CPSC 540: Machine Learning Expectation Maximization

Mark Schmidt

University of British Columbia

Winter 2020

Last Time: Learning with MAR Values

• We discussed learning with "missing at random" values in data:

$$X = \begin{bmatrix} 1.33 & 0.45 & -0.05 & -1.08 & ?\\ 1.49 & 2.36 & -1.29 & -0.80 & ?\\ -0.35 & -1.38 & -2.89 & -0.10 & ?\\ 0.10 & -1.29 & 0.64 & -0.46 & ?\\ 0.79 & 0.25 & -0.47 & -0.18 & ?\\ 2.93 & -1.56 & -1.11 & -0.81 & ?\\ -1.15 & 0.22 & -0.11 & -0.25 & ? \end{bmatrix}$$

- Imputation approach:
 - Guess the most likely value of each ?, fit model with these values (and repeat).
- K-means clustering algorithm is a special case:
 - Gaussian mixture $(\pi_c = 1/k, \Sigma_c = I)$ and ? being the cluster $(? \in \{1, 2, \dots, k\})$.

Parameters, Hyper-Parameters, and Nuisance Parameters

• Are the ? values "parameters" or "hyper-parameters"?

Parameters:

• Variables in our model that we optimize based on the training set.

Hyper-Parameters

- Variables that control model complexity, typically set using validation set.
- Often become degenerate if we set these based on training data.
- We sometimes add optimization parameters in here like step-size.

Nuisance Parameters

- Not part of the model and not really controlling complexity.
- An alternative to optimizing ("imputation") is to consider all values.
 - Based on marginalization rule for probabilities.
 - Consider all possible imputations, and weight them by their probability.

Expectation Maximization Notation

- Expectation maximization (EM) is an optimization algorithm for MAR values:
 - Applies to problems that are easy to solve with "complete" data (i.e., you knew ?).
 - Allows probabilistic or "soft" assignments to MAR (or other nuisance) variables.
 - Imputation approach is sometimes called "hard" EM.
- EM is among the most cited paper in statistics.
- EM notation: we use O as observed data and H as hidden (?) data.
 - $\bullet \ \, {\sf Semi-supervised \ learning: \ observe} \ \, O = \{X,y,\bar{X}\} \ \, {\sf but \ don't \ observe} \ \, H = \{\bar{y}\}.$
 - Mixture models: observe data $O=\{X\}$ but don't observe clusters $H=\{z^i\}_{i=1}^n$.
- We use Θ as parameters we want to optimize.
 - In Gaussian mixtures this will be the π_c , μ_c , and Σ_c variables.

The Two Likelihoods: "Complete" and "Marginal"

- "Complete" likelihood: likelihood with known hidden values, $p(O, H \mid \Theta)$.
 - We assume that this is "nice". Maybe it has a closed-form MLE or is convex.
- "Marginal" likelihood: likelihood with unknown hidden values, $p(O \mid \Theta)$.
 - This is our usual likelihood, the thing we actually want to optimize.
- The "complete" and "marginal" likelihoods are related by the marginalization rule:

$$\underbrace{p(O\mid\Theta)}_{\text{"marginal"}} = \sum_{H_1} \sum_{H_2} \cdots \sum_{H_m} p(O,H\mid\Theta) = \sum_{H} \underbrace{p(O,H\mid\Theta)}_{\text{"complete likelihood"}}.$$

where we sum over all possible $H \equiv \{H_1, H_2, \dots, H_m\}$.

- For mixture models, this sums over all possible clusterings (k^n values).
- Replace the sums by integrals for continuous hidden values.

Expectation Maximization Bound

• The negative log-likelihood (that we want to optimize) thus has the form

$$-\log p(O \mid \Theta) = -\log \left(\sum_{H} p(O, H \mid \Theta) \right),$$

- which has a sum inside the log.
 - This does not preserve convexity: minimizing it is usually NP-hard.
- Both EM and imputation are based on the approximation:

$$-\log\left(\sum_{H} p(O, H \mid \Theta)\right) \approx -\sum_{H} \alpha_{H} \log p(O, H \mid \Theta)$$

where α_H is some probability for the assignment H to the hidden variables.

- An expectation over "complete" log-likelihood.
- This is useful when the approximation is easier to minimize.

Expectation Maximization Bound

• Each iteration of EM and imputation optimize the approximation:

$$\Theta^{t+1} \in \operatorname*{argmin} - \sum_{H} \alpha_{H}^{t} \log p(O, H \mid \Theta).$$

where the probabilities α_H^t are updated after each iteration t.

