Solutions to Problems 3.8-3.11

Adithya Hosapate Sushant Meena

IIT Hyderabad
ee16btech11040@iith.ac.in
es16btech11021@iith.ac.in

February 27, 2019

Question 1

A transportation problem for which the costs, origin and availabilities, destination and requirements are given as follows:

	D_1	D_2	D_3	
$\overline{Q_1}$	2	1	2	40
Q_2	9	4	7	60
Q_3	1	2	9	10
	40	50	20	

Check whether the following basic feasible solution

$$x_{11} = 20, x_{13} = 20, x_{21} = 10, x_{22} = 50$$

 $x_{13} = 10$ and $x_{12} = x_{23} = x_{32} = x_{33} = 0$

is optimal. If not, find an optimal solution.

Solution (Linear Programming)

We can formulate the problem as:

$$\min_{x} 2x_{11} + x_{12} + 2x_{13} + 9x_{21} + 4x_{22} + 7x_{23} + x_{31} + 2x_{32} + 9x_{33}$$

The supply constraints are as follows:

$$x_{11} + x_{12} + x_{13} \le 40$$

 $x_{21} + x_{22} + x_{23} \le 60$
 $x_{31} + x_{32} + x_{33} \le 10$

The demand constraints are:

$$-x_{11} - x_{21} - x_{31} \le -40$$

-x₁₂ - x₂₂ - x₃₂ \le -50
-x₁₃ - x₂₃ - x₃₃ \le -20

Also:

$$-x_{ij} \leq 0 \ \forall i,j$$

This is in standard LP form and can be solved using cvxpot/cvxpy

Solution(MODI method)

	D_1	D_2	D_3	
$\overline{Q_1}$	2	1	2	40
Q_2	9	4	7	60
Q_3	1	2	9	10
	40	50	20	

UV table is:

Penalty table is:

-	-4	-
-	-	2
-	-6	-8

Loop would be as: C(2,3), C(1,3), C(1,1), C(2,1) with signs (+), (-), (+) (-) respectively. On updating the transportation table, we get:

ſ	30	0	10
ĺ	0	50	10
ĺ	10	0	0

Updated UV table is:

	2	-1	-2
0	2	1	2
5	9	4	7
-1	1	2	9

Updated penalty table is:

-	-2	-
-2	-	-
-	-4	-8

All negative entries. Hence, optimal.

Transporation matrix X is:

30	0	10
0	50	10
10	0	0

On multiplying cost matrix with transportation matrix, we get minimized cost to be 360.