

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
ped Roof Snow Load, P _s =	20.62 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	120 mpn	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

1.2D + 1.6S + 0.8W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 1.0W1.0D + 0.75L + 0.75W + 0.75S $0.6D + 1.0W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1395.35</u>	<u>6805.65</u>	k
Compressive Load =	4433.95	5229.30	k
Lateral Load =	309.12	3079.91	k
Moment (Weak Axis) =	0.62	0.32	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 171509.8 in-lbs Resisting Force Required = 2598.63 lbs A minimum 132in long x 37in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4331.06 lbs to resist overturning. Minimum Width = <u>37 in</u> in Weight Provided = 7376.88 lbs Sliding Force = 740.28 lbs Use a 132in long x 37in wide x 18in tall Friction = 0.4 Weight Required = 1850.70 lbs ballast foundation to resist sliding. Resisting Weight = 7376.88 lbs Friction is OK. Additional Weight Required = Cohesion 740.28 lbs Sliding Force = Cohesion = 130 psf Use a 132in long x 37in wide x 18in tall 33.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3688.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

ASD LC		1.0D ·	+ 1.0S			1.0D+	+ 1.0W		1	.0D + 0.75L +	0.75W + 0.75	iS		0.6D+	- 1.0W	
Width	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in
FA	1398 lbs	1398 lbs	1398 lbs	1398 lbs	1819 lbs	1819 lbs	1819 lbs	1819 lbs	2296 lbs	2296 lbs	2296 lbs	2296 lbs	-665 lbs	-665 lbs	-665 lbs	-665 lbs
F _B	1422 lbs	1422 lbs	1422 lbs	1422 lbs	2202 lbs	2202 lbs	2202 lbs	2202 lbs	2600 lbs	2600 lbs	2600 lbs	2600 lbs	-3267 lbs	-3267 lbs	-3267 lbs	-3267 lbs
F _V	154 lbs	154 lbs	154 lbs	154 lbs	1312 lbs	1312 lbs	1312 lbs	1312 lbs	1088 lbs	1088 lbs	1088 lbs	1088 lbs	-1481 lbs	-1481 lbs	-1481 lbs	-1481 lbs
P _{total}	10196 lbs	10396 lbs	10595 lbs	10795 lbs	11398 lbs	11597 lbs	11797 lbs	11996 lbs	12273 lbs	12472 lbs	12672 lbs	12871 lbs	494 lbs	614 lbs	733 lbs	853 lbs
M	3537 lbs-ft	3537 lbs-ft	3537 lbs-ft	3537 lbs-ft	5417 lbs-ft	5417 lbs-ft	5417 lbs-ft	5417 lbs-ft	6420 lbs-ft	6420 lbs-ft	6420 lbs-ft	6420 lbs-ft	2517 lbs-ft	2517 lbs-ft	2517 lbs-ft	2517 lbs-ft
е	0.35 ft	0.34 ft	0.33 ft	0.33 ft	0.48 ft	0.47 ft	0.46 ft	0.45 ft	0.52 ft	0.51 ft	0.51 ft	0.50 ft	5.09 ft	4.10 ft	3.43 ft	2.95 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	243.8 psf	243.1 psf	242.4 psf	241.8 psf	248.9 psf	248.1 psf	247.3 psf	246.6 psf	258.6 psf	257.5 psf	256.5 psf	255.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf

357.5 psf 353.8 psf 350.3 psf 347.0 psf 423.2 psf 417.8 psf 412.6 psf 407.7 psf 465.1 psf 458.6 psf 452.4 psf 446.5 psf 263.3 psf 92.4 psf 72.7 psf 66.9 psf

Ballast Width

<u>39 in</u> 7377 lbs 7576 lbs 7776 lbs 7975 lbs

38 in

37 in

40 in

Maximum Bearing Pressure = 465 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.08 \text{ ft}) =$

Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2996.6 \text{ ft-lbs}$

Resisting Force Required = 1943.71 lbs S.F. = 1.67

Weight Required = 3239.52 lbs Minimum Width = 37 in in Weight Provided = 7376.88 lbs A minimum 132in long x 37in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		37 in			37 in			37 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	248 lbs	580 lbs	197 lbs	808 lbs	2316 lbs	770 lbs	90 lbs	170 lbs	40 lbs		
F _V	194 lbs	190 lbs	196 lbs	144 lbs	140 lbs	151 lbs	194 lbs	191 lbs	195 lbs		
P _{total}	9380 lbs	9713 lbs	9330 lbs	9502 lbs	11009 lbs	9463 lbs	2760 lbs	2840 lbs	2711 lbs		
М	766 lbs-ft	759 lbs-ft	772 lbs-ft	577 lbs-ft	573 lbs-ft	601 lbs-ft	765 lbs-ft	757 lbs-ft	767 lbs-ft		
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.28 ft	0.27 ft	0.28 ft		
L/6	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft		
f _{min}	232.6 psf	242.8 psf	230.8 psf	247.0 psf	291.7 psf	244.5 psf	37.5 psf	40.3 psf	35.9 psf		
f _{max}	320.5 psf	329.9 psf	319.4 psf	313.3 psf	357.5 psf	313.5 psf	125.3 psf	127.2 psf	123.9 psf		

Maximum Bearing Pressure = 357 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 37in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.411 k 12.808 k 7.421 k <u>46%</u>	Rear Strut Maximum Axial Load = 4.674 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 63%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.129 k 12.808 k 7.421 k <u>29%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	0	Struts under compression are shown to demon

e shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 40.12 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.802 in Max Drift, Δ_{MAX} = 0.474 in 0.474 ≤ 0.802, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 108 \text{ in}$$

$$J = 0.432$$

$$298.779$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$1.6Dc$$
S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 27.7 \text{ ksi}$$

Weak Axis: 3.4.14

$$L_b = 108$$
 $J = 0.432$
 190.005

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 28.9$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$
 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\varphi F_L St = 25.1 \text{ ksi}$$
 $lx = 897074 \text{ mm}^4$

 $\phi F_L =$

$$1X = 897074 \text{ mn}$$

 2.155 in^4

43.2 ksi

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

1.073 in⁴

$$x = 45.5 \text{ mm}$$

1.152 k-ft

$$Sy = 0.599 \text{ in}^3$$

 $M_{max}Wk =$

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2*\sqrt{(BpE))/(1.6b/t)} \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = **BF0**

Strong Axis:

3.4.14 $L_{b} = 88.9 \text{ in}$ J = 1.08 152.913 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$ S2 = 1701.56 $\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$ $\phi F_{I} = 29.4 \text{ ksi}$

Weak Axis:

$L_b = 88.9$ J = 1.08 161.829 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

 $S2 = 1701.56$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_1 &= 29.2 \end{split}$$

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.1 \text{ ksi}$$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = mDbr$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ \text{lx} = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ \text{y} = & 43.717 \text{ mm} \\ \text{Sx} = & 1.375 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 3.363 \text{ k-ft} \end{array}$$

3.4.16.1

N/A for Weak Direction

3.4.18
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 = 12.21

12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = \phi y F c y \\ \phi F_L = 33.3 \text{ ksi}$$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

 $\phi F_L =$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_I = 28.2 \text{ ksi}$$

31.4 ksi

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t =

y =

 $M_{max}St = 1.460 \text{ k-ft}$

Sx=

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

0.621 in³

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

Sy =

 $M_{max}Wk = 1.460 \text{ k-ft}$

24.5

0.621 in³

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$	$\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\left(Rt - 1.17 \frac{\theta_y}{r_{CY}} F_{CY}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