- Imputation sets $\alpha_H^t = 1$ for the most likely H given Θ^t (all other $\alpha_H^t = 0$).
 - It assumes that the imputations are correct, then optimizes with the guess
- In EM we set $\alpha_H^t = p(H \mid O, \Theta^t)$, weighting H by probability given Θ^t .
 - It weighs different imputations by their probability, then optimizes.

Expectation Maximization as Bound Optimization

• We'll show that the EM approximation minimizes an upper bound,

$$-\underbrace{\log p(O\mid\Theta)}_{\text{what we want}} \leq -\underbrace{\sum_{H} p(H\mid O,\Theta^t) \log p(O,H\mid\Theta)}_{Q(\Theta\mid\Theta^t): \text{ what we optimize}} + \text{const.},$$

- Geometry of expectation maximization as "bound optimization":
 - At each iteration t we optimize a bound on the function.

Expectation Maximization (EM)

- So EM starts with Θ^0 and sets Θ^{t+1} to maximize $Q(\Theta \mid \Theta^t)$.
- This is typically written as two steps:
 - **①** E-step: Define expectation of complete log-likelihood given last parameters Θ^t ,

$$\begin{split} Q(\Theta \mid \Theta^t) &= \sum_{H} \underbrace{p(H \mid O, \Theta^t)}_{\text{fixed weights } \alpha_H^t} \underbrace{\log p(O, H \mid \Theta)}_{\text{nice term}} \\ &= \mathbb{E}_{H \mid O, \Theta^t} [\log p(O, H \mid \Theta)], \end{split}$$

which is a weighted version of the "nice" $\log p(O, H)$ values.

2 M-step: Maximize this expectation to generate new parameters Θ^{t+1} ,

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} Q(\Theta \mid \Theta^t).$$

Expectation Maximization for Mixture Models

• In the case of a mixture model with extra "cluster" variables z^i EM uses

$$\begin{split} Q(\Theta \mid \Theta^t) &= \mathbb{E}_{z \mid X, \Theta}[\log p(X, z \mid \Theta)] \\ &= \sum_{z^1 = 1}^k \sum_{z^2 = 1}^k \cdots \sum_{z^n = 1}^k \underbrace{p(z \mid X, \Theta^t)}_{\alpha_z} \underbrace{\log p(X, z \mid \Theta)}_{\text{"nice"}} \\ &= \sum_{z^1 = 1}^k \sum_{z^2 = 1}^k \cdots \sum_{z^n = 1}^k \left(\prod_{i = 1}^n p(z^i \mid x^i, \Theta^t)\right) \left(\sum_{i = 1}^n \log p(x^i, z^i \mid \Theta)\right) \\ &= \text{(see EM notes, tedious use of distributive law and independences)} \\ &= \sum_{i = 1}^n \sum_{z^i = 1}^k p(z^i \mid x^i, \Theta^t) \log p(x^i, z^i \mid \Theta). \end{split}$$

- Sum over k^n clusterings turns into sum over nk 1-example assignments.
 - Same simplification happens for semi-supervised learning, we'll discuss why later.

Expectation Maximization for Mixture Models

ullet In the case of a mixture model with extra "cluster" variables z^i EM uses

$$Q(\Theta \mid \Theta^t) = \sum_{i=1}^n \sum_{z^i=1}^k \underbrace{p(z^i \mid x^i, \Theta^t)}_{r_c^i} \log p(x^i, z^i \mid \Theta).$$

- This is just a weighted version of the usual likelihood.
 - We just need to do MLE in weighted Gaussian, weighted Bernoulli, etc.
- We typically write update in terms of responsibilitites (easy to calculate),

$$r_c^i \triangleq p(z^i = c \mid x^i, \Theta^t) = \frac{p(x^i \mid z^i = c, \Theta^t)p(z^i = c \mid \Theta^t)}{\sum_{c'=1}^k p(x^i \mid z^i = c', \Theta^t)p(z^i = c' \mid \Theta^t)} \quad \text{(Bayes rule)},$$

the probability that cluster c generated x^i .

- In k-means $r_c^i = 1$ for most likely cluster and 0 otherwise.
- You may get underflow when computing r_c^i (see bonus for log-domain tricks).

