Perciodie Function:

If
$$f(t)=f(t+T)=f(t+2T)=\dots$$
, then $f(t)$ is called the

Periodic function of period T. As for example,

$$Sin x = Sin (x + 27) = Sin (x + 47) = \cdots$$

so sinx is a periodie function with period 27.

Fourier Servies:

A services of sines and eosines of an angle and its multiples of the form:

$$\frac{a_0}{2} + a_1 e_{0} + a_2 e_{0} + a_3 e_{0} + a_3 e_{0} + a_1 + a_n e_{0} + a_1 + a_2 e_{0} + a_3 e_{0} + a_1 + a_2 e_{0} + a_1 e_{0}$$

=
$$\frac{a_0}{2} + \frac{g}{n} = \frac{a_0}{n} + \frac{g}{n} = \frac{g}{n} + \frac{g}{n} + \frac{g}{n} = \frac{g}{n} + \frac{g}{n} = \frac{g}{n} + \frac{g}{n} + \frac{g}{n} = \frac{g}{n} + \frac{g}{n} = \frac{g}{n} + \frac{g}{n} + \frac{g}{n} = \frac{g}{n} + \frac{g}$$

Series, where ao, a, az,, an, ..., b, bz, ..., bn are

constants.

Here
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$
, or, $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $\left| \frac{\pi - (-\pi)}{\pi} \right|^2 = 2\pi$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) eosnada,$$

and
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx$$
,

by taking n=1,2,.... we can find the values of a,, az, ...,

b1, b2,

Some useful integrals:

(i)
$$\int_{0}^{2\pi} \sin nx \, dx = 0,$$

(ii)
$$\int_{0}^{2\pi} eosnn dn = 0$$
,

(iii)
$$\int_{0}^{2\pi} \sin^{2}nx \, dx = \pi,$$

(iv)
$$\int_{0}^{2\pi} \cos^2 nn \, dn = \pi,$$

(v)
$$\int_{0}^{2\pi} \sin n\pi \cdot \sin n\pi \, d\pi = 0,$$

(vi)
$$\int_{0}^{2\pi} \cos n\pi \cdot \cos mn \, dn = 0,$$

$$u' = \frac{du}{dx}$$
, $u'' = \frac{d^2u}{dx^2}$ and so on.

Example: Find the Fourier services of f(n) = n, $0 < n < 2\pi$ and sketch its grouph from $n = -4\pi$ to $n = 4\pi$.

$$\frac{501^n}{1}$$
 Let $f(\pi) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2\pi + b_1 \sin x + b_2 \sin 2\pi + \dots$ (1)

Heree,
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$

$$= \frac{1}{\pi} \int_0^{2\pi} x dx = \frac{1}{\pi} \left[\frac{x^2}{2} \right]_0^{2\pi} = \frac{1}{2\pi} \left[x^2 \right]_0^{2\pi}$$

$$= \frac{1}{2\pi} \left[4\pi^2 - 0 \right] = 2\pi.$$

$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} x \cos nx \, dx$$

$$= \frac{1}{\pi} \left[x \cdot \frac{\sin nx}{n} - 1 \cdot \left(-\frac{\cos nx}{n^{2}} \right) + 0 \right]_{0}^{2\pi}$$

$$= \frac{1}{\pi} \left[x \cdot \frac{\sin nx}{n} + \frac{\cos nx}{n^{2}} \right]_{0}^{2\pi}$$

$$= \frac{1}{\pi} \left[\left\{ 2\pi \cdot \frac{\sin 2n\pi}{n} + \frac{\cos 2n\pi}{n^{2}} \right\} - \left\{ 0 + \frac{1}{n^{2}} \right\} \right]$$

$$= \frac{1}{\pi} \left[0 + \frac{\cos 2n\pi}{n^{2}} - \frac{1}{n^{2}} \right] = \frac{1}{\pi} \left[\frac{1}{n^{2}} - \frac{1}{n^{2}} \right] = 0.$$

Again,
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_0^{2\pi} \pi \sin nx \, dx$$

$$= \frac{1}{\pi} \left[\pi \cdot \left(-\frac{\cos n\pi}{n} \right) - 1 \cdot \left(\frac{-\sin n\pi}{n^2} \right) + 0 \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[-\pi \cdot \frac{\cos n\pi}{n} + \frac{\sin n\pi}{n^2} \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[\left\{ -2\pi \cdot \frac{\cos 2\pi\pi}{n} + \frac{\sin 2\pi\pi}{n^2} \right\} - \left\{ 0 + 0 \right\} \right]$$

$$= \frac{1}{\pi} \left[-2\pi \cdot \frac{1}{n} + 0 \right] = -\frac{2}{n}$$

Now substituting the values of ao, an and by in (1), we get $\chi = \frac{2\pi}{2} - \frac{2}{1} \sin \chi - \frac{2}{2} \sin \chi - \frac{2}{3} \sin$

The graph of f(x) from x=-47 to x=47 is given below:

