Rational Homotopy Theory.

• rational space: 1. simple connected space X, i.e. $\pi_{\bullet}(X) = 0$

2.
$$\pi_{*}(X) \otimes_{\underline{\mathcal{X}}} \mathbb{Q} \subseteq \pi_{*}(X) \iff \widetilde{H}_{*}(X;\underline{\mathcal{X}}) \otimes \mathbb{Q} \subseteq \widetilde{H}_{*}(X;\underline{\mathcal{X}}) \subseteq \widetilde{H}_{*}(X;\mathbb{Q})$$

the existence of rational space: constructure rational space.

simple connected space X

CW-approximation.

$$(X^{n} = X^{n-1} \coprod_{\alpha} e^{n} = X^{n-1} U_{\alpha} D^{n}_{\alpha})$$

$$(X^{n} = X^{n-1} \coprod_{\alpha} e^{n} = X^{n-1} U_{\alpha} D^{n}_{\alpha})$$

$$(D^{n+1}, S^{n}) \Rightarrow (D^{n+1}, S^{n}_{\alpha})$$

$$(D^{n+1}, S^{n}) \Rightarrow (D^{n+1}, S^{n}_{\alpha})$$

$$(X^{(n)} = X^{(n-1)} \coprod_{\alpha} e^{n}_{\alpha} = X^{(n-1)} U_{F_{\alpha}} D^{n}_{\alpha, \alpha})$$

$$(X^{(n)} = X^{(n-1)} \coprod_{\alpha} e^{n}_{\alpha, \alpha} = X^{(n-1)} U_{F_{\alpha}} D^{n}_{\alpha, \alpha})$$

 $S_{n\alpha}^{n} = \left(\bigvee_{i=0}^{\infty} S_{i}^{n}\right) \bigcup_{h} \left(\bigvee_{j=1}^{\infty} D_{j}^{n+1}\right), \text{ where } D_{j}^{n+1} \text{ is attached by } \alpha \text{ map } S_{j-1}^{n} V S_{j}^{n},$ representing $[S_{j-1}^{n}] - k_{j} [S_{j}^{n}].$

$$X_{\nu} \subset X_{(\nu)} \subset X_{\nu+1}$$

 $\pi_*(X; \mathbb{Z})$ $H_*(X; \mathbb{Z})$ Thm: $\pi_*(X; \mathbb{Z})$ is 1Q-module $\Leftrightarrow H_*(\Omega X; \mathbb{Z})$ is 1Q-module.

Def. rationalization: $Q: X \rightarrow X_{10}$ s.t. Q induces an isomorphism

$$\pi_*(X) \otimes_{\mathbb{Z}} 1Q \xrightarrow{\widehat{\Sigma}} \pi_*(X_{\mathbb{Q}})$$

Thm: $\varphi: X \to Y$ is a rationalization iff. $\pi_X(Y) \otimes_{\mathbb{Z}} (Q \subseteq \pi_X(Y))$ and $H_X(\varphi; |k|)$ is an isomorphism.

Thm. Be space X is simplen connected, the vationalizations are unique up to homotopy equivalence rel X

 $f: \times \rightarrow Y$ following conditions are equivalent:

· Transform topological space into commutative cochain algebras.

$$A_{PL} = \{(A_{PL})_n\}_{n \geq 0} : (A_{DR})_n = C^{\infty}(\Delta^n) \otimes_{(A_{PL})_n} (A_{PL})_n \}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$= \frac{\Lambda(t_0, \dots, t_n, y_0, \dots, y_n)}{(\Sigma + t_i - 1, \Sigma y_j)}$$

$$(ApL)_n = \frac{\Lambda(to, \dots, tn, yo, \dots, yn)}{(\Sigma + i - 1, \Sigma y_i)}$$

algeboa) 2. face and degeneracy morphisms.

$$\partial_i: (A_{PL})_{n+1} \rightarrow (A_{PL})_n$$

$$\partial_i: t_k \mapsto \begin{cases} t_k & k < i \\ 0 & k = i \end{cases}$$

$$\begin{array}{ll} \partial_{i}: (A_{PL})_{n+1} \rightarrow (A_{PL})_{n} & S_{j}: (A_{PL})_{n} \rightarrow (A_{PL})_{n+1} \\ \\ \partial_{i}: t_{k} \mapsto \left\{ \begin{array}{ll} t_{k} & k < i \\ 0 & k = i \\ t_{k-1} & k > i \end{array} \right. & \left\{ \begin{array}{ll} t_{k} & k < j \\ t_{k} + t_{k+1} & k = j \\ \end{array} \right. \\ \end{array}$$

Apr = {(Apr)n}nzo, K be a simplicial set.

