CREDIT RISK ANALYSIS MACHINE LEARNING - HACKATHON

Meaga Varsha Ramakrishnan

100

- Introduction
- Dataset Information
- Methodology
- Modeling Platform
- Exploratory Data Analysis and Pre-processing
- Feature Engineering
- Modeling and Discussions
- Model Summary (attached google sheet link)
- Conclusion

INTRODUCTION

DATASET INFORMATION - SOURCE

METHODOLOGY

MODELING PLATFORM

- Platform : Google Colab
- Runtime Type : TPU

EXPLORATORY DATA ANALYSIS

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
addr_state	80000	51	CA	11744	NaN	NaN	NaN	NaN	NaN	NaN	NaN
annual_inc	80000.0	NaN	NaN	NaN	76046.143138	69020.055377	0.0	46000.0	65000.0	90000.0	7141778.0
earliest_cr_line	80000	640	Sep-2003	547	NaN	NaN	NaN	NaN	NaN	NaN	NaN
emp_length	75412	11	10+ years	26278	NaN	NaN	NaN	NaN	NaN	NaN	NaN
emp_title	74982	38881	Teacher	1278	NaN	NaN	NaN	NaN	NaN	NaN	NaN
fico_range_high	80000.0	NaN	NaN	NaN	699.987975	31.73484	664.0	674.0	694.0	714.0	850.0
fico_range_low	80000.0	NaN	NaN	NaN	695.987813	31.734075	660.0	670.0	690.0	710.0	845.0
grade	80000	7	В	23502	NaN	NaN	NaN	NaN	NaN	NaN	NaN
home_ownership	80000	6	MORTGAGE	39628	NaN	NaN	NaN	NaN	NaN	NaN	NaN
application_type	80000	2	Individual	78446	NaN	NaN	NaN	NaN	NaN	NaN	NaN
initial_list_status	80000	2	w	48745	NaN	NaN	NaN	NaN	NaN	NaN	NaN
int_rate	80000.0	NaN	NaN	NaN	13.232898	4.771705	5.31	9.75	12.74	15.99	30.99
loan_amnt	80000.0	NaN	NaN	NaN	14403.867813	8703.826298	750.0	7925.0	12000.0	20000.0	40000.0
num_actv_bc_tl	78052.0	NaN	NaN	NaN	3.63379	2.282505	0.0	2.0	3.0	5.0	32.0
mort_acc	77229.0	NaN	NaN	NaN	1.674759	2.005104	0.0	0.0	1.0	3.0	32.0
tot_cur_bal	78052.0	NaN	NaN	NaN	141586.358991	159371.388832	0.0	29842.0	81000.5	211027.25	5172185.0
open_acc	80000.0	NaN	NaN	NaN	11.605675	5.483362	1.0	8.0	11.0	14.0	80.0
pub_rec	80000.0	NaN	NaN	NaN	0.216675	0.579854	0.0	0.0	0.0	0.0	24.0
pub_rec_bankruptcies	79969.0	NaN	NaN	NaN	0.137103	0.383202	0.0	0.0	0.0	0.0	7.0
purpose	80000	14	debt_consolidation	46418	NaN	NaN	NaN	NaN	NaN	NaN	NaN
revol_bal	80000.0	NaN	NaN	NaN	16289.340975	22649.147472	0.0	5985.75	11111.0	19635.0	1023940.0
revol_util	79947.0	NaN	NaN	NaN	51.899142	24.504836	0.0	33.5	52.2	70.8	152.6
sub_grade	80000	35	C1	4982	NaN	NaN	NaN	NaN	NaN	NaN	NaN
term	80000	2	36 months	60750	NaN	NaN	NaN	NaN	NaN	NaN	NaN
title	79030	5349	Debt consolidation	39396	NaN	NaN	NaN	NaN	NaN	NaN	NaN
total_acc	80000.0	NaN	NaN	NaN	25.036875	12.009194	2.0	16.0	23.0	32.0	162.0
verification_status	80000	3	Source Verified	30855	NaN	NaN	NaN	NaN	NaN	NaN	NaN
loan_status	80000	2	Fully Paid	64030	NaN	NaN	NaN	NaN	NaN	NaN	NaN

