Проектирование в QSys с применением процессора Nios II

Программа курса

- Описание программного процессорного ядра Nios® II
- Использование Qsys для создания сложных систем
- Разработка и отладка программного обеспечения для процессора Nios II
- Интерфейсы систем на кристалле
- Разработка пользовательских периферийных модулей
- Разработка пользовательских инструкций
- Моделирование системы в среде ModelSim®
- Запуск и отладка проекта
- Программирование отладочной платы

Продукция Altera

CPLD

Hedopozue FPGA c SoC и приемопередатчиками

Производительные FPGA высокой степени интеграции

Hedopozue FPGA c SoC u приемопередатчиками

Системы питания

Аппаратные и программные процессорные ядра

Две конфигурации Quartus II

Поддержка устройств

Возможности

Распространение

Стоимость

Bce

100%

Интернет и DVD

Платная

Ограничена

95%

Интернет и DVD

Бесплатно

Подробное сравнение возможностей приведено на сайте Altera

Требования к установке

- Последняя версия Quartus II
- Профиль пользователя не должен содержать русских букв
- Не использовать пробелы и русские буквы в имени пути проекта
- Не использовать пробелы и русские буквы в пути установки Quartus и Nios II
- Лицензия на Nios II

или

 Загрузочный кабель, соединенный с ПК для работы в режиме OpenCore Plus

Возможности QSys

Система на кристалле в FPGA

 ■ Полностью интегрированный маршрут проектирования в САПР Quartus II с использованием QSys

Традиционный подход к проектированию

- Компоненты могут использовать разные интерфейсы
- Требуется значительный объем усилий по проектированию соединений и обмена между модулями
- Интеграция модулей не автоматизирована и неудобна (в том числе стандартных)

Автоматическая генерация соединений

- Уменьшает вероятность ошибок в процессе интеграции
- Сокращает время разработки
- Необходимо проектировать только нестандартные модули

Повторное использование проектов

QSys обеспечивает возможность повторного использования ІР и **Project A** иерархического проектирования Top top top **Project B** Package as IP **Add to library** Top **Qsys Project C** Top

Применение QSys

- Может использоваться практически в любом проекте на FPGA
- Две категории связей в проекте
 - Управление
 - С отображением в общую память
 - Чтение регистров статуса и запись регистров управления
 - Передача данных
 - Потоковая передача
 - Коммутация данных, объединение, мосты и FIFO
- Применения включают обработку видео и изображений, высоскоростные интерфейсы, встроенные системы, интерфейс с внешней памятью

Управление

Что, если процессорное ядро не нужно?

- Системы Qsys не требуют процессора
- Другие компоненты могут формировать запросы на передачу и осуществлять чтение/запись регистров
 - Конечный автомат как главное устройство на общей шине
 - Потоковая обработка
- Внутренние процессоры (Nios® II, ARM® Cortex™-A9) могут быть интегрированы в Qsys

Преимущества Qsys

- Упрощает разработку сложных систем
 - Автоматическая генерация соединений
- Повышает уровень абстракции
 - Высокоуровневый ввод и визуализация
- Стандартная платформа
 - Для интеграции готовых IP ядер и модулей пользователя
 - Для верификации
- Возможность повторного использования модулей
- Простота масштабирования

Процессор Nios II Введение

Что такое процессор Nios II?

- Второе поколение программных 32-х разрядных RISC микропроцессоров
 - Собственная разработка Altera
 - Гарвардская архитектура
 - Без отчислений от продаж

Что такое процессор Nios II?

- Второе поколение программных 32-х разрядных RISC микропроцессоров
 - Процессор Nios II и вся периферия реализованы на HDL
 - Может быть реализован в любых FPGA фирмы Altera
 - Синтезируется средствами пакета Quartus II

Архитектура процессора Nios II

Классический конвейеризованный RISC процессор

- 32 регистра общего назначения
- 3 формата команд
- 32-х битные команды
- 32-х битные шины данных
- Раздельный кэш команд и данных (настраиваются)
- Тесно связанная память (ТСМ)
- Предсказание ветвлений
- 32 источника прерываний с приоритетом
- Аппаратная реализация умножения и сдвигов
- Модуль управления памятью (MMU)
- Модуль защиты памяти (MPU)
- Пользовательские инструкции
- Модуль отладки с поддержкой JTAG

Архитектура процессора Nios II

- Адресация до 2Гбайт по шине данных без ММU
 - Старший бит адреса зарезервирован как флаг обхода кэша
 - На практике максимальный объем модуля памяти составляет 1Гбайт, так как требуется выделить область в карте памяти для периферийных модулей
- Адресация до 4Гбайт по шине данных с ММU
- Адресация до 256 Мбайт по шине инструкций
 - Следует учитывать при проектировании подсистемы памяти

Блок-схема процессора Nios II

Версии процессора Nios II

■ Три версии процессора Nios II

- FAST: Оптимизирован по быстродействию

- STANDARD: Сбалансированная реализация

ECONOMY: Оптимизирован по объему

Программное обеспечение

- Совместимо на уровне машинного кода
 - Не требуется изменения ПО при смене версии

Сравнение версий Nios II

	Nios II /f Fast	Nios II /s Standard	Nios II /e Economy			
Конвейер	6 стадий	5 стадий	Нет			
Аппаратный умножитель и сдвигатель	1 такт	3 такта	Эмулируется в ПО			
Предсказание ветвлений	Динамическое	Статическое	Нет			
Кэш команд	Конфигурируется	Конфигурируется	Нет			
Кэш данных	Конфигурируется	Нет	Нет			
Объем (ЛЭ)	1800 без ММU 3200 с ММU	1200	600			
Пользовательские инструкции	До 256					

Аппаратный умножитель

- Nios II, версия Economy нет аппаратного умножителя
 - Использует библиотеку GNUPro Math для реализации умножения
- Nios II, версия Standard аппаратный умножитель
 - 32 x 32 → 32 за 3 такта, если в семействе есть аппаратные умножители*
- Nios II Processor, Fast Full Hardware Multiplier
 - 32 x 32 → 32 за 1 такт, если в семействе есть аппаратные умножители*

Версия	Тактов (32 x 32 → 32)			
Economy	250			
Standard	3			
Fast	1			

^{*)} Также может реализовываться аппаратно на логических элементах, умножение 32 x 32 → 32 занимает 11 тактов

Производительность и объем разных версий процессора Nios II

^{*} Dhrystone 2.1 Benchmark

Данные приведены для Stratix III

Производительность Nios II (МГц/DMIPS)

Семейство	Fast		Standard		Economy	
Stratix V	310	350	300	192	340	51
Arria V	160	180	180	115	190	28
Cyclone V	160	180	140	89	200	30
Stratix IV	240	271	230	147	290	43
Cyclone IV GX	160	181	130	83	170	26
Arria II GX	170	192	170	108	300	45
Cyclone III	175	195	145	90	215	30

Лицензирование

- Процессор Nios II поставляется как зашифрованное IP ядро
 - Лицензия включается в файл лицензии пакета Quartus II
 - Ядро включает средство проверки наличия процессора Nios II в проекте пользователя
 - При отсутствии лицензии работает в режиме OpenCore Plus
 - Система работает неограниченно долго в режиме отладки, когда есть соединение со средствами проектирования на ПК
 - Система перестает работать примерно через один час если нет связи с ПК
 - При наличии активной подписки
 - Подписчики и покупатели средств проектирования получают лицензию а www.altera.com
 - Проект, откомпилированный с такой лицензией, работает без ограничений
- Лицензия с открытым исходным кодом
 - Доступна по запросу, вопрос о предоставлении решается фирмой Altera
 - Требуется при переносе проектов на устройства других фирм и полузаказные СБИС

Уменьшение цены, сложности и потребления

System On A Programmable Chip (SOPC)

Наличие процессорного ядра требуется для решения задач управления при системной интеграции

Комплекты разработчика

Блок-схема базового проекта

Структура системы на процессоре Nios II

Другие комплекты разработчика

- http://www.altera.com/products/devkits/kit-dev_platforms.jsp
- Комплекты разработчика от Altera, Terasic, EBV Elektronik и других производителей
- Доступные и специализированные комплекты
- Схема и реализация могут использоваться как reference design при проектировании

Базовые проекты для комплектов разработчика

- Можно найти проекты
 - Ha Altera.com
 http://www.altera.com/products/devkits/kit-index.html
 - Ha Altera Wiki
 http://www.alterawiki.com/wiki/Special:Categories
- Могут использоваться как есть в качестве аппаратной платформы (прошивки ПЛИС) или как отправная точка для создания системы на кристалле

Создание системы в QSys

Запуск QSys

- Создайте проект в Quartus II
- 3aпустите Qsys из менюTools
- Откройте или создайте новую систему в QSys

Главная страница QSys

Библиотека компонент

 Перечень доступных IP-ядер и подсистем QSys

Можно ввести часть названия для поиска в списке

Использование существующих систем (иерархическое проектирование)

Компоненты распределены по категориям

Добавление компонента осуществляется двойным щелчком или нажатием на кнопку Add

Закладка System Contents

- Отображает компоненты и подсистемы в составе системы
- Используется для добавления компонент, их связи и настройки

Столбец соединений Connections

- Столбец соединений используется для связывания компонент по различным интерфейсам
 - Тактовые импульсы и сброс
 - Интерфейсы передачи данных

- ...

