Теория и решение примеров Шага 5, Ступени 1

Содержание

1	§Oc	новные правила комбинаторики	3
	1.1	Задание 1	4
	1.2	Задание 2	5
	1.3	Задание 3	6
	1.4	Задание 4	7
	1.5	Задание 5	8
	1.6	Задание 6	9
	1.7	Задание 7	10
	1.8	Задание 8	11
	1.9	Задание 9	12
	1.10	Задание 10	13
2	§Сл	учайное событие. Вероятностное пространство. Класс	ическоє
	опр	еделение вероятности.	14
	2.1	Задание 11	14
	2.2	Задание 12	15
	2.3	Задание 13	16
	2.4	Задание 14	17
	2.5	Задание 15	18
	2.6	Задание 16	19
	2.7	Задание 17	20
	2.8	Задание 18	21
	2.9	Задание 19	22
	2.10	Задание 20	23
	2.11	Задание 21	24
	2.12	Задание 22	25
	2.13	Задание 23	26
	2.14	Залание 24	27

	3.1—Залание 31	35
	независимые события	34
3	Операции с событиями, формула сложения вероятностей,	
	2.20 Задание 30	33
	2.19 Задание 29	
	2.18 Задание 28	31
	2.17 Задание 27	30
	2.16 Задание 26	29
	2.15 Задание 25	28

1 §Основные правила комбинаторики

Теория отлично дана в книге, поэтому сюда я ее не переписывал. Условия тоже не переписываются.

1.1 Задание 1

Тут надо знать, что 000 для цифр быть не может

Способ решения является следствием из правила умножения. У нас есть 3 позиции одного типа(для цифр) и 3 позиции другого типа(для букв). Для первого типа количетво всех возможных значений равно 10, для второго - 12. В учебнике аналогичный пример, только количество позиций каждого типа равно 1. В любом случае, в таких ситуациях количество всех возможных значений - это основание, а количество позиций - это степень.

Слеовательно, всех вариантов с цифрами может быть:

 $10^3 - 1 = 999$

Для букв:

 12^{3}

Правильный ответ (по правилу умножения):

 $12^3 * 999 = 1726272$

1.2 Задание 2

Тут все просто, 4 позиции, количество всех возможных значений 10. $10^4 = 10000$

1.3 Задание 3

Тут нужно понять, сколько видов бутеров у нас получается и составить решение по правилу умножения для каждого типа.

Первый тип, когда в бутере есть все компоненты.

Хлеб: 1 позиция, 3 вида хлеба = 3 в степени 1 = 3.

Колбаса: 5.

Масло: 1.

Количество всех возможных вариантов для первого типа бутеров:

 $3 \cdot 5 \cdot 1 = 15$

Второй тип, когда в бутере нет колбасы.

Хлеб:3.

Масло: 1.

Количество всех возможных вариантов для второго типа бутеров:

 $3 \cdot 1 = 3$

Третий тип, когда в бутере нет масла.

Хлеб:3.

Колбаса: 5.

Количество всех возможных вариантов для третьего типа бутеров:

 $3 \cdot 5 = 15$

Для всех типов:

15 + 15 + 3 = 33

1.4 Задание 4

От А до К, исключая Ё и Й будет 10 букв. Цифр тоже 10. 1 позиция для букв, 3 для цифр: $10(\text{букв})\cdot 10(\text{цифр})\cdot 10(\text{цифр})\cdot 10(\text{цифр})=10000$

1.5 Задание 5

Тут подвох в том, что правильных ответа 3. Ведь один и тот же человек может решить все хадачи(правило умножения), любые 4 человека могут быть выбраны из 20(порядок не важен - правило сочетаний) и каждая задача может быть предначертана преподом конкретному студенту(порядок важен - правило размещений).

Поэтому:

по правилу умножения:

 20^{4}

по правилу сочетаний

$$C_n^k = \frac{20 \cdot 19 \cdot 18 \cdot 17}{1 \cdot 2 \cdot 3 \cdot 4} = 4845$$

по правилу размещений

$$A_n^k = 20 \cdot 19 \cdot 18 \cdot 17 = 116280$$

1.6 Задание 6

$$n=36, k=3$$

Иногда проще решать задачу наоборот. Вытащим всех тузов из колоды - количетсво всех неинтересующих нас случаев:

$$C_{32}^{3}$$

Количество вообще всех случаев:

$$C_{36}^{3}$$

Тогда проще вычесть из всех неинтересующие случаи, тогда получим только интересющие!

$$C_{36}^3 - C_{32}^3$$

1.7 Задание 7

 C_{10}^{3}

1.8 Задание 8

- а) 16!, потому что нужно составить все возможные варианты очередей (правило перестановок)
- б) A_{16}^3

1.9 Задание 9

$$n = 2^6 = 64$$

Исключаем вариант "все решки"и все варианты "1 орла": 64-1-6=57

1.10 Задание 10

 $n_1 = 20$

 $n_2 = 3$ $C_{20}^5 \cdot 3$

2 §Случайное событие. Вероятностное пространство. Классическое определение вероятности.

