Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафеда электронных вычислительных машин

ОТЧЕТ по лабораторной работе №2 на тему ИССЛЕДОВАНИЕ ГЕНЕРАТОРОВ ПСЕВДОСЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И СИГНАТУРНЫХ АНАЛИЗАТОРОВ

 Выполнила:
 А. В. Деркач

 Проверил:
 М. М. Татур

1 ЦЕЛЬ РАБОТЫ

- 1. Для генератора ПСП (5 разрядов) опытным путем найти все примитивные полиномы. Результаты свести в таблицу.
- 2. Выбрать один из вариантов примитивных полиномов в качестве полинома делитель g(x). Аналитически разделить полином заданного слова на полином делителя, получить сигнатуру S(x). Выполнить (с использованием системы) имитационное моделирование этой процедуры и сравнить результаты.
- 3. Выбрать примитивный полином для ГПСП и СА и получить псевдослучайную последовательность длиной 31 набор.
- 4. Для данной ПСП с использованием системы имитационного моделирования получить карту эталонных сигнатур в полюсах: 6, 7, 8, 9.
- 5. Определить "окно" формирования сигнатуры (минимизированное число наборов ПСП, необходимое для обнаружения константных неисправностей в полюсах 6, 7, 8, 9).

2 ИСХОДНЫЕ ДАННЫЕ

Шестнадцатиразрядное слово (0000 1111 0111 1011).

3 ПОИСК ПРИМИТИВНЫХ ПОЛИНОМОВ

Примитивные полиномы представлены в таблице 3.1.

В таблице 1 единицы (1) и нули (0) на D означают, соответственно, активен или не активен сумматор по модулю 2 на входе триггера. Эффект – сколько последовательностей покрывает данный полином. Полностью расписаны только полиномы, которые проходятся по всем вариантам тестовых последовательностей.

T ~	\sim	1	T ~		
Таблица	1	I —	Таблица	примитивных	попиномов

D 1	D2	D3	D4	D5	Эффективность	Полином
1	1	1	1	1	6	
1	0	1	1	1	31	$X^5 \oplus X^4 \oplus X^3 \oplus X^2 \oplus 1$
1	1	0	1	1	31	$X^5 \oplus X^4 \oplus X^3 \oplus X \oplus 1$
1	0	0	1	1	14	
1	1	1	0	1	31	$X^5 \oplus X^4 \oplus X^2 \oplus X \oplus 1$
1	0	1	0	1	15	
1	1	0	0	1	8	
1	0	0	0	1	21	
1	1	1	1	0	31	$X^5 \oplus X^3 \oplus X^2 \oplus X \oplus 1$
1	0	1	1	0	12	

Продолжение таблицы 3.1

1	1	0	1	0	15	
1	0	0	1	0	31	$X^5 \oplus X^3 \oplus 1$
1	1	1	0	0	14	
1	0	1	0	0	31	$X^5 \oplus X^2 \oplus 1$
1	0	0	0	0	1	

4 АНАЛИТИЧЕСКОЕ ДЕЛЕНИЕ ПОЛИНОМА

Выберем порождающий полином из перечня примитивных неприводимых: $g(x) = x^5 \oplus x^3 \oplus 1$.

Представим анализируемую последовательность в виде полинома: $y(x) = 0 \cdot x^{15} \oplus 0 \cdot x^{14} \oplus 0 \cdot x^{13} \oplus 0 \cdot x^{12} \oplus 1 \cdot x^{11} \oplus 1 \cdot x^{10} \oplus 1 \cdot x^9 \oplus 1 \cdot x^8 \oplus 0 \cdot x^7 \oplus 1 \cdot x^6 \oplus 1 \cdot x^5 \oplus 1 \cdot x^4 \oplus 1 \cdot x^3 \oplus 0 \cdot x^2 \oplus 1 \cdot x \oplus 1 = x^{11} \oplus x^{10} \oplus x^9 \oplus x^8 \oplus x^6 \oplus x^5 \oplus x^4 \oplus x^3 \oplus x \oplus 1.$

Разделим полученный полином на выбранный порождающий. Аналитический вариант деления полинома:

$$x^{11} \oplus x^{10} \oplus x^9 \oplus x^8 \oplus x^6 \oplus x^5 \oplus x^4 \oplus x^3 \oplus x \oplus 1$$
 $x^{11} \oplus x^9 \oplus x^6$ $x^{10} \oplus x^8 \oplus x^5 \oplus x^4 \oplus x^3 \oplus x \oplus 1$ $x^{10} \oplus x^8 \oplus x^5$ $x^4 \oplus x^3 \oplus x \oplus 1$ $x^4 \oplus x^3 \oplus x \oplus 1 - S(x)$, остаток (сигнатура)

Числовой вариант деления полинома:

Синтезируем сигнатурный анализатор с внутренними сумматорами на основе полинома $g(x) = x^5 \oplus x^3 \oplus 1$ (рисунок 4.1). Последняя строка вывода равна инвертированному (визуально) остатку от деления, полученному на этапе аналитического деления.

