Módulo A - PRECIPITAÇÃO

MA.01 -O quadro abaixo apresenta valores de precipitação pluvial (mm) observados em Curitiba no período de 1980 a 1984.

- Represente graficamente os valores médios, máximos e mínimos da precipitação em cada mês.
- · Indique, no mesmo gráfico, o percentual que cada valor médio mensal representa sobre o total médio anual.

	1980	1981	1982	1983	1984
JAN	114,4	161,6	20,9	267,8	145,9
FEV	133,5	28,3	279,1	77,2	72,3
MAR	175,7	63,0	67,5	107,8	160,9
ABR	86,6	72,1	43,3	148,8	126,9
MAI	25,8	43,8	69,8	330,7	117,9
JUN	87,1	17,2	250,1	227,0	149,3
JUL	199,3	25,4	117,1	264,6	63,1
AGO	82,3	57,2	56,8	5,2	200,9
SET	172,3	71,3	19,0	239,1	108,6
OUT	163,7	126,0	226,3	77,9	40,9
NOV	51,7	136,9	258,9	45,0	170,7
DEZ	314,6	145,1	199,6	199,6	130,9
TOTAL	1607,0	947,9	1608,4	1990,7	1488,3

• É importante ressaltar que a representatividade dos resultados depende do tamanho da amostra. Neste exemplo - para fins didáticos - foram considerados somente 5 anos de observação.

MA.02. No quadro abaixo estão transcritos os totais anuais de precipitação (mm) em diferentes postos pluviométricos. Construir, para cada posto, a respectiva curva duplo-acumulativa.

	POSTO					
ANO	Α	В	С	D		
1985	1600	1200	1400	1800		
1986	1500	1300	1500	1200		
1987	1700	1500	1300	1900		
1988	1800	1200	1200	1700		
1989	1300	1800	1600	1500		

MA.03. Repita o exercício anterior, supondo que, devido a um erro de transcrição, o valor registrado para o posto **B**, em 1988, seja de 200 mm.

MA.04. No quadro abaixo estão transcritos os totais anuais de precipitação (mm) em 3 postos pluviométricos. (1º.TE/1989/RS)

Suponha que não se conheça o total precipitado no posto _____ em ____. Faça uma estimativa deste valor.

		POSTO Z						
ANO	Х							
1983	1620	1377	1539					
1984	1340	1139	1273					
1985	1410	1198	1340					
1986	1530	1300	1454					
1987	1600	1360	1520					
1988	1740	1479	1653					

- MA.05. No quadro abaixo estão transcritos os totais anuais de precipitação (mm) em 4 postos pluviométricos. (1º.TE/1988/RS)
- a) Suponha que não se conheça o total precipitado no posto _____ em 1983. Faça uma estimativa deste valor.
- **b)** Traçar a curva duplo-acumulativa para o posto _____.

	POSTO						
ANO	Α	В	С	D			
1980	1600	1200	1400	1800			
1981	1500	1300	1500	1200			
1982	1700	1500	1300	1900			
1983	1800	1200	1200	1700			
1984	1300	1800	1600	1500			

MA.06. Tendo em vista as informações abaixo, verifique a homogeneidade dos dados do posto 1. Efetue correções, se necessário. (3°.TE/1975/RS)

	PR	RECIPITAÇÃO (m	ım)
ANO	MÉDIA NA	POSTO	POSTO 1
	REGIÃO	1	CORRIGIDO
1967	1030	1050	
1968	980	970	
1969	990	950	
1970	1040	1070	
1971	990	1210	
1972	1000	1180	
1973	990	1230	
1974	1020	1180	

- MA.07. No quadro abaixo estão transcritos os totais anuais de precipitação (mm) em 4 postos pluviométricos. (1º.TE/1974/RS)
- a) Calcular o valor da precipitação anual em 1961 no posto C.
- b) Traçar as curvas duplo-acumulativas para os postos A e B.

