1. Name the following compounds (3 \times 6 = 18 pts)

(a)

6-benzyl-5-methylthiooct-4-en-7-yne-3-thiol

(b) O OH

5-hydroxy-2-isobutoxy-4-mercaptobenzoic acid

OMe H
NO₂

3-bromo-4-isopropylthio-6-methoxy-2-nitrobenzaldehyde

OMe OH

7-methoxy-3-methyl-6-phenylnon-4-en-8-yn-2-ol

(e) S NH₂ Br

2-bromo-5-ethylthio-4-isobutoxyaniline

O₂N OH OH

4-bromo-6-sec-butyl-5-nitrobenzene-1,3-diol

2. Classify the following molecules as aromatic, anti-aromatic or non-aromatic (5 pts)

3. Predict the major product(s) expected from the following reaction sequences ($3 \times 14 = 42 \text{ pts}$)

(a)
$$SO_3$$
 H_2SO_4 SO_3H Br_2 $FeBr_3$ SO_3H SO_3H

(h)
$$H_2SO_4$$

$$HNO_3$$

$$Fe, HCI$$

$$Rr$$

(i)

(j)

OMe +
$$NO_2$$
 + NO_2 OMe NO_2

(k)

(n)
$$SO_3H$$
 SO_3H SO_3H D_2O D_2SO_4 OCH_3 OCH_3

4. Show how you would synthesize each of the following compounds from the given starting material(s). You must draw all key intermediates to receive full credit $(3 \times 6 = 18 \text{ pts})$

(e)
$$O_2N$$
 O_2N O_2

5. Propose a mechanism consistent with the following reactions (you must show all the intermediates to receive full credit) (3 \times 3 = 9 pts) (a)

6. Use the Woodward-Fieser table to estimate the λ_{max} observed in a UV spectra of the following cross-conjugated systems (8 pts)

Acyclic	217 nm
Heteroannular	214 nm
Homoannular	253 nm

For each additional conjugated double bond	+ 30 nm
For each exocyclic double bond	+ 5 nm
For each substituent C-substituent CI Br O-Alkyl OCOCH ₃ N(alkyl) ₂ S-alkyl	+ 5 nm + 5 nm + 5 nm + 6 nm + 0 nm + 60 nm + 30 nm
Solvent correction	+ 0 nm