Mercedes-Benz Greener Manufacturing

DESCRIPTION

Reduce the time a Mercedes-Benz spends on the test bench.

Problem Statement Scenario: Since the first automobile, the Benz Patent Motor Car in 1886, Mercedes-Benz has stood for important automotive innovations. These include the passenger safety cell with a crumple zone, the airbag, and intelligent assistance systems. Mercedes-Benz applies for nearly 2000 patents per year, making the brand the European leader among premium carmakers. Mercedes-Benz is the leader in the premium car industry. With a huge selection of features and options, customers can choose the customized Mercedes-Benz of their dreams. To ensure the safety and reliability of every unique car configuration before they hit the road, the company's engineers have developed a robust testing system. As one of the world's biggest manufacturers of premium cars, safety and efficiency are paramount on Mercedes-Benz's production lines. However, optimizing the speed of their testing system for many possible feature combinations is complex and time-consuming without a powerful algorithmic approach. You are required to reduce the time that cars spend on the test bench. Others will work with a dataset representing different permutations of features in a Mercedes-Benz car to predict the time it takes to pass testing. Optimal algorithms will contribute to faster testing, resulting in lower carbon dioxide emissions without reducing Mercedes-Benz's standards.

Following actions should be performed:

- 1. If for any column(s), the variance is equal to zero, then you need to remove those variable(s).
- 2. Check for null and unique values for test and train sets.
- 3. Apply label encoder.
- 4. Perform dimensionality reduction.
- 5. Predict your test_df values using XGBoost.

Step 1: Importing Data

```
In [ ]:
```

```
#Importing Necessary Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn import metrics
from sklearn.metrics import r2_score
import statsmodels.api as sm
%matplotlib inline
```

```
In [ ]:
```

```
#Importing the train and test data
cars_train = pd.read_csv("/content/drive/MyDrive/Python/Projects_ML/Mercedes/train.csv")
cars_test = pd.read_csv("/content/drive/MyDrive/Python/Projects_ML/Mercedes/test.csv")
```

Step 2: Inspecting the Dataframe

```
In [ ]:
```

```
#Printing the shape of the df
print(cars_train.shape)
print(cars_test.shape)
```

```
(4209, 378)
(4209, 377)
```

```
In [ ]:
#Viewing the first 5 rows of the Train data
cars_train.head()
Out[]:
    ID
                                               X10 X11 X12 X13
                                                                    X14 X15 X16 X17
                                                                                                                             X26 X
            y X0 X1
                      X2 X3
                              X4 X5 X6 X8
                                                                                         X18
                                                                                              X19
                                                                                                   X20
                                                                                                        X21
                                                                                                             X22
                                                                                                                   X23
                                                                                                                        X24
    0
       130.81
                                                  0
                                                       0
                                                             0
                                                                       0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                                 0
                                                                                                      0
                                                                                                                0
                                                                                                                     0
                                                                                                                          0
                                                                                                                                0
         88.53
                                                  0
                                                       0
                                                            0
                                                                 0
                                                                       0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                                0
                                                                                                      0
                                                                                                           0
                                                                                                                0
                                                                                                                     0
                                                                                                                          0
                                                                                                                                0
    6
                                d
                                     У
                                             0
    7
         76.26
               az
                             С
                                d
                                                  0
                                                       0
                                                            0
                                                                 0
                                                                       0
                                                                            0
                                                                                 0
                                                                                      1
                                                                                            0
                                                                                                0
                                                                                                      0
                                                                                                           0
                                                                                                                0
                                                                                                                     0
                                                                                                                          0
                                                                                                                               0
    9
         80.62
                                                  0
                                                       0
                                                             0
                                                                 0
                                                                       0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                            0
                                                                                                 0
                                                                                                      0
                                                                                                           0
                                                                                                                0
                                                                                                                     0
                                                                                                                          0
                                                                                                                                0
                                                  0
                                                                 0
                                                                       0
                                                                            0
                                                                                 0
                                                                                                 0
                                                                                                      0
                                                                                                           0
                                                                                                                0
                                                                                                                     0
    13
         78.02
                                         d
                                                                                                                                0
               az
5 rows × 378 columns
In [ ]:
pd.set option("display.max columns", 340)
pd.set option("display.max columns", None)
In [ ]:
#Describing the data
cars train.describe()
Out[]:
                 ID
                                        X10
                                                X11
                                                             X12
                                                                         X13
                                                                                      X14
                                                                                                   X15
                                                                                                               X16
                                                                                                                            X17
 count 4209.000000
                    4209.000000
                                 4209.000000
                                              4209.0
                                                     4209.000000
                                                                  4209.000000
                                                                               4209.000000
                                                                                           4209.000000
                                                                                                        4209.000000
                                                                                                                    4209.000000
 mean 4205.960798
                     100.669318
                                    0.013305
                                                        0.075077
                                                                     0.057971
                                                                                  0.428130
                                                                                              0.000475
                                                                                                           0.002613
                                                                                                                        0.007603
                                                 0.0
   std 2437.608688
                      12.679381
                                    0.114590
                                                 0.0
                                                        0.263547
                                                                     0.233716
                                                                                  0.494867
                                                                                              0.021796
                                                                                                           0.051061
                                                                                                                        0.086872
           0.000000
                      72.110000
                                    0.000000
                                                 0.0
                                                        0.000000
                                                                     0.000000
                                                                                  0.000000
                                                                                              0.000000
                                                                                                           0.000000
                                                                                                                        0.000000
  25% 2095.000000
                      90.820000
                                    0.000000
                                                 0.0
                                                        0.000000
                                                                     0.000000
                                                                                  0.000000
                                                                                              0.000000
                                                                                                           0.000000
                                                                                                                        0.000000
  50%
       4220.000000
                      99.150000
                                    0.000000
                                                 0.0
                                                        0.000000
                                                                     0.000000
                                                                                  0.000000
                                                                                              0.000000
                                                                                                           0.000000
                                                                                                                        0.000000
       6314.000000
                     109.010000
                                    0.000000
                                                 0.0
                                                        0.000000
                                                                     0.000000
                                                                                  1.000000
                                                                                              0.000000
                                                                                                           0.000000
                                                                                                                        0.000000
                     265.320000
                                                                                                                        1.000000
       8417.000000
                                    1.000000
                                                 0.0
                                                        1.000000
                                                                     1.000000
                                                                                  1.000000
                                                                                              1.000000
                                                                                                           1.000000
  max
```

Step 3: Data Preprocessing

1. If for any column(s), the variance is equal to zero, then you need to remove those variable(s).

```
In [ ]:
#Displaying the Variance of all the columns
x=cars train.var().sort values()
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    display(x)
        0.000000e+00
X289
X330
        0.000000e+00
X268
        0.000000e + 00
X347
        0.000000e+00
X107
        0.000000e+00
X235
        0.000000e+00
        0.000000e+00
X233
X290
        0.000000e+00
X11
        0.000000e+00
X297
        0.000000e+00
X293
        0.000000e+00
X93
        0.000000e+00
X257
        2.375861e-04
X207
        2.375861e-04
X280
        2.375861e-04
X288
        2.375861e-04
        2.375861e-04
X33
X39
        2.375861e-04
X190
        2.375861e-04
X270
        2.375861e-04
```

X295 X296 X95 X260 X210 X259 X339 X42 X204 X205 X372 X384 X236 X369 X15 X269 X319 X124 X278 X40 X332 X245 X89 X318 X74 X153 X59 X318 X74 X153 X59 X3167 X167 X92 X160 X357 X167 X87 X167 X87 X167 X87 X167 X87 X168 X87 X168 X87 X168 X87 X87 X168 X87 X168 X87 X87 X87 X87 X87 X87 X87 X87 X87 X8	2.375861e-04 4.750593e-04 7.124196e-04
X383 X91 X104 X24 X67 X213 X271 X353 X65 X307 X105 X192 X258 X281 X310 X123 X21 X16 X112 X199 X365 X364 X240 X227 X125 X365 X365 X37 X16 X112 X199 X365 X365 X310 X112 X199 X365 X365 X310 X112 X199 X365 X365 X310 X112 X199 X365 X365 X310 X112 X199 X365 X365 X364 X240 X227 X125 X335 X282 X183 X312 X97 X366 X37 X37 X37 X37 X37 X37 X37 X37	1.660732e-03 1.660732e-03 1.897527e-03 1.897527e-03 1.897527e-03 1.897527e-03 2.134210e-03 2.134210e-03 2.134210e-03 2.134210e-03 2.370780e-03 2.370780e-03 2.607237e-03 2.607237e-03 2.607237e-03 2.607237e-03 2.607237e-03 2.643581e-03 2.843581e-03 4.023607e-03 4.023607e-03 4.023607e-03 4.023607e-03 4.023607e-03 4.494827e-03 4.494827e-03 4.494827e-03 4.494827e-03 4.494827e-03 4.494827e-03 5.200810e-03

X230 X55 X34 X212 X78 X325 X216 X62 X172 X237 X169 X200 X239 X214 X53 X102 X338 X243 X320 X214 X53 X102 X338 X243 X320 X242 X309 X242 X309 X242 X309 X247 X387 X317 X387 X317 X317 X317 X317 X317 X317 X317 X31
5.200810e-03 5.200810e-03 5.435912e-03 5.435912e-03 5.670901e-03 5.905777e-03 5.905777e-03 6.609727e-03 6.609727e-03 6.609727e-03 6.609727e-03 6.609727e-03 6.844152e-03 6.844152e-03 6.844152e-03 6.844152e-03 7.078463e-03 7.078463e-03 7.078463e-03 7.078463e-03 7.312662e-03 7.312662e-03 7.312662e-03 7.312662e-03 7.546747e-03 7.546747e-03 7.546747e-03 7.546747e-03 7.546747e-03 7.546747e-03 7.546747e-03 8.014579e-03 8.182184e-03 9.415366e-03 9.415366e-03 9.415366e-03 1.27676e-02 1.127676e-02

X148	X286 5.167103e-02 X331 5.293902e-02	X376 5.399258e-02 X98 5.420295e-02 X13 5.462335e-02 X164 5.859468e-02 X368 5.880257e-02 X208 5.901034e-02 X101 6.025462e-02 X219 6.293661e-02 X43 6.702548e-02 X256 6.783784e-02 X68 6.804065e-02	X349 X61 X301 X346 X179 X117 X177 X367 X348 X80 X352 X286	4.289762e-02 4.397771e-02 4.462441e-02 4.527009e-02 4.569998e-02 4.677274e-02 4.762890e-02 4.912285e-02 4.997405e-02 5.018657e-02 5.124746e-02 5.167103e-02
------	--	---	--	--

X71 9.287924e-02 X182 9.494490e-02 X49 1.072316e-01 X129 1.075906e-01 X133 1.088435e-01 X294 1.093787e-01 X336 1.111555e-01 X327 1.118631e-01 X20 1.224296e-01 X114 1.247954e-01 X180 1.330640e-01 X201 1.461667e-01 X356 1.475408e-01 X316 1.573375e-01 X144 1.551541e-01 X316 1.586353e-01 X144 1.551541e-01 X316 1.586353e-01 X141 1.586353e-01 X234 1.610617e-01 X354 1.617692e-01 X354 1.676189e-01 X370 1.682812e-01 X300 1.641534e-01 X150 1.682812e-01 X301 1.757146e-01 X37 1.757146e-01 X37 1.757146e-01 X37 1.784108e-01 X37 1.881631e-01 X247 1.831631e-01 X247 1.831631e-01 X45 1.891677e-01	
X144 1.551541e-01 X316 1.573375e-01 X116 1.580596e-01 X161 1.586353e-01 X234 1.610617e-01 X354 1.617692e-01	
X300 1.641534e-01 X150 1.645707e-01 X154 1.652641e-01 X50 1.682812e-01 X103 1.690946e-01 X374 1.757146e-01	
X158 1.770047e-01 X142 1.770047e-01 X37 1.784108e-01 X35 1.784108e-01 X31 1.784108e-01 X321 1.818042e-01	
X247 1.831631e-01 X96 1.834087e-01 X363 1.855988e-01	
X273 2.015935e-01 X156 2.028408e-01 X157 2.028408e-01 X115 2.040719e-01 X351 2.089300e-01 X313 2.104576e-01 X163 2.113977e-01	
X100 2.138795e-01 X132 2.145094e-01 X218 2.148670e-01 X377 2.157528e-01 X224 2.167142e-01 X27 2.167142e-01 X375 2.172329e-01	
X350 2.240671e-01 X171 2.252785e-01 X64 2.344678e-01 X119 2.351137e-01 X118 2.351137e-01 X355 2.357460e-01 X251 2.388537e-01	
X311 2.403589e-01 X46 2.405915e-01 X85 2.416252e-01 X246 2.418420e-01 X137 2.433587e-01 X261 2.435900e-01 X187 2.437420e-01 X324 2.444393e-01	

```
X358
        2.447207e-01
        2.448929e-01
X14
X314
        2.453926e-01
X329
        2.458669e-01
X220
        2.463157e-01
X178
        2.467665e-01
X223
        2.470074e-01
X250
        2.472643e-01
        2.486588e-01
X334
        2.487635e-01
X186
X194
        2.487635e-01
X191
        2.492121e-01
        2.496467e-01
X362
X337
        2.497867e-01
        2.500357e-01
X127
        1.607667e+02
ÍD
        5.941936e+06
dtype: float64
In [ ]:
#Removing columns with variance =0 from train and test data
cars\_train = cars\_train.drop((["X289","X330","X268","X347","X107","X235","X233","X290","X11","X297","X293","X93"]
),axis=1)
cars test = cars test.drop((["X289","X330","X268","X347","X107","X235","X233","X290","X11","X297","X293","X93"]),
axis=1)
In [ ]:
#Printing the shape of the df
print(cars_train.shape)
print(cars_test.shape)
(4209, 366)
(4209, 365)
2. Check for null and unique values for test and train sets.
In [ ]:
#Checking for missing values in train data
cars_train.isnull().sum().sort_values(ascending = False)
Out[]:
X385
        0
X119
        0
X122
        0
X123
        0
X124
        0
X256
        0
X257
        0
X258
        0
X259
        0
ID
Length: 366, dtype: int64
In [ ]:
#Checking for missing values in test data
cars_test.isnull().sum().sort_values(ascending = False)
Out[]:
X385
        0
X119
        0
X122
        0
X123
        0
X124
        0
X256
        0
X257
        0
        0
X258
X259
        0
ID
```

X58

2.444393e-01

Length: 365, dtype: int64

There are no missing values in Train and test data.

X73 X74 X75

```
In [ ]:
#Checking for unique values in train dataset
x= cars train.drop(('y'),axis=1)
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    display(x.nunique()) #Gets the count of unique values
ID
X0
           47
           27
X1
X2
           44
            7
Х3
X4
            4
X5
           29
Х6
           12
X8
           25
            2
X10
X12
            X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23
X24
X26
X27
X28
            2
            2
X29
X30
            2
            2
X31
X32
            X33
X34
X35
X36
X37
X38
X39
X40
X41
X42
X43
X44
X45
X46
X47
X48
            2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
X49
X50
X51
X52
X53
X54
X55
X56
X57
X58
            2
X59
X60
            X61
X62
X63
X64
X65
X66
X67
X68
X69
X70
X71
```

X76 X77 X78 X79 X80 X81 X82 X84 X85 X87 X89 X91 X94 X95 X97 X98 X90 X100 X102 X102 X104 X105 X106 X107 X107 X111 X112 X113 X114 X115 X116 X117 X118 X122 X124 X125 X127 X128 X131 X131 X131 X131 X131 X131 X131 X13
222222222222222222222222222222222222222

X163 X164 X165 X166 X167 X168 X170 X171 X172 X173 X174 X175 X177 X178 X180 X181 X182 X183 X184 X185 X186 X187 X190 X191 X192 X193 X194 X195 X197 X198 X197 X198 X197 X198 X197 X198 X197 X198 X197 X198 X197 X198 X197 X198 X197 X198 X199 X201 X201 X202 X203 X204 X205 X207 X208 X208 X208 X208 X208 X208 X208 X208
222222222222222222222222222222222222222

X250 X251 X252 X253 X254 X255 X256 X257 X258 X258 X261 X262 X263 X264 X263 X264 X265 X267 X270 X271 X272 X273 X274 X275 X277 X278 X278 X281 X282 X283 X284 X285 X286 X287 X288 X288 X288 X288 X288 X288 X288
222222222222222222222222222222222222222

X340	2
X341	2
X342	2
V2/12	2
X344	2
X345 X346	2
X348	2
X349	2
X350	2
X351 X352	2
X352	2
X354	2
X355	2
X356	2
X357 X358	2
X359	2
X360	2
X361	2
X362	2
X363 X364	2
X365	2
X366	2
X367	2
X368	2
X379	2
X371	2
X372	2
X373	2
X3/4 Y275	2
X375	2
X377	2
X378	2
X379	2
X344 X344 X345 X346 X348 X349 X350 X351 X352 X353 X354 X355 X356 X357 X358 X361 X362 X363 X364 X365 X366 X367 X368 X367 X368 X371 X372 X373 X374 X375 X376 X377 X378 X377 X378 X377 X378 X377 X378 X377 X378 X377 X378 X379 X371 X372 X373 X374 X375 X376 X377 X378 X377 X378 X377 X378 X378 X379 X371 X372 X378 X379 X371 X378 X379 X371 X372 X378 X378 X379 X371 X372 X378 X378 X378 X378 X378 X378 X378 X378	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
X383	2
X384	2
X385	2
atype:	int64

```
In [ ]:
```

Out[]:

Unique	Values	Count

Feature		
ID	[0, 6, 7, 9, 13, 18, 24, 25, 27, 30, 31, 32, 3	4209
у	[130.81, 88.53, 76.26, 80.62, 78.02, 92.93, 12	2545
X0	[k, az, t, al, o, w, j, h, s, n, ay, f, x, y, \dots	47
X1	[v,t,w,b,r,l,s,aa,c,a,e,h,z,j,o,	27
X2	[at, av, n, e, as, aq, r, ai, ak, m, a, k, ae,	44
Х3	[a, e, c, f, d, b, g]	7
X4	[d, b, c, a]	4
X5	[u, y, x, h, g, f, j, i, d, c, af, ag, ab, ac,	29
X6	[j, l, d, h, i, a, g, c, k, e, f, b]	12
X8	[o,x,e,n,s,a,h,p,m,k,d,i,v,j,b,	25
X10	[0, 1]	2
X12	[0, 1]	2

In []:

#Displaying the last 5 rows of the unique values dataframe in train data
train_uniques.tail()

Out[]:

Unique Values Count

Feature		
X380	[0, 1]	2
X382	[0, 1]	2
X383	[0, 1]	2
X384	[0, 1]	2
X385	[0, 1]	2

In []:

#Checking for unique values in test dataset
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
 display(cars_test.nunique()) #Gets the count of unique values

ID	4209
X0	49
X1	27
X2	45
Х3	7
X4	4
X5	32
X6	12
X8	25
X10	2
X12	2
X13	2
X14	2
X15	2
X16	2
X17	2
X18	2

X19 X221 X221 X223 X224 X226 X231 X233 X334 X335 X337 X339 X337 X337 X337 X337 X337 X337
222222222222222222222222222222222222222

X105 X106 X108 X109 X110 X111 X112 X113 X114 X115 X116 X117 X118 X120 X122 X123 X124 X125 X126 X127 X128 X129 X130 X131 X132 X133 X134 X135 X137 X138 X140 X141 X142 X143 X144 X145 X146 X147 X148 X155 X156 X166 X167 X166 X167 X166 X167 X166 X167 X166 X167 X168 X168 X169 X170 X171 X172 X173 X174 X175 X176 X177 X178 X177 X178 X179 X170 X171 X171 X172 X173 X174 X175 X176 X177 X178 X177 X178 X177 X178 X179 X170 X171 X171 X172 X173 X174 X175 X176 X177 X178 X177 X178 X179 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X179 X170 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X170 X170 X170 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X170 X170 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X170 X170 X170 X170 X170 X170 X170 X170
222222222222222222222222222222222222222

X192 X194 X195 X196 X197 X198 X199 X200 X201 X202 X203 X204 X205 X207 X210 X211 X212 X213 X214 X215 X216 X217 X218 X221 X222 X223 X224 X225 X227 X228 X227 X228 X227 X228 X230 X241 X25 X26 X27 X27 X27 X27 X27 X27 X27 X27 X27 X27
222222222222222222222222222222222222222

X279 X280 X281 X282 X283 X284 X285 X286 X287 X288 X292 X294 X295 X300 X301 X302 X304 X305 X308 X307 X308 X311 X312 X313 X314 X315 X317 X318 X317 X318 X317 X318 X317 X318 X318 X319 X311 X311 X311 X311 X311 X311 X311
222222222211222222222222222222222222222

```
X369
              1
2
2
2
X370
X371
X372
X373
              2
2
2
2
2
2
2
2
X374
X375
X376
X377
X378
X379
X380
X382
              2
              2
X383
X384
              2
X385
              2
dtype: int64
```

Out[]:

Unique Values Count

Feature		
ID	[1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 15, 16, 17,	4209
X0	[az, t, w, y, x, f, ap, o, ay, al, h, z, aj, d	49
X1	[v,b,l,s,aa,r,a,i,p,c,o,m,z,e,h,	27
X2	[n, ai, as, ae, s, b, e, ak, m, a, aq, ag, r,	45
Х3	[f, a, c, e, d, g, b]	7
X4	[d, b, a, c]	4
X5	[t, b, a, z, y, x, h, g, f, j, i, d, c, af, ag	32
Х6	[a, g, j, l, i, d, f, h, c, k, e, b]	12
X8	[w,y,j,n,m,s,a,v,r,o,t,h,c,k,p,	25
X10	[0, 1]	2
X12	[0, 1]	2
X13	[0, 1]	2

In []:

```
#Displaying the last 5 rows of the unique values dataframe in test data
test_uniques.tail()
```

Out[]:

Unique Values Count

Feature		
X380	[0, 1]	2
X382	[0, 1]	2
X383	[0, 1]	2
X384	[0, 1]	2
X385	[0, 1]	2

```
#Checking the datatype of the columns in the train data cars_train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4209 entries, 0 to 4208
Columns: 366 entries, ID to X385
dtypes: float64(1), int64(357), object(8)
memory usage: 11.8+ MB

In []:

```
dt = cars_train.dtypes
with pd.option_context('display.max_rows', None) :
    display(dt)
```

```
ID
           int64
        float64
X0
         object
Х1
         object
X2
         object
Х3
         object
X4
         object
X5
         object
Х6
         object
X8
         object
X10
          int64
X12
           int64
X13
          int64
X14
           int64
X15
           int64
X16
           int64
X17
           int64
X18
           int64
X19
           int64
X20
           int64
X21
           int64
X22
           int64
X23
           int64
X24
           int64
X26
           int64
X27
           int64
X28
           int64
X29
           int64
X30
           int64
X31
           int64
X32
           int64
X33
           int64
X34
           int64
X35
           int64
X36
           int64
X37
           int64
X38
           int64
X39
           int64
X40
           int64
X41
           int64
X42
           int64
X43
           int64
X44
           int64
X45
           int64
X46
           int64
X47
           int64
X48
           int64
X49
           int64
X50
           int64
X51
           int64
X52
           int64
X53
           int64
X54
           int64
X55
           int64
X56
           int64
X57
           int64
X58
           int64
           int64
X59
X60
           int64
X61
           int64
X62
           int64
X63
           int64
X64
           int64
X65
           int64
```

X66

X67

int64

int64

X68 X69 X70 X71 X73 X74 X75 X76 X77 X78 X80 X81 X82 X83 X84 X85 X87 X88 X90 X91 X92 X94 X95 X97 X98 X90 X101 X102 X103 X104 X105 X110 X111 X112 X113 X114 X116 X117 X118 X120 X121 X1
int64 int64 int64 int664 int66

X156 X157 X158 X159 X160 X161 X162 X163 X164 X165 X166 X167 X168 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X180 X181 X182 X183 X184 X185 X187 X189 X190 X191 X192 X194 X195 X196 X197 X198 X199 X200 X211 X212 X203 X204 X205 X207 X208 X209 X210 X211 X212 X213 X214 X215 X216 X217 X218 X219 X209 X210 X211 X212 X213 X214 X215 X216 X217 X218 X219 X220 X221 X222 X223 X224 X225 X226 X227 X228 X229 X230 X231 X214 X215 X216 X217 X218 X219 X220 X221 X222 X223 X224 X225 X226 X227 X228 X228 X229 X230 X231 X232 X234 X244 X242
int64

X243 X244 X245 X246 X247 X248 X249 X250 X251 X252 X253 X254 X255 X256 X257 X258 X260 X261 X262 X263 X264 X265 X267 X270 X271 X272 X273 X274 X275 X276 X277 X278 X278 X279 X280 X281 X282 X283 X284 X285 X286 X297 X298 X291 X292 X294 X295 X296 X297 X298 X299 X300 X301 X302 X308 X306 X307 X308 X308 X309 X311 X312 X313 X314 X315 X316 X317 X318 X319 X310 X311 X312 X313 X314 X315 X316 X317 X318 X319 X310 X311 X312 X313 X314 X315 X316 X317 X318 X319 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X310 X311 X312 X313 X314 X315 X316 X317 X318 X319 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X321 X328 X329 X321 X328 X329 X321 X328 X329 X331 X329 X331 X320
int64 int64

```
X333
          int64
X334
          int64
X335
          int64
X336
          int64
X337
          int64
X338
          int64
X339
          int64
X340
          int64
X341
          int64
X342
          int64
X343
          int64
X344
          int64
X345
          int64
X346
          int64
X348
          int64
X349
          int64
X350
          int64
X351
          int64
X352
          int64
X353
          int64
X354
          int64
X355
          int64
X356
          int64
X357
          int64
X358
          int64
X359
          int64
X360
          int64
X361
          int64
X362
          int64
X363
          int64
X364
          int64
X365
          int64
X366
          int64
          int64
X367
X368
          int64
X369
          int64
X370
          int64
X371
          int64
X372
          int64
X373
          int64
X374
          int64
          int64
X375
X376
          int64
X377
          int64
X378
          int64
X379
          int64
X380
          int64
X382
          int64
X383
          int64
X384
          int64
X385
          int64
```

3. Apply label encoder.

