REPORT OF THE 2007 ICCAT ALBACORE STOCK ASSESSMENT SESSION

(Madrid, Spain - July 5 to 12, 2007)

1. Opening, adoption of agenda and meeting arrangements

The meeting was held at the ICCAT Secretariat in Madrid July 5 to 12, 2007. Mr. Driss Meski, ICCAT Executive Secretary, opened the meeting and welcomed participants ("the Group").

Ms. Victoria Ortiz de Zárate (EC-Spain), meeting Chairperson, welcomed meeting participants and thanked the Secretariat for the efforts made to prepare the meeting. Ms. Ortiz de Zárate proceeded to review the Agenda which was adopted with minor changes (**Appendix 1**).

The List of Participants is included in **Appendix 2**. The List of Documents presented at the meeting is attached as **Appendix 3**. The following participants served as rapporteurs:

P. Pallarés Items 1, 10 and 11 V. Ortiz de Zárate Item 2 P. Kebe, G. Scott Item 3 C. Palma, G. Scott Item 4 J.M. Ortiz de Urbina, V. Ortiz de Zárate Item 5.1 V. Ortiz de Zárate, T. Frédou-K. Uosaki Items 5.2 and 5.3 G. Scott, G. Díaz Items 6.1, 7.1 and 8.1 V. Restrepo, M. Ortiz Items 6.2, 7.2 and 8.2 C. Kirchner, S. Yeh Items 6.3, 7.3 and 8.3 V. Ortiz de Zárate Item 9

2. Biological data, including tagging information

No new information was presented to the Group at this meeting. Therefore, the hypothesis of two separate stocks, a northern and a southern stock separated at 5°N latitude, has been maintained for the assessments purposes.

With regard to the biology of Atlantic albacore, no new studies were presented to the Group. All information concerning parameters used in both stocks area included in **Table 1**.

For the North Atlantic stock no changes have been presented. Therefore, the growth parameters estimated by Bard (1981) were applied.

New growth estimates were available for the South stock (Lee and Yeh, 2007) and were presented at the 2006 ICCAT Data Preparatory Meeting for Atlantic Albacore (Anon. 2007). This new estimates were based on revised reading of the South albacore sample. The new growth equation was adopted by the Group for the South stock and was used in the assessment of this stock.

As concerns conversion factors for length-weight relationships, no new information has been provided. Thus, the parameters applied in the assessment were those found in the Chapter 2 of the *ICCAT Manual* for Atlantic albacore. Natural mortality was assumed to be constant and equal to 0.3 for all age classes, for both the North and the South stocks (Anon. 2004). The maturity vector for North and South albacore was assumed as being 50% mature at age 5 and completely mature onwards.

A paper on preliminary results from an inter-laboratory exchange of ageing material was presented in document SCRS/2007/102. Age estimates were obtained using spines, scales and otoliths of Mediterranean and Atlantic albacore. Moderate levels of precision were observed in one pair of readers (experienced reader and inexperienced reader who they had trained). However, the wider comparison across laboratories yielded poor precision, particularly for otoliths. Bias was detected between readers for all structures. Inter-reader precision was higher for Mediterranean than for Atlantic albacore. Agreement of age estimates derived using different structures from the same fish was low and scales appeared to provide lower estimates of age than spines. The results need greater standardization of ageing methodologies across laboratories through further exchange of material and consultation between readers.

The available tagging information which has been revised by national scientist and updated by the Secretariat was not considered for assessment purposes at this time. Future analyses could incorporate this information on the modeling of North Atlantic albacore.

3. Catch data, including size frequencies and fisheries trends

3.1 Catch data

Task I data were reviewed in detail during the *Ad Hoc* Meeting to Prepare Multifan-CL Inputs for the 2007 Albacore Assessment, held in March 2007. At this meeting, the Secretariat again presented the total nominal catch by gear, year and flag for the period 1950 up to 2005. As only a few countries had reported catch information for 2006, the Group agreed to use catch information available up to 2005. The Group noticed the high increase (more than 300%) in the French reported catch in 2005. One possible explanation for this increase could be related to the strong management measures applied to the anchovy fishery in the Bay of Biscay and the consequential shift in effort to albacore. In addition, the Group was informed that this high catch was reported as unclassified. During the meeting, a Japanese scientist presented revised catch information for Japanese longline for the period 2003-2005. The revisions mainly involved reassigning catch to the north or south stocks based on updated data. The Group accepted this new revision and decided to incorporate it in the catch table. As no information was reported for St Vincent & Grenadines for 2005 for the northern stock, the Group decided to use the average catch during the latest five years (2000-2004) to fill the gap noted for 2005. All the above changes and the complete revision made during the Data Preparatory Meeting held in 2006 and the *Ad Hoc* Meeting to Prepare Multifan-CL Input (March 2007) were included in the Secretariat database and these data are shown in **Table 2** and **Figure 1**.

According to this latest revision and the reclassification of catch by main fleets and gear, the geographic distribution of the catch is plotted in **Figure 2**.

3.2 Size frequencies

The March 2007 *Ad Hoc* Meeting to Prepare Multifan-CL Inputs for the 2007 Albacore Assessment initiated a review of the Task II size samples available in the Secretariat database for use in analysis at the 2007 albacore assessment. Intersessionally, work continued on the screening of these data and the results of this work are summarized in Section 5 of this report.

4. Catch-at-size (CAS) and Catch-at-Age (CAA)

4.1 CAS estimates for the northern and southern stocks

Since the last albacore assessment (Anon. 2004), national scientists have invested significant efforts into the revision and updating of historical size data, especially aimed to fill the needs for the Multifan-CL modeling approach. A breakdown of samples by fleet (Portuguese baitboat from Madeira and Azores Islands, and Spanish baitboat from Canary Islands and Cantabrian Sea) allowed for separation of the catch-at-size series by fishery. Historical revisions of South African baitboats (1979-2001), Japanese longliners (1992-2005), Brazil home-based longliners (1978-1985, 1992-2005) with a more detailed and homogeneous structure, were also made. Several identified gaps on some time series (Canada longline, 1999; Spanish Cantabrian baitboat and troll, 1979, 1981, 1992), or doubtful datasets (Chinese Taipei 1986) were also corrected.

In order to incorporate all the size revisions made, the Secretariat recreated the entire albacore (**Tables 3** and **4**) estimates for the period 1975-2005, for both North and South stocks. Details about the methodology used are presented in document SCRS/2007/104. The substitution rules adopted were basically the same ones used in past CAS estimations.

The overall CAS matrix of both northern and southern stocks has no large differences when compared to those used in the last assessment (SCRS/2003/017). More important differences could appear when comparing CAS matrices of single fisheries. Nevertheless, the Group decided to adopt the new CAS estimations due to improvements made in size data and gains in detail (fisheries breakdown and/or gear breakdown). Another important feature of the new estimates is that CAS and Multifan-CL base datasets were built with the same source information.

The substitution ratios of total Task I catch for the North (around 10% in recent years) and South Atlantic (around 20% in recent years) stocks are shown in **Figures 3** and **4**, respectively. These substitution ratios do not include those made by national scientists who submitted catch-at-size data and are thus conservative estimates. The above figures also show that the CAS reported by national scientists is much higher for the northern stock (mainly Spanish baitboat and troll fisheries, and, Japanese longline) than for the southern stock (lack of the some of the major longline fisheries).

4.2 CAA estimates for the northern and southern stocks

The July 2006 Data Preparatory Meeting for the Albacore Assessment recommended to the Secretariat the responsibility to produce the catch-at-age (CAA) estimates for the northern stock, applying the Kimura-Chikuni algorithm (Kimura *et al.* 1987). During this assessment, the Group decided to expand this methodology to the southern stock, by adopting the same coefficient of variation by age and quarter of used in the North, and, using new von Bertalanffy growth parameters estimates (SCRS/2006/110) for the South to estimate the mean length at age. Normal probability matrices of length-at-age were calculated (one for each quarter), with November 15 as the birth date. The CAA estimates were made using as input the new CAS matrices.

4.2.1 Northern stock

The CAA matrices for the northern stock (total and by major fishery) are shown in **Table 5** and **Figure 5** shows bubble plots of relative number of fish by year and age (1 to 8) of the major fisheries. For the surface fisheries (Spain BB and TR, France TR) the first three age groups are those most represented in the catches. In the longline fisheries, Japan shows a predominance of ages 3, 4 and 5, the United States a predominance of ages 4 to 7. Chinese Taipei longline shows three distinct periods: before 1987 with large dispersion between ages 3 to 8; dominance of ages 3 and 4 between 1993 and 2001; dominance of age 6 from 2002 onwards. Overall there are few fish assigned age 7 in the catch at age, compared to age 6 and the plus group, indicating that the length data alone may be insufficient to resolve ages above 6.

4.2.2 Southern stock

The CAA matrices for the southern stock (total and by major fishery) are shown in **Table 5** and **Figure 6** shows bubble plots of relative number of fish by year and age (1 to 8) of the major fisheries. The major surface fisheries (South Africa BB and Namibia BB) show a predominance of ages 3 to 5, with the exception of Namibia in 2002-2003 with a majority of the fish in ages 7 and 8. The longline fisheries show, in general, a very heterogeneous dispersion, but with the domination of large ages. Japan has fish spread between ages 2 and 8 with an insignificant predominance of ages 3 to 5. Exception is shown in 2001 and 2002 where age 1 is prevalent. In the Chinese Taipei fishery, a large quantity of fish in age 8 (the plus group) in all series was noted.

5. Relative abundance indices

5.1 Indices by age for VPA-2BOX model fit

5.1.1 North Atlantic

Relative abundance indices by age group of albacore caught by the Spanish troll fleet in the northeastern Atlantic were estimated using catch rate data in number of fish by fishing day (CPUE) from 6,254 individual trips collected for the period 1981-2005 (SCRS/2007/099). Standardized CPUEs for age groups 1 to 4 were estimated through a general linear modeling (GLM) approach by assuming a log-normal error distribution model. Since this fleet does not target age 1 and the availability of age 4 varies on an annual basis, the Group decided, as in previous assessments, to use only the CPUE indices for ages 2 and 3 as relative abundance indices.

Nominal catch per unit effort (number of fish caught per thousand hooks) of north Atlantic albacore recorded from Chinese Taipei longliners from 1967 to 2005 was used to estimate standardized CPUEs by means of a generalized linear model (GLM) approach (SCRS/2007/093) assuming a log-normal error distribution. Three sub-areas were identified and used for the standardization. The standardized yearly CPUE series showed a continuous decline from mid-1980s up to 2002, with a pronounced increase in the last three years of the series, which is probably related to changes in the composition of the fleet (less efficient boats are being removed) or in the way catch rates are reported (only include records from efficient boats). The Group decided to adjust this series before using it in the VPA. The original standardized CPUE values for the last three years were divided by an index, which was defined as the ratio between the average for years 2003-2005 and the average for 2000-2002 (Chinese Taipei LL adjusted).

Japanese longline catch rates were standardized for three separate periods (1959-69, 1969-75 and 1975-2005)

using two models: one with a log-normal (LN) error structure and the other with a negative binominal (NB) error structure (SCRS/2007/103). Both standardized series showed a notable decline during the 1960s and early 1970s, a moderate decline during the 1980s, and became near constant during the 1990s; finally, the series showed a slight upward trend during the late 1990s and the 2000s. It was attempted to clarify which model error assumption was more appropriate using information criteria. Results showed that the LN model was better than the NB for the periods 1959-69 and 1969-75 while the NB model was better for the period 1975-2005. However, since model selection by means of information criteria seems not appropriate to discriminate between models fitted to different data, the Group, based on the inherently better statistical properties of the negative binomial error model for this kind of data, decided to use the NB standardized CPUEs for the three periods as indices of relative abundance for the VPA.

The U.S. albacore non-target nominal catch per unit of effort, in number of fish caught per thousand hooks (CPUE) from the longline fleet, was used to obtain the relative catch rate indices estimated by a GLMM (Generalized Linear Mixed Model) approach assuming a delta-lognormal model distribution. Results were presented in SCRS/2007/151.

For the French troll earlier fishery from 1967 to 1986 years time series, the catch per unit of effort (CPUE) of age 2 and 3 was estimated with a GLM model with log-normal error structure to standardize daily CPUE (Goujon *et al.* 1996). Since then no updated information of the French fleet has been available to the Group.

Data used from final models for each given fishery are presented in **Table 6** and **Figure 7** shows the scaled time series of CPUE for surface and longline main fisheries used in the assessment.

5.2 Indices by age for Multifan-CL

5.2.1 North

As was required in preparation for Multifan-CL modeling of Atlantic albacore stocks, extensive work was carried out in preparation of several CPUE time series, which were analyzed for this modeling purpose by year and quarter. More detailed information on the methods and model assumption area are included as Appendix 4 of the Report of the Ad Hoc Meeting to Prepare Multifan-CL Inputs for the 2007 Albacore Assessment held in March 2007. A list of documents is included in this report as well as some CPUE analyses done by the Group at that meeting in Appendix 5 are presented in that report.

New nominal catch per unit effort (number of fish caught per thousand hooks) on quarterly *year strata of north Atlantic albacore recorded from Chinese Taipei longliners from 1967 to 2005 was used to estimate standardized CPUEs by means of a generalized linear model (GLM) approach assuming a log-normal error distribution was presented to the Group (SCRS/2007/093). As was done in the case of the annual standardized CPUEs, the quarterly*year standardized CPUEs were adjusted.

New model analyses were presented for the Japanese longline catch rates on year*quarter strata as required for the Multifan model fit. Those CPUEs were standardized for three separate periods (1959-69, 1969-75 and 1975-2005) using a negative binominal (NB) error structure (SCRS/2007/103).

5.2.2 South

As was required in preparation for Multifan-CL modeling of Atlantic albacore stocks, extensive work was carried out on in preparation of several CPUE time series, which were analyzed for this modeling purpose by year and quarter. More detail information about methods and model assumption area included as Appendix 4 to the Report of the Ad Hoc Meeting to Prepare Multifan-CL Inputs for the 2007 Albacore Assessment held in March 2007. A list of documents is included in that report as well as some CPUE analyses done by the Group at that meeting that were included in Appendix 5 of the March report.

New data on the Brazilian fleet were presented to the Group (SCRS/2007/105). The catch and effort data from 67,335 sets of the Brazilian tuna longline fleet in the southwestern Atlantic Ocean, from 1978 to 2006 (29 years), were standardized using GLM. The negative binomial error structure was selected as it was considered the most suitable for the Brazilian dataset (which has a high number of no catch sets). The factors considered in the final model were year, area, target specie (defined through K-means cluster analysis), quarter and year*quarter.

Nominal catch per unit effort (number of fish caught per thousand hooks) on quarterly*year strata of South Atlantic albacore recorded from Chinese Taipei longliners from 1967 to 2005 used to estimate standardized CPUEs by means of a generalized linear model (GLM) approach assuming a log-normal error distribution was presented to the Group (SCRS/2007/094). As was done in the case of the annual standardized CPUEs these quarterly*year standardized CPUEs were adjusted following the same procedure as described in the ASPM indices section (5.3 Indices of abundance).

Also, a new model analyses was presented for the Japanese longline catch rates on year*quarter strata as required for the Multifan-CL model fit. Those CPUEs were standardized for three separate periods (1959-69, 1969-75 and 1975-2005) using a negative binominal (NB) error structure (SCRS/2007/103).

5.3 Indices by age group for Age Structured Production models (ASPM) fit

New data on the Brazilian fleet was presented to the meeting (SCRS/2007/105). The catch and effort data from 67,335 sets of the Brazilian tuna longline fleet in the southwestern Atlantic Ocean, from 1978 to 2006 (29 years), were standardized using GLM. The negative binomial error structure was selected as it was considered the more suitable for the Brazilian dataset (with a high number of no catch sets). The considered factors on the final model were year, area, target species (defined through K-means cluster analysis), quarter and year*quarter.

The Japanese longline CPUE was separately standardized into three periods (1959-69, 1969-75 and 1975-2005) using two models; one with a log-normal (LN) error structure, while the other used a negative binominal (NB) error structure (SCRS/2007/103). Both standardized CPUEs declined during the 1960s and the early 1970s; after that the CPUEs fluctuated and showed no clear trend. An attempt was made to clarify which model was more appropriate using information criteria. Results showed that the LN model was better than the NB model for the periods 1959-69 and 1969-75, while the NB model was better for the 1975-2005 period. However, the Group decided to use the standardized CPUEs for the NB model for three periods for the south stock as indices of abundance since the calculation of information criteria was not necessarily appropriate.

The Chinese Taipei longline catch and effort statistics of 1967-2005 South Atlantic albacore were standardized by using Generalized Liner Model with log normal residual assumption. Factors such as year, quarter, sub area, by-catch effects of bigeye tuna, yellowfin tuna, and swordfish were used to obtain the yearly standardized CPUE trend from 1967 to 2005. The annual CPUE trends indicated that the abundance in number of South Atlantic albacore declined from the late-1960s to 1990, leveled off up to 2003, and showed an upward trend in 2004 and 2005. The Group decided to adjust this series before using it in the age-structured production model ASPM. The original standardized CPUE values for the last three years were divided by an index, which was defined as the ratio between the average for years 2003-2005 and the average for years 2000-2002 (Chinese Taipei LL adjusted).

South Atlantic albacore catch rates (weight by fishing days) per quarter from the South African baitboat fishery were standardized (SCRS/2007/040) and split into two series, from 1985 to 1998 and from 1999 to 2005. The reason for the split series was that more detailed information was available in the latter time period to allow for more appropriate vessel classification and catch verification processes. The Generalized Liner Model with log normal residual distribution assumption was used. Factors such as year, area, quarter and year*quarter interaction effects were included in the first period time series (1985-1998) analysis adding to these factors the by-catch effect in the most recent period (1999-2005) to account for the targeting away from albacore in favor of other species. Analyses were performed on the positive observations. The Group decided to average the year quarterly standardized CPUE to obtain annual standardized CPUEs for this fleet.

Data used from final models for each given fishery is presented in **Table 7** and **Figure 8** show the scaled time series of CPUE for the baitboat surface fishery and main longline fisheries used in the assessment of the southern albacore stock.

6. Methods and other data relevant to the assessment

6.1 VPA-2BOX

The Group decided to apply a VPA-2BOX model repeating the Base Case scenario from the 2000 northern albacore stock assessment using the revised catch-at-age and catch per effort data. The Group was concerned about the quality of the new catch-at-age data for the reasons outlined in section 3.7, but wished to examine the potential implications of the changes on the assessment advice. The analysis was conducted using updated

versions of the Spanish, U.S., Chinese Taipei, Japanese and French fisheries indices (same fisheries used in the 2000 and 2003 assessments) (**Table 6**). A lognormal error structure was assumed for all indices within the VPA model. The selectivity at age for each index was estimated from the partial catches using the method proposed by Butterworth and Geromont (equation 4, Geromont and Butterworth, 1997), except, of course, for the two Spanish troll indices, which reflect only one age class. The terminal (2005) fishing mortality rates for ages 2-7 were estimated and the 2005 fishing mortality rate on age 1 was set to 20% of that on age 2. Initially, the F-ratio (F on the oldest age divided by the F on the next younger age) was fixed to 1.0 for all years. The natural mortality rate was fixed at 0.3.

It was found that the weight-at-age matrix provided an average weight for the age 8+ group corresponding to a fish of age 7.7. Therefore, it was decided to use a constant annual weight-at-age estimated from the growth and L-W equations (mid-year weight in kg).

Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8+
3.30	6.90	11.07	15.47	19.08	23.59	27.02	36.13

6.2 Multifan-CL

Basic data

The data sets used for the Multifan-CL analyses were initially compiled during the March 2007 inter-sessional meeting. The fisheries included in the model are given in **Table 8**. For the July assessment, the data sets were modified as follows:

- The catch information was updated to reflect updates to the Task I data.
- The CPUE (fishing effort) data were changed to reflect updates presented by national scientists for the following indices: Japan (North and South), Chinese Taipei (North and South), and Brazil (South).
- The size data set was modified according to the following rules which were adopted as a result of intersessional discussions between interested scientists: (a) Delete records with fewer than 50 fish measured in all size bins; (b) delete records with measured fish in less than 10 bins (out of 61 bins); (c) delete records with a skewness parameter greater than 5.0; (d) within each fishery, downweight all of the size samples such that the (year/quarter/fishery) with largest sample size had 1000 measured fish. These changes resulted in the removal of 119 and 62 size records for the northern and southern stocks, respectively.

Table 9 shows the catch data by fishery and **Table 10** gives effort data by fishery. **Figure 9** summarizes the size distributions.

Model options

Table 11 shows the basic modeling options made by the Group for various fisheries. These were based on knowledge of the fisheries and a cursory examination of the data. The longline fisheries were assumed to have non-decreasing selectivity.

The Group then conducted eight preliminary runs for each stock (**Table 12**). These included various combinations of options that included fixing or estimating natural mortality, fixing or estimating some of the growth parameters, estimating or not random walks in catchability for some fisheries, and the number of years used for estimating initial stock size based on equilibrium total mortality.

The number of age groups was set at 15, and the growth equations used were those of Bard (1981) for the North and Lee and Yeh (2007) for the South. For MSY calculations, a stock-recruitment relationship was fitted with a very weak penalty so as to not affect the results, with a prior of 0.9 for the steepness parameter.

6.3 ASPM

6.3.1 ASPM

The age-structured production model described in Rademeyer *et al.* (2004) was used to assess the southern albacore tuna stock. This age-structured production model replaced the previously used production model (Punt *et al.* 1997) since this newer version uses catch-at-age data to estimate multiple selectivities. The model code was available in a back up of the 2003 assessment. However, the by-catch transitions that were previously

estimated by the model have been removed and only different selectivity for the various CPUE indices (**Table 7**) have been estimated by using the updated catch-at-age matrix (**Table 5**). For the Chinese Taipei and the Brazilian CPUE index, a single logistic selectivity was estimated. It was further assumed that the first two time-series (1956-1968 and 1969-1974) of the Japanese CPUE index fished with the same selectivity as the Chinese Taipei fleet. Selectivity for the latest time-series (1975-2005) of the Japanese index was assumed to be logistic with a slight decrease in the older ages (domed-shaped). For South Africa and Namibia a dome-shaped selectivity was estimated over the whole time period.

Catches were split into five fleets mainly following Rademeyer *et al.* (2004) as described in **Table 13** and the catches by fleet are given in **Table 14**. Further additional model specifications are given in **Table 15**. Initial model runs were all made with a constant natural mortality of 0.3 and a constant steepness parameter of 0.7. Management quantities of sensitivity tests were compared in cases were either natural mortality or steepness parameters or both were estimated.

6.3.2 ASPM_2

The age-structured production model (ASPM), which was proposed by Punt *et al.* (1997) and modified by Legault and Restrepo (1999), was applied at this session mainly for the purpose of comparison because most of the assessment in the past decade for South Atlantic albacore relied on this model. Additionally, this model does not explicitly use the catch-at-age matrix in fitting, although the age-structure matrix is updated within the model, based on externally specified, fleet-specific selectivity. Not directly incorporating the catch-at-age matrix may not be a weak point for the model if: (1) the input catch-at-age matrix is not explanatory; or (2) the specified selectivity already has its good reasoning. The selectivity curve of most fleets used information available during the previous two assessments. Only the Chinese Taipei fleet changed from a dome shaped to a sigmoid curve, mainly due to the fact that most Chinese Taipei longline catch in size are around 100 cm fork length, which is about age 7 based on the Lee and Yeh (2007) von Bertalanffy (vB) growth equation. Therefore, a sigmoid selectivity curve setting age 7 as 100% was adopted by the Group.

Removal by fisheries of South Atlantic albacore can be categorized by two types of gears, i.e., the longline (LL) fleets and the surface (baitboat or BB) fleets (**Table 16**). Seven CPUE indices series (JapanLL 1959-1969, JapanLL 1969-1975, JapanLL 1975-2005, Chinese Taipei LL 1968-2005, BrazilLL 1978-2005, South AfricaBB 1985-1998, and South AfricaBB 1999-2005) from the two fleets were provided (**Tables 7** and **17**) for the modeling of this stock. Yearly total removals by the two fleets were also provided for the model (**Table 18**). Further specifications, such as selection of parental-recruitment pattern, vB growth equation, length-weight conversion pattern, natural mortality, and plus age number were also provided (**Table 19**).

7. Stock status results

7.1 VPA-2BOX

In an initial run, before defining the base case, the fits to the indices were poor (**Figure 10**). Improvements in the indices fit were attempted by making model runs using the combination of indices as follows:

- 1) Spain + France + Japan + Chinese Taipei
- 2) Spain + France + Japan + US
- 3) Spain + France + US + Chinese Taipei
- 4) Spain + France + Japan
- 5) Spain + France + US
- 6) Spain + France + Chinese Taipei

None of the runs with the different combinations of indices improved the fit to the indices. Another attempt was made to improve the fits to the indices by changing the F-ratio of the initial year (1975) to values of 0.25, 0.5 and 1.0, and for the period 1976-2004, F-ratios were modeled with a random walk, and for the final year 2005 it was kept fixed to a value of 1.0. In all cases, a lognormal prior with a mean of 1 and a log-scale standard error of 0.1 was used.