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
addr_state	20000	50	CA	2865	NaN	NaN	NaN	NaN	NaN	NaN	NaN
annual_inc	20000.0	NaN	NaN	NaN	76497.649333	85680.966779	0.0	45000.0	65000.0	90000.0	9522972.0
earliest_cr_line	20000	568	Oct-2001	160	NaN	NaN	NaN	NaN	NaN	NaN	NaN
emp_length	18742	11	10+ years	6579	NaN	NaN	NaN	NaN	NaN	NaN	NaN
emp_title	18622	11180	Teacher	357	NaN	NaN	NaN	NaN	NaN	NaN	NaN
fico_range_high	20000.0	NaN	NaN	NaN	700.2044	31.768558	664.0	674.0	694.0	714.0	850.0
fico_range_low	20000.0	NaN	NaN	NaN	696.20425	31.767853	660.0	670.0	690.0	710.0	845.0
grade	20000	7	В	5756	NaN	NaN	NaN	NaN	NaN	NaN	NaN
home_ownership	20000	4	MORTGAGE	9900	NaN	NaN	NaN	NaN	NaN	NaN	NaN
application_type	20000	2	Individual	19610	NaN	NaN	NaN	NaN	NaN	NaN	NaN
initial_list_status	20000	2	w	11582	NaN	NaN	NaN	NaN	NaN	NaN	NaN
int_rate	20000.0	NaN	NaN	NaN	13.259451	4.772028	5.31	9.75	12.79	16.02	30.99
loan_amnt	20000.0	NaN	NaN	NaN	14426.67125	8811.38736	1000.0	7800.0	12000.0	20000.0	40000.0
num_actv_bc_tl	18989.0	NaN	NaN	NaN	3.61741	2.220795	0.0	2.0	3.0	5.0	20.0
mort_acc	19296.0	NaN	NaN	NaN	1.68931	1.981554	0.0	0.0	1.0	3.0	19.0
tot_cur_bal	18989.0	NaN	NaN	NaN	141200.889673	155848.258592	0.0	29596.0	80707.0	210215.0	2210119.0
open_acc	20000.0	NaN	NaN	NaN	11.59345	5.507847	1.0	8.0	11.0	14.0	58.0
pub_rec	20000.0	NaN	NaN	NaN	0.208	0.568816	0.0	0.0	0.0	0.0	15.0
pub_rec_bankruptcies	19989.0	NaN	NaN	NaN	0.130722	0.374108	0.0	0.0	0.0	0.0	8.0
purpose	20000	14	debt_consolidation	11611	NaN	NaN	NaN	NaN	NaN	NaN	NaN
revol_bal	20000.0	NaN	NaN	NaN	16181.7775	21917.28208	0.0	5803.75	11051.5	19876.25	921484.0
revol_util	19987.0	NaN	NaN	NaN	51.709746	24.509718	0.0	33.2	52.2	70.6	127.6
sub_grade	20000	35	C1	1294	NaN	NaN	NaN	NaN	NaN	NaN	NaN
term	20000	2	38 months	15209	NaN	NaN	NaN	NaN	NaN	NaN	NaN
title	19753	1623	Debt consolidation	9855	NaN	NaN	NaN	NaN	NaN	NaN	NaN
total_acc	20000.0	NaN	NaN	NaN	25.0223	12.098794	2.0	18.0	23.0	32.0	107.0
verification status	20000	3	Source Verified	7722	NaN	NaN	NaN	NaN	NaN	NaN	NaN

