On Mixup Regularization

[Carratino et al., JMLR 2022]

-Summary-

Introduction – Current paper for mix-up theory

There are some papers dealing with theoretical analysis of mix-up technique :

[Brief summary & idea]

- 1. How Does Mixup Help With Robustness And Generalization [Zhang et al., ICLR 2021]
 - 1 Showed regularization effect of mix-up using Taylor expansion on mix-up loss.
 - ② Given adversarial attack size, <u>demonstrated mix up loss is the upper bound of adversarial loss.</u>
 - ③ Under two-layer ReLU network setup with some assumption, they showed:
 <u>Decreasing mix-up loss -> Decreasing ERM loss -> improve generalization</u>
 <u>performance as ERM minimization even using mix up training</u>

Introduction – Current paper for mix-up theory

[Brief summary & idea]

- 2. Towards Understanding the Data Dependency of Mixup-style Training [Chidambaram et al., ICLR 2022]
 - 1 Showed why mix up technique still works even though model encounter very few true data points during training using theoretical analysis.
 - ② Demonstrated that if collinearity (= manifold intrusion) of mix up point is expected, then model cannot achieve zero training error even with very long training.
 - ③ On high dimensional dataset [MNIST, CIFAR-10/100], showed empirically that collinearity rarely occurs => reason why training loss -> 0 on CIFAR-10 mixup training (By computing minimum distance between each mixup points and points from classes other than the two mixed classes)

Introduction – Current paper for mix-up theory

[Brief summary & idea]

- 3. On Mixup Regularization [Carratino et al., JMLR 2022]
 - 1 Showed Mixup can be written as a perturbed ERM loss.
 - 2 Showed regularization effect of mix-up using Taylor expansion on various training case: Cross entropy loss / logistic regression loss / MSE loss (Slight different approach, but involves interesting terms to study)
 - 3 Suggested 'Approximated Mixup' by dropping out the regularization term, which is an intermediate compromise of Mixup and ERM training in the view or regularization. (Not our interest...)

<u>Our current goal</u>: Want to focus on part ① to study the detailed regularization effect of mixup and find some reasonable intuition to modify original mix-up. (to improve generalization performance)

- Learning problem & Notations:
 - 1. Training set : $S_n = \{(x_1, y_1), ...(x_n, y_n)\}$, and $x_i \in \mathcal{X} \subset \mathbb{R}^d$, $y_i \in \mathcal{Y} \subset \mathbb{R}^c$
 - 2. Sample mean : $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
 - 3. Sample covariance : $\Sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})^T$
 - 4. ERM loss : $\mathcal{E}^{ERM}(f) = \frac{1}{n} \sum_{i=1}^{n} l(y_i, f(x_i))$ Usually $\lambda \sim Beta(\alpha, \alpha)$
 - 5. Mix-up loss : $\mathcal{E}^{Mixup}(f) = \frac{1}{n^2} \sum_{i=1}^n \sum_{i=1}^n \mathbb{E}_{\lambda} [l(\lambda y_i + (1-\lambda)y_j, f(\lambda x_i + (1-\lambda)x_j)]$
- Now, we reformulate mix-up loss as a perturbed ERM by following procedure.

1. Define $m_{ij}(\lambda) = l\left(\lambda y_i + (1-\lambda)y_j, f\left(\lambda x_i + (1-\lambda)x_j\right)\right)$ to simplify $\mathcal{E}^{Mixup}(f)$:

$$\mathcal{E}^{Mixup}(f) = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}_{\lambda}[m_{ij}(\lambda)]$$

2. Separate λ by symmetry of Beta distribution as follows :

Beta distribution constricted on given domain

$$\lambda = \pi \lambda_0 + (1 - \pi) \lambda_1, \qquad \lambda_0 \sim Beta_{\left[0, \frac{1}{2}\right]}(\alpha, \alpha), \qquad \lambda_1 \sim Beta_{\left[\frac{1}{2}, 1\right]}(\alpha, \alpha), \qquad \pi \sim Bern\left(\frac{1}{2}\right)$$

Critical note: It is possible to use any pdf symmetric w.r.t 0.5 (restricted on [0,1]) for λ

