Statement of the original problem

For any hypercube \mathbb{Q}_n $(n \geq 2)$, there exists some **symmetric flips** of some 1's in the adjacency matrix $A(\mathbb{Q}_n)$ such that the spectral of $A(\mathbb{Q}_n)$ are $\pm \sqrt{n}$, that is, $\operatorname{spec}(A(\mathbb{Q}_n)) = (\sqrt{n}^{(2^{n-1})}, -\sqrt{n}^{(2^{n-1})})$ since $\operatorname{trace}(A) = 0$.

In 2019, H. Huang defined a sequence of symmetric square matrices iteratively as follows, which is highlighted in his <u>paper</u>:

$$A_1=egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \quad A_{n+1}:=egin{pmatrix} A_n & I \ I & -A_n \end{pmatrix}.$$

Notice that the method of iterating above resembles the how Sylvester constructed the <u>Hadamard matrix</u> in 1867; whereas the number of flips in $A(\mathbb{Q}_n)$ still has room for reduction under such construction. For instance, via Huang's construction we have

$$A_3 = egin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \ 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \ 0 & 1 & 0 & 0 & -1 & 0 & 0 & -1 \ 0 & 0 & 1 & 0 & -1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \end{pmatrix}.$$

Here 4 pairs of 1's flip, here 4 is defined as the **flip index**. Actually, the flip index of signed matrix

$$A_3' = egin{pmatrix} 0 & 1 & -1 & 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 & 0 & 0 & -1 \ 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \ 0 & 1 & 0 & 0 & -1 & 0 & 0 & 1 \ 0 & 0 & 0 & -1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

is only 3 (the **minimum flip index** of \mathbb{Q}_3 actually).

In the main part of the manuscript, we shall discuss that:

- the equivalent statement of the original problem
- the minimum flip index of \mathbb{Q}_n

Since any signed matrix of $A(\mathbb{Q}_n)$ with column vectors $(q_1, q_2, \dots, q_{2^n})$ is symmetric, the following statements are equivalent.

$$\operatorname{spec}(\operatorname{sign}(A^2)) = n \Leftrightarrow \langle q_i, q_j
angle = \delta_i^j \Leftrightarrow \dfrac{1}{\sqrt{n}} A \in O_{2^n}(\mathbb{R}).$$

A short discussion of the main problem

For the case that $n \geq 3$, we shall prove the existence of signed matrix $\operatorname{sign} A(\mathbb{Q}_n)$ such that $\operatorname{sign}(A(\mathbb{Q}_n))$ consists of orthogonal column vectors. Let

- v_1, \ldots, v_{2^n} be verteces of \mathbb{Q}_n .
- u_1,\ldots,u_{2^n} be column vectors of $A(\mathbb{Q}_n)$ w.r.t. v_i 's.
- w_1,\ldots,w_{2^n} be column vectors of some valid $\mathrm{sign}A(\mathbb{Q}_n)$ w.r.t. v_i 's.

Since $\langle u_i, u_j \rangle \neq 0$ if and only if $N(u_i) \cap N(u_j) \neq 0$. When $i \neq j$, the following statements are equivalent:

- $N(u_i) \cap N(u_j) \neq 0$.
- $|N(u_i) \cap N(u_i)| = 2$.
- u_i and u_j are adjoint in some \mathbb{Q}_2 -subgraph in \mathbb{Q}_n .

For each \mathbb{Q}_2 -subgraph in \mathbb{Q}_n , the induced adjacency matrix is either $\pm A_2$ in the sense of congruence. As some -1 elements in $\mathrm{sign}(A)$ are signed, we colour the corresponding edges in \mathbb{Q}_n (the remains are called *uncoloured*). We only need to prove that:

There exists a colouring of edges for \mathbb{Q}_n such that every \mathbb{Q}_2 -subgraph has odd number of edges coloured.

Here, Huang's construction for $\mathrm{sign}(A(\mathbb{Q}_3))$ is given as follows:

In order to seek for the minimal flip index, we only need to prove that:

There exists a colouring of edges for \mathbb{Q}_n such that every \mathbb{Q}_2 -subgraph has **only one** edge coloured.

For instance, one possible colouring of edges in \mathbb{Q}_3 with minimum flip index is given as follows.

We define the **dimer** as the graph congruent to the *Chinese character* " \boxminus ". The statement above equals that all \mathbb{Q}_2 subgraphs in \mathbb{Q}_n has a perfect dimer covering, that is, a *complete* and *non-overlapping* covering. Therefore, the *mid-edges* of all dimers in a perfect covering establish an one-to-one correspondence to all coloured edges. For instance, the dimers 2437512, 2687342, 1268751 perfectly covers the \mathbb{Q}_3 cube.

We shall prove that such a covering exists for all \mathbb{Q}_n for $n \geq 3$ via *Mathematical Induction*.

- 1. There is a perfect dimer covering for \mathbb{Q}_3 .
- 2. Assume that the statement is true for n=k. In order to prove that \mathbb{Q}_{k+1} has a perfect dimer covering, we first perfectly cover the *inside and outside* \mathbb{Q}_k *cubes* by assumption. Since the rest of \mathbb{Q}_2 -subgraphs correspond the edges of \mathbb{Q}_k , we only need to prove that \mathbb{Q}_k has a perfect P_2 *covering* on its edges, which equals that the **line graph** $L(\mathbb{Q}_n)$ has a perfect matching. Since every line graph is *claw-free*, the line graph of a connected graph with an even size has at least one perfect matching.

Hence the minimal flip index of \mathbb{Q}_n is number of dimers in any perfect covering, that is, $n(n-1)(n-2)2^{n-4}$ for $n\geq 3$.