 $A_{PL}(K) = \{A_{PL}^{\uparrow}(K)\}_{\uparrow \geq 0}$ is the "ordinary" cochain complex (algebra)

1. Apr is the set of simplicial set morphisms from K to A_{PL}^{\dagger} $\Phi \in A_{PL}^{\dagger}(K) \qquad \sigma \stackrel{\underline{\Phi}}{\Longrightarrow} \Phi \sigma \qquad \text{s.t.} \quad \Phi_{\partial i} \sigma = \partial_{i} \Phi \sigma \quad , \quad \Phi_{s_{j}} \sigma = s_{j} \Phi \sigma$

2. (車+生)の= 重の+重の 、(を生)の= か・重の、(はを)の= d(重の)

3. If A_{PL} is a simplicial cochain algebra, then (general, $\Phi \cdot \Psi$) $\Phi \cdot \Psi$ consider $\Phi \cdot \Psi$

4. $Q: K \to L$ morphism of simplicial sets then $A_{p}(Q): A_{p}(K) \longleftarrow A_{p}(L)$

is the morphism of cochain complexes (algebra) defined by. $(A_p(\mathbf{e})\, \hat{\Phi})_{\sigma} = \underline{\Phi}\, \mathbf{e}\sigma$

41/14/18/18/19

 $A_{PL}(X) \triangleq \textit{Re}A_{PL}\left(S_{\mathcal{F}}(X)\right) \qquad \left(S_{\mathcal{K}}(X) : \text{the set significan simplexes on a Space } X\right)$

The simplicial cochain algebra $C_{PL}: (C_{PL})_n \triangleq C^*(\Delta E_n)$, $C_{PL} = \{(C_{PL})_n\}_{n \geq 0}$ ($C^*(X; lk)$ is called the normalized singular chain complex of X)

Thm. I. the natural morphisms of cuchain algebras,

 $C_{PL}(K) \longrightarrow (C_{PL} \otimes A_{PL})(K) \longleftarrow A_{PL}(K)$ (K: simplicial set)

ore quasi-isomorphism.

2. There is a natural isomorphism $C_{PL}(K) \xrightarrow{\Delta} C^*(K)$ of cochain algebras.

Cor. H*(X) = H(APL(X))

· Sullivan models

Det Sullivan algebra: a commutative cochain algebra (NV, d), satisfying

1. V= {VP}

2. V= UV(k), V(0)CV(1)C ...

d=0 in V(0) and $d:V(k)\rightarrow \Lambda V(k-1)$, $k\geqslant 1$.

2'. There exist graded subspaces $V_k \subset V(k)$, s.t. $\Lambda V(k) = \Lambda V(k-1) \otimes \Lambda V_k$. d: $V_k \rightarrow \Lambda V(k-1)$

(3. minimal: Imd $\subset \Lambda^+ V \cdot \Lambda^+ V$)

Def. Sullivan model: $m: (NV, d) \xrightarrow{\sim} APL(X)$

Prop. Any commutative cochain algebra (A,d), sortistyling $H^{\circ}(A)=1k$, has a Sullivan model.

Def. morphisms $(0, 0) : (NV, d) \to (A, d)$ are homotopic, if there is a morphism $\underline{\Phi} : (NV, d) \to (A, d) \otimes (N(t, dt), d)$

s.t. $(id \cdot E;) \not = \varphi;$ i=0,1. $(E_0,E_1:\Lambda(t,dt) \rightarrow ik$, by $E_0(t)=0$, $E_1(t)=1)$ $\mathring{\underline{}}$ is called a homotopy from φ_0 to φ_1 , $(\varphi_0 \land \varphi_1)$.