3. Using the fact $\lambda_1' \coloneqq 1 - \lambda_0 \sim Beta_{\left[\frac{1}{2},1\right]}(\alpha,\alpha)$, we further simplify as below :

$$\mathbb{E}_{\lambda}[m_{ij}(\lambda)] = \mathbb{E}_{\lambda_0,\lambda_1,\pi}[m_{ij}(\pi\lambda_0 + (1-\pi)\lambda_1)] = \frac{1}{2}[\mathbb{E}_{\lambda'_1}[m_{ji}(\lambda'_1)] + \mathbb{E}_{\lambda_1}[m_{ij}(\lambda_1)]$$

4. Finally, we can simply $\mathcal{E}^{Mixup}(f)$ by following: $|\operatorname{Recall}: m_{ij}(\lambda) = l(\lambda y_i + (1-\lambda)y_j, f(\lambda x_i + (1-\lambda)x_j))|$

Recall:
$$m_{ij}(\lambda) = l \left(\lambda y_i + (1 - \lambda) y_j, f \left(\lambda x_i + (1 - \lambda) x_j \right) \right)$$

$$\mathcal{E}^{Mixup}(f) = \frac{1}{2n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\mathbb{E}_{\lambda'_1} [m_{ji}(\lambda'_1)] + \mathbb{E}_{\lambda_1} [m_{ij}(\lambda_1)] \right] = \frac{1}{n} \sum_{i=1}^{n} l_i$$

$$\text{ where } l_i = \mathbb{E}_{\theta,j} \left[l \left(\theta y_i + (1-\theta) y_j, f \left(\theta x_i + (1-\theta) x_j \right) \right) \right], \quad \theta \sim Beta_{\left[\frac{1}{2},1\right]}(\alpha,\alpha), \quad j \sim Unif([n])$$

5. Define
$$\widetilde{x_i} \coloneqq \mathbb{E}_{\theta,j} [\theta x_i + (1-\theta)x_j]$$
 and $\widetilde{y_i} \coloneqq \mathbb{E}_{\theta,j} [\theta y_i + (1-\theta)y_j]$

6. Define
$$\delta_i \coloneqq \theta x_i + (1 - \theta) x_j - \mathbb{E}_{\theta, j} [\theta x_i + (1 - \theta) x_j]$$

$$\epsilon_i \coloneqq \theta y_i + (1 - \theta) y_j - \mathbb{E}_{\theta, j} [\theta y_i + (1 - \theta) y_j]$$

Note : $\mathbb{E}_{\theta,j}[\delta_i] = \mathbb{E}_{\theta,j}[\epsilon_i] = 0$

5. Then, $l_i = \mathbb{E}_{\theta,i}[l(\widetilde{y}_i + \epsilon_i, f(\widetilde{x}_i + \delta_i))]$

• Summarizing this result, we get following theorem :

Theorem 1 Let $\theta \sim Beta_{\left[\frac{1}{2},1\right]}(\alpha,\alpha)$ and $j \sim Unif([n])$ be two random variables with $\alpha > 0$, n > 0 and let $\overline{\theta} = \mathbb{E}_{\theta}\theta$. For any training set S_n , let $(\widetilde{x}_i, \widetilde{y}_i)$ for any $i \in [n]$ be the modified input/output pair given by

$$\begin{cases} \widetilde{x}_i &= \overline{x} + \overline{\theta}(x_i - \overline{x}), \\ \widetilde{y}_i &= \overline{y} + \overline{\theta}(y_i - \overline{y}), \end{cases}$$

and $(\delta_i, \varepsilon_i)$ be the random perturbations given by:

$$\begin{cases} \delta_i &= (\theta - \overline{\theta})x_i + (1 - \theta)x_j - (1 - \overline{\theta})\overline{x}, \\ \varepsilon_i &= (\theta - \overline{\theta})y_i + (1 - \theta)y_j - (1 - \overline{\theta})\overline{y}. \end{cases}$$

