JC03 Rec'd PCT/PTO 2 7 APR 2001

FORM PTO-1390 (Modelads II S DEDARTMENT OF	COMMERCE PATENT AND TRADEMARK OFFICE	ATTORNEY'S DOCKET NUMBER									
(REV 5-93)		•										
TRANSMITTAL LETTER TO THE UNITED STATES 032931/0251												
DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371												
	ONCERNING A FILING	J ONDER 33 0.3.C. 371	US APPLICATION PORTE TO BE ASSIGNED TO BE ASSIGNED.									
INTERPALATE.	ONAL APPLICATION NO.	INTERNATIONAL FILING DATE										
PCT/CAS		28 October 1999	28 October 1998									
TITLE OF IN		ECDONDING DNA EDACMENTS	ND LICEC THEREOF									
CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF APPLICANT(S) FOR DO/EO/US												
Andrew D. MURDIN, Raymond P. OOMEN and Joe WANG Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:												
I		-										
1.	This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.											
2. 🗆	This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.											
3. 🗌	This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).											
4. 🗆	A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.											
5. 🛛	A copy of the International Application as filed (35 U.S.C. 371(c)(2)) is transmitted herewith (required only if not transmitted by the International Bureau). has been transmitted by the International Bureau. is not required, as the application was filed in the United States Receiving Office (RO/US)											
6. 🗆	A translation of the International Application into English (35 U.S.C. 371(c)(2)).											
7. 🗵	Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) are transmitted herewith (required only if not transmitted by the International Bureau). have been transmitted by the International Bureau. have not been made; however, the time limit for making such amendments has NOT expired. have not been made and will not be made.											
8.	A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).											
9. 🗆	An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).											
10.	A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).											
11.	Applicant claims small entity st	atus under 37 CFR 1.27 .										
Items 12. to 1	below concern other document	(s) or information included:										
12.	An Information Disclosure Statement under 37 CFR 1.97 and 1.98.											
13.	An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.											
14. 🖾	A FIRST preliminary amendment. A SECOND or SUBSEQUENT preliminary amendment.											
15. 🗆	A substitute specification.											
16.	A change of power of attorney and/or address letter.											
17. 🗆	Other items or information:											

U.S. APPLICATION NO. (If known, 25, 27 G.F.R. 1 39 4 4 6 PCT/CA99/00992							O32931/0251			
18. ☑The following fees are submitted:							CALCULATIO	N	PTO USE ONLY	
	Fee (37 CFR 1.4									
			ne EPO or JPO				\$860.00	1		
			fee paid to USPTO				\$690.00			
but international	I search fee paid	to US	ion fee paid to USF PTO (37 CFR 1.44	5(a)	(2)		\$710.00			
International sea	arch fee (37 CFF	1.44	nination fee (37 CF 5(a)(2)) paid to US	PTO.			\$1,000.00			
			fee paid to USPTO CT Article 33(2)-(4				\$100.00			
	ENTE	R AI	PPROPRIATE I	BAS	IC FEE A	M	DUNT =	\$860	0.00	
urcharge of \$130.00) for furnishing t	ie oat	h or declaration late	r tha	ın 20					
Aonths from the earl	iest claimed prio	rity d a	ite (37 CFR 1.492(e))						İ
Claims	Number Filed		Included in Basic Fee		Extra Claims		Rate			
Total Claims	39	-	20	П	19	×	\$18.00	\$342.00		
ndependent Claims	8	-	3	=	5	×	\$80.00	\$400.00		
Aultiple dependent el	laim(s) (if applica	ible)					\$270.00			
		TC	TAL OF ABO	VE	CALCUL	AT	ONS =	\$1602.00		
Reduction by ½ for filing by small entity, if applicable.								\$0.00		
SUBTOTAL =							\$1602.00			
Processing fee of \$13 nonths from the earli					e 20		+			
			TOT	`AL	NATION	IAL	FEE =	\$1602	2.00	
ee for recording the ecompanied by an ap										
			TOTA	LI	EES EN	CLC	SED =	\$1602	2.00	
								Amount to be: refunded		
						-			s	
-	L		l			_		Charged		
. A check in	the amount of \$	1602.0	00 to cover the above	ve fe	es is enclose	d.				
								s. A duplicate copy		
			orized to charge an te copy of this shee			whic	ch may be requ	iired, or credit any o	verpa	yment to Depo
NOTE: Where an ap .137(a) or (b)) must								n to revive (37 CFR		
END ALL CORRESP	ONDENCE TO:		-			_	13	500	1	E.
FOLEY & I 3000 K Stre	LARDNER et, N.W., Suit	e 500				SIGN.	ATURE			-7
	, DC 20007					NAM	E BERNHARE	D. SAXE		

REGISTRATION NUMBER 28,665

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No: 032931/0251

In re patent application of MURDIN, Andrew D. et al.

Serial No.: Not Assigned

Group Art Unit: Not Assigned

(U.S Entry of PCT/CA99/00992)

Filed: October 28, 1999 (International Filing Date) Examiner: Not Assigned

US Entry Date: April 27, 2001

For: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF

AMENDMENT ACCOMPANYING SUBMISSION OF SEQUENCE LISTING

Assistant Commissioner for Patents Washington, D.C. 20231 Box SEQUENCE

Sir:

In order to comply with the requirements for patent applications containing amino acid and/or sequence disclosures, please amend the application as follows:

IN THE SPECIFICATION:

At the end of the specification, please insert the printed Sequence Listing submitted concurrently herewith.

REMARKS

Applicants submit this Amendment to insert the required references to SEQ ID NOS of the Sequence Listing filed concurrently herewith, and to indicate the insertion point for the Sequence Listing. Applicants respectfully request examination on the merits of this application.

Respectfully submitted,

June 22, 2001

Joy D. Morrow

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No: 032931/0251

In re patent application of MURDIN, Andrew D. et al.

Serial No.: U.S. National Entry

of PCT/CA99/00992

Group Art Unit: 1643

Filed: October 28, 1999

Examiner: Not assigned

For: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND

USES THEREOF

STATEMENT TO SUPPORT FILING AND SUBMISSION IN ACCORDANCE with 37 C.F.R. §§ 1.821-1.825

Assistant Commissioner for Patents Washington, D.C. 20231 Box SEQUENCE

Sir:

In connection with a Sequence Listing submitted concurrently herewith, the undersigned hereby states that:

- 1. the submission, filed herewith in accordance with 37 C.F.R. § 1.821(g), does not include new matter; and
- e.2. the content of the attached paper copy and the attached computer readable copy of the Sequence Listing, submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are the same.

Respectfully submitted.

__25 May 2001_ Date ()

Joy D. Morrow

531 Rec'd PC. 27 APR 2001 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Andrew D. MURDIN

Title:

CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF

Appl. No.:

To be assigned

Filing Date:

April 27, 2001

Examiner:

Unassigned

Art Unit:

Unassigned

PRELIMINARY AMENDMENT

Commissioner for Patents Washington, D.C. 20231

5 Sir:

Prior to examination of the above-identified application, Applicants respectfully request that the following amendments be entered into the application:

10 IN THE CLAIMS:

Please cancel claims 1-24 in their entirety without prejudice or disclaimer and therefore insert new claims 25-63.

- 15 25. (New) A nucleic acid molecule comprising a nucleic acid sequence which encodes a polypeptide selected from any of:
 - (a) SEQ ID Nos: 27 to 45;
 - (b) an immunogenic fragment comprising at least 12 consecutive amino acids from a polypeptide of (a); and
- 20 (c) a polypeptide of (a) or (b) which has been modified without loss of immunogenicity, wherein said modified polypeptide is at least 75% identical in amino acid sequence to the corresponding polypeptide of (a) or (b).

- (New) A nucleic acid molecule comprising a nucleic acid sequence selected from any of:
 - (a) SEQ ID Nos: 1 to 26;
- 5 (b) a sequence which encodes a polypeptide encoded by any one of SEQ ID Nos: 1 to 26:
 - (c) a sequence comprising at least 38 consecutive nucleotides from any one of the nucleic acid sequences of (a) and (b); and
- (d) a sequence which encodes a polypeptide which is at least 75% identical in amino acid sequence to any one of the polypeptides encoded by SEQ ID Nos: 1 to 26.
 - 27. (New) A nucleic acid molecule comprising a nucleic acid sequence which is antisense to the nucleic acid molecule of claim 25.
 - 28. (New) A nucleic acid molecule comprising a nucleic acid sequence which encodes a fusion protein, said fusion protein comprising a polypeptide encoded by a nucleic acid molecule according to claim 25 and a second polypeptide.
 - 29. (New) The nucleic acid molecule of claim 28 wherein the second polypeptide is a heterologous signal peptide.
 - (New) The nucleic acid molecule of claim 28 wherein the second polypeptide has adjuvant activity.
- 20 31. (New) A nucleic acid molecule according to claim 25, operatively linked to one or more expression control sequences.
 - 32. (New) A vaccine comprising a vaccine vector and at least one first nucleic acid selected from any of:
 - (i) SEO ID Nos: 1 to 26;

1.5

25 (ii) a nucleic acid sequence which encodes a polypeptide encoded by any one of SEQ ID Nos: 1 to 26:

- (iii) a nucleic acid sequence comprising at least 38 consecutive nucleotides from any one of the nucleic acid sequences of (i) and (ii);
- $\label{eq:continuous} \mbox{(iv) a nucleic acid sequence which encodes a polypeptide which is at least 75% identical in amino acid sequence to the polypeptide encoded by any one of SEQ ID Nos: 1 to 26;$
- 5 (v) a nucleic acid sequence which encodes a polypeptide whose sequence is set forth in any one of SEQ ID Nos: 27 to 45;
 - (vi) a nucleic acid sequence which encodes an immunogenic fragment comprising at least 12 consecutive amino acids from any one of SEO ID Nos: 27 to 45; and
- (vii) a nucleic acid sequence which encodes a polypeptide as defined in (v) or an immunogenic fragment as defined in (vi) which has been modified without loss of immunogenicity, wherein said modified polypeptide or fragment is at least 75% identical in amino acid sequence to the corresponding polypeptide of (v) or the corresponding fragment of (vi);

wherein each first nucleic acid is capable of being expressed.

- 33. (New) A vaccine comprising a vaccine vector and at least one first nucleic acid encoding a fusion protein, wherein the fusion protein comprises:
 - (a) a first polypeptide selected from any of:

20

25

- (i) a polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
- (ii) a polypeptide encoded by a nucleic acid sequence comprising at least 38 consecutive nucleotides from any one of SEO ID Nos: 1 to 26:
- (iii) a polypeptide which is at least 75% identical in amino acid sequence to the polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
 - (iv) a polypeptide whose sequence is set forth in any one of SEQ ID Nos: 27 to 45;
- (v) an immunogenic fragment comprising at least 12 consecutive amino acids from any one of SEQ ID Nos: 27 to 45; and
- (vi) a polypeptide as defined (iv) or an immunogenic fragment as defined in (v) which has been modified without loss of immunogenicity, wherein said modified polypeptide or fragment is at least 75% identical in amino acid sequence to the corresponding polypeptide of (iv) or the corresponding fragment of (v); and

(b) a second polypeptide:

10

wherein each first nucleic acid is capable of being expressed.

- 34. (New) The vaccine of claim 33 wherein the second polypeptide is a heterologous signal peptide.
- 5 35. (New) The vaccine of claim 33 wherein the second polypeptide has adjuvant activity.
 - 36. (New) The vaccine of claim 32 wherein each first nucleic acid is operatively linked to one or more expression control sequences.
 - 37. (New) A vaccine according to claim 32 wherein each first nucleic acid is expressed as a polypeptide, and wherein the vaccine comprises a second nucleic acid encoding an additional polypeptide which enhances the immune response to the polypeptide expressed by the first nucleic acid
 - 38. (New) The vaccine of claim 37 wherein the second nucleic acid encodes an additional *Chlamydia* polypeptide.
- 39. (New) A pharmaceutical composition comprising a nucleic acid according to claim 25
 and a pharmaceutically acceptable carrier.
 - 40. (New) A pharmaceutical composition comprising a vaccine according to claim 32 and a pharmaceutically acceptable carrier.
 - 41. (New) A unicellular host transformed with the nucleic acid molecule of claim 31.
- 42. (New) An isolated nucleic acid probe of 5 to 100 nucleotides which hybridizes under stringent conditions to any one of nucleic acid molecules of SEQ ID Nos: 1 to 26, or to a complementary or anti-sense sequence of said nucleic acid molecule.
 - 43. (New) A primer of 10 to 40 nucleotides which hybridizes under stringent conditions to any one of nucleic acid molecules of SEQ ID Nos: 1 to 26, or to a homolog or complementary or anti-sense sequence of said nucleic acid molecule.
- 25 44. (New) A polypeptide encoded by a nucleic acid sequence according to claim 26.

- 45. (New) A polypeptide comprising an amino acid sequence selected from any of-
 - (a) SEO ID Nos: 27 to 45:
- (b) an immunogenic fragment comprising at least 12 consecutive amino acids from a polypeptide of (a); and
- 5 (c) a polypeptide of (a) or (b) which has been modified without loss of immunogenicity, wherein said modified polypeptide is at least 75% identical in amino acid sequence to the corresponding polypeptide of (a) or (b).
 - 46. (New) A fusion protein comprising a polypeptide of claim 44 and a second polypeptide.
- 10 47. (New) The fusion protein of claim 46 wherein the second polypeptide is a heterologous signal peptide.
 - 48. (New) The fusion protein of claim 46 wherein the second polypeptide has adjuvant activity.
- (New) A method for producing a polypeptide, comprising the step of culturing a
 unicellular host of claim 41 and recovering the resultant polypeptide.
 - 50. (New) An antibody against the polypeptide of claim 44.
 - 51. (New) A vaccine comprising at least one first polypeptide selected from any of:
 - (i) a polypeptide encoded by any one of SEO ID Nos: 1 to 26;
- (ii) a polypeptide encoded by a nucleic acid sequence comprising at least 38
 consecutive nucleotides from any one of SEO ID Nos: 1 to 26;
 - (iii) a polypeptide which is at least 75% identical in amino acid sequence to the polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
 - (iv) a polypeptide whose sequence is set forth in any one of SEO ID Nos: 27 to 45;
- (v) an immunogenic fragment comprising at least 12 consecutive amino acids fromany one of SEO ID Nos: 27 to 45; and
 - (vi) a polypeptide as defined in (iv) or an immunogenic fragment as defined in (v) which has been modified without loss of immunogenicity, wherein said modified polypeptide or

fragment is at least 75% identical in amino acid sequence to the corresponding polypeptide of (iv) or the corresponding fragment of (v).

- 52. (New) A vaccine comprising at least one fusion protein, wherein the fusion protein comprises:
- 5 (a) a first polypeptide selected from any of:
 - (i) a polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
 - (ii) a polypeptide encoded by a nucleic acid sequence comprising at least 38 consecutive nucleotides from any one of SEQ ID Nos: 1 to 26;
- (iii) a polypeptide which is at least 75% identical in amino acid sequence to the 10 polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
 - (iv) a polypeptide whose sequence is set forth in any one of SEQ ID Nos: 27 to 45;
 - $\label{eq:consecutive} (v) \ an \ immunogenic \ fragment \ comprising \ at \ least \ 12 \ consecutive \ amino \ acids \ from \ any \ one \ of \ SEQ \ ID \ Nos: \ 27 \ to \ 45; \ and \$
- (vi) a polypeptide as defined (iv) or an immunogenic fragment as defined in (v) which has been modified without loss of immunogenicity, wherein said modified polypeptide or fragment is at least 75% identical in amino acid sequence to the corresponding polypeptide of (iv) or the corresponding fragment of (v); and
 - (b) a second polypeptide.
- 53. (New) The vaccine of claim 52 wherein the second polypeptide is a heterologous
 20 signal peptide.
 - 54. (New) The vaccine of claim 52 wherein the second polypeptide has adjuvant activity.
 - 55. (New) A vaccine comprising at least one first polypeptide according to claim 44 and an additional polypeptide which enhances the immune response to the first polypeptide.
- 56. (New) The vaccine of claim 55 wherein the additional polypeptide comprises a25 Chlamydia polypeptide.
 - (New) A pharmaceutical composition comprising a polypeptide according to claim 44 and a pharmaceutically acceptable carrier.

- 58. (New) A pharmaceutical composition comprising a vaccine according to claim 51 and a pharmaceutically acceptable carrier.
- (New) A pharmaceutical composition comprising an antibody according to claim 50 and a pharmaceutically acceptable carrier.
- 60. (New) A method for preventing or treating Chlamydia infection comprising administering to a patient an effective amount of:
 - (a) a nucleic acid molecule according to claim 26; or
 - (b) a vaccine comprising a vaccine vector and at least one first nucleic acid according to claim 26; or
- 10 (c) a pharmaceutical composition comprising a nucleic acid according to claim 26 and a pharmaceutically acceptable carrier; or
 - (d) a polypeptide encoded by a nucleic acid sequence according to claim 26; or
 - (e) an antibody against a polypeptide encoded by a nucleic acid sequence according to claim 26.
- 15 61. (New) A method of detecting Chlamydia infection comprising the step of contacting a body fluid of a mammal to be tested, with a component selected from any one of:
 - (a) a nucleic acid molecule according to claim 26:
 - (b) a polypeptide encoded by a nucleic acid sequence according to claim 26; and
 - (c) an antibody against a polypeptide encoded by a nucleic acid sequence according to
 - 62. (New) A diagnostic kit comprising instructions for use and a component selected from any one of:
 - (a) a nucleic acid molecule according to claim 26;

20

claim 26.

- (b) a polypeptide encoded by a nucleic acid sequence according to claim 26; and
- 25 (c) an antibody against a polypeptide encoded by a nucleic acid sequence according to claim 26.
 - 63. (New) A method for identifying a polypeptide of claim 44 which induces an immune response effective to prevent or lessen the severity of *Chlamydia* infection in a mammal previously immunized with polypeptide, comprising the steps of:

- (a) immunizing a mouse with a polypeptide of claim 44; and
- (b) inoculating the immunized mouse with Chlamydia;

wherein the polypeptide which prevents or lessens the severity of *Chlamydia* infection in the immunized mouse compared to a non-immunized control mouse is identified.

REMARKS

The Examiner is respectfully requested to enter the above amendment prior to examination of the instant application.

Respectfully submitted,

Date April 27, 2001

FOLEY & LARDNER
Washington Harbour
3000 K Street, N.W., Suite 500
Washington, D.C. 20007-5109
Telephone: (202) 672-5414
Facsimile: (202) 672-5399

Bernhard D. Saxe Attorney for Applicant Registration No. 28,665 165/PRTS

WO 00/24765

531 Rec'd PCT/F-PCT/2/79/APR 2001

TITLE OF INVENTION

CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

5 REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S.

Provisional Application No. 60/106034, filed October 28, 1998,
U.S. Provisional Application No.60/106039, filed October 28,
1998,U.S. Provisional Application No. 60/106042, filed October

- 10 28, 1998, U.S. Provisional Application No. 60/106044, filed October 28, 1998, U.S. Provisional Application No. 60/106072, filed October 29, 1998, U.S. Provisional Application No. 60/106073, filed October 29, 1998, U.S. Provisional Application No. 60/106074, filed October 29, 1998, U.S. Provisional
- 15 Application No. 60/106087, filed October 29, 1998, U.S.
 Provisional Application No. 60/106587, filed November 2, 1998,
 U.S. Provisional Application No. 60/106588, filed November 2,
 1998, U.S. Provisional Application No. 60/107089, filed November
 2, 1998, U.S. Provisional Application No. 60/107034, filed
- 20 November 2, 1998 and U.S. Provisional Application No. 60/107035, filed November 2, 1998.

FIELD OF INVENTION

The present invention relates to *Chlamydia* antigens 25 and corresponding DNA molecules, which can be used to prevent and treat *Chlamydia* infection in mammals, such as humans.

BACKGROUND OF THE INVENTION

Chlamydiae are prokaryotes. They exhibit morphologic 30 and structural similarities to gram-negative bacteria including a trilaminar outer membrane, which contains lipopolysaccharide and several membrane proteins that are structurally and functionally analogous to proteins found in *E coli*. They are obligate intra-cellular parasites with a unique biphasic life

cycle consisting of a metabolically inactive but infectious extracellular stage and a replicating but non-infectious intracellular stage. The replicative stage of the life-cycle takes place within a membrane-bound inclusion which sequesters the bacteria away from the cytoplasm of the infected host cell.

- C. pneumoniae is a common human pathogen, originally described as the TWAR strain of Chlamydia psittaci but subsequently recognised to be a new species. C. pneumoniae is antigenically, genetically and morphologically distinct from 10 other chlamydia species (C. trachomatis, C. pecorum and C.
 - psittaci). It shows 10% or less DNA sequence homology with
 either of C.trachomatis or C.psittaci.
- C. pneumoniae is a common cause of community acquired pneumonia, only less frequent than Streptococcus pneumoniae and 15 Mycoplasma pneumoniae (Grayston et al. (1995) Journal of
- Infectious Diseases 168:1231; Campos et al. (1995) Investigation of Ophthalmology and Visual Science 36:1477). It can also cause upper respiratory tract symptoms and disease, including bronchitis and sinusitis (Grayston et al. (1995) Journal of
- 20 Infectious Diseases 168:1231; Grayston et al (1990) Journal of Infectious Diseases 161:618; Marrie (1993) Clinical Infectious Diseases. 18:501; Wang et al (1986) Chlamydial infections).
 - Diseases. 18:501; Wang et al (1986) Chlamydial infections).

 Cambridge University Press, Cambridge. p. 329The great majority of the adult population (over 60%) has antibodies to C.
- 25 pneumoniae (Wang et al (1986) Chlamydial infections. Cambridge University Press, Cambridge. p. 329), indicating past infection which was unrecognized or asymptomatic.
- C. pneumoniae infection usually presents as an acute respiratory disease (i.e., cough, sore throat, hoarseness, and 30 fever; abnormal chest sounds on auscultation). For most patients, the cough persists for 2 to 6 weeks, and recovery is slow. In approximately 10% of these cases, upper respiratory tract infection is followed by bronchitis or pneumonia.

 Furthermore, during a C. pneumoniae epidemic, subsequent

3

PCT/CA99/00992

co-infection with pneumococcus has been noted in about half of these pneumonia patients, particularly in the infirm and the elderly. As noted above, there is more and more evidence that C. pneumoniae infection is also linked to diseases other than 5 respiratory infections.

The reservoir for the organism is presumably people. In contrast to C. psittaci infections, there is no known bird or animal reservoir. Transmission has not been clearly defined. It may result from direct contact with secretions, from fomites, or 10 from airborne spread. There is a long incubation period, which may last for many months. Based on analysis of epidemics, C. pneumoniae appears to spread slowly through a population (caseto-case interval averaging 30 days) because infected persons are inefficient transmitters of the organism. Susceptibility to C.

- 15 pneumoniae is universal. Reinfections occur during adulthood, following the primary infection as a child. C. pneumoniae appears to be an endemic disease throughout the world, noteworthy for superimposed intervals of increased incidence (epidemics) that persist for 2 to 3 years. C.trachomatis
- 20 infection does not confer cross-immunity to C. pneumoniae. Infections are easily treated with oral antibiotics, tetracycline or erythromycin (2 g/d, for at least 10 to 14 d). A recently developed drug, azithromycin, is highly effective as a single-dose therapy against chlamydial infections.
- 25 In most instances, C. pneumoniae infection is often mild and without complications, and up to 90% of infections are subacute or unrecognized. Among children in industrialized countries, infections have been thought to be rare up to the age of 5 y, although a recent study (E Normann et al, Chlamydia
- 30 pneumoniae in children with acute respiratory tract infections, Acta Paediatrica, 1998, Vol 87, Iss 1, pp 23-27) has reported that many children in this age group show PCR evidence of infection despite being seronegative, and estimates a prevalence of 17-19% in 2-4 y olds. In developing countries, the

. .

seroprevalence of *C. pneumoniae* antibodies among young children is elevated, and there are suspicions that *C. pneumoniae* may be an important cause of acute lower respiratory tract disease and mortality for infants and children in tropical regions of the 5 world.

From seroprevalence studies and studies of local epidemics, the initial *C. pneumoniae* infection usually happens between the ages of 5 and 20 y. In the USA, for example, there are estimated to be 30,000 cases of childhood pneumonia each 10 year caused by *C. pneumoniae*. Infections may cluster among groups of children or young adults (e.g., school pupils or military conscripts).

- C. pneumoniae causes 10 to 25% of community-acquired lower respiratory tract infections (as reported from Sweden,
- 15 Italy, Finland, and the USA). During an epidemic, C. pneumonia infection may account for 50 to 60% of the cases of pneumonia. During these periods, also, more episodes of mixed infections with S. pneumoniae have been reported.

Reinfection during adulthood is common; the clinical
20 presentation tends to be milder. Based on population
seroprevalence studies, there tends to be increased exposure
with age, which is particularly evident among men. Some
investigators have speculated that a persistent, asymptomatic C.
pneumoniae infection state is common.

- In adults of middle age or older, *C. pneumoniae* infection may progress to chronic bronchitis and sinusitis. A study in the USA revealed that the incidence of pneumonia caused by *C. pneumoniae* in persons younger than 60 years is 1 case per 1,000 persons per year; but in the elderly, the disease
- 30 incidence rose three-fold. *C. pneumoniae* infection rarely leads to hospitalization, except in patients with an underlying illness.

Of considerable importance is the association of atherosclerosis and *C. pneumoniae* infection. There are several

5

PCT/CA99/00992

- epidemiological studies showing a correlation of previous infections with *C. pneumoniae* and heart attacks, coronary artery and carotid artery disease (Saikku *et al.*(1988) Lancet;ii:983; Thom *et al.* (1992) JAMA 268:68; Linnanmaki *et al.* (1993),
- 5 Circulation 87:1030; Saikku et al. (1992)Annals Internal Medicine 116:273; Melnick et al(1993) American Journal of Medicine 95:499). Moreover, the organisms has been detected in atheromas and fatty streaks of the coronary, carotid, peripheral arteries and aorta (Shor et al. (1992) South African. Medical
- 10 Journal 82:158; Kuo et al. (1993) Journal of Infectious Diseases 167:841; Kuo et al. (1993) Arteriosclerosis and Thrombosis 13:1500; Campbell et al (1995) Journal of Infectious Diseases 172:585; Chiu et al. Circulation, 1997 (In Press)). Viable C. pneumoniae has been recovered from the coronary and carotid
- 15 artery (Ramirez et al (1996) Annals of Internal Medicine
 125:979; Jackson et al. Abst. K121, p272, 36th ICAAC, 15-18
 Sept. 1996, New Orleans). Furthermore, it has been shown that
 C. pneumoniae can induce changes of atherosclerosis in a rabbit
 model (Fong et al (1997) Journal of Clinical Microbiolology
- 20 35:48). Taken together, these results indicate that it is highly probable that C. pneumoniae can cause atherosclerosis in humans, though the epidemiological importance of chlamydial atherosclerosis remains to be demonstrated.
- A number of recent studies have also indicated an 25 association between *C. pneumoniae* infection and asthma. Infection has been linked to wheezing, asthmatic bronchitis, adult-onset asthma and acute exacerbations of asthma in adults, and small-scale studies have shown that prolonged antibiotic treatment was effective at greatly reducing the severity of the 30 disease in some individuals (Hahn DL, et al. Evidence for Chlamydia pneumoniae infection in steroid-dependent asthma. Ann Allergy Asthma Immunol. 1998 Jan; 80(1): 45-49.; Hahn DL, et al. Association of Chlamydia pneumoniae IgA antibodies with recently symptomatic asthma. Epidemiol Infect. 1996 Dec;

117(3): 513-517; Bjornsson E, et al. Serology of chlamydia in relation to asthma and bronchial hyperresponsiveness. Scand J Infect Dis. 1996; 28(1): 63-69.; Hahn DL. Treatment of Chlamydia pneumoniae infection in adult asthma: a before-after trial. J

- Fam Pract. 1995 Oct; 41(4): 345-351.; Allegra L, et al. Acute exacerbations of asthma in adults: role of Chlamydia pneumoniae infection. Eur Respir J. 1994 Dec; 7(12): 2165-2168.; Hahn DL, et al. Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset
- 10 asthma. JAMA. 1991 Jul 10; 266(2): 225-230).
- In light of these results a protective vaccine against C. pneumoniae infection would be of considerable importance. There is not yet an effective vaccine for any human chlamydial infection. It is conceivable that an effective vaccine can be developed using physically or chemically inactivated Chlamydiae. However, such a vaccine does not have a high margin of safety. In general, safer vaccines are made by genetically manipulating
- Accordingly, a major obstacle in creating an effective and safe 20 vaccine against human chlamydial infection has been the paucity of genetic information regarding Chlamydia, specifically C. pneumoniae.

the organism by attenuation or by recombinant means.

 $\mbox{Studies with C. $trachomatis$ and C. $psittaci$ indicate} \\ \mbox{that safe and effective vaccine against C chlamydia is an} \\$

- 25 attainable goal. For example, mice which have recovered from a lung infection with C. trachomatis are protected from infertility induced by a subsequent vaginal challenge (Pal et al.(1996) Infection and Immunity.64:5341). Similarly, sheep immunized with inactivated C. psittaci were protected from
- 30 subsequent chlamydial-induced abortions and stillbirths (Jones et al. (1995) Vaccine 13:715). Protection from chlamydial infections has been associated with Th1 immune responses, particularly the induction of INFg producing CD4+T-cells (Igietsemes et al. (1993) Immunology 5:317). The adoptive

7

PCT/CA99/00992

transfer of CD4+ cell lines or clones to nude or SCID mice conferred protection from challenge or cleared chronic disease (Igietseme et al (1993) Regional Immunology 5:317; Magee et al (1993) Regional Immunology 5: 305), and in vivo depletion of 5 CD4+ T cells exacerbated disease post-challenge (Landers et al (1991) Infection & Immunity 59:3774; Magee et al (1995) Infection & Immunity 63:516). However, the presence of sufficiently high titres of neutralising antibody at mucosal surfaces can also exert a protective effect (Cotter et al.

Antigenic variation within the species *C. pneumoniae* is not well documented due to insufficient genetic information, though variation is expected to exist based on *C. trachomatis*.

Serovars of *C. trachomatis* are defined on the basis of antigenic

10 (1995) Infection and Immunity 63:4704).

- 15 variation in MOMP, but published *C. pneumoniae* MOMP gene sequences show no variation between several diverse isolates of the organism (Campbell et *al* (1990) Infection and Immunity 58:93; McCafferty et *al* (1995) Infection and Immunity 63:2387-9; Knudsen et *al* (1996) Third Meeting of the European Society for
- 20 Chlamydia Research, Vienna). Regions of the protein known to be conserved in other chlamydial MOMPs are conserved in *C. pneumoniae* (Campbell *et al* (1990) Infection and Immunity 58:93;

 McCafferty *et al* (1995) Infection and Immunity 63:2387-9). One study has described a strain of *C. pneumoniae* with a MOMP of
- 25 greater that usual molecular weight, but the gene for this has not been sequenced (Grayston et al. (1995) Journal of Infectious Diseases 168:1231). Partial sequences of outer membrane protein 2 from nine diverse isolates were also found to be invariant (Ramirez et al (1996) Annals of Internal Medicine 125:979). The
- 30 genes for HSP60 and HSP70 show little variation from other chlamydial species, as would be expected. The gene encoding a 76kDa antigen has been cloned from a single strain of C.

 pneumoniae. It has no significant similarity with other known

8

chlamydial genes (Marrle (1993) Clinical Infectious Diseases. 18:501).

Many antigens recognised by immune sera to C.

pneumoniae are conserved across all Chlamydiae, but 98kDa,

76kDa and 54kDa proteins appear to be C. pneumoniae-specific
(Campos et al. (1995) Investigation of Ophthalmology and Visual
Science 36:1477; Marrie (1993) Clinical Infectious Diseases.

18:501; Wiedmann-Al-Ahmad M, et al. Reactions of polyclonal and
neutralizing anti-p54 monoclonal antibodies with an isolated,

10 species-specific 54-kilodalton protein of Chlamydia pneumoniae.

Clin Diagn Lab Immunol. 1997 Nov; 4(6): 700-704). A
publication relevant to 98KDa proteins is Perez Melgosa et al.

FEMS Microbiology Letters. 112(2): 199-204. 1993

Immunoblotting of isolates with sera from patients

does show variation of blotting patterns between isolates,
indicating that serotypes *C. pneumoniae* may exist (Ref 1,16).

However, the results are potentially confounded by the
infection status of the patients, since immunoblot profiles of
a patient's sera change with time post-infection. An

assessment of the number and relative frequency of any
serotypes, and the defining antigens, is not yet possible.

Accordingly, a need exists for identifying and isolating polynucleotide sequences of *C. pneumoniae* for use in preventing and treating Chlamydia infection.

25 SUMMARY OF THE INVENTION

The present invention provides purified and isolated polynucleotide molecules that encode *Chlamydia* polypeptides which can be used in methods to prevent, treat, and diagnose *Chlamydia* infection. In one form of the invention, the polynucleotide molecules are selected from DNA that encode polypeptides CPN100397 (SEQ ID Nos: 1 and 2), CPN100421 (SEQ ID

HAT TO BE IN THE FIRM OF SECONDIE SIND

10-11-2000

13

77813-1

8*a*

Nos: 3 and 4), CPN100422 (SEQ ID Nos: 5 and 6), CPN100424 (SEQ ID Nos: 7 and 8), CPN100426 (SEQ ID Nos: 9 and 10), CPN100506 (SEQ ID Nos: 11 and 12), CPN100515 (SEQ ID Nos: 13 and 14), CPN100538 (SEQ ID Nos: 15 and 16), CPN100557 (SEQ ID Nos: 17

5 and

a

PCT/CA99/00992

18), CPN100622 (SEQ ID Nos: 19 and 20), CPN100626 (SEQ ID Nos: 21 and, 22), CPN100628 (SEQ ID Nos: 23 and 24) and CPN100630 (SEO ID Nos: 25 and 26).

Another form of the invention provides polypeptides
5 corresponding to the isolated DNA molecules. The amino acid
sequences of the corresponding encoded polypeptides are shown
for CPN100397 as SEQ ID Nos: 27 and 28, CPN100421 as SEQ ID No:
29, CPN100422 as SEQ ID No: 30, CPN100424 as SEQ ID No: 31,
CPN100426 as SEQ ID No: 32, CPN100508 as SEQ ID Nos: 33 and 34,
10 CPN100515 as SEQ ID Nos: 35 and 36, CPN100538 as SEQ ID No: 37,
CPN100557 as SEQ ID Nos: 38 and 39, CPN100622 as SEQ ID Nos: 40
and 41, CPN100626 as SEQ ID No: 42, CPN100628 as SEQ ID No: 43
and CPN100630 as SEQ ID Nos: 44 and 45.

Those skilled in the art will readily understand that the invention, having provided the polynucleotide sequences encoding Chlamydia polypeptides, also provides polynucleotides encoding fragments derived from such peptides. Moreover, the invention is understood to provide mutants and derivatives of such polypeptides and fragments derived therefrom, which result from 20 the addition, deletion, or substitution of non-essential amino acids as described herein. Those skilled in the art would also readily understand that the invention, having provided the polynucleotide sequences encoding Chlamydia polypeptides, further provides monospecific antibodies that specifically bind 25 to such polypeptides

The present invention has wide application and includes expression cassettes, vectors, and cells transformed or transfected with the polynucleotides of the invention.

Accordingly, the present invention further provides (i) a method 30 for producing a polypeptide of the invention in a recombinant host system and related expression cassettes, vectors, and transformed or transfected cells; (ii) a vaccine, or a live vaccine vector such as a pox virus, Salmonella typhimurium, or Vibrio cholerae vector, containing a polynucleotide of the

10

invention, such vaccines and vaccine vectors being useful for, e.g., preventing and treating Chlamydia infection, in combination with a diluent or carrier, and related pharmaceutical compositions and associated therapeutic and/or prophylactic methods; (iii) a therapeutic and/or prophylactic use of an RNA or DNA molecule of the invention, either in a naked form or formulated with a delivery vehicle, a polypeptide or combination of polypeptides, or a monospecific antibody of the invention, and related pharmaceutical compositions; (iv) a method for diagnosing the presence of Chlamydia in a biological sample, which can involve the use of a DNA or RNA molecule, a monospecific antibody, or a polypeptide of the invention; and (v) a method for purifying a polypeptide of the invention by antibody-based affinity chromatography.

BRIEF DESCRIPTION OF THE DRAWINGS

15

The present invention will be further understood from the following description with reference to the drawings, in which:

Figure 1 shows the nucleotide sequence of the CPN100397

20 (SEQ ID No: 1 - entire sequence and SEQ ID No: 2 - coding sequence) and the deduced amino acid sequence of the CPN100397 protein from Chlamydia pneumoniae (SEQ ID No: 27 and 28).

Figure 2 shows the restriction enzyme analysis of the gene encoding the *C. pneumoniae* CPN100397 gene.

25 Figure 3 shows the nucleotide sequence of the CPN100421 (SEQ ID No: 3 - entire sequence and SEQ ID No: 4 - coding sequence) and the deduced amino acid sequence of the CPN100421 protein from Chlamydia pneumoniae (SEQ ID No: 29).

Figure 4 shows the restriction enzyme analysis of the 30 gene encoding the $C.\ pneumoniae\ CPN100421$ gene.

Figure 5 shows the nucleotide sequence of the CPN100422 (SEQ ID No: 5 - entire sequence and SEQ ID No: 6 - coding sequence) and the deduced amino acid sequence of the CPN100422 protein from Chlamydia pneumoniae (SEQ ID No: 30).

PCT/CA99/00992

Figure 6 shows the restriction enzyme analysis of the gene encoding the $\emph{C. pneumoniae}$ CPN100422 gene.

Figure 7 shows the nucleotide sequence of the CPN100424 (SEQ ID No: 7 - entire sequence and SEQ ID No: 8 - coding 5 sequence) and the deduced amino acid sequence of the CPN100424 protein from Chlamydia pneumoniae (SEQ ID No: 31).

Figure 8 shows the restriction enzyme analysis of the gene encoding the $\emph{C. pneumoniae}$ CPN100424 gene.

Figure 9 shows the nucleotide sequence of the CPN100426

10 (SEQ ID No: 9 - entire sequence and SEQ ID No: 10 - coding sequence) and the deduced amino acid sequence of the CPN100426 protein from Chlamydia pneumoniae (SEQ ID No: 32).

Figure 10 shows the restriction enzyme analysis of the gene encoding the $\emph{C. pneumoniae}$ CPN100426 gene.

15 Figure 11 shows the nucleotide sequence of the CPN100508 (SEQ ID No: 11 - entire sequence and SEQ ID No: 12 - coding sequence) and the deduced amino acid sequence of the CPN100508protein from Chlamydia pneumoniae (SEQ ID No: 33 - full length sequence and SEQ ID No: 34 - processed sequence).

20 Figure 12 shows the restriction enzyme analysis of the gene encoding the *C. pneumoniae* CPN100508 gene.

Figure 13 shows the nucleotide sequence of the CPN100515 (SEQ ID No: 13 - entire sequence and SEQ ID No: 14 - coding sequence) and the deduced amino acid sequence of the CPN100515 protein from Chlamydia pneumoniae (SEQ ID No: 35 - full length sequence and SEQ ID No: 36 - processed sequence).

Figure 14 shows the restriction enzyme analysis of the gene encoding the $\it C.\ pneumoniae\ CPN100515$ gene.

Figure 15 shows the nucleotide sequence of the CPN100538

30 (SEQ ID No: 15 - entire sequence and SEQ ID No: 16 - coding sequence) and the deduced amino acid sequence of the CPN100538 protein from Chlamydia pneumoniae (SEQ ID No: 37).

Figure 16 shows the restriction enzyme analysis of the gene encoding the $C.\ pneumoniae$ CPN100538 gene.

PCT/CA99/00992

Figure 17 shows the nucleotide sequence of the CPN100557 (SEQ ID No: 17 - entire sequence and SEQ ID No: 18 - coding sequence) and the deduced amino acid sequence of the CPN100557 protein from Chlamydia pneumoniae (SEQ ID No: 38 - full length 5 sequence and SEQ ID No: 39 - processed sequence).

Figure 18 shows the restriction enzyme analysis of the gene encoding the $\it C.\ pneumoniae\ CPN100557$ gene.

Figure 19 shows the nucleotide sequence of the CPN100622 (SEQ ID No: 19 - entire sequence and SEQ ID No: 20 - coding 10 sequence) and the deduced amino acid sequence of the CPN100622 protein from Chlamydia pneumoniae (SEQ ID No: 40 - full length sequence and SEQ ID No: 41 - processed sequence).

Figure 20 shows the restriction enzyme analysis of the gene encoding the $\it C.\ pneumoniae\ CPN100622$ gene.

15 Figure 21 shows the nucleotide sequence of the CPN100626 (SEQ ID No: 21 - entire sequence and SEQ ID No: 22 - coding sequence) and the deduced amino acid sequence of the CPN100626 protein from Chlamydia pneumoniae (SEQ ID No: 42).

Figure 22 shows the restriction enzyme analysis of the 20 gene encoding the *C. pneumoniae* CPN100626 gene.

Figure 23 shows the nucleotide sequence of the CPN100628 (SEQ ID No: 23 - entire sequence and SEQ ID No: 24 - coding sequence) and the deduced amino acid sequence of the CPN100628 protein from Chlamydia pneumoniae (SEQ ID No: 43).

25 Figure 24 shows the restriction enzyme analysis of the gene encoding the C. pneumoniae CPN100628 gene.

Figure 25 shows the nucleotide sequence of the CPN100630 (SEQ ID No: 25 - entire sequence and SEQ ID No: 26 - coding sequence) and the deduced amino acid sequence of the CPN100630 30 protein from Chlamydia pneumoniae (SEQ ID No: 44 - full length sequence and SEQ ID No: 45 - processed sequence).

Figure 26 shows the restriction enzyme analysis of the gene encoding the $\emph{C. pneumoniae}$ CPN100630 gene.

13

PCT/CA99/00992

Figures 27 through 39 show an identification of T and B cell epitopes from the amino acid sequences shown in the foregoing figures.

5 DETAILED DESCRIPTION OF INVENTION

Open reading frames (ORFs) encoding chlamydial polypeptides have been identified from the *C. pneumoniae* genome. These polypeptides include polypeptides found permanently in the bacterial membrane structure, polypeptides present in the 10 external vicinity of the bacterial membrane, polypeptides found permanently in the inclusion membrane structure, polypeptides present in the external vicinity of the inclusion membrane, and polypeptides released into the cytoplasm of the infected cell. These polypeptides can be used to prevent and treat *Chlamydia* 15 infection.

According to a first aspect of the invention, isolated polynucleotides are provided which encode the precursor and mature forms of *Chlamydia* polypeptides, whose amino acid sequences are selected from the group consisting of: SEQ ID 20 Nos: 27 to 45.

The term "isolated polynucleotide" is defined as a polynucleotide removed from the environment in which it naturally occurs. For example, a naturally-occurring DNA molecule present in the genome of a living bacteria or as part 25 of a gene bank is not isolated, but the same molecule separated from the remaining part of the bacterial genome, as a result of, e.g., a cloning event (amplification), is isolated. Typically, an isolated DNA molecule is free from DNA regions (e.g., coding regions) with which it is immediately contiguous at the 5' or 3' 30 end, in the naturally occurring genome. Such isolated polynucleotides may be part of a vector or a composition and still be defined as isolated in that such a vector or composition is not part of the natural environment of such polynucleotide.

PCT/CA99/00992

WO 00/24765

The polynucleotide of the invention is either RNA or DNA (cDNA, genomic DNA, or synthetic DNA), or modifications, variants, homologs or fragments thereof. The DNA is either double-stranded or single-stranded, and, if single-stranded, is 5 either the coding strand or the non-coding (anti-sense) strand. Any one of the sequences that encode the polypeptides of the invention as shown in SEQ ID Nos: 1 to 26 is (a) a coding sequence, (b) a ribonucleotide sequence derived from transcription of (a), or (c) a coding sequence which uses the 10 redundancy or degeneracy of the genetic code to encode the same polypeptides. By "polypeptide" or "protein" is meant any chain of amino acids, regardless of length or post-translational modification (e.g., glycosylation or phosphorylation). Both terms are used interchangeably in the present application.

15 Consistent with the first aspect of the invention, amino acid sequences are provided which are homologous to any one of SEQ ID Nos: 27 to 45. As used herein, "homologous amino acid sequence" is any polypeptide which is encoded, in whole or in part, by a nucleic acid sequence which hybridizes at 25-35°C 20 below critical melting temperature (Tm), to any portion of the nucleic acid sequences of SEO ID Nos: 1 to 26. A homologous amino acid sequence is one that differs from an amino acid sequence shown in any one of SEO ID Nos: 27 to 45 by one or more amino acid substitutions. Such a sequence also encompass 25 serotypic variants (defined below) as well as sequences containing deletions or insertions which retain inherent characteristics of the polypeptide such as immunogenicity. Preferably, such a sequence is at least 75%, more preferably 80%, and most preferably 90% identical to any one of SEQ ID 30 Nos: 27 to 45. Homologous amino acid sequences include sequences that are identical or substantially identical to SEQ ID Nos: 27 to 45. By "amino acid sequence substantially

identical" is meant a sequence that is at least 90%, preferably 95%, more preferably 97%, and most preferably 99% identical to

15

PCT/CA99/00992

an amino acid sequence of reference and that preferably differs from the sequence of reference by a majority of conservative amino acid substitutions.

Conservative amino acid substitutions are substitutions
5 among amino acids of the same class. These classes include, for
example, amino acids having uncharged polar side chains, such as
asparagine, glutamine, serine, threonine, and tyrosine; amino
acids having basic side chains, such as lysine, arginine, and
histidine; amino acids having acidic side chains, such as
10 aspartic acid and glutamic acid; and amino acids having nonpolar
side chains, such as glycine, alanine, valine, leucine,
isoleucine, proline, phenylalanine, methionine, tryptophan, and
cysteine.

Homology is measured using sequence analysis software
15 such as Sequence Analysis Software Package of the Genetics
Computer Group, University of Wisconsin Biotechnology Center,
1710 University Avenue, Madison, WI 53705. Amino acid sequences
are aligned to maximize identity. Gaps may be artificially
introduced into the sequence to attain proper alignment. Once
20 the optimal alignment has been set up, the degree of homology is
established by recording all of the positions in which the amino
acids of both sequences are identical, relative to the total
number of positions.

Homologous polynucleotide sequences are defined in a 25 similar way. Preferably, a homologous sequence is one that is at least 45%, more preferably 60%, and most preferably 85% identical to any one of coding sequences SEQ ID Nos: 1 to 26.

Consistent with the first aspect of the invention, polypeptides having a sequence homologous to any one of SEQ ID 30 Nos: 27 to 45 include naturally-occurring allelic variants, as well as mutants or any other non-naturally occurring variants that retain the inherent characteristics of the polypeptide of SEQ ID Nos: 27 to 45.

As is known in the art, an allelic variant is an alternate form of a polypeptide that is characterized as having a substitution, deletion, or addition of one or more amino acids that does not alter the biological function of the polypeptide.

- 5 By "biological function" is meant the function of the polypeptide in the cells in which it naturally occurs, even if the function is not necessary for the growth or survival of the cells. For example, the biological function of a porin is to allow the entry into cells of compounds present in the
- 10 extracellular medium. Biological function is distinct from antigenic property. A polypeptide can have more than one biological function.

Allelic variants are very common in nature. For example, a bacterial species such as *C. pneumoniae*, is usually

- 15 represented by a variety of strains that differ from each other by minor allelic variations. Indeed, a polypeptide that fulfills the same biological function in different strains can have an amino acid sequence (and polynucleotide sequence) that are not identical in each of the strains. Despite this
- 20 variation, an immune response directed generally against many allelic variants has been demonstrated. In studies of the Chlamydial MOMP antigen, cross-strain antibody binding plus neutralization of infectivity occurs despite amino acid sequence variation of MOMP from strain to strain, indicating that the
- 25 MOMP, when used as an immunogen, is tolerant of amino acid

Polynucleotides encoding homologous polypeptides or allelic variants are retrieved by polymerase chain reaction (PCR) amplification of genomic bacterial DNA extracted by

30 conventional methods. This involves the use of synthetic oligonucleotide primers matching upstream and downstream of the 5' and 3' ends of the encoding domain. Suitable primers are designed according to the nucleotide sequence information provided in SEQ ID Nos:1 to 26. The procedure is as follows: a

17

PCT/CA99/00992

primer is selected which consists of 10 to 40, preferably 15 to 25 nucleotides. It is advantageous to select primers containing C and G nucleotides in a proportion sufficient to ensure efficient hybridization; i.e., an amount of C and G nucleotides 5 of at least 40%, preferably 50% of the total nucleotide content.

An alternative method for retrieving polynucleotides encoding homologous polypeptides or allelic variants is by hybridization screening of a DNA or RNA library. Hybridization procedures are well-known in the art and are described in

10 Ausubel et al., (Ref 41), Silhavy et al. (Ref 43), and Davis et al. (ref 44). Important parameters for optimizing hybridization conditions are reflected in a formula used to obtain the critical melting temperature above which two complementary DNA strands separate from each other (Ref 45). For polynucleotides

15 of about 600 nucleotides or larger, this formula is as follows:

Tm = 81.5 + 0.5 x (% G+C) + 1.6 log (positive ion concentration)

- 0.6 x (% formamide). Under appropriate stringency conditions, hybridization temperature (Th) is approximately 20 to 40°C, 20 to 25°C, or, preferably 30 to 40°C below the calculated Tm.

For the polynucleotides of the invention, stringent conditions are achieved for both pre-hybridizing and hybridizing incubations (i) within 4-16 hours at 42°C, in 6 x SSC containing 550% formamide, or (ii) within 4-16 hours at 65°C in an aqueous 6 x SSC solution (1 M NaCl, 0.1 M sodium citrate (pH 7.0)).

temperature and salt conditions can be readily determined.

Useful homologs and fragments thereof that do not occur naturally are designed using known methods for identifying regions of an antigen that are likely to tolerate amino acid 30 sequence changes and/or deletions. As an example, homologous polypeptides from different species are compared; conserved sequences are identified. The more divergent sequences are the most likely to tolerate sequence changes. Alternatively, sequences are modified such that they become more reactive to T-

and/or B-cells. (See Table below for identification of T- and B- epitopes.) Yet another alternative is to mutate a particular amino acid residue or sequence within the polypeptide in vitro, then screen the mutant polypeptides for their ability to prevent.

5 or treat Chlamydia infection according to the method outlined below.

A person skilled in the art will readily understand that by following the screening process of this invention, it will be determined without undue experimentation whether a particular

- 10 homolog of any of SEQ ID Nos: 27 to 45 may be useful in the prevention or treatment of Chlamydia infection. The screening procedure comprises the steps:
 - (i) immunizing an animal, preferably mouse, with the test homolog or fragment;
 - (ii) inoculating the immunized animal with Chlamydia; and

15

(iii) selecting those homologs or fragments which confer protection against Chlamydia.

By "conferring protection" is meant that there is a 20 reduction is severity of any of the effects of Chlamydia infection, in comparison with a control animal which was not immunized with the test homolog or fragment.

It has been previously demonstrated (Yang et. al., 1993) that mice are susceptible to intranasal infection with different 25 isolates of *C. pneumoniae*. Strain AR-39 (Grayston, 1989) was used in Balb/c mice as a challenge infection model to examine the capacity of chlamydia gene products delivered as naked DNA to elicit a protective response against a sublethal *C. pneumoniae* lung infection. Protective immunity is defined as an 30 accelerated clearance of pulmonary infection.

Groups of 7 to 9 week old male Balb/c mice (6 to 10 per group) were immunized intramuscularly (i.m.) plus intranasally (i.n.) with plasmid DNA containing the coding sequence of a *C.pneumoniae* polypeptide. Saline or the plasmid vector lacking

peroxidase substrate.

19

PCT/CA99/00992

an inserted chlamydial gene was given to groups of control animals.

For i.m. immunization alternate left and right quadriceps were injected with 100µg of DNA in 50µl of PBS on 5 three occasions at 0, 3 and 6 weeks. For i.n. immunization, anaesthetized mice aspirated 50µl of PBS containing 50 µg DNA on three occasions at 0, 3 and 6 weeks. At week 8, immunized mice were inoculated i.n. with 5 x 10⁵ IFU of C. pneumoniae, strain AR39 in 100µl of SPG buffer to test their ability to limit the 10 growth of a sublethal C. pneumoniae challenge.

Lungs were taken from mice at day 9 post-challenge and immediately homogenised in SPG buffer (7.5% sucrose, 5mM glutamate, 12.5mM phosphate pH7.5). The homogenate was stored frozen at -70°C until assay. Dilutions of the homogenate were assayed for the presence of infectious chlamydia by inoculation onto monolayers of susceptible cells. The inoculum was centrifuged onto the cells at 3000rpm for 1 hour, then the cells were incubated for three days at 35°C in the presence of 1µg/ml cycloheximide. After incubation the monolayers were fixed with 20 formalin and methanol then immunoperoxidase stained for the presence of chlamydial inclusions using convalescent sera from rabbits infected with C.pneumoniae and metal-enhanced DAB as a

Consistent with the first aspect of the invention,
25 polypeptide derivatives are provided that are partial sequences
of SEQ ID Nos: 27 to 45, partial sequences of polypeptide
sequences homologous to SEQ ID Nos: 27 to 45, polypeptides
derived from full-length polypeptides by internal deletion, and
fusion proteins.

30 It is an accepted practice in the field of immunology to use fragments and variants of protein immunogens as vaccines, as all that is required to induce an immune response to a protein is a small (e.g., 8 to 10 amino acid) immunogenic region of the

protein. Various short synthetic peptides corresponding to surface-exposed antigens of pathogens other than *Chlamydia* have been shown to be effective vaccine antigens against their respective pathogens, e.g. an 11 residue peptide of murine 5 mammary tumor virus (Ref 38), a 16-residue peptide of Semliki Forest virus (Ref 39), and two overlapping peptides of 15 residues each from canine parvovirus (Ref 40).

Accordingly, it will be readily apparent to one skilled in the art, having read the present description, that partial 10 sequences of SEQ ID Nos: 27 to 45 or their homologous amino acid sequences are inherent to the full-length sequences and are taught by the present invention. Such polypeptide fragments preferably are at least 12 amino acids in length.

Advantageously, they are at least 20 amino acids, preferably at 1 least 50 amino acids, more preferably at least 75 amino acids, and most preferably at least 100 amino acids in length.

Polynucleotides of 30 to 600 nucleotides encoding partial sequences of sequences homologous to SEQ ID Nos: 27 to 45 are retrieved by PCR amplification using the parameters outlined 20 above and using primers matching the sequences upstream and downstream of the 5' and 3' ends of the fragment to be amplified. The template polynucleotide for such amplification is either the full length polynucleotide homologous to one of SEO ID Nos: 1 to 26, or a polynucleotide contained in a mixture 25 of polynucleotides such as a DNA or RNA library. As an alternative method for retrieving the partial sequences, screening hybridization is carried out under conditions described above and using the formula for calculating Tm. Where fragments of 30 to 600 nucleotides are to be retrieved, the 30 calculated Tm is corrected by subtracting (600/polynucleotide size in base pairs) and the stringency conditions are defined by a hybridization temperature that is 5 to 10°C below Tm. Where oligonucleotides shorter than 20-30 bases are to be obtained, the formula for calculating the Tm is as follows: $Tm = 4 \times (G+C)$

21

PCT/CA99/00992

+ 2 (A+T). For example, an 18 nucleotide fragment of 50% G+C would have an approximate Tm of 54°C. Short peptides that are fragments of SEQ. ID Nos. 27 to 45 or their homologous sequences, are obtained directly by chemical synthesis (E. Gross 5 and H. J. Meinhofer, 4 The Peptides: Analysis, Synthesis, Biology; Modern Techniques of Peptide Synthesis, John Wiley & Sons (1981), and M. Bodanzki, Principles of Peptide Synthesis, Springer -Verlag (1984)).

Useful polypeptide derivatives, e.g., polypeptide 10 fragments, are designed using computer-assisted analysis of amino acid sequences. This identifies probable surfaceexposed, antigenic regions (Ref 37). An analysis of the 13 amino acid sequences contained in SEQ ID Nos: 27 to 45, based on the product of flexibility and hydrophobicity propensities using 15 the program SEQSEE (Wishart DS, et al. "SEQSEE: a comprehensive program suite for protein sequence analysis." Comput Appl Biosci. 1994 Apr; 10(2):121-32), reveal a number of potential Band T-cell epitopes which may be used as a basis for selecting useful immunogenic fragments and variants. The results are 20 shown in Figures 27 to 39. This analysis uses a reasonable combination of external surface features that is likely to be recognized by antibodies. Probable T-cell epitopes for HLA-A0201 MHC subclass were revealed by an algorithm written at Connaught Laboratories that emulates an approach developed at 25 the NIH (Parker KC, et al. "Peptide binding to MHC class I molecules: implications for antigenic peptide prediction."

Epitopes which induce a protective T cell-dependent immune response are present throughout the length of the 30 polypeptide. However, some epitopes may be masked by secondary and tertiary structures of the polypeptide. To reveal such masked epitopes large internal deletions are created which remove much of the original protein structure and exposes the masked epitopes. Such internal deletions sometimes effects the

Immunol Res 1995;14(1):34-57).

additional advantage of removing immunodominant regions of high variability among strains. Polynucleotides encoding polypeptide fragments and polypeptides having large internal deletions are constructed using standard methods (Ref 41). Such methods include standard PCR, inverse PCR, restriction enzyme treatment of cloned DNA molecules, or the method of Kunkel et al. (Ref 42). Components for these methods and instructions for their use are readily available from various commercial sources such as Stratagene. Once the deletion mutants have been constructed, they are tested for their ability to prevent or treat Chlamydia infection as described above.

As used herein, a fusion polypeptide is one that contains a polypeptide or a polypeptide derivative of the invention fused at the N- or C-terminal end to any other polypeptide

- 15 (hereinafter referred to as a peptide tail). A simple way to obtain such a fusion polypeptide is by translation of an inframe fusion of the polynucleotide sequences, i.e., a hybrid gene. The hybrid gene encoding the fusion polypeptide is inserted into an expression vector which is used to transform or
- 20 transfect a host cell. Alternatively, the polynucleotide sequence encoding the polypeptide or polypeptide derivative is inserted into an expression vector in which the polynucleotide encoding the peptide tail is already present. Such vectors and instructions for their use are commercially available, e.g.
- 25 the pMal-c2 or pMal-p2 system from New England Biolabs, in which the peptide tail is a maltose binding protein, the glutathione-S-transferase system of Pharmacia, or the His-Tag system available from Novagen. These and other expression systems provide convenient means for further purification of 30 polypeptides and derivatives of the invention.

An advantageous example of a fusion polypeptide is one where the polypeptide or homolog or fragment of the invention is fused to a polypeptide having adjuvant activity, such as subunit B of either cholera toxin or E. coli heat-labile toxin. Another

PCT/CA99/00992

advantageous fusion is one where the polypeptide, homolog or fragment is fused to a strong T-cell epitope or B-cell epitope. Such an epitope may be one known in the art (e.g. the Hepatitis B virus core antigen, D.R. Millich et al., "Antibody production 5 to the nucleocapsid and envelope of the Hepatitis B virus primed by a single synthetic T cell site", Nature. 1987. 329:547-549), or one which has been identified in another polypeptide of the invention (Table). Consistent with this aspect of the invention is a fusion polypeptide comprising T- or B-cell 10 epitopes from one of SEO ID Nos: 27 to 45 or its homolog or fragment, wherein the epitopes are derived from multiple variants of said polypeptide or homolog or fragment, each variant differing from another in the location and sequence of its epitope within the polypeptide. Such a fusion is effective 15 in the prevention and treatment of Chlamydia infection since it optimizes the T- and B-cell response to the overall polypeptide, homolog or fragment.

To effect fusion, the polypeptide of the invention is fused to the N-, or preferably, to the C-terminal end of the 20 polypeptide having adjuvant activity or T- or B-cell epitope. Alternatively, a polypeptide fragment of the invention is inserted internally within the amino acid sequence of the polypeptide having adjuvant activity. The T- or B-cell epitope may also be inserted internally within the amino acid sequence 25 of the polypeptide of the invention.

Consistent with the first aspect, the polynucleotides of the invention also encode hybrid precursor polypeptides containing heterologous signal peptides, which mature into polypeptides of the invention. By "heterologous signal peptide" 30 is meant a signal peptide that is not found in naturally-occurring precursors of polypeptides of the invention.

A polynucleotide molecule according to the invention, including RNA, DNA, or modifications or combinations thereof, have various applications. A DNA molecule is used, for example,

(i) in a process for producing the encoded polypeptide in a recombinant host system, (ii) in the construction of vaccine vectors such as poxviruses, which are further used in methods and compositions for preventing and/or treating Chlamydia
5 infection, (iii) as a vaccine agent (as well as an RNA molecule), in a naked form or formulated with a delivery vehicle and, (iv) in the construction of attenuated Chlamydia strains that can over-express a polynucleotide of the invention or

express it in a non-toxic, mutated form. Accordingly, a second aspect of the invention encompasses 10 (i) an expression cassette containing a DNA molecule of the invention placed under the control of the elements required for expression, in particular under the control of an appropriate promoter; (ii) an expression vector containing an expression 15 cassette of the invention; (iii) a procaryotic or eucaryotic cell transformed or transfected with an expression cassette and/or vector of the invention, as well as (iv) a process for producing a polypeptide or polypeptide derivative encoded by a polynucleotide of the invention, which involves culturing a 20 procaryotic or eucaryotic cell transformed or transfected with an expression cassette and/or vector of the invention, under conditions that allow expression of the DNA molecule of the invention and, recovering the encoded polypeptide or polypeptide

A recombinant expression system is selected from procaryotic and eucaryotic hosts. Eucaryotic hosts include yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris), mammalian cells (e.g., COS1, NIH3T3, or JEG3 cells), arthropods cells (e.g., Spodoptera frugiperda (SF9) cells), and plant 30 cells. A preferred expression system is a procaryotic host such as E. coli. Bacterial and eucaryotic cells are available from a number of different sources including commercial sources to those skilled in the art, e.g., the American Type Culture

derivative from the cell culture.

Collection (ATCC; Rockville, Maryland). Commercial sources of

25

PCT/CA99/00992

cells used for recombinant protein expression also provide instructions for usage of the cells.

The choice of the expression system depends on the features desired for the expressed polypeptide. For example, it 5 may be useful to produce a polypeptide of the invention in a particular lipidated form or any other form.

One skilled in the art would redily understand that not all vectors and expression control sequences and hosts would be expected to express equally well the polynucleotides of this 10 invention. With the guidelines described below, however, a selection of vectors, expression control sequences and hosts may be made without undue experimentation and without departing from the scope of this invention.

In selecting a vector, the host must be chosen that is

15 compatible with the vector which is to exist and possibly replicate in it. Considerations are made with respect to the vector copy number, the ability to control the copy number, expression of other proteins such as antibiotic resistance. selecting an expression control sequence, a number of variables 20 are considered. Among the important variable are the relative strength of the sequence (e.g. the ability to drive expression under various conditions), the ability to control the sequence's function, compatibility between the polynucleotide to be expressed and the control sequence (e.g. secondary structures 25 are considered to avoid hairpin structures which prevent efficient transcription). In selecting the host, unicellular hosts are selected which are compatible with the selected vector, tolerant of any possible toxic effects of the expressed product, able to secrete the expressed product efficiently if 30 such is desired, to be able to express the product in the desired conformation, to be easily scaled up, and to which ease of purification of the final product.

The choice of the expression cassette depends on the host system selected as well as the features desired for the

expressed polypeptide. Typically, an expression cassette includes a promoter that is functional in the selected host system and can be constitutive or inducible; a ribosome binding site; a start codon (ATG) if necessary; a region encoding a 5 signal peptide, e.g., a lipidation signal peptide; a DNA molecule of the invention; a stop codon; and optionally a 3' terminal region (translation and/or transcription terminator). The signal peptide encoding region is adjacent to the polynucleotide of the invention and placed in proper reading 10 frame. The signal peptide-encoding region is homologous or heterologous to the DNA molecule encoding the mature polypeptide and is compatible with the secretion apparatus of the host used for expression. The open reading frame constituted by the DNA molecule of the invention, solely or together with the signal 15 peptide, is placed under the control of the promoter so that transcription and translation occur in the host system. Promoters and signal peptide encoding regions are widely known and available to those skilled in the art and include, for example, the promoter of Salmonella typhimurium (and 20 derivatives) that is inducible by arabinose (promoter araB) and is functional in Gram-negative bacteria such as E. coli (as described in U.S. Patent No. 5,028,530 and in Cagnon et al., (Ref 46)); the promoter of the gene of bacteriophage T7 encoding RNA polymerase, that is functional in a number of E. coli 25 strains expressing T7 polymerase (described in U.S. Patent No. 4,952,496); OspA lipidation signal peptide; and RlpB

The expression cassette is typically part of an expression vector, which is selected for its ability to 30 replicate in the chosen expression system. Expression vectors (e.g., plasmids or viral vectors) can be chosen, for example, from those described in Pouwels et al. (Cloning Vectors: A Laboratory Manual 1985, Supp. 1987). Suitable expression vectors can be purchased from various commercial sources.

lipidation signal peptide (Ref 47).

27

PCT/CA99/00992

Methods for transforming/transfecting host cells with expression vectors are well-known in the art and depend on the host system selected as described in Ausubel et al., (Ref 41).

Upon expression, a recombinant polypeptide of the 5 invention (or a polypeptide derivative) is produced and remains in the intracellular compartment, is secreted/excreted in the extracellular medium or in the periplasmic space, or is embedded in the cellular membrane. The polypeptide is recovered in a substantially purified form from the cell extract or from the 10 supernatant after centrifugation of the recombinant cell

culture. Typically, the recombinant polypeptide is purified by antibody-based affinity purification or by other well-known methods that can be readily adapted by a person skilled in the art, such as fusion of the polynucleotide encoding the

15 polypeptide or its derivative to a small affinity binding domain. Antibodies useful for purifying by immunoaffinity the polypeptides of the invention are obtained as described below.

A polynucleotide of the invention can also be useful as a

vaccine. There are two major routes, either using a viral or 20 bacterial host as gene delivery vehicle (live vaccine vector) or administering the gene in a free form, e.g., inserted into a plasmid. Therapeutic or prophylactic efficacy of a polynucleotide of the invention is evaluated as described below.

Accordingly, a third aspect of the invention provides (i)
25 a vaccine vector such as a poxvirus, containing a DNA molecule
of the invention, placed under the control of elements required
for expression; (ii) a composition of matter comprising a
vaccine vector of the invention, together with a diluent or
carrier; specifically (iii) a pharmaceutical composition

30 containing a therapeutically or prophylactically effective amount of a vaccine vector of the invention; (iv) a method for inducing an immune response against Chlamydia in a mammal (e.g., a human; alternatively, the method can be used in veterinary applications for treating or preventing Chlamydia infection of

animals, e.g., cats or birds), which involves administering to the mammal an immunogenically effective amount of a vaccine vector of the invention to elicit a protective or therapeutic immune response to Chlamydia; and particularly, (v) a method 5 for preventing and/or treating a Chlamydia (e.g., C. trachomatis, C. psittaci, C. pneumonia, C. pecorum) infection, which involves administering a prophylactic or therapeutic amount of a vaccine vector of the invention to an infected individual. Additionally, the third aspect of the invention 10 encompasses the use of a vaccine vector of the invention in the preparation of a medicament for preventing and/or treating Chlamydia infection.

As used herein, a vaccine vector expresses one or several polypeptides or derivatives of the invention, as well as at 15 least one additional *Chlamydia* antigen (??), fragment, homolog, mutant, or derivative thereof. The vaccine vector may express additionally a cytokine, such as interleukin-2 (IL-2) or interleukin-12 (IL-12), that enhances the immune response (adjuvant effect). It is understood that each of the components 20 to be expressed is placed under the control of elements required for expression in a mammalian cell.

Consistent with the third aspect of the invention is a composition comprising several vaccine vectors, each of them capable of expressing a polypeptide or derivative of the 25 invention. A composition may also comprise a vaccine vector capable of expressing an additional *Chlamydia* antigen, or a subunit, fragment, homolog, mutant, or derivative thereof; or a cytokine such as IL-2 or IL-12.

Vaccination methods for treating or preventing infection 30 in a mammal comprises use of a vaccine vector of the invention to be administered by any conventional route, particularly to a mucosal (e.g., ocular, intranasal, oral, gastric, pulmonary, intestinal, rectal, vaginal, or urinary tract) surface or via the parenteral (e.g., subcutaneous, intradermal, intramuscular,

PCT/CA99/00992

intravenous, or intraperitoneal) route. Preferred routes depend upon the choice of the vaccine vector. Treatment may be effected in a single dose or repeated at intervals. The appropriate dosage depends on various parameters understood by 5 skilled artisans such as the vaccine vector itself, the route of administration or the condition of the mammal to be vaccinated (weight, age and the like).

Live vaccine vectors available in the art include viral vectors such as adenoviruses and poxviruses as well as bacterial 10 vectors, e.g., Shigella, Salmonella, Vibrio cholerae, Lactobacillus, Bacille bilié de Calmette-Guérin (BCG), and Streptococcus.

An example of an adenovirus vector, as well as a method for constructing an adenovirus vector capable of expressing a 15 DNA molecule of the invention, are described in U.S. Patent No. 4.920.209. Poxvirus vectors include vaccinia and canary pox virus, described in U.S. Patent No. 4,722,848 and U.S. Patent No. 5,364,773, respectively. (Also see, e.g., Tartaglia et al., Virology (1992) 188:217) for a description of a vaccinia virus 20 vector and Taylor et al, Vaccine (1995) 13:539 for a reference of a canary pox.) Poxvirus vectors capable of expressing a polynucleotide of the invention are obtained by homologous recombination as described in Kieny et al., Nature (1984) 312:163 so that the polynucleotide of the invention is inserted 25 in the viral genome under appropriate conditions for expression in mammalian cells. Generally, the dose of vaccine viral vector, for therapeutic or prophylactic use, can be of from about 1×10^4 to about 1×10^{11} , advantageously from about 1×10^7 to about 1x1010, preferably of from about 1x107 to about 1x109 30 plaque-forming units per kilogram. Preferably, viral vectors are administered parenterally; for example, in 3 doses, 4 weeks apart. It is preferable to avoid adding a chemical adjuvant to a composition containing a viral vector of the invention and

thereby minimizing the immune response to the viral vector itself.

