Introduction to Optimization

Lecture 05: Gradient descent. Convex functions.

Recall: descent methods

Most algorithms are based on the idea of (sufficient) descent: given x_k , find x_{k+1} such that

$$(1) f(x_{k+1}) \leq f(x_k) - \delta_k^2.$$

One way is to find $d_k \in \mathbb{R}^N$ and $\alpha_k > 0$, such that (1) holds with

$$x_{k+1} = x_k - \alpha_k d_k.$$

We say $-d_k$ is a descent direction, and α_k is the step size, step length or learning rate (in ML).

L-smoothness

A differentiable function $f:A\subset\mathbb{R}^N\to\mathbb{R}$ is L-smooth, with L>0, if

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

for all $x, y \in A$.

3/12

Juan PEYPOUQUET Optimization 2022-2023

L-smoothness

A differentiable function $f:A\subset\mathbb{R}^N\to\mathbb{R}$ is L-smooth, with L>0, if

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

for all $x, y \in A$.

Proposition (Descent Lemma)

If f is L-smooth and A is convex, then

$$|f(y) - f(x) - \nabla f(x) \cdot (y - x)| \le \frac{L}{2} ||x - y||^2$$

for all $x, y \in A$.

1

The *L*-smooth case

By the Descent Lemma, we have

$$f(x_n - \alpha_n d_n) \leq f(x_n) - \alpha_n \nabla f(x_n) \cdot d_n + \frac{\alpha_n^2 L}{2} ||d_n||^2.$$

Juan PEYPOUQUET Optimization 2022-2023 4 / 12

The L-smooth case

By the Descent Lemma, we have

$$f(x_n - \alpha_n d_n) \leq f(x_n) - \alpha_n \nabla f(x_n) \cdot d_n + \frac{\alpha_n^2 L}{2} ||d_n||^2.$$

It is therefore sufficient for α_n and d_n to satisfy

$$0 < \alpha_n L \|d_n\|^2 < 2\nabla f(x_n) \cdot d_n.$$

Juan PEYPOUQUET Optimization 2022-2023

The L-smooth case

By the Descent Lemma, we have

$$f(x_n - \alpha_n d_n) \leq f(x_n) - \alpha_n \nabla f(x_n) \cdot d_n + \frac{\alpha_n^2 L}{2} ||d_n||^2.$$

It is therefore sufficient for α_n and d_n to satisfy

$$0 < \alpha_n L \|d_n\|^2 < 2\nabla f(x_n) \cdot d_n.$$

Gradient-consistency: $\tau \|d_n\|^2 \le \|\nabla f(x_n)\|^2 \le \sigma \nabla f(x_n) \cdot d_n$.

Juan PEYPOUQUET Optimization 2022-2023 4

The L-smooth case

By the Descent Lemma, we have

$$f(x_n - \alpha_n d_n) \leq f(x_n) - \alpha_n \nabla f(x_n) \cdot d_n + \frac{\alpha_n^2 L}{2} ||d_n||^2.$$

It is therefore sufficient for α_n and d_n to satisfy

$$0 < \alpha_n L \|d_n\|^2 < 2\nabla f(x_n) \cdot d_n.$$

Gradient-consistency:
$$\tau \|d_n\|^2 \le \|\nabla f(x_n)\|^2 \le \sigma \nabla f(x_n) \cdot d_n$$
.

Sufficient condition for descent: $0 < \inf \alpha_n \le \sup \alpha_n < \frac{2\tau}{\sigma L}$.

Juan PEYPOUQUET Optimization 2022-2023 4 / 12

Constant stepsize $\alpha_n \equiv \alpha$, for simplicity

Proposition

Let f be L-smooth and bounded from below. Iterate $x_{n+1} = x_n - \alpha d_n$, where d_n is gradient-consistent and $0 < \alpha < \frac{2\tau}{\sigma I}$.

5/12

Constant stepsize $\alpha_n \equiv \alpha$, for simplicity

Proposition

Let f be L-smooth and bounded from below. Iterate $x_{n+1} = x_n - \alpha d_n$, where d_n is gradient-consistent and $0 < \alpha < \frac{2\tau}{\sigma L}$. Then,

Constant stepsize $\alpha_n \equiv \alpha$, for simplicity

Proposition

Let f be L-smooth and bounded from below. Iterate $x_{n+1} = x_n - \alpha d_n$, where d_n is gradient-consistent and $0 < \alpha < \frac{2\tau}{\sigma L}$. Then,

- $\exists \lim_{n \to \infty} f(x_n) \in \mathbb{R}, \text{ and } \lim_{n \to \infty} \|\nabla f(x_n)\| = 0.$
- **2** Cluster points are critical: if $x_{k_n} \to \hat{x}$, then $\nabla f(\hat{x}) = 0$.

5/12

Juan PEYPOUQUET Optimization 2022-2023

Constant stepsize $\alpha_n \equiv \alpha$, for simplicity

Proposition

Let f be L-smooth and bounded from below. Iterate $x_{n+1} = x_n - \alpha d_n$, where d_n is gradient-consistent and $0 < \alpha < \frac{2\tau}{\sigma I}$. Then,

- **2** Cluster points are critical: if $x_{k_n} \to \hat{x}$, then $\nabla f(\hat{x}) = 0$.
- § If f has no critical points, then $\lim_{n\to\infty} ||x_n|| = +\infty$.