Sullivan representative for $f: X \rightarrow Y: \mathcal{C}: (\Lambda W, d) \rightarrow (\Lambda V, d)$

$$A_{PL}(X) \leftarrow A_{PL}(f)$$
 m_X
 M_X

Proof of the existence of Sullivan model: . . .

$$M_0: (\Lambda V_0, 0) \rightarrow (A, d)$$
 s.t. $H(M_0): V_0 \xrightarrow{\sim} H^+(A)$

$$m_k: \left(\bigwedge_{i=0}^k V_i \right), d \right) \rightarrow (A, d)$$

$$V_{k+1} \cong \text{Ker } H(m_k)$$
, $[Z\alpha]$ is a basis for Ker $H(m_k)$
 $V\alpha \in V_{k+1}$, $dV\alpha = Z\alpha$

Example 1. S^k .

if k is odd, $m: (\Lambda(e), 0) \xrightarrow{\sim} A_{PL}(S^k)$ if k is even, $m: (\Lambda(e, e'), de'=e^2) \xrightarrow{\sim} A_{PL}(S^k)$

Example. 2. Product.

$$m_{\times}: (NV, d) \longrightarrow A_{PL}(X)$$
 $m_{Y}: (NW, d) \longrightarrow A_{PL}(Y)$
 $m_{\times}: m_{Y}: (NV, d) \otimes (NW, d) \xrightarrow{\sim} A_{PL}(X \times Y)$

Example 3. H-space have minimal Sullivan models of the form (N,0)

14/4/1/07/ ·

VALLAN.

Example 4. Wedge.

$$m_{\alpha}: (\Lambda V_{\alpha}, d) \xrightarrow{\Delta} A_{PL}(X_{\alpha})$$

II
$$(N \vee \alpha, d) \xrightarrow{\Delta} II ApL(X \vee \alpha)$$

not sullivan algebra.

Example
$$5$$
. $5^3 \times 5^3 \times 5^5 \times 5^6$
 $(NV, d) = N(x, y, Z, \alpha, u; dx = dy = dZ = d\alpha = 0, du = \alpha^2)$

Adjunction space.

 $f: Y \rightarrow X$. $\varphi: (NV_X, d) \rightarrow (NV_Y, d)$ is Sullivan representive of f.

Relative Sullivan model. (BONV, d) ... be similar to sullivan model.

$$\begin{cases} (B,d) = (BB 1,d) & +1^{\circ}(B) = k. \\ (BV = V = \{V^{P}\}_{P \geq 1} \\ V = \bigvee_{k=0}^{\infty} V(k) & V(0) \subset V(1) \subset \cdots & \text{s.t.} \\ d \colon V(0) \to B & \text{and} & d \colon V(k) \to B \otimes NV(k-1) & k \geq 1 \end{cases}$$

given $\varphi:(B,d) \Rightarrow (C,d)$, s.t. $H^{\circ}(B)=Ik$, Sullivan model for φ is $m: (B \otimes N, d) \xrightarrow{\Delta} (C, d)$

(minimal: Ind C B+ & NV + B & N32 V)

existence of minimal: $(B \otimes NV, d)$

idea: V => W + U + doU.

$$\frac{V}{\text{kerdo}} = U$$

$$\frac{1}{1} = U$$

$$\frac{1}{1} = U$$

7.,

Sullivan pairing.
$$(NV, d) \times .$$

$$m_{\times}: (NV, d) \longrightarrow A_{PL}(\times)$$

$$m_k: (N(e), 0) \rightarrow A_{PL}(S^k)$$
 or $(N(e, e'), de' = e^2) \rightarrow A_{PL}(S^k)$

$$d \in \pi_k(X)$$
 is represented by $\alpha : (S^k, *) \rightarrow (X, *)$

Let
$$Q(a): V^k \rightarrow k \cdot e$$

Define the pairing
$$\langle -; - \rangle : V \times \pi_*(X) \rightarrow k$$
.

$$\langle V; x \rangle \mathcal{L} = \begin{cases} Q(\alpha)V & V \in V^k \\ 0 & |V| \neq |x| \end{cases}$$

induces a natural linear map : $V_X: V \xrightarrow{\cong} Hom_{\mathbb{Z}}(\pi_*(X), \mathbb{I}_k)$ $V \mapsto (V; -)$

Cell attachment. XUa D nt1 . commutative model (NV ⊕lku, da) by :

$$\Lambda V$$
 is a subalgebra and $u \cdot \Lambda^+ V = \overline{v} = u^2$

$$d\alpha u=0$$
, $d\alpha v=dv+\langle v;\alpha\rangle u$, $v\in V$.

Differential
$$d = d_0 + d_1 + d_2 + \cdots$$
 ($d = d_1 + d_2 + \cdots$ minimal)
 $d_1: V \rightarrow \Lambda^2 V$.

$$\gamma_0 \in \pi_k(X)$$
, $\gamma_1 \in \pi_n(X)$ [$\gamma_0, \gamma_1]_w \in \pi_{n+k-1}(X)$

$$[C_0, C_1]_W: S^{k+n-1} \rightarrow S^k V S^n \xrightarrow{(C_0, C_1)} X$$
.

Define a trilinear map.

$$\langle -j_{-}, \rangle : \Lambda^{2} \bigvee \times \pi_{*}(X) \times \pi_{*}(X) \longrightarrow \mathbb{R}. \quad \text{by}$$

$$\langle v_{NW}; \gamma_{0}, \gamma_{1} \rangle = \langle v_{1}, \gamma_{1} \rangle \langle w_{1}, \gamma_{0} \rangle + \langle v_{1}, \gamma_{0} \rangle \langle w_{1}, \gamma_{1} \rangle.$$

Prop.
$$\langle d, V; Y_0, Y_1 \rangle = (-1)^{k+n-1} \langle V; LY_0, Y_1 J_w \rangle$$

Fibration. (Serre).

Fibration
$$A_{PL}(\tilde{f})$$
 $A_{PL}(\tilde{f})$
 $A_{PL}(\tilde{f})$
 $A_{PL}(\tilde{f})$
 $A_{PL}(\tilde{f})$
 $A_{PL}(\tilde{f})$
 $A_{PL}(\tilde{f})$

$$A_{PL}(P): A_{PL}(Y) \longrightarrow A_{PL}(X)$$
 to $m: (A_{PL}(Y) \otimes NV, d) \xrightarrow{\triangle} A_{PL}(X)$

$$(NV, \overline{d}) = Ik \otimes_{A_{RL}(Y)} (A_{PL}(Y) \otimes NV, d)$$
 fibre of the model of yo.

· Spatial realization 1 · 1.

1:1: Commutative cochain algebras >>> CW complexes.

commutative cochain algebras is simplicial sets of CW complexes

(contravariant)

Simplicial realization functor

adjoint of ApL (-)

Milnor's realization functor.

Sullivan realization: the contravariant functor $(A,d) \mapsto (A,d)$ from commutative cochain algebras to simplicial sets, give by:

c) The n-simplices of (A,d) are the dga morphisms $o:(A,d) \rightarrow (A_{PL})_n$.

(1). face and degeneracy operators are given by $\partial_1 \sigma = \partial_1 \circ \sigma$ and $S_j \sigma = S_j \circ \sigma$.

(3) If $\varphi: (A,d) \to (B,d)$ is a morphism of commutative cochain algebras, then $\langle \varphi \rangle: (A,d) \longleftarrow (B,d)$ is the simplicial morphism given by

 $\langle \Psi \rangle (0) = 0.09$ $0 \in \langle B, d \rangle_n$

· Lie model.

graded Lie algebra, L, graded vector space
$$L = \{L_i\}_{i \in \mathbb{Z}}$$
, $[,]: L \otimes L \rightarrow L$
 $\downarrow [x,y] = -(-1)^{\text{deg} x} \stackrel{\text{deg} y}{\text{deg} y} [y,x]$
 $\downarrow [x,y,z] = [[x,y],z] + (-1)^{[x]\cdot |y|} [y,[x,z]]$
 $(d[x,y] = [dx,y] + (-1)^{[x]} [x,dy])$

Universal enveloping algebras.

graded Lie algebra $L \longrightarrow tensor$ algebra $TL = \Lambda L$.

whiversal enveloping algebra of
$$L:UL=TL/I$$

I: generated by the examp elements of form $x \otimes y - (-1)^{(x)-U1} y \otimes x - [x,y]$
 $x \cdot y \in L$

admissible U-monomials: 1, and $u_m = (V_{\alpha_i}) \cdots (V_{\alpha_k}) \in UL$. $\alpha_i \in \alpha_i \in C_{\alpha_i} \subseteq C_{\alpha_k}$ and $\alpha_i \in C_{\alpha_i} \subseteq C_{\alpha_k} \subseteq C_{\alpha_k}$

Thm. 1. admissible U-monomials & are a basis of UL.

2. a natural linear isomorphism of graded vector spaces,

Free graded Lie algebras Lv.

TV. $[v,w] \triangleq v \otimes w - (-i)^{|v|-|w|} w \otimes v.$

ILV is a sub Lie algebra generated by V.

inclusion $L_V \rightarrow TV$ extend to an algebra morphism $UL_V \rightarrow TV$.

inclusion V => 4v => ULLV extend to a morphism TV -> ULLV

> ULv=TV

The homotopy Lie algebra of a topological space

$$[\alpha,\beta]=(-1)^{|\alpha|+1}\partial_{*}([\partial_{*}^{1}\alpha,\partial_{*}^{-1}\beta]_{W})$$
 $\alpha,\beta\in\pi_{*}(\Omega_{X})$

17x(sux) ⊗ik is a graded Lie algebra., denoted by Lx.

The homotopy Lie algebra of a minimal Sullivan algebra . $(NV, d=d_1+d_2+\cdots)$, consider (NV, d_1)

sL = Hom(V, lk) $(sL)_k = L_{k-1}$

Define a pairing $\langle -; - \rangle : V \times S \perp \longrightarrow \mathbb{R}$ $\langle V; S \rangle = (-1)^{1/2} \leq \gamma(V)$ extend to (k+1)-linear maps.

1kV x s/ x ··· x s/ -> 1k

 $\langle v, \Lambda \dots \Lambda v_k ; s \gamma_k, \dots, s \gamma_i \rangle = \sum_{\sigma \in S_k} \varepsilon_{\sigma} \langle v_{\sigma(i)}; s \gamma_i \rangle \dots \langle v_{\sigma(k)}; s \gamma_k \rangle$

consider a pair of dual basis for V and for L, (Vi) for V, (Xi) for L,

s.t. (Vi; sxj)= 8ij

[,]: $L \times L \longrightarrow L$ is uniquely determined by the formula $\langle V; S[x,y] \rangle = (-1)^{|y|+1} \langle d_1V; SX, Sy \rangle$, $x,y \in L$, $v \in V$.

(L, L-, -J) is called the homotopy Lie algebra of the Sullivan algebra (N, d)

12.

linear map $\sigma: L_X \longrightarrow L$ defined by $\Theta(s\alpha) = s \sigma \alpha$, $\alpha \in L_X$.

is an isomorphism of graded Lie algebras.

$$(\theta: \pi_*(X) \otimes \mathbb{I}_k \longrightarrow Hom(V, \mathbb{I}_k)).$$

• functors C_{*} and I.

$$\left\{\begin{array}{c} \text{one-connected cocommutative} \right\} \\ \left\{\begin{array}{c} \text{chain coalgebras} \end{array}\right\} \\ \left\{\begin{array}{c} \text{C}_{\star} \end{array}\right\} \\ \left\{\begin{array}{c} \text{C$$

$$L(C_*(L,d_L)) \xrightarrow{\triangle} (L,d_L)$$
 $C_*(L(C,d)) \xleftarrow{\triangle} (C,d)$

(one-connected: $C = Ik \oplus \{C_i\}_{i \ge 1}$, connected chain Lie algebra: $L = \{L_i\}_{i \ge 1}$)

(co commutative if $\tau \triangle = \triangle$, $\tau : C \otimes C \rightarrow C \otimes C$, $\alpha \otimes b \mapsto (\dashv)^{|\alpha| \cdot |b|} b \otimes \alpha$) for, NV, △(v)=v⊗1+(⊗V, E: N+V→0, 1→1

consider (L, dL), define do, di,

do (SX, N-- N SXK) = - \frac{k}{1} (-1)^{n_1} sx, n-- N sdl \center i \chi ... \chi & \center k

 $q''(\xi\lambda'V\cdots V\xi\lambda') = \sum_{i \in j \in \mathcal{I} \times i} (-i)_{k!i+1} (-i)_{k!j} \xi [\lambda_i'\lambda_i'] V \xi \lambda' \cdots \xi \lambda' \cdots V \xi \lambda'$

$$\left(N_{i} = \frac{\sum_{j < i}}{\sum_{i}} \operatorname{deg} SX_{j} \qquad SX_{i} \wedge \dots \wedge SX_{k} = (-1)^{n_{ij}} SX_{i} \wedge SX_{j} \wedge SX_{i} \dots SX_{i} \dots SX_{k} \right)$$