Changes to the F ratios resulted in some improvement of the fits to the indices (see **Figure 11** for case of F ratio=0.5). An additional comparison of the F8/F7 ratios with the ratio of the catch of the longline fisheries to the catch of the surface fisheries (**Figure 12**) guided the Group to choose the case of the F-ratio of the initial year=0.5 as the base case. Sensitivities were run for the following cases (F ratio for the initial year):

- 1) F-ratio=0.25,
- 2) F-ratio=1.0
- 3) F-ratio=0.5 without the last three years (2003-2005) of the Chinese Taipei index of abundance.

No substantial differences between the base case and the sensitivities were observed with respect to the estimated trajectories of relative F (F/F_{MSY}), relative SSB (SSB/SSB_{MSY}), and the current status of the stock. The VPA indicated that overfishing occurred during the entire period analyzed (1975-2005), but the stock did not become over fished until 1992 (**Figure 13**). By 2005, the stock remained over fished (SSB₂₀₀₅/SSB_{MSY} = 0.86) and experiencing overfishing conditions ($F_{2005}/F_{MSY} = 4.6$). The stock trajectories with respect to relative F and relative SSB are presented in **Figure 13**. Fishing mortality rate at age and stock size at age for the base case are shown in **Tables 20** and **21**, respectively.

A retrospective analysis was conducted back to 1999. Estimated F for Age 1, Age 2-4, Age 5-7 and Age 8+ for each retrospective scenario are presented in **Figure 14.** There are retrospective patterns evident in the analysis which suggested that with new information, terminal year estimates of F on Age 1 and on the Age 8+ group increases, and tends to converge after several years of data accumulated. The same pattern can be seen for the older age groups (Ages 5 to 7), but there is a less obvious pattern in the Ages 2 to 4 category. The Group decided not to apply any retrospective pattern adjustments to the estimates, following the procedures applied in the 2000 and 2003 assessments.

Given the patterns of fishing mortality at age from the base VPA run, an additional sensitivity analysis was run with an age-structure with a 6+ group instead of an 8+ group. Catch-at age and the age(s) index-coverage were properly adjusted, and the VPA was run for the same time period (1975-2005). Two runs were considered: (a) fixing the F ratios for Age 5 and Age 6+ to 1.0 for all years, and (b) allowing a random walk (estimated F ratios with a correlated process error) for all years except 1975 where it was freely estimated.

Figure 15 shows the trends of biomass, fishing mortality, recruits, and ratios of SSB against SSBmsy and SSB20%SPR. Fits to the indices of abundance of each run are shown in **Figure 16**. The VPA runs show a different historic trend of the northern albacore stock. Fixing the F ratios of the plus group resulted in a larger estimated biomass through the series and also implies a different trend, with a decrease in the first years up to 1985, followed by an increase of SSB reaching a peak in 1992, and follow for a decline since then. Instead, allowing estimation of F ratios for the plus group (Age 6+) with a restricted random walk, estimated a smaller stock that declined more or less continuously since 1975. Estimates of recruits were comparable except for 1987 when a large recruitment entered the fishery, producing the increase of biomass most likely in response to the large value for the Chinese Taipei index of abundance value in 1988. In the case of random walk estimation for the plus-group, the VPA fit indicated a continuous increase in the ratio of F Age6+/5, reaching a value of 5 in the last year.

For purposes of characterizing stock status with the VPA, the Group decided to utilize the Base Case identified above and conducted bootstrap (500) analysis to characterize uncertainty and several sets of stochastic projections identified below. Estimated benchmarks are presented in **Table 22**, while **Figure 17** shows the stock trajectory as a plot of relative SSB versus relative F and the scatter plot of the 500 bootstrap estimated values for year 2005 together with the deterministic value.

7.2 Multifan-CL

The Group examined initially the results of the eight model runs made for the North and South. Since the relative effects of changing one of the modeling options were similar for the two stocks, a more detailed graphic summary is provided here for the North only.

North

Figures 18, 19 and **20** show the estimated trends in SSB relative to the MSY level, F relative to the MSY level and absolute recruitment. All of the runs gave similar results in terms of fit diagnostics and estimated trends.

The Group examined the runs in which M was estimated and considered that either the patterns or the magnitudes were not very reasonable. In addition, for comparison purposes since M was fixed in all of the other analyses, the Group decided that the runs with M=0.3 would be preferable. In addition, the Group considered that the Japanese longline fisheries in the transition and by catch periods could have dome-shaped selectivity and asked that a new run be conducted modifying this assumption. Also, in this new run ("Base Case"), the steepness prior was changed to a mode of 0.75.

The eight preliminary runs specified month 6 as the month of recruitment. This had an effect in the way the model keeps track of time, which resulted in the first time period corresponding to the first half of 1930, and the last time period corresponding to the second half of 2005. Therefore, the Group decided to change the month of recruitment to 1 which would result in annual time steps comparable to those in the VPA.

Figure 21 shows the results for the base case. They are similar to, but somewhat more optimistic, than those of Run 8. **Figure 22** shows the estimated selectivity patterns.

In terms of diagnostics, **Figure 23** shows the spread of estimated effort deviations for the different series. Some time series patterns are evident, especially for the longline fisheries. In addition, there is a noticeable change in the spread for fishery 2 (composite troll series), which is not unexpected since the data set was composed of different time series. Nevertheless, the fits seem reasonable.

The estimated MSY for the base case is 30,230 t (s.d. = 2,850). The 2005 spawning stock is estimated to be 0.814 times the corresponding MSY level and the fishing mortality is estimated to be at 1.491 times the MSY level¹. Therefore, the stock is estimated to be below the target level established by the ICCAT Convention.

The Group noted that the MSY levels can be affected by changes in selectivity, among other things. Since the MFCL application allowed for a long-term view of the resource starting in 1930, the Group calculated changes in MSY benchmarks over time. The estimated trend in MSY is shown in **Figure 24**. A gradual increase in MSY between the mid-1950s until the mid 1960s is evident, concurrent with the increase in fishing by longline fisheries which caught larger fish than the troll fisheries did.

Figure 25 shows the track of (Relative F, Relative SSB) pairs from 1930 to 2005. **Figure 26** shows the same tracks, divided by decade. The decade corresponding to the 1950s had the largest decline in SSB, due to increased fishing on mature (ages 5+) albacore. The most apparent incursions into the overfished (SSB ratio < 1) and overfishing (F ratio > 1) quadrant were in the 1960s and since the 1990s (**Figure 26**).

Figure 27 shows the scatter plot of SSB and recruitment estimates and the fitted relationship.

South

The results of the preliminary MFCL runs made for the southern stock (**Figure 28**) were viewed as unsatisfactory. The estimates of recruitment showed a strong increasing for most of the observed time period trend which is probably being driven by the combination of (a) increasing catch and (b) lack of catch-effort observations for small fish before the mid 1980s. The Group attempted to correct this problem by imposing different penalties on the model parameters being estimated, but the different trials did not improve the situation greatly. The Group recommended that the input dataset be analyzed more exhaustively in the future.

7.3 Other methods

7.3.1 ASPM

_

Considering that the CPUE index data are somewhat more reliable than the catch-at-age data the model was run by down-weighting the catch-at-age data in order to fit the high CPUE values in the early years of the Chinese Taipei and Japan CPUE series. Various weightings were considered and the management quantities for those are shown in Table 23. The lower the weighting the better the data is fitted as can be seen from the improvements of the negative log-likelihoods. For further evaluations of the model results the weighting of 0.125 was used. It was estimated that it is likely that the stock is currently below the maximum sustainable yield (MSY) level. The spawning biomass is estimated to be 74% of the MSY level, whereas the biomass of albacore tuna that are 2 years and older are estimated to be 86% of the MSY level. The MSY was estimated to be around 30,000 tons, whereas the replacement yield (RY), averaged over the last 10 years, is calculated to be approximately 27,000 tons. The model fits to the CPUE series are reasonable (Figure 29) with the exception of the very early years of the Chinese Taipei and Japanese CPUE series. The residuals of the catch-at-age matrix (Figure 30) are large in some instances and also some patterns are obvious. It is however generally accepted that the catch-at-age matrix for the southern albacore tuna stock has a high level of substitutions and therefore highly uncertain (Figure 6). No distinct pattern is shown in the recruitment residuals and a reasonable fit of the estimated stock-recruitment curve is illustrated in Figure 31. The selectivities estimated for the different fleets are sensible (Figure 32). A biomass trajectory relative to the maximum sustainable yield biomass is shown in Figure 33. Only the results of

¹ For later work: The respective standard deviations for the SSB and F ratios are 0.112 and 0.137, and their correlation is -0.392.

the base case are presented in this report. Detailed results for all the sensitivity tests are available in the ICCAT secretariat.

In **Table 24**, the 95% percentiles of some of the benchmarks and management quantities are presented. It must be noted that these intervals are conservative as in the base case model the steepness parameter as well as natural mortality are fixed.

Past management strategies in terms of catch taken relative to replacement yield and resulting stock status in terms of current spawning biomass relative to the spawning biomass at MSY are shown in **Figure 34.** The snail track is the result of the base case and the individual circular points indicate the current position of all the sensitivity runs. It is clear that for all but one sensitivity run, the stock is estimated to be below the MSY level.

7.3.2 *ASPM*_2 *model*

As compared to the results presented to the Group in document SCRS/2007/95, which also used ASPM_2 model, some specifications have been modified following new information obtained during the meeting, such as: (1) yearly total catch follows updated Task I data; (2) adopting revised Japanese and Chinese Taipei standardized CPUE trends; and (3) revised selectivity patterns (**Figure 35**) as discussed and agreed to modify selectivity from dome shape to sigmoid for the Chinese Taipei longline by the Group. Two cases of (1) constant steepness at 0.7 (deterministic) and (2) optimized steepness (stochastic) were implemented. **Figures 36 to 38** indicated the predicted CPUE trends by the model (**Figure 36**), parental recruitment pattern (**Figure 37**), and long-term recruitment trend (**Figure 39**), parental recruitment pattern (**Figure 39**), and long-term recruitment trend (**Figure 41**) obtained from the deterministic case. In general, these fittings are acceptable, although plots revealed by stochastic case are often better fitted than those from deterministic case. Benchmarks estimated by the model are shown in **Table 25**. The values obtained in both cases are quite similar, although the stochastic version appeared to be more comparable to those resultants obtained in previous assessments. The lower MSY estimation and poor stock conditions obtained in this assessment may have stemmed from huge yields of South Atlantic albacore in early 2000s.

8. Projections

8.1 VPA-2BOX

Projections of the Base Case were conducted using 500 bootstraps. Projections were run by keeping the current catch level (36,000 t) for years 2006 and 2007 and projecting for years 2008-2020 for a constant catch of 38,000 t, 34,500 t (TAC), 36,000 t (2005 catch), 32,000 t, 30,000 t, 26,000 t, 25,000 t, 20,000 t, and also for F values of F_{CURRENT} , F_{MSY} , F_{MAX} , $F_{\text{20\%SPR}}$, $F_{\text{30\%SPR}}$, and $F_{\text{40\%SPR}}$. Future recruitment was assumed to follow a Beverton-Holt SRR estimated from the VPA bootstrap-specific outcomes, using the spawning stock and recruitment estimates from the VPA.

Two assumptions were used regarding the last three years of recruitment estimates from the VPA. Normally the estimates of year-class strength for the most recent period in the CAA data are considered too unreliable for use in future projections (see, for example, the retrospective patterning in **Figure 14**) and are replaced with values derived from the SRR used for projections. This was also done in this case. However, as the recent fishery catch rates of young (age 2) fish indicate a relatively strong year-class entering the fishery, the Group also decided to project all of the VPA estimated year class abundance estimates to compare and contrast implications resulting from an estimated strong year-class entering the fishery in the recent past.

Results of the projections which assumed the recent year class strengths were average (on the order of 9,000,000 age 1 fish) and future year classes followed the SRR indicated that catch levels corresponding to the present TAC (34,500 t) or higher catches will result in further decline in stock status (**Figures 42 and 43**). Constant catches on the order of 30,000 t or lower would promote improvement in stock status. Similarly, these projections indicate current F levels or higher would result in further decline in stock status. Other F scenarios tested, which are all lower than the current F are projected to result in improved stock status.

Results of the projections which assumed the 2003 year class (fish of Age 1 in 2004) was strong (on the order of 12,000,000 Age 1 fish) the recent year class strengths were above average and future year classes followed the SRR indicated that catch levels corresponding to the present TAC (34,500 t) or higher catches will result in some near-term increase in SSB, but a slow decline in stock status (**Figure 44**) after the year-class passes through the fisheries. Constant catches on the order of 32,000 t or lower would promote sustained improvement in stock

status. Similarly, these projections indicate current F levels or higher would result in further decline in stock status. Other F scenarios tested, which are all lower than the current F are projected to result in improved stock status.

Estimates of yield-per-recruit (YPR) and spawner-per-recruit (S/R) for different values of F are shown in **Figure** 45.

8.3 ASPM

From ASPM_2 model, projections regarding the biomass of the southern albacore tuna were made under various constant catch assumptions (viz. 18, 21, 24, 27, 30, 33 thousand tons). The stock is estimated to be somewhat below the maximum sustainable yield level. Previously, a TAC of 31,000 tons was allowed. However, from **Figure 46** it is obvious the constant catch of this magnitude will further deplete the stock. The replacement yield was estimated to be around 27,000 tons, so catches taken from the stock should be lower than this value in order to increase the stock. **Figure 47** shows the biomass trajectory with the 95 percentiles of a constant TAC of 25,000 tons. Considering the lower percentile there remains a possibility of the stock remaining below the maximum sustainable yield (MSY) level over the next 10 years. Note that these percentiles are conservative, as both steepness parameter and natural mortality are fixed inputs in the base case scenario.

9. Recommendations

Greater standardization of ageing methodologies across laboratories and readers is needed and the Group proposed that an ageing activities network be created, as has been done in the case of bluefin.

The Group recommended that the revised vB growth equation for South Atlantic albacore, adopted by the Group, be incorporated into the *ICCAT Manual* and web page.

It is recommended to continue to investigate the conversion of catch-at-size (CAS) into catch-at-age (CAA) for the assessments for both North and South Atlantic albacore stocks (i.e. length slicing methods, age-length keys derived from aging methods).

Studies on fecundity and maturity for both North and South albacore are needed to better estimate the potential spawning stock biomass.

Tagging programs for Atlantic albacore stocks should be initiated and promoted.

It is recommended that Task I data reported for EC-France be disaggregated by species, gear, area and flag, as is the required standard format from ICCAT. Most of the analyses done on albacore required disaggregated catch.

The Group recommended finding ways to incorporate the historical catches of French troll catches into the ICCAT database.

The Group reemphasized the need for biological size sample data (Task II), especially from longline fisheries in the North and South stocks as a result of examination of size sample data available at Secretariat. The scarce sample size of adult albacore limits the precision of the analyses the Group can conduct. The Group recommended that biological size sampling data (Task II) from all fisheries be reported as stratified as possible, by 1x1 degrees squares for surface fisheries and by 5x5 degrees squares for longline fisheries.

The tagging data for albacore should be incorporated into the assessment model to the degree possible, with an aim to improve the scientific advice to the Commission on albacore productivity potentials.

The Group recommended the development of standardized CPUE series for all the main fleets exploiting the North and South Atlantic albacore stocks.

The Group recommended continuing the investigation of modeling of the North and South albacore stocks with statistical models for use in future assessments.

10. Other matters

No other matters were discussed.

11. Adoption of the report and closure

The report was adopted and the meeting adjourned.

Literature cited

- ANON. 2004. 2003 ICCAT Albacore Stock Assessment Session (Madrid, Spain, 15-20 September 2004). Col. Vol. Sci. Pap. ICCAT, 56(4): 1223-1311. (SCRS/2003/017)
- ANON. 2007. Report of the 2006 ICCAT Data Preparatory Meeting for Atlantic Albacore (Madrid, Spain, July 2-7, 2006). Col. Vol. Sci. Pap. ICCAT, 60(2): 351-403. (SCRS/2006/014).
- BARD, F.X. 1981. Le thon germon (*Thunnus alalunga*) de l'Océan Atlantique. Ph.D. Thesis presented at the University of Paris, 333 p.
- GEROMONT, H.F. and D.S. Butterworth. 1997. Specifications for the Adapt VPA Code, September 1996 (Revised). Col. Vol. Sci. Pap. ICCAT, 46(2): 321-324.
- GOUJON, M., L. Antoine and D. Gascuel. 1996. Trends of abundance indices of albacore tuna (*Thunnus alalunga*) obtained by GLM fitting of the French troll and baitboat catch per unit of effort data for the period 1967 to 1986. Col.Vol. Sci. Pap. ICCAT, 43: 295-300.
- KIMURA, D.K. and S. Chikuni. 1987. Mixtures of empirical distributions: an iterative application of the agelength key. *Biometrics* 43: 23-35.
- LEE, L.K. and S-Y. Yeh. 1993. Studies on the age and growth of south Atlantic albacore (*Thunnus alalunga*) specimens collected from Taiwanese longliners. Col. Vol. Sci. Pap. ICCAT, 40(2): 354-360.
- LEE, L.K. and S-Y. Yeh. 2007. Age and growth of South Atlantic albacore a revision after the revelation of otolith daily ring counts. Col. Vol. Sci. Pap. ICCAT, 60(2): 443-456. (SCRS/2006/110)
- LEGAULT, C.M. and V.R. Restrepo. 1999. A flexible forward ae-structured assessment program. Col. Vol. Sci. Pap. ICCAT, 49(2): 246-253.
- PUNT, A.E., D.S. Butterworth, A.J. Penney and R.W. Leslie. 1997. Further development of stock assessment and risk analysis methods for the South Atlantic population of albacore (*Thunnus alalunga*). Col. Vol. Sci. Pap. ICCAT, 46(3): 138-147.
- RADEMEYER, R.A., D.S. Butterworth and A.J. Penney. 2004. A Bayesian Assessment of the South Atlantic population of albacore which explicitly models changes in targeting. Col. Vol. Sci. Pap. ICCAT, 56(4): 1360-1390.

Table 1. Biological parameters and conversion factors for North and South albacore stocks.

North Stock	Parameters	Source
Growth	$L\infty = 124.74$ cm; $k = 0.23$ per year; and $t_0 = -0.9$	Bard, 1981, ICCAT Manual
Length-weight relation	a=1.339 10-5 b=3.107	Santiago (1982)
Maturity	50% of mature fish at 90 cm (age5)	Bard (1981)
Assumed birth month	May	
Assumed month @ 30cm	November	
South Stock		
South Stock Growth	$L\infty = 147.5$ cm; k = 0.126 per year; and t ₀ = -1.89	new Lee and Yeh, SCRS/2006/110
	$L\infty = 147.5$ cm; $k = 0.126$ per year; and $t_0 = -1.89$ a=1.3718 10-5 b=3.0973	new Lee and Yeh, SCRS/2006/110 Penney (1993)
Growth	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Growth Length-weight relation	a=1.3718 10-5 b=3.0973	Penney (1993)

Table 2. Estimated catches (t) of albacore (*Thunnus alalunga*) by major area, gear and flag.