NULL CONTRIBUTIONS

	ColumnName	NULL_count	Contribution(in %)		ColumnName	NULL_count	Contribution(in %)
4	emp_title	5018	6.27	ı	emp_title	1378	6.89
3	emp_length	4588	5.74 3	3	emp_length	1258	6.29
13	num_actv_bc_tl	3948	4.93	3	num_actv_bc_tl	1011	5.06
15	tot_cur_bal	3948	4.93	5	tot_cur_bal	1011	5.06
14	mort_acc	2771	3.46	4	mort_acc	704	3.52
24	title	970	1.21 24	4	title	247	1.23
21	revol_util	53	0.07	1	revol_util	13	0.06
18	pub_rec_bankruptcies	31	0.04 18	8	pub_rec_bankruptcies	11	0.06

Row-wise NULL contributions are also evaluated

- Train 76 rows with 5 null values in the same row
- Test 76 rows with 5 null values in the same row

UNIQUE VALUE DISTRIBUTION - TRAIN

	ColumnName	sample_UniqueValues	UniqueValues_count	Unique%
3	emp_title	[Deputy, Department of Veterans Affairs, Marbl	36662	45.83
11	title	[Debt consolidation, Credit Loan, Debt Connsol	5350	6.69
1	earliest_cr_line	[Jul-1997, Apr-1987, Aug-2007, Sep-1980, Jul-1	640	0.80
0	addr_state	[CO, CA, FL, IL, MD, NY, PA, WI, UT, TX, AL]	51	0.06
9	sub_grade	[E1, B1, B5, B2, F5, D3, C1, C4, B4, D4, A5]	35	0.04
8	purpose	$[{\tt debt_consolidation, home_improvement, credit\}$	14	0.02
2	emp_length	[10+ years, nan, 3 years, < 1 year, 1 year, 8	12	0.01
4	grade	[E, B, F, D, C, A, G]	7	0.01
5	home_ownership	[MORTGAGE, RENT, OWN, ANY, NONE, OTHER]	6	0.01
12	verification_status	[Source Verified, Verified, Not Verified]	3	0.00
6	application_type	[Individual, Joint App]	2	0.00
7	initial_list_status	[w, f]	2	0.00
10	te <mark>rm</mark>	[60 months, 36 months]	2	0.00
13	loan_status	[Charged Off, Fully Paid]	2	0.00

11 1 1

	JNIQU	E VALUE DISTRIBU	- NOIT	TEST
	ColumnName	sample_UniqueValues	UniqueValues_count	Unique%
3	emp_title	[Tower technician, Supervisor, APPLICATIONS PR	11181	55.91
11	title	[Debt consolidation, Credit card refinancing,	1624	8.12
1	earliest_cr_line	[May-2012, Dec-2001, Mar-1989, Nov-2004, Feb-1	568	2.84
0	addr_state	[MO, HI, TX, CA, MI, NJ, FL, GA, MD, AL, NC]	50	0.25
9	sub_grade	[C4, B2, C1, B5, A3, D3, B3, B1, E5, B4, A4]	35	0.18

	ColumnName	sample_UniqueValues	UniqueValues_count	Unique%
3	emp_title	[Tower technician, Supervisor, APPLICATIONS PR	11181	55.91
11	title	[Debt consolidation, Credit card refinancing,	1624	8.12
1	earliest_cr_line	[May-2012, Dec-2001, Mar-1989, Nov-2004, Feb-1	568	2.84
0	addr_state	[MO, HI, TX, CA, MI, NJ, FL, GA, MD, AL, NC]	50	0.25
9	sub_grade	[C4, B2, C1, B5, A3, D3, B3, B1, E5, B4, A4]	35	0.18
8	purpose	[debt_consolidation, credit_card, home_improve	14	0.07
2	emp_length	[1 year, 10+ years, 9 years, nan, < 1 year, 2	12	0.06
4	grade	[C, B, A, D, E, F, G]	7	0.03
5	home_ownership	[OWN, RENT, MORTGAGE, ANY]	4	0.02
12	verification_status	[Source Verified, Not Verified, Verified]	3	0.01

