工学系のモデリングA演習問題

第6回 2015年5月20日 電子物理システム学科 谷井孝至

問1 右図のように、ばね定数 k_1, k_2, k_3 の3つのばねで結ばれた質量 m_1, m_2 の2 質点の振動を考える.上段の図は、黒丸で示した2 質点が平衡点にあり、すべてのばねは自然長にあるものとする.中段の図は2 質点がそれぞれ平衡点から x_1 (> 0), x_2 (> 0) だけずれた位置にある瞬間を示している (図の右方向を正にとる).下段の図は逆に、2 質点がそれぞれ平衡点から x_1 (< 0), x_2 (< 0) だけずれた位置にある瞬間を示している.

(a) 中段の図で $0 < x_1 < x_2$ のとき、2 質点は3つのばねのそれぞれからどちら向きに力を受けるか? 右方向を正、左方向を負として下表を埋めよ、また、 $0 < x_2 < x_1$ の場合についても答えよ、

	$0 < x_1 < x_2$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m1 の質点	負	_	
m2 の質点	_		

	$0 < x_2 < x_1$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m_1 の質点	負	-	
m_2 の質点	_		

(b) 下段の図で $x_2 < x_1 < 0$ のとき、または、 $x_1 < x_2 < 0$ のとき、2質点は3つのばねのそれぞれからどちら向きに力を受けるか? (a) と同様にして下表を埋めよ.

	$x_2 < x_1 < 0$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m1 の質点	正	_	
m ₂ の質点	_		

	$x_1 < x_2 < 0$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m1 の質点	正	_	
m ₂ の質点	_		

(c) (a) または (b) と同様にして、 $x_1 > 0$ かつ $x_2 < 0$ 、または、 $x_1 < 0$ かつ $x_2 > 0$ のとき、2 質点は3つのばねのそれぞれからどちら向きに力を受けるか?下表を埋めよ.

	$x_1 > 0$ かつ $x_2 < 0$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m_1 の質点	負	_	
m ₂ の質点	_		

7	<u> </u>				
		$x_1 < 0$ かつ $x_2 > 0$ の場合			
		k_1 のばねの力	k_2 のばねの力	k_3 のばねの力	
	m_1 の質点	正	_		
	m2の質点	_			

(d) (a) \sim (c) の結果を参考にしながら、2 質点がそれぞれのばねから受ける力を、ばねの伸縮の大きさも勘案しながら求め、下表を埋めよ ((a) \sim (c) の 6 通りのいずれの場合においても、同じ式で表せることがわかるだろう).

	$0 < x_1 < x_2$ の場合		
	k_1 のばねの力	k_2 のばねの力	k3 のばねの力
m1 の質点	$-k_{1}x_{1}$	_	
m2 の質点	_		

- (e) (d) の結果を踏まえて、 x_1, x_2 に対する連立運動方程式を示せ.
- (f) この連立運動方程式を行列形式

$$\ddot{X} = -AX$$
 $X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$

で書いたとき、行列 A を求めよ. ただし、 $m_1 = m_2 = m$ 、 $k_1 = k_2 = 2k$ 、 $k_3 = k$ とする.

- (g) (f) で求めた A の固有値問題を解け (指導書 p.61 例題 5.2.1 を参考に、A の固有値 (λ_1 , λ_2) と 固有ベクトル (X_1 , X_2) を求めよ.その際,固有ベクトルについて任意定数 (C_1 , C_2) を含んだ形で解答せよ).
- (h) (f) で求めた A を対角化する直交行列 U を求めよ (指導書 p.64 例題 5.2.2 を参考にせよ).
- (i) (f)~(h) の結果を用いて、基準座標 $Q(t) = \begin{pmatrix} a_1 \cos(\sqrt{\lambda_1}t + \epsilon_1) \\ a_2 \cos(\sqrt{\lambda_2}t + \epsilon_2) \end{pmatrix}$ と一般解 X(t) = UQ(t) を示せ、ただし、 a_1 、 a_2 、 ϵ_1 、 ϵ_2 は任意定数とする.

