(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 March 2002 (21.03.2002)

PCT

(10) International Publication Number WO 02/22802 A1

(51) International Patent Classification⁷: C12N 15/00, 15/12, C07K 14/435

(21) International Application Number: PCT/US01/28462

(22) International Filing Date:

13 September 2001 (13.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/232,463	13 September 2000 (13.09.2000)	US
60/232,455	13 September 2000 (13.09.2000)	US
60/237,293	2 October 2000 (02.10.2000)	US
60/246,269	7 November 2000 (07.11.2000)	US
60/252,049	20 November 2000 (20.11.2000)	US

(71) Applicants (for all designated States except US):

SMITHKLINE BEECHAM CORPORATION
[US/US]; One Franklin Plaza, Philadelphia, PA 19103
(US). SMITHKLINE BEECHAM P.L.C. [GB/GB]; New
Horizons Court, Great West Road, Brentford, Middlesex
TW8 9EP (GB). GLAXO GROUP LIMITED [GB/GB];
Glaxo House, Berkeley Avenue, Greenford, Middlesex
UB6 0NN (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AGARWAL, Pankaj [IN/US]; 251 West DeKalb Pike, King of Prussia, PA 19406 (US). GOGSWELL, John, P. [US/US]; Five Moore Drive, Research Triangle Park, NC 27709 (US). LAI, Ying-Ta [CN/US]; 516 Spruce Avenue, Upper Darby, PA 19082 (US). MARTENSEN, Shelby, A. [US/US]; Five Moore Drive, Research Triangle Park, NC 27709 (US). SMITH, Randall, F. [US/US]; 4138 Presidential Drive, Lafayette Hill, PA 19444 (US). STRUM, Jay, C. [US/US]; Five Moore Drive, Research Triangle Park, NC 27709 (US). XIE, Qing [CN/US]; 310 Sawmill Lane, Horsham, PA 19044 (US).

- (74) Agents: FEDON, Jason, C. et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

:/22802 A1

(54) Title: NOVEL COMPOUNDS

(57) Abstract: Polypeptides and polynucleotides of the genes set forth in Table I and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing polypeptides and polynucleotides of the genes set forth in Table I in diagnostic assays.

Novel Compounds

Field of Invention

This invention relates to newly identified polypeptides and polynucleotides encoding such polypeptides, to their use in diagnosis and in identifying compounds that may be agonists, antagonists that are potentially useful in therapy, and to production of such polypeptides and polynucleotides. The polynucleotides and polypeptides of the present invention also relate to proteins with signal sequences which allow them to be secreted extracellularly or membrane-associated (hereinafter often referred collectively as secreted proteins or secreted polypeptides).

Background of the Invention

The drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics", that is, high throughput genome- or gene-based biology. This approach as a means to identify genes and gene products as therapeutic targets is rapidly superseding earlier approaches based on "positional cloning". A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.

Functional genomics relies heavily on high-throughput DNA sequencing technologies and the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available. There is a continuing need to identify and characterise further genes and their related polypeptides/proteins, as targets for drug discovery.

Proteins and polypeptides that are naturally secreted into blood, lymph and other body fluids, or secreted into the cellular membrane are of primary interest for pharmaceutical research and development. The reason for this interest is the relative ease to target protein therapeutics into their place of action (body fluids or the cellular membrane). The natural pathway for protein secretion into extracellular space is the endoplasmic reticulum in eukaryotes and the inner membrane in prokaryotes (Palade, 1975, Science, 189, 347; Milstein, Brownlee, Harrison, and Mathews, 1972, Nature New Biol., 239, 117; Blobel, and Dobberstein, 1975, J. Cell. Biol., 67, 835). On the other hand, there is no known natural pathway for exporting a protein from the exterior of the cells into the cytosol (with the exception of pinocytosis, a mechanism of snake venom toxin intrusion into cells). Therefore targeting protein therapeutics into cells poses extreme difficulties.

The secreted and membrane-associated proteins include but are not limited

to all peptide hormones and their receptors (including but not limited to insulin, growth hormones, chemokines, cytokines, neuropeptides, integrins, kallikreins, lamins, melanins, natriuretic hormones, neuropsin, neurotropins, pituitiary hormones, pleiotropins, prostaglandins, secretogranins, selectins, thromboglobulins, thymosins), the breast and colon cancer gene products, leptin, the obesity gene protein and its receptors, serum albumin, superoxide dismutase, spliceosome proteins, 7TM (transmembrane) proteins also called as G-protein coupled receptors, immunoglobulins, several families of serine proteinases (including but not limited to proteins of the blood coagulation cascade, digestive enzymes), deoxyribonuclease I, etc.

Therapeutics based on secreted or membrane-associated proteins approved by FDA or foreign agencies include but are not limited to insulin, glucagon, growth hormone, chorionic gonadotropin, follicle stimulating hormone, luteinizing hormone, calcitonin, adrenocorticotropic hormone (ACTH), vasopressin, interleukines, interferones, immunoglobulins, lactoferrin (diverse products marketed 15 by several companies), tissue-type plasminogen activator (Alteplase by Genentech), hyaulorindase (Wydase by Wyeth-Ayerst), dornase alpha (Pulmozyme\ by Genentech), Chymodiactin (chymopapain by Knoll), alglucerase (Ceredase by Genzyme), streptokinase (Kabikinase by Pharmacia) (Streptase by Astra), etc. This indicates that secreted and membrane-associated proteins have an established, 20 proven history as therapeutic targets. Clearly, there is a need for identification and characterization of further secreted and membrane-associated proteins which can play a role in preventing, ameliorating or correcting dysfunction or disease, including but not limited to diabetes, breast-, prostate-, colon cancer and other 25 malignant tumors, hyper- and hypotension, obesity, bulimia, anorexia, growth abnormalities, asthma, manic depression, dementia, delirium, mental retardation, Huntington's disease, Tourette's syndrome, schizophrenia, growth, mental or sexual development disorders, and dysfunctions of the blood cascade system including those leading to stroke. The proteins of the present invention which include the signal 30 sequences are also useful to further elucidate the mechanism of protein transport which at present is not entirely understood, and thus can be used as research tools.

Summary of the Invention

5

10

35

The present invention relates to particular polypeptides and polynucleotides of the genes set forth in Table I, including recombinant materials and methods for their production. Such polypeptides and polynucleotides are of interest in relation to methods of treatment of

certain diseases, including, but not limited to, the diseases set forth in Tables III and V, hereinafter referred to as "diseases of the invention". In a further aspect, the invention relates to methods for identifying agonists and antagonists (e.g., inhibitors) using the materials provided by the invention, and treating conditions associated with imbalance of polypeptides and/or polynucleotides of the genes set forth in Table I with the identified compounds. In still a further aspect, the invention relates to diagnostic assays for detecting diseases associated with inappropriate activity or levels the genes set forth in Table I. Another aspect of the invention concerns a polynucleotide comprising any of the nucleotide sequences set forth in the Sequence Listing and a polypeptide comprising a polypeptide encoded by the nucleotide sequence. In another aspect, the invention relates to a polypeptide comprising any of the polypeptide sequences set forth in the Sequence Listing and recombinant materials and methods for their production. Another aspect of the invention relates to methods for using such polypeptides and polynucleotides. Such uses include the treatment of diseases, abnormalities and disorders (hereinafter simply referred to as diseases) caused by abnormal expression, production, function and or metabolism of the genes of this invention, and such diseases are readily apparent by those skilled in the art from the homology to other proteins disclosed for each attached sequence. In still another aspect, the invention relates to methods to identify agonists and antagonists using the materials provided by the invention, and treating conditions associated with the imbalance with the identified compounds. Yet another aspect of the invention relates to diagnostic assays for detecting diseases associated with inappropriate activity or levels of the secreted proteins of the present invention.

Description of the Invention

5

10

15

20

30

- In a first aspect, the present invention relates to polypeptides the genes set forth in Table I. Such polypeptides include:
 - (a) an isolated polypeptide encoded by a polynucleotide comprising a sequence set forth in the Sequence Listing, herein when referring to polynucleotides or polypeptides of the Sequence Listing, a reference is also made to the Sequence Listing referred to in the Sequence Listing:
 - (b) an isolated polypeptide comprising a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
 (c) an isolated polypeptide comprising a polypeptide sequence set forth in the Sequence Listing;

(d) an isolated polypeptide having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;

(e) a polypeptide sequence set forth in the Sequence Listing; and

10

15

20

25

30

35

- (f) an isolated polypeptide having or comprising a polypeptide sequence that has an Identity
 Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polypeptide sequence set forth in the
 Sequence Listing;
 - (g) fragments and variants of such polypeptides in (a) to (f).

 Polypeptides of the present invention are believed to be members of the gene families set forth in Table II. They are therefore of therapeutic and diagnostic interest for the reasons set forth in Tables III and V. The biological properties of the polypeptides and polynucleotides of the genes set forth in Table I are hereinafter referred to as "the biological activity" of polypeptides and polynucleotides of the genes set forth in Table I. Preferably, a polypeptide of the present invention exhibits at least one biological activity of the genes set forth in Table I.

Polypeptides of the present invention also include variants of the aforementioned polypeptides, including all allelic forms and splice variants. Such polypeptides vary from the reference polypeptide by insertions, deletions, and substitutions that may be conservative or non-conservative, or any combination thereof. Particularly preferred variants are those in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acids are inserted, substituted, or deleted, in any combination.

Preferred fragments of polypeptides of the present invention include an isolated polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids from an amino acid sequence set forth in the Sequence Listing, or an isolated polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids truncated or deleted from an amino acid sequence set forth in the Sequence Listing. Preferred fragments are biologically active fragments that mediate the biological activity of polypeptides and polynucleotides of the genes set forth in Table I, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also preferred are those fragments that are antigenic or immunogenic in an animal, especially in a human.

Fragments of a polypeptide of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention. A polypeptide of the present invention may be in the form of the "mature" protein or may be a

part of a larger protein such as a precursor or a fusion protein. It is often advantageous to include an additional amino acid sequence that contains secretory or leader sequences, prosequences, sequences that aid in purification, for instance multiple histidine residues, or an additional sequence for stability during recombinant production.

- Polypeptides of the present invention can be prepared in any suitable manner, for instance by isolation form naturally occurring sources, from genetically engineered host cells comprising expression systems (vide infra) or by chemical synthesis, using for instance automated peptide synthesizers, or a combination of such methods. Means for preparing such polypeptides are well understood in the art.
- In a further aspect, the present invention relates to polynucleotides of the genes set forth in Table I. Such polynucleotides include:
 - (a) an isolated polynucleotide comprising a polynucleotide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polynucleotide sequence set forth in the Sequence Listing;
- (b) an isolated polynucleotide comprising a polynucleotide set forth in the Sequence Listing;
 - (c) an isolated polynucleotide having at least 95%, 96%, 97%, 98%, or 99% identity to a polynucleotide set forth in the Sequence Listing;
 - (d) an isolated polynucleotide set forth in the Sequence Listing;

5

- 20 (e) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
 - (f) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide set forth in the Sequence Listing;
- 25 (g) an isolated polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
 - (h) an isolated polynucleotide encoding a polypeptide set forth in the Sequence Listing;
- (i) an isolated polynucleotide having or comprising a polynucleotide sequence that has an
 Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polynucleotide sequence set forth in the Sequence Listing;
 - (j) an isolated polynucleotide having or comprising a polynucleotide sequence encoding a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polypeptide sequence set forth in the Sequence Listing; and

polynucleotides that are fragments and variants of the above mentioned polynucleotides or that are complementary to above mentioned polynucleotides, over the entire length thereof.

Preferred fragments of polynucleotides of the present invention include an isolated polynucleotide comprising an nucleotide sequence having at least 15, 30, 50 or 100 contiguous nucleotides from a sequence set forth in the Sequence Listing, or an isolated polynucleotide comprising a sequence having at least 30, 50 or 100 contiguous nucleotides truncated or deleted from a sequence set forth in the Sequence Listing.

5

10

15

20

25

30

35

Preferred variants of polynucleotides of the present invention include splice variants, allelic variants, and polymorphisms, including polynucleotides having one or more single nucleotide polymorphisms (SNPs).

Polynucleotides of the present invention also include polynucleotides encoding polypeptide variants that comprise an amino acid sequence set forth in the Sequence Listing and in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acid residues are substituted, deleted or added, in any combination.

In a further aspect, the present invention provides polynucleotides that are RNA transcripts of the DNA sequences of the present invention. Accordingly, there is provided an RNA polynucleotide that:

- (a) comprises an RNA transcript of the DNA sequence encoding a polypeptide set forth in the Sequence Listing;
 - (b) is a RNA transcript of a DNA sequence encoding a polypeptide set forth in the Sequence Listing;
 - (c) comprises an RNA transcript of a DNA sequence set forth in the Sequence Listing; or
 - (d) is a RNA transcript of a DNA sequence set forth in the Sequence Listing; and RNA polynucleotides that are complementary thereto.

The polynucleotide sequences set forth in the Sequence Listing show homology with the polynucleotide sequences set forth in Table II. A polynucleotide sequence set forth in the Sequence Listing is a cDNA sequence that encodes a polypeptide set forth in the Sequence Listing. A polynucleotide sequence encoding a polypeptide set forth in the Sequence Listing may be identical to a polypeptide encoding a sequence set forth in the Sequence Listing or it may be a sequence other than a sequence set forth in the Sequence Listing, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes a polypeptide set forth in the Sequence Listing. A polypeptide of a sequence set forth in the Sequence Listing related to other proteins of the gene families set forth in Table II, having

homology and/or structural similarity with the polypeptides set forth in Table II. Preferred polypeptides and polynucleotides of the present invention are expected to have, *inter alia*, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one activity of the genes set forth in Table I.

5

10

15

20

25

30

Polynucleotides of the present invention may be obtained using standard cloning and screening techniques from a cDNA library derived from mRNA from the tissues set forth in Table IV (see for instance, Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.

When polynucleotides of the present invention are used for the recombinant production of polypeptides of the present invention, the polynucleotide may include the coding sequence for the mature polypeptide, by itself, or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz *et al.*, Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. A polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.

Polynucleotides that are identical, or have sufficient identity to a polynucleotide sequence set forth in the Sequence Listing, may be used as hybridization probes for cDNA and genomic DNA or as primers for a nucleic acid amplification reaction (for instance, PCR). Such probes and primers may be used to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encoding paralogs from human sources and orthologs and paralogs from other species) that have a high sequence similarity to sequences set forth in the Sequence Listing, typically at least 95% identity. Preferred probes and primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50, if not at least 100 nucleotides. Particularly preferred probes will have between

30 and 50 nucleotides. Particularly preferred primers will have between 20 and 25 nucleotides.

A polynucleotide encoding a polypeptide of the present invention, including homologs from other species, may be obtained by a process comprising the steps of screening a library under stringent hybridization conditions with a labeled probe having a sequence set forth in the Sequence Listing or a fragment thereof, preferably of at least 15 nucleotides; and isolating full-length cDNA and genomic clones containing the polynucleotide sequence set forth in the Sequence Listing. Such hybridization techniques are well known to the skilled artisan. Preferred stringent hybridization conditions include overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA; followed by washing the filters in 0.1x SSC at about 65°C. Thus the present invention also includes isolated polynucleotides, preferably with a nucleotide sequence of at least 100, obtained by screening a library under stringent hybridization conditions with a labeled probe having the sequence set forth in the Sequence Listing or a fragment thereof, preferably of at least 15 nucleotides.

The skilled artisan will appreciate that, in many cases, an isolated cDNA sequence will be incomplete, in that the region coding for the polypeptide does not extend all the way through to the 5' terminus. This is a consequence of reverse transcriptase, an enzyme with inherently low "processivity" (a measure of the ability of the enzyme to remain attached to the template during the polymerisation reaction), failing to complete a DNA copy of the mRNA template during first strand cDNA synthesis.

There are several methods available and well known to those skilled in the art to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman et al., Proc Nat Acad Sci USA 85, 8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon (trade mark) technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon (trade mark) technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using 'nested' primers, that is, primers designed to anneal within the amplified product (typically an adapter specific primer that anneals further 3' in the adaptor sequence and a gene specific

primer that anneals further 5' in the known gene sequence). The products of this reaction can then be analyzed by DNA sequencing and a full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.

5.

10

15

20

25

30

35

Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems comprising a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems and to the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Polynucleotides may be introduced into host cells by methods described in many standard laboratory manuals, such as Davis et al., Basic Methods in Molecular Biology (1986) and Sambrook et al.(ibid). Preferred methods of introducing polynucleotides into host cells include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, micro-injection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.

Representative examples of appropriate hosts include bacterial cells, such as *Streptococci*, *Staphylococci*, *E. coli*, *Streptomyces* and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any system or vector that is able to maintain, propagate or express a polynucleotide to produce a

polypeptide in a host may be used. The appropriate polynucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook *et al.*, (*ibid*). Appropriate secretion signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, the periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.

5

10

15

20

25

30

35

If a polypeptide of the present invention is to be expressed for use in screening assays, it is generally preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If the polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide. If produced intracellularly, the cells must first be lysed before the polypeptide is recovered.

Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during intracellular synthesis, isolation and/or purification.

Polynucleotides of the present invention may be used as diagnostic reagents, through detecting mutations in the associated gene. Detection of a mutated form of a gene is characterized by the polynucleotides set forth in the Sequence Listing in the cDNA or genomic sequence and which is associated with a dysfunction. Will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, or susceptibility to a disease, which results from under-expression, over-expression or altered spatial or temporal expression of the gene. Individuals carrying mutations in the gene may be detected at the DNA level by a variety of techniques well known in the art.

Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or it may be amplified enzymatically by using PCR, preferably RT-PCR, or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified

a. 3.

by hybridizing amplified DNA to labeled nucleotide sequences of the genes set forth in Table I. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence difference may also be detected by alterations in the electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing (see, for instance, Myers et al., Science (1985) 230:1242). Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (see Cotton et al., Proc Natl Acad Sci USA (1985) 85: 4397-4401).

An array of oligonucleotides probes comprising polynucleotide sequences or fragments thereof of the genes set forth in Table I can be constructed to conduct efficient screening of e.g., genetic mutations. Such arrays are preferably high density arrays or grids. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability, see, for example, M. Chee et al., Science, 274, 610-613 (1996) and other references cited therein.

Detection of abnormally decreased or increased levels of polypeptide or mRNA expression may also be used for diagnosing or determining susceptibility of a subject to a disease of the invention. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, nucleic acid amplification, for instance PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radio-immunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

Thus in another aspect, the present invention relates to a diagnostic kit comprising:

(a) a polynucleotide of the present invention, preferably the nucleotide sequence set forth in the Sequence Listing, or a fragment or an RNA transcript thereof;

(b) a nucleotide sequence complementary to that of (a);

10

15

20

30

35

- (c) a polypeptide of the present invention, preferably the polypeptide set forth in the Sequence Listing or a fragment thereof; or
- (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide set forth in the Sequence Listing .

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a disease, particularly diseases of the invention, amongst others.

5

10

15

20

25

30

35

The polynucleotide sequences of the present invention are valuable for chromosome localisation studies. The sequences set forth in the Sequence Listing are specifically targeted to, and can hybridize with, a particular location on an individual human chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found in, for example, V. McKusick, Mendelian Inheritance in Man (available online through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (co-inheritance of physically adjacent genes). Precise human chromosomal localisations for a genomic sequence (gene fragment etc.) can be determined using Radiation Hybrid (RH) Mapping (Walter, M. Spillett, D., Thomas, P., Weissenbach, J., and Goodfellow, P., (1994) A method for constructing radiation hybrid maps of whole genomes, Nature Genetics 7, 22-28). A number of RH panels are available from Research Genetics (Huntsville, AL, USA) e.g. the GeneBridge4 RH panel (Hum Mol Genet 1996 Mar;5(3):339-46 A radiation hybrid map of the human genome. Gyapay G, Schmitt K. Fizames C, Jones H, Vega-Czarny N, Spillett D, Muselet D, Prud'Homme JF, Dib C, Auffray C, Morissette J, Weissenbach J, Goodfellow PN). To determine the chromosomal location of a gene using this panel, 93 PCRs are performed using primers designed from the gene of interest on RH DNAs. Each of these DNAs contains random human genomic fragments maintained in a hamster background (human / hamster hybrid cell lines). These PCRs result in 93 scores indicating the presence or absence of the PCR product of the gene of interest. These scores are compared with scores created using PCR products from genomic sequences of known location. This comparison is conducted at http://www.genome.wi.mit.edu/.

The polynucleotide sequences of the present invention are also valuable tools for tissue expression studies. Such studies allow the determination of expression patterns of polynucleotides of the present invention which may give an indication as to the expression patterns of the encoded polypeptides in tissues, by detecting the mRNAs that encode them. The techniques used are well known in the art and include in situ hydridization techniques to clones arrayed on a grid, such as cDNA microarray hybridization (Schena et al, Science, 270, 467-470, 1995 and Shalon et al, Genome Res, 6, 639-645, 1996) and nucleotide amplification techniques such as PCR. A preferred method uses the TAQMAN (Trade mark) technology available from Perkin Elmer. Results from these studies can provide an

indication of the normal function of the polypeptide in the organism. In addition, comparative studies of the normal expression pattern of mRNAs with that of mRNAs encoded by an alternative form of the same gene (for example, one having an alteration in polypeptide coding potential or a regulatory mutation) can provide valuable insights into the role of the polypeptides of the present invention, or that of inappropriate expression thereof in disease. Such inappropriate expression may be of a temporal, spatial or simply quantitative nature.

A further aspect of the present invention relates to antibodies. The polypeptides of the invention or their fragments, or cells expressing them, can be used as immunogens to produce antibodies that are immunospecific for polypeptides of the present invention. The term "immunospecific" means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.

10

15

20

25

35

Antibodies generated against polypeptides of the present invention may be obtained by administering the polypeptides or epitope-bearing fragments, or cells to an animal, preferably a non-human animal, using routine protocols. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C., Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, Immunology Today (1983) 4:72) and the EBV-hybridoma technique (Cole *et al.*, Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).

Techniques for the production of single chain antibodies, such as those described in U.S. Patent No. 4,946,778, can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms, including other mammals, may be used to express humanized antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography.

Antibodies against polypeptides of the present invention may also be employed to treat diseases of the invention, amongst others.

Polypeptides and polynucleotides of the present invention may also be used as vaccines. Accordingly, in a further aspect, the present invention relates to a method for inducing an immunological response in a mammal that comprises inoculating the mammal with a polypeptide of the present invention, adequate to produce antibody and/or T cell immune response, including, for example, cytokine-producing T cells or cytotoxic T cells,

to protect said animal from disease, whether that disease is already established within the individual or not. An immunological response in a mammal may also be induced by a method comprises delivering a polypeptide of the present invention via a vector directing expression of the polynucleotide and coding for the polypeptide in vivo in order to induce such an immunological response to produce antibody to protect said animal from diseases of the invention. One way of administering the vector is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid. For use a vaccine, a polypeptide or a nucleic acid vector will be normally provided as a vaccine formulation (composition). The formulation may further comprise a suitable carrier. Since a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, subcutaneous, intra-muscular, intravenous, or intra-dermal injection). Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions that may contain anti-oxidants, buffers, bacteriostats and solutes that render the formulation instonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions that may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

10

15

20

25

30

35

Polypeptides of the present invention have one or more biological functions that are of relevance in one or more disease states, in particular the diseases of the invention hereinbefore mentioned. It is therefore useful to identify compounds that stimulate or inhibit the function or level of the polypeptide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those that stimulate or inhibit the function or level of the polypeptide. Such methods identify agonists or antagonists that may be employed for therapeutic and prophylactic purposes for such diseases of the invention as hereinbefore mentioned. Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical libraries, collections of chemical compounds, and natural product mixtures. Such agonists or antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of the polypeptide; a structural or functional mimetic thereof (see Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991)) or a small molecule. Such

small molecules preferably have a molecular weight below 2,000 daltons, more preferably between 300 and 1,000 daltons, and most preferably between 400 and 700 daltons. It is preferred that these small molecules are organic molecules.

The screening method may simply measure the binding of a candidate compound to the polypeptide, or to cells or membranes bearing the polypeptide, or a fusion protein thereof, by means of a label directly or indirectly associated with the candidate compound. Alternatively, the screening method may involve measuring or detecting (qualitatively or quantitatively) the competitive binding of a candidate compound to the polypeptide against a labeled competitor (e.g. agonist or antagonist). Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells bearing the polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Further, the screening methods may simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide of the present invention, to form a mixture, measuring an activity of the genes set forth in Table I in the mixture, and comparing activity of the mixture of the genes set forth in Table I to a control mixture which contains no candidate compound.

10

15

20

25

30

35

Polypeptides of the present invention may be employed in conventional low capacity screening methods and also in high-throughput screening (HTS) formats. Such HTS formats include not only the well-established use of 96- and, more recently, 384-well micotiter plates but also emerging methods such as the nanowell method described by Schullek et al, Anal Biochem., 246, 20-29, (1997).

Fusion proteins, such as those made from Fc portion and polypeptide of the genes set forth in Table I, as hereinbefore described, can also be used for high-throughput screening assays to identify antagonists for the polypeptide of the present invention (see D. Bennett *et al.*, J Mol Recognition, 8:52-58 (1995); and K. Johanson *et al.*, J Biol Chem, 270(16):9459-9471 (1995)).

The polynucleotides, polypeptides and antibodies to the polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.

A polypeptide of the present invention may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, ¹²⁵I), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete with the binding of the polypeptide to its receptors, if any. Standard methods for conducting such assays are well understood in the art.

5

10

15

20

25

30

Examples of antagonists of polypeptides of the present invention include antibodies or, in some cases, oligonucleotides or proteins that are closely related to the ligands, substrates, receptors, enzymes, etc., as the case may be, of the polypeptide, *e.g.*, a fragment of the ligands, substrates, receptors, enzymes, etc.; or a small molecule that bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.

Screening methods may also involve the use of transgenic technology and the genes set forth in Table I. The art of constructing transgenic animals is well established. For example, the genes set forth in Table I may be introduced through microinjection into the male pronucleus of fertilized oocytes, retroviral transfer into pre- or post-implantation embryos, or injection of genetically modified, such as by electroporation, embryonic stem cells into host blastocysts. Particularly useful transgenic animals are so-called "knock-in" animals in which an animal gene is replaced by the human equivalent within the genome of that animal. Knock-in transgenic animals are useful in the drug discovery process, for target validation, where the compound is specific for the human target. Other useful transgenic animals are so-called "knock-out" animals in which the expression of the animal ortholog of a polypeptide of the present invention and encoded by an endogenous DNA sequence in a cell is partially or completely annulled. The gene knock-out may be targeted to specific cells or tissues, may occur only in certain cells or tissues as a consequence of the limitations of the technology, or may occur in all, or substantially all, cells in the animal. Transgenic animal technology also offers a whole animal expression-cloning system in which introduced genes are expressed to give large amounts of polypeptides of the present invention

Screening kits for use in the above described methods form a further aspect of the present invention. Such screening kits comprise:

- (a) a polypeptide of the present invention;
- (b) a recombinant cell expressing a polypeptide of the present invention;
- (c) a cell membrane expressing a polypeptide of the present invention; or
 - (d) an antibody to a polypeptide of the present invention; which polypeptide is preferably that set forth in the Sequence Listing.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.

10

15

20

25

30

35

Glossary

The following definitions are provided to facilitate understanding of certain terms used frequently hereinbefore.

"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an

Fab or other immunoglobulin expression library.

"Isolated" means altered "by the hand of man" from its natural state, *i.e.*, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Moreover, a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated" even if it is still present in said organism, which organism may be living or non-living.

"Secreted protein activity or secreted polypeptide activity" or "biological activity of the secreted protein or secreted polypeptide" refers to the metabolic or physiologic function of said secreted protein including similar activities or improved activities or these activities with decreased undesirable side-effects. Also included are antigenic and immunogenic activities of said secreted protein.

"Secreted protein gene" refers to a polynucleotide comprising any of the attached nucleotide sequences or allelic variants thereof and/or their complements.

"Polynucleotide" generally refers to any polyribonucleotide (RNA) or polydeoxribonucleotide (DNA), which may be unmodified or modified RNA or DNA. "Polynucleotides" include, without limitation, single- and double-stranded DNA, DNA that

is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term "polynucleotide" also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications may be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.

5

10

"Polypeptide" refers to any polypeptide comprising two or more amino acids joined 15 to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as post-translational 20 processing, or by chemical modification techniques that are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications may occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present to the 25 same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-translation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-30 ribosylation, amidation, biotinylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, crosslinking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, 35 glycosylation, GPI anchor formation, hydroxylation, iodination, methylation,

myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination (see, for instance, Proteins - Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993; Wold, F., Post-translational Protein Modifications: Perspectives and Prospects, 1-12, in Post-translational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter *et al.*, "Analysis for protein modifications and nonprotein cofactors", Meth Enzymol, 182, 626-646, 1990, and Rattan *et al.*, "Protein Synthesis: Post-translational Modifications and Aging", Ann NY Acad Sci, 663, 48-62, 1992).

5

10

15

20

25

30

35

ţ.

.

÷.

"Fragment" of a polypeptide sequence refers to a polypeptide sequence that is shorter than the reference sequence but that retains essentially the same biological function or activity as the reference polypeptide. "Fragment" of a polynucleotide sequence refers to a polynucleotide sequence that is shorter than the reference sequence set forth in the Sequence Listing.

"Variant" refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains the essential properties thereof. A typical variant of a polynucleotide differs in nucleotide sequence from the reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from the reference polypeptide. Generally, alterations are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, insertions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Typical conservative substitutions include Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe and Tyr. A variant of a polynucleotide or polypeptide may be naturally occurring such as an allele, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. Also included as variants are polypeptides having one or more post-translational modifications, for instance glycosylation, phosphorylation, methylation, ADP ribosylation and the like. Embodiments include methylation of the N-terminal amino acid, phosphorylations of serines and threonines and modification of C-terminal glycines.

"Allele" refers to one of two or more alternative forms of a gene occurring at a given locus in the genome.

"Polymorphism" refers to a variation in nucleotide sequence (and encoded polypeptide sequence, if relevant) at a given position in the genome within a population.

5

10

15

20

25

30

"Single Nucleotide Polymorphism" (SNP) refers to the occurrence of nucleotide variability at a single nucleotide position in the genome, within a population. An SNP may occur within a gene or within intergenic regions of the genome. SNPs can be assayed using Allele Specific Amplification (ASA). For the process at least 3 primers are required. A common primer is used in reverse complement to the polymorphism being assayed. This common primer can be between 50 and 1500 bps from the polymorphic base. The other two (or more) primers are identical to each other except that the final 3' base wobbles to match one of the two (or more) alleles that make up the polymorphism. Two (or more) PCR reactions are then conducted on sample DNA, each using the common primer and one of the Allele Specific Primers.

"Splice Variant" as used herein refers to cDNA molecules produced from RNA molecules initially transcribed from the same genomic DNA sequence but which have undergone alternative RNA splicing. Alternative RNA splicing occurs when a primary RNA transcript undergoes splicing, generally for the removal of introns, which results in the production of more than one mRNA molecule each of that may encode different amino acid sequences. The term splice variant also refers to the proteins encoded by the above cDNA molecules.

"Identity" reflects a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, determined by comparing the sequences. In general, identity refers to an exact nucleotide to nucleotide or amino acid to amino acid correspondence of the two polynucleotide or two polypeptide sequences, respectively, over the length of the sequences being compared.

"% Identity" - For sequences where there is not an exact correspondence, a "% identity" may be determined. In general, the two sequences to be compared are aligned to give a maximum correlation between the sequences. This may include inserting "gaps" in either one or both sequences, to enhance the degree of alignment. A % identity may be determined over the whole length of each of the sequences being compared (so-called global alignment), that is particularly suitable for sequences of the same or very similar length, or over shorter, defined lengths (so-called local alignment), that is more suitable for sequences of unequal length.

"Similarity" is a further, more sophisticated measure of the relationship between two polypeptide sequences. In general, "similarity" means a comparison between the amino acids of two polypeptide chains, on a residue by residue basis, taking into account not only exact correspondences between a between pairs of residues, one from each of the sequences being compared (as for identity) but also, where there is not an exact correspondence, whether, on an evolutionary basis, one residue is a likely substitute for the other. This likelihood has an associated "score" from which the "% similarity" of the two sequences can then be determined.

Methods for comparing the identity and similarity of two or more sequences are 10 well known in the art. Thus for instance, programs available in the Wisconsin Sequence Analysis Package, version 9.1 (Devereux J et al, Nucleic Acids Res, 12, 387-395, 1984, available from Genetics Computer Group, Madison, Wisconsin, USA), for example the programs BESTFIT and GAP, may be used to determine the % identity between two polynucleotides and the % identity and the % similarity between two polypeptide sequences. BESTFIT uses the "local homology" algorithm of Smith and Waterman (J Mol Biol, 147,195-197, 1981, Advances in Applied Mathematics, 2, 482-489, 1981) and finds the best single region of similarity between two sequences. BESTFTT is more suited to comparing two polynucleotide or two polypeptide sequences that are dissimilar in length, the program assuming that the shorter sequence represents a portion of the longer. In comparison, GAP aligns two sequences, finding a "maximum similarity", according to the algorithm of Neddleman and Wunsch (J Mol Biol, 48, 443-453, 1970). GAP is more suited to comparing sequences that are approximately the same length and an alignment is expected over the entire length. Preferably, the parameters "Gap Weight" and "Length Weight" used in each program are 50 and 3, for polynucleotide sequences and 12 and 4 for polypeptide sequences, respectively. Preferably, % identities and similarities are determined when the two sequences being compared are optimally aligned.

15

20

25

30

Other programs for determining identity and/or similarity between sequences are also known in the art, for instance the BLAST family of programs (Altschul S F et al, J Mol Biol, 215, 403-410, 1990, Altschul S F et al, Nucleic Acids Res., 25:389-3402, 1997, available from the National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA and accessible through the home page of the NCBI at www.ncbi.nlm.nih.gov) and FASTA (Pearson W R, Methods in Enzymology, 183, 63-99, 1990; Pearson W R and Lipman D J, Proc Nat Acad Sci USA, 85, 2444-2448,1988, available as part of the Wisconsin Sequence Analysis Package).

Preferably, the BLOSUM62 amino acid substitution matrix (Henikoff S and Henikoff J G, Proc. Nat. Acad Sci. USA, 89, 10915-10919, 1992) is used in polypeptide sequence comparisons including where nucleotide sequences are first translated into amino acid sequences before comparison.

Preferably, the program BESTFIT is used to determine the % identity of a query polynucleotide or a polypeptide sequence with respect to a reference polynucleotide or a polypeptide sequence, the query and the reference sequence being optimally aligned and the parameters of the program set at the default value, as hereinbefore described.

5

10

15

20

25

30

35

"Identity Index" is a measure of sequence relatedness which may be used to compare a candidate sequence (polynucleotide or polypeptide) and a reference sequence. Thus, for instance, a candidate polynucleotide sequence having, for example, an Identity Index of 0.95 compared to a reference polynucleotide sequence is identical to the reference sequence except that the candidate polynucleotide sequence may include on average up to five differences per each 100 nucleotides of the reference sequence. Such differences are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion. These differences may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between these terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polynucleotide sequence having an Identity Index of 0.95 compared to a reference polynucleotide sequence, an average of up to 5 in every 100 of the nucleotides of the in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies mutatis mutandis for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.

Similarly, for a polypeptide, a candidate polypeptide sequence having, for example, an Identity Index of 0.95 compared to a reference polypeptide sequence is identical to the reference sequence except that the polypeptide sequence may include an average of up to five differences per each 100 amino acids of the reference sequence. Such differences are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion. These differences may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between these terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polypeptide sequence having an Identity Index of 0.95 compared to a reference polypeptide sequence, an average of up to 5

in every 100 of the amino acids in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies *mutatis* mutandis for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.

The relationship between the number of nucleotide or amino acid differences and the Identity Index may be expressed in the following equation:

$$n_a \le x_a - (x_a \bullet I),$$

in which:

5

15

20

25

30

na is the number of nucleotide or amino acid differences,

x_a is the total number of nucleotides or amino acids in a sequence set forth in the
 Sequence Listing,

I is the Identity Index,

• is the symbol for the multiplication operator, and in which any non-integer product of x_a and I is rounded down to the nearest integer prior to subtracting it from x_a .

"Homolog" is a generic term used in the art to indicate a polynucleotide or polypeptide sequence possessing a high degree of sequence relatedness to a reference sequence. Such relatedness may be quantified by determining the degree of identity and/or similarity between the two sequences as hereinbefore defined. Falling within this generic term are the terms "ortholog", and "paralog". "Ortholog" refers to a polynucleotide or polypeptide that is the functional equivalent of the polynucleotide or polypeptide in another species. "Paralog" refers to a polynucleotideor polypeptide that within the same species which is functionally similar.

"Fusion protein" refers to a protein encoded by two, often unrelated, fused genes or fragments thereof. In one example, EP-A-0 464 533-A discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for use in therapy and diagnosis resulting in, for example, improved pharmacokinetic properties [see, e.g., EP-A 0232 262]. On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed, detected and purified.

All publications and references, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference in their entirety as if each individual publication or reference were specifically and individually indicated to be incorporated by reference herein as being fully set forth. Any patent application to which

this application claims priority is also incorporated by reference herein in its entirety in the manner described above for publications and references.

Table I.

	GSK	Nucleic Acid	Corresponding Protein
Gene Name	Gene ID	SEQ ID NO's	SEQ ID NO's
sbg960509cbrecpt	960509	SEQ ID NO:1	SEQ ID NO:45
sbg614126complfH	614126	SEQ ID NO:2	SEQ ID NO:46
		SEQ ID NO:3	SEQ ID NO:47
sbg120703RNase	120703	SEQ ID NO:4	SEQ ID NO:48
sbg98530TS	98530	SEQ ID NO:5	SEQ ID NO:49
Ü		SEQ ID NO:6	SEQ ID NO:50
sbg563917RDP	63917	SEQ ID NO:7	SEQ ID NO:51
•		SEQ ID NO:8	SEQ ID NO:52
sbg618069LRR	618069	SEQ ID NO:9	SEQ ID NO:53
· ·		SEQ ID NO:10	SEQ ID NO:54
sbg934114Relaxin	934114	SEQ ID NO:11	SEQ ID NO:55
sbg99174LOX-like	99174	SEQ ID NO:12	SEQ ID NO:56
sbg995002PIGR	995002	SEQ ID NO:13	SEQ ID NO:57
sbg1033026C1q	1033026	SEQ ID NO:14	SEQ ID NO:58
		SEQ ID NO:15	SEQ ID NO:59
sbg1003675RNase	1003675	SEQ ID NO:16	SEQ ID NO:60
sbg1015258PLM	1015258	SEQ ID NO:17	SEQ ID NO:61
sbg1003328IG	1003328	SEQ ID NO:18	SEQ ID NO:62
		SEQ ID NO:19	SEQ ID NO:63
sbg1020829SGLT	1020829	SEQ ID NO:20	SEQ ID NO:64
sbg1005450UDPGT	1005450	SEQ ID NO:21	SEQ ID NO:65
		SEQ ID NO:22	SEQ ID NO:66
sbg1002620TIa	1002620	SEQ ID NO:23	SEQ ID NO:67
		SEQ ID NO:24	SEQ ID NO:68
sbg1002620TIb	1002620	SEQ ID NO:25	SEQ ID NO:69
sbg102200MCTa	102200	SEQ ID NO:26	SEQ ID NO:70
Ü	l	SEQ ID NO:27	SEQ ID NO:71
sbg102200MCTb	102200	SEQ ID NO:28	SEQ ID NO:72
sbg1020380LYG	1020380	SEQ ID NO:29	SEQ ID NO:73
		SEQ ID NO:30	SEQ ID NO:74
sbg1007026SGLT	1007026	SEQ ID NO:31	SEQ ID NO:75
sbg1012732GLUT	1012732	SEQ ID NO:32	SEQ ID NO:76
_		SEQ ID NO:33	SEQ ID NO:77
sbg1012732GLUTb	1012732	SEQ ID NO:34	SEQ ID NO:78
sbg1018172CSP	1018172	SEQ ID NO:35	SEQ ID NO:79
		SEQ ID NO:36	SEQ ID NO:80
sbg1004570ERGIC	1004570	SEQ ID NO:37	SEQ ID NO:81
20PIOO42 LODICOTO	100/5/0	SEQ ID NO:38	SEQ ID NO:82
sbg1016995IGBrecpt	1016995	SEQ ID NO:39	SEQ ID NO:83
208 10 10 25 27 CD1 GCht	1010993	SEQ ID NO:40	SEQ ID NO:84
sbg1151bSREC	1151	SEQ ID NO:41	SEQ ID NO:85
SUBTISTUSKEC	1131	SEQ ID NO:41	SEQ ID NO:86
-h-1200054 A NIZ	1399854		SEQ ID NO:87
sbg1399854ANK	1298624	SEQ ID NO:43 SEQ ID NO:44	SEQ ID NO:88

Table II

Gene Name	Gene Family	Closest Polynucleotide by homology	Closest Polypeptide by homology	Cell Localization (by
sbg960509 cbrecpt	Carbohydra te-binding receptor	GB:AC007395 Direct submitted (25-APR-1999) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Parkway, St. Louis, MO 63108, USA	Mouse Kupffer cell c- type lectin receptor, gi: 7949066 Submitted (25-OCT-1996) to the DDBJ/EMBL/GenBank databases.	homology) Membrane- bound
sbg614126 complfH	Compleme nt factor H	SC:AL353809 Submitted (20-JAN-2001) by Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Human H-factor like 1, gi:11321587 Estaller, C., Koistinen, V., Schwaeble, W., Dierich, M.P., and Weiss, E.H. J. Immunol. 146, 3190-3196 (1991)	Secreted
sbg120703 RNase	RNase	GB:AL157687 Direct Submitted (24-MAY-2000) to the EMBL/GenBank/DDBJ databases by Genoscope.	Human keratinocyte- derived RNase-like protein, geneseqp: Y44192 Submitted by INNOGENETICS NV Application number and publication date: EP- 943679-A1, 22-SEP-99	Secreted .
sbg98530T S	Thrombosp ondin type I	GB:AC027307 Submitted (30-MAR-2000) Production Sequencing Facility, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA	Mouse RIKEN cDNA 2010109H09 gene, gi:13385092 The RIKEN Genome Exploration Research Group Phase II Team and FANTOM Consortium. Nature 409, 685-690 (2001)	Secreted
sbg563917 RDP	Renal dipeptidase	GB:AC009077 Directly submitted (03-AUG-1999) by Production Sequencing Facility, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA	Human putative metallopeptidase (family M19) gi:11641273 Chen,J.M., Fortunato,M. and Barrett, A.J. Submitted (02-NOV-2000) Chen J.M., MRC Molecular Enzymology Laboratory, The Babraham Institute, Babraham, Cambridge, CB2 4AT, UK	Secreted

able II (cont) Gene Name	Gene Family	Closest Polynucleotide by homology	Closest Polypeptide by homology	Cell Localization (by homology)
sbg618069 LRR	Leucine- rich repeat	GB:AL589765 Submitted (16-MAR- 2001) by Sanger Centre, Hinxton, Cambridgeshire, CB10 ISA, UK.	Macaca fascicularis brain protein, gi: 9651088 Submitted (28-JUL-2000) to the DDBJ/EMBL/GenBank databases. Katsuyuki Hashimoto, National Institute of Infectious Diseases, Division of Genetic Resources; 23- 1, Toyama 1-chome, Shinjuku-ku, Tokyo 162-8640, Japan	Membrane- bound
sbg934114 Relaxin	Insulin	JGI:CIT978SKB_55O6 Found at Joint Genome Institute DoE/LLNL/LBNL/LANL.	Mouse insulin-like peptide (relaxin/insulin- like protein), gi:7387805 Conklin D, Lofton-Day CE, Haldeman BA, Ching A, Whitmore TE, Lok S, Jaspers S. 1999. Genomics 60:50-56.	Secreted
sbg99174L OX-like	C-type lectin	GB:AL137062 Direct submitted (09- AUG-2000) Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Mouse putative protien, gi: 12855891 The RIKEN Genome Exploration Research Group Phase II Team and FANTOM Consortium. Nature 409, 685-690 (2001)	Membrane- bound
sbg995002 PIGR	Polymeric - immublob ulin receptor (PIGR)	GB:AC027192 Direct submitted (28- MAR-2000) Whitehead Institute/MTT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141, USA.	Human TANGO 354 protein, geneseqp: B66271 Submitted by (MILL-) MILLENNIUM PHARM INC Application number and publication date: WO200100673-A1, 04-JAN-01	Membrane- bound
sbg103302 6C1q	Clq	GB:AL359736 Direct submitted (22-AUG-2000) Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Human adipocyte- specific secretory protein, gi: 4757760 Maeda,K., Okubo,K., Shimomura,I., Funahashi,T., Matsuzawa,Y. and Matsubara,K. Biochem. Biophys. Res. Commun. 221 (2), 286- 289 (1996)	Secreted

Table II (cont) Gene Name	Gene Family	Closest Polynucleotide by homology	Closest Polypeptide by homology	Cell Localization (by homology)
sbg100367 5RNase	RNase	EMBL:CNS01RIH Found at European Molecular Biology Laboratory	Chinchilla brevicaudata pancreatic ribonuclease, gi:133205 Van Den Berg A, Van Den Hende-Timmer L, Beintema JJ. 1976. Biochim Biophys Acta 453:400-9.	Secreted
sbg101525 8PLM	Phosphole mman (PLM)	GB:AL022345 Direct submitted (10-DEC-1999) by Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Human phospholemman-like protein, geneseqp:W51104 Submitted by (HUMA-) HUMAN GENOME SCI INC Application number and publication date: WO9839448-A2, 11-SEP-98	Membrane- bound
sbg100332 8IG	Immunogl obulin	EMBL:HSBA536C5 Found at European Molecular Biology Laboratory.	Human immune system molecule, geneseqp:B15536 Submitted by (INCY-) INCYTE PHARM INC Application number and publication date: WO200060080-A2, 12-OCT-00	Membrane- bound
sbg102082 9SGLT	Na+/gluco se cotranspor ter	GB:AJ009617 Directly submitted (17- JUL-1998) by MPIMG, Abt.Lehrach, Max Planck Institut fuer Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany.	Oryctolagus cuniculus Na/glucose cotransporters, gi:520469 Pajor,A.M. 1994 Biochim. Biophys. Acta 1194 (2), 349-51.	Membrane- bound
sbg100545 OUDPGT	UDP- glucuronos yltransfera se(UDPG T)	GB:AC016612 Submitted (04-DEC- 1999) Production Sequencing Facility, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA	Human PRO1780 protein, geneseqp: B24025 Submitted by GENENTECH INC Application number and publication date: WO200053750-A1, 14-SEP-00	Membrane- bound
sbg100262 OTIa	Cysteine- rich secretory protein (CRISP) trypsin inhibitor	GB:AC025280 Submitted (08-MAR-2000) by Production Sequencing Facility, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA	Human hypothetical protein DKFZp434B044, gi: 13899332 Wiemann,S., Weil,B. et al. Genome Res. 11 (3), 422-435 (2001)	Secreted

Gene Name	Gene Family	Closest Polynucleotide by homology	Closest Polypeptide by homology	Cell Localization (by homology)
sbg100262 OTIb	Cysteine- rich secretory protein (CRISP) trypsin inhibitor	GB:AC025280 Submitted (08-MAR- 2000) by Production Sequencing Facility, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA	Rat late gestation lung protein 1, gi:4324682 Kaplan,F., Ledoux,P., Kassamali,F.Q., Gagnon,S., Post,M., Koehler,D., Deimling,J. and Sweezey,N.B. Am. J. Physiol. 276 (6), L1027-L1036 (1999)	Secreted
sbg102200 MCTa	Monocarb oxylate cotranspor ter (MCT1)	GB: AC015918 Directly submitted (17- NOV-1999) by Whitehead Institute/MIT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141, USA.	Mouse unnamed protein product, gi:7670446 Submitted (12-APR-2000) to the DDBJ/EMBL/GenBank databases by Katsuyuki Hashimoto, National Institute of Infectious Diseases, Division of Genetic Resources; 23-1, Toyama 1-chome, Shinjuku-ku, Tokyo 162-8640, Japan	Membrane- bound
sbg102200 MCTb	Monocarb oxylate cotranspor ter (MCT1)	GB: AC015918 Directly submitted (17-NOV-1999) by Whitehead Institute/MIT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141, USA.	Human solute carrier 16 (monocarboxylic acid transporters), member 8, gi:13655082 Submitted (17-APR- 2001) by National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA	Membrane- 'bound
sbg102038 0LYG	Goose- type lysozyme G	GB:AC023965 Directly submitted (20-FEB-2000) by Whitehead Institute/MIT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141, USA	Lysozyme G (1,4-beta- N-acetylmuramidas E) (Goose-type lysozyme). gi:126634 Schoentgen, F., Jolles,J. and Jolles, P. Eur. J. Biochem. 123 (3), 489-497 (1982)	Secreted
sbg100702 6SGLT	Sodium- glucose cotranspor ter	GB:AC046167 Direct submitted (13-APR-2000) Whitehead Institute/MIT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141.	Human transport protein TPPT-13, geneseqp: B60093 Submitted by INCYTE GENOMICS INC Application number and publication date: WO200078953-A2, 28-DEC-00	Membrane- bound

Gene Name		Tal	T	
Gene Name	1	Closest Polynucleotide	Closest Polypeptide by	Cell
	Family	by homology	homology	Localization
				(by
1 101050	Glucose	GB:AP000350	Transaction and the second	homology)
sbg101273	transporte	Direct submitted (10-	Human glucose	Membrane-
2GLUT	r	JUN-1999) to the	transporter GLUT10, gi:13540598	bound
	-	DDBJ/EMBL/GenBank	Submitted (10-FEB-	
		databases. Nobuyoshi	2000) Joost H.G.,	
		Shimizu, Keio university,	Institute of	
	}	school of medicine,	Pharmacology and	
		Molecular Biology; 35	Toxicology, Medical	1.
		Shinanomachi, Shinjuku-	Faculty, Technical	
	1	ku, Tokyo 160-0016,	University of Aachen,	
}	j	Japan.	Wendlingweg 2,	
			Aachen, D-52057,	
	-		GERMANY	
sbg101273	Glucose	GB:AP000350	Human glucose	Membrane-
2GLUTb	transporte	Direct submitted (10-	transporter GLUT10,	bound
	r	JUN-1999) to the	gi:13540598	
		DDBJ/EMBL/GenBank databases. Nobuyoshi	Submitted (10-FEB-	
		Shimizu, Keio university,	2000) Joost H.G., Institute of	
[school of medicine,	Pharmacology and	ľ
		Molecular Biology; 35	Toxicology, Medical	
		Shinanomachi, Shinjuku-	Faculty, Technical	
		ku, Tokyo 160-0016,	University of Aachen,	ľ
		Japan.	Wendlingweg 2,	
			Aachen, D-52057,	
			GERMANY	
sbg101817	Chondroit	EMBL:AL354819,	Lytechinus variegatus	Secreted
2CSP	in sulfate	and SC:AL590007.	embryonic blastocoelar	
	proteoglyc	Submitted (30-APR-2001	extracellular matrix	i
1	an .	and 04-MAY-2001) by	protein , gi:9837426	
		Sanger Centre, Hinxton, Cambridgeshire, CB10	Submitted (14-JUL-	
		1SA, UK.	2000) Biological Sciences, Carnegie	
		EMBL:AC017111,	Mellon University,	
		Submitted (09-DEC-	4400 Fifth Ave,	
	•	1999) Genome	Pittsburgh, PA 15213,	Ì
		Sequencing Center,	USA	l
1		Washington University		
		School of Medicine, 4444		i
		Forest Park Parkway, St.		}
	TD C · ·	Louis, MO 63108, USA		
sbg100457	ER-Golgi	GB:AC020705	Human ERGL protein,	Membrane-
0ERGIC	intermedia	Submitted (08-JAN-2000)	gi:11141891	bound
	te	Genome Sequencing	Submitted (06-SEP-	
	compartm ent protein	Center, Washington	2000) Laboratory of	
	cur brotein	University School of Medicine, 4444 Forest	Molecular Biology,	ļ
		Park Parkway, St. Louis,	NCI, NIH, 37 Convent	
		MO 63108, USA	Dr., Bldg. 37, Rm.]
1		1,10 03100, 00A	4B20, Bethesda, MD 20892, USA	}
			20032, USA	

Gene Name	Gene Family	Closest Polynucleotide by homology	Closest Polypeptide by homology	Cell Localization (by homology)
sbg101699 5IGBrecpt	Immunogl obulin receptor	GB:AL353721 Submitted (07-JUL-2001) Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Human immunoglobulin superfamily receptor translocation associated 1, gi:14550416 Hatzivassiliou,G., Miller,I.J., Takizawa,J., et al. Immunity 14 (3), 277-289 (2001)	Membrane- bound
sbg1151bS REC	EGF-like LDL receltor protein	GB:AC005500 Chen,F., D,L., Do,T., Dumanski,J.P. and Roe,B.A. Direct submission (31-MAY-01) Department Of Chemistry and Biochemistry, The University Of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019, USA	Human nurse cell receptor B6TNC#10b, geneseqp: B60395 Submitted by (SHIO) SHIONOGI & CO LTD Application number and publication date: JP2000308492-A, 07-NOV-00	Membrane- bound
sbg139985 4ANK	The ankyrin repeat family	GB: AC020658 Direct submitted (08- JAN-2000) Multimegabase Sequencing Center, University of Washington, PO BOX 357730, Seattle, WA 98195, USA	Human KIAA1223 protein, gi:6330617 Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N, and Ohara O; 1999 DNA Res 6:337-45.	Cytosolic

Table III

Gene Name	Uses	Associated
		Diseases
sbg960509 cbrecpt	An embodiment of the invention is the use of sbg960509cbrecpt in the treatment or diagnosis of cancer. A close homologue of sbg960509cbrecpt is Langerin. Langerin was a type II Ca2+-dependent lectin, an endocytic receptor and expressed by Langerhans cells (LC). Transfection of Langerin cDNA into fibroblasts created a compact network of membrane structures with typical features of Birbeck granules(BG). It was proposed that induction of BG was a consequence of the antigen-capture function of Langerin, allowing routing into these organelles and providing access to a nonclassical antigen-processing pathway (Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S. 2000. Immunity Jan;12(1):71-81). A striking incongruity was found between variably spliced transcripts for the second asialoglycoprotein receptor polypeptide, H2, in normal and transformed human liver cells (Paietta E, Stockert RJ, Racevskis J. 1992. Hepatology Mar;15(3):395-402). Human macrophage cell surface C-type lectin was demonstrated to recognize Tn Ag, a well-known human carcinoma-associated epitope (Suzuki N, Yamamoto K, Toyoshima S, Osawa T, Irimura T.1996. J Immunol Jan 1;156(1):128-35). An embodiment of the invention is the use of sbg614126complfH in the diagnosis or treatment of cancer, Alzheimer disease, and/or tumor cell evasion. A close homologue of sbg614126complfH is Human complement factor H. Human complement factor H was detected by the AM34 antibody in the cerebrospinal fluid from an Alzheimer's disease patient. It was recently found that AM34 was capable of staining senile plaques positively and factor H was associated with senile plaques in the human brain (Honda S, Itoh F, Yoshimoto M, Ohno S, Hinoda Y, Imai K. 2000. J Gerontol A Biol Sci Med Sci.	
	from an Alzheimer's disease patient. It was recently found that AM34 was capable of staining senile plaques positively and factor H was associated with senile plaques in the human brain (Honda S, Itoh F, Yoshimoto M, Ohno S, Hinoda Y, Imai K. 2000. J Gerontol A Biol Sci Med Sci. May;55(5):M265-9). It was also suggested that exceptional	
	resistance of human H2 glioblastoma cells to complement-mediated killing was due to the production and binding of factor H and factor H-like protein 1 (Junnikkala S, Jokiranta TS, Friese MA, Jarva H, Zipfel PF, Meri S. 2000. J Immunol. Jun 1;164(11):6075-81). Moreover, factor H was shown to bind to bone sialoprotein and osteopontin and enable tumor cell evasion of complement-mediated attack (Fedarko NS, Fohr B, Robey PG, Young MF, Fisher LW. 2000. J Biol Chem. Jun 2;275(22):16666-72). Finally, complement factor H gene mutation was associated with autosomal recessive atypical hemolytic uremic syndrome (Ying L, Katz Y, Schlesinger M, Carmi R, Shalev H, Haider N, Beck G, Sheffield VC, Landau D. 1999. Am J Hum Genet	

Cable III (cont Gene Name	Uses	Associated
		Diseases
sbg120703 RNase	An embodiment of the invention is the use of sbg120703Rnase as a tool for anticancer therapy, and treating apoptosis-related disorders. It has been shown that a genetic-engineered pancreatic RNase has cytotoxic action on mouse and human tumor cells, but lacks any appreciable toxicity on human and mouse normal cells. This variant of human pancreatic RNase selectively sensitized cells derived from a human thyroid tumor to apoptotic death. Because of its selectivity for tumor cells, and because of its human origin, this protein is thought to represent a promising tool for anticancer therapy (Piccoli R, Di Gaetano S, De Lorenzo C, Grauso M, Monaco C, Spalletti-Cernia D, Laccetti P, Cinatl J,	Cancer and infection
	Matousek J, D'Alessio G. 1999. Proc Natl Acad Sci U S A 96:7768-73). In addition, RNase itself can be used to treat an RNA viral infection, and its antagonist may be useful in treating apoptosis-related disorders.	
sbg98530T S	An embodiment of the invention is the use of sbg98530TS in the wound healing processes, development of the nervous system, and affecting cell migration, survival, or angiogenesis. Close homologues of sbg98530TS are thrombospondins. The thrombospondins are a family of proteins found widely in the embryonic extracellular matrix, and the expression patterns and in vitro properties of many thrombospondins suggest potential roles in the guidance of cell and growth cone migration, especially during the development of the nervous system (Adams JC, 2000. Tucker RP Dev Dyn 218:280-99). Cell interactions with extracellular matrices are important to pathological changes that occur during cell transformation and tumorigenesis. The thrombospondin-1 has been suggested to modulate tumor phenotype by affecting cell migration, survival, or angiogenesis (Liaw L, Crawford HC. 1999. Braz J Med Biol Res 32:805-12). In addition, thrombospondin-1 is also a transient component of extracellular matrix in developing and repairing tissues (Adams JC. 1997. Int J Biochem Cell Biol 29:861-5).	Cancer, wound healing disorders
sbg563917 RDP	An embodiment of the invention is the use of sbg563917RDP in treatment or diagnosis of chronic renal failure and aged eye lenses and cataracts. Close homologues of sbg563917RDP are renal and lens dipeptidases. It has been reported that the renal dipeptidase activity was significantly lower in the chronic renal failure group (Fukumura Y, Kera Y, Oshitani S, Ushijima Y, Kobayashi I, LiuZ, Watanabe T, Yamada R, Kikuchi H, Kawazu S and Yabuuchi M. 1999 Ann Clin Biochem Mar;36 (Pt 2):221-5). In contrast, increased lens dipeptidase activity was detected in aging and cataracts (Sulochana KN, Ramakrishnan S and Punitham R.1999 Br J Ophthalmol Jul;83(7):885).	Renal diseases, aging, cataract, cancer, and Alzheimer disease

77-	1.1.	TTY	,	4
1 a	Die	ш	(con	IE).

Gene Name	Uses	Associated
	An ombodiment of the control of the	Diseases
sbg618069	An embodiment of the invention is the use of sbg618069LRR	Tango-associated
LRR	in treatment or diagnosis of neural development and the adult	diseases,
	nervous system disorders. Close homologues of	disorders
	sbg618069LRR are Leucine-rich repeat proteins. Leucine-rich	associated with
	repeat protein, the spineless-aristapedia, has been shown to	the preservation
	interact with tango bHLH-PAS proteins for controlling	and maintenance
	antennal and tarsal development in Drosophila (Emmons RB,	of gastrointestinal
	Duncan D, Estes PA, Kiefel P, Mosher JT, Sonnenfeld M,	mucosa and the
	Ward MP, Duncan I and Crews ST. 1999. Development	repair of acute
	Sep;126(17):3937-45). In mouse, neuronal Leucine-Rich	and chronic
	Repeat NLRR-1 and NLRR-2 mRNAs were expressed	mucosal lesions,
	primarily in the central nervous system and may play	Parkinson's
	significant but distinct roles in neural development and in the	disease,
	adult nervous system (Taguchi A, Wanaka A, Mori T,	Alzheimer's
	Matsumoto K, Imai Y, Tagaki T and Tohyama M. 1996.	disease, ALS,
	Brain Res Mol Brain Res Jan;35(1-2):31-40). Furthermore, a	neuropathies,
	new member of the leucine-rich repeat superfamily GAC1	cancer, wound
	was amplified and overexpressed in malignant gliomas	healing and tissue
	(Almeida A, Zhu XX, Vogt N, Tyagi R, Muleris M,	гераіг
	Dutrillaux AM, Dutrillaux B, Ross D, Malfoy B and Hanash	
	S. 1998. Oncogene Jun 11;16(23):2997-3002).	
sbg934114	An embodiment of the invention is the use of	Cancer,
Relaxin	sbg934114Relaxin in treatment or diagnosis of collagen	rheumatic
	remodeling, breast cancer, and uterine contractile disorders. A	diseases, heart
ľ	close homologue of sbg934114Relaxin is Relaxin. Relaxin	diseases,
	has various biologic activities, including the induction of	systemic
	collagen remodeling and consequent softening of the tissues	sclerosis
	of the birth canal during delivery, the inhibition of uterine	(scleroderma),
	contractile activity, and the stimulation of growth and	and preterm birth
	differentiation of the mammary gland (Bani D. 1997. Gen	
.]	Pharmacol 28:13-22). Relaxin belongs to the insulin	
ľ	superfamily, and is produced primarily by the corpus luteum	.
1	in both pregnant and nonpregnant females. In males, relaxin is	
1	synthesized in the prostate and released in the seminal fluid	
}	(Goldsmith LT, Weiss G, Steinetz BG. 1995. Endocrinol	
l	Metab Clin North Am 24:171-86). It has been further	
	demonstrated that relaxin regulates growth and differentiation	
- !	of breast cancer cells in culture, promotes dilation of blood	
	vessels in several organs, including the uterus, the mammary	
	gland, the lung and the heart, has a chronotropic action on the	
	heart, inhibits the release of histamine by mast cells,	
	depresses aggregation of platelets and their release by	Ì
	megakaryocytes, and influences the secretion of hormones by	
ſ	the pituitary gland (Bani D. 1997. Gen Pharmacol 28:13-22).	ì
	In addition, some reports have shown that relaxin is effective	į
}	in decreasing skin involvement in systemic sclerosis (Furst	ŀ
	DE. 1998. Curr Opin Rheumatol 10:123-8).	}

Gene Name	Uses	Associated Diseases
	An embodiment of the invention is the use of	Cardiovascular
sbg99174L	sbg99174LOX-like in treatment or diagnosis of endothelial	disorders (e.g.
OX-like	function or atherosclerosis. A close homologue of	atherosclerosis,
	sbg99174LOX-like is oxidized low-density lipoprotein	hypertension,
	receptor 1. sbg99174LOX-like as well as oxidized low-	stroke),
	density lipoprotein receptor 1, contain a C-type lectin domain	, ,
	(CTL) (Colonna M, Samaridis J, Angman L. 2000. Eur J	
	Immunol 30:697-704). Evidence suggests that oxidized low-	
	density lipoprotein (OxLDL) plays a critical role in the	
	changes in endothelial function. Lectin-like OxLDL receptor-	
	1 (LOX-1) is the major endothelial OxLDL receptor.	
	Functional changes of endothelial cells are implicated in the	1
	earliest stage of the pathogenesis of atherosclerosis (Aoyama	
	T, Sawamura T, Furutani Y, Matsuoka R, Yoshida MC,	
	Fujiwara H, Masaki T. Biochem J. 1999 339 (Pt 1):177-84).	
sbg995002	An embodiment of the invention is the use of	Infection and
PIGR	sbg995002PIGR to actively transport IgA and IgM to the	inflammation
IIOK	apical surface of epithelia. A close homologue of	such as
	sbg995002PIGR is polymeric-immunoglobulin receptor. The	inflammatory
	polymeric-immunoglobulin receptor binds polymeric IgA and IgM at the basolateral surface of epithelial cells. PIGR	bowel disease, gluten-sensitive
į	knockout mice completely lack active external IgA and IgM	enterropathy, an
	translocation, but remain normal and fertile (Johansen FE,	urinary tract
	Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P,	infection)
1	Betsholtz C, Brandtzaeg P. 1999. J Exp Med 190:915-22). In	infection, .
	addition, it has been reported that PIGR can be upregulated by	
	tumor necrosis factor (TNF)-alpha (Takenouchi-Ohkubo N,	
	Takahashi T, Tsuchiya M, Mestecky J, Moldoveanu Z, Moro	
	I; 2000. Immunogenetics 51:289-95).	
sbg103302	An embodiment of the invention is the use of sbg1033026C1q	Central nervous
6C1q	to regulate central nervous system functions. A close	system disorder
	homologue of sbg1033026C1q is C1q-related factor.	
	C1q is a subunit of the C1 enzyme complex that activates the	
	serum complement system. It has been shown that human	
	C1q-related factor (CRF) transcript is expressed at highest	
	levels in the brain, particularly in the brainstem. Similarly, in	
	mouse brain CRF transcripts are most abundant in areas of the	
	nervous system involved in motor function (Berube NG,	
	Swanson XH, Bertram MJ, Kittle JD, Didenko V, Baskin DS,	
	Smith JR, and Pereira-Smith OM., 1999, Brain Res. Mol.	
	Brain Res. 63:233-240). Moreover, ACRP30 is structurally	
	similar to complement factor C1q, and it forms large homo-	
	oligomers that undergo a series of post-translational	
	modifications. ACRP30 proteins may be a factor that	
	participates in the complex balanced system of energy	
	homeostasis involving food intake, carbohydrate catabolism,	
	and lipid catabolism (Scherer PE, Williams S, Fogliano M,	
	Baldini G, Lodish HF; 1995; J Biol Chem 270:26746-9).	
sbg100367 5RNase	An embodiment of the invention is the use of	Viral infection,
	sbg1003675RNase as a promising tool for anticancer therapy,	and tumor
	and apontosislated discutors. A along hamalams of	
	and apoptosis-related disorders. A close homologue of	
	sbg1003675RNase is RNase. It has been shown that a genetic-engineered pancreatic RNase has cytotoxic action on	

	toxicity on human and mouse normal cells. This variant of human pancreatic RNase selectively sensitized cells derived from a human thyroid tumor to apoptotic death. Because of its selectivity for tumor cells, and because of its human origin, this protein was thought to represent a promising tool for anticancer therapy (Piccoli R, Di Gaetano S, De Lorenzo C, Grauso M, Monaco C, Spalletti-Cernia D, Laccetti P, Cinatl J, Matousek J, D'Alessio G. 1999. Proc Natl Acad Sci U S A 96:7768-73). Moreover, RNase itself can be used to treat an RNA viral infection, and its antagonist of this RNase may be useful in treating apoptosis-related disorders.	
sbg101525 8PLM	An embodiment of the invention is the use of sbg1015258PLM to regulate skeletal and cardiac muscle disorders. A close homologue of sbg1015258PLM is phospholemman. The phospholemman (PLM) is enriched in skeletal muscle and the heart, and is a major substrate phosphorylated in response to insulin and adrenergic stimulation. All phospholemman proteins are small and have a single transmembrane domain (Chen LS, Lo CF, Numann R, Cuddy M. 1997. Genomics 41:435-4). Phospholemman can be phosphorylated by protein kinases A and C to induce a hyperpolarization-activated chloride current, and therefore may play a role in muscle contraction. Recently phospholemman was shown to be a substrate for myotonic dystrophy protein kinase, and therefore is associated with the disease, an autosomal dominant-inherited disorder with prominent effects on skeletal and cardiac muscle (Mounsey JP, John JE 3rd, Helmke SM, Bush EW, Gilbert J, Roses AD, Perryman MB, Jones LR, Moorman JR. 2000. J Biol Chem; 275:23362-7).	Myotonic muscular dystrophy
sbg100332 8IG	An embodiment of the invention is the use of sbg1003328IG to generate immunosuppressants to suppress immune responses. A close homologue of sbg1003328IG is V7, a human leukocyte surface protein (Stockinger H, Gadd SJ, Eher R, Majdic O, Schreiber W, Kasinrerk W, Strass B, Schnabl E, Knapp W. 1990. J Immunol 145:3889-97). sbg1003328IG is an immunoglobulin (Ig)-like membrane protein containing three potential Ig domains, and it has an overall strong sequence similarity to V7.	Cancer, infection, autoimmune disorder, hematopoietic disorder, wound healing disorders, and inflammation
sbg102082 9SGLT	An embodiment of the invention is the use of sbg1020829SGLT to regulate Na(+)-dependent glucose transport. A close homologue of sbg1020829SGLT is Na+/glucose cotransporters. The human intestinal Na+/glucose cotransporter (SGLT1) was cloned and sequenced. Close homology was observed between the human and rabbit intestinal Na+/glucose cotransporters, and a significant homology was found between these and the Escherichia coli Na+/proline cotransporter (putP) indicating that the mammalian Na+/glucose and prokaryote Na+/proline cotransporters sharing a common ancestral gene (Hediger MA, Turk E, Wright EM. 1989 Proc Natl Acad Sci U S A Aug;86(15):5748-52). In addition, study of intestinal biopsies of glucose/galactose malabsorption (GCM) patients has revealed a specific defect in Na(+)-dependent absorption of glucose in the brush border. A single missense mutation was found in SGLT1 amplified from the genomic DNA derived from members of a family affected with GGM. This mutated SGLT1 cosegregated with the GGM	Cancer, infection, autoimmune disorder, hematopoietic disorder, wound healing disorders, inflammation and glucose/galactose malabsorption

	phenotype and resulted in a complete loss of Na(+)-dependent	
-	glucose transport in Xenopus oocytes injected with this	-
*	complementary RNA (Turk E, Zabel B, Mundlos S, Dyer J,	
	Wright EM. 1991 Nature Mar 28;350(6316):354-6).	Carran infration
sbg100545	An embodiment of the invention is the use of	Cancer, infection, autoimmune
0UDPGT	sbg1005450UDPGT to regulate estrogen and androgen	disorder,
l.	catabolism in peripheral steroid target tissues. A close	
•	homologue of sbg1005450UDPGT is UDP-	hematopoietic disorder, wound
	glucuronosyltransferase (UDPGT) gene. Mutations had been found in the promoter and coding regions of UDP-	healing disorders,
	glucuronosyltransferase (UDPGT) gene in seven patients with	inflammation
	Crigler-Najjar syndrome type II caused by reduction in hepatic	Gilbert
ı	bilirubin UDPGT activity (Yamamoto K, Soeda Y, Kamisako T,	syndrome,
	Hosaka H, Fukano M, Sato H, Fujiyama Y, Adachi Y, Satoh Y,	Crigler-Najjar
	Bamba T. 1998. J Hum Genet 43(2):111-4). A case of Gilbert	syndrome (CN)
	syndrome caused by a homozygous missense mutation of the	type II, and
	bilirubin UDPGT gene was also reported (Maruo Y, Sato H,	steroid hormone
	Yamano T, Doida Y, Shimada M. 1998. J Pediatr	catabolism
	Jun;132(6):1045-7). In addition, monkey UDPGT UGT1A9	malfunction
	had been cloned and the mRNA was expressed in extrahepatic	
	estrogen-responsive tissues indicating its potential role in	
	estrogen metabolism (Albert C, Vallee M, Beaudry G, Belanger	
•	A, Hum DW. 1999. Endocrinology Jul;140(7):3292-302).	
	Human UDPGT UGT2B23 transcript was also expressed in	
	extrahepatic tissues including prostate, mammary gland,	
	epididymis, testis, and ovary. The activity of UGT2B23 was	
	tested with 62 potential endogenous substrates and was demonstrated to be active on 6 steroids and the bile acid,	
	hyodeoxycholic acid suggesting that UGT2B23 might play an	
	important role in estrogen and androgen catabolism in peripheral	
	steroid target tissues (Barbier O, Levesque E, Belanger A, Hum	1
	DW. 1999. Endocrinology Dec;140(12):5538-48).	
sbg100262	An embodiment of the invention is the use of sbg1002620TIa	Cancer, infection,
OTIa	to regulate human tumor cells. A close homologue of	autoimmune
	sbg1002620TIa is human hypothetical protein	disorder,
	DKFZp434B044. This gene is also similar to trypsin inhibitor	hematopoietic
	which contains Sc7 family of extracellular domains at its N-	disorder, wound
	ternimal region (Genome Res. 11 (3), 422-435 (2001)).	healing disorders,
	Trypsin inhibitor P25TI sequence had similarity to CRISP	inflammation,
	family proteins including insect venom allergens, mammalian	blood coagulation disorders, cellular
	testis-specific proteins and plant pathogenesis-related proteins. mRNA encoding P25TI and another two glioma pathogenesis-	adhesion
	related protein GliPR and RTVP-1, which were also shown to	disorders,
	be structurally similar to CRISP family proteins was frequently	pancreatitis,
	expressed in human tumor tissues but not detected in normal	shock, multi-
	human tissue cell lines (Yamakawa T, Miyata S, Ogawa N,	organ failure, and
	Koshikawa N, Yasumitsu H, Kanamori T, Miyazaki K 1998.	gastrointestinal
Ì	Biochim Biophys Acta Jan 21; 1395(2):202-8., Murphy EV,	ulceration
	Zhang Y, Zhu W, Biggs J. 1995. Gene Jun 14;159(1):131-5.,	
	Rich T, Chen P, Furman F, Huynh N, Israel MA.1996. Gene	
	Nov 21;180(1-2):125-30).	
sbg100262	An embodiment of the invention is the use of	Cancer, infection,
-	sbg1002620TTb as a marker for some nervous system tumors,	autoimmune
OTIb	and to regulate expression of human neuroblastoma and	disorder,
	glioblastoma. A close homologue of sbg1002620TIb is late-	hematopoietic
	gestation lung 1 (LGL1) protein. Late-gestation lung 1	disorder, wound
L	(LGL1) protein showed 81% homology to P25TI, the trypsin	healing disorders,

glioblastoma cells (Kaplan F, Ledoux P, Kassamali FQ, Gagnon S, Post M, Koehler D, Deimling J, Sweezey NB. 1999. Am J Physiol Jun; 276(6 Pt 1):L1027-36; Koshikawa N, Nakamura T, Tsuchiya N, Isaji M, Yasumitsu H, Umeda M, Miyazaki K. 1996. J Biochem (Tokyo) Feb;119(2):334-9). The cDNA encoding P25TI was isolated and the sequence had similarity to CRISP family proteins including insect venom allergens, mammalian testis-specific proteins and plant pathogenesis-related proteins. P25TI mRNA was frequently expressed in human neuroblastoma and glioblastoma but not detected in normal human tissues cell lines (Yamakawa T, Miyazaki K 1998. Biochim Biophys Acta Jan 21; 1395(2):202-8). Another two glioma pathogenesis-related protein GliPR and RTVP-1 were also shown to be structurally similar to CRISP family proteins. The GLIPR gene was highly expressed in the human brain tumor, glioblastoma multiforme/astrocytoma, but neither in normal fetal or adult brain tissue, nor in other nervous system tumors (Murphy EV, Zhang Y, Zhu W, Biggs J. 1995. Gene Jun 14;159(1):131-5). Multiple RTVP-1 mRNA species were highly expressed in a panel of cell lines from nervous system tumors arising from glia, in contrast, the expression of these RNAs was low or absent in nonglial-derived nervous system tumors arising from glia, in contrast, the expression of these RNAs was low or absent in nonglial-derived nervous system tumor cell lines (Rich T, Chen P, Furman F, Huynh N, Israel MA.1996. Gene Nov 21;180(1-2):125-30). An embodiment of the invention is the use of sbg102200MCTa in regulating cancer cells, including the hematopoietic lineages, Burkitt's lymphoma, and solid tumor cells. A close homologue of sbg102200MCTa is MCT1 from Chinese hamster and mouse. Mouse H+-monocarboxylate cotransporter (MCT1) was cloned and sequenced from Ehrlich Lettre tumour cells, the sequence of MCT1 is 93% and 87% homologous to MCT1 from Chinese hamster and human, respectively. N-glycanase-F treatment and an in vitro translation experiments demonstrated that glyco			
library was found only expressed in RPE cells. A rat thyroid epithelial cell line FRTL transfected with pCl-neo/MCT3 showed enhanced pyruvate uptake suggesting that MCT3 may regulate lactate levels in the interphotoreceptor space (Yoon H, Fanelli A, Grollman EF, Philp NJ. 1997. Biochem Biophys Res Commun May 8;234(1):90-4). In human, MCT2 had been implicated as a primary pyruvate transporter in man. The mRNAs of MCT1 and MCT2 were found co-expressed in various human cancer cell lines, including the hematopoietic lineages HL60, K562, MOLT-4, Burkitt's lymphoma Raji, and solid tumor cells such as SW480, A549, and G361.	sbg102200	Gagnon S, Post M, Koehler D, Deimling J, Sweezey NB. 1999. Am J Physiol Jun;276(6 Pt 1):L1027-36; Koshikawa N, Nakamura T, Tsuchiya N, Isaji M, Yasumitsu H, Umeda M, Miyazaki K. 1996. J Biochem (Tokyo) Feb;119(2):334-9). The cDNA encoding P25TI was isolated and the sequench had similarity to CRISP family proteins including insect venor allergens, mammalian testis-specific proteins and plant pathogenesis-related proteins. P25TI mRNA was frequently expressed in human neuroblastoma and glioblastoma but not detected in normal human tissues cell lines (Yamakawa T, Miyata S, Ogawa N, Koshikawa N, Yasumitsu H, Kanamori T, Miyata S, Ogawa N, Koshikawa N, Yasumitsu N, Yasumi	disorders, pancreatitis, shock, multi- organ failure, an gastrointestinal ulceration Cancer, infection autoimmune disorder, hematopoietic disorder, wound healing disorders and inflammation
These findings suggested that human MCT1 and MCT2 may		These findings suggested that human MCT1 and MCT2 may	
have distinct biological roles (Lin RY, Vera JC, Chaganti RS, Golde DW. 1998. J Biol Chem Oct 30;273(44):28959-65).		Golde DW. 1998. J Biol Chem Oct 30:273(44):28959-65)	
Sog 102200 An embodiment of the invention is the use of Cancer infection		An embodiment of the invention is the use of	Cancer, infection,
MCTb sbg102200MCTb in regulating cancer cells, including the autoimpune	MCTb	sbg102200MCTb in regulating cancer cells, including the	
hematopoietic lineages, Burkitt's lymphoma, and solid tumor disorder,		nematopoietic lineages, Burkitt's lymphoma, and solid tumor	disorder,

		
	cells. A close homologue of sbg102200MCTb is MCT1 from	hematopoietic
	Chinese hamster and mouse. Mouse H+-monocarboxylate	disorder, wound
	cotransporter (MCT1) was cloned and sequenced from	healing disorders,
	Ehrlich Lettre tumour cells, the sequence of MCT1 is 93%	and inflammation
	and 87% homologous to MCT1 from Chinese hamster and	
	human, respectively. N-glycanase-F treatment and an in vitro	
	translation experiments demonstrated that glycosylation was	
i	not required for MCT1 function (Carpenter L, Poole RC,	
	Halestrap AP. 1996. Biochim Biophys Acta Mar	
ľ	13;1279(2):157-63). Chick monocarboxylate transporter	
	15;12/9(2):15/-05). Click indicatooxylate transporter	
	MCT3 cloned from retinal pigment epithelium (RPE) cDNA	
	library was found only expressed in RPE cells. A rat thyroid	
	epithelial cell line FRTL transfected with pCl-neo/MCT3	
	showed enhanced pyruvate uptake suggesting that MCT3 may	
	regulate lactate levels in the interphotoreceptor space (Yoon	
	H, Fanelli A, Grollman EF, Philp NJ. 1997. Biochem Biophys	į
	Res Commun May 8;234(1):90-4). In human, MCT2 had	
	been implicated as a primary pyruvate transporter in man.	
	The mRNAs of MCT1 and MCT2 were found co-expressed in	
	various human cancer cell lines, including the hematopoietic	İ
	lineages HL60, K562, MOLT-4, Burkitt's lymphoma Raji,	ļ
	and solid tumor cells such as SW480, A549, and G361.	1
	These findings suggested that human MCT1 and MCT2 may	ļ
	have distinct biological roles (Lin RY, Vera JC, Chaganti RS,	}
	Golde DW. 1998. J Biol Chem Oct 30;273(44):28959-65).	
sk =100020	An embodiment of the invention is the use of	Cancer, infection,
sbg102038	sbg1020380LYG in the immune system and enhance the	autoimmune
0LYG	SUBTUZUDOULT UTIL HIGH HIGHING System and emianos the	disorder,
	activity of immunoagents and may serve as biomarkers of	hematopoietic
} .	periodontal disease activity. Close homologues of	disorder, wound
	sbg1020380LYG are lysozymes. Lysozymes are bacteriolytic	healing disorders,
	defensive agents and have been adapted to serve a digestive	and inflammation
ľ	function (Qasba PK, Kumar S, 1997, Crit Rev Biochem Mol	atic innammacion
	Biol 32:255-306). Those in tissue and body fluids are	
	involved in the immune system and enhance the activity of	
1	immunoagents. Llysozymes may serve as biomarkers of	
	periodontal disease activity from inflammatory cell origin	!
	(Eley BM, and Cox SW, 1998, Br Dent J 184:323-8).	
sbg100702	An embodiment of the invention is the use of	Glucose/galactos
6SGLT	sbg1007026SGLT, a human sodium-glucose cotransporter, in	e malabsorption
	regulation of Glucose/galactose malabsorption (GGM), familial	(GGM), familial
1	renal glycosuria, and diabetic renal disorders. Close	renal glycosuria,
	homologues of sbg1007026SGLT are other sodium-glucose	and diabetic renal
1	cotransporters from humans and rabbits. Human sodium-	disorders
	glucose cotransporters are responsible for the active	
1	accumulation of glucose in cells (Hediger MA, Turk E,	
	Wright EM. 1989. Proc Natl Acad Sci U S A 86:5748-52).	
	The renal sodium-glucose cotrnasporter may be related to the	
	pathophysiology of renal diseases such as familial renal	
	painophysiology of fenal diseases such as failillai fenal	
	glycosuria and diabetic renal disorders (Kanai Y, Lee WS,	
l	You G, Brown D, Hediger MA. 1994. J Clin Invest 93:397-	
	404). In addition, study of glucose/galactose malabsorption	
Į.	(GGM) patients has revealed a specific defect in sodium-	
1	dependent absorption of glucose in the brush border, and the	
i	consequent severe diarrhea and dehydration caused by	
}	glucose/galactose malabsorption are usually lethal unless	}
1	these sugars are eliminated from the diet (Turk E, Zabel B,	
	Mundlos S, Dyer J, Wright EM. 1991 Nature 350:354-6).	
L	Tradition of Division of the D	

	<u> </u>	
sbg101273	An embodiment of the invention is the use of	Tumor, diabetic
2GLUT	sbg1012732GLUT, in the maintenance of cellular	nephropathy, and
	homeostasis and metabolism. Close homologues of	insulin-induced
1	sbg1012732GLUT are transmembrane glucose transporters	hypoglycemia
	(gluts). Glucose uptake is achieved by transmembrane	
-	glucose transporters (gluts), and the transport of glucose	
	across plasma membranes is important for the maintenance of	·
	cellular homeostasis and metabolism. Glucose is taken up by	1
1	cells and then phosphorylated to glucose-6-phosphate, and lucose utilization by cancer cells is greatly enhanced when	
	compared with that by normal tissue. Tumor tissue is	
1	frequently associated with the abnormal and/or over-	
1	expression of glucose transporters, especially glut1 (Smith	
	TA. 1999. Br J Biomed Sci 56:285-92). Increased utilization	
1	of glucose in glomerular cells cause the increased expression	
{	and activity of aldose reductase, protein kinase C and TGF-	
	beta, which have been implicated in excessive extracellular	
	matrix accumulation in diabetic nephropathy (Z. Katedry i	
	Zakladu Patofizjologii, Akaemii Medycznei w Poznaniu	
	1999. Przegl Lek 56:793-9). Changes in endothelial glucose	1
1	transport and GLUT1 abundance in the barriers of the brain	
1	and retina may severely affect glucose delivery to these]
	tissues and major implications in the development of two	
}	major diabetic complications, insulin-induced hypoglycemia	
	and diabetic retinopathy (Kumagai AK, 1999, Diabetes Metab	
	Res Rev 15:261-73).	
sbg101273	An embodiment of the invention is the use of	Tumor, diabetic
2GLUTb	sbg1012732GLUTb, in the maintenance of cellular	nephropathy, and
	homeostasis and metabolism. Close homologues of	insulin-induced
1	sbg1012732GLUTb are transmembrane glucose transporters (gluts). Glucose uptake is achieved by transmembrane glucose	hypoglycemia
	transporters (gluts), and the transport of glucose across	
	plasma membranes is important for the maintenance of	
	cellular homeostasis and metabolism. Glucose is taken up by	ĺ
	cens and then phosphorylated to glucose-6-phosphate and	
	lucose utilization by cancer cells is greatly enhanced when	
	compared with that by normal tissue. Tumor tissue is	
	frequently associated with the abnormal and/or over-	
	expression of glucose transporters, especially glut 1 (Smith	
	IA. 1999. Br J Biomed Sci 56:285-92). Increased utilization	
	of glucose in glomerular cells cause the increased expression	
	and activity of aldose reductase, protein kinase C and TGF-	1
	beta, which have been implicated in excessive extracellular	1
	matrix accumulation in diabetic nephropathy (Z Katedry i	
	Zakladu Patofizjologii, Akaemii Medycznej w Poznaniu.	
	1999. Przegl Lek 56:793-9). Changes in endothelial glucose transport and GLUT1 abundance in the barriers of the brain	ĺ
j	and retina may severely affect glucose delivery to these	
1	tissues and major implications in the development of two	
Į	major diabetic complications, insulin-induced hypoglycemia	
ſ	and diabetic retinopathy (Kumagai AK. 1999. Diabetes Metab	
	Res Rev 15:261-73).	
sbg101817	An embodiment of the invention is the use of	Malanama
· 1	sbg1018172CSP in regulation of melanoma, autoimmune	Melanoma,
2CSP	disorders, hematopoietic disorder, wound healing and	infection, autoimmune
	inflammation. A close homologue of sbg1018172CSP is	disorder,
	melanoma-associated chondroitin sulfate proteoglycan	hematopoietic
	P.) 4411	

	O (COD) I' NICO TI . MOCD NICO	digordan mound
	(MCSP) core protein NG2. The MCSP core protein NG2 can	disorder, wound
}	act as a coreceptor for spreading and focal contact formation	healing, and
	in association with alpha 4 beta 1 integrin in melanoma cells	inflammation
	(Iida J, Meijne AM, Spiro RC, Roos E, Furcht LT, McCarthy	
1 .	JB. 1995. Cancer Res Mar 15;55(10):2177-85). Cloning of	
	MCSP recognized by mAb 9.2.27 showed that the core	
	protein contained an open reading frame of 2322 AAs,	
	encompassing a large extracellular domain, a hydrophobic	
	transmembrane region, and a relatively short cytoplasmic tail.	
1	MCSP RNA was detected in human melanoma cell lines and	
]	in biopsies prepared from melanoma skin metastases but not	
	in other human cancer cells or a variety of human fetal and	
}	adult tissues (Pluschke G, Vanek M, Evans A, Dittmar T,	
	Schmid P, Itin P, Filardo EJ, Reisfeld RA. 1996. Proc Natl	
	Acad Sci U S A Sep 3;93(18):9710-5).	
	An embodiment of the invention is the use of	Cancer, infection,
sbg100457	sbg1004570ERGIC as a probe for studying protein trafficking	autoimmune
0ERGIC	in the secretory pathway which is crucial for the elucidation	disorder,
	and treatment of many inherited and acquired diseases, such	hematopoietic
1	as cystic fibrosis, Alzheimer's disease and viral infectionsin	disorder, wound
I	regulation of melanoma, autoimmune disorders, hematopoietic	healing disorders,
1	disorder, wound healing, and inflammation. A close	inflammation,
l	homologue of sbg1004570ERGIC is ERGIC-53, an ER-Golgi	and Alzheimer's
	intermediate compartment (ERGIC) protein. A ERGIC	disease
}	protein was elevated more than two fold in HT-29 colon	
	adenocarcinoma cells resistant to the the antitumor drug	
	KRN5500. Together with other information, the cellular	
	secretory pathway was suggested a primary determinant of	
	sensitivity to KRN550 (Kamishohara M, Kenney S,	
ľ	Domergue R, Vistica DT, Sausville EA. 2000 Exp Cell Res	
ļ	May 1;256(2):468-79). Mutations in ERGIC-53 was shown to	
	cause combined deficiency of coagulation factors V and VIII	
1	and it was suggested that ERGIC-53 might function as a	
1	molecular chaperone for the transport from ER to Golgi of a	·
	specific subset of secreted proteins, including coagulation	
	factors V and VII (Nichols WC, Seligsohn U, Zivelin A,	
	Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri	
	HP, Ciavarella N, Kaufman RJ, Ginsburg D. 1998. Cell Apr	
j	3;93(1):61-70). In addition, ERGIC-53 was reviewed as an	
1	attractive probe for studying numerous aspects of protein	
]	trafficking in the secretory pathway which is crucial for the	
	elucidation and treatment of many inherited and acquired	
	diseases, such as cystic fibrosis, Alzheimer's disease and viral	
	infections (Hauri HP, Kappeler F, Andersson H, Appenzeller	
	C. 2000 J Cell Sci Feb;113 (Pt 4):587-96).	,
sbg101699	An embodiment of the invention is the use of	Auto-immune
5IGBrecpt	sbg1016995IGBreept in the clearance of circulating	diseases, allergy,
Montechr	autoantibodies and immune complexes. A close homologue	and guillain-
Į.	of sbg1016995IGBrecpt is guinea pig Fc receptor for	Barre syndrom
	immunoglobulin (Tominaga M, Sakata A, Ohmura T,	Danie syndienn
1	Yamashita T, Koyama J, Onoue K, 1990. Biochem Biophys	
]		
	Res Commun Apr 30;168(2):683-9). IgG Fc-receptor	
	polymorphisms have been reported recently in patients with	
	guillain-Barre syndrome indicating the role of IgG Fc-	*
	receptor in the clearance of circulating autoantibodies and	
J	immune complexes (Vedeler CA, Raknes G, Myhr KM,	
	Nyland H. 2000 Neurology Sep 12;55(5):705-7).	

sbg1151bS REC sbg139985 4ANK	An embodiment of the invention is the use of sbg1151bSREC, a scavenger receptor, in the regulation of pathogenesis in atherosclerosis and the formation of foam cells in atherosclerotic lesions. A close homologue of sbg1151bSREC is scavenger receptor class A type I and type II. Most of the scavenger receptors interacted with several structurally different ligands such as oxidized low density lipoprotein (Ox-LDL) and acetyl LDL. Several studies showed Ox-LDL was involved in the pathogenesis of atherosclerosis (Steinbrecher UP. 1999 Biochim Biophys Acta Jan 4;1436(3):279-98). In macrophages scattered in aortic walls without atherosclerotic lesions, scavenger receptor class A type I and type II (SRA) was detected weakly but consistently. In contrast, in atherosclerotic lesions, macrophages around the core region showed a strong immunoreactivity to SRA indicating the involvement of SRA in the formation of foam cells in atherosclerotic lesions (Nakata A, Nakagawa Y, Nishida M, Nozaki S, Miyagawa J, Nakagawa T, Tamura R, Matsumoto K, Kameda-Takemura K, Yamashita S and Matsuzawa Y. Arterioscler Thromb Vasc Biol 1999 May;19(5):1333-9). An embodiment of the invention is the use of sbg1399854ANK in protein-protein interactions and it may act by inhibiting protein of cyclin dependent kinase. The	Cancer, infection, autoimmune disorder,
	present invention contains both death domain and ankyrin repeat region. The death domain is involved in cell death signaling (Cleveland J. and Ihle J.N. 1995. Cell 81:479-482). Ankyrin repeats (ANK) are tandem repeat modules of about 33 amino acids. Many ankyrin repeat regions are known to be involved in protein-protein interaction (Svetlana Gorina and Nikola P. Pavletich; 1996 Science 274:1001-1005).	hematopoietic disorder, wound healing disorders, and inflammation

Table IV. Quantitative, Tissue-specific mRNA expression detected using SybrMan

Quantitative, tissue-specific, mRNA expression patterns of the genes were measured using SYBR-Green Quantitative PCR (Applied Biosystems, Foster City, CA; see Schmittgen T.D. et al., Analytical Biochemistry 285:194-204, 2000) and human cDNAs prepared from various human tissues. Gene-specific PCR primers were designed using the first nucleic acid sequence listed in the Sequence List for each gene. The threshold cycle (C_i) is defined as the fractional cycle number at which the reporter fluorescence generated by cleavage of the probe reaches a threshold defined as 10 times the background. In cases sequence detection system software predicted more than one PCR product, Taqman was used for the specific PCR amplification as indicated under the specific genes.

10

15

In each gene's first subset table, two replicate measurements of gene of identification (GOI) mRNA were measured from various human tissues (column 3 and 4). The average GOI mRNA copies of the two replicates were made from each tissue RNA (column 5). The average amount of 18S rRNA from each tissue RNA was measured (column 6) and used for normalization. To make each tissue with the same amount of 50 ng of 18S rRNA, the normalization factor (column 7) was calculated by dividing 50 ng with the amount of 18S rRNA measured from each tissue (column 6). The mRNA copies per 50 ng of total RNA were obtained by multipling each GOI normalization factor and the average mRNA copies (column8).

Fold changes shown in each gene's second subset table were only calculated for disease tissues which have a normal counterpart. There are blanks in the fold change column for all samples that do not have counterparts. In addition, the fold change calculations are the fold change in the disease sample as compared to the normal sample. Accordingly, there will not be a fold change calculation next to any of the normal samples. For patient matched cancer pairs (colon, lung, and breast), each tumor is compared to its specific normal counterpart. When patient-matched normal/disease pairs do not exist, each disease sample was compared back to the average of all the normal samples of that same tissue type. For example, normal brain from the same patient that provided Alzheimer's brain is not applicable. Three normal brain samples and 4 Alzheimer's brain samples are used in the fold change. Three normal samples were averaged, and each of the Alzheimer's samples was compared back to that average.

30

Abbreviations

ALZ Alzheimer's Disease CT CLONTECH (1020 East Meadow Circle Palo Alto, CA 94303-4230, USA) KC Sample prepared by GSK investigator

35 COPD chronic obstructive pulmonary disease endo endothelial
VEGF vascular endothelial growth factor bFGF basic fibroblast growth factor
BM bone marrow

osteo osteoblast
OA osteoarthritis
RA rheumatoid arthritis
PBL peripheral blood lymphocytes
PBMNC peripheral blood mononuclear cells

45 HIV human immunodeficiency virus HSV Herpes simplex virus HPV human papilloma virus

Gene Name sbg960509cbrecpt

5

10

Lowest overall expression in normal and disease samples. Highest normal expression in the whole brain, fetal liver, and uterus. Highest disease expression in 2 of the lung tumor samples, one of the breast tumor samples, and one of the normal breast samples. Downregulation in 1 of 4 colon tumors implies an involvement in cancer of the colon. Downregulation in 2 of 4 AD brain samples as well as high expression in whole brain suggests an involvement in Alzheimer's disease. Downregulation in 3 of 3 COPD lung samples and downregulation in 4 of 4 asthmatic lung samples implicates this gene in COPD and asthma. Upregulation in 2 of 3 heart samples proposes roles in non-obstructive and obstructive DCM. Patterns difficult to interpret due to Cts > 35. Moderate to low expression in immune cells. Moderate expression in OA and RA synovium.