Non-toxicogenic Vibrio cholerae mutant strains that are useful as a live oral vaccine are known. Mekalanos et al., 5 Nature (1983) 306:551 and U.S. Patent No. 4,882,278 describe strains which have a substantial amount of the coding sequence of each of the two ctxA alleles deleted so that no functional cholerae toxin is produced. WO 92/11354 describes a strain in which the irgA locus is inactivated by mutation; this mutation 10 can be combined in a single strain with ctxA mutations. WO 94/1533 describes a deletion mutant lacking functional ctxA and attRS1 DNA sequences. These mutant strains are genetically engineered to express heterologous antigens, as described in WO 94/19482. An effective vaccine dose of a Vibrio cholerae 15 strain capable of expressing a polypeptide or polypeptide derivative encoded by a DNA molecule of the invention contains about 1×10^5 to about 1×10^9 , preferably about 1×10^6 to about 1×10^8 , viable bacteria in a volume appropriate for the selected route of administration. Preferred routes of administration include 20 all mucosal routes; most preferably, these vectors are administered intranasally or orally.

Attenuated Salmonella typhimurium strains, genetically engineered for recombinant expression of heterologous antigens or not, and their use as oral vaccines are described in 25 Nakayama et al. (Bio/Technology (1988) 6:693) and WO 92/11361. Preferred routes of administration include all mucosal routes; most preferably, these vectors are administered intranasally or orally.

Other bacterial strains used as vaccine vectors in the 30 context of the present invention are described in High et al., EMBO (1992) 11:1991 and Sizemore et al., Science (1995) 270:299 (Shigella flexneri); Medaglini et al., Proc. Natl. Acad. Sci. USA (1995) 92:6868 (Streptococcus gordonii), Flynn J.L., Cell.

31

PCT/CA99/00992

Mol. Biol. (1994) 40 (suppl. I):31, WO 88/6626, WO 90/0594, WO 91/13157, WO 92/1796, and WO 92/21376 (Bacille Calmette Guerin).

In bacterial vectors, the polynucleotide of the invention is inserted into the bacterial genome or remains in a free 5 state as part of a plasmid.

The composition comprising a vaccine bacterial vector of the present invention may further contain an adjuvant . A number of adjuvants are known to those skilled in the art.

Preferred adjuvants are selected from the list provided below.

Accordingly, a fourth aspect of the invention provides

(i) a composition of matter comprising a polynucleotide of the invention, together with a diluent or carrier; (ii) a pharmaceutical composition comprising a therapeutically or prophylactically effective amount of a polynucleotide of the 15 invention; (iii) a method for inducing an immune response

- against Chlamydia in a mammal by administration of an immunogenically effective amount of a polynucleotide of the invention to elicit a protective immune response to Chlamydia; and particularly, (iv) a method for preventing and/or treating a
- 20 Chlamydia (e.g., C. trachomatis, C. psittaci, C. pneumoniae, or C. pecorum) infection, by administering a prophylactic or therapeutic amount of a polynucleotide of the invention to an infected individual. Additionally, the fourth aspect of the invention encompasses the use of a polynucleotide of the
- 25 invention in the preparation of a medicament for preventing and/or treating Chlamydia infection. A preferred use includes the use of a DNA molecule placed under conditions for expression in a mammalian cell, especially in a plasmid that is unable to replicate in mammalian cells and to substantially integrate in a 30 mammalian genome.

Use of the polynucleotides of the invention include their administration to a mammal as a vaccine, for therapeutic or prophylactic purposes. Such polynucleotides are used in the form of DNA as part of a plasmid that is unable to replicate in

a mammalian cell and unable to integrate into the mammalian genome. Typically, such a DNA molecule is placed under the control of a promoter suitable for expression in a mammalian cell. The promoter functions either ubiquitously or tissue5 specifically. Examples of non-tissue specific promoters include the early Cytomegalovirus (CMV) promoter (described in U.S. Patent No. 4,168,062) and the Rous Sarcoma Virus promoter (described in Norton & Coffin, Molec. Cell Biol. (1985) 5:281). An example of a tissue-specific promoter is the desmin promoter which drives expression in muscle cells (Li et al., Gene (1989) 78:243, Li & Paulin, J. Biol. Chem. (1991) 266:6562 and Li & Paulin, J. Biol. Chem. (1993) 268:10403). Use of promoters is well-known to those skilled in the art. Useful vectors are described in numerous publications, specifically WO 94/21797 and 15 Hartikka et al., Human Gene Therapy (1996) 7:1205.

Polynucleotides of the invention which are used as a vaccine encode either a precursor or a mature form of the corresponding polypeptide. In the precursor form, the signal peptide is either homologous or heterologous. In the latter 20 case, a eucaryotic leader sequence such as the leader sequence of the tissue-type plasminogen factor (tPA) is preferred.

As used herein, a composition of the invention contains one or several polynucleotides with optionally at least one additional polynucleotide encoding another *Chlamydia* antigen 25 such as urease subunit A, B, or both, or a fragment, derivative, mutant, or analog thereof. The composition may also contain an additional polynucleotide encoding a cytokine, such as interleukin-2 (IL-2) or interleukin-12 (IL-12) so that the immune response is enhanced. These additional polynucleotides 30 are placed under appropriate control for expression. Advantageously, DNA molecules of the invention and/or additional DNA molecules to be included in the same composition, are present in the same plasmid.

polynucleotides.

33

PCT/CA99/00992

Standard techniques of molecular biology for preparing and purifying polynucleotides are used in the preparation of polynucleotide therapeutics of the invention. For use as a vaccine, a polynucleotide of the invention is formulated 5 according to various methods outlined below.

One method utililizes the polynucleotide in a naked form, free of any delivery vehicles. Such a polynucleotide is simply diluted in a physiologically acceptable solution such as sterile saline or sterile buffered saline, with or without a 10 carrier. When present, the carrier preferably is isotonic, hypotonic, or weakly hypertonic, and has a relatively low ionic strength, such as provided by a sucrose solution, e.g., a solution containing 20% sucrose.

An alternative method utilizes the polynucleotide in 15 association with agents that assist in cellular uptake. Examples of such agents are (i) chemicals that modify cellular permeability, such as bupivacaine (see, e.g., WO 94/16737), (ii) liposomes for encapsulation of the polynucleotide, or (iii) cationic lipids or silica, gold, or tungsten 20 microparticles which associate themselves with the

Anionic and neutral liposomes are well-known in the art (see, e.g., Liposomes: A Practical Approach, RPC New Ed, IRL press (1990), for a detailed description of methods for making

- 25 liposomes) and are useful for delivering a large range of products, including polynucleotides. Cationic lipids are also known in the art and are commonly used for gene delivery. Such lipids include Lipofectin™ also known as DOTMA (N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride), DOTAP
- 30 (1,2-bis(oleyloxy)-3-(trimethylammonio)propane), DDAB
 (dimethyldioctadecylammonium bromide), DOGS
 (dioctadecylamidologlycyl spermine) and cholesterol derivatives
 such as DC-Chol (3 beta-(N-(N',N'-dimethyl aminomethane) carbamoyl) cholesterol). A description of these cationic lipids

can be found in EP 187,702, WO 90/11092, U.S. Patent
No. 5,283,185, WO 91/15501, WO 95/26356, and U.S. Patent
No. 5,527,928. Cationic lipids for gene delivery are preferably
used in association with a neutral lipid such as DOPE (dioleyl
5 phosphatidylethanolamine), as described in WO 90/11092 as an
example.

Formulation containing cationic liposomes may optionally contain other transfection-facilitating compounds. A number of them are described in WO 93/18759, WO 93/19768, WO 94/25608, and 10 WO 95/2397. They include spermine derivatives useful for facilitating the transport of DNA through the nuclear membrane (see, for example, WO 93/18759) and membrane-permeabilizing compounds such as GALA, Gramicidine S, and cationic bile salts (see, for example, WO 93/19768).

15 Gold or tungsten microparticles are used for gene delivery, as described in WO 91/359, WO 93/17706, and Tang et al. (Nature (1992) 356:152). The microparticle-coated polynucleotide is injected via intradermal or intraepidermal routes using a needleless injection device ("gene gun"), such as 20 those described in U.S. Patent No. 4,945,050, U.S. Patent No. 5,015,580, and WO 94/24263.

The amount of DNA to be used in a vaccine recipient depends, e.g., on the strength of the promoter used in the DNA construct, the immunogenicity of the expressed gene product, the 25 condition of the mammal intended for administration (e.g., the weight, age, and general health of the mammal), the mode of administration, and the type of formulation. In general, a therapeutically or prophylactically effective dose from about 1 µg to about 1 mg, preferably, from about 10 µg to about 800 µg 30 and, more preferably, from about 25 µg to about 250 µg, can be administered to human adults. The administration can be achieved in a single dose or repeated at intervals.

 $\begin{tabular}{ll} The route of administration is any conventional route \\ used in the vaccine field. As general guidance, a \\ \end{tabular}$

PCT/CA99/00992

polynucleotide of the invention is administered via a mucosal surface, e.g., an ocular, intranasal, pulmonary, oral, intestinal, rectal, vaginal, and urinary tract surface; or via a parenteral route, e.g., by an intravenous, subcutaneous, 5 intraperitoneal, intradermal, intraepidermal, or intramuscular

- 5 intraperitoneal, intradermal, intraepidermal, or intramuscular route. The choice of administration route depends on the formulation that is selected. A polynucleotide formulated in association with bupivacaine is advantageously administered into muscles. When a neutral or anionic liposome or a cationic
- 10 lipid, such as DOTMA or DC-Chol, is used, the formulation can be advantageously injected via intravenous, intranasal (aerosolization), intramuscular, intradermal, and subcutaneous routes. A polynucleotide in a naked form can advantageously be administered via the intramuscular, intradermal, or sub-15 cutaneous routes.
- Although not absolutely required, such a composition can also contain an adjuvant. If so, a systemic adjuvant that does not require concomitant administration in order to exhibit an adjuvant effect is preferable such as, e.g., QS21, which is
- 20 described in U.S. Patent No. 5,057,546.

The sequence information provided in the present application enables the design of specific nucleotide probes and primers that are used for diagnostic purposes. Accordingly, a fifth aspect of the invention provides a nucleotide probe or 25 primer having a sequence found in or derived by degeneracy of the genetic code from a sequence shown in any one of SEQ ID Nos:1 to 26.

The term "probe" as used in the present application refers to DNA (preferably single stranded) or RNA molecules (or 30 modifications or combinations thereof) that hybridize under the stringent conditions, as defined above, to nucleic acid molecules having SEQ ID Nos: 1 to 26 or to sequences homologous to SEQ ID Nos:1 to 26, or to their complementary or anti-sense sequences. Generally, probes are significantly shorter than

full-length sequences . Such probes contain from about 5 to about 100, preferably from about 10 to about 80, nucleotides. In particular, probes have sequences that are at least 75%, preferably at least 85%, more preferably 95% homologous to a 5 portion of any of SEQ ID Nos:1 to 26 or that are complementary to such sequences. Probes may contain modified bases such as inosine, methyl-5-deoxycytidine, deoxyuridine, dimethylamino-5-deoxyuridine, or diamino-2, 6-purine. Sugar or phosphate residues may also be modified or substituted. For example, a 10 deoxyribose residue may be replaced by a polyamide (Nielsen et al., Science (1991) 254:1497) and phosphate residues may be replaced by ester groups such as diphosphate, alkyl, arylphosphonate and phosphorothicate esters. In addition, the 2'-hydroxyl group on ribonucleotides may be modified by

Probes of the invention are used in diagnostic tests, as capture or detection probes. Such capture probes are conventionally immobilized on a solid support, directly or indirectly, by covalent means or by passive adsorption. A 20 detection probe is labelled by a detection marker selected from: radioactive isotopes, enzymes such as peroxidase, alkaline phosphatase, and enzymes able to hydrolyze a chromogenic, fluorogenic, or luminescent substrate, compounds that are chromogenic, fluorogenic, or luminescent, nucleotide base 25 analogs, and biotin.

Probes of the invention are used in any conventional hybridization technique, such as dot blot (Maniatis et al., Molecular Cloning: A Laboratory Manual (1982) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York), Southern blot (Southern, J. Mol. Biol. (1975) 98:503), northern blot (identical to Southern blot with the exception that RNA is used as a target), or the sandwich technique (Dunn et al., Cell (1977) 12:23). The latter technique involves the use of a specific capture probe and/or a specific detection probe with

37

PCT/CA99/00992

nucleotide sequences that at least partially differ from each other.

A primer is a probe of usually about 10 to about 40 nucleotides that is used to initiate enzymatic polymerization 5 of DNA in an amplification process (e.g., PCR), in an elongation process, or in a reverse transcription method. Primers used in diagnostic methods involving PCR are labeled by methods known in the art.

As described herein, the invention also encompasses (i) a 10 reagent comprising a probe of the invention for detecting and/or identifying the presence of Chlamydia in a biological material; (ii) a method for detecting and/or identifying the presence of Chlamydia in a biological material, in which (a) a sample is recovered or derived from the biological material, (b) DNA or 15 RNA is extracted from the material and denatured, and (c) exposed to a probe of the invention, for example, a capture, detection probe or both, under stringent hybridization conditions, such that hybridization is detected; and (iii) a method for detecting and/or identifying the presence of 20 Chlamydia in a biological material, in which (a) a sample is recovered or derived from the biological material, (b) DNA is extracted therefrom, (c) the extracted DNA is primed with at least one, and preferably two, primers of the invention and amplified by polymerase chain reaction, and (d) the amplified 25 DNA fragment is produced.

It is apparent that disclosure of polynucleotide sequences of SEQ ID Nos: 1 to 26, their homolog, and partial sequences of either enable their corresponding amino acid sequences. Accordingly, a sixth aspect of the invention 30 features a substantially purified polypeptide or polypeptide derivative having an amino acid sequence encoded by a polynucleotide of the invention.

A "substantially purified polypeptide" as used herein is defined as a polypeptide that is separated from the environment

in which it naturally occurs and/or that is free of the majority of the polypeptides that are present in the environment in which it was synthesized. For example, a substantially purified polypeptide is free from cytoplasmic polypeptides. Those 5 skilled in the art would readily understand that the polypeptides of the invention may be purified from a natural source, i.e., a Chlamydia strain, or produced by recombinant means.

Consistent with the sixth aspect of the invention are
10 polypeptides, homologs or fragments which are modified or
treated to enhance their immunogenicity in the target animal, in
whom the polypeptide, homolog or fragments are intended to
confer protection against Chlamydia. Such modifications or
treatments include: amino acid substitutions with an amino acid
15 derivative such as 3-methyhistidine, 4-hydroxyproline, 5hydroxylysine etc., modifications or deletions which are carried
out after preparation of the polypeptide, homolog or fragment,
such as the modification of free amino, carboxyl or hydroxyl
side groups of the amino acids.

20

Identification of homologous polypeptides or polypeptide

derivatives encoded by polynucleotides of the invention which have specific antigenicity is achieved by screening for cross-reactivity with an antiserum raised against the polypeptide of reference having an amino acid sequence of any one of SEQ ID 25 Nos: 27 to 45. The procedure is as follows: a monospecific hyperimmune antiserum is raised against a purified reference polypeptide, a fusion polypeptide (for example, an expression product of MBP, GST, or His-tag systems), or a synthetic peptide predicted to be antigenic. Where an antiserum is raised 30 against a fusion polypeptide, two different fusion systems are employed. Specific antigenicity can be determined according to a number of methods, including Western blot (Towbin et al., Proc. Natl. Acad. Sci. USA (1979) 76:4350), dot blot, and ELISA, as described below.

39

PCT/CA99/00992

In a Western blot assay, the product to be screened, either as a purified preparation or a total *E. coli* extract, is submitted to SDS-Page electrophoresis as described by Laemmli (Nature (1970) 227:680). After transfer to a nitrocellulose 5 membrane, the material is further incubated with the monospecific hyperimmune antiserum diluted in the range of dilutions from about 1:5 to about 1:5000, preferably from about 1:100 to about 1:500. Specific antigenicity is shown once a band corresponding to the product exhibits reactivity at any of

10 the dilutions in the above range. In an ELISA assay, the product to be screened is preferably used as the coating antigen. A purified preparation is preferred, although a whole cell extract can also be used. Briefly, about 100 µl of a preparation at about 10 µg protein/ml 15 are distributed into wells of a 96-well polycarbonate ELISA plate. The plate is incubated for 2 hours at 37°C then overnight at 4°C. The plate is washed with phosphate buffer saline (PBS) containing 0.05% Tween 20 (PBS/Tween buffer). The wells are saturated with 250 µl PBS containing 1% bovine serum 20 albumin (BSA) to prevent non-specific antibody binding. After 1 hour incubation at 37°C, the plate is washed with PBS/Tween buffer. The antiserum is serially diluted in PBS/Tween buffer containing 0.5% BSA. 100 µl of dilutions are added per well. The plate is incubated for 90 minutes at 37°C, washed and 25 evaluated according to standard procedures. For example, a goat anti-rabbit peroxidase conjugate is added to the wells when specific antibodies were raised in rabbits. Incubation is carried out for 90 minutes at 37°C and the plate is washed. reaction is developed with the appropriate substrate and the 30 reaction is measured by colorimetry (absorbance measured spectrophotometrically). Under the above experimental

conditions, a positive reaction is shown by O.D. values greater

than a non immune control serum.

In a dot blot assay, a purified product is preferred, although a whole cell extract can also be used. Briefly, a solution of the product at about 100 µg/ml is serially two-fold diluted in 50 mM Tris-HCl (pH 7.5). 100 ul of each dilution are 5 applied to a nitrocellulose membrane 0.45 µm set in a 96-well dot blot apparatus (Biorad). The buffer is removed by applying vacuum to the system. Wells are washed by addition of 50 mM Tris-HCl (pH 7.5) and the membrane is air-dried. The membrane is saturated in blocking buffer (50 mM Tris-HCl (pH 7.5) 0.15 M 10 NaCl. 10 g/L skim milk) and incubated with an antiserum dilution from about 1:50 to about 1:5000, preferably about 1:500. The reaction is revealed according to standard procedures. For example, a goat anti-rabbit peroxidase conjugate is added to the wells when rabbit antibodies are used. Incubation is carried 15 out 90 minutes at 37°C and the blot is washed. The reaction is developed with the appropriate substrate and stopped. The reaction is measured visually by the appearance of a colored spot, e.g., by colorimetry. Under the above experimental conditions, a positive reaction is shown once a colored spot is 20 associated with a dilution of at least about 1:5, preferably of

Therapeutic or prophylactic efficacy of a polypeptide or derivative of the invention can be evaluated as described below. A seventh aspect of the invention provides (i) a composition of 25 matter comprising a polypeptide of the invention together with a diluent or carrier; specifically (ii) a pharmaceutical composition containing a therapeutically or prophylactically effective amount of a polypeptide of the invention; (iii) a method for inducing an immune response against Chlamydia in a 30 mammal, by administering to the mammal an immunogenically effective amount of a polypeptide of the invention to elicit a protective immune response to Chlamydia; and particularly, (iv) a method for preventing and/or treating a Chlamydia (e.g., C. trachomatis. C. psittaci, C. pneumoniae. or C. pecorum)

at least about 1:500.

41

PCT/CA99/00992

infection, by administering a prophylactic or therapeutic amount of a polypeptide of the invention to an infected individual.

Additionally, the seventh aspect of the invention encompasses the use of a polypeptide of the invention in the preparation of a medicament for preventing and/or treating Chlamydia infection.

As used herein, the immunogenic compositions of the invention are administered by conventional routes known the vaccine field, in particular to a mucosal (e.g., ocular, intranasal, pulmonary, oral, gastric, intestinal, rectal,

- 10 vaginal, or urinary tract) surface or via the parenteral (e.g., subcutaneous, intradermal, intramuscular, intravenous, or intraperitoneal) route. The choice of administration route depends upon a number of parameters, such as the adjuvant associated with the polypeptide. If a mucosal adjuvant is used,
- 15 the intranasal or oral route is preferred. If a lipid formulation or an aluminum compound is used, the parenteral route is preferred with the sub-cutaneous or intramuscular route being most preferred. The choice also depends upon the nature of the vaccine agent. For example, a polypeptide of the
- 20 invention fused to CTB or LTB is best administered to a mucosal surface.

As used herein, the composition of the invention contains one or several polypeptides or derivatives of the invention.

The composition optionally contains at least one additional

25 Chlamydia antigen, or a subunit, fragment, homolog, mutant, or derivative thereof.

For use in a composition of the invention, a polypeptide or derivative thereof is formulated into or with liposomes, preferably neutral or anionic liposomes, microspheres, ISCOMS,

30 or virus-like-particles (VLPs) to facilitate delivery and/or enhance the immune response. These compounds are readily available to one skilled in the art; for example, see Liposomes: A Practical Approach (supra).

Adjuvants other than liposomes and the like are also used and are known in the art. Adjuvants may protect the antigen from rapid dispersal by sequestering it in a local deposit, or they may contain substances that stimulate the host to secrete 5 factors that are chemotactic for macrophages and other components of the immune system. An appropriate selection can conventionally be made by those skilled in the art, for example, from those described below.

Treatment is achieved in a single dose or repeated as

10 necessary at intervals, as can be determined readily by one
skilled in the art. For example, a priming dose is followed by
three booster doses at weekly or monthly intervals. An
appropriate dose depends on various parameters including the
recipient (e.g., adult or infant), the particular vaccine

15 antigen, the route and frequency of administration, the
presence/absence or type of adjuvant, and the desired effect
(e.g., protection and/or treatment), as can be determined by one
skilled in the art. In general, a vaccine antigen of the
invention is administered by a mucosal route in an amount from
20 about 10 µg to about 500 mg, preferably from about 1 mg to about
200 mg. For the parenteral route of administration, the dose
usually does not exceed about 1 mg, preferably about 100 µg.

When used as vaccine agents, polynucleotides and polypeptides of the invention may be used sequentially as part 25 of a multistep immunization process. For example, a mammal is initially primed with a vaccine vector of the invention such as a pox virus, e.g., via the parenteral route, and then boosted twice with the polypeptide encoded by the vaccine vector, e.g., via the mucosal route. In another example, liposomes associated 30 with a polypeptide or derivative of the invention is also used for priming, with boosting being carried out mucosally using a soluble polypeptide or derivative of the invention in combination with a mucosal adjuvant (e.g., LT).

20

43

PCT/CA99/00992

accordance with the seventh aspect as a diagnostic reagent for detecting the presence of anti-Chlamydia antibodies, e.g., in a blood sample. Such polypeptides are about 5 to about 80, 5 preferably about 10 to about 50 amino acids in length. They are either labeled or unlabeled, depending upon the diagnostic method. Diagnostic methods involving such a reagent are described below.

A polypeptide derivative of the invention is also used in

Upon expression of a DNA molecule of the invention, a
10 polypeptide or polypeptide derivative is produced and purified
using known laboratory techniques. As described above, the
polypeptide or polypeptide derivative may be produced as a
fusion protein containing a fused tail that facilitates
purification. The fusion product is used to immunize a small
15 mammal, e.g., a mouse or a rabbit, in order to raise antibodies
against the polypeptide or polypeptide derivative (monospecific
antibodies). Accordingly, an eighth aspect of the invention
provides a monospecific antibody that binds to a polypeptide or
polypeptide derivative of the invention.

By "monospecific antibody" is meant an antibody that is

capable of reacting with a unique naturally-occurring Chlamydia polypeptide. An antibody of the invention is either polyclonal or monoclonal. Monospecific antibodies may be recombinant, e.g., chimeric (e.g., constituted by a variable region of murine 25 origin associated with a human constant region), humanized (a human immunoglobulin constant backbone together with hypervariable region of animal, e.g., murine, origin), and/or single chain. Both polyclonal and monospecific antibodies may also be in the form of immunoglobulin fragments, e.g., F(ab)'2 30 or Fab fragments. The antibodies of the invention are of any isotype, e.g., IgG or IgA, and polyclonal antibodies are of a single isotype or a mixture of isotypes.

Antibodies against the polypeptides, homologs or fragments of the present invention are generated by immunization

of a mammal with a composition comprising said polypeptide, homolog or fragment. Scu antibodies may be polyclonal or monoclonal. Methods to produce polyclonal or monoclonal antibodies are well known in the art. For a review, see 5 "Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Eds. E. Harlow and D. Lane (1988), and D.E. Yelton et al., 1981. Ann. Rev. Biochem. 50:657-680. For monoclonal antibodies, see Kohl and Milstein?...

The antibodies of the invention, which are raised to a polypeptide or polypeptide derivative of the invention, are produced and identified using standard immunological assays, e.g., Western blot analysis, dot blot assay, or ELISA (see, e.g., Coligan et al., Current Protocols in Immunology (1994) John Wiley & Sons, Inc., New York, NY). The antibodies are used 15 in diagnostic methods to detect the presence of a Chlamydia antigen in a sample, such as a biological sample. The antibodies are also used in affinity chromatography for purifying a polypeptide or polypeptide derivative of the invention. As is discussed further below, such antibodies may 20 be used in prophylactic and therapeutic passive immunization

Accordingly, a ninth aspect of the invention provides

(i) a reagent for detecting the presence of Chlamydia in a
biological sample that contains an antibody, polypeptide, or

25 polypeptide derivative of the invention; and (ii) a diagnostic
method for detecting the presence of Chlamydia in a biological
sample, by contacting the biological sample with an antibody, a
polypeptide, or a polypeptide derivative of the invention, such
that an immune complex is formed, and by detecting such complex

30 to indicate the presence of Chlamydia in the sample or the
organism from which the sample is derived.

methods.

Those skilled in the art will readily understand that the immune complex is formed between a component of the sample and the antibody, polypeptide, or polypeptide derivative, whichever

is used, and that any unbound material is removed prior to detecting the complex. It is understood that a polypeptide reagent is useful for detecting the presence of anti-Chlamydia antibodies in a sample, e.g., a blood sample, while an antibody of the invention is used for screening a sample, such as a gastric extract or biopsy, for the presence of Chlamydia polypeptides.

For diagnostic applications, the reagent (i.e., the antibody, polypeptide, or polypeptide derivative of the 10 invention) is either in a free state or immobilized on a solid support, such as a tube, a bead, or any other conventional support used in the field. Immobilization is achieved using direct or indirect means. Direct means include passive adsorption (non-covalent binding) or covalent binding between 15 the support and the reagent. By "indirect means" is meant that an anti-reagent compound that interacts with a reagent is first attached to the solid support. For example, if a polypeptide reagent is used, an antibody that binds to it can serve as an anti-reagent, provided that it binds to an epitope that is not 20 involved in the recognition of antibodies in biological samples. Indirect means may also employ a ligand-receptor system, for example, where a molecule such as a vitamin is grafted onto the

25 streptavidin system. Alternatively, a peptide tail is added chemically or by genetic engineering to the reagent and the grafted or fused product immobilized by passive adsorption or covalent linkage of the peptide tail.

polypeptide reagent and the corresponding receptor immobilized on the solid phase. This is illustrated by the biotin-

Such diagnostic agents may be included in a kit which
30 also comprises instructions for use. The reagent are labeled
with a detection means which allows for the detection of the
reagent when it is bound to its target. The detection means may
be a fluorescent agent such as fluorescein isocyanate or
fluorescein isothiocyanate, or an enzyme such as horse radish

peroxidase or luciferase or alkaline phosphatase, or a radioactive element such as ^{125}I or ^{51}Cr .

Accordingly, a tenth aspect of the invention provides a process for purifying, from a biological sample, a polypeptide 5 or polypeptide derivative of the invention, which involves carrying out antibody-based affinity chromatography with the biological sample, wherein the antibody is a monospecific antibody of the invention.

For use in a purification process of the invention, the 10 antibody is either polyclonal or monospecific, and preferably is of the IgG type. Purified IgGs is prepared from an antiserum using standard methods (see, e.g., Coligan et al., supra). Conventional chromatography supports, as well as standard methods for grafting antibodies, are described in, e.g., 15 Antibodies: A Laboratory Manual, D. Lane, E. Harlow, Eds. (1988) and outlined below.

Briefly, a biological sample, such as an *C. pneumoniae* extract preferably in a buffer solution, is applied to a chromatography material, preferably equilibrated with the buffer 20 used to dilute the biological sample so that the polypeptide or polypeptide derivative of the invention (i.e., the antigen) is allowed to adsorb onto the material. The chromatography material, such as a gel or a resin coupled to an antibody of the invention, is in either a batch form or a column. The unbound 25 components are washed off and the antigen is then eluted with an appropriate elution buffer, such as a glycine buffer or a buffer containing a chaotropic agent, e.g., guanidine HCl, or high salt concentration (e.g., 3 M MgCl₂). Eluted fractions are recovered and the presence of the antigen is detected, e.g., by measuring 30 the absorbance at 280 nm.

An eleventh aspect of the invention provides (i) a composition of matter comprising a monospecific antibody of the invention, together with a diluent or carrier; (ii) a pharmaceutical composition comprising a therapeutically or

47

PCT/CA99/00992

prophylactically effective amount of a monospecific antibody of the invention, and (iii) a method for treating or preventing a Chlamydia (e.g., C. trachomatis, C. psittaci, C. pneumoniae or C. pecorum) infection, by administering a therapeutic or 5 prophylactic amount of a monospecific antibody of the invention to an infected individual. Additionally, the eleventh aspect of the invention encompasses the use of a monospecific antibody of the invention in the preparation of a medicament for treating or preventing Chlamydia infection.

The monospecific antibody is either polyclonal or monoclonal, preferably of the IgA isotype (predominantly). In passive immunization, the antibody is administered to a mucosal surface of a mammal, e.g., the gastric mucosa, e.g., orally or intragastrically, advantageously, in the presence of a

15 bicarbonate buffer. Alternatively, systemic administration, not requiring a bicarbonate buffer, is carried out. A monospecific antibody of the invention is administered as a single active component or as a mixture with at least one monospecific antibody specific for a different Chlamydia polypeptide. The

20 amount of antibody and the particular regimen used are readily determined by one skilled in the art. For example, daily administration of about 100 to 1,000 mg of antibodies over one week, or three doses per day of about 100 to 1,000 mg of antibodies over two or three days, are effective regimens for

25 most purposes.

Therapeutic or prophylactic efficacy are evaluated using standard methods in the art, e.g., by measuring induction of a mucosal immune response or induction of protective and/or therapeutic immunity, using, e.g., the C. pneumoniae mouse 30 model. Those skilled in the art will readily recognize that the C. pneumoniae strain of the model may be replaced with another Chlamydia strain. For example, the efficacy of DNA molecules and polypeptides from C. pneumoniae is preferably evaluated in a mouse model using C. pneumoniae strain. Protection is

determined by comparing the degree of *Chlamydia* infection to that of a control group. Protection is shown when infection is reduced by comparison to the control group. Such an evaluation is made for polynucleotides, vaccine vectors, polypeptides and 5 derivatives thereof, as well as antibodies of the invention.

Adjuvants useful in any of the vaccine compositions described above are as follows.

Adjuvants for parenteral administration include aluminum compounds, such as aluminum hydroxide, aluminum phosphate, and 10 aluminum hydroxy phosphate. The antigen is precipitated with, or adsorbed onto, the aluminum compound according to standard protocols. Other adjuvants, such as RIBI (ImmunoChem, Hamilton, MT), is used in parenteral administration.

Adjuvants for mucosal administration include bacterial

15 toxins, e.g., the cholera toxin (CT), the *E. coli* heat-labile toxin (LT), the *Clostridium difficile* toxin A and the *pertussis* toxin (PT), or combinations, subunits, toxoids, or mutants thereof such as a purified preparation of native cholera toxin subunit B (CTB). Fragments, homologs, derivatives, and fusions 20 to any of these toxins are also suitable, provided that they retain adjuvant activity. Preferably, a mutant having reduced toxicity is used. Suitable mutants are described, e.g., in WO 95/17211 (Arg-7-Lys CT mutant), WO 96/6627 (Arg-192-Gly LT mutant), and WO 95/34323 (Arg-9-Lys and Glu-129-Gly PT mutant). 25 Additional LT mutants that are used in the methods and compositions of the invention include, e.g., Ser-63-Lys, Ala-69-Gly, Glu-110-Asp, and Glu-112-Asp mutants. Other adjuvants, such as a bacterial monophosphoryl lipid A (MPLA) of, e.g., *E*.

30 flexneri; saponins, or polylactide glycolide (PLGA) microspheres, is also be used in mucosal administration.

Adjuvants useful for both mucosal and parenteral administrations include polyphosphazene (WO 95/2415), DC-chol (3

coli, Salmonella minnesota, Salmonella typhimurium, or Shigella

49

PCT/CA99/00992

b-(N-(N',N'-dimethyl aminomethane)-carbamoyl) cholesterol; U.S. Patent No. 5,283,185 and WO 96/14831) and QS-21 (WO 88/9336).

Any pharmaceutical composition of the invention containing a polynucleotide, a polypeptide, a polypeptide

5 derivative, or an antibody of the invention, is manufactured in a conventional manner. In particular, it is formulated with a pharmaceutically acceptable diluent or carrier, e.g., water or a saline solution such as phosphate buffer saline. In general, a diluent or carrier is selected on the basis of the mode and

10 route of administration, and standard pharmaceutical practice. Suitable pharmaceutical carriers or diluents, as well as pharmaceutical necessities for their use in pharmaceutical formulations, are described in Remington's Pharmaceutical Sciences, a standard reference text in this field and in the

15 USP/NF.

The invention also includes methods in which Chlamydia

infection are treated by oral administration of a Chlamydia polypeptide of the invention and a mucosal adjuvant, in combination with an antibiotic, an antacid, sucralfate, or a 20 combination thereof. Examples of such compounds that can be administered with the vaccine antigen and the adjuvant are antibiotics, including, e.g., macrolides, tetracyclines, and derivatives thereof (specific examples of antibiotics that can be used include azithromycin or doxicyclin or immunomodulators 25 such as cytokines or steroids). In addition, compounds containing more than one of the above-listed components coupled together, are used. The invention also includes compositions for carrying out these methods, i.e., compositions containing a Chlamydia antigen (or antigens) of the invention, an adjuvant, 30 and one or more of the above-listed compounds, in a pharmaceutically acceptable carrier or diluent.

Amounts of the above-listed compounds used in the methods and compositions of the invention are readily determined by one skilled in the art. Treatment/immunization schedules are also

50

PCT/CA99/00992

known and readily designed by one skilled in the art. For example, the non-vaccine components can be administered on days 1-14, and the vaccine antigen + adjuvant can be administered on days 7, 14, 21, and 28.

51

PCT/CA99/00992

REFERENCES

- 1. Grayston et al. (1995) Journal of Infectious Diseases
- 2. Campos et al. (1995) Investigation of Ophthalmology and
- 5 Visual Science 36:1477
 - 3. Grayston et al (1990) Journal of Infectious Diseases 161:618
- 4. Marrie (1993) Clinical Infectious Diseases. 18:501
 - 5. Wang et al (1986) Chlamydial infections. Cambridge University Press, Cambridge. p. 329
- 10 6. Saikku et al. (1988) Lancet; ii: 983
 - 7. Thom et al. (1992) JAMA 268:68
 - 8. Linnanmaki et al. (1993), Circulation 87:1030
 - 9. Saikku et al. (1992) Annals Internal Medicine 116:273
 - 10. Melnick et al(1993) American Journal of Medicine 95:499 11
- 15 Shor et al. (1992) South African. Medical Journal 82:158
 - 12. Kuo et al. (1993) Journal of Infectious Diseases 167:841
 - 13. Kuo et al. (1993) Arteriosclerosis and Thrombosis 13:1500
 - 14. Campbell et al (1995) Journal of Infectious Diseases 172:585
 - 15. Chiu et al. Circulation, 1997 (In Press).
- 20 16. Ramirez et al (1996) Annals of Internal Medicine 125:979
 - 17. Jackson et al. Abst. K121, p272, 36th ICAAC, 15-18 Sept. 1996, New Orleans.
 - 18. Fong et al (1997) Journal of Clinical Microbiolology 35:48
 - 19. Hahn DL, et al. Evidence for Chlamydia pneumoniae infection
- 25 in steroid-dependent asthma. Ann Allergy Asthma Immunol. 1998 Jan; 80(1): 45-49.
 - 20. Hahn DL, et al. Association of Chlamydia pneumoniae IgA antibodies with recently symptomatic asthma. Epidemiol Infect. 1996 Dec; 117(3): 513-517.
- 30 21. Bjornsson E, et al. Serology of chlamydia in relation to asthma and bronchial hyperresponsiveness. Scand J Infect Dis. 1996; 28(1): 63-69.

- 22. Hahn DL. Treatment of *Chlamydia pneumoniae* infection in adult asthma: a before-after trial. J Fam Pract. 1995 Oct; 41(4): 345-351.
- 23. Allegra L, et al. Acute exacerbations of asthma in adults:
- 5 role of Chlamydia pneumoniae infection. Eur Respir J. 1994 Dec; 7(12): 2165-2168.
- 24. Hahn DL, et al. Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA. 1991 Jul 10; 266(2): 225-230.
- 10 25. Pal et al. (1996) Infection and Immunity. 64:5341
 - 26. Jones et al. (1995) Vaccine 13:715
 - 27. Igietsemes et al. (1993) Immunology 5:317
 - 28. Igietseme et al (1993) Regional Immunology 5:317
 - 29. Magee et al (1993) Regional Immunology 5: 305
- 15 30. Landers et al (1991) Infection & Immunity 59:3774
 - 31. Magee et al (1995) Infection & Immunity 63:516
 - 32. Cotter et al. (1995) Infection and Immunity63:4704
 - 33. Campbell et al (1990) Infection and Immunity 58:93
 - 34. McCafferty et al (1995) Infection and Immunity 63:2387-9.
- 20 35. Knudsen et al (1996)Third Meeting of the European Society for Chlamydia Research, Vienna
 - 36. Wiedmann-Al-Ahmad M, et al. Reactions of polyclonal and neutralizing anti-p54 monoclonal antibodies with an isolated, species-specific 54-kilodalton protein of Chlamydia pneumoniae.
- 25 Clin Diagn Lab Immunol. 1997 Nov; 4(6): 700-704
 - 37. Hughes et al., 1992. Infect. Immun. 60(9):3497,
 - 38. Dion et al., 1990. Virology 179:474-477,
 - 39. Snijders et al., 1991. J. Gen. Virol. 72:557-565,
 - 40. Langeveld et al., Vaccine 12(15):1473-1480, 1994
- 30 41. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons Inc., 1994
 - 42. Kunkel et al. Proc. Natl. Acad. Sci. USA (1985) 82:448
 - 43. Silhavy et al. Experiments with Gene Fusions, Cold Spring Harbor Laboratory Press, 1984

53

PCT/CA99/00992

- 44. Davis et al. A Manual for Genetic Engineering: Advanced Bacterial Genetics, Cold Spring Harbor Laboratory Press, 1980)
- 45. Casey & Davidson, Nucl. Acid Res. (1977) 4:1539
- 46. Cagnon et al., Protein Engineering (1991) 4(7):843
- 5 47. Takase et al., J. Bact. (1987) 169:5692

CLAIMS:

- 1. A nucleic acid molecule comprising a nucleic acid sequence which encodes a polypeptide selected from any of:
 - (a) SEQ ID Nos: 27 to 45;
- 5 (b) an immunogenic fragment comprising at least 12 consecutive amino acids from a polypeptide of (a); and
- (c) a polypeptide of (a) or (b) which has been modified without loss of immunogenicity, wherein said modified polypeptide is at least 75% identical in amino acid sequence to 10 the corresponding polypeptide of (a) or (b).
 - A nucleic acid molecule comprising a nucleic acid sequence selected from any of:
 - (a) SEO ID Nos: 1 to 26;
- (b) a sequence which encodes a polypeptide encoded by 15 any one of SEQ ID Nos: 1 to 26;
 - (c) a sequence comprising at least 38 consecutive nucleotides from any one of the nucleic acid sequences of (a) and (b); and $\begin{tabular}{ll} \end{tabular}$
- (d) a sequence which encodes a polypeptide which is 20 at least 75% identical in amino acid sequence to any one of the polypeptides encoded by SEQ ID Nos: 1 to 26.
 - A nucleic acid molecule comprising a nucleic acid sequence which is anti-sense to the nucleic acid molecule of claim 1.
- 25 4. A nucleic acid molecule comprising a nucleic acid sequence which encodes a fusion protein, said fusion protein comprising a polypeptide encoded by a nucleic acid molecule according to claim 1 and a second polypeptide.

- 5. The nucleic acid molecule of claim 4 wherein the second polypeptide is a heterologous signal peptide.
- 6. The nucleic acid molecule of claim 4 wherein the second polypeptide has adjuvant activity.
- 5 7. A nucleic acid molecule according to claim 1, operatively linked to one or more expression control sequences.
 - 8. A vaccine comprising a vaccine vector and at least one first nucleic acid selected from any of:
 - (i) SEQ ID Nos: 1 to 26;
- 10 (ii) a nucleic acid sequence which encodes a polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
 - (iii) a nucleic acid sequence comprising at least 38 consecutive nucleotides from any one of the nucleic acid sequences of (i) and (ii);
- (iv) a nucleic acid sequence which encodes a polypeptide which is at least 75% identical in amino acid sequence to the polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
- (v) a nucleic acid sequence which encodes a 20 polypeptide whose sequence is set forth in any one of SEQ ID Nos: 27 to 45;
 - (vi) a nucleic acid sequence which encodes an immunogenic fragment comprising at least 12 consecutive amino acids from any one of SEQ ID Nos: 27 to 45; and
- 25 (vii) a nucleic acid sequence which encodes a polypeptide as defined in (v) or an immunogenic fragment as defined in (vi) which has been modified without loss of immunogenicity, wherein said modified polypeptide or fragment is at least 75% identical in amino acid sequence to the

corresponding polypeptide of (v) or the corresponding fragment of (vi);

wherein each first nucleic acid is capable of being expressed. $% \begin{center}

- 9. A vaccine comprising a vaccine vector and at least one first nucleic acid encoding a fusion protein, wherein the fusion protein comprises:
 - (a) a first polypeptide selected from any of:
- $\mbox{(i) a polypeptide encoded by any one of SEQ ID Nos: 1} \label{eq:second} \mbox{10 to 26;}$
 - (ii) a polypeptide encoded by a nucleic acid sequence comprising at least 38 consecutive nucleotides from any one of SEQ ID Nos: 1 to 26;
- (iii) a polypeptide which is at least 75% identical 15 in amino acid sequence to the polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
 - (iv) a polypeptide whose sequence is set forth in any one of SEO ID Nos: 27 to $45\colon$
- (v) an immunogenic fragment comprising at least 12 20 consecutive amino acids from any one of SEQ ID Nos: 27 to 45; and
- (vi) a polypeptide as defined (iv) or an immunogenic fragment as defined in (v) which has been modified without loss of immunogenicity, wherein said modified polypeptide or 25 fragment is at least 75% identical in amino acid sequence to the corresponding polypeptide of (iv) or the corresponding fragment of (v); and
 - (b) a second polypeptide;

wherein each first nucleic acid is capable of being expressed. $% \begin{center}

- 10. The vaccine of claim 9 wherein the second polypeptide is a heterologous signal peptide.
- 5 11. The vaccine of claim 9 wherein the second polypeptide has adjuvant activity.
 - 12. The vaccine of claim 8 wherein each first nucleic acid is operatively linked to one or more expression control sequences.
- 10 13. A vaccine according to claim 8 wherein each first nucleic acid is expressed as a polypeptide, and wherein the vaccine comprises a second nucleic acid encoding an additional polypeptide which enhances the immune response to the polypeptide expressed by the first nucleic acid.
- 15 14. The vaccine of claim 13 wherein the second nucleic acid encodes an additional Chlamydia polypeptide.
 - 15. A pharmaceutical composition comprising a nucleic acid according to claim 1 and a pharmaceutically acceptable carrier.
- 20 16. A pharmaceutical composition comprising a vaccine according to claim 8 and a pharmaceutically acceptable carrier.
 - 17. A unicellular host transformed with the nucleic acid molecule of claim 7.
 - 18. An isolated nucleic acid probe of 5 to 100 nucleotides which hybridizes under stringent conditions to any
- 25 nucleotides which hybridizes under stringent conditions to any one of nucleic acid molecules of SEQ ID Nos: 1 to 26, or to a complementary or anti-sense sequence of said nucleic acid molecule.
- 19. A primer of 10 to 40 nucleotides which hybridizes
 30 under stringent conditions to any one of nucleic acid molecules

of SEQ ID Nos: 1 to 26, or to a homolog or complementary or anti-sense sequence of said nucleic acid molecule.

- 20. A polypeptide encoded by a nucleic acid sequence according to claim 2.
- 5 21. A polypeptide comprising an amino acid sequence selected from any of:
 - (a) SEQ ID Nos: 27 to 45;
 - (b) an immunogenic fragment comprising at least 12 consecutive amino acids from a polypeptide of (a); and
- 10 (c) a polypeptide of (a) or (b) which has been modified without loss of immunogenicity, wherein said modified polypeptide is at least 75% identical in amino acid sequence to the corresponding polypeptide of (a) or (b).
- 22. A fusion protein comprising a polypeptide of claim 20 and a second polypeptide.
 - 23. The fusion protein of claim 22 wherein the second polypeptide is a heterologous signal peptide.
 - 24. The fusion protein of claim 22 wherein the second polypeptide has adjuvant activity.
- 20 25. A method for producing a polypeptide of claim 20, comprising the step of culturing a unicellular host of claim 17.
 - 26. An antibody against the polypeptide of claim 20.
- 27. A vaccine comprising at least one first polypeptide25 selected from any of:
 - $\mbox{(i) a polypeptide encoded by any one of SEQ ID Nos: 1} \label{eq:sequence}$ to 26;

- (ii) a polypeptide encoded by a nucleic acid sequence comprising at least 38 consecutive nucleotides from any one of SEO ID Nos: 1 to 26:
- (iii) a polypeptide which is at least 75% identical
 5 in amino acid sequence to the polypeptide encoded by any one of
 SEO ID Nos: 1 to 26;
 - (iv) a polypeptide whose sequence is set forth in any one of SEO ID Nos: 27 to $45\,;$
- (v) an immunogenic fragment comprising at least 12 10 consecutive amino acids from any one of SEQ ID Nos: 27 to 45; and
- (vi) a polypeptide as defined in (iv) or an immunogenic fragment as defined in (v) which has been modified without loss of immunogenicity, wherein said modified
 polypeptide or fragment is at least 75% identical in amino acid sequence to the corresponding polypeptide of (iv) or the corresponding fragment of (v).
 - 28. A vaccine comprising at least one fusion protein, wherein the fusion protein comprises:
- 20 (a) a first polypeptide selected from any of:
 - $\mbox{(i) a polypeptide encoded by any one of SEQ ID Nos: 1} \label{eq:second}$ to 26;
- (ii) a polypeptide encoded by a nucleic acid sequence comprising at least 38 consecutive nucleotides from any one of 25 SEO ID Nos: 1 to 26;
 - (iii) a polypeptide which is at least 75% identical in amino acid sequence to the polypeptide encoded by any one of SEQ ID Nos: 1 to 26;
- $\mbox{(iv) a polypeptide whose sequence is set forth in any} \label{eq:sequence} \mbox{30 one of SEQ ID Nos: 27 to } 45;$

- $$\rm (v)$$ an immunogenic fragment comprising at least 12 consecutive amino acids from any one of SEQ ID Nos: 27 to 45; and
- (vi) a polypeptide as defined (iv) or an immunogenic fragment as defined in (v) which has been modified without loss of immunogenicity, wherein said modified polypeptide or fragment is at least 75% identical in amino acid sequence to the corresponding polypeptide of (iv) or the corresponding fragment of (v); and
- 10 (b) a second polypeptide.
 - 29. The vaccine of claim 28 wherein the second polypeptide is a heterologous signal peptide.
 - 30. The vaccine of claim 28 wherein the second polypeptide has adjuvant activity.
- 15 31. A vaccine comprising at least one first polypeptide according to claim 20 and an additional polypeptide which enhances the immune response to the first polypeptide.
 - 32. The vaccine of claim 31 wherein the additional polypeptide comprises a *Chlamydia* polypeptide.
- 20 33. A pharmaceutical composition comprising a polypeptide according to claim 20 and a pharmaceutically acceptable carrier.
 - 34. A pharmaceutical composition comprising a vaccine according to claim 27 and a pharmaceutically acceptable
- 25 carrier.
 - 35. A pharmaceutical composition comprising an antibody according to claim 26 and a pharmaceutically acceptable carrier.

- 36. A method for preventing or treating *Chlamydia* infection comprising administering to a patient an effective amount of:
 - (a) a nucleic acid molecule according to claim 2;
- 5 (b) a vaccine comprising a vaccine vector and at least one first nucleic acid according to claim 2;
 - (c) a pharmaceutical composition comprising a nucleic acid according to claim 2 and a pharmaceutically acceptable carrier:
- 10 (d) a polypeptide encoded by a nucleic acid sequence according to claim 2; or
 - (e) an antibody against a polypeptide encoded by a nucleic acid sequence according to claim 2.
- 37. A method of detecting Chlamydia infection comprising 15 the step of contacting a body fluid of a mammal to be tested, with a component selected from any one of:
 - (a) a nucleic acid molecule according to claim 2;
 - (b) a polypeptide encoded by a nucleic acid sequence according to claim 2; and
- (c) an antibody against a polypeptide encoded by a nucleic acid sequence according to claim 2.
 - 38. A diagnostic kit comprising instructions for use and a component selected from any one of:
 - (a) a nucleic acid molecule according to claim 2;
- 25 (b) a polypeptide encoded by a nucleic acid sequence according to claim 2; and
 - (c) an antibody against a polypeptide encoded by a nucleic acid sequence according to claim 2.

- 39. A method for identifying a polypeptide of claim 20 which induces an immune response effective to prevent or lessen the severity of *Chlamydia* infection in a mammal previously immunized with polypeptide, comprising the steps of:
- $\hbox{\ensuremath{\mbox{(a)}}$ immunizing a mouse with a polypeptide of claim}} \label{eq:claim20:equation}$

5

(b) inoculating the immunized mouse with Chlamydia;

wherein the polypeptide which prevents or lessens the severity of *Chlamydia* infection in the immunized mouse compared to a non-immunized control mouse is identified.

WO 00/24765 PCT/CA99/00992 54

CLAIMS

- A nucleic acid molecule comprising a nucleic acid sequence which encodes a polypeptide selected from any of:
- 5 (a) SEO ID Nos: 27 to 45;
 - (b) an immunogenic fragment comprising at least 12 consecutive amino acids from a polypeptide of (a); and
 - (c) a polypeptide of (a) or (b) which has been modified to improve its immunogenicity, wherein said modified polypeptide is at least 75% identical in amino acid sequence to the corresponding polypeptide of (a) or (b).
- A nucleic acid molecule comprising a nucleic acid
 sequence selected from any of:
 - (a) SEO ID Nos: 1 to 26;
 - (b) a sequence which encodes a polypeptide encoded by any one of SEO ID Nos: 1 to 26;
 - (c) a sequence comprising at least 38 consecutive nucleotides from any one of the nucleic acid sequences of (a) and (b); and
 - (d) a sequence which encodes a polypeptide which is at least 75% identical in amino acid sequence to any one of the polypeptides encoded by SEQ ID Nos: 1 to 26.

25

20

1.0

55

PCT/CA99/00992

- 3. A nucleic acid molecule comprising a nucleic acid sequence which encodes a fusion protein, said fusion protein comprising a polypeptide encoded by a nucleic acid molecule according to claim 1 and an additional polypeptide.
- A nucleic acid molecule according to claim 1, operatively linked to one or more expression control sequences.

10

15

5

- 5. A vaccine comprising at least one first nucleic acid according to any one of claims 1 to 4 and a vaccine vector wherein each first nucleic acid is expressed as a polypeptide, the vaccine optionally comprising a second nucleic acid encoding an additional polypeptide which enhances the immune response to the polypeptide expressed by said first nucleic acid.
- The vaccine of claim 5 wherein the second nucleic acid
 encodes an additional Chlamydia polypeptide.
 - 7. A pharmaceutical composition comprising a nucleic acid according to any one of claims 1 to 5 and a pharmaceutically acceptable carrier.

WO 00/24765 PCT/CA99/00992

- A pharmaceutical composition comprising a vaccine according to claim 5 or 6 and a pharmaceutically acceptable carrier.
- 5 9. A unicellular host transformed with the nucleic acid molecule of claim 4.
- 10. A nucleic acid probe of 5 to 100 nucleotides which hybridizes under stringent conditions to any one of nucleic acid molecules of SEQ ID Nos: 1 to 26, or to a homolog or complementary or anti-sense sequence of said nucleic acid molecule.
- 11. A primer of 10 to 40 nucleotides which hybridizes 15 under stringent conditions to any one of nucleic acid molecules of SEQ ID Nos: 1 to 26, or to a homolog or complementary or anti-sense sequence of said nucleic acid molecule.
- 20 12. A polypeptide encoded by a nucleic acid sequence according to any one of claims 1 to 4.
 - 13. A polypeptide comprising an amino acid sequence selected from any of:
- 25 (a) SEO ID Nos: 27 to 45;

57

PCT/CA99/00992

- (b) an immunogenic fragment comprising at least 12 consecutive amino acids from a polypeptide of (a); and
- (c) a polypeptide of (a) or (b) which has been modified to improve its immunogenicity, wherein said modified polypeptide is at least 75% identical in amino acid sequence to the corresponding polypeptide of (a) or
 (b).
- 14. A fusion polypeptide comprising a polypeptide of claim
 10 12 or 13 and an additional polypeptide.
 - 15. A method for producing a polypeptide of claim 12 or 13, comprising the step of culturing a unicellular host according to claim 9.

15

- 16. An antibody against the polypeptide of any one of claims 12 to 14.
- 17. A vaccine comprising at least one first polypeptide

 20 according to any one of claims 12 to 14 and a

 pharmaceutically acceptable carrier, optionally comprising
 a second polypeptide which enhances the immune response to
 the first polypeptide.
- 25 18. The vaccine of claim 17 wherein the second polypeptide comprises an additional Chlamvdia polypeptide.

58

PCT/CA99/00992

19. A pharmaceutical composition comprising a polypeptide according to any one of claims 12 to 14 and a pharmaceutically acceptable carrier.

5

15

- 20. A pharmaceutical composition comprising a vaccine according to claim 17 or 18 and a pharmaceutically acceptable carrier.
- 10 21. A pharmaceutical composition comprising an antibody according to claim 16 and a pharmaceutically acceptable carrier.
 - 22. A method for preventing or treating Chlamydia infection using:
 - (a) the nucleic acid of any one of claims 1 to 4;
 - (b) the vaccine of any one of claims 5, 6, 17 and 18;
 - (c) the pharmaceutical composition of any one of claims 7, 8. 19 to 21;
- 20 (d) the polypeptide of any one of claims 12 to 14; or
 - (e) the antibody of claim 16.
 - 23. A method of detecting Chlamydia infection comprising the step of assaying a body fluid of a mammal to be tested, with a component selected from any one of:
 - (a) the nucleic acid of any one of claims 1 to 4;

PCT/CA99/00992

- (b) the polypeptide of any one of claims 12 to 14; and
- (c) the antibody of claim 16.
- 24. A diagnostic kit comprising instructions for use and a
- 5 component selected from any one of:
 - (a) the nucleic acid of any one of claims 1 to 4;
 - (b) the polypeptide of any one of claims 12 to 14; and the antibody of claim 16.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

9/830446

(19) World Intellectual Property Organization International Bureau (43) International Publication Date

NIPO OMP

PCT

(10)

(10) International Publication Number WO 00/24765 A3

- 4 May 2000 (04.05.2000) Pt.
 (51) International Patent Classification?: C12N 15/62, C07K 14/295, 16/12, A61K 39/118, G01N 33/53, C12Q 16/8. C12N 5/10
- (21) International Application Number: PCT/CA99/00992
- (22) International Filing Date: 28 October 1999 (28.10.1999)
- (25) Filing Language:
- English English
- (26) Publication Language:
 - 28 October 1998 (28 10 1998) 119
- (30) Priority Data:

60/106,034	28 October 1998 (28.10.1998)	US
60/106,044	28 October 1998 (28.10.1998)	US
60/106,039	28 October 1998 (28.10.1998)	US
60/106,042	28 October 1998 (28.10.1998)	US
60/106,087	29 October 1998 (29.10.1998)	US
60/106,072	29 October 1998 (29.10.1998)	US
60/106,073	29 October 1998 (29.10.1998)	US
60/106,074	29 October 1998 (29.10.1998)	US
60/106,589	2 November 1998 (02.11.1998)	US
60/107,034	2 November 1998 (02.11.1998)	US
60/107,035	2 November 1998 (02.11.1998)	US
60/106,587	2 November 1998 (02.11.1998)	US
60/106,588	2 November 1998 (02.11.1998)	US

- (71) Applicant (for all designated States except US): AVEN-TIS PASTEUR LIMITED [CA/CA]; 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MURDIN, Andrew, D. [CA/CA]; 11 Forest Hill Drive, Richmond Hill, Ontario L4B 3C2 (CA). OOMEN, Raymond, P. [CA/CA]; RR No. 1, Schomberg, Ontario LOG 1TO (CA), WANG, Joe

[CA/CA]; 51 Aspenwood Drive, Toronto, Ontario M2H 2E8 (CA).

- (74) Agents: MORROW, Joy, D. et al.; Smart & Biggar, 900-55 Metcalfe Street, P.O. Box 2999, Station D, Ottawa, Ontario K1P 5Y6 (CA).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MN, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 9 November 2000
- (48) Date of publication of this corrected version:

20 December 2001

(15) Information about Correction:

see PCT Gazette No. 51/2001 of 20 December 2001, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

8

(54) Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

The present invention provides purified and isolated polynucleotide molecules that encode Chlamydia polypeptides which can be used in methods to prevent, treat, and diagnose Chlamydia infection. In one form of the invention, the polynucleotide molecules are selected from DNA that encode polypeptides CPN100397 (SEQ ID Nos: 1 and 2), CPN100421 (SEQ ID Nos: 3 and 4), CPN100422 (SEQ ID Nos: 4 and 6), CPN100424 (SEQ ID Nos: 7 and 8), CPN100426 (SEQ ID Nos: 9 and 10), CPN10057 (SEQ ID Nos: 11 and 12), CPN100538 (SEQ ID Nos: 11 and 12), CPN100537 (SEQ ID Nos: 17 and 18), CPN100622 (SEQ ID Nos: 9 and 20), CPN100626 (SEQ ID Nos: 2) and 20), CPN100626 (SEQ ID Nos: 3) and 20), CPN100

09/830446

Tide: CHLAMYDIA ANTIGENS AND TO SEE THE CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 PCT/CA99/00992

Figure 1:	CPN10039	7				
attttaacgt o	gcgtatcatt	tgtgactaag	agatagactt	gctttcttta	tctatcttct	60

attt	taac	gt g	cgta	tcat	t tg	tgac	taag	aga	taga	CEL	gett		La	.cca		00
gtat	tgga	aa g	aaag	eccc	t tg	aggg	aaaa	aaa	ggt t	gtt	atg Met 1	aag Lys	att Ile	cca Pro	ctc Leu 5	115
ege Arg	ttt Phe	tta Leu	ttg Leu	ata Ile 10	tca Ser	tta Leu	gta Val	cct Pro	acg Thr 15	ctt Leu	tct Ser	atg Met	tcg Ser	aat Asn 20	tta Leu	163
tta Leu	gga Gly	gct Ala	gct Ala 25	act Thr	acc Thr	gaa Glu	gag Glu	tta Leu 30	tcg Ser	gct Ala	agc Ser	aat Asn	agc Ser 35	ttc Phe	gat Asp	211
gga Gly	act Thr	aca Thr 40	tca Ser	aca Thr	aca Thr	agc Ser	ttt Phe 45	tct Ser	agt Ser	aaa Lys	aca Thr	tca Ser 50	tcg Ser	gct Ala	aca Thr	259
gat Asp	ggc Gly 55	acc Thr	aat Asn	tat Tyr	gtt Val	ttt Phe 60	aaa Lys	gat Asp	tct Ser	gta Val	gtt Val 65	ata Ile	gaa Glu	aat Asn	gta Val	307
ccc Pro 70	aaa Lys	aca Thr	Gly ggg	gaa Glu	act Thr 75	cag Gln	tct Ser	act Thr	agt Ser	tgt Cys 80	ttt Phe	aaa Lys	aat Asn	gac Asp	gct Ala 85	355
gca Ala	gct Ala	gga Gly	gat Asp	cta Leu 90	aat Asn	ttc Phe	tta Leu	gga Gly	999 Gly 95	gga Gly	ttt Phe	tct Ser	ttc Phe	aca Thr 100	ttt Phe	403
agc Ser	aat Asn	atc Ile	gat Asp 105	gca Ala	acc Thr	acg Thr	gct Ala	tct Ser 110	gga Gly	gct Ala	gct Ala	att Ile	gga Gly 115	agt Ser	gaa Glu	451
gca Ala	gct Ala	aat Asn 120	aag Lys	aca Thr	gtc Val	acg Thr	tta Leu 125	tca Ser	gga Gly	ttt Phe	tcg Ser	gca Ala 130	ctt Leu	tct Ser	ttt Phe	499
ctt Leu	aaa Lys 135	tcc Ser	cca Pro	gca Ala	agt Ser	aca Thr 140	gtg Val	act Thr	aat Asn	gga Gly	ttg Leu 145	gga Gly	gct Ala	atc Ile	aat Asn	547
gtt Val 150	aaa Lys	ggg Gly	aat Asn	tta Leu	agc Ser 155	cta Leu	ttg Leu	gat Asp	aat Asn	gat Asp 160	aag Lys	gta Val	ttg Leu	att Ile	cag Gln 165	595
gac Asp	aat Asn	ttc Phe	tca Ser	aca Thr 170	gga Gly	gat Asp	ggc Gly	gga Gly	gca Ala 175	att Ile	aat Asn	tgt Cys	gca Ala	ggc Gly 180	tcc Ser	643
ttg Leu	aag Lys	atc Ile	gca Ala	aac Asn	aat Asn	aag Lys	tcc Ser	ctt Leu	tct Ser	ttt Phe	att Ile	gga Gly	aat Asn	agt Ser	tct Ser	691

190

185

Tide: CHLAMYDIA ANTIGERS AND SCIENCE 109/830446

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fia.	1	(con't)

WO 00/24765

tca Ser	aca Thr	cgt Arg 200	ggc Gly	gga Gly	gcg Ala	att Ile	cat His 205	acc Thr	aaa Lys	aac Asn	ctc Leu	aca Thr 210	cta Leu	tct Ser	tct Ser	739
ggt Gly	999 Gly 215	gaa Glu	act Thr	cta Leu	ttt Phe	cag Gln 220	Gly 999	aat Asn	aca Thr	gcg Ala	cct Pro 225	acg Thr	gct Ala	gct Ala	ggt Gly	787
aaa Lys 230	gga Gly	ggt Gly	gct Ala	atc Ile	gcg Ala 235	att Ile	gca Ala	gac Asp	tct Ser	ggc Gly 240	acc Thr	cta Leu	tcc Ser	att Ile	tct Ser 245	835
gga Gly	gac Asp	agt Ser	ggc Gly	gac Asp 250	att Ile	atc Ile	ttt Phe	gaa Glu	ggc Gly 255	aat Asn	acg Thr	ata Ile	gga Gly	gct Ala 260	aca Thr	883
gga Gly	acc Thr	gtc Val	tct Ser 265	cat His	agt Ser	gct Ala	att Ile	gat Asp 270	tta Leu	gga Gly	act Thr	agc Ser	gct Ala 275	aag Lys	ata Ile	931
act Thr	gcg Ala	tta Leu 280	cgt Arg	gct Ala	gcg Ala	caa Gln	gga Gly 285	cat His	acg Thr	ata Ile	tac Tyr	ttt Phe 290	tat Tyr	gat Asp	ccg Pro	979
att Ile	act Thr 295	gta Val	aca Thr	gga Gly	tcg Ser	aca Thr 300	tct Ser	gtt Val	gct Ala	gat Asp	gct Ala 305	ctc Leu	aat Asn	att Ile	aat Asn	1027
agc Ser 310	cct Pro	gat Asp	act Thr	gga Gly	gat Asp 315	aac Asn	aaa Lys	gag Glu	tat Tyr	acg Thr 320	gga Gly	acc Thr	ata Ile	gtc Val	ttt Phe 325	1075
tct Ser	gga Gly	gag Glu	aag Lys	ctc Leu 330	acg Thr	gag Glu	gca Ala	gaa Glu	gct Ala 335	aaa Lys	gat Asp	gag Glu	aag Lys	aac Asn 340	cgc Arg	1123
act Thr	tct Ser	aaa Lys	tta Leu 345	ctt Leu	caa Gln	aat Asn	gtt Val	gct Ala 350	ttt Phe	aaa Lys	aat Asn	ggg ggg	act Thr 355	gta Val	gtt Val	1171
tta Leu	aaa Lys	ggt Gly 360	gat Asp	gtc Val	gtt Val	tta Leu	agt Ser 365	gcg Ala	aac Asn	ggt Gly	ttc Phe	tct Ser 370	cag Gln	gat Asp	gca Ala	1219
aac Asn	tct Ser 375	aag Lys	ttg Leu	att Ile	atg Met	gat Asp 380	tta Leu	gly	acg Thr	tcg Ser	ttg Leu 385	gtt Val	gca Ala	aac Asn	acc Thr	1267
gaa Glu 390	Ser	atc Ile	gag Glu	tta Leu	acg Thr 395	aat Asn	ttg Leu	gaa Glu	att Ile	aat Asn 400	ata Ile	gac Asp	tct Ser	ctc Leu	agg Arg 405	1315

Title: CHLAMYDIA ANTIGENS AND SULLING 1830456

CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al WO 00/24765 DOCKET NO.: 032931/0251

PCT/CA99/00992

Fio	1 :	(con't)

aac Asn	Gly aga	aaa Lys	aag Lys	ata Ile 410	aaa Lys	ctc Leu	agt Ser	gct Ala	gcc Ala 415	aca Thr	gct Ala	cag Gln	aaa Lys	gat Asp 420	att Ile	1363
cgt Arg	ata Ile	gat Asp	cgt Arg 425	cct Pro	gtt Val	gta Val	ctg Leu	gca Ala 430	att Ile	agc Ser	gat Asp	gag Glu	agt Ser 435	ttt Phe	tat Tyr	1411
caa Gln	aat Asn	ggc Gly 440	ttt Phe	ttg Leu	aat Asn	gag Glu	gac Asp 445	cat His	tcc Ser	tat Tyr	gat Asp	999 Gly 450	att Ile	ctt Leu	gag Glu	1459
tta Leu	gat Asp 455	gct Ala	gly aaa	aaa Lys	gac Asp	atc Ile 460	gtg Val	att Ile	tct Ser	gca Ala	gat Asp 465	tct Ser	cgc Arg	agt Ser	ata Ile	1507
gat Asp 470	gct Ala	gta Val	caa Gln	tct Ser	ccg Pro 475	tat Tyr	ggc Gly	tat Tyr	cag Gln	gga Gly 480	aag Lys	tgg Trp	acg Thr	atc Ile	aat Asn 485	1555
tgg Trp	tct Ser	act Thr	gat Asp	gat Asp 490	aag L ys	aaa Lys	gct Ala	acg Thr	gtt Val 495	tct Ser	tgg Trp	gcg Ala	aag Lys	cag Gln 500	agt Ser	1603
ttt Phe	aat Asn	ccc Pro	act Thr 505	gct Ala	gag Glu	cag Gln	gag Glu	gct Ala 510	ccg Pro	tta Leu	gtt Val	cct Pro	aat Asn 515	ctt Leu	ctt Leu	1651
tgg Trp	ggt Gly	tct Ser 520	ttt Phe	ata Ile	gat Asp	gtt Val	cgt Arg 525	tcc Ser	ttc Phe	cag Gln	aat Asn	ttt Phe 530	ata Ile	gag Glu	cta Leu	1699
ggt Gly	act Thr 535	gaa Glu	ggt Gly	gct Ala	cct Pro	tac Tyr 540	gaa Glu	aag Lys	aga Arg	ttt Phe	tgg Trp 545	gtt Val	gca Ala	ggc Gly	att Ile	1747
tcc Ser 550	aat Asn	gtt Val	ttg Leu	cat His	agg Arg 555	agc Ser	ggt Gly	cgt Arg	gaa Glu	aat Asn 560	caa Gln	agg Arg	aaa Lys	ttc Phe	cgt Arg 565	1795
cat His	gtg Val	agt Ser	gga Gly	ggt Gly 570	gct Ala	gta Val	gta Val	ggt Gly	gct Ala 575	agc Ser	acg Thr	agg Arg	atg Met	ccg Pro 580	ggt Gly	1843
ggt Gly	gat Asp	acc Thr	ttg Leu 585	tct Ser	ctg Leu	ggt Gly	ttt Phe	gct Ala 590	cag Gln	ctc Leu	ttt Phe	gcg Ala	cgt Arg 595	gac Asp	aaa Lys	1891
gac Asp	tac Tyr	ttt Phe 600	atg Met	aat Asn	acc Thr	aat Asn	ttc Phe 605	gca Ala	aag Lys	acc Thr	tac Tyr	gca Ala 610	gga Gly	tct Ser	tta Leu	1939

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRÂGMENTS OF 109/0830450

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 1 (con't)

WO 00/24765

9.	. (-	,														
cgt Arg	ttg Leu 615	cag Gln	cac His	gat Asp	gct Ala	tcc Ser 620	cta Leu	tac Tyr	tct Ser	gtg Val	gtg Val 625	agt Ser	atc Ile	ctt Leu	tta Leu	1987
gga Gly 630	gag Glu	gga Gly	gga Gly	ctc Leu	cgc Arg 635	gag Glu	atc Ile	ctg Leu	ttg Leu	cct Pro 640	tat Tyr	gtt Val	tcc Ser	aag Lys	act Thr 645	2035
ctg Leu	ccg Pro	tgc Cys	tct Ser	ttc Phe 650	tat Tyr	gly aaa	cag Gln	ctt Leu	agc Ser 655	tac Tyr	ggc Gly	cat His	acg Thr	gat Asp 660	cat His	2083
cgc Arg	atg Met	aag Lys	acc Thr 665	gag Glu	tct Ser	cta Leu	ccc Pro	ccc Pro 670	ccc Pro	ccc Pro	ccg Pro	acg Thr	ctc Leu 675	tcg Ser	acg Thr	2131
gat Asp	cat His	act Thr 680	tct Ser	tgg Trp	gga Gly	gga Gly	tat Tyr 685	gtc Val	tgg Trp	gct Ala	gga Gly	gag Glu 690	ctg Leu	gga Gly	act Thr	2179
cga Arg	gtt Val 695	gct Ala	gtt Val	gaa Glu	aat Asn	acc Thr 700	agc Ser	ggc Gly	aga Arg	gga Gly	ttt Phe 705	ttc Phe	caa Gln	gag Glu	tac Tyr	2227
act Thr 710	cca Pro	ttt Phe	gta Val	aaa Lys	gtc Val 715	caa Gln	gct Ala	gtt Val	tac Tyr	gct Ala 720	cgc Arg	caa Gln	gat Asp	agc Ser	ttt Phe 725	2275
			gga Gly													2323
aac Asn	ctt Leu	gcg Ala	att Ile 745	cct Pro	ctt Leu	gga Gly	atc Ile	aag Lys 750	tta Leu	gag Glu	aaa Lys	cgg Arg	ttt Phe 755	gca Ala	gag Glu	2371
caa Gln	tat Tyr	tat Tyr 760	cat His	gtt Val	gta Val	gcg Ala	atg Met 765	tat Tyr	tct Ser	cca Pro	gat Asp	gtt Val 770	tgt Cys	cgt Arg	agt Ser	2419
aac Asn	ccc Pro 775	aaa Lys	tgt Cys	acg Thr	act Thr	acc Thr 780	cta Leu	ctt Leu	tcc Ser	aac Asn	caa Gln 785	ggg ggg	agt Ser	tgg Trp	aag Lys	2467
			tcg Ser													2515
			tct Ser													2563

Willeh Street WO 00/24765 Title: CHLAMYDIA ANTIGENS AND 1111 1097 830446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 1 (con't)

ttt gaa tgg egg gga tet tet egt age tat aat gta gat geg ggt age 2611 Phe Glu Trp Arg Gly Ser Ser Arg Ser Tyr Asn Val Asp Ala Gly Ser 825 830

835

aaa atc aaa ttt tagcgatttc tctttcgatg ctatttttcc atggctattt 2663 Lys Ile Lys Phe 840

ttaaaatqat aqccatggtt atagatacgt agtccttatt tcaaagaaga cactgttgca 2723

2750

ttagatacgc tctctgatcc ctcaaaa

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.; 032931/0251

PCT/CA99/00992

WO 00/24765

Figure 2 (RY-32)
Restriction Enzyme analysis of CPN100397

1	MaeII MaeIII BaeI MseI Tsp451 DdeI MboII	60
	BslI	
61	SmlI HinfI AciI CviJI Bce31 TfiI Mb0II GTATTGGAAGAAAAAAGGTTGTTATGAAGATTCCACTCCGCTT	120
0.1	CATAACCTTTCTTTCGGGGAACTCCCTTTTTTTCCAACAATACTTCTAAGGTGAGGCGAA	
	Apol BbvI Fnu4HI Tsp5091 AluI AceIII CviJI ECORV RSAI TAGI TSEI EARI	
121		180
181	Cac8I BfaI CviJI TaqI AluI CviJI AluI MboII AluI CviJI BcgI NheI CviJI BccI BcgI HindIII BfaI	240
	Tsp5091	700
241	ATTTTGTAGTAGCCGATGTCTACCGTGGTTAATACAAAAATTTCTAAGACATCAATATCT	300

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765 Fig. 2 (con't)

Apol	AAATGT	 PACCCAAAACAGGGGA	BfaI SpeI OdeI AccI AAACTCAGTCTACTA	 GTTGTTTTAAA	+	360
Fnu4H Alu	Bh Dpn1 BglII BstYI Sau3AI TGGAGA	S5091 VI C	 BAGGGGGATTTCTT	TCACATTTAGO	BsaJI BstDSI CviRI CjeI ClaI TaqI AATATCGATGCAAC	420
Tsp451 RsaI AluI MseI TatI TspRI CviJI ATTTTCGGCACTTTCTTTCTTAATCCCCAGCAAGTACAGTGACTGAATGGGATGG	CViJI MwoI BbvI CACGGG	Fnu4HI AluI CviJI TseI MwoI SIII SIII	CviJI Fnu4HI TseI BpmI CjeI TTGGAAGTGAAGCAG	MaeIII Taa: Tsp455 BbvI CTAATAAGAC	MaeII	480
481 540	ATTTT	CGGCACTTTCTTTC	Rs I Tatl TTAAATCCCCAGCAA	Sp451 SaI SaI	CviJI raatggattgggagc	

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

	Hin4I	
	CjeI	
	Tsp509I	
	ApoI Hpy178III	
	Tsp509I CviJI HinfI	
	MseI MseI TfiI	
	TATCAATGTTAAAGGGAATTTAAGCCTATTGGATAATGATAAGGTATTGATTCAGGACAA	
541		500
	ATAGTTACAATTTCCCTTAAATTCGGATAACCTATTACTATTCCATAACTAAGTCCTGTT	
	Tsp509I	
	MseI	
	VspI NlaIV	
	Tsp509I CviJI	
	EciI Cac8I DpnI AciI CviRI BsmFI MboII	
	AciI	
	BCCI CJEI SausAI BBGI	
	TTTCTCAACAGGAGATGGCGGAGCAATTAATTGTGCAGGCTCCTTGAAGATCGCAAACAA	
601	ITTCTCAACAGGAGATGGCGGAGCAATTAATTGTGCAGGCTCCTTGAAGATCGCAAACAA	560
601	AAAGAGTTGTCCTCTACCGCCTCGTTAATTAACACGTCCGAGGAACTTCTAGCGTTTGTT	,
	AAAGAGIIGICCICIACCGCCICGIIAAIIAACACGICCGAGGAACAI	
	BsaAI	
	PmlI	
	MaeII	
	XmnI AflIII Ecil Hinfl	
	TthlllII MboII BsbI AciI TfiI	
	TAAGTCCCTTTCTTTTATTGGAAATAGTTCTTCAACACGTGGCGGAGCGATTCATACCAA	
661		720
	ATTCAGGGAAAGAAATAACCTTTATCAAGAAGTTGTGCACCGCCTCGCTAAGTATGGTT	
	Fnu4HI	
	FNU4HI CViJI	
	TseI	
	MwoI	
	BbvI HaeII	
	MboII MnlI CjeI HhaI	
	PROOF PROOF	
	AAACCTCACACTATCTTCTGGTGGGGAAACTCTATTTCAGGGGAATACAGCGCCTACGGC	
721		780
	TTTGGAGTGTGATAGAAGACCACCCCTTTGAGATAAAGTCCCCTTATGTCGCGGATGCCG	

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

(con t)	
NlaIV BanI	
ACGACCATTTCCTCCACGATAGCGCTAACGTCTGAGACCGTGGGATAGGTAAAGACCTC	
TSPRI ALUI TAAI BSMAI TAAI BPMI CVIJI NIAIV BSMBI	900
HhaI FSpI FSpI Fnu4HI TseI DdeI BSAAI HaeII MwoI HaeII MaeII Eco47III MaeIII BfaI BbVI TGCTATTGATTTAGGAACTAGCGCTAAGATAACTGCGTTACGTGCTGCGCAAGGACATAGATAACTAAATCCTTGATCTGCGCATCATTTAGACGCAATGCACGACGACGTTCCTGTATGATTAGACGACGACGACGACCATAGATAACTAAATCCTTGATCTGCGCAATGACTAATGACGACGACGACGATCCTGATCAATGACTACACGACGACGACCACGTTCCTGTATGACGACAAGACCACGACGACCATCATATGACGCAATGCACGACGACCACGTTCCTGTATGACGACATAACTAAATCCTTGATCGCGATTCTATTGACGCAATGCACGACGACCGTTCCTGTATGACGACTAAACTAAATCCTTGATCGCGATTCTATTGACGCAATGCACGACGACCGTTCCTGTATGACGACTAAACTAAATCCTTGATCGCGATTCTATTGACGCAATGCACGACGACCGTTCCTGTATGACGACAACGACCGAC	+ 960
Alwi SfaNI Hpy188IX BsaBI DpnI TaqI Sau3AI MaeIII DpnI AlwI TaaI Sau3AI	
AINI IABI SAUSAI	Ą.

