Chcemy dojść do tw Lebesque.

Twierdzenie 1 (Lebesque) Niech P - zbiór nieciągłości funkcji $f: D \to \mathbb{R}$, f - ograniczona na D, D - . . . jest zbiorem miary Lebesque'a zera \iff f - całkowalna na D.

Wiemy, że f - całkowalna \iff

$$\underset{\varepsilon>0}{\forall}.\exists.|\overline{S}(f,\Pi)-\underline{S}(f,\Pi)|<\varepsilon.$$

Ostatnio pokazaliśmy, że

$$A_{\varepsilon}=\{x\in A, O(f,x)\geqslant \varepsilon\}$$
, to A_{ε} jest zbiorem domkniętym.

(PS funkcja f na zbiorze A powinna być ograniczona!!!)

Obserwacja 1 Jeżeli weźmiemy stól o jakiejś długości to mogę wziąć ileś kartek (albo naleśników. Nie wiadomo czy działa dla czego innego) i go nimi przykryć. Co więcej, jeżeli będzie promocja, to mogę nawet rzucić ich przeliczalnie dużo. Pytanie: czy dla każdego zbioru mogę (niezależnie od kształtu kartek) przykryć go skończoną liczbą kartek?

Weźmy długi stół:

$$R = \bigcup_{n=0}^{\infty} [n-2, n+2[\cup] - n-2, -n+2[$$

$$]0, 1[\subset [-2, 2]$$

$$]0, 1[\subset [-2019, 2018] \cup [-2, 2]$$

$$]0, 1[= \bigcup_{n=2}^{\infty} [\frac{1}{n}, 1 - \frac{1}{n}[.$$

Ostatnie jest słabe, bo nie mogę wybrać pokrycia ze skończonej ilości elementów.

Definicja 1 Niech X - zbiór a $F = \{A_{\alpha}, \alpha \in \mathbb{R}, A_i, i \in \mathbb{N}\}$ - rodzina zbiorów. Mówimy, że F jest pokryciem zbioru X, jeżeli $X \subset \bigcup_{i,\alpha} A_{\alpha}$. Jeżeli zbiory A_{α} są otwarte, to mówimy, że F jest pokryciem otwartym, jeżeli ilość zbiorów A_{α} jest skończona, to mówimy, że pokrycie jest skończone. Dowolny podzbiór F taki, że jest też pokryciem zbioru X nazywamy podpokryciem.

Definicja 2 Zbiór X nazywamy zwartym, jeżeli z **każdego** pokrycia otwartego możemy wybrać skończone podpokrycie.

Jak sprawdzamy, czy zbiór jest zwarty, to nie szukamy skończonych pokryć, tylko takie które nie są skończone.

Stwierdzenie 1 $(X - domknięty, ograniczony) \iff (X - zbiór zwarty)$

Dowód 1 niech $X \in \mathbb{X}$, \mathbb{X} - przestrzeń metryczna

 \Leftarrow 1 Pokażemy, że jeżeli X - zwarty, to X - ograniczony. (przypomnienie: zbiór $A \subset \mathbb{X}$ jest ograniczony jeżeli \exists 3 \exists 2 \exists 4 \exists 4 \exists 5 \exists 7 \exists 8 \exists 8 \exists 8 \exists 7 \exists 8 \exists 8 \exists 9 \exists 9 \exists 1 \exists 1 \exists 1 \exists 1 \exists 2 \exists 1 \exists 2 \exists 3 \exists 3 \exists 4 \exists 2 \exists 3 \exists 4 \exists 6 \exists 8 \exists 9 \exists 1 \exists 1 \exists 1 \exists 2 \exists 3 \exists 4 \exists 2 \exists 3 \exists 4 \exists 4 \exists 2 \exists 3 \exists 4 \exists 2 \exists 4 \exists 2 \exists 3 \exists 4 \exists 4 \exists 4 \exists 5 \exists 6 \exists 7 \exists 8 \exists 9 \exists 9 \exists 1 \exists 1

to niech F będzie pokryciem złożonym z $K(x,1), x_1X$. $F = \left\{K(x,1), \bigvee_{x \in X}\right\}$. F jest pokryciem zbioru X, ale ponieważ X - zwarty, to znaczy, że z pokrycia F możemy wybrać **skończone** podpokrycie, co oznacza, że zbiór X możemy ułożyć W kulę o skończonym promieniu. Zatem X - ograniczony.

 \Leftarrow 2 Pokażemy, że X - zwarty, to X - domknięty. Pokażemy, że X' - zbiór otwarty. Czyli, że dla dowolnego $p \in X' \underset{K(p,\tilde{r})}{\exists}$, że $K(p,\tilde{r}) \cap X = \phi$ co będzie oznaczało, że X' składa się wyłącznie z punktów wewnętrznych. Weźmy $q \in X$, utwórzmy dwa otoczenia:

$$K(q,r), K(p,r); r = \frac{1}{2}d(p,q).$$

Widać, że $K(q,r) \cap K(p,r) = \phi$. Powtarzamy taką procedurę dla każdego $q \subset X$, oznacza to, że dostaniemy pokrycie zbioru X kulami $K(q,r_q), q \in X$, ale X jest

