Quantum Mechanics

白塔

2019年9月12日

目录

1	早期	量子现象	9
	1.1	光电效应	9
	1.2	Compton 效应	9
	1.3	氢原子光谱	9
	1.4	Franck-Hertz 实验	9
	1.5	Stem-Gerlach 实验	10
	1.6	Wien 辐射定律	10
	1.7	Rayleigh-Jeans 辐射定律	10
	1.8	Planck 辐射定律	10
2	波粒	二象性 二象性	10
	2.1	De Broglie 波	10
	2.2	de Broglie 关系	10
	2.3	Young 双缝实验	11
	2.4	物质波的衍射	11
	2.5	波函数	11
	2.6	波函数的统计解释	11
	2.7	Schrödinger 方程	11
	2.8	连续性方程	11
	2.9	叠加原理	11
	2.10	自由粒子	11
	2.11	波包	12
	2.12	自由波包的时间演化	12

目录		目录

3	力学	量的表述	12
	3.1	线性算符	12
	3.2	厄密算符	12
	3.3	位置算符	13
	3.4	动量算符	13
	3.5	动能算符	13
	3.6	角动量算符	13
	3.7	哈密顿算符	13
	3.8	量子力学中的基本对易关系	13
	3.9	正则量子化	13
	3.10	Heisenberg 不确定性原理	13
	3.11	能量-时间不确定性原理	13
	3.12	位置算符、动量算符、角动量算符的本征值和本征函数	13
4	不含	时标量势场中粒子的运动	13
	4.1	空间变量与时间变量的分离	13
	4.2	定态	13
	4.3	定态的叠加	13
	4.4	一维方势场	13
5	트고	力学的数学工具	13
Э		カテ的数子工兵 単粒子波函数空间	13
	5.1		_
	5.2	波函数空间的结构	
	5.3	标量积	14
	5.4	离散正交归一基底	14
	5.5	<u>态空间</u>	15
	5.6	Dirac 符号	15
	5.7	左矢与右矢	15
	5.8	表象的定义	15
	5.9	正交归一关系	15
		封闭性关系	15
		左矢的表示	15
		右矢的表示	15
	5.13	算符的表示	15

\neg	₹	目录
_	구	ᆿᆕ
_	<i>K</i>	\neg

	5.14	表象变换	15
	5.15	右矢分量的变换	15
	5.16	左矢分量的变换	16
	5.17	算符矩阵元的变换	16
	5.18	可观测量	16
	5.19	可观测量完全集	16
	5.20	坐标 $\{ m{r}\rangle\}$ 表象与动量 $\{ m{p}\rangle\}$ 表象	17
	5.21	Schwarz 不等式	17
		幺正算符	17
	5.23	宇称算符	18
	5.24	张量积的定义与性质	19
	5.25	直积空间中的本征值方程	19
3	量 子	力学的假设	19
•	£ 5	体系状态的描述	19
	6.2	物理量的描述	19
	6.3	物理量的测量	19
	6.4	体系随时间的演化	20
	6.5	量子化规则	20
	6.6	测量过程	21
	6.7	给定态中可观测量的平均值	21
	6.8	方均根偏差	21
	6.9	可观测量的相容性	21
	6.10	叠加原理	21
	6.11	概率守恒	21
	6.12	概率幅与干涉效应	22
	6.13	密度算符	22
	6.14	时间演化算符	23
	6.15	Schrödinger、Heisenberg、相互作用图像	24
	6.16	规范不变性	24
	6.17	Schrödinger 方程的传播子	24
	6.18	不稳定能级	24
	6.19	寿命	24
	6.20	任意形状势阱中粒子的束缚态	24

目录		目录

	6.21	任意形状势阱或势垒中粒子的非束缚态	24
	6.22	一维周期性结构中粒子的量子性质	24
7	白旋	1/2 与双能级体系	24
1	7.1	可观测量 S_z 与自旋态空间	24 24
	7.1		25
	7.3	各种自旋状态的实际制备	26
	7.4		26
	7.5	均匀磁场中自旋 1/2 的演化	26
	7.6		26
	7.7		27
	7.8		27
	7.9		27
			27
			27
			27
			27
8	一维	· - · · · · ·	27
	8.1		27
	8.2		27
	8.3	_ · / · · / / _ / / / / / / / / / / / /	27
	8.4	能谱的确定	27
		nually material section and the section and th	21
	8.5		27
	8.5 8.6	本征值的简并性	
		本征值的简并性	27
	8.6	本征值的简并性	27 27
	8.6 8.7	本征值的简并性	27 27 27
	8.6 8.7 8.8 8.9 8.10	本征值的简并性	27 27 27 27
	8.6 8.7 8.8 8.9 8.10	本征值的简并性	27 27 27 27 27
	8.6 8.7 8.8 8.9 8.10 8.11	本征值的简并性	27 27 27 27 27 28
	8.6 8.7 8.8 8.9 8.10 8.11 8.12	本征值的简并性	27 27 27 27 27 28 28
	8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13	本征值的简并性	27 27 27 27 27 28 28 28

目录		目录

	8.16	无限长耦合谐振子链的振动模	28
	8.17	谐振子的准经典相干态	28
	8.18	连续物理体系的振动模	28
	8.19	处于有限温度下热力学平衡态的谐振子	28
9	量子	力学中角动量的一般性质	28
	9.1	定义与符号	29
	9.2	J^2 与 J_z 的本征值 \ldots	29
	9.3	标准表象 $\{ k,j,m\rangle\}$	30
	9.4	$m{L}^2$ 与 L_z 的本征值 \ldots	32
	9.5	球谐函数	32
	9.6	角动量与转动	32
	9.7	双原子分子的转动	32
	9.8	二维谐振子在定态中的角动量	32
	9.9	磁场中的带电粒子: Landau 能级	32
10	中心	· ·势场中的粒子氢原子	32
	10.1	分离变量	32
	10.2	中心势场中粒子的定态	32
	10.3	经典力学中的质心运动与相对运动	32
	10.4	量子力学中的分离变量	32
	10.5	氢原子的 Bohr 模型	32
	10.6	氢原子的量子理论	32
	10.7	类氢体系	32
	10.8	各向同性三维谐振子	32
	10.9	与氢原子定态相联系的概率流	32
	10.10	0 均匀磁场中的氢原子	32
	10.11	1 顺磁性与抗磁性	32
	10.12	2 Zeeman 效应	32
	10.13	3 双原子分子的振动-转动能级	32
11	散射	的量子理论	32
	11.1	碰撞现象的重要性	32
	11.2	势散射	32
	11.3	散射截面的定义	32