 $\phi F_L = 43.2 \text{ ksi}$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phi} \textbf{F}_{L} = & \textbf{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi} \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phi} \textbf{F}_{L} = & \textbf{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi} \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	,	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-66.204	-66.204	0	0
2	M14	V	-66.204	-66.204	0	0
3	M15	V	-104.034	-104.034	0	0
4	M16	V	-104.034	-104.034	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	151.323	151.323	0	0
2	M14	V	116.014	116.014	0	0
3	M15	V	63.051	63.051	0	0
4	M16	V	63.051	63.051	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa	
1	1 LRFD 1.2D + 1.6S + 0.8W				1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes			2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	599.794	2	1250.132	2	.698	1	.003	1	0	1	0	1
2		min	-752.664	3	-1613.295	3	-55.155	5	246	4	0	1	0	1
3	N7	max	.029	9	1197.51	1	4	12	0	12	0	1	0	1
4		min	188	2	-310.625	3	-237.784	4	474	4	0	1	0	1
5	N15	max	.023	9	3410.727	1	0	3	0	3	0	1	0	1
6		min	-2.166	2	-1073.345	3	-228.815	4	462	4	0	1	0	1
7	N16	max	2156.704	2	4022.536	2	0	12	0	3	0	1	0	1
8		min	-2369.162	3	-5235.115	3	-55.059	5	248	4	0	1	0	1
9	N23	max	.032	14	1197.51	1_	7.531	1	.016	1	0	1	0	1
10		min	188	2	-310.625	3	-232.69	4	466	4	0	1	0	1
11	N24	max	599.794	2	1250.132	2	046	12	0	12	0	1	0	1
12		min	-752.664	3	-1613.295	3	-55.646	5	248	4	0	1	0	1
13	Totals:	max	3353.75	2	12153.007	2	0	3						
14		min	-3875.445	3	-10156.301	3	-861.086	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	78.885	1	483.555	1	-6.148	12	0	3	.188	1	0	4
2			min	4.45	12	-800.457	3	-144.585	1	016	2	.011	12	0	3
3		2	max	78.885	1	338.226	1	-4.926	12	0	3	.082	4	.682	3
4			min	4.45	12	-563.375	3	-110.966	1	016	2	.004	10	411	1
5		3	max	78.885	1	192.897	1	-3.705	12	0	3	.045	5	1.127	3
6			min	4.45	12	-326.294	3	-77.348	1	016	2	034	1	676	1
7		4	max	78.885	1	47.568	1	-2.483	12	0	3	.024	5	1.334	3
8			min	4.45	12	-89.213	3	-43.729	1	016	2	095	1	797	1
9		5	max	78.885	1	147.868	3	434	10	0	3	.005	5	1.305	3
10			min	4.45	12	-97.761	1	-20.772	4	016	2	122	1	772	1
11		6	max	78.885	1	384.95	3	23.508	1	0	3	005	12	1.039	3
12			min	2.975	15	-243.09	1	-16.34	5	016	2	115	1	601	1
13		7	max	78.885	1	622.031	3	57.126	1	0	3	004	12	.535	3
14			min	-5.646	5	-388.42	1	-14.449	5	016	2	075	1	285	1
15		8	max	78.885	1	859.112	3	90.745	1	0	3	.002	2	.179	2
16			min	-15.911	5	-533.749	1	-12.559	5	016	2	042	4	205	3
17		9	max	78.885	1	1096.193	3	124.363	1	0	3	.107	1	.782	1
18			min	-26.177	5	-679.078	1	-10.668	5	016	2	053	5	-1.183	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	78.885	1	1333.275	3	157.981	1	.016	2	.248	1	1.534	1
20			min	4.45	12	-824.407	1	-92.832	14	0	12	.005	12	-2.398	3
21		11	max	78.885	1	679.078	1	-3.627	12	.016	2	.107	1	.782	1
22			min	4.45	12	-1096.193	3	-124.363	1	0	3	0	3	-1.183	3
23		12	max	78.885	1	533.749	1	-2.405	12	.016	2	.041	4	.179	2
24			min	4.45	12	-859.112	3	-90.745	1	0	3	004	3	205	3
25		13	max	78.885	1	388.42	1	-1.183	12	.016	2	.019	5	.535	3
26			min	4.45	12	-622.031	3	-57.126	1	0	3	075	1	285	1
27		14	max	78.885	1	243.09	1	.144	3	.016	2	0	15	1.039	3
28			min	2.793	15	-384.95	3	-24.047	4	0	3	115	1	601	1
29		15	max	78.885	1	97.761	1	10.111	1	.016	2	004	12	1.305	3
30			min	-5.984	5	-147.868	3	-17.036	5	0	3	122	1	772	1
31		16	max	78.885	1	89.213	3	43.729	1	.016	2	002	12	1.334	3
32			min	-16.249	5	-47.568	1	-15.145	5	0	3	095	1	797	1
33		17	max	78.885	1	326.294	3	77.348	1	.016	2	.001	3	1.127	3
34			min	-26.514	5	-192.897	1	-13.255	5	0	3	057	4	676	1
35		18	max	78.885	1	563.375	3	110.966	1	.016	2	.06	1	.682	3
36			min	-36.78	5	-338.226	1	-11.364	5	0	3	061	5	411	1
37		19	max	78.885	1	800.457	3	144.585	1	.016	2	.188	1	0	1
38		1.0	min	-47.045	5	-483.555	1	-9.474	5	0	3	072	5	0	3
39	M14	1	max	51.497	4	521.473	1	-6.324	12	.011	3	.217	1	0	1
40			min	1.933	12	-633.324	3	-149.466	1	013	2	.012	12	0	3
41		2	max	41.232	4	376.144	1	-5.102	12	.011	3	.121	4	.543	3
42			min	1.933	12	-452.738	3	-115.848	1	013	2	.006	12	449	1
43		3	max	39.153	1	230.815	1	-3.88	12	.011	3	.068	5	.905	3
44		-	min	1.933	12	-272.151	3	-82.229	1	013	2	015	1	752	1
45		4	max	39.153	1	86.378	2	-2.659	12	.011	3	.037	5	1.087	3
46		7	min	1.933	12	-91.564	3	-48.611	1	013	2	08	1	91	1
47		5	max	39.153	1	89.023	3	909	10	.011	3	.008	5	1.089	3
48			min	1.442	15	-59.843	1	-31.77	4	013	2	112	1	923	1
49		6	max	39.153	1	269.61	3	18.626	1	.011	3	004	12	.909	3
50		-	min	-8.079	5	-205.172	1	-26.126	5	013	2	004 11	1	791	1
51		7	max	39.153	1	450.197	3	52.244	1	.013	3	004	12	.549	3
52			min	-18.344	5	-350.502	1	-24.236	5	013	2	004 075	1	518	2
53		0			_	630.784	3	85.863			3				3
54		8	max	39.153	<u>1</u> 5		1	-22.345	1	.011		0 07	10	.009	2
		0	min	-28.61	_	-495.831			5	013	3		_	106	
55		9	max	39.153	1	811.37	3	119.481	1	.011		.097	1	.479	1
<u>56</u> 57		10	min	-38.875	5	-641.16 991.957	3	-20.455	5	013	2	089	5	712	3
		10	max	61.568	4			153.1	1	.013	2	.233	1	1.193	1
58		4.4	min	1.933	12	-786.489	1_	-95.253	14	011	3	.004	12	<u>-1.614</u>	3
59		11	max		4	641.16	1	-3.451	12	.013	2	.121	4	.479	1
60		10	min	1.933	12	-811.37	3	-119.481	12	011	3	0	3	712	3
61		12	max		4	495.831	1	-2.229	12	.013	2	.066	5	.009	3
62		40	min	1.933	12	-630.784	3	-85.863	1	011	3	006	1	106	2
63		13		39.153	1	350.502	1	-1.007	12	.013	2	.035	5	.549	3
64		4.4	min	1.933	12	-450.197	3	-52.244	1	011	3	075	1	518	2
65		14	max	39.153	1	205.172	1	.408	3	.013	2	.006	5	.909	3
66		4-	min	1.933	12	-269.61	3	-32.457	4	011	3	11	1	791	1
67		15	max	39.153	1	59.843	1	14.993	1	.013	2	004	12	1.089	3
68		4.0	min	1.319	15	-89.023	3	-26.272	5	011	3	112	1	923	1
69		16	max	39.153	1	91.564	3	48.611	1	.013	2	002	12	1.087	3
70			min	-8.26	5	-86.378	2	-24.382	5	011	3	08	1	91	1
71		17	max	39.153	1	272.151	3	82.229	1	.013	2	.003	3	.905	3
72			min	-18.526	5	-230.815	1_	-22.492	5	011	3	074	4	752	1
73		18		39.153	1_	452.738	3	115.848	1	.013	2	.084	1	.543	3
74			min	-28.791	5	-376.144	1_	-20.601	5	011	3	091	5	449	1
75		19	max	39.153	1	633.324	3	149.466	1	.013	2	.217	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
76			min	-39.056	5	-521.473	1_	-18.711	5	011	3	111	5	0	3
77	M15	1	max	74.68	5	718.062	2	-6.257	12	.013	2	.229	4	0	2
78			min	-40.911	1_	-347.697	3	-149.459	1	009	3	.012	12	0	3
79		2	max	64.415	5	515.091	2	-5.035	12	.013	2	.156	4	.3	3
80			min	-40.911	1_	-251.851	3	-115.841	1	009	3	.006	12	617	2
81		3	max	54.15	5	312.121	2	-3.813	12	.013	2	.094	5	.504	3
82			min	<u>-40.911</u>	1	-156.005	3	-82.222	1	009	3	015	1	-1.03	2
83		4	max	43.884	5	109.15	2	-2.591	12	.013	2	.053	5	.612	3
84			min	-40.911	1	-60.159	3	-50.652	4	009	3	08	1	-1.241	2
85		5	max	33.619	5	35.687	3	941	10	.013	2	.014	5	.624	3
86			min	-40.911	1	-93.82	2	-41.757	4	009	3	112	1	-1.248	2
87		6	max	23.354	5	131.533	3	18.633	1	.013	2	004	12	.54	3
88			min	-40.911	1	-296.791	2	-36.098	5	009	3	11	1	-1.053	2
89		7	max	13.089	5	227.379	3	52.251	1	.013	2	004	12	.361	3
90			min	-40.911	1	-499.761	2	-34.207	5	009	3	075	1	655	2
91		8	max	2.824	5	323.225	3	85.87	1	.013	2	0	10	.086	3
92			min	-40.911	1	-702.732	2	-32.317	5	009	3	094	4	063	1
93		9	max	-2.389	12	419.071	3	119.488	1	.013	2	.097	1	.751	2
94			min	-40.911	1	-905.702	2	-30.427	5	009	3	123	5	285	3
95		10	max	-2.389	12	514.917	3	153.107	1	.009	3	.233	1	1.758	2
96		10	min	-40.911	1	-1108.673	2	-100.33	14	013	2	.005	12	752	3
97		11	max	2.529	5	905.702	2	-3.518	12	.009	3	.155	4	.751	2
98			min	-40.911	1	-419.071	3	-119.488	1	013	2	0	12	285	3
99		12	max	-2.389	12	702.732	2	-2.296	12	.009	3	.091	5	.086	3
100		12		-40.911	1	-323.225	3	-85.87	1	013	2	006	1	063	1
101		13	min	- 40.911 -2.389	12	499.761	2	-03.67 -1.075	12	.009	3	.05	5	.361	3
101		13	max								2				2
		4.4	min	-40.911	1	-227.379	3	-52.251	1	013		075	1	<u>655</u>	
103		14	max	-2.389	12	296.791	2	.3	3	.009	3	.011	5	.54	3
104		4.5	min	-40.911	1	-131.533	3	-42.461	4	013	2	11	1	-1.053	2
105		15	max	-2.389	12	93.82	2	14.985	1	.009	3	004	12	.624	3
106		4.0	min	-47.653	4	-35.687	3	-36.246	5	013	2	112	1	-1.248	2
107		16	max	-2.389	12	60.159	3_	48.604	1	.009	3	002	12	.612	3
108		4-	min	<u>-57.918</u>	4	-109.15	2	-34.356	5	013	2	08	1	<u>-1.241</u>	2
109		17	max	-2.389	12	156.005	3	82.222	1	.009	3	.002	3	.504	3
110		10	min	-68.183	4	-312.121	2	-32.465	5	013	2	1	4	-1.03	2
111		18	max	-2.389	12	251.851	3	115.841	1	.009	3	.084	1	3	3
112			min	-78.449	4	-515.091	2	-30.575	5	013	2	127	5	617	2
113		19	max	-2.389	12	347.697	3	149.459	1_	.009	3	.217	1	0	2
114			min	-88.714	4	-718.062	2	-28.684	5	013	2	156	5	0	5
115	<u>M16</u>	1	max	73.456	5	678.951	2	-5.921	12	.012	1	.189	1	0	2
116			min	-83.96	1	-316.939		-144.845		013	3	.01	12	0	3
117		2	max	63.19	5	475.981	2	-4.699	12	.012	1	.115	4	.269	3
118			min	-83.96	1	-221.093		-111.226		013	3	.004	12	577	2
119		3	max	52.925	5	273.01	2	-3.477	12	.012	1	.069	5	.442	3
120			min	-83.96	1	-125.247	3	-77.608	1	013	3	033	1	952	2
121		4	max	42.66	5	70.04	2	-2.255	12	.012	1	.039	5	.52	3
122			min	-83.96	1	-29.401	3	-43.989	1	013	3	094	1	-1.123	2
123		5	max	32.395	5	66.445	3	576	10	.012	1	.011	5	.501	3
124			min	-83.96	1	-132.931	2	-29.706	4	013	3	121	1	-1.092	2
125		6	max	22.13	5	162.291	3	23.248	1	.012	1	005	12	.387	3
126			min	-83.96	1	-335.901	2	-25.177	5	013	3	115	1	858	2
127		7	max	11.864	5	258.137	3	56.866	1	.012	1	004	12	.176	3
128			min	-83.96	1	-538.872	2	-23.287	5	013	3	075	1	42	2
129		8	max	1.599	5	353.983	3	90.484	1	.012	1	.001	2	.22	2
130			min	-83.96	1	-741.842	2	-21.397	5	013	3	063	4	13	3
131		9	max	-4.348	12	449.829	3	124.103	1	.012	1	.106	1	1.063	2
132			min	-83.96	1	-944.813	2	-19.506	5	013	3	082	5	532	3
				00.00		0.11010	_	. 0.000	<u> </u>	.5.10	_	.502	_	.002	<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-4.348	12	545.675	3	157.721	1	.013	3	.247	1	2.11	2
134			min	-83.96	1	-1147.784	2	-97.275	14	012	1	.006	12	-1.029	3
135		11	max	396	15	944.813	2	-3.854	12	.013	3	.117	4	1.063	2
136			min	-83.96	1	-449.829	3	-124.103	1	012	1	.001	12	532	3
137		12	max	-4.348	12	741.842	2	-2.632	12	.013	3	.062	4	.22	2
138			min	-83.96	1	-353.983	3	-90.484	1	012	1	003	3	13	3
139		13	max	-4.348	12	538.872	2	-1.41	12	.013	3	.031	5	.176	3
140			min	-83.96	1	-258.137	3	-56.866	1	012	1_	075	1	42	2
141		14	max	-4.348	12	335.901	2	189	12	.013	3	.002	5	.387	3
142			min	-83.96	1	-162.291	3	-32.902	4	012	1_	115	1	858	2
143		15	max	-4.348	12	132.931	2	10.371	1	.013	3	004	12	.501	3
144			min	-83.96	1	-66.445	3	-25.861	5	012	1_	121	1	-1.092	2
145		16	max	-4.348	12	29.401	3	43.989	1	.013	3	003	12	.52	3
146			min	-83.96	1	-70.04	2	-23.971	5	012	1	094	1	-1.123	2
147		17	max	-4.348	12	125.247	3	77.608	1_	.013	3_	0	3	.442	3
148			min	-83.96	1	-273.01	2	-22.08	5	012	1_	08	4	952	2
149		18	max	-4.348	12	221.093	3	111.226	1_	.013	3_	.061	1	.269	3
150			min	-91.063	4	-475.981	2	-20.19	5	012	1_	094	5	577	2
151		19	max	-4.348	12	316.939	3	144.845	1_	.013	3_	.189	1_	0	2
152			min	-101.328	4	-678.951	2	-18.299	5	012	1_	113	5	0	5
153	<u>M2</u>	1	max		2	2.075	4	.738	1_	0	3	0	3	0	1
154		_	min	-1440.524	3	.509	15	-51.504	4	0	4	0	1	0	1
155		2		1091.108	2	2.041	4	.738	1_	0	3_	0	1	0	15
156			min	-1440.239	3	.501	15	-51.833	4	0	4	013	4	0	4
157		3		1091.487	2	2.008	4	.738	1	0	3	0	1	0	15
158			min	-1439.955	3	.493	15	-52.163	4	0	4	027	4	001	4
159		4_		1091.867	2	1.974	4	.738	1_	0	3_	0	1	0	15
160			min	-1439.67	3	.485	15	-52.492	4	0	4	04	4	002	4
161		5		1092.246	2	1.941	4	.738	1	0	3	0	1	0	15
162			min	-1439.386	3	.477	15	-52.821	4	0	4_	053	4	002	4
163		6		1092.625	2	1.908	4	.738	1	0	3	0	1	0	15
164			min	-1439.101	3	.466	12	-53.151	4	0	4_	067	4	003	4
165		7		1093.004	2	1.874	4	.738	1	0	3	.001	1	0	15
166			min	-1438.817	3	.453	12	-53.48	4	0	4	081	4	003	4
167		8		1093.384	2	1.841	4	.738	1	0	3	.001	1	0	15
168			min	-1438.532	3	.44	12	<u>-53.81</u>	4	0	4	094	4	004	4
169		9		1093.763	2	1.807	4	.738	1	0	3_	.002	1	0	15
170		40	min	-1438.248	3	.427	12	-54.139	4	0	4_	108	4	004	4
171		10	max		2	1.774	4	.738	1	0	3_	.002	1	001	12
172		4.4	min	-1437.964	3	.414	12	<u>-54.469</u>	4	0	4	122	4	004	4
173		11		1094.521 -1437.679	2	1.741	4	.738 -54.798	1	0	3	.002	1	001	12
174		10	min		3	.401	12		4	0	4	136	4	005	4
175		12		1094.901 -1437.395	2	1.707	4	.738	4	0	3	.002	1	001	12
176		12	min		3	.388	12	<u>-55.128</u>		0	3	15 .002	1	005	4
177 178		13	min	1095.28 -1437.11	3	1.674 .375	12	.738 -55.457	4	0	<u>3</u>	164	4	001	12
		1.1		1095.659				.738				.002	_	006 001	12
179		14	min	-1436.826	2	1.64	12		4	0	3_4	179	1	006	4
180		15			3	.362		<u>-55.787</u>		0	4		4		_
181 182		15	min	1096.038 -1436.541	3	1.607 .349	12	.738 -56.116	4	0	<u>3</u>	.003 193	4	002 007	12
183		16		1096.418	2	1.574	4	.738	1		3	.003	1		12
		16	min		3	.336	12		4	0		207		002 007	
184 185		17						<u>-56.446</u> .738	1	0	3	.003	1		12
186		17	min	1096.797 -1435.972	3	1.54 .323	12	-56.775	4	0	<u>3</u>	-,222	4	002 007	4
		10		1097.176					1	_			1		
187 188		18	min	-1435.688	3	1.507 .31	12	.738 -57.104	4	0	<u>3</u>	.003 237	4	002 008	12
189		19			2		4				3	.003			12
109		19	шах	1097.555		1.474	4	.738	_ 1_	0	<u>ა</u>	.003	1	002	12

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-1435.404	3	.297	12	-57.434	4	0	4	251	4	008	4
191	M3	1_	max	545.867	2	8.011	4	1.141	4	0	3	0	1_	.008	4
192			min	-679.19	3	1.896	15	.004	12	0	4	018	4	.002	12
193		2	max	545.697	2	7.241	4	1.682	4	0	3	0	1	.005	2
194			min	-679.318	3	1.715	15	.004	12	0	4	017	4	0	12
195		3	max	545.526	2	6.471	4	2.223	4	0	3	0	1	.003	2
196			min	-679.446	3	1.534	15	.004	12	0	4	016	4	0	3
197		4	max	545.356	2	5.701	4	2.763	4	0	3	0	1	0	2
198			min	-679.574	3	1.353	15	.004	12	0	4	015	4	002	3
199		5	max	545.186	2	4.931	4	3.304	4	0	3	0	1	0	15
200			min	-679.701	3	1.172	15	.004	12	0	4	014	4	003	3
201		6	max	545.015	2	4.161	4	3.844	4	0	3	0	1_	001	15
202			min	-679.829	3	.991	15	.004	12	0	4	013	4	005	6
203		7	max	544.845	2	3.391	4	4.385	4	0	3	0	1	001	15
204			min	-679.957	3	.81	15	.004	12	0	4	011	5	006	6
205		8	max	544.675	2	2.621	4	4.925	4	0	3	0	1	002	15
206			min	-680.085	3	.629	15	.004	12	0	4	009	5	007	6
207		9	max	544.504	2	1.851	4	5.466	4	0	3	0	1	002	15
208			min	-680.212	3	.448	15	.004	12	0	4	007	5	008	6
209		10	max	544.334	2	1.081	4	6.006	4	0	3	0	1	002	15
210			min	-680.34	3	.252	12	.004	12	0	4	004	5	009	6
211		11	max	544.164	2	.406	2	6.547	4	0	3	0	1	002	15
212			min	-680.468	3	087	3	.004	12	0	4	002	5	009	6
213		12	max	543.993	2	095	15	7.087	4	0	3	.001	4	002	15
214			min	-680.596	3	537	3	.004	12	0	4	0	12	009	6
215		13	max	543.823	2	276	15	7.628	4	0	3	.004	4	002	15
216			min	-680.723	3	-1.23	6	.004	12	0	4	0	12	009	6
217		14	max	543.653	2	457	15	8.169	4	0	3	.008	4	002	15
218			min	-680.851	3	-2	6	.004	12	0	4	0	12	008	6
219		15	max	543.482	2	638	15	8.709	4	0	3	.011	4	002	15
220			min	-680.979	3	-2.77	6	.004	12	0	4	0	12	007	6
221		16	max	543.312	2	819	15	9.25	4	0	3	.015	4	001	15
222			min	-681.107	3	-3.54	6	.004	12	0	4	0	12	006	6
223		17	max	543.142	2	-1	15	9.79	4	0	3	.019	4	0	15
224			min	-681.234	3	-4.31	6	.004	12	0	4	0	12	004	6
225		18	max	542.971	2	-1.181	15	10.331	4	0	3	.023	4	0	15
226			min	-681.362	3	-5.08	6	.004	12	0	4	0	12	002	6
227		19	max	542.801	2	-1.362	15	10.871	4	0	3	.028	4	0	1
228			min	-681.49	3	-5.85	6	.004	12	0	4	0	12	0	1
229	M4	1		1194.444	1	0	1	398	12	0	1	.017	4	0	1
230				-312.925	3	0	1	-236.31	4	0	1	0	12	0	1
231		2		1194.614	1	0	1	398	12	0	1	0	12	0	1
232			min		3	0	1	-236.458		0	1	01	4	0	1
233		3		1194.785		0	1	398	12	0	1	0	12	0	1
234				-312.669		0	1	-236.606		0	1	037	4	0	1
235		4		1194.955	1	0	1	398	12	0	1	0	12	0	1
236				-312.541	3	0	1	-236.753		0	1	064	4	0	1
237		5		1195.125	1	0	1	398	12	0	1	0	12	0	1
238				-312.413	3	0	1	-236.901		0	1	091	4	0	1
239		6		1195.296		0	1	398	12	0	1	0	12	0	1
240				-312.286		0	1	-237.048		0	1	119	4	0	1
241		7		1195.466	<u> </u>	0	1	398	12	0	1	0	12	0	1
242			min		3	0	1	-237.196		0	1	146	4	0	1
243		8		1195.636		0	1	398	12	0	1	140	12	0	1
244		0			3	0	1	-237.344		0	1	173	4	0	1
244		9	min	1195.807	<u> </u>	0	1	398	12	0	1	173 0	12	0	1
		9					1				1				1
246			THILL	-311.902	3	0		-237.491	4	0		2	4	0	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