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

	DrdII	
	NlaIV	
	BscGI	
MseI	BpmI	
VspI	BstZ17I	
SspI CviJI BslI BsrI St	h132I Acci Hpy178III	
SSPI CVIOI BSII BSII SC		
	TAACAAAGAGTATACGGGAACCATAGTCTTTTCTGG	
		٥.
1021	+	вυ
ATAATTATCGGGACTATGACCTCTA	TTGTTTCTCATATGCCCTTGGTATCAGAAAAGACC	
AluI AluI		
CviJI BplI		
MnlI CviJI	Tsp5091	
Hin4I BpmI	Acil MboII	
Hin4I BpmI		
AGAGAAGCTCACGGAGGCAGAAGCT	AAAGATGAGAAGAACCGCACTTCTAAATTACTTCA	
	+	4 O
TOTAL TOTAL TOTAL CONTROL OF THE CON	ATTTCTACTCTTCTTGGCGTGAAGATTTAATGAAGT	
TCTCTTCGAGTGCCTCCGTCTTCGA	ITTETACTOTTCTTGGCGTGAAGATTTAATGABIGT	
	BsmFI	
DraI TaaI	Dral Hphl Msel Msel	
AAATGTTGCTTTTAAAAATGGGACT	GTAGTTTTAAAAGGTGATGTCGTTTTAAGTGCGAA	
	+ 120	00
TTTACAACGAAAATTTTTACCCTGA	CATCAAAATTTTCCACTACAGCAAAATTCACGCTT	
Hpy178III Fok	I.	
SfaNI DdeI	1	
SfaNI DdeI PpiI BseMII	AatII	
TaaI Hin4I	BsaHI CviRI	
XmnI DdeI CviRI	MaeII BsmFI	
	Maeii Domiii	
	AAGTTGATTATGGATTTAGGGACGTCGTTGGTTGC	- ^
1201		50
GCCAAAGAGAGTCCTACGTTTGAGA	ATTCAACTAATACCTAAATCCCTGCAGCAACCAACG	
Apol		
Tsp509I	PleI Hpy178III	
Hincii I	Msell Ddell	
Tth111II HpaI	VspI Sth132I	
TagI MseI	Tsp509I HinfI BscGI	
	Tsp5091 HinfI BscGI	
	SAATTTGGAAATTAATATAGACTCTCTCAGGAACGG	
	+++ 13:	20
	TTAAACCTTTAATTATATCTGAGAGAGTCCTTGCC	_ •

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Fig.	2	(con't)

BSAXI NlaIV CV101 Mboll	
1621+ CGTCCTCCGAGGCAATCAAGGATTAGAAGAAACCCCCAAGAAAATATCTACAAGCAAG	1680
ApoI BfaI Tsp5091 AluI BsiHKAI Hpy178III CviJI RsaI Bsp1286I Eco57I CviRI	
1681+ GGTCTTAAAATATCTCGATCCATGACTTCCACGAGGAATGCTTTTCTCTAAAACCCAACG	1740
Hpy178III BsiEI MslI BsaXI MslI AciI ApoI MnlI ApoI MnlI Tsp509I NlaIII Tsp509I NlaIII H	
AGGCATTTCCAATGTTTTGCATAGGAGCGGTCGTGAAAATCAAAGGAAATTCCGTCATGT 1741	1800
MslI Sth132I BssSI	
Cac8I	1860
BeeMII MacIII AluI Tsp45I CviJI HhaI Bpull02I ThaI DdcI MwoI Tsp509I GGGTTTTGCTCAGCTCTTTGCGCGTGACAAAGACTACTTTATGAATACCAATTTCGCAAA 1861 +	1920

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al

DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Title: CHLAMYDIA ANTIGERS AND: 日早十旬9月8月日暮春6 CORRESPONDING DNA FRAGMENTS AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fnu4HI	
TaqI TauI	
AvaI AciI	
AluI SmlI MspAlI	
CviJI CviJI Xhol BpmI MnlI	
GGCTGGAGAGCTGGGAACTCGAGTTGCTGTTGAAAATACCAGCGGCAGAGGATTTTTCCA	
2161	
CCGACCTCTCGACCCTTGAGCTCAACGACAACTTTTATGGTCGCCGTCTCCTAAAAAGGT	
AluI	
RsaI AluI Cac8I CviJI	
TatI CviJI MwoI MwoI	
5.252 15	
AGAGTACACTCCATTTGTAAAAGTCCAAGCTGTTTACGCTCGCCAAGATAGCTTTGTAGA	
2221	
TCTCATGTGAGGTAAACATTTTCAGGTTCGACAAATGCGAGCGGTTCTATCGAAACATCT	
TCTCATGTGAGGTAAACATTTTCAGGTTCGACAAATGCGAGCGGTTCTATCGAAACATCT	
BsaBI	
AluI HinfI CjePI HinfI BfaI CviJI Hbyl78III TfiI SfaNI TfiI	
ACTAGGAGCTATCAGTCGTGATTTTAGTGATTCGCATCTTTATAACCTTGCGATTCCTCT	
2281	
TGATCCTCGATAGTCAGCACTAAAATCACTAAGCGTAGAAATATTGGAACGCTAAGGAGA	
MnlI	
HinfI CviRI BpmI Tth111II	
TfiI CjePI TaaI SspI NlaIII Hin4I	
TfiI CjePI TaaI SspI NlaIII Hin4I	
TGGAATCAAGTTAGAGAAACGGTTTGCAGAGCAATATTATCATGTTGTAGCGATGTATTC	
2341+	2400
ACCTTAGTTCAATCTCTTTGCCAAACGTCTCGTTATAATAGTACAACATCGCTACATAAG	
BslI	
MaeIII BsaJI	
Hpy178III Pfl1108I RsaI MmeI StyI	
pyrrolli rillion Nati	
TCCAGATGTTTGTCGTAGTAACCCCAAATGTACGACTACCCTACTTTCCAACCAA	
	2460
2401	2460
	2460
2401	2460
2401	2460
AGGTCTACAAACAGCATCATTGGGGTTTACATGCTGATGGGATGAAAGGTTGGTT	2460
2401	2460
AGGTCTACAAACAGCATCATTGGGGTTTACATGCTGATGGGATGAAAGGTTGGTT	2460
2401	2460
AGGTCTACAAACAGCATCATTGGGGTTTACATGCTGATGGGATGAAAGGTTGGTT	2460
2401	2460
AGGTCTACAAACAGCATCATTGGGGTTTACATGCTGATGGGATGAAAGGTTGGTT	2460
AGGTCTACAAACAGCATCATTGGGGTTTACATGCTGATGGGATGAAAGGTTGGTT	

THE CHLAMYDIA ANTIGERS AND THE SEQ 91/1830446

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

Sau3AI BbvI MnlI TaqI TCGATCTT	Pst Fnu4HI CviRI TseI Fnu4HI SfcI AluI CviJI TseI GGGAGCTGC	AluI CviJI 1321 I I I I I I I I I I I I I I I I I I I	bvi C	FauI Sth1321 Ac ViJI Mooi TTTGGCTTTGAA1	II rggcgggatc	2580
Sfan Alui CVJJI Pfl11081 Alwi TTCTCGTAC	[-+	+	SfaN] AAATTTTAGCGAT	TTCTCTTTCG	2640
ATGCTATT	+	-+	 AAATGATAGCC# +	BsaA Hael Hin4 SnaE Maell	IV II II I ACGTAGTCCTT	2700
2701	Mb Tsp TaaI BbsI GAAGACACTG	TTGCATTA	Sau3Al Hpy188IX AlwI Hin4I GATACGCTCTCT		2750	

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Figure 3:	CPN100421			
		testesstes	aattotaato	ctttgaacgt

ctcctgtccc tege	gttgtc aacctaccc	c tecteceteg	aattctaatc cttt	gaacgt 60
agtacaacag cctg	ttgctg catcgtcag	t geetteetae	atg ccc cca ctg Met Pro Pro Leu 1	aat 115 Asn 5
gct gat gat gtt Ala Asp Asp Val	ctc cct aga gac Leu Pro Arg Asp 10	cat ctg tca His Leu Ser 15	gat gga agt tto Asp Gly Ser Phe 20	Ser
gat acg tat cca Asp Thr Tyr Pro 25	gac att aca acg Asp Ile Thr Thr	caa gcg atc Gln Ala Ile 30	atc tta att ttc Ile Leu Ile Phe 35	ttg 211 Leu
gcc cta tcg cct Ala Leu Ser Pro 40	ttc ctg gtc atg Phe Leu Val Met 45	ttg ctc act Leu Leu Thr	tcg tat cta aag Ser Tyr Leu Lys 50	att 259 :Ile
atc att act tta Ile Ile Thr Leu 55	gtc tta tta cgt Val Leu Leu Arg 60	aac gcc tta Asn Ala Leu	gga gta caa caa Gly Val Gln Gln 65	aca 307 Thr
cct ccc agt caa Pro Pro Ser Gln 70	gtc ctc aat ggg Val Leu Asn Gly 75	att gca ctc Ile Ala Leu 80	atc cta tct att Ile Leu Ser Ile	tat 355 Tyr 85
	acg gga gtg gct Thr Gly Val Ala 90			Glu
	acc att cct caa Thr Ile Pro Gln			
	gtc gct tta aac Val Ala Leu Asn 125			
	aac act cca aaa Asn Thr Pro Lys 140			
	acc ttc cct tcg Thr Phe Pro Ser 155			
	atc att att cct Ile Ile Ile Pro 170			. Lys
	att gga gtc ttg Ile Gly Val Leu			

HUNGSHARLES

Tide: CHLAMYDIA ANTIGENSANDS CHARLES . (15 = 47 C = CORRESPONDING DNA FRAGMENTS

AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig.	3 (cc	on't)														
gat Asp	Leu	gtg Val 200	act Thr	gct Ala	aac Asn	gtt Val	ctt Leu 205	gta Val	gcg Ala	atg Met	cag Gln	atg Met 210	atg Met	atg Met	tta Leu	739
Ser	cct Pro 215	cta Leu	tcg Ser	att Ile	tcg Ser	tta Leu 220	cct Pro	tta Leu	aag Lys	tta Leu	ctt Leu 225	ttg Leu	atc Ile	gtc Val	atg Met	787
	gac Asp															835
taag	gaca	cg t	gccg	tgtt	a go	attt	ttcg	g caa	ctag	gttt	caaa	tcts	gtt (ettt	tgagt	895
acto	ctac	ca a	tcat	tatt	a ct	tatt	ttga	ttg	gttt	ggc	acct	ccca	itc a	atctt	agctt	955
ccat	agtc	gg 9	atta	tggt	t go	gato	ttco	aag	gccgo	aac	acaa	ıa				1000

PCT/CA99/00992

DOCKET NO.: 032931/0251

Figure 4 (RY-34) Restriction enzyme analysis of CP100421

> MnlI ApoI 1 ECORT 1 Tsp5091 BCAPT HincII Thal Mnll | BsaXI TaqI | | Mnll CTCCTGTCCCTCGCGTTGTCAACCTACCCCTCCTCCCTCGAATTCTAATCCTTTGAACGT 1 ------ 60 GAGGACAGGGAGCGCAACAGTTGGATGGGGAGGAGGGAGCTTAAGATTAGGAAACTTGCA Rhy T CviRT Fnu4HI TspRI NlaIII RsaI R sm T TatI | CviJI TseI | SfaNI | NspI TSDRT 11.1 AGTACAACAGCCTGTTGCTGCATCGTCAGTGCCTTCCTACATGCCCCCACTGAATGCTGA 61 -----+ 120 TCATGTTGTCGGACAACGACGTAGCAGTCACGGAAGGATGTACGGGGGTGACTTACGACT BseMII Hpy188IX Hpy178III AhdI BsaAI HaeIV RfaT RSART BsaI | Hin4I Hpy188IX SnaBI BccI | XcmI | BccI | DdeI | MaeII | BsmAI TGATGTTCTCCCTAGAGACCATCTGTCAGATGGAAGTTTCTCAGATACGTATCCAGACAT ----- 180 ACTACAAGAGGGATCTCTGGTAGACAGTCTACCTTCAAAGAGTCTATGCATAGGTCTGTA CviJI Sau3AI | Tsp509I Cac8I | MseI| Sau96I ΤĹ - 11 TACAACGCAAGCGATCATCTTAATTTTCTTGGCCCTATCGCCTTTCCTGGTCATGTTGCT 181 -----+ 240 ATGTTGCGTTCGCTAGTAGAATTAAAAGAACCGGGATAGCGGAAAGGACCAGTACAACGA BSAAT MaeIII SnaBI Bsu36I RsaI MaeII | DdeI TatI | - 11 CACTTCGTATCTAAAGATTATCATTACTTTAGTCTTATTACGTAACGCCTTAGGAGTACA 241 -----+ 300 GTGAAGCATAGATTTCTAATAGTAATGAAATCAGAATAATGCATTGCGGAATCCTCATGT

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 4 (con't)

WO 0004765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

	DpnI		Hpy188IX
	BglII	ApoI	MnlI
	BStYI	Tsp509I Hha	I TspRI
	Sau3AI XmnI	Hpy188IX TaqI Hin4	I BtsI
			1 111
		CCTTCCCTTCGGAAATTCGAGC	
541			600
311		GGAAGGGAAGCCTTTAAGCTCG	
			Tsp509I
	MnlI	Hpy188IX	NspV
			TagI HinfI
BE	oli Mme	31111	raqi minii
	CTTIGTAATCATTATICCIG		MARIOCITICOAAATIOO
90I		GAAAATAATACCCAGTCTATTT	
	GAAACATTAGTAATAAGGAC	GAAAATAATACCCAGTCTATTT	IIIACGAAAGCIIIAACC
-	DpnI		
	PleI		
	Sau3AI		SfaNI
	.78III		Acli
I	Iin4I	Tsp45I	MaeII
	111 1		
		TCTTTGTTATTGATTTAGTGAC	
661			
	TCAGAACTAGATAGATGGAA	AGAAACAATAACTAAATCACTG	ACGATTGCAAGAACATCG
		MaeIII	
		MnlI	MaeIII
			raI DpnI
c	viRI	TaqI Ms	eI Sau3AI
c		TaqI Ms	eI
	 GATGCAGATGATGATGTTAT	TaqI Ms	eI Sau3AI TTTAAAGTTACTTTTGAT
	 GATGCAGATGATGATGTTAT	TaqI Ms	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms	eI Sau3AÎ
	 GATGCAGATGATGATGTTAT	TaqI Ms	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms - CCCCTCTATCGATTTCGTTACC GGGGAGATAGCTAAAGCAATGG	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TAGI MS CCCCTCTATCGATTTCGTTACC GGGGAGATAGCTAAAGCAATGG	EI SAU3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms CCCCTCTATCGATTTCGTTACC GGGGAGATAGCTAAAGCAATGG Dp Bcli	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms CCCCTCTATCGATTTCGTTACC GGGGAGATAGCTAAAGCAATGG Dp Bcll Sau3AI	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms CCCCTCTATCGATTTCGTTACC GGGGGAGATAGCTAAAGCAATGG Dp BclI Sau3AI CviJI C	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI Ms CCCCTCTATCGATTTCGTTACC GGGGGAGATAGCTAAAGCAATGG Dp BclI Sau3AI CviJI C	eI Sau3AI
	 GATGCAGATGATGATGTTAT	TaqI	eI Sau3AI
	GATGCAGATGATGTTAT	TaqI Ms CCCCTCTATCGATTCGTTACC GGGGAGATAGCTAAAGCAATGG Dp BclI Sau3AI CviJI MwoI BsaJI BsaJI StyI Sty	eI Sau3AI
	GATGCAGATGATGTTAT CTACGTCTACTACTACAATA	TaqI Ms CCCCTCTATCGATTCGTTACC GGGGAGATAGCTAAAGCAATGG Dp BclI Sau3AI CviJI MwoI BsaJI BsaJI StyI Sty	eI Sau3AI
	GATGCAGATGATGTTAT CTACGTCTACTACTACAATA ACCI NlaIII BCCI NlaIII BCCI	TaqI Ms CCCCTCTATCGATTCGTTACC GGGGAGATAGCTAAAGCAATGG Dp BclI Sau3AI CviJI MwoI BsaJI BsaJI StyI Sty	EI Sau3AI
721	Acci Nlaili Bcci Corcatogragacogaroga	TaqI	EI SAU3AI

Title: CHLAMYDIA ANTIGENS AND 30111109/830446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al

PCT/CA99/00992

WO 00/24765

DOCKET NO.: 032931/0251

Fig. 4 (con't)

BsaAI RsaI BfaI Scal MaeII AflIII || MwoI SpeI 1 - 1 1 1 11 ACACGTGCCGTGTTAGCATTTTCGCAACTAGTTTCAAATCTGTTCTTTTTGAGTACTCC 841 ------ 900 TGTGCACGGCACAATCGTAAAAAGCGTTGATCAAAGTTTAGACAAGAAAACTCATGAGG Sth132I AluI CviJI NlaIV BanI BccI MnlI 1 11 TACCAATCATTATTACTTATTTTGATTGTTTCGGCACCTCCCATCATCTTAGCTTCCATA ATGGTTAGTAATAATGAATAAAACTAACAAAGCCGTGGAGGGTAGTAGAATCGAAGGTAT Acil DpnI Fnu4HI Hpy178III Sau3AI | TauI MboII CviJI | BsbI BslI 1 - 11 961 -----+ 1000 CAGCCCTAATACCAACGCTAGAAGGTTCGGCGTTGTGTTT

Title: CHLAMYDIA ANTIGENS AND 1 1 1 0 0 9 / 8 3 0 4 4 6

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 5:

tagctttata ca	aaagtatag aaaa	ataaca cgacaata	aa aggageggtg ttttetette	60
tgaggtaaat ca	agcctcaaa gata	ctacgc catagtaa	ag atg aag ttt ttt agc Met Lys Phe Phe Ser 1 5	115
tta att ttt a Leu Ile Phe I	aaa gat gat ga Lys Asp Asp As 10	gtc tcc cca a Val Ser Pro A 15	at aag aag gtt tta tct sn Lys Lys Val Leu Ser 20	163
			aa gag ctg tta gaa aaa ys Glu Leu Leu Glu Lys 35	211
			ag aca gaa caa aag tgt lu Thr Glu Gln Lys Cys 50	259
		a Lys Asp Gln G	ga ttt aaa gag gga tct Hy Phe Lys Glu Gly Ser 65	307
		Ala Phe Leu G	gaa gaa gaa act aaa aat Hu Glu Glu Thr Lys Asn 80 85	355
			ct ctg gca att gcg agt ro Leu Ala Ile Ala Ser 100	403
Val Arg Lys 1			ta cat cct gaa act att eu His Pro Glu Thr Ile 115	451
			etc aca caa aat aaa cat eu Thr Gln Asn Lys His 130	499
		Lys Asp Leu P	ct ctt gtt gag aaa agt ro Leu Val Glu Lys Ser 145	547
		e Val Glu Tyr A	ct gac tcc tta att ctt la Asp Ser Leu Ile Leu 60 165	595
			gc att atc gag act gaa Lys Ile Ile Glu Thr Glu 180	643
Ala Gly Ile 1			aa tta gat gcc tta gaa iln Leu Asp Ala Leu Glu 195	691

Title: CHLAMYDIA ANTIGENSANDS 13 44 44 6 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

								gcg Ala								739
								tct Ser								787
		aaa Lys		taaa	iggta	att o	acta	attat	g cg	gated	att	t tt	gatt	tttc		839
cctt	tgtt	tt t	ttac	gets	ga go	gtct	cate	gctg	gattt	gct	gaco	gcca	gtc t	atat	gaaaa	899
С																900

PCT/CA99/00992

WO 00/24765

Figure 6 (RY-35) Restriction analysis of CPN100422

	В	seMII	
	Mbo	II DdeI	
AluI	AciI	Hpy188IX	
CviJI	BsrBI	MnlI	
Ī			
TAGCTTTATACAAAGTATAGAAAA	ATAACACGACAATAAAAGGAGC	GGTGTTTTCTCTTC	_
1	+	+	0
ATCGAAATATGTTTCATATCTTTT	TATTGTGCTGTTATTTTCCTCG		
		Tsp509I	
		MseI	
		AluI	
Earl CviJI MnlI		CviJI	
TGAGGTAAATCAGCCTCAAAGATA		TTTTTTAGCTTAAT	
61			20
ACTCCATTTAGTCGGAGTTTCTAT	'GATGCGGTATCATTTCTACTTC	AAAAAICGAAIIA	
		AluI	
		viJI	
DraI	HindI		
MseI Hin4I BsmAI	Hpy178III	MwoI	
TTTTAAAGATGATGATGTCTCCCC	CAAATAAGAAGGTTTTATCTCCT	GAAGCTTTCTCTGC	80
			80
AAAATTTCTACTACTACAGAGGGG	TTTATTCTTCCAAAATAGAGGA	.CTTCGAAAGAGACG	
		CviRI	
Eco57I AluI		BsmAI	
AceIII CviJI	CviJI C	viJI MwoI	
Fi I			
TTTCCTTGATGCCAAAGAGCTGT	ragaaaaaacaaaagccgatagc	GAAGCCTATGTTGC	
			40
AAAGGAACTACGGTTTCTCGACAA	ATCTTTTTTGTTTTCGGCTATCG	CTTCGGATACAACG	
Apo:			
Tsp509			
BsiHKAI	DpnI Sau3AI		
Bsp1286I		Dwo T	
BseSI	AluI	DraI MseI	
CVIRI	CviJI	MnlI	
ApaLI	Hpy178III	1 11	
AGAGACAGAACAAAAGTGTGCAC		CAAGGATTTAAAGA	
	AAATTCGTCAAGAAGCTAAAGAT	+	00
TCTCTGTCTTGTTTTCACACGTG			

DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fig. 6 (con't)

DOCKET NO.: 032931/0251

Title: CHLAMYDIA ANTIGENS AND: CIRCLES OF 830446 AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al WO 00/24765 DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 6 (con't)

Hpy178III Tsp509I Bce83I Hpy178III Smll PleI HinfI MseI	600
SCTFI BSaJI Hpy178III ECO57I ECORII BSMAI DpnI FSPI MAEIII CVIRI TaqI SAU3AI AlwI	660
TSp509I AluI BbVI Hpy178III CviJI RsaI Hpy178III Fnu4HI BSrGI AluI Hhal SfaNI CviJI TseI TatI DdeI HindIII TaqI Hall CACACTICATATACAAAGCGAA 661 CGTCGAACTACATGTTAATCTACGGAATCTTTTCGAAAGAGCTGAATAGATTTCCCTT	720
DdeI	
SfcI	780
Bell AlwI Sau3AI TaqI TGATCAGGATAAGAAAGAATAAAGGTATTCACTATTATCCATTATTCCATTATTCCATTATTCCATTATT	840

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS 3 13 44 6 AND USES THEREOF AND USES THEREOF AND USES THEREOF AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 6 (con't)

	NlaIII											
	Bp	ou1102I	BsmAI	BsrI	Γ							
	HgaI	1	BsmBI	PshAl	r							
	BseMII	DdeI	MwoI	BsaHI	HgaI							
	11	1	11.1									
	CTTTGTTTTTTTTACGCTGAGCGTCTCATGCTGATTTGCTGACGCCAGTCTATATGAAAAC											
841		+	+		+	+ 900						
	GAAACAAAA	AAATGCGACT	CGCAGAGTACGAC	TAAACGACTGCC	GTCAGATATACTTTT	G						

₩O 00/24765

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 7: CPN 100424

tgttcgcgat	tggcactaat c	cccctttt gt	tatggtga .	ataaaaaggt	atgcgtggat	60
tatggttcgt	cgatctattt c	tttttgctt gt		atg aca ttg Met Thr Leu 1		115
tgt aca agc Cys Thr Ser	tgt aac agc Cys Asn Ser 10	agg tct cta Arg Ser Leu	att gtg (Ile Val) 15	cac ggt ctt His Gly Leu	cct ggc Pro Gly 20	163
aga gaa gcg Arg Glu Ala	aat gag att Asn Glu Ile 25	gtg gtg ctt Val Val Leu 30	ttg gta a	agc aaa ggg Ser Lys Gly 35	gtg gct Val Ala	211
	ttg cct caa Leu Pro Gln					259
gag caa atg Glu Gln Met 55	tgg gat atc Trp Asp Ile	gcg gtt ccg Ala Val Pro 60	tca gca (Ser Ala (caa atc aca Gln Ile Thr 65	gag gcc Glu Ala	307
	cta aat caa Leu Asn Gln 75					355
	ctt ttt gca Leu Phe Ala 90					403
	cgt tat caa Arg Tyr Gln 105					451
	atg gat ggc Met Asp Gly					499
	aat gaa gat Asn Glu Asp		Leu Thr			547
	ggg gtt ttg Gly Val Leu 155					595
	ctt att gca Leu Ile Ala 170					643
	gtg agc gat Val Ser Asp 185					691

Tile: CHLAMYDIA ANTIGENS AND STREET 198 30446 CORRESPONDING DNA FRAGMENTS AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 7 (con't)

WO 00/24765

ggt Gly	cct Pro	tgg Trp 200	gga Gly	tta Leu	aca Thr	gaa Glu	gaa Glu 205	atc Ile	gat Asp	tat Tyr	gtt Val	tct Ser 210	gtt Val	tgg Trp	ggt Gly	739
												ctc Leu				787
												ctc Leu				835
												ggt Gly				883
												gaa Glu				931
												gat Asp 290				979
												gac Asp				1027
								gaa Glu				gct Ala	tagt	gact	ge	1076
caac	actt	tt e	gaad	ctcta	ag ac	catct	tgat	gaa	gcac	tec	aagg	gaaga	itg a	ecct	tccag	1136
gtttcttcct aaaaatcttc ttgttgaatc tcctcatccc gaagaaatcc ctttaaaatc												1196				
ttta	ı															1200

,

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 8 (RY-36)

Figure 8 (KY-36)	
Restriction analysis of CPN100424	
Hpy178III NTUI ThaI HphI TGTTCGCGATTGGCACTAATCCCCCCTTTTGTTATGGTGAATAAAAAGGTATGCGTGGAT ACAAGCGCTAACCGTGATTAGGGGGGAAAACAATACCACTTATTTTCCATACGCACCT.	+ 60
Tth111II Mwo DpnI RsaI Sau3AI BsrOI DrdII TaqI BsrDI MslI TatI	 120
SCIFI	r

121 ----+ 180
TTCGACATTGTCGTCCAGAGATTAACACGTGCCAGAAGGACCGTCTTCTGCTTACTCTA

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 8 (con't)

WO 00/24765

` '	
	SfcI
	CviJI
	Fnu4HI
	TauI
	AciI
	MspAlI
	MwoI
	PstI
	Fnu4HI
	MnlI
	CviRI
	Tsp509I TseI
	CviRI Fnu4HI
1	Bce83I SfcI
	Fnu4HI AluI
BbvI	CviJI CviJI
BsqI	TseI BbvI SmlI TseI
- li	
TGTGGTGCTTTTGGTAAGCAAAGG	GGTGGCTGCACAAAATTGCCTCAAGCTGCAGCGGC
181	+
	CCACCGACGTGTTTTTAACGGAGTTCGACGTCGCCG
DdeI	
AlwNI	
RleAI	
AluI	
CviJI	
Fnu4HI	
CjePI	
MwoI	
TseI	
	CjePI
BseMII	NlaIV
MspI	
BbvI	AciI
CviJI	ThaI
MwoI BbvI	ECORV MnlI
TACAGCCGGAGCAGCTACTGAGCA	AATGTGGGATATCGCGGTTCCGTCAGCACAAATCAC
241	300
ATGTCGGCCTCGTCGATGACTCGT	TTACACCCTATAGCGCCAAGGCAGTCGTGTTTAGTG
	SimI
CviJI Ac	iI
HaeTTT BbsT	
	BsaAI CjePI
	CjeFi MaeII CviJI
Sau96I Sth132I	
11 11	
AGAGGCCCTTGCCATTCTAAATCA	AGCGGGTCTTCCACGTATGAAAGGGACAAGCCTGTT
301	+ 360

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 8 (con't)

DDDI BglII Hpy178III BsmFI AluI BstFI CviII Bsu3AI CviRI Eco57I Hpy188IX Hpy178III	420
TCTAGAAAAACGTTTTGTTCCAGAACAAGGAAGGCTCGAAGTCCTTTTTTAGGCAATAGT Pf11108I	
	480
TCTTCCGAATAGTCTTGTCTACCGGAGATGCTAATCTTTTTACCTACC	
RSaI Tati BseMII MseI AlwNI DdeI MnlI SfcI MboII MboII CViJI CTCAGTACAGATTTCCTTCACTACAGAAAATGAAGATAATCTCCTTTAACAGCCTCTGT 481 GAGTCATGTCTAAAGGAAGTGATGTCTTTTACTATTAGAAGGAAATTGCCGAGACA	540
Mnl CjePI MseI MseI MseI Mnl TaqI SfaNI Hpy188IX CjePI TSp509I GTATATTAAGCATCGAGGGGTTTTGGACAATCCGAACAGCATTATGGTTTCCAAAATTAA	600
CATATAATTCGTAGCTCCCCAAAACCTGTTAGGCTTGTCGTAATACCAAAGGTTTTAATT	600
Bsp241 CjeI	660
CGCGGAATAACGTTCACGACAAGGTCCTGAACACGGTCTCTTGCAGAGACATCACTCGCT	200

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 8 (con't)

901	AlwNI	960
961	MboII HinfI Hinf	1020
Sfa 1021	TAGTGATAAAGATGCTCCAGAAGGAAGCAATGAAATTGAGGGTGCTTAGTGACTGCCAAC	1080
1081	ScrFI	1140
1141		1200

Title: CHLAMYDIA ANTIGENS AND TO LIGHT OF THE CORRESPONDING DNA FRAGMENTS 09/830446 AND USES THEREOF

PCT/CA99/00992

499

547

595

643

691

Inventor(s): Andrew D. MURDIN et al. DOCKET NO.: 032931/0251

ttqaacccta tggaaatgta tcttatttqt gctgggctat atttcttaat qacaacatca 60

WO 00/24765

135

185

Figure 9: CPN100426

ttttcctgta tttctaggtt atcagaaaag agaaggagtt atg aca att aga gtc Met Thr Ile Arg Val cga aac ctt gcc tac tct gta aat aag aaa aag att cta gat ggt gta 163 Arg Asn Leu Ala Tyr Ser Val Asn Lys Lys Lys Ile Leu Asp Gly Val 211 act ttt tct tta gag cga ggg cac att aca ctg ttt gtt ggg aag agt Thr Phe Ser Leu Glu Arg Gly His Ile Thr Leu Phe Val Gly Lys Ser 3.0 qqt tca gga aaa aca atg att tta cgt gct ttg gcg ggc tta gtc cag Gly Ser Gly Lys Thr Met Ile Leu Arg Ala Leu Ala Gly Leu Val Gln 40 45 ccc act caa gga gat att tgg att gaa ggg gag gct cca gct cta gtt 307 Pro Thr Gln Gly Asp Ile Trp Ile Glu Gly Glu Ala Pro Ala Leu Val 55 355 ttc caa caa ccc gag tta ttt tcc cat atg aca gta tta gga aat tgc Phe Gln Gln Pro Glu Leu Phe Ser His Met Thr Val Leu Gly Asn Cys ace cat cca caa ate cat ate aag ggt cgt agt ace gaa gaa get cga 403 Thr His Pro Gln Ile His Ile Lys Gly Arg Ser Thr Glu Glu Ala Arg gaa aag gcg ttc gag ctt tta cat ttg ttg gat att gaa gag gtt gct 451 Glu Lys Ala Phe Glu Leu Leu His Leu Leu Asp Ile Glu Glu Val Ala

aag aat tat cot gac cag oto tot ggg gga caa aaa caa cgt gtg got Lys Asn Tyr Pro Asp Gln Leu Ser Gly Gly Gln Lys Gln Arg Val Ala 125

att qta cqt tct tta tqt atq qat aaa cat aca tta ctt ttt gat gaa Ile Val Arg Ser Leu Cys Met Asp Lys His Thr Leu Leu Phe Asp Glu

cct aca tcg gct tta gat cct ttt gct acg gca tcg ttc cga cat ctt

Pro Thr Ser Ala Leu Asp Pro Phe Ala Thr Ala Ser Phe Arg His Leu tta gaa aca ctt cga gac cag gaa ctg act gta ggg tta act act cat

Leu Glu Thr Leu Arg Asp Gln Glu Leu Thr Val Gly Leu Thr Thr His gac atg caa ttt gtt cat agt tgt ttg gat cgt atc tat ctt ata gat

Asp Met Gln Phe Val His Ser Cys Leu Asp Arg Ile Tyr Leu Ile Asp 190

Title: CHLAMYDIA ANTIGENS AND

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 PCT/CA99/00992

Fig. 9 (con't)

	0	`	,														
	caa Gln	gga Gly	act Thr 200	gtt Val	gcg Ala	ggg Gly	gtc Val	tat Tyr 205	gac Asp	aag Lys	cgt Arg	gac Asp	gga Gly 210	gag Glu	ctc Leu	gat Asp	739
										cac His				tag	gacta	aca	788
gctgctagag cagctgtagt gatactttag aatcctgacc agtggcagga atgagcggca													848				
	tg																850

Title: CHLAMYDIA ANTIGENS AND 09/830446

Title: CHLAMYDIA ANTIĞENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

1000 March

Figure 10 (RY-37) Restriction enzyme analysis of CPN100426

CVIDI	
TTGAACCCTATGGAAATGTATCTTATTTGTGCTGGGCTATATTTCTTAATGACAACATCA	
1	60
AACTTGGGATACCTTTACATAGAATAAACACGACCCGATATAAAGAATTACTGTTGTAGT	
Hpy188IX	
BfaI Hpy188IX Tsp509I HinfI PleI	
TTTTCCTGTATTTCTAGGTTATCAGAAAAGAGAAGGAGTTATGACAATTAGAGTCCGAAA	
61	120
AAAAGGACATAAAGATCCAATAGTCTTTTCTCTTCCTCAATACTGTTAATCTCAGGCTTT	
Hpy178III	
BfaI	
XbaI	
HinfI MaeIII MnlI	
CjePI TfiI BccI CjePI	
CCTTGCCTACTCTGTAAATAAGAAAAAGATTCTAGATGGTGTAACTTTTTCTTTAGAGCG	180
	180
GGAACGGATGAGACATTTATTCTTTTTCTAAGATCTACCACATTGAAAAAGAAATCTCGC	
Bsp1286I Hpy178III FauI	
Tth111II EarI MboII Sth132I	
BmgI TspRI DrdII BsaAI	
BseSI TaaI AloI CjeI MaeII	
AGGGCACATTACACTGTTTGTTGGGAAGAGTGGTTCAGGAAAAACAATGATTTTACGTGC	
181	240
TCCCGTGTAATGTGACAAACAACCCTTCTCACCAAGTCCTTTTTGTTACTAAAATGCACG	
· · · · · · · · · · · · · · · · · · ·	
DdeI	
Bce831	
CviJI CieI	
Cac8I CviJI BslI MnlI NlaIV AluI	
ACII BSpGI SmlI BpmI CjeI CviJI CviJI	
TTTGGCGGGCTTAGTCCAGCCCACTCAAGGAGATATTTGGATTGAAGGGGAGGCTCCAGC	
241	300
AAACCGCCCGAATCAGGTCGGGTGAGTTCCTCTATAAACCTAACTTCCCCTCCGAGGTCG	
MACCICCIONATCAGGICGGGIGAGITCCTCTATAAACCTACTTCCCCTCCGAGGICG	
Sth132I	
CjeI MmeI Tsp509I	
Bfal Acelli Aval Ndel Taal Foki CviRl Bccl	
Blai Acelli Avai Ndel laai Fori CVIRI Beel	
TCTAGTTTTCCAACAACCCGAGTTATTTTCCCATATGACAGTATTAGGAAATTGCACCCA	360
301	200
AGATCAAAAGGTTGTTGGGCTCAATAAAAGGGTATACTGTCATAATCCTTTAACGTGGGT	

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 10 (con't)

WO 00/24765

Hpy178III Tsp509I	361	MboII Hpy178III TaqI AluI AvaI AluI SmII CviJI Pfll108I XhoI CjeI SimI AluI TaqI TaqII BslI RsaI CviJI MmeI TCCACAAATCCATATCAAGGGTCGTAGTACCGGAAGAAGCCTGAGAAAAAGGCTTCAGGCT AGGTGTTTAGGTATTAGTTCCCAGCATCATGGCTTCTTCGAGCTCTTTTCCGCAAGCTCA	120
### ### ##############################		Tsp5091 BstXI MboII AluI AluI MnoII DdeI CviJI AceIII CarI CjeI	
ACAAAACAACGTGTGCTATTGTACGTTCTTTATGTATGGATAACATACAT	421	AAATGTAAACAACCTATAACTTCTCCAACGATTCTTAATAGGACTGGTCGAGAGACCCCC BSmFI AflIII MaeII MaeII CviJI RsaI CjeI	180
Sau3AI	481	ACAAAAACAACGTGTGGCTATTGTACGTTCTTTATGTATG	i 4 0
ScrFI	541	BstYl BcefI Sau3AI BcefI Sau3AI SfaNI CviJI Hpy188IX	500
AACACTTCGAGAACCAGGAACTGACTGTAAGGGTTAACTACTCATGACATTTGTTCA	B:	ScrFI	560

38/165

AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al. DOCKET NO.: 032931/0251

PCT/CA99/00992

Title: CHI.AMYDIA ANTIGENSANDES TO 446 OF 7835446

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fig. 10 (con't)

Fnu4HI
TauI
AciI|
BSTBI|NlaIII
|
GAGCGGCATG
841

CTCGCCGTAC

THE CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS 1 10 09 78 30 446 AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

CPN100508 Figure 11: ctctgattta tggtaattct ttattttcag agccgtcaag tcctttctat tctgttgaat 60 ttcctaataa cqtaaqtaat aaacaatcaa aaqtccqcat atq aaa aqa cct ttt Met Lys Arg Pro Phe ttt acc tat cta tgc atc atc ttc tac gga tct tgt gca tcg tta tct Phe Thr Tyr Leu Cys Ile Ile Phe Tyr Gly Ser Cys Ala Ser Leu Ser tta cat qca gqa ete tet tte eca gaa gta egt gga get aeg get get Leu His Ala Gly Leu Ser Phe Pro Glu Val Arg Gly Ala Thr Ala Ala gtt gtc cat gcc gac tct ggg aag gta ttc tat gat aaa gac ata gat Val Val His Ala Asp Ser Gly Lys Val Phe Tyr Asp Lys Asp Ile Asp 259 Val Val His Ala Asp Ser Gly Lys Val Phe Tyr Asp Lys Asp Ile Asp gct gta atc tat cct gcc agc atg acg aaa atc gca act gcc ctc ttt Ala Val Ile Tyr Pro Ala Ser Met Thr Lys Ile Ala Thr Ala Leu Phe 307 Ala Val Ile Tyr Pro Ala Ser Met Thr Lys Ile Ala Thr Ala Leu Phe atc cta aag cac tat ccc aca gtc ctc gat act ctc atc aaa gtc aaa Ile Leu Lys His Tyr Pro Thr Val Leu Asp Thr Leu Ile Lys Val Lys Ile Leu Lys His Tyr Pro Thr Val Leu Asp Thr Leu Ile Lys Val Lys caa gat gcg atc gct tcc atc act ccg caa gca aaa aaa caa tca gga Gln Asp Ala Ile Ala Ser Ile Thr Pro Gln Ala Lys Lys Gln Ser Gly Gln Asp Ala Ile Ala Ser Ile Thr Pro Gln Ala Lys Lys Gln Ser Gly 90 tat cgt agt cct ccc cac tgg tta gaa act gat gga tct aca ata cag Tyr Arg Ser Pro Pro His Trp Leu Glu Thr Asp Gly Ser Thr Ile Gln Tyr Arg Ser Pro Pro His Trp Leu Glu Thr Asp Gly Ser Thr Ile Gln ctc cat ctt cga gaa gag ctt tta ggg tgg gac ctg ttc cac gcc tta Leu His Leu Arg Glu Glu Leu Leu Gly Trp Asp Leu Phe His Ala Leu Leu His Leu Arg Glu Glu Leu Leu Gly Trp Asp Leu Phe His Ala Leu ctg gtc tgt tct gct aat gat gct gcg aat gtc tta gct atg gca tgt Leu Val Cys Ser Ala Asn Asp Ala Ala Asn Val Leu Ala Met Ala Cys Leu Val Cys Ser Ala Asn Asp Ala Ala Asn Val Leu Ala Met Ala Cys 135 tgc gga tct gta gag aag ttt atg gat aag ctg aac ttc ttc tta aaa Cys Gly Ser Val Glu Lys Phe Met Asp Lys Leu Asn Phe Phe Leu Lys 595 Cys Gly Ser Val Glu Lys Phe Met Asp Lys Leu Asn Phe Phe Leu Lys

Title: CHLAMYDIA ANTIGENS AND THE FIRST 1830446 CORRESPONDING DNA FRAGMENTS AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 11 (con't)

WO 00/24765

His	His	Pro	Asn	His	Tyr	Thr	Thr	Thr	Arg	Asp	Leu	Ile	Ser	: Ile	atg Met Met	691
Arg	Cys	Āla	Leu	Lys	gaa Glu Glu	Pro	Pro	Phe	Arg	Gly	. Val	Ile	Ser Ser	Thr	aca Thr Thr	739
Ser	Tyr	Lys	Ile	Gly	gct Ala Ala	Thr	Asn	Leu	His	Gly	Glu	Arg	Ile	Leu	Ser	787
Pro	Thr	Asn	Lys	Leu	ctt Leu Leu 235	Leu	Pro	Gly	Ser	Thr	Tyr	His	Tyr	Pro	Pro	835
Ala	Leu	Gly	Gly	Lys	aca Thr Thr	Gly	Thr	Thr	Lys	Thr	Ala	Gly	Lvs	Asn	Leu	883
Ile	Met	Ala	Ala	Glu	aaa Lys Lys	Asn	Asn	Arg	Leu	Lau	Val	Thr	Ile	Āla	Thr	931
Gly	Tyr	tcg Ser Ser 280	Gly	Pro	gtg V al	agt Ser	gat Asp 285	ctc Leu	tac Tyr	caa Gln	gat Asp	gtc Val 290	att Ile	gct Ala	cta Leu	979
					aac Asn											1027
Pro 310	tcc Ser	gac Asp	tgt Cys	ctc Leu	caa Gln 315	tta Leu	gaa Glu	ata Ile	gcg Ala	aat Asn 320	ctt Leu	ggg Gly	aag Lys	ctt Leu	tct Ser 325	1075
tgc Cys	cct Pro	ctt Leu	cct Pro	gag Glu 330	gga Gly	ctc Leu	tac Tyr	tat Tyr	gac Asp 335	ttc Phe	tat Tyr	gcc Ala	tcc Ser	gaa Glu 340	gat Asp	1123
cgc Arg	gaa Glu	cct Pro	ctt Leu 345	tst Ser	gta Val	tst Ser	ttt Phe	att Ile 350	gca Ala	cat His	gcg Ala	gac Asp	gcc Ala 355	ttc Phe	cct Pro	1171
att Ile	gaa Glu	caa Gln 360	gga Gly	gat Asp	cit Leu	ctt Leu	ggt Gly 363	cat Hıs	tgg Trp	gtt Val	ttt Phe	tat Tyr 370	gac Asp	gat Asp	gaa Glu	1219

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

ggc aag aaa att tot Gly Lys Lys Ile Ser 375			
cgc act atc aag cct Arg Thr Ile Lys Pro 390			
tat aga acc tat atg Tyr Arg Thr Tyr Met 410	Ser Ile Thr Met L		
cgc aag cac cgc aag Arg Lys His Arg Lys 425			: Ile
taacttttc ttttaatt	ta taaaaaacca aagg	tttatg taagatttgc	gcttttcaat 1468
ccaacaagaa tcccttgt	gc gcacattact tt		1500

Inventor(s): Andrew D. MURDIN et al

DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Figure 12 (RY-39)

Restriction enzyme analysis of CPN100508

1.	BcefI 509I Hpy188 TGGTAATTCTTTATT	 TTCAGAGCCGTCAAGT	ApoI Tsp509I CCTTTCTATTCTGTTGAAT	
GAGACTAAAT			GGAAAGATAAGACAACTTA	
MaeII TTCCTAATAA 		NdeI AciI ATCAAAAGTCCGCATA	TGAAAAGACCTTTTTTTAC	.0
	GCATTCATTATTTGT	PAGTTTTCAGGCGTAT	ACTTTTCTGGAAAAAAATG	
121+	Sau3AI SfaNI ATCATCTTCTACGGA	AlwI SfaNI 		:0
GATAGATACO	TAGTAGAAGATGCCT	AGAACACGTAGCAATA	GAAATGTACGTCCTGAGAG	
E Ma Rs TTTCCCAGAA 181	SaAI Fnu4i DVI CViJ: LeII AluI Mwo: LaI CViJI Tse: LGTACGTGGAGCTACGG	I NlaIII I BcefI I PleI	cmI	10
SfaNI CjePI 		NlaI Cac8I 		
241	+	+ + -	TGACGAAAATCGCAACTGC + 30 ACTGCTTTTAGCGTTGACG	0
301	 CCTAAAGCACTATCCC.	+-		50

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

09/830446

PCT/CA99/00992

WO 00/24765

Sau3AI BccI Ac	iI T	ECORV	PATCGTAGTCCTCCCCA	420
ACGCTAGCGAAGGTAGTG	AGGCGTTCGTTTT1	TTGTTAGTCCT	TAGCATCAGGAGGGGT	
BsrI BstYI TspRI Sau3AI Mnl1 BccI CTGGTTAGAAACTGATGG	CviJI MboII AlwI I	Hpy178III AceIII TaqI EarI SapI BccI		
421	-+		+	480
GACCAATCTTTGACTACC NlaIV AVAII 2001091 PSP511 Sau961 BsmF1	BbvI SfaNI BsrI	Fnu4HI TseI MwoI	AluI CviJI DdeI 	
481	-+			540
CCTGGACAAGGTGCGGAA SfcI DpnI BstYI Sau3AI	TGACCAGACAA G A			
AciI		AluI CviJI	BbvI BsqI	
NlaIII		MboII Xmn	:	
541	-+		+	600
CCGTACAACGCCTAGACA	TCTCTTCAAATAC	CTATTCGACTTG/	AGAAGAATTTTCTTCT	

CORRESPONDING DNA FRAGMENTS AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765 Fig. 12 (con't)

			MaeIII		
			NlaIII		
	CviRI		BsaJI		
	MboII		tDSI	HinfI	
	Fnu4HI		NcoI		
	CviJI		Styl	TfiI	
	TseI	MseI F	oki H	py188IX	
	1111			G 2 MG 2 MG 2 GM 2	
	AATCGGCTGCACTCATA	.CCCATTTTAATAA	ATCCCCATGGGTTA	+	
501	TTAGCCGACGTGAGTAT	+ GGGTAAAATTATI	raggggtacccaat		660
	Sth132I				
	DpnI		Hpv188IX	MnlI	
	Sau3AI	Sf	ani II Hhai	BslI	
	BscGI	NlaII	II HhaI	MnlI TaqI	
	BscGI		1 1 1 1	1 111	
	TACTACAACCCGTGATC	TTATTAGCATCAT	GCGTTGCGCTCTG	AAAGAACCTCCATTTCG	
661				+	720
	ATGATGTTGGGCACTAG	AATAATCGTAGTA	ACGCAACGCGAGAC	TTTCTTGGAGGTAAAGC	
				DpnI	
				NlaIV	
				BamHI	
				BstYI	
				Sau3AI	
				AlwI	
				BspMI	
Ŧ		AluI		NlaIII	
		viJI	CviJI Cv	IRI	
	AGGGGTCATCTCCACGA	CAAGCTATAAAA	PAGGGGC PACAAAC	+	700
721	TCCCCAGTAGAGGTGCT	+	+	CA CCTA CCCCTTGCCTA	780
	TECCEAGTAGAGGTGET	GITCGATATITI	ATCCCCGATGITIG	GACGIACEGEIIGEEIA	
			AccI		
			SimI		
			I	BslI	3
		BsaJI		AluI	
	Mhott	EcoRII		CviJI	
	AlwI Tsp509I	Tth111II	i i i	MnlI	
	I ISPOST		i i i	1 1	
	CCTATCCCCAACAACA	1 I 1 A A TTGCTTCTTC	TGGGTCTACCTAC	CACTATCCCCCAGCTTT	
781					840
				GTGATAGGGGGTCGAAA	
		Pst	tI		
	NlaIV	CviRI	 Tsp509I BbvI	Fnu4HI	
	AvaII	BsmFI	Tsp509I	CviJI	
	Sau96I	SfcI	BbvI	TseI	
	11	111		11	
	AGGAGGGAAAACAGGGA	ACCACCAAGACTG	CAGGGAAAAATCTA	ATTATGGCTGCTGAAAA	
841				+	900
	maamaaammmamaaaa	naamaammama a	amacammmmn and a	TO A TO A COCC A COCA COTTO	

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 12 (con't)

WO 00/24765

		CviJI	
	Bs	scGI	
	Sth13	321	
	BsiEI	111	
	PvuI	NlaIV	
	DpnI	AvaII	
	Sau3AI	EC001091	
	Sth132I	Psp5II	
	MaeIII	Sau96I DpnI	
	Acil BslI MnlI	SimI Sau3AI	
	ACII DOII IIIII	- i i	
	A A TRA A COCCOCTOTTGGTA A CGATCGCA	AACGGGCTATTCGGGTCCTGTGAGTGATCTCTA	
001	AAATAACCGCCTCTTCGTTBCCTTTGGG	+	960
901	THE ATTROCT OF A ACCATTACT AGCGT	TTGCCCGATAAGCCCAGGACACTCACTAGAGAT	
	IIIAIIGGGGAGAACCAIIGCIAGCG	. 100000111111100001100111	
		BanII	
		BsiHKAI	
		AciI Bsp1286I	
		Fnu4HI SacI	
		Taul BsmFI Alul	
		I MseI CviJI MseI CviJI	
	BsrDI Taal		
		++	1020
961		CCATAAATTGCTCGGCGATAATTCTTTTCTCGA	1020
	GGTTCTACAGTAACGAGATACACTTIGC	CAIAAAIIGCICGGCGAIAAIICIIIICICGA	
		BseMII	
	DNT	MboII	
	BsmAI	HinfI AluI	
	Tsp509I MnlI	Tfil CviJI	
		MmeI HindIII	
	Hpy188IX TaaI		
		AGAAATAGCGAATCTTGGGAAGCTTTCTTGCCC	
		+	1080
021			1080
	GCAGGGGGGAGGCTGACAGAGGTTAAT	TCTTTATCGCTTAGAACCCTTCGAAAGAACGGG	
	HinfI	Hpy178III	
	MnlI	NruI	
	Bsu36I	ThaI	
	DdeI	MnlI	
	EarI	DpnI	
	178III	Sau3AI	
Mn.	I PleI BsmFI	Hpy188IX MboII MnlI	
		CTATGCCTCCGAAGATCGCGAACCTCTTTCTGT	· -
081		+	1140

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 PCT/CA99/00992

				D	pnI	
		BsaHI		BglI	I	
		AciI		BstY	I	
	1	VlaIII		Sau3A	I	
	CviRI	NspI	HgaI	MboII	1 1	
	1	1 1				
	ATCTTTTATTG	CACATGCGGA	CGCCTTCCC	TATTGAACAAGG	AGATCTTCTTGGTCATTG	
1141		+ -	+		+	1200
	TAGAAAATAACO	TGTACGCCT	GCGGAAGGG	ATAACTTGTTCC	TCTAGAAGAACCAGTAAC	
			ApoI			
			sp509I			
		ME	OII	CviJI		
					mmmers receceratere	
		ACGATGAAGG	CAAGAAAAT	TTCTTCCCAGCC	TTTCTATGCCCCTTGTCG	1260
1201					AAAGATACGGGGAACAGC	1200
	CCAAAAAATAC.	IGCTACT TCC	GIICIIIIA	MAGMAGGGICGG	AAAGATACGGGGAACAGC	
				AflIII		
		BsaJI		MaeII		
		Styl		BbsI		
	HhaI	CviJI		MboII		
	111101	11		1		
	TTTTGAGCGCAG		TTGGAAACT	CTATATGAAACG	TGTCTTCACATCGTATAG	
1261			+		+	1320
	AAAACTCGCGTC	BATAGTTCGC	AACCTTTGA	GATATACTTTGC	ACAGAAGTGTAGCATATC	
			NlaII	I	AciI	
			FokI		MwoI	
			HI		SfaNI Cac8I	
		NlaII		l Aci		
	BbvI	Tse	11	ACI	†	
	A A CCTTA TTATCT	~~~~~~~~~~		I GTATTTTCGCAT	CCGCAAGCACCGCAAGTA	
1221						1380
1321					GGCGTTCGTGGCGTTCAT	
	TIOONININGA	3111111110011				
	ApoI					
Tst	509I DraI			Tsp509I		
	III MseI			MseI		
	- 1 i - 1 i -			- 11		
	TAAAAATTTAA	AACACTATTO	CTAAAATCTA		AATTTATAAAAAACCAAA	
1381			+			1440
	ATTTTTAAATT'	TTGTGATAA	SATTTTAGAT	TGAAAAAGAAAA	TTAAATATTTTTTGGTTT	
					CjePI	
		CjeP:		HinfI	HhaI	
		HhaI		TfiI	FspI MmeI	
					TTGTGCGCACATTACTTT	1500
1441					AACACGCGTGTAATGAAA	1500
	CCMMMIMCHII	CIMMACOCO	THE THOU			

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS 09/830446 AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al WO 00/24765 DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 13: CPN100515 -

aagg	agc	aaa	tgga	gatt	gg c	caaa	taga	c ga	gcaa	gggt	ttq	cata	aga	ataç	goottt	60
tcgc	aat	aat	aact	tgcc	ta a	acga	tctt	g ta	aacg	actt		Ala			ccc Pro 5	115
Ile	Leu	Gln	Ile	Glu	Asp	Leu	Ser	Ile	Thr	Leu	Ala	Lys	Glr	Arq	Gln Gln	163
cag Gln Gln	Tyr	Pro	Ile	Val	Gln	Ser	Leu	Ser	Phe	Thr	Ile	Asn	Glu	Gly	caa Gln Gln	211
acc Thr Thr	Leu	Ala	Ile	Ile	Gly	Glu	Ser	Gly	Ser	Gly	Lys	Ser	Val Val	Ser	Ala	259
cat His His	Ala	Ile	Leu	Arg	Leu	Leu	Pro	Cys	Pro	Pro	Phe	Ser	Val	Ser	Gly	307
Gln Gln 70	Val	Asn	Phe	Gln	Gly	His	Asn	Leu	Leu	Thr	Ala	Ser	Arg	Ser	Ile	355
Gln :	Lys	Lys	Ile	Ile	Gly	Thr	Glu	Ile	Ser	Met	Ile	Phe	Gln	Asn	Pro	403
Gln i	Ala	Ser	Leu	Asn	Pro	Val	Phe	Thr	Ile	Glu	Gln	Gln	Phe	Arg	Ğlu	451
att a Ile : Ile :	Ile Ile	His	Thr	His	Leu	Ala	Leu	Thr	Ala	Glu	Va1	Ala	Lys	Ğlu	Lys	499
atg t Met I Met I	Leu	Tyr	Ala	Leu	Ğiu	Glu	Thr	Gly	Phe	Hıs	Asp	Pro	Arg	Leu	Cys	547
ttg a Leu A Leu A 150	Asa	Leu	Tyr	Pro	His	Gln	Leu	Ser	Gly	Gly	Met	Leu	Gln	Arg	Ile	595

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

Fig. 13 (con't)

C	s I	le A	la Me	t Al	a Le a Le	ı Le	u Cy	s Se	r Pi	O L	ys Le	eu L	eu I.	le A. le A.	ct gat la Asp la Asp 80	643
Gl	u Pr	o Th	r Th	r Ala	a Leu	Asi	Va.	1 Ser 190	va Va	1 G1	n Ty n Ty	r Gl	n II n II	le Le le Le 95	a caa eu Gln eu Gln	691
Let	ı Le	20	s Th	r Let	ı Gln	Lys	Lys Lys 205	Thr	G1 G1	y Me y Me	t Se t Se	r Le r Le 21	u Le u Le 0	u Il	t att e Ile e Ile	739
Thi	Hi:	Asi	n Met	Gly	Val	Val 220	Ala	Glu	Th	r Al	a Ası a Ası 22	P As	p Va p Va	l Le l Le	c gtg u Val u Val	787
Leu 230	Tyr	Ala	i Gly	Arg	Met 235	Val	Glu	Cys	Ala	Pro Pro 240	o Ala o Ala	a Vai	l Gl	n Mei	g ttc t Phe Phe 245	835
His	Asn	Pro	Ser	His 250	Pro	Tyr	Thr	Arg	Asp 255	Leu	Leu Leu	Ala Ala	Ser Ser	Arc 260		883
Ser	Leu	Gin	Pro 265	Gln	Gin	Leu	Gly	Ser 270	Phe	Asn Asn	Pro	Ile Ile	Pro Pro 275	Gly Gly		931
Pro	Pro	His 280	Tyr	Thr	gcc Ala Ala	Phe	Pro 285	Ser	Gly	Cys	Arg	Tyr Tyr 290	His His	Pro	Arg Arg	979
Cys	Ser 295	Lys	Ile	Leu		Arg 300	Cys	Ser	Ala	Glu	Ala Ala 305	Pro	Glu Glu	Ile	Tyr	1027
Pro 310	Val	Arg	Glu	Gly	cac : His : His : 315	Lys	Val .	Arg	Val	Gly 320	Cys	Met Met	Thr	Thr Thr	Asn Asn 325	1075
					att d Ile (Thr S								1123

50/165

Title: CHLAMYDIA ANTIGENS AND TO 145 09/830446 CORRESPONDING DNA FRAGMENTS AND USES THEREOF

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Fig.	13 (con't)													
Tue	cgt Arg Arg	Sar	Phe	Tro	Phe	Gln	Glv	Lvs	Thr	Ile	Ala	Ser	Arc	Pro	Val	1171
Asn	gac Asp Asp	Val	Ser	Phe	Ser	Leu	Tvr	Ser	Arq	Arq	Ala	Val	Gly	Leu	Ile	1219
Gly Gly	gaa Glu Glu 375	Ser Ser	Gly Gly	Ser Ser	Gly Gly	Lys 380	Ser	Thr	Leu Leu	Ala	Leu Leu 385	Ala Ala	Leu Leu	Ala	Gly Gly	1267
T.011	cta Leu Leu	Pro	Leu	Thr	Ser	Glv	Phe	Leu	Thr	Phe	Asn	Gly	Thr	Pro	Ile	1315
Tire	ttg Leu Leu	Uic	Ser	Lvs	His	Glv	Arg	His	Gln	Leu	Arq	Ser	Gin	val	Arg	1363
T. 011	gtc Val Val	Phe	Gln	Asn	Pro	Gln	Ala	Ser	Leu	Asn	Pro	Arg	Lys	Thr	11e	1411
Ton	gat Asp Asp	Sar	T11	Glv	His	Ser	Leu	Leu	Tyr	His	Lvs	Leu	Val	Pro	Lys	1459
Člu	aaa Lys Lys 455	17 = 1	T.e.11	Ala	Thr	Val	Arg	Glu	Tvr	Leu	Glu	Leu	Val	GLy	Leu	1507
Sar	gag Glu Glu	Glu	TVT	Phe	Tvr	Arq	Tyr	Pro	His	Gln	Leu	Ser	GLY	GTA	GIN	1555
Gln	caa Gln Gln	Ara	Val	Ser	Ile	Ala	Arg	Ala	Leu	Leu	Gly	Val	Pro	Gln	Leu	1603
T10	att Ile	Cire	Asp	Glu Glu	Tle	Val	Ser	Ala	Leu Leu	Asp	Leu	Ser	Ile	Gln	Aia	1651
Glr	att Ile	Leu	Asn Asn	Met	Leu	Ala	Glu	Leu Leu	Gln	Lys	Lys	Leu	Ser	Leu	Thr	1699

1100 \$ 518 A 11 5 WO 00/24765

Title: CHLAMYDIA ANTIGENS AND STATE CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 Jラ/ 83U44 PCT/CA99/00992

Tyr	Leu	Phe Phe	: Ile	Ser	His	Asp	Leu Leu	Ala	ı Va]	Val	. Ara	Ser Ser	Phe	Cvs	aca Thr Thr	1747
Glu	Val Val	Phe	Ile	Met	Tyr	Lys Lys	Gly Gly	Gln	Ile	. Val	. Glu . Glu	Lys	Ğĺv	Asn	aca Thr Thr 565	1795
Lys	Arg	Ile	Phe	Ser	Asp	Pro	Gln Gln	His	Pro	Tyr Tyr	Thr	Arg	Met	Leu	Leu	1843
Asn	Ala	Gln	Leu	Pro	Glu	Thr	ect Pro Pro	Asp	Gln	Arg	Gln	tct Ser	aaa Lys 595	cct Pro	ata Ile	1891
tt: Phe	caa Gln	gaa Glu 600	tat Tyr	cac His	aaa Lys	gat Asp	tct Ser 605	gaa Glu	gaa Glu	tct Ser	tgc Cys	tct Ser 610	aca Thr	gga Gly	tgc Cys	1939
tac Tyr	ttt Phe 615	tac Tyr	aat Asn	cgt Arg	Cys	cca Pro 620	caa Gln	aaa Lys	caa Gln	gaa Glu	gct Ala 625	tgc Cys	aag Lys	tca Ser	gag Glu	1987
630	TTE	Pro	Asn	GIN	635	Asp	gcg Ala	His	His	Thr 640	Tyr	Arg	Cys	Ile	His 645	2035
tgat	tcgt	cc t	ctac	gcta	t tc	ttaa	gcta	cca	ttaa	gga	atco	caag	gg a	gagg	tctgc	2095
tcta	t															2100