目录	目录
----	----

	11.4 稳定散射态的定义	32
	11.5 利用概率流计算散射截面	32
	11.6 散射积分方程	32
	11.7 Born 近似	32
	11.8 分波法原理	32
	11.9 自由粒子的定态	32
	11.10 势场中的分波	32
	11.11 散射截面的相移表达式	32
	11.12 自由粒子的具有确定角动量的定态	32
	11.13 弹性散射截面	32
	11.14 吸收截面	32
	11.15 总截面	32
	11.16 光学定理	32
	11.17 Yukawa 势的 Born 近似	32
	11.18 硬球上的低能散射	32
19	。 · 电子自旋	32
14	12.1 实验证据	
	12.1 英型证据	
	12.3 角动量 1/2 的特殊性质	$\frac{32}{32}$
	12.3 用効量 1/2 的符殊性质	$\frac{32}{32}$
	12.5 物理测量概率的计算	
	12.6 自旋 1/2 粒子的转动算符	32
13	角动量的合成	32
	13.1 经典力学中的总角动量	32
	13.2 量子力学中总角动量的重要性	32
	13.3 两个自旋 1/2 的合成	32
	13.4 任意两个角动量的合成	32
	13.5 角动量合成的例子	32
	13.6 Clebsch-Gordan 系数	32
	13.7 球谐函数的合成	32
	13.8 Wigner-Eckart 定理	32

\neg	₹	目录
_	구	ᆿᆕ
_	<i>K</i>	\neg

14	定态微扰理论	32
	14.1 本征值方程的近似解	32
	14.2 能量的一级修正	32
	14.3 本征矢的一级修正	32
	14.4 能量的二级修正	32
	14.5 本征矢的二级修正	32
	14.6 简本能级的微扰	32
	14.7 van der Waals 力	32
	14.8 体积效应: 原子核的空间延展性对原子能级的影响	32
	14.9 变分方法	32
	14.10 固体中电子的能带: 简单模型	32
	14.11 化学键的简单例子: 离子	32
15	氢原子的精细与超精细结构	32
	15.1 精细结构哈密顿量	32
	15.2 与质子自旋相关的磁相互作用: 超精细哈密顿量	32
	15.3 能级的精细结构	32
	15.4 能级的超精细结构	32
	15.5 基态超精细结构的 Zeeman 效应	32
	15.6 氢原子的 Stark 效应	32
16	与时间有关问题的近似方法	32
10	16.1 表象中的 Schrödinger 方程	32
	16.2 微扰方程	$\frac{32}{32}$
	16.3 时刻体系的状态	$\frac{32}{32}$
	16.4 跃迁概率	$\frac{32}{32}$
	16.5 正弦微扰	$\frac{32}{32}$
	16.6 态密度	$\frac{32}{32}$
	16.7 Fermi 黄金规则	$\frac{32}{32}$
	16.8 原子与电磁波的相互作用	$\frac{32}{32}$
	16.9 共振微扰作用下体系在两离散态之间的振动	$\frac{32}{32}$
	16.10 与连续终本共振耦合的离散态的竞变	32 32
	THE THE → LETT (→ CONSCIPENCY MIN III HE HE IZED FORSTHELM) ▼	.)/

目录	目录

L 7	全同粒子体系	32
	17.1 全同粒子的定义	32
	17.2 经典力学中的全同粒子	32
	17.3 量子力学中的全同粒子	32
	17.4 两粒子体系	32
	17.5 任意数目粒子体系	32
	17.6 对称化假设	32
	17.7 交换简便的消除	32
	17.8 物理右矢的构造	32
	17.9 其它假设的应用	32
	17.10 Pauli 不相容原理	32
	17.11 独立全同粒子体系的基态	32
	17.12 量子统计	32
	17.13 直接与交换过程之间的干涉	32
	17.14 可忽略对称化假设的情形	32
	17.15 多电子原子	32
	17.16 电子结构	32
	17.17 氦原子的能级	32
	17.18 电子气的物理性质	32
	17.19 在固体上的应用	32

1 早期量子现象

1.1 光电效应

Einstein's concept of photons: A beam of light consists of small packages of energy, photons or quanta.

Einstein's explanation of the photoelectric effect.

Energy and momentum of a photon: $E = h\nu$; $p = h/\lambda$.

1.2 Compton 效应

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \phi) = \frac{2h}{m_e c} \sin^2(\phi/2)$$

1.3 氢原子光谱

Rydberg formula:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right), n > m = 1, 2, 3, \dots, \infty$$

First six spectral series of the hydrogen atom: The Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys series.

Ritz combination principle: For a given atom, if there exist spectral lines at two wave numbers, then there often exists another spectral line precisely at the sum of the two wave numbers. Energy levels of the hydrogen atom inferred from its spectrum: $E_n = -\frac{R_H hc}{n^2}$, $n = 1, 2, 3, \dots, \infty$. Bohr's hypotheses:Stationary states, Quantization condition, Quantum transition.

