8. Standardize/Normalize Data

Why It's Important

Data with varying scales can negatively impact machine learning models, especially distance-based models like k-NN and SVM.

Steps to Standardize/Normalize Data:

1. Choose the Scaling Method:

Standardization:

- Rescales data to have a mean of 0 and a standard deviation of 1.
- Suitable for algorithms that assume normally distributed data (e.g., linear regression, SVM).

Normalization:

- Rescales data to a fixed range, usually [0, 1].
- Suitable for algorithms that do not assume normal distribution (e.g., neural networks).

2. Identify Features to Scale:

- Numerical features with different ranges (e.g., income in thousands vs. age in years).
- Exclude categorical and already scaled features.

3. Apply the Scaling:

- o Fit the scaler to the training set and transform both training and testing sets.
- Avoid using test data during fitting to prevent data leakage.

4. Verify the Results:

 Check the mean and standard deviation (for standardization) or the range (for normalization) of the scaled features.

Best Practices:

- Use standardization for algorithms sensitive to feature variance.
- Apply scaling only after data splitting to avoid information leakage.

9. Feature Engineering

Why It's Important

Feature engineering enhances the predictive power of models by creating or transforming data to better represent the problem.

Steps for Feature Engineering:

1. Create New Features:

Combine Existing Features:

Example: Create a "total_price" feature from "price" and "quantity."

o Extract Information:

- From date-time: Extract "day of the week," "month," or "hour."
- From text: Count words, extract sentiment, etc.

2. Transform Features:

- Log or square-root transformations can reduce skewness in data.
- Polynomial transformations can add interaction terms.

3. Encode Categorical Data:

 Use one-hot encoding for unordered categories or ordinal encoding for ordered ones.

4. Remove Irrelevant Features:

- Drop features that have little or no correlation with the target variable.
- Example: IDs or highly correlated features.

Best Practices:

- Use domain knowledge to create meaningful features.
- Avoid creating overly complex or redundant features.

10. Split the Data

Why It's Important

Splitting ensures models are trained on a subset of data (training set) and tested on unseen data (testing set) to evaluate generalizability.

Steps to Split Data:

1. Determine Split Ratios:

- Common split: 70% training, 30% testing.
- o For large datasets, consider 80%-20% or even 90%-10%.

2. Stratify the Data (if necessary):

For classification tasks, stratify to maintain class distribution across splits.

3. Create Validation Set (Optional):

 Split training data into further subsets (e.g., 80%-20%) for hyperparameter tuning.

4. Perform the Split:

- Use a random state for reproducibility.
- Ensure the test set remains unseen during training and validation.

Best Practices:

- Use cross-validation for small datasets to maximize data utility.
- Avoid using test data for any model tuning or feature engineering.

11. Check for Multicollinearity

Why It's Important

Multicollinearity occurs when features are highly correlated, leading to redundancy and unstable coefficients in some models (e.g., linear regression).

Steps to Check and Handle Multicollinearity:

1. Analyze Feature Correlations:

- Use a correlation matrix to measure relationships between features.
- Focus on absolute correlation values > 0.85 or a chosen threshold.

2. Visualize Relationships:

Heatmaps provide an intuitive representation of feature correlations.

3. Handle Highly Correlated Features:

- Remove One of the Features:
 - Keep the feature most strongly correlated with the target variable.
- Combine Features:
 - Example: Combine "height" and "weight" into "body mass index (BMI)."
- Dimensionality Reduction:
 - Use PCA (Principal Component Analysis) to transform correlated features into independent components.

4. Verify After Adjustment:

o Recheck the correlation matrix to confirm multicollinearity is addressed.

Best Practices:

- Keep domain knowledge in mind when choosing which features to drop.
- Avoid multicollinearity even in unsupervised learning to ensure meaningful results.