

수강신청이 어려운 세종대 학생들을 위한 도우미

수강편람은 왜 어려울까?

처음 겪어보는 '수강신청'

익숙하지 않은 대학교 문법

방대한 문서에 흩어져 있는 자료

CRA봇과 함께라면?

처음 겪어보는 '수강신청'

대화를 통해 보다 쉽게 접근

익숙하지 않은 대학교 문법

익숙한 일상어로 정보 제공

방대한 문서에 흩어져 있는 자료

페이지 수를 함께 제공해 사용자 가 Cross-check 가능

목적은 결국 "데이터 리터러시 향상"

기능

- 수강편람을 벡터DB에 업로드하여, 질문과 유사한 정보를 검색하여 LLM 답변에 포함
- 정보가 명시된 페이지 수를 함께 출력하여, 사용자의 Cross-check 지원

Stacks

- UI: Streamlit
- Document Loader: UpstageDocumentParseLoader
- Vector DB: Chroma DB
- Retreiver: MultiVectorRetriver + BM25 Retriver Ensemble
- Embedding: Upstage Embedding "embedding-passage"
- LLM: Google Gemini-1.5-flash
- 기술 구현: LangChain

What is RAG?

Retrieval Augmented Generation

LOAD SPLIT EMBED STORE [0.3, 0.4, 0.1, 1.8, 1.1...] [0.7, 1.4, 2.1, 4.8, 4.1...] [1.2, 0.3, 1.2, 4.1, 1.8...] \rightarrow JSON URLs [**0.3**, 0.4, 0.1, 1.8, 1.1...] [0.7, 1.4, 2.1, 4.8, 4.1...] [1.2, 0.3, 1.2, 4.1, 1.8...]

Loader

UpstageDocumentParseLoader

Parser? Loader?

Splitter

RecursiveChracterTextSplitter()

Why Split?

Upstage Document Parser로 PDF를 Markdown으로 분류했으나, 페이지 기준으로 Parsing 하여 max_length가 Embedding 모델의 context windo를 훌쩍 넘김(4000 <<< 5072)

검색 편의성과 Output Token 절약을 위해 2000으로 split

Embedding

UpstageEmbedding(model="passage-embedding")

UpstageEmbedding

Store

Chroma DB

Chroma DB

- 오픈소스
- 다양한 Retriever 지원
- 프로덕션에 '일부' 적용 가능...?

Retriever

EnsembleRetriever
BM25 Retriever + MultiVector Retriever

EnsembleRetriever

- Sparse + Dense
- 벡터 차원이 희소할수록 Keyword Search에 강함
- 벡터 차원이 밀집될수록
- Semantic Search에 강함
- 수강편람 검색은 과목명 등 Keyword와 문단 위주의 Semantic 둘 다 필요
- Ensemble 비율은 5:5

LLM

Google Gemini-1.5-flash

Why flash?

오로지 가격 때문

Performance

GPT-4o (May '24)		128k	78	\$7.50	77.3	0.66	☑ Model ☑ Providers
GPT-4o mini		128k	73	\$0.26	79.3	0.66	☑ Model ☑ Providers
GPT-4o (Nov '24)		128k	73	\$4.38	97.3	0.50	☑ Model ☑ Providers
GPT-4o mini Realtime (Dec '24)		128k		\$0.00			☑ Model ☑ Providers
GPT-4o Realtime (Dec '24)		128k		\$0.00			☑ Model ☑ Providers
Llama 3.3 70B	∞ Meta	128k	74	\$0.69	72.0	0.46	☑ Model ☑ Providers
Llama 3.1 405B	∞ Meta	128k	74	\$3.50	30.0	0.73	☑ Model ☑ Providers
Llama 3.1 70B	∞ Meta	128k	68	\$0.72	73.3	0.42	☑ Model ☑ Providers
Llama 3.2 90B (Vision)	∞ Meta	128k	68	\$0.90	46.1	0.33	☑ Model ☑ Providers
Llama 3.2 11B (Vision)	∞ Meta	128k	54	\$0.18	132.2	0.28	☑ Model ☑ Providers
Llama 3.1 8B	∞ Meta	128k	54	\$0.10	185.0	0.31	☑ Model ☑ Providers
Llama 3.2 3B	∞ Meta	128k	49	\$0.06	196.4	0.37	☑ Model ☑ Providers
Llama 3.2 1B	∞ Meta	128k	26	\$0.04	314.6	0.35	☑ Model ☑ Providers
Gemini 2.0 Flash (exp)	Google	1m	82	\$0.00	169.0	0.46	☑ Model ☑ Providers
Gemini 1.5 Pro (Sep)	Google	2m	80	\$2.19	60.6	0.61	☑ Model ☑ Providers
Gemini 1.5 Flash (Sep)	Google	1m	74	\$0.13	187.1	0.26	☑ Model ☑ Providers

Why flash?

사용한 만큼만 지불(가격은 미국 달러(USD) 기준)

Model

gpt-4o

gpt-4o-2024-11-20

gpt-4o-2024-08-06

RPM (분당 요청) 2,000개 4백만 TPM (분당 토큰 수)

토큰 100만 개당 \$0.075 토큰 100만 개당 \$0.30 토큰 100만 개당 \$0.01875

토큰 100만 개당 \$0.15 토큰 100만 개당 \$0.60 토큰 100만 개당 \$0.0375

컨텍스트 캐싱 (저장소)

시간당 100만 토큰당 \$1.00 <u>자세히 알아보기</u>

시연