Genetic Material

Discovery of Genetic Material

Mendel's work was rediscovered

- In the 1900s, people already knew that genetic info was stored in the chromosomes
- They did not know whether the info was stored in the protein or the DNA (nucleic acid), since chromosomes were made of both

Griffith

- Griffith's experiment was on two strains of Streptococcus pneumoniae
- The two strains were (S)mooth and (R)ough
- S had a sugar coat on it, and caused pnemonia
- Griffith's observations

•	Smooth Strain	Rough Strain	Dead Smooth Strain	Dead Smooth Strain + Rough Strain
	Mouse died	Mouse Survived	Mouse Survived	Mouse Died

• He concluded that live R strains can be transformed into S strains

Avery

- Avery tested what part of the S strain turns the R strain into an S strain
- · He tested:
 - DNA
 - Protein
 - Lipids
- He found that only the DNA made the R strand turn into an S strand
- He theorized that the DNA from the S strand leaked and the R strand picked it up and replicated it, creating live S strands

Hershey and Chase

Bacteriophage

- A type of virus
- · Attacks bacteria
- In this study, the type selected was made of only **DNA and protein**

• Cannot reproduce on their own, need to inject themselves into a living cell

Method

- There are two groups of bacteriophage and liquid culture medium
- · Radioactive labeling
 - In the first group
 - Bacteriophage grown in radioactive Phosphorous
 - DNA contains Phosphorous while Protein does not
 - Labels the DNA radioactively
 - In the **second** group
 - Bacteriophage grown in radioactive Sulfur
 - Protein contains Sulfur while DNA does not
 - Labels the Protein radioactively
- Labeled bacteriophage was then put in the liquid culture to hijack and reproduce
- After some time, the bacteriophage was removed, when the DNA was already injected into the culture (probably using a blender)
- The bacteriophage was then separated using a centrifuge and readings of the radioactivity taken
 - Culture sinks to the bottom while the bacteriophage floats to the top
- Radioactivity Results
 - In the first group
 - Radioactivity was detected in the **bottom** of the vial (where the culture was)
 - Since the first group labeled the DNA, this proves that the DNA moves on into the culture
 - DNA is used in the reproduction of the bacteriophage
 - In the **second** group
 - Radioactivity was detected in the top of the vial (where the removed bacteriophage was)
 - Since the second group labeled the Protein, this proves that the Proteins stay with the bacteriophage
 - Protein is not used in reproduction
- Conclusion is that DNA is used in reproduction of bacteriophage, not Protein

DNA Structure

- After Hershey-Chase, scientists believed that DNA was the genetic material
- We still do not know how RNA and DNA was formed

Nucleotides

- Nucleotides are what make up Nucleic Acids (including DNA and RNA)
- Parts of a nucleotide (discovered by P. A. Levene)

- 5C Sugar
- Phosphate Group
- Nitogenous Base
- Purine Bases have two rings while Pyrimidine Bases have one
- DNA's Nitrogenous Base will always be one of
 - Adenine (Purine Base)
 - Guanine (Purine Base)
 - Cytosine (Pyramidine Base)
 - Thymine (Pyramidine Base)
- RNA's Nitrogenous Base will always be one of
 - Adenine (Purine Base)
 - Guanine (Purine Base)
 - Cytosine (Pyramidine Base)
 - Uracil (Pyramidine Base)

Chargaff

- Found that the amount of A and T, and G and C in a cell are roughly the same
- Chargaff's Rule: C = G & T = A

Franklin

• Took photo 51, which depicted a double helix

Watson and Crick

- Used their own as well as Chargaff's and Franklin's data to make new conclusions
- Conclusions
 - The two outside strands consist of alternating deoxyribose and phosphate
 - C and T pair together with three hydrogen bonds
 - T and A pair together with two hydrogen bonds

DNA Structure

- C and T pair together with three hydrogen bonds
- T and A pair together with two hydrogen bonds
- Purine Bases can only bond with Pyramidine bases because of the space between the rails of the double helix
- The total number of pyramidine bases will always equal to the number of purine bases

Orientation

 Each side of the double helix points the opposite direction as they are antiparallel