

SERVICE MANUAL

US Model Canadian Model

PVM-8041Q

Chassis No. SCC-E96A-A

PVM-8044Q

Chassis No. SCC-E96C-A

SPECIFICATIONS

Video signal

Color system

PAL, SECAM, NTSC_{3.58}, NTSC_{4.43}

Resolution

PVM-8044Q: 450 TV lines PVM-8041Q: 250 TV lines

Aperture correction -4.0 dB - +6.0 dB (at 3.0 MHz)

Frequency response 6.0 MHz (-3.0 dB) at all inputs

Synchronization

AFC time constant 1.0 msec.

Picture performance

Normal scan

6% over scan of CRT effective screen

area

Underscan

3% underscan of CRT effective screen

H. linearity

Less than 7.0% (typical)

V. linearity

Less than 7.0% (typical)

Convergence

Central area: 0.43mm (typical)

Peripheral area: 0.53mm (typical)

Raster size stability H: 1.0%, V: 1.5%

High voltage regulation

3.0% D65

Color temperature

Inputs and Outputs

Inputs

Y/C IN: 4-pin mini DIN connector

(See the pin assignment on page 2.)

VIDEO IN: BNC connector 1Vp-p ± 6dB, sync negative AUDIO IN: phono jack, -5 dBs, less

than 47k ohms

R/R-Y, G/Y, B/B-Y: BNC connector R, G, B channels: 0.7 Vp-p, ±6 dB Sync on green: 0.3 Vp-p, negative,

75 ohms terminated

R-Y, B-Y channels: 0.7 Vp-p, ±6 dB

Y channel: 0.7 Vp-p, ± 6 dB

(Standard color bar signal of 75%

chrominance)

EXT SYNC IN: BNC connector Composite sync 4 Vp-p, ±6 dB,

negative

Loop-through outputs

Y/C OUT: 4-pin mini DIN connector

VIDEO OUT: BNC connector,

75 ohms terminated AUDIO OUT: phono jack

EXT SYNC OUT: BNC connector.

75 ohms terminated

AUDIO OUTPUT 0.5W

Tally/remote input

TALLY/REMOTE: 8-pin mini DIN connector (See the pin assignment

on page 2.)

General

Power consumption 45 W Max at AC operation 38 W at DC operation

- Continued on next page -

TRINITRON® COLOR VIDEO MONITOR SONY Power requirements 120V AC, 50/60 Hz

12V DC, with the Sony NP-1A/1B battery pack (not supplied) or AC-500 AC power adaptor

(not supplied)

Operating temperature range

0-35°C

Storage temperature range

-10 - +40 °C

Humidity

0 - 90%

Dimensions

Approx. 217 x 217 x 352.5 mm (w/h/d)

(8 5/8 x 8 5/8 x 14 inches)

not incl. projecting parts and controls

Weight

Approx. 7.8 kg (17 lb 3 oz)

not incl. battery packs

Accessory supplied AC power cord (1)

Design and specifications are subject to change without notice.

Pin Assignment

Y/C IN connector (4-pin mini DIN)

Pin No.	Signal	Description	
1	Y-input	1 Vp-p, sync negative, 75 ohms	
2	CHROMA sub-carrier- input	300 mVp-p, burst Delay time between Y and C: within 0±100 nsec. 75 ohms	
3	GND for Y-input	GND	
4	GND for CHROMA- input	GND	

TALLY/REMOTE connector (8-pin mini DIN)

Pin No.	Signal	
1	Blue only	
2	H/V delay	
3	GND	
4	INT/EXT SYNC	
5	Tally	-
6	Underscan/normal scan	
7	A/B or RGB/component	
8	RGB/LINE	

For remote control, connect the pin of the desired function to pin 3 (GND).

SAFETY CHECK-OUT

(US Model only)

After correcting the original service problem, perform the following safety checks before releasing the set to the customer:

- Check the area of your repair for unsoldered or poorly-soldered connections. Check the entire board surface for solder splashes and bridges.
- 2. Check the interboard wiring to ensure that no wires are "pinched" or contact high-wattage resistors.
- 3. Check that all control knobs, shields, covers, ground straps, and mounting hardware have been replaced. Be absolutely certain that you have replaced all the insulators.
- 4. Look for unauthorized replacement parts, particularly transistors, that were installed during a previous repair Point them out to the customer and recommend their replacement.
- Look for parts which, though functioning, show obvious signs of deterioration. Point them out to the customer and recommend their replacement.
- 6. Check the line cord for cracks and abrasion. Recommend the replacement of any such line cord to the customer.
- Check the condition of the monopole antenna (if any).
 Make sure the end is not broken off, and has the plastic cap on it.
 Point out the danger of impalement on a broken antenna to the customer, and recommend the antenna's replacement.
- 8. Check the B+ and HV to see they are at the values specified. Make sure your instruments are accurate; be suspicious of your HV meter if sets always have low HV.
- Check the antenna terminals, metal trim, "metallized" knobs, screws, and all other exposed metal parts for AC leakage. Check leakage as described below.

LEAKAGE

The AC leakage from any exposed metal part to earth ground and from all exposed metal parts to any exposed metal part having a return to chassis, must not exceed 0.5 mA (500 microampers). Leakage current can be measured by any one of three methods.

- A commercial leakage tester, such as the Simpson 229 or RCA WT-540A. Follow the manufacturers' instructions to use these instruments.
- 2. A battery-operated AC milliammeter. The Data Precision 245 digital multimeter is suitable for this job.
- 3. Measuring the voltage drop across a resistor by means of a VOM or battery-operated AC voltmeter. The "limit" indication is 0.75 V, so analog meters must have an accurate low-voltage scale. The Simpson 250 and Sanwa SH-63Trd are examples of a passive VOM that is suitable. Nearly all battery operated digital multimeters that have a 2V AC range are suitable. (See Fig. A)

HOW TO FIND A GOOD EARTH GROUND

A cold-water pipe is guaranteed earth ground; the cover-plate retaining screw on most AC outlet boxes is also at earth ground. If the retaining screw is to be used as your earth-ground, verify that it is at ground by measuring the resistance between it and a coldwater pipe with an ohmmeter. The reading should be zero ohms. If a cold-water pipe is not accessible, connect a 60-100 watts trouble light (not a neon lamp) between the hot side of the receptacle and the retaining screw. Try both slots, if necessary, to locate the hot side of the line, the lamp should light at normal brilliance if the screw is at ground potential. (See Fig. B)

TABLE OF CONTENTS

<u>Sec</u>	<u>tion</u> <u>Title</u>	<u>Page</u>	Sect	<u>ion</u> <u>Title</u>	<u>Page</u>
1.	GENERAL		4.	SAFETY RELATED ADJUSTMENT	
			4-1.	Safety Related Adjustments	20
1-1.	Features	5			
1-2.	Location and Function of Parts and Controls	6			
1-3.	Power Sources	9	5.	CIRCUIT ADJUSTMENTS	
			5-1.	D Board Adjustments	22
2.	DISASSEMBLY		5-2.	B Board Adjustments	25
			5-3.	S Board Adjustments	30
2-1.	Cabinet Removal	11			
2-2.	B Board Removal	11			
2-3.	Switching Regulator Removal	12	6.	DIAGRAMS	
2-4.	D Board Removal	12			
2-5.	P Board Removal	13	6-1.	Frame Schematic Diagram	31
2-6.	Rear Assy Removal	13	6-2.	Block Diagram (1)	34
2-7.	HA and FA Boards Removal	14	6-3.	Block Diagram (2)	
2-8.	Picture Tube Removal	15	6-4.	Circuit Boards Location	42
			6-5.	Printed Wiring Boards and Schematic Diagrams	42
			6-6.	Semiconductors	78
3.	SET-UP ADJUSTMENTS				
3-1.	Beam Landing	16	7.	EXPLODED VIEWS	
3-2.	Convergence	17			
3-3.	Focus	19	7-1.	Chassis	80
3-4.	White Balance	19	7-2.	Picture Tube	81
			8.	ELECTRICAL PARTS LIST	82

(CAUTION)

SHORT CIRCUIT THE ANODE OF THE PICTURE TUBE AND THE ANODE CAPTOTHE METAL CHASSIS, CRT SHIELD, OR CARBON PAINTED ON THE CRT, AFTER REMOVING THE ANODE.

WARNING!!

AN ISOLATION TRANSFORMER SHOULD BE USED DURING ANY SERVICE TO AVOID POSSIBLE SHOCK HAZARD, BECAUSE OF LIVE CHASSIS.

THE CHASSIS OF THIS RECEIVER IS DIRECTLY CONNECTED TO THE AC POWER LINE.

SAFETY-RELATED COMPONENT WARNING!!

COMPONENTS IDENTIFIED BY SHADING AND MARK ⚠ ON THE SCHEMATIC DIAGRAMS, EXPLODED VIEWS AND IN THE PARTS LIST ARE CRITICAL TO SAFE OPERATION. REPLACE THESE COMPONENTS WITH SONY PARTS WHOSE PART NUMBERS APPEAR AS SHOWN IN THIS MANUAL OR IN SUPPLEMENTS PUBLISHED BY SONY. CIRCUIT ADJUSTMENTS THAT ARE CRITICAL TO SAFE OPERATION ARE IDENTIFIED IN THIS MANUAL. FOLLOW THESE PROCEDURES WHENEVER CRITICAL COMPONENTS ARE REPLACED OR IMPROPER OPERATION IS SUSPECTED.

(ATTENTION)

APRES AVOIR DECONNECTE LE CAP DE L'ANODE, COURTCIRCUITER L'ANODE DU TUBE CATHODIQUE ET CELUI DE L'ANODE DU CAPAU CHASSIS METALLIQUE DE L'APPAREIL, OU AU COUCHE DE CARBONE PEINTE SUR LE TUBE CATHODIQUE OU AU BLINDAGE DU TUBE CATHODIQUE.

ATTENTION!!

AFIN D'EVITER TOUT RISQUE D'ELECTROCUTION PROVENANT D'UN CHÁSSIS SOUS TENSION, UN TRANSFORMATEUR D'ISOLEMENT DOIT ETRE UTILISÉ LORS DE TOUT DÉPANNAGE. LE CHÁSSIS DE CE RÉCEPTEUR EST DIRECTEMENT RACCORDÉ Á L'ALIMENTATION SECTEUR.

ATTENTION AUX COMPOSANTS RELATIFS ÁLA SÉCURITÉ!!

LES COMPOSANTS IDENTIFIÉS PAR UNE TRAME ET PAR UNE MAPQUE À SUR LES SCHÉMAS DE PRINCIPE, LES VUES EXPLOSÉES ET LES LISTES DE PIECES CONT D'UNE IMPORTANCE CRITIQUE POUR LA SÉCURITÉ DU FONCTIONNEMENT. NE LES REMPLACER QUE PAR DES COMPOSANTS SONY DONT LE NUMÉRO DE PIÉCE EST INDIQUÉ DANS LE PRÉSENT MANUEL OU DANS DES SUPPLÉMENTS PUBLIÉS PAR SONY. LES RÉGLAGES DE CIRCUIT DONT L'IMPORTANCE EST CRITIQUE POUR LA SÉCURITÉ DU FONCTIONNEMENT SONT IDENTIFIES DANS LE PRÉSENT MANUEL. SUIVRE CES PROCÉDURES LORS DE CHAQUE REMPLACEMENT DE COMPOSANTS CRITIQUES, OU LORSQU'UN MAUVAIS FONCTIONNEMENT EST SUSPECTÉ.

SECTION 1 GENERAL

1-1. FEATURES

Four color systems available

The monitor can display PAL, SECAM, NTSC3.58 and NTSC4.43* signals. The appropriate color system is selected automatically.

* A signal of NTSC_{4.43} is used for playing back NTSC recorded video cassettes with a video tape recorder/player especially designed for use with this system.

Super Fine Pitch Trinitron picture tube

(PVM-8044Q only)

The Super Fine Pitch Trinitron picture tube provides a high resolution picture. Horizontal resolution is more than 450 TV lines at the center of the picture.

Blue only picture

The picture can be displayed in blue and black only. This facilitates hue adjustment and the observation of video noise.

Analog RGB/component Input connectors

Analog RGB or component (Y, R-Y and B-Y) signals from video equipment can be input through these connectors.

Y/C input connector

The video signal, split into the chrominance signal (C) and the luminance signal (Y), can be input through this connector, eliminating the interference between the two signals, which tends to occur in a composite video signal, assuring video quality.

Beam current feedback circuit

The built-in beam current feedback circuit assures stable white balance.

Comb filter

When NTSC video signals are received, a comb filter activates to increase the resolution, resulting in fine picture detail without color spill or color noise.

Automatic termination

The Y/C, VIDEO IN and EXT SYNC IN connectors are terminated at 75 ohms inside, when no cable is connected to the loop-through output connectors. When a cable is connected to an output connector, the 75-ohm termination is automatically released.

EIA standard 19-inch rack mounting

By using an MB-507 mounting bracket (not supplied), the monitor can be mounted in an EIA standard 19-inch rack. For details on mounting, see the instruction manual of the MB-507.

For the Customers in the USA

INFORMATION

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

You are cautioned that any changes or modifications not expressly approved in this manual could void your authority to operate this equipment.

For the Customers in Canada

This apparatus complies with the Class A limits for radio noise emissions set out in Radio Interference Regulations.

1-2. LOCATION AND FUNCTION OF PARTS AND CONTROLS

Front

1 Tally lamp

2 POWER switch and indicator

Depress to turn the monitor on. The indicator will light up in green.

The POWER indicator also functions as the battery indicator. When the internal battery becomes weak or the power supplied through the DC12V IN jack decreases, the indicator flashes.

3 VOLUME control

Turn this control clockwise or counterclockwise to obtain the desired volume.

4 CONTR (contrast) control

Turn clockwise to make the contrast stronger and counterclockwise to make it weaker.

5 PHASE control

This control is effective only for the NTSC_{3.58} and NTSC_{4.43} color systems. Turn clockwise to make the skin tones greenish and counterclockwise to make them purplish.

Notes

- The PHASE, CHROMA and APER control settings have no effect on an analog RGB signal.
- · The PHASE control has no effect on component singals.
- The PHASE control setting is effective only for the NTSC system.

6 CHROMA control

Turn clockwise to make the color intensity stronger and counterclockwise to make it weaker.

7 BRIGHT (brightness) control

Turn clockwise for more brightness and counterclockwise for less.

8 APER (aperture) control

Turn clockwise for more sharpness and counterclockwise for less.

9 SYNC INT/EXT (sync internal/external) selector

Keep this button released (INT) to operate the monitor on the sync signal from the displayed composite video signal.

Depress this button (EXT) to operate the monitor on an external sync signal fed through the EXT SYNC connector on the rear panel.

10 LINE/RGB input selector

Select the program to be monitored. Keep this button released (LINE) for a signal fed through the LINE A or LINE B connectors. Depress this button (RGB) for a signal fed through the RGB connectors.

11 A/B, RGB/Y R-Y B-Y input selector
When the LINE/RGB input selector is set to LINE,
keep this button released (A) for a signal fed through the
LINE A connectors. Depress this button (B) for a signal
fed through the LINE B connectors.

When the LINE/RGB input selector is set to RGB, select the RGB signal or the component signal which is fed through the RGB input connectors. Keep this button released (RGB) for the RGB signal. Depress this button (Y R-Y B-Y) for the component signal.

12 BLUE ONLY selector

Depress this button to turn off the red and green signals. A blue signal is displayed as an apparent monochrome picture on the screen. This facilitates "chroma" and "phase" control adjustments and the observation of video noise.

13 UNDER SCAN selector

Depress this button for underscanning. The display size is reduced by approximately 3% so that four corners of the raster are visible.

14 H/V DELAY selector

Depress this button to observe the horizontal and vertical sync signals at the same time. The horizontal sync signal is displayed in the left quarter of the screen; the vertical sync signal is displayed near the center of the screen.

15 R/G/B BIAS and GAIN adjustment controls

Used for white balance fine adjustment. BIAS and GAIN controls are provided for the R (red), G (green) and B (blue) screens.

BIAS: Adjust the white balance and brightness of the screen at the lowlight.

GAIN: Adjust the white balance and brightness of the screen at the highlight.

Rear

16 LINE A connectors

To monitor the signal fed through these connectors, keep the LINE/RGB selector and the A/B, RGB/Y R-Y B-Y selector on the front panel released (LINE and A).

Note

The Y/C IN connector has a priority over the VIDEO IN connector.

When a plug is connected to the Y/C IN connector, the VIDEO IN connector is automatically disconnected.

17 LINE B connectors

To monitor the signal fed through these connectors, keep the LINE/RGB selector released (LINE) and depress the A/B, RGB/Y R-Y B-Y selector (B) on the front panel.

VIDEO IN (BNC): Connect to the video output of a video camera, VCR or other video equipment.

VIDEO OUT (BNC): Loop-through output of the VIDEO IN connector. Connect to the video input of a VCR or another monitor.

AUDIO IN (phono jack): Connect to the audio output of a VCR or a microphone (through a suitable microphone amplifier).

AUDIO OUT (phono jack): Loop-through output of the AUDIO IN connector. Connect to the audio input of a VCR or another monitor.

18 TALLY/REMOTE connector (8-pin mini DIN)

Connect to the tally output of a control console, special-effect generator, etc. The tally lamp on the front panel will be turned on and off by the connected equipment. This connector can be used for connecting a remote controller. For the pin assignment of this connector, see "Specifications" on page 2.

19 EXT SYNC (external sync) connectors

IN (BNC): When this monitor operates on an external sync signal, connect the reference signal from a sync generator to this connector. In this case, depress the SYNC INT/EXT selector (EXT) on the front panel.

OUT (BNC): Loop-through output of the EXT SYNC IN connector. Connect to the external sync input of video equipment to be synchronized with this monitor.

20 V HOLD (vertical hold) control

Turn to stabilize the picture if it rolls vertically.

21 DC 12V IN jack (XLR, 4 pin)

Connect the Sony AC-500 AC power adaptor (not supplied).

22 RGB/component input connectors

R/R-Y, G/Y, B/B-Y (BNC), AUDIO (phono):

To monitor a signal fed through these connectors, depress the LINE/RGB selector on the front panel (RGB). When the SYNC INT/EXT selector on the front panel is released (INT), the monitor operates on the sync signal from the G/Y channel.

To monitor the analog RGB signal

Connect to the analog RGB signal outputs of a video camera having no sync signal. Keep the A/B, RGB/Y R-Y B-Y selector on the front panel released (RGB).

To monitor the component signal

Connect to the R-Y/Y/B-Y component signal outputs of a Sony BetaCam video camera. Depress the A/B, RGB/Y R-Y B-Y selector on the front panel (Y R-Y B-Y).

23 AC IN socket

Connect the supplied AC power cord to this socket and to a wall outlet.

24 EJECT buttons

Press the EJECT button upwards to remove the battery pack.

25 BATTERY compartments

Insert the NP-1A/1B battery pack (not supplied).

1-3. POWER SOURCES

House Current

Connect the supplied AC power cord to the AC IN socket and to a wall outlet.

When the AC power cord is plugged into the AC IN socket, the battery pack (if installed) or the AC power adaptor (if connected) is automatically disconnected.

Rechargeable Battery

The monitor can operate with one or two battery packs. For extended use, two battery packs are recommended.

To remove the battery pack, press the EJECT button upwards.

For charging, use the BC-1WA battery charger (not supplied) for the NP-1A or the BC-1WB for the NP-1B.

Note

Make sure that the AC power cord and the AC power adaptor are disconnected from the monitor. Otherwise, the monitor cannot operate on the battery pack(s).

<u>MEMO</u>

SECTION 2 DISASSEMBLY

2-1. CABINET REMOVAL

2-2. B BOARD REMOVAL

2-3. SWITCHING REGULATOR REMOVAL

2-4. D BOARD REMOVAL

2-5. P BOARD REMOVAL

2-6. REAR ASSY REMOVAL

2-7. HA AND FA BOARDS REMOVAL

Note: Caution for ANODE CAP installation.

When you replace PICTURE TUBE or FBT, remove RTV on ANODE CAP so that PICTURE TUBE and FBT can be separated. Please adhere picture tube and anode cap in accordance with the following procedure.

ADHERING PROCEDURE OF ANODE CAP.

- Clean PICTURE TUBE ANODE CAP with ethnaol to remove original RTV.
- 2. Dry clean face with air.

 Use KE-490RTV (RTV silicone adhesive, SHIN-ETSU CHEMICAL).

Part. No. 7-322-065-19

Description

Silicone (RTV) KE-490W

- 4. Install ANODE CAP.
- 5. Adeguately apply RTV to the entire picture tube anode area, piace the anode cap onto the picture tube and push it down securety so that no air pockets remain beneath the cap.
- 6. Dry more than 12 hours at room temperature.

REMOVAL OF ANODE-CAP

REMOVING PROCEDURES

1 Turn up one side of the rubber cap in the direction indicated by the arrow a.

② Using a thumb pull up the rubber cap firmly in the direction indicated by the arrow ⑤.

When one side of the rubber cap is separated from the anode button, the anode-cap can be removed by turning up the rubber cap and pulling up it in the direction of the arrow ©.

HOW TO HANDLE AN ANODE-CAP

- ① Don't hurt the surface of anode-caps with sharp shaped material!
- ② Don't press the rubber hardly not to hurt inside of anode-caps! A metal fitting called as shatter-hook terminal is built

in the rubber.

3 Don't turn the foot of rubber over hardly!

SECTION 3 SET-UP ADJUSTMENTS

- The following adjustments should be made when a complete realignment is required or a new picture tube is installed.
- These adjustments should be performed with rated power supply voltage unless otherwise noted.

The control and switch below should be set as follows unless otherwise noted:

CONTRAST control	80%
BRIGHTNESS control	50%

Perform the adjustments in order as follows:

- 3-1. Beam Landing
- 3-2. Convergence
- 3-3. Focus
- 3-4. White Balance

Note: Test equipment Required.

- 1. Color Bar/Pattern Generator
- 2. Degausser
- 3. Color Analyzer (Minolta)
- 4. Luminance Level Meter

3-1. BEAM LANDING

Precaution

- 1. Set the side of the unit with the PICTURE TUBE so that it faces east or west in order to reduce the influence of external magnetic force.
- 2. Turn the power switch for the unit ON and erase the magnetic force using a degausser.

(1) Beam Landing

- 1. Receive an entirely white signal with the pattern generator. CONTRASTMAX. BRIGHTNESS..... set easy to observe
- 2. Adjust the white balance, G2 voltage and convergence roughly.
- 3. Loosen the deflection yoke mounting screw, and set the purity control to the center as shown in Fig.3-1.
- 4. Switch over the pattern generator to green.
- 5. Move the deflection yoke backward, and adjust with the purity control so that green is in the center and blue and red are at the sides, evenly. (Fig.3-2)
- 6. Move the deflection yoke forward, and adjust so that the entire screen becomes green. Repeat 5 to 7 as to red and blue.
- 7. When landing at the corners is not right, correct by using the magnet. (Fig.3-3)
- 8. When the position of the deflection yoke is determined, tighten it with a deflection yoke mounting screw.

CAUTION: When correction magnet is used, be sure to degauss the unit.

Fig.3-1

Fig.3-2

3-2. CONVERGENCE

(1) Horizontal and vertical Static Convergence Adjustment on the Center of Screen.

 Before starting, perform V. SIZE, V. CENT, H.SIZE, H.CENT and Screen Distortion Adjustment rightly.

(Static Convergence Adjustment)

- Receive a dot signal, setting BRIGHTNESS minimum and set CONTRAST to normal.
- 2. Adjust H.STAT VR to coincide red, green and blue dots on the center of screen. (Horizontal movement)
- 3. Adjust V.STAT magnet to coincide red, green and blue dots on the center of screen. (Vertical movement)

* If the red, green and blue dots do not coincide on the center of screen with H.STAT VR, perform adjustment using V.STAT at the same time while tracking.