	1950 1951									1962	1963 1	964 19	65 196	1967	1968	1969	1970 1	971 19	72 197	3 1974	1975	1976 1	1977 19	78 197	9 1980	1981	1982	1983 1	984 198	5 1986	1987	1988 19	989 199	0 1991	1992	1993 19	994 199	5 1996				00 2001				
TOTAL.	39623 34149								14 53495	77758	7725 90	633 910	03 7515	75525	71408	75923 7	0048 82	206 826	71 7438	6 69797	59995	77171 76	099 738	06 7482	6 62137	60071	73617 6	7643 59	850 7605	2 88554	82738 6	7229 633	342 6716	7 56343	69598 7	3078 716	6751	2 60353			7345 714			61394 52		
AT.N AT.S	39623 34149		0117 399	0 31424																																										19 27337 59 12301
MEDI	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0 5	00 50	500	500	700	500	500 7	01 50	0 500	500	561	613 9	90 83	3 500	1500	1272	1235 3	451 412	9 3712	3993	4063 4	060 189	6 2378	2203	2130 13	349 158	7 3125	2541	2698 4	4851 55	77 4866	5608	7893 4	1874 35	29 0
Landings AT.N Bait boat	0 0	0 3	8875 72	250 3125			17558 185									14569 1			96 883		19687	20227 15															967 1641					48 6099				
Longline	0 0		0	0 0				599 165	58 703 0 0			148 150		5 10124		14238 1	5801 17		10 1812				869 141						709 1741													17 7344				59 2665
Other surf. Purse seine	0 0		0	0 0		0	0		0 0		0		0 (0	0	0	10	0 13	0	0		0 6	2 3 0 16		84	367 2 364	194 IC 555 5	8 213 9 60		994 16	12 386	5 3999 1 222	139	229 2	906 355: 278 27	15 3337 18 263	45/8	91	/646 61 55 1	19 3089 91 263	118	211	2163 85 348	67 15 63 0
Trawl	0 0		0	0 0	0	0	0		0 0	0	0		0 (0	0	0	0	0 0	0	0			0 0		0	0																		60 505
Troll	39623 34149	32397 26	5242 327	729 28299	35398	30028 3	33945 30	796 3307	72 20907	30943	4625 28	058 255	44 2279	30669	23993	17923 1	5706 24	029 265	17 1871	2 20958	9491	13918 17					12831 13	2788 11	029 1065	4 10847	11457 1	1329 103	554 1035	0 8959	7348	6109 59	959 1022	6 6652	7870	5894 6	5845 50	23 4312	4007	5410 7	7487 102	13 10293
AT.S Bait boat	0 0	0	0	0 0	0 21	725	1047 4	0	0 0	0	0	22	0 (0 0	38	0	0	0	0	1 97	46	0			3 1346			1794 4		9 6829			393 598			7379 89						73 10360 98 28039			7475 50	
Longline Other surf.	0 0	0	0	0 0	- 21	/25	0 0		0 400		0		0 (15883	25050	28493 2	0		00 9				293 2		4 449					4 400				9 137		3947 240		0 200				98 28039 58 377				
Purse seine	0 0	0	0	0 0	0	0	0		0 0		0	0	0 (0	0	0	0	0	0	3 0		47	112 1	19 18		1804			365 18			185	0	4 416	2517	1448 10	078 413	257	117		183	51 25	39	309	0 5	
Trawl	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0		0 0	0	0		0 0		9	52	0 0	0	12	18	0
MEDI Bait boat Longline	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0 41	130 1	0 (0 0	900	539		331 24 226 37		161	169	0 8	3 499 4 523	171		81 16 350 8	3 205 37 366	2.49	33		88 77 00 2597	29	4249 2	0	0
Other surf.	0 0	0	0	0 0	0	0	0	0	0 0	0	0		00 50			500			00 50			520	483 4	40 83			700	700 1	753 297	3 3552	3782	3879 31	879 109	8 1198	1534	879 7	766 103	1 2435	1991	2426 4	1265 26	89 2193	1755	3166 2	2176 12	00
Purse seine	0 0	0	0	0 0	0	0	0	0	0 0	0	0		0 (200	0	0		0 0	0	0			0 0		0	0	141 27	4 10	50	16	16 9	1 110	6	559	23	0 0	0	0		0 0	1	478	353 3	17
Troll	0 0	0	0	0 0	- 0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	33	0	0 26	4 0	0	0	0	0 48	50	59 1	129 30	6 119	202	45	73	0 0	117	0	0	0
Landings AT.N Barbados Brasil	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 1	0 0	1	1	1	0 2	5	5	0	0
Canada	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0 1	21	47	22	6 5	1	9	32 1	2 24	31	23	38 1	22 51	113	56	27	52 27
Cape Verde	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	10	10	0 0	0	0	0	0 0	0	0	0 (0 0	0	0		0 0	0	0	0	0
China P.R.	0 0	0	0	0 0	0	0	0	0	0 0	.0	0	0	0 (0 1 761	1907	2352	0	0 871 44	0	0 0	0	0	0 93	0 (0 0	6584	0	0	923 1489	0 0	0	0	0 294 300	0 0	2209	0 6300 64	14 :	8 20 77 3905		3098 5	21 5785 52	16 57 99 4399				12 40 2357
Chinese Taipei Cuba	0 0	0	0	0 0	. 0	0	0	0	0 0	17	18		18 15		345	2352	46/5 2		110 950 36	0 9538	8130	14837 13		24 697. 89 (3 /090 0 31	48	82	4254 14	923 1485	9 19646 0 31	15	2117 13		2 0	2209	0.500 64	0 397	0 0		3098 5		99 4399		4557 4	0 0	40 2357
Dominican Republic	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0 .	0 1	0 0	0	0	0	0	0	0 0	0	0	0	0 (0 0	-40	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	323	121		95 0	0	0	0	0
EC.España	24943 19446		925 263		24148		33924 298	822 3101	14 24335	31499	8155 28	500 292	78 2579	32745	24580	22607 2	3731 30	196 251			22601	26735 25	155 254				25478 29		656 2067					2 17233					17295	13285 15	5363 160					47 24133
EC.France	14680 14703	14220 13	192 136	538 14620	16750	20064 1	17279 189	921 1959	0 17092	20293	6239 19	486 155	48 1341	3 15533	13239	9385	6163 9	210 91	58 685	9 8425	5666	6800 7	7733 104	00 932	0 3955	2929	2855	2391 2	797 186	0 1200	1921	2805 40	050 330				934 530 534 911				7189 60 1858 34	19 6344	4289 1100			70 06 521
EC.Ireland EC.Portugal	0 0	0	0	0 0	. 0	0	300 4	0 570 60	0 600	620	070	500 9	20 24	740	110	600	200	200 /	0 00	0 0 7 1229	011	610	62	0 1	0 70	442	221	1770	776 66	7 409	422	194	0 4 169 318				934 911 974 647	18 8/4 70 1634	1913			64 2093 78 1175	1953			06 521 56 101
EC.United Kingdom	0 0	0	0	0 0	0	0	0	0	0 0	0_0	0	0	0 1	0 0	0	0	0	0	0	0 0	0	0	0	0 1	0 0	0	0	0	0	0 0	0	0	0	0 0	59		513 19					15 0	0	0		6
FR.St Pierre et Miquelon	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	4	0	7	2
Grenada	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	2 1	6	7	6	12 21	23	46	25	29
Iceland Japan	0 0	0	0	0 0	2	135	945	599 117	380	5716	4633 19	713 143	25 586) 4771	3306	4717	5875 6	472 17	19 146	7 2059	1331	1345	825 5	31 121	9 1036	1740	781	1156	576 84	4 470	494	723	764 73	7 691	466	485 5	505 38	6 466	414	446	425 6	88 1126	711	681	874 14	81
Korea, Republic of	0 0	0	0	0 0	0	0	0	0	0 0	0	0	52 1	74 147	3926	1588	6844	5011 7	707 79	22 479	4 2823	2843	5379 5	579 30	48 299	7 797	938	1326	478	967 39	0 373	18	16	53 3	4 1	0	8	0	0 2	1	0	0	0 0	0	0	0	59
Maroc	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 (0 0	0	0	0	0 0	55		120 1	78
Mexico	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 2	0	0	33	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0
NEI (Flag related) Panama	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 1) (0	0	0	0 7	0 140 236	0 0 6 217	226	1227	557 7	68 42	5 193	177	494	357 2	551 66	0 0	44	0	0	0 11	19	60 1	10 :	8 11	5	8	12	0 0	0	0	0	0 197
Philippines	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 1	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0 .	0 1	0 0	0	0	4	0 0	0	0	0	0
Sierra Leone	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	10	0 0	0	0	0 (0 0	0	0	0	0 91	0	0	0	0
St. Vincent and Grenadine	nes 0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	2	0 (0 0	0	0	1 7	04 1370	300	1555	89 8	02
Sta. Lucia Trinidad and Tobago	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 1	0 0	0	0	268	0	0 0	0	0	0	0 0	247	1	0	1 1	0	0	0	1 3	2	10 12	12	2
U.S.A.	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	10	0 13	0	0	2	1 (0 22	472	699		206 5	8 251	301	288	243 35	7 479	438	509 7	741 54	15 472	577	829	315 4	06 322	480			87
U.S.S.R.	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 59	9 0	51	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0
UK.Bermuda	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 (0 0	1	0	2	2 2	0	0	1	1
Vanuatu Venezuela	0 0	0	0	0 0	0	0	0	0 53	0 0	642	325	280 2	71 12	0 575	145	244	240	65 1	41	0 0	0 02	133	102 3	0 (3 300	331	137	823 1	0 076 46	0 0 7 172	26	137	41 9	0 0	205	246 2	0 1	0 0	40	107	0 01 13	74 349	162	0 424		07 75
AT.S Argentina	0 0	0	0	0 0	0	0	0 17	700 180	02 1472	749	1547 1	493 11	00 80	710	1229	400	500	281 1	00 4	4 13	97	48	80	8 (0 4	2	7		209 15	3 356	469	344 :	354 15		306	0	2 (0 0	120	9	52	0 0	0	12	18	0
Belize (foreign obs.)	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0			0 0		0			0 0		0	0		0 0		0		0 0	0	0	0			0		2 0		0	0	0
Brasil Cambodia	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	63	16 6	0 169	170	296	688 4	94 51:	5 476	276	800	731	732 38	2 520	395	421 4	435 51	4 1113	2710	3613 12 0	0 92			3418 1		0 0	3228 0	2647	522 5	56
Cambodia China P.R.	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 1) 0	0	0	0	0	0	0 0	0	0	0	0 1	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0		89 26	30			95
Chinese Taipei	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (1059	6792	12546 1	2225 17	491 249	85 2215	7 16686	13384	14600 16	6092 204	67 2034	0 18710					3 27592		0746 183	386 2136		23063 1	9400 225	573 1835	1 18956	18165	16106 17	7377 172	21 15833	17321	17351 13		30 12293
Cuba	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	81 10	5 42	75	30	0	0	64	0 0	13	15	17	11 (0 27	53	29		67 2			2	1	2 17	5	3	0 (0 0	0	0		0 0	0	0	0	0
EC.España EC.France	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	112	0 (40 17	0 0 2 457	889 912	106 947	295 372	307 15 7 1			185	0	0 280	1943		331 45° 129 8:			193 1		82 573 23 16	836 18	376 63	81 2	78 78
EC.Prance EC.Portugal	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0) 0	0	0	0	0	0	0 0	0	0	0	0 1/.	0 0	912	947	0	741 139			1153	557 73		184		129 8.					23 16 86 41	433	415		43 8
Honduras (foreign obs.)	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0		0 0	0	0	0	2 0	7	1	6	0 0	0	0	0	0
Japan	0 0	0	0	0 0	21	725	1047 30	015 867	73 8893	16422	5104 23	760 283	09 2102		11895	6331		218 20		0 109	306	73	107 1	35 10:	5 333	558	569		224 62		357	405	450 58	7 654	583	467 6	551 38	9 435	424	418	601 5	54 341	231	315	463 3	42
Korea, Republic of Maroc	0 0	0	0	0 0	0	0	0	0	0 0	0	0	115 3	46 527	6353	5697	9186	5030 3	832 56	55 373	0 2393	3230	3376 3 0	0 14	2 87	803	682	563	599	348 51	1 321	383	180	54 1	9 31	5	20	0 1	0 18	4	7	0	0 0	0	5	37	42
NEI (ETRO)	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	. 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	4 8	122	68	55 6	3 41	5	27	0	0 10	14	53	0	15
NEI (Flag related)	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 149	262	146 1	123 10			42		0 0	0	0	0	0
Namibia	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0 9	915 95	60 982	1199		1162 24	18 3419	2962	3152 3	3328 23	44
Netherlands Antilles Panama	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0 '	72 104	0 0	256	770	277 2	54 12	U 0	120	210	0	0	0 280	924	0	0	0 0	482	318 4	0 1	0 0	9 53	192	14	2 0	0	0	0	0
Panama Philippines	0 0	0	0	0 0	. 0	0	0	0	0 0	0	0	0	0	, 0	0	0	0	0	0 184	0 0	200	0	0	0 12	0 0	0	0	0	0	0 280	0	0	0	0 0	402	0 4	0 1	0 0	0	5	4	0 0	0	0	0	0
Seychelles	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0
South Africa	0 0	0	0	0 0	0	0	0	0	0 400	1800	734	631	9 9	2 0	0	0	0	0 1	00 10	0 150	150	150	150 1	50 48	0 1850	2320	3180	2760 3	540 669	7 5930	7275	6570 61	890 528	0 3410	6360	6881 69	931 521	4 5634	6708	8412 5	5101 36		6507		1502 31	98
St. Vincent and Grenadine U.S.A.	nes 0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	102	0	0	0 0	0	0	0	0 0	0	0	0 !	0 0	0	0	0 21	16 4292	44 8	0	0	0
U.S.A. U.S.S.R.	0 0	0	0	0 0	. 0	0	0	0	0 0	0	0	0	0 (, 0	0	0	0	0	0	0 0	0	84	212	9 I 74 I	0 99	0	102	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	8	0	0	0
UK.Sta Helena	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0		12	2 4	7	11	7	9	0 0	2	1	1	1 5	28	38	5 8	12 47	18	1	1	58 12	2	0	0	0
Uruguay	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	23	235	373	526 153	1 262	178	100	83 5	5 34	31	28	16 4	19 75	56	110	90	90 135	111	108		32
Vanuatu	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0		84
MEDI EC.Cyprus EC.España	0 0	0	0	υ 0 0 0	0	0	0	0	0 0	0	0	0	0 4	, 0	0	0	0	0 -	0	0 0	0	0	0	0 1	υ 0 0 0	900	572	535 1	0 368 53	υ 0 1 n	0	3	0 8	0 0 4 547	228	290 2	0 1	0 0 75 404	380	0 126	284 1	6 0 52 200	12 209			25 89
EC.France	0 0	0	0	0 0	0	0	ō	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0		141 25	0 20	60		31 12	1 140	11			3 0	5	5	0	0 0	1	0	0	0
EC.Greece	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0				500 50	0 500	500	1	1 (0 952	741	1152 2		86 1840	1352	950	773 6	23
EC.Italy	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0 5	00 50	500	500	500	500	500 5	00 50	0 500	500	560	613 5	90 83	3 500	600	700	700 1	942 334	8 3208	3433	3529 35	529 119	1 1191	1464	1275 11	107 110	9 1769	1414	1414 2	2561 36	30 2826	4032	6912 3		
EC.Malta EC.Portugal	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 1	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 1	0 0	1	1	1	4 0	2	0	10	15
Japan Japan	0 0	0	0	0 0	. 0	0	0	0	0 0	0	0	0	0	, 0	0	0	0	0	1	0 0	0	1	0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0
NEI-2	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	500	0	0 0	0	0	0	0 0	0	0	0	0
Turkey	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 (0 0	0	0	0	0 0	0	0		30
Yugoslavia Fed.	0 0	0	0	0 0	- 0	0	0	0	U 0	0	0	0	0 () 0	0	200	0	0	Ü	υ 0	0	0	0	0 (υ 0	0	0	0	0	υ 0	0	0	0	0 0	0	0	0 (υ 0	0	0	0	υ 0	0	0	0	0

Table 3. Total albacore catch-at-size composition (fork length 2cm lower limit) for the North Atlantic stock.

L	i	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
40)	1962	1712		19	13955	4461	1453	2875	12857	16018	3784	991	116	2005	323	38	4689	3004	1307	1420	621	16	10340	1490	605	1331	2009	2500	718	1695	2836
42	2	2820	8913		1542	5277	257	3575		33	310	124	991	13	189	108	3465	374	216	814	75	2520	1098	16878	1230	9849	3695	2075	3645	3675	2187	3703
4	4 1	10777	26691	1562	7813	28009	2893	7956	3724	10302	14036	5122	5001	64	3540	749	19438	9243	4927	4354	954	9262	6933	25841	2425	16439	4547	4920	7068	7057	8358	8776
40	5 2	24501	89033	18298	37038	19039	39488	25724	4602	12099	21859	11410	16683	650	6144	3225	20912	36791	13009	7802	3853	30003	22397	54204	17863	18042	6650	17406	31658	100596	33087	43672
45	8 2	20678	84377	33020	317929	56687	156630	84497	27255	50640	69461	53105	51504	1614	22867	12728	68732	136373	74444	23775	6194	69021	63032	147246	194902	203725	95046	96223	158382	395414	117962	144080
50	0 2	27101	87144	75846	691414	59515	322838	223801	25205	144448	73482	210861	187938	12720	245390	79318	235332	249929	248325	118451	50349	237641	169415	357054	558734	392834	210185	175294	279852 :	577039	171545	240585
52	2 7	78461	138136	105910	399413	119199	308367	195491	34632	241768	145106	254303	182873	46989	421252	187002	320893	309990	342847	282986	123503	338054	252280	374973	493421	416182	223751	113868	189773	390132	123700	263038
5	4 12	29251	243156	55963	230131	173392	269656	165789	46575	215768	133452	277114	147807	102584	392845	284972	244730	265991	236456	307347	160791	349057	339616	245431	224607	289902	195321	45230	87512	145955	70843	239503
50	6 9	94207	208094	85800	136811	122356	201411	215295	59155	191110	136329	192248	137174	94527	358656	325729	140201	140365	177752	188856	176812	145332	243228	235466	172868	217623	142968	30083	53215	44414	80033	155474
55	8 10	08587	294365	198306	293522	197344	316480	248295	77801	153423	80572	70506	130135	83627	124586	197574	105272	171050	162683	176679	240101	133735	307372	267683	251101	248559	125680	29479	69687	87288	184962	218371
6	0 14	10464	488136	441350	842569	514276	411705	276923	221338	148806	209331	179149	344732	251119	250652	230004	265671	437795	321687	265688	381566	285763	554142	462733	516084	289544	255548	53129	110512	201344	403383	405820
6	2 20	00762	596658	612245	849410	638942	257798	193378	266735	209937	281901	228244	380458	452449	427316	309267	498607	534882	447206	369400	527157	472457	670334	407299	528841	300251	316451	108092	111424	218928	411869	437567
6	4 26	52449	451849	415831	382693	468211	179578	188339	286230	287827	277107	273524	281142	432309	468316	357834	551804	498116	386344	450198	521915	557079	596130	320266	331808	230727	320738	172485	81394	139210	301988	316105
6	5 23	37382	224486	308415	198885	256681	152403	231043	237152	258344	149994	224666	190922	381253	376566	286031	424300	264852	266753	302065	331113	362469	260523	199751	163472	203247	262830	183379	48346	46702	113816	197001
69	8 20	00608	140019	205284	99825	171759	191179	265111	259424	293942	94155	195538	160470	387447	277576	237745	308333	156593	184257	209692	231098	208827	107164	130091	116210	205487	248957	163172	39355	25360	57284	142503
70	28	37782	101814	184830	138077	182480	306461	302041	330751	335979	127623	226659	152909	370131	241102	224519	243859	113869	185055	250311	212632	170200	83791	136450	114808	248052	223942	152450	20778	38801	86715	163785
7.	2 41	16963	134996	272967	202473	241160	360366	237839	273130	276447	181868	198161	205091	327283	207978	233564	206377	109433	183212	288237	168425	214552	104480	166847	125504	213076	231308	148309	20564	55020	117850	202718
7	4 38	39921	173662	250769	274710	425769	325390	193778	308811	287685	195391	228124	236176	366120	191028	254948	182821	127204	168958	287353	165721	219293	81167	164033	84894	232607	213034	170316	29112	71717	145439	222397
70	5 28	30436	212967	290620	226397	454234	259959	160068	230401	304880	204212	200035	248590	307257	206712	267356	155195	110802	160862	246032	139956	239943	85184	155297	90195	176060	185983	158480	45789	79302	121626	241658
75	8 24	43107	220589	255065	212511	336734	189495	162832	251269	258115	198242	184434	267758	295549	237118	262118	128359	98293	151945	181845	144930	159066	61527	133292	73224	150456	176402	157757	63760	86177	109231	213402
86	0 17	71457	226858	217453	192066	232678	142307	153825	255253	270839	117544	141562	189465	111564	136028	193881	117941	79133	112758	194610	133142	107129	49538	95341	81509	136239	152349	184243	83364	98185	89485	186716
8	2 13	31470	211104	157356	131874	152647	102115	114773	223949	232952	108349	98833	166140	83073	93509	132320	103418	70017	87502	116363	88944	64609	46914	64035	70002	125917	91060	146719	94637	88008	61573	142579
8	4 11	13279	198688	109275	106228	118462	99941	103606	166923	192716	96250	82354	129208	119660	62808	77303	88409	51912	50234	99232	61384	51346	50706	56061	43045	108350	58302	149729	85535	74082	46777	87605
8/	5 10)7736	184950	104965	60203	175280	75801	69708	109945	144448	63307	60522	81719	42599	26151	40625	67413	56336	24712	51988	48030	38826	31104	45820	47218	108849	51102	124947	68453	49277	36797	45751
88	8 9	95779	164702	69256	74024	135351	54838	48516	67613	111286	58784	55446	59750	37611	19600	24936	47149	33038	16272	45809	33449	34936	26278	27106	20756	63927	44034	87842	60627	42949	25006	29683
90	0 7	72642	154985	99637	83820	123669	74285	39351	55323	113829	90512	66908	84760	26744	21471	26837	49660	43161	23037	45369	20773	32993	19780	26122	22713	56307	59820	32266	54375	47836	32884	32120
92	2 5	52846	151483	118033	94852	70024	32362	34733	41750	94804	72981	75615	80604	16176	18632	23764	44528	62872	13884	33284	26221	34518	17350	19323	10800	32708	13148	30831	48159	40438	31102	33851
9/	4 4	19824	133828	136418	60804	100188	57242	27405	40453	78972	87460	80571	74369	21042	14369	22464	51133	43290	12178	33097	34683	58535	18177	16799	11206	25868	15426	30826	57255	37441	30973	42561
90	6 4	10653	123920	120209	65889	44278	25513	31149	35571	76713	86009	76488	67802	20598	12356	20796	43631	30278	13142	16589	24845	47536	25587	17047	8515	21137	30164	26597	72934	51068	47677	66495
98	8 4	16036	118154	120184	95867	49539	22965	25819	36590	59392	74415	65839	62806	16943	13136	11322	30766	22275	16911	21745	20449	45414	17085	15849	9183	22728	38571	26447	64781	55426	32573	66717
100	0 4	14719	92659	97957	73295	39801	50429	29613	39518	71746	73339	61059	78426	15880	10348	7744	29310	9255	45109	61981	31044	38126	15996	25434	10790	24868	115949	27344	62829	65085	50343	51625
102	2 5	50733	85336	95833	61994	28783	35367	31743	37803	50297	84311	56000	76594	19861	10335	6013	22166	7236	34661	29224	17871	39523	13664	17048	9571	18069	78702	15504	46318	52846	46285	43050
104	4 3	38543	59490	68619	53676	28634	34885	31289	36484	39119	79022	50934	68911	24822	11444	5807	19269	3674	12046	33243	22158	40351	11831	21224	13207	21083	34438	17590	39373	33156	27735	12520
100	6 3	32104	46932	45281	29492	12997	7160	19871	31088	29243	53681	29884	37816	16780	8565	3958	17124	2890	16074	18433	14323	40165	10794	15536	9862	16423	10376	9075	28518	23376	20554	6249
108	8 2	29093	32197	29498	17238	11320	8364	17285	30731	37892	41307	26803	31111	10502	7113	4733	15798	3293	20052	16009	22616	31762	7783	13978	10184	15330	5523	7790	17190	14885	12155	5665
110	0 2	23461	24055	22542	10042	13731	6899	14796	16645	17428	23895	21879	37407	12826	5846	2654	10571	2861	27630	9367	17339	21496	7318	7811	6825	10784	3764	4002	8819	6549	3747	2782
112	2 1	10372	9183	9388	7708	10878	5359	8746	14919	14581	19791	24547	56052	9417	5757	3348	7926	1719	21226	6707	6193	16071	5256	4886	4905	7926	1825	1399	5000	6029	2748	2518
114	4 1	10049	6716	7737	4211	7564	4784	13564	12305	10000	17888	26813	33343	15342	6020	2034	3212	520	10824	5473	3220	6483	3221	3130	2616	5180	804	1345	2192	3191	1945	1569
110	6	5037	4135	2887	1995	5249	1618	4146	10773	8963	10770	14769	10018	7584	3054	999	1104	368	770	5129	3131	2809	7527	1023	429	500	388	787	1309	911	1266	1012
118	-	4303	3009	1494	1651	3505	1376	3896	9690	5738	7221	7980	5104	4611	1555	326	1382	596	111	1581	1566	732	9232	753	403	447	433	1029	1006	644	1085	846
120	0	1579	572	1285	1221	3726	3427	9969	8966	4109	8354	6534	5694	1720	589	68	1968	307	42	2439	8748	1298	12709	685	516	322	517	199	894	355	860	333
122	2	697	260	21	1101	1653	178	1104	5632	1253	3980	1288	141	125	56	11	779		10	107	17521	39	5253	192	138	49	67	111	299	203	376	420
124	4	468	9	913	431	964	779	3179	3641	1174	5287	1833	484	573	207	16	779			399	15004	4	4	71	226	37	469	45	293	121	295	283
120	6		173	417	200	313	6	441	2303	346	3864	739	185	26	13	5	100		98	565	8857	1	747	142	76	40	101	90	269	110	140	164
128	8	417		5	430	313	6	175	640	72	1316	105	104	13	13		68		50	7	4170	2	6	72	4	26	50	53	92	49	153	20
130-	+	966	165	154		1298	197	3029	2716	692	4878	663	1125	67	110				31	604	9533	755	6131	506	407	86	102	121	732	111	640	248

Table 4. Total albacore catch-at-size composition (fork length 2cm lower limit) for the South Atlantic stock.

Li	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
40	25.0	2,,,,	206	1,,,,	2117	38284	1765	3319	1981	359	4750	5778	7240	2	1,0,	55		604	402	300	89		469	4	7099	2000	2001	886	226	415	287
42	6		206		1059	15444	272	953	283	52	3877	1781	1218	408					121	200	201	771	1140	26	442			1424	356	312	215
44	10	2		340		12534	472	511	660	130	5554	3772	2351	407	75					367	205		1378	27	424			2718	655		
46	16	120	412 206	719	423 212	14653	629	885	906	26 470	5816 7386	3788	3483 3080	205	487 1460	1212	155	170	603	1125 983	659		1959	27	689	17		4385	1096 844	597 103	376
48 50	16 6	129 381	702	1362	212	7443 17909	1765 5331	1794 1306	711 1100	202	7064	7657 10168	4846	406 1	8650	3086 3692	155 312	179 23	3781 1922	8397	2926 28330		2131 3998	55 929	561 1918	17	40	3318 5195	1518	103	116 13
52	O	254	702	1021	423	11211	6775	1896	1119	607	5361	6878	3579	203	8613	2645	936	179	4505	12665	12712		3429	330	732	33	40	2600	658	9	38
54	380	383	1030	1416	635	10839	11749	4375		718	5378	12610	5941	204	4980	1819	626	90	2030	37615	47091	37831	4566	5036	5387	70	393	3695	1268	368	270
56	20	385	1854	3405	1270	10280	9762	4445	1377	1244	6636	11216	9163	206	6715	497	778	179	8296	50826	39300	48620	6390	7219	7012	168	56	3885	2557	2157	1245
58		1679	1442	3853	705				,-	3763	11868	19287	13118	1160	3613	1874	1090	179			58622		9322	10479		789	2236	2155		3321	3997
60	1211		5562	12258	847			8175			22480		30634	6045	11403	3751	2339	2114		84716		74155	15069	15661		6065	5787	0	12277		3901
62 64		7641 7521	8034 14382	14695 17079	3176 4304	22350 32723		9378			31451 47890	28256 46766	50277 51195	7574 14022	9700 16145	5019 7721	7460 16166	3990 4291		91877 72657	89756 39063		16574 13980	10854 16433		2185 7823	10691 13248	36310 65569	10370	14956 18835	9886
66	5530		15450	18046		25231	, .					35796		20893	15384	9209	15278	5556		43507				11419			18567	46852		33883	
68		11008	14529	23208				33957					50263	18244	28135	35887	68329	9856				60973					22352	24616		37089	
70	6928			51202	9308			75029				,			25758			22234		109223	48733			33337			42822	27154		35603	
72			33345		22862									26736				48307		125482		73297	60250					19230		22123	
74	33229		45862 61074		17748									46710 77653					96624				64732					26396	5082 1 11086 1	22643	
76 78		,																				88591									
80	55175		71201	88501																		124816							63521		
82			94968																			110508									
84	117486	88709	118411	101381	70207	92517	91176	134491	74501	69905	171135	190006	228193	117619	141068	159462	101100	171025	185182	131022	116227	166688	104959	144769	80924	77855	112827	104086	82148	88599	66070
86																						138942									
88			100709																			118246							55857		
90 92			72642																			104928 97193							55479 : 64498 4		
94														67468								76891	68385						72251		
96	33359	46066	59167	61496	45633	58242	42417	50125	30058	24402	57589	66190	80978	64419	52113	46645	7294	88131	68150	60347	42458	26487	53158	50830	51487	41932	69854	82363	99018	56213	49694
98		,	63487	75549			,,,	47224					60716			41829	5077					15672									
100					58199								63437			34033	8694	76651		31740											
102 104			52412 39045		35371			66741						37785 43444		39716	7274	89052 61029		48481	34722	31160 70645		97461				49610 58203			
104	28826			26940	65454			57659					44298			12046				72427	30255			51620				57179			
108	26772			24744				42894											45697		39231							61968			
110	28976	35771	16062	25858	61535	20248	41723	33236	17374	15408	27734	54980	46669	20096	19574	7912	92913	56591	25554	64175	49092	36726	29757	47755	44786	61547	103139	51959	48823	30207	18188
112	20204		8334											19224	10014			51794	18199	-,,-	39557							41858			
114	12009		7574	5839	13282			21285			18442	33626		28045	4226		59527		13733	17381	28961	10041	31117	30220			73391	35619			
116 118	9150 5584	9126 4764	2352 924	1981	13364 6379		9188	15554 11534			14676 10570	26766 25464	20843 12944	49138 26461	1080 1011		72772 21933	12018 4376	10148 3633	19736 10343	17869 13254	6839 6777	22124 15539	25556 20802			46584 35946	12268 11859	42055 27461	-,	
120	2607	1365	918	3038	13534		11954		9154		7042	25835	9759	8880	382	612	1439	2892	4076	7231	7114	3773	8500	23523			26739	16061	6036		3939
122	419	66	168	948	2316	805			3280		1136	7200	4246	2332	28	240	730	486	383	1017	2043		9245			7201	1604	5643			2673
124	140	66		1175	1789	2107	4458	2685			809	4026	4768	1513	111	166	34	968	685	729	382	1388	3288	629	628	3507	2779	10980	887	2012	1419
126		66		408	837	565			1466		245	2589	1509	378		55	5	449	402	245	138		1505	1335	1369	264	2603	11161		1383	994
128	200	122	206	433	837	186		517		6151	136	703	1099	252	138	55	22.4	(25	123	129	201	771	4617	372	316	226	765	3042	638	449	698
130+	280	132	374	681	572	1163	1551	1496	2660	16692	145	4595	1415	252	187	1547	224	635	1086	367	2293	1935	6842	978	651	296	2735	11219	1006	1122	1697

Table 5. Albacore catch-at-age matrices (total and by fishery) for the North Atlantic stock.