PCT/CA99/00992

WO 00/24765

Figure 14 (RY-40)
Restriction enzyme analysis of CPN 100515

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

DOCKET NO.: 032931/0251

PCT/CA99/00992

						BsrDI	
						CviRI	
			Hpy17			BpmI	
			Bst			FokI	
		jePI	SfaNI			ApoI	
	HinfI		MnlI			5091	
CviJ	I Tfil	İ	XcmI	1 1	CjePI	11 1 1	
		1	- 11	1			
	GCTGTGCTTG				AGGGATGCTTC	AAAGAATTTGCAT	
541	+		+			+	600
	CGACACGAAC'	TTAGAGATGG	GGGTGGTTGA	GAGACC	TCCCTACGAAG	TTTCTTAAACGTA	
	Hael	I					
	HhaI	[
	NlaIII	1					
Bs	aJI						
Bst	DSI	1					
N	coI	İ					
9	tyI	ĺ					
Bse		İ					
	111	M:	nlI		Pf111	180	
	i i i	İ	_ 1				
	TGCCATGGCG	CTCCTCTGTT	CTCCTAAACT	TCTTAT	TGCTGATGAAC	CTACGACTGCTTT	
601	+					++	660
	ACGGTACCGC	GAGGAGACAA	GAGGATTTGA	AGAATA	ACGACTACTTG	GATGCTGACGAAA	
		Hin	fΙ				
		Tf	iI		Sth132	I	
		Hpy188IX	Tsp509I		SfcI	BscGI	
			i i		1	i	
	AGATGTTTCT		i i		1	i	
661		GTTCAGTATC	 AGATTCTACA		1	BscGI 'AGAAAAAAACGGG	720
661	+	GTTCAGTATC	 AGATTCTACA	ATTACT	AAAAACACTAC	AGAAAAAAACGGG	720
661	+	GTTCAGTATC	 AGATTCTACA	ATTACT	AAAAACACTAC	AGAAAAAAACGGG	720
661	+	GTTCAGTATC	 AGATTCTACA	ATTACT	AAAAACACTAC	AGAAAAAAACGGG ++ TCTTTTTTTGCCC	720
661	+	GTTCAGTATC	 AGATTCTACA + TCTAAGATGT	ATTACT	 AAAAACACTAC + TTTTTGTGATG	GAAAAAAACGGG	720
661	+	GTTCAGTATC	 AGATTCTACA + TCTAAGATGT	ATTACT TAATGA nf I	 AAAAACACTAC + TTTTTGTGATG Alwni	AGAAAAAAACGGG	720
661	+	GTTCAGTATC	 AGATTCTACA + TCTAAGATGT Hi	ATTACT TAATGA nf I	AAAAACACTAC TTTTTTGTGATG AlwNI BstAPI	AGAAAAAAACGGG	720
661	TCTACAAAGA	GTTCAGTATC	 AGATTCTACA + TCTAAGATGT Hi BslI	ATTACT TAATGA nf I	AAAAACACTAC TTTTTTGTGATG Alwni BstAPI Cviri	AGAAAAAAACGGG	720
661	TCTACAAAGA CViJI	GTTCAGTATC.	 AGATTCTACA TCTAAGATGT Hi BSlI PflMI	ATTACT TAATGA nfI	AAAAACACTAC TTTTTGTGATG AlwNI BStAPI CViRI PleI Mwol	MaeII	720
	TCTACAAAGA CViJI AATGAGCCTT	GTTCAGTATC.	 AGATTCTACA TCTAAGATGT Hi BSlI PflMI	ATTACT TAATGA nfI	AAAAACACTAC TTTTTGTGATG AlwNI BStAPI CViRI PleI Mwol	MaeII	
	TCTACAAAGA CViJI AATGAGCCTT	GTTCAGTATC	AGATTCTACA TCTAAGATGT Hi BslI PflMI CCCATAATAT	ATTACT TAATGA nf I	AAAAACACTAC TTTTTGTGATG AlwNI BStAPI CViRI PleI MwoI CGTTGCAGAAA	MaeII LCTGCTGATGACGT	780
	TCTACAAAGA CViJI AATGAGCCTT	GTTCAGTATC	AGATTCTACA TCTAAGATGT Hi BslI PflMI CCCATAATAT	ATTACT TAATGA nf I	AAAAACACTAC TTTTTGTGATG AlwNI BStAPI CViRI PleI MwoI CGTTGCAGAAA	MaeII	780
	CVIJI AATGAGCCTT	GTTCAGTATC	AGATTCTACA TCTAAGATGT Hi BslI PflMI CCCATAATAT	ATTACT TAATGA nf I	AAAAACACTAC TTTTTGTGATG AlwNI BStAPI CViRI PleI MwoI CGTTGCAGAAA	MaeII LCTGCTGATGACGT	780
	CVIJI AATGAGCCTT TTACTCGGAA BSIHKAI	GTTCAGTATC	AGATTCTACA TCTAAGATGT Hi BslI PflMI CCCATAATAT	ATTACT TAATGA nf I	AAAAACACTAC TTTTTGTGATG AlwNI BStAPI CViRI PleI MwoI CGTTGCAGAAA	MaeII LCTGCTGATGACGT	780
721	CVIJI AATGAGCCTT TTACTCGGAA BSIHKAI BSP12861	GTTCAGTATC	AGATTCTACA AGATTCTACA TCTAAGATGT Hi Bsli PflMI CCCATAATAT GGGTATTATA	ATTACT TAATGA nf I GGGAGT	AAAAACACTAC ATTTTTGTGATG AlwNI BStAPI CVIRI PleI MwoI	MaeII LCTGCTGATGACGT	780
721 Bsil	CVIJI AATGAGCCTT TTACTCGGAA BSiHKAI BSpl2861	GTTCAGTATC	AGATTCTACA AGATTCTACA AGATGT Hi Bsli PflMI CCCATAATAT	ATTACT TAATGA nf I	AAAAACACTAC TTTTTGGATG AlwMI BStAPI CVIRI PleI Mwol CGTTGCAGAAA	MaeII LCTGCTGATGACGT	780
721 BsiI Bsp12	CVIJI AATGAGCCTT TTACTCGGAA BSIHKAI BSp12861 KAI K861	GTTCAGTATC CAAGTCATAG CTTATTATTA GAATAATAAT	AGATTCTACA TCTAAGATGT Hi Bsli PflMI CCCATAATAT	ATTACT TAATGA nfI	AAAAACACTAC TTTTTGGATG AlwMI BStAPI CVIRI PleI Mwol CGTTGCAGAAA	MaeII LCTGCTGATGACGA	780
721 BsiI Bsp12	CVIJI AATGAGCCTT TTACTCGGAA Bspl2861 KAI KKAI GTTCAGTATC	AGATTCTACA TCTAAGATGT Hi Bsli PflMI CCCATAATAT	ATTACT TAATGA nfI	AAAAACACTAC AIWNI BSTAPI CVIRI PleI MwoI CGTTGCAGAAA	MaeII LCTGCTGATGACGA	780	
721 BsiI Bsp12	CVIJI AATGAGCCTT TTACTCGGAA BsiHKAI Bspl286I HKAI 1861 SSI C	GTTCAGTATC CAAGTCATAG CTTATTATTA GAATAATAAT ViRI N	AGATTCTACA TCTAAGATGT Hi Bsli PflMI CCCATAATAT GGGTATTATA	ATTACT TAATGA nfI	AAAAACACTAC AlwNI BStAPI CVIRI PleI Mwol CGTTGCAGAAA GCAACGTCTTI	MaeII CTGCTGATGACTACTGCA GACGACTACTGCA	780
721 BsiI Bsp12	CVIJI AATGAGCCTT TTACTCGGAA BSP12861 KAI R861 CSI CCTCGTGCTC	GTTCAGTATC CAAGTCATAG CTTATTATTA GAATAATAAT ViRI N	AGATTCTACA TCTAAGATGT Hi Bsli PflMI CCCATAATAT GGGTATTATA	ATTACT TAATGA nfI	AAAAACACTAC AlwNI BStAPI CVIRI PleI Mwol CGTTGCAGAAA GCAACGTCTTI	MaeII LCTGCTGATGACGA	780

AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765 Fig. 14 (con't)

(554)				
		BsmAI		
		BsmBI		
	,	BomI		
		EII		
	BsaHI			
	Hin4I			
	MaeII	- ! ! !	V3 70 T T T	
MunI Tsp509I BsrI I	Tthlill	Mr	Hpy178III	
Tsp509I BsrI I	lincII	ii i Mr	neı i	
	1 11	11 1		
TCAGGGAAAGACAATTGCCAGTCGTC	CTGTTGACGA	CGTCTCTTTT:	CACTATACICCAG	
1141	+	+	++	1200
AGTCCCTTTCTGTTAACGGTCAGCAC	3GACAACTGCT(GCAGAGAAAA	GTGATATGAGGTC	
Hpy188IX	DpnI			
AhdI Sai	u3AI	ScrF		
HaeIV Hpy178	u3AI III 	BsaJI	AluI	
Hin4I HinfI	11 1	EcoRII	CviJI	
MaeII TfiI	Alw	I RsaI	BspMI	
	ii i	1 1 1		
ACGTGCTGTCGGACTTATTGGAGAA'	TCTGGATCAGG	GAAAAGTACC	TGGCGTTAGCTCT	
1201	+	+	++	1260
TGCACGACAGCCTGAATAACCTCTT	AGACCTAGTCC	CTTTTCATGG	BACCGCAATCGAGA	
100,100,1010001012111111111111				
BsaI				
BsmAI	MseI	NlaIV		
	MnlT M	cet Bant	BcefI	
HphI MnlI	MnlI M	I Duni		
CGCAGGTCTCCTACCTCTCACCTCT				
1261	JOGITCITANC	t		1320
GCGTCCAGAGGATGGAGAGTGGAGA	CCCDACDATTC	N N N N TTCCCCC	CCCCTTAGTTCAA	
GCGTCCAGAGGA TGGAGAGTGGAGA	CCCAMOMATIO	MAMATIGEES.	.000011011011	
	SmlI			
	DpnI			
,				
	u3AI			
HgaI	!!!			
Tsp509I	1 ! !			
BccI	1 1 1			
BsmI Bce83I	1 1 1	TaaI		
CviRI BsaHI		saI		
		1 1		
GCATTCTAAACACGGACGCCATCAA	TTACGATCTCA	AGTA CGGTTG	STCTTTCAAAATCC	
1321				1380
CGTAAGATTTGTGCCTGCGGTAGTT.	AATGCTAGAGT	TCATGCCAAC	CAGAAAGTTTTAGG	
FauI				
AluI Sth132I		CviJI		
CviJI ThaI		HaeI		
	BfaI	HaeIII	BsmFI	
	1	Ī		
ACAAGCTTCATTAAACCCGCGAAAA	actatectaga	TAGTTTAGGC	CACTCTCTGCTTTA	
1381			++	1440
TGTTCGAAGTAATTTGGGCGCTTTT	TGATAGGATCT	ATCAAATCCG	STGAGAGACGAAAT	

57/165

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 77830446

PCT/CA99/00992

WO 00/24765

Title: CHLAMYDIA ANTIGENS AND STATE 09/830446

Title: CHLAMYDIA ANTIGENS AND LISES THEREOF

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Fig. 14 (con't) CviRI MnlI | Tsp509I CTGCACAGAGGTATTCATTATGTATAAGGGGCAAATTGTAGAAAAAGGAAATACAAAACG 1741 ------ 1800 GACGTGTCTCCATAAGTAATACATATTCCCCGTTTAACATCTTTTTCCTTTATGTTTTGC DonI Sau3AI NlaIII Hpyl78III HhaI | MseI PleI | ThaI | NspI | BsmAI | | Hpy188IX| | FokI | AlwI - 11 CATTTTTCTGATCCACAACATCCTTATACGCGCATGTTGTTAAATGCCCAACTTCCAGA 1801 -----+ 1860 GTAAAAAAGACTAGGTGTTGTAGGAATATGCGCGTACAACAATTTACGGGTTGAAGGTCT BclI | Sau3AI Hpv178III Hpy188IX HinfI | HinfI | Tfil GACTCCTGATCAAAGGCAATCTAAACCTATATTCCAAGAATATCACAAAGATTCTGAAGA 1861 -----+ 1920 CTGAGGACTAGTTTCCGTTAGATTTGGATATAAGGTTCTTATAGTGTTTCTAAGACTTCT CVIRI FokI Cacstl Alut II SfcI CviJI ||| IlodM HindIII | | | SfaNI | Eco57I FokI ii I ATCTTGCTCTACAGGATGCTACTTTTACAATCGTTGTCCACAAAAACAAGAAGCTTGCAA 1921 ------ 1980 TAGAACGAGATGTCCTACGATGAAAATGTTAGCAACAGGTGTTTTTGTTCTTCGAACGTT BslI BaeI HhaI BCIVI DonI Sau3AI | BsmAI | Hpy188IX | BsmBI | HinfI Thal |Hgal Taal 1981 -----+ 2040

Tile: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al

PCT/CA99/00992

WO 00/24765 Fig. 14 (con't)

DOCKET NO.: 032931/0251

Title: CHLAMYDIA ANTIGENS AND TO THE STORESPONDING DNA FRAGMENTS TO THE STORESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 15:

cgaa	gago	aa a	acctccacag ttacagagaa agacgtccaa								cctaaaacac aagcaacacc					60
acac	gctt	cg a	agaa	aaac	g tt	gcaa	gtco	tto	gac	tct		cca Pro				115
aaa Lys	gca Ala	gca Ala	aca Thr	aca Thr 10	gtg Val	gct Ala	gta Val	cct Pro	caa Gln 15	gac Asp	aaa Lys	tct Ser	gaa Glu	gaa Glu 20	gaa Glu	163
aaa Lys	gtt Val	aaa Lys	gag Glu 25	cga Arg	ttg Leu	aca Thr	aag Lys	cgg Arg 30	gaa Glu	ctt Leu	acc Thr	tgt Cys	gaa Glu 35	gac Asp	ctt Leu	211
aaa Lys	gat Asp	aac Asn 40	ggc Gly	tat Tyr	act Thr	gtc Val	aat Asn 45	ttt Phe	gaa Glu	gac Asp	att Ile	tct Ser 50	att Ile	tta Leu	gag Glu	259
ttg Leu	ttg Leu 55	cag Gln	ttc Phe	gta Val	agt Ser	aaa Lys 60	att Ile	tct Ser	gga Gly	acg Thr	aac Asn 65	ttt Phe	gtc Val	ttt Phe	gat Asp	307
agc Ser 70	aac Asn	gat Asp	ttg Leu	caa Gln	ttc Phe 75	aat Asn	gtc Val	acg Thr	atc Ile	gtt Val 80	tcc Ser	cac His	gat Asp	cct Pro	act Thr 85	355
tct Ser	gta Val	gat Asp	gat Asp	tta Leu 90	tct Ser	aca Thr	atc Ile	tta Leu	cta Leu 95	caa Gln	gtc Val	tta Leu	aaa Lys	atg Met 100	cat His	403
gac Asp	ttg Leu	aag Lys	gtt Val 105	gtt Val	gaa Glu	caa Gln	ggc Gly	aat Asn 110	aac Asn	gtc Val	ctt Leu	atc Ile	tat Tyr 115	cgt Arg	aat Asn	451
cct Pro	cat His	ctt Leu 120	tct Ser	aag Lys	cta Leu	tcc Ser	aca Thr 125	gta Val	gtc Val	aca Thr	gac Asp	agc Ser 130	tcc Ser	tta Leu	aaa Lys	499
gaa Glu	acg Thr 135	tgt Cys	gaa Glu	gct Ala	gtt Val	gtg Val 140	gtt Val	acc Thr	cga Arg	gtg Val	ttc Phe 145	cgt Arg	ctt Leu	tac Tyr	agg Arg	547
									att Ile							595
gat Asp	gct Ala	atc Ile	gtt Val	agt Ser 170	gct Ala	tca Ser	gaa Glu	gct Ala	act Thr 175	cgt Arg	cat His	gtt Val	atc Ile	atc Ile 180	tcg Ser	643
									agt Ser							691

Title: CHLAMYDIA ANTIGENS AND SUBLIFIED

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF

WO 00/24765 Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 15 con't)

gat t Asp (tgc Cys	cca Pro 200	ggc Gly	aca Thr	tct Ser	gtg Val	gac Asp 205	atg Met	act Thr	gaa Glu	tac Tyr	gaa Glu 210	gtt Val	aaa Lys	tat Tyr	739
gcc a Ala A	aat Asn 215	ccc Pro	gca Ala	gct Ala	ctt Leu	gtt Val 220	agc Ser	tac Tyr	tgc Cys	caa Gln	gat Asp 225	gtt Val	ctt Leu	ggt Gly	act Thr	787
ctg g Leu A 230	gcc Ala	gaa Glu	gat Asp	gat Asp	gct Ala 235	ttc Phe	caa Gln	atg Met	ttc Phe	atc Ile 240	caa Gln	cct Pro	gga Gly	acg Thr	aac Asn 245	835
aaa a Lys 1	att Ile	ttc Phe	gtc Val	gtc Val 250	tct Ser	tca Ser	cca Pro	cgt Arg	ctt Leu 255	gca Ala	aat Asn	aag Lys	gca Ala	gag Glu 260	cag Gln	883
ctc c Leu I	ctg Leu	aag Lys	tcc Ser 265	tta Leu	gat Asp	gtc Val	cca Pro	gaa Glu 270	atg Met	gca Ala	cat His	acc Thr	cta Leu 275	gat Asp	gat Asp	931
Pro A	gca Ala	agt Ser 280	act Thr	gcc Ala	ttg Leu	gct Ala	ttg Leu 285	gga Gly	gga Gly	aca Thr	gga Gly	acc Thr 290	acg Thr	agc Ser	cct Pro	979
aag a Lys S																1027
gtg a Val 1 310																1075
aca o	gct Ala	atg Met	gac Asp	gaa Glu 330	gat Asp	ttc Phe	att Ile	aac Asn	act Thr 335	ctc Leu	aat Asn	agt Ser	atc Ile	cag Gln 340	tgg Trp	1123
tta ç	gag Glu	gtc Val	aat Asn 345	aac Asn	tcc Ser	ata Ile	gtt Val	att Ile 350	atc Ile	gga Gly	aac Asn	caa Gln	ggg Gly 355	aat Asn	gtc Val	1171
gac a																1219
gtt t Val :																1267
gac t Asp 1 390																1315

Title: CHLAMYDIA ANTIGENS AND 1 1 1 09 / 83 04 4 6

CORRESPONDING DNA FRAGMENTS AND USES THEREOF PCT/CA99/00992

WO 00/24765

600

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

Fig.	15 c	on't)														
gct Ala	tat Tyr	gct Ala	tct Ser	gga Gly 410	cta Leu	ttg Leu	aat Asn	aat Asn	act Thr 415	ggc Gly	ata Ile	gcc Ala	aca Thr	cct Pro 420	aca Thr	1363
aaa Lys	gca Ala	act Thr	gtc Val 425	cct Pro	ccc Pro	ggc Gly	acg Thr	cca Pro 430	aat Asn	cct Pro	ggt Gly	tcg Ser	atc Ile 435	cct Pro	ctt Leu	1411
cct Pro	acg Thr	cca Pro 440	gga Gly	caa Gln	ttg Leu	aca Thr	999 Gly 445	ttc Phe	tca Ser	gat Asp	atg Met	ctg Leu 450	aac Asn	tct Ser	tcg Ser	1459
tca Ser	gca Ala 455	ttc Phe	ggt Gly	cta Leu	gga Gly	atc Ile 460	atc Ile	gga Gly	aat Asn	gtc Val	cta Leu 465	agt Ser	cat His	aaa Lys	ggg Gly	1507
aag Lys 470	tct Ser	ttc Phe	ctt Leu	act Thr	ttg Leu 475	gga Gly	ggc Gly	tta Leu	tta Leu	agt Ser 480	gcc Ala	tta Leu	gat Asp	caa Gln	gat Asp 485	1555
gga Gly	gat Asp	act Thr	gtc Val	att Ile 490	gtc Val	ttg Leu	aat Asn	cct Pro	aga Arg 495	atc Ile	atg Met	gct Ala	cag Gln	gat Asp 500	acg Thr	1603
caa Gln	caa Gln	gct Ala	tcg Ser 505	ttt Phe	ttt Phe	gta Val	Gly ggg	caa Gln 510	acg Thr	gtc Val	cct Pro	tac Tyr	caa Gln 515	act Thr	atc Ile	1651
aaa Lys	tac Tyr	tat Tyr 520	atc Ile	caa Gln	gaa Glu	aca Thr	gga Gly 525	act Thr	gta Val	acg Thr	caa Gln	aat Asn 530	atc Ile	gat Asp	tat Tyr	1699
gaa Glu	gat Asp 535	att Ile	gga Gly	gtg Val	aac Asn	ctt Leu 540	gtc Val	gtt Val	acc Thr	tct Ser	aca Thr 545	gtt Val	gct Ala	ccc Pro	aac Asn	1747
												gaa Glu				1795
gcg Ala	tct Ser	gga Gly	tca Ser	cta Leu 570	aca Thr	cct Pro	gtc Val	aca Thr	gat Asp 575	aaa Lys	act Thr	tat Tyr	gca Ala	gcc Ala 580	aca Thr	1843
												agt Ser				1891
aga Arg	Asp	aaa Lys	Thr	aca Thr	Lys	gtg Val	Val	Ser	gga Gly	gtg Val	cct Pro	ttg Leu 610	Leu	aac Asn	tcc Ser	1939

63/165

605

610

Title: CHLAMYDIA ANTIGENS AND THE 11 G 09/850446

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al

WO 00/24765 Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 15 con't)

ata Ile	cca Pro 615	tta Leu	att Ile	cgt Arg	ggt Gly	tta Leu 620	ttt Phe	agc Ser	cgt Arg	acc Thr	atc Ile 625	gac Asp	caa Gln	agg Arg	caa Gln	1987
aaa Lys 630	cgc Arg	aat Asn	atc Ile	atg Met	atg Met 635	ttt Phe	att Ile	aag Lys	cct Pro	aag Lys 640	gtg Val	att Ile	agt Ser	agc Ser	ttt Phe 645	2035
gaa Glu	gaa Glu	ggc Gly	act Thr	cgt Arg 650	gtt Val	acc Thr	aat Asn	aag Lys	gaa Glu 655	gga Gly	tac Tyr	aga Arg	tac Tyr	aat Asn 660	tgg Trp	2083
gaa Glu	gct Ala	gat Asp	gaa Glu 665	gga Gly	tcc Ser	atg Met	caa Gln	gtg Val 670	gcc Ala	cct Pro	cgc Arg	cat His	gct Ala 675	cct Pro	gaa Glu	2131
tgc Cys	caa Gln	gga Gly 680	cct Pro	cct Pro	tct Ser	tta Leu	cag Gln 685	gct Ala	gaa Glu	agt Ser	gac Asp	ttt Phe 690	aaa Lys	ata Ile	ata Ile	2179
	ata Ile 695			cag Gln	tagt	ggta	ata t	aaaa	agagg	ga aç	gatga	atatt	cto	egge	egtg	2234
gaat	aget	tc t	gact	ctgt	t go	atto	aggg	g gga	aaago	caa	gaag	gatgt	ag a	agte	ggccgt	2294
ataa	act															2300

THE CHLAMYDIA ANTIGENS AND THE 6 097830446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Figure 16 (RY-41)

Restriction enzyme analysis of CPN100538

	MnlI AatII	
	MaeIII BsaHI	
	MaeIII BsaHI MboII MaeII	
	Hin4I TaaI BplI BsbI	
	CGAAGAGCAAACCTCCACAGTTACAGAGAAAGACGTCCAACCTAAAACACAAGCAACACC	
		60
	GCTTCTCGTTTGGAGGTGTCAATGTCTCTTTCTGCAGGTTGGATTTTGTGTTCGTTGTGG	
	Post ATT	
	Fnu4HI TseI	
	BcgI	
	Hpy178III	
	TaqI	
	HinfI	
	CviRI TfiI	
	NspV BcgI BcgI	
	TagI MboII MnlI	
TH	h111II AclI ScrFI	
	I BcgI MaeII TaqI EcoRII	
	ACACGCTTCGAAGAAAACGTTGCAAGTCCTTCGACCTCTATGCCAGGAATCGAGAAAGC	
61		120
	TGTGCGAAGCTTCTTTTTGCAACGTTCAGGAAGCTGGAGATACGGTCCTTAGCTCTTTCG	
	Hpy178III	
	Smli	
	RsaI FauI	
	I SPAT	
	ATWAT	
	Mart	
	BbvI	
	Bce83I	
	BC6931	
	AGCAACAACAGTGGCTGTACCTCAAGACAAATCTGAAGAAGAAAAAGTTAAAGAGCGATT	
127	**************************************	180
121	TCGTTGTTGTCACCGACATGGAGTTCTGTTTAGACTTCTTCTTTTTCAATTTCTCGCTAA	
	100110110101011011011011011011011011011	
	MboII BcefI	
	BbsI Tsp509I	
	AciI MseI CviJI TaaI	
	GACAAAGCGGGAACTTACCTGTGAAGACCTTAAAGATAACGGCTATACTGTCAATTTTGA	
181		240
	CHEMPTON CONTROL A CONTROL OF CONTROL OF CHEMPTON CONTROL OF CACTALANACT	

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 16 (con't)

	Hpy178III	
	MboII ApoI	
	BbsI CviRI Tsp509I	
	AGACATTTCTATTTTAGAGTTGTTGCAGTTCGTAAGTAAAATTTCTGGAACGAAC	TTGT
241		+ 300
241	TCTGTAAAGATAAAATCTCAACAACGTCAAGCATTCATTTTAAAGACCTTGCTTG	AACA
	TCTGTAMAGATAMATCTCAACAACGTCAAGCATTCTTTTTTTTTT	
	BsiEI	
	PvuI	
	DpnI	
	Sau3AI	
	Hpy178III DpnI	
	Tsp509I MaeIII Sau3AI	
	CviRI Tsp45I AlwI Sfc	:I
	11 1 11 1 1 1 1	
	CTTTGATAGCAACGATTTGCAATTCAATGTCACGATCGTTTCCCACGATCCTACTT	CTGT
301		+ 360
	GAAACTATCGTTGCTAAACGTTAAGTTACAGTGCTAGCAAAGGGTGCTAGGATGAA	GACA
	CAALCE	
	NlaIII	
	7.002	
	Hin4I MseI CviRI	
	AGATGATTTATCTACAATCTTACTACAAGTCTTAAAAATGCATGACTTGAAGGTTG	
361		
	TCTACTAAATAGATGTTAGAATGATGTTCAGAATTTTTACGTACTGAACTTCCAAC	AACT
	AluI	
	CviJI MaeI	II
	DdeI Tsp4	5I
	MaeII MnlI TaaI	
		i i
	ACAAGGCAATAACGTCCTTATCTATCGTAATCCTCATCTTTCTAAGCTATCCACAG	TAGT
421		+ 480
	TGTTCCGTTATTGCAGGAATAGATAGCATTAGGAGTAGAAAGATTCGATAGGTGTC	CATCA
	1011ccollation.com	
	AflIII	
	MaeII	
	AluI AceIII AluI BstEII Sth132I	
	CviJI MseI CviJI MaeIII AvaI HgaI	
	CACAGACAGCTCCTTAAAAGAAACGTGTGAAGCTGTTGTGGTTACCCGAGTGTTCC	
481		+ 540
	GTGTCTGTCGAGGAATTTTCTTTGCACACTTCGACAACACCCAATGGGCTCACAAGG	CAGA

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 16 (con't)

WO 00/24765

541	MnlI PstI PstI Pnu4HI CviRI Stall BsaHI CviJI SfcI TTACAGGGGTCAGCCCTCTTCAGAGGATAATTATTATAATAAGTTGGAAATGAAAGGGTACTACCG AATGTCCGCAGTCAGGGAGCCTCATTTATAATAAGTTGGAAATGAAAGGGTACTACCG	600
601	AluI CviJI Mwoi NaIII Hpy188IX TaqI Hpy188IX NlaIII Hpy188IX TaqI TATCGTTAGTGCTTCAGAAGCTACTCGTCATGTTATCATCTCGGATATTGCTGGTAATGT ATAGCAATCACGAAGTCTCGATGAGCAGTACAATAGTAGAGCCTATAACGACCATTACA	660
661	Hpy178III	720
721	Paul Sth132	780

67/165

ACTTATGCTTCAATTTATACGGTTAGGGCGTCGAGAACAATCGATGACGGTTCTACAAGA

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fig. 16 (con't)

Bo 781	CviJI HaeIII SfaNI SFANI SCIFI APOI EggI [GdiII FokI BegI EcoRII TSP509I I I I FOKI BCGI ECORII TSP509I TGGTACTCTGGCGAAGATGATGCTTCCAAATGTTCATCCAACCTGGAACGAAC	840
M) 841	BsmFI Hpy178III AlwNI AlwNI HphI EarI CviJI DdeI MmeI BsmAI Fnu4HI AceIII boII BsmBI CviRI MwoI TseI BbvI TTTCGTCGTCTTCTTCACCACGTCTTGCAAATAAGGCAGAGCAGCTCCTGAAGTCCTTAGA	900
901	BSAJI BSAAPI MWOI DpnI RSAI SAUJAI SCAI ECO57I BFAI CVIFI CVIFI TGTCCCAGAAATGGCACATACCTAGATGATCCTGCAAGTACTGCCTTGGCTTTGGGAGG ACAGGGTCTTTACCGTGTATGGGATCTACTAGGAGGTTCATGACGGAACCGCAAACCCTCC	960
961	DdeI BamII Bspl286 BssSI RsaI DrdII BsrGI AluI NlaIV CviJI AciI TaI CviJI AciAcaGGAACCACGGGCCCTAAGGGTTCTTCATTTTTTTTTAAGTTCAAGTTTCAAAA	1020

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Fig. 16 (con't)

	MaeIII AluI MnlI CviJI	
	Eco57I EcoRV MaeIII MslI	
	TGGAGAAGTGATTGCTAATGCCCTCCAAGATATCGGTTACAATCTATATGTAACCACAGC	1080
1021	ACCTCTTCACTAACGATTACGGGAGGTTCTATAGCCAATGTTAGATATACATTGGTGTCG	1000
	- 1	
	BciVI TspRI	
Bst	MboII MnlI XI MseI BsrI	
	TATGGACGAAGATTTCATTAACACTCTCAATAGTATCCAGTGGTTAGAGGTCAATAACTC	
1081		1140
	ATACCIOCITETAMOTATITOTOMOTATITOTOMOTOMOTOMOTOMOTOMOTOMOTOMOTOMOTOMO	
	HincII	
	Acci CviJI BsaJI TaqI HaeI MnlI	
	Hpy188IX Styl Sall HaeIII Msel Taal	
1141	CATAGTTATTGGGAAACCAAGGGAATGTCGACAGAGTTATTGGCCTCTTAAACGGTTT	1200
	${\tt GTATCAATAATAGCCTTTGGTTCCCTTACAGCTGTCTCAATAACCGGAGAATTTGCCAAA}$	
	DdeI	
	Hpy178III AluI Tsp509I BfaI CviJI	
	Mnli Taqi Msel Xbal CjePi	
	AGATTTACCTCCTAAACAGGTTTACATCGAAGTTTTAATTCTAGATACCAGCTTAGAGAA	
1201	TCTAAATGGAGGATTTGTCCAAATGTAGCTTCAAAATTAAGATCTATGGTCGAATCTCTT	1260
	BfaI AvrII	
	BsaJI BsrFI StyI	
В	saJI CjePI CviJI AluI	
ECO		
1261		1320
	TAGGA CCCTGAAACCTCA CGTTACCCATCGGGATCCACTACTTGTTTCATTCATCGAAT	

Title: CHLAMYDIA AN ITGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fig. 16 (con't)

, ()	
BspGI CyiJI CjePI BsaXI NciI Hpy178III BsrI BsmFI TaaI ScrFI	138
DpnI	144
Hpy188IX HinfI BseMII EarI TfiI MboII TaqII BsmI BfaI DdeI Agartargcrgaactcttcgtctacgtctaggaatcatcggaaatgtcctaagtca 1441 TCTATACGACTTGAGAAGCAGTCGTAAGCCAGATCCTTAGAGGATTCAGT	150
Hpy178III DpnI Sau3AI XmnI MnlI CviJI MseI DdeI BccI TAAAGGGAAGCTTTCCTTACTTTGGGAGGCTTATTAAGTGCCTTAGATCAAGATGAGAA	

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fig. 16 (con't)

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

MboII

BciVI

PCT/CA99/00992

Fig. 16 (con't) Sth132I Hpy188IX Taal| DdeI Hpv178III - 1 -11 CGGTTGTTTCTTAGTTATGAGTGGGCATATCAGAGATAAAACTACAAAAGTGGTTTCAGG 1861 -----+ 1920 GCCAACAAAGAATCAATACTCACCCGTATAGTCTCTATTTTGATGTTTTCACCAAAGTCC TagI BcefI BccI Tsp509I RsaI MseI CviJI VspI 1921 -----+ 1980 Bsu36I NlaIII DdeI HphI Hpy178III AluI RcaI | | AAGGCAAAAACGCAATATCATGATGTTTATTAAGCCTAAGGTGATTAGTAGCTTTGAAGA 1981 -----+ 2040 $\tt TTCCGTTTTTGCGTTATAGTACTACAAATAATTCGGATTCCACTAATCATCGAAACTTCT$ DpnI NlaIV BamHI BstYI Sau3AI HaeIV Hin4I MaeIII AlwI | |

MunI

Tsp509I

AluI

CviJI

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 16 (con't)

WO 00/24765

Hin4I

- 11 111 2281 ----- 2300 CATCTCAGCCGGCATATTGA

	NlaIV					
	CviJI		AvaII	Ī		
	HaeIII		Eco01091			
	Sau96I		Psp5II			
	BstXI		Sau961	ī		
	MslI		Sse86471	Ī		
	AlwI	Hpy178III	BsmI			
C	viRI	MnlI	BsaJI		CviJI	
Nl	aIII	NlaIII	StyI		MnlI	
	11 1 111	11 1	11 1			
	CATGCAAGTGGC	CCCTCGCCATGCTCCT				
2101				+		2160
	GTACGTTCACCG	GGGAGCGGTACGAGGA	CTTACGGTTC	CTGGAGGAA	GAAATGTCCGACT	
		Dd				
MaeI	II DraI	Alu		BseMII		
Tsp4	5I MseI	CviJ	I	MnlI	BcefI	
-	1 11		11	11		
	AAGTGACTTTAA	AATAATAGAAATAGAA	GCTCAGTAGT	rggtatataa		
2161			-+			2220
	TTCACTGAAATT	TTATTATCTTTATCTT	CGAGTCATCA	CCATATATT	TTCTCCTTCTACT	
		HinfI				
	BsaJI	Hpy188IX				
	BstDSI	AluI				
	EciI	CviJI				
	Acil	PleI	BsmI			
	MboII i	XmnI	CviRI	Cv	iJI BcefI	
	i ii i	ti ii				
	TATTCTCCGCCG	TGGAATAGCTTCTGAC	TCTGTTGCA?	TCAGGGGGA	AAGCCAAGAAGAT	
2221			-+	+		2280
	ATAAGAGGCGGC	ACCTTATCGAAGACTG	AGACAACGT	AGTCCCCCT	TTCGGTTCTTCTA	
	PleI					
	BsiEI					
	CviJI					
	HaeIII					
	EaeI					
	EagI					
	GASTI []]					

Title: CHLAMYDIA ANTIGENS AND 1445 097850446 CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765 Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

E' 47.	CDNI400EE7
Figure 17:	CPN100557

tagettgaaa tagetteete caattgtgat ttetgaagaa	a gtataggggg aaatgtcgaa 60	
gagatagict tgittiaaag gaggagggga aaacggitta	a atg agc aga aaa gac 115 Met Ser Arg Lys Asp Arg Lys Asp 1 5	
aat gag gtt too tta got ogt toa att tit aat Asn Glu Val Ser Leu Ala Arg Ser Ile Phe Asn Asn Glu Val Ser Leu Ala Arg Ser Ile Phe Asn 10	lle Leu Ser Gly Thr	
tic tgt agt cgt att aca ggg ata tit cga gaa Phe Cys Ser Arg 11e Thr Gly 11e Phe Arg Glu Phe Cys Ser Arg 11e Thr Gly 11e Phe Arg Glu 25	lle Ala Met Ala Thr	
tat tit gga gct gat cca att gta gct gct tic Tyr Phe Gly Ala Asp Pro Ile Val Ala Ala Phe Tyr Phe Gly Ala Asp Pro Ile Val Ala Ala Phe 40	Trp Leu Gly Phe Arg	
act gtt ttt ttc tta aga aaa att tta gga ggg Thr Val Phe Phe Leu Arg Lys Ile Leu Gly Gly Thr Val Phe Phe Leu Arg Lys Ile Leu Gly Gly 55	Leu Ile Leu Glu Gln	
gcc ttc atc cct cat ttt gaa ttt ctc cgt gct Ala Phe Ile Pro His Phe Glu Phe Leu Arg Ala Ala Phe Ile Pro His Phe Glu Phe Leu Arg Ala 70	n Gln Ser Leu Asp Arg n Gln Ser Leu Asp Arg	
gcg gcg ttt ttt ttc cga cgc ttt tct aga ttg Ala Ala Phe Phe Phe Arg Arg Phe Ser Arg Leu Ala Ala Phe Phe Phe Arg Arg Phe Ser Arg Leu 90	lle Lys Gly Ser Thr	
att ata ttc act ctg ctt att gaa gca gta ttg Ile Ile Phe Thr Leu Leu Ile Glu Ala Val Leu Ile Ile Phe Thr Leu Leu Ile Glu Ala Val Leu 105	Trp Val Phe Phe Asn	
aac 9tt gaa gag ggg act tac gat atg att ctc Asn Val Glu Glu Gly Thr Tyr Asp Met Ile Leu Asn Val Glu Glu Gly Thr Tyr Asp Met Ile Leu 120	Leu Thr Met Ile Leu	
ttg ccc tgt ggc att ttc tta atg atg tac aat Leu Pro Cys Gly Ile Phe Leu Met Met Tyr Asr Leu Pro Cys Gly Ile Phe Leu Met Met Tyr Asr 135	ı Val Asn Gly Ala Leu	
ctt cac tgt gga aat aag ttt ttc ggg gtg ggs Leu His Cys Gly Asn Lys Phe Phe Gly Val Gly Leu His Cys Gly Asn Lys Phe Phe Gly Val Gly 150	/ Leu Ala Pro Val Val / Leu Ala Pro Val Val	
gta aat atc att tgg att ttc ttt gtt ata gcg Val Asn Ile Ile Trp Ile Phe Phe Val Ile Ale Val Asn Ile Ile Trp Ile Phe Phe Val Ile Ale 170 175 175	a Ala Arg His Ser Asp	

Title: CHLAMYDIA ANTIGENS AND SCHOOL 109/830446

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765 Inventor(s)

PCT/CA99/00992

t)	(con	- (17	ia.	Fi
	(COH			ıy.	F

cct Pro Pro	Ara	gag Glu Glu	Arg	Ile	Ile	Gly	Leu	Ser	Val	Ala	Leu	Val	Ile	Gly	Phe	691
Phe	Phe	gaa Glu Glu 200	Trp	Leu	Ile	Thr	Val	Pro	Gly	Val	Trp	Lys	Phe	Leu	Leu	739
Glu	Ala	aag Lys Lys	Ser	Pro	Pro	Gln	Glu	His	Asp	Ser	Val	Arg	Ala	Leu	Leu	787
Ala	Pro	tta Leu Leu	Ser	Leu	Gly	Ile	Leu	Thr	Ser	Ser	Ile	Phe	Gln	Leu	Asn	835
Leu	Leu	tct Ser Ser	Asp	Ile	Cvs	Leu	Ala	Arq	Tyr	Val	His	Glu	Ile	Gly	Pro	883
Leu	Tyr	ctt Leu Leu	Met	Tyr	Ser	Leu	Lys	Ile	Tyr	Gln	Leu	Pro	Ile	His	Leu	931
Phe	Glv	Phe Phe 280	Glv	Val	Phe	Thr	Val	Leu	Leu	Pro	Ala	Ile	Ser	Arg	Cys	979
Val	Gln	cga Arg Arg	Glu	Asp	His	Glu	Arg	Gly	Leu	Lys	Leu	Met	Lys	Phe	Val	1027
Leu	Thr	cta Leu Leu	Thr	Met	Ser	Val	Met	Ile	Ile	Met	Thr	Ala	Gly	Leu	Leu	1075
Leu	Leu	Ala	Leu	Pro	Gly	Val	Arg	Val	Leu	Tyr	Glu	His	Gly	Leu	ttc Phe Phe	1123
Pro	Gln	Ser	Ala	Val	Tyr	Ala	Ile	Val	Arg Arg	Val	Leu	Arg	Gly	Tyr	ggt Gly Gly	1171
Ala	Ser	Ile	Ile	Pro	Met	Ala	Leu	Ala Ala	Pro	Leu	Val	Ser	Val Val	Leu	ttt Phe Phe	1219

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

1900

					1	JOCK	EIN	J.: U3	2931/	0251						
Fig.	17 (con't	()													
Tyr	Āla	Gln	Arg	Gln	Tyr	Ala	Val	Pro	Leu	Phe	Ile	Gly	Ile	ggt Gly Gly	Thr	1267
Ala	Leu	Āla	Asn	Ile	Val	Leu	Ser	Leu	Val	Leu	Gly	Arg	Trp	gtt Val Val	Leu	1315
Lys	Āsp	Val	Ser	Gly	Ile	Ser	Tyr	Ala	Thr	Ser	Ile	Thr	Ala	tgg Trp Trp 420	Val	1363
Gln	Leu	Tyr	Phe	Leu	${\tt Trp}$	Tyr	Tyr	Ser	Ser	Lys	Arg	Leu	Pro	atg Met Met	Tyr	1411
Ser	Lys	Leu	Leu	Trp	Glu	Ser	Ile	Arg	Arg	ser	lle	Lys	Val	atg Met Met	Gly	1459
Thr	Thr	Met	Leu	Ala	Cys	Met	Ile	Thr	Leu	Gly	Leu	Asn	Ile	ctt Leu Leu	Thr	1507
Gln	Thr	Thr	Tyr	Val	Ile	Phe	Leu	Asn	Pro	Leu	Thr	Pro	Leu	gct Ala Ala	Trp	1555
Pro	Leu	Ser	Ser	Ile	Thr	Ala	Gln	Ala	Ile	Ala	Phe	Leu	Ser	gag Glu Glu 500	Ser	1603
Cys	Ile	Phe	Leu	Āla	Phe	Leu	Phe	Gly	Phe	Ala	Lys	Leu	Leu	cga Arg Arg	Val	1651
Glu	Asp	Leu	Ile	Asn	Leu	Ala	Ser	Phe	Glu	Tyr	Trp	Arg	Gly	caa Gln Gln	Arg	1699
Gly		Leu	Gln	Arg						gac Asp						1741
taa		gtt	tgtt	tctt	gt a		agtc	g ct	ttct	ttta		ttaa	gtt	ttga	tag¢ct	1801

76/165

tatcaatggt tagcgagtgt ggttctttta gcgctgaca

gcttggtctt ctgtttctac acttaatatt gatactaagg atactatgaa aaaacaggta 1861

Tide: CHLAMYDIA ANTIGERS AND CULT O 0978307446

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Figure 18 (RY-43)
Restriction enzyme analysis of CPN100557

AND USES THEREOF

Inventor(s): Andrew D. MURDIN et et

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 18 (con't)

	Fnu	4HI
	BsiEI	1
	PvuI	
	. DpnI	
	BsmAI	
	Sau3AI	. !
	MnlI Hpy178III ApoI BsiHKAI T	<u> </u>
	ApoI BsiHKAI T	
	CviJI Tsp5091 Bsp1286I Taqi Ac	Τİ
	AGAACAAGCCTTCATCCCTCATTTTGAATTTCTCCGTGCTCAAAGTCTCGATCG	TGCGGC
301		
	TCTTGTTCGGAAGTAGGGAGTAAAACTTAAAGAGGCACGAGTTTCAGAGCTAGC	ACGCCG
	Hpy178III Fnu4HI	
	BfaI TseI	
	HgaI MmeI	
	Hpy188IX XbaI MseI BbvI	
	GTTTTTTTCCGACGCTTTTCTAGATTGATTAAAGGCAGCACTATTATATTCAC	TCTGCT
361		+ 420
	CAAAAAAAGGCTGCGAAAAGATCTAACTAATTTCCGTCGTGATAATATAAGTG	AGACGA
	MnlI	
		smFI infI
		TfiI
	RleAI MboII MaeII MboII	1111
	TATTGAAGCAGTATTGTGGGTATTCTTCAATAACGTTGAAGAGGGGACTTACGA	ТАПСАТ
421		+ 480
721	ATAACTTCGTCATAACACCCCATAAGAAGTTATTGCAACTTCTCCCCTGAATGCT	ATACTA
	RsaI	
	BsrGI	
	MseI TatI	
	TCTCCTTACTATGATACTCTTGCCCTGTGGCATTTTCTTAATGATGTACAATGT	
481	·	
	AGAGGAATGATACTATGAGAACGGGACACCGTAAAAGAATTACTACATGTTACA	TTTGCC
	Sth132I Sth132I	
	TspRI BscGI	
p-	iaeII TaaI AluI	
	Hall BcefI CviJI	
n		
	CGCTTTGCTTCACTGTGGAAATAAGTTTTTCGGGGTGGGATTAGCTCCCGTAGT	TGTAAA
541		+ 600
	GCGAAACGAAGTGACACCTTTATTCAAAAAGCCCCACCCTAATCGAGGGCATCA	ACATTT

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 09/830446

PCT/CA99/00992

WO 00/24765

Fig. 18 (con't)

	BfaI DpnI CviJI BstYI Fnu4HI Sau3AI TauI Hpy1881X	
	AciI AlwI	
601	ATAGTAAACCTAAAAGAAACAATATCGCCGAGCAGTAAGTCTAGGATCTCTCGCATAATA	660
661	B\$fal ScrFI Sch132 ScrFI CviJI Cjel EcoRI BsaJI NspV NlaIV BstDSI MboII TaqI MseI TaaI CGGTTTATCCGTGGCTCTAGTTATCACGGTTCCTGG CCCAAATAGGCACCCAAGACCAATAGGCCCAAAAGAACGTTACCAATTAGTGCCAAGGACC	720
	Hpy178111	
721	TCATACCTTTAAAGATAATCTTCGCTTCTCGGGTGGAGTTCTTGTGCTATCACAAGCTCG Tth111I AluI	780
	Alui Spani Cviji Spani Cviji Spani Cviji Mspani Cviji Mboli Pvuli Spani	
781	AAATAATCGAGGGAATAGAAACCCATAAAATTGAAGTTCGTAGAAGGTCGACTTGGAAGA	840
Hpyl: Tthlll	II CviJI Tatl Sau961 MnlI	
841	AAGACTATAGACGAACCGAGCGATACATGTACTTTATCCGGGAGATATAGAATACATGAG	900

Title: CHLAMYDIA ANTIGENS AND TO 44 1 50 97 8 50 44 6 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fig. 18 (con't)

AluI MseI CviJI AceIII CviJI BseRI TaaI	r
901	+ 960 A
MboII NalII Hpy178III ReaI ResI DpnI MnlI BsrGI MnlI Tsp509I Tatl Sau3AI CCCAGCAATTCTCGTTGTGTACAGCGGAGAGATCATGAGAGGGGATTGAAACTTATGA GGGTCGTTAAAGAGCAACACATGTCGCTCTTCTAGTACTCCCCCTAACTTTGAATACT GGGTCGTTAAAGAGCAACACATGTCGCTCTTCTAGTACTCCCCCTAACTTTGAATACT	+ 1020
DpnI BelI HphI NlaIII Sau3AI CviJI DdeI 1 1	+ 1080
BSAXI	+ 1140
BSAJI Styl BSRI CViJI NlaIV Hael NlaIV MnlI BanI HaeIII CViJI	+ 1200

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fig. 18 (con't)

1201		Fnu4H: Tau: AciI MspAlI CviRI 	T Bs Aci CGGCAGTATGCTGTT	rBI HinfI I TfiI CCGCTCTTTATAGGAAT	1260					
1201	AAATCAGAGACAAG.	AAAAAATACGTGTC		GGCGAGAAATATCCTTA						
1261	CviJI HaeI HaeIII CviJI MscI RsaI EaeI	Alt Cvic HindIII BcefI SpI MseI CCAATATTGTTTTA	uI JI BfaI DrdII 	BsaHI MaeII Sth1321 DraI MseI CCTTGGGTTTTAAAAGA	1320					
1201	GCCATGCCGAAACC			GCAACCCAAAATTTTCT						
			-+	MboII - 	1380					
B:		infI TatI	FokI I MaeIII DdeI TACTCTAAGTTACTT	SfaNI MspI TGGGAGAGCATCCGGCG	1440					
1301		TTTCTGAGGGATAC	ATGAGATTCAATGAA	ACCCTCTCGTAGGCCGC						
1441	Tthl1 XcmI TTCCATAAAAGTTA	Tth11II DrdII NlaIV .1II Cac Cac	Ĩ	MseI CviJI BfaI PACTCTAGGCTTAAATAT	1500					
	AAGGTATTTTCAATACCCTTGGTGATACGAACGAACATACTAATGAGATCCGAATTTATA									

Title: CHLAMYDIA ANTIGENS AND 144109/830446

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 18 (con't)

WO 00/24765

Bce831 CjePI CviJI HaeIII	660
DdeI	520
TAGGAGGTATTGCCGAGTTCGTTAACGAAAAAATAGACTCTCGACGTAAAAGAACCGAAA Dpni MboII BglII Tsp5091 BStYI MseI Cviri Taqi Sau3Ai Vspi CviJI TTTGTTTGGTTTTGCAAAACTGCTTCGAGTAGAAGATCTTATTAATTTGGCTTCTTTTGA 1621 AAACAAACCAAAACGTTTTGACGAAGCTCATCTTCTAGAATAATTAAACCGGAAGAAAACT	580
BSSAN PMI PMI	740
Tth11111 MseI BbsI MseI BbsI Mse	800

Title: CHLAMYDIA ANTIGENSAND THE TOP 1830446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Fig. 18 (con't)

SspI DdeI MseI | BciVI |

TGCTTGGTCTTCTGTTTCTACACTTAATATTGATACTAAGGATACTATGAAAAAAACAGGT 1801 ------ 1860 ACGAACCAGAAGACAAAGATGTGAATTATAACTATGATTCCTATGATACTTTTTTGTCCA

> HaeII Hhall DrdII Eco47III

ATATCAATGGTTAGCGAGTGTGGTTCTTTTAGCGCTGACA 1861 ------ 1900 TATAGTTACCAATCGCTCACACCAAGAAAATCGCGACTGT

Title: CHLAMYDIA ANTIGENS AND 1510 - 951102 CORRESPONDING DNA FRAGMENTS 09/830446

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

WO 00/24765

Figure 19: CPN100622

tct	caac	agt	aaco	ttat	cc t	taga	ttat	it ca	gct	caag	t c t	cctc	gtca	act	gtaggi	tc 60
aat	acct	taa	agct	gaga	igt o	attg	caca	at tt	taa	cac	Me				a agg r Arg 5	115
aat Asr	aaa Lys	Glr	g tgc 1 Cys	aaa Lys 10	Ile	aca Thr	gat Asp	Pro	Let Let	Se:	aa.	a tc s Se	t to	r Ph	c ttt = Phe	163
gtt Val	gga Gly	gcc	tta Leu 25	Ile	tta Leu	ggt Gly	aaa Lys	act Thr 30	Thr	ata Ile	t cto	ct: Le:	aat 1 Asi 35	ı Ala	act Thr	211
ccg Pro	ttg Leu	tct Ser 40	Asp	tat Tyr	ttt Phe	gat Asp	aat Asn 45	Gln	gca Ala	aat Asn	Glr	cto Let 50	Thi	aca Thr	ctc Leu	259
ttc Phe	Pro 55	cta Leu	att Ile	gat Asp	act Thr	ctt Leu 60	act Thr	aac Asn	atg Met	act	Pro 65	Туг	: tct :Ser	cat His	aga Arg	307
gca Ala 70	aca Thr	ctt Leu	ttt Phe	gga Gly	gtt Val 75	agg Arg	gat Asp	gac Asp	act Thr	aac Asn 80	caa Gln	gac	att Ile	gtc Val	ctc Leu 85	355
gat Asp	cac His	cag Gln	aat Asn	ser 90	ata Ile	gaa Glu	agc Ser	tgg Trp	ttc Phe 95	gaa Glu	aac Asn	ttc Phe	tct Ser	caa Gln 100	gac Asp	403
ggc Gly	ggt Gly	gct Ala	ctc Leu 105	tct Ser	tgc Cys	aaa Lys	tca Ser	ctt Leu 110	gcc Ala	ata Ile	acg Thr	aat Asn	aca Thr 115	aaa Lys	aac Asn	451
caa Gln	att Ile	ctt Leu 120	ttc Phe	cta Leu	aat Asn	agc Ser	ttt Phe 125	gct Ala	att Ile	aaa Lys	aga Arg	gct Ala 130	ggt Gly	gcg Ala	atg Met	499
tat Tyr	gtt Val 135	gat Asp	ggt Gly	aat Asn	ttc Phe	gat Asp 140	ctt Leu	tct Ser	gag Glu	aat Asn	cat His 145	ggt Gly	tcc Ser	atc Ile	att Ile	547
ttc Phe 150	tct Ser	Gly 999	aat Asn	tta Leu	agc Ser 155	ttt Phe	ect Pro	aat Asn	gca Ala	agt Ser 160	aat Asn	ttc Phe	gct Ala	gat Asp	act Thr 165	595
tgt Cys	Int	GIY	GIV	Ala	vai	tta Leu Leu	Cvs	Ser	LVS	Acn	17 - 1	The	T10	C	T	643
						ttc Phe Phe	Ile									691

Tide: CHLAMYDIA ANTIGENS AND COLUMN 1997 830446 CORRESPONDING DNA FRAGMENTS PCT/CA99/00992

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

Fig	. 19	(con	't)									× 4				
G1 y	/ Ala	: Ile	Gln Gln	. Ala	. Ala	Ile	Ile	Asn Asn	Ile	Lvs	SAST	Asr	Thr Thr	- G1:	cct Pro	739
Cys	Leu	Phe Phe	Phe	Asn	Asn	Ala	Ala	Gly	Gly	/ Thi	r Ala	Gly Gly	/ G1:	/ Al.	g ttg a Leu a Leu	787
Phe	Ala Ala	Asn	Ala	Cys	Arg	Ile	Glu	Asn	Asn	Ser	Glr.	Pro	Ile	Typ	Phe Phe 245	835
Leu	Asn	Asn	Gln	Ser	Glv	Leu	Glv	Glv	Ala	Ile	Ara	Va1	His	G1-	gag Glu Glu	883
Cys	Ile	Leu	aca Thr Thr 265	Lys	Asn	Thr	Gly	Ser	Val	Ile	Phe	Asn	Asn	Asn	Phe	931
Ala	Met	Glu	gcg Ala Ala	Asp	Ile	Ser	Ala	Asn	His	Ser	Ser	Gly	Gly	Ala	Ile	979
Tyr	Cys	Ile	agt Ser Ser	Cys	Ser	Ile	Lys	Asp	Asn	Pro	Gly	Ile	Ala	Ala	Phe	1027
Asp	Asn	Asn	act Thr Thr	Ala	Ala	Arg	Asp	Glv	Glv	Ala	Ile	Cvs	Thr	Gln	Ser	1075
Leu Leu	Thr Thr	Ile Ile	caa Gln Gln	Asp Asp 330	Ser Ser	Gly Gly	Pro Pro	Val Val	Tyr Tyr 335	Phe Phe	Thr Thr	Asn Asn	Asn Asn	Gln Gln 340	Gly Gly	1123
Thr	Trp	Gly Gly	ggc Gly Gly 345	Ala Ala	Ile Ile	Met Met	Leu Leu	Arg Arg 350	Gln Gln	Asp Asp	Gly Gly	Ala Ala	Cys Cys 355	Thr Thr	Leu Leu	1171
Phe	Ala	Asp	cag Gln Gln	Glv	Asp	Ile Ile	Ile	Phe	Tvr	Asn	Asn Asn	Ara	His	Phe	Lve	1219
Asp	Thr	Phe	agc Ser Ser	Asn	His Hıs	Val	Ser	Val	Asn	Cvs	Thr	Ara	Asn	Val	Ser	1267

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREON LEVENTOS (1) AND USES THEREON OF A PROPERTY (2) AND USES THE PROPERTY (3) AND USES THE PROPERTY (4) AND USES THE PROPERTY (5) AND USES THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPERTY (6) AND USE THE PROPER

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 PCT/CA99/00992

WO 00/24765 Fig. 19 (con't)

Leu	Thr Thr	Val	Glv	Ala	Ser	Gln	Glv	His	Ser	A1.3	Thr Thr	: Phe	TVI	Asr	Pro Pro 405	1315
Ile	Leu	Gln	Arg	Tyr	Thr Thr	Ile	Gln	Asn	Ser	Ile	Gln	Lvs	Phe	Asn Asn 420	Pro	1363
Asn	Pro	Glu	His	Leu	Gly	Thr	Ile	Leu	Phe Phe	Ser	: Ser	Thi	Ty	r Ile	ccg Pro Pro	1411
Asp	Thr	Ser	Thr	Ser	Arg	Asp	Asp	Phe	Ile	Ser	His	Phe	Arc	Asr	cac His His	1459
Ile	Gly	Leu	Tyr	Asn	Gly	Thr	Leu	Ala	Leu	Ğlu	Asp	Arg	Ala		tgg Trp Trp	1507
Lys	Val	Tyr	Lys	Phe	Asp	Gln	Phe	Gly	Gly	Thr	Leu	Arg	Leu	ggc Gly Gly	Ser	1555
Arg	Ala	Val	Phe	Ser	Thr	Thr	Asp	Glu	Glu	Gln	Ser	Ser	Ser	agt Ser Ser 500	Val	1603
Gly	Ser	Val	Ile	Asn	Ile	Asn	Asn	Leu	Ala	Ile	Asn	Leu	Pro	tct Ser Ser	Ile	1651
Leu	Gly	Asn	Arg	Val	Ala	Pro	Lys	Leu	Trp	Ile	Arg	Pro	Thr	ggt Gly Gly	Ser	1699
Ser	Ala	Pro	Tyr	Ser	Glu	Asp	Asn	Asn	Pro	Ile	Ile	Asn	Leu	tca Ser Ser	Ğĺv	1747
Pro	Leu	Ser	Leu	Leu	Asp	Asp	Glu	Asn	Leu	Asp	Pro	Tyr	Asp	act Thr Thr	Āla	1795
Asp	Leu	Ala	Gln	Pro	Ile	Ala	Glu	Val	Pro	Leu	Leu	Tvr	Leu	tta Leu Leu 580	Asp	1843

Tide: CHLAMYDIA ANTIGENS AND 30469/830446 CORRESPONDING DNA FRAGMENTS

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig	19	(con't)

tac agc aac ca Tyr Ser Asn H: Tyr Ser Asn H: 775			Gly Tyr			2467		
acg gaa ggc as Thr Glu Gly L Thr Glu Gly L 790						2515		
tot ota tot o Ser Leu Ser L Ser Leu Ser L	eu Glo Tro	Arg Ser Arg	r Pro Leu	HIS PHE IIII	FIO FILE	2563		
atc caa gca a Ile Gln Ala I Ile Gln Ala I	tt gcc gtt le Ala Val le Ala Val 25	cgt tot aat Arg Ser Ass Arg Ser Ass 830	1 GIN INI	gcg ttt caa Ala Phe Gln Ala Phe Gln 835	gaa agt Glu Ser Glu Ser	2611		
gga gat aaa go Gly Asp Lys Al Gly Asp Lys Al 840						2659		
aca gtc cct co Thr Val Pro Le Thr Val Pro Le 855	en Glv Ile	Gin Ser Ala	Trp Glu	Ser Lys Fne	MIG Let	2707		
cct acc tat to Pro Thr Tyr T: Pro Thr Tyr T: 870	ro Asn Ile	Glu Leu Ala	TVr Gin	Pro vai Leu	TAL GIU	2755		
caa aat cct ga Gln Asn Pro G. Gln Asn Pro G.	lu Tle Asn	Val Ser Leu	ı Glu Ser	Ser Gly Ser	Ser Trp	2803		
ctc cta tca g Leu Leu Ser G Leu Leu Ser G 9	1 v Thr Thr	Leu Ala Arc	Asn Ala Asn Ala	Ile Ala Phe	LVS GIV	2851		
aga aac caa a Arg Asn Gln I Arg Asn Gln I 920	le Phe Ile	Phe Pro Lvs	: Leu Ser	Val Phe Leu	Asp Tyr	2999		
caa ggc tcg g Gln Gly Ser V Gln Gly Ser V 935	a: Ser Ser	Ser ing in:	Thr His	IAT Ted utp	MIG Giy	2947		
acq acc til a Thr Thr Phe L Thr Thr Phe L 950	ys Phe	aagcatg tta	atagac aa	tgcaacst gta	aagacca	3002		
aatagagagt ag								
ccacagatac gt	ttccccca t	aaaaattaa ga	acccgata	catcctcact a	igagattega			
aagaactact taaatcctaa gcattcga								

SUBSTITUTE SHEET (RULE 26)

Title: CHLAMYDIA ANTIGENS'AND THE TO 09783 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 19 (con't)

٧a١	Thr	Āla	Lvs	His	att Ile Ile	Asn	Thr	Asp	Asn	Phe	Tyr	Pro	Glu	Gly	Leu	1891
Asn	Thr	Thr	Gln	His	tac Tyr Tyr	Glv	Tyr	Gln	Gly	Val	Trp	Ser	Pro	Tyr	Trp	1939
T10	G1 11	Thr	Tle	Thr	act Thr Thr	Ser	Asp	Thr	Ser	Ser	Glu	Asp	Thr	Val	Asn	1987
Thr	Leu	His	Arg	Gln	ctt Leu Leu 635	Tyr	Gly	Asp	Trp	Thr	Pro	Thr	Gly	Tyr	Lys	2035
Val	Asn	Pro	Glu	Asn	aaa Lys Lys	Gly	Asp	Ile	Ala	Leu	Ser	Ala	Phe	Trp	Gln Gln	2083
Ser	Phe	His	Asn	Leu	ttt Phe Phe	Ala	Thr	Leu	Arg	Tyr	Gln	Thr	Gln	Gln	Gly	2131
Gln	Ile	Ála	Pro	Thr	gct Ala Ala	Ser	Gly	Ğlu	Ála	Thr	Arg	Leu	Phe	Val	His	2179
Gln	Asn	Ser	Asn	Asn	gat Asp Asp	Ala	Lys	Gly	Phe	His	Met	Glu	Ala	Thr	Gly	2227
Tyr	Ser	Leu	Gly	Thr	acc Thr Thr 715	Ser	Asn	Thr	Ala	Ser	Asn	His	Ser	Phe	Gly	2275
Val	Asn	Phe	Ser	Gln	ctt Leu Leu	Phe	Ser	Asn	Leu	Tyr	Glu	Ser	His	Ser	Asp	2323
Asn	Ser	Val	Āla	Ser	cat His His	Thr	Thr	Thr	Val	Ālā	Leu	Gln	Ile	Asn	Asn	2371
Pro	Trp	Leu	Gln	Glu	aga Arg Arg	Phe	Ser	Thr	Ser	Ala	Ser	Leu	Ala	Tyr	Ser	2419

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al

WO 00/24765

entor(s): Andrew D. MURDIN et al PCT/CA99/00992

DOCKET NO.: 032931/0251

Figure 20 (RY-44)
Restriction enzyme analysis of CPN100622

Mnli Taai Smli Sfci MaeIII Alui Hincii Hpy178III Ddei CviJI BsmAi Smli Bce83 Bseri AceIII J TCTCAAGAGTAACCTTATCCTTAGATTATTCAGCTCAAGTCTCCTCGTCAACTGTAGGTC	60
BSTDI HinfI DdeI MSeI AluI CViRI BSEMII CVIJI PleI MSeI ANTACCTTAAAGCTGAGAGTCATTGCACATTTTAACCACAATGAAAACATCAAGGAATAA 61 TTATGGAATTTCGACTCTCAGTAACGTGTAAAATTGGTGTTACTTTTGTAGTTCCTTATT	120
MmeI	180
PleI Hpy188IX MseI HinfI DrdI aggtaaaactacaatactccattaatacaccccgattraaaccatactccattaatcaagc 181 TCCATTTTGATGTTATGAGGAATTACGCTGAGGCAACAGACTGATAAAACCTATTAGTTCG	240
BBBI Hinf1 Tthl11II Tsp5091 Nla1II MboII EarI MnlI PleI AAATCAACTCACAACACTCTTCCCTCTAATTGATACTATCACATGACTCCCTCACTC TTTAGTTGAGTGATTGTAGGAATGAACTTTCTACTGAGGGATTAACTTTCTAGGAATGATCTTCTAGGGAATGACTTTTGTTAGGAATGATCATTGAGGAATGACTATGAGGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAACTATGAGAATGAAT	300

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

DpnI	
Sau3AI	
HphI TthlllI	
CjeI BsbI CjeI FokI TaqI	
TCATAGAGCAACACTTTTTGGAGTTAGGGATGACACTAACCAAGACATTGTCCTCGATC	A
301	+ 360
AGTATCTCGTTGTGAAAAACCTCAATCCCTACTGTGATTGGTTCTGTAACAGGAGCTAC	T
NspV	
TaqI	
ApoI DrdII BsiHKAI	
ECOKI	т
15p3031	ī
MnlI CviJI SmlI Acil Bceff	ì
CCAGAATTCCATAGAAAGCTGGTTCGAAAACTTCTCTCAAGACGGCGGTGCTCTCTCT	Ġ
361	+ 420
GGTCTTAAGGTATCTTTCGACCAAGCTTTTGAAGAGAGTTCTGCCGCCACGAGAGAGA	С
AceIII	
ApoI AluI	
Tsp509I CviJI Mse	I
	_
CAAATCACTTGCCATAACGAATACAAAAAACCAAATTCTTTTCCTAAATAGCTTTGCTA	
421	+ 480
	+ 480
421	+ 480
421	+ 480
421	+ 480
421 GTTTAGTGAACGGTATTGCTTATGTTTTTTGGTTTAAGAAAGGATTTATCGAAACGAT HinfI DdeI Hpyl881X DpnI	+ 480
421 GTTTAGTGAACGGTATTGCTTATGTTTTTTGGTTTAAGAAAAGGATTTATCGAAACGAT HinfI DdeI Hpy1881X DpnI Sau3AI	+ 480
421	+ 480
### ##################################	+ 480
421	+ 480
### ### ##############################	+ 480 A
### ### ##############################	+ 480 A
### ### ##############################	+ 480 A C + 540
### ### ##############################	+ 480 A C + 540
### ### ##############################	+ 480 A C + 540
421 GTTTAGTGAACGGTATTGCTTATGTTTTTTGGTTTAAGAAAGGATTTATCGAAACGAT HinfI DdeI Hpyl881X DpnI Sau3AI Alui Tsp509I DrdII Cviji Beci TaqI FII NIaIII TAAAAGAGCTGGTGCGATGTATGTTGATGGTAATTTCGATCATCTTCTGAGAATCATCATGTACAACTACCATTAAAGGCTAGAAAGACTCTTAGTACCACAT	+ 480 A C + 540
GTTTAGTGAACGGTATTGCTTATGTTTTTGGTTTAAGAAAGGATTTATCGAAACGAT HinfI DdeI Hpy1881X DpnI Sau3AI NlaIV AluI Tsp5091 DrdII CviJI BccI TaqII Tfi NlaIII I TAAAAGAGCTGGTGCGATGTTATGTTGATGATATTTCGATCTTTCTGAGAATCATGGTT ATTTCTCGACCACGCTACATACAACTACCATTAAAGCTAGAAAGACTCTTAGTACCAI AluI CviJI AluI CviJI HindIII RsaI	+ 480 A C + 540
### ATTTTCTCGACCACGATACAACTACCATTAAAAGCTAGAAAGAA	+ 480 A C + 540
### ### ##############################	+ 480 A C + 540
### ATTITICTCGACCACGCTACAACTACCATTAAAGCTAGAAAGAATTCATAGTACCAAACGAT ###################################	+ 480 A C + 540
### ### ##############################	+ 480 A C + 540 G
### ### ##############################	+ 480 A C + 540 G