```
In [ ]:
```

dtype: object

```
#Importing library
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
```

```
In [ ]:
```

```
#Setting up X and y(features and target variable)
X_train= cars_train.drop(('y'),axis=1) #Dropping 'y' as its the target
y_train= cars_train['y']
```

```
#Identifying the object columns and Applying label encoding to it
Object_cols = X_train.select_dtypes(include=np.object_)
Object_cols = Object_cols.apply(le.fit_transform)
Object_cols.head()
Out[]:
   X0 X1 X2 X3 X4 X5 X6 X8
                      24
       21
           19
               4
                   3
                      28
                             14
   32
                         11
   20
       24
          34
               2
                   3
                      27
                             23
                      27
       23
          34
               5
                   3 12
                          3 13
   20
In [ ]:
#Dropping the original object columns from the train and concatenating label encoded data.
X train new = X train.drop(Object_cols.columns,axis=1)
X train new = pd.concat([Object cols,X train new],axis=1)
X train new.head()
Out[]:
   X0 X1 X2 X3 X4 X5 X6
                            X8
                                ID X10 X12 X13 X14 X15 X16 X17
                                                                    X18 X19
                                                                                 X21
                                                                                      X22
                                                                                           X23
                                                                                                             X28
                                                                            X20
                                                                                               X24
                                                                                                    X26 X27
                                                                                                                  Х
                                                                                                      0
   32
       21
          19
               4
                   3
                      28
                         11
                             14
                                 6
                                      0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                 0
                                                                           0
                                                                               0
                                                                                    0
                                                                                        0
                                                                                             0
                                                                                                  0
                                                                                                      0
                                                                                                           1
                                                                                                               0
                                                                      1
                                                             0
                                                                                    0
   20
       24
          34
               2
                   3
                      27
                             23
                                      0
                                          0
                                               0
                                                    0
                                                        0
                                                                  1
                                                                      0
                                                                           0
                                                                               0
                                                                                        0
                                                                                             0
                                                                                                  0
                                                                                                      0
                                                                                                               1
   20
                   3
                      27
                                      0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                  0
                                                                      0
                                                                           0
                                                                               0
                                                                                    0
                                                                                        0
                                                                                             0
                                                                                                  0
                                                                                                      0
                         11
                                                             0
                                                                  0
                                                                      0
                                                                                    0
                                                                                             0
       23
                      12
                             13
                                      0
                                               0
                                                    0
                                                                           0
                                                                               0
                                                                                         0
                                                                                                      0
   20
          34
                   3
                                 13
4.Perform dimensionality reduction
In [ ]:
#Dropping 'ID' in train data as it plays no value in the model
X train new.drop(('ID'),axis=1,inplace=True)
In [ ]:
#Dropping 'ID' in test data as it plays no value in the model
cars_test.drop(('ID'),axis=1,inplace=True)
In [ ]:
X_train_new.shape
Out[ ]:
(4209, 364)
In [ ]:
#Checking correlation between variables
correlation X = X train new.corr()
with pd.option context('display.max rows', None):
  display(correlation X)
                    X1
                                       X3
                                                                  X6
      1.000000
  X0
               -0.271123
                        -0.139904
                                 -0.070645
                                           0.017988
                                                    0.012293
                                                             0.037549
                                                                      0.047735
                                                                               0.081122
                                                                                        -0.134577
                                                                                                 -0.130529
                                                                                                          -0.138310
      -0.271123
                1.000000
                         0.088266
                                  0.205657
                                          -0.020724
                                                    0.046417
                                                             -0.079119
                                                                               -0.137193
                                                                                                  0.286683
                                                                                                           0.079784
                                                                      -0.000306
                                                                                        0.112263
                                 -0.093546
                                           0.002289
                                                                               0.042398
                                                                                                          -0.079183
  X2
      -0.139904
                0.088266
                         1.000000
                                                    -0.017722
                                                             0.065778
                                                                      -0.069932
                                                                                        0.131464
                                                                                                 0.222132
  X3
      -0.070645
                0.205657
                        -0.093546
                                  1.000000
                                           0.015298
                                                   -0.008161
                                                             -0.048468
                                                                      -0.001249
                                                                               0.019663
                                                                                        0.056166
                                                                                                 -0.216464
                                                                                                           0.045183
```

0.017988

0.012293

0.037549

X5

X6

X10

-0.020724

0.046417

-0.079119

-0.000306

0.081122 -0.137193

0.015298

-0.008161

-0.048468

-0.001249

0.019663

0.002289

-0.017722

0.065778

0.042398

1.000000

0.039778

0.027854

-0.008909

0.039778

1.000000

-0.019917

0.012746

0.003360 -0.006800

0.027854

-0.019917

1.000000

0.018565

0.092986

-0.008909

0.012746

0.018565

0.014075

0.003360

-0.006800

0.092986

0.008245

0.060161

-0.099264

-0.061136

1.000000 -0.033084 -0.028806

0.007179

-0.003452

-0.041825

-0.038309

0.005544

-0.003439

0.028516

0.026162

-0.100474

¥12	-0.134577	0.112263	0.131464	0.056166	0.008245	0.060161	-0.099264	-0.061136	-0 033084	1.000000	0 214825	-0.246513
	-0.130529	0.286683	0.222132	-0.216464	0.000243	-0.003452	-0.033204	-0.038309	-0.028806	0.214825	1.000000	-0.083141
	-0.138310	0.079784	-0.079183	0.045183	0.007173	-0.003439	0.028516		-0.100474	-0.246513	-0.083141	1.000000
X15	0.011491	-0.023295	-0.001613	-0.024059	0.000631	-0.003439	-0.002297			-0.006212		-0.018865
X16	0.003940	-0.025255		-0.008337	-0.061497		0.035292		-0.005944	-0.014584	-0.012698	-0.044291
	-0.060401	0.120044		-0.046271	0.002533	-0.032371	0.053292	-0.000996	-0.003944		-0.012090	0.012713
				-0.028413	0.002533		-0.019988					
X18	-0.036495	0.068924	-0.060337			-0.004646		0.044339	-0.010323	-0.025327	-0.010525	-0.076916
X19	0.203244	-0.207605	-0.312393	-0.068126	0.009622	0.009854	0.048629	0.031221	-0.038610	-0.094730	-0.082482	
X20	0.030838		-0.494692	0.073098	-0.015761	0.008522	-0.122983	0.011349		-0.116280	-0.043126	
X21	-0.025532	0.069149	-0.018519	-0.032411	0.001481	-0.029751	0.003382	0.053085	-0.005944	-0.014584		-0.044291
X22	0.147904	-0.129648	0.444380	-0.188833	0.008931	-0.050032	0.035421	-0.051851		-0.087924		-0.267021
X23		-0.011723	0.115886	0.055659	0.004204	-0.033924	0.026774	0.062841		-0.041391	-0.036040	
X24		-0.022323	-0.008234	-0.048153	0.001263	0.008780	-0.000858	0.002410		-0.012433		-0.004686
X26	-0.006131		0.030495	-0.041311	0.002049	-0.024992	0.026645	0.020203	-0.008223	-0.020175		-0.061270
X27	0.050622	-0.048785	0.137151	-0.049081	0.021713	0.037836	-0.062026	0.031821	0.070276	0.184599	0.110191	0.126863
X28	-0.100412	0.127520	0.280952	0.162385	0.005308	0.026029	-0.003490	0.004614	-0.021300	-0.052259	-0.039773	-0.158707
X29	-0.149090	0.202989	0.209387	0.188854	0.006134	0.006306	0.013201	0.004552	-0.024615	-0.042617	-0.052586	-0.076904
X30	0.062321	0.035667	-0.076038	0.078486	0.001949	0.010111	0.006879	-0.032543	-0.007820	-0.019185	-0.016705	-0.058265
X31	0.120973	-0.092994	0.110163	-0.080666	0.000695	-0.040828	0.019952	0.059488	-0.044248	-0.126861	-0.095558	-0.313459
X32	0.094024	-0.004861	-0.168747	-0.082171	0.003075	0.025765	0.058184	-0.035257	-0.012340	-0.030276	-0.026362	-0.091947
X33	0.012613	0.021482	-0.001848	-0.008149	0.000446	0.018050	0.022160	0.027139	-0.001790	-0.004392	-0.003824	0.017817
X34	0.037187	-0.051615	0.079531	-0.020661	0.002145	-0.010089	0.056831	-0.019721	-0.008608	-0.021119	-0.018388	-0.064136
X35	0.120973	-0.092994	0.110163	-0.080666	0.000695	-0.040828	0.019952	0.059488	-0.044248	-0.126861	-0.095558	-0.313459
X36	0.044776	-0.024995	0.158753	0.001071	0.001949	-0.027694	0.042119	-0.006353	-0.007820	-0.019185	-0.016705	-0.058265
X37	0.120973	-0.092994	0.110163	-0.080666	0.000695	-0.040828	0.019952	0.059488	-0.044248	-0.126861	-0.095558	-0.313459
X38	-0.010562	0.078145	0.003780	0.023032	0.005368	0.120028	-0.019545	0.002714	-0.021539	0.017543	-0.029005	0.061752
X39	0.012613	0.021482	-0.001848	-0.008149	0.000446	0.018050	0.022160	0.027139	-0.001790	-0.004392	-0.003824	0.017817
X40	-0.010552	-0.021229	-0.003202	0.021701	0.000773	0.012927	0.020078	0.020451	-0.003101	-0.007609	-0.006625	0.030866
X41	-0.008554	0.018769	-0.012875	0.055119	0.003108	0.011844	0.032413	0.015790	-0.012472	-0.030600	-0.026644	0.124132
X42	-0.026665	-0.018278	0.005224	0.027295	0.000446	-0.000636	-0.004267	-0.005720	0.132754	-0.004392	-0.003824	-0.013338
X43	-0.028147	0.082471	0.266184	0.119448	-0.004347	0.019644	0.070355	0.030802	0.400164	-0.079493	-0.065287	-0.091170
X44	-0.009858	-0.090357	0.052208	-0.038773	0.003108	-0.054607	-0.013618	-0.035086	-0.012472	-0.030600	-0.026644	-0.092931
X45	0.125718	-0.342465	-0.005299	-0.394862	0.009459	0.011412	0.073876	-0.029552	-0.062859	0.033104	-0.128106	-0.088756
X46	0.074638	0.018940	-0.081631	-0.033725	-0.023761	0.004737	-0.043615	0.029131	-0.124508	-0.054680	-0.030554	-0.471226
X47	-0.043813	0.004175	-0.000881	-0.034783	0.003299	-0.013146	-0.020698	0.007797	0.005188	-0.032480	0.007856	0.114690
X48	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X49	0.072314	-0.149410	-0.085257	-0.147537	-0.008847	-0.002188	0.017425	0.036893	-0.036977	-0.086986	-0.055262	-0.171664
X50	0.009891	-0.022295	-0.123523	-0.133728	-0.024093	0.042159	-0.022520	0.043807	-0.055547	-0.106926	0.004383	0.030734
X51	-0.092869	0.063273	-0.049236	-0.078943	-0.010791	0.022005	-0.094822	-0.021560	0.067466	-0.018278	-0.043370	0.415034
X52	-0.157480	0.021976	0.210407	-0.077838	-0.025873	0.006646	-0.010808	0.032074	0.037420	-0.046429	-0.042025	-0.043440
X53	0.045359	0.096876	0.173437	-0.012665	0.002410	0.010491	0.031107	-0.065193	-0.009672	-0.023731	-0.020663	-0.072069
X54	-0.153188	0.203808	0.206302	0.190653	0.006170	0.006177	0.011289	0.004657	-0.024757	-0.034216	-0.052889	-0.078518
X55	-0.068057	0.019507	0.025473	-0.049684	0.002098	0.002602	-0.003119	0.021796	-0.008417	-0.020652	-0.017982	-0.062719
X56	-0.021364	0.003464	-0.067319	-0.059663	0.004253	0.014357	-0.058235	-0.022389	-0.017067	-0.016807	-0.022327	0.023017
X57	-0.068020	0.161085	0.046964	0.017279	0.003360	0.013057	-0.011524	-0.055761	-0.013484	-0.033084	-0.028806	0.037820
X58	0.049016	-0.030810	-0.154328	-0.183065	-0.018377	-0.029963	-0.078223	0.039177	-0.051164	-0.205520	0.026140	-0.160336
X59	-0.024162	0.017387	0.001699	-0.014119	0.000773	-0.012971	0.020078	0.020451	-0.003101	-0.007609	-0.006625	-0.023108
X60	0.011660	0.008356	-0.004529	0.045180	0.001093	0.032027	-0.021254	0.045040	-0.004387	-0.010765	-0.009373	0.043667
X61	0.151655	-0.027227	-0.200188	0.084943	0.024308	0.011949	0.006068	-0.034684	-0.033810	0.049727	0.039984	0.057379
X62	-0.139559	0.100466	0.097122	-0.058637	0.002237	0.032042	0.007227	-0.077016	-0.008976	-0.022023	-0.019176	-0.066883
X63	0.063444	0.074118	0.044406	-0.002759	0.003108	0.036255	-0.041237	0.069209		-0.022109	-0.026644	0.096999
X64	-0.052449	0.062860	-0.012785	0.065384	0.002499	-0.017143	-0.070623	-0.046321	-0.081410	-0.086679	0.055571	0.434361
X65	0.009418	-0.016294	-0.012703	-0.030385	0.002433	0.000585	0.036564	0.010597	-0.005375	-0.013189	-0.011483	0.032711
X66	-0.171936	0.014937	0.292361	-0.086523	-0.034787	-0.006171			-0.019375		-0.041390	-0.144366
		2.2001	0 _ 001	2.300020	2.30.1101	2.500111	2.20.000	2.300700	2.2.0010	2.5 000	2.2000	2

X67	0.016247	0.043543	0.010785	-0.007392	0.001263	0.000845	0.001013	0.039618	-0.005067	-0.012433	-0.010825	-0.037758
X68	-0.139264	0.068230	0.050007	-0.099061	-0.016511	-0.006419	-0.050428	0.004027	-0.024735	-0.038713	-0.038642	0.006826
X69	-0.040786	-0.032086	-0.042678	-0.150568	0.005084	0.038554	0.177478	0.011090	-0.020399	-0.050049	-0.043578	0.166399
X70	0.055022	-0.045026	0.068539	-0.039784	-0.008537	-0.011815	-0.162361	-0.058965	0.034258	0.067442	0.069439	-0.194119
X71	-0.240184	0.218500	0.134877	-0.125480	-0.011266	0.010647	-0.070837	-0.015681	-0.039474	0.201982	0.199264	0.011558
X73	-0.040799	0.055060	-0.037526	0.001705	0.004130	-0.005267	-0.027850	0.010296	-0.016571	0.036705	-0.013591	0.096260
X74	-0.016667	0.032709	-0.016402	0.014119	-0.000773	0.020525	-0.001764	0.004850	0.003101	0.007609	0.006625	0.023108
X75	-0.179995	0.044748	0.233268	-0.081831	-0.028866	0.001588	0.006675	0.046703	-0.022477	-0.055147	-0.037118	-0.046520
X76	-0.153188	0.203808	0.206302	0.190653	0.006170	0.006177	0.011289	0.004657	-0.024757	-0.034216	-0.052889	-0.078518
X77	-0.032468	0.016481	-0.013537	-0.024181	0.003268	-0.018862	0.000886	0.007751	-0.013113	-0.032174	-0.000661	0.130515
X78	0.078499	0.105526	0.053458	-0.040034	0.002191	0.040479	-0.020961	0.070545	-0.008794	-0.021575	-0.018786	0.087522
X79	-0.222609	0.060967	-0.041946	0.164309	0.004651	0.018368	-0.036692	0.018575	-0.018664	-0.034285	-0.039873	0.139797
X80	0.169303	-0.059024	-0.319569	0.116505	0.021864	0.024154	-0.007262	0.027330	0.027466	0.067388	0.054137	0.204655
X81	0.115520	-0.031052	-0.300293	-0.082740	-0.007183	-0.014185	-0.084957	-0.020914	-0.063291	-0.116665	0.075283	-0.287628
X82	-0.032383	-0.030540	0.082031	-0.048677	0.003818	-0.005218	0.021908	-0.034634	0.304515	-0.037586	-0.032726	-0.051195
X83	0.008634	0.000349	0.062317	0.029345	0.000998	0.016135	0.007008	-0.025539	-0.004005	-0.009826	-0.008555	-0.029840
X84	-0.240184	0.218500	0.134877	-0.125480	-0.011266	0.010647	-0.070837	-0.015681	-0.039474	0.201982	0.199264	0.011558
X85	-0.392543	0.541306	0.060696	0.113356	-0.015220	-0.016026	-0.108553	-0.048375	-0.096436	0.078911	0.296641	0.139186
X86	-0.016303	0.013523	0.037072	0.005364	0.001093	0.009128	-0.036367	-0.002387	-0.004387	-0.010765	-0.009373	-0.032692
X87	0.014009	0.042978	-0.003697	0.036881	0.000893	-0.019030	0.012612	-0.028976	-0.003581	-0.008787	-0.007651	0.035646
X88	0.040334	0.117073	-0.010157	0.068847	0.002452	-0.007260	-0.001181	-0.014183	-0.009839	-0.024139	-0.021018	0.097923
X89	0.012130	0.037216	-0.003202	0.031936	0.000773	-0.012971	0.020078	-0.023826	-0.003101	-0.007609	-0.006625	0.030866
X90	0.037708	0.115798	-0.010326	0.071058	0.002493	-0.010625	0.002833	-0.014195	-0.010003	-0.024541	-0.021368	0.099554
X91	0.020661	0.056192	-0.004893	0.032048	0.001181	-0.030661	-0.005300	0.017997	-0.004740	-0.011628	-0.010125	0.047172
X92	0.005028	-0.025721	0.052901	0.019152	0.000893	0.021159	0.023187	0.012661	-0.003581	-0.008787	-0.007651	-0.026686
X94	0.037708	0.115798	-0.010326	0.071058	0.002493	-0.010625	0.002833	-0.014195	-0.010003	-0.024541	-0.021368	0.099554
X95	0.007002	0.021482	0.023612	0.018434	0.000446	-0.017453	-0.020123	0.020567	-0.001790	-0.004392	-0.003824	-0.013338
X96	-0.228835	0.224250	-0.066181	0.030378	-0.008836	0.033987	-0.094574	-0.003996	0.055903	0.091439	0.054642	0.220715
X97	0.056271	0.023030	0.040249	0.055345	0.001896	-0.000055	-0.015644	0.049667	-0.007610	-0.018671	-0.016257	-0.056704
X98	0.142066	-0.036675	-0.250019	0.064865	0.020477	0.020330	0.001879	-0.001169	0.028681	0.070368	0.056903	0.213706
X99	0.041623	0.110373	-0.011134	0.081405	0.002688	0.006490	-0.009787	0.005497	-0.010785	-0.026462	-0.023041	0.107346
X100	0.040508	-0.002524	-0.192736	-0.042740	0.001472	0.053974	-0.140445	-0.012182	-0.168835	0.114842	0.106840	0.310765
X101	0.119456	-0.067434	-0.295585	0.065790	0.018609	0.015747	-0.008701	0.020863	0.030462	0.074739	0.060934	0.226979
X102	0.045359	0.096876	0.173437	-0.012665	0.002410	0.010491	0.031107	-0.065193	-0.009672	-0.023731	-0.020663	-0.072069
X103	0.078831	-0.074652	-0.339114	-0.038475	0.008294	0.071694	-0.123580	0.010630	0.050773	0.147127	0.078087	0.291151
X104	0.006716	0.033951	-0.009736	-0.007392	0.001263	0.011424	-0.002728	0.011712	-0.005067	-0.012433	0.035859	0.017362
X105	-0.011229	0.004499	0.106093	0.024694	0.001412	0.008635	0.021629	-0.003546	-0.005667	-0.013904	-0.012106	-0.042225
X106	0.023631	0.021523	-0.015329	0.088289	0.003330	-0.048110	-0.034719	-0.111375	-0.013362	-0.032783	-0.010639	0.132987
X108	-0.086882	0.083685	0.179143	0.146211	0.003538	-0.001935	0.018896	0.020766	-0.014198	-0.034836	-0.030332	-0.093839
X109	-0.020762	-0.013342	-0.024594	0.043461	0.005937	-0.002463	-0.013755	-0.007018	-0.023823	-0.058451	-0.045729	0.237109
X110	-0.021915	0.023996	-0.003697	0.010288	0.000893	-0.016226	0.033762	-0.011445	-0.003581	-0.008787	-0.007651	0.035646
X111	0.182649	-0.003371	-0.299899	0.087586	0.036391	0.006629	0.004978	-0.029133	0.018664	0.045793	0.039873	0.139073
X112	0.004824	-0.037279	0.047559	-0.010338	0.001547	0.000495	-0.002579	0.003587	-0.006209	-0.015234	-0.013265	-0.046266
X113	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X114	-0.254859	0.281680	0.264240	-0.044313	-0.006235	0.034061	-0.080832	0.016636	-0.048035	0.139947	0.231265	-0.077892
X115	-0.096472	-0.100667	-0.135202	0.045813	-0.003059	-0.008859	0.059081	0.056972	0.009216	-0.090308	-0.100570	0.135416
X116	0.077929	-0.128996	-0.068701	-0.249933	-0.001856	0.004078	-0.015668	-0.023455	-0.041816	-0.077486	-0.015345	-0.182985
X117	0.036194	-0.044889	-0.057809	0.205644	0.006581	0.031240	-0.016995	-0.018196	-0.016820	0.402172	-0.051717	-0.152373
X118	0.136117	0.028872	0.064132	-0.213425	-0.002652	-0.008319	-0.052987	-0.046867	0.009215	-0.077411	0.138766	-0.026020
X119	0.136117	0.028872	0.064132	-0.213425	-0.002652	-0.008319	-0.052987	-0.046867	0.009215	-0.077411	0.138766	-0.026020
X120	0.157480	-0.021976	-0.210407	0.077838	0.025873	-0.006646	0.010808	-0.032074	-0.037420	0.046429	0.042025	0.043440
X122	0.040334	0.117073	-0.010157	0.068847	0.002452	-0.007260	-0.001181	-0.014183	-0.009839	-0.024139	-0.021018	0.097923
X123	-0.041115	-0.029596	-0.026632	-0.029736	0.001481	-0.019597	0.000191	-0.000479	-0.005944	-0.014584	-0.012698	0.021542
X124	-0.013906	0.022715	0.009390	-0.024059	0.000631	0.007030	-0.017249	0.010500	-0.002532	-0.006212	-0.005409	0.003167
X125	-0.018667	0.033894	-0.078173	-0.004814	0.001611	0.004451	-0.030087	-0.001793	-0.006463	-0.015858	-0.013808	-0.048161

X126	-0.192859	0.114483	0.340411	-0.107152	-0.027405	0.008216	0.015407	-0.016096	-0.023382	-0.057367	-0.049950	-0.174222
X120	0.473392	-0.122318	-0.237877	0.052541	0.009365	0.00215	-0.034614	-0.010330	0.055047	-0.085586	0.000383	-0.304649
X128	0.135520	-0.005878	-0.320774	0.094373	0.026187	0.030662	-0.003150	0.020800	0.024186	0.059341	0.051668	0.180215
X129	0.070162	-0.150708	-0.085887	-0.148056	-0.008791	-0.002595	0.018485	0.037735	-0.037083	-0.087254	-0.055529	-0.171167
X130	-0.135520	0.005878	0.320774	-0.094373	-0.026187	-0.030662	0.003150	-0.020800	-0.024186	-0.059341	-0.051668	-0.180215
X131	-0.044406	0.078793	-0.057341	0.004238	0.004785	-0.044038	-0.014891	-0.001357	-0.019199	-0.041504	0.009521	0.047883
X132	-0.056980	0.295066	-0.036585	0.359400	0.001366	0.002738	-0.047600	0.026058	0.073625	-0.045896	0.133919	0.119526
X133	0.184564	-0.325615	0.081463	-0.308841	0.010900	-0.024701	0.031552	-0.032415	-0.037455	-0.071787	-0.093443	-0.146885
X134	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X135	0.082176	-0.014918	-0.037325	0.199515	0.004828	0.031617	-0.077798	-0.034253	-0.019375	0.363467	-0.041390	-0.126619
X136	0.153188	-0.203808	-0.206302	-0.190653	-0.006170	-0.006177	-0.011289	-0.004657	0.024757	0.034216	0.052889	0.078518
X137	0.056731	-0.014632	-0.125585	-0.185595	-0.018013	-0.028271	-0.073180	0.028331	-0.052900	-0.209955	0.022733	-0.172778
X138	0.046140	-0.079142	-0.119220	-0.123606	0.005973	0.004870	0.009522	0.052671	-0.023969	-0.045146	-0.030663	-0.011250
X139	0.007966	0.001915	0.126291	0.034077	-0.002077	-0.091701	0.081313	0.019897	-0.036634	-0.089883	-0.010938	-0.212726
X140	0.046182	-0.077291	-0.122036	-0.124411	0.005937	0.005290	0.008174	0.051461	-0.023823	-0.044712	-0.030237	-0.009224
X141	-0.030442	-0.007240	-0.027473	-0.027859	0.003480	-0.001315	-0.003738	0.005788	-0.013964	-0.026656	-0.012678	0.074175
X142	0.110379	-0.166666	0.027640	-0.353098	0.007126	-0.009448	0.031888	-0.064276	0.058490	-0.140169	0.116147	-0.061634
X143	-0.038818	-0.017758	-0.015610	-0.015715	0.005771	-0.049665	0.096417	-0.054114	-0.001536	-0.052118	-0.049473	0.085293
X144	0.063223	0.040647	-0.137344	0.078405	0.010387	0.091248	-0.109348	-0.025722	0.046070	0.129712	0.061542	0.168155
X145	-0.000717	-0.005671	0.017427	-0.019974	0.001093	0.001495	-0.032049	-0.018495	-0.004387	0.013132	-0.009373	-0.019965
X146	0.046140	-0.079142	-0.119220	-0.123606	0.005973	0.004870	0.009522	0.052671	-0.023969	-0.045146	-0.030663	-0.011250
X147	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X148	-0.104378	0.113990	0.224644	0.122115	0.006275	0.026658	0.000164	0.008227	-0.025179	-0.040008	-0.039061	-0.097186
X150	-0.273111	0.297895	-0.048967	0.044043	-0.014814	0.022887	-0.091456	-0.006219	0.049222	0.076946	0.126993	0.260645
X151	-0.112547	0.155177	-0.041494	0.079551	0.008850	-0.005713	-0.007175	0.017134	-0.035513	0.003134	0.007745	0.252163
X152	0.036243	-0.013459	0.012737	0.042417	0.005288	-0.030337	-0.032153	-0.072772	0.002234	0.009124	-0.039580	-0.014190
X153	-0.025458	0.016343	-0.022806	0.021701	0.000773	0.020480	0.010921	0.012861	-0.003101	0.093740	-0.006625	-0.023108
X154	-0.154785	0.239910	-0.009085	0.450741	-0.000953	-0.020550	-0.010948	-0.034498	-0.059660	0.055468	-0.127452	0.018515
X155	-0.212191	0.240327	0.185954	-0.117218	-0.015865	0.037645	-0.078442	0.010690	-0.033422	0.236848	0.341697	0.005676
X156	0.075635	-0.140393	0.015380	0.034705	0.003252	0.002486	0.083699	0.044793	-0.175748	0.090779	-0.083566	0.178570
X157	-0.075635	0.140393	-0.015380	-0.034705	-0.003252	-0.002486	-0.083699	-0.044793	0.175748	-0.090779	0.083566	-0.178570
X158	-0.110379	0.166666	-0.027640	0.353098	-0.007126	0.009448	-0.031888	0.064276	-0.058490	0.140169	-0.116147	0.061634
X159	-0.081908	0.122546	0.022356	0.058579	0.003391	-0.017539	0.025360	0.012022	-0.013606	-0.009980	-0.029066	0.064793
X160	-0.018480	-0.026334	-0.004134	-0.022196	0.000998	-0.021488	0.004643	0.001905	-0.004005	-0.009826	-0.008555	0.039858
X161	0.148924	-0.353580	-0.011057	-0.421517	0.014364	0.024365	0.113792	-0.034048	-0.052431	-0.082553	-0.123132	-0.070176
X162	-0.148939	0.196889	0.216622	0.184740	0.005973	0.008507	0.012402	0.002704	-0.023969	-0.036038	-0.051205	-0.084009
X163	0.041554	-0.056650	-0.082432	-0.109156	-0.015872	0.008553	0.011173	0.020516	0.013575	-0.188025	-0.046505	0.242602
X164	0.038654	-0.189059	-0.135247	-0.205882	0.007471	-0.001247	-0.040833	0.039648	-0.029979	-0.028852	-0.064043	-0.094427
X165	-0.068231	0.048132	0.059893	-0.007078	0.001949	0.013118	-0.007703	0.067683	-0.007820	-0.019185	-0.016705	-0.058265
X166 X167	-0.131802 -0.015180	0.165593 0.048402	0.235124	0.201242	0.005368	0.009695	0.002714	-0.002557 0.003895	-0.021539 -0.003581	-0.037763 -0.008787	-0.046014 -0.007651	-0.098908 -0.026686
X167 X168	-0.036166	0.046402	-0.043316 -0.158563	-0.003008 0.375698	-0.004069	-0.001272 0.001824	0.023187 -0.031224	0.003693	0.087874	0.059671	-0.148904	0.067996
X169	-0.066234	0.095876	0.025320	0.007137	0.002368	-0.000186	0.015427	0.010750	-0.009503	-0.001133	-0.020301	0.023700
X170	-0.179464	0.032135	0.238552	-0.095745	-0.037259	-0.021107	-0.011838	0.024513	-0.018300	-0.044899	-0.032483	-0.136357
X171	0.166988	-0.169628	-0.027333	-0.400510	0.012985	0.001796	0.026974	-0.042649	-0.064729	-0.024201	0.174797	0.021615
X172	-0.139559	0.100466	0.097122	-0.058637	0.002237	0.032042	0.007227	-0.077016	-0.008976	-0.022023	-0.019176	-0.066883
X173	0.019690	-0.003873	0.000984	0.024045	0.002870	0.013503	-0.002571	0.069417	-0.011517	-0.000718	-0.024604	0.085294
X174	0.042192	0.075252	0.025987	-0.032573	0.003845	0.026949	-0.009943	0.053113	-0.015427	-0.037851	-0.032957	0.098374
X175	0.005090	-0.111340	-0.047919	-0.121490	0.004374	-0.030790	-0.023092		-0.017551	0.005752	-0.037493	0.012204
X176	-0.032649	-0.003475	-0.015815	-0.017081	0.003818	-0.035424	-0.005105		-0.015319	-0.037586	-0.032726	0.152470
X177	-0.027386	0.004217	-0.027539	0.064426	0.006648	0.010850	0.014804	-0.001236	-0.026677	-0.065452	-0.038353	0.265510
X178	0.205178	-0.099616	-0.035288	-0.000992	0.006580	0.030082	-0.037715	-0.012652	0.103480	0.253889	0.088016	-0.832712
X179	-0.164475	0.090441	0.302603	-0.105278	-0.023588	-0.026370	0.011403	-0.028192	-0.026072	-0.063969	-0.050942	-0.194270
X180	-0.069228	-0.110769	0.001804	-0.174707	-0.013911	0.041039	0.038444	-0.003103	-0.050301	0.143554	-0.087946	-0.043057
X181	0.141662	-0.287863	0.157504	-0.271752	0.009313	0.011022	0.030478	-0.068015	-0.030259	-0.032944	-0.079833	-0.156606

X182	0.045356	-0.033338	-0.218000	0.112099	0.009975	0.034952	-0.069502	0.010163	-0.026567	0.384644	-0.065711	-0.162665
X183	-0.020161	-0.006996	0.025706	-0.029359	0.001843	-0.005351	-0.003499	0.027472	-0.007395	-0.018143	-0.015797	-0.055100
X184	0.006159	0.052650	-0.001063	-0.009115	0.001093	-0.030564	0.006814	0.030722	-0.004387	-0.010765	0.017574	-0.032692
X185	-0.097127	0.144906	0.127671	0.165383	0.004002	0.027401	-0.021476	-0.015498	-0.016060	-0.019473	-0.034309	-0.041829
X186	0.421405	-0.570809	-0.098067	-0.218208	0.011760	0.022144	0.103509	0.039123	0.108042	-0.092879	-0.266619	-0.135624
X187	-0.362440	0.492463	0.013845	0.141683	-0.014429	-0.024922	-0.109233	-0.041448	-0.098922	0.107966	0.291201	0.169451
X189	0.205917	-0.152207	-0.382779	-0.069982	0.014314	0.017400	-0.011884	0.011603	0.035297	0.073641	0.075405	0.185354
X190	-0.012076	-0.014663	-0.001848	-0.008149	0.000446	0.008707	-0.020123	0.009614	-0.001790	-0.004392	-0.003824	0.017817
X191	-0.144415	0.040339	-0.200524	0.104832	0.007975	-0.007519	-0.025639	0.037498	-0.109548	0.022031	-0.093487	0.819047
X192	-0.008742	0.006788	0.008479	-0.020188	0.001412	0.005086	-0.016854	-0.010481	-0.005667	-0.013904	-0.012106	0.016951
X194	-0.421405	0.570809	0.098067	0.218208	-0.011760	-0.022144	-0.103509	-0.039123	-0.108042	0.092879	0.266619	0.135624