(Tilt the V.STAT magnet and adjust static convergence to open or

close the V.STAT magnet.)

- 4. When the V.STAT magnet is moved in the direction of arrow A and b, red, green and blue dots move as shown below.
- ① When moving the V.STAT Magnet open or close.

When moving the V.STAT magnet counterclockwise.

When moving the V.STAT magnet clockwise.

4 When tilt the V.STAT magnet and open or close.

- * If the red and green dots do not coincide with blue dot, adjustment with BMC (6-poles) magnet.
- 5. HMC and VMC correction for BMC (6-Poles) magnet.
- 1 HMC (Horizontal Misconvergence) correction and motion of the Electron Beam with the BMC (6-poles) magnet.

② VMC (Vertical Misconvergence) correction and motion of the Electron Beam with the BMC (6-poles) magnet.

- (2) Horizontal and Vertical Dynamic Convergence Adjustment at the Environs of the Screen (Dynamic Convergence Adjustment)
- 1. When there is misconvergence at the sides of screen, adjust for best convergence as follows by moving the deflection yoke.
- Loosen deflection yoke screw. Remove deflection yoke spacers.
 Move the deflection yoke for best convergence. Tighten the deflection yoke screw. Install three deflection yoke spacers.

Screen-corner Convergence

3-3. FOCUS

- 1. Receive the broadcast.
- 2. CONTRAST → Normal
- Adjust FOCUS control so that the focus on the center of screen becomes to the best.

3-4. WHITE BALANCE

[Screen (G2) Voltage Adjustment]

- 1. Receive a dot signal with the pattern generator.
- 2. Adjust R. G. B cut-off controls so that respective cathode voltage against ground becomes 103V DC.
- Observing the screen, adjust SCREEN control so that the background of the dot signal is bright dimly.

[White Balance]

- 1. Receive a color-bar pattern signal with the pattern generator. (Make black and white screen by chroma switch off.)
- 2. BRIGHTNESS50%
 - CONTRASTMinimum
 - CHROMA50%
 - DRIVE control Mechanical center
 - BKG control Mechanical center
- 3. Adjust RV118 (SUB BRT) on B board so that the blue stripe portion on the color-bar pattern signal is bright dimly.

- 4. Receive an entirely white signal from the pattern generator.
- 5. CONTRAST70% (90 degree clockwise from mechanical center.)
- 6. Using the luminance level meter, adjust the luminance level of the pattern generator becomes 3 Nits. (The condition the screen is bright dimly.)
- Adjust white balance at cut-off using RV119 (G-C/O) and RV121 (B-C/O).
- 8. Change the all-white signal luminance level to 100 IREs.
- Adjust white balance at high-light using RV120 (G-GAIN) and RV121 (B-GAIN).
- 10. Change the unit to blue ONLY mode.
- 11. Adjust white balance (at high-light) in blue ONLY mode using RV124*R-GAIN/BL) and RV125 (G-GAIN/BL).
- 12. Using the luminance level meter, adjust the luminance level of the pattern generator becomes 8 Nits. Confirm that white balance at cut-off is satisfactory..

SECTION 4 SAFETY RELATED ADJUSTMENT

4-1. SAFETY RELATED ADJUSTMENTS

B+ MAX CONFIRMATION (■ RV651)

The following adjustments should always be performed when replacing the following components (marked with \square on the schematic diagram).

on G board: (Power supply block)

IC601, IC651, PH602, C655, R653, R655, R656, R657, RV651.

- 1. For US model, supply $130V_{-0}^{+0.5}$ V AC with variable autotransformer.
- 2. Receive a dot signal.
- 3. CONTRAST Minimum
 - BRIGHTNESS Minimum
- 4. Connect a digital multimeter to RY1601 pin-7 of D board.
- 5. Turn RV651 on the G board fully clockwise. Confirm that the voltage of RY1601 pin- is less than 41.9V DC.
- 6. If step 5 is not satisfied, readjust the RV651. After adjusting, fasten RV651 in place with epoxy.

B+ MAX IN DC POWER INPUT MODE, CONFIRMATION (☐ RV1603)

The following adjustments should always be performed when replacing the following components (marked with \square on the schematic diagram).

on D board:

Q1601, Q1602, Q1603, D1601, D1602, D1603, D1604, D1605, C1601, C1602, R1601, R1602, R1603, R1604, R1605, R1606, R1607, R1608, R1629, R1628, R1630, RV1601, RV1603.

- 1. Supply DC $12V_{-0}^{+0.4}$ V from DC 12V IN connector.
- 2. Receive a dot signal.
- 3. · CONTRAST Minimum
 - BRIGHTNESS Minimum
- $4. \quad Connect \, a \, digital \, multimeter \, to \, C1605 \, positive \, + \, side \, of \, D \, board.$
- 5. Turn RV1601 on the D board fully clockwise. Confirm that the voltage of C1605 + pin is less than 41.9V DC.
- If step 5 is not satisfied, readjust the RV1603. After adjusting, fasten RV1603 in place with epoxy.

HOLD-DOWNCIRCUIT CONFIRMATION (■ RV833) AND READJUSTMENTS

The following adjustments should always be performed when replacing the following components (marked with \square on the schematic diagram).

on D board:

IC502, Q833, Q834, Q835, Q836, D835, D836, C519, C814, C843, C844, C845, C846, C847, C848, RV833, R523, R850, R851, R852, R853, R854, R855, R856, R857, R858, R859, R861, R862, R863, NL801.

- on P board: NL801, T802 (FBT)
- 1. Receive an entire white signal.
- 2. CONTRAST Maximum
 - BRIGHTNESS Maximum
- 3. Connect a digital multimeter to the TP85 (CN503 pin-6).
- 4. Confirm the voltage is 14.1 ± 3.0 V DC.
- Receive a dot signal.
- 6. Connect an ammeter between D board CN503 pin-® and P board CN801 pin-®.
- 7. Adjust BRIGHTNESS and CONTRAST so that the current is IABL = $160 \pm 30 \,\mu\text{A}$.
- 8. Apply an external DC voltage gradually to TP85. When the voltage becomes $18.5V \pm 0.1V$ DC, confirm the HOLD-DOWN circuit operates immediately and raster disappears.
- 9. When external DC voltage at TP85 becomes $17.5V \pm 0.1V$ DC, confirm the HOLD-DOWN circuit doesn't operate.
- 10. Receive an entire white signal.
- 11. Adjust with BRIGHTNESS and CONTRAST controls so that the current is IABL = $520 \pm 30 \mu A$.
- 12. Apply DC voltage of 17.8V ± 0.1V to TP85. Confirm the HOLD-DOWN circuit operates immediately and raster disappears.
- 13. With the same set-up as steps 10 and 11, supply $16.8V \pm 0.1V$ DC to TP85. Confirm that the HOLD-DOWN circuit doesn't operate.
- 14. When above specifications are not satisfied, readjust RV833. After adjusting, fasten RV833 in place with epoxy.

SECTION 5 CIRCUIT ADJUSTMENTS

5-1. D BOARD ADJUSTMENTS

--- D BOARD (COMPONENT SIDE)---

HORIZONTAL OSCILLATION FREQUENCY ADJUSTMENT (RV503)

- 1. Receive a monoscope signal.
- Connect pin-① of IC502 to ground with 100μF/16V electrolytic capacitor.
- 3. Adjust RV503 (H.FREQ) so that the screen streaming to stops.

SCREENPHASE ADJUSTMENTS (RV502, RV512, RV516)

- 1. Receive a monoscope signal.
- 2. Set U/S (Under Scan) switch to Under mode.
- 3. CONTRAST Minimum
 - BRIGHTNESS Maximum.
- 4. Adjust RV512 (U/H. SIZE) so that the white frame of monoscope signal becomes visible.
- 5. Adjust RV516 (H.BLK) for minimum BLKG width so that all the deflection area becomes visible.
- 6. Adjust RV502 (VIDEO PHASE) so that the monoscope's white frames should have equal width.

H.V BLK ADJUSTMENTS (RV501,RV516)

- 1. Receive a monoscope signal.
- Set U/S (Under Scan) switch to Under mode.
- CONTRAST Minimum
 - BRIGHTNESS Maximum.
- V. BLK Adjustment (RV501)
- (1) Adjust RV501(V. BLK) so that the upper side white frame of monoscope signal is not blanked.

Make not to blank the upper side white frame of monoscope signal.

- 5. H. BLK Adjustment (RV516)
- (1) Adjust with RV516 (H. BLK) so that the left end white vertical line of the white frame of monoscope signal is not blanked as following figure.

Make not to blank the left end white vertical line of the white frame of monoscope signal.

VERTICAL DEFLECTION PART ADJUSTMENTS (RV504, RV505, RV506, RV507)

- 1. Receive a monoscope signal.
- CONTRAST70%
 - BRIGHTNESS 50%
- 3. Adjust RV505 (V. SIZE) so that the vertical size of monoscope signal becomes 12 frames.

Adjust RV507 (V.LIN) the vertical linearity.

Adjust RV504 (V. CENT) the vertical position.

- 6. V. SIZE ADJUSTMENT (RV505)
- (1) Adjust RV505 (V. SIZE) so that the vertical size of monoscope signal becomes 11.75 +0.2 frames.
- V.SIZE IN UNDERSCAN MODE ADJUSTMENT (RV506)
- (1) Set U/S (Under Scan) switch to Under mode.
- (2) Adjust the Under V.SIZE with RV506 (U/V. SIZE) as follows.

Screen is not wane on the four corners.

HORIZONTAL DEFLECTION PART ADJUSTMENTS (RV508, RV509, RV511, RV514, RV515, RV801/P board)

- 1. Receive a monoscope signal.
- CONTRAST70%
 - BRIGHTNESS 50%
- 3. H. CENT Adjustment (RV801 on P board)
- (1) Adjust RV801 on P board (H. CENT) the horizontal position.

- 4. H. SIZE Adjustment (RV511)
- (1) Adjust RV511 (H. S1ZE) the horizontal size of 16 frames of monoscope signal.

5. PIN AMP. PIN PHASE, V. ANG, BOW ADJUSTMENTS (RV508 RV509, RV514, RV515)

Adjust RV514 (V. ANG) and RV515 (BOW) to correct vertical angular distortion and bow distortion. Adjust RV509 (PIN AMP) and RV508 (PIN PHASE) so that vertical lines become straight.

• V. ANG (RV514)

BOW (RV515)

PIN AMP (RV509)

• PIN PHASE (RV508)

- 6. H. SIZE ADJUSTMENT (RV511)
- (1) Adjust RV511 (H. SIZE) so that the horizontal size becomes 16 ± 0.2 frames.
- 7. UNDERSCAN MODE H.SIZE ADJUSTMENT (RV512)
- (1) Set U/S (Under Scan) switch to Under mode.
- (2) Adjust RV512 (U/H. SIZE) the Under H. SIZE as shown in the figure.

HV DELAY ADJUSTMENT (RV831, RV832)

- 1. Receive a monoscope signal.
- 2. CONTRAST70%
 - BRIGHTNESS50%
- 3. Set H V DELAY switch to DELAY mode.
- 4. H. DELAY Adjustment (RV832)
- (l) Connect an oscilloscope to pin-4 of IC831.
- (2) Adjust RV832 (H. DELAY) to becomes $41 \pm 1 \mu sec.$

- 5. V. DELAY Adjustment (RV831)
- (1) Connect an oscilloscope to pin-9 of IC833.
- (2) Adjust RV831 to become 8.0 ± 0.4 msec as follows.

SHUT-DOWN VOLTAGE ADJUSTMENT (RV1602)

- 1. Fully rotate RV1602 in the direction that does not shut-down.
- 2. Supply a 9.4V $_{-0}^{+0.1}$ V voltage to the C1602 side of L1602 on the D board.
- 3. Turn AC power switch ON.
- Rotate D board RV1602 (SHT DOWN) slowly to the point that shuts-down the unit.

B+ VOLTAGE DURING DC OPERATE MODE, ADJUSTMENT (RV1601)

- 1. Supply DC12V±0.2V to DC 12V IN connector.
- 2. Receive a monoscope signal.
- 3. CONTRAST80%
 - BRIGHTNESS50%
- 4. Connect a digital voltmeter to C1605 + positive side on D board.
- 5. Adjust RV1601 on the D board for 40.0±0.1V DC.

B BOARD ADJUSTMENT

-B BOARD (COMPONENT SIDE)-

-B BOARD (CONDUCTOR SIDE)-

PRIMARY COLOR MATRIX ADJUSTMENT (RV115, RV116, RV123)

- Supply component color bar signal (75% drroma color bar) to the equipment so that Y signal is supplied to EXT SYNC and R-Y signal to R-Y connectors Operate the equipment in external sync mode.
- 2. Connect oscilloscope to IC124 pin-3 (B-OUT).
- 3. Adjust RV115 (SUB HUE) to obtain the Blue output as shown in figure.

- 4. Supply component color bar signal (75% color bar) to the component input connector to feed R-Y and B-Y signals. Operate the equipment in internal SYNC mode.
- Connect oscilloscope to IC124 pin-3 (SUB-COL). Adjust RV116 (SUB-COL) so that waveform peaks should have the same level.

(Adjust so that the first and the 4th peaks should have the same level.)

- 6. Connect oscilloscope to IC124 pin-4 (R-OUT).
- 7. Adjust RV123 ((R-Y)-IN) so that waveform peaks should have the same level.

BURST GATE PULSE WIDTH ADJUSTMENT (RV109)

- 1. Receive color bar signal.
- Connect dual trace oscilloscope to CN104 connector pin (COMP-SYNC) and IC113 (M51279) pin (BGP-WIDTH).
 Adjust RV109 (BGP-WIDTH) to obtain the relationship as shown in the figure.

VXO ADJUSTMENT (CV101,CV102)

- 1. 3.58MHz VXO adjustment (CV101)
- (1) Receive NTSC color bar signal.
- (2) Connect +5V power line to IC113 pin-²⁸ (ID-FILT-REF) via a 4700Ω resistor.
- (3) Ground IC109 pin-2 by connecting it to ground.
- (4) Ground C162 negative side by connecting it to ground.
- (5) Connect frequency counter to IC113 pin-②. Adjust CV101 (358FO) for 3579545±20Hz.
 (This adjustment can be alternatively done by observing screen as below.)

Adjust color synchronization by CV101 (358FO).

Adjust so that color stripes disappear and the hue change is stabilized extremely.

- 2. 4.43MHz VXO adjustment (CV102)
- (1) Receive PAL colour bar signal.
- (2) Connect +12V power line to IC109 pin-2.
- (3) Connect frequency counter to IC113 pin-20. Adjust CV102 (443FO) for 4433619±20Hz.
 (This adjustment can be alternatively done by observing screen as below.)

Adjust colour synchronization by CV102(443FO).

Adjust so that colour stripes disappear and the hue change is stabilized extremely.

NTSC COMB FILTER ADJUSTMENT (RV1,T1/CFM101 BOARD)

- 1. Receive NTSC 3.58 color bar signal.
- 2. Connect an oscilloscope to C202 negative side.
- 3. Confirm the Y OUT is 0.78±0.5 Vp p.
- 4. Confirm the residual chroma is 32 mVp-p below. If it is above 35 mVpp, adjust with RV1 and T1 on CFM201 board while tracking.

NTSC COLOR DEMODULATION ADJUSTMENT (RV114,RV111,RV104,RV107)

- 1. NTSC 3.58MHz HUE adjustment (RV114)
- Supply NTSC color bar signal including burst and R-Y component.
 (For example, Tektronix 1410SG output color bar signal with B-Y component removed.)
- (2) Connect an oscilloscope to Q128 emitter (B-Y OUT).
- (3) Adjust RV114 (358NT HUE) so that all the waveform peaks should have equal amplitude (look flat) except burst. (Level difference should be less than 10mV p-p.)

- 2. NTSC 3.58MHz COLOR adjustment (RV111)
- (1) Receive NTSC 3.58 color bar signal.
- (2) Connect an oscilloscope to IC124 pin-30 (B-OUT).
- (3) Adjust RV111(358NT-COL) so that waveform peaks should have the same level (most flat).

- 3. NTSC 3.58MHz COLOR (R-Y) adjustment (RV104, RV107)
- (1) Receive the color bar signal.
- (2) Connect an oscilloscope to the Q127 emitter (R-Y OUT), and adjust RV104 (358NT-SHIFT) so that the output of the burst section (B-Y axis signal output) becomes 0.
- (3) Connect an oscilloscope to IC124 pin-4 (R-OUT). Adjust RV107 (358NT-COL (R-Y)) so that the level difference should be minimum.

(Adjust for B=D. [less than 20mV] Also level difference between B and C should be less than 60mV.)

NTSC 4.43MHZ COLOR DEMODULATION ADJUSTMENT (RV108,RV112,RV103,RV106)

- 1. NTSC 4.43MHz COLOR adjustment (RV108,RV112)
- (1) Receive NTSC 4.43 color bar signal (75% color bar).
- (2) Connect an oscilloscope to IC124 pin-30 (B-OUT).
- (3) Adjust RV108 (443NT-COL) so that waveform peaks should have the same level (most flat).

(4) When cyan and magenta have level difference, adjust RV112 (443NT-HUE) and RV108 (443NT-COL) alternatively to remove,

When cyan and magenta have level difference, adjust RV112 and RV108 alternatively to remove.

- 2. NTSC 4.43MHz COLOR (R-Y) adjustment (RV103, RV106)
- (1) Receive the NTSC 4.43 color bar signal (75%, chroma color bar).
- (2) Connect an oscilloscope to the Q127 emitter (R-Y OUT), and adjust RV103(443NT-SHIFT) so that the output of the burst section (B-Y axis signal output) becomes 0.
- (3) Connect an oscilloscope to IC124 pin- ((R-OUT)). Adjust RV106 (443NT-COL (R-Y)) so that the level difference should be minimum.

(Adjust for B=D. [less than 20mV] Also level difference between B and C should be less than 60mV.)

PAL COLOR DEMODULATION ADJUSTMENT (RV113,RV2/SEP101, RV110,RV105,RV205)

- 1. PAL PHASE Adjustment (RV113,RV2/SEP101)
- (1) Receive the special PAL color-bar.
- (2) Connect an oscilloscope to emitter of Q127 (R-Y OUT).
- (3) Adjust RV113 (PAL-PHASE) so that B-Y (0/180°) anti-PAL portion (in the R-Y demodulated output) becomes "0" (flat) as following figure.

- (4) Connect an oscilloscope to emitter of Q128 (B-Y OUT).
- (5) Adjust RV2 inside SEP101 so that R-Y (90°/90°) anti-PAL portion (in B-Y demodulated output) becomes "0" (flat) as following figure.

For the adjustments of (3) and (5), it is also possible to set the color level to MAX with the chroma adjusting knob of the unit and erase the color of the anti-pal signal section.

- 2. PAL COLOR ADJUSTMENT (RV110)
- (1) Receive PAL color bar signal (75% color bar).
- (2) Connect an oscilloscope to IC124 pin-30 (B-OUT).
- (3) Adjust RV110 (PAL-COL) so that waveform peaks should have the same level (most flat).

- 3. PAL-COLOR-(R-Y) ADJUSTMENT (RV105)
- (1) Connect an oscilloscope to IC124 pin-41 (R-OUT).
- (2) Adjust RV105 (PAL-COL-(R-Y)) so that waveform peaks should have the same level (most flat).

(Adjust for B=D. [less than 20mV] Also level difference between B and C should be less than 60mV.)

SUB-SHARP ADJUSTMENT (RV205)

- (1) Receive a sweep signal (or multi-burst).
- Bandwidth should be more than 10MHz (flat).
 - Composite sync should be included.
 - · Turn burst off.
- (2) Connect an oscilloscope to IC124 pin-36 (G-OUT).
- (3) Adjust RV205 (SUB-SHARP) as shown.

Example of sweep signal output waveform

[specification] 6MHz/0.5MHz=0±0.5dB

CHROMA H PULSE POSITION ADJUSTMENT (RV101,RV102)

- (1) Receive the SECAM color bar signal.

 (The left edge of the screen should not be colored.)
- (2) Set to the under-scan mode.
- (3) Adjust RV101 (PLUSE-WIDTH) until the point immediately before the color on the left edge of the screen disappears.
- (4) Release the under-scan mode.
- (5) Set the HV DELAY mode.
- (6) Adjust RV102 (PULSE-POSI) untill the point immediately before the rising color of the image after back porch diappears.

Note: If image phase adjustment or HV DELAY amount adjustment during HV DELAY is performed after completing the adjustment in this section, re-adjustments will be required. Therefore, performed this adjustment after the two mentioned have been performed.

S BOARD ADJUSTMENTS

-S BOARD (COMPONENT SIDE)-

SECAM(T1101,L1102,L1103)

- 1. Receive SECAM color-bar.
- 2. Bell Filter Adjustment (T1101)
- (1) Connect an oscilloscope to IC1101 pin-2.
- (2) Adjust T1101 (Bell Filter) so that the chroma waveform becomes smooth. (Uneven level should be minimum.)

- 3. Color Balance Adjustment (L1102,L1103)
- (1) Connect an oscilloscope to pin-9 (R-Y) of CN1101 connector.
- Adjust L1102 (R-Y) so that the non-colored portion level becomes flat.

- (3) Connect an oscilloscope to pin-® (B-Y) of CN1101 connector.
- (4) Adjust L1103 (B-Y) so that the non-colored portion level becomes flat.

(5) When adjusting the color level of the unit to MAX or MIN using the chroma adjusting knob, check that the white balance of the colorless section does not change.

DEMODULATION LEVEL ADJUSTMENT (RV1101, RV1102)

- 1. Receive SECAM color-bar.
- 2. Connect an oscilloscope to IC124 pin- (B-OUT).
- 3. Adjust S board RV1101 (SEC-COL) so that waveform peaks should have the same level (most flat).

- 4. Connect an oscilloscope to IC124 pin-4 (R-OUT).
- 5. Adjust S board RV1102 (SEC-COL (R-Y)) so that the level difference should be minimum.

(Adjust for B=D. [less than 20mV] Also level difference between B and C should be less than 60mV.)

SECTION 9 BLOCK DIAGRAMS

SECTION 10 DIAGRAMS

10-1. FRAME SCHEMATIC DIAGRAMS

CH401
15P
WHT-L
:S-WICRO
TO B BOARD
15 EXT SYNC
14 HV DL S Y/COMPOSITE 2 GND 1 12V 0 VOL 1 +12V 2 50/60 2 50/60
8 COMPO SYNC
4 Y.P
6 Y.BLK
6 H.BLK
7 ABL
6 GND
9 POWER LED
10 U/9 81. PULSED
112 +120 Y 9 B/B-Y 8 RGB/LINE 7 G/G-Y 6 ROS/ COMPONENT 5 R/R-Y DC 12V IN DC.12V 1 BATT 12V 2 4 TALLY 8 SYNC 2 Y/C-C-OUT. B OL CN505 WHT :8-BICRO 40V 6 NC 5 GND 4 OFF 3 SW 2 ON 1 4P WCN40S VM
1 AC SW
2 NC
3 NC
4 AC SW CN602 3P : WIN1 CN610 3P : NIMI CN651 3P F601 8601 1 AC OUT 2 NC 3 AC OUT 1 +40A 2 NC 3 E AC SW 1 NC 2 NC 3 AC SW 4 AC OUT 1 NC 2 AC OUT 3 G 1 DC SW1 2 DC SW2 3 DC SW3 4 NC CM893 4PT :8-WICRO SWITCHING CN501 3P WHT :8-WICRO REGULATOR) FA (AC/DC SW) { " ∳ (INPUT out ∳ SIGNA! H. FREQ 1 NC 2 GND 3 (DEFLECTION SYSTEM) SIGNAL I CN600 2P WHT :8-HICRO w IN SELECTOR) CM507 8P YEL : S-MICRO 1 4:3/16:9 2 GND BATT IN 1 1 BATT IN 1 2 E 3 E 4 BATT IN 2 5 BATT IN 2 6 TALLY CN402 3P WHT-L :S-MICRO SPEAKER 1 GND
1 GND
2 +15V
3 +24V
4 D.D CON
6 H.DRV
6 HV
7 +B
8 ABL
9 PIN
110 V (+)
111 V (-)
112 CS
113 HP
14 +120V SP 3 BATTERY 2 GND (SP) 3 GND CM509 WHT :8-WICHO LINE B CN504 SP WHT :8-NICRO CM404 BP WHT-L S-WICRO 1 U/8 2 15V 3 V.HOLD 4 E 5 4:3/16:9 U/8 1 15V 2 V.HOLD 3 E 4 4:3/16:9 5 B∕B-Y IN 🕝

1

2

3

10-2. SCHEMATIC DIAGRAMS/PRINTED WIRING BOARDS

No

1

Note:

- · All capacitors are in µF unless otherwise noted.
- PF: 50 WV or less are not indicated except for electorlytics.

