LIMBAJUL VHDL - 1

INTRODUCERE

VHDL

- VHSIC Very High Speed Integrated Circuit
- HDL Hardware Description Language
- început 1980; standard 1987; extins 1993;
 variantă 2004, 2008; acum 1076/2019
- Scop metodologie riguroasă de **proiectare** în ciclul de dezvoltare a sistemelor hardware

INTRODUCERE

Definiție

- limbaj de descriere a sistemelor electronice hardware
 - structură de blocuri
 - relaţii
 - interconexiuni
- VHDL definit şi integrat în instrumentele CAD (Computer-Aided Design)
- toate instrumentele CAE (Computer-Aided) Engineering) - produse cu intrări / ieșiri 23.02.2020standard VHDL

Curs 1 VHDL

STRUCTURA PROGRAMULUI

Proiectare ierarhică

model VHDL: pereche entitate + arhitectură

Arhitectură Entitate

Declaraţia de entitate

Descrierea arhitecturii

STRUCTURA PROGRAMULUI

Proiectare ierarhică

- entitatea declaraţie a intrărilor şi ieşirilor modulului
- arhitectura
 - descriere detaliată a structurii modulului sau
 - descriere detaliată a funcţionării modulului

sistemele hardware - în mod natural concurente

- **modelare** în:
 - domeniul concurent şi
 - domeniul secvenţial

Obiecte

- constante
- variabile
- semnale
 - specifice sistemelor hardware
 - modelează informaţia care tranzitează între componente (legătură fizică prin fire)
 - există tot timpul simulării, indiferent de zona de vizibilitate

Obiecte

pilot (driver) de semnal

Coadă de așteptare a valorilor prevăzute pentru semnal

Objecte

- orice obiect clasificat într-un tip
- tipul este obligatoriu și nu se schimbă niciodată
- tipurile impun valori şi operaţii permise şi interzise
- 4 tipuri:
 - scalare (întregi, flotante, fizice, enumerate)
 - compuse (tablouri, articole)
 - acces (pointeri)
 - fişier
- tipuri predefinite:
 - bit, bit-vector, boolean, character, integer, real,

23.02.2020 severity-level, string, time HDL

Funcţii şi proceduri

- funcţiile:
 - argumente au tip definit
 - returnează rezultat are tip definit
- procedurile
 - argumente au tip definit
 - se pot folosi în locul unei instrucţiuni secvenţiale

Biblioteci și pachete

- VHDL limbaj modular ⇒ se descriu unităţi mici, ierarhizate ⇒ descrieri compilate separat = unităţi de proiectare
- unităţile de proiectare salvate în biblioteca de lucru generată de mediul VHDL: WORK
- biblioteci de resurse apelare cu library înainte de unitatea de proiectare
- folosire cu use unitate.all
- WORK şi STD au o clauză library implicită

23.02.2020 Curs 1 VHDL

Biblioteci şi pachete

WOLK

pac	kage bod	ly std_lo	gic_1164
pac	kage std_	_logic_ar	rith
		=	
	kage bod	2000	gic arith
		2000	5.0 _ 0.1.0.1

pack	kage 1	textio		W	
E		w			
pack	age l	body	textic)	
				455	

STD

23.02.2020

Curs 1 VHDL

Biblioteci şi pachete

- bibliotecile conţin doar unităţi de proiectare
- fişierele sursă (cu cod VHDL) analizate şi compilate nu mai există pentru proiectant
- după compilarea fişierelor ⇒ utilizăm (referim) doar unităţi de proiectare

Biblioteci și pachete

- unități de proiectare:
 - entitate (interfaţa sistemului)
 - arhitectură (descrierea sistemului)
 - specificaţie de pachet (vedere externă a posibilităţilor puse la dispoziţie)
 - corp de pachet (descrierea internă a funcţionalităţilor)
 - configurație (asociere componentă model)

DOMENII DE APLICARE

Objective VHDL

- specificare sisteme hardware
- simulare evoluţie temporală a descrierilor
 - instrumentele de simulare realizează simularea ("execuţia") codului VHDL în paralel
 - codul nu descrie modul de proiectare sau de realizare a funcţiei, ci doar ce trebuie să facă aceasta

DOMENII DE APLICARE

Objective VHDL

- pentru faza de proiectare sinteza logică în cadrul instrumentelor CAD care integrează VHDL (fază automatizată)
 - descrierea proiectării unui sistem prin descrierea atât a funcţionării cât şi a structurii exacte a fiecărei părţi
 - descrierea realizării finale în termeni de interconexiuni de componente logice elementare
 - porneşte de la o descriere VHDL sintetizabilă şi conduce la o schemă logică clasică (porţi logice
 - + bistabili)