				<u> </u>											
	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1195.977	_1_	0	1	398	12	0	1	0	12	0	1
248			min	-311.775	3	0	1	-237.639	4	0	1	228	4	0	1
249		11	max	1196.148	1	0	1	398	12	0	1	0	12	0	1
250			min	-311.647	3	0	1	-237.787	4	0	1	255	4	0	1
251		12	max	1196.318	1	0	1	398	12	0	1	0	12	0	1
252			min	-311.519	3	0	1	-237.934	4	0	1	282	4	0	1
253		13		1196.488	1	0	1	398	12	0	1	0	12	0	1
254			min		3	0	1	-238.082	4	0	1	31	4	0	1
255		14		1196.659	1	0	1	398	12	0	1	0	12	0	1
256		17	min	-311.264	3	0	1	-238.23	4	0	1	337	4	0	1
257		15		1196.829	1	0	1	398	12	0	1	0	12	0	1
258		13	min		3	0	1	-238.377	4	0	1	364	4	0	1
259		16		1196.999	<u></u>	0	1	398	12	0	1	0	12	0	1
		10				_	1	-238.525		_	1	_			1
260		47	min		3_	0			4	0		392	4	0	
261		17	max		1	0	1	398	12	0	1	0	12	0	1
262		40	min	-310.88	3	0	1	-238.672	4	0	1	419	4	0	1
263		18		1197.34	1_	0	1	398	12	0	1	0	12	0	1
264			min	-310.753	3	0	1	-238.82	4	0	1	447	4	0	1
265		19	max		_1_	0	1	398	12	0	1	0	12	0	1
266			min	-310.625	3	0	1	-238.968	4	0	1	474	4	0	1
267	M6	1	max	3472.401	2	2.65	2	0	1	0	1	0	_4_	0	1
268			min	-4674.46	3	136	3	-51.985	4	0	4	0	1_	0	1
269		2	max	3472.78	2	2.624	2	0	1	0	1	0	1	0	3
270			min	-4674.175	3	155	3	-52.315	4	0	4	013	4	0	2
271		3	max	3473.159	2	2.598	2	0	1	0	1	0	1	0	3
272			min	-4673.891	3	175	3	-52.644	4	0	4	027	4	001	2
273		4	max	3473.539	2	2.572	2	0	1	0	1	0	1	0	3
274			min	-4673.606	3	194	3	-52.974	4	0	4	04	4	002	2
275		5	max	3473.918	2	2.546	2	0	1	0	1	0	1	0	3
276			min	-4673.322	3	214	3	-53.303	4	0	4	054	4	003	2
277		6		3474.297	2	2.52	2	0	1	0	1	0	1	0	3
278		Ŭ	min		3	233	3	-53.633	4	0	4	068	4	003	2
279		7		3474.677	2	2.494	2	0	1	0	1	0	1	0	3
280			min	-4672.753	3	253	3	-53.962	4	0	4	081	4	004	2
281		8		3475.056	2	2.468	2	0	1	0	1	0	1	0	3
282		0		-4672.469	3	272	3	-54.292	4	0	4	095	4	005	2
		9	min	3475.435	2	2.442	2		1		1	095	1	0	3
283		9		-4672.184				0	_	0		_		_	
284		40	min		3_	292	3	-54.621	4	0	4	109	4	005	2
285		10		3475.814	2	2.416	2	0	1	0	1	0		0	3
286		4.4	min		3	311	3	-54.95	4	0	4	123	4	006	2
287		11		3476.194	2	2.39	2	0	1	0	1	0	_1_	0	3
288		4 -	min		3	331	3	-55.28	4	0	4	137	4	006	2
289		12		3476.573	2	2.364	2	0	1	0	1	0	1_	0	3
290			min		3	35	3	-55.609	4	0	4	152	4	007	2
291		13		3476.952	2	2.338	2	0	1	0	1	0	1_	0	3
292			min		3	37	3	-55.939	4	0	4	166	4	008	2
293		14		3477.331	2	2.312	2	0	1	0	1	0	_1_	0	3
294			min	-4670.762	3	389	3	-56.268	4	0	4	18	4	008	2
295		15	max	3477.711	2	2.286	2	0	1	0	1	0	1_	0	3
296			min	-4670.477	3	409	3	-56.598	4	0	4	195	4	009	2
297		16	max	3478.09	2	2.26	2	0	1	0	1	0	1	.001	3
298			min		3	429	3	-56.927	4	0	4	209	4	009	2
299		17		3478.469	2	2.234	2	0	1	0	1	0	1	.001	3
300			min		3	448	3	-57.257	4	0	4	224	4	01	2
301		18		3478.848	2	2.208	2	0	1	0	1	0	1	.001	3
302			min		3	468	3	-57.586	4	0	4	239	4	011	2
303		19		3479.228		2.182	2	0	1	0	1	0	1	.001	3
000		10	παλ	UT1 J.ZZ0		2.102				U		<u> </u>		.001	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-4669.34	3_	487	3	-57.916	4	0	4	253	4	011	2
305	M7	1	max		2	8.016	6	1.009	4	0	1	0	1	.011	2
306			min	-2126.229	3_	1.882	15	0	1	0	4	018	4	001	3
307		2		1995.264	2	7.246	6	1.55	4	0	1	0	1	.008	2
308			min	-2126.357	3_	1.701	15	0	1	0	4	017	4	003	3
309		3	max		2	6.476	6	2.091	4	0	1	0	1_	.006	2
310			min	-2126.485	3	1.52	15	0	1	0	4	017	4	004	3
311		4		1994.924	2	5.706	6	2.631	4	0	1	0	1	.004	2
312			min	-2126.612	3	1.339	15	0	1	0	4	016	4	005	3
313		5		1994.753	2	4.936	6	3.172	4	0	1	0	1	.002	2
314			min	-2126.74	3	1.158	15	0	1	0	4	015	4	006	3
315		6	max		_2_	4.166	6	3.712	4	0	1_	0	1_	0	2
316			min	-2126.868	3_	.977	15	0	1	0	4	013	4	007	3
317		7		1994.413	2	3.396	6	4.253	4	0	_1_	0	1	001	15
318			min	-2126.996	3	.796	15	0	1	0	4	011	4	008	3
319		8	max		2	2.673	2	4.793	4	0	1_	0	1_	002	15
320			min	-2127.123	3	.507	12	0	1	0	4	009	4	008	3
321		9		1994.072	2	2.073	2	5.334	4	0	1	0	1	002	15
322			min	-2127.251	3	.207	12	0	1	0	4	007	4	008	4
323		10	max		2	1.473	2	5.874	4	0	1	0	1	002	15
324			min	-2127.379	3_	19	3	0	1	0	4	005	5	009	4
325		11	max	1993.731	2	.873	2	6.415	4	0	1	0	1	002	15
326			min	-2127.507	3	64	3	0	1	0	4	002	5	009	4
327		12	max	1993.561	2	.273	2	6.955	4	0	1	0	4	002	15
328			min	-2127.634	3	-1.09	3	0	1	0	4	0	1	009	4
329		13	max	1993.391	2	29	15	7.496	4	0	1	.003	4	002	15
330			min	-2127.762	3	-1.54	3	0	1	0	4	0	1	009	4
331		14	max	1993.22	2	471	15	8.037	4	0	1	.007	4	002	15
332			min	-2127.89	3	-1.994	4	0	1	0	4	0	1	008	4
333		15	max	1993.05	2	652	15	8.577	4	0	1	.01	4	002	15
334			min	-2128.018	3	-2.764	4	0	1	0	4	0	1	007	4
335		16	max	1992.879	2	833	15	9.118	4	0	1	.014	4	001	15
336			min	-2128.146	3	-3.534	4	0	1	0	4	0	1	006	4
337		17	max	1992.709	2	-1.014	15	9.658	4	0	1	.018	4	001	15
338			min	-2128.273	3	-4.304	4	0	1	0	4	0	1	004	4
339		18	max	1992.539	2	-1.195	15	10.199	4	0	1	.022	4	0	15
340			min	-2128.401	3	-5.074	4	0	1	0	4	0	1	002	4
341		19	max	1992.368	2	-1.376	15	10.739	4	0	1	.026	4	0	1
342			min	-2128.529	3	-5.844	4	0	1	0	4	0	1	0	1
343	M8	1		3407.661	_1_	0	1	0	1	0	1	.016	4	0	1
344			min	-1075.645	3	0	1	-230.221	4	0	1	0	1	0	1
345		2	max	3407.831	1	0	1	0	1	0	1	0	1	0	1
346			min	-1075.517	3	0	1	-230.369	4	0	1	01	4	0	1
347		3	max	3408.002	_1_	0	1	0	1	0	1	0	1	0	1
348			min	-1075.389	3	0	1	-230.516	4	0	1	036	4	0	1
349		4	max	3408.172	1	0	1	0	1	0	1	0	1	0	1
350			min	-1075.262	3	0	1	-230.664	4	0	1	063	4	0	1
351		5		3408.342	1	0	1	0	1	0	1	0	1	0	1
352				-1075.134	3	0	1	-230.812	4	0	1	089	4	0	1
353		6		3408.513	1	0	1	0	1	0	1	0	1	0	1
354				-1075.006	3	0	1	-230.959	4	0	1	116	4	0	1
355		7	max	3408.683	1	0	1	0	1	0	1	0	1	0	1
356			min	-1074.878	3	0	1	-231.107	4	0	1	142	4	0	1
357		8	max	3408.853	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-231.255	4	0	1	169	4	0	1
359		9	max	3409.024	1	0	1	0	1	0	1	0	1	0	1
360			min	-1074.623	3	0	1	-231.402	4	0	1	196	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
361		10		3409.194	1_	0	1	0	1	0	1	0	1	0	1
362		4.4	min	-1074.495	3	0	1_	-231.55	4	0	1_	222	4	0	1
363		11		3409.364	1	0	1	0	1	0	1	0	1	0	1
364		40	_	-1074.367	3	0	1	-231.697	4	0	1	249	4	0	1
365		12		3409.535	1	0	1	0	11	0	1_	0	1	0	1
366		40		-1074.24	3_	0	1	-231.845	4	0	1_	275	4	0	1
367		13		3409.705	1_	0	1	0	1	0	1	0	1	0	1
368		4.4		-1074.112	3	0	1	-231.993	4	0	1_	302	4	0	1
369		14		3409.875	1	0	1	0	1	0	1	0	1	0	1
370		4.5		-1073.984	3	0	1	-232.14	4	0	1_	329	4	0	1
371		15		3410.046	1_	0	1	0	1	0	1	0	1	0	1
372		10	min	-1073.856	3	0	1	-232.288	4	0	1	355	4	0	1
373		16		3410.216	_1_	0	1	0	1	0	1	0	1	0	1
374			_	-1073.729	3	0	1	-232.436	4	0	1	382	4	0	1
375		17		3410.386	_1_	0	1	0	1	0	1	0	1	0	1
376				-1073.601	3	0	1	-232.583	4	0	1_	409	4	0	1
377		18		3410.557	_1_	0	1	0	1	0	_1_	0	1	0	1
378				-1073.473	3	0	1	-232.731	4	0	1_	435	4	0	1
379		19		3410.727	_1_	0	1	0	1	0	_1_	0	1	0	1
380				-1073.345	3	0	1	-232.879	4	0	1	462	4	0	1
381	M10	1	max	1090.729	2	1.983	6	038	12	0	1_	0	1	0	1
382			min	-1440.524	3	.447	15	-51.898	4	0	5	0	3	0	1
383		2	max	1091.108	2	1.949	6	038	12	0	1	0	10	0	15
384			min	-1440.239	3	.439	15	-52.227	4	0	5	013	4	0	6
385		3	max	1091.487	2	1.916	6	038	12	0	1	0	10	0	15
386			min	-1439.955	3	.431	15	-52.557	4	0	5	027	4	0	6
387		4	max	1091.867	2	1.883	6	038	12	0	1	0	12	0	15
388				-1439.67	3	.423	15	-52.886	4	0	5	04	4	001	6
389		5	max	1092.246	2	1.849	6	038	12	0	1	0	12	0	15
390			min	-1439.386	3	.415	15	-53.216	4	0	5	054	4	002	6
391		6	max	1092.625	2	1.816	6	038	12	0	1	0	12	0	15
392			min	-1439.101	3	.407	15	-53.545	4	0	5	068	4	002	6
393		7	max	1093.004	2	1.782	6	038	12	0	1	0	12	0	15
394				-1438.817	3	.4	15	-53.875	4	0	5	081	4	003	6
395		8		1093.384	2	1.749	6	038	12	0	1	0	12	0	15
396			min	-1438.532	3	.392	15	-54.204	4	0	5	095	4	003	6
397		9		1093.763	2	1.716	6	038	12	0	1	0	12	0	15
398			min	-1438.248	3	.384	15	-54.534	4	0	5	109	4	004	6
399		10		1094.142	2	1.682	6	038	12	0	1	0	12	0	15
400				-1437.964	3	.376	15	-54.863	4	0	5	123	4	004	6
401		11		1094.521	2	1.649	6	038	12	0	1	0	12	001	15
402				-1437.679	3	.368	15	-55.193	4	0	5	137	4	005	6
403		12		1094.901	2	1.615	6	038	12	0	1	0	12	001	15
404				-1437.395	3	.36	15	-55.522	4	0	5	151	4	005	6
405		13		1095.28	2	1.582	6	038	12	0	1	0	12	001	15
406		'		-1437.11	3	.352	15	-55.852	4	0	5	166	4	005	6
407		14		1095.659	2	1.549	6	038	12	0	1	0	12	001	15
408		17		-1436.826	3	.345	15	-56.181	4	0	5	18	4	006	6
409		15		1096.038	2	1.521	2	038	12	0	1	0	12	001	15
410		13		-1436.541	3	.337	15	-56.51	4	0	5	194	4	006	6
411		16		1096.418	2	1.495	2	038	12	0	1	0	12	001	15
412		10	min	-1436.257	3	.329	15	-56.84	4	0	5	209	4	007	6
413		17		1096.797	2	1.469	2	038	12	0	<u>ວ</u> 1	209 0	12	007	15
414		17		-1435.972						0		224			
		40			3	.321	15	-57.169	4	_	5		4	007	15
415		18		1097.176 -1435.688	2	1.443	12	038 57,400	12	0	<u>1</u> 5	0	12	002	15
416		10	min		3	.31	12	-57.499	4	0		238	4	007	6 1 <i>E</i>
417		19	max	1097.555	2	1.417	2	038	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

