

Project Break Down

Data Preparation & Resources

- Prepared structured data by generating synthetic patients based on the Disease
- Symptom Knowledge Base (DSKB). Ensured clinical realism by simulating partial symptom presence and adding controlled noise for variability.

Model Development & Storage

- Built and trained a dense neural network using TensorFlow.
- Saved the model, scaler, and feature encodings to deploy predictions in realtime.

Backend API Development

- Developed a Flask API connected to a PostgreSQL database.
- Serves symptoms, diseases, and model predictions through structured endpoints.

Frontend Web Application

- Created an interactive web app using HTML, CSS, and JavaScript.
- Users can search symptoms, analyze results, and view top disease matches with probabilities.

Project Objective

Problem Statement

Patients often turn to generic online searches for health concerns, leading to anxiety and misinformation.

There is a need for a reliable tool that can predict diseases based on symptom input, reducing uncertainty and improving user trust.

Project Objective

Develop a machine learning-powered web application that:

- Accepts symptoms from users.
- Predicts the top 3 most likely diseases with probability scores.
- Provides related symptoms to refine and improve predictions.
- Offers a more accurate alternative to broad, unreliable online symptom searches.

Dataset Overview

Dataset:

 Disease Symptom Knowledge Base (DSKB)

Content:

- 149 diseases
- 407 symptoms
- 5,000 synthetic mock patient records

Number of rows in synthetic dataset: 5000

Format:

- CSV files
- Web Scraping
- Symptoms hotcoded into binary columns (1 = symptom present, 0 = absent)

Why DSKB?

Provides structured, rich labeled data ideal for supervised machine learning.

```
Database disease_symptom_db dropped successfully.

Database disease_symptom_db created successfully.

SQL schema file executed successfully.

Data for diseases_tb uploaded successfully. Total rows: 133

Data for symptoms_tb uploaded successfully. Total rows: 406

Data for disease_symptom_tb uploaded successfully. Total rows: 1906
```

Technologies & ML Architecture

Technologies Used

- Machine Learning: TensorFlow, Scikit-learn
- Data Handling: Pandas, NumPy
- Backend: Flask, SQLAlchemy, PostgreSQL
- Frontend: HTML, CSS, JavaScript
- Dev Tools: Google Colab, GitHub, AWS (planned deployment)

Machine Learning Model Architecture

- Model Type: Dense Neural Network (Multiclass Classification)
- Structure:
 - Input: 407 symptom features
 - 3 Hidden Layers (ReLU activation, Batch Normalization, Dropout)
 - Output Layer: Softmax activation (149 disease classes)
- Training:
 - Loss: Categorical Crossentropy
 - ∘ Optimizer: Adam
 - Data: 5,000 synthetic patient rows
- Model Performance:
 - Training Accuracy: 99.88%
 - Validation Accuracy: 99.25%
 - Training Loss: 0.0063
 - Validation Loss: 0.0315

Synthetic Data Generation

Objective: Generate artificial data mimicking real-world patient charts for machine learning and testing. **Outcome**: A 5,000-row synthetic dataset with diverse disease-symptom profiles, ready for algorithm training and testing.

Step 1: Simulating Patients

- Created mock charts linking diseases to their symptoms.
- Ensured variability by assigning 33%+ of symptoms to each disease.

Step 3: Why Noise Matters

- Mimics variability in clinical data
- Builds robust models for real-world applications.

Step 2: Introducing Noise

• Created mock charts linking diseases to their symptoms. Ensured variability by assigning 33%+ of symptoms to each disease.

Step 4: Real-World Alignment

 Reflects thresholds used in diagnostic frameworks (DSM-5: ~30-50% of symptoms; ACR for lupus: ~36-40%)

Features of the Web App

Symptom Search:

 Autocomplete search bar linked to a database of 407 symptoms.

Disease Prediction:

• Predicts the top 3 diseases with probability scores based on selected symptoms.

Related Symptom Suggestions:

• Suggests additional symptoms for refining predictions.

Reanalyze and Refine:

• Users can add new symptoms and instantly update their results.

Lightweight Frontend:

- Built with pure HTML, CSS, and JavaScript.
- Fast, responsive, and mobile-friendly design without heavy frameworks.

Workflow Overview

Step 1: Data Preparation (ETL)

• Cleaned and loaded disease-symptom data into a PostgreSQL database.

Step 2: Synthetic Patient Generation

• Created 5,000 mock patients with ≥33% disease symptoms and controlled noise.

Step 3: Model Training

• Trained a dense neural network on synthetic patient data.

Step 4: Model Export

• Saved trained model (.h5) and preprocessing tools (.pkl).

Step 5: Backend API (Flask)

• Built API endpoints to serve real-time predictions from the model.

Step 6: Frontend Integration

• Web app connects user symptom input to API and displays top 3 disease predictions.

Challenges Faced

- Managing imbalanced data (some diseases have fewer symptoms & ranking system).
- Choosing model complexity (not overfitting on mock patients).
- Cross-environment compatibility (TensorFlow versions, Python versions).
- Backend and frontend integration (CORS, API security).

Key Learnings

- Building and serving a deep learning model in a real-world app.
- Handling full-stack architecture (frontend, backend, model).
- Team collaboration with Google Colab.
- Importance of user-centered design for health-related apps.

- Train on real patient data (if available) for even better accuracy.
- Add ranking for better predictions
- Deploy to cloud server (AWS/GCP) for public use.
- Add user accounts and prediction history saving.

