Data Safety and Backups

Christian Lang (clang)

27. April 2020

A lot of private important or emotional relevant data is insufficiently protected against data loss.

My personal experience

- Not only business data is worth to protect:
 - private pictures,
 - password safe,
 - accounting and insurance data.
- The importance of this data is mostly discovered after loss.
- Rescuing data of a defective hard disc costs >1'000 sFr.

Scope

This presentation concentrates on data loss and not privacy.

Concepts

Data loss scenarios

- Hardware
 - Instantly defective hard disc.
 - Slow occurring problems: sporadic read errors.
 - Bit rot: sporadic bit-flips in physical memory segments.
 - Catastrophe: Fire or water damage, etc.
- User / Software
 - User deletes a file that he later needs again.
 - User changed file and later needs an earlier version of it.
 - Some software deletes/changes by itself (not intended by the user):
 - Errorneous software
 - Ransomware

Which one want you protect yourself from? How?

RAID - Redundant Array of Inexpensive Disks

- Does only protect against "some" hardware problems.
 - A user that deletes his important data is not protected by RAID.
- Hardware RAID implementations require hardware replacements if the RAID controller dies.
- Different RAID configurations
- Software implementations use more flexible definitions.
 - E.g: RAID1 can also work with 3 discs. Of different sizes.

RAID is no backup!

Backups - Data copy elsewhere

- Can protect against all/various data loss scenarios.
- Big range of how to implement:
 - One simple USB stick with a copy of your data that is updated each evening by hand.
 - Multiple servers with multiple layers of backups and different used technologies.
- Location is important:
 - in my PC
 - in my separate NAS
 - not in the same house
 - in the cloud
- Different backup intervals protect against different problems:
 - monthly backup can recover old data that was thought of never needed anymore
 - hourly backup can recover files that I deleted by mistake

Backups are no version control!

How to design your Backup

Questions:

- How much time do I have to detect data loss?
 - Age of oldest kept backup. → Backup rotation scheme
- How long a data state needs to exist to go into backup?
 - Interval when backups are done.
- How much space can I spend for backups?
 - The more data versions the more space is consumed for backups.
- Where should I store my backup?
 - If I want to protect from Ransomware \rightarrow at least not on the same host.
- Who has access to my backup?
 - Off-site backup in a public place (Cloud/Office) \rightarrow encrypted.

Atomic Snapshots

- Traditional backup solutions use different kinds of backups:
 - full
 - incremental
 - differential
- Optimize trade-off between number of states and storage space.
- Creates binary images. → not directly accessible.
- This kind of "snapshots" can be simulated directly with hardlinks.
- More modern filesystems do provide atomic snapshot mechanism by itself.
 - ullet E.g. by using internal tree data structure o similar to git
- Examples:
 - btrfs
 - zfs
 - ntfs
 - (lvm)

Monitoring

The best backup system is worthless if you do not detect failed hardware!

- Discs \rightarrow S.M.A.R.T.
 - statistics: age, power on hours, temperature, failed sectors, etc.
 - tests
- Filesystem
 - fill state
 - read/write errors
- System log
- → Best case: automated email notifications

Migration

The migration to new hardware is a critical step!

- Should be planned
- Have extra copies ouf your data
- Keep old state of your data on old hardware until new setup is mature and runs at least $\frac{1}{2}$ year without data loss.

Example project

Requirements

In this example I want to focus on the most powerful but still simple solution.

Simple means:

- not too complex architecture
- not too much hardware
- done by a technology affine person

Possibilities

Hardware

- Specific NAS
 - Synology
 - Qnap
 - Western Digital
 - etc.
- Old PC
- Small single board computer
 - Raspberry Pi
 - Odroid HC1 or N2
 - etc.

Software

- Proprietary
 - Synology DMS
 - etc.
- OpenSource linux distributions
 - FreeNAS \rightarrow zfs
 - Rockstor → btrfs
 - OpenMediaVault
 - etc.
- Self-made → use some basic linux server distribution

Decisions

- Separate small linux server: NAS with ubuntu-server
- Flexible hardware configuration.
- Simple user structure.
- Filesystem with snapshots for backups: btrfs
- All daily data access via samba shares.
 - If the daily usage is too complicated no one uses the features.
 - Snapshots access via shadow copy.
- Separate disc for disaster backup:
 - ullet ext4 ightarrow "simpler" than btrfs
 - rsync
- Backups of client hosts flow to NAS: qtdsync
 - Therefore all client data can take advantage of the snapshot mechanism etc.

Structure example

Hardware example

Hardware example

Odroid XU4 with 2x2.5 IcyBox

Odroid N2 with $2x3.5\ \text{lcyBox}$

Demo

github.com/langchr86/mini-nas

VM with ubuntu-server installed by ansible scripts.

Addendum

RAID configurations

Туре	Min. disks	Usable Capacity (# of disks)	Protection
RAID0	2	2	Nothing. Higher risk for loss. Higher speed.
RAID1	2	1	All data is mirrored. Can withstand one failed disk.
RAID01	4	2	Combined RAID0 and RAID1. Similar to RAID1 but with higher speed and higher risk
RAID5	5	4	if one disk has failed. Distributed parity information. Can withstand one failed disk. Recovery is a very intense
RAID6	6	4	task. Same as RAID5 but can withstand 2 failed disks.

Backup methods

Traditional backup solutions use different kinds of backups:

- full
- incremental
 - depends on previous incremental
 - use N incremental + 1 full to recover
- differential
 - depends on last full
 - ullet use 1 differential + 1 full to recover

Hardware-Costs

Usable storage: 2TB

Total costs: 467.-

- 2x Seagate Barracuda 2TB 2.5" 2x 85.-
- 2x WD Elements 2TB 2.5" 2x 71.-
- 1x IcyBox IB-RD2253-U31 55.-
- 1x Odroid N2 4GB 100.-

Can be reduced:

- 1. Off-site Backup: -1x WD Elements 71.-
- 2. RAID1: -1x Seagate 85.-