Matière : Physique-Chimie Professeur : Zakaria HAOUZAN

Unité : Mécanique Établissement : Lycée SKHOR qualifiant Niveau : 2BAC-SM-PC Heure : 5H

Leçon $N^{\circ}16$: Aspects énergétiques

I Travail de la tension d'un ressort :

I.1 Travail d'une force constante lors d'un déplacement rectiligne:

Le Travail d'une force constante entre deux points A et B est égale au produit scalaire du vecteur force \vec{F} par le vecteur déplacement \vec{AB} :

$$W_{A\to B}(\vec{F}) = \vec{F}.\vec{AB} = F.AB.cos(F.AB)$$

I.2 Travail de la tension d'un ressort:

Considérons un ressort de longueur initiale l_0 et de constante de raideur K placé sur un plan horizontal comme l'indique la figure :

La tension du ressort $\vec{T} = -K \cdot x \cdot \vec{i}$ n'est pas une force constante.

Pour Calculer le Travail de cette force on doit Considerer le travail élémentaire de cette force δW sur un déplacement infiniment petit $\delta \vec{l}$ sur lequel nous Considérons que la force est constante $\delta W = \vec{T}.\delta \vec{l}$ avec $\delta \vec{l} = \delta x.\vec{i}$.

donc:
$$\delta W = \vec{F} \cdot \delta \vec{l} = -K \cdot x \cdot \vec{i} \cdot \delta x \cdot \vec{i} = -K \cdot x \delta x$$

Le travail total de la tension \vec{T} du ressort lorsque son point d'application se déplace d'un point d'abscisse x_1 à un point d'abscisse x_2 est la somme des travaux élémentaire, on obtient:

$$\begin{array}{c}
\ell_0 & \overrightarrow{x} < 0 \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\hline
P & & 2
\end{array}$$

$$dW = -Kx.dx$$

donc

$$W_{A\to B}(\vec{T}) = \int_{x_1}^{x_2} -K.x. \, dx = -K \int_{x_1}^{x_2} x. \, dx$$

alors:

$$W_{A\to B}(\vec{T}) = K. \left[\frac{x^2}{2}\right]_{x_1}^{x_2}$$

Donc le travail de la tension du ressort lorsque son point d'application se déplace d'un point M1d'abscisse x_1 à un point M_2

d'abscisse x2 est donné par la relation suivante $W_{A\to B}(\vec{T})=\frac{1}{2}.K.(x_1^2-x_2^2)$

II Etude énergétique du pendule élastique :

II.1 Energie potentielle de élastique:

L'énergie potentielle élastique d'un pendule élastique est l'énergie qu'il possède grâce à la déformation du ressort, elle est donnée par la relation suivante: $E_{pe} = \frac{1}{2}.K.x^2 + C$

C: est une constante qui dépend du choix de l'état de référence de l'énergie potentielle élastique.

x : allongement du ressort (en mètre)

 E_{pe} : énergie potentielle élastique en (J).

En considérant comme état de référence $E_{pe}=0$ lorsque $\mathbf{x}=0$ La constante C=0 donc $E_{pe}=\frac{1}{2}.K.x^2$

Remarque : La variation de l'énergie potentielle ne dépend pas de l'état de référence . En effet

- dans la position x_1 On a $E_{pe1} = \frac{1}{2}.K.x_1 + C$
- dans la position x_2 On a $E_{pe2} = \frac{1}{2} . K . x_2 + C$
- La variation de l'énergie potentielle $\Delta E_p = E_{p2} E_{p1} = \frac{1}{2} K \cdot (x_2^2 x_1^2)$
- donc $W_{A\to B}(\vec{T}) = -\Delta E_p$

II.2 Conservation de l'énergie mécanique:

Pendant les oscillations libres non amorties d'un pendule élastique horizontal constitué d'un corps S de masse m et d'un ressort de constante de raideur K.

appliquons le théorème de l'énergie cinétique sur le corps S entre un point M1d'abscisse x_1 à d'abscisse x_2 un point M_2 : $\Delta_{1\to 2}Ec=W_{1\to 2}(\vec{P})+W_{1\to 2}(\vec{R})+W_{1\to 2}(\vec{T})$

On a
$$W(\vec{P})_{1\to 2} = W(\vec{R})_{1\to 2} = 0$$

donc
$$\Delta E c_{1\to 2} = W(\vec{T})_{1\to 2}$$
 or $\Delta E p e_{1\to 2} = -W(\vec{T})_{1\to 2}$

alors $\Delta E_m = 0$ donc $E_{m1} = E_{m2}$ donc l'énergie mécanique est constante.

