Aufgabe	A17	A18	A19	A20	Σ
Punkte					

Aufgabe 17. Beh.: $\varphi = \mathbb{1}_{A_k}$ mit $k \in \mathbb{R}^+$ ist bester Test zum Niveau $\mathbb{P}_0(A_k) \in [0,1]$.

Beweis. Sei $\tilde{\varphi} = \mathbb{1}_{\tilde{A}}$ ein Test zum Niveau $\mathbb{P}_0(A_k)$, d.h. $\mathbb{P}_0(\tilde{\varphi} = 1) = \mathbb{P}_0(\tilde{A}) \leq \mathbb{P}_0(A_k) = \mathbb{P}_0(\varphi = 1)$ (**).

Z.z.:
$$\mathbb{P}_1(\tilde{\varphi} = 0) = \mathbb{P}_1(\tilde{A}^c) \ge \mathbb{P}_1(A_k^c) = \mathbb{P}_1(\varphi = 0).$$

Es ist $x \in A_k \iff f_1(x) - kf_0(x) \ge 0$, also $x \in A_k^c \iff f_1(x) - kf_0(x) < 0$ (*). Damit folgt

$$\begin{split} \mathbb{P}_1(A_k) - k \mathbb{P}_0(A_k) &= \int_{A_k} \left[\mathbb{f}_1(x) - k \mathbb{f}_0(x) \right] \, \mathrm{d}x \\ &\geq \int_{A_k \cap \tilde{A}} \left[\mathbb{f}_1(x) - k \mathbb{f}_0(x) \right] \, \mathrm{d}x \\ &\geq \int_{A_k \cap \tilde{A}} \left[\mathbb{f}_1(x) - k \mathbb{f}_0(x) \right] \, \mathrm{d}x + \int_{A_k^c \cap \tilde{A}} \underbrace{\left[\mathbb{f}_1(x) - k \mathbb{f}_0(x) \right]}_{<0 \ (*)} \, \mathrm{d}x \\ &= \int_{\tilde{A}} \left[\mathbb{f}_1(x) - k \mathbb{f}_0(x) \right] \, \mathrm{d}x \\ &= \mathbb{P}_1(\tilde{A}) - k \mathbb{P}_0(\tilde{A}). \end{split}$$

Also folgt

$$\mathbb{P}_1(A_k) - \mathbb{P}_1(\tilde{A}) \ge k(\mathbb{P}_0(A_k) - \mathbb{P}_0(\tilde{A})) \stackrel{(**)}{\ge} 0.$$

Es ist also $\mathbb{P}_1(A_k) \geq \mathbb{P}_1(\tilde{A})$, insgesamt

$$\mathbb{P}_1(A_k^c) = 1 - \mathbb{P}_1(A_k) \le 1 - \mathbb{P}_1(\tilde{A}) = \mathbb{P}_1(\tilde{A}^c).$$

Also Fehler 2. Art minimiert und damit φ bester Test zum Niveau $\mathbb{P}_0(A_k)$.

Aufgabe 18. (a) Der Neyman-Pearson-Test $\varphi \colon \mathbb{R} \to \{1,0\}$ ist gegeben durch $\mathbb{1}_{A_{k_{\alpha}}}$ mit

$$A_{k_{\alpha}} = \{x \in \mathbb{R} | \mathbb{f}_1(x) \ge k_{\alpha} \mathbb{f}_0(x)\} = \{x \in \mathbb{R} | \mathbb{f}_1(x) / \mathbb{f}_0(x) \ge k_{\alpha}\},$$

wobei wir zeigen werden, dass ein k_{α} existiert mit $\mathbb{P}_{0}(A_{k_{\alpha}}) = \alpha$. Dabei ist der Likelihoodquotient $L(x) = \frac{f_{1}(x)}{f_{0}(x)} = \frac{\lambda_{0}}{\lambda_{1}} e^{\left(\frac{1}{\lambda_{0}} - \frac{1}{\lambda_{1}}\right)x}$ stetig und wegen $\lambda_{0} < \lambda_{1} \implies \frac{1}{\lambda_{0}} > \frac{1}{\lambda_{1}}$ auch monoton wachsend. Insbesondere existiert zu jedem k_{α} genau ein c_{α} mit

$$A_{k_{\alpha}} = [c_{\alpha}, \infty).$$

Dann gilt

$$\alpha \stackrel{!}{=} \mathbb{P}_0(A_{k_\alpha}) = \int_{A_{k_\alpha}} \mathbb{f}_0(x) \, \mathrm{d}x = \int_{c_\alpha}^\infty \frac{1}{\lambda_0} e^{-\frac{1}{\lambda_0}x} \, \mathrm{d}x = e^{-\frac{1}{\lambda_0}c_\alpha}$$

Daher gilt $c_{\alpha} = -\lambda_0 \log(\alpha)$ und damit $\varphi = \mathbb{1}_{[-\lambda_0 \log(\alpha), \infty)}$

