Neural Network Potentials

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

Smith, Isayev and Roitberg

Sabri Eyuboglu February 6, 2018

What are Neural Network Potentials?

Neural Network Potentials are statistical learning models that approximate the potential energy of molecular systems

Why are they significant?

Molecular Dynamics Simulations

Molecular Dynamics Simulations

OBJECTIVE

Simulate the movements of atoms in a molecular system

APPROACH

Use **potential energy** to determine movement of the atoms in the system

for each time-step:

Derive forces acting on each atom using **potential energy** Update position and velocity

Potential Energy Function

A function mapping a molecular system's geometry to its potential energy

where

Molecular Representation

A vector describing the molecular system's geometry. Elements usually consist of atomic numbers and associated 3D coordinates.

E

Potential Energy

The scalar potential energy of the molecular system.

Potential Energy Function **EXAMPLE**

1-Dimensional Molecular Representation for a Diatomic Molecule

MOLECULAR REPRESENTATION

Bond Distance, q

$$\overrightarrow{G} = \{q\}$$

Potential Energy Function **EXAMPLE**

1-Dimensional Molecular Representation for a Diatomic Molecule

MOLECULAR REPRESENTATION

Bond Distance, q

$$\overrightarrow{G} = \{q\}$$

POTENTIAL ENERGY FUNCTION

THE PROBLEM

Potential Energy Function Approximation

Real molecular systems require elaborate molecular representations
Real potential energy functions are very difficult and costly to compute

MD Simulations require

Fast

and

Reliable

Potential Energy Function Approximations

Potential Energy Function Approximations

Method that computes the potential energy from a molecular representation

where

Molecular Representation

A vector describing the molecular system's geometry. Elements can include atom positions, bond lengths and/or angles.

E

Potential Energy

The scalar potential energy of the molecular system.

METHODS OF

Potential Energy Function Approx.

Density Functional Theory (DFT) ab initio Methods

Proceed from first principles

ACCURATE SLOW

TRANSFERABLE

Semi-Empirical Methods

Use empirically determined parameters to speed up DFT computation

LESS ACCURATE

FASTER

TRANSFERABLE

Empirical Methods

Classical Force Fields and Interatomic Potentials

OFTEN INACCURATE

FAST

POOR TRANSFERABILITY

Statistical Learning with Neural Networks

? FAST and ACCURATE and TRANSFERABLE

Neural Networks for Regression

Statistical learning models that can learn a **very** diverse class of real-valued functions

Could it be learned from labeled molecular data?

Regression Unit

INPUT

REGRESSION UNIT COMPUTATION

OUTPUT

Neural Networks for Regression

Find optimal weights by minimizing some loss function

Naive Neural Network Potential

- 1. Variance to Equivalent Molecules
- 2. Fixed length for Input Molecular Representation

IDEA: Atomic Decomposition

- 1. Decompose the molecular representation by atom
- 2. Decompose the energy function by atom

Atomic Environment Vectors (AEV)

Decompose molecular representation of the systems total geometry to a sequence of molecular representations capturing the local geometry around an atom

Input: Coordinates of each atom in the system

For each: Atom in the system

Build: One AEV factoring in coordinates and atomic number of nearby atoms

Atomic Environment Vectors (AEV)

Computation of AEV

Atomic Environment Vectors (AEV)

Decomposed Energy Function

Model total energy E as a sum of each atom's contribution E_i

$$E = \sum_{i=1}^{n} E_i$$

where n is the number of atoms in the molecular system

Naive Architecture

ANI-1 Architecture

DATA

Use **GDB-8** database of all possible molecules containing up to **8** atoms of **H**, **C**, **N**, and **O**

~58k Molecules

Generate likely conformations of each molecule by perturbing the molecule along its **normal modes**

~17.2mil Conformations

Compute energy of conformation using **DFT** and label the example

~17.2mil Labeled Examples

Atom	DFT
Coordinates	Energy
$(x_1 y_1 z_1) \dots (x_n y_n z_n)$	E
$(x_1 y_1 z_1) \dots (x_n y_n z_n)$	E
$(x_1 \ y_1 \ z_1) \dots (x_n \ y_n \ z_n)$	E
$(x_1 y_1 z_1) \dots (x_n y_n z_n)$	E
$(x_1 y_1 z_1) \dots (x_n y_n z_n)$	E
$(x_1 \ y_1 \ z_1) \dots (x_n \ y_n \ z_n)$	E
$(x_1 y_1 z_1) \dots (x_n y_n z_n)$	E
$(x_1 y_1 z_1) \dots (x_n y_n z_n)$	E