ΟΙΛΙΛΟ	L AMERICAN TOLINATOR	17011	ILJ
ColumnName	sample_UniqueValues	UniqueValues_count	Unique%
emp_title	[Tower technician, Supervisor, APPLICATIONS PR	11181	55.91
title	[Debt consolidation, Credit card refinancing,	1624	8.12
earliest_cr_line	[May-2012, Dec-2001, Mar-1989, Nov-2004, Feb-1	568	2.84
addr_state	[MO, HI, TX, CA, MI, NJ, FL, GA, MD, AL, NC]	50	0.25
sub_grade	[C4, B2, C1, B5, A3, D3, B3, B1, E5, B4, A4]	35	0.18
purpose	[debt_consolidation, credit_card, home_improve	14	0.07
emp_length	[1 year, 10+ years, 9 years, nan, < 1 year, 2	12	0.06
grade	[C, B, A, D, E, F, G]	7	0.03
home_ownership	[OWN, RENT, MORTGAGE, ANY]	4	0.02
verification_status	[Source Verified, Not Verified, Verified]	3	0.01

[Individual, Joint App]

[36 months, 60 months]

[f, W]

2

2

2

0.01

0.01

0.01

application_type

initial_list_status

term

10

UNIQUE VALUE DISTRIBUTION - TARGET

OTHER PLOTS

FEATURE ENGINEERING

DROPPING COLUMNS - HIGH CARDINALITY

The following columns are dropped as they are **Highly**Cardinal (has more Unique values)

- emp_title
- title

	ColumnName	sample_UniqueValues	UniqueValues_count	Unique%
3	emp_title	[Deputy, Department of Veterans Affairs, Marbl	44317	44.32
11	title	[Debt consolidation, Credit Loan, Debt Connsol	6507	6.51

	ColumnName	NULL_count	Contribution(in %)
4	emp_title	6396	6.40

KNN-IMPUTER CODE SNIPPET

```
def impute null values using knn imputer (df, column to be imputed, column type, columns to be considered, n neighbors=3):
 knn imputer = KNNImputer(n neighbors=n neighbors)
 data to impute = df[columns to be considered+[column to be imputed]]
 # print('Value Counts (before imputation) : \n',data to impute[columns to be considered].value counts(dropna=False))
 value counts df before =
data to impute[column to be imputed].value counts(dropna= False).rename axis('unique values').reset index(name='count before imputati
on').sort values(by=['unique values'])
 value counts df before['unique values'] = value counts df before['unique values'].fillna('NaN').astype('str')
 knn imputer.fit(data to impute)
 imputed data = knn imputer.transform(data to impute)
 imputed data = pd.DataFrame(imputed data, columns= data to impute.columns)
 if column type=='int':
  df[column to be imputed] = imputed data[column to be imputed].astype( int)
 else:
   df[column to be imputed] = imputed data[column to be imputed]
 # print('Null Counts (after imputation) : \n',df[columns to be considered].value counts(dropna=False))
 value counts df after =
df[column to be imputed].astype('float').astype('str').value counts(dropna=False).rename axis('unique values').reset index(name='cou
nt after imputation').sort values(by=['unique values'])
 value counts df = value counts df before.merge(value counts df after, on=[ 'unique values'], how='left')
 value counts df['no of values imputed'] = value counts df['count after imputation'] - value counts df['count before imputation']
 if column type=='int':
   display(value counts df)
 return df
```

EARLIEST _CR _LINE _YEAR

- Converting the Month-Year format earliest_cr_line column to earliest_cr_line_month (Month) and earliest_cr_line_year (Year) separately
- Dropping the *earliest_cr_line* column

```
data['earliest_cr_line_year'], data['earliest_cr_line_month'] =
pd.DatetimeIndex(data['earliest_cr_line']).year, pd.DatetimeIndex(data['earliest_cr_line']).month
data = data.drop(columns = 'earliest_cr_line')
data.head(3)
```