X195	-0.073731	0.069443	0.017677	0.027926	0.003141	0.005189	-0.031560	0.009142	-0.012603	0.053131	-0.026923	0.031431
X196	-0.019902	0.075096	-0.021934	0.008764	0.002940	-0.002185	-0.003819	0.038179	-0.011797	-0.002047	0.065791	0.055344
X197	-0.063329	-0.023855	-0.020672	-0.161476	0.005288	0.040021	0.213847	-0.009764	-0.021219	-0.052061	-0.045330	0.208474
X198	-0.196737	0.019859	0.296563	-0.090296	-0.038413	-0.009405	-0.000711	0.032784	-0.017835	-0.043758	-0.038101	-0.132892
X199	0.004824	-0.037279	0.047559	-0.010338	0.001547	0.000495	-0.002579	0.003587	-0.006209	-0.015234	-0.013265	-0.046266
X200	0.058446	-0.076127	-0.129950	-0.061742	0.002368	0.020716	0.038475	-0.041581	-0.009503	-0.023315	-0.020301	-0.070807
X201	0.257258	-0.423469	-0.033318	-0.013551	0.013453	-0.030020	-0.001678	0.016758	0.211812	-0.125374	-0.115325	0.004721
X202	0.101290	-0.391924	0.001916	-0.477880	0.008810	0.020683	0.097609	-0.033617	-0.060657	-0.076436	-0.139933	-0.080766
X203	-0.009000	-0.090421	0.094498	-0.113787	0.003791	-0.021503	-0.019179	0.005400	-0.015211	-0.030318	-0.032494	-0.049952
X204	0.002513	0.021482	-0.000434	-0.025872	0.000446	0.019919	0.011589	0.005233	-0.001790	-0.004392	0.062143	-0.013338
X205	-0.002513	-0.021482	0.000434	0.025872	-0.000446	-0.019919	-0.011589	-0.005233	0.001790	0.004392	-0.062143	0.013338
X206	-0.047037	0.007664	-0.000607	-0.036279	0.004054	0.016863	-0.031065	0.040176	-0.016266	-0.000533	-0.005148	0.067529
X207	-0.018809	0.001602	-0.001848	-0.008149	0.000446	0.023656	0.001018	-0.010102	-0.001790	-0.004392	-0.003824	0.017817
X208	-0.080080	-0.054251	0.085961	-0.154462	-0.018974	-0.001916	0.005051	0.061578	-0.030100	-0.062715	-0.047560	-0.089856
X209	0.090043	0.054843	-0.059143	0.134661	0.011576	0.031885	-0.065366	-0.014646	0.025282	0.083787	0.069885	0.017194
X210	-0.005343	-0.007434	-0.017407	0.018434	0.000446	-0.023059	-0.004267	-0.021055	-0.001790	-0.004392	-0.003824	-0.013338
X211	-0.026911	-0.080779	-0.037398	-0.060668	0.003567	0.016974	-0.028754	-0.022387	-0.014314	-0.035120	-0.030579	0.063380
X212	0.038829	-0.053882	0.044933	0.012684	0.002145	-0.006573	0.017052	0.002720	0.441442	-0.021119	-0.018388	-0.064136
X213	0.016247	0.043543	0.010785	-0.007392	0.001263	0.000845	0.001013	0.039618	-0.005067	-0.012433	-0.010825	-0.037758
X214	0.045359	0.096876	0.173437	-0.012665	0.002410	0.010491	0.031107	-0.065193	-0.009672	-0.023731	-0.020663	-0.072069
X215	0.203709	-0.204714	-0.312762	-0.066274	0.009571	0.009448	0.048627	0.033217	-0.038405	-0.094227	-0.082044	-0.286164
X216	-0.139559	0.100466	0.097122	-0.058637	0.002237	0.032042	0.007227	-0.077016	-0.008976	-0.022023	-0.019176	-0.066883
X217	0.040945	0.119056	-0.005737	0.071058	0.002493	-0.010289	-0.004789	-0.010247	-0.010003	-0.024541	-0.021368	0.093938
X218	-0.144207	0.071733	0.193593	-0.262360	-0.001305	-0.019224	-0.076563	-0.013977	-0.078276	0.072507	0.339494	-0.130524
X219	-0.181137	0.262799	0.133223	-0.088848	0.007784	0.040686	-0.076405	0.017280	-0.031236	0.264821	0.371002	0.048641
X220	-0.118393	0.051007	0.266040	-0.161081	0.032725	0.021669	0.010689	-0.093747	-0.118781	-0.007871	0.176341	0.224245
X221	-0.157834	0.054496	0.059564	-0.061438	0.002611	0.007861	-0.008599	-0.055740	-0.010479	-0.025711	-0.022386	-0.045897
X222	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X223	-0.225250	0.129003	0.141726	0.039483	-0.006489	0.000458	0.019556	0.027881	0.095583	-0.147785	-0.129869	0.727050
X224	-0.104389	0.049084	-0.078562	0.051135	-0.000990	0.002751	-0.036152	0.013730	-0.079186	-0.194284	-0.053402	0.779874
X225	-0.015105	-0.003985	-0.018497	-0.157507	0.009481	0.029901	0.009805	0.062828	-0.031036	-0.020208	-0.019422	0.091405
X226	0.036243	-0.013459	0.012737	0.042417	0.005288	-0.030337	-0.032153	-0.072772	0.002234	0.009124	-0.039580	-0.014190
X227	-0.018667	0.033894	-0.078173	-0.004814	0.001611	0.004451	-0.030087	-0.001793	-0.006463	-0.015858	-0.013808	-0.048161
X228	-0.150940	-0.004984	0.152279	-0.096566	-0.027405	-0.005327	-0.023321	0.031710	-0.023382	-0.038730	-0.044696	-0.092338
X229	0.147355	-0.001838	-0.150059	0.093140	0.026950	0.005466	0.019403	-0.028509	0.023677	0.039669	0.040193	0.088119
X230	-0.045030	0.043842	-0.008689	0.005240	0.002098	-0.038535	0.012697	0.005877	-0.008417	-0.020652	-0.017982	0.083776
X231	-0.091055	-0.011648	-0.073114	-0.031998	0.003708	0.007964	-0.037409	0.029305	0.001567	-0.036509	-0.007597	0.026230
X232	-0.149090	0.202989	0.209387	0.188854	0.006134	0.006306	0.013201	0.004552	-0.024615	-0.042617	-0.052586	-0.076904
X234	0.325250	-0.206457	0.041494	-0.143218	0.014546	-0.025682	0.066297	-0.007404	-0.058371	-0.143214	0.083058	-0.434934
X236	-0.045651	0.017603	-0.018618	0.026072	0.000631	-0.000899	-0.017249	0.001204	-0.002532	0.076529	-0.005409	-0.018865
X237	-0.006021	-0.021648	-0.020269	-0.041582	0.002368	-0.066435	-0.003612	-0.015416	-0.009503	-0.023315	-0.007794	-0.070807
X238	0.240511	-0.205279	-0.382044	-0.058801	0.014444	0.008634	-0.015286	0.025309	0.035134	0.073192	0.071389	0.183842
X239	0.045359	0.096876	0.173437	-0.012665	0.002410	0.010491	0.031107	-0.065193	-0.009672	-0.023731	-0.020663	-0.072069
X240	-0.040265	0.026452	0.018530	0.048572	0.001547	-0.002205	0.027977	0.021317	-0.006209	-0.015234	0.005803	0.061799

X241	-0.219042	0.227151	0.166088	-0.110730	-0.012217	0.020404	-0.053407	-0.032261	-0 038096	0.147004	0.203512	0.050084
X242	0.037708	0.115798	-0.010326	0.071058	0.002493	-0.010625	0.002833	-0.032201	-0.010003	-0.024541	-0.021368	0.099554
X243	0.040334	0.117073	-0.010320	0.068847	0.002453	-0.007260	-0.001181	-0.014183	-0.009839	-0.024341	-0.021018	0.093934
X244	-0.240184	0.218500	0.134877	-0.125480	-0.011266	0.010647	-0.070837	-0.015681	-0.039474	0.201982	0.199264	0.037323
X245	0.012130	0.037216	-0.003202	0.031936	0.000773	-0.012971	0.020078	-0.023826	-0.003101	-0.007609	-0.006625	0.030866
X246	-0.341428	0.522338	-0.003202	0.215346	-0.015143	-0.012371	-0.118948	-0.023020	-0.096673	0.091023	0.293841	0.154610
X247	0.101290	-0.391924	0.001916	-0.477880	0.008810	0.020683	0.097609	-0.033617	-0.060657	-0.076436	-0.139933	-0.080766
X248	0.011660	0.008356	-0.004529	0.045180	0.001093	0.032027	-0.021254	0.045040	-0.004387	-0.010765	-0.009373	0.043667
X249	0.038361	0.117799	-0.005975	0.073218	0.002533	-0.013556	-0.000782	-0.010324	-0.010164	-0.024937	-0.021713	0.095631
X250	0.210866	-0.088023	-0.048940	0.007105	0.006310	0.028457	-0.035492	-0.013277	0.104430	0.256220	0.090179	-0.824017
X251	-0.136941	0.062503	-0.096691	0.046175	0.003602	-0.017882	0.032782	0.026036	-0.093663	-0.229802	-0.066938	0.932210
X252	-0.018977	0.036172	0.040907	0.016584	0.000773	0.028034	0.002762	0.006535	-0.003101	-0.007609	-0.006625	-0.023108
X253	0.011660	0.008356	-0.004529	0.045180	0.0011093	0.032027	-0.021254	0.045040	-0.004387	-0.010765	-0.009373	0.043667
X254	-0.045030	0.043842	-0.008689	0.005240	0.002098	-0.038535	0.012697	0.005877	-0.008417	-0.020652	-0.017982	0.083776
X255	-0.052481	0.071881	0.214645	-0.051791	0.004079	0.010856	0.016974	-0.095300	-0.016368	-0.040160	-0.034967	-0.121963
X256	0.016251	0.049735	0.177008	0.050727	0.008131	0.025679	0.072363	-0.014427	0.397338	-0.080055	-0.065801	-0.243123
X257	0.001391	0.023289	0.025027	-0.017011	0.000446	-0.024928	0.011589	-0.012292	-0.001790	-0.004392	-0.003824	-0.013338
X258	-0.016913	-0.057861	0.110570	-0.000552		-0.001421	-0.008488	-0.025044	-0.005667	-0.013904	-0.012106	-0.042225
X259	0.011491	-0.014663	0.034928	0.000712	0.000446	-0.008110	0.011589	0.007423	-0.001790	-0.004392	-0.003824	-0.013338
X260	0.015980	-0.018278	-0.010335	-0.008149	0.000446	-0.023059	-0.014838	0.013995	-0.001790	-0.004392	-0.003824	-0.013338
X261	-0.346534	0.014135	0.121778	-0.093864	-0.014489	0.007013	0.036361	0.019528	-0.035701	0.119510	0.028066	0.341442
X262	0.006159	0.052650	-0.001063	-0.009115	0.001093	-0.030564	0.006814	0.030722	-0.004387	-0.010765	0.017574	-0.032692
X263	0.149090	-0.202989	-0.209387	-0.188854	-0.006134	-0.006306	-0.013201	-0.004552	0.024615	0.042617	0.052586	0.076904
X264	-0.192854	0.111068	0.338257	-0.108523	-0.027176	0.009843	0.012968	-0.017602	-0.023530	-0.057730	-0.050266	-0.175324
X265	0.227735	-0.181413	-0.392478	-0.047588	0.012626	0.013819	-0.014389	0.021842	0.037526	0.079746	0.076692	0.205772
X266	0.006159	0.052650	-0.001063	-0.009115	0.001093	-0.030564	0.006814	0.030722	-0.004387	-0.010765	0.017574	-0.032692
X267	-0.032166	-0.010105	-0.000379	-0.025914	0.002762	-0.020987	-0.016086	-0.000796	0.010839	-0.027194	-0.012929	0.095085
X269	-0.015493	0.013768	0.009390	0.007273	0.000631	-0.029971	-0.013511	-0.011189	-0.002532	-0.006212	-0.005409	0.003167
	-0.010954		-0.001848	0.018434	0.000446		-0.035980		-0.001790		-0.003824	0.017817
X271	-0.032893	0.035563	0.021351	0.028745	0.001340	-0.010014	-0.000469	0.026677	-0.005375	0.006330	-0.011483	0.032711
X272	-0.139510	0.185082	0.225772	0.180114	0.005715	0.013067	0.015618	0.005935	-0.022933	-0.056266	-0.048992	-0.082464
X273	0.050051	-0.025389	-0.046565	0.171387	-0.018041	-0.027983	-0.107958	0.019638	-0.181647	-0.009156	-0.071812	-0.276651
X274	-0.069771	0.116640	0.031611	0.033488	0.002905	-0.006169	0.028761	0.008602	-0.011658	-0.019532	-0.024905	0.033906
X275	0.142594	-0.066217	0.057895	-0.355917	0.003903	-0.013814	0.032249	-0.070613	-0.017215	-0.096432	0.115597	-0.003933
X276	-0.142165	0.188599	0.225772	0.190261	0.005790	0.008216	0.015758	-0.001761	-0.023233	-0.042942	-0.049632	-0.085754
X277	-0.018596	0.057818	-0.053064	0.012603	0.001093	0.013708	-0.010458	0.005666	-0.004387	-0.010765	-0.009373	-0.032692
X278	-0.015493	0.035495	-0.006615	-0.011526	0.000631	0.013637	0.016392	0.002754	-0.002532	-0.006212	-0.005409	0.025199
X279	-0.149090	0.202989	0.209387	0.188854	0.006134	0.006306	0.013201	0.004552	-0.024615	-0.042617	-0.052586	-0.076904
X280	-0.024420	0.003409	0.032099	-0.017011	0.000446	0.016182	0.011589	-0.003530	-0.001790	-0.004392	-0.003824	-0.013338
X281	0.004618	0.045690	0.106587	-0.005662	0.001481	-0.029187	0.025719	-0.033544	-0.005944	-0.014584	-0.012698	-0.044291
X282	0.061375	0.088740	0.132600	-0.007827	0.001843	0.033245	0.017051	-0.057167	-0.007395	-0.018143	-0.015797	-0.055100
X283	-0.235678	0.144991	-0.044422	0.327428	-0.006790	-0.046588	-0.036302	-0.059325	-0.046979	-0.021903	-0.076965	0.080860
X284	-0.076545	-0.135900	0.025692	-0.176176	-0.010205	0.002777	-0.016686	-0.005060	-0.024041	-0.004489	-0.051360	-0.036440
X285	-0.205316	0.585840	0.100820	-0.069071	-0.009133	0.010926	-0.075996	-0.021330	-0.059102	0.095866	0.444642	0.130940
X286	-0.088499	0.041406	0.082726	0.237622	0.006957	-0.000665	-0.005262	0.026055	-0.027918	0.046540	-0.059642	-0.066483
X287	0.055418	-0.016604	-0.053913	-0.113064	0.003680	0.023517	0.063724	0.035619	-0.014769	-0.036235	-0.031550	0.035737
X288	0.014857	0.021482	0.032099	-0.008149	0.000446	0.016182	-0.004267	0.005233	-0.001790	-0.004392	-0.003824	-0.013338
X291	-0.036472	0.027112	0.042120	0.026228	0.002974	-0.007070	0.002786	0.026258	-0.011935	-0.011554	-0.015501	-0.060606
X292	-0.027411	0.029060	0.015293	0.023176	0.002762	-0.016115	-0.051395	-0.007221	-0.011084	0.001402	0.008568	-0.047052
X294	0.158783	-0.272456	-0.065739	-0.244799	0.010936	-0.004873	-0.011245	-0.018331	-0.025072	-0.072226	-0.093749	-0.194855
X295	0.005880	0.016060	-0.001848	0.000712	0.000446	-0.017453	-0.004267	0.013995	-0.001790	-0.004392	-0.003824	0.017817
X296	0.005880	0.016060	-0.001848	0.000712	0.000446	-0.017453	-0.004267	0.013995	-0.001790	-0.004392	-0.003824	0.017817
X298	0.059225	-0.040784	-0.000918	-0.000966	0.001949	0.035887	-0.002842	-0.021966	-0.007820	-0.019185	-0.016705	0.020525
X299	0.059225	-0.040784	-0.000918	-0.000966	0.001949	0.035887	-0.002842	-0.021966	-0.007820	-0.019185	-0.016705	0.020525

X300	-0.178401	0.076323	-0.061827	0.110216	0.014782	-0.033791	-0.051109	0.003046	-0.059317	-0.145535	-0.058958	0.589188	
X301	0.145602	-0.024840	-0.068673	0.072945	0.006412	0.145477	0.035465	0.054918	0.042989	0.060655	-0.054970	-0.128079	
X302	-0.009858	-0.090357	0.052208	-0.038773	0.003108	-0.054607	-0.013618	-0.035086	-0.012472	-0.030600	-0.026644	-0.092931	
X304	0.079118	-0.035021	-0.242346	0.121975	0.016011	0.010504	-0.042926	0.025514	0.017583	0.081587	0.067197	0.247776	
X305	0.061800	-0.041171	0.104233	0.013704	0.003360	-0.000265	0.024734	0.024978	0.022712	-0.033084	-0.028806	-0.100474	
X306	-0.149048	0.058455	0.167671	-0.137076	-0.025265	0.011324	0.032053	-0.011143	-0.024828	-0.060915	-0.048067	-0.184997	
X307	-0.008180	-0.025339	-0.011684	-0.033341	0.001340	-0.035576	0.010112	-0.012061	-0.005375	-0.013189	-0.011483	-0.040053	
X308	0.032011	0.051232	0.208903	-0.010962	0.002835	0.006943	0.024103	-0.066971	-0.011374	-0.027907	-0.024299	-0.084753	
X309	-0.003253	-0.020994	-0.021559	-0.038298	0.002452	-0.048683	-0.009896	-0.003347	-0.009839	-0.024139	-0.021018	-0.073310	
X310	-0.034340	0.050600	-0.015957	0.045161	0.001481	-0.008316	-0.003000	0.008118	-0.005944	0.003075	-0.012698	0.012137	
X311	0.193054	0.019371	-0.027173	-0.183512	0.009093	-0.003702	-0.051619	-0.057639	0.014742	-0.062754	0.147193	0.016201	
X312	0.001937	-0.076849	-0.035584	-0.034645	0.001896	-0.047718	-0.018140	-0.028975	-0.007610	-0.018671	-0.016257	-0.056704	
X313	0.429398	-0.029443	-0.244862	0.164566	-0.002038	-0.032840	-0.026615	-0.009387	0.036810	0.011552	-0.040891	-0.205630	
X314	-0.339141	0.022699	0.147049	-0.101764	-0.013728	0.000164	0.040310	0.003698	-0.038410	0.112101	0.021894	0.319019	
X315	-0.231550	0.040382	0.021906	-0.082778	0.004979	-0.007267	-0.033484	0.007482	-0.019978	-0.022038	-0.006173	0.066655	
X316	0.100732	-0.115136	-0.016777	-0.124962	0.014267	0.037613	-0.012205	0.000757	0.026404	-0.122276	0.049448	-0.149336	
X317	-0.005843	-0.066580	0.002558	-0.035266	0.002533	-0.045385	-0.009223	-0.019264	-0.010164	-0.024937	-0.021713	-0.075732	
X318	-0.017681	-0.005574	0.032739	-0.009002	0.000773	0.028034	0.004817	-0.008645	-0.003101	0.026174	-0.006625	-0.005117	
X319	-0.025810	-0.014349	-0.002614	-0.011526	0.000631	0.008351	0.020130	0.027541	-0.002532	-0.006212	-0.005409	-0.018865	
X320	0.040334	0.117073	-0.010157	0.068847	0.002452	-0.007260	-0.001181	-0.014183	-0.009839	-0.024139	-0.021018	0.097923	
X321	-0.141728	0.321879	-0.051798	0.434591	-0.021502	-0.022692	-0.017264	-0.027350	-0.065035	0.020191	-0.119857	-0.017199	
X322	-0.063873	0.024107	-0.009124	-0.017383	0.004326	0.007622	-0.042492	0.026267	-0.017359	0.031403	-0.030130	0.002010	
X323	-0.042542	0.003654	0.000011	-0.078207	0.002799	-0.009098	-0.025919	-0.005230	-0.011230	0.028908	-0.023990	-0.013516	
X324	0.049016	-0.030810	-0.154328	-0.183065	-0.018377	-0.029963	-0.078223	0.039177	-0.051164	-0.205520	0.026140	-0.160336	
X325	-0.051742	0.119213	0.015531	-0.040034	0.002191	-0.039075	0.056932	-0.000749	-0.008794	-0.021575	-0.018786	0.004622	
X326	0.036243	-0.013459	0.012737	0.042417	0.005288	-0.030337	-0.032153	-0.072772	0.002234	0.009124	-0.039580	-0.014190	
X327	0.004613	-0.121544	-0.117760	-0.319196	0.001487	-0.018663	-0.041885	0.034012	-0.044549	0.049764	0.242285	-0.056269	
X328	-0.144536	0.193212	0.220778	0.188223	0.005919	0.007115	0.012267	0.007858	-0.023750	-0.044493	-0.050737	-0.079133	
X329	0.071595	0.076906	0.022667	-0.116484	0.005949	-0.007800	-0.084452	0.020231	0.128089	-0.031899	0.266164	0.142041	
X331	-0.036578	-0.047799	-0.049874	-0.208983	-0.006923	0.032385	0.210492	0.025202	-0.028302	-0.069438	-0.060460	0.214893	
X332	0.018611	0.027823	-0.003202	0.026819	0.000773	0.034509	-0.019602	0.002740	-0.003101	-0.007609	-0.006625	0.030866	
X333	-0.002468	-0.128397	-0.094721	0.180359	0.004537	0.004448	-0.014659	0.013294	-0.018208	0.155634	-0.038897	-0.041544	
X334	-0.061232	-0.159830	0.276947	-0.558937	0.007501	-0.030001	0.062598	-0.032585	-0.103574	-0.043716	0.267385	-0.137297	
X335	0.022810	0.013226	-0.007169	-0.065992	0.001731	-0.038229	-0.016554	0.062793	-0.006945	-0.017039	-0.014836	0.069118	
X336	-0.100537	0.420864	-0.073259	0.065564	-0.017881	0.027354	-0.062243	0.017454	-0.044359	-0.014176	-0.094764	0.225448	
X337	0.047351	0.138232	-0.282255	0.574053	-0.008695	0.027452	-0.057885	0.011149	0.108199	0.055537	-0.256402	0.103045	
X338	0.024660	0.017410	-0.011039	-0.017618	0.002410	0.011535	-0.008284	0.024192	0.015396	-0.001932	-0.020663	-0.002413	
X339	-0.032276	0.003409	-0.013164	0.018434	0.000446	-0.000636	-0.025409	-0.018864	-0.001790	0.054108	-0.003824	-0.013338	
X340	0.057060	-0.129059	-0.043493	-0.127035	0.004374	0.003707	0.024869	0.039194	-0.017551	-0.030857	-0.037493	0.008955	
X341	-0.031662	0.069743	-0.011792	-0.008040	0.002611	-0.005008	-0.008599	-0.001805	-0.010479	0.004506	-0.022386	0.072112	
X342	0.055305	0.013067	-0.135847	-0.029992	-0.060906	-0.039171	-0.025297	-0.010388	0.052615	-0.043061	-0.037493	-0.111276	
X343	0.050892	-0.067608	0.003962	-0.112025	0.008440	-0.057990	-0.013460	-0.038023	-0.033870	-0.076391	-0.057226	0.031647	
X344	-0.122156	0.107954	0.060595	-0.062449	0.002688	-0.002579	-0.014210	-0.046565	-0.010785	-0.006881	-0.023041	-0.054294	
X345	0.004856	0.007790	-0.137912	0.178881	0.004374	0.027874	0.008882	0.049704	-0.017551	0.085073	-0.037493	-0.101528	
X346	-0.049686	-0.039632	-0.034358	-0.202812	-0.008650	0.039522	0.212715	-0.002105	-0.025936	-0.063635	-0.055408	0.222029	
X348	0.170687	-0.060908	-0.320180	0.116191	0.021941	0.025579	-0.008300	0.026540	0.027401	0.067229	0.053988	0.204170	
X349	-0.023534	-0.035300	-0.046940	-0.197058	0.006275	0.056139	0.201164	0.020943	-0.025179	-0.061776	-0.053789	0.204227	
X350	-0.106772	0.152362	-0.230941	0.143553	-0.006459	-0.055928	-0.100208	0.016212	-0.083122	-0.194416	-0.076614	0.108029	
X351	-0.144929	0.157290	0.065231	0.077231	0.018819	-0.032679	-0.019419	-0.005965	-0.070980	-0.151745	0.150106	0.340823	
X352	-0.037934	-0.046500	-0.048432	-0.207965	-0.007280	0.033643	0.207265	0.023063	-0.027790	-0.068182	-0.059367	0.210827	
X353	-0.042253	-0.010867	-0.005549	-0.024472	0.001340	-0.026847	0.034801	-0.006214	-0.005375	-0.013189	-0.011483	0.053500	
X354	-0.182165	0.177373	0.099700	-0.071795	-0.001390	0.005689	-0.096507	-0.058520	-0.053430	0.255318	0.130177	0.020747	
X355	0.132281	-0.332577	-0.065141	-0.189158	-0.010442	0.022560	0.026425	0.050301	0.139665	-0.037512	-0.192270	0.056933	
X356	0.159288	-0.407207	0.017311	-0.392994	0.013551	-0.002591	-0.003423	-0.048943	-0.048979	-0.046559	-0.116168	-0.208902	
X357	0.015664	0.048057	-0.004134	0.041239	0.000998	-0.023996	0.007008	-0.033381	-0.004005	-0.009826	-0.008555	0.039858	

X358	-0.331767	0.492712	-0.020174	0.196666	-0.014025	-0.018653	-0.129731	-0.027884	-0.100230	0.085827	0.283290	0.161773
X359	-0.024918	0.124822	-0.015778	0.037152	0.005248	-0.022078	-0.004724	-0.046906	-0.021057	-0.051664	0.007134	0.168556
X360	-0.212191	0.240327	0.185954	-0.117218	-0.015865	0.037645	-0.078442	0.010690	-0.033422	0.236848	0.341697	0.005676
X361	-0.021215	0.244337	0.095281	-0.209929	-0.005427	-0.028669	-0.030375	-0.023963	0.021777	-0.210335	0.046522	0.085403
X362	0.417100	-0.553714	-0.121228	-0.208063	0.010831	0.035216	0.104187	0.046646	0.111496	-0.083772	-0.258361	-0.108226
X363	-0.235644	0.209735	-0.086462	0.031959	-0.009071	0.028312	-0.096939	0.004571	0.056725	0.093726	0.056781	0.227999
X364	-0.040265	0.026452	0.018530	0.048572	0.001547	-0.002205	0.027977	0.021317	-0.006209	-0.015234	0.005803	0.061799
X365	-0.040265	0.026452	0.018530	0.048572	0.001547	-0.002205	0.027977	0.021317	-0.006209	-0.015234	0.005803	0.061799
X366	0.010643	-0.003694	-0.005400	0.017451	0.000998	-0.000586	0.040116	0.012687	-0.004005	-0.009826	0.020960	0.039858
X367	-0.054229	-0.045593	-0.044346	-0.203050	-0.007746	0.040783	0.205846	0.014585	-0.027139	-0.066587	-0.057978	0.226781
X368	-0.081594	-0.052381	0.084253	-0.155343	-0.019036	-0.000097	0.003987	0.059822	-0.030039	-0.062547	-0.047400	-0.087187
X369	0.001967	-0.020739	0.019393	0.001006	0.000631	-0.003542	0.012654	0.013598	-0.002532	-0.006212	-0.005409	-0.018865
X370	0.050787	0.097932	0.170400	-0.009662	0.002368	0.007608	0.029456	-0.065670	-0.009503	-0.023315	-0.020301	-0.070807
X371	-0.085449	0.079697	0.175921	0.143799	0.003480	-0.003016	0.015503	0.022877	-0.013964	-0.034261	-0.029832	-0.091899
X372	-0.015493	0.029105	0.033397	0.026072	0.000631	0.005708	0.020130	-0.009640	-0.002532	-0.006212	-0.005409	-0.018865
X373	0.021198	-0.123914	-0.102637	0.161539	0.004054	-0.007035	-0.040552	0.004788	-0.016266	0.176659	-0.034749	-0.054797
X374	-0.161102	0.202307	-0.036632	0.518349	0.000355	0.002639	-0.007503	-0.004513	-0.062993	0.097125	-0.134572	-0.008845
X375	0.113272	0.056874	-0.174308	0.051801	-0.021598	0.012756	-0.036780	0.044093	0.165277	-0.107864	-0.169721	0.118950
X376	0.070546	-0.102424	0.033697	-0.105009	0.007132	-0.062472	-0.021234	-0.054105	-0.028618	-0.070214	-0.061136	0.026496
X377	0.045173	-0.248791	0.122503	-0.588272	0.012692	0.005345	0.069685	-0.033075	-0.074244	0.030134	0.357229	-0.097464
X378	-0.102136	0.145282	0.131974	0.173723	0.004204	0.029634	-0.030480	-0.010485	-0.016870	-0.016043	-0.036040	-0.037958
X379	0.083352	0.070753	0.033645	-0.026446	0.002835	0.034548	-0.030471	0.069440	-0.011374	-0.027907	-0.024299	0.103309
X380	-0.038618	-0.022360	0.006473	0.004166	0.002611	0.010434	-0.014059	0.009511	-0.010479	-0.005566	0.023045	0.007743
X382	-0.060401	0.120044	0.024392	-0.046271	0.002533	-0.031128	0.054548	-0.000996	-0.010164	-0.024937	-0.021713	0.012713
X383	-0.011174	-0.029253	-0.019873	-0.028280	0.001181	-0.007337	-0.021293	0.038712	-0.004740	-0.011628	-0.010125	0.023604
X384	0.009110	0.017603	-0.002614	0.007273	0.000631	0.007030	0.023867	0.008950	-0.002532	-0.006212	0.041242	0.025199
X385	0.011660	0.008356	-0.004529	0.045180	0.001093	0.032027	-0.021254	0.045040	-0.004387	-0.010765	-0.009373	0.043667

#Choosing the upper part of the correlation matrix as it will be same as the lower half
Corr_upper = correlation_X.where(np.triu(np.ones_like(correlation_X),k=1).astype(np.bool))
Corr_upper
with pd.option_context('display.max_rows',None):
 display(Corr_upper)

	X0	X1	X2	Х3	X4	X5	Х6	X8	X10	X12	X13	X14	
Х0	NaN	-0.271123	-0.139904	-0.070645	0.017988	0.012293	0.037549	0.047735	0.081122	-0.134577	-0.130529	-0.138310	0.0
X1	NaN	NaN	0.088266	0.205657	-0.020724	0.046417	-0.079119	-0.000306	-0.137193	0.112263	0.286683	0.079784	-0.0
X2	NaN	NaN	NaN	-0.093546	0.002289	-0.017722	0.065778	-0.069932	0.042398	0.131464	0.222132	-0.079183	-0.0
Х3	NaN	NaN	NaN	NaN	0.015298	-0.008161	-0.048468	-0.001249	0.019663	0.056166	-0.216464	0.045183	-0.0
X4	NaN	NaN	NaN	NaN	NaN	0.039778	0.027854	-0.008909	0.003360	0.008245	0.007179	0.005544	0.0
X5	NaN	NaN	NaN	NaN	NaN	NaN	-0.019917	0.012746	-0.006800	0.060161	-0.003452	-0.003439	-0.0
Х6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.018565	0.092986	-0.099264	-0.041825	0.028516	-0.0
X8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.014075	-0.061136	-0.038309	0.026162	-0.0
X10	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-0.033084	-0.028806	-0.100474	-0.0
X12	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.214825	-0.246513	-0.0
X13	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-0.083141	-0.0
X14	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-0.0
X15	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X16	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X17	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X18	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X19	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X21	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X22	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

X23	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X24	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X26	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X27	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X28	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X29	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X30	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X31	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X32	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X33	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X34	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X35	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X36	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X37	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X38	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X39	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X40	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X41	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X42	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X43	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X44	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X45	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X46	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X47	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X48	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X49	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X50	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X51	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X52	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X53	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X54	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X55	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X56	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X57	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X58	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X59	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X60	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X61	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X62		NaN										
X63	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X64	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X65	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X66		NaN										
X67	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X68	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X69	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X70		NaN										
X71	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X73		NaN										
X74		NaN										
X75		NaN										
X76		NaN										
X77		NaN										
X78	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
X79	INGIN	NaN										

V00	NeN	NaN	NaN	NeN	NeN	NaN	NeN	NeN	NeN	NeN	NeN	NeN
X80 X81	NaN NaN											
X82	NaN											
X83	NaN											
X84	NaN											
X85	NaN											
X86	NaN											
X87	NaN											
X88	NaN											
X89	NaN											
X90	NaN											
X91	NaN											
X92	NaN											
X94	NaN											
X95	NaN											
X96	NaN											
X97	NaN											
X98	NaN											
X99	NaN											
X100	NaN											
X101	NaN											
X102	NaN											
X103	NaN											
X104	NaN											
X105	NaN											
X106	NaN											
X108	NaN											
X109	NaN											
X110	NaN											
X111	NaN											
X112	NaN											
X113	NaN											
X114	NaN											
X115	NaN											
X116	NaN											
X117	NaN											
X118	NaN											
X119	NaN											
X120	NaN											
X122	NaN											
X123	NaN											
X124	NaN											
X125	NaN											
X126 X127	NaN											
X127	NaN NaN											
X120	NaN											
X123	NaN											
X130	NaN											
X131		NaN										
X132	NaN											
X134	NaN											
X135		NaN										
X136	NaN											
X137		NaN										

X138	NaN											
X139	NaN											
X140	NaN											
X141	NaN											
X142	NaN											
X143	NaN											
X144	NaN											
X145	NaN											
X146	NaN											
X147	NaN											
X148	NaN											
X150	NaN											
X151	NaN											
X152	NaN											
X153	NaN											
X154	NaN											
X155	NaN											
X156	NaN											
X157	NaN											
X158	NaN											
X159	NaN											
X160	NaN											
X161	NaN											
X162	NaN											
X163	NaN											
X164	NaN											
X165	NaN											
X166	NaN											
X167	NaN											
X168	NaN											
X169	NaN											
X170	NaN											
X171	NaN											
X172	NaN											
X173	NaN											
X174	NaN											
X175	NaN											
X176	NaN											
X177	NaN											
X178	NaN											
X179	NaN											
X180	NaN											
X181	NaN											
X182	NaN											
X183	NaN											
X184	NaN											
X185	NaN											
X186	NaN											
X187	NaN											
X189	NaN											
X190	NaN											
X191	NaN											
X192	NaN											
X194	NaN											
X195	NaN											

X196	NaN											
X197	NaN											
X198	NaN											
X199	NaN											
X200	NaN											
X201	NaN											
X202	NaN											
X203	NaN											
X204	NaN											
X205	NaN											
X206	NaN											
X207	NaN											
X208	NaN											
X209	NaN											
X210	NaN											
X211	NaN											
X212	NaN											
X213	NaN											
X214	NaN											
X215	NaN											
X216	NaN											
X217	NaN											
X218	NaN											
X219	NaN											
X220	NaN											
X221	NaN											
X222	NaN											
X223	NaN											
X224	NaN											
X225	NaN											
X226	NaN											
X227	NaN											
X228	NaN											
X229	NaN											
X230	NaN											
X231	NaN											
X232	NaN											
X234	NaN											
X236	NaN											
X237	NaN											
X238	NaN											
X239	NaN											
X240	NaN											
X241	NaN											
X242	NaN											
X243	NaN											
X244	NaN											
X245	NaN											
X246	NaN											
X247	NaN											
X248	NaN											
X249	NaN											
X250	NaN											
X251	NaN											

X252	NaN											
X252	NaN											
X254	NaN											
X255	NaN											
X256	NaN											
X257	NaN											
X258	NaN											
X259	NaN											
X260	NaN											
X261	NaN											
X262	NaN											
X263	NaN											
X264	NaN											
X265	NaN											
X266	NaN											
X267	NaN											
X269	NaN											
X270	NaN											
X271	NaN											
X272	NaN											
X273	NaN											
X274	NaN											
X275	NaN											
X276	NaN											
X277	NaN											
X278	NaN											
X279	NaN											
X280	NaN											
X281	NaN											
X282	NaN											
X283	NaN											
X284	NaN											
X285	NaN											
X286	NaN											
X287	NaN											
X288	NaN											
X291	NaN											
X292	NaN											
X294	NaN											
X295	NaN											
X296	NaN											
X298	NaN											
X299	NaN											
X300	NaN											
X301	NaN											
X302	NaN											
X304	NaN											
X305	NaN											
X306	NaN											
X307	NaN											
X308	NaN											
X309	NaN											
X310	NaN											
X311	NaN											
X312	NaN											

X313	NaN											
X314	NaN											
X315	NaN											
X316	NaN											
X317	NaN											
X318	NaN											
X319	NaN											
X320	NaN											
X321	NaN											
X322	NaN											
X323	NaN											
X324	NaN											
X325	NaN											
X326	NaN											
X327	NaN											
X328	NaN											
X329	NaN											
X331	NaN											
X332	NaN											
X333	NaN											
X334	NaN											
X335	NaN											
X336	NaN											
X337	NaN											
X338	NaN											
X339	NaN											
X340	NaN											
X341	NaN											
X342	NaN											
X343	NaN											
X344	NaN											
X345	NaN											
X346	NaN											
X348	NaN											
X349	NaN											
X350	NaN											
X351	NaN											
X352	NaN											
X353	NaN											
X354	NaN											
X355	NaN											
X356	NaN											
X357	NaN											
X358	NaN											
X359	NaN											
X360	NaN											
X361	NaN											
X362	NaN											
X363	NaN											
X364	NaN											
X365	NaN											
X366	NaN											
X367	NaN											
X368	NaN											
X369	NaN											

