Şiruri 12

Progresii 12.1

P 1. Fie $(a_n)_{n\in\mathbb{N}^*}$ o progresie aritmetică cu termeni pozitivi, de rație r>0. Arătați că pentru orice $n\in\mathbb{N}^*$ au loc egalitățile:

a)
$$\sum_{k=1}^{n} a_k = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}r$$
.

$$\begin{array}{l} \text{a) } \sum_{k=1}^{n} a_{k} = \frac{n(a_{1} + a_{n})}{a_{k}} = na_{1} + \frac{n(n-1)}{2}r. \\ \text{b) } \sum_{k=1}^{n} \frac{r}{a_{k}a_{k+1}} = \frac{1}{a_{1}} - \frac{1}{a_{n+1}}. \text{ c) } \sum_{k=1}^{n} \frac{mr}{a_{k}a_{k+1}...a_{k+m}} = \frac{1}{a_{1}a_{2}...a_{m}} - \frac{1}{a_{n+1}a_{n+2}...a_{n+m}}, \ (\forall) m \in \mathbb{N}^{*}. \end{array}$$

P 2. Fie $(a_n)_{n\in\mathbb{N}^*}$ un şir de numere reale nenule, cu proprietatea că există $r\in\mathbb{R}^*$ astfel încât

$$\sum_{k=1}^{n} \frac{r}{a_k a_{k+1}} = \frac{1}{a_1} - \frac{1}{a_{n+1}}, \quad (\forall) n \in \mathbb{N}^*.$$

Arătați că șirul este o progresie aritmetică de rație r.

P 3. Fie $(a_n)_{n\in\mathbb{N}^*}$ o progresie geometrică de rație $q\in\mathbb{R}\setminus\{1\}$. Arătați că pentru orice $n\in\mathbb{N}^*$ are loc egalitatea

$$a_1 + a_2 + \dots + a_n = \frac{a_{n+1} - a_1}{q - 1}$$
.

P 4. Fie $a \in (-1,1)$ oarecare şi $(x_n)_{n \in \mathbb{N}}$ şirul definit prin $x_n = \sum_{k=0}^n a^k$. Arătaţi că şirul $(x_n)_{n \in \mathbb{N}}$ este convergent şi determinați limita sa.

P 5. Calculati sumele

$$1 + 2q + 3q^{2} + 4q^{3} + \dots + nq^{n-1},$$

$$1 + 4q + 9q^{2} + 16q^{3} + \dots + n^{2}q^{n-1}.$$

Puncte limită ale unui şir

P 6. Fie $(a_n)_{n\geq 1}$ un şir de numere reale şi $I\subseteq \overline{\mathbb{R}}$ un interval. Arătaţi că dacă $\{n\in \mathbb{N}^*|\ a_n\in I\}$ este infinită, atunci

$$\overline{I} \cap \mathcal{L}((a_n)) \neq \emptyset.$$

P 7. Fie $(a_n)_{n\geq 1}$ un şir mărginit şi $l_*=\liminf a_n,\ l^*=\limsup a_n$. Arătaţi că pentru orice $\varepsilon>0$ există un rang $n_\varepsilon\geq 1$ cu proprietatea că

$$l^* - \varepsilon < a_n < l^* + \varepsilon, \qquad (\forall) n \ge n_{\varepsilon}.$$

P 8. Fie $a \in \mathbb{R}$ un număr real cu proprietatea că $a + \varepsilon > 0$, $(\forall)\varepsilon > 0$. Arătați că $a \ge 0$.