Sample	Ct	Mean	Mean	Averag	188	50	copies
sbg960509cbrecpt	(sample 1	GOI	GOI	e GOI	rRNA	1	of
	and 2)	copies	copies	Copies	(ng)	rRNA	mRNA
	{	(sample		:		(ng)	detecte
		1)	(2)	1			d/50 ng
	1	į		}	1		total
Subcutaneous	40, 40	0	0	0.00	3.06	16.34	0.00
Adipocytes Zenbio		•	*	0.00	3.00	10.54	0.00
Subcutaneous	40, 40	0	0	0.00	0.96	52.36	0.00
Adipose Zenbio Adrenal Gland	10.40	ļ	<u> </u>		<u> </u>		
Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain	33.26, 32.07	24.63	48.4	36.52	7.24	6.91	252.18
Clontech	<u></u>			30.32	1.24	0.91	232.18
Fetal Brain Clontech	40, 40	0	0	0.00	0.48	103.95	0.00
Cerebellum Clontech	40, 40	0	0	0.00	2.17	23.04	0.00
Cervix	40, 40	0	0	0.00	2.42	20.66	0.00
Colon	40, 40	0	0	0.00	2.71	18.45	0.00
Endometrium	40, 40	0.81	0	0.41	0.73	68.21	27.63
Esophagus	40, 40	0	0	0.00	1.37	36.50	0.00
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	40, 40	0	0	0.00	2.58	19.38	0.00
Jejunum	35.56, 34.42	6.66	12.71	9.69	6.60	7.58	73.37
Kidney	40, 40	0	0	0.00	2.12	23.58	0.00
Liver	40, 40	0	0	0.00	1.50	33.33	0.00
Fetal Liver Clontech	33.46, 34.83	14.95	27.51	21.23	10.40	4.81	102.07
Lung	40, 40	0	0	0.00	2.57	19.46	0.00
Mammary Gland Clontech	40, 40	21.94	10.06	16.00	13.00	3.85	61.54
Myometrium	40, 40	0	0	0.00	2.34	21.37	0.00
Omentum	40, 40	0	0	0.00	3.94	12.69	0.00
Ovary	40, 40	0	0	0.00	4.34	11.52	0.00
Pancreas	40, 40	0 .	0	0.00	0.81	61.80	0.00
Head of Pancreas	40, 40	0	0	0.00	1.57	31.85	0.00
Parotid Gland	40, 40	0	0	0.00	5.48	9.12	0.00
Placenta Clontech	40, 40	0.39	0		5.26	9.51	1.85
	40, 40	0			3.00	16.67	0.00
	40, 40	0			1.23	40.65	0.00
Salivary Gland	34.79, 40	10.31	0		7.31	6.84	35.26

Clontech		Ī .				T	T
Skeletal Muscle Clontech	40, 40	0	0	0.00	1.26	39.68	0.00
Skin	40, 40	0	0	0.00	1.21	41.32	0.00
Small Intestine Clontech	40, 40	0	0	0.00	0.98	51.07	0.00
Spleen	40, 40	0	0	0.00	4.92	10.16	0.00
Stomach	35.8, 38.29	5.82	1.41	3.62	2.73	18.32	66.21
Testis Clontech	40, 40	0	0	0.00	0.57	87.87	0.00
Thymus Clontech	35.13, 35.08	8.48	8.75	8.62	9.89	5.06	43.55
Thyroid	40, 40	0	0	0.00	2.77	18.05	0.00
Trachea Clontech	35.26, ND	7.9	ND .	7.90	9.71	5.15	40.68
Urinary Bladder	40, ND	0	ND	0.00	5.47	9.14	0.00
Uterus	35.09, 33.87	8.67	17.4	13.04	5.34	9.36	122.05
genomic	26.62	1067.33					
b-actin	27.44	670.43					
1.00E+05	19.22	100000					
1.00E+05	19.38	100000					
1.00E+04	22.78	10000					
1.00E+04	20.52	10000					
1.00E+03	26.45	1000					
1.00E+03	27.03	1000					
1.00E+02	30.99	100					
1.00E+02	31.26	100					
1.00E+01	40	0					
1.00E+01	40	0		-			
1.00E-00	40 ·	0					
1.00E-00	40	0					
NTC	40	0					
NTC	40	0					

Sample sbg960509cbrecpt	Reg number (GSK identifier	Ct	Mean GOI copies	copies of mRNA detecte d/50 ng total RNA	Sample	Fold Change in Disease Populat ion
colon normal GW98-167	21941	29.42		332.32	colon normal	
colon tumor GW98-166	21940	30.95	66.31	132.62	colon tumor	-2.51
colon normal GW98-178	22080	31.32	53.01	106.02	colon normal	
colon tumor GW98-177	22060	30.57	83.1	166.20	colon tumor	1.57
colon normal GW98-561	23514	31.44	49.16	98.32	colon normal	
colon tumor GW98-560	23513	31.81	39.47	78.94	colon tumor	-1.25
colon normal GW98-894	24691	29.44	164.69	329.38	colon normal	
colon tumor GW98-893	24690	34.42	8.18	16.36	colon tumor	-20.13
lung normal GW98-3	20742	28.04	383.11	766.22	lung normal	

lung tumor GW98-2	20741	34.22	9.19	18.38	lung tumor	-41.69
lung normal GW97-179	20677	30.93	66.74	133.48	lung normal	 -
lung tumor GW97-178	20676	27.11	667.61	1335.22	lung tumor	10.00
lung normal GW98-165	21922	28.31	323.99	647.98	lung normal	
lung tumor GW98-164	21921	30.92	67.22	134.44	lung tumor	-4.82
lung normal GW98-282	22584	31.76	40.67	81.34	lung normal	+
lung tumor GW98-281	22583	29.61	148.67	297.34	lung tumor	3.66
breast normal GW00-392	2 28750	27.64	487.44	487.44	breast normal	
breast tumor GW00-391	28746	27.47	539.99	1079.98	breast tumor	2.22
breast normal GW00-413	28798	33.36	15.44	15.44	breast normal	
breast tumor GW00-412	28797	30.88	68.84	137.68	breast tumor	8.92
breast normal GW00- 235:238	27592-95	34.74	6.73	6.73	breast normal	
breast tumor GW00- 231:234	27588-91	33.73	12.41	12.41	breast tumor	1.84
breast normal GW98-621		27.7	469.27	938.54	breast normal	
breast tumor GW98-620	23655	33.1	18.13	36.26	breast tumor	-25.88
brain normal BB99-542	25507	31.46	48.61	97.22	brain normal	
brain normal BB99-406	25509	34.17	9.52	19.04	brain normal	
brain normal BB99-904	25546	35.69	3.79	7.58	brain normal	
brain stage 5 ALZ BB99- 874		40	0	0.00	brain stage 5 ALZ	-41.28
brain stage 5 ALZ BB99- 887	25503	34.96	5.91	11.82	brain stage 5 ALZ	-3.49
brain stage 5 ALZ BB99- 862		33.13	17.82	35.64	brain stage 5 ALZ	-1.16
brain stage 5 ALZ BB99- 927	25542	40	0	0.00	brain stage 5 ALZ	-41.28
CT lung KC	normal	29.53	155.88	311.76	CT lung	
lung 26 KC	normal				lung 26	
lung 27 KC	normal	39.2	0.46	0.46	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-104.07
lung 28 KC	COPD	40	0	0.00	lung 28	-104.07
lung 23 KC	COPD	34.81	6.44	6.44	lung 23	-16.16
lung 25 KC	normal	40	0	0.00	lung 25	
asthmatic lung ODO3112	29321	38.99	0.52	0.52	asthmatic lung	-200.14
asthmatic lung ODO3433	29323	33.69	12.65	25.30	asthmatic lung	-4.11
asthmatic lung ODO3397	29322	33.53	13.98	27.96	asthmatic lung	-3.72
asthmatic lung ODO4928	29325	34.27	8.96	17.92	asthmatic lung	-5.81
endo cells KC	control	40	0	0.00	endo cells	
endo VEGF KC		40	0	0.00	endo VEGF	0.00
endo bFGF KC		40	0	0.00	endo bFGF	0.00
heart Clontech		35.53	4.19	8.38	heart ·	
heart (T-1) ischemic	29417	34	10.5	21.00	heart T-1	2.51
heart (T-14) non- obstructive DCM	29422	31,16	58.24	116.48	heart T-14	13.90
heart (T-3399) DCM	29426	28.35	317.67	635.34	heart T-3399	75.82
						

adenoid GW99-269	26162	31.52	46.93	93.86	adenoid	<u> </u>
tonsil GW98-280	22582	30.82	71.35	142.70	tonsil	1
T cells PC00314	28453	34.36	8.47	16.94	T cells	
PBMNC	 	40	0	0.00	PBMNC	
monocyte	 	40	0	0.00	monocyte	<u> </u>
B cells PC00665	28455	40	0	0.00	B cells	
dendritic cells 28441		31.52	47.02	94.04	dendritic cells	
neutrophils	28440	36.13	2.91	2.91	neutrophils	
eosinophils	28446	40	0	0.00	eosinophils	
BM unstim		40	0	0.00	BM unstim	
BM stim		40	0	0.00	BM stim	0.00
osteo dif		40	0	0.00	osteo dif	0.00
osteo undif		40	0	0.00	osteo undif	
chondrocytes		40	0	0.00	chondrocytes	
OA Synovium IP12/01	29462	32.08	33.47	33.47	OA Synovium	
OA Synovium NP10/01	29461	31.43	49.5	99.00	OA Synovium	
OA Synovium NP57/00	28464	30.42	91.04	182.08	OA Synovium	
RA Synovium NP03/01	28466	32.11	32.84	65.68	RA Synovium	
RA Synovium NP71/00	28467	31.07	61.51	123.02	RA Synovium	
RA Synovium NP45/00	28475	36.21	2.78	5.56	RA Synovium	
OA bone (biobank)	29217	31.49	47.85	47.85	OA bone (biobank)	
OA bone Sample 1	J. Emory	30.11	109.44	218.88	OA bone	
OA bone Sample 2	J. Emory	32.6	24.52	49.04	OA bone	
Cartilage (pool)	Normal	32.09	33.26	66.52	Cartilage (pool)	
Cartilage (pool)	OA	33.1	18.07	36.14	Cartilage (pool)	-1.84
PBL unifected	28441	27.68	474.91	949.82	PBL unifected	
PBL HIV IIIB	28442	31.76	40.5	81.00	PBL HIV IIIB	-11.73
MRC5 uninfected (100%)	29158	40	0	0.00	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	34.15	9.61	19.22	MRC5 HSV strain	19.22
W12 cells	29179	40	0	0.00	W12 cells	
Keratinocytes	29180	38.16	0.85	1.70	Keratinocytes	
B-actin control		27.02	707.5			
genomic		26.1	1232.73			
1.00E+05		18.64	100000			
1.00E+05		18.95	100000			
1.00E+04		22.4	10000			
1.00E+04		22.17	10000			
1.00E+03		26.34	1000			
1.00E+03		25.94	1000			
1.00E+02		31.03	100			
1.00E+02		32.83	100			
1.00E+01		33.21	10			
1.00E+01		32.93	10			
1.00E-00		40	0			
1.00E-00		40	0			
NTC		40	0			

Gene Name sbg960509cbrecpt

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-2.51
colon tumor	1.57
colon tumor	-1.25
colon tumor	-20.13
lung tumor	-41.69
lung tumor	10.00
lung tumor	-4.82
lung tumor	3.66
breast tumor .	2,22
breast tumor	8.92
breast tumor	1.84
breast tumor	-25.88
brain stage 5 ALZ	-41.28
brain stage 5 ALZ	-3.49
brain stage 5 ALZ	-1.16
brain stage 5 ALZ	-41.28
lung 24	-104.07
lung 28	-104.07
lung 23	-16.16
asthmatic lung	-200.14
asthmatic lung	-4.11
asthmatic lung	-3.72
asthmatic lung	-5.81
endo VEGF	0.00
endo bFGF	0.00
heart T-1	2.51
heart T-14	13.90
heart T-3399	75.82
BM stim	0.00
osteo undif	0.00
Cartilage (pool)	-1.84
PBL HIV IIIB	-11.73
MRC5 HSV strain F	19.22

5 Gene Name sbg614126complfH

10

15

Moderate to low overall expression in normal and disease samples. Highest normal expression in liver and fetal liver. Lower (but still significant expression) is seen in the whole brain, ovary, and uterus. Highest disease expression in 2 of the breast tumor samples, one of the normal brain samples, one of the normal lungs, one of the OA synovium samples, and the HSV-infected MRC5 cells. Upregulation in 1 of 4 colon tumors suggests a role in cancer of the colon. Downregulation in 2 of 4 lung tumors and upregulation in 1 of 4 breast tumors suggest roles in cancers of the lung and breast. Downregulation in 3 of 3 COPD lung samples as well as downregulation in 4 of 4 asthmatic lungs implies an involvement in chronic obstructive pulmonary disease and asthma. Upregulation in 1 of 3 heart samples suggests a role in DCM. Upregulation in HSV implicates involvement in herpes simplex virus as a potential host factor. Moderate to low expression in immune cells, RA and OA synovium bone, and chondrocytes.

Sample	Ct	Mean	Mean	Average	18S	50	copies
sbg614126complfH	(sample 1	GOI	GOI	GOI	rRNA	ng/18S	
				001	110.112	118/105	of

	and 2)	copies (sample 1)	2)	Copies	(ng)	rRNA (ng)	mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	40, 40	0	0	0.00	3.06	16.34	0.00
Subcutaneous Adipose Zenbio	40, 40	0	0	0.00	0.96	52.36	0.00
Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain Clontech	32.34, 31.88	46.5	61.71	54.11	7.24	6.91	373.65
Fetal Brain Clontech	40, 40	0	0	0.00	0.48	103.95	0.00
Cerebellum Clontech	40, 40	0	0	0.00	2.17	23.04	0.00
Cervix	40, 35.04	0	8.88	4.44	2.42	20.66	91.74
Colon	40, 40	0	0	0.00	2.71	18.45	0.00
Endometrium	40, 40	0	0	0.00	0.73	68.21	0.00
Esophagus	40, 40	0	0	0.00	1.37	36.50	0.00
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 39.79	0	0.48	0.24	0.32	155.28	37.27
Ileum	40, 36.32	0	4.04	2.02	2.58	19.38	39.15
Jejunum	33.25, 34.19	26.6	14.98	20.79	6.60	7.58	157.50
Kidney	40, 40	0	0	0.00	2.12	23.58	0.00
	28.77, 28.81	417.4	407.38	412.39	1.50	33.33	13746.
Liver		246.38	266.67	256.53	10.40	4.81	13740. 33 1233.2
Fetal Liver Clontech	29.63, 29.5						9
Lung	40, 40	0	0	0.00	2.57	19.46	0.00
Mammary Gland Clontech	34.19, 40	14.9	0	7.45	13.00	3.85	28.65
Myometrium	35.76, 40	5.7	0	2.85	2.34	21.37	60.90
Omentum	36.04, 33.62	4.81	21.16	12.99	3.94	12.69	164.78
Ovary	34.29, 32.95	14.02	31.93	22.98	4.34	11.52	264.69
Pancreas	40, 40	0	0	0.00	0.81	61.80	0.00
Head of Pancreas	38.98, 35.35	0.79	7.32	4.06	1.57	31.85	129.14
Parotid Gland	34.58, 33.83	11.74	18.68	15.21	5.48	9.12	138.78
Placenta Clontech	35.73, 35.66	5.82 ·	6.06	5.94	5.26	9.51	56.46
Prostate	40, 40	0	0	0.00	3.00	16.67	0.00
Rectum .	40, 40	0.38	0	0.19	1.23	40.65	7.72
Salivary Gland Clontech	40, 40	0.3	0	0.15	7.31	6.84	1.03
Skeletal Muscle Clontech	40, 40	0	0.28	0.14	1.26	39.68	5.56
Skin	40, 40	0	0.33	0.17	1.21	41.32	6.82
Small Intestine Clontech	40, 40	0	0	0.00	0.98	51.07	0.00
Spleen	40, 40	0	0	0.00	4.92	10.16	0.00
Stomach	40, 36	0	4.92	2.46	2.73	18.32	45.05
Testis Clontech	40, 40	0	0	0.00	0.57	87.87	0.00

;y !:

Thymus Clontech	40, 37.06	0	2.56	1.28	9.89	5.06	6.47
Thyroid	40, 40	0	0.31	0.16	2.77	18.05	2.80
Trachea Clontech	40, 40	0.28	0	0.14	9.71	5.15	0.72
Urinary Bladder	40, 34.13	0	15.53	7.77	5.47	9.14	70.98
Uterus	33.21, 32.79	27.27	35.32	31.30	5.34	9.36	293.02
genomic	26.93	1288.98		- 		 	- 250.02
b-actin	27.55	878.74		 			
1.00E+05	20.07	100000		 		+	
1.00E+05	20.14	100000		 		 	
1.00E+04	23.43	10000				 	
1.00E+04	23.34	10000		+		·	
1.00E+03	26.84	1000		 	 		-
1.00E+03	27.02	1000		1	 		-
1.00E+02	31.72	100		 			
1.00E+02	31.32	100		<u> </u>		 	
1.00E+01	33.78	10					
1.00E+01	35.79	10		†		 	
1.00E-00	40	0		 		 	+
1.00E-00	40	0		 	 	 	
NTC	40	0			 		
NTC	40	0		 	+	-	

Sample sbg614126complfH	Reg number (GSK identifier	Ct	Mean GOI copies	copies of mRNA detecte d/50 ng total RNA	Sample	Fold Change in Disease Populatio n
colon normal GW98- 167	21941	34.6	13.63	27.26	colon normal	
colon tumor GW98-166	21940	35.71	7.35	14.70	colon tumor	-1.85
colon normal GW98- 178	22080	40	0	0.00	colon normal	
colon tumor GW98-177	22060	39.81	0.75	1.50	colon tumor	1.50
colon normal GW98- 561	23514	38.61	1.45	2.90	colon normal	
colon tumor GW98-560	23513	34.84	11.95	23.90	colon tumor	8.24
colon normal GW98- 894	24691	39.05	1.14	2.28	colon normal	
colon tumor GW98-893	24690	40	0	0.00	colon tumor	-2.28
lung normal GW98-3	20742	35.78	7.04	14.08	lung normal	
lung tumor GW98-2	20741	40	0	0.00	lung tumor	-14.08
lung normal GW97-179	20677	33.99	19.21	38.42	lung normal	
lung tumor GW97-178	20676	40	0.49	0.98	lung tumor	-39.20
lung normal GW98-165	21922	39.63	0.82	1.64	lung normal	+
lung tumor GW98-164	21921	38.89	1.24	2.48	lung tumor	1.51
lung normal GW98-282	22584	40	0	0.00	lung normal	
lung tumor GW98-281	22583	40	0	0.00	lung tumor	0.00

breast normal GW00- 392	28750	32.71	39.28	39.28	breast normal	
breast tumor GW00-391	28746	31.65	70.89	141.78	breast tumor	3.61
breast normal GW00- 413	28798	35.83	6.88	6.88	breast normal	
breast tumor GW00-412	28797	33.17	30.3	60.60	breast tumor	8.81
breast normal GW00- 235:238	27592-95	36.73	4.16	4.16	breast normal	
breast tumor GW00- 231:234	27588-91	35.98	6.33	6.33	breast tumor	1.52
breast normal GW98- 621	23656	37.38	2.89	5.78	breast normal	
breast tumor GW98-620	23655	34.95	11.23	22.46	breast tumor	3.89
brain normal BB99-542	25507	32.26	50.34	100.68	brain normal	
brain normal BB99-406	25509	40	0.57	1.14	brain normal	
brain normal BB99-904	25546	34.68	13.04	26.08	brain normal	
brain stage 5 ALZ BB99-874	25502	40	0	0.00	brain stage 5 ALZ	-42.63
brain stage 5 ALZ BB99-887	25503	35.87	6.73	13.46	brain stage 5 ALZ	-3.17
brain stage 5 ALZ BB99-862	25504	39.2	1.05	2.10	brain stage 5 ALZ	-20.30
brain stage 5 ALZ BB99-927	25542	40	0	0.00	brain stage 5 ALZ	-42.63
CT lung KC	normal	39.4	0.93	1.86	CT lung	
lung 26 KC	normal				lung 26	
lung 27 KC	normal	40	0 .	0.00	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-0.62
lung 28 KC	COPD	40	0	0.00	lung 28	-0.62
lung 23 KC	COPD	40	0	0.00	lung 23	-0.62
lung 25 KC	normal	40	0	0.00	lung 25 .	
asthmatic lung ODO3112	29321	36.52	4.68	4.68	asthmatic lung	7.55
asthmatic lung ODO3433	29323	40	0	0.00	asthmatic lung	-0.62
asthmatic lung ODO3397	29322	40	0	0.00	asthmatic lung	-0.62
asthmatic lung ODO4928	29325	38.18	1.85	3.70	asthmatic lung	5.97
endo cells KC	control	40	0	0.00	endo cells	
endo VEGF KC		40	0	0.00	endo VEGF	0.00
endo bFGF KC		40	0	0.00	endo bFGF	0.00
heart Clontech	normal	40	0	0.00	heart	
heart (T-1) ischemic	29417	40	0	0.00	heart T-1	0.00
heart (T-14) non- obstructive DCM	29422	40	0	0.00	heart T-14	0.00
heart (T-3399) DCM	29426	36.03	6.13	12.26	heart T-3399	12.26
adenoid GW99-269	26162	34.08	18.19	36.38	adenoid	
tonsil GW98-280	22582	37.46	2.77	5.54	tonsil	
T cells PC00314	28453	40	0	0.00	T cells	
PBMNC		40	0	0.00	PBMNC	
monocyte		40	0	0.00	monocyte	
					·	

100455	104 -4				
28455				B cells	
-				dendritic cells	
				neutrophils	
28446			0.00	eosinophils	
			0.00	BM unstim	
		0	0.00	BM stim	0.00
	40	0	0.00	osteo dif	0.00
	40	0	0.00	osteo undif	1
	34.25	16.55	41.38	chondrocytes	
29462	40	0	0.00	OA Synovium	+
29461	40 .	0	0.00		
28464	33.1	31.54	63.08		
28466	40	0	0.00		+
28467	40	0	0.00		
28475	40	0			
29217	40	0		_ _	
			• • • • • • • • • • • • • • • • • • •		ĺ
	40	0	0.00	OA bone	
	40	0	0.00	OA bone	
Normal	40	0	0.00	Cartilage (pool)	
OA .	40	0	0.00		0.00
28441	36.12	5.84	11.68		
28442	36.1	5.9	11.80	PBL HIV IIIB	1.01
29158	40	0	0.00	MRC5	
		ŀ		uninfected	
20178	31 02	64.00	100.16		
27170	31.63	04.08	128.16		128.16
29179	40	0	0.00		
29180	40	0			ļ
	27.26	820.77		ziorannocytes	
	1		 		
			 		
			.		
· · · · · · · · · · · · · · · · · · ·					<u> </u>
					
				<u> </u>	
			l		
	33.26	10			
	JJ.4U	110			
					
	40 40	0			
	29461 28464 28466 28467 28475 29217 J. Emory J. Emory Normal OA 28441 28442 29158	28440 33.76 28446 40 40 40 40 40 34.25 29462 40 29461 40 28464 33.1 28466 40 28475 40 29217 40 J. Emory 40 Normal 40 OA 40 28441 36.12 28442 36.1 29158 40 29178 31.83	40	40	40

Gene Name sbg614126complfH

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.85
colon tumor ·	1.50
colon tumor	8.24
colon tumor	-2.28
lung tumor	-14.08
lung tumor	-39.20
lung tumor	1.51
lung tumor	0.00
breast tumor	3.61
breast tumor	8.81
breast tumor	1.52
breast tumor	3.89
brain stage 5 ALZ	-42.63
brain stage 5 ALZ	-3.17
brain stage 5 ALZ	-20.30
brain stage 5 ALZ	-42.63
lung 24	-0.62
lung 28	-0.62
lung 23	-0.62
asthmatic lung	7.55
asthmatic lung	-0.62
asthmatic lung	-0.62
asthmatic lung	5.97
endo VEGF	0.00
endo bFGF	0.00
heart T-1	0.00
heart T-14	0.00
heart T-3399	12.26
BM stim	0.00
osteo undif	0.00
Cartilage (pool)	0.00
PBL HIV IIIB	1.01
MRC5 HSV strain F	128.16

Gene Name sbg120703RNase

Moderate to low overall expression in normal and disease samples. Highest normal expression in whole brain and salivary gland. Moderate expression in the fetal liver and the thymus. Highest disease expression in 2 of the normal lung samples, one of the lung tumor samples, the normal cartilage pool, and the HSV-infected MRC5 cells. Upregulation in 1 of 4 colon tumors suggests a role in cancer of the colon. Downregulation in 2 of 4 lung tumor samples suggests possible implication in lung cancer. Upregulation in 2 of 4 breast tumors implies an involvement in cancers of the breast. Downregulation in 3 of 3 COPD lung samples implies an involvement in COPD. Upregulation in 3 of 3 heart samples implicates this gene in diseases of the heart such as DCM and ischemia. High expression in the OA and RA synovium and the OA bone samples suggests a possible involvement in osteoarthritis and rheumatoid arthritis. Upregulation in HSV implicates this gene in herpes simplex virus as a potential host factor. Moderate to low expression in immune cells.

Sample sbg120703RNase	Ct (sample 1 and 2)	Mean GOI copies (sample	Mean GOI copies (sample	Averag e GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte
		1)	2)				d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	40, 36.24	0	2.54	1.27	3.06	16.34	20.75
Subcutaneous Adipose Zenbio	36.58, 40	2.07	0	1.04	0.96	52.36	54.19
Adrenal Gland Clontech	40, 40	0.22	0	0.11	0.61	81.97	9.02
Whole Brain Clontech	28.62, 28.6	245.21	247.41	246.31	7.24	6.91	1701.04
Fetal Brain Clontech		0.3	0	0.15	0.48	103.95	15.59
Cerebellum Clontech	40, 40	0.29	0	0.15	2.17	23.04	3.34
Cervix	35.3, 40	4.45	0 -	2.23	2.42	20.66	45.97
Colon	40, 40	0.26	0	0.13	2.71	18.45	2.40
Endometrium	40, 38.38	0	0.7	0.35	0.73	68.21	23.87
Esophagus	36.11, 37.01	2.74	1.6	2.17	1.37	36.50	79.20
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	39.31, 36.07	0.4	2.8	1.60	2.58	19.38	31.01
Jejunum	34.13, 39.51	8.98	0.36	4.67	6.60	7.58	35.38
Kidney	40, 40	0.48	0	0.24	2.12	23.58	5.66
Liver	34.4, 36.04	7.64	2.86	5.25	1.50	33.33	175.00
Fetal Liver Clontech	31.46, 31.39	44.65	46.4	45.53	10.40	4.81	218.87
Lung	34.21, 35.61	8.59	3.71	6.15	2.57	19.46	119.65
Mammary Gland Clontech	34.9, 35.65	5.67	3.6	4.64	13.00	3.85	17.83
Myometrium	40, 38.99	0_	0.49	0.25	2.34	21.37	5.24
Omentum	38.39, 34.35	0.7	7.89	4.30	3.94	12.69	54.51
Ovary	35, 33.21	5.34	15.64	10.49	4.34	11.52	120.85
Pancreas	40	0	0	0.00	0.81	61.80	0.00
Head of Pancreas	40	0	0	0.00	1.57	31.85	0.00
Parotid Gland	32.22, 33.49	28.28	13.18	20.73	5.48	9.12	189.14
Placenta Clontech	37, 39.59	1.6	0.34	0.97	5.26	9.51	9.22
Prostate	35.03, 35.75	5.23	3.4	4.32	3.00	16.67	71.92
Rectum	38.25, 40	0.76	0.21	0.49	1.23	40.65	19.72
Salivary Gland Clontech	30.01, 29.73	106.25	125.78	116.02	7.31	6.84	793.54
Clontech	40, 39.16	0.41	0.44	0.43	1.26	39.68	16.87
	37.21, 35.01	1.42	5.31	3.37	1.21	41.32	139.05
Clontech	40, 40	0	0.19	0.10	0.98	51.07	4.85
	35.4, 35.9	4.2	3.11	3.66	4.92	10.16	37.14
	36.12, 40	2.73	0.21			18.32	26.92
estis Clontech	40, 40	0	0			87.87	0.00

Thymus Clontech	31.88, 31.42	34.61	45.62	40.12	9.89	5.06	202.81
Thyroid	40, 35.22	0	4.67	2.34	2.77	18.05	42.15
Trachea Clontech	35.38, 37.52	4.26	1.17	2.72	9.71	5.15	13.98
Urinary Bladder	38.77, 40	0.56	0.31	0.44	5.47	9.14	3.98
Uterus	33.66, 37.55	11.93	1.16	6.55	5.34	9.36	61.28
genomic	25.78	1342.66					
b-actin	27.27	551.42					
1.00E+05	19.03	100000					
1.00E+05	19.08	100000					
1.00E+04	22.28	10000					
1.00E+04	22.27	10000					
1.00E+03	25.85	1000					
1.00E+03	25.6	1000					
1.00E+02 .	30.44	100					
1.00E+02	29.33	100				}	
1.00E+01	34.4	10					
1.00E+01	34.48	10					
1.00E-00							
1.00E-00	-						
NTC	40	-1					
NTC	40	0					

Sample sbg120703RNase	Reg number	Ct	Mean GOI	copies of	Sample	Fold Change
	(GSK		copies	detected/		in
	identifie		Copies	50 ng		Disease
	r)			total		Populati
				RNA		on
colon normal GW98-167	21941	29.03	142.85	285.70	colon normal	
colon tumor GW98-166	21940	28.31	226.87	453.74	colon tumor	1.59
colon normal GW98-178	22080	33.08	10.78	21.56	colon normal	
colon tumor GW98-177	22060	29.33	118.09	236.18	colon tumor	10.95
colon normal GW98-561	23514	30.02	76.09	152.18	colon normal	
colon tumor GW98-560	23513	30.42	58.89	117.78	colon tumor	-1.29
colon normal GW98-894	24691	29.07	139.29	278.58	colon normal	
colon tumor GW98-893	24690	30.3	63.5	127.00	colon tumor	-2.19
lung normal GW98-3	20742	26.86	574.4	1148.80	lung normal	
lung tumor GW98-2	20741	30.07	73.89	147.78	lung tumor .	-7.77
lung normal GW97-179	20677	29.74	90.79	181.58	lung normal	
lung tumor GW97-178	20676	27.63	351.24	702.48	lung tumor	3.87
lung normal GW98-165	21922	26.63	663.94	1327.88	lung normal	
lung tumor GW98-164	21921	29.38	114.52	229.04	lung tumor	-5.80
lung normal GW98-282	22584	30	77.02	154.04	lung normal	
lung tumor GW98-281	22583	29.64	97.04	194.08	lung tumor	1.26
breast normal GW00-392	28750	29.08	138.57	138.57	breast normal	
breast tumor GW00-391	28746	28.77	169.53	339.06	breast tumor	2.45
breast normal GW00-413	28798	32.72	13.55	13.55	breast normal	
breast tumor GW00-412	28797	31.01	40.4	80.80	breast tumor	5.96

breast normal GW00- 235:238	27592- 95	34.39	4.68	4.68	breast normal	
breast tumor GW00- 231:234	27588- 91	31.4	31.48	31.48	breast tumor	6.73
breast normal GW98-621	23656	28.54	195.6	391.20	breast normal	
breast tumor GW98-620	23655	30.37	60.84	121.68	breast tumor	-3.21
brain normal BB99-542	25507	32.94	11.79	23.58	brain normal	-3.21
brain normal BB99-406	25509	32.22	18.66	37.32	brain normal	
brain normal BB99-904	25546	32.3	17.71	35.42	brain normal	
brain stage 5 ALZ BB99- 874	25502	32.82	12.76	25.52	brain stage 5	-1.26
brain stage 5 ALZ BB99- 887	25503	30.31	63.18	126.36	brain stage 5	3.94
brain stage 5 ALZ BB99- 862	25504	31.42	31.08	62.16	brain stage 5	1.94
brain stage 5 ALZ BB99- 927	25542	33.35	9.08	18.16	brain stage 5	-1.77
CT lung KC	normal	30.41	59.49	118.98	CT lung	
lung 26 KC	normal				lung 26	
lung 27 KC	normal	37.69	0.57	0.57	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-40.17
lung 28 KC	COPD	40	0	0.00	lung 28	-40.17
lung 23 KC	COPD	40	0	0.00	lung 23	-40.17
lung 25 KC	normal	36.86	0.97	0.97	lung 25	
asthmatic lung ODO3112	29321	33.08	10.79	10.79	asthmatic lung	-3.72
asthmatic lung ODO3433	29323	29.94	80.31	160.62	asthmatic lung	4.00
asthmatic lung ODO3397	29322	29.79	87.94	175.88	asthmatic lung	4.38
asthmatic lung ODO4928	29325	30.08	73.39	146.78	asthmatic lung	3.65
endo cells KC	control	40	0.13	0.13	endo cells	
endo VEGF KC		40	0	0.00	endo VEGF	-0.13
endo bFGF KC		40	0.12	0.12	endo bFGF	-1.08
heart Clontech	normal	34.66	3.95	7.90	heart	
heart (T-1) ischemic	29417	30.43	58.48	116.96	heart T-1	14.81
heart (T-14) non- obstructive DCM	29422	30.3	63.76	127.52	heart T-14	16.14
heart (T-3399) DCM	29426	31.14	37.27	74.54	heart T-3399	9.44
adenoid GW99-269	26162	33.15	10.31	20.62	adenoid	
tonsil GW98-280	22582	30.26	65.22	130.44	tonsil	
T cells PC00314	28453	33.29	9.45	18.90	T cells	
PBMNC		40	0	0.00	PBMNC	
monocyte		40	0	0.00	monocyte	
B cells PC00665	28455	32.25	18.35	36.70	B cells	
dendritic cells 28441		30.52	55.34	110.68	dendritic cells	
neutrophils	28440	31.61	27.61	27.61	neutrophils	
eosinophils	28446	33.2	10.01	20.02	eosinophils	
BM unstim		40	0	0.00	BM unstim	
BM stim		40	0	0.00		0.00
osteo dif		40	0	0.00	osteo dif	0.00
osteo undif		40	0	0.00	osteo undif	0.00
chondrocytes		29.65	96.25	240.63		
	i	-2.03	70.23	240.03	chondrocytes	

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	100460	Jac. 50	1100.00	1100.00	lou a	
OA Synovium IP12/01	29462	28.59	190.09	190.09	OA Synovium	
OA Synovium NP10/01	29461	29.06	140.66	281.32	OA Synovium	
OA Synovium NP57/00	28464	28.38	216.61	433.22	OA Synovium	
RA Synovium NP03/01	28466	29.43	111	222.00	RA Synovium	
RA Synovium NP71/00	28467	28.35	220.48	440.96	RA Synovium	
RA Synovium NP45/00	28475	28.7	176.79	353.58	RA Synovium	
OA bone (biobank)	29217	30.6	52.6	52.60	OA bone (biobank)	
OA bone Sample 1	J. Emory	29.64	97.1	194.20	OA bone	
OA bone Sample 2	J. Emory	30.85	44.71	89.42	OA bone	
Cartilage (pool)	Normal	28.07	264.86	529.72	Cartilage (pool)	
Cartilage (pool)	OA	30.47	56.97	113.94	Cartilage (pool)	-4.65
PBL unifected	28441	33.41	8.73	17.46	PBL unifected	
PBL HIV IIIB	28442	32.1	20.17	40.34	PBL HIV IIIB	2.31
MRC5 uninfected (100%)	29158	31.09	38.5	77.00	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	28.24	237.46	474.92	MRC5 HSV strain F	6.17
W12 cells	29179	28.83	162.45	324.90	W12 cells	
Keratinocytes	29180	29.21	127.89	255.78	Keratinocytes	
B-actin control		26.99	528.52			
genomic		25.66	1229.15			
1.00E+05		18.76	100000			
1.00E+05		19.03	100000			
1.00E+04		22.01	10000			
1.00E+04		22.05	10000			
1.00E+03		26.01	1000	•		
1.00E+03		25.68	1000			
1.00E+02		30.57	100			
1.00E+02		30.32	100			
1.00E+01		32.24	10			
1.00E+01		40	0			
1.00E-00		40	0			
1.00E-00		40	0			
NTC		40	0			

Gene Name sbg120703RNase

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.59
colon tumor	10.95
colon tumor	-1.29
colon tumor	-2.19
lung tumor	-7.77

lung tumor	3.87
lung tumor	-5.80
lung tumor	1.26
breast tumor	2.45
breast tumor	5.96
breast tumor	6.73
breast tumor	-3.21
brain stage 5 ALZ	-1.26
brain stage 5 ALZ	3.94
brain stage 5 ALZ	1.94
brain stage 5 ALZ	-1.77
lung 24	-40.17
lung 28	-40.17
lung 23	-40.17
asthmatic lung	-3.72
asthmatic lung	4.00
asthmatic lung	4.38
asthmatic lung	3.65
endo VEGF	-0.13
endo bFGF	-1.08
heart T-1	14.81
heart T-14	16.14
heart T-3399	9.44
BM stim	0.00
osteo undif	0.00
Cartilage (pool)	-4.65
PBL HIV IIIB	2.31
MRC5 HSV strain F	6.17

Gene Name sbg98530TS

Moderate overall expression in normal and disease samples. Highest normal expression in whole brain, endometrium, and testis. Moderate expression in normal heart, skeletal muscle, and esophagus. Shows expression in most of the GI tract samples as well as the female reproductive tract samples. Highest disease expression in one of the colon tumor samples, all 3 of the heart samples, and the chondrocytes. Data predominantly shows a muscle-specific pattern of expression. Upregulation in 1 of 4 colon tumors and upregulation in 2 of 4 breast tumors implies an involvement in cancers of the colon and breast. Downregulation in 3 of 3 COPD samples implies a role in chronic obstructive pulmonary disease. Downregulation in HSV implicates involvement in herpes simplex virus as a potential host factor. Moderate to low overall expression in immune cells. High expression in chondrocytes and OA and RA synovium suggests possible involvement in osteoarthritis and rheumatoid arthritis.

-	_
1	_
	٦.

Sample sbg98530TS	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sampl e 2)	Averag e GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	40, 36.35	0	4.22	2.11	3.06	16.34	34.48
Subcutaneous Adipose Zenbio	35.78, 40	5.89	0	2.95	0.96	52.36	154.19
Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00

Whole Brain Clontech	26.63, 26.42	1253.02	1414.2	1333.61	7.24	6.91	9210.01
Fetal Brain Clontech	40, 37.33	0	2.38	1.19	0.48	103.95	123.70
Cerebellum Clontech	35.9, 40	5.5	0	2.75	2.17	23.04	63.36
Cervix	33.47, 34.27	22.86	14.26	18.56	2.42	20.66	383.47
Colon	34.49, 34.05	12.58	16.28	14.43	2.71	18.45	266.24
Endometrium	33.28, 32.94	25.41	31.15	28.28	0.73	68.21	1929.06
Esophagus	33.61, 32.9	21.02	31.85	26.44	1.37	36.50	964.78
Heart Clontech	33.32, 33.03	24.91	29.42	27.17	1.32	37.88	1028.98
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	35.89, 33.37	L	24.14	14.84	2.58	19.38	287.50
Jejunum	31.55, 31.42	70.2	75.71	72.96	6.60	7.58	552.69
Kidney	40, 35.5	0	6.96	3.48	2.12	23.58	82.08
Liver	34.29, 33.63	14.07	20.78	17.43	1.50	33.33	580.83
Fetal Liver Clontech	32.16, 32.92	49.02	31.52	40.27	10.40	4.81	193.61
Lung	40, 35.78	0		2.95	2.57	19.46	57:30
Mammary Gland	31.42, 32.08	75.62	51.54	63.58	13.00	3.85	244.54
Clontech							
Myometrium	32.93, 32.03	31.21	52.84	42.03	2.34	21.37	897.97
Omentum	35.21, 40	8.23	0	4.12	3.94	12.69	52.22
Ovary	35.36, 35.51	7.53	6.89	7.21	4.34	11.52	83.06
Pancreas	40, 40	0	0	0.00	0.81	61.80	0.00
Head of Pancreas	40, 37.54	0	2.11	1.06	1.57	31.85	33.60
Parotid Gland	31.67, 31.01	65.33	96.46	80.90	5.48	9.12	738.09
Placenta Clontech	33.13, 32.05	27.88	52.3	40.09	5.26	9.51	381.08
Prostate	35.03, 40	9.13	5.22	7.18	3.00	16.67	119.58
Rectum	40, 35.19	0	8.32	4.16	1.23	40.65	169.11
Salivary Gland Clontech	32.41, 34.06	42.32	16.15	29.24	7.31	6.84	199.97
Skeletal Muscle Clontech	33.93, 33.76	17.41	19.28	18.35	1.26	39.68	727.98
Skin	40, 40	0	0	0.00	1.21	41.32	0.00
Small Intestine Clontech	34.11	11.73	15.7	13.72	0.98	51.07	700.46
Spleen	36.08, 40	4.94	0.37	2.66	4.92	10.16	26.98
Stomach	40, 40	0	0	0.00	2.73	18.32	0.00
Testis Clontech	35.54, 33.26	6.79	25.83	16.31	0.57	87.87	1433.22
Thymus Clontech	33.66, 34.12	20.35	15.62	17.99	9.89	5.06	90.93
Thyroid	40, 35.46	0	7.12	3.56	2.77	18.05	64.26
Trachea Clontech	32.08, 31.84	51.54	59.21	55.38	9.71	5.15	285.14
Urinary Bladder	34.75, 36.99	10.8	2.91	6.86	5.47	9.14	62.66
Uterus	31.79, 32.2	60.97	47.95	54.46	5.34	9.36	509.93
genomic	26.8	1133.17	<u> </u>				
b-actin	27.6	706.62					
1.00E+05	19.53	100000					
1.00E+05	19.54	100000					
1.00E+04	22.8	10000					
1.00E+04	23.02	10000					
1.00E+03	26.14	1000					
1.00E+03	26.59	1000					

1.00E+02	31.41	100		T		T
1.00E+02	30.97	100		<u> </u>	- 	
1.00E+01	40	0	 			1
1.00E+01	35.24	10				
1.00E-00	40	0				1
1.00E-00	40	0			1	-
NTC	40	0				1
NTC-	40	0				

Sample	Reg	Ct	Mean	copies	Sample	Fold
sbg98530TS	number		GOI	of		Change
	(GSK		copies	mRNA		in
	identifier	1		detecte	}	Disease
) .			d/50 ng		Populat
				total RNA		ion
colon normal GW98-167	21941	26.26	1792.89	3585.78	colon normal	 -
colon tumor GW98-166	21940	26.2	1856.22	3712.44	colon tumor	1.04
colon normal GW98-178	22080	27.25	986.8	1973.60	colon normal	
colon tumor GW98-177	22060	26.7	1369.12	2738.24	colon tumor	1.39
colon normal GW98-561	23514	27.55	821.35	1642.70	colon normal	
colon tumor GW98-560	23513	24.64	4748.96	9497.92	colon tumor	5.78
colon normal GW98-894	24691	27.27	971.87	1943.74	colon normal	
colon tumor GW98-893	24690	25.35	3093.47	6186.94	colon tumor	3.18
lung normal GW98-3	20742	27.02	1133.68	2267.36	lung normal	
lung tumor GW98-2	20741	27.26	981.94	1963.88	lung tumor	-1.15
lung normal GW97-179	20677	29.14	315.07	630.14	lung normal	
lung tumor GW97-178	20676	28.15	571.76	1143.52	lung tumor	1.81
lung normal GW98-165	21922	27.86	682.2	1364.40	lung normal	
lung tumor GW98-164	21921	27.45	871.19	1742.38	lung tumor	1.28
lung normal GW98-282	22584	28.12	581.74	1163.48	lung normal	
lung tumor GW98-281	22583	29.32	283.71	567.42	lung tumor	-2.05
breast normal GW00-392	28750	27.85	687.38	687.38	breast normal	
breast tumor GW00-391	28746	26.61	1444.19	2888.38	breast tumor	4.20
breast normal GW00-413	28798	28.43	483.03	483.03	breast normal	
breast tumor GW00-412	28797	25.49	2836.66	5673.32	breast tumor	11.75
breast normal GW00- 235:238	27592-95	32.26	48.29	48.29	breast normal	
breast tumor GW00- 231:234	27588-91	29.07	328.46	328.46	breast tumor	6.80
breast normal GW98-621	23656	26.82	1279.07	2558.14	breast normal	
breast tumor GW98-620	23655	26.8	1289.27	2578.54	breast tumor	1.01
brain normal BB99-542	25507	29.03	337.63	675.26	brain normal	
brain normal BB99-406.	25509	29.19	305.6	611.20	brain normal	
brain normal BB99-904	25546	30.44	144.55	289.10	brain normal	
brain stage 5 ALZ BB99- 874	25502	28.47	471.8	943.60	brain stage 5 ALZ	1.80
brain stage 5 ALZ BB99- 887	25503	27.3	955.52	1911.04	brain stage 5 ALZ	3.64

brain stage 5 ALZ BB99- 862	25504	27.42	891.77	1783.54	brain stage 5 ALZ	3.40
brain stage 5 ALZ BB99- 927	25542	29.31	285.16	570.32	brain stage 5 ALZ	1.09
CT lung KC	normal	27.96	643.88	1287.76	CT lung	
lung 26 KC	normal	35.82	5.66	5.66	lung 26	
lung 27 KC	normal	40	0	0.00	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-325.52
lung 28 KC	COPD	35.3	7.73	7.73	lung 28	-42.11
lung 23 KC	COPD	36.67	3.39	3.39	lung 23	-96.02
lung 25 KC	normal	35.11	8.67	8.67	lung 25	
asthmatic lung ODO3112	29321	31.01	102.08	102.08	asthmatic lung	-3.19
asthmatic lung ODO3433	29323	29.76	216.81	433.62	asthmatic lung	1.33
asthmatic lung ODO3397	29322	29.83	208.08	416.16	asthmatic lung	1.28
asthmatic lung ODO4928	29325	30.37	150.17	300.34	asthmatic lung	-1.08
endo cells KC	control	37.54	2	2.00	endo cells	
endo VEGF KC		35.77	5.83	5.83	endo VEGF	2.92
endo bFGF KC		40	0	0.00	endo bFGF	-2.00
heart Clontech	normal	26.09	1982.44	3964.88	heart	
heart (T-1) ischemic	29417	24	6956.27	13912.5	heart T-1	3.51
heart (T-14) non- obstructive DCM	29422	24.55	5010.03	10020.0	heart T-14	2.53
heart (T-3399) DCM	29426	24.05	6766.57	13533.1 4	heart T-3399	3.41
adenoid GW99-269	26162	30.56	134.11	268.22	adenoid	
tonsil GW98-280	22582	27.94	651.01	1302.02	tonsil	·
T cells PC00314	28453	29.8	212.45	424.90	T cells	
PBMNC		33.01	30.69	30.69	PBMNC	
monocyte ·		33.42	23.9	47.80	monocyte	
B cells PC00665	28455	33.52	22.59	45.18	B cells	
dendritic cells 28441		29.07	329.58	659.16	dendritic cells	
neutrophils	28440	30.39	149	149.00	neutrophils	
eosinophils	28446	35.41	7.25	14.50	eosinophils	
BM unstim		34.24	14.65	14.65	BM unstim	
BM stim		36.61	3.51	3.51	BM stim	-4.17
osteo dif		30.55	135.33	135.33	osteo dif	3.02
osteo undif		32.38	44.88	44.88	osteo undif	
chondrocytes		25.35	3089.54	7723.85	chondrocytes	
OA Synovium IP12/01	29462	28.75	398.53	398.53	OA Synovium	
OA Synovium NP10/01	29461	27.04	1119.77	2239.54	OA Synovium	
OA Synovium NP57/00	28464.	28.85	375.92	751.84	OA Synovium	
RA Synovium NP03/01	28466	28.14	574.66	1149.32	RA Synovium	
RA Synovium NP71/00	28467	27.58	806.11	1612.22	RA Synovium	
RA Synovium NP45/00	28475	28.04	611.1	1222.20	RA Synovium	
OA bone (biobank)	29217	30.25	161.3	161.30	OA bone (biobank)	
OA bone Sample 1	J. Emory	31.24	89.29	178.58	OA bone	
OA bone Sample 2	J. Emory	30.98	104.34	208.68	OA bone	

Cartilage (pool)	Normal	29.86	204.47	408.94	Cartilage (pool)	T
Cartilage (pool)	OA	29.37	275.09	550.18	Cartilage (pool)	1.35
PBL unifected	28441	26.45	1598.39	3196.78	PBL unifected	-
PBL HIV IIIB	28442	27.57	814.58	1629.16	PBL HIV IIIB	-1.96
MRC5 uninfected (100%)	29158	25.13	3539.95	7079.90	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	30.49	139.89	279.78	MRC5 HSV strain	-25.31
W12 cells	29179	26.72	1359.04	2718.08	W12 cells	
Keratinocytes	29180	26.41	1633.77	3267.54	Keratinocytes	
B-actin control		27.87	678.8			
genomic		26.9	1214.71			
1.00E+05		19.86	100000			
1.00E+05		19.82	100000			
1.00E+04		23.15	10000			
1.00E+04		23.21	10000			
1.00E+03		26.62	1000			
1.00E+03		26.79	1000		•	
1.00E+02		31.2	100			
1.00E+02		32.2	100			
1.00E+01		40	0			
1.00E+01		34.53	10			
1.00E-00		40	0			
1.00E-00		40	0			
NTC		40	0	, ,		

Gene Name sbg98530TS

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.04
colon tumor	1.39
colon tumor	5.78
colon tumor	3.18
lung tumor	-1.15
lung tumor	1.81
lung tumor	1.28
lung tumor	-2.05
breast tumor	4.20
breast tumor	11.75
breast tumor	6.80
breast tumor	1.01
brain stage 5 ALZ	1.80
brain stage 5 ALZ	3.64
brain stage 5 ALZ	3.40
brain stage 5 ALZ	1.09
lung 24	-325.52
lung 28	-42.11
lung 23	-96.02
asthmatic lung	-3.19
asthmatic lung	1.33

asthmatic lung	1.28
asthmatic lung	-1.08
endo VEGF	2.92
endo bFGF	-2.00
heart T-1	3.51
heart T-14	2.53
heart T-3399	3.41
BM stim	-4.17
osteo undif	3.02
Cartilage (pool)	1.35
PBL HIV IIIB	-1.96
MRC5 HSV strain F	-25.31

Gene Name sbg563917RDP

5

10

Moderate to low overall expression in normal and disease samples. Highest normal expression in testis liver, trachea, and whole brain. Shows good expression in most of the GI tract samples. Highest disease expression in T cells, B cells, neutrophils, and eosinophils. Upregulation in 1 of 4 breast tumors implies involvement in cancer of the breast. Downregulation in 3 of 3 COPD lungs suggests an involvement in chronic obstructive pulmonary disease. Downregulation in the ischemic heart sample implicates this gene in ischemic heart disease. Downregulation in the VEGF and bFGF-treated endothelial cells suggests a role in angiogenesis. Upregulation in HSV implicates involvement in herpes simplex virus as a potential host factor.

Sample sbg563917RDP	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Avera ge GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	35.34, 40	3.66	0	1.83	3.06	16.34	29.90
Subcutaneous Adipose Zenbio	40, 40	0		0.00	0.96	52.36	0.00
Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain Clontech	30.09, 30.01	91.85	96.8	94.33	7.24	6.91	651.42
Fetal Brain Clontech	40, 40	0	0	0.00	0.48	103.95	0.00
Cerebellum Clontech	35.19, 40	4.03	0	2.02	2.17	23.04	46.43
Cervix	36.08, 40	2.33	0	1.17	2.42	20.66	24.07
Colon	36.07, 35.1	2.35	4.24	3.30	2.71	18.45	60.79
Endometrium	35.01, 40	4.49	0	2.25	0.73	68.21	153.14
Esophagus	34.94, 40	4.68	0	2.34	1.37	36.50	85.40
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	35.24, 40	3.89	0	1.95	2.58	19.38	37.69
Jejunum	35.37, 33.35	3.6	12.44	8.02	6.60	7.58	60.76
Kidney	40, 34.97	0	4.6	2.30	2.12	23.58	54.25
Liver	33.51, 34.6	11.25	5.78	8.52	1.50	33.33	283.83
Fetal Liver Clontech	33.19, 35.54	13.75	3.25	8.50	10.40	4.81	40.87
Lung	34.32	6.84	2.28	4.56	2.57	19.46	88.72
Mammary Gland Clontech	40, 35.14	0	4.15	2.08	13.00	3.85	7.98

Myometrium	40, 40	10	0.09	0.05	2.34	21.37	0.96
Omentum	36.17, 33.01	2.2	15.32	8.76	3.94	12.69	
Ovary	40, 40	0	0	0.00	4.34	11.52	111.17
Pancreas	40, 40	0	0	0.00	0.81	61.80	0.00
Head of Pancreas	40, 40	0	0	0.00	1.57		0.00
Parotid Gland	35.43, 39.81	3.46	0.24	1.85	5.48	31.85	0.00
Placenta Clontech	33.7, 35.45	10.02	3.42	6.72	1	9.12	16.88
Prostate	40, 40	0	0		5.26	9.51	63.88
Rectum	40, 40	0	+	0.00	3.00	16.67	0.00
Salivary Gland	34.89, 40	4.83	0	0.00	1.23	40.65	0.00
Clontech	34.89, 40	4.83	0	2.42	7.31	6.84	16.52
Skeletal Muscle	40, 40	0	0	0.00	1.26	39.68	0.00
Clontech		L	}		1	55.00	0.00
Skin	40, 40	0	0	0.00	1.21	41.32	0.00
Small Intestine Clontech	40, 40	0	0	0.00	0.98	51.07	0.00
Spleen	35.01, 33.36	4.48	12.38	8.43	4.92	10.16	85.67
Stomach	33.38, 34.18	12.18	7.48	9.83	2.73	18.32	180.04
Testis Clontech	34.25, 32.86	7.17	16.84	12.01	0.57	87.87	1054.92
Thymus Clontech:	32.14, 33.25	26.17	13.24	19.71	9.89	5.06	99.62
Thyroid	40, 40	0	0.09	0.05	2.77	18.05	0.81
Trachea Clontech	31.41, 31	41.04	52.65	46.85	9.71	5.15	241.22
Urinary Bladder	40, 35.05	0	4.38	2.19	5.47	9.14	20.02
Uterus	33.77, 33.41	9.62	12	10.81	5.34	9.36	101.22
genomic '	26.54	813.56					
b-actin	27.39	481.34		<u> </u>			
1.00E+05	18.71	100000					
1.00E+05	18.92	100000		1			.
1.00E+04	22.44	10000				 	
1.00E+04	22.11	10000					
1.00E+03	26.05	1000				 	†
1.00E+03	26.11	1000					†
1.00E+02	30.4	100				 	
1.00E+02	30.17	100		<u> </u>		 	 -
1.00E+01	33.87	10					† —
1.00E+01 (· ·	33.26	10				 	
1.00E-00	40	0		 			1
1.00E-00	40	0					
NTC	40	0					
NTC	40	0		 			

Sample sbg563917RDP	Reg number (GSK identifier	Ct	Mean GOI copies	copies of mRNA detecte d/50 ng total RNA	Sample	Fold Change in Disease Population
colon normal GW98-167	21941	30.39	148.35	296.70	colon normal	

<u> </u>						
colon tumor GW98-166	21940	30.93	110.14	220.28	colon tumor	-1.35
colon normal GW98-178	22080	32.93	36.71	73.42	colon normal	
colon tumor GW98-177	22060	34.8	13.09	26.18	colon tumor	-2.80
colon normal GW98-561	23514	31.41	84.68	169.36	colon normal	
colon tumor GW98-560	23513	32.09	58.33	116.66	colon tumor	-1.45
colon normal GW98-894	24691	30.02	182.15	364.30	colon normal	
colon tumor GW98-893	24690	31.12	99.26	198.52	colon turnor	-1.84
lung normal GW98-3	20742	28.4	443.99	887.98	lung normal	
lung tumor GW98-2	20741	33.59	25.44	50.88	lung tumor	-17.45
lung normal GW97-179	20677	28.63	391.85	783.70	lung normal	
lung tumor GW97-178	20676	29.16	292.08	584.16	lung tumor	-1.34
lung normal GW98-165	21922	29.13	296.8	593.60	lung normal	1.0.
	21921	30.22	163.43	326.86	lung tumor	-1.82
lung tumor GW98-164	22584	31.71	71.72	143.44	lung normal	-1.02
lung normal GW98-282					lung tumor	-1.01
lung tumor GW98-281	22583	31.74	70.77	141.54		-1.01
breast normal GW00-392	28750	31.49	81.02	81.02	breast normal	1.50
breast tumor GW00-391	28746	33.58	25.62	51.24	breast tumor	-1.58
breast normal GW00-413	28798	35.07	11.31	11.31	breast normal	10.00
breast tumor GW00-412	28797	31.99	61.52	123.04	breast tumor	10.88
breast normal GW00- 235:238	27592-95	35.63	8.3	8.30	breast normal	
breast tumor GW00- 231:234	27588-91	34.33	16.97	16.97	breast tumor	2.04
breast normal GW98-621	23656	32.07	58.95	117.90	breast normal	
breast tumor GW98-620	23655	32.71	41.33	82.66	breast tumor	-1.43
brain normal BB99-542	25507	30.16	168.86	337.72	brain normal	
brain normal BB99-406	25509	31.12	99.35	198.70	brain normal	
brain normal BB99-904	25546	31.14	98.44	196.88	brain normal	·
brain stage 5 ALZ BB99- 874	25502	33.16	32.39	64.78	brain stage 5 ALZ	-3.77
brain stage 5 ALZ BB99- 887	25503	29.32	267.28	534.56	brain stage 5 ALZ	2.19
brain stage 5 ALZ BB99- 862	25504	30.36	150.72	301.44	brain stage 5 ALZ	1.23
brain stage 5 ALZ BB99- 927	25542	30.1	174.01	348.02	brain stage 5 ALZ	1.42
CT lung KC	normal	31.06	102.88	205.76	CT lung	
lung 26 KC	normal	32.15	56.21	56.21	lung 26	
lung 27 KC	normal	35.96	6.92	6.92	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-70.34
lung 28 KC	COPD	36.21	6.05	6.05	lung 28	-11.63
lung 23 KC	COPD	34.83	12.87	12.87	lung 23	-5.47
lung 25 KC	normal	34.89	12.45	12.45	lung 25	
asthmatic lung ODO3112		32.57	44.76	44.76	asthmatic lung	-1.57
asthmatic lung ODO3433		32.4	49:04	98.08	asthmatic lung	1.39
asthmatic lung ODO3397	29322	31.79	68.64	137.28	asthmatic lung	1.95
asthmatic lung ODO4928		31.34	88.11	176.22	asthmatic lung	2.51
endo cells KC	control	35.77	7.68	7.68	endo cells	
endo VEGF KC		40	0	0.00	endo VEGF	-7.68
		i TV	ıv	10.00	CHICO ATION	i - / • O O

endo bFGF KC	Т	140	10	0.00	anda bECE	7.60
heart Clontech	normal	31.09	100.75	201.50	endo bFGF heart	-7.68
heart (T-1) ischemic	29417	34.75	13.46	26.92	heart T-1	7.40
heart (T-14) non-	29422	33.69	24.17	48.34	heart T-14	-7.49
obstructive DCM	25,122	33.05	24.17	70.54	neart 1-14	-4.17
heart (T-3399) DCM	29426	33.48	27.16	54.32	heart T-3399	-3.71
adenoid GW99-269	26162	30.49	140.7	281.40	adenoid	
tonsil GW98-280	22582	30.07	177.32	354.64	tonsil	
T cells PC00314	28453	27.79	622.1	1244.20	T cells	
PBMNC	<u> </u>	36.19	6.11	6.11	PBMNC	
monocyte		33.24	30.91	61.82	monocyte	
B cells PC00665	28455	26.37	1355.2	2710.40	B cells	
dendritic cells 28441		28.69	378.62	757.24	dendritic cells	
neutrophils	28440	23.28	7420.47	7420.47	neutrophils	
eosinophils	28446	25.33	2408.94	4817.88	eosinophils	
BM unstim		32.24	53.57	53.57	BM unstim	
BM stim		31.92	64.05	64.05	BM stim	1.20
osteo dif		40	0	0.00	osteo dif	0.00
osteo undif		40	0	0.00	osteo undif	0.00
chondrocytes		37.59	2.82	7.05	chondrocytes	
OA Synovium IP12/01	29462	31.77	69.48	69.48	OA Synovium	 -
OA Synovium NP10/01	29461	31.16	96.93	193.86	OA Synovium	
OA Synovium NP57/00	28464	30.84	115.69	231.38	OA Synovium	
RA Synovium NP03/01	28466	30.96	108.37	216.74	RA Synovium	
RA Synovium NP71/00	28467	29.2	285.91	571.82	RA Synovium	
RA Synovium NP45/00	28475	29.87	198.12	396.24	RA Synovium	
OA bone (biobank)	29217	29.67	220.64	220.64	OA bone (biobank)	
OA bone Sample 1	J. Emory	30.54	136.41	272.82	OA bone	
OA bone Sample 2	J. Emory	29.38	259.07	518.14	OA bone .	
Cartilage (pool)	Normal	31.34	87.88	175.76	Cartilage (pool)	
Cartilage (pool)	OA	32.9	37.23	74.46	Cartilage (pool)	-2.36
PBL unifected	28441	30.55	135.85	271.70	PBL unifected	
PBL HIV IIIB	28442	31.02	104.8	209.60	PBL HIV IIIB	-1.30
MRC5 uninfected (100%)	29158	35.11	11.06		MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	29.63	226.14		MRC5 HSV strain F	20.45
W12 cells	29179		2.42	4.84	W12 cells	
	29180	36.14	6.26	12.52	Keratinocytes	
B-actin control			887.42			
genomic			1520.17			
1.00E+05			100000			
1.00E+05			100000			
1.00E+04			10000			
1.00E+04			10000			
1.00E+03			1000			
1.00E+03			1000			
1.00E+02		30.26	100			

1.00E+02	31.03	100		
1.00E+01	38.68	10		
1.00E+01	33.47	10		
1.00E-00	40	0		
1.00E-00	40	0		
NTC	40	0		

Gene Name sbg563917RDP

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.35
colon tumor	-2.80
colon tumor	-1.45
colon tumor	-1.84
lung turnor	-17.45
lung tumor	-1.34
lung tumor	-1.82
lung tumor	-1.01
breast tumor	-1.58
breast tumor	10.88
breast tumor	2.04
breast tumor	-1.43
brain stage 5 ALZ	-3.77
brain stage 5 ALZ	2.19
brain stage 5 ALZ	1.23
brain stage 5 ALZ	1.42
lung 24	-70.34
lung 28	-11.63
lung 23	-5.47
asthmatic lung	-1.57
asthmatic lung	1.39
asthmatic lung	1.95
asthmatic lung	2.51
endo VEGF	-7.68
endo bFGF	-7.68
heart T-1	-7.49
heart T-14	-4.17
heart T-3399	-3.71
BM stim	1.20
osteo undif	0.00
Cartilage (pool)	-2.36
PBL HIV IIIB	-1.30
MRC5 HSV strain F	20.45

5 Gene Name sbg618069LRR

10

Low overall expression in normal and disease samples. Highest normal expression in whole brain, fetal brain, cerebellum, and thymus. Highest disease expression in one of the colon tumor samples, one of the lung tumor samples, and the uninfected PBL cells. Downregulation in 2 of 4 colon tumors suggests a role in cancer of the colon. Upregulation in 1 of 4 lung tumors and upregulation in 2 of 4 breast tumors suggest roles in cancers of the lung and breast. Downregulation in 3 of 3 COPD lung samples implicates a role for this gene in COPD. Upregulation in the stimulated bone marrow. Downregulation in an HIV-infected cell line as well as moderate expression in immune

cells suggests an involvement in HIV. Upregulation in HSV implicates involvement in herpes simplex virus as a potential host factor.

Sample	Ct (sample	Mean	Mean	Average	18S	50	copies
sbg618069LRR	1 and 2)	GOI	GOI	GOI	rRNA	ng/18S	
		copies	copies	Copies	(ng)	rRNA	mRNA
		(sample	ı · •			(ng)	detecte
		1)	2)				d/50 ng
	į	1	İ				total
Subcutaneous	35.24, 34.33	4.38	7.65	6.02	3.06	16.34	RNA
Adipocytes Zenbio	33.24, 34.33	7.50	1.03	0.02	3.00	10.34	98.28
Subcutaneous Adipose	40, 40	0	0.08	0.04	0.96	52.36	2.09
Zenbio							
Adrenal Gland Clontech		0.13	0.51	0.32	0.61	81.97	26.23
Whole Brain Clontech	27.02, 26.51	673.36	916.93	795.15	7.24	6.91	5491.33
Fetal Brain Clontech	40, 40	0.13	6.01	3.07	0.48	103.95	319.13
Cerebellum Clontech	32.15, 32.13	28.98	29.44	29.21	2.17	23.04	673.04
Cervix	40, 40	0	0	0.00	2.42	20.66	0.00
Colon	36.53, 39.88	1.98	0.25	1.12	2.71	18.45	20.57
Endometrium	37.98, 40	0.82	0.19	0.51	0.73	68.21	34.45
Esophagus	38.86, 40	0.48	0.15	0.32	1.37	36.50	11.50
Heart Clontech	34.17, 34.72	8.41	6.03	7.22	1.32	37.88	273.48
Hypothalamus	40, 40	0 ·	0.07	0.04	0.32	155.28	5.43
Ileum	40, 40	0.17	0.11	0.14	2.58	19.38	2.71
Jejunum	33.07, 34.34	16.52	7.58	12.05	6.60	7.58	91.29
Kidney	36.05, 40	2.67	0.21	1.44	2.12	23.58	33.96
Liver	38.72, 40	0.52	0.61	0.57	1.50	33.33	18.83
Fetal Liver Clontech	33.28, 36.35	14.52	2.22	8.37	10.40	4.81	40.24
Lung	40, 40	0.13	0.08	0.11	2.57	19.46	2.04
Mammary Gland	40, 34.19	0	8.33	4.17	13.00	3.85	16.02
Clontech	40.40	222	_				
Myometrium	40, 40	0.28	0	0.14	2.34	21.37	2.99
Omentum .	35.01, 35.36	5.04	4.07	4.56	3.94	12.69	57.80
Ovary	34.24, 40	8.07	0.26	4.17	4.34	11.52	47.98
Pancreas	40, 40	0.11	0.13	0.12	0.81	61.80	7.42
Head of Pancreas	40, 40	0	0	0.00	1.57	31.85	0.00
Parotid Gland	34.01, 34.28	9.31	7.9	8.61	5.48	9.12	78.51
Placenta Clontech	40, 40	0	0.07	0.04	5.26	9.51	0.33
Prostate	40, 39.13	0.15	0.4	0.28	3.00	16:67	4.58
Rectum	40, 39.55	0.21	0.31	0.26	1.23	40.65	10.57
Salivary Gland	32.35, 33.08	25.74	16.45	21.10	7.31	6.84	144.29
Clontech Skeletal Muscle	34.78, 40	5.81	0.27	3.04	1.26	20.69	120.62
Clontech	J-7. / U, 4·U	2.01	0.27	3.04	1.26	39.68	120.63
Skin	40, 40	0	0	0.00	1.21	41.32	0.00
Small Intestine	40, 40	0.16	0	0.08	0.98	51.07	4.09
Clontech							,
Spleen	35.59, 40		0.59	2.06	4.92	10.16	20.93
Stomach	36.73, 40	1.76	0.11	0.94	2.73	18.32	17.12
Testis Clontech	37.91, 40	0.86	0.1	0.48	0.57	87.87	42.18

Thymus Clontech	30.22, 29.94	94.88	112.23	103.56	9.89	5.06	523.53
Thyroid	35.15, 40	4.62	0	2.31.	2.77	18.05	41.70
Trachea Clontech	33.49, 34.21	12.75	8.22	10.49	9.71	5.15	53.99
Urinary Bladder	40, 40	0.09	0.08	0.09	5.47	9.14	0.78
Uterus	35.26, 33.03	4.31	16.97	10.64	5.34	9.36	99.63
genomic	26.04	1229.54					
b-actin	27.25	584.19					
1.00E+05	19.09	100000					
1.00E+05	19.04	100000] .		
1.00E+04	22.35	10000					
1.00E+04	22.35	10000					
1.00E+03	26.07	1000					
1.00E+03	26.26	1000]
1.00E+02	30.64	100					
1.00E+02	30.38	100			1		
1.00E+01	34.04	10					
1.00E+01	33.52	10					
1.00E-00	40	0				1	
1.00E-00	40	0					
NTC	40	0					
NTC	40	0					

Sample sbg618069LRR	Reg number (GSK identifier)	Ct	Mean GOI copies	copies of mRNA detecte d/50 ng total RNA	Sample	Fold Change in Disease Populati on
colon normal GW98-167	21941	29.52	176.51	353.02	colon normal	
colon tumor GW98-166	21940	33.45	18.5	37.00	colon tumor	-9.54
colon normal GW98-178	22080	31.82	47.14	94.28	colon normal	
colon tumor GW98-177	22060	29.68	160.67	321.34	colon tumor	3.41
colon normal GW98-561	23514	30.33	110.78	221.56	colon normal	
colon tumor GW98-560	23513	33.11	22.39	44.78	colon tumor	-4.95
colon normal GW98-894	24691	28.1	396.95	793.90	colon normal	
colon tumor GW98-893	24690	26.93	779.99	1559.98	colon tumor	1.96
lung normal GW98-3	20742	30.41	105.78	211.56	lung normal	
lung tumor GW98-2	20741	26.28	1128.28	2256.56	lung tumor	10.67
lung normal GW97-179	20677	29.28	201.91	403.82	lung normal	
lung tumor GW97-178	20676	28.35	345.36	690.72	lung tumor	1.71
lung normal GW98-165	21922	28.42	331.95	663.90	lung normal	
lung tumor GW98-164	21921	30.98	76.05	152.10	lung tumor	-4.36
lung normal GW98-282	22584	34.15	12.36	24.72	lung normal	
lung tumor GW98-281	22583	32.08	40.6	81.20	lung tumor	3.28
breast normal GW00-392	28750	29.67	161.68	161.68	breast normal	
breast tumor GW00-391	28746	28.98	239.65	479.30	breast tumor	2.96
breast normal GW00-413	28798	31.78	48.04	48.04	breast normal	

breast tumor GW00-412	28797	29.69	159.55	319.10	breast tumor	6.64
breast normal GW00-	27592-95	34.18	12.14	12.14	breast normal	
breast tumor GW00-	27588-91	29.2	211.28	211.28	breast tumor	17.40
231:234	2,300 51	25.2	211.20	211.20	broast tamor	17.70
breast normal GW98-621	23656	29.72	157.4	314.80	breast normal	
breast tumor GW98-620	23655	31.12	70.17	140.34	breast tumor	-2.24
brain normal BB99-542	25507	30.81	83.89	167.78	brain normal	
brain normal BB99-406	25509	31.02	74.28	148.56	brain normal	
brain normal BB99-904	25546	31.39	60.08	120.16	brain normal	
brain stage 5 ALZ BB99- 874	25502	32.54	31.07	62.14	brain stage 5 ALZ	-2.34
brain stage 5 ALZ BB99- 887	25503	30.65	92.1	184.20	brain stage 5 ALZ	1.27
brain stage 5 ALZ BB99- 862	25504	31.68	50.92	101.84	brain stage 5 ALZ	-1.43
brain stage 5 ALZ BB99- 927	25542	31.39	60.36	120.72	brain stage 5 ALZ	-1.21
CT lung KC	normal	30.47	101.87	203.74	CT lung	
lung 26 KC	normal				lung 26	
lung 27 KC	normal	39.27	0.65	0.65	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-68.13
lung 28 KC	COPD	37.38	1.93	1.93	lung 28	-35.30
lung 23 KC	COPD	34.28	11.47	11.47	lung 23	-5.94
lung 25 KC	normal	40	0	0.00	lung 25	
asthmatic lung ODO3112	29321	33.17	21.73	21.73	asthmatic lung	-3.14
asthmatic lung ODO3433	29323	32.35	34.64	69.28	asthmatic lung	1.02
asthmatic lung ODO3397	29322	30.83	83.1	166.20	asthmatic lung	2.44
asthmatic lung ODO4928	29325	30.94	77.99	155.98	asthmatic lung	2.29
endo cells KC	control	40	0	0.00	endo cells	
endo VEGF KC		40	0	0.00	endo VEGF	0.00
endo bFGF KC		40	0	0.00	endo bFGF	0.00
heart Clontech	normal	30.52	99.45	198.90	heart	
heart (T-1) ischemic	29417	28.78	270.18	540.36	heart T-1	2.72
heart (T-14) non- obstructive DCM	29422	29.62	166.76	333.52	heart T-14	1.68
heart (T-3399) DCM	29426	30.05	129.76	259.52	heart T-3399	1.30
adenoid GW99-269	26162	29.05	230.93	461.86	adenoid	
tonsil GW98-280	22582	29.77	152.22	304.44	tonsil	
T cells PC00314	28453	31.6	53.48	106.96	T cells	
PBMNC		39.8	0.48	0.48	PBMNC	
monocyte		40	0	0.00	monocyte	
B cells PC00665	28455	31.56	54.77	109.54	B cells	
dendritic cells 28441		34.09	12.8	25.60	dendritic cells	
neutrophils	28440	34.03	13.21	13.21	neutrophils	
eosinophils	28446	40	0	0.00	eosinophils	
BM unstim		40	0	0.00	BM unstim	-
BM stim		35.71	5.04	5.04	BM stim	5.04
osteo dif		40	0	0.00	osteo dif	0.00
osteo undif	· .	40	0	0.00	osteo undif	

chondrocytes		33.5	17.89	44.73	chondrocytes	
OA Synovium IP12/01	29462	32.24	37.02	37.02	OA Synovium	
OA Synovium NP10/01	29461	27.95	434.95	869.90	OA Synovium	
OA Synovium NP57/00	28464	30.9	79.82	159.64	OA Synovium	
RA Synovium NP03/01	28466	31.79	47.9	95.80	RA Synovium	
RA Synovium NP71/00	28467	33.06	23.05	46.10	RA Synovium	
RA Synovium NP45/00	28475	32.76	27.41	54.82	RA Synovium	
OA bone (biobank)	29217	32.02	42.02	42.02	OA bone (biobank)	
OA bone Sample 1	J. Emory	31.32	62.63	125.26	OA bone	
OA bone Sample 2	J. Emory	33.13	22.24	44.48	OA bone	
Cartilage (pool)	Normal	30.76	86.51	173.02	Cartilage (pool)	
Cartilage (pool)	OA	33.13	22.15	44.30	Cartilage (pool)	-3.91
PBL unifected	28441	26.78	847.01	1694.02	PBL unifected	
PBL HIV IIIB	28442	28.21	374.26	748.52	PBL HIV IIIB	-2.26
MRC5 uninfected (100%)	29158	40	0	0.00	MRC5 uninfected (100%)	,
MRC5 HSV strain F	29178	31.26	64.96	129.92	MRC5 HSV strain F	129.92
W12 cells	29179	40	0	0.00	W12 cells	
Keratinocytes	29180	39.77	0.49	0.98	Keratinocytes	
B-actin control		27.18	675.17			
genomic		25.96	1358.6			
1.00E+05		18.58	100000			
1.00E+05		18.53	100000			
1.00E+04		22.04	10000			
1.00E+04		22.1	10000			,
1.00E+03		25.85	1000			
1.00E+03		26.11	1000			
1.00E+02		34.02	100			
1.00E+02		30.53	100			
1.00E+01		32.98	10			
1.00E+01		40	0			
1.00E-00		40	0			
1.00E-00		38.21	1			
NTC		40	0	L		

Gene Name sbg618069LRR

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-9.54
colon tumor	3.41
colon tumor	-4.95
colon tumor	1.96
lung tumor	10.67
lung tumor	1.71
lung tumor	-4.36
lung tumor	3.28

breast tumor 6. breast tumor 1' breast tumor -2 brain stage 5 ALZ -2	.96 .64 7.40 2.24 2.34
breast tumor 1' breast tumor -2 brain stage 5 ALZ -2	7.40 2.24 2.34 2.7
breast tumor -2 brain stage 5 ALZ -2	2.24 2.34 27
brain stage 5 ALZ	2.34 27
	27
brain stage 5 ALZ.	
1.	
brain stage 5 ALZ -1	1.43
<u> </u>	.21
lung 24 -6	58.13
	55.30
	.94
	.14
	02
asthmatic lung 2.4	44
asthmatic lung 2.2	29
endo VEGF 0.0	00
endo bFGF 0.0	00
heart T-1 2.7	72
heart T-14 1.6	68
heart T-3399 1.3	30
BM stim 5.0	04
osteo dif 0.0	00
Cartilage (pool) -3.	91
PBL HIV IIIB -2.	26
MRC5 HSV strain F 129	9.92

Gene Name sbg934114Relaxin

Low overall expression in normal and disease samples. Highest normal expression in testis, liver, and whole brain. Highest disease expression in 3 of the normal lung samples, one of the normal 5 tumor samples, the HSV-infected MRC5 cells, the adenoid, and the T cells. Highest disease expression in 2 of the normal lung samples, one of the lung tumor samples, 1 of the normal breast samples, I of the breast tumor samples, and the uninfected PBL samples. Downregulation in 1 of 4 colon tumors and downregulation in 2 of 4 lung tumors imply roles in cancers of the colon and lung. Downregulation in 3 of 3 COPD lung samples and upregulation in 3 of 4 asthmatic lung samples 10 implicates this gene in COPD and asthma. Upregulation in 2 of 3 heart samples proposes roles in non-obstructive and obstructive DCM. Downregulation in the OA cartilage pool and low expression in RA and OA synovium, OA bone, and chondrocytes suggests an involvement in osteoarthritis and rheumatoid arthritis. Downregulation in an HIV-infected primary cell line suggests an involvement 15 in HIV. Upregulation in HSV implicates involvement in herpes simplex virus as a potential host factor.

Sample sbg934114Relaxin	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	37.4, 40	5.41	0	2.71	3.06	16.34	44.20

Subcutaneous Adipose Zenbio	40, 40	0.73	0	0.37	0.96	52.36	19.11
Adrenal Gland Clontech	40, 40	0.73	0.69	0.71	0.61	81.97	58.20
Whole Brain Clontech	33.52, 34.72	47.76	24.26	36.01	7.24	6.91	248.69
Fetal Brain Clontech	39.51, 40	1.65	0.86	1.26	0.48	103.95	130.46
Cerebellum Clontech	40, 39.84	0.99	1.37	1.18	2.17	23.04	27.19
Cervix	40, 40	1.05	0	0.53	2.42	20.66	10.85
Colon	40, 37.31	0	5.7	2.85	2.71	18.45	52.58
Endometrium	40, 40	0	0	0.00	0.73	68.21	0.00
Esophagus	40, 40	0	0	0.00	1.37	36.50	0.00
Heart Clontech	38.11, 40	3.63	1.31	2.47	1.32	37.88	93.56
Hypothalamus	40, 40	0	1.06	0.53	0.32	155.28	82.30
Ileum	40, 36.79	0	7.62	3.81	2.58	19.38	73.84
Jejunum	35.14, 35.9	19.25	12.54	15.90	6.60	7.58	120.42
Kidney	40, 40	0	0	0.00	2.12	23.58	0.00
Liver	37.25, 35.17	5.88	18.92	12.40	1.50	33.33	413.33
Fetal Liver Clontech	40, 37.38	0.73	5.47	3.10	10.40	4.81	14.90
Lung	37.07, 40	6.52	0	3.26	2.57	19.46	63.42
Mammary Gland Clontech	40, 40	0	0	0.00	13.00	3.85	0.00
Myometrium	37.95, 40	3.98	0	1.99	2.34	21.37	42.52
Omentum	36.24, 37.04	10.39	6.63	8.51	3.94	12.69	107.99
Ovary	35.29, 36.26	17.66	10.28	13.97	4.34	11.52	160.94
Pancreas	39.48, 40	1.69	0	0.85	0.81	61.80	52.22
Head of Pancreas	36.17, 39.82	10.79	1.39	6.09	1.57	31.85	193.95
Parotid Gland	40, 38.66	0	2.67	1.34	5.48	9.12	12.18
Placenta Clontech	40, 36.57	0	8.63	4.32	5.26	9.51	41.02
Prostate	36.91, 40	7.14	0	3.57	3.00	16.67	59.50
Rectum	40, 37.34	0	5.61	2.81	1.23	40.65	114.02
Salivary Gland Clontech	40, 40	0	0	0.00	7.31	6.84	0.00
Skeletal Muscle Clontech	40, 39.45	0	1.71	0.86	1.26	39.68	33.93
Skin	39.2, 40	1.98	0	0.99	1.21	41.32	40.91
Small Intestine Clontech	40, 40	0	0	0.00	0.98	51.07	0.00
Spleen	36, 40	11.84	0	5.92	4.92	10.16	60.16
Stomach	35.48, 39.19	15.9	1.98	8.94	2.73	18.32	163.74
Testis Clontech	40, 36.09	0	11.27	5.64	0.57	87.87	495.17
Thymus Clontech	34.34, 36.66	30.03	8.2	19.12	9.89	5.06	96.64
Thyroid	40, 40	0	0	0.00	2.77	18.05	0.00
Trachea Clontech	40, 37.8	0	4.33	2.17	9.71	5.15	11.15
Urinary Bladder	40, 40	0	0	0.00	5.47	9.14	0.00
Uterus	37.11, 35.16	6.36	18.96	12.66	5.34	9.36	118.54
genomic	27.61	1307.98					
b-actin	27.15	1697.68					
1.00E+05	19.88	100000					
1.00E+05	20.05	100000					
1.00E+04	24.01	10000					

WO 02/22802· . : PCT/US01/28462

1.00E+04	23.92	10000		Ţ	1	
1.00E+03	27.98	1000		1		
1.00E+03	27.6	1000		<u> </u>		
1.00E+02	32.89	100				
1.00E+02	32.2	100				<u> </u>
1.00E+01	36.1	10				
1.00E+01						
1.00E-00						<u>-</u>
1.00E-00	•					
NTC	40	0				· — —
NTC	40	0				

Sample	Reg	Ct	Mean	copies	Sample	Fold
sbg934114Relaxin	number		GOI	of	•	Change
	(GSK		copies	mRNA		in
	identifier			detecte		Disease
)	l		d/50 ng		Populati
*				total		on .
colon normal GW98-167	21941	36.1	22.33	RNA 44.66	colon normal	-
colon tumor GW98-166	21940	36.47	18.37	36.74	colon tumor	-1.22
colon normal GW98-178	22080	35.7	27.58	55.16	colon normal	-1.22
colon tumor GW98-177	22060	38.05	7.98	15.96	colon tumor	2.46
colon normal GW98-561	23514	33.57	84.85	169.70		-3.46
colon tumor GW98-560	23513	37.66	9.8	19.60	colon normal	0.66
colon normal GW98-894	24691	36.39	19.09	38.18	colon tumor	-8.66
colon tumor GW98-893	24690	36.43	18.74		colon normal	
lung normal GW98-3	20742	32.48		37.48	colon tumor	-1.02
lung tumor GW98-2	20742		150.6	301.20	lung normal	
		36.65	16.64	33.28	lung tumor	-9.05
lung normal GW97-179	20677	33.22	102.07	204.14	lung normal	
lung tumor GW97-178	20676	32.31	164.63	329.26	lung tumor	1.61
lung normal GW98-165	21922	32.08	185.96	371.92	lung normal	'
lung tumor GW98-164	21921	35.14	37.09	74.18	lung tumor	-5.01
lung normal GW98-282	22584	36.41	18.93	37.86	lung normal	
lung tumor GW98-281	22583	35.24	35.13	70.26	lung tumor	1.86
breast normal GW00-392	28750	34.04	66.25	66.25	breast normal	
breast tumor GW00-391	28746	37.9	8.61	17.22	breast tumor	-3.85
breast normal GW00-413	28798	36.36	19.44	19.44	breast normal	
breast tumor GW00-412	28797	36.79	15.49	30.98	breast tumor	1.59
breast normal GW00- 235:238	27592-95	36.91	14.52	14.52	breast normal	
breast tumor GW00- 231:234	27588-91	35.43	31.71	31.71	breast tumor	2.18
breast normal GW98-621	23656	36.26	20.51	41.02	breast normal	
breast tumor GW98-620	23655	35.76	26.68	53.36	breast tumor	1.30
brain normal BB99-542	25507	37.99	8.21	16.42	brain normal	
brain normal BB99-406	25509	40	1.41	2.82	brain normal	
brain normal BB99-904	25546	40	0	0.00	brain normal	
brain stage 5 ALZ BB99-	25502	38.65	5.82	11.64	brain stage 5 ALZ	1.81

874		I				
brain stage 5 ALZ BB99- 887	25503	37	13.9	27.80	brain stage 5 ALZ	4.33
brain stage 5 ALZ BB99- 862	25504	37.4	11.24	22.48	brain stage 5 ALZ	3.51
brain stage 5 ALZ BB99- 927	25542	38	8.19	16.38	brain stage 5 ALZ	2.55
CT lung KC	normal	35.32	33.59	67.18	CT lung	
lung 26 KC	normal	37.02	13.72	13.72	lung 26	
lung 27 KC	normal	40	0	0.00	lung 27	
lung 24 KC	COPD	39.97	2.78	2.78	lung 24	-7.81
lung 28 KC	COPD	40	0	0.00	lung 28	-21.71
lung 23 KC	COPD	39.06	4.67	4.67	lung 23	-4.65
lung 25 KC	normal	38.61	5.92	5.92	lung 25	
asthmatic lung ODO3112	29321	36.02	23.31	23.31	asthmatic lung	1.07
asthmatic lung ODO3433	29323	34.12	63.36	126.72	asthmatic lung	5.84
asthmatic lung ODO3397	29322	33.99	68.06	136.12	asthmatic lung	6.27
asthmatic lung ODO4928	29325	33.77	76.08	152.16	asthmatic lung	7.01
endo cells KC	control	40	0	0.00	endo cells	
endo VEGF KC	•	40	0	0.00	endo VEGF	0.00
endo bFGF KC		38.16	7.54	7.54	endo bFGF	7.54
heart Clontech	normal	40 .	0	0.00	heart	
heart (T-1) ischemic	29417	40	1.36	2.72	heart T-1	2.72
heart (T-14) non- obstructive DCM	29422	36.31	20.01	40.02	heart T-14	40.02
heart (T-3399) DCM	29426	37.17	12.7	25.40	heart T-3399	25.40
adenoid GW99-269	26162	33.33	96.07	192.14	adenoid	,
tonsil GW98-280	22582	34.86	42.85	85.70	tonsil	
T cells PC00314	28453	33.48	88.65	177.30	T cells	
PBMNC		40	0	0.00	PBMNC	
monocyte		40	0	0.00	monocyte	
B cells PC00665	28455	32.44	153.68	307.36	B cells	
dendritic cells 28441		35.78	26.47	52.94	dendritic cells ·	
neutrophils	28440	36.18	21.43	21.43	neutrophils	
eosinophils	28446	39.2	4.34	8.68	eosinophils	
BM unstim		39.56	3.6	3.60	BM unstim	
BM stim		40	1.34	1.34	BM stim	-2.69
osteo dif		40	0	0.00	osteo dif	0.00
osteo undif		40	0	0.00	osteo undif	
chondrocytes		36.64	16.79	41.98	chondrocytes	
OA Synovium IP12/01	29462	34.75	45.45	45.45	OA Synovium	
OA Synovium NP10/01	29461	36.02	23.28	46.56	OA Synovium	
OA Synovium NP57/00	28464	34.24	59.37	118.74	OA Synovium	-
RA Synovium NP03/01	28466	37.88	8.71	17.42	RA Synovium	
RA Synovium NP71/00	28467	36.02	23.22	46.44	RA Synovium	
RA Synovium NP45/00	28475	34.9	41.9	83.80	RA Synovium	
OA bone (biobank)	29217	33.59	83.75	83.75	OA bone (biobank)	
OA bone Sample 1	J. Emory	37.31	11.8	23.60	OA bone	-
<u> </u>	<u>-</u>					

OA bone Sample 2	JEmory	37.47	10.81	21.62	OA bone	T
Cartilage (pool)	Normal	34.61	49.07	98.14	Cartilage (pool)	
Cartilage (pool)	OA	40	Ō	0.00	Cartilage (pool)	-98.14
PBL unifected	28441	33.86	72.8	145.60	PBL unifected	
PBL HIV IIIB	28442	37.08	13.28	26.56	PBL HIV IIIB	-5.48
MRC5 uninfected (100%)	29158	39.01	4.81	9.62	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	31.5	252.68	505.36	MRC5 HSV strain	52.53
W12 cells	29179	39.84	3.1	6.20	W12 cells	
Keratinocytes	29180	39.07	4.64	9.28	Keratinocytes	
B-actin control		27.9	1683.49			
genomic		28.13	1492.71			
1.00E+05		20.5	100000			
1.00E+05		20.61	100000	i		
1.00E+04		24.56	10000			
1.00E+04		24.17	10000			
1.00E+03		28.14	1000			
1.00E+03		28.32	1000			
1.00E+02		34.26	100			
1.00E+02		32.76	100			· · ·
1.00E+01		38.07	10			
1.00E+01		37.53	10			
1.00E-00		40	0			
1.00E-00		40	1			
NTC		38.42	-1			

Gene Name sbg934114Relaxin

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.22
colon tumor	-3.46
colon tumor	-8.66
colon tumor	-1.02
lung tumor	-9.05
lung tumor	1.61
lung tumor	-5.01
lung tumor	1.86
breast tumor	-3.85
breast tumor	1.59
breast tumor	2.18
breast tumor	1.30
brain stage 5 ALZ	1.81
brain stage 5 ALZ	4.33
brain stage 5 ALZ	3.51
brain stage 5 ALZ	2.55
lung 24	-7.81
lung 28	-21.71
lung 23	-4.65
asthmatic lung	1.07

٠::

asthmatic lung	5.84
asthmatic lung	6.27
asthmatic lung	7.01
endo VEGF	0.00
endo bFGF	7.54
heart T-1	2.72
heart T-14	40.02
heart T-3399	25.40
BM stim	-2.69
osteo dif	0.00
Cartilage (pool)	-98.14
PBL HIV IIIB	-5.48
MRC5 HSV strain F	52.53

Gene Name sbg99174LOX-like

: .5

10

15

Moderate overall expression in normal and disease samples. Highest normal expression in whole brain, liver, skin, spleen, testis. Shows relatively good expression in the female reproductive samples as well as the GI tract samples. Highest disease expression in one of the normal lung samples, one of the asthmatic lung samples, neutrophils, eosinophils, 2 of the RA synovium samples, and one of the OA bone samples. Downregulation in 1 of 4 lung tumor samples suggests possible implication in lung cancer. Upregulation in 2 of 4 breast tumors implies an involvement in cancers of the breast. Downregulation in 1 of 4 AD brains along with the high expression seen in the brain suggests an involvement in Alzheimer's disease. Downregulation in 2 of 3 COPD lung samples implies an involvement in chronic obstructive pulmonary disease. Upregulation in 1 of 4 asthmatic lung samples implies a role in asthma. Downregulation in OA cartilage and high expression in OA and RA synovium suggests possible involvement in osteoarthritis and rheumatoid arthritis. Corroborating high expression in the T cells provides additional evidence for a role in RA/OA. Moderate expression in other immune cells.