Fishery	Age	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001 2002	2003	2004	2005
TOTAL	1	418825		370992		676426	1700		203573			1093186		1,0,	1627149	1/0/	1//0				1//7	1//5	1//0	1688278 1	1//0	1767071		03659 890217		755765	2005
	2								1740841																			29850 413287		1506361	
	3					1722563 550008		915648 293101	1450687		961316	968611 212352	1241157	1369441	950165 116405		775498 232693			1230372 252558		878391 107572	335375 115001	751169 87871				36415 222915 44387 372563		547655 136402	
	5		382791	462393		239202	147127	70720		270508	282616		185383	44557	42069	77088	129324	135928	19504	77060	56744	139997	47086	62350	33817	91255		69124 118276		106600	58587
	6	103280	252748			82277	75000	77395	94002	167176	159430		217923	54305	28133	21430	107624	46330	111671	120509	75823	150462	47530	50836	18555			85813 234146		111511	261638
	7	81202	123175	73310		22750	61247	8791	21575	29837	113959	7448	17115	10595	7989	4507	7637	2902	14733	30792	9929	55891	18390	32401	20758			24524 61364			7059
DD EGD (8	130365	98338	105537	67708	96675	49343					227194		98575	44402	21187	68319	12042	95037	72226			77340	48528	40227	62916		17315 46811	37049	31806	20291
BB_ESPct	2	142941 405706	221221 378872	88717 352917	890148 251625	299277 731031	762271 336929	542733 458156	49132 681585	788846 509348	209617 118883	557287 500358	389840 507724		1081628 1003094	655016 616367	749776 935027		534404 486966	594866 549187		486290 592880	523013 951722	748028 1 150591		905905 222796	449710 1	53170 294362 49601 19406			156685 248954
	3	497970	428767		321643	823727	917838			870886	418007		772200	861553	498873			139445	385870			355731	111883			157941	520967 1			237015	618149
	4	72896	308460		157663	58914	104944		102678	205629	45461	39916	97690	33484	13670	50772	130612	25405	46786	3167	13693	1023	9842	16319	5420	46821	32311	387 104490	62857	29950	70395
	5	25	28665	40828	9007	6412	37	656	4	7661	637	2287	5083	78	1098	11225	3935	0	101	38	2	0	8	3202	1156	9181		10977 6044	3043	63	2101
	6	1479	2384	31376 5840	8618 0	3098	8 3706	1	678 72	3467 0	1451	2510 0	989 135	0	1502 1996	132 856	5346 437	0	282	260	0	0	64	9592	29 7	2186	1714 0	4131 6829 1 2	8542 0	1904 562	1090
	8	0	0	8048	0	661	3700	0	0	0	0	0	133	0	1341	723	161	44	282	0	0	0	0	3341	64	77	0	909 232	9	258	0
TR ESPct	1	101724	286692		859078	273057	579607	332630	71760	33651	135610	396734	346814	139814		. = e			414509	281496	203586	699687	451595		382115	428108	121462 1	15182 396699	597331	429451	672383
	2	300684	894078	1123107	1161164	1561933	803220	800257	944155	863008	790039	713708	999326	925937	815853	778649	1079445	1012944	622201	569511	663316	975008	792687	811134	463020	464849	284163 2	95745 310407	356823		1127176
	3	213065			439813			241015		480633	316064				343109		260155		229336			230492	61973			226229	225758 1		83384	126303	158562
	4	22969	45952	23944	35107	8264	2610	5604	2188	19025	5744	5527	4841	36913	59608	5215	21952	2629	4697	1424	1823	4433	2254	5686	18371	30347	38872	4696 20602	12261	12363	4543
	6	1406	87 671	0	954 2467	1991 533	1355 190	231 630	0	0	605	2464 1468	933 2378	0	5917 2738	353 269	2668 722	1033 215	1052 138	59 3	2 87	5 13	131 70	252 227	139	6869 2005	7433 2373	4895 2652 242 3725	7717 11614	4477 1450	3596 372
	7	0	4	0	0	1296	15	0	0	0	0	11	344	0	706	110	295	0	0	0	15	6	9	10	0	29	268	3787 440	349	872	460
	8	0	0	0	0	0	0	0	0	0	0	2	1	0	1670	166	647	0	0	0	196	75	0	26	0	0	477	792 367	289	176	217
TR_FRA	1	39611	300170	93990	200666	84501	193323	89286	32654	6961	45856	78508	37994	20127																	
	2	337894 299981	814612 70955			120679 351225	495479 9319	328983 30211	47785 1021	178531 99429	267149 106876	141233 61125	109479 33012	133294 50379																	
	4	948	2480	16520		252361	9319		179148	3936	1942	1094	53012	5314																	
	5	0	0	0	0	59022	0	0	0	1	205	488	102	1																	
	6	0	0	0	0	2	0	0	0	0	0	291	261	0																	
	7	0	0	0	0	0	0	0	0	0	0	2	38	0																	
LL JPN	8	28	402	263	299	392	395	1574	597	753	1185	44	34	15	23	11	0	1291	1406	23954	14217	3316	0	204	249	269	431	948 0	63	2464	2178
EE_3111	2	1572	1646	2145	2725	3721	2609	11435	651	3867	4060	479	479	364	1433	2749	1684	3386	4674	3244	56	46	38	1016	1401	3162	3648	4844 1503		3219	9749
	3	9860	10353	12829	10245	19856	18580	24264	8430	30200	4647	6526	3544	4562	7792	10706	8197	11273	3518	1086	4250	3214	4119	3145	4132	8902		18065 11157	6436	10902	18550
	4	23004	27451	15560	10341	31514	23645	36225	20041	20603	4476	14742	8213	4141	12511	8638	12267	15612	6462	14323	13449	9934	14308	5516	4815	10962	9237		9562	13042	6908
	5	24463 7526	25642 9419	14540 4597	5597 3466	10782 11680	10289 9386	12778 19397	6171 8063	11073 7956	8942 4943	7400 13642	3378 6378	7802 1823	9382 5884	13300 2939	12041 5900	3319 6780	8380 1198	837 2641	1853 3787	1381 3158	829 2782	823 4438	1537 4107	1406 2278	4150 8713	9618 3931 5670 5040	3989 6583	5843 7314	11292 35085
	7	756	1590	194	312	500	36	252	676	871	112	771	10	4596	3146	715	1501	476	1421	780	1332	1280	895	197	255	781	1270	5567 3756		5116	1102
	8	7887	2274	900	1445	831	2293	6699	2425	1311	4935	2520	3053	2228	1083	4602	899	1855	2050	2129	2008	2002	3450	5262	5803	1341	5196	3416 3338	3405	3259	846
LL_TAI	1	0	2378	1092	651	2316	2886	5807	4229	6016	17363	4214	4959	42497	13557	759	0	0	0	1220	3204	7249	94625	40	12	22	0	147 0	136	0	0
	2	6788 80720	22943 93753	22220 108555	1043 44667	12267 64780	21369 30920	16639 40222	49694 103330	29638 103146	43023 102087	19707 89694	35289 122557	63286 76587	20189 24433	7045	5364	0 82568	0		22683 33015	1864 66020	7343 42031	0 82779	0 87236	0 162906	0 3093 1	400 40 46877 12344	924 5179	1032 9196	0
	4	131295	220341	139315	75196	161212	75968	86690	70072	166300	130992	123487	189058	72525	23137	15716	21621	23243	2932		22340	76484	41063	48932	30814	57539	2137 1		48119		270
	5			193556	102006	101961	113489	28420		173810	156590	198673	161599	21565	6880	41142	54616		684		48462	58017	24332	11686	20661	38583	1	0 39908	36401	49818	0
	6	58759	129146		174022	28956	52194	33592	54403	120172	136196	102454	180423	42250	13478	11682	7733	24580	0		18748	34969	1150	22059	7356	13748	86525	0 101557	93285	62002	
	7	32766	85570 44114	53740 57709		20258 22712	53529 31240	3811	210 166925	232 160746	96	29 200083	145	88 89386	28 28516	0	0 3758	3 3930	3414 68746		109436	13241 5240	0 46597	15292 17194	14274 22635	26646 42263	141124	142 33107 1321 8023	38913 2600	55579 2415	4 153
LL USA	1	70728	44114	37709	19018	22/12	31240	111922	100923	100740	1001/0	200083	219030	09380	28310	0	3/38	3930	3	32983	109430	3240	40397	1/194	22033	42203 8	0	0 0	2000	2413	133
LL_COLI	2						0	0	0	0	0	0	0	16	0	0	0	1	0	12	48	13	8	5	3	28	4	13 1	1	4	4
	3						2	0	7	6	11	5	17	193	27	5	31	307	32	9	136	25	95	74	0	20	37	105 93	5	6	27
	4						76	19	304	247	476	229	718	232	368	137	31	1988	83	4192	3427	842	542	802	2174	1515	4122	2535 732	398	614	1150
	5						3 91	23	12 366	10 297	19 572	9 275	28 863	403 749	611 501	1152 321	2418 2037	2066 3077	1206 1050	1092 187	3042 377	4823 2808	682 1876	1177 1945	1129 1098	2182 353	855 1073	4281 3146 811 1303		1473 1539	1086 1072
	7						25	6	101	82	158	76	239	405	932	495	469	1758	2121	3289	3365	3531	1435	3213	3009	4093	1291	967 715		1279	1277
	8						2	0	8	6	12	6	19	50	120	621	1539	535	488	697	931	4112	803	863	814	537	446	1051 951	551	520	474
Others	1	134521	118973	50698	52843	16884	18017	55022	45200	187031	230899	56398	19207	5439	82614	66929	102582	152293	263092	155965	52059	65944	315309		290632	432759		34213 199155	194091	28560	447638
	2	390644	204751	202246	15054	38334	14226	74664	16971	22488	28922	48889	37493	47522	294043	422744	462184	517990	801387	846909		675085	652755	822990 1				79247 81930	75664	91654	411244
	3	144863	248849 238234	269245 65325	31533 83726	12070 37743	41402 31996	44487 52158	39639 46151	17964 71021	13622 58871	51499 27358	8493 14608	26204 3744	75931 7113	102556 4327	115915 46210		201882 28121	125734	240944 123184	222909 14855	115275 46992	54373 10616	102731 25200	517350 95030		01337 49644 21663 222959	235414 126230	164233 48503	361170 63068
	5	40169		213469	57422	59033	21953	28634	11525	77950	115618	47251	14260	14704	18181	9917	53646	3066	8082	10710	3382	75772	21104	45211	9194	33035		39353 62595		44927	40511
	6		111127	88757	87314	38009	13130	23751	30492	35283	16268	40701	26632	9483	4030	6088	85886	11678	109280	63542	52824	109514	41588	12575	5965	27360		74959 115693		37301	103160
	7	47680	36011	13536	271	34	3936	4721	20516	28651	113592	6559	16205	5506	1182	2331	4935	662	7494	4884	5213	37833	16050	13682	3213	552		14061 23344	9945	9240	4216
	8	51750	51949	38880	46646	73132	15765	23495	35624	14266	55947	24582	19680	6912	11673	15075	61316	5678	23748	36417	41142	109225	26491	21842	10912	18699	7996	9825 33901	30195	25178	18602

Table 5. (cont.) Albacore catch-at-age matrices (total and by fishery) for the South Atlantic stock.

Fishery	Age	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
TOTAL	1	288	1107	3430	6076	4025	150817	34166	19760	9674	2802	55490	59790	34701	1847	32132	12638	630	990	33754	56535	172942	114918	24363	4873	16231	69	239	29750	28629	4668	4029
	2	11132	32089	49090	71499		123518	57452	51035	17771			169973	193570	51011	66376		46813	10652			294096		73429	75253	86393	21267		216973	26442	79294	14069
	3	103239 409471	125025	167207 363026			254779 317738	222259													442935 680645			240556 374953	108504	164116		245337 538495		17383 192152	125207	193911 483121
	5	201948		435849					285747																	258210				274669		79038
	6	94213	104820		116525					97769			189947				79720		260604			155963	86226			235875	110967			281076		185883
	7	21140		121157					113342				74061				106119		100650	87880		12476	16265			78228	24031				27504	64262
	8	212251	238610	115859	140702	344552	183558	372114	289099	157190	169515	196246	380578						379471	265728		340817	282112	366478	382096	363837	627033	691391	423150	399501	355985	173298
BB_NAM	1																				0	84	87	105	0	0	0	0	0	0	0	90
	2																				740 67014	4332 3599	4477 3721	5435 4516	1587 5629	1196 4243	3603 43105	1052 15492	0	0	4507 11959	2594 16470
	3 4																				26458	7171	7412	8997	88417		89958	70646	1345		113186	58885
	5																				3753	53238	55031	66799	19763	14899	46097	108993	5348	4551	73480	26269
	6																				937	1613	1668	2024	0	0	5602	9945	27227	23169	14102	21807
	7																				0	2	2	2	0	0	845	889	60274	51291	4385	1384
	8																				0	500	517	628	0	0	0		29346	24972	5806	11157
BB_ZAF	1	0		0		0	0	807	1184	817	342	695	569	0	1519	1007	9949	0	0	127	264	2955	93	207	0	0	0	9	0	0	0	0
	2	0		0		0	0	20104	12704	20522	25244	51240	23119	3950	33583	38545	5179	7946	4195	52617		36662	14574	47283	18889		4099	31632		0	46325	5181
	3	130		3		149	0 3476	29184 77801	42784 114058	29523		144598 225423	52273 153607	17820	35157	96174 342012	56339	69326 193128	41382		206500 310165	43396	40754 251431	100646		107267 223410	76942 114953	191172 337787	32013	93176	43353 24467	137161 162037
	5	1792		39		2065	48036	33847	49620	34241	36114	73305	186631			115102		25190		127344		173072		135310	149447		29615	70081	69269		156904	3349
	6	254		6		292	6802	1796	2633	1817	7732	15695	8087	12528	15020	11518	27	2507	0	2171		15415	5660	20324	13274	7632	17287	5406	131	29179	29824	390
	7	468		10		539	12537	1671	2449	1690	11866	24086	15103	13062	9364	915	12166	4720	455	767	1680	2835	2885	13482	185	3519	20708	517	6891	1076	16139	263
	8	82		2		94	2194	0	0	0	2195	4456	2205	98	21	0	0	5	967	913	529	1773	111	5510	2254	1928	2555	1509	150	4846	4004	0
LL_BRA	1	0	0	67	29	0	0	0	0	0	0	0	0	70	0	103	6	26	0	4820	1593	5038	4552	601	663	324	3	10	26	3	0	5
	2	0	0	986	151	553	0	0	92	0	0	54	0	421	55	94	89	1616	38	14532		7484	12185	406	7866	3854	1865	400	108	1701	188	131
	3	0 80	23	3332 7240	17 16999	2268 9714	35 290	23 682	101 166	2030	1293	2381	0 16	542 1589	234 2179	837 2111	1986 4654	15855 2560	616 861	28338 56242	4875 9661	5751 4941	10525 7890	3200 2399	4721 6519	2334 2787	14827 8753	1181 3464	3576 7202	1423 3607	692 536	236 809
	5	902	4321	12956	10302	6009	119	3279	2968	7913	6755	5506	9118	2430	2179	2762	5392	13950	996	50932		6535	11218	4832	19592	9469	22600	2954	28229	10967	2011	339
	6	2921	3293	3758	1957	4997	10643	5649	14798	14629	11606	4907	12486	8738	11215	1858	3709	3236	1999	33555	6880	6813	2816	5098	32840		10474	41922	31431	18543	4428	4363
	7	3965	6519	4797	713	1995	6502	2966		8848	4068	1411	3661	2495	3107	6611	3908	1957	44991	10733		149	6	1196	11283	5092	4	25011	3449	10415	179	898
	8	0	0	954	70	46	198	224	2153	431	139	1235	202	766	1135	5937	5769	19727	59679	34758	10327	10994	10961	11172	55387	27330	98405	159309	52813	33610	5104	7661
LL_JPN	1	44	0	0	11	0	27	0	1851	0	0	258	0	0	0	0	0	0	0	2	276	4	229	312	528	0	0	22	19587	20593	3685	3599
	2	430	0	0	56	263	36	0	604	77	0	939	520	0	0	0	0	24	350	6	3133	576	1231	1068	1407	1812	0	1749	4016	4725	6396	4453
	3	1197 6241	23 655	33 941	6 6395	1142 4359	1873 12252	6296 9775	10684 7521	113 97	267 2753	1369 6499	530 2091	0	47 3409	890 1638	802 3985	1034 745	5658 5528	954 4836		1012 4965	2011 3417	1645 2798	2114 3387	5193 8914	3733 12369	2871 9951	1679 4165	758 5908	9595 9086	8444 5710
	5	4122	1580	2273	2878	2322	8883	17456	6936	813	593	4787	5082	709	8056	1730	4446	1705	7164	8201	6095	11982	8541	3271	2538	9044	2440	4712	4494	6472	7743	5241
	6	2414	772	1110	0	317	463	3529	4837	1697	4503	4433	770	0	882	1785	4852	10605	7039	5967	5742	2809	3188	3965	3971	6127	3254	1518	850	1486	4070	2788
	7	3917	806	1159	54	45	97	1702	2385	4917	3501	8037	24496	7268	1304	7729	6868	6993	747	488	428	1027	3059	6005	5432	6397	2433	446	21	92	670	260
	8	580	127	183	8	0	19	233	3924	0	136	6270	1237	6546	6612	6444	7598	8025	6747	5060	6485	1347	3503	3228	3148	429	7106	2456	134	177	94	40
LL_TAI	1	236	1097	3276	6030	4025	150574	32116	15812	7990	2261	54336	59076	34014	0	30956	1002	593	429	28358			106913	22985	3666	4094	14	25	165	0	0	0
	3	10329	31843 124300	47960 162943	71181		122836 251292	56354	50257	17668 90539	8782		141081 288355	188127 267754	10137 78417	23960	14411 226082	36298	5697	85600 163492				15642 122129	43724	48826	8545 67941	1015 2996	660	17682	13102 49178	8323
	3	101582 396878	302486		218698 367285				321014 363635			407144					370980				257682	181188			26267 31909	29335 35630	40109	8789	22771 39686	14645 38226	27708	192039
	5	182669								54541											258813					112674			157860	98229	65357	40052
	6	78237	78249	89917	96144	141083	126770	126779	149389	65969	39991			126525		149020	69250				156813			141256		182827	47994	106372	178255	165455	93483	132254
	7	2679	79173	71039	268007	18341	73185	2314	76434	11604	438	45756	17	36400	50966	59200	76187	0	29928	57584	58369	1024	144	69	63147	62608	20	63462	22030	93901	5951	61250
	8	103192	109530						258573												286101									321896		118253
Others	1	8	9	87	6	0	216	1243	913	867	199	201	144	617	328	67	1681	11	560	447	810	3122	3046	154	16		52	173	9972	8034	983	335
	2	372 460	246 679	144 899	111 532	0 150	647 1579	1097 44735	81 32923	25 30625	13395 37801	14582 40150	5773 14067	1073 4942	7237 7581	3778 14037	1282 20756	928 10105	371 6273	5835 8034		8915 7405	10464 13396	3596 8420	1781 4530	6420 15743	3155 38915	7092 31626	36023 6520	2334 557	8777 10430	1710 23276
	3 4	6142	4949	17520	5725	3988	5379	112040	32923 84146	81148	62008	76182	38924	40163	35786	36048		9564	24107	37798		17305	49749	31272	33596		78455		106043	50091	13248	63641
	5	12464	16466	60499	22923	29167	51641	55742	41581	43006	30568	51583	54783	98609	78590	12882	50201	7428	24107	17713		54116	27947	11498	12572		20328	20776	8516	46884	25277	3789
	6	10387	22506	46293	18425	18567	14541	6184	3482	13657	25050	44831	1980	53541	3009	7705	1882	3609	11941	9588		14417	6744	9522	5946		26357	51220	26812	43244	13130	24280
	7	10112	6771	44152	11690	6410	13473	6139	19186	21101	15990	25887	30784	14757	8327	3795	6990	0	24529	18307	10470	7440	10170	10	10	612	22	14316	1235	9474	179	205
	8	108396	128952	68901	36133	24448	26654	18011	24449	7279	9302	11986	17032	21394	1172	4321	6645	21377	82202	38970	44807	12422	9560	8692	16262	9585	68049	118078	6412	14001	9650	36187

Table 6. Standardized annual CPUEs for North Atlantic albacore used to fit the VPA-ADAPT model to assess the North stock.

	Japan NB	Japan NB	Japan NB	Spain TR Age 2	Spain TR Age 3	USA Numb	France TR	France TR	Taiwan LL adjusted(WG)
Age Range Catch Units Effort Units Selectivity	3-8+ Number 1000 hooks Partial cath	3-8+ Number 1000 hooks Partial cath	3-8+ Number 1000 hooks Partial cath	2 Number fishing days Partial cath	3 Number fishing days Partial cath	3 - 8 Number 1000 hooks Partial cath	2-3 Number fishing days Partial catch	2-3 Number fishing days Partial catch	2-8+ Number 1000 hooks Partial Catch
Model	Neg. Binomial	Neg. Binomial	Neg. Binomial	LogNormal	LogNormal	Delta log-	LogNormal	LogNormal	LogNormal
Used in assess	Y	Y	Y	Y	Y	normal Y	Y	Y	Y
Year	•	•	1	1	1	1	1	1	1
1959	27.46								
1960	23.33								
1961	19.19								
1962	28.38								
1963	14.99								
1964	14.92								
1965	11.04								
1966	10.36								
1967	10.92								9.79
1968	11.14						0.69		12.54
1969	9.14	10.66					1.11		11.92
1970		10.50					1.12		9.72
1971		5.95					0.63		6.14
1972		3.00					1.25		6.81
1973		4.14					1.33		8.51
1974		3.60					1.31		8.34
1975		3.08	2.56				1.36		6.45
1976			2.14				0.95		8.74
1977			1.41				1.23		7.74
1978			1.18				1.46		8.10
1979			1.40				1.27		7.96
1980			1.32					1.46	8.94
1981			1.44	23.63	9.32			1.57	8.23
1982			1.26	31.13	18.04			1.55	8.84
1983			1.14	22.09	18.70			0.86	9.14
1984			1.00	18.21	13.24			0.47	7.85
1985			1.10	13.79	9.76			1.70	6.91
					19				

1986	0.61	22.16	13.87	1.072	0.37	5.50
1987	0.47	24.13	11.86	0.635	0.62	5.28
1988	0.75	24.30	14.56	0.633		11.57
1989	0.71	12.98	10.16	0.743		8.62
1990	0.54	22.21	7.87	1.188		5.42
1991	0.64	32.61	8.59	0.98		7.24
1992	0.51	27.78	11.00	0.678		5.60
1993	0.50	24.58	11.90	1.044		6.72
1994	0.64	40.13	8.11	1.148		4.64
1995	0.43	29.66	9.16	1.176		4.70
1996	0.37	34.74	3.53	0.752		3.09
1997	0.50	21.36	6.28	0.986		3.61
1998	0.82	19.63	8.18	1.025		4.09
1999	0.48	15.87	7.91	1.014		2.63
2000	0.79	7.97	8.70	1.079		2.52
2001	1.07	12.04	9.65	1.461		2.49
2002	1.13	11.05	4.01	1.336		2.58
2003	0.82	12.25	4.84	0.894		3.10
2004	0.62	27.64	8.23	1.01		2.52
2005	0.84	37.79	8.29	1.145		1.96

Table 7. Standardized annual CPUE s for South Atlantic albacore used to fit ASPM models used in the assessment.