_	POSTO							
ANO	Α	A B C D						
1960	1600	1200	1400	1800				
1961	1500	1300	300 X 1	1200				
1962	1700	1500	1300	1900				
1963	1700	1200	1200	1700				
1964	1300	1800	1600	1500				

- **MA.08**. Em uma área de forma triangular estão instalados 3 pluviômetros, exatamente nos vértices, cujas coordenadas são: **A** (0;0), **B** (0;6 km), **C** (8 km;0). Sendo P_A = 1200 mm, P_B = 960 mm e P_C = 1040 mm, avaliar a chuva média nesta área. (*EF/*1990/*FG*)
- **MA.09.** Na região limitada pelos meridianos 49°W e 50°W e pelos paralelos 25°S e 26°S existem 5 pluviômetros: um em cada extremo da área e um exatamente no centro. Sendo 1200, 1250, 1300 e 1350 mm os totais médios anuais de precipitação correspondentes aos aparelhos situados nos extremos, qual é o valor correspondente ao aparelho central para que a média na região, avaliada pelo método de Thiessen, seja igual a 1300 mm?
- **MA.10.** Em uma área de forma quadrada, com 20 km de lado existem 5 pluviômetros: um em cada vértice (que coincidem com os pontos cardeais) e um exatamente no centro. Calcular a precipitação média anual nesta área, sabendo que a precipitação média anual na estação norte é de 1200 mm, na estação sul é de 1100 mm, na estação oeste é de 1180 mm, na estação leste é de 1320 mm e na estação central é de 1400 mm.

- **MA.11.** Dada uma bacia hidrográfica de forma circular, com 314,16 km² de área, determinar a chuva média de um episódio pluvial pelo método de isoietas, sabendo que o total precipitado na posição central da bacia foi de 100 mm, o mapa de isoietas é formado por círculos concêntricos de 2, 4, 6, 8 e 10 km de raio, correspondentes, respectivamente, a 80, 60, 40, 20 e 0 mm. (2°.TE/1993/FG)
- **MA.12.** Na verdade, a figura geométrica que produziu as isoietas do exercício anterior é um cilindro. Assim sendo, pode-se resolver novamente o problema, imaginando-se que as isoietas são de milímetro em milímetro e não de 10 em 10 milímetros. Pode-se resolver, mais uma vez, com diferenças ainda menores entre isoietas. No limite, qual o valor exato da precipitação média? (2°.TE/1993/FG)
- **MA.13.** Avaliar a chuva média em uma área de forma quadrada definida, em um sistema de eixos cartesianos, pelas retas y = 0, y = 1, x = 0, x = 1, com base nos seguintes dados: $(2^a.CH/1990/FG)$

APARELHO	COORDENADAS	P (mm)
1	0 ; I/2	1632
2	0;1	1600
3	I/2 ; I	1616
4	1;1	1552
5	I ; I/2	1568
6	I; 0	1552
7	1/2 ; 0	1584
8	0;0	1568
9	1/2 ; 1/2	1800

- **MA.14.** A figura da página xxxxx representa a bacia hidrográfica do rio Iguaçu na seção transversal logo à jusante da confluência dos rios Palmital e Irai. O quadro abaixo indica as coordenadas de 4 postos pluviométricos (fictícios) e os respectivos totais mensais precipitados (em mm) no ano passado.
- · Avalie a precipitação média sobre a bacia relativa ao total anual precipitado com o método de Thiessen.

	POSTO A	POSTO B	POSTO C	POSTO D
MÊS	LONG: 49°00'	LONG: 49°00'	LONG: 49°10'	LONG: 49°10'
	LAT: 25°30'	LAT: 25°25'	LAT: 25°20'	LAT: 25°25'
JAN	103,8	217,5	85,6	162,6
FEV	59,1	62,4	34,2	126,8
MAR	115,8	109,7	125,8	90,8
ABR	188,6	171,8	168,2	175,6
MAI	266,6	291,6	250,0	268,2
JUN	230,5	208,8	166,2	206,2
JUL	336,5	235,6	324,0	304,6
AGO	37,2	36,0	30,6	25,0
SET	166,5	221,1	123,0	207,0
OUT	76,0	51,6	105,4	76,0
NOV	31,7	54,9	128,4	44,2
DEZ	194,6	251,3	99,2	173,2

- **MA.15.** Relativamente aos dados do exercício anterior, avalie a precipitação média sobre a bacia relativa ao mês de ______, usando o método de Thiessen.
- MA.16. Use os dados do exercício MA.14. e as figuras das páginas seguintes para desenhar mapas de isoietas para:
- a) O total anual precipitado.
- b) O mês que choveu mais.
- MA.17. Use os mapas de isoietas do exercício anterior para avaliar a chuva média sobre a bacia relativa ao:
- a) Total anual precipitado.
- b) Mês que choveu mais.