Sample sbg99174LOX-like	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	39.67, 34.48	0.53	11.91	6.22	3.06	16.34	101.63
Subcutaneous Adipose Zenbio	40, 39.75	0.39	0.51	0.45	0.96	52.36	23.56
Adrenal Gland Clontech	38.61, 37.69	1	1.75	1.38	0.61	81.97	112.70
Whole Brain Clontech	30.59, 31.07	122.95	92.57	107.76	7.24	6.91	744.20
Fetal Brain Clontech	40, 40	0	0.29	0.15	0.48	103.95	15.07
Cerebellum Clontech	40, 40	0.4	0.4	0.40	2.17	23.04	9.22
Cervix	35.77, 40	5.52	0.62	3.07	2.42	20.66	63.43
Colon	40, 39.41	0.34	0.62	0.48	2.71	18.45	8.86
Endometrium	40, 38.65	0	0.98	0.49	0.73	68.21	33.42
Esophagus	40, 40	0.35	0.41	0.38	1.37	36.50	13.87
Heart Clontech	39.33, 40	0.65	0	0.33	1.32	37.88	12.31
Hypothalamus	40, 39.54	0	0.58	0.29	0.32	155.28	45.03
Ileum	35.42, 35.76	6.79	5.55	6.17	2.58	19.38	119.57
Jejunum	34.13, 33.4	14.77	22.9	18.84	6.60	7.58	142.69

Kidney	40, 37.22	0.68	2.32	1.50	2.12	23.58	35.38
Liver	33.5, 33.86	21.47	17.3	19.39	1.50	33.33	646.17
Fetal Liver Clontech	32.78, 33.23	33.08	25.33	29.21	10.40	4.81	140.41
Lung	33.96, 34.44	16.33	12.25	14.29	2.57	19.46	278.02
Mammary Gland Clontech	35.05, 36.02	8.51	4.76	6.64	13.00	3.85	25.52
Myometrium	35.08, 35.49	8.34	6.52	7.43	2.34	21.37	158.76
Omentum	37.6, 35.05	1.83	8.49	5.16	3.94	12.69	65.48
Ovary	35.57, 32.76	6.21	33.46	19.84	4.34	11.52	228.51
Pancreas	40, 40	0	0.42	0.21	0.81	61.80	12.98
Head of Pancreas	40, 38.65	0.56	0.98	0.77	1.57	31.85	24.52
Parotid Gland	35.28, 40	7.4	0.64	4.02	5.48	9.12	36.68
Placenta Clontech	40, 39.17	0.32	0.72	0.52	5.26	9.51	4.94
Prostate	40, 35.34	0	7.15	3.58	3.00	16.67	59.58
Rectum	37.29, 39.02	2.22	0.78	1.50	1.23	40.65	60.98
Salivary Gland Clontech	40, 38.15	0.27	1.32	0.80	7.31	6.84	5.44
Skeletal Muscle Clontech	40, 38.56	0.56	1.03	0.80	1.26	39.68	31.55
Skin	35.1, 34.19	8.22	14.22	11.22	1.21	41.32	463.64
Small Intestine Clontech	40, 40	0	0.85	0.43	0.98	51.07	21.71
Spleen	32.2, 32.08	46.76	50.49	48.63	4.92	10.16	494.16
Stomach	34.28, 34.07	13.5	15.3	14.40	2.73	18.32	263.74
Testis Clontech	34.05, 32.7	15.46	34.82	25.14	0.57	87.87	2209.14
Thymus Clontech	33.85, 32.4	17.44	41.71	29.58	9.89	5.06	149.52
Thyroid	34.22, 34.29	13.93	13.37	13.65	2.77	18.05	246.39
Trachea Clontech	32.51, 32.4	38.89	41.53	40.21	9.71	5.15	207.05
Urinary Bladder	35.47, 40	6.6	0	3.30	5.47	9.14	30.16
Uterus	33.8, 33.6	18.01	20.22	19.12	5.34	9.36	178.98
genomic	26.31	1603.29					
b-actin	27.35	860.96					
1.00E+05	19.71	100000					
1.00E+05	19.88	100000					
1.00E+04	22.98	10000					
1.00E+04	23.01	10000					
1.00E+03	26.44	1000					
1.00E+03	26.54	1000		.			
1.00E+02	31.28	100					
1.00E+02	31.29	100					
1.00E+01	35.79	10					
1.00E+01	34.36	10					
1.00E-00	38.32	1					
1.00E-00	40	1					
NTC	40	0					
NTC	40	0					

Sample	Reg	Ct	Mean	copies	Sample	Fold
sbg99174LOX-like	number		GOI	of	-	Change

r	COOK	ι	T•	DATA	Γ	T
	(GSK identifier	l	copies	mRNA detecte		in Disease
)	•		d/50 ng		Populati
]'	ļ	'	total		on
				RNA		
colon normal GW98-167	21941	29.81	184.31	368.62	colon normal	
colon tumor GW98-166	21940	29.25	254.48	508.96	colon tumor	1.38
colon normal GW98-178	22080	32.06	50.31	100.62	colon normal	
colon tumor GW98-177	22060	31.77	59.28	118.56	colon tumor	1.18
colon normal GW98-561	23514	33.21	25.83	51.66	colon normal	
colon tumor GW98-560	23513	31.74	60.51	121.02	colon tumor	2.34
colon normal GW98-894	24691	30.17	149.84	299.68	colon normal	
colon tumor GW98-893	24690	29.41	232.23	464.46	colon tumor	1.55
lung normal GW98-3	20742	25.76	1914.72	3829.44	lung normal	
lung tumor GW98-2	20741	30.12	154.63	309.26	lung tumor	-12.38
lung normal GW97-179	20677	29.59	209.5	419.00	lung normal	
lung tumor GW97-178	20676	27.2	835.04	1670.08	lung tumor	3.99
lung normal GW98-165	21922	28.22	462.22	924.44	lung normal	
lung tumor GW98-164	21921	29.27	251.87	503.74	lung tumor	-1.84
lung normal GW98-282	22584	30.18	149.17	298.34	lung normal	
lung tumor GW98-281	22583	28.47	399.41	798.82	lung tumor	2.68
breast normal GW00-392	28750	30.24	143.58	143.58	breast normal	
breast tumor GW00-391	28746	30.16	151.08	302.16	breast tumor	2.10
breast normal GW00-413	28798	31.51	68.87	68.87	breast normal	
breast tumor GW00-412	28797	28.91	310.66	621.32	breast tumor	9.02
breast normal GW00- 235:238	27592-95	40	0	0.00	breast normal	
breast tumor GW00- 231:234	27588-91	33.55	21.28	21.28	breast tumor	21.28
breast normal GW98-621	23656	31.57	66.56	133.12	breast normal	
breast tumor GW98-620	23655	31.15	84.8	169.60	breast tumor	1.27
brain normal BB99-542	25507	29.55	214.38	428.76	brain normal	
brain normal BB99-406	25509	29.15	270.89	541.78	brain normal	
brain normal BB99-904	25546	30.48	124.98	249.96	brain normal	
brain stage 5 ALZ BB99- 874	25502	33.57	20.99	41.98	brain stage 5 ALZ	-9.69
brain stage 5 ALZ BB99- 887	25503	29.89	176.42	352.84	brain stage 5 ALZ	-1.15
brain stage 5 ALZ BB99- 862	25504	31.65	63.83	127.66	brain stage 5 ALZ	-3.19
brain stage 5 ALZ BB99- 927	25542	31.04	90.73	181.46	brain stage 5 ALZ	-2.24
CT lung KC	normal	29.94	170.8	341.60	CT lung	
lung 26 KC	normal	30.63	115.04	115.04	lung 26	•
lung 27 KC	normal	32.22	45.83	45.83	lung 27	
lung 24 KC	COPD	34.16	14.91	14.91	lung 24	-9.21
lung 28 KC	COPD	33.51	21.7	21.70	lung 28	-6.33
lung 23 KC	COPD	32.51	38.67	38.67	lung 23	-3.55
lung 25 KC	normal	32.18	46.79	46.79	lung 25	
asthmatic lung ODO3112	29321	31.84	56.95	56.95	asthmatic lung	-2.41

asthmatic lung ODO3433	120222	21.10	86.42	170.04	T	14.06
asthmatic lung ODO3397		31.12		172.84	asthmatic lung	1.26
asthmatic lung ODO4928		27.13	867.31	1734.62	asthmatic lung	12.63
endo cells KC		30.25	142.92	285.84	asthmatic lung	2.08
	control	31.23	81.05	81.05	endo cells	<u> </u>
endo VEGF KC	ļ	31.87	56.15	56.15	endo VEGF	-1.44
endo bFGF KC		32.64	35.97	35.97	endo bFGF	-2.25
heart Clontech	normal	35.46	7.06	14.12	heart	
heart (T-1) ischemic	29417	35.73	6.03	12.06	heart T-1	-1.17
heart (T-14) non- obstructive DCM	29422	34.34	13.49	26.98	heart T-14	1.91
heart (T-3399) DCM	29426	33.65	20.01	40.02	heart T-3399	2.83
adenoid GW99-269	26162	31.2	82.69	165.38	adenoid	
tonsil GW98-280	22582	30.8	103.96	207.92	tonsil	
T cells PC00314	28453	28.16	480.4	960.80	T cells	
PBMNC		30.25	143.11	143.11	PBMNC	
monocyte		30.05	160.68	321.36	monocyte	
B cells PC00665	28455	30.75	107.02	214.04	B cells	
dendritic cells 28441		30.32	137.17	274.34	dendritic cells	
neutrophils	28440	26.32	1390.87	1390.87	neutrophils	
eosinophils	28446	25.07	2854.44	5708.88	eosinophils	
BM unstim	23	30.72	109.05	109.05	BM unstim	
BM stim	-	28.61	369.2	369.20	BM stim	3.39
osteo dif		40	0	0.00	osteo dif	
osteo undif		40	0.28	0.28	osteo undif	-0.28
chondrocytes		34.3	13.76	34.40		<u> </u>
OA Synovium IP12/01	29462	27.56	676.63	676.63	chondrocytes	
OA Synovium NP10/01	29461	31.41	73.19	146.38	OA Synovium	
OA Synovium NP57/00	28464		518.05		OA Synovium	
RA Synovium NP03/01	28466	28.02		1036.10	OA Synovium	
RA Synovium NP71/00			921.88	1843.76	RA Synovium	
RA Synovium NP45/00	28467	27.04	914.02	1828.04	RA Synovium	
OA bone (biobank)	28475	29.06	285.08	570.16	RA Synovium	
	29217	26.78	1065.84	1065.84	OA bone (biobank)	
OA bone Sample 1	J. Emory	30.27	141.07	282.14	OA bone	
OA bone Sample 2	J. Emory	27.04	917.04	1834.08	OA bone	
Cartilage (pool)	Normal	28.23	461.21	922.42	Cartilage (pool)	
Cartilage (pool)	OA "	33.16	26.65	53.30	Cartilage (pool)	-17.31
PBL unifected	28441	28.72	346.97	693.94	PBL unifected	
PBL HIV IIIB	28442	28.54	384.02	768.04	PBL HIV IIIB	1.11
MRC5 uninfected (100%)	29158	31.64	64.07	128.14	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	31.53	68.31	136.62	MRC5 HSV strain	1.07
W12 cells	29179	34.44	12.72	25.44	W12 cells	
	29180	36.02	5.1		Keratinocytes	
B-actin control		27.2	835.98			
genomic		26.76	1073.72			
1.00E+05		19.13	100000			
1.00E+05		19.61	100000			
		-2.01	-50000			

1.00E+04	22.79	10000		
1.00E+04	· 22.5	10000		
1.00E+03	26.36	1000	-	
1.00E+03	26.23	1000		
1.00E+02	31.25	100		
1.00E+02	30.82	100		
1.00E+01	35.02	10		
1.00E+01	35.15	10		
1.00E-00	40	0		•
1.00E-00	40	0		
NTC .	40	0		

Gene Name sbg99174LOX-like

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.38
colon tumor_	1.18
colon tumor	2.34
colon tumor	1.55
lung tumor	-12.38
lung tumor	3.99
lung tumor	-1.84
lung tumor	2.68
breast tumor	2.10
breast tumor	9.02
breast tumor	21.28
breast tumor	1.27
brain stage 5 ALZ	-9.69
brain stage 5 ALZ	-1.15
brain stage 5 ALZ	-3.19
brain stage 5 ALZ	-2.24
lung 24	-9.21
lung 28	-6.33
lung 23	-3.55
asthmatic lung	-2.41
asthmatic lung	1.26
asthmatic lung	12.63
asthmatic lung	2.08
endo VEGF	-1.44
endo bFGF	-2.25
heart T-1	-1.17
heart T-14	1.91
heart T-3399	2.83
BM stim	3.39
osteo dif	-0.28
Cartilage (pool)	-17.31
PBL HIV IIIB	1.11
MRC5 HSV strain F	1.07

5 Gene Name sbg995002PIGR (Taqman)

Extremely low overall expression in normal and disease samples. Highest normal expression in the colon and the parotid gland. Highest disease expression in the one of the lung tumors and one of the colon tumors. Upregulation in 1 of 4 colon tumors and 1 of 4 lung tumors imply roles in cancers of the colon and lung. Downregulation in 3 of 4 AD brain samples as well as high expression in whole brain suggests an involvement in Alzheimer's disease. Downregulation in 3 of 3 COPD lung samples implicates this gene in COPD. Downregulation in the ischemic and non-obstructive DCM heart samples suggests a role for this gene in cardiovascular disease. Upregulation in the stimulated bone marrow sample. Upregulation in HSV implicates involvement in herpes simplex virus as a potential host factor. High expression in neutrophils and eosinophils.

10

5

Sample	Ct (sample	Mean	Mean	Average	18S	50	copies
sbg995002PIGR	1 and 2)	GOI	GOI	GOI	rRNA	ng/18S	
1		copies	copies	Copies	(ng)	rRNA	mRNA
	1	(sample				(ng)	detecte
j		1)	2)		İ		d/50 ng
	1		1		1		total
Subcutaneous	40, 40	0	0	0.00	3.06	16.24	RNA
Adipocytes Zenbio		ľ		0.00	3.00	16.34	0.00
Subcutaneous Adipose Zenbio	40, 40	0	0	0.00	0.96	52.36	0.00
Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain Clontech	36.78, 40	11.16	0	5.58	7.24	6.91	38.54
Fetal Brain Clontech	40, 40	0	0	0.00	0.48	103.95	0.00
Cerebellum Clontech	40, 40	0	0	0.00	2.17	23.04	0.00
Cervix	40, 40	0	0	0.00	2.42	20.66	0.00
Colon	37.16, 37.12	8.81	9.05	8.93	2.71	18.45	164.76
Endometrium	40, 40	0	0	0.00	0.73	68.21	0.00
Esophagus	40, 40	0	0	0.00	1.37	36.50	0.00
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	40, 40	0	0	0.00	2.58	19.38	0.00
Jejunum	40, 40	0	0	0.00	6.60	7.58	0.00
Kidney	40, 40	0	0	0.00	2.12	23.58	0.00
Liver	40, 39.16	0	2.58	1.29	1.50	33.33	43.00
Fetal Liver Clontech	40, 40	0	0	0.00	10.40	4.81	0.00
Lung	40, 40	0	0	0.00	2.57	19.46	0.00
Mammary Gland Clontech	40, 39.18	Ó	2.55	1.28	13.00	3.85	4.90
Myometrium	40, 40	0	0	0.00	2.34	21.37	0.00
Omentum	40, 38.04	0	5.15	2.58	3.94	12.69	32.68
Ovary	39.29, 40	2.37	0		4.34		13.65
Pancreas	40, 40	0	0	0.00	0.81		0.00
	40, 40	0	0				0.00
	36.7, 37.94	11.72	5.46				78.38
Placenta Clontech	40, 40	0					0.00
	40, 40	0					0.00
	40, 40	0					0.00
Clontech	37.23, 39.21	8.45	2.5				37.45
Skeletal Muscle Clontech	40, 40	0	0 (0.00	1.26	39.68	0.00

Skin	40, 40	0	0	0.00	1.21	41.32	0.00
Small Intestine Clontech	40, 40	0	0	0.00	0.98	51.07	0.00
Spleen	40, 38.76	1.25	3.3	2.28	4.92	10.16	23.12
Stomach	40, 39.25	1.25	2.43	1.84	2.73	18.32	33.70
Testis Clontech	40, 40	0	0	0.00	0.57	87.87	0.00
Thymus Clontech	37.82, 40	5.88	0	2.94	9.89	5.06	14.86
Thyroid	40, 40	0	0	0.00	2.77	18.05	0.00
Trachea Clontech	40, 40	0	0	0.00	9.71	5.15	0.00
Urinary Bladder	40, 40	0	0	0.00	5.47	9.14	0.00
Uterus	38.34, 40	4.27	0	2.14	5.34	9.36	19.99
genomic	29.66	888.99					
b-actin	30.72	462.87	}				
1.00E+05	22.2	100000	Ĭ				
1.00E+05	22.14	100000					
1.00E+04	25.72	10000	· .				
1.00E+04	25.66	10000					
1.00E+03	29.16	1000					
1.00E+03	29.07	1000					
1.00E+02	32.37	100		_			
1.00E+02	34.12	100					
1.00E+01	37.12	10					
1.00E+01	37.11	10				·	
1.00E-00	40	0					
1.00E-00	40	0					
NTC	40	0					
NTC	38.03	-1					

Sample sbg995002PIGR	Reg number (GSK identifier)	Ct	Mean GOI copies	copies of mRNA detecte d/50 ng total RNA	Sample	Fold Change in Disease Populati on
colon normal GW98-167	21941	33.43	149.84	299.68	colon normal	
colon tumor GW98-166	21940	32.49	274.64	549.28	colon tumor	1.83
colon normal GW98-178	22080	40	0	0.00	colon normal	
colon tumor GW98-177	22060	31.11	675.8	1351.60	colon tumor	1351.60
colon normal GW98-561	23514	37.74	9.09	18.18	colon normal	
colon tumor GW98-560	23513	35.81	31.94	63.88	colon tumor	3.51
colon normal GW98-894	24691	33.17	177.11	354.22	colon normal	
colon tumor GW98-893	24690	31.61	488.49	976.98	colon tumor	2.76
lung normal GW98-3	20742	35.48	39.55	79.10	lung normal	
lung tumor GW98-2	20741	28.32	4121.56	8243.12	lung tumor	104.21
lung normal GW97-179	20677	36.47	20.69	41.38	lung normal	
lung tumor GW97-178	20676	37.24	12.59	25.18	lung tumor	-1.64
lung normal GW98-165	21922	37.32	11.96	23.92	lung normal	
lung tumor GW98-164	21921	36.07	26.9	53.80	lung tumor	2.25

lung normal GW98-282	22584	38.49	5.58	11.16	11	
lung tumor GW98-281	22583	37.89	8.24	16.48	lung normal	1.10
breast normal GW00-39		39.03	3.93		lung tumor	1.48
breast tumor GW00-391	28746	38.01	7.65	3.93	breast normal	-
breast normal GW00-41		40	0		breast tumor	3.89
breast tumor GW00-412		38.67	4.98	0.00 9.96	breast normal	
breast normal GW00-	27592-95	٠	0		breast tumor	9.96
235:238		ļ		0.00	breast normal	
breast tumor GW00- 231:234	27588-91	40	0	0.00	breast tumor	0.00
breast normal GW98-62	23656	36.12	26.13	52.26	breast normal	
breast tumor GW98-620	23655	40	0	0.00	breast tumor	-52.26
brain normal BB99-542	25507	37.14	13.43	26.86	brain normal	
brain normal BB99-406	25509	40	0	0.00	brain normal	†
brain normal BB99-904	25546	40	0	0.00	brain normal	<u> </u>
brain stage 5 ALZ BB99-874	25502	40	0	0.00	brain stage 5 ALZ	-8.95
brain stage 5 ALZ BB99- 887	25503	40	0.51	1.02	brain stage 5 ALZ	-8.78
brain stage 5 ALZ BB99- 862	25504	40	0.88	1.76	brain stage 5 ALZ	-5.09
brain stage 5 ALZ BB99- 927	25542	40	1.9	3.80	brain stage 5 ALZ	-2.36
CT lung KC	normal	36.59	19.23	38.46	CT lung	
lung 26 KC	normal	40	0	0.00	lung 26	-
lung 27 KC	normal	40	0	0.00	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-9.62
lung 28 KC	COPD	40	0	0.00	lung 28	-9.62
lung 23 KC	COPD	40	0	0.00	lung 23	-9.62
lung 25 KC	normal	40	0	0.00	lung 25	
asthmatic lung ODO3112	29321	40	0	0.00	asthmatic lung	-9.62
asthmatic lung ODO3433	29323	38.36	6.1	12.20	asthmatic lung	1.27 ·
asthmatic lung ODO3397	29322	37.29	12.16	24.32	asthmatic lung	2.53
asthmatic lung ODO4928	29325	38.01	7.64	15.28	asthmatic lung	1.59
endo cells KC	control	40	0	0.00	endo cells	
endo VEGF KC		40	0	0.00	endo VEGF	0.00
endo bFGF KC		40	0	0.00	endo bFGF	0.00
heart Clontech ·	normal	37.85	8.49	16.98	heart	
heart (T-1) ischemic	29417	40	0	0.00	heart T-1	-16.98
heart (T-14) non- obstructive DCM	29422	40	0	0.00	heart T-14	-16.98
heart (T-3399) DCM	29426	39.5	2.9	5.80	heart T-3399	-2.93
adenoid GW99-269	26162	40	0	0.00	adenoid	
tonsil GW98-280	22582	36.35	22.46	44.92	tonsil	
T cells PC00314	28453	36.17	25.23	50.46	T cells	
PBMNC		40	0	0.00	PBMNC	
monocyte		40	0.45	0.90	monocyte	
B cells PC00665	28455	40	0.6	1.20	B cells	
dendritic cells 28441		38.07	7.37	14.74	dendritic cells	
neutrophils		32.73	236.09	236.09	neutrophils	
					F	

eosinophils	28446	33.68	126.65	253.30	eosinophils	· · · · · · · · · · · · · · · · · · ·
BM unstim		40	0	0.00	BM unstim	
BM stim		36.52	20.1	20.10	BM stim	20.10
osteo dif		40	0	0.00	osteo dif	0.00
osteo undif		40	0	0.00	osteo undif	
chondrocytes		39.61	2.7	6.75	chondrocytes	
OA Synovium IP12/01	29462	39.91	1.59	1.59	OA Synovium	
OA Synovium NP10/01	29461	38.98	4.07	8.14	OA Synovium	
OA Synovium NP57/00	28464	36.29	23.27	46.54	OA Synovium	
RA Synovium NP03/01	28466	35.81	31.94	63.88	RA Synovium	
RA Synovium NP71/00	28467	34.79	61.79	123.58	RA Synovium	
RA Synovium NP45/00	28475	35.08	51.15	102.30	RA Synovium	
OA bone (biobank)	29217	40	1.12	1.12	OA bone (biobank)	
OA bone Sample 1	J. Emory	36.8	16.77	33.54	OA bone	
OA bone Sample 2	J. Emory	34.72	64.74	129.48	OA bone	
Cartilage (pool)	Normal	37.46	10.93	21.86	Cartilage (pool)	
Cartilage (pool)	OA	40	0	0.00	Cartilage (pool)	-21.86
PBL unifected	28441	35.05	52.27	104.54	PBL unifected	
PBL HIV IIIB	28442	37.31	12.04	24.08	PBL HIV IIIB	-4.34
MRC5 uninfected (100%)	29158	40	0	0.00	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	38.19	6.8	13.60	MRC5 HSV strain	13.60
W12 cells	29179	40	0	0.00	W12 cells	
Keratinocytes	29180	40	0	0.00	Keratinocytes	
B-actin control	B-actin control	29.77	1604.25			
genomic	genomic	30.5	1001.61			
1.00E+05	1.00E+05		100000			
1.00E+05	1.00E+05		100000			
1.00E+04	1.00E+04	26.49	10000			
1.00E+04	1.00E+04		10000			
1.00E+03	1.00E+03		1000			
1.00E+03	1.00E+03		1000			
1.00E+02	1.00E+02		100			
1.00E+02	1.00E+02		100			
1.00E+01	1.00E+01		10			ļ
1.00E+01	1.00E+01		10			
1.00E-00	1.00E-00	40	0			
1.00E-00	1.00E-00	37.86	1			
NTC	NTC	40	0	<u> </u>	<u> </u>	

Gene Name sbg995002PIGR

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.83

colon tumor	1351.60
colon tumor	3.51
colon tumor	2.76
lung tumor	104.21
lung tumor	-1.64
lung tumor	2.25
lung tumor	1.48
breast tumor	3.89
breast tumor	9.96
breast tumor	0.00
· breast tumor	-52.26
brain stage 5 ALZ	-8.95
brain stage 5 ALZ	-8.78
brain stage 5 ALZ	-5.09
brain stage 5 ALZ	-2.36
lung 24	-9.62
lung 28	-9.62
lung 23	-9.62
asthmatic lung	-9.62
asthmatic lung	1.27
asthmatic lung	2.53
asthmatic lung	1.59
endo VEGF	0.00
endo bFGF	0.00
heart T-1	-16.98
heart T-14	-16.98
heart T-3399	-2.93
BM stim	20.10
osteo dif	0.00
Cartilage (pool)	-21.86
PBL HIV IIIB	-4.34
MRC5 HSV strain F	13.60

Gene Name sbg1033026C1q

5

10

Low to moderate overall expression in normal and disease samples. Highest normal expression in the subcutaneous adipocytes, subcutaneous adipose, whole brain, and heart. Highest disease expression in the 3 heart samples. Downregulation in 1 of 4 lung tumor samples and upregulation in 2 of 4 breast tumor samples indicates a role for this gene in cancers of the lung and breast. Upregulation in 2 of 4 AD brain samples suggests an involvement in Alzheimer's disease. Upregulation in 3 of 3 heart samples implies an involvement in cardiovascular diseases such as non-obstructive and obstructive DCM as well as ischemia. Low expression in all of the immune cells. Low to moderate expression in the OA synovium and bone samples as well as in the RA synovium samples.

Sample sbg1033026C1q	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	32.32, 31.18	11.99	24.91	18.45	3.06	16.34	301.47
Subcutaneous Adipose Zenbio	34.95, 33.78	2.2	4.69	3.45	0.96	52.36	180.37

Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain Clontech	28.5, 28.04	140.11	187.98	164.05	7.24	6.91	1132.91
Fetal Brain Clontech	40, 40	0	0	0.00	0.48	103.95	0.00
Cerebellum Clontech	40, 40	0	0	0.00	2.17	23.04	0.00
Cervix	40, 40	0	0	0.00	2.42	20.66	0.00
Colon	34.82, 38.44	2.39	0.23	1.31	2.71	18.45	24.17
Endometrium	40, 35.09	0	2.01	1.01	0.73	68.21	68.55
Esophagus	40, 40	0	0	0.00	1.37	36.50	0.00
Heart Clontech	32.53, 34.31	10.45	3.32	6.89	1.32	37.88	260.80
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	40, 34.55	0	2.85	1.43	2.58	19.38	27.62
Jejunum	33.04, 34.86	7.51	2.33	4.92	6.60	7.58	37.27
Kidney	40, 40	0	0	0.00	2.12	23.58	0.00
Liver	35.81, 33.92	1.26	4.28	2.77	1.50	33.33	92.33
Fetal Liver Clontech	32.05, 40	14.25	0	7.13	10.40	4.81	34.25
Lung	40, 33.51	0	5.58	2.79	2.57	19.46	54.28
Mammary Gland Clontech	31.05, 30.69	27.02	34.2	30.61	13.00	3.85	117.73
Myometrium	33.29, 35.1	6.42	2	4.21	2.34	21.37	89.96
Omentum	34.44, 40	3.07	0	1.54	3.94	12.69	19.48
Ovary	32.59, 35.04	10.03	2.07	6.05	4.34	11.52	69.70
Pancreas	40, 40	0	0	0.00	0.81	61.80	0.00
Head of Pancreas	40, 40	0	0	0.00	1.57	31.85	0.00
Parotid Gland	34.63, 33.09		7.29	5.00	5.48	9.12	45.62
Placenta Clontech	32.77, 33.01	8.94	7.7	8.32	5.26	9.51	79.09
Prostate	40, 40	0	0	0.00	3.00	16.67	0.00
Rectum	40, 34.44	0	3.06	1.53	1.23	40.65	62.20
Salivary Gland Clontech	32.96, 40	7.94	0	3.97	7.31	6.84	27.15
Skeletal Muscle Clontech	40, 40	0	0	0.00	1.26	39.68	0.00
Skin	40, 33.46	0.6	5.75	3.18	1.21	41.32	131.20
Small Intestine Clontech	40, 40	0 .	0	0.00	0.98	51.07	0.00
Spleen	35.65, 35	1.4	2.13	1.77	4.92	10.16	17.94
Stomach	40, 34.73	0	2.54	1.27	2.73	18.32	23.26
Testis Clontech	40, 35.12	0	1.98	0.99	0.57	87.87	86.99
Thymus Clontech	32.44, 31.57	11.11	19.37	15.24	9.89	5.06	77.05
Thyroid	40, 40	0	0	0.00	2.77	18.05	0.00
Trachea Clontech	34.58, 33.56	2.79	5.4	4.10	9.71	5.15	21.09
Urinary Bladder	33.45, 33.34	5.8	6.21	6.01	5.47	9.14	54.89
Uterus	33.19, 32.41	6.82	11.32	9.07	5.34	9.36	84.93
genomic	25.47	981.57		· · · · · · · · · · · · · · · · · · ·			
b-actin	26.87	398.61					
1.00E+05	18.24	100000					
1.00E+05	18.35	100000					
1.00E+04	21.53	10000					
1.00E+04	21.62	10000					

1.00E+03	25.17	1000				T	
1.00E+03	25.03	1000	 -				
1.00E+02	30.53	100	1	_			 -
1.00E+02	30.49	100					
1.00E+01	30.85	10			- 	<u> </u>	
1.00E+01	40	10					
1.00E-00	40	0				 	
1.00E-00	40	0					
NTC	40	0		 	_		
NTC	40	0	 			+	

Sample	Reg	Ct	Mean	copies	Sample	Fold
sbg1033026C1q	number		GOI	of	Campie	Change
	(GSK	1	copies	mRNA		in
	identifier	1		detecte		Disease
· ·)			d/50 ng		Populat
				total		ion
colon normal GW98-167	21941	27.03	397.15	RNA	<u> </u>	
colon tumor GW98-166	21941	29.53		794.30	colon normal	<u> </u>
colon normal GW98-178	22080	30.3	91.39	182.78	colon tumor	-4.35
colon tumor GW98-177	22060	29.31		115.62	colon normal	
colon normal GW98-561	23514		103.84	207.68	colon tumor	1.80
colon tumor GW98-560		28.79	140.64	281.28	colon normal	
colon normal GW98-894	23513	30.18	62.18	124.36	colon tumor	-2.26
	24691 .	28.31	187.28	374.56	colon normal	
colon tumor GW98-893	24690	28.75	143.93	287.86	colon tumor	-1.30
lung normal GW98-3	20742	28.18	201.78	403.56	lung normal	
lung tumor GW98-2	20741	32.35	17.41	34.82	lung tumor	-11.59
lung normal GW97-179	20677	29.94	71.52	143.04	lung normal	
lung tumor GW97-178	20676	28.76	143.36	286.72	lung tumor	2.00
lung normal GW98-165	21922	28.69	149.49	298.98	lung normal	
lung tumor GW98-164	21921	31.28	32.63	65.26	lung tumor	-4.58
lung normal GW98-282	22584	31.42	30.07	60.14	lung normal	
lung tumor GW98-281	22583	30.33	56.83	113.66	lung tumor	1.89
breast normal GW00-392	28750	28.72	146.7	146.70	breast normal	
breast tumor GW00-391	28746	27.02	398.56	797.12	breast tumor	5.43
breast normal GW00-413	28798	30.95	39.63	39.63	breast normal	
breast tumor GW00-412	28797	30.58	49.03	98.06	breast tumor	2.47
breast normal GW00- 235:238	27592-95	32.53	15.6	15.60	breast normal	
breast tumor GW00- 231:234	27588-91	29.58	88.49	88.49	breast tumor	5.67
breast normal GW98-621	23656	27.5	300.39	600.78	breast normal	
breast tumor GW98-620	23655	29.28	105.43	210.86	breast tumor	-2.85
brain normal BB99-542	25507	30.67	46.59	93.18	brain normal	
brain normal BB99-406	25509	29.54	90.66	181.32	brain normal	
orain normal BB99-904	25546	31.13	35.58	71.16	brain normal	
brain stage 5 ALZ BB99- 874	25502	31.4	30.36	60.72	brain stage 5 ALZ	-1.90

	05500	00.00	100.04	055.00	landa star 5 AT 7	2.00
brain stage 5 ALZ BB99- 887	25503	28.39	177.94	355.88	brain stage 5 ALZ	3.09
brain stage 5 ALZ BB99- 862	25504	28.92	130.19	260.38	brain stage 5 ALZ	2.26
brain stage 5 ALZ BB99- 927	25542	28.2	198.98	397.96	brain stage 5 ALZ	3.45
CT lung KC	normal	31.24	33.37	66.74	CT lung	-
lung 26 KC	normal	33.59	8.37	8.37	lung 26	
lung 27 KC	normal	37.8	0.7	0.70	lung 27	
lung 24 KC	COPD	34.56	4.73	4.73	lung 24	-4.39
lung 28 KC	COPD	35.39	2.91	2.91	lung 28	-7.13
lung 23 KC	COPD	34.74	4.26	4.26	lung 23	-4.87
lung 25 KC	normal	33.85	7.19	7.19	lung 25	
asthmatic lung ODO3112	29321	35.04	3.57	3.57	asthmatic lung	-5.81
asthmatic lung ODO3433	29323	32.44	16.48	32.96	asthmatic lung	1.59
asthmatic lung ODO3397	29322	29.4	98.44	196.88	asthmatic lung	9.49
asthmatic lung ODO4928		31.1	36.23	72.46	asthmatic lung	3.49
endo cells KC	control	40	0	0.00	endo cells	
endo VEGF KC	Condo	40	0	0.00	endo VEGF	0.00
endo bFGF KC		35.4	2.89	2.89	endo bFGF	2.89
heart Clontech	normal	29.05	120.78	241.56	heart	
heart (T-1) ischemic	29417	26.23	633.79	1267.58	heart T-1	5.25
heart (T-14) non-	29422	25.74	847.85	1695.70	heart T-14	7.02
obstructive DCM		120,				
heart (T-3399) DCM	29426	25.03	1289.37	2578.74	heart T-3399	10.68
adenoid GW99-269	26162	35.24	3.17	6.34	adenoid	
tonsil GW98-280	22582	31	38.35	76.70	tonsil	
T cells PC00314	28453	31.75	24.69	49.38	T cells	
PBMNC		40	0	0.00	PBMNC	
monocyte		40	0	0.00	monocyte	
B cells PC00665	28455	31.35	31.31	62.62	B cells	
dendritic cells 28441		32.81	13.25	26.50	dendritic cells	
neutrophils	28440	31.76	24.51	24.51	neutrophils	
eosinophils	28446	33.08	11.29	22.58	eosinophils	
BM unstim		36.9	1.19	1.19	BM unstim	
BM stim		38.86	0.38	0.38	BM stim	-3.13
osteo dif		37.77	0.72	0.72	osteo dif	0.72
osteo undif .		40	0	0.00	osteo undif	
chondrocytes		33.14	10.88	27.20	chondrocytes	
OA Synovium IP12/01	29462	30.61	48.28	48.28	OA Synovium	
OA Synovium NP10/01	29461	27.5	300.97	601.94	OA Synovium	
OA Synovium NP57/00	28464	29.28	105.55	211.10	OA Synovium	
RA Synovium NP03/01	28466	30.18	62.3	124.60	RA Synovium	
RA Synovium NP71/00	28467	29.22	109.5	219.00	RA Synovium	
RA Synovium NP45/00	28475	30.06	66.71	133.42	RA Synovium	
OA bone (biobank)	29217	32.6	14.99	14.99	OA bone (biobank)	
OA bone Sample 1	J. Emory	30.48	52.25	104.50	OA bone .	
OA bone Sample 2	J. Emory	32.31	17.76	35.52	OA bone	
Cartilage (pool)	Normal	30.45	53.05	106.10	Cartilage (pool)	
			·		·	

WO 02/22802

Cartilage (pool)	104	100.01	140.00	1	· · · · · · · · · · · · · · · · · · ·	
	OA	30.81	43.01	86.02	Cartilage (pool)	-1.23
PBL unifected	28441	30.19	61.92	123.84	PBL unifected	
PBL HIV IIIB	28442	31.19	34.35	68.70	PBL HIV IIIB	-1.80
MRC5 uninfected (100%)	29158	30.19	62.02	124.04	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	31.13	35.48	70.96	MRC5 HSV strain	-1.75
W12 cells	29179	32	21.32	42.64	W12 cells	
Keratinocytes	29180	33.3	9.92	19.84	Keratinocytes	
B-actin control		26.66	492.23			
genomic		24.83	1443.91			
1.00E+05	*	18.12	100000			
1.00E+05		18.12	100000			
1.00E+04		21.28	10000	 		
1.00E+04		21.31	10000			
1.00E+03	-	24.92	1000			
1.00E+03		24.9	1000	ļ		
1.00E+02		29.22	100	 		
1.00E+02		29.26	100	· -		
1.00E+01	-	33.13	10			
1.00E+01		34.32	10			
1.00E-00	· ·	40	0			
1.00E-00		40	0			
NTC		40	0			

Gene Name sbg1033026C1q

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-4.35
colon tumor	1.80
colon tumor	-2.26
colon tumor	-1.30
lung tumor	-11.59
lung tumor	2.00
lung tumor	-4.58
lung tumor	1.89
breast tumor	5.43
breast tumor	2.47
breast tumor	5.67
breast tumor	-2.85
brain stage 5 ALZ	-1.90
brain stage 5 ALZ	3.09
brain stage 5 ALZ	2.26
brain stage 5 ALZ	3.45
lung 24	-4.39
lung 28	-7.13
lung 23	-4.87
asthmatic lung	-5.81
asthmatic lung	1.59
asthmatic lung	9.49

asthmatic lung	3.49
endo VEGF	0.00
endo bFGF	2.89
heart T-1	5.25
heart T-14	7.02
heart T-3399	10.68
BM stim	-3.13
osteo dif	0.72
Cartilage (pool)	-1.23
PBL HIV IIIB	-1.80
MRC5 HSV strain F	-1.75

Gene Name sbg1003675Rnase

FAILED

10

15

5 Gene Name sbg1015258PLM

Low overall expression in normal and disease samples. Highest normal expression in the endometrium, hypothalamus, liver small intestine, and the testis. Highest disease expression in one of the breast normal/tumor pairs, one of the normal brain samples, two of the Alzheimer's disease brain samples, the B cells and the HSV-infected MRC5 cells. Downregulation in 1 of 4 lung tumor samples is sufficient to claim a role in cancer of the lung. Upregulation in 2 of 4 breast tumor samples indicates an involvement in cancer of the breast. Downregulation in 2 of 3 COPD samples and in 1 of 4 asthmatic lung samples implies a role in chronic obstructive pulmonary disease and asthma. Upregulation in the obstructive DCM heart sample suggests a potential role in cardiovascular disease. Downregulation in the stimulated bone marrow sample. Downregulation in the OA cartilage pool implicates this gene in osteoarthritis. Upregulation in the HSV-infected MRC5 cells suggests that this gene may be a host factor in HSV. Low expression in all immune cells except the B cells which show moderate expression.

Sample sbg1015258PLM	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected/ 50 ng total RNA
Subcutaneous Adipocytes Zenbio	39.96, 39.32	0.39	0.73	0.56	3.06	16.34	9.15
Subcutaneous Adipose Zenbio	39.61, 37.77	0.62	1.84	1.23	0.96	52.36	64.40
Adrenal Gland Clontech	36.89, 37.65	3.12	1.98	2.55	0.61	81.97	209.02
Whole Brain Clontech	32.77, 33.06	36.18	30.37	33.28	7.24	6.91	229.80
Fetal Brain Clontech	38.01, 37.52	1.6	2.14	1.87	0.48	103.95	194.39
Cerebellum Clontech	38.34, 37.8	1.31 ·	1.81	1.56	2.17	23.04	35.94
Cervix	36.9, 37.17	3.1	2.64	2.87	2.42	20.66	59.30
Colon	35.93, 37.95	5.51	1.66	3.59	2.71	18.45	66.14
Endometrium	34.62, 37.51	12.02	2.15	7.09	0.73	68.21	483.29
Esophagus	35.76, 37.39	6.1	2.31	4.21	1.37	36.50	153.47
Heart Clontech	36.78, 38.53	3.33	1.17	2.25	1.32	37.88	85.23
Hypothalamus	37.12, 36.52	2.71	3.87	3.29	0.32	155.28	510.87
Ileum	36.15, 36.19	4.84	4.72	4.78	2.58	19.38	92.64
Jejunum	34.6, 33.48	12.14	23.65	17.90	6.60	7.58	135.57
Kidney	37.16, 37.9	2.65	1.7	2.18	2.12	23.58	51.30

Liver	34.6, 36.06	12.13	5.11	8.62	1.50	33.33	287.33
Fetal Liver Clontech	34.32, 36.9	1 14.35	3.07	8.71	10.40	4.81	41.88
Lung	36.94, 35.3	1 3.02	7.98	5.50	2.57	19.46	107.00
Mammary Gland Clontech	38.03, 36.8	9 1.58	3.11	2.35	13.00	3.85	9.02
Myometrium	38.44, 38	1.24	1.6	1.42	2.34	21.37	30.34
Omentum	35.41, 35.3	8 7.51	7.64	7.58	3.94	12.69	96.13
Omentum						12.05	150.15
Ovary	34.32, 34.30	6 14.4	14.07	14.24	4.34	11.52	164.00
Pancreas	36.44, 36.82	2 4.07	3.25	3.66	0.81	61.80	226.21
Head of Pancreas	37.54, 36.90	5 2.11	2.98	2.55	1.57	31.85	81.05
Parotid Gland	37.1, 35.46	2.75	7.29	5.02	5.48	9.12	45.80
Placenta Clontech	36.07, 35.36	5.08	7.74	6.41	5.26	9.51	60.93
Prostate	37.4, 37.82	2.3	1.79	2.05	3.00	16.67	34.08
Rectum	36.65, 37.39	3.59	2.32	2.96	1.23	40.65	120.12
Salivary Gland Clontech	38.55, 39.31	1.16	0.74	0.95	7.31	6.84	6.50
Skeletal Muscle Clontech	37.59, 36.87		3.15	2.61	1.26	39.68	103.37
Skin	38.36, 36.33	1.3	4.34	2.82	1.21	41.32	116.53
Small Intestine Clontech	36.05, 36.76	5.14	3.37	4.26	0.98	51.07	217.31
Spleen	37.62, 35.34	2.02	7.83	4.93	4.92	10.16	50.05
Stomach	35.8, 35.15	5.95	8.76	7.36	2.73	18.32	134.71
Testis Clontech	35.14, 37.08	8.82	2.77	5.80	0.57	87.87	509.23
Thymus Clontech	35.89, 35.06	5.65	9.22	7.44		5.06	37.59
Thyroid	37.59, 37.2	2.06	2.59	2.33		18.05	41.97
Trachea Clontech	37.52, 37.95	2.14	1.66	1.90		5.15 .	9.78
Urinary Bladder	37.47, 35.44	2.2	7.38	4.79		9.14	43.78
Uterus	34.17, 34.12	15.66	16.17	15.92		9.36	149.02
genomic	27.03	1097.52					
b-actin	27.23	974.77					
1.00E+05	19.25	100000					
1.00E+05	19.2	100000					
1.00E+04	22.99	10000					·
1.00E+04	22.94	10000					
1.00E+03	27.09	1000					
1.00E+03	27.28	1000					
1.00E+02	31.49	100					
1.00E+02	31.46	100					
1.00E+01	37.86	10					
1.00E+01	35.45	10					
1.00E-00		1					
1.00E-00		1	`				
NTC		-1				 	
NTC	36.15	-1					

Sample sbg1015258PLM	Reg number	Ct	Mean GOI	copies of mRNA	Sample	Fold Change in	
				222241 121		Change in	1

<u> </u>	(GSK	T	copies	detected/	Γ	Disease
	identifier		l sopiios	50 ng		Population
)			total		_
				RNA		
colon normal GW98-167	ļ	35.4	9.91	19.82	colon normal	
colon tumor GW98-166	21940	35.13	11.61	23.22	colon tumor	1.17
colon normal GW98-178	L	34.84	13.83	27.66	colon normal	<u> </u>
colon tumor GW98-177	22060	35	12.59	25.18	colon tumor	-1.10
colon normal GW98-561	23514	35.48	9.4	18.80	colon normal	
colon tumor GW98-560	23513	36.2	6.14	12.28	colon tumor	-1.53
colon normal GW98-894	24691	34.53	16.62	33.24	colon normal	
colon tumor GW98-893	24690	34.29	19.25	38.50	colon tumor	1.16
lung normal GW98-3	20742	34.53	16.69	33.38	lung normal	
lung tumor GW98-2	20741	37.87	2.25	4.50	lung tumor	-7.42
lung normal GW97-179	20677	34.59	16.02	32.04	lung normal	
lung tumor GW97-178	20676	34.45	17.43	34.86	lung tumor	1.09
lung normal GW98-165	21922	33.89	24.39	48.78	lung normal	
lung tumor GW98-164	21921	35.48	9.43	18.86	lung tumor	-2.59
lung normal GW98-282	22584	36.67	4.62	9.24	lung normal	
lung tumor GW98-281	22583	37.87	2.26	4.52	lung tumor	-2.04
breast normal GW00- 392	28750	34.17	20.64	20.64	breast normal	
breast tumor GW00-391	28746	33.54	30.09	60.18	breast tumor	2.92
breast normal GW00- 413	28798	39.05	1.11	1.11	breast normal	
breast tumor GW00-412	28797	35.01	12.46	24.92	breast tumor	22.45
breast normal GW00- 235:238	27592-95	40	0.55	0.55	breast normal	
breast tumor GW00- 231:234	27588-91	35.07	12.02	12.02	breast tumor	21.85
breast normal GW98- 621	23656	33	41.58	83.16	breast normal	
breast tumor GW98-620	23655	33.05	40.47	80.94	breast tumor	-1.03
brain normal BB99-542	25507	32.73	48.93	97.86	brain normal	
brain normal BB99-406	25509	33.97	23.34	46.68	brain normal	
brain normal BB99-904	25546	37.88	2.24	4.48	brain normal	
brain stage 5 ALZ BB99-874	25502	35.92	7.25	14.50	brain stage 5 ALZ	
brain stage 5 ALZ BB99-887	25503	31,57	97.99	195.98	brain stage 5 ALZ	3.95
brain stage 5 ALZ BB99-862	25504	36.08	6.57	13.14	brain stage 5 ALZ	-3.78
brain stage 5 ALZ BB99-927	25542	32.66	50.98	101.96	brain stage 5 ALZ	2.05
CT lung KC	normal	37.37	3.04	6.08	CT lung	
lung 26 KC	normal				lung 26	
lung 27 KC	normal	38.52	1.52	1.52	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-3.07
lung 28 KC	COPD	37.4	2.99	2.99	lung 28	-1.03
lung 23 KC	COPD	39.56	0.82	0.82	lung 23	-3.74
lung 25 KC	normal	38.43	1.61	1.61	lung 25	

asthmatic lung ODO3112	29321	39.45	5 0.88	0.88	asthmatic lung	-3.49
asthmatic lung ODO3433	29323	36.48	5.19	10.38	asthmatic lung	3.38
asthmatic lung ODO3397	29322	35.56	5 8.99	17.98	asthmatic lung	5.86
asthmatic lung ODO4928	29325	37.06	3.66	7.32	asthmatic lung	2.38
endo cells KC	control	39.29	0.96	0.96	endo cells	
endo VEGF KC		37.65	2.57	2.57	endo VEGF	2.68
endo bFGF KC		40	0.48	0.48	endo bFGF	-2.00
heart Clontech	normal	40	0.68	1.36	heart	+
heart (T-1) ischemic	29417	39.29	0.96	1.92	heart T-1	1.41
heart (T-14) non- obstructive DCM	29422	38.21	1.84	3.68	heart T-14	2.71
heart (T-3399) DCM	29426	35.49	9.35	18.70	heart T-3399	13.75
adenoid GW99-269	26162	39.63	0.78	1.56	adenoid	13.73
tonsil GW98-280	22582	34.5	16.92	33.84	tonsil	-
T cells PC00314	28453	34.57	16.25	32.50	T cells	
PBMNC		37.32	3.13	3.13	PBMNC	+
monocyte		37.74	2.44	4.88	monocyte	
B cells PC00665	28455	33.32	34.36	68.72	B cells	
dendritic cells 28441		37.29	3.19	6.38	dendritic cells	
neutrophils	28440	36.01	6.85	6.85	neutrophils	
eosinophils	28446	35.38	9.98	19.96	eosinophils	
BM unstim		37.44	2.91	2.91	BM unstim	
BM stim		40	0.53	0.53	BM stim	-5.49
osteo dif		38.15	1.91	1.91	osteo dif	-1.38
osteo undif	 	37.6	2.64	2.64	osteo undif	1.50
chondrocytes		36.1	6.51	16.28	chondrocytes	
OA Synovium IP12/01	29462	35.58	8.86	8.86	OA Synovium	
OA Synovium NP10/01	29461	35.46	9.54	19.08	OA Synovium	
OA Synovium NP57/00	28464	34.05	22.23	44.46	OA Synovium	+
RA Synovium NP03/01	28466	37.92	2.19	4.38	RA Synovium	
RA Synovium NP71/00	28467	35.39	9.92	19.84	RA Synovium	
RA Synovium NP45/00	28475	35.03	12.37	24.74	RA Synovium	 -
OA bone (biobank)	29217	39.98	0.67	0.67	OA bone (biobank)	
OA bone Sample 1	J. Emory	36.06	6.68	13.36	OA bone	
OA bone Sample 2	J. Emory	39.89	0.67	1.34	OA bone	
Cartilage (pool)	Normal	35.57	8.92	17.84	Cartilage (pool)	<u> </u>
Cartilage (pool)	OA	39.5	0.85	1.70	Cartilage (pool)	-10.49
PBL unifected	28441	36.65	4.67	9.34	PBL unifected	
PBL HIV IIIB	28442	36.94	3.92	7.84	PBL HIV IIIB	-1.19
MRC5 uninfected (100%)	29158	37.54	2.74	5.48	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	33.19	37.18	74.36	MRC5 HSV strain	13.57
	29179	37.23	3.3	6.60	W12 cells	
Keratinocytes	29180	37.18	3.4	6.80	Keratinocytes	·

B-actin control	27.26	1296.8		
		7		L
genomic	27.2	1345.3		
		4		
1.00E+05	19.44	100000		
1.00E+05	19.81	100000		
1.00E+04	23.63	10000		
1.00E+04	23.41	10000		
1.00E+03	27.77	1000		
1.00E+03	27.89	1000	-	
1.00E+02	32.32	100		
1.00E+02	32.3	100		
1.00E+01	36.77	10		
1.00E+01	36.39	10		
1.00E-00	38.06	1		
1.00E-00	37.56	1		
NTC	38.18	-1		

Gene Name sbg1015258PLM

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.17
colon tumor	-1.10
colon tumor	-1.53
colon tumor	1.16
lung tumor	-7.42
lung tumor	1.09
lung tumor	-2.59
lung tumor	-2.04
breast tumor .	2.92
breast tumor	22.45
breast tumor	21.85
breast tumor	-1.03
brain stage 5 ALZ	-3.43
brain stage 5 ALZ	3.95
brain stage 5 ALZ	-3.78
brain stage 5 ALZ	2.05
lung 24	-3.07
lung 28	-1.03
lung 23 .	-3.74
asthmatic lung	-3.49
asthmatic lung	3.38
asthmatic lung	5.86
asthmatic lung	2.38
endo VEGF	2.68
endo bFGF	-2.00

5

10

heart T-1	1.41	
heart T-14	2.71	
heart T-3399	13.75	
BM stim	-5.49	
osteo dif	-1.38	
Cartilage (pool)	-10.49	
PBL HIV IIIB	-1.19	
MRC5 HSV strain F	13.57	

Gene Name sbg1003328IG (Taqman)

Moderate overall expression. Highest normal expression in whole brain, fetal brain, and cerebellum with slightly lower levels of expression in the colon and mammary gland. Highest disease expression in the colon and lung tumor pairs as well as the normal and Alzheimer's brain. Significant upregulation in 2 of 4 breast tumor samples with slight upregulation in 1 of 4 breast tumor samples implicates this gene in breast cancer. Downregulation in 3 of 3 COPD samples may suggest an involvement in chronic obstructive pulmonary disease. Downregulation in 1 of 4 asthma samples suggests a potential role for this gene in asthma. Downregulation in the HSV-infected MRC5 cells suggests that this gene may play a role in HSV. High expression in 3 of 3 OA synovium samples, 3 of 3 RA synovium samples, 2 of 2 OA bone samples, and corroborating high expression in the T cells and B cells implicates this gene in osteoarthritis and rheumatoid arthritis.

Sample sbg1003328IG	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected /50 ng total RNA
Subcutaneous Adipocytes Zenbio	32.35, 32.1	109.15	127.12	118.14	3.06	16.34	1930.31
Subcutaneous Adipose Zenbio	37.92, 40	3.84	0	1.92	0.96	52.36	100.52
Adrenal Gland Clontech	38.07, 35.73	3.5	14.32	8.91	0.61	81.97	730.33
Whole Brain Clontech	22.72, 23.09	35640.5	28576.52	32108.51	7.24	6.91	221743. 85
Fetal Brain Clontech	33.39, 34.06	•	39.04	48.74	0.48	103.95	5066.01
Cerebellum Clontech	31.32, 31.02	202.49	242.95	222.72	2.17	23.04	5131.80
Cervix	36.36, 35.6	9.78	15.49	12.64	2.42	20.66	261.05
Colon	30.74, 32.11	286.9	125.78	206.34	2.71	18.45	3807.01
Endometrium	34.58, 36.01	28.47	12.11	20.29	0.73	68.21	1384.04
Esophagus	37.54, 36.05	4.82	11.78	8.30	1.37	36.50	302.92
Heart Clontech	36.23, 36.85	10.56	7.3	8.93	1.32	37.88	338.26
Hypothalamus	40, 36.96	0	6.81	3.41	0.32	155.28	528.73
Ileum	34.79, 34.48	-	30.4	27.75	2.58	19.38	537.69
Jejunum	30.14, 31.02	412.72	242.47	327.60	6.60	7.58	2481.78
Kidney			28.12	35.01	2.12	23.58	825.59
Liver	36.11, 35.38	11.41	17.61	14.51	1.50	33.33	483.67
Fetal Liver Clontech	30.24, 30.27	L	381.28	384.70		4.81	1849.52
Lung	35.59, 35.09	15.59	20.98	18.29	2.57	19.46	355.74
Mammary Gland Clontech	29.21, 28.52	718.74	1090.18	904.46		3.85	3478.69

Myometrium 33.7, 34.11 48.42 37.85 43.14 2.34 21.37 Omentum 33.83, 33.57 44.75 52.27 48.51 3.94 12.69 Ovary 32.47, 32.34 101.42 109.96 105.69 4.34 11.52 Pancreas 38.16, 40 3.31 0 1.66 0.81 61.80 Head of Pancreas 40, 36.68 0 8.07 4.04 1.57 31.85 Parotid Gland 31.68, 31.03 162.92 241.11 202.02 5.48 9.12 Placenta Clontech 30.48, 30.82 3355.37 274.53 304.95 5.26 9.51 Prostate 33.39, 32.15 58.39 122.82 90.61 3.00 16.67 Rectum 35.95, 35.32 12.5 18.32 15.41 1.23 40.65 Salivary Gland 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Clontech 36.61, 37.62 8.44 4.6 6.52 <t< th=""><th>615.61 1217.63 102.29 128.50 1843.20 2898.76 1510.08 626.42 1761.56 258.73 439.46 959.65 205.44</th></t<>	615.61 1217.63 102.29 128.50 1843.20 2898.76 1510.08 626.42 1761.56 258.73 439.46 959.65 205.44
Ovary 32.47, 32.34 101.42 109.96 105.69 4.34 11.52 Pancreas 38.16, 40 3.31 0 1.66 0.81 61.80 Head of Pancreas 40, 36.68 0 8.07 4.04 1.57 31.85 Parotid Gland 31.68, 31.03 162.92 241.11 202.02 5.48 9.12 Placenta Clontech 30.48, 30.82 335.37 274.53 304.95 5.26 9.51 Prostate 33.39, 32.15 58.39 122.82 90.61 3.00 16.67 Rectum 35.95, 35.32 12.5 18.32 15.41 1.23 40.65 Salivary Gland 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Skin 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine 36.74, 34.51 7.79 29.79 18.79 <t< td=""><td>1217.63 102.29 128.50 1843.20 2898.76 1510.08 626.42 1761.56 258.73 439.46 959.65</td></t<>	1217.63 102.29 128.50 1843.20 2898.76 1510.08 626.42 1761.56 258.73 439.46 959.65
Pancreas 38.16, 40 3.31 0 1.66 0.81 61.80 Head of Pancreas 40, 36.68 0 8.07 4.04 1.57 31.85 Parotid Gland 31.68, 31.03 162.92 241.11 202.02 5.48 9.12 Placenta Clontech 30.48, 30.82 335.37 274.53 304.95 5.26 9.51 Prostate 33.39, 32.15 58.39 122.82 90.61 3.00 16.67 Rectum 35.95, 35.32 12.5 18.32 15.41 1.23 40.65 Salivary Gland 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Skin 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Spleen 34.78, 35.63 25.25 15.18 20.22	102.29 128.50 1843.20 2898.76 1510.08 6 626.42 1761.56 3 258.73 2 439.46 959.65
Head of Pancreas 40, 36.68 0 8.07 4.04 1.57 31.85 Parotid Gland 31.68, 31.03 162.92 241.11 202.02 5.48 9.12 Placenta Clontech 30.48, 30.82 335.37 274.53 304.95 5.26 9.51 Prostate 33.39, 32.15 58.39 122.82 90.61 3.00 16.67 Rectum 35.95, 35.32 12.5 18.32 15.41 1.23 40.65 Salivary Gland 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Skeletal Muscle 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Clontech 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Clontech 34.78, 35.63 25.25 15.18 20.22	128.50 1843.20 2898.76 1510.08 626.42 1761.56 3 258.73 439.46 959.65 6 205.44
Parotid Gland 31.68, 31.03 162.92 241.11 202.02 5.48 9.12 Placenta Clontech 30.48, 30.82 335.37 274.53 304.95 5.26 9.51 Prostate 33.39, 32.15 58.39 122.82 90.61 3.00 16.67 Rectum 35.95, 35.32 12.5 18.32 15.41 1.23 40.65 Salivary Gland Clontech 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Clontech 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine Clontech 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Spleen 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33	1843.20 2898.76 1510.08 6 626.42 1761.56 3 258.73 439.46 959.65 205.44
Placenta Clontech 30.48, 30.82 335.37 274.53 304.95 5.26 9.51 Prostate 33.39, 32.15 58.39 122.82 90.61 3.00 16.67 Rectum 35.95, 35.32 12.5 18.32 15.41 1.23 40.65 Salivary Gland 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Clontech 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Clontech 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thyroid 32.02, 32.14 133.23 123.77 128.50	2898.76 1510.08 626.42 1761.56 8 258.73 2 439.46 959.65 6 205.44
Prostate 33.39, 32.15 58.39 122.82 90.61 3.00 16.67 Rectum 35.95, 35.32 12.5 18.32 15.41 1.23 40.65 Salivary Gland Clontech 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Skeletal Muscle Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Clontech 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine Clontech 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Clontech 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.7	1510.08 626.42 1761.56 3 258.73 2 439.46 959.65 6 205.44
Rectum 35.95, 35.32 12.5 18.32 15.41 1.23 40.65 Salivary Gland Clontech 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Clontech 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine Clontech 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Spleen 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04	626.42 1761.56 3 258.73 439.46 959.65 205.44
Salivary Gland 31.25, 30.65 211.88 303.2 257.54 7.31 6.84 Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Clontech 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Clontech 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.01, 33.15 73.56 67.48	1761.56 258.73 2 439.46 959.65 205.44
Clontech 36.61, 37.62 8.44 4.6 6.52 1.26 39.68 Clontech 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine Clontech 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Spleen 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.37 74.34	3 258.73 2 439.46 959.65 3 205.44
Clontech 36.37, 36.08 9.71 11.56 10.64 1.21 41.32 Small Intestine Clontech 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Clontech 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.34 7	2 439.46 959.65 2 205.44
Small Intestine Clontech 36.74, 34.51 7.79 29.79 18.79 0.98 51.07 Spleen 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.34 5.47 9.14	959.65 205.44
Clontech 34.78, 35.63 25.25 15.18 20.22 4.92 10.16 Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.34 5.47 9.14	205.44
Stomach 40, 35.13 0.88 20.56 10.72 2.73 18.32 Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.34 70.52 5.34 9.36	
Testis Clontech 35.01, 39.68 22.07 1.33 11.70 0.57 87.87 Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.34 </td <td>196.34</td>	196.34
Thymus Clontech 29.15, 29.2 749.23 724.61 736.92 9.89 5.06 Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.34	
Thyroid 32.02, 32.14 133.23 123.77 128.50 2.77 18.05 Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.34 74.34 74.34 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 70.52 74.34 74.34 74.34 70.52 74.34 74.34 74.34 74.34 74.34 74.34 74.34 74.34 74.34 74.34 74.34 74.34 74.34 <td></td>	
Trachea Clontech 31.28, 30.17 207.67 405.04 306.36 9.71 5.15 Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77 74.34 70.52 73.4 74.7	3725.58
Urinary Bladder 33.07, 32.91 70.6 78.07 74.34 5.47 9.14 Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77	2319.49
Uterus 33.01, 33.15 73.56 67.48 70.52 5.34 9.36 genomic 29.15 746.77	1577.52
genomic 29.15 746.77	679.48
	660.30
b-actin 30.2 397.52	
1.00E+05 21.06 100000	
1.00E+05 20.94 100000	
1.00E+04 25.06 10000	
1.00E+04 24.54 10000	
1.00E+03 28.32 1000	
1.00E+03 28.77 1000	
1.00E+02 33 100	
1.00E+02 32.74 100	
1.00E+01 35.9 10	
1.00E+01 40 0	
1.00E-00 40 0	
1.00E-00 40 0	
NTC 40 0	
NTC 40 0	

Sample sbg1003328IG	Reg number (GSK identifie r)	Ct	Mean GOI copies	copies of mRNA detected/ 50 ng total RNA	Sample	Fold Change in Disease Populati on
colon normal GW98-167	21941	24.26	15509.01	31018.02	colon normal	

colon tumor GW98-166		24.5	13727.44	27454.8	3 colon tumor	-1.13
colon normal GW98-17		28.01	2276.97	4553.94	colon normal	
colon tumor GW98-177		27.11	3618.2	7236.40	colon tumor	1.59
colon normal GW98-56		24.47	13993.67	27987.34	colon normal	1
colon tumor GW98-560		25.32	9040.47	18080.94	colon tumor	-1.55
colon normal GW98-89		24.17	16251.61	32503.22		+
colon tumor GW98-893	24690	25.15	9872.46	19744.92	colon tumor	-1.65
lung normal GW98-3	20742	24.4	14498.52	28997.04		
lung tumor GW98-2	20741	24.66	12640.32	25280.64	lung tumor	-1.15
lung normal GW97-179	20677	24.12	16680.84	33361.68		
lung tumor GW97-178	20676	24.69	12468.91	24937.82	lung tumor	-1.34
lung normal GW98-165	21922	25.09	10168.18	20336.36	lung normal	'
lung tumor GW98-164	21921	25.49	8296.37	16592.74	lung tumor	-1.23
lung normal GW98-282	22584	26.85	4131.52	8263.04	lung normal	
lung tumor GW98-281	22583	26.59	4702	9404.00	lung tumor	1.14
breast normal GW00- 392	28750	25.9	6719.98	6719.98	breast normal	
breast tumor GW00-391	28746	25.04	10402.11	20804.22	breast tumor	3.10
breast normal GW00- 413	28798	32.51	226.94	226.94	breast normal	
breast tumor GW00-412	28797	26.37	5261.73	10523.46	breast tumor	46.37
breast normal GW00- 235:238	27592- 95	34.58	78.63	78.63	breast normal	
breast tumor GW00- 231:234	27588- 91	28.45	1812.86	1812.86	breast tumor	23.06
breast normal GW98- 621	23656	25.26	9289.36	18578.72	breast normal	
breast tumor GW98-620	23655	25.66	7579.13	15158.26	breast tumor	-1.23
brain normal BB99-542	25507	22.52	37845.47	75690.94	brain normal	-
brain normal BB99-406	25509	23.07	28574.8	57149.60	brain normal	<u> </u>
brain normal BB99-904	25546	23.85	19214.49	38428.98	brain normal	
brain stage 5 ALZ BB99-874	25502	25.98	6442.51	12885.02	brain stage 5 ALZ	-4.43
brain stage 5 ALZ BB99-887	25503	23.19	26936.06	53872.12	brain stage 5 ALZ	-1.06
brain stage 5 ALZ BB99-862	25504	23.42	23948.83	47897.66	brain stage 5 ALZ	-1.19
brain stage 5 ALZ BB99-927	25542	24.15	16419.33	32838.66	brain stage 5 ALZ	-1.74
CT lung KC	normal	25.63	7714.35	15428.70	CT lung	
lung 26 KC	normal	32.34	247.99	247.99	lung 26	
lung 27 KC	normal	33.71	122.77	122.77	lung 27	
lung 24 KC	COPD	32.47	231.47	231.47	lung 24	-17.21
lung 28 KC	COPD	32.63	213.14	213.14	lung 28	-18.70
	COPD	31.2	444.95	444.95	lung 23	-8.96
	normal	33.46	139.4	139.40	lung 25	
ODO3112	29321	31.6	360.95		asthmatic lung	-11.04
asthmatic lung	29323	28.66	1634.71	3269.42	asthmatic lung	1.22
ODO3433 asthmatic lung		-0.00		0203.42	asamiade rang	-1.22

ODO3397				Γ		Γ
asthmatic lung ODO4928	29325	28.23	2033.93	4067.86	asthmatic lung	1.02
endo cells KC	control	30.68	580.47	580.47	endo cells	
endo VEGF KC		31.08	471.26	471.26	endo VEGF	-1.23
endo bFGF KC		32.25	259.04	259.04	endo bFGF	-2.24
heart Ciontech	normal	27.28	3312.82	6625.64	heart	
heart (T-1) ischemic	29417	27.48	2979.22	5958.44	heart T-1	-1.11
heart (T-14) non- obstructive DCM	29422	27.74	2613.8	5227.60	heart T-14	-1.27
heart (T-3399) DCM	29426	26.66	4541.38	9082.76	heart T-3399	1.37
adenoid GW99-269	26162	27.83	2493.31	4986.62	adenoid	
tonsil GW98-280	22582	25.68	7506.04	15012.08	tonsil	
T cells PC00314	28453	27.18	3487.61	6975.22	T cells	
PBMNC		32.6	216.73	216.73	PBMNC	
monocyte		32.27	256.89	513.78	monocyte	
B cells PC00665	28455	27.83	2492.12	4984.24	B cells	
dendritic cells 28441		26.67	4528.97	9057.94	dendritic cells	
neutrophils	28440	28.4	1862.35	1862.35	neutrophils	
eosinophils	28446	31.69	344.59	689.18	eosinophils	
BM unstim		32.04	289.03	289.03	BM unstim	
BM stim		30.59	607.18	607.18	BM stim	2.10
osteo dif	<u> </u>	28.43	1831.57	1831.57	osteo dif	3.42 ·
osteo undif		30.83	536	536.00	osteo undif	
chondrocytes		26.74	4368.46	10921.15	chondrocytes	
OA Synovium IP12/01	29462	27.91	2391.03	2391.03	OA Synovium	
OA Synovium NP10/01	29461	27.4	3109.93	6219.86	OA Synovium	
OA Synovium NP57/00	28464	27.05	3729.47	7458.94	OA Synovium	
RA Synovium NP03/01	28466	25.53	8116.96	16233.92	RA Synovium	
RA Synovium NP71/00	28467	26.06	6167:42	12334.84	RA Synovium	
RA Synovium NP45/00	28475	25.35	8888.66	17777.32	RA Synovium	
OA bone (biobank)	29217	30.23	729.87	729.87	OA bone (biobank)	
OA bone Sample 1	J. Emory	27.65	2743.38	5486.76	OA bone	
OA bone Sample 2	J. Emory	28.02	2258.96	4517.92	OA bone	
Cartilage (pool)	Normal	25.82	7006.64	14013.28	Cartilage (pool)	
Cartilage (pool)	OA	27.22	3408.61	6817.22	Cartilage (pool) ·	-2.06
PBL unifected	28441	24.24	15680.49	31360.98	PBL unifected	
PBL HIV IIIB	28442	25.43	8521.98	17043.96	PBL HIV IIIB	-1.84
MRC5 uninfected (100%)	29158	25.58	7922.19	15844.38	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	32.02	291.12	582.24	MRC5 HSV strain F	-27.21
W12 cells	29179	26.03	6269.24	12538.48	W12 cells	
Keratinocytes	29180	25.43	8538.15	17076.30	Keratinocytes	
B-actin control		29.74	938.61	T		
genomic		28.79	1522.16			
1.00E+05		20.84	100000	l		
1.00E+05		21.4	100000			

1.00E+04	. 24.5	10000	 	
1.00E+04	25.2	10000	 	
1.00E+03	28.45	1000		
1.00E+03	29.25	1000	 	
1.00E+02	35.34	100	 	
1.00E+02	33.61	100	-	 -
1.00E+01	38.95	10		
1.00E+01	40	0		
1.00E-00	40	O	 	
1.00E-00	40	0		
NTC	40	0	 	

Gene Name sbg1003328IG

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.13
colon tumor	1.59
colon tumor	-1.55
colon tumor	-1.65
lung tumor	-1.15
lung tumor	-1.34
lung tumor	-1.23
lung tumor	1.14
breast tumor	. 3.10
breast tumor	46.37
breast tumor	23.06
breast tumor	-1.23
brain stage 5 ALZ	-4.43
brain stage 5 ALZ	-1.06
brain stage 5 ALZ	-1.19
brain stage 5 ALZ	-1.74
lung 24	-17.21
lung 28	-18.70
lung 23	-8.96
asthmatic lung	-11.04
asthmatic lung	-1.22
asthmatic lung	2.66
asthmatic lung	1.02
endo VEGF	-1.23
endo bFGF	-2.24
heart T-1	-1.11
heart T-14	-1.27
heart T-3399	1.37
BM stim	2.10
osteo dif	3.42

Cartilage (pool)	-2.06
PBL HIV IIIB	-1.84
MRC5 HSV strain F	-27.21

Gene Name sbg1020829SGLT

5

10

Low overall expression in normal and disease samples. Highest normal expression in the whole brain, kidney, and thymus. Highest disease expression in the adenoid, tonsil, T cells, B cells, and eosinophils. Highly immune cell specific. Downregulation in 1 of 4 lung tumor samples and upregulation in 1 of 4 breast tumor samples indicates involvement in cancers of the lung and breast. Upregulation in 3 of 4 AD brain samples suggests an involvement in Alzheimer's disease. Downregulation in 3 of 3 COPD samples implies a role in chronic obstructive pulmonary disease. Downregulation in the stimulated bone marrow sample. Upregulation in the differentiated osteoblast sample. Upregulation in the HSV-infected MRC5 cells suggests that this gene may be a host factor in HSV. Moderate to high expression in the OA and RA samples indicates a potential role in osteoarthritis and rheumatoid arthritis.

Sample sbg1020829SGLT	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	37.07, 40	7.33	0	3.67	3.06	16.34	59.89
Subcutaneous Adipose Zenbio	40, 40	0	0	0.00	0.96	52.36	0.00
Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain Clontech	32.13, 32.38	138.5	119.48	128.99	7.24	6.91	890.81
Fetal Brain Clontech	40, 40	0	0	0.00	0.48	103.95	0.00
Cerebellum Clontech	40, 40	0	0	0.00	2.17	23.04	0.00
Cervix	36.13, 40	12.82	0	6.41	2.42	20.66	132.44
Colon	36.93, 36.84	7.97	8.41	8.19	2.71	18.45	151.11
Endometrium .	37.45, 37.41	5.84	5.98	5.91	0.73	68.21	403.14
Esophagus	40, 40	0	0	0.00	1.37	36.50	0.00
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	36.53, 35.17	10.09	22.67	16.38	2.58	19.38	317.44
Jejunum	40, 35.73	0	16.2	8.10	6.60	7.58	61.36
Kidney	31.93, 31.01	155.27	269.39	212.33	2.12	23.58	5007.78
Liver	36.1, 35.88	13.05	14.82	13.94	1.50	33.33	464.50
Fetal Liver Clontech	35.06, 34.36	24.26	36.78	30.52	10.40	4.81	146.73
Lung	37.24, 40	6.63	0	3.32	2.57	19.46	64.49
Mammary Gland Clontech	34.25, 34.21	39.27	40.17	39.72	13.00	3.85	152.77
Myometrium	38.48, 35.31	3.16	20.87	12.02	2.34	21.37	256.73
Omentum	40, 38.91	0	2.45	1.23	3.94	12.69	15.55
Ovary	37.87, 37.06	4.56	7.37	5.97	4.34	11.52	68.72
Pancreas	40, 40	0	0	0.00	0.81	61.80	0.00
Head of Pancreas	40, 40	0	0	0.00	1.57	31.85	0.00

Parotid Gland	36.06, 37.07	13.32	7.31	110.22	15.40	10.40	
Placenta Clontech	35.98, 38.73			10.32	5.48	9.12	94.11
Prostate	40, 40		2.72	8.34	5.26	9.51	79.28
Rectum		0	0	0.00	3.00	16.67	0.00
Salivary Gland	40, 40	0	0	0.00	1.23	40.65	0.00
Clontech	37.05, 37.06	7.4	7.36	7.38	7.31	6.84	50.48
Skeletal Muscle Clontech	40, 40	0	0	0.00	1.26	39.68	0.00
Skin	40, 40	0	0	0.00	1.21	41.32	0.00
Small Intestine Clontech	40, 40	0	0	0.00	0.98	51.07	0.00
Spleen	35.62, 35.72	17.34	16.35	16.85	4.92	10.16	171.19
Stomach .	40, 40	0 .	1.61	0.81	2.73	18.32	14.74
Testis Clontech	40, 40	0	0	0.00	0.57	87.87	0.00
Thymus Clontech	31.3, 31.09	226.24	257.15	241.70	9.89	5.06	1221.92
Thyroid	40, 40	0	0	0.00	2.77	18.05	0.00
Trachea Clontech	36.6, 36.64	9.68	9.44	9.56	9.71	5.15	49.23
Urinary Bladder	40, 40	0	0	0.00	5.47	9.14	0.00
Uterus	34.64, 36.65	31.06	9.41	20.24	5.34	9.36	189.47
genomic	29.07	853.08	 		+	7.50	109.47
b-actin	27.08	2793.5		 		 	
1.00E+05	20.85	100000		 -	┧	 	 -
1.00E+05	21.11	100000		 	 -		
1.00E+04	24.81	10000	<u> </u>	 	 	 	ļ
1.00E+04	24.95	10000			 		
1.00E+03	28.39	1000					
1.00E+03	28.9	1000			-		
1.00E+02	34.1	100					
1.00E+02	32.86	100					
1.00E+01	35.52	10			 		
1.00E+01	40	0					
1.00E-00	40	0					
1.00E-00		0			 		
NTC	40	0					
NTC		0					

Sample sbg1020829SGLT	Reg number (GSK identifier	Ct	Mean GOI copies	copies of mRNA detected/ 50 ng total RNA	Sample	Fold Change in Disease Populat
colon normal GW98-167	21941	31.06	206.55	413.10	colon normal	, , , , , , , , , , , , , , , , , , ,
colon tumor GW98-166	21940	31.18	193.59	387.18	colon tumor	-1.07
colon normal GW98-178	22080	30.74	244.37	488.74	colon normal	
colon tumor GW98-177	22060	30.37	299.28	598.56	colon tumor	1.22
colon normal GW98-561	23514	29.31	527.04	1054.08	colon normal	1.22
colon tumor GW98-560	23513	31.86	134.48	268.96	colon tumor	-3.92

colon normal GW98-894	24691	31.84	135.33	270.66	colon normal	
colon tumor GW98-893	24690	31.9	131.57	263.14	colon tumor	-1.03
lung normal GW98-3	20742	28.81	689.14	1378.28	lung normal	1.03
lung tumor GW98-2	20741	31.91	130.71	261.42	lung tumor	-5.27
lung normal GW97-179	20677	30.04	356.26	712.52	lung normal	-3.27
	20676	29.05	605.73	1211.46	lung tumor	1.70
lung tumor GW97-178						1.70
lung normal GW98-165	21922	28.42	852.41	1704.82	lung normal	2.00
lung tumor GW98-164	21921	30.51	277.13	554.26	lung tumor	-3.08
lung normal GW98-282	22584	31.23	188.34	376.68	lung normal	1.51
lung tumor GW98-281	22583	30.46	285	570.00	lung tumor	1.51
breast normal GW00-392	28750	31.14	197.15	197.15	breast normal	1.1/
breast tumor GW00-391	28746	32.15	114.65	229.30	breast tumor	1.16
breast normal GW00-413	28798	34.87	26.64	26.64	breast normal	
breast tumor GW00-412	28797	31.83	136.42	272.84	breast tumor	10.24
breast normal GW00- 235:238	27592-95	36.34	12.09	12.09	breast normal	
breast tumor GW00- 231:234	27588-91	33.48	56.11	56.11	breast tumor	4.64
breast normal GW98-621	23656	32.39	100.78	201.56	breast normal	
breast tumor GW98-620	23655	31.4	171.82	343.64	breast tumor	1.70
brain normal BB99-542	25507	34.49	32.75	65.50	brain normal	
brain normal BB99-406	25509	34.01	42.2	84.40	brain normal	
brain normal BB99-904	25546	36.17	13.3	26.60	brain normal	
brain stage 5 ALZ BB99- 874	25502	31.16	195.23	390.46	brain stage 5 ALZ	6.64
brain stage 5 ALZ BB99- 887	25503	31.56	157.33	314.66	brain stage 5 ALZ	5.35
brain stage 5 ALZ BB99- 862	25504	32.62	89.2	178.40	brain stage 5 ALZ	3.03
brain stage 5 ALZ BB99- 927	25542	33.26	63.43	126.86	brain stage 5 ALZ	2.16
CT lung KC	normal	30.82	234.88	469.76	CT lung	
lung 26 KC	normal	30.21	325.42	325.42	lung 26	
lung 27 KC	normal	36.89	9	9.00	lung 27	·
lung 24 KC	COPD	36.17	13.24	13.24	lung 24	-15.84
lung 28 KC .	COPD	38.38	4.06	4.06	lung 28	-51.66
lung 23 KC	COPD	35.53	18.67	18.67	lung 23	-11.23
lung 25 KC	normal	34.37	34.83	34.83	lung 25	
asthmatic lung ODO3112	29321	33.65	51.41	51.41	asthmatic lung	-4.08
asthmatic lung ODO3433	29323	30.62	260.95	521.90	asthmatic lung	2.49
asthmatic lung ODO3397	29322	31.31	180.14	360.28	asthmatic lung	1.72
asthmatic lung ODO4928	29325	31.14	197.09	394.18	asthmatic lung	1.88
endo cells KC	control	32.56	92.23	92.23	endo cells	
endo VEGF KC		33.29	62.39	62.39	endo VEGF	-1.48
endo bFGF KC		32.55	92.65	92.65	endo bFGF	1.00
heart Clontech	normal	33.17	66.25	132.50	heart	
heart (T-1) ischemic	29417	33.07	70.16	140.32	heart T-1	1.06
heart (T-14) non- obstructive DCM	29422	34.64	30.13	60.26	heart T-14	-2.20
heart (T-3399) DCM	29426	32.53	93.63	187.26	heart T-3399	1.41

adenoid GW99-269	26162	28.9	2 650.55	1301.10	adenoid ·	T
tonsil GW98-280	22582	. 27.1	1 1719.42	1	tonsil	
T cells PC00314	28453	28.0			T cells	
PBMNC		36.5		10.71	PBMNC	
monocyte		33.2		129.36	monocyte	
B cells PC00665	28455	27.0			B cells	
dendritic cells 28441		33.7		96.10	dendritic cells	+
neutrophils	28440	30.7		248.56	neutrophils	
eosinophils	28446	27.3	1549.7	3099.40	eosinophils	
BM unstim	+	30.06		352.26	BM unstim	
BM stim		34.14		39.39	BM stim	-8.94
osteo dif	 	36.29		12.42	osteo dif	
osteo undif	 	40	0	0.00	osteo undif	12.42
chondrocytes	 	32.11		293.48	chondrocytes	
OA Synovium IP12/01	29462	30.17		331.70	OA Synovium	-
OA Synovium NP10/01	29461	32.05		241.96	OA Synovium	+
OA Synovium NP57/00	28464	30.13		678.06	OA Synovium OA Synovium	
RA Synovium NP03/01	28466	31.28		365.92	RA Synovium	
RA Synovium NP71/00	28467	29.81	1	804.68	RA Synovium	
RA Synovium NP45/00	28475	30.22		648.28	RA Synovium	
OA bone (biobank)	29217	28.45		837.78	OA bone (biobank)	ļ
OA bone Sample 1	J. Emory	30.21	1 -	650.06	OA bone (blobank)	
OA bone Sample 2	J. Emory		406	812.00	OA bone	
Cartilage (pool)	Normal	31.09	203.28	406.56	Cartilage (pool)	 -
Cartilage (pool)	OA	32.18	112.77	225.54	Cartilage (pool)	1.00
PBL unifected	28441	29.17	567.22	1134.44	PBL unifected	-1.80
PBL HIV IIIB	28442	30.73	246.69	493.38	PBL HIV IIIB	-2.30
MRC5 uninfected	29158	35.54	18.61	37.22	MRC5 uninfected	-2.30
(100%)					(100%)	
MRC5 HSV strain F	29178	30.54	272.3	544.60	MRC5 HSV strain	14.63
W12 cells	29179	32.28	107.25	214.50	W12 cells	
Keratinocytes	29180	34.27	36.84	73.68	Keratinocytes	
B-actin control		27.03	1793.92			
депотіс		27.77	1204.8			
1.00E+05		19.84	100000			
1.00E+05		19.86	100000			
1.00E+04		23.46	10000			
1.00E+04		23.8	10000			
1.00E+03		27.45	1000			
1.00E+03		27.94	1000			
1.00E+02		33.86	100			
1.00E+02		31.41	100			
1.00E+01		40	0			
1.00E+01		36.88	10	+		
1.00E-00		40	0			
1.00E-00			0			
NTC					i i	

Gene Name sbg1020829SGLT

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.07
colon tumor	1.22
colon tumor	-3.92
colon tumor	-1.03
lung tumor	-5.27
lung tumor	1.70
lung tumor	-3.08
lung tumor	1.51
breast tumor	1.16
breast tumor	10.24
breast tumor	4.64
breast turnor	1.70
brain stage 5 ALZ	6.64
brain stage 5 ALZ	5.35
brain stage 5 ALZ	3.03
brain stage 5 ALZ	2.16
lung 24	-15.84
lung 28	-51.66
lung 23	-11.23
asthmatic lung	-4.08
asthmatic lung	2.49
asthmatic lung	1.72
asthmatic lung	1.88
endo VEGF	-1.48
endo bFGF	1.00
heart T-1	1.06
heart T-14	-2.20
heart T-3399	1.41
BM stim	-8.94
osteo dif	12.42
Cartilage (pool)	-1.80
PBL HIV IIIB	-2.30
MRC5 HSV strain F	14.63

5 Gene Name sbg1005450UDPGT

10

Low to moderate overall expression. Highest normal expression in endometrium, esophagus, and spleen with lower levels of expression in cerebellum, hypothalamus, rectum, and uterus. Highest disease expression in one of the OA synovium samples. Downregulation in 1 of 4 colon tumor samples is sufficient to make a disease claim in cancer of the colon. Upregulation in 1 of 4 lung tumor samples indicates a potential role for this gene in cancer of the lung. Downregulation in 2 of 4 AD brain samples suggests an involvement in Alzheimer's disease. Downregulation in 3 of 3 COPD lung samples and 4 of 4 asthmatic lung samples suggests involvement in chronic obstructive

pulmonary disease and asthma. Upregulation in the HSV-infected MRC5 cells suggests that this gene may be a host factor in HSV. Moderate expression in the B cells and the dendritic cells.

Sample	Ct	24	1.2				
sbg1005450UDPGT	(sample 1	Mean GOI	Mean	Averag		50	copies
Sogroos-soodi Gi	and 2)	copies	GOI	e GOI	rRNA	-6	1
	(Line 2)	(sample	copies (sample	Copies	(ng)	rRNA	mRNA
	1	1)	(Sample 2)			(ng)	detecte d/50 ng
	1	1	-'	İ		1	total
							RNA
Subcutaneous	40, 40	0.15	0.17	0.16	3.06	16.34	2.61
Adipocytes Zenbio Subcutaneous Adipose	40, 40	 	<u> </u>	1	<u> </u>	ļ	
Zenbio	40, 40	0	0	0.00	0.96	52.36	0.00
Adrenal Gland	40, 40	0	0.14	0.07	0.61	81.97	5.74
Clontech			0.11	0.07	0.01	01.97	3.74
Whole Brain Clontech	33.74, 40	12.07	0	6.04	7.24	6.91	41.68
Fetal Brain Clontech	40, 40	0	0	0.00	0.48	103.95	0.00
Cerebellum Clontech	32.07, 33.2	32.85	16.64	24.75	2.17	23.04	570.16
Cervix	40, 40	0	0	0.00	2.42	20.66	0.00
Colon	40; 35.16	0	5.12	2.56	2.71	18.45	47.23
Endometrium	32.73, 31.85	22.19	37.5	29.85	0.73	68.21	2035.81
Esophagus	32.67, 29.39	22.91	165.34	94.13	1.37	36.50	3435.22
Heart Clontech	37.12, 35.03	1.58	5.55	3.57	1.32	37.88	135.04
Hypothalamus	34.08, 40	9.84	0	4.92	0.32	155.28	763.98
Ileum	34.35	8.33		8.33	2.58	19.38	161.43
Jejunum	40, 40	0	0	0.00	6.60	7.58	0.00
Kidney	38.89, 40	0.54	0	0.27	2.12	23.58	6.37
Liver	36.32, 40	2.55	0	1.28	1.50	33.33	42.50
Fetal Liver Clontech	36.96	1.74		1.74	10.40	4.81	8.37
Lung	40, 40	0	0	0.00	2.57	19.46	0.00
Mammary Gland Clontech	40, 40	0	0	0.00	13.00	3.85	0.00
Myometrium	40, 38.22	0	0.82	0.41	2.34	21.37	8.76
Omentum	36.17, 40	2.8	0	1.40	3.94	12.69	17.77
Ovary	40, 40	0	0	0.00	4.34	11.52	0.00
Pancreas	40, 40	0	0	0.00	0.81	61.80	0.00
Head of Pancreas	40, 38.35	0	0.75	0.38	1.57	31.85	11.94
Parotid Gland	40, 40		0	0.00	5.48	9.12	0.00
Placenta Clontech	39.06, 35.49	0.49	4.22	2.36	5.26	9.51	22.39
Prostate	38.81, 40	0.57	0	0.29	3.00		4.75
	35.22, 33.25	4.94	16.2	10.57	1.23	40.65	429.67
Salivary Gland Clontech	32.56, 34.56	24.55	7.36	15.96	7.31	6.84	109.13
Clontech	40, 40	0	0	0.00	1.26	39.68	0.00
	34.26, 40	8.8	0	4.40	1.21	41.32	181.82
Clontech	40	0	6.23		0.98		159.09
	40, 27.36	0	560.92	280.46	4.92	10.16	2850.20
tomach	33.49, 39.12	13.98					132.33

Testis Clontech	40, 40	0	0	0.00	0.57	87.87	0.00
Thymus Clontech	40, 35.33	0	4.64	2.32	9.89	5.06	11.73
Thyroid	37.18, 35.52	1.53	4.13	2.83	2.77	18.05	51.08
Trachea Clontech	40, 40	0	0	0.00	9.71	5.15	0.00
Urinary Bladder	40, 40	0	0.16	0.08	5.47	9.14	0.73
Uterus	30.11	106.94	0	53.47	5.34	9.36	500.66
genomic	35.81	3.47					
b-actin	26.86	757.01					
1.00E+05	18.99	100000					
1.00E+05	19.13	100000					
1.00E+04	22.43	10000					
1.00E+04	22.31	10000					
1.00E+03	25.74	1000					
1.00E+03	25.99	1000					
1.00E+02	31.47	100					
1.00E+02	29.82	100					
1.00E+01	40	0					
1.00E+01	40	0					
1.00E-00	40	0					
1.00E-00	40	0		·			
NTC	26.02	-1					
NTC	40	0					

Sample sbg1005450UDPGT	Reg number (GSK identifie r)	Ct	Mean GOI copies	copies of mRNA detecte d/50 ng total RNA	Sample	Fold Change in Disease Populati on
colon normal GW98-167	21941	40	0.17	0.34	colon normal	
colon tumor GW98-166	21940	39.88	0.29	0.58	colon tumor	1.71
colon normal GW98-178	22080	40	0	0.00	colon normal	
colon tumor GW98-177	22060	40	0	0.00	colon tumor	0.00
colon normal GW98-561	23514	40	0	0.00	colon normal	
colon tumor GW98-560	23513	40	0	0.00	colon tumor	0.00
colon normal GW98-894	24691	33.84	10.47	20.94	colon normal	
colon tumor GW98-893	24690	40	0	0.00	colon tumor	-20.94
lung normal GW98-3	20742	40	0	0.00	lung normal	
lung tumor GW98-2	20741	40	0	0.00	lung tumor	0.00
lung normal GW97-179	20677	31.67	37.94	75.88	lung normal	
lung tumor GW97-178	20676	33.08	16.47	32.94	lung tumor	-2.30
lung normal GW98-165	21922	40	0	0.00	lung normal	
lung tumor GW98-164	21921	40.	0	0.00	lung tumor	0.00
lung normal GW98-282	22584	40	0	0.00	lung normal	
lung tumor GW98-281	22583	35.03	5.16	10.32	lung tumor	10.32
breast normal GW00-392	28750	32.64	21.38	21.38	breast normal	

breast tumor GW00-391	_	31.6	7 37.98	75.96	breast tumor	3.55
breast normal GW00-41		32.5	4 22.63	22.63	breast normal	+
breast tumor GW00-412	28797	29.2	3 161.71	323.42	breast tumor	14:29
breast normal GW00- 235:238	27592- 95	37.0	5 1.55	1.55	breast normal	
breast tumor GW00- 231:234	27588- 91	35.0	3 5.17	5:17	breast tumor	3.34
breast normal GW98-621	23656	34.12	2 8.87	17.74	breast normal	
breast tumor GW98-620	23655	40	0	0.00	breast tumor	-17.74
brain normal BB99-542	25507	34.28	8.05	16.10	brain normal	+
brain normal BB99-406	25509	40	0 .	0.00	brain normal	+
brain normal BB99-904	25546	40	0	0.00	brain normal	
brain stage 5 ALZ BB99- 874	25502	38.8	0.55	1.10	brain stage 5 ALZ	-4.88
brain stage 5 ALZ BB99- 887	İ	40	0	0.00	brain stage 5 ALZ	-5.37
brain stage 5 ALZ BB99- 862		36.16	2.64	5.28	brain stage 5 ALZ	-1.02
brain stage 5 ALZ BB99- 927	25542	40	0	0.00	brain stage 5 ALZ	-5.37
CT lung KC	normal	36.61	2.02	4.04	CT lung	
lung 26 KC	normal			+	lung 26	
lung 27 KC	normal	40	0	0.00	lung 27	
lung 24 KC	COPD	40	0	0.00	lung 24	-1.35
lung 28 KC	COPD	40	0	0.00	lung 28	-1.35
lung 23 KC	COPD	40	0.	0.00	lung 23	-1.35
lung 25 KC	normal	40	0	0.00	lung 25	-1.33
asthmatic lung ODO3112	29321	38.19	0.79	0.79	asthmatic lung	-1.70
asthmatic lung ODO3433	29323	36.09	2.76	5.52	asthmatic lung	4.10
asthmatic lung ODO3397	29322	40	0	0.00	asthmatic lung	-1.35
asthmatic lung ODO4928	29325	40	0	0.00	asthmatic lung	-1.35
endo cells KC	control	40	0	0.00	endo cells	-1.55
endo VEGF KC		40	0	0.00	endo VEGF	0.00
endo bFGF KC		40	0	0.00	endo bFGF	0.00
heart Clontech	normal	40	0	0.00	heart	0.00
heart (T-1) ischemic	29417	38.36	0.71	1.42	heart T-1	1.42
heart (T-14) non-	29422	40	0	0.00		0.00
obstructive DCM			<u></u>	"	neart 1-14	0.00
heart (T-3399) DCM	29426	40	0	0.00	heart T-3399	0.00
	26162	38.96	0.5	1.00	adenoid	
	22582	35.44	4.04	8.08	tonsil	
	28453	38.83	0.54	1.08	T cells	
PBMNC		40	0	0.00	PBMNC	
monocyte		35.1	4.94	9.88	monocyte	
	28455	33.32	14.31		B cells	
dendritic cells 28441		32.53	22.85		dendritic cells	
	28440	34.43	7.39		neutrophils	
eosinophils	28446	40	0		eosinophils	
				1		
BM unstim BM stim		40	0		BM unstim	

osteo dif		40	0	0.00	osteo dif	0.00
osteo undif		40	0	0.00	osteo undif	
chondrocytes		34.51	7.05	17.63	chondrocytes	
OA Synovium IP12/01	29462	40	0	0.00	OA Synovium	
OA Synovium NP10/01	29461	27.21	538.51	1077.02	OA Synovium	
OA Synovium NP57/00	28464	33.5	12.85	25.70	OA Synovium	
RA Synovium NP03/01	28466	39.09	0.46	0.92	RA Synovium	-
RA Synovium NP71/00	28467	40	0	0.00	RA Synovium	
RA Synovium NP45/00	28475	40	0	0.00	RA Synovium	
OA bone (biobank)	29217	40	0	0.00	OA bone (biobank)	
OA bone Sample 1	J. Emory	35.23	4.59	9.18	OA bone	
OA bone Sample 2	J. Emory	37.1	1.51	3.02	OA bone	
Cartilage (pool)	Normal	35.45	4.01	8.02	Cartilage (pool)	
Cartilage (pool)	OA	40	0	0.00	Cartilage (pool)	-8.02
PBL unifected	28441	40	0	0.00	PBL unifected	
PBL HIV IIIB	28442	40	0	0.00	PBL HIV IIIB	0.00
MRC5 uninfected (100%)	29158	40	0.17	0.34	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	30.15	93.76	187.52	MRC5 HSV strain F	551.53
W12 cells	29179	40	0	0.00	W12 cells	
Keratinocytes	29180	35.72	3.44	6.88	Keratinocytes	
B-actin control		26.57	788.4			
genomic		25.69	1326.94			
1.00E+05		18.72	100000			
1.00E+05		18.74	100000			
1.00E+04		22.11	10000			
1.00E+04		22.15	10000			
1.00E+03		25.57	1000			
1.00E+03		25.54	1000	-		
1.00E+02		31.37	100			
1.00E+02		29.65	100			
1.00E+01		40	0			
1.00E+01		40	0			
1.00E-00		40	0			
1.00E-00		40	0			
NTC		40	0			

Gene Name sbg1005450UDPGT

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.71
colon tumor	0.00
colon tumor	0.00
colon tumor	-20.94

lung tumor	0.00
lung tumor	-2.30
lung tumor	0.00
lung tumor	10.32
breast tumor	3.55
breast tumor	14.29
breast tumor	3.34
breast tumor	-17.74
brain stage 5 ALZ	-4.88
brain stage 5 ALZ	-5.37
brain stage 5 ALZ	-1.02
brain stage 5 ALZ	-5.37
lung 24	-1.35
lung 28	-1.35
lung 23	-1.35
asthmatic lung	-1.70
asthmatic lung	4.10
asthmatic lung	-1.35
asthmatic lung	-1.35
endo VEGF	0.00
endo bFGF	. 0.00
heart T-1	1.42
heart T-14	, 0.00
heart T-3399	0.00
BM stim	8.87
osteo undif	0.00
Cartilage (pool)	-8.02
PBL HIV IIIB	0.00
MRC5 HSV strain F	551.53

Gene Name sbg1002620Tia

Moderate overall expression. Highest normal expression in the whole brain, endometrium, myometrium, placenta, and rectum. Highest disease expression in the one of the colon normal/tumor pairs, the normal lung samples, one of the asthmatic lung samples, the neutrophils, the eosinophils, and one of the RA synovium samples. Expressed at high levels in all of the samples representative of the GI tract indicating a potential role for this gene in IBS, IBD, and Crohn's disease. Downregulation in 1 of 3 COPD lung samples suggests involvement in chronic obstructive pulmonary disease. Upregulation in 1 of 4 asthmatic lung samples implies a role in asthma. High expression in the OA synovium and bone samples as well as in the RA synovium samples. Also high expression in the chondrocytes. Variable expression in the immune cells with highest expression in the neutrophils and eosinophils and lowest expression in the dendritic cells. Corroborating high expression in B and T cells as well as OA samples implicates this gene in osteoarthritis and rheumatoid arthritis.