Energy levels of the hydrogen atom in Bohr's theory:

$$E_n = -\frac{1}{n^2} \frac{m_e e^4}{2(4\pi\epsilon_0)^2 \hbar^2} = -\frac{1}{n^2} \frac{e^2}{2(4\pi\epsilon_0) a_0}, n = 1, 2, 3, \dots, \infty$$

Bohr-Sommerfeld quantization condition:

$$\oint_E dq_j p_j = n_j h, n_j = 1, 2, \cdots, j = 1, 2, \cdots, d$$

1.4 Franck-Hertz 实验

Franck-Hertz experiment: he existence of discrete energy levels (quantization of energy) in the mercury atom.

1.5 Stem-Gerlach 实验

Stern-Gerlach experiment: The quantization of the spatial orientation of angular momentum.

1.6 Wien 辐射定律

$$E_{\lambda}(T) = \frac{2\pi hc^2}{\lambda^5} e^{-hc/\lambda k_B T}$$

1.7 Rayleigh-Jeans 辐射定律

$$E_{\lambda}(T) = \frac{2\pi c k_B T}{\lambda^4}$$

1.8 Planck 辐射定律

Planck's quantum hypothesis: The energy of a harmonic oscillator of frequency ν can take on one of the values: $0, h\nu, 2h\nu, \cdots$. Planck's of blackbody radiation: $E_{\lambda}(T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k_B T} - 1}$. Date of birth of quantum theory: December 14, 1900.

2 波粒二象性

2.1 De Broglie 波

De Broglie 假说:和光子一样,物质微粒也具有波动性.

2.2 de Broglie 关系

$$E = h\nu = \hbar\omega$$
$$p = \hbar k$$

de Broglie 色散关系

$$\omega = \frac{\hbar k^2}{2m}$$

- 2.3 Young 双缝实验
- 2.4 物质波的衍射
- 2.5 波函数

波函数 $\psi(\mathbf{r},t)$ 满足的条件:

1. 平方可积, 归一性条件

$$\int \left| \psi(\boldsymbol{r}, t) \right|^2 \mathrm{d}^3 r = 1$$

- 2. 任意次可微
- 2.6 波函数的统计解释
- 2.7 Schrödinger 方程

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\psi(\boldsymbol{r},t)=-\frac{\hbar^2}{2m}\nabla^2\psi(\boldsymbol{r},t)+V(\boldsymbol{r},t)\psi(\boldsymbol{r},t)$$

- 2.8 连续性方程
- 2.9 叠加原理

由于 Schrödinger 方程对 ψ 是线性的, 叠加原理成立, 再加上概率幅的解释, 就能给出波动型的结果.

2.10 自由粒子

若粒子在空间各点 V=C, 则粒子未受力的作用, 我们说它是自由的. 自由粒子的波函数为

$$e^{i[k\cdot x - \omega(k)t]}, \quad \omega = \frac{\hbar k^2}{2m}$$

的线性叠加.

3 力学量的表述 2.11 波包

- 2.11 波包
- 2.12 自由波包的时间演化

3 力学量的表述

3.1 线性算符

线性算符 A 定义

$$\begin{cases} |\psi'\rangle = A|\psi\rangle \\ A[\lambda_1|\psi_1\rangle + \lambda_2|\psi_2\rangle] = \lambda_1 A|\psi_1\rangle + \lambda_2 A|\psi_2\rangle \end{cases}$$

3.2 厄密算符

厄密算符 A[†] 定义:

$$|\psi'\rangle = A|\psi\rangle \iff \langle\psi| = \langle\psi|A^{\dagger}$$

推论:

- 1. 厄米算符 A 的本征值都是实数.
- 2. A 向左作用: 当 $\langle \varphi |$ 是 A 的本征矢, 对于任意 $|\psi \rangle$ 均有

$$\langle \psi | A | \varphi \rangle = \lambda_{\psi} \langle \psi | \varphi \rangle$$

3. 厄米算符两个互异本征值的本征矢互相正交.

$$\langle \psi | A^{\dagger} | \varphi \rangle = \langle \varphi | A | \psi \rangle^{*}$$
$$\langle A \psi | = \langle \psi | A^{\dagger}$$
$$\langle A^{\dagger} \varphi | \psi \rangle = \langle \varphi | A \psi \rangle$$
$$(|u\rangle \langle v|)^{\dagger} = |v\rangle \langle u|$$

- 3.3 位置算符
- 3.4 动量算符
- 3.5 动能算符
- 3.6 角动量算符
- 3.7 哈密顿算符
- 3.8 量子力学中的基本对易关系

定义对易子:

$$[A, B] = AB - BA$$

- 3.9 正则量子化
- 3.10 Heisenberg 不确定性原理
- 3.11 能量-时间不确定性原理
- 3.12 位置算符、动量算符、角动量算符的本征值和本征函数

4 不含时标量势场中粒子的运动

- 4.1 空间变量与时间变量的分离
- 4.2 定态
- 4.3 定态的叠加
- 4.4 一维方势场

5 量子力学的数学工具

5.1 单粒子波函数空间

 L^2 为所有平方可积函数的集合, 称由 L^2 中充分正规函数 (归一化, 可微等) 构成的波函数集合 (空间)为 \mathscr{S} .

5.2 波函数空间的结构

ℱ 是一个矢量空间.

5.3 标量积

定义内积

$$(\varphi, \psi) = \int \varphi^*(r)\psi(r) d^3r$$

内积与第二个因子线性, 与第一个因子反线性:

$$\begin{cases} (\varphi, \psi) = (\psi, \varphi)^* \\ (\varphi, \lambda_1 \psi_1 + \lambda_2 \psi_2) = \lambda_1(\varphi, \psi_1) + \lambda_2(\varphi, \psi_2) \\ (\lambda_1 \varphi_1 + \lambda_2 \varphi_2, \psi) = \lambda_1^*(\varphi_1, \psi) + \lambda_2^*(\varphi_2, \psi) \end{cases}$$

5.4 离散正交归一基底

正交归一基定义:

设可列函数集合 $\{u_i(r)\} \in \mathcal{F}$, 当

$$(u_i, u_j) = \delta_{ij}$$

且任意函数 $\psi(r) \in \mathcal{F}$ 可按 $u_i(r)$ 展开

$$\psi(r) = \sum c_i u_i(r), \quad c_i = (u_i, \psi)$$

则 $\{u_i(r)\}$ 是一个正交归一基.

