0.1 title: KM-620 Tables

1 Table KM-620

Material

Ferritic steel

Austenitic stainless steel and nickel-based alloys

Duplex stainless steel

Precipitation hardening, nickel based

Aluminum

Copper

Titanium and zirconium

Max. Temp. (F)	m_2	m_3	m_4	m_5	ϵ_p
900	$0.6 \cdot (1.0 - R)$	$2 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	2.0e - 5
900	$0.75 \cdot (1.0 - R)$	$3 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	0.6	2.0e - 5
900	$0.7 \cdot (0.95 - R)$	$2 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	2.0e - 5
1000	$1.09 \cdot (0.93 - R)$	$1 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	2.0e - 5
250	$0.52 \cdot (0.98 - R)$	$1.3 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	5.0e - 6
150	$0.5 \cdot (1.0 - R)$	$2 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	5.0e - 6
500	$0.5 \cdot (0.98 - R)$	$1.3 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	2.0e - 5

NOTE: Ferritic steel includes carbon, low alloy, and alloy steels, and ferritic, martensitic, and iron-based age-hardening stainless steels.