Notes for Vector Calculus

Zhao Wenchuan

October 12, 2021

Contents

1	Particle Motion		
	1.1	Particle Motion	2
	1.2	Components of Velocity	3
	1.3	Components of Acceleration	3

Chapter 1.

Particle Motion

§1.1 Particle Motion

Assume that we have a particle moving in space \mathbb{R}^n , as the motion of the particle is described by $\mathbf{r}(t)$ with respect to time t.

The displacement $\Delta \mathbf{r}$ between t_1 and t_0 ($t_0 < t_1$) is defined to be the position change over the period (t_0, t_1):

$$\Delta \mathbf{r} = \mathbf{r}(t_1) - \mathbf{r}(t_0) \quad \text{m.} \tag{1.1}$$

The average velocity $\bar{\mathbf{v}}$ is defined to be the average rate of position change during the period:

$$\bar{\mathbf{v}} = \frac{\Delta \mathbf{r}}{\Delta t}$$
 m/sec, (1.2)

where $\Delta t = t_1 - t_0$.

The velocity, or instantaneous velocity, $\mathbf{v}(t)$ at a certain time t is defined to be the rate of change during a very small period between t and $t + \Delta t$ ($|\Delta t| > 0$). That is, the limit of $\bar{\mathbf{v}}$ over neighbourhood of t as $\Delta t \to 0$:

$$\mathbf{v}(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t} = \frac{d\mathbf{r}}{dt}(t) \quad \text{m/sec.}$$
 (1.3)

The distance traveled s of the particle from time t_0 to t_1 is defined to be

the total variation of $\mathbf{r}(t)$ over $[t_0, t_1]$; as (1.3) is given, we have

$$s = \int_{t_0}^{t_1} \| \mathbf{dr}(t) \| = \int_{t_0}^{t_1} \| \mathbf{v}(t) \| \mathbf{d}(t) \quad \mathbf{m}.$$
 (1.4)

The acceleration $\mathbf{a}(t)$ at a certain time t is defined to be the rate of velocity change over a very small interval between t and $t + \Delta t$:

$$\mathbf{a}(t) = \lim_{\Delta t \to 0} \frac{\mathbf{v}(t + \Delta t) - \mathbf{v}(t)}{\Delta t} = \frac{\mathrm{d}\mathbf{v}(t)}{\mathrm{d}t} = \frac{\mathrm{d}^2\mathbf{r}(t)}{\mathrm{d}t^2} \quad \text{m/sec}^2$$
 (1.5)

§1.2 Components of Velocity

SSSS

§1.3 Components of Acceleration

Following the condition in Section 1.1.

The tangential acceleration $\mathbf{a}_{\mathrm{T}}(t)$ at a certain time t is defined to be the projection of $\mathbf{a}(t)$ on any tangent vector of the motion curve at t. Thus,

$$\mathbf{a}_{\mathrm{T}}(t) = \mathbf{a}(t) \cdot \hat{\mathbf{v}}(t) \cdot \hat{\mathbf{v}}(t) \quad \mathrm{m/sec}^{2}.$$
 (1.6)

Then centripetal acceleration $\mathbf{a}_{\mathrm{C}}(t)$ at t is defined to be the projection of $\mathbf{a}(t)$ at any right vector of the motion curve at t. As the right vector is orthogonal to the tangent vector, hence it is orthogonal to $\mathbf{a}(t)$. By the sum of vectors, we have

$$\mathbf{a}_{\mathrm{C}}(t) = \mathbf{a}(t) - \mathbf{a}_{\mathrm{T}}(t) \quad \mathrm{m/sec^2}.$$
 (1.7)

As any right vector at t can be defined by the......