- 5.5 态空间
- 5.6 Dirac 符号
- 5.7 左矢与右矢
- 5.8 表象的定义
- 5.9 正交归一关系
- 5.10 封闭性关系

$$\begin{cases} P_{u_i} = \sum_{i} |u_i\rangle\langle u_i| &= \mathbb{1} \\ P_{w_a} = \int |w_a\rangle\langle w_a| \,da &= \mathbb{1} \end{cases}$$

其含义为将任意 $|\psi\rangle$ 向空间的基投影, 得到其自身.

- 5.11 左矢的表示
- 5.12 右矢的表示
- 5.13 算符的表示
- 5.14 表象变换

变换基 $|u_i\rangle \rightarrow |t_k\rangle$ 的变换矩阵为

$$S_{ik} = \langle u_i | t_k \rangle$$
$$(S^{\dagger})_{ki} = (S_{ik})^*$$

5.15 右矢分量的变换

由右矢在旧基中的分量得到新基中的分量:

$$\langle t_k | \psi \rangle = \sum_i S_{ki}^{\dagger} \langle u_i | \psi \rangle$$

5.16 左矢分量的变换

由右矢在旧基中的分量得到新基中的分量:

$$\langle \psi | t_k \rangle = \sum_i \langle \psi | u_i \rangle S_{ik}$$

5.17 算符矩阵元的变换

$$\langle t_k | A | t_l \rangle = \sum_{i,j} \langle t_k | u_i \rangle \langle u_i | A | u_j \rangle \langle u_j | t_l \rangle$$

或写作

$$A_{kl} = \sum_{i,j} S_{ki}^{\dagger} A_{ij} S_{jl}$$

5.18 可观测量

可观察量用观察算符描述. 一个厄米算符 A 的互异本征值是正交的, 通过选择, 总可以让每一个相同本征值的子空间的各个本征矢也是正交的.

按定义, 如果本征矢的厄米算符 A 的正交归一系构成一个基, 则厄米算符 A 构成一个观察算符. 构成基可用封闭性关系式描述.

5.19 可观测量完全集

定理 I

如果两个算符 A 和 B 是对易的, 且 $|\psi\rangle$ 是 A 的一个本征矢, 则 $B|\psi\rangle$ 也是 A 的本征矢, 即 A 的本征子空间在 B 的作用下不变.

定理 II

如果两个观察算符 A,B 是对易的,且 $|\psi_1\rangle,|\psi_2\rangle$ 是 A 的不同本征值的两个本征矢,那么 $\langle \psi_1|B|\psi_2\rangle=0$.

定理 III(基本定理)

如果两个观察算符 A,B 是对易的,则 A,B 的共同本征矢构成态空间的一个正交归一基.

ECOC

若 A,B,\ldots 的共同本征矢构成一个正交归一基,则 A,B,\ldots 构成一个 ECOC. 此时, 1. A,B,\ldots 是两两对易的. 2. 给出了全体 A,B,\ldots 的本征值的一个数组,便足以决定唯一的共同本征矢. 两个典型的 ECOC: $\{X,Y,Z\}, \{P_x,P_y,P_z\}, \{X,P_y,P_z\}$.

5.20 坐标 $\{|r\rangle\}$ 表象与动量 $\{|p\rangle\}$ 表象

引入两个特殊的基:

$$\xi_{\boldsymbol{r_0}}(\boldsymbol{r}) = \delta(\boldsymbol{r} - \boldsymbol{r_0})$$
$$v_{\boldsymbol{p_0}}(\boldsymbol{r}) = (2\pi\hbar)^{-3/2} e^{\frac{i}{\hbar}\boldsymbol{p_0} \cdot \boldsymbol{r}}$$

利用封闭性关系式,可以计算得到

$$\langle \boldsymbol{r}_0 | \psi \rangle = \psi(\boldsymbol{r}_0)$$

$$\langle \boldsymbol{p}_0 | \psi \rangle = \overline{\psi}(\boldsymbol{p}_0)$$

变换表象 $\{|r\rangle\} \rightarrow \{|p\rangle\}$ 需要用到下面的数:

$$\langle \boldsymbol{r} | \boldsymbol{p} \rangle = \langle \boldsymbol{p} | \boldsymbol{r} \rangle^* = (2\pi\hbar)^{-3/2} e^{\frac{i}{\hbar} \boldsymbol{p}_0 \cdot \boldsymbol{r}}$$

在 $\{|r\rangle\}$ 表象中,

$$oldsymbol{P}=rac{\hbar}{\mathrm{i}}
abla$$

对两个表象的各个分量:

$$[X, P_x] = i\hbar$$

$$[X, Y] = 0$$

$$[P_x, P_y] = 0$$

$$(5.20.1)$$

右矢 $\{|r\rangle\}$ 是算符 X,Y,Z 的本征右矢, 对于动量同理.

5.21 Schwarz 不等式

对于态空间 ℰ 中的任意右矢,

这可以导出施瓦兹不等式:

$$\left| \langle \psi_1 | \psi_2 \rangle \right|^2 \le \langle \psi_1 | \psi_1 \rangle \langle \psi_2 | \psi_2 \rangle$$

5.22 幺正算符

幺正算符的定义:

$$U^{\dagger}U = UU^{\dagger} = \mathbb{1}$$

和 U 相联系的幺正变换可以保持 \mathcal{E} 空间中的内积不变. 即

$$\langle \widetilde{\psi}_1 | \widetilde{\psi}_2 \rangle = \langle \psi_1 | U^{\dagger} U | \psi_2 \rangle = \langle \psi_1 | \psi_2 \rangle$$

若 A 是厄米算符, 则 e^{iA} 是幺正算符.

两个幺正算符的乘积也是幺正的.

