Índice general

1.	Conceptos fundamentales			4
	1.1.	Conce	ptos de termodinámica	4
		1.1.1.	Definición	4
		1.1.2.	Importancia de la termodinámica	4
		1.1.3.	Desenvolvimiento	4
		1.1.4.	Termodinámica Quiímica	5
		1.1.5.	Termodinámica Técnica	5
	1.2.	Sistem	a de Unidades	5
		1.2.1.	Grandezas físicas	5
		1.2.2.	Dimensiones de las grandezas físicas	6
		1.2.3.	Sistema de Unidades	6
		1.2.4.	Clasificación de los Sistemas de Unidad	6

Índice de figuras

Índice de cuadros

Capítulo 1

Conceptos fundamentales

1.1. Conceptos de termodinámica

1.1.1. Definición

Es la ciencia que se ocupa del estudio de las transformaciones de energía, fundamentalmente de trabajo en calor y de calor en trabajo.

$$\begin{array}{c|cccc} \mathbf{Q} & \text{calor (Kcal)} & & \mathbf{L} & \text{trabajo (Kgfm)} \\ \mathbf{q} & \text{calor específico } \left(\frac{Kcal}{Kg}\right) & \mathbf{l} & \text{trabajo específico } \left(\frac{Kgfm}{Kg}\right) \end{array}$$

$$L - - > QQ - - > L$$

1.1.2. Importancia de la termodinámica

Termodinámica es la materia previa, teórica y fundamental para el estudio de las máquinas térmicas, compresores, máquinas a combustión interna y externa, máquinas frigoríficas, turbinas a gas y vapor y sistemas de condicionamiento de aire.

1.1.3. Desenvolvimiento

El desenvolvimiento de la ciencia de la termodinámica está basada en dos principios fundamentales, el primer principio de la termodinámica o principio de la equivalencia o de la conservación de la energía y el segundo principio de la termodinámica (principio de Carnot-Clausius) de caracter cualitativo.

Primer Principio de la Termodinámica

Principio de caracter cuantitativo o de equivalencia. Es siempre posible transformar calor en trabajo y trabajo en calor y siempre va a existir una relación constante entre esas dos grandezas, si el sistema es cerrado.

$$\frac{L}{Q} = Cte = X$$

$$\frac{Q}{L} = Cte = Y$$

Segundo Principio de la Termodinámica

Principio de caracter cualitativo o de Carnot-Clausius Es más fácil transformar trabajo en calor de que calor en trabajo.

Observación: Calor es la degradación máxima de la energía, calor es una forma degenerada de energía.

1.1.4. Termodinámica Quiímica

Estudia las reacciones químicas desde el punto de vista del calor. Reacciones exotérmicas y endotérmicas.

1.1.5. Termodinámica Técnica

Estudia la obtención, aprovechamiento y aplicación del trabajo.

1.2. Sistema de Unidades

1.2.1. Grandezas físicas

Todo lo que puede ser pesado, medido y comparado.

1.2.2. Dimensiones de las grandezas físicas

Son evaluadas por comparación, la unidad es el medio de comparación.

1.2.3. Sistema de Unidades

Hecho para padronizar y orientar.

1.2.4. Clasificación de los Sistemas de Unidad

- Sistema de unidad gravitacional o técnico LFT.
- \bullet Sistema absoluto LMT. L = longitud F = fuerza M = masa T = tiempo
- Sistema de unidades absolutas LMT CGS y MKS
- Sistema de unidades gravimétricas LFT M Kgf S