Rysunek 1: Nieważne, co ${\cal A}$ myśli o sobie, jeżeli otoczymy je kulą, to jest ograniczone i koniec

zbiorem zwartym więc mogę wybrać **skończoną** ilość kul $K(q_1, r_1), K(q_2, r_2), \ldots, K(q_k, r_k)$ będącą pokryciem zbioru X. A to znaczy, że

$$\underbrace{\left(K(p,r_1)\cap K(p,r_2)\cap\ldots\cap K(p,r_k)\right)}_{jest\ do\ zbi\acute{o}r\ niepusty\ i\ \textit{otwarty}}\cap\underbrace{\left(K(q_1,r_1)\cup K(q_2,r_2)\cup\ldots\cup K(q_k,r_k)\right)}_{Pokrywa\ caly\ X}=\phi.$$

czyli np.

$$\bigcap_{n=1}^{\infty}] - \frac{1}{n}, \frac{1}{n}[=[0].$$

Znaleźliśmy otoczenie otwarte punktu $P: K(p, r_k) \cap \ldots K(p, r_k)$, takie, że nie ma punktów wspólnych z X, więc p jest punktem wewnętrznym, czyli X' - otwarty, czyli X - domknięty.

 $\implies X$ - domknięty i ograniczony $\implies X$ - zwarty. Niech P - kostka $z \mathbb{R}^n$, metryka d_2 . Pokażemy, że P jest zwarta.

$$P = [a_1, b_1] \times \ldots \times [a_n, b_n].$$

$$\neg(p \implies q) \iff p \land \neg q.$$

Dowód przez srzeczność:

Zalóżmy, że P - domknięty i ograniczony i P nie jest zwarty. Co to znaczy, że P nie jest zwarte? Oznacza to, że istnieje pokrycie zbioru P takie, że nie da się wyciągnąć z niego skończonego podpokrycia.

Jeżeli P nie da się pokryć skończoną ilością zbiorów, to znaczy, że jeżeli weźmiemy kostkę $[a_1,c_1]\times[a_2,c_2]\times\ldots\times[a_n,c_n]$ gdzie $c_1=\frac{a_1+b_1}{2},c_2=\frac{a_2+b_2}{2},\ldots,c_n=\frac{a_n+b_n}{2},$

to jej też nie możemy podzielić na skończoną ilość elementów. Czyli $P_1 \subset P$,

Rysunek 2: Przykrywanie zbioru kulami

kulę P_1 też możemy podzielić na cztery części itd... W efekcie dostaniemy ciąg kostek $PP_1P_2P_3\dots P_n\dots$ Weźmy ciąg elementów

$$x_0 \in P$$

$$x_1 \in P_1$$

$$\vdots$$

$$x_n \in P_n$$

$$\vdots$$

Znaczy, że ciąg $\{x_n\}$ jest ciągiem Cauchy (bo każdy element ciągu asdasd). Ciąg $\{x_n\} \in \mathbb{R}^n$ czyli X_n jest zbieżny. (bo \mathbb{R}^n - zupełna). Niech \tilde{x} będzie granicą $\{x_n\}$

a zbiór $\{P, P_1, P_2, \dots, P_n, \dots\}$ jest pokryciem P takim, z którego nie możemy wyciągnąć skończonego podpokrycia. Ale skoro $\lim_{n\to\infty} x_n = \tilde{x}$, to znaczy, że

$$\underset{\varepsilon>0}{\forall}.\exists.\underset{n>N}{\forall}.x_n\in K(\tilde{x},\varepsilon).$$

Oznacza to, że mogę tak dobrać ε , że w $K(\tilde{x}, \varepsilon)$ będą się zawierać wszystkie P_i , i > n. Mogę wtedy wybrać **skończone** podpokrycia kostki P.

$$\{P_1, P_2, P_3, \ldots, P_{n_i}, K(\tilde{x}, \varepsilon)\}$$
.

 $i\ sprzeczność$

Wracamy do tw. Lebesque'a. Obserwacja: Niech D - zwarty, $D \subset \mathbb{R}^n, f: D \to \mathbb{R}$ - ograniczona i niech $A = \{x \in D, o(f,x) < \varepsilon\}$. Wówczas:

$$\exists . |\overline{S}(f,\Pi) - \underline{S}(f,\Pi)| < \varepsilon |D|.$$

Dowód 2 Skoro $\forall \lim_{r \to 0} |\sup_{K(x',r)} f(x') - \inf_{x' \in K(x',r)} f(x')| < \varepsilon$ To znaczy, że $\exists \underset{r_{\varepsilon}}{\exists}$ takie, że $|\sup f(x') - \inf f(x')| < \varepsilon$. Jeżeli zbadamy wszystkie kule $K(x, r_{\varepsilon}) \forall \underset{x \in D}{\forall}$ to otrzymamy pokrycie A. Ale A jest zbiorem zwartym, więc możemy wybrać skończone podpokrycie, czyli skończoną ilość kul takich, że

$$(*)A \subset K(x_1, r_{\varepsilon}^1) \cup K(x_2, r_{\varepsilon}^2) \cup \ldots \cup K(x_n, r_{\varepsilon}^n).$$

Możemy zatem wybrać podział Π zbioru D zgodny z podziałem (*), w wyniku czego,

$$|\overline{S}(f,\Pi) - \underline{S}(f,\Pi)| < \varepsilon |D|.$$

Rysunek 3: mogę wybrać sobie takie kółko, że wszytkie następne kwadraty będą już leżały w tym kółku!