解答

(a) $0 < x_1 < x_2$ の場合 k_3 のばねが伸びている, $0 < x_2 < x_1$ の場合 k_3 のばねが縮んでいることに注意して,

	$0 < x_1 < x_2$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m_1 の質点		_	正
m ₂ の質点	_	負	負

	$0 < x_2 < x_1$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m ₁ の質点	負	_	負
m2 の質点	_	負	正

(b) $x_2 < x_1 < 0$ の場合 k_3 のばねが縮んでいる, $x_1 < x_2 < 0$ の場合 k_3 のばねが伸びていることに注意して,

	$x_2 < x_1 < 0$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m ₁ の質点	正	_	負
m ₂ の質点	_	正	正

	$x_1 < x_2 < 0$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m1 の質点	正	_	正
m_2 の質点	_	正	負

(c) $x_1 > 0$ かつ $x_2 < 0$ の場合 k_3 のばねが縮んでいる, $x_1 < 0$ かつ $x_2 > 0$ の場合 k_3 のばねが伸びていることに注意して,

	$x_1 > 0$ かつ $x_2 < 0$ の場合		
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力
m1 の質点	負	-	負
m2の質点	_	正	正

	$x_1 < 0$ かつ $x_2 > 0$ の場合			
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力	
m1 の質点	正	_	正	
m ₂ の質点	_	負	負	

(d) k_3 のばねの伸縮は $|x_2-x_1|$ なので、力の大きさは $k_3|x_2-x_1|$. (a) の正負、および x_2-x_1 の正負から判断すると、

	$0 < x_1 < x_2$ の場合			
	k_1 のばねの力	k_2 のばねの力	k_3 のばねの力	
m_1 の質点	$-k_1x_1$	_	$k_3(x_2-x_1)$	
m_2 の質点	_	$-k_{2}x_{2}$	$-k_3(x_2-x_1)$	

(e) (d) の結果より,

$$m_1\ddot{x_1} = -k_1x_1 + k_3(x_2 - x_1) = -(k_1 + k_3)x_1 + k_3x_2$$

 $m_2\ddot{x_2} = -k_2x_2 + k_3(x_1 - x_2) = k_3x_1 - (k_2 + k_3)x_2$

$$A = \begin{pmatrix} \frac{k_1 + k_3}{m_1} & -\frac{k_3}{m_1} \\ -\frac{k_3}{m_2} & \frac{k_2 + k_3}{m_2} \end{pmatrix}$$

 $m_1 = m_2 = m$, $k_1 = k_2 = 2k$, $k_3 = k$ のとき,

$$A = \omega^2 \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}, \qquad \omega = \sqrt{\frac{k}{m}}$$

(g)(f)で求めた A を用いて、固有値と固有ベクトルを求める.

$$\lambda_1 = (2\omega)^2, \quad X_1 = C_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\lambda_2 = (\sqrt{2}\omega)^2, \quad X_2 = C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(h) (g) の結果より、 X_1 と X_2 を規格化して、それぞれ u_1 および u_2 とすると、

$$u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

したがって直交行列は,

$$U = (u_1 \ u_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

UをつかってAを対角化してみる.

$$U^{T}AU = \frac{\omega^{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} (2\omega)^{2} & 0 \\ 0 & (\sqrt{2}\omega)^{2} \end{pmatrix}$$

(i) 基準振動が
$$Q(t) = \begin{pmatrix} a_1 \cos(2\omega t + \epsilon_1) \\ a_2 \cos(\sqrt{2}\omega t + \epsilon_2) \end{pmatrix}$$
 とすると,

$$X(t) = UQ(t) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} a_1 \cos(2\omega t + \epsilon_1) \\ a_2 \cos(\sqrt{2}\omega t + \epsilon_2) \end{pmatrix}$$
$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} \frac{a_1}{\sqrt{2}} \cos(2\omega t + \epsilon_1) + \frac{a_2}{\sqrt{2}} \cos(\sqrt{2}\omega t + \epsilon_2) \\ -\frac{a_1}{\sqrt{2}} \cos(2\omega t + \epsilon_1) + \frac{a_2}{\sqrt{2}} \cos(\sqrt{2}\omega t + \epsilon_2) \end{pmatrix}$$

問 2 右図のような LC 回路において、コンデンサ C_1 に蓄えられる電荷 q_1 、コンデンサ C_2 に蓄えられる電荷 q_2 と表す.また、回路全体では電気的に中性であるとし、コンデンサ C_3 には q_2-q_1 (向きのよっては q_1-q_2) が蓄えられることになる.Kirchhoff の法則より、次の連立微分方程式が導かれる.

