Методы численной оптимизации (задача без ограничений)

Условие.

- 1. Каждый студент получает индивидуальную задачу, используя свой порядковый номер в списке группы
- 2. Доказать, что в задаче имеется глобальный минимум. Найти его аналитически.
- 3. Проверить свои вычисления в Python, используя методы численной оптимизации. Реализовать следующие алгоритмы самостоятельно (не надо использовать готовые методы, которые, конечно же, там есть, но можно использовать одномерную оптимизацию на шаге итерации).
 - Найти решение задачи методом наискорейшего спуска. Начальная точка дана в варианте. Точность вычислений $\varepsilon=0,01$. Процесс последовательных приближений завершаем, если выполнено условие останова

$$\max_{1 \le j \le n} \left| \frac{\partial f_0\left(x^k\right)}{\partial x_j} \right| < \varepsilon$$

• Найти решение задачи методом сопряженных градиентов. Сколько шагов необходимо для определения решения? Какова погрешность?

NB. Перед определением каждой функции необходимо прокомментировать функционал ее действия. Например,

This function calculates the gradient.

Input: coordinates (x,y)

Output: vector of gradient at this point

Название функции должно отражать ее функционал. В случае обнаружения неподписанных / неосмысленных функций код проверяться не будет.

Структура сданного ірупь-файла следующая:

- В первой ячейке блокнота должны быть объявлены необходимые библиотеки и прописаны назначения этих библиотек
- Во второй ячейке необходимо инициализировать глобальные переменные:

функция
$$f(x,y)$$
, начальная точка (x_0,y_0) , погрешность ε

Например:

- В третьей ячейке должны быть определены все необходимые функции с описанием и понятными названиями
- В четвертой ячейке их вызов. Допускается, чтобы в 4-ой ячейке был вызов функции, реализующей метод наискорейшего спуска, а в 5-ой метод сопряженных градиентов.

NB.Вывод функции должен содержать:

- (а) Название метода
- (b) Номер итерации
- (с) Подписанные значения на данной итерации

```
Point: [x_k,y_k], Gradient: [1,2]
```

- (d) Итоговое количество итераций
- (е) Точка численного глобального минимума

Отчетность.

Состоит из 2 частей:

- Бумажный отчет, который включает в себя доказательство существования решения в задаче и поиск решения аналитически. Сдать бумажный отчет необходимо лично семинаристу до 20 октября, а также прикрепить скан/фото в SmartLMS (до 20 октября).
- Файл с кодом (желательно, Python, но возможен любой язык программирования) разместить до 20 октября в Google-сервисе https://colab.research.google.com/ (в своем google-аккаунте на miem.hse.ru). Разрешить редактирование пользователям lmanita@miem.hse.ru, vaignatovskaya@miem.hse.ru и svrumyantseva@miem.hse.ru.

NB. Все файлы в названии должны содержать М023-Д31, номер группы и Вашу фамилию. Пример:

```
МО23-Д31-БПМ211-Игнатовская-Отчет.pdf
МО23-Д31-БПМ211-Игнатовская-Программа.ipynb
```

Ссылку на colab-файл прикрепить в комментариях к сданному в SmartLMS отчету.

Варианты. Каждая группа получит свои варианты в семинарских чатах.