

Università degli Studi di Pavia

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE, NATURALI Corso di laurea in Scienze Fisiche

Fotorivelatori Criogenici per la rivelazione di eventi rari in fisica delle alte energie

Candidato Alessandro Villa Matricola 462495 Supervisore

Dott. Andrea Negri

Co-Supervisori

Dott. Roberto Ferrari Dott. Lorenzo Pezzotti

Indice

In	trod	uction		iii				
1	Fut	ure e^+	e^- colliders	1				
_	1.1			1				
	1.2		nic colliders	1				
	1.3	_	tors	1				
2	Calorimetry and dual-readout							
	2.1	Electo	omagnetic showers	3				
		2.1.1	Shower development	3				
		2.1.2	Energy resolution	3				
	2.2	Hadro	onic showers	3				
		2.2.1	Shower development	3				
		2.2.2	Energy resolution	3				
	2.3	Dual-1	readout calorimetry	3				
		2.3.1	Working principles	4				
		2.3.2	Experiments	4				
3	Silie	con Ph	notomultipliers	5				
	3.1		ing principles	5				
	3.2		Response	5				
	3.3		effects	5				
		3.3.1	Dark Count Rate	5				
		3.3.2	After-Pulse	5				
		3.3.3	Optical Cross-Talk	5				
4	IDE	EA DR	calorimeter project	7				
5	IDE	EA DR	calorimeter full simulation	9				
	5.1 Simulation performances							
		5.1.1	Different configurations	9				
		5.1.2	Time studies	9				
		5.1.3	Saturation effect	9				
		5.1.4	Digitization impact on energy resolution	9				

ii	INDICE

		Neural Network: Particle ID on waveform			
6	6 Conclusion 11				
\mathbf{T}	Thanks				
\mathbf{Bi}	Bibliography				

Introduction

Future e^+ e^- colliders

aaa

1.1 Physics goals

aaa

1.2 Leptonic colliders

aaa

1.3 Detectors

Calorimetry and dual-readout

aaa

2.1 Electomagnetic showers

aaa

2.1.1 Shower development

aaa

2.1.2 Energy resolution

aaa

2.2 Hadronic showers

aaa

2.2.1 Shower development

aaa

2.2.2 Energy resolution

aaa

2.3 Dual-readout calorimetry

2.3.1 Working principles

aaa

2.3.2 Experiments

aaa

3.3.2

3.3.3

aaa

Silicon Photomultipliers

3.1 Working principles
aaa
3.2 SiPM Response
aaa
3.3 Noise effects
aaa
3.3.1 Dark Count Rate
aaa

After-Pulse

Optical Cross-Talk

IDEA DR calorimeter project

IDEA DR calorimeter full simulation

aaa

5.1 Simulation performances

aaa

5.1.1 Different configurations

aaa

5.1.2 Time studies

aaa

5.1.3 Saturation effect

aaa

Occupancy effect and Energy loss

Studies of the occupancy effect are important preliminary studies that give knowledge about the information loss in the detection process.

5.1.4 Digitization impact on energy resolution

10 CAPITOLO 5. IDEA DR CALORIMETER FULL SIMULATION

5.2 Neural Network: Particle ID on waveform

aaa

5.2.1 Configuration

aaa

5.2.2 Performances

aaa

5.3 Neural Network: Particle ID on imaging

aaa

5.3.1 Configuration

aaa

5.3.2 Performances

Conclusion

Thanks

14 THANKS

Bibliografia

 $[1]\,$ Y. Fukuda et al., Phys. Rev. Lett. 81 (1998) 1158-1162.