(b) Offensichtlich ist also φ unabhängig von λ_1 . Sei $\lambda < \lambda_0$. Dann gilt

$$\mathbb{P}_{\lambda}(A_{k_{\alpha}}) = \int_{-1,\log(\alpha)}^{\infty} \frac{1}{\lambda} e^{-\frac{1}{\lambda}x} \, \mathrm{d}x = e^{\frac{\lambda_0}{\lambda}\log(\alpha)} = \alpha^{\frac{\lambda_0}{\lambda}} < \alpha,$$

da $\alpha < 1$. Damit hält φ für $H_0 : \lambda \leq \lambda_0$ das Signifikanzniveau α ein und ist folglich gleichmäßig bester Test mit $H_1 : \lambda > \lambda_0$, da für alle $\lambda_1 > \lambda_0$ nach dem Neyman-Pearson-Lemma φ ein bester Test ist.

(c) Die Forscher liegen falsch, wenn die Nullhypothese $\lambda \leq \lambda_0$ wahr ist und sie diese ablehnen. Das ist also gerade ein Fehler erster Art und wir erhalten $\alpha = 0.05$. Damit ist $\varphi = \mathbb{1}_{[-\lambda_0 \log(\alpha), \infty)} = \mathbb{1}_{[15,7917,\infty]}$. Wegen $\varphi(X) = \varphi(13) = 0$ publizieren sie ihre Ergebnisse nicht.

(d) Es gilt $\mathcal{R}_{\lambda} = \mathcal{F}_{\lambda}^{c} = (0, \lambda)^{c} = [\lambda, \infty)$. Die assoziierte Familie von Partitionen ist

$$\mathscr{H}^0_{\lambda} := \{\tilde{\lambda} \in \mathbb{R}^+ : \lambda \in \mathcal{R}_{\tilde{\lambda}}\} = \{\tilde{\lambda} \in \mathbb{R}^+ : \lambda \geq \tilde{\lambda}\} = (-\infty, \tilde{\lambda}]$$

und analog

$$\mathscr{H}^{1}_{\lambda} := \{\tilde{\lambda} \in \mathbb{R}^{+} : \lambda \in \mathcal{F}_{\tilde{\lambda}}\} = \{\tilde{\lambda} \in \mathbb{R}^{+} : \lambda < \tilde{\lambda}\} = (\tilde{\lambda}, \infty).$$

Nach Aufgabe b wissen wir, dass $\varphi_{\lambda} = \mathbbm{1}_{[-\lambda \log(\alpha)]}$ ein gleichmäßig bester Test zum Niveau α mit Nullhypothese \mathscr{H}^0_{λ} gegen die Alternative \mathscr{H}^1_{λ} ist. Nach Satz 12.33 muss damit die assoziierte Bereichsschätzfunktion B ein gleichmäßig bester $(1-\alpha)$ -Konfidenzbereich sein. Die assoziierte Bereichsschätzfunktion ist gegeben durch

$$B(x) = \{\lambda \in \mathbb{R}^+ : \varphi_{\lambda}(x) = 0\}$$
$$= \{\lambda \in \mathbb{R}^+ : \mathbb{1}_{[-\lambda \log(\alpha), \infty)} = 0\}$$
$$= \{\lambda \in \mathbb{R}^+ : x < -\lambda \log(\alpha)\}$$

 $\log(\alpha) < 0$

$$= \{\lambda \in \mathbb{R}^+ \colon -x/\log(\alpha) < \lambda\}$$
$$= \left(-\frac{x}{\log(\alpha)}, \infty\right)$$

Aufgabe 19. (a) Beh.: $\hat{\theta}_n(x) = (\overline{x}_n, \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2)$.

Beweis. Betrachte für $\sigma^2 > 0$:

$$L(x, \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$
$$l(x, \mu, \sigma^2) = \log L$$
$$= -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2} \log(2\pi\sigma^2)$$

Es genügt die Maxima von $l = \log L$ zu betrachten, da der Logarithmus streng monoton wachsend ist. Betrachte den Gradienten bezüglich μ und σ^2 :

$$\nabla l(x, \mu, \sigma^2) = \begin{pmatrix} \frac{1}{2\sigma^2} \sum_{i=1}^n 2(x_i - \mu) \\ \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2} \frac{1}{\sigma^2} \end{pmatrix} \stackrel{!}{=} 0.$$

Damit folgt

$$\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = \frac{n}{\sigma^2} \implies \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2.$$

Eingesetzt in die zweite Gleichung ergibt:

$$n \frac{\sum_{i=1}^{n} (x_i - \mu)}{\sum_{i=1}^{n} (x_i - \mu)^2} = 0 \implies \sum_{i=1}^{n} (x_i - \mu) = 0 \implies \sum_{i=1}^{n} x_i = n\mu \implies \mu = \overline{x}_n.$$

Damit folgt

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2.$$

Die Determinante der Hessematrix von l bezüglich μ und σ^2 ausgewertet bei $\mu = \overline{x}_n$ ist $\forall \sigma^2 > 0$:

$$\det \left[\begin{pmatrix} -\frac{n}{\sigma^2} & -\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu) \\ -\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu) & -\frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2 + \frac{n}{2} \frac{1}{\sigma^4} \end{pmatrix} \Big|_{\mu = \overline{x}_n} \right] = \det \left[\begin{pmatrix} -\frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2\sigma^4} \end{pmatrix} \right]$$

$$= -\underbrace{\frac{n^2}{2\sigma^6}}_{>0} < 0.$$

Es liegt also ein (lokales) Maximum bei $\theta = (\overline{x}_n, \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2)$ vor. Damit folgt die Behauptung.

