元素及其化合物

胡译文

目录

1	镁和	美和铝														2						
	1.1	铝单质																				2
		1.1.1	物理性质																			2
		1.1.2	化学性质																			2
		1.1.3	制备																			3
	1.2	氧化铝																				4
		1.2.1	物理性质																			4
		1.2.2	化学性质																			4
	1.3	氢氧化	铝																			4
		1.3.1	化学性质																			4
	1.4	铝离子																				5
	1.5	偏铝酸	根																			6
	1.6	氢氧化	铝																			6
		1.6.1	物理性质																			6
		1.6.2	制备																			7
	1 7	总结																				7

1 镁和铝

1.1 铝单质

1.1.1 物理性质

银白色固体、导电性优良(Ag>Cu>Al)、熔点低、密度小

1.1.2 化学性质

与非金属单质反应

- $4 \text{ Al} + 3 \text{ O}_2 \xrightarrow{\text{k.m.}} 2 \text{ Al}_2 \text{O}_3$ (铝在氧气中无法剧烈燃烧)
- 铝在空气中生成致密的氧化膜,阻止反应;但硝酸汞可以阻止致密的氧化膜生成,剧烈反应,俗称铝的"铝汞齐"。
- $2 \text{ Al} + 3 \text{ Cl}_2 \xrightarrow{\text{点燃}} 2 \text{ AlCl}_3$ (铝在氯气中可以剧烈燃烧) $_{\text{分子晶体}}$
- $2 Al + N_2 \xrightarrow{\overline{\text{Bla}}} 2 AlN$ 原子晶体
- $2 \text{ Al} + 3 \text{ S} \xrightarrow{\Delta} \text{Al}_2 \text{S}_3$

与热水反应

- $Mg + H_2O($ 沸水 $) \longrightarrow Mg(OH)_2 + H_2 \uparrow$
- $2 Al + 6 H_2O \longrightarrow 2 Al(OH)_3 + 3 H_2 \uparrow$

铝(镁)热反应 可以与 FeO、 Fe_2O_3 、 Fe_3O_4 、 Cr_2O_3 、 MnO_2 、 V_2O_5 等氧化物反应。用于焊接金属、冶炼难溶金属。

•
$$2 \text{ Al} + \text{Fe}_2\text{O}_3 \xrightarrow{\overline{\text{Bla}}} \text{Al}_2\text{O}_3 + 2 \text{ Fe}$$

•
$$2 \text{ Al} + \text{Cr}_2\text{O}_3 \xrightarrow{\text{\bar{n}}} \text{Al}_2\text{O}_3 + 2 \text{ Cr}$$

两性

- 与非氧化性酸: 2 Al + 6 H⁺ → 2 Al₃⁺ + 3 H₂↑
- 与氧化性酸: 在冷的浓硫酸或浓硝酸中钝化.
- 与强碱: 2Al+2NaOH+6H₂O → 2NaAlO₂+4H₂O+3H₂↑

1.1.3 制备

工业制铝

$$2 \text{ Al}_2\text{O}_3(l) \xrightarrow{\text{冰晶石}} 4 \text{ Al} + 3 \text{ O}_2 \uparrow$$

熔融冰晶石(Na3AIF6)可以溶解Al2O3,是助熔剂,而非催化剂。

- 1. 粉碎
- 2. NaOH 溶液浸泡: Al₂O₃ + 2 OH⁻ → 2 AlO₂⁻ + H₂O
- 3. 过滤
- 4. 通入 CO_2 : $CO_2 + AlO_2^- + 2H_2O \longrightarrow Al(OH)_3 \downarrow + HCO_3^-$
- 5. 过滤
- 6. 煅烧: 2 Al(OH)₃ → Ak₂O₃ + 3 H₂O
- 7. 电解: $2 Al_2O_3(l) \xrightarrow{\text{冰晶石}} 4 Al + 3 O_2 \uparrow$

工业制镁

- $Mg_2^+ + 2OH^- \longrightarrow Mg(OH)_2 \downarrow$
- $Mg(OH)_2 + 2HCl \longrightarrow MgCl_2 + H_2O$
- $MgCl_2(1) \xrightarrow{\underline{\mathfrak{Me}}} Mg + Cl_2 \uparrow$

海水提镁

$$CaCO3 \longrightarrow CaO \longrightarrow Ca(OH)_2 \longrightarrow Mg(OH)_2 \longrightarrow MgCl_2 \xrightarrow{\bar{\mathfrak{B}}\mathfrak{k}} Mg$$

其中氯元素可以循环: $Cl_2 \longrightarrow HCl \longrightarrow MgCl_2 \longrightarrow Cl_2$

1.2 氧化铝

1.2.1 物理性质

- 熔点高、硬度大。
- 俗称: 刚玉、宝石。
- 用途: 氧化铝坩锅、装饰品、蓝宝石保护层

1.2.2 化学性质

两性

- $\bullet \ Al_2O_3 + 6\,H^+ \longrightarrow 2\,Al^{3+} + 3\,H_2O$
- $Al_2O_3 + 2OH^- \longrightarrow 2AlO_2^- + H_2O$

