杭州电子科技大学学生考试卷(B)卷

考试课	计算机组成原理	考试日	2012 年	月	成 绩		
程			期	日			
课程号	A0507030	教师号		任课者	炉姓名	戴钧、	冯建文、刘鹏
考生姓		学 号 (8		年级	10 级	专业	计算机
名		位)					

题号	_	=	Ξ	四	五	总分
分数	20	20	10	20	30	100
得分						

所有试题均做在答题纸上, 否则不计分!

答题纸

1、 单项选择题(20分,每题1分,按小标号填写答案)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11	(12	(13	(14	(15	(16	(17	(18	(19	(20
))))))))))

2、 计算填空题(20分,每空1分)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(11	(12	(13	(14	(15	(16	(17	(18	(19	(20
))))))))))

3、 计算题(10分)

4、 简答题(20分, 每题5分)

第1页 共5页

座位号:	
	5、 综合设计题(30 分)

第2页 共5页

座位号:

试题

- 1、 单项选择题(20分。每空1分)
- 1、计算机系统包括<u>(1)</u>。
 - A. 五大部件
- B. 主机和外设
- C. 硬件系统和软件系统 D. 系统软件和应用软件
- 2、系统软件的核心是(2)。
 - A. 操作系统
- B. 语言处理程序
- C. 服务性程序
- D. 数据库管理系统
- 3、ASCII 码是对(3)进行编码的一种方案。
 - A. 西文字符
- B. 汉字 C. 图形符号 D. 声音
- 4、在汉字系统中存在下面几种编码,汉字库中存放的是(4)。
 - A. 汉字输入码
- B. 汉字内码
- C. 汉字交换码
- D. 汉字字模码
- 5、对于一个16×16点阵的汉字,若要显示输出,它占用的存储空间是<u>(5)</u>个字节,但是若要在机内存 储,它占用的存储空间则是(6)个字节。
 - A. 256
- B. 32 C. 16
- D. 2
 - E. 1
- 6、计算机的指令系统是指一台计算机中所有<u>(7)</u>的集合。

 - A. 微指令 B. 机器指令 C. 操作系统指令 D. 符号指令
- 7、下面三种语言中,<u>(8)</u>既是符号化语言,又是面向机器的语言。
 - A. 汇编语言
- B. 机器语言 C. 高级语言
- 8、在浮点机器数的表示中, (9) 是隐含表示的。
 - A. 尾数

- B. 阶码 C. 数符 D. 阶码的底
- 9、在CPU中, (10)用于存放指令地址, (11)用于存放运算结果的状态。
 - A. 数据寄存器
- B. 地址寄存器
- C. 程序计数器

- D. 标志寄存器
- E. 指令寄存器
- 10、 指令系统中采用不同寻址方式的目的主要是(12)。
 - A. 实现存贮程序和程序控制
 - B. 缩短指令长度,扩大寻址空间,提高编程灵活性
 - C. 以便直接访问外存
 - D. 提供扩展操作码的可能并降低指令译码难度
- 11、 下面有关 Cache 的说法哪一个是不正确的: <u>(13)</u>。
 - A. 设置 Cache 后,不仅扩大了主存的容量,而且提高了主存的平均访问速度。
- B. 设置 Cache 的理论基础,是程序访问的局部性原理。
- C. Cache 的内容是主存部分内容的副本。
- D. Cache 的功能均由硬件实现,对程序员是透明的。

- 12、 一个指令周期通常被划分为若干个(14)。
 - A. 存储周期
- B. 时钟周期 C. 工作脉冲
- D. 机器周期
- 13、 微程序控制器中,一条机器指令通常是由(15)来解释执行的。
 - A. 一条微指令
- B. 一段微程序
- C. 一个微命令
- D. 一个微操作
- 14、 计算机中采用二进制表示数据,下面哪一种原因是错误的: (16)。
 - A. 二进制数的表示精度高
 - B. 二讲制数运算规则简单
 - C. 二值状态的电子器件易实现
 - D. 具有逻辑特性,可以进行逻辑运算
- 15、 指令和数据均存放在存储器中,由(17)来区分哪些是指令字,哪些是数据字。
 - A. 运算器
- B. 操作系统
- C. 控制器
- D. 适配器
- 16、 下面哪一组存储器是永久性存储器: (18)。
 - A.SRAM 和硬盘
- B. DRAM 和 Cache
- C. ROM 和外存
- D. 优盘和 Cache
- 17、 Cache 是一种高速小容量的存储器,它位于(19)之间。
 - A. CPU 和内存
- B. CPU 和外存
- C. 内存和外存
- D. 运算器和控制器
- 18、 下面(20)机器数中, "0"的表示方法是唯一的。
 - A. 原码
- B. 反码 C. 补码
- D. 移码