Then for any $i \in [n]$, $\mathbb{E}_{\theta,j}\delta_i = \mathbb{E}_{\theta,j}\varepsilon_i = 0$, and for any function $f \in \mathcal{H}$,

$$\mathcal{E}^{Mixup}(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\theta,j} \ell\left(\widetilde{y}_i + \varepsilon_i, f(\widetilde{x}_i + \delta_i)\right).$$

Mixup loss as perturbed ERM

• Now, we want to approximate the mix-up loss via 2nd order Taylor expansion:

$$\mathcal{E}_{Q}^{Mixup}(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\theta,j} [l_{Q}^{(i)}(\widetilde{y}_{i} + \epsilon_{i}, f(\widetilde{x}_{i} + \delta_{i})]$$

where $l_{0}^{(i)}$ is given as following :

$$\ell_{Q}^{(i)}\left(\widetilde{y}_{i}+\varepsilon,f(\widetilde{x}_{i}+\delta)\right) = \ell\left(\widetilde{y}_{i},f(\widetilde{x}_{i})\right) + \nabla_{y}\ell\left(\widetilde{y}_{i},f(\widetilde{x}_{i})\right)\varepsilon + \nabla_{u}\ell\left(\widetilde{y}_{i},f(\widetilde{x}_{i})\right)\nabla_{x}f(\widetilde{x}_{i})\delta$$

$$+ \frac{1}{2}\left\langle\delta\delta^{\top},\nabla f(\widetilde{x}_{i})^{\top}\nabla_{uu}^{2}\ell(\widetilde{y}_{i},f(\widetilde{x}_{i}))\nabla f(\widetilde{x}_{i}) + \nabla_{u}\ell(\widetilde{y}_{i},f(\widetilde{x}_{i}))\nabla^{2}f(\widetilde{x}_{i})\right\rangle$$

$$+ \frac{1}{2}\left\langle\varepsilon\varepsilon^{\top},\nabla_{yy}^{2}\ell(\widetilde{y}_{i},f(\widetilde{x}_{i}))\right\rangle + \left\langle\varepsilon\delta^{\top},\nabla_{yu}^{2}\ell(\widetilde{y}_{i},f(\widetilde{x}_{i}))\nabla f(\widetilde{x}_{i})\right\rangle,$$

Note : $\langle A, B \rangle := Tr(A^TB)$ (Frobenius inner product)

This term : $1 \times c$ by $c \times |x| \times |x|$ calculation (tensor product) In detail, it is the same as following :

$$\sum_{k=1}^{c} \nabla_{u} l(\widetilde{y}_{i}, f(\widetilde{x}_{i}))^{(k)} \nabla^{2} f(\widetilde{x}_{i})^{(k)} \in \mathbb{R}^{|x| \times |x|}$$

• To proceed further, we define 3 covariance related term as belows:

Lemma 2 Let $\overline{\theta}$ and σ^2 be respectively the mean and variance of a $Beta_{\left[\frac{1}{2},1\right]}(\alpha,\alpha)$ distributed random variable, and $\gamma^2 = \sigma^2 + (1-\overline{\theta})^2$. For any $i \in [n]$, let

$$\Sigma_{\widetilde{x}\widetilde{x}}^{(i)} = \frac{\sigma^{2}(\widetilde{x}_{i} - \overline{x})(\widetilde{x}_{i} - \overline{x})^{\top} + \gamma^{2}\Sigma_{\widetilde{x}\widetilde{x}}}{\overline{\theta}^{2}},$$

$$\Sigma_{\widetilde{y}\widetilde{y}}^{(i)} = \frac{\sigma^{2}(\widetilde{y}_{i} - \overline{y})(\widetilde{y}_{i} - \overline{y})^{\top} + \gamma^{2}\Sigma_{\widetilde{y}\widetilde{y}}}{\overline{\theta}^{2}},$$

$$\Sigma_{\widetilde{x}\widetilde{y}}^{(i)} = \frac{\sigma^{2}(\widetilde{x}_{i} - \overline{x})(\widetilde{y}_{i} - \overline{y})^{\top} + \gamma^{2}\Sigma_{\widetilde{x}\widetilde{y}}}{\overline{\theta}^{2}}.$$