(b) Beh.: $\hat{\theta}_n(x) = \frac{\overline{x}_n}{m}$.

Beweis. Sei $m \in \mathbb{N}$ fest. Betrachte wieder den Logarithmus der Likelihoodfunktion:

$$L(x,p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{m-x_i}$$
$$= p^{n\overline{x}_n} (1-p)^{nm-n\overline{x}_n}$$
$$l(x,p) = n\overline{x}_n \log(p) + n(m-\overline{x}_n) \log(1-p)$$

Dann folgt

$$\frac{\partial l}{\partial p} = \frac{n\overline{x}_n}{p} - \frac{n(m - \overline{x}_n)}{1 - p} \stackrel{!}{=} 0$$

Damit folgt direkt

$$p = \frac{\overline{x}_n}{m}$$

Dieses ist auch lokales Maximum da wegen $0 \le x_i \le m \ \forall i \in \mathbb{N}$ auch $0 \le \overline{x_n} \le m$ gilt und damit

$$\left. \frac{\partial l^2}{\partial p^2} \right|_{p = \frac{\overline{x}_n}{m}} = -\frac{n\overline{x}_n}{p^2} - \frac{n(m - \overline{x}_n)}{(1 - p)^2} \right|_{p = \frac{\overline{x}_n}{m}} = -n\frac{m^2}{\overline{x}_n} - \frac{n(m - \overline{x}_n)}{\left(1 - \frac{\overline{x}_n}{m}\right)^2} < 0.$$

Da $\frac{\overline{x}_n}{m}$ einzige Nullstelle von $\frac{\partial l}{\partial p}$, ist dieses auch globales Maximum. Damit folgt die Behauptung.

Aufgabe 20. (a) Für die Zähldichte \mathbb{p}_{X_i} gilt

$$\mathbb{p}_{X_i} = \begin{cases} \mathbb{p}_{\mathrm{Poi}_{\lambda}}(0) & |X_i = 0\\ \sum_{i=1}^{\infty} \mathbb{p}_{\mathrm{Poi}_{\lambda}}(i) & |X_i = 1 \end{cases} = \begin{cases} e^{-\lambda} & |X_i = 0\\ 1 - e^{-\lambda} & |X_i = 1 \end{cases}$$

Für die Produktzähldichte erhalten wir daher

$$\prod_{i=1}^{n} p_{X_i} = (1 - e^{-\lambda})^{\sum_{i=1}^{n} X_i} (e^{-\lambda})^{n - \sum_{i=1}^{n} X_i} = (1 - e^{-\lambda})^{n \overline{X_n}} (e^{-\lambda})^{n - n \overline{X_n}}$$

Daraus ergibt sich die Likelihoodfunktion

$$L(X,\lambda) = (1 - e^{-\lambda})^{n\overline{X_n}} e^{-n\lambda} e^{n\lambda \overline{X_n}} = (e^{\lambda} - 1)^{n\overline{X_n}} \cdot e^{-n\lambda},$$

die log-Likelihoodfunktion

$$l(X, \lambda) = n\overline{X_n}\log(e^{\lambda} - 1) - n\lambda,$$

sowie deren Ableitung

$$\frac{\partial}{\partial \lambda}l(X,\lambda) = n\overline{X_n}\frac{e^{\lambda}}{e^{\lambda} - 1} - n \stackrel{!}{=} 0,$$

von der wir direkt die Nullstellen berechnen um Extremstellen in $L(X,\lambda)$ zu finden. Daraus folgern wir

$$\overline{X_n}e^{\hat{\lambda}_n} = e^{\hat{\lambda}_n} - 1$$

$$1 - \overline{X_n} = e^{-\hat{\lambda}_n}$$

$$\hat{\lambda}_n = -\log(1 - \overline{X_n}).$$

(b) Der Schätzer $\hat{\lambda}_n$ existiert genau dann nicht, wenn $\overline{X_n}=1 \Leftrightarrow X_i=1 \forall 1 \leq i \leq n$. Es gilt

$$\mathbb{P}(X_1 = \dots = X_n = 1) = \prod_{i=1}^n \mathbb{P}_i(X_i = 1) = \prod_{i=1}^n (1 - e^{-\lambda}) = e^{-n\lambda} > 0.$$