Sample sbg1002620TIa	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18 S rRNA (ng)	copies of mRNA detected/ 50 ng total RNA
-------------------------	------------------------	--	--	--------------------------	---------------------	----------------------------------	---

Subcutaneous	35.04, 34.4	201.66	274.43	238.05	3.06	16.34	3889.62
Adipocytes Zenbio	33.04, 34.4	201.00	214.43	236.03	3.00	10.54	3669.02
Subcutaneous Adipose Zenbio	38.03, 38.45	48.67	39.85	44.26	0.96	52.36	2317.28
Adrenal Gland Clontech	38.71, 38.14	35.25	46.23	40.74	0.61	81.97	3339.34
Whole Brain Clontech	29.27, 29.32	3152.23	3071.49	3111.86	7.24	6.91	21490.75
Fetal Brain Clontech	40, 37.57	0	60.7	30.35	0.48	103.95	3154.89
Cerebellum Clontech	39.37, 39.14	25.78	28.75	27.27	2.17	23.04	628.23
Cervix	34.05, 34.32	323.57	285.02	304.30	2.42	20.66	6287.09
Colon	32.64, 32.98	633.12	537.54	585.33	2.71	18.45	10799.45
Endometrium	34.44, 33.84	269.09	357.16	313.13	0.73	68.21	21359.14
Esophagus	35.48, 35.21	163.52	186.15	174.84	1.37	36.50	6380.84
Heart Clontech	38.67, 39.08	35.94	29.52	32.73	1.32	37.88	1239.77
Hypothalamus	40, 40	0.	0	0.00	0.32	155.28	0.00
Ileum	33.07, 32.9	516.19	559.94	538.07	2.58	19.38	10427.62
Jejunum	30.58, 30.66	1688.39	1625.61	1657.00	6.60	7.58	12553.03
Kidney	34.9, 33.68	216.07	385.19	300.63	2.12	23.58	7090.33
Liver	37.17, 36.49	73.4	101.31	87.36	1.50	33.33	2911.83
Fetal Liver Clontech	33.99, 34.79	332.15	227.82	279.99	10.40	4.81	1346.08
Lung	34.67, 34.06	240.47	.321.54	281.01	2.57	19.46	5467.02
Mammary Gland Clontech	29.3, 29.19	3098.36	3272.39	3185.38	13.00	3.85	12251.44
Myometrium	32.45, 31.79	692.54	946.75	819.65	2.34	21.37	17513.78
Omentum .	32.88, 33.43	563.23	434.44	498.84	3.94	12.69	6330.39
Ovary	33.02, 32.92	528.43	553.26	540.85	4.34	11.52	6230.93
Pancreas	37.31, 39.81	68.49	20.84	44.67	0.81	61.80	2760.51
Head of Pancreas	38.5, 39.16	38.99	28.45	33.72	1.57	31.85	1073.89
Parotid Gland	34.48, 34.22	263.15	298.49	280.82	5.48	9.12	2562.23
Placenta Clontech	31.16, 30.91	1280.82	1442.99	1361.91	5.26	9.51	12945.87
Prostate	33.5, 33.11	420.13	506.76	463.45	3.00	16.67	7724.08
Rectum .	34.48, 33.88	263.61	350.22	306.92	1.23	40.65	12476.22
Salivary Gland Clontech	34.48, 34.32	263.4	284.18	273.79	7.31	6.84	1872.71
Skeletal Muscle Clontech	40, 39.37	0	25.73	12.87	1.26	39.68	510.52
Skin	35.52, 35.13	160.58	193.62	177.10	1.21	41.32	7318.18
Small Intestine Clontech	36.79, 36.59	<u> </u>	96.5	92.12	0.98	51.07	4704.80
Spleen	34.45, 34.51		260	263.73	4.92	10.16	2680.13
Stomach	35.16, 33.89		348.48	269.76	2.73	18.32	4940.57
Testis Clontech	38.19, 37.07		76.91	61.07	0.57	87.87	5365.99
Thymus Clontech	33.74, 33.57	374.59	406.79	390.69	9.89	5.06	1975.18
Thyroid	34.18, 33.46		427.57	365.98	2.77	18.05	6606.05
Trachea Clontech	32.67, 31.27		1213.65	918.80	9.71	5.15	4731.18
Urinary Bladder	32.07, 31.34	830.04	1176.15	1003.10	5.47	9.14	9169.06
Uterus	31.75, 31.37	968.5	1157.09	1062.80	5.34	9.36	9951.26
genomic	31.33	1181.44					
b-actin	28.56	4411.32					
1.00E+05	22.12	100000			<u>.</u>		

1.00E+05	22.12	100000		T-T-	
1.00E+04	26.72	10000		 	
1.00E+04	. 26.91	10000		 	
1.00E+03	31.28	1000		 	
1.00E+03	31.5	1000		 	
1.00E+02	36.35	100		 	
1.00E+02	37.09	100		 	
1.00E+01	40	10			
1.00E+01	40	10		 	
1.00E-00	40	1			
1.00E-00	40	0		 -	
NTC	40	0	·		 -
NTC	40	0		<u> </u>	

Sample sbg1002620TIa	Reg number (GSK	Ct	Mean GOI	copies of mRNA		Fold Change
	identifie		copies	detected/ 50 ng total		in Disease
	^/	1	j	RNA		Populati
colon normal GW98-167	21941	24.54	22693.01		colon normal	on
colon tumor GW98-166	21940	24.18	26862.61	L .	colon tumor	1.18
colon normal GW98-178	22080	27.08	6895.34	13790.68	colon normal	1
colon tumor GW98-177	22060	28.41	3692.19	7384.38	colon tumor	-1.87
colon normal GW98-561	23514	26.58	8698.68	17397.36	colon normal	1.07
colon tumor GW98-560	23513	27.85	4799.22	9598.44	colon tumor	-1.81
colon normal GW98-894	24691	25.9	11972.57	23945.14	colon normal	1.01
colon tumor GW98-893	24690	28.04	4396.4	8792.80	colon tumor	-2.72
lung normal GW98-3	20742	24.25	26016.9	52033.80	lung normal	-2.72
lung tumor GW98-2	20741	27.64	5300.37	10600.74	lung tumor	-4.91
lung normal GW97-179	20677	25.1	17476.66	34953.32	lung normal	7.31
lung tumor GW97-178	20676	25.53	14274.54	28549.08	lung tumor	-1.22
lung normal GW98-165	21922	24.62	21917.37	43834.74	lung normal	-1.22
lung tumor GW98-164	21921	25.64	13526.49	27052.98	lung tumor	-1.62
lung normal GW98-282	22584	27.08	6884.03	13768.06	lung normal	1-1.02
lung tumor GW98-281	22583	25.37	15385.8	30771.60	lung tumor	2.23
breast normal GW00- 392	28750	26.07	11065.25	11065.25	breast normal	2.23
breast tumor GW00-391	28746	26.87	7611.48	15222.96	breast tumor	1.38
breast normal GW00- 413	28798	28.65	3294.68	3294.68	breast normal	1.56
breast tumor GW00-412	28797	28.52	3496.94	6993.88	breast tumor	2.12
	27592- 95	29.47	2243.69	2243.69	breast normal	2.12
231:234	27588- 91	25.83	12385.23	12385.23	breast tumor	5.52
521	23656	26.05	11188.07	22376.14	breast normal	
oreast tumor GW98-620	23655	26.03	11303.95	22607.90	breast tumor	1.01

brain normal BB99-542	25507	27.68	5198.79	10397.58	brain normal	
brain normal BB99-406	25509	29.81	1909.01	3818.02	brain normal	
brain normal BB99-904	25546	31.84	735.25	1470.50	brain normal	
brain stage 5 ALZ BB99-874	25502	28.43	3650.66	7301.32	brain stage 5 ALZ	1.40
brain stage 5 ALZ BB99-887	25503	29.01	2785.56	5571.12	brain stage 5 ALZ	0.00
brain stage 5 ALZ BB99-862	25504	29.65	2059.62	4119.24	brain stage 5 ALZ	-1.27
brain stage 5 ALZ BB99-927	25542	30.01	1742.3	3484.60	brain stage 5 ALZ	-1.50
CT lung KC	normal	25.49	14553.17	29106.34	CT lung	
lung 26 KC	normal	31.8	749.93	749.93	lung 26	
lung 27 KC	normal	33.35	362.66	362.66	lung 27	
lung 24 KC	COPD	30.67	1275.68	1275.68	lung 24	-6.03
lung 28 KC	COPD	29.25	2490.39	2490.39	lung 28	-3.09
lung 23 KC	COPD	30.11	1661.24	1661.24	lung 23	-4.63
lung 25 KC	normal.	32.45	553.75	553.75	lung 25	
asthmatic lung ODO3112	29321	27.3	6215.19	6215.19	asthmatic lung	-1.24
asthmatic lung ODO3433	29323	26.66	8407.3	16814.60	asthmatic lung	2.19
asthmatic lung ODO3397	29322	24.06	28466.73	56933.46	asthmatic lung	7.40
asthmatic lung ODO4928	29325	26.22	10313.71	20627.42	asthmatic lung	2.68
endo cells KC	control	40	0	0.00	endo cells	
endo VEGF KC		40	0	0.00	endo VEGF	0.00
endo bFGF KC		40	0	0.00	endo bFGF	0.00
heart Clontech	normal	27.58	5449.78	10899.56	heart	
heart (T-1) ischemic	29417	28.42	3670.86	7341.72	heart T-1	-1.48
heart (T-14) non- obstructive DCM	29422	27.18	6570.11	13140.22	heart T-14	1.21
heart (T-3399) DCM	29426	26.23	10277.2	20554.40	heart T-3399	1.89
adenoid GW99-269	26162	31.98	688.86	1377.72	adenoid	
tonsil GW98-280	22582	29.31	2421.67	4843.34	tonsil	
T cells PC00314	28453	29.53	2178.21	4356.42	T cells	
PBMNC		33.23	383.88	383.88	PBMNC	
monocyte		31.07	1057.9	2115.80	monocyte	
B cells PC00665	28455	35.97	106.01	212.02	B cells	
dendritic cells 28441		33.56	328.62	657.24	dendritic cells	
neutrophils	28440	22.32	64510.36	64510.36	neutrophils	
eosinophils	28446	24.18	26910.17	53820.34	eosinophils	
BM unstim		30.35	1480.07	1480.07	BM unstim	
BM stim		31.71	782.56	782.56	BM stim	-1.89
osteo dif		31.42	895.71	895.71	osteo dif	2.03
osteo undif		32.93	440.66	440.66	osteo undif	
chondrocytes		28.98	2820.8	7052.00	chondrocytes	
OA Synovium IP12/01	29462	25.37	15383.84	15383.84	OA Synovium	
OA Synovium NP10/01	29461	27.12	6763.44	13526.88	OA Synovium	
		_				

OA Synovium NP57/00	Tooler	122	T			
	28464	26.48		18261.62	OA Synovium	
RA Synovium NP03/01	28466	27.78		9934.46	RA Synovium	
RA Synovium NP71/00	28467	24.72	_	41847.32	RA Synovium	 `
RA Synovium NP45/00	28475	26.15		21317.64	RA Synovium	
OA bone (biobank)	29217	28.68	3248.19	3248.19	OA bone (biobank)	
OA bone Sample 1	J. Emory	27.19	6545.82	13091.64	OA bone	
OA bone Sample 2	J. Emory	27.24	6384.92	12769.84	OA bone	
Cartilage (pool)	Normal	26.28	10016.65	20033.30	Cartilage (pool)	
Cartilage (pool)	OA	26.67	8342.92	16685.84	Cartilage (pool)	-1.20
PBL unifected	28441	31.05	1069.84	2139.68	PBL unifected	1-1.20
PBL HIV IIIB	28442	31.7	788.06	1576.12	PBL HIV IIIB	-1.36
MRC5 uninfected (100%)	29158	26.37	9631.13	19262.26	MRC5 uninfected (100%)	-1.50
MRC5 HSV strain F	29178	28.38	3747.38	7494.76	MRC5 HSV strain F	-2.57
W12 cells	29179	35.15	155.25	310.50	W12 cells	
Keratinocytes	29180	34.93	172.87	345.74	Keratinocytes	
B-actin control		28.06	4342.74			
genomic		30.54	1356.79			
1.00E+05		21.39	100000			
1.00E+05		21.64	100000			
1.00E+04		26.21	10000		——————————————————————————————————————	
1.00E+04		26.24	10000			
1.00E+03		30.9	1000			
1.00E+03		30.97	1000			
1.00E+02		36.34	100			
1.00E+02		36.22	100			
1.00E+01		40	10			
1.00E+01		40	0			
1.00E-00		40	0			
1.00E-00		40	0			
NTC		40	0			

Gene Name sbg1002620TIa

5

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.18
colon tumor	-1.87
colon tumor	-1.81
colon tumor	-2.72
lung tumor	-4.91
lung tumor	-1.22
lung tumor	-1.62
lung tumor	2.23
breast tumor	1.38

breast tumor	2.12
breast tumor	5.52
breast tumor	1.01
brain stage 5 ALZ	1.40
brain stage 5 ALZ	1.07
brain stage 5 ALZ	-1.27
brain stage 5 ALZ	-1.50
lung 24	-6.03
lung 28	-3.09
lung 23	-4.63
asthmatic lung	-1.24
asthmatic lung	2.19
asthmatic lung	7.40
asthmatic lung	2.68
endo VEGF	0.00
endo bFGF	0.00
heart T-1	-1.48
heart T-14	1.21
heart T-3399	1.89
BM stim	-1.89
osteo dif	2.03
Cartilage (pool)	-1.20
PBL HIV IIIB	-1.36
MRC5 HSV strain F	-2.57

Gene Name sbg1002620TIb

Moderate to high overall expression. Highest normal expression in whole brain, endometrium, jejunum, placenta, thymus, and urinary bladder. Highest disease expression in one of the colon normal/tumor pairs, one of the normal lung samples, one of the asthmatic lung samples, the neutrophils, and the eosinophils. Strong expression in all of the GI tract samples implicates this gene in IBS, IBD, and Crohn's disease. Downregulation in 1 of 4 lung tumor samples is sufficient to make a disease claim in cancer of the lung. Downregulation in 3 of 3 COPD lung samples suggests involvement in chronic obstructive pulmonary disease. Upregulation in 1 of 4 asthmatic lung samples implies a role in asthma. Upregulation in 2 of 3 heart samples suggests this gene may play a role in non-obstructive and obstructive dilated cardiac myopathy. High expression in the RA and OA synovium samples as well as high expression in the chondrocytes and T cells implicates this gene in osteoarthritis and rheumatoid arthritis.

_,

Sample sbg1002620TIb	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Averag e GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected /50 ng total RNA
Subcutaneous Adipocytes Zenbio	31.35, 31.44	58.54	55.11	56.83	3.06	16.34	928.51
Subcutaneous Adipose Zenbio	35.12, 34.21	5	9.05	7.03	0.96	52.36	367.80
Adrenal Gland Clontech	40, 34.29	0	8.61	4.31	0.61	81.97.	352.87
Whole Brain Clontech	26.02, 26.06	1897.9	1849.19	1873.55	7.24	6.91	12938.85

Fetal Brain Clontech	40, 36.43	To	0.12	Ti on	10.10	1.00.00	
Cerebellum Clontech		0	2.13	1.07	0.48	103.95	110.71
Cervix	40, 36.05	0	2.74	1.37	2.17	23.04	31.57
Colon	32.23, 33.04		19.47	26.29	2.42	20.66	543.18
	30.44, 30.45		105.29	105.61	2.71	18.45	1948.52
Endometrium	30.86, 30.56	_l	97.92	89.34	0.73	68.21	6093.79
Esophagus	33.03, 32.34		30.66	25.14	1.37	36.50	917.52
Heart Clontech	40, 35.05	0	5.26	2.63	1.32	37.88	99.62
Hypothalamus	40, 36.17	0	2.53	1.27	0.32	155.28	196.43
Ileum	31.25, 30.31		115.58	89.05	2.58	19.38	1725.78
Jejunum	27.75, 27.93		543.46	577.74	6.60	7.58	4376.78
Kidney	32.59, 31.86		42.14	34.09	2.12	23.58	803.89
Liver	34.66, 34.5	6.77	7.52	7.15	1.50	33.33	238.17
Fetal Liver Clontech	29.08, 28.58	I	356.67	306.75	10.40	4.81	1474.76
Lung	30.74, 30.68		90.91	89.18	2.57	19.46	1734.92
Mammary Gland Clontech	27.49, 26.81		1132.42	928.72	13.00	3.85	3572.00
Myometrium	31.2, 30.29	64.54	117.26	90.90	2.34	21.37	1942.31
Omentum	31.19, 30.12	1	130.86	97.96	3.94	12.69	1243.08
Ovary	30.24, 30.54		99.3	110.13	4.34	11.52	1268.72
Pancreas	36.01, 36.55	2.81	1.97	2.39	0.81	61.80	147.71
Head of Pancreas	33.95, 35.73	10.72	3.36	7.04	1.57	31.85	224.20
Parotid Gland	32.16, 33.16	34.51	18.05	26.28	5.48	9.12	239.78
Placenta Clontech		395.01	512.77	453.89	5.26	9.51	4314.54
Prostate	30.61, 31.28	95.23	61.5	78.37	3.00	16.67	1306.08
Rectum	30.5, 30.93	101.73	76.9	89.32	1.23	40.65	3630.69
Salivary Gland Clontech	31.17, 31.07	65.95	70.23	68.09	7.31	6.84	465.73
Skeletal Muscle Clontech	40, 40	0	0	0.00	1.26	39.68	0.00
Skin	34.37, 33.12	8.18	18.53	13.36	1.21	41.32	551.86
Small Intestine Clontech	36.71, 34.96	1.78	5.55	3.67	0.98	51.07	187.18
Spleen	30.54, 31.29	99.47	60.88	80.18	4.92	10.16	814.79
Stomach	32.4, 31.53	29.49	52	40.75	2.73	18.32	746.25
Testis Clontech	34.4, 35.19	8.03	4.79	6.41	0.57	87.87	563.27
Thymus Clontech		888.84	924.29	906.57	9.89	5.06	4583.24
	32.17, 30.89		79.27	56.82	2.77	18.05	1025.54
	30.01, 29.25		230.28	185.30	9.71	5.15	954.15
	28.33, 27.87	420.47	565.71	493.09	5.47	9.14	4507.22
	29.09, 28.81	255.27	308	281.64	5.34	9.36	2637.03
	27.16	900.78					
	27.4	769.87					
	19.87	100000					
	19.95	100000					
	23.4	10000					
	23.39	10000					
	26.94	1000					
	26.95	1000					
1.00E+02	31.02	100					

1.00E+02	30.96	100			
1.00E+01	33.46	10			
1.00E+01	40	0			
1.00E-00	40	0			
1.00E-00	40	0			
NTC	40	0			
NTC	40	0			

Sample	Reg	Ct	Mean	copies of	Sample	Fold
sbg1002620TIb	number		GOI	mRNA	·	Chang
	(GSK		copies	detected		e in
,	identifier		i i	/50 ng		Diseas
)	ł		total		e
		ĺ		RNA		Popula
	21011		10601.0	07060.40		tion
colon normal GW98-167	21941	22.85	18631.2		colon normal	104
colon tumor GW98-166	21940	22.51	23090.96	46181.92	colon tumor	1.24
colon normal GW98-178	22080	25.49	3620.45	7240.90	colon normal	<u> </u>
colon tumor GW98-177	22060	26.88	1527.3	3054.60	colon tumor	-2.37
colon normal GW98-561	23514	25.37	3901.36	7802.72	colon normal	
colon tumor GW98-560	23513	26.08	2512.21	5024.42	colon tumor	-1.55
colon normal GW98-894	24691	23.78	10441.49	20882.98	colon normal	
colon tumor GW98-893	24690	25.54	3515.48	7030.96	colon tumor	-2.97
lung normal GW98-3	20742	22.6	21810.56	43621.12	lung normal	
lung tumor GW98-2	20741	26.19	2349.32	4698.64	lung tumor	-9.28
lung normal GW97-179	20677	23.38	13423.28	26846.56	lung normal	
lung tumor GW97-178	20676	24.51	6653.03	13306.06	lung tumor	-2.02
lung normal GW98-165	21922	23.68	11120.91	22241.82	lung normal	
lung tumor GW98-164	21921	24.37	7242.32	14484.64	lung tumor	-1.54
lung normal GW98-282	22584	25.05	4745.83	9491.66	lung normal	
lung tumor GW98-281	22583	23.57	11943.28	23886.56	lung tumor	2.52
breast normal GW00- 392	28750	24.84	5415.88	5415.88	breast normal	
breast tumor GW00-391	28746	24.98	4973.9	9947.80	breast tumor	1.84
breast normal GW00- 413	28798	24.69	5954.77	5954.77	breast normal	
breast tumor GW00-412	28797	26.38	2081.99	4163.98	breast tumor	-1.43
breast normal GW00- 235:238	27592-95	25.04	4792.18	4792.18	breast normal	
breast tumor GW00- 231:234	27588-91	23.63	11520.86	11520.86	breast tumor	2.40
breast normal GW98- 621	23656	23.22	14836.24	29672.48	breast normal	
breast tumor GW98-620	23655	24.24	7879	15758.00	breast tumor	-1.88
brain normal BB99-542	25507	25.16	4447.15	8894.30	brain normal	
brain normal BB99-406	25509	27.05	1377.71	2755.42	brain normal	
brain normal BB99-904	25546	29.35	330.53	661.06	brain normal	
brain stage 5 ALZ BB99-874	25502	27.64	956.16	1912.32	brain stage 5 ALZ	-2.15
brain stage 5 ALZ	25503	27.02	1400.04	2800.08	brain stage 5	-1.47

BB99-887	·		T	T	ALZ	
brain stage 5 ALZ BB99-862	25504	27.4	1105.21	2210.42	brain stage 5	-1.86
brain stage 5 ALZ BB99-927	25542	27.1	1336.02	2672.04	brain stage 5	-1.54
CT lung KC	normal	23.52	12295.29	24590.58		
lung 26 KC	normal	31.42	91.19	91.19	lung 26	
lung 27 KC	normal	32.34	51.71	51.71	lung 27	
lung 24 KC	COPD	31.27	100.29	100.29	lung 24	-61.80
lung 28 KC	COPD	28.64	511.37	511.37	lung 28	-12.12
lung 23 KC	COPD	30.52	159:17	159.17	lung 23	-38.94
lung 25 KC	normal	32.15	57.91	57.91	lung 25	150.51
asthmatic lung ODO3112	29321	23.19	15086.65	15086.65		2.43
asthmatic lung ODO3433	29323	24.76	5706.9	11413.80	asthmatic lung	1.84
asthmatic lung ODO3397	29322	21.71	37760.01	75520.02	asthmatic lung	12.18
asthmatic lung ODO4928	29325	24.16	8255.16	16510.32	asthmatic lung	2.66
endo cells KC	control	37.31	2.36	2.36	endo cells	
endo VEGF KC		40	0	0.00	endo VEGF	-2.36
endo bFGF KC	<u> </u>	35.67	6.54	6.54	endo bFGF	2.77
heart Clontech	normal	26.32	2170.24	4340.48	heart	
heart (T-1) ischemic	29417	25.87	2863.04	5726.08	heart T-1	1.32
heart (T-14) non- obstructive DCM	29422	24.62	6200.03	12400.06	heart T-14	2.86
heart (T-3399) DCM	29426	24.06	8775.18	17550 36	heart T-3399	104
adenoid GW99-269	26162	29.2	362.88	725.76	adenoid	4.04
tonsil GW98-280	22582	27.24	1222,33	2444.66	tonsil	
T cells PC00314	28453	28.09	723.06	1446.12	T cells	-
PBMNC	<u> </u>	30.67	145.75	145.75	PBMNC	
monocyte	 	28.42	587.16	1174.32	monocyte	
B cells PC00665	28455	34.17	16.57	33.14	B cells	
dendritic cells 28441	-	31.78	72.95	145.90	dendritic cells	
neutrophils	28440	21.46	44297.23			
eosinophils	28446	22.79	19332.21		eosinophils	
BM unstim	 	29.22	358.53	358.53	BM unstim	
BM stim		31.27	100.39	100.39	BM stim	-3.57
osteo dif		30.14	202.25	202.25	osteo dif	
osteo undif	 	32.72	40.67	40.67	osteo undif	4.97
chondrocytes	 	27.3	1178.3	2945.75	chondrocytes	
OA Synovium IP12/01	29462	23.33	13860.23	 	OA Synovium	
OA Synovium NP10/01	29461	25.3	4080.49	8160.98	OA Synovium	
OA Synovium NP57/00	28464	25.23	4253.8		OA Synovium OA Synovium	:
RA Synovium NP03/01	28466	25.46	3686.62		RA Synovium	
RA Synovium NP71/00	28467	23.31	14036.44		RA Synovium RA Synovium	
RA Synovium NP45/00	28475	24.28	7658.52		RA Synovium RA Synovium	├
OA bone (biobank)	29217	26.48	1958.1		OA bone	
· · · · · · · · · · · · · · · · · · ·	L	<u></u>			(biobank)	

OA bone Sample 1	J. Emory	25.28	4131.76	8263.52	OA bone	
OA bone Sample 2	J. Emory	25.23	4242.9	8485.80	OA bone	
Cartilage (pool)	Normal	24.05	8829.67	17659.34	Cartilage (pool)	
Cartilage (pool)	OA	24.28	7685.44	15370.88	Cartilage (pool)	-1.15
PBL unifected	28441	29.33	334.71	669.42	PBL unifected	
PBL HIV IIIB	28442	29.59	283.96	567.92	PBL HIV IIIB	-1.18
MRC5 uninfected (100%)	29158	23.92	9595.12	19190.24	uninfected (100%)	
MRC5 HSV strain F	29178	25.2	4341.36	8682.72	MRC5 HSV strain F	-2.21
W12 cells	29179	30.43	168.9	337.80	W12 cells	
Keratinocytes	29180	29.66	272.9	545.80	Keratinocytes	
B-actin control		27.64	956.41			
genomic		27.35	1143.39			
1.00E+05		20.14	100000	· .		
1.00E+05		20.26	100000			
1.00E+04		23.6	10000			
1.00E+04		24.02	10000			
1.00E+03		27.49	1000			
1.00E+03		27.5	1000			
1.00E+02		31.66	100			
1.00E+02		31.01	100			
1.00E+01		40	0			
1.00E+01		40	0			
1.00E-00		40	0.			
1.00E-00		40	0			
NTC		40	0			

Gene Name sbg1002620TIb

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.24
colon tumor	-2.37
colon tumor	-1.55
colon tumor	-2.97
lung tumor	-9.28
lung tumor	-2.02
lung tumor	-1.54
lung tumor	2.52
breast tumor	1.84
breast tumor	-1.43
breast tumor	2.40
breast tumor	-1.88
brain stage 5 ALZ	-2.15
brain stage 5 ALZ	-1.47
brain stage 5 ALZ	-1.86
brain stage 5 ALZ	-1.54
lung 24	-61.80
lung 28	-12.12

lung 23	-38.94
asthmatic lung	2.43
asthmatic lung	1.84
asthmatic lung	12.18
asthmatic lung	2.66
endo VEGF	-2.36
endo bFGF	2.77
heart T-1	1.32
heart T-14	2.86
heart T-3399	4.04
BM stim	-3.57
osteo dif	4.97
Cartilage (pool)	-1.15
PBL HIV IIIB	-1.18
MRC5 HSV strain F	-2.21

Gene Name sbg102200MCTa

Moderate to low overall expression. Highest normal expression in the subcutaneous adipose tissue, whole brain, fetal brain, cerebellum, and fetal liver. Highest disease expression in 2 of 4 lung tumor samples, one of the normal lung samples, one of the normal breast samples, and the CT lung sample. Downregulation in 1 of 4 breast cancer samples implicates this gene in cancer of the breast. Downregulation in 3 of 3 COPD lung samples suggests involvement in chronic obstructive pulmonary disease. Moderate expression in the OA and RA synovium as well as the PBLs, adenoid, tonsil, T cells, B cells, and the chondrocytes indicates involvement in osteoarthritis and rheumatoid arthritis.

Sample sbg102200MCTa	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	36.01, 34.76	3.83	8.04	5.94	3.06	16.34	96.98
Subcutaneous Adipose Zenbio	34.85, 33.96	7.63	12.94	10.29	0.96	52.36	538.48
Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain Clontech	26.05, 26.18	1434.25	1331.2	1382.73	7.24	6.91	9549.21
Fetal Brain Clontech	40, 34.46	0	9.63	4.82	0.48	103.95	500.52
Cerebellum Clontech	31.7, 32.73	49.65	26.9	38.28	2.17	23.04	881.91
Cervix	40, 40	0	0	0.00	2.42	20.66	0.00
Colon	38.55, 38.57	0.84	0.83	0.84	2.71	18.45	15.41
Endometrium	40, 40	0	0	0.00	0.73	68.21	0.00
Esophagus	35.23, 40	6.09	0	3.05	1.37	36.50	111.13
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	39.8, 40	0.4	0	0.20	0.32	155.28	31.06
Ileum	34.16, 40	11.53	0	5.77	2.58	19.38	111.72
Jejunum	32.82, 33.18	25.46	20.6	23.03	6.60	7.58	174.47
Kidney	34.23, 34.1	11.02	11.9	11.46	2.12	23.58	270.28
	35.35, 37.28	5.65	1.79	3.72	1.50	33.33	124.00
Fetal Liver Clontech	29.45, 28.98	189.89	250.96	220.43	10.40	4.81	1059.74

Lung	34.99, 33.43	7.04	17.81	12.43	2.57	19.46	241.73
Mammary Gland	31.76, 31.05	48.02	73.18	60.60	13.00	3.85	233.08
Clontech					<u> </u>		
Myometrium	34.46, 35.22	9.64	6.12	7.88	2.34	21.37	168.38
Omentum	37.94, 34.13	1.21	11.71	6.46	3.94	12.69	81.98
Ovary	34.03, 33.43	12.44	17.77	15.11	4.34	11.52	174.02
Pancreas	40, 40	0	.0	0.00	0.81	61.80	0.00
Head of Pancreas	40, 40	0	0	0.00	1.57	31.85	0.00
Parotid Gland	32.56, 31.81	29.88	46.65	38.27	5.48	9.12	349.13
Placenta Clontech	40, 40	0	0	0.00	5.26	9.51	0.00
Prostate	40, 36.21	0	3.39	1.70	3.00	16.67	28.25
Rectum	40, 39.37	0	0.52	0.26	1.23	40.65	10.57
Salivary Gland Clontech	30.6, 31.77	95.89	47.76	71.83	7.31	6.84	491.28
Skeletal Muscle Clontech	40, 40	0	0	0.00	1.26	39.68	0.00
Skin	34.47, 35.32	9.58	5.75	7.67	1.21	41.32	316.74
Small Intestine Clontech	40, 40	0	0	0.00	0.98	51.07	0.00
Spleen	34.1, 36.49	11.93	2.87	7.40	4.92	10.16	75.20
Stomach .	35.17, 36.07	6.3	3.68	4.99	2.73	18.32	91.39
Testis Clontech	37.98, 40	1.19	0	0.60	0.57	87.87	52.28
Thymus Clontech	31.28, 30.4	63.69	108.05	85.87	9.89	5.06	434.13
Thyroid	33.08, 32.96	21.88	23.47	22.68	2.77	18.05	409.30
Trachea Clontech	32.54, 31.34	30.14	61.71	45.93	9.71	5.15	236.48
Urinary Bladder	33.91, 40	13.32	0	6.66	5.47	9.14	60.88
Uterus	33.71, 32.43	15.04	32.13	23.59	5.34	9.36	220.83
genomic	26.3	1237.42					
b-actin	27.49	610.72					
1.00E+05	19.18	100000					
1.00E+05	19.45	100000				<u> </u>	
1.00E+04	22.6	10000			<u></u>		
1.00E+04	22.53	10000					<u> </u>
1.00E+03	26.17	1000					
1.00E+03	26.19	1000			<u> </u>		
1.00E+02	30.61	100					
1.00E+02	30.53	100					
1.00E+01	40	0				<u></u>	
1.00E+01	34.91	10					
1.00E-00	40	0					
1.00E-00	40	0					
NTC	40	0					
NTC	40	0			<u> </u>		

Sample	Reg	Ct	Mean	copies	Sample	Fold
sbg102200MCTa	number		GOI	of		Change in
	(GSK		copies	mRNA		Disease
	identifier	[_	detecte		Populatio

Colon normal GW98-167 21941 28.58 519.72 1039.44 colon normal colon tumor GW98-166 21940 30.18 202.86 405.72 colon tumor - 2.56 colon normal GW98-178 22080 31.39 100.15 200.30 colon normal colon tumor GW98-177 22080 22080 282.42 564.84 colon tumor - 2.56 colon normal GW98-561 23514 30.36 138.13 366.26 colon normal GW98-560 23513 30.45 173.87 347.74 colon tumor GW98-560 23513 30.45 173.87 347.74 colon tumor - 1.05 colon normal GW98-894 24690 30.35 183.76 367.52 colon tumor GW98-893 24690 30.35 183.76 367.52 colon tumor - 1.07 lung normal GW98-30 20741 28.8 456.47 912.94 lung normal managemental GW97-179 20677 27.94 754.47 1508.94 lung normal managemental GW97-179 20676 26.27 2002.28 4004.56 lung normal managemental GW98-164 21922 26.87 1411.09 2822.18 lung normal managemental GW98-164 21922 26.87 1411.09 2822.18 lung normal managemental GW98-282 22584 30 225.32 450.64 lung normal managemental GW98-282 22584 30 225.32 450.64 lung normal managemental GW00-392 28750 28.32 602.59 602.59 breast normal GW00-392 28750 28.32 602.59 602.59 breast normal GW00-413 28798 29.56 292.43 292.43 breast normal GW00-412 28797 30.05 218.89 437.78 breast normal GW00-235:238 breast normal GW00-26355 31.35 102.26 204.52 breast normal managemental GW00-23550 25.00 25.00 26.00 26.00 235.23 25.00 26.00 2		1.	· · · · · · · · · · · · · · · · · · ·	,	T	,	
Colon normal GW98-167 21941 28.58 519.72 1039.44 colon normal colon tumor GW98-166 21940 30.18 202.86 405.72 colon tumor -2.56 colon normal GW98-178 22080 31.39 100.15 200.30 colon normal colon tumor GW98-177 22060 29.62 282.42 564.84 colon tumor 2.82 colon tumor GW98-561 23514 30.36 173.87 347.74 colon tumor GW98-561 23513 30.45 173.87 347.74 colon tumor GW98-894 24691 30.23 196.98 393.96 colon normal GW98-893 24690 30.35 183.76 367.52 colon tumor GW98-893 24690 30.35 183.76 367.52 colon tumor GW98-893 24690 30.35 183.76 367.52 colon tumor GW98-893 24690 30.35 183.76 367.52 colon tumor -1.07 tung normal GW98-3 20742 26.68 1575.72 3151.44 tung normal GW98-19 20677 27.94 754.47 1508.94 tung tumor -3.45 tung normal GW97-179 20677 27.94 754.47 1508.94 tung normal gward GW98-164 21921 29.38 325.51 651.02 tung tumor -4.34 tung normal GW98-282 22584 30 225.32 450.64 tung normal lung tumor GW98-281 22583 28.64 502.02 1004.04 tung normal lung tumor GW98-281 22583 28.64 502.02 1004.04 tung tumor 2.23 breast normal GW00-391 28796 28.32 602.59 breast normal GW00-413 28798 29.56 292.43 292.43 breast normal GW00-412 28797 30.05 218.89 437.78 breast tumor 1.50 breast normal GW00-420 27592-95 30.96 128.91 128.91 breast normal GW00-25509 29.01 402.37 804.52 breast normal GW00-25509 29.01 402.37 804.52 breast normal GW00-25509 29.01 402.37 804.52 breast normal GW00-25509 29.01 402.37 804.52 breast normal GW00-25509 29.01 402.37 804.52 breast normal GW00-25509 29.01 402.37 804.54 brain normal BB99-904 25564 29.67 274.03 548.06 brain normal BB99-904 25564 29.67 274.03 548.06 brain normal GW00-25509 29.01 402.37 804.54 brain normal GW00-25509 25504 29.67 274.03 548.06 brain stage 5 ALZ BB99- 25504))			d/50 ng	·	n
				1			
Colon tumor GW98-166 21940 30.18 202.86 405.72 colon tumor -2.56 colon normal GW98-178 22080 31.39 100.15 200.30 colon normal GW98-178 22080 282.42 564.84 colon tumor 2.82 colon normal GW98-561 23514 30.36 183.13 366.26 colon normal GW98-560 23513 30.45 173.87 347.74 colon tumor -1.05 colon normal GW98-894 24691 30.23 196.98 393.96 colon normal GW98-893 24690 30.35 183.76 367.52 colon tumor -1.07 colon tumor GW98-893 24690 30.35 183.76 367.52 colon tumor -1.07 colon tumor GW98-2 20741 28.8 456.47 912.94 lung tumor GW98-2 20741 28.8 456.47 912.94 lung tumor -3.45 lung normal GW97-178 20676 26.27 2002.28 4004.56 lung tumor -3.45 lung normal GW98-164 21921 29.38 325.51 651.02 lung tumor GW98-282 22584 30 225.32 450.64 lung tumor -4.34 lung tumor GW98-282 22584 30 225.32 450.64 lung tumor -2.23 breast normal GW00-391 28746 28.05 709.37 1418.74 breast tumor 2.23 breast normal GW00-413 28798 29.56 292.43 292.43 breast normal GW00-413 28798 29.56 292.43 292.43 breast normal GW00-413 28798 29.56 292.43 292.43 breast normal GW00-42 28797 30.05 218.89 37.78 breast normal breast tumor GW00-42 28797 30.96 128.91 128.91 breast normal BP9-406 25509 29.01 402.37 804.74 brain normal BP9-406 25509 29.01 402.37 804.74 brain normal BP9-406 25509 29.01 402.37 804.74 brain normal brain normal BP9-406 25509 29.01 402.37 804.74 brain normal brain normal BP9-406 25509 29.01 402.37 804.74 brain normal brain normal BP9-406 25509 29.01 402.37 804.74 brain stage 5 ALZ BP99 25502 28.6 28.48 56.30 50.	colon normal GW98-167	21941	28.58	519.72		colon normal	
Colon normal GW98-178 22080 31.39 100.15 200.30 colon normal colon tumor GW98-177 22060 29.62 282.42 564.84 colon tumor CW98-561 23514 30.64 183.13 366.26 colon normal colon tumor GW98-560 23513 30.45 173.87 347.74 colon tumor GW98-580 23513 30.45 173.87 347.74 colon tumor GW98-893 24690 30.23 196.98 399.96 colon normal colon tumor GW98-893 24690 30.23 183.76 367.52 colon tumor GW98-893 24690 30.25 183.76 367.52 colon tumor GW98-893 24690 30.25 183.76 367.52 colon tumor -1.07 lung normal GW98-3 20741 28.8 456.47 912.94 lung tumor 3.45 lung normal GW97-179 20677 27.94 754.47 1508.94 lung normal mormal GW97-178 20676 26.27 2002.28 4004.56 lung tumor 2.65 lung normal GW98-165 21922 26.67 1411.09 2822.18 lung normal lung tumor GW98-164 21921 29.38 235.51 651.02 lung tumor 4.434 lung normal GW98-282 22584 30 225.32 450.64 lung tumor 4.434 lung normal GW08-281 22583 28.64 502.02 1004.04 lung tumor 2.23 lung tumor GW98-281 28798 29.56 292.43 292.43 breast normal GW00-412 28797 30.05 218.89 37.78 breast tumor GW00-412 28797 30.05 218.89 37.78 breast tumor GW00-212 27592-95 30.96 128.91 128.91 breast tumor GW00-212 27592-95 30.96 128.91 128.91 breast tumor GW00-212 25507 28.44 564.32 1128.64 brain normal brain normal BB99-542 25507 28.44 564.32 1128.64 brain normal brain normal BB99-404 25560 29.01 402.37 804.74 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99 25502 29.6 284.82 569.64 brain stage 5 ALZ 1.22 27.24 brain stage 5 ALZ BB99 25502 29.6 284.82 569.64 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.22 27.24 brain stage 5 ALZ BB99 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99 25504 28.74 472.27 944.54 brain sta	colon tumor GW98-166		ļ				-2.56
Colon tumor GW98-177 22060 29.62 282.42 564.84 Colon tumor 2.82	colon normai GW98-178	22080					-2.50
Colon normal GW98-561 23514 30.36 183.13 366.26 colon normal colon tumor GW98-560 23513 30.45 173.87 347.74 colon tumor -1.05 colon normal GW98-894 24691 30.23 196.98 399.96 colon normal colon tumor GW98-893 24690 30.35 183.76 367.52 colon tumor -1.07 lung normal GW98-33 20742 26.68 1575.72 3151.44 lung normal GW98-32 20741 28.8 456.47 912.94 lung tumor -3.45 lung normal GW97-179 20677 27.94 754.47 1508.94 lung tumor -3.45 lung normal GW97-178 20676 26.27 2002.28 4004.56 lung tumor -2.65 lung normal GW98-165 21922 26.87 1411.09 2822.18 lung normal GW98-164 21921 29.38 325.51 651.02 lung tumor -4.34 lung normal GW98-282 22584 30 225.32 450.64 lung normal mormal GW98-282 22583 28.64 502.02 1004.04 lung tumor -2.23 breast normal GW00-391 28746 28.05 709.37 1418.74 breast tumor -2.35 breast normal GW00-412 28797 30.05 218.89 437.78 breast normal GW00-392 27592-95 30.96 128.91 128.91 breast normal GW00-235:238 breast normal GW98-621 23656 27.04 127.581 2551.62 breast normal GW98-620 23655 31.35 102.26 204.52 breast normal breast normal GW98-620 23655 31.35 102.26 204.52 breast normal breast normal GW98-620 23655 29.01 402.37 804.74 brain normal brain normal BB99-904 25546 29.67 274.03 548.06 brain normal brain normal BB99-904 25546 29.67 274.03 548.06 brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25502 29.6 287.40 240.23 brain stage 5 ALZ BB99- 25502 29.6 287.40 240.23 brain stage 5 ALZ BB99- 25502 29.6 287.40 240.23 brain stage 5 ALZ BB99- 25502 29.6 287.40 240.23 brain stage 5 ALZ BB99- 25502 29.6 287.40 240.23 brain stage 5 ALZ BB99- 25502 29.6 287.40 240.23 240.23 brain stage 5 ALZ BB99- 25502 29.6 287.40 240.23 brain stage 5 ALZ BB99- 25502 29.6 287.40 240.23 brain sta						 	2.82
Colon tumor GW98-560 23513 30.45 173.87 347.74 Colon tumor -1.05	colon normal GW98-561						2.02
Colon normal GW98-894 24691 30.23 196.98 393.96 Colon normal Colon tumor GW98-893 24690 30.35 183.76 367.52 Colon tumor -1.07	colon tumor GW98-560						-1.05
Colon tumor GW98-893 24690 30.35 183.76 367.52 colon tumor -1.07	colon normal GW98-894	24691	30.23	196.98			1.05
Ling normal GW98-3 20742 26.68 1575.72 3151.44 Ling normal Ling tumor GW98-2 20741 28.8 456.47 912.94 Ling tumor GW97-179 20677 27.94 754.47 1508.94 Ling tumor GW97-178 20676 26.27 2002.28 4004.56 Ling tumor GW98-165 21922 26.87 1411.09 2822.18 Ling normal GW98-165 21922 26.87 1411.09 2822.18 Ling normal GW98-164 21921 29.38 325.51 651.02 Ling tumor GW98-164 21921 29.38 325.51 651.02 Ling tumor GW98-282 22584 30 225.32 450.64 Ling normal GW98-282 22583 28.64 502.02 1004.04 Ling tumor GW98-281 22583 28.64 502.02 1004.04 Ling tumor GW08-281 22583 28.95 602.59 602.59 breast normal GW00-391 28746 28.05 709.37 1418.74 breast tumor GW00-391 28796 29.56 292.43 292.43 breast normal GW00-413 28798 29.56 292.43 292.43 breast normal GW00-412 28797 30.05 218.89 437.78 breast normal GW00-27592-95 30.96 128.91 128.91 breast normal GW00-231:234 breast tumor GW00-27588-91 30.57 161.3 161.30 breast tumor GW08-621 23656 27.04 1275.81 2551.62 breast normal BB99-542 25507 28.44 564.32 1128.64 brain normal brain normal BB99-540 25509 29.01 402.37 804.74 brain normal brain normal BB99-9406 25509 29.01 402.37 804.74 brain normal brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 18.5 Brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 18.5 Brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 18.5 Brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 18.5 Brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 18.5 Brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 18.5 Brain stage 5	colon tumor GW98-893	24690					-1.07
Iung tumor GW98-2 20741 28.8 456.47 912.94 Iung tumor -3.45 Iung normal GW97-179 20677 27.94 754.47 1508.94 Iung normal -2.65 Iung tumor GW97-178 20676 26.27 2002.28 4004.56 Iung tumor 2.65 Iung normal GW98-165 21922 26.87 1411.09 2822.18 Iung normal -1.25 Iung tumor GW98-164 21921 29.38 325.51 651.02 Iung tumor -4.34 Iung tumor GW98-282 22584 30 225.32 450.64 Iung normal -4.34 Iung tumor GW98-281 22583 28.64 502.02 1004.04 Iung tumor 2.23 Iung tumor GW00-392 28750 28.32 602.59 602.59 breast normal -2.35 Ibreast tumor GW00-391 28746 28.05 709.37 1418.74 breast tumor 2.35 Ibreast tumor GW00-412 28797 30.05 218.89 437.78 breast normal -1.50 Ibreast normal GW00-412 28797 30.05 218.89 437.78 breast normal -1.50 Ibreast normal GW00-27598-91 30.57 161.3 161.30 breast normal -1.25 Ibreast normal GW98-621 23656 27.04 1275.81 2551.62 breast normal -1.248 Ibreast tumor GW98-620 23655 31.35 102.26 204.52 breast tumor -12.48 Ibreast tumor GW98-620 23655 31.35 102.26 204.52 breast tumor -12.48 Ibreast tumor GW98-620 23655 29.01 402.37 804.74 brain normal -1.45 Ibrain normal BB99-406 25509 29.01 402.37 804.74 brain normal -1.45 Ibrain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ -1.45 Ibrain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ -1.45 Iung 26 KC	lung normal GW98-3	20742	26.68		3151.44		
Lung normal GW97-179 20677 27.94 754.47 1508.94 Lung normal Lung tumor GW97-178 20676 26.27 2002.28 4004.56 Lung tumor 2.65 Lung normal GW98-165 21922 26.87 1411.09 2822.18 Lung normal GW98-164 21921 29.38 325.51 651.02 Lung tumor -4.34 Lung normal GW98-282 22584 30 225.32 450.64 Lung tumor -4.34 Lung normal GW98-282 22584 30 225.32 450.64 Lung tumor -4.34 Lung normal GW00-392 28750 28.32 602.59 602.59 breast normal GW00-391 28746 28.05 709.37 1418.74 breast tumor GW00-413 28798 29.56 292.43 292.43 breast normal GW00-413 28797 30.05 218.89 437.78 breast tumor GW00-412 28797 30.05 218.89 437.78 breast normal GW00-2355.238 breast tumor GW00-27588-91 30.57 161.3 161.30 breast normal GW00-2351:234 breast tumor GW98-621 23656 27.04 1275.81 2551.62 breast normal BB99-542 25507 28.44 564.32 1128.64 brain normal BB99-406 25546 29.67 274.03 548.06 brain normal brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25504 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.76 1569.87 3139.74 CT lung Lung 26 Lung 27 KC lung 27 KC lung 28 KC COPD 31.8 78.78 S1.57 lung 25 Lung 28 KC COPD 31.35 102.33 102.33 lung 23 8.45 lung 25 KC asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung 1.97		20741	28.8				-3 45
Lung tumor GW97-178 20676 26.27 2002.28 4004.56 Lung tumor 2.65 Lung normal GW98-165 21922 26.87 1411.09 2822.18 Lung normal 24.00 Lung tumor GW98-164 21921 29.38 325.51 651.02 Lung tumor -4.34 Lung normal GW98-282 22584 30 225.32 450.64 Lung normal 22.23 Lung tumor GW98-281 22583 28.64 502.02 1004.04 Lung tumor 2.23 Lung tumor GW00-392 28750 28.32 602.59 602.59 breast normal GW00-391 28746 28.05 709.37 1418.74 breast tumor 2.35 Loreast normal GW00-413 28798 29.56 292.43 292.43 breast normal GW00-412 28797 30.05 218.89 437.78 breast tumor 1.50 Loreast normal GW00- 27588-91 30.57 161.3 161.30 breast normal GW00-231:234 Loreast normal GW98-621 23656 27.04 1275.81 2551.62 breast normal gward 25507 28.44 564.32 1128.64 brain normal BB99-542 25507 28.44 564.32 1128.64 brain normal BB99-904 25509 29.01 402.37 804.74 brain normal brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.75 3139.74 CT lung 27 10.98 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 1	lung normal GW97-179	20677	27.94	754.47	L		-
Lung normal GW98-165 21922 26.87 1411.09 2822.18 lung normal lung tumor GW98-164 21921 29.38 325.51 651.02 lung tumor -4.34 lung normal GW98-282 22584 30 225.32 450.64 lung normal lung tumor GW98-281 22583 28.64 502.02 1004.04 lung tumor 2.23 breast normal GW00-392 28750 28.32 602.59 602.59 breast normal breast tumor GW00-391 28746 28.05 709.37 1418.74 breast tumor GW00-412 28797 30.05 218.89 437.78 breast normal GW00-412 28797 30.05 218.89 437.78 breast normal GW00-235:238 breast normal GW00-27592-95 30.96 128.91 128.91 breast tumor GW00-231:234 breast normal GW98-621 23656 27.04 1275.81 2551.62 breast normal breast tumor GW98-621 23655 31.35 102.26 204.52 breast tumor -12.48 breast normal BB99-542 25507 28.44 564.32 1128.64 brain normal BB99-406 25509 29.01 402.37 804.74 brain normal brain normal BB99-406 25509 29.01 402.37 804.74 brain normal brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ BB99- 25504 28.79 765.16 1530.32 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 25504 28.74 472.27 945.54 brain st	lung tumor GW97-178	20676	<u> </u>				2.65
Lung tumor GW98-164 21921 29.38 325.51 651.02 Lung tumor -4.34 Lung normal GW98-282 22584 30 225.32 450.64 Lung normal Lung tumor GW98-281 22583 28.64 502.02 1004.04 Lung tumor 2.23 breast normal GW00-392 28750 28.32 602.59 602.59 breast normal breast tumor GW00-391 28746 28.05 709.37 1418.74 breast tumor 2.35 breast normal GW00-413 28798 29.56 292.43 292.43 breast normal breast tumor GW00-412 28797 30.05 218.89 437.78 breast tumor 1.50 breast normal GW00- 27592-95 30.96 128.91 128.91 breast tumor 1.25 breast tumor GW00- 27588-91 30.57 161.3 161.30 breast tumor 1.25 breast tumor GW98-621 23656 27.04 1275.81 2551.62 breast normal breast tumor GW98-620 23655 31.35 102.26 204.52 breast tumor -12.48 brain normal BB99-542 25507 28.44 564.32 1128.64 brain normal brain normal BB99-940 25546 29.67 274.03 548.06 brain normal brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ -1.45 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99- 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99- 25542 29.3 340.25 680.50 brain stage 5 ALZ -1.22 CT lung KC normal 31.07 120.9 120.90 lung 26 lung 27 KC normal 31.07 120.9 120.90 lung 26 lung 28 KC COPD 31.8 78.78 78.78 lung 24 -10.98 lung 28 KC COPD 31.35 102.33 102.33 lung 23 8.45 lung 28 KC COPD 31.35 102.33 102.33 lung 23 8.45 lung 28 KC COPD 31.35 102.33 102.33 lung 23 8.45 lung 29 KC COPD 31.35 102.33 102.33 lung 25 83 sathmatic lung OD03413 29321 28.76 467.45 467.45 asthmatic lung 1.97	lung normal GW98-165	21922					12.00
Iung normal GW98-282 22584 30 225.32 450.64 Iung normal Iung tumor GW98-281 22583 28.64 502.02 1004.04 Iung tumor 2.23		21921					-4 34
Iung tumor GW98-281 22583 28.64 502.02 1004.04 lung tumor 2.23	lung normal GW98-282	22584	30	225.32			
breast normal GW00-391 28750 28.32 602.59 602.59 breast normal breast tumor GW00-391 28746 28.05 709.37 1418.74 breast normal breast normal GW00-413 28798 29.56 292.43 292.43 breast normal breast tumor GW00-412 28797 30.05 218.89 437.78 breast normal breast normal GW00-235:238 27592-95 30.96 128.91 128.91 breast tumor 1.50 235:238 breast tumor GW00-231:234 27588-91 30.57 161.3 161.30 breast normal breast normal breast normal GW98-621 23656 27.04 1275.81 2551.62 breast normal breast normal breast normal GW98-620 23655 31.35 102.26 20.452 breast tumor -12.48 brain normal BB99-542 25507 28.44 564.32 1128.64 brain normal brain normal stage 5 ALZ BB99-204 25546 29.67 274.03 548.06 brain normal stage 5 ALZ BB99-25502 29.6 284.82 <td< td=""><td>lung tumor GW98-281</td><td>22583</td><td>28.64</td><td></td><td></td><td></td><td>2.23</td></td<>	lung tumor GW98-281	22583	28.64				2.23
Dreast tumor GW00-391 28746 28.05 709.37 1418.74 Dreast tumor 2.35	breast normal GW00-392	28750	28.32				
breast normal GW00-413 28798 29.56 292.43 292.43 breast normal breast tumor GW00-412 28797 30.05 218.89 437.78 breast tumor 1.50 breast normal GW00- 235:238 27592-95 30.96 128.91 128.91 breast normal 1.25 231:234 27588-91 30.57 161.3 161.30 breast tumor 1.25 231:234 23656 27.04 1275.81 2551.62 breast normal 1.25 breast tumor GW98-620 23655 31.35 102.26 204.52 breast tumor -12.48 brain normal BB99-542 25507 28.44 564.32 1128.64 brain normal brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ 1.85 87 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 A	breast tumor GW00-391	28746	28.05	709.37			2.35
Dreast normal GW00-235:238 Dreast tumor GW00-235:238 Dreast tumor GW00-235:238 Dreast tumor GW00-231:234 Dreast tumor GW98-621 Dreast tumor GW98-621 Dreast tumor GW98-620 Dreast tumo	breast normal GW00-413	28798	29.56	292.43	292.43		
235:238	breast tumor GW00-412	28797	30.05	218.89	437.78		1.50
231:234	_	27592-95	30.96	128.91	128.91	breast normal	
breast tumor GW98-620 23655 31.35 102.26 204.52 breast tumor -12.48 brain normal BB99-542 25507 28.44 564.32 1128.64 brain normal brain normal BB99-406 25509 29.01 402.37 804.74 brain normal brain stage 5 ALZ BB99-904 25546 29.67 274.03 548.06 brain normal brain stage 5 ALZ BB99-874 25502 29.6 284.82 569.64 brain stage 5 ALZ -1.45 brain stage 5 ALZ BB99-874 25503 27.92 765.16 1530.32 brain stage 5 ALZ 1.85 brain stage 5 ALZ BB99-862 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-862 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-862 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-862 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.12		27588-91	30.57	161.3	161.30	breast tumor	1.25
brain normal BB99-542 25507 28.44 564.32 1128.64 brain normal brain normal BB99-406 25509 29.01 402.37 804.74 brain normal brain normal BB99-904 25546 29.67 274.03 548.06 brain normal brain stage 5 ALZ BB99-874 25502 29.6 284.82 569.64 brain stage 5 ALZ -1.45 brain stage 5 ALZ BB99-887 25503 27.92 765.16 1530.32 brain stage 5 ALZ 1.85 brain stage 5 ALZ BB99-862 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-927 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-927 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.12 brain stage 5 ALZ BB99-927 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.12 brain stage 5 ALZ BB99-927 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.12	breast normal GW98-621	23656	27.04	1275.81	2551.62	breast normal	
brain normal BB99-406 25509 29.01 402.37 804.74 brain normal brain normal BB99-904 25546 29.67 274.03 548.06 brain normal brain stage 5 ALZ BB99-874 25502 29.6 284.82 569.64 brain stage 5 ALZ -1.45 brain stage 5 ALZ BB99-887 25503 27.92 765.16 1530.32 brain stage 5 ALZ 1.85 brain stage 5 ALZ BB99-862 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-862 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-862 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-862 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-872 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99-8872 25542 29.3 340.25 680.50 brain stage 5 ALZ	breast tumor GW98-620	23655	31.35	102.26	204.52	breast tumor	-12.48
brain normal BB99-904 25546 29.67 274.03 548.06 brain normal brain stage 5 ALZ BB99- 874 25502 29.6 284.82 569.64 brain stage 5 ALZ -1.45 brain stage 5 ALZ BB99- 887 25503 27.92 765.16 1530.32 brain stage 5 ALZ 1.85 brain stage 5 ALZ BB99- 862 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99- 927 25542 29.3 340.25 680.50 brain stage 5 ALZ -1.22 CT lung KC normal 26.69 1569.87 3139.74 CT lung 1.14 lung 26 KC normal 31.07 120.9 120.90 lung 26 lung 27 KC normal 31.17 113.69 113.69 lung 27 lung 28 KC COPD 31.8 78.78 78.78 lung 24 -10.98 lung 23 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 </td <td>brain normal BB99-542</td> <td>25507</td> <td>28.44</td> <td>564.32</td> <td>1128.64</td> <td>brain normal</td> <td></td>	brain normal BB99-542	25507	28.44	564.32	1128.64	brain normal	
brain stage 5 ALZ BB99- 25502 29.6 284.82 569.64 brain stage 5 ALZ 1.45 brain stage 5 ALZ BB99- 25503 27.92 765.16 1530.32 brain stage 5 ALZ 1.85 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99- 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99- 25542 29.3 340.25 680.50 brain stage 5 ALZ 1.12 CT lung KC normal 26.69 1569.87 3139.74 CT lung lung 26 KC normal 31.07 120.9 120.90 lung 26 lung 27 KC normal 31.17 113.69 113.69 lung 27 lung 24 KC COPD 31.8 78.78 78.78 lung 24 -10.98 lung 28 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 85.57 lung 25 casthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97	brain normal BB99-406	25509	29.01	402.37	804.74	brain normal	
874 brain stage 5 ALZ BB99- 887 25503 27.92 765.16 1530.32 brain stage 5 ALZ 1.85 brain stage 5 ALZ BB99- 862 25504 28.74 472.27 944.54 brain stage 5 ALZ 1.14 brain stage 5 ALZ BB99- 927 25542 29.3 340.25 680.50 brain stage 5 ALZ -1.22 CT lung KC normal 26.69 1569.87 3139.74 CT lung lung 26 KC normal 31.07 120.9 120.90 lung 26 lung 27 KC normal 31.17 113.69 113.69 lung 27 lung 24 KC COPD 31.8 78.78 78.78 lung 24 -10.98 lung 28 KC COPD 32.79 44.02 44.02 lung 28 -19.65 lung 25 KC normal 31.66 85.57 85.57 lung 25 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85	brain normal BB99-904	25546	29.67	274.03	548.06	brain normal	
887 brain stage 5 ALZ BB99- 25504 28.74 472.27 944.54 brain stage 5 ALZ BB99- 1.14 862 brain stage 5 ALZ BB99- 25542 29.3 340.25 680.50 brain stage 5 ALZ brain s		25502	29.6	284.82	569.64	brain stage 5 ALZ	-1.45
862 brain stage 5 ALZ BB99- 927 25542 29.3 340.25 680.50 brain stage 5 ALZ -1.22 CT lung KC normal 26.69 1569.87 3139.74 CT lung lung 26 KC normal 31.07 120.9 120.90 lung 26 lung 27 KC normal 31.17 113.69 113.69 lung 27 lung 24 KC COPD 31.8 78.78 78.78 lung 24 -10.98 lung 28 KC COPD 32.79 44.02 44.02 lung 28 -19.65 lung 23 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 85.57 lung 25 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97		25503	27.92	765.16	1530.32	brain stage 5 ALZ	1.85
927 Image: Control of the control of the		25504	28.74	472.27	944.54	brain stage 5 ALZ	1.14
lung 26 KC normal 31.07 120.9 120.90 lung 26 lung 27 KC normal 31.17 113.69 113.69 lung 27 lung 24 KC COPD 31.8 78.78 78.78 lung 24 -10.98 lung 28 KC COPD 32.79 44.02 44.02 lung 28 -19.65 lung 23 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 85.57 lung 25 -19.65 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97		25542	29.3	340.25	680.50	brain stage 5 ALZ	-1.22
lung 27 KC normal 31.17 113.69 113.69 lung 27 lung 24 KC COPD 31.8 78.78 78.78 lung 24 -10.98 lung 28 KC COPD 32.79 44.02 44.02 lung 28 -19.65 lung 23 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 85.57 lung 25 -19.65 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97		normal	26.69	1569.87	3139.74	CT lung	
lung 24 KC COPD 31.8 78.78 78.78 lung 24 -10.98 lung 28 KC COPD 32.79 44.02 44.02 lung 28 -19.65 lung 23 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 85.57 lung 25 -10.98 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97	lung 26 KC	normal	31.07	120.9	120.90	lung 26	
lung 28 KC COPD 32.79 44.02 44.02 lung 28 -19.65 lung 23 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 85.57 lung 25 -8.45 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97	lung 27 KC	normal	31.17	113.69	113.69	lung 27	
lung 23 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 85.57 lung 25 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97		COPD	31.8	78.78	78.78	lung 24	-10.98
lung 23 KC COPD 31.35 102.33 102.33 lung 23 -8.45 lung 25 KC normal 31.66 85.57 85.57 lung 25 lung 25 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97		COPD	32.79	44.02	44.02	lung 28	-19.65
lung 25 KC normal 31.66 85.57 85.57 lung 25 asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97	lung 23 KC	COPD	31.35	102.33			
asthmatic lung ODO3112 29321 28.76 467.45 467.45 asthmatic lung -1.85 asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97		normal	31.66	85.57	85.57	lung 25 ·	
asthmatic lung ODO3433 29323 27.73 851.21 1702.42 asthmatic lung 1.97		29321	28.76	467.45			-1.85
-4 + 1 OD02207 20000 OT 04 C10 C0 100 T0		29323	27.73	851.21			
	asthmatic lung ODO3397	29322	27.81	812.68	1625.36	asthmatic lung	

asthmatic lung ODO4928	29325	29.42	317.12	634.24 .	asthmatic lung	-1.36
endo cells KC	control	33.06	37.57	37.57	endo cells	
endo VEGF KC		33.9	22.97	22.97	endo VEGF	-1.64
endo bFGF KC		33.13	36.03	36.03	endo bFGF	-1.04
heart Clontech	normal	31.1	118.18	236.36	heart	
heart (T-1) ischemic	29417	31.16	114.67	229.34	heart T-1	-1.03
heart (T-14) non-	29422	30.52	166.47	332.94	heart T-14	1.41
obstructive DCM	120.00					
heart (T-3399) DCM	29426	30.14	208.3	416.60	heart T-3399	1.76
adenoid GW99-269	26162	29.07	388.9	777.80	adenoid	
tonsil GW98-280	22582	28.29	614.82	1229.64	tonsil	
T cells PC00314	28453	29.78	256.1	512.20	T cells	
PBMNC		33.73	25.44	25.44	PBMNC	
monocyte		33.52	28.71	57.42	monocyte	
B cells PC00665	28455	28.66	495.36	990.72	B cells	
dendritic cells 28441		30.81	140.17	280.34	dendritic cells	
neutrophils	28440	30.17	204.92	204.92	neutrophils	
eosinophils	28446	34.19	19.39	38.78	eosinophils	
BM unstim		35.9	7.11	7.11	BM unstim	
BM stim		35.77	7.7	7.70	BM stim	1.08
osteo dif		34.98	12.18	12.18	osteo dif	2.55
osteo undif		36.59	4.77	4.77	osteo undif	
chondrocytes		32.91	41.03	102.58	chondrocytes	
OA Synovium IP12/01	29462	29.16	370.33	370.33	OA Synovium	
OA Synovium NP10/01	29461	30.69	151.13	302.26	OA Synovium	
OA Synovium NP57/00	28464	29.51	301.55	603.10	OA Synovium	
RA Synovium NP03/01	28466	30.36	183.35	366.70	RA Synovium	
RA Synovium NP71/00	28467	29.27	346.61	693.22	RA Synovium	
RA Synovium NP45/00	28475	29.13	376.88	753.76	RA Synovium	
OA bone (biobank)	29217	30.47	171.6	171.60	OA bone (biobank)	
OA bone Sample 1	J. Emory	30.05	219.19	438.38	OA bone	
OA bone Sample 2	J. Emory	31.13	116.62	233.24	OA bone	
Cartilage (pool)	Normal	30.65	154.56	309.12	Cartilage (pool)	
Cartilage (pool)	OA	32.01	69.39	138.78	Cartilage (pool)	-2.23
PBL unifected	28441	27.91	769.91	1539.82	PBL unifected	
PBL HIV IIIB	28442	28.14	672.12	1344.24	PBL HIV IIIB	-1.15
MRC5 uninfected (100%)	29158	31.66	85.38	170.76	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	30.08	214.88	429.76	MRC5 HSV strain F	2.52
W12 cells	29179	33.33	32.15	64.30	W12 cells	
Keratinocytes	29180	30.64	155.16	310.32	Keratinocytes	
B-actin control		27.55	946.64			
genomic		26.82	1451.22			
1.00E+05		19.71	100000			
1.00E+05		19.95	100000	1_		
1.00E+04		23.43	10000			
1.00E+04		23.38	10000			

1.00E+03		26.88	1000			 1
1.00E+03		26.8	1000			
1.00E+02		31.99	100	T		
1.00E+02		32.15	100			
1.00E+01		34.99	10			
1.00E+01	- 00	40	0			
1.00E-00		40	0	1	_	 <u> </u>
1.00E-00		40	0	 	1	
NTC		40	0	 		

Gene Name sbg102200MCTa

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-2.56
colon tumor	2.82
colon tumor	-1.05
colon tumor	-1.07
lung tumor	-3.45
lung tumor	2.65
lung tumor	-4.34
lung tumor	2.23
breast tumor	2.35
breast tumor	1.50
breast tumor	1.25
breast tumor	-12.48
brain stage 5 ALZ	-1.45
brain stage 5 ALZ	1.85
brain stage 5 ALZ	1.14
brain stage 5 ALZ	-1.22
lung 24	-10.98
lung 28	-19.65
lung 23	-8.45
asthmatic lung	-1.85
asthmatic lung	1.97
asthmatic lung	1.88
asthmatic lung	-1.36
endo VEGF	-1.64
endo bFGF	-1.04
heart T-1	-1.03
heart T-14	1.41
heart T-3399	1.76
BM stim	1.08
osteo dif	2.55
Cartilage (pool)	-2.23
PBL HIV IIIB	-1.15
MRC5 HSV strain F	2.52

High to moderate overall expression. Highest normal expression in the whole brain, liver, fetal liver, and thymus. Highest disease expression in one of the colon normal/tumor pairs, one of the lung normal/tumor pairs, one of the asthmatic lung samples, the dendritic cells, and the uninfected and HIV-infected PBL cells. Upregulation in 2 of 4 breast tumor samples is sufficient to make a disease claim in cancer of the breast. Upregulation in 1 of 4 AD brain samples indicates a potential role in Alzheimer's disease. Downregulation in 3 of 3 COPD lung samples suggests involvement in chronic obstructive pulmonary disease. Upregulation in 1 of 4 asthmatic lung samples indicates a potential role for this gene in lung cancer. High expression in all of the immune cells. Also high to moderate expression in the OA and RA synovium samples, the OA bone samples, and in the chondrocytes suggests an involvement in osteoarthritis and rheumatoid arthritis.

5

10

Sample	Ct (sample	Mean	Mean	Average	18S	50	copies
sbg102200MCTb	1 and 2)	GOI	GOI	GOI	rRNA	ng/18S	of
555102200020		copies	copies	Copies	(ng)	rRNA	mRNA
		(sample	(sample	_	"	(ng)	detecte
		1)	2)				d/50 ng
				{	ł		total
	25.66.24.05	0.76	10.0	6.00	2.06	16.34	RNA
Subcutaneous Adipocytes Zenbio	35.66, 34.05	3.76	10.2	6.98	3.06	10.34	114.05
Subcutaneous Adipose Zenbio	40, 36	0.17	3.07	1.62	0.96	52.36	84.82
Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain Clontech	26.32, 26.41	1192.66	1124.69	1158.68	7.24	6.91	8001.90
Fetal Brain Clontech	40, 35.84	0	3.38	1.69	0.48	103.95	175.68
Cerebellum Clontech	34.51, 34.28	7.68	8.8	8.24	2.17	23.04	189.86
Cervix	40, 34.34	3.17	8.5	5.84	2.42	20.66	120.56
Colon	33.67, 35.6	12.86	3.91	8.39	2.71	18.45	154.70
Endometrium	35.32, 34.43	4.66	8.05	6.36	0.73	68.21	433.49
Esophagus	34.27, 35.14	8.86	5.19	7.03	1.37	36.50	256.39
Heart Clontech	40, 35.05	0	5.5	2.75	1.32	37.88	104.17
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	35.29, 33.68	4.74	12.8	8.77	2.58	19.38	169.96
Jejunum	31.23, 30.98	57.65	67.22	62.44	6.60	7.58	472.99
Kidney	34.67, 34.21	6.95	9.2	8.08	2.12	23.58	190.45
Liver	30.76, 30.65	77.12	82.56	79.84	1.50	33.33	2661.33
Fetal Liver Clontech	26.8, 27.1	885.14	734.31	809.73	10.40	4.81	3892.91
Lung	40, 40	0	0.17	0.09	2.57	19.46	1.65
Mammary Gland Clontech	31.28, 31.37	56.1	52.95	54.53	13.00	3.85	209.71
Myometrium	34.16, 36.28	9.48	2.57	6.03	2.34	21.37	128.74
Omentum	34.18, 33.42	9.38	15	12.19	3.94	12.69	154.70
Ovary	34.21, 34.18	9.24	9.39	9.32	4.34	11.52	107.32
Pancreas	40, 40	0	0.14	0.07	18.0	61.80	4.33
Head of Pancreas	40, 35.02	0	5.59	2.80	1.57	31.85	89.01
Parotid Gland	31.23, 31.9	57.68	38.33	48.01	5.48	9.12	438.00
Placenta Clontech	31.77, 33.13	41.33	17.94	29.64	5.26	9.51	281.70
Prostate	39.72, 35.03	0.31	5.56	2.94	3.00	16.67	48.92
Rectum	35.36, 34.34	4.53	8.5	6.52	1.23	40.65	264.84
Salivary Gland Clontech	30.52, 30.54	89.5	88.43	88.97	7.31	6.84	608.52

Skeletal Muscle Clontech	40, 40	0	0	0.00	1.26	39.68	0.00
Skin	40, 40	0	0	0.00	1.21	41.32	0.00
Small Intestine Clontech	40, 39.27	0	0.41	0.21	0.98	51.07	10.47
Spleen	34.21, 33.54	9.2	13.91	11.56	4.92	10.16	117.43
Stomach	35.05, 33.62	5.51	13.22	9.37	2.73	18.32	171.52
Testis Clontech	40, 40	0	0	0.00	0.57	87.87	0.00
Thymus Clontech	28.56, 28.44	299.45	322.02	310.74	9.89	5.06	1570.96
Thyroid	31.65, 32.3	44.76	29.81	37.29	2.77	18.05	673.01
Trachea Clontech	32.3, 31.9	29.9	38.28	34.09	9.71	5.15	175.54
Urinary Bladder	34.34, 35.02	8.49	5.59	7.04	5.47	9.14	64.35
Uterus	33.07, 34.56	18.62	7.45	13.04	5.34	9.36	122.05
genomic	25.84	1597.08		†	 		
b-actin	27.32	643.56		 	-	 	
1.00E+05	19.22	100000	 	 	 		<u> </u>
1.00E+05	19.33	100000		 	†	 	
1.00E+04	22.48	10000		 	+	 	
1.00E+04	22.95	10000			 	 	
1.00E+03	26.19	1000		<u> </u>	 		
1.00E+03	26.37	1000			 	 	 -
1.00E+02	31.23	100			+		
1.00E+02	30.48	100		 	 		
1.00E+01	32.76	10		 	 	 	
1.00E+01	35.02	10					·
1.00E-00	40	0			 -		
1.00E-00	40	0		 	+		
NTC	40	0			 		
NTC	40	0			1	 	

Sample sbg102200MCTb	Reg number (GSK identifie r)	Cŧ	Mean GOI copies	copies of mRNA detected /50 ng total RNA	Sample	Fold Change in Disease Populati
colon normal GW98-167	21941	26.48	1723.59	3447.18	colon normal	·
colon tumor GW98-166	21940	26.06	2195.04	4390.08	colon tumor	1.27
colon normal GW98-178	22080	29.03	389.88	779.76	colon normal	
colon tumor GW98-177	22060	27.39	1015.65	2031.30	colon tumor	2.61
colon normal GW98-561	23514	26.74	1478.76	2957.52	colon normal	
colon tumor GW98-560	23513	26.37	1831.8	3663.60	colon tumor	1.24
colon normal GW98-894	24691	25.58	2918.02	5836.04	colon normal	
colon tumor GW98-893	24690	25	4089.75	8179.50	colon tumor	1.40
lung normal GW98-3	20742	24.59	5183.31	10366.62	lung normal	- · · · ·
lung tumor GW98-2	20741	24.94	4232.23	8464.46	lung tumor	-1.22
lung normal GW97-179	20677	25.73	2672.73	5345.46	lung normal	
lung tumor GW97-178	20676	25.36	3307.37	6614.74	lung tumor	1.24
lung normal GW98-165	21922	26.13	2109.28	4218.56	lung normal	

						
lung tumor GW98-164	21921	25.54	Ļ	5947.64	lung tumor	1.41
lung normal GW98-282	22584	27.08	1212.64		lung normal	
lung tumor GW98-281	22583	27.45	979.82	1959.64	lung tumor	-1.24
breast normal GW00-392	28750	26.68	1536.57	1536.57	breast normal	
breast tumor GW00-391	28746	26.58	1626.58	3253.16	breast tumor	2.12
breast normal GW00-413	28798	31.71	81.9	81.90	breast normal	1
breast tumor GW00-412	28797	26.57	1632	3264.00	breast tumor	39.85
breast normal GW00- 235:238	27592- 95	32.52	51.1	51.10	breast normal	
breast tumor GW00- 231:234	27588- 91	29.67	268.7	268.70	breast tumor	5.26
breast normal GW98-621	23656	26.48	1727.44	l	breast normal	
breast tumor GW98-620	23655	25.65	2793.6	5587.20	breast tumor	1.62
brain normal BB99-542	25507	28.62	494	988.00	brain normal	
brain normal BB99-406	25509	29.45	304.68	609.36	brain normal	
brain normal BB99-904	25546	30.08	211.25	422.50	brain normal	
brain stage 5 ALZ BB99- 874	25502	28.75	458.64	917.28	brain stage 5 ALZ	1.36
brain stage 5 ALZ BB99- 887	25503	26.86	1383.71	2767.42	brain stage 5 ALZ	4.11
brain stage 5 ALZ BB99- 862	25504	28.02-	702.59	1405.18	brain stage 5 ALZ	2.09
brain stage 5 ALZ BB99- 927	25542	29.57	284.31	568.62	brain stage 5 ALZ	-1.18
CT lung KC	normal	26.58	1624.29	3248.58	CT lung	
lung 26 KC	normal	34.19	19.27	19.27	lung 26	
lung 27 KC	normal	32.45	53.23	53.23	lung 27	
lung 24 KC	COPD	33	38.6	38.60	lung 24	-21.75
lung 28 KC	COPD	32.24	59.95	59.95	lung 28	-14.01
lung 23 KC	COPD	32.87	41.63	41.63	lung 23	-20.17
lung 25 KC	normal	33.04	37.52	37.52	lung 25	
asthmatic lung ODO3112	29321	30.13	205.46	205.46	asthmatic lung	-4.09
asthmatic lung ODO3433	29323	27.82	788.82	1577.64	asthmatic lung	1.88
asthmatic lung ODO3397	29322	25.17		7390.86	asthmatic lung	8.80
asthmatic lung ODO4928	29325	27.6	894.3	1788.60	asthmatic lung	2.13
endo cells KC	control	28.2	633.43	633.43	endo cells	
endo VEGF KC		28.86	429.51	429.51	endo VEGF	-1.47
endo bFGF KC		28.97	403.08	403.08	endo bFGF	-1.57
heart Clontech	normal	28.83	437.62	875.24	heart	
heart (T-1) ischemic	29417	28.42	557.54	1115.08	heart T-1	1.27
heart (T-14) non- obstructive DCM	29422	27.72	835.11	1670.22	heart T-14	1.91
heart (T-3399) DCM	29426	28.63	493.01	986.02	heart T-3399	1.13
adenoid GW99-269	26162	27	1269.75	2539.50	adenoid	
tonsil GW98-280	22582	26.33	1876.29	3752.58	tonsil	
T cells PC00314	28453	29.15	363.35	726.70	T cells	
PBMNC		33.05	37.41	37.41	PBMNC	
monocyte		31.49	92.84	185.68	monocyte	
B cells PC00665	28455	26.5	1700.87	3401.74	B cells	
dendritic cells 28441		24.2	6511.17	13022.34	dendritic cells	- V

neutrophils	28440	27.01	1262.74	1262.74	neutrophils	,
eosinophils	28446	29.23	347.08	694.16	eosinophils	
BM unstim		30.85	135.01	135.01	BM unstim	
BM stim	 	28.68	478.5	478.50	BM stim	3.54
osteo dif		31.03	121.2	121.20	osteo dif	3.93
osteo undif		33.38	30.85	30.85	osteo undif	15.75
chondrocytes		26.63	i	3949.33	chondrocytes	
OA Synovium IP12/01	29462	29.11	371.98	371.98	OA Synovium	
OA Synovium NP10/01	29461	29.45	304.55	609.10	OA Synovium	
OA Synovium NP57/00	28464	27.83	784.87	1569.74	OA Synovium	 -
RA Synovium NP03/01	28466	27.31		2127.54	RA Synovium	<u> </u>
RA Synovium NP71/00	28467	27.08	L	2434.42	RA Synovium	
RA Synovium NP45/00	28475	26.6		3212.82	RA Synovium	
OA bone (biobank)	29217	28.65	485.63	485.63	OA bone (biobank)	
OA bone Sample 1	J. Emory	i	451.74	903.48	OA bone	·
OA bone Sample 2	J. Emory		607.15	1214.30	OA bone	
Cartilage (pool)	Normal	29.42	310.76	621.52	Cartilage (pool)	
Cartilage (pool)	OA	30.09	209.7	419.40	Cartilage (pool)	-1.48
PBL unifected	28441	23.85	1	15994.06	- 12 /	-1.40
PBL HIV IIIB	28442	24.85		8894.68	PBL HIV IIIB	-1.80
MRC5 uninfected (100%)	29158	27.02		2516.92	MRC5 uninfected	-1.60
MRC5 HSV strain F	29178	29.6	278.84	557.68	(100%) MRC5 HSV strain F	-4.51
W12 cells	29179	27.21	1122.77		W12 cells	
Keratinocytes	29180	25.64	2815.12	1	Keratinocytes	
B-actin control	-	27.78	807.72			
genomic	ļ	27.04	1246.22			
1.00E+05		19.69	100000	,		
1.00E+05		20.01	100000			
1.00E+04		23.15	10000			
1.00E+04		23.2	10000			
1.00E+03		27.02	1000			
1.00E+03		26.76	1000		-	
1.00E+02		31.45	100			
1.00E+02		32.39	100			
1.00E+01		35.72	10			
1.00E+01		34.74	10			
1.00E-00		40	0			
1.00E-00		40	0			

Gene Name sbg102200MCTb

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.27
colon tumor	2.61
colon tumor	1.24

colon tumor	1.40
lung tumor	-1.22
lung tumor	1.24
lung tumor	1.41
lung tumor	-1.24
breast tumor	2.12
breast tumor	39.85
breast tumor	5.26
breast tumor	1.62
brain stage 5 ALZ	1.36
brain stage 5 ALZ	4.11
brain stage 5 ALZ	2.09
brain stage SALZ	-1.18
lung 24	-21.75
lung 28	-14.01
lung 23	-20.17
asthmatic lung	-4.09
asthmatic lung	1.88
asthmatic lung	8.80
asthmatic lung	2.13
endo VEGF	-1.47
endo bFGF	-1.57
heart T-1	1.27
heart T-14	7.01
heart T-3399	1.13.
BM stim	3.54
osteo dif	3.93
Cartilage (pool)	-1.48
PBL HIV IIIB	-1.80
MRC5 HSV strain F	-4.51

Gene Name sbg1020380LYG

Failed

5

10

15

20

Gene Name sbg1007026SGLT

Good to moderate overall expression. The highest normal expression is seen in the whole brain, cerebellum, hypothalamus, jejunum, fetal liver, rectum, and uterus. This gene shows system specific expression in samples representing the central nervous system, the female reproductive organs, and the GI tract. The expression seen in the disease samples confirms that seen in the normal samples with the highest levels of expression seen in the normal and Alzheimer's brain samples. Upregulation in 1 of 4 colon tumor samples and 2 of 4 breast tumor samples as well as downregulation in 1 of 4 lung tumors poses a potential role for this gene in cancers of the colon and breast. Downregulation in 2 of 4 Alzheimer's brain samples implies involvement in Alzheimer's disease. Downregulation in 3 of 3 COPD samples and upregulation in 2 of 4 asthmatic lung samples suggests a potential role for this gene in chronic obstructive pulmonary disorder. Upregulation in the VEGF-treated endothelial cell line implicates a possible role for this gene in angiogenesis. Downregulated in the stimulated bone marrow sample. High expression in the RA and OA synovium samples, the OA bone samples, and the chondrocytes with corroborating high expression in the T cells, B cells, neutrophils, and eosinophils implicates this gene in osteoarthritis and rheumatoid arthritis.

Sample	Ct (sample	Mean	Mean	Average	18S	50	copies of	
sbg1007026SGLT	1 and 2)	GOI	GOI	GOI	rRNA	ng/18	mRNA	Ì

·		copies (sample 1)	copies (sample 2)	Copies	(ng)	S rRNA (ng)	detected 50 ng total RNA
Subcutaneous Adipocytes Zenbio	40, 40	0	0	0.00	3.06	16.34	0.00
Subcutaneous Adipose Zenbio	40, 40	0 .	0.1	0.05	0.96	52.36	2.62
Adrenal Gland Clontech	40, 38.76	0	0.31	0.16	0.61	81:97	12.70
Whole Brain Clontech	23.01, 22.63	3438.45	4301.69	!	_	6.91	26727.00
Fetal Brain Clontech	35.91, 39.16	1.66	0.24	0.95	0.48	107.95	
Cerebellum Clontech	34.55, 32.7	3.71	11.08	7.40	2.17	23.04	170.39
Cervix	34.21, 34.61	4.54	3.58	4.06	2.42	20.66	83.88
Colon	33.44, 33.7	7.16	6.14	6.65	271	18.45	122.69
Endometrium	34.88, 40	3.05	0.1	1.58	0.73	68.21	107.44
Esophagus	40, 40	0	0.1	0.05	1.37	36.50	1.82
Heart Clontech	39.63, 39.53	0.18		10.19	1.32	37.88	7.01
Hypothalamus	40, 35.34	0	2.33	1.17	0.32	155.28	
Ileum	40, 40	0	0.	0.00	2.58	19.38	0.00
Jejunum	30.1, 30.34	51.59	44.92	48.26	6.60	7.58	365.57
Kidney	33.49, 40	6.96	0	3.48	2.12	23.58	82.08
Liver	40, 33.7	2	6.15	3.08	1.50	33.33	102.50
Fetal Liver Clontech	29.58. 29 41	70.26	77.58	73.92	10.40	4.81	355.38
Lung	35 51, 37.83	1.98	0.53	1.26	2.57	19.46	24.42
Mammary Gland Clontech	33 05, 34.04	9.02	5.03	7.03	13.00	3.85	27.02
Myometrium	33.63, 34.13	6.38	4.77	5.58	2.34	21.37	119.12
Omentum.	40, 40	0	0	0.00	3.94	12.69	0.00
Ovary	35.38, 37.6	2.27	0.61	1.44	4.34	11.52	16.59
િવાcreas .	40, 37.1	0	0.82	0.41	0.81	61.80	25.34
Head of Pancreas	35.45, 36.72	2.18	1.03	1.61	1.57	31.85	51.11
Parotid Gland	36.88, 40	0.94	0	0.47	5.48	9.12	4.29
	33.84, 38.46	5.66	0.37	3.02	5.26	9.51	28.66
Prostate	38.76, 37.12	0.31	0.81	0.56	3.00	16.67	9.33
		1.42	5.7	3.56	1.23	40.65	144.72
Salivary Gland Clontech	38.36, 39.93	0.39	0.12	0.26	7.31	6.84	1.74
Clontech		1.9	1.38	1.64	1.26	39.68	65.08
	39.51, 40	0.2	0.09	0.15	1.21	41.32	5.99
	40, 36.04	0.1	1.53	0.82	0.98		41.62
Spleen	33.51, 38.51	6.87	0.36	3.62	4.92		36.74
Stomach	34.14, 34.19	4.73	1.59	4.66	2.73		85.35
	35.81, 40	1.76	0.11	0.94	0.57		82.16
100	33.26, 32.49				9.89		51.85
Thyroid 2	40, 39.9				2.77		2.17
Frachea Clontech : 3	34.25, 33.8						26.24
	39.95, 36.54						5.67
			. 1	1,		1	
Jterus 3	33, 31.23	9.3	6.52	7.91	5.34	9.36	167.70

b-actin	25.89	625.04		
1.00E+05	17.54	100000		
1.00E+05	17.65	100000		
1.00E+04	21.03	10000		
1.00E+04	20.92	10000		
1.00E+03	24.87	1000		
1.00E+03	24.96	1000		1
1.00E+02	29.1	100		
1.00E+02	29.04	100		
1.00E+01	32.05	10		
1.00E+01	33.51	10		
1.00E-00	36.41	1		
1.00E-00	37.41	1		
NTC	` \ 40	0		
NTC	`\40	-1	`	

Sample sbg1007026SGLT	Reg.	Ct	Mean GOI	copies of mRNA	Sample	Fold Change
30g100/0203G111	(GSK	` .	copies	detected/		in
	identifier		copies	50 ng		Disease
)	1		total		Populati
	ľ			RNA	_	on
colon normal GW98-167	21941	29.22	127.1	254.20	colon normal	
colon tumor GW98-166	21940	31.07	44.11	88:22	colon tumor	-2.88
colon normal GW98-178	22080	38.41	0.65	1.30	colon normal	
colon tumor GW98-177	22060	31.17	41.5	83.00	colon tumor	63.85
colon normal GW98-561	23514	31.21	40.69	81.38	colon normal	
colon tumor GW98-560	23513	33.06	14.04	28.08	colon tumor	-2.90
colon normal GW98-894	24691	29.63	100.41	200.82	colon normal	
colon tumor GW98-893	24690	32.22	22.7	45.40	colon tumor	-4.42
lung normal GW98-3	20742	29.8	91.46	182.92	lung normal	
lung tumor GW98-2	20741	34.26	7.02	14.04	lung tumor	-13.03
lung normal GW97-179	20677	29.59	103.13	206.26	lung normal	
lung tumor GW97-178	20676	29.84	89.09	178.18	lung tumor	-1.16
lung normal GW98-165	21922	29.6	102.46	204.92	lung normal	
lung tumor GW98-164	21921	30.8	51.53	103.06	lung tumor	-1.99
lung normal GW98-282	22584	32.53	18.97	37.94	lung normal	
lung tumor GW98-281	22583	32.29	21.8	43.60	lung tumor	1.15
breast normal GW00-392	28750	28.77	164.85	164.85	breast normal	
breast tumor GW00-391	28746	30.64	56.21	112.42	breast tumor	-1.47
breast normal GW00-413	28798	34.49	6.17	6.17	breast normal	
breast tumor GW00-412	28797	30.37	65.97	131.94	breast tumor	21.38
breast normal GW00- 235:238	27592-95	32.87	15.66	15.66	breast normal	
breast tumor GW00- 231:234	27588-91	29.8	91.07	91.07	breast tumor	5.82
breast normal GW98-621	23656	28.95	149.19	298.38	breast normal	
breast tumor GW98-620	23655	29.62	101.25	202.50	breast tumor	-1.47
brain normal BB99-542	25507	24.5	1917.28	3834.56	brain normal	

brain normal BB99-406	25509	101.00	- 117060	2122122		
brain normal BB99-904	25546	21.35		2 23473.84		
brain stage 5 ALZ BB99	1	25.25		2497.36	brain normal	
874		27.29	386.81	773.62	brain stage 5 ALZ	-12.84
brain stage 5 ALZ BB99 887	- 25503	23.61	3196.37	6392.74	brain stage 5 ALZ	-1.55
brain stage 5 ALZ BB99 862	- 25504	25.56	1045.09	2090.18	brain stage 5 ALZ	-4.75
brain stage 5 ALZ BB99 927	25542	24.45	1976.24	3952.48	brain stage 5 ALZ	-2.51
CT lung	normal	31.07	44.03	88.06	CT lung Nml	
lung 26	normal	24.93	1496.87	 	lung 26 Nml	
lung 27	normal	34.06	7.92	7.92	lung 27 Nml	
lung 24	COPD	34.58	5.87	5.87	lung 24 COPD	-5.45
lung 28	COPD	40	0	0.00	lung 28 COPD	-31.99
lung 23	COPD	40	0	0.00	lung 23 COPD	-31.99
lung 25	normal	40	0	0.00	lung 25 Nml	31.77
asthmatic lung ODO3112	29321	33.19	13.04	13.04	asthmatic lung	-2.45
asthmatic lung ODO3433	29323	30.61	57.38	114.76	asthmatic lung	3.59
asthmatic lung ODO3397	29322	29.2	129.16	258.32	asthmatic lung	8.07
asthmatic lung ODO4928	29325	30.32	67.67	135.34	asthmatic lung	4.23
endo cells	control	35.09	4.37	4.37	endo cells	1,23
endo VEGF	-	32.22	22.7	22.70	endo VEGF	5.19
endo bFGF	ļ	33.23	12.7	12.70	endo bFGF	2.91
heart Clontech	normal	33.53	10.71	21.42	heart	2.71
heart (T-1) ischemic	29417	33.43	11.37	22.74	heart (T-1) ischemic	1.06
heart (T-14) non- obstructive DCM	29422	34.45	6.32	12.64	heart (T-14) non- obstructive DCM	-1.69
heart (T-3399) DCM	29426	31.98	26.02	52.04		2.43
adenoid GW99-269	26162	29.56	104.93	209.86	adenoid	
tonsil GW98-280	22582	29	144.55	289.10	tonsil	
T cells PC00314	28453	32.03	25.34	50.68	T cells	
PBMNC		37.71	0.97	0.97	PBMNC	
monocyte		37.49	1.1	2.20	monocyte	
B cells PC00665	28455	27.18	410.49	820.98	B cells	
dendritic cells	28441	33.7	9.73	19.46	dendritic cells	
neutrophils	28440	32.48	19.6	19.60	neutrophils	
eosinophils	28446	32.44	20.08		eosinophils	
BM unstim		33.8	9.17		BM unstim	
BM stim	treated	38.89	0.49			18.71
osteo dif	treated	37.26	1.26			1.26
osteo undif		40	0		osteo undif	
chondrocytes		32.07	24.82		chondrocytes	
OA Synovium IP12/01	29462	30.31			OA Synovium	
OA Synovium NP10/01	29461	30.74			OA Synovium	
OA Synovium NP57/00	28464				OA Synovium	
RA Synovium NP03/01	28466				RA Synovium	
RA Synovium NP71/00	28467				RA Synovium	
					- Jionuii	

RA Synovium NP45/00	28475	30.74	53.21	106.42	RA Synovium	
OA bone (biobank)	29217	30.47	61.99	61.99	OA bone (biobank)	
OA bone Sample 1	J. Emory	29.92	85.09	170.18	OA bone	
OA bone Sample 2	J. Emory	30.91	48.27	96.54	OA bone	
Cartilage (pool)	Normal	31.34	37:68	75.36	Nml Cartilage (pool)	
Cartilage (pool)	OA	31.72	30.35	60.70	OA Cartilage (pool)	-1.24
PBL unifected	28441	30.8	51.54	103.08	PBL unifected	
PBL HIV IIIB	28442	32.03	25.38	50.76	PBL HIV IIIB	-2.03
MRC5 uninfected (100%)	29158	32.29	21.85	43.70	MRC5 uninfected (100%)	
MRC5 HSV strain.F	29178	31.21	40.73	81.46	MRC5 HSV strain F	1.86
W12 cells	29179	33.12	13.52	27.04	W12 cells	
Keratinocytes	29180	32.35	21.06	42.12	Keratinocytes	
B-actin control	•	25.63	1002.01			
genomic		25.19	1290.48			
1.00E+05		17.86	100000			
1.00E+05		17.85	100000			
1.00E+04		21.44	10000			
1.00E+04		21.51	10000			
1.00E+03		25.33	1000			
1.00E+03		25.26	1000			
1.00E+02		29.62	100			
1.00E+02		30.55	100			
1.00E+01		32.93	10			
1.00E+01		33.46	10			
1.00E-00		38.18	1			
1.00E-00		40	0			
NTC		38.28	-1			
*lung 26 Normal has been omitted due to multiple amplification failures from that sample						

Gene Name sbg1007026SGLT

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-2.88
colon tumor	63.85
colon tumor	-2.90
colon tumor	-4.42
lung tumor	-13.03
lung tumor	-1.16
lung tumor	-1.99
lung tumor	1.15
breast turnor	-1.47
breast tumor	21.38

breast tumor	5.82
breast tumor	-1.47
brain stage 5 ALZ	-12.84
brain stage 5 ALZ	-1.55
brain stage 5 ALZ	-4.75
brain stage 5 ALZ	-2.51
lung 24	-5.45
lung 28	-31.99
lung 23	-31.99
asthmatic lung	-2.45
asthmatic lung	3.59
asthmatic lung	8.07
asthmatic lung ,	4.23
endo VEGF	5.19
endo bFGF	2.91
heart T-1	1.06
heart T-14	-1.69
heart T-3399	2.43
BM stim	-18.71
osteo dif	1.26
Cartilage (pool)	-1.24
PBL HIV IIIB	-2.03
MRC5 HSV strain F	1.86

Gene Name sbg1012732GLUT

5

10

High to moderate overall expression. This gene is expressed fairly ubiquitously in all normal samples analyzed with highest levels of expression seen in the whole brain, fetal brain cerebellum, kidney, fetal liver, and the placenta. This gene is also expressed fairly ubiquitously in the disease samples. Downregulation in 3 of 3 COPD samples suggests a potential role for this gene in chronic obstructive pulmonary disorder. Upregulation in 3 of 3 disease heart samples implies an involvement in cardiovascular diseases such as non-obstructive and obstructive DCM and ischemia. Downregulation in the HSV-infected MRC5 cells suggests that this gene may play a role in HSV. Upregulated in the differentiated osteoblasts. High expression in the RA and OA synovium samples, the OA bone samples, and the chondrocytes with corroborating high expression in the T cells, B cells, dendritic cells, neutrophils, and eosinophils implicates this gene in osteoarthritis and rheumatoid arthritis.