```
X370 NaN
              NaN
                       NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X371
     NaN
              NaN
                        NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X372 NaN
              NaN
                       NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X373 NaN
              NaN
                       NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                                 NaN
                                                                                                          NaN
                                                                                        NaN
X374 NaN
              NaN
                        NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X375 NaN
              NaN
                       NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X376 NaN
                       NaN
                                 NaN
                                                                     NaN
                                                                              NaN
              NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X377
     NaN
              NaN
                        NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X378 NaN
              NaN
                       NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
                                 NaN
                                                                              NaN
X379 NaN
              NaN
                       NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X380
     NaN
              NaN
                        NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X382 NaN
              NaN
                       NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X383 NaN
              NaN
                       NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X384 NaN
              NaN
                        NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
X385 NaN
              NaN
                       NaN
                                 NaN
                                          NaN
                                                   NaN
                                                            NaN
                                                                     NaN
                                                                              NaN
                                                                                        NaN
                                                                                                 NaN
                                                                                                          NaN
```

```
In [ ]:
```

```
#Finding the columns with correlation > .95
droppables = [col for col in Corr upper.columns if any(abs(Corr upper[col])>.95)]
droppables
```

```
Out[]:
['X35',
 'X37',
 'X39',
 'X54',
 'X61'
 'X76'
 'X84'
 'X90'
 'X94'
 'X102'
 'X111'
 'X113'
 'X119'
 'X120'
```

'X122' 'X129 'X130' 'X134' 'X136' 'X137 'X140' 'X146' 'X147' 'X157' 'X158' 'X162' 'X172' 'X194' 'X198' 'X199' 'X205' 'X213' 'X214' 'X215' 'X216' 'X217 'X222' 'X226' 'X227' 'X229 'X232' 'X239' 'X242' 'X243 'X244' 'X245' 'X247' 'X248' 'X249' 'X250' 'X253' ' X254 '

```
'X262',
 'X263',
 'X264',
 'X266',
 'X279',
 'X296',
 'X299',
 'X302'
 'X311'
 'X314',
 'X320',
 'X324'
 'X326',
 'X328',
 'X337',
 'X348',
 'X352'
 'X358',
 'X360',
 'X362'
 'X363'
 'X364',
 'X365',
 'X367'
 'X368',
 'X370',
 'X371'
 'X378',
 'X382'
 'X385']
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation X
  correlation_X.loc[correlation_X['X385'] > 0.9, correlation_X['X385'] > 0.9]
Out[]:
     X60 X248 X253 X385
 X60
      1.0
           1.0
                1.0
                     1.0
X248
      1.0
           1.0
                1.0
                     1.0
X253
     1.0
           1.0
                1.0
                     1.0
X385
     1.0
           1.0
                1.0
                     1.0
In [ ]:
#Dropping all 4 columns since they are highly correlated.
X train 1=X train new.drop((['X60','X248','X253','X385']),axis=1)
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation_X
  correlation_X.loc[correlation_X['X382'] > 0.9, correlation_X['X382'] > 0.9]
Out[]:
     X17 X382
 X17
      1.0
           1.0
X382 1.0
           1.0
In [ ]:
#Dropping X382
```

X_train_2 = X_train_1.drop('X382',axis=1)

```
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation_X
  correlation_X.loc[correlation_X['X378'] > 0.9, correlation_X['X378'] > 0.9]
Out[]:
         X185
                 X378
X185 1.000000 0.951991
 X378 0.951991 1.000000
In [ ]:
#Dropping X378
X_{\text{train}_3} = X_{\text{train}_2.\text{drop}('X378',axis=1)}
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation X
  correlation_X.loc[correlation_X['X371'] > 0.9, correlation_X['X371'] > 0.9]
Out[]:
         X108
                 X371
X108 1.000000 0.983502
X371 0.983502 1.000000
In [ ]:
#Dropping X371
X_{train_4} = X_{train_2.drop('X371',axis=1)}
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation X
  correlation_X.loc[correlation_X['X370'] > 0.9, correlation_X['X370'] > 0.9]
Out[]:
         X53
               X102
                      X214
                             X239
                                    X370
 X53 1.00000 1.00000 1.00000 1.00000 0.98249
 X102 1.00000 1.00000
                    1.00000
                           1.00000
                                  0.98249
X214 1.00000 1.00000
                   1.00000
                           1.00000
                                  0.98249
X239 1.00000 1.00000 1.00000 1.00000 0.98249
 X370 0.98249 0.98249 0.98249 0.98249 1.00000
In [ ]:
#Dropping 4 columns since they are highly correlated.
X train 5=X train 4.drop((['X53','X102','X214','X239']),axis=1)
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation_X
  correlation X.loc[correlation X['X368'] > 0.9, correlation X['X368'] > 0.9]
Out[]:
         X208
                 X368
X208 1.000000 0.993951
X368 0.993951 1.000000
In [ ]:
#Dropping X368
X_{\text{train}_6} = X_{\text{train}_5.\text{drop}('X368',axis=1)}
```

```
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation_X
  correlation_X.loc[correlation_X['X367'] > 0.9, correlation_X['X367'] > 0.9]
Out[]:
        X331
                X346
                        X352
                                X367
X331 1.000000 0.916432 0.981917 0.958938
X346 0.916432 1.000000 0.923442 0.940555
X352 0.981917 0.923442 1.000000 0.948180
X367 0.958938 0.940555 0.948180 1.000000
In [ ]:
#Dropping 3 columns since they are highly correlated.
X_train_7=X_train_6.drop((['X331','X346','X352']),axis=1)
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation_X
  correlation X.loc[correlation X['X365'] > 0.9, correlation X['X365'] > 0.9]
Out[ ]:
     X240 X364 X365
X240
       1.0
            1.0
                 1.0
X364
       1.0
            1.0
                 1.0
X365
       1.0
            1.0
                 1.0
In [ ]:
#Dropping 2 columns since they are highly correlated.
X_train_8=X_train_7.drop((['X240','X364']),axis=1)
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation X
  correlation X.loc[correlation X['X363'] > 0.9, correlation X['X363'] > 0.9]
Out[]:
         X96
                X363
 X96 1.000000 0.988475
X363 0.988475 1.000000
In [ ]:
#Dropping X363
X_{\text{train}_9} = X_{\text{train}_8.\text{drop}('X363',axis=1)}
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation_X
  correlation_X.loc[correlation_X['X362'] > 0.9, correlation_X['X362'] > 0.9]
Out[]:
        X186
                X362
X186 1.000000 0.969026
X362 0.969026 1.000000
In [ ]:
#Dropping X362
X_{\text{train}_9} = X_{\text{train}_9.\text{drop}('X362',axis=1)}
```

```
In [ ]:
#These show one out of each pair of correlated variables. To find the other pair, we can subset the correlation_X
  correlation_X.loc[correlation_X['X360'] > 0.9, correlation_X['X360'] > 0.9]
Out[]:
        X155
                X219
                        X360
X155 1.000000 0.906078 1.000000
X219 0.906078 1.000000 0.906078
X360 1.000000 0.906078 1.000000
In [ ]:
#Dropping 2 columns since they are highly correlated.
X_train_10=X_train_9.drop((['X360','X155']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation X.loc[correlation X['X358'] > 0.9, correlation X['X358'] > 0.9]
Out[]:
       X246
              X358
X246 1.00000 0.96451
X358 0.96451 1.00000
In [ ]:
#Dropping X358
X_train_10=X_train_10.drop((['X358']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X348'] > 0.9, correlation_X['X348'] > 0.9]
Out[]:
                X348
         X80
 X80 1.000000 0.992885
X348 0.992885 1.000000
In [ ]:
#Dropping X348
X train 10=X train 10.drop((['X348']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X337'] > 0.9, correlation_X['X337'] > 0.9]
Out[]:
     X337
X337
In [ ]:
#X337 is good to keep , so we will move onto the next one
```

```
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X328'] > 0.9, correlation_X['X328'] > 0.9]
Out[]:
         X29
                 X54
                         X76
                                X162
                                        X232
                                                X272
                                                        X276
                                                                X279
                                                                       X328
 X29
    1.000000 0.994274 0.994274 0.961903 1.000000 0.931650
                                                    0.943836 1.000000 0.964846
 X54 0.994274 1.000000 1.000000 0.968158 0.994274 0.926315 0.938431 0.994274 0.959321
 X76 0.994274 1.000000 1.000000 0.968158 0.994274 0.926315 0.938431 0.994274 0.959321
X162 0.961903 0.968158 0.968158 1.000000 0.961903 0.944154 0.919389 0.961903 0.954195
X232 1.000000 0.994274 0.994274 0.961903 1.000000 0.931650 0.943836 1.000000 0.964846
X272 0.931650 0.926315 0.926315 0.944154 0.931650 1.000000 0.915617 0.931650 0.946493
X279 1.000000 0.994274 0.994274 0.961903 1.000000 0.931650 0.943836 1.000000 0.964846
X328 0.964846 0.959321 0.959321 0.954195 0.964846 0.946493 0.940478 0.964846 1.000000
In [ ]:
#Dropping columns which are highly correlated.
X_train_11=X_train_10.drop((['X328','X279','X276','X272','X162','X76','X54']),axis=1)
In [ ]:
```

```
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X326'] > 0.9, correlation_X['X326'] > 0.9]
```

Out[]:

	X152	X226	X326
X152	1.0	1.0	1.0
X226	1.0	1.0	1.0
X326	1.0	1.0	1.0

In []:

```
#Dropping X326, X226
X_train_11=X_train_11.drop((['X326','X226']),axis=1)
```

In []:

```
#To find the next pair, we can subset the correlation_X.
correlation X.loc[correlation X['X324'] > 0.9, correlation X['X324'] > 0.9]
```

Out[]:

```
X137
          X58
                           X324
X58 1.000000 0.985972
                        1.000000
X137 0.985972 1.000000 0.985972
X324 1 000000 0 985972 1 000000
```

In []:

```
#Dropping X324, X137
X_train_11=X_train_11.drop((['X324','X137']),axis=1)
```

```
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X320'] > 0.9, correlation_X['X320'] > 0.9]
Out[ 1:
          X88
                  X90
                          X94
                                   X99
                                          X122
                                                   X217
                                                           X242
                                                                   X243
                                                                            X249
                                                                                    X320
     1.000000 0.983621
                      0.983621 0.912215 1.000000 0.983621
                                                        0.983621
                                                                1.000000
                                                                        0.968014 1.000000
 X88
                      1.000000 0.897231 0.983621 0.967503
     0.983621 1.000000
                                                       1.000000 0.983621 0.984133
                                                                                0.983621
 X90
 X94
     0.983621 1.000000
                      1.000000 0.897231 0.983621 0.967503
                                                       1.000000 0.983621 0.984133 0.983621
     0.912215 0.897231
                      0.897231 1.000000 0.912215 0.897231 0.897231 0.912215 0.882952 0.912215
 X99
     1.000000 0.983621
                      0.983621 0.912215 1.000000 0.983621 0.983621 1.000000 0.968014 1.000000
X122
X217 0.983621 0.967503
                      0.967503  0.897231  0.983621  1.000000
                                                       0.967503 0.983621 0.984133 0.983621
     0.983621 1.000000
                      1.000000 0.897231 0.983621 0.967503
                                                       1.000000
                                                                0.983621 0.984133
X242
X243
     1.000000 0.983621 0.983621 0.912215 1.000000 0.983621
                                                       0.983621 1.000000 0.968014 1.000000
X249
     0.968014 0.984133 0.984133 0.882952 0.968014 0.984133 0.984133 0.968014 1.000000 0.968014
X320 1.000000 0.983621 0.983621 0.912215 1.000000 0.983621 0.983621 1.000000 0.968014 1.000000
In [ ]:
#Dropping 9 columns since they are highly correlated.
X train 12=X train 11.drop((['X320','X249','X243','X242','X217','X122','X99','X94','X90']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation X.loc[correlation X['X314'] > 0.9, correlation X['X314'] > 0.9]
Out[ ]:
                 X314
         X261
X261
     1.000000 0.975521
X314 0.975521 1.000000
In [ ]:
#Dropping X314
X train 13=X train 12.drop((['X314']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation X.loc[correlation X['X311'] > 0.9, correlation X['X311'] > 0.9]
Out[]:
                 X119
         X118
                         X311
X118 1.000000 1.000000
                      0.951265
X119 1.000000 1.000000 0.951265
X311 0.951265 0.951265 1.000000
In [ ]:
#Dropping X311, x119
X_train_13=X_train_13.drop((['X311','X119']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X302'] > 0.9, correlation_X['X302'] > 0.9]
Out[]:
      X44
          X302
      1.0
 X44
            1.0
```

In []:

X302

1.0

1.0

```
#Dropping X302
X_{train_13=X_{train_13.drop((['X302']),axis=1)}
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X299'] > 0.9, correlation_X['X299'] > 0.9]
Out[]:
     X298 X299
X298
       1.0
            1.0
X299
       1.0
            1.0
In [ ]:
#Dropping X299
X_train_13=X_train_13.drop((['X299']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X296'] > 0.9, correlation_X['X296'] > 0.9]
Out[]:
     X295 X296
X295
       1.0
            1.0
X296
       1.0
            1.0
In [ ]:
#Dropping X296
X_train_13=X_train_13.drop((['X296']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X266'] > 0.9, correlation_X['X266'] > 0.9]
Out[]:
     X184 X262 X266
X184
       1.0
                 1.0
            1.0
X262
       1.0
            1.0
                 1.0
X266
       1.0
            1.0
                 1.0
In [ ]:
#Dropping X266,X262
X_train_13=X_train_13.drop((['X266','X262']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X264'] > 0.9, correlation_X['X264'] > 0.9]
Out[]:
        X126
                X264
X126 1.000000 0.993712
X264 0.993712 1.000000
In [ ]:
#Dropping X264
X_train_13=X_train_13.drop((['X264']),axis=1)
```

In []:

```
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X263'] > 0.9, correlation_X['X263'] > 0.9]
Out[]:
        X136
                X263
X136 1.000000 0.994274
X263 0.994274 1.000000
In [ ]:
#Dropping X263
X_train_13=X_train_13.drop((['X263']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X254'] > 0.9, correlation_X['X254'] > 0.9]
Out[]:
     X230 X254
X230
            1.0
X254
       1.0
            1.0
In [ ]:
#Dropping X254
X_train_13=X_train_13.drop((['X254']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X250'] > 0.9, correlation_X['X250'] > 0.9]
Out[]:
        X178
                X250
X178 1.000000 0.984168
X250 0.984168 1.000000
In [ ]:
#Dropping X250
X_train_13=X_train_13.drop((['X250']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X247'] > 0.9, correlation_X['X247'] > 0.9]
Out[]:
     X202 X247
X202
       1.0
            1.0
X247
       1.0
            1.0
In [ ]:
#Dropping X247
X_train_13=X_train_13.drop((['X247']),axis=1)
```

```
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X245'] > 0.9, correlation_X['X245'] > 0.9]
Out[]:
      X89 X245
 X89
      1.0
            1.0
X245
      1.0
            1.0
In [ ]:
#Dropping X245
X_train_13=X_train_13.drop((['X245']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X244'] > 0.9, correlation_X['X244'] > 0.9]
Out[]:
      X71 X84 X244
                1.0
 X84
      1.0
           1.0
                1.0
X244
      1.0
           1.0
                1.0
In [ ]:
#Dropping X244 and X84
X_train_14=X_train_13.drop((['X244','X84']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X232'] > 0.9, correlation_X['X232'] > 0.9]
Out[]:
          X29
                  X54
                          X76
                                  X162
                                          X232
                                                   X272
                                                           X276
                                                                    X279
                                                                            X328
 X29
     1.000000 0.994274
                      0.994274 0.961903 1.000000 0.931650
                                                        0.943836
                                                                1.000000
                                                                        0.964846
 X54 0.994274 1.000000 1.000000 0.968158 0.994274 0.926315 0.938431 0.994274 0.959321
 X76 0.994274 1.000000
                      1.000000 0.968158 0.994274 0.926315 0.938431 0.994274 0.959321
X162 0.961903 0.968158 0.968158 1.000000 0.961903 0.944154 0.919389 0.961903 0.954195
X232 1.000000 0.994274 0.994274 0.961903 1.000000 0.931650 0.943836 1.000000 0.964846
X272 0.931650 0.926315 0.926315 0.944154 0.931650 1.000000 0.915617 0.931650 0.946493
X276 0.943836 0.938431 0.938431 0.919389 0.943836 0.915617 1.000000 0.943836 0.940478
X279 1.000000 0.994274 0.994274 0.961903 1.000000 0.931650 0.943836 1.000000 0.964846
X328 0.964846 0.959321 0.959321 0.954195 0.964846 0.946493 0.940478 0.964846 1.000000
In [ ]:
```