	Taiwan LL	Brazil	Japan	Japan early	Japan Transiction	Japan Bycatch	South Africa I	South Africa 2
	Adjusted (WG)					•		
Age range	3-8+	3-8+	3-8+	3-8+	3-8+	3-8+	2-4	2-4
Catch Units	Number	Number	Number	Number	Number	Number	Number	Number
Effort Units	1000 hooks		1000 hooks	1000 hooks	1000 hooks	1000 hooks	fishing days	fishing days
		Partial	Partial					
Selectivity	Partial catch	catch	catch	Partial catch	Partial catch	Partial catch	Partial catch	Partial catch
N f - 1 - 1	Log Normal	ND 1.1	NID 1.1	ND 1.1	NID 4-1	NID 1-1	I NI 1	INI1
Model Used in	Model	NB model	NB model	NB model	NB model	NB model	LogNormal	LogNormal
assess	Y	Y	Y	Y	Y	Y	Y	Y
assess	1	1	1	1	1	1	1	1
Year								
1959			40.39	40.39				
1960			38.09	38.09				
1961			30.60	30.60				
1962			21.93	21.93				
1963			21.23	21.23				
1964			21.31	21.31				
1965			14.36	14.36				
1966			13.05	13.05				
1967	20.74		13.87	13.87				
1968	18.49		12.80	12.80				
1969	19.72		7.74	7.74	8.53			
1970	14.80		4.10		4.10			
1971	14.90		6.49		6.49			
1972	10.34		3.48		3.48			
1973	9.02		2.34		2.34			
1974	10.19		1.38		1.38			
1975	11.91		0.83		0.83	0.80		
1976	12.60		1.02			1.02		
1977	13.75		0.62			0.62		
1978	12.28	1.17	1.18			1.18		
1979	11.43	3.32	0.47			0.47		
1980	10.51	0.98	0.70			0.70		
1981	8.38	1.26	1.34			1.34		
1982	8.39	0.23	1.10			1.10		

1983	8.23	0.74	0.86	0.86		
1984	9.29	1.17	0.87	0.87		
1985	8.88	0.52	1.43	1.43	735.42	
1986	8.78	0.93	1.72	1.72	661.58	
1987	7.76	2.19	0.66	0.66	799.78	
1988	5.60	1.48	0.53	0.53	636.29	
1989	5.05	2.11	0.62	0.62	584.27	
1990	5.24	2.00	0.83	0.83	576.40	
1991	6.06	2.71	0.94	0.94	542.31	
1992	7.19	1.36	0.53	0.53	655.47	
1993	6.13	0.74	0.47	0.47	602.80	
1994	7.79	1.59	0.69	0.69	632.83	
1995	7.75	1.10	0.45	0.45	652.88	
1996	8.17	2.16	0.50	0.50	681.66	
1997	7.67	1.98	0.68	0.68	826.70	
1998	6.66	1.78	0.65	0.65	841.63	
1999	5.55	1.50	0.73	0.73		1332.21
2000	5.10	1.39	1.24	1.24		1202.45
2001	6.18	0.98	1.15	1.15		1484.22
2002	5.00	0.67	0.77	0.77		1400.92
2003	4.64	0.32	0.77	0.77		1356.71
2004	5.11	0.45	1.02	1.02		1185.47
2005	4.53	0.40	0.78	0.78		1207.26

Table 8a. Summary of fisheries for the MFCL analyses (North).

		NORTH	I ATLANTIC
Fish.	Name	Years	Gears/Flags
1	ESP BB Recent	1981-2005	a- ESP BB
			b- MWTD all flags
			c- FR BB 1981- 2004
2	ESP FR TR all	1930-2005	a- ESP and FR TR 1930- 1980
			b- ESP TR 1981- 2005
			b- GIL all flags 1989- 2002
3	FR+SP BB early	1948-1980	a- ESP+FR BB
4	PRT BB	1958-2005	a- PRT BB
			b- Canary Islands BB and BB Cadiz
5	JPN target LL	1956-1969	a- JPN LL
6	JPN Trans LL	1970-1975	a- JPN LL
7	JPN Byc LL	1976-2005	a- JPN LL
8	CHTAI LL	1962-2005	a- Chinese Taipei LL
			b- all other LL 1960- 2005
9	KOR+PAN+CUB LL	1964-1993	a- KOR+PAN+CUB LL
10	OTH SURF	1950-2005	a- BB from Cap Verde and Venezuela and Cadiz
			b- TR from Ireland, Portugal, Grenada, SVG, St
			Lucia,USA
			c- All other catches except those mentioned above
			1972- 2005

Table 8b. Summary of fisheries for the MFCL analyses (South).

	SOUTH ATLANTIC										
Fish.	Name	Years	Gears/Flags								
1	JPN target LL	1956-1969	a- JPN LL								
2	JPN Trans LL	1970-1975	a- JPN LL								
3	JPN Byc LL	1976-2005	a- JPN LL								
4	CHTAI LL	1962-2005	a- Chinese Taipei LL b- LL for all others								
5	BRA LL	1971-2005	a- Brazil LL								
6	SA-NA BB early	1964-1998	a- RSA-Namibia BB early b- BB for Brazil, France, Portugal, Japan, Korea, St Helena								
7	SA-NA BB late	1999-2005	a- RSA-Namibia BB late b- BB for Brazil, France, Portugal, Japan, Korea, St Helena								
8	Other Surf	1961-2005	a- Surface gears other than BB								

Table 9a. Catch (tons) by fishery used for MFCL.

YEAR	MONTH	1 2	3	4	5	6	7	8	9	10	Total
1930	5	2137.5								10	2138
1330	8	8437.5									8438
	11	675.0									675
1931	5	2964.0									2964
1331	8	11700.0									11700
	11	936.0									936
1932	5	2441.5									2442
1332	8	9637.5									9638
	11	771.0									771
1933	5	2175.5									2176
1933	8	8587.5									8588
	11	687.0									687
1934	5	3587.2									3587
1934											
	8	14160.0									14160
4005	11	1132.8									1133
1935	5	3942.5									3943
	8	15562.5									15563
	11	1245.0									1245
1936	5	3192.0									3192
	8	12600.0									12600
	11	1008.0									1008
1937	5	2565.0									2565
	8	10125.0									10125
	11	810.0									810
1938	5	2778.2									2778
	8	10966.5									10967
	11	877.3									877
1939	5	3244.8									3245
	8	12808.5									12809
	11	1024.7									1025
1940	5	2182.7									2183
	8	8616.0									8616
	11	689.3									689
1941	5	2516.4									2516
	8	9933.0									9933
	11	794.6									795
1942	5	3188.2									3188
	8	12585.0									12585
	11	1006.8									1007
1943	5	3185.2									3185
	8	12573.0									12573
	11	1005.8									1006
1944	5	3223.0									3223
	8	12722.3									12722
	11	1017.8									1018
1945	5	5241.3									5241
	8	20689.5									20690
	11	1655.2									1655
1946	5	4420.5									4421
	8	17449.5									17450
	11	1396.0									1396
1947	5	3850.9									3851
	8	15201.0									15201
	11	1216.1									1216
1948	5	4579.2									4579
	8	18075.8									18076
	11	1446.1									1446
1949	5	5294.4									5294
	8	20898.8									20899
	11	1671.9									1672
1950	5	15442.8									15443
	8	22739.1									22739
	11	1442.0									1442
1951	5	12598.2									12598
	8	20193.8									20194
	11	1357.5									1357
1952	5	11858.1									11858
. 552	8	19236.9									19237
	11	1302.7									1303
1953	5	9025.1									9025
. 555	8	16068.5	3423.6								19492
	11	1148.7	451.5								1600
1954	5	12231.9	.01.0								12232
1004	8	19222.1	6405.6								25628
	11	19222.1	844.8								2120
	5	9596.0	J-7U								9596
1955		17442.7	2761.0								20204
1955	Ω	11444.1									
1955	8		36/I 1								1675
	11	1260.7	364.1		0.0						1625
1955 1956	11 5	1260.7 12536.1			0.8						12537
	11	1260.7	364.1 4859.4 640.9		0.8 0.9 0.2						

	8 11	17808.4 1203.3	10629.9 1329.5		86.7 43.6						28525 2576
1958	2	1200.0	.020.0		9.1						9
	5	14591.7	45000.0	200.0	153.6						14745
	8 11	18338.5 1015.7	15326.6 1931.6	300.0	263.0 519.3						34228 3467
1959	2				75.8						76
	5	13107.0	45050.7	F70.0	129.3						13236
	8 11	16747.3 942.9	15953.7 1993.1	570.0	79.4 314.8						33350 3251
1960	2	<u> </u>			57.7			232.6			290
	5	13607.1	45500.0	000.0	170.5			294.1			14072
	8 11	18378.1 1087.8	15582.0 1957.1	600.0	349.5 553.2						34910 3598
1961	2				54.8			142.4			197
	5	7656.4	40004.0	000.0	55.9			181.0			7893
	8 11	12411.1 840.3	18201.9 2318.2	600.0	130.5 138.8						31344 3297
1962	2	0.000			15.5			285.4			301
	5 8	11670.1	10400 6	620.0	790.7			363.9			12825
	o 11	18084.8 1188.9	18490.6 2358.7	620.0	4738.4 170.7			5.3 4.2			41939 3722
1963	2				34.4			147.3			182
	5 8	9361.9 14329.8	17524.6	970.0	8955.1 4890.2			186.2 5.5			18503 37720
	11	934.2	2244.2	970.0	753.3			4.4			3936
1964	2				406.3			143.1	17.5		567
	5 8	10127.4 16779.9	17668.6	500.0	9480.5 3941.8			183.2 32.2	13.5 9.7		19805 38932
	11	1151.4	2259.9		1883.8			24.5	10.7		5330
1965	2	2000 =		83.6	2832.9			141.0	83.1		3141
	5 8	9296.9 15212.0	16850.6	123.3 853.6	7517.8 2272.7			180.9 35.8	90.3 79.6		17209 35304
	11	1036.0	2178.7	22.6	1701.5			27.2	38.5		5004
1966	2	0055.0		94.8	483.4			94.7	30.5		703
	5 8	8355.2 13518.7	14280.0	139.8 366.7	2436.3 886.4			125.4 64.3	85.4 111.6		11142 29228
	11	913.8	1847.3	25.7	2053.6			48.8	1381.6		6271
1967	2 5	11855.4		104.3 154.1	1177.0 1640.3			254.6 320.3	1357.4 1050.0		2893 15020
	8	17680.1	15312.6	714.8	1118.7			315.1	778.5		35920
	11	1131.5	1979.0	82.8	835.5			445.9	829.2		5304
1968	2 5	8609.4		114.5 168.7	695.4 1033.7			399.2 479.6	611.9 543.2		1821 10835
	8	14391.5	11928.2	134.2	1171.5			854.0	438.0		28917
1969	11 2	992.8	1550.2	39.1 125.2	405.0 1524.8			319.6 619.8	339.6 2349.7		3646 4619
1909	5	6627.7		184.7	1601.0			432.1	1800.3		10646
	8	10587.9	12113.4	498.4	1249.0			616.4	1331.0		26396
1970	11	710.2	1579.8	70.7 82.6	341.5	987.7		928.1 967.1	1443.8 1709.5		5074 3747
1070	5	6592.9		121.8		1834.9		2005.6	1296.0		11851
	8	8616.8	12328.1	194.0		1409.3		1184.7	947.9		24681
1971	11 2	495.0	1608.1	51.6 132.0		1642.3 2155.7		757.6 1120.9	1056.9 2629.0		5612 6038
	5	9772.5		194.7		1589.7		823.3	1993.6		14374
	8 11	13448.0 808.9	13246.4 1731.4	87.9 285.0		1525.6 1201.5		325.7 665.8	1458.7 1625.7		30092 6318
1972	2	000.9	1731.4	237.5		750.9		665.8 1981.8	2792.0		5762
	5	10806.1		353.9		149.4		301.3	2124.8	1.0	13737
	8 11	14953.6 903.5	6269.2 821.6	103.3 458.4		279.8 138.7		626.6 1641.0	1558.7 1722.0	9.0	23800 5685
1973	2	903.3	021.0	100.4		525.2		4374.8	2442.1		7342
	5	7688.6	6007.0	5.1		161.0		1219.8	1851.7		10926
	8 11	10403.5 616.4	6607.9 860.3	977.5 382.4		193.8 585.1		2278.4 1627.9	1354.2 1510.6		21815 5583
1974	2					774.3		2690.1	431.5		3896
	5 8	3844.6 16406.7	13.2	37.8		329.2		2551.1	488.5	1.3	7266
	8 11	16406.7 706.9	10356.4 1337.4	2078.7 162.5		476.7 478.9		1363.8 2933.0	1187.6 932.0	11.7	31882 6551
1975	2		·	440.0		476.7		2902.9	812.4		4632
	5 8	1360.2 7624.4	5409.4	654.1 4427.7		355.8 110.6		1218.5 1022.0	929.3 450.5		4518 19045
	11	511.7	4284.5	4471.2		387.5		3079.6	963.9		13698
1976	2			152.8			444.4	6165.8	1786.2		8549
	5 8	1288.7 11930.7	10292.4	238.4 4570.7			154.0 349.4	1286.3 1851.5	2240.8 1690.6		5208 30685
	11	698.1	3168.3	1804.5			397.4	5666.4	973.2		12708
1977	2	2055 5		429.9			384.7	4819.5	2456.1		8090
	5 8	3355.5 13446.0	6222.3	387.0 2861.4			42.9 28.9	2045.5 1811.6	2095.9 1048.5	2.0	7927 25421
	11	590.3	3655.6	2002.8			368.3	5148.3	618.5		12384
1978	2 5	1694.6	5.5	179.0 967.3			171.1 14.1	4713.6 1991.9	1308.3 954.9	0.1	6372 5628
	8	21441.2	8219.3	13.3			64.8	1183.5	954.9 978.9	0.1	31902

1 1	11		793.6	2489.5	85.1	281.2	1832.0	662.1		6143
1979	2			2.00.0	43.8	326.4	2969.5	1397.1	2.6	4739
	5		1881.1	10000 0	572.8	141.2	1474.1	1296.4	40.0	5366
	8 11		20993.3 469.5	12698.6 2302.5	131.1 2.3	98.1 653.8	957.2 2165.3	372.6 356.1	40.0 19.4	35291 5969
1980	2		100.0	2002.0	3.0	339.2	2451.0	538.9	10.5	3342
	5		1088.7	10005 7	369.9	56.1	1505.9	140.5	4.8	3166
	8 11		11836.0 133.0	13205.7 2374.2	63.7 153.0	138.5 501.6	1119.0 2318.1	233.7 108.6	5.9 5.4	26603 5594
1981	2		100.0	2017.2	950.0	477.2	1532.5	247.5	2.0	3209
	5		881.3		193.8	157.2	1663.1	207.2	47.1	3150
	8 11	10154.5 1806.9	9764.6 128.5		305.1	366.9 738.2	1940.3 1780.0	401.0 307.3	424.0 51.0	23356 4812
1982	2	1000.9	120.5		309.8	115.6	2206.7	634.6	22.6	3289
	5		328.0		434.7	104.1	2870.9	594.2	130.4	4462
	8 11	14396.3 587.2	12345.1 155.4		73.5 5.1	93.8 466.9	2136.2 3309.1	500.5 172.0	657.0 18.7	30202 4714
1983	2	307.2	155.4		91.2	867.6	3347.2	264.1	335.2	4905
	5	104.4	4.0		823.5	58.4	4167.6	248.6	90.2	5497
	8	12747.6	12534.7		1577.0	27.8	2979.8	220.0	375.5	30462
1984	11 2	5536.7	248.6		54.6 849.1	202.4 198.0	4339.8 5051.2	140.6 958.2	103.0 530.1	10626 7587
1001	5	29.1	215.4		424.3	87.4	4034.8	1146.4	254.9	6192
	8	6027.4	10641.4		206.3	14.8	2882.0	866.9	2001.1	22640
1985	11 2	395.9	191.1		266.3 450.2	275.8 506.7	3576.8 4528.6	615.4 261.2	92.4 39.4	5414 5786
1303	5		222.6		949.6	50.2	3662.3	333.0	44.0	5262
	8	8799.8	9122.5		511.3	73.9	2785.4	268.3	153.1	21714
1986	11 2	1596.8	1300.3		186.1 304.0	214.3 145.4	4582.6 7219.3	148.8 340.3	12.2 4.9	8041 8014
1900	2 5	8.2	1280.6		304.0 124.7	145.4	7219.3 5165.0	340.3 264.5	4.9 52.6	6906
	8	9127.1	8613.0		149.3	71.6	3604.9	189.4	226.1	21981
1007	11	5170.9	943.8		314.0	243.4	3843.6 4135.1	135.4	1.5	10652
1987	2 5	45.4	1327.9		75.0 113.5	188.0 7.8	4135.1 1280.4	31.3 14.0	0.5 17.3	4430 2806
	8	15186.0	8847.9		5.1	65.5	1016.0	19.1	242.0	25382
1000	11	3175.7	1362.3		417.1	233.1	293.8	12.6	2.3	5497
1988	2 5	296.8	852.9		212.7 130.9	292.1 12.0	462.7 921.1	0.8 11.6	13.0 7.5	981 2233
	8	11628.3	9145.0		6.8	35.7	605.7	7.7	303.2	21732
400-	11	5244.7	2082.3		101.8	383.5	280.5		18.4	8111
1989	2 5	388.9	994.1		150.9 4.4	437.1 48.9	396.3 383.8	0.6 38.0	12.2 10.8	997 1869
	8	11014.5	8483.4		15.2	29.9	298.1	13.5	176.9	20032
	11	5914.7	2510.7		136.8	248.5	332.7	0.9	29.0	9173
1990	2 5	328.0	1589.6		114.4 80.0	405.7 4.0	655.9 433.8	12.7 18.1	1.0 400.1	1190 2854
	8	11401.3	9914.2		2246.3	20.8	382.0	4.2	158.1	24127
	11	3316.6	1154.9		2160.6	307.2	437.9	1.1	1008.8	8387
1991	2 5	145.4	2418.2		158.1 65.8	299.7 10.3	1456.7 1465.2	1.0	33.0 60.1	1948 4166
	8	7060.9	9346.2		5.3	16.9	912.4	1.0	244.7	17586
	11	805.3	917.9		1177.8	363.9	829.9		191.3	4286
1992	2	470.6	2400.2		52.7	179.5	486.9	29.4	20.9	769
	5 8	473.6 9327.1	2100.2 9059.7		317.0 422.5	11.2 14.0	749.1 1135.9		139.9 142.6	3791 20102
	11	2014.0	1128.4		2322.0	261.3	300.1		189.4	6215
1993	2	005.4	4700 5		109.2	186.6	104.0	67.7	26.7	494
	5 8	235.1 10348.6	1760.5 10893.9		39.1 198.4	11.7 14.2	2486.5 1771.0		63.0 323.9	4596 23550
	11	281.2	477.7		6121.3	272.4	2179.8		151.4	9484
1994	2	070.0	0740.0		325.7	211.0	989.5		210.5	1737
	5 8	372.0 9077.6	2749.3 8972.6		231.5 276.0	4.3 26.4	1076.6 3148.8		209.4 211.1	4643 21712
	11	1125.9	1344.1		2510.8	263.4	1588.9		209.8	7043
1995	2	EEAE	1045 4		22.5	161.2	584.1		31.8	800
	5 8	554.5 10416.9	1845.4 10682.3		252.4 2847.6	13.4 26.4	928.9 1482.9		76.4 173.0	3671 25629
	11	702.8	1193.3		4532.9	185.1	1473.6		184.2	8272
1996	2	F00 1	1044 4		342.2	79.4	2728.9		30.1	3181
	5 8	502.1 10137.3	1341.4 7692.2		188.0 397.9	41.2 27.5	501.3 404.6		158.7 270.8	2733 18930
	11	364.1	568.4		1988.7	317.9	540.5		175.9	3955
1997	2	:	40.55	· · · · · · · · · · · · · · · · · · ·	601.1	122.9	1529.4	·	81.5	2335
	5 8	552.1 8787.8	1947.2 8491.2		512.3 184.1	26.6 7.6	1490.3 508.2		81.1 464.1	4610 18443
	11	1897.7	1070.3		147.9	256.9	110.3		96.9	3580
1998	2				174.9	253.2	1268.8		133.5	1830
	5 8	351.1 7762.0	3204.3 7489.8		73.8 9.9	35.9 13.8	873.6 919.3		52.6 648.5	4591 16843
	0 11	269.3	1264.7		180.2	143.1	375.9		96.8	2330
1999	2				344.1	130.5	2176.6		79.0	2730
	5	990.2	4121.3		326.0	43.3	911.9		32.5	6425
	8 11	9537.3 543.2	8932.6 1513.1		725.4 898.5	7.9 243.3	1259.7 1860.7		134.7 40.0	20598 5099
		0.5.2			500.0	2 13.0	. 555.1			3000

2000	2			112.1	138.7	2515.6	97.6	2864
	5	163.0	950.1	91.1	32.5	2160.9	38.9	3437
	8	13178.2	9408.2	209.1	72.8	1171.2	278.2	24318
	11	845.9	453.7	117.6	444.0	781.1	1239.7	3882
2001	2			355.3	392.2	1904.9	171.0	2823
	5	266.7	867.5	1162.4	99.3	1802.6	11.3	4210
	8	7628.7	6014.9	838.4	30.0	1379.4	168.5	16060
	11	986.3	309.1	289.3	604.5	1131.6	177.0	3498
2002	2			90.0	414.6	2541.8	102.5	3149
	5	124.6	395.0	1339.5	92.0	1862.3	45.8	3859
	8	6150.1	4531.7	1230.9	14.8	695.5	345.2	12968
	11	1235.3	494.6	374.0	189.7	353.0	62.4	2709
2003	2			538.0	362.7	1541.5	159.3	2602
	5	691.8	259.7	626.9	95.1	1818.7	88.4	3581
	8	9076.4	4561.3	389.4	26.1	2077.6	432.9	16564
	11	635.0	371.8	278.8	198.0	1141.6	109.4	2735
2004	2			399.4	422.7	209.2	110.5	1142
	5	563.1	450.7	172.3	62.8	1876.3	295.9	3421
	8	8493.2	6516.4	297.5	38.5	2061.7	508.8	17916
	11	701.3	509.6	100.4	343.7	1371.6	89.9	3116
2005	2		•	131.8	850.9	3287.1	48.5	4318
	5	1552.3	950.6	380.2	66.0	606.8	20.7	3577
	8	14795.3	8493.0	479.0	54.7	685.3	389.3	24897
	11	1405.9	726.0	141.7	751.7	299.2	82.4	3407

Table 9b. Catch (tons) by fishery used for MFCL (South).