 All electrolytics are in 50 V unless otherwise specified.
- All resistors are in ohms, 1/4 W in resistance, 1/10 W in chip
- All resistors are in ohms, 1/4 W in resistance, 1/10 W in ci resistance.
- $k\Omega = 100$, $M\Omega = 1000$ $k\Omega$
- · +w- : nonflammable resistor.
- \(\Delta \) : internal component.
- panel designation, or adjustment for repair.
- All variable and adjustable resistors have characteristic curve B, unless otherwise noted.

Board	☑ Parts	▼ Parts
D	C519, C843, C844, C845, C846, C847, C848, C1601, C1602, D835, D836, D1601, D1603, IC502, Q833, Q834, Q835, Q836, Q1601, Q1602, Q1603, R523, R850, R851, R852, R853, R854, R855, R856, R857, R858, R859, R860, R861, R862, R863, R1601, R1602, R1607, R1608, R1605, R1606, R1630, RV833, RV1601, RV1603	,
G	C654, IC601, IC651, PH601, R653, R655, R656, R657, RV651	RV651
Р	C814, NL801, T802 (FBT)	

· Readings are taken with a color-bar signal input.

no mark : With PAL color-ber signal receved or common voltage.

) : With SECAM color-ber signal receved.

- > : With NTSC (3.58, 4.43) color-ber signal receved.
- Readings are taken with a 10 MΩ digital multimeter.
- Voltage are dc with respect to ground unless otherwise noted.
- Voltage variations may be noted due to normal production
- All voltages are in V.
- Circled numbers are waveform reference.

· V : B+ bus.

• <u>v</u> : B- bus.

: signal path.

* : Measurement impossibility.

The components identified by mark ∆ are critical for safety. Replace only with part number specified.

Les composants identifies par une marque ∆ sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

Reference Information

RESISTOR : RN METAL FILM

: RC SOLID

: FPRD NONFLAMMABLE CARBON : FUSE NONFLAMMABLE FUSIBLE : RS NONFLAMMABLE METAL OXIDE : RB NONFLAMMABLE CEMENT : RW NONFLAMMABLE WIREWOUND

OIL : LF-8L MICRO INDUCTOR

CAPACITOR : TA TANTALUM : PS STYROL

: PP POLYPROPYLENE

: PT MYLAR

: MPS METALIZED POLYESTER

: MPP METALIZED POLYPROPYLENE

: ALB BIPOLAR

: ALT HIGH TEMPERATURE

: ALR HIGH RIPPLE

G BOARD

G -B SIDE-SUFFIX: -12

QA BOARD

QA -B SIDE-SUFFIX: -15

D BOARD

D -A SIDE-SUFFIX: -31

D BOARD (A SIDE)

IC501 IC502 IC503 IC505 IC506 IC507 IC831 IC832 IC833 IC1601 B-1 B-1 C-6 B-5 C-4 C-3 C-7 A-6 B-6 E-8 Q505 Q508 Q509 Q512 Q515 Q516 Q532 Q533 Q534 Q569 Q571 Q576 Q525 Q600 Q601 Q600 Q601 Q1605 Q1606 Q1607 Q1610 Q1612 Q1612 Q1613 Q1614 Q1615 Q1616 Q1617 Q1617 D506 D508 D508 D510 D514 D520 D521 D833 D834 D835 D836 D1607 D1616 D1621 D1625 D1626 D1627 D1627 D-5
A-4
B-1
A-5
B-1
A-6
A-6
A-6
C-7
C-8
A-8
E-9
D-8
C-9
D-9 RV501 RV502 RV503 RV504 RV504 RV505 RV509 RV511 RV512 RV514 RV515 RV516 RV517 RV518 RV517 RV518 RV631 RV633 RV1601 RV1603 A-3 D-4 C-2 D-5 D-3 D-3 D-2 D-2 D-4 D-4 D-3 C-2 A-4 D-3 C-6 A-7 B-3 D-8 E-9

D BOARD

D -B SIDE-SUFFIX: -31

FA -B SIDE-SUFFIX: -13

D (1/2) BOARD IC501 CX23025

8 BIT COUNTER

6 BIT COUNTER

-○<u>R</u> 1/8

P-ON INITIALIZE

> -®-BLCT

1

_

2

_

5

D (1/2) BOARD * MARK LIST

PVM-8042Q (U/C) PVM-9045PM (BRZ) PVM-9045Q (U/C) PVM-9042QM (AEP/AUS) PVM-9045QM (AEP/AUS)

C501	47 16V	NOT USED
C518	56P B: CHIP	NOT USED
C541	0.047 B: CHIP	NOT USED
D520	MA157-TX	NOT USED
IC501	CX23025	NOT USED
JR507	NOT USED	SHORT 0
Q501	DTC144EKA-T146	NOT USED
Q502	DTC144EKA-T146	NOT USED
Q503	DTC144EKA-T147	NOT USED
Q504	DTC144EKA-T146	NOT USED
R501	47K :CHIP	NOT USED
R502	47K :CHIP	NOT USED
R503	47K	NOT USED
R514	120K :RN	NOT USED
R522	270K :CHIP	NOT USED
R531	47K :CHIP	NOT USED
R565	2.7K CHIP	NOT USED
R566	100 :CHIP	NOT USED
R589	150K :CHIP	NOT USED

D (1/2) BOARD WAVEFORMS

D (2/2) BOARD

5

P BOARD

P -A SIDE-SUFFIX: -31

P -B SIDE-SUFFIX: -31

1

P BOARD WAVEFORMS

B BOARD

B -A SIDE-SUFFIX: -31

B Board (A SIDE)

DOS	ira (A S	iDE)	
2501 1101 1101 1102 1103 1104 1105 1107 11108 11109 1110 1112 1113 1114 1115 1112 1112 1112 1112 1112 1112	B-1 D-5 E-7 B-1 D-8 E-8 D-8 E-8 D-4 C-7 C-3 C-4 C-6 B-8 D-1 D-2 D-4 D-8 B-8 D-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1	D103 D107 D118 D119 D122 D123 D130 D131 D137 D138 D159 D159 D151 D153 D154 D153 D158 D163 D189 D191 D264 D193 D193 D193 D193 D193 D193 D193 D193	D-62-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
121 (124 129 121 121 121 121 121 121 121 121 121	D-4 7 8 8 1 8 8 1 8 8 9 9 9 9 9 9 9 8 8 8 6 6 6 6 5 2 10 10 10 7 2 7 10 10 10 10 10 10 10 10 10 10 10 10 10	D393 RV101 RV102 RV103 RV104 RV105 RV106 RV107 RV108 RV109 RV111 RV112 RV111 RV112 RV111 RV112 RV111 RV112 RV111 RV112 RV111 RV112 RV112 RV112 RV113 RV114 RV115 RV116 RV117 RV118 RV119 RV120 RV121 R	E-1 D-2 B-8 B-8 E-8 C-9 C-10 C-10 C-10 C-9 C-9 C-9 B-8 B-4 B-7 B-7 B-7 B-7 B-7 B-1 B-1 B-1 B-1 B-1 B-1 B-1 B-1 B-1 B-1

B Board (B SIDE)

IC112 E-2 IC124 C-4 DIO12 DIO95 DIO95 DIO95 DIO95 DIO95 DIO96 DIO99 DIO97 RV101 RV102 RV103 RV104 RV105 RV106 RV107 RV110 RV111 RV1112 RV113 RV114 RV115 RV116 RV1117 RV1118 RV1118 RV1119 RV1120 RV1212 RV122 RV123 RV124 RV125 E-10 D-9 D-3 E-3 E-3 C-11 D-1 D-2 C-7 A-7 A-8 A-7 A-7 A-3 A-3

B BOARD

B -B SIDE-SUFFIX: -31

B MOUNT (1/3) VOLTAGES

1								
			IC					
	IC102	PAL 1 6.7	SECAM 6.7	NTSC 6.7	IC114	PAL	SECAM	NTSC
	10102	2 7.1	0.7	0.7	IC114	1 0	2.6 2.6	2.6 2.6
		3 0	ŏ	ŏ		3 2	2.6	2.6
		4 0	0	0		4 NC	NC	NC
		5 6.6	6.6	6.6		5 NC	NC	NC
		6 12VA 7 6	12VA	12VA		6 GND	GND	GND
		7 6 8 GND	6 GND	6 GND		7 GND 8 GND	GND GND	GND GND
	IC111	1 NC	NC	NC		9 11.5	0	0
		2 2.3	2.3	2.3		10 11.5	Ö	Ö
		3 2.3	2.3	2.3		11 11.5	3.7	3.7
		4 2.3	2.3	2.3		12 0.8	3.9	3.9
2		5 0 6 GND	2.5 GND	2.5 GND		13 1.7 14 NC	3.9 NC	3.9 NC
-		7 GND	GND	GND		15 0.8	3.6	3.6
		8 GND	GND	GND		16 12VA	12VA	12VA
		9 9.4	0	0	IC115	1 0	0	0
		10 11.5	0	<u> </u>		2 0	0	0
		11 9.9 12 11.5	0	0		3 0.4	0.4	0.4
		13 11.5	11.5	11.5		4 0.4 5 NC	0.4 NC	NC
_		14 11.5	0	0		6 GND	GND	GND
		15 0	2.3	2.3		7 GND	GND	GND
		16 GND	GND	GND		8 GND	GND	GND
	IC110	1 0.6	0	0		9 11.5	11.5	11.5
		2 2.3 3 2	0	0		10 1.7 11 1.7	1.7 1.7	1.7 1.7
		4 2.2	2.2	2.5		12 3.4	3.4	3.4
_		5 0	0	0		13 1.7	3.4	3.4
3		6 GND	GND	GND		14 NC	NC	NC
		7 GND	GND	GND		15 3.2	3.2	3.2
		8 GND 9 11.5	GND 11.5	GND 11.5		16 12VA	12VA	12VA
		10 11.5	0	0		TDAN	ISISTOR	
		11 11.5	Ö	Ö	Q117	B 1.7	2.5	2.5
		12 0.8	2.5	2.5		C GND	GND	GND
		13 1.7	1.7	1.7		E 2.3	3.1	3.1
		14 1.7	2.5 2.5	2.5 2.5	Q119	B 0	0	0
		15 0.8 16 12VA	12VA	12VA		C GND E 0.6	GND 0	GND 0
	C113	1 2.8	2.8	2.8	Q121	B 0	2.3	2.3
		2 1.7	1.7	1.7		C 11.9	10.9	10.2
		3 2.3	2.3	2.3		E 3.1	2.5	2.5
		4 2.4	2.5	2.5	Q122	B 1.7	1.7	1.7
4		5 3 6 3	3	3 3		C 2.3 E GND	0 GND	0 GND
		7 4.3	4.3	4.3	Q124	B 1.7	0	0
		8 3	3	3		C GND	GND	GND
		9 NC	NC	NC		E 0	2.3	2.3
		10 2.9 11 2.9	2.9	2.9	Q125	<u>B</u> 0	0	<u> </u>
		11 2.9 12 2.6	2.9 2.6	2.9 2.6		C 5 E GND	5 GND	5 GND
		13 3.4	3.4	3.4	Q126	E GND B 9.6	0	0
		14 GND	GND	GND	4.20	C 0	0.8	0.8
		15 3	3	3		E GND	GND	GND
		16 NC	NC	NC	Q200	B 11.8	11.8	11.8
		17 NC 18 5VA	NC 5VA	NC 5VA		C 12VA	12VA 0	12VA 0
		19 2.9	2.9	2.9	Q1400	E 0 G 6.1	6.1	*
		20 0	0	0	Q 1-100	D 5.5	5.5	*
5		21 NC	NC	NC		S 5.5	5.5	*
		22 2.1	2.1	2.1	Q1401	<u> </u>	0	0
		23 2.1 24 NC	NC	2.1 NC		D 5.4 S 0.6	5.4	*
		25 2	2	2		S 0.6	0.6	0.6
		26 2.8	2.8	2.8				
		27 5VA	5VA	5VA		tages are in		
		28 4.5	4.5	4.5		o connectio		
		29 2.9 30 3	2.9 3	2.9 3	• * mar	k: measurer	nent impos	SIDIO.
		31 1.4	1.4	1.4				

CROSS-REFERENCE OF * MARKS ON B (1/3) BOARD

	PVM-8042Q (U/C)	
	PVM-8042Q (U/C)	
	PVM-9042QM (AEP)	
	PVM-9042QM (AUS)	
	PVM-9045QM (AEP)	
	PVM-9045QM (AUS)	PVM-9045PM(BRZ)
BPF102	1-236-364-11	1-236-363-11
C104	0.01 :CHIP	NOT USED
C105	0.01 :CHIP	NOT USED
C115	0.01 :CHIP	NOT USED
C134	0.01 :CHIP	NOT USED
C157	12P :CHIP	NOT USED
CTR101	1-236-366-11	1-809-369-11
CTR102	1-236-365-11	NOT USED
D102	NOT USED	MA111
D105	MA111	NOT USED
D186	MA151WK	NOT USED
D344	DTZ-TT11-6.2A	NOT USED
IC101	MM1111XFBE	NOT USED
JR256	NOT USED	SHORT 0
L103	4.7µH	NOT USED
Q118	2SC2412K	NOT USED
Q119	2SB709A	NOT USED
Q200	DTA114EK	NOT USED
R107	27K :CHIP	NOT USED
R123	100 :CHIP	NOT USED
R209	560 :CHIP	NOT USED
R210	220 :CHIP	NOT USED
R213	560 :CHIP	NOT USED
R253	150K :CHIP	NOT USED
R1043	2.2K :CHIP	NOT USED
R1044	3.3K :CHIP	NOT USED
R1055	NOT USED	100K :CHIP
R1313	150K :CHIP	120K :CHIP
R1405	5.6K :CHIP	NOT USED
R1406	5.6K :CHIP	NOT USED
R1408	5.6K :CHIP	1K :CHIP
R1409	5.6K :CHIP	1K :CHIP
RV103	220	NOT USED
RV106	1K	NOT USED
RV108	10K	NOT USED
RV112	47K	NOT USED
X1401	1-577-259-11	1-527-523-00
	OSCILLATOR,	OSCLLATOR,
	CRYSTAL	CRYSTAL

B (1/3) BOARD WAVEFORMS

B (1/3) BOARD WAY	EFURMS			
0	2			3
				-()++()++()++(
PAL 1.0 V p-p (H)	PAL 1.0 V p-p (H)	SECAM 1.0 V p-p (H)	NTSC 3.581 V p-p (H) NTSC 4.431 V p-p (H)	PAL 26 mV p-p (H)
④				6
Dreft Letters Lorder Le	a free free free free free free free fre	مالمممالممسالممد		بالممسهالمسمال
PAL 1.0 V p-p (H)	SECAM 1.0 V p-p (H)	NTSC3.58 1.0 V p-p (H)	NTSC4.43 1.0 V p-p (H)	PAL 1.0 V p-p (H) SECAM 1.0 V p-p (H)
§	,	®	,	11()
Confront from the second	mohombook	depdepdep d	m+4m+4m	***************************************
NTSC3.58 1.0 V p-p (H)	NTSC4.43 1.0 V p-p (H)	PAL 0.25 V p-p (H)	NTSC3.58 1.0 V p-p (H)	NTSC4.43 0.17 V p-p (I
⑦			8	
			Lower Course Course Co	سكسكسك
PAL 35 mV p-p (H)	SECAM 35 mV p-p (H)	NTSC3.58 35 mV p-p (H) NTSC4.43 35 mV p-p (H)	PAL 1.0 V p-p (H) SECAM 1.0 V p-p (H)	NTSC3.58 1.0 V p-p (H NTSC4.43 1.0 V p-p (H
9	00	0		12
	PAL 1.0 V p-p (H)	(HD(HD(HD	-	****
SECAM 0.65 V p-p (H) NTSC3.58 0.65 V p-p (H)	SECAM 1.0 V p-p (H) NTSC3.58 1.0 V p-p (H)		NTSC3.58 0.22 V p-p (H)	D. 1 0 00 1/2 // // // // // // // // // // // // /
NTSC4.43 0.65 V p-p (H) ②	NTSC4.43 1.0 V p-p (H)	PAL 0.25 V p-p (H)	NTSC4.43 0.22 V p-p (H)	PAL 0.22 V p-p (H)
}			ىرىسىسىسىسى	
SECAM 0.36 V p-p (H)	PAL 1.4 V p-p (H)	SECAM 1.6 V p-p (H)	PAL 0.9 V p-p (H)	NTSC3.58 0.9 V p-p (H NTSC4.43 0.9 V p-p (H
(f)				
~1000_~1000_~1000~				
PAL 0.47 V p-p (H)	NTSC3.58 0.47 V p-p (H) NTSC4.43 0.47 V p-p (H)			

B (2/3) BOARD WAVEFORMS

B MOUNT (2/3) VOLTAGES

_	D 1110	J. (2)	,					
1								
			IC					NITOO
	IC106	1 0	SECAM	NTSC	IC121	1 0		
	10100	1 0 2 0.2	0 0.2	0.2	10121	1 0 2 5.1	5.1 5.1	5.1 5.1
		3 12VI		12VB	-	3 0	0	0.1
		4 1.8	1.8	1.8	-	4 5.1		ŏ
		5 12VI		12VB	•	5 5.1		Ö
_		6 12	12	12	-	6 GN	ID GND	GND
		7 NC	NC	NC	-	7 GN		GND
		8 GND		GND	-	8 GN		GND
		9 10.2	10.2	10.2	-	9 2	2	2
		10 1.2	1.2	1.2	-	10 2	2	2
		11 12 12 1.7	12 1.7	12 1.7	-	11 2 12 5.1	2 I 5.1	5.1
		13 12VI		12VB	-	13 0	4.8	4.8
2		14 9.8	0	0	•	14 5.1		5.1
_		15 GND		GND	-	15 5.1		5.1
		16 12VI	3 12VB	12VB	-	16 12		12VB
	IC108	1 0.3	0.3	0.3	IC 122	1 4.8	4.8	4.8
		2 GNE		GND	_	2 4.8		4.8
		3 GNE		GND	-	3 4.8		4.8
		4 0.4	0.4	0.4	-	4 GN		GND
_		5 0.4	0.4	0.4	-	5 5.1		5.1
		6 GND 7 GND		GND GND	-	6 5.1 7 5.1	5.1 5.1	5.1 5.1
		8 GNE		GND	-	8 12	VB 12VB	12VB
		9 8.2	8.2	8.2	IC123	1 0	0.6	0.6
		10 5.5	6	6	. 10120	2 2.5		2.5
		11 9.8	9.8	9.8	-	3 1.7	7 1.7	1.7
		12 0.5	0.5	0.5	-	4 GN	ID GND	GND
^		13 0.3	0.3	0.3	_	5 5.1	5.1	5.1
3		<u>14 0.3</u>	0.3	0.3		6 5.1		5.1
		15 0.3	0.3	0.3	-	7 5.1		5.1
	IC109	16 12VI		12VB	IC128		<u>VB 12VB</u>	12VB
	10109	1 GNE 2 11.2	9 GND 11.2	GND 11.2	10120	1 3	3 3	3 3
		3 11.6	11.6	11.6	-	3 0	2.9	2.9
		4 11.9	11.9	11.9	-	4 GN		GND
		5 11.3	11.3	11.3	-	5 5.3		4.6
		6 0.6	0	0	-	6 5	5	5
		7 0	0	0	-	7 10	.4 0	0
		8 GND		GND		8 12	VB 12VB	12VB
		9 GND		GND	-			
		10 0.7	0.7	0.7			ANSISTOR	400 m
		11 0.4 12 10.5	0.4 10.5	0.4 10.5	Q136		VB 12VB	12VB
_		13 9.1	9.1	9.1	-	2 5.7 3 5.1		5.7 5.1
4		14 12VI		12VB	-	4 10		10.5
	IC118	1 5.4	0	0	-	5 5.7		5.7
		2 2.8	ŏ	2.8	-	6 5.1		5.1
		3 0	5.4	5.4	Q137	1 12	VB 12VB	12VB
		4 0	0	0	-	2 5.7	5.7	5.7
		5 5.4	0	0	-	3 5.1	5.1	5.1
		6 12VI		12VB	-	4 10		10.5
_		7 5.7	5.7	5.7	-	5 5.7		5.7
	IC120	8 GNE		GND	Q138	6 5.1		5.1
	10120	1 5.1 2 5.1	5.1 5.1	5.1 5.1	_ Q130	1 12 2 5.7	<u>VB 12VB</u> 7 5.7	12VB 5.7
		3 5.1	5.1	5.1	-	3 5.1		5.1
		4 5.1	5.1	5.1	-	4 10		10.5
		5 0.4	0.4	0.4	•	5 5.7		5.7
		6 8.3	8.3	8.3		6 5.1		5.1
5		7 GND	GND	GND	Q132	B 6	6	6
-		8 12VI		2VB	-	C 1.7		1.7
		9 12	12	12		E 2.3	3 2.3	2.3
		10 4.8	4.8	4.8				
		11 5.1 12 0.5	5.1	5.1			e in V (volt).	
		12 0.5 13 0.4	0.5 0.4	0.5 0.4	. · NC: N	conne	zion.	
		14 12VI		12VB	-			
		17 1241	J 12 V D	1240	-			

CROSS-REFERENCE OF * MARKS ON B (2/3) BOARD

	PVM-8042Q (U/C) PVM-8045Q (U/C) PVM-9042QM (AEP) PVM-9042QM (AUS) PVM-9045QM (AEP)	
	PVM-9045QM (AUS)	PVM-9045PM(BRZ)
C135	68P :CHIP	NOT USED `
C190	150P :CHIP	NOT USED
C193	47 16 V :CHIP	NOT USED
C197	47 16 V :CHIP	NOT USED
C308	0.1 25 V CHIP	NOT USED
C309	0.1 25 V CHIP	NOT USED
C310	0.1 25 V CHIP	NOT USED
CN103	B to B 12P	NOT USED
D108	MA111	NOT USED
D116	NOT USED	MA111
D121	MA111	NOT USED
D185	MA151WA	NOT USED
D342	MA151WA	NOT USED
D390	MA157	NOT USED
IC128	LM358DR	NOT USED
JR113	NOT USED	SHORT 0
Q129	DTC144EK	NOT USED
R130	100K :CHIP	NOT USED
R148	6.8K :CHIP	NOT USED
R161	47K :CHIP	NOT USED
R182	20K :RN-CP	22K :CHIP-CP
R389	47K :CHIP	NOT USED
R1040	100 :CHIP	NOT USED
R1280	330K :CHIP	NOT USED
R1285	NOT USED	2.2K :CHIP
R1339	100K :CHIP	NOT USED
R1340	100K :CHIP	NOT USED
R1341	390K :CHIP	NOT USED
R1342	62K RN-CP	NOT USED
R1343	1M :CHIP	NOT USED
R1344	10K CHIP	NOT USED
R1345	1.8K CHIP	NOT USED
R1346	820 :CHIP	NOT USED
RV101	4.7K	NOT USED
SEP101	1-808-654-11	1-809-347-11
TP113	NOT USED	1-809-347-11 MODULE

B (2/3) BOARD WAVEFORMS

B MOUNT (3/3) VOLTAGES

1			IC			PAL	SECAM	NTSC		DAL	SECAM	NTSC
•		PAL	SECAM	NTSC	IC125	1 1.8	1.8	1.8	Q165	PAL B 1.1	0.8	0.8
	IC116	1 1.8	1.8	1.8	10120	2 1.8	1.8	1.8	Q 100	C GND	GND	GND
		2 1.1	1.1	1.1		3 1.8	1.8	1.8		E 1.8	1.5	1.5
		3 1.7	1.5	1.5		4 1.8	1.8	1.8	Q166	B 1.1	0.8	0.8
		4 1 5 1.6	1.8	1.8		5 0.7	0.7	0.7		C GND	GND	GND
		6 GND	GND	GND		6 0.7	0.7	0.7		E 1.8	1.5	1.5
_		7 GND	GND	GND		7 GND	GND	GND	Q167	B 1.1	0.7	0.7
		8 NC	NC	NC		8 1.7 9 1.7	1.7 1.7	1.7		C GND E 1.7	GND 1.4	GND 1.4
		9 NC	NC	NC		10 1.7	1.7	1.7	Q168	B 1.6	1.2	1.2
		10 1.8	1.8	1.8		11 1.7	1.7	1.7	4.00	C GND	GND	GND
		11 0.9	0.9	0.9		12 0.7	0.7	0.7		E 2.3	1.8	1.8
		12 1.6 13 1.6	1.8 1.8	1.8		13 0.7 14 12VA	0.7	0.7	Q170	B 2.4 C 12VA	2.1	2.1
		14 12VA	12VA	12VA	10100	14 12VA	12VA	12VA		C 12VA	12VA	12VA
2	IC124	1 4.3	4.3	4.3	IC126	1 1.8	1.8	1.8	0470	E 1.7	1.5	1.5
_		2 4.3	4.3	4.3		2 1.6 3 NC	1.6 NC	1.6 NC	Q172	B 2.4 C 12VA	2.1 12VA	2.1 12VA
		3 5.2	5.2	5.2		4 1.6	1.6	1.6		E 1.7	1.5	1.5
		4 GND	GND	GND		5 1.6	1.6	1.6	Q173	B 1.8	1.8	1.8
		5 8.7	8.7	8.7		6 GND	GND	GND		C GND E 2.3	GND	GND
		6 2.9 7 4.8	2.9 7.1	2.9		7 GND	GND	GND		E 2.3	2.3	2.3
		8 3.1	3.1	7.1 3.1		8 GND	GND	GND	Q157	B 2.3	2.3	2.3
		9 GND	GND	GND		9 GND	GND	GND		C 89	89	89
		10 5.6	5.6	5.6		10 10.7 11 10.7	10.7	10.7 10.7	0450	E 1.7 B 2.3	1.8	1.8
		11 5.7	5.7	5.7		11 10.7	10.7 1.8	1.8	Q158	B 2.3 C 98.9	99.8	99.8
		12 5.6	5.6	5.6		12 1.8 13 0	1.7	1.7		E 1.8	1.5	1.5
		13 GND	GND	GND		14 1.8	1.8	1.8	Q159	B 2.3	1.9	1.9
		14 GND	GND	GND		15 1.8	1.8	1.8		C 98.9	99.7	99.7
		15 GND	GND 0	GND 0		16 12VA	12VA	12VA		E 1.8	1.4	1.4
3		16 0 17 0	ŏ	0	IC127	1 6.1	5.8	5.8	Q161	B 0	0	0
		18 0	0	0		2 1.7	1.7	1.7		C 0.5	0.5	0.5
		19 GND	GND	GND		3 1.7 4 GND	1.7 GND	1.7 GND	Q189	E GND 1 4.6	GND 5.1	GND 5.1
		20 1.3	1.3	1.3					Q 109	1 4.0		
										2 27	27	
		21 0	0	0		5 1.7 6 1.7	1.7	1.7		2 2.7	3.3	3.3
		21 0 22 0.4	0.6	0.6		5 1.7 6 1.7 7 6.1	1.7 1.7 5.9	1.7 1.7 5.9		3 4	2.7 3.3 6.8	3.3 6.8
		21 0 22 0.4 23 0.2	0.6 0.2	0.6 0.2		6 1.7	1.7	1.7		3 4 4 0 5 0.6	3.3 6.8 0.6	3.3 6.8 0.6
		21 0 22 0.4 23 0.2 24 0.2	0.6 0.2 0.2	0.6 0.2 0.2		6 1.7 7 6.1 8 10.2	1.7 5.9 10.2	1.7 5.9		3 4 4 0 5 0.6 6 4	3.3 6.8 0.6 3.3	3.3 6.8 0.6 3.3
		21 0 22 0.4 23 0.2 24 0.2 25 4.2	0.6 0.2 0.2 4.2	0.6 0.2 0.2 4.2		6 1.7 7 6.1 8 10.2	1.7 5.9 10.2	1.7 5.9 10.2	Q201	3 4 4 0 5 0.6 6 4 B 2	3.3 6.8 0.6 3.3 2	3.3 6.8 0.6 3.3 2
_		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7	0.6 0.2 0.2	0.6 0.2 0.2	Q109	6 1.7 7 6.1 8 10.2 TRAN B 2.5	1.7 5.9 10.2 ISISTOR 2.5	1.7 5.9 10.2	Q201	3 4 4 0 5 0.6 6 4 B 2 C GND	3.3 6.8 0.6 3.3 2 GND	3.3 6.8 0.6 3.3 2 GND
		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1	0.6 0.2 0.2 4.2 4.7 4.5 6.8	0.6 0.2 0.2 4.2 4.7 4.5 6.8	Q109	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5	1.7 5.9 10.2 ISISTOR 2.5 1.1	1.7 5.9 10.2 2.5 1.1		3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6	3.3 6.8 0.6 3.3 2 GND 2.6	3.3 6.8 0.6 3.3 2 GND 2.6
		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND		6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND	1.7 5.9 10.2 2.5 1.1 GND	Q201 Q202	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2	3.3 6.8 0.6 3.3 2 GND 2.6 2	3.3 6.8 0.6 3.3 2 GND 2.6 2
		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND	Q109 Q146	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112	1.7 5.9 10.2 2.5 1.1 GND 0.2 112	Q202	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 2.6	3.3 6.8 0.6 3.3 2 GND 2.6	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6
_		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA	Q146	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND		3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9		6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND 116.9	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND 116.9	Q202	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2 C GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4	Q146	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND 116.9 112.4	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4	Q202 Q203	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2 C GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 34 6 35 GND	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9	Q146 Q147	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7	Q202	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4 6.3 GND	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4 6.3 GND	Q146	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4	Q202 Q203	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2 C GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA	Q146 Q147	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3 B 82 C 87.5 E 89.2	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4 91.3	Q202 Q203 Q204	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2 C GND E 2.6	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4 6.3 GND 1.5 12VA 6.3	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4 6.3 GND 1.5 12VA 6.3	Q146 Q147	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3 B 82.2 C 87.5 E 89.2 B 88.5	1.7 5.9 10.2 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4 91.3 94.4 91.3 94.4	2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4 91.3 94.4 89.5	Q202 Q203	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 3 E 3 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA	0.6 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 1.5 12VA 6.3	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4 6.3 GND 1.5 1.2VA 6.3 GND	Q146 Q147 Q148	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3 E 112.2 C 2 20.3 E 30.2	1.7 5.9 10.2 10.2 2.5 1.1 GND 0.2 112 GND 112.4 119.7 84.4 89.5 2.9	2.5 11.1 GND 0.2 112 GND 112.4 119.7 84.4 89.5 2.9	Q202 Q203 Q204 Q205	3 4 4 0 0 5 0.6 6 4 B 2 C GND E 2.6 B 1.7 C GND E 2.6 B 1.7 C GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 2 GND 2.6 2.6 2 2 GND 2.6 2.6 2.6 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	3.3 6.8 0.6 3.3 2 GND 2.6 2 2 GND 2.6 2 2 GND 2.6 2 2 GND 2.6 2 2 GND 2.6 2 3.3 2 2 6 1.7 2.6 2.6 2 3.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4 6.3 GND 1.5 12VA 6.3 GND	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 5.9 4.4 6.3 GND 1.5 1.2VA 6.3 GND	Q146 Q147 Q148 Q149	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.3 B 82 C 87.5 E 89.2 B 88.5 C 2.9.2	1.7 5.9 10.2 10.2 10.2 2.5 1.1 GND 0.2 112.6 GND 116.9 112.4 119.7 84.4 91.3 94.4 89.5 2.9 93.2	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4 91.3 94.4 99.5 2.9 93.2	Q202 Q203 Q204	3 4 4 0 0.6 6 4 B 2 C GND E 2.6 B 3 C C C C C C C C C C C C C C C C C C	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 1 GND 2.6 2 1 GND 2.6 2 1 GND 2.6 2 1 GND 2.6 2 1 GND 2.6 2 1 GND 2.6 2 1 GND 2.6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2.7 GND 2.6 2.7 GND 2.6 2.7 GND 2.6 2.7 GND 2.6 2.7 GND 2.6 2.7 GND 2.7 CND 2.7 CND 2.7 GND 2.7 CND
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA 39 6.2 40 GND	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 1.5 12VA 6.3 GND 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 5.9 4.4 6.3 GND 1.5 12VA 6.8 GND 1.5 12VA 6.8 GND 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Q146 Q147 Q148	6 1.7 7 6.1 8 10.2 TRAM B 2.5 C 0.5 E GND B 0.12 C 112.2 C 120.3 B 82 C 120.3 B 82 C 29.9 E 98.2 B 88.5	1.7 5.9 10.2 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4 91.3 94.4 91.3 94.4 93.2 85.2	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4 199.3 94.4 98.5 2.9 93.2	Q202 Q203 Q204 Q205	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 1 C GND E 2.3 B 1.7 C GND E 2.3 B 1.7 C GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 2 GND 2.6 2.2 2 GND 2.6 2.6 2.1,7 GND 2.6 1.7 GND 2.3 1.2 GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 1.7 GND 2.6 2 1.7 2.6 2 1.7 2.6 2.6 2.6 2.6 2.7 3.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 6 33 5 GND 36 1.8 37 12VA 40 GND 41 1.7 42 12VA 43 12VA	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 5.9 4.4 6.3 GND 1.5 1.2VA 6.3 GND	Q146 Q147 Q148 Q149	6 1.7 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112.3 E 118.3 E 112.2 C 120.3 B 82. C 120.3 B 88.5 C 2.9 E 89.2 B 88.5 C 2.9 E 93.2 E	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4 89.5 2.9 93.2 85.2 117.1	1.7 5.9 10.2 2.5 1.1 GND 0.2 112,0 116.9 111.7 84.4 89.5 2.9 93.2 85.2 117.1	Q202 Q203 Q204 Q205 Q206	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 1.7 C GND E 2.3 B 1.2 C GND E 2.3 B 1.2 C GND	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	3.3 6.8 0.6 3.3 2 GND 2.6 2.6 2 GND 2.6 2.6 2 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 GND 1.9
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA 38 6 99 6.2 40 GND 41 1.7 42 12VA 43 12VA 44 6.2	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 5.9 4.4 6.3 GND 1.5 12VA 6 7.5 GND 1.5 1.5 1.2VA 1.5 6.3 GND 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.8 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 5.9 4.4 6.3 GND 1.5 1.2VA 6.3 GND 1.5 1.5 1.5 1.5 1.5 1.5 GND 1.5 1.5 6.8	Q146 Q147 Q148 Q149 Q151	6 1.7 7 6.1 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3 B 82 C 87.5 E 89.2 B 88.5 C 2.9 E 93.2 E 93.5 C 116.2 E 94.5	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND 116.9 119.7 84.4 91.3 94.4 99.3 2.9 93.2 85.2 117.1	1.7 5.9 10.2 2.5 1.1 GND 0.2 112.4 119.7 84.4 89.5 2.9 93.2 85.2 117.1	Q202 Q203 Q204 Q205	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 C GND E 2.6 B 1.2 C GND E 2.6 B 1.2 C GND E 2.8 B 1.1 C GND E 1.9 B 1.9	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 3.3 3.3 3.3 4.7 4.7 4.7 4.7 4.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 3.3 3.3 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 30 1.7 31 12VA 34 6 33 6.ND 36 1.8 37 12VA 38 6 39 6.2 40 GND 41 1.7 42 12VA 43 12VA 44 6.2	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.8 6.8 GND 1.5 12VA 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA 6 6 6 7.5 GND 1.5 12VA 6 6 7.5 GND 1.5 12VA 6 6 6 7.5 6 7.5 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Q146 Q147 Q148 Q149	6 1.7 7 6.1 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 20.3 E 20.3 E 30.3 E 30.3	1.7 5.9 10.2 ISISTOR 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4 89.5 2.9 93.2 85.2 117.1	1.7 5.9 10.2 2.5 1.1 GND 0.2 112,0 116.9 111.7 84.4 89.5 2.9 93.2 85.2 117.1	Q202 Q203 Q204 Q205 Q206	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 1.1 C GND E 1.6 C GND E 1.6 C GND E 1.9 C GND E 1.9 E 1.0 C GND E	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2.6 2.7 GND 2.6 2.8 2.9 1.7 GND 2.6 1.7 GND 2.6 1.7 GND	3.3 6.8 0.6 3.3 2 GND 2.6 1.7 GND 2.6 1.7 GND 1.9 100.5
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 30 1.7 31 12VA 34 6 35 GND 36 1.8 37 12VA 43 12VA 43 12VA 44 6.2 45 0	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 5.9 4.4 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 5.9 4.4 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 1.5 12VA 6.3 GND 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Q146 Q147 Q148 Q149 Q151	6 1.7 7 6.1 7 6.1 8 10.2 TRAM B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3 B 82.5 C 97.5 E 98.2 B 88.5 C 116.2 E 94.5 C 116.2 E 94.5 C 2.9 E 98.9 C 3.3	1.7 5.9 10.2 IO.2 IO.2 IO.2 IO.2 IO.2 IO.2 IO.2 IO	1.7 5.9 10.2 2.5 1.1 GND 0.2 112 GND 116.9 112.4 119.7 84.4 119.7 84.4 199.3 94.5 2.9 93.2 85.2 117.1 94.5 94.5 99.8 2.7	Q202 Q203 Q204 Q205 Q206	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 C GND E 2.6 C GND E 2.6 C GND E 1.7 C GND E 2.3 B 1.7 C GND E 1.9 B 100 C 116.2 E 94.5	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 1.7 GND 2.9 1.2 GND 2.1 1.2 GND 2.1 1.2 GND 2.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 1.2 GND 2.6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 17 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA 39 6.2 40 GND 41 IND 42 12VA 43 12VA 44 6.2 45 0 46 4.7 47 6.4	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 6.3 GND 1.5 12VA 6 6.7 7.5 GND 1.5 12VA 6 6 7.5 GND 1.5 GND	0.8 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA 6 1.5 1.5 12VA 6 6.2 0 5.1	Q146 Q147 Q148 Q149 Q151	6 1.7 7 6.1 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3 B 82.2 C 87.5 C 99.2 B 88.5 C 2.9 E 99.2 B 88.5 C 2.9 C 116.2 E 94.5 B 98.9 C 116.2 E 99.2 B 98.9 C 3.8	1.7 5.9 10.2 10.2 10.2 2.5 1.1 GND 0.2 112, GND 116.9 119.7 84.4 119.7 84.4 89.5 2.9 93.2 85.2 117.1 94.5 99.8 2.7	1.7 5.9 10.2 2.5 1.1 0,0 0,0 116,9 112,4 119,7 84,4 89,5 2.9 93,2 85,2 117,1 94,5 99,8 2,7 93,4 99,8 2,7	Q202 Q203 Q204 Q205 Q206	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 2 C GND E 2.6 B 2 C GND E 2.6 B 1.7 C GND E 2.8 B 1.7 C GND E 1.9 B 100 C 116.2 E 94.5 B 100 C 116.2	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2.7 GND 2.6 2.6 1.7 GND 3.6 1.7 GND 2.6 1.7 CND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2.7 GND 2.6 2.7 GND 2.6 2.7 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 GND
4		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 1.7 30 1.7 31 12VA 34 6 35 GND 36 1.8 37 12VA 43 12VA 43 12VA 44 6.2 45 0	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 5.9 4.4 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 5.9 4.4 6.3 GND 1.5 12VA 6.3 GND 1.5 12VA 6.3 GND 1.5 1.5 12VA 6.3 GND 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Q146 Q147 Q148 Q149 Q151	6 1.7 7 6.1 7 6.1 8 10.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3 B 82.2 C 87.5 E 99.2 B 88.5 C 2.9 E 99.2 B 88.5 C 116.2 E 94.5 C 3.5 E 99.2 B 98.9 C 3.5 C 3.5	1.7 5.9 10.2 SISTOR 2.5 1.1 GND 0.2 112 GND 116.9 119.7 84.4 91.3 94.4 99.3 94.5 99.8 2.7 93.4 92.3 99.2	1.7 5.9 10.2 2.5 1.1 GND 0.2 112.4 119.7 84.4 89.5 2.9 93.2 85.2 117.1 94.5 99.8 2.7 99.8	Q202 Q203 Q204 Q205 Q206 Q210	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 1.7 C GND E 1.9 B 1.9 B 1.9 B 1.9 B 1.0 C 116.4 E 94.5 E 9	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND 2.3 1.2 GND 1.9 100.5 116.7 95.5 100.5 116.7	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND 1.9 100.5 116.7 95.5 110.5 110.5
		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 17 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA 39 6.2 40 GND 41 IND 42 12VA 43 12VA 44 6.2 45 0 46 4.7 47 6.4	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 6.3 GND 1.5 12VA 6 6.7 7.5 GND 1.5 12VA 6 6 7.5 GND 1.5 GND	0.8 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA 6 1.5 1.5 12VA 6 6.2 0 5.1	Q146 Q147 Q148 Q149 Q151 Q152	6 1.7 7 6.1 7 6.1 7 6.1 8 10.2 TRAM B 2.5 C 0.5 D 60.5 D 60.5 E 6ND B 0.2 C 112 E GND B 118.3 B 82 C 120.3 B 82 C 2.9 E 93.2 B 88.5 C 116.2 E 94.5 D 98.5 C 3 B 90.0 C 99.5 E 92.3 B 90.0	1.7 5.9 10.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.3 ID.3 ID.4 ID.9 ID	1.7 5.9 10.2 2.5 1.1 0RD 0.2 112 GND 116.9 112.4 119.7 84.4 199.3 94.4 99.5 93.2 117.1 94.5 94.9 93.2 98.9 93.2 98.9 99.8 99.8	Q202 Q203 Q204 Q205 Q206	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 10 C GND E 2.6 B 10 C GND E 1.9 B 100 C 116.4 E 96.5 G 1.4	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2.7 GND 2.6 2.6 1.7 GND 3.6 1.7 GND 2.6 1.7 CND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.7 CND 2.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2.7 GND 2.6 2.7 GND 2.6 2.7 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 GND 2.6 1.7 GND
		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 17 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA 39 6.2 40 GND 41 IND 42 12VA 43 12VA 44 6.2 45 0 46 4.7 47 6.4	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 6.3 GND 1.5 12VA 6 6.7 7.5 GND 1.5 12VA 6 6 7.5 GND 1.5 GND	0.8 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA 6 1.5 1.5 12VA 6 6.2 0 5.1	Q146 Q147 Q148 Q149 Q151	6 1.7 7 6.1 7 6.1 1 0.2 TRAN B 2.5 C 0.5 E GND B 0.2 C 112 E GND B 118.3 E 112.2 C 120.3 B 82 C 87.5 C 2.9 E 89.2 B 88.5 C 2.9 E 93.2 E 94.5 B 98.9 C 3 E 99.5 E 101.2 B 99.5 E 101.2	1.7 5.9 10.2 10.2 10.2 10.2 10.2 11.1 GND 0.2 1112.4 119.7 84.4 91.3 94.4 89.5 2.9 93.2 85.2 117.1 94.5 99.8 2.7 99.8 2.7 99.8 2.3 99.2 10.5 99.7	1.7 5.9 10.2 2.5 1.1 GND 0.2 112,4 119.7 84.4 91.3 94.4 89.5 2.9 93.2 85.2 117.1 94.5 99.8 2.7 93.4 92.3 99.2 105 99.7	Q202 Q203 Q204 Q205 Q206 Q210	3 4 4 0 5 0.6 6 4 8 2 C GND E 2.6 B 1.7 C GND E 2.6 B 1.7 C GND E 2.6 B 1.7 C GND E 2.6 E	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND 2.3 1.2 GND 1.9 100.5 116.7 95.5 100.5 116.7	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND 1.9 100.5 116.7 95.5 110.5 110.5
		21 0 22 0.4 23 0.2 24 0.2 25 4.2 26 4.7 27 4.5 28 6.1 29 GND 30 17 31 12VA 32 5.9 33 4.4 34 6 35 GND 36 1.8 37 12VA 39 6.2 40 GND 41 IND 42 12VA 43 12VA 44 6.2 45 0 46 4.7 47 6.4	0.6 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 1.2VA 6.3 GND 1.5 12VA 6 6.7 7.5 GND 1.5 12VA 6 6 7.5 GND 1.5 GND	0.8 0.2 0.2 4.2 4.7 4.5 6.8 GND 1.5 12VA 6.3 GND 1.5 12VA 6 1.5 1.5 12VA 6 6.2 0 5.1	Q146 Q147 Q148 Q149 Q151 Q152	6 1.7 7 6.1 7 6.1 7 6.1 8 10.2 TRAM B 2.5 C 0.5 D 60.5 D 60.5 E 6ND B 0.2 C 112 E GND B 118.3 B 82 C 120.3 B 82 C 2.9 E 93.2 B 88.5 C 116.2 E 94.5 D 98.5 C 3 B 90.0 C 99.5 E 92.3 B 90.0	1.7 5.9 10.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.2 ID.3 ID.3 ID.4 ID.9 ID	1.7 5.9 10.2 2.5 1.1 0RD 0.2 112 GND 116.9 112.4 119.7 84.4 199.3 94.4 99.5 93.2 117.1 94.5 94.9 93.2 98.9 93.2 98.9 99.8 99.8	Q202 Q203 Q204 Q205 Q206 Q210	3 4 4 0 5 0.6 6 4 B 2 C GND E 2.6 B 10 C GND E 2.6 B 10 C GND E 1.9 B 100 C 116.4 E 96.5 G 1.4	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND 2.3 1.2 GND 1.9 100.5 116.7 95.5 100.5 116.7	3.3 6.8 0.6 3.3 2 GND 2.6 2 GND 2.6 2 GND 2.6 2 GND 2.6 1.7 GND 1.9 100.5 116.7 95.5 100.5 116.7 95.5

· All voltages are in V (volt).

· NC: No connection.

CROSS-REFERENCE OF * MARKS ON B (3/3) BOARD

PVM-8042Q (U/C) PVM-8045Q (U/C) PVM-9042QM (AÉP) PVM-9042QM (AUS) PVM-9045QM (AEP)

PVM-9045QM (AUS) PVM-9045PM(BRZ)

1-535-877-22 CHIP, CHEKER TP114 NOT USED

B (3/3) BOARD WAVEFORMS

NTSC3.58 43 V p-p (H)

SECAM 48.6 V p-p (H) NTSC4.43 43 V p-p (H)

PAL 46.8 V p-p (H)

S BOARD

1

S -B SIDE-SUFFIX: -31

S BOARD IC1101 CXA1214P

4

S BOARD WAVEFORMS

HA BOARD HA BOARD

HA -A SIDE-SUFFIX: -11

HA -B SIDE-SUFFIX: -11

1

PA BOARD

PA -B SIDE-SUFFIX: -11

PA BOARD

CA BOARD X BOARD

CRT. F. S. SONY

R701

R704

CR704

CR705

CR704

CR7

CA -B SIDE-SUFFIX: -12

X -B SIDE-SUFFIX: -12

7-2. PICTURE TUBE

▲ : BVTP3x12 7-685-648-79

REF.NO	D. PART NO.	DESCRIPTION	REMARK	REF. NO	. PART NO.	DESCRIPTION	REMARK
53 54	A.8-737-151-05 A.8-737-651-05	FLANGE NUT, 5MM CRT (A20JKU10X) (PVM-8041Q ONLY CRT (M20JMP10X) (PVM-8044Q ONLY CLOTH, PROTECTION HOLDER, HV CABLE	901J 2017	66 67 68 69 70	*1-641-723-11 1-692-049-11 4-034-841-01 *X-4030-166-1 4-034-840-01	FA BOARD SWITCH, PUSH (AC POWER) (1KEY) SWITCH, POWER CHASSIS ASSY, BOTTOM RUBBER, FOOT	70
55 56 57 58 59 60	* 4-376-133-11	DEFLECTION YOKE (Y9FXC) CA BOARD COVER (MAIN), CV VOL COVER (REAR LID), CV VOL	NA EX	71 72 73 74 75	*X-4030-163-1 4-034-861-01 4-876-347-01 3-669-594-00 4-308-870-00	GUIDE ASSY, BATTERY KNOB, BATTERY SPRING, COMPRESSION SPRING, COMPRESSION CLIP, LEAD WIRE	72,73
61 62 63 64 65	4-380-534-01 *4-034-850-02 *A-1371-782-A	CAP, DGC INSULATOR HA BOARD, COMPLETE SWITCH (SMALL), PUSH		76 77 78	1-452-126-11 1-452-094-00 X-4308-815-8	MAGNET MAGNET, ROTATABLE DISK; 15MM∮ PERMALLOY ASSY, CONVERGENCE	

NOTE:

SECTION 8 ELECTRICAL PARTS LIST

The components identified by shading and mark Δ are critical for safety.

Replace only with part number specified.

Les composants identifies par une trame et une marque 🗘 sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

- Items marked "*" are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.
- All variable and adjustable resistors have characteristic curve B, unless otherwise noted.

RESISTORS

- All resistors are in ohms
- F: nonflammable

When indicating parts by reference number, please include the board name.

CAPACITORS MF: μF, PF: μμF

COILS

MMH: mH, UH: μH

The components identified by **M** in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation.

Should replacement be required, replace only with the value originally

REF.NO.	PART NO.	DESCRIPTION		REMARK	REF.NO.	PART NO.	DESCRIPTION		REMARK
	A-1135-700-A 3-710-578-01	DESCRIPTION B BOARD, COMPLETE ********************* COVER, VOLUME, 6 MOLD D PASS FILTER> FILTER, BAND PASS FILTER, BAND PASS ACITOR>			C142 C143 C144 C145	1-163-031-11 1-163-121-00 1-163-101-00 1-163-131-00	CERAMIC CHIP 0.01MF CERAMIC CHIP 150PF CERAMIC CHIP 22PF CERAMIC CHIP 390PF ELECT 10MF	5% 5% 5% 20%	50V 50V 50V 50V 16V
	<ban< td=""><td>D PASS FILTER></td><td></td><td></td><td>C146</td><td>1-164-232-11</td><td>CERAMIC CHIP O.OIMF</td><td>10%</td><td>50V</td></ban<>	D PASS FILTER>			C146	1-164-232-11	CERAMIC CHIP O.OIMF	10%	50V
BPF 101 BPF 102	1-236-363-11 1-236-364-11	FILTER, BAND PASS FILTER, BAND PASS			C148 C149 C150 C151	1-126-160-11 1-163-022-00 1-124-589-11 1-163-131-00	ELECT 1MF CERAMIC CHIP 0.012MF ELECT 47MF CERAMIC CHIP 390PF	20% 10% 20% 5%	50V 50V 16V 50V
		ACITOR>	0.110					5%	50V
C101 C102 C103 C104 C105	1-124-589-11 1-163-031-11 1-126-320-11 1-163-031-11 1-163-031-11	ELECT 47MF CERAMIC CHIP 0.01MF ELECT 10MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	20 % 20%	16V 50V 16V 50V 50V	C153 C154 C155 C156	1-163-031-11	CERAMIC CHIP 220PF CERAMIC CHIP 0.01MF CERAMIC CHIP 470PF CERAMIC CHIP 0.22MF	5% 5% 10%	50V 50V 50V 25V
C106 C107	1-124-477-11		20%	16V 50V	C157 C158 C159	1-163-229-11 1-124-477-11 1-163-229-11	CERAMIC CHIP 12PF ELECT 47MF CERAMIC CHIP 12PF	5% 20% 5%	50V 16V 50V
C108 C109 C110	1-124-477-11 1-124-477-11 1-124-120-11	ELECT 47MF ELECT 47MF	20% 20% 20%	16V 16V 16V	C160 C161	1-163-229-11 1-163-229-11 1-124-902-00	CERAMIC CHIP 12PF ELECT 0.47MF	5% 20%	50V 50V
C111	1-163-031-11	CERAMIC CHIP O.O1MF	20%	50V	C162 C163	1-124-903-11 1-163-809-11	ELECT 1MF CERAMIC CHIP 0.047MF	20% 10%	50V 25V
C112 C113 C114	1-163-031-11 1-124-477-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF ELECT 47MF	20%	50V 50V 16V	C164 C165 C166	1-163-009-11	CERAMIC CHIP 0.047MF CERAMIC CHIP 0.001MF CERAMIC CHIP 0.01MF	10% 10%	25V 50V 50V
C115		CERAMIC CHIP 0.01MF ELECT 47MF	20%	50V	C167	1-124-477-11	ELECT 47MF	20%	16V
C116 C117 C118	1-124-477-11 1-124-477-11 1-124-477-11	ELECT 47MF ELECT 47MF	20% 20% 20%	16V 16V 16V	C168 C169 C170	1-163-243-11 1-163-129-00	CERAMIC CHIP 0.01MF CERAMIC CHIP 47PF CERAMIC CHIP 330PF	5% 5%	50V 50V 50V
C119 C120	1-163-031-11 1-124-477-11	CERAMIC CHIP 0.01MF ELECT 47MF	20%	50V 16V	C171 C172	1-163-243-11 1-163-129-00	CERAMIC CHIP 47PF CERAMIC CHIP 330PF	5% 5%	50V 50V
C121 C122	1-124-477-11 1-124-477-11	ELECT 47MF	20% 20%	16V 16V	C173 C174	1-124-589-11 1-124-477-11	ELECT 47MF	20% 20%	16V 16V
C123 C124 C125		CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF ELECT 47MF	20%	50V 50V 16V	C175 C176	1-108-792-11 1-163-031-11	MYLAR 0.001MF CERAMIC CHIP 0.01MF	5%	50V 50V
C126	1-163-031-11			507	C177 C178	1-163-031-11 1-163-031-11	CERAMIC CHIP 0.01MF	0.08/	50V 50V
C127 C128 C129	1-124-477-11 1-124-477-11 1-163-031-11	ELECT 47MF ELECT 47MF CERAMIC CHIP 0.01MF	20% 20%	16V 16V 50V	C179 C180 C181	1-126-160-11 1-163-031-11 1-126-154-11	ELECT 1MF CERAMIC CHIP 0.01MF ELECT 47MF	20% 20%	50V 50V 6.3V
C130		CERAMIC CHIP 0.01MF		50V 50V	C182	1-126-163-11	ELECT 4.7MF	20%	16V
C131 C132	1-124-589-11	CERAMIC CHIP 0.01MF ELECT 47MF	20%	50V 16V	C183 C184	1-164-232-11 1-163-031-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	10%	50V 50V
C133 C134 C135	1-124-589-11 1-163-275-11 1-163-113-00	ELECT 47MF CERAMIC CHIP 0.001MF CERAMIC CHIP 68PF	20 % 5 % 5 %	16V 50V 50V	C185 C186	1-163-031-11 1-163-099-00	CERAMIC CHIP 0.01MF CERAMIC CHIP 18PF	5%	50V 50V
C137	1-163-115-00	CERAMIC CHIP 82PF	5%	50V	C187 C188	1-163-031-11 1-163-031-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF		50V 50V
C138 C139 C140	1-124-589-11 1-163-031-11 1-163-688-91	ELECT 47MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.001MF	20% 5%	16V 50V 50V	C189 C190 C191	1-163-035-00 1-163-121-00 1-163-031-11	CERAMIC CHIP 0.047MF CERAMIC CHIP 150PF CERAMIC CHIP 0.01MF	5%	50V 50V 50V
C141	1-163-141-00	CERAMIC CHIP 0.001MF	5% 5%	50V	1	- 102 021 11			

REF.NO.	PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION			REMARK
C192 C193 C194 C195 C196	1-163-031-11 1-124-589-11 1-124-589-11 1-124-589-11 1-124-589-11	ELECT ELECT ELECT	47MF 47MF 47MF	20% 20% 20%	50V 16V 16V 16V 16V	C258 C259 C260 C261 C262	1-163-129-00 1-163-031-11 1-124-465-00 1-137-193-11 1-124-465-00	ELECT FILM ELECT	0.01MF 0.47MF 0.39MF 0.47MF	5% 20% 5% 20%	50V 50V 50V 50V 50V
C197 C198 C199 C202	1-124-589-11 1-124-589-11 1-124-589-11 1-124-589-11		47MF 47MF 47MF 47MF	20% 20% 20% 20%	16V 16V 16V 16V	C264 C265 C266 C267	1-163-123-00 1-163-129-00 1-126-320-11 1-126-320-11	CERAMIC CHIP CERAMIC CHIP ELECT ELECT CERAMIC CHIP	180PF	5% 5% 20% 20%	50V 50V 16V 16V
C203 C204 C205 C206 C207	1-124-589-11 1-124-589-11 1-163-101-00 1-164-298-11 1-164-298-11	ELECT CERAMIC CHIP	22PF 0.15MF	20% 20% 5% 10% 10%	16V 16V 50V 25V 25V	C268 C269 C270 C271	1-124-477-11 1-164-004-11 1-164-004-11 1-163-809-11	CERAMIC CHIP CERAMIC CHIP	0.1MF 0.047MF	10% 10% 10%	16V 25V 25V 25V
C208 C209 C210 C211	1-163-101-00 1-164-004-11 1-124-589-11 1-124-589-11	CERAMIC CHIP CERAMIC CHIP ELECT ELECT ELECT	22PF 0.1MF	5% 10% 20% 20%	50V 25V 16V 16V	C272 C273 C274	1-163-129-00 1-163-129-00 1-124-477-11 1-163-119-00 1-163-097-00	CERAMIC CHIP ELECT	330PF 47MF	5% 5% 20% 5%	50V 50V 16V
C212 C213 C214 C215	1-124-589-11 1-124-589-11 1-126-157-11 1-126-157-11	ELECT ELECT FLECT	47MF 10MF 10MF	20% 20% 20%	16V 16V 16V 16V	C277 C278 C279 C280	1-163-809-11 1-126-157-11 1-163-117-00	CERAMIC CHIP ELECT CERAMIC CHIP	0.047MF 10MF 100PF	10% 20% 5%	50V 25V 16V 50V
C216 C217 C218 C219	1-126-157-11 1-163-031-11 1-164-298-11 1-163-009-11	CERAMIC CHIP	0.01MF	20% 20% 10% 10%	16V 50V 25V 50V	C281 C282 C283 C299 C300	1-163-031-11 1-163-031-11 1-163-031-11 1-163-031-11 1-126-157-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP ELECT	0.01MF 0.01MF 0.01MF 0.01MF 10MF	20%	50V 50V 50V 50V 16V
C220 C221 C222 C223	1-163-031-11 1-124-903-11 1-163-093-00 1-163-031-11	CERAMIC CHIP ELECT CERAMIC CHIP	0.01MF 1MF 10PF	20% 5%	50V 50V 50V 50V	C301 C302 C303 C304	1-163-809-11 1-124-589-11 1-126-157-11 1-163-125-00	CERAMIC CHIP ELECT ELECT CERAMIC CHIP	0.047MF 47MF 10MF	10% 20% 20%	25V 16V 16V 50V
C225 C226 C227 C228	1-124-477-11 1-163-031-11 1-163-038-00 1-163-986-00	CERAMIC CHIP ELECT CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	U. IMF	20% 10%	16V 50V 25V 25V	C305 C306 C307 C308	1-124-257-00 1-163-115-00 1-163-145-00 1-164-004-11	CERAMIC CHIP	2.2MF 82PF 0.0015MF	5% 20% 5% 10%	50V 50V 50V 25V
C229 C230 C231 C232 C233	1-163-031-11 1-163-038-00 1-163-986-00 1-163-031-11 1-163-031-11	CERAMIC CHIP	U.UIMF	10%	50V 25V 25V 50V 50V	C309 C310 C312 C313	1-164-004-11 1-164-004-11	CERAMIC CHIP	0.1MF 0.1MF	10% 10%	25V 25V 50V 50V
C234 C235 C236	1-163-038-00 1-163-986-00 1-163-031-11 1-163-031-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.1MF 0.027MF 0.01MF	10%		C314 C315 C316	1-163-031-11 1-163-115-00 1-126-157-11 1-164-299-11 1-126-157-11 1-163-031-11			20% 10% 20%	16V 25V 16V
C238 C239 C240	1-164-299-11 1-163-809-11 1-163-809-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.22MF 0.047MF 0.047MF	10% 10% 10%	25V 25V 25V 25V 25V	C318 C319 C320 C321	1-163-095-00 1-163-095-00 1-163-095-00 1-163-121-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	12PF 12PF 12PF	5% 5% 5% 5%	50V 50V 50V 50V
C241 C242 C243	1-163-809-11 1-163-113-00 1-163-031-11 1-163-103-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	68PF 0.01MF 27PF	10% 5%	50V 50V 50V	C322 C324 C340 C344	1-163-121-00 1-163-121-00 1-163-688-91 1-163-092-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	150PF 0.001MF 9PF	5% 5% 0.25PF 5%	50V 50V 50V 50V 50V
C245 C246 C247 C248	1-163-105-00 1-163-809-11 1-163-809-11 1-163-809-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.047MF 0.047MF 0.047MF	5% 10% 10% 10%	50V 25V 25V 25V	C345 C346 C347 C1293	1-163-109-00 1-163-109-00 1-163-119-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	47PF 47PF 120PF	5% 5% 5%	50V 50V 50V
C249 C250 C251 C252 C253	1-126-101-11 1-163-017-00 1-110-364-11 1-123-935-00 1-124-477-11	ELECT CERAMIC CHIP MYLAR ELECT ELECT	100MF 0.0047MF 0.1MF 33MF 47MF	20% 10% 10% 20% 20%	16V 50V 200V 160V 16V	C1294 C1295 C1296 C1297	1-163-119-00 1-163-119-00 1-163-115-00 1-163-103-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	120PF 82PF 27PF	5% 5% 5% 5%	50V 50V 50V
C254 C255 C256	1-163-031-11 1-124-477-11 1-163-129-00	CERAMIC CHIP ELECT CERAMIC CHIP	0.01MF 47MF 330PF	20% 5% 5%	50V 16V 50V	C1298 C1299 C1300	1-163-113-00 1-163-093-00 1-126-160-11 1-126-160-11	CERAMIC CHIP CERAMIC CHIP ELECT	68PF	5% 5% 20% 20%	50V 50V 50V
C257	1-163-129-00	CERAMIC CHIP	33UTF	9/a	50V	C1302	1-126-160-11	ELECT	1MF	20%	50V

REF.NO.	PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION	REMARK
		ELECT 1			50V	1	8-719-404-46		
	1-464-880-11	TER BLOCK> FILTER BLOCK,				D137 D138 D139 D142	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110	
	<con< td=""><td>NECTOR></td><td></td><td></td><td></td><td>D143 D144</td><td>8-719-404-46 8-719-404-46</td><td>DIODE MA110</td><td></td></con<>	NECTOR>				D143 D144	8-719-404-46 8-719-404-46	DIODE MA110	
		NECTOR> PIN, CONNECTOR PLUG, CONNECTO CONNECTOR, BOA PIN, CONNECTOR PLUG, CONNECTO	15P R 3P RD TO BOAR 12P R 6P	D 12P		D145 D146 D147	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110	
CN106 CN107 CN108	1-506-473-11 1-506-478-11 *1-564-506-11	PIN, CONNECTOR PIN, CONNECTOR PLUG, CONNECTO	8P 13P R 3P			D149 D150 D151 D152	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110	
	< T R A	P MUDULE>				D153 D154	8-719-977-20 8-719-404-46	DIODE DTZ8.2B DIODE MA110	
	1-236-366-11 1-236-365-11					D155 D156 D157	8-719-404-46 8-719-404-46 8-719-901-83	DIODE MAIIO DIODE MAIIO DIODE 1883	
ī	<tri< td=""><td>MMER></td><td></td><td></td><td></td><td>D158 D159</td><td>8-719-901-83 8-719-901-83</td><td>DIODE 1883</td><td></td></tri<>	MMER>				D158 D159	8-719-901-83 8-719-901-83	DIODE 1883	
CV101 CV102	1-141-245-00 1-141-245-00	CAP, TRIMMER CAP, TRIMMER				D160 D161 D162	8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110	
	<010	DE>				D170 D171	8-719-404-46 8-719-404-46		
D101 D102	8-719-404-46 8-719-404-46	DIODE MA110				D172 D285	8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110	
D103 D104 D105	8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110				D289 D341 D342	8-719-404-46 8-719-404-46 8-719-104-34	DIODE MA110	
D106 D107	8-719-404-46 8-719-404-46	DIODE MAILO DIODE MAILO		1		D343 D344	8-719-800-76	DIODE 1SS226	l
D108 D109	8-719-404-46 8-719-404-46	DIODE MAI10 DIODE MAI10				D345 D346	8-719-901-83 8-719-901-83	DIODE 1883	
D110 D111	8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110				D347 D348 D349	8-719-901-83 8-719-800-76 8-719-800-76	DIODE 1SS226	
D112 D113 D114 D115	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110				D350 D393	8-719-800-76	DIODE 1SS226	
D116	8-719-404-46	DIODE MA110					<del.< td=""><td>AY LINE></td><td></td></del.<>	AY LINE>	
D117 D118 D119 D120	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110 DIODE MA110				DL101 DL102	1-415-632-11 1-415-633-11	DELAY LINE, Y DELAY LINE, Y	
D121 D122		DIODE MA110 DIODE MA110				 	<1C>		
D123 D125	8-719-404-46 8-719-404-46	DIODE MAIIO DIODE MAIIO				IC102	8-759-048-09 8-759-501-21 8-759-501-21	IC MM1148XF IC MM1149XF IC MM1149XF	
D126 D127	8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110				IC104	8-759-501-21 8-759-048-09	IC MM1149XF IC MM1148XF	
D128 D129 D130	8-719-400-18 8-719-404-46 8-719-800-76	DIODE MA152WK DIODE MA110 DIODE 1SS226				IC107	8-759-509-57	IC MC14538BF IC XRU4584BF	
D131 D132	8-719-800-76 8-719-800-76	DIODE 1SS226 DIODE 1SS226				IC109	8-759-509-37	IC XRU4053BF IC XRU4070BF IC XRU4053BF	
D133 D134	8-719-404-46	DIODE MAI10 DIODE MAI10				IC111	8-759-509-17	IC XRU4053BF	
						10112	8-759-924-12	16 たがしめいついし	

RĒF.NO	. PART NO.	DESCRIPTION	REMARK	REF. NO.	PART NO.	DESCRIPTION	REMARK
10114 10115 10116	8-759-631-08 8-759-509-13 8-759-509-13 8-759-509-05 8-759-711-32	IC XRU4052BF IC XRU4052BF		Q123 Q124 Q125 Q126 Q127	8-729-216-22 8-729-920-74 8-729-901-01	TRANSISTOR 2SC2412K-QR	
10119 10120 10121	8-759-711-32 8-759-711-32 8-759-509-05 8-759-509-17 8-759-998-98	IC NJM2245M		Q128 Q129 Q130 Q131 Q131	8-729-216-22 8-729-901-01 8-729-216-22 8-729-920-74	TRANSISTOR 2SA1162-G TRANSISTOR DTC144EK TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-G	
10124 10125 10126 10127	8-759-998-98 8-752-052-62 8-759-509-05 8-759-509-17 8-759-998-98	IC CXA1478S IC XRU4066BF IC XRU4053BF IC LM358D		Q133 Q134 Q135 Q136 Q137	8-729-920-74 8-729-901-01 8-729-920-74 8-729-907-26	TRANSISTOR 2SC2412K-QR TRANSISTOR DTC144EK TRANSISTOR 2SC2412K-QR	
10128 10129	8-759-998-98 8-759-998-98 <c01< td=""><td>IC LM358D L></td><td></td><td>Q138 Q139 Q140 Q141</td><td>8-729-907-26 8-729-216-22 8-729-920-74 8-729-920-74</td><td>TRANSISTOR IMX1 TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR</td><td></td></c01<>	IC LM358D L>		Q138 Q139 Q140 Q141	8-729-907-26 8-729-216-22 8-729-920-74 8-729-920-74	TRANSISTOR IMX1 TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR	
L101 L102 L103 L104 L105	1-412-002-31	INDUCTOR 18MMH INDUCTOR CHIP 4.7UH INDUCTOR CHIP 4.7UH INDUCTOR CHIP 4.7UH		Q143 Q144 Q145 Q146	8-729-920-74 8-729-920-74 8-729-920-74 8-729-255-12	TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2551-0 TRANSISTOR 2SC2551-0	
L106 L107 L108 L109 L110	1-410-470-11 1-410-470-11 1-408-418-00 1-408-418-00 1-408-418-00	INDUCTOR 10UH INDUCTOR 56UH INDUCTOR 56UH INDUCTOR 56UH		Q148 Q149 Q150 Q151	8-729-216-22 8-729-200-17	TRANSISTOR 2SA1162-G TRANSISTOR 2SA1091-0 TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-G	
L112 L113 L114 L115 L116	1-410-947-31 1-410-947-31	INDUCTOR 68UH INDUCTOR CHIP 33UH INDUCTOR CHIP 33UH INDUCTOR CHIP 33UH INDUCTOR CHIP 27UH		Q153 Q154 Q155 Q157 Q157 Q158	8-729-920-74 8-729-216-22 8-729-200-17 8-729-326-11	TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-G TRANSISTOR 2SA1091-O TRANSISTOR 2SC2611 TRANSISTOR 2SC2611	
L117 L118 L250 L251 L252	1-410-997-31	INDUCTOR CHIP 27UH INDUCTOR CHIP 27UH INDUCTOR CHIP 2.2UH INDUCTOR CHIP 3.3UH		100	8-729-326-11 8-729-920-74 8-729-216-22 8-729-920-74	TRANSISTOR 2SC2611 TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR	
L300	1-410-482-31			Q164	8-729-901-01	TRANSISTOR DTC144EK TRANSISTOR 2SA1162-G	
Q101		NSISTOR> TRANSISTOR 2SC2412K-QR		Q166 Q167 Q168		TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G	
Q102 Q103 Q104 Q105	8-729-920-74 8-729-920-74 8-729-920-74 8-729-920-74	TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR		Q170 Q171 Q172 Q173	8-729-920-74 8-729-920-74 8-729-920-74 8-729-216-22	TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-G	
Q106 Q107 Q108 Q109 Q112	8-729-920-74 8-729-920-74 8-729-216-22 8-729-901-01 8-729-920-74	TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-G TRANSISTOR DTC144EK TRANSISTOR 2SC2412K-QR		Q174 Q175 Q176 Q177	8-729-216-22 8-729-216-22 8-729-216-22 8-729-920-74	TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-OR	
Q113 Q114 Q115 Q116	8-729-920-74 8-729-216-22 8-729-920-74 8-729-920-74	TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR		Q178 Q179 Q190 Q191	8-729-920-74	TRANSISTOR 2SC2412K-QR TRANSISTOR DTC144EK TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-QR	
Q117 Q118		TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-C		Q192 Q193 Q194	8-729-920-74 8-729-920-74 8-729-920-74	TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR	
Q119 Q120 Q121 Q122	8-729-216-22 8-729-216-22 8-729-920-74 8-729-216-22	TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-G		Q195 Q196 Q197	8-729-920-74	TRANSISTOR 2SA1162-G TRANSISTOR 2SC2412K-QR TRANSISTOR 2SA1162-G	

REF.NO	. PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
Q198 Q199 Q200 Q201 Q202	8-729-216-22 8-729-216-22 8-729-901-06 8-729-216-22 8-729-216-22	TRANSISTOR 2SA11 TRANSISTOR 2SA11 TRANSISTOR DTA14 TRANSISTOR 2SA11 TRANSISTOR 2SA11	62-G 4EK 62-G 62-G			R141 R142 R143 R145 R146	1-216-063-00 1-216-073-00 1-216-085-00 1-216-065-00 1-216-037-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	3.9K 10K 33K 4.7K 330	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
Q203 Q204 Q205 Q206 Q207	8-729-216-22 8-729-216-22 8-729-216-22 8-729-216-22 8-729-901-01	TRANSISTOR 2SA11 TRANSISTOR 2SA11 TRANSISTOR 2SA11 TRANSISTOR 2SA11 TRANSISTOR DTC14	62-G 62-G 62-G 62-G 14EK			R147 R148 R155 R157 R158	1-216-089-00 1-216-671-11 1-216-655-11 1-216-679-11 1-216-677-11	METAL GLAZE METAL CHIP METAL CHIP METAL CHIP METAL CHIP METAL CHIP	47K 6.8K 1.5K 15K	5% 0.50%	1/10W 1/10W 1/10W 1/10W	
Q208 Q209 Q210 Q211 Q212	8-729-216-22 8-729-255-12 8-729-255-12 8-729-255-12 8-729-109-44	TRANSISTOR 2SA11 TRANSISTOR 2SC25 TRANSISTOR 2SC25 TRANSISTOR 2SC25 TRANSISTOR 2SK94	62-6 51-0 51-0 51-0 51-0 1-X4			R160 R161 R163 R164 R165	1-216-065-00 1-216-089-00 1-216-073-00 1-216-677-11 1-216-107-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	4.7K 47K 10K 12K	5% 5% 5% 0.50%	1/10W 1/10W 1/10W	
Q299	8-729-920-74	TRANSISTOR 2SC24	112K-QR			R166 R167	1-216-681-11 1-216-635-11	METAL CHIP METAL CHIP	220	0.50% 0.50%	1/10W 1/10W	
JR105		ISTOR>	59	1/10W		R168 R169 R170	1-216-103-00 1-216-033-00 1-216-089-00	METAL GLAZE METAL GLAZE METAL GLAZE	180K 220 47K	5%	1/10W 1/10W 1/10W	
JR110 JR118 JR133 JR138	1-216-295-00 1-216-295-00 1-216-295-00	METAL GLAZE O		1/10W 1/10W 1/10W 1/10W 1/10W		R171 R172 R173 R174	1-216-053-00 1-216-043-00 1-216-093-00 1-216-069-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.5K 560 68K 6.8K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
JR178 R101 R102 R103 R104	1-216-295-00 1-216-089-00 1-216-025-00 1-216-091-00 1-216-061-00	METAL GLAZE 10 METAL GLAZE 50	5% 7K 5% 90 5% 5K 5% 3K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R175 R176 R177 R178 R179	1-216-057-00 1-216-065-00 1-216-073-00 1-216-089-00 1-216-081-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 10K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R105 R106 R107	1-216-025-00 1-216-065-00 1-216-025-00	METAL GLAZE 4.	00 5% .7K 5% 00 5% 7OK 5% .7K 5%	1/10W 1/10W 1/10W		R180 R181	1-216-679-11 1-216-071-00	METAL CHIP METAL GLAZE	15K 8.2K	0.50% 5%	1/10W 1/10W	
R108 R109	1-216-113-00 1-216-065-00	METAL GLAZE 47 METAL GLAZE 4.		1/10W 1/10W 1/10W		R182 R183 R184 R185	1-216-683-11 1-216-691-11 1-216-699-11 1-216-073-00	METAL CHIP METAL CHIP METAL CHIP METAL GLAZE	47K	0.50% 0.50% 0.50% 5%	1/10W	
R110 R111 R112 R113 R114	1-216-049-00 1-216-063-00 1-216-049-00 1-249-401-11 1-216-045-00	METAL GLAZE 11 CARBON 47 METAL GLAZE 68	.9K 5% K 5% 7 5% BO 5%	1/10W 1/10W 1/4W 1/10W	F	R186 R187 R188 R189 R190	1-216-113-00 1-216-073-00 1-216-113-00 1-216-103-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470K 10K 470K 180K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R115 R117 R118 R119 R120	1-216-061-00 1-216-073-00 1-216-025-00 1-216-647-11 1-216-647-11	METAL GLAZE 10 METAL GLAZE 10 METAL CHIP 68	.3K 5% OK 5% OO 5% 8O 0.50% BO 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W		R190 R191 R192 R193 R194	1-216-107-00 1-216-097-00 1-216-103-00 1-216-105-00 1-216-089-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	270K 100K 180K 220K 47K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	ψ.
R121 R122 R123 R124 R125	1-216-025-00 1-216-083-00 1-216-073-00 1-216-073-00 1-216-083-00	METAL GLAZE 2' METAL GLAZE 10 METAL GLAZE 10	00 5% 7K 5% 0K 5% 0K 5% 7K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R195 R196 R197 R198	1-216-113-00 1-216-073-00 1-216-671-11 1-216-049-00	METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	470K 10K 6.8K 1K	5% 5% 0.50% 5% 5%	1/10W	
R126 R127	1-216-093-00 1-216-037-00	METAL GLAZE 3	8K 5% 30 5%	1/10W 1/10W		R199 R200	1-216-065-00 1-216-065-00	METAL GLAZE METAL GLAZE	4.7K 4.7K	5%	1/10W 1/10W	
R128 R129 R130	1-216-083-00 1-216-067-00 1-216-097-00	METAL GLAZE 5	7K 5% .6K 5% DOK 5%	1/10W 1/10W 1/10W		R201 R202 R203 R204	1-216-043-00 1-216-033-00 1-216-045-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	560 220 680 10K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R131 R132 R133	1-216-089-00 1-216-057-00 1-216-079-00	METAL GLAZE 2 METAL GLAZE 13	7K 5% . 2K 5% BK 5%	1/10W 1/10W 1/10W		R205 R206	1-216-073-00 1-216-043-00	METAL GLAZE METAL GLAZE	10K 560	5% 5% 5%	1/10W	
R134 R135	1-216-645-11 1-216-645-11 1-216-091-00	METAL CHIP 5	60 0.50%	1/10W 1/10W 1/10W		R207 R208 R209 R210	1-216-045-00 1-216-671-11 1-216-043-00 1-216-033-00	METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE	680 6.8K 560 220	5% 0.50% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R136 R137 R138 R139 R140	1-216-091-00 1-216-045-00 1-216-657-11 1-216-079-00 1-216-653-11	METAL GLAZE 6 METAL CHIP 1 METAL GLAZE 1	80 5% .8K 0.50% 8K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R211 R212 R213	1-216-099-00 1-216-065-00 1-216-043-00	METAL GLAZE METAL GLAZE METAL GLAZE	120K 4.7K 560	5% 5% 5%	1/10W 1/10W 1/10W	

REF.NO	. PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R214 R215 R216 R217 R218	1-216-043-00 1-216-125-00 1-216-043-00 1-216-033-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	560 1.5M 560 220 0	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R280 R281 R282 R283 R284	1-216-061-00 1-216-061-00 1-216-037-00 1-216-049-00 1-216-057-00		3.3K 3.3K 330 1K 2.2K 330	5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R219 R220 R221 R222 R223	1-216-043-00 1-216-043-00 1-216-035-00 1-216-033-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	560 560 270 220 10K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R286 R287 R288 R288 R289	1-216-037-00 1-216-061-00 1-216-061-00 1-216-037-00 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	3.3K 3.3K 330	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R224 R225 R226 R227 R228	1-216-073-00 1-216-095-00 1-216-073-00 1-216-035-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 82K 10K 270 4.7K		1/10W 1/10W 1/10W 1/10W 1/10W		R290 R291 R292 R293 R295	1-216-057-00 1-216-037-00 1-216-061-00 1-216-061-00 1-216-057-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1K 2.2K 330 3.3K 3.3K 2.2K	5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R229 R230 R231 R232 R233	1-216-113-00 1-216-081-00 1-216-113-00 1-216-105-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE	470K 22K 470K 220K 10K		1/10W 1/10W 1/10W 1/10W 1/10W		R296 R297 R298 R300	1-216-659-11 1-216-659-11 1-216-065-00 1-216-065-00	METAL CHIP METAL GLAZE METAL GLAZE	2.2K 2.2K 4.7K 4.7K	0.50% 0.50% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R234 R235 R236 R237 R238	1-216-041-00 1-216-041-00 1-216-077-00 1-216-025-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE		5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R301 R302 R303 R304 R305	1-216-065-00 1-216-113-00 1-216-065-00 1-216-049-00 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 470K 4.7K 1K 1K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R239 R240 R241 R242 R243	1-216-065-00 1-216-033-00 1-216-073-00 1-216-051-00 1-216-113-00	METAL GLAZE METAL GLAZE	4.7K 220 10K 1.2K 470K		1/10W 1/10W 1/10W 1/10W 1/10W		R306 R307 R308 R309 R310	1-216-089-00 1-216-033-00 1-216-089-00 1-216-089-00 1-216-033-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	47K 220 47K 47K 220	5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R244 R245 R246 R247 R248	1-216-065-00 1-216-679-11 1-216-103-00 1-216-093-00 1-216-095-00	METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 15K 180K 68K 82K	0.50% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R311 R312 R313 R314 R315	1-216-089-00 1-216-089-00 1-216-033-00 1-216-089-00 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	47K 47K 220 47K 470K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R249 R250 R251 R252 R253	1-216-109-00 1-216-101-00 1-216-105-00 1-216-101-00 1-216-101-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	330K 150K 220K 150K 150K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R316 R317 R318 R319 R320	1-216-105-00 1-216-109-00 1-216-105-00 1-216-099-00 1-216-099-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220K 330K 220K 120K 120K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R254 R255 R256 R258 R259	1-216-033-00 1-216-061-00 1-216-107-00 1-216-041-00 1-216-073-00	METAL GLAZE	220 3.3K 270K 470 10K	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R321 R322 R323 R324 R325	1-216-043-00 1-216-109-00 1-216-109-00 1-216-109-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	560 330K 330K 330K 100K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R260 R261 R262 R263 R264	1-216-025-00 1-216-035-00 1-216-097-00 1-216-029-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100 270 100K 150 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R326 R328 R329 R330 R331	1-216-113-00 1-216-073-00 1-216-107-00 1-216-105-00 1-216-025-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470K 10K 270K 220K 100	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R265 R266 R267 R268 R269	1-216-067-00 1-216-073-00 1-216-073-00 1-216-081-00 1-216-101-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	5.6K 10K 10K 22K 150K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R332 R333 R334 R335 R336	1-216-097-00 1-216-097-00 1-216-025-00 1-216-099-00 1-216-095-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100K 100K 100 120K 82K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R270 R271 R272 R273 R275	1-216-081-00 1-216-025-00 1-216-101-00 1-216-113-00 1-216-081-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	22K 100 150K 470K 22K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R337 R338 R339 R340 R341	1-216-105-00 1-216-025-00 1-216-099-00 1-216-095-00 1-216-105-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220K 100 120K 82K 220K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R276 R277 R278 R279	1-216-037-00 1-216-049-00 1-216-057-00 1-216-037-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	330 1K 2.2K 330	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R342 R343	1-216-047-00 1-216-053-00	METAL GLAZE METAL GLAZE	820 1.5K	5% 5%	1/10W 1/10W	

REF. NO. PART NO.

DESCRIPTION

trame et une marque A sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

REMARK REF. NO. PART NO.

Les composants identifies par une

The components identified by shading and mark $\hat{\Delta}$ are critical for safety. Replace only with part number

specified.

REMARK

<MODULE>

SEP101 1-808-654-11 MODULE

<CRYSTAL>

1-527-722-00 OSCILLATOR, CRYSTAL 1-577-259-11 VIBRATOR, CRYSTAL X101 X102

*A-1195-048-A P BOARD, COMPLETE

<CAPACITOR>

C801 C802 C803 C804 C805	1-126-104-11 1-162-318-11 1-102-228-00 1-123-935-00 1-101-004-00	ELECT CERAMIC CERAMIC ELECT CERAMIC	470MF 0.001MF 470PF 33MF 0.01MF	20% 10% 10% 20%	35V 500V 500V 160V 50V
C806	1-124-480-11	ELECT	470MF	20%	25V
C807	1-102-228-00	CERAMIC	470PF	10%	500V
C808	1-106-367-00	MYLAR	0.01MF	10%	100V
C809	1-106-375-12	MYLAR	0.022MF	10%	100V
C810	1-162-318-11	CERAMIC	0.001MF	10%	500V
	. 1-137-544-91	FILM	0.01MF	31	600V
	. 1-137-545-91	FILM	0.013MF	32	600V
	1-106-385-00	MYLAR	0.056MF	5%	200V
	1-106-383-00	MYLAR	0.047MF	10%	100V
	1-126-233-11	ELECT	22MF	20%	50V
C816	1-124-798-11	ELECT	1MF	20%	160V
C817	1-130-800-00	FILM	2.2MF	10%	250V
C818	1-102-228-00	CERAMIC	470PF	10%	500V
C819	1-162-116-00	CERAMIC	680PF	10%	2KV
C820	1-162-116-00	CERAMIC	680PF	10%	2KV

<CONNECTOR>

CN801 *1-564-595-11 PLUG, CONNECTOR 14P CN802 *1-508-766-00 PIN, CONNECTOR (5MM PITCH) 4P CN803 *1-564-508-11 PLUG, CONNECTOR 5P CN805 *1-560-123-00 PLUG, CONNECTOR (2.5MM) 3P

<DIODE>

8-719-300-33 DIODE RU-3AM 8-719-300-33 DIODE RU-3AM 8-719-300-33 DIODE RU-3AM 8-719-979-85 DIODE RU-3AM 8-719-300-33 DIODE RU-3AM D801 D802 D803 D804 DIODE EGP-20G D805 D806 8-719-300-33 DIODE RU-3AM DIODE RD6.2M-B1 THYRISTOR CRO.2AM-8 8-719-105-99 8-719-008-28 D807 D808 8-719-911-55 8-719-911-55 DIODE UOSG DIODE UOSG D809 D810 8-719-911-55 DIODE UO5G 8-719-300-33 DIODE RU-3AM D811

<COIL>

L802 1-459-442-00 COIL (WITH CORE) L803 1-422-613-11 COIL, AIR CORE L804 1-459-109-00 COIL, DUST CORE L805 1-460-225-11 COIL, HORIZONTAL LINEARITY L806 1-407-500-00 INDUCTOR 4.7MMH

1-407-500-00 INDUCTOR

4.7MMH

<NEON LAMP>

NL801 1-519-108-XX LAMP, NEON

<TRANSISTOR>

8-729-195-82 TRANSISTOR 2SC2958-L 8-729-201-62 TRANSISTOR 2SC2555-2 0801 Q802 4-382-854-01 SCREW (M3X8), P, SW (+); Q802 4-879-937-00 SHEET, MICA; Q802

DESCRIPTION

8-729-906-24 TRANSISTOR 2SD835

<RESISTOR>

R801 R802 R803 R804 R805	1-249-383-11 1-249-377-11 1-216-049-00 1-249-419-11 1-215-892-11	CARBON CARBON METAL GLAZE CARBON METAL OXIDE	1.5 0.47 1K 1.5K 1K	5% 5% 5% 5%	1/4W 1/4W 1/10W 1/4W 2W	FF
R807	1-216-425-11	METAL OXIDE	56	5%	1W	F
R808	1-202-881-91	SOLID	470K	20%	1/2W	
R809	1-216-089-00	METAL GLAZE	47K	5%	1/10W	
R810	1-249-421-11	CARBON	2.2K	5%	1/4W	
R811	1-216-049-00	METAL GLAZE	1K	5%	1/10W	
R812	1-249-439-11	CARBON	68K	5%	1/4W	F
R813	1-249-414-11	CARBON	560	5%	1/4W	
R814	1-249-377-11	CARBON	0.47	5%	1/4W	

<VARIABLE RESISTOR>

RV801 1-223-102-00 RES. ADJ. WIREWOUND 120

<TRANSFORMER>

1-437-082-31 HDT T802 A. 1-439-526-11 TRANSFORMER ASSY, FLYBACK

> *1-641-723-11 FA BOARD ******

*4-341-751-01 EYELET *4-341-752-01 EYELET EY1, EY3, EY8, EY9

<CONNECTOR>

CN601 *1-580-689-11 PIN, CONNECTOR (PC BOARD) 4P CN602 *1-508-765-00 PIN, CONNECTOR (5MM PITCH) 3P CN603 *1-564-507-11 PLUG, CONNECTOR 4P

<FUSE>

F601 A 1-532-745-11 FUSE, GLASS TUBE (3.15A/125Y) 1-533-223-11 CLIP, FUSE; F601

<RESISTOR>

R602 1-202-721-00 SOLID 1.5M 10% 1/2W

<SWITCH>

FA	QA

REF.NO	. PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION		<u> </u>	REMARK
	1-692-049-11					C453 C454 C460	1-124-234-00 1-128-499-61 1-126-301-11	ELECT ELECT ELECT	22MF 220MF 1MF	20% 20% 20%	16V 16V 50V
	A-1275-099-A	QA BOARD, CO				C461 C462	1-126-301-11 1-126-301-11	ELECT ELECT	1MF 1MF	20% 20%	50V 50V
	1-537-408-11 1-537-410-11 *4-341-752-01	TERMINAL BOA	RD, INPUT/O	UTPUT (I UTPUT (I	LINE B) LINE A)	C464 C465 C466	1-163-031-11 1-163-031-11 1-163-031-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.01MF 0.01MF 0.01MF		50V 50V 50V
	< CAP	ACITOR>				C467	1-163-031-11	CERAMIC CHIP	0.01MF		50♥
C401	1-124-234-00	ELECT	22MF	20%	16V			NECTOR>	DD 450		
C402 C403 C404 C405	1-124-234-00 1-124-234-00 1-124-234-00 1-124-234-00	ELECT Elect	22MF 22MF 22MF 22MF	20% 20% 20% 20%	16V 16V 16V 16V	CN403	1-506-494-11 *1-564-518-11 *1-580-690-11 *1-564-519-11	PIN. CONNECTO	OR (PC BOARD)	4P	€
C406 C407	1-124-234-00 1-124-234-00	ELECT	22MF 22MF	20% 20%	16V 16V	 	<010	DE>			
C408 C409 C410	1-124-463-00 1-124-234-00 1-124-234-00	ELECT	0.1MF 22MF 22MF	20% 20% 20%	50V 16V 16V	D401 D402	8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110			
C411	1-124-234-00 1-124-234-00	ELECT	22MF 22MF	20% 20%	16V 16V	D403 D404 D405	8-719-110-09 8-719-404-46	DIODE RD8.2ES DIODE MA110 DIODE MA110	S-B3		
C412 C413 C414	1-124-234-00 1-126-157-11	ELECT ELECT	22MF 10MF	20% 20%	16V 16V	D406	8-719-404-46	DIODE MA110			
C415 C416	1-126-157-11 1-126-157-11		10MF 10MF	20% 20%	16V 16V	D407 D408 D409	8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110			
C417 C418	1-126-157-11 1-126-157-11	ELECT ELECT	10MF 10MF	20% 20%	16V 16V	D410	8-719-404-46	DIODE MA110			
C419 C420	1-126-157-11 1-126-157-11	ELECT	10MF 10MF	20% 20%	16V 16V	D411 D412 D413	8-719-404-46 8-719-404-46	DIODE MA110			
C421 C422 C423	1-102-125-00 1-124-464-11 1-126-157-11	ELECT	0.0047MF 0.22MF 10MF	10% 20% 20%	50V 50V 16V	D414 D415	8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110			
C424 C425	1-126-157-11 1-126-157-11 1-108-634-11	ELECT	10MF 10MF 0.047MF	20% 20% 10%	16V 100V	D416 D417	8-719-404-46	DIODE MA110 DIODE MA110			
C426 C427	1-128-499-61 1-128-499-61	ELECT ELECT	220MF 220MF	20% 20%	16V 16V	D418 D419 D420		DIODE MA110 DIODE MA110 DIODE MA110			
C428 C429	1-124-589-11	ELECT ELECT	47MF 22MF	20% 20%	16V 16V 50V	D421 D422		DIODE MA110			
C430 C431	1-124-234-00	ELECT	22MF	20%	16V	D423 D424	8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110			
C432 C433 C434	1-163-033-00 1-124-234-00 1-163-033-00	CERAMIC CHIP ELECT CERAMIC CHIP	22MF	20%	50V 16V 50V	D425	8-719-404-46 8-719-404-46	DIODE MAILO			
C435	1-124-234-00	ELECT	22MF	20%	16V	D427 D428	8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110			
C436 C437 C438	1-163-033-00 1-163-033-00 1-124-234-00	CERAMIC CHIP CERAMIC CHIP ELECT		20%	50V 50V 16V	D429 D430	8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110			
C439 C440	1-163-033-00	CERAMIC CHIP CERAMIC CHIP	0.022MF		50V 50V	D431	8-719-404-46	DIODE MA110			
C441 C442	1-124-234-00 1-163-033-00	ELECT CERAMIC CHIP	22MF 0.022MF	20%	16V 50V		<10>	1.0 W44.40WB			
C443 C444 C445	1-163-033-00 1-163-033-00 1-163-031-11	CERAMIC CHIP	0.022MF 0.022MF		50V 50V 50V	IC401 IC402 IC403	8-759-501-21 8-759-501-21 8-759-420-04	IC MM1149XF			
C446 C447	1-163-031-11 1-126-301-11	CERAMIC CHIP ELECT	1MF	20%	50V 50V 16V		<c0i< td=""><td>L></td><td></td><td></td><td></td></c0i<>	L>			
C448 C449 C450	1-124-234-00 1-163-031-11 1-124-234-00	ELECT CERAMIC CHIP ELECT	22MF 0.01MF 22MF	20% 20%	50V 16V	L401 L402	1-410-682-31 1-410-682-31	INDUCTOR INDUCTOR	470UH 470UH		
C451 C452	1-163-033-00 1-128-499-61	CERAMIC CHIP ELECT	0.022MF 220MF	20%	50V 16V						

_														
	KEF.NO.	. PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
		<tra< td=""><td>NSISTOR></td><td></td><td></td><td></td><td></td><td>1</td><td>1-216-091-00</td><td></td><td>56K</td><td>59</td><td>1/10W</td><td></td></tra<>	NSISTOR>					1	1-216-091-00		56K	59	1/10W	
	Q401 Q402	8-729-920-74 8-729-920-74	TRANSISTOR 2	SC2412	K-QR K-OR			R439	1-216-063-00 1-216-027-00	METAL GLAZE	56K 3.9K 120	5% 5%	1/10W 1/10W	
	Q403 Q404	8-729-216-22	TRANSISTOR 2	SA1162	regit −G V–∩D			DAA1	1-216-089-00		120 47K		1/10W	
	Q405	8-729-920-74 8-729-920-74 8-729-216-22 8-729-920-74 8-729-920-74 8-729-920-74 8-729-920-74	TRANSISTOR 2	SC2412	K-QR			R442	1-216-049-00 1-216-748-11	METAL GLAZE	1K	5% 5%	1/10W	
	Q406 Q407	8-729-920-74	TRANSISTOR 2	SC2412	K-QR			R444	1-214-702-00	METAL GLAZE	39K 75 1K	5% 5% 1% 5%	1/10W 1/4W	
	Q408				K-UR			K445	1-216-049-00				1/10W	
	Q409 Q410	8-729-920-74 8-729-920-74	TRANSISTOR 2 TRANSISTOR 2	SC2412	K-QR K-QR			R446	1-216-093-00 1-216-091-00	METAL GLAZE	68K 56K 3.9K 120	5% 5%	1/10W 1/10W	
	Q411	8-729-216-22	TRANSISTOR 2	SA1162	-G			R448 R449	1-216-063-00 1-216-027-00	METAL GLAZE	3.9K 120	5% 5%	1/10W 1/10W	
	Q412 Q413	8-729-216-22 8-729-216-22 8-729-216-22	TRANSISTOR 2 TRANSISTOR 2	SA1162 SA1162	-G -G			R450	1-214-702-00		15	1%	1/4W	
	Q414 Q416	8-729-216-22 8-729-145-18	TRANSISTOR 2 TRANSISTOR 2	SA1162 [.] SC3736	-G			R451 R452	1-216-049-00 1-216-091-00 1-216-093-00	METAL GLAZE METAL GLAZE	1 K 56 K	5% 5%	1/10W 1/10W	
	Q417	8-729-901-06	TRANSISTOR D	TA144EI	<			R453 R454	1-216-093-00 1-216-063-00	METAL GLAZE	68K 3.9K	5% 5%	1/10W 1/10W	
	Q418 Q419	8-729-901-06	TRANSISTOR D TRANSISTOR D	TA144EI	(R455	1-216-037-00	METAL GLAZE	330	5%	1/10W	
	Q420 Q421	8-729-901-01	TRANSISTOR D'TRANSISTOR D'	TC144EI	(R456 R457	1-216-085-00 1-216-085-00	METAL GLAZE METAL GLAZE	33K 33K	5% 5%	1/10W 1/10W	
	Q422		TRANSISTOR D		ζ			R458 R459	1-247-707-11 1-216-748-11	CARBON	390 39K	5% 5% 5% 5%	1/4W 1/10W	
	Q423 Q424	8-729-901-06 8-729-901-06	TRANSISTOR D	TA144E1	į.			R460	1-216-089-00	METAL GLAZE	47K	5%	1/10W	
		0 (2))01 00			•			R461	1-216-097-00	METAL GLAZE	100K	5% 5%	1/10W 1/10W	
			ISTOR>					R463	1-216-115-00 1-216-105-00 1-216-077-00	METAL GLAZE	560K 220K 15K 100	5%	1/10W 1/10W 1/10W	
	R401 R402	1-214-702-00	METAL CLAZE	75 18	1%	1/4W 1/10W		R465	1-216-025-00	METAL GLAZE	100	5%	1/10W	
	R403 R404	1-214-702-00 1-216-049-00 1-216-093-00 1-216-091-00 1-216-063-00	METAL GLAZE	68K	5% 5%	1/1UW		R466	1-216-097-00 1-216-115-00	METAL GLAZE	100K	5%	1/10W	
	R405	1-216-063-00	METAL GLAZE	3.9K	5% 5%	1/10W 1/10W		R468	1-216-115-00 1-216-105-00 1-216-077-00	METAL GLAZE	100K 560K 220K 15K 100	5% 5%	1/10W 1/10W	
	R406 R407	1-216-037-00 1-216-748-11	METAL GLAZE	330	5%	1/10W		R470	1-216-025-00	METAL GLAZE	100	5% 5%	1/10W 1/10W	
	R408	1-216-085-00	METAL GLAZE	330 39K 33K	5%	1/10W 1/10W		R471	1-216-097-00	METAL GLAZE	100K	5%	1/10W	
	R409 R410	1-214-702-00 1-216-049-00	METAL METAL GLAZE	75 1K	5%	1/4W 1/10W		R472 R473	1-216-115-00	METAL GLAZE METAL GLAZE	220K	5% 5% 5%	1/10W 1/10W	÷
	R411	1-216-093-00	METAL GLAZE	68K	5%	1/10W		R474 R475	1-216-077-00 1-216-025-00	METAL GLAZE CARBON CARBON CARBON	15K 100	5% 5%	1/10W 1/10W	
	R412 R413	1-216-091-00 1-216-063-00 1-216-037-00	METAL GLAZE	68K 56K 3.9K 330 3.3K	5% 5%	1/10W 1/10W 1/10W		R477	1-216-081-00	METAL GLAZE	22K	5%	1/10W	
	R414 R415	1-216-037-00 1-216-061-00	METAL GLAZE METAL GLAZE	330 3.3K	5% 5%	1/10W 1/10W		R479 R480	1-216-085-00 1-247-711-11	METAL GLAZE Carbon	22K 33K 680 3.9K	5% 5%	1/10W 1/4W	
	R416	1-216-023-00	METAL GLAZE	82	5%			R481 R482	1-247-720-11 1-249-455-11	CARBON CARBON	3.9K 4.7	5% 5%	1/4W 1/4W	
	R417 R418	1-216-049-00 1-216-093-00	METAL GLAZE METAL GLAZE	1 K 68 K	5% 5% 5% 5%	1/10W 1/10W		R483	1-249-389-11	CARBON	4.7	5%	1/4W F	
	R419 R420	1-216-091-00 1-216-063-00	METAL GLAZE METAL GLAZE	56K 3.9K	5% 5%	1/10W 1/10W		R484 R485	1-216-041-00 1-247-688-11	METAL GLAZE CARBON	470 10	5% 5%	1/10W 1/4W F	
	R421	1-216-027-00	METAL GLAZE	120		1/10W		R486 R487	1-216-037-00 1-249-468-11	METAL GLAZE CARBON	330 82K	5% 5% 5%	1/10W 1/4W	
	R422 R423	1-214-702-00 1-214-702-00	METAL METAL	75 75	5% 1% 1%	1/4W 1/4W		R488	1-249-468-11	CARBON	82K		1/4W	
	R424 R425	1-216-049-00 1-216-093-00	METAL GLAZE METAL GLAZE	1K 68K	5% 5%	1/10W 1/10W		R489 R490	1-249-468-11 1-216-057-00	CARBON METAL GLAZE	82K 2.2K	5% 5% 5%	1/4W 1/10W	
	R426	1-216-091-00	METAL GLAZE	56K		1/10W		R491	1-216-089-00 1-216-089-00	METAL GLAZE METAL GLAZE	47K 47K	5% 5%	1/10W 1/10W	
	R427 R428	1-216-063-00 1-216-037-00	METAL GLAZE METAL GLAZE	3.9K 330	5% 5% 5%	1/10W 1/10W	<u> </u>		1-216-089-00	METAL GLAZE	47K	5%	1/10W	
	R429 R430	1-214-702-00 1-216-049-00	METAL METAL GLAZE	75 1K	1% 5%	1/4W 1/10W	2	R494	1-216-089-00	METAL GLAZE	47K	5%	1/10W	
	K431	1-216-093-00	METAL GLAZE					R496	1-216-295-00 1-216-057-00	METAL GLAZE METAL GLAZE	0 2.2K	5% 5% 5% 5%	1/10W 1/10W	
	R432	1-216-091-00	METAL GLAZE	68K 56K	5% 5% 5%	1/10W 1/10W			1-216-089-00	METAL GLAZE	47K		1/10W	
	R433 R434	1-216-063-00 1-216-027-00	METAL GLAZE	3.9K 120	5%	1/10W 1/10W		R499	1-216-089-00 1-216-089-00	METAL GLAZE	47K 47K	5% 5% 5%	1/10W 1/10W	
	R435		METAL CLAZE	75	1%	1/4W		R1403	1-216-097-00 1-216-295-00	METAL GLAZE METAL GLAZE	100K 0	5%	1/10W 1/10W	
	R436 R437	1-216-049-00 1-216-093-00	METAL GLAZE METAL GLAZE	1 K 68 K	5% 5%	1/10W 1/10W		R1404	1-216-097-00	METAL GLAZE	100K	5%	1/10W	

QA CA D

									G G		CA	
REF.NO.	PART NO.	DESCRIPTIO	N -		REMARK	REF.NO.	PART NO.	DESCRIPTION	I		REMARK	_
RV401	<vaf< td=""><td>RIABLE RESIST RES, VAR, C</td><td></td><td></td><td></td><td>C512 C513 C514 C515</td><td>1-106-375-12 1-106-375-12 1-106-371-00 1-124-925-11</td><td>MYLAR MYLAR</td><td>0.022MF 0.022MF 0.015MF 2.2MF</td><td>10% 10% 10% 20%</td><td>100V 100V 100V 50V</td><td></td></vaf<>	RIABLE RESIST RES, VAR, C				C512 C513 C514 C515	1-106-375-12 1-106-375-12 1-106-371-00 1-124-925-11	MYLAR MYLAR	0.022MF 0.022MF 0.015MF 2.2MF	10% 10% 10% 20%	100V 100V 100V 50V	
*****	*********	*********	********	******	*******	C516 C517	1-124-925-11 1-130-480-00	ELECT	2.2MF 0.0056MF	20% 5%	50V 50V	
	1-641-720-11	******				C518 C519 C520	1-163-245-11 1-124-927-11 1-163-129-00	CERAMIC CHIP	56PF 4.7MF	5% 20% 5%	50V 50V 50V	
	1-526-958-41	SUCKEI, CKI				C521 C523	1-124-907-11 1-106-363-00	ELECT MYLAR	10MF 0.0068MF	20% 10%	50V 100V	
amo 4		ACITOR>				C524 C525	1-102-116-00 1-102-820-00	CERAMIC CERAMIC	680PF 330PF	10% 5%	50V 50V	
C702	1-162-114-00 1-102-050-00 1-161-830-00	CERAMIC	0.0047MF 0.01MF 0.0047MF	10% 99% 99%	2KV 500V 500V	C526 C527 C528	1-102-973-00 1-124-122-11 1-102-125-00	ELECT	100PF 100MF 0.0047MF	5% 20% 10%	50V 50V 50V	
	<con< td=""><td>NECTOR></td><td></td><td></td><td></td><td>C528 C529 C530</td><td>1-124-910-11 1-163-097-00</td><td>ELECT CERAMIC CHIP</td><td>47MF 15PF</td><td>20% 5%</td><td>50V 50V</td><td></td></con<>	NECTOR>				C528 C529 C530	1-124-910-11 1-163-097-00	ELECT CERAMIC CHIP	47MF 15PF	20% 5%	50V 50V	
CN701 *	1-564-509-11 1-508-784-00	PLUG, CONNEC	CTOR 6P	~W\ 1D		C531 C532	1-131-370-00	TANTALUM	6.8MF	10%	16V	
CN703 *	1-564-508-11	PLUG, CONNEC	CTOR 5P	vII) IF		C533 C534	1-124-557-11 1-124-927-11 1-124-768-11	FIFCT	1000MF 4.7MF 4.7MF	20% 20% 20%	25V 50V 50V	
	<c01< td=""><td>L></td><td></td><td></td><td></td><td>C535 C536</td><td>1-136-161-00</td><td>FILM ELECT</td><td>0.047MF 4.7MF</td><td>5% 20%</td><td>50V 50V</td><td></td></c01<>	L>				C535 C536	1-136-161-00	FILM ELECT	0.047MF 4.7MF	5% 20%	50V 50V	
L701	1-410-668-11	INDUCTOR	27UH		7	C537 C538	1-124-484-11 1-124-910-11	ELECT ELECT	220MF 47MF	20% 20%	35V 50V	
	<res< td=""><td>ISTOR></td><td></td><td></td><td></td><td>C539 C540</td><td>1-136-113-00 1-163-017-00</td><td>FILM CERAMIC CHIP</td><td>2MF 0.0047MF</td><td>5% 10%</td><td>200V 50V</td><td></td></res<>	ISTOR>				C539 C540	1-136-113-00 1-163-017-00	FILM CERAMIC CHIP	2MF 0.0047MF	5% 10%	200V 50V	
R701 R702	1-202-871-91 1-202-871-91	SOLID	2.2K 20% 2.2K 20%	1/2W 1/2W		C541 C542		CERAMIC CHIP		20*	50V	
R703	1-202-871-91 1-202-877-91	SOLID SOLID	2.2K 20% 2.2K 20% 100K 20%	1/2W 1/2W 1/2W		C545 C546	1-126-103-11 1-126-101-11 1-124-907-11	ELECT ELECT	470MF 100MF 10MF	20% 20% 20%	16V 16V 50V	
R705	1-202-885-91	SOLID	1M 20%	1/2W		C547 C548	1-124-907-11	ELECT ELECT	10MF 10MF	20% 20%	50V 50V	
R706 :	1-202-878-91	SULTU	220K 20%	1/2W			1-124-907-11 1-124-907-11		10MF 10MF	20% 20%	50V 50V	
		IABLE RESISTO				C551 C552	1-124-927-11 1-101-004-00	ELECT CERAMIC	4.7MF 0.01MF	20%	50V 50V	
RV701 **	1-230-164-00 4-376-132-11 4-376-133-11	RES, ADJ, ME COVER (REAR	ETAL GLAZE 55 LID), CV VOL	5M .; RV701			1-126-103-11		470MF	20%	167	
	4-310-133-11 ********					C564	1-106-383-00 1-162-318-11 1-124-907-11		0.047MF 0.001MF 10MF	10% 10% 20%	100V 500V 50V	
	A-1346-018-A	D BOARD, COM	IPLETE			C568	1-130-736-11	FILM FILM	0.01MF 0.001MF	5% 5%	50V 50V	
1	1-533-189-11	HOLDER, FUSE				C570 C571	1-163-117-00 1-124-913-11	CERAMIC CHIP	100PF 470MF	5% 20%	50V 50V	
3	3-710-578-01 3-738-015-01	COVER, VOLUM COVER. (DIA.	IE, 6 MOLD 6) CARBON V	'R	!	C572 C574	1-101-004-00 1-106-351-00	CERAMIC MYLAR	0.01MF 0.0022MF	10%	50V 100V	
4	4-382-854-01	SCREW (M3X8) SCREW (M3X10	, P, SW (+)		! ! !	C575	1-106-351-00	MYLAR ELECT	0.0022MF 10MF	10% 20%	100V	
	<ĊAP/	ACITOR>				C832	1-124-907-11 1-124-907-11 1-163-009-11	ELECT CERAMIC CHIP	10MF	20% 20% 10%	50V 50V 50V	
C501 1	1-124-477-11	ELECT	47MF	20%	16V	C834	1-163-121-00 1-163-209-00	CERAMIC CHIP CERAMIC CHIP	150PF	5% 5%	50V 50V	
C503 1		ELECT ELECT ELECT	10MF 470MF 0.47MF	20% 20% 20%	50V 16V 50V		1-124-907-11 1-106-347-00	ELECT Mylar	10MF 0.0015MF	20%	50V 100V	
C505 1	1-106-381-12	MYLAR	0.039MF	10%	100V	C838	1-136-163-00 1-106-351-00	FILM MYLAR	0.068MF 0.0022MF	10% 5% 10%	50V 100V	
C507 1	l-106-367-00	ELECT MYLAR	1MF 0.01MF	20% 10%	50V 100V	C840	1-163-209-00	CERAMIC CHIP		5%	50V	
C509 1	1-136-173-00	ELECT FILM FILM	1MF 0.47MF 0.047MF	20% 5% 5%	50V 50V 50V	C843	1-163-209-00 1-124-902-00 1-124-902-00	ELECT ELECT	0.47MF 0.47MF	5% 20% 20%	50V 50V 50V	
	1-124-903-11		1MF	20%	50V	C845	1-124-477-11	ELECT ELECT	47MF 10MF	20% 20%	25V 50V	
						C847	1-126-233-11	ELECT	22MF	20%	50V	

Les composants identifies par une trame et une marque A sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The components identified by shading and mark ∆ are critical for safety.
Replace only with part number specified.

REF.NO. PART NO.	DESCRIPTION		REMARK		PART NO.	DESCRIPTION	REMARK
C848 1-131-351-00 C849 1-164-182-11 C1601 1-124-907-11 C1602 1-164-161-11 C1603 1-124-903-11	TANTALUM 4.7MF CERAMIC CHIP 0.0033MF ELECT 10MF CERAMIC CHIP 0.0022MF ELECT 1MF	10% 10% 20% 10% 20%	35V 50V 50V 50V 50V	D1613 D1614 D1615	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110	
C1604 1-128-500-51 C1605 1-124-922-11 C1606 1-102-074-00 C1607 1-124-907-11 C1608 1-126-233-11	ELECT 1000MF ELECT 1000MF CERAMIC 0.001MF ELECT 10MF ELECT 22MF	20% 20% 10% 20% 20%	50V 50V 50V 50V 50V	D1617 D1618 D1621 D1625	8-719-404-46 8-719-977-49 8-719-977-49 8-719-510-12 8-719-404-46	DIODE DTZ15B DIODE DTZ15B DIODE DIOSC4M DIODE MA110	
C1609 1-163-009-11 C1610 1-124-927-11 C1611 1-126-233-11 C1612 1-130-025-91 C1613 1-163-009-11	CERAMIC CHIP 0.001MF ELECT 4.7MF ELECT 22MF FILM 0.0039MF CERAMIC CHIP 0.001MF	10% 20% 20% 5% 10%	50V 50V 50V 50V 50V	D1627 D1628 D1635	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110	
C1614 1-164-232-11 C1615 1-124-465-00 C1620 1-163-133-00	CERAMIC CHIP 0.01MF ELECT 0.47MF CERAMIC CHIP 470PF CERAMIC CHIP 100PF	10% 20% 5% 5%	50V 50V 50V 50V	AF1601	<fus< td=""><td>E> FUSE. NICRO (SECONDARY) (1.25A/12</td><td>5V)</td></fus<>	E> FUSE. NICRO (SECONDARY) (1.25A/12	5 V)
<con< td=""><td>NECTOR></td><td></td><td></td><td></td><td><1C></td><td></td><td></td></con<>	NECTOR>				<1C>		
CN501 *1-564-506-11 CN502 1-506-477-11 CN504 *1-564-507-11 CN505 *1-564-509-11 CN507 *1-564-511-11	PIN, CONNECTOR 12P PLUG, CONNECTOR 4P PLUG, CONNECTOR 6P			1C502 1C503 1C504	8-759-909-70 8-759-100-60 8-759-801-98 8-759-929-62 8-759-009-51	IC UPC1377C IC LA7830	
CN508 *1-564-104-00 CN509 *1-564-506-11		3P ·		10833	8-759-509-29 8-759-509-37 8-759-009-51 8-759-509-91	IC MC14538BF	
D501 8-719-404-46				1	<c01< td=""><td>L></td><td></td></c01<>	L>	
D502 8-719-404-46 D503 8-719-404-46 D504 8-719-404-46 D505 8-719-404-46	DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE MAIIO			L501 L502 L503 L506	1-410-093-11 1-410-665-31 1-424-625-11 1-412-530-31	INDUCTOR 33MMH INDUCTOR 15UH COIL, CHOKE (PMC) 381.4UH INDUCTOR 27UH	
D506 8-719-911-55 D507 8-719-404-46 D508 8-719-404-46 D509 8-719-404-46 D510 8-719-404-46	DIODE WOSG DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE MAIIO			L1602	1-424-626-12	COIL, CHOKE 390UH	
DE11 0-710-404-46					1 410 391 21	FERRITE BEAD INDUCTOR	
D512 8-719-404-46	DIODE MA110 DIODE MA110					FERRITE BEAD INDUCTUR	
D512 8-719-404-46 D514 8-719-404-46 D831 8-719-404-46 D832 8-719-404-46 D833 8-719-404-46	DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE MAIIO			Q501 Q502 Q503 Q504 Q505	<tra 8-729-901-01 8-729-901-01 8-729-901-06 8-729-901-01</tra 	NSISTOR> TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTA144EK TRANSISTOR DTA144EK TRANSISTOR DTC144EK	
D512 8-719-404-46 D514 8-719-404-46 D831 8-719-404-46 D832 8-719-404-46 D833 8-719-404-46 D834 8-719-404-46 D835 8-719-109-89 D836 8-719-977-69 D837 8-719-404-46	DIODE MAIIO DIODE RD5.6ES-B2 DIODE DTZ24B DIODE MAIIO			Q502 Q503 Q504 Q505 Q506 Q507 Q508	<tra 8-729-901-01="" 8-729-901-06="" 8-729-920-74="" 8-729-920-74<="" td=""><td>NSISTOR> TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTA144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC2412K-QR TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC2412K-QR</td><td></td></tra>	NSISTOR> TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTA144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC2412K-QR TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC2412K-QR	
D512 8-719-404-46 D514 8-719-404-46 D831 8-719-404-46 D832 8-719-404-46 D834 8-719-404-46 D835 8-719-109-89 D836 8-719-977-69	DIODE MAIIO DIODE RD5.6ES-B2 DIODE DTZ24B DIODE MAIIO			Q502 Q503 Q504 Q505 Q506 Q507 Q508 Q509 Q510 Q511 Q512	<pre></pre>	TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTA144EK TRANSISTOR DTA144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC2412K-QR TRANSISTOR DTA144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK	
D512 8-719-404-46 D514 8-719-404-46 D831 8-719-404-46 D832 8-719-404-46 D834 8-719-404-46 D835 8-719-404-46 D836 8-719-404-46 D837 8-719-404-46 D838 8-719-705-XX	DIODE MAIIO DIODE RD5.6ES-B2 DIODE DT724B DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE DT720B			Q502 Q503 Q504 Q505 Q506 Q507 Q508 Q509 Q510	<pre></pre>	TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTA144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC2412K-QR TRANSISTOR 2SC2412K-QR TRANSISTOR DTC144EK TRANSISTOR DTC144EK	