Рисунок 4.1 – Имитационное моделирование деления полиномов на сигнатурном анализаторе

Смоделируем динамику получения сигнатуры для анализируемой последовательности:

```
1101111011110000
                       00000
 110111101111000
                       00000
  1\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0
                       00000
   1101111011110
                       00000
     110111101111
                       00000
      11011110111
                       10000
       1101111011
                       11000
         110111101
                       11100
          11011110
                       11110
           110111
                       01111
             110111
                       00101
                                 0
                                 0.0
              1 1 0 1 1
                       00000
               1 1 0 1
                       10000
                                 000
                 110
                       11000
                                 0000
                  1 1
                       01100
                                 00000
                   1
                       10110
                                 100000
                       11011
                                 1100000
                      сигнатура
                                   частное
```

Сравнивая сигнатуры, полученные аналитически и в результате моделирования, наблюдаем идентичные результаты.

5 ПОЛУЧЕНИЕ ПСЕВДОСЛУЧАЙНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Псевдослучайная последовательность после прохождения устройства подаётся на сигнатурный анализатор, эталонная сигнатура формируется на 31-ом шаге. Пример формирования эталонной сигнатуры приведён на рисунке 5.1.

Рисунок 5.1 – Эталонная сигнатура

Эталонная сигнатура и функции неисправностей представлены в приложении А. Как видно из приложения, окно формирования сигнатуры представляет собой набор 10010, который обнаруживает все константные неисправности а полюсах 6, 7, 8, 9.

6 ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы для генератора ПСП (5 разрядов) опытным путем были найдены все примитивные полиномы. Был выбран один из вариантов примитивных полиномов в качестве полинома делителя g(x). Аналитически разделен полином заданного слова на полином делителя, получена сигнатура S(x), а также выполнено (с использованием системы) имитационное моделирование этой процедуры и сравнены результаты.

Также был выбран примитивный полином для ГПСП и СА и получна псевдослучайная последовательность длиной 31. Для данной ПСП с использованием системы имитационного моделирования получена карта эталонных сигнатур в полюсах: 6, 7, 8, 9, определено "окно" формирования сигнатуры.