Then, for any $i \in [n]$, the random perturbations defined in (6) satisfy

$$\mathbb{E}_{\theta,j}\delta_i\delta_i^{\top} = \Sigma_{\widetilde{x}\widetilde{x}}^{(i)}, \quad \mathbb{E}_{\theta,j}\varepsilon_i\varepsilon_i^{\top} = \Sigma_{\widetilde{y}\widetilde{y}}^{(i)}, \quad and \quad \mathbb{E}_{\theta,j}\delta_i\varepsilon_i^{\top} = \Sigma_{\widetilde{x}\widetilde{y}}^{(i)}.$$

• Further cleaning up the terms induces following approximation of Mixup loss:

Theorem 3 For any twice continuously differentiable loss $\ell(y, u)$, the approximate Mixup risk at any twice differentiable $f \in \mathcal{H}$ satisfies

$$\mathcal{E}_{Q}^{Mixup}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(\widetilde{y}_{i}, f(\widetilde{x}_{i})) + R_{1}(f) + R_{2}(f) + R_{3}(f) + R_{4}(f),$$

where

$$R_1(f) = \frac{1}{2n} \sum_{i=1}^n \left\| \left(\nabla f(\widetilde{x}_i) - J^{(i)} \right)^{\top} \left(\nabla_{uu}^2 \ell(\widetilde{y}_i, f(\widetilde{x}_i)) \right)^{\frac{1}{2}} \right\|_{\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}}^2,$$

$$R_2(f) = \frac{1}{2n} \sum_{i=1}^{n} \left\langle \Sigma_{\widetilde{x}\widetilde{x}}^{(i)}, \nabla_u \ell(\widetilde{y}_i, f(\widetilde{x}_i)) \nabla^2 f(\widetilde{x}_i) \right\rangle,$$

$$R_3(f) = -\frac{1}{2n} \sum_{i=1}^n \left\| \Sigma_{\widetilde{x}\widetilde{y}}^{(i)} \nabla_{yu}^2 \ell(\widetilde{y}_i, f(\widetilde{x}_i)) \left(\nabla_{uu}^2 \ell(\widetilde{y}_i, f(\widetilde{x}_i)) \right)^{-\frac{1}{2}} \right\|_{\left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1}}^2,$$

$$R_4(f) = \frac{1}{2n} \sum_{i=1}^{n} \left\langle \Sigma_{\widetilde{y}\widetilde{y}}^{(i)}, \nabla_{yy}^2 \ell(\widetilde{y}_i, f(\widetilde{x}_i)) \right\rangle ,$$

Note : $||A||_Z^2 := \langle A, ZA \rangle = Tr(A^TZA)$ (Squared frobenius norm with metric Z)

Hard to interpret, but we can do something when loss is Cross-entropy loss

and

$$\forall i \in [n], \quad J^{(i)} = -\left(\nabla_{uu}^2 \ell(\widetilde{y}_i, f(\widetilde{x}_i))\right)^{-1} \nabla_{uy}^2 \ell(\widetilde{y}_i, f(\widetilde{x}_i)) \Sigma_{\widetilde{y}\widetilde{x}}^{(i)} \left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1}.$$

• If we use Cross-entropy loss $l^{CE}(y, u)$, we can get following facts :

$$\nabla_{y} \ell^{\text{CE}}(y, u) = -u^{\top},$$

$$\nabla_{u} \ell^{\text{CE}}(y, u) = (\mathcal{S}(u) - y)^{\top}$$

$$\nabla_{yy}^{2} \ell^{\text{CE}}(y, u) = \mathbf{0}_{c},$$

$$\nabla_{yu}^{2} \ell^{\text{CE}}(y, u) = -\mathbf{I}_{c},$$

$$\nabla_{uu}^{2} \ell^{\text{CE}}(y, u) = H(u).$$

where $H(u) = diag(S(u)) - S(u)S(u)^T \in \mathbb{R}^{c \times c}$ [the Jacobian of softmax function (S)]

 By putting these terms into previous theorem, we achieve following approximate mix up loss on Cross entropy loss setup

