01204211 Discrete Mathematics Lecture 9a: Finite automata¹

Jittat Fakcharoenphol

August 29, 2024

Example: syntax highlighting

HTML tokenizer

A finite-state machine or a deterministic finite-state automaton (DFA) has five components:

ightharpoonup the input alphabet Σ ,

- ightharpoonup the input alphabet Σ ,
- \triangleright a finite set of states Q,

$$S: A \rightarrow B$$

- \blacktriangleright the input alphabet Σ ,
- ightharpoonup a finite set of states Q,
- ightharpoonup a transition function δ

- ightharpoonup the input alphabet Σ ,
- \blacktriangleright a finite set of states Q,
- lacktriangle a transition function $\delta: \stackrel{Q}{\underbrace{Q \times \Sigma}} \longrightarrow Q$

- ightharpoonup the input alphabet Σ ,
- ightharpoonup a finite set of states Q,
- \blacktriangleright a transition function $\underline{\delta}:Q\times\Sigma\longrightarrow Q$
- ightharpoonup a start state $s \in Q$, and
- ▶ a subset $A \subseteq Q$ of accepting states.

Example 1

$$Q = \{q_0, q_1\}$$

$$S : \frac{Q}{q_0} = \{q_0, q_1\}$$

$$Q : \{q_0,$$

· E = 16,14

Example 2

3 tatts hut g. ecception slove {9;}

One step move: from state q with input symbol a, the machine changes its state to

$$\delta(8,a)$$

Moves

- \rightarrow **One step move**: from state q with input symbol a, the machine changes its state to
- **Extension:** from state q with input string w, the machine changes its state to $\delta^*(q,w)$ defined as

Case:
$$\omega = \varepsilon$$
, $\delta(q, \omega) = q$

Cuse:
$$w = a \cdot x$$

$$\delta^*(q,a\cdot x) = \delta^*(\delta(q,a),x)$$

Moves

One step move: from state q with input symbol a, the machine changes its state to $\delta(q,a)$.

Extension: from state q with input string w, the machine changes its state to $\delta^*(q,w)$ defined as

$$\delta^*(q,w) = \left\{ \begin{array}{ll} q & \text{if } w = \varepsilon, \\ \delta^*(\underline{\delta(q,a)},x) & \text{if } w = ax. \end{array} \right.$$

The signature of δ^* is $Q \times \Sigma^* \longrightarrow Q$.

Acceptance

For a finite-state machine with starting states and accepting states A it accepts string w iff

$$\delta^*(s,\omega) \in A$$

Acceptance

 \rightarrow For a finite-state machine with starting states and accepting states A, it accepts string w iff

$$\delta^*(s,w) \in A$$

Multiple of 5

```
def multiple_of_5(w):

r = 0

for i in w:

r = (2*r + w) \% 5  // r = \delta(r, \omega)

return r = 0
```

Multiple of 5

```
def multiple_of_5(w):
    r = 0
    for i in w:
        r = (2*r + w) % 5
    return r == 0
```


Digital design: Implementation

Digital design: Moore and Mealy machines

In the digital design class, you will encounter finite-state machines as well. The version we consider in this class is referred to as a **Moore machine**. In practices, there is another variant of FSM called **Mealy machines**, whose outputs depend on input symbols as well.

Digital design: Moore and Mealy machines

In the digital design class, you will encounter finite-state machines as well. The version we consider in this class is referred to as a **Moore machine**.

In practices, there is another variant of FSM called **Mealy machines**, whose outputs depend on input symbols as well.

Formally, they differ in output function.

- $lackbox{ Moore machine: }G:Q\longrightarrow [0,1]$
- ▶ Mealy machine: $G: Q \times \Sigma \longrightarrow [0,1]$

Example: even number of 1's

Example: strings containing 00 as a substring

Combining DFAs

011001

What if we want to build a DFA that accepts strings with an even number of 1's and containing 00 as a substring?

