Image Super Resolution

7기 최명헌 8기 장준혁 조보경 최윤서 황진우

목차

A table of Contents

- #1, Why
- #2, Data 소개
- #3, 적용 가능한 모델
- #4, Toy model
- **#5, Custom model**
- #6, Streamlit

Part 1, 왜 Image Super Resolution인가

Why Image Super Resolution?

사진 화질 개선

압축된 사진 복원 과거의 사진 화질 개선

CCTV 범인 추적

차량 번호판 범인 얼굴 색출

Part 2,

Data 소개

Part 2 Data 소개

"LR to HR"

저해상도, 고해상도 촬영 이미지 사용

Part 2 Data **소개**

Train data(1640州)

Low-Resolution Image (input)와 High-Resolution Image (target) pair로 존재

ex)

512*512 LR

2048*2048 HR

Test(18洲)

Low-Resolution Image

512*512 LR

Part 2 Data 소개

Part 2 명가 metric for SR

PSNR

Peak-Signal-to-Noise-Ratio

영상 압축했을 때 화질이 얼마나 손실되었는지 평가 "PSNR이 높을수록 원본 영상에 비해 손실이 적다는 의미"

$$PSNR = 10 \log \frac{s^2}{MSE}$$
, (where, $s^2 = \max(pixel - value)$)

실제 HR 이미지와의 유사성

SSIM

Structural Similarity Index Map

수치적 에러가 아닌 인간의 시각적 화질 차이를 평가 "SSIM이 높을수록 원본 영상의 품질에 가깝다는 의미"

$$SSIM(x,y) = [l(x,y)]^{\alpha} \cdot [c(x,y)]^{\beta} \cdot [s(x,y)]^{\gamma}$$

$$l(x,y) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}, c(x,y) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}, s(x,y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$$

인간이 느끼는 품질

 Part 3,

 적용 가능한 모델

Part 3 CNN based

Part 3 CNN based

EDSR

-BN Layer 제거 Network의 range flexibility 감소 방지 -Residual Scaling Feature map 개수 증가

Part 3 GAN based

Figure 4: Architecture of Generator and Discriminator Network with corresponding kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional layer.

SWINIR

Figure 2: The architecture of the proposed SwinIR for image restoration.

- Convolution Layer ->
 Shallow Feature
 - reconstruction module 에 직접 연결
- Deep Feature 추출

Shallow Feature +Deep Feature

Vision Transformer

Hierarchical Feature Map

이미지의 특징을 더 잘 보기 위해 Segmentation

SWINIR

Figure 2: The architecture of the proposed SwinIR for image restoration.

- Convolution Layer ->
 Shallow Feature
 - reconstruction module 에 직접 연결
- Deep Feature 추출

Shallow Feature +Deep Feature

Part 4,

Toy Model

Part 4 Toy Model; EDSR

Part 4 Toy Model; SWINIR

Part 4 Toy Model

성능 **PSNR EDSR** 22.7684 21.1658 **SWINIR** Dacon Leader board 기준

Part 4 Toy Model

Toy Model Result

Issue!

Input Size의 증가 + 큰 모델 사이즈 =

00M(Out Of Memory)

모델의 일부 Layer 삭제

성능 저하

Solution!

512*512 사이즈의 Image를 64*64 사이즈로 자르자!

		논문 Architecture	Toymodel Architecture
INPUT Size		64*64 or 44*44	512 * 512
EDSR	Residual Block	64개	167
	Feature Dimension	256개	647 ₩
SwinIR	RSTB	47H	37∦
	STL in 1 RSTB	6 7	67∦
	Attention Heads in 1 RSTB	67H	6 7

Part5,
Improvement

Part 5 Data processing

해결방안

512*512 기존의 LR Image (Input)

64*64

1장의 input image(512*512)를 64장의 patch(64*64)로 잘라서 총 1640장*64개 = 104,960개의 이미지로 학습

Part 5 Data processing

해결방안

2048*2048 기존의 HR Image (Target)

256*256

LR, HR 모두 64개 패치로 자름

512*512 2 48*2048 Upscaling 노벨 만들자!

64*64 -> 256*256 Upscaling 모델 만들자!

Part 5 Custom Model

EDSR + SwinIR Upscaling Residual Block CNN: **EDSR** 국소적 특징 Conv ReLU Multi Shuffle Deep Feature Extraction **SWINIR Transformer:** HQ Image Extraction Reconstruction 전역적 특징 (b) Swin Transformer Layer (STL) Figure 2: The architecture of the proposed SwinIR for image restoration.

Part 5 Custom Model

Part 5 Custom Model Training

학습과정

Train: Valid = 8:2

Train: Valid = 1:0 + Horizontal / Vertical Flip

Model Structure

SwinIR:

RSTB:4洲

STL in 1 RSTB:6洲

Attention Heads : 6개

Window Size: 8

EDSR:

Featrue Dim: 256

ResBlock: 64개

Hyperparameter

epoch: 10

loss function: L1 Loss

optimizer: Adam

scheduler: Cosine Annealing

batch_size = 16

learning_rate = 0.0001

input size = 64, 64, 3

output size = 512, 512, 3

Part 5 Custom Model Training

Result

	Train	Valid
비율	0.8	0.2
loss	0.0529	0.0521
PSNR	21.1272	21.2176

+ Horizontal / Vertical Flip

	Train	Valid	Dacon 제출
비율	1.0	0.0	•
loss	0.05486	X	•
PSNR	20.7179	X	23.1245

Part6,

Streamlit

Part 6 Limitation

Resource 학습환경

2. Patch로 인한 가장자리 비율 증가

3. Detail한 요소가 많은 이미지

Reference

강석주, 서유림 (2020). 딥러닝 기반 Super Resolution 기술의 현황 및 최신 동향 방송과 미디어 = Broadcasting and media magazine v.25 no.2, pp.7 – 16.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee,(2017) "Enhanced Deep Residual Networks for Single Image Super-Resolution," 2nd NTIRE: New Trends in Image Restoration and Enhancement workshop and challenge on image super-resolution in conjunction with CVPR

Ledig, Christian, et al.(2017) "Photo-realistic single image super-resolution using a generative adversarial network." Proceedings of the IEEE conference on computer vision and pattern recognition.

Liang, Jingyun, et al.(2021) "Swinir: Image restoration using swintransformer." Proceedings of the IEEE/CVF International Conference on Computer Vision.

Lim, Bee, et al (2017). "Enhanced deep residual networks for single image super-resolution." Proceedings of the IEEE conference on computer vision and pattern recognition workshops.

Wang, Xintao, et al.(2018) "Esrgan: Enhanced super-resolution generative adversarial networks." Proceedings of the European conference on computer vision (ECCV) workshops.

Thank You for Listening