Deep Learning

Programming Assignment 2

April 7, 2019

Group Members						
Name	Roll No.					
Akul Gupta	B16006					
Arpit Batra	B16047					
Ayush Meghwani	B16127					

Faculty Mentor - Prof. Aditya Nigam.

Contents

1	Cla	ssification Head 1 - Width	3
	1.1	Learning Curves	3
	1.2		
	1.3	Confusion Matrix	
2	Cla	ssification Head 2 - Colour	4
	2.1	Learning Curves	4
	2.2	F-score	4
	2.3	Confusion Matrix	4
3	Cla	ssification Head 3 - Length	5
	3.1	Learning Curves	5
	3.2	F-score	5
	3.3	Confusion Matrix	5
4	Cla	ssification Head 4 - Angle	6
	4.1	Learning Curves	6
	4.2	F-score	6
	4.3	Confusion Matrix	7
5	Tot	al Accuracy and Loss	7
6	Var	riations Tried	7
7	Infe	erences	8

1 Classification Head 1 - Width

1.1 Learning Curves

Accuracy: 99.988%

1.2 F-score

	C_0	C_1
recall	1.0	1.0
precision	1.0	1.0
f_score	1.0	1.0

1.3 Confusion Matrix

$$\begin{bmatrix} 19200 & 0 \\ 1 & 19199 \end{bmatrix}$$

2 Classification Head 2 - Colour

2.1 Learning Curves

Accuracy: 100%

2.2 F-score

	C_0	C_1
recall	1.0	1.0
precision	1.0	1.0
f_score	1.0	1.0

2.3 Confusion Matrix

$$\begin{bmatrix} 19200 & 0 \\ 0 & 19200 \end{bmatrix}$$

3 Classification Head 3 - Length

3.1 Learning Curves

Accuracy: 100%

3.2 F-score

	C_0	C_1
recall	1.0	1.0
precision	1.0	1.0
f_score	1.0	1.0

3.3 Confusion Matrix

$$\begin{bmatrix} 19200 & 0 \\ 0 & 19200 \end{bmatrix}$$

4 Classification Head 4 - Angle

4.1 Learning Curves

Accuracy: 99.86%

4.2 F-score

	C_0	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}	C_{11}
recall	0.997	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.986
precision	0.99	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.996	0.997
f_score	0.994	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.998	0.992

4.3 Confusion Matrix

[3191	0	0	0	0	0	0	0	0	0]
0	9								
0	3200	0	0	0	0	0	0	0	0
0	0								
0	0	3200	0	0	0	0	0	0	0
0	0								
0	0	0	3200	0	0	0	0	0	0
0	0								
0	0	0	0	3200	0	0	0	0	0
0	0								ļ
0	0	0	0	0	3200	0	0	0	0
0	0								
0	0	0	0	0	0	3200	0	0	0
0	0								-
0	0	0	0	0	0	0	3200	0	0
0	0								
0	0	0	0	0	0	0	0	3200	0
0	0								İ
0	0	0	0	0	0	0	0	0	3200
0	0								
0	0	0	0	0	0	0	0	0	0
3200	0								Ī
31	0	0	0	0	0	0	0	0	0
_ 13	3156								

5 Total Accuracy and Loss

Total Accuracy = 99.62% (this is taken as the average of all accuracy) Total Loss = 0.008209 (this is taken as weighted average of all losses)

6 Variations Tried

- 1. Taking 2 convolution layers of filters size 3*3 and 32 and 64 as number of filters gives same accuracy as compare to 2 convolution layers of same filters size but with 6 and 12 as number of filters.
- 2. Tried 2 dense layers and 1 layer, accuracy was same but loss value was less as compare to head having only 1 dense layer.
- 3. Significant change in less value was observe when activation was chosen

RELU instead of Sigmoid in initial batches of 1st epoch.

4. Using of BatchNormalization() layer gives higher accuracy faster.

7 Inferences

- 1. Use of larger no. of filters gives no benefit in this case as there is no much intense information in the images, the line dataset is very simple.
- 2. Using BatchNormalization giver greater accuracy because it brings all the values in a confined range which make easier to give good loss prediction and how much data is actually deviated from its ground truth.
- 3. We infer that in such datasets, using of greater filter size is much affective as it makes learning fast and there is no significant change in accuracy.
- 4.In case of using sigmoid function, we need to run greater number epochs in order to achieve higher frequency as compare to number of epochs in RELU/softmax function.
- 5. Use of functional API is better then sequential API for parallel networks.