Sample sbg1012732GLUT	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected/ 50 ng total RNA
Subcutaneous Adipocytes Zenbio	30.84, 30.49	46.76	57.63	52.20	3.06	16.34	852.86
Subcutaneous Adipose Zenbio	34.89, 35.19	4.31	3.62	3.97	0.96	52.36	207.59
Adrenal Gland Clontech	33.79, 32.74	8.27	15.31	11.79	0.61	81.97	966.39
Whole Brain Clontech	22.02, 21.91	8374.61	8944.05	8659.33	7.24	6.91	59802.00
Fetal Brain Clontech	32.03, 32.85	23.23	14.34	18.79	0.48	103.95	1952.70
Cerebellum Clontech	28.2, 28.26	221.12	213.07	217.10	2.17	23.04	5002.19
Cervix	32.91, 34.54	13.81	5.31	9.56	2.42	20.66	197.52
Colon	30.88, 32.48	45.58	17.87	31.73	2.71	18.45	585.33
Endometrium	36.13, 32.5	2.08	17.6	9.84	0.73	68.21	671.21

32.19. 33.5	21.15	9.77	15.46	1.37	36.50	564.23
			<u> </u>			992.99
						1167.70
						974.22
						713.18
						2532.67
					I	426.17
						2538.03
						838.81
28.06, 27.59	239.58	316.2	277.89	13.00	3.85	1068.81
30.44, 29.88	59.31	82.52	70.92	2.34	21.37	1515.28
31.7, 30.82	28.2	47.35	37.78	3.94	12.69	479.38
30.92, 31.56	44.74	30.55	37.65	4.34	11.52	433.70
33.08, 32.66	12.54	16.03	14.29	0.81	61.80	882.88
33.98, 34.1	7.36	6.89	7.13	1.57	31.85	226.91
29.5, 30.55	102.86	55.41	79.14	5.48	9.12	722.03
25.63, 25.87	1002.18	869.55	935.87	5.26	9.51	8896.06
30.23, 31.17	67.04	38.48	52.76	3.00	16.67	879.33
31.29, 31.15	35.89	38.94	37.42	1.23	40.65	1520.93
28.82, 28.83	153.9	152.53	153.22	7.31	6.84	1047.98
33.23, 32.66	11.48	16.02	13.75	1.26	39.68	545.63
32.62, 32.57	16.46	16.96	16.71	1.21	41.32	690.50
	5.03	14.62	9.83	0.98	51.07	501.79
		15.56	<u> </u>		10.16	245.02
		18.41	18.67	2.73	18.32	341.94
	19.58	20.17	19.88	0.57	87.87	1746.49
27.24, 26.75	388.32	518.55	453.44	9.89	5.06	2292.39
30.48, 29.44	57.86	106.5	82.18	2.77	18.05	1483.39
29.96, 30.29	78.48	64.81	71.65	9.71	5.15	368.92
30.59, 30.1	54.25	72.45	63.35	5.47	9.14	579.07
30.62, 29.73	53.18	89.72	71.45	5.34	9.36	669.01
25.15	1330.24					
26.01	800.58					
18.01	100000					
18.19	100000					
21.35	10000			-		
21.3	10000					
25.59	1000					
25.51	1000			-		
29.95	100	-		•		
29.37	100					
	10					
33.22	ו טון					
33.22 37.19	1					
	30.44, 29.88 31.7, 30.82 30.92, 31.56 33.08, 32.66 33.98, 34.1 29.5, 30.55 25.63, 25.87 30.23, 31.17 31.29, 31.15 28.82, 28.83 33.23, 32.66 32.62, 32.57 34.63, 32.82 31.45, 32.71 32.38, 32.43 32.32, 32.27 27.24, 26.75 30.48, 29.44 29.96, 30.29 30.59, 30.1 30.62, 29.73 25.15 26.01 18.01 18.19 21.35 21.3 25.59 25.51 29.95 29.37 34.05	31.93, 31.73 24.67 40, 32.77 0 30.94, 30.52 44.17 30.04, 29.34 75.03 29.72, 29.18 90.58 34.81, 32.2 4.52 26.6, 26.85 567.46 31.61, 30.52 29.69 28.06, 27.59 239.58 30.44, 29.88 59.31 31.7, 30.82 28.2 30.92, 31.56 44.74 33.08, 32.66 12.54 33.98, 34.1 7.36 29.5, 30.55 102.86 25.63, 25.87 1002.18 30.23, 31.17 67.04 31.29, 31.15 35.89 28.82, 28.83 153.9 33.23, 32.66 11.48 32.62, 32.57 16.46 34.63, 32.82 5.03 31.45, 32.71 32.66 32.38, 32.43 18.93 32.32, 32.27 19.58 27.24, 26.75 388.32 30.48, 29.44 57.86 29.96, 30.29 78.48 30.59, 30.1 54.25 30.62, 29.73 53.18 25.15 1330.24 26.01 800.58 18.01 100000 21.35 10000 21.35 10000 21.35 10000 29.37 100 34.05 10	31.93, 31.73 24.67 27.76 40, 32.77 0 15.04 30.94, 30.52 44.17 56.37 30.04, 29.34 75.03 113.25 29.72, 29.18 90.58 124.19 34.81, 32.2 4.52 21.05 26.6, 26.85 567.46 488.36 31.61, 30.52 29.69 56.54 28.06, 27.59 239.58 316.2 30.44, 29.88 59.31 82.52 31.7, 30.82 28.2 47.35 30.92, 31.56 44.74 30.55 33.08, 32.66 12.54 16.03 33.98, 34.1 7.36 6.89 29.5, 30.55 102.86 55.41 25.63, 25.87 1002.18 869.55 30.23, 31.17 67.04 38.48 31.29, 31.15 35.89 38.94 28.82, 28.83 153.9 152.53 33.23, 32.66 11.48 16.02 32.62, 32.57 16.46 16.96 34.63, 32.82 5.03 14.62 31.45, 32.71 32.66 15.56	31.93, 31.73 24.67 27.76 26.22 40, 32.77 0 15.04 7.52 30.94, 30.52 44.17 56.37 50.27 30.04, 29.34 75.03 113.25 94.14 29.72, 29.18 90.58 124.19 107.39 34.81, 32.2 4.52 21.05 12.79 26.6, 26.85 567.46 488.36 527.91 31.61, 30.52 29.69 56.54 43.12 28.06, 27.59 239.58 316.2 277.89 30.44, 29.88 59.31 82.52 70.92 31.7, 30.82 28.2 47.35 37.78 30.92, 31.56 44.74 30.55 37.65 33.08, 32.66 12.54 16.03 14.29 33.98, 34.1 7.36 6.89 7.13 29.5, 30.55 102.86 55.41 79.14 25.63, 25.87 1002.18 869.55 935.87 30.23, 31.17 67.04 38.48 52.76 31.29, 31.15 35.89 38.94 37.42 28.82, 28.83 153.9	31.93, 31.73 24.67 27.76 26.22 1.32 40, 32.77 0 15.04 7.52 0.32 30.94, 30.52 44.17 56.37 50.27 2.58 30.04, 29.34 75.03 113.25 94.14 6.60 29.72, 29.18 90.58 124.19 107.39 2.12 34.81, 32.2 4.52 21.05 12.79 1.50 26.6, 26.85 567.46 488.36 527.91 10.40 31.61, 30.52 29.69 56.54 43.12 2.57 28.06, 27.59 239.58 316.2 277.89 13.00 30.44, 29.88 59.31 82.52 70.92 2.34 31.7, 30.82 28.2 47.35 37.78 3.94 30.92, 31.56 44.74 30.55 37.65 4.34 33.98, 34.1 7.36 6.89 7.13 1.57 29.5, 30.55 1002.86 55.41 79.14 5.48 25.63, 25.87 1002.18 869.55 935.87 5.26 30.23, 31.17 67.04 38.48 <	31.93, 31.73 24.67 27.76 26.22 1.32 37.88 40, 32.77 0 15.04 7.52 0.32 155.28 30.94, 30.52 44.17 56.37 50.27 2.58 19.38 30.04, 29.34 75.03 113.25 94.14 6.60 7.58 29.72, 29.18 90.58 124.19 107.39 2.12 23.58 34.81, 32.2 4.52 21.05 12.79 1.50 33.33 26.6, 26.85 567.46 488.36 527.91 10.40 4.81 31.61, 30.52 29.69 56.54 43.12 2.57 19.46 28.06, 27.59 239.58 316.2 277.89 13.00 3.85 30.44, 29.88 59.31 82.52 70.92 2.34 21.37 31.7, 30.82 28.2 47.35 37.78 3.94 12.69 30.92, 31.56 44.74 30.55 37.65 4.34 11.52 33.08, 32.66 12.54 16.03

NTC	10					
INIC	140	10				
	170	10	1 1	. 1	,	
		1 -	i i		1	
					1	1

Sample sbg1012732GLUT	Reg number (GSK identifie		Mean GOI copies	mRNA detecte 50 ng total		Fold Change in Disease Populat
colon normal GW98-16	7 21941	25.3	8 1605	RNA 17 3390.94		on
colon tumor GW98-166		25.5		1 3153.82		
colon normal GW98-17		26.8	765.5	1531.00		-1.08
colon tumor GW98-177		25.80				
colon normal GW98-56	1 23514	26.12		4 2241.28		1.69
colon tumor GW98-560		26.12	1	9 2243.78		
colon normal GW98-89		24.85		6 4567.12		1.00
colon tumor GW98-893	24690	24.37			colon tumor	1121
lung normal GW98-3	20742	24.37		1 5968.22	lung normal	1.31
lung tumor GW98-2	20741	25.38		6 3382.12	lung tumor	1.76
lung normal GW97-179	20677	25.07	105 110		lung normal	-1.76
lung tumor GW97-178	20676	24.61		3 5214.06	lung tumor	1.00
lung normal GW98-165	21922	24.92		5 4391.70	lung tunior	1.29
lung tumor GW98-164	21921	25.36		2 3425.24	lung tumor	1.00
lung normal GW98-282	22584	26.24		7 2099.94	lung normal	-1.28
lung tumor GW98-281	22583	25.94		2483.60	lung tumor	110
oreast normal GW00-392	28750	25.26		1813.70	breast normal	1.18
oreast tumor GW00-391	28746	24.87		4519.08	breast tumor	2.49
preast normal GW00-413	28798	25.4		1672.46	breast normal	2.49
oreast tumor GW00-412	28797	25.21	1864.18		breast tumor	2.23
oreast normal GW00- 235:238	27592-95	25.68	1435.2	1435.20	breast normal	2.23
oreast tumor GW00- 231:234	27588-91	24.08	3510.78	3510.78	breast tumor	2.45
reast normal GW98-621		24.16	3363.26	6726.52	breast normal	
reast tumor GW98-620	23655	24.19	3300.23	6600.46	breast tumor	-1.02
rain normal BB99-542	25507	22.64	7880.57	15761.14	brain normal	+
rain normal BB99-406	25509	23.32	5357.05	10714.10	brain normal	-
rain normal BB99-904	25546	23.66	4436.27	8872.54	brain normal	 -
rain stage 5 ALZ BB99- 74	25502	24.7	2474.23	4948.46	brain stage 5 ALZ	-2.38
rain stage 5 ALZ BB99- 87	25503	23.22	5674.88	11349.76	brain stage 5 ALZ	-1.04
rain stage 5 ALZ BB99- 52	25504	23.5	4868.6	9737.20	brain stage 5 ALZ	-1.21
rain stage 5 ALZ BB99- 27	25542	23.17	5843.2	11686.40	brain stage 5 ALZ	-1.01
T lung	normal	25.61	1486.99	2973.98	CT lung Nml	
	normal	26.55	879.91		lung 26 Nml	
ng 27	normal	29.44	174.3	174.30	lung 27 Nml	

lung 24	COPD	29.99	128.5	128.50	lung 24 COPD	-8.67
lung 28	COPD	29.56	163.34	163.34	lung 28 COPD	-6.82
lung 23	COPD	29.59	160.67	160.67	lung 23 COPD	-6.94
lung 25	normal	29.24	194.83	194.83	lung 25 Nml	
asthmatic lung ODO3112	29321	27.22	604.38	604.38	asthmatic lung	-1.84
asthmatic lung ODO3433	29323	26.46	923.43	1846.86	asthmatic lung	1.66
asthmatic lung ODO3397	29322	26.16	1094.36	2188.72	asthmatic lung	1.96
asthmatic lung ODO4928	29325	25.51	1576.72	1	asthmatic lung	2.83
endo cells	control	29.09	211.78	211.78	endo cells	
endo VEGF		30.07	122.67	122.67	endo VEGF	-1.73
endo bFGF		29.93	132.63	132.63	endo bFGF	-1.60
heart Clontech	normal	27.35	561.26	1122.52	heart	7.00
heart (T-1) ischemic	29417	23.82	<u> </u>	8107.30	heart (T-1)	7.22
					ischemic	
heart (T-14) non- obstructive DCM	29422	23.96	3746.25	7492.50	heart (T-14) non- obstructive DCM	6.67
heart (T-3399) DCM	29426	23.35	5282.35	10564.70	heart (T-3399) DCM	9.41
adenoid GW99-269	26162	25.71	1405.41	2810.82	adenoid	
tonsil GW98-280	22582	23.97	3725.77	7451.54	tonsil	
T cells PC00314	28453	25.03	2062.68	4125.36	T cells	
PBMNC		30.16	116.69	116.69	PBMNC	
monocyte		30.15	117.05	234.10	monocyte	·
B cells PC00665	28455	23.22	5673.63	11347.26	B cells	
dendritic cells	28441	25.74	1385.65	2771.30	dendritic cells	
neutrophils	28440	27.14	631.86	631.86	neutrophils	
eosinophils	28446	28.27	335.66	671.32	eosinophils	
BM unstim		30.08	122.25	122.25	BM unstim	
BM stim	treated	29.57	162.71	162.71	BM stim	1.33
osteo dif	treated	29.07	214.84	214.84	osteo dif	2.91
osteo undif		30.98	73.85	73.85	osteo undif	
chondrocytes		25.41	1667.28		chondrocytes	
OA Synovium IP12/01	29462	24.65	2554.39		OA Synovium	
OA Synovium NP10/01	29461	25.72	1399	2798.00	OA Synovium	
OA Synovium NP57/00	28464	25.24	1828.2	3656.40.	OA Synovium	
	28466			2845.22	RA Synovium	
RA Synovium NP71/00	28467	25.25		3636.30	RA Synovium	
RA Synovium NP45/00	28475	25.22		3714.26	RA Synovium	
OA bone (biobank)	29217	26.19	1074.74		OA bone (biobank)	
OA bone Sample 1	J. Emory	26.71	805.65	1611.30	OA bone	
OA bone Sample 2	J. Emory	26.96	700.88	1401.76	OA bone	
Cartilage (pool)	Normal	26.38	968.45	1936.90	Nml Cartilage	
Cartilage (pool)	OA	28.07	376.23	752.46	(pool) OA Cartilage (pool)	-2.57
PBL unifected	28441	25.09	1997 75	3995.50	PBL unifected	
PBL HIV IIIB	28442	25.36	1710.81	3421.62	PBL HIV IIIB	-1.17
MRC5 uninfected	29158	25.28	1788.71	3577.42	MRC5 uninfected	-1.1/

MRC5 HSV strain F	29178	30.17	116.17	232.34	MRC5 HSV strain	-15.40
W12 cells	29179	27.6	489.01	978.02	W12 cells	 -
Keratinocytes	29180	26.4	959.61	1919.22	Keratinocytes	
B-actin control		25.62	1482.86			
genomic		25.42	1657.68			
1.00E+05		18.49	100000			
1.00E+05		18.49	100000			
1.00E+04		21.94	10000			<u> </u>
1.00E+04	1	21.98	10000			
1.00E+03		25.34	1000			
1.00E+03		25.39	1000			
1.00E+02		30.59	100			
1.00E+02		30.9	100			
1.00E+01		32.51	10			
1.00E+01		39.12	10			
1.00E-00		39.07	1			
1.00E-00		36.71	1			
NTC		39.63	-1			
*lung 26 Normal has been omitted due to multiple amplification				i		
failures from that sample		<u> </u>				

Gene Name sbg1012732GLUT

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.08
colon tumor	1.69
colon tumor	1.00
colon tumor	1.31
lung tumor*	-1.76
lung tumor	1.29
lung tumor	-1.28
lung tumor	1.18
breast tumor	2.49
breast tumor	2.23
breast tumor	2.45
breast tumor	-1.02
brain stage 5 ALZ	-2.38
brain stage 5 ALZ	-1.04
brain stage 5 ALZ	-1.21
brain stage 5 ALZ	-1.01
lung 24	-8.67
lung 28	-6.82
lung 23	-6.94
asthmatic lung	-1.84
asthmatic lung	1.66
asthmatic lung	1.96
asthmatic lung	2.83
endo VEGF	-1.73

endo bFGF	-1.60
heart T-1	7.22
heart T-14	6.67
heart T-3399	9.41
BM stim	1.33
osteo dif	2.91
Cartilage (pool)	-2.57
PBL HIV IIIB	-1.17
MRC5 HSV strain F	-15.40

Gene Name sbg1012732GLUTb

The same as sbg1012732GLUT.

5

10

15

Gene Name sbg1018172CSP

Moderate to low overall expression. Highest normal expression is seen in the whole brain, kidney, thyroid, and uterus. This gene is expressed in all of the samples representing the female reproductive system. Highest disease expression is seen in many of the normal/tumor lung samples and the asthmatic lung samples. Downregulation in 2 of 4 lung tumor samples and upregulation in 2 of 4 breast tumor samples suggests an involvement in cancers of the lung and breast. Downregulation in 3 of 3 COPD samples suggests a potential role for this gene in chronic obstructive pulmonary disorder. Upregulation in 2 of 4 asthmatic lung samples implies an involvement in asthma. Upregulation in 1 of 3 disease heart samples implies an involvement in cardiovascular disease such as obstructive DCM. Downregulation in the OA cartilage pool with corroborating low expression in the immune cells (T and B cells in particular) implicates this gene in osteoarthritis and rheumatoid arthritis. Upregulation in the HSV-infected MRC5 cells suggests that this gene may be a host factor in HSV.

20

Sample sbg1018172CSP	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	35.54, 34.87	7.65	11.21	9.43	3.06	16.34	154.08
Subcutaneous Adipose Zenbio	40, 40	0.4	0	0.20	0.96	52.36	10.47
Adrenal Gland Clontech	40, 40	0	0	0.00	0.61	81.97	0.00
Whole Brain Clontech	25.71, 25.78	1950.98	1867.58	1909.28	7.24	6.91	13185.6 4
Fetal Brain Clontech	40, 40	0	0	0.00	0.48	103.95	0.00
Cerebellum Clontech	36.32, 35.16	4.95	9.48	7.22	2.17	23.04	166.24
Cervix	36.76, 36.16	3.85	5.42	4.64	2.42	20.66	95.76
Colon	36.52, 36.41	4.41	4.7	4.56	2.71	18.45	84.04
Endometrium	36.4, 35.92	4.73	6.19	5.46	0.73	68.21	372.44
Esophagus	40, 40	0	0	0.00	1.37	36.50	0.00
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	40, 40	0	0	0.00	2.58	19.38	0.00
Jejunum	36.53, 33.22	4.38	28.28	16.33	6.60	7.58	123.71

Kidney	32.81, 32.4	15 25 74	142.67	120.71	12.2		
Liver	35.92, 36.2		43.67	39.71	2.12	23.58	936.44
Fetal Liver Clontech	31.57, 30.4		5.29	5.74	1.50	33.33	191.33
Lung	33.35, 36.8		134.34	103.02	10.40	4.81	495.26
Mammary Gland	32.99, 32.1	1	3.65	14.99	2.57	19.46	291.54
Clontech	32.99, 32.1	/ 32.23	51.27	41.75	13.00	3.85	160.58
Myometrium	34.99, 40	10.44	0	5.22	2.34	21.37	111.54
Omentum	35.61, 40	7.37	0	3.69	3.94	12.69	46.76
Ovary	35.83, 35.5	4 6.53	7.67	7.10	4.34	11.52	81.80
Pancreas	35.86, 40	6.39	0	3.20	0.81	61.80	197.47
Head of Pancreas	40, 40	0	Ō	0.00	1.57	31.85	0.00
Parotid Gland	34.26, 34.0	3 15.73	17.96	16.85	5.48	9.12	153.70
Placenta Clontech	32.64, 33.10		29.26	34.30	5.26	9.51	326.05
Prostate	35.71, 40	6.95	0	3.48	3.00	16.67	57.92
Rectum	33.84, 34.42	2 19.99	14.41	17.20	1.23	40.65	699.19
Salivary Gland Clontech	40, 40	0	0	0.00	7.31	6.84	0.00
Skeletal Muscle Clontech	34.2, 40	16.33	0	8.17	1.26	39.68	324.01
Skin	35.02, 40	10.31	0.48	5.40	1.21	41.32	222.93
Small Intestine Clontech	40, 40	0	0	0.29	0.98	51.07	14.81
Spleen	40, 35.31	0	8.71	4.36	4.92	10.16	44.26
Stomach	40, 35.4	0	8.3	4.15	2.73	18.32	76.01
Testis Clontech	40, 37.31	0	2.82	1.41	0.57	87.87	123.90
Thymus Clontech	30.9, 31.1	104.45	93.52	98.99	9.89	5.06	500.43
Thyroid	31.62, 31.57	69.89	71.93	70.91	2.77	18.05	1279.96
Trachea Clontech	34.19, 34.08	16.41	17.49	16.95	9.71	5.15	87.28
Urinary Bladder	40, 34.4	0	14.55	7.28	5.47	9.14	66.50
Uterus	30.63, 30.6	122.13	123.57	122.85	5.34	9.36	1150.28
genomic	26.58	1190.6					1,00.20
b-actin	27.38	758.43					
1.00E+05	19.07	100000	 				
1.00E+05	19.35	100000					
1.00E+04	22.57	10000					
1.00E+04	22.59	10000					
1.00E+03	26.24	1000					
.00E+03	26.31	1000					
1.00E+02	30.18	100					
.00E+02	31.64	100			~		
.00E+01	35.9	10					
.00E+01	40	0					
.00E-00	.40	0				 	
.00E-00	40	0					
TC	40	0					
TC	40	0				+	

Sample sbg1018172CSP	Reg number	Ct	Mean GOI	copies of mRNA	Sample	Fold	
		<u> </u>	1001	IIIIIII	L	Change	

	(GSK	<u> </u>	copies	detected/		in
	identifier			50 ng	·	Disease
)			total RNA		Populati
colon normal GW98-167	21941	27.29	1064.89	2129.78	colon normal	on
	21941	26.18	2023.11	4046.22	colon tumor	1.90
colon tumor GW98-166	L			337.36	colon normal	1.50
colon normal GW98-178	22080	30.45	168.68			1.92
colon tumor GW98-177	22060	29.33	324.49	648.98	colon tumor	1.92
colon normal GW98-561	23514	30.36	177.62	355.24	colon normal	2.00
colon tumor GW98-560	23513	32.27	58.7	117.40	colon tumor	-3.03
colon normal GW98-894	24691	30.71	145.57	291.14	colon normal	
colon tumor GW98-893	24690	32.3	57.43	114.86	colon tumor	-2.53
lung normal GW98-3	20742	24.82	4478.67	8957.34	lung normal	
lung tumor GW98-2	20741	33.61	26.86	53.72	lung tumor	-166.74
lung normal GW97-179	20677	26.31	1874.25	3748.50	lung normal	
lung tumor GW97-178	20676	24.52	5311.72	10623.44	lung tumor	2.83
lung normal GW98-165	21922	24.99	4042.28	8084.56	lung normal	
lung tumor GW98-164	21921	27.19	1127.26	2254.52	lung tumor	-3.59
lung normal GW98-282	22584	25.51	2990.53	5981.06	lung normal	
lung tumor GW98-281	22583	26.67	1522.51	3045.02	lung tumor	-1.96
breast normal GW00-392	28750	32.25	59.17	59.17	breast normal	
breast tumor GW00-391	28746	30.48	165.82	331.64	breast tumor	5.60
breast normal GW00-413	28798	34.58	15.31	15.31	breast normal	
breast tumor GW00-412	28797	30.05	213.4	426.80	breast tumor	27.88
breast normal GW00- 235:238	27592-95	34.41	16.85	16.85	breast normal	
breast tumor GW00- 231:234	27588-91	33.52	28.31	28.31	breast tumor	1.68
breast normal GW98-621	23656	28.22	618.19	1236.38	breast normal	
breast tumor GW98-620	23655	32.02	67.94	135.88	breast tumor	-9.10
brain normal BB99-542	25507	29.11	367.88	735.76	brain normal	
brain normal BB99-406	25509	28.05	682.39	1364.78	brain normal	
brain normal BB99-904	25546	29.06	379.07	758.14	brain normal	
brain stage 5 ALZ BB99- 874	25502	30.06	211.81	423.62	brain stage 5 ALZ	
brain stage 5 ALZ BB99- 887	25503	26.97	1280.13	2560.26	brain stage 5 ALZ	
brain stage 5 ALZ BB99- 862	25504	29.85	239.03	478.06	brain stage 5 ALZ	
brain stage 5 ALZ BB99- 927	25542	28.13	652.56	1305.12	brain stage 5 ALZ	1.37
CT lung	normal	26.97	1280.81	2561.62	CT lung Nml	
lung 26	normal	32.21	60.75		lung 26 Nml	
lung 27	normal	34	21.39	21.39	lung 27 Nml	
lung 24	COPD	32.11	64.11	64.11	lung 24 COPD	-13.87
lung 28	COPD	33.01	38.18	38.18	lung 28 COPD	-23.29
lung 23	COPD	32.84	42.15	42.15	lung 23 COPD	-21.10
lung 25	normal	31.63	84.78	84.78	lung 25 Nml	
asthmatic lung ODO3112	29321	29.4	310.75	310.75	asthmatic lung	-2.86
asthmatic lung ODO3433	29323	27.02	1242.79	2485.58	asthmatic lung	2.80

			-		•	
asthmatic lung ODO33		25.97	2289.7	4 4579.48	asthmatic lung	5.15
asthmatic lung ODO49	28 29325	26.84	1380.5	2761.00	asthmatic lung	3.10
endo cells	control	40	0	0.00	endo cells	
endo VEGF		40	0	0.00	endo VEGF	0.00
endo bFGF	7.	40	1.01	1.01	endo bFGF	1.01
heart Clontech	normal	33.02	37.93	75.86	heart	
heart (T-1) ischemic	29417	34.34	17.51	35.02	heart (T-1)	-2.17
heart (T-14) non- obstructive DCM	29422	34.85	13.07	26.14	heart (T-14) non- obstructive DCM	
heart (T-3399) DCM	29426	29.74	254.69	509.38	heart (T-3399) DCM	6.71
adenoid GW99-269	26162	35.07	11.5	23.00	adenoid	
tonsil GW98-280	22582	40	0	0.00	tonsil	
T cells PC00314	28453	36.12	6.22	12.44	T cells	
PBMNC		40	0	0.00	PBMNC	
monocyte		40	0	0.00	monocyte	
B cells PC00665	28455	40	0	0.00	B cells	+
dendritic cells	28441	40	0	0.00	dendritic cells	+
neutrophils	28440	35.43	9.3	9.30	neutrophils	
eosinophils	28446	40	1.32	2.64	eosinophils	-
BM unstim		40	0	0.00	BM unstim	
BM stim	treated	40	0	0.00	BM stim	0.00
osteo dif	treated	40	0	0.00	osteo dif	0.00
osteo undif	 	40	0	0.00	osteo undif .	0.00
chondrocytes	 	33,23	33.49	83.73	chondrocytes	
OA Synovium IP12/01	29462	34.9	12.68	12.68	OA Synovium	
OA Synovium NP10/01	29461	28.55	510.63	1021.26	OA Synovium	
OA Synovium NP57/00	28464	34	21.41	42.82	OA Synovium	
RA Synovium NP03/01	28466	40	0	0.00	RA Synovium	ļ
RA Synovium NP71/00	28467	36.2	5.96	11.92	RA Synovium	
RA Synovium NP45/00	28475	36.38	5.34	10.68	RA Synovium	
OA bone (biobank)	29217	35.58	8.52	8.52	OA bone	
	1-2-7.	33.30	0.52	0.52	(biobank)	
OA bone Sample 1	J. Emory	33.54	27.91	55.82	OA bone	
OA bone Sample 2	J. Emory	34.92	12.54	25.08	OA bone	
Cartilage (pool)	Normal	33.88	22.98	45.96	Nml Cartilage (pool)	
Cartilage (pool)	OA	40	0	0.00	OA Cartilage \(\square\)	-45.96
PBL unifected	28441	30.74	142.65	285.30	PBL unifected	
PBL HIV IIIB	28442	32.47	52.13	104.26	PBL HIV IIIB	-2.74
MRC5 uninfected (100%)	29158	40	0	0.00	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	30.06	211.88	423.76	MRC5 HSV strain F	423.76
W12 cells	29179	39.65	0.8	1.60	W12 cells	
Keratinocytes	29180	33.76	24.58	49.16	Keratinocytes	
B-actin control		27.17	1140.82			
genomic		26.81	1405.46			

1.00E+05		19.68	100000		
1.00E+05	-	19.63	100000		
1.00E+04		23.15	10000		
1.00E+04		23.27	10000		
1.00E+03		27.1	1000		
1.00E+03		27.33	1000		
1.00E+02		31.34	100		
1.00E+02		32.04	100		
1.00E+01		35.09	10		
1.00E+01		40	10		
1.00E-00		40	0		
1.00E-00		40	0		
NTC		40	0		
*lung 26 Normal has been omitted due to multiple amplification failures from that sample					

Gene Name sbg1018172CSP

Disease tissues	Fold Change in Disease
	Population Relative to
	Normal
colon tumor	1.90
colon tumor	1.92
colon tumor	-3.03
colon tumor	-2.53
lung tumor	-166.74
lung tumor	2.83
lung tumor	-3.59
lung tumor	-1.96
breast tumor	5.60
breast tumor	27.88
breast tumor	1.68
breast tumor	-9.10
brain stage 5 ALZ	-2.25
brain stage 5 ALZ	2.69
brain stage 5 ALZ	_1.99
brain stage 5 ALZ	1.37
lung 24	
lung 28	-23.29
lung 23	-21.10
asthmatic lung	-2.86
asthmatic lung	2.80
asthmatic lung	5.15
asthmatic lung	3.10
endo VEGF	0.00
endo bFGF	1.01
heart T-1	2.17
heart T-14	-2.90
heart T-3399	6.71
BM stim	0.00
osteo dif	0.00
Cartilage (pool)	-45.96

5

10

PBL HIV IIIB	-2.74
MRC5 HSV strain F	423.76

Gene Name sbg1004570ERGIC

Moderate to low overall expression. This gene is expressed fairly ubiquitously in all normal samples analyzed with highest levels of expression seen in the whole brain, hypothalamus, pancreas, and head of pancreas. This pattern of expression suggests that this gene may be involved in diabetes or other metabolic diseases. Highest disease expression is seen in the colon, breast, and lung normal/tumor pairs as well as the Alzheimer's brain samples and the T cells, B cells, dendritic cells, and eosinophils. Upregulation in 2 of 4 breast tumor samples suggests a role for this gene in breast cancer. Upregulation in 2 of 4 Alzheimer's brain samples implies an involvement in Alzheimer's disease. Downregulation in 3 of 3 COPD samples and 4 of 4 asthmatic lung samples suggests a potential role for this gene in chronic obstructive pulmonary disorder and asthma. Upregulated in the stimulated bone marrow sample.

Sample	Ct (sample	Mean	Mean	Average	180	50	copies
sbg1004570ERGIC	1 and 2)	GOI	GOI	GOI	rRNA	1-0	
		copies	copies	Copies	(ng)	rRNA	mRNA
		(sample	(sample		1.0"	(ng)	detecte
		1)	2)				d/50 ng
							total
Subcutaneous	40, 40	0	0	0.00	1000	1	RNA
Adipocytes Zenbio	10, 40	ļ,	ا	0.00	3.06	16.34	0.00
Subcutaneous Adipose	39.46, 35.22	0.08	1.37	0.73	0.96	52.36	37.96
Zenbio					0.50	32.30	37.90
Adrenal Gland Clontech	36.91, 36.21		0.7	0.57	0.61	81.97	46.31
Whole Brain Clontech	26.46, 30.31		39.49	293.26	7.24	6.91	2025.24
Fetal Brain Clontech	36.04, 36.66		0.51	0.65	0.48	103.95	67.05
Cerebellum Clontech	35.46, 34.63		2.06	1.61	2.17	23.04	37.10
Cervix	35.63, 36.28	L	0.67	0.86	2.42	20.66	17.67
Colon	35.38, 34.57	1.23	2.13	1.68	2.71	18.45	31.00
Endometrium	40, 35.24	0.06	1.35	0.71	0.73	68.21	48.09
Esophagus	35.02, 36.31	1.57	0.65	1.11	1.37	36.50	40.51
Heart Clontech	37.16, 35.48	0.36	1.15	0.76	1.32	37.88	28.60
Hypothalamus	35.15, 36.01	1.44	0.8	1.12	0.32	155.28	173.91
Ileum	35.04, 35.5	1.55	1.13	1.34	2.58	19.38	25.97
Jejunum	35.14, 34.88	1.45	1.73	1.59	6.60	7.58	12.05
Kidney	35.81, 37.16	0.91	0.36	0.64	2.12	23.58	14.98
Liver	36.19, 34.39	0.71	2.42	1.57	1.50	33.33	52.17
Fetal Liver Clontech	32.94, 33.1	6.51	5.85	6.18	10.40	4.81	29.71
Lung	34.54, 35.16	2.18	1.43		2.57	19.46	35.12
Mammary Gland	34.45, 34.76	2.33	1.88	2.11	13.00	3.85	8.10
Clontech					10.00	5.05	0.10
Myometrium	34.08, 34.61			2.54	2.34	21.37	54.17
Omentum	35.22, 36.18	!	0.71	1.04	3.94	12.69	13.20
Ovary	34.52, 34.83		1.78	2.00	4.34	11.52	22.98
Pancreas	34.45, 33.99	2.32	3.18	2.75	0.81	61.80	169.96
Head of Pancreas	33.24, 33.63		4.06	4.69	1.57	31.85	149.36
Parotid Gland	33.22, 33.08	1	5.9	5.64	5.48	9.12	51.46
Placenta Clontech	36.02, 35.39	0.79	1.22		5.26	9.51	9.55

Prostate	35.98, 35.07	0.81	1.51	1.16	3.00	16.67	19.33
Rectum	36.71, 37.13	0.49	0.37	0.43	1.23	40.65	17.48
Salivary Gland Clontech	33.51, 34.22	4.41	2.71	3.56	7.31	6.84	24.35
Skeletal Muscle Clontech	35.53, 34.52	1.11	2.21	1.66	1.26	39.68	65.87
Skin	36.02, 36.07	0.79	0.77	0.78	1.21	41.32	32.23
Small Intestine Clontech	35.02, 37.21	1.57	0.35	0.96	0.98	51.07	49.03
Spleen	35.64, 35.27	1.03	1.33	1.18	4.92	10.16	11.99
Stomach	35.08, 35.41	1.51	1.2	1.36	2.73	18.32	24.82
Testis Clontech	35.48, 38.1	1.15	0.19	0.67	0.57	87.87	58.88
Thymus Clontech	32.15, 31.72		14.98	13.07	9.89	5.06	66.08
Thyroid	35.61, 35.09	1.05	1.49	1.27	2.77	18.05	22.92
Trachea Clontech	35.04, 34.75	1.55	1.89	1.72	9.71	5.15	8.86
Urinary Bladder	36.11, 36.24	0.74	0.68	0.71	5.47	9.14	6.49
Uterus	35.59, 35.68	1.06	1	1.03	5.34	9.36	9.64
genomic	24.29	2416.83					
b-actin	26.09	706.6					
1.00E+05	20.09	100000					
1.00E+05	19.53	100000					
1.00E+04	21.72	10000					
1.00E+04	21.68	10000					
1.00E+03	24.13	1000					
1.00E+03	24.18	1000					
1.00E+02	29.13	100					
1.00E+02	30.16	100			- " .		
1.00E+01	31.7	10					
1.00E+01	33.16	10			= 6		
1.00E-00	36.93	1	,				
1.00E-00	34.75	1					
NTC	36	-1				<u> </u>	
NTC	35.85	-1				L	

Sample sbg1004570ERGIC	Reg number (GSK identifier)	Ct	Mean GOI copies	copies of mRNA detecte d/50 ng total RNA	Sample	Fold Change in Disease Populati on
colon normal GW98-167	21941	30.51	38.25	76.50	colon normal	
colon tumor GW98-166	21940	31.28	23.13	46.26	colon tumor	-1.65
colon normal GW98-178	22080	31.79	16.57	33.14	colon normal	
colon tumor GW98-177	22060	31.3	22.86	45.72	colon tumor	1.38
colon normal GW98-561	23514	30.71	33.5	67.00	colon normal	
colon tumor GW98-560	23513	31.18	24.73	49.46	colon tumor	-1.35
colon normal GW98-894	24691	30.16	48.2	96.40	colon normal	
colon tumor GW98-893	24690	29.96	55	110.00	colon tumor	1.14
lung normal GW98-3	20742	30.1	50.19	100.38	lung normal	
lung tumor GW98-2	20741	32.86	8.15	16.30	lung tumor	-6.16

C						
lung normal GW97-17		31.6	5 18.14	36.28	lung normal	
lung tumor GW97-178		31.0	5 26.89	53.78		1.48
lung normal GW98-16		30.4	4 40.16	80.32		11.76
lung tumor GW98-164		30.72	2 33.36	. 66.72		-1.20
lung normal GW98-282	2 22584	31.83	3 16.13			-1.20
lung tumor GW98-281	22583	32.09	13.61	1	lung tumor	-1.19
breast normal GW00-39	2 28750	32.76	8.73	8.73	breast normal	-1.19
breast tumor GW00-39	- 120.10	30.68		68.76	breast tumor	7.00
breast normal GW00-41	3 28798	37.11		0.50	breast normal	7.88
breast tumor GW00-412	2 28797	30.8	31.72	63.44	breast tumor	106.0
breast normal GW00- 235:238	27592-95	38.8	0.17	0.17	breast normal	126.8
breast tumor GW00- 231:234	27588-91	37.36	0.43	0.43	breast tumor	2.53
breast normal GW98-62		31.67	17.86	35.72	breast normal	
breast tumor GW98-620	23655	32.59	1	19.60	breast tumor	1.00
brain normal BB99-542	25507	33.66		9.66	brain normal	-1.82
brain normal BB99-406	1	33.24	6.37	12.74	brain normal	
brain normal BB99-904		33.2	6.54	13.08	brain normal	
brain stage 5 ALZ BB99	- 25502	33.1	6.97	13.94		1110
874				13.77	brain stage 5 ALZ	1.18
brain stage 5 ALZ BB99 887		30.93	29.17	58.34	brain stage 5 ALZ	4.93
brain stage 5 ALZ BB99. 862		31.44	20.73	41.46	brain stage 5 ALZ	3.51
brain stage 5 ALZ BB99- 927		32.93	7.83	15.66	brain stage 5 ALZ	1.32
CT lung	normal	32.62	9.6	19.20	CT lung Nml	
lung 26	normal				lung 26 Nml	
lung 27	normal	40	0	0.00	lung 27 Nml	
lung 24	COPD	39.15	0.13	0.13	lung 24 COPD	-49.46
lung 28	COPD	40	0.08	0.08	lung 28 COPD	-80.38
lung 23	COPD	38.59	0.19	0.19	lung 23 COPD	-33.84
lung 25	normal	40	0.09	0.09	lung 25 Nml	-55.04
asthmatic lung ODO3112		40	0	0.00	asthmatic lung	-6.43
asthmatic lung ODO3433	29323	38.47	0.2	0.40	asthmatic lung	-16.08
asthmatic lung ODO3397		38.01	0.28	0.56	asthmatic lung	-11.48
asthmatic lung ODO4928	29325	38.13	0.26	0.52	asthmatic lung	-11.48
endo cells	control	36.24	0.89	0.89	endo cells	1-12.37
endo VEGF		39.8	0.09	0.09	endo VEGF	0.00
endo bFGF		37.19	0.47	0.47	endo bFGF	-9.89
heart Clontech		35.52	1.43	2.86	heart	-1.89
		33.79	4.43	8.86	heart (T-1)	3.10
obstructive DCM	29422	34.81	2.27	4.54	heart (T-14) non-	1.59
	29426	34.11	3.59	7.18	obstructive DCM heart (T-3399)	2.51
idenoid GW99-269	26162 3	34.97	2.05	4.10	DCM adenoid	
onsil GW98-280			7.23		HOUSIOIG	Ī

T cells PC00314 28453 31.09 26.2 52.40 T cells PBMNC 38.01 0.28 0.28 PBMNC monocyte 36.29 0.86 1.72 monocyte B cells PC00665 28455 32.13 13.23 26.46 B cells dendritic cells 28441 31.94 14.96 29.92 dendritic cells neutrophils 28440 34.08 3.66 3.66 neutrophils eosinophils 28446 32.23 12.37 24.74 eosinophils BM unstim 39.73 0.09 0.09 BM unstim BM stim treated 37.03 0.53 BM stim 5.89 osteo dif treated 36.8 0.61 0.61 osteo dif 0.61	
monocyte 36.29 0.86 1.72 monocyte B cells PC00665 28455 32.13 13.23 26.46 B cells dendritic cells 28441 31.94 14.96 29.92 dendritic cells neutrophils 28440 34.08 3.66 3.66 neutrophils eosinophils 28446 32.23 12.37 24.74 eosinophils BM unstim 39.73 0.09 0.09 BM unstim BM stim treated 37.03 0.53 BM stim 5.89	
B cells PC00665 28455 32.13 13.23 26.46 B cells dendritic cells 28441 31.94 14.96 29.92 dendritic cells neutrophils 28440 34.08 3.66 3.66 neutrophils eosinophils 28446 32.23 12.37 24.74 eosinophils BM unstim 39.73 0.09 0.09 BM unstim BM stim treated 37.03 0.53 BM stim 5.89	
dendritic cells 28441 31.94 14.96 29.92 dendritic cells neutrophils 28440 34.08 3.66 3.66 neutrophils eosinophils 28446 32.23 12.37 24.74 eosinophils BM unstim 39.73 0.09 0.09 BM unstim BM stim treated 37.03 0.53 0.53 BM stim 5.89	
neutrophils 28440 34.08 3.66 3.66 neutrophils eosinophils 28446 32.23 12.37 24.74 eosinophils BM unstim 39.73 0.09 0.09 BM unstim BM stim treated 37.03 0.53 0.53 BM stim 5.89	
eosinophils 28446 32.23 12.37 24.74 eosinophils BM unstim 39.73 0.09 0.09 BM unstim BM stim treated 37.03 0.53 0.53 BM stim 5.89	
BM unstim 39.73 0.09 0.09 BM unstim BM stim treated 37.03 0.53 0.53 BM stim 5.89	
BM stim treated 37.03 0.53 0.53 BM stim 5.89	
osteo dif treated 36.8 0.61 0.61 osteo dif 0.61	
osteo undif 40 0 0.00 osteo undif	
chondrocytes 31.85 15.9 39.75 chondrocytes	
OA Synovium IP12/01 29462 38.61 0.19 0.19 OA Synovium	
OA Synovium NP10/01 29461 33.11 6.96 13.92 OA Synovium	
OA Synovium NP57/00 28464 33.81 4.39 8.78 OA Synovium	
RA Synovium NP03/01 28466 33.11 6.96 13.92 RA Synovium	
RA Synovium NP71/00 28467 32.03 14.14 28.28 RA Synovium	
RA Synovium NP45/00 28475	
OA bone (biobank) 29217 35.25 1.7 1.70 OA bone (biobank)	
OA bone Sample 1	
OA bone Sample 2	
Cartilage (pool) Normal 35.24 1.71 3.42 Nml Cartilage	
(pool)	
Cartilage (pool) OA 34.45 2.87 5.74 OA Cartilage 1.68	
(pool) PBL unifected 28441 32.53 10.19 20.38 PBL unifected	
PBL HIV IIIB 28442 31.77 16.79 33.58 PBL HIV IIIB 1.65	
MRC5 uninfected 29158 33.12 6.87 13.74 MRC5 uninfected	
(100%)	
MRC5 HSV strain F 29178 33.76 4.54 9.08 MRC5 HSV strain -1.51	
W12 cells 29179 33.1 6.96 13.92 W12 cells	
Keratinocytes 29180 32.67 9.29 18.58 Keratinocytes	
B-actin control 26.03 726.55	
genomic 24.63 1825.58	
1.00E+05 19.96 100000	
1.00E+05 19.27 100000	
1.00E+04 21.83 10000	
1.00E+04 21.45 10000	
1.00E+03 23.86 1000	
1.00E+03 23.84 1000	
1.00E+02 28.42 100	
1.00E+02 29.35 100	
1.00E+01 33.3 10	
1.00E+01 35.09 10	
1.00E-00 35.16 1	
1.00E-00 36.05 1	
NTC 38.24 -1	
*lung 26 Normal has	

been omitted due to multiple amplification	
failures from that sample	
A	

Gene Name sbg1004570ERGIC

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.65
colon tumor	1.38
colon tumor	-1.35
colon tumor	1.14
lung tumor	-6.16
lung tumor	1.48
lung tumor	-1.20
lung tumor	-1.19
breast tumor	7.88
breast tumor	126.88
breast tumor	2.53
breast tumor	-1.82
brain stage 5 ALZ	1.18
brain stage 5 ALZ	4.93
brain stage 5 ALZ	3.51
brain stage 5 ALZ	1.32
lung 24	-49.46
lung 28	-80.38
lung 23	-33.84
asthmatic lung	-6.43
asthmatic lung	-16.08
asthmatic lung	-11.48
asthmatic lung	-12.37
endo VEGF	-9.89
endo bFGF	-1.89
heart T-1	3.10
heart T-14	1.59
heart T-3399	2.51
BM stim	5.89
osteo dif	0.61
Cartilage (pool)	1.68
PBL HIV IIIB	1.65
MRC5 HSV strain F	-1.51

Gene Name sbg1016995IGBrecpt

Moderate to low overall expression. Highest normal expression is seen in the whole brain in lung with slightly lower levels of expression in the endometrium, ileum, rectum, and skin. High level of expression in the skin may suggest a possible role for this gene in psoriasis and Lupus. The patterns of expression in the samples on the disease plate indicate that this gene is highly specific to the adenoid and tonsil. Downregulation in 2 of 4 lung tumor samples and upregulation in 2 of 4 breast tumor samples suggests an involvement in cancers of the lung and breast. Downregulation in 3 of 3 COPD samples suggests a potential role for this gene in chronic obstructive pulmonary disorder. Upregulated in the stimulated bone marrow sample. Downregulated in the differentiated osteoblast. Upregulated in the HIV-infected PBL cells suggests that this gene may be a host factor in HIV.

15

10

5

Sample	Ct (sample	7/	3.4	1.	1.00		
- transpace	Cr (sample	Mean	Mean	Average	118S	150	copies of
						100	COPICS OF

sbg1016995IGBrecpt	1 and 2)	GOI	GOI	GOI	rRNA	ng/18S	mRNA
Sugiorossocio		copies	copies	Copies	(ng)	rRNA	detected/
		(sample	(sample	-		(ng)	50 ng
		1)	2)				total
							RNA
Subcutaneous Adipocytes Zenbio	40, 40	0.61	0.61	0.61	3.06	16.34	9.97
Subcutaneous Adipose Zenbio	40, 40	0.59	0.56	0.58	0.96	52.36	30.10
Adrenal Gland Clontech	39.89, 39.79	0.54	0.57	0.56	0.61	81.97	45.49
Whole Brain Clontech	30.69, 30.76	108.67	104.35	106.51	7.24	6.91	735.57
Fetal Brain Clontech	39.41, 40	0.71	0.62	0.67	0.48	103.95	69.13
Cerebellum Clontech	39.33, 37.82	0.74	1.78	1.26	2.17	23.04	29.03
Cervix	36.12, 36.58	4.73	3.62	4.18	2.42	20.66	86.26
Colon	35.23, 38.35	7.9	1.31	4.61	2.71	18.45	84.96
Endometrium	35.51, 40	6.73	0	3.37	0.73	68.21	229.54
Esophagus	37.22, 38.18	2.5	1.45	1.98	1.37	36.50	72.08
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 40	0 .	0	0.00	0.32	155.28	0.00
Ileum	34.65, 34.11	11.04	15.09	13.07	2.58	19.38	253.20
Jejunum	34.84, 34.04		15.72	12.82	6.60	7.58	97.08
Kidney	38.2, 39.11	1.43	0.84	1.14	2.12	23.58	26.77
Liver	34.47, 38.59	12.26	1.14	6.70	1.50	33.33	223.33
Fetal Liver Clontech	33.51, 33.07	21.26	27.43	24.35	10.40	4.81	117.04
Lung	27.32, 37.11	755.31	2.68	379.00	2.57	19.46	7373.44
Mammary Gland Clontech	36.31, 36.4	4.24	4.03	4.14	13.00	3.85	15.90
Myometrium	40, 38.7	0.7	1.07	0.89	2.34	21.37	18.91
Omentum	35.44, 36.14	6.98	4.68	5.83	3.94	12.69	73.98
Ovary	38.76, 35.49	1.03	6.82	3.93	4.34	11.52	45.22
Pancreas	40, 38.56	0.48	1.16	0.82	0.81	61.80	50.68
Head of Pancreas	40, 40	0	0	0.00	1.57	31.85	0.00
Parotid Gland	36.8, 35.45	3.2	6.98	5.09	5.48	9.12	46.44
Placenta Clontech	35.63, 35.11	6.27	8.47	7.37	5.26 .	9.51	70.06
Prostate	37.4, 37.5	2.26	2.14	2.20	3.00	16.67	36.67
Rectum	35.45, 35.25	6.94	7.81	7.38	1.23	40.65	299.80
Salivary Gland Clontech	37.3, 37.06	2.4	2.75	2.58	7.31	6.84	17.61
Skeletal Muscle Clontech	40, 39.34	0	0.74	0.37	1.26	39.68	14.68
Skin	38.84, 34.56	0.98	11.63	6.31	1.21	41.32	260.54
Small Intestine Clontech	40, 40	0	0.63	0.32	0.98	51.07	16.09
Spleen	34.37, 34.89	13	9.6	11.30	4.92	10.16	114.84
Stomach	39.73, 35.52		6.67	3.63	2.73	18.32	66.48
Testis Clontech	38.91, 40	0.94	0	0.47	0.57	87.87	41.30
Thymus Clontech	31.96, 32.96		29.2	40.68	9.89	5.06	205.66
Thyroid	35.53, 40	6.66	0	3.33	2.77	18.05	60.11
Trachea Clontech	37.99, 37.69		1.91	1.76	9.71	5.15	9.06

Urinary Bladder	39.69, 39.02	0.6	0.89	0.75	5.47	9.14	6.81
Uterus	34.41, 33.56	12.67	20.75	16.71	5.34	9.36	156.46
genomic	26.31	1359.1	 		+	12.50	130.40
b-actin	27.2	812.88	 	 -			
1.00E+05	19.24	100000	 			 -	
1.00E+05	19.38	100000	†	 	 	+	
1.00E+04	22.67	10000		 		+	
1.00E+04	22.67	10000	 	 	+	+	
1.00E+03	26.31	1000	 	 	+		
1.00E+03	26.28	1000	 	┪──		 	
1.00E+02	30.17	100	 		 	+	
1.00E+02	31.02	100		 	 	-	
1.00E+01	36.17	10			 		
1.00E+01	34.46	10			 	├──	
1.00E-00	40	0	 	 	 	 	
1.00E-00	40	1		 	 	 	<u> </u>
NTC	40	-1		-	 		
NTC	40	-1		 	 		

Sample sbg1016995IGBrecpt	Reg number (GSK identifier	Ct	Mean GOI copies	copies of mRNA detecte	Sample	Fold Change in Disease
:				d/50 ng total RNA		Populat on
colon normal GW98-167	21941	29.45	174.86	349.72	colon normal	
colon tumor GW98-166	21940	32.1	33.44	66.88	colon tumor	-5.23
colon normal GW98-178	22080	31.77	41.07	82.14	colon normal	
colon tumor GW98-177	22060	32.66	23.5	47.00	colon tumor	-1.75
colon normal GW98-561	23514	29.15	211.24	422.48	colon normal	
colon tumor GW98-560	23513	31.25	56.95	113.90	colon tumor	-3.71
colon normal GW98-894	24691	30.68	81.3	162.60	colon normal	
colon tumor GW98-893	24690	31.33	54.12	108.24	colon tumor	-1.50
lung normal GW98-3	20742	31.86	38.92	77.84	lung normal	
lung tumor GW98-2	20741	34.55	7.25	14.50	lung tumor	-5.37
lung normal GW97-179	20677	28.38	342.07	684.14	lung normal	
lung tumor GW97-178	20676	32.1	33.52	67.04	lung tumor	-10.20
ung normal GW98-165	21922	32.2	31.46	62.92	lung normal	10.20
ung tumor GW98-164	21921	30.5	90.8	181.60	lung tumor	2.89
ung normal GW98-282	22584	29.82	138.8	277.60	lung normal	- 2.05
ung tumor GW98-281	22583	32.72	22.64	45.28	lung tumor	-6.13
preast normal GW00-392	28750	31.5	48.65	48.65	breast normal	-0.15
preast tumor GW00-391	28746	31.9	37.84	75.68	breast tumor	1.56
preast normal GW00-413	28798	34.37	8.07	8.07	breast normal	1.50
reast tumor GW00-412	28797	29.97	126.73	253.46	breast tumor	31.41
reast normal GW00-	27592-95	35.08	5.2		breast normal	31.41

025,028	r ——	T				T
235:238	05500 01	00.0	00.54	00.54	1	F (D .
breast tumor GW00- 231:234	27588-91	32.3	29.54	29.54	breast tumor	5.68
breast normal GW98-621	23656	31.11	61.96	123.92	breast normal	
breast tumor GW98-620	23655	31.27	56.22	112.44	breast tumor	-1.10
brain normal BB99-542	25507	33.3	15.82	31.64	brain normal	
brain normal BB99-406	25509	33.02	18.83	37.66	brain normal	_
brain normal BB99-904	25546	33.93	10.62	21.24	brain normal	
brain stage 5 ALZ BB99- 874	25502	32.36	28.38	56.76	brain stage 5 ALZ	1.88
brain stage 5 ALZ BB99- 887	25503	31.79	40.66	81.32	brain stage 5 ALZ	2.69
brain stage 5 ALZ BB99- 862	25504	32.04	34.76	69.52	brain stage 5 ALZ	2.30
brain stage 5 ALZ BB99- 927	25542	31.79	40.51	81.02	brain stage 5 ALZ	2.68
CT lung	normal	33.32	15.63	31.26	CT lung Nml	
lung 26	normal	29.8	140.4	<u> </u>	lung 26 Nml	
lung 27	normal	38.71	0.54	0.54	lung 27 Nml	
lung 24	COPD	39.31	0.37	0.37	lung 24 COPD	-29.00
lung 28	COPD	37.09	1.48 .	1.48	lung 28 COPD	-7.25
lung 23	COPD	38.02	0.83	0.83	lung 23 COPD	-12.93
lung 25	normal	39.22	0.39	0.39	lung 25 Nml	
asthmatic lung ODO3112	29321	37.96	0.86	0.86	asthmatic lung	-12.48
asthmatic lung ODO3433	29323	31.15	60.54	121.08	asthmatic lung	11.28
asthmatic lung ODO3397	29322	33.74	12.01	24.02	asthmatic lung	2.24
asthmatic lung ODO4928	29325	31.59	46.09	92.18	asthmatic lung	8.59
endo cells	control	36.98	1.58	1.58	endo cells	
endo VEGF		39.28	0.38	0.38	endo VEGF	-4.16
endo bFGF		37.3	1.3	1.30	endo bFGF	-1.22
heart Clontech	normal	35.73	3.45	6.90	heart	
heart (T-1) ischemic	29417	34.7	6.58	13.16	heart (T-1) ischemic	1.91
heart (T-14) non- obstructive DCM	29422	37.5	1.15	2.30	heart (T-14) non- obstructive DCM	-3.00
heart (T-3399) DCM	29426	35.15	4.96	9.92	heart (T-3399) DCM	1.44
adenoid GW99-269	26162	25.98		3056.14	adenoid	
tonsil GW98-280	22582	24.6	3626.43	7252.86	tonsil	
T cells PC00314	28453	34.49	7.5	15.00	T cells	
PBMNC		37.58	1.09	1.09	PBMNC	
monocyte		37.4	1.22	2.44	monocyte	
B cells PC00665	28455	31.68	43.59	87.18	B cells	
dendritic cells	28441	35.05	5.28	10.56	dendritic cells	
neutrophils	28440	35.68	3.57	3.57	neutrophils	
eosinophils	28446	35.07	5.23	10.46	eosinophils	
BM unstim		38.19	0.75	0.75	BM unstim	
BM stim	treated	34.27	8.61	8.61	BM stim	11.48
osteo dif	treated	40	0.09	0.09	osteo dif	-5.78
osteo undif		40	0.52	0.52	osteo undif	

chondrocytes		32.86	100.70	771.00		
OA Synovium IP12/01	29462	I		51.98	chondrocytes	
OA Synovium NP10/01	29461	31.85		38.99	OA Synovium	
OA Synovium NP57/00	28464	34.76	6.33	12.66	OA Synovium	
RA Synovium NP03/01		31.39	51.96	103.92	OA Synovium	
RA Synovium NP71/00	28466	31.1	62.3	124.60	RA Synovium	1
	28467	31.95	36.76	73.52	RA Synovium	1
RA Synovium NP45/00	28475	32.43	27.14	54.28	RA Synovium	†
OA bone (biobank)	29217	35.84	3.22	3.22	OA bone (biobank)	
OA bone Sample 1	J. Emory		4.18	8.36	OA bone	
OA bone Sample 2	J. Emory		5.95	11.90	OA bone	1
Cartilage (pool)	Normal	34.79	6.21	12.42	Nml Cartilage (pool)	
Cartilage (pool)	OA	36.55	2.07	4.14	OA Cartilage (pool)	-3.00
PBL unifected	28441	30.02	122.76	245.52	PBL unifected	
PBL HIV IIIB	28442	28.17	388.59	777.18	PBL HIV IIIB	3.17
MRC5 uninfected (100%)	29158	34.6	7.01	14.02	MRC5 uninfected (100%)	3.17
MRC5 HSV strain F	29178	33.27	16.13	32.26	MRC5 HSV strain	2.30
W12 cells	29179	34.43	7.8	15.60	W12 cells	·
Keratinocytes	29180	35.04	5.31	10.62	Keratinocytes	
B-actin control		27	808.77			
genomic .		26.18	1353.11			
1.00E+05		19.37	100000			
1.00E+05		19.59	100000		<u> </u>	
1.00E+04		22.75	10000			
1.00E+04		22.8	10000			
1.00E+03		26.43	1000			<u> </u>
1.00E+03		26.17	1000			
1.00E+02		30.09	100			
1.00E+02		30.21	100			
1.00E+01		35.27	10			<u>·</u>
1.00E+01		35.55	10			
1.00E-00		39.31	1			
1.00E-00		34.53	1			
NTC			-1			
*lung 26 Normal has been omitted due to multiple amplification failures from that sample			-			

Gene Name sbg1016995IGBrecpt

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-5.23
colon tumor	-1.75
colon tumor	-3.71
colon tumor	-1.50

lung tumor	-5.37
lung tumor	-10.20
lung tumor	2.89
lung tumor	-6.13
breast tumor	1.56
breast tumor	31.41
breast tumor	5.68
breast tumor	-1.10
brain stage 5 ALZ	1.88
brain stage 5 ALZ	2.69
brain stage 5 ALZ	2.30
brain stage 5 ALZ	2.68
lung 24	-29.00
lung 28	-7.25
lung 23	-12.93
asthmatic lung	-12.48
asthmatic lung	11.28
asthmatic lung	2.24
asthmatic lung	8.59
endo VEGF	-4.16
endo bFGF	-1.22
heart T-1	1.91
heart T-14	-3.00
heart T-3399	1.44
BM stim	11.48
osteo dif	-5.78
Cartilage (pool)	-3.00
PBL HIV IIIB	3.17
MRC5 HSV strain F	2.30

Gene Name sbg1151bSREC

Highest overall expression in normal and disease samples. Fairly ubiquitously expressed but highest normal expression in adipocytes, adipose, whole brain, fetal brain, and endometrium. Highest disease expression in one of the colon tumor samples, one of the normal lung samples, chondrocytes, and the uninfected MRC5. There are no significant changes in brains from patients with Alzheimer's disease. Downregulation in 1 of 4 lung tumors suggests possible implication in lung cancer. Upregulation in 1 of 4 breast tumor samples is sufficient to claim a role in cancer of the breast. Upregulation in 1 of 4 asthma lungs implies a role in asthma. Downregulation in HSV implicates involvement in herpes simplex virus as a potential host factor. High expression in immune cells. High expression in cartilage and bone samples from patients with OA as well as high expression in chondrocytes possible involvement in osteoarthritis and rheumatoid arthritis. Additionally, the corroborating expression in immune cells (particularly B and T cells) provides additional evidence for a role in RA/OA.

15

10

5

Sample sbg1151bSREC	Ct (sample 1 and 2)	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected /50 ng total RNA
Subcutaneous Adipocytes Zenbio	28.31, 28.35	477.04	466.02	471.53	3.06	16.34	7704.74
Subcutaneous Adipose Zenbio	30.79, 30.22	122.3	166.95	144.63	0.96	52.36	7571.99
Adrenal Gland Clontech	33.96, 33.47	21.39	27.97	24.68	0.61	81.97	2022.95
Whole Brain Clontech	24.07, 23.98	4889.28	5123.8	5006.54	7.24	6.91	34575.55

Fetal Brain Clontech	21 1 20 00	1100.11				.,	
Cerebellum Clontech	31.1, 32.29	103.16		78.36	0.48	103.95	
Cervix	31.03, 31.99			85.10	2.17	23.04	1960.83
Colon	31.22, 30.06		182.64	139.62	2.42	20.66	2884.71
Endometrium	30.68, 30.53		140.99	135.26	2.71	18.45	2495.48
	30.59, 30.44			141.93	0.73	68.21	9681.45
Esophagus Heart Clontech	33.11, 32.17		57.32	45.70	1.37	36.50	1667.88
	33.19, 32.41		50.11	41.40	1.32	37.88	1567.99
Hypothalamus Ileum	34.34, 40	17.4	0	8.70	0.32	155.28	1350.93
Jejunum	31.29, 30.13		174.99	133.92	2.58	19.38	2595.25
	29.7, 29.48	221.9	251.05	236.48	6.60	7.58	1791.48
Kidney Liver	31.03, 30.17		171.45	139.30	2.12	23.58	3285.38
	32.89, 33.16		33.17	35.89	1.50	33.33	1196.33
Fetal Liver Clontech	28.05, 28.15		518.95	534.80	10.40	4.81	2571.13
Lung	29.39, 28.63		398.99	331.42	2.57	19.46	6447.86
Mammary Gland Clontech	27.56, 27.39	<u></u>	789.94	753.81	13.00	3.85	2899.25
Myometrium	29.08, 28.93	312.86	339.46	326.16	2.34	21.37	6969.23
Omentum	30.72, 29.32		273.04	199.87	3.94	12.69	2536.42
Ovary	28.89, 28.68		388.02	367.47	4.34	11.52	4233.47
Pancreas	35.24, 35.75	10.59	8.02	9.31	0.81	61.80	575.09
Head of Pancreas	35.25, 33.21	10.57	32.34	21.46	1.57	31.85	683.28
Parotid Gland	28.46, 27.84	438.62	615.36	526.99	5.48	9.12	4808.30
Placenta Clontech	28.67, 28.66	391.9	393.15	392.53	5.26	9.51	3731.23
Prostate	30.55, 31.46	139.05	84.64	111.85	3.00	16.67	1864.08
Rectum	31.28, 31.43	93.33	85.92	89.63	1.23	40.65	3643.29
Salivary Gland Clontech	31.13, 30.57	101.46	138.16	119.81	7.31	6.84	819.49
Skeletal Muscle Clontech	34.05, 35.24	20.38	10.59	15.49	1.26	39.68	614.48
Skin	31.53, 31.2	81.49	97.36	89.43	1.21	41.32	3695.25
Small Intestine Clontech	34.81, 33.82	13.41	23.18	18.30	0.98	51.07	934.37
Spleen	31.01, 30.44	108.41	147.9	128.16	4.92	10.16	1302.39
Stomach	32.01, 31.1	62.6	102.97	82.79	2.73	18.32	1516.21
Testis Clontech	31.74, 32.29	72.49	53.45	62.97	0.57	87.87	5533.39
Thymus Clontech	28.84, 28.53	356.64	421.44	389.04	9.89	5.06	1966.84
Thyroid		176.76	184.5	180.63	2.77	18.05	3260.47
Trachea Clontech		434.3	459.42	446.86	9.71	5.15	2301.03
Urinary Bladder		230.25	241.15	235.70	5.47		2154.48
Uterus		387.47	461.07	424.27	5.34		3972.57
genomic	26.24	1487.44					
b-actin		839.2					
1.00E+05		100000		•		· ·	
1.00E+05		100000					
1.00E+04	22.64	10000					
1.00E+04		10000				+	
1.00E+03	26.22	1000			 		
1.00E+03	26.04	1000			 		
1.00E+02	31.04	100				+	

1.00E+02	30.1	100	T		
1.00E+01	33.33	10			
1.00E+01	39.08	10	7		
1.00E-00	40	0			
1.00E-00	40	1			
NTC	40	0			
NTC	40	0	 7		

Sample	Reg	Ct	Mean	copies of	Sample	Fold
sbg1151bSREC	number		GOI	mRNA	_	Change
	(GSK		copies	detected		in Disease
	identifie	[/50 ng		Populatio
	r)		{	total		n
1.077/00 167	21041	04.55	5257.05	RNA		
colon normal GW98-167	21941	24.55	5357.25	L	colon normal	2.60
colon tumor GW98-166	21940	22.61	19769.94	39539.88		3.69
colon normal GW98-178	22080	26.71	1252.3	2504.60	colon normal	1.10
colon tumor GW98-177	22060	26.13	1854.49	3708.98	colon tumor	1.48
colon normal GW98-561	23514	26.82	1165.06	2330.12	colon normal	
colon tumor GW98-560	23513	25.75	2390.26	4780.52	colon tumor	2.05
colon normal GW98-894	24691	26.06	1948.57	3897.14	colon normal	
colon tumor GW98-893	24690	26.59	1362.55	2725.10	colon tumor	-1.43
lung normal GW98-3	20742	22.77	17753		lung normal	
lung tumor GW98-2	20741	26.17	1803.8	3607.60	lung tumor	-9.84
lung normal GW97-179	20677	25.24	3370.88	6741.76	lung normal	
lung tumor GW97-178	20676	24.14	7057.92	14115.84	lung tumor	2.09
lung normal GW98-165	21922	23.87	8442.49	16884.98	lung normal	
lung tumor GW98-164	21921	24.08	7339.83	14679.66	lung tumor	-1.15
lung normal GW98-282	22584	25.51	2804.42	5608.84	lung normal	
lung tumor GW98-281	22583	24.2	6787.31	13574.62	lung tumor	2.42
breast normal GW00-392	28750	25.7	2480.5	2480.50	breast normal	
breast tumor GW00-391	28746	25.77	2364.2	4728.40	breast tumor	1.91
breast normal GW00-413	28798	26.06	1948.1	1948.10	breast normal	
breast tumor GW00-412	28797	27.21	894.11	1788.22	breast tumor	-1.09
breast normal GW00- 235:238	27592-95	26.64	1317.83	1317.83	breast normal	
breast tumor GW00- 231:234	27588-91	23.91	8225.11	8225.11	breast tumor	6.24
breast normal GW98-621	23656	24.46	5693.73	11387.46	breast normal	
breast tumor GW98-620	23655	23.91	8218.73	16437.46	breast tumor	1.44
brain normal BB99-542	25507	26.39	1553.13	3106.26	brain normal	
brain normal BB99-406	25509	26.63	1325.63	2651.26	brain normal	
brain normal BB99-904	25546	27.05	1001.6	2003.20	brain normal	. A
brain stage 5 ALZ BB99- 874	25502	26.97	1052.15	2104.30	brain stage 5 ALZ	-1.23
brain stage 5 ALZ BB99- 887	25503	25.28	3289.99	6579.98	brain stage 5 ALZ	2.54
brain stage 5 ALZ BB99- 862	25504	26.24	1725.06	3450.12	brain stage 5 ALZ	1.33
brain stage 5 ALZ BB99-	25542	26.12	1864.26	3728.52	brain stage 5 ALZ	1.44

927			- 1			
CT lung KC	normal	24.7	4 4711.99	9423.9	8 CT lung	
lung 26 KC	normal			611.36		_
lung 27 KC	normal	28.2		439.19	lung 27	
lung 24 KC	COPD	26.9				0.56
lung 28 KC	COPD	26.9				-2.56
lung 23 KC	COPD	27.1		909.68	lung 23	-2.57
lung 25 KC	normal	27.6		678.79	lung 25	-3.07
asthmatic lung ODO311		25.33				
asthmatic lung ODO343	3 29323	25.30				1.14
asthmatic lung ODO339	7 29322	23.81				2.23
asthmatic lung ODO492		24.76	_1			6.32
endo cells KC	control	26	2021.13			3.34
endo VEGF KC	Jonator	25.78		2343.21		
endo bFGF KC		26.7	1264.03			1.16
heart Clontech	normal	26.62		1264.03 2661.28		-1.60
heart (T-1) ischemic	29417	27.07		1968.66	1	
heart (T-14) non-	29422	26.11		3755.50		-1.35
obstructive DCM	27422	20.11	10//./3	3/33.30	heart T-14	1.41
heart (T-3399) DCM	29426	26.34	1608.79	3217.58	heart T-3399	1.21
adenoid GW99-269	26162	27.64	670.25	1340.50	adenoid	1.21
tonsil GW98-280	22582	27.61	684.15	1368.30	tonsil	
T cells PC00314	28453	25.95	2098.64	4197.28	T cells	
PBMNC		31.16	63.19	63.19	PBMNC	
monocyte		31.32	56.63	113.26	monocyte	
B cells PC00665	28455	26.34	1609.52	3219.04	B cells	
dendritic cells 28441		28.25	444.68	889.36	dendritic cells	
neutrophils	28440	26.11	1874.13	1874.13	neutrophils	
eosinophils.	28446	26.39	1553.82	3107.64	eosinophils	-
BM unstim		31.45	51.76	51.76	BM unstim	
BM stim		31.28	58.37	58.37	BM stim	1.13
osteo dif		24.62	5118.74	5118.74	osteo dif	1.70
osteo undif		25.41	3015.6	3015.60	osteo undif	12.70
chondrocytes		22.12	27351.89			+
OA Synovium IP12/01	29462	24.5	5551.61	5551.61	OA Synovium	+
OA Synovium NP10/01	29461	25.1	3711.29	7422.58	OA Synovium	
OA Synovium NP57/00	28464	24.5	5537.1	11074.20		
RA Synovium NP03/01	28466	26.45	1492.95	2985.90	RA Synovium	
A Synovium NP71/00	28467	24.44	5783.96	11567.92		
A Synovium NP45/00	28475	25.94	2112.54	4225.08	RA Synovium	 -
A bone (biobank)	29217	26.16	1811.72	1811.72	OA bone	
A bone Sample 1	J. Emory	24.54	5399.31	10798.62	(biobank)	
A bone Sample 2	J. Emory	26.07	1931.94	3863.88	OA bone	
artilage (pool)	Normal		3730.42		OA bone	
artilage (pool)	OA		2328.66	7460.84	Cartilage (pool)	
	~1.1	ا ۱۰۰۰	40.00	4657.32	Cartilage (pool)	-1.60
BL unifected	28441		1068.16	2136.32	PBL unifected	

MRC5 uninfected (100%)	29158	22,28	24694.87	49389.74	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	29.07	256.64	513.28	MRC5 HSV strain	-96.22
W12 cells	29179	28.37	410.68	821.36	W12 cells	
Keratinocytes	29180	29.12	249.25	498.50	Keratinocytes	
B-actin control		27.53	721.15			
genomic		26.92	1091.74			
1.00E+05		19.96	100000			
1.00E+05		20.19	100000			
1.00E+04		23.43	10000			
1.00E+04		23.34	10000			
1.00E+03		26.64	1000			
1.00E+03		26.8	1000			
1.00E+02		31.34	100			
1.00E+02		31.48	100			
1.00E+01		34.9	10			
1.00E+01		34.19	10			
1.00E-00		40	0			
1.00E-00		35.53	1			
NTC		40	0			

Gene Name sbg1151bSREC

Disease tissues	Fold Change in Disease
	Population Relative to
	Normal
colon tumor	3.69
colon tumor	1.48
colon tumor	2.05
colon tumor	-1.43
lung tumor	-9.84
lung tumor	2.09
lung tumor	-1.15
lung tumor	2.42
breast tumor .	1.91
breast tumor	-1.09
breast tumor	6.24
breast tumor	1.44
brain stage 5 ALZ /	-1.23
brain stage 5 ALZ	2.54
brain stage 5 ALZ	1.33
brain stage 5 ALZ	1.44
lung 24	-2.56
lung 28	-2.57
lung 23	-3.07
asthmatic lung	1.14
asthmatic lung	2.23
asthmatic lung	6.32
asthmatic lung	3.34
endo VEGF	1.16
endo bFGF	-1.60
heart T-1	-1.35

5

10

heart T-14	1.41
heart T-3399	1.21
BM stim	1.13
osteo dif	1.70
Cartilage (pool)	-1.60
PBL HIV IIIB	-2.66
MRC5 HSV strain F	-96.22

Gene Name sbg1399854ANK

Low overall expression. Highest normal expression is seen in the whole brain, fetal brain, and liver. Good levels of expression are seen in all of the samples representing the female reproductive system. Highest disease expression is seen in the normal and Alzheimer's brain samples as well as in the dendritic cells. Upregulation in 2 of 4 colon tumor samples and in 2 of 4 breast tumor samples as well as downregulation in 2 of 4 lung tumor samples implicates this gene in cancers of the colon, breast, and lung. Downregulation in 3 of 3 COPD samples and in 2 of 4 asthmatic lung samples suggests a potential role for this gene in chronic obstructive pulmonary disorder and asthma. Downregulation in the OA cartilage sample as well as corroborating low expression in the normal chondrocytes and many of the immune cells suggests involvement in osteoarthritis. Upregulation in the HSV-infected MRC5 cells suggests that this gene may be a host factor in HSV.

Sample sbg1399854ANK	Ct (sample 1 and 2)	Mean GOI	Mean GOI	Average GOI	18S rRNA	50	copies
		copies	copies	Copies	(ng)	ng/18S	of mRNA
	1	(sample			(8)	(ng)	detecte
		1)	2)	İ		. 0"	d/50 ng
	,		1				total
Subcutaneous	40, 40	0	0	0.00	1005	-	RNA
Adipocytes Zenbio	10, 40	0	١	0.00	3.06	16.34	0.00
Subcutaneous Adipose Zenbio	40, 40	1.83	1.77	1.80	0.96	52.36	94.24
Adrenal Gland Clontech	40, 40	1.75	0	0.88	0.61	81.97	71.72
Whole Brain Clontech	28.57, 28.35	944.29	1058.09	1001.19	7.24	6.91	6914.30
Fetal Brain Clontech	36.57, 34.65	14.38	39.28	26.83	0.48	103.95	2788.98
Cerebellum Clontech	37.21, 36.71	10.3	13.37	11.84	2.17	23.04	272.70
Cervix	36.3, 40	16.52	0	8.26	2.42	20.66	170.66
Colon	36.17, 35.71	17.73	22.5	20.12	2.71	18.45	371.13
Endometrium	40, 36.1	0	18.41	9.21	0.73	68.21	627.90
Esophagus	40, 40	0	1.58	0.79	1.37	36.50	28.83
Heart Clontech	40, 40	0	0	0.00	1.32	37.88	0.00
Hypothalamus	40, 40	0	0	0.00	0.32	155.28	0.00
Ileum	40, 40	0	0	0.00	2.58	19.38	0.00
Jejunum	34.07, 34.37	53.18	45.33	49.26	6.60	7.58	373.14
Kidney	37.55, 40	8.58	0	4.29	2.12	23.58	101.18
Liver	36.53, 35.62	14.69	23.59	19.14	1.50	33.33	638.00
Fetal Liver Clontech	34.56, 34.61	41.04	40.04	40.54		4.81	194.90
Lung	40, 40	0	0	0.00			0.00
Mammary Gland Clontech	39.07, 39.45	3.89	3.18	3.54		3.85	13.60
Myometrium	39.5, 35.37	3.1	26.93	15.02	2.34	21.37	320.83
	40, 36.18	0	17.61	8.81			111.74
Ovary	35.87, 34.34	20.75	46.22				385.77

Pancreas	40, 40	0	0	0.00	0.81	61.80	0.00
Head of Pancreas	40, 39.79	0	2.66	1.33	1.57	31.85	42.36
Parotid Gland	35.2, 38.6	29.46	4,97	17.22	5.48	9.12	157.07
Placenta Clontech	40, 38.14	0	6.32	3.16	5.26	9.51	30.04
Prostate	40, 40	0	0	0.00	3.00	16.67	0.00
Rectum	40, 39.2	0	3.63	1.82	1.23	40.65	73.78
Salivary Gland Clontech	40, 39.19	2.19	3.64	2.92	7.31	6.84	19.94
Skeletal Muscle Clontech	40, 39.37	0	3.32	1.66	1.26	39.68	65.87
Skin	40, 40	0	2.09	1.05	1.21	41.32	43.18
Small Intestine Clontech	40, 40	1.44	0	0.72	0.98	51.07	36.77
Spleen	35.36, 40	27.05	1.84	14.45	4.92	10.16	146.80
Stomach	40, 37.03	1.93	11.29	6.61	2.73	18.32	121.06
Testis Clontech	40, 37.99	0	6.82	3.41	0.57	87.87	299.65
Thymus Clontech	38.47, 35.55	5.32	24.52	14.92	9.89	5.06	75.43
Thyroid	40, 40	0	2.15	1.08	2.77	18.05	19.40
Trachea Clontech	35.37, 36.67	26.97	13.66	20.32	9.71	5.15	104.61
Urinary Bladder	39.07, 40	3.89	1.42	2.66	5.47	9.14	24.27
Uterus	36.01, 33.41	19.29	75.06	47.18	5.34	9.36	441.71
genomic	29.57	558.84					
b-actin	27.57	1592.66					
1.00E+05	19.91	100000					
1.00E+05	20.08	100000					
1.00E+04	23.79	10000					
1.00E+04	24.06	10000					
1.00E+03	27.72	1000					
1.00E+03	28.29	1000					
1.00E+02	31.95	100		L			<u> </u>
1.00E+02	33.62	100					
1.00E+01	39.75	10					
1.00E+01	35.41	10					
1.00E-00	40	0					
1.00E-00	40	0					
NTC	40	-1					
NTC	40	-1					

Sample sbg1399854ANK	Reg number (GSK identifier)	Ct	Mean GOI copies	copies of mRNA detecte d/50 ng total RNA	Sample	Fold Change in Disease Populati on
colon normal GW98-167	21941	35.32	22.34	44.68	colon normal	
colon tumor GW98-166	21940	34.14	47.5	95.00	colon tumor	2.13
colon normal GW98-178	22080	36.16	13.07	26.14	colon normal	
colon tumor GW98-177	22060	35.58	18.93	37.86	colon tumor	1.45

colon normal GW98-561		36.5		20.06	colon normal	
colon tumor GW98-560	23513	32.6		252.96	colon tumor	12.61
colon normal GW98-894		35.6		37.24	colon normal	
colon tumor GW98-893	24690	33.24		169.50	colon tumor	4.55
lung normal GW98-3	20742	34.7	7 31.8	63.60	lung normal	
lung tumor GW98-2	20741	33.63	66.03	132.06	lung tumor	2.08
lung normal GW97-179	20677	34.76	32.04	64.08	lung normal	
lung tumor GW97-178	20676	34.44		78.46	lung tumor	1.22
lung normal GW98-165	21922	35.18	24.44	48.88	lung normal	†
lung tumor GW98-164	21921	37.99	4.06	8.12	lung tumor	-6.02
lung normal GW98-282	22584	33.64	65.37	130.74	lung normal	
lung tumor GW98-281	22583	37.3	6.34	12.68	lung tumor	-10.31
breast normal GW00-392		36.29	12.08	12.08	breast normal	
breast tumor GW00-391	28746	36.14	13.29	26.58	breast tumor	2.20
breast normal GW00-413		37.08		7.29	breast normal	
breast tumor GW00-412	28797	33.26	1	167.16	breast tumor	22.93
breast normal GW00- 235:238	27592-95	38.93	2.24	2.24	breast normal	
breast tumor GW00- 231:234	27588-91	36.57	10.08	10.08	breast tumor	4.50
breast normal GW98-621	23656	34.9	29.32	58.64	breast normal	
breast tumor GW98-620	23655	36.11	13.51	27.02	breast tumor	-2.17
brain normal BB99-542	25507	29.6	866.9	1733.80	brain normal	
brain normal BB99-406	25509	31.93	194.87	389.74	brain normal	
brain normal BB99-904	25546	30.38	526.58	1053.16	brain normal	
brain stage 5 ALZ BB99- 874	25502	32.7	119.57	239.14	brain stage 5 ALZ	-4.43
brain stage 5 ALZ BB99- 887	25503	30.08	634.97	1269.94	brain stage 5 ALZ	1.20
brain stage 5 ALZ BB99- 862	25504	29.7	809.22	1618.44	brain stage 5 ALZ	1.53
brain stage 5 ALZ BB99- 927	25542	29.93	700.82	1401.64	brain stage 5 ALZ	1.32
CT lung	normal	35.1	25.82	51.64	CT lung Nml	
lung 26	normal	36.74	9.07		lung 26 Nml	 -
lung 27	normal	40	0	0.00	lung 27 Nml	
lung 24	COPD	40	2.5	2.50	lung 24 COPD	-7.11
lung 28	COPD	40	0	0.00	lung 28 COPD	-17.77
lung 23	COPD	40	0	0.00	lung 23 COPD	-17.77
lung 25	normal	39.39	1.67	1.67	lung 25 Nml	
	29321	40	0	0.00	asthmatic lung	-17.77
	29323	37	7.68	15.36	asthmatic lung	-1.16
	29322	36.08	13.8	27.60		1.55
	29325	40	0	0.00		-17.77
	control	40	0	0.00	endo cells	
endo VEGF		40	0	 		0.00
endo bFGF		35.68	17.77			17.77
hand Claude 1	normal	35.03	26.95		heart	
heart Clontech heart (T-1) ischemic	tioimai	JJ.0J	40.93	122.90	ircart i	

heart (T-14) non-	29422	34.57	36.11	72.22	heart (T-14) non-	1.34
obstructive DCM	<u> </u>				obstructive DCM	
heart (T-3399) DCM	29426	36.25	12.37	24.74	heart (T-3399) DCM	-2.18
adenoid GW99-269	26162	38.51	2.92	5.84	adenoid ·	
tonsil GW98-280	22582	35.05	26.54	53.08	tonsil	
T cells PC00314	28453	35.5	19.98	39.96	T cells	
PBMNC		40	0	0.00	PBMNC	*
monocyte		40	0	0.00	monocyte	
B cells PC00665	28455	33.78	59.82	119.64	B cells	
dendritic cells	28441	29.33	1026.14	2052.28	dendritic cells	
neutrophils	28440	31.3	292.56	292.56	neutrophils	
eosinophils	28446	35.97	14.79	29.58	eosinophils	
BM unstim		35.56	19.16	19.16	BM unstim	
BM stim	treated	34.79	31.48	31.48	BM stim	1.64
osteo dif	treated	40	2.59	2.59	osteo dif	2.59
osteo undif		40	0	0.00	osteo undif	
chondrocytes		37.11	7.15	17.88	chondrocytes	
OA Synovium IP12/01	29462	35.95	14.93	14.93	OA Synovium	
OA Synovium NP10/01	29461	35.74	17.17	34.34	OA Synovium	
OA Synovium NP57/00	28464	39.09	2.02	4.04	OA Synovium	
RA Synovium NP03/01	28466	38.03	3.97	7.94	RA Synovium	
RA Synovium NP71/00	28467	35.08	26.03	52.06	RA Synovium	
RA Synovium NP45/00	28475	37.11	7.13	14.26	RA Synovium	
OA bone (biobank)	29217	33.76	60.54	60.54	OA bone	
OA bone Sample 1	J. Emory	33.35	78.68	157.36	(biobank) OA bone	·
OA bone Sample 2 .	J. Emory	34.15	47.2	94.40	OA bone	
Cartilage (pool)	Normal	35.05	26.63	53.26	Nml Cartilage	
Carriago (poor)	1.0				(pool)	
Cartilage (pool)	OA	37.42	5.87	11.74	OA Cartilage (pool)	-4.54
PBL unifected	28441	33.95	53.63	107.26	PBL unifected	
PBL HIV IIIB	28442	33.3	81.2	162.40	PBL HIV IIIB	1.51
MRC5 uninfected (100%)	29158	39.41	1.64	3.28	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	35.73	17.22	34.44	MRC5 HSV strain	10.50
W12 cells	29179	35.08	26.08	52.16	W12 cells	
Keratinocytes	29180	36.69	9.33	18.66	Keratinocytes	
B-actin control		28.13	2213.67			
genomic		29.03	1240.79			
1.00E+05		22.03	100000			
1.00E+05		22.36	100000		,	
1.00E+04	· · · · · · · · · · · · · · · · · · ·	25.68	10000			
1.00E+04	 	25.78	10000			
1.00E+03		29.01	1000			
1.00E+03	 	28.67	1000			
1.00E+02		33.46	100			 -
1.00E+02	 	40	100	 		
<u> </u>	L		L		L 	

1.00E+01	38.75	110	 	 	
1.00E+01	40	10	 	 	
1.00E-00	40	0	 -	 	
1.00E-00	38.6	1	 	 -+	
NTC	40	0	 	 	
*lung 26 Normal has been omitted due to multiple amplification failures from that sample					

Gene Name sbg1399854ANK

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	2.13
colon tumor	1.45
colon tumor	12.61
colon tumor	4.55
lung tumor	2.08
lung tumor	1.22
lung tumor	-6.02
lung tumor	-10.31
breast tumor	2.20
breast tumor	22.93
breast tumor	4.50
breast tumor	-2.17
brain stage 5 ALZ	-4.43
brain stage 5 ALZ	1.20
brain stage 5 ALZ	1.53
brain stage 5 ALZ	1.32
lung 24 .	-7.11
lung 28	-17.77
lung 23	-17.77
asthmatic lung	-17.77
asthmatic lung	-1.16
asthmatic lung	1.55
asthmatic lung	-17.77
endo VEGF	0.00
endo bFGF	17.77
heart T-1	-2.34
heart T-14	1.34
heart T-3399	-2.18
BM stim	1.64
osteo dif	2.59
Cartilage (pool)	-4.54
PBL HIV IIIB	1.51
MRC5 HSV strain F	10.50

Table V. Additional diseases based on mRNA expression in specific tissues

Tissue	Additional Diseases
Expression	
Brain	Neurological and psychiatric diseases, including Alzheimers, parasupranuclear palsey, Huntington's disease, myotonic dystrophy, anorexia, depression, schizophrenia, headache, amnesias, anxiety disorders, sleep disorders, multiple sclerosis
Heart	Cardiovascular diseases, including congestive heart failure, dilated cardiomyopathy, cardiac arrhythmias, Hodgson's Disease, myocardial infarction, cardiac arrhythmias
Lung	Respiratory diseases, including asthma, Chronic Obstructive Pulmonary Disease, cystic fibrosis, acute bronchitis, adult respiratory distress syndrome
Liver	Dyslipidemia, hypercholesterolemia, hypertriglyceridemia, cirrhosis, hepatic encephalopathy, fatty hepatocirrhosis, viral and nonviral hepatitis, Type II Diabetes Mellitis, impaired glucose tolerance
Kidney	Renal diseases, including acute and chronic renal failure, acute tubular necrosis, cystinuria, Fanconi's Syndrome, glomerulonephritis, renal cell carcinoma, renovascular hypertension
Skeletal	Eulenburg's Disease, hypoglycemia, obesity, tendinitis, periodic paralyses,
muscle	malignant hyperthermia, paramyotonia congenita, myotonia congenita
Intestine	Gastrointestinal diseases, including Myotonia congenita, Ileus, Intestinal Obstruction, Tropical Sprue, Pseudomembranous Enterocolitis
Spleen/lymph	Lymphangiectasia, hypersplenism, angiomas, ankylosing spondylitis, Hodgkin's Disease, macroglobulinemia, malignant lymphomas, rheumatoid arthritis
Placenta	Choriocarcinoma, hydatidiform mole, placenta previa
Testis	Testicular cancer, male reproductive diseases, including low testosterone and male infertility
Pancreas	Diabetic ketoacidosis, Type 1 & 2 diabetes, obesity, impaired glucose tolerance

25

30

What is claimed is:

- 1. An isolated polypeptide selected from the group consisting of:
- 5 (a) an isolated polypeptide encoded by a polynucleotide comprising a sequence set forth in Table I;
 - (b) an isolated polypeptide comprising a polypeptide sequence set forth in Table I; and
 - (c) a polypeptide sequence of a gene set forth in Table I.
- 10 2. An isolated polynucleotide selected from the group consisting of:
 - (a) an isolated polynucleotide comprising a polynucleotide sequence set forth in Table I;
 - (b) an isolated polynucleotide of a gene set forth in Table I;
 - (c) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide set forth in Table I;
- (d) an isolated polynucleotide encoding a polypeptide set forth in Table I;
 - (e) a polynucleotide which is an RNA equivalent of the polynucleotide of (a) to (d); or a polynucleotide sequence complementary to said isolated polynucleotide.
- 3. An expression vector comprising a polynucleotide capable of producing a polypeptide of
 claim 1 when said expression vector is present in a compatible host cell.
 - 4. A process for producing a recombinant host cell which comprises the step of introducing an expression vector comprising a polynucleotide capable of producing a polypeptide of claim 1 into a cell such that the host cell, under appropriate culture conditions, produces said polypeptide.
 - 5. A recombinant host cell produced by the process of claim 4.
 - 6. A membrane of a recombinant host cell of claim 5 expressing said polypeptide.
 - 7. A process for producing a polypeptide which comprises culturing a host cell of claim 5 under conditions sufficient for the production of said polypeptide and recovering said polypeptide from the culture.