2.1 Задание 11

```
1)например, 6,6, орел.
```

3) дублей с орлом всего может быть 6, тогда

$$p$$
(дубль с орлом) = $\frac{6}{72}$

2.2 Задание 12

позиций = 4, алфавит = 2, тогда всего исходов: $2^4=16$ Количество исходов, когда нет орлов = 1. Есть хотя бы 1 орел:16-1=15 $p(\text{хотя бы 1 орел})=\frac{15}{16}$

2.3 Задание 13

```
позиций = 2, алфавит = 6 Всего: 6^2 = 36 интересующие нас случаи(их 5): 2-6, 3-5, 4-4, 5-3, 6-2 p(\text{сумма очков равна 8}) = \frac{5}{36}
```

2.4 Задание 14

позиций =3, алфавит =6.

Всего исходов: $6^3 = 216$

Нас интересуют случаи(их 4):

666

665

656

566

 $p(\text{сумма очков больше 16}) = \frac{4}{216}$

2.5 Задание 15

```
позиций = 5, алфавит = 6.
```

Всего: 6^5

Нас интересуют случаи(их 6):

11111

11112

11121

11211

12111

21111

p(сумма мегьше, либо равна 6) = $\frac{6}{6^5} = \frac{1}{6^4}$

2.6 Задание 16

позиций =2, алфавит =6

Всего: $6^6 = 36$

Нас интересуют:

- 6-1
- 6-2
- 6-3
- 6-4
- 6-5
- 1-6
- 2-6
- 3-6
- 4-6
- 5-6

p(не более одного раза) = $\frac{10}{36} = \frac{5}{18}$

2.7 Задание 17

позиций =4, алфавит =10

Всего: $10^4 = 10000$

3 попытки. Тут странно, так как если ты ввел какой-нибудь пин-код, а он неверный, то вводить его еще раз ты не будешь. Значит, каждая следующая попытка уменьшает количество пинковод на 1, тем самым чуть-чуть увеличивая вероятность успеха. То есть

 $p(\text{угадать пин-код с 3 попытки}) = \frac{1}{10000} + \frac{1}{9999} + \frac{1}{9998}$ Но в ответах почему-то $\frac{3}{10000}$

2.8 Задание 18

 $\frac{n}{k}$

2.9 Задание 19

к сожалению, я не знаю, как это решить. Мне кажется, что в условии чего-то не хватает.

2.10 Задание 20

6 юношей, 14 девушек.

количество всех возможных способов вырать 2 юношей из 6:

$$C_6^2 = \frac{6 \cdot 5}{1 \cdot 2} = 15$$

количество всех возможных способов вырать 1 девушку из 14:

$$C_{14}^1 = 14$$

колиество способов выбрать 3 любых студента из вcex(6+14=20):

$$C_{20}^3 = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 20 \cdot 19 \cdot 3$$

$$p = \frac{C_6^2 \cdot C_{14}^1}{C_{20}^3} = \frac{14 \cdot 15}{20 \cdot 19 \cdot 3} = \frac{7}{38}$$

2.11 Задание 21

количество всех возможных способов вырать 3 из 12:

$$C_{12}^3 = \frac{12 \cdot 11 \cdot 10}{1 \cdot 2 \cdot 3} = 220$$

колиество способов выбрать 3 любых из вcex(12+3=15):

$$C_{15}^3 = \frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3} = 455$$

$$C_{15}^3 - C_{12}^3 = 455 - 220 = 235$$

$$C_{15}^{3} = \frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3} = 455$$

$$C_{15}^{3} - C_{12}^{3} = 455 - 220 = 235$$

$$p = \frac{C_{15}^{3} - C_{12}^{3}}{C_{15}^{3}} = \frac{235}{455} = \frac{47}{91}$$

2.12Задание 22

 C_n^m

В подобных задачах лучше чтобы у всех С, п было минимально. Тогда легче счистать.

Число интересующих исходов:

$$C_{20}^3 - (C_5^2 \cdot C_{15}^1 + C_5^3)$$

$$C_5^2 = \frac{5\cdot 4}{1\cdot 2} = 10$$

$$C_{15}^1 = 15$$

$$C_5^2 \cdot C_{15}^1 = 150$$

$$C_5^3 = \frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} = 10$$

$$C_5^2 \cdot C_{15}^1 + C_5^3 = 150 + 10 = 160$$

$$C_{20}^3 = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 1140$$

$$C_{20}^3 - (C_5^2 \cdot C_{15}^1 + C_5^3) = 1140 - 160 = 980$$

$$C_{20}^{3} = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 1140$$

$$C_{20}^{3} - \left(C_{5}^{2} \cdot C_{15}^{1} + C_{5}^{3}\right) = 1140 - 160 = 980$$

$$p = \frac{C_{20}^{3} - \left(C_{5}^{2} \cdot C_{15}^{1} + C_{5}^{3}\right)}{C_{20}^{3}} = \frac{890}{1140} = \frac{49}{57}$$

2.13 Задание 23

Здесь проще наоборот, решаем случай, когда вообще нет юношей. Это когда есть только девушки)