- Точка означает наличие соединения
- Направление соединения отражается стрелкой
 - От главного к подчиненному устройству
 - От источника к приемнику
- Имеется возможно скрыть столбец
 - Вызовите контекстное меню на заголовке "Connections"

Экспорт интерфейсов

- Экспорт интерфейсов из системы на кристалле
 - Может быть экспортирован любой интерфейс
- Для экспорта введите имя в столбце Export
- Для отмены удалите имя

Значок порта показывает экспортированные интерфейсы

Просмотр и редактирование карты памяти

apped Slave	Click to export	cik [clk1]	•	0x02400000	0x02400fff
apped Slave	Click to export Click to export Click to export Click to export	[clk1] [clk2] clk [clk2]	•	0x02400000	0x02400fff
ral apped Slave	Click to export Click to export Click to export	clk [clk]		0 x 01202070	0x01202077

Закладка редактирования карты памяти Address Map

Редактирование в System Contents

Закладка Clocks

- Вызов через View > Clocks
- Используется для:
 - Настройки тактовых импульсов
 - Добавления новых тактовых импульсов
 - Переименования тактовых импульсов
 - Указания частот (файл настроек TimeQuest в формате SDC создается пользователем)

Name	Source	MHz
clk	External	50.0
sys_clk	pll.c0	100.0
ssram_clk	pll.c1	100.0

Закладка Project Settings

- Выбор ПЛИС
- Управление генерацией межсоединений
 - Упрощает создание систем с разными ТИ
 - Настройка конвейеризации шины. Важно для быстродействия

Закладка System Inspector

- Обзор системы в целом и информация о компонентах
 - Иерархия
 - Соединения верхнего уровня
 - Интерфейсы компонент
 - Соединения между компонентами
 - Информация о компонентах
- Редактирование настроек компонент

Закладки Hierarchy и Parameters

Настройки блока

Меню Generate > HDL Example

- Генерирует шаблон создания экземпляра системы на Verilog или VHDL
- Можно использовать код для создания экземпляра
 QSys как модуля нижнего уровня в проекте

```
HDL Example
You can copy the example HDL below to declare an instance of your Qsys system.
HDL Language: Verilog 😓
Example HDL
     niosii u0 (
         .clk clk
                                              (<connected-to-clk clk>),
         .reset reset n
                                              (<connected-to-reset reset n>),
                                             (<connected-to-ram bus tcm address out>),
         .ram bus tcm address out
         .ram bus tcm outputenable n out
                                             (<connected-to-ram bus tcm outputenable n
         .ram bus tcm byteenable n out
                                             (<connected-to-ram bus tcm byteenable n or
                                             (<connected-to-ram bus tcm write n out>),
         .ram bus tcm write n out
         .ram bus tcm data out
                                             (<connected-to-ram bus tcm data out>),
         .ram_bus_tcm_chipselect_n_out
                                             (<connected-to-ram bus tcm chipselect n or
         .flash bus tcm address out
                                              (<connected-to-flash bus tcm address out>)
                                                                                      Close
```


Меню Generate...

- Генерация исходных кодов для синтеза
- Возможность создания проекта и тестбенча для моделирования
- Возможность настройки путей для сохранения файлов
- Проверьте предупреждения перед генерацией!

Выходные файлы QSys

- Verilog (.v) или SV(.sv)
 - Исходные тексты для синтеза
- Verilog (.v) или VHDL (.vhd)
 - Исходные тексты и тестбенчи для моделирования
- .BSF file
 - Символ системы
- .HTML file
 - Отчет о генерации с описанием системы
- .QIP file
 - IP файл системы, надо добавить к проекту Quartus
- .QSYS file
 - Архив с описанием содержимого системы для последующего редактирования
- .SOPCinfo file
 - Шаблон проекта для средств разработки ПО

Файл .SOPCInfo

■ Описывает состав системы на кристалле

- Требуется для маршрута проектирования с использованием командной строки
- Требуется для среды Nios II Software Build Tools for Eclipse

• Содержит следующую информацию

- Имя проекта и версия QSys
- Язык HDL
- Имена и версии компонент в пути поиска
- Размещение файлов на диске
- Имена и версии модулей
- Информация об их интерфейсах, включая имена и типы сигналов
- Имена и значения параметров
- Информация о каждом соединении, в то числе:
 - Какие компоненты соединяются
 - Базовый адрес, номер прерывания и т.д.
 - Карта памяти для каждого мастера (главного устройства)

Формат XML

Схемный ввод

Используйте блок (.bsf) файле проекта (.bdf)