P 9. Fie $(a_n)_{n\geq 1}$ un şir de numere reale, iar $(b_n)_{n\geq 1}$ un şir strict monoton de numere pozitive. Arătați că dacă are loc una dintre condițiile

a)
$$\lim_{n \to \infty} b_n = \infty$$

b)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$$
, atunci

$$\liminf \frac{a_{n+1}-a_n}{b_{n+1}-b_n} \leq \liminf \frac{a_n}{b_n} \leq \limsup \frac{a_n}{b_n} \leq \limsup \frac{a_{n+1}-a_n}{b_{n+1}-b_n} \,.$$

P 10. Fie $(a_n)_{n\geq 1}$ un şir de numer reale pozitive. Arătați că

$$\liminf \frac{a_{n+1}}{a_n} \le \liminf \sqrt[n]{a_n} \le \limsup \sqrt[n]{a_n} \le \frac{a_{n+1}}{a_n}.$$

P 11. Calculați

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n}.$$

P 12. Fie $(a_n)_{n\geq 1}$ un șir de numere pozitive care verifică următoarele condiții

a) subșirul $(a_{2n-1})_{n\geq 1}$ este convergent cu limita 2.

b) $a_{2n} = \sqrt{a_n + 2}$ pentru orice $n \ge 1$.

Arătați că șirul $(a_n)_{n\geq 1}$ este convergent.

12.3 Siruri Cauchy

P 13. Fie $(a_n)_{n\geq 1}$ un şir de numere reale cu proprietatea că şirul $(x_n)_{n\geq 1}$ definit prin $x_n = \sum_{k=1}^n |a_k|$, pentru orice $n\geq 1$, este convergent. Arătați că şirul $(y_n)_{n\geq 1}$, definit prin $y_n = \sum_{k=1}^n a_k$ pentru orice $n\geq 1$, este de asemenea convergent.

P 14. Fie $x \in \mathbb{R}$ oarecare, iar $(a_n(x))_{n \in \mathbb{N}}$ şirul definit prin

$$a_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$
, pentru orice $n \in \mathbb{N}$.

Arătați că șirul $(a_n(x))_{n\in\mathbb{N}}$ este convergent. Dacă $f:\mathbb{R}\longrightarrow\mathbb{R}$ este definită prin $f(x)=\lim_{n\longrightarrow\infty}a_n(x)$, arătați că

$$f(0) = 1$$
, $f'(x) = f(x)$, $f(x+y) = f(x) \cdot f(y)$, $(\forall) x, y \in \mathbb{R}$.

Determinați funcția f.

P 15. Fie $x \in \mathbb{R}$ oarecare, iar $(a_n(x))_{n \in \mathbb{N}}$ şi $(b_n(x))_{n \in \mathbb{N}}$ şirurile definite prin

$$a_n(x) = \sum_{k=0}^n (-1)^k \cdot \frac{x^{2k}}{(2k)!} \qquad , \ \, \text{pentru orice } n \in \mathbb{N},$$

$$b_n(x) = \sum_{k=0}^{n} (-1)^k \cdot \frac{x^{2k+1}}{(2k+1)!}$$
, pentru orice $n \in \mathbb{N}$.

Arătați că șirurile $(a_n(x))_{n\in\mathbb{N}}$ și $(b_n(x))_{n\in\mathbb{N}}$ sunt convergente. Dacă $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ sunt definite prin $f(x)=\lim_{n\longrightarrow\infty}a_n(x)$, respectiv $g(x)=\lim_{n\longrightarrow\infty}b_n(x)$, arătați că

$$f(0) = 1$$
, $g(0) = 0$, $f(-x) = f(x)$, $g(-x) = -g(x)$, $f'(x) = -g(x)$, $g'(x) = f(x)$, $(\forall)x \in \mathbb{R}$.

P 16.

12.4 Câteva limite remarcabile

P 17. Fie $(x_n)_{n\in\mathbb{N}^*}$ şi $(y_n)_{n\in\mathbb{N}^*}$ şirurile definite prin

$$x_n = \left(1 + \frac{1}{n}\right)^n, \quad y_n = \left(1 + \frac{1}{n}\right)^{n+1}, (\forall) n \in \mathbb{N}^*.$$

Arătați că $x_n < x_{n+1} < y_{n+1} < y_n$ pentru orice $n \in \mathbb{N}^*$, $\lim_{n \to \infty} (y_n - x_n) = 0$, astfel că $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n (= e)$.