ПРИЛОЖЕНИЕ А

Таблица функций неисправности

No		Qe	хода		v	Овыхода		Овыхода			Овыхода6/0			V	Овыхода6/1			Ι,	,	Овыхода7/0			v		Овыхода7/1				v	Овыхода8/0				v	Овыхода8/1				Овыхода9/0				,	QBE	ыхода9	//1		
W	Q1	Q2	Q3 Q4	Q5	Ľ	Q1	Q2 Q3	3 Q4	Q5	<u> </u>	Q1 (Q2 0	Q3 Q4	Q5	'	Q1 Q2	Q3	Q4 C)5	Q1	Q2	Q3	Q4 C	5 '	Q:	1 Q2	Q3	Q4	Q5	'	Q1 Q2	Q3	Q4	Q5	ď	1 Q2	Q3	Q4 Q	5 '	Q1	Q2 (Q3 Q4	Q5	Q	1 Q2	Q3	Q4 Q	5
0	1	1	1 1	1	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0 (0 0	0	0	0 (1	0	0	0	0	0	1	0 0	0	0	0	0 (0 0	0	0 0	0	0	0	0 0	0 1	L 0	0	0	0 0)
1	1	1	1 0	1	0	0	0 0	0	0	0	0	0 (0 0	0	0	0 0	0	0	0 (0	0	0	0 (1	1	. 0	0	0	0	1	1 0	0	0	0	0 (0	0	0 0	0	0	0	0 0	0 1	1	0	0	0 0)
2	1	1	1 0	0	1	0	0 0	0	0	1	0	0 (0 0	0	1	0 0	0	0	0 :	1 0	0	0	0 (1	1	1	0	0	0	1	1 1	0	0	0	1 (0	0	0 0	0	0	0	0 0	0 1	1	1	0	0 0)
3	0	1	1 1	0	1	1	0 0	0	0	1	1	0 (0 0	0	1	1 0	0	0	0 :	1 1	0	0	0 () 1	1	. 1	1	0	0	1	1 1	1	0	0	1 1	L O	0	0 0	0	0	0	0 0	0 1	1	1	1	0 0)
4	0	0	1 1	1	0	1	1 0	0	0	0	1	1 (0 0	0	0	1 1	0	0	0 (1	1	0	0 (0	1	. 1	1	1	0	1	1 1	1	1	0	0 1	l 1	0	0 0	0	0	0	0 0	0 1	1	1	1	1 0)
5	1	0	0 0	1	1	0	1 1	0	0	0	0	1 :	1 0	0	1	0 1	1	0	0 (0	1	1	0 (1	0	1	1	1	1	1	1 1	1	1	1	0 0	1	1	0 0	0	0	0	0 0	0 1	1	1	1	1 1	
6	1	1	0 1	0	1	1	0 1	1	0	1	0	0 :	1 1	0	1	1 0	1	1 (0 :	0	0	1	1 (1	0	0	1	0	1	1	0 1	1	0	1	1 (0	1	1 0	0	0	0	0 0	0 1	L 0	1	1	0 1	
7	0	1	1 0	1	0	1	1 0	1	1	0	1	0 (0 1	1	0	1 1	0	1	1 (1	0	0	1 :	1	0	0	0	0	0	1	0 0	1	0	0	0 1	L O	0	1 1	0	0	0	0 0	0 1	0	0	1	0 0)
8	1	0	1 0	0	1	1	1 1	1	1	1	1	1 (0 1	1	1	1 1	1	1	1 :	1	1	0	1 :	1	1	. 0	0	0	0	1	1 0	0	1	0	1 1	1 1	0	1 1	0	0	0	0 0	0 1	1	0	0	1 0)
9	0	1	0 1	0	1	0	1 1	0	1	1	0	1 :	1 1	1	1	0 1	1	0	1 :	. 0	1	1	1 :	1	1	1	0	0	0	1	1 1	0	0	1	1 (1	1	1 1	0	0	0	0 0	0 1	1	1	0	0 1	
10	0	0	1 0	1	0	0	0 1	0	0	0	0	0 :	1 0	1	0	0 0	1	0	0 (0	0	1	0 :	0	1	1	1	0	0	1	0 1	1	1	0	0 (0	1	0 1	0	0	0	0 0	0 1	0	1	1	1 0	j
11	1	0	0 0	0	1	0	0 0	1	0	1	1	0 (0 0	0	1	0	0	1	0 :	1	0	0	0 (1	0	1	1	1	0	1	1 0	1	1	1	1 1	L O	0	0 0	0	0	0	0 0	0 1	1	0	1	1 1	L
12	0	1	0 0	0	1	1	0 0	0	1	1	1	1 (0 0	0	1	1 0	0	0	1 :	1	1	0	0 (1	1	. 0	1	1	1	1	0 1	0	0	1	1 1	1	0	0 0	0	0	0	0 0	0 1	L 0	1	0	0 1	
13	0	0	1 0	0	1	0	1 0	1	0	1	1	1 :	1 0	0	1	0 1	0	1	0 :	1	1	1	0 (1	0	1	0	0	1	1	0 0	1	1	0	1 1	1	1	0 0	0	0	0	0 0	0 1	L 0	0	1	1 0)
