

深度计算平台与响应时效管理的思考 SysML and Time based model serving

车轮互联 数据VP 张翔

深度计算平台与大数据平台的差异

应用密集 型

从大量非标数据中寻找一致性规律

按需而变的个性化结果

计算资源 密集型

从海量数据存放着手解决大数据问题

存储资源 密集型

分布式存储

从集中计算资源着手解决复杂计算问题

GPU 高速计算

Big data

Al

深度计算平台与深度学习系统的关系

Serving: 大量并发请求 复杂逻辑推理 高实时性约束

Model Training 的分布式选型

数据

Map reduce 适合大规模数据的分离处理,但SGD的任务下使迭代协同产生困难,也使得通讯变得耗时

Parameter server是更灵活的异步训练架构, 支持online training,但Async-SGD导致收 敛会比较慢

计算

MPI-Allreduce 经过改造是适用面比较广的方案,当然对内存和负载平衡有较高要求

模型

Model serving 生态环境

行业应用者:

非技术公司使用云服务中小互联网公司用开源

Clipper Ray (UC Berkeley) EMQ broker
TensorRT Kuberflow MLFlow Horovod MQTT

技术领先者:

腾讯bert-as-service 美团的TFS+yarn集群 知乎cuBert 星环科技

TF serving PaddlePaddle zeroMQ

TensorFlow Torch MXNet Caffe CNTK

行业领导者: 阿里PAI使用TVM 优化 transformer 科大讯飞的FPGA

CUDA MLIR TVM PerfXLab cuBLAS cuBERT LLVM PerfBLAS OpenBLAS

Cloud TPU Sophon Edge TPU BM1880

云到端

热插拔

标准制定者: Nvidia, google, 寒武纪,海思

GPU CPU ARM FPGA ASIC

Chat bot的任务案例

来自俄罗斯NLP项目DeepPavlov

Chat bot的问题抽象

来自俄罗斯NLP项目DeepPavlov

AI产品经理的工作: 从模型到算力到用户任务的全流程

TBMS: Time based model serving

产品服务端请求 Python API mixTry

```
tbms_client = tbmsClient(ENDPOINT, ACCESSID, ACCESSKEY, INSTANCENAME)
tbms_models = tbmsList({"embedding":{"est":35},
              "svm":{"est":25},
              "bayes":{"est":15},
              "keysearch"{"est":5}
             })
def main():
  questionString = sys.argv
  if len(sys.argv)>=1:
    questionString = sys.argv[0]
    answer =
tbmsTry(tbmsClient,tbms models,questionString,tloc=50,crossRequest=1,crossLag=10,priority=0)
    if len(answer) >0:
       print answer
    else:
       print u'human assist'
```

任务分发服务 timeBroker

https://github.com/linkinbird/TBMS/blob/master/timeBroker.go

监控管理 reportChannel

同时监听timeBroker和ResourceManager的情况

Down Grade %

TaskA	TaskB	TaskC	TaskE	TaskF
embedding	embedding	embedding	embedding	bayes
bayes	svm	keywords	svm	keywords
	bayes		bayes	
			keywords	

Lag time (10min, avg)

Model resource occupancy %

	embe dding	SVM	bayes
GPU1	90%		
GPU2	90%		
GPU3	10% (free)		
CPU1		50%	50%

配置调优 opiConfigure

最大QPS 有高lag 甚至降级

Batch size = 10 Batch time = 20 ms

QPS max = (1000/20) x 10 = 500

Lag = Batch time + (1000/QPS) x — Batch size -1 Lag 200 = 20 + 5 x 1.5 = 27.5 ms 2

Lag
$$\frac{\text{max}}{\text{min}}$$
 = 1 + $\frac{\text{Batch size -1}}{2 \text{ x batch size}}$

更多GPU资源满足两者

Lag 200 = 20ms < 27.5ms but occupancy is low

动态配置

QPS monitor

资源管理 Resource Manager

混动 VS 纯电

混动方案:服务网络(Service Mesh) 可以和 timeBroker层结合在一起:

- 市面上已经有了与kubernetes解耦的方案, 比如Kong的Kuma
- 现有的load balance不符合GPU的batch原则, 但可以用TensorRT的dynamic_batching和 Streaming来配合执行
- 后续兼顾GPU和FPGA物联网混合的场景

资源执行的复杂度

把资源管理的复杂度放在资源抽象层,而不是kubernetes那种调度层,是因为深度学习的执行层优化还没有统一:开源社区的TVM vs 谷歌主导的MLIR

- 用一种统一的build工具去产生pod部署 目前不可行
- Kuberflow/kfserving/Knative/Istio 就不支持adaptive batch和虚拟GPU

将针对不同场景和硬件的最佳执行方案交给模型提供方去解决,在上层通过解耦的service mesh 管理服务

模型仓库 Model House

NVIDIA TensorRT Inference Server

Sequence Batcher和 Ensemble model

Model serving 商业路径选择

深度计算平台发展趋势

2004 MapReduce论文 2009 0.20.0稳定版本
2006 Apache Hadoop 创立 2012 AWS data pipeline

定制化 产品化 服务化 (Serverless)
Al as a Service
2015 Tensorflow 2017 Clipper 论文 2019 Caicloud 的发展

谢谢

birdzhangxiang@gmail.com

让人类平等自由的享受智能带来的福利 让企业可以最低的成本,最便捷的管理, 应用最前沿的智能技术