Grade received 100% To pass 80% or higher

Go to next item

1/1 point

1. The graph below shows the function $f(x)= an^{-1}(x)$

By using the Maclaurin series or otherwise, determine whether the function shown above is even, odd or neither.

- O Even
- Neither odd nor even

 \odot correct For an odd function, -f(x)=f(-x). We can also determine if a function is odd by looking at its symmetry. If it has rotational symmetry with respect to the origin, it is an odd function.

2. The graph below shows the discontinuous function $f(x)=rac{2}{(x^2-x)}$. For this function, select the starting points that will allow a Taylor approximation to be made.

- x = 1
- \odot Correct A Taylor approximation centered at x=2 will allow us to approximate f(x) for x>1 only.
- x = -3

 \odot Correct A Taylor approximation centered at x=-3 will allow us to approximate f(x) for x<0 only.

x = 0.5

 \bigcirc Correct A Taylor approximation centered at x=0.5 will allow us to approximate f(x) for 0 < x < 1 only.

3. For the same function as previously discussed, $f(x)=\frac{2}{(2^2-x)}$, select all of the statements that are true about the resulting Taylor approximation.

1/1 point

Approximation ignores segments of the function

- Correct

 Due to the discontinues function and the range of x values in which it remains well behaved, the starting
 point of the Taylor series dictates the domain of the function we are trying to approximate.
- Approximation accurately captures the asymptotes
- ☐ The approximation converges quickly
- Approximation ignores the asymptotes

Correct
 Taylor series approximations often find it difficult to capture asymptotes correctly. For example, the zeroth
 and first order terms cut directly through an asymptote in most cases.

4. The graph below highlights the function $f(x)=\frac{1}{(1+x^2)}$ (green line), with the Taylor expansions for the first 3 terms also shown about the point x=2. The Taylor expansion is $f(x)=\frac{1}{2}-\frac{4(x-2)}{2}+\frac{11(x-2)^2}{2}+\dots$ Although the function looks rather normal, we find that the Taylor series does a bad approximation further from its starting point, not capturing the turning point. What could be the reason why this approximation is poor for the function described.

1/1 point

Asymptotes are in the complex plane

Correct
Although this function is well behaved in the real plane, in the imaginary plane, the asymptotes limit its convergence and the behaviour of the Taylor expansion, which is shown to behave badly for functions that are discontinuous.

☐ The function has no real roots

Function does not differentiate well

It is a discontinuous function in the complex plane

Correct
 Although this function is well behaved in the real plane, in the imaginary plane, the asymptotes limit its
 convergence and the behaviour of the Taylor expansion, which is shown to behave badly for functions
 that are discontinuous.

☐ None of these options

5. For the function $f(x) = \frac{1}{x}$, provide the linear approximation about the point x = 4, ensuring it is second order 3/3 point accurate.

$$\bigcirc \ f(x) = 1/4 + x/16 - \ O(\Delta x^2)$$

$$\bigcap f(x) = 1/4 - (x - 4)/16 + O(\Delta x)$$

$$\bigcirc f(x) = 1/4 - x/16 + O(\Delta x^2)$$

 \odot Correct Second order accurate means we have a first order Taylor series. All the terms above are sufficiently small, assuming Δx is small.