算符 U 为幺正的充分必要条件: U 将 $\mathscr E$ 中的正交归一基变为另一正交归一基.

幺正矩阵: 一列元素与另一列的对应元素的共轭复数的乘积之和为 0.

幺正算符的本征值模为 1, 且互异本征值的两个本征矢是正交的.

算符的幺正变换: 定义 A 的变换 \widetilde{A} 是这样一个算符: 它在基 $\{|\widetilde{v}_i\rangle\}$ 的矩阵元与 A 在 $\{|v_i\rangle\}$ 的矩阵元对应. 即

$$\langle \widetilde{v}_i | \widetilde{A} | \widetilde{v}_i \rangle = \langle v_i | A | v_i \rangle$$

则

$$\widetilde{A} = UAU^{\dagger}$$
$$(\widetilde{A})^{\dagger} = \widetilde{A}^{\dagger}$$
$$(\widetilde{A})^{n} = \widetilde{A}^{n}$$
$$\widetilde{F}(A) = F(\widetilde{A})$$

5.23 宇称算符

宇称算符的定义:

$$\Pi |m{r}
angle = |m{-r}
angle$$
 $\langle m{r}|\Pi |\psi
angle = \psi(-m{r})$

宇称算符下描述的体系是关于原点与原体系对应的体系. 宇称算符是一个幺正算符性质:

$$\Pi=\Pi^{-1}=\Pi^{\dagger}$$

 Π 的本征值只能为 ± 1 , 这两个本征值是简并的. 属于 1 的本征矢是偶性本征矢, 属于 -1 的本征矢是奇性本征矢.

利用算符

$$P_{+} = \frac{1}{2}(\mathbb{1} + \Pi)$$

 $P_{-} = \frac{1}{2}(\mathbb{1} - \Pi)$

可以将任意 $|\psi\rangle$ 分解为分别属于偶性 (+) 和奇性 (-) 的本征矢. 将任意算符做变换

$$\widetilde{B} = \Pi B \Pi$$

若 $\widetilde{B} = B$, 则 B 为偶算符, B_+ 与 Π 对易, 若 $\widetilde{B} = -B$, 则 B 为奇算符, B_- 与 Π 反对易. 奇偶算符的性质:

- 一个偶算符在字称相反的矢量之间的矩阵元为零: $\langle \varphi | B_+ | \psi \rangle = 0$.
- 一个奇算符在宇称相同的矢量之间的矩阵元为零: $\langle \varphi' | B_- | \psi' \rangle = 0$.

特别地, 当 $|\psi\rangle$ 具有确定的字称, $\langle \psi | B_- | \psi \rangle = 0$.

例子:

- 1. **R** 是奇算符.
- 2. **P** 是奇算符.
- 3. Ⅱ 是偶算符.
- 5.24 张量积的定义与性质
- 5.25 直积空间中的本征值方程

6 量子力学的假设

6.1 体系状态的描述

第一个假定: 在确定的时刻 t_0 , 一个物理体系的态由态空间 \mathscr{E} 中一个特定的右矢来确定.

6.2 物理量的描述

6.3 物理量的测量

1. 非简并的离散谱的情况: 若体系处于已归一化的态 $|\psi\rangle$ 中, 则测量物理量 $\mathscr A$ 得到的结果为对应观察算符 A 的非简并本征值 a_n 的概率 $\mathscr P(a_n)$ 是:

$$\mathscr{P}(a_n) = \left| \langle u_n | \psi \rangle \right|^2$$

2. 离散谱的情况: 若体系处于已归一化的态 $|\psi\rangle$ 中, 则测量物理量 $\mathscr A$ 得到的结果为对应观察算符 A 的本征值 a_n 的概率 $\mathscr P(a_n)$ 是:

$$\mathscr{P}(a_n) = \sum_{i=1}^{g_n} \left| \langle u_n^i | \psi \rangle \right|^2$$

3. 非简并连续谱的情况: 测量已处于已归一化的态 $|\psi\rangle$ 的物理量 \mathscr{A} 时,得到介于 α 和 $\alpha+\mathrm{d}\alpha$ 之间的结果的概率 $\mathrm{d}\mathscr{P}(\alpha)$ 是

$$d\mathscr{P}(\alpha) = \left| \langle v_{\alpha} | \psi \rangle \right|^2 d\alpha$$

重要后果:

互为比例的两个态矢量表示同一个物理状态, 总的相位因子对于物理预言没有影响, 但展开式中各项系数的相对相位则是有影响的

第五个假定: 如果对于处在 $|\psi\rangle$ 态的体系测量物理量 $\mathscr A$ 得到的结果是 a_n , 则刚测量之后体系的态是 $|\psi\rangle$ 在属于 a_n 的本征子空间上的归一化投影 $\frac{P_n|\psi\rangle}{\sqrt{\langle\psi|P_n|\psi\rangle}}$.

6.4 体系随时间的演化

第六个假定: 态矢量 $|\psi(t)\rangle$ 随时间的演变遵从 Schrödinger 方程.

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = H(t)|\psi(t)\rangle$$

6.5 量子化规则

规则的陈述:

首先考虑处在标量势场中的一个无自旋粒子构成的体系,这时,我们有下述规则与粒子位置 r(x, y, z) 相联系的是观察算符 R(X, Y, Z).

与粒子动量 $\mathbf{p}(p_x, p_y, p_z)$ 相联系的是观察算符 $\mathbf{P}(P_x, P_y, P_z)$.

