密码学与信息安全第四次作业

郭嘉 17345019 数学与应用数学

2020年5月23日

1. (第四章第1题)

对 $x^4 - 1$ 分解得 $x^4 - 1 = (x+1)^4$

故下面容易对三种不同情况直接写出结果

(1) 当生成多项式 g(x) = x + 1

故生成矩阵

$$G = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

进而得到 $C = \{xG | x \in \Pi_2^3\} = \{(0000), (1100), (0110), (0011), (1001), (1010), (0101), (1111)\}$ 也可以得到校验多项式 $h(x) = (x^4 - 1)/g(x) = x^3 + x^2 + x + 1$ 故校验矩阵为

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

(2) 当生成多项式 $g(x) = (x+1)^2 = x^2 + 1$

故生成矩阵

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

进而得到 $C=\{xG|x\in\Pi_2^2\}=\{(0000),(1010),(0101),(1111)\}$ 也可以得到校验多项式 $h(x)=(x^4-1)/g(x)=x^2+1$ 故校验矩阵为

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

(3) 当生成多项式 $g(x) = (x+1)^3 = x^3 + x^2 + x + 1$ 故生成矩阵

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

进而得到 $C = \{xG | x \in \Pi_2^1\} = \{(0000), (1111)\}$ 也可以得到校验多项式 $h(x) = (x^4 - 1)/g(x) = x + 1$ 故校验矩阵为

$$H = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

2. (第四章第 2 题)

必要性: 如果 $C_2 \subset C_1$, 那么由于 $g_2(x) \in C_2$, 那么 $g_2(x) \in C_1$, 但由于 $g_1(x)$ 是 C_1 的生成多项式, 故其整除 C_1 中所有的码字, 特别的, 有 $g_1(x)|g_2(x)$

充分性: 如果 $g_1(x)|g_2(x)$,那么 $\forall c(x) \in C_2$ 有 $g_2(x)|c(x)$,又由于 $g_1(x)|g_2(x)$ 因此 $g_1(x)|c(x)$,这说明 $c(x) \in C_1$

得证

3. (第四章第6题)

由第 2 题结论 $C'\subset C$, 因此 C' 的最小距离 \geq C 的最小距离, 即 C' 的最小距离 \geq d

下面只需要说明 C'的最小距离不可能为 d,由于 d 为奇数,我们只需要说明 C'的最小距离不可能为奇数。又由于 C'为线性码,故其最小距离等于最小重量,因此我们只需要说明 C'码字的最小重量不可能为奇数

我们注意到 $\forall c(x) \in C'$ 都有 g(x)(x-1)|c(x)。特别地,有 (x-1)|c(x) 即 c(1)=0 即 c(x) 的系数和为 0,这就意味着 c(x) 的重量为偶数,特别地 C' 码字的最小重量为偶数,再结合上面的讨论就完成了证明。

得证

4. (第四章第7题)

非系统: $a(x) = x + x^3$

$$c(x) = a(x)g(x) = x + x^2 + x^3 + x^6$$
 即 (0111001)
系统: $\overline{a(x)} = x^6 + x^4 = (x^3 + 1)(x^3 + x + 1) + (x + 1)$

即
$$r(x) = x + 1$$
 , $c(x) = \overline{a(x)} - r(x) = x^6 + x^4 + x + 1$ 即 (1100101)