```
#Checking correlation between variables
correlation_X = X_train_14.corr()
with pd.option_context('display.max_rows', None):
    display(correlation X)
```

	Х0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	X13	X14
X0	1.000000	-0.271123	-0.139904	-0.070645	0.017988	0.012293	0.037549	0.047735	0.081122	-0.134577	-0.130529	-0.138310
X1	-0.271123	1.000000	0.088266	0.205657	-0.020724	0.046417	-0.079119	-0.000306	-0.137193	0.112263	0.286683	0.079784
X2	-0.139904	0.088266	1.000000	-0.093546	0.002289	-0.017722	0.065778	-0.069932	0.042398	0.131464	0.222132	-0.079183
Х3	-0.070645	0.205657	-0.093546	1.000000	0.015298	-0.008161	-0.048468	-0.001249	0.019663	0.056166	-0.216464	0.045183
X4	0.017988	-0.020724	0.002289	0.015298	1.000000	0.039778	0.027854	-0.008909	0.003360	0.008245	0.007179	0.005544
X5	0.012293	0.046417	-0.017722	-0.008161	0.039778	1.000000	-0.019917	0.012746	-0.006800	0.060161	-0.003452	-0.003439
X6	0.037549	-0.079119	0.065778	-0.048468	0.027854	-0.019917	1.000000	0.018565	0.092986	-0.099264	-0.041825	0.028516
X8	0.047735	-0.000306	-0.069932	-0.001249	-0.008909	0.012746	0.018565	1.000000	0.014075	-0.061136	-0.038309	0.026162

X10	0.081122	-0.137193	0.042398	0.019663	0.003360	-0.006800	0.092986	0.014075	1.000000	-0.033084	-0.028806	-0.100474
X10	-0.134577	0.112263	0.131464	0.056166	0.003300	0.060161	-0.099264	-0.061136	-0.033084	1.000000	0.214825	-0.246513
X12	-0.130529	0.286683	0.222132	-0.216464	0.000243	-0.003452	-0.033204	-0.038309	-0.028806	0.214825	1.000000	-0.083141
X14	-0.138310	0.079784	-0.079183	0.045183	0.005544	-0.003439	0.028516	0.026162	-0.100474	-0.246513	-0.083141	1.000000
X15	0.011491	-0.023295	-0.001613	-0.024059	0.000631	-0.003542	-0.002297	-0.006542	-0.002532	-0.006212	-0.005409	-0.018865
X16	0.003940	-0.005591	-0.020227	-0.008337	-0.061497	-0.032571	0.035292	0.030602	-0.005944	-0.014584	-0.012698	-0.044291
X17	-0.060401	0.120044	0.024392	-0.046271	0.002533	-0.031128	0.054548	-0.000996	-0.010164	-0.024937	-0.021713	0.012713
X18	-0.036495	0.068924	-0.060337	-0.028413	0.002572	-0.004646	-0.019988	0.044339	-0.010323	-0.025327	-0.010525	-0.076916
X19	0.203244	-0.207605	-0.312393	-0.068126	0.009622	0.009854	0.048629	0.031221	-0.038610	-0.094730	-0.082482	-0.287691
X20	0.030838	0.030153	-0.494692	0.073098	-0.015761	0.008522	-0.122983	0.011349	-0.047393	-0.116280	-0.043126	-0.353137
X21	-0.025532	0.069149	-0.018519	-0.032411	0.001481	-0.029751	0.003382	0.053085	-0.005944	-0.014584	0.007215	-0.044291
X22	0.147904	-0.129648	0.444380	-0.188833	0.008931	-0.050032	0.035421	-0.051851	-0.035836	-0.087924	0.226530	-0.267021
X23	0.115098	-0.011723	0.115886	0.055659	0.004204	-0.033924	0.026774	0.062841	-0.016870	-0.041391	-0.036040	-0.125703
X24	0.001554	-0.022323	-0.008234	-0.048153	0.001263	0.008780	-0.000858	0.002410	-0.005067	-0.012433	-0.010825	-0.004686
X26	-0.006131	-0.004501	0.030495	-0.041311	0.002049	-0.024992	0.026645	0.020203	-0.008223	-0.020175	-0.017566	-0.061270
X27	0.050622	-0.048785	0.137151	-0.049081	0.021713	0.037836	-0.062026	0.031821	0.070276	0.184599	0.110191	0.126863
X28	-0.100412	0.127520	0.280952	0.162385	0.005308	0.026029	-0.003490	0.004614	-0.021300	-0.052259	-0.039773	-0.158707
X29	-0.149090	0.202989	0.209387	0.188854	0.006134	0.006306	0.013201	0.004552	-0.024615	-0.042617	-0.052586	-0.076904
X30	0.062321	0.035667	-0.076038	0.078486	0.001949	0.010111	0.006879	-0.032543	-0.007820	-0.019185	-0.016705	-0.058265
X31	0.120973	-0.092994	0.110163	-0.080666	0.000695	-0.040828	0.019952	0.059488	-0.044248	-0.126861	-0.095558	-0.313459
X32	0.094024	-0.004861	-0.168747	-0.082171	0.003075	0.025765	0.058184	-0.035257	-0.012340	-0.030276	-0.026362	-0.091947
X33	0.012613	0.021482	-0.001848	-0.008149	0.000446	0.018050	0.022160	0.027139	-0.001790	-0.004392	-0.003824	0.017817
X34	0.037187	-0.051615	0.079531	-0.020661	0.002145	-0.010089	0.056831	-0.019721	-0.008608	-0.021119	-0.018388	-0.064136
X35	0.120973	-0.092994	0.110163	-0.080666	0.000695	-0.040828	0.019952	0.059488	-0.044248	-0.126861	-0.095558	-0.313459
X36	0.044776	-0.024995	0.158753	0.001071	0.001949	-0.027694	0.042119	-0.006353	-0.007820	-0.019185	-0.016705	-0.058265
X37	0.120973	-0.092994	0.110163	-0.080666	0.000695	-0.040828	0.019952	0.059488	-0.044248	-0.126861	-0.095558	-0.313459
X38	-0.010562	0.078145	0.003780	0.023032	0.005368	0.120028	-0.019545	0.002714	-0.021539	0.017543	-0.029005	0.061752
X39	0.012613	0.021482	-0.001848	-0.008149	0.000446	0.018050	0.022160	0.027139	-0.001790	-0.004392	-0.003824	0.017817
X40	-0.010552	-0.021229	-0.003202	0.021701	0.000773	0.012927	0.020078	0.020451	-0.003101	-0.007609	-0.006625	0.030866
X41	-0.008554	0.018769	-0.012875	0.055119	0.003108	0.011844	0.032413	0.015790	-0.012472	-0.030600	-0.026644	0.124132
X42	-0.026665	-0.018278	0.005224	0.027295	0.000446	-0.000636	-0.004267	-0.005720	0.132754	-0.004392	-0.003824	-0.013338
X43	-0.028147	0.082471	0.266184	0.119448	-0.004347	0.019644	0.070355	0.030802	0.400164	-0.079493	-0.065287	-0.091170
X44	-0.009858	-0.090357	0.052208	-0.038773	0.003108	-0.054607	-0.013618	-0.035086	-0.012472	-0.030600	-0.026644	-0.092931
X45	0.125718	-0.342465	-0.005299	-0.394862	0.009459	0.011412	0.073876	-0.029552	-0.062859	0.033104	-0.128106	-0.088756
X46	0.074638	0.018940	-0.081631	-0.033725	-0.023761	0.004737	-0.043615	0.029131	-0.124508	-0.054680	-0.030554	-0.471226
X47	-0.043813	0.004175	-0.000881	-0.034783	0.003299	-0.013146	-0.020698	0.007797	0.005188	-0.032480	0.007856	0.114690
X48	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X49	0.072314	-0.149410	-0.085257	-0.147537	-0.008847	-0.002188	0.017425	0.036893	-0.036977	-0.086986	-0.055262	-0.171664
X50	0.009891	-0.022295	-0.123523	-0.133728	-0.024093	0.042159	-0.022520	0.043807	-0.055547	-0.106926	0.004383	0.030734
X51	-0.092869	0.063273	-0.049236	-0.078943	-0.010791	0.022005	-0.094822	-0.021560	0.067466	-0.018278	-0.043370	0.415034
X52	-0.157480	0.021976	0.210407	-0.077838	-0.025873	0.006646	-0.010808	0.032074	0.037420	-0.046429	-0.042025	-0.043440
X55	-0.068057	0.019507	0.025473	-0.049684	0.002098	0.002602	-0.003119	0.021796	-0.008417	-0.020652	-0.017982	-0.062719
X56	-0.021364	0.003464	-0.067319	-0.059663	0.004253	0.014357	-0.058235	-0.022389	-0.017067	-0.016807	-0.022327	0.023017
X57	-0.068020	0.161085	0.046964	0.017279	0.003360	0.013057	-0.011524	-0.055761	-0.013484	-0.033084	-0.028806	0.037820
X58	0.049016	-0.030810	-0.154328	-0.183065	-0.018377	-0.029963	-0.078223	0.039177	-0.051164	-0.205520	0.026140	-0.160336
X59	-0.024162	0.017387	0.001699	-0.014119	0.000773	-0.012971	0.020078	0.020451	-0.003101	-0.007609	-0.006625	-0.023108
X61	0.151655	-0.027227	-0.200188	0.084943	0.024308	0.011949	0.006068	-0.034684	-0.033810	0.049727	0.039984	0.057379
X62	-0.139559	0.100466	0.097122	-0.058637	0.002237	0.032042	0.007227	-0.077016	-0.008976	-0.022023	-0.019176	-0.066883
X63	0.063444	0.074118	0.044406	-0.002759	0.003108	0.036255	-0.041237	0.069209	-0.012472	-0.022109	-0.026644	0.096999
X64	-0.052449	0.062860	-0.012785	0.065384	0.002499	-0.017143	-0.070623	-0.046321	-0.081410	-0.086679	0.055571	0.434361
X65	0.009418	-0.016294	-0.015460	-0.030385	0.001340	0.000585	0.036564	0.010597	-0.005375	-0.013189	-0.011483	0.032711
X66	-0.171936	0.014937	0.292361	-0.086523	-0.034787	-0.006171	-0.004533	0.038750	-0.019375	-0.047536	-0.041390	-0.144366
X67	0.016247	0.043543	0.010785	-0.007392	0.001263	0.000845	0.001013	0.039618	-0.005067	-0.012433	-0.010825	-0.037758
X68	-0.139264	0.068230	0.050007	-0.099061	-0.016511	-0.006419	-0.050428	0.004027	-0.024735	-0.038713	-0.038642	0.006826
X69	-0.040786	-0.032086	-0.042678	-0.150568	0.005084	0.038554	0.177478	0.011090	-0.020399	-0.050049	-0.043578	0.166399

X70	0.055022	-0.045026	0.068539	-0.039784	-0 008537	-0.011815	-0.162361	-0.058965	0.034258	0.067442	0.069439	-0.194119
X71	-0.240184	0.218500	0.134877	-0.125480	-0.011266	0.010647	-0.070837	-0.015681	-0.039474	0.201982	0.199264	0.011558
X73	-0.040799	0.055060	-0.037526	0.001705	0.004130	-0.005267	-0.027850	0.010296	-0.016571	0.036705	-0.013591	0.096260
X74	-0.016667	0.032709	-0.016402	0.014119	-0.000773	0.020525	-0.001764	0.004850	0.003101	0.007609	0.006625	0.023108
X75	-0.179995	0.044748	0.233268	-0.081831	-0.028866	0.001588	0.006675	0.046703	-0.022477	-0.055147	-0.037118	-0.046520
X77	-0.032468	0.016481	-0.013537	-0.024181	0.003268	-0.018862	0.000886	0.007751	-0.013113	-0.032174	-0.000661	0.130515
X78	0.078499	0.105526	0.053458	-0.040034	0.002191	0.040479	-0.020961	0.070545	-0.008794	-0.021575	-0.018786	0.087522
X79	-0.222609	0.060967	-0.041946	0.164309	0.004651	0.018368	-0.036692	0.018575	-0.018664	-0.034285	-0.039873	0.139797
X80	0.169303	-0.059024	-0.319569	0.116505	0.021864	0.024154	-0.007262	0.027330	0.027466	0.067388	0.054137	0.204655
X81	0.115520	-0.031052	-0.300293	-0.082740	-0.007183	-0.014185	-0.084957	-0.020914	-0.063291	-0.116665	0.075283	-0.287628
X82	-0.032383	-0.030540	0.082031	-0.048677	0.003818	-0.005218	0.021908	-0.034634	0.304515	-0.037586	-0.032726	-0.051195
X83	0.008634	0.000349	0.062317	0.029345	0.000998	0.016135	0.007008	-0.025539	-0.004005	-0.009826	-0.008555	-0.029840
X85	-0.392543	0.541306	0.060696	0.113356	-0.015220	-0.016026	-0.108553	-0.048375	-0.096436	0.078911	0.296641	0.139186
X86	-0.016303	0.013523	0.037072	0.005364	0.001093	0.009128	-0.036367	-0.002387	-0.004387	-0.010765	-0.009373	-0.032692
X87	0.014009	0.042978	-0.003697	0.036881	0.000893	-0.019030	0.012612	-0.028976	-0.003581	-0.008787	-0.007651	0.035646
X88	0.040334	0.117073	-0.010157	0.068847	0.002452	-0.007260	-0.001181	-0.014183	-0.009839	-0.024139	-0.021018	0.097923
X89	0.012130	0.037216	-0.003202	0.031936	0.000773	-0.012971	0.020078	-0.023826	-0.003101	-0.007609	-0.006625	0.030866
X91	0.020661	0.056192	-0.004893	0.032048	0.001181	-0.030661	-0.005300	0.017997	-0.004740	-0.011628	-0.010125	0.047172
X92	0.005028	-0.025721	0.052901	0.019152	0.000893	0.021159	0.023187	0.012661	-0.003581	-0.008787	-0.007651	-0.026686
X95	0.007002	0.021482	0.023612	0.018434	0.000446	-0.017453	-0.020123	0.020567	-0.001790	-0.004392	-0.003824	-0.013338
X96	-0.228835	0.224250	-0.066181	0.030378	-0.008836	0.033987	-0.094574	-0.003996	0.055903	0.091439	0.054642	0.220715
X97	0.056271	0.023030	0.040249	0.055345	0.001896	-0.000055	-0.015644	0.049667	-0.007610	-0.018671	-0.016257	-0.056704
X98	0.142066	-0.036675	-0.250019	0.064865	0.020477	0.020330	0.001879	-0.001169	0.028681	0.070368	0.056903	0.213706
X100	0.040508	-0.002524	-0.192736	-0.042740	0.001472	0.053974	-0.140445	-0.012182	-0.168835	0.114842	0.106840	0.310765
X101	0.119456	-0.067434	-0.295585	0.065790	0.018609	0.015747	-0.008701	0.020863	0.030462	0.074739	0.060934	0.226979
X103	0.078831	-0.074652	-0.339114	-0.038475	0.008294	0.071694	-0.123580	0.010630	0.050773	0.147127	0.078087	0.291151
X104	0.006716	0.033951	-0.009736	-0.007392	0.001263	0.011424	-0.002728	0.011712	-0.005067	-0.012433	0.035859	0.017362
X105	-0.011229	0.004499	0.106093	0.024694	0.001412	0.008635	0.021629	-0.003546	-0.005667	-0.013904	-0.012106	-0.042225
X106	0.023631	0.021523	-0.015329	0.088289	0.003330	-0.048110	-0.034719	-0.111375	-0.013362	-0.032783	-0.010639	0.132987
X108	-0.086882	0.083685	0.179143	0.146211	0.003538	-0.001935	0.018896	0.020766	-0.014198	-0.034836	-0.030332	-0.093839
X109	-0.020762	-0.013342	-0.024594	0.043461	0.005937	-0.002463	-0.013755	-0.007018	-0.023823	-0.058451	-0.045729	0.237109
X110	-0.021915	0.023996	-0.003697	0.010288	0.000893	-0.016226	0.033762	-0.011445	-0.003581	-0.008787	-0.007651	0.035646
X111	0.182649	-0.003371	-0.299899	0.087586	0.036391	0.006629	0.004978	-0.029133	0.018664	0.045793	0.039873	0.139073
X112	0.004824	-0.037279	0.047559	-0.010338	0.001547	0.000495	-0.002579	0.003587	-0.006209	-0.015234	-0.013265	-0.046266
X113	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X114	-0.254859	0.281680	0.264240	-0.044313	-0.006235	0.034061	-0.080832	0.016636	-0.048035	0.139947	0.231265	-0.077892
X115	-0.096472	-0.100667	-0.135202	0.045813	-0.003059	-0.008859	0.059081	0.056972	0.009216	-0.090308	-0.100570	0.135416
X116	0.077929	-0.128996	-0.068701	-0.249933	-0.001856	0.004078	-0.015668	-0.023455	-0.041816	-0.077486	-0.015345	-0.182985
X117	0.036194	-0.044889	-0.057809	0.205644	0.006581	0.031240	-0.016995	-0.018196	-0.016820	0.402172	-0.051717	-0.152373
X118	0.136117	0.028872	0.064132	-0.213425	-0.002652	-0.008319	-0.052987	-0.046867	0.009215	-0.077411	0.138766	-0.026020
X120	0.157480	-0.021976	-0.210407	0.077838	0.025873	-0.006646	0.010808	-0.032074	-0.037420	0.046429	0.042025	0.043440
X123	-0.041115	-0.029596	-0.026632	-0.029736	0.001481	-0.019597	0.000191	-0.000479	-0.005944	-0.014584	-0.012698	0.021542
X124	-0.013906	0.022715	0.009390	-0.024059	0.000631	0.007030	-0.017249	0.010500	-0.002532	-0.006212	-0.005409	0.003167
X125	-0.018667	0.033894	-0.078173	-0.004814	0.001611	0.004451	-0.030087	-0.001793	-0.006463	-0.015858	-0.013808	-0.048161
X126	-0.192859	0.114483	0.340411	-0.107152	-0.027405	0.008216	0.015407	-0.016096	-0.023382	-0.057367	-0.049950	-0.174222
X127	0.473392	-0.122318	-0.237877	0.052541	0.009365	0.002015	-0.034614	-0.010330	0.055047	-0.085586	0.000383	-0.304649
X128	0.135520	-0.005878	-0.320774	0.094373	0.026187	0.030662	-0.003150	0.020800	0.024186	0.059341	0.051668	0.180215
X129	0.070162	-0.150708	-0.085887	-0.148056	-0.008791	-0.002595	0.018485	0.037735	-0.037083	-0.087254	-0.055529	-0.171167
X130	-0.135520	0.005878	0.320774	-0.094373	-0.026187		0.003150	-0.020800	-0.024186	-0.059341	-0.051668	-0.180215
X131	-0.044406	0.078793	-0.057341	0.004238	0.004785	-0.044038	-0.014891	-0.001357	-0.019199	-0.041504	0.009521	0.047883
X132	-0.056980	0.295066	-0.036585	0.359400	0.001366	0.002738	-0.047600	0.026058	0.073625	-0.045896	0.133919	0.119526
X133	0.184564	-0.325615	0.081463	-0.308841	0.010900	-0.024701	0.031552	-0.032415	-0.037455	-0.071787	-0.093443	-0.146885
X134	-0.195415	0.017026	0.300841		-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X135	0.082176	-0.014918	-0.037325	0.199515	0.004828		-0.077798	-0.034253	-0.019375	0.363467	-0.041390	-0.126619
X136	0.153188	-0.203808	-0.206302	-0.190653	-0.006170	-0.006177	-0.011289	-0.004657	0.024757	0.034216	0.052889	0.078518

X138	0.046140	-0.079142	-0.119220	-0.123606	0.005973	0.004870	0.009522	0.052671	-0.023969	-0.045146	-0.030663	-0.011250
X139	0.007966	0.001915	0.126291	0.034077	-0.002077	-0.091701	0.081313	0.019897	-0.036634	-0.089883	-0.010938	-0.212726
X140	0.046182	-0.077291	-0.122036	-0.124411	0.005937	0.005290	0.008174	0.051461	-0.023823	-0.044712	-0.030237	-0.009224
X141	-0.030442	-0.007240	-0.027473	-0.027859	0.003480	-0.001315	-0.003738	0.005788	-0.013964	-0.026656	-0.012678	0.074175
X142	0.110379	-0.166666	0.027640	-0.353098	0.007126	-0.009448	0.031888	-0.064276	0.058490	-0.140169	0.116147	-0.061634
X143	-0.038818	-0.017758	-0.015610	-0.015715	0.005771	-0.049665	0.096417	-0.054114	-0.001536	-0.052118	-0.049473	0.085293
X144	0.063223	0.040647	-0.137344	0.078405	0.010387	0.091248	-0.109348	-0.025722	0.046070	0.129712	0.061542	0.168155
X145	-0.000717	-0.005671	0.017427	-0.019974	0.001093	0.001495	-0.032049	-0.018495	-0.004387	0.013132	-0.009373	-0.019965
X146	0.046140	-0.079142	-0.119220	-0.123606	0.005973	0.004870	0.009522	0.052671	-0.023969	-0.045146	-0.030663	-0.011250
X147	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X148	-0.104378	0.113990	0.224644	0.122115	0.006275	0.026658	0.000164	0.008227	-0.025179	-0.040008	-0.039061	-0.097186
X150	-0.273111	0.297895	-0.048967	0.044043	-0.014814	0.022887	-0.091456	-0.006219	0.049222	0.076946	0.126993	0.260645
X151	-0.112547	0.155177	-0.041494	0.079551	0.008850	-0.005713	-0.007175	0.017134	-0.035513	0.003134	0.007745	0.252163
X152	0.036243	-0.013459	0.012737	0.042417	0.005288	-0.030337	-0.032153	-0.072772	0.002234	0.009124	-0.039580	-0.014190
X153	-0.025458	0.016343	-0.022806	0.021701	0.000773	0.020480	0.010921	0.012861	-0.003101	0.093740	-0.006625	-0.023108
X154	-0.154785	0.239910	-0.009085	0.450741	-0.000953	-0.020550	-0.010948	-0.034498	-0.059660	0.055468	-0.127452	0.018515
X156	0.075635	-0.140393	0.015380	0.034705	0.003252	0.002486	0.083699	0.044793	-0.175748	0.090779	-0.083566	0.178570
X157	-0.075635	0.140393	-0.015380	-0.034705	-0.003252	-0.002486	-0.083699	-0.044793	0.175748	-0.090779	0.083566	-0.178570
X158	-0.110379	0.166666	-0.027640	0.353098	-0.007126	0.009448	-0.031888	0.064276	-0.058490	0.140169	-0.116147	0.061634
X159	-0.081908	0.122546	0.022356	0.058579	0.003391	-0.017539	0.025360	0.012022	-0.013606	-0.009980	-0.029066	0.064793
X160	-0.018480	-0.026334	-0.004134	-0.022196	0.000998	-0.021488	0.004643	0.001905	-0.004005	-0.009826	-0.008555	0.039858
X161	0.148924	-0.353580	-0.011057	-0.421517	0.014364	0.024365	0.113792	-0.034048	-0.052431	-0.082553	-0.123132	-0.070176
X163	0.041554	-0.056650	-0.082432	-0.109156	-0.015872	0.008553	0.011173	0.020516	0.013575	-0.188025	-0.046505	0.242602
X164	0.038654	-0.189059	-0.135247	-0.205882	0.007471	-0.001247	-0.040833	0.039648	-0.029979	-0.028852	-0.064043	-0.094427
X165	-0.068231	0.048132	0.059893	-0.007078	0.001949	0.013118	-0.007703	0.067683	-0.007820	-0.019185	-0.016705	-0.058265
X166	-0.131802	0.165593	0.235124	0.201242	0.005368	0.009695	0.002714	-0.002557	-0.021539	-0.037763	-0.046014	-0.098908
X167	-0.015180	0.048402	-0.043316	-0.003008	0.000893	-0.001272	0.023187	0.003895	-0.003581	-0.008787	-0.007651	-0.026686
X168	-0.036166	0.070795	-0.158563	0.375698	-0.004069	0.001824	-0.031224	0.024927	0.087874	0.059671	-0.148904	0.067996
X169	-0.066234	0.095876	0.025320	0.007137	0.002368	-0.000186	0.015427	0.010750	-0.009503	-0.001133	-0.020301	0.023700
X170	-0.179464	0.032135		-0.095745	-0.037259	-0.021107			-0.018300		-0.032483	-0.136357
X171	0.166988	-0.169628	-0.027333		0.012985	0.001796	0.026974	-0.042649	-0.064729	-0.024201	0.174797	0.021615
X172	-0.139559	0.100466	0.097122		0.002237	0.032042	0.007227		-0.008976		-0.019176	-0.066883
X173	0.019690	-0.003873	0.000984	0.024045	0.002870	0.013503	-0.002571	0.069417	-0.011517		-0.024604	0.085294
X174	0.042192	0.075252	0.025987	-0.032573	0.003845	0.026949	-0.009943		-0.015427	-0.037851	-0.032957	0.098374
X175	0.005090	-0.111340	-0.047919	-0.121490	0.004374	-0.030790	-0.023092	-0.003762	-0.017551	0.005752	-0.037493	0.012204
X176	-0.032649	-0.003475	-0.015815	-0.017081	0.003818	-0.035424	-0.005105		-0.015319	-0.037586	-0.032726	0.152470
X170	-0.032043	0.004217	-0.027539	0.064426	0.006648	0.010850	0.014804	-0.001236	-0.026677	-0.065452	-0.032720	0.265510
X177	0.205178	-0.099616	-0.035288	-0.000992	0.006580	0.030082		-0.012652	0.103480	0.253889	0.088016	-0.832712
X170 X179	-0.164475	0.090441	0.302603	-0.105278	-0.023588	-0.026370	0.011403	-0.012032	-0.026072	-0.063969	-0.050942	-0.032712
X179	-0.104473	-0.110769	0.001804				0.038444		-0.050301	0.143554	-0.030942	-0.194270
X180				-0.174707	-0.013911	0.041039						
	0.141662	-0.287863	0.157504	-0.271752	0.009313	0.011022	0.030478	-0.068015	-0.030259	-0.032944	-0.079833	-0.156606
X182	0.045356	-0.033338	-0.218000	0.112099	0.009975	0.034952	-0.069502		-0.026567	0.384644	-0.065711	-0.162665
X183	-0.020161	-0.006996	0.025706	-0.029359	0.001843	-0.005351	-0.003499	0.027472	-0.007395	-0.018143	-0.015797	-0.055100
X184	0.006159	0.052650	-0.001063	-0.009115	0.001093	-0.030564	0.006814	0.030722	-0.004387	-0.010765	0.017574	-0.032692
X185	-0.097127	0.144906	0.127671	0.165383	0.004002	0.027401	-0.021476	-0.015498	-0.016060	-0.019473	-0.034309	-0.041829
X186	0.421405	-0.570809	-0.098067	-0.218208	0.011760	0.022144	0.103509	0.039123	0.108042	-0.092879	-0.266619	-0.135624
X187	-0.362440	0.492463	0.013845	0.141683	-0.014429	-0.024922	-0.109233	-0.041448	-0.098922	0.107966	0.291201	0.169451
X189	0.205917	-0.152207	-0.382779	-0.069982	0.014314	0.017400	-0.011884	0.011603	0.035297	0.073641	0.075405	0.185354
X190	-0.012076	-0.014663	-0.001848	-0.008149	0.000446	0.008707	-0.020123	0.009614	-0.001790	-0.004392	-0.003824	0.017817
X191	-0.144415	0.040339	-0.200524	0.104832	0.007975	-0.007519	-0.025639	0.037498	-0.109548	0.022031	-0.093487	0.819047
X192	-0.008742	0.006788	0.008479	-0.020188	0.001412	0.005086	-0.016854	-0.010481	-0.005667	-0.013904	-0.012106	0.016951
X194	-0.421405	0.570809	0.098067	0.218208	-0.011760	-0.022144	-0.103509	-0.039123	-0.108042	0.092879	0.266619	0.135624
X195	-0.073731	0.069443	0.017677	0.027926	0.003141	0.005189	-0.031560	0.009142	-0.012603	0.053131	-0.026923	0.031431
X196	-0.019902	0.075096	-0.021934	0.008764	0.002940	-0.002185	-0.003819	0.038179	-0.011797	-0.002047	0.065791	0.055344
X197	-0.063329	-0.023855	-0.020672	-0.161476	0.005288	0.040021	0.213847	-0.009764	-0.021219	-0.052061	-0.045330	0.208474

X198	-0.196737	0.019859	0.296563	-0.090296	-0.038413	-0.009405	-0.000711	0.032784	-0.017835	-0.043758	-0.038101	-0.132892
X199	0.004824	-0.037279	0.047559	-0.010338	0.001547	0.000495	-0.002579	0.003587	-0.006209	-0.015234	-0.013265	-0.046266
X200	0.058446	-0.076127	-0.129950	-0.061742	0.002368	0.020716	0.038475	-0.041581	-0.009503	-0.023315	-0.020301	-0.070807
X201	0.257258	-0.423469	-0.033318	-0.013551	0.013453	-0.030020	-0.001678	0.016758	0.211812	-0.125374	-0.115325	0.004721
X202	0.101290	-0.391924	0.001916	-0.477880	0.008810	0.020683	0.097609	-0.033617	-0.060657	-0.076436	-0.139933	-0.080766
X203	-0.009000	-0.090421	0.094498	-0.113787	0.003791	-0.021503	-0.019179	0.005400	-0.015211	-0.030318	-0.032494	-0.049952
X204	0.002513	0.021482	-0.000434	-0.025872	0.000446	0.019919	0.011589	0.005233	-0.001790	-0.004392	0.062143	-0.013338
X205	-0.002513	-0.021482	0.000434	0.025872	-0.000446	-0.019919	-0.011589	-0.005233	0.001790	0.004392	-0.062143	0.013338
X206	-0.047037	0.007664	-0.000607	-0.036279	0.004054	0.016863	-0.031065	0.040176	-0.016266	-0.000533	-0.005148	0.067529
X207	-0.018809	0.001602	-0.001848	-0.008149	0.000446	0.023656	0.001018	-0.010102	-0.001790	-0.004392	-0.003824	0.017817
X208	-0.080080	-0.054251	0.085961	-0.154462	-0.018974	-0.001916	0.005051	0.061578	-0.030100	-0.062715	-0.047560	-0.089856
X209	0.090043	0.054843	-0.059143	0.134661	0.011576	0.031885	-0.065366	-0.014646	0.025282	0.083787	0.069885	0.017194
X210	-0.005343	-0.007434	-0.017407	0.018434	0.000446	-0.023059	-0.004267	-0.021055	-0.001790	-0.004392	-0.003824	-0.013338
X211	-0.026911	-0.080779	-0.037398	-0.060668	0.003567	0.016974	-0.028754	-0.022387	-0.014314	-0.035120	-0.030579	0.063380
X212	0.038829	-0.053882	0.044933	0.012684	0.002145	-0.006573	0.017052	0.002720	0.441442	-0.021119	-0.018388	-0.064136
X213	0.016247	0.043543	0.010785	-0.007392	0.001263	0.000845	0.001013	0.039618	-0.005067	-0.012433	-0.010825	-0.037758
X215	0.203709	-0.204714	-0.312762	-0.066274	0.009571	0.009448	0.048627	0.033217	-0.038405	-0.094227	-0.082044	-0.286164
X216	-0.139559	0.100466	0.097122	-0.058637	0.002237	0.032042	0.007227	-0.077016	-0.008976	-0.022023	-0.019176	-0.066883
X218	-0.144207	0.071733	0.193593	-0.262360	-0.001305	-0.019224	-0.076563	-0.013977	-0.078276	0.072507	0.339494	-0.130524
X219	-0.181137	0.262799	0.133223	-0.088848	0.007784	0.040686	-0.076405	0.017280	-0.031236	0.264821	0.371002	0.048641
X220	-0.118393	0.051007	0.266040	-0.161081	0.032725	0.021669	0.010689	-0.093747	-0.118781	-0.007871	0.176341	0.224245
X221	-0.157834	0.054496	0.059564	-0.061438	0.002611	0.007861	-0.008599	-0.055740	-0.010479	-0.025711	-0.022386	-0.045897
X222	-0.195415	0.017026	0.300841	-0.089142	-0.039146	-0.007207	-0.004348	0.029597	-0.017551	-0.043061	-0.037493	-0.130773
X223	-0.225250	0.129003	0.141726	0.039483	-0.006489	0.000458	0.019556	0.027881	0.095583	-0.147785	-0.129869	0.727050
X224	-0.104389	0.049084	-0.078562	0.051135	-0.000990	0.002751	-0.036152	0.013730	-0.079186	-0.194284	-0.053402	0.779874
X225	-0.015105	-0.003985	-0.018497	-0.157507	0.009481	0.029901	0.009805	0.062828	-0.031036	-0.020208	-0.019422	0.091405
X227	-0.018667	0.033894	-0.078173	-0.004814	0.001611	0.004451	-0.030087	-0.001793	-0.006463	-0.015858	-0.013808	-0.048161
X228	-0.150940	-0.004984	0.152279	-0.096566	-0.027405	-0.005327	-0.023321	0.031710	-0.023382	-0.038730	-0.044696	-0.092338
X229	0.147355	-0.001838	-0.150059	0.093140	0.026950	0.005466	0.019403	-0.028509	0.023677	0.039669	0.040193	0.088119
X230	-0.045030	0.043842	-0.008689	0.005240	0.002098	-0.038535	0.012697	0.005877	-0.008417	-0.020652	-0.017982	0.083776
X231	-0.091055	-0.011648	-0.073114	-0.031998	0.003708	0.007964	-0.037409	0.029305	0.001567	-0.036509	-0.007597	0.026230
X232	-0.149090	0.202989	0.209387	0.188854	0.006134	0.006306	0.013201	0.004552	-0.024615	-0.042617	-0.052586	-0.076904
X234	0.325250	-0.206457	0.041494	-0.143218	0.014546	-0.025682	0.066297	-0.007404	-0.058371	-0.143214	0.083058	-0.434934
X236	-0.045651	0.017603	-0.018618	0.026072	0.000631	-0.000899	-0.017249	0.001204	-0.002532	0.076529	-0.005409	-0.018865
X237	-0.006021	-0.021648	-0.020269	-0.041582	0.002368	-0.066435	-0.003612	-0.015416	-0.009503	-0.023315	-0.007794	-0.070807
X238	0.240511	-0.205279	-0.382044	-0.058801	0.014444	0.008634	-0.015286	0.025309	0.035134	0.073192	0.071389	0.183842
X241	-0.219042	0.227151	0.166088	-0.110730	-0.012217	0.020404	-0.053407	-0.032261	-0.038096	0.147004	0.203512	0.050084
X246	-0.341428	0.522338	-0.006343	0.215346	-0.015143	-0.011843	-0.118948	-0.028514	-0.096673	0.091023	0.293841	0.154610
X251	-0.136941	0.062503	-0.096691	0.046175	0.003602	-0.017882	0.032782	0.026036	-0.093663	-0.229802	-0.066938	0.932210
X252	-0.018977	0.036172	0.040907	0.016584	0.000773	0.028034	0.007869	0.006535	-0.003101	-0.007609	-0.006625	-0.023108
X255	-0.052481	0.071881	0.214645	-0.051791	0.004079	0.010856	0.016974	-0.095300	-0.016368	-0.040160	-0.034967	-0.121963
X256	0.016251	0.049735	0.177008	0.050727	0.008131	0.025679	0.072363	-0.014427	0.397338	-0.080055	-0.065801	-0.243123
X257	0.001391	0.023289	0.025027	-0.017011	0.000446	-0.024928	0.011589	-0.012292	-0.001790	-0.004392	-0.003824	-0.013338
X258	-0.016913	-0.057861	0.110570	-0.000552	0.001412	-0.001421	-0.008488	-0.025044	-0.005667	-0.013904	-0.012106	-0.042225
X259	0.011491	-0.014663	0.034928	0.000712	0.000446	-0.008110	0.011589	0.007423	-0.001790	-0.004392	-0.003824	-0.013338
X260	0.015980	-0.018278	-0.010335	-0.008149	0.000446	-0.023059	-0.014838	0.013995	-0.001790	-0.004392	-0.003824	-0.013338
X261	-0.346534	0.014135	0.121778	-0.093864	-0.014489	0.007013	0.036361	0.019528	-0.035701	0.119510	0.028066	0.341442
X265	0.227735	-0.181413	-0.392478	-0.047588	0.012626	0.013819	-0.014389	0.021842	0.037526	0.079746	0.076692	0.205772
X267	-0.032166	-0.010105	-0.000379	-0.025914	0.002762	-0.020987	-0.016086	-0.000796	0.010839	-0.027194	-0.012929	0.095085
X269	-0.015493	0.013768	0.009390	0.007273	0.000631	-0.029971	-0.013511	-0.011189	-0.002532	-0.006212	-0.005409	0.003167
X270	-0.010954	0.016060	-0.001848	0.018434	0.000446	0.004970	-0.035980	0.007423	-0.001790	-0.004392	-0.003824	0.017817
X270 X271	-0.032893	0.035563	0.021351	0.018434	0.000440	-0.010014	-0.000469	0.007423	-0.001790	0.006330	-0.003624	0.032711
X271	0.050051	-0.025389	-0.046565	0.020743	-0.018041	-0.027983	-0.107958	0.020077	-0.181647	-0.009156	-0.071812	-0.276651
X274	-0.069771	0.116640	0.031611	0.171367		-0.027963	0.028761	0.019636		-0.009130	-0.071812	0.033906
T	0.000111	0.110040	5.501011	0.000400	0.002000	0.000100	5.520101	0.000002	0.011000	0.010002	5.527300	0.00000

X275	0.142594	-0.066217	0.057895	-0.355917	0.003903	-0.013814	0.032249	-0.070613	-0.017215	-0.096432	0.115597	-0.003933
X277	-0.018596	0.057818	-0.053064	0.012603	0.001093	0.013708	-0.010458	0.005666	-0.004387	-0.010765	-0.009373	-0.032692
X278	-0.015493	0.035495	-0.006615	-0.011526	0.000631	0.013637	0.016392	0.002754	-0.002532	-0.006212	-0.005409	0.025199
X280	-0.024420	0.003409	0.032099	-0.017011	0.000446	0.016182	0.011589	-0.003530	-0.001790	-0.004392	-0.003824	-0.013338
X281	0.004618	0.045690	0.106587	-0.005662	0.001481	-0.029187	0.025719	-0.033544	-0.005944	-0.014584	-0.012698	-0.044291
X282	0.061375	0.088740	0.132600	-0.007827	0.001843	0.033245	0.017051	-0.057167	-0.007395	-0.018143	-0.015797	-0.055100
X283	-0.235678	0.144991	-0.044422	0.327428	-0.006790	-0.046588	-0.036302	-0.059325	-0.046979	-0.021903	-0.076965	0.080860
X284	-0.076545	-0.135900	0.025692	-0.176176	-0.010205	0.002777	-0.016686	-0.005060	-0.024041	-0.004489	-0.051360	-0.036440
X285	-0.205316	0.585840	0.100820	-0.069071	-0.009133	0.010926	-0.075996	-0.021330	-0.059102	0.095866	0.444642	0.130940
X286	-0.088499	0.041406	0.082726	0.237622	0.006957	-0.000665	-0.005262	0.026055	-0.027918	0.046540	-0.059642	-0.066483
X287	0.055418	-0.016604	-0.053913	-0.113064	0.003680	0.023517	0.063724	0.035619	-0.014769	-0.036235	-0.031550	0.035737
X288	0.014857	0.021482	0.032099	-0.008149	0.000446	0.016182	-0.004267	0.005233	-0.001790	-0.004392	-0.003824	-0.013338
X291	-0.036472	0.027112	0.042120	0.026228	0.002974	-0.007070	0.002786	0.026258	-0.011935	-0.011554	-0.015501	-0.060606
X292	-0.027411	0.029060	0.015293	0.023176	0.002762	-0.016115	-0.051395	-0.007221	-0.011084	0.001402	0.008568	-0.047052
X294	0.158783	-0.272456	-0.065739	-0.244799	0.010936	-0.004873	-0.011245	-0.018331	-0.025072	-0.072226	-0.093749	-0.194855
X295	0.005880	0.016060	-0.001848	0.000712	0.000446	-0.017453	-0.004267	0.013995	-0.001790	-0.004392	-0.003824	0.017817
X298	0.059225	-0.040784	-0.000918	-0.000966	0.001949	0.035887	-0.002842	-0.021966	-0.007820	-0.019185	-0.016705	0.020525
X300	-0.178401	0.076323	-0.061827	0.110216	0.014782	-0.033791	-0.051109	0.003046	-0.059317	-0.145535	-0.058958	0.589188
X301	0.145602	-0.024840	-0.068673	0.072945	0.006412	0.145477	0.035465	0.054918	0.042989	0.060655	-0.054970	-0.128079
X304	0.079118	-0.035021	-0.242346	0.121975	0.016011	0.010504	-0.042926	0.025514	0.017583	0.081587	0.067197	0.247776
X305	0.061800	-0.041171	0.104233	0.013704	0.003360	-0.000265	0.024734	0.024978	0.022712	-0.033084	-0.028806	-0.100474
X306	-0.149048	0.058455	0.167671	-0.137076	-0.025265	0.011324	0.032053	-0.011143	-0.024828	-0.060915	-0.048067	-0.184997
X307	-0.008180	-0.025339	-0.011684	-0.033341	0.001340	-0.035576	0.010112	-0.012061	-0.005375	-0.013189	-0.011483	-0.040053
X308	0.032011	0.051232	0.208903	-0.010962	0.002835	0.006943	0.024103	-0.066971	-0.011374	-0.027907	-0.024299	-0.084753
X309	-0.003253	-0.020994	-0.021559	-0.038298	0.002452	-0.048683	-0.009896	-0.003347	-0.009839	-0.024139	-0.021018	-0.073310
X310	-0.034340	0.050600	-0.015957	0.045161	0.001481	-0.008316	-0.003000	0.008118	-0.005944	0.003075	-0.012698	0.012137
X312	0.001937	-0.076849	-0.035584	-0.034645	0.001896	-0.047718	-0.018140	-0.028975	-0.007610	-0.018671	-0.016257	-0.056704
X313	0.429398	-0.029443	-0.244862	0.164566	-0.002038	-0.032840	-0.026615	-0.009387	0.036810	0.011552	-0.040891	-0.205630
X315	-0.231550	0.040382	0.021906	-0.082778	0.004979	-0.007267	-0.033484	0.007482	-0.019978	-0.022038	-0.006173	0.066655
X316	0.100732	-0.115136	-0.016777	-0.124962	0.014267	0.037613	-0.012205	0.000757	0.026404	-0.122276	0.049448	-0.149336
X317	-0.005843	-0.066580	0.002558	-0.035266	0.002533	-0.045385	-0.009223	-0.019264	-0.010164	-0.024937	-0.021713	-0.075732
X318	-0.017681	-0.005574	0.032739	-0.009002	0.000773	0.028034	0.004817	-0.008645	-0.003101	0.026174	-0.006625	-0.005117
X319	-0.025810	-0.014349	-0.002614	-0.011526	0.000631	0.008351	0.020130	0.027541	-0.002532	-0.006212	-0.005409	-0.018865
X321	-0.141728	0.321879	-0.051798	0.434591	-0.021502	-0.022692	-0.017264	-0.027350	-0.065035	0.020191	-0.119857	-0.017199
X322	-0.063873	0.024107	-0.009124	-0.017383	0.004326	0.007622	-0.042492	0.026267	-0.017359	0.031403	-0.030130	0.002010
X323	-0.042542	0.003654	0.000011	-0.078207	0.002799	-0.009098	-0.025919	-0.005230	-0.011230	0.028908	-0.023990	-0.013516
X325	-0.051742	0.119213	0.015531	-0.040034	0.002191	-0.039075	0.056932	-0.000749	-0.008794	-0.021575	-0.018786	0.004622
X327	0.004613	-0.121544	-0.117760	-0.319196	0.001487	-0.018663	-0.041885	0.034012	-0.044549	0.049764	0.242285	-0.056269
X329	0.071595	0.076906	0.022667	-0.116484	0.005949	-0.007800	-0.084452	0.020231	0.128089	-0.031899	0.266164	0.142041
X332	0.018611	0.027823	-0.003202	0.026819	0.000773	0.034509	-0.019602	0.002740	-0.003101	-0.007609	-0.006625	0.030866
X333	-0.002468	-0.128397	-0.094721	0.180359	0.004537	0.004448	-0.014659	0.013294	-0.018208	0.155634	-0.038897	-0.041544
X334	-0.061232	-0.159830	0.276947	-0.558937	0.007501	-0.030001	0.062598	-0.032585	-0.103574	-0.043716	0.267385	-0.137297
X335	0.022810	0.013226	-0.007169	-0.065992	0.001731	-0.038229	-0.016554	0.062793	-0.006945	-0.017039	-0.014836	0.069118
X336	-0.100537	0.420864	-0.073259	0.065564	-0.017881	0.027354	-0.062243	0.017454	-0.044359	-0.014176	-0.094764	0.225448
X337	0.047351	0.138232	-0.282255	0.574053	-0.008695	0.027452	-0.057885	0.011149	0.108199	0.055537	-0.256402	0.103045
X338	0.024660	0.017410	-0.011039	-0.017618	0.002410	0.011535	-0.008284	0.024192	0.015396	-0.001932	-0.020663	-0.002413
X339	-0.032276	0.003409	-0.013164	0.018434	0.000446	-0.000636	-0.025409	-0.018864	-0.001790	0.054108	-0.003824	-0.013338
X340	0.057060	-0.129059	-0.043493	-0.127035	0.004374	0.003707	0.024869	0.039194	-0.017551	-0.030857	-0.037493	0.008955
X341	-0.031662	0.069743	-0.011792	-0.008040	0.002611	-0.005008	-0.008599	-0.001805	-0.010479	0.004506	-0.022386	0.072112
X342	0.055305	0.013067	-0.135847	-0.029992	-0.060906	-0.039171	-0.025297	-0.010388	0.052615	-0.043061	-0.037493	-0.111276
X343	0.050892	-0.067608	0.003962	-0.112025	0.008440	-0.057990	-0.013460	-0.038023	-0.033870	-0.076391	-0.057226	0.031647
X344	-0.122156	0.107954	0.060595	-0.062449	0.002688	-0.002579	-0.014210	-0.046565	-0.010785	-0.006881	-0.023041	-0.054294
X345	0.004856	0.007790	-0.137912	0.178881	0.004374	0.027874	0.008882	0.049704	-0.017551	0.085073	-0.037493	-0.101528
X349	-0.023534	-0.035300	-0.046940	-0.197058	0.006275	0.056139	0.201164	0.020943	-0.025179	-0.061776	-0.053789	0.204227
X350	-0.106772	0.152362	-0.230941	0.143553	-0.006459	-0.055928	-0.100208	0.016212	-0.083122	-0.194416	-0.076614	0.108029

X351	-0.144929	0.157290	0.065231	0.077231	0.018819	-0.032679	-0.019419	-0.005965	-0.070980	-0.151745	0.150106	0.340823
X353	-0.042253	-0.010867	-0.005549	-0.024472	0.001340	-0.026847	0.034801	-0.006214	-0.005375	-0.013189	-0.011483	0.053500
X354	-0.182165	0.177373	0.099700	-0.071795	-0.001390	0.005689	-0.096507	-0.058520	-0.053430	0.255318	0.130177	0.020747
X355	0.132281	-0.332577	-0.065141	-0.189158	-0.010442	0.022560	0.026425	0.050301	0.139665	-0.037512	-0.192270	0.056933
X356	0.159288	-0.407207	0.017311	-0.392994	0.013551	-0.002591	-0.003423	-0.048943	-0.048979	-0.046559	-0.116168	-0.208902
X357	0.015664	0.048057	-0.004134	0.041239	0.000998	-0.023996	0.007008	-0.033381	-0.004005	-0.009826	-0.008555	0.039858
X359	-0.024918	0.124822	-0.015778	0.037152	0.005248	-0.022078	-0.004724	-0.046906	-0.021057	-0.051664	0.007134	0.168556
X361	-0.021215	0.244337	0.095281	-0.209929	-0.005427	-0.028669	-0.030375	-0.023963	0.021777	-0.210335	0.046522	0.085403
X365	-0.040265	0.026452	0.018530	0.048572	0.001547	-0.002205	0.027977	0.021317	-0.006209	-0.015234	0.005803	0.061799
X366	0.010643	-0.003694	-0.005400	0.017451	0.000998	-0.000586	0.040116	0.012687	-0.004005	-0.009826	0.020960	0.039858
X367	-0.054229	-0.045593	-0.044346	-0.203050	-0.007746	0.040783	0.205846	0.014585	-0.027139	-0.066587	-0.057978	0.226781
X369	0.001967	-0.020739	0.019393	0.001006	0.000631	-0.003542	0.012654	0.013598	-0.002532	-0.006212	-0.005409	-0.018865
X370	0.050787	0.097932	0.170400	-0.009662	0.002368	0.007608	0.029456	-0.065670	-0.009503	-0.023315	-0.020301	-0.070807
X372	-0.015493	0.029105	0.033397	0.026072	0.000631	0.005708	0.020130	-0.009640	-0.002532	-0.006212	-0.005409	-0.018865
X373	0.021198	-0.123914	-0.102637	0.161539	0.004054	-0.007035	-0.040552	0.004788	-0.016266	0.176659	-0.034749	-0.054797
X374	-0.161102	0.202307	-0.036632	0.518349	0.000355	0.002639	-0.007503	-0.004513	-0.062993	0.097125	-0.134572	-0.008845
X375	0.113272	0.056874	-0.174308	0.051801	-0.021598	0.012756	-0.036780	0.044093	0.165277	-0.107864	-0.169721	0.118950
X376	0.070546	-0.102424	0.033697	-0.105009	0.007132	-0.062472	-0.021234	-0.054105	-0.028618	-0.070214	-0.061136	0.026496
X377	0.045173	-0.248791	0.122503	-0.588272	0.012692	0.005345	0.069685	-0.033075	-0.074244	0.030134	0.357229	-0.097464
X378	-0.102136	0.145282	0.131974	0.173723	0.004204	0.029634	-0.030480	-0.010485	-0.016870	-0.016043	-0.036040	-0.037958
X379	0.083352	0.070753	0.033645	-0.026446	0.002835	0.034548	-0.030471	0.069440	-0.011374	-0.027907	-0.024299	0.103309
X380	-0.038618	-0.022360	0.006473	0.004166	0.002611	0.010434	-0.014059	0.009511	-0.010479	-0.005566	0.023045	0.007743
X383	-0.011174	-0.029253	-0.019873	-0.028280	0.001181	-0.007337	-0.021293	0.038712	-0.004740	-0.011628	-0.010125	0.023604
X384	0.009110	0.017603	-0.002614	0.007273	0.000631	0.007030	0.023867	0.008950	-0.002532	-0.006212	0.041242	0.025199

In []:

#Choosing the upper part of the correlation matrix as it will be same as the lower half
Corr_upper = correlation_X.where(np.triu(np.ones_like(correlation_X),k=1).astype(np.bool))
Corr_upper

Out[]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	X13	X14	
X0	NaN	-0.271123	-0.139904	-0.070645	0.017988	0.012293	0.037549	0.047735	0.081122	-0.134577	-0.130529	-0.138310	0.0
X1	NaN	NaN	0.088266	0.205657	-0.020724	0.046417	-0.079119	-0.000306	-0.137193	0.112263	0.286683	0.079784	-0.0
X2	NaN	NaN	NaN	-0.093546	0.002289	-0.017722	0.065778	-0.069932	0.042398	0.131464	0.222132	-0.079183	-0.0
Х3	NaN	NaN	NaN	NaN	0.015298	-0.008161	-0.048468	-0.001249	0.019663	0.056166	-0.216464	0.045183	-0.0
X4	NaN	NaN	NaN	NaN	NaN	0.039778	0.027854	-0.008909	0.003360	0.008245	0.007179	0.005544	0.0
X378	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X379	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X380	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X383	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
X384	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
306 ra	₩ × ′	306 column	ne										

