Решение задачи регрессии с помощью методов машинного обучения

Голиков М. О.

«ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ И. С. ТУРГЕНЕВА»

19 декабря 2020

Содержание

- ① Описание исходных данных
- 2 Анализ данных
- 3 Моделирование

Описание исходных данных

В данной работе используются данные о страховых выплатах медицинскому персоналу.

1	age	sex	bmi	children	smoker	region	charges
2	19	female	27.9	0	yes	southwest	16884.924
3	18	male	33.77	1	no	southeast	1725.5523
4	28	male	33	3	no	southeast	4449.462
5	33	male	22.705	0	no	northwest	21984.47061
6	32	male	28.88	0	no	northwest	3866.8552
7	31	female	25.74	0	no	southeast	3756.6216
8	46	female	33.44	1	no	southeast	8240.5896
9	37	female	27.74	3	no	northwest	7281.5056

Рисунок: Пример данных

Описание исходных данных

Описание признаков:

- age возраст бенефициара (лица, получающего страховые выплаты);
- sex пол бенефициара;
- bmi индексы массы тела;
- children количество детей бенефициара, на которых распространяется страхование / количество иждевенцов бенефициара;
- smoker является ли бенефициар курильщиком;
- region жилой район бенефициара в США: северо-восток, юго-восток, юго-запад, северо-запад;
- charges индивидуальные медицинские расходы, выставленные на счет медицинского страхования.

Гистограммы признаков sex и region

Рисунок: Гистограмма признака sex

Рисунок: Гистограмма признака region

Гистограммы признаков children и smoker

Рисунок: Гистограмма признака children

Рисунок: Гистограмма признака smoker

С помощью гистограмм удалось выяснить, что в категориальных признаках нет категорий, у которых была бы значительная количественная разница по отношению к другим значениям.

Диаграммы размаха признаков sex и region

Рисунок: Гистограмма признака sex

Рисунок: Гистограмма признака region

Диаграммы размаха признаков children и smoker

Рисунок: Гистограмма признака children

Рисунок: Гистограмма признака smoker

С помощью диаграмм размаха удалось выяснить, что в между категориями имеются статистические различия.

Справа можно увидеть диаграмму рассеяния и распределения признаков. Можно заметить, что между признаками не наблюдается линейной зависимости.

Стоит обратить внимание на распределение признака charges, которое сильно скошено в левую сторону.

На рисунке справа представлена визуализация матрицы корреляции. На основе этих занных можно сделать вывод, что между вещественными признаками не наблюдается линейной зависимости, а также отсутсвует мультиколлинеарность.

В качестве базиса используется линейная регрессия.

Ввиду отсутствия мультиколлениарности и небольшого количества признаков применение таких алгоритмов как LASSO, Ridge и Elastik-Net кажется нецелесообразным.

Можно использовать случайный лес, т. к. он хорошо умеет восстанавливать нелинейные зависимости, но нужно помнить о том, что случайный лес не способен экстраполировать.

Для решения данной задачи также можно использовать метод опорного вектора регрессии.

В работе используются следующие алгоритмы:

- линейная регрессия;
- опорный вектор регрессии;
- случайный лес.

Для подбора наиболее оптимальных параметров используется GridSearchCV.

Для оценки алгоритмов используется Root Mean Square Error (RMSE) – среднеквадратическое отклонение ошибки. Данная оценка позволит оценить разброс ошибки.

В таблице ниже можно увидеть значения RMSE для используемых алгоритмов.

Таблица: Оценка ошибки алгоритмов

Алгоритм	RMSE
Линейная регрессия	0,434
Опорный вектор регрессии	0,443
Случайный лес	0,371

Мы видим, что у случайный леса наилучшее значение RMSE. Однако, нужно помнить что случайный лес не способен экстраполировать.

Можно использовать композицию алгоритмов. Применив композицию на основе голосования получаем значение RMSE равное 0,396.