

딥러닝 9일차

RNN(Recurrent Neural Network

[Folded]

가중치 공유

RNN의 학습 가중치는 시작 층과 도착 층에 따라 크게 세 가지, U, W, V 로 분류

- U: 입력층 → 은닉층
- W: t 시점 은닉층 → t+1 시점 은닉층
- V: 은닉층 → 출력층

가중치 U, W, V 는 모든 시점에서 동일: 가중치 공유

가중치 공유의 이점

- 학습에 필요한 가중치의 수를 줄일 수 있다.
- 데이터별 시간의 길이 T에 유연하다.

RNN NLP(자연어 처리)

시간의 길이 T에 유연

- Ex). 1개의 모형으로 hell의 o를, kin의 g를, exper의 t를 예측 가능
- 같은 가중치를 곱해주고, 은닉층에 단어의 과거 정보가 포함
- 위 예제 단어의 길이 5, 4, 6에 무관하게 같은 모형을 적용

RNN 동작 원리

입력층, 은닉층의 노드의 수가 1개이고, 출력층이 K개 노드

$$x^{(t)} \in \mathbb{R}$$
$$h^{(t)} \in \mathbb{R}$$
$$o^{(t)} \in \mathbb{R}^k$$

가중치W,U는 스칼라, $V \in \mathbb{R}^{K \times 1}$

1. 은닉층: 은닉층 계산에는 $x^{(t)}$ 와 $h^{(t-1)}$ 이 필요,

(τ: hyperbolic tangent)

$$h^{(t)} = \tau \big(a^{(t)} \big)$$

$$a^{(t)} = Wh^{(t-1)} + Ux^{(t)}$$

2. 출력층: 출력층은 ANN 계산과 동일

$$h^{(t)} = \tau(a^{(t)})$$

$$o^{(t)} = softmax(Vh^{(t)}$$

RNN 동작 원리

• x,h,o에서 $x \in \mathbb{R}^D, h \in \mathbb{R}^J, o \in \mathbb{R}^K$

• 각각의 노드 수 D,J,K에서 $U \in \mathbb{R}^{J \times D}, h \in \mathbb{R}^{J \times J}, o \in \mathbb{R}^{K \times J}$

RNN Architectures

- One-to-One: Vanlina Neural Networks, 은닉층이 1층인 신경망 모형
- One-to-Many: Image를 입력으로 받아, Image 속 대상에 이름을 붙이는 모형
- Many-to-One: word sequence를 입력으로 받아, 감정 분류를 해주는 모형
- Many-to-Many: 기계 번역 모형, word sequence를 입력으로 받아, word sequence을 출력
- Many-to-Many: 비디오의 frame을 입력으로 받아 frame 속 대상에 이름을 붙이는 모형

[4] [5] [6]

Many-to-One

Many-to-Many

Stacked Many-to-One

Stacked RNNs은 모형을 구축할 때 RNN cell을 적층하는 구조

[1]

[2] [3]

Stacked Many-to-Many

Stacked RNNs은 모형을 구축할 때 RNN cell을 적층하는 구조

return_sequence=True

RNN의 Long-term Dependencies

$$h^{(t)} = au \left(Ux^{(t)} + Wh^{(t-1)}
ight)$$

t-2 시점까지 진행 시 h(t)가 tangent hyperbolic(tanh) τ에서 반복적으로 곱해짐

$$h^{(t)} = au \left[U x^{(t)} + W au (U x^{(t-1)} + W h^{(t-2)})
ight]$$

1보다 작은 값이 반복적으로 곱해지기 때문에,

- feed-forward 시 데이터가 뒤로 갈수록 전달 미비
- back-propagation 시 tanh의 함수 기울기가 0으로 수렴하여 경사하강 손실(Vashing Gradients)

LSTM(Long Short-Term Memory)

LSTM, RNN 비교

LSTM Concept

LSTM Key Concept: 이전 단계의 정보를 memory cell에 저장하여 흘려보내서,

• 현재 시점의 정보를 바탕으로 과거의 내용을 얼마나 잊을지 곱해주고

1단계. Forget Gate (망각 게이트)

과거의 정보를 얼마나 잊을지 결정하는 게이트

- 현시점의 정보와 과거의 은닉층의 값에 각각 가중치를 곱하여 더한 후 sigmoid(0, 1) 함수를 적용
- 그 출력 값을 직전 시점의 cell에 곱하기 연산.
- 1에 가까울수록 과거 정보를 많이 활용, 0에 가까울수록 과거 정보를 많이 망각

2단계.