1.3 氢氧化铝

1.3.1 化学性质

两性

与强碱反应

- 2 Al + 6 H⁺ → 2 Al³⁺ + 3 H₂↑ (非氧化性酸)
- $\bullet \ Al_2O_3 + 6\,H^+ \longrightarrow 2\,Al^{3+} + 3\,H_2O$
- $\bullet \ Al(OH)_3 + 3\,H^+ \longrightarrow Al^{3+} + 3\,H_2O$

与强碱反应

- $2 \text{ Al} + 2 \text{ OH}^- + 2 \text{ H}_2 \text{O} \longrightarrow 2 \text{ AlO}_2^- + 3 \text{ H}_2 \uparrow$
- $Al_2O_3 + 2OH^- \longrightarrow 2AlO_2^- + H_2O$
- $Al(OH)_3 + OH^- \longrightarrow AlO_2^- + 2H_2O$

Al(OH)₃ 的电离

- $Al(OH)_3 \rightleftharpoons H^+ + AlO_2^- + H_2O$
- $Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^-$

受热分解

1.4 铝离子

与 NaOH 的相互滴加 缓慢滴加并搅拌

将 NaOH 滴入 Al3+ 溶液中

- 1. 先出现白色沉淀: Al³⁺ + 3 OH⁻ → Al(OH)₃↓
- 2. 后沉淀消失: Al(OH)₃ + OH⁻ → AlO₂⁻ + 2H₂O

将 Al3+ 滴入 NaOH 溶液中

- 1. 先无明显现象: $Al^{3+} + 4OH^{-} \longrightarrow AlO_{2}^{-} + H_{2}O$
- 2. 后产生白色沉淀: $Al^{3+} + 3AlO_2^- + 6H_2O \longrightarrow 4Al_3(OH)_3 \downarrow$

与氨水反应 $Al^{3+} + NH_3 \cdot H_2O \longrightarrow Al(OH)_3 \downarrow + 3 NH_4^+$

双水解反应

- $Al^{3+} + 3HCO_3^- \longrightarrow Al(OH)_3 \downarrow + 3CO_2 \uparrow$
- $Al^{3+} + 3CO_3^{2-} + 3H_2O \longrightarrow Al(OH)_3 \downarrow + 3HCO_3^{-}$
- $Al^{3+} + 3AlO_2^- + 6H_2O \longrightarrow 4Al(OH)_3 \downarrow$
- $2 \text{ Al}^{3+} + 3 \text{ S}^{2-} + 6 \text{ H}_2\text{O} \longrightarrow 2 \text{ Al}(\text{OH})_3 \downarrow + 3 \text{ H}_2\text{S} \uparrow$

- $AlO_2^- + NH_4^+ + H_2O \longrightarrow 4Al(OH)_3 \downarrow + NH_3 \uparrow$
- $2 \text{ Al}^{3+} + 3 \text{ SiO}_3^{2-} + 6 \text{ H}_2\text{O} \longrightarrow 2 \text{ Al}(\text{OH})_3 \downarrow + 3 \text{ H}_2 \text{SiO}_3 \downarrow$

1.5 偏铝酸根

与强酸相互滴加 缓慢滴加并搅拌

将 H₂SO₄ 滴入 AlO₂ - 溶液中

- 1. 先出现白色沉淀: AlO₂⁻ + H⁺ + H₂O → Al(OH)₃↓
- 2. 后沉淀消失: Al(OH)₃ + 3 H⁺ ---- Al³⁺ + 3 H₂O

将 AlO₂- 滴入 H₂SO₄ 溶液中

- 1. 先无明显现象: $AIO_2^- + 4H^+ \longrightarrow AI^{3+} + 2H_2O$
- 2. 后产生白色沉淀: Al³⁺ + 3 AlO₂⁻ + 6 H₂O → 4 Al₃(OH)₃↓

与碳酸反应 立即生成 Al(OH)₃ 沉淀且不溶解。

- CO₂ 过量: AlO₂⁻ + 2 H₂O + CO₂ → Al(OH)₃↓ + HCO₃⁻
- CO_2 少量: $2 AlO_2^- + 3 H_2 O + CO_2 \longrightarrow 2 Al(OH)_3 \downarrow + CO_3^{2-}$

与铵盐溶液反应 $NH_4^+ + AlO_2^- + H_2O \longrightarrow Al(OH)_3 \downarrow + NH_3 \uparrow$

1.6 氢氧化铝

1.6.1 物理性质

• 白色胶状沉淀

1.6.2 制备

•
$$Al^{3+} + NH_3 \cdot H_2O \longrightarrow Al(OH)_3 \downarrow + 3 NH_4^+$$

•
$$AlO_2^- + 2H_2O + CO_2 \longrightarrow Al(OH)_3 \downarrow + HCO_3^-$$

•
$$Al^{3+} + 3AlO_2^- + 6H_2O \longrightarrow 4Al_3(OH)_3 \downarrow$$

1.7 总结