PCT/CA99/00992

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

	AluI NspV		AciI	
	CviJI TaqI	MaeIII	NlaIV	
	l l			
			CAAAAAATCAAGGAACCGCATA	660
601			GTTTTTAGTTCCTTGGCGTAT	880
	TCCCCCTCGACAAAATACAA	GCITITIACAATGITAGA	3111111AGIICCIIGGCGIAI	
			CviRI	
			BseRI	
			Fnu4HI	
		Hin4I	AluI	
		BbvI	CviJI	
	Eco57I H	py178III	TseI	
	MseI MboII M		woI MseI	
			i ii i	
	CTTCATTAACAACAAGGCAA	aatcttcaggaggagcaa	TCCAAGCTGCAATCATAAACAT	
661			-++	720
	GAAGTAATTGTTGTTCCGTT	TTAGAAGTCCTCCTCGTT	AGGTTCGACGTTAGTATTTGTA	
			EciI	
			FauI	
			AciI	
		:	Sth132I	
	BsrI		Cac8I	
	TspRI		PstI	
	CviJI	Cv.	iRI	
	HaeIII	Fnu4H		
	Sau96I	Sfc		
	BsbI	BbvI MseI TseI	MspAll MwoI	
	1 111			
	TAAGGACAACACTGGCCCTT	GCCTGTTTTTTAATAATG	CTGCAGGCGGAACAGCGGGGG	
721			•	780
	ATTCCTGTTGTGACCGGGAA	CGGACAAAAATTATTAC	GACGTCCGCCTTGTCGCCCCCC	
	MwoI			
	:h111II			
	naI		CviJI	
Th	naI Tsp	509I Tsp509I Dde	I BseMII	
			on as a coms many manufacture.	
			CTCAGCCTATCTATTTTTTGAA	
781			GAGTCGGATAGATAAAAAACTT	840
	GCGCAACAAGCGATTACGAA	CATCITAACICITATIAA	GAGICGGA IAGA IAAAAAACII	
		Hpyl78II	т	
			BsmI	
	TagII Cv	iRI TatI	CviRI	
	raqri CV	I I I	I I	
	TAACCAATCAGGTCTGGGTG	GTGCAATAAGAGTACATC	 AAGAGTGCATTCTTACAAAGAA	
841				900
011			TTCTCACGTAAGAATGTTTCTT	

Title: CHLAMYDIA ANTIGENS AND TOLL BY 838446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

MspI Bsat BsaWI BstD: BsrFI Noc PinAI Tsp509I St; TACCGGTTCTGTGATCTTCAACAATAATTTTC	SI
CVIJI HinaT BslT Hpy178III BstXI BpmI MnlI MnlI CVIRI TTCCTCTGGAGGGGCTATCTATTGCATTAGTT AAGGAGACCTCCCCGATAGATAACGTAATCATT	+ 1020
CviJI BbvI SfcI BccI BccI BccI BccI	+ 1080
Sth1321	+ 1140

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al

DOCKET NO : 032931/0251

PCT/CA99/00992

WO 00/24765

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

				TaqI				
		RsaI		DpnI				
		BsrGI	Sa	au3AI				
		TaaI	Bcei	ar I ii				
	Hpy188IX	TatI	Hpy178III					
	npy room	1401	1107170111					
	TTCACATTTCAGAAACCAC	ATTGGACTGTACA	ACGGCACACTCGCTCT	TGAAGATCGAGC				
1441		+			1500			
	AAGTGTAAAGTCTTTGGTG	TAACCTGACATGT	TGCCGTGTGAGCGAGA	ACTTCTAGCTCG				
	•	Tsp509I						
		DpnI						
	Be	clI						
	Sau:	3AI	BsmF	'I				
	ApoI	1 1 1	AceIII	AluI				
Mbo	oII Tsp509I	PleI	HinfI TaaI	CviJI				
				1 1				
	AGAGTGGAAAGTCTATAAA?	TTTGATCAATTTG	GTGGGACTCTACGGTT	AGGCAGTAGAGC				
1501								
	TCTCACCTTTCAGATATTT	AAACTAGTTAAAC	CACCCTGAGATGCCAA	TCCGTCATCTCG				
		MboII		MseI				
		RleAI	Tsp5	.09I				
		1.1		1 1				
	TGTGTTTTCTACAACAGAC	GAAGAACAAAGTA	GCAGTAGTGTGGGTTC	TGTAATTAACAT				
1561								
	ACACAAAAGATGTTGTCTG	CTTCTTGTTTCAT	CGTCATCACACCCAAG	ACATTAATTGTA				
				BslI				
	MseI			PflMI				
	Tsp509I	Mn	1I	AluI				
	CviRI	DdeI	1	CviJI				
	11 1			1.1				
	CAATAATCTTGCAATTAACO	CTTCCCTCTATCT'	PAGGCAACAGAGTTGC	TCCCAAGCTATG				
1621				-+	1680			
	GTTATTAGAACGTTAATTGC	GAAGGGAGATAGA	ATCCGTTGTCTCAACG	AGGGTTCGATAC				
Hinf		SfcI						
Tfi	.I	RleAI	MboII					
	1	1 i	1					
	GATTCGCCCCACAGGTTCATCAGCACCCTATAGCGAAGATAATAACCCTATAATCAATC							
1681					1740			
	CTAAGCGGGGTGTCCAAGTA	GTCGTGGGATAT	CGCTTCTATTATTGGG	ATATTAGTTAGA				

DOCKET NO.: 032931/0251

Title: CHLAMYDIA ANTIGENS AND TO THE TOP OF THE CORRESPONDING DNA FRAGMENTS CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al

PCT/CA99/00992

WO 00/24765

Fig. 20 (con't)

AvaTI Eco0109I DonI Psp5II BstYI | BSTAPI Sau96I Sau3AI BfaI | PstI Sse8647I Hpy178III BseMII FokI | CviRI CviJI BsrI AlwI SfcI | 1MwoI 1 CTCAGGACCTTTGAGCCTACTGGATGACGAGAACCTAGATCCCTATGATACTGCAGACCT 1741 -----+ 1800 GAGTCCTGGAAACTCGGATGACCTACTGCTCTTGGATCTAGGGATACTATGACGTCTGGA AatII MaeIII | Tsp45I BsaHI MnlI MaeII AluI EarI | DdeI | | | CviJI TGCCCAACCTATCGCAGAAGTTCCTCTTCTGTATCTCTTAGACGTCACAGCTAAACATAT 1801 ------ 1860 ACGGGTTGGATAGCGTCTTCAAGGAGAAGACATAGAGAATCTGCAGTGTCGATTTGTATA MWOT BsaJI | StyI BseMII Bsu36I BsmFI Tsp509I | MnlI DdeT SimI BsbI TAATACGGATAATTTCTACCCTGAGGGTCTAAATACAACTCAACACTACGGCTACCAAGG 1861 ------+ 1920 ATTATGCCTATTAAAGATGGGACTCCCAGATTTATGTTGAGTTGTGATGCCGATGGTTCC TaqI NlaIV BsrI AvaII | DpnI MnlI Hpy188IX Sau3AI || Eart | BslI | | AlwI MboII Hpy188IX - 1 i ii - 1 CGTTTGGTCCCCTTACTGGATCGAAACAATCACAACTTCTGATACCTCTTCTGAAGATAC 1921 ------ 1980 GCAAACCAGGGGAATGACCTAGCTTTGTTAGTGTTGAAGACTATGGAGAAGACTTCTATG AluI MboII SfcI CviJI TaaI | Eco57I Cac8I | l i 1981 ------ 2040 ACACTTATGAAATGTAGCGGTCGAAATACCACTAACCTGTGGATGTCCTATATTCCATTT

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 PCT/CA99/00992

	BsmAI Bsri	oi wwoi						
		BACATTGCCCTATCTGC	CTTCTGGCAATCTTTCCA	TAACTTATT				
2041	GGGTCTTTTGTTTCCTCTGTAACGGGATAGACGGAAGACCGTTAGAAAAGGTATTGAATAA							
2101	MaeII TGCGACACTACGTTATO	Cje: TthllIII CviJI HaeI HaeII 		PleI AluI CviJI				
2101	ACGCTGTGATGCAATAGTTTGTGTCGTTCCGGTTTATCGTGGATGTCGAAGACCTCTTCG							
Mbo:	TACTCGACTCTTCGTG	Sfani Cje CATCAAATAGCAACAAT		i t				
			CTACGCTTTCCTAAGGT					
		MnlI BtsI 	CViJI GCTTCTAATCATAGCTT	TGGTGTAAA + 2280				
	$\tt ATGCCCAATAAGAAACCCTTGTTGGAGTTTGTGACGAAGATTAGTATCGAAACCACATTT$							
		CviJI	BsaJI BstDSI Tsp509I 188IX					
		Pfl1108I Hin4I	Bpl	I !!				
2281	CTTCTCCCAACTTTTCA	GTAATCTCTACGAGAGC	CACTCCGACAATTCCGT	GGCTTCGCA				
~201	GAAGAGGGTTGAAAAGT	CATTAGAGATGCTCTCG	GTGAGGCTGTTAAGGCA					

CORRESPONDING DNA FRAGMENTS

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

HaeIV	
Hin4I	
BbvI	
DpnI	
Sau3AI	
Hpy178III	
HaeII CViRI	
HhaI Fnu4HI	
Eco47III CviJI Hin4I	
MmeI TaaI BsaJI HinfI	
BpmI SfcI Styl TseI Tfil	
TACGACAACTGTAGCGCTCCAGATCAATAATCCTTGGCTGCAAGAGAGATTCTCTACATC	
2341+	2400
ATGCTGTTGACATCGCGAGGTCTAGTTATTAGGAACCGACGTTCTCTCTAAGAGATGTAG	
SfcI	
CviJI	
SfaNI	
BfaI SfcI Hpy178III	
MwoI AluI SfaNI	
CviRI BplI CviJI Hpy178III	
TGCATCTCTAGCCTACAGCTACAGCAACCACCATATCAAAGCATCTGGATATTCTGGAAA	
2401	2460
ACGTAGAGATCGGATGTCGATGTCGTTGGTGGTATAGTTTCGTAGACCTATAAGACCTTT	
CviJI	
Fnu4HI	
TauI	
RsaI ACII	
AATACAAACGGAAGGCAAATGTTATAGTACGACATTAGGGGCGGCTCTCTCT	
	2520
TTATGTTTGCCTTCCGTTTACAATATCATGCTGTAATCCCCGCCGAGAGAGA	
BsaXI	
Hpy178III	
DpnI MunI	
Sau3AI MnlI BcefI Tsp509I	
ATCTCTACAATGGCGATCACGACCTCTCCACTTCACTCCTTTTATCCAAGCAATTGCCGT	
2521+	2580
TAGAGATGTTACCGCTAGTGCTGGAGAGGTGAAGTGAGGAAAATAGGTTCGTTAACGGCA	

ST APREME

Title: CHLAMYDIA ANTIGENS AND \$ 2014-1-1097 830446

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 20 (con't)

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 20 (con't)

					P.	IspV					
					7	aqI					
			FokI		Hinf]	: 1					
			MseI	Hin4I	Mnll	: 1					
	MaeII	Tsp	509I	Sth132I	BfaI Tfil	: [
	1	_	1 1	1	1 1	Ĺ					
	ATCCACAGATAC	STTTCCCCCA	TAAAAATTA	AGAACCCGATACATO	CTCACTAGAG	ATTC					
3	061+	1									
	TAGGTGTCTATG	TAGGTGTCTATGCAAAGGGGGTATTTTTAATTCTTGGGCTATGTAGGAGTGATCTCTAAG									
		Bsm	ıI								
		Bpu10I	1								
	MseI	DdeI	TaqI								
		1	1 1								

3121 -----+ 3150 CTTTCTTGATGAATTTAGGATTCGTAAGCT

PCT/CA99/00992

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

Figure 21A: CPN100626 Coding Sequence

	cactcgaaat					
	aatgctttag					
	ttagattact					
	agaatgagat					
	aagactcctc					
	actcctgcag					
	gaagagtttc					
	ccaataacta					
	tacaagtcta					
tgtgtcctgt	aataatttct	tattatcaaa	tgttgaagac	catgccttct	tcagtaaaaa	600
	gggactggag					
	cttattttt					
	ggtgcgattg					
	gtcaacaatt					
	caaagcaaca					
	cttcgtagtg					
	tgtgggaaca					
aaataactcc	gggtcggtga	ttttcaataa	caacacagcg	ttatctggtt	cgataaattc	1080
aggaaatggt	tcaggagggg	cgatttatac	aacaaaccta	tccatagacg	ataaccctgg	1140
aactattctt	ttcaataata	actactgcat	tegegatgge	ggagctatct	gtacacaatt	1200
tttgacaatc	aaaaatagtg	gccacgtata	tttcaccaac	aatcaaggaa	actggggagg	1260
tgctcttatg	ctcctacagg	acagcacctg	cctactcttc	gcggaacaag	gaaatatcgc	1320
atttcaaaat	aatgaggttt	tcctcaccac	atttggtaga	tacaacgcca	tacattgtac	1380
accaaatagc	aacttacaac	ttggagctaa	taaggggtat	acgactgctt	tttttgatcc	1440
tatagaacac	caacatccaa	ctacaaatcc	tctaatcttt	aatcccaatg	cgaaccatca	1500
gggaacgatc	ttattttctt	cagcctatat	cccagaagct	tctgactacg	aaaataattt	1560
cattagcagc	tcgaaaaata	cctctgaact	tcgcaatggt	gtcctctcta	tcgaggatcg	1620
tgcgggatgg	caattctata	agttcactca	aaaaggaggt	atccttaaat	tagggcatgc	1680
ggcgagtatt	gcaacaactg	ccaactctga	gactccatca	actagtgtag	gctcccaggt	1740
catcattaat	aaccttgcga	ttaacctccc	ctcgatctta	gcaaaaggaa	aagctcctac	1800
cttgtggatc	cgtcctctac	aatctagtgc	tcctttcaca	gaggacaata	accctacaat	1860
	ggtcctctga					
	gagcctttac					
tcatatcaat	accgataact	ttcatcctga	aagcttaaat	gcgactgagc	attacggtta	2040
tcaaggcatc	tggtctcctt	attgggtaga	gacgataaca	acaacaaata	acgcttctat	2100
agagacggca	aacaccctct	acagagetet	gtatgccaat	tggactccct	taggatataa	2160
ggtcaatcct	gaataccaag	gagatettge	tacgactccc	ctatggcaat	cctttcatac	2220
	ctattaagaa					
	caagggattg					
	cgtatccaat					
	atctccttag					
	gtctcggctc					
	tttgcaacat					
	cgtcacatca					
	ggctgttctt					
	attgcaatac					
	gtctctcaaa					
	tcaaaattcc					
	caacaaaatc					
	ggccataact					
	cgttctctcg					
	catctccaag					
	ttagaattaa					
	atttaaataa	5	3-3			3200

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al WO 00/24765 DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 21B: CPN100626 Deduced Amino Acid Sequence

9											, _				
Met 1	Gln	Val	Phe	Pro 5	Lys	Val	Thr	Leu	Ser 10	Leu	Asp	Tyr	Ser	Ala 15	Asp
Ile	Ser	Ser	Ser 20	Thr	Leu	Ser	His	Tyr 25	Leu	Asn	Val	Ala	Ser 30	Arg	Met
Arg	Phe	Leu 35	Thr	Ile	Ser	Asp	Gln 40	Asn	Arg	Lys	Ile	Lys 45	Glu	Pro	Leu
Val	Ser 50	Lys	Thr	Pro	Pro	Lys 55	Phe	Leu	Phe	Tyr	Leu 60	Gly	Asn	Phe	Thr
Ala 65	Cys	Met	Phe	Gly	Met 70	Thr	Pro	Ala	Val	туr 75	Ser	Leu	Gln	Thr	Asp 80
Ser	Leu	Glu	Lys	Phe 85	Ala	Leu	Glu	Arg	Asp 90	Glu	Glu	Phe	Arg	Thr 95	Ser
Phe	Pro	Leu	Leu 100	Asp	Ser	Leu	Ser	Thr 105	Leu	Thr	Gly	Phe	Ser 110	Pro	Ile
Thr	Thr	Phe 115	Val	Gly	Asn	Arg	His 120	Asn	Ser	Ser	Gln	Asp 125	Ile	Val	Leu
Ser	Asn 130	Tyr	Lys	Ser	Ile	Asp 135	Asn	Ile	Leu	Leu	Leu 140	Trp	Thr	Ser	Ala
Gly 145	Gly	Ala	Val	Ser	Cys 150	Asn	Asn	Phe	Leu	Leu 155	Ser	Asn	Val	Glu	Asp 160
His	Ala	Phe	Phe	Ser 165	Lys	Asn	Leu	Ala	Ile 170	Gly	Thr	Gly	Gly	Ala 175	Ile
Ala	Cys	Gln	Gly 180	Ala	Cys	Thr	Ile	Thr 185	Lys	Asn	Arg	Gly	Pro 190	Leu	Ile
Phe	Phe	Ser 195	Asn	Arg	Gly	Leu	Asn 200	Asn	Ala	Ser	Thr	Gly 205	Gly	Glu	Thr
Arg	Gly 210	Gly	Ala	Ile	Ala	Cys 215	Asn	Gly	Asp	Phe	Thr 220	Ile	Ser	Gln	Asn
Gln 225	Gly	Thr	Phe	Tyr	Phe 230	Val	Asn	Asn	Ser	Val 235	Asn	Asn	Trp	Gly	Gly 240
Ala	Leu	Ser	Thr	Asn 245	Gly	His	Cys	Arg	Ile 250	Gln	Ser	Asn	Arg	Ala 255	Pro
Leu	Leu	Phe	Phe 260	Asn	Asn	Thr	Ala	Pro 265	Ser	Gly	Gly	Gly	Ala 270	Leu	Arg
Ser	Glu	Asn 275	Thr	Thr	Ile	Ser	Asp 280	Asn	Thr	Arg	Pro	11e 285	Tyr	Phe	Lys

WO 00/24765

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig	21R	(con't)

Asn	Asn 290	Cys	Gly	Asn	Asn	Gly 295	Gly	Ala	Ile	Gln	Thr 300	Ser	Val	Thr	Val
Ala 305	Ile	Lys	Asn	Asn	Ser 310	Gly	Ser	Val	Ile	Phe 315	Asn	Asn	Asn	Thr	Ala 320
Leu	Ser	Gly	Ser	Ile 325	Asn	Ser	Gly	Asn	Gly 330	Ser	Gly	Gly	Ala	Ile 335	Tyr
Thr	Thr	Asn	Leu 340	Ser	Ile	Asp	Asp	Asn 345	Pro	Gly	Thr	Ile	Leu 350	Phe	Asn
Asn	Asn	Tyr 355	Cys	Ile	Arg	Asp	Gly 360	Gly	Ala	Ile	Cys	Thr 365	Gln	Phe	Leu
Thr	11e 370	Lys	Asn	Ser	Gly	His 375	Val	Tyr	Phe	Thr	Asn 380	Asn	Gln	Gly	Asn
Trp 385	Gly	Gly	Ala	Leu	Met 390	Leu	Leu	Gln	Asp	Ser 395	Thr	Cys	Leu	Leu	Phe 400
Ala	Glu	Gln	Gly	Asn 405	Ile	Ala	Phe	Gln	Asn 410	Asn	Glu	Val	Phe	Leu 415	Thr
Thr	Phe	Gly	Arg 420	Tyr	Asn	Ala	Ile	His 425	Cys	Thr	Pro	Asn	Ser 430	Asn	Leu
Gln	Leu	Gly 435	Ala	Asn	Lys	Gly	Tyr 440	Thr	Thr	Ala	Phe	Phe 445	Asp	Pro	Ile
Glu	His 450	Gln	His	Pro	Thr	Thr 455	Asn	Pro	Leu	Ile	Phe 460	Asn	Pro	Asn	Ala
Asn 465	His	Gln	Gly	Thr	11e 470	Leu	Phe	Ser	Ser	Ala 475	Tyr	Ile	Pro	Glu	Ala 480
Ser	Asp	Tyr	Glu	Asn 485	Asn	Phe	Ile	Ser	Ser 490	Ser	Lys	Asn	Thr	Ser 495	Glu
Leu	Arg	Asn	Gly 500	Val	Leu	Ser	Ile	Glu 505	Asp	Arg	Ala	Gly	Trp 510	Gln	Phe
Tyr	Lys	Phe 515	Thr	Gln	Lys	Gly	Gly 520	Ile	Leu	Lys	Leu	Gly 525	His	Ala	Ala
Ser	11e 530	Ala	Thr	Thr	Ala	Asn 535	Ser	Glu	Thr	Pro	Ser 540	Thr	Ser	Val	Gly
Ser 545	Gln	Val	Ile	Ile	Asn 550	Asn	Leu	Ala	Ile	Asn 555	Leu	Pro	Ser	Ile	Leu 560
Ala	Lys	Gly	Lys	Ala 565	Pro	Thr	Leu	Trp	Ile 570	Arg	Pro	Leu	Gln	Ser 575	Ser

Title: CHLAMYDIA ANTIGENS AND 1044097830446

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

T:	240	(000'4)	
rig.	210	(con't)	

Ala	Pro	Phe	Thr 580	Glu	Asp	Asn	Asn	Pro 585		Ile	Thr	Leu	Ser 590		Pro
Leu	Thr	Leu 595	Leu	Asn	Glu	Glu	Asn 600	Arg	Asp	Pro	Tyr	Asp 605	Ser	Ile	Asp
Leu	Ser 610	Glu	Pro	Leu	Gln	Asn 615	Ile	His	Leu	Leu	Ser 620	Leu	Ser	Asp	Val
Thr 625	Ala	Arg	His	Ile	Asn 630	Thr	Asp	Asn	Phe	His 635	Pro	Glu	Ser	Leu	Asn 640
Ala	Thr	Glu	His	Tyr 645	Gly	Tyr	Gln	Gly	Ile 650	Trp	Ser	Pro	Tyr	Trp 655	Val
Glu	Thr	Ile	Thr 660	Thr	Thr	Asn	Asn	Ala 665	Ser	Ile	Glu	Thr	Ala 670	Asn	Thr
Leu	Tyr	Arg 675	Ala	Leu	Tyr	Ala	Asn 680	Trp	Thr	Pro	Leu	Gly 685	Tyr	Lys	Val
Asn	Pro 690	Glu	Tyr	Gln	Gly	Asp 695	Leu	Ala	Thr	Thr	Pro 700	Leu	Trp	Gln	Ser
Phe 705	His	Thr	Met	Phe	Ser 710	Leu	Leu	Arg	Ser	Tyr 715	Asn	Arg	Thr	Gly	Asp 720
Ser	Asp	Ile	Glu	Arg 725	Pro	Phe	Leu	Glu	Ile 730	Gln	Gly	Ile	Ala	Asp 735	Gly
Leu	Phe	Val	His 740	Gln	Asn	Ser	Ile	Pro 745	Gly	Ala	Pro	Gly	Phe 750	Arg	Ile
Gln	Ser	Thr 755	Gly	Tyr	Ser	Leu	Gln 760	Ala	Ser	Ser	Glu	Thr 765	Ser	Leu	His
Gln	Lys 770	Ile	Ser	Leu	Gly	Phe 775	Ala	Gln	Phe	Phe	Thr 780	Arg	Thr	Lys	Glu
Ile 785	Gly	Ser	Ser	Asn	Asn 790	Val	Ser	Ala	His	Asn 795	Thr	Val	Ser	Ser	Leu 800
Tyr	Val	Glu	Leu	Pro 805	Trp	Phe	Gln	Glu	Ala 810	Phe	Ala	Thr	Ser	His 815	Ser
Leu	Ala	Tyr	Gly 820	Tyr	Gly	Asp	His	His 825	Leu	His	Ala	Tyr	Ile 830	Arg	His
Ile	Lys	Asn 835	Arg	Ala	Glu	Gly	Thr 840	Cys	Tyr	Ser	His	Thr 845	Leu	Ala	Ala
Ala	Ile 850	Gly	Cys	ser	Phe	Pro 855	Trp	Gln	Gln	Lys	Ser 860	Tyr	Leu	His	Leu

Title: CHLAMYDIA ANTIGENS AND SUPPLY 109 / 830 446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF

WO 00/24765

PCT/CA99/00992 Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

	(con't)

Ser Pro Phe	val Gln	Ala I	le Ala	Ile	Arg	Ser	His	Gln	Thr	Ala	Phe
865		870				875					880

Glu Glu Ile Gly Asp Asn Pro Arg Lys Phe Val Ser Gln Lys Pro Phe 890

Tyr Asn Leu Thr Leu Pro Leu Gly Ile Gln Gly Lys Trp Gln Ser Lys 905

Phe His Val Pro Thr Glu Trp Thr Leu Glu Leu Ser Tyr Gln Pro Val 920 915

Leu Tyr Gln Gln Asn Pro Gln Ile Gly Val Thr Leu Leu Ala Ser Gly 935

Gly Ser Trp Asp Ile Leu Gly His Asn Tyr Val Arg Asn Ala Leu Gly 945

Tyr Lys Val His Asn Gln Thr Ala Leu Phe Arg Ser Leu Asp Leu Phe 970

Leu Asp Tyr Gln Gly Ser Val Ser Ser Ser Thr Ser Thr His His Leu

Gln Ala Gly Ser Thr Leu Lys Phe 995

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO · 032931/0251

PCT/CA99/00992

Figure 22 (RY-45)
Restriction enzyme analysis of CPN100626

CORRESPONDING DNA FRAGMENTS AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 22 (con't)

Hpy	178III FokI	
	PleI PstI	
NlaI:		
Nsj	pI HinfI SfcI TspRI PleI HinfI MnlI	
	GTTCGGGATGACTCCTGCAGTGTATAGTTTACAAACGGACTCCCTTGAAAAGTTTGCTTT	
301	CAAGCCCTACTGAGGACGTCACATATCAAATGTTTGCCTGAGGGAACTTTTCAAACGAAA	360
	CAAGCCCTACTGAGGACGTCACATATCAAATGTTTGCCTGAGGGAACTTTTCAAACGAAA	
	Hin4I BplI	
	AluI BsaXI	
	CviJI Hin4I	
	MboII MnlI	
	RsaI HinfI	
	FokI DdeI	
	Earl XmnI SunI PleI	
	!	
2.51	AGAGAGGGATGAAGAGTTTCGTACGAGCTTTCCTCTTTAGACTCTCTCCACTCTTAC	
361	TCTCTCCCTACTTCTCAAAGCATGCTCGAAAGGAGAGAATCTGAGAGAGA	420
	TETETECETACTICTCAAAGCATGCTCGAAAAGGAGAGAGAGAGAGAGAGAGA	
	Hpy178III RsaI	
	CjeI Tsp509I SmlI TatI	
	MmeI MaeII Bce83I CjeI MnlI	
	${\tt AGGATTTCTCCAATAACTACGTTTGTTGGAAATAGACATAATTCCTCTCAAGACATTGT}$	
421		480
	TCCTAAAAGAGGTTATTGATGCAAACAACCTTTATCTGTATTAAGGAGAGTTCTGTAACA	
	Bsp24I AluI	
	CjeI CviJI CviJI	
	FokI MboII CjePI AceIII MwoI	
	ACTTTCTAACTACAAGTCTATTGATAACATCCTTCTTTTTTTT	
481		540
	TGAAAGATTGATGTTCAGATAACTATTGTAGGAAGAAGAAACCTGTAGCCGACCCCCTCG	
	W . EAST	
	Tsp509I MboII CieI NlaIII	
	CjeI NlaIII CjePI BbsI	
	Bsp24I Eco57I MboII CjePI	
	2535/1 10011	
	TGTGTCCTGTAATAATTTCTTATTATCAAATGTTGAAGACCATGCCTTCTTCAGTAAAAA	
541		600
	${\tt ACACAGGACATTATTAAAGAATAATAGTTTACAACTTCTGGTACGGAAGAAGTCATTTTT}$	

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

MnlI	
Hpy178III	
CviRI	
Cac8I	
CviJI	
NlaIV	
BpmI	
BsaJI	
ECORII	
Cac8I	
CjePI	
BsgI	
Hpy178III BsrI BsmFI	
NruI Tthl11II HhaI	
11101 11111 11111 1111	
TCTCGCGATTGGGACTGGAGGCGCGATTGCTTGCCAGGGAGCCTGCACAATCACGAAGAA	
601+	660
AGAGCGCTAACCCTGACCTCCGCGCTAACGAACGGTCCCTCGGACGTGTTAGTGCTTCTT	
MboII NlaIV	
AvaII	
Eco0109I	
Psp5II RsaI	
Sau96I MnlI	
SimI MnlI TaqI MseI TatI	
TAGAGGACCCCTTATTTTTTCAGCAATCGAGGTCTTAACAATGCGAGTACAGGAGGAGA	
TAGAGGACCCCTTATTTTTTCAGCAATCGAGGTCTTAACAATGCGAGTACAGGAGAGA	720
ATCTCCTGGGGAATAAAAAAGTCGTTAGCTCCAGAATTGTTACGCTCATGTCCTCCTCT	
BssSI BseRI BsmAI Hpy178III	
AACTCGTGGGGGTGCGATTGCCTGTAATGGAGACTTCACGATTTCTCAAAATCAAGGGAC	700
721+ TTGAGCACCCCCACGCTAACGGACATTACCTCTGAAGTGCTAAAGAGTTTTAGTTCCCTG	780
TIGAGCACCCCACGCTAACGGACATTACCTCTGAAGTGCTAAAGAGTTTTAGTTCCCTG	
BanII	
Bsp1286I	
BsrI	
Tsp509I BmrI CviJI FokI	
HincII MnlI Hin4I MnlI	
BsmFI HincII NlaIV BseRI BplI	
TTTCTACTTTGTCAACAATTCCGTCAACAACTGGGGAGGAGCCCTCTCCACCAATGGACA	
781+	840
AAAGATGAAACAGTTGTTAAGGCAGTTGTTGACCCCTCCTCGGGAGAGGTGGTTACCTGT	

Title: CHLAMYDIA ANTIGENS AND THE HEUVIS 30446

CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765 Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

	TspRI	Bsp1286I	Bs	
1	AciI	NlaIV	ECONI	
	u4HI	BmgI	BfaI	1
			MseI MnlI	1
Bts	I MwoI	BanI Mn	li CviJi	1
				mac.
			TTTTTTAACAATACAGCCCCTAG	
			AAAAATTGTTATGTCGGGGATC	
	GACGGCGTAGGTTTCGT	IGICCCGIGGAGAIGAG.	AAAAAAIIGIIAIGICGGGGAIC	ACC
		Hpy188	TX	
		Hga		
	Pf11108I		AflIII	
	HhaI	Sau3AI	MluI CjePI M	seI
	ı i	I i		1
	AGGGGTGCGCTTCGTA	GTGAAAATACAACGATC	TCTGATAACACGCGTCCTATTTA	TTT
		+		+ 960
	TCCCCCACGCGAAGCAT	CACTTTTATGTTGCTAG	AGACTATTGTGCGCAGGATAAAT	AAA
		CviJI		
		HaeIII		
	7	CjePI		
	FauI Sth132I		Tth111II	
RleA		AciI	MaeIII TaaI	
RIEA	i idai ji	ACII	Maerii raar	
	TARGARCARCTGTGGG	ACABTGGCGGGCCATT	CAAACAAGCGTTACTGTTGCGAT	AAA
			GTTTGTTCGCAATGACAACGCTA	
	SimI		ApoI	
	Ncil		Tsp509I	
	ScrFI		TaqI	
Sth132	I MspI	HphI BsbI	DrdII	
	1 11 1	1 1		
			ACAGCGTTATCTGGTTCGATAAA	
			+	
	TTTATTGAGGCCCAGCC	ACTAAAAGTTATTGTTG	TGTCGCAATAGACCAAGCTATTT	AAG
	Umrel 20 T T T			
	Hpy178III DrdII		ScrFI	
	MnlI		BsaJI	
Hpy178II			ECORII	
	1 1		1 1	
	AGGAAATGGTTCAGGAG	GGGCGATTTATACAACA	AACCTATCCATAGACGATAACCC	TGG
1081			+	
	TOTTTACCAAGTCCTC	CCCGCTAAATATGTTGT	TTGGATAGGTATCTGCTATTGGG	ACC

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

				AluI CviJI		
				EciI		
			Bcc:	ciI	Tsp509I	
			BIII		RsaI	
		BsmI N			BsrGI	
		CviRI T	haI l		TatI	
	AACTATTCTTTTCAATAATAA	CTACTGCAT	TCGCGA	rggcggagc	TATCTGTACAC	AATT + 1200
1141	TTGATAAGAAAAGTTATTATT	GATGACGTA	AGCGCT	ACCGCCTCC	ATAGACATGTG	
		BsaAI HphI				
		eII				
	CviJ					
	Hael HaeIII				BsrI	
	Msc	ı İİ			BmrI	
	EaeI	: !!			MnlI	
	TTTGACAATCAAAAATAGTG	II SCCACGTAT <i>A</i>	TTTCAC	CAACAATCA	AGGAAACTGGG	GAGG
1201					+	
	AAACTGTTAGTTTTTATCACC	GGTGCATAI	AAAGTG	TTGTTAGT	TCCTTTGACCC	Free
		MboII		AciI		
	iHKAI 1286I SfcI	AarI AlwNI	DanMT			
вар.	12861 5101	AIWNI	BSPHI			
	TGCTCTTATGCTCCTACAGG					
1261	ACGAGAATACGAGGATGTCCT					
	ACGAGAATACGAGGATGTCC	GICGIGGAC	.ddridac	PAROCOCCI	TOTICCITIAL	1000
					Rs: BsrGI	
	CjeI CjeI	Mr	11		CjeI	
	MnlI HphI	HgiEI	I C	jeI	CjeI TatI	i
	ATTTCAAAATAATGAGGTTTT	יככייכי ככי כ	 	 	CGCCATACATT	
1321	ATTICAAAATAATGAGGTTT	+		+		+ 1380
	TAAAGTTTTATTACTCCAAAA	GGAGTGGT	TAAACC	TCTATGTT	GCGGTATGTAA	CATG
					1	FokI
						SfcI
		237	D-67		Dpn:	
	CieI	AluI CviJI	BSTZ.		Sau3AI AlwI	
	-3	Ī		Tİ	T i	i i
1201	ACCAAATAGCAACTTACAACT					
1301	TOOTTT A TOOTTO A A TOTTO					

Title: CHLAMYDIA ANTIGERS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

		Mme:		
		MnlI		
		MseI 	DrdII	
	TATAGAACACCAACATCCAACTACAAA		ATCCCAATGCGAACCATCA	
1441	TATAGAACACCAACATCCAACTACAAA			1500
	ATATCTTGTGGTTGTAGGTTGATGTTT			
			Pfl1108I	
	MboII	Hpy188		
	DpnI	AluI	!!!	
	Sau3AI 5571 CviJI	CviJI HindIII		
ECC	55/1 1 CV101	nindiii	11393031	
	GGGAACGATCTTATTTTCTTCAGCCTAT			
1501				1560
	CCCTTGCTAGAATAAAAGAAGTCGGATA	ATAGGGTCTTCGA	AGACTGATGCTTTTATTAAA	
			DpnI	
	TaqI AluI		FauI Sau3AI	
	Cvi.II Howlesty		Sth1321	
	CviJI Hpy188IX Fnu4HI AceIII TseI BbvI N	Bcg	MnlI	
	Tsel Bbvl M	InlI BsrDI	MnlI TaqI	
		1 11	1 1111	
	CATTAGCAGCTCGAAAAATACCTCTGAA	ACTTCGCAATGGT0	STCCTCTCTATCGAGGATCG	
1201				1620
1501	GTAATCGTCGAGCTTTTTATGGAGACTT			1620
1201			CAGGAGAGATAGCTCCTAGC	1620
1201				1620
1201			CAGGAGAGATAGCTCCTAGC Fnu4HI	1620
1201			CAGGAGAGATAGCTCCTAGC Fnu4HI TauI AciI NlaIII	1620
	GTAATCGTCGAGCTTTTTATGGAGACT	rgaagcgttacca(CAGGAGAGATAGCTCCTAGC Fnu4HI TauI ACII NlaIII BCIVI NSDI	1620
,	GTAATCGTCGAGCTTTTTATGGAGACT	rgaagcgttacca(CAGGAGAGATAGCTCCTAGC Fnu4HI TauI ACII NlaIII BCIVI NSDI	1620
,	GTAATCGTCGAGCTTTTTATGGAGACTT AlwI Tsp509I FokI ziI BecI BegI Mnl	rgaagcgttacca(CAGGAGAGATAGCTCCTAGC Fnu4HI TauI AciI NlaIII BciVI NSpI	1620
,	GTAATCGTCGAGCTTTTTATGGAGACTT	rgaagegttaeeac li 	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI NSI Sp509I SphI MseI Cac8I	1620
Ac	GTAATCGTCGAGCTTTTTATGGAGACTT AlwI Tsp509I FokI til BccI BegI Mnl	TGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acil NlaIII BciVI NspI Cap509I SphI MseI Cac8I	
Ac	GTAATCGTCGAGCTTTTTATGGAGACTT	IGAAGCGTTACCAG	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii BciVI NspII Sp5091 SphI MseI Cac8I HICCTRAATTAGGCATGC	
Ac	GTAATCGTCGAGCTTTTTATGGAGACTT Alwi Tsp5091 Foki ti Bcci Bcgi Mnl	TGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii BciVI NspII Sp5091 SphI MseI Cac8I HICCTRAATTAGGCATGC	
Ac	AlwI Tsp509I FokI iiI BecI BegI Mn1	IGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI Nspi Spp1 SphI MseI Cac8I NTCCTTAAATTAGGGCATGC	
Ac	AlwI Tsp509I FokI iiI BecI BegI Mn1	IGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI Nspi Spp1 SphI MseI Cac8I NTCCTTAAATTAGGGCATGC	
Ac	AlwI Tsp509I FokI iiI BecI BegI Mn1	IGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI Nspi Spp1 SphI MseI Cac8I NTCCTTAAATTAGGGCATGC	
Ac	AlwI Tsp509I FokI iiI BecI BegI Mn1	IGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI Nspi Spp1 SphI MseI Cac8I NTCCTTAAATTAGGGCATGC	
Ac	AlwI Tsp509I FokI iiI BecI BegI Mn1	IGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI Nspi Spp1 SphI MseI Cac8I NTCCTTAAATTAGGGCATGC	
Ac	AlwI Tsp509I FokI iiI BecI BegI Mn1	IGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI Nspi Spp1 SphI MseI Cac8I NTCCTTAAATTAGGGCATGC	
Ac	GTAATCGTCGAGCTTTTTATGGAGACTT ALWI TSp509I FokI :i BccI BcgI Mnl TGCGGGATGCAATTCTATAAGTTCACT ACGCCCTACCGTTAAGATATTCAAGTG BSEMII Ddel BSEAPI Hpy188IX CVIRI PleI MWOI MWOI BSMAI PleI	GAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI Nspi Spp1 SphI MseI Cac8I NTCCTTAAATTAGGGCATGC	
1 Ac 1621	GTAATCGTCGAGCTTTTTATGGAGACTT ALWI TSp509I FOKI SII BCCI BCGI MnI TGCGGGATGGCAATTCTATAAGTTCACT ACGCCCTACCGTTAAGATATTCAAGTG BSEMII Ddel BSLAPI HPYLBEIX CVIRI P1EI MWOI MWOI BSMAI GGCGAGTATTGCAACTGCCAACTCC GGCGAGTATTGCAACTACCACACTCC	IGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii NlaIII BciVI NspI MseI Cas8 Case	1680
1 Ac 1621	GTAATCGTCGAGCTTTTTATGGAGACTT Alwi Tsp509i Foki iii Beci Begi Mnl	TGAAGCGTTACCAC	CAGGAGAGATAGCTCCTAGC Fnu4HI TauI Acii BciVI NspI Sp5091 SphI MseI Cac81 ACCTTARATTAGGCATGC SCRFI BsaJI ECORII II NlaIV CviJI CCTAGTGTAGGCTCCAGGT	1680

Title: CHLAMYDIA ANTIGENS AND " CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 22 (con't)

		MnlI		
		DdeI		
		DpnI		
		MnlI		
MseI		3AI	AluI	
VspI	MseI Ta	qI	CviJI	
		CTCGATCTTAGCAAAAGG		
1741				1800
GTAGTAATTATTGGAA(CCTAATTGGAGGG	GAGCTAGAATCGTTTTCC	TTTTCGAGGATG	
AlwI				
Hin4I				
DpnI				
NlaIV		MnlI		
BamHI	BsiHKA			
BstYI	Bsp1286	I		
Sau3AI	BfaI	!!		
AlwI	MnlI	ļ ļ	Tsp509I	
		l i		
	TACAATCTAGTGC	TCCTTTCACAGAGGACAA		
1801				1860
GAACACCTAGGCAGGAG	3ATGTTAGATCACG.	AGGAAAGTGTCTCCTGTT	ATTGGGATGTTA	
H	,	Pfl11	007	
Hpy188I) AvaII		DpnI	.081	
EcoO109I	i	Sau3AI		
Psp5II	MseI	ThaI		
Sau96I	MnlI	AciI	BseMII	
Sse8647I	MnlI	AlwI	TaaI	
556864/1	MILLI	ATWI	l raar	
TA CTTTA TCA GGTCCT	1111	TGAGGAAAACCGCGATCC	CTACGACAGTAT	
1861	.IGACACICITAAA	IGAGGAAAACCGCGAICC		1920
	SACTETEREARATTT	ACTCCTTTTGGCGCTAGG		1320
ATGAMATAGTECAGGA	MCTOTOMORATTT.	ACTOCITITOCCOCITIO		
CviJI				
DdeI				
Hpy188IX				
DpnI				
BqlII				
BstYI		MaeII	I FokI	
Sau3AI	MboII	Hpy188IX	MaeII	
			i ii	
AGATCTCTCTGAGCCTT	 !TACAAAACATTCA!	TCTTCTTTCTTTATCGGA	TGTAACAGCACG	
AGATCTCTCTGAGCCTT	 TACAAAACATTCA +	TCTTCTTTCTTTATCGGA		1980
1921	+ - +	TCTTCTTTCTTATCGGA	-++	1980

150.3, 4F. 5 S WO 00/24765

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D, MURDIN et al

DOCKET NO.: 032931/0251

09/830446

PCT/CA99/00992

BseMII	
MseI AluI	
CviJI HindIII	
FokI Hpy178III DdeI	Taal
TCATATCAATACCGATAACTTTCATCCTGAAAGCTTAAATGCGACTG	 AGCATTACGGTTA
1981	++ 2040
AGTATAGTTATGGCTATTGAAAGTAGGACTTTCGAATTTACGCTGAC	TCGTAATGCCAAT
BsmAI	
BsaI	SfcI
BsmAI SfaNI BsmBI	BsmAI BsmBI
57447 554657	ii
TCAAGGCATCTGGTCTCCTTATTGGGTAGAGACGATAACAACAA	
AGTTCCGTAGACCAGAGGAATAACCCATCTCTGCTATTGTTGTTGTT	++ 2100
AGTICCGTAGACCAGAGGAATAACCCATCTCTGCTATTGTTGTTGTT	TATIOCOAAOATA
BanII	
BsiHKAI Bsp1286I	
CjePI	
SacI	
AluI	
CviJI MnlI MunI	
Tth111II PleI	
BcefI Tsp509I Bsu3	
SfcI MwoI HinfI Dd	eI Hin4I
	CCTTAGGATATAA
2101	++ 2160
TCTCTGCCGTTTGTGGGAGATGTCTCGAGACATACGGTTAACCTGAG	GGAATCCTATATT
D7	
DpnI BglII	
BstYI	
Sau3AI HinfI	
Hpy178III BsaJI Pfl1108I CiePI StvI PleI	
CjePI StyI PleI	
GGTCAATCCTGAATACCAAGGAGATCTTGCTACGACTCCCCTATGGC	AATCCTTTCATAC
2161	+ 2220
CCAGTTAGGACTTATGGTTCCTCTAGAACGATGCTGAGGGGATACCG	TTAGGAAAGTATG

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO: 032931/0251

WO 00/24765

PCT/CA99/00992

Fig. 22 (con't) CVIJI Hael HaeIII Hpv178III TagI HphI ECORVII MnlTlll Hpy188IX HinfI TfiI TagI BsrI MseT 11 TATGTTCTCTCTATTAAGAAGTTATAATCGAACTGGTGATTCTGATATCGAGAGGCCTTT 2221 -----+ 2280 ATA CA SGAGAGA TA ATTCTTCA ATATTAGCTTGACCACTAAGACTATAGCTCTCCGGAAA NlaIV Sth132T CVITTI SEANT L Ncil | SCTFI SmaI BsaJI | MspI | Ncil Sth132I ScrFI BcefI AvaIII ApoI BsaJI Tsp509I CviJI MnlI | HaeIII FokI | BpmI | BsaJI | | DdeI i i ~ ii 11111 CTTAGAAATTCAAGGGATTGCCGACGGCCTCTTTGTTCATCAAAATAGCATCCCCGGGGC 2281 ----- 2340 GAATCTTTAAGTTCCCTAACGGCTGCCGGAGAAACAAGTAGTTTTATCGTAGGGGCCCCG HaeIV Hin4I HinfT TfiI ScrFI Mn 1 T BanII Tth111II| SfaNI Bsp1286I | BciVI ECORII SfcI | FokI Hpy188IX 1 1 TCCAGGATTCCGTATCCAATCTACAGGGTATTCCTTACAAGCATCCTCCGAAACTTCTTT 2341 ----- 2400

114/165

AGGTCCTAAGGCATAGGTTAGATGTCCCATAAGGAATGTTCGTAGGAGGCTTTGAAGAAA

Title: CHLAMYDIA ANTIGENS AND STATE O 9 / 8 3 0 4 4 6

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

		Taa				
		HphI		FauI	DpnI	
	Bsu36				IAI	
Hpy	/188IX Dde	I MboII	Acil	Hpy188	IX	
	1			11	11 1	
	ACATCAGAAAATCTC	CTTAGGTTTTGCAC	AGTTCTTCACCO	GCACTAAAGAAA	TCGGATC	
2401		+	+		+	2460
	TGTAGTCTTTTAGAG	GAATCCAAAACGTG	TCAAGAAGTGGG	CGTGATTTCTTT	AGCCTAG	
	Cvi	IT				
	BsmA					
	BsmB			BsaJI		
	TthlllI		CjePI	BstDSI		
	MaeII		EarI		DrdII	
				CviJI	MnlI	
	AlwI	MboII I		CA191		
	AAGCAACAACGTCTC	3GCTCACAATACAG'				
2461		+				2520
	TTCGTTGTTGCAGAG	CCGAGTGTTATGTC	agagaagtgaaa'	TACAACTCGAAG	GCACCAA	
	CviRI					
	CjePI			FokI		
	CviJI			BccI		
	HaeI			NlaIV		
	HaeIII			AvaIII		
	StuI		CviJI S	au96II		
	FokI	TaaI	RleAI H		BsmFI	
	10.1	1441	KICKI II	P	1	
	CCAAGAGGCCTTTGC	, a carce ca ca corr	TACCCTATCCCT		יא כיבדיכים א	
2521	CCAAGAGGCCTTTGC	AMCMICCCMCMGII.	I AGCG I A I GGC I.		+	25.00
2521		+				2580
	GGTTCTCCGGAAACG'	FTGTAGGGTGTCAA	ATCGCATACCGA	TACCCCTGGTAG	TGGAGGT	
	MaeIII					
	Tsp45I		AflIII		Fnu4HI	
	MnlI Hpyl	78III	MaeII	CviJI	TseI	
				11	- 11	
	CGCCTACATCCGTCA					
2581		+	+		+	2640
	GCGGATGTAGGCAGT	STAGTTCTTGTCCC	STCTTCCCTGCA	CAATATCGGTAT	GTAATCG	
					MnlI	
				Bs	cGI	
	AluT			CviJ		
	CviJI BbvI			BbvCI	7 1 1	
Em	14HI CviJI	BsaJI	Umb T	Bpu10I	111	
			HphI	DdeI	1 1 1	
.1.5	eI BbvI	styI	MboII	pgei	1 1 1	
	AGCAGCTATCGGCTG'					
2641					+	2700
	TCGTCGATAGCCGAC	AAGAAAGGGAACCG'	FTGTCTTTAGGA	TAGAAGTGGAGT	CGGGCAA	

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

PCT/CA99/00992

Fig. 22 (con't)

CviJI HaeI HaeIII BfaI AvrII BsaJI StyI		
EcoRV MslI	BsrDI RsaI	MboII
	ATGTTCGCAATGCTTTAGGGT	ACAAAGTCCACAATCAAAC
2941+ CCTATAGGATCCGGTATTGA	TACAAGCGTTACGAAATCCCA	
	Dp	ili oni
Dpn Sau3AI	BseRI	1
Hpy178III EarI	BsaJI StyI	BsaI BsmAI
HhaI SapI TaqI	TaqII	AlwI TaqI
3001	ATCTATTCTTGGATTACCAAG	3060
MnlI MnlI BccI 	ApoI Tsp5091 Tth11111 MseI RsaI	Tsp509I
3061+		3120
TAGATGCGTGGTAGAGGTTC	GTCCTTCATGGAATTTTAAGA	TTTTATTTTCTTGCTATTT
 ATTGAAATCTTTAGAATTAA	MwoI MaeII AluI Hpy188IX CviJI CAACTATCCGATGAGCTACGT	PleI HinfI HinfI
	GTTGATAGGCTACTCGATGCA	

CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 22 (con't)

BECHUD / 83044

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
WO 00/24765 Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 23:

taga	acact	at a	aaaa	caaaı	t at	agad	caaaa	a aat	ctag	gcat	tgat	tta	tc a	agaat	tatttc	60
ttt	tatt	tg 1	gaad	gagt	ta to	geget	tttt	ttg	getto	egga	atg Met 1	ttg Leu	ctt Leu	cct Pro	ttt Phe 5	115
act Thr	ttt Phe	gta Val	ttg Leu	gct Ala 10	aat Asn	gaa Glu	ggt Gly	ctc Leu	caa Gln 15	ctt Leu	cct Pro	ttg Leu	gag Glu	acc Thr 20	tat Tyr	163
att Ile	aca Thr	tta Leu	agt Ser 25	cct Pro	gaa Glu	tat Tyr	caa Gln	gca Ala 30	gcc Ala	cct Pro	caa Gln	gta Val	999 Gly 35	ttt Phe	act Thr	211
cat His	aac Asn	caa Gln 40	aat Asn	caa Gln	gat Asp	ctc Leu	gca Ala 45	att Ile	gtc Val	gly ggg	aat Asn	cac His 50	aat Asn	gat Asp	ttc Phe	259
atc Ile	ttg Leu 55	gac Asp	tat Tyr	aag Lys	tac Tyr	tat Tyr 60	cgg Arg	tcg Ser	aat Asn	gga Gly	ggt Gly 65	gct Ala	ctt Leu	acc Thr	tgt Cys	307
aag Lys 70	aat Asn	ctt Leu	ctg Leu	atc Ile	tct Ser 75	gaa Glu	aat Asn	ata Ile	ggg ggg	aat Asn 80	gtc Val	ttc Phe	ttt Phe	gag Glu	aag Lys 85	355
aat Asn	gtc Val	tgt Cys	ccc Pro	aat Asn 90	tct Ser	ggc Gly	ggg Gly	gca Ala	att Ile 95	tat Tyr	gct Ala	gct Ala	caa Gln	aat Asn 100	tgc Cys	403
acg Thr	atc Ile	tcc Ser	aag Lys 105	aat Asn	cag Gln	aac Asn	tat Tyr	gca Ala 110	ttt Phe	act Thr	aca Thr	aac Asn	ttg Leu 115	gtc Val	tct Ser	451
									cta Leu							499
gcc Ala	ata Ile 135	aat Asn	tgc Cys	tct Ser	att Ile	act Thr 140	aat Asn	aac Asn	cta Leu	gga Gly	cag Gln 145	gga Gly	act Thr	ttc Phe	gtt Val	547
									gcc Ala							595
tta Leu	tct Ser	att Ile	aaa Lys	gac Asp 170	aat Asn	aaa Lys	ggc Gly	ccg Pro	atc Ile 175	ata Ile	atc Ile	aag Lys	cag Gln	aat Asn 180	cgg Arg	643
									ggg Gly							691

(4.0 (2.0 km y) WO 00/24765

Tide: CHLAMYDIA ANTIGENS AND CORESPONDING DNA FRAGMENTS AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig.	23	(con	't)
------	----	------	-----

cta Leu	aat Asn	ata Ile 200	gag Glu	gga Gly	aat Asn	tct Ser	gga Gly 205	gct Ala	ata Ile	cag Gln	atc Ile	aca Thr 210	agc Ser	aac Asn	tct Ser	739
tca Ser	gga Gly 215	tct Ser	eja aaa	gga Gly	ggc Gly	ata Ile 220	ttt Phe	tct Ser	acc Thr	caa Gln	aca Thr 225	ctc Leu	acg Thr	atc Ile	tcc Ser	787
tcg Ser 230	aat Asn	aaa Lys	aaa Lys	ctc Leu	ata Ile 235	gaa Glu	atc Ile	agt Ser	gaa Glu	aat Asn 240	tcc Ser	gcg Ala	ttc Phe	gca Ala	aat Asn 245	835
aac Asn	tat Tyr	gga Gly	tcg Ser	aac Asn 250	ttc Phe	aat Asn	cca Pro	gga Gly	gga Gly 255	gga Gly	ggt Gly	ctt Leu	act Thr	acc Thr 260	acc Thr	883
ttt Phe	tgc Cys	acg Thr	ata Ile 265	ttg Leu	aac Asn	aac Asn	cga Arg	gaa Glu 270	Gly ggg	gta Val	ctc Leu	ttt Phe	aac Asn 275	aat Asn	aac Asn	931
caa Gln	agc Ser	cag Gln 280	agc Ser	aac Asn	ggt Gly	gga Gly	gcc Ala 285	att Ile	cat His	gcg Ala	aaa Lys	tct Ser 290	atc Ile	att Ile	atc Ile	979
aaa Lys	gaa Glu 295	aat Asn	ggt Gly	cct Pro	gta Val	tac Tyr 300	ttt Phe	tta Leu	aat Asn	aac Asn	act Thr 305	gca Ala	act Thr	cgg Arg	gga Gly	1027
999 Gly 310	gct Ala	ctc Leu	ctc Leu	aac Asn	tta Leu 315	tca Ser	gca Ala	ggt Gly	tct Ser	gga Gly 320	aac Asn	gga Gly	agc Ser	ttc Phe	atc Ile 325	1075
tta Leu	tct Ser	gca Ala	gat Asp	aat Asn 330	gga Gly	gat Asp	att Ile	atc Ile	ttt Phe 335	aac Asn	aat Asn	aat Asn	acg Thr	gcc Ala 340	tcc Ser	1123
aag Lys	cat His	gcc Ala	ctc Leu 345	aat Asn	cct Pro	cca Pro	tac Tyr	aga Arg 350	aac Asn	gcc Ala	att Ile	cac His	tcg Ser 355	act Thr	cct Pro	1171
aat Asn	atg Met	aat Asn 360	ctg Leu	caa Gln	ata Ile	gga Gly	gcc Ala 365	cgt Arg	ccc Pro	ggc Gly	tat Tyr	cga Arg 370	gtg Val	ctg Leu	ttc Phe	1219
tat Tyr	gat Asp 375	ccc Pro	ata Ile	gaa Glu	cat His	gag Glu 380	ctc Leu	cct Pro	tcc Ser	tcc Ser	ttc Phe 385	ccc Pro	ata Ile	ctc Leu	ttt Phe	1267
aat Asn 390	ttc Phe	gaa Glu	acc Thr	ggt Gly	cat His 395	aca Thr	ggt Gly	aca Thr	gtt Val	tta Leu 400	ttt Phe	tca Ser	ggg	gaa Glu	cat His 405	1315

Title: CHILAMYDIA ANTIGENSIANDS CORRESPONDING DNA FRAGMENTS
09/830446 CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

	(con't)

gta Val	cac His	cag Gln	aac Asn	ttt Phe 410	acc Thr	gat Asp	gaa Glu	atg Met	aat Asn 415	ttc Phe	ttt Phe	tcc Ser	tat Tyr	tta Leu 420	agg Arg	1363
aac Asn	act Thr	tcg Ser	gaa Glu 425	cta Leu	cgt Arg	caa Gln	gga Gly	gtc Val 430	ctt Leu	gct Ala	gtt Val	gaa Glu	gat Asp 435	ggt Gly	gcg Ala	1411
с 1У 333	ctg Leu	gcc Ala 440	tgc Cys	tat Tyr	aag Lys	ttc Phe	ttc Phe 445	caa Gln	cga Arg	gga Gly	ggc Gly	act Thr 450	cta Leu	ctt Leu	cta Leu	1459
ggt Gly	caa Gln 455	ggt Gly	gcg Ala	gtg Val	atc Ile	acg Thr 460	aca Thr	gca Ala	gga Gly	acg Thr	att Ile 465	ccc Pro	aca Thr	cca Pro	tcc Ser	1507
tca Ser 470	aca Thr	cca Pro	acg Thr	aca Thr	gta Val 475	gga Gly	agt Ser	act Thr	ata Ile	act Thr 480	tta Leu	aat Asn	cac His	att Ile	gcc Ala 485	1555
att Ile	gac Asp	ctt Leu	cct Pro	tct Ser 490	att Ile	ctt Leu	tct Ser	ttt Phe	caa Gln 495	gct Ala	cag Gln	gct Ala	cca Pro	aaa Lys 500	att Ile	1603
tgg Trp	att Ile	tac Tyr	ccc Pro 505	aca Thr	aaa Lys	aca Thr	gga Gly	tct Ser 510	acc Thr	tat Tyr	act Thr	gaa Glu	gat Asp 515	tcc Ser	aac Asn	1651
											cgc Arg					1699
gaa Glu	gat Asp 535	ccc Pro	tac Tyr	gat Asp	agt Ser	ctg Leu 540	gat Asp	ctc Leu	tcg Ser	cac His	tct Ser 545	ctt Leu	gag Glu	aaa Lys	gtt Val	1747
ccc Pro 550	ctt Leu	ctt Leu	tat Tyr	att Ile	gtc Val 555	gat Asp	gtc Val	gct Ala	gca Ala	caa Gln 560	aaa Lys	att Ile	aac Asn	tct Ser	tcg Ser 565	1795
caa Gln	ctg Leu	gat Asp	cta Leu	tcc Ser 570	aca Thr	tta Leu	aat Asn	tct Ser	ggc Gly 575	gaa Glu	cac His	tat Tyr	gly ggg	tat Tyr 580	caa Gln	1843
ggc Gly	atc Ile	tgg Trp	tcg Ser 585	acc Thr	tat Tyr	tgg Trp	gta Val	gaa Glu 590	act Thr	aca Thr	aca Thr	atc Ile	acg Thr 595	aac Asn	cct Pro	1891
											ctg Leu					1939

Title: CHLAMYDIA ANTIGENS AND THE 109/830446

CORRESPONDING DNA FRAGMENTS AND USES THEREOF

2371

2419

2467

2515

WO 00/24765

745

810

760

775

790

Fig. 23 (con't)

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

tgg tct cct cta ggc tac cgt cct cat ccc gaa cgt cga gga gaa ttc 1987

PCT/CA99/00992

Trp	Ser 615	Pro	Leu	Gly	Tyr	Arg 620	Pro	His	Pro	Ğlu	Arg 625	Arg	Gly	Glu	Phe	
att Ile 630	acg Thr	aat Asn	gcc Ala	ttg Leu	tgg Trp 635	caa Gln	tcg Ser	gca Ala	tat Tyr	acg Thr 640	gct Ala	ctt Leu	gca Ala	gga Gly	ctc Leu 645	2035
cac His	tcc Ser	ctc Leu	tcc Ser	tcc Ser 650	tgg Trp	gat Asp	gaa Glu	gag Glu	aag Lys 655	ggt Gly	cat His	gca Ala	gct Ala	tcc Ser 660	cta Leu	2083
			ggt Gly 665													2131
gga Gly	ttt Phe	cgt Arg 680	agt Ser	cat His	atg Met	aca Thr	ggt Gly 685	tat Tyr	agt Ser	gct Ala	acc Thr	acc Thr 690	gaa Glu	gca Ala	acc Thr	2179
tct Ser	tct Ser 695	caa Gln	agt Ser	ccg Pro	aat Asn	ttc Phe 700	tct Ser	tta Leu	gga Gly	ttt Phe	gct Ala 705	cag Gln	ttc Phe	ttc Phe	tcc Ser	2227
aaa Lys 710	gct Ala	aaa Lys	gaa Glu	cat His	gaa Glu 715	tct Ser	caa Gln	aat Asn	agc Ser	acg Thr 720	tcc Ser	tct Ser	cac His	cac His	tat Tyr 725	2275
			atg Met													2323

cta tot gtg tot ott got tat atg ttt acc tog gaa cat acc cat aca

Leu Ser Val Ser Leu Ala Tyr Met Phe Thr Ser Glu His Thr His Thr

Met Tyr Gln Gly Leu Leu Glu Gly Asn Ser Gln Gly Ser Phe His Asn

cat acc tta gca ggg gct ctc tcc tgt gtt ttc tta cct caa cct cac His Thr Leu Ala Gly Ala Leu Ser Cys Val Phe Leu Pro Gln Pro His

ggc gag tcc ctg cag atc tat ccc ttt att act gcc tta gcc atc cga

Gly Glu Ser Leu Gln Ile Tyr Pro Phe Ile Thr Ala Leu Ala Ile Arg

gga aat ctt gct gcg ttt caa gaa tct gga gac cat gct cgg gaa ttt Gly Asn Leu Ala Ala Phe Gln Glu Ser Gly Asp His Ala Arg Glu Phe

765

780

750 atg tat cag ggt ctc ctg gaa ggg aac tct cag gga tct ttc cac aac

815

Title: CHLAMYDIA ANTIGENS AND

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig	23	(con't)

too ota cac ogo coo ota acg gac gto too oto cot gta gga ato ogo Ser Leu His Arg Pro Leu Thr Asp Val Ser Leu Pro Val Gly Ile Arg 825 830 835	2611
gct tct tgg aag aac cac cac cga gtt ccc cta gtc tgg ctc aca gaa Ala Ser Trp Lys Asn His His Arg Val Pro Leu Val Trp Leu Thr Glu 840 845 850	a 2659 i
att too tat ogo tot act oto tat agg caa gat oot gaa oto cac tog Ile Ser Tyr Arg Ser Thr Leu Tyr Arg Gln Asp Pro Glu Leu His Ser 855 860 865	2707
aaa tta ctg att agc caa ggt acg tgg acg cag cag gcc act cct gtg Lys Leu Leu Ile Ser Gln Gly Thr Trp Thr Thr Gln Ala Thr Pro Val 870 885 885	Į.
acc tac aat gct tta ggg atc aaa gtg aaa aat acc atg cag gtg ttt Thr Tyr Asn Ala Leu Gly Ile Lys Val Lys Asn Thr Met Gln Val Phe 890 895 900	2803
cct aaa gtc act ctc tcc tta gat tac tct gcg gat att tct tcc tcc Pro Lys Val Thr Leu Ser Leu Asp Tyr Ser Ala Asp Ile Ser Ser Ser 905 910 915	2851
acg ctg agt cac tac tta aac gtg gcg agt aga atg aga ttt Thr Leu Ser His Tyr Leu Asn Val Ala Ser Arg Met Arg Phe 920 925 930	2893
taacaataag tgaccaaaac agaaagatta aggaacctct agtgtcaaag actcctc	cta 2953
agtttttatt ctatctcggg aatttcacag cctgcatgtt cgggatg	3000

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Hp

Figure 24 (RY-46)
Restriction enzyme analysis of CPN100628

		HaeIV					
	Tsp509I	Hin4I	BfaI	Hpy18	8IX SspI		
	TAGACACTATAAAACA	*****************	A	. ~ ~ n mm n n mm n n		TTTC	
1	TAGACACTATAAAACA	+	-+	+	+	+ 6	50
_	ATCTGTGATATTTTGT	TTAATATCTGTT	TTTTAGA:	CGTAACTAAAT.	AAGTCTTA	FAAAG	
		771 T . Mr	Hpy188	rx.			
		Hhal Mwo	21				
	TTTCTATTTGTGAACG	AGTATGCGCTTT	TTTTGCT:	CGGAATGTTGC	TTCCTTTT	ACTTT	
61							20
	AAAGATAAACACTTGC	TCATACGCGAAA	AAAACGA?	AGCCTTACAACG	AAGGAAAAT	rgaaa	
					D	ce83I	
					Hpy178I		
				M:	seI	īii	
		BsaI Bsal		Cj.	eI	i i	
	CviJI CjeI	BsmAI BsmAI	I.	MmeI	11	!!	
	TGTATTGGCTAATGAA	000000000000000000000000000000000000000	 	 			
121	TGTATTGGCTAATGAA	GGICICCAACII		GACCIAIAIIA	JAIIAAGI		80
	ACATAACCGATTACTT	CCAGAGGTTGAAG	GAAACCI	CTGGATATAAT	TAATTCAC		
				_	MunI		
		MnlI			rsp509I n132I		
	Tth	11111		Dpn:			
		BbvI		BglII	i i i		
		BslI		BstYI			
	Fnu4HI Eco			Sau3AI			
	TseI SmlI			Hpy178III			
	ATATCAAGCAGCCCCT	IIIII CAAGTAGGGTTTA	CTCATA	II CCAAAATCAAG	TCTCGCA	TTGT	
181							40
	TATAGTTCGTCGGGGA	GTTCATCCCAAAT	rgagtati	GGTTTTAGTTC	PAGAGCGTT	AACA	
	HinfI		RsaI ScaI	BsiEI			
	Tfil		TatI	MnlI	BsiHk	AI	
/178		Taql		TaqI	Bsp128		
	1 1	_	1 1 1	1	-	- 1	
	CGGGAATCACAATGAT						
241	GCCCTTAGTGTTACTA						00

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 097830446

PCT/CA99/00992

Fig. 24 (con't)

Hpy188IX	-+ 360
Fnu4HI	
BslI TseI	
Sth132I Tsp509I Sau3AI	Hpy188IX
Tsp509I BbvI CviRI	HinfI
MboII AciI MwoI Tsp509I	TfiI
	 CTCCAAGAATCA
361	
GACAGGGTTAAGACCGCCCCGTTAAATACGACGAGTTTTAACGTGCTA	
	DpnI
	au3AI TagII
	raqii spRI!
	iI
BtsI	1 ii i
AlwNI	1 11 1
CjePI	
CViJI BsaI FauI	
BsaI FauI	1 11 1
CViRI Hpy188IX SfcI	1 11 1
	i ii i
GAACTATGCATTTACTACAAACTTGGTCTCTGACAATCCTACAGCCAC	
421	
CTTGATACGTAAATGATGTTTGAACCAGAGACTGTTAGGATGTCGGTG	ACGCCCTAGTGA
BanII	BslI
BsiHKAI Eco	
Bsp1286I BfaI	1 [
SacI AvrII	!!
AluI CjePI BsaJI	1 1
AlwI CviJI MwoI Tsp509I StyI	
ATTGGGTGGAGCTCTCTTTGCCATAAATTGCTCTATTACTAATAACCT	AGGACAGGGAAC
481	
TAACCCACCTCGAGAGAAACGGTATTTAACGAGATAATGATTATTGGA	TO COTO TO COTO

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 24 (con't)

		BsmAI			
		BsmBI			
	Bsp	1286I			
	Bs	eMII			
	В	mgI			
	Bs	eSI			
Dr	aI Nla	IVIII I	MnlI		
HincII Mse			deI		
1	1 i I	iiii i	1 1		
TTTCGTTGACAATCTCGCT		GTGCCCTCTA	TACTGAGACGA	AACTTATC	
541	+			+ 60	00
AAAGCAACTGTTAGAGCGA	AATTTATTCCCCC	CACGGGAGAT	ATGACTCTGC7	ITGAATAG	
		HinfI			
	Bcg	I			
	Sth132I				
	BsaBI	i i	Hpy1881	ſΧ	
	Sth132I	i i	Apol	1	
	DpnI	i i	Tsp509I	İ	
Sau3	IA	Tth	111II		
CviJI	1 i i i	Bsp1	286I	1	
HaeIII		Bm	ngI	MnlI	
MseI Sau96I		Tfil Bse	SI	TaaI	
11			1 11 1	1 1	
TATTAAAGACAATAAAGGC	CCGATCATAATCA	AGCAGAATCG	GGCACTAAATT		
601	+			+ 66	50
ATAATTTCTGTTATTTCCG	GGCTAGTATTAGT	TCGTCTTAGC	CCGTGATTTAA	AGCCTGTC	
				AluI	
				/iJI	
BcgI			Hpy178III	!	
CjePI			ApoI	!	
MnlI Bse	RI Mn	li Tsp	5091	!	
	_ !	_! _ !			
TTTAGGAGGAGGGATTTAT					
661					20
AAATCCTCCTCCCTAAATA	TCACCCTTGAGAG	ATTTATATCT	CCCTTTAAGAC	CTCGATA	
	- 2 - 100				
	AlwNI MnlI				
Danit Ma	DpnI h111II				
	stYI				
				Sau3AI	
	u3AI arI		Uni	/178III	
Sau3AI Hpy178			npy Bse		
Juanit Apy1/8	11 MIW1		Бъс		
ACAGATCACAAGCAACTCT	TCAGGATCTGGGG	GAGGCATATT	TTCTACCCAAA	L II	
	+				8.0
	ACTOOTACACCO	OTTO CTT ATA	7 7 C 7 TO COTTO	CTCLOTC	

Title: CHLAMYDIA ANTIGENS AND CULTURE OF 1830446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765
Fig. 24 (con't)

Dp	TaqI ApoI thillII Tsp5091 ThaI thillII MnlI TspRI AciI	840
,01	$\tt CTAGAGGAGCTTATTTTTGAGTATCTTTAGTCACTTTTAAGGCGCAAGCGTTTATTGAT$	
Sau3	BSII MnlI ScrFI MnlI TaqI EcoRII DpnI MnlI BSERI ON I NI ACTAGCTTGAAGTTAGGTCCTCCTCCAGAATGATGGGAAAACGTGCTATAACTT ACCTAGCTTGAAGTTAGGTCCTCCTCCAGAATGATGGGAAAAACGTGCTATAACTT	900
901	CViJI TABI CVIJI BS1I RSAI MSEI CJEPI XCMI NIAIV MWOI	960
Nlal	AVAI MnlI TSPRI CVIRI CYRI CYRI CYRI Sau961 Acci Msei Sth1321	1020
1021	BanII Bsp12861 CvJJ Hpy178III AluI Hin4I BplI CviJI BseRI BspMI MnlI AlwNI HindIII SfcI	1080