						Ontinuc									
	Member	<u>Sec</u>		Axial[lb]						Torque[k-ft]				z-z Mome	<u>LC</u>
418			min	-1435.404	3	.297	12	-57.828	4	0	5	253	4	008	6
419	M11	1	max	545.867	2	7.955	6	1.104	4	0	_1_	0	12	.008	6
420			min	-679.19	3	1.858	15	071	1	0	4	018	4	.002	15
421		2	max	545.697	2	7.185	6	1.645	4	0	1	0	12	.005	2
422			min	-679.318	3	1.677	15	071	1	0	4	017	4	0	12
423		3	max	545.526	2	6.415	6	2.185	4	0	1	0	12	.003	2
424			min	-679.446	3	1.496	15	071	1	0	4	017	4	0	3
425		4	max	545.356	2	5.645	6	2.726	4	0	1	0	12	0	2
426			min	-679.574	3	1.315	15	071	1	0	4	016	4	002	3
427		5	max	545.186	2	4.875	6	3.266	4	0	1	0	12	0	15
428			min	-679.701	3	1.134	15	071	1	Ö	4	014	4	003	3
429		6	max	545.015	2	4.105	6	3.807	4	0	1	0	12	001	15
430			min	-679.829	3	.953	15	071	1	0	4	013	4	005	4
431		7	max	544.845	2	3.335	6	4.347	4	0	1	0	12	002	15
432				-679.957	3	.772	15	071	1	0	4	011	4	002	4
433		8	min	544.675	_	2.565	6	4.888			1	0	12	002	15
		0	max		2				4	0					
434			min	-680.085	3	.591	15	071	1_	0	4	009	4	008	4
435		9	max	544.504	2	1.795	6	5.428	4	0	1_	0	12	002	15
436			min	-680.212	3	.41	15	071	1	0	4	007	4	009	4
437		10	max	544.334	2	1.025	6	5.969	4	0	_1_	0	12	002	15
438			min	-680.34	3	.229	15	071	1_	0	4	005	4	009	4
439		11	max	544.164	2	.406	2	6.509	4	0	_1_	0	12	002	15
440			min	-680.468	3	087	3	071	1	0	4	002	4	01	4
441		12	max	543.993	2	133	15	7.05	4	0	1	0	5	002	15
442			min	-680.596	3	537	3	071	1	0	4	0	1	009	4
443		13	max	543.823	2	314	15	7.591	4	0	1	.004	5	002	15
444			min	-680.723	3	-1.286	4	071	1	0	4	0	1	009	4
445		14	max	543.653	2	495	15	8.131	4	0	1	.007	4	002	15
446			min	-680.851	3	-2.056	4	071	1	0	4	0	1	008	4
447		15	max	543.482	2	676	15	8.672	4	0	1	.011	4	002	15
448		13	min	-680.979	3	-2.826	4	071	1	0	4	0	1	007	4
449		16		543.312	2	857	15	9.212	4	0	1	.015	4	001	15
		10	max		3		4		1		4		1		
450		47	min	-681.107	_	-3.596		071	•	0		0		006	4
451		17	max	543.142	2	-1.038	15	9.753	4	0	1_	.019	4	001	15
452		40	min	-681.234	3	-4.366	4	071	1	0	4	0	1	004	4
453		18	max	542.971	2	-1.219	15	10.293	4	0	1	.023	4	0	15
454			min	-681.362	3	-5.136	4	071	1_	0	4	0	1	002	4
455		19	max	542.801	2	-1.4	15	10.834	4	0	1	.027	4	0	1
456			min	-681.49	3	-5.906	4	071	1	0	4	0	1	0	1
457	M12	1	max	1194.444	_1_	0	1	7.813	1_	0	_1_	.017	4	0	1
458				-312.925	3	0	1	-232.128	4	0	1	0	1	0	1
459		2		1194.614	_1_	0	1	7.813	1	0	_1_	0	1	0	1
460			min	-312.797	3	0	1	-232.275	4	0	1	01	4	0	1
461		3	max	1194.785	1	0	1	7.813	1	0	1	.001	1	0	1
462				-312.669	3	0	1	-232.423	4	0	1	036	4	0	1
463		4		1194.955	1	0	1	7.813	1	0	1	.002	1	0	1
464				-312.541	3	0	1	-232.57	4	0	1	063	4	0	1
465		5		1195.125	1	0	1	7.813	1	0	1	.003	1	0	1
466				-312.413	3	0	1	-232.718	4	0	1	09	4	0	1
467		6		1195.296	1	0	1	7.813	1	0	1	.004	1	0	1
468				-312.286	3	0	1	-232.866	4	0	1	117	4	0	1
469		7		1195.466		0	1	7.813		0	1	.005	1	0	1
		/			1				1_4						_
470		0		-312.158	3	0	1_4	-233.013	4	0	1_	143	4	0	1
471		8		1195.636	1_	0	1	7.813	1	0	1	.006	1	0	1
472			min	-312.03	3	0	1	-233.161	4	0	_1_	17	4	0	1
473		9		1195.807	_1_	0	1	7.813	1	0	_1_	.007	1	0	1
474			min	-311.902	3	0	1	-233.309	4	0	1	197	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
475		10		1195.977	_1_	0	1	7.813	1	0	1	.008	1_	0	1
476			min	-311.775	3	0	1	-233.456	4	0	1	224	4	0	1
477		11	max	1196.148	1	0	1	7.813	1	0	1	.009	1	0	1
478			min	-311.647	3	0	1	-233.604	4	0	1	25	4	0	1
479		12	max	1196.318	1	0	1	7.813	1	0	1	.009	1	0	1
480			min	-311.519	3	0	1	-233.751	4	0	1	277	4	0	1
481		13	max	1196.488	1	0	1	7.813	1	0	1	.01	1	0	1
482			min	-311.391	3	0	1	-233.899	4	0	1	304	4	0	1
483		14	max	1196.659	1	0	1	7.813	1	0	1	.011	1	0	1
484			min	-311.264	3	0	1	-234.047	4	0	1	331	4	0	1
485		15	max	1196.829	1	0	1	7.813	1	0	1	.012	1	0	1
486			min	-311.136	3	0	1	-234.194	4	0	1	358	4	0	1
487		16	max	1196.999	1	0	1	7.813	1	0	1	.013	1	0	1
488			min	-311.008	3	0	1	-234.342	4	0	1	385	4	0	1
489		17	max	1197.17	1	0	1	7.813	1	0	1	.014	1	0	1
490			min	-310.88	3	0	1	-234.49	4	0	1	412	4	0	1
491		18	max	1197.34	1	0	1	7.813	1	0	1	.015	1	0	1
492			min	-310.753	3	0	1	-234.637	4	0	1	439	4	0	1
493		19	max	1197.51	1	0	1	7.813	1	0	1	.016	1	0	1
494			min	-310.625	3	0	1	-234.785	4	0	1	466	4	0	1
495	M1	1	max	144.589	1	800.429	3	47.026	5	0	1	.188	1	0	3
496			min	-9.474	5	-482.257	1	-78.806	1	0	3	072	5	016	2
497		2	max	145.079	1	799.419	3	48.267	5	0	1	.146	1	.241	1
498			min	-9.245	5	-483.603	1	-78.806	1	0	3	047	5	422	3
499		3	max	409.413	3	570.143	2	59	15	0	3	.105	1	.484	1
500			min	-242.985	2	-588.547	3	-78.238	1	0	2	022	5	827	3
501		4	max	409.781	3	568.797	2	.269	5	0	3	.063	1	.192	1
502			min	-242.496	2	-589.556	3	-78.238	1	0	2	022	5	516	3
503		5	max		3	567.451	2	1.511	5	0	3	.022	1	004	15
504			min	-242.006	2	-590.566	3	-78.238	1	0	2	021	5	205	3
505		6	max		3	566.105	2	2.752	5	0	3	001	12	.107	3
506			min	-241.516	2	-591.575	3	-78.238	1	0	2	024	4	428	2
507		7	max	410.883	3	564.759	2	3.994	5	0	3	003	12	.42	3
508			min	-241.026	2	-592.585	3	-78.238	1	0	2	061	1	726	2
509		8	max	411.251	3	563.413	2	5.235	5	0	3	006	12	.733	3
510			min	-240.536	2	-593.594	3	-78.238	1	0	2	102	1	-1.024	2
511		9	max	421.19	3	51.157	2	45.464	5	0	9	.061	1	.855	3
512			min	-181.789	2	.406	15	-117.419	1	0	3	111	5	-1.171	2
513		10	max		3	49.81	2	46.705	5	0	9	0	10	.833	3
514			min	-181.299	2	0	5	-117.419	1	0	3	088	4	-1.198	2
515		11		421.924	3	48.464	2	47.947	5	0	9	003	12	.812	3
516			min		2	-1.688	4	-117.419		0	3	075	4	-1.224	2
517		12		431.756	3	389.571	3	128.622	5	0	2	.101	1	.709	3
518				-122.021	2	-669.678	2	-76.536	1	0	3	176	5	-1.085	2
519		13		432.124	3	388.562	3	129.863	5	0	2	.06	1	.503	3
520				-121.531	2	-671.024	2	-76.536	1	0	3	108	5	731	2
521		14		432.491	3	387.552	3	131.105	5	0	2	.02	1	.299	3
522			min		2	-672.37	2	-76.536	1	0	3	039	5	377	2
523		15		432.859	3	386.543	3	132.346	5	0	2	.03	5	.094	3
524		'	min		2	-673.716	2	-76.536	1	0	3	02	1	046	1
525		16		433.226	3	385.533	3	133.588	5	0	2	.101	5	.334	2
526		'	min		2	-675.062	2	-76.536	1	0	3	061	1	109	3
527		17		433.594	3	384.524	3	134.829	5	0	2	.171	5	.691	2
528				-119.571	2	-676.408	2	-76.536	1	0	3	101	1	313	3
529		12	max		5	680.784	2	-4.348	12	0	5	.157	5	.348	2
530		10		-145.331	1	-315.989		-102.61	4	0	2	145	1	154	3
531		19			5	679.438	2	-4.348	12	0	5	.113	5	.013	3
UUI		10	IIIIUX	10.200		J1 J. TJU		7.070	14					.010	