COST FUNCTION

$$C(\overrightarrow{E}^{ANI}) = \exp\left(\sum_{j} \overrightarrow{E}_{j}^{ANI} - \overrightarrow{E}_{j}^{DFT}\right)$$

Find minimize via gradient descent with backpropagation

Test Set

Molecules containing more than 8 atoms

Methods for Comparison

ab initio

DFT

Semi-Empirical

DFTB

PM1

AM1

NN Potential

CM Representation

No AEV Type Diff

RMSE GDB-8 RMSE GDB-8+

Source: J. S. Smith, O. Isayev, and A. E. Roitberg, "ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost."

ANI-1 Neural Network Potential Strengths

Innovative Architecture

Highly Transferable (works on larger molecules)

Outperforms Baseline Neural Network Potentials

Models DFT Very Accurately

SPEED

ANI-1 Neural Network Potential Limitations

Lacks Theoretical Justification of Atomic Decomposition?

Mimicking DFT, but...

DFT isn't ground truth

Little to no interpretability of learned function

Only works for C, H, N, O – Scale to more atoms?

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error

Faster method may be more accurate than traditional method

Lydia Hamburg 1/29/2018

Calculations of chemical properties are useful in chemistry and biology

Knowledge of electronic and thermodynamic properties enables:

- Prediction of chemical reactivity
- Identification of peaks in spectroscopy data
- Design of dyes and fluorophores
- Materials design
- Drug screening

Nearly all quantum chemistry calculations are approximations

- Schrodinger's wave equation can't be solved analytically for more than two particles
- Density Functional Theory (DFT) approximates solution to Schrodinger's Equation by simplifying the system
- The paper uses data from a hybrid DFT approach called B3LYP (Becke, 3-parameter, Lee-Yang-Parr)

Hybrid DFT (B3LYP) is fast but has flaws

- DFT makes assumptions that intentionally deviate from known quantum theory
- DFT calculations rely on functions that are fit to a limited set of experimental data
- Unable to predict when DFT will fail spectacularly

ML may be able to provide quick quantum chemistry estimates at a higher level of theory

- Density Functional Theory O(~N³)
- B3LYP, Hybrid DFT O(~N³)
- Hartree-Fock Theory O(N²)
- Coupled-cluster theory O(N⁶)
- Configuration interaction O(>N⁶)

"We investigated *all* combinations of regressors and representations..."

- No new ideas, but useful large scale benchmark
- Central source for results that might instead have been produced in multiple small slightly-different papers

Molecular representations of dataset

- Coulomb matrix (CM)
- Bag of bonds (BOB)
- Molecular graphs (MG)
- Histograms of distances (HD)
- Histograms of dihedrals (HDAD)
- Bonds, angles, machine learning (BAML)
- Extended connectivity fingerprints (ECFP4)
- Molecular atomic radial angular distribution function (MARAD)

Machine learning regressors

- Bayesian ridge regression (BR)
- Elastic net (EN)
- Neural network (NN)
- Graph convolutions (GC)
- Gated graphs (GG)
- Random forest (RF)
- Kernel ridge regression (KRR)

Experimental Data

6k data points

Hybrid DFT Calculations

134k data points

Machine
Learning of
Hybrid DFT
Calculations
134k data points

Machine
Learning of
Hybrid DFT
Calculations
134k data points

Comparison of errors

"ML models could be more accurate than hybrid DFT if...data were available"

Weaknesses

- Not a new concept (but the thoroughness is very satisfying)
- Generalizability unknown: explored 134K/10⁶⁰ of chemical space
- Molecules types of interest unlikely to be well represented in training set
- Calculations of higher levels of theory might get faster
- The transitive nature of the conclusion slightly weakens confidence in the findings

Strengths

- Competently and thoroughly explored the space
- Made use of a huge percentage of all of the quantum chemistry data known to mankind
- Great example of a cross-disciplinary collaboration chemists supplied the descriptions and interpretations, Google did the ML
- Straightforward about shortcomings

Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules

Anvita Gupta CS371

Free Energy vs Potential Energy

U(x) ~ Potential energy based on exact coordinates of every atom in system (x)

Free Energy vs Potential Energy

 $U(x) \sim Potential energy based on exact coordinates of every atom in system (x)$

△G (Free Energy) gives a **penalty** to macrostates which are statistically unlikely

Goal of Authors: Predict **free energy** of macromolecular complex

Develop free-energy function based on both **physics modelling** and **statistics** from **empirical data**

Decoy discrimination

Homology modeling

Molecular docking

Sequence prediction

Mutational $\Delta\Delta G$

Energy Function Development Pipeline

Modelling

Pick Terms for Energy Function - **Physics** and **Statistics**

Energy ~
w*[electrostatic] +
w*[bond lengths] +
w*[protein torsion
from PDB] + ...