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s) Andrew D, MURDIN et al

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251 PCT/CA99/00992

		BcefI	
		NlaIII	
		NspI	
		SphI	
PstI	CviJI	MnlI	
CviRI Hin4I MseI		Cac8I Tth111II	
	naeiii	Cacol Ichilli	
TGCAGATAATGGAGATATTATCTTTAAC		1	_
TGCAGATAATGGAGATATTATCTTTAAC	AATAATACGGCCTC	CAAGCAIGCCCICAAIC	
1081			
ACGTCTATTACCTCTATAATAGAAATTG	TTATTATGCCGGA	3GTTCGTACGGGAGTTAG	G
		BanII	
	Cvi		
HinfI	BsmF.	I Bsp1286I Msp	I
TagI	HinfI	CviJI Nci	I
MnlI MnlI PleI	TfiI	NlaIV ScrF	1
	1	i	Ī
TCCATACAGAAACGCCATTCACTCGACT	יריבי אידי אידי אידי איז אידירי	TGCN N T T GG DGCCCGTC	ċ
1141	CCIMMIMIGMMIC.	IGCARATAGOAGEECGTE	. 1200
1141	-+		7 1200
AGGTATGTCTTTGCGGTAAGTGAGCTGA	GGATTATACTTAGA	ACGITTATCCTCGGGCAG	G
	BanI:		
	BsiHKA:	1	
	Bsp1286	1	
	Sac	1	
	AluI	l	
	CViJI	i	
TagI	BsaXI		
Sth132I DonI	NlaIII		
CviJI Sau3AI	AloI		
Sth132I AlwI	PpiI	MnlI	
	111		
CGGCTATCGAGTGCTGTTCTATGATCCC			
1201	-+		+ 1260
GCCGATAGCTCACGACAAGATACTAGGG	TATCTTGTACTCG	AGGGAAGGAGGAAGGGGT	A
		RsaI	
MspI		NlaIII	
BsaWI		IqaN	
BsrFI		BsrGI	
		TatI	
PinAI		AflIII	
Tsp509I NspV	TaaI	ATILII []]	
MseI TaqI R	saI	BspLU11I	
11 1 11			
ACTCTTTAATTTCGAAACCGGTCATACA			
1261	-+		+ 1320
TGAGAAATTAAAGCTTTGGCCAGTATGT	CCATGTCAAAATA	AAAGTCCCCTTGTACATG	T

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS 09/830446 CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 24 (con't)

WO 00/24765

	BslI	
	ApoI MseI Tsp509I EcoNI Hpy188IX MaeII	
1321	CCAGAACTTTACCGATGAAATGAATTTCTTTTCCTATTTAAGGAACACTTCGGAACTACG	1380
	${\tt GGTCTTGAAATGGCTACTTTACTTAAAGAAAAGGATAAATTCCTTGTGAAGCCTTGATGC}$	
	MboII	
	CacBI CviJI	
	HaeI	
	HaeIII Cac8I	
	Bcci Mwoll	
	FauI CviJI	
	HinfI PleI AciI MnlI	
1381	+	1440
	AGTTCCTCAGGAACGACAACTTCTACCACGCCCCGACCGGACGATATTCAAGAAGGTTGC	
	Hpyl78III DpnI	
	MmeI BclI HinfI	
	BfaI Sau3AI TfiI	
1441	AGGAGGCACTCTACTTCTAGGTCAAGGTGCGGTGATCACGACAGCAGGAACGATTCCCAC	1500
	${\tt TCCTCCGTGAGATGAAGATCCAGTTCCACGCCACTAGTGCTGTCGTCCTTGCTAAGGGTG}$	
	BsrDI	
	CjePI MnlI RsaI DraI	
	Ciel RleAI Scal Msel	
E	BccI BsbI TaaI TatI CjeI	
	${\tt ACCATCCTCAACACCAACGACAGTAGGAAGTACTATAACTTTAAATCACATTGCCATTGA}$	
1501	TGGTAGGAGTTGTGGTTGCTGTCATCCTTCATGATATTGAAATTTAGTGTAACGGTAACT	1560
	Data	
	BstXI BseMII	
	Bpul0I ApoI DdeI Tsp509I	
	AluI NlaIV	
	CjePI	
	CCTTCCTTCTATTCTTTCCAAGCTCAGGCTCCAAAAATTTGGATTTACCCCACAAA	
1561	GGAAGGAAGATAAGAAAGAAAGTTCGAGTCCGAGGTTTTTAAACCTAAATGGGGTGTTT	1620

CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Alwi	1680
Dpn	
Alwi Alwi Smli	1740
Bsg	1800
HincII SfaNI	
CCTAGATAGGTGTAATTTAAGACCGCTTGTGATACCCATAGTTCCGTAGACCAGCTGGAT BDVI HhaI HhaI Hpy178III BfaI ThaI TTGGGTAGAAACTACAACAATCAACAACCACTACATCTCTACTACGAGCGGAATACAAAACA	
1861+	1920

PCT/CA99/00992

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

Fig. 24 (con't)

Taal	
BBERI BCefi	
Alui	
MseI DrdII TaaI Pf11108I NdeI	
ApoI Tsp509I Hpy1881X DdeI MhoII MboII MboII TgCTACCACCGAAGCAACCTCTTCTCAAAGTCCGAATTTCTCTTTAGGATTTGCTCAGTT	

131/165

ACGATGGTGGCTTCGTTGGAGAAGAGTTTCAGGCTTAAAGAGAAATCCTAAACGAGTCAA

Inventor(s): Andrew D. MURDIN et al PCT/CA99/00992

Fig. 24 (con't)

Title: CHLAMYDIA ANTIGENS AND 3 13 14 10 9 / 8 3 0 4 4 6 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF.
WO 00/24765 Inventor(s): Andrew D. MURDIN et al
DOCKET NO. 032931/0251

PCT/CA99/00992

Sth132I	
Hpy178III ApoI	
BsaI Tsp509I	
BsmAI Hpy178III	
HinfI BslI	
Fnu4HI TfiI AvaI	
Tsel Hpy178III	
· 1	
TCTTGCTGCGTTTCAAGAATCTGGAGACCATGCTCGGGAATTTTCCCTACACCGCCCCCT	
	2580
AGAACGACGCAAAGTTCTTAGACCTCTGGTACGAGCCCTTAAAAGGGATGTGGCGGGGGA	
BsmAI BsmBI AatII	
BsaHI HinfI HhaI	
MaeII TfiI ThaI	
BslI SfcI MnlI AciI DrdII MboII	
AACGGACGTCTCCCTGTAGGAATCCGCGCTTCTTGGAAGAACCACCACCGAGTTCC	
	2640
TTGCCTGCAGAGGGAGGACATCCTTAGGCGCGAAGAACCTTCTTGGTGGTGGCTCAAGG	
Hpy178III	
DpnI	
BstYI	
CviJI Sau3AI	
BslI ApoI AlwI	
BfaI Tsp509I SfcI	
CCTAGTCTGGCTCACAGAAATTTCCTATCGCTCTACTCTCTATAGGCAAGATCCTGAACT	
	2700
GGATCAGACCGAGTGTCTTTAAAGGATAGCGAGATGAGAGATATCCGTTCTAGGACTTGA	
MaeIII	
Tsp45I	
MslI	
CjeI	
HgaI	
CViJI BsaJI BsaAI HaeI !	
TaqI CjeI CviJI RsaI Cac8I	
CCACTCGAAATTACTGATTAGCCAAGGTACGTGGACGACGCAGGCCACTCCTGTGACCTA	
	2760
2701	2.00

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 24 (con't)

WO 00/24765

Title: CHLAMYDIA ANTIGENSAND TO THE CORRESPONDING DNA FRAGMENTS 09/830446

Inventor(s): Andrew D. MURDIN et al

WO 00/24765 DOCKET NO.: 032931/0251 PCT/CA99/00992

Figure 25:

cac	tgtg	gat	gtga	tatt	cg c	agaa	cctc	c cg	tcaa	atat	act	ctaç	gata	tago	jaagcaa	60
att	acga	ctt	taaa	cctt	at t	taac	gaca	g gg	ttga				ctt Leu			114
			tct Ser												Cys	162
			gag Glu 25												acg Thr	210
aat Asn	cag Gln	ggt Gly 40	gaa Glu	gag Glu	atc Ile	tta Leu	ctc Leu 45	act Thr	tca Ser	gat Asp	ttt Phe	gtt Val 50	tgt Cys	tca Ser	aac Asn	258
			gcg Ala													306
			tta Leu													354
			aat Asn													402
			aat Asn 105													450
			ggc Gly													498
Lys	Asp 135	Leu	atc Ile	Phe	Thr	Thr 140	Asn	Arg	Val	Āla	Tyr 145	Ser	Pro	Ala	Ser	546
gta Val 150	act Thr	acg Thr	tcg Ser	gca Ala	act Thr 155	Pro	gca Ala	atc Ile	act Thr	aca Thr 160	gta Val	act Thr	aca Thr	gga Gly	gcc Ala 165	594
Ser	Āla	Leu	caa Gln Gln	Pro	Thr Thr	Asp	Ser	Lau	Thr	Val	Glu	Asn	Ile	Ser	Gln	642
Ser	Ile	Lys	ttt Phe Phe 185	Phe	Ġĺγ	Asn	Leu	Ala	Asn	Phe	Ğĺy	Ser	Ala	Ile	Ser	690

970

AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al PCT/CA99/00992 DOCKET NO.: 032931/0251 Fig. 25 (con't) agt tot occ acg goa gto gtt aaa tto atc aat aac acc got acc atg Ser Ser Pro Thr Ala Val Val Lys Phe Ile Asn Asn Thr Ala Thr Met Ser Ser Pro Thr Ala Val Val Lys Phe Ile Asn Asn Thr Ala Thr Met 205 age the toe cat aac tit act teg toa gga gge gge gtg att tat gga Ser Phe Ser His Asn Phe Thr Ser Ser Gly Gly Gly Val Ile Tyr Gly Ser Phe Ser His Asn Phe Thr Ser Ser Gly Gly Gly Val Ile Tyr Gly 786 220 gga ago tot oto ott tit gaa aac aat tot gga tgo ato ato tio acc 834

Gly Ser Ser Leu Leu Phe Glu Asn Asn Ser Gly Cys Ile Ile Phe Thr Gly Ser Ser Leu Leu Phe Glu Asn Asn Ser Gly Cys Ile Ile Phe Thr 235 god aad too tgt gtg aad agd tta aaa ggd gtd acd oot toa toa gga 882

Ala Asn Ser Cys Val Asn Ser Leu Lys Gly Val Thr Pro Ser Ser Gly Ala Asn Ser Cys Val Asn Ser Leu Lys Gly Val Thr Pro Ser Ser Gly

acc tat gct tta gga agt ggc gga gcc atc tgc atc cct acg gga act Thr Tyr Ala Leu Gly Ser Gly Gly Ala Ile Cys Ile Pro Thr Gly Thr Thr Tyr Ala Leu Gly Ser Gly Gly Ala Ile Cys Ile Pro Thr Gly Thr 270 ttc gaa tta aaa aac aat cag ggg aag tgc acc tts tct tat aat ggt 978 Phe Glu Leu Lys Asn Asn Gln Gly Lys Cys Thr Phe Ser Tyr Asn Gly Phe Glu Leu Lys Asn Asn Gln Gly Lys Cys Thr Phe Ser Tyr Asn Gly

aca cca aat gat gcg ggt gcg atc tac gcc gaa acc tgc aac atc gta 1026 Thr Pro Asn Asp Ala Gly Ala Ile Tyr Ala Glu Thr Cys Asn Ile Val Thr Pro Asn Asp Ala Gly Ala Ile Tyr Ala Glu Thr Cys Asn Ile Val 300

ggg aac cag ggt gcc ttg ctc cta gat agc aac act gca gcg aga aat Gly Asn Gln Gly Ala Leu Leu Leu Asp Ser Asn Thr Ala Ala Arg Asn 1074 Gly Asn Gln Gly Ala Leu Leu Leu Asp Ser Asn Thr Ala Ala Arg Asn 315

ggc gga gcc atc tgt gct aaa gtg ctc aat att caa gga cgc ggt cct Gly Gly Ala Ile Cys Ala Lys Val Leu Asn Ile Gln Gly Arg Gly Pro Gly Gly Ala Ile Cys Ala Lys Val Leu Asn Ile Gln Gly Arg Gly Pro 335

att gaa tto tot aga aac ogo gog gag aag ggt gga got att tto ata Ile Glu Phe Ser Arg Asn Arg Ala Glu Lys Gly Gly Ala Ile Phe Ile 1170 Ile Glu Phe Ser Arg Asn Arg Ala Glu Lys Gly Gly Ala Ile Phe Ile 345

ggc ccc tct gtt gga gac cct gcg aag caa aca tcg aca ctt acg att Gly Pro Ser Val Gly Asp Pro Ala Lys Gln Thr Ser Thr Leu Thr Ile Gly Pro Ser Val Gly Asp Pro Ala Lys Gln Thr Ser Thr Leu Thr Ile 360 365

ttg got tcc gaa ggt gat att gcg ttc caa gga aac atg ctc aat aca Leu Ala Ser Glu Gly Asp Ile Ala Phe Gln Gly Asn Met Leu Asn Thr Leu Ala Ser Glu Gly Asp Ile Ala Phe Gln Gly Asn Met Leu Asn Thr 380

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS 07/830446

WO 00/24765 AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig	25	(con't)

_																
Lys	s Pro	o Gl	y Il	e Ar	g Ası	n Ala n Ala	a Ile	Th:	r Va	1 Gl	u Al u Al	a Gl	v Gi	v Ğl	g att u Ile u Ile 405	1314
Va:	L Sei	: Le	u Se	r Al.	a Glr a Glr	a Gly	/ Gly	/ Se	- Ar	g Le g Le	u Va	1 Ph	e Tu	r As	t ccc p Pro p Pro	1362
116	: Thi	Hi:	s Se:	r Lei r Lei	ı Pro	Thr	Thr	Sei	Pro	o Se	r Ac	n Luc	e Ae	p Il p Il	t aca e Thr e Thr	1410
11E	: Asr	n Ala	a Asr a Asr	ı Gıv	' Ala	Ser	Glv	Ser	· Val	Va	1 Ph	e Th	r Se r Se	~ t	g gga s Gly s Gly	1458
Leu	Ser	Ser	The	: Glu	Leu	Leu	Leu	Pro	Ala	AST	י דהי	r Thi	- Th	- T1.	a ctt e Leu e Leu	1506
Leu	Gly	Thr	· Val	Lys	Ile	Ala	Ser	Glv	Glu	T211	Lys Lys	: 110	Th.		Asn Asn 485	1554
ата	vai	٧aı	Asn	Val	Ala	ggc Gly Gly	Phe	Ala	Th-	Gln	Gls	500	C1:	. G1-	Leu Leu	1602
1111	Leu	GTA	Ser	GIV	Giv	acc Thr Thr	Leu	Glv	I.A11	Aia	Thr	D	The	C1.	51-	1650
510	Ада	Ата	vaı	ASD	Phe	acg Thr Thr	I 1 e	Glv	T. vs	T. 6012	A 1 =	Dho	7	0	m -	1698
ser	rne	Leu	LVS	Arc	Asn	ttt Phe Phe 540	V = 1	800	תות	Com	17 n 1	2	7 1 -	~ i	-	1746
Lys	MSD	vaı	Thr	Leu	Thr	gga Gly . Gly .	Ala	Len	Val	Len	Acn	Clin	u i a	3	17 - 1	1794
						gtg : Val : Val :		Leu Leu								1842

Title: CHLAMYDIA ANTIGENS AND SOUTH 1097830446 CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. OF (con't)			= 1		
Fig. 25 (con't)					
atc gct gtt ttc Ile Ala Val Phe Ile Ala Val Phe 585	Lys Gly Ala Lys Gly Ala	Thr Val Thr	Lvs Thr Glv	Phe Pro As	D
ggg gag att gcg Gly Glu Ile Ala Gly Glu Ile Ala 600	Thr Pro Ser	His Tyr Gly	Tyr Gln Gly	Lys Tro Se	r
tac aca tgg tcc Tyr Thr Trp Ser Tyr Thr Trp Ser 615	Arg Pro Leu	Leu Ile Pro	Ala Pro Asp	Gly Gly Ph	e
cct gga ggt ccc Pro Gly Gly Pro Pro Gly Gly Pro 630	Ser Pro Ser	Ala Asn Thr	Leu Tyr Ala	Val Tro As	n n
tca gac act ctc Ser Asp Thr Leu Ser Asp Thr Leu	Val Arg Ser	Thr Tyr Ile	Leu Asp Pro	Glu Arg Tv	r
gga gaa att gtc Gly Glu Ile Val Gly Glu Ile Val 665	Ser Asn Ser	Leu Tro Ile	Ser Phe Leu	Gly Asn Gl	n
gca ttc tct gat Ala Phe Ser Asp Ala Phe Ser Asp 680	Ile Leu Gln	Asp Val Leu	Leu Ile Asp	His Pro Gl	У
ttg tcc ata acc Leu Ser Ile Thr Leu Ser Ile Thr 695	Ala Lys Ala	Leu Gly Ala	Tyr Val Glu	His Thr Pr	0
aga caa gga cat Arg Gln Gly His Arg Gln Gly His 710	Glu Gly Phe	Ser Gly Arg	Tyr Gly Gly	Tyr Gln Al	a a
gcg cta tct atg Ala Leu Ser Met Ala Leu Ser Met	Asn Tyr Thr	Asp His Thr	Thr Leu Gly	Leu Ser Ph	e
ggg cag ctt tat Gly Gln Leu Tyr Gly Gln Leu Tyr 745	Gly Lys Thr	Asn Ala Asn	Pro Tyr Asp Pro Tyr Asp	Ser Arg Cy.	5
tca gaa caa atg Ser Glu Gln Met Ser Glu Gln Met 760	Tyr Leu Leu	Ser Phe Phe	Gly Gln Phe	Pro Ile Va.	1

Tide: CHLAMYDIA ANTIGERS AND 304709 / 8304446

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Fi	g. 25	(con	ı't)													
Th.	r Gli	n Lys n Lys	s Ser	: Glu	ı Ala	ı Let	ı Ile	• Se:	Tr	Lv:	s Al	a Al. a Al.	a Tv	r Gi	tat y Tyr y Tyr	2466
Se:	r Lys	: Asr	n His	Leu	Asn	Thr Thr	Thr	Tvr	Leu	1 Arc	g Pro	Ast	a Tays	: Ā1:	Pro Pro 805	2514
Lys	s Ser	Gln	Gly	Gln	Tro	cat His His	Asn	Asn	Ser	Tyr	- Tvr	 Val 	Lau	Tla		2562
Ala	Glu	His	Pro	Phe	Leu	aac Asn Asn	Trp	Cvs	Leu	Leu	Thr	Arc	r P∽r	Let Let	gct Ala Ala	2610
Gin	Ala	Tro	Asp	Leu	Ser	Glv	Phe	Ile	Ser	Ala	Glii	Pho	Leu Leu	Gi.	ggt Gly Gly	2658
Tro	GIn	Ser	Lvs	Phe	The	gaa Glu Glu 860	Thr	Glv	Aso	1.011	Gln	A	Sar	Dha	80.0	2706
Arg	Gly	Lys	Gly	Tyr	Asn	gtt Val Val	Ser	Leu	Pro	Ile	Glv	Cvs	Ser	Ser	Gln	2754
Trp	Phe	Thr	Pro	Phe	Lvs	aag Lys Lys	Ala	Pro	Ser	Thr	Len	アカー	Tia	Luc	Lan	2802
Аца	Tyr	Lys	Pro	Aso	Ile	tat Tyr Tyr	Ara	Va!	Asn	P∽o	His	Aen	710	Un 1	The	2850
var	vai	ser	Asn	Gln	Glu	agc Ser Ser	Thr	Ser	Ile	5e-	GIV	Al =	Acn	Lon	7	2998
Arg	HLS	GTA	Leu	Phe	Va!	caa Gln Gln	Ile	Hıs	aso '	Vai	Val	Asn	7.011	ምካተ	Ġ1.ii	2946

Title: CHLAMYDIA ANTIGENS AND 09/830446

CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765 AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

gaacttagca atgaaggcca agatteteac tetatgagaa ceccec

PCT/CA99/00992

3150

Fig	. 25 (con't	:)													
Ásp	act Thr Thr	Gln	Āla	Phe	Leu	Asn	Tyr	Thr	Phe	Asp	Gly	Lys	Asn	Gly	Phe	2994
Thr	aac Asn Asn	His	Arg	Val	Ser	Thr	Gly	Leu	Lys	Ser	Thr	Phe	taaa	aacto	ta	3043
agc	tctg	stt a	agagt	itti	et gt	agco	ccgq	j tc	gtat	aga	atco	eteta	atc o	atca	tegaa	3103

CORRESPONDING DNA FRAGMENTS AND USES THEREOF

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 26 (RY-47) Restriction enzyme analysis of CPN100630

Inventor(s): Andrew D. MURDIN et al

Fig. 26 (con't)

PCT/CA99/00992 DOCKET NO.: 032931/0251

301	CViJI HaeIII AclI AluI Eccolo91 MaeII CViJI Bsll Sau961 MseI MnlI	360
361	PleI AciI ApoI Fnu4HI Tsp509I TauI Hpy188IX MboII MaeIII HhaI BsmAI HinfI Hpy178III ACAAATAGTAACTATGCGCTACTTTCTGCCGCAGAGACTTCTGACCTTCAAGAATTTTCT TGTTTATCATTGATACGCGATGAAAACAGGCGTCTCTGAGACTGGAAGTTCTTAAAAAGA	420
421	DrdII	480
481	CjeI BsbI DpnI TasI Sau3AI BpmI MboII Pf11108I ATTGTTTTCCAATCTATCAAAGATTTGATCATCACGAACCGTATTGCCTATTCTCCA	540
	MaeII	600

09/830446

WO 00/24765

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 26 (con't)

PCT/CA99/00992

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

WO 00/24765

Fig. 26 (con't)

MaeIII Tsp45I BsaHI CjeI MwoI HphI NlaIV AluI Hpy178III CviJI BsII HgaI EcoNI TCCTGTGTGGACACCTTAAAAGGCGTCACCCCTTCATCAGGAACCTATGCTTTAGGAAGT AGGACACCTTGCGAATTTTCCGCAGTGGGGAAGTAGTCCTTCA	900
CviRI	
Sth132I	
BccI	
CviJI	
NlaIV MseI	
Ecil Tsp509I BseSI Acil BscGI NspV CviRI	
FokI	
GGCGGAGCCATCTGCATCCCTACGGGAACTTTCGAATTAAAAAACAATCAGGGGAAGTGC	
901+	960
CCGCCTCGGTAGACGTAGGGATGCCCTTGAAAGCTTAATTTTTTGTTAGTCCCCTTCACG	
FauI	
Sth132I MwoI BsiHKAT RsaI DpnI	
graph and the second se	
Sp1286I SfaNI Acil Sau3AI CVIRI	
ACCTTCTCTTATAATGGTACACCAAATGATGCGGGTGCGATCTACGCCGAAACCTGCAAC	
961	1020
TGGAAGAGAATATTACCATGTGGTTTACTACGCCCACGCTAGATGCGGCTTTGGACGTTG	
PstI	
NlaIV TspRI BanI Fnu4HI	
BanI Fnu4HI ScrFI CviRI	
BsaJI TseI NlaIV	
DrdII BtsI EciI	
Pfl1108I EcoRII	
BSpMI NlaIV BfaI BsbI BbvI	
ATCGTAGGGAACCAGGGTGCCTTGCTCCTAGATAGCAACACTGCAGCGAGAAATGGCGGA	
1021	
TAGCATCCCTTGGTCCCACGGAACGAGGATCTATCGTTGTGACGTCGCTCTTTACCGCCT	

WO 00/24765

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 26 (con't)

	AvaII	Hpyl78III ApoI	
	Sau96I	Apol	
SspI	Acil	ECORI	
BccI BsiHKAI	ThaI Ts	p509I BfaI	
BCCI BSiHKAI CVIJI MwoI BSp1286I	Tthl111 HgaI	XbaI Ac	iΙ
GCCATCTGTGCTAAAGTGCTCAAT			
1081			
CGGTAGACACGATTTCACGAGTTA	TAAGTTCCTGCGCCAGG	:ATAACTTAAGAGATCTT	rg
	NlaIV		
AciI	CviJI		
HhaI MmeI	HaeIII BslI		
	co01091 BsaI		
ThaI CviJI	Sau96I BsmAI	SimI	
1 1	111 1 1	1	
CGCGCGGAGAAGGGTGGAGCTATT			
1141			
GCGCGCCTCTTCCCACCTCGATAA	AAGTATCCGGGGAGACA	ACCTCTGGGACGCTTCG	rt
		saJI NlaIII	
Hpy188	IX	StyI NspI	
TaqI TthlllII CviJI	Hp	hI CjeI	
ACATCGACACTTACGATTTTGGCT	TCCGAAGGTGATATTGC	GTTCCAAGGAAACATGC	
1201	+		-+ 1260
TGTAGCTGTGAATGCTAAAACCGA	AGGCTTCCACTATAACG	CAAGGTTCCTTTGTACG	AG
HinfI		Hin4I	
	CjeI TspRI	Hin4I BsaXI	
ScrFI B	ccI TaaI	BsaXI	
ECORII Acil Bs	rDI SfcI	BsgI	
		11 1 1	
AATACAAAACCTGGAATCCGCAAT	GCCATCACTGTAGAAGC	AGGGGGAGAGATTGTGT	
1261	+-		-+ 1320
TTATGTTTTGGACCTTAGGCGTTA	CGGTAGTGACATCTTCG	TCCCCCTCTCTAACACA	3A
	DpnI		
CviRI MaeII	Sau3AI	CviJI	
BsmAI MnlI CviJI	AlwI	BsaXI	
1 I I	1 11	11	
CTATCTGCACAAGGAGGCTCACGT		CATTACACATAGCCTCC	CA
1321			-+ 1380

GATAGACGTGTTCCTCCGAGTGCAGAACATAAAATACTAGGGTAATGTGTATCGGAGGGT

CORRESPONDING DNA FRAGMENTS AND USES THEREOF

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 26 (con't)

WO 00/24765

-0 (0.	,	
1381	AlwI	140
1381	TGGTGTTCAGGCAGATTATTTCTGTAATGTTAGTTGCGATTACCGCGAAGTCCTAGACAT	
1441	BSERI BSMFI PleI HinfI SfcI MnlI Cac8I B8bI	500
1501	DPNI Sau3AI	560
	Hpy178III Ban1I	
1561	1	620

WO 00/24765

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 26 (con't)

>
Acci
BspMI
SfcI
MspAlI
Acii
Fnu4HI
Taul
MwoI
TagII
AarI
BsiHKAI
Bsp1286I
BscGI
BsaJI
BstDSI
BsbI
BpmI
Sth132I
Bsu36I Cac8I
Ddel CviJI
Each Color
ACCTTAGGGCTGGCAACACCCACGGGAGCACCTGCCGCTGTAGACTTTACGATTGGAAAG
1621+ 1680
TGGAATCCCGACCGTTGTGGGTGCCCTCGTGGACGGCGACATCTGAAATGCTAACCTTTC
DpnI
Sau3AI
TaqI Cac8I
AlwI CviRI
BsmI SfaNI
TTAGCATTCGATCCTTTTTCCTTCCTAAAAAGAGATTTTGTTTCAGCATCAGTAAATGCA
1681+ 1740
AATCGTAAGCTAGGAAAAAGGAAGGATTTTTCTCTAAAACAAAGTCGTAGTCATTTACGT
AAICGIAAGCIAGGAAAAAGGAAGAIIIICICIAAAAGAAGICGIAGICAIIIACGI
W - 100777
Hpy178III
DrdII
AloI
PpiI
BanII
BsaXI
BsiHKAI
Bsp1286I DpnI
MaeIII SacI MaeIII BglII
Tsp45I AluI MaeII BstYI
GGCACAAAAACGTCACTTTAACAGGAGCTCTGGTTCTTGATGAACATGACGTTACAGAT
1741+ 1800
CCGTGTTTTTTGCAGTGAAATTCTCCTCGAGACCAAGAACTACTTGTACTGCAATGTCTA

Title: CHLAMYDIA ANTIGENS AND THE 1997 830 446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al

WO 00/24765

DOCKET NO.: 032931/0251

PCT/CA99/00992

Fig. 26 (con't)

HaeIV Tsp509I	
Hin4I BsrI	
HIII-I	
CTTTATGATATGGTGTCATTACAATCTCCAGTAGCAATTCCTATCGCTGTTTTCAAAGGA	
1801	1860
GAAATACTATACCACAGTAATGTTAGAGGTCATCGTTAAGGATAGCGACAAAAGTTTCCT	
GAAATACTATACCACAGTAATGTACTCGT	
CviJI	
BqlI	
MaeIII HinfI MwoI	
TaaI BccI Hin4I CjeI	
BsaXI DdeI Hpy178III PleI CviJI	
BSAKI Buei mpyl/bili 1201	
GCAACCGTTACTAAGACAGGATTTCCTGATGGGGAGATTGCGACTCCAAGCCACTACGGC	
	1920
1861	
CGTTGGCAATGATTCTGTCCTAAAGGACTACCCCTCTAACGCTGAGGTTCGGTGATGCCC	
AceIII	
Tsp509I BsmFI	
Sth132I BslI	
BscGI BccI	
20001	
93 1	
Bausor Marrie	
BsaJI BcefI Sau96I AluI	
Styl BsmFl Bsll Msel CviJl	
TACCAAGGAAAGTGGTCCTACACATGGTCCCGTCCCCTGTTAATTCCAGCTCCTGATGGA	1980
1921	1980
ATGGTTCCTTTCACCAGGATGTGTACCAGGGCAGGGGACAATTAAGGTCGAGGACTACCT	
NlaIV	
AvaII	
EcoO109I	
Psp5II	
Sau961 BpmI Hpy188IX	
ScrFI HhaI ApoI	
ECORII MnlI ECORI	
MnlI BfaI Tsp509I	
GGATTTCCTGGAGGTCCCTCTCCTAGCGCAAATACTCTCTATGCTGTATGGAATTCAGAC	
1981	2040

PCT/CA99/00992

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

WO 00/24765

Fig. 26 (con't)

	Sth132I MaeIII Hpy178III AvaI DpnI BSTYI	CjeI
	Sau3AI	BsaXI Hin4I sp509I
2041		2100
	AluI Hpy1881X riJI DdeI CjeI BsmI	+ 2160
2161	Sau3AI AvaI ThaI N Sth132I BsaJI AciI Mw III III III TTGATAGATCATCCCGGGTTGTCCATAACCGCGAAAGCTTT	BsaXI Hin4I CviJI laIV oI TaqI
2221	MnlI CviJI MwoI BslI NlaIII MnlI BbVI	TSEI HhaI
2281	Sau96I CjeI MaeII Sth132I Cj TCTATGAACTACACGGACCACTACGTTAGGACTTTCTTT	+ 2340

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765 Fig. 26 (con't)

Hin				
	iI Hpy1881			
Pf11108I	MaeII DdeI	BseMII		
1				
ACTAACGCCAACCCCTA				
2341	+		+	2400
TGATTGCGGTTGGGGAT	GCTAAGTGCAACGA	GTCTTGTTTACATA	AATGAGAGCAAGAAA	
		ScrFI		
		EcoRII		
		Tsp509I		
Hinf		MseI		
Hpy178III		iJI	AluI	
MaeIII		aeI	CviJI	
Tsp451		III	Fnu4HI	
Tsp509I PleI	MnlI S	tuI	TseI	
1 11			11 1	
GGTCAATTCCCTATCGT				
2401				2460
CCAGTTAAGGGATAGCA	CTGAGTTTTCTCGC	TCCGGAATTAAAGG	ACCTTTCGTCGAATA	
			AluI	
			viJI	
			MII	
HphI		188IX Bce83I	!!	
BbvI	T.	deI MnlI	SmlI	
1 1		11 11		
GGTTATTCCAAAAATCA				
			+	2520
CCAATAAGGTTTTTAGT	GGATTTATGGTGGA	TGGAGTCTGGACTG	TTTCGAGGTTTTAGA	
		Pst.T		
		CviRI		
BsrDI M	aeIII	FokI SfcI	AloT	
BSIDI M	aeiii		AIOI	
CAAGGGCAATGGCATAA	()			
2521				2500
GTTCCCGTTACCGTATT				2360
GIICCCGIIACCGIAII	GITATCAATGATAC	AAGAA I AAAGACG I	CIIGIAGGAAAGGAI	
		DpnI		
		BstYI		
		Sau3AI		
	n.	luI		
		iJI		
	HindII			
	Mnl			
BbsI	SmlI			
MboII BsrI Bce83I	CviJII	Alv	wI AciI	
1 1 1	0,1011		1 1	
AACTGGTGTCTTCTTAC	II AAGACCTCTGGCTC	I I I I	, TCDGGTTTTDTTTCC	
2581	+			2640
TTGACCACAGAAGAATG	TTCTGGAGACCGAG	TTCCAACCCTACAA		

WO 00/24765

Fig. 26 (con't)

Title: CHLAMYDIA ANTIGENS AND THE TOP 1530446

CORRESPONDING DNA FRAGMENTS
AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

HinfI TfiI

CCAAGATTCTCACTCTATGAGAACCCCCCC
3121 -----+ 3150
GGTTCTAAGAGTGAGATACTCTTGGGGGGG

CviJI HaeI HaeIII Sth132I DdeI StuI BseMII Sth132I BscGI CiePI BslI CieI BsaJI ACCGAGGACACTCAGGCCTTTCTAAACTATACCTTTGACGGGAAAAATGGATTTACAAAC 2941 ------ 3000 TGGCTCCTGTGAGTCCGGAAAGATTTGATATGGAAACTGCCCTTTTTACCTAAATGTTTG SFCT CieI ATHT CjePI CviJI DraI AccI Bsp24I| MseTi CACCGAGTGTCTACAGGACTAAAATCCACATTTTAAAACTCTAAGCTCTGCTTAGAGTTT 3001 -----+ 3060 GTGGCTCACAGATGTCCTGATTTTAGGTGTAAAATTTTGAGATTCGAGACGAATCTCAAA HinfI DdeI Sth132I BsiEI | CviJI MspI HaeI NciI ScrFI BsaJI | TagI BsrDI | MnlI IOWM SfcI Tfil BccI | DdeI MboII TCTGTAGCCCCGGTCGTCTTAGAATCCTCTATCCATCATCGAAGAACTTAGCAATGAAGG 3061 -----+ 3120 AGACATCGGGGCCAGCAGAATCTTAGGAGATAGGTAGTAGCTTCTTGAATCGTTACTTCC Hin4T

Title: CHLAMYDIA ANTIGENS AND 134 46 A 46 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 27: CPN100397

WO 00/24765

1	MKIPLRFLLI	SLVPTLSMSN	LLGAATTEEL	SASNSFDGTT	STTSFSSKTS
51	SATDGTNYVF	KDSVVIENVP	KTGETQSTSC	FKNDAAAGDL	NFLGGGFSFT
101	FSNIDATTAS	GAAIGSEAAN	KTVTLSGFSA	LSFLKSPAST	VTNGLGAINV
151	KGNLSLLDND	KVLIQDNFST	GDGGAINCAG	SLKIANNKSL	SFIGNSSSTR
201	GGAIHTKNLT	LSSGGETLFQ	GNTAPTAAGK	GGAIAIADSG	TLSISGDSGD
251	IIFEGNTIGA	TGTVSHSAID	LGTSAKITAL	RAAQGHTIYF	YDPITVTGST
301	SVADALNINS	PDTGDNKEYT	GTIVFSGEKL	TEAEAKDEKN	RTSKLLQNVA
351	FKNGTVVLKG	DVVLSANGFS	QDANSKLIMD	LGTSLVANTE	SIELTNLEIN
401	IDSLRNGKKI	KLSAATAQKD	IRIDRPVVLA	ISDESFYQNG	FLNEDHSYDG
451	ILELDAGKDI	VISADSRSID	AVQSPYGYQG	KWTINWSTDD	KKATVSWAKQ
501	SFNPTAEQEA	PLVPNLLWGS	FIDVRSFQNF	IELGTEGAPY	EKRFWVAGIS
551	NVLHRSGREN	QRKFRHVSGG	AVVGASTRMP	GGDTLSLGFA	QLFARDKDYF
601	MNTNFAKTYA	GSLRLQHDAS	LYSVVSILLG	EGGLREILLP	YVSKTLPCSF
651	YGQLSYGHTD	HRMKTESLPP	PPPTLSTDHT	SWGGYVWAGE	LGTRVAVENT
701	SGRGFFQEYT	PFVKVQAVYA	RQDSFVELGA	ISRDFSDSHL	YNLAIPLGIK
751	LEKRFAEQYY	HVVAMYSPDV	CRSNPKCTTT	LLSNQGSWKT	KGSNLARQAG
801	IVQASGFRSL	GAAAELFGNF	GFEWRGSSRS	YNVDAGSKIK	F

Possible T cell epitope:

516 LLWGSFIDV

Possible B cell epitope:

554 HRSGRENQRKFRHV

WO 00/24765

Figure 28: CPN100421

1 MPPLNADDVL PRDHLSDGSF SDTYPDITTQ AIILIFLALS PFLVMLLTSY 51 LKIIITLVLL RNALGVQQTP PSQVLNGIAL ILSIYVMFPT GVANYKDARK

101 EIEANTIPQS LFTAEGAETV FVALNKSKEP LRSFLIRNTP KAQIQSFYKI 151 SQKTPPSEIR AHLTASDFVI IIPAFIMGQI KNAFEIGVLI YLPFFVIDLV

201 TANVLVAMOM MMLSPLSISL PLKLLLIVMV DGWTLLLQGL MISFK

Possible T cell epitope:

188 VLIYLPFFV

Possible B cell epitope:

125 NKSKEPLR

THE CHLAMYDIA ANTIGENS AND STORM OF 183044

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

WO 00/24765

PCT/CA99/00992

Figure 29: CPN100422

1 MKFFSLIFKD DDVSPNKKVL SPEAFSAFLD AKELLEKTKA DSEAYVAETE 51 OKCAQIRQEA KDOGFKEGSE SWSKQIAFLE EETKHLARTEV REALVPLAIA 101 SVRKIIGKEL ELHPETIVSI ISQALKELTQ NKHIIISVNP KDLPLVEKSR 151 PELKNIVEYA DSLILTAKPD VTPGGCIIET EAGIINAQLD VQLDALEKAF

201 STILKAKNPV DEPSETSSST DSSSLSNDQD KKE

Possible T cell epitope:

163 LILTAKPDV

Possible B cell epitope:

226 SNDQDKKE

Tide: CHLAMYDIA ANTIGENS AND 097830446 CORRESPONDING DNA FRAGMENTS

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765
Figure 30: CPN100424

1 MTLLCCTSCN SRSLIVHGLP GREANEIVVL LVSKGVAAQK LPQAAAATAG 51 AATEOMMDIA VPSAQITEAL AILMQAGLPR MKGTSLLDLF AKQGLVPSEL 101 QEKIRYQEGL SEQMASTIRK MGGVVDASVQ ISPTTENEDN LPLTASVYIK 151 HRGVLDNPNS IMVSKIRRLI ASAVPGLVPE NVSVVSDRAA YSDITINGPW

201 GLTEEIDYVS VWGIILAKSS LTKFRLIFYV LILILFVISC GLLWVIWKTH

251 TLIMTMGGTK GFFNPTPYTK NALEAKKAEG AAADKEKKED ADSQGESKNA

301 ETSDKDSSDK DAPEGSNEIE GA

Possible T cell epitope:

201 GLTEEIDYV

Possible B cell epitope:

284 DKEKKEDADSQGESKNAETSDKDSSDKDAPEGSNEIE

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

WO 00/24765

Figure 31: CPN100426

1 MTIRVRNLAY SVNKKKILDG VTFSLERGHI TLFVGKSGSG KTMILRALAG 51 LVQPTOGDIW ISGEAPALVF QOPELFSHMT VLGNCTHPOI HIKGRSTEBA 101 REKAFELHL LDIEEVAKNY PPQLSGGOKQ RVAIVRSLCM DKHTLLFDE 151 TSALDPPATA STRHLLETLR DOELTVGLTT HDMQFVHSCL DRIYLIDGGT

201 VAGVYDKRDG ELDSGHPLSK YIHSAQ

Possible T cell epitope:

145 LLFDEPTSA

Possible B cell epitope:

205 YDKRDGE

PCT/CA99/00992

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

Figure 32: CPN100508

1 MKRPFFTYLC IIFYGSCASL SLHAGLSFPE VRGATAAVVH ADSGKVFYDK 51 DIDAVIYPAS MTKIATALFI LKHYPTVLDT LIKVKQDAIA SITPOAKKOS

101 GYRSPPHWLE TDGSTTQLHL REELLGWDLF HALLVCSAND AANVLAMACC 151 GSVEKFMDKL NFFLKEEIGC THTHFNNPHG LHHPNHYTTT RDLISIMRCA

201 LKEPPFRGVI STTSYKIGAT NLHGERILSP TNKLLLPGST YHYPPALGGK

251 TGTTKTAGKN LIMAAEKNNR LLVTIATGYS GPVSDLYQDV IALCETVFNE 301 PLLRKELVPP SDCLOLEIAN LGKLSCPLPE GLYYDFYASE DREPLSVSFI

351 AHADAFPIEO GDLLGHWVFY DDEGKKISSQ PFYAPCRFER TIKPWKLYMK

401 RVFTSYRTYM SITMLLMYFR IRKHRKYKNL KHYSKI

Possible T cell epitope:

156 FMDKLNFFL

Possible B cell epitope:

422 RKHRKYKN

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al

DOCKET NO.: 032931/0251

09/830446

PCT/CA99/00992

WO 00/24765

Figure 33: CPN100515.

1	MASNPILQIE	DLSITLAKOR	QQYPIVQSLS	FTINEGQTLA	IIGESGSGKS
		PCPPFSVSGQ			
		IEQQFREIIH			
		MLORICIAMA			
		LIITHNMGVV			
		PSLQPQQLGS			
		VREGHKVRVG			
		SFSLYSRRAV			
		HGRHQLRSQV			
		REYLELVGLS			
		LDLSIQAQIL			
		EKGNTKRIFS			
601	YHKDSEESCS	TGCYFYNRCP	QKQEACKSEI	IPNQGDAHHT	YRCIH

Possible T cell epitope:

59 LLPCPPFSV

Possible B cell epitopes:

18 KQRQQY

587 ETPDOROSK

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS

AND USES THEREOF
Inventor(s): Andrew D. MURDIN et al
DOCKET NO.: 032931/0251

C77830446

PCT/CA99/00992

WO 00/24765

Figure 34: CPN100538

1	MPGIEKAATT	VAVPODKSEE	EKVKERLTKR	ELTCEDLKON	GYTVNFEDIS
5.1	TLELLOFVSK	ISGTNFVFDS	NDLOFNVTIV	SHDPTSVDDL	STILLQVLKM
101	HDLKVVEOGN	NVLIYRNPHL	SKLSTVVTDS	SLKETCEAVV	VTRVFRLYRR
151	OPSAAVNIIO	PLLSHDAIVS	ASEATRHVII	SDIAGNVDKV	SDLLAALDCP
201	GTSVDMTEYE			AEDDAFQMFI	
251	SSPRLANKAE	QLLKSLDVPE	MAHTLDDPAS	TALALGGTGT	TSPKSLRFFM
301	YKLKYQNGEV	IANALQDIGY	NLYVTTAMDE	DFINTLNSIQ	WLEVNNSIVI
351	IGNOGNVDRV	IGLLNGLDLP	PKQVYIEVLI	LDTSLEKSWD	FGVQWVALGD
401	EOSKVAYASG	LLNNTGIATP	TKATVPPGTP	NPGSIPLPTP	GQLTGFSDML
451	NSSSAFGLGI	IGNVLSHKGK	SFLTLGGLLS	ALDQDGDTVI	VLNPRIMAQD
501	TQQASFFVGQ	TVPYQTIKYY	IQETGTVTQN	IDYEDIGVNL	VVTSTVAPNN
551	VVTLQIEQTI	SELHSASGSL	TPVTDKTYAA	TRLQIPDGCF	LVMSGHIRDK
601	TTKVVSGVPL	LNSIPLIRGL	FSRTIDQRQK	RNIMMFIKPK	VISSFEEGTR
651	VTNKEGYRYN	WEADEGSMQV	APRHAPECQG	PPSLQAESDF	KIIEIEAQ

Possible T cell epitope:

50 SILELLOFV

Possible B cell epitopes:

15 ODKSEEEK

626 DQRQKRN

09/830446

PCT/CA99/00992

WO 00/24765

Figure 35: CPN100557

Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

1 MSRKDNEVSL ARSIFNILSG TFCSRITGIF REIAMATYFG ADDIVAAFAL 51 GFRTVFFLRK ILGGLILEQA FIPHFEPLRA CSLDRAAFFF RRFSRLIKGS 101 TIFFILLIEA VLWYFNNVE EGTYDMILLT MILLPCGIFL MMYNVMGALL

151 HCGNKFFGVG LAPVVVNIIW IFFVIAARHS DPRERIIGLS VALVIGFFFE

201 WLITVPGVWK FLLEAKSPPQ EHDSVRALLA PLSLGILTSS IFQLNLLSDI

251 CLARYVHEIG PLYLMYSLKI YOLPIHLFGF GVFTVLLPAI SRCVQREDHE 301 RGLKLMKFVL TLTMSVMIIM TAGLLLLALP GVRVLYEHGL FPQSAVYAIV

351 RVLRGYGASI IPMALAPLVS VLFYAQRQYA VPLFIGIGTA LANIVLSLVL

401 GRWVLKDVSG ISYATSITAW VQLYFLWYYS SKRLPMYSKL LWESIRRSIK 451 VMGTTMLACM ITLGLNILTQ TTYVIFLNPL TPLAWPLSSI TAQAIAFLSE

501 SCIFLAFIFG FAKLLRVEDL INLASFEYWR GORGLLOROH VMQDTQN

Possible T cell epitope:

111 VLWVFFNNV

Possible B cell epitopes:

1 MSRKDNE

295 QREDHERG

Inventor(s): Andrew D. MURDIN et al

DOCKET NO.: 032931/0251

WO 00/24765

Figure 36: CPN100622

1	MKTSRNKOCK	ITDPLSKSSF	FVGALILGKT	TILLNATPLS	DYFDNQANQL
51	TTLFPLIDTL	TNMTPYSHRA	TLFGVRDDTN	QDIVLDHQNS	IESWFENFSQ
101	DGGALSCKSL	AITNTKNOIL	FLNSFAIKRA	GAMYVDGNFD	LSENHGSIIF
151	SGNLSFPNAS	NFADTCTGGA	VLCSKNVTIS	KNQGTAYFIN	NKAKSSGGAI
201	OAAIINIKDN	TGPCLFFNNA	AGGTAGGALF	ANACRIENNS	QPIYFLNNQS
251	GLGGAIRVHQ	ECILTKNTGS	VIFNNNFAME	ADISANHSSG	GAIYCISCSI
301	KDNPGIAAFD	NNTAARDGGA	ICTOSLTIQD	SGPVYFTNNQ	GTWGGAIMLR
351	ODGACTLFAD	OGDIIFYNNR	HFKDTFSNHV	SVNCTRNVSL	TVGASQGHSA
401	TFYDPILORY	TIONSIQKEN	PNPEHLGTIL	FSSTYIPDTS	TSRDDFISHF
451	RNHIGLYNGT	LALEDRAEWK	VYKFDQFGGT	LRLGSRAVFS	TTDEEQSSSS
501	VGSVININNL	AINLPSILGN	RVAPKLWIRP	TGSSAPYSED	NNPIINLSGP
551	LSLLDDENLD	PYDTADLAQP	IAEVPLLYLL	DVTAKHINTD	NFYPEGLNTT
601	OHYGYOGVWS	PYWIETITTS	DTSSEDTVNT	LHRQLYGDWT	PTGYKVNPEN
651	KGDIALSAFW	OSFHNLFATL	RYOTOQGQIA	PTASGEATRL	FVHQNSNNDA
701	KGFHMEATGY	SLGTTSNTAS	NHSFGVNFSQ	LFSNLYESHS	DNSVASHTTT
751	VALOINNPWL	OERFSTSASL	AYSYSNHHIK	ASGYSGKIQT	EGKCYSTTLG
801	AALSCSLSLO	WRSRPLHFTP	FIQAIAVRSN	QTAFQESGDK	ARKFSVHKPL
851	YNLTVPLGIO	SAWESKFRLP	TYWNIELAYQ	PVLYQQNPEI	NVSLESSGSS
901	WLLSGTTLAR	NAIAFKGRNO	IFIFPKLSVF	LDYQGSVSSS	TTTHYLHAGT
951	TFKF				

Possible T cell epitope:

119 ILFLNSFAI

Possible B cell epitopes:

2 KTSRNKQ 647 NPENKG

694 QNSNNDAK

WO 00/24765

Tide: CHLAMYDIA ANTIGERS AND 11-16 09/2830446

AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 37: CPN100626

1	MOVFPKVTLS	LDYSADISSS	TLSHYLNVAS	RMRFLTISDQ	NRKIKEPLVS
51	KTPPKFLFYL	GNFTACMFGM	TPAVYSLQTD	SLEKFALERD	EEFRTSFPLL
101	DSLSTLTGFS	PITTFVGNRH	NSSQDIVLSN	YKSIDNILLL	WTSAGGAVSC
151	NNFLLSNVED	HAFFSKNLAI	GTGGAIACQG	ACTITKNRGP	LIFFSNRGLN
201	NASTGGETRG	GAIACNGDFT	ISQNQGTFYF	VNNSVNNWGG	ALSTNGHCRI
251	QSNRAPLLFF	NNTAPSGGGA	LRSENTTISD	NTRPIYFKNN	CGNNGGAIQT
301	SVTVAIKNNS	GSVIFNNNTA	LSGSINSGNG	SGGAIYTTNL	SIDDNPGTIL
351	FNNNYCIRDG	GAICTQFLTI	KNSGHVYFTN	NQGNWGGALM	LLQDSTCLLF
401	AEQGNIAFQN	NEVFLTTFGR	YNAIHCTPNS	NLQLGANKGY	TTAFFDPIEH
451	QHPTTNPLIF	NPNANHQGTI	LFSSAYIPEA	SDYENNFISS	SKNTSELRNG
501	VLSIEDRAGW	QFYKFTQKGG	ILKLGHAASI	ATTANSETPS	TSVGSQVIIN
551	NLAINLPSIL	AKGKAPTLWI	RPLQSSAPFT	EDNNPTITLS	GPLTLLNEEN
601	RDPYDSIDLS	EPLQNIHLLS	LSDVTARHIN	TDNFHPESLN	ATEHYGYQGI
651	WSPYWVETIT	TTNNASIETA	NTLYRALYAN	WTPLGYKVNP	EYQGDLATTP
701	LWQSFHTMFS	LLRSYNRTGD	SDIERPFLEI	QGIADGLFVH	QNSIPGAPGF
751	RIQSTGYSLQ	ASSETSLHQK	ISLGFAQFFT	RTKEIGSSNN	VSAHNTVSSL
801	YVELPWFQEA	FATSHSLAYG	YGDHHLHAYI	RHIKNRAEGT	CYSHTLAAAI
851	GCSFPWQQKS	YLHLSPFVQA	IAIRSHQTAF		VSQKPFYNLT
901	LPLGIQGKWQ	SKFHVPTEWT	LELSYQPVLY		LASGGSWDIL
951	GHNYVRNALG	YKVHNQTALF	RSLDLFLDYQ	GSVSSSTSTH	HLQAGSTLKF

Possible T cell epitope:

56 FLFYLGNFT

Possible B cell epitopes:

39 DQNRKIK

597 NEENRDPYD

PCT/CA99/00992

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

Figure 38: CPN100628

WO 00/24765

1 MLLPFTFVLA NEGLQLPLET YITLSPEYQA APQVGFTHNQ NQDLAIVGNH 51 NDFILDYKYY RSNGGALTCK NLLISENIGN VFFEKNVCPN SGGAIYAAQN 101 CTISKNONYA FTTNLVSDNP TATAGSLLGG ALFAINCSIT NNLGQGTFVD 151 NLALNKGGAL YTETNLSIKD NKGPIIIKON RALNSDSLGG GIYSGNSLNI 201 EGNSGAIQIT SNSSGSGGGI FSTQTLTISS NKKLIEISEN SAFANNYGSN 251 FNPGGGGLTT TFCTILNNRE GVLFNNNQSQ SNGGAIHAKS IIIKENGPVY 301 FLNNTATRGG ALLNLSAGSG NGSFILSADN GDIIFNNNTA SKHALNPPYR 351 NATHSTPNMN LOIGARPGYR VLFYDPIEHE LPSSFPILFN FETGHTGTVL 401 FSGEHVHONF TDEMNFFSYL RNTSELRQGV LAVEDGAGLA CYKFFQRGGT 451 LLLCOGAVIT TAGTIPTPSS TPTTVGSTIT LNHIAIDLPS ILSFQAQAPK 501 IWIYPTKTGS TYTEDSNPTI TISGTLTLRN SNNEDPYDSL DLSHSLEKVP 551 LLYIVDVAAO KINSSOLDLS TLNSGEHYGY QGIWSTYWVE TTTITNPTSL 601 LGANTKHKLL YANWSPLGYR PHPERRGEFI TNALWQSAYT ALAGLHSLSS 651 WDEEKGHAAS LQGIGLLVHQ KDKNGFKGFR SHMTGYSATT EATSSQSPNF 701 SLGFAOFFSK AKEHESONST SSHHYFSGMC IAKYSLORVI RLSVSLAYMF 751 TSEHTHTMYQ GLLEGNSQGS FHNHTLAGAL SCVFLPQPHG ESLQIYPFIT 801 ALAIRGNLAA FOESGDHARE FSLHRPLTDV SLPVGIRASW KNHHRVPLVW

851 LTETSYRSTL YRODPELHSK LLISOGTWTT OATPVTYNAL GIKVKNTMOV

Possible T cell epitope:

901 FPKVTLSLDY SADISSSTLS HYLNVASRMR F

1 MLLPFTFVL

Possible B cell epitopes:

38 HNQNQ

619 YRPHPERRG

669 HQKDKNG

Title: CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF Inventor(s): Andrew D. MURDIN et al DOCKET NO.: 032931/0251

PCT/CA99/00992

Figure 39: CPN100630

			CAFAETRLGG	NFVPPITNQG	EEILLTSDFV
1	MPLSFKSSSF	CLLACLCSAS			NYALLSAAET
51	CSNFLGASFS	SSFINSSSNL	SLLGKGLSLT	FTSCQAPTNS	
101	LTFKNFSSIN	FTGNQSTGLG	GLIYGKDIVF	QSIKDLIFTT	NRVAYSPASV
151	TTSATPAITT	VTTGASALQP	TDSLTVENIS	QSIKFFGNLA	NFGSAISSSP
201	TAVVKFINNT	ATMSFSHNFT	SSGGGVIYGG	SSLLFENNSG	CIIFTANSCV
251	NSLKGVTPSS	GTYALGSGGA	ICIPTGTFEL	KNNQGKCTFS	YNGTPNDAGA
301	IYAETCNIVG	NQGALLLDSN	TAARNGGAIC	AKVLNIQGRG	PIEFSRNRAE
351	KGGAIFIGPS	VGDPAKQTST	LTILASEGDI	AFQGNMLNTK	PGIRNAITVE
401	AGGEIVSLSA	OGGSRLVFYD	PITHSLPTTS	PSNKDITINA	NGASGSVVFT
451	SKGLSSTELL	LPANTTILL	GTVKIASGEL	KITDNAVVNV	AGFATQGSGQ
501	LTLGSGGTLG	LATPTGAPAA	VDFTIGKLAF	DPFSFLKRDF	VSASVNAGTK
551	NVTLTGALVL	DEHDVTDLYD	MVSLQSPVAI	PIAVFKGATV	TKTGFPDGEI
601	ATPSHYGYQG	KWSYTWSRPL	LIPAPDGGFP	GGPSPSANTL	YAVWNSDTLV
651	RSTYILDPER	YGEIVSNSLW	ISFLGNQAFS	DILQDVLLID	HPGLSITAKA
701	LGAYVEHTPR	QGHEGFSGRY	GGYQAALSMN	YTDHTTLGLS	FGQLYGKTNA
751	NPYDSRCSEO	MYLLSFFGQF	PIVTQKSEAL	ISWKAAYGYS	KNHLNTTYLR
801	PDKAPKSQGQ	WHNNSYYVLI	SAEHPFLNWC	LLTRPLAQAW	DLSGFISAEF
851	LGGWQSKFTE	TGDLORSFSR	GKGYNVSLPI	GCSSQWFTPF	KKAPSTLTIK
901	LAYKPDIYRV	NPHNIVTVVS	NOESTSISGA	NLRRHGLFVQ	IHDVVDLTED
951	TOAFLNYTFD	GKNGFTNHRV	STGLKSTF		
231					

Possible T cell epitope:

GLFVQIHDV 936

Possible B cell epitopes:

281 KNNQGK SRNRAEK 345 707 HTPRQGHE

77813-51 /pw

RECEIVED

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

MAY 3 0 1002

COMBINED DECLARATION AND POWER OF ATTORNEY

TECH CENTER 1000/2900

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that I verily believe that I am the original, first and so inventor (if only one name is listed below) or a joint inventor (if plural inventors are named below) of the subject matter which is claimed and for which a patent is sought no the invention entitled:

CHLAMYDIA ANTIGENS AND CORRESPONDING DNA FRAGMENTS AND USES THEREOF

the specification of which

)		is attached here was filed on	eto. April 27, 2001		
	_ ⊠	as U.S. Applic		30,446	
	_	as PCT Interna	tional Application No.	PCT/CA99/00992	
and (if app	plicable) wa	s amended on	February 8, 2001		

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information known to me which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §§1.56(a) and (b), which state:

- "(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclose information exists with respect to each pending claim until the claim is cancelled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability that is cancelled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclose all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by §§1.97(b)-(d) and 1.98. However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:
 - (1) prior art cited in search reports of a foreign patent office in a counterpart application.
 - (2) the closest information over which individuals associated with the filing or prosecution of a patent application believe any pending claim patentably defines, to make sure that any material information contained therein is disclosed to the Office.

- (b) Under this section, information is material to patentability when it is not cumulative to information already of record or being made of record in the application, and (1). It establishes by itself or its combination, with other information, a prime feet each of the combination.
 - It establishes, by itself or in combination with other information, a prima facie case of unpatentability of a claim; or
 - (2) It refutes, or is inconsistent with, a position the applicant takes in:
 - (i) Opposing an argument of unpatentability relied on by the Office, or
 - (ii) Asserting an argument of patentability.

A prima facie case of unpatentability is established when the information compels a conclusion that a claim is unpatentable under the preponderance of evidence, burden-of-proof standard, giving each term in the claim is broadest reasonable construction consistent with the specification, and before any consideration is given to evidence which may be submitted in an attempt to establish a contrary conclusion of natentability.

I hereby claim foreign priority benefits under 35 United States Code, §119 and/or §365 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate filed by me or my assigned disclosing the subject matter claimed in this application and having a filing date (1) before that of the application on which priority is claimed, or (2) if no priority claimed, before the filing of this application;

PRIOR FOREIGN APPLICATION(S)

			Date First		
Number	Country	Filing Date (Day/Month/Year)	Laid-open or Published	Date Patented or Granted	Priority Claimed?

I hereby claim the benefit under 35 United States Code, §119(e) of any United States provisional application(s) listed below:

Filing Date
October 28, 1998
October 28, 1998
October 28, 1998
October 28, 1998
October 29, 1998
October 29, 1998
October 29, 1998
October 29, 1998
November 2, 1998
November 2, 1998
November 2, 1998
November 2, 1998
November 2, 1998

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56(a) which became available between the filing date of the prior application and the national or PCT international filing date of this application:

PRIOR U.S. OR PCT APPLICATION(S)

Application No.

Filing Date (day/month/year) Status (nending abandoned granted)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that wilful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.

I hereby appoint the following patent agents with full power of substitution, association and revocation to prosecute this application and/or international application and to transact all business in the Patent and Trademark Office connected therewith:

HUGH O'GORMAN (Reg. No. 26140) A. DAVID MORROW (Reg. No. 28816) JAMES McGRAW (Reg. No. 28168) JOHN BOCHNOVIC (Reg. No. 29229) JOY D. MORROW (Reg. No. 30911) TOKUO HIRAMA (Reg. No. 32551) KOHJI SUZUKI (Reg. No. 44467) CHRISTINE N. GENGE (Reg. No. 45405) DENNIS S.K. LEUNG (Reg. No. 47325) MATTHEW M. ROY (Reg. No. 48,074) ELLIOTT S. SIMCOE (Reg. No. 50,010) DAVID E. SCHWARTZ (Reg. No. 48,211) STEPHEN A. BENT (Reg. No. 29,768) BETH BURROUS (Reg. No. 35,087) WILLIAM T. ELLIS (Reg. No. 26,874) MICHAEL D. KAMINSKI (Reg. No. 32,904) KENNETH E. KROSIN (Reg. No. 25,735) JACK LAHR (Reg. No. 19,621) PETER G. MACK (Reg. No. 26,001) BRIAN J. MCNAMARA (Reg. No. 32,789) RICHARD C. PEET (Reg. No. 35,792) ANDREW E. RAWLINS (Reg. No. 34,702) CHARLES F. SCHILL (Reg. No. 27,590) MICHELE M. SIMKIN (Reg. No. 34,717)

ROBERT D. GOULD (Reg. No. 27523) THOMAS R. KELLY (Reg. No. 29244) MICHAEL E. WHEELER (Reg. No. 29246) R. ALLAN BRETT (Reg. No. 40476) PHILIP D. LAPIN (Reg. No. 44443) R. JOHN HALEY (Reg. No. 29502) THUY HUONG NGUYEN (Reg. No. 47336) KEVIN K. GRAHAM (Reg. No. P-47,365) DAVID E. SCHWARTZ (Reg. No. 48,211) STEVEN B. GARLAND (Reg. No. 50,003) ELLIOTT S. SIMCOE (Reg. No. P-50,010) DAVID A. BLUMENTHAL (Reg. No. 26,257) ALAN I. CANTOR (Reg. No. 28,163) JOHN J. FELDHAUS (Reg. No. 28,822) LYLE K. KIMMS (Reg. No. 34,079) JOHNNY A. KUMAR (Reg. No. 34,649) GLENN LAW (Reg. No. 34,371) STEPHEN B. MAEBIUS (35,264) SYBIL MELOY (Reg. No. 22,749) GEORGE E. QUILLIN (Reg. No. 32,792) BERNHARD D. SAXE (Reg. No. 28,665) RICHARD L. SCHWABB (Reg. No. 25,479) HAROLD C. WEGNER (Reg. No. 25,258)

ALAN R. CAMPBELL (Reg. No. 26129)

PLEASE SEND CORRESPONDENCE TO:

BERNHARD D. SAXE FOLEY & LARDNER 3000 K Street N.W. Suite 500 Washington, D.C. 20007-5109 U.S.A. Telephone: (202) 672-5300 Facsimile: (202) 672-5399

48

NO. 021 D04

416 667 2459

	1-11
1- 0 0	1) INVENTOR'S SIGNATURE: LA CHUA Date: 22 May 2002
	Inventor's Name: ANDREW D. MURDIN (First) (Middle) (Family Name)
3.0	Country of Citizenship: GREAT BRITAIN
-,4	Residence: Richmond Hill, Ontario, Canada — A ~ (City, Province, Country)
	Post Office Address: 11 Forest Hill Drive, Richmond Hill, Ontario L4B 3C2, Canada
2 - 00	2) INVENTOR'S SIGNATURE: Date: 22 May 2002
	Inventor's Name: RAYMOND P. COMEN (First) (Middle) (Family Name)
	Country of Citizenship: CANADA
	Residence: Aurora, Ontario. Canada
	Post Office Address: 29 Kennedy St. W., Aurora, Ontario LOG 1T0, Canada
3-00	3) INVENTOR'S SIGNATURE: Date: 22 hd Many, 1000
7.5	Inventor's Name: IQE (First) (Middle) (Family Name)
**,	Country of Citizenship: CANADA
	Residence: Toronto, Onissio, Canada CA
	Post Office Address: 51 Aspenwood Drive, Toronto, Ontario M2H 2E3, Canada

. 1/83

SEQUENCE LISTING

```
<110> MURDIN, Andrew D.; OOMEN, Raymond P; and WANG, Joe
    <120> Chlamydia antigens and corresponding DNA fragments and uses thereof
10
   <130> 77813-51
    <140> PCT/CA99/00992
    <141> 1999-10-28
    <150> US 60/106034
    <151> 1998-10-28
    <150> US 60/106039
    <151> 1998-10-28
2.0
    <150> US 60/10604
    <151> 1998-10-28
    <150> US 60/106044
    <151> 1998-10-28
    <150> US 60/106072
    <151> 1998-10-29
3.0
   <150> US 60/106073
    <151> 1998-10-29
    <150> US 60/106074
    <151> 1998-10-29
    <150> US 60/106087
    <151> 1998-10-29
    <150> US 60/106587
40
   <151> 1998-11-02
    <150> US 60/106588
    <151> 1998-11-02
    <150> US 60/107089
    <151> 1998-11-02
    <150> US 60/107034
    <151> 1998-11-02
50
    <150> US 60/107035
    <151> 1998-11-02
    <160> 45
    <170> PatentIn Ver. 2.0
```

<210> 1 60 <211> 2750

	<212> Di <213> Ci		dia	pneı	ımon:	iae										
	<220> <221> Cl <222> (. (26	23)												
10	<400> 1 attttaa	cgt g	cgta	tcat	t tç	gtga	ctaaç	g aga	ataga	actt	gct	ttct	ta 1	tcta	tcttct	60
	gtattgg	aaa g	aaag	ccc	et to	gagg	gaaaa	a aa	aggti	tgtt		aag Lys				115
20	cgc ttt Arg Phe															163
20	tta gga Leu Gly															211
	gga act Gly Thr															259
30	gat ggc Asp Gly 55															307
	ccc aaa Pro Lys 70															355
4.0	gca gct Ala Ala															403
40	agc aat Ser Asn	Ile i														451
	gca gct Ala Ala															499
50	ctt aaa Leu Lys 135															547
	gtt aaa Val Lys 150															595
60	gac aat Asp Asn		Ser '													643

		atc Ile							691
10		cgt Arg 200							739
		gaa Glu							787
		ggt Gly							835
20		agt Ser							883
		gtc Val							931
30		tta Leu 280							979
		gta Val							1027
		gat Asp							1075
40		gag Glu							1123
		aaa Lys							1171
50		ggt Gly 360							1219
		aag Lys							1267
		atc Ile							1315
60		aaa Lys							1363

						gtt Val											1411
10						aat Asn											1459
10						gac Asp											1507
						ccg Pro 475											1555
20	tgg Trp	tct Ser	act Thr	gat Asp	gat Asp 490	aag Lys	aaa Lys	gct Ala	acg Thr	gtt Val 495	tct Ser	tgg Trp	gcg Ala	aag Lys	cag Gln 500	agt Ser	1603
						gag Glu											1651
30						gat Asp											1699
30						cct Pro											1747
						agg Arg 555											1795
40						gct Ala											1843
						ctg Leu											1891
50						acc Thr											1939
						gct Ala											1987
						ege Arg 635											2035
60	ctg Leu	ccg Pro	tgc Cys	tct Ser	ttc Phe 650	tat Tyr	gly ggg	cag Gln	ctt Leu	agc Ser 655	tac Tyr	ggc Gly	cat His	acg Thr	gat Asp 660	cat His	2083

			aag Lys													2131
10			act Thr 680													2179
10			gct Ala													2227
			ttt Phe													2275
20			cta Leu													2323
			gcg Ala													2371
30			tat Tyr 760													2419
30			aaa Lys													2467
			ggt Gly													2515
40			cga Arg													2563
			tgg Trp													2611
50			aaa Lys 840	tago	gatt	tc t	ctt	cgat	g ct	attt	ttec	atg	gcta	ttt		2663
30			gat a gc t					agt:	cctt	att	tcaa	agaa	iga c	actg	ttgca	2723 2750
	<210)> 2														

<210> 2 <211> 2523

<212> DNA <213> Chlamydia pneumoniae

60 <220> <221> CDS

	<40	0 > 2								
								att Ile		15
10			ttg Leu							63
			gct Ala 25							111
			tca Ser							159
20			aat Asn							207
			ggg Gly							255
30			gat Asp							303
			gat Asp 105							351
			aag Lys							399
40			cca Pro							447
			aat Asn							495
50			tca Ser							543
			gca Ala 185							591
			ggc Gly							639

						gcg Ala			687
10						ggc Gly 240			735
						aat Asn			783
						gga Gly			831
20						ata Ile			879
						gat Asp			927
30						acg Thr 320			975
						aaa Lys			1023
						aaa Lys			1071
40						ggt Gly			1119
						tcg Ser			1167
50						aat Asn 400			1215
						aca Thr			1263
						agc Ser			1311
60						tat Tyr			1359

								agt Ser	1407
10								atc Ile	1455
								cag Gln 500	1503
								ctt Leu	1551
20								gag Glu	1599
								ggc Gly	1647
30								ttc Phe	1695
30								ccg Pro 580	1743
								gac Asp	1791
40								tct Ser	1839
								ctt Leu	1887
50								aag Lys	1935
30								gat Asp 660	1983
								tcg Ser	2031
60								gga Gly	2079

					gaa Glu												2127
10					aaa Lys												2175
					gct Ala 730												2223
					cct Pro												2271
20					gtt Val												2319
					acg Thr												2367
30					aac Asn												2415
30					ttg Leu 810												2463
					gga Gly												2511
40			aaa Lys 840														2523
	<212	l> 10 2> Di	ΙA	dia	pneu	ımoni	.ae										
50		l> CI	s .01).	. (83	15)												
	<400 ctcc		ec t	cgcc	ttgt	c aa	ccta	cccc	tcc	teec	tcg	aatt	ctaa	itc c	tttg	aacgt	60
	agta	caac	ag c	ctgt	tget:	g ca	tcgt	cagt	gcc	ttcc		atg Met 1					115

			ctc Leu 10						163
10			gac Asp						211
10			ttc Phe						259
			gtc Val						307
20			gtc Val						355
			acg Thr 90						403
30			acc Thr						451
30			gtc Val						499
			aac Asn						547
40			acc Thr						595
			atc Ile 170						643
50			att Ile						691
30			gct Ala						739
			att Ile						787
60			aca Thr						835

taaggacacg tgccgtgtta gcatttttcg caactagttt caaatctgtt cttttttgagt 895 actectacca atcattatta ettattttga ttgtttegge aceteccate atettagett 955 ccatagtegg gattatggtt gegatettee aageegeaac acaaa <210> 4 <211> 9 <212> PRT <213> Chlamydia pneumoniae <220> <221> SITE <222> (188)..(197) <400> 4 Val Leu Ile Tyr Leu Pro Phe Phe Val 1 5 2.0 <210> 5 <211> 900 <212> DNA <213> Chlamydia pneumoniae <220> <221> CDS <222> (101)..(799) 30 <400> 5 tagctttata caaaqtataq aaaaataaca cqacaataaa aqqaqcqqtq ttttctcttc 60 tgaggtaaat cagcctcaaa gatactacgc catagtaaag atg aag ttt ttt agc 115 Met Lys Phe Phe Ser tta att ttt aaa gat gat gat gtc tcc cca aat aag aag gtt tta tct Leu Ile Phe Lys Asp Asp Val Ser Pro Asn Lys Lys Val Leu Ser 40 10 cct gaa gct ttc tct gct ttc ctt gat gcc aaa gag ctg tta gaa aaa 211 Pro Glu Ala Phe Ser Ala Phe Leu Asp Ala Lys Glu Leu Leu Glu Lys 30 aca aaa gee gat age gaa gee tat gtt gea gag aca gaa caa aag tgt 259 Thr Lys Ala Asp Ser Glu Ala Tyr Val Ala Glu Thr Glu Gln Lys Cys 45 50 gca caa att cgt caa gaa gct aaa gat caa gga ttt aaa gag gga tct 307 Ala Gln Ile Arg Gln Glu Ala Lys Asp Gln Gly Phe Lys Glu Gly Ser 60 qaa too tqq aqo aaq caa att qot tto tta gaa gaa gaa act aaa aat 355 Glu Ser Trp Ser Lys Gln Ile Ala Phe Leu Glu Glu Glu Thr Lys Asn 75 403 cta ege ata aga gta ege gag gee ttg gtt eet etg gea att geg agt Leu Arg Ile Arg Val Arg Glu Ala Leu Val Pro Leu Ala Ile Ala Ser

