

Chapter 6: Network Layer

Introduction to Networks v6.0

Cisco | Networking Academy® | Mind Wide Open®

Chapter 6 - Sections & Objectives

6.1 Network Layer Protocols

- Describe the purpose of the network layer in data communication.
- Explain why the IPv4 protocol requires other layers to provide reliability.
- Explain the role of the major header fields in the IPv4 and IPv6 packet.

6.2 Routing

- Explain how a host device uses routing tables to direct packets to itself, a local destination, or a default gateway.
- Compare a host routing table to a routing table in a router.

6.3 Routers

- Describe the common components and interfaces of a router.
- Describe the boot-up process of a Cisco IOS router.

6.4 Configure a Cisco Router

- Configure initial settings on a Cisco IOS router.
- Configure two active interfaces on a Cisco IOS router.
- Configure devices to use the default gateway.

Cisco | Networking Academy® | Mind Wide Open®

Network Layer in Communications

- The Network Layer
 - End to End Transport processes
 - Addressing end devices
 - Encapsulation
 - Routing
 - De-encapsulating
- Network Layer Protocols
 - IPv4
 - IPv6

The Exchange of Data

Network layer protocols forward transport layer PDUs between hosts.

Characteristics of the IP Protocol

Encapsulating IP

- Segments are encapsulated into IP packets for transmission.
- The network layer adds a header so packets can be routed to the destination.

IP - Connectionless

- Sender doesn't know if the receiver is listening or the message arrived on time.
- Receiver doesn't know data is coming.
- IP Best Effort Delivery
 - No guarantees of delivery are made.
- IP Media Independent
 - IP can travel over different types of media.

IPv4 Packet

IPv4 Packet Header

- Version = 0100
- DS = Packet Priority
- TTL = Limits life of Packet
- Protocol = Upper layer protocol such as TCP
- Source IP Addresssource of packet
- Destination IP Address = destination of packet

IPv6 Packet

- Limitations of IPv4
 - IP address depletion
 - Internet routing table expansion
 - Lack of end-to-end connectivity
- Introducing IPv6
 - Increased address space
 - Improved packet handling
 - Eliminates the need for NAT
- EncapsulatingIPv6
 - Simplified header format
 - No checksum process requirement
 - More efficient Options Header mechanism
 - Flow Label field makes it more efficient.
- IPv6 Packet Header
 - XX

IPv6 Packet (Cont.)

- IPv6 Packet Header
 - XX

Fields in the IPv6 Packet Header

- Version = 0110
- Traffic Class = Priority
- Flow Label = same flow will receive same handling
- Payload Length = same as total length
- Next Header = Layer 4 Protocol
- Hop Limit = Replaces TTL field

6.2 Routing

Cisco | Networking Academy® | Mind Wide Open®

Routing

How a Host Routes

- Host Forwarding Decision
 - Three types of destination: itself, local host, remote host.
- Default Gateway
 - Routes traffic to other networks
 - Has a local IP address in the same address range as other hosts on the network
 - Can take data in and forward data out
- Using the Default Gateway
 - Hosts will use the default gateway when sending packets to remote networks.
- Host Routing Tables
 - Use the **netstat** –**r** command to display the host routing table on a Windows machine.

How a Host Routes (Cont.)

IPv4 Routing Table for PC1

<output omitted=""></output>				
IPv4 Route Table				
Active Routes:				
Network Destination	n Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.10.1	192.168.10.10	2.5
127.0.0.0	255.0.0.0	On-link	127.0.0.1	308
127.0.0.1	255,255,255,255	On-link	127.0.0.1	308
127.255.255.255	255.255.255.255	On-link	127.0.0.1	308
192.168.10.0	255.255.255.0	On-link	192.168.10.10	281
192.168.10.10	255,255,255,255	On-link	192,168,10,10	281
192.168.10.255	255.255.255.255	On-link	192.168.10.10	281
224.0.0.0	240.0.0.0	On-link	127.0.0.1	308
224.0.0.0	240.0.0.0	On-link	192.168.10.10	281
255.255.255.255	255.255.255.255	On-link	127.0.0.1	308
255.255.255.255	255.255.255.255	On-link	192.168.10.10	281

How a Host Routes

Router Routing Tables

Router Packet Forwarding Decision

- Routers and hosts forward packets in a similar fashion.
- The main difference is that routers have more interfaces while hosts often have only one.
- Devices on directly connected networks can be reached directly.
- Devices on remote networks are reached through gateway.