The Castan-Eilenberg-Chevallery construction on a dgl (L, dz) is the differential graded Coalgebra

$$C_*(L, dL) = (NsL, dotd_1)$$

Quillen functor L

 $(C,d) = (\overline{C},d) \oplus ik$ co-augmented dgc , cocommutative .

by cobar construction, $\Omega C = T s^{-1} \overline{C}$, d = dot d, $d = s^{-1} \overline{C} \rightarrow s^{-1} \overline{C} \otimes s^{-1} \overline{C}$

$$L(c,d) = (L_{s-1}\bar{c},d)$$
 Withour.

Def. free model of a connected chain Lie algebra (L,d) is a dgl quasi-isomorphism of the form.

 $m: (\perp \!\!\! \perp_{V}, d) \xrightarrow{\Delta} (\perp, d)$ with $V = \{Vi\}_{i \ge 1}$

4: LC*(L,d) => (L,d)

Prop. $Q: (\mu_{W}, d) \rightarrow (\mu_{V}, d)$ respected the morphism of free connected chain Lie algebras then

$$\varphi: \Delta \Leftrightarrow \varphi: \Delta \qquad (\mathscr{C} = Q(\varphi))$$

Def. minimal: (Lv,d) $V=\{V_i\}_{i\geq 1}$, if $d=do+d_1+\cdots$. do=0 $m:(Lv,d) \xrightarrow{\triangle} (L,d)$ is called a minimal free Lie model.

Thm. For any connected chain algebra (L,d), admits a minimal free Lie model $m: (Lv,d) \xrightarrow{\triangle} (L,d)$

and (ILv, d) is unique up to isomorphism.

 $C^*(L,dL)$ and $L_{(A,d)}$

 $C^*(L,d_L) = Hom(C_*(L,d_L),l_k)$ (commutative, $dg\alpha$) $ef(-g)(c) = (f\otimes g)(\Delta c)$ ($def(c) = -(-1)^{lf} f(dc)$ $f,g \in C^*(L,d_L)$ $ef(-g)(c) = (f\otimes g)(\Delta c)$

If (L,d) is a connected chain Lie algebra, and each Li is finite dimensional consider $(SL)^{\#}= Hom (SL, Ik) \longrightarrow C^{\#}(L)$, extend to $D: \Lambda(SL)^{\#} \xrightarrow{\cong} C^{\#}(L)$ which exhibits $C^{\#}(L)$ as a Sullivan algebra.

Suppose $A = (k \oplus A)^{\geq 2}$ is a commutative cochain algebra, A^{\perp} is finite dimensional, (C, dc) = Hom(A, k), $L(A, d) \stackrel{\triangle}{=} L(C, dc)$ we have results: $C^*(L(A, d)) \stackrel{\triangle}{\longrightarrow} (A, d)$ $C^*(L(A, d))$ as a functorial Sullivan model of (A, d)

Example. Minimal Lie models of Minimal Bullivan algebras.

(NW,d) is a minimal Sullivar algebra, and that $W=\{W^i\}_{i\geq 2}$ is a graded vector space of finite type.

Let $(\mathbb{L} v, \partial)$ be a minimal Lie model of L(nW,d), then (nW,d) is a minimal Sullivan model for $C^*(\mathbb{L} v, \partial)$

Lie model for Epological spaces and CW-complexes

Def. Lie model for X is a connected chain Lie algebra (L,dL) of finite type s.t. $m: C^*(L,dL) \xrightarrow{\Delta} A_{PL}(X)$ free Lie model for X: Lie model + "free", <math>L = Lv.

Lie representative for a continue map $f:X\to Y$ is a dgl morphism $\iota Q:(L,d_L)\longrightarrow (E,d_E)$, s.t. $mC^*(\iota Q) \sim A_{PL}(f)$ n.

Example. Sk

$$C^*(L(v)) = (\Lambda(e,e'), de' = e^2)$$
 $\{e \mid = 2n+2\}$

Conclusion: Every space X has a minimal free Lie model, unique up to isomorphism, and every continuous map has a Lie representative.