60

90

		agg Arg															451
10		tct Ser															499
10		att Ile 135															547
		cct Pro															595
20		gca Ala															643
		Gly ggg															691
30		gct Ala															739
30		gag Glu 215															787
		aag Lys			taaa	ıggta	itt o	acta	ttat	g cg	gated	attt	tto	gatt	ttc		839
40	cctt	tgtt	tt t	ttac	getg	ja go	gtet	cato	g et <u>e</u>	gattt	gct	gaco	gecag	jtc t	atat	gaaaa	899 900
				⁄dia	pnet	ımoni	.ae										
50)> l> SI l> (1		. (17	1)												
	<400 Leu 1)> 6 Ile	Leu	Thr	Ala 5	Lys	Pro	Asp	Val								
60	<212)> 7 .> 12 !> DN !> Ch	IA	dia	pneu	ımoni	.ae										

		1> C		(1	066)												
		0> 7 tege	gat	tggca	actaa	at co	cccc	ettt	gti	tatg	gtga	ata	aaaa	ggt a	atge	gtggat	60
10	tat	ggtt	cgt (egato	etati	et ei	ettti	tgett	gti	ctt	cta				ctg Leu		115
				tgt Cys													163
20				aat Asn 25													211
				ttg Leu													259
				tgg Trp													307
30				cta Leu													355
				ctt Leu													403
40				cgt Arg 105													451
				atg Met													499
				aat Asn													547
50				gly aaa													595
				ctt Leu													643
60				gtg Val 185													691

		cct Pro													739
10		att Ile 215													787
10		ttg Leu													835
		tgg Trp													883
20		ttc Phe													931
		gag Glu													979
		999 Gly 295													1027
30		gat Asp										tagt	gact	ge	1076
		ctto												ctccag aaaatc	
40	<212	0> 8 1> 9 2> PF 3> Cl		/dia	pneı	ımoni	.ae								
)> l> S1 2> (2		(20	19)										
50)> 8 Leu	Thr	Glu	Glu 5	Ile	Asp	туг	Val						
	<212	0> 9 L> 85 2> DN B> Ch	IA.	/dia	pneu	ımoni	.ae								
60)> L> CI 2> (1		(75	'8)										

		0> 9 aacc	cta:	tgga	aatgi	ta t	ettai	tttg	t gc	tggg	ctat	att	tett	aat 🤉	gaca	acatca	60
	ttt	tect	gta	ttte	taggi	tt a	tcag	aaaa	g ag	aagg	agtt			att Ile			115
10														gat Asp			163
														32 GJA aaa			211
20														tta Leu			259
														gct Ala			307
														gga Gly			355
30														gaa Glu			403
														gag Glu 115			451
40														cgt Arg			499
														ttt Phe			547
														cga Arg			595
50														act Thr			643
														ctt Leu 195			691
60														gag Glu			739

	tct ggt cat cca tta tcg aaa tat atc cac tct gct caa taggactaca Ser Gly His Pro Leu Ser Lys Tyr Ile His Ser Ala Gln 215 220 225	788
	gctgctagag cagctgtagt gatactttag aatcctgacc agtggcagga atgagcggca ϵ tg	848 850
10	<210> 10 <211> 9 <212> PRT <213> Chlamydia pneumoniae	
	<220> <221> SITE <222> (145)(153)	
20	<400> 10 Leu Leu Phe Asp Glu Pro Thr Ser Ala 1 5	
	<210> 11 <211> 1500 <212> DNA <213> Chlamydia pneumoniae	
30	<220> <221> CDS <222> (101)(1408)	
	<400> 11 ctctgattta tggtaattct ttattttcag agccgtcaag tcctttctat tctgttgaat 6	50
40	ttcctaataa cgtaagtaat aaacaatcaa aagtccgcat atg aaa aga cct ttt $aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	L15
10	ttt acc tat cta tgc atc atc ttc tac gga tct tgt gca tcg tta tct $$ 1 Phe Thr Tyr Leu Cys Ile Ile Phe Tyr Gly Ser Cys Ala Ser Leu Ser $$ 10 $$ 15 $$ 20	163
	tta cat gca gga ctc tct ttc cca gaa gta cgt gga gct acg gct gct 2 Leu His Ala Gly Leu Ser Phe Pro Glu Val Arg Gly Ala Thr Ala Ala 25 30 35	11
50	gtt gtc cat gcc gac tct ggg aag gta ttc tat gat aaa gac ata gat Val Val His Ala Asp Ser Gly Lys Val Phe Tyr Asp Lys Asp Ile Asp 40 45	59
	gct gta atc tat cct gcc agc atg acg aaa atc gca act gcc ctc ttt 3Ala Val Ile Tyr Pro Ala Ser Met Thr Lys Ile Ala Thr Ala Leu Phe 55 60 65	107
60	atc cta aag cac tat ccc aca gtc ctc gat act ctc atc aaa gtc aaa Ile Leu Lys His Tyr Pro Thr Val Leu Asp Thr Leu Ile Lys Val Lys 70 80 85	55

			tcc Ser						403
10			cac His						451
10			gag Glu						499
			aat Asn						547
20			aag Lys 155						595
			act Thr						643
30			tat Tyr						691
			gaa Glu						739
			gct Ala						787
40			ctt Leu 235						835
			aca Thr						883
50			aaa Lys						931
			gtg Val						979
			aac Asn						1027
60			caa Gln 315						1075

															gaa Glu 340		1123
10															ttc Phe		1171
10	att Ile	gaa Glu	caa Gln 360	gga Gly	gat Asp	ctt Leu	ctt Leu	ggt Gly 365	cat His	tgg Trp	gtt Val	ttt Phe	tat Tyr 370	gac Asp	gat Asp	gaa Glu	1219
															ttt Phe		1267
20															aca Thr		1315
															cgc Arg 420		1363
30		aag Lys															1408
		ctttt								gttt	atg	taag	gattt	ge g	gettt	tcaat	1468 1500
	<212 <212	0> 12 L> 9 2> PI 3> Ch	₹Т	/dia	pneu	ımoni	.ae										
40)> L> SI 2> (I		. (16	54)												
)> 12 Met		Lys	Leu 5	Asn	Phe	Phe	Leu								
50	<211 <212)> 13 l> 23 l> DN l> Ch	IOO JA	⁄dia	pneu	ımoni	ae										
)> L> CI !> (1		. (20	35)												
60)> 13 gagca		ggag	jatto	ıg co	aaat	agad	gaç	gcaag	ggt	ttgo	ataa	ıga a	ıtago	ctttt	60

	teg	caata	aat a	aact	gec	ta aa	acga	ctt	g taa	aacga	actt	gct Ala		115
10		tta Leu												163
10		tac Tyr												211
		tta Leu												259
20		gca Ala 55												307
		gtc Val												355
30		aaa Lys												403
30		gca Ala												451
		att Ile												499
40		tta Leu 135												547
		aat Asn												595
50		att Ile												643
		cct Pro												691
		cta Leu												739
60		cat His 215												787

															atg Met		835
10															aga Arg 260		883
10															gga Gly		931
	ccc Pro	cca Pro	cac His 280	tac Tyr	acg Thr	gcc Ala	ttt Phe	ccc Pro 285	tcg Ser	gga Gly	tgt Cys	cgc Arg	tat Tyr 290	cac His	cct Pro	aga Arg	979
20	tgc Cys	tca Ser 295	aaa Lys	att Ile	tta Leu	aat Asn	cga Arg 300	tgt Cys	tct Ser	gcg Ala	gaa Glu	gct Ala 305	cca Pro	gaa Glu	atc Ile	tat Tyr	1027
															act Thr		1075
30															tat Tyr 340		1123
															cct Pro		1171
															ctt Leu		1219
40															gca Ala		1267
															cca Pro		1315
50															gta Val 420		1363
															act Thr		1411
															cca Pro		1459
60	gaa Glu	aaa Lys 455	gta Val	cta Leu	gca Ala	acg Thr	gta Val 460	agg Arg	gaa Glu	tat Tyr	tta Leu	gaa Glu 465	ttg Leu	gta Val	Gly ggg	tta Leu	1507

															gga Gly		1555
10	caa Gln	caa Gln	cga Arg	gtc Val	tct Ser 490	ata Ile	gcg Ala	aga Arg	gcc Ala	cta Leu 495	tta Leu	gga Gly	gtc Val	cct Pro	cag Gln 500	tta Leu	1603
10															caa Gln		1651
															ctc Leu		1699
20															tgc Cys		1747
															aat Asn		1795
30															ttg Leu 580		1843
30															cct Pro		1891
															gga Gly		1939
40															tca Ser		1987
															atc Ile		2035
50	tgat tcta		ce t	ctac	egeta	it to	ettaa	igcta	a cca	attaa	agga	atco	caaç	igg a	agago	gtetge	2095 2100
50	<211 <212	2> PF	eT.	/dia	pneu	ımoni	iae										
		L> S]		. (67)													

	<400> 14 Leu Leu Pro Cys Pro Pro Phe Ser Val 1 5	
10	<210> 15 <211> 2300 <212> DNA <213> Chlamydia pneumoniae	
	<220> <221> CDS <222> (101)(2194)	
	<400> 15 cgaagagcaa acctccacag ttacagagaa agacgtccaa cctaaaacac aagcaacacc 60	
20	acacgetteg aagaaaaaeg ttgeaagtee ttegaeetet atg eea gga ate gag 11 Met Pro Gly Ile Glu 1	5
	aaa gca gca aca aca gtg gct gta cct caa gac aaa tct gaa gaa gaa 16 Lys Ala Ala Thr Thr Val Ala Val Pro Gln Asp Lys Ser Glu Glu Glu 10 20	3
30	aaa gtt aaa gag cga ttg aca aag cgg gaa ctt acc tgt gaa gac ctt 21 Lys Val Lys Glu Arg Leu Thr Lys Arg Glu Leu Thr Cys Glu Asp Leu 25 30 35	1
	aaa gat aac ggc tat act gtc aat ttt gaa gac att tct att tta gag 25 Lys Asp Asn Gly Tyr Thr Val Asn Phe Glu Asp Ile Ser Ile Leu Glu 40 45 50	9
	ttg ttg cag ttc gta agt aaa att tct gga acg aac ttt gtc ttt gat 30 Leu Leu Gln Phe Val Ser Lys Ile Ser Gly Thr Asn Phe Val Phe Asp 55 60	7
40	age aac gat ttg caa ttc aat gtc acg atc gtt tcc cac gat cct act 35 Ser Asn Asp Leu Gln Phe Asn Val Thr Ile Val Ser His Asp Pro Thr 70 80 85	5
	tct gta gat gat tta tct aca atc tta cta caa gtc tta aaa atg cat 40 Ser Val Asp Asp Leu Ser Thr Ile Leu Leu Gln Val Leu Lys Met His 90 95 100	3
50	gac ttg aag gtt gtt gaa caa ggc aat aac gtc ctt atc tat cgt aat 45 Asp Leu Lys Val Val Glu Gln Gly Asn Asn Val Leu Ile Tyr Arg Asn 105 110	1
	oct cat ctt tct aag cta tcc aca gta gtc aca gac agc tcc tta aaa 49 Pro His Leu Ser Lys Leu Ser Thr Val Val Thr Asp Ser Ser Leu Lys 120 125 130	9
	gaa acg tgt gaa gct gtt gtg gtt acc cga gtg ttc cgt ctt tac agg 54 Glu Thr Cys Glu Ala Val Val Val Thr Arg Val Phe Arg Leu Tyr Arg 135 140 145	7
C0		

			gca Ala 155						595
10			gct Ala						643
10			gtc Val						691
			tct Ser						739
20			ctt Leu						787
			gct Ala 235						835
30			tct Ser						883
			gat Asp						931
			ttg Leu						979
40			ttt Phe						1027
			ctc Leu 315						1075
50			gat Asp						1123
			tcc Ser						1171
			ctc Leu						1219
60			tta Leu						1267

	ttt Phe								1315
10	tat Tyr								1363
	gca Ala								1411
	acg Thr								1459
20	gca Ala 455								1507
	tct Ser								1555
30	gat Asp								1603
	caa Gln								1651
	tac Tyr								1699
40	gat Asp 535								1747
	gta Val								1795
50	tct Ser								1843
	tta Leu								1891
	gat Asp								1939
60	cca Pro 615								1987

	aaa cgc aat atc atg atg ttt att aag cct aag gtg att agt agc ttt Lys Arg Asn Ile Met Met Phe Ile Lys Pro Lys Val Ile Ser Ser Phe 630 640 645	2035
10	gaa gaa ggc act cgt gtt acc aat aag gaa gga tac aga tac aat tgg 2 Glu Glu Gly Thr Arg Val Thr Asn Lys Glu Gly Tyr Arg Tyr Asn Trp 6 6 6 6 6	2083
	gaa gct gat gaa gga tcc atg caa gtg gcc cct cgc cat gct cct gaa 2 Glu Ala Asp Glu Gly Ser Met Gln Val Ala Pro Arg His Ala Pro Glu 665 670 675	2131
	tgc caa gga cct cct tct tta cag gct gaa agt gac ttt aaa ata ata Cys Gln Gly Pro Pro Ser Leu Gln Ala Glu Ser Asp Phe Lys Ile Ile 680 685	2179
20	gaa ata gaa gct cag tagtggtata taaaagagga agatgatatt ctccgccgtg 2 Glu Ile Glu Ala Gln 695	2234
	gaatagette tgactetgtt geatteaggg ggaaageeaa gaagatgtag agteggeegt 2 ataaet	2294 2300
30	<210> 16 <211> 9 <212> PRT <213> Chlamydia pneumoniae	
	<220> <221> SITE <222> (50)(58)	
	<400> 16 Ser Ile Leu Glu Leu Leu Gln Phe Val 1 5	
40	<210> 17 <211> 1900 <212> DNA <213> Chlamydia pneumoniae	
	<220> <221> CDS <222> (101)(1741)	
50	<400> 17 tagcttgaaa tagcttcctc caattgtgat ttctgaagaa gtataggggg aaatgtcgaa 6	50
	gagatagtct tgttttaaag gaggaggga aaacggttta atg agc aga aaa gac lagatagtct tgttttaaag gaggaggga aaacggttta atg agc aga aaa gac lagatagtct tgttttaaag gaggaggga aaacggttta atg agc aga aaa gac lagatagtct tgttttaaag gaggaggga aaacggttta atg agc aga aaa gac lagatagtct tgttttaaag gaggaggga aaacggttta atg agc aga aaa gac lagatagtct tgttttaaag gaggaggga aaacggttta atg agc aga aaa gac lagatagtct tgttttaaag gaggaggga aaacggttta atg agc aga aaa gac lagatagtct tgttttaaag gaggaggaga aaacggttta atg agc aga aaa gac lagatagtct tgttttaaag gaggaggaga aaacggttta atg agc aga aaa gac lagatagaggagagagagagagagagagagagagagagag	115
	aat gag gtt tcc tta gct cgt tca att ttt aat at at tcc gga act $$ 1 Asn Glu Val Ser Leu Ala Arg Ser Ile Phe Asn Ile Leu Ser Gly Thr $$ 15 $$ 20	1.63

			att Ile						211
10			gat Asp						259
			tta Leu						307
			cat His						355
20			ttc Phe 90						403
			ctg Leu						451
30			ggg gly						499
30			att Ile						547
			aat Asn						595
40			tgg Trp 170						643
			att Ile						691
50			tta Leu						739
30			cca Pro						787
			ttg Leu						835
60			atc Ile 250						883

			tac Tyr						931
10			gtg Val						979
			gat Asp						1027
			atg Met						1075
20			cct Pro 330						1123
			gtc Val						1171
30			cct Pro						1219
			cag Gln						1267
			att Ile						1315
40			ggc Gly 410						1363
			ctc Leu						1411
50			tgg Trp						1459
			gct Ala						1507
			gta Val						1555
60			ata Ile 490						1603

	tgc att ttc ttg gct ttt ttg ttt ggt ttt gca Cys Ile Phe Leu Ala Phe Leu Phe Gly Phe Ala 505 510	
10	gaa gat ctt att aat ttg gct tct ttt gaa tac Glu Asp Leu Ile Asn Leu Ala Ser Phe Glu Tyr 520 525	
10	ggt ctt ttg caa aga caa cac gtg atg caa gac Gly Leu Leu Gln Arg Gln His Val Met Gln Asp 535 540	
	taatcatgit tgittetigi ageteagieg etitettita getiggiett eigittetae aettaatait gatactaagg tatcaatggi tagegagigi ggitettita gegetgaea	
20	<210> 18 <211> 9 <212> PRT <213> Chlamydia pneumoniae	
	<220> <221> SITE <222> (111)(119)	
30	<400> 18 Val Leu Trp Val Phe Phe Asn Asn Val 1 5	
	<210> 19 <211> 3150 <212> DNA <213> Chlamydia pneumoniae	
40	<220> <221> CDS <222> (101)(2962)	
	<400> 19 totcaagagt aacottatoo ttagattatt cagotcaagt	ctcctcgtca actgtaggtc 60
	aatacettaa agetgagagt cattgcacat tttaaccaca	atg aaa aca tca agg 115 Met Lys Thr Ser Arg 1 5
50	aat aaa cag tgc aaa ata aca gat ccc tta agt Asn Lys Gln Cys Lys Ile Thr Asp Pro Leu Ser 10 15	
	gtt gga gcc tta att tta ggt aaa act aca ata Val Gly Ala Leu Ile Leu Gly Lys Thr Thr Ile 25 30	
60	ccg ttg tct gac tat ttt gat aat caa gca aat Pro Leu Ser Asp Tyr Phe Asp Asn Gln Ala Asn 40 45	

			gat Asp						307
10			gga Gly						355
			tcc Ser 90						403
			tct Ser						451
20			cta Leu						499
			aat Asn						547
30			tta Leu						595
			gct Ala 170						643
			gca Ala						691
40			gct Ala						739
			aat Asn						787
50			tgt Cys						835
			tca Ser 250						883
			aag Lys						931
60			gac Asp						979

								gcc Ala	1027
10								caa Gln	1075
								cag Gln 340	1123
								act Thr	1171
20								ttc Phe	1219
								gtc Val	1267
30								gat Asp	1315
30								aat Asn 420	1363
								att Ile	1411
40								aac Asn	1459
								gag Glu	1507
50								ggc	1555
								agt Ser 500	1603
								tct Ser	1651
60								ggt Gly	1699

			agc Ser						1747
10			ctg Leu						1795
			cct Pro 570						1843
			cat His						1891
20			cac His						1939
			aca Thr						1987
3.0			cag Gln						2035
			aac Asn 650						2083
			tta Leu						2131
40			aca Thr						2179
			aat Asn						2227
50			aca Thr						2275
			caa Gln 730						2323
			tcg Ser						2371
60			gag Glu						2419

						atc Ile											2467
10						tat Tyr 795											2515
						tgg Trp											2563
						gtt Val											2611
20						aaa Lys											2659
						att Ile											2707
30						ata Ile 875											2755
						aac Asn											2803
						acc Thr											2851
40						atc Ile											2899
						tca Ser											2947
50			ttt Phe			taaa	agca	ıtg t	tata	ıtaga	ıc aa	itgca	acct	gta	aaga	ıcca	3002
-	ccac	agat	ac g	ittte	cccc		aaaa	ttaa								gaaat ittcga	

<210> 20

60 <220>

<211> 9 <212> PRT

<213> Chlamydia pneumoniae

```
<221> SITE
    <222> (119)..(127)
     -400 > 20
     Ile Leu Phe Leu Asn Ser Phe Ala Ile
1.0
    <210> 21
    <211> 3200
    <212> DNA
    <213> Chlamydia pneumoniae
    -22Ds
    <221> CDS
    <222> (101)..(3100)
    <400> 21
    tectgaacte cactegaaat tactgattag ceaaggtacg tggacgacge aggecactee 60
    tqtqacctac aatqctttaq qqatcaaaqt qaaaaaatacc atqcaqqtqt ttcctaaaqt 120
    cactetetee tragattact etgeggatat ttetteetee acgetgagte actacttaaa 180
    cgtggcgagt agaatgagat tittaacaat aagtgaccaa aacagaaaga ttaaggaacc 240
    totagtotca aagactooto otaagttttt attotatoto oogaatttca cagootocat 300
    qttcqqqatq actcctqcaq tqtataqttt acaaacqqac tcccttqaaa aqtttqcttt 360
    agagaggat gaagagtttc gtacgagctt tcctctctta gactctctct ccactcttac 420
    aggattttct ccaataacta cgtttgttgg aaatagacat aattcctctc aagacattgt 480
    actitictaac tacaaqteta tiqataacat cottettett tqqacateqq ctqqqqqqqc 540
3.0
   tqtqtcctqt aataatttct tattatcaaa tqttqaaqac catqccttct tcagtaaaaa 600
    totogogatt gggactggag gegegattge tigecaggga geetgeacaa teacgaagaa 660
    tagaggaccc cttatttttt tcagcaatcg aggtcttaac aatgcgagta caggaggaga 720
    aacteqtqqq qqtqcqattq cctqtaatqq agacttcacq atttctcaaa atcaagggac 780
    tttctacttt gtcaacaatt ccgtcaacaa ctggggagga gccctctcca ccaatggaca 840
    ctgccgcatc caaagcaaca gggcacctct actcttttt aacaatacag cccctagtgg 900
    agggggtgcg cttcgtagtg aaaatacaac gatctctgat aacacgcgtc ctatttattt 960
    taagaacaac totoogaaca atoocoogoo cattcaaaca agcottacto ttocoataaa 1020
    aaataactcc qqqtcqqtqa ttttcaataa caacacaqcq ttatctqqtt cqataaattc 1080
    aggaaatggt tcaggagggg cgatttatac aacaaaccta tccatagacg ataacctgg 1140
40
    aactattett tteaataata actaetgeat tegegatgge ggagetatet gtacacaatt 1200
    tttgacaatc aaaaatagtg gccacgtata tttcaccaac aatcaaggaa actggggagg 1260
    tgctcttatg ctcctacagg acagcacctg cctactcttc gcggaacaag gaaatatcgc 1320
    atttcaaaat aatqaqqttt tcctcaccac atttqqtaqa tacaacqcca tacattqtac 1380
    accaaatagc aacttacaac ttggagctaa taaggggtat acgactgctt tttttgatcc 1440
    tatagaacac caacatccaa ctacaaatcc tctaatcttt aatcccaatg cgaaccatca 1500
    gggaacgate ttattttett cageetatat eecagaaget tetgaetaeg aaaataattt 1560
    cattagcage tegaaaaata eetetgaaet tegeaatggt gteeteteta tegaggateg 1620
    tqcqqqatqq caattctata aqttcactca aaaaqqaqqt atccttaaat taqqqcatqc 1680
    ggcgagtatt gcaacaactg ccaactctga gactccatca actagtgtag gctcccaggt 1740
   catcattaat aaccttqcqa ttaacctccc ctcqatctta qcaaaaqqaa aaqctcctac 1800
    cttqtqqatc cqtcctctac aatctaqtqc tcctttcaca qaqqacaata accctacaat 1860
    tactitatea ggteetetga caetettaaa tgaggaaaac egegateeet acgacagtat 1920
    agatetetet gageetttae aaaacattea tettetttet ttateggatg taacageacg 1980
    tcatatcaat accqataact ttcatcctqa aagcttaaat gcgactgagc attacggtta 2040
    tcaaggcatc tggtctcctt attgggtaga gacgataaca acaacaaata acqcttctat 2100
    agagacggca aacaccctct acagagctct gtatgccaat tggactccct taggatataa 2160
    ggtcaatcct gaataccaag gagatcttgc tacgactccc ctatggcaat cctttcatac 2220
    tatgttetet etattaagaa gttataateg aactggtgat tetgatateg agaggeettt 2280
    cttagaaatt caagggattg ccgacggcct ctttgttcat caaaatagca tccccggggc 2340
60 tocaggatto ogtatocaat otacagggta ttoottacaa gcatoctoog aaacttottt 2400
    acatcagaaa atctccttag gttttgcaca gttcttcacc cgcactaaag aaatcggatc 2460
```

```
aagcaacaac gtotoggoto acaatacagt otottoactt tatgttgago ttoogtggtt 2520
    ccaaqaqqcc tttqcaacat cccacaqttt aqcqtatqqc tatqqqqacc atcacctcca 2580
    cgcctacatc cgtcacatca agaacagggc agaagggacg tgttatagcc atacattaqc 2640
    agcagetate ggetgttett teeettggca acagaaatee tatetteace teageeegtt 2700
    cqttcaqqca attqcaatac qttctcacca aacaqcqttc qaaqagattg gtgacaatcc 2760
    ccgaaagttt gtctctcaaa agcctttcta taatctgacc ttacctctag gaatccaagg 2820
    aaaatqqcaq tcaaaattcc acqtacctac aqaatqqact ctaqaacttt cttaccaacc 2880
10 qqtactctat caacaaaatc cccaaatcqq tqtcacqcta cttqcgagcg gaggttcctg 2940
    ggatatecta ggecataact atgttegeaa tgetttaggg tacaaagtee acaateaaac 3000
    tgegetette egtteteteg atetattett ggattaccaa ggatcggtet ceteetegae 3060
    attgaaatct ttagaattaa caactateeg atgagetaeg ttageecaat eggtagagga 3180
    ctccctcaaa atttaaataa
                                                                     3200
    <210> 22
    <211> 9
   <212> PRT
    <213> Chlamydia pneumoniae
    <220>
    <221> SITE
    <222> (56)..(64)
    <400> 22
    Phe Leu Phe Tyr Leu Gly Asn Phe Thr
     1
                     5
3.0
    <210> 23
    <211> 3000
    <212> DNA
    <213> Chlamydia pneumoniae
    <220>
    <221> CDS
    <222> (101)..(2893)
40
    tagacactat aaaacaaatt atagacaaaa aatctagcat tgatttattc agaatatttc 60
    tttctatttg tgaacgagta tgcgcttttt ttgcttcgga atg ttg ctt cct ttt
                                               Met Leu Leu Pro Phe
                                                 1
    act ttt qta ttq qct aat qaa qqt ctc caa ctt cct ttq qaq acc tat
                                                                    163
    Thr Phe Val Leu Ala Asn Glu Gly Leu Gln Leu Pro Leu Glu Thr Tyr
50
                     10
                                        15
    att aca tta aqt cct gaa tat caa gca gcc cct caa gta ggg ttt act
                                                                    211
    Ile Thr Leu Ser Pro Glu Tyr Gln Ala Ala Pro Gln Val Gly Phe Thr
    cat age cag agt cag qut ctc qcg att qtc qqq agt cac agt qat ttc
                                                                    259
    His Asn Gln Asn Gln Asp Leu Ala Ile Val Gly Asn His Asn Asp Phe
```

45

40

	atc Ile	ttg Leu 55	gac Asp	tat Tyr	aag Lys	tac Tyr	tat Tyr 60	cgg Arg	tcg Ser	aat Asn	gga Gly	ggt Gly 65	gct Ala	ctt Leu	acc Thr	tgt Cys	307
10					atc Ile												355
10					aat Asn 90												403
					aat Asn												451
20					gcc Ala												499
					tct Ser												547
30	gac Asp 150	aat Asn	ctc Leu	gct Ala	tta Leu	aat Asn 155	aag Lys	glà aaa	ggt Gly	gcc Ala	ctc Leu 160	tat Tyr	act Thr	gag Glu	acg Thr	aac Asn 165	595
30					gac Asp 170												643
	gca Ala	cta Leu	aat Asn	tcg Ser 185	gac Asp	agt Ser	tta Leu	gga Gly	gga Gly 190	gly ggg	att Ile	tat Tyr	agt Ser	ggg Gly 195	aac Asn	tct Ser	691
40	cta Leu	aat Asn	ata Ile 200	gag Glu	gga Gly	aat Asn	tct Ser	gga Gly 205	gct Ala	ata Ile	cag Gln	atc Ile	aca Thr 210	agc Ser	aac Asn	tct Ser	739
	tca Ser	gga Gly 215	tct Ser	gly aaa	gga Gly	ggc Gly	ata Ile 220	ttt Phe	tct Ser	acc Thr	caa Gln	aca Thr 225	ctc Leu	acg Thr	atc Ile	tcc Ser	787
50					ctc Leu												835
30					aac Asn 250												883
					ttg Leu												931
60					aac Asn												979

								cgg Arg	1027
10								ttc Phe	1075
								gcc Ala 340	1123
								act Thr	1171
20								ctg Leu	1219
								ctc Leu	1267
30								gaa Glu	1315
								tta Leu 420	1363
								ggt Gly	1411
40								ctt Leu	1459
								cca Pro	1507
50								att Ile	1555
								aaa Lys 500	1603
								tcc Ser	1651
60								aac Asn	1699

	gat Asp 535								1747
10	ctt Leu								1795
	ctg Leu								1843
	atc Ile								1891
20	tct Ser								1939
	tct Ser 615								1987
30	acg Thr								2035
	tcc Ser								2083
	ggc Gly								2131
40	ttt Phe								2179
	tct Ser 695								2227
50	gct Ala								2275
	tct Ser								2323
	tct Ser								2371
60	tat Tyr								2419

													cct Pro		2467
10													atc Ile		2515
													gaa Glu 820		2563
													atc Ile		2611
20													aca Thr		2659
													cac His		2707
30													cct Pro		2755
30													gtg Val 900		2803
													tcc Ser		2851
40				cac His											2893
				gaco								ag a	etec	tccta	2953 3000
50	<211 <212	2 > PF	eT.	/dia	pneu	ımoni	.ae								
)> L> SI !> (I		(9)											
)> 24 Leu		Pro	Phe 5	Thr	Phe	Val	Leu						
C 0															

	<213 <213	0 > 2! 1 > 3: 2 > DI 3 > Cl	150 VA	ydia	pne	ımon	iae										
10		1> C		(3	033)												
		0> 2! tgtg		gtgai	tatto	eg ca	agaa	ecte	c cgi	caa	atat	act	ctag	ata	tagg.	aagcaa	60
	atta	acga	t t t '	taaa	eetta	at ti	aac	gacaç	g gg1	ttga					tct Ser		114
20															agt Ser 20		162
															att Ile		210
30															tca Ser		258
30															agc Ser		306
	ctc Leu 70	tcc Ser	tta Leu	tta Leu	g1y g1y	aag Lys 75	ggc Gly	ctt Leu	tcc Ser	tta Leu	acg Thr 80	ttt Phe	acc Thr	tct Ser	tgt Cys	caa Gln 85	354
40															act Thr 100		402
															tcg Ser		450
50															tct Ser		498
50															gca Ala		546
															gga Gly		594
60															tcc Ser 180		642

						61y 999											690
10						gtc Val											738
10						ttt Phe											786
						ttt Phe 235											834
20	gcc Ala	aac Asn	tcc Ser	tgt Cys	gtg Val 250	aac Asn	agc Ser	tta Leu	aaa Lys	ggc Gly 255	gtc Val	acc Thr	cct Pro	tca Ser	tca Ser 260	gga Gly	882
						agt Ser											930
30						aat Asn											978
30						ggt Gly											1026
						ttg Leu 315											1074
40	ggc Gly					gct Ala											1122
						aac Asn											1170
50						gac Asp											1218
30						gat Asp											1266
						aat Asn 395											1314
60						caa Gln											1362

															att Ile		1410
10															aag Lys		1458
															ata Ile		1506
															gac Asp		1554
20															cag Gln 500		1602
															gga Gly		1650
30	cct Pro	gcc Ala	gct Ala 520	gta Val	gac Asp	ttt Phe	acg Thr	att Ile 525	gga Gly	aag Lys	tta Leu	gca Ala	ttc Phe 530	gat Asp	cct Pro	ttt Phe	1698
															ggc Gly		1746
															gac Asp		1794
40															att Ile 580		1842
															cct Pro		1890
50															tgg Trp		1938
															gga Gly		1986
															tgg Trp		2034
60															cgt Arg 660		2082

		gtc Val 665							2130
10		gat Asp							2178
		acc Thr							2226
		cat His							2274
20		atg Met							2322
		tat Tyr 745							2370
30		atg Met							2418
		agc Ser							2466
		cac His							2514
40		999, Gly							2562
		cct Pro 825							2610
50		gat Asp							2658
		aag Lys							2706
		gly aaa							2754
60		cca Pro							2802

	gcc Ala	tac Tyr	aag Lys	cct Pro 905	gat Asp	atc Ile	tat Tyr	cgt Arg	gtc Val 910	aac Asn	cct Pro	cac His	aat Asn	att Ile 915	gtg Val	act Thr	2850
10			tca Ser 920														2898
			ggt Gly														2946
			cag Gln														2994
20			cac His											taaa	acto	ta	3043
			ctt a gca a											tc o	atca	itcgaa	3103 3150
30	<211 <212	0 > 26 L > 9 2 > PF 3 > Ch		/dia	pneu	ımoni	.ae										
		L> S1	TE 36).	. (94	4)												
)> 26 Leu	Phe	Val	Gln 5	Ile	His	Asp	Val								
40	<211 <212	0> 27 L> 84 2> PF 3> Ch	1	'dia	pneu	ımoni	.ae										
)> 27 Lys	7 Ile	Pro	Leu 5	Arg	Phe	Leu	Leu	Ile 10	Ser	Leu	Val	Pro	Thr 15	Leu	
50	Ser	Met	Ser	Asn 20	Leu	Leu	Gly	Ala	Ala 25	Thr	Thr	Glu	Glu	Leu 30	Ser	Ala	
	Ser	Asn	Ser 35	Phe	Asp	Gly	Thr	Thr 40	Ser	Thr	Thr	Ser	Phe 45	Ser	Ser	Lys	
	Thr	Ser 50	Ser	Ala	Thr	Asp	Gly 55	Thr	Asn	Tyr	Val	Phe 60	Lys	Asp	ser	Val	
60	Val 65	Ile	Glu	Asn	Val	Pro 70	Lys	Thr	Gly	Glu	Thr 75	Gln	Ser	Thr	ser	Cys 80	

	Phe	Lys	Asn	Asp	Ala 85	Ala	Ala	Gly	Asp	Leu 90	Asn	Phe	Leu	Gly	Gly 95	Gly
	Phe	Ser	Phe	Thr 100	Phe	ser	Asn	Ile	Asp 105	Ala	Thr	Thr	Ala	ser 110	Gly	Ala
10	Ala	Ile	Gly 115	Ser	Glu	Ala	Ala	Asn 120	Lys	Thr	Val	Thr	Leu 125	Ser	Gly	Phe
	Ser	Ala 130	Leu	Ser	Phe	Leu	Lys 135	Ser	Pro	Ala	Ser	Thr 140	Val	Thr	Asn	Gly
	Leu 145	Gly	Ala	Ile	Asn	Val 150	Lys	Gly	Asn	Leu	Ser 155	Leu	Leu	Asp	Asn	Asp 160
	Lys	Val	Leu	Ile	Gln 165	Asp	Asn	Phe	Ser	Thr 170	Gly	Asp	Gly	Gly	Ala 175	Ile
20	Asn	Cys	Ala	Gly 180	Ser	Leu	Lys	Ile	Ala 185	Asn	Asn	Lys	Ser	Leu 190	Ser	Phe
	Ile	Gly	Asn 195	Ser	ser	Ser	Thr	Arg 200	Gly	Gly	Ala	Ile	His 205	Thr	Lys	Asn
	Leu	Thr 210	Leu	Ser	ser	Gly	Gly 215	Glu	Thr	Leu	Phe	Gln 220	Gly	Asn	Thr	Ala
30	Pro 225	Thr	Ala	Ala	Gly	Lys 230	Gly	Gly	Ala	Ile	Ala 235	Ile	Ala	Asp	Ser	Gly 240
	Thr	Leu	Ser	Ile	Ser 245	Gly	Asp	Ser	Gly	Asp 250	Ile	Ile	Phe	Glu	Gly 255	Asn
	Thr	Ile	Gly	Ala 260	Thr	Gly	Thr	Val	Ser 265	His	Ser	Ala	Ile	Asp 270	Leu	Gly
40	Thr	Ser	Ala 275	Lys	Ile	Thr	Ala	Leu 280	Arg	Ala	Ala	Gln	Gly 285	His	Thr	Ile
10	Tyr	Phe 290	Tyr	Asp	Pro	Ile	Thr 295	Val	Thr	Gly	Ser	Thr 300	Ser	Val	Ala	Asp
	Ala 305	Leu	Asn	Ile	Asn	Ser 310	Pro	Asp	Thr	Gly	Asp 315	Asn	Lys	Glu	Tyr	Thr 320
	Gly	Thr	Ile	Val	Phe 325	ser	Gly	Glu	Lys	Leu 330	Thr	Glu	Ala	Glu	Ala 335	Lys
50	Asp	Glu	Lys	Asn 340	Arg	Thr	Ser	Lys	Leu 345	Leu	Gln	Asn	Val	Ala 350	Phe	Lys
	Asn	Gly	Thr 355	Val	Val	Leu	Lys	Gly 360	Asp	Val	Val	Leu	Ser 365	Ala	Asn	Gly
	Phe	Ser 370	Gln	Asp	Ala	Asn	ser 375	Lys	Leu	Ile	Met	Asp 380	Leu	Gly	Thr	Ser
60	Leu 385	Val	Ala	Asn	Thr	Glu 390	ser	Ile	Glu	Leu	Thr 395	Asn	Leu	Glu	Ile	Asn 400

Ile Asp Ser Leu Arg Asn Gly Lys Lys Ile Lys Leu Ser Ala Ala Thr Ala Gln Lys Asp Ile Arq Ile Asp Arq Pro Val Val Leu Ala Ile Ser Asp Glu Ser Phe Tyr Gln Asn Gly Phe Leu Asn Glu Asp His Ser Tyr 10 Asp Gly Ile Leu Glu Leu Asp Ala Gly Lys Asp Ile Val Ile Ser Ala 455 Asp Ser Arg Ser Ile Asp Ala Val Gln Ser Pro Tyr Gly Tyr Gln Gly 475 Lys Trp Thr Ile Asn Trp Ser Thr Asp Asp Lys Lys Ala Thr Val Ser 485 2.0 Trp Ala Lys Gln Ser Phe Asn Pro Thr Ala Glu Gln Glu Ala Pro Leu 505 Val Pro Asn Leu Leu Trp Gly Ser Phe Ile Asp Val Arg Ser Phe Gln Asn Phe Ile Glu Leu Gly Thr Glu Gly Ala Pro Tyr Glu Lys Arg Phe 535 Trp Val Ala Gly Ile Ser Asn Val Leu His Arg Ser Gly Arg Glu Asn 3.0 545 Gln Arg Lys Phe Arg His Val Ser Gly Gly Ala Val Val Gly Ala Ser Thr Arg Met Pro Gly Gly Asp Thr Leu Ser Leu Gly Phe Ala Gln Leu Phe Ala Arg Asp Lvs Asp Tvr Phe Met Asn Thr Asn Phe Ala Lvs Thr 40 600 Tyr Ala Gly Ser Leu Arg Leu Gln His Asp Ala Ser Leu Tyr Ser Val 610 615 Val Ser Ile Leu Leu Gly Glu Gly Gly Leu Arg Glu Ile Leu Leu Pro 630 635 Tyr Val Ser Lys Thr Leu Pro Cys Ser Phe Tyr Gly Gln Leu Ser Tyr 645 50 Gly His Thr Asp His Arg Met Lys Thr Glu Ser Leu Pro Pro Pro 665 Pro Thr Leu Ser Thr Asp His Thr Ser Trp Gly Gly Tyr Val Trp Ala Gly Glu Leu Gly Thr Arg Val Ala Val Glu Asn Thr Ser Gly Arg Gly 695 Phe Phe Gln Glu Tyr Thr Pro Phe Val Lys Val Gln Ala Val Tyr Ala 705 710 715

Arg Gln Asp Ser Phe Val Glu Leu Gly Ala Ile Ser Arg Asp Phe Ser Asp Ser His Leu Tyr Asn Leu Ala Ile Pro Leu Gly Ile Lys Leu Glu Lys Arg Phe Ala Glu Gln Tyr Tyr His Val Val Ala Met Tyr Ser Pro 10 Asp Val Cys Arg Ser Asn Pro Lys Cys Thr Thr Leu Leu Ser Asn Gln Gly Ser Trp Lys Thr Lys Gly Ser Asn Leu Ala Arg Gln Ala Gly 705 790 Ile Val Gln Ala Ser Gly Phe Arg Ser Leu Gly Ala Ala Ala Glu Leu 805 20 Phe Gly Asn Phe Gly Phe Glu Trp Arg Gly Ser Ser Arg Ser Tyr Asn 825 Val Asp Ala Gly Ser Lys Ile Lys Phe 835 <210> 28 <211> 841 <212> PRT 3.0 <213> Chlamydia pneumoniae <400> 28 Met Lys Ile Pro Leu Arg Phe Leu Leu Ile Ser Leu Val Pro Thr Leu Ser Met Ser Asn Leu Leu Gly Ala Ala Thr Thr Glu Glu Leu Ser Ala 40 Ser Asn Ser Phe Asp Gly Thr Thr Ser Thr Thr Ser Phe Ser Ser Lys Thr Ser Ser Ala Thr Asp Gly Thr Asn Tyr Val Phe Lys Asp Ser Val Val Ile Glu Asn Val Pro Lys Thr Gly Glu Thr Gln Ser Thr Ser Cys 65 Phe Lys Asn Asp Ala Ala Ala Gly Asp Leu Asn Phe Leu Gly Gly Gly 5.0 Phe Ser Phe Thr Phe Ser Asn Ile Asp Ala Thr Thr Ala Ser Gly Ala Ala Ile Gly Ser Glu Ala Ala Asn Lys Thr Val Thr Leu Ser Gly Phe 120 Ser Ala Leu Ser Phe Leu Lys Ser Pro Ala Ser Thr Val Thr Asn Gly 135 140 130

	Leu 145	Gly	Ala	Ile	Asn	Val 150	Lys	Gly	Asn	Leu	Ser 155	Leu	Leu	Asp	Asn	Asp 160
	Lys	Val	Leu	Ile	Gln 165	Asp	Asn	Phe	Ser	Thr 170	Gly	Asp	Gly	Gly	Ala 175	Ile
10	Asn	Cys	Ala	Gly 180	ser	Leu	Lys	Ile	Ala 185	Asn	Asn	Lys	ser	Leu 190	ser	Phe
	Ile	Gly	Asn 195	Ser	Ser	Ser	Thr	Arg 200	Gly	Gly	Ala	Ile	His 205	Thr	Lys	Asn
	Leu	Thr 210	Leu	Ser	Ser	Gly	Gly 215	Glu	Thr	Leu	Phe	Gln 220	Gly	Asn	Thr	Ala
20	Pro 225	Thr	Ala	Ala	Gly	Lys 230	Gly	Gly	Ala	Ile	Ala 235	Ile	Ala	Asp	Ser	Gly 240
	Thr	Leu	Ser	Ile	Ser 245	Gly	Asp	Ser	Gly	Asp 250	Ile	Ile	Phe	Glu	Gly 255	Asn
	Thr	Ile	Gly	Ala 260	Thr	Gly	Thr	Val	Ser 265	His	Ser	Ala	Ile	Asp 270	Leu	Gly
	Thr	Ser	Ala 275	Lys	Ile	Thr	Ala	Leu 280	Arg	Ala	Ala	Gln	Gly 285	His	Thr	Ile
30	Tyr	Phe 290	Tyr	Asp	Pro	Ile	Thr 295	Val	Thr	Gly	Ser	Thr 300	ser	Val	Ala	Asp
	Ala 305	Leu	Asn	Ile	Asn	Ser 310	Pro	Asp	Thr	Gly	Asp 315	Asn	Lys	Glu	Tyr	Thr 320
	Gly	Thr	Ile	Val	Phe 325	Ser	Gly	Glu	Lys	Leu 330	Thr	Glu	Ala	Glu	Ala 335	Lys
40	Asp	Glu	Lys	Asn 340	Arg	Thr	Ser	Lys	Leu 345	Leu	Gln	Asn	Val	Ala 350	Phe	Lys
	Asn	Gly	Thr 355	Val	Val	Leu	Lys	Gly 360	Asp	Val	Val	Leu	Ser 365	Ala	Asn	Gly
	Phe	Ser 370	Gln	Asp	Ala	Asn	Ser 375	Lys	Leu	Ile	Met	Asp 380	Leu	Gly	Thr	Ser
50	Leu 385	Val	Ala	Asn	Thr	Glu 390	Ser	Ile	Glu	Leu	Thr 395	Asn	Leu	Glu	Ile	Asn 400
5.0	Ile	Asp	Ser	Leu	Arg 405	Asn	Gly	Lys	Lys	Ile 410	Lys	Leu	Ser	Ala	Ala 415	Thr
	Ala	Gln	Lys	Asp 420	Ile	Arg	Ile	Asp	Arg 425	Pro	Val	Val	Leu	Ala 430	Ile	Ser
	Asp	Glu	Ser 435	Phe	Tyr	Gln	Asn	Gly 440	Phe	Leu	Asn	Glu	Asp 445	His	Ser	Tyr
60	Asp	Gly 450	Ile	Leu	Glu	Leu	Asp 455	Ala	Gly	Lys	Asp	Ile 460	Val	Ile	Ser	Ala

	Asp 465	Ser	Arg	Ser	Ile	Asp 470	Ala	Val	Gln	Ser	Pro 475	Tyr	Gly	Tyr	Gln	Gly 480
	Lys	Trp	Thr	Ile	Asn 485	Trp	Ser	Thr	Asp	Asp 490	Lys	Lys	Ala	Thr	Val 495	Ser
10	Trp	Ala	Lys	Gln 500	Ser	Phe	Asn	Pro	Thr 505	Ala	Glu	Gln	Glu	Ala 510	Pro	Leu
	Val	Pro	Asn 515	Leu	Leu	Trp	Gly	Ser 520	Phe	Ile	Asp	Val	Arg 525	Ser	Phe	Gln
	Asn	Phe 530	Ile	Glu	Leu	Gly	Thr 535	Glu	Gly	Ala	Pro	Tyr 540	Glu	Lys	Arg	Phe
20	Trp 545	Val	Ala	Gly	Ile	Ser 550	Asn	Val	Leu	His	Arg 555	Ser	Gly	Arg	Glu	Asn 560
	Gln	Arg	Lys	Phe	Arg 565	His	Val	Ser	Gly	Gly 570	Ala	Val	Val	Gly	Ala 575	Ser
	Thr	Arg	Met	Pro 580	Gly	Gly	Asp	Thr	Leu 585	Ser	Leu	Gly	Phe	Ala 590	Gln	Leu
	Phe	Ala	Arg 595	Asp	Lys	Asp	Tyr	Phe 600	Met	Asn	Thr	Asn	Phe 605	Ala	Lys	Thr
30	Tyr	Ala 610	Gly	Ser	Leu	Arg	Leu 615	Gln	His	Asp	Ala	Ser 620	Leu	Tyr	Ser	Val
	Val 625	Ser	Ile	Leu	Leu	Gly 630	Glu	Gly	Gly	Leu	Arg 635	Glu	Ile	Leu	Leu	Pro 640
	Tyr	Val	ser	Lys	Thr 645	Leu	Pro	Cys	Ser	Phe 650	Tyr	Gly	Gln	Leu	Ser 655	Tyr
40	Gly	His	Thr	Asp 660	His	Arg	Met	Lys	Thr 665	Glu	Ser	Leu	Pro	Pro 670	Pro	Pro
	Pro	Thr	Leu 675	Ser	Thr	Asp	His	Thr 680	Ser	Trp	Gly	Gly	Tyr 685	Val	Trp	Ala
	Gly	Glu 690	Leu	Gly	Thr	Arg	Val 695	Ala	Val	Glu	Asn	Thr 700	Ser	Gly	Arg	Gly
50	Phe 705	Phe	Gln	Glu	Tyr	Thr 710	Pro	Phe	Val	Lys	Val 715	Gln	Ala	Val	Tyr	Ala 720
	Arg	Gln	Asp	Ser	Phe 725	Val	Glu	Leu	Gly	Ala 730	Ile	Ser	Arg	Asp	Phe 735	Ser
	Asp	Ser	His	Leu 740	Tyr	Asn	Leu	Ala	Ile 745	Pro	Leu	Gly	Ile	Lys 750	Leu	Glu
	Lys	Arg	Phe 755	Ala	Glu	Gln	Tyr	Tyr 760	His	Val	Val	Ala	Met 765	Tyr	Ser	Pro
60	Asp	Val 770	Cys	Arg	Ser	Asn	Pro 775	Lys	Cys	Thr	Thr	Thr 780	Leu	Leu	Ser	Asn

Gln Gly Ser Trp Lys Thr Lys Gly Ser Asn Leu Ala Arq Gln Ala Gly Ile Val Gln Ala Ser Gly Phe Arg Ser Leu Gly Ala Ala Ala Glu Leu Phe Gly Asn Phe Gly Phe Glu Trp Arg Gly Ser Ser Arg Ser Tyr Asn Val Asp Ala Gly Ser Lys Ile Lys Phe 835 <210> 29 <211> 245 <212> PRT <213> Chlamydia pneumoniae <400× 29 Met Pro Pro Leu Asn Ala Asp Asp Val Leu Pro Arg Asp His Leu Ser Asp Gly Ser Phe Ser Asp Thr Tyr Pro Asp Ile Thr Thr Gln Ala Ile Ile Leu Ile Phe Leu Ala Leu Ser Pro Phe Leu Val Met Leu Leu Thr Ser Tyr Leu Lys Ile Ile Ile Thr Leu Val Leu Leu Arg Asn Ala Leu Gly Val Gln Gln Thr Pro Pro Ser Gln Val Leu Asn Gly Ile Ala Leu Ile Leu Ser Ile Tyr Val Met Phe Pro Thr Gly Val Ala Met Tyr Lys Asp Ala Arg Lys Glu Ile Glu Ala Asn Thr Ile Pro Gln Ser Leu Phe Thr Ala Glu Gly Ala Glu Thr Val Phe Val Ala Leu Asn Lys Ser Lys 120 Glu Pro Leu Arg Ser Phe Leu Ile Arg Asn Thr Pro Lys Ala Gln Ile 130 135 Gln Ser Phe Tyr Lys Ile Ser Gln Lys Thr Phe Pro Ser Glu Ile Arg 150 155 Ala His Leu Thr Ala Ser Asp Phe Val Ile Ile Pro Ala Phe Ile Met Gly Gln Ile Lys Asn Ala Phe Glu Ile Gly Val Leu Ile Tyr Leu 185 Pro Phe Phe Val Ile Asp Leu Val Thr Ala Asn Val Leu Val Ala Met

200

195

10

2.0

30

40

Gln Met Met Met Leu Ser Pro Leu Ser Ile Ser Leu Pro Leu Lys Leu 215 Leu Leu Ile Val Met Val Asp Gly Trp Thr Leu Leu Leu Gln Gly Leu 235 230 Met Ile Ser Phe Lvs 245 <210> 30 <211> 233 <212> PRT <213> Chlamydia pneumoniae Met Lys Phe Phe Ser Leu Ile Phe Lys Asp Asp Asp Val Ser Pro Asn Lys Lys Val Leu Ser Pro Glu Ala Phe Ser Ala Phe Leu Asp Ala Lys Glu Leu Leu Glu Lys Thr Lys Ala Asp Ser Glu Ala Tyr Val Ala Glu Thr Glu Gln Lys Cys Ala Gln Ile Arg Gln Glu Ala Lys Asp Gln Gly Phe Lys Glu Gly Ser Glu Ser Trp Ser Lys Gln Ile Ala Phe Leu Glu Glu Glu Thr Lys Asn Leu Arg Ile Arg Val Arg Glu Ala Leu Val Pro Leu Ala Ile Ala Ser Val Arg Lys Ile Ile Gly Lys Glu Leu Glu Leu His Pro Glu Thr Ile Val Ser Ile Ile Ser Gln Ala Leu Lys Glu Leu Thr Gln Asn Lys His Ile Ile Ile Ser Val Asn Pro Lys Asp Leu Pro 135 140 Leu Val Glu Lys Ser Arg Pro Glu Leu Lys Asn Ile Val Glu Tyr Ala 145 155 Asp Ser Leu Ile Leu Thr Ala Lys Pro Asp Val Thr Pro Gly Gly Cys 170 Ile Ile Glu Thr Glu Ala Gly Ile Ile Asn Ala Gln Leu Asp Val Gln Leu Asp Ala Leu Glu Lys Ala Phe Ser Thr Ile Leu Lys Ala Lys Asn Pro Val Asp Glu Pro Ser Glu Thr Ser Ser Ser Thr Asp Ser Ser Ser

215

210

50

10

20

	Leu 225	Ser	Asn	Asp	Gln	Asp 230	Lys	Lys	Glu							
10	<21 <21	0 > 3: 1 > 3: 2 > Pl 3 > Cl	22	ydia	pne	ımon:	iae									
		0> 3: Thr	l Leu	Leu	Cys 5	Cys	Thr	Ser	Cys	Asn 10	Ser	Arg	Ser	Leu	Ile 15	Val
	His	Gly	Leu	Pro 20	Gly	Arg	Glu	Ala	Asn 25	Glu	Ile	Val	Val	Leu 30	Leu	Val
20	Ser	Lys	Gly 35	Val	Ala	Ala	Gln	Lys 40	Leu	Pro	Gln	Ala	Ala 45	Ala	Ala	Thr
	Ala	Gly 50	Ala	Ala	Thr	Glu	Gln 55	Met	Trp	Asp	Ile	Ala 60	Val	Pro	Ser	Ala
	Gln 65	Ile	Thr	Glu	Ala	Leu 70	Ala	Ile	Leu	Asn	Gln 75	Ala	Gly	Leu	Pro	Arg 80
	Met	Lys	Gly	Thr	Ser 85	Leu	Leu	Asp	Leu	Phe 90	Ala	Lys	Gln	Gly	Leu 95	Val
30	Pro	Ser	Glu	Leu 100	Gln	Glu	Lys	Ile	Arg 105	Tyr	Gln	Glu	Gly	Leu 110	Ser	Glu
	Gln	Met	Ala 115	Ser	Thr	Ile	Arg	Lys 120	Met	Asp	Gly	Val	Val 125	Asp	Ala	Ser
	Val	Gln 130	Ile	Ser	Phe	Thr	Thr 135	Glu	Asn	Glu	Asp	Asn 140	Leu	Pro	Leu	Thr
40	Ala 145	Ser	Val	Tyr	Ile	Lys 150	His	Arg	Gly	Val	Leu 155	Asp	Asn	Pro	Asn	Ser 160
	Ile	Met	Va1	Ser	Lys 165	Ile	Lys	Arg	Leu	Ile 170	Ala	Ser	Ala	Val	Pro 175	Gly
	Leu	Val	Pro	Glu 180	Asn	Val	Ser	Val	Val 185	Ser	Asp	Arg	Ala	Ala 190	Tyr	Ser
50	Asp	Ile	Thr 195	Ile	Asn	Gly	Pro	Trp 200	Gly	Leu	Thr	Glu	Glu 205	Ile	Asp	Tyr
	Val	Ser 210	Val	Trp	Gly	Ile	Ile 215	Leu	Ala	Lys	ser	Ser 220	Leu	Thr	Lys	Phe
	Arg 225	Leu	Ile	Phe	Tyr	Val 230	Leu	Ile	Leu	Ile	Leu 235	Phe	Val	Ile	Ser	Cys 240
60	Gly	Leu	Leu	Trp	Val 245	Ile	Trp	Lys	Thr	His 250	Thr	Leu	Ile	Met	Thr 255	Met

Gly Gly Thr Lys Gly Phe Phe Asn Pro Thr Pro Tyr Thr Lys Asn Ala 265 Leu Glu Ala Lys Lys Ala Glu Gly Ala Ala Ala Asp Lys Glu Lys Lys Glu Asp Ala Asp Ser Gln Gly Glu Ser Lys Asn Ala Glu Thr Ser Asp 10 295 Lys Asp Ser Ser Asp Lys Asp Ala Pro Glu Gly Ser Asn Glu Ile Glu 310 315 Gly Ala <210> 32 <211> 226 <212> PRT <213> Chlamydia pneumoniae Met Thr Ile Arg Val Arg Asn Leu Ala Tyr Ser Val Asn Lys Lys Ile Leu Asp Gly Val Thr Phe Ser Leu Glu Arg Gly His Ile Thr Leu Phe Val Gly Lys Ser Gly Ser Gly Lys Thr Met Ile Leu Arg Ala Leu 3.0 Ala Gly Leu Val Gln Pro Thr Gln Gly Asp Ile Trp Ile Glu Gly Glu Ala Pro Ala Leu Val Phe Gln Gln Pro Glu Leu Phe Ser His Met Thr Val Leu Gly Asn Cys Thr His Pro Gln Ile His Ile Lys Gly Arg Ser 40 Thr Glu Glu Ala Arg Glu Lys Ala Phe Glu Leu Leu His Leu Leu Asp 100 105 Ile Glu Glu Val Ala Lys Asn Tyr Pro Asp Gln Leu Ser Gly Gly Gln 120 Lys Gln Arg Val Ala Ile Val Arg Ser Leu Cys Met Asp Lys His Thr 130 135 Leu Leu Phe Asp Glu Pro Thr Ser Ala Leu Asp Pro Phe Ala Thr Ala 150 Ser Phe Arg His Leu Leu Glu Thr Leu Arg Asp Gln Glu Leu Thr Val Gly Leu Thr Thr His Asp Met Gln Phe Val His Ser Cys Leu Asp Arg Ile Tyr Leu Ile Asp Gln Gly Thr Val Ala Gly Val Tyr Asp Lys Arg 200

205

50

Asp Gly Glu Leu Asp Ser Gly His Pro Leu Ser Lys Tyr Ile His Ser 215 Ala Gln 225 <210> 33 <211> 436 <212> PRT <213> Chlamydia pneumoniae Met Lys Arg Pro Phe Phe Thr Tyr Leu Cys Ile Ile Phe Tyr Gly Ser 1 Cys Ala Ser Leu Ser Leu His Ala Gly Leu Ser Phe Pro Glu Val Arg Gly Ala Thr Ala Ala Val Val His Ala Asp Ser Gly Lys Val Phe Tyr Asp Lys Asp Ile Asp Ala Val Ile Tyr Pro Ala Ser Met Thr Lys Ile Ala Thr Ala Leu Phe Ile Leu Lys His Tyr Pro Thr Val Leu Asp Thr Leu Ile Lys Val Lys Gln Asp Ala Ile Ala Ser Ile Thr Pro Gln Ala 90 Lys Lys Gln Ser Gly Tyr Arg Ser Pro Pro His Trp Leu Glu Thr Asp Gly Ser Thr Ile Gln Leu His Leu Arg Glu Glu Leu Leu Gly Trp Asp Leu Phe His Ala Leu Leu Val Cys Ser Ala Asn Asp Ala Ala Asn Val Leu Ala Met Ala Cys Cys Gly Ser Val Glu Lys Phe Met Asp Lys Leu 150 155 Asn Phe Phe Leu Lys Glu Glu Ile Gly Cys Thr His Thr His Phe Asn 165 Asn Pro His Gly Leu His His Pro Asn His Tyr Thr Thr Thr Arg Asp 185 Leu Ile Ser Ile Met Arg Cys Ala Leu Lys Glu Pro Pro Phe Arg Gly Val Ile Ser Thr Thr Ser Tyr Lys Ile Gly Ala Thr Asn Leu His Gly Glu Arg Ile Leu Ser Pro Thr Asn Lys Leu Leu Leu Pro Gly Ser Thr

230

235

10

20

30

40

50

Tyr His Tyr Pro Pro Ala Leu Gly Gly Lys Thr Gly Thr Thr Lys Thr Ala Gly Lys Asn Leu Ile Met Ala Ala Glu Lys Asn Asn Arg Leu Leu Val Thr Ile Ala Thr Gly Tyr Ser Gly Pro Val Ser Asp Leu Tyr Gln 1.0 Asp Val Ile Ala Leu Cvs Glu Thr Val Phe Asp Glu Pro Leu Leu Arg 290 295 Lys Glu Leu Val Pro Pro Ser Asp Cys Leu Gln Leu Glu Ile Ala Asn 315 Leu Gly Lys Leu Ser Cys Pro Leu Pro Glu Gly Leu Tyr Tyr Asp Phe 325 20 Tyr Ala Ser Glu Asp Arg Glu Pro Leu Ser Val Ser Phe Ile Ala His 345 Ala Asp Ala Phe Pro Ile Glu Gln Gly Asp Leu Leu Gly His Trp Val Phe Tyr Asp Asp Glu Gly Lys Lys Ile Ser Ser Gln Pro Phe Tyr Ala 375 30 Pro Cys Arg Phe Glu Arg Thr Ile Lys Pro Trp Lys Leu Tyr Met Lys Arg Val Phe Thr Ser Tyr Arg Thr Tyr Met Ser Ile Thr Met Leu Leu 410 Met Tyr Phe Arg Ile Arg Lys His Arg Lys Tyr Lys Asn Leu Lys His Tvr Ser Lvs Ile 40 435 <210> 34 <211> 245 <212> PRT <213> Chlamydia pneumoniae <400> 34 Val Val His Ala Asp Ser Gly Lys Val Phe Tyr 50 Asp Lys Asp Ile Asp Ala Val Ile Tyr Pro Ala Ser Met Thr Lys Ile Ala Thr Ala Leu Phe Ile Leu Lys His Tyr Pro Thr Val Leu Asp Thr Leu Ile Lys Val Lys Gln Asp Ala Ile Ala Ser Ile Thr Pro Gln Ala 45 50

Lys Lys Gln Ser Gly Tyr Arg Ser Pro Pro His Trp Leu Glu Thr Asp Gly Ser Thr Ile Gln Leu His Leu Arg Glu Glu Leu Leu Gly Trp Asp Leu Phe His Ala Leu Leu Val Cys Ser Ala Asn Asp Ala Ala Asn Val 10 Leu Ala Met Ala Cys Cys Gly Ser Val Glu Lys Phe Met Asp Lys Leu 110 115 Asn Phe Phe Leu Lys Glu Glu Ile Gly Cys Thr His Thr His Phe Asn 130 Asn Pro His Gly Leu His His Pro Asn His Tyr Thr Thr Thr Arg Asp 140 145 150 20 Leu Ile Ser Ile Met Arg Cys Ala Leu Lys Glu Pro Pro Phe Arg Gly 160 165 Val Ile Ser Thr Thr Ser Tyr Lys Ile Gly Ala Thr Asn Leu His Gly Glu Arg Ile Leu Ser Pro Thr Asn Lys Leu Leu Pro Gly Ser Thr 195 30 Tyr His Tyr Pro Pro Ala Leu Gly Gly Lys Thr Gly Thr Thr Lys Thr Ala Gly Lys Asn Leu Ile Met Ala Ala Glu Lys Asn Asn Arg Leu Leu 225 230 Val Thr Ile Ala Thr Gly Tyr Ser Gly Pro 240 40 <210> 35 <211> 645 <212> PRT <213> Chlamydia pneumoniae <400> 35 Met Ala Ser Asn Pro Ile Leu Gln Ile Glu Asp Leu Ser Ile Thr Leu Ala Lys Gln Arg Gln Gln Tyr Pro Ile Val Gln Ser Leu Ser Phe Thr 50 2.5 Ile Asn Glu Gly Gln Thr Leu Ala Ile Ile Gly Glu Ser Gly Ser Gly Lys Ser Val Ser Ala His Ala Ile Leu Arg Leu Leu Pro Cys Pro Pro Phe Ser Val Ser Gly Gln Val Asn Phe Gln Gly His Asn Leu Leu Thr 70 75 60

	Ala	Ser	Arg	Ser	Ile 85	Gln	Lys	Lys	Ile	Ile 90	Gly	Thr	Glu	Ile	Ser 95	Met
	Ile	Phe	Gln	Asn 100	Pro	Gln	Ala	Ser	Leu 105	Asn	Pro	Val	Phe	Thr 110	Ile	Glu
10	Gln	Gln	Phe 115	Arg	Glu	Ile	Ile	His 120	Thr	His	Leu	Ala	Leu 125	Thr	Ala	Glu
	Val	Ala 130	Lys	Glu	Lys	Met	Leu 135	Tyr	Ala	Leu	Glu	Glu 140	Thr	Gly	Phe	His
	Asp 145	Pro	Arg	Leu	Cys	Leu 150	Asn	Leu	Tyr	Pro	His 155	Gln	Leu	Ser	Gly	Gly 160
20	Met	Leu	Gln	Arg	11e 165	Cys	Ile	Ala	Met	Ala 170	Leu	Leu	Cys	Ser	Pro 175	Lys
20	Leu	Leu	Ile	Ala 180	Asp	Glu	Pro	Thr	Thr 185	Ala	Leu	Asp	Val	Ser 190	Val	Gln
	Tyr	Gln	11e 195	Leu	Gln	Leu	Leu	Lys 200	Thr	Leu	Gln	Lys	Lys 205	Thr	Gly	Met
	Ser	Leu 210	Leu	Ile	Ile	Thr	His 215	Asn	Met	Gly	Val	Val 220	Ala	Glu	Thr	Ala
30	Asp 225	Asp	Val	Leu	Val	Leu 230	Tyr	Ala	Gly	Arg	Met 235	Val	Glu	Cys	Ala	Pro 240
	Ala	Val	Gln	Met	Phe 245	His	Asn	Pro	Ser	His 250	Pro	Tyr	Thr	Arg	Asp 255	Leu
	Leu	Ala	Ser	Arg 260	Pro	Ser	Leu	Gln	Pro 265	Gln	Gln	Leu	Gly	Ser 270	Phe	Asn
40	Pro	Ile	Pro 275	Gly	Gln	Pro	Pro	His 280	Tyr	Thr	Ala	Phe	Pro 285	Ser	Gly	Сув
	Arg	Tyr 290	His	Pro	Arg	Cys	Ser 295	Lys	Ile	Leu	Asn	Arg 300	Cys	Ser	Ala	Glu
	Ala 305	Pro	Glu	Ile	Tyr	Pro 310	Val	Arg	Glu	Gly	His 315	Lys	Val	Arg	Val	Gly 320
50	Cys	Met	Thr	Thr	Asn 325	Phe	Pro	Gln	Pro	Leu 330	Ile	Gln	Ala	Thr	Ser 335	Leu
30	Thr	Lys	His	Tyr 340	Tyr	Lys	Arg	Ser	Phe 345	Trp	Phe	Gln	Gly	Lys 350	Thr	Ile
	Ala	Ser	Arg 355	Pro	Val	qaA	Asp	Val 360	Ser	Phe	Ser	Leu	Tyr 365	Ser	Arg	Arg
	Ala	Val 370	Gly	Leu	Ile	Gly	Glu 375	Ser	Gly	Ser	Gly	Lys 380	Ser	Thr	Leu	Ala
60	Leu 385	Ala	Leu	Ala	Gly	Leu 390	Leu	Pro	Leu	Thr	Ser 395	Gly	Phe	Leu	Thr	Phe 400

Asn Gly Thr Pro Ile Lys Leu His Ser Lys His Gly Arq His Gln Leu Arg Ser Gln Val Arg Leu Val Phe Gln Asn Pro Gln Ala Ser Leu Asn 425 Pro Arg Lys Thr Ile Leu Asp Ser Leu Gly His Ser Leu Leu Tyr His 10 Lys Leu Val Pro Lys Glu Lys Val Leu Ala Thr Val Arg Glu Tyr Leu Glu Leu Val Gly Leu Ser Glu Glu Tyr Phe Tyr Arg Tyr Pro His Gln 475 Leu Ser Gly Gly Gln Gln Gln Arq Val Ser Ile Ala Arg Ala Leu Leu 485 20 Gly Val Pro Gln Leu Ile Ile Cys Asp Glu Ile Val Ser Ala Leu Asp 505 Leu Ser Ile Gln Ala Gln Ile Leu Asn Met Leu Ala Glu Leu Gln Lys Lys Leu Ser Leu Thr Tyr Leu Phe Ile Ser His Asp Leu Ala Val Val Arg Ser Phe Cys Thr Glu Val Phe Ile Met Tyr Lys Gly Gln Ile Val 30 545 Glu Lys Gly Asn Thr Lys Arg Ile Phe Ser Asp Pro Gln His Pro Tyr 570 Thr Arg Met Leu Leu Asn Ala Gln Leu Pro Glu Thr Pro Asp Gln Arg Gln Ser Lys Pro Ile Phe Gln Glu Tyr His Lys Asp Ser Glu Glu Ser 40 600 Cys Ser Thr Gly Cys Tyr Phe Tyr Asn Arg Cys Pro Gln Lys Gln Glu 615 Ala Cys Lys Ser Glu Ile Ile Pro Asn Gln Gly Asp Ala His His Thr 640 630 635 Tyr Arg Cys Ile His 645 50 <210> 36 <211> 588 <212> PRT <213> Chlamydia pneumoniae <400> 36 Ile Leu Gln Ile Glu Asp Leu Ser Ile Thr Leu 5 60

