

Classification

How long the train can be late?

Will the train be late?

What grade the student is in?

Math in Classification

 $y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$

Equation in Regression

Will the train be late?

What should be the value of prediction?

What grade the student is in?

What should be the value of prediction?

Multiple answers possible

Number of Predictions = Number of Possible Outputs

Grade 1	2%
Grade 2	5%
Grade 3	3%
Grade 4	6%
Grade 5	4%
Grade 6	15%
Grade 7	22%
Grade 8	36%
Grade 9	6%
Grade 10	1%
Total	100%

Probability of Student being in a particular Grade

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

How do we get multiple predictions?

$$y_{10} = w_{101}x_1 + w_{32}x_2 + w_{103} + b_3$$
 Using multiple equations

 $y_1 = w_{11}x_1 + w_{12}x_2 + w_{13} + b_1$

 $y_2 = w_{21}x_1 + w_{22}x_2 + w_{23} + b_2$

 $y_3 = w_{31}x_1 + w_{32}x_2 + w_{33} + b_3$

How do we get predictions between 0% and 100%?

Softmax

$$\sigma(y_i) = \frac{e^{y_i}}{\sum\limits_{k=1}^{n} e^{y_k}}$$

- 'Squashes' each input between 0 and 1
- Sum of all outputs is 1 ie. 100%

Prediction

$$Y = softmax(X.W+b)$$

Cross Entropy Loss

How do we assess ML model performance?

Training Data Data that model has 'seen'

Test Data

during training

Data that model has <u>NOT</u> 'seen' during training

Calculating Accuracy of the Model

Grade 1	2%
Grade 2	5%
Grade 3	3%
Grade 4	6%
Grade 5	4%
Grade 6	15%
Grade 7	22%
Grade 8	36%
Grade 9	6%
Grade 10	1%
Total	100%

Model Prediction = Grade 8

Student #	Model Prediction	Actual Grade	Accurate?
1	7	7	Yes
2	3	2	No
3	9	9	Yes
4	10	10	Yes
5	5	5	Yes

Accuracy = Number of correct predictions / Number of Predictions

Classification Exercise

Handwritten digit recognition

Scenario

➤ What needs to be done

- Build a Classifier to predict Handwritten numbers
- Use Tensorflow to build the model

➤ What is given

- Handwritten data (60,000 training examples, 10,000 test examples)
- o 10 classes

Let's build the classifier in TensorFlow

How many calculations at once?

7840 additions Softmax + Loss + Gradient Descent

7840 multiplications

```
60,000 * 7840 multiplications

+

60,000 * 7840 additions

+

60,000 * Softmax
```

60,000 * Loss

Gradient Descent

What if we had 1,000,000 records?

Memory Error!!!

How do we handle this?

Small batches or mini-batch

Improving the model

Hyperparameters

Number of iterations

Batch Size


```
model.compile(optimizer='sgd', loss='mse')
```

```
sgd_optimizer = tf.keras.optimizers.SGD(lr=0.03)
model.compile(optimizer=sgd_optimiser, loss='mse')
```