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]	LC	Torque[k-ft]	LC		LC	z-z Mome	LC
532			min	-144.841	1	-316.998	3	-101.369		0	2	189	1_	012	1
533	M5	1_	max		1_	2666.48	3	81.817	5	0	1	0	_1_	.031	2
534			min	9.698	12	-1641.707	1	0	1	0	4	155	4	0	3
535		2	max		1	2665.471	3	83.058	5	0	1	0	1_	.894	1
536			min	9.943	12	-1643.053	1	0	1	0	4	112	4	-1.407	3
537		3	max	1306.818	3	1692.191	2	36.315	4	0	4	0	_1_	1.722	1
538			min	-832.725	2	-1853.753	3	0	1	0	1	069	4	-2.759	3
539		4	max	1307.185	3	1690.845	2	37.557	4	0	4	0	_1_	.85	1
540			min	-832.235	2	-1854.762	3	0	1	0	1	049	4	-1.78	3
541		5	max	1307.552	3	1689.499	2	38.798	4	0	4	0	1	.017	9
542			min	-831.745	2	-1855.772	3	0	1	0	1	029	4	801	3
543		6	max	1307.92	3	1688.153	2	40.04	4	0	4	0	1	.178	3
544			min	-831.255	2	-1856.781	3	0	1	0	1	008	5	979	2
545		7	max	1308.287	3	1686.807	2	41.281	4	0	4	.013	4	1.158	3
546			min	-830.765	2	-1857.791	3	0	1	0	1	0	1	-1.869	2
547		8	max	1308.655	3	1685.461	2	42.522	4	0	4	.035	4	2.139	3
548			min	-830.275	2	-1858.8	3	0	1	0	1	0	1	-2.759	2
549		9	max	1322.87	3	171.621	2	146.436	4	0	1	0	1	2.461	3
550			min	-707.066	2	.406	15	0	1	0	1	156	4	-3.143	2
551		10	max	1323.237	3	170.275	2	147.678	4	0	1	0	1	2.383	3
552			min	-706.576	2	0	15	0	1	0	1	079	5	-3.233	2
553		11	max	1323.604	3	168.929	2	148.919	4	0	1	0	14	2.305	3
554			min	-706.086	2	-1.569	6	0	1	0	1	002	5	-3.322	2
555		12		1338.033	3	1204.701	3	180.099	4	0	1	0	1	2.023	3
556			min	-582.958	2	-2032.496	2	0	1	0	4	25	4	-2.974	2
557		13		1338.401	3	1203.692	3	181.34	4	0	1	0	1	1.388	3
558		10	min	-582.468	2	-2033.842	2	0	1	0	4	155	4	-1.902	2
559		14		1338.768	3	1202.682	3	182.581	4	0	1	0	1	.753	3
560		17	min	-581.978	2	-2035.188	2	0	1	0	4	059	4	828	2
561		15		1339.135	3	1201.673	3	183.823	4	0	1	.038	4	.246	2
562		13	min	-581.488	2	-2036.534	2	0	1	0	4	0	1	003	13
563		16		1339.503	3	1200.663	3	185.064	4	0	1	.135	4	1.321	2
564		10	min	-580.999	2	-2037.88	2	0	1	0	4	0	1	515	3
565		17	max		3	1199.654	3	186.306	4	0	1	.233	4	2.397	2
		17	1	-580.509	2	-2039.226	2	0	1	0	4	.233	1	-1.148	3
566		18	min		12	2299.471	2	0	1		4	.247	4	1.235	2
567		10	max		1	-1090.635		_		0	1		1		3
568		40	min	-315.94			3	-29.657	5	0		0	•	601	$\overline{}$
569		19	max	-10.151	12	2298.125 -1091.644	2	0	1	0	4	.232	<u>4</u> 1	.023	1
570	140	4	min	-315.45	1		3	-28.416	5	0		0	_	025	3
571	<u>M9</u>	1	max		1	800.429	3	78.806	1	0	3	011	12	0	3
572			mın		12			4.45	12	0	4	188	1_	016	2
573		2	max		1	799.419	3	78.806	1	0	3	008	12	.241	1
574			min	6.393	12	-483.603		4.45	12	0	4	146	1_	422	3
575		3	1	409.413	3	570.143	2	78.238	1	0	2	006	12	.484	1
576			min		2	-588.547	3	4.409	12	0	3	105	1_	827	3
577		4	1	409.781	3	568.797	2	78.238	1	0	2	004	12	.192	1
578			min		2	-589.556	3	4.409	12	0	3	063	_1_	516	3
579		5		410.148	3	567.451	2	78.238	1	0	2	001	12	004	15
580				-242.006	2	-590.566	3	4.409	12	0	3	029	4	205	3
581		6		410.516	3	566.105	2	78.238	1_	0	2	.019	_1_	.107	3
582				-241.516	2	-591.575	3	4.409	12	0	3	018	5	428	2
583		7	max		3	564.759	2	78.238	1	0	2	.061	1_	.42	3
584			min		2	-592.585		4.409	12	0	3	011	5	726	2
585		8	max	411.251	3	563.413	2	78.238	1	0	2	.102	1_	.733	3
586			min	-240.536	2	-593.594	3	4.409	12	0	3	004	5	-1.024	2
587		9	max		3	51.157	2	117.419	1	0	3	003	12	.855	3
588			min	-181.789	2	.412	15	6.339	12	0	9	132	4	-1.171	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	421.557	3	49.81	2	117.419	1	0	3	0	1	.833	3
590			min	-181.299	2	.006	15	6.339	12	0	9	087	4	-1.198	2
591		11	max	421.924	3	48.464	2	117.419	1	0	3	.063	1	.812	3
592			min	-180.809	2	-1.641	6	6.339	12	0	9	055	5	-1.224	2
593		12	max	431.756	3	389.571	3	155.046	4	0	3	005	12	.709	3
594			min	-122.021	2	-669.678	2	3.953	12	0	2	211	4	-1.085	2
595		13	max	432.124	3	388.562	3	156.287	4	0	3	003	12	.503	3
596			min	-121.531	2	-671.024	2	3.953	12	0	2	129	4	731	2
597		14	max	432.491	3	387.552	3	157.529	4	0	3	001	12	.299	3
598			min	-121.041	2	-672.37	2	3.953	12	0	2	046	4	377	2
599		15	max	432.859	3	386.543	3	158.77	4	0	3	.038	4	.094	3
600			min	-120.551	2	-673.716	2	3.953	12	0	2	0	12	046	1
601		16	max	433.226	3	385.533	3	160.012	4	0	3	.122	4	.334	2
602			min	-120.061	2	-675.062	2	3.953	12	0	2	.003	12	109	3
603		17	max	433.594	3	384.524	3	161.253	4	0	3	.207	4	.691	2
604			min	-119.571	2	-676.408	2	3.953	12	0	2	.005	12	313	3
605		18	max	-6.166	12	680.784	2	84.036	1	0	2	.206	4	.348	2
606			min	-145.331	1	-315.989	3	-74.806	5	0	3	.007	12	154	3
607		19	max	-5.921	12	679.438	2	84.036	1	0	2	.189	1	.013	3
608			min	-144.841	1	-316.998	3	-73.565	5	0	3	.01	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.126	2	.007	3	1.02e-2	2	NC	1	NC	1
2			min	493	4	026	3	004	2	-2.129e-3	3	NC	1	NC	1
3		2	max	0	1	.25	3	.025	1	1.157e-2	2	NC	5	NC	2
4			min	493	4	032	1	012	5	-2.134e-3	3	781.951	3	8852.847	1
5		3	max	0	1	.474	3	.059	1	1.294e-2	2	NC	5	NC	3
6			min	493	4	147	1	015	5	-2.138e-3	3	432.069	3	3673.781	1
7		4	max	0	1	.61	3	.089	1	1.431e-2	2	NC	5	NC	3
8			min	493	4	209	1	011	5	-2.142e-3	3	339.749	3	2449.674	1
9		5	max	0	1	.641	3	.104	1	1.569e-2	2	NC	5	NC	3
10			min	493	4	209	1	003	5	-2.147e-3	3	323.704	3	2099.41	1
11		6	max	0	1	.571	3	.099	1	1.706e-2	2	NC	5	NC	3
12			min	493	4	148	1	.003	10	-2.151e-3	3	361.939	3	2189.873	1
13		7	max	0	1	.419	3	.077	1	1.843e-2	2	NC	5	NC	3
14			min	493	4	041	1	0	10	-2.156e-3	3	484.92	3	2823.81	1
15		8	max	0	1	.227	3	.044	1	1.98e-2	2	NC	2	NC	2
16			min	493	4	.002	15	004	10	-2.16e-3	3	853.17	3	5036.815	1
17		9	max	0	1	.229	2	.023	3	2.117e-2	2	NC	4	NC	1
18			min	493	4	.005	15	009	2	-2.165e-3	3	2094.414	2	NC	1
19		10	max	0	1	.279	2	.023	3	2.254e-2	2	NC	3	NC	1
20			min	493	4	026	3	015	2	-2.169e-3	3	1408.815	2	NC	1
21		11	max	0	12	.229	2	.023	3	2.117e-2	2	NC	4	NC	1
22			min	493	4	.005	15	01	5	-2.165e-3	3	2094.414	2	NC	1
23		12	max	0	12	.227	3	.044	1	1.98e-2	2	NC	2	NC	2
24			min	493	4	.002	15	01	5	-2.16e-3	3	853.17	3	5036.815	1
25		13	max	0	12	.419	3	.077	1	1.843e-2	2	NC	5	NC	3
26			min	493	4	041	1	004	5	-2.156e-3	3	484.92	3	2823.81	1
27		14	max	0	12	.571	3	.099	1	1.706e-2	2	NC	5	NC	3
28			min	493	4	148	1	.003	10	-2.151e-3	3	361.939	3	2189.873	1
29		15	max	0	12	.641	3	.104	1	1.569e-2	2	NC	5	NC	3
30			min	493	4	209	1	.005	10	-2.147e-3	3	323.704	3	2099.41	1
31		16	max	0	12	.61	3	.089	1	1.431e-2	2	NC	5	NC	3
32			min	493	4	209	1	.004	10	-2.142e-3	3	339.749	3	2449.674	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r L	C (n) L/v Ratio	LC	(n) L/z Ratio	LC
33		17	max	0	12	.474	3	.059	1 1.294e-2 2		5	NC	3
34			min	493	4	147	1	.002	10 -2.138e-3 3	432.069	3	3673.781	1
35		18	max	0	12	.25	3	.025	1 1.157e-2 2	NC	5	NC	2
36			min	493	4	032	1	0	10 -2.134e-3	781.951	3	8852.847	1
37		19	max	0	12	.126	2	.007	3 1.02e-2 2	NC	1	NC	1
38			min	493	4	026	3	004	2 -2.129e-3 3	NC NC	1	NC	1
39	M14	1	max	0	1	.255	3	.007	3 5.941e-3 2	NC NC	1	NC	1
40			min	385	4	391	2	003	2 -4.552e-3 3	NC NC	1	NC	1
41		2	max	0	1	.541	3	.017	1 7.061e-3 2	NC NC	5	NC	1
42			min	385	4	662	2	019	5 -5.492e-3 3	755.15	3	NC	1
43		3	max	0	1	.785	3	.047	1 8.181e-3 2	NC NC	5	NC	2
44			min	385	4	899	2	023	5 -6.432e-3 3	407.413	3	4658.817	1
45		4	max	0	1	.959	3	.075	1 9.302e-3 2	NC NC	15	NC	3
46			min	385	4	-1.078	2	016	5 -7.371e-3	306.969	3	2896.861	1
47		5	max	0	1	1.047	3	.091	1 1.042e-2 2		15	NC	3
48			min	385	4	-1.186	2	003	5 -8.311e-3 3	3 271.741	2	2389.026	1
49		6	max	0	1	1.05	3	.09	1 1.154e-2 2	NC NC	15	NC	3
50			min	385	4	-1.223	2	.003	10 -9.251e-3 3		2	2431.262	1
51		7	max	0	1	.983	3	.071	1 1.266e-2 2		15	NC	2
52			min	385	4	-1.198	2	0	10 -1.019e-2 3	267.808	2	3079.504	
53		8	max	0	1	.872	3	.041	1 1.378e-2 2	NC NC	15	NC	2
54			min	385	4	-1.132	2	004	10 -1.113e-2 3		2	5405.576	1
55		9	max	0	1	.763	3	.025	4 1.49e-2 2		5	NC	1
56			min	385	4	-1.06	2	008	2 -1.207e-2 3	322.974	2	8618.673	4
57		10	max	0	1	.711	3	.02	3 1.602e-2 2	NC NC	5	NC	1
58			min	385	4	-1.024	2	014	2 -1.301e-2 3	341.394	2	NC	1
59		11	max	0	12	.763	3	.021	3 1.49e-2 2	NC NC	5	NC	1
60			min	385	4	-1.06	2	019	5 -1.207e-2 3	322.974	2	NC	1
61		12	max	0	12	.872	3	.041	1 1.378e-2 2	NC NC	15	NC	2
62			min	385	4	-1.132	2	022	5 -1.113e-2 3		2	5405.576	
63		13	max	0	12	.983	3	.071	1 1.266e-2 2		15	NC	2
64			min	385	4	-1.198	2	014	5 -1.019e-2 3		2	3079.504	1
65		14	max	0	12	1.05	3	.09	1 1.154e-2 2		15	NC	3
66			min	385	4	-1.223	2	0	5 -9.251e-3 3		2	2431.262	
67		15	max	0	12	1.047	3	.091	1 1.042e-2 2		15	NC	3
68			min	385	4	-1.186	2	.004	10 -8.311e-3 3		2	2389.026	1
69		16	max	0	12	.959	3	.075	1 9.302e-3 2		15	NC	3
70			min	385	4	-1.078	2	.003	10 -7.371e-3		3	2896.861	1
71		17	max	0	12	.785	3	.047	1 8.181e-3 2		5	NC	2
72			min	385	4	899	2	.001	10 -6.432e-3		3	4658.817	1
73		18	max	0	12	.541	3	.025	4 7.061e-3 2		5	NC	1
74			min	385	4	662	2	001	10 -5.492e-3 3		3	8394.293	4
75		19	max	0	12	.255	3	.007	3 5.941e-3 2		1	NC	1
76			min	385	4	391	2	003	2 -4.552e-3 3		1	NC	1
77	M15	1	max	0	12	.261	3	.006	3 3.867e-3 3		1	NC	1
78			min	321	4	39	2	003	2 -6.154e-3 2		1	NC	1
79		2	max	0	12	.45	3	.017	1 4.667e-3 3		5	NC	1
80			min	321	4	732	2	027	5 -7.318e-3 2		2	7761.233	
81		3	max	0	12	.615	3	.047	1 5.466e-3 3		5	NC	2
82			min	321	4	-1.026	2	033	5 -8.482e-3 2		2	4643.079	
83		4	max	0	12	.742	3	.076	1 6.266e-3 3		15	NC	3
84			min	321	4	-1.239	2	024	5 -9.645e-3 2		2	2888.519	
85		5	max	0	12	.82	3	.092	1 7.065e-3 3		15	NC	3
86			min	321	4	-1.356	2	007	5 -1.081e-2 2		2	2382.137	
87		6	max	0	12	.85	3	.09	1 7.864e-3 3		15	NC	3
88			min	321	4	<u>-1.374</u>	2	.003	10 -1.197e-2 2		2	2423.171	1
89		7	max	0	12	.837	3	.071	1 8.664e-3 3	NC	15	NC	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
90			min	321	4	-1.311	2	0	10	-1.314e-2	2	234.731	2	3065.43	1
91		8	max	0	12	.796	3	.046	4	9.463e-3	3	NC	15	NC	2
92			min	322	4	-1.196	2	003	10	-1.43e-2	2	268.001	2	4674.356	4
93		9	max	0	12	.749	3	.032	4	1.026e-2	3	NC	5	NC	1
94			min	322	4	-1.079	2	007	2	-1.546e-2	2	313.581	2	6758.364	4
95		10	max	0	1	.726	3	.019	3	1.106e-2	3	NC	5_	NC	1
96			min	322	4	-1.023	2	013	2	-1.663e-2	2	341.463	2	NC	1
97		11	max	0	1	.749	3	.019	3	1.026e-2	3	NC	5_	NC	1
98			min	322	4	-1.079	2	026	5	-1.546e-2	2	313.581	2	8414.62	5
99		12	max	0	1	<u>.796</u>	3	.041	1	9.463e-3	3	NC	<u>15</u>	NC	2
100		10	min	321	4	<u>-1.196</u>	2	03	5	-1.43e-2	2	268.001	2	5360.135	1
101		13	max	0	1	.837	3	.071	1	8.664e-3	3	NC 004.704	<u>15</u>	NC	3
102		4.4	min	321	4	<u>-1.311</u>	2	02	5	-1.314e-2	2	234.731	2	3065.43	1
103		14	max	0 321	1	.85 -1.374	3	.09	1	7.864e-3 -1.197e-2	3	NC 240 FFF	<u>15</u>	NC	3
104 105		15	min max	3 <u>21</u> 0	1	<u>-1.374</u> .82	3	002 .092	<u>5</u>	7.065e-3	3	219.555 NC	<u>2</u> 15	2423.171 NC	3
106		13	min	321	4	-1.356	2	.004	10	-1.081e-2	2	223.791	2	2382.137	1
107		16	max	0	1	.742	3	.076	1	6.266e-3	3	NC	15	NC	3
108		10	min	321	4	-1.239	2	.004	10	-9.645e-3	2	254.468	2	2888.519	1
109		17	max	0	1	.615	3	.05	4	5.466e-3	3	NC	5	NC	2
110		17	min	321	4	-1.026	2	.001	10	-8.482e-3	2	339.968	2	4336.145	4
111		18	max	0	1	.45	3	.033	4	4.667e-3	3	NC	5	NC	1
112			min	321	4	732	2	001	10	-7.318e-3	2	632.561	2	6410.93	4
113		19	max	0	1	.261	3	.006	3	3.867e-3	3	NC	1	NC	1
114			min	321	4	39	2	003	2	-6.154e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.111	2	.005	3	6.943e-3	3	NC	1	NC	1
116			min	134	4	087	3	003	2	-8.545e-3	2	NC	1	NC	1
117		2	max	0	12	.003	3	.025	1	8.045e-3	3	NC	5	NC	2
118			min	134	4	106	2	02	5	-9.531e-3	2	999.125	2	8896.66	1
119		3	max	0	12	.072	3	.059	1	9.147e-3	3	NC	5	NC	3
120			min	134	4	277	2	025	5	-1.052e-2	2	556.849	2	3678.21	1
121		4	max	0	12	.108	3	.089	1	1.025e-2	3	NC	5_	NC	3
122			min	134	4	375	2	02	5	-1.15e-2	2	444.989	2	2446.715	
123		5	max	0	12	.102	3	.104	1	1.135e-2	3	NC	5_	NC	3
124			min	134	4	384	2	008	5	-1.253e-2	1_	436.274	2	2091.874	1
125		6	max	0	12	.058	3	1	1	1.245e-2	3	NC	5_	NC	3
126			min	134	4	309	2	.004	15	-1.356e-2	1	514.919	2	2174.885	1
127		7	max	0	12	0	15	.078	1	1.355e-2	3	NC	5_	NC 0707.000	3
128			min	134	4	<u>167</u>	2	.002	10	-1.458e-2	1_	779.359	2	2787.639	1
129		8	max	0	12	.039	1	.045	1	1.466e-2	3	NC	3	NC	2
130		0	min	134	4	105	3	002		-1.561e-2	1	2100.886	2	4892.225	
131 132		9	max min	0 134	12	.175 182	3	.022 006	4	1.576e-2 -1.664e-2	<u>3</u> 1	NC 2285.042	<u>4</u> 3	NC 9701.511	4
133		10		134 0	1	.235	1	006 .017	10 3	1.686e-2	3	NC	<u>3</u> 4	NC	1
134		10	max min	134	4	216	3	012	2	-1.766e-2	1	1677.568	3	NC NC	1
135		11	max	0	1	.175	1	.017	3	1.576e-2	3	NC	4	NC	1
136			min	134	4	182	3	016	5	-1.664e-2	1	2285.042	3	NC	1
137		12	max	0	1	.039	1	.045	1	1.466e-2	3	NC	3	NC	2
138		1,2	min	134	4	105	3	017	5	-1.561e-2	1	2100.886	2	4892.225	
139		13	max	0	1	0	15	.078	1	1.355e-2	3	NC	5	NC	3
140			min	134	4	167	2	008	5	-1.458e-2	1	779.359	2	2787.639	
141		14	max	0	1	.058	3	.1	1	1.245e-2	3	NC	5	NC	3
142			min	134	4	309	2	.004	15	-1.356e-2	1	514.919	2	2174.885	
143		15	max	0	1	.102	3	.104	1	1.135e-2	3	NC	5	NC	3
144			min	134	4	384	2	.006	10	-1.253e-2	1	436.274	2	2091.874	
145		16	max	0	1	.108	3	.089	1	1.025e-2	3	NC	5	NC	3
146			min	134	4	375	2	.005	10	-1.15e-2	2	444.989	2	2446.715	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