Training

Extract terms from training data

Feature Recovery Benchmarks

Atom Pair Distance = F[Energy(molecule)]

Optimize Weights for Energy Function

Evaluation

Scientific Benchmarks

Docking Scores, etc.

Modelling Energy Function (~100 parameters)

Nonbonding Interactions

- Lennard Jones PotentialImproved!
- Coulomb's Law (Electrostatic)
- Van Der Waal's
- Hydrogen Bonding

Bonding Terms

- Bond Torsion
 - Improved!
- Bond lengths

Solvation Energy

- Anisotropic (Asymmetric)
 Solvation Model
 - Improved!

Statistical Terms

- Small Molecule and Macromolecular Data
 - -log(Prob) ~ Energy

Modelling Energy Function (~100 parameters)

Nonbonding Interactions

- Lennard Jones PotentialImproved!
- Coulomb's Law (Electrostatic)
- Van Der Waal's

Bonding Terms

- Bond Torsion
 - o Improved!
- Bond lengths

- $E_{\text{total}} = E_{\text{LJ_atr}} + W_{\text{LJ_rep}} E_{\text{LJ_rep}} + E_{\text{Coulomb}} + E_{\text{Hbond}}$ $+ E_{\text{solv_iso}} + E_{\text{solv_aniso}} + W_{\text{dun}} E_{\text{dun}} + W_{\text{rama}} E_{\text{rama}}$ $+ W_{\text{p_aa_pp}} E_{\text{p_aa_pp}} + W_{\text{bonded}} E_{\text{bonded}} + E_{\text{ref}}$ (5)
 - Anisotropic (Asymmetric)
 Solvation Model
 - Improved!

tatistical Energy Terms

- Small Molecule and Macromolecular Data
 - -log(Prob)

Training Energy Function

Evaluating Energy Function (Results)

- Divided into test set and training set
- Decoy Detection
 - First allow structures to move (relax) in current energy function)
- Improvement of:
 - 20.8% (36.3% to 57.1%) on training set
 - 14.1% (53.1% to 67.2%) on test set
- Homology Modeling
 - Small but consistent improvements when using this energy function with Rosetta

Figure 2. Improvements in monomeric structure prediction from independent tests.

Results: Docking Studies

- Improvements in both protein-protein and protein-ligand docking
- Protein-ligand not used in optimization!
- Demonstrates success in balancing:
 - Nonbonded interaction terms
 - Solvation energy
- Key successes of new function:
 - Correct protein-protein docked pose with smaller buried surface area but more favorable interactions
 - Correct protein-ligand pose with greater
 Solvation energy but more interactions

Left: Correct structure found by *optnov15*, Right: non-native structure selected by *talaris*

Results: Various Other Tasks

Protein Design

- Small improvements (on the order of 1 percentage point)
- Better balanced preferences for different amino acids

Free Energy Change from Mutations

- R^2 between predicted and experimental ΔΔG improves by 4% to 0.743
- <1% improvement in classification accuracy for stabilizing mutations

Small Molecule Thermo Data

- To be expected.
- Improved estimates of heat of vaporization
- Original function not enough weight on nonbonded interaction strength

Key Takeaways

- Integrated both small molecule force field data and macromolecular structural data to improve energy function
- 2. Thoroughly evaluated energy function
 - a. Results from almost every task Energy Function could be used for
 - b. Good benchmarking of all computational software
 - c. Tested dualOptE (simplex optimization) on existing energy function to make sure it was performing correctly
- 3. Good interpretation of cases when new energy function improved upon older energy function

Limitations

- 1. No standard evaluation on several tasks for benchmarking
- 2. Conflation of improved energy terms and increased training data
- 3. "Black magic"
 - a. Setting weights for target functions
 - b. Statistics/Sources of Training Data
- 4. Order of 100 parameters
 - a. Authors call this a "high dimensional subspace" when nowadays this is not true
- 5. Important to see: more careful analysis of cases when initial energy function (talaris) performed better than new energy function (opt-nov-15)
- 6. In general: too much jargon makes paper unclear, generally disorganized.

Methods: Overview of Approach

