CSC105M Final Project

Fernandez, Ryan Austin

Poblete, Clarisse Felicia M.

Dataset Description

- Student alcohol consumption dataset
- Uci machine learning repository
- 650 instances

Attr #	Attribute	Description
1	school	student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira)
2	sex	student's sex (binary: 'F' - female or 'M' - male)
3	age	student's age (numeric: from 15 to 22)
4	address	student's home address type (binary: 'U' - urban or 'R' - rural)
5	famsize	family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3)
6	Pstatus	parent's cohabitation status (binary: 'T' - living together or 'A' - apart)
7	Medu	mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)
8	Fedu	father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)
9	Mjob	mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other')
10	Fjob	father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other')

Attr #	Attribute	Description		
11	reason	reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other')		
12	guardian	student's guardian (nominal: 'mother', 'father' or 'other')		
13	traveltim e	home to school travel time (numeric: $1-<15$ min., $2-15$ to 30 min., $3-30$ min. to 1 hour, or $4->1$ hour)		
14	studytim e	weekly study time (numeric: $1-<2$ hours, $2-2$ to 5 hours, $3-5$ to 10 hours, or $4->10$ hours)		
15	failures	number of past class failures (numeric: n if 1<=n<3, else 4)		
16	schoolsu p	extra educational support (binary: yes or no)		
17	famsup	family educational support (binary: yes or no)		
18	paid	extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)		
19	activities	extra-curricular activities (binary: yes or no)		
20	nursery	attended nursery school (binary: yes or no)		
21	higher	wants to take higher education (binary: yes or no)		

Attr #	Attribute	Description		
22	internet	Internet access at home (binary: yes or no)		
23	romantic	with a romantic relationship (binary: yes or no)		
24	famrel	quality of family relationships (numeric: from 1 - very bad to 5 - excellent)		
25	freetime	free time after school (numeric: from 1 - very low to 5 - very high)		
26	gout	going out with friends (numeric: from 1 - very low to 5 - very high)		
27	Dalc	workday alcohol consumption (numeric: from 1 - very low to 5 - very high)		
28	Walc	weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)		
29	health	current health status (numeric: from 1 - very bad to 5 - very good)		
30	absences	number of school absences (numeric: from 0 to 93)		
31	G1	first period grade (numeric: from 0 to 20)		
31	G2	second period grade (numeric: from 0 to 20)		
32	G3	final grade (numeric: from 0 to 20, output target)		

Data Preprocessing

- No missing values
- Discrete
- Normalization for Regression and Neural Networks

Data Preprocessing

- **Binary**: 1 or 0
- Nominal: n values −> n − 1 attributes
- Ordinal: 1 to n
- Final Grade:
 - If ≥ 12 , Pass
 - Else, Fail
- Min/Max Standardization

Feature Selection

- Regression
 - Multicollinearity checks
 - Low correlation coefficients across the board
- Decision Trees
 - C4.5 Algorithm prunes the features
- Neural Networks
 - Neural Networks are robust to noise

Passes and Failures

Desire to Take Higher Education

Desire to Take Higher Education

Internet Access

Internet Access

Analytics

- Predict Pass or Fail
- Three techniques
 - Regression
 - Decision Trees
 - Neural Networks
- Bootstrap Aggregating
 - 80% of dataset with replacement

Regression

Low correlations deem this unsuitable for the dataset

Decision Trees

- C4.5 Algorithm
- Using J48 Implementation in Weka
- Parse Decision Trees using Java
- Bagging via voting scheme

Neural Network

- Custom Implementation of Backpropagation Algorithm
- Sigmoid Hidden Layer and Output Layer neurons
- One Output neuron for Pass, one for fail
- If Pass, Pass Neuron's target is 0.9, Fail Neuron's is 0.1
- If Fail, Pass Neuron's target is 0.1, Fail Neuron's is 0.9

Decision Tree

Actual/Prediction	Pass	Fail
Pass	333	15
Fail	50	251

Decision Tree

Classification Accuracy: 89.9846%

• Classification Error: 10.0154%

• Sensitivity: 95.6897%

• Specificity: 83.3887%

Decision Tree

Correct Predictions	Wrong Predictions	Rule
158	31	failures = 0 ^ higher = yes ^ Mjob != home ^ Walc <= 3 ^ schoolsup = no ^ school = GP ^ internet = yes ^ age <= 18 -> Pass
139	24	higher = yes ^ failures = 0 ^ school = GP ^ nursery = yes ^ internet = yes ^ schoolsup = no ^ Dalc <= 1 -> Pass
110	24	failures = 0 ^ higher = yes ^ Mjob != home ^ Dalc <= 2 ^ Fjob != teach ^ absences <= 3 ^ health <= 4 -> Pass
88	5	failures > 0 ^ age <= 19 -> Fail
88	3	failures > 0 ^ Medu <= 3 ^ Fedu > 0 -> Fail

Neural Networks

Actual/Prediction	Pass	Fail
Pass	329	19
Fail	27	274

Neural Networks

Classification Accuracy: 92.9122%

• Classification Error: 7.0878%

• Sensitivity: 94.5402%

• Specificity: 91.0299%

Neural Networks

- Possible overfitting in NN
- Neural Networks performed better
- Success in building an analytic model
- Possible use of SVM in future studies

References

- Amran, H. & Pagnotta, F. (2016). Using Data Mining to Predict Secondary School Alcohol Consumption. *University of Camerino*. doi: 10.13140/RG.2.1.1465.8328
- Baesens, B. (2014). Analytics in a Big Data World: The Essential Guide to Data Science and its Applications. NJ: John Wiley & Sons.
- Cortez, P. & Silva, A. (2008) Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds., Proceedings of 5th Future Business Technology Conference pp. 5–12, Porto, Portugal, EUROSIS, ISBN 978-9077381-39-7.
- Mitchell, T. (1997). Machine learning. McGraw-Hill.
- Stockburger, D.W. (n.d.) Multiple Regression With Categorical Variables.

 Retrieved July 27, 2016, from Psychological Statistics at Missouri State University:
 - http://www.psychstat.missouristate.edu/multibook/mlt08m.html