- **MA.18.** Apresente esquematicamente o gráfico do Professor **Parigot de Souza** relativo a chuvas intensas. Indique e descreva todas as variáveis envolvidas. (1º.TE/1993/RS)
- O que representam estas variáveis ?
- Quais são as limitações da fórmula do Professor Parigot de Souza ?
- MA.19. Tendo em vista os dados constantes na tabulação abaixo, calcular as máximas intensidades médias correspondentes a períodos de:
- a) 15 minutos:
- b) 22,5 minutos e
- c) 30 minutos.
- Considerar que o pluviograma é formado por uma série de segmentos de reta.

HORA	8:00	8:15	8:30	8:45	9:00	9:15
CHUVA ACUMULADA (mm)	zero	1,0	5,0	7,0	10,5	14,0

- **MA.20.** O pluviograma abaixo refere-se a uma chuva intensa ocorrida na cidade de Tapejara PR. Avaliar as máximas intensidades médias para intervalos de 5, 10, 30, 60, e 120 minutos. Traçar o gráfico **intensidade vs duração.**
- A tabela abaixo fornece alguns valores lidos no pluviograma, para facilitar a sua análise (observar que o aparelho é defeituoso no que diz respeito ao seu funcionamento como sifão).

Hora	Precipitação Acumulada (mm)	Hora	Precipitação Acumulada (mm)
7:00	0,00	10:52	8,49
7:20	0,18	10:55	9,40
7:43	1,15	11:32	10,10
9:15	1,15	11:45	12,10
9:22	1,75	11:51	19,70
10:00	1,80	12:20	27,30
10:06	1,92	13:20	28,20
10:40	1,92	13:30	28,70
10:45	6,78	14:05	29,20

MA.21. O quadro abaixo indica a altura de chuva acumulada ao longo do tempo. Determine a variação da intensidade da chuva com sua duração. Faça um gráfico. (1º.TE/1986/RS)

HORA	17:10	17:20	17:30	17:40	17:50	18:00	18:10	18:20	18:30	18:40
Altura acumulada (mm)	2,0	6,0	8,0	8,0	9,0	10,0	13,0	15,0	17,0	17,0

MA.22. A equação abaixo - derivada pelo Professor **Parigot de Souza** - é válida para a cidade de Curitiba para chuvas com duração entre 5 minutos e 2 horas. Calcule a intensidade de chuva para diferentes tempos de recorrência (T_r) e durações (t). Represente seus valores graficamente para tempos de recorrência iguais a 2, 10, 25 e 50 anos. (i em mm/h, T_r em anos e t em minutos)

$$i = \frac{5950 \cdot T_r^{0,217}}{(t+26)^{1,15}}$$

MA.23. Um episódio pluvial, compatível com a equação $i = \frac{9800}{(t + 26)^{1.5}}$ (i em mm/h e t em minutos), ocorreu entre 9:00 h e

9:40 h. Determinar os valores de $\bf x$ (quando choveu entre 9:00 h e 9:10 h), $\bf y$ (quanto choveu entre 9:20 h e 9:30 h) e $\bf w$ (quanto choveu entre 9:30 h e 9:40 h), sabendo que $\bf y > x > z > w$. (1°.TE/1990/FG)

MA.24. A avaliação da vazão na exutória de uma bacia - a partir dos dados de chuva - pode ser feita, por exemplo, com o uso do **Método Racional**, baseado na equação abaixo. Considere uma pequena bacia quadrada com 100 m de lado (aproximadamente o tamanho de um campo de futebol) e um coeficiente de escoamento superficial (**c**) igual a 0,5. Use os resultados do exercício **M1.22.** (intensidade de chuva) e avalie a vazão resultante para diferentes cenários, i.e., diferentes durações e riscos. (**Q** em m³/s, **i** em mm/h e **A** em km²)

$$Q = \frac{1}{3.6} ciA$$

MA.25 A partir de considerações sobre o Balanço Hídrico, derive a fórmula para o cálculo da vazão utilizada no Método Racional, apresentada no exercício anterior.