<110> SMITHKLINE BEECHAM CORPORATION

SEQUENCE LISTING.

```
SMITHKLINE BEECHAM p.1.c.
     GLAXO GROUP, LIMITED
<120> NOVEL COMPOUNDS
<130> GP50034
<140> TO BE ASSIGNED
<141> 2001-09-13
<150> 60/232,463
<151> 2000-09-13
<150> 60/232,455
<151> 2000-09-13
<150> 60/237,293
<151> 2000-10-02
<150> 60/246,269
<151> 2000-11-07
<150> 60/252,049
<151> 2000-11-20
<160> 88
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 1707
<212> DNA
<213> Homo sapiens
<400> 1
                                                                        60
atgaaggaag cagagatgga cggtgaggca gtccgcttct gcacagataa ccagtgtgtc
tccctgcacc cccaagaggt ggactctgtg gcaatggctc ctgcagcccc caagataccg
                                                                       120
aggetegtte aggetacece ggeatttatg getgtgaeet tggtettete tettgtgaet
                                                                       180
ctctttgtag tgggtaagcc cccagttcaa cagcagacaa gacctgttcc gaagcctgtg
                                                                       240
                                                                       300
caageegtaa ttetgggaga caacattact gggcatttac ettttgaace caacaatcat
caccactttg gcagggagge agaaatgega gagettatee agacatttaa aggeeacatg
                                                                       360
gagaattcca gtgcctgggt agtagaaatc cagatgttga agtgcagagt ggacaatgtc
                                                                       420
                                                                       480
aattcgcagc tccaggtgct cggtgatcat ctgggaaaca ccaatgctga catccagatg
                                                                       540
gtaaaaggag ttctaaagga tgccactaca ttgagtttgc agacacagat gttaaggagt
tccctggagg gaaccaatgc tgagatccag aggctcaagg aagaccttga aaaggcagat
                                                                       600
getttaaett teeagaeget gaatttetta aaaageagtt tagaaaaeae cageattgag
                                                                       660
ctccacgtgc taagcagagg cttagaaaat gcaaactctg aaattcagat gttgaatgcc
                                                                       720
agagccaatg ctgagatcca gggactaaag gaaaatttgc agaacacaaa tgctttaaac
                                                                       780
teccagacce aggeetttat aaaaagcagt tttgacaaca etagtgetga gatecagtte
                                                                       840
ttaagaggtc atttggaaag agctggtgat gaaattcacg tgttaaaaaag ggatttgaaa
                                                                       900
atggtcacag cccagaccca aaaagcaaat ggccgtctgg accagacaga tactcagatt
                                                                       960
caggtattca agtcagagat ggaaaatgtg aataccttaa atgcccagat tcaggtctta
                                                                      1020
aatggtcata tgaaaaatgc cagcagagag atacagaccc taaaacaagg aatgaagaat
                                                                      1080
getteageet taaetteeca gacceagatg ttagacagea atetgeagaa ggeeagtgee
                                                                      1140
gagatccaga ggttaagagg ggatctagag aacaccaaag ctctaaccat ggaaatccag
                                                                      1200
caggagcaga gtcgcctgaa gaccctccat gtggtcatta cttcacagga acagctacaa
```

```
agaacccaaa gtcagcttct ccagatggtc ctgcaaggct ggaagttcaa tggtggaagc
                                                                        1320
  ttatattatt tttctagtgt caagaagtct tggcatgagg ctgagcagtt ctgcgtgtcc
  cagggagece atetggeate tgtggeetee aaggaggage aggeatttet ggtagagtte
                                                                       1380
 acaagtaaag tgtactactg gatcggtctc actgacaggg gcacagaggg ctcctggcgc
                                                                       1440
                                                                       1500
 tggacagatg ggacaccatt caacgccgcc cagaacaaag cccctgttgt cttcgggttt
                                                                       1560
 tgggaaaaga atcagtctga caactggcgg cacaagaatg ggcagactga agactgtgtc
                                                                       1620
 caaattcagc agaagtggaa tgacatgacc tgtgacaccc cctatcagtg ggtgtgcaag
                                                                       1680
 aagcccatgg gccagggtgt ggcctga
                                                                       1707
 <210> 2
 <211> 1095
 <212> DNA
 <213> Homo sapiens
 <400> 2
 atgtcgagac aaggaaaatt attttctgct tttggagtgg gttgttgtgt aacggcaggc
 ttgccaaagg acgataacac tcctagcacc attgcggatg tgcacaatgg ttatacgatg
 aatgttgtag agcaagttct aaaggatagt tttgtgttat ttttcccagg aacactttgt
                                                                        120
 gattttccaa aaatacacca tggatttctg tatgatgaag aagattataa ccctttttcc
                                                                        180
 caagttccta caggggaagt tttctattac tcctgtgaat ataattttgt gtctccttca
                                                                        240
agateetttt ggaetegeat aacatgeaca gaagaaggat ggteaceaac accgaagtgt
                                                                        300
 ctcagaatgt gttcctttcc ttttgtgaaa aatggtcatt ctgaatcttc aggactaata
                                                                        360
                                                                        420
catctggaag gtgatactgt acaaattatt tgcaacacag gatacagcct tcaaaacaat
gagaaaaaca tttcgtgtgt agaacggggc tggtccactc ctcccatatg cagcttcact
                                                                        480
atgaaaacat gtggatacat acctgaactc gagtacggtt atgttcagcc gtctgtccct
                                                                        540
                                                                        600
ccctatcaac atggagtttc agtcgaggtg aattgcagaa atgaatatgc aatgattgga
aataacatga ttacctgtat taatggaata tggacagagc ttcctatgtg tgttgagtct
                                                                        660
actgcatatt gtgggccccc tccatctatt aacaatggag ataccacctc attcccatta
                                                                        720
teagtatate etceagggte aacagtgaeg tacegttgee agteetteta taaacteeag
                                                                        780
ggctctgtaa ctgtaacatg cagaaataaa cagtggtcag aaccaccaag atgcctagat
                                                                       840
                                                                       900
ccatgtgtgg tatctgaaga aaacatgaac aaaaataaca tacagttaaa atggagaaac
gatggaaaac tetatgcaaa aacaggggat getgttgaat tecagtgtaa atteccacat
                                                                       960
                                                                      1020
aaagcgatga tatcatcacc accatttcga gcaatctgtc aggaagggaa atttgaatat
                                                                      1080
cctatatgtg aatga
                                                                      1095
<210> 3
<211>. 984
<212> DNA
<213> Homo sapiens
<400> 3
atgttgctct tattcagtgt aatcctaatc tcatgggtat ccactgttgg gggagaagga
acactttgtg attttccaaa aatacaccat ggatttctgt atgatgaaga agattataac
                                                                        60
                                                                       120
cctttttccc aagttcctac aggggaagtt ttctattact cctgtgaata taattttgtg
tctccttcaa aatccttttg gactcgcata acatgcacag aagaaggatg gtcaccaaca
                                                                       180
ccgaagtgtc tcagaatgtg ttcctttcct tttgtgaaaa atggtcattc tgaatcttca
                                                                       240
ggactaatac atctggaagg tgatactgta caaattattt gcaacacagg atacagcett
                                                                       300
caaaacaatg agaaaaacat ttcgtgtgta gaacggggct ggtccactcc tcccatatgc
                                                                       360
agetteacta tgaaaacatg tggatacata cetgaacteg agtaeggtta tgtteageeg
                                                                       420
tetgteeete eetateaaca tggagtttea gtegaggtga attgeagaaa tgaatatgea
                                                                       480
atgattggaa ataacatgat tacctgtatt aatggaatat ggacagagct tcctatgtgt
                                                                       540
                                                                       600
gttgagtcta ctgcatattg tgggccccct ccatctatta acaatggaga taccacctca
                                                                       660
ttcccattat cagtatatcc tccagggtca acagtgacgt accgttgcca gtccttctat
                                                                       720
aaactccagg gctctgtaac tgtaacatgc agaaataaac agtggtcaga accaccaaga
tgcctagatc catgtgtggt atctgaagaa aacatgaaca aaaataacat acagttaaaa
                                                                       780
tggagaaacg atggaaaact ctatgcaaaa acaggggatg ctgttgaatt ccagtgtaaa
                                                                       840
                                                                      900
ttcccacata aagcgatgat atcatcacca ccatttcgag caatctgtca ggaagggaaa
                                                                      960
tttgaatatc ctatatgtga atga
                                                                      984
```

```
<210> 4
<211> 465
<212> DNA
<213> Homo sapiens
<400> 4
atggcaccgg ccagagcagg atgctgcccc ctgctgctgc tgcttctggg gctgtgggtg
                                                                      60
120
cagcatgtgc agcccagccc tcaagcatgc aactcagcca tgagcatcat caataagtac
                                                                     180
                                                                     240
acagaacggt gcaaagacct caacaccttc ctgcacgagc ccttctccag tgtggccatc
acctgccaga cccccaacat agcctgcaag aatagctgta aaaactgcca ccagagccac
                                                                     300
gggcccatgt ccctgaccat gggtgagctc acctcaggga agtacccaaa ctgcaggtac
                                                                     .360
aaagagaagc acctgaacac accttacata gtggcctgtg accctccaca acagggtgac
                                                                     420
                                                                     465
ccagggtacc cacttgttcc tgtgcacttg gataaagttg tctaa
<210> 5
<211> 1509
<212> DNA
<213> Homo sapiens
<400> 5
atgegecage tgggagggte teteegecee eegegegegg eecaegggge egageetete
                                                                      60
cccagtgcgc tggggccctg cgctgggggt gaccgggacc tgggtcgggg aacccccgga
                                                                     120
                                                                     180
tgggagccca ggcgcgccag ggtccccatc cacgagcagg tcgacccccc gcgagagggg
cccacctct tccagaacct cctgctcttc ctgtgggccc tgctgaactg tggtttgggg
                                                                     240
                                                                     300
gtcagtgctc agggtccggg cgagtggacc ccgtgggtgt cctggacccg ctgctccagc
                                                                     360
tectgegge gtggegtete tgtgegeage eggegetgee teeggettee tggggaagaa
                                                                     420
ccgtgctggg gagactccca tgagtaccgc ctctgccagt tgccagactg ccccccaggg
gctgtgccct tccgagacct acagtgtgcc ctgtacaatg gccgccctgt cctgggcacc
                                                                     480
                                                                     540
cagaagacct accagtgggt gcccttccat ggggcgccca accagtgcga cctcaactgc
                                                                     600
ctggctgagg ggcacgcctt ctaccacage tteggcegeg teetggaegg cacegeetge
agcccgggtg cccagggggt ctgcgtggct ggccgctgcc ttagcgccgg ctgtgatggg
                                                                     660
ttgttgggct cgggtgccct cgaggaccgc tgtggccgct gcggaggcgc caacgactcg
                                                                     720
tgccttttcg tgcagcgcgt gtttcgtgac gccggtgcct tcgctgggta ctggaacgtg
                                                                     780
accetgatee eegaggege cagacacate egegtggaac acaggageeg caaccacetg
                                                                     840
                                                                     900
qqtatcctag gatcactgat ggggggcgat gggcgctacg tgcttaatgg gcactgggtg
qtcagcccac cagggaccta cgaggcggcc ggcacgcatg tggtctacac ccgagacaca
                                                                     960
gggccccagg agacattgca agcagccggg cccacctccc atgacctgct cctacaggtc
                                                                    1020
ctcctgcagg agcccaaccc tggcatcgag tttgagttct ggctccctcg ggagcgctac
                                                                    1080
agccccttcc aggctcgtgt gcaggccctg ggctggcccc tgaggcagcc tcagccccgg
                                                                    1140
ggggtggage ctcageceee cgcageceet getgteacee ctgcacagae cccaacgetg
                                                                    1200
qccccagtqt tccaggccg agtgctgggc caccaccacc aggcccagga gacccgctat
                                                                    1260
                                                                    1320
qaqqtqcqca tccaqctcgt ctacaagaac cgctcgccac tgcgggcacg cgagtacgtg
                                                                    1380
tgqqcgccag gccactgccc ctgcccgatg ctggcacccc accgggacta cctgatggct
                                                                    1440
qtccagcgtc ttgtcagccc cgacggcaca caggaccagc tgctgctgcc ccacgccggc
                                                                    1500
tacgcccggc cctggagccc tgcggaggac agccgcatac gcctgactgc ccggcgctgt
                                                                    1509
cctggctga
<210> 6
<211> 1356
<212> DNA
<213> Homo sapiens
<400> 6
atggactcgg cccctctgtt ccccaggccc cacctcttcc agaacctcct gctcttcctg
                                                                      60
                                                                     120
tgggccctgc tgaactgtgg tttgggggtc agtgctcagg gtccgggcga gtggaccccg
tgggtgtcct ggacccgctg ctccagctcc tgcgggcgtg gcgtctctgt gcgcagccgg
                                                                     180
                                                                     240
cgctgcctcc ggcttcctgg ggaagaaccg tgctggggag actcccatga gtaccgcctc
tgccagttgc cagactgccc cccaggggct gtgcccttcc gagacctaca gtgtgccctg
                                                                     300
```

3/79

tacaatggcc gecetgteet gggcacecag aagacetace agtgggtgcc ettecatggg	360
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	420
billion gradelia character attacates and and	480
TO STEED SASSESCOME CHARLES CELLECTED COLLECTION OF THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSESSES FOR THE FEBRUARY SASSES FOR THE FEBRUARY FOR THE	540
ggtgcettcg dtgggtactg gaacgtgace ctgatececg agggcgcag acacatecge	600
gtggaacaca ggagcgcaa ccacctggt abactcock agggcgccag acacatccgc	660
gtggaacaca ggagccgcaa ccacctgggt atcctaggat cactgatggg gggcgatggg	720
	780
	840
The state of the s	900
The state of the s	960
The same same section descended decorate accordance to the same section in the same se	1020
The standard of the standard o	1080
The same of the sa	
3 3 333 Cacgega quacululuu memeraneee antroparte	1140
	1200
gaccagetge tgetgeecea egeeggetae geeeggeeet ggageeetge ggaggaeage	1260
cgcatacgcc tgactgcccg gcgctgtcct ggctga	1320
To the second description and the second description	1356
<210> 7	
<211> 1296	
<212> DNA	
<213> Homo sapiens	
4400. 7	
<400> 7	
atgateegga eeceattgte ggeetetgee eategeetge teeteeeagg eteeeggge	60
J. T. T. J. J. G. G. G. G. G. G. G. G. G. G. G. G. G.	
The state of the s	120
	180
3 - 33 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	240
aaaaccctgg accttegggg tegeggegeag geectgatge ggagttteec actegtggae	300
gggtatgtag gtctgaacag ctctgaaaa ctcatatatatatatatatatatatatatatatat	360
gggtatgtag gtctgaacag ctctcaaaag ctggcctgcc tcattggcgt ggagggtggt	420
cactcactgg acagcagect ctctgtggetg eggagttet atgtgetggg ggtgegetac	480
- The contraction of the contrac	540
	600
	660
	720
	780
The surface of the su	840
The state of the s	900
The state of the s	
	960
	1020
TO THE TO TOURS OF THE TOURS OF	1080
	1140
cgggtcccct ggaggtcctc aaatgcctcc ccataccttg ttccaggcct tgtggctgct	1200
gccaccatce caaccttcac ccagtggctc tgctga	1260
- Light Cody Cody Cody	1296
<210> 8	
<211> 1443	
<212> DNA	
<213> Homo sapiens	
.400. 0	
<400> 8	
atgcagecet eeggeetega gggteeegge aegtttggte ggtggeetet getgagtetg	
- 19 10 19 19 19 19 19 19 19 19 19 19 19 19 19	60
	120
togaccacac toagtagtes cascaccag ggootgeaag agcaggcacg ggootgatg	180
egggaettee egetestara eggessaaa saabaaa ageaggeaeg ggeeetgatg	240
cgggacttcc cgctcgtgga cggccacaac gacctgccc tggtcctaag gcaggtttac	300
4/79	•

cagaaagggc	tacaggatgt	taacctgcgc	aatttcagct	acqqccaqac	cagcctggac	360
		gggcgcccag				420
		cctcaccctg				480
		gcttgtgacc				540
		ggagggtggt				600
		ggtgcgctac				660
tagagagaga	attenances	ggtgcgctac	cegacaceca	ccaacatcaa	cageacacca	720
cgggcagaga	gtttcatcaa	gttcagacac	cacacytaca	ccaacgicag	agatttata	780
		agaggagttg				840
		aagaagggtc				900
tcccactcag	ctgccagagc	tgtgtgtgac	aatttgttga	atgttcccga	tgatateetg	
		tggcatcgtg				960
		gtccactgtg				1020
attggatctg	agttcatcgg	gattggtgga	aattatgacg	ggactggccg	gttccctcag	1080
gggctggagg	atgtgtccac	atacccagtc	ctgatagagg	agttgctgag	tcgtagctgg	1140
		tgtccttcgt				1200
		cagggcgcag				1260
caactgagca	catcctgcca	ctcccacctc	gtgcctcaga	atggacacca	ggctactcat	1320
ctggaggtga	ccaagcagcc	aaccaatcgg	gtcccctgga	ggtcctcaaa	tgcctcccca'	1380
taccttgttc	caggccttgt	ggctgctgcc	accatcccaa	ccttcaccca	gtggctctgc	1440
tga						1443
-		•				
<210> 9						
<211> 1116			1			
<212> DNA						
<213> Homo	sapiens					
••••						
<400> 9						
	ccacagetee	aaagcaagcc	tggccccat	aacccccact	ccttttcctc	60
		cggtggcagc				120
		ccacaggcaa				180
		gagtgggaac				240
		aggggcatgc				300
						360
		cctggatgtg				420
		caaactggtc				480
		gctgctccgg				540
		tcatgtccag				600
		ctgcaaacca			•	660
		gcatgcggtt				
		gcctcatggg				720
		ggagateege				780
		cgctgggaat				840
		cacactttct				900
gggccttttt	ttctggatag	cagaggtgtg	gccatggtgc	tggcagtcgg	cttcctccc	960
		ctgctttggc				1020
cgggtcaaac	atcacatgac	ctttgacttt	gtggcacctc	ggccctctgg	ggataaaaac	1080
tctgggggta	accgggtcac	tgccaagctc	ttctga			1116
<210> 10						
<211> 1779						
<212> DNA						
<213> Homo	sapiens					
	-					
<400> 10						
	ccacagetee	aaagcaagcc	tggccccat	gaccccact	ccttttcctc	60-
		cggtggcagc				120
		ccacaggcaa				180
		gagtgggaac				240
toccasta	acctactors	ggaattggac	ctcacctaca	accarctctc	aaccetteae	300
agtagaaast	taateest	gyaarryyar	atcaccatas	ancharaga	caatcccctc	360
Cocyygodd	cocacygoot	acaaagccta	6/70	2200200233	Jacoby	500

*5/*79

```
agaatcatgg ggcctggggt cttctcaggc ctctctgctc tgaccctgct ggacctccgc
                                                                        420
 ctcaaccaga ttgttctctt cctagatgga gcttttgggg agctaggcag cctccagaag
                                                                        480
 ctggaggttg gggacaacca cctggtattt gtggctccgg gggcctttgc agggctagcc
                                                                        540
 aagttgagca ccctcaccct ggagcgctgc aacctcagca cagtgcctgg cctagccctt
                                                                        600
 gcccgtctcc cggcactagt ggccctaagg cttagagaac tggatattgg gaggctgcca
                                                                        660
 gctggggccc tgcgggggct ggggcagctc aaggagctgg agatccacct ctggccatct
                                                                        720
 ctggaggctc tggaccctgg gagcctggtt gggctcaatc tcagcagcct ggccatcact
                                                                        780
 cgctgcaatc tgagctcggt gcccttccaa gcactgtacc acctcagctt cctcagggtc
                                                                        840
 ctggatctgt cccagaatcc catctcagcc atcccagccc gaaggctcag ccccctggtg
                                                                        900
 eggetecagg agetacgeet gteaggggea tgeeteacet ceattgetge ceatgeette
                                                                        960
 catggettga etgeetteea eeteetggat gtggeagata aegeeettea gacactagag
                                                                       1020
 gaaacagett teeettetee agacaaactg gteaeettga ggetgtetgg caacceetta
                                                                      1080
 acctgtgact gccgcctcct ctggctgctc cggctccgcc acctggactt tggcatgtcc
                                                                       1140
 cccctgcct gtgctggccc ccatcatgtc caggggaaga gcctgaagga gttttcagac
                                                                       1200.
 atcetgcete cagggcactt cacetgcaaa ccageeetga teegaaagte ggggcetega
 tgggtcattg cagaggaggg cgggcatgcg gttttctcct gctctggaga tggagaccca
                                                                      1260
                                                                      1320
 gccccactg tctcctggat gaggcctcat ggggcttggc tgggcagggc tgggagagta
                                                                      1380
 agggtcctag aggatgggac actggagatc cgctcagtgc agctacggga cagaggggcc
                                                                      1440
 tatgtctgtg tggttagcaa tgtcgctggg aatgactccc tgaggacctg gctggaagtc
                                                                      1500
 atccaggtgg aaccaccaaa cggcacactt tctgacccca acatcaccgt gccagggatc
                                                                      1560
ccagggcctt tttttctgga tagcagaggt gtggccatgg tgctggcagt cggcttcctc
                                                                      1620
ccettcctca cctcagtgac cctctgcttt ggcctgattg ccctttggag caagggcaaa
                                                                      1680
ggtcgggtca aacatcacat gacctttgac tttgtggcac ctcggccctc tggggataaa
                                                                      1740
aactetgggg gtaacegggt caetgeeaag etettetga
                                                                      1779
<210> 11
<211> 429
<212> DNA
<213> Homo sapiens
<400> 11
atggccaggt acatgctgct gctgctcctg gcggtatggg tgctgaccgg ggagctgtgg
                                                                        60
ccgggagctg aggcccgggc agcgccttac ggggtcaggc tttgcggccg agaattcate
                                                                       120
egageagtea tetteacetg egggggetee eggtggagae gateagaeat eetggeeeae
                                                                       180
gaggetatgg gagatacett cccggatgca gatgetgatg aagacagtet ggcaggcgag
                                                                       240
ctggatgagg ccatggggtc cagcgagtgg ctggccctga ccaagtcacc ccaggccttt
                                                                       300
tacagggggc gacccagctg gcaaggaacc cctggggttc ttcggggcag ccgagatgtc
                                                                       360
ctggctggcc tttccagcag ctgctgcaag tgggggtgta gcaaaagtga aatcagtagc
                                                                       420
ctttgctag
                                                                       429
<210> 12
<211> 692
<212> DNA
<213> Homo sapiens
<400> 12
atgtctgaag aagtgaccta cgcgacactc acatttcagg attctgctgg agcaaggaat
                                                                        60
aaccgagatg gaaataacct aagaaaaaga gggcatccag ctccatctcc catttggcgt
                                                                      120
catgctgctc tgggtctggt aactctttgc ctgatgttgc tgattgggct ggtgacgttg
                                                                      180
gggatgatgt ttttgcagat atctaatgac attaactcag attcagagaa attgagtcaa
                                                                      240
ettcagaaaa ccatccaaca gcagcaggat aacttatccc agcaactggg caactccaac
                                                                      300
aacttgtcca tggaggagga atttctcaag tcacagatct ccagtctact gaagaggcag
                                                                      360
gaacaaatgg ccatcaaact gtgccaagag ctaatcattc atacttcaga ccacagatgt
                                                                      420
aatccatgtc ctaagatgtg gcaatggtac caaaatagtt gctactattt tacaacaaat
                                                                      480
gaggagaaaa cctgggctaa cagtagaaag gactgcatag acaagaactc caccctagtg
                                                                      540
aagatagaca gtttggaaga aaaggatttt cttatgtcac agccattact catgttttcg
                                                                      600
ttettttgge tgggattate atgggactee tetggeagaa gttggttetg ggaagatgge
                                                                      660
tctgttccct ctccatcctt gtacgtctct aa
                                                                      692
```

```
<210> 13
<211> 585
<212> DNA
<213> Homo sapiens
<400> 13
atgtggctgt ecccagetet getgettete atecteccag gttactecat tgeegetaaa
                                                                        60
atcactggtc caacaacagt gaatggctcg gagcagggct cattgactgt gcagtgtgct
                                                                       120
tatggctcag gctgggagac ctacttgaag tggcggtgtc aaggagctga ttggaattac
                                                                       180
tgtaacatcc ttgttaaaac aaatggatca gagcaggagg taaagaagaa tcgagtttcc
                                                                       240
atcagggaca atcagaaaaa ccacatgttc accgtgacca tggagaatct caaaagagat
                                                                       300
                                                                       360
gatgctgaca gttattggtg tgggactgag agacctggaa ttgatcttgg ggtcaaagtt
caagtgacca ttaacccagg cacacaaact gcagtctcag aatggacaac cacaacagca
                                                                       420
agcctggctt tcacagctgc agccacccag aagaccagca gccccctcac caggtccccg
                                                                       480
                                                                       540
ctcaagagca eccaetteet gtteetgtte etcetggage tgeetetget ectgageatg
                                                                       585
ctggggaccg tcctctgggt gaacagacca caaagaaggt cttga
<210> 14
<211> 1002
<212> DNA
<213> Homo sapiens
<400> 14
                                                                        60
atgaggatct ggtggcttct gcttgccatt gaaatctgca cagggaacat aaactcacag
                                                                       120
gacacctgca ggcaagggca ccctggaatc cctgggaacc ccggtcacaa tggtctgcct
                                                                       180
ggaagagatg gacgagacgg agcgaagggt gacaaaggcg atgcaggaga accaggacgt
cctggcagcc cggggaagga tgggacgagt ggagaagagg gagaacgagg agcagatgga
                                                                       240
                                                                       300
aaagttgaag caaaaggcat caaaggtgat caaggctcaa gaggatcccc aggaaaacat
ggccccaagg ggcttgcagg gcccatggga gagaagggcc tccgaggaga gactgggcct
                                                                       360
caggggcaga aggggaataa gggtgacgtg ggtcccactg gtcctgaggg gccaaggggc
                                                                       420
aacattgggc ctttgggccc aactggttta ccgggcccca tgggccctat tggaaagcct
                                                                       480
ggtcccaaag gagaagctgg acccacgggg ccccagggtg agccaggagt ccggggaata
                                                                       540
                                                                       600
agaggctgga aaggagatcg aggagagaaa gggaaaatcg gtgagactct agtcttgcca
aaaagtgctt tcactgtggg gctcacggtg ctgagcaagt ttccttcttc agatatgccc
                                                                       660
                                                                       720
attaaatttg ataagatcct gtataacgaa ttcaaccatt atgatacagc agcggggaaa
                                                                       780
ttcacgtgcc acattgctgg ggtctattac ttcacctacc acatcactgt tttctccaga
                                                                       840
aatgttcagg tgtctttggt caaaaatgga gtaaaaatac tgcacaccaa agatgcttac
                                                                       900
atgagetetg aggaeeagge etetggegge attgteetge agetgaaget eggggatgag
                                                                       960
gtgtggctgc aggtgacagg aggagagagg ttcaatggct tgtttgctga tgaggacgat
                                                                      1002
gacacaactt tcacagggtt ccttctgttc agcagcccgt ga
<210> 15
<211> 678
<212> DNA
<213> Homo sapiens
<400> 15
                                                                        60
atgaggatct ggtggcttct gcttgccatt gaaatctgca cagggaacat aaactcacag
gacacctgca ggcaagggca ccctggaatc cctgggaacc ccggtcacaa tggtctgcct
                                                                       120
ggaagagatg gacgagacgg agcgaagggt gacaaaggcg atgcaggaga agctggaccc
                                                                       180
acggggcccc agggtgagcc aggagtccgg ggaataagag gctggaaagg agatcgagga
                                                                       240
gagaaaggga aaatcggtga gactctagtc ttgccaaaaa gtgctttcac tgtggggctc
                                                                       300
acggtgctga gcaagtttcc ttcttcagat atgcccatta aatttgataa gatcctgtat
                                                                       360
aacgaattca accattatga tacagcagcg gggaaattca cgtgccacat tgctggggtc
                                                                       420
tattacttca cctaccacat cactgttttc tccagaaatg ttcaggtgtc tttggtcaaa
                                                                       480
aatggagtaa aaatactgca caccaaagat gcttacatga gctctgagga ccaggcctct
                                                                       540
                                                                       600
ggcggcattg tcctgcagct gaagctcggg gatgaggtgt ggctgcaggt gacaggagga
                                                                       660
gagaggttca atggcttgtt tgctgatgag gacgatgaca caactttcac agggttcctt
                                                                       678
ctgttcagca gcccgtga
```

.010	
<210> 16	
<211> 618 <212> DNA	
<213> Homo sapiens	
<400> 16	
atgatgagaa ctctcatcac cacacacca ctgcccctgc ttctattgcc gcagcagetg	60
a sa sa sa sa sa sa sa sa sa sa sa sa sa	-120
	180
accaaagaaa aagtcaaaag acgtgtcett attgaacetg gaatgecact aaatcatata	240
gagtactgta accatgaaat catgggaaa aatgtttact acaaacaccg ttgggtggca gaacattact teettettat geaatatgac gageteeaaa aaatetgtta caacagattt gtgecatgta agaatggaat taggaaatgt aagaatgt	300
gtgccatgta agaatggaat taggaaatgt aacaggagca aaggtcttgt agaaggagtg	360
o manufacture de l'unitable de l'estre de l'	420
	480
	540
tttgtcatat cgccctag	600
.040	618
<210> 17	
<211> 288	
<212> DNA	
<213> Homo sapiens	
<400> 17	
atggaggtgg tgctgatett tetatgeage etgttggeee acattgteet ggeegatgea	60
gttgagaggg agaagcaaat tgaccctttt cattatgact accagaccct gaggattagg gggttggtat gtgctgtggt cetettetee attgggatee teettateet aggttgeaga tgcaagtgca gtttcaatca gaggggggg	120
tgcaagtgca gtttcaatca gaagcccagg accccaggag aggaggaagc ccaggtggag	180
aaceteatea etgeaaatge aacaaagete cagaaageag agagetga	240
	288
<210> 18	
<211> 1788	
<212> DNA	
<213> Homo sapiens	
<400> 18	
atggaggtgg gaatgggatg ctgggcccgg gaggtgata	
atggaggtgg gaatgggatg ctgggcccgg gaggtgctgg tccccgaggg gcccttgtac cgcgtggctg gcacagctgt ctccatctcc tgcaatgtga ccggctatga gggccctgcc cagcagaact tcgagtggtt cctgtatagg	60
	120
	180
	240
	300
The standard of the standard o	360
	420 480
	540
	600
	660
	720
	780
	840
	900
	960
	1020
	1080
attgccatgg agaaggtggc atccagaaca taccggctac ggctagaggc tgccaggcct ggtgatgcgg gcacctaccg ctgcctcgcc aaagcctatg ttcgagggtc tgggacccgg	1140
	1200
	1260
tractantat	1220
tccctgctgt gcaacatctc tgtgcggggt ggcccccag gactgcggct ggccgccagc	1320 1380

ggcgtaggcc gtagagctgg gaaggcgtgt caggcgggca accctatttg	agcgaccaga aggatggtgt tggggcccg accactgtgc gtgcccgctc tgcctctgct tcacttgctg	ggcagagctg aagccatcgg ccccagcgcc agggcctgtt ggtgggtaca	ggagtccggc ctgagactac tgggtgcagc acagtctacc ggggtggccc	ctggaggagg acagcttggg atgccgacta cctacatgca tagtcactgg	ccctgtcagc gcccgaggat cagctggtac tgccctggac	1440 1500 1560 1620 1680 1740 1788
ctaggaatgg gctggcacag aacttcgagt accaaggata caggtgcagc gatgccggca agcggcaagg gggccccgag gagctggcac tcctttgggc ggaatccggt gggagcttc caggcagggg ggcagctggg ctgtccagc cccttggaac tactctgtag cagctggaca	tcaggcccac gatgctgggc ctgtctccat ggttcctgta cccagttctc gcctacaagg tttatgagtg tggagctgag gccgccaggc tgggctgcct gatctgtgcc cagacttggc gtctgggcaa acgcaggcac cccagattgc agctggcagt tgctgtgcaa tgctgtgcaa tgctgtgcaa tcagaggtgt	ccgggaggtg ctcctgcaat taggcccgag ctatgctgtc tgatgccgtg ccacaccccc agttcttcca cccaacctca ggcgaggaca cgaggcacca cgtggaggct ggaagggacc ctaccactgc agagaaaagg gacagtgggg tgtgtcaggg ggcacctgcg	ctggtccccg gtgaccggct gccccagata ttcaagtccc gtgctcaaga tccactgata gatgtcctcc ccccacgca agcacacaga gttgggcggt ggagctccct gatcggtacc actgccgctg gccgtcctgg cctggtgaac gcacttcccc ggggcacctg	aggggccett atgagggccc ctgcactggg gagtggtggc ttgcccgcct cccgctacct aggtgtctgc tgacggtgca agcacacac acactctgca atgctgagcg gcatggtagt agtggattca cccacgtgga gtcggatcgg cagcaggccg ggcccggccg atgagggccg	gtaccgcgtg tgcccagcag cattgtcagt gggtgaggtg gcaggcccag gggcagctac tgcccccca tgaggggcag cctggcagtg ggaagtggtg attggctgca agggggtgcc ggatcctgat tgtgcagacg cccaggggag tcatgctgca cctggtagcc acctggtagcc	60 120 180 240 300 360 420 480 540 600 660 720 780 960 1020 1080 1140
gcgggcacct gaagcagcca ctggaggctg ctgtgcaaca gtggagcgac ggccaggatg ctggtgggc gtgtaccact ggcagtgccc tttgtgcctc	tggcatccag accgctgcct gtgcccgttc tggcatggct tctctgtgcg cagaggacgg gtgtggcaga cccgaagcca gtgccccag gctcagggcc tgctggtggg gctgcttcat	cgccaaagcc ccggcctctc agcaggaggc gggtggcccc agagctcagc gctgggagtc tcggctgaga cgcctgggtg tgttacagtc tacaggggtg	tatgttcgag cctgtacatg acagtgtacc ccaggactgc tctgtccctg cggcctggag ctacacagct cagcatgccg tacccctaca gccctagtca	ggtctgggac tgcgggagga gcggggagac ggctggccgc cccagctggt gaggccctgt tggggcccga actacagctg tgcatgccct ctggtgccac	ccggcttcgt aggtgtggtg tgcctccctg cagctggtgg gggtggcgta cagcgtagag ggatgaaggc gtaccaggcg ggacacccta	1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1842
<213> Homo <400> 20 atggccgcca atcatcgtca cgggccagta ccgattggag ggctcaggcg ctgctggcac	actccaccag tcactgtgta ggaacacggt cctccctctt cggcaggagg tggcatgggt ttcagaagcg	ttttgctctg gaatggctac cgccagcagc tctggccgtg gttcgtgccc	aacgtggccg ttcctggcag gagggctctg gcaggcttcg atctacatct	tgggcatatg gccgggacat gcctcttcat agtggaatgc cctcagagat	gtcctcttgt gacgtggtgg tggactggcg cacgtacgtg cgtcacctta	60 120 180 240 300 360 420

```
tccctgctac tgtctgtctt caccaagata tcgctggacc tgtacgcggg ggctctgttt
  gtgcacatct gcctgggctg gaacttctac ctctccacca tcctcacgct cggcatcaca
                                                                        480
  gecetgtaca ccategeagg gggeetgget getgtaatet acaeggaege cetgeagaeg
                                                                         540
                                                                        600
  ctcatcatgg tggtgggggc tgtcatcctg acaatcaaag cttttgacca gatcggtggt
                                                                        660
  tacgggcagc tggaggcagc ctacgcccag gccattccct ccaggaccat tgccaacacc
                                                                        720
 acctgccacc tgccacgtac agacgccatg cacatgtttc gagaccccca cacaggggac
 ctgccgtgga ccgggatgac ctttggcctg accatcatgg ccacctggta ctggtgcacc
                                                                        780
                                                                        840
 gaccaggtca tcgtgcagcg atcactgtca gcccgggacc tgaaccatgc caaggcgggc
 tccatcctgg ccagctacct caagatgctc cccatgggcc tgatcataat gccgggcatg
                                                                        900
                                                                        960
 atcagecgcg cattgttccc agatgatgtg ggctgcgtgg tgccgtccga gtgcctgcgg
                                                                       1020
 gcctgcgggg ccgaggtcgg ctgctccaac atcgcctacc ccaagctggt catggaactg
                                                                       1080
 atgcccatcg gtctgcgggg gctgatgatc gcagtgatgc tggcggcgct catgtcgtcg
                                                                       1140
 ctgacctcca tetteaacag cageageace etetteacta tggacatetg gaggeggetg
                                                                       1200
 cgtccccgct ccggcgagcg ggagctcctg ctggtgggac ggctggtcat agtggcactc
                                                                       1260
 ateggegtga gtgtggcetg gateceegte etgeaggaet ceaacagegg geaactette
 atctacatgc agtcagtgac cagctcctg gccccaccag tgactgcagt ctttgtcctg
                                                                       1320
                                                                       1380
 ggcgtcttct ggcgacgtgc caacgagcag ggggccttct ggggcctgat agcagggctg
                                                                       1440
 gtggtggggg ccacgaggct ggtcctggaa ttcctgaacc cagccccacc gtgcggagag
 ccagacacgc ggccagccgt cctggggagc atccactacc tgcacttcgc tgtcgcctc
                                                                       1500
                                                                       1560
 tttgcactca gtggtgctgt tgtggtggct ggaagcctgc tgaccccacc cccacagagt
                                                                       1620
 gtccagattg agaacettac ctggtggacc ctggctcagg atgtgccctt gggaactaaa
                                                                       1.680
 gcaggtgatg gccaaacacc ccagaaacac gccttctggg cccgtgtctg tggcttcaat
                                                                       1740
 gecatectee teatgigigt caacatatic tittatgeet acticgeetg a
                                                                       1791
 <210> 21
 <211> 1182
 <212> DNA ·
 <213> Homo sapiens
 <400> 21
atggattcct taaagaatga gaactatgat ctggtatttg ttgaagcatt tgatttctgt
                                                                        60
tettteetga ttgetgagaa gettgtgaaa ceatttgtgg ceattettee caccacatte
ggetetttgg attttggget accaageece ttgtettatg ttecagtatt ecetteettg
                                                                       120
ctgactgatc acatggactt ctggggccga gtgaagaatt ttctgatgtt ctttagtttc
                                                                       180
tccaggagcc aatgggacat gcagtctaca tttgacaaca ccatcaagga gcatttccca
                                                                       240
gaaggeteta ggecagtttt gteteatett etaetgaaag cagagttgtg gtttgttaae
                                                                       300
                                                                       360
totgattttg cotttgattt tgcccggccc ctgcttccca acactgttta tattggaggc
                                                                       420
ttgatggaaa aacctattaa accagtacca caagacttgg acaacttcat tgccaacttt
                                                                       480
ggggatgcag ggtttgtcct tgtggccttt ggctccatgt tgaacaccca tcagtcccag
gaagteetea agaagatgea caatgeettt geecacetee etcaaggagt gatatggaca
                                                                       540
tgtcagagtt ctcattggcc cagagatgtt catttggcca caaatgtgaa aattgtggac
                                                                       600
tggcttcctc agagtgacct cctggctcac cccagcatcc gtctttttgt cactcatggt
                                                                       660
                                                                       720
gggcagaaca gcgtaatgga ggccatccgt catggtgtgc ccatggtggg attaccagtc
                                                                       780
aatggagacc agcatggaaa catggtccga gtagtagcca aaaattatgg tgtctctatc
                                                                       840
cggttgaatc aggtcacagc cgacacactg acacttacaa tgaaacaagt catagaagac
aagaggtaca agteggeagt ggtggeagec agtgteatee tgeactetea geceetgage
                                                                       900
                                                                       960
cccgcacagc ggctggtggg ctggatcgac cacatcctcc agactggggg agcgacgcac
                                                                      1020
ctcaagccct atgccttcca gcagccttgg catgagcagt acctcattga tgtctttgtg
                                                                      1080
tttctgctgg ggctcactct gggcactatg tggctttgtg ggaagctgct gggtgtggtg
                                                                      1140
gecaggtgge tgegtgggge caggaaggtg aagaagacat ga
                                                                      1182
<210> 22
<211> 1572
<212> DNA
<213> Homo sapiens
<400> 22
atggttgggc agcgggtgct gcttctagtg gccttccttc tttctggggt cctgctcta
gaggetgeca aaateetgae aatatetaea etgggtggaa gecattaeet aetgttggae
                                                                       60
                                                                      120
                                   10/79
```

cgggtgtctc	agattcttca	agagcatggt	cataatgtga	ctatgcttca	tcagagtgga	180
	tcccagatat					240
	atcatcaaaa					300
ttggatggca	gaaaagaatc	tgaagccctt	gtaaagctaa	tggaaatatt	tgggactcaa	360
tgtagttatt	tgctaagcag	aaaggatata	atggattcct	taaagaatga	gaactatgat	420
	ttgaagcatt					480
	ccattcttcc					540
	ttccagtatt					600
	ttctgatgtt					660
	ccatcaagga					720
	cagagttgtg					780
	acactgttta					840
	acaacttcat					900
	tgaacaccca					960 1020
	ctcaaggagt					1020
	caaatgtgaa					1140
	gtcttttgt					1200
	ccatggtggg aaaattatgg					1260
	tgaaacaagt					1320
	tgcactctca					1380
	agactggggg					1440
	acctcattga					1500
	ggaagctgct					1560
aagaagacat		333-3-33-3	333	-5-5-555		1572
5 5	2					
<210> 23						
<211> 759						
<212> DNA						
<213> Homo	sapiens					
<400> 23						
	tcctgggtgg	totcatecee	ttagaactac	tattectaat	ctgcggatcc	60
	tectgeceaa					120
	actcccgggt					180
atgctgcaca	acaagcttcg	gggccaggtg	cagcctcagg	cctccaacat	ggagtacatg	240
	acgaactgga					300
cacgggccca	ccagtctgct	ggtgtccatc	gggcagaacc	tgggcgctca	ctggggcagg	360
tatcgctctc	cggggttcca	tgtgcagtcc	tggtatgacg	aggtgaagga	ctacacctac	420
ccctacccga	gcgagtgcaa	cccctggtgt	ccagagaggt	gctcggggcc	catgtgcacg	480
cactacacac	agatagtttg	ggccaccacc	aacaagatcg	gttgtgctgt	gaacacctgc	540
cggaagatga	ctgtctgggg	agaagtttgg	gagaacgcgg	tctactttgt	ctgcaattat	600
	ggaactggat					660
	gctatggagg			gttaccgagg	taggaaattt	720
actcccaaca	cttttgcaat	gaatttgccc	tcagtctga			759
<210> 24						
<211> 24						
<211> 1434 <212> DNA						
<213> Homo	ganieng					
-222- 1101110						
<400> 24						
	tcctgggtgg	tgtcatcccc	ttggggctgc	tgttcctggt	ctgcggatcc	60
	tcctgcccaa					120
aacgagtctc	actcccgggt	ccgcagagcc	atccccaggg	aggacaagga	ggagatcctc	180
atgctgcaca	acaagcttcg	gggccaggtg	cagcctcagg	cctccaacat	ggagtacatg	240
	acgaactgga					300
cacgggccca	ccagtctgct	ggtgtccatc	gggcagaacc	tgggcgctca	ctggggcagg	360
tatcgctctc	cggggttcca	tgtgcagtcc	tggtatgacg	aggtgaagga	ctacacctac	420
			11/79			

					•	
ccctacccg	a gcgagtgcaa	a cccctggtgt	ccagagaggt	gctcggggc	catgtgcacg	. 480
Cactacaca	c agatagtttg	g ggccaccacc	: aacaagatcg	gttgtgctgt	gaacacctgc	540
cggaagatg	a ctgtctgggg	y agaagtttgc	gagaacgcgg	r tctactttat	ctgcaattat	600
tctccaaag	g ggaactggat	: tggagaagco	: ccctacaaga	atggccggcc	ctactctaaa	660
Lycccaccc	a getatggagg	, cagctgcagg	, aacaacttgt	gttaccgaga	agaaacctac	720
actccaaaa	c ctgaaacgga	ı cgagatgaat	: gaggtggaaa	cggctcccat	tcctgaagaa	. 780
aaccatgtti	c ggctccaaco	: gagggtgatg	agacccacca	. agcccaagaa	aacctctccc	840
gtcaactaca	a tgacccaagt	: cgtcagatgt	gacaccaaga	tgaaggacag	gtgcaaaggg	900
recaegigia	a acaggtacca	l gtgcccagca	ggctgcctga	accacaaggg	gaagatettt	960
ggaactctgi	t ctatgaaag	, ctcgtctage	: atatgccgcg	cogcoaticoa	chacgggatc	1020
ciggatgaca	a agggaggcct	ggtggatatc	accaggaacg	ggaaggtccc	cttcttcata	1080
aagtctgaga	a gacacggcgt	geagteecte	agcaaataca	aaccttccag	ctcattcatg	. 1140
graccaaaag	g tgaaagtgca	ggatttggac	tgctacacga	ccgttgctca	gctgtgcccg	1200
cattactact	cagcaactca	ctgcccaaga	atccattgtc	cggcacactg	caaagacgaa	1260
aagaagaga	gggeteeggt	gtttggaacc	aacatctatg	cagatacctc	aagcatctgc	· 1320.
cocatagett	Lycaegeggg	agtcatcagc	aacgagagtg	ggggtgacgt	ggacgtgatg	1380
ctagagagata	aaaayaayac	ctacgtgggc	tegeteagga	atggagttca	gtctgaaagc	1440
crygggactt	. cccgggargg	aaaggccttc	cggatetttg	ctgtcaggca	gtga	1494
<210> 25						
<211> 1315						
<212> DNA						
<213> Homo	sapiens					
•		•				•
<400> 25						
batgctgcac	aacaagcttc	ggggccaggt	gcagcctcag	qcctccaaca	tggagtacat	60
gacctgggat	gacgaactgg	agaagtctgc	tgcagcgtgg	gccagtcagt	gcatctggga	120
gcacgggccc	accagtetge	tggtgtccat	cgggcagaac	ctgggcgctc	actggggcag	180
gtategetet	ccggggttcc	atgtgcagtc	ctggtatgac	gaggtgaagg	actacaccta	240
cccctacccg	agcgagtgca	acccctggtg	tccagagagg	tgctcggggc	ccatgtgcac	300
gcactacaca	cagatagttt	gggccaccac	caacaagatc	gattatacta	tgaacacctg	360
ccggaagatg	actgtctggg	gagaagtttg	ggagaacgcg	gtctactttg	tetgeaatta	420
ttctccaaag	gggaactgga	ttggagaagc	cccctacaag	aatggccggc	cctactctaa	480
gracecaece	agctatggag	gcagctgcag	gaacaacttg	tottaccoao	aagaaaccta	540
caccccaaaa	cctgaaacgg	acgagatgaa	tgaggtggaa	acqqctccca	ttcctgaaga	600
adaceatgtt	tggctccaac	cgagggtgat	gagacccacc	aagcccaaga	aaacctctcc	660
ggtcaactac	atgacccaag	tcgtcagatg	tgacaccaag	atgaaggaca	ggtgcaaagg	720
tranactor	aacaggtacc	agtgcccagc	aggetgeetg	aaccacaagg	cgaagatctt	780
cotocators	TICLACGAAA	gctcgtctag	catatgccgc	gccgccatcc	actacgggat	840
gaagtetgae	aagggaggee	tggtggatat	caccaggaac	gggaaggtcc	ccttcttcgt	900
gaagtetgag	agacacygeg	tgcagtccct	cagcaaatac	aaaccttcca	gctcattcat	960
atttaaaaa	CCagcaactc	aggatttgga	ctgctacacg	accettectc	agctgtgccc	1020
accttcctac	tagactcaa	actgcccaag tgtttggaac	aacccaltgt	ccggcacact	gcaaagacga	1080
caagacagcc	atacacacaa	gettggaac	Caacacccat	gcagatacct	tggacgtgat	1140
acccatagat	aaaaaaaaaa	cctacgtggg	ctcactcaaa	ggggggacg	tggacgtgat	1200
cctggggact	cctcagaata	gaaaggcctt	cccgctcagy	aatggagttc	agtctgaaag	1260
3333		gadaggeeee	ceggatette	getgteagge	agtga	1315
<210> 26						
<211> 927						
<212> DNA						
<213> Homo	sapiens					
<400> 26				•		
atggttgggg	gcgtcctcgc	ctcgctgggc	ttcgtcttct	cggctttcgc	cagcgatctq	60
ctgcatctct	acctcggcct	gggcctcctc	gctggcttta	attagaccct	gatattegee	120
cccgccctag	gcaccetete	gcgttacttc	tecegeegte	gagtettage	aataaaacta	180
gcgctcaccg	gcaacggggc	ctcctcgctg	ctcctggcgc	ccaccttaca	acttettete	240
gatactttcg	gctggcgggg	cgctctgctc	ctcctcggcg	cgatcaccct	ccacctcacc	300
			10/70	·		

ccctataaca	ccctactact	acccctggtc	cttcctggag	accccccage	cccaccacat	360
	abasastara	actorogyto	ttananagaa	gggggttgtg	aatotttoot	420
agteceetag	ergeceregg	cctgagtctg	Licacacycc	gggccccccc	aaccecegee	
ctaggcacag	ccctggttgg	gggcgggtac	ttcgttcctt	acgtgcactt	ggctccccac	480
gctttagacc	ggggcctggg	gggatacgga	gcagcgctgg	tggtggccgt	ggctgcgatg	540
gaggatgcag	gcgcccggct	ggtctgcggg	tggctggcag	accaaggctg	ggtgcccctc	600
		cggggctctg				660
atacacataa	tagacaacaa	agagagctgg	addateccc	tactaaccac	aactataacc	720
gracecara	cgggcggcga	agagageegg		chetactece	ggccgcggcc	780
tatgggctga	gcgcggggag	ttacgccccg	erggreereg	gracicec	egggetggtg	
ggcgtcggag	gtgtggtgca	ggccacaggg	ctggtgatga	tgctgatgag	cctcgggggg	840
ctcctgggcc	ctcccctgtc	aggtaaggac	ctgagctcac	agatctgcct	acaactatcc	900
	gggttcgagg					927
	334 5 -5			•		
<210> 27						
<211> 1344						
<212> DNA			•			
<213> Homo	sapiens					
	•				•	
<400> 27						•
	agcccgccgg	accccggat	aaaaactaaa	actaggtagt	ggcggccgca	60
gasttagas	taaacaaact	gtcctacggg	ctactacact	cactagacct	tacetteect	120
geettegega	nanatttan	gccccacggg	cagaagaata	catagataaa	caccetaacc	180
gaccuugeeg	agcactttga	ccgaagcgcc	caygacactg	cytygattay	cgccccggcc	
ctggccgtgc	agcaggcagc	cageceegtg	ggcagcgccc	tgagcacgcg	cragadadec	240
		gggcgtcctc				300
gccagcgatc	tgctgcatct	ctacctcggc	ctgggcctcc	tcgctggctt	tggttgggcc	360
		aggcaccctc				420
acaataaaac	tagaactcac	cggcaacggg	acctcctcac	tactcctaac	acccacctta	480
geggegggg	togatacttt	cggctggcgg	gacactetac	tectecteaa	cacaatcacc	540
cagccccccc	ccgacacccc	cggccggcgg	atagggggg	tacttactag	202000000	600
		cgccctgctg				660
		agctgccctc				
		agccctggtt				720
ttggctcccc	acgctttaga	ccggggcctg	gggggatacg	gagcagcgct	ggtggtggcc	780
gtggctgcga	tgggggatgc	gggcgcccgg	ctggtctgcg	ggtggctggc	agaccaaggc	840
tgggtgcccc	tcccgcggct	gctggccgta	ttcggggctc	tgactgggct	ggggctgtgg	900
ataataaaac	tggtgcccgt	ggtgggcggc	gaagagagct	gggggggtcc	cctgctggcc	960
		gagcgcgggg				. 1020
		aggtgtggtg				1080
						. 1140
		ccctcccctg				1200
		gtctggttct				
gggttgccca	gggcgctgcc	ctcctgtggt	ccagcctccc	ctccagccac	gcctcccca	1260
		cgctccccag	gcagtcttgc	tgtccccagg	aggccctggc	1320
tccactctgg	acaccacttg	ttga				1344
					•	
<210> 28				•		
<211> 1375						
<212> DNA						
<213> Homo	canione					
\213> HOMO	aubiena					
.400- 20						
<400> 28					.	
		ccccgacgg				60
		tgtttggggt				120
		agcaggcagc				180
		gcccggtagg				240
		gcatcttggc				300
						360
		acctgagtat				420
gaccttcgct	ecgaccctgg	cctgcctgtc	cegecatete	Leucgeegae	galocctggc	
caccgggctg	gcactgacag	gcgtgggcct	ctcctccttc	acatttgccc	cctttttcca	480
		cctggagggg				540
		ctctcctccg				600
		tcacctctct				660

tgttgcctc accetgatca acactggcta cttcattcc tacctccacc tggtggccca tctccaggac ctggattggg acceactacc tgctgccttc ctactctcag ttgttgctat tctctgacctc gtggggcgtg tggtctccgg atggctggga gatgcagtcc cagggcctgt gacacgactc ctgatgctct ggaccacctt gactggggtg tcactagcce tgttccctgt agctcaggct ccacagccc tggtggctct ggctgtggcc tacggcttca catcaggggc tctggcctgga ctgttgcaga tggtagagac catcgggggg ctgctgggc ctcctctctc aggcactcacctc cgggatggt caggaactaata gggactagaa ggatttactg caggcactac caggcttct tttgtggtgg ctgctgggcctt cactactcc caggatggcc caggcactaccccctctctctcaccctctctcaccctctctcaccctctcaccccacca	720 780 840 900 960 1020 1080 1140 1200 1260 1320 1375
<210> 29 <211> 510 <212> DNA <213> Homo sapiens	
<pre><400> 29 atgaccatga agacctctgg ggccacttgt gatgcaaaca gtgtgatgaa ctgcgggatc cgcgggtctg aaatgtttgc tgagatggat ttgagggcca taaaacctta ccagactctg atcaaaaaag tcgggcagag acattgcgtg gaccctgctg tcatcgcagc catcatctcc agggaaagcc atgggggatc tgtcctgcaa gacggctggg accacagggg acttaaattt ggcttgatgc agcttgataa acaaacgtac caccctgtcg gtgcctggga tagcaaagag cacctttcac aggctactgg gattctaaca gaggaaatta aggcaatcca gaaaaaattc cccacgtgga gtgttgctca gcacctcaaa ggtggtctct cagcttttaa gtcaggaatt gaagcgattg ccaccccatc ggacatagac aatgacttcg tcaatgatat cattgctcga gctaagttct ataaaagaca aagcttctag</pre>	60 120 180 240 300 360 420 480 510
<210> 30 <211> 561 <212> DNA <213> Homo sapiens	
atgaagcete acetacatee acgeetgtae caeggetget atggggacat catgaceatg aagacetetg gggeeacttg tgatgeaaae agtgtgatga actgegggat eegegggtet attgagggee ataaaacett aceagactet gateaaaaaa gteggggaa eegegggtet attgagggee ataaaacett aceagactet gateaaaaaa gacgggggat eegegggtet atgggggaa eegeggggete ataaaacett aceagactet gateaaaaaa gacggtggaa eegegggaaage eagettgata aacaaacgta acaceetge ggtgeetggg gacetaaatt tggettgatg atagcaaaga geacettea agagagaatt aaggcaatee agaaaaaatt eegeacgtgg acaceetga aggtgttgete ggacaaceetaa aggtggtete teagettta agteaggaat tgaagegatt taaaaaagac aaagetteta ggeaatgata aaagetteta ggeaatgata teattgeteg agetaagtee	60 120 180 240 300 360 420 480 540
<210> 31 <211> 2028 <212> DNA <213> Homo sapiens	
<400> 31 atggagagcg gcaccagcag ccctcagcct ccacagttag atcccctgga tgcgtttccc cagaaagggct tggagcctgg ggacatcgcg gtgctagttc tgtacttcct ctttgtcctg gctgttggac tatggtccac agtgaaagacc aaaagagaca cagtgaaagg ctacttcctg gctggagggg acatggtgg gtggcagtg ggtgcatcct tgtttgccag caatgttgga agtggacatt tcattggcct ggcagggtca ggtgctgcta cgggcatttc tgtatcagct tatgaactta atggettgtt ttctgtgctg atgttggcct ggatcttcct acccatctac attgctggtc aggtcagaa tacctacgga agcgcttcgg tggcatcaga 14/79	60 120 180 240 300 360 420

						•
atccccatca	tcctggctgt	actctaccta	tttatctaca	tcttcaccaa	gatctcggta	480
	caggtgccat					540
	tactggccat					600
	atgccctgca					660
	ccgcggttgg					720
						780
	ggagtgagaa					840
ttccgagatc	cgctgacatc	tgatctcccg	rggccggggg	tectattegg	aatgtccatc	
ccatccctct	ggtactggtg	cacggatcag	gtgattgtcc	ageggaetet	ggctgccaag	900
aacctgtccc	atgccaaagg	aggtgctctg	atggctgcat	acctgaaggt	getgeeete	960
	tgttccctgg					1020
gcagatccag	agatctgcca	gaagatctgc	agcaacccct	caggctgttc	ggacatcgcg	1080
tatcccaaac	tcgtgctgga	actcctgccc	acagggctcc	gtgggctgat	gatggctgtg	1140
atggtggcgg	ctctcatgtc	ctccctcacc	tccatcttta	acagtgccag	caccatcttc	1200
	tctggaatca					1260
	ttgtgctgct					1320
accaaccaaa	gcggccagct	cttcatctat	atccagtcca	tcagctccta	cetgcagecg	1380
gccagccagg	tggtcttcat	cataggatat	ttctqqaaqa	dasceatas	aaaaaatacc	1440
tteteeeg	tgatctcggg	catagtacta	aacttaatta	ggaccaacga	ccacttatt	1500
tretggggee	charatees	cocycecty	ggcccggcca	tactactaca	ggaccctacc	1560
	ctcgatgcga					1620
	tctccatgat					1680
tggttcacag	agccaccctc	caaggagatg	greagecace	tgacctggtt	tactcgtcac	
	tccagaagga					1740
	tgccagaggc					1800
	aaacccacag					1860
atcctgtggc	tctgtggaat	acaggagaag	ggcaaggaag	agctcccggc	cagagcagaa	1920
gccatcatag	tttccctgga	agaaaacccc	ttggtgaaga	ccctcctgga	cgtcaacctc	1980
	tgagctgcgc					2028
<210> 32						
<211> 1458						
<211> 1458 <212> DNA		•				
<212> DNA	sapiens	•				
	sapiens	٠				
<212> DNA <213> Homo	sapiens	•				
<212> DNA <213> Homo <400> 32		. aggcttgttt	catctaggag	cccacacca	ccatccccag	60
<212> DNA <213> Homo <400> 32 atggagcct	gttggggaga					60 . 120
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact	gttggggaga ggcatttctg	tccacagcac	attcaggaat	tcaccaatga	gacatggcag	. 120
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg	gttggggaga ggcatttctg gagagccact	tccacagcac gcccgatcac	attcaggaat ctagtcctgc	tcaccaatga ttatgtggtc	gacatggcag cctcatcgtg	. 120 180
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc	gttggggaga ggcatttctg gagagccact ccctgggagg	tccacagcac gcccgatcac cctctttgga	attcaggaat ctagtcctgc gcactgcttg	tcaccaatga ttatgtggtc caggtccctt	gacatggcag cctcatcgtg ggccatcacg	120 180 240
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct	tccacagcac gcccgatcac cctctttgga cctggtgaat	attcaggaat ctagtcctgc gcactgcttg aacatctttg	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc	gacatggcag cctcatcgtg ggccatcacg agcaatcctg	120 180 240 300
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg	120 180 240 300 360
<212> DNA <213> Homo <400> 32 atggagcct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct	120 180 240 300 360 420
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg	120 180 240 300 360 420 480
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctg	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gcccctgctg	120 180 240 300 360 420 480 540
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgcc	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctg ccctgcctct	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gctccctgaa	120 180 240 300 360 420 480 540 600
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgcc	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc cggggcgctc tgactgtgga	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctg cctgcctct	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gcccctgctg gctccctgaa agcactacgg	120 180 240 300 360 420 480 540 600 660
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgcc	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc cggggcgctc tgactgtgga	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctg cctgcctct	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gcccctgctg gctccctgaa agcactacgg	120 180 240 300 360 420 480 540 600 660 720
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgc acctcctcat gctccgggga	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc cggggcgctc tgactgtgga cttggcaggg	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctg ccctgcctct cctgcctggc agctggagga	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gctccctgaa agcactacgg ggagcgcgct	120 180 240 300 360 420 480 540 600 660
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gcctgccagg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgc acctcctcat gctccgggga gctgccgtgc	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc cggggcgctc tgactgtgga cttggcaggg ccggcgcca	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctg ccctgcctct cctgcctggc agctggagga tccagcatcg	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gctccctgaa agcactacgg ggagcgcgct ggccctgagg	120 180 240 300 360 420 480 540 600 660 720
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gcctgccagg agacaggtga	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgcc acctcctcat gctccgggga gctgccgtgc caagcctcgt	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc cggggcgctc tgactgtgga cttggcaggg ccggcgcca ggttctgggc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctggggaag acctggggga ttacggctct ctcaggcctg cctgcctct cctgcctggc agctggagga tccagcatcg agctctgcgg	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gctccctgaa agcactacgg ggagcgcgct ggccctgagg gaatgactcg	120 180 240 300 360 420 480 540 600 660 720 780
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gcctgccagg agacaggtga gtgtacgct	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgc acctcctcat gctccggga gctgccgtgc caagcctcgt acgcctcctc	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc cggggcgctc tgactgtgga cttggcaggg ccggcgccca ggttctgggc cgtgttccgg	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg aaggcaggag	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctg ccctgcctct cctgcctggc agctggagga tccagcatcg agctctgcgg	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gctccctgaa agcactacgg ggagcgcgct ggccctgagg gaatgactcg gaagatccag	120 180 240 300 360 420 480 540 600 660 720 780 840
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gcctgccagg agacaggtga gtgtacgcct tacgcgatca	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgc acctcctcat gctccgggga gctgccgtgc caagcctcgt acgcctcctc tcgggactg	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc tgactgtgga cttggcaggg ccggcgcca ggttctggg cgtgttccgg gagctgcgag	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg aaggcaggag ctgctcacgg	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctggggaag acctggggga ttacggctct ctcaggcctg cctgcctct cctgcctggc agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gctccctgaa agcactacgg ggagcgcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gcctgccagg agacaggtga gtgtacgcct tacgcgatca atcgagagggg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgc acctcctcat gctccgggga gctgccgtgc caagcctcgt acgcctcctc tcgggactgg	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc tgactgtgga cttggcaggg ccggcgcca ggttctgggc cgtgttccgg gagctgcgag cgtgttccgg	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg aaggcaggag ctgctcacgg atcggtgggt	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctggggaag acctggggga ttacggctct ctcaggcctg cctgcctct cctgcctgg agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gctccctgaa agcactacgg ggagcgcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta gacctgctgg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gcctgccagg agacaggtga gtgtacgcct tacgcgatca atcgagaggg gggagcatct	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgc acctcctcat gctccgggga gctgccgtgc caagcctcgt acgcctcctc tcgggactgg tgggtcggcg	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc tgactgtgga cttggcaggg ccggcgcca ggttctggg cgtgttccgg gagctgcgag cgtgttccgg cgtgttccgg	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg aaggcaggag ctgctcacgg atcggtgggt cagagctcct	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctggggaag acctggggga ttacggctct ctcaggcctg cctgcctct cctgcctggc agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat tcccctggac	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gcccctgaaa agcactacgg ggagcgcgct ggccctgagg gaatgactcg gaatgactcg gaagatccag ttgtgtggta gacctgctgg actctacctg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gcctgccagg agacaggtga gtgtacgcct tacgcgatca atcgagaggg gggagcatct gccatggcct	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgc acctcctcat gctccggga gctgccgtgc caagcctcgt acgcctcct tcgggactg tgggtcggcg tgggtcggcg tacttgtgg	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc tgactgtgga cttggcaggg ccggcgcca ggttctggg cgtgttccgg gagctgcgag cgtgttccgg cgtgttccgg cgtgctcc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg aaggcaggag ctgctcacgg atcggtgggt cagagctcct agctttggca	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctggggaag acctggggga ttacggctct ctcaggcctg cctgcctct cctgcctgg agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat tcccctggac ttggccctgc	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gcccctgaaa agcactacgg ggagcgcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta gacctgctgg actctacctg cggagtgacg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gcctgccagg agacaggtga gtgtacgct tacgcgatca atcgagaggg gggagcatct gccatggcct gggatcctgg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctgctcat gctccgtgc acctcctcat gctcgggga gcagcctcgt tcgggactgc tcaggactgc tcgggactgc caagcctcct tcgggactgc tcggactgc tcactgtggc	tccacagcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggagctc tgactgtgga cttggcaggg ccggcgcca ggttctggg cgtgttccgg gagctgcgag cgtgttccgg cgtgttccgg cgtgctcc cctgtgctc cctgtgcatg cttgtgcatg	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg aaggcaggag ctgctcacgg atcggtgggt cagagctcct agctttggca atggccaggc	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctggggaag acctggggga ttacggctct ctcaggcctg cctgcctct cctgcctgg agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat tcccctggac ttggccctgc	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgctg gcccctgaaa agcactacgg ggagcgcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta gacctgctgg actctacctg cggagtgacg catggtctgc	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140 1200
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gctgccagg gctgccagg ggtacgct tacgcgatca atcgagaggg gggagcatct gccatggcct gggatcctgg gggagcctc	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctcgtgc acctcctcat gctccggga gctgccgtgc caagcctcct tcgggactg tgggtcggcg tcactgtggc gcatctttgc ccacagagct tgtggatcat	tccacagcac gcccgatcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggggctc tgactgtgga cttggcaggg ccggcgcca ggttctgggc cgtgttccgg gagctgcgag cgtgctgctc cctgtgctg cttcatcctc gtttgaccag gctcatcctg	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg aaggcaggag ctgctcacgg atcggtggt cagagctcct agctttggca atggccaggc gtcggcctgg	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctct cctgcctgc agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat tcccctggac ttggccctgc ctgctgctg	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgcccct ggggatcgtg gccctgatg gcacctgagg ggagcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta gacctgctgg acctgctgg catgatgacg catgatgacg catgatgacg catgatgacg	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140 1200 1260
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gctgccagg agacaggtga gtgtacgcct tacgcgatca atcgagaggg gggagcatct gccatggcct gggatcctgg ggggcgctca gccttgtcc	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgcc acctcctcat gctccggga gctgccgtgc caagcctcgt acgcctcct tcgggactg tgggtcggcg tcactgtggc gcatctttgc ccacagagct tgtggatcat acttcctcta	tccacagcac gcccgatcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggggctc tgactgtgga cttggcaggg ccggccca ggttctgggc gagctgcgag cgtgttccgg gagctgctgct cctgtgctg cttcatcct gtttgaccag gctcatctt tgtcccttt	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagg tgggagctgt agtgccatgg aaggcaggag ctgctcacgg atcggtggt cagagctcct agctttggca atggccaggc gtcggcctgg cttggtgtct	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctct cctgcctgc agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat tcccctggac ttggccctgc ctgctgctg gatttccctt gtgtctgtgg	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgccct ggggatcgtg gccctgaaa agcactacgg ggagcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta gacctgctgg catgtgcg catggtctg	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140 1200 1260 1320
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gctgccagg ggagcatca atcgagaggg ggagcatct gccatggcct gggatcctgg gggagcct gggatcctgg gggagcatct gccatggcct agccttgtcc actggcctgt cactggcct gggatcctgg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgcc acctcctcat gctccggga gctgccgtgc caagcctcgt acgcctcct tcgggactg tgggtcggcg tcactgtggc gcatctttgc ccacagagct tgtggatcat acttcctcta tcgtggatcat	tccacagcac gcccgatcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggggctc tgactgtgga cttggcaggg ccggccca ggttctgggc gagctgcgag cgtgttccgg gagctgctgct cctgtgctg cttcatcct gtttgaccag gctcatcttc gtttgaccag gctcatcttc gaccaaaggc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagctgt agtgccatgg aaggcaggag ctgctcacgg acggtgggt cagagctcct agctttggca attggcaggc gtcggcctgg cttggtgtct aagaccttcc	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctct cctgcctgc agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat tcccctggac ttggccctgc ctgctgctg gattccctt gtgtctgtgg aagagatct	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgccct ggggatcgtg gccctgaaa agcactacgg ggagcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta gacctgctgg catgtacg catggtctgc catgatgacg catgataccc caaggaatta	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gctgccagg ggagcatca atcgagaggg ggagcatct gccatggcct gggatcctgg gggagcct gggatcctgg gggagcatct gccatggcct agccttgtcc actggcctgt cactggcct gggatcctgg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgcc acctcctcat gctccggga gctgccgtgc caagcctcgt acgcctcct tcgggactg tgggtcggcg tcactgtggc gcatctttgc ccacagagct tgtggatcat acttcctcta	tccacagcac gcccgatcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggggctc tgactgtgga cttggcaggg ccggccca ggttctgggc gagctgcgag cgtgttccgg gagctgctgct cctgtgctg cttcatcct gtttgaccag gctcatcttc gtttgaccag gctcatcttc gaccaaaggc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagctgt agtgccatgg aaggcaggag ctgctcacgg acggtgggt cagagctcct agctttggca attggcaggc gtcggcctgg cttggtgtct aagaccttcc	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctct cctgcctgc agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat tcccctggac ttggccctgc ctgctgctg gattccctt gtgtctgtgg aagagatct	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgccct ggggatcgtg gccctgaaa agcactacgg ggagcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta gacctgctgg catgtacg catggtctgc catgatgacg catgataccc caaggaatta	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
<212> DNA <213> Homo <400> 32 atggagccct aaggctgact gcgcgtactg tctctgtatc ctgggaagga tttggattca ggagtcaatg aaggagctcc atgggacagg ctggccagct agcccgcgct cggctccggg gctgccagg ggagcatca atcgagaggg ggagcatct gccatggcct gggatcctgg gggagcct gggatcctgg gggagcatct gccatggcct agccttgtcc actggcctgt cactggcct gggatcctgg	gttggggaga ggcatttctg gagagccact ccctgggagg agaagtccct gccgcaaagc caggtgtgag gaggagctgt tggtcggact gcctggtgc acctcctcat gctccgggga gctgccgtgc caagcctcgt acgcctcctc tcgggactgg tgggtcggcg tcactgtggc tactgtggc tactgtggc gcatctttgc ccacagagct tgtggatcat acttcctcat acttcctca	tccacagcac gcccgatcac gcccgatcac cctctttgga cctggtgaat aggctccttt catgaacatc ggccatgagc cagggggctc tgactgtgga cttggcaggg ccggccca ggttctgggc gagctgcgag cgtgttccgg gagctgctgct cctgtgctg cttcatcct gtttgaccag gctcatcttc gtttgaccag gctcatcttc gaccaaaggc	attcaggaat ctagtcctgc gcactgcttg aacatctttg gagatgatca cagcccatgt tcagccatct ctaggtggcc cagctcgcct gacaccgagg gagctggagctgt agtgccatgg aaggcaggag ctgctcacgg acggtgggt cagagctcct agctttggca attggcaggc gtcggcctgg cttggtgtct aagaccttcc	tcaccaatga ttatgtggtc caggtccctt tggtgtcagc tgctgggaag acctggggga ttacggctct ctcaggcctct cctgcctgc agctggagga tccagcatcg agctctgcgg tgccggaagc cggttgttag acagcctgat tcccctggac ttggccctgc ctgctgctg gattccctt gtgtctgtgg aagagatct	gacatggcag cctcatcgtg ggccatcacg agcaatcctg actgctcgtg gagcgccct ggggatcgtg gccctgaaa agcactacgg ggagcgct ggccctgagg gaatgactcg gaagatccag ttgtgtggta gacctgctgg catgtacg catggtctgc catgatgacg catgataccc caaggaatta	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380

```
<210> 33
  <211> 1491
  <212> DNA
  <213> Homo sapiens
  <400> 33
 atgagagege teegaagaet gatteaggge aggateetge teetgaceat etgegetgee
                                                                          60
 ggcattggtg ggacttttca gtttggctat aacctctcta tcatcaatgc cccgaccttg
                                                                        120 .
 cacattcagg aattcaccaa tgagacatgg caggcgcgta ctggagagcc actgcccgat
                                                                        180
 cacctagtcc tgcttatgtg gtccctcatc gtgtctctgt atcccctggg aggcctcttt
 ggagcactgc ttgcaggtcc cttggccatc acgctgggaa ggaagaagtc cctcctggtg
                                                                        240
                                                                        300
 aataacatet ttgtggtgte agcageaate etgtttggat teageegeaa agcaggetee
                                                                        360
 tttgagatga tcatgctggg aagactgctc gtgggagtca atgcaggtgt gagcatgaac
 atccagccca tgtacctggg ggagagcgcc cctaaggagc tccgaggagc tgtggccatg
                                                                        420
 ageteageea tetttaegge tetggggate gtgatgggae aggtggtegg aeteagggag
                                                                        480
 ctcctaggtg gccctcaggc ctggcccctg ctgctggcca gctgcctggt gcccggggcg
                                                                        540
 ctccagetcg cetecetgee tetgeteet gaaageeege getaceteet cattgaetgt
                                                                        600
 ggagacaccg aggcetgeet ggcagcacta eggeggetee ggggeteegg ggaettggea
                                                                        660
                                                                        720
 ggggagetgg aggagetgga ggaggagege getgeetgee agggetgeeg tgeeeggege
                                                                        780
 ccatgggagc tgttccagca tcgggccctg aggagacagg tgacaagcct cgtggttctg
                                                                        840
 ggcagtgcca tggagctctg cgggaatgac tcggtgtacg cctacgcctc ctccgtgttc
                                                                        900
 cggaaggcag gagtgccgga agcgaagatc cagtacgcga tcatcgggac tgggagctgc
                                                                        960
 gagetgetca eggeggttgt tagttgtgtg gtaategaga gggtgggteg gegegtgetg
 ctcatcggtg ggtacagcct gatgacctgc tgggggagca tcttcactgt ggccctgtgc
                                                                       1020
                                                                       1.080
 ctgcagagct ccttcccctg gacactctac ctggccatgg cctgcatctt tgccttcatc
 ctcagctttg gcattggccc tgccggagtg acggggatcc tggccacaga gctgtttgac
                                                                       1140
 cagatggcca ggcctgctgc ctgcatggtc tgcggggcgc tcatgtggat catgctcatc
                                                                       1.200
 etggteggee tgggatttee etttateatg gaggeettgt eccaetteet etatgteeet
                                                                       1260
                                                                       1320
 ttccttggtg tctgtgtctg tggggccatc tacactggcc tgttccttcc tgagaccaaa
                                                                       1380
 ggcaagacet tecaagagat etecaaggaa ttacacagae teaaetteee caggegggee
 cagggcccca cgtggaggag cctggaggtt atccagtcaa cagaactcta g
                                                                       1440
                                                                       1491
 <210> 34
 <211> 1501
 <212> DNA
 <213> Homo sapiens
<400> 34
batgctccac gccctcctgc gatctagaat gattcagggc aggatcctgc tcctgaccat
                                                                        60
ctgcgctgcc ggcattggtg ggacttttca gtttggctat aacctctcta tcatcaatgc
                                                                       120
cccgaccttg cacattcagg aattcaccaa tgagacatgg caggcgcgta ctggagagcc
actgcccgat cacctagtcc tgcttatgtg gtccctcatc gtgtctctgt atcccctggg
                                                                       180
                                                                       240
aggeetettt ggageaetge ttgeaggtee ettggeeate aegetgggaa ggaagaagte
                                                                       300
cetectggtg aataacatet ttgtggtgte agcagcaate etgtttggat teageegeaa
                                                                       360
agcaggetee titgagatga teatgetggg aagaetgete gtgggagtea atgeaggtgt
gagcatgaac atccagccca tgtacctggg ggagagcgcc cctaaggagc tccgaggagc
                                                                       420
                                                                       480
tgtggccatg ageteageea tetttaegge tetggggate gtgatgggae aggtggtegg
                                                                       540
actcagggag ctcctaggtg gccctcaggc ctggcccctg ctgctggcca gctgcctggt
                                                                       600
geceggggeg etecageteg cetecetgee tetgeteeet gaaageeege getaceteet
                                                                       660
cattgactgt ggagacaccg aggcctgcct ggcagcacta cggcggctcc ggggctccgg
                                                                       720
ggaettggca ggggagetgg aggagetgga ggaggagege getgeetgee agggetgeeg
                                                                       780
tgcccggcgc ccatgggagc tgttccagca tcgggccctg aggagacagg tgacaagcct
                                                                       840
cgtggttctg ggcagtgcca tggagctctg cgggaatgac tcggtgtacg cctacgcctc
                                                                       900
ctccgtgttc cggaaggcag gagtgccgga agcgaagatc cagtacgcga tcatcgggac
tgggagctgc gagctgctca cggcggttgt tagttgtgtg gtaatcgaga gggtgggtcg
                                                                       960
                                                                      1020
gegegtgetg etcateggtg ggtacageet gatgacetge tgggggagea tetteaetgt
                                                                      1080
ggccctgtgc ctgcagagct ccttcccctg gacactctac ctggccatgg cctgcatctt
                                                                      1140
tgccttcatc ctcagctttg gcattggccc tgccggagtg acggggatcc tggccacaga
                                                                      1200
gctgtttgac cagatggcca ggcctgctgc ctgcatggtc tgcggggcgc tcatgtggat
                                                                      1260
```

ctatgtccct	ctggtcggcc ttccttggtg	tctgtgtctg	tggggccatc	tacactggcc	tgttccttcc	1320 1380
	ggcaagacct					1440 1500
g	cagggcccca	cgcggaggag	cccggaggcc	·	cagaactcta	1501
9						2002
<210> 35						
<211> 4077	- 4	·				
<212> DNA					*	
<213> Homo	sapiens			•		
400- 25						
<400> 35	tassaaast	assassta	actecaataa	tcacccagaa	taccoatett	60
	tgaagcccat agggtcagtc					120
	gcgatgagga					180
	accttgtcat					240
	agctggcagc					300
	acctggtgct					360
	tcaccttagt					420
gggctgacac	tggcagaggg	tgaaacagtg	cccatcctgc	ccctttccct	gagtgcaact	480
gacatggatt	cagatgattc	tctgctgctt	tttgtgctgg	agtcaccctt	cttaactacg	540
	ttctccgcca					600
	aggaggggc					660
	gcaggctgtt					720
	catttagagt					780
	ttcgtatcca					840 900
cccctcgta	tggtggtaca	ggaatcccag	etcacaccac	cgaggaagaa	gtggetgege	960
	tggacacaga aaaatcacct					1020
tractrotton	tgacccattt	tacccaagee	cagatcaacc	atcataaaat	tacttacaga	1080
	aagaactggg					1140
	ggaatgtggc					1200
	agatecteaa					1260
	agttgcacgt					1320
	cacccaaaca					- 1380
ggtctcttcc	acttggagga	cataaaacag	ggccgagttt	cctatgccca	taatggggac	1440
	ctgatagctg					1500
	taaatgtccg					1560
	agtcctatct					1620
	ggaccaatga					1680 1740
	atggggaaat agggctctgt					1800
	cttttaacct					1860
	aaggagttac					1920
	taggtgaaca					1980
	gtgctgaaga					2040
	cttcaggtta					2100
agagcaggga	ttgccataag	tgctttcaac	ttgaaagatc	tcaggcaggg	ccacataaac	2160
	gtgtccataa					2220
	ttaacttttc					2280
	cagagatgtt					2340
	ccattctcaa					2400
	aattccccac					2460
	gcttcacctt					2520 2580
	agacccagga cggtcctcat					2640
	gactagaaat					2700
	atttagattc					2760
	tattacagag					2820
55			17/79			

17/79

atgaatttta cccaggatga agtagacaga aacttaattc agtatgtcca tttggggcaa	
gagggcattc gggacctaat taaatttgat gactgatg gaataaatcc cctcatagat	2880
cgttactttt atgtgtccat cgggaggtt gtgactgdtg gaataaatcc cctcatagat	2940
cgttactttt atgtgtccat cgggagcatt gacattgtct tccctgatgt gataagtaag	3000
ggagtgtcct tgaaagaagg tggcaaagtc actcttacaa cagacctact aagcactagt	3060
	3120
	3180
	3240
	3300
	3360
	3420
	3480
	3540
	3600
	3660
	3720
	3780
	3840
	3900
	3960
gacgetttte ttggttgete tetgatgaca ttattacaag aagtetteat caagtaa	4020
	4077
<210> 36	
<211> 9318	
<212> DNA .	
<213> Homo sapiens	
<400> 36	
atggcacgat cttggctcac tgcaacctcc acctcccggc ccgctgcctt cggcagggcg	
ttgctgtccc ctggtctcgc gggggctgca ggggtcctg ctgaggaggc catagtgctg	60
gegaaceged dacteedadt geettteda gatartet etgaggagge catagtgetg	120
gegaacegeg gacteegggt geetttegge egtgatet ggetggatee cetgeatgae etggtgttge aggtgeage egggatege basaartht	180
ctggtgttgc aggtgcagcc cggggaccgc tgcgcggttt cggtactaga caacgacgca ctggcccagc gaccggcg cctgagtcg	240
ctggcccagc gaccgggccg cctgagtccc aggcgcttt tggtactaga caacgacgca gaggtgcgct actctcact ggcgcgggg	300
gaggtgeget acteteacet gggegegege ageegetete gggacegegt ceggetgeag	360
ctgcgctatg acgcgccgg aggggcagta gtgctaccac tggtactgga ggtggaggtg	420
gtcttcaccc agctggaggt tgtgactcga acttgcctc tggtactgga ggtggaggtg gggaccagca atgccctgga cgggggagagagagagagagagagagagagagagag	480
	540
	- 600
	660
	720
	780
	840
	900
	960
ttgatettea acettaette tecatteege getgategetgetee etetgacetg gategeagee tgeeette eterteagt comments getaettegt gageacegat	1020
	1080
	1140
	1200
	1260
	1320
	1380
	1440
	1500
	1560
	1620
	1680
	1740
	1800
18/79	1860
2011)	

tatagacact	ctgggcccca	tagtcctggg	ccagtcacag	accagttcac	atttagagtc	1920
			gggctacagc			1980
			agtggctgtc			2040
			tggctgcgct			2100
			cccccacag			2160
			gacaacccct			2220
			gcttacagac			2280
			caggtggaag			2340
geggetacet	ttaccettta	cttgcatccc	gtggacaacc	agccacctga	gatecteac	2400
			cacatcctga			2460
accegectea	acactcatga	tacccatata	tctttcactc	tractrace	acccaaacat	2520
			catgtagggg			2580
			aatggggaca			2640
			gtgcccatca			2700
ceettggaag	teagegacag	catactaage	catcctactg	acactetaga	atcatatata	2760
ccagiggaty	atyaaytycc	tacterate	actoccaeto	ttattaagga	gaccaatgag	2820
gatgttttag	aaaacggggc	cactydaatc	actgccaatg	cacctttata	tagagaaata	2880
gaaactgatg	actigatytt	gaettteett	ttggaagatc	acceptagea	cggggaaacc	2940
ctggtcaatg	geattedage	agagcagttt	actcaaaggg	acaccccgga	ttttaaaata	3000
gtatataccc	acaccagugg	ranatagge	ctattgccta	aageggatte	aggraphs	3060
agtetgteag	ataagtetea	agaatygaya	attggtggca	acaccaccca	aggagetace	3120
			caggececag			3180
ctgatagtaa	tggaaggtga	caaaaguguu	ataacatcag	thereacted	thereather	3240
gtcgactccc	tgaatgatga	catettgtgt	actatagtta	gagagagat	trocataart	3300
gttgaaaaca	tttctccage	accaggetet	gagaaatcaa	gagcagggac	tataastaas	3360
gctttcaact	tgaaagatet	caggcagggc	cacataaact	atgiccagag	taaattttaa	3420
			tttcgttgtt			3480
			cccaccaatg			3540
			agtctggtaa			3600
			ttaactttca			3660
			ggcacggttt			3720
			tatgagcatg			3780
			aagcactctg			3840
			agaatgacta			3900
			aaaatattaa tatgggccag			3960
						4020
			acactgggca ttggggcaag			4080
			ctcatagatc			4140
			ataagtaagg			4200
						4260
			agcactagtg atgcgaggtc			4320
			ctgcaactgg			4380
			gacagttttg			4440
			tccattagcg			4500
			gaaagtgaaa			4560
			gacaagctcc			4620
			aataccagac			4680
			aaacatgatg			4740
			catacagact			4800
			aagatccagg			4860
			tctacacttc			4920
			aaagtggagg			4980
			caacatggat			5040
			gctgacattg			5100
			gatatgttct			5160
						5220
			cgtctgaatt			5280
			aaatttctag attggcacaa			5340
			caagtgcagt			5400
yacaaagact	ccaayggcaa	aycacayada	10/70	ccaacccayg	ccagaccagg	2400
			14//4			

19/79

gtgaatcage etggatetga tggatttaaa gtegaetcaa caccactett teaggteget etaggetatt acatacgate tatacagta gategaaaga caatgecaat egaggtattg gcaaaagaaga tgtggagtac cattebaha	8760 8820
tttggaaatg tcctatttaa tgccaaacta gcagtggatg accetgaage cattetetta	
tcactcttat atagatttaa aattgtggac aaagctcage cagagacaca agcgaccagt	8700
ggctatgttc ccaagtatag tccaatgaat gcagaatatg gctgcttagc cgactctcct tcactcttat atagattta aattgtgggg pagatatg gctgcttagc cgactctcct	8640
	8580
gatgttgett ttgcagaagg tgatataatt tatggtegtg teatggtgga teetgteeag	8520
	8460
ctgctctcta agaagagtct ctggttgtct gatggatta gcttgaacac ccaaatgtac	8400
cgattccaac aggtcagtga tccagtgact cottgacatc	8340
gaataccgcc tgccagtcac ctgcaacgcc agaggagatat gcactgcccc atcacatcag	8280
	8220
	8160
	8100
	8040
	7980
	7920
	7860
	7800
	7740
	7680
	7620
	7560
	7500
caagccagtg ctgacccagg catggtcagg atggtcage ccaggaaaca gcccctgcag	7440
actocatgtg ctcagaggct togtggttt attgaccace ccaggaaace atcagcacag caagccagtg ctgaccagg catggtcagg attgaccace ccaggaaaca gcccctgcag	7380
	7320
	7260
	7200
	7140
	7080
tatggtttct tgactgatgc taccaaaaat ccagaaataa ttggagagac atatccttac	7020
	6960
	6900
gttacctttg acgggtgag agagatgaga gaggcttca ctgttcacct aaaacctgat	
	6840
	6780
	6720
gatgctgata agactgttat taaatttgga gaacccaaat ttagtgtcac tgaacccaaa gaacctggag agtcggtggt tataagaatt gaaccaaat	6660
	6600
	6540
	6480
	6420
	6360
	6300
	6240
	6180
	6120
	6060
	6000
	5940
	5880
	5820
	5760
	5700
	5640
	5580
	5520
gccacatggc gagtgcggat cctgagtgat ggggagcatg agcagtctga aacctttcag	5460
gccacatogc gagtgcggat cotract	

20/79

						•
tecaccacca	agagccggaa	gaagagagag	atcaggagca	caccctcact	ggcatgggag	9000
	aaaacagtcg					9060
	cccatgggag					9120
cccagctctg	cagtcagcct	ggtcactgtg	gtgggaggca	ccacggtagg	gttactcacc	9180
atctocctca	ctgtcattgc	agtgctgatg	tgcaggggca	aggaaagttt	cagggggaag	9240
detacccas	aaggctccag	caccacteae	cccataatac	ccccacadad	ccatcacaat	9300
		cagcagcgag	cccacggcgc	ccccacagag	couccacaac	
gacageteag	aagtttga					9318
	-	•				
<210> 37						
<211> 1374						
<212> DNA						
<213> Homo	sapiens					
<400> 37						
atggggtgta	gtggagcctg	gggcttgagc	tgcccttgtc	cacagacgcc	atcctgggcc	60
	tgcggacgcc					120
	tctctgcctg					180
						240
	agggcatggc					
	tggcttcgtg					300
actcaggaca	gtcctgccat	ccgtgtgctg	gccagcgacg	ggcacatccc	ctctgagcag	360
cctggggatg	gagctagcca	agggctgggc	tcctgtcatt	gggacttccg	gaaccggcca	420
	gagcacggat					480
	ccagtgatcc					540
						600
	tctttggggt					
ctgtccttcc	tgaccttcag	cctgagtgag	cccagcccag	aggttccccc	tcagcccttc	660
ctggagatgc	agcacgtccg	cctggcgagg	cagctggaag	ggctgtgggc	aaggctgggc	720
ttgggcacca	gggaggatgt	aactccaaaa	tcagactctg	aagctcaagg	agaaggggaa	780
	acctggagga					. 840
						900
	agcagctggc					
	gcctgacgga					960
gtctcctacc	tgcctgtggg	cattgagcat	catttcttag	agctggacca	catcctgggc	1020
ctcctgcagg	aggagcttcg	gggcccggcg	aaggcagcag	ccaaggcccc	ccgcccacct	1080
	caagggcctc					1140
	taggcttctt					1200
	cgttcatggt					1260
						1320
	gcggcgagga					
atgagccggg	aggagtacga	ggagtatcag	aagcaactcg	tggaagagaa	gtga	1374
<210> 38						
<211> 1581						
<212> DNA						
<213> Homo	annione					
(213) NOIIIO	saptens	•				
<400> 38						
atgccggcgg	tcagtggtcc	aggtccctta	ttctgccttc	tcctcctgct	cctggacccc	60
cacagccctg	agacggggtg	tcctcctcta	cgcaggtttg	agtacaagct	cagcttcaaa	120
	tggcattgcc					180
	tggaggaagt					240
	cctctgtccc					300
	gccggggagc					360
gtaggctctg	tccttggggg	gctggcttcg	tgggacggca	tcgggatctt	ctttgactct	420
	atactcagga					480
	agcctgggga					540
						600
	cacacccctt					
	gtggcctcac					660
ctgcttttgg	tccctggagg	tttctttggg	gtctcagcag	ccaccggcac	cctggcagat	720
gatcatgatg	tcctgtcctt	cctgaccttc	agcctgagtg	agcccagccc	agaggttccc	780
	tcctggagat					840
	gcttgggcac					900
2000220029	, 3 9 9 9 - 0 0	~~235~39~6	01/70		J J - 2044	

ctggggccca attccatcca aaggtcggtg gatgcagctg catcatttca gcgaaggcag ctgcagcctg gtgcacttca cctctgggtc	c ggggtetete c caggecaag a ceceagga g ceetgetee g teegeatgg t tagagetgg g cagecaagg g geatettee a ggeaggaget	c caagcagct; c caggectgac g gggtggccac a tggacagtg; c tgcagaagcc c cccccgccc c gttctacctc c gaacaagagc	g gcccaggctg ggaggctggg c ctctccatgi g actctgctcci g ggcctcctgg a cctggccagg c ctcattcagg	g agagacaatg g ccctggatg t cactcaataa aggccctgc acctgcctgt aggaggagct ccccaaggga ctgtaggctt	g ccggatcctg g gaagaagcag c ttcctgccag a ggactctgcc a agagatgagg c tcggggcccg c ctcctcgtgc c cttcggctac aggcagcctt g gcagcctctc	. 960 1020 1080 1140 1200 1320 1380 1440 1500 1560
<210> 39 <211> 2715 <212> DNA <213> Homo						
<400> 39						
atgetettgg	ctctatgttc	: atctctggct	cttatttttg	cagctcctgt	cagtggacag	60
ccigageact	. cayygaacta	ctactgcaca	gctgacaatg	actttaacco	ccadcacadt	120
gaggiggiga	grereretgt	cactgtecet	gtgtctcate	ctgtcctcac	cctcagctct	180
gctgaggccc	ctatattta	aggagccact	gtgacacttc	actcttcgct	gatcctgcaa	240
gtaacactca	atactatota	aggagaette	gtggttctga	ggtgccgggc	aaaggcggaa	300
gacttccata	ttcatcacgca	caagaatggt	aacgtcctga	cattccttaa	taaaagctct	360
aacqqaaqta	atttetetetet	aagtctcaaa	gacaatggtg	catatcactt	tactggattt	420
ctaccccaat	gattectase	ttcttccaac	acagecaaaa	tccaagtcca	agagcatete	480
gtcaatagag	gtccacttct	ggcacctgat	cccactgtgg	cccttagtga	gatattctca	540
ttccctacto	aggactggaa	gacaggcaca cttcactctt	gycteeegag	ttatgactcc	ctggatttac	600
aggeettata	ctcctcggaa	tccttgggaa	atteccatta	ctgtggacga	tgcttgcaaa	660
cagcagaagg	ggaacccaga	cctgctcatg	greggaagee	Laacaccagg	aaagagtttc	720
atcacacttt	tttqcaacat	ggcaggttct	ttatttt	atguettea	cttgtccctc	780
aaagatgcat	tatttottac	aggaaatgaa	aggagagaga	atacggaact	Eggagaaaag	840
agccttgctg	gtgggcaaga	agcagatcaa	ageagaaget	ttooccates	ccagaagttc	900
caggatattt	tcatatatat	cagacaaggt	gagagttgtc	ttatatta	actgatgagt	960
caggtctaca	gacggcctgc	tggaggtgtt	ccagtagagc	atatgagtgt	gatgttttat	1020
agggtgaata	gttcgggact	cttcgcctac	actaataact	gastattta	argggerere	1080
ctccagtctg	tggacaatct	gagcccatca	acteactete	aaacacacac	aggartes	1140
aagttatgtc	ccttcctggc	catagggcca	cctgcacata	acacacacga	aggccatgaa	1200
gcaaagaaga	gtctagttgc	atacatcaaa	ggaaatcaac	tctccttccc	togagtaga	1260
gacctattgt	CLaagtCCCCa	atggccctqc	atccaggtgc	ttcccammaa	tataceteca	1320
getgeacaca	aacctgtgat	ttccgtccat	cctccataga	ccacattett	nenenneeen	1380
agagigacic	cgacttgcaa	tggatttcag	ttctatgcaa	Cagagaaaac	aacatootat	1440
Catteggeact	accggggaga	aaagttgacc	ctgaccccag	gaaacaccct	agageteaga	1500 1560
gaarerggae	igracagatg	ccaggcccgg	ggctccccac	gaagtaaccc	tatacactta	1620
	cayyryayaa	ayaagactgt	gtetetgaca	agaatectge	tacaaatcac	1680
acticiaatgi	ccaggaagag	atcctcatgt	agttctctaa	gtgccacttc	tttcatacct	1740
cccyclolya	gaetegaete	cttaatcctg	caggcaccat	attetatatt	traagrataac	1800
acactggtte	Lyagatgeca	cagaagaagg	aaagagaaat	tgactgctgt	maaatatant	1860
tygaatygaa	acattette	catttctaat	aaaaactaaa	atcttcttat	CCCSCSSACS	1920
ayılcadala	acaatggcaa	ttatcgatgc	attogatato	gagacgagaa	tratratet	1980
ayaccaaacc	tcaaaataat	taaaattcaa	gggatccctg	tatatagaat	actactacea	2040
acceageeee	cagggggcca	ggctgttgaa	ggggagatgc	taatecttat	ctactccata	2100
gergaaggea	caggggatac	cacattctcc	tggcaccgag	aggacatgca	adadaateta	2160
yyyayyaaaa	ctcagcgttc	cctgagagca	gagctggagc	tecetaceat	Cacacacac	2220
catycagygg	gatactactg	tacagcagac	aacagctacg	accetateca	aaacataata	2280
ctyaatytea	cigtgagaga	gaccccaqqc	aacagagatg	accttateae	000000000	2340
actggagggc	tgctcagtgc	tcttctcctg	gctgtggccc	tgctgtttca	ctgctggcgt	2400
			22 <i>1</i> 70			

canaggaagt	cagtacaccc	caaaaaggga	gatttggtat	actctgagat	ccagactact	2460
cagctggaage	aagaagagga	aggaaatcat	ggcaataaaa	atcaagaact	agaacttgtt	2520
aatgtaggag	agagttttc	tcacagggca	tgcatatgga	gtactctaat	gggaacttgc	2580
caaacaatco	ggggtgctaa	tacctccagg	acacttctag	aggataagga	tgtctcagtt	2640
gtctactctg	aggtaaagac	acaacaccca	gataactcag	ctggaaagat	cagctctaag	2700
						2715
	_					
<210> 40		-				
<211> 1548						
<212> DNA						
<213> Homo	sapiens					
<400> 40						٠٠.
atgctgctgt	gggcgtcctt	gctggccttt	gctccagtct	gtggacaatc	tgcagctgca	60
cacaaacctg	tgatttccgt	ccatcctcca	tggaccacat	tcttcaaagg	agagagagtg	120 180
actctgactt	gcaatggatt	tcagttctat	gcaacagaga	aaacaacacg	tagganatat	240
cactactggg	gagaaaagtt	gaccctgacc	ccaggaaaca	cccccgaggc	cttactatt	300
ggactgtaca	gatgecagge	ceggggetee	tattetetet	ttgaaggtga	cacattggtt	360
tetteagaet	ccttaatcct	geaggeacea	ttgactgctg	traaatatar	ttggaatgga	420
ctgagatgcc	acayaayaay	taaaaactaa	catchtctta	tcccacaage	aagttcaaat	480
aacactccct	attatogato	cattegatat	gacccccaa	atgatgtatt	tagatcaaat	540
ttcaaaataa	ttaaaattca	agaactattt	ccacatccag	agctgaaagc	tacagactct	600
cagcctacag	aggggaattc	totaaaccto	agctgtgaaa	cacagettee	tccagagcgg	660
tcagacaccc	cacttcactt	caacttcttc	agagatggcg	aggtcatcct	gtcagactgg	720
agcacgtacc	cggaactcca	gctcccaacc	gtctggagag	aaaactcagg	atcctattgg	780
tgtggtgctg	aaacagtgag	gggtaacatc	cacaagcaca	gtccctcgct	acagatccat	840
gtgcagcgga	tccctgtgtc	tggggtgctc	ctggagaccc	agccctcagg	gggccaggct	900
gttgaagggg	agatgctggt	ccttgtctgc	tccgtggctg	aaggcacagg	ggataccaca	960
ttctcctggc	accgagagga	catgcaggag	agtctgggga	ggaaaactca	gcgttccctg	1020
agagcagagc	tggagctccc	tgccatcaga	cagagccatg	cagggggata	ctactgtaca	1080
gcagacaaca	gctacggccc	tgtccagagc	atggtgctga	atgtcactgt	gagagagacc	1140
ccaggcaaca	gagatggcct	tgtcgccgcg	ggagccactg	gagggctgct	cagtgctctt	1200 1260
ctcctggctg	tggccctgct	gtttcactgc	tggcgtcgga	ggaagtcagg	agetggttte	1320
ttgggagacg	aaaccaggct	ccctcccgct	ccaggcccag	tagaggeete	aaaaaaaat	1380
tgccctgccc	aggrggager	cagtegttg	chargetgatg	anaggaagg	taatacctcc	1440
ctggtatact	tagagateca	gactactcag	attatatat	ctgaggtage	gacacaacac	1500
aggadactic	cagayyacaa	gatgactct	aaggatgaag	aaagttaa	gaoadadad	1548
ccayacaacc	cageeggaaa	gaccagococ	aaggaagaag	aaagaaaa		
<210> 41						
	sapiens					
<400> 41						
batggctgtg	ggaggaggac	acaaaggagt	tagatgtcct	ccctctgctc	gcagctccca	60
ggtgcccacg	tgctgcgctg	gctggaggca	gcaaggggac	gagtgtggga	ttgcggtgtg	120
cgaaggcaac	tccacgtgct	cagagaacga	ggtgtgcgtg	aggcctggcg	agtgccgctg	180 240
ccgccacggc	tacttcggtg	ccaactgcga	caccaagrgc	cegegeeagt	tetggggeee	300
cgactgcaag	gagctgtgta	gctgccaccc	acacgggcag	tgcgaggacg	tgacaggcca	360
gtgtacttgt	cacgcgcggc	gctggggcgc	gcgctgcgag	tecacetact	agracasass	420
cggcacgtgc	caccccgga	geggegegtg	cegetgtgag	dacccacaca	ggggggggga	480
gtgcgccagc	gcgcgctact	gcagcgccac	gregegerge	cantacacat	acaactcatc	540
cctgtgccac	gcaggctggt	ggggccgcag	ataccaccasa	catacattca	acacacacta	600
ccccugcyag	taccagtact	tecacaacaa	ctoccaccct	atagacaaca	catataceta	660
cgategetae	taccocooce	artactotco	casaccatac	cccaccaact	tctacgoctt	720
addetated	caccaatata	accaptacaa	addccadcad	ccgtgcacaa	tggccgaggg	780
3930090090	~5~~55~5~5	30008080000		2 2 23		
			43117			
	cagctgggag aatgtaggag caaacaatcg gtctactctg gatgaagaaa <210> 40 <211> 1548 <212> DNA <213> Homo <400> 40 atgctgctgt cacaaacctg actctgactt cactactggg ggactgtaca tcttcagact ctgagatgcc aacattcttt aacaatggca tctaaaataa cagcctacag tcagacggga gttgaagggg ttctcctggc agagcagaca ccaggcaaca ccagacactc ccagataact ccagataact ccagataact ccagatact ccagataact ccagacactc ccagacacac ccaggcaaca ccagacacac ccacacac acacac ccacacac ccacacac ccacacac ccacacac ccacac acac ccacac ccacac ccacac ccacac ccacac ccacac ccacac ccacac ccacac ccacac ccacac ccacac ccacac ccacac ccac ccacac ccac ccac ccacac ccac ccacac ccac ccacac ccac ccacac ccac ccac ccac ccac	cagctgggag aagaagagga aatgtaggag aggtgaagaaa ggtaaagaa gttaa <210> 40 <211> 1548 <212> DNA <213> Homo sapiens <400> 40 atgctgctgt gggcgtcctt cacaaacctg tgattccgt gagtagaagat ggactgtaca gatgacgactcttcagact ccttaatcct ctgagatgc acattctt cacaaactg tattctaa aacaatggca ttaaacattctt cagacgacacc cacttcact agcacgacacc cacttcact agcacgacac agagggaggaggggggagacgacgacacac caggcaacac aggacacacac	cagctgggag aagaagagaa aggaaatcat agaggtttttc cacaagggag ggtgataa ggtaaagac ggtaaagac ggtaaagac ggtaaagac ggtaaagac ggtaaagac ggtaaagac ggtaaagac ggtaaagac ggtaaagac ggtaaagac ggggggtctat cacacacca ggtgaagaagac ggtaaagac ggggggtctt cacaaacctg ggggggtcctt cacaaacctg ggggggtcctt cacaaacctg ggatttccq tacacacctg gaggaaagac cacttaatcct gactt cactactgac gatgacagac acattctta cactactgac acattctta cactactgac acaaagaagaagaa taaagagaa ataaagagaa acattctt cattcaact cagaagaagaa acattctt cagacaccc agggggaattc taggacaca acaatgaat taaaaattcaa gaacaatgac acattcact agcacgac aacaatgaag ggggaactca taggaggaattc taggaacaca aggaggaattc taggaacaca aggaggaattc taggaacaca aggaggaattc taggaacaca ggaacacac ggaaccaca ggaacacac gggggaacca gggggaacca gggggaacca gggggaacca gggggaacca gggggaacca gggggaacca ggaggagac aacaaggag ggtaacact taggagacaca ggaggacaca ggaggacaca caggagacacac caggaagacactc caggaacacac caggagaacactc caggaagacactc caggaagacactc caggagaacacac caggagaacactc caggagaacacac caggagaacacac caggagaacacac caggagaacacac caggagaacacac caggagaacacac caggagaacacac caggagaacacac caggagaacacac caggagaacacac caggagaacacacac	cagctgggag agagtttttc cacacgggca tecatagag agagtttttc cacacgggca tecatetag gggtgctaa tacctccagg acactctag ggtgaagaaa gttaa <210> 40 <211> 1548 <212> DNA <213> Homo sapiens <400> 40 atgctgctgt gcaatggat tacctctag gattacacac gagacgacacaccc tactcagg gattacacccac tacctaggg agacacacccac tacctaggg gattacacccac tacctaggg gattacacccac gagacgacac acactctatact gagaaaagat gacctgacc cactcactcg sactctacacg gadaaaagat gacctgacc cacgagaacac acactcttc cactaactgga gacgacacaccccaccc	cagctgggggg aggaattttc tcacagggca tcacataaaa aggattttc tcacagggca tgacatataga ggadatctaa aggataagga ggacatctaaggaca ggataagga cacatctctaagga ctggaaagga ctggaaagga ctggaaagga ctggaaagaa ctggaaagaa ctggaacacat ctggaaagaa ctggaacacat ctctcaagat ctctcaagat ctctcaagat ctctcaagat ctctcaagat ctctcaagat ccatcaacacat ccatcaacacat ccttcaagat cacatcaagaga aacacacacat ccttcaagat ccatcaacacat ccttcaagat ccttcaagat ccatcaacacat ccttcaagat ccatcaacacat ccttcaagat cacatcaagaga aacacacaca ccttcaagat cacatcaagaga aacacatagaga aacattcttt cacatcaagaga cacatcaagaga cacttcaagagaga cacatcaagaga cacatcaagaga cacatcaagaga cacatcaagaga cacatcaagaga cacatcaagaga cacatcaagaga cacatcaagagaa cacatcaagaga cacatcaagagaa	<pre><210> 40 <211> 1548 <212> DNA <213> Homo sapiens </pre> <pre><400> 40 atgctgctgt cacaaacctg gggcgtcctt gctcctcca tggaccacat cttcaaagg actctgactg gaattecgt cactectca tggaccacat tctcaaagg cactagatg gagaaagtt gactctata gcacaagaga aacaacatg gactgtaca gatgcaggc ccggggctcc tcttcagact ccttaatcct gcaggcacca tattcttgtgt ttgaaagtgc tcttgagatgc ccttaatcct gcaggcacca tattcttgtgt ttgaaagtgt tcttcagact ccttaatcct gcaggcacca tattcttgtgt ttgaaagtgc tctgagatgcc ccttaatcct gcaggcacca tattcttgtgt ttgaaagtgc tctgagatgcc ccttaatcct gcaggcacca tattcttgtgt ttgaaagtgc tctgagatgcc ccttaatcct gcaggcacca tattcttgtgt ttgaaagtgc tctgagatgcc ccttaatcct gcaggcacca tattcttgtgt ttgaaagtgc tctgaaatcacactct ccattttcaa taaaagtgg gatcttctta acaaatgcac attaagtgc cattggatat tcaaactagca attatcgatg cattggatat tcaaactagca attatagatg cattggatat tcaaactagcaccacagagagagaaccc gagcaccacacagacaccacagacaccagagagag</pre>