任意一个物理量 $\mathscr A$ 都可以表示为 r,p 的函数 $\mathscr A(r,p,t)$. 要得到观察算符 A, 将 r,p 替换为 R,P 即可:

$$A(t) = \mathcal{A}(\boldsymbol{r}, \boldsymbol{p}, t)$$

6 量子力学的假设 6.6 测量过程

6.6 测量过程

6.7 给定态中可观测量的平均值

平均值的定义

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle$$

在实际计算中通常要在一个确定的表象中计算,例如:

$$\langle x \rangle_{\psi} = \langle \psi | X | \psi \rangle = \int d^3 r \psi^*(r) x \psi(r)$$

6.8 方均根偏差

方均根偏差 ΔA 的定义是:

$$\Delta A = \sqrt{\langle (A - \langle A \rangle)^2 \rangle} = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$$

可以得到不确定度关系式:

$$\Delta X \cdot \Delta P_x \ge \frac{\hbar}{2}$$

6.9 可观测量的相容性

考虑两个对易的观察算符 A, B, 存在一个由 A, B 的共同本征右矢构成的基 $|a_n, b_p, i\rangle$, 对于这样一个态, 测量 A 一定得到 a_n 而测量 B 一定得到 b_p , 像 A, B 这样可以同时完全确定的可观察量叫做相容的可观察量.

如果两个可观察量是相容的,那么测量顺序是无关紧要的.而两个不相容的可观察量是不能同时测量的,且第二次测量会使第一次测量所得信息失去.

6.10 叠加原理

由于 Schrödinger 方程的解是线性齐次的, 因此它的解是可以线性叠加的.

6.11 概率守恒

- 1. 态矢量的模方保持为常数.
- 2. 局域守恒: 概率密度和概率流

保守体系的情况

在保守体系中, H 不依赖与时间, 这种情况的重要后果就是能量守恒, 或者说体系的总能量是一个运动常量. 此时我们可以把任意态 $|\psi(t)\rangle$ 按全体本征矢 $|\varphi_{n,\tau}\rangle$ 展开:

$$|\psi(t)\rangle = \sum_{n,\tau} c_{n,\tau}(t) |\varphi_{n,\tau}\rangle$$

再由 Schrödinger 方程可以得到

$$c_{n,\tau}(t) = c_{n,\tau}(t_0) e^{-iE_n(t-t_0)/\hbar}$$

即

$$|\psi(t)\rangle = \sum_{n} \sum_{\tau} c_{n,\tau}(t_0) e^{-iE_n(t-t_0)/\hbar} |\varphi_{n,\tau}\rangle$$
(6.11.1)

6.12 概率幅与干涉效应

概率幅的概念

- 1. 量子理论中概率型预言均得自概率幅, 计算时要取它模的平方.
- 2. 在一个确定的实验中, 如果没有进行中间状态的测量, 那么我们绝不能根据中间测量可能得到的各种结果的概率, 而应根据它们的概率幅来分析问题.
- 3. 一个物理体系的态可以线性叠加,这意味着一个概率幅往往表现为若干部分幅之和. 因而对应的概率等于若干项之和的模的平方,而且那些部分幅是彼此相干的.

要计算一个末态的概率, 必须:

将对应同一末态的诸概率幅相加, 然后将对应于正交末态的诸概率相加.

6.13 密度算符

纯态

当体系的态是完全确定的, 这是我们说体系处于纯态, 此时用态矢量 $|\psi\rangle$ 或在态空间起作用的密度算符描述体系是完全等价的.

引入密度算符, 其定义是:

$$\rho(t) = |\psi\rangle\langle\psi|$$

在基 |u> 中, 密度算符是用一个矩阵描述的, 称为密度矩阵, 它的矩阵元是

$$\rho_{pn}(t) = c_n^*(t)c_p(t)$$

使用概率算符, 概率守恒变为

$$Tr\rho(t) = 1$$

可观察量的平均值变为

$$\langle A \rangle(t) = \text{Tr}\{A\rho(t)\} = \text{Tr}\{\rho(t)A\}$$

Schrödinger 方程变为

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = [H(t), \rho(t)]$$

在纯态下, 描述同一物理状态的两个态矢量 $|\psi(t)\rangle$, $e^{i\theta}|\psi(t)\rangle$ 对应着同一个密度算符, 可以避免相位因子带来的麻烦, 且上面各式对密度算符是线性的. 最后, 列出密度算符的一些其他性质:

$$\rho^{\dagger}(t) = \rho(t)$$

$$\rho^2(t) = \rho(t)$$

$$\operatorname{Tr}\rho^2(t) = 1$$

后面两式来源于 $\rho(t)$ 是投影算符这一事实, 这两式只在纯态成立.

统计混合态

密度算符的定义考虑这样一个体系,与它有关的概率可以在满足概率和为一的条件下任意取值,假设态矢量为 $|\psi\rangle$,则概率为

$$\mathscr{P}_k(a_n) = \langle \psi_k | P_n | \psi \rangle$$

要得到所求的概率 $\mathcal{P}(a_n)$, 则要以 p_k 为权重去乘 $\mathcal{P}_k(a_n)$, 再对 k 相加

$$\mathscr{P}(a_n) = \sum_k p_k \mathscr{P}_k(a_n) = \operatorname{Tr}\{p_k \rho_k\}$$

6.14 时间演化算符

体系的演变算符定义为

$$|\psi(t)\rangle = U(t,t_0)|\psi(t_0)\rangle$$

首先有

$$U(t_0, t_0) = 1$$

且

$$i\hbar \frac{\partial}{\partial t}U(t,t_0) = H(t)U(t,t_0)$$

有了上述两式即可完全确定 $U(t,t_0)$, 此外, 函数还具有性质

$$U(t_n, t_1) = U(t_n, t_{n-1})U(t_{n-1}, t_{n-2}) \cdots U(t_2, t_1)$$
$$U(t', t) = U(t, t')$$

无穷小演变算符为

$$U(t + dt, t) = 1 - \frac{i}{\hbar}H(t) dt$$

若体系为保守系, H 与时间无关

$$U(t, t_0) = e^{iH(t-t_0)/\hbar}$$

- 6.15 Schrödinger、Heisenberg、相互作用图像
- 6.16 规范不变性
- 6.17 Schrödinger 方程的传播子
- 6.18 不稳定能级
- 6.19 寿命
- 6.20 任意形状势阱中粒子的束缚态
- 6.21 任意形状势阱或势垒中粒子的非束缚态
- 6.22 一维周期性结构中粒子的量子性质