```
In [ ]:
#Finding the columns with correlation > .95
droppables = [col for col in Corr_upper.columns if any(abs(Corr_upper[col])>.95)]
Out[]:
['X35',
 'X37',
'X39',
 'X61',
 'X111',
 'X113',
 'X120'
 'X129'
 'X130',
 'X134',
 'X136'
 'X140',
 'X146',
 'X147'
 'X157
 'X158'
 'X172'
 'X194'
 'X198',
 'X199',
 'X205',
 'X213
 'X215
 'X216'
 'X222',
 'X227'
 'X229',
 'X232',
 'X337'
 'X378']
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X378'] > 0.9, correlation_X['X378'] > 0.9]
Out[]:
                X378
        X185
X185 1.000000 0.951991
X378 0.951991 1.000000
In [ ]:
#Dropping X378
X train 15=X train 14.drop((['X378']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X232'] > 0.9, correlation_X['X232'] > 0.9]
Out[]:
     X29 X232
 X29
           1.0
X232 1.0
           1.0
In [ ]:
#Dropping X232
X train 15=X train 15.drop((['X232']),axis=1)
```

```
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X227'] > 0.9, correlation_X['X227'] > 0.9]
Out[]:
     X125 X227
X125
       1.0
            1.0
X227
       1.0
            1.0
In [ ]:
#Dropping X227
X_train_15=X_train_15.drop((['X227']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X222'] > 0.9, correlation_X['X222'] > 0.9]
Out[ ]:
         X48
                 X66
                         X113
                                 X134
                                         X147
                                                 X198
                                                         X222
     1.000000
             0.905844
                      1.000000
                              1.000000
                                      1.000000
                                              0.984056
                                                       1.000000
 X66
     0.905844 1.000000
                     0.905844 0.905844 0.905844 0.891259
                                                      0.905844
X113
     1.000000 0.905844
                     1.000000
                             1.000000
                                     1.000000
                                              0.984056
                                                      1.000000
     1.000000 0.905844
                     1.000000
                             1.000000
                                     1.000000
                                              0.984056
                                                      1.000000
X147
     1.000000 0.905844 1.000000
                             1.000000
                                     1.000000
                                              0.984056
                                                      1.000000
X198 0.984056 0.891259 0.984056 0.984056 0.984056
                                              1.000000
                                                      0.984056
X222 1.000000 0.905844 1.000000 1.000000 1.000000 0.984056
In [ ]:
#Dropping X66, X113,
                          X134,
                                   X147.
                                            X198.
                                                     X222
X train 15=X train 15.drop((['X66',
                                            'X113', 'X134', 'X147', 'X198' ,'X222']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation X.loc[correlation X['X216'] > 0.9, correlation X['X216'] > 0.9]
Out[]:
     X62 X172 X216
 X62
           1.0
                 1.0
X172
      1.0
           1.0
                 1.0
X216
     1.0
           1.0
                1.0
In [ ]:
#Dropping X216,X172
X_train_15=X_train_15.drop((['X216',
                                           'X172']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X215'] > 0.9, correlation_X['X215'] > 0.9]
Out[]:
         X19
                X215
 X19 1.000000 0.994691
X215 0.994691 1.000000
In [ ]:
#Dropping X215
X_train_16=X_train_15.drop((['X215']),axis=1)
```

```
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X213'] > 0.9, correlation_X['X213'] > 0.9]
Out[]:
     X67 X213
 X67
      1.0
           1.0
X213 1.0
           1.0
In [ ]:
#Dropping X213
X_train_16=X_train_16.drop((['X213']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X199'] > 0.9, correlation_X['X199'] > 0.9]
Out[]:
     X112 X199
X112
            1.0
X199
       1.0
            1.0
In [ ]:
#Dropping X199
X_train_16=X_train_16.drop((['X199']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X194'] > 0.9, correlation_X['X194'] > 0.9]
Out[]:
        X187
                X194
X187 1.000000 0.915586
X194 0.915586 1.000000
In [ ]:
#Dropping X194
X_{\text{train}_16=X_{\text{train}_16.drop}((['X194']),axis=1)}
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X146'] > 0.9, correlation_X['X146'] > 0.9]
Out[]:
        X138
                X140
                        X146
X138 1.000000 0.993923 1.000000
X140 0.993923 1.000000 0.993923
X146 1.000000 0.993923 1.000000
In [ ]:
#Dropping X146,X140
X_train_16=X_train_16.drop((['X146','X140']),axis=1)
```

```
In [ ]:
#To find the next pair, we can subset the correlation_X.
correlation_X.loc[correlation_X['X129'] > 0.9, correlation_X['X129'] > 0.9]
Out[]:
        X49
              X129
 X49 1.00000 0.99779
X129 0.99779 1.00000
In [ ]:
#Dropping X129
X_train_16=X_train_16.drop((['X129']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X120'] > 0.9, correlation_X['X120'] > 0.9]
Out[]:
         X61
                X120
 X61 1.000000 0.955973
X120 0.955973 1.000000
In [ ]:
#Dropping X120
X_train_16=X_train_16.drop((['X120']),axis=1)
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X39'] > 0.9, correlation_X['X39'] > 0.9]
Out[]:
     X33 X39
X33
     1.0
X39
    1.0 1.0
In [ ]:
#Dropping X39
X_{\text{train}_16=X_{\text{train}_16.drop((['X39']),axis=1)}}
In [ ]:
#To find the next pair, we can subset the correlation X.
correlation_X.loc[correlation_X['X37'] > 0.9, correlation_X['X37'] > 0.9]
Out[]:
    X31 X35 X37
X31
         1.0
             1.0
     1.0
X35
    1.0 1.0 1.0
     1.0
         1.0 1.0
X37
In [ ]:
#Dropping X37, X35
X_train_17=X_train_16.drop((['X37','X35']),axis=1)
In [ ]:
#Thus we have deleted all the variables that are highly correlated.
```

```
In [ ]:
#Dropping all these columns from the test data as well
droppables = ['X60','X248','X253','X385','X382','X378','X371','X53','X102','X214','X239','X368','X331','X346','X3
droppables = [ x60 , x246 , x233 , x363 , x362 , x376 , x371 , x38 , x122 , x221 , x223 , x363 , x362 , x363 , x362 , x376 , x371 , x38 , x122 , x221 , x223 , x363 , x362 , x360 , x155 , x358 , x348 , x328 , x3279 , x376 , x372 , x362 , x376 , x376 , x328 , x328 , x379 , x376 , x372 , x314 , x311 , x119 , x392 , x399 , x394 , x396 , x364 , x311 , x119 , x302 , x299 , x296 , x266 , x262 , x264 , x263 , x254 , x254 , x250 , x247 , x245 , x244 , x84 , x378 , x232 , x227 , x366 , x313 , x313 , x314 , x314 , x314 , x318 , x322 , x321 , x321 , x331 , x334 , x334
 'X216', 'X172','X215','X213','X199','X194','X146','X140','X129','X120','X39','X37','X35']
X test = cars test.drop((droppables),axis=1)
In [ ]:
print(X_train_17.shape)
print(y_train.shape)
(4209, 284)
(4209,)
In [ ]:
#Performing Linear Regression
lm=LinearRegression()
lm.fit(X_train_17,y_train)
Out[]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [ ]:
#Finding the RFE for 280 features
rfe =RFE(lm, 280)
rfe=rfe.fit(X_train_17,y_train)
In [ ]:
#Listing the features, Support and Ranking.
list(zip(X train 17.columns,rfe.support ,rfe.ranking ))
Out[]:
[('X0', True, 1),
  ('X1', True, 1),
('X2', False, 2),
   ('X3', True, 1),
   ('X4', True, 1),
   ('X5', True, 1),
  ('X6', True, 1),
   ('X8', False, 5),
  ('X10', True, 1),
('X12', True, 1),
   ('X13', True, 1),
   ('X14', True, 1),
   ('X15', True, 1),
   ('X16', True, 1),
   ('X17'
                 , True, 1),
   ('X18', True, 1),
   ('X19', True, 1),
('X20', True, 1),
   ('X21'
                 , True, 1),
   ('X22', True, 1),
   ('X23', True, 1),
   ('X24'
                 , True, 1),
   ('X26', True, 1),
   ('X27', True, 1),
   ('X28', True, 1),
('X29', True, 1),
   ('X30', True, 1),
   ('X31', True, 1),
   ('X32', True, 1),
   ('X33', True, 1),
   ('X34', True, 1),
   ('X36', True, 1),
   ('X38', True, 1),
('X40', True, 1),
   ('X41'
                 , True, 1),
   ('X42', True, 1),
   ('X43', True, 1),
('X44', True, 1),
   ('X45', True, 1),
   ('X46', True, 1),
```