Expectation Maximization for Mixture of Gaussians

 \bullet For mixture of Gaussians, E-step computes all r_c^i and M-step minimizes the weighted NLL:

 $\pi_c^{t+1} = \frac{1}{n} \sum_{c}^{n} r_c^i$ (proportion of examples soft-assigned to cluster c)

$$\begin{split} \mu_c^{t+1} &= \frac{1}{\sum_{i=1}^n r_c^i} \sum_{i=1}^n r_c^i x^i \qquad \text{(mean of examples soft-assigned to cluster } c\text{)} \\ \Sigma_c^{t+1} &= \frac{1}{\sum_{i=1}^n r_c^i} \sum_{i=1}^n r_c^i (x^i - \mu_c^{t+1}) (x^i - \mu_c^{t+1})^\top \qquad \text{(covariance of examples soft-assigned to } c\text{)}. \end{split}$$

- Now you would compute new responsibilities and repeat.
 - Notice that there is no step-size.
- EM for fitting mixture of Gaussians in action: https://www.youtube.com/watch?v=B36fzChfyGU

Discussing of EM for Mixtures of Gaussians

- EM and mixture models are used in a ton of applications.
 - One of the default unsupervised learning methods.
- EM usually doesn't reach global optimum.
 - Classic solution: restart the algorithm from different initializations.
 - Lots of work in CS theory on getting better initializations.
- MLE for some clusters may not exist (e.g., only responsible for one point).
 - Use MAP estimates or remove these clusters.
- EM does not fix "propagation of errors" from imputation approach.
 - But it reduces problem by incorporating a "confidence" over different imputations.
- Can you make it robust?
 - Use mixture of Laplace of student t distributions.
 - Don't have closed-form EM steps: compute responsibilities then need to optimize.

Outline

- Expectation Maximization
- Monotonicity of EM

Monotonicity of EM

• Classic result is that EM iterations are monotonic:

$$\log p(O \mid \Theta^{t+1}) \ge \log p(O \mid \Theta^t),$$

- We don't need a step-size and this is useful for debugging.
- We can show this by proving that the below picture is "correct":

- The Q function leads to a global bound on the original function.
- At Θ^t the bound matches original function.
 - \bullet So if you improve on the Q function, you improve on the original function.

Monotonicity of EM

• Let's show that the Q function gives a global upper bound on NLL:

$$\begin{split} -\log p(O\mid\Theta) &= -\log\left(\sum_{H}p(O,H\mid\Theta)\right) & \text{(marginalization rule)} \\ &= -\log\left(\sum_{H}\alpha_{H}\frac{p(O,H\mid\Theta)}{\alpha_{H}}\right) & \text{(for }\alpha_{H}\neq0) \\ &\leq -\sum_{H}\alpha_{H}\log\left(\frac{p(O,H\mid\Theta)}{\alpha_{H}}\right), \end{split}$$

because $-\log(z)$ is convex and the α_H are a convex combination.

Monotonicity of EM

Using that log turns multiplication into addition we get

$$\begin{split} -\log p(O\mid\Theta) &\leq -\sum_{H} \alpha_{H} \log \left(\frac{p(O,H\mid\Theta)}{\alpha_{H}}\right) \\ &= -\sum_{H} \alpha_{H} \log p(O,H\mid\Theta) + \sum_{H} \alpha_{H} \log \alpha_{H} \\ &\underbrace{Q(\Theta\mid\Theta^{t})}_{\text{negative entropy}} \\ &= -Q(\Theta\mid\Theta^{t}) - \text{entropy}(\alpha), \end{split}$$

so we have the first part of the picture, $-\log p(O \mid \Theta^{t+1}) \leq -Q(\Theta \mid \Theta^t) + \text{const.}$

- Entropy is a measure of how "random" the α_H values are.
- ullet Q behaves more like true objective for H that are more "predictable".
- Now we need to show that this holds with equality at Θ^t .

Bound on Progress of Expectation Maximization

• To show equality at Θ^t we use definition of conditional probability.

$$p(H \mid O, \Theta^t) = \frac{p(O, H \mid \Theta^t)}{p(O \mid \Theta^t)} \quad \text{or} \quad \log p(O \mid \Theta^t) = \log p(O, H \mid \Theta^t) - \log p(H \mid O, \Theta^t)$$

• Multiply by α_H and summing over H values,

$$\sum_{H} \alpha_{H} \log p(O \mid \Theta^{t}) = \underbrace{\sum_{H} \alpha_{H} \log p(O, H \mid \Theta^{t} - \sum_{H} \alpha_{H} \log \underbrace{p(H \mid O, \Theta^{t})}_{\alpha_{H}}.$$

• Which gives the result we want:

$$\log p(O \mid \Theta^t) \underbrace{\sum_{H} \alpha_H} = Q(\Theta^t \mid \Theta^t) + \mathrm{entropy}(\alpha),$$

Bound on Progress of Expectation Maximization

Thus we have the two bounds

$$\log p(O \mid \Theta) \ge Q(\Theta \mid \Theta^t) + \mathsf{entropy}(\alpha)$$
$$\log p(O \mid \Theta^t) = Q(\Theta^t \mid \Theta^t) + \mathsf{entropy}(\alpha).$$

• Subtracting these and using $\Theta = \Theta^{t+1}$ gives a stronger result,

$$\log p(O \mid \Theta^{t+1}) - \log p(O \mid \Theta^t) \ge Q(\Theta^{t+1} \mid \Theta^t) - Q(\Theta^t \mid \Theta^t),$$

that we improve objective by at least the decrease in Q.