147		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
149	147		17	max			.072	3	.059		9.147e-3	3	NC	5	NC	3
150				min						10						
151			18						.029	4						2
1522				min		4								2		4
153 M2			19	max		_								_1_		
154				min		_				2				1_		
155		M2	1	max	.006		.006			1	1.277e-3	5_		_1_	NC	2
156				min		3	01	3		4		1_	9689.033	2	118.791	4
157			2	max	.006		.005			1		5		1	NC	2
158				min			009			4		1_		1		4
159			3	max			.004			1		5_		_1_		1
160				min	007		009			4		1_		1_		4
161			4	max		2				1		5_		<u>1</u>		1
162	160			min	006	3	009	3	352	4	-1.27e-4	1		1		4
163			5	max			.003		.004	1		5		1_		1
164				min						4		1_		1_		4
165	163		6	max	.004		.002		.004	1		5		1_		1
166				min	006	3	008	3	28	4	-1.058e-4	1		1	197.894	4
167	165		7	max	.004	2	.002	2	.003	1	1.741e-3	5	NC	1	NC	1
1688				min	005					4		1		1		4
169			8	max			.001			1		5		1_		1
170	168			min	005		007		211	4	-8.456e-5	1		1		4
171			9	max					.002	1		4		1_		1
172	170			min	004	3	006	3	18	4	-7.395e-5	1	NC	1	308.127	4
173			10	max	.003	2	0		.002	1	1.98e-3	4		1	NC	1
174	172			min	004	3	006	3	15	4		1	NC	1	369.98	4
175	173		11	max	.003	2	0	2	.002	1	2.061e-3	4	NC	1		1
176	174			min	003	3	005	3	122	4	-5.272e-5	1_	NC	1	455.103	4
177	175		12	max	.002	2	0	15	.001	1	2.142e-3	4	NC	1	NC	1
178	176			min	003		005	3	096	4	-4.211e-5	1		1	577.027	4
179	177		13	max	.002	2	0	15	0	1	2.223e-3	4	NC	1	NC	1
180	178			min	003		004	3	073	4	-3.149e-5	1	NC	1	760.88	4
181	179		14	max	.002	2	0	15	0	1	2.304e-3	4	NC	1		
182	180			min	002	3	004	3	052	4	-2.088e-5	1	NC	1	1057.829	4
183	181		15	max	.001	2	0	15	0	1	2.386e-3	4	NC	1	NC	1
184 min 001 3 002 3 021 4 -6.482e-7 3 NC 1 2672.195 4 185 17 max 0 2 0 15 0 1 2.548e-3 4 NC 1 NC 1 186 min 0 3 002 3 01 4 2.07e-7 12 NC 1 5532.11 4 187 18 max 0 2 0 15 0 1 2.629e-3 4 NC 1 NC 1 188 min 0 3 0 3 003 4 8.193e-7 12 NC 1 NC 1 189 19 max 0 1 0 1 2.71e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 4.34e-9	182			min	002	3	003	3	035	4	-1.026e-5	1	NC	1	1585.949	4
185 17 max 0 2 0 15 0 1 2.548e-3 4 NC 1 NC 1 186 min 0 3 002 3 01 4 2.07e-7 12 NC 1 5532.11 4 187 18 max 0 2 0 15 0 1 2.629e-3 4 NC 1 NC 1 188 min 0 3 0 3 003 4 8.193e-7 12 NC 1 NC 1 199 max 0 1 0 1 0 1 2.71e-3 4 NC 1	183		16	max	0	2	0	15	0	1	2.467e-3	4	NC	1	NC	1
186 min 0 3 002 3 01 4 2.07e-7 12 NC 1 5532.11 4 187 18 max 0 2 0 15 0 1 2.629e-3 4 NC 1 NC 1 188 min 0 3 0 3 003 4 8.193e-7 12 NC 1 NC 1 189 19 max 0 1 0 1 2.71e-3 4 NC 1 NC 1 190 min 0 1 0 1 2.71e-3 4 NC 1 NC 1 190 min 0 1 0 1 0.44e-38e-7 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.83e-7 12 NC 1 NC 1	184			min	001	3	002	3	021	4	-6.482e-7	3	NC	1	2672.195	4
187 18 max 0 2 0 15 0 1 2.629e-3 4 NC 1 NC 1 188 min 0 3 0 3003 4 8.193e-7 12 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.71e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 1.432e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.698e-7 12 NC 1 NC 1 192 min 0 1 0 1 -6.381e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .013 4 8.305e-6 1 NC 1 NC 1 194 min 0 2002 6 0 12 -5.211e-5 5 NC 1 NC 1 195 3 max 0 3 0 15 .025 <td< td=""><td>185</td><td></td><td>17</td><td>max</td><td>0</td><td>2</td><td>0</td><td>15</td><td>0</td><td>1</td><td>2.548e-3</td><td>4</td><td>NC</td><td>1</td><td>NC</td><td>1</td></td<>	185		17	max	0	2	0	15	0	1	2.548e-3	4	NC	1	NC	1
188 min 0 3 0 3 003 4 8.193e-7 12 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.71e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 1.432e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.698e-7 12 NC 1 NC 1 192 min 0 1 0 1 -6.381e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .013 4 8.305e-6 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -5.211e-5 5 NC				min			002		01							
189 19 max 0 1 0 1 0 1 2.71e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 1.432e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.698e-7 12 NC 1 NC 1 192 min 0 1 0 1 0 1 -6.381e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .013 4 8.305e-6 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -5.211e-5 5 NC 1 NC 1 195 3 max 0 3 0 15 .025 4 5.382e-4	187		18	max	0		0	15	0	1	2.629e-3	4	NC	1	NC	1
190 min 0 1 0 1 1.432e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.698e-7 12 NC 1 NC 1 192 min 0 1 0 1 -6.381e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .013 4 8.305e-6 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -5.211e-5 5 NC 1 NC 1 195 3 max 0 3 0 15 .025 4 5.382e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 1.363e-6 12 NC 1 NC	188			min	0	3	0	3	003	4		12	NC	1	NC	1
191 M3 1 max 0 1 0 1 -4.698e-7 12 NC 1 NC 1 192 min 0 1 0 1 -6.381e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .013 4 8.305e-6 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -5.211e-5 5 NC 1 NC 1 195 3 max 0 3 0 15 .025 4 5.382e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 1.363e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .037 4 1.126e-3 4<	189		19	max	0	1	0	1	0	1	2.71e-3	4	NC	1	NC	1
192 min 0 1 0 1 -6.381e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .013 4 8.305e-6 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -5.211e-5 5 NC 1 NC 1 195 3 max 0 3 0 15 .025 4 5.382e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 1.363e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .037 4 1.126e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 2.279e-6	190			min	0	1	0	1	0	1	1.432e-6	12	NC	1	NC	1
193 2 max 0 3 0 15 .013 4 8.305e-6 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -5.211e-5 5 NC 1 NC 1 195 3 max 0 3 0 15 .025 4 5.382e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 1.363e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .037 4 1.126e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 2.279e-6 12 NC 1 NC 1 199 5 max .001 3 001 15 <t></t>	191	M3	1	max	0	1	0	1	0	1	-4.698e-7	12	NC	1	NC	1
194 min 0 2 002 6 0 12 -5.211e-5 5 NC 1 NC 1 195 3 max 0 3 0 15 .025 4 5.382e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 1.363e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .037 4 1.126e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 2.279e-6 12 NC 1 NC 1 199 5 max .001 3 001 15 .047 4 1.715e-3 4 NC 1 NC 1 200 min 001 2 007 6 0	192			min	0	1	0	1	0	1	-6.381e-4	4	NC	1	NC	1
195 3 max 0 3 0 15 .025 4 5.382e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 1.363e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .037 4 1.126e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 2.279e-6 12 NC 1 NC 1 199 5 max .001 3 001 15 .047 4 1.715e-3 4 NC 1 NC 1 200 min 001 2 007 6 0 12 3.195e-6 12 NC 1 NC 1 201 6 max .002 3 002 15	193		2	max	0	3	0	15	.013	4	8.305e-6	1	NC	1	NC	1
195 3 max 0 3 0 15 .025 4 5.382e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 1.363e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .037 4 1.126e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 2.279e-6 12 NC 1 NC 1 199 5 max .001 3 001 15 .047 4 1.715e-3 4 NC 1 NC 1 200 min 001 2 007 6 0 12 3.195e-6 12 NC 1 NC 1 201 6 max .002 3 002 15	194			min	0	2	002	6	0	12	-5.211e-5	5	NC	1	NC	1
196 min 0 2 003 6 0 12 1.363e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .037 4 1.126e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 2.279e-6 12 NC 1 NC 1 199 5 max .001 3 001 15 .047 4 1.715e-3 4 NC 1 NC 1 200 min 001 2 007 6 0 12 3.195e-6 12 NC 1 NC 1 201 6 max .002 3 002 15 .057 4 2.303e-3 4 NC 1 NC 1 202 min 001 2 009 6	195		3	max	0	3	0	15	.025	4	5.382e-4	4	NC	1	NC	1
197 4 max 0 3 001 15 .037 4 1.126e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 2.279e-6 12 NC 1 NC 1 199 5 max .001 3 001 15 .047 4 1.715e-3 4 NC 1 NC 1 200 min 001 2 007 6 0 12 3.195e-6 12 NC 1 NC 1 201 6 max .002 3 002 15 .057 4 2.303e-3 4 NC 1 NC 1 202 min 001 2 009 6 0 12 4.111e-6 12 NC 1 NC 1					0		003			12		12		1		1
198 min 0 2 005 6 0 12 2.279e-6 12 NC 1 NC 1 199 5 max .001 3 001 15 .047 4 1.715e-3 4 NC 1 NC 1 200 min 001 2 007 6 0 12 3.195e-6 12 NC 1 NC 1 201 6 max .002 3 002 15 .057 4 2.303e-3 4 NC 1 NC 1 202 min 001 2 009 6 0 12 4.111e-6 12 NC 1 NC 1			4	1 1	0	3		15	.037	4		4		1		1
199 5 max .001 3 001 15 .047 4 1.715e-3 4 NC 1 NC 1 200 min 001 2 007 6 0 12 3.195e-6 12 NC 1 NC 1 201 6 max .002 3 002 15 .057 4 2.303e-3 4 NC 1 NC 1 202 min 001 2 009 6 0 12 4.111e-6 12 NC 1 NC 1					0					12		12	NC	1	NC	1
200 min 001 2 007 6 0 12 3.195e-6 12 NC 1 NC 1 201 6 max .002 3 002 15 .057 4 2.303e-3 4 NC 1 NC 1 202 min 001 2 009 6 0 12 4.111e-6 12 NC 1 NC 1			5		.001	3			.047	4				1		1
201 6 max .002 3002 15 .057 4 2.303e-3 4 NC 1 NC 1 202 min001 2009 6 0 12 4.111e-6 12 NC 1 NC 1										12		12		1		1
202 min001 2009 6 0 12 4.111e-6 12 NC 1 NC 1			6						.057					1		1
														_1		1
	203		7			3	002	15	.067	4		4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
204			min	002	2	01	6	0	12	5.027e-6		9099.243	6	NC	1
205		8	max	.002	3	002	15	.076	4	3.479e-3	4_	NC	_1_	NC	1
206			min	002	2	011	6	0	12	5.944e-6		8129.464	6	NC	1
207		9	max	.003	3	003	15	.085	4	4.067e-3	4	NC	1_	NC	1
208		40	min	002	2	012	6	0	12	6.86e-6	12	7551.683	6	NC	1
209		10	max	.003	3	003	15	.093	4	4.655e-3	4	NC	2	NC NC	1
210		44	min	002	2	013	6	0	12	7.776e-6	12	7263.929	6	NC NC	1
211		11	max	.003	3	003	15	.101	4	5.243e-3	4	NC	2	NC NC	1
212		40	min	003	2	013	6	0	12	8.692e-6	12	7223.327	6	NC NC	1
213		12	max	.004 003	3	003 012	15	109 0	12	5.832e-3	<u>4</u> 12	NC 7429.588	2	NC NC	1
215		13	min	.003	3	012	15	.117		9.608e-6 6.42e-3		NC	<u>6</u> 1	NC NC	1
216		13	max min	003	2	003 012	6	0	12	1.052e-5	<u>4</u> 12	7926.943	6	NC NC	1
217		14	max	.003	3	012 002	15	.126	4	7.008e-3	4	NC	1	NC NC	1
218		14	min	003	2	00 <u>2</u> 01	6	0	12	1.144e-5	12	8827.522	6	NC	1
219		15	max	.005	3	002	15	.134	4	7.596e-3	4	NC	1	NC	1
220		13	min	004	2	002	6	0	12	1.236e-5	12	NC	1	NC	1
221		16	max	.005	3	001	15	.144	4	8.184e-3	4	NC	1	NC	1
222		10	min	004	2	007	1	0	12	1.327e-5	12	NC	1	NC	1
223		17	max	.005	3	0	15	.153	4	8.772e-3	4	NC	1	NC	1
224			min	004	2	006	1	0	12	1.419e-5	12	NC	1	NC	1
225		18	max	.006	3	0	15	.164	4	9.361e-3	4	NC	1	NC	1
226			min	004	2	004	1	0	12	1.511e-5	12	NC	1	NC	1
227		19	max	.006	3	0	5	.176	4	9.949e-3	4	NC	1	NC	1
228			min	005	2	003	1	0	12	1.602e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.004	2	0	12	1.996e-5	1	NC	1	NC	2
230			min	0	3	006	3	176	4	-3.683e-4	5	NC	1	141.117	4
231		2	max	.003	1	.004	2	0	12	1.996e-5	1	NC	1	NC	2
232			min	0	3	006	3	162	4	-3.683e-4	5	NC	1	153.524	4
233		3	max	.003	1	.004	2	0	12	1.996e-5	1_	NC	1_	NC	2
234			min	0	3	005	3	147	4	-3.683e-4	5	NC	1_	168.286	4
235		4	max	.002	1	.003	2	0	12	1.996e-5	_1_	NC	_1_	NC	2