```
('X47', True, 1),
 ('X48', True, 1),
('X49', True, 1),
('X50', False, 3),
('X51', True, 1),
   ('X52', True, 1),
 ('X55', True, 1),
('X56', True, 1),
('X56', True, 1),
 ('X58', True, 1),
('X58', True, 1),
('X59', True, 1),
('X61', True, 1),
('X62', True, 1),
   ('X63', True, 1),
  ('X64', True, 1),
('X65', True, 1),
('X65', True, 1),
  ('X68', True, 1),
('X69', True, 1),
('X70', True, 1),
('X69', True, 1),
('X70', True, 1),
('X71', True, 1),
  ('X73', True, 1),
('X74', True, 1),
('X75', True, 1),
  ('X77'
                                        True, 1),
  ('X78', True, 1),
('X79', True, 1),
('X80', True, 1),
('X80', True, 1),
  ('X82', True, 1),
('X83', True, 1),
('X85', True, 1),
   ('X86', True, 1),
  ('X87', True, 1),
('X88', True, 1),
('X89', True, 1),
('X91', True, 1),
('X91', True, 1),
('X92', True, 1),
('X95', True, 1),
('X96', True, 1),
('X97', True, 1),
('X100', True, 1),
('X101', True, 1),
('X103', True, 1),
('X104', True, 1),
('X105', True, 1),
('X106', True, 1),
('X108', True, 1),
('X109', True, 1),
('X110', True, 1),
('X111', True, 1),
('X112', True, 1),
('X114', True, 1),
('X114', True, 1),
('X114', True, 1),
('X112', True, 1),

('X114', True, 1),

('X115', True, 1),

('X116', True, 1),

('X117', True, 1),

('X118', True, 1),

('X123', True, 1),

('X124', True, 1),

('X125', True, 1),

('X126', True, 1),
('X125', True, 1),
('X126', True, 1),
('X126', True, 1),
('X127', True, 1),
('X130', True, 1),
('X131', True, 1),
('X132', True, 1),
('X135', True, 1),
('X136', True, 1),
('X138', True, 1),
('X138', True, 1),
('X139', True, 1),
('X141', True, 1),
('X142', True, 1),
('X142', True, 1),
('X144', True, 1),
('X144', True, 1),
('X145', True, 1),
('X148', True, 1),
('X150', True, 1),
('X151', True, 1),
('X152', True, 1),
 ('X151', True, 1),
('X152', True, 1),
('X153', True, 1),
('X154', True, 1),
```

```
('X156', True, 1),
   ('X157', True, 1),
('X158', True, 1),
('X159', True, 1),
('X160', True, 1),
     ('X161', True, 1),
('X163', True, 1),
('X164', True, 1),
('X164', True, 1),
('X165', True, 1),
('X166', True, 1),
('X168', True, 1),
('X169', True, 1),
('X170', True, 1),
('X171', True, 1),
('X173', True, 1),
('X174', True, 1),
('X175', True, 1),
('X176', True, 1),
('X177', True, 1),
('X178', True, 1),
('X180', True, 1),
('X181', True, 1),
('X182', True, 1),
('X184', True, 1),
('X184', True, 1),
('X185', True, 1),
('X186', True, 1),
('X186', True, 1),
('X186', True, 1),
('X187', True, 1),
('X189', True, 1),
('X190', True, 1),
('X191', True, 1),
('X191', True, 1),
('X195', True, 1),
('X196', True, 1),
('X197', True, 1),
('X200', True, 1),
('X201', True, 1),
('X208', True, 1),
('X207', True, 1),

('X208', True, 1),

('X209', True, 1),

('X210', True, 1),

('X211', True, 1),

('X212', True, 1),

('X218', True, 1),

('X220', True, 1),

('X221', True, 1),
('X220', True, 1),

('X221', True, 1),

('X223', True, 1),

('X224', True, 1),

('X225', False, 4),

('X228', True, 1),

('X229', True, 1),

('X230', True, 1),

('X231', True, 1),

('X234', True, 1),
 ('X251', True, 1),
('X252', True, 1),
('X255', True, 1),
('X256', True, 1),
('X257', True, 1),
 ('X257', True, 1),

('X258', True, 1),

('X259', True, 1),

('X260', True, 1),

('X261', True, 1),

('X265', True, 1),

('X267', True, 1),

('X269', True, 1),

('X270', True, 1),

('X271', True, 1),
     ('X270', True, 1),
('X271', True, 1),
('X273', True, 1),
('X274', True, 1),
```

```
('X275', True, 1),
       ('X277', True, 1),
('X278', True, 1),
('X280', True, 1),
('X281', True, 1),
('X281', True, 1),

('X282', True, 1),

('X283', True, 1),

('X284', True, 1),

('X285', True, 1),

('X286', True, 1),

('X287', True, 1),

('X288', True, 1),

('X291', True, 1),

('X292', True, 1),
('X291', True, 1),
('X292', True, 1),
('X294', True, 1),
('X295', True, 1),
('X298', True, 1),
('X300', True, 1),
('X301', True, 1),
('X304', True, 1),
('X305', True, 1),
('X306', True, 1),
('X307', True, 1),
('X308', True, 1),
('X309', True, 1),
('X310', True, 1),
( 'X310', True, 1), ( 'X310', True, 1), ( 'X312', True, 1), ( 'X313', True, 1), ( 'X315', True, 1), ( 'X316', True, 1), ( 'X318', True, 1), ( 'X319', True, 1), ( 'X321', True, 1), ( 'X322', True, 1), ( 'X323', True, 1), ( 'X329', True, 1), ( 'X329', True, 1), ( 'X334', True, 1), ( 'X336', True, 1), ( 'X336', True, 1), ( 'X338', True, 1), ( 'X338', True, 1), ( 'X339', True, 1), ( 'X339', True, 1), ( 'X339', True, 1), ( 'X340', True, 1), ( 'X340', True, 1), ( 'X341', True, 1), ( 'X342', True, 1), ( 'X344', True, 1), ( 'X344', True, 1), ( 'X345', True, 1), ( 'X350', True, 1), ( 'X350', True, 1), ( 'X351', True, 1), ( 'X361', True, 1), ( 'X361', True, 1), ( 'X361', True, 1), ( 'X361', True, 1), ( 'X371', True, 1), ( 'X37
          ('X383', True, 1),
('X384', True, 1)]
```

```
In [ ]:
X_train_17.columns[~rfe.support_]
Out[]:
Index(['X2', 'X8', 'X50', 'X225'], dtype='object')
In [ ]:
#Since RFE Support is 'False' for 'X1', 'X2', 'X5', 'X6', 'X8', 'X27', 'X275', 'X351', 'X361', we can eliminate t
hat as well
X_train_rfe = X_train_17.drop(['X1', 'X2', 'X5', 'X6', 'X8', 'X27', 'X275', 'X351', 'X361'],axis=1)
In [ ]:
# Adding a constant variable
X train lm= sm.add constant(X train rfe)
In [ ]:
# Running the linear model
lm = sm.OLS(y_train, X_train_lm).fit()
In [ ]:
#Let's see the summary of our linear model
lm.summary()
Out[]:
OLS Regression Results
    Dep. Variable:
                                       R-squared:
                                                      0.590
                               У
                            OLS
                                                      0.565
          Model:
                                   Adj. R-squared:
         Method:
                    Least Squares
                                       F-statistic:
                                                      23.87
           Date: Thu, 14 Oct 2021 Prob (F-statistic):
                                                       0.00
                         20:45:32
                                   Log-Likelihood:
           Time:
                                                     -14788
 No. Observations:
                            4209
                                             AIC: 3.006e+04
     Df Residuals:
                            3969
                                             BIC: 3.158e+04
        Df Model:
                             239
 Covariance Type:
                        nonrobust
           coef std err
                            t P>|t|
                                      [0.025 0.975]
 const
       29.1053
                 3.402
                        8.556 0.000
                                      22.436 35.775
   X0
         0.0642
                 0.015
                        4.221 0.000
                                       0.034
                                              0.094
   X3
        -0.1029
                 0.125
                        -0.821 0.412
                                      -0.349
                                              0.143
   X4
        -0.4266
                 1.767
                        -0.241 0.809
                                      -3.891
                                              3.038
  X10
         5.3341
                 4.286
                        1.245 0.213
                                      -3.069 13.737
  X12
         4.1357
                 2.980
                        1.388 0.165
                                      -1.706
                                              9.977
  X13
         1.7067
                 3.011
                        0.567 0.571
                                      -4.196
                                              7.609
  X14
         3.3535
                 3.131
                        1.071 0.284
                                      -2.786
                                              9.493
  X15
         9.2840
                 8.937
                         1.039 0.299
                                      -8.237 26.805
  X16
         6.2089
                 4.328
                         1.435 0.151
                                      -2.276
                                             14.693
  X17
         0.9413
                 3.423
                        0.275 0.783
                                      -5.770
                                              7.653
         6.7927
                 4.783
                                      -2.584 16.170
  X18
                        1.420 0.156
  X19
         2.5657
                 3.099
                        0.828 0.408
                                      -3.511
                                              8.642
  X20
         3.0069
                 2.960
                        1.016 0.310
                                      -2.797
                                              8.811
  X21 -15.4570
                        -2.075 0.038
                 7.448
                                     -30.060
                                             -0.854
  X22
         2.6498
                 3.074
                        0.862 0.389
                                      -3.376
                                              8.676
  X23
         1.0570
                 3.215
                        0.329 0.742
                                              7.361
                                      -5.247
        -1.2170
  X24
                 3.597
                        -0.338 0.735
                                      -8.268
                                              5.834
  X26
         4.6841
                 4.716
                        0.993 0.321
                                      -4.562
                                             13.930
         4.8496
  X28
                 5.141
                        0.943 0.346
                                      -5.230 14.929
  X29
        -0.7628
                 3.600
                        -0.212 0.832
                                      -7.821
                                              6.295
```

X30

X31

-17.5868

0.8946

14.854

0.559

-1.184 0.236

1.600 0.110

-46.709

-0.202

11.535

1.991

X32	7.2866	14.791	0.493	0.622	-21.712	36.285	
X33	-8.5644	8.915	-0.961	0.337	-26.042	8.913	
X34	8.8138	7.695	1.145	0.252	-6.273	23.901	
X36	1.5839	4.000	0.396	0.692	-6.258	9.425	
X38	-1.7299	0.792	-2.183	0.029	-3.284	-0.176	
X40	-0.4995	4.560	-0.110	0.913	-9.439	8.440	
X41	-0.0182	1.575	-0.012	0.991	-3.106	3.069	
X42	3.9444	8.724	0.452	0.651	-13.160	21.048	
X43	-0.0570	2.178	-0.026	0.979		4.214	
X44	-8.5224	7.439	-1.146	0.252		6.062	
X45	-4.7684	1.804	-2.644	0.008	-8.305	-1.232	
X46	0.2739	0.402	0.682	0.496	-0.514	1.062	
X47	5.6304	2.319	2.428	0.015	1.083	10.178	
X48	9.3237	5.809	1.605	0.109	-2.065	20.713	
X49							
	-0.0890	0.841	-0.106	0.916	-1.737	1.559	
X50	-0.1401	0.580	-0.242	0.809	-1.277	0.996	
X51	0.1859	0.470	0.395	0.693	-0.736	1.108	
X52	-13.5232	13.837	-0.977	0.328	-40.652		
X55	-2.8719	2.879	-0.998	0.319	-8.516	2.772	
X56	-0.2244	1.298	-0.173	0.863	-2.770	2.321	
X57	-2.7957	4.320	-0.647	0.518	-11.265	5.673	
X58	0.9720	0.401	2.426	0.015	0.187	1.757	
X59	-11.0739	7.245	-1.528	0.126	-25.279	3.131	
X61	-14.4382	13.802	-1.046	0.296	-41.498	12.621	
X62	-2.8461	5.518	-0.516	0.606	-13.664	7.972	
X63	-0.7377	2.504	-0.295	0.768	-5.646	4.171	
X64	-0.3540	0.429	-0.825	0.410	-1.195	0.487	
X65	2.6518	3.095	0.857	0.392	-3.415	8.719	
X67	2.2489	6.901	0.326	0.745	-11.282	15.779	
X68	-0.1480	0.916	-0.162	0.872	-1.944	1.648	
X69	-0.9268	1.563	-0.593	0.553	-3.992	2.138	
X70	-0.9500	0.915	-1.039	0.299	-2.743	0.843	
X71	2.2760	1.455	1.565	0.118	-0.576	5.128	
X73	1.2222	1.062	1.151	0.250	-0.860	3.305	
X74	9.9503	5.585	1.782	0.075	-0.999	20.900	
X75	-3.3449	1.452	-2.304	0.021	-6.192	-0.498	
X77	1.3741	1.490	0.922	0.356	-1.547	4.295	
X78	-0.5908	3.521	-0.168	0.867	-7.495	6.313	
X79	-3.6538	0.985	-3.708	0.000	-5.586	-1.722	
X80	-2.9603	11.457	-0.258	0.796	-25.423	19.503	
X81	-0.8254	0.593	-1.392	0.164	-1.988	0.337	
X82	0.0735	1.401	0.052	0.958	-2.674	2.821	
X83	-13.8744	15.227	-0.911	0.362	-43.727	15.978	
X85	-1.2351	1.647	-0.750	0.453	-4.464	1.994	
X86	7.2853	4.865	1.497	0.134	-2.254	16.824	
X87	-0.7451	11.894	-0.063	0.950	-24.064	22.574	
X88	2.2417	5.487	0.409	0.683	-8.516	12.999	
X89	4.1471	7.085	0.585	0.558	-9.743	18.037	
X91	-4.3168	3.855	-1.120	0.263	-11.874	3.241	
X92	-12.3486	9.771	-1.264	0.206	-31.506	6.809	
X95	28.1507	9.620	2.926	0.003	9.290	47.011	
X96	0.8088	0.920	0.879	0.380	-0.996	2.613	
X97	-9.6154	12.771	-0.753	0.452	-34.653	15.423	
X98	-5.3410	6.715	-0.795	0.426	-18.507	7.825	
¥100	-U 8202	N 722	_1 149	ი 251	-2 244	N 586	

AIVV	-0.0232	V.1 &&	-1.170	V. Z V I	-4.477	0.000
X101	-13.3040	10.684	-1.245	0.213	-34.250	7.642
X103	-0.4278	3.185	-0.134	0.893	-6.673	5.817
X104	6.7796	3.097	2.189	0.029	0.707	12.852
X105	6.5458	3.988	1.641	0.101	-1.274	14.365
X106	-0.7815	1.712	-0.457	0.648	-4.138	2.575
X108	1.9937	2.027	0.984	0.325	-1.980	5.967
X109	0.7225	1.225	0.590	0.555	-1.678	3.123
X110	1.4295	4.601	0.311	0.756	-7.591	10.450
X111	16.8881	4.930	3.426	0.001	7.223	26.553
X112	2.8935	4.893	0.591	0.554	-6.699	12.486
X114	-0.4613	0.802	-0.575	0.565	-2.033	1.111
X115	10.0749	1.265	7.966	0.000	7.595	12.554
X116	-0.1817	0.673	-0.270	0.787	-1.502	1.139
X117	5.9489	1.385	4.294	0.000	3.233	8.665
X118	13.8444	1.257	11.017	0.000	11.381	16.308
X123	9.0170	2.425	3.718	0.000	4.262	13.772
X124	0.2766	6.639	0.042	0.967	-12.739	13.292
X125	-2.0459	6.811	-0.300	0.764	-15.400	11.308
X126	3.9401	7.228	0.545	0.586	-10.231	18.111
X127	-1.4718	3.563	-0.413	0.680	-8.457	5.513
X128	5.8745	3.368	1.744	0.081	-0.728	12.477
X130	23.2308	3.481	6.674	0.000	16.406	30.055
X131	2.7223	1.687	1.614	0.107	-0.585	6.030
X132	2.3407	1.474	1.587	0.112	-0.550	5.231
X132	7.5895					
		1.388	5.469 1.197	0.000	4.869	10.310
X135	2.2042	1.842		0.231	-1.407	5.815
X136	5.5233	3.153	1.752	0.080	-0.658	11.705
X138	6.4431	3.484	1.849	0.064	-0.388	13.274
X139						
	0.2619				-2.215	
X142						
	7.2847					
X144					0.022	
	2.3057				-6.604	
X148		1.356				0.431
X150					-3.401	
X151					-0.442	
					0.652	
X153	-1.1386				-13.777	
	0.7381					
X156	14.8194			0.000	11.468	
X157	14.2859	1.724	8.287	0.000	10.906	17.666
X158	14.6766				11.304	
X159					-6.829	
X160					-10.284	
X161			0.269		-5.691	
X163		0.541			-2.849	
X164					-4.711	
X165	-1.8077	4.742	-0.381	0.703	-11.104	7.489
X166	6.2482		1.992		0.098	
X167	4.9988	5.434	0.920	0.358	-5.654	15.652
X168	-1.3460	4.110	-0.328	0.743	-9.403	6.711
X169	7.1592	2.997	2.389	0.017	1.284	13.034
X170	-0.9417	5.395	-0.175	0.861	-11.518	9.635

X171	-0.3173	4.105	-0.077	0.938	-8.366	7.731	
X173	0.3524	2.266	0.155	0.876	-4.091	4.796	
X174	6.8436	1.852	3.694	0.000	3.212	10.475	
X175	0.3024	2.414	0.125	0.900	-4.431	5.036	
X176	0.0175	1.339	0.013	0.990	-2.608	2.643	
X177	-0.2784	1.145	-0.243	0.808	-2.524	1.967	
X178	-21.9892	8.721	-2.522	0.012	-39.086	-4.892	
X179	-26.2020	9.265	-2.828	0.005	-44.367	-8.037	
X180	7.4358	1.224	6.074	0.000	5.036	9.836	
X181	1.0653	2.243	0.475	0.635	-3.331	5.462	
X182	-1.0323	1.087	-0.949	0.342	-3.164	1.099	
X183	1.2181	5.390	0.226	0.821	-9.349	11.785	
X184	-13.7816	8.949	-1.540	0.124	-31.327	3.764	
X185	1.7731	1.822	0.973	0.331	-1.800	5.346	
X186	4.2121	1.864	2.259	0.024	0.557	7.867	
X187	1.3112	1.841	0.712	0.476	-2.298	4.921	
X189	6.6373	2.931	2.264	0.024	0.890	12.385	
X190	-5.0114	8.574	-0.584	0.559	-21.821	11.798	
X191	0.9910	1.273	0.779	0.436	-1.504	3.486	
X192	-0.8056	3.004	-0.268	0.789	-6.694	5.083	
X195	3.8813	1.547	2.509	0.012	0.849	6.914	
X196	5.3272	1.531	3.480	0.001	2.326	8.328	
X197	-1.8528	2.309	-0.802	0.422	-6.380	2.674	
X200	-1.0346	3.644	-0.284	0.776	-8.178	6.109	
X201	-3.8278	1.712	-2.236	0.025	-7.184	-0.472	
X202	-1.1727	4.176	-0.281	0.779	-9.359	7.014	
X203	-1.4501	2.467	-0.588	0.557	-6.287	3.386	
X204	28.6254	5.287	5.414	0.000	18.260	38.991	
X205	0.4799	4.279	0.112	0.911	-7.909	8.869	
X206	-2.6611	1.129	-2.356	0.019	-4.875	-0.447	
X207	13.6260	6.179	2.205	0.028	1.511	25.741	
X208	2.1407	3.579	0.598	0.550	-4.876	9.158	
X209	6.0539	1.570	3.855	0.000	2.975	9.133	
X210	-29.1983	12.968	-2.252	0.024	-54.624	-3.773	
X211	0.5854	2.028	0.289	0.773	-3.390	4.561	
X212	-0.8294	2.172	-0.382	0.703	-5.088	3.429	
X218	0.4866	0.534	0.911	0.362	-0.561	1.534	
X219	-0.2891	1.024	-0.282	0.778	-2.296	1.718	
X220	0.0126	0.469	0.027	0.978	-0.907	0.932	
X221	0.0302	3.083	0.010	0.992	-6.014	6.074	
X223	-1.0732	0.741	-1.449	0.148	-2.526	0.379	
X224	0.0159	0.715	0.022	0.982	-1.386	1.418	
X225	-0.0230	0.576	-0.040	0.968	-1.152	1.106	
X228	-2.0121	3.127	-0.644	0.520	-8.142	4.118	
X229	-1.6551	3.058	-0.541	0.588	-7.650	4.340	
X230	0.0961	2.028	0.047	0.962	-3.880	4.072	
X231	0.3341	1.212	0.276	0.783	-2.041	2.710	
X234	1.1861	1.072	1.107	0.268	-0.915	3.287	
X236	24.3449	5.392	4.515	0.000	13.774	34.916	
X237	4.0912	7.730	0.529	0.597	-11.064	19.247	
X238	-2.3134	8.005	-0.289	0.773	-18.009	13.382	
X241	-1.1907	1.512	-0.787	0.431	-4.156	1.774	
X246	0.3715	0.920	0.404	0.686	-1.432	2.175	
X251	-21.5902	8.957	-2.410	0.016	-39.151	-4.030	
X252	5.8234	6.539	0.891	0.373	-6.996	18.643	

X255	-1.3642	5.149	-0.265	0.791	-11.459	8.730
X256	-0.7852	2.721	-0.289	0.773	-6.119	4.549
X257	-23.0958	15.263	-1.513	0.130	-53.021	6.829
X258	0.6793	5.732	0.119	0.906	-10.558	11.917
X259	-6.9888	7.913	-0.883	0.377	-22.503	8.526
X260	3.5499	8.992	0.395	0.693	-14.080	21.180
X261	7.7267	4.096	1.887	0.059	-0.303	15.757
X265	1.8612	4.796	0.388	0.698	-7.542	11.264
X267	2.2555	2.719	0.830	0.407	-3.075	7.586
X269	-4.6560	6.965	-0.668	0.504	-18.312	9.000
X270	-4.2700	8.876	-0.481	0.630	-21.671	13.131
X271	3.2502	3.432	0.947	0.344	-3.478	9.979
X273	-0.4816	0.559	-0.862	0.389	-1.577	0.614
X274	1.9113	2.470	0.774	0.439	-2.932	6.754
X277	-4.9372	7.070	-0.698	0.485	-18.798	8.924
X278	0.1125	6.664	0.017	0.987	-12.953	13.178
X280	8.0136	7.330	1.093	0.274	-6.358	22.385
X281	-0.8387	2.936	-0.286	0.775	-6.594	4.917
X282	0.7881	2.758	0.286	0.775	-4.620	6.196
X283	3.5714	1.251	2.854	0.004	1.118	6.025
X284	5.5497	2.619	2.119	0.034	0.415	10.684
X285	4.1286	1.200	3.439	0.001	1.775	6.482
X286	2.4351	1.695	1.437	0.151	-0.887	5.758
X287	-1.3124	1.984	-0.661	0.508	-5.202	2.578
X288	0.0607	8.750	0.007	0.994	-17.094	17.215
X291	-1.1174	1.342	-0.833	0.405	-3.749	1.514
X292	-2.8448	1.481	-1.920	0.055	-5.749	0.059
X294	0.3143	0.870	0.361	0.718	-1.391	2.019
X295	-6.9825	8.925	-0.782	0.434	-24.480	10.515
X298	-1.1599	1.997	-0.581	0.561	-5.076	2.756
X300	-0.6240	0.660	-0.946	0.344	-1.917	0.669
X301	1.6878	0.748	2.257	0.024	0.221	3.154
X304	17.7551	8.859	2.004	0.045	0.386	35.124
X305	10.4961	6.878	1.526	0.127	-2.988	23.980
X306	9.2625	6.190	1.496	0.135	-2.874	21.399
X307	-12.7141	9.338	-1.362	0.173	-31.021	5.593
X308	1.6536	6.212	0.266	0.790	-10.526	13.833
X309	2.6521	6.061	0.438	0.662	-9.231	14.535
X310	5.1758	3.138	1.649	0.099	-0.977	11.328
X312	2.5031	5.888	0.425	0.671	-9.042	14.048
X313	-7.1992	3.567	-2.018	0.044	-14.193	-0.206
X315	11.5590		2.787	0.005		19.690
X316	-8.0541	3.564	-2.260	0.024	-15.041	-1.067
X317	0.8521	8.117	0.105	0.916	-15.062	16.767
X318	-2.4840	6.827	-0.364	0.716	-15.870	10.902
X319	-2.1593	6.272	-0.344	0.731	-14.455	10.137
X321	-0.5085	1.364	-0.373	0.709		
X322	0.9762	1.538	0.635	0.526		
X323	-1.0887	1.641	-0.664	0.507	-4.305	
X325	-1.2652	4.596	-0.275	0.783	-10.277	
X327	1.4526	0.825	1.760	0.079		
X329	-0.8754	1.900	-0.461	0.645	-4.601	
X332	-1.7136	4.914	-0.349	0.727	-11.347	
X333	0.4320	2.609	0.166	0.869		
X334	6.1942	1.897	3.266	0.001	2.476	9.912

X335	7.4814	2.774	2.697	0.007	2.043	12.920	
X336	-2.5815	1.681	-1.536	0.125	-5.877	0.713	
X337	8.5861	1.350	6.358	0.000	5.938	11.234	
X338	-4.4789	2.119	-2.113	0.035	-8.634	-0.324	
X339	37.6149	12.819	2.934	0.003	12.482	62.748	
X340	-0.5529	2.821	-0.196	0.845	-6.084	4.978	
X341	-1.7417	2.076	-0.839	0.402	-5.812	2.328	
X342	-1.9721	1.861	-1.060	0.289	-5.621	1.677	
X343	1.0076	2.366	0.426	0.670	-3.632	5.647	
X344	-3.2293	2.981	-1.083	0.279	-9.074	2.616	
X345	0.9124	1.868	0.489	0.625	-2.749	4.574	
X349	1.9571	1.895	1.033	0.302	-1.758	5.672	
X350	0.5599	0.562	0.997	0.319	-0.541	1.661	
X353	1.9898	3.302	0.603	0.547	-4.484	8.463	
X354	0.0676	0.541	0.125	0.901	-0.994	1.129	
X355	0.2823	1.237	0.228	0.820	-2.143	2.708	
X356	0.2000	2.152	0.093	0.926	-4.019	4.419	
X357	-2.7972	8.723	-0.321	0.748	-19.899	14.305	
X359	-1.2256	0.982	-1.248	0.212	-3.152	0.701	
X365	9.2111	3.704	2.487	0.013	1.949	16.473	
X366	-3.9174	6.239	-0.628	0.530	-16.149	8.314	
X367	-0.6584	3.021	-0.218	0.827	-6.581	5.264	
X369	-4.4963	6.858	-0.656	0.512	-17.941	8.949	
X370	-0.0506	4.091	-0.012	0.990	-8.072	7.970	
X372	-0.9598	7.173	-0.134	0.894	-15.023	13.103	
X373	3.6902	2.616	1.410	0.158	-1.439	8.820	
X374	3.9733	1.848	2.150	0.032	0.351	7.596	
X375	6.1861	1.449	4.269	0.000	3.345	9.027	
X376	7.3344	2.459	2.983	0.003	2.514	12.155	
X377	3.0509	2.440	1.251	0.211	-1.732	7.834	
X379	4.7332	3.435	1.378	0.168	-2.002	11.468	
X380	2.1171	2.979	0.711	0.477	-3.723	7.957	
X383	9.3202	3.674	2.537	0.011	2.118	16.523	
X384	-1.1200	7.861	-0.142	0.887	-16.533	14.293	
Omnibus: 4020.908 Durbin-Watson: 1.974							
Prob(Omnibus):							
•	Skew:				(JB):	0.00	
	Vtaala.	E 4 70	0	C		0.010147	

Warnings:

Kurtosis:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.61e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Cond. No.

54.728

In []:

from statsmodels.stats.outliers_influence import variance_inflation_factor

2.21e+17

