

Adversarial Attack and Defense of YOLO Detectors in Autonomous Driving Scenarios

Jung Im Choi and Qing Tian

Department of Computer Science, Bowling Green State University

Overview & Research Goals

- Deep visual detectors are vulnerable to adversarial attacks. A comprehensive understanding of YOLO detectors' vulnerability is needed before their robustness can be improved. However, only a few adversarial attack/defense works have focused on visual detection, especially in autonomous driving.
- Research Goals:
- Goal 1 (Attacking): To understand the adversarial vulnerability of deep visual detectors and design effective adversarial attacks by utilizing them
- Goal 2 (Defending): To improve detectors' robustness via a new adversarial training-based approach

Contributions

- We identified a serious vulnerability in YOLOs which comes from the objectness aspect and proposed a more effective objectness-oriented adversarial attack approach.
- We found the direction of the image gradient derived from the objectness loss is more consistent with those from the classification and localization losses.
- We proposed a new defense strategy explicitly paying attention to the objectness aspect.
- Our objectness-aware adversarial training framework can help alleviate the potential conflicts/misalignment of the image gradients sourced from different loss components.

Methods

Decomposition of Adversarial Vulnerability in YOLO

- Overall loss in YOLO consists of three components (i.e., objectness, localization, & classification losses):

$$L(\mathbf{x}, \mathbf{y}, \mathbf{b}; \theta) = L_{OBJ}(\mathbf{x}, \mathbf{b}; \theta) + L_{LOC}(\mathbf{x}, \mathbf{b}; \theta) + L_{CLS}(\mathbf{x}, \mathbf{y}; \theta)$$

- Objectness-Oriented Adversarial Attack
- Unlike prior works, we **explicitly leverage objectness loss** in addition to localization and classification losses to generate adversarial examples for visual detection in self-driving scenarios:

$$\mathbf{x'}_{obj, PGD} = \mathcal{P}(\mathbf{x} + \alpha \cdot sign(\nabla_{\mathbf{x}} L_{OBJ}(\mathbf{x}, \mathbf{b}; \theta)))$$

$$\mathbf{x'}_{loc, PGD} = \mathcal{P}(\mathbf{x} + \alpha \cdot sign(\nabla_{\mathbf{x}} L_{LOC}(\mathbf{x}, \mathbf{b}; \theta)))$$

$$\mathbf{x'}_{cls, PGD} = \mathcal{P}(\mathbf{x} + \alpha \cdot sign(\nabla_{\mathbf{x}} L_{CLS}(\mathbf{x}, \mathbf{y}; \theta)))$$

Objectness-Aware (OA) Adversarial Training

Algorithm 1 Objectness-Aware Adversarial Training

Input: Dataset D, Training epochs N, Batch size B, Perturbation bounds ϵ

Output: Learned model parameter θ

for epoch =1 to N do

for random batch $\{\mathbf{x}^i, \{\mathbf{y}^i, \mathbf{b}^i\}\}_{i=1}^B \sim D \mathbf{do}$

 $(\mathbf{x'}_{obj})^{i} = P(\mathbf{x}^{i} + \epsilon \bullet sign(\nabla_{\mathbf{x}} L_{OBJ}(\mathbf{x}^{i}, \mathbf{b}^{i}; \theta)))$ $(\mathbf{x'}_{loc})^{i} = P(\mathbf{x}^{i} + \epsilon \bullet sign(\nabla_{\mathbf{x}} L_{LOC}(\mathbf{x}^{i}, \mathbf{b}^{i}; \theta)))$

 $(\mathbf{x'}_{cls})^{i} = P(\mathbf{x}^{i} + \epsilon \bullet sign(\nabla_{\mathbf{x}} L_{CLS}(\mathbf{x}^{i}, \mathbf{y}^{i}; \theta)))$

Choose $\underline{\mathbf{x}}^{i}$ that leads to the max total loss:

 $\underline{\mathbf{x}}^{i} = \arg \max_{\widetilde{\mathbf{x}}^{i} \in \{(\mathbf{x'}_{obi})^{i}, (\mathbf{x'}_{loc})^{i}, (\mathbf{x'}_{cls})^{i}\}} L(\widetilde{\mathbf{x}}^{i}, \{\mathbf{y}^{i}, \mathbf{b}^{i}\}; \theta)$

Perform an adversarial training step w.r.t. θ :

 $\operatorname{arg} \min_{\theta} L(\mathbf{x}^{i}, \{\mathbf{y}^{i}, \mathbf{b}^{i}\}; \theta) + L(\underline{\mathbf{x}}^{i}, \{\mathbf{y}^{i}, \mathbf{b}^{i}\}; \theta)$

end for end for

Experiments & Results

Datasets

	KITTI	COCO_ traffic
Classes #	3	8
Train. Img. #	3,740	71,536
Test Img. #	3,741	3,028

- Attack Design:
- Used a range of different attack sizes $\epsilon = [2, 4, 6, 8]$
- Adapted both FGSM and PGD using L_{∞} norm

Figure 1. Distribution of adversarial examples derived from the three task losses in YOLO

 Qualitative Analysis of Attacks on KITTI and COCO_traffic

Figure 2. Visual comparison of detection results under different task-specific attacks (top: KITTI, bottom: COCO_traffic).

 $\mathcal{A}_{obj}(PGD)$

Results - cont.

Quantitative Analysis of Attacks

- The objectness-oriented attacks (\mathcal{A}_{obj}) are more effective than \mathcal{A}_{loc} and/or \mathcal{A}_{cls}

Method	Att. Size	\mathcal{A}_{loc}	${\cal A}_{\sf cls}$	A _{loc+cls+obj}	\mathcal{A}_{obj}
PGD-10 (KITTI)	€ = 2	-1.22	-0.87	-42.44	-42.64
	€ = 4	-4.11	-2.64	-51.47	-51.67
	€ = 6	-7.00	-5.91	-57.17	-54.39
	ε = 8	-10.66	-9.59	-55.48	-55.83
PGD-10 (COCO)	ε = 2	-0.19	-0.15	-36.55	-37.55
	€ = 4	-0.70	-0.77	-43.84	-43.93
	ε = 6	-1.88	-2.26	-45.31	-45.69
	ε = 8	-3.24	-3.58	-46.88	-47.08

Table 1. Performance degradation comparison. \mathcal{A}_{loc} , \mathcal{A}_{cls} , $\mathcal{A}_{obi+loc+cls}$, & \mathcal{A}_{obi} : attacks sourced from corresponding task losses.

Adversarial Training Results

- The models adversarially trained with objectness-based attacks (\mathcal{M}_{OBJ} and \mathcal{M}_{OA}) leads to more robustness than those utilizing other two task losses.

KITTI			\mathbf{C}	COCO_traffic			
Model	\mathcal{A}_{obj}	Aloc+cls+obj	Model	\mathcal{A}_{cls}	$\mathcal{A}_{loc+cls}$		
\mathcal{M}_{STD}	28.43	28.63	\mathcal{M}_{STD}	22.17	22.2		
\mathcal{M}_{ALL}	39.65	40.65	\mathcal{M}_{ALL}	34.58	33.4		
\mathcal{M}_{MTD}	36.13	35.94	\mathcal{M}_{MTD}	33.26	33.2		
\mathcal{M}_{LOC}	37.86	37.61	\mathcal{M}_{LOC}	33.23	32.1		
\mathcal{M}_{CLS}	39.29	39.70	$M_{\sf CLS}$	31.71	31.5		
\mathcal{M}_{OBJ}	49.43	48.83	\mathcal{M}_{OBJ}	33.30	32.6		
\mathcal{M}_{OA}	42.26	41.86	\mathcal{M}_{OA}	34.77	33.6		

Table 2. Performance comparison of **adversarially trained YOLO models.** \mathcal{M}_{STD} : trained standardly, \mathcal{M}_{MTD} : trained using the multitask domain algorithm [1], \mathcal{M}_{OA} : trained using our OA algorithm.

Conclusion

- We identified a serious vulnerability of YOLO detectors in autonomous driving scenarios.
- We proposed: (1) an effective attack strategy targeting the objectness loss in visual detection, and (2) an objectness-aware adversarial training framework.
- Experiments on both datasets showed the effectiveness of our proposed approaches.