II.3 Détermination de l'équation différentielle par étude énergétique:

Si les frottement sont négligeables , l'énergie mécanique de l'oscillateur est constante $E_m = Constante$ donc $\frac{dE_m}{dt} = 0$

Or
$$Em = Ec + Ep = \frac{1}{2}.m\dot{x} + \frac{1}{2}.K.x^2$$

d'où l'équation différentielle: $m.\ddot{x} + K.x = 0$

II.4 Expression de l'énergie mécanique du pendule élastique:

La solution de l'équation différentielle: $m.\ddot{x} + K.x = 0$ est $x_m.\cos(\frac{2.\pi}{T_0}.t + \phi)$ avec $T_0 = 2.\pi.\sqrt{\frac{m}{K}}$ avec $v = \dot{x} = -x_m.\frac{2.\pi}{T_0}.\sin(\frac{2.\pi}{T_0}.t + \phi)$ $E_m = E_p + E_c = \frac{1}{2}K.x_m^2$

II.5 Diagramme énergétiques :

II.5.1 Cas des oscillations sans frottements :

Dans le cas des oscillations sans frottements l'énergie mécanique de l'oscillateur mécanique est constante.

$$E_m = \frac{1}{2}.K.x_m^2 = \frac{1}{2}.m.v_{max}^2 = C^{te}$$

En considérant comme état de référence Epe=0 lorsque x=0 on a C=0 donc : $E_{pe}=\frac{1}{2}.K.x^2$

En représentant la variation Epe ,Ec et Em en fonction de x on obtient le diagramme suivant:

A chaque instant on a ; Em=EC+Epe donc : Ec=Em-Epe Et en représentant la variation de Epe ,Ec et Em en fonction du temps on obtient le diagramme suivant:

Diagramme énergétique.:

Dans le cas des oscillations avec frottements l'énergie mécanique de l'oscillateur mécanique diminue jusqu'à ce qu'elle s'annule.

III Etude énergétique d'un pendule de Torsion :

III.1 Energie cinétique du système:

L'énergie cinétique du pendule de torsion est égale à l'énergie cinétique de la tige qui est donnée par l'expression suivante: $E_c=\frac{1}{2}.J_{\Delta}.\dot{\theta}^2$

III.2 Energie potentielle de torsion:

L'énergie potentielle de torsion est donnée par la la relation suivante: $E_p = \frac{1}{2}.C.\theta^2 + C$

Cte: est une constante qui dépend du choix de l'état de référence de l'énergie potentielle de torsion .

En considérant comme état de référence $E_p=0$ lorsque $\theta=0$ $E_p=\frac{1}{2}C.\theta^2$ donc C=0

III.3 Energie mécanique du pendule de torsion:

L'énergie mécanique du pendule de torsion est la somme de son énergie cinétique et son énergie potentielle de torsion.

$$E_m = E_c + E_p$$

En considérant comme état de référence E p t=0 lorsque $\theta=0$, l'énergie mécanique du pendule de torsion s'écrit:

$$E_m = \frac{1}{2} J_\Delta \dot{\theta}^2 + \frac{1}{2} C \theta^2$$

Si les frottements sont négligeables, l'énergie mécanique de l'oscillateur est constante $\frac{dE_m}{dt}=0$ donc $E_m=Constante$

équation différentielle. $J_{\Delta}.\ddot{\theta} + C.\theta = 0$

III.4 Diagramme énergétiques :

En considérant comme état de référence E p t=0 lorsque $\theta=0$, la constante C=0 donc: $E_p=\frac{1}{2}.C.\theta^2$

IV Etude énergétique du pendule pesant :

IV.1 Energie cinétique du système:

L'énergie cinétique du pendule pesant est: $E_c = \frac{1}{2}.J_{\Delta}.\dot{x}^2$

IV.2 Energie potentielle de pesanteur:

L'énergie potentielle de pesanteur du pendule pesant est : $E_{pp} = mgz + C$

En considérant comme état de référence E p p=0 lorsque z = 0 la constante C=0 donc $E_{pp}=mgz$

Lorsque le pendule pesant est incliné d'un angle θ , son énergie potentielle de pesanteur $E_{pp}=mgz_G$

avec
$$z_G = d - OH = d - d\cos(\theta) = d(1 - \cos\theta)$$
 donc

$$E_{pp} = mgd(1 - cos(\theta))$$

pour $\theta = -1$ l'énergie potentielle $E_{ppmax} = 2.m.g.d$ On a deux cas possibles :

- $E_m > 2.m.g.d$, l'énergie cinétique du système ne s'annule pas et le système se met à tourner sans arrêt et ce n'est pas un oscillateur mécanique.
- $E_m < 2.m.g.d$, l'énergie cinétique du système ne s'annule aux position $\theta = \ddagger \theta_m$ et il oscille de façon périodique.

IV.3 Energie mécanique du pendule pesant:

En considérant comme état de référence $E_{pp}=0$ lorsque z=0, L'énergie mécanique du système : $E_m=E_c+E_{pp}=\frac{1}{2}J_\Delta.\ddot{\theta}^2+mgz$

IV.4 Diagramme énergétiques :

Pour les petites oscillations $\theta \leq 15^{\circ}$ donc $cos(\theta) = 1 - \frac{\theta^2}{2}$ on peut écrire par approximation $E_{pp} = \frac{m.g.d.\theta^2}{2}$ dans ce cas on a: