ベクトル東と局所自由層

2024年6月8日更新*

はじめに

ベクトル束の一定階数をもつ射の核・余核は再びベクトル束となる。高次元の多様体上のベクトル束はアーベル圏を成さないが、ベクトル束を局所自由層とみると、層のアーベル圏の中で核・余核を関手的に定めることができる。(ただし、核と余核は局所自由とは限らなくなる。)ここではベクトル束から局所自由層を構成する方法を説明し、一定階数の場合にはこの対応が圏同値を引き起こすことを示す。

記号

次の記号は断りなく使う.

- 添字: なんらかの族 $(a_i)_{i\in I}$ を $(a_i)_i$ とか (a_i) と略記することがある.
- 近傍:位相空間 X の点 x や部分集合 Z に対し、その開近傍系をそれぞれ I_x や I_Z で表す、これらは、包含関係の逆で有向順序集合をなす、
- A 構造 : A 多様体 M 上の A ベクトル束や A 加群というとき, A は \mathcal{C}_M^∞ または \mathcal{O}_M を表す.

1 ベクトル束

2 層

M を A 多様体とする. このとき, A を M 上の環(の層)とする.

^{* 2024} 年 6 月 5 日かきはじめ

3 関手

E を M 上の \mathcal{A} ベクトル束とする. このとき, M の任意の開集合 U に対し, $\mathcal{E}(U)$ を

$$\mathcal{E}(U) \coloneqq \{\sigma \colon U \to E; \sigma は E の切断\}$$

とおくと, $U \mapsto \mathcal{E}(U)$ は前層を定める. 実は \mathcal{E} は層になる. $E \mapsto \mathcal{E}$ を α で表すことにする.

4 圏同値

命題 4.1. 関手 α は圏同値

 $\{4.1\}$ $\{$ 階数 d の $\mathcal A$ ベクトル東 $\}$ $\stackrel{\sim}{\longrightarrow}$ $\{$ 階数 d の局所自由 $\mathcal A$ 加群 $\}$

を誘導する.

 \varkappa

参考文献

 $[Ram 07]\ Rammanann,\ Global\ Calculus,\ 2007.$

[Sab07] Claude Sabbah, Isomonodromic Deformations and Frobenius Manifolds, Universitext, Springer, 2007.