→Product construction

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

$$\blacktriangleright \ \ \mathsf{Let} \ Q = Q_1 \times Q_2,$$

$$S: Q \times \underline{S} \longrightarrow Q$$

$$S: (Q_1 \times Q_2) \times \underline{S} \longrightarrow Q_1 \times Q_2$$

$$(g_1, r_1) \xrightarrow{\alpha} (f(g_1, a), f_2(g_1, a))$$

$$\uparrow \qquad \qquad (f(g_1, a), f_2(g_1, a))$$

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

- $\blacktriangleright \ \, \mathsf{Let} \,\, Q = Q_1 \times Q_2,$
- ▶ Let $\delta: (Q_1 \times Q_2) \times \Sigma \longrightarrow (Q_1 \times Q_2)$ be such that

Given a DFA $M_1 = (\Sigma, Q_1, \delta_1, s_1, A_1)$ that accepts strings from language L_1 and $M_2 = (\Sigma, Q_2, \delta_2, s_2, A_2)$ that accepts strings from language L_2 we can construct a DFA $M = (\Sigma, Q, \delta, s, A)$ that accepts strings from $L_1 \cap L_2$ as follows:

- $\blacktriangleright \ \mathsf{Let} \ Q = Q_1 \times Q_2,$
- ▶ Let δ : $(Q_1 \times Q_2) \times \Sigma \longrightarrow (Q_1 \times Q_2)$ be such that

$$\delta((q_1,q_2),a) = (\delta_1(q_1,a),\delta_2(q_2,a)),$$

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

- $\blacktriangleright \ \, \mathsf{Let} \,\, Q = Q_1 \times Q_2,$
- ▶ Let $\delta: (Q_1 \times Q_2) \times \Sigma \longrightarrow (Q_1 \times Q_2)$ be such that

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)),$$

Let
$$s = (s_1, s_2)$$
, and

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

- $\blacktriangleright \ \mathsf{Let} \ Q = Q_1 \times Q_2,$
- ▶ Let $\delta: (Q_1 \times Q_2) \times \Sigma \longrightarrow (Q_1 \times Q_2)$ be such that

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)),$$

- ▶ Let $s = (s_1, s_2)$, and
- $\blacktriangleright \text{ Let } \underline{\underline{A}} = \underbrace{\underline{A_1}} \times \underbrace{A_2}.$

Recall the definition of $\delta^*(q,\underline{w})\text{, i.e.,}$

Recall the definition of $\delta^*(q, w)$, i.e.,

$$\delta^*(q,w) = \left\{ \begin{array}{ll} \widehat{q} & \text{if } w = \varepsilon, \checkmark \\ \delta^*(\underline{\delta(q,a)},x) & \text{if } w = \underline{a}x \text{ where } a \in \Sigma \end{array} \right.$$

Recall the definition of $\delta^*(q, w)$, i.e.,

$$\delta^*(q,w) = \begin{cases} q & \text{if } w = \varepsilon, \\ \delta^*(\delta(q,a),x) & \text{if } w = ax \text{ where } a \in \Sigma \end{cases}$$

Lemma 1

$$\delta^*((\underbrace{q_1,q_2}_{1}),\underline{\underline{w}}) = (\delta_1^*(q_1,w),\delta_2^*(q_2,w)) \text{ for any string } \underline{w}.$$

Proof.

We prove by induction. I.H.: Assume that $\delta^*((q_1,q_2),x) \models (\delta_1^*(q_1,x),\delta_2^*(q_2,x)),$ for any string x such that |x| < |w|.

$$x$$
 such that $|x| < |w|$.

 $C_{q_{1}q_{2}} = (\delta_{1}^{*}(q_{1}, \epsilon), \delta_{2}^{*}(q_{2}, \epsilon))$ Mymbor

Case!
$$\omega = \varepsilon$$

$$x$$
 such that $|x| < |w|$.

 $C_{q_{1}e_{1}} = (S_{1} + (Q_{1}, Q_{2}), S) = (S_{1}, Q_{2}) = (S_{1} + (Q_{1}, S), S_{2} + (Q_{2}, S))$ on which

$$\frac{C_{\alpha \beta 2}}{C_{\alpha \beta 2}} = (S_{1}^{*}(S_{1}, S_{2}), S_{2}^{*}(S_{2}, S_{2})) = (S_{1}^{*}(S_{1}, S_{2}), S_{2}^{*}(S_{2}, S_{2}), S_{2}^{*}(S_{2}, S_{2}) = (S_{1}^{*}(S_{1}, S_{2}), S_{2}^{*}(S_{2}, S_{2}), S_{2}^{*}(S_{1}^{*}(S_{1}, S_{2}), S_{2}^{*}(S_{2}, S_{2})) = (S_{1}^{*}(S_{1}, S_{2}), S_{2}^{*}(S_{1}^{*}(S_{1}, S_{2}), S_{2}^{*}(S_{1}, S_{2}), S_{2$$

$$\langle |w|.$$

$$\int_{-\infty}^{\infty} ((q_1, q_2), \varepsilon) = (q_1, q_2) = (\delta_1^*(q_1, \varepsilon), \delta_2^*)$$

$$\delta_2^*(q_1, q_2) = (\delta_1^*(q_1, \varepsilon), \delta_2^*)$$

From the previous lemma, we have that

$$\underline{\delta^*(s,w)} = \delta^*((s_1,s_2),w) \\
= \left(\underbrace{\delta^*(s_1,w)}_{2},\underbrace{\delta^*(s_2,\omega)}_{2}\right)$$