CCCCtacta		
ccgctgcttg acgtgcgagc ccggctggaa cggaaccaag tgcgaccagc cttgcgccac	840	
	900	
	960	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1020	
T TO THE TOTAL PROPERTY OF THE TOTAL PROPERT	1080	
a same a same a same contraction of the contraction	1140	
a manageged decedured full full de da da faire de da faire de da fair	1200	
The second of th	1260	
	1320	
	1380	
	1440	
	1500 1560	
	1620	
	1620	
	1740	
	1800	
- The Theorem addition and the analysis and the second and the sec	1860 1920	
The state of the s	1980	
- 00 "" -33403000 909acaaacc nochcaraca ataassassassassassassassassassassassassa		
	2040 2100	
	2160	
The state of the s	2220 2280	
	2340	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
The state of the s	2400 2460	
cgagetgggc agggegggcg cacceacct gtag	2400 2494	
	2434	
<210> 42		
<211> 2614		
<212> DNA		
<213> Homo sapiens		
<400> 42		
batggaggge geagggeee ggggggeegg geeggeggg egeeggggg egegggggee	60	
	120	
	180	
	240	
	300	
	360	
	420	
	480	
	540	
	600	
	660	
	720	
	780	
	840	
	900	
	960	
	1020	
	1080	
	1140	
	1200	
	1260	
a sample of a control of the transfer of the sample of the	1320	
caagggcgtg atgggcgcgg gegegetget egteetgete gtetgeetge tgeteteget	1380	
24/79		

WO 02/22802 PCT/US01/28462 .

gctcggctgc	tgctgcgctt	gccgcggcaa	ggaccctacg	cgccgacccc	gcccccgcag	1440
ggagctttcg	cttgggagga	agaaggcgcc	gcaccgacta	tgcgggcgct	tcagtcgcat	1500
cagcatgaag	ctgccccgga	tcccgctccg	gaggcagaaa	ctacccaaag	tcgtagtggc	1560
ccaccacgac	ctggataaca	cactcaactg	cagcttcctg	gagccaccct	cagggctgga	1620
gcagccctca	ccatcctggt	cctctcgggc	ctccttctcc	tegtttgaca	ccactgatga	1680
aggccctgtg	tactgtgtac	cccatgagga	ggcaccagcg	gagagccggg	accccgaagt	1740
	cctgccgagg					1800
cgccgaggag	gcgatacccc	teccegegte	ctccgacagc	gagcggtcgg	cgtccagcgt	1860
	ggaggggctc					1920
	gagattgggg					1980
gccacctgac	cccgccacca	agcctaaggt	gtcctggatc	cacggcaagc	acagcgccgc	2040
tgcaġctggc	cgtgcgccct	caccaccgcc	gccaggctcc	gaggccgcgc	ccagccccag	2100
caagaggaaa	cggacgccca	gcgacaaatc	ggcgcatacg	gtcgaacacg	gcagcccccg	2160
gacccgcgac	ccaacgccgc	gcccccggg	gctgcccgag	gaggcgacag	ccctcgctgc	2220
gccctcgccg	cccagggccc	gagcgcgcgc	cgcgccccgg	cctcttggag	cccacggacg	2280
	cccgcgaagc					2340
caagactcgc	agcctgggcc	gcgccgaggt	ggccctgggc	gcgcagggcc	ccagggaaaa	2400
gccggcgccc	ccacagaaag	ccaagegete	cgtgccgcca	gcctcgcccg	cccgcgcgcc	2460
cccagcgacc	gaaaccccgg.	ggcctgagaa	ggcggcgacc	gacttgcccg	cgcctgagac	2520
	aagaccccca			aagagccggg	aggcggcggg	2580
cgagctgggc	agggcgggcg	cacccaccct	gtag			2614
<210> 43						
<211> 402						
<212> DNA			•			
<213> Homo	sapiens					·
<400> 43						
atcgactgcc	gcgcggagca	gggccgtacg	ccgctcatgg	tggccgtggg	gctgccggac	60
cccgcgctgc	gegegegett	cgtgcggctg	ctgctcgagc	agggtgctgc	agtgaacctg	120
cgagacgagc	gcggccgcac	cgcactcagc	ctggcgtgcg	agcgaggcca	cctggacgcc	180
gtgcagctgc	tggtgcagtt	cagcggtgac	cccgaggcgg	ccgactctgc	gggcaacagc	240
ccggtgatgt	gggcggcggc	ctgcggccac	ggggcggtgc	tcgagttcct	ggtgcggtcc	300
	taggcctgcg				cgcgctgcaa	360
ctggccgccg	cccgcggcca	cgggacctgt	gtgcaggccc	tc		402
			•			
<210> 44	•					
<211> 975						
<212> DNA						
<213> Homo	sapiens					•
				•		
<400> 44						60
	ccaaggacct					60
caggcgggca	aagtgcactt	ggecegette	gtgttggatg	cgctggaccg	cagcatcatc	120
	cggagcaggg					180
	cgcgcttcgt					240
gacgagcgcg	gccgcaccgc	actcagcctg	gcgtgcgagc	gaggccacct	ggacgccgtg	300
cagetgetgg	tgcagttcag	cggtgacccc	gaggcggccg	actctgcggg	caacagcccg	360
gtgatgtggg	cggcggcctg	cggccacggg	geggtgeteg	agttcctggt	gcggtccttc	420
	gcctgcgcct					480
gccgccgccc	gcggccacgg	gacctcggcg	ggcggccacg	gcggcgaggc	tggctcagcg	540
ggcaagaatt	cgggccggca	ccgggcgcag	ggcagcgaac	ggcccgagct	gggtcggagc	600
atgagcctgg	ctctaggtgc	ggtaaccgag	gaggaggctg	cccgcctgcg	ggctggggcc	660
	taccaaactc					720
gtgctggagg	gagcgccccc	aaccttagcg	caagccccca	ttggcctcag	tccccacccg	780
	ccggctctgg					840
cccagcctgg	tcggggaggc	gccagggccc	gagagtggcc	cggagttaga	ggccaacgct	900
ctgtctgtct	cggtgcctgg	gccgaaccct	tggcaggcgg	gcaccgaggc	tgtggtgctg	960
cgtgctcagc	ggtaa					975
			07/70			

<210> 45 <211> 568 <212> PRT <213> homo sapiens <400> 45 Met Lys Glu Ala Glu Met Asp Gly Glu Ala Val Arg Phe Cys Thr Asp - 5 10 Asn Gln Cys Val Ser Leu His Pro Gln Glu Val Asp Ser Val Ala Met 20 . 25 Ala Pro Ala Ala Pro Lys Ile Pro Arg Leu Val Gln Ala Thr Pro Ala 40 Phe Met Ala Val Thr Leu Val Phe Ser Leu Val Thr Leu Phe Val Val 55 60 Gly Lys Pro Pro Val Gln Gln Gln Thr Arg Pro Val Pro Lys Pro Val 70 75 Gln Ala Val Ile Leu Gly Asp Asn Ile Thr Gly His Leu Pro Phe Glu 85 90 Pro Asn Asn His His His Phe Gly Arg Glu Ala Glu Met Arg Glu Leu 100 105 Ile Gln Thr Phe Lys Gly His Met Glu Asn Ser Ser Ala Trp Val Val 120 125 Glu Ile Gln Met Leu Lys Cys Arg Val Asp Asn Val Asn Ser Gln Leu 135 140 Gln Val Leu Gly Asp His Leu Gly Asn Thr Asn Ala Asp Ile Gln Met 150 155 Val Lys Gly Val Leu Lys Asp Ala Thr Thr Leu Ser Leu Gln Thr Gln 165 170 Met Leu Arg Ser Ser Leu Glu Gly Thr Asn Ala Glu Ile Gln Arg Leu 180 185 Lys Glu Asp Leu Glu Lys Ala Asp Ala Leu Thr Phe Gln Thr Leu Asn 200 205 Phe Leu Lys Ser Ser Leu Glu Asn Thr Ser Ile Glu Leu His Val Leu 215 220 Ser Arg Gly Leu Glu Asn Ala Asn Ser Glu Ile Gln Met Leu Asn Ala 230 235 Arg Ala Asn Ala Glu Ile Gln Gly Leu Lys Glu Asn Leu Gln Asn Thr 250 Asn Ala Leu Asn Ser Gln Thr Gln Ala Phe Ile Lys Ser Ser Phe Asp 265 Asn Thr Ser Ala Glu Ile Gln Phe Leu Arg Gly His Leu Glu Arg Ala 280 Gly Asp Glu Ile His Val Leu Lys Arg Asp Leu Lys Met Val Thr Ala 295 300 Gln Thr Gln Lys Ala Asn Gly Arg Leu Asp Gln Thr Asp Thr Gln Ile 310 315 Gln Val Phe Lys Ser Glu Met Glu Asn Val Asn Thr Leu Asn Ala Gln 325 330 Ile Gln Val Leu Asn Gly His Met Lys Asn Ala Ser Arg Glu Ile Gln 345. Thr Leu Lys Gln Gly Met Lys Asn Ala Ser Ala Leu Thr Ser Gln Thr 355 360 Gln Met Leu Asp Ser Asn Leu Gln Lys Ala Ser Ala Glu Ile Gln Arg 375 380 Leu Arg Gly Asp Leu Glu Asn Thr Lys Ala Leu Thr Met Glu Ile Gln 390 395 Gln Glu Gln Ser Arg Leu Lys Thr Leu His Val Val Ile Thr Ser Gln 405 410

```
Glu Gln Leu Gln Arg Thr Gln Ser Gln Leu Leu Gln Met Val Leu Gln
             425 430
Gly Trp Lys Phe Asn Gly Gly Ser Leu Tyr Tyr Phe Ser Ser Val Lys
                    440
Lys Ser Trp His Glu Ala Glu Gln Phe Cys Val Ser Gln Gly Ala His
                      460
                 455
Leu Ala Ser Val Ala Ser Lys Glu Glu Gln Ala Phe Leu Val Glu Phe
     470
Thr Ser Lys Val Tyr Tyr Trp Ile Gly Leu Thr Asp Arg Gly Thr Glu
           485
                          490
Gly Ser Trp Arg Trp Thr Asp Gly Thr Pro Phe Asn Ala Ala Gln Asn
   500 ·
                       505
Lys Ala Pro Val Val Phe Gly Phe Trp Glu Lys Asn Gln Ser Asp Asn
                          525
 515 520
Trp Arg His Lys Asn Gly Gln Thr Glu Asp Cys Val Gln Ile Gln Gln
 530 535
                                540
Lys Trp Asn Asp Met Thr Cys Asp Thr Pro Tyr Gln Trp Val Cys Lys
      550
                              555
Lys Pro Met Gly Gln Gly Val Ala
            565
```

<210> 46 <211> 364 <212> PRT <213> homo sapiens

(213) Homo Dapie.

<400> 46 Met Ser Arg Gln Gly Lys Leu Phe Ser Ala Phe Gly Val Gly Cys Cys 10 . Val Thr Ala Gly Leu Pro Lys Asp Asp Asn Thr Pro Ser Thr Ile Ala 20 25 Asp Val His Asn Gly Tyr Thr Met Asn Val Val Glu Gln Val Leu Lys 40 Asp Ser Phe Val Leu Phe Phe Pro Gly Thr Leu Cys Asp Phe Pro Lys 55 Ile His His Gly Phe Leu Tyr Asp Glu Glu Asp Tyr Asn Pro Phe Ser Gln Val Pro Thr Gly Glu Val Phe Tyr Tyr Ser Cys Glu Tyr Asn Phe 90 . Val Ser Pro Ser Lys Ser Phe Trp Thr Arg Ile Thr Cys Thr Glu Glu · 105 Gly Trp Ser Pro Thr Pro Lys Cys Leu Arg Met Cys Ser Phe Pro Phe 120 125 Val Lys Asn Gly His Ser Glu Ser Ser Gly Leu Ile His Leu Glu Gly 135 .140 Asp Thr Val Gln Ile Ile Cys Asn Thr Gly Tyr Ser Leu Gln Asn Asn 150 155 · Glu Lys Asn Ile Ser Cys Val Glu Arg Gly Trp Ser Thr Pro Pro Ile 165 170 Cys Ser Phe Thr Met Lys Thr Cys Gly Tyr Ile Pro Glu Leu Glu Tyr 185 Gly Tyr Val Gln Pro Ser Val Pro Pro Tyr Gln His Gly Val Ser Val 200 205 Glu Val Asn Cys Arg Asn Glu Tyr Ala Met Ile Gly Asn Asn Met Ile 215 220 Thr Cys Ile Asn Gly Ile Trp Thr Glu Leu Pro Met Cys Val Glu Ser 230 235 Thr Ala Tyr Cys Gly Pro Pro Pro Ser Ile Asn Asn Gly Asp Thr Thr 27/79 -

```
245
                                     250
  Ser Phe Pro Leu Ser Val Tyr Pro Pro Gly Ser Thr Val Thr Tyr Arg
              260
                          265
  Cys Gln Ser Phe Tyr Lys Leu Gln Gly Ser Val Thr Val Thr Cys Arg
                            280
                                                285
  Asn Lys Gln Trp Ser Glu Pro Pro Arg Cys Leu Asp Pro Cys Val Val
                         295
                                            300
  Ser Glu Glu Asn Met Asn Lys Asn Asn Ile Gln Leu Lys Trp Arg Asn
                     310
                                        315
  Asp Gly Lys Leu Tyr Ala Lys Thr Gly Asp Ala Val Glu Phe Gln Cys
                325
                                    330
 Lys Phe Pro His Lys Ala Met Ile Ser Ser Pro Pro Phe Arg Ala Ile
             340
                                 345.
 Cys Gln Glu Gly Lys Phe Glu Tyr Pro Ile Cys Glu
                             360
 <210> 47
 <211> 327
 <212> PRT
 <213> homo sapiens
 Met Leu Leu Phe Ser Val Ile Leu Ile Ser Trp Val Ser Thr Val
                                  · 10
 Gly Gly Glu Gly Thr Leu Cys Asp Phe Pro Lys Ile His His Gly Phe
            20
                                25
 Leu Tyr Asp Glu Glu Asp Tyr Asn Pro Phe Ser Gln Val Pro Thr Gly
                           40
Glu Val Phe Tyr Tyr Ser Cys Glu Tyr Asn Phe Val Ser Pro Ser Lys
                       55
                                           60
Ser Phe Trp Thr Arg Ile Thr Cys Thr Glu Glu Gly Trp Ser Pro Thr
                    70
Pro Lys Cys Leu Arg Met Cys Ser Phe Pro Phe Val Lys Asn Gly His
                                   90
Ser Glu Ser Ser Gly Leu Ile His Leu Glu Gly Asp Thr Val Gln Ile
            100
                               105
Ile Cys Asn Thr Gly Tyr Ser Leu Gln Asn Asn Glu Lys Asn Ile Ser
                           120
Cys Val Glu Arg Gly Trp Ser Thr Pro Pro Ile Cys Ser Phe Thr Met
                       135
                                          140
Lys Thr Cys Gly Tyr Ile Pro Glu Leu Glu Tyr Gly Tyr Val Gln Pro
                   150
Ser Val Pro Pro Tyr Gln His Gly Val Ser Val Glu Val Asn Cys Arg
                                      155
               165
                                   170
Asn Glu Tyr Ala Met Ile Gly Asn Asn Met Ile Thr Cys Ile Asn Gly
                              185
Ile Trp Thr Glu Leu Pro Met Cys Val Glu Ser Thr Ala Tyr Cys Gly
        195 -
                          200
                                              205
Pro Pro Pro Ser Ile Asn Asn Gly Asp Thr Thr Ser Phe Pro Leu Ser
                       215
Val Tyr Pro Pro Gly Ser Thr Val Thr Tyr Arg Cys Gln Ser Phe Tyr
                                          220
```

28/79

250

Lys Leu Gln Gly Ser Val Thr Val Thr Cys Arg Asn Lys Gln Trp Ser

Glu Pro Pro Arg Cys Leu Asp Pro Cys Val Val Ser Glu Glu Asn Met

265 Asn Lys Asn Asn Ile Gln Leu Lys Trp Arg Asn Asp Gly Lys Leu Tyr 280

235

285

230

245

260

WO 02/22802 PCT/US01/28462 .

<210> 48 <211> 154 <212> PRT <213> homo sapiens

<400> 48 Met Ala Pro Ala Arg Ala Gly Cys Cys Pro Leu Leu Leu Leu Leu Leu 10 . 15 Gly Leu Trp Val Ala Glu Val Leu Val Arg Ala Lys Pro Lys Asp Met 20 25 Thr Ser Ser Gln Trp Phe Lys Thr Gln His Val Gln Pro Ser Pro Gln 40 Ala Cys Asn Ser Ala Met Ser Ile Ile Asn Lys Tyr Thr Glu Arg Cys 55 Lys Asp Leu Asn Thr Phe Leu His Glu Pro Phe Ser Ser Val Ala Ile 70 75 Thr Cys Gln Thr Pro Asn Ile Ala Cys Lys Asn Ser Cys Lys Asn Cys 85 90 His Gln Ser His Gly Pro Met Ser Leu Thr Met Gly Glu Leu Thr Ser 105 Gly Lys Tyr Pro Asn Cys Arg Tyr Lys Glu Lys His Leu Asn Thr Pro 120 Tyr Ile Val Ala Cys Asp Pro Pro Gln Gln Gly Asp Pro Gly Tyr Pro 135 140 Leu Val Pro Val His Leu Asp Lys Val Val

150

<210> 49 <211> 502 <212> PRT <213> homo sapiens

<400> 49

145

Met Arg Gln Leu Gly Gly Ser Leu Arg Pro Pro Arg Ala Ala His Gly Ala Glu Pro Leu Pro Ser Ala Leu Gly Pro Cys Ala Gly Gly Asp Arg 25 Asp Leu Gly Arg Gly Thr Pro Gly Trp Glu Pro Arg Arg Ala Arg Val 40 Pro Ile His Glu Gln Val Asp Pro Pro Arg Glu Gly Pro His Leu Phe 55 Gln Asn Leu Leu Phe Leu Trp Ala Leu Leu Asn Cys Gly Leu Gly 70 75 Val Ser Ala Gln Gly Pro Gly Glu Trp Thr Pro Trp Val Ser Trp Thr 90 Arg Cys Ser Ser Ser Cys Gly Arg Gly Val Ser Val Arg Ser Arg Arg 105 Cys Leu Arg Leu Pro Gly Glu Glu Pro Cys Trp Gly Asp Ser His Glu 120 Tyr Arg Leu Cys Gln Leu Pro Asp Cys Pro Pro Gly Ala Val Pro Phe 29/79

```
·. ·135
                                           140
  Arg Asp Leu Gln Cys Ala Leu Tyr Asn Gly Arg Pro Val Leu Gly Thr
                    150
                                       155
  Gln Lys Thr Tyr Gln Trp Val Pro Phe His Gly Ala Pro Asn Gln Cys
                165
                                    170
  Asp Leu Asn Cys Leu Ala Glu Gly His Ala Phe Tyr His Ser Phe Gly
            180
                               185
 Arg Val Leu Asp Gly Thr Ala Cys Ser Pro Gly Ala Gln Gly Val Cys
        195 200
                                               205
 Val Ala Gly Arg Cys Leu Ser Ala Gly Cys Asp Gly Leu Leu Gly Ser
            . 215
                                          220
 Gly Ala Leu Glu Asp Arg Cys Gly Arg Cys Gly Gly Ala Asn Asp Ser
                   230-
                                      235
 Cys Leu Phe Val Gln Arg Val Phe Arg Asp Ala Gly Ala Phe Ala Gly
                245
                                   250
 Tyr Trp Asn Val Thr Leu Ile Pro Glu Gly Ala Arg His Ile Arg Val
           260
                             . 265
 Glu His Arg Ser Arg Asn His Leu Gly Ile Leu Gly Ser Leu Met Gly
                           280
 Gly Asp Gly Arg Tyr Val Leu Asn Gly His Trp Val Val Ser Pro Pro
                                              285
               - 295
                                           300
 Gly Thr Tyr Glu Ala Ala Gly Thr His Val Val Tyr Thr Arg Asp Thr
                   310
                                      315
 Gly Pro Gln Glu Thr Leu Gln Ala Ala Gly Pro Thr Ser His Asp Leu
                325
                                  330
 Leu Leu Gln Val Leu Leu Gln Glu Pro Asn Pro Gly Ile Glu Phe Glu
                              345
 Phe Trp Leu Pro Arg Glu Arg Tyr Ser Pro Phe Gln Ala Arg Val Gln
                                                 350
                           360
Ala Leu Gly Trp Pro Leu Arg Gln Pro Gln Pro Arg Gly Val Glu Pro
                      375
Gln Pro Pro Ala Ala Pro Ala Val Thr Pro Ala Gln Thr Pro Thr Leu
                                          380
                   390
                                    • 395
Ala Pro Val Phe Gln Ala Arg Val Leu Gly His His His Gln Ala Gln
Glu Thr Arg Tyr Glu Val Arg Ile Gln Leu Val Tyr Lys Asn Arg Ser
                                  410
                              425
Pro Leu Arg Ala Arg Glu Tyr Val Trp Ala Pro Gly His Cys Pro Cys
                          440
Pro Met Leu Ala Pro His Arg Asp Tyr Leu Met Ala Val Gln Arg Leu
                                              445
                      455 . ,
                                         460
Val Ser Pro Asp Gly Thr Gln Asp Gln Leu Leu Pro His Ala Gly
                  470
Tyr Ala Arg Pro Trp Ser Pro Ala Glu Asp Ser Arg Ile Arg Leu Thr
                                     475
              485
                                  490
Ala Arg Arg Cys Pro Gly
           500
<210> 50
```

<211> 451

<212> PRT

<213> homo sapiens

<400> 50

```
Gln Gly Pro Gly Glu Trp Thr Pro Trp Val Ser Trp Thr Arg Cys Ser
Ser Ser Cys Gly Arg Gly Val Ser Val Arg Ser Arg Arg Cys Leu Arg
Leu Pro Gly Glu Glu Pro Cys Trp Gly Asp Ser His Glu Tyr Arg Leu
                                      75
Cys Gln Leu Pro Asp Cys Pro Pro Gly Ala Val Pro Phe Arg Asp Leu
                                 .90-
Gln Cys Ala Leu Tyr Asn Gly Arg Pro Val Leu Gly Thr Gln Lys Thr
                             105
Tyr Gln Trp Val Pro Phe His Gly Ala Pro Asn Gln Cys Asp Leu Asn
                          120
Cys Leu Ala Glu Gly His Ala Phe Tyr His Ser Phe Gly Arg Val Leu
                      135
Asp Gly Thr Ala Cys Ser Pro Gly Ala Gln Gly Val Cys Val Ala Gly
        150
                                     155
Arg Cys Leu Ser Ala Gly Cys Asp Gly Leu Leu Gly Ser Gly Ala Leu
                                 170
             165
Glu Asp Arg Cys Gly Arg Cys Gly Gly Ala Asn Asp Ser Cys Leu Phe
    180
                             185
Val Gln Arg Val Phe Arg Asp Ala Gly Ala Phe Ala Gly Tyr Trp Asn
 195
                          200
Val Thr Leu Ile Pro Glu Gly Ala Arg His Ile Arg Val Glu His Arg
 210 · 215
                                          220
Ser Arg Asn His Leu Gly Ile Leu Gly Ser Leu Met Gly Gly Asp Gly
                 230
                                      235
Arg Tyr Val Leu Asn Gly His Trp Val Val Ser Pro Pro Gly Thr Tyr
                                  250
               245
Glu Ala Ala Gly Thr His Val Val Tyr Thr Arg Asp Thr Gly Pro Gln
                           . 265
                                                270
Glu Thr Leu Gln Ala Ala Gly Pro Thr Ser His Asp Leu Leu Gln
                          280
Val Leu Leu Gln Glu Pro Asn Pro Gly Ile Glu Phe Glu Phe Trp Leu
                      295
                                          300
Pro Arg Glu Arg Tyr Ser Pro Phe Gln Ala Arg Val Gln Ala Leu Gly
                                      315
                  310
Trp Pro Leu Arg Gln Pro Gln Pro Arg Gly Val Glu Pro Gln Pro Pro
                                 330
               325
Ala Ala Pro Ala Val Thr Pro Ala Gln Thr Pro Thr Leu Ala Pro Val
                              345
    . 340
Phe Gln Ala Arg Val Leu Gly His His His Gln Ala Gln Glu Thr Arg
                          360
Tyr Glu Val Arg Ile Gln Leu Val Tyr Lys Asn Arg Ser Pro Leu Arg
                      375
Ala Arg Glu Tyr Val Trp Ala Pro Gly His Cys Pro Cys Pro Met Leu
                                      395
                  390
Ala Pro His Arg Asp Tyr Leu Met Ala Val Gln Arg Leu Val Ser Pro
                                  410
Asp Gly Thr Gln Asp Gln Leu Leu Leu Pro His Ala Gly Tyr Ala Arg
                              425
Pro Trp Ser Pro Ala Glu Asp Ser Arg Ile Arg Leu Thr Ala Arg Arg
Cys Pro Gly
   450
```

<210> 51

<211> 431

<212> PRT

<213> homo sapiens

Met Ile Arg Thr Pro Leu Ser Ala Ser Ala His Arg Leu Leu Pro . . . 10 Gly Ser Arg Gly Arg Pro Pro Arg Asn Met Gln Pro Thr Gly Arg Glu 2.0 25 Gly Ser Arg Ala Leu Ser Arg Arg Tyr Leu Arg Arg Leu Leu Leu Leu Leu Leu Leu Leu Arg Gln Pro Val Thr Arg Ala Glu Thr Thr - 55 60 Pro Gly Ala Pro Arg Ala Leu Ser Thr Leu Gly Ser Pro Ser Leu Phe 70 · 75 Thr Thr Pro Gly Val Pro Ser Ala Leu Thr Thr Pro Gly Leu Thr Thr 90 Pro Gly Thr Pro Lys Thr Leu Asp Leu Arg Gly Arg Ala Gln Ala Leu 105 Met Arg Ser Phe Pro Leu Val Asp Gly Tyr Val Gly Leu Asn Ser Ser 115 120 Gln Lys Leu Ala Cys Leu Ile Gly Val Glu Gly Gly His Ser Leu Asp 135 Ser Ser Leu Ser Val Leu Arg Ser Phe Tyr Val Leu Gly Val Arg Tyr 150 155 Leu Thr Leu Thr Phe Thr Cys Ser Thr Pro Trp Ala Glu Ser Ser Thr 170 Lys Phe Arg His His Met Tyr Thr Asn Val Ser Gly Leu Thr Ser Phe 180 185 190 Gly Glu Lys Val Val Glu Glu Leu Asn Arg Leu Gly Met Met Ile Asp 200 Leu Ser Tyr Ala Ser Asp Thr Leu Ile Arg Arg Val Leu Glu Val Ser 215 220 Gln Ala Pro Val Ile Phe Ser His Ser Ala Ala Arg Ala Val Cys Asp 230 235 Asn Leu Leu Asn Val Pro Asp Asp Ile Leu Gln Leu Leu Lys Lys Asn 245 250 Gly Gly Ile Val Met Val Thr Leu Ser Met Gly Val Leu Gln Cys Asn 260 265 Leu Leu Ala Asn Val Ser Thr Val Ala Asp Asp Ser Asn Arg Cys Ser 280 Val Pro Val Ile Gly Ser Glu Phe Ile Gly Ile Gly Gly Asn Tyr Asp 295 300 Gly Thr Gly Arg Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr Pro 310 315 Val Leu Ile Glu Glu Leu Leu Ser Arg Ser Trp Ser Glu Glu Glu Leu 325 330 Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg Gln Val Glu 345 Lys Val Arg Glu Glu Ser Arg Ala Gln Ser Pro Val Glu Ala Glu Phe 360 365 Pro Tyr Gly Gln Leu Ser Thr Ser Cys His Ser His Leu Val Pro Gln 375 380 Asn Gly His Gln Ala Thr His Leu Glu Val Thr Lys Gln Pro Thr Asn 390 395 Arg Val Pro Trp Arg Ser Ser Asn Ala Ser Pro Tyr Leu Val Pro Gly 405 410 Leu Val Ala Ala Ala Thr Ile Pro Thr Phe Thr Gln Trp Leu Cys 425

<210> 52

<211> 480 <212> PRT <213> homo sapiens <400> 52 Met Gln Pro Ser Gly Leu Glu Gly Pro Gly Thr Phe Gly Arg Trp Pro 1 5 - 10 Leu Leu Ser Leu Leu Leu Leu Leu Leu Leu Gln Pro Val Thr Cys 20 · 25 Ala Tyr Thr Thr Pro Gly Pro Pro Arg Ala Leu Thr Thr Leu Gly Ala 40 Pro Arg Ala His Thr Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu 55 Ser Ser Pro Ser Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met 70 75 Arg Asp Phe Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu 90 85 Arg Gln Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe 105 100 Ser Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly 120 125 115 Ala Gln Phe Trp Ser Ala Tyr Val Pro Cys Gln Thr Gln Asp Arg Asp 135 Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg Met Cys 155 150 Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Lys Gly Leu Asn 165 170 Ser Ser Gln Lys Leu Ala Cys Leu Ile Gly Val Glu Gly Gly His Ser 180 185 Leu Asp Ser Ser Leu Ser Val Leu Arg Ser Phe Tyr Val Leu Gly Val 200 205 Arg Tyr Leu Thr Leu Thr Phe Thr Cys Ser Thr Pro Trp Ala Glu Ser 220 215 Ser Thr Lys Phe Arg His His Met Tyr Thr Asn Val Ser Gly Leu Thr 230 235 Ser Phe Gly Glu Lys Val Val Glu Glu Leu Asn Arg Leu Gly Met Met 250 245 Ile Asp Leu Ser Tyr Ala Ser Asp Thr Leu Ile Arg Arg Val Leu Glu 265 Val Ser Gln Ala Pro Val Ile Phe Ser His Ser Ala Ala Arg Ala Val 280 285 Cys Asp Asn Leu Leu Asn Val Pro Asp Asp Ile Leu Gln Leu Leu Lys . 300 295 Lys Asn Gly Gly Ile Val Met Val Thr Leu Ser Met Gly Val Leu Gln 315 310 Cys Asn Leu Leu Ala Asn Val Ser Thr Val Ala Asp His Phe Asp His 330 325 Ile Arg Ala Val Ile Gly Ser Glu Phe Ile Gly Ile Gly Gly Asn Tyr 345 340 Asp Gly Thr Gly Arg Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr 360 365 Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Ser Trp Ser Glu Glu Glu 375 380 Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg Gln Val 395 390 Glu Lys Val Arg Glu Glu Ser Arg Ala Gln Ser Pro Val Glu Ala Glu 410 405 Phe Pro Tyr Gly Gln Leu Ser Thr Ser Cys His Ser His Leu Val Pro 33/79

425 Gln Asn Gly His Gln Ala Thr His Leu Glu Val Thr Lys Gln Pro Thr 435 440 Asn Arg Val Pro Trp Arg Ser Ser Asn Ala Ser Pro Tyr Leu Val Pro 455 460 Gly Leu Val Ala Ala Ala Thr Ile Pro Thr Phe Thr Gln Trp Leu Cys <210> 53 <211> 371 <212> PRT <213> homo sapiens <400> 53 Met Asp Ala Ala Thr Ala Pro Lys Gln Ala Trp Pro Pro Trp Pro Pro 10 Leu Leu Phe Leu Leu Leu Pro Gly Gly Ser Gly Gly Ser Cys Pro 25 Ala Val Cys Asp Cys Thr Ser Gln Pro Gln Ala Val Leu Cys Gly His 40 Arg Gln Leu Glu Ala Val Pro Gly Gly Leu Pro Leu Asp Thr Glu Leu 55 Leu Asp Leu Ser Gly Asn Arg Leu Pro Lys Ala Gln Pro Leu Val Arg 75 Leu Gln Glu Leu Arg Leu Ser Gly Ala Cys Leu Thr Ser Ile Ala Ala 85 90 His Ala Phe His Gly Leu Thr Ala Phe His Leu Leu Asp Val Ala Asp 105 Asn Ala Leu Gln Thr Leu Glu Glu Thr Ala Phe Pro Ser Pro Asp Lys 120 125 Leu Val Thr Leu Arg Leu Ser Gly Asn Pro Leu Thr Cys Asp Cys Arg . 135 140 Leu Leu Trp Leu Leu Arg Leu Arg His Leu Asp Phe Gly Met Ser Pro 150 . 155 Pro Ala Cys Ala Gly Pro His His Val Gln Gly Lys Ser Leu Lys Glu 165 170 Phe Ser Asp Ile Leu Pro Pro Gly His Phe Thr Cys Lys Pro Ala Leu 180 185 Ile Arg Lys Ser Gly Pro Arg Trp Val Ile Ala Glu Glu Gly Gly His 200 205 Ala Val Phe Ser Cys Ser Gly Asp Gly Asp Pro Ala Pro Thr Val Ser 215 220 Trp Met Arg Pro His Gly Ala Trp Leu Gly Arg Ala Gly Arg Val Arg 230 235 Val Leu Glu Asp Gly Thr Leu Glu Ile Arg Ser Val Gln Leu Arg Asp 250 Arg Gly Ala Tyr Val Cys Val Val Ser Asn Val Ala Gly Asn Asp Ser 260 265 Leu Arg Thr Trp Leu Glu Val Ile Gln Val Glu Pro Pro Asn Gly Thr 280 Leu Ser Asp Pro Asn Ile Thr Val Pro Gly Ile Pro Gly Pro Phe Phe 285 295 300 Leu Asp Ser Arg Gly Val Ala Met Val Leu Ala Val Gly Phe Leu Pro 310 315 Phe Leu Thr Ser Val Thr Leu Cys Phe Gly Leu Ile Ala Leu Trp Ser 325 330 · Lys Gly Lys Gly Arg Val Lys His His Met Thr Phe Asp Phe Val Ala 340 345 350 34/79

Pro Arg Pro Ser Gly Asp Lys Asn Ser Gly Gly Asn Arg Val Thr Ala Lys Leu Phe 370 <210> 54 <211> 592 <212> PRT <213> homo sapiens <400> 54 Met Asp Ala Ala Thr Ala Pro Lys Gln Ala Trp Pro Pro Trp Pro Pro 10 5 Leu Leu Phe Leu Leu Leu Pro Gly Gly Ser Gly Ser Cys Pro 25 Ala Val Cys Asp Cys Thr Ser Gln Pro Gln Ala Val Leu Cys Gly His Arg Gln Leu Glu Ala Val Pro Gly Gly Leu Pro Leu Asp Thr Glu Leu Leu Asp Leu Ser Gly Asn Arg Leu Trp, Gly Leu Gln Gln Gly Met Leu Ser Arg Leu Ser Leu Leu Gln Glu Leu Asp Leu Ser Tyr Asn Gln Leu

90 Ser Thr Leu Glu Pro Gly Ala Phe His Gly Leu Gln Ser Leu Leu Thr 110 105 Leu Arg Leu Gln Gly Asn Arg Leu Arg Ile Met Gly Pro Gly Val Phe 120 125 Ser Gly Leu Ser Ala Leu Thr Leu Leu Asp Leu Arg Leu Asn Gln Ile 135 140 Val Leu Phe Leu Asp Gly Ala Phe Gly Glu Leu Gly Ser Leu Gln Lys 150 155 Leu Glu Val Gly Asp Asn His Leu Val Phe Val Ala Pro Gly Ala Phe 170 Ala Gly Leu Ala Lys Leu Ser Thr Leu Thr Leu Glu Arg Cys Asn Leu 185 Ser Thr Val Pro Gly Leu Ala Leu Ala Arg Leu Pro Ala Leu Val Ala 200 Leu Arg Leu Arg Glu Leu Asp Ile Gly Arg Leu Pro Ala Gly Ala Leu 215 220 Arg Gly Leu Gly Gln Leu Lys Glu Leu Glu Ile His Leu Trp Pro Ser 230 235 Leu Glu Ala Leu Asp Pro Gly Ser Leu Val Gly Leu Asn Leu Ser Ser 250 245 Leu Ala Ile Thr Arg Cys Asn Leu Ser Ser Val Pro Phe Gln Ala Leu 260 265 Tyr His Leu Ser Phe Leu Arg Val Leu Asp Leu Ser Gln Asn Pro Ile 280 275 285 Ser Ala Ile Pro Ala Arg Arg Leu Ser Pro Leu Val Arg Leu Gln Glu 295 300 Leu Arg Leu Ser Gly Ala Cys Leu Thr Ser Ile Ala Ala His Ala Phe 310 315 His Gly Leu Thr Ala Phe His Leu Leu Asp Val Ala Asp Asn Ala Leu 330 325 Gln Thr Leu Glu Glu Thr Ala Phe Pro Ser Pro Asp Lys Leu Val Thr 345 Leu Arg Leu Ser Gly Asn Pro Leu Thr Cys Asp Cys Arg Leu Leu Trp 360 365

Leu Leu Arg Leu Arg His Leu Asp Phe Gly Met Ser Pro Pro Ala Cys 35/79

```
375
                                            380
  Ala Gly Pro His His Val Gln Gly Lys Ser Leu Lys Glu Phe Ser Asp
                    390
                                       395
  Ile Leu Pro Pro Gly His Phe Thr Cys Lys Pro Ala Leu Ile Arg Lys
                 405 . ..
                                   410
  Ser Gly Pro Arg Trp Val Ile Ala Glu Glu Gly Gly His Ala Val Phe
             420
                       425
                                     •
  Ser Cys Ser Gly Asp Gly Asp Pro Ala Pro Thr Val Ser Trp Met Arg
                  440
  Pro His Gly Ala Trp Leu Gly Arg Ala Gly Arg Val Arg Val Leu Glu
                        455
 Asp Gly Thr Leu Glu Ile Arg Ser Val Gln Leu Arg Asp Arg Gly Ala
                   470.
                                       475
 Tyr Val Cys Val Val Ser Asn Val Ala Gly Asn Asp Ser Leu Arg Thr
                485 .
                                   490
 Trp Leu Glu Val Ile Gln Val Glu Pro Pro Asn Gly Thr Leu Ser Asp
             500
                               505
 Pro Asn Ile Thr Val Pro Gly Ile Pro Gly Pro Phe Phe Leu Asp Ser
                           520
 Arg Gly Val Ala Met Val Leu Ala Val Gly Phe Leu Pro Phe Leu Thr
                                              525
                       535
                                           540
 Ser Val Thr Leu Cys Phe Gly Leu Ile Ala Leu Trp Ser Lys Gly Lys
                    550
                                      555
 Gly Arg Val Lys His His Met Thr Phe Asp Phe Val Ala Pro Arg Pro
                565
                                  570
 Ser Gly Asp Lys Asn Ser Gly Gly Asn Arg Val Thr Ala Lys Leu Phe
            580
                               585
 <210> 55
 <211> 142
 <212> PRT
<213> homo sapiens
<400> 55
Met Ala Arg Tyr Met Leu Leu Leu Leu Ala Val Trp Val Leu Thr
                                  10
Gly Glu Leu Trp Pro Gly Ala Glu Ala Arg Ala Ala Pro Tyr Gly Val
                               25
Arg Leu Cys Gly Arg Glu Phe Ile Arg Ala Val Ile Phe Thr Cys Gly
                                                30
                           40
Gly Ser Arg Trp Arg Arg Ser Asp Ile Leu Ala His Glu Ala Met Gly
                      -55
Asp Thr Phe Pro Asp Ala Asp Ala Asp Glu Asp Ser Leu Ala Gly Glu
                                         60
Leu Asp Glu Ala Met Gly Ser Ser Glu Trp Leu Ala Leu Thr Lys Ser
               85
                                  90
Pro Gln Ala Phe Tyr Arg Gly Arg Pro Ser Trp Gln Gly Thr Pro Gly
                              105
Val Leu Arg Gly Ser Arg Asp Val Leu Ala Gly Leu Ser Ser Cys
       115
                         120
Cys Lys Trp Gly Cys Ser Lys Ser Glu Ile Ser Ser Leu Cys
                     135
```

<210> 56 <211> 230 <212> PRT

```
<400> 56
Met Ser Glu Glu Val Thr Tyr Ala Thr Leu Thr Phe Gln Asp Ser Ala
                                 10
              5
Gly Ala Arg Asn Asn Arg Asp Gly Asn Asn Leu Arg Lys Arg Gly His
                              25
Pro Ala Pro Ser Pro Ile Trp Arg His Ala Ala Leu Gly Leu Val Thr
                               45
                          40
Leu Cys Leu Met Leu Leu Ile Gly Leu Val Thr Leu Gly Met Met Phe
                      55
Leu Gln Ile Ser Asn Asp Ile Asn Ser Asp Ser Glu Lys Leu Ser Gln
                                      75
                  70
Leu Gln Lys Thr Ile Gln Gln Gln Asp Asn Leu Ser Gln Gln Leu
                                 90
              85
Gly Asn Ser Asn Asn Leu Ser Met Glu Glu Glu Phe Leu Lys Ser Gln
                             105
     100
Ile Ser Ser Leu Leu Lys Arg Gln Glu Gln Met Ala Ile Lys Leu Cys
                          120
                                              125
 115
Gln Glu Leu Ile Ile His Thr Ser Asp His Arg Cys Asn Pro Cys Pro
                      135
                                          140
Lys Met Trp Gln Trp Tyr Gln Asn Ser Cys Tyr Tyr Phe Thr Thr Asn
       150
                                      155
Glu Glu Lys Thr Trp Ala Asn Ser Arg Lys Asp Cys Ile Asp Lys Asn
              165
                                  170
Ser Thr Leu Val Lys Ile Asp Ser Leu Glu Glu Lys Asp Phe Leu Met
                              185
Ser Gln Pro Leu Leu Met Phe Ser Phe Phe Trp Leu Gly Leu Ser Trp
                           200
                                              205
Asp Ser Ser Gly Arg Ser Trp Phe Trp Glu Asp Gly Ser Val Pro Ser
                      215
                                          220
Pro Ser Leu Tyr Val Ser
<210> 57
<211> 194
<212> PRT
<213> homo sapiens
<400> 57
Met Trp Leu Ser Pro Ala Leu Leu Leu Leu Ile Leu Pro Gly Tyr Ser
Ile Ala Ala Lys Ile Thr Gly Pro Thr Thr Val Asn Gly Ser Glu Gln
                              25
Gly Ser Leu Thr Val Gln Cys Ala Tyr Gly Ser Gly Trp Glu Thr Tyr
                          40
Leu Lys Trp Arg Cys Gln Gly Ala Asp Trp Asn Tyr Cys Asn Ile Leu
                       55
Val Lys Thr Asn Gly Ser Glu Gln Glu Val Lys Lys Asn Arg Val Ser
                   70
                                      75
Ile Arg Asp Asn Gln Lys Asn His Met Phe Thr Val Thr Met Glu Asn
                                  90 ·
               85
Leu Lys Arg Asp Asp Ala Asp Ser Tyr Trp Cys Gly Thr Glu Arg Pro
                              105
Gly Ile Asp Leu Gly Val Lys Val Gln Val Thr Ile Asn Pro Gly Thr
                          120
                                             125
Gln Thr Ala Val Ser Glu Trp Thr Thr Thr Thr Ala Ser Leu Ala Phe
                       135
                                          140
```

Thr Ala Ala Ala Thr Gln Lys Thr Ser Ser Pro Leu Thr Arg Ser Pro

37/79

155

150

```
Leu Lys Ser Thr His Phe Leu Phe Leu Phe Leu Glu Leu Pro Leu
                 165
                                     170
  Leu Leu Ser Met Leu Gly Thr Val Leu Trp Val Asn Arg Pro Gln Arg
              180
  Arg Ser
  <210> 58
  <211> 333
  <212> PRT
  <213> homo sapiens
  <400> 58
  Met Arg Ile Trp Trp Leu Leu Leu Ala Ile Glu Ile Cys Thr Gly Asn
                                     10
  Ile Asn Ser Gln Asp Thr Cys Arg Gln Gly His Pro Gly Ile Pro Gly
                                 25
 Asn Pro Gly His Asn Gly Leu Pro Gly Arg Asp Gly Arg Asp Gly Ala
                             40
 Lys Gly Asp Lys Gly Asp Ala Gly Glu Pro Gly Arg Pro Gly Ser Pro
                        55
 Gly Lys Asp Gly Thr Ser Gly Glu Lys Gly Glu Arg Gly Ala Asp Gly
                                         75
 Lys Val Glu Ala Lys Gly Ile Lys Gly Asp Gln Gly Ser Arg Gly Ser
                 85
                                    90
 Pro Gly Lys His Gly Pro Lys Gly Leu Ala Gly Pro Met Gly Glu Lys
                                 105
 Gly Leu Arg Gly Glu Thr Gly Pro Gln Gly Gln Lys Gly Asn Lys Gly
                             120
 Asp Val Gly Pro Thr Gly Pro Glu Gly Pro Arg Gly Asn Ile Gly Pro
                                               125
                        135
                                            140
Leu Gly Pro Thr Gly Leu Pro Gly Pro Met Gly Pro Ile Gly Lys Pro
                    150
                                        155
Gly Pro Lys Gly Glu Ala Gly Pro Thr Gly Pro Gln Gly Glu Pro Gly
                165
                                    170
Val Arg Gly Ile Arg Gly Trp Lys Gly Asp Arg Gly Glu Lys Gly Lys
                                185
Ile Gly Glu Thr Leu Val Leu Pro Lys Ser Ala Phe Thr Val Gly Leu
                                                    190
                            200
                                                205
Thr Val Leu Ser Lys Phe Pro Ser Ser Asp Met Pro Ile Lys Phe Asp
                       215
Lys Ile Leu Tyr Asn Glu Phe Asn His Tyr Asp Thr Ala Ala Gly Lys
                                            220
                   230
                                        235
Phe Thr Cys His Ile Ala Gly Val Tyr Tyr Phe Thr Tyr His Ile Thr
               245
                                    250
Val Phe Ser Arg Asn Val Gln Val Ser Leu Val Lys Asn Gly Val Lys
            260
                               265
                                                   270
Ile Leu His Thr Lys Asp Ala Tyr Met Ser Ser Glu Asp Gln Ala Ser
                          280
Gly Gly Ile Val Leu Gln Leu Lys Leu Gly Asp Glu Val Trp Leu Gln
                       295
Val Thr Gly Gly Glu Arg Phe Asn Gly Leu Phe Ala Asp Glu Asp Asp
                                           300
                   310
                                       315
Asp Thr Thr Phe Thr Gly Phe Leu Leu Phe Ser Ser Pro
               325
```

```
<210> 59
<211> 225
<212> PRT
<213> homo sapiens
<400> 59
Met Arg Ile Trp Trp Leu Leu Ala Ile Glu Ile Cys Thr Gly Asn
                                  10
                5
Ile Asn Ser Gln Asp Thr Cys Arg Gln Gly His Pro Gly Ile Pro Gly
Asn Pro Gly His Asn Gly Leu Pro. Gly Arg Asp Gly Arg Asp Gly Ala
Lys Gly Asp Lys Gly Asp Ala Gly Glu Ala Gly Pro Thr Gly Pro Gln
                       55
Gly Glu Pro Gly Val Arg Gly Ile Arg Gly Trp Lys Gly Asp Arg Gly.
                   70
                                       75
Glu Lys Gly Lys Ile Gly Glu Thr Leu Val Leu Pro Lys Ser Ala Phe
               85
                               90
Thr Val Gly Leu Thr Val Leu Ser Lys Phe Pro Ser Ser Asp Met Pro
          100
                    105
Ile Lys Phe Asp Lys Ile Leu Tyr Asn Glu Phe Asn His Tyr Asp Thr
                                               125
                          120
Ala Ala Gly Lys Phe Thr Cys His Ile Ala Gly Val Tyr Tyr Phe Thr
                                           140
                       135
Tyr His Ile Thr Val Phe Ser Arg Asn Val Gln Val Ser Leu Val Lys
                   150
                                       155
Asn Gly Val Lys Ile Leu His Thr Lys Asp Ala Tyr Met Ser Ser Glu
               165
                                   170
Asp Gln Ala Ser Gly Gly Ile Val Leu Gln Leu Lys Leu Gly Asp Glu
                               185
Val Trp Leu Gln Val Thr Gly Gly Glu Arg Phe Asn Gly Leu Phe Ala
                           200
                                               205
Asp Glu Asp Asp Asp Thr Thr Phe Thr Gly Phe Leu Leu Phe Ser Ser
                       215
                                           220
Pro
225
<210> 60
<211> 205
<212> PRT
<213> homo sapiens
<400> 60
Met Met Arg Thr Leu Ile Thr Thr His Pro Leu Pro Leu Leu Leu
                                   10
1
Pro Gln Gln Leu Leu Gln Leu Vàl Gln Phe Gln Glu Val Asp Thr Asp
Phe Asp Phe Pro Glu Glu Asp Lys Lys Glu Glu Phe Glu Glu Cys Leu
Glu Lys Phe Phe Ser Thr Gly Pro Ala Arg Pro Pro Thr Lys Glu Lys
                       55
Val Lys Arg Arg Val Leu Ile Glu Pro Gly Met Pro Leu Asn His Ile
Glu Tyr Cys Asn His Glu Ile Met Gly Lys Asn Val Tyr Tyr Lys His
                                   90
Arg Trp Val Ala Glu His Tyr Phe Leu Leu Met Gln Tyr Asp Glu Leu
                               105
Gln Lys Ile Cys Tyr Asn Arg Phe Val Pro Cys Lys Asn Gly Ile Arg
                                  39/79
```

120 Lys Cys Asn Arg Ser Lys Gly Leu Val Glu Gly Val Tyr Cys Asn Leu 125 135 Thr Glu Ala Phe Glu Ile Pro Ala Cys Lys Tyr Glu Ser Leu Tyr Arg 140 150 155 Lys Gly Tyr Val Leu Ile Thr Cys Ser Trp Gln Asn Glu Met Gln Lys 165 170 Arg Ile Pro His Thr Ile Asn Asp Leu Val Glu Pro Pro Glu His Arg 180 185 Ser Phe Leu Ser Glu Asp Gly Val Phe Val Ile Ser Pro 200

<210> 61 <211> 95 <212> PRT

<213> homo sapiens

<400> 61 Met Glu Val Val Leu Ile Phe Leu Cys Ser Leu Leu Ala His Ile Val 10 Leu Ala Asp.Ala Val Glu Arg Glu Lys Gln Ile Asp Pro Phe His Tyr 25 Asp Tyr Gln Thr Leu Arg Ile Arg Gly Leu Val Cys Ala Val Val Leu 40 Phe Ser Ile Gly Ile Leu Leu Ile Leu Gly Cys Arg Cys Lys Cys Ser 55 . Phe Asn Gln Lys Pro Arg Thr Pro Gly Glu Glu Glu Ala Gln Val Glu 60 70 Asn Leu Ile Thr Ala Asn Ala Thr Lys Leu Gln Lys Ala Glu Ser 75

<210> 62 <211> 595 <212> PRT <213> homo sapiens

<400> 62 Met Glu Val Gly Met Gly Cys Trp Ala Arg Glu Val Leu Val Pro Glu 10 Gly Pro Leu Tyr Arg Val Ala Gly Thr Ala Val Ser Ile Ser Cys Asn 25 Val Thr Gly Tyr Glu Gly Pro Ala Gln Gln Asn Phe Glu Trp Phe Leu 40 Tyr Arg Pro Glu Ala Pro Asp Thr Ala Leu Gly Ile Val Ser Thr Lys . 55 Asp Thr Gln Phe Ser Tyr Ala Val Phe Lys Ser Arg Val Val Ala Gly 60 70 Glu Val Gln Val Gln Arg Leu Gln Gly Asp Ala Val Val Leu Lys Ile 90 Ala Arg Leu Gln Ala Gln Asp Ala Gly Ile Tyr Glu Cys His Thr Pro 100 105 Ser Thr Asp Thr Arg Tyr Leu Gly Ser Tyr Ser Gly Lys Val Glu Leu 120 Arg Val Leu Pro Asp Val Leu Gln Val Ser Ala Ala Pro Pro Gly Pro 135 Arg Gly Arg Gln Ala Pro Thr Ser Pro Pro Arg Met Thr Val His Glu 140

150

```
Gly Gln Glu Leu Ala Leu Gly Cys Leu Ala Arg Thr Ser Thr Gln Lys
                           170
His Thr His Leu Ala Val Ser Phe Gly Arg Ser Val Pro Glu Ala Pro
                              185
Val Gly Arg Ser Thr Leu Gln Glu Val Val Gly Ile Arg Ser Asp Leu
                          200
                                  .
                                             205
Ala Val Glu Ala Gly Ala Pro Tyr Ala Glu Arg Leu Ala Ala Gly Glu
                215 220
Leu Arg Leu Gly Lys Glu Gly Thr Asp Arg Tyr Arg Met Val Val Gly
                  230 ·
                                    235
Gly Ala Gln Ala Gly Asp Ala Gly Thr Tyr His Cys Thr Ala Ala Glu
                              250
Trp Ile Gln Asp Pro Asp Gly Ser Trp Ala Gln Ile Ala Glu Lys Arg
                           265
Ala Val Leu Ala His Val Asp Val Gln Thr Leu Ser Ser Gln Leu Ala
                          280
Val Thr Val Gly Pro Gly Glu Arg Arg Ile Gly Pro Gly Glu Pro Leu
                                          300
                      295
Glu Leu Leu Cys Asn Val Ser Gly Ala Leu Pro Pro Ala Gly Arg His
       310
                                     315
Ala Ala Tyr Ser Val Gly Trp Glu Met Ala Pro Ala Gly His Leu Gly
                                  330
              325
Pro Gly Arg Leu Val Ala Gln Leu Asp Thr Glu Gly Val Gly Ser Leu
                             345
           340
Gly Pro Gly Tyr Glu Gly Arg His Ile Ala Met Glu Lys Val Ala Ser
       355
                          360
Arg Thr Tyr Arg Leu Arg Leu Glu Ala Ala Arg Pro Gly Asp Ala Gly
                      375
Thr Tyr Arg Cys Leu Ala Lys Ala Tyr Val Arg Gly Ser Gly Thr Arg
                   390
                                      395
Leu Arg Glu Ala Ala Ser Ala Arg Ser Arg Pro Leu Pro Val His Val
                                  410
Arg Glu Glu Gly Val Val Leu Glu Ala Val Ala Trp Leu Ala Gly Gly
                              425
                                                 430 .
Thr Val Tyr Arg Gly Glu Thr Ala Ser Leu Leu Cys Asn Ile Ser Val
                          440
       435
Arg Gly Gly Pro Pro Gly Leu Arg Leu Ala Ala Ser Trp Trp Val Glu
                       455
Arg Pro Glu Asp Gly Glu Leu Ser Ser Val Pro Ala Gln Leu Val Gly
                  470
                                      475
Gly Val Gly Gln Asp Gly Val Ala Glu Leu Gly Val Arg Pro Gly Gly
               485
                                  490
Gly Pro Val Ser Val Glu Leu Val Gly Pro Arg Ser His Arg Leu Arg
                              505
Leu His Ser Leu Gly Pro Glu Asp Glu Gly Val Tyr His Cys Ala Pro
                          520
Ser Ala Trp Val Gln His Ala Asp Tyr Ser Trp Tyr Gln Ala Gly Ser
                       535
                                          540
Ala Arg Ser Gly Pro Val Thr Val Tyr Pro Tyr Met His Ala Leu Asp
                   550
                                      555
Thr Leu Phe Val Pro Leu Leu Val Gly Thr Gly Val Ala Leu Val Thr
                                  570
Gly Ala Thr Val Leu Gly Thr Ile Thr Cys Cys Phe Met Lys Arg Leu
Arg Lys Arg
       595
```

<210> 63

<211> 613 <212> PRT <213> homo sapiens <400> 63 Met Gly Ala Leu Arg Pro Thr Leu Leu Pro Pro Ser Leu Pro Leu Leu 10 Leu Leu Leu Met Leu Gly Met Gly Cys Trp Ala Arg Glu Val Leu Val 25 Pro Glu Gly Pro Leu Tyr Arg Val Ala Gly Thr Ala Val Ser Ile Ser 40 Cys Asn Val Thr Gly Tyr Glu Gly Pro Ala Gln Gln Asn Phe Glu Trp 55 Phe Leu Tyr Arg Pro Glu Ala Pro Asp Thr Ala Leu Gly Ile Val Ser 70 Thr Lys Asp Thr Gln Phe Ser Tyr Ala Val Phe Lys Ser Arg, Val Val Ala Gly Glu Val Gln Val Gln Arg Leu Gln Gly Asp Ala Val Val Leu 90 105 Lys Ile Ala Arg Leu Gln Ala Gln Asp Ala Gly Ile Tyr Glu Cys His 120 Thr Pro Ser Thr Asp Thr Arg Tyr Leu Gly Ser Tyr Ser Gly Lys Val 135 Glu Leu Arg Val Leu Pro Asp Val Leu Gln Val Ser Ala Ala Pro Pro 150 155 Gly Pro Arg Gly Arg Gln Ala Pro Thr Ser Pro Pro Arg Met Thr Val 165 170 His Glu Gly Gln Glu Leu Ala Leu Gly Cys Leu Ala Arg Thr Ser Thr Gln Lys His Thr His Leu Ala Val Ser Phe Gly Arg Ser Val Pro Glu 185 200 Ala Pro Val Gly Arg Ser Thr Leu Gln Glu Val Val Gly Ile Arg Ser 215 Asp Leu Ala Val Glu Ala Gly Ala Pro Tyr Ala Glu Arg Leu Ala Ala 220 230 235 Gly Glu Leu Arg Leu Gly Lys Glu Gly Thr Asp Arg Tyr Arg Met Val 250 Val Gly Gly Ala Gln Ala Gly Asp Ala Gly Thr Tyr His Cys Thr Ala 265 Ala Glu Trp Ile Gln Asp Pro Asp Gly Ser Trp Ala Gln Ile Ala Glu 280 Lys Arg Ala Val Leu Ala His Val Asp Val Gln Thr Leu Ser Ser Gln 295 Leu Ala Val Thr Val Gly Pro Gly Glu Arg Arg Ile Gly Pro Gly Glu Pro Leu Glu Leu Cys Asn Val Ser Gly Ala Leu Pro Pro Ala Gly 330 Arg His Ala Ala Tyr Ser Val Gly Trp Glu Met Ala Pro Ala Gly Ala 345 Pro Gly Pro Gly Arg Leu Val Ala Gln Leu Asp Thr Glu Gly Val Gly 360 Ser Leu Gly Pro Gly Tyr Glu Gly Arg His Ile Ala Met Glu Lys Val 365 375 Ala Ser Arg Thr Tyr Arg Leu Arg Leu Glu Ala Ala Arg Pro Gly Asp 390 395 Ala Gly Thr Tyr Arg Cys Leu Ala Lys Ala Tyr Val Arg Gly Ser Gly 405 410 Thr Arg Leu Arg Glu Ala Ala Ser Ala Arg Ser Arg Pro Leu Pro Val 425 42/79

```
His Val Arg Glu Glu Gly Val Val Leu Glu Ala Val Ala Trp Leu Ala
             440
Gly Gly Thr Val Tyr Arg Gly Glu Thr Ala Ser Leu Leu Cys Asn Ile
               · 455
Ser Val Arg Gly Gly Pro Pro Gly Leu Arg Leu Ala Ala Ser Trp Trp
                                475
               470
Val Glu Arg Pro Glu Asp Gly Glu Leu Ser Ser Val Pro Ala Gln Leu
          485 490 495
Val Gly Gly Val Gly Gln Asp Gly Val Ala Glu Leu Gly Val Arg Pro
                         505 510
Gly Gly Gly Pro Val Ser Val Glu Leu Val Gly Pro Arg Ser His Arg
                      520
Leu Arg Leu His Ser Leu Gly Pro Glu Asp Glu Gly Val Tyr His Cys
                 535
Ala Pro Ser Ala Trp Val Gln His Ala Asp Tyr Ser Trp Tyr Gln Ala
                                555 560
      550
Gly Ser Ala Arg Ser Gly Pro Val Thr Val Tyr Pro Tyr Met His Ala
     565
                    570 575
Leu Asp Thr Leu Phe Val Pro Leu Leu Val Gly Thr Gly Val Ala Leu
     580
                         585
Val Thr Gly Ala Thr Val Leu Gly Thr Ile Thr Cys Cys Phe Met Lys
     595
                      600
Arg Leu Arg Lys Arg
   610
```

<210> 64 <211> 596 <212> PRT <213> homo sapiens

<400> 64

Met Ala Ala Asn Ser Thr Ser Asp Leu His Thr Pro Gly Thr Gln Leu 10 Ser Val Ala Asp Ile Ile Val Ile Thr Val Tyr Phe Ala Leu Asn Val 20 Ala Val Gly Ile Trp Ser Ser Cys Arg Ala Ser Arg Asn Thr Val Asn 40 35. Gly Tyr Phe Leu Ala Gly Arg Asp Met Thr Trp Trp Pro Ile Gly Ala 55 Ser Leu Phe Ala Ser Ser Glu Gly Ser Gly Leu Phe Ile Gly Leu Ala 75 70 Gly Ser Gly Ala Ala Gly Gly Leu Ala Val Ala Gly Phe Glu Trp Asn 85 90 Ala Thr Tyr Val Leu Leu Ala Leu Ala Trp Val Phe Val Pro Ile Tyr 105 Ile Ser Ser Glu Ile Val Thr Leu Pro Glu Tyr Ile Gln Lys Arg Tyr 120 Gly Gly Gln Arg Ile Arg Met Tyr Leu Ser Val Leu Ser Leu Leu Ser Val Phe Thr Lys Ile Ser Leu Asp Leu Tyr Ala Gly Ala Leu Phe 150 155 Val His Ile Cys Leu Gly Trp Asn Phe Tyr Leu Ser Thr Ile Leu Thr 165 170 Leu Gly Ile Thr Ala Leu Tyr Thr Ile Ala Gly Gly Leu Ala Ala Val 185 Ile Tyr Thr Asp Ala Leu Gln Thr Leu Ile Met Val Val Gly Ala Val 200 Ile Leu Thr Ile Lys Ala Phe Asp Gln Ile Gly Gly Tyr Gly Gln Leu 43/79

```
215
                                      220
  Glu Ala Ala Tyr Ala Gln Ala Ile Pro Ser Arg Thr Ile Ala Asn Thr
          . 230
                                     235
  Thr Cys His Leu Pro Arg Thr Asp Ala Met His Met Phe Arg Asp Pro
               245
                                  250
  His Thr Gly Asp Leu Pro Trp Thr Gly Met Thr Phe Gly Leu Thr Ile
            260
                              265
  Met Ala Thr Trp Tyr Trp Cys Thr Asp Gln Val Ile Val Gln Arg Ser
        275 . 280
 Leu Ser Ala Arg Asp Leu Asn His Ala Lys Ala Gly Ser Ile Leu Ala
    290 . 295
                                        300
 Ser Tyr Leu Lys: Met Leu Pro Met Gly Leu Ile Ile Met Pro Gly Met
          310
                                    315 320
 Ile Ser Arg Ala Leu Phe Pro Asp Asp Val Gly Cys Val Val Pro Ser
               325
                                 330
 Glu Cys Leu Arg Ala Cys Gly Ala Glu Val Gly Cys Ser Asn Ile Ala
           340
                             345
 Tyr Pro Lys Leu Val Met Glu Leu Met Pro Ile Gly Leu Arg Gly Leu
        355
                         360
                                           365
 Met Ile Ala Val Met Leu Ala Ala Leu Met Ser Ser Leu Thr Ser Ile
    Phe Asn Ser Ser Ser Thr Leu Phe Thr Met Asp Ile Trp Arg Arg Leu
 385 390
                                    395
 Arg Pro Arg Ser Gly Glu Arg Glu Leu Leu Val Gly Arg Leu Val
               405
                                 410
 Ile Val Ala Leu Ile Gly Val Ser Val Ala Trp Ile Pro Val Leu Gln
           420
                             425
 Asp Ser Asn Ser Gly Gln Leu Phe Ile Tyr Met Gln Ser Val Thr Ser
                                            430
                          440
 Ser Leu Ala Pro Pro Val Thr Ala Val Phe Val Leu Gly Val Phe Trp
                      455
                                       460
Arg Arg Ala Asn Glu Gln Gly Ala Phe Trp Gly Leu Ile Ala Gly Leu
        . 470
                                    475
Val Val Gly Ala Thr Arg Leu Val Leu Glu Phe Leu Asn Pro Ala Pro
               485
                                 490
Pro Cys Gly Glu Pro Asp Thr Arg Pro Ala Val Leu Gly Ser Ile His
           500
                             505
Tyr Leu His Phe Ala Val Ala Leu Phe Ala Leu Ser Gly Ala Val Val
     515
                         520
                                        525
Val Ala Gly Ser Leu Leu Thr Pro Pro Pro Gln Ser Val Gln Ile Glu
                     535
                                       540
Asn Leu Thr Trp Trp Thr Leu Ala Gln Asp Val Pro Leu Gly Thr Lys
      . 550
                                    555
Ala Gly Asp Gly Gln Thr Pro Gln Lys His Ala Phe Trp Ala Arg Val
             565
                                570
Cys Gly Phe Asn Ala Ile Leu Leu Met Cys Val Asn Ile Phe Phe Tyr
                            585
Ala Tyr Phe Ala
       595
<210> 65
<211> 393
<212> PRT
<213> homo sapiens
<400> 65
Met Asp Ser Leu Lys Asn Glu Asn Tyr Asp Leu Val Phe Val Glu Ala
```

5

```
Phe Asp Phe Cys Ser Phe Leu Ile Ala Glu Lys Leu Val Lys Pro Phe
Val Ala Ile Leu Pro Thr Thr Phe Gly Ser Leu Asp Phe Gly Leu Pro
Ser Pro Leu Ser Tyr Val Pro Val Phe Pro Ser Leu Leu Thr Asp His
Met Asp Phe Trp Gly Arg Val Lys Asn Phe Leu Met Phe Phe Ser Phe
              × 70° · · · · · · · · · 75 · · · 80
Ser Arg Ser Gln Trp Asp Met Gln Ser Thr Phe Asp Asn Thr Ile Lys
                                 90
Glu His Phe Pro Glu Gly Ser Arg Pro Val Leu Ser His Leu Leu Leu
                             105
Lys Ala Glu Leu Trp Phe Val Asn Ser Asp Phe Ala Phe Asp Phe Ala
                          120
                                             125
Arg Pro Leu Leu Pro Asn Thr Val Tyr Ile Gly Gly Leu Met Glu Lys
                                         140
                      135
Pro Ile Lys Pro Val Pro Gln Asp Leu Asp Asn Phe Ile Ala Asn Phe
                  150
                                     155
Gly Asp Ala Gly Phe Val Leu Val Ala Phe Gly Ser Met Leu Asn Thr
                      170
              165
His Gln Ser Gln Glu Val Leu Lys Lys Met His Asn Ala Phe Ala His
          180
                             185
Leu Pro Gln Gly Val Ile Trp Thr Cys Gln Ser Ser His Trp Pro Arg
                          200
Asp Val His Leu Ala Thr Asn Val Lys Ile Val Asp Trp Leu Pro Gln
                     215
                                          220
Ser Asp Leu Leu Ala His Pro Ser Ile Arg Leu Phe Val Thr His Gly
                   230
                                      235
Gly Gln Asn Ser Val Met Glu Ala Ile Arg His Gly Val Pro Met Val
               245 .
                                  250
Gly Leu Pro Val Asn Gly Asp Gln His Gly Asn Met Val Arg Val Val
                              265
                                                  270
Ala Lys Asn Tyr Gly Val Ser Ile Arg Leu Asn Gln Val Thr Ala Asp
                          280
                                              285
Thr Leu Thr Leu Thr Met Lys Gln Val Ile Glu Asp Lys Arg Tyr Lys
                                          300
                       295
Ser Ala Val Val Ala Ala Ser Val Ile Leu His Ser Gln Pro Leu Ser
                   310
                                      315
Pro Ala Gln Arg Leu Val Gly Trp Ile Asp His Ile Leu Gln Thr Gly
                                  330
               325
Gly Ala Thr His Leu Lys Pro Tyr Ala Phe Gln Gln Pro Trp His Glu
                              345
Gln Tyr Leu Ile Asp Val Phe Val Phe Leu Leu Gly Leu Thr Leu Gly
                          360
Thr Met Trp Leu Cys Gly Lys Leu Leu Gly Val Val Ala Arg Trp Leu
                      375
Arg Gly Ala Arg Lys Val Lys Lys Thr
                   390
```

<210> 66

<211> 523

<212> PRT

<213> homo sapiens

<400> 66

Met Val Gly Gln Arg Val Leu Leu Leu Val Ala Phe Leu Leu Ser Gly

1 5 10 15

Val Leu Leu Ser Glu Ala Ala Lys Ile Leu Thr Ile Ser Thr Leu Gly

45/79

Gla	, 50	יי ע	2 1 - T	0		-	_			25						3	0		•	
				yr L																
				sn V										Gly	Ly	s P				
Pro 65	As ₁	p I.	le L	ys G	lu į	Glu 70	G1	u L	/S	Ser	Ту	r G	ln	60 Val	. 11	, e A	rg	Tr	o Ph	ıe
				sp H	is (
			r A	la L																
				00 le Pl																
				sp Se																
				sp Pl																
Pro	Phe	· Va	1 A1	la II 16	e L	eu	Pro	Th	r T	hr	Phe	15 G1	у <u>:</u>	Ser	Leı	ı As	g	Phe	160 Gly	y Y
				o Le																
				p Ph																
				g Se																
				s Ph									o V	al						
Leu												Se	r A							
Phe	Ala	Arg	Pr-	o Le	ı Le	eu ∶	Pro	Asr	1 T	hr	Val	Туз	r I	le	Gly	Gl	y I	255 Seu	Met	
Glu			Il					Pro	G:											
Asn						ly 1	?he													
Asn '																				
Ala																				
. Pro 1																				
Pro 0																Phe	V			
														g E	lis					
Met V 385						1 A 0	sn						Gl	уА						
Val V	al i	Ala	Lys	Asn 405	Ty:	r G	ly '	Val	Se	r I	le.	395 Arg	Le	u A	sn	Gln	Va	al s	400 Thr	
Ala A								Met	$\mathbf{L}_{\mathbf{Y}}$	4 SG										
Tyr L	ys S	Ser																		
Leu S																				
4. Thr G: 465																				
His G	U		-11-	485	-1.€	: AS	y q	/al	₽ħ€	9 Va 49	al I 90	?he	Let	1 L	eu (Зlу	Le 49		hr	
										46/	79									

Leu Gly Thr Met Trp Leu Cys Gly Lys Leu Leu Gly Val Val Ala Arg 500 505 510

Trp Leu Arg Gly Ala Arg Lys Val Lys Lys Thr 515 520

<210> 67 <211> 252 <212> PRT <213> homo sapiens

<400> 67

Met Ser Cys Val Leu Gly Gly Val Ile Pro Leu Gly Leu Leu Phe Leu 10 Val Cys Gly Ser Gln Gly Tyr Leu Leu Pro Asn Val Thr Leu Leu Glu 25 20 Glu Leu Leu Ser Lys Tyr Gln His Asn Glu Ser His Ser Arg Val Arg 40 Arg Ala Ile Pro Arg Glu Asp Lys Glu Glu Ile Leu Met Leu His Asn 55 Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser Asn Met Glu Tyr Met 75 Thr Trp Asp Asp Glu Leu Glu Lys Ser Ala Ala Ala Trp Ala Ser Gln 85 90 . 95 Cys Ile Trp Glu His Gly Pro Thr Ser Leu Leu Val Ser Ile Gly Gln 105 Asn Leu Gly Ala His Trp Gly Arg Tyr Arg Ser Pro Gly Phe His Val 120 125 Gln Ser Trp Tyr Asp Glu Val Lys Asp Tyr Thr Tyr Pro Tyr Pro Ser 135 140 Glu Cys Asn Pro Trp Cys Pro Glu Arg Cys Ser Gly Pro Met Cys Thr 150 . 155 His Tyr Thr Gln Ile Val Trp Ala Thr Thr Asn Lys Ile Gly Cys Ala 165 170 Val Asn Thr Cys Arg Lys Met Thr Val Trp Gly Glu Val Trp Glu Asn . 190 185 180 Ala Val Tyr Phe Val Cys Asn Tyr Ser Pro Lys Gly Asn Trp Ile Gly 200 Glu Ala Pro Tyr Lys Asn Gly Arg Pro Cys Ser Glu Cys Pro Pro Ser 215 220 Tyr Gly Gly Ser Cys Arg Asn Asn Leu Cys Tyr Arg Gly Arg Lys Phe 230 235 Thr Pro Asn Thr Phe Ala Met Asn Leu Pro Ser Val

<210> 68 <211> 497 <212> PRT <213> homo sapiens

<400> 68

Met Ser Cys Val Leu Gly Gly Val Ile Pro Leu Gly Leu Leu Phe Leu

1 5 10 15

Val Cys Gly Ser Gln Gly Tyr Leu Leu Pro Asn Val Thr Leu Leu Glu
20 25 30

Glu Leu Leu Ser Lys Tyr Gln His Asn Glu Ser His Ser Arg Val Arg
35 40 45

Arg Ala Ile Pro Arg Glu Asp Lys Glu Glu Ile Leu Met Leu His Asn
47/79

```
55
                                             60
  Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser Asn Met Glu Tyr Met
                      70
                                         75
  Thr Trp Asp Asp Glu Leu Glu Lys Ser Ala Ala Ala Trp Ala Ser Gln
                 85
                                    90
  Cys'Ile Trp Glu His Gly Pro Thr Ser Leu Leu Val Ser Ile Gly Gln
             100
                                 105
  Asn Leu Gly Ala His Trp Gly Arg Tyr Arg Ser Pro Gly Phe His Val
                             120
  Gln Ser Trp Tyr Asp Glu Val Lys Asp Tyr Thr Tyr Pro Tyr Pro Ser
                         135
                                 . 140
 Glu Cys Asn Pro Trp Cys Pro Glu Arg Cys Ser Gly Pro Met Cys Thr
                    150
                                        155
 His Tyr Thr Gln Ile Val Trp Ala Thr Thr Asn Lys Ile Gly Cys Ala
                165
                                     170
 Val Asn Thr Cys Arg Lys Met Thr Val Trp Gly Glu Val Trp Glu Asn
             180
                                 185
 Ala Val Tyr Phe Val Cys Asn Tyr Ser Pro Lys Gly Asn Trp Ile Gly
                            200
                                                205
 Glu Ala Pro Tyr Lys Asn Gly Arg Pro Cys Ser Glu Cys Pro Pro Ser
                        215
                                            220
 Tyr Gly Gly Ser Cys Arg Asn Asn Leu Cys Tyr Arg Glu Glu Thr Tyr
                     230
                                       235
 Thr Pro Lys Pro Glu Thr Asp Glu Met Asn Glu Val Glu Thr Ala Pro
                 245
                                    250
 Ile Pro Glu Glu Asn His Val Trp Leu Gln Pro Arg Val Met Arg Pro
             260
                                265
 Thr Lys Pro Lys Lys Thr Ser Ala Val Asn Tyr Met Thr Gln Val Val
                            280
 Arg Cys Asp Thr Lys Met Lys Asp Arg Cys Lys Gly Ser Thr Cys Asn
                        295
                                           300
Arg Tyr Gln Cys Pro Ala Gly Cys Leu Asn His Lys Ala Lys Ile Phe
                    310
                                        315
Gly Thr Leu Phe Tyr Glu Ser Ser Ser Ser Ile Cys Arg Ala Ala Ile
                325
                                    330
His Tyr Gly Ile Leu Asp Asp Lys Gly Cly Leu Val Asp Ile Thr Arg
                                345
Asn Gly Lys Val Pro Phe Phe Val Lys Ser Glu Arg His Gly Val Gln
                           360
Ser Leu Ser Lys Tyr Lys Pro Ser Ser Ser Phe Met Val Ser Lys Val
                        375
Lys Val Gln Asp Leu Asp Cys Tyr Thr Thr Val Ala Gln Leu Cys Pro
                   390
                                       395
Phe Glu Lys Pro Ala Thr His Cys Pro Arg Ile His Cys Pro Ala His
                                   410
Cys Lys Asp Glu Pro Ser Tyr Trp Ala Pro Val Phe Gly Thr Asn Ile
                               425
Tyr Ala Asp Thr Ser Ser Ile Cys Lys Thr Ala Val His Ala Gly Val
                           440
Ile Ser Asn Glu Ser Gly Gly Asp Val Asp Val Met Pro Val Asp Lys
                       455
Lys Lys Thr Tyr Val Gly Ser Leu Arg Asn Gly Val Gln Ser Glu Ser
                                           460
                   470
                                      475
Leu Gly Thr Pro Arg Asp Gly Lys Ala Phe Arg Ile Phe Ala Val Arg
                                   490
Gln
```

```
<210> 69
<211> 438
<212> PRT
<213> homo sapiens
<400> 69
Asx Met Leu His Asn Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser
                                  10
Asn Met Glu Tyr Met Thr Trp Asp Asp Glu Leu Glu Lys Ser Ala Ala
           20
Ala Trp Ala Ser Gln Cys Ile Trp Glu His Gly Pro Thr Ser Leu Leu
                           40
Val Ser Ile Gly Gln Asn Leu Gly Ala His Trp Gly Arg Tyr Arg Ser
                      55
Pro Gly Phe His Val Gln Ser Trp Tyr Asp Glu Val Lys Asp Tyr Thr
                                       75
                   70
Tyr Pro Tyr Pro Ser Glu Cys Asn Pro Trp Cys Pro Glu Arg Cys Ser
               85
Gly Pro Met Cys Thr His Tyr Thr Gln Ile Val Trp Ala Thr Thr Asn
                              105
Lys Ile Gly Cys Ala Val Asn Thr Cys Arg Lys Met Thr Val Trp Gly
                           120
                                           125
Glu Val Trp Glu Asn Ala Val Tyr Phe Val Cys Asn Tyr Ser Pro Lys
                      135
                                          140
Gly Asn Trp Ile Gly Glu Ala Pro Tyr Lys Asn Gly Arg Pro Cys Ser
                                      155
                  150
Glu Cys Pro Pro Ser Tyr Gly Gly Ser Cys Arg Asn Asn Leu Cys Tyr
                           170
              165
Arg Glu Glu Thr Tyr Thr Pro Lys Pro Glu Thr Asp Glu Met Asn Glu
                              185
          180
Val Glu Thr Ala Pro Ile Pro Glu Glu Asn His Val Trp Leu Gln Pro
                           200
Arg Val Met Arg Pro Thr Lys Pro Lys Lys Thr Ser Ala Val Asn Tyr
                       215
Met Thr Gln Val Val Arg Cys Asp Thr Lys Met Lys Asp Arg Cys Lys
                   230
                                       235
Gly Ser Thr Cys Asn Arg Tyr Gln Cys Pro Ala Gly Cys Leu Asn His
               245
                                   250
Lys Ala Lys Ile Phe Gly Thr Leu Phe Tyr Glu Ser Ser Ser Ile
                               265
                                                   270
Cys Arg Ala Ala Ile His Tyr Gly Ile Leu Asp Asp Lys Gly Gly Leu
                                               285
                           280
Val Asp Ile Thr Arg Asn Gly Lys Val Pro Phe Phe Val Lys Ser Glu
                       295
                                           300
Arg His Gly Val Gln Ser Leu Ser Lys Tyr Lys Pro Ser Ser Ser Phe
                                       315
                   310
Met Val Ser Lys Val Lys Val Gln Asp Leu Asp Cys Tyr Thr Thr Val
                                  330
               325
Ala Gln Leu Cys Pro Phe Glu Lys Pro Ala Thr His Cys Pro Arg Ile
           340
                               345
His Cys Pro Ala His Cys Lys Asp Glu Pro Ser Tyr Trp Ala Pro Val
                           360
Phe Gly Thr Asn Ile Tyr Ala Asp Thr Ser Ser Ile Cys Lys Thr Ala
                       375
                                           380
Val His Ala Gly Val Ile Ser Asn Glu Ser Gly Gly Asp Val Asp Val
                   390
                                       395
Met Pro Val Asp Lys Lys Lys Thr Tyr Val Gly Ser Leu Arg Asn Gly
                                   410
                405
Val Gln Ser Glu Ser Leu Gly Thr Pro Arg Asp Gly Lys Ala Phe Arg
                                  49/79
```

```
420
                               425
                                                    430
  Ile Phe Ala Val Arg Gln
     435
  <210> 70
 <211> 308
  <212> PRT
 <213> homo sapiens
 <400> 70
 Met Val Gly Gly Val Leu Ala Ser Leu Gly Phe Val Phe Ser Ala Phe
                                    10
 Ala Ser Asp Leu Leu His Leu Tyr Leu Gly Leu Gly Leu Leu Ala Gly
           20
                               25
 Phe Gly Trp Ala Leu Val Phe Ala Pro Ala Leu Gly Thr Leu Ser Arg
                            40
 Tyr Phe Ser Arg Arg Arg Val Leu Ala Val Gly Leu Ala Leu Thr Gly
                       55 ...
                                          60
 Asn Gly Ala Ser Ser Leu Leu Leu Ala Pro Ala Leu Gln Leu Leu
         . 70
                                       75
 Asp Thr Phe Gly Trp Arg Gly Ala Leu Leu Leu Gly Ala Ile Thr
               85
                          90
 Leu His Leu Thr Pro Cys Gly Ala Leu Leu Leu Pro Leu Val Leu Pro
            100
                              105
                                                  110
 Gly Asp Pro Pro Ala Pro Pro Arg Ser Pro Leu Ala Ala Leu Gly Leu
        115
                           120
 Ser Leu Phe Thr Arg Arg Ala Phe Ser Ile Phe Ala Leu Gly Thr Ala
                       135
                                          140
Leu Val Gly Gly Tyr Phe Val Pro Tyr Val His Leu Ala Pro His
                    150
                                      155
Ala Leu Asp Arg Gly Leu Gly Gly Tyr Gly Ala Ala Leu Val Val Ala
               165
                                   170
Val Ala Ala Met Gly Asp Ala Gly Ala Arg Leu Val Cys Gly Trp Leu
           180
                               185
                                                 190
Ala Asp Gln Gly Trp Val Pro Leu Pro Arg Leu Leu Ala Val Phe Gly
        195
                           200
Ala Leu Thr Gly Leu Gly Leu Trp Val Val Gly Leu Val Pro Val Val
                      215
                                          220
Gly Gly Glu Glu Ser Trp Gly Gly Pro Leu Leu Ala Ala Ala Val Ala
                   230
                                       235
Tyr Gly Leu Ser Ala Gly Ser Tyr Ala Pro Leu Val Phe Gly Val Leu
                                  250
Pro Gly Leu Val Gly Val Gly Val Val Gln Ala Thr Gly Leu Val
          260
                              265
Met Met Leu Met Ser Leu Gly Gly Leu Leu Gly Pro Pro Leu Ser Gly
                          280
Lys Asp Leu Ser Ser Gln Ile Cys Leu Gln Leu Ser Ser Ala Pro Gly
                       295
                                          300
Val Arg Gly Phe
<210> 71
<211> 447
<212> PRT
<213> homo sapiens
```

<400> 71

Met 1	Thr	Pro	Gln	Pro 5	Ala	Gly	Pro	Pro	Asp 10	Gly	Gly	Trp	Gly	Trp 15	Val
			Ala 20					25					30		
Arg	Ser	Leu 35	Gly	Leu	Ala	Phe	Pro 40	Asp	Leu	Ala	Glu	His 45	Phe	Asp	Arg
	50		Asp			55					60				
65			Ser		70					75					80
_			Val	85					90					95	
			Phe 100					105					110		
		115	Gly		•		120					125			
	130		Arg			135					140				
145			Gly		150					155					160
			Leu	165					170					175	
_			Thr 180					185					190		
		195	Pro				200					205			
	210	_	Leu Ala			215					220				
225					230					235					240
			His Ala	245					250					255	
			260 Leu					265	_				270		
		275	Gly				280					285			
	290		Val			295				•	300				
305			Ala		310					315					320
			Leu	325					330					335	
			340 Val					345					350		
		355	Gly				360					365			
	370		Ser			375					380				
385					390					395					400
			Arg	405					410					415	
			Pro 420					425					430		val
ьeu	ьeu	35 435	Pro	GIY	СТĀ	Pro	G1Y 440	ser	Tnr	ьeu	qsa	Thr 445	ınr	cys	

<211> 458 <212> PRT <213> homo sapiens <400> 72 Asx Met Ala Arg Arg Thr Glu Pro Pro Asp Gly Gly Trp Gly Trp Val Val Val Leu Ser Ala Phe Phe Gln Ser Ala Leu Val Phe Gly Val Leu 25 Arg Ser Phe Gly Val Phe Phe Val Glu Phe Val Ala Ala Phe Glu Glu 40 Gln Ala Ala Arg Val Ser Trp Ile Ala Ser Ile Gly Ile Ala Val Gln 55 Gln Phe Gly Ser Pro Val Gly Ser Ala Leu Ser Thr Lys Phe Gly Pro 70 75 Arg Pro Val Val Met Thr Gly Gly Ile Leu Ala Ala Leu Gly Met Leu 90 Leu Ala Ser Phe Ala Thr Ser Leu Thr His Leu Tyr Leu Ser Ile Gly 100 105 Leu Leu Ser Gly Ser Gly Trp Ala Leu Thr Phe Ala Pro Thr Leu Ala 115 120 Cys Leu Ser Cys Tyr Phe Ser Arg Arg Ser Leu Ala Thr Gly Leu 135 Ala Leu Thr Gly Val Gly Leu Ser Ser Phe Thr Phe Ala Pro Phe Phe 150 155 Gln Trp Leu Leu Ser His Tyr Ala Trp Arg Gly Ser Leu Leu Val 165 170 Ser Ala Leu Ser Leu His Leu Val Ala Cys Gly Ala Leu Leu Arg Pro 180 185 Pro Ser Leu Ala Glu Asp Pro Ala Val Gly Gly Pro Arg Ala Gln Leu 200 Thr Ser Leu Leu His His Gly Pro Phe Leu Arg Tyr Thr Val Ala Leu 215 220 Thr Leu Ile Asn Thr Gly Tyr Phe Ile Pro Tyr Leu His Leu Val Ala 230 235 His Leu Gln Asp Leu Asp Trp Asp Pro Leu Pro Ala Ala Phe Leu Leu 245 250 Ser Val Val Ala Ile Ser Asp Leu Val Gly Arg Val Val Ser Gly Trp 260 265 Leu Gly Asp Ala Val Pro Gly Pro Val Thr Arg Leu Leu Met Leu Trp 280 Thr Thr Leu Thr Gly Val Ser Leu Ala Leu Phe Pro Val Ala Gln Ala 285 295 300 Pro Thr Ala Leu Val Ala Leu Ala Val Ala Tyr Gly Phe Thr Ser Gly 310 315 Ala Leu Ala Pro Leu Ala Phe Ser Val Leu Pro Glu Leu Ile Gly Thr 325 330 Arg Arg Ile Tyr Cys Gly Leu Gly Leu Leu Gln Met Ile Glu Ser Ile 345 Gly Gly Leu Leu Gly Pro Pro Leu Ser Gly Tyr Leu Arg Asp Val Ser 360 Gly Asn Tyr Thr Ala Ser Phe Val Val Ala Gly Ala Phe Leu Leu Ser 375 380 Gly Ser Gly Ile Leu Leu Thr Leu Pro His Phe Phe Cys Phe Ser Thr 390 395 Thr Thr Ser Gly Pro Gln Asp Leu Val Thr Glu Ala Leu Asp Thr Lys 405 410 Val Pro Leu Pro Lys Glu Gly Leu Glu Gly Gly Leu Asn Ser Thr Glu 425

Ser Gly Pro Glu Ser Gln Ser Leu Thr Ala Pro Gly Leu Leu Pro
435 440 445

Arg Leu Gly Leu His Arg Thr Thr Val Pro
450 455

<210> 73 <211> 169 <212> PRT <213> homo sapiens

<400> 73 Met Thr Met Lys Thr Ser Gly Ala Thr Cys Asp Ala Asn Ser Val Met 10 Asn Cys Gly Ile Arg Gly Ser Glu Met Phe Ala Glu Met Asp Leu Arg 25 Ala Ile Lys Pro Tyr Gln Thr Leu Ile Lys Lys Val Gly Gln Arg His 40 Cys Val Asp Pro Ala Val Ile Ala Ala Ile Ile Ser Arg Glu Ser His 55 Gly Gly Ser Val Leu Gln Asp Gly Trp Asp His Arg Gly Leu Lys Phe 75 70 Gly Leu Met Gln Leu Asp Lys Gln Thr Tyr His Pro Val Gly Ala Trp 90. 85 Asp Ser Lys Glu His Leu Ser Gln Ala Thr Gly Ile Leu Thr Glu Arg 105 Ile Lys Ala Ile Gln Lys Lys Phe Pro Thr Trp Ser Val Ala Gln His 120 Leu Lys Gly Gly Leu Ser Ala Phe Lys Ser Gly Ile Glu Ala Ile Ala 135 Thr Pro Ser Asp Ile Asp Asn Asp Phe Val Asn Asp Ile Ile Ala Arg 150 155 Ala Lys Phe Tyr Lys Arg Gln Ser Phe