- Inequality holds for any choice of Θ^{t+1} .
 - ullet Approximate M-steps are ok: we just need to decrease Q to improve likelihood.
- For imputation, we instead improve "complete" log-likelihood, $\log p(O, H \mid \Theta^t)$.
 - Which isn't quite what we want, treats hidden data as a "parameter".

Summary

- Expectation maximization:
 - Optimization with MAR variables, when knowing MAR variables make problem easy.
 - Instead of imputation, works with "soft" assignments to nuisance variables.
 - Maximizes log-likelihood, weighted by all imputations of hidden variables.
- Monotonicity of EM: EM is guaranteed not to decrease likelihood.
- Next time: generalizing histograms?

EM Alternatives

- Are there alternatives to EM?
 - Could use gradient descent, SGD, and so on.
 - Many variations on EM to speed up its convergence (for example, "adaptive" bound optimization).
 - Spectral and other recent methods have some global guarantees.

Avoiding Underflow when Computing Responsibilities

- Computing responsibility may underflow for high-dimensional x^i , due to $p(x^i \mid z^i = c, \Theta^t)$.
- Usual ML solution: do all but last step in log-domain.

$$\log r_c^i = \log p(x^i \mid z^i = c, \Theta^t) + \log p(z^i = c \mid \Theta^t) - \log \left(\sum_{c'=1}^k p(x^i \mid z^i = c', \Theta^t) p(z^i = c' \mid \Theta^t) \right).$$

• To compute last term, use "log-sum-exp" trick.

Log-Sum-Exp Trick

• To compute $\log(\sum_i \exp(v_i))$, set $\beta = \max_i \{v_i\}$ and use:

$$\log(\sum_{c} \exp(v_i)) = \log(\sum_{i} \exp(v_i - \beta + \beta))$$

$$= \log(\sum_{i} \exp(v_i - \beta) \exp(\beta))$$

$$= \log(\exp(\beta)) \sum_{i} \exp(v_i - \beta))$$

$$= \log(\exp(\beta)) + \log(\sum_{i} \exp(v_i - \beta))$$

$$= \beta + \log(\sum_{i} \exp(v_i - \beta)).$$

Avoids overflows due to computing exp operator.

Alternate View of EM as BCD

ullet We showed that given α the M-step minimizes in Θ the function

$$F(\Theta, \alpha) = -\mathbb{E}_{\alpha}[\log p(O, H \mid \Theta)] - \mathsf{entropy}(\alpha).$$

- The E-step minimizes this function in terms of α given Θ .
 - Setting $\alpha_H = p(H \mid O, \Theta)$ minimizes it.
- ullet Note that F is not the NLL, but F and the NLL have same stationary points.
- From this perspective, we can view EM as a block coordinate descent method.
- This perspective is also useful if you want to do approximate E-steps.

Alternate View of EM as KL-Proximal

• Using definitions of expectation and entropy and α in the last slide gives

$$\begin{split} F(\Theta, \alpha) &= -\sum_{H} p(H \mid O, \theta^{t}) \log p(O, H \mid \Theta) + \sum_{H} p(H \mid O, \theta^{t}) \log p(H \mid O, \theta^{t}) \\ &= -\sum_{H} p(H \mid O, \theta^{t}) \log \frac{p(O, H \mid \theta)}{p(H \mid O, \theta^{t})} \\ &= -\sum_{H} p(H \mid O, \theta^{t}) \log \frac{p(H \mid O, \theta)p(O \mid \theta)}{p(H \mid O, \theta^{t})} \\ &= -\sum_{H} \log p(O \mid \Theta) - \sum_{H} p(H \mid O, \theta^{t}) \log \frac{p(H \mid O, \theta)}{p(H \mid O, \theta^{t})} \\ &= NLL(\Theta) + \mathsf{KL}(p(H \mid O, \theta^{t}) \mid\mid p(H \mid O, \theta)). \end{split}$$

- From this perspective, we can view EM as a "proximal point" method.
 - Classical proximal point method uses $\frac{1}{2}\|\theta^t \theta\|^2$, EM uses KL divergence.
- From this view we can see that EM doesn't depend on parameterization of Θ .
- If we linearize NLL and we multiply KL term by $1/\alpha_k$ (step-size), we get the natural gradient method.