Corrélation LOC * PNS

Régressions linéaires multiples

	Modèle 1 - OLS avec outliers	Modèle 2 - OLS sans outliers
(Intercept)	0.220 *	0.055
loss_control	(0.113) -0.094 (0.143)	(0.100) 0.051 (0.138)
PNS	-0.001	0.002
LOC	(0.002) 0.003	(0.002) 0.003
loss_control:PNS	(0.003) -0.000	(0.003) -0.004
loss_control:LOC	(0.003) 0.004 (0.004)	(0.003) 0.004 (0.004)
N R2	192 0.038	138 0.041

Standard errors are heteroskedasticity robust. *** p < 0.01; ** p < 0.05; * p < 0.1.

Column names: names, Modèle ${\tt 1}$ - OLS avec outliers, Modèle ${\tt 2}$ - OLS sans outliers

Bêta régressions

model.beta.reg.outliers <- betareg(FA_corr ~ loss_control+PNS+LOC+PNS*loss_ control+LOC*loss_control, data = df_participants)

	Modèle 1 - bêta rég avec outliers	Modèle 2 - bêta reg sans outliers
(Intercept)	-1.469 ***	-2.187 ***
	(0.528)	(0.646)
loss_control	-0.270	0.251
	(0.732)	(0.886)
PNS	0.000	0.013
	(0.008)	(0.010)
OC	0.013	0.014
	(0.013)	(0.015)
oss_control:PNS	-0.003	-0.015
000 00000000000000000000000000000000000	(0.012)	(0.015)
oss_control:LOC	0.014	0.014
(phi)	(0.019) 6.012 ***	(0.022) 6.283 ***
(piri)	(0.585)	(0.728)
	(0.303)	(0.728)
iobs	192	138
seudo.r.squared	0.028	0.044
f.null	190.000	136.000
ogLik	90.615	75.915
ΙĊ	-167.229	-137.831
BIC	-144.427	-117.340
df.residual	185.000	131.000
nobs.1	192.000	138.000

Column names: names, Modèle 1 - bêta rég avec outliers, Modèle 2 - bêta reg sans outliers

Convert coefficients of bêta régression (R) to compare to linear regression

```
    coefficient par coefficient (alpha = intercept; beta = coeff to convert)

convert_coeff_beta <- function(alpha, beta) {
    p0 = 1/(1+exp(-(alpha + beta*3)))
    p1 = 1/(1+exp(-(alpha + beta*4)))
    coeff_simple <- p1 - p0
    return(coeff_simple)
}
</pre>
```

Théorie de la detection du signal

```
# to compute d' / c when Hits = 1 or FA = 0 (often when low nb of trials =
high sampling variability), we use loglinear transformation
# which seems to work quite well (Hautus, 1995; Stanislaw & Todorov, 1999)

HIT_corr = (sum(signal == 1 & correct == 1) + 0.5)/ (nb_signal + 1),

FA_corr = (sum(signal == 0 & correct == 0 & response != "timeout") +
0.5) / (nb_noise + 1),

dprime = round(qnorm(HIT_corr) - qnorm(FA_corr),2),
c = round(-0.5 * (qnorm(HIT_corr) + qnorm(FA_corr)), 2)
```

Tests t d' et c

```
> t.test(dprime ~ loss_control, data = df_participants)
         Welch Two Sample t-test
        dprime by loss_control
t = 0.60783, df = 189.75, p-value = 0.544
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.1534243 0.2900910
sample estimates:
mean in group 0 mean in group 1
        1.169583
                           1.101250
> t.test(dprime ~ loss_control, data = df_participants_cleaned)
        Welch Two Sample t-test
data: dprime by loss_control
t = -0.113, df = 130.92, p-value = 0.9102
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.2479260 0.2211331
sample estimates:
mean in group 0 mean in group 1
        1.290694
                           1.304091
c (decision criterion)
t.test(c ~ loss_control, data = df_participants)
         Welch Two Sample t-test
data: c by loss_control
t = 0.32558, df = 189.39, p-value = 0.7451
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.1022250 0.1426416
sample estimates:
mean in group 0 mean in group 1
       0.1595833
                         0.1393750
> t.test(c ~ loss_control, data = df_participants_cleaned)
        Welch Two Sample t-test
data: c by loss_control
t = 0.0055037, df = 129.78, p-value = 0.9956
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.1538898 0.1547484
sample estimates:
mean in group 0 mean in group 1
       0.1702778
                         0.1698485
```