Число всех интересующий исходов в таком случае:

$$\begin{split} &C_{25}^3 - C_{15}^3 \\ &p = \frac{C_{25}^3 - C_{15}^3}{C_{25}^3} \\ &C_{25}^3 = 2300 \\ &C_{15}^3 = 455 \\ &C_{25}^3 - C_{15}^3 = 2300 - 455 = 1845 \\ &p = \frac{C_{25}^3 - C_{15}^3}{C_{25}^3} = \frac{1845}{2300} = \frac{369}{460} \end{split}$$

Задание 24 2.14

На интересуют случаи, когда выбраны только 4 парня или когда выбраны 3 парня и 1 девушка:

$$C_{10}^4 + C_{10}^3 \cdot C_5^1$$

Тогда вероятность всех этих исходов будет:
$$p=\frac{C_{10}^4+C_{10}^3\cdot C_5^1}{C_{15}^4}=\frac{810}{1365}=\frac{54}{91}$$

2.15 Задание 25

Нас интересуют случаи, когда повезло 2 новичкам и одному бывалому и

$$3$$
 новичкам:
$$p=\frac{C_6^3+C_6^2\cdot C_9^1}{C_{15}^3}=\frac{135+20}{455}=\frac{31}{91}$$

2.16 Задание 26

Хотя бы один, это значит 1 и более.

Проше решать обратную задачу - найти количество всех вариантов англоговорящих делегаций, далее из вообще всех вариантов вычесть это число. Получим как раз те случаи, когда в делегации есть хоть один неговорящий. Число вариантов хорошо говорящих делегаций:

 C_6^3

Число всех:

 C_{10}^{3}

Число вариантов вообще не говорящих по английски делегаций:

$$C_{10}^3 - C_6^3$$

Вероятность того, что в делегацию попадет хотя бы один неговорящий:

$$p = \frac{C_{10}^3 - C_6^3}{C_{10}^3} = \frac{120 - 20}{120} = \frac{5}{6}$$

2.17 Задание 27

Нас интересуют случаи, когда проконтроллированы 2 брака и 2 нормальных трубы, и проконтроллированы все 3 брака и 1 нормальная труба:

$$p = \frac{C_3^2 \cdot C_{12}^2 + C_3^3 \cdot C_{12}^1}{C_{15}^4} = \frac{198 + 12}{1365} = \frac{2}{13}$$

2.18 Задание 28

$$p = \frac{C_{12}^3 \cdot C_{10}^1 + C_{12}^4}{C_{22}^4} = \frac{7}{19}$$

Задание 29 2.19

- 1) Тут проще сначала решать наоборот.
- $p = \frac{C_{23}^5 (C_8^1 \cdot C_{15}^4 + C_{15}^5)}{C_{23}^5}$ $2) \ p = \frac{C_{15}^3 \cdot C_8^2}{C_{23}^3}$

Задание 30 2.20

Нужно найти вероятности прохождения первого и второго туров.

$$p_1 = \frac{C_{25}^3 \cdot C_5^1 + C_{25}^4}{C_{30}^4}$$

$$p_2 = \frac{C_{18}^3 \cdot C_6^1 + C_{18}^4}{C_{24}^4}$$

Тут придется сначала прочитать теорию к следующе главе, чтобы знать, почему вероятности исходов первого и второго тура в коннце надо умножить. $p_1\cdot p_2=\frac{C_{25}^3\cdot C_5^1+C_{25}^4}{C_{30}^4}\cdot \frac{C_{18}^3\cdot C_6^1+C_{18}^4}{C_{24}^4}$

$$p_1 \cdot p_2 = \frac{C_{25}^3 \cdot C_5^1 + C_{25}^4}{C_{30}^4} \cdot \frac{C_{18}^3 \cdot C_6^1 + C_{18}^4}{C_{24}^4}$$

3 Операции с событиями, формула сложения вероятностей, независимые события

Чтобы здесь хоть что-то решить, лучше полностью выучить теорию из всех прерыдущих глав.

3.1 Задание 31

Тут ошибка в ответах!

$$n = 36$$

А - на 1 кости четное

В - на 1 и 2 кости в сумме больше 3

Число исходов события В проще посчитать, если посчитать число исходов обратных В и вычесть это число из всех. Всего исходов для \overline{B} :

11

12

21

Тогда,

$$n_B = 36 - 3 = 33$$

$$n_A = 3 \cdot 6 = 18$$

$$P(A) = \frac{18}{36} = \frac{1}{2}$$

$$P(B) = \frac{33}{36} = \frac{11}{12}$$

a)
$$A \cap B$$
:

$$n_{A \cap B} = 6 + 6 + 5 = 17$$

$$P(A \cap B) = \frac{17}{36}$$

6)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{11}{12} - \frac{17}{36} = \frac{34}{36} = \frac{17}{18}$$

в)
$$P(A) = \frac{18}{36} = \frac{1}{2}$$

$$P(\bar{A}) = \frac{18}{36} = \frac{1}{2}$$

д)
$$n_{\overline{A} \cap \overline{B}} = 36 - 17 = 19P(\overline{A \cap B}) = \frac{19}{36}$$