YEAR	MONTH	1	2	3	4	5	6	7	8	Grand Total
1956	5	5.7								5.7
	8	10.6								10.6
	11	4.6								4.6
1957	2	15.9								15.9
	5	194.5								194.5
	8	134.0								134.0
	11	380.7								380.7
1958	2	447.3								447.3
	5	368.0								368.0
	8	24.9								24.9
	11	206.9								206.9
1959	2	631.7			526.2					1157.9
	5	294.8			524.6					819.4
	8	15.2			548.9					564.1
	11	2073.0			100.3					2173.3
1960	2	2087.0			557.7					2644.7
	5	553.7			556.1					1109.8
	8	77.6			581.8					659.4
	11	5955.1			106.4					6061.5
1961	2	2670.5			761.8					3432.3
	5	1290.8			318.8					1609.6
	8	796.2			192.6				99.2	1088.0
	11	4135.9			198.8				300.8	4635.5
1962	2	4999.8			108.5					5108.3
	5	492.8			163.2					656.0
	8	1893.9			236.3				446.3	2576.4
1000	11	9035.2			241.1				1353.7	10630.0
1963	2	9120.6			298.9					9419.5
	5 8	577.0			1008.8					1585.8
	11	2231.6 3174.8			562.6 410.7					2794.2 3585.5
1964	2	5383.5			462.5		5.5			5851.5
1904	5	704.4			462.5 879.5		5.5 5.5			1589.4
	8	7390.8			499.5		5.5 5.5			7895.8
	11	10258.8			398.1		5.5			10662.4
1965	2	5264.0			443.7		5.5			5707.7
1905	5	7541.8			288.6					7830.4
	8	9839.9			409.6					10249.5
	11	5663.3			394.6					6057.9
1966	2	4006.7			166.4					4173.1
. 500	5	9413.6			1290.9					10704.5
	8	4960.4			1672.1					6632.5
	11	2642.6			3156.4					5799.0
1967	2	2037.2			611.1					2648.3
	5	1638.0			1626.8					3264.8
	8	2165.9			3540.9					5706.8
	11	1877.6			2387.1					4264.7
1968	2	1181.4			1243.8		9.5			2434.7
	5	5785.2			4734.4		9.5			10529.1
	8	3386.0			4326.0		9.5			7721.5
	11	1504.5			3489.1		9.5			5003.1
1969	2	1532.6			5061.8					6594.4
	5	2289.6			5030.3					7319.9
	8	1545.2			5212.6					6757.8

1 1	11	963.8		6857.5			ı	7821.3
1970	2	2045.9		2666.4				4712.3
10.0	5	3434.5		4712.0				8146.5
	8	275.4		4791.5				5067.0
1071	11	143.0		5585.7	20.1			5728.7
1971	2 5	549.3 1665.2		2309.0 5972.4	20.1 16.9			2878.4 7654.5
	8	785.1		8734.3	21.3			9540.7
	11	217.5		4588.2	4.7			4810.4
1972	2	387.7		5219.8	5.1			5612.6
	5 8	1346.0 160.6		10882.4 9673.3	4.3 5.4		24.8	12232.7 9864.1
	11	193.1		5201.0	1.2		75.2	5470.5
1973	2	89.9		4157.1		0.5	0.7	4248.2
	5	120.5		9677.0	60.0		0.7	9858.3
	8 11	38.4 29.3		7810.0 6133.3		0.1 0.4	24.5 72.9	7873.1 6235.8
1974	2	26.3		2782.9	1.5	48.8	12.1	2871.6
	5	48.1		5793.3	75.9	1.4	1.2	5919.9
	8	20.3		6746.1	88.6	12.8	14.8	6882.6
1975	11	14.2 4.9		3953.0 2614.5	7.3	34.0 31.3	25.0 66.1	4029.2 2724.1
1373	5	30.0		6054.0	58.3	2.0	6.8	6151.1
	8	178.4		4616.9	91.8		1.0	4888.1
4070	11	93.2	00.4	3694.4	12.6	12.7	31.1	3844.0
1976	2 5		28.1 15.6	2127.0 5995.5	6.0 74.5		48.3 124.5	2209.4 6210.0
	8		10.0	6283.8	83.8		121.0	6377.6
	11		19.6	4487.0	131.7		24.4	4662.6
1977	2		14.1	3246.5	88.6	2.3	182.8	3534.3
	5 8		45.5 36.3	8447.9 5174.5	181.7 148.8	0.3 20.6	111.1 38.3	8786.5 5418.4
	11		9.1	3674.9	125.8	43.5	73.1	3926.4
1978	2		26.3	4224.7	37.1		44.1	4332.3
	5		18.7	9064.4	201.1	40.7	47.2	9331.4
	8 11		77.6 12.1	5952.3 2975.3	191.7 25.2	13.7 29.4	20.4 208.1	6255.8 3250.2
1979	2		13.8	5493.7	16.9	20.1	215.5	5739.9
	5		14.6	8539.5	102.9	47.9	318.2	9023.1
	8		27.9	4163.5	228.4	5 0	79.9	4499.7
1980	11 2		48.2 63.2	3160.2 3990.2	32.7 12.9	5.2 415.4	119.8 286.2	3366.1 4767.9
1000	5		171.5	7692.6	73.4	601.7	381.8	8921.0
	8		80.5	4308.8	282.9	36.7	46.3	4755.2
1981	11		18.5 137.4	3957.9 5033.9	20.8	291.8 749.0	201.4 317.5	4490.4 6238.8
1901	5		293.8	6051.6	61.2	324.0	1049.9	7780.6
	8		76.4	3701.7	164.2	2.0	12.0	3956.4
1000	11		50.9	4824.7	29.6	646.0	517.2	6068.3
1982	2 5		198.6 264.6	5613.7 9111.5	7.2 259.2	1255.3 636.1	390.6 1063.4	7465.4 11334.9
	8		45.2	5619.9	404.7	0.6	35.7	6106.2
	11		61.2	3612.7	57.9	683.0	354.8	4769.6
1983	2		67.9	3424.9	14.8	595.8	330.6	4434.0
	5 8		25.5 21.1	3530.3 2113.1	185.7 418.8	405.9 49.8	518.1 13.1	4665.5 2615.9
	11		47.2	2032.5	58.7	742.5	322.7	3203.5
1984	2		56.8	1698.4	31.9	1885.4	130.1	3802.6
	5 8		55.0 33.3	2852.4 2000.5	167.8 246.5	673.5 937.7	297.7 55.1	4046.4 3273.0
	11		78.8	2589.7	22.8	669.4	117.2	3477.9
1985	2		162.0	3851.6	18.6	2220.5	121.7	6374.5
	5		203.5	9021.7	169.0	3326.5	285.9	13006.5
	8 11		209.5 47.0	4798.8 4083.3	81.7 23.7	1541.1 820.5	37.3 71.6	6668.4 5046.1
1986	2		126.1	7128.1	41.0	2730.3	121.1	10146.5
	5		259.4	11358.2	208.8	2567.0	322.4	14715.7
	8 11		284.3	6286.4	203.4	1083.7	104.1	7961.9
1987	2		68.5 60.3	3801.9 9060.2	48.2 17.7	446.7 1147.8	96.7 250.0	4462.0 10536.0
	5		138.4	10344.7	172.6	3113.2	794.1	14562.9
	8		135.5	6356.6	112.3	1284.1	132.9	8021.3
1988	11		22.4 52.2	4524.0 5876.0	19.4 16.1	2636.3 2338.2	309.9 96.2	7512.0 8378.7
1300	5		168.2	7685.5	212.4	2336.2 2728.2	296.8	11091.1
	8		114.4	3884.7	144.9	1231.9	87.1	5463.1
4000	11		69.9	3581.7	22.1	1397.4	103.2	5174.2
1989	2 5		82.7 68.2	5818.6 4767.7	28.6 211.1	2602.5 2236.7	88.1 198.2	8620.5 7482.0
	8		126.9	4060.2	173.5	611.3	84.3	5056.1
	11		171.8	3877.4	20.4	1943.4	40.5	6053.6
1990	2		76.8	4820.2	21.7	2916.4	964.5	8799.5
	5 8		172.2 265.4	7229.8 5909.0	256.0 191.5	1834.3 746.9	122.2 37.1	9614.4 7149.9
	11		71.8	2559.0	15.7	483.4	19.3	3149.1
'								'

1991	2	108.2	4957.1	16.1	1115.7		122.6	6319.8
	5	175.0	5382.8	154.8	1138.1		314.3	7164.9
	8	235.4	4591.7	295.6	95.0		19.2	5236.9
	11	135.6	5286.2	628.5	1105.1		97.2	7252.6
1992	2	58.8	5329.5	626.5	2503.5		218.6	8737.0
	5	161.3	8248.4	571.0	2725.7		2286.2	13992.6
	8	228.7	6988.5	381.8	215.2		113.3	7927.5
	11	134.2	3258.2	1130.5	1045.6		292.5	5861.0
1993	2	46.9	3422.2	791.7	2647.4		220.0	7128.1
1000	5	128.8	4678.4	719.7	1601.1		1246.1	8374.0
	8	183.5	3954.7	599.6	515.8		9.4	5263.0
	11	107.9	7824.5	1488.7	2611.7		13.1	12045.9
1994	2	72.0	7358.3	168.1	2170.9		847.9	10617.2
1334	5	194.1	9172.9	113.8	980.4		257.0	10718.2
	8							
		236.7	4364.7	362.1	2231.4		213.4	7408.3
4005	11	148.3	2225.3	189.6	3562.3		241.3	6366.8
1995	2	42.4	1381.7	14.4	6128.2		105.5	7672.2
	5	85.6	5367.7	297.3	91.8		7.1	5849.5
	8	217.4	5519.7	322.7	734.5		245.3	7039.6
	11	43.6	6655.1	86.2	136.4		64.2	6985.5
1996	2	57.8	5931.3	32.5	1329.9		47.8	7399.3
	5	174.5	5537.2	323.4	1388.1			7423.2
	8	126.7	4391.9	398.1	788.2		224.3	5929.2
	11	76.0	3897.2	52.0	3451.2		194.5	7671.0
1997	2	83.1	3768.3	68.2	1709.8		92.0	5721.4
	5	132.0	7408.6	182.1	1533.2		30.0	9286.0
	8	175.6	4983.3	163.0	770.8		65.0	6157.7
	11	33.3	2374.0	175.6	4096.0		177.4	6856.4
1998	2	13.8	3208.5	469.4	2534.8		341.2	6567.6
	5	101.8	6314.6	762.1	2788.5		80.3	10047.2
	8	261.0	4542.7	802.9	2528.3		9.4	8144.4
	11	41.4	2302.1	978.6	2501.4		12.2	5835.7
1999	2	35.2	4696.3	257.5	1270.3		32.3	6291.5
.000	5	211.3	5745.7	445.9	1847.4		166.4	8416.8
	8	273.1	3766.0	378.7	1047.4	101.6	77.8	4597.2
	11	81.4	4338.5	396.1		3489.7	31.3	8337.0
2000	2	18.6	4832.9	577.1		1977.5	47.8	7453.9
2000	5	185.2	6651.3	1081.4		3088.7	30.9	11037.5
		251.3						
	8		4226.3	894.2		459.6	12.2	5843.5
	11	99.0	4371.9	1205.5		1347.6	20.4	7044.5
2001	2	61.9	6136.2	1595.9		3058.4	112.0	10964.4
	5	76.4	4917.5	943.2		4702.3	173.8	10813.3
	8	146.1	6184.7	651.6		447.2	24.3	7453.9
	11	56.6	4216.6	3047.7		2152.0	91.8	9564.7
2002	2	69.4	5352.2	2429.7		4351.0	139.6	12341.9
	5	33.2	6061.0	171.0		1916.1	66.5	8247.8
	8	117.3	5503.2	204.4		271.1	0.1	6096.2
	11	11.1	1658.5	59.6		3173.8	155.7	5058.7
2003	2	50.1	6388.5	89.1		2197.6	19.0	8744.2
	5	59.1	5776.7	73.9		2619.9	186.9	8716.5
	8	158.9	3687.3	145.7		35.4	187.1	4214.4
	11	46.9	2648.6	1535.4		2120.5	9.1	6360.6
2004	2	35.1	2985.4	27.3		3488.3	60.3	6596.4
	5	82.3	3584.4	52.3		2312.4	73.8	6105.2
	8	272.5	3765.2	85.7		241.3	24.4	4389.2
	11	109.9	3605.5	120.2		1433.3	157.6	5426.6
2005	2	6.6	9054.1	67.6		1857.6	315.5	11301.3
2003	5	4.5	2232.3	97.6		1223.4	90.1	3647.9
	8	376.0	535.2	97.8 95.8		10.9	236.2	1254.0
	11	376.0	432.2	98.0			177.7	2699.9
1	11		432.2	96.0		1992.0	1//./	2099.9

Table 10a. Effort data used in MFCL (North). (negative values indicate missing effort).

			- (,) (8	
YEAR	MONTH	1 2	3	4 5	6 7 8 9	10
1930	5	-1.0				
	8	-1.0				
	11	-1.0				
1021	- ' '	-1.0				
1931	5	-1.0				
	8	8521.5				
	11	-1.0				
1932	5	-1.0				
	8	9012.9				
	11	-1.0				
1933	5	-1.0 -1.0				
	8	9751.9				
	11	-1.0				
1934		-1.0 -1.0				
1934	5 8	-1.0				
	8	-1.0				
	11	-1.0 -1.0				
1935	5	-1.0				
	8	-1.0				
	11	-1.0				
1936	5	-1.0				,,
	8 11	-1.0				
	11	-1.0				
1937	5	-1.0 -1.0				
1931	0	-1.0 -1.0				
	8 11	-1.0				
1000	11	-1.0 -1.0				
1938	5 8	-1.0				
	. 8	-1.0				
	11	-1.0 -1.0				
1939	5	-1.0		·		
	8	-1.0				
	11	-1.0				
1940	5	-1.0				
	8	8202.8				
	11	-1.0				
1941	5	-1.0 -1.0				
1341	٥	6405.1				
	8 11	1.0				
1012	5	-1.0 -1.0				
1942	5	-1.0				
	8	6755.7				
	11	-1.0 -1.0				
1943	5	-1.0				
	8	-1.0				
	11	-1.0 -1.0				
1944	5	-1.0				
	8	-1.0				
	11	-1.0				
1945	5	-1.0				<u> </u>
	8 11	13020.0				
	11	-1.0				
1946	5	-1.0 -1.0				
1010	٥	14359.8				
	8 11	14339.6				
404=	11	-1.0 -1.0				
1947	5	-1.0				
	8	16081.6				
	11	-1.0				
1948	5	-1.0				
	8	13033.5				
	11	-1.0				
1949	5	-1.0				
	8	21973.4				
	11	-1.0				
1950	5	-1.0				
	8	22430.2				
	11	-1.0				
1951	5	-1.0				
1901						
	8	19740.4				
10=0	11	-1.0				
1952	5	-1.0				
	8	-1.0				
	11	-1.0				
1953	5	-1.0				
	8	-1.0	-1.0			
	11	-1.0	-1.0			
1954	5	-1.0				
	8	-1.0	-1.0			
	11	-1.0	-1.0			
1955	5	-1.0				
	8	-1.0	-1.0			
	11	-1.0	-1.0			
1956	5	-1.0	•	-1.0		
1000	8	-1.0	-1.0	-1.0		
	11	-1.0	-1.0 -1.0	-1.0		
1957	5	-1.0	-1.0	-1.0		
1937	l o	-1.0		-1.0		

ĺ	8	12272.3	12233.8		-1.0					
	11	-1.0	1530.1		-1.0					
1958	2 5	-1.0			-1.0 -1.0					
	8	15218.6	18118.9	-1.0	-1.0					
1050	11	-1.0	2283.5		-1.0					
1959	2 5	-1.0			45.9 56.1					
	8	13962.6	13425.4	-1.0	160.8					
	11	-1.0	1677.2		196.7					
1960	2 5	-1.0			40.8 263.2			-1.0 -1.0		
	8	12531.3	13533.5	-1.0	527.6			-1.0		
	11	-1.0	1699.8		214.6					
1961	2	4.0			14.8			-1.0		
	5 8	-1.0 9598.5	17054.0	-1.0	243.2 274.6			-1.0		
	11	-1.0	2172.0		78.3					
1962	2	4.0			2.1			-1.0		
	5 8	-1.0 12805.4	15175.3	-1.0	923.1 6622.1			-1.0 -1.0		
	11	-1.0	1935.8	1.0	224.0			-1.0		
1963	2				37.4			-1.0		
	5 8	-1.0 14637.9	14536.1	-1.0	14527.3 9343.1			-1.0 -1.0		
	11	-1.0	1861.5	-1.0	837.5			-1.0 -1.0		
1964	2				370.0			-1.0	-1.0	
	5	-1.0 14274.0	14064.0	4.0	20447.2			-1.0	-1.0 1.0	
	8 11	14274.0 -1.0	14064.2 1798.9	-1.0	8610.2 1677.7			-1.0 -1.0	-1.0 -1.0	
1965	2			-1.0	2408.0			-1.0	-1.0	
	5	-1.0	40055.0	-1.0	20896.5			-1.0	-1.0	
	8 11	11094.2 -1.0	18855.8 2438.0	-1.0 -1.0	7400.7 2814.0			-1.0 -1.0	-1.0 -1.0	
1966	2		2.00.0	-1.0	545.4			-1.0	-1.0	
	5	-1.0	44454.0	-1.0	7241.2			-1.0	-1.0	
	8 11	16426.8 -1.0	14151.8 1830.7	-1.0 -1.0	2636.2 3384.2			-1.0 -1.0	-1.0 -1.0	
1967	2	1.0	1000.7	-1.0	2004.7			-1.0	-1.0	
	5	8103.3		-1.0	3709.8			-1.0	-1.0	
	8 11	16148.1 1035.2	27778.5 3590.1	-1.0 -1.0	2589.0 1246.2			344.3 270.7	-1.0 -1.0	
1968	2	1000.2	3330.1	-1.0	1134.2			200.0	-1.0	
	5	9858.9		-1.0	2441.6			274.3	-1.0	
	8 11	16113.5 992.7	14312.6 1860.0	-1.0 -1.0	2489.5 607.0			490.5 180.4	-1.0 -1.0	
1969	2	332.1	1000.0	-1.0	2710.3			311.5	-1.0	
	5	9765.9		-1.0	4015.8			406.0	-1.0	
	8 11	10087.7 -1.0	17250.1 2249.7	-1.0 -1.0	3396.9 764.8			351.3 393.0	-1.0 -1.0	
1970	2	-1.0	2243.1	-1.0	704.0	412.8		516.7	-1.0	
	5	5150.3		715.6		778.7		1451.3	-1.0	
	8 11	8352.9 434.2	12687.1 1655.0	603.5 39.0		1291.7 692.7		835.5 673.7	-1.0 -1.0	
1971	2	434.2	1000.0	-1.0		1310.4		807.1	-1.0	
	5	4980.3		2573.9		1269.0		905.6	-1.0	
	8	10444.0	17613.6	664.0		2127.8		532.4	-1.0	
1972	11 2	595.8	2302.2	486.1 -1.0		1183.8 714.1		866.3 1297.7	-1.0 -1.0	
1072	5	3866.6		1336.7		233.9		445.1	-1.0	-1.0
	8	11281.5	8205.7	195.1		845.0		876.8	-1.0	-1.0
1973	11 2	1355.9	1075.4	209.0		318.1 436.5		1142.0 2396.8	-1.0 -1.0	
1370	5	4438.3		13.5		182.5		1300.3	-1.0	
	8	8754.2	8797.0	1360.2		434.0		2056.7	-1.0	
1974	11 2	329.8	1145.3	125.6		790.6 633.1		1171.5 1676.0	-1.0 -1.0	
13/4	5	3612.8	8.3	80.0		413.6		2247.2	-1.0	-1.0
	8	16548.5	6557.8	2338.7		1361.8		1504.5	-1.0	-1.0
1975	11 2	483.5	846.9	43.6 -1.0		808.3 521.3		1935.9 2205.7	-1.0 776.7	
1373	5	3607.3		4941.3		508.6		1797.4	870.9	
	8	8608.7	4915.3	16723.8		360.4		1284.6	507.1	
1076	11	762.8	3893.2	3940.5		707.8	122.2	2081.3	423.1	
1976	2 5	877.4		-1.0 3151.5			132.2 98.5	2921.1 1089.5	579.9 1154.8	
	8	3548.3	-1.0	30211.6			180.1	2906.5	1940.5	
1077	11	284.9	-1.0	2891.6			215.9	3608.1	503.1	
1977	2 5	2924.1		-1.0 20464.1			217.5 32.9	3530.5 1446.4	1674.4 1160.9	
	8	9067.1	-1.0	75652.9			28.9	1855.7	958.2	-1.0
1070	11	1035.0	-1.0	11767.0			240.7	4947.8	721.5	
1978	2 5	3291.2	-1.0	-1.0 -1.0			130.3 12.2	2616.2 2257.7	1611.1 1076.1	-1.0
	8		-1.0	702.6			97.4	1179.8	1327.6	-1.0

1 1	11	İ	900.9	-1.0	1124.5	162.5	1419.3	586.7	
1979	2		300.3	-1.0	-1.0	338.7	1403.0	1142.9	-1.0
	5		1197.7		3365.6	71.2	1518.9	1961.4	
	8 11		10111.2 453.6	-1.0 -1.0	407.7 1.7	90.6 397.5	1407.8 1477.3	851.4 594.4	-1.0 -1.0
1980	2		400.0	-1.0	-1.0	248.8	1013.6	654.4	-1.0
	5		975.6		19562.0	15.7	1506.0	202.4	-1.0
	8 11		7580.9	-1.0	3369.2	271.2 456.7	1255.2 1644.5	372.1 125.4	-1.0
1981	2		-1.0	-1.0	1618.1 -1.0	261.4	1011.3	392.0	-1.0 -1.0
	5		688.4		539.4	110.0	1486.0	270.7	-1.0
	8	10467.9	10957.0		436.0	360.0	1866.4	601.2	-1.0
1982	11	2156.3	-1.0		-1.0	511.8 64.1	1347.1 1447.8	485.1 1355.2	-1.0 -1.0
	5		569.3		1915.6	49.6	2181.3	290.9	-1.0
	8 11	14890.0 604.5	15456.4 -1.0		162.0 2.7	141.4 519.6	2154.0 2078.8	779.3 416.2	-1.0 -1.0
1983	2	004.5	-1.0		-1.0	390.5	2556.5	886.0	34.8
	5	122.0	9.5		531.0	46.3	3236.9	873.5	378.0
	8 11	12246.3	16527.2		531.1	62.4	2393.7	463.8	257.0
1984	2	5518.4	754.6		4.4 -1.0	166.5 184.8	2118.0 2945.6	110.7 1001.3	133.9 -1.0
	5	-1.0	153.7		747.9	63.6	3634.0	404.6	217.6
	8	6524.4	12409.8		191.4	30.4	3080.8	1089.7	114.7
1985	11	-1.0	213.4		59.4 -1.0	222.1 298.5	3313.3 3487.2	454.8 1162.9	23.4 11.4
1000	5		311.4		2642.9	48.8	3289.0	579.2	357.9
	8	8790.3	17802.2		751.1	88.8	4006.3	850.5	1255.9
1986	11	1578.2	1474.1		64.3 -1.0	240.6 182.4	3805.3 6945.7	281.9 -1.0	18.1 2.4
1300	5	-1.0	907.5		824.4	26.2	6970.1	-1.0	5815.9
	8	9386.8	12442.4		526.3	99.3	4705.1	-1.0	2434.6
1987	11	5254.2	1337.5		272.2 -1.0	442.3 142.0	5052.5 4829.6	-1.0 -1.0	1.5 -1.0
1307	5	-1.0	-1.0		428.6	27.7	1930.8	-1.0	463.8
	8	14062.5	17720.9		10.4	137.1	1103.6	-1.0	1598.1
1988	11	3249.6	1505.2		204.2 -1.0	974.0 338.6	305.8 241.1	-1.0 -1.0	-1.0 45.2
1300	5	-1.0	1703.1		-1.0	10.7	556.1	-1.0	39.0
	8	11141.6	14663.4		359.5	108.1	336.5	-1.0	1584.4
1989	11	4966.5	2673.4		1793.9 -1.0	432.5 361.2	167.0 205.9	-1.0	-1.0 3.6
1303	5	-1.0	2140.0		-1.0	87.0	348.2	-1.0	409.5
	8	10871.3	19739.0		803.8	74.4	221.3	-1.0	1630.5
1990	11	6083.7	5971.2		1808.5 -1.0	306.0 426.2	288.1 493.9	-1.0 -1.0	99.8
1990	5	-1.0	3657.4		128.2	13.4	496.9	-1.0	781.8
	8	9902.2	16355.5		1855.9	55.3	705.7	-1.0	1065.0
1991	11	3439.5	1868.1		427.9 -1.0	425.1 322.7	579.4 1257.2	-1.0	8552.0 12.2
1331	5	-1.0	1401.3		-1.0	20.4	1217.0	-1.0	1637.4
	8	6518.0	9992.2		-1.0	44.7	1033.0		1839.3
1992	11	854.7	711.1		62279.9 -1.0	427.2 313.4	771.7 553.3	-1.0	400.4 42.7
1992	5	-1.0	1383.2		838.2	24.3	767.7	-1.0	488.0
	8	8707.5	11630.4		587.9	44.1	1858.9		3118.6
1993	11	2759.7	787.9		762.6 -1.0	375.1 315.1	389.9 178.5	-1.0	1350.7 14.8
1993	5	-1.0	2775.2		76.6	34.8	2474.6	-1.0	650.0
	8	9465.1	13305.7		201.7	34.7	1531.6		2087.2
1994	11	280.8	512.9		1484.8 -1.0	390.4 475.3	2655.6 1526.8		51.9 700.8
1334	5	-1.0	6187.9		720.1	17.0	2121.5		734.2
	8	8210.0	9815.7		456.0	48.3	3743.0		1716.8
1995	11	1094.9	3261.9		998.3	109.3 199.8	2188.4 823.8		448.7 228.7
1990	5	-1.0	1815.8		230.1	138.0	023.6 1547.6		1130.6
	8	9559.9	11565.6		1344.5	56.5	1411.1		1858.7
1996	11	717.9	663.9		512.2 -1.0	222.8 190.3	2580.9 4250.9		601.6 -1.0
1990	5	395.1	2692.8		1420.2	135.0	1162.3		3666.9
	8	9289.0	8287.8		1503.0	186.5	947.6		8501.3
1997	11	-1.0	501.5		1813.1 -1.0	357.9 66.8	1560.6 2104.0		-1.0 -1.0
1551	5	-1.0	2576.9		6772.5	118.9	2675.6		-1.0
	8	7954.0	9035.5		1391.0	62.9	1311.7		8008.1
1998	11 2	2023.7	557.1		279.2 -1.0	233.9 67.7	224.6 2169.1		342.8 51.2
1330	5	254.8	3818.3		1300.0	52.2	1528.4		1456.2
	8	6868.4	10498.2		87.7	30.9	1448.2		17697.4
1999	11	253.9	3415.9		381.2 -1.0	419.8 141.8	603.1 3086.2		249.0 81346.0
1999	5	-1.0	4160.8		1014.1	77.7	2887.8		111.3
	8	8578.2	11727.6		1162.3	53.6	4542.7		1639.3
1	11	787.2	4378.0		344.3	402.4	5230.7		212.4

2000	2			-1.0	164.3	4275.4	177.7
	5	-1.0	2813.1	803.1	83.6	5312.2	272.1
	8	11234.3	25126.2	921.3	161.9	4668.9	1985.6
	11	1191.0	3561.4	124.4	193.0	3485.5	1050.9
2001	2			-1.0	161.0	4264.7	204.4
	5	-1.0	1580.6	30733.6	140.3	5291.3	147.2
	8	7879.1	12724.3	11083.4	53.6	4277.2	1950.0
	11	1189.8	4808.5	805.2	504.8	2671.5	162.2
2002	2			-1.0	198.1	4492.9	21.1
	5	-1.0	1182.4	-1.0	47.5	6009.5	328.7
	8	6389.6	8567.4	65088.4	43.5	2149.9	1658.1
	11	1652.7	1437.9	4944.8	178.7	939.5	32.8
2003	2			-1.0	227.3	2950.0	96.6
	5	-1.0	1121.2	-1.0	86.0	4077.9	144.9
	8	8185.5	6284.1	-1.0	82.0	5391.2	1156.0
	11	755.3	1034.8	14740.6	278.8	2258.6	112.7
2004	2			-1.0	262.8	398.2	167888.8
	5	546.7	766.2	-1.0	178.7	4245.4	2452.7
	8	7780.1	8010.9	15730.6	136.1	9056.8	73662.1
	11	799.6	934.3	1769.7	419.5	4309.5	68.7
2005	2			-1.0	457.7	6176.0	-1.0
	5	-1.0	1059.7	5026.3	222.9	1855.8	121.6
	8	13513.2	7860.0	3165.9	94.0	6707.4	670.9
	11	1614.9	806.7	234.2	536.7	1224.3	35.5

Table 10b. Effort data used in MFCL (South). (negative values indicate missing effort).