Constant stepsize $\alpha_n \equiv \alpha$, for simplicity

Proposition

Let f be L-smooth and bounded from below. Iterate $x_{n+1} = x_n - \alpha d_n$, where d_n is gradient-consistent and $0 < \alpha < \frac{2\tau}{\sigma I}$. Then,

- **2** Cluster points are critical: if $x_{k_n} \to \hat{x}$, then $\nabla f(\hat{x}) = 0$.
- **3** If f has no critical points, then $\lim_{n\to\infty} ||x_n|| = +\infty$.
- There is C > 0 such that $\min \{ \|\nabla f(x_i)\| : 1 \le i \le n \} \le \frac{C}{\sqrt{n}}$.

→ロト 4回 ト 4 三 ト 4 三 ・ り Q ()

Break

Convex functions and the gradient method

Theorem

Let f be convex and L-smooth. Iterate $x_{n+1} = x_n - \alpha \nabla f(x_n)$ with $0 < \alpha < \frac{2}{L}$.

Convex functions and the gradient method

Theorem

Let f be convex and L-smooth. Iterate $x_{n+1} = x_n - \alpha \nabla f(x_n)$ with $0 < \alpha < \frac{2}{I}$.

$$\bullet \lim_{n\to\infty} f(x_n) = \inf(f).$$

Convex functions and the gradient method

Theorem

Let f be convex and L-smooth. Iterate $x_{n+1} = x_n - \alpha \nabla f(x_n)$ with $0 < \alpha < \frac{2}{L}$.

- $\bullet \lim_{n\to\infty} f(x_n) = \inf(f).$
- 2 If f has minimizers, then x_n converges to one of them, and

$$f(x_n) - \min(f) \le \frac{D^2}{\alpha(2 - \alpha L)n},$$

where D is the distance from x_0 to its closest minimizer.

Moreover,
$$\lim_{n\to\infty} n[f(x_n) - \min(f)] = 0.$$

do

Ø

An important tool

Proposition (Baillon-Haddad Lemma)

If f is convex and L-smooth, then

$$\frac{1}{I}|\nabla f(y) - \nabla f(x)|^2 \le (\nabla f(y) - \nabla f(x)) \cdot (y - x)$$

for all $x, y \in A$.

This will be proved in the tutorial.

Sketch of the proof

First, use

(2)
$$||x_{n+1} - u||^2 = \alpha^2 ||\nabla f(x_n)||^2 + ||x_n - u||^2 - 2\alpha \nabla f(x_n) \cdot (x_n - u)$$

and Baillon-Haddad Lemma to show that

$$\frac{\alpha}{L}(2 - \alpha L) \sum_{n=0}^{K} \|\nabla f(x_n)\|^2 \leq \|x_0 - u\|^2.$$

Then, use (2) and convexity to prove that

$$2\alpha \big(f(x_n) - \min(f)\big) \leq \|x_n - u\|^2 - \|x_{n+1}\|^2 + \alpha^2 \|\nabla f(x_n)\|^2.$$

Sum over n, and combine the two inequalitites, to conclude that

$$2\alpha k \big(f(x_k) - \min(f)\big) \leq \|x_0 - u\|^2 \left(1 + \frac{\alpha L}{2 - \alpha L}\right).$$

Sketch of the proof, continued

For the convergence, use that cluster points are critical, and that $||x_n - u||$ is nonincreasing, to deduce that (x_n) cannot have more than one cluster point. This is sufficient for convergence because (x_n) is bounded.

For the last statement, use the following lemma with $e_n = f(x_n) - \min(f)$:

Lemma

Let (e_n) be a positive, nonincreasing sequence such that $\sum_{n=0}^{\infty} e_n < +\infty$. Then $\lim_{n \to \infty} ne_n = 0$.

• Constant: $\alpha_n \equiv \alpha \in (0, 2/L)$.

- Constant: $\alpha_n \equiv \alpha \in (0, 2/L)$.
- Exact minimization: $\min_{\alpha>0} f(x_n \alpha d_n)$.

4 D > 4 B > 4 E > 4 E > E 9 Q C

11/12

- Constant: $\alpha_n \equiv \alpha \in (0, 2/L)$.
- Exact minimization: $\min_{\alpha>0} f(x_n \alpha d_n)$.
- Limited minimization: $\min_{\alpha \in (0,A]} f(x_n \alpha d_n)$.

Juan PEYPOUQUET Optimization 2022-2023 11/12

- Constant: $\alpha_n \equiv \alpha \in (0, 2/L)$.
- Exact minimization: $\min_{\alpha>0} f(x_n \alpha d_n)$.
- Limited minimization: $\min_{\alpha \in (0,A]} f(x_n \alpha d_n)$.
- Vanishing: $\alpha_n \to 0$, $\sum \alpha_n = \infty$.

- Constant: $\alpha_n \equiv \alpha \in (0, 2/L)$.
- Exact minimization: $\min_{\alpha>0} f(x_n \alpha d_n)$.
- Limited minimization: $\min_{\alpha \in (0,A]} f(x_n \alpha d_n)$.
- Vanishing: $\alpha_n \to 0$, $\sum \alpha_n = \infty$.
- Backtracking (Armijo, Goldstein).

Some remarks

The simplest example, revisited

We had applied the gradient method to the function $f(x) = x^2$. Were the hypotheses on α and the rate of convergence consistent with the previous theorem?

12 / 12

Some remarks

The simplest example, revisited

We had applied the gradient method to the function $f(x) = x^2$. Were the hypotheses on α and the rate of convergence consistent with the previous theorem?

Strong convexity

If the objective function is strongly convex, can we expect the gradient method to converge faster?

Juan PEYPOUQUET Optimization 2022-2023 12 / 12