Топология. Лекция (21.09.24)

Th. 6
$$(X, \tau)$$
 - т.п. $A \subset X$ $F \subset A$

F - замкнуто в $au_A \iff \exists G$ - замкнутое подмн-во в $au \mid F = G \cap A$

 $\underline{\text{Proof}}$

$$A \setminus (A \cap B) = A \cap C(A \cap B) = A \cap CB \tag{1}$$

 $1) \stackrel{?}{\Longrightarrow}$

$$\exists U \in \tau_A \mid F = A \setminus U$$

$$\exists U_1 \in \tau \mid U = U_1 \cap A$$

$$F=A\setminus U=A\setminus (U_1\cap A)\stackrel{(1)}{=}A\cap CU_1$$
 - замкнуто в А

2) $\stackrel{?}{\Longleftarrow} F = G \cap A G -$ замкнуто в τ

$$A \setminus F = A \setminus (G \cap A) = A \cap CG \in \tau \implies A \cap CG \in \tau_A$$

 $\underline{\mathrm{Def.}}$ Точка х наз-ся точкой прикосновения множества A, если $\forall U \implies U_x \cap A \neq \varnothing$ $\overline{A} = ClA$

<u>Тh.7</u> Замыкание любого множества замкнуто

 $\frac{\mathrm{Proof}}{C\overline{A}} \in \mathcal{T}$ — замкнуто?

$$\forall x \in CA \implies x \notin \overline{A} \implies \exists U_x \mid U_x \cap A = \emptyset$$

 $\forall y \in U_x \implies U_x$ является иакде окр-тью т.у

$$U_x\cap A=arnothing\implies y
otinar{A}\implies y\in C\overline{A}\implies U_x\subset C\overline{A}$$
, т.е $C\overline{A}$ — замкнуто

 $\underline{\mathrm{Th.8}}$ замыкание мн-ва A является пересечением всех замкнутых мн-в, содержащих множество A, т.е. замыкание A является самым маленьким замкнутым мн-ом содержащим A

 $A = \bigcap_{i \in I} A_i$

 A_i - замкнуто $A_i \supset A \ \forall i \in I$

 $\underline{\text{Proof}} \ 1. \ \overline{A} \supset \bigcap_{i \in I} A_i$

$$\exists A_{i_0} = \overline{A} \implies 1$$
. выполнено из св-й

 $2. \ \overline{A} \subset \bigcap_{i \in I} A_i$

$$\forall x \in \overline{A} \implies \forall U_x \cap A \neq \varnothing \implies U_x \cap A_i \neq \varnothing \ \forall i \implies X \in \overline{A}_i \ \forall i \stackrel{Th.7.5}{\Longrightarrow} \overline{A}_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies X \in A_i \ \forall i \implies A_i = A_i \implies A_i \implies A_i = A_i \implies A_$$

<u>Тh.7.5</u> Замыкание замкнуто мн-во совпадает с этим мн-вом

Proof F замнуто $\Longrightarrow \overline{F} = F$

1. $\overline{F}\supset F$ из опр-я

 $2. \overline{F} \subset F$ для замкнутого F.

От противного:

Let
$$\exists x \in \overline{F} \ \text{u} \ x \notin F$$

$$CF \in \tau$$
 и $x \in CF \implies \exists U_x \mid U_x \subset CF \implies x \notin \overline{F}$ противоречие

Следствие $\overline{A} = \overline{A}$

 $\underline{\text{Proof}} \ \overline{A}$ замкнуто \Longrightarrow по Теореме 7.5

 $1. \ \underline{A} \subset \underline{B} \implies \overline{A} \subset \overline{B}$ $2. \ \overline{A \cup B} = \overline{A} \cup \overline{B}$ $\underline{Proof} \ 1. \ us \ \text{определения}$ $2. \ \overline{A \cup B} \subset \overline{A} \cup \overline{B}$ От противного: $\Pi \text{усть} \ x \in \overline{A \cap B} \ u \ x \notin \overline{A} \cup \overline{B} \implies \begin{cases} x \notin \overline{A} \implies \exists U_x \mid U_x \cap A = \varnothing \\ x \notin \overline{B} \implies \exists V_x \mid V_x \cap A = \varnothing \end{cases}$ $\Pi \text{усть} \ W_x = U_x \cap V_x \implies W_x \cap (A \cup B) = \varnothing \implies x \notin \overline{A \cup B}$ $\overline{A \cup B} \stackrel{?}{\supset} \overline{A} \cup \overline{B}$ $\forall x \in \overline{A} \cup \overline{B} \implies \begin{cases} x \in \overline{A} \implies \forall U - x \cap A \neq \varnothing \\ x \in \overline{B} \implies \forall U_x \cap B \neq \varnothing \end{cases}$

 $\operatorname{\Pip}\, \overline{A\cap B}\stackrel{?}{=}\overline{A}\cap \overline{B}$

Th.9 (Св-ва замыкания)

$$A = (0,1) \subset (\mathbb{R}, \tau_0)$$

$$B = (1,2) \subset (\mathbb{R}, \tau_0)$$

$$A \cap B = \varnothing \implies \overline{A \cap B} = \varnothing$$

$$\overline{A} = [0,1]$$

$$\overline{B} = [1,2] \implies \overline{A} \cap \overline{B} = \varnothing$$

 $\underline{\mathrm{Def}}$ точка а наз-ся граничной точкой A, если её любая окр-ть пересекается с самим мно-ом, а также с его дополнением FrA

 $\underline{\text{Th.}10} \ FrA = \overline{A} \setminus IntA$

Proof 1. $FrA \stackrel{?}{\subset} A \setminus IntA$

$$\forall x \in FrA \implies \forall U_x \cap A \neq \varnothing \implies x \in \overline{A}$$

Докажем, что $x \notin IntA$

От противного:

 $x \in IntA \implies \exists U_x \mid U_x \subset A \implies$ противоречие с определением граничной точки

1. $FrA \stackrel{?}{\supset} A \setminus IntA$

$$\forall x \in \overline{A} \setminus IntA$$

Те же рассуждения в обратном порядке

<u>Def</u> х называется предельной точкой мн-ва A, если любая проколотая окр-ть имеет непустое пересечение со мн-вом A, т.е. $\forall (U_x \setminus \{x\}) \cap A \neq \emptyset$. обозн. A'

 $\underline{\mathbf{Def}}\ a:\mathbb{N} \to X$ наз последовательностью в X

<u>Def</u> Точка b называется пределом посл-ти a_n , если $\forall U_b \; \exists \, n_0 \; | \; \forall n > n_0 \implies a_n \in U_b \; b = \lim_{n \to \infty} a_n$ <u>Def</u> Точка a наз-ся изолировнной точкой множества A, если $\exists U_a \; | \; U_a \cap A = \{a\} \; IsoA$

§2. Непрерывные отображения в топологических пространствах

 $\underline{\mathbf{Def}}$ Отображение $f:(X,\tau)\to (Y,\omega)$ называется непрерывным в т. x_0 , если $\forall U_{f(x_0)}\ \exists U_{x_0}\ |\ f(U_{x_0})\subset U_{f(x_0)}$

 $\underline{\mathrm{Th.1}}$ Отображение $f:(X,\tau) \to (Y,\omega)$ непрерывно \iff Прообраз каждого открытого мн-ва открыт $\underline{\mathrm{Th.2}}$ Отображение $f:(X,\tau) \to (Y,\omega)$ непрерывно \iff Прообраз каждого замкнутого мн-ва замкнут

Ex. $c:(X,\tau)\to (Y,\omega:c(x)=c\in T$