YEAR	MONTH	1	2	3	4	5	6	7	8
1956	5	-1.0							
	8	-1.0							
	11	-1.0							
1957	2	-1.0							
	5	-1.0							
	8	-1.0							
	11	-1.0							
1958	2	-1.0							
	5	-1.0							
	8	-1.0							
	11	-1.0							
1959	2	259.4			-1.0				
	5	98.6			-1.0				
	8	14.8			-1.0				
	11	1356.2			-1.0				
1960	2	1355.0			-1.0				
	5	293.9			-1.0				
	8	39.6			-1.0				
	11	3743.5			-1.0				
1961	2	1643.2			-1.0				
	5	675.3			-1.0				
	8	796.7			-1.0				-1.0
	11	3409.5			-1.0				-1.0
1962	2	4815.2			-1.0				
	5	627.9			-1.0				
	8	1702.9			-1.0				-1.0
	11	8249.9			-1.0				-1.0
1963	2	9852.3			-1.0				
	5	665.3			-1.0				
	8	2079.4			-1.0				
	11	3137.8			-1.0				
1964	2	5981.2			-1.0		-1.0		
	5	860.4			-1.0		-1.0		
	8	6192.3			-1.0		-1.0		
	11	10191.1			-1.0		-1.0		
1965	2	7448.9			-1.0				
	5	13192.3			-1.0				
	8	15183.7			-1.0				
	11	8128.5			-1.0				
1966	2	6060.2			-1.0				
	5	22694.7			-1.0				
	8	7566.0			-1.0				
	11	3815.8			-1.0				
1967	2	3060.4			-1.0				
	5	3602.2			-1.0				
	8	2395.3			961.6				
	11	3232.9			1679.0				
1968	2	2169.0			963.3		-1.0		
	5	11744.4			1651.8		-1.0		
	8	4567.8			1083.9		-1.0		
	11	2599.8			2884.8		-1.0		
1969	2	2940.1			3038.2				

	8 11	5693.5 3296.6		2184.3 2642.7			
1970	2	986.6		1726.3			
	5	1813.5		3087.2			
	8 11	295.3 312.6		2287.3 4510.6			
1971	2	206.2		1713.4	-1.0		
	5	630.0		3317.3	-1.0		
	8	530.9		3572.0	-1.0		
1972	11	215.5 325.3		3749.3 4312.6	-1.0 -1.0		
1372	5	730.6		9220.8	-1.0		
	8	196.3		7910.1	-1.0		-1.0
4070	11	399.8		5902.3	-1.0	4.0	-1.0
1973	2 5	81.5 80.0		5607.4 5973.0	-1.0	-1.0	-1.0 -1.0
	8	79.7		6437.3	1.0	-1.0	-1.0
	11	132.0		9172.9		-1.0	-1.0
1974	2	139.8		3379.8	-1.0	-1.0	-1.0
	5 8	61.2 31.9		4745.1 4816.9	-1.0 -1.0	-1.0 -1.0	-1.0 -1.0
	11	61.4		4025.8	-1.0	-1.0	-1.0
1975	2	123.2		2152.7	-1.0	-1.0	-1.0
	5 8	111.5 275.3		3679.4 3208.5	-1.0 -1.0	-1.0	-1.0 -1.0
	11	233.6		4047.6	-1.0	-1.0	-1.0
1976	2		44.8	1980.5	-1.0		-1.0
	5		7.3	3385.6	-1.0		-1.0
	8 11		8.7 21.8	3529.2 4807.4	-1.0 -1.0		-1.0
1977	2		46.5	2410.1	-1.0	-1.0	-1.0
	5		35.8	4480.2	-1.0	-1.0	-1.0
	8		20.9	3223.5	-1.0	-1.0	-1.0
1978	11 2		31.8 36.9	3079.1 3639.9	-1.0 43.0	-1.0	-1.0 -1.0
	5		13.2	6115.4	192.8		32.2
	8		28.9	4512.8	171.4	-1.0	33.1
1979	11 2		13.4 46.9	2130.3 4670.8	50.4 6.9	-1.0	-1.0 -1.0
1979	5		68.4	6785.1	83.8	-1.0	1851.5
	8		17.9	3350.5	214.7		464.7
1000	11		76.8 182.4	2578.0	56.0	-1.0 -1.0	86.8 492.1
1980	2 5		154.0	3576.7 5423.2	17.9 152.5	-1.0 -1.0	1497.2
	8		56.8	4097.1	317.0	-1.0	-1.0
4004	11		33.6	3801.2	44.4	-1.0	-1.0
1981	2 5		117.4 142.3	5918.4 5159.0	1.0 178.2	-1.0 -1.0	-1.0 -1.0
	8		50.9	4072.3	438.5	-1.0	-1.0
	11		44.9	6646.1	25.1	-1.0	-1.0
1982	2 5		90.9 138.2	5134.0 8212.5	43.3 491.0	-1.0 -1.0	127.1 22932.9
	8		58.6	6552.6	1038.6	-1.0	164.7
	11		104.8	6994.0	80.0	-1.0	-1.0
1983	2		30.8	4559.4	27.0	-1.0	681.3
	5 8		31.7 23.8	3425.7 2076.3	300.2 491.9	-1.0 -1.0	464.9 48.5
	11		105.1	2303.5	93.9	-1.0	1870.7
1984	2		42.1	1675.2	37.1	-1.0	1109.1
	5 8		77.9 32.3	1857.3	178.3 379.1	-1.0 -1.0	1102.4
	11		32.3 107.5	2194.5 3545.4	26.9	-1.0 -1.0	89.0 111.8
1985	2		41.5	4326.4	49.2	2665.1	1799.2
	5		118.4	6828.0	221.1	3051.7	1629.2
	8 11		184.7 66.5	5045.1 5497.8	153.3 44.5	-1.0 606.8	143.3 365.7
1986	2		84.6	7556.8	60.0	3446.8	156.1
	5		148.0	9982.3	225.7	2489.1	931.3
	8 11		116.5 39.1	6180.4 5544.9	327.4 23.8	-1.0 397.7	1138.6 1176.3
1987	2		46.9	11105.3	11.0	1421.9	-1.0
	5		224.7	10405.4	119.8	2136.0	2178.3
	8 11		137.8 72.4	7961.7 6180.2	94.5 12.3	-1.0 2032.0	27.5 480.9
1988	2		62.6	12370.1	14.8	2656.9	225.8
	5		615.1	9286.3	278.2	2479.6	4499.9
	8 11		213.8	6170.0 4242.8	182.2 13.0	-1.0 1636.9	-1.0 -1.0
1989	2		88.0 105.3	11036.3	18.5	3520.2	-1.0
	5		136.7	9569.4	255.9	2525.1	5709.4
	8		138.6	5506.3	148.7	-1.0	-1.0 111.9
1990	11		332.7 133.0	8615.2 8528.9	10.7 14.7	1988.8 4327.3	111.8 931.5
	5		257.9	10538.2	247.8	2501.0	479.6
	8		173.7	10553.4	127.1	-1.0	37.4

1 1	11	71.3	7036.8	18.5	416.8		0.9
1991	2	132.9	7751.8	8.1	1838.7		365.0
1001	5	345.0	10242.6	170.9	1338.6		600.6
	8	228.9	6392.6	427.6	-1.0		164.8
	11	58.5	7282.2	632.5	1153.1		-1.0
1992	2	74.2	7823.8	627.5	2896.3		-1.0
	5	338.0	8426.0	516.5	2844.7		6584.4
	8	299.6	8128.6	322.9	-1.0		239.0
	11	384.8	6176.6	2424.4	953.3		667.6
1993	2	112.5	10741.7	1456.4	3033.6		145.2
	5	299.2	4743.8	307.6	2114.5		1859.2
	8	253.7	5297.7	522.2	-1.0		3.0
	11	227.8	13172.8	432.9	2475.7		-1.0
1994	2	147.8	8346.0	143.7	2619.5		1756.4
	5	237.0	10128.8	42.1	1106.2		1162.5
	8	241.0	5125.8	207.9	-1.0		228.2
	11	197.3	3242.6	159.6	3228.2		706.5
1995	2	56.4	1658.8	17.8	6585.9		549.6
	5	268.5	5390.0	339.0	102.4		18.6
	8	336.3	7320.6	341.8	-1.0		454.6
	11	133.3	8572.0	71.2	126.2		591.4
1996	2	127.3	6957.7	20.5	1294.8		37.1
	5	327.7	5999.7	152.4	1758.2		
	8	209.2	4998.1	357.8	-1.0		239.1
4007	11	137.7	4790.2	29.3	2830.3		176.0
1997	2	143.9	4512.3	46.9	1296.3		264.4
	5 8	166.2 115.6	8962.5 5879.6	141.4 98.2	1421.7 -1.0		67.1 66.9
	11	86.4	3201.2	106.1	3188.5		3165.5
1998	2	28.6	4475.3	358.4	1875.3		329.8
1990	5	138.9	7986.3	599.9	2406.1		475.1
	8	290.5	6066.3	572.4	-1.0		38.8
	11	57.2	3966.7	769.5	2020.7		10.2
1999	2	79.2	8889.7	233.8	-1.0		-1.0
	5	211.6	10167.2	394.1	-1.0		358.9
	8	354.5	5760.9	484.8		-1.0	13.3
	11	77.0	7316.3	389.8		2948.7	-1.0
2000	2	12.9	9247.7	565.8		2528.3	481.8
	5	222.6	12294.7	997.8		3937.8	14.6
	8	173.4	7284.4	846.9		-1.0	4.9
	11	57.1	8320.8	1230.1		1134.9	5.9
2001	2	39.5	8373.3	2207.9		3139.6	156.5
	5	105.8	8392.2	1162.8		3835.5	214.6
	8	178.6	8847.1	670.5		-1.0	81.2
0000	11	23.7	7369.5	3843.8		1794.7	861.8
2002	2	40.6	8652.3	4962.6		5676.2	1147.1
	5 8	59.1	12304.7	287.0		2267.6	176.3
	11	226.1 12.6	10801.3 3137.8	292.7 277.4		-1.0 1987.4	0.3 493.9
2003	2	23.3	11447.0	384.5		2740.7	13.4
2003	5	130.2	11261.7	117.4		2420.1	72.2
	8	220.3	7466.8	450.2		-1.0	95.4
	11	75.4	6810.9	2073.4		1734.1	8.7
2004	2	15.5	5104.7	83.3		3283.8	-1.0
	5	89.5	6781.2	140.0		2412.9	-1.0
	8	335.5	7158.3	181.1		-1.0	337.7
	11	133.7	6994.8	189.9		2064.0	-1.0
2005	2	5.2	18107.3	228.4		2336.5	1731.9
	5	11.1	4679.5	209.3		2002.2	2422.1
	8	187.0	1303.1	256.4		-1.0	5596.4
1	11		771.3	250.0		1465.9	282.1

Table 11a. Fishery options for MFCL

North Atlantic							
Fishery	CV effort deviations	sel. group	size sample reduced by				
1	0.22	1	10				
2	0.22	2	10				
3	0.22	1	10				
4	0.22	3	10				
5	0.22	4	10				
6	0.22	5	10				
7	0.22	5	10				
8	0.22	6	20				
9	0.32	6	20				
10	0.32	3	30				

Table 11b. Fishery options for MFCL (southern albacore)

South Atlantic								
Fishery	CV effort	sel.	size sample					
	deviations	group	reduced by					
1	0.22	1	10					
2	0.22	2	10					
3	0.22	2	10					
4	0.22	3	10					
5	0.22	4	10					
6	0.22	5	10					
7	0.22	5	10					
8	0.32	5	30					

Table 12. Model options used in the initial MFCL runs.

	Run1	Run2	Run3	Run4	Run5	Run6	Run7	Run8
M = 0.3	✓							✓
\hat{M} constant		√					\	
\hat{M} by age			√	✓	✓	\		
Init. Pop					✓			
\bar{Z} short ¹								
Initi Pop	✓	✓	✓	✓		✓	✓	✓
\overline{Z} long ²								
$\hat{\sigma}$ growth						✓	✓	✓
\hat{l}_1 age 1						√	√	√
\hat{q} Random walks ³				✓	✓	✓	✓	✓

¹ Five years for the North and 2 years for the South ² Ten years for the North and 5 years for the South ³ For the North: Fisheries 1, 2, 3, 4, 8, 9, 10. For the South, fisheries 4, 5, 6, 7, 8.

Table 13. Catches were divided by country and gear into five fleets.

Fleet 1	Fleet 2	Fleet 3	Fleet 4	Fleet 5
Chinese Taipei	China LL	Brazil (LL, SU)	Brazil (BB, GN,	Namibia (BB)
(LL)			HL, PS)	
Korea (LL)	E.C. Espana (LL)	Panama (LL)	E.C. Espana (PS)	
	E.C Portugal (LL)	South Africa (LL,	E.C Portugal (BB,	
		UN)	PS)	
	Japan (LL)	Argentina (LL,	Japan (BB, PS)	
		TW, UN)		
	Philippines (LL)	Belize (LL)	Korea (BB)	
	St Vicent and	Cambodia (LL)	Maroc (PS)	
	Grenadier (LL)			
	USA (LL)	Cuba (LL, UN)	Panama (PS)	
	USSR (LL, UN)		South Africa (BB,	
			HL, PS, RR, SP)	
	Uruguay (LL)		USA (PS)	
	Vanuatu (LL)		USSR (PS)	
	Honduras (LL)		UK St Helena	
			(BB, RR)	
	Nei (LL)		Chinese Taipei	
			(GN)	
			Nei (PS)	
			Netherlands (PS)	

Table 14. Catches for the 5 fleets.

	Fleet 1	Fleet 2	Fleet 3	Fleet 4	Fleet 5
1956	0	21	0	0	0
1957	0	725	0	0	0
1958	0	1047	0	0	0
1959	0	3015	1700	0	0
1960	0	8673	1802	0	0
1961	0	9293	1472	0	0
1962	0	18222	749	0	0
1963	0	15838	1547	0	0
1964	115	24369	1493	22	0
1965	346	28318	1181	0	0
1966	5275	21115	906	0	0
1967	7412	7719	752	0	0
1968	12489	11857	1304	38	0
1969	21732	6331	430	0	0
1970	17255	5898	500	0	0
1971	21323	3218	344	0	0
1972	30640	2087	352	100	0
1973	25888	280	1945	100	0
1974	19079	109	365	150	0
1975	16614	306	536	151	0
1976	18060	73	1129	197	0
1977	20070	105	1162	328	0
1978	21843	135	867	324	0
1979	21218	119	640	651	0
1980	19400	683	674	2173	0
1981	18869	1117	460	3594	0
1982	23363	924	1046	4339	0
1983	10101	1126	822	2869	0

1984	8237	1061	1008	4293	0
1985	20154	2198	562	8183	0
1986	27913	1097	1180	7098	0
1987	29173	535	1798	9124	0
1988	20926	505	767	7909	0
1989	18440	533	790	7448	0
1990	20461	642	638	6973	0
1991	19914	838	1333	3930	0
1992	23068	1003	3374	9089	0
1993	19420	776	3753	8863	0
1994	22573	939	1489	9199	915
1995	18351	744	941	6563	950
1996	18974	860	1165	6444	982
1997	18169	736	762	7162	1192
1998	16113	615	3080	9365	1422
1999	17377	1763	1538	5893	1072
2000	17239	3398	3760	4743	2240
2001	15834	5965	6240	7793	2969
2002	17321	1485	2866	7216	2858
2003	17356	1419	1856	4932	2432
2004	13325	1107	305	4694	3079
2005	10772	1868	359	3873	2031

 Table 15. Model specifications.

Age-at-50% maturity	5
Constant natural mortality	0.3
Steepness parameter	0.7
Plus-group	8
Minus-age-group	2 for all fleets
Age-at-which selectivity starts decline	SA and Nam = 3 , Japan = 5 , Taiwan and Brazil = 8
Phases of estimation:	K = 1, selectivity parameters = 2, recruitment residuals = 3.

Table 16. Categorization, based on type of gears, of the two fishing fleets (longline fisheries and surface fisheries) that utilized the South Atlantic albacore resource.

Fleet 1	Japan LL (1959 ~ 2005); Chinese Taipei LL (1968 ~ 2005); Brazil LL (1978 ~ 2005)
Fleet 2	South Africa BB (1985 ~ 2005)

Table 17. Periods of adopted seven CPUE Indices series.

Index series 1	Japan LL (1959 ~ 1969)
Index series 2	Japan LL (1969 ~ 1975)
Index series 3	Japan LL (1975 ~ 2005)
Index series 4	Chinese Taipei LL (1968 ~ 2005)
Index series 5	Brazil LL (1978 ~ 2005)
Index series 6	South Africa BB (1985 ~ 1998)
Index series 7	South Africa BB (1999 ~ 2005)

Table 18. Yearly catch (in t) of South Atlantic albacore, by fleet.

Year	Fleet 1	Fleet 2
1959	4715	
1960	10475	
1961	10365	400
1962	17171	1800
1963	17385	
1964	25977	22
1965	29845	
1966	27296	
1967	15883	
1968	25650	38
1969	28493	
1970	23653	
1971	24885	
1972	33079	100
1973	28113	100
1974	19553	150
1975	17456	151
1976	19262	197
1977	21194	471
1978	22806	363
1979	21843	785
1980	20671	2259
1981	20426	3614

1982	25255	4417
1983	11941	2977
1984	9834	4765
1985	22672	8425
1986	29815	7473
1987	30964	9666
1988	21828	8279
1989	19407	7804
1990	21590	7124
1991	22008	4007
1992	27133	9400
1993	23947	8866
1994	24607	10508
1995	20036	7513
1996	21000	7426
1997	19547	8474
1998	19799	10796
1999	20626	7017
2000	24398	6982
2001	28039	10762
2002	21672	10074
2003	20619	7376
2004	14717	7792
2005	12999	5905

Table 19. Specifications selected and values provided to the ASPM_2 model.

Specification	Stochastic	Deterministic
Plus-group	13+	13+
Nature Mortality	0.3	0.3
Steepness parameter	>0.9	0.7
SRR type	Beverton-Holt	Beverton-Holt
Growth equation	Lee and Yeh (2006)	Lee and Yeh (2006)
Length/Weight conversion	Penney (1994)	Penney (1994)

Table 20. Fishing mortality rate at age estimates for the VPA base case.

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8
1975	0.039	0.079	0.454	0.135	0.048	0.054	0.122	0.061
1976	0.119	0.358	0.081	0.518	0.211	0.157	0.082	0.051
1977	0.043	0.599	0.417	0.036	0.672	0.281	0.058	0.046
1978	0.150	0.571	0.656	0.196	0.025	1.944	0.033	0.033
1979	0.101	0.297	1.078	0.948	0.244	0.018	0.039	0.049
1980	0.170	0.413	0.289	0.436	0.841	0.116	0.019	0.030
1981	0.105	0.300	0.491	0.107	0.223	3.305	0.020	0.040
1982	0.035	0.278	0.551	0.486	0.030	1.164	0.032	0.076
1983	0.155	0.459	0.500	0.450	0.565	0.162	0.034	0.098
1984	0.111	0.322	0.631	0.155	0.454	2.753	0.064	0.223
1985	0.165	0.423	0.519	0.278	0.268	0.647	0.046	0.179
1986	0.110	0.455	0.940	0.296	0.414	0.351	0.081	0.344
1987	0.036	0.650	1.000	0.298	0.086	0.257	0.042	0.194
1988	0.290	0.427	0.641	0.187	0.180	0.069	0.018	0.088
1989	0.146	0.689	0.587	0.094	0.256	0.130	0.009	0.045
1990	0.164	0.689	0.839	0.227	0.231	0.875	0.027	0.133
1991	0.171	0.630	0.360	0.364	0.221	0.162	0.006	0.027
1992	0.224	0.482	0.592	0.112	0.033	0.332	0.063	0.297
1993	0.171	0.773	0.796	0.404	0.106	2.033	0.059	0.254
1994	0.102	0.866	0.890	0.262	0.171	0.181	0.150	0.587
1995	0.181	0.696	1.137	0.256	0.477	0.789	0.341	1.192
1996	0.234	0.685	0.233	0.470	0.258	0.268	0.192	0.591
1997	0.222	0.592	0.520	0.103	0.468	0.744	0.207	0.563
1998	0.191	0.445	0.348	0.126	0.044	0.615	0.195	0.471
1999	0.273	0.258	0.575	0.342	0.185	0.148	0.806	1.727
2000	0.223	0.532	0.291	0.222	0.021	0.802	0.691	1.314
2001	0.174	0.334	0.741	0.228	0.059	0.384	0.145	0.253
2002	0.197	0.228	0.159	0.868	0.084	0.861	0.343	0.557
2003	0.262	0.228	0.445	0.328	0.267	0.343	0.264	0.409
2004	0.075	0.407	0.374	0.233	0.251	2.194	0.173	0.259
2005	0.028	0.284	0.742	0.189	0.123	1.477	0.065	0.065

 Table 21. Stock size at age estimates for the VPA base case.