IPv4 Router Routing Table

- The router routing table stores network routes the router knows about.
- Use the show ip route command to display the routing table on a Cisco router.
- The router routing table also has information on: how the route was learned, its trustworthiness and rating.
- It also contains which interface to use to reach that specife destination.

Directly Connected Routing Table Entries

- C Identifies a directly-connected network, automatically created when an interface is configured with an IP address and activated.
- L Identifies that this is a local interface. This is the IPv4 address of the interface on the router.
- Remote Network Routing Table Entries

How a Host Routes

Router Routing Tables (Cont.)

- Remote Network Routing Table Entries
 - Remote destinations can't be reached directly.
 - Remote routes contain the address of the intermediate network device to be used to reach the destination.
- Next-Hop Address
 - Next-Hop address is the address of the intermediate device used to reach a specific remote destination.

6.3 Routers

Cisco Networking Academy® Mind Wide Open®

Anatomy of a Router

- A Router is a Computer
 - Routers have CPU, memory and I/O devices
 - Cisco routers use IOS as their operating system.
- Router Memory
 - Just as a computer, routers have memory.
 - Routers contain RAM, ROM, NVRAM and Flash memory.
- Inside a Router
 - Routers have the same general structure.
- Connect to a Router
 - Routers have may ports to support connections.
- LAN and WAN Interfaces
 - Routers have LAN and WAN ports.
 - Different models ship with different ports.
 - Ethernet is very common on different router models.

Anatomy of a Router

Bootset Files

- IOS image file, stored in the Flash, contains the IOS.
- The Flash also stores other system files.
- The NVRAM stores configuration parameters.

Router Bootup Process

- Perform the POST and load the bootstrap program.
- 2. Locate and load the Cisco IOS software.
- Locate and load the startup configuration file or enter setup mode

Show Version Output

- The show version command is very useful.
- It provides information on the amounts of memory installed, what IOS images was loaded during boot and more.

Files Copied to RAM During Bootup

6.4 Configuring a Cisco Router

Cisco Networking Academy® Mind Wide Open®

Configure a Cisco Router

Configure Initial Settings

- Basic Switch Configuration Steps
 - Configure device name
 - Secure EXEC mode
 - Secure VTY lines
 - Secure privilege EXEC mode
 - Secure all passwords
 - Provide legal notification
 - Configure the management SVI
 - Save the configuration

- Basic Router Configuration Steps
 - Configure device name
 - Secure EXEC mode
 - Secure VTY lines
 - Secure privilege EXEC mode
 - Secure all passwords
 - Provide legal notification
 - Configure the management SVI
 - Save the configuration

Configure a Cisco Router

Configure Interfaces

- Configure Router Interfaces
 - Enter the interface sub-configuration mode.
 - Add a description to the Interface (optional)
 - Configure an IPv4 or IPv6 address.
 - Activate the interface with a no shutdown command
- Verify Interface Configuration
 - show ip route Displays the contents of the IPv4 routing table stored in RAM.
 - show interfaces Displays statistics for all interfaces on the device.
 - show ip interface Displays the IPv4 statistics for all interfaces on a router.

```
R1#conf t
Enter configuration commands, one per line.
End with CNTL/Z.
R1(config)#
R1(config)#interface gigabitethernet 0/0
R1(config-if)#ip address 192.168.10.1 255.255.255.0
R1(config-if)#description Link to LAN-10
R1(config-if)#no shutdown
%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface
GigabitEthernet0/0, changed state to up
```


Configure the Default Gateway

Default Gateway for a Host

- Default Gateway for a Switch
 - A default gateway is required for remote network communication.
 - If a switch is to be managed via its VTY lines, it needs a default gateway.
 - Use the ip default-gateway command to configure the default gateway for a switch.

6.5 Chapter Summary

Cisco | Networking Academy® | Mind Wide Open®

- Explain how network layer protocols and services support communications across data networks.
- Explain how routers enable end-to-end connectivity in a small to medium-sized business network.
- Explain how devices route traffic in a small to medium-sized business network.
- Configure a router with basic configurations.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Cisco | Networking Academy[®] | Mind Wide Open™

##