- 입력게이트 (Input Gate): 현시점의 정보를 셀에 입력할 크기를 지정
- **입력후보 (Candidate):** 현지점의 정보를 계산
- 현시점에서 실제로 갖고 있는 정보(입력후보)가 얼마나 중요한지(입력게이트)를 반영하여 셀에 기록

3단계. Memory Cell의 계산

계산한 망각게이트, 입력게이트, 입력후보를 이용하여 memory cell에 저장

- 과거의 정보를 망각게이트에서 계산 된 만큼 잊고,
- 현시점의 정보 후보에 입력게이트의 중요도를 곱해준 것을 더하여 현시점 기준 memory cell을 계산.

4단계. 출력게이트 (Output Gate)

계산된 현시점의 memory cell을 현시점의 은닉층 값으로 출력할 양을 결정

5단계. 출력층

RNN과 동일 softmax 함수 $\hat{y}^{(t)} = softmax\left(Vh^{(t)}
ight)$

전체 과정 요약

$$egin{aligned} f^{(t)} &= \sigma \left(U_f x^{(t)} + W_f h^{(t-1)}
ight) \ i^{(t)} &= \sigma \left(U_{in} x^{(t)} + W_{in} h^{(t-1)}
ight) \ ilde{C}^{(t)} &= au \left(U_c x^{(t)} + W_c h^{(t-1)}
ight) \ C^{(t)} &= f^{(t)} * C^{(t-1)} + i^{(t)} * ilde{C}^{(t)} \ o^{(t)} &= \sigma \left(U_o x^{(t)} + W_o h^{(t-1)}
ight) \ h^{(t)} &= o^{(t)} * au (C^{(t)}) \ \hat{y}^{(t)} &= softmax(V h^{(t)}) \end{aligned}$$

GRU (Gated Recurrent Units)

GRU(Gated Reccurent Units) 개요

- GRU는 게이트 메커니즘이 적용된 RNN 프레임워크의 일종
- LSTM과 유사하지만 더 간략한 구조
- 한국인 조경현 박사가 연구논문에서 제안 (Cho et al., 2014)

1단계. Reset Gate

- 과거의 정보를 적당히 리셋시키는게 목적
- sigmoid 함수를 출력으로 이용해 (0,1) 값을 이전 은닉층에 곱 연산
- 직전 시점의 은닉층의 값과 현시점의 정보에 가중치를 곱하여 진행

2단계. Update Gate

- LSTM의 forget gate와 input gate를 합쳐놓은 것과 유사, 과거와 현재의 정보의 최신화 비율을 결정
- Update gate에서는 sigmoid로 출력된 결과(u(t))는 현시점의 정보의 양을 결정
- 1에서 뺀 값(1-u(t))는 직전 시점의 은닉층의 정보에 곱해 줌
- 각각이 LSTM의 input gate와 forget gate

3단계. Candidate

- 현 시점의 정보 후보군을 계산하는 단계
- 과거 은닉층의 정보를 그대로 이용하지 않고 리셋 게이트의 결과를 곱하여 사용 (τ는 tangent hyperbolic, *은 pointwise operation)

4. 은닉층 계산

- 마지막 단계로 update gate 결과와 candidate 결과를 결합하여 현시점의 은닉층을 계산
- sigmoid 함수의 결과는 현시점 결과의 정보의 양을 결정
- 1-sigmoid 함수의 결과는 과거 시점의 정보 양을 결정

Summary

LSTM & GRU 비교 시

- 기본 구조와 성능 유사
- 학습 가중치가 LSTM보다 적다

전체 과정 요약

$$egin{aligned} r^{(t)} &= \sigma \left(W_r h^{(t-1)} + U_r x^{(t)}
ight) \ u^{(t)} &= \sigma \left(W_u h^{(t-1)} + U_u x^{(t)}
ight) \ ilde{h}^{(t)} &= au \left(W h^{(t-1)} * r^{(t)} + U x^{(t)}
ight) \ h^{(t)} &= (1 - u^{(t)}) * h^{(t-1)} + u^{(t)} * ilde{h}^{(t)} \end{aligned}$$