Corollary 4 Let $S : \mathbb{R}^c \to \mathbb{R}^c$ be the softmax operator, i.e., for any $i \in [c]$ and $u \in \mathbb{R}^c$, $S(u)_i = e^{u_i} / \sum_{j=1}^c e^{u_j}$, and let $H(u) = diag(S(u)) - S(u)S(u)^\top \in \mathbb{R}^{c \times c}$. The approximate Mixup risk for the cross-entropy loss satisfies

$$\mathcal{E}_{Q}^{Mixup}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell^{CE}(\widetilde{y}_{i}, f(\widetilde{x}_{i})) + R_{1}^{CE}(f) + R_{2}^{CE}(f) + R_{3}^{CE}(f),$$

where

$$R_1^{CE}(f) = \frac{1}{2n} \sum_{i=1}^n \left\| \left(\nabla f(\widetilde{x}_i) - J^{(i)} \right)^\top H(f(\widetilde{x}_i))^{\frac{1}{2}} \right\|_{\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}}^2,$$

$$R_2^{CE}(f) = \frac{1}{2n} \sum_{i=1}^n \left\langle \Sigma_{\widetilde{x}\widetilde{x}}^{(i)}, \left(\mathcal{S}(f(\widetilde{x}_i)) - \widetilde{y}_i \right)^\top \nabla^2 f(\widetilde{x}_i) \right\rangle,$$

$$R_3^{CE}(f) = -\frac{1}{2n} \sum_{i=1}^n \left\| \Sigma_{\widetilde{x}\widetilde{y}}^{(i)} H(f(\widetilde{x}_i))^{-\frac{1}{2}} \right\|_{\left(\Sigma_{\widetilde{x}\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1}}^2,$$

This term is related with EL2N score.

=> Let's try upper bound analysis for each term

with

$$\forall i \in [n], \quad J^{(i)} = H(f(\widetilde{x}_i))^{-1} \Sigma_{\widetilde{y}\widetilde{x}}^{(i)} \left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1}.$$

Analysis beyond the paper

1.
$$R_1^{CE}(f)$$
 analysis: focus on $\left\| \left(\nabla f(\widetilde{x_i}) - J^{(i)} \right)^T H(f(\widetilde{x_i}))^{\frac{1}{2}} \right\|_{\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}}^2$ term

2. Note the following:

$$\begin{split} \left\| \left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right)^{T} H(f(\widetilde{x_{i}}))^{\frac{1}{2}} \right\|_{\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}}^{2} &= Tr \left[H(f(\widetilde{x_{i}}))^{\frac{1}{2}} \left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right) \Sigma_{\widetilde{x}\widetilde{x}}^{(i)} \left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right)^{T} H(f(\widetilde{x_{i}}))^{\frac{1}{2}} \right] \\ &= Tr \left[\Sigma_{\widetilde{x}\widetilde{x}}^{(i)} \left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right)^{T} H(f(\widetilde{x_{i}})) \left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right) \right] \\ &\leq Tr \left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)} \right) \cdot Tr \left(H(f(\widetilde{x_{i}})) \right) \cdot Tr \left[\left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right)^{T} \left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right) \right] \\ &\leq Tr \left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)} \right) \cdot \mathcal{H} \left(S(f(\widetilde{x_{i}})) \right) \cdot Tr \left[\left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right)^{T} \left(\nabla f(\widetilde{x_{i}}) - J^{(i)} \right) \right] \end{split}$$

As the entropy of prediction of $\widetilde{x_i}$ get higher (close to decision boundary \sim Hard example), It gets stronger regularization from mix-up

 R_1^{CE} terms forces the Jacobian of $f(\widetilde{x_i})$ to be close to $J^{(i)}$, which is interpreted as weighted Multivariate OLS estimator in this paper (MLOS ???)