14	0	0	0 1	0	1	1	0 1	0	1	1	1	1 :	1 1	0	1	1 0	1	0	1 :	1	1	1	1 (1	0	0	1	1	0	1	1 0	0	1	1	1 1	1	1	1 0	0	0	0	0 0	0 1	1	0	0	1 1	L
15	0	0	0 0	1	0	0	1 0	0	0	0	1	1 :	1 1	1	1	0 1	0	0	0 (1	1	1	1	0	1	. 0	0	1	1	1	0 1	0	1	1	0 1	1	1	1 1	0	0	0	0 0	0 1	0	1	0	1 1	L
16	1	0	0 1	0	1	0	0 1	0	0	1	1	1 :	1 0	1	1	1 0	1	0	0 :	1	1	1	0 :	1	1	. 1	0	1	1	1	0 0	1	1	1	1 1	1 1	1	0 1	0	0	0	0 0	0 1	. 0	0	1	1 1	L
17	0	1	0 0	1	1	1	0 0	1	0	0	0	1 :	1 0	0	1	1 1	0	1	0 (0	1	1	0 (1	0	1	1	1	1	1	0 0	0	0	1	0 0	1	1	0 0	0	0	0	0 0	0 1	L 0	0	0	0 1	L
18	1	0	1 1	0	1	1	1 0	0	1	1	0	0 :	1 1	0	1	1 1	1	0	1 :	0	0	1	1 (1	0	0	1	0	1	1	0 0	0	1	0	1 (0 0	1	1 0	0	0	0	0 0	0 1	L 0	0	0	1 0	j
19	0	1	0 1	1	0	0	1 1	1	0	0	1	0 (0 1	1	0	0 1	1	0	0 (1	0	0	1 :	1	0	0	0	0	0	1	1 0	0	0	1	0 1	L O	0	1 1	0	0	0	0 0	0 1	1	0	0	0 1	L
20	1	0	1 1	1	0	0	0 1	1	1	0	1	1 (0 1	1	0	0 0	1	1 (0 (1	1	0	1 :	1	1	. 0	0	0	0	1	0 1	0	1	0	0 1	1	0	1 1	0	0	0	0 0	0 1	. 0	1	0	1 0	j
21	1	1	0 0	1	1	1	0 0	0	1	0	1	1 :	1 1	1	1	0 0	0	1	1 (1	1	1	1 :	1	1	. 1	0	0	0	1	1 0	1	0	1	0 :	1	1	1 1	0	0	0	0 0	0 1	1	0	1	0 1	L
22	1	1	1 1	0	1	0	1 0	1	0	1	1	1 :	1 0	1	1	0 0	0	1	1 :	1	1	1	0 :	1	1	. 1	1	0	0	1	0 1	0	0	0	1 1	1	1	0 1	0	0	0	0 0	0 1	. 0	1	0	0 0)
23	0	1	1 1	1	0	1	0 1	0	1	0	0	1 :	1 0	0	0	0 0	0	1	1 (0 0	1	1	0 (1	1	. 1	1	1	0	1	1 0	1	0	0	0 0	1	1	0 0	0	0	0	0 0	0 1	1	0	1	0 0	j
24	1	0	1 0	1	0	1	1 0	0	0	0	0	0 :	1 1	0	0	1 0	0	1	1 (0	0	1	1 (1	1	1	1	1	1	1	1 1	0	1	0	0 0	0 0	1	1 0	0	0	0	0 0	0 1	1	1	0	1 0)
25	1	1	0 0	0	1	0	1 1	0	0	1	0	0 (0 1	1	1	1 1	0	1	1 :	0	0	0	1 :	1	0	1	1	0	1	1	1 1	1	0	1	1 (0 0	0	1 1	0	0	0	0 0	0 1	1	1	1	0 1	L
26	0	1	1 0	0	1	1	0 1	1	0	1	0	0 (0 1	1	1	0 1	1	1	1 :	0	0	0	1 :	1	0	0	1	0	0	1	0 1	1	0	0	1 (0 0	0	1 1	0	0	0	0 0	0 1	L 0	1	1	0 0)
27	0	0	1 1	0	1	1	1 0	1	1	1	0	0 (0 1	1	1	0 0	1	0	1 :	0	0	0	1	1	1	. 0	0	1	0	1	1 0	1	1	0	1 (0 0	0	1 1	0	0	0	0 0	0 1	1	0	1	1 0)
28	0	0	0 1	1	0	0	1 1	1	1	0	0	0 (0 1	1	0	0 0	0	0	0 (0 0	0	0	1	0	1	. 1	0	0	1	1	1 1	0	1	1	0 0	0 0	0	1 1	0	0	0	0 0	0 1	1	1	0	1 1	L
29	1	0	0 1	1	0	1	0 1	0	1	0	1	0 (0 1	1	0	0 0	0	0	0 (1	0	0	1 :	1	1	1	1	1	0	1	0 1	1	1	1	0 1	L O	0	1 1	0	0	0	0 0	0 1	0	1	1	1 1	
30	1	1	0 1	1	0	1	1 0	0	0	0	1	1 (0 1	1	0	0	0	0	0 (1	1	0	1 :	1	1	1	1	1	1	1	0 0	1	0	1	0 1	1	0	1 1	0	0	0	0 0	0 1	0	0	1	0 1	L
31	1	1	1 1	1	0	0	1 1	0	0	0	1	1 :	1 1	1	0	0 0	0	0	0 (1	1	1	1	1	0	1	1	0	1	1	0 0	0	0	0	0 1	1	1	1 1	0	0	0	0 0	0 1	1 0	0	0	0 0)