Problema 1 Fie $y_n = \int_0^1 t^n e^{-t} dt$, n = 0, 1, 2, ...

- (a) Utilizați integrarea prin părți pentru a obține o relație de recurență între y_k și y_{k-1} , pentru $k = 1, 2, 3, \ldots$, și determinați valoarea de pornire y_0 .
- (b) Scrieţi un program MATLAB care generează y₀, y₁, ..., y₂₀, utilizând recurenţa de la (a), şi afişaţi rezultatul cu 15 cifre zecimale după marca zecimală. Explicaţi detaliat ce se întâmplă.
- (c) Utilizaţi recurenţa de la (a) în ordine inversă, pornind cu valoarea (arbitrară) y_N = 0. Plasaţi în cinci coloane consecutive ale unei matrice de (21 × 5) Y valorile y₀^(N), y₁^(N), ..., y₂₀^(N) astfel obţinute pentru N = 22, 24, 26, 28, 30. Determinaţi cât de mult diferă una de alta coloanele consecutive ale lui Y afişând

$$e_i = \max |(Y(:, i+1) - Y(:, i)) / Y(:, i+1)|, i = 1, 2, 3, 4.$$

Tipăriți ultima coloană Y(:,5) a lui Y și explicați de ce ea reprezintă precis cantitățile y_0, y_1, \ldots, y_{20} .

Problema 2 La evaluarea pe calculator a funcției

$$f(x) = \frac{e^x - 1 - x}{x^2}$$

se observă o eroare relativă mare pentru valori $x \approx 0$.

- 1. Reprezentați grafic pe intervalul $x \in [-10^{-11}, 10^{-11}]$. Explicați ce se întâmplă.
- 2. Găsiți o metodă de calcul a lui f pentru |x| < 1 la precizia mașinii și scrieți o funcție MATLAB pentru calculul lui f. Reprezentați din nou cu noua funcție.