236			min	0	3	005	3	133	4	-3.683e-4	5	NC	1_	186.014	4
237		5	max	.002	1	.003	2	0	12	1.996e-5	_1_	NC	_1_	NC	2
238			min	0	3	005	3	12	4	-3.683e-4	5	NC	_1_	207.54	4
239		6	max	.002	1	.003	2	0	12	1.996e-5	_1_	NC	_1_	NC	2
240			min	0	3	004	3	106	4	-3.683e-4	5	NC	1_	234.017	4
241		7	max	.002	1	.003	2	0	12	1.996e-5	_1_	NC	1_	NC	2
242			min	0	3	004	3	093	4	-3.683e-4	5_	NC	1_	267.085	4
243		8	max	.002	1	.003	2	0	12	1.996e-5	_1_	NC NC	1_	NC 200 404	2
244			min		3	004	3	08		-3.683e-4		NC NC	1	309.131	4
245		9	max	.002	3	.002	2	0	12	1.996e-5	1_	NC NC	1_1	NC 202.754	1
246		10	min	0		003	2	068	4	-3.683e-4	5	NC NC	<u>1</u> 1	363.751	1
247 248		10	max	.001 0	3	.002 003	3	0 057	12	1.996e-5 -3.683e-4		NC NC	1	NC 436.566	
249		11	min max	.001	1	.002	2	<u>057</u> 0	12	1.996e-5	<u>5</u> 1	NC NC	1	NC	1
250		11	min	0	3	003	3	046	4	-3.683e-4	5	NC	1	536.773	4
251		12	max	.001	1	.002	2	040 0	12	1.996e-5	1	NC	1	NC	1
252		12	min	0	3	002	3	036	4	-3.683e-4	5	NC	1	680.281	4
253		13	max	0	1	.002	2	<u>030</u> 0	12	1.996e-5	1	NC	1	NC	1
254		13	min	0	3	002	3	028	4	-3.683e-4	5	NC	1	896.618	4
255		14	max	0	1	.002	2	0	12	1.996e-5	1	NC	1	NC	1
256		17	min	0	3	002	3	02	4	-3.683e-4	5	NC	1	1245.857	4
257		15	max	0	1	0	2	0	12	1.996e-5	1	NC	1	NC	1
258		13	min	0	3	001	3	013	4	-3.683e-4	5	NC	1	1866.485	4
259		16	max	0	1	0	2	0	12	1.996e-5	1	NC	1	NC	1
260		1	min	0	3	0	3	008	4	-3.683e-4	5	NC	1	3141.343	
200			1111111				U	.000		0.0000 4		.10		OT FILOTO	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	1.996e-5	1	NC	1	NC	1
262			min	0	3	0	3	004	4	-3.683e-4	5	NC	1	6489.977	4
263		18	max	0	1	0	2	0	12	1.996e-5	1	NC	1	NC	1
264			min	0	3	0	3	001	4	-3.683e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.996e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-3.683e-4	5	NC	1	NC	1
267	M6	1	max	.019	2	.021	2	0	1	1.336e-3	4	NC	4	NC	1
268			min	025	3	031	3	47	4	0	1	1792.28	3	117.769	4
269		2	max	.017	2	.02	2	0	1	1.412e-3	4	NC	4	NC	1
270			min	023	3	029	3	432	4	0	1	1901.083	3	128.27	4
271		3	max	.016	2	.018	2	0	1	1.487e-3	4	NC	4	NC	1
272			min	022	3	027	3	393	4	0	1	2023.904	3	140.748	4
273		4	max	.015	2	.016	2	0	1	1.563e-3	4	NC	4	NC	1
274			min	021	3	026	3	355	4	0	1	2163.577	3	155.717	4
275		5	max	.014	2	.014	2	0	1	1.639e-3	4	NC	4	NC	1
276			min	019	3	024	3	318	4	0	1	2323.748	3	173.879	4
277		6	max	.013	2	.013	2	0	1	1.715e-3	4	NC	4	NC	1
278			min	018	3	022	3	282	4	0	1	2509.189	3	196.206	4
279		7	max	.012	2	.011	2	0	1	1.791e-3	4	NC	1_	NC	1
280			min	017	3	02	3	247	4	0	1	2726.26	3	224.078	4
281		8	max	.011	2	.01	2	0	1	1.867e-3	4_	NC	_1_	NC	1
282			min	01 <u>5</u>	3	019	3	213	4	0	1_	2983.638	3	259.507	4
283		9	max	.01	2	.008	2	0	1	1.942e-3	4	NC	_1_	NC	1
284			min	014	3	017	3	181	4	0	1_	3293.475	3	305.524	4
285		10	max	.009	2	.007	2	0	1	2.018e-3	4	NC	_1_	NC	1
286			min	012	3	015	3	151	4	0	1_	3673.324	3	366.868	4
287		11	max	.008	2	.005	2	0	1	2.094e-3	4_	NC	_1_	NC	1
288			min	<u>011</u>	3	<u>013</u>	3	123	4	0	1_	4149.521	3	451.296	4
289		12	max	.007	2	.004	2	0	1	2.17e-3	4	NC	1	NC	1
290			min	01	3	012	3	097	4	0	1	4763.455	3	572.232	4
291		13	max	.006	2	.003	2	0	1	2.246e-3	4	NC	_1_	NC	1
292			min	008	3	01	3	073	4	0	1	5584.116	3	754.614	4
293		14	max	.005	2	.002	2	0	1	2.322e-3	_4_	NC	_1_	NC	1
294			min	007	3	008	3	053	4	0	1_	6735.695	3	1049.219	
295		15	max	.004	2	.002	2	0	1	2.397e-3	_4_	NC	1_	NC	1
296			min	006	3	007	3	035	4	0	1_	8466.586	3	1573.262	4
297		16	max	.003	2	0	2	0	1	2.473e-3	4_	NC	1_	NC	1
298			min	004	3	005	3	021	4	0	_1_	NC	_1_	2651.393	
299		17	max	.002	2	0	2	0	1	2.549e-3	4	NC	1_	NC	1
300			min	003	3	003	3	01	4	0	1_	NC	1_	5491.18	4
301		18	max	.001	2	0	2	0	1	2.625e-3	4_	NC	1	NC	1
302		10	min	001	3	002	3	003	4	0	1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	2.701e-3	4	NC	1_	NC NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
306			min	0	1	0	1	0	1	-6.347e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	2	.013	4	0	1_	NC	1	NC NC	1
308			min	0	2	003	3	0	1	-5.956e-5	5_	NC NC	1_	NC NC	1
309		3	max	.002	3	0	2	.025	4	5.159e-4	4	NC	1	NC NC	1
310		4	min	002	2	005	3	0	1	0	1_	NC NC	1_	NC NC	1
311		4	max	.003	3	001	15	.036	4	1.091e-3	4	NC	1_	NC NC	1
312		-	min	003	2	007	3	0	1	0	1_	NC NC	1_	NC NC	1
313		5	max	.004	3	002	15	.047	4	1.667e-3	4	NC NC	1_1	NC NC	1
314			min	004	2	009	3	0	1	0	1	NC NC	1_	NC NC	1
315		6	max	.005	3	002	15	.057	4	2.242e-3	4	NC	1	NC 0573 033	1
316		7	min	005	2	011	3	0	1	0	1_1	8897.166	3	9573.922	4
317		7	max	.006	3	002	15	.067	4	2.817e-3	4	NC	_1_	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	006	2	012	3	0	1	0	_1_	7936.616	3	9676.817	4
319		8	max	.007	3	003	15	.075	4	3.392e-3	4	NC	1_	NC	1
320			min	007	2	013	3	0	1	0	1_	7366.609	3	NC	1
321		9	max	.008	3	003	15	.084	4	3.968e-3	4	NC	1_	NC	1
322			min	008	2	014	3	0	1	0	<u>1</u>	7069.732	3	NC	1
323		10	max	.009	3	003	15	.092	4	4.543e-3	4	NC	1_	NC	1
324			min	009	2	014	3	0	1	0	_1_	6993.101	3	NC	1
325		11	max	.01	3	003	15	1	4	5.118e-3	4	NC	1	NC	1
326			min	01	2	014	3	0	1	0	1	7122.998	3	NC	1
327		12	max	.011	3	003	15	.108	4	5.694e-3	4_	NC	_1_	NC	1
328			min	011	2	014	3	0	1	0	1_	7452.653	4_	NC	1
329		13	max	.012	3	003	15	.116	4	6.269e-3	4	NC	1_	NC	1
330			min	012	2	013	3	0	1	0	1	7950.51	4_	NC	1
331		14	max	.013	3	003	15	.124	4	6.844e-3	4	NC	1_	NC	1
332			min	013	2	012	3	0	1	0	<u>1</u>	8852.805	4	NC	1
333		15	max	.014	3	002	15	.132	4	7.42e-3	4	NC	_1_	NC	1
334		4.0	min	014	2	01	3	0	1	0	_1_	NC	1	NC	1
335		16	max	.015	3	002	15	141	4	7.995e-3	4	NC	1_	NC	1
336			min	015	2	009	1	0	1	0	1_	NC	1_	NC	1
337		17	max	.017	3	001	15	.15	4	8.57e-3	4_	NC	_1_	NC	1
338			min	015	2	008	1	0	1	0	<u>1</u>	NC	1_	NC	1
339		18	max	.018	3	0	15	.16	4	9.145e-3	4	NC	1_	NC	1
340			min	016	2	007	1	0	1	0	<u>1</u>	NC	1_	NC	1
341		19	max	.019	3	0	15	171	4	9.721e-3	4	NC	1_	NC	1
342			min	017	2	006	1	0	1	0	_1_	NC	1_	NC	1
343	<u>M8</u>	1	max	.008	1	.016	2	0	1	0	1_	NC	_1_	NC	1
344			min	003	3	019	3	171	4	-4.142e-4	4	NC	1_	144.702	4
345		2	max	.008	1	.015	2	0	1	0	1_	NC	1_	NC	1
346			min	002	3	018	3	158	4	-4.142e-4	4	NC	1_	157.429	4
347		3	max	.007	1	.014	2	0	1	0	_1_	NC	_1_	NC	1
348			min	002	3	017	3	144	4	-4.142e-4	4	NC	1	172.57	4
349		4	max	.007	1	.013	2	0	1	0		NC	1	NC	1
350			min	002	3	01 <u>5</u>	3	<u>13</u>	4	-4.142e-4	4	NC	1_	190.753	4
351		5	max	.006	1	.012	2	0	1	0	1	NC	1	NC	1
352			min	002	3	<u>014</u>	3	117	4	-4.142e-4	4	NC	1_	212.832	4
353		6	max	.006	1	.011	2	0	1	0	1	NC	1	NC	1
354		-	min	002	3	<u>013</u>	3	103	4	-4.142e-4	4	NC	1	239.989	4
355		7	max	.005	1	.011	2	0	1	0		NC	1	NC	1
356			min	002	3	012	3	091	4	-4.142e-4	4	NC	1_	273.906	4
357		8	max	.005	1	.01	2	0	1	0	1	NC NC	1	NC 247 024	1
358		_	min	002	3	<u>011</u>	3	078	4	-4.142e-4	4	NC NC	1	317.031	4
359		9	max	.005	1	.009	2	0	1	0	1	NC NC	1	NC 070.050	1
360		40	min	001	3	01	3	066	4	-4.142e-4	4	NC NC	1_	373.052	4
361		10	max	.004	1	.008	2	0	1	0	1_1	NC	1	NC	1
362		4.4	min	001	3	009	3	055	4	-4.142e-4	4	NC NC	1_	447.737	4
363		11	max	.004	1	.007	2	0	1	0	1	NC	1	NC FF0 F47	1
364		40	min	001	3	008	3	045	4	-4.142e-4	4	NC NC	1_	550.517	4
365		12	max	.003	1	.006	2	0	1	0	1_1	NC NC	1	NC	1
366		40	min	0	3	007	3	036	4	-4.142e-4	4	NC NC	1_	697.708	4
367		13	max	.003	1	.005	2	0	1	0	1_1	NC NC	1	NC 040 F00	1
368		4.4	min	0	3	006	3	027	4	-4.142e-4	4_	NC NC	1_	919.599	4
369		14	max	.002	1	.004	2	0	1	0	1	NC NC	1	NC	1
370		4.5	min	0	3	005	3	<u>019</u>	4	-4.142e-4	4_	NC NC	1_	1277.807	4
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372		40	min	0	3	004	3	013	4	-4.142e-4	4	NC NC	1_	1914.377	4
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374			min	0	3	003	3	008	4	-4.142e-4	4	NC	<u>1</u>	3221.994	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
375		17	max	Ö	1	.002	2	Ö	1	0	1	NC	1	NC	1
376			min	0	3	002	3	004	4	-4.142e-4	4	NC	1	6656.713	4
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	001	3	001	4	-4.142e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	-4.142e-4	4	NC	1	NC	1
381	M10	1	max	.006	2	.006	2	0	12	1.335e-3	4	NC	1	NC	2
382			min	008	3	01	3	469	4	9.591e-6	12	9689.033	2	117.964	4
383		2	max	.006	2	.005	2	0	12	1.411e-3	4	NC	1	NC	2
384			min	007	3	009	3	431	4	8.978e-6	12	NC	1	128.483	4
385		3	max	.005	2	.004	2	0	12	1.486e-3	4	NC	1	NC	1
386			min	007	3	009	3	393	4	8.366e-6	12	NC	1	140.981	4
387		4	max	.005	2	.004	2	0	12	1.561e-3	4	NC	1	NC	1
388			min	006	3	009	3	355	4	7.754e-6	12	NC	1	155.975	4
389		5	max	.005	2	.003	2	0	12	1.637e-3	4	NC	1_	NC	1
390			min	006	3	008	3	318	4	7.141e-6	12	NC	1	174.168	4
391		6	max	.004	2	.002	2	0	12	1.712e-3	4	NC	1_	NC	1
392			min	006	3	008	3	282	4	6.529e-6	12	NC	1	196.532	4
393		7	max	.004	2	.002	2	0	12	1.788e-3	4	NC	1	NC	1
394			min	005	3	007	3	247	4	5.917e-6	12	NC	1	224.45	4
395		8	max	.004	2	.001	2	0	12	1.863e-3	4	NC	_1_	NC	1
396			min	005	3	007	3	213	4	5.304e-6	12	NC	1_	259.938	4
397		9	max	.003	2	0	2	0	12	1.939e-3	4	NC	1_	NC	1
398			min	004	3	006	3	181	4	4.692e-6	12	NC	1	306.031	4
399		10	max	.003	2	0	2	0	12	2.014e-3	4	NC	1_	NC	1_
400			min	004	3	006	3	151	4	4.08e-6	12	NC	1	367.478	4
401		11	max	.003	2	0	2	0	12	2.089e-3	4_	NC	_1_	NC	1
402			min	003	3	005	3	122	4	3.467e-6	12	NC	1_	452.048	4
403		12	max	.002	2	0	2	0	12	2.165e-3	4	NC	1_	NC	1
404			min	003	3	005	3	097	4	2.855e-6	12	NC	1_	573.188	4
405		13	max	.002	2	0	2	0	12	2.24e-3	4_	NC	_1_	NC	1
406			min	003	3	004	3	073	4	2.242e-6	12	NC	1_	755.879	4
407		14	max	.002	2	00	15	0	12	2.316e-3	_4_	NC	_1_	NC	1
408			min	002	3	004	3	053	4	1.611e-6	10	NC	1_	1050.988	
409		15	max	.001	2	0	15	0	12	2.391e-3	4_	NC	1	NC	1
410			min	002	3	003	3	035	4	6.945e-7	10	NC	1_	1575.935	4
411		16	max	0	2	0	15	0	12	2.466e-3	4	NC	1	NC	1
412			min	001	3	002	3	021	4	-4.152e-7	2	NC	_1_	2655.959	
413		17	max	0	2	0	15	0	12	2.542e-3	4	NC	1_	NC	1
414			min	0	3	002	3	01	4	-1.096e-5	1_	NC	1_	5500.874	4
415		18	max	0	2	0	15	0		2.617e-3	4_	NC	1_	NC NC	1
416		4.0	min	0	3	0	4	003	4	-2.158e-5	1_	NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	2.693e-3	4_	NC	1	NC NC	1
418	B.4.4.4		min	0	1	0	1	0	1	-3.219e-5	1_	NC	1_	NC NC	1
419	M11	1	max	0	1	0	1	0	1	1.021e-5	1_	NC	1	NC	1
420			min	0	1	0	1	0	1	-6.326e-4	4	NC	1_	NC NC	1
421		2	max	0	3	0	15	.013	4	-4.464e-7	12	NC	1	NC NC	1
422			min	0	2	002	4	0	1	-5.434e-5	4_	NC	1_	NC NC	1
423		3	max	0	3	0	15	.025	4	5.239e-4	4	NC	1	NC NC	1
424		4	min	0	2	004	4	0	1	-2.683e-5	1_	NC NC	1_	NC NC	1
425		4	max	0	3	001	15	.036	4	1.102e-3	4	NC NC	1	NC NC	1
426		_	min	0	2	005	4	0	1	-4.535e-5	1_	NC NC	1_	NC NC	1
427		5	max	.001	3	002	15	.047	4	1.68e-3	4	NC NC	1_4	NC NC	1
428		_	min	001	2	007	4	0	1	-6.387e-5	1_	NC NC	1_	NC NC	1
429		6	max	.002	3	002	15	.057	4	2.259e-3	4	NC NC	1	NC NC	1
