Quantoren für All- und Existenzaussagen

 $\slash\hspace{-0.6em}\not\hspace{-0.8em}$ Allaussage: $\forall n.A(n)$

Diese ist genau dann wahr, wenn A(n) für alle Werte $n \in \mathbb{N}$ wahr ist.

 \nearrow Existenzaussage: $\exists n.A(n)$

Diese ist genau dann wahr, wenn A(n) für mindestens einen Wert $n \in \mathbb{N}$ wahr ist.

Lemma 2.2

$$\nearrow \neg (\forall x. A(x)) \equiv \exists x. \neg A(x)$$

$$\nearrow \neg (\exists x. A(x)) \equiv \forall x. \neg A(x)$$

Prädikatenlogik über natürliche Zahlen

Prädikat	Definition	Bedeutung
n m	$\exists k.n \cdot k = m$	n teilt m
ggT(n,m,x)	$\begin{vmatrix} x n \land x m \land \forall y.(y n \land y m) \Rightarrow y \le x \end{vmatrix}$	Ist x der größte gemeinsame Teiler von n und m ?