7 自旋 1/2 与双能级体系

7.1 可观测量 S_z 与自旋态空间

根据施特恩-格拉赫实验结果观察到的两个斑点, 我们要为银原子的 \mathcal{S}_z 联系上一个观察算符 S_z , 且具有两个相反的本征值 $\pm \frac{1}{2}$. 这两个本征值应该是非简并的, 用 $|+\rangle$, $|-\rangle$ 表示对应的正交归一矢, 即

$$\begin{cases} S_z|+\rangle = +\frac{\hbar}{2}|+\rangle \\ S_z|-\rangle = -\frac{\hbar}{2}|-\rangle \end{cases}$$

因此, S_z 本身可以构成一个 ECOC. 空间中的任意 $|\psi\rangle$ 可以表示为

$$|\psi\rangle = \alpha|+\rangle + \beta|-\rangle, \quad |\alpha|^2 + |\beta|^2 = 1$$

表示 S_z 的矩阵显然是对角的 (因为在自身的表象中), 可以写作

$$(S_z) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

7.2 其它自旋可观测量

在以 |+>, |-> 构成的基中,

$$(S_x) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$(S_y) = \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}$$

在极角为 θ, φ 的单位矢 u 的方向上

$$(S_u) = \begin{pmatrix} \cos \theta & \sin \theta e^{-i\varphi} \\ \sin \theta e^{i\varphi} & -\cos \theta \end{pmatrix}$$

 S_x, S_y, S_u 的本征矢 $|\pm\rangle_x, |\pm\rangle_y, |\pm\rangle_u$ 可以展开为

$$|\pm\rangle_{x} = \frac{1}{\sqrt{2}}[|+\rangle \pm |-\rangle]$$

$$|\pm\rangle_{y} = \frac{1}{\sqrt{2}}[|+\rangle \pm |-\rangle]$$

$$\begin{cases}
|+\rangle_{u} = \cos\frac{\theta}{2}e^{-i\varphi/2}|+\rangle + \sin\frac{\theta}{2}e^{i\varphi/2}|-\rangle \\
|-\rangle_{u} = -\sin\frac{\theta}{2}e^{-i\varphi/2}|+\rangle + \cos\frac{\theta}{2}e^{i\varphi/2}|-\rangle
\end{cases}$$

7.3 各种自旋状态的实际制备

7.4 自旋测量

7.5 均匀磁场中自旋 1/2 的演化

现在考虑一个在均匀磁场 \mathbf{B}_0 中的银原子, 取 \mathbf{B}_0 的方向为 z 轴, 假设在 t=0 时, 粒子的态是

$$|\psi(0)\rangle = \cos\frac{\theta}{2}e^{-i\varphi/2}|+\rangle + \sin\frac{\theta}{2}e^{i\varphi/2}|-\rangle$$

该态在极角为 θ, φ 的单位矢 u 的方向上, 利用6.11.1式可以得到

$$|\psi(0)\rangle = \cos\frac{\theta}{2}\mathrm{e}^{-\mathrm{i}\varphi/2}\mathrm{e}^{-\mathrm{i}E_+t/\hbar}|+\rangle + \sin\frac{\theta}{2}\mathrm{e}^{\mathrm{i}\varphi/2}\mathrm{e}^{-\mathrm{i}E_-t/\hbar}|-\rangle$$

再利用

$$\begin{cases} E_{+} = +\frac{\hbar\omega_{0}}{2}|+\rangle \\ E_{-} = -\frac{\hbar\omega_{0}}{2}|-\rangle \end{cases}$$

可以写作

$$|\psi(0)\rangle = \cos\frac{\theta}{2}\mathrm{e}^{-\mathrm{i}(\varphi+\omega_0t)/2}|+\rangle + \sin\frac{\theta}{2}\mathrm{e}^{\mathrm{i}(\varphi+\omega_0t)/2}|-\rangle$$

由此可见, 磁场 B_0 的存在就是使 u 以正比于磁场大小的角速度 ω_0 绕 Oz 轴旋转, 这个现象叫做拉莫尔进动.

7.6 耦合对双能级体系定态的影响

考虑一个二维的态空间 (像自旋这样), 我们选择 H_0 的分别属于 E_1, E_2 的两个态 $|\varphi_1\rangle, |\varphi_2\rangle$ 做基.

$$H_0|\varphi_1\rangle = E_1|\varphi_1\rangle$$

$$H_0|\varphi_2\rangle = E_2|\varphi_2\rangle$$

假设考虑一个外界微扰或体系内部的相互作用, 则哈密顿算符变为

$$H = H_0 + W$$

 H_0 通常叫做未微扰的哈密顿算符, W 叫做微扰或耦合, 假定 W 不依赖与时间, 由一个厄米矩阵表示

$$(W) = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}, \quad W_{12} = W_{21}^*$$

耦合后, φ_1, φ_2 不再 H 的本征态, 因而不再是定态. 此时我们可以将 H 写作

$$(H) = \begin{pmatrix} E_1 + W_{11} & W_{12} \\ W_{21} & E_2 + w_{22} \end{pmatrix}$$

- 7.7 双能级体系在两个非扰动状态之间的振荡
- 7.8 Pauli 矩阵
- 7.9 矩阵的对角化
- 7.10 与双能级体系相联系的虚拟自旋 1/2
- 7.11 两个自旋 1/2 粒子的体系
- 7.12 自旋 1/2 密度矩阵
- 7.13 静磁场与旋转磁场中的自旋 1/2 粒子: 磁共振

8 一维谐振子

- 8.1 谐振子在物理中的重要性
- 8.2 经典力学中的谐振子
- 8.3 量子力学哈密顿量的一般性质
- 8.4 能谱的确定
- 8.5 本征值的简并性
- 8.6 哈密顿量的本征态
- 8.7 与定态相联系的波函数
- 8.8 基态的性质
- 8.9 平均值的时间演化