- Добавьте файл .QIP к проекту
- Откомпилируйте проект в Quartus II

Каталог проекта Quartus II

Папка проекта Quartus II my_project db Папка с выходными файлами Qsys qsys_system Файлы для синтеза Файлы для моделирования synthesis Папка программного testbench обеспечения Исходные тексты приложения Библиотеки

Hастройка ядра Nios II в QSys

Добавление и конфигурация Nios II

Адреса векторов Reset и Exception

- Устанавливаются после того, как модули памяти были добавлены в систему
- Вектор сброса Reset должен указывать на энергонезависимую память или встроенные блоки памяти, конфигурируемые при загрузке системы
 - При работе без загрузочного кабеля
- Вектор исключений **Exception** обрабатывает все исключения
 - Код обработчика включается в пакет поддержки платы
 - Поддерживаемые типы исключений
 - Программные исключения
 - Программные ловушки
 - Неподдерживаемые инструкции
 - Позволяет обеспечить совместимость версий Nios II
 - Аппаратные прерывания
 - Поддерживается 32 прерывания, чувствительных по уровню
 - Внешний контроллер прерываний предоставляет возможность неограниченного расширения

Настройка кэша и ТСМ

- Размер кэша команд и данных
 - В новой версии можно отключать кэш данных в версии Fast
 - При использовании ТСМ можно также отключить кэш команд
- Поддержка модулей тесно связанной памяти
 - память с быстрым доступом для данных и команд
- Настройка длин строки кэша данных
 - До 32 байт в строке кэша для повышения скорости обмена с внешней SDRAM за счет увеличения burst size

TCM (Tightly Coupled Masters)

- Обеспечивает быстрый доступ Nios II к памяти на кристалле
- Добавляет "локальные" интерфейсы, в которых CPU является задатчиком (Master Interfaces)

	ТСМ	тсм
	команд	данных
Nios II/f	До 4	До 4
Nios II/s	До 4	Нет
Nios II/e	Нет	Нет

- Допускают присоединение только некоторых типов "быстрых" периферийных модулей
 - Т.е. памяти на кристалле
 - Задержка чтения 1, задержка записи 0
 - Для повышения скорости обмена используются двухпортовые модули

TCM (Tightly Coupled Masters)

- Связь с подчиненными устройствами через
 Tightly Coupled Memory Interfaces не требует коммутации
- Двухпортовые модули памяти могут реализовывать одновременно интерфейс TCM slave и Avalon slave

ТСМ и кэш

- Доступ к модулям тесно связанной памяти не кэшируется
 - Работают как кэш с вероятностью попадания 100%
 - Рекомендуется для размещения обработчиков прерываний и других критичных к времени выполнения функций
- Отображаются в карту памяти системы, режим доступа определяется декодером адреса процессора

- Рекомендуется размещать ТСМ в верхних адресах
 - Упрощает логику декодирования в декодере адреса
 - Повышает производительность

Закладка Advanced Features

- Выбор внутреннего или внешнего контроллера прерываний
- Вывод сигналов **cpu_resetrequest** и **cpu_resettaken**
- Ручная настройка **cpuid**
- Поддержка исключений

Закладка MMU and MPU Settings

Настройка ММU и MPU в соответствии с требованиями

приложения или ОС

 MMU и MPU – взаимоисключающие модули

Закладка JTAG Debug Module

Выбор возможностей внутрисхемной отладки через JTAG

CPU в составе системы

Вспомогательные периферийные модули

Модуль JTAG UART

- Реализует:
 - Конфигурацию устройства
 - Программирование Flash
 - Загрузку кода
 - Отладку
 - Консольный вывод через STDIO

Модуль System ID

- Используется для синхронизации версий аппаратного и программного обеспечения
- Периферийный модуль с двумя регистрами на чтение
 - Регистр 1 Идентификатор, задается пользователем
 - Регистр 2 время и дата генерации системы в QSys
- Может использоваться для проверки соответствия загружаемого программного кода конфигурации аппаратуры

Во всех проектах с Nios II должен присутствовать модуль system ID

Конфигурация ПЛИС

Конфигурация из программатора Quartus II

Запускается из Quartus II или Nios II SBT

Конфигурация из Flash

- Используются микросхема энергонезависимой памяти и конфигурационный контроллер
 - Конфигурационный контроллер считывает данные из Flash памяти
 - В Flash памяти должен содержаться образ прошивки ПЛИС
 - Также в Flash памяти может храниться код Nios II
 - Средства разработки предоставляют возможность реализовать программирование Flash через ПЛИС

Nios II Development Board

Конфигурация из EPCS

- Одно устройство, низкая стоимость
 - Хранит конфигурацию
 - Возможно хранение кода
 - Низкая стоимость
 - Средства разработки предоставляют возможность реализовать программирование Flash через ПЛИС

Nios II Development Board

Пабораторная работа 1 Создание системы в Qsys