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7
1975	12403791	21822577	5069760	3510231	2970951	2346955	661214
1976	9610969	8833684	14931850	2386138	2271269	2098147	1647667
1977	9973945	6323749	4572736	10196107	1053288	1362277	1329019
1978	17169888	7076165	2573792	2233270	7289421	398474	761754
1979	8308918	10943552	2962002	989264	1359321	5268165	42268
1980	11740652	5565540	6021927	746710	283959	788966	3831795
1981	12280740	7340520	2728681	3342922	357608	90702	520646
1982	6999957	8193139	4028548	1237010	2225828	212033	2467
1983	8162851	5008909	4597749	1720348	563672	1600140	49024
1984	7104451	5177083	2344803	2066772	812635	237264	1008191
1985	8320716	4707857	2778651	924340	1311296	382207	11203
1986	9032457	5228726	2285110	1224658	518568	743200	148262
1987	9778992	5996135	2456456	661332	674647	253834	387773
1988	7481880	6985331	2319713	669273	363564	458522	145418
1989	8846099	4146803	3375863	905571	411403	224906	317165
1990	8407551	5663827	1542208	1390744	610932	236031	146277
1991	9145148	5285811	2107544	493623	820945	359136	72905
1992	6991683	5709081	2086111	1089102	254095	487546	226167
1993	7674933	4138676	2611312	855153	721637	182124	259047
1994	7548929	4793072	1414895	872827	422918	480643	17660
1995	8891837	5050707	1493639	430643	497664	263982	297104
1996	7675338	5498755	1866420	355006	246975	228721	88883
1997	10019900	4499244	2053416	1095809	164376	141306	129663
1998	12727620	5944548	1844359	904220	732638	76244	49729
1999	8598678	7790732	2822143	964551	590705	519180	30544
2000	5588041	4846470	4458383	1176051	507530	363584	331871
2001	3643842	3313529	2108203	2469016	697544	368318	120737
2002	5797198	2268572	1757883	744599	1456007	487090	185772
2003	9047055	3528356	1337907	1111117	231658	992177	152619
2004	12016485	5156400	2081511	635083	592851	131461	521543
2005	52996850	8257613	2542474	1060499	372824	341643	10856

 $\textbf{Table 22.} \ \, \text{Estimated benchmarks by the VPA model and approximate 80\% condifent intervals (upper CL and lower CL) using 500 bootstrpas.}$

Measure	Lower CL	Median	Upper CL	Average	Run 0
F at MSY	3.76E-01	4.31E-01	5.33E-01	4.42E-01	4.15E-01
MSY	3.12E+04	3.22E+04	3.32E+04	3.21E+04	3.23E+04
Y/R at MSY	3.72E+04 3.72E+00	3.81E+00	3.90E+00	3.81E+00	3.81E+00
S/R at MSY					4.88E+00
	3.98E+00	4.66E+00	5.25E+00	4.61E+00	
SPR AT MSY	1.37E-01	1.61E-01	1.81E-01	1.59E-01	1.68E-01
SSB AT MSY	3.37E+04	3.93E+04	4.40E+04	3.89E+04	4.14E+04
F at max. Y/R	5.40E-01	6.15E-01	7.58E-01	6.32E-01	6.23E-01
Y/R maximum	3.81E+00	3.91E+00	4.00E+00	3.91E+00	3.93E+00
S/R at Fmax	2.23E+00	2.43E+00	2.61E+00	2.43E+00	2.35E+00
SPR at Fmax	7.69E-02	8.37E-02	9.01E-02	8.36E-02	8.10E-02
SSB at Fmax	1.69E+04	1.88E+04	2.07E+04	1.88E+04	1.77E+04
F 0.1	2.77E-01	3.04E-01	3.43E-01	3.08E-01	3.18E-01
Y/R at F0.1	3.48E+00	3.55E+00	3.62E+00	3.55E+00	3.60E+00
S/R at F0.1	6.78E+00	7.42E+00	8.12E+00	7.43E+00	7.04E+00
SPR at F0.1	2.34E-01	2.56E-01	2.80E-01	2.56E-01	2.43E-01
SSB at F0.1	5.86E+04	6.46E+04	7.14E+04	6.46E+04	6.15E+04
F 20% SPR	3.21E-01	3.63E-01	4.54E-01	3.75E-01	3.67E-01
Y/R at F20	3.63E+00	3.71E+00	3.80E+00	3.71E+00	3.73E+00
S/R at F20	5.83E+00	5.84E+00	5.85E+00	5.84E+00	5.84E+00
SSB at F20	4.95E+04	5.01E+04	5.07E+04	5.01E+04	5.03E+04
F 30% SPR	2.32E-01	2.59E-01	3.17E-01	2.66E-01	2.63E-01
Y/R at F30	3.32E+00	3.39E+00	3.48E+00	3.40E+00	3.40E+00
S/R at F30	8.74E+00	8.75E+00	8.76E+00	8.75E+00	8.75E+00
SSB at F30	7.61E+04	7.68E+04	7.73E+04	7.67E+04	7.74E+04
F 40% SPR	1.71E-01	1.89E-01	2.29E-01	1.95E-01	1.93E-01
Y/R at F40	2.93E+00	3.01E+00	3.09E+00	3.01E+00	3.00E+00
S/R at F40	1.16E+01	1.17E+01	1.17E+01	1.17E+01	1.17E+01
SSB at F40	1.02E+05	1.03E+05	1.04E+05	1.03E+05	1.05E+05
F 90% max Y/R	2.61E-01	2.91E-01	3.46E-01	2.97E-01	2.98E-01
Y 90% max Y/R	2.97E+04	3.06E+04	3.16E+04	3.06E+04	3.11E+04
Y/R 90% max Y/R	3.43E+00	3.51E+00	3.60E+00	3.51E+00	3.54E+00
S/R 90% max Y/R	7.46E+00	7.76E+00	8.03E+00	7.75E+00	7.61E+00
SSB 90% max Y/R	6.49E+04	6.76E+04	7.03E+04	6.76E+04	6.68E+04
F 75% of Fmax	4.05E-01	4.61E-01	5.69E-01	4.74E-01	4.67E-01
Y 75% of Fmax	3.10E+04	3.20E+04	3.30E+04	3.20E+04	3.21E+04
Y/R at 75% Fmax	3.75E+00	3.85E+00	3.95E+00	3.85E+00	3.87E+00
S/R at 75% Fmax	3.90E+00	4.12E+00	4.34E+00	4.12E+00	4.04E+00
SSB at 75% Fmax	3.22E+04	3.43E+04	3.64E+04	3.43E+04	3.34E+04

Table 23. Management benchmarks and other quantities estimated by the various model specifications.

							M & h
Model specification		Base case			h=est	M est	est
Weighting of CAA data	0.5	0.125	0.05	0.025	0.125	0.125	0.125
-lnL:overall	101.95	-73.39	-110.16	-124.97	-74.99	-74.11	-75.61
No of parameters	78	78	78	78	79	79	80
Ksp	320307	267134	224479	237173	521287	307600	560044
K2+	498101	415411	349078	368819	810646	437219	973650
Bsp(2005)	88396	60290	49901	47451	122798	59072	139486
B2+(2005)	220917	163439	135413	128507	246254	142936	307222
Bsp(MSY)	87903	74497	67603	67373	218348	86676	246441
B2+(MSY)	207458	175948	157201	159578	164323	173059	475055
MSY	35547	30380	27594	27728	28869	27982.3	21917
aveRy	24298	27393	28607	28499	24138	26997	23717
Bsp(2005)/Ksp	0.28	0.23	0.22	0.20	0.24	0.19	0.25
B2+(2005)/K2+	0.44	0.39	0.39	0.35	0.30	0.33	0.32
Bsp(2005)/Bsp(msy)	1.01	0.81	0.74	0.70	0.56	0.68	0.57
B2+(2005)/B2+(msy)	1.06	0.93	0.86	0.81	0.64	0.83	0.65
MSYL/Ksp	0.27	0.28	0.30	0.28	0.42	0.28	0.44
MSYL/K2+	0.42	0.42	0.45	0.43	0.47	0.40	0.49
Fmsy	0.25	0.27	0.65	0.35	0.09	0.22	0.07
F(2005)/Fmsy	0.54	0.72	0.92	0.92	1.33	0.88	1.37
M	0.3	0.3	0.3	0.3	0.3	0.24	0.36
h	0.7	0.7	0.7	0.7	0.34	0.7	0.30

Table 24. Management quantities and benchmarks with 95 percentiles obtained using the MCMC procedure with the base case.

	50 percentile	95 percentile	5 percentile
Bsp(2005)/Ksp	0.26	0.35	0.18
B2+(2005)/K2+	0.41	0.52	0.34
Bsp(MSY)	81486	99178	70437
MSY	33265	40437	28882
Ry (average over last 10 years)	28042	30615	25196

Table 25. Management quantities and benchmarks derived from results of stochastic and deterministic ASPM-2 applicable to South Atlantic albacore.

Quantity	stochastic ASPM	deterministic ASPM		
B mat 2005	10777	58174		
B mat MSY	12933	75205		
B mat 2005 / B mat MSY	0.833	0.774		
Virgin (K)	226260	341174		
B ₂₀₀₅ /K	0.152	0.257		
MSY	27220	25233		
F ₂₀₀₅	0.551	0.216		
F _{MSY}	0.721	0.253		
F ₂₀₀₅ /F _{MSY}	0.764	0.854		

Figure 1. Total albacore catches reported to ICCAT (Task I) by gear for the northern and southern stocks.

Figure 2. Spatial distribution of average 2000-2005 albacore catches by gear.

Figure 3. Level of substitutions in weight and % applied to obtain the catch at size for North Atlantic albacore.

Figure 4. Level of substitutions in weight and % applied to obtain the catch at size for SouthAtlantic albacore.

Figure 5. "Bubble plots" of Albacore catch-at-age composition of the catches (total and by fishery, in number) for the North Atlantic stock. Bubble sizes are proportional to number of fish, and independent in each figure.

Figure 6. "Bubble plots" of Albacore catch-at-age composition of the catches (total and by fishery, in number) for the South Atlantic stock. Bubble sizes are proportional to number of fish, and independent in each figure.

Figure 7. Set of standardized CPUE's relative abundance indices from the surface fisheries (upper), which take mostly juvenile fish, and from the longline fisheries (lower), which take mostly mature fish used in the 2007 northern albacore stock assessment to fit the VPA-ADAPT model (1975-2005 years) and Multifan-CL model (1930-2005 years surface fishery and 1956-2005 longline fishery).

Figure 8. Set of standardized CPUE's relative abundance indices used in the 2007 southern albacore stock assessment from the surface (South Africa baitboat) and longline (LL) fleets.

Figure 9a. Summary of the size data used for MFCL. The bars that start at the origin are indicative of relative sample size (number) over time. The high-low-close bars denote the 10th, 90th and 50th percentiles of the size distributions.

Figure 9b. Summary of the size data used for MFCL. The bars that start at the origin are indicative of relative sample size (number) over time. The high-low-close bars denote the 10th, 90th and 50th percentiles of the size distributions.

Figure 10. VPA fits to the indices of abundance of preliminary run before defining the base case.

Figure 10 (continued)

Figure 11. VPA model fits to the indices of abundance for the case of a fixed F ratio for the initial year 1975 of 0.5 (Base case) (see text of details of the run).

Figure 11 (continued)

Figure 12. Estimated F ratio for ages 7 and 8+ (black squares) and ratio of the catch of the longline fisheries to the catch of the surface fisheries (open diamonds) for 3 cases of fixed F ratio for the initial year 1975.

Figure 13. Estimated a) relative F and b) relative SSB trajectories for the VPA base case and sensitivity runs. See text for details of runs.

Figure 14. Retrospective analysis of VPA base case for age groups 1, 2-4, 5-7, and 8+.

Figure 15. Estimated trajectories of biomass, fishing mortality, recruits, and ratios of SSB against SSBmsy and SSB20%SPR for the VPA sensitivity case using an Age 6+ group for the cases of fixed F ratio and random walk estimation of F ratios (see text for details).

Figure 16. VPA fits to the indices for the sensitivity case of an Age 6+ group. Left panels correspond to the case of a fixed F ratios;L right panels for the estimation of F ratios using random walk (see text for full details).

Figure 16 (continued)

Figure 17. Estimated stock trajectory of relative SSB vs. relative F (top panels) and estimated 500 bootstrap values for relative F and relative SSB (open diamonds) and deterministic estimate (red diamond) (middle and lower panels) from VPA model of North Atlantic stock.

Figure 18. Estimates of relative spawning biomass obtained in 8 different runs of Multifan-CL model for the North Atlantic albacore stock.

Figure 19. Estimates of relative fishing mortality obtained with different Multifan-CL modeling options of the North Atlantic albacore stock.

Figure 20. Estimates of recruitment obtained with 8 different model runs of Multifan-CL model of the North Atlantic albacore stock.

Figure 21. Estimates of relative biomass, relative fishing mortality and recruitment for the North Atlantic albacore stock from Multifan-CL model analyses.

Figure 22. Estimated selectivity patterns for the 10 fisheries used in Multifan-CL model analyses for the North Atlantic albacore stock.

Figure 23. Effort deviations for the various fisheries modeled by Multifan-CL in the North Atlantic albacore stock.

Figure 24. Estimated changes in MSY (thousand tons) for northern albacore, based on changes in total selectivity.

Figure 25. Trajectory of relative Fishing mortality and relative SSB for Northen albacore, 1930-2005. The blue X marks the 2005 point.

Figure 26. Trajectory of relative fishing mortality and relative SSB, by decade. The **X** marks the last point in each decade (1939, 1949, 1959 ... 2005) for the North Atlantic stock.

Figure 27. Estimated stock-recruitment relationship for northern albacore.

Figure 28. Estimates of recruitment, relative SSB and relative F for southern albacore (Run 8).

Figure 29. ASPM model fit of the observed CPUE data of the four different fleets using the base case in the South Atlantic albacore stock.

Figure 30. ASPM model.Residual plots of the catch-at-age data for the five different fleets using the base case in the South Atlantic stock.

Figure 31. ASPM model. Recruitment residuals and an estimated Spawner-Recruit relationship for the base case in the South Atlantic albacore stock.

Figure 32. ASPM model.Estimated selectivity by fleet for the different fleets in the ASPM base case analysis of the South Atlantic stock.

Figure 33. ASPM model. Biomass trajectory relative to the maximum sustainable yield (MSY) level for the base case analysis with ASPM model in the South Atlantic stock .

Figure 34. ASPM model. Catch relative to replacement yield versus current biomass relative to the biomass at MSY. The circles are the current state of the stock for all the sensitivity runs for the South Atlantic stock.

Figure 35. Selectivity patterns of Japanese (upper), Chinese Taipei (middle), and South African (below) fleets used for ASPM_2 model analyses in the South Atlantic stock.

Figure 36. Plots of observed CPUE versus its respective predicted CPUE for the seven different indices series, based on stochastic model ASPM_2. (Note: two series of indices of South African baitboat fisheries were plotted in one figure).

Figure 37. Plot of Spawner-recruitment pattern obtained from deterministic ASPM_2 model applied in the South albacore stock.

Figure 38. Estimated recruitment trend, based on stochastic ASPM_2 model applied in the South albacore stock.

Figure 39. Plots of observed CPUE versus its respective predicted CPUE for the seven different indices series, based on deterministic ASPM_2. (Note: two series of indices of South African baitboat fisheries were plotted in one figure.)

Figure 40. Plot of spawner-recruitment pattern, based on deterministic ASPM_2.

Figure 41. Estimated recruitment trend, based on deterministic ASPM_2.

Figure 42. Estimated VPA projections of relative F (F/F_{MSY}) for different scenarios of constant catch and constant F assuming average recent year-class strengths for the North Atlantic albacore stock.

Figure 43. Estimated VPA projections of relative SSB (SSB/SSB_{MSY}) for different scenarios of constant catch and constant F assuming average recent year-class strengths for the North Atlantic albacore stock.

Figure 44. Estimated VPA projections of relative SSB (SSB/SSB_{MSY}) for different scenarios of constant catch under the assumption of a strong incoming year-class as estimated by the VPA for North Atlantic albacore.

Figure 45. VPA estimated yield-per-recruit (YPR) and spawner-per-recruit (S/R) for different values of F. The diamond indicates estimated $F_{2005} = 1.974$. The circle shows estimated geometric mean of F for years 2002-2004 (F=0.952). North Atlantic albacore stock.

Figure 46. ASPM_2 biomass trajectories for various constant catch strategies using the base case in the South Atlantic albacore stock.

Figure 47. Biomass trajectory with 95 percentiles with a constant catch of 25,000 tones over the next 10 years for the base case scenario in the Southh Atlantic albacore stock.

Appendix 1

AGENDA

- 1. Opening, adoption of the Agenda and meeting arrangements.
- 2. Biological data, including tagging information
- 3. Catch data, including size frequencies and fisheries trends
- 4. Catch-at-size (CAS) and catch-at-age (CAA)
- 5. Relative abundance indices
 - 5.1 Indices by age for VPA-2BOX model fit
 - 5.2 Indices by fleet for MULTIFAN-CL model fit
 - 5.3 Indices for Age Structured Production Model fit
- 6. Methods and other data relevant to the assessment
- 7. Stock status results
 - 7.1 VPA-2BOX
 - 7.2 MULTIFAN-CL
 - 7.3 Other methods
- 8. Projections and yield per pecruit analysis
- 9. Recommendations
 - 9.1 Research and statistics
 - 9.2 Management
- 10. Other matters
- 11. Adoption of the report and closure

Appendix 2

LIST OF PARTICIPANTS

CONTRACTING PARTIES

BRAZIL

Frédou, Thierry

Universidade Federal do Pará Campus do Guamá, Depto. de Oceanografía Centro de Geociências, C.P. 8617, CEP 66093-110, Belém, PA

Tel: +55 91 3201 7983, Fax: +55 91 3201 7109, E-Mail: tfredou@ufpa.br

Hazin, Humberto

UFRPE/DEPAq, , Rua Dom Manuel de Medeiros, s/n, , Dois Irmaos, Recife-PE Tel: +55 81 3320 6500, Fax: +55 81 3320 6501, E-Mail: hghazin@hotmail.com

EUROPEAN COMMUNITY

Brophy, Deirdre

Commercial Fisheries Research Group, GMIT, Dublin Rd, Galway, Ireland Tel: +353 91 742484, Fax: , E-Mail: deirdre.drophy@gmit.ie

Cosgrove, Ronan

An Bord Iascaigh Mhara (BIM), New Docks, Co. Galway, Ireland Tel: +353 91 564 318, Fax: +353 91 568 569, E-Mail: cosgrove@bim.ie

Ortiz de Urbina, Jose Maria

Instituto Español de Oceanografía, C.O de Málaga, Apartado 285, Puerto Pesquero s/n, 29640 Fuengirola, Málaga, Spain Tel: +34 952 476 955, Fax: +34 952 463 808, E-Mail: urbina@ma.ieo.es

Ortiz de Zárate Vidal, Victoria

Ministerio de Educación y Ciencia, Instituto Español de Oceanografía, Promontorio de San Martín s/n, 39012 Santander, Cantabria, Spain

Tel: +34 942 29 10 60, Fax: +34 942 27 50 72, E-Mail: victoria.zarate@st.ieo.es

Pereira, Joao Gil

Universidade dos Açores, Departamento de Oceanografia e Pescas, 9900 Horta, Portugal Tel: +351 292 200 431, Fax: +351 292 200 411, E-Mail: pereira@notes.horta.uac.pt

ALBACORE STOCK ASSESSMENT - MADRID 2007

Taquet, Marc

IFREMER HMT, B.P. 171, Rue Jean Monet, 34203 Sète Cedex, France

Tel:, Fax:, E-Mail: marc.taquet@ifremer.fr

JAPAN

Uosaki, Koji

National Research Institute of Far Seas Fisheries, Fisheries Research Agency of Japan, 7-1, 5 Chome Orido, Shizuoka-shi, Shimizu-ku 424-8633

Tel: +81 543 36 3036, Fax: +81 543 35 9642, E-Mail: uosaki@affrc.go.jp

NAMIBIA

Kirchner, Carola

Ministry of Fisheries and Marine Resources, Strand Str., Box 912, Swaropmund

Tel: +264 64 410 1133, Fax: , E-Mail: ckirchner@mfmr.gov.na

UNITED STATES

Díaz, Guillermo

NOAA Fisheries, Southeast Fisheries Center, Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149 Tel: +1 305 361 4466, Fax: +1 305 361 4562, E-Mail: guillermo.diaz@noaa.gov

Ortiz, Mauricio

NOAA Fisheries, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149-1099 Tel: +1 305 361 4288, Fax: +1 305 361 4562, E-Mail: mauricio.ortiz@noaa.gov

Scott, Gerald P.

SCRS Chairman, NOAA Fisheries, Southeast Fisheries Science Center Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149-1099

Tel: +1 305 361 4220, Fax: +1 305 361 4219, E-Mail: gerry.scott@noaa.gov

OBSERVERS FROM COOPERATING NON-CONTRACTING PARTIES

CHINESE TAIPEI

Chang, Feng-Chen

Overseas Fisheries Development Council, , 19 Lane 113, Roosevelt Road Sect. 4, Taipei 106 Tel: +886 2 2738 1522, Fax: +886 2 2738 4329, E-Mail: fengchen@ofdc.org.tw; d93241008@ntu.edu.tw

Chen, Chiee-Young

National Kaohsiung Marine University, Department of Fishereis productor and Management, P.O. Box 23-13; No 142, Hai-Chuan Rd, Kaohsiung, Narzih Districk, 811

Tel: +88 6 7 365 1481, Fax: +886 7 368 1210, E-Mail: chency@mail.nkmu.edu.tw

Lee, Liang-Kang

National Kaohsiung Marine University, Department of Fishereis productor and Management, P.O. Box 23-13; No 142, Hai-Chuan Rd., Kaohsiung, Narzih Districk 811

Tel: +886 7 3617 141; ext 3515, Fax: +886 7 3644 190, E-Mail: Leelk@mail.nkmu.edu.tw

Yeh, Shean-Ya

Professor, Institute of Oceanography National Taiwan University, P.O. Box 23-13, Taipei

Tel: +886 2 2363 7753, Fax: +886 2 2366 1197, E-Mail: sheanya@ntu.edu.tw

ICCAT SECRETARIAT

C/ Corazón de María, 8 - 6 Planta, 28002 Madrid, Spain Tel: + 34 91 416 5600, Fax: +34 91 415 2612, E-Mail: info@iccat.int

> Restrepo, Victor Kebe, Papa Pallarés, Pilar Palma, Carlos

LIST OF DOCUMENTS

SCRS/2007/093	Standardized northern Atlantic albacore (<i>Thunnus alalunga</i>) CPUE, from 1967 to 2005, based on Taiwanese longline catch and effort statistics. HSIEH, Chi-Heng, Feng-Chen Chang and Shean-Ya Yeh.
SCRS/2007/094	Standardized CPUE of South Atlantic albacore (<i>Thunnus alalunga</i>) based on Taiwanese longline catch and effort statistics dating from 1967 to 2005. CHANG, Feng-Chen and Shean-Ya Yeh.
SCRS/2007/095	Assessment of the South Atlantic albacore resource based on 1959-2005 catch and effort statistics from ICCAT. LEE, Liang-Kang and Shean-Ya Yeh.
SCRS/2007/096	Factors, predicted by GAM procedures, dominating South Atlantic albacore (<i>Thunnus alalunga</i>) distribution revealed by 1982-2005 Taiwanese longline catch and effort data. CHANG, Feng-Chen and Shean-Ya Yeh.
SCRS/2007/098	Spanish albacore (<i>Thunnus alalunga</i>) surface fishery statistics in the northeastern Atlantic in 2006. ORTIZ DE ZÁRATE, Victoria, Santiago Barreiro, Cristina Rodriguez-Cabello.
SCRS/2007/099	Standardized age-specific catch rates of albacore, <i>Thunnus alalunga</i> , from the Spanish troll fishery in the northeast Atlantic, from 1981 to 2006. ORTIZ DE ZÁRATE, V. and J.M. Ortiz de Urbina.
SCRS/2007/102	Age estimation in albacore tuna, <i>Thunnus alalunga</i> (Bonn. 1788) using three different calcareous structures; preliminary findings of an inter-laboratory comparison. DAVIES, C.A., D. Brophy, P. Megalofonou, E. Gosling, N. Griffin, B. Leroy and N. Clear.
SCRS/2007/103	Standardized cpue for albacore using log-normal and negative binominal models for the Japanese longline in the Atlantic Ocean. UOSAKI, Koji and Hiroshi Shono.
SCRS/2007/104	Integral revision of the albacore (<i>Thunnus alalunga</i>) catch-at-size composition for the northern and southern stocks, between 1975 and 2005. PALMA, C., P. Kebe.
SCRS/2007/105	Standardization CPUE series of albacore, <i>Thunnus alalunga</i> , caught by Brazilian longliners in the Atlantic Ocean. HAZIN, H., T. Frédou, P. Travassos, F. Hazin, and F. Carvalho.