$$P(X > s + t | X > s) = P(X > t)$$

where s and t are integers and X is a geometrically distributed random variable. The probability of a failure is denoted by q and

$$\begin{split} P(X > s) &= \sum_{j=s+1}^{\infty} q^{j-1} p = q^{s}, \\ P(X > t) &= q^{t}, \text{and} \\ P(X > s+t) &= q^{s+t}; \text{so}, \\ P[(X > s+t)|X > s] &= \left(q^{s+t}/q^{s}\right) = q^{t} \end{split}$$

which is equal to P(X > t).

Q2 Two results that are useful to solve this problem are

$$(c+d) \mod m = c \mod m + d \mod m$$

and that if $g = h \mod m$, then we can write g = h - km for some integer $k \ge 0$. The last result is true because, by definition, g is the remainder after subtracting the largest integer multiple of m that is $\le h$.

(a) Notice that

$$X_{i+2} = aX_{i+1} \mod m$$

 $= a[aX_i \mod m] \mod m$
 $= a[aX_i - km] \mod m$ (for some integer $k \ge 0$)
 $= a^2X_i \mod m - akm \mod m$
 $= a^2X_i \mod m$ (since $akm \mod m = 0$).

(b) Notice that

$$(a^n X_i) \bmod m = \{(a^n \bmod m) + [a^n - (a^n \bmod m)]\} X_i \bmod m$$

$$= \{(a^n \bmod m)X_i \bmod m\} + \{[a^n - (a^n \bmod m)]X_i \bmod m\}$$

$$= \{(a^n \bmod m)X_i \bmod m\} + \{kmX_i \bmod m\}$$
 (for some integer $k \ge 0$)
$$= (a^n \bmod m)X_i \bmod m.$$

The answer has the same computation from an example in U N Bhat's book.

(i) Assuming that the two counters operate independently of each other determine the expected number of waiting customers and their mean waiting time at each counter.

	Commercial	Personal	
λ	6/h	12/h	
μ	12/h	24/h	
$ ho = \frac{\lambda}{\mu}$	0.5	0.5	
$L_q = \frac{\rho^2}{1-\rho}$	0.5	0.5	Answer
$W_q = \frac{\rho}{\mu(1-\rho)}$	5 min	$2.5 \min$	Answer

(ii) What is the effect of operating the two queues as a two-server queue with arrival rate 18/h and service rate 18/h? What conclusion can you draw from this operation?

	Two-server queue	
λ	18/h	
μ	18/h	
Number of servers (s)	2	
$\rho = \frac{\lambda}{su}$	0.5	
$\alpha = \frac{\lambda}{\mu}$	1	
$p_0 = \left[\sum_{0}^{1} \frac{\alpha^r}{r!} + \frac{\alpha^2}{2(1-\rho)}\right]^{-1}$	0.33	
$L_q = \frac{\rho \alpha^2 p_0}{2(1-\rho)^2}$	0.33	Answer.
 $W_q = \frac{\alpha^2 p_0}{(2) \ 2\mu (1-\rho)^2}$	1.33 min	Answer.

Conclusion: The two-server queue operation is more efficient than the two single-server operations.

Q4. (the answer involves computation same as an example from U N Bhat's book)

(a)

Assuming that the arrivals are in a Poisson process with rate 1 per minute (λ) and the service times are exponential with mean 2.5 minute $(1/\mu)$. We have $\rho = 2.5$. Also K = 3.

$$L_q = \frac{2.5}{1 - 2.5} - \frac{(2.5)[1 + 3(2.5)^3]}{1 - (2.5)^4}$$
$$= 1.4778$$

Answer.

Since $\lambda = 1$, the mean waiting time in queue

$$W_q = 3.7271 \text{ min.}$$

Answer.

(b)

We use the formula for $1 - F_q(t)$ with $t = 1.5, 1/\mu = 2.5$ and $\rho = 2.5$. We get,

P(Wait in queue > 1.5 min) $= \frac{1 - 2.5}{1 - (2.5)^3} \sum_{n=1}^{3-1} (2.5)^n \sum_{r=0}^{n-1} e^{-\frac{1.5}{2.5}} \frac{(1.5/2.5)^r}{r!}$ = 0.7036

Answer.

(c)

With two lines, now s=2 and we have an M/M/2/3 system. Accordingly we have $\alpha=2.5, \ \rho=1.25, \ s=2$ and K=3. We get

$$p_0 = 0.0950,$$
 $p_1 = 0.2374$
 $p_2 = 0.2969,$ $p_3 = 0.3711$

$$W_q = 0.5902 \text{ min}$$
 Answer.
 $L_q = \lambda(1 - p_3)W_q = 0.3712$ Answer.

P(wait in queue > 1.5 min):

$$1 - F_q(1.5) = 0.1422.$$
 Answer.

The formula for the

probability that the waiting time exceeds t is:

$$\frac{1}{1 - p_K} \sum_{n=s}^{K-1} p_n \sum_{r=0}^{n-s} e^{-s\mu t} \frac{(s\mu t)^r}{r!}$$

- **Q5** (a) Generate x distributed as |x| on [-1,1] by evaluating $\operatorname{sign}(u-0.5)*\sqrt{(2^*|u-0.5|)}$ where u is generated as U(0,1) by a pseudo-random number generator.
 - (b) 0. Let *x* be generated by computing $sign(u-0.5)*\sqrt{(2^*|u-0.5|)}$ where *u* is generated as U(0,1) by a pseudo-random number generator.
 - 1. Generate a random number v distributed as U(0,1) using a pseudo-random number generator.
 - 2. If $v \le (x*x)/|x|$, that is, if $v \le |x|$ (so that there is no division by 0), then accept x as a random variate distributed as (3/2)*x*x else reject and go back to step 1.

The maximum efficiency of the method can be no more than 2/3 since the area under the curve (3/2)*x*x on [-1,1] cover only 2/3rd of the area under the straight line segments (3/2)*|x| on [-1,1].

Any coefficient less than 3/2 multiplied with |x| will not cover the whole area under (3/2)*x*x on [-1,1].