$$L_1 \frac{d^2 q_1}{dt^2} + \frac{1}{C_1} q_1 + \frac{1}{C_3} (q_1 - q_2) = 0$$

$$L_2 \frac{d^2 q_2}{dt^2} + \frac{1}{C_2} q_2 + \frac{1}{C_3} (q_2 - q_1) = 0$$

(a) $L_1 = L_2 = L$, $3C_1 = C_2 = 2C_3 = C$ とするとき、上の連立微分方程式が次のような行列表示で書けることを示せ、

$$\ddot{Q} = -AQ$$
, $Q(t) = \begin{pmatrix} q_1(t) \\ q_2(t) \end{pmatrix}$, $A = \omega^2 \begin{pmatrix} 5 & -2 \\ -2 & 3 \end{pmatrix}$, $\omega^2 = \frac{1}{LC}$

(b) 行列対角化を用いて、 q_1 、 q_2 の一般解を求めよ.

解答

(a)

$$\frac{d^2q_1}{dt^2} = -\frac{1}{LC}(5q_1 - 2q_2)$$

$$\frac{d^2q_1}{dt^2} = -\frac{1}{LC}(-2q_1 + 3q_2)$$

を行列表示すればよい.

(b) 固有値と固有ベクトルを求めると,

$$\lambda_1 = 4 + \sqrt{5}, \qquad X_1 = C_1 \begin{pmatrix} 1 + \sqrt{5} \\ -2 \end{pmatrix}$$
$$\lambda_2 = 4 - \sqrt{5}, \qquad X_2 = C_2 \begin{pmatrix} -1 + \sqrt{5} \\ 2 \end{pmatrix}$$

規格化して,

$$u_1 = \frac{1}{\sqrt{10 + 2\sqrt{5}}} \begin{pmatrix} 1 + \sqrt{5} \\ -2 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{10 - 2\sqrt{5}}} \begin{pmatrix} -1 + \sqrt{5} \\ 2 \end{pmatrix}$$

直交行列は,

$$U = (u_1 \ u_2) = \begin{pmatrix} \frac{1+\sqrt{5}}{\sqrt{10+2\sqrt{5}}} & \frac{-1+\sqrt{5}}{\sqrt{10-2\sqrt{5}}} \\ \frac{-2}{\sqrt{10+2\sqrt{5}}} & \frac{2}{\sqrt{10-2\sqrt{5}}} \end{pmatrix}$$

Uを用いてAを対角化すると,

$$U^T A U = \omega^2 \begin{pmatrix} 4 + \sqrt{5} & 0 \\ 0 & 4 - \sqrt{5} \end{pmatrix} = \begin{pmatrix} \left(\sqrt{4 + \sqrt{5}\omega}\right)^2 & 0 \\ 0 & \left(\sqrt{4 - \sqrt{5}\omega}\right)^2 \end{pmatrix}$$

したがって、基準座標:
$$Q(t) = \begin{pmatrix} a_1 \cos\left(\sqrt{4+\sqrt{5}\omega t} + \epsilon_1\right) \\ a_2 \cos\left(\sqrt{4-\sqrt{5}\omega t} + \epsilon_2\right) \end{pmatrix}$$
.

一般解は,

$$X(t) = UQ(t) = \begin{pmatrix} \frac{1+\sqrt{5}}{\sqrt{10+2\sqrt{5}}} a_1 \cos\left(\sqrt{4+\sqrt{5}}\omega t + \epsilon_1\right) + \frac{-1+\sqrt{5}}{\sqrt{10-2\sqrt{5}}} a_2 \cos\left(\sqrt{4-\sqrt{5}}\omega t + \epsilon_2\right) \\ \frac{-2}{\sqrt{10+2\sqrt{5}}} a_1 \cos\left(\sqrt{4+\sqrt{5}}\omega t + \epsilon_1\right) + \frac{2}{\sqrt{10-2\sqrt{5}}} a_2 \cos\left(\sqrt{4-\sqrt{5}}\omega t + \epsilon_2\right) \end{pmatrix}$$

以上.