EMP_LENGTH

- The emp_length columns values are suffixed with ' years', so splitting the column based on this siffix.
- Replacing the following to maintain a standard format:

```
10+ years: 10 years1 year: 1 years< 1 year: 1 years</li>
```

```
data['emp_length'] = data['emp_length'].replace({'10+
years': '10 years', '1 year':'1', '< 1 year':'1
years'}).str.split(" years",n=1, expand=True)[0]</pre>
```


EMP_LENGTH

NULL values are imputed using KNN-Imputer

FICO _RANGE _HIGH , FICO _RANGE _LOW

- There exists a straight-forward linear relationship between these two columns
- So, creating 'fico_range_average', average column out of these and dropping these 2 columns

```
emp_len_imputed['fico_range_average'] =
  (emp_len_imputed['fico_range_low'] +
  emp_len_imputed['fico_range_high']) / 2
  fico_range_avg =
  emp_len_imputed.drop(columns=['fico_range_low',
  'fico_range_high'])
```


HOME _OWNERSHIP

The following pre-process should be done:

- The NaN value is indicated as NONE
- 'ANY' and 'OTHER' values are combined to 'OTHER'
- NONE is imputed with the mode value

NUM _ACTV _BC _TL, MORT _ACC, TOT _CUR _BAL, REVOL _BAL, REVOL _UTIL

 The NaN values in these columns are imputed using KNN-Imputer

```
actv bc tl = impute null values using knn imputer(fico range avg,
                                                   column to be imputed='num actv bc tl',
                                                   column type='int',
                                                   columns to be considered=['loan amnt',
'fico range average'],
                                                  n neighbors=3)
mort acc = impute null values using knn imputer(actv bc tl,
                                                column to be imputed='mort acc',
                                                column type='int',
                                                columns to be considered=['loan amnt',
'fico range average', 'num actv bc tl'],
                                                n neighbors=3)
```

TERM

• The following replacements are done:

```
60 months' - 6036 months' - 36
```

```
na_filled['term'] = na_filled['term'].replace({' 60 months': 60, ' 36 months': 36}).astype(int)
na_filled['term'].dtype
```

GRADE AND SUB _GRADE

- This table shows that the grade and sub_grade columns are related.
- So, updating the sub_grade column with

numeric value

```
na_filled['sub_grade'] = na_filled['sub_grade'].str[-1].astype(int)
na_filled['sub_grade'].unique()
```

sub grade grade A {A1, A3, A5, A2, A4} В {B4, B5, B3, B1, B2} {C5, C1, C3, C4, C2} C {D4, D3, D2, D1, D5} E {E4, E3, E2, E5, E1} F {F2, F3, F1, F5, F4} {G1, G5, G3, G4, G2} G

ENCODING

- Ordinal Encode: grade, initial_list_status
- <u>One-Hot Encode:</u> addr_state, home_ownership, application_type, purpose, verification_status

FEATURE SELECTION

- The important features are selected based on 2 criteria:
 - Sum of rows < 1% of column size : This is because the one hot encoding would produce a very sparse data (more zeros than values). So, removing those columns with sum less than 1% of no. of columns
 - Using **feature importance** attribute in **Random Classifier** Model. The first 20 important features are chosen

ColumnName ColumnSum

265.0

739.0

252.0

281.0

502.0

1.0

125.0

833.0

147.0

456.0

280.0

110.0

303.0

450.0 5340

addr state AK

addr state AR

addr state DC

addr state DE

addr state HI

addr state IA

addr state ID

addr state KS

addr state ME

addr state MS

addr state MT

addr state ND

addr state NE

addr state NH

20

22

28

31

32

33

36

41

45

48

49

NOTE: The model is build with all the columns and also these 2 filtered columns

```
important_features = rf_cv_best_model.best_estimator_.feature_importances_
feature_columns = encoded_train_with_dropped_cols.drop(columns='loan_status').columns.values
important = pd.DataFrame({"Feature":feature_columns, "Importance":important_features})
important = important.sort_values(by = 'Importance', ascending = False)
sns.barplot(x= 'Importance', y = 'Feature', data = important.head(10))
important columns = important['Feature'].head(20).values.tolist()
```