```
In [ ]:
```

```
# Calculate the VIFs for the new model
# Create a dataframe that will contain the names of all the feature variables and their respective VIFs
vif = pd.DataFrame()
X = X_train_lm
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'],2)
vif = vif.sort_values(by='VIF', ascending = False)

x=vif
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    display(x)
```

	Features	VIF
118	X156	inf
98	X128	inf
92	X118	inf
93	X123	inf
181	X237	inf
180	X236	inf
96	X126	inf
97	X127	inf
99	X130	inf
89	X115	inf
100	X131	inf
101	X132	inf
102	X133	inf
251	X344	inf
104	X136	inf
105	X138	inf
91	X117	inf
187	X255	inf
176	X229	inf
191	X259	inf
194	X265	inf
193	X261	inf
75	X97	inf
76	X98	inf
192	X260	inf
78	X101	inf
190	X258	inf
87	X112	inf
81	X105	inf
189	X257	inf
83	X108	inf
84	X109	inf
85	X110	inf
86	X111	inf
106	X139	inf
108	X142	inf
143	X183	inf
134	X174	inf
128	X167	inf
129	X168	inf
130	X169	inf
131	X170	inf
132	X171	inf

133	X173	inf
148	X189	inf
126	X165	inf
136	X176	inf
137	X177	inf
147	X187	inf
146	X186	inf
140	X180	inf
145	X185	inf
127	X166	inf
152	X195	inf
109	X143	inf
160	X205	inf
110	X144	inf
175	X228	inf
252	X345	inf
164	X209	inf
163	X208	inf
162	X207	inf
117	X154	inf
153	X196	inf
159	X204	inf
119	X157	inf
120	X158	inf
156	X201	inf
122	X160	inf
155	X200	inf
72	X92	inf
265	X370	inf
70	X89	inf
26	X36	inf
20	X29	inf
21	X30	inf
228	X315	inf
23	X32	inf
272	X379	inf
25	X34	inf
271	X377	inf
18	X26	inf
28	X40	inf
29	X41	inf
270	X376	inf
227	X313	inf
32	X44	inf
225	X310	inf
19	X28	inf
17	X24	inf
223	X308	inf
8	X15	inf
230	X317	inf
273	X380	inf
4	X10	inf
5	X12	inf
229	X316	inf

7	X14	inf
9	X16	inf
16	X23	inf
10	X17	inf
11	X18	inf
12	X19	inf
13	X20	inf
14	X21	inf
15	X22	inf
224	X309	inf
36	X48	inf
249	X342	inf
267	X373	inf
206	X283	inf
268	X374	inf
57	X74	inf
205	X282	inf
59	X77	inf
204	X281	inf
62	X80	inf
208	X285	inf
203	X280	inf
246	X339	inf
65	X83	inf
201	X277	inf
67	X86	inf
248	X341	inf
207	X284	inf
144	X184	inf
222	X307	inf
243	X336	inf
221	X306	inf :f
220 219	X305 X304	inf :==f
240	X333	inf inf
241	X334	inf
242	X335	inf
45	X59	inf
209	X286	inf
244	X337	inf
47	X62	inf
48	X63	inf
245	X338	inf
269	X375	inf
51	X67	inf
185	X251	1153.08
138	X178	1129.27
46	X61	504.12
40	X52	466.77
182	X238	296.38
139	X179	236.07
157	X202	192.17
123	X161	108.01
79	X103	103.24
238	X329	53.44

258	X356	41.12
66	X85	39.44
33	X45	37.03
188	X256	30.22
6	X13	29.79
263	X367	26.98
141	X181	25.74
250	X343	24.35
150	X191	24.29
257	X355	21.71
113	X150	21.05
233	X321	20.36
31	X43	19.14
125	X164	16.81
43	X57	14.74
69	X88	12.82
184	X246	12.32
183	X241	12.08
55	X71	11.83
179	X234	11.13
247	X340	10.46
154	X197	10.04
74	X96	9.35
253	X349	9.27
226	X312	8.89
95	X125	8.60
172	X223	8.16
68	X87	8.08
135	X175	7.66
236	X325	7.21
142	X182	6.75
77	X100	6.70
173	X224	6.67
158	X203	6.07
121	X159	5.81
259	X357	5.43
103 214	X135 X294	5.38 4.98
88	X114	4.83
112	X114 X148	4.75
237	X327	4.59
171	X221	4.58
37	X49	4.56
58	X75	4.42
90	X116	4.31
217	X300	4.30
53	X69	4.27
254	X350	4.25
60	X78	4.23
35	X47	4.10
195	X267	3.98
169	X219	3.97
199	X273	3.79
63	X81	3.74
124	X163	3.72

210	X287	3.71
54	X70	3.71
168	X218	3.69
166	X211	3.65
200	X274	3.63
52	X68	3.44
38	X50	3.40
22	X31	3.36
115	X152	3.32
170	X220	3.26
234	X322	3.04
2	Х3	2.86
256	X354	2.85
262	X366	2.78
39	X51	2.68
1	X0	2.63
49	X64	2.60
41	X55	2.59
165	X210	2.40
44	X58	2.36
261	X365	2.35
34	X46	2.34
82	X106	2.27
42	X56	2.10
231	X318	2.00
64	X82	1.99
186	X252	1.83
260	X359	1.79
116	X153	1.78
275	X384	1.77
111	X145	1.77
174	X225	1.75
167	X212	1.54
198	X271	1.51
218	X301	1.50
235	X323	1.49
71	X91	1.49
266	X372	1.47
161	X206	1.45
61	X79	1.43
178	X231	1.40
255	X353	1.40
196	X269	1.39
114	X151	1.38
107	X141	1.35
274	X383	1.35
264	X369	1.34
56	X73	1.33
73	X95	1.32
151	X192	1.29
177	X230	1.29
202	X278	1.27
94	X124	1.26
50	X65	1.23
27	X38	1.22

```
213
         X292
                   1.18
24
          X33
                   1.14
215
         X295
                   1.14
197
         X270
                   1.13
212
         X291
                   1.12
232
         X319
                   1.12
80
         X104
                   1.10
211
         X288
                   1.09
30
          X42
                   1.09
216
         X298
                   1.08
149
         X190
                   1.05
239
         X332
                   1.04
  3
           X4
                   1.03
  0
                   0.00
         const
```

In []:

```
#Eliminating the columns that have high P value

P_cols = ['X3','X4','X10','X12','X13','X14','X15','X16','X17','X18','X19','X20','X22','X23','X24','X26','X28','X29','X30','X31','X32','X33','X34','X36','X40','X41',
'X42','X43','X44','X46','X48','X49','X50','X51','X52','X55','X56','X57','X59','X61','X62','X63','X64','X65','X67','X68','X69','X70','X71','X73','X74',
'X77','X78','X80','X81','X82','X83','X85','X86','X87','X88','X89','X91','X92','X96','X97','X98','X100','X101','X1
03','X105','X106','X108','X109',
'X110','X112','X114','X116','X124','X125','X126','X127','X128','X131','X132','X135','X136','X138','X139','X141','
X145','X148','X150','X151',
'X153','X154','X159','X160','X161','X164','X165','X167','X168','X170','X171','X173','X175','X176','X177','X181','
X182','X183','X184','X185','X187',
'X190','X191','X192','X290','X200','X202','X203','X205','X208','X211','X212','X218','X219','X220','X221','X223','
X224','X225','X228','X229','X230',
'X231','X234','X237','X238','X241','X246','X252','X255','X256','X257','X258','X259','X260','X261','X265','X267','
X269','X270','X271','X273','X281','X286','X287','X288','X291','X292','X294','X295','X298','X300','X305','X306','
'X317','X318','X319','X321','X322','X323','X325','X327','X329','X332','X333','X336','X340','X341','X342','X343','
X344','X345','X349','X350','X353','
'X354','X355','X356','X357','X359','X366','X367','X369','X370','X372','X373','X377','X379','X380','X384']

X_vif_1 = X.drop(P_cols,axis=1)
```

In []:

```
# Running the linear model
lm = sm.OLS(y_train, X_vif_1).fit()
```

In []:

```
#Let's see the summary of our linear model lm.summary()
```

Out[]:

X0

X21

0.0532

2.7268

0.013

3.014

OLS Regression Results

```
Dep. Variable:
                                          R-squared:
                                                           0.576
                                 У
          Model:
                              OLS
                                      Adj. R-squared:
                                                           0.570
         Method:
                     Least Squares
                                           F-statistic:
                                                           99.05
           Date: Thu, 14 Oct 2021 Prob (F-statistic):
                                                            0.00
           Time:
                          20:46:47
                                      Log-Likelihood:
                                                          -14855.
No. Observations:
                              4209
                                                 AIC: 2.983e+04
    Df Residuals:
                              4151
                                                 BIC: 3.019e+04
        Df Model:
                                57
Covariance Type:
                         nonrobust
           coef std err
                               t P>|t|
                                          [0.025
                                                  0.975]
      44.5690
                 4.004
                         11.132 0.000
                                         36.720
                                                  52.418
const
```

3.946 0.000

0.905 0.366

0.027

-3.183

0.080

8.637

X38	-1.9466	0.736	-2.644	0.008	-3.390	-0.503
X45	-5.1457	1.333	-3.860	0.000	-7.759	-2.532
X47	7.7150	1.199	6.433	0.000	5.364	10.066
X58	0.7471	0.319	2.345	0.019	0.123	1.372
X75	-1.6153	1.131	-1.428	0.153	-3.833	0.603
X79	-3.4706	0.929	-3.738	0.000	-5.291	-1.650
X95	24.6843	8.328	2.964	0.003	8.357	41.011
X104	7.9392	2.991	2.655	0.008	2.076	13.802
X111	-3.6825	1.987	-1.853	0.064	-7.578	0.213
X115	11.3772	0.996	11.420	0.000	9.424	13.330
X117	8.9159	1.125	7.924	0.000	6.710	11.122
X118	15.5799	0.975	15.979	0.000	13.668	17.491
X123	5.1683	2.898	1.783	0.075	-0.514	10.850
X130	17.5835	1.875	9.377	0.000	13.907	21.260
X133	5.3005	1.391	3.811	0.000	2.574	8.027
X142	22.0529	2.018	10.928	0.000	18.097	26.009
X143	-2.0283	1.027	-1.975	0.048	-4.042	-0.015
X144	-0.0111	0.491	-0.023	0.982	-0.973	0.951
X152	1.2767	0.800	1.596	0.110	-0.291	2.845
X156	22.4967	2.007	11.208	0.000	18.562	26.432
X157	22.0723	2.012	10.972	0.000	18.128	26.016
X158	22.5161	2.004	11.235	0.000	18.587	26.445
X163	-1.1973	0.352	-3.399	0.001	-1.888	-0.507
X166	1.1771	2.334	0.504	0.614	-3.399	5.753
X169	2.4865	2.760	0.901	0.368	-2.925	7.898
X174	9.7657	1.402	6.966	0.000	7.017	12.514
X178	-21.4798	8.415	-2.553	0.011	-37.977	-4.982
X179	-19.8843	8.539	-2.329	0.020	-36.625	-3.143
X180	5.3489	1.273	4.202	0.000	2.853	7.844
X186	-0.1984	0.894	-0.222	0.824	-1.950	1.554
X189	18.2896	1.390	13.157	0.000	15.564	
X195	0.3131	1.428	0.219	0.827	-2.487	3.114
X196	1.9891	1.540	1.291	0.197	-1.031	5.009
X201	-1.5238	0.611	-2.492	0.013	-2.723	-0.325
X204	32.5782 -2.5915	8.765	3.717	0.000	15.394	49.763
X206 X207	10.4622	1.022 8.548	-2.537 1.224	0.011		-0.589 27.220
X207	-0.5362	0.845	-0.634	0.526	-2.193	1.121
X210	-29.6489	11.847	-2.503	0.012	-52.876	-6.422
X236	22.2987	8.934	2.496	0.012	4.783	39.814
X251	-21.6846	8.408	-2.579	0.010	-38.169	-5.200
X283	-0.2542	0.924	-0.275	0.783	-2.066	1.558
X284	0.3148	1.125	0.280	0.780	-1.891	2.521
X285	-0.0073	0.861	-0.008	0.993	-1.694	1.680
X301	2.0772	0.705	2.948	0.003	0.696	3.459
X304	1.1106	0.920	1.207	0.228	-0.694	2.915
X313	-16.1439	0.425	-37.982	0.000	-16.977	-15.311
X315	3.4815	0.909	3.830	0.000	1.699	5.264
X316	-17.0788	0.409	-41.791	0.000	-17.880	-16.278
X334	11.2691	1.233	9.137	0.000	8.851	13.687
X335	11.3338	2.126	5.330	0.000	7.165	15.503
X337	12.2004	1.207	10.111	0.000	9.835	14.566
X338	-1.8551	1.616	-1.148	0.251	-5.024	1.314
X339	37.4353	11.826	3.166	0.002	14.250	60.621
X365	8.2682	2.453	3.370	0.001	3.459	13.078

```
X374
      1.804
X375
      0.0092
             0.781
                   0.012 0.991
                               -1.522
                                       1.541
X376
      0.8211
             0.840
                    0.977 0.329 -0.827
                                       2.469
X383 13.9656
             3.222 4.334 0.000 7.649 20.282
    Omnibus: 4043.688 Durbin-Watson:
                                       1.966
Prob(Omnibus):
               0.000 Jarque-Bera (JB): 486008.199
       Skew:
               4.268
                          Prob(JB):
    Kurtosis:
              54.946
                          Cond. No. 1.10e+16
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.76e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

In []:

```
# Calculate the VIFs for the new model
# Create a dataframe that will contain the names of all the feature variables and their respective VIFs
vif = pd.DataFrame()
X = X_vif_1
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'],2)
vif = vif.sort_values(by='VIF', ascending = False)

x=vif
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    display(x)
```

	Features	VIF
28	X174	inf
18	X142	inf
22	X156	inf
14	X118	inf
13	X117	inf
12	X115	inf
23	X157	inf
24	X158	inf
16	X130	inf
33	X189	inf
52	X334	inf
53	X335	inf
54	X337	inf
29	X178	1064.80
43	X251	1029.05
30	X179	203.06
4	X45	20.48
31	X180	13.14
17	X133	12.83
32	X186	12.11
26	X166	10.68
59	X375	8.08
58	X374	7.52
46	X285	7.38
44	X283	6.29
11	X111	5.91
40	X209	3.97
48	X304	3.62

```
X169
27
               3.07
 45
       X284
               3.04
 7
       X75
               2.72
       X143
 19
               2.37
 49
       X313
               2.32
 60
       X376
               2.32
       X236
 42
               2.31
20
       X144
               2.28
        X0
               2.09
       X210
 41
               2.03
56
       X339
               2.02
25
       X163
               1.60
51
       X316
               1.60
       X58
 6
               1.51
35
       X196
               1.46
 2
        X21
               1.44
       X195
34
               1.43
 50
       X315
               1.41
       X301
               1.35
 47
       X123
15
               1.33
 8
       X79
               1.29
21
       X152
               1.22
       X206
38
               1.20
 37
       X204
 5
       X47
               1.11
       X338
55
               1.09
 3
        X38
               1.06
       X207
39
               1.06
       X383
61
               1.05
 57
       X365
               1.04
       X104
               1.03
 10
       X95
               1.00
       const
               0.00
In [ ]:
#Eliminating the columns that have vif as'inf'
P_cols = ['X174','X142','X156','X118','X117','X115','X157','X158','X130','X189','X334','X335','X337']
X vif 2 = X vif 1.drop(P cols,axis=1)
In [ ]:
# Calculate the VIFs for the new model
# Create a dataframe that will contain the names of all the feature variables and their respective VIFs
vif = pd.DataFrame()
X = X \text{ vif } 2
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'],2)
vif = vif.sort_values(by='VIF', ascending = False)
x=vif
with pd.option context('display.max rows', None, 'display.max columns', None):
    display(x)
```

36

X201

3.33

	Features	VIF
0	const	4521.29
20	X178	1064.01
33	X251	1028.53
21	X179	200.76
4	X45	17.35
13	X133	10.91
22	X180	10.26
23	X186	9.56
36	X285	6.06
34	X283	4.95
11	X111	3.98
30	X209	3.91
38	X304	3.45
46	X375	3.29
45	X374	3.26
26	X201	3.21
7	X75	2.64
35	X284	2.61
14	X143	2.34
47	X376	2.25
15	X144	2.22
39	X313	2.16
32	X236	2.14
31	X210	2.03
43	X339	2.02
1	X0	1.92
18	X166	1.77
17	X163	1.58
41	X316	1.51
6	X58	1.47
25	X196	1.36
24	X195	1.31
12	X123	1.29
19	X169	1.27
2	X21	1.27
40	X315	1.26
37	X301	1.26
8	X79	1.21
28	X206	1.21
16	X152	1.16
27	X204	1.10
5	X47	1.10
42	X338	1.10
29	X207	1.06
29	X38	1.05
3 48	X383	1.05
48	X365	1.04
	X305 X104	
10		1.03
9	X95	1.00

In []:

```
#Eliminating the columns that have vif >11

P_cols = ['X178','X251','X179','X45']
X_vif_3 = X_vif_2.drop(P_cols,axis=1)
```

In []:

```
# Calculate the VIFs for the new model
# Create a dataframe that will contain the names of all the feature variables and their respective VIFs
vif = pd.DataFrame()
X = X_vif_3
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'],2)
vif = vif.sort_values(by='VIF', ascending = False)

x=vif
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    display(x)
```

	Features	VIF
0	const	154.96
20	X186	8.43
32	X285	5.76
30	X283	4.76
27	X209	3.87
10	X111	3.46
42	X375	3.24
41	X374	3.23
23	X201	3.13
6	X75	2.55
34	X304	2.42
31	X284	2.31
13	X143	2.30
12	X133	2.23
29	X236	2.14
14	X144	2.13
43	X376	2.06
39	X339	2.02
35	X313	2.00
1	X0	1.91
19	X180	1.76
17	X166	1.67
16	X163	1.46
37	X316	1.44
5	X58	1.40
22	X196	1.34
21	X195	1.31
18	X169	1.26
36	X315	1.26
33	X301	1.25
2	X21	1.20
25	X206	1.20
7	X79	1.19
15	X152	1.13
24	X204	1.11
4	X47	1.07
11	X123	1.07
38	X338	1.07
26	X207	1.06
3	X38	1.04
44	X383	1.04
40	X365	1.03
9	X104	1.03
8	X95	1.00
28	X210	1.00

In []:

```
# Running the linear model
lm = sm.OLS(y_train, X_vif_3).fit()
```

In []

```
#Let's see the summary of our linear model lm.summary()
```

0.533	R-squared:	У	Dep. Variable:
0.528	Adj. R-squared:	OLS	Model:
108.0	F-statistic:	Least Squares	Method:
0.00	Prob (F-statistic):	Thu, 14 Oct 2021	Date:
-15060.	Log-Likelihood:	20:46:51	Time:
3.021e+04	AIC:	4209	No. Observations:
3.050e+04	BIC:	4164	Df Residuals:
		44	Df Model:

Covariance Type: nonrobust

Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	115.2134	1.671	68.932	0.000	111.937	118.490
X0	0.0878	0.013	6.504	0.000	0.061	0.114
X21	2.5575	2.885	0.886	0.375	-3.099	8.214
X38	-2.1624	0.764	-2.832	0.005	-3.660	-0.665
X47	8.3309	1.237	6.737	0.000	5.906	10.755
X58	0.9505	0.321	2.960	0.003	0.321	1.580
X75	-1.6544	1.150	-1.439	0.150	-3.909	0.600
X79	-5.4079	0.937	-5.774	0.000	-7.244	-3.572
X95	25.6333	8.724	2.938	0.003	8.529	42.737
X104	7.5138	3.130	2.400	0.016	1.376	13.651
X111	-7.3453	1.595	-4.605	0.000	-10.473	-4.218
X123	1.2977	2.722	0.477	0.634	-4.038	6.633
X133	0.6710	0.607	1.105	0.269	-0.520	1.862
X143	-2.3906	1.061	-2.253	0.024	-4.471	-0.310
X144	0.2509	0.497	0.504	0.614	-0.724	1.226
X152	-0.6056	0.809	-0.749	0.454	-2.191	0.980
X163	-0.8259	0.353	-2.337	0.019	-1.519	-0.133
X166	-30.5233	0.967	-31.555	0.000	-32.420	-28.627
X169	-29.4346	1.853	-15.889	0.000	-33.066	-25.803
X180	0.1937	0.488	0.397	0.691	-0.763	1.150
X186	-0.9382	0.782	-1.200	0.230	-2.471	0.595
X195	0.5972	1.430	0.418	0.676	-2.206	3.401
X196	1.5132	1.545	0.980	0.327	-1.515	4.542
X201	-1.8223	0.622	-2.930	0.003	-3.042	-0.603
X204	33.4189	9.166	3.646	0.000	15.448	51.390
X206	-2.2919	1.069	-2.143	0.032	-4.388	-0.196
X207	10.3330	8.955	1.154	0.249	-7.224	27.890
X209	-0.6494	0.875	-0.742	0.458	-2.364	1.066
X210	-10.5017	8.731	-1.203	0.229	-27.620	6.617
X236	50.8905	9.021	5.641	0.000	33.205	68.576
X283	0.5782	0.843	0.686	0.493	-1.074	2.230
X284	0.3718	1.028	0.362	0.718	-1.644	2.388
X285	-0.1717	0.797	-0.215	0.830	-1.735	1.392
X301	-0.1118	0.710	-0.157	0.875	-1.505	1.281
	-0.7509					
X313	-16.1137	0.413	-38.970	0.000	-16.924	-15.303
X315	4.8492	0.902	5.376	0.000	3.081	6.618
X316	-16.2236	0.406	-39.978	0.000	-17.019	-15.428
X338	-2.0890	1.683	-1.242	0.214	-5.388	1.210
	34.2962					
X365	6.8608	2.554	2.686	0.007	1.853	11.869
X374	0.9736	0.575	1.692	0.091	-0.155	2.102
X375	1.2564	0.518	2.424	0.015	0.240	2.273

```
X376
        1.8805
                 0.829
                          2.268 0.023
                                         0.255
                                                  3 506
X383
       13 3895
                 3 357
                          3 988 0 000
                                         6 808
                                                 19 971
     Omnibus: 3563.208
                          Durbin-Watson:
                                                 1.985
Prob(Omnibus):
                   0.000 Jarque-Bera (JB): 316993.266
                   3.530
                                 Prob(JB):
        Skew:
                  44.925
      Kurtosis:
                                 Cond. No.
                                              3.48e+03
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.48e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In []:

```
#Dropping all the columns which we dropped in train data from test data as well
#Eliminating the columns that have high P value

P_cols = ['X3','X4','X10','X12','X13','X14','X15','X16','X17','X18','X19','X20','X22','X23','X24','X26','X28','X29','X30','X31','X32','X33','X34','X36','X40','X41',
'X42','X43','X44','X46','X48','X49','X59','X51','X52','X55','X56','X57','X59','X61','X62','X63','X64','X65','X67','X68','X69','X70','X71','X73','X74',
'X77','X78','X80','X81','X82','X83','X85','X86','X87','X88','X89','X91','X92','X96','X97','X98','X100','X101','X1
03','X105','X106','X108','X109',
'X110','X112','X114','X116','X124','X125','X126','X127','X128','X131','X132','X135','X136','X138','X139','X141','
X145','X148','X150','X151',
'X153','X154','X159','X160','X161','X164','X165','X167','X168','X170','X171','X173','X175','X176','X177','X181','X182','X183','X184','X185','X189','X200','X202','X203','X208','X211','X212','X218','X219','X220','X221','X223','X224','X225','X228','X229','X230','X206','X261','X266','X257','X258','X259','X260','X261','X265','X267','X269','X270','X271','X273','X274','X277','X278','X288','X291','X292','X294','X295','X298','X300','X306','X306','X308','X308','X318','X318','X318','X318','X319','X315','X322','X323','X325','X288','X291','X292','X239','X298','X300','X306','X306','X306','X308','X308','X318','X318','X319','X315','X356','X357','X359','X366','X367','X369','X370','X372','X373','X377','X379','X380','X380','X384']

X_test_1 = X_test.drop(P_cols,axis=1)
```

In []:

In []:

```
X_test_2.columns
Out[]:
Index(['X0' - 'X1' - 'X2' - 'X5' - 'X6' - 'X8' - 'X21' - 'X27' - 'X38' - 'X47' - 'X58' -
```

In []:

```
#Displaying the columns in the final train data.
X_vif_3.columns
```

Out[]:

```
In [ ]:
P_cols = ['X1','X2','X5','X6', 'X8','X27','X361','X351', 'X275']
X_test_3 = X_test_2.drop(P_cols,axis=1)
In [ ]:
#Displaying the columns in the test data.
X_test_3.columns
Out[]:
dtype='object')
In [ ]:
#Checking the datatype of test data
X_test_3.dtypes
Out[]:
Χ0
        object
X21
        int64
X38
         int64
X47
        int64
X58
        int64
X75
        int64
X79
         int64
X95
        int64
X104
        int64
X111
        int64
X123
         int64
X133
        int64
X143
        int64
X144
        int64
X152
         int64
X163
        int64
X166
        int64
X169
        int64
X180
        int64
X186
        int64
X195
        int64
X196
        int64
X201
         int64
X204
        int64
X206
        int64
X207
        int64
X209
        int64
X210
        int64
X236
        int64
X283
        int64
X284
        int64
X285
        int64
X301
        int64
X304
        int64
X313
        int64
X315
        int64
X316
        int64
X338
        int64
X339
        int64
X365
        int64
X374
        int64
X375
         int64
X376
        int64
X383
        int64
dtype: object
In [ ]:
#Converting X0 using Label Encoding
X_test_3.X0=le.fit_transform(X_test_3.X0)
```

```
In [ ]:
print(X_vif_3.shape)
print(X_test_3.shape)
(4209, 45)
(4209, 44)
In [ ]:
y train Y = lm.predict(X vif 3)
y_train_Y
Out[]:
        130.810000
1
         94.388543
         75.217924
         77.950786
         77.950786
        104.175752
4204
4205
        109.310615
        107.249076
4206
4207
         89.326500
4208
         95.911372
Length: 4209, dtype: float64
In [ ]:
# Plot the histogram of the error terms
fig = plt.figure()
sns.distplot((y_train-y_train_Y), bins=20)
plt.show()
  0.08
  0.07
  0.06
  0.05
  0.04
  0.03
  0.02
  0.00
     -<u>5</u>0
                       50
                               100
                                        150
In [ ]:
#Dropping the constant from the train data
X_transformed = X_vif_3.drop('const',axis=1)
5. Predict your test df values using XGBoost.
In [ ]:
#Importing necessary libary for XGBoost
import xgboost as xgb
In [ ]:
#fitting the model
xg = xgb.XGBRegressor()
xg.fit(X_transformed,y_train)
[21:24:30] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in
favor of reg:squarederror.
Out[ ]:
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
             colsample bynode=1, colsample bytree=1, gamma=0,
             importance_type='gain', learning_rate=0.1, max_delta_step=0,
             max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
             n_jobs=1, nthread=None, objective='reg:linear', random_state=0,
             reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
             silent=None, subsample=1, verbosity=1)
```

```
In [ ]:
score = xg.score(X_transformed,y_train)
score
Out[]:
0.5768101508292847
In [ ]:
y_pred= xg.predict(X_transformed)
In [ ]:
from sklearn.metrics import mean absolute error, mean squared error
In [ ]:
mse = mean_squared_error(y_true=y_train,y_pred=y pred)
Out[]:
68.01867548820672
In [ ]:
#Root mean squared error
rmse = np.sqrt(mse)
rmse
Out[]:
8.247343541299024
In [ ]:
#Now tying the model without dimensionality reduction
xg 1 = xgb.XGBRegressor()
xg_1.fit(X_train_new,y_train)
[21:32:41] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in
favor of reg:squarederror.
Out[]:
XGBRegressor(base_score=0.5, booster='gbtree', colsample bylevel=1,
             colsample_bynode=1, colsample_bytree=1, gamma=0,
             importance_type='gain', learning_rate=0.1, max_delta_step=0,
             max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
             n_jobs=1, nthread=None, objective='reg:linear', random_state=0,
             reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
             silent=None, subsample=1, verbosity=1)
In [ ]:
#Finding the score
score_1 = xg_1.score(X_train_new,y_train)
score_1
Out[]:
0.6079199226194931
In [ ]:
#Displaying the shape of the data
print(X_train_new.shape)
print(cars_test.shape)
(4209, 364)
(4209, 364)
In [ ]:
#Performing label encoding on the object columns
Object cols = cars test.select dtypes(include=np.object )
Object_cols = Object_cols.apply(le.fit_transform)
```

```
In [ ]:
#Dropping the object columns from test data and concatenating the transformed columns
X test 4 = cars_test.drop(Object_cols.columns,axis=1)
X_test_5 = pd.concat([Object_cols,X_test_4],axis=1)

In [ ]:
y_pred_1 = xg_1.predict(X_test_5)

In [ ]:
mse_1 = mean_squared_error(y_true=y_train,y_pred=y_pred_1)
mse_1
Out[ ]:
249.55739818916985

In [ ]:
#Root mean squared error
rmse_1 = np.sqrt(mse_1)
```

rmse_1
Out[]:

15.797385802377867

Conclusion: The model after feature selection and dimensionality reduction is a better model.