430		-	min	001	2	009	4	0	1	-8.239e-5	1_	NC NC	1_	NC NC	1
431		7	max	.002	3	003	15	.066	4	2.837e-3	4	NC	_1_	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
432			min	002	2	011	4	001	1	-1.009e-4	1	8763.569	4	NC	1
433		8	max	.002	3	003	15	.075	4	3.415e-3	4	NC	_1_	NC	1
434			min	002	2	012	4	001	1	-1.194e-4	1_	7851.689	4_	NC	1
435		9	max	.003	3	003	15	.084	4	3.993e-3	4	NC	_1_	NC	1
436		40	min	002	2	<u>013</u>	4	002	1	-1.379e-4	1_	7310.677	4_	NC	1
437		10	max	.003	3	003	15	.092	4	4.572e-3	4	NC	2	NC	1
438		4.4	min	002	2	013	4	002	1	-1.565e-4	1_	7045.793	4	NC	1
439		11	max	.003	3	003	15	1	4	5.15e-3	4_	NC 7047 044	2	NC	1
440		40	min	003	2	014	4	002	1	-1.75e-4	1_4	7017.841	4_	NC NC	1
441		12	max	.004 003	3	003	15	.108	4	5.728e-3	<u>4</u> 1	NC 7228.123	<u>2</u>	NC NC	1
443		13	min		3	013 003	15	003 .116	4	-1.935e-4	•	NC	_ 4 _	NC NC	1
444		13	max	.004 003	2	003 013	4	003	1	6.306e-3 -2.12e-4	<u>4</u> 1	7720.837	4	NC NC	1
445		14	min	.003	3	003	15	<u>003</u> .124	4	6.885e-3	4	NC	1	NC NC	1
446		14	max min	003	2	003 011	4	003	1	-2.305e-4	1	8606.178	4	NC NC	1
447		15	max	.005	3	002	15	.132	4	7.463e-3	4	NC	1	NC	1
448		13	min	004	2	002	4	004	1	-2.491e-4	1	NC	1	NC	1
449		16	max	.005	3	002	15	.141	4	8.041e-3	4	NC	1	NC	1
450		10	min	004	2	008	4	004	1	-2.676e-4	1	NC	1	NC	1
451		17	max	.005	3	002	15	.151	4	8.619e-3	4	NC	1	NC	1
452		<u> </u>	min	004	2	006	1	005	1	-2.861e-4	1	NC	1	NC	1
453		18	max	.006	3	0	15	.161	4	9.197e-3	4	NC	1	NC	1
454			min	004	2	004	1	005	1	-3.046e-4	1	NC	1	NC	1
455		19	max	.006	3	0	15	.173	4	9.776e-3	4	NC	1	NC	1
456			min	005	2	003	1	006	1	-3.231e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.004	2	.006	1	-1.291e-6	12	NC	1	NC	2
458			min	0	3	006	3	173	4	-3.77e-4	4	NC	1	143.672	4
459		2	max	.003	1	.004	2	.005	1	-1.291e-6	12	NC	1	NC	2
460			min	0	3	006	3	159	4	-3.77e-4	4	NC	1	156.303	4
461		3	max	.003	1	.004	2	.005	1	-1.291e-6	12	NC	1_	NC	2
462			min	0	3	005	3	145	4	-3.77e-4	4	NC	1_	171.331	4
463		4	max	.002	1	.003	2	.004	1	-1.291e-6	12	NC	_1_	NC	2
464			min	0	3	005	3	131	4	-3.77e-4	4	NC	1_	189.379	4
465		5	max	.002	1	.003	2	.004	1	-1.291e-6	12	NC	_1_	NC	2
466			min	0	3	005	3	117	4	-3.77e-4	4	NC	1_	211.293	4
467		6	max	.002	1	.003	2	.004	1	-1.291e-6	12	NC	_1_	NC	2
468		<u> </u>	min	0	3	004	3	<u>104</u>	4	-3.77e-4	4	NC	1_	238.248	4
469		7	max	.002	1	.003	2	.003	1	-1.291e-6	12	NC	1_	NC	2
470			min	0	3	004	3	<u>091</u>	4	-3.77e-4	4_	NC	1_	271.913	4
471		8	max	.002	1	.003	2	.003	1	-1.291e-6	12	NC	1_	NC O44.747	2
472			min		3	004	3	079		-3.77e-4		NC NC	1		4
473		9	max	.002	1	.002	2	.002	1	-1.291e-6		NC	1	NC 270 222	1
474 475		10	min	.001	3	003 .002	2	067 .002	1	-3.77e-4	12	NC NC	<u>1</u> 1	370.322 NC	1
		10	max		3		3		4	-1.291e-6			1		
476 477		11	min max	.001	1	003 .002	2	056 .002	1	-3.77e-4 -1.291e-6	<u>4</u> 12	NC NC	1	444.451 NC	1
478			min	0	3	003	3	045	4	-3.77e-4	4	NC	1	546.466	4
479		12	max	.001	1	.002	2	.001	1	-3.77e-4 -1.291e-6		NC	1	NC	1
480		12	min	0	3	002	3	036	4	-3.77e-4	4	NC	1	692.562	4
481		13		0	1	.002	2	<u>030</u> 0	1	-3.77e-4 -1.291e-6	12	NC	1	NC	1
482		13	max min	0	3	002	3	027	4	-1.291e-6 -3.77e-4	4	NC NC	1	912.799	4
483		14	max	0	1	.002	2	<u>027</u> 0	1	-3.77e-4 -1.291e-6		NC	1	NC	1
484		14	min	0	3	002	3	02	4	-3.77e-4	4	NC	1	1268.335	_
485		15	max	0	1	<u>002</u> 0	2	<u>02</u> 0	1	-1.291e-6		NC	1	NC	1
486		10	min	0	3	001	3	013	4	-3.77e-4	4	NC	1	1900.152	4
487		16	max	0	1	0	2	0	1	-1.291e-6		NC	1	NC	1
488		1	min	0	3	0	3	008	4	-3.77e-4	4	NC	1	3197.991	4
700			1111111	U		U	J	.000		0.116-4		110		0101.001	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-1.291e-6	12	NC	1_	NC	1
490			min	0	3	0	3	004	4	-3.77e-4	4	NC	1_	6606.976	4
491		18	max	0	1	0	2	0	1	-1.291e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-3.77e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-1.291e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-3.77e-4	4	NC	1	NC	1
495	M1	1	max	.007	3	.126	2	.493	4	1.274e-2	1	NC	1	NC	1
496	1711	<u> </u>	min	004	2	026	3	0	12	-2.389e-2	3	NC	1	NC	1
497		2	max	.007	3	.061	2	.48	4	7.281e-3	4	NC	4	NC	1
498				004	2	012	3	004	1	-1.182e-2	3	1780.398	2	NC	1
499		2	min	.007	3		3		4	1.223e-2		NC	5	NC NC	1
		3	max			.011		.466			4				
500		-	min	004	2	009	2	006	1	-1.217e-4	3	858.674	2	8505.261	5
501		4	max	.007	3	.049	3	.451	4	1.065e-2	4_	NC	5	NC .	1
502		_	min	004	2	087	2	006	1	-4.641e-3	3	542.588	2	5970.189	
503		5	max	.007	3	.097	3	.437	4	9.08e-3	_4_	NC	<u>5</u>	NC	1
504			min	004	2	169	2	004	1	-9.161e-3	3	391.925	2	4687.314	5
505		6	max	.007	3	.15	3	.422	4	1.286e-2	2	NC	<u>15</u>	NC	1
506			min	004	2	248	2	002	1	-1.368e-2	3	308.88	2	3918.541	5
507		7	max	.007	3	.2	3	.407	4	1.714e-2	2	NC	15	NC	1
508			min	004	2	318	2	0	3	-1.82e-2	3	259.836	2	3399.014	4
509		8	max	.007	3	.242	3	.391	4	2.143e-2	2	9415.601	15	NC	1
510			min	003	2	374	2	0	12	-2.272e-2	3	230.816	2	3030.013	4
511		9	max	.007	3	.269	3	.374	4	2.428e-2	2	8804.839	15	NC	1
512		Ť	min	003	2	409	2	0	1	-2.294e-2	3	215.705	2	2803.773	4
513		10	max	.006	3	.279	3	.355	4	2.618e-2	2	8618.629	15	NC	1
514		10	min	003	2	421	2	0	12	-2.032e-2	3	211.27	2	2735.794	
515		11	max	.006	3	.273	3	.335	4	2.809e-2	2	8804.562	15	NC	1
					2			_							1
516		40	min	003		409	2	0	12	-1.769e-2	3	216.42	2	2794.095	
517		12	max	.006	3	.25	3	.312	4	2.709e-2	2	9414.963	15	NC	1
518		10	min	003	2	373	2	0	1	-1.492e-2	3	232.981	2	2992.13	4
519		13	max	.006	3	.212	3	.286	4	2.172e-2	2	NC	<u>15</u>	NC	1
520			min	003	2	314	2	0	1	-1.195e-2	3	265.088	2	3511.867	4
521		14	max	.006	3	.165	3	.259	4	1.635e-2	2	NC	15	NC	1
522			min	003	2	241	2	0	12	-8.972e-3	3	320.067	2	4604.966	4
523		15	max	.006	3	.112	3	.23	4	1.098e-2	2	NC	5	NC	1
524			min	003	2	161	2	0	12	-5.995e-3	3	414.876	2	6994.891	4
525		16	max	.006	3	.057	3	.202	4	8.407e-3	4	NC	5	NC	1
526			min	003	2	08	2	0	12	-3.019e-3	3	590.806	2	NC	1
527		17	max	.005	3	.004	3	.176	4	9.471e-3	4	NC	5	NC	1
528			min	003	2	005	2	0	12	-4.277e-5	3	967.593	2	NC	1
529		18	max	.005	3	.056	2	.154	4	9.334e-3	2	NC	4	NC	1
530		10	min	003	2	043	3	0	12		3	2057.037	2	NC	1
531		19	max	.005	3	.111	2	.134	4	1.876e-2	2	NC	1	NC	1
532		13	min	003	2	087	3	0	1	-7.874e-3	3	NC	1	NC	1
533	M5	1		.023	3	.279	2	.493	4	0	1	NC	1	NC	1
	UIU		max		2				1		4		1		1
534			min	015		026	3	0		-3.879e-6		NC NC	•	NC NC	
535		2	max	.023	3	.134	2	.483	4	6.265e-3	4	NC 000 450	_5_	NC NC	1
536			min	015	2	01	3	0	1	0	_1_	803.159	2	NC	1
537		3	max	.023	3	.034	3	.47	4	1.234e-2	4	NC	_5_	NC	1
538			min	015	2	028	2	0	1	0	1_	377.969	2	7023.895	
539		4	max	.022	3	.13	3	.455	4	1.005e-2	4	NC	15	NC	1
540			min	015	2	221	2	0	1	0	1	231.425	2	5270.902	4
541		5	max	.022	3	.261	3	.44	4	7.768e-3	4	7568.332	15	NC	1
542			min	015	2	431	2	0	1	0	1	162.933	2	4389.372	4
543		6	max	.021	3	.409	3	.423	4	5.482e-3	4	5822.476	15	NC	1
544			min	015	2	639	2	0	1	0	1	125.967	2	3839.016	-
545		7	max	.021	3	.553	3	.407	4	3.196e-3	4	4815.132	15	NC	1
			mun	.041		.000			<u> </u>	3000		.0.0.102			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
546			min	014	2	827	2	0	1	0	1_	104.513	2	3429.182	4
547		8	max	.021	3	.673	3	.391	4	9.1e-4	4_	4229.801	<u>15</u>	NC	1
548			min	014	2	978	2	0	1	0	1	91.995	2	3074.464	4
549		9	max	.02	3	.751	3	.375	4	0	_1_	3929.777	15	NC	1
550			min	014	2	-1.074	2	0	1	-2.482e-6	5	85.559	2	2800.818	4
551		10	max	.02	3	.779	3	.355	4	0	1_	3839.404	15	NC	1
552			min	014	2	-1.106	2	0	1	-2.378e-6	5	83.675	2	2755.689	4
553		11	max	.019	3	.76	3	.334	4	0	<u>1</u>	3929.891	<u>15</u>	NC	1
554			min	013	2	-1.074	2	0	1	-2.274e-6	5	85.855	2	2825.38	4
555		12	max	.019	3	.694	3	.313	4	6.786e-4	4	4230.067	<u>15</u>	NC	1
556			min	013	2	975	2	0	1	0	1_	92.965	2	2942.89	4
557		13	max	.018	3	.588	3	.287	4	2.384e-3	4_	4815.666	<u>15</u>	NC	1
558			min	013	2	816	2	0	1	0	1_	107.034	2	3449.594	4
559		14	max	.018	3	.454	3	.258	4	4.089e-3	4	5823.508	15	NC	1
560			min	013	2	62	2	0	1	0	1	131.654	2	4744.467	4
561		15	max	.017	3	.304	3	.228	4	5.794e-3	4	7570.357	15	NC	1
562			min	012	2	407	2	0	1	0	1	175.334	2	8296.028	4
563		16	max	.017	3	.153	3	.198	4	7.499e-3	4	NC	15	NC	1
564			min	012	2	199	2	0	1	0	1	259.454	2	NC	1
565		17	max	.017	3	.012	3	.172	4	9.204e-3	4	NC	5	NC	1
566			min	012	2	017	2	0	1	0	1	447.063	2	NC	1
567		18	max	.017	3	.122	1	.151	4	4.674e-3	4	NC	5	NC	1
568			min	012	2	108	3	0	1	0	1	990.399	2	NC	1
569		19	max	.017	3	.235	1	.134	4	0	1_	NC	1_	NC	1
570			min	012	2	216	3	0	1	-1.927e-6	4	NC	1	NC	1
571	M9	1	max	.007	3	.126	2	.493	4	2.389e-2	3	NC	1	NC	1
572			min	004	2	026	3	0	1	-1.274e-2	1	NC	1	NC	1
573		2	max	.007	3	.061	2	.482	4	1.182e-2	3	NC	4	NC	1
574			min	004	2	012	3	0	12	-6.194e-3	1	1780.398	2	NC	1
575		3	max	.007	3	.011	3	.469	4	1.23e-2	4	NC	5	NC	1
576			min	004	2	009	2	0	12	-3.508e-5	10	858.674	2	7276.504	4
577		4	max	.007	3	.049	3	.455	4	9.701e-3	5	NC	5	NC	1
578			min	004	2	087	2	0	12	-4.303e-3	2	542.588	2	5373.746	4
579		5	max	.007	3	.097	3	.439	4	9.161e-3	3	NC	5	NC	1
580			min	004	2	169	2	0	12	-8.583e-3	2	391.925	2	4411.752	4
581		6	max	.007	3	.15	3	.423	4	1.368e-2	3	NC	15	NC	1
582			min	004	2	248	2	0	12	-1.286e-2	2	308.88	2	3818.814	4
583		7	max	.007	3	.2	3	.407	4	1.82e-2	3	NC	15	NC	1
584			min	004	2	318	2	0	1	-1.714e-2	2	259.836	2	3395.799	4
585		8	max	.007	3	.242	3	.391	4	2.272e-2	3	9398.849	15	NC	1
586			min	003	2	374	2	0	1	-2.143e-2	2	230.816	2	3053.747	4
587		9	max	.007	3	.269	3	.374	4	2.294e-2	3	8789.353	15	NC	1
588			min	003	2	409	2	0	12	-2.428e-2	2	215.705	2	2796.83	4
589		10	max	.006	3	.279	3	.355	4	2.032e-2	3		15	NC	1
590			min	003	2	421	2	0	1	-2.618e-2	2	211.27	2	2736.776	4
591		11	max	.006	3	.273	3	.334	4	1.769e-2	3	8789.062	15	NC	1
592			min	003	2	409	2	0	1	-2.809e-2	2	216.42	2	2802.554	4
593		12	max	.006	3	.25	3	.312	4	1.492e-2	3	9398.276	15	NC	1
594			min	003	2	373	2	0	12	-2.709e-2	2	232.981	2	2969.244	4
595		13	max	.006	3	.212	3	.286	4	1.195e-2	3	NC	15	NC	1
596			min	003	2	314	2	0	10	-2.172e-2	2	265.088	2	3511.189	4
597		14	max	.006	3	.165	3	.258	4	8.972e-3	3	NC	15	NC	1
598			min	003	2	241	2	001	1	-1.635e-2	2	320.067	2	4725.308	5
599		15	max	.006	3	.112	3	.228	4	5.995e-3	3	NC	5	NC	1
600			min	003	2	161	2	004	1	-1.098e-2	2	414.876	2	7601.075	5
601		16	max	.006	3	.057	3	.199	4	7.36e-3	5	NC	5	NC	1
602			min	003	2	08	2	005	1	-5.616e-3	2	590.806	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.005	3	.004	3	.173	4	9.265e-3	4	NC	5	NC	1
604			min	003	2	005	2	006	1	-4.355e-4	1	967.593	2	NC	1
605		18	max	.005	3	.056	2	.152	4	4.453e-3	5	NC	4	NC	1
606			min	003	2	043	3	004	1	-9.334e-3	2	2057.037	2	NC	1
607		19	max	.005	3	.111	2	.134	4	7.874e-3	3	NC	1	NC	1
608			min	003	2	087	3	0	12	-1.876e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.