Analysis beyond the paper

3. $R_2^{CE}(f)$ analysis: focus on $< \Sigma_{\widetilde{x}\widetilde{x}}^{(i)}$, $\left(S(f(\widetilde{x_i})) - \widetilde{y_i}\right)^T \nabla^2 f(\widetilde{x_i}) > \text{term}$

4. Note the following:

$$< \Sigma_{\tilde{x}\tilde{x}}^{(i)}, \left(S \big(f(\tilde{x}_{i}) \big) - \tilde{y}_{i} \right)^{T} \nabla^{2} f(\tilde{x}_{i}) > = Tr \left[\Sigma_{\tilde{x}\tilde{x}}^{(i)} \big(S \big(f(\tilde{x}_{i}) \big) - \tilde{y}_{i} \big)^{T} \nabla^{2} f(\tilde{x}_{i}) \right]$$

$$\le Tr \left(\Sigma_{\tilde{x}\tilde{x}}^{(i)} \right) \cdot Tr \left[\left(S \big(f(\tilde{x}_{i}) \big) - \tilde{y}_{i} \right)^{T} \nabla^{2} f(\tilde{x}_{i}) \right]$$

$$= Tr \left(\Sigma_{\tilde{x}\tilde{x}}^{(i)} \right) \cdot \left(S \big(f(\tilde{x}_{i}) \big) - \tilde{y}_{i} \right)^{T} Tr^{tensor} \left(\nabla^{2} f(\tilde{x}_{i}) \right)$$

$$\le Tr \left(\Sigma_{\tilde{x}\tilde{x}}^{(i)} \right) \left\| S \big(f(\tilde{x}_{i}) \big) - \tilde{y}_{i} \right\|_{2} \cdot \left\| Tr^{tensor} \left(\nabla^{2} f(\tilde{x}_{i}) \right) \right\|_{2}$$

where
$$Tr^{tensor}(\nabla^2 f(\widetilde{x_i})) = \begin{bmatrix} Tr(\nabla^2 f(\widetilde{x_i})^{(1)}) \\ \dots \\ Tr(\nabla^2 f(\widetilde{x_i})^{(c)}) \end{bmatrix} \in \mathbb{R}^c$$

This term is EL2N score of expected mix-up point of x_i (= $\widetilde{x_i}$). As the $\widetilde{x_i}$ gets harder, the regularization effect of $\widetilde{x_i}$ gets stronger.

 $R_2^{\it CE}$ terms forces the input Laplacian of $f(\widetilde{x_i})^{(k)}$ to be zero. $(k \in [c])$

[Mustafal et al., ICLM 2020] claims that input hessian regularization improves robustness of model

Analysis beyond the paper

5.
$$R_3^{CE}(f)$$
 analysis: focus on $\left\| \Sigma_{\widetilde{x}\widetilde{y}}^{(i)} H(f(\widetilde{x_i}))^{-\frac{1}{2}} \right\|_{\left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1}}^2$ term

Note the following :

$$\left\| \Sigma_{\widetilde{x}\widetilde{y}}^{(i)} H(f(\widetilde{x}_{i}))^{-\frac{1}{2}} \right\|_{\left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1}}^{2} = Tr \left[H(f(\widetilde{x}_{i}))^{-\frac{1}{2}} \Sigma_{\widetilde{y}\widetilde{x}}^{(i)} \left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1} \Sigma_{\widetilde{x}\widetilde{y}}^{(i)} H(f(\widetilde{x}_{i}))^{-\frac{1}{2}} \right]$$

$$= Tr \left[\Sigma_{\widetilde{y}\widetilde{x}}^{(i)} \left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1} \Sigma_{\widetilde{x}\widetilde{y}}^{(i)} H(f(\widetilde{x}_{i})) \right]$$

$$\leq Tr \left(\Sigma_{\widetilde{y}\widetilde{x}}^{(i)} \Sigma_{\widetilde{x}\widetilde{y}}^{(i)}\right) Tr \left(\left(\Sigma_{\widetilde{x}\widetilde{x}}^{(i)}\right)^{-1}\right) \mathcal{H}\left(S(f(\widetilde{x}_{i}))\right)$$

Since R_3^{CE} term regularize $\mathcal{H}\left(S\big(f(\widetilde{x_i})\big)\right)$, the regularization effect of R_1^{CE} (~Jacobian regularization) becomes smaller as the training loss gets minimized

Regularize the entropy of prediction on $\tilde{x_i}$ and force the entropy to be lower as possible for expected mix-up point for x_i .