P 18. Fie $(a_n)_{n\in\mathbb{N}}$ un șir de numere nenule, cu limita $\lim_{n\longrightarrow\infty}a_n=0$. Arătați că

$$\lim_{n \to \infty} \left(1 + \frac{1}{a_n} \right)^{a_n} = e \,, \qquad \lim_{n \to \infty} \frac{\ln(1 + a_n)}{a_n} = 1 \,;$$

$$\lim_{n \to \infty} \frac{(1 + a_n)^r - 1}{a_n} = r \, (r \in \mathbb{R}), \qquad \lim_{n \to \infty} \frac{\alpha^{a_n} - 1}{a_n} = \ln(\alpha) \, (\alpha \in (0, \infty));$$

$$\lim_{n \to \infty} \frac{\sin(a_n)}{a_n} = \lim_{n \to \infty} \frac{tg(a_n)}{a_n} = \lim_{n \to \infty} \frac{\arcsin(a_n)}{a_n} = \lim_{n \to \infty} \frac{\arctan(a_n)}{a_n} = 1 \,.$$

P 19. Fie $(x_n)_{n\in\mathbb{N}^*}$ şi $(y_n)_{n\in\mathbb{N}^*}$ şirurile definite prin

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n+1), \quad y_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n), \quad (\forall) n \in \mathbb{N}^*.$$

Arătați că $x_n < x_{n+1} < y_{n+1} < y_n$, $(\forall) n \in \mathbb{N}^*$ și $\lim_{n \to \infty} (y_n - x_n) = 0$, astfel că $(x_n)_{n \in \mathbb{N}^*}$ și $(y_n)_{n \in \mathbb{N}^*}$ sunt convergente la o aceeași limită γ (constanta Euler-Mascheroni).

P 20. Arătați că

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \ln(2).$$

P 21. Fie $\alpha > -1$ oarecare. Arătați că

$$\lim_{n \to \infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}} = \frac{1}{\alpha+1}.$$

P 22. Fie a>0 și $\alpha>0$ oarecare, iar $(x_n)_{n\in\mathbb{N}}$ șirul definit prin

$$x_0 = \alpha$$
 şi $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), (\forall) n \in \mathbb{N}.$

Arătați că $(x_n)_{n\in\mathbb{N}}$ este convergent cu limita \sqrt{a} .

P 23. Arătați că

$$\lim_{n \to \infty} \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} \cdot \left(1 + \sqrt{\frac{1}{2}}\right)} \cdot \dots \underbrace{\sqrt{\frac{1}{2} \cdot \left(1 + \sqrt{\frac{1}{2} \cdot \left(1 + \dots + \sqrt{\frac{1}{2}}\right)}\right)}}_{n \text{ radicali}} = \frac{2}{\pi}.$$

P 24. Fie $(a_n)_{n\in\mathbb{N}^*}$ şi $(b_n)_{n\in\mathbb{N}^*}$ şirurile definite prin

$$a_n = \frac{{}^{n+1}\sqrt{(n+1)!}}{{}^{n}\sqrt{n!}}, \qquad b_n = {}^{n+1}\sqrt{(n+1)!} - {}^{n}\sqrt{n!}.$$

Arătați că $\lim_{n \longrightarrow \infty} a_n = 1$, $\lim_{n \longrightarrow \infty} a_n^n = e$ și că

$$a_n^n = \left((1 + (a_n - 1))^{\frac{1}{a_n - 1}} \right)^{\frac{n}{\frac{n}{\sqrt[n]} \cdot b_n}}$$
.

Deduceţi că $\lim_{n \to \infty} b_n = \frac{1}{e}$.

P 25. Fie $n \in \mathbb{N}$, $n \ge 2$ oarecare. Arătați că numerele $x_k = ctg^2\left(\frac{k\pi}{2n+1}\right)$, cu $k = \overline{1,n}$ sunt soluțiile ecuației

$$C_{2n+1}^1 x^n - C_{2n+1}^3 x^{n-1} + C_{2n+1}^5 x^{n-2} - \dots = 0.$$

Deduceți că

$$\lim_{n \to \infty} \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \right) = \frac{\pi^2}{6} ,$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \frac{1}{n^4} \right) = \frac{\pi^4}{90} .$$

P 26. Arătați că probabilitatea ca două numere naturale nenule alese la întâmplare să fie prime între ele este

$$P = \frac{6}{\pi^2} \,.$$