- 8.10 位置表象中的定态研究
- 8.11 Hermite 多项式
- 8.12 用多项式方法求解谐振子的本征值方程
- 8.13 动量表象中的定态研究
- 8.14 三维各向同性谐振子
- 8.15 均匀电场中的带电谐振子
- 8.16 无限长耦合谐振子链的振动模
- 8.17 谐振子的准经典相干态
- 8.18 连续物理体系的振动模
- 8.19 处于有限温度下热力学平衡态的谐振子

9 量子力学中角动量的一般性质

如果被研究的体系是有心力场中的一个质点,那么角动量 L 的各个分量都将是运动常量,因此它们可以和描述有心势场 V(r) 中的粒子的 H 对易,这个重要性质使其在量子力学中非常重要.定义有经典类比的一切角动量为轨道角动量 L.属于基本粒子的一切内禀角动量称为自旋角动量 S,而二者之和为总角动量 L.根据正则对易关系式5.20.1,可以写出

$$L = R \times P$$

并得到关系式

$$\begin{aligned}
[J_x, J_y] &= i\hbar J_z \\
[J_y, J_z] &= i\hbar J_x \\
[J_z, J_x] &= i\hbar J_y
\end{aligned} (9.0.1)$$

$$\boxed{[\boldsymbol{J}^2, \boldsymbol{J}] = 0} \tag{9.0.2}$$

量子力学中的角动量理论完全建立在对易关系式9.0.1, 9.0.2的基础上, 这些关系式意味着角动量的三个分量不能同时测量, 但是分量和角动量的大小可以同时测量, 同时可以和 H 同时测量. 因此, H, J^2, J_z 构成一个 ECOC. 我们通常去寻找 H 的本征矢中属于 J^2 和 J_z 的共同本征矢的集合.

9.1 定义与符号

为方便, 引入以下非厄米伴随算符:

$$J_{+} = J_{x} + iJ_{y}$$
$$J_{-} = J_{x} - iJ_{y}$$

满足对易关系

$$\begin{split} [J_z, J_+] &= \hbar J_+ \\ [J_z, J_-] &= -\hbar J_- \\ [J_+, J_-] &= 2\hbar J_z \\ [J^2, J_+] &= [J^2, J_-] = [J^2, J_z] = 0 \end{split}$$

且有

$$J^2 = \frac{1}{2}(J_+J_- + J_-J_+) + J_z^2$$

将 J^2, J_z 写作:

$$J^2 = j(j+1)\hbar^2$$
$$J_z = m\hbar$$

为了构成一个 ECOC, 我们还需要除了 j, m 的另一个指标, 记做 k.

9.2 J^2 与 J_z 的本征值

如果 $j(j+1)\hbar$ 与 $m\hbar$ 是 J^2 与 J_z 对应同一本征矢 $|k,j,m\rangle$ 的本征值, 则满足

$$-j \le m \le j$$

同时,

若 m = -j, 则 $J_{-}|k, j, -j\rangle = 0$.

若 m>-j, 则 $J_-|k,j,m\rangle$ 是一个 J^2 与 J_z 的非零本征矢, 属于本征值 $j(j+1)\hbar^2$ 与 $(m-1)\hbar$. 若 m=j, 则 $J_+|k,j,j\rangle=0$.

若 m < j, 则 $J_+|k,j,m\rangle$ 是一个 J^2 与 J_z 的非零本征矢, 属于本征值 $j(j+1)\hbar^2$ 与 $(m+1)\hbar$. 我们可将已知结果归纳如下

假设 J 是满足对易关系9.0.1的任意角动量, 如果 $j(j+1)\hbar^2$ 与 $m\hbar$ 表示 J^2 与 J_z 的值, 那么:

- 1. j 只能取正整数,半整数或零,即 $0,1/2,1,1/3,\cdots$,这些只是可能值,并不是对于一切角动量而言所有值都会出现.
- 2. 对于 j 的一个固定值, m 的可能值只有 (2j+1) 个,:-j, -j+1, \cdots , j-1, j, 因此, 若 j 是半整数, m 也是半整数. 在 m 的这些值中, 只要有一个出现, 其他的值也会出现.

9.3 标准表象 $\{|k,j,m\rangle\}$

基右矢

取 $k = 1, 2, \dots, g(j)$ 作为表征状态的除了 j, m 的第三个量. 可以看到 g(j) 即 k 的维度与 m 无关. k 不相同的两个状态正交. 可以证明

$$|k,j,m+1\rangle = \frac{1}{\hbar\sqrt{j(j+1) - m(m+1)}} J_+|k,j,m\rangle$$
$$|k,j,m-1\rangle = \frac{1}{\hbar\sqrt{j(j+1) - m(m-1)}} J_-|k,j,m\rangle$$

下表粗略地表示了 k 的构建过程

子空间 $\mathcal{E}(k,j)$

- 9.4 L^2 与 L_z 的本征值
- 9.5 球谐函数
- 9.6 角动量与转动
- 9.7 双原子分子的转动
- 9.8 二维谐振子在定态中的角动量
- 9.9 磁场中的带电粒子: Landau 能级

10 中心势场中的粒子氢原子

- 10.1 分离变量
- 10.2 中心势场中粒子的定态
- 10.3 经典力学中的质心运动与相对运动
- 10.4 量子力学中的分离变量
- 10.5 氢原子的 Bohr 模型
- 10.6 氢原子的量子理论
- 10.7 类氢体系
- 10.8 各向同性三维谐振子
- 10.9 与氢原子定态相联系的概率流
- 10.10 均匀磁场中的氢原子
- 10.11 顺磁性与抗磁性
- 10.12 Zeeman 效应
- 10.13 双原子分子的振动-转动能级

11 散射的量子理论

- 11.1 碰撞现象的重要性 · 32/32 ·
- 11.2 势散射
- 11.3 散射截面的定义
- 11.4 稳定散射态的定义
- 11.5 利用概率流计算散射截面