MODELING AND DISCUSSIONS

FUNCTIONS CREATED - SCALING, SAMPLING

```
def scale_data(data, scaler=StandardScaler()):
    scaler.fit(data)
    data_scaled = scaler.transform(data)
    return data_scaled

def sampling_data(X_data, y_data, sampling_type='oversampling'):
    if sampling_type=='oversampling':
        sampler = RandomOverSampler()
    else:
        sampler = RandomUnderSampler()
    X_sampled, y_sampled = sampler.fit_resample(X_data, y_data)
    return X sampled, y sampled
```

FUNCTIONS CREATED - TRAIN-TEST SPLIT

```
def split_data(df, target_col, train_size=0.75, random_state=0):
    print('Train Test Split...')
    print('Target Column :', target_col)
    print(f"Train-Test Size : {train_size}, {round(1-train_size, 1)}")
    X = df.drop(columns=str(target_col))
    Y = df[target_col]
    # display(X)
    return train test split(X, Y, train size=train size, stratify=Y, random state=random state)
```

FUNCTIONS CREATED - GET DATA FOR MODELING

This function fetches the relevant modeling as per the parameters(scaling, sampling, features)

```
def get data for modeling (data and hack test, target col, important features, model, scaling, sampling,
sampling type):
  data, hack test, hack results = data and hack test
 print(target col in hack test.columns.tolist())
if len(important features) == 0:
    important features = data.columns.tolist()
    important features for test data = data.drop(columns=target col).columns.tolist()
 else:
    list(set(important features)).append(target col)
  data = data[list(set(important features))]
  hack test = hack test[list(set(important features for test data))]
 X train, X test, y train, y test = split data(data, target col, train size=0.7)
 print("Scaling : ", scaling)
 if scaling==True:
   X train, X test, hack test = scale data(X train), scale data(X test), scale data(hack test)
 else:
    X train, X test, hack test = X train, X test, hack test
```

FUNCTIONS CREATED - APPLYING MODELS

```
def applying model (data and hack test, target col, base model name, model=None, important features=[], scaling=False, sampling=True,
sampling type='oversampling'):
 """ The model is passed as parameter, for GridSearchCV """
 X train, X test, y train, y test, hack test = get data for modeling(data and hack test, target col, important features,
model, scaling, sampling, sampling type)
if important features==[]:
feature selection = False
 print('Training the model with the best parameter...')
   model.fit(X train, y train)
  print('Best Estimator : ')
print(model.best estimator)
 else:
   feature selection = True
 print('Predicting results...')
 train pred = model.predict(X train)
 test pred = model.predict(X test)
 hack test pred = model.predict(hack test)
 model accuracy info.append([base model name, f'Scaling-{scaling}, Sampling-{sampling}((sampling type)),
FeatureSelection-{feature selection}', round(accuracy score(y train, train pred), 4), round(accuracy score(y test, test pred), 4),
round (accuracy score (hack results, hack test pred), 4), round (f1 score (y train, train pred), 4), round (f1 score (y test, test pred), 4),
round(f1 score(hack results, hack test pred), 4) ])
print (model accuracy info[-1])
```

MODEL SUMMARY

https://drive.google.com/file/d/1j0fqEZXHhgj2zV3X5cXuhaHvRHt
FYnJm/view?usp=share link

The evaluation metric is F1 score

$$F1 \ score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} = 2 \cdot \frac{Precision * Recall}{Precision + Recall}$$

$$\Rightarrow$$
 F1 score = 2 · $\frac{Precision * Recall}{Precision + Recall}$

CONCLUSION

BEST MODEL

```
[280] model_summary.sort_values(by='f1score_hack_test', ascending=False)['model_name'].iloc[0]
```

```
* GradientBoostingClassifier
GradientBoostingClassifier()
```

F1 Score of the best model: 0.4324

THANK YOU