• Our natural question on Mix-up is 'Why we sample λ for $Beta(\alpha, \alpha)$?' (Obviously, this is the well-known distribution restricted on [0,1])

Learned λ distribution from MetaMixup

- Some papers on mix-up shows test accuracy improvement via adopting new λ distribtuion:
 - 1. RegMixup [Pinto et al., NeurIPS 2022]
 - : Propose to mix-up training with original training samples (with high $\alpha \sim 10$)
 - **2. MetaMixup** [Mai et al., IEEE TNNLS]

: Using Meta learning to learn good λ selection policy based on input x_i , demonstrated test accuracy improvement via W shaped λ distribution (learned from meta learning)

Both paper showed the results by experiments, but we may be able to explain this phenomenon using our previous analysis on mix-up.

• Note the following terms appeared in R_1^{CE} , R_2^{CE} , R_3^{CE} : $Tr\left(\Sigma_{\tilde{y}\tilde{\chi}}^{(i)}\Sigma_{\tilde{\chi}\tilde{y}}^{(i)}\right)$ or $Tr\left(\Sigma_{\tilde{\chi}\tilde{\chi}}^{(i)}\right)$:

(Note :
$$\gamma^2 = \sigma^2 + (1 - \bar{\theta})^2$$
 and $\theta \sim Beta_{\left[\frac{1}{2},1\right]}(\alpha,\alpha)$)

$$\begin{split} \text{PRecall:} & \Sigma_{\widetilde{x}\widetilde{x}}^{(i)} = \frac{\sigma^2(\widetilde{x}_i - \overline{x})(\widetilde{x}_i - \overline{x})^\top + \gamma^2 \Sigma_{\widetilde{x}\widetilde{x}}}{\overline{\theta}^2} \,, \\ & \Sigma_{\widetilde{y}\widetilde{y}}^{(i)} = \frac{\sigma^2(\widetilde{y}_i - \overline{y})(\widetilde{y}_i - \overline{y})^\top + \gamma^2 \Sigma_{\widetilde{y}\widetilde{y}}}{\overline{\theta}^2} \,, \\ & \Sigma_{\widetilde{x}\widetilde{y}}^{(i)} = \frac{\sigma^2(\widetilde{x}_i - \overline{x})(\widetilde{y}_i - \overline{y})^\top + \gamma^2 \Sigma_{\widetilde{x}\widetilde{y}}}{\overline{\theta}^2} \,, \\ & \Sigma_{\widetilde{x}\widetilde{y}}^{(i)} = \frac{\sigma^2(\widetilde{x}_i - \overline{x})(\widetilde{y}_i - \overline{y})^\top + \gamma^2 \Sigma_{\widetilde{x}\widetilde{y}}}{\overline{\theta}^2} \,. \end{split} \end{split}$$

• (Experiment) Let $\lambda \sim Beta(0.5,0.5)$ as in naïve mixup.

$$dbeta(\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

In other words, $p(\theta) = 2 \times dbeta(0.5,0.5)$. Then,

$$\bar{\theta} = \mathbb{E}[\theta] = \frac{3}{4}$$

$$\sigma^2 = Var(\theta) = \frac{1}{4}Var(X) = \frac{1}{32}$$

Thus,
$$\frac{\sigma^2}{\overline{\theta}} = \frac{1}{24}$$

Note : $X \sim Beta(\alpha, \alpha) \Rightarrow Var(X) = \frac{1}{4(2\alpha+1)}$

• (Experiment) Let
$$\lambda | Z = \begin{cases} \frac{1}{2}X & Z = 0\\ \frac{1}{2}(X+1) & Z = 1 \end{cases}$$
, where $X \sim Beta(0.5,0.5), Z \sim Bern\left(\frac{1}{2}\right)$

In other words, $\theta = \frac{1}{2}(X+1)$. Then.

$$\bar{\theta} = \mathbb{E}[\theta] = \frac{3}{4}$$

$$\sigma^2 = Var(\theta) = \frac{1}{4}Var(X) = \frac{1}{32}$$

Thus, $\frac{\sigma^2}{\overline{\theta}} = \frac{1}{24}$

Note : $X \sim Beta(\alpha, \alpha) \Rightarrow Var(X) = \frac{1}{4(2\alpha+1)}$