Correctness

From the previous lemma, we have that

$$\delta^*(s, w) = \delta^*((s_1, s_2), w)
= (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$$

Correctness

From the previous lemma, we have that

$$\delta^*(s, w) = \delta^*((s_1, s_2), w)
= (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$$

Thus, for an input \underline{w} , \underline{M} would reach the state $(\underline{\delta_1^*(s_1,w),\delta_2^*(s_2,w)})$; it accepts \underline{w} when

$$(\delta_1^*(s_1, w), \delta_2^*(s_2, w)) \in A_1 \times A_2.$$

This implies that M accepts w when $\delta_1^*(s_1,w) \in A_1$ and $\delta_2^*(s_2,w) \in A_2$, i.e., M accepts w iff M_1 and M_2 accept w.

Finally, we conclude that M accepts strings from language $L_1 \cap L_2$.

Language of a DFA

L(M)

For a DFA M, let L(M) be the set of all strings that M accepts. More formally, for $M = (\Sigma, Q, \delta, s, A),$

$$L(M) = \{ w \in \Sigma^* \mid \delta^*(s, w) \in A \}.$$

 $L(M) = \{w \in \Sigma^* \mid \underline{\delta}^*(s,w) \in \underline{A}\}.$ We refer to L(M) as the language of M.

Lemma 2

If L_1 and L_2 are languages of some DFAs M_1 and M_2 , we have that

lacksquare there is a DFA M that accepts $L_1\cap L_2$,

Lemma 2

If L_1 and L_2 are languages of some DFAs M_1 and M_2 , we have that

- \blacktriangleright there is a DFA M that accepts $L_1 \cap L_2$,
- ▶ there is a DFA \underline{M} that accepts $L_1 \cup L_2$,

$$A = \left\{ (q_1 q_2) \right|$$

$$q_1 \in A_2 \quad w$$

$$q_2 \in A_2$$

Lemma 2

If (L_1) and (L_2) are languages of some DFAs M_1 and M_2 , we have that

- lacksquare there is a DFAMthat accepts $L_1\cap L_2$
- lacktriangle there is a DFA \widehat{M} that accepts $\widehat{L_1 \cup L_2}$
- lacktriangle there is a DFA M that accepts $L_1\setminus L_2$,

Lemma 2

If L_1 and L_2 are languages of some DFAs (M_1) and M_2 , we have that

- \blacktriangleright there is a DFA M that accepts $L_1 \cap L_2$, \longleftarrow
- lacktriangle there is a DFA M that accepts $L_1 \cup L_2$,
- \blacktriangleright there is a DFA M that accepts $L_1 \setminus L_2$,
- there is a DFA M that accepts $\Sigma^* \setminus L_1$,

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

²Taken directly from Erickson's lecture notes

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If $\underline{L_1}$ and $\underline{L_2}$ are automatic languages over alphabet Σ , then

$$ightharpoonup L_1 \cap L_2$$
,

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If L_1 and L_2 are automatic languages over alphabet Σ , then

- $ightharpoonup L_1 \cap L_2$,
- $ightharpoonup L_1 \cup L_2$,

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If L_1 and L_2 are automatic languages over alphabet Σ , then

- $ightharpoonup L_1 \cap L_2$,
- $ightharpoonup L_1 \cup L_2$,
- $ightharpoonup L_1 \setminus L_2$, and

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If (L_1) and (L_2) are automatic languages over alphabet Σ , then

- $ightharpoonup L_1 \cap L_2$,
- $ightharpoonup L_1 \cup L_2$,

むべとかなっ 20

- $ightharpoonup L_1 \setminus L_2$, and $ightharpoonup L_2$
- $\triangleright \Sigma^* \setminus L_1$,

are also automatic.

²Taken directly from Erickson's lecture notes

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If L_1 and L_2 are automatic languages over alphabet Σ , then

- $ightharpoonup L_1 \cap L_2$,
- $ightharpoonup L_1 \cup L_2$,
- $ightharpoonup L_1 \setminus L_2$, and
- $ightharpoonup \Sigma^* \setminus L_1$,

are also automatic.

The set of automatic languages is closed under these boolean operations.

²Taken directly from Erickson's lecture notes