Ala Lys Gln Arg Gln Gln Tyr Pro Ile Val Gln Ser Leu Ser Phe Thr Ile Asn Glu Gly Gln Thr Leu Ala Ile Ile Gly Glu Ser Gly Ser Gly Lys Ser Val Ser Ala His Ala Ile Leu Arg Leu Leu Pro Cys Pro Pro 10 Phe Ser Val Ser Gly Gln Val Asn Phe Gln Gly His Asn Leu Leu Thr Ala Ser Arg Ser Ile Gln Lys Lys Ile Ile Gly Thr Glu Ile Ser Met Ile Phe Gln Asn Pro Gln Ala Ser Leu Asn Pro Val Phe Thr Ile Glu 95 100 2.0 Gln Gln Phe Arq Glu Ile Ile His Thr His Leu Ala Leu Thr Ala Glu 115 Val Ala Lys Glu Lys Met Leu Tyr Ala Leu Glu Glu Thr Gly Phe His Asp Pro Arg Leu Cys Leu Asn Leu Tyr Pro His Gln Leu Ser Gly Gly 150 Met Leu Gln Arg Ile Cys Ile Ala Met Ala Leu Leu Cys Ser Pro Lys 30 Leu Leu Ile Ala Asp Glu Pro Thr Thr Ala Leu Asp Val Ser Val Gln 180 Tyr Gln Ile Leu Gln Leu Leu Lys Thr Leu Gln Lys Lys Thr Gly Met Ser Leu Leu Ile Ile Thr His Asn Met Gly Val Val Ala Glu Thr Ala 40 Asp Asp Val Leu Val Leu Tyr Ala Gly Arg Met Val Glu Cys Ala Pro 220 225 Ala Val Gln Met Phe His Asn Pro Ser His Pro Tyr Thr Arg Asp Leu 245 Leu Ala Ser Arg Pro Ser Leu Gln Pro Gln Gln Leu Gly Ser Phe Asn 50 Pro Ile Pro Gly Gln Pro Pro His Tyr Thr Ala Phe Pro Ser Gly Cys Arg Tyr His Pro Arg Cys Ser Lys Ile Leu Asn Arg Cys Ser Ala Glu Ala Pro Glu Ile Tyr Pro Val Arq Glu Gly His Lys Val Arg Val Gly 310 Cys Met Thr Thr Asn Phe Pro Gln Pro Leu Ile Gln Ala Thr Ser Leu 60 325 320

Thr Lys His Tyr Tyr Lys Arg Ser Phe Trp Phe Gln Gly Lys Thr Ile 340 Ala Ser Arg Pro Val Asp Asp Val Ser Phe Ser Leu Tyr Ser Arg Arg 355 Ala Val Gly Leu Ile Gly Glu Ser Gly Ser Gly Lys Ser Thr Leu Ala 10 370 Leu Ala Leu Ala Gly Leu Leu Pro Leu Thr Ser Gly Phe Leu Thr Phe 380 385 390 Asn Gly Thr Pro Ile Lys Leu His Ser Lys His Gly Arq His Gln Leu 400 405 Arg Ser Gln Val Arg Leu Val Phe Gln Asn Pro Gln Ala Ser Leu Asn 415 420 2.0 Pro Arg Lys Thr Ile Leu Asp Ser Leu Gly His Ser Leu Leu Tyr His 435 Lys Leu Val Pro Lys Glu Lys Val Leu Ala Thr Val Arg Glu Tyr Leu Glu Leu Val Gly Leu Ser Glu Glu Tyr Phe Tyr Arg Tyr Pro His Gln 470 30 Leu Ser Gly Gly Gln Gln Gln Arg Val Ser Ile Ala Arg Ala Leu Leu Gly Val Pro Gln Leu Ile Ile Cys Asp Glu Ile Val Ser Ala Leu Asp 500 Leu Ser Ile Gln Ala Gln Ile Leu Asn Met Leu Ala Glu Leu Gln Lys Lys Leu Ser Leu Thr Tyr Leu Phe Ile Ser His Asp Leu Ala Val Val 40 Arg Ser Phe Cys Thr Glu Val Phe Ile Met Tyr Lys Gly Gln Ile Val 540 545 Glu Lys Gly Asn Thr Lys Arg Ile Phe Ser Asp Pro Gln His Pro Tyr 560 565 Thr Arg Met Leu Leu Asn Ala Gln Leu Pro Glu Thr Pro Asp Gln Arg 575 585 50 Gln <210> 37 <211> 698 <212> PRT <213> Chlamydia pneumoniae -<400> 37 60 Met Pro Gly Ile Glu Lys Ala Ala Thr Thr Val Ala Val Pro Gln Asp 5 - 1 10

Lys Ser Glu Glu Glu Lys Val Lys Glu Arg Leu Thr Lys Arg Glu Leu Thr Cys Glu Asp Leu Lys Asp Asn Gly Tyr Thr Val Asn Phe Glu Asp Ile Ser Ile Leu Glu Leu Leu Gln Phe Val Ser Lys Ile Ser Gly Thr 10 Asn Phe Val Phe Asp Ser Asn Asp Leu Gln Phe Asn Val Thr Ile Val Ser His Asp Pro Thr Ser Val Asp Asp Leu Ser Thr Ile Leu Leu Gln Val Leu Lys Met His Asp Leu Lys Val Val Glu Gln Gly Asn Asn Val 100 105 20 Leu Ile Tyr Arg Asn Pro His Leu Ser Lys Leu Ser Thr Val Val Thr Asp Ser Ser Leu Lys Glu Thr Cys Glu Ala Val Val Thr Arg Val Phe Arg Leu Tyr Arg Arg Gln Pro Ser Ala Ala Val Asn Ile Ile Gln 30 Pro Leu Leu Ser His Asp Ala Ile Val Ser Ala Ser Glu Ala Thr Arg His Val Ile Ile Ser Asp Ile Ala Gly Asn Val Asp Lys Val Ser Asp 185 Leu Leu Ala Ala Leu Asp Cys Pro Gly Thr Ser Val Asp Met Thr Glu Tyr Glu Val Lys Tyr Ala Asn Pro Ala Ala Leu Val Ser Tyr Cys Gln 40 Asp Val Leu Gly Thr Leu Ala Glu Asp Asp Ala Phe Gln Met Phe Ile 225 235 Gln Pro Gly Thr Asn Lys Ile Phe Val Val Ser Ser Pro Arg Leu Ala 250 Asn Lys Ala Glu Gln Leu Leu Lys Ser Leu Asp Val Pro Glu Met Ala 260 265 50 His Thr Leu Asp Asp Pro Ala Ser Thr Ala Leu Ala Leu Gly Gly Thr Gly Thr Thr Ser Pro Lys Ser Leu Arg Phe Phe Met Tyr Lys Leu Lys Tyr Gln Asn Gly Glu Val Ile Ala Asn Ala Leu Gln Asp Ile Gly Tyr 60 Asn Leu Tyr Val Thr Thr Ala Met Asp Glu Asp Phe Ile Asn Thr Leu 325 330

Asn Ser Ile Gln Trp Leu Glu Val Asn Asn Ser Ile Val Ile Ile Gly 345 Asn Gln Gly Asn Val Asp Arq Val Ile Gly Leu Leu Asn Gly Leu Asp Leu Pro Pro Lys Gln Val Tyr Ile Glu Val Leu Ile Leu Asp Thr Ser 10 Leu Glu Lys Ser Trp Asp Phe Gly Val Gln Trp Val Ala Leu Gly Asp Glu Gln Ser Lys Val Ala Tyr Ala Ser Gly Leu Leu Asn Asn Thr Gly 410 Ile Ala Thr Pro Thr Lys Ala Thr Val Pro Pro Gly Thr Pro Asn Pro 420 425 2.0 Gly Ser Ile Pro Leu Pro Thr Pro Gly Gln Leu Thr Gly Phe Ser Asp Met Leu Asn Ser Ser Ser Ala Phe Gly Leu Gly Ile Ile Gly Asn Val Leu Ser His Lys Gly Lys Ser Phe Leu Thr Leu Gly Gly Leu Leu Ser Ala Leu Asp Gln Asp Gly Asp Thr Val Ile Val Leu Asn Pro Arg Ile 30 Met Ala Gln Asp Thr Gln Gln Ala Ser Phe Phe Val Gly Gln Thr Val 505 Pro Tyr Gln Thr Ile Lys Tyr Tyr Ile Gln Glu Thr Gly Thr Val Thr Gln Asn Ile Asp Tyr Glu Asp Ile Gly Val Asn Leu Val Val Thr Ser 40 Thr Val Ala Pro Asn Asn Val Val Thr Leu Gln Ile Glu Gln Thr Ile 545 550 555 Ser Glu Leu His Ser Ala Ser Gly Ser Leu Thr Pro Val Thr Asp Lys 570 Thr Tyr Ala Ala Thr Arg Leu Gln Ile Pro Asp Gly Cys Phe Leu Val 580 585 50 Met Ser Gly His Ile Arg Asp Lys Thr Thr Lys Val Val Ser Gly Val Pro Leu Leu Asn Ser Ile Pro Leu Ile Arg Gly Leu Phe Ser Arg Thr Ile Asp Gln Arg Gln Lys Arg Asn Ile Met Met Phe Ile Lys Pro Lys 60 Val Ile Ser Ser Phe Glu Glu Gly Thr Arg Val Thr Asn Lys Glu Gly 645 650

Tyr Arg Tyr Asn Trp Glu Ala Asp Glu Gly Ser Met Gln Val Ala Pro 665 Arg His Ala Pro Glu Cys Gln Gly Pro Pro Ser Leu Gln Ala Glu Ser Asp Phe Lys Ile Ile Glu Ile Glu Ala Gln <210> 38 <211> 547 <212> PRT <213> Chlamydia pneumoniae <400> 38 Met Ser Arg Lys Asp Asn Glu Val Ser Leu Ala Arg Ser Ile Phe Asn Ile Leu Ser Gly Thr Phe Cys Ser Arg Ile Thr Gly Ile Phe Arg Glu Ile Ala Met Ala Thr Tyr Phe Gly Ala Asp Pro Ile Val Ala Ala Phe Trp Leu Gly Phe Arg Thr Val Phe Phe Leu Arg Lys Ile Leu Gly Gly Leu Ile Leu Glu Gln Ala Phe Ile Pro His Phe Glu Phe Leu Arg Ala Gln Ser Leu Asp Arg Ala Ala Phe Phe Phe Arg Arg Phe Ser Arg Leu Ile Lys Gly Ser Thr Ile Ile Phe Thr Leu Leu Ile Glu Ala Val Leu Trp Val Phe Phe Asn Asn Val Glu Glu Gly Thr Tyr Asp Met Ile Leu 120 Leu Thr Met Ile Leu Leu Pro Cys Gly Ile Phe Leu Met Met Tyr Asn 135 Val Asn Gly Ala Leu Leu His Cys Gly Asn Lys Phe Phe Gly Val Gly 145 150 Leu Ala Pro Val Val Val Asn Ile Ile Trp Ile Phe Phe Val Ile Ala 170 Ala Arg His Ser Asp Pro Arg Glu Arg Ile Ile Gly Leu Ser Val Ala Leu Val Ile Gly Phe Phe Phe Glu Trp Leu Ile Thr Val Pro Gly Val 200 Trp Lys Phe Leu Leu Glu Ala Lys Ser Pro Pro Gln Glu His Asp Ser

215

10

20

30

40

50

60

	Val 225	Arg	Ala	Leu	Leu	Ala 230	Pro	Leu	Ser	Leu	Gly 235	Ile	Leu	Thr	Ser	Ser 240
	Ile	Phe	Gln	Leu	Asn 245	Leu	Leu	ser	Asp	Ile 250	Cys	Leu	Ala	Arg	Tyr 255	Val
10	His	Glu	Ile	Gly 260	Pro	Leu	Tyr	Leu	Met 265	Tyr	Ser	Leu	Lys	Ile 270	Tyr	Gln
	Leu	Pro	11e 275	His	Leu	Phe	Gly	Phe 280	Gly	Val	Phe	Thr	Val 285	Leu	Leu	Pro
	Ala	Ile 290	ser	Arg	Cys	Val	Gln 295	Arg	Glu	Asp	His	Glu 300	Arg	Gly	Leu	Lys
20	Leu 305	Met	Lys	Phe	Val	Leu 310	Thr	Leu	Thr	Met	Ser 315	Val	Met	Ile	Ile	Met 320
20	Thr	Ala	Gly	Leu	Leu 325	Leu	Leu	Ala	Leu	Pro 330	Gly	Val	Arg	Val	Leu 335	Tyr
	Glu	His	Gly	Leu 340	Phe	Pro	Gln	Ser	Ala 345	Val	Tyr	Ala	Ile	Val 350	Arg	Val
	Leu	Arg	Gly 355	Tyr	Gly	Ala	Ser	Ile 360	Ile	Pro	Met	Ala	Leu 365	Ala	Pro	Leu
30	Val	Ser 370	Val	Leu	Phe	Tyr	Ala 375	Gln	Arg	Gln	Tyr	Ala 380	Val	Pro	Leu	Phe
	Ile 385	Gly	Ile	Gly	Thr	Ala 390	Leu	Ala	Asn	Ile	Val 395	Leu	Ser	Leu	Val	Leu 400
	Gly	Arg	Trp	Val	Leu 405	Lys	Asp	Val	Ser	Gly 410	Ile	Ser	Tyr	Ala	Thr 415	Ser
40	Ile	Thr	Ala	Trp 420	Val	Gln	Leu	Tyr	Phe 425	Leu	Trp	Tyr	Tyr	Ser 430	Ser	Lys
	Arg	Leu	Pro 435	Met	Tyr	Ser	Lys	Leu 440	Leu	Trp	Glu	Ser	Ile 445	Arg	Arg	Ser
	Ile	Lys 450	Val	Met	Gly	Thr	Thr 455	Met	Leu	Ala	Cys	Met 460	Ile	Thr	Leu	Gly
50	Leu 465	Asn	Ile	Leu	Thr	Gln 470	Thr	Thr	Tyr	Val	Ile 475	Phe	Leu	Asn	Pro	Leu 480
	Thr	Pro	Leu	Ala	Trp 485	Pro	Leu	Ser	Ser	Ile 490	Thr	Ala	Gln	Ala	Ile 495	Ala
	Phe	Leu	Ser	Glu 500	Ser	Cys	Ile	Phe	Leu 505	Ala	Phe	Leu	Phe	Gly 510	Phe	Ala
	Lys	Leu	Leu 515	Arg	Val	Glu	Asp	Leu 520	Ile	Asn	Leu	Ala	ser 525	Phe	Glu	Tyr
60	Trp	Arg 530	Gly	Gln	Arg	Gly	Leu 535	Leu	Gln	Arg	Gln	His 540	Val	Met	Gln	Asp

Thr Gln Asn 545 <210> 39 <211> 535 <212> PRT 1.0 <213> Chlamydia pneumoniae <400> 39 Arg Lys Asp Asn Glu Val Ser Leu Ala Arg Ser Ile Phe Asn Ile Leu Ser Gly Thr Phe Cys Ser Arg Ile Thr Gly Ile Phe Arg Glu 15 2.0 Ile Ala Met Ala Thr Tyr Phe Gly Ala Asp Pro Ile Val Ala Ala Phe 20 Trp Leu Gly Phe Arg Thr Val Phe Phe Leu Arg Lys Ile Leu Gly Gly Leu Ile Leu Glu Gln Ala Phe Ile Pro His Phe Glu Phe Leu Arg Ala 70 Gln Ser Leu Asp Arg Ala Ala Phe Phe Phe Arg Arg Phe Ser Arg Leu 30 Ile Lys Gly Ser Thr Ile Ile Phe Thr Leu Leu Ile Glu Ala Val Leu 105 Trp Val Phe Phe Asn Asn Val Glu Glu Gly Thr Tyr Asp Met Ile Leu Leu Thr Met Ile Leu Leu Pro Cys Gly Ile Phe Leu Met Met Tyr Asn 40 Val Asn Gly Ala Leu Leu His Cys Gly Asn Lys Phe Phe Gly Val Gly Leu Ala Pro Val Val Val Asn Ile Ile Trp Ile Phe Phe Val Ile Ala 165 170 Ala Arg His Ser Asp Pro Arg Glu Arg Ile Ile Gly Leu Ser Val Ala Leu Val Ile Gly Phe Phe Phe Glu Trp Leu Ile Thr Val Pro Gly Val 50 200 Trp Lys Phe Leu Leu Glu Ala Lys Ser Pro Pro Gln Glu His Asp Ser Val Arg Ala Leu Leu Ala Pro Leu Ser Leu Gly Ile Leu Thr Ser Ser Ile Phe Gln Leu Asn Leu Leu Ser Asp Ile Cys Leu Ala Arg Tyr Val

245

240

His Glu Ile Gly Pro Leu Tyr Leu Met Tyr Ser Leu Lys Ile Tyr Gln 265 Leu Pro Ile His Leu Phe Gly Phe Gly Val Phe Thr Val Leu Leu Pro Ala Ile Ser Arg Cys Val Gln Arg Glu Asp His Glu Arg Gly Leu Lys 10 Leu Met Lys Phe Val Leu Thr Leu Thr Met Ser Val Met Ile Ile Met Thr Ala Gly Leu Leu Leu Ala Leu Pro Gly Val Arg Val Leu Tyr 325 Glu His Gly Leu Phe Pro Gln Ser Ala Val Tyr Ala Ile Val Arg Val 335 340 345 20 Leu Arg Gly Tyr Gly Ala Ser Ile Ile Pro Met Ala Leu Ala Pro Leu Val Ser Val Leu Phe Tyr Ala Gln Arg Gln Tyr Ala Val Pro Leu Phe Ile Gly Ile Gly Thr Ala Leu Ala Asn Ile Val Leu Ser Leu Val Leu 390 30 Gly Arg Trp Val Leu Lys Asp Val Ser Gly Ile Ser Tyr Ala Thr Ser Ile Thr Ala Trp Val Gln Leu Tyr Phe Leu Trp Tyr Tyr Ser Ser Lys 420 425 Arq Leu Pro Met Tyr Ser Lys Leu Leu Trp Glu Ser Ile Arg Arg Ser Ile Lys Val Met Gly Thr Thr Met Leu Ala Cys Met Ile Thr Leu Gly 40 Leu Asn Ile Leu Thr Gln Thr Thr Tyr Val Ile Phe Leu Asn Pro Leu 465 470 Thr Pro Leu Ala Trp Pro Leu Ser Ser Ile Thr Ala Gln Ala Ile Ala 485 490 Phe Leu Ser Glu Ser Cys Ile Phe Leu Ala Phe Leu Phe Gly Phe Ala 50 Lys Leu Leu Arg Val Glu Asp Leu Ile Asn Leu Ala Ser Phe Glu Tyr Trp Arg Gly Gln Arg Gly Leu Leu Gln 530

<210> 40

<211> 954 60

<212> PRT

<213> Chlamydia pneumoniae

		0> 40 Lys		Ser	Arg 5	Asn	Lys	Gln	Cys	Lys 10	Ile	Thr	Asp	Pro	Leu 15	Ser
	Lys	Ser	Ser	Phe 20	Phe	Val	Gly	Ala	Leu 25	Ile	Leu	Gly	Lys	Thr 30	Thr	Ile
10	Leu	Leu	Asn 35	Ala	Thr	Pro	Leu	Ser 40	Asp	Tyr	Phe	Asp	Asn 45	Gln	Ala	Asn
	Gln	Leu 50	Thr	Thr	Leu	Phe	Pro 55	Leu	Ile	Asp	Thr	Leu 60	Thr	Asn	Met	Thr
	Pro 65	Tyr	Ser	His	Arg	Ala 70	Thr	Leu	Phe	Gly	Val 75	Arg	Asp	Asp	Thr	Asn 80
20	Gln	Asp	Ile	Val	Leu 85	Asp	His	Gln	Asn	Ser 90	Ile	Glu	Ser	Trp	Phe 95	Glu
	Asn	Phe	Ser	Gln 100	Asp	Gly	Gly	Ala	Leu 105	Ser	Сув	Lys	Ser	Leu 110	Ala	Ile
	Thr	Asn	Thr 115	Lys	Asn	Gln	Ile	Leu 120	Phe	Leu	Asn	Ser	Phe 125	Ala	Ile	Lys
30	Arg	Ala 130	Gly	Ala	Met	Tyr	Val 135	Asp	Gly	Asn	Phe	Asp 140	Leu	Ser	Glu	Asn
, ,	His 145	Gly	Ser	Ile	Ile	Phe 150	Ser	Gly	Asn	Leu	Ser 155	Phe	Pro	Asn	Ala	Ser 160
	Asn	Phe	Ala	Asp	Thr 165	Cys	Thr	Gly	Gly	Ala 170	Val	Leu	Cys	Ser	Lys 175	Asn
	Val	Thr	Ile	Ser 180	Lys	Asn	Gln	Gly	Thr 185	Ala	Tyr	Phe	Ile	Asn 190	Asn	Lys
40	Ala	Lys	Ser 195	Ser	Gly	Gly	Ala	Ile 200	Gln	Ala	Ala	Ile	Ile 205	Asn	Ile	Lys
	Asp	Asn 210	Thr	Gly	Pro	Cys	Leu 215	Phe	Phe	Asn	Asn	Ala 220	Ala	Gly	Gly	Thr
	Ala 225	Gly	Gly	Ala	Leu	Phe 230	Ala	Asn	Ala	Cys	Arg 235	Ile	Glu	Asn	Asn	Ser 240
50	Gln	Pro	Ile	Tyr	Phe 245	Leu	Asn	Asn	Gln	Ser 250	Gly	Leu	Gly	Gly	Ala 255	Ile
	Arg	Val	His	Gln 260	Glu	Сув	Ile	Leu	Thr 265	Lys	Asn	Thr	Gly	Ser 270	Val	Ile
	Phe	Asn	Asn 275	Asn	Phe	Ala	Met	Glu 280	Ala	Asp	Ile	Ser	Ala 285	Asn	His	Ser
	Ser	Gly 290	Gly	Ala	Ile	Tyr	Cys 295	Ile	Ser	Cys	Ser	Ile 300	Lys	Asp	Asn	Pro

	Gly 305	Ile	Ala	Ala	Phe	Asp 310	Asn	Asn	Thr	Ala	Ala 315	Arg	Asp	Gly	Gly	Ala 320
	Ile	Cys	Thr	Gln	Ser 325	Leu	Thr	Ile	Gln	Asp 330	Ser	Gly	Pro	Val	Tyr 335	Phe
10	Thr	Asn	Asn	Gln 340	Gly	Thr	Trp	Gly	Gly 345	Ala	Ile	Met	Leu	Arg 350	Gln	Asp
	Gly	Ala	Cys 355	Thr	Leu	Phe	Ala	Asp 360	Gln	Gly	Asp	Ile	11e 365	Phe	Tyr	Asn
	Asn	Arg 370	His	Phe	Lys	Asp	Thr 375	Phe	Ser	Asn	His	Val 380	Ser	Val	Asn	Cys
20	Thr 385	Arg	Asn	Val	Ser	Leu 390	Thr	Val	Gly	Ala	Ser 395	Gln	Gly	His	Ser	Ala 400
	Thr	Phe	Tyr	Asp	Pro 405	Ile	Leu	Gln	Arg	Tyr 410	Thr	Ile	Gln	Asn	Ser 415	Ile
	Gln	Lys	Phe	Asn 420	Pro	Asn	Pro	Glu	His 425	Leu	Gly	Thr	Ile	Leu 430	Phe	Ser
	Ser	Thr	Tyr 435	Ile	Pro	Asp	Thr	Ser 440	Thr	Ser	Arg	Asp	Asp 445	Phe	Ile	Ser
30	His	Phe 450	Arg	Asn	His	Ile	Gly 455	Leu	Tyr	Asn	Gly	Thr 460	Leu	Ala	Leu	Glu
	Asp 465	Arg	Ala	Glu	Trp	Lys 470	Val	Tyr	Lys	Phe	Asp 475	Gln	Phe	Gly	Gly	Thr 480
	Leu	Arg	Leu	Gly	Ser 485	Arg	Ala	Val	Phe	Ser 490	Thr	Thr	Asp	Glu	Glu 495	Gln
40	Ser	Ser	Ser	Ser 500	Val	Gly	Ser	Val	11e 505	Asn	Ile	Asn	Asn	Leu 510	Ala	Ile
	Asn	Leu	Pro 515	Ser	Ile	Leu	Gly	Asn 520	Arg	Val	Ala	Pro	Lys 525	Leu	Trp	Ile
	Arg	Pro 530	Thr	Gly	Ser	Ser	Ala 535	Pro	Tyr	Ser	Glu	Asp 540	Asn	Asn	Pro	Ile
50	Ile 545	Asn	Leu	Ser	Gly	Pro 550	Leu	Ser	Leu	Leu	Asp 555	Asp	Glu	Asn	Leu	Asp 560
	Pro	Tyr	Asp	Thr	Ala 565	Asp	Leu	Ala	Gln	Pro 570	Ile	Ala	Glu	Val	Pro 575	Leu
	Leu	Tyr	Leu	Leu 580	Asp	Val	Thr	Ala	Lys 585	His	Ile	Asn	Thr	Asp 590	Asn	Phe
	Tyr	Pro	Glu 595	Gly	Leu	Asn	Thr	Thr 600	Gln	His	Tyr	Gly	Tyr 605	Gln	Gly	Val
60	Trp	Ser 610	Pro	Tyr	Trp	Ile	Glu 615	Thr	Ile	Thr	Thr	Ser 620	Asp	Thr	Ser	Ser

	Glu 625	Asp	Thr	Val	Asn	Thr 630	Leu	His	Arg	Gln	Leu 635	Tyr	Gly	Asp	Trp	Thr 640
	Pro	Thr	Gly	Tyr	Lys 645	Val	Asn	Pro	Glu	Asn 650	Lys	Gly	Asp	Ile	Ala 655	Leu
10	Ser	Ala	Phe	Trp 660	Gln	Ser	Phe	His	Asn 665	Leu	Phe	Ala	Thr	Leu 670	Arg	Tyr
	Gln	Thr	Gln 675	Gln	Gly	Gln	Ile	Ala 680	Pro	Thr	Ala	Ser	Gly 685	Glu	Ala	Thr
	Arg	Leu 690	Phe	Val	His	Gln	Asn 695	Ser	Asn	Asn	Asp	Ala 700	Lys	Gly	Phe	His
20	Met 705	Glu	Ala	Thr	Gly	Tyr 710	Ser	Leu	Gly	Thr	Thr 715	Ser	Asn	Thr	Ala	Ser 720
	Asn	His	Ser	Phe	Gly 725	Val	Asn	Phe	Ser	Gln 730	Leu	Phe	Ser	Asn	Leu 735	Tyr
	Glu	Ser	His	Ser 740	Asp	Asn	Ser	Val	Ala 745	Ser	His	Thr	Thr	Thr 750	Val	Ala
	Leu	Gln	Ile 755	Asn	Asn	Pro	Trp	Leu 760	Gln	Glu	Arg	Phe	Ser 765	Thr	Ser	Ala
30	Ser	Leu 770	Ala	Tyr	Ser	Tyr	Ser 775	Asn	His	His	Ile	Lys 780	Ala	Ser	Gly	Tyr
	Ser 785	Gly	Lys	Ile	Gln	Thr 790	Glu	Gly	Lys	Cys	Tyr 795	Ser	Thr	Thr	Leu	Gly 800
	Ala	Ala	Leu	Ser	Cys 805	Ser	Leu	Ser	Leu	Gln 810	Trp	Arg	Ser	Arg	Pro 815	Leu
40	His	Phe	Thr	Pro 820	Phe	Ile	Gln	Ala	Ile 825	Ala	Val	Arg	Ser	Asn 830	Gln	Thr
	Ala	Phe	Gln 835	Glu	Ser	Gly	Asp	Lys 840	Ala	Arg	Lys	Phe	Ser 845	Val	His	Lys
	Pro	Leu 850	Tyr	Asn	Leu	Thr	Val 855	Pro	Leu	Gly	Ile	Gln 860	Ser	Ala	Trp	Glu
50	Ser 865	Lys	Phe	Arg	Leu	Pro 870	Thr	Tyr	Trp	Asn	11e 875	Glu	Leu	Ala	Tyr	Gln 880
	Pro	Val	Leu	Tyr	Gln 885	Gln	Asn	Pro	Glu	Ile 890	Asn	Val	Ser	Leu	Glu 895	Ser
	Ser	Gly	Ser	Ser 900	Trp	Leu	Leu	Ser	Gly 905	Thr	Thr	Leu	Ala	Arg 910	Asn	Ala
	Ile	Ala	Phe 915	Lys	Gly	Arg	Asn	Gln 920	Ile	Phe	Ile	Phe	Pro 925	Lys	Leu	Ser
60	Val	Phe 930	Leu	Asp	Tyr	Gln	Gly 935	Ser	Val	Ser	Ser	Ser 940	Thr	Thr	Thr	His

	Tyr 945	Leu	His	Ala	Gly	Thr 950	Thr	Phe	Lys	Phe						
10	<21 <21	0 > 4: 1 > 7: 2 > P! 3 > C!	88	ydia	pne	ımon	iae									
		0> 4: Gly	l Gly	Ala	Val 5	Leu	Cys	Ser	Lys	Asn 10						
	Val	Thr	Ile	Ser	Lys 15	Asn	Gln	Gly	Thr	Ala 20	Tyr	Phe	Ile	Asn	Asn 25	Lys
20	Ala	Lys	Ser	Ser 30	Gly	Gly	Ala	Ile	Gln 35	Ala	Ala	Ile	Ile	Asn 40	Ile	Lys
	Asp	Asn	Thr 45	Gly	Pro	Cys	Leu	Phe 50	Phe	Asn	Asn	Ala	Ala 55	Gly	Gly	Thr
	Ala	Gly 60	Gly	Ala	Leu	Phe	Ala 65	Asn	Ala	Сув	Arg	Ile 70	Glu	Asn	Asn	Ser
30	Gln 75	Pro	Ile	Tyr	Phe	Leu 80	Asn	Asn	Gln	Ser	Gly 85	Leu	Gly	Gly	Ala	Ile 90
30	Arg	Val	His	Gln	Glu 95	Cys	Ile	Leu	Thr	Lys 100	Asn	Thr	Gly	Ser	Val 105	Ile
	Phe	Asn	Asn	Asn 110	Phe	Ala	Met	Glu	Ala 115	Asp	Ile	Ser	Ala	Asn 120	His	Ser
	Ser	Gly	Gly 125	Ala	Ile	Tyr	Cys	Ile 130	Ser	Cys	Ser	Ile	Lys 135	Asp	Asn	Pro
40	Gly	11e 140	Ala	Ala	Phe	Asp	Asn 145	Asn	Thr	Ala	Ala	Arg 150	Asp	Gly	Gly	Ala
	11e 155	Cys	Thr	Gln	Ser	Leu 160	Thr	Ile	Gln	Asp	Ser 165	Gly	Pro	Val	Tyr	Phe 170
	Thr	Asn	Asn	Gln	Gly 175	Thr	Trp	Gly	Gly	Ala 180	Ile	Met	Leu	Arg	Gln 185	Asp
50	Gly	Ala	Cys	Thr 190	Leu	Phe	Ala	Asp	Gln 195	Gly	Asp	Ile	Ile	Phe 200	Tyr	Asn
	Asn	Arg	His 205	Phe	Lys	Asp	Thr	Phe 210	Ser	Asn	His	Val	Ser 215	Val	Asn	Cys
	Thr	Arg 220	Asn	Val	Ser	Leu	Thr 225	Val	Gly	Ala	Ser	Gln 230	Gly	His	ser	Ala
60	Thr 235	Phe	Tyr	Asp	Pro	Ile 240	Leu	Gln	Arg	Tyr	Thr 245	Ile	Gln	Asn	Ser	Ile 250

	Gln	Lys	Phe	Asn	Pro 255	Asn	Pro	Glu	His	Leu 260	Gly	Thr	Ile	Leu	Phe 265	Ser
	Ser	Thr	Tyr	Ile 270	Pro	Asp	Thr	Ser	Thr 275	Ser	Arg	Asp	Asp	Phe 280	Ile	Ser
10	His	Phe	Arg 285	Asn	His	Ile	Gly	Leu 290	Tyr	Asn	Gly	Thr	Leu 295	Ala	Leu	Glu
	Asp	Arg 300	Ala	Glu	Trp	Lys	Val 305	Tyr	Lys	Phe	Asp	Gln 310	Phe	Gly	Gly	Thr
	Leu 315	Arg	Leu	Gly	Ser	Arg 320	Ala	Val	Phe	ser	Thr 325	Thr	Asp	Glu	Glu	Gln 330
20	Ser	ser	ser	Ser	Val 335	Gly	Ser	Val	Ile	Asn 340	Ile	Asn	Asn	Leu	Ala 345	Ile
	Asn	Leu	Pro	Ser 350	Ile	Leu	Gly	Asn	Arg 355	Va1	Ala	Pro	Lys	Leu 360	Trp	Ile
	Arg	Pro	Thr 365	Gly	Ser	Ser	Ala	Pro 370	Tyr	Ser	Glu	Asp	Asn 375	Asn	Pro	Ile
	Ile	Asn 380	Leu	ser	Gly	Pro	Leu 385	Ser	Leu	Leu	Asp	Asp 390	Glu	Asn	Leu	Asp
30	Pro 395	Tyr	Asp	Thr	Ala	Asp 400	Leu	Ala	Gln	Pro	Ile 405	Ala	Glu	Val	Pro	Leu 410
	Leu	Tyr	Leu	Leu	Asp 415	Val	Thr	Ala	Lys	His 420	Ile	Asn	Thr	Asp	Asn 425	Phe
	Tyr	Pro	Glu	Gly 430	Leu	Asn	Thr	Thr	Gln 435	His	Tyr	Gly	Tyr	Gln 440	Gly	Val
40	Trp	Ser	Pro 445	Tyr	Trp	Ile	Glu	Thr 450	Ile	Thr	Thr	Ser	Asp 455	Thr	Ser	Ser
	Glu	Asp 460	Thr	Val	Asn	Thr	Leu 465	His	Arg	Gln	Leu	Tyr 470	Gly	Asp	Trp	Thr
	Pro 475	Thr	Gly	Tyr	Lys	Val 480	Asn	Pro	Glu	Asn	Lys 485	Gly	Asp	Ile	Ala	Leu 490
50	Ser	Ala	Phe	Trp	Gln 495	Ser	Phe	His	Asn	Leu 500	Phe	Ala	Thr	Leu	Arg 505	Tyr
	Gln	Thr	Gln	Gln 510	Gly	Gln	Ile	Ala	Pro 515	Thr	Ala	ser	Gly	Glu 520	Ala	Thr
	Arg	Leu	Phe 525	Val	His	Gln	Asn	Ser 530	Asn	Asn	Asp	Ala	Lys 535	Gly	Phe	His
	Met	Glu 540	Ala	Thr	Gly	Tyr	Ser 545	Leu	Gly	Thr	Thr	Ser 550	Asn	Thr	Ala	Ser
60	Asn 555	His	Ser	Phe	Gly	Val 560	Asn	Phe	Ser	Gln	Leu 565	Phe	Ser	Asn	Leu	Tyr 570

Glu Ser His Ser Asp Asn Ser Val Ala Ser His Thr Thr Thr Val Ala Leu Gln Ile Asn Asn Pro Trp Leu Gln Glu Arg Phe Ser Thr Ser Ala Ser Leu Ala Tyr Ser Tyr Ser Asn His His Ile Lys Ala Ser Gly Tyr 10 Ser Gly Lys Ile Gln Thr Glu Gly Lys Cys Tyr Ser Thr Thr Leu Gly 620 625 Ala Ala Leu Ser Cys Ser Leu Ser Leu Gln Trp Arg Ser Arg Pro Leu 640 645 His Phe Thr Pro Phe Ile Gln Ala Ile Ala Val Arg Ser Asn Gln Thr 655 2.0 Ala Phe Gln Glu Ser Gly Asp Lys Ala Arg Lys Phe Ser Val His Lys Pro Leu Tyr Asn Leu Thr Val Pro Leu Gly Ile Gln Ser Ala Trp Glu Ser Lys Phe Arg Leu Pro Thr Tyr Trp Asn Ile Glu Leu Ala Tyr Gln 705 30 Pro Val Leu Tyr Gln Gln Asn Pro Glu Ile Asn Val Ser Leu Glu Ser 720 715 Ser Gly Ser Ser Trp Leu Leu Ser Gly Thr Thr Leu Ala Arg Asn Ala 735 740 Ile Ala Phe Lys Gly Arg Asn Gln Ile Phe Ile Phe Pro Lys Leu Ser Val Phe Leu Asp Tyr Gln Gly Ser Val Ser Ser Ser Thr Thr His 40 770 Tyr Leu His Ala Gly Thr Thr Phe Lys Phe 780 785 <210> 42 <211> 1000 <212> PRT <213> Chlamydia pneumoniae 50 Met Gln Val Phe Pro Lys Val Thr Leu Ser Leu Asp Tyr Ser Ala Asp Ile Ser Ser Ser Thr Leu Ser His Tyr Leu Asn Val Ala Ser Arg Met 25 Arg Phe Leu Thr Ile Ser Asp Gln Asn Arg Lys Ile Lys Glu Pro Leu 40 60

Val Ser Lys Thr Pro Pro Lys Phe Leu Phe Tyr Leu Gly Asn Phe Thr Ala Cys Met Phe Gly Met Thr Pro Ala Val Tyr Ser Leu Gln Thr Asp Ser Leu Glu Lys Phe Ala Leu Glu Arg Asp Glu Glu Phe Arg Thr Ser 10 Phe Pro Leu Leu Asp Ser Leu Ser Thr Leu Thr Gly Phe Ser Pro Ile Thr Thr Phe Val Gly Asn Arg His Asn Ser Ser Gln Asp Ile Val Leu 120 Ser Asn Tyr Lys Ser Ile Asp Asn Ile Leu Leu Trp Thr Ser Ala 130 135 2.0 Gly Gly Ala Val Ser Cys Asn Asn Phe Leu Leu Ser Asn Val Glu Asp 150 His Ala Phe Phe Ser Lys Asn Leu Ala Ile Gly Thr Gly Gly Ala Ile Ala Cys Gln Gly Ala Cys Thr Ile Thr Lys Asn Arg Gly Pro Leu Ile Phe Phe Ser Asn Arg Gly Leu Asn Asn Ala Ser Thr Gly Gly Glu Thr 30 Arg Gly Gly Ala Ile Ala Cys Asn Gly Asp Phe Thr Ile Ser Gln Asn Gln Gly Thr Phe Tyr Phe Val Asn Asn Ser Val Asn Asn Trp Gly Gly Ala Leu Ser Thr Asn Gly His Cys Arg Ile Gln Ser Asn Arg Ala Pro 40 Leu Leu Phe Phe Asn Asn Thr Ala Pro Ser Gly Gly Gly Ala Leu Arg 260 Ser Glu Asn Thr Thr Ile Ser Asp Asn Thr Arg Pro Ile Tyr Phe Lys 280 Asn Asn Cys Gly Asn Asn Gly Gly Ala Ile Gln Thr Ser Val Thr Val 295 5.0 Ala Ile Lys Asn Asn Ser Gly Ser Val Ile Phe Asn Asn Asn Thr Ala 310 Leu Ser Gly Ser Ile Asn Ser Gly Asn Gly Ser Gly Gly Ala Ile Tyr Thr Thr Asn Leu Ser Ile Asp Asp Asn Pro Gly Thr Ile Leu Phe Asn Asn Asn Tyr Cys Ile Arg Asp Gly Gly Ala Ile Cys Thr Gln Phe Leu 355 360

Thr Ile Lys Asn Ser Gly His Val Tyr Phe Thr Asn Asn Gln Gly Asn 375 Trp Gly Gly Ala Leu Met Leu Leu Gln Asp Ser Thr Cys Leu Leu Phe Ala Glu Gln Gly Asn Ile Ala Phe Gln Asn Asn Glu Val Phe Leu Thr 10 Thr Phe Gly Arg Tyr Asn Ala Ile His Cys Thr Pro Asn Ser Asn Leu 420 425 Gln Leu Gly Ala Asn Lys Gly Tyr Thr Thr Ala Phe Phe Asp Pro Ile 440 Glu His Gln His Pro Thr Thr Asn Pro Leu Ile Phe Asn Pro Asn Ala 450 455 2.0 Asn His Gln Gly Thr Ile Leu Phe Ser Ser Ala Tyr Ile Pro Glu Ala Ser Asp Tyr Glu Asn Asn Phe Ile Ser Ser Ser Lys Asn Thr Ser Glu Leu Arg Asn Gly Val Leu Ser Ile Glu Asp Arg Ala Gly Trp Gln Phe 505 30 Tyr Lys Phe Thr Gln Lys Gly Gly Ile Leu Lys Leu Gly His Ala Ala Ser Ile Ala Thr Thr Ala Asn Ser Glu Thr Pro Ser Thr Ser Val Gly 535 Ser Gln Val Ile Ile Asn Asn Leu Ala Ile Asn Leu Pro Ser Ile Leu Ala Lys Gly Lys Ala Pro Thr Leu Trp Ile Arg Pro Leu Gln Ser Ser 40 570 Ala Pro Phe Thr Glu Asp Asn Asn Pro Thr Ile Thr Leu Ser Gly Pro 580 585 Leu Thr Leu Leu Asn Glu Glu Asn Arg Asp Pro Tyr Asp Ser Ile Asp 600 Leu Ser Glu Pro Leu Gln Asn Ile His Leu Leu Ser Leu Ser Asp Val 610 615 50 Thr Ala Arg His Ile Asn Thr Asp Asn Phe His Pro Glu Ser Leu Asn 635 Ala Thr Glu His Tyr Gly Tyr Gln Gly Ile Trp Ser Pro Tyr Trp Val Glu Thr Ile Thr Thr Asn Asn Ala Ser Ile Glu Thr Ala Asn Thr 60 Leu Tyr Arg Ala Leu Tyr Ala Asn Trp Thr Pro Leu Gly Tyr Lys Val 675 680 685

Asn Pro Glu Tyr Gln Gly Asp Leu Ala Thr Thr Pro Leu Trp Gln Ser 695 Phe His Thr Met Phe Ser Leu Leu Arg Ser Tyr Asn Arg Thr Gly Asp Ser Asp Ile Glu Arg Pro Phe Leu Glu Ile Gln Gly Ile Ala Asp Gly 10 Leu Phe Val His Gln Asn Ser Ile Pro Gly Ala Pro Gly Phe Arg Ile Gln Ser Thr Gly Tyr Ser Leu Gln Ala Ser Ser Glu Thr Ser Leu His 760 Gln Lys Ile Ser Leu Gly Phe Ala Gln Phe Phe Thr Arq Thr Lys Glu 775 20 Ile Gly Ser Ser Asn Asn Val Ser Ala His Asn Thr Val Ser Ser Leu Tyr Val Glu Leu Pro Trp Phe Gln Glu Ala Phe Ala Thr Ser His Ser Leu Ala Tyr Gly Tyr Gly Asp His His Leu His Ala Tyr Ile Arq His 825 Ile Lys Asn Arq Ala Glu Gly Thr Cys Tyr Ser His Thr Leu Ala Ala 30 Ala Ile Gly Cys Ser Phe Pro Trp Gln Gln Lys Ser Tyr Leu His Leu 855 Ser Pro Phe Val Gln Ala Ile Ala Ile Arg Ser His Gln Thr Ala Phe Glu Glu Ile Gly Asp Asn Pro Arg Lys Phe Val Ser Gln Lys Pro Phe 40 Tyr Asn Leu Thr Leu Pro Leu Gly Ile Gln Gly Lys Trp Gln Ser Lys 900 905 Phe His Val Pro Thr Glu Trp Thr Leu Glu Leu Ser Tyr Gln Pro Val 920 Leu Tyr Gln Gln Asn Pro Gln Ile Gly Val Thr Leu Leu Ala Ser Gly 935 50 Gly Ser Trp Asp Ile Leu Gly His Asn Tyr Val Arg Asn Ala Leu Gly Tyr Lys Val His Asn Gln Thr Ala Leu Phe Arg Ser Leu Asp Leu Phe Leu Asp Tyr Gln Gly Ser Val Ser Ser Ser Thr Ser Thr His His Leu 985 60 Gln Ala Gly Ser Thr Leu Lys Phe 995 1000

	<21 <21	0 > 4: 1 > 9: 2 > P! 3 > C!	31 RT	ydia	pne	umon	iae									
10		0> 4: Leu		Pro	Phe 5	Thr	Phe	Val	Leu	Ala 10	Asn	Glu	Gly	Leu	Gln 15	Let
	Pro	Leu	Glu	Thr 20	Tyr	Ile	Thr	Leu	Ser 25	Pro	Glu	Tyr	Gln	Ala 30	Ala	Pro
	Gln	Val	Gly 35	Phe	Thr	His	Asn	Gln 40	Asn	Gln	Asp	Leu	Ala 45	Ile	Val	Gly
20	Asn	His 50	Asn	Asp	Phe	Ile	Leu 55	Asp	Tyr	Lys	Tyr	Tyr 60	Arg	Ser	Asn	Gly
20	Gly 65	Ala	Leu	Thr	Cys	Lys 70	Asn	Leu	Leu	Ile	Ser 75	Glu	Asn	Ile	Gly	Ası 80
	Val	Phe	Phe	Glu	Lys 85	Asn	Val.	Сув	Pro	Asn 90	Ser	Gly	Gly	Ala	Ile 95	Туз
	Ala	Ala	Gln	Asn 100	Cys	Thr	Ile	Ser	Lys 105	Asn	Gln	Asn	Tyr	Ala 110	Phe	Th
30	Thr	Asn	Leu 115	Val	Ser	Asp	Asn	Pro 120	Thr	Ala	Thr	Ala	Gly 125	Ser	Leu	Let
	Gly	Gly 130	Ala	Leu	Phe	Ala	Ile 135	Asn	Cys	ser	Ile	Thr 140	Asn	Asn	Leu	Gly
	Gln 145	Gly	Thr	Phe	Val	Asp 150	Asn	Leu	Ala	Leu	Asn 155	Lys	Gly	Gly	Ala	Le:
40	Tyr	Thr	Glu	Thr	Asn 165	Leu	Ser	Ile	Lys	Asp 170	Asn	Lys	Gly	Pro	11e 175	Ile
	Ile	Lys	Gln	Asn 180	Arg	Ala	Leu	Asn	Ser 185	Asp	Ser	Leu	Gly	Gly 190	Gly	Ile
	Tyr	Ser	Gly 195	Asn	Ser	Leu	Asn	Ile 200	Glu	Gly	Asn	Ser	Gly 205	Ala	Ile	Glr
50	Ile	Thr 210	Ser	Asn	Ser	Ser	Gly 215	Ser	Gly	Gly	Gly	Ile 220	Phe	Ser	Thr	Gli
	Thr 225	Leu	Thr	Ile	Ser	Ser 230	Asn	Lys	Lys	Leu	Ile 235	Glu	Ile	Ser	Glu	Asr 240
	Ser	Ala	Phe	Ala	Asn 245	Asn	Tyr	Gly	Ser	Asn 250	Phe	Asn	Pro	Gly	Gly 255	Gly
	Gly	Leu	Thr	Thr 260	Thr	Phe	Cys	Thr	Ile 265	Leu	Asn	Asn	Arg	Glu 270	Gly	Val
60	Leu	Phe	Asn 275	Asn	Asn	Gln	ser	Gln 280	ser	Asn	Gly	Gly	Ala 285	Ile	His	Ala

	Lys	Ser 290	Ile	Ile	Ile	Lys	Glu 295	Asn	Gly	Pro	Val	Tyr 300	Phe	Leu	Asn	Asn
	Thr 305	Ala	Thr	Arg	Gly	Gly 310	Ala	Leu	Leu	Asn	Leu 315	Ser	Ala	Gly	Ser	Gly 320
10	Asn	Gly	Ser	Phe	11e 325	Leu	Ser	Ala	Asp	Asn 330	Gly	Asp	Ile	Ile	Phe 335	Asn
	Asn	Asn	Thr	Ala 340	Ser	Lys	His	Ala	Leu 345	Asn	Pro	Pro	Tyr	Arg 350	Asn	Ala
	Ile	His	Ser 355	Thr	Pro	Asn	Met	Asn 360	Leu	Gln	Ile	Gly	Ala 365	Arg	Pro	Gly
20	Tyr	Arg 370	Val	Leu	Phe	Tyr	Asp 375	Pro	Ile	Glu	His	Glu 380	Leu	Pro	Ser	ser
20	Phe 385	Pro	Ile	Leu	Phe	Asn 390	Phe	Glu	Thr	Gly	His 395	Thr	Gly	Thr	Val	Leu 400
	Phe	Ser	Gly	Glu	His 405	Val	His	Gln	Asn	Phe 410	Thr	Asp	Glu	Met	Asn 415	Phe
	Phe	Ser	Tyr	Leu 420	Arg	Asn	Thr	Ser	Glu 425	Leu	Arg	Gln	Gly	Val 430	Leu	Ala
30	Val	Glu	Asp 435	Gly	Ala	Gly	Leu	Ala 440	Cys	Tyr	Lys	Phe	Phe 445	Gln	Arg	Gly
	Gly	Thr 450	Leu	Leu	Leu	Gly	Gln 455	Gly	Ala	Val	Ile	Thr 460	Thr	Ala	Gly	Thr
	Ile 465	Pro	Thr	Pro	Ser	Ser 470	Thr	Pro	Thr	Thr	Val 475	Gly	Ser	Thr	Ile	Thr 480
40	Leu	Asn	His	Ile	Ala 485	Ile	Asp	Leu	Pro	Ser 490	Ile	Leu	Ser	Phe	Gln 495	Ala
	Gln	Ala	Pro	Lys 500	Ile	Trp	Ile	Tyr	Pro 505	Thr	Lys	Thr	Gly	Ser 510	Thr	Tyr
	Thr	Glu	Asp 515	Ser	Asn	Pro	Thr	Ile 520	Thr	Ile	Ser	Gly	Thr 525	Leu	Thr	Leu
50	Arg	Asn 530	Ser	Asn	Asn	Glu	Asp 535	Pro	Tyr	Asp	Ser	Leu 540	Asp	Leu	Ser	His
30	Ser 545	Leu	Glu	Lys	Val	Pro 550	Leu	Leu	Tyr	Ile	Val 555	Asp	Val	Ala	Ala	Gln 560
	Lys	Ile	Asn	Ser	Ser 565	Gln	Leu	Asp	Leu	Ser 570	Thr	Leu	Asn	Ser	Gly 575	Glu
	His	Tyr	Gly	Tyr 580	Gln	Gly	Ile	Trp	Ser 585	Thr	Tyr	Trp	Val	Glu 590	Thr	Thr
60	Thr	Ile	Thr 595	Asn	Pro	Thr	Ser	Leu 600	Leu	Gly	Ala	Asn	Thr 605	Lys	His	Lys

	Leu	Leu 610	Tyr	Ala	Asn	Trp	Ser 615	Pro	Leu	Gly	Tyr	Arg 620	Pro	His	Pro	Glu
	Arg 625	Arg	Gly	Glu	Phe	Ile 630	Thr	Asn	Ala	Leu	Trp 635	Gln	Ser	Ala	Tyr	Thr 640
10	Ala	Leu	Ala	Gly	Leu 645	His	Ser	Leu	Ser	Ser 650	Trp	Asp	Glu	Glu	Lys 655	Gly
	His	Ala	Ala	Ser 660	Leu	Gln	Gly	Ile	Gly 665	Leu	Leu	Val	His	Gln 670	Lys	Asp
	Lys	Asn	Gly 675	Phe	Lys	Gly	Phe	Arg 680	Ser	His	Met	Thr	Gly 685	Tyr	Ser	Ala
20	Thr	Thr 690	Glu	Ala	Thr	Ser	Ser 695	Gln	Ser	Pro	Asn	Phe 700	Ser	Leu	Gly	Phe
20	Ala 705	Gln	Phe	Phe	Ser	Lys 710	Ala	Lys	Glu	His	Glu 715	Ser	Gln	Asn	Ser	Thr 720
	ser	Ser	His	His	Tyr 725	Phe	Ser	Gly	Met	Cys 730	Ile	Ala	Lys	Tyr	Ser 735	Leu
	Gln	Arg	Val	11e 740	Arg	Leu	Ser	Val	Ser 745	Leu	Ala	Tyr	Met	Phe 750	Thr	Ser
30	Glu	His	Thr 755	His	Thr	Met	Tyr	Gln 760	Gly	Leu	Leu	Glu	Gly 765	Asn	Ser	Gln
	Gly	Ser 770	Phe	His	Asn	His	Thr 775	Leu	Ala	Gly	Ala	Leu 780	Ser	Cys	Val	Phe
	Leu 785	Pro	Gln	Pro	His	Gly 790	Glu	Ser	Leu	Gln	Ile 795	Tyr	Pro	Phe	Ile	Thr 800
40	Ala	Leu	Ala	Ile	Arg 805	Gly	Asn	Leu	Ala	Ala 810	Phe	Gln	Glu	Ser	Gly 815	Asp
	His	Ala	Arg	Glu 820	Phe	Ser	Leu	His	Arg 825	Pro	Leu	Thr	Asp	Val 830	Ser	Leu
	Pro	Val	Gly 835	Ile	Arg	Ala	Ser	Trp 840	Lys	Asn	His	His	Arg 845	Val	Pro	Leu
50	Val	Trp 850	Leu	Thr	Glu	Ile	Ser 855	Tyr	Arg	Ser	Thr	Leu 860	Tyr	Arg	Gln	Asp
50	Pro 865	Glu	Leu	His	Ser	Lys 870	Leu	Leu	Ile	Ser	Gln 875	Gly	Thr	Trp	Thr	Thr 880
	Gln	Ala	Thr	Pro	Val 885	Thr	Tyr	Asn	Ala	Leu 890	Gly	Ile	Lys	Val	Lys 895	Asn
	Thr	Met	Gln	Val 900	Phe	Pro	Lys	Val	Thr 905	Leu	Ser	Leu	Asp	Tyr 910	Ser	Ala
60	Asp	Ile	Ser 915	ser	Ser	Thr	Leu	Ser 920	His	Tyr	Leu	Asn	Val 925	Ala	Ser	Arg

	Met	Arg 930	Phe													
10	<211 <212)> 44 l> 9' 2> Pl 3> Cl	78 RT	ydia	pne	umon:	iae									
)> 44 Pro		Ser	Phe 5	Lys	Ser	Ser	Ser	Phe 10	Cys	Leu	Leu	Ala	Cys 15	Leu
	Cys	Ser	Ala	Ser 20	Cys	Ala	Phe	Ala	Glu 25	Thr	Arg	Leu	Gly	Gly 30	Asn	Phe
20	Val	Pro	Pro 35	Ile	Thr	Asn	Gln	Gly 40	Glu	Glu	Ile	Leu	Leu 45	Thr	Ser	Asp
	Phe	Val 50	Cys	ser	Asn	Phe	Leu 55	Gly	Ala	Ser	Phe	Ser 60	ser	Ser	Phe	Ile
	Asn 65	Ser	Ser	Ser	Asn	Leu 70	Ser	Leu	Leu	Gly	Lys 75	Gly	Leu	Ser	Leu	Thr 80
30	Phe	Thr	Ser	Cys	Gln 85	Ala	Pro	Thr	Asn	Ser 90	Asn	Tyr	Ala	Leu	Leu 95	Ser
30	Ala	Ala	Glu	Thr 100	Leu	Thr	Phe	Lys	Asn 105	Phe	Ser	Ser	Ile	Asn 110	Phe	Thr
	Gly	Asn	Gln 115	Ser	Thr	Gly	Leu	Gly 120	Gly	Leu	Ile	Tyr	Gly 125	Lys	Asp	Ile
	Val	Phe 130	Gln	Ser	Ile	Lys	Asp 135	Leu	Ile	Phe	Thr	Thr 140	Asn	Arg	Val	Ala
40	Tyr 145	Ser	Pro	Ala	Ser	Val 150	Thr	Thr	Ser	Ala	Thr 155	Pro	Ala	Ile	Thr	Thr 160
	Val	Thr	Thr	Gly	Ala 165	Ser	Ala	Leu	Gln	Pro 170	Thr	Asp	Ser	Leu	Thr 175	Val
	Glu	Asn	Ile	Ser 180	Gln	Ser	Ile	Lys	Phe 185	Phe	Gly	Asn	Leu	Ala 190	Asn	Phe
50	Gly	ser	Ala 195	Ile	Ser	Ser	Ser	Pro 200	Thr	Ala	Val	Val	Lys 205	Phe	Ile	Asn
	Asn	Thr 210	Ala	Thr	Met	ser	Phe 215	Ser	His	Asn	Phe	Thr 220	Ser	Ser	Gly	Gly
	Gly 225	Val	Ile	туг	Gly	Gly 230	Ser	Ser	Leu	Leu	Phe 235	Glu	Asn	Asn	Ser	Gly 240
60	Cys	Ile	Ile	Phe	Thr 245	Ala	Asn	Ser	Cys	Val 250	Asn	Ser	Leu	Lys	Gly 255	Val

Thr Pro Ser Ser Gly Thr Tyr Ala Leu Gly Ser Gly Gly Ala Ile Cys Ile Pro Thr Gly Thr Phe Glu Leu Lys Asn Asn Gln Gly Lys Cys Thr Phe Ser Tyr Asn Gly Thr Pro Asn Asp Ala Gly Ala Ile Tyr Ala Glu 10 Thr Cys Asn Ile Val Gly Asn Gln Gly Ala Leu Leu Leu Asp Ser Asn 305 310 Thr Ala Ala Arg Asn Gly Gly Ala Ile Cys Ala Lys Val Leu Asn Ile Gln Gly Arg Gly Pro Ile Glu Phe Ser Arg Asn Arg Ala Glu Lys Gly 2.0 Glv Ala Ile Phe Ile Gly Pro Ser Val Gly Asp Pro Ala Lys Gln Thr Ser Thr Leu Thr Ile Leu Ala Ser Glu Gly Asp Ile Ala Phe Gln Gly Asn Met Leu Asn Thr Lys Pro Gly Ile Arg Asn Ala Ile Thr Val Glu 395 30 Ala Gly Gly Glu Ile Val Ser Leu Ser Ala Gln Gly Gly Ser Arg Leu Val Phe Tyr Asp Pro Ile Thr His Ser Leu Pro Thr Thr Ser Pro Ser 425 Asn Lys Asp Ile Thr Ile Asn Ala Asn Gly Ala Ser Gly Ser Val Val Phe Thr Ser Lvs Glv Leu Ser Ser Thr Glu Leu Leu Pro Ala Asn 4.0 Thr Thr Ile Leu Leu Gly Thr Val Lys Ile Ala Ser Gly Glu Leu 465 470 475 Lys Ile Thr Asp Asn Ala Val Val Asn Val Ala Gly Phe Ala Thr Gln 490 Gly Ser Gly Gln Leu Thr Leu Gly Ser Gly Gly Thr Leu Gly Leu Ala 50 Thr Pro Thr Gly Ala Pro Ala Ala Val Asp Phe Thr Ile Gly Lys Leu Ala Phe Asp Pro Phe Ser Phe Leu Lys Arg Asp Phe Val Ser Ala Ser 535 Val Asn Ala Gly Thr Lys Asn Val Thr Leu Thr Gly Ala Leu Val Leu 60 Asp Glu His Asp Val Thr Asp Leu Tyr Asp Met Val Ser Leu Gln Ser 565 570

Pro Val Ala Ile Pro Ile Ala Val Phe Lys Gly Ala Thr Val Thr Lys Thr Gly Phe Pro Asp Gly Glu Ile Ala Thr Pro Ser His Tyr Gly Tyr Gln Glv Lvs Trp Ser Tvr Thr Trp Ser Arg Pro Leu Leu Ile Pro Ala 1.0 Pro Asp Glv Glv Phe Pro Glv Glv Pro Ser Pro Ser Ala Asn Thr Leu 625 Tyr Ala Val Trp Asn Ser Asp Thr Leu Val Arg Ser Thr Tyr Ile Leu 650 Asp Pro Glu Arg Tyr Gly Glu Ile Val Ser Asn Ser Leu Trp Ile Ser 20 Phe Leu Gly Asn Gln Ala Phe Ser Asp Ile Leu Gln Asp Val Leu Leu Ile Asp His Pro Gly Leu Ser Ile Thr Ala Lys Ala Leu Gly Ala Tyr Val Glu His Thr Pro Arg Gln Gly His Glu Gly Phe Ser Gly Arg Tyr 30 Gly Gly Tyr Gln Ala Ala Leu Ser Met Asn Tyr Thr Asp His Thr Thr Leu Gly Leu Ser Phe Gly Gln Leu Tyr Gly Lys Thr Asn Ala Asn Pro Tyr Asp Ser Arg Cys Ser Glu Gln Met Tyr Leu Leu Ser Phe Phe Gly Gln Phe Pro Ile Val Thr Gln Lvs Ser Glu Ala Leu Ile Ser Trp Lvs 40 Ala Ala Tyr Gly Tyr Ser Lys Asn His Leu Asn Thr Thr Tyr Leu Arg 790 795 785 Pro Asp Lys Ala Pro Lys Ser Gln Gly Gln Trp His Asn Asn Ser Tyr 810 Tyr Val Leu Ile Ser Ala Glu His Pro Phe Leu Asn Trp Cys Leu Leu 825 50 Thr Arg Pro Leu Ala Gln Ala Trp Asp Leu Ser Gly Phe Ile Ser Ala Glu Phe Leu Gly Gly Trp Gln Ser Lys Phe Thr Glu Thr Gly Asp Leu Gln Arg Ser Phe Ser Arg Gly Lys Gly Tyr Asn Val Ser Leu Pro Ile 60 Gly Cys Ser Ser Gln Trp Phe Thr Pro Phe Lys Lys Ala Pro Ser Thr 885 890

Leu Thr Ile Lys Leu Ala Tyr Lys Pro Asp Ile Tyr Arg Val Asn Pro 905 His Asn Ile Val Thr Val Val Ser Asn Gln Glu Ser Thr Ser Ile Ser Gly Ala Asn Leu Arg Arg His Gly Leu Phe Val Gln Ile His Asp Val 10 Val Asp Leu Thr Glu Asp Thr Gln Ala Phe Leu Asn Tyr Thr Phe Asp 945 Gly Lys Asn Gly Phe Thr Asn His Arg Val Ser Thr Gly Leu Lys Ser 965 970 Thr Phe 2.0 <210> 45 <211> 813 <212> PRT <213> Chlamydia pneumoniae <400> 45 Ser Ala Leu Gln Pro Thr Asp Ser Leu Thr Val Glu Asn Ile Ser Gln Ser Ile Lys Phe Phe Gly Asn Leu Ala Asn Phe 30 Gly Ser Ala Ile Ser Ser Ser Pro Thr Ala Val Val Lys Phe Ile Asn 35 Asn Thr Ala Thr Met Ser Phe Ser His Asn Phe Thr Ser Ser Gly Gly Gly Val Ile Tyr Gly Gly Ser Ser Leu Leu Phe Glu Asn Asn Ser Gly 40 Cys Ile Ile Phe Thr Ala Asn Ser Cys Val Asn Ser Leu Lys Gly Val 80 Thr Pro Ser Ser Gly Thr Tyr Ala Leu Gly Ser Gly Gly Ala Ile Cys 100 Ile Pro Thr Gly Thr Phe Glu Leu Lys Asn Asn Gln Gly Lys Cys Thr 110 50 Phe Ser Tyr Asn Gly Thr Pro Asn Asp Ala Gly Ala Ile Tyr Ala Glu Thr Cys Asn Ile Val Gly Asn Gln Gly Ala Leu Leu Leu Asp Ser Asn Thr Ala Ala Arg Asn Gly Gly Ala Ile Cys Ala Lys Val Leu Asn Ile 60 Gln Gly Arg Gly Pro Ile Glu Phe Ser Arg Asn Arg Ala Glu Lys Gly 175 180

Gly Ala Ile Phe Ile Gly Pro Ser Val Gly Asp Pro Ala Lys Gln Thr Ser Thr Leu Thr Ile Leu Ala Ser Glu Gly Asp Ile Ala Phe Gln Gly Asn Met Leu Asn Thr Lys Pro Gly Ile Arg Asn Ala Ile Thr Val Glu 10 Ala Gly Gly Glu Ile Val Ser Leu Ser Ala Gln Gly Gly Ser Arg Leu 240 Val Phe Tyr Asp Pro Ile Thr His Ser Leu Pro Thr Thr Ser Pro Ser 260 Asn Lys Asp Ile Thr Ile Asn Ala Asn Gly Ala Ser Gly Ser Val Val 270 2.0 Phe Thr Ser Lys Gly Leu Ser Ser Thr Glu Leu Leu Leu Pro Ala Asn Thr Thr Thr Ile Leu Leu Gly Thr Val Lys Ile Ala Ser Gly Glu Leu 300 Lys Ile Thr Asp Asn Ala Val Val Asn Val Ala Gly Phe Ala Thr Gln 325 Gly Ser Gly Gln Leu Thr Leu Gly Ser Gly Gly Thr Leu Gly Leu Ala 30 Thr Pro Thr Gly Ala Pro Ala Ala Val Asp Phe Thr Ile Gly Lys Leu 355 Ala Phe Asp Pro Phe Ser Phe Leu Lys Arg Asp Phe Val Ser Ala Ser Val Asn Ala Gly Thr Lys Asn Val Thr Leu Thr Gly Ala Leu Val Leu 40 390 Asp Glu His Asp Val Thr Asp Leu Tyr Asp Met Val Ser Leu Gln Ser 400 405 Pro Val Ala Ile Pro Ile Ala Val Phe Lys Gly Ala Thr Val Thr Lys 420 Thr Gly Phe Pro Asp Gly Glu Ile Ala Thr Pro Ser His Tyr Gly Tyr 435 430 50 Gln Gly Lys Trp Ser Tyr Thr Trp Ser Arg Pro Leu Leu Ile Pro Ala 450 Pro Asp Gly Gly Phe Pro Gly Gly Pro Ser Pro Ser Ala Asn Thr Leu 470 Tyr Ala Val Trp Asn Ser Asp Thr Leu Val Arg Ser Thr Tyr Ile Leu 485 60 Asp Pro Glu Arg Tyr Gly Glu Ile Val Ser Asn Ser Leu Trp Ile Ser 500 505 495

	Phe	Leu	Gly 510	Asn	Gln	Ala	Phe	Ser 515	Asp	Ile	Leu	Gln	Asp 520	Val	Leu	Leu
	Ile	Asp 525	His	Pro	Gly	Leu	Ser 530	Ile	Thr	Ala	Lys	Ala 535	Leu	Gly	Ala	Tyr
10	Val 540	Glu	His	Thr	Pro	Arg 545	Gln	Gly	His	Glu	Gly 550	Phe	Ser	Gly	Arg	Tyr 555
	Gly	Gly	Tyr	Gln	Ala 560	Ala	Leu	Ser	Met	Asn 565	Tyr	Thr	Asp	His	Thr 570	Thr
	Leu	Gly	Leu	Ser 575	Phe	Gly	Gln	Leu	Tyr 580	Gly	Lys	Thr	Asn	Ala 585	Asn	Pro
20	Tyr	Asp	Ser 590	Arg	Cys	Ser	Glu	Gln 595	Met	туг	Leu	Leu	Ser 600	Phe	Phe	Gly
20	Gln	Phe 605	Pro	Ile	Val	Thr	Gln 610	Lys	Ser	Glu	Ala	Leu 615	Ile	Ser	Trp	Lys
	Ala 620	Ala	Tyr	Gly	Tyr	Ser 625	Lys	Asn	His	Leu	Asn 630	Thr	Thr	Tyr	Leu	Arg 635
	Pro	Asp	Lys	Ala	Pro 640	Lys	Ser	Gln	Gly	Gln 645	Trp	His	Asn	Asn	Ser 650	Tyr
30	Tyr	Val	Leu	Ile 655	Ser	Ala	Glu	His	Pro 660	Phe	Leu	Asn	Trp	Cys 665	Leu	Leu
	Thr	Arg	Pro 670	Leu	Ala	Gln	Ala	Trp 675	Asp	Leu	Ser	Gly	Phe 680	Ile	Ser	Ala
	Glu	Phe 685	Leu	Gly	Gly	Trp	Gln 690	Ser	Lys	Phe	Thr	Glu 695	Thr	Gly	Asp	Leu
40	Gln 700	Arg	Ser	Phe	Ser	Arg 705	Gly	Lys	Gly	Tyr	Asn 710	Val	Ser	Leu	Pro	Ile 715
	Gly	Cys	Ser	Ser	Gln 720	Trp	Phe	Thr	Pro	Phe 725	Lys	Lys	Ala	Pro	Ser 730	Thr
	Leu	Thr	Ile	Lys 735	Leu	Ala	Tyr	Lys	Pro 740	Asp	Ile	Tyr	Arg	Val 745	Asn	Pro
50	His	Asn	Ile 750	Val	Thr	Val	Val	Ser 755	Asn	Gln	Glu	Ser	Thr 760	Ser	Ile	Ser
30	Gly	Ala 765	Asn	Leu	Arg	Arg	His 770	Gly	Leu	Phe	Val	Gln 775	Ile	His	Asp	Val
	Val 780	Asp	Leu	Thr	Glu	Asp 785	Thr	Gln	Ala	Phe	Leu 790	Asn	Tyr	Thr	Phe	Asp 795
	Gly	Lys	Asn	Gly	Phe 800	Thr	Asn	His	Arg	Val 805	ser	Thr	Gly	Leu	Lys 810	Ser
60	Thr	Phe														