- · Every connected chain Lie algebra, (L,dL) of finite type, and the defined over 1Q, is the Lie model of a simple connected CW complex, unique up to rational homotopy equivalence.
 - If (L,dL) is a Lie model for X, then there a natural isomorphism $H(L) \xrightarrow{\cong} \pi_*(\Omega X) \otimes_{\mathbb{Z}} \mathbb{K}$ or $SH(L) \xrightarrow{\cong} \pi_*(X) \otimes_{\mathbb{Z}} \mathbb{K}$ If $(L,dL) = (\mathbb{L} v,d)$ for X, then there a isomorphism $SH(V,dv) \oplus \mathbb{K} \cong H_*(X,\mathbb{K})$

Lie models for adjunction spaces. (Helpistence of free Lie model) Consider $Y = X \coprod e^{n\alpha + 1} = X U_f (\coprod D^{n\alpha + 1})$ where:

cp X is simply connected with rational homotopy of finite type.

- (2) $f = f f_{\alpha} : (S^{n_{\alpha}}, *) \longrightarrow (X, \kappa_0)$
- (3) the cell $D^{N\alpha+1}$ are all of dimension ≥ 2 , with finitely many in any given dimension.

Suppose $m: C^*(L_V, d) \longrightarrow A_{PL}(X)$ is a free Lie-model for X. we shall constructure a free Lie model for Y.

constructure: given an isomorphism. $\tau_L: SH(\mathbb{L}_V) \xrightarrow{\underline{c}} \pi_X(x) \otimes \mathbb{I}_K$

the classes $[f_{\alpha}] \in Tn_{\alpha}(X)$ determine classes $S[Z_{\alpha}] = 7_{L}^{-1} [f_{\alpha}] \in SH(L_{V})$, $Z_{\alpha} \in LV$. Let W be a graded vector space with basis $\{w_{\alpha}\}$ and $\{w_{\alpha}\} = N_{\alpha}$ we can extend L_{V} to a chain Lie algebra $L_{V \oplus W} = L_{V \oplus W}$ by defining $dw_{\alpha} = Z_{\alpha}$

Thm. the chain Lie algebra (IL VOW, d) is a Lie model for Y.

n-skeleton, Xn, (Lv=1,d) is identified as a Lie model for Xn

SH*(ILVsn-1,d) => T+(Xn) & 1Q

Example.

- 1. a wedge of spheres. $X= \bigvee S^{n_{\alpha}+1} = Pt U_f \left(\bigcup_{\alpha} D^{n_{\alpha}+1} \right)$ $((U_{V}, 0) , V= \{V_i\}_{i \geq 1} \text{ basis } \{V_{\alpha}\}, |V_{\alpha}| = n_{\alpha}.$
- 2. the free product of Lie models is a Lie model for wedge, $\bigvee_{\alpha} X_{\alpha}$ $X = \bigvee_{\alpha} X_{\alpha}$ finite type. (IL v(α), $d\alpha$) be a Lie model for X_{α} $\coprod_{\alpha} (\coprod_{\alpha} V(\alpha), d\alpha) \cong (\coprod_{\alpha} V(\alpha), d\alpha)$ is a Lie model for $\bigvee_{\alpha} X_{\alpha}$. $\prod_{\alpha} (\Omega \bigvee_{\alpha} X_{\alpha}) \otimes |Q| = H(\coprod_{\alpha} V(\alpha), d\alpha) = \coprod_{\alpha} T_{*}(\Omega I X_{\alpha})$
- 2. Let M_{α} (Lx, dx) be Lie models for simply connected space X_{α} , s.t. $X = \prod_{\alpha} X_{\alpha}$ is finite type.

 $\bigoplus_{\alpha} (L_{\alpha}, d_{\alpha})$ is a Lie model for X.

4. $f: X \rightarrow Y$. Lie representative for $f: P: (L, d_L) \rightarrow (K, d_K)$ Let $0 \longrightarrow (I, d_I) \longrightarrow (L, d_L) \longrightarrow (K, d_K) \longrightarrow 0$ be a short exact sequence of differential graded Lie algebras (connected finite type).

(I,dI) is a Lie model for the homotopy fibre of f.