- E. 原码和反码 F. 补码和移码
- 2、 计算填空题(20分,每空1分)
- 1、在 CPU 执行的一段时间内,Cache 完成存取的次数为 2910 次,主存完成的存取次数为 90 次, 已知 Cache 的存储周期为 10ns, 主存的存储周期为 50ns。则 Cache 的命中率为 (1), Cache/主 存系统的平均访问时间为(2) ns, Cache/主存系统的效率为(3)。
- 2、设主存容量 64MB, 存储器按字节编址; Cache 容量 16KB, 每块 16B, Cache 按照 4 路组相联 方式组织,则主存地址(4)位;其中"标记"字段(5)位,Cache 组地址(6)位,块内地 址 (7) 位; 主存地址 1234H 映射到 Cache 的 (8) 组。
- 3、设某8位计算机指令格式如下:

L(,	XH I.							
	OP (4位)	MOD	(2	DR (2位)			
		位)						
	ADDR/ DATA / DISP							

其中, DR 为目的寄存器号, MOD 为寻址方式码字段, 指令第二字为地址、数据或偏移量; 源操 作数由 MOD 字段和指令第二字共同确定。除了 HALT 指令为单字指令外,其他指令均为双字指令;各 字段解释如表1。

				表 1			
指令助记符	OP	指令助记符	OP	MOD	寻址方式	DR	寄存器

第3页 共5页

座位号:

ADD	0000	MOV	0100	00	立即寻址	00	R0
SUB	0001	JMP	1000	01	直接寻址	01	R1
ADC	0010			10	变址寻址(SI)	10	R2
SBB	0011	HALT	1111	11	相对寻址	11	R3

- ①指令 ADC R1, [38H]的功能是将内存地址 38H 单元的内容送 R1 寄存器,则该指令机器码第一字节为 (9) H, 第二字节为 (10) H。
- ②内存地址的部分单元内容如表 2,若(PC) = 20H,变址寄存器(SI) = 10H,则此时启动程序执行,则程序执行的前三条指令如表 3,请填写完整。

_	\sim
ᆂ	٠,
70	7.

	松 2						
	单元地址	内容	单元地址	内容	单元地址	内容	
	10H	80H	20H	40H	24H	18H	
	11H	90H	21H	23H	25H	17H	
	12H	10H	22H	04H	26H	F0H	
_	13H	11H	23H	12H	27H	20H	

表3

		~ -		
指令序号	助记符	寻址方式	操作数	执行结果
1	(11)	(12)	(13)	
2	(14)	(15)	(16)	
3	(17)	(18)	(19)	(20)

3、 计算题(10分)

设浮点数的格式为:阶码 5 位,包含一位符号位,尾数 5 位,包含一位符号位,阶码和尾数均用补码表示,排列顺序为:

阶 符 (1	阶码 (4	数符 (1位)	尾数 (4
位)	位)		位)

则按上述浮点数的格式:

- (1) (4分) 若(X) $_{10} = 15/32$, (Y) $_{10} = -1.25$, 则求 X 和 Y 的规格化浮点数表示形式。
- (2) (6分) 求 [X+Y] (要求用补码计算,列出计算步骤)。
- 4、 简答题(20分, 每题5分)
- 1. 简述冯·诺依曼体系结构的主要设计思想。
- 2. 试从工作原理、执行速度、应用场合、规整性和易扩充性等方面,分析微程序控制器和硬布线控制器的特性。
- 3. 简述存储器按不同的方法,分别可以分为哪几类。
- 4. 从计算机硬件组成的角度,谈谈你对计算机工作原理的理解。
- 5、 综合设计题(30分)

- 1. (10 分) 某 CPU 地址总线 16 位,数据总线 8 位,CPU 的控制信号线有: MREQ#(存储器访问请求, 低电平有效), R/W#(读写控制, 低电平为写信号, 高电平为读信号)。若用若干个 8K×4 位的 SRAM 芯片形成 32K×8 位的 RAM 存储区域, 起始地址为 0000H, 假设 SRAM 芯片有CS#(片选, 低电平有效)和 WE#(写使能, 低电平有效)信号控制端; 试写出 RAM 的地址范围, 并画出 SRAM 与 CPU 的连接图(请标明 SRAM 芯片个数、译码器的输入输出线、地址线、数据线、控制线及其连接)。
 - 2. (20 分) 某 8 位模型机采用微程序控制器,结构如图 1 所示。其中 MEM 为主存,R0~R3 是通用寄存器。各部件的控制信号均已标出,控制信号的命名准则是: '→'符号前的是数据发送方部件, '→'符号后的是数据接收方部件,并且控制信号中的 B 表示总线; J1#控制指令译码,其他读写信号具有普通意义。
 - (1) (4分)图1中有28个微操作控制信号,其中J1#~J5#是用于转移的判别测试条件。在微指令中,控制字段采用直接控制法,判别测试字段采用译码法编码,下址字段8位,则该模型机的控存容量是多少?
 - (2) (6分)模型机的某条指令的微程序流程图如图 2 所示,写出该条指令的功能、寻址方式、指令第二字的含义。
 - (3) (3分) 写出 PC→AR, PC+1 微指令必须发送的微操作控制信号。
 - (4) (7分) 根据图 1 所示的数据通路,写出 ADDDR, # data 指令的微程序流程图,指令功能为 (DR) + data \rightarrow DR。

第4页 共5页