<210> 74 <211> 186 <212> PRT <213> homo sapiens

165

<400> 74 Met Lys Pro His Leu His Pro Arg Leu Tyr His Gly Cys Tyr Gly Asp 10 Ile Met Thr Met Lys Thr Ser Gly Ala Thr Cys Asp Ala Asn Ser Val Met Asn Cys Gly Ile Arg Gly Ser Glu Met Phe Ala Glu Met Asp Leu Arg Ala Ile Lys Pro Tyr Gln Thr Leu Ile Lys Lys Val Gly Gln Arg 55 His Cys Val Asp Pro Ala Val Ile Ala Ala Ile Ile Ser Arg Glu Ser His Gly Gly Ser Val Leu Gln Asp Gly Trp Asp His Arg Gly Leu Lys 90 Phe Gly Leu Met Gln Leu Asp Lys Gln Thr Tyr His Pro Val Gly Ala 105 Trp Asp Ser Lys Glu His Leu Ser Gln Ala Thr Gly Ile Leu Thr Glu 120 Arg Ile Lys Ala Ile Gln Lys Lys Phe Pro Thr Trp Ser Val Ala Gln 53/79

140

. 135

130

His Leu Lys Gly Gly Leu Ser Ala Phe Lys Ser Gly Ile Glu Ala Ile ··· 150 155 Ala Thr Pro Ser Asp Ile Asp Asn Asp Phe Val Asn Asp Ile Ile Ala 165 170 Arg Ala Lys Phe Tyr Lys Arg Gln Ser Phe 180 <210> 75 <211> 675 <212> PRT <213> homo sapiens <400> 75 Met Glu Ser Gly Thr Ser Ser Pro Gln Pro Pro Gln Leu Asp Pro Leu 10 Asp Ala Phe Pro Gln Lys Gly Leu Glu Pro Gly Asp Ile Ala Val Leu 25 Val Leu Tyr Phe Leu Phe Val Leu Ala Val Gly Leu Trp Ser Thr Val 35 Lys Thr Lys Arg Asp Thr Val Lys Gly Tyr Phe Leu Ala Gly Gly Asp 55 60 Met Val Trp Trp Pro Val Gly Ala Ser Leu Phe Ala Ser Asn Val Gly 70 Ser Gly His Phe Ile Gly Leu Ala Gly Ser Gly Ala Ala Thr Gly Ile 85 90 Ser Val Ser Ala Tyr Glu Leu Asn Gly Leu Phe Ser Val Leu Met Leu 105 Ala Trp Ile Phe Leu Pro Ile Tyr Ile Ala Gly Gln Val Thr Thr Met 120 Pro Glu Tyr Leu Arg Lys Arg Phe Gly Gly Ile Arg Ile Pro Ile Ile 125 135 140 Leu Ala Val Leu Tyr Leu Phe Ile Tyr Ile Phe Thr Lys Ile Ser Val 150 155 Asp Met Tyr Ala Gly Ala Ile Phe Ile Gln Gln Ser Leu His Leu Asp 165 170 Leu Tyr Leu Ala Ile Val Gly Leu Leu Ala Ile Thr Ala Val Tyr Thr 185 Val Ala Gly Gly Leu Ala Ala Val Ile Tyr Thr Asp Ala Leu Gln Thr 195 200 Leu Ile Met Leu Ile Gly Ala Leu Thr Leu Met Gly Tyr Ser Phe Ala 215 220 Ala Val Gly Gly Met Glu Gly Leu Lys Glu Lys Tyr Phe Leu Ala Leu 230 235 Ala Ser Asn Arg Ser Glu Asn Ser Ser Cys Gly Leu Pro Arg Glu Asp 245 250 Ala Phe His Ile Phe Arg Asp Pro Leu Thr Ser Asp Leu Pro Trp Pro 265 Gly Val Leu Phe Gly Met Ser Ile Pro Ser Leu Trp Tyr Trp Cys Thr 280 285 Asp Gln Val Ile Val Gln Arg Thr Leu Ala Ala Lys Asn Leu Ser His 295 Ala Lys Gly Gly Ala Leu Met Ala Ala Tyr Leu Lys Val Leu Pro Leu 300 310 315 Phe Ile Met Val Phe Pro Gly Met Val Ser Arg Ile Leu Phe Pro Asp 325 330 Gln Val Ala Cys Ala Asp Pro Glu Ile Cys Gln Lys Ile Cys Ser Asn 345 54/79

```
Pro Ser Gly Cys Ser Asp Ile Ala Tyr Pro Lys Leu Val Leu Glu Leu
                          360
       355
Leu Pro Thr Gly Leu Arg Gly Leu Met Met Ala Val Met Val Ala Ala
                                          380
                       375
Leu Met Ser Ser Leu Thr Ser Ile Phe Asn Ser Ala Ser Thr Ile Phe
                                      395
                  390
Thr Met Asp Leu Trp Asn His Leu Arg Pro Arg Ala Ser Glu Lys Glu
                                  410
              405
Leu Met Ile Val Gly Arg Val Phe Val Leu Leu Val Leu Val Ser
           420
                               425
Ile Leu Trp Ile Pro Val Val Gln Ala Ser Gln Gly Gly Gln Leu Phe
                           440
       435
Ile Tyr Ile Gln Ser Ile Ser Ser Tyr Leu Gln Pro Pro Val Ala Val
                      455
                                          460
Val Phe Ile Met Gly Cys Phe Trp Lys Arg Thr Asn Glu Lys Gly Ala
                   470
                                      475
Phe Trp Gly Leu Ile Ser Gly Leu Leu Gly Leu Val Arg Leu Val
              485
                                  490
Leu Asp Phe Ile Tyr Val Gln Pro Arg Cys Asp Gln Pro Asp Glu Arg
                               505
Pro Val Leu Val Lys Ser Ile His Tyr Leu Tyr Phe Ser Met Ile Leu
                           520
Ser Thr Val Thr Leu Ile Thr Val Ser Thr Val Ser Trp Phe Thr Glu
                      535
Pro Pro Ser Lys Glu Met Val Ser His Leu Thr Trp Phe Thr Arg His
                  550
                                      555
Asp Pro Val Val Gln Lys Glu Gln Ala Pro Pro Ala Ala Pro Leu Ser
              565
                                  570
Leu Thr Leu Ser Gln Asn Gly Met Pro Glu Ala Ser Ser Ser Ser Ser
                              585
    580
Val Gln Phe Glu Met Val Gln Glu Asn Thr Ser Lys Thr His Ser Cys
                           600
                                              605
Asp Met Thr Pro Lys Gln Ser Lys Val Val Lys Ala Ile Leu Trp Leu
                       615
Cys Gly Ile Gln Glu Lys Gly Lys Glu Glu Leu Pro Ala Arg Ala Glu
                   630
                                      635
Ala Ile Ile Val Ser Leu Glu Glu Asn Pro Leu Val Lys Thr Leu Leu
                                   650
Asp Val Asn Leu Ile Phe Cys Val Ser Cys Ala Ile Phe Ile Trp Gly
                               665
Tyr Phe Ala
       675
```

<210> 76

<211> 485

<212> PRT

<213> homo sapiens

<400> 76

 Met Glu Pro Cys
 Trp Gly Glu Gly Leu Phe His Leu Ala Pro Pro Arg

 1
 5
 10
 15
 15

 His His Pro Gln Lys Ala Asp Trp His Phe Cys Pro Gln His Ile Gln 20
 25
 30
 30

 Glu Phe Thr Asn Glu Thr Trp Gln Ala Arg Thr Gly Glu Pro Leu Pro 35
 40
 45

 Asp His Leu Val Leu Leu Met Trp Ser Leu Ile Val Ser Leu Tyr Pro 50
 55
 60

 Leu Gly Gly Leu Phe Gly Ala Leu Leu Ala Gly Pro Leu Ala Ile Thr

```
70
                                        75
  Leu Gly Arg Lys Lys Ser Leu Leu Val Asn Asn Ile Phe Val Val Ser
                85 -
                                    90
  Ala Ala Ile Leu Phe Gly Phe Ser Arg Lys Ala Gly Ser Phe Glu Met
            100
                                105
  Ile Met Leu Gly Arg Leu Leu Val Gly Val Asn Ala Gly Val Ser Met
                120
  Asn Ile Gln Pro Met Tyr Leu Gly Glu Ser Ala Pro Lys Glu Leu Arg
                        135 .
 Gly Ala Val Ala Met Ser Ser Ala Ile Phe Thr Ala Leu Gly Ile Val
                                          140
                   150
                                       155
 Met Gly Gln Val Val Gly Leu Arg Glu Leu Leu Gly Gly Pro Gln Ala
                165
                                   170
 Trp Pro Leu Leu Ala Ser Cys Leu Val Pro Gly Ala Leu Gln Leu
            180
                               185
 Ala Ser Leu Pro Leu Pro Glu Ser Pro Arg Tyr Leu Leu Ile Asp
                 . 200
 Cys Gly Asp Thr Glu Ala Cys Leu Ala Ala Leu Arg Arg Leu Arg Gly
                       215
                                          220
 Ser Gly Asp Leu Ala Gly Glu Leu Glu Glu Glu Glu Glu Arg Ala
                   230
                                       235
 Ala Cys Gln Gly Cys Arg Ala Arg Arg Pro Trp Glu Leu Phe Gln His
               245.
                                  250
 Arg Ala Leu Arg Arg Gln Val Thr Ser Leu Val Val Leu Gly Ser Ala
                              265
                                                  270
 Met Glu Leu Cys Gly Asn Asp Ser Val Tyr Ala Tyr Ala Ser Ser Val
                          280
 Phe Arg Lys Ala Gly Val Pro Glu Ala Lys Ile Gln Tyr Ala Ile Ile
                      295
                                          300
 Gly Thr Gly Ser Cys Glu Leu Leu Thr Ala Val Val Ser Cys Val Val
                   310
                                      315
Ile Glu Arg Val Gly Arg Arg Val Leu Leu Ile Gly Gly Tyr Ser Leu
               325
                               330
Met Thr Cys Trp Gly Ser Ile Phe Thr Val Ala Leu Cys Leu Gln Ser
                               345
Ser Phe Pro Trp Thr Leu Tyr Leu Ala Met Ala Cys Ile Phe Ala Phe
                          360
Ile Leu Ser Phe Gly Ile Gly Pro Ala Gly Val Thr Gly Ile Leu Ala
                      375
                                          380
Thr Glu Leu Phe Asp Gln Met Ala Arg Pro Ala Ala Cys Met Val Cys
                  390
Gly Ala Leu Met Trp Ile Met Leu Ile Leu Val Gly Leu Gly Phe Pro
                                      395
               405
                                  410
Phe Ile Met Glu Ala Leu Ser His Phe Leu Tyr Val Pro Phe Leu Gly
          420
                              425
Val Cys Val Cys Gly Ala Ile Tyr Thr Gly Leu Phe Leu Pro Glu Thr
                          440
Lys Gly Lys Thr Phe Gln Glu Ile Ser Lys Glu Leu His Arg Leu Asn
                      455
                                        460
Phe Pro Arg Arg Ala Gln Gly Pro Thr Trp Arg Ser Leu Glu Val Ile
                  470
                                     475
Gln Ser Thr Glu Leu
```

<210> 77 <211> 496 <212> PRT <213> homo sapiens

<400)> 77	7													
			Leu	Arg 5	Arg	Leu	Ile	Gln	Gly 10	Arg	Ile	Leu	Leu	Leu 15	Thr
	Cys	Ala	Ala 20	Gly	Ile	Gly	Gly	Thr 25	Phe	Gln	Phe	Gly	Tyr 30	Asn	Leu
Ser	Ile	Ile 35		Ala	Pro	Thr	Leu 40	His	Ile	Gln	Glu	Phe 45	Thr	Asn	Glu
Thr	Trp 50		Ala	Arg	Thr	Gly 55	Glu	Pro	Leu	Pro	Asp 60	His	Leu	Val	Leu
Leu 65	Met	Trp	Ser	Leu	Ile 70	Val	Ser	Leu	Tyr	Pro 75	Leu	Gly	Gly	Leu	Phe 80
Gly	Ala	Leu	Leu	Ala 85	Gly	Pro	Leu	Ala	Ile 90	Thr	Leu	Gly	Arg	Lys 95	Lys
			100	Asn				105					110		
		115		Lys			120					125			
	130			Val		135		•			140				
145				Ser	150				•	155					160
				Phe 165					170					175	
_		_	180	Leu				185				,	190		
		195		Val			200					205			
	210			Pro		215					220				
225				Ala	230					235					240
_				Glu 245					250					255	
			260	Pro				265				•	270		
		275		Leu			280					285			
	290			Tyr		295					300				
305				Lys	310					315					320
				Ala 325					330					335	
			340	Leu				345					350		
		355		Val			360					365			
	370			Met		375					380				
385				Gly	390					395	•				400
			_	Pro 405					410					415	
			420	Leu				425					430		
		435		Leu			440					445			
Ala	Ile	Tyr	Thr	Gly	Leu	Phe	Leu		Glu 7/79	Thr	Lys	Gly	Lys	Thr	Phe

450

```
455
                                              460
  Gln Glu Ile Ser Lys Glu Leu His Arg Leu Asn Phe Pro Arg Arg Ala
                   470
                                          475
  Gln Gly Pro Thr Trp Arg Ser Leu Glu Val Ile Gln Ser Thr Glu Leu
                 485
                                     490
  <210> 78
  <211> 500
  <212> PRT
  <213> homo sapiens
  <400> 78
  Asx Met Leu His Ala Leu Leu Arg Ser Arg Met Ile Gln Gly Arg Ile
 Leu Leu Thr Ile Cys Ala Ala Gly Ile Gly Gly Thr Phe Gln Phe
             20
                                 25
 Gly Tyr Asn Leu Ser Ile Ile Asn Ala Pro Thr Leu His Ile Gln Glu
                             40
 Phe Thr Asn Glu Thr Trp Gln Ala Arg Thr Gly Glu Pro Leu Pro Asp
                         55
                                            60
 His Leu Val Leu Leu Met Trp Ser Leu Ile Val Ser Leu Tyr Pro Leu
                    70
                                        75
 Gly Gly Leu Phe Gly Ala Leu Leu Ala Gly Pro Leu Ala Ile Thr Leu
                85
                                   90
 Gly Arg Lys Lys Ser Leu Leu Val Asn Asn Ile Phe Val Val Ser Ala
             100
                                105
 Ala Ile Leu Phe Gly Phe Ser Arg Lys Ala Gly Ser Phe Glu Met Ile
                            120
                                                125
 Met Leu Gly Arg Leu Leu Val Gly Val Asn Ala Gly Val Ser Met Asn
                        135
 Ile Gln Pro Met Tyr Leu Gly Glu Ser Ala Pro Lys Glu Leu Arg Gly
                                           140
                     150
                                       155
Ala Val Ala Met Ser Ser Ala Ile Phe Thr Ala Leu Gly Ile Val Met
                165
                                    170
Gly Gln Val Val Gly Leu Arg Glu Leu Leu Gly Gly Pro Gln Ala Trp
            180
                                185
Pro Leu Leu Ala Ser Cys Leu Val Pro Gly Ala Leu Gln Leu Ala
               .
                           200
Ser Leu Pro Leu Leu Pro Glu Ser Pro Arg Tyr Leu Leu Ile Asp Cys
                       215
Gly Asp Thr Glu Ala Cys Leu Ala Ala Leu Arg Arg Leu Arg Gly Ser
                                           220
                    230
                                       235
Gly Asp Leu Ala Gly Glu Leu Glu Glu Leu Glu Glu Glu Arg Ala Ala
               245
                                   250
Cys Gln Gly Cys Arg Ala Arg Pro Trp Glu Leu Phe Gln His Arg
                               265
Ala Leu Arg Arg Gln Val Thr Ser Leu Val Val Leu Gly Ser Ala Met
                          280
                                               285
Glu Leu Cys Gly Asn Asp Ser Val Tyr Ala Tyr Ala Ser Ser Val Phe
                       295
                                           300
Arg Lys Ala Gly Val Pro Glu Ala Lys Ile Gln Tyr Ala Ile Ile Gly
                   310
                                       315
Thr Gly Ser Cys Glu Leu Leu Thr Ala Val Val Ser Cys Val Val Ile
               325
                                  330
Glu Arg Val Gly Arg Arg Val Leu Leu Ile Gly Gly Tyr Ser Leu Met
                               345
Thr Cys Trp Gly Ser Ile Phe Thr Val Ala Leu Cys Leu Gln Ser Ser
                                                  350
                           360
```

```
Phe Pro Trp Thr Leu Tyr Leu Ala Met Ala Cys Ile Phe Ala Phe Ile
                375
Leu Ser Phe Gly Ile Gly Pro Ala Gly Val Thr Gly Ile Leu Ala Thr
                                     395
                  390
Glu Leu Phe Asp Gln Met Ala Arg Pro Ala Ala Cys Met Val Cys Gly
                                 410
                                                     415
Ala Leu Met Trp Ile Met Leu Ile Leu Val Gly Leu Gly Phe Pro Phe
                             425 430
Ile Met Glu Ala Leu Ser His Phe Leu Tyr Val Pro Phe Leu Gly Val
                          440
Cys Val Cys Gly Ala Ile Tyr Thr Gly Leu Phe Leu Pro Glu Thr Lys
                       455
                                         460 .
Gly Lys Thr Phe Gln Glu Ile Ser Lys Glu Leu His Arg Leu Asn Phe
                  470
                                     475
Pro Arg Arg Ala Gln Gly Pro Thr Trp Arg Ser Leu Glu Val Ile Gln
                                  490
Ser Thr Glu Leu
           500
<210> 79
<211> 1358
<212> PRT
<213> homo sapiens
<400> 79
Met Val Val Val Lys Pro Met Asn Thr Met Ala Pro Val Val Thr Arg
Asn Thr Gly Leu Ile Leu Tyr Glu Gly Gln Ser Arg Pro Leu Thr Gly
                              25
Pro Ala Gly Ser Gly Pro Gln Asn Leu Val Ile Ser Asp Glu Asp Asp
Leu Glu Ala Val Arg Leu Glu Val Val Ala Gly Leu Arg His Gly His
Leu Val Ile Leu Gly Ala Ser Ser Gly Ser Ser Ala Pro Lys Ser Phe
                   70
                                      75
Thr Val Ala Glu Leu Ala Ala Gly Gln Val Val Tyr Gln His Asp Asp
                                  90
               85
Arg Asp Gly Ser Leu Ser Asp Asn Leu Val Leu Arg Met Val Asp Gly
                             105
Gly Gly Arg His Gln Val Gln Phe Leu Phe Pro Ile Thr Leu Val Pro
                          120
Val Asp Asp Gln Pro Pro Val Leu Asn Ala Asn Thr Gly Leu Thr Leu
                                          140
                       135
Ala Glu Gly Glu Thr Val Pro Ile Leu Pro Leu Ser Leu Ser Ala Thr
                  150
                                      155
Asp Met Asp Ser Asp Asp Ser Leu Leu Phe Val Leu Glu Ser Pro
               165
                                  170
Phe Leu Thr Thr Gly His Leu Leu Leu Arg Gln Thr His Pro Pro His
                              185
                                                 190
Glu Lys Gln Glu Leu Leu Arg Gly Leu Trp Arg Lys Glu Gly Ala Phe
                          200
                                             205
Tyr Glu Arg Thr Val Thr Glu Trp Gln Gln Asp Ile Thr Glu Gly
                      215
                                          220
Arg Leu Phe Tyr Arg His Ser Gly Pro His Ser Pro Gly Pro Val Thr
```

59/79

250

Asp Gln Phe Thr Phe Arg Val Gln Asp Asn His Asp Pro Pro Asn Gln

Ser Gly Leu Gln Arg Phe Val Ile Arg Ile His Pro Val Asp Arg Leu

235

230

245

			2	60														
Dro	Dag	<u> </u>				_			2	65						27	0	
																		ln Gl
														gI	yr	Th		sp Le
Asp 305	Thi	c As	p A	sp A	rg (31u 310	Let	. Ar	g T	yr	Thr	Va	l Tì	ır G	ln	Se	r Pr	o Th
Asp	Thi	As	p G	lu A	sn F 25	lis	Leu	Pr	o A	la	Pro	31 Le	s u Gl	y T	hr	Le	u Va	32 1 Le
			n Pi	ro Se	رين				1 T	nr 1	3 Z II							
		Hi	s Ly	T U				Ar	g Pi	15						25	^	y Vai
																		a Gly
																		p Ası
				· 						- 4	ยาก	Thi	11					400 s Gly
His			7.0	•					4.7	u H	lis					400		p Thr
Asp			-					441	. Le	u I					0		His	
							4:17	Ile	e Le				100	/ G1	У			
Leu (465												175	Ala	Hi.				
Lys :	Ser	Leu	Th	r Ası 48	o <i>S</i> ∈	er (Cys	Ser	Le	u G	lu 90	Val	Ser	· As	g j	Arg		
Val v	/al	Pro	500	e Thi	c L∈	eu A	۱rg	Val	As:	n V	al.	Arg	Pro	Va			495 Asp	Glu
Val I	Pro	Ile 515	Let	ı Sei	Hi	s E	ro	Thr 520	Gl	y Ti	hr :	Leu	Glu		r	510 Tyr	Leu	Asp
Val I	Jeu 530	Glu	Ası	n Gly	/ Al	a I	hr 35.	Glu	Ile	e Tì	ar I	Ala	Asn	52 Va	5 1]	[le	Lys	Gly
Thr A	sn	Glu	Glı	ı Thr	- As 55	рА	sp :	Leu	Met	L.	∍u !	Thr	540 Phe	Le	u I	ieu	Glu	Asp
Pro P	ro	Leu	Туг	Gly	G1	u I	le :	Leu	Va]	. As	sn (555 31y	Ile	Pre	o A	la	Glu	560 Gln
Phe T				gaA ı			eu (3lu	Gly	57 S∈	,,,							
Ser G	ly		Ile	Gly	Le	u L	eu 1	ro	Lys									
Leu S						n G	lu I	3111						$-c \wedge r$	_			
Gly V 625					Va.	l Ti												
Glu I				Gly														
Val I			Ser	U = J						65	(1							
Asp As	c qe	Cle																
Glu As	sn I																	
69 Ala I] 705	-				•	U.7	-					,	700					
705					710						77.	3 =						
ryr Va	ıl G	ln	Ser	Val	His	Lυ	s G	lv i	Val	C1.	1 D-	سم ۲	7-7	\sim 1	-	_		

V	al	Phe	Arg	Cys 740	Ser	Asp	Gly	Ile	Asn 745	Phe	Ser	Glu	Arg	Gln 750	Phe	Phe
P	ro	Ile	Val 755	Ile	Ile	Pro	Thr	Asn 760	Asp	Glu	Gln	Pro	Glu 765	Met	Phe	Met
A	rg	Glu 770		Met	Val	Met	Glu 775	Gly	Met	Ser	Leu	Val 780	Ile	Asp	Thr	Pro
	le 85		Asn	Ala	Ala	Asp 790	Ala	Asp	Va1		Leu .795		Asp	Leu	Thr	Phe 800
		Ile	Thr	Gln	Phe 805		Thr	His	GļĀ					Gln	Leu 815	Ile
A	sn	Gly	Thr	Val 820		Val	Glu	Ser	Phe 825		Leu	Asp	Gln	Ile 830	Ile	Glu
S	Ser	Ser	Ser 835	Ile	Ile	Tyr	Glu	His 840		Asp	Ser	Glu	Thr 845	Gln	Glu	Asp
S	er	Phe 850		Ile	Lys	Leu	Thr 855	Asp	Gly	Lys	His	Ser 860	Val	Glu	Lys	Thr
	7al 165		Ile	Ile	Val	Ile 870	Pro	Val	Asp	qaA	Glu 875	Thr	Pro	Arg	Met	Thr 880
		Asn	Asn	Gly	Leu 885		Ile	Glu	Ile	890	Asp	Thr	Lys	Ile	Ile 895	Asn
				Leu 900					905					910		
			915	Ile				920					925			
		930		Gly			935					940				
9	45			Val		950			•		955					960
		_		Arg	965					970					975	
				Asp 980					985					990		
			995	Asp				1000)				1009	วี		
		1010)	Leu			1015	5				1020)			
	Pro 1025		Glu	Asn	Leu	Val 103(Thr	Ile	Thr	Arg 103		Pro	Met	Arg	1040
				Суѕ	1045	5				1050)				1055	5
				Leu 1060)				1065	5				1070)	
			107					1080)				108	5		
		109	0	Phe			1095	5				110	0			
	iys 1109	_	Pro	Val	Val	Thr 1110		His	Lys	Leu	Val 111!		Ser	Glu	Ser	G1u 1120
7	\sn	Lys	Leu	Ile	Thr 1129		Phe	Glu	Leu	Thr 1130		Glu	Asp	Arg	Asp 1139	
				Leu 114	0				1145	3				115	0	
F	lis	Leu	Leu 115	Phe 5	Asn	Asn	Thr	Arg 1160		Val	Met	Val	Phe 116		Lys	Gln
	_	117	0	Glu			1175	5				118	0			
1	L189	5 .	-	Ser		1190)				119	5				1200
I	?he	Tyr	Val	Phe	Pro	Asp	Thr	Val		Glu 51/79		Arg	Arg	Pro	Gln	Val

1205 1210 1215 Met Lys Ile Gln Val Leu Ala Val Asp Asn Ser Val Pro Gln Ile Ala 1220 1225 Val Asn Lys Gly Ala Ser Thr Leu Arg Thr Leu Ala Thr Gly His Leu 1235 1240 Gly Phe Met Ile Thr Ser Lys Ile Leu Lys Val Glu Asp Arg Asp Ser 1255 1260 Leu His Ile Ser Leu Arg Phe Ile Val Thr Glu Ala Pro Gln His Gly 1270 1275 Tyr Leu Leu Asn Leu Asp Lys Gly Asn His Ser Ile Thr Gln Phe Thr . 1285 1290 Gln Ala Asp Ile Asp Asp Met Lys Ile Cys Tyr Val Leu Arg Glu Gly 1300 1305 Ala Asn Ala Thr Ser Asp Met Phe Tyr Phe Ala Val Glu Asp Gly Gly 1320 1325 Lys Tyr Ser Pro Leu Leu Val Val Thr Ala Arg Arg Asp Ala Phe Leu 1335 1340 Gly Cys Ser Leu Met Thr Leu Leu Gln Glu Val Phe Ile Lys 1350 <210> 80 <211> 3105 <212> PRT <213> homo sapiens <400> 80 Met Ala Arg Ser Trp Leu Thr Ala Thr Ser Thr Ser Arg Pro Ala Ala 5 10 Phe Gly Arg Ala Leu Leu Ser Pro Gly Leu Ala Gly Ala Ala Gly Val 25 Pro Ala Glu Glu Ala Ile Val Leu Ala Asn Arg Gly Leu Arg Val Pro 40 Phe Gly Arg Glu Val Trp Leu Asp Pro Leu His Asp Leu Val Leu Gln 55 60 Val Gln Pro Gly Asp Arg Cys Ala Val Ser Val Leu Asp Asn Asp Ala 70 75 Leu Ala Gln Arg Pro Gly Arg Leu Ser Pro Lys Arg Phe Pro Cys Asp 85 90 Phe Gly Pro Gly Glu Val Arg Tyr Ser His Leu Gly Ala Arg Ser Pro 105 Ser Arg Asp Arg Val Arg Leu Gln Leu Arg Tyr Asp Ala Pro Gly Gly 120 125 Ala Val Val Leu Pro Leu Val Leu Glu Val Glu Val Val Phe Thr Gln 135 140 Leu Glu Val Val Thr Arg Asn Leu Pro Leu Val Val Glu Glu Leu Leu 150 155 Gly Thr Ser Asn Ala Leu Asp Ala Arg Ser Leu Glu Phe Ala Phe Gln 165 170 Pro Glu Thr Glu Glu Cys Arg Val Gly Ile Leu Ser Gly Leu Gly Ala 185 Leu Pro Arg Tyr Gly Glu Leu Leu His Tyr Pro Gln Val Pro Gly Gly 195 200 205 Ala Arg Glu Gly Gly Ala Pro Glu Thr Leu Leu Met Asp Cys Lys Ala 215 220 Phe Gln Glu Leu Gly Val Arg Tyr Arg His Thr Ala Ala Ser Arg Ser 230 235 Pro Asn Arg Asp Trp Ile Pro Met Val Val Glu Leu Arg Ser Arg Gly 245 250

Ala	Pro	Val	Gly 260	Ser	Pro	Ala	Leu	Lys 265	Arg	Glu	His	Phe	Gln- 270	Val	Leu
Val	Arg	11e 275	Arg	Gly	Gly	Ala	Glu 280	Asn	Thr	Ala	Pro	Lys 285	Pro	Ser	Phe
Val	Ala 290		Met	Met	Met	Glu 295		Asp	Gln	Phe	Val 300	Leu	Thr	Ala	Leu
Thr 305		Asp	Met	Leu	Ala 310		Glu	Asp	Ala	Glu 315	Ser	Pro	Ser	Asp	Leu 320
	Ile	Phe	Asn	Leu 325		Ser	Pro	Phe	Gln 330		Gly	Gln	Gly	Tyr 335	
Val	Ser	Thr	Asp		Arg	Ser	Leu	Pro 345		Ser	Ser	Phe	Thr 350	-	Arg
Asp	Leu	Arg 355		Leu	Lys	Ile	Ala 360		G1n	Pro	Pro	Ser 365	Glu	qaA	Ser
Asp	Gln 370	Glu	Arg	Leu	Phe	Glu 375	Leu	Glu	Leu	Glu	Val 380	Val	Asp	Leu	Glu
Gly 385	Ala	Ala	Ser	Asp	Pro 390	Phe	Ala	Phe	Met.	Val 395	Val	Val	Lys	Pro	Met 400
Asn	Thr	Met	Ala	Pro 405	Val	Val	Thr	Arg	Asn 410	Thr	Gly	Leu	Ile	Leu 415	Tyr
Glu	Gly	Gln	Ser 420	Arg	Pro	Leu	Thr	Gly 425	Pro	Ala	Gly	Ser	Gly 430	Pro	Gln
Asn	Leu	Val 435	Ile	Ser	Asp	Glu	Asp 440	Asp	Leu	Glu	Ala	Val 445	Arg	Leu	Glu
Val	Val 450	Ala	Gly	Leu	Arg	His 455	Glу	His	Leu	Va1	Ile 460	Leu	Gly	Ala	Ser
465	_				470	_				475			Leu		480
_				485				_	490		-		Leu	495	_
			500					505					Gln 510		
		515					520			_	_	525	Pro		
	530					535					540		Thr		
11e 545	Leu	Pro	Leu	ser	ьеи 550	ser	Ата	Thr	Asp	Met 555	Asp	ser	Asp	Asp	560
	Leu	Leu	Phe	Val 565	Leu	Glu	Ser	Pro	Phe 570	Leu	Thr	Thr	Gly	His 575	Leu
Leu	Leu	Arg	Gln 580	Thr	His	Pro	Pro	His 585	Glu	Lys	Gln	Glu	Leu 590	Leu	Arg
_		595					600					605	Val		
_	610					615					620		Arg		
625					630					635			Phe		640
				645					650				Arg	655	
			660					665					Gly 670		
-		675					680					685	Pro		
гЛS	Lys 690	Trp	ьеп	Arg	ryr	1hr 695	ASP	ьеи	Asp	Tnr	700	Asp	Arg	GTU	ьeu
Arg 705	Tyr	Thr	Val	Thr	Gln 710	Pro	Pro	Thr	Asp	Thr 715	Asp	Glu	Asn	His	Leu 720
Pro	Ala	Pro	Leu	Gly	Thr	Leu	Val			Asp	Asn	Pro	Ser	Val	Val
								6	3/79						

				725					730	l				725		
Val	L Th:	r His	Phe 740	Thr	Gln	Ala	Glr	1 Ile 745	Asn	His	His	Lys	Ile	Ala	Tyr	
								Val	Ala							
			Val				Ala	Gly					Gly			
Thr 785	Leu	ı Tyr	Leu	His	Pro 790	Val	Asp	Asn	Gln	Pro	780 Pro	Glu	Ile	Leu	Asn	
Thr	Gly	Phe	Thr	Ile 805	Gln	Glu	Lys	Gly	His	795 His	Ile	Leu	Ser	Glu	800 Thr	
Glu	Leu	His	Val 820	Asn	Asp	Val	Asp	Thr	810 Asp	Val	Ala	His	Ile	815 Ser	Phe	
Thr	Leu	Thr 835	Gln	Ala	Pro	Lys	His 840	825 Gly	His	Met	Arg	Val	830 Ser	$\mathtt{Gl}_{\mathbf{Y}}$	Gln	
			Val								Asp					
			Tyr													
			Val					His	Val							
		Val	Arg 900				Asp	Glu								
			Leu			Tyr	Leu									
			Ala i		Val	Ile										
Leu 945	Met	Leu	Thr. 1	Phe 1	նeu : 950	935 Leu	Glu .	Asp :	Pro :	Pro I	940 Leu !	ľyr (Gly (lu :	Ile	
Leu	Val	Asn (Gly)	le 1 965	Pro 1	Ala (Glu (Gln 1	Phe ?	955 Phr (Sln <i>l</i>	Arg A	Asp 1	:le I	960 Seu	
Glu	Gly	Ser 1	Val (980	al 1	yr 1	Chr 1	His !	Thr S	970 Ser (∃ly (3lu]	[le (gly L	75 eu I	ieu	
Pro 1						Asn I	Leu S	ser I								
Trp 2					sn I					al T	hr I					
Ile I 1025	Leu 1	Pro V	al A	ag ga	er G 030	ln A	Ala F	ro G	lu I	le S	020 er V	al G	ly G	lu G	1n	
Leu]			let G					er V	al I							
Ser A		Glu A		al A			eu A	sn A								
Val I	le G					lý T	yr V									
Gly S			ys S	er A	rg A	la G 095	JA I 080	le A	la I	le Se	er A	085 la Pi	he As	sn L	eu	
Lys A 1105				ln G					yr Va	11 al Gl						
Gly V			ro Va					he Va	al Pl							
Ile A	sn P	he Se	er Gl L40	u Ai	g G]	ln Pl	ne Pl	ne Pr	L30 :o I]	le Va	ıl I)	le I]	11 le Pr	.35 O Th	ır	
Asn A	sp G					et Ph	je We									
Gly Me					e As	rr Tr q				eu As	11 n Al					
Asp Va 1185				p As	p Le				r Il	11 e Th						
				11	90			64/7	11	.95				12		

													,		
His	Ġly	His	Ile	Met 1205	Asn	Gln	Leu	Ile	Asn 1210		Thr	Val	Leu	Val 1215	
Ser	Phe	Thr	Leu 1220	Asp	Gln	Ile	Ile	Glu 1225	Ser		Ser	Ile	Ile 1230	Tyr	
His	Asn	Asn			Thr	Gln	Glu			Phe	Val	Ile			Thr
112.0	1100	1235		014			1240					1245			
Asp	Gly 1250	Lys		Ser	Val	Glu 1255	Lys		Val	Leu	Ile 1260	Ile		Ile	Pro
Val			Glu	Thr	Pro			Thr	Ile	Asn			Leu	Glu	Ile
1265	_				1270					1275		_			1280
Glu	Ile	Gly	Asp	Thr 1285	Lys	Ile	Ile	Asn	Asn 1290		Ile	Leu	Met	Ala 1295	
_			1300)	Asp			1305	5				1310)	
	_	1315	5		Leu		1320)				1325	5		
Asn	Ile 1330		Leu	Gly	Met	Asn 1335		Thr	Gln	Asp	Glu 1340		Asp	Arg	Asn
Leu	Ile	Gln	Tyr	Val	His	Leu	Gly	Gln	Glu	Gly	Ile	Arg	Asp	Leu	Ile
1345					1350					1355					1360
-				1365					1370)				1375	5
Tyr	Val	Ser	Ile	Gly	Ser	Ile	Asp	Ile	Val	Phe	Pro	Asp			Ser
			1380					1389				_	1390		_
_	_	1395	5		Lys		1400)				1405	5		
	1410	}			Asp	1415	5			•	1420)			
		Thr	Arg	Ala	Pro		Arg	Gly	His			Суѕ	Thr	Asp	
1425		_	_		1430		_,	- T	01	1435			. 1	a 3	1440
				1445					1450	3				1455	5
			1460)	His			1465	5				1470)	
		1475	5		Thr		1480)				1485	5		
Arg	Ile 1490		Ile	Ser	Asp	Val 1495		Asn	Lys	Lys	Pro 1500		Val	Thr	Ile
		Leu	Val	Val	Ser		Ser	Glu	Asn	Lys 1519		Ile	Thr	Pro	
1505		mh	77 7	O1	1510 Asp		7.00	mb~	D×O			Lou	Lou	Laze	1520
GIU	теп	THE	vaı	1525		Arg	ASQ	TILL	1530		пуъ	Deu	пец	1535	
Thr	Ile	Thr	Gln 1540	Val	Pro	Ile	His	Gly 1545	His	Leu	Leu	Phe	Asn 1550	Asn	Thr
Ara	Pro	Val			Phe	Thr	Lvs			Len	Asn	Glu			Ile
nrg	110	1555		VUL	1 110	1111	1560				*****	1565			
Ser	Tyr 1570		His	Asp	Gly	Thr 1575		Ser	Ser	Glu	Asp 1580		Phe	Ser	Phe
Thr	Val	Thr	Asp	Gly	Thr	His	Thr	Asp	Phe	Tyr	Val	Phe	Pro	Asp	Thr
1585			_	_	1590					1595					1600
Val	Phe	Glu	Thr	Arg	Arg	Pro	Gln	Val	Met	Lys	Ile	Gln	Val	Leu	Ala
	•			160	5				1610)				1615	5
			1620)	Pro			1625	5				1630)	
Leu	Arg	Thr 1635		Ala	Thr	Gly	His 1640		Gly	Phe	Met	Ile 1649		Ser	Lys
Ile	Leu 1650	Lys		Glu	Asp	Arg 1659	Asp		Leu	His	Ile 1660	Ser		Arg	Phe
Tla			Glu	Ala	Pro			Glv	Tvr	Leu			Leu	Asp	Lvs
77 <u>6</u>	A CT-T		SIU	ru		O111			5/79						

1670 1675 Gly Asn His Ser Ile Thr Gln Phe Thr Gln Ala Asp Ile Asp Asp Met 1685 1690 Lys Ile Cys Tyr Val Leu Arg Glu Gly Ala Asn Ala Thr Ser Asp Met 1700 1705 1710 Phe Tyr Phe Ala Val Glu Asp Gly Gly Asn Lys Leu Thr Tyr Gln 1715 . 1720 1725 Asn Phe Arg Leu Asn Trp Ala Trp Ile Ser Phe Glu Lys Glu Tyr Tyr 1735 1740 Leu Val Asn Glu Asp Ser Lys Phe Leu Asp Val Val Leu Lys Arg Arg 1750 1755 Gly Tyr Leu Gly Glu Thr Ser Phe Ile Ser Ile Gly Thr Arg Asp Arg 1765 . 1770 Thr Ala Glu Lys Asp Lys Asp Phe Lys Gly Lys Ala Gln Lys Gln Val 1780 1785 Gln Phe Asn Pro Gly Gln Thr Arg Ala Thr Trp Arg Val Arg Ile Leu 1795 1800 Ser Asp Gly Glu His Glu Gln Ser Glu Thr Phe Gln Val Val Leu Ser 1805 1815 1820 Glu Pro Val Leu Ala Ala Leu Glu Phe Pro Thr Val Ala Thr Val Glu 1830 1835 Ile Val Asp Pro Gly Asp Glu Pro Thr Val Phe Ile Pro Gln Ser Lys 1845 : 1850 Tyr Ser Val Glu Glu Asp Val Gly Glu Leu Phe Ile Pro Ile Arg Arg 1865 1860 Ser Gly Asp Val Ser Gln Glu Leu Met Val Val Cys Tyr Thr Gln Gln 1875 , 1880 1885 Gly Thr Ala Thr Gly Thr Val Pro Thr Ser Val Leu Ser Tyr Ser Asp 1895 1900 Tyr Ile Ser Arg Pro Glu Asp His Thr Ser Val Val Arg Phe Asp Lys 1910 1915 Asp Glu Arg Glu Lys Leu Cys Arg Ile Val Ile Ile Asp Asp Ser Leu 1925 · 1930 Tyr Glu Glu Glu Thr Phe His Val Leu Leu Ser Met Pro Met Gly 1940 9 1945 Gly Arg Ile Gly Ser Glu Phe Pro Gly Ala Gln Val Thr Ile Val Pro 1955 1960 Asp Lys Asp Asp Gly Pro Ser Asp Ser Lys Phe Asn Val Ala Glu Asn 1965 1970 1975 1980 Tyr Ser Leu Leu Pro Phe Thr Cys Phe Gln Gly Ser Ile Ala Thr Ala 1990 1995 Glu Ala Ala Thr Gln Gly Gly Gly Arg Ser Thr Arg Gln Val Ala Ala 2005 / 2010 Val Lys Lys Asp Lys Asp Phe Lys Gly Lys Ala Gln Lys Gln Val Gln 2020 2025 Phe Asn Pro Gly Gln Thr Arg Ala Thr Trp Arg Val Arg Ile Leu Ser 2040 Asp Gly Glu His Glu Gln Ser Glu Thr Phe Gln Val Val Leu Ser Glu 2045 2055 2060 Pro Val Leu Ala Ala Leu Glu Phe Pro Thr Val Ala Thr Val Glu Ile 2065 *: 2070 · 2075 Val Asp Pro Gly Asp Ala Cys Pro Trp Gly Glu Glu Ser Asp Gln Ser 2085 2090 Ser Gln Gly Leu Lys Leu Gln Ser Phe Leu Thr Lys Met Met Val Ser 2100 2105 2110 Thr Asn Leu Leu Glu Asn Ser Phe Ser Arg Glu Asp Gln His Gln Glu 2115 2120 2125 Gln Leu Ser Arg Gln Lys Lys Trp Glu Ser Lys Thr Met Ile Ile Tyr 2135 2140

Thr Phe Ile Leu 2145	Cys Glu Thr 2150	Glu Lys	Pro Cys II 2155	le Leu	Glu Leu	Met 2160
Asp Asp Val Leu	Tyr Glu Glu 2165	Val Glu	Glu Leu A: 2170	rg Leu	Val Leu 2175	
Thr Pro Gln Ser . 2180		Phe Gly 2185		al Gly	Glu Gln 2190	Asn
Glu Thr Leu Ile . 2195	Arg Ile Arg	Asp Asp 2200	Ala Asp Ly	ys Thr 2205		Lys
Phe Gly Glu Thr : 2210	Lys Phe Ser 221			ys Glu 220	Pro Gly	Glu
Ser Val Val Ile . 2225	2230		2235			2240
	2245		2250		2255	5
Glu Asp Tyr His 2260		2265	5		2270	
Thr Gln His Val		2280		2285	5	
Met Arg Glu Ala 2290	229	5	2:	300		
Ala Glu Met Gln 2305	2310	·	2315			2320
	2325		2330		2335	5
Val Lys Thr His		2345	5		2350	
Ile Ile Gly Glu		2360		2365	5	
Ser Thr Thr Leu . 2370	Arg Phe Tyr 237			eu Gru 380	Ala Cys	nen
m	a	-			71- 7	0
Trp Glu Phe Val	2390	Asp Met	Ser Glu Le 2395	eu Leu		2400
2385 Arg Ser Val Leu	2390 Asn Ala Ser 2405	Asp Met	Ser Glu Lo 2395 His Glu Mo 2410	eu Leu et Ala	Pro Glu 241	2400 Gly
2385 Arg Ser Val Leu Lys Gln Ser Lys 2420	2390 Asn Ala Ser 2405 Cys Leu Val	Asp Met Ile Phe Asn Ser 2425	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu T	eu Leu et Ala yr Ser	Pro Glu 2419 Ile Leu 2430	2400 Gly Glu
2385 Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu Ty Jo Ile Ser A	eu Leu et Ala yr Ser la Leu 2445	Pro Glu 2419 Ile Leu 2430 Arg Met	Gly Glu Gly
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu Ty Ile Ser Al Ser Ala G	et Ala yr Ser la Leu 2445 ln Thr	Pro Glu 2419 Ile Leu 2430 Arg Met Pro Cys	2400 Gly Glu Gly Ala
2385 Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu Tr Ile Ser Al Ser Ala G Pro Arg Lo 2475	et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln	Pro Glu 2419 Ile Leu 2430 Arg Met Pro Cys	Gly Gly Ala Gln 2480
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465 Gln Ala Ser Ala	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470 Asp Pro Gly 2485	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His Met Leu	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu T Ile Ser A Ser Ala G Pro Arg Lo 2475 Pro Val II 2490	et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln le Ser	Pro Glu 2419 Ile Leu 2430 Arg Met Pro Cys Pro Leu Thr Arg 2499	2400 Gly Glu Gly Ala Gln 2480 Glu
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465 Gln Ala Ser Ala Leu Ser Asn Phe	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470 Asp Pro Gly 2485 Glu Leu Thr	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His Met Leu Leu Ser 2505	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu T Ile Ser A Ser Ala G Pro Arg Lo 2475 Pro Val I 2490 Pro Asp G	et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln le Ser	Pro Glu 2415 Ile Leu 2430 Arg Met Pro Cys Pro Leu Thr Arg 2495 Arg Val 2510	2400 Gly Glu Gly Ala Gln 2480 Glu Gly
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465 Gln Ala Ser Ala Leu Ser Asn Phe 2500 Asn His Lys Cys 2515	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470 Asp Pro Gly 2485 Glu Leu Thr Ser Asn Leu	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His Met Leu Leu Ser 2505 Leu Asp 2520	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu Tr Ile Ser Al Ser Ala Gr Pro Arg Lr 2475 Pro Val Ir 2490 Pro Asp Gr Tyr Thr Gr	et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln le Ser ly Thr lu Val 2525	Pro Glu 2415 Ile Leu 2430 Arg Met Pro Cys Pro Leu Thr Arg 2499 Arg Val 2510 Lys Thr	2400 Gly Glu Gly Ala Gln 2480 Glu Gly His
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465 Gln Ala Ser Ala Leu Ser Asn Phe 2500 Asn His Lys Cys 2515 Tyr Gly Phe Leu 2530	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470 Asp Pro Gly 2485 Glu Leu Thr Ser Asn Leu Thr Asp Ala 253	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His Met Leu Leu Ser 2505 Leu Asp 2520 Thr Lys 5	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu Ty Ile Ser A Ser Ala G Pro Arg Ly 2475 Pro Val II 2490 Pro Asp G Tyr Thr G Asn Pro G	et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln le Ser ly Thr lu Val 2525 lu Ile	Pro Glu 2419 Ile Leu 2430 Arg Met Pro Cys Pro Leu Thr Arg 2499 Arg Val 2510 Lys Thr	2400 Gly Glu Gly Ala Gln 2480 Glu Gly His
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465 Gln Ala Ser Ala Leu Ser Asn Phe 2500 Asn His Lys Cys 2515 Tyr Gly Phe Leu 2530 Thr Tyr Pro Tyr 2545	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470 Asp Pro Gly 2485 Glu Leu Thr Ser Asn Leu Thr Asp Ala 253 Gln Tyr Ser	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His Met Leu Leu Ser 2505 Leu Asp 2520 Thr Lys 5 Leu Ser	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu Ty Ile Ser A Ser Ala G Pro Arg Ly 2475 Pro Val II 2490 Pro Asp G Tyr Thr G Asn Pro G 11e Arg G 2555	et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln le Ser ly Thr lu Val 2525 lu Ile 540 ly Ser	Pro Glu 2415 Ile Leu 2430 Arg Met Pro Cys Pro Leu Thr Arg 2499 Arg Val 2510 Lys Thr Ile Gly	2400 Gly Glu Gly Ala Gln 2480 Glu Gly His Glu Leu 2560
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465 Gln Ala Ser Ala Leu Ser Asn Phe 2500 Asn His Lys Cys 2515 Tyr Gly Phe Leu 2530 Thr Tyr Pro Tyr 2545 Arg Phe Tyr Arg	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470 Asp Pro Gly 2485 Glu Leu Thr Ser Asn Leu Thr Asp Ala 253 Gln Tyr Ser 2550 Asn Leu Asn	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His Met Leu Leu Ser 2505 Leu Asp 2520 Thr Lys 5 Leu Ser Leu Glu	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu Ty Ile Ser A Ser Ala G Pro Arg Ly 2475 Pro Val II 2490 Pro Asp G Tyr Thr G Asn Pro G 2555 Ala Cys Lo 2395	eu Leu et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln le Ser lu Val 2525 lu Ile 540 ly Ser eu Trp	Pro Glu 2415 Ile Leu 2430 Arg Met Pro Cys Pro Leu Thr Arg 2499 Arg Val 2510 Lys Thr Ile Gly Thr Thr Glu Phe 2579	2400 Gly Glu Gly Ala Gln 2480 Glu Gly His Glu Leu 2560 Val
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465 Gln Ala Ser Ala Leu Ser Asn Phe 2500 Asn His Lys Cys 2515 Tyr Gly Phe Leu 2530 Thr Tyr Pro Tyr 2545 Arg Phe Tyr Arg	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470 Asp Pro Gly 2485 Glu Leu Thr Ser Asn Leu Thr Asp Ala 253 Gln Tyr Ser 2550 Asn Leu Asn 2565 Met Ser Glu	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His Met Leu Leu Ser 2505 Leu Asp 2520 Thr Lys 5 Leu Ser Leu Glu Leu Leu 2585	Ser Glu Lo 2395 His Glu Mo 2410 Thr Leu Ty Ile Ser Al Ser Ala Gl Pro Arg Ly 2475 Pro Val II 2490 Pro Asp Gl Tyr Thr Gl Asn Pro Gl 2555 Ala Cys Lo 2570 Ala Asp Cys	eu Leu et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln le Ser ly Thr lu Val 2525 lu Ile 540 ly Ser eu Trp ys Gly	Pro Glu 2415 Ile Leu 2430 Arg Met Pro Cys Pro Leu Thr Arg 2499 Arg Val 2510 Lys Thr Ile Gly Thr Thr Glu Phe 2579 Gly Thr 2590	2400 Gly Glu Gly Ala Gln 2480 Glu Gly His Glu Leu 2560 Val
Arg Ser Val Leu Lys Gln Ser Lys 2420 Cys His Glu Ser 2435 Lys Trp Arg Lys 2450 Gln Arg Leu Arg 2465 Gln Ala Ser Ala Leu Ser Asn Phe 2500 Asn His Lys Cys 2515 Tyr Gly Phe Leu 2530 Thr Tyr Pro Tyr 2545 Arg Phe Tyr Arg	2390 Asn Ala Ser 2405 Cys Leu Val Leu Pro Asn Ile Lys Ser 245 Gly Phe Ile 2470 Asp Pro Gly 2485 Glu Leu Thr Ser Asn Leu Thr Asp Ala 253 Gln Tyr Ser 2550 Asn Leu Asn 2565 Met Ser Glu Gln Val Leu	Asp Met Ile Phe Asn Ser 2425 Phe Cys 2440 Lys Pro 5 Asp His Met Leu Leu Ser 2509 Leu Asp 2520 Thr Lys 5 Leu Ser Leu Glu Leu Leu 2585 Asn Leu 2600	Ser Glu Le 2395 His Glu Me 2410 Thr Leu Ty Ile Ser Al Ser Ala Gl Pro Arg Ly 2475 Pro Val II 2490 Pro Asp Gl Tyr Thr Gl Asn Pro Gl 2555 Ala Cys Le 2570 Ala Asp Cy Val Gln Se	eu Leu et Ala yr Ser la Leu 2445 ln Thr 460 ys Gln le Ser ly Thr lu Val 2525 lu Ile 640 ly Ser eu Trp ys Gly er Tyr 2605	Pro Glu 2415 Ile Leu 2430 Arg Met Pro Cys Pro Leu Thr Arg 2499 Arg Val 2510 Lys Thr Ile Gly Thr Thr Glu Phe 2579 Gly Thr 2590 Val Thr	2400 Gly Glu Gly Ala Gln 2480 Glu Gly His Glu Leu 2560 Val Ile Leu

2610 2615 2620
Gry Gry Trp Gin His Phe Asp Leu Lys Ser Glu Leu Arg Leu Thr Phe
Val Tyr Asp Thr Ala Ile Leu Trp Asn Asp Gly Ile Gly Ser Pro Pro 2645 2650 2655
Glu Ala Glu Leu Gln Gly Ser Leu Tyr Pro Thr Ser Met Arg Ile Gly
Asp Gid Giy Arg Leu Ala Val His Phe Lys Thr Glu Ala Gln Phe His
Gly Leu Phe Val Leu Ser His Pro Ala Ser Phe Thr Ser Ser Val Ile 2690 2695 2700
Met Ser Ala Asp His Pro Gly Leu Thr Phe Ser Leu Arg Leu Ile Ang
2705 2710 2715 2720 Ser Glu Pro Thr Tire Are Glu Pro The Tree Are Glu Pr
and find the try tash Gin Pro Val Gln Gln Trp Ser Phe Val Ser
Asp Phe Ala Val Arg Asp Tyr Ser Gly Thr Tyr Thr Val Lys Leu Val
Pro Cys Thr Ala Pro Ser His Gln Glu Tyr Arg Leu Pro Val Thr Cys
Asn Pro Arg Glu Pro Val What Ph
Asn Pro Arg Glu Pro Val Thr Phe Asp Leu Asp Ile Arg Phe Gln Gln 2770 2775 2780
Val Ser Asp Pro Val Ala Ala Glu Phe Ser Leu Asn Thr Gln Met Tyr
2785 2790 2795 2800
ber bys ber Leu Trp Leu Ser Asp Gly Ser Met Gly Phe
Gly Gln Glu Ser Asp Val Ala Phe Ala Glu Gly Asp Ile Ile Tyr Gly
2820 2825 2830
and val Asp Pro Val Gln Asn Leu Gly Asp Ser Phe Tvr Cvs
Ser Ile Glu Lys Val Phe Leu Cys Thr Gly Ala Asp Gly Tyr Val Pro
2850 2855 2860
bys Tyr Ser Pro Met Asn Ala Glu Tyr Gly Cys Leu Ala Asn Ser Pro
2870 2875 2880 Ser Leu Leu Tyr Arg Phe Lyg Ile 171
Ser Leu Leu Tyr Arg Phe Lys Ile Val Asp Lys Ala Gln Pro Glu Thr 2885 2890 2890
Gin Ala Thr Ser Phe Gly Asn Val Leu Phe Asn Ala Lvc Lov Ala Val
2900 2905 2910
Asp Asp Pro Glu Ala Ile Leu Leu Val Asn Gln Pro Gly Ser Asp Gly 2915 2920 2925
Phe Lys Val Asp Ser Thr Pro Leu Phe Gln Val Ala Leu Gly Arg Glu 2930
Trp Tyr Ile His Thr Ile Tyr Thr Val Arg Ser Lys Asp Asn Ala Asn 2940 2945 2940
Arg Gly Ile Gly Lys Arg Ser Val Glu Tyr His Ser Leu Val Ser Gln
2965 2970 2975
Giy Lys Pro Gin Ser Thr Thr Lys Ser Arg Lys Lyg Arg Civ Ti
2980 2985 2990 Ser Thr Pro Ser Lev Ala Tra Clarification 2985 2990
Ser Thr Pro Ser Leu Ala Trp Glu Ile Gly Ala Glu Asn Ser Arg Gly 2995 3000 3005
Thr Asn Ile Gln His Ile Ala Leu Asp Arg Thr Lys Arg Gln Ile Pro
3010 3015 3020
His Gly Arg Ala Pro Pro Asp Gly Ile Leu Pro Trp Glu Leu Asn Ser
Pro Ser Ser Ala Val Ser Leu Val Thr Val Val Gly Gly Thr Thr Val
Gry Leu Thr Ile Cys Leu Thr Val Ile Ala Val Leu Met Cys Arg
3060 3065 3070 Gly Lys Glu Ser Phe Arg Gly Lys Acr Al
Gly Lys Glu Ser Phe Arg Gly Lys Asp Ala Pro Lys Gly Ser Ser Ser 3075 3080 3095
68/79

Ser Glu Pro Met Val Pro Pro Gln Ser His His Asn Asp Ser Ser Glu

Val 3105 <210> 81 <211> 457 <212> PRT <213> homo sapiens <400> 81 Met Gly Cys Ser Gly Ala Trp Gly Leu Ser Cys Pro Cys Pro Gln Thr 10 Pro Ser Trp Ala Trp Arg Lys Met Arg Thr Pro Ser Met Arg Asn Arg Ser Gly Ala Val Trp Ser Arg Ala Ser Val Pro Phe Ser Ala Trp Glu 40 Val Glu Val Gln Met Arg Val Thr Gly Leu Gly Arg Arg Gly Ala Gln 55 Gly Met Ala Val Trp Tyr Thr Arg Gly Arg Gly His Val Gly Ser Val 70 75 Leu Gly Gly Leu Ala Ser Trp Asp Gly Ile Gly Ile Phe Phe Asp Ser 90 85 Pro Ala Glu Asp Thr Gln Asp Ser Pro Ala Ile Arg Val Leu Ala Ser 100 105 Asp Gly His Ile Pro Ser Glu Gln Pro Gly Asp Gly Ala Ser Gln Gly 125 115 120 Leu Gly Ser Cys His Trp Asp Phe Arg Asn Arg Pro His Pro Phe Arg 130 . 135 Ala Arg Ile Thr Tyr Trp Gly Gln Arg Leu Arg Met Ser Leu Asn Ser 150 Gly Leu Thr Pro Ser Asp Pro Gly Glu Phe Cys Val Asp Val Gly Pro 170 165 Leu Leu Leu Val Pro Gly Gly Phe Phe Gly Val Ser Ala Ala Thr Gly 185 190 Thr Leu Ala Asp Asp His Asp Val Leu Ser Phe Leu Thr Phe Ser Leu 205 200 Ser Glu Pro Ser Pro Glu Val Pro Pro Gln Pro Phe Leu Glu Met Gln 215 His Val Arg Leu Ala Arg Gln Leu Glu Gly Leu Trp Ala Arg Leu Gly 235 230 Leu Gly Thr Arg Glu Asp Val Thr Pro Lys Ser Asp Ser Glu Ala Gln 245 250 Gly Glu Gly Glu Arg Leu Phe Asp Leu Glu Glu Thr Leu Gly Arg His 265 Arg Arg Ile Leu Gln Ala Leu Arg Gly Leu Ser Lys Gln Leu Ala Gln 280 Ala Glu Arg Gln Trp Lys Lys Gln Leu Gly Pro Gln Ala Lys Pro Gly 295 Leu Thr Glu Ala Gly Asp Ala Ala Val Arg Met Ala Ala Glu Ala Gln 310 315 Val Ser Tyr Leu Pro Val Gly Ile Glu His His Phe Leu Glu Leu Asp 325 330 His Ile Leu Gly Leu Leu Gln Glu Glu Leu Arg Gly Pro Ala Lys Ala 340 345 Ala Ala Lys Ala Pro Arg Pro Pro Gly Gln Pro Pro Arg Ala Ser Ser 360 Cys Leu Gln Pro Gly Ile Phe Leu Phe Tyr Leu Leu Ile Gln Thr Val 69/79

```
375
                                             380
  Gly Phe Phe Gly Tyr Val His Phe Arg Arg Pro Val Pro Arg Pro Ala
                     390
                                        395
  Lys Thr Met Ala Phe Met Val Lys Thr Met Val Gly Gln Leu Lys
                405
                                     410
  Asn Leu Thr Gly Ser Leu Gly Gly Gly Glu Asp Lys Gly Asp Gly Asp
   420
                                425
  Lys Ser Ala Ala Glu Ala Gln Gly Met Ser Arg Glu Glu Tyr Glu Glu
                                                    430
     435
                            440
  Tyr Gln Lys Gln Leu Val Glu Glu Lys
  <210> 82
  <211> 526
  <212> PRT
  <213> homo sapiens
  <400> 82
 Met Pro Ala Val Ser Gly Pro Gly Pro Leu Phe Cys Leu Leu Leu
  1 . 5
 Leu Leu Asp Pro His Ser Pro Glu Thr Gly Cys Pro Pro Leu Arg Arg
            20
                               25
 Phe Glu Tyr Lys Leu Ser Phe Lys Gly Pro Arg Leu Ala Leu Pro Gly
 Ala Gly Ile Pro Phe Trp Ser His His Gly Asp Ala Ile Leu Gly Leu
                        55
 Glu Glu Val Arg Leu Thr Pro Ser Met Arg Asn Arg Ser Gly Ala Val
                                           60
                    70
 Trp Ser Arg Ala Ser Val Pro Phe Ser Ala Trp Glu Val Glu Val Gln
                85
                                   90
 Met Arg Val Thr Gly Leu Gly Arg Arg Gly Ala Gln Gly Met Ala Val
                                105
 Trp Tyr Thr Arg Gly Arg Gly His Val Gly Ser Val Leu Gly Gly Leu
                           120
 Ala Ser Trp Asp Gly Ile Gly Ile Phe Phe Asp Ser Pro Ala Glu Asp
                                              125
                       135
Thr Gln Asp Ser Pro Ala Ile Arg Val Leu Ala Ser Asp Gly His Ile
                   150
                                       155
Pro Ser Glu Gln Pro Gly Asp Gly Ala Ser Gln Gly Leu Gly Ser Cys
        ′ 165
                                   170
His Trp Asp Phe Arg Asn Arg Pro His Pro Phe Arg Ala Arg Ile Thr
                               185
Tyr Trp Gly Gln Arg Leu Arg Met Ser Leu Asn Ser Gly Leu Thr Pro
                           200
Ser Asp Pro Gly Glu Phe Cys Val Asp Val Gly Pro Leu Leu Val
                                              205
                      215
                                          220
Pro Gly Gly Phe Phe Gly Val Ser Ala Ala Thr Gly Thr Leu Ala Asp
           . 230
                                      235
Asp His Asp Val Leu Ser Phe Leu Thr Phe Ser Leu Ser Glu Pro Ser
              245
                                  250
Pro Glu Val Pro Pro Gln Pro Phe Leu Glu Met Gln His Val Arg Leu
                              265
Ala Arg Gln Leu Glu Gly Leu Trp Ala Arg Leu Gly Leu Gly Thr Arg
                          280
Glu Asp Val Thr Pro Lys Ser Asp Ser Glu Ala Gln Gly Glu Gly Glu
                       295
                                         300
Arg Leu Phe Asp Leu Glu Glu Thr Leu Gly Arg His Arg Arg Ile Leu
               . 310
                                      315
```

```
Gln Ala Leu Arg Gly Leu Ser Lys Gln Leu Ala Gln Ala Glu Arg Gln
                     330
             325
Trp Lys Lys Gln Leu Gly Pro Pro Gly Gln Ala Arg Pro Asp Gly Gly
                            345
Trp Ala Leu Asp Ala Ser Cys Gln Ile Pro Ser Thr Pro Gly Arg Gly
                         360
Gly His Leu Ser Met Ser Leu Asn Lys Asp Ser Ala Lys Val Gly Ala
                     375
                                     380
Leu Leu His Gly Gln Trp Thr Leu Leu Gln Ala Leu Gln Glu Met Arg
                                    395
                 390
Asp Ala Ala Val Arg Met Ala Ala Glu Ala Gln Val Ser Tyr Leu Pro
              405
                                410
Val Gly Ile Glu His His Phe Leu Glu Leu Asp His Ile Leu Gly Leu
                             425
Leu Gln Glu Glu Leu Arg Gly Pro Ala Lys Ala Ala Ala Lys Ala Pro
                        440
Arg Pro Pro Gly Gln Pro Pro Arg Ala Ser Ser Cys Leu Gln Pro Gly
                              460
               455
Ile Phe Leu Phe Tyr Leu Leu Ile Gln Thr Val Gly Phe Phe Gly Tyr
          470
                         475
Val His Phe Arg Gln Glu Leu Asn Lys Ser Leu Gln Glu Cys Leu Ser
             485 490
Thr Gly Ser Leu Pro Leu Gly Pro Ala Pro His Thr Pro Arg Ala Leu
                            505
       500
Gly Ile Leu Arg Arg Gln Pro Leu Pro Ala Ser Met Pro Ala
                         520
     515
<210> 83
<211> 904
<212> PRT
<213> homo sapiens
<400> 83
Met Leu Leu Ala Leu Cys Ser Ser Leu Ala Leu Ile Phe Ala Ala Pro
               5
                       10
Val Ser Gly Gln Leu Glu His Ser Gly Asn Tyr Tyr Cys Thr Ala Asp
          2.0
                             25
Asn Gly Phe Gly Pro Gln His Ser Glu Val Val Ser Leu Ser Val Thr
                                            45
                      , 40
Val Pro Val Ser His Pro Val Leu Thr Leu Ser Ser Ala Glu Ala Leu
                     55
Thr Phe Glu Gly Ala Thr Val Thr Leu His Ser Ser Leu Ile Leu Gln
                  70
                                     75
Ala Pro Leu Ser Val Phe Glu Gly Asp Phe Val Val Leu Arg Cys Arg
              85
                                 90
Ala Lys Ala Glu Val Thr Leu Asn Thr Met Tyr Lys Asn Gly Asn Val
                             105
          100
Leu Thr Phe Leu Asn Lys Ser Ser Asp Phe His Ile His His Ala Ser
                         120
                              .
                                            125
Leu Lys Asp Asn Gly Ala Tyr His Phe Thr Gly Phe Asn Gly Ser Asn
                      135
Phe Ser Val Ser Ser Asn Ile Val Lys Ile Gln Val Gln Glu His Leu
                  150
                                    155
Leu Pro Gln Trp Phe Leu Lys Ala Pro Asp Pro Thr Val Ala Leu Ser
              165
                                 170
Glu Ile Phe Ser Val Asn Arg Gly Pro Leu Leu Thr Gly Thr Gly Ser
                            185
```

Arg Val Met Thr Pro Trp Ile Tyr Phe Pro Thr Glu Asp Trp Asn Phe

71/79

			_															
	Ψ'n	r T.c		95 10 F) w a	T 1.			20	0					209	5		
								<i>-</i> 1	7					ነባለ				s Ala
							4.	v				,	4 h					r Phe
						24	,				25	et G	ly F				2 -	l Leu
					00					26	s As	n M				2.7	^	u Phe
	Ту:	r Ty	r Me	et G 75	1u	Leu	Gl	y Gl	u Ly. 28	s Ly	s As	p A	la L	eu			U l Th	r Gly
	Ası	n Gl 29	u Se O	er A	rg	Ser	Ty:	r Hi: 29!	s Tr	p Ph	e Gl	n Ly	ys P	he	285 Ser	Lei	u Al	a Gly
	Gl ₃ 30!	7 Gl	n G]	lu A	la	Asp	Glr 310	ı Ly	s Le	ı Tr	p Ph	e Pi	co P	00 ro	Gly	Le	ı Me	t Ser
	Glr	ı As	p II	e P	he	Ile 325	Туз	: Ile	e Arg	g Gl	n Gl	у G.	l5 lu S	er	Cys	Let		320 l Ile
	Glu	Me	t Ph	ie H:				Туз	Arg	3 Arg	33 g Pr	0 0 A]	la G	ly	Gly			5 Val
	Glu	His	s Ме	t Se		Val	Trp	Ala	Le:	ı Arç	y Va.	l As	n Se	er	Ser	350 Gl _y) / Let	ı Phe
	Ala	Ty:	c A1		₹p	Gly	Trp	Leu 375	ı Phe	Th:	Lei	u Ph	ie G	ln	365 Leu	Glr	sei	. Val
	Asp 385	Asr	ı Le	u Se	er	Pro	Ser	Thr	Gln	Sei	Glı	n Th	r Hi	30 is	Glu	Gly	His	Glu
	Lys	Let	і Су	s Pı	0	Phe 405	Leu	Ala	Ile	G13	Pro	39 Pr	o A]	la i	His	Ser		400 Gly
	Ser	Ph∈	e Le	u Ar 42	g		Lys	Lys	Ser	Leu 425	410 Val	L Al	а Ту	r:	Ile			Asn
	Gln	Leu	Se:	r Ph		Pro	Pro	Val	Glu 440	Asp	Let	ı Le	u Pr	o 1	Ĺуs	430 Ser	G1n	Trp
	Pro	Cys 450	Il	e Gl	n V	Val	Leu	Pro 455	Arg	Asn	Ile	al Al	a Al	a Z	445 Ala	Ala	His	Lys
	Pro 465	Val	I1e	e Se	r (/al	His 470	Pro	Pro	Trp	Thr	Th	46 r Ph	e I	?he	Lys	Gly	Glu
٠	Arg	Val	Th	r Le	u 1	Thr 185	Cys	Asn	Gly	Phe	Gln 490	47 Ph	5 е Ту	r A	lla	Thr		480 Lys
•	Thr	Thr	Tr	ту 50	r F	lis	Arg	His	Тут	Trp 505	Gly	Glı	ı Ly	s I	eu		495 Leu	Thr
]	Pro	Gly	Asr 515	1 Th	r I	eu	Glu	Val	Arg 520	Glu	Ser	Gly	/ Le			510 Arg	Cys	Gln
7	Ala	Arg 530	G17	7 Se	r F	ro	Arg	Ser 535	Asn	Pro	Val	Arg	J Le	u I	eu eu	Phe	Ser	Ser
0	3ly 545	Glu	Lys	Gl:	u A	sp			Ser	Asp	Lys	Asr	ı Pr	0 D A	la	Thr	Asn	His
3	Chr	Pro	Met	Se:	r A 5	rg : 65	Lys	Arg	Ser	Ser	Cys 570	555 Sez	Sei	r L	eu	Ser		560 Thr
٤	Ser	Phe	Ile	Ala 580	a P	ro i	Ala	Leu	Arg	Leu 585	Asp	Ser	Let	ιI			575 Gln	Ala
E	ro	Tyr	Ser 595	Va:		he (Glu	Gly	Asp 600	Thr	Leu	Val	. Let		rg (590 Cys	His	Arg
A	rg	Arg 610			ı L	ys I	Leu	Thr 615	Ala	Val	Lys	Tyr	Thi	T:	05 rp <i>1</i>	Asn	Gly	Asn
I 6			Ser	Ile	s S	er A	Asn	Lys	Ser	Trp	Asp	Leu	620 Leu) L I.	le I	?ro	Gln	Ala
_					ı A	٠,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Туг		Cys	615						
					A:	±ン			Phe		650				le G	ln		
											2/70				6	70		

```
Pro Val Ser Gly Val Leu Leu Glu Thr Gln Pro Ser Gly Gly Gln Ala
           . 680
 Val Glu Gly Glu Met Leu Val Leu Val Cys Ser Val Ala Glu Gly Thr
                    695
 Gly Asp Thr Thr Phe Ser Trp His Arg Glu Asp Met Gln Glu Ser Leu
                 710
                                  715
 Gly Arg Lys Thr Gln Arg Ser Leu Arg Ala Glu Leu Glu Leu Pro Ala
            725 730
 Ile Arg Gln Ser His Ala Gly Gly Tyr Tyr Cys Thr Ala Asp Asn Ser
                            745
       740
 Tyr Gly Pro Val Gln Ser Met Val Leu Asn Val Thr Val Arg Glu Thr
                        760
 Pro Gly Asn Arg Asp Gly Leu Val Ala Ala Gly Ala Thr Gly Gly Leu
        775
 Leu Ser Ala Leu Leu Ala Val Ala Leu Leu Phe His Cys Trp Arg
                 790 ·
                                  795
 Arg Arg Lys Ser Val His Pro Lys Lys Gly Asp Leu Val Tyr Ser Glu
                               810
 Ile Gln Thr Thr Gln Leu Gly Glu Glu Glu Gly Asn His Gly Asn
               825
, Lys Asn Gln Glu Leu Glu Leu Val Asn Val GÎy Glu Ser Phe Ser His
                       840
                                       845
 Arg Ala Cys Ile Trp Ser Thr Leu Met Gly Thr Cys Gln Thr Ile Gly
                                    860
          855
 Gly Ala Asn Thr Ser Arg Thr Leu Leu Glu Asp Lys Asp Val Ser Val
 865 870
                                  875
Val Tyr Ser Glu Val Lys Thr Gln His Pro Asp Asn Ser Ala Gly Lys
                               890
              885
 Ile Ser Ser Lys Asp Glu Glu Ser
           900
```

<210> 84 <211> 515 <212> PRT

<213> homo sapiens

<400> 84 Met Leu Leu Trp Ala Ser Leu Leu Ala Phe Ala Pro Val Cys Gly Gln 5 10 Ser Ala Ala Ala His Lys Pro Val Ile Ser Val His Pro Pro Trp Thr 25 Thr Phe Phe Lys Gly Glu Arg Val Thr Leu Thr Cys Asn Gly Phe Gln 40 Phe Tyr Ala Thr Glu Lys Thr Thr Trp Tyr His Arg His Tyr Trp Gly 55 Glu Lys Leu Thr Leu Thr Pro Gly Asn Thr Leu Glu Val Arg Glu Ser 75 Gly Leu Tyr Arg Cys Gln Ala Arg Gly Ser Pro Arg Ser Asn Pro Val 90 85 Arg Leu Leu Phe Ser Ser Asp Ser Leu Ile Leu Gln Ala Pro Tyr Ser 105 Val Phe Glu Gly Asp Thr Leu Val Leu Arg Cys His Arg Arg Arg Lys 120 125 Glu Lys Leu Thr Ala Val Lys Tyr Thr Trp Asn Gly Asn Ile Leu Ser 135 140 Ile Ser Asn Lys Ser Trp Asp Leu Leu Ile Pro Gln Ala Ser Ser Asn 155 150 Asn Asn Gly Asn Tyr Arg Cys Ile Gly Tyr Gly Asp Glu Asn Asp Val 73/79

```
165
                                    170
                                                       175
 Phe Arg Ser Asn Phe Lys Ile Ile Lys Ile Gln Glu Leu Phe Pro His
            180
                               185
 Pro Glu Leu Lys Ala Thr Asp Ser Gln Pro Thr Glu Gly Asn Ser Val
                           200
 Asn Leu Ser Cys Glu Thr Gln Leu Pro Pro Glu Arg Ser Asp Thr Pro
                       215
                                            220
Leu His Phe Asn Phe Phe Arg Asp Gly Glu Val Ile Leu Ser Asp Trp
                   230
                                       235
Ser Thr Tyr Pro Glu Leu Gln Leu Pro Thr Val Trp Arg Glu Asn Ser
               245
                                   250
Gly Ser Tyr Trp Cys Gly Ala Glu Thr Val Arg Gly Asn Ile His Lys
            260.
                               265
His Ser Pro Ser Leu Gln Ile His Val Gln Arg Ile Pro Val Ser Gly
                           280
                                               285
Val Leu Leu Glu Thr Gln Pro Ser Gly Gly Gln Ala Val Glu Gly Glu
                       295
                                           300
Met Leu Val Leu Val Cys Ser Val Ala Glu Gly Thr Gly Asp Thr Thr
                    310
                                       315
Phe Ser Trp His Arg Glu Asp Met Gln Glu Ser Leu Gly Arg Lys Thr
                325
                                   330
Gln Arg Ser Leu Arg Ala Glu Leu Glu Leu Pro Ala Ile Arg Gln Ser
            340
                               345
His Ala Gly Gly Tyr Tyr Cys Thr Ala Asp Asn Ser Tyr Gly Pro Val
                           360
                                              365
Gin Ser Met Val Leu Asn Val Thr Val Arg Glu Thr Pro Gly Asn Arg
                       375
                                           380
Asp Gly Leu Val Ala Ala Gly Ala Thr Gly Gly Leu Leu Ser Ala Leu
                   390
                                       395
Leu Leu Ala Val Ala Leu Leu Phe His Cys Trp Arg Arg Lys Ser
               405
                                   410
Gly Val Gly Phe Leu Gly Asp Glu Thr Arg Leu Pro Pro Ala Pro Gly
           420
                               425
Pro Gly Glu Ser Ser His Ser Ile Cys Pro Ala Gln Val Glu Leu Gln
                           440
                                               445
Ser Leu Tyr Val Asp Val His Pro Lys Lys Gly Asp Leu Val Tyr Ser
                      455
Glu Ile Gln Thr Thr Gln Leu Gly Glu Glu Glu Glu Ala Asn Thr Ser
                   470
                                       475
Arg Thr Leu Leu Glu Asp Lys Asp Val Ser Val Val Tyr Ser Glu Val
              485
                                  490
Lys Thr Gln His Pro Asp Asn Ser Ala Gly Lys Ile Ser Ser Lys Asp
                   . 505
Glu Glu Ser
      515
```

<210> 85

<211> 831

<212> PRT

<213> homo sapiens

<400> 85

74/79

```
Glu Asn Glu Val Cys Val Arg Pro Gly Glu Cys Arg Cys Arg His Gly
                       55
Tyr Phe Gly Ala Asn Cys Asp Thr Lys Cys Pro Arg Gln Phe Trp Gly
                   70
                                      75
Pro Asp Cys Lys Glu Leu Cys Ser Cys His Pro His Gly Gln Cys Glu
Asp Val Thr Gly Gln Cys Thr Cys His Ala Arg Arg Trp Gly Ala Arg
100
Cys Glu His Ala Cys Gln Cys Gln His Gly Thr Cys His Pro Arg Ser
                          120
Gly Ala Cys Arg Cys Glu Ser Gly Trp Trp Gly Ala Gln Cys Ala Ser
                     135
Ala Cys Tyr Cys Ser Ala Thr Ser Arg Cys Asp Pro Gln Thr Gly Ala
                 150
                                     155
Cys Leu Cys His Ala Gly Trp Trp Gly Arg Ser Cys Asn Asn Gln Cys
                                  170
              165
Ala Cys Asn Ser Ser Pro Cys Glu Gln Gln Ser Gly Arg Cys Gln Cys
       180
                              185
Arg Glu Arg Thr Phe Gly Ala Arg Cys Asp Arg Tyr Cys Gln Cys Phe
      195
                           200
Arg Gly Arg Cys His Pro Val Asp Gly Thr Cys Ala Cys Glu Pro Gly
                       215
Tyr Arg Gly Lys Tyr Cys Arg Glu Pro Cys Pro Ala Gly Phe Tyr Gly
                                      235
Leu Gly Cys Arg Arg Arg Cys Gly Gln Cys Lys Gly Gln Gln Pro Cys
               245
                                  250
Thr Val Ala Glu Gly Arg Cys Leu Thr Cys Glu Pro Gly Trp Asn Gly
                               265
Thr Lys Cys Asp Gln Pro Cys Ala Thr Gly Phe Tyr Gly Glu Gly Cys
                          280
                                              285
       275
Ser His Arg Cys Pro Pro Cys Arg Asp Gly His Ala Cys Asn His Val
                    . 295
Thr Gly Lys Cys Thr Arg Cys Asn Ala Gly Trp Ile Gly Asp Arg Cys
                                      315
                  310
Glu Thr Lys Cys Ser Asn Gly Thr Tyr Gly Glu Asp Cys Ala Phe Val
               325
                                  330
Cys Ala Asp Cys Gly Ser Gly His Cys Asp Phe Gln Ser Gly Arg Cys
                              345
Leu Cys Ser Pro Gly Val His Gly Pro His Cys Asn Val Thr Cys Pro
                          360
                                              365
Pro Gly Leu His Gly Ala Asp Cys Ala Gln Ala Cys Ser Cys His Glu
                      375·
                                          380
Asp Thr Cys Asp Pro Val Thr Gly Ala Cys His Leu Glu Thr Asn Gln
                   390
                                      395
Arg Lys Gly Val Met Gly Ala Gly Ala Leu Leu Val Leu Leu Val Cys
              405
                                  410
Leu Leu Ser Leu Leu Gly Cys Cys Cys Ala Cys Arg Gly Lys Asp
                              425
Pro Thr Arg Arg Pro Arg Pro Arg Glu Leu Ser Leu Gly Arg Lys
                          440
                                             445
Lys Ala Pro His Arg Leu Cys Gly Arg Phe Ser Arg Ile Ser Met Lys
                       455
                                          460
Leu Pro Arg Ile Pro Leu Arg Arg Gln Lys Leu Pro Lys Val Val Val
                  470
                                      475
Ala His His Asp Leu Asp Asn Thr Leu Asn Cys Ser Phe Leu Glu Pro
          . 485
                                  490
Pro Ser Gly Leu Glu Gln Pro Ser Pro Ser Trp Ser Ser Arg Ala Ser
                              505
Phe Ser Ser Phe Asp Thr Thr Asp Glu Gly Pro Val Tyr Cys Val Pro
                                 75/79
```

```
520
 His Glu Glu Ala Pro Ala Glu Ser Arg Asp Pro Glu Val Pro Thr Val
             535
                                          540
 Pro Ala Glu Ala Pro Ala Pro Ser Pro Val Pro Leu Thr Thr Pro Ala
 545 550
                                      555
 Ser Ala Glu Glu Ala Ile Pro Leu Pro Ala Ser Ser Asp Ser Glu Arg
         565
                                  570
 Ser Ala Ser Ser Val Glu Gly Pro Gly Gly Ala Leu Tyr Ala Arg Val
            580
                              585
 Ala Arg Arg Glu Ala Arg Pro Ala Arg Ala Arg Gly Glu Ile Gly Gly
                          600
 Leu Ser Leu Ser Pro Ser Pro Glu Arg Arg Lys Pro Pro Pro Pro Asp
                       615
                                         620
 Pro Ala Thr Lys Pro Lys Val Ser Trp Ile His Gly Lys His Ser Ala
                  630
                                     635
Ala Ala Ala Gly Arg Ala Pro Ser Pro Pro Pro Pro Gly Ser Glu Ala
               645
                                  650
Ala Pro Ser Pro Ser Lys Arg Lys Arg Thr Pro Ser Asp Lys Ser Ala
                              665
His Thr Val Glu His Gly Ser Pro Arg Thr Arg Asp Pro Thr Pro Arg
                          680
                                             685
Pro Pro Gly Leu Pro Glu Glu Ala Thr Ala Leu Ala Ala Pro Ser Pro
                      695
                                         700
Pro Arg Ala Arg Ala Arg Ala Pro Arg Pro Leu Gly Ala His Gly
        710
                                     715
Arg Arg Arg Ser Pro Ala Lys Arg Ala Glu Ala Ala Ser Met Leu Ala
               725
                                  730
Ala Asp Val Arg Gly Lys Thr Arg Ser Leu Gly Arg Ala Glu Val Ala
           740 .
                              745
Leu Gly Ala Gln Gly Pro Arg Glu Lys Pro Ala Pro Pro Gln Lys Ala
                          760
Lys Arg Ser Val Pro Pro Ala Ser Pro Ala Arg Ala Pro Pro Ala Thr
                      775
                                         780
Glu Thr Pro Gly Pro Glu Lys Ala Ala Thr Asp Leu Pro Ala Pro Glu
                   790
                                      795
Thr Pro Arg Lys Lys Thr Pro Ile Gln Lys Pro Pro Arg Lys Lys Ser
              805
                                 810
Arg Glu Ala Ala Gly Glu Leu Gly Arg Ala Gly Ala Pro Thr Leu
                              825
```

<210> 86

<211> 871

<212> PRT

<213> homo sapiens

<400> 86

		_			_			_	-1				_	_	~·1
Gly	Glu	Cys	Arg 100	Суѕ	Arg	Hıs	GТĀ	Туг 105	Phe	GLY	Ala	Asn	Cys 110	Asp	Thr
Lys	Суз	Pro 115	Arg	Gln	Phe	Trp	Gly 120	Pro	Asp	Cys	Lys	Glu 125	Leu	Суѕ	Ser
Cys	His 130	Pro	His	Gly	Gln	Cys 135	Glu	Asp	Val	Thr	Gly 140	Gln	Cys	Thr	Cys
His 145		Arg	Arg	Trp	Gly 150	Ala	Arg	Cys	Glu	His 155	Ala	Cys	Gl.n	Cys	Gln 160
	Gly	Thr	Сув	His 165		Arg	Ser	Gly	Ala 170		Arg	Cys	Glu	Ser 175	
Trp	Trp	Gly	Ala 180		Cys	Ala	Ser	Ala 185		Tyr	Cys	Ser	Ala 190		Ser
Arg	Cys	Asp 195	Pro	Gln	Thr	Gly	Ala 200		Leu	Cys	His	Ala 205		Trp	Trp
Gly	Arg 210		Cys	Asn	Asn'	Gln 215		Ala	Cys	Asn	Ser 220		Pro	Cys	Glu
Gln 225		Ser	Gly	Arg	Cys 230		Суз	Arg	Glu	Arg 235		Phe	Gly	Ala	Arg 240
	Asp	Arg	Tyr	Cys 245		Суз	Phe	Arg	Gly 250		Суѕ	His	Pro	Val 255	
Gly	Thr	Суѕ	Ala 260		Glu	Pro	Gly	Tyr 265		Gly	Lys	Tyr	Cys 270		Glu
Pro	Cys	Pro 275	Ala	Gly	Phe	Tyr	Gly 280	Leu	Gly	Cys	Arg	Arg 285	Arg	Cys	Gly
Gln	Суs 290	Lys	Gly	Gln	Gln	Pro 295	Суѕ	Thr	Val	Ala	Glu 300	Gly	Arg	Cys	Leu
Thr 305	Суѕ	Glu	Pro	Gly	Trp 310	Asn	Gly	Thr	Lys	Cys 315	Asp	Gln	Pro	Cys	Ala 320
Thr	Gly	Phe	Tyr	Gly 325	Glu	Gly	Cys	Ser	His 330	Arg	Суѕ	Pro	Pro	Cys 335	Arg
Asp	Gly	His	Ala 340	Cys	Asn ·	His	Val	Thr 345	Gly	Lys	Суѕ	Thr	Arg 350	Cys	Asn
Ala	Gly	Trp 355	Ile	Gly	Asp	Arg	Суs 360	Glu	Thr	ГЛS	Суѕ	Ser 365	Asn	Gly	Thr
_	370		Asp			375					380				
385			Gln		390					395					400
			Asn	405					410					415	
			Cys 420					425					430		
		435	Leu				440					445			
	450		Val			455					460				
465			Cys		470					475					480
			Ser	485					490					495	
			Arg 500					505					510		
		515	Pro				520					525			
	530		Ser			535					540				
545			Ser		550					555					560
Glu	Gly	Pro	Val	Tyr	Cys	Val	Pro		Glu 7/79	Glu	Ala	Pro	Ala	Glu	Ser

570

565 .

```
Arg Asp Pro Glu Val Pro Thr Val Pro Ala Glu Ala Pro Ala Pro Ser
                                585
Pro Val Pro Leu Thr Thr Pro Ala Ser Ala Glu Glu Ala Ile Pro Leu
                            600
 Pro Ala Ser Ser Asp Ser Glu Arg Ser Ala Ser Ser Val Glu Gly Pro
                        615
                                            620
Gly Gly Ala Leu Tyr Ala Arg Val Ala Arg Arg Glu Ala Arg Pro Ala
                   . 630
                                        635
Arg Ala Arg Gly Glu Ile Gly Gly Leu Ser Leu Ser Pro Ser Pro Glu
                645
                                    650
Arg Arg Lys Pro Pro Pro Pro Asp Pro Ala Thr Lys Pro Lys Val Ser
                                665
Trp Ile His Gly Lys His Ser Ala Ala Ala Ala Gly Arg Ala Pro Ser
                            680
Pro Pro Pro Pro Gly Ser Glu Ala Ala Pro Ser Pro Ser Lys Arg Lys
                       695
                                            700
Arg Thr Pro Ser Asp Lys Ser Ala His Thr Val Glu His Gly Ser Pro
                   710
                                        715
Arg Thr Arg Asp Pro Thr Pro Arg Pro Pro Gly Leu Pro Glu Glu Ala
                725
                                    730
Thr Ala Leu Ala Ala Pro Ser Pro Pro Arg Ala Arg Ala Ala
           740 ·
                                745
Pro Arg Pro Leu Gly Ala His Gly Arg Arg Arg Ser Pro Ala Lys Arg
                           760
Ala Glu Ala Ala Ser Met Leu Ala Ala Asp Val Arg Gly Lys Thr Arg
                       775
                                           780
Ser Leu Gly Arg Ala Glu Val Ala Leu Gly Ala Gln Gly Pro Arg Glu
                    790
                                        795
Lys Pro Ala Pro Pro Gln Lys Ala Lys Arg Ser Val Pro Pro Ala Ser
                805
                                   810
Pro Ala Arg Ala Pro Pro Ala Thr Glu Thr Pro Gly Pro Glu Lys Ala
                                825
Ala Thr Asp Leu Pro Ala Pro Glu Thr Pro Arg Lys Lys Thr Pro Ile
                            840
Gln Lys Pro Pro Arg Lys Lys Ser Arg Glu Ala Ala Gly Glu Leu Gly
                       855
Arg Ala Gly Ala Pro Thr Leu
<210> 87
<211> 134
<212> PRT
<213> homo sapiens
<400> 87
Ile Asp Cys Arg Ala Glu Gln Gly Arg Thr Pro Leu Met Val Ala Val
                                   10
Gly Leu Pro Asp Pro Ala Leu Arg Ala Arg Phe Val Arg Leu Leu
                               25
Glu Gln Gly Ala Ala Val Asn Leu Arg Asp Glu Arg Gly Arg Thr Ala
                           40
Leu Ser Leu Ala Cys Glu Arg Gly His Leu Asp Ala Val Gln Leu Leu
                                           .60
Val Gln Phe Ser Gly Asp Pro Glu Ala Ala Asp Ser Ala Gly Asn Ser
                                       75
Pro Val Met Trp Ala Ala Ala Cys Gly His Gly Ala Val Leu Glu Phe
                                   90
```

78/79

```
      Leu Val
      Arg
      Ser
      Phe
      Arg
      Arg
      Leu
      Gly
      Leu
      Arg
      Arg
      Thr
      Asn
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      110
      <
```

```
<210> 88
<211> 324
<212> PRT
<213> homo sapiens
<400> 88
Met Leu Lys Pro Lys Asp Leu Cys Pro Arg Ala Gly Thr Arg Thr Phe
           • 5
                                  10
Leu Glu Ala Met Gln Ala Gly Lys Val His Leu Ala Arg Phe Val Leu
                               25
Asp Ala Leu Asp Arg Ser Ile Ile Asp Cys Arg Ala Glu Gln Gly Arg
                          40
Thr Pro Leu Met Val Ala Val Gly Leu Pro Asp Pro Ala Leu Arg Ala
                      55
                                          60
Arg Phe Val Arg Leu Leu Glu Gln Gly Ala Ala Val Asn Leu Arg
                  70
                                       75
Asp Glu Arg Gly Arg Thr Ala Leu Ser Leu Ala Cys Glu Arg Gly His
       · 85
                                  90
Leu Asp Ala Val Gln Leu Leu Val Gln Phe Ser Gly Asp Pro Glu Ala
                              105 .
Ala Asp Ser Ala Gly Asn Ser Pro Val Met Trp Ala Ala Ala Cys Gly
                          120
       115
His Gly Ala Val Leu Glu Phe Leu Val Arg Ser Phe Arg Arg Leu Gly
                       135
                                           140 .
Leu Arg Leu Asp Arg Thr Asn Arg Ala Gly Leu Thr Ala Leu Gln Leu
                   150
Ala Ala Arg Gly His Gly Thr Ser Ala Gly Gly His Gly Gly Glu
                                   170
Ala Gly Ser Ala Gly Lys Asn Ser Gly Arg His Arg Ala Gln Gly Ser
                               185
Glu Arg Pro Glu Leu Gly Arg Ser Met Ser Leu Ala Leu Gly Ala Val
                                               205
                           200
Thr Glu Glu Glu Ala Ala Arg Leu Arg Ala Gly Ala Leu Met Ala Leu
                       215
                                           220
Pro Asn Ser Pro Gln Ser Ser Gly Thr Gly Arg Trp Arg Ser Gln Glu
                   230
                                       235
Val Leu Glu Gly Ala Pro Pro Thr Leu Ala Gln Ala Pro Ile Gly Leu
                                   250
               245
Ser Pro His Pro Glu Gly Gly Pro Gly Ser Gly Arg Leu Gly Leu Arg
                               265
Arg Arg Ser Thr Ala Pro Asp Ile Pro Ser Leu Val Gly Glu Ala Pro
                           280
       275
Gly Pro Glu Ser Gly Pro Glu Leu Glu Ala Asn Ala Leu Ser Val Ser
                       295
                                           300
Val Pro Gly Pro Asn Pro Trp Gln Ala Gly Thr Glu Ala Val Val Leu
                   310
Arg Ala Gln Arg
```

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/28462

	<u> </u>		
A. CLAS IPC(7) US CL	SSIFICATION OF SUBJECT MATTER : C12N 15/00, 12; C07K 14/435 : 435/69.1, 320.1, 325; 530/350; 536/23.1, 23.	5	
According to	International Patent Classification (IPC) or to both r		
B. FIEL	DS SEARCHED		
	cumentation searched (classification system followed 35/69.1, 320.1, 325; 530/350; 536/23.1, 23.5	by classification symbols)	
Documentati	on searched other than minimum documentation to th	e extent that such documents are included	d in the fields searched
Electronic da	ata base consulted during the international search (nar	ne of data base and, where practicable, s	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.
A, P	Genbank Accession No. AC007395, 30 September nucleotides 123581 through 122421.		1-7
		,	-
		:	
		•	
K	r documents are listed in the continuation of Box C.	See patent family armex.	
"A" document	Special categories of cited documents: t defining the general state of the art which is not considered to be	"T" later document published after the into date and not in conflict with the applie principle or theory underlying the invo	ation but cited to understand the
•	ular relevance pplication or patent published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be conside when the document is taken alone	
"L" document establish specified	t which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	"Y" document of particular relevance; the considered to involve an inventive ste	
·	t referring to an oral disclosure, use, exhibition or other means	combined with one or more other such being obvious to a person skilled in th	documents, such combination
	t published prior to the international filing date but later than the date claimed	"&" document member of the same patent	family
	actual completion of the international search	Date of mailing of the international sea	rch report
	2001 (30.10.2001)	Authorized officer	-/-\
Cor	nailing address of the ISA/US maissioner of Patents and Trademarks PCT	Marianne P. Allen	al allen for
Wa	Shington, D.C. 20231 O. (703)305-3230	Telephone No. 703-308-0196	at recently
	A/210 (second sheet) (July 1998)	1 100 1	/,

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/28462

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-7 with respect to SEQ ID NOS: 1 and 45
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/28462

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Claims 1-7 reference SEQ ID NOS. listed in Table 1 on page 24 of the description. Each nucleotide and corresponding amino acid sequence pair in Table 1 forms an inventive concept. Thus, with respect to claims 1-7, SEQ ID NOS: 1 and 45 form the first inventive concept, SEQ ID NOS: 2 and 46 form the second inventive concept, and so forth. There are a total of 44 inventions encompassed by the claims. The different sequence pairs have no obvious special technical feature in common as they appear to be structurally unrelated sequences.

As such, claims 1-7 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features.

Form PCT/ISA/210 (second sheet) (July 1998)