REF.NO.	.NO. PART NO. DESCRIPTION			REMARK	REF.NO.	F.NO. PART NO. DESCRIPTION				REMARK 		
9532 9533 9833 9834	8-729-920-74 8-729-920-74 8-729-216-22 8-729-920-74	TRANSISTOR 250 TRANSISTOR 250 TRANSISTOR 250 TRANSISTOR 250	C2412K-QR C2412K-QR A1162-G C2412K-QR			R535 R536 R537		FUSIBLE METAL OXIDE			1/10W 1/4W F 1W F	
Q836 Q1601 Q1602	8-729-920-74 8-729-309-08 8-729-920-74 8-729-920-74	TRANSISTOR 2SO TRANSISTOR 2SO TRANSISTOR 2SO TRANSISTOR 2SO	C1890A C2412K-QR C2412K-QR C2412K-QR			R538 R539 R540 R541 R542	1-216-095-00 1-216-095-00 1-216-101-00 1-216-063-00 1-216-075-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	82K 82K 150K 3.9K 12K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
Q1604 Q1605 Q1606 Q1607	8-729-216-22 8-729-119-80 8-729-133-42 8-729-920-74	TRANSISTOR 250 TRANSISTOR 250 TRANSISTOR 250 TRANSISTOR 250 TRANSISTOR 250	22412KQR 21162-G 22688-LK 22334-L 22412KQR			R543 R544 R545 R546 R547	1-216-065-00 1-216-101-00 1-216-041-00 1-216-091-00 1-216-121-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 150K 470 56K 1M	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
Q1608 Q1609 Q1610 Q1611 Q1612	8-729-920-74 8-729-920-74 8-729-920-74 8-729-920-74 8-729-920-74	TRANSISTOR 250	22412K-QR 22412K-QR 22412K-QR 22412K-QR 22412K-QR			R548 R549 R550 R552	1-216-107-00 1-216-101-00 1-216-356-00 1-216-061-00 1-216-748-11		270K 150K 3.9 3.3K 39K		1/10W 1/10W 1W F 1/10W 1/10W	•
Q1613 Q1614 Q1615 Q1616 Q1617	8-729-920-74 8-729-920-74 8-729-216-22 8-729-216-22	TRANSISTOR 2SO TRANSISTOR 2SO TRANSISTOR 2SA TRANSISTOR 2SA	2412K-QR 2412K-QR 11162-G 11162-G			R554 R555 R557 R558	1-216-073-00 1-216-077-00 1-216-057-00 1-216-049-00		10K 15K 2.2K 1K 4.7K		1/10W 1/10W 1/10W 1/10W	
						R562 R563	1-216-065-00 1-216-037-00 1-216-081-00 1-216-053-00 1-216-061-00		330 22K 1.5K 3.3K 680		1/10W 1/10W 1/10W 1/10W 1/10W	
D1619 D1620 JR510 R501 R502	1-216-295-00 1-216-295-00 1-216-295-00 1-216-089-00 1-216-089-00	ISTOR> METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 5% 0 5% 0 5% 47K 5% 47K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R564 R565 R566 R567	1-249-415-11 1-216-059-00 1-216-025-00 1-216-095-00 1-216-063-00		2.7K 100 82K 3.9K 3.9K 68K		1/4W F 1/10W 1/10W 1/10W	
R503 1 R504 1 R505 1 R506 1	1-249-437-11 1-216-073-00 1-249-393-11	CARBON METAL CLAZE	47K 5%	1/4W F 1/10W 1/4W F 1/10W	7 7	R569 R570 R571	1-216-063-00 1-216-063-00 1-216-093-00 1-216-089-00 1-216-095-00				1/10W 1/10W 1/10W 1/10W 1/10W	
R508 1	1-216-085-00 1-216-687-11 1-216-683-11 1-216-675-11 1-218-761-11	METAL GLAZE METAL CHIP METAL CHIP METAL CHIP	10 5% 8.2K 5% 2.7K 5% 33K 5% 33K 0.50% 22K 0.50% 10K 0.50% 4.7K 5%	1/10W 1/10W 1/10W 1/10W		R573 R574 R575	1-216-063-00 1-216-063-00 1-216-105-00		47K 82K 3.9K 3.9K 220K		1/10W 1/10W 1/10W 1/10W	
R513 1 R514 1 R515 1 R516 1	1-216-065-00 1-216-099-00 1-216-081-00 1-216-073-00	METAL CHIP METAL GLAZE METAL GLAZE	120K 0.50% 22K 5% 10K 5%	1/10W 1/10W 1/10W		R577 R578 R579 R591 R592 R831	1-249-457-11	METAL GLAZE METAL GLAZE CARBON CARBON METAL GLAZE METAL GLAZE METAL GLAZE	6.8	5%	1/10W 1/4W F 1/4W F 1/10W 1/10W 1/10W	
R518 1 R519 1 R520 1 R521 1		CARBON METAL GLAZE METAL CHIP METAL GLAZE	2.7K 5% 33K 5% 12K 0.50% 5.6K 5%	1/10W 1/4W F 1/10W 1/10W 1/10W	7	R832 R833 R834 R835 R836	1-216-075-00 1-216-065-00 1-216-059-00 1-216-081-00 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	12K 4.7K 2.7K 22K 1K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R523 1 R524 1 R525 1 R526 1	1-216-107-00 1-216-081-00 1-216-049-00 1-216-434-11 1-216-079-00 1-249-437-11	METAL GLAZE METAL GLAZE METAL OXIDE METAL GLAZE	270K 5% 22K 5% 1K 5% 1.8K 5% 18K 5% 47K 5%	1/10W 1/10W 1/10W 1W F 1/10W 1/4W F		R840	1-216-075-00 1-216-049-00 1-216-061-00 1-216-097-00 1-216-093-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	12K 1K 3.3K 100K 68K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R528 1 R529 1 R530 1 R531 1	1-216-073-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 5% 10K 5% 47K 5% 47K 5% 100K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R843 R844 R847	1-216-093-00 1-216-065-00 1-216-077-00 1-216-049-00 1-216-085-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	68K 4.7K 15K 1K 33K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R533 1	1-216-089-00	METAL GLAZE	47K 5% 100K 5%	1/10W 1/10W		R852 R853 R854	1-216-669-11 1-216-675-11 1-216-105-00 1-216-099-00 1-216-697-11	METAL CHIP METAL CHIP METAL GLAZE METAL CHIP METAL CHIP	5.6K 10K 220K 120K 82K	0.50% 0.50% 5% 0.50% 0.50%	1/10W 1/10W 1/10W	

The components identified by M in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding Xray radiation.
Should replacement be required, replace only

with the value originally used.

Les composants identifies par une trame et une marque 🛕 sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The components identified by shading and mark ▲ are critical for safety.
Replace only with part number specified.

 REF.NO.	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION REMARK	
R857	1-216-699-11 1-216-686-11 1-216-061-00	METAL CHIP	30K	0.50% 0.50%	1/1NW		!	1-216-069-00		
	1-216-436-00	METAL CHIP	IUK	5% 5% 0.50%	1/1UW	F	R1649 1-216-069 R1650 1-216-069 R1651 1-216-069 R1652 1-216-069 R1653 1-216-069	1-216-069-00 1-216-069-00 1-216-069-00	METAL GLAZE 6.8K 5% 1/10W	
R863	1-216-675-11 1-249-435-11	METAL CHIP METAL CHIP CARBON METAL GLAZE	6.8K 10K 33K 1K	0.50% 0.50% 5%	1/10W 1/10W 1/4W	F	R1654	1-216-069-00 1-216-681-11 1-216-081-00	METAL CHIP 18K 0.50% 1/10W	
R1504	1-216-049-00 1-216-695-11 1-216-089-00	METAL CHIP	68K 47K	0.50%	1/10W 1/10W		R1656 R1657 R1658	1-216-643-11 1-216-081-00 1-216-063-00	METAL GLAZE 22K 5% 1/10W METAL CHIP 470 0.50% 1/10W METAL GLAZE 22K 5% 1/10W METAL GLAZE 3.9K 5% 1/10W	
R1506 R1507 R1508	1-216-667-11 1-216-081-00 1-216-073-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 22K 10K 4.7K	0.50%	1/10W 1/10W 1/10W 1/10W		R1659	1-216-049-00 1-216-649-11 1-216-065-00	METAL GLAZE 1K 5% 1/10W METAL CHIP 820 0.50% 1/10W	
R1511	1-249-425-11 1-216-033-00 1-216-049-00	CARBON METAL GLAZE METAL GLAZE	4.7K 220 1K	52	1/4W 1/10W 1/10W				IABLE RESISTOR>	
R1513 R1519	1-216-017-00 1-216-031-00	METAL GLAZE METAL GLAZE	47 180	5% 5%	1/10W 1/10W		RV502 RV503	1-238-017-11 1-241-701-11	RES, ADJ, CARBON 47K RES, ADJ, CARBON 22K RES, ADJ, CERMET 4.7K	
R1601 R1602	1-216-053-00 1-216-685-11 1-216-681-11	METAL CHIP METAL CHIP	1.5K 27K 18K	0.50%	1/10W 1/10W 1/10W		RV505	1-224-250-99 1-238-009-11	RES, ADJ, METAL GLAZE 2.2K RES, ADJ, CARBON 220	
R1604	1-216-671-11 1-249-433-11	CARBON		0.50% 0.50% 5%		F	RV507	1-238-013-11 1-238-012-11	RES, ADJ, CARBON 1K RES, ADJ, CARBON 2.2K RES, ADJ, CARBON 1K	
R1606 R1607	1-216-070-00 1-216-070-00 1-216-071-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	7.5K 7.5K 8.2K 4.7K 6.8K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		RV511	1-238-015-11	RES, ADJ, CARBON 220K RES, ADJ, CARBON 4.7K RES, ADJ, CARBON 4.7K	
R1609	1-216-069-00 1-216-057-00				1/10W 1/10W		RV514 1 RV515 1	1-238-019-11 1-238-021-11	RES, ADJ, CARBON 47K RES, ADJ, CARBON 220K RES, ADJ, CERMET 4.7K	
R1611 R1612 R1613	1-216-057-00 1-215-913-11 1-216-025-00	METAL GLAZE METAL OXIDE	2.2K 2.2K 220 100 5.6K	-5%	1/10W 3W 1/10W	F	RV831	1-228-997-00	RES, ADJ, METAL GLAZE 100K RES, ADJ, CERMET 10K RES, ADJ, CERMET	
R1614 R1615	1-216-067-00	METAL GLAZE METAL CHIP	1.8K	0.50%	1/10W 1/10W		RV1601 RV1602	1-241-700-11 1-238-012-11	RES, ADJ, CERMET 2.2K RES. ADJ. CARBON 1K	
R1617 R1618	1-216-629-11 1-216-659-11 1-216-073-00 1-216-065-00	METAL CHIP METAL GLAZE	120 2.2K 10K 4.7K	0.50% 0.50% 5%	1/10W 1/10W 1/10W 1/10W		⊠ RV1603,	A <rel< td=""><td>RES, ADJ, CERMET</td></rel<>	RES, ADJ, CERMET	
K1621	1-216-073-00 1-216-073-00 1-216-073-00	METAL GLAZE	10K 10K		1/10W 1/10W 1/10W	(6)	RY1601		RELAY (G2R-212P-V)	
R1623 R1624	1-216-073-00 1-216-246-00 1-216-061-00	METAL GLAZE METAL GLAZE	10K 100K 3.3K	5% 5%	1/10W 1/8W 1/10W				NSFORMER>	
R1626 R1627	1-216-065-00 1-216-049-00	METAL GLAZE METAL GLAZE	4.7K 1K	5% 5%	1/10W 1/10W		1		TRANSFORMER, DRIVE	
R1628 R1629	1-216-073-00 1-216-683-11 1-216-683-11	METAL GLAZE METAL CHIP METAL CHIP	10K 22K 22K	5% 0.50% 0.50%	1/10W 1/10W 1/10W		*	*A-1371-782-A	HA BOARD, COMPLETE	
R1632	1-216-057-00 1-216-042-00 1-216-109-00	METAL GLAZE METAL GLAZE METAL GLAZE	2.2K 510 330K	5% 5%	1/10W 1/10W 1/10W		,	\$4-348-208-00 \$4-341-752-01	HOLDER, LED EYELET EY5	
R1634	1-216-099-00 1-216-097-00	METAL GLAZE METAL GLAZE	120K 100K	5%	1/10W 1/10W			<con< td=""><td>INECTOR></td></con<>	INECTOR>	
R1640 R1641	1-216-073-00 1-216-063-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 3.9K 10K	5% 5% 5%	1/10W 1/10W 1/10W		CN001 CN002	1-506-478-11 1-506-473-11	PIN, CONNECTOR 13P PIN, CONNECTOR 8P	
R1642	1-216-073-00 1-216-069-00	METAL GLAZE METAL GLAZE	10K 6.8K	5% 5%	1/10W 1/10W		<d10de></d10de>			
R1645 R1646	1-216-069-00 1-216-073-00 1-216-073-00 1-216-685-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	6.8K 10K 10K 27K	5% 5% 5% 0.50%	1/10W 1/10W 1/10W		D001 D002	8-719-920-05 8-719-109-68	DIODE SLP281C-50 DIODE RD3.6ESB1	
11041	1 210 000 11	HEIRE CHII	4 j ft	0. 30%	1/ 1/1		1			

IIIA	V	0
HA	X	3

DEE NO DADE NO	DECCRIPTION	DEMARK	IDEE NO	DADE NO	DDG CD I DW I OV	•			_
REF.NO. PART NO.	DESCRIPTION	REMARK	KEF.NU.	PART NO.	DESCRIPTION			REMARK 	
JW009 1-216-295-00 JW024 1-216-295-00 R001 1-247-713-11	METAL GLAZE 0 5% 1/ CARBON 1K 5% 1/	/10W /10W /4W /10W	C1112 C1113	1-163-018-00 1-126-160-11 1-163-119-00 1-163-103-00 1-164-004-11	CERAMIC CHIP 0. BLECT 1MI CERAMIC CHIP 120 CERAMIC CHIP 270 CERAMIC CHIP 0.	F OPF PF	10% 20% 5% 5% 10%	50V 50V 50V 50V 25V	
R003 1-216-295-00 R004 1-216-081-00	METAL GLAZE 0 5% 1/	/10W /10W	C1117 C1118 C1119	1-163-114-00 1-124-589-11 1-164-004-11 1-163-020-00 1-163-097-00	CERAMIC CHIP O. CERAMIC CHIP O.	MF 1MF 0082MF	5% 20% 10% 10% 5%	50V 16V 25V 50V 50V	
	RIABLE RESISTOR>		C1121	1-163-097-00	CERAMIC CHIP 15	PF	5%	50 V	
RV002 1-241-846-11 RV003 1-241-845-11 RV004 1-241-845-11	RES, VAR, CARBON 20K		C1122 C1123 C1130	1-163-222-11 1-163-097-00 1-163-097-00	CERAMIC CHIP 5PI CERAMIC CHIP 15I CERAMIC CHIP 15I CERAMIC CHIP 15I	F PF PF	0.25PF 5% 5% 5%	50V 50V 50V 50V	
RV006 1-241-845-11 RV007 1-226-773-11	RES, VAR, CARBON 20K RES, ADJ, METAL GLAZE 22K		<u> </u> -	<con< td=""><td>NECTOR></td><td></td><td></td><td></td><td></td></con<>	NECTOR>				
RV008 1-226-773-11 RV009 1-226-773-11	RES, ADJ, METAL GLAZE 22K RES, ADJ, METAL GLAZE 22K		CN1101	*1-565-488-11	CONNECTOR, BOARI	D TO BOARD	12P		
RV010 1-226-773-11	RES, ADJ, METAL GLAZE 22K		 	<010	DE>				
RV012 1-226-773-11	RES, ADJ, METAL GLAZE 22K RES, ADJ, METAL GLAZE 22K			8-719-404-46 8-719-404-46					
<\$W	TTCH>			<1C>					
S002 1-554-419-00	SWITCH, PUSH (1 KEY) SWITCH, PUSH (1 KEY) SWITCH, PUSH (1 KEY) SWITCH, PUSH (1 KEY)		IC1101	8-752-056-67					
	SWITCH, PUSH (1 KEY)			<001	L>				
S006 1-554-419-00	SWITCH, PUSH (1 KEY)			1-408-411-00 1-404-496-00	INDUCTOR 1 COIL	15UH			
**************************************	**************************************	******	L1103 L1104	1-404-496-00 1-408-411-00	COIL INDUCTOR 1 INDUCTOR CHIP 1	150H 150H			
			L1111	1-412-008-31	INDUCTOR CHIP 1	15UH			
	INECTOR>			<tra< td=""><td>NSISTOR></td><td></td><td></td><td></td><td></td></tra<>	NSISTOR>				
CN21 *1-564-518-11	PLUG, CONNECTOR 3P				TRANSISTOR 2SA11				
<010	DDE>		Q1102 Q1103 Q1104	8-729-920-74 8-729-216-22 8-729-216-22	TRANSISTOR 2SC24 TRANSISTOR 2SA11 TRANSISTOR 2SA11	162-G			
D21 8-719-023-78 D22 8-719-023-78	DIODE SEL3810DLC05 DIODE SEL3810DLC05			8-729-901-01	TRANSISTOR DTC14	14EK			
D23 8-719-023-78	DIODE SEL3810DLC05		Q1106 Q1107	8-729-901-01 8-729-109-44	TRANSISTOR DTC14 TRANSISTOR 25K94	1-X4			
	**************************************	**********	Q1108	8-729-920-74	TRANSISTOR 2SC24	112K-QR			
ה כצל צלכו ה	**********			<res< td=""><td>ISTOR></td><td>2</td><td></td><td></td><td></td></res<>	ISTOR>	2			
< CAF	ACITOR>	i	R1101 R1102	1-216-053-00 1-216-067-00		5K 5% 6K 5%	1/10W 1/10W		
C1101 1-163-119-00	CERAMIC CHIP 120PF 5%	50V	R1104	1-216-059-00 1-216-073-00	METAL GLAZE 10	7K 5%	1/10W 1/10W		
C1102 1-164-004-11 C1103 1-124-589-11 C1104 1-163-031-11	CERAMIC CHIP 0.1MF 10% ELECT 47MF 20% CERAMIC CHIP 0.01MF	25V 16V 50V		1-216-031-00 1-216-059-00	METAL GLAZE 18 METAL GLAZE 2.	30 5% 7K 5%	1/10W 1/10W		
C1105 1-163-114-00	CERAMIC CHIP 75PF 5%	500	R1107 R1108	1-216-071-00 1-216-039-00	METAL GLAZE 8.	2K 5%	1/10W 1/10W 1/10W		
C1106 1-163-101-00 C1107 1-164-004-11	CERAMIC CHIP 22PF 5% CERAMIC CHIP 0.1MF 10%	50V 25V	R1109	1-216-063-00 1-216-069-00	METAL GLAZE 3.	9K 5% 8K 5%	1/10W 1/10W		
C1108 1-163-119-00 C1109 1-163-031-11 C1110 1-163-117-00	CERAMIC CHIP 120PF 5% CERAMIC CHIP 0.01MF CERAMIC CHIP 100PF 5%	50V 50V	R1111	1-216-065-00		7K 5% 9K 5%	1/10W		
01110 1 107:111:00	OPRUMITO CHIL TOOLE 3%	50 V		1-216-063-00 1-216-069-00	METAL GLAZE 3. METAL GLAZE 6.	9K 5% 8K 5%	1/10W 1/10W		

SG

The components identified by in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation.

Should replacement be required, replace only with the value originally used.

Les composants identifies par une trame et une marque 🛆 sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The components identified by shading and mark \triangle are critical for safety. Replace only with part number specified.

REF.NO. PART NO.	DESCRIPTION			REMARK	REF.NO. PART NO. DESCRIPTION REMARK	** K -
R1114 1-216-055-00 R1115 1-216-061-00 R1116 1-216-069-00 R1117 1-216-061-00 R1118 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.8K 5 3.3K 5 6.8K 5 3.3K 5	% 1/10W % 1/10W % 1/10W % 1/10W		D201 <u>A</u> 8-719-971-08 DIODE ESAC39M O6C D601 <u>A</u> 8-719-510-27 DIODE D3SB60 D602 <u>A</u> 8-719-921-20 DIODE 1SS119TD D603 <u>A</u> 8-719-981-47 DIODE ERA38-06TP1 D604 <u>A</u> 8-719-981-47 DIODE ERA38-06TP1	
R1119 1-216-049-00 R1120 1-216-097-00 R1121 1-216-121-00 R1122 1-216-039-00 R1123 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1K 5 100K 5 1M 5 390 5 4.7K 5	% 1/10W % 1/10W % 1/10W		D605 & 8-719-113-44 D10DE RD20ES-T1B3 D651 & 8-719-971-08 D10DE ESAC39M O6C D0 180 462 4 400 410	2)
R1124 1-216-029-00 R1125 1-216-029-00 R1126 1-216-053-00 R1127 1-216-043-00 R1128 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	150 5 150 5 1.5K 5 560 5 1K 5	% 1/10W		IC601 A 1-809-086-12 HIC CH+1018	
R1129 1-216-091-00 R1130 1-216-295-00 R1131 1-216-073-00 R1132 1-216-073-00 R1133 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	56K 5 0 5 10K 5 10K 5 10K 5	% 1/10W % 1/10W % 1/10W % 1/10W % 1/10W		<pre></pre>	
R1134 1-216-091-00		56K 5	% 1/10W		<transistor></transistor>	
RV1101 1-238-015-11 RV1102 1-238-013-11	RES, ADJ, CARI RES, ADJ, CARI	3ON 4.7K			Q601 A8-729-322-18 TRANSISTOR 25K1402A	
cmn t	неговить.				<resistor></resistor>	
T1101 1-404-584-11		******	******	*****	R601 A1-205-940-51 CEMENT 1.5 5% 5W F R602 A1-205-940-51 CEMENT 1.5 5% 5W F R603 A1-215-904-11 METAL OXIDE 100K 5% 2W F R604 A1-215-904-11 METAL OXIDE 100K 5% 2W F R605 A1-212-865-61 FUSIBLE 22 5% 1/4W F	
	G BOARD (SOPS-	-1021)			R606 1-247-805-91 CARBON 82 5% 1/4W	
4-812-134-11	******* RIVET NYLON, 3	3.5¢			R607 ±1-260-128-91 CARBON 270K 5% 1/2W R608 ±1-260-128-91 CARBON 00/270K 5% 1/2W F R609 ±1-215-904-51 METAL OXIDE 100K 5% 2W F R610 ±1-207-455-11 WIRE 0.22 10% 1/2W	
C601 A1-136-889-11 C602 A1-136-889-11 C603 A1-161-973-51 C604 A1-161-973-51	METALIZED FILM CERAMIC 2 CERAMIC 2	1 0.22MF 220PF 220PF	20% 10%	250V 250V 400V 400V	R611 Å 1-247-789-91 CARBON 18 35% 1/4W R612 Å 1-247-795-91 CARBON 33 5% 1/4W R613 Å 1-215-904-51 METAL OXIDE 100K 5% 12W F R614 Å 1-247-815-91 CARBON 220 5% 1/4W R651 Å 1-215-886-51 METAL OXIDE 100 5% 2W F	
C605 A1-161-973-51 C608 A1-161-742-51 C609 A1-161-742-51 C610 A1-125-724-11 C611 A1-136-206-21 C612 A1-124-910-51	CERAMIC (CERAMIC (BLECT) METALIZED FILM). 0022MF J. 0022MF I.80MF	0-100-055-6 201 201 201 F 101	400V 400V 400V 400V 630V 50V	R654 A 1-260-107-91	
C613 A1-137-190-91 C614 A1-137-190-91 C615 A1+130-471-91 C651 A1+161-925-11 C652 A1-128-486-51	METALIZED FILMETALIZED FILMETAL	1 0.22MF NTE 0.00 100PF B 380MF	51 1MF 51 102 201	50 Y	ST919MOD . GRAOP & A ELE-BUET-A <variable resistor=""> ■RV651 A.1-237-443-11 RES, ADJ, CARBON 1K.9A.)</variable>	
C653 <u>A</u> 1-128-485-51 C654 <u>A</u> 1-130-483-91	ELECT PE TEREPHTHALA	220MF	20% NF 52			
900 1 17	AC C SATU.		n-03h-315-1		T601 (A.1-450-760-11 TRANSFORMER, CONVERTER 18 18 18 18 18 18 18 18 18 18 18 18 18	
CN610##1-560-436-11 CN651##1-564-518-11	PLUG, CONNECTO	JR 3P			*******	• •
<010	DE>				⚠ 1-413-720-11 SWITCHING REGULATOR (SOPS-1021) ⚠ 1-413-720-31 SWITCHING REGULATOR (SOPS-1021)	

The components identified by shading and mark Λ are critical for safety.

Replace only with part number specified.

Les composants identifies par une trame et une marque 🛕 sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

REF.NO.	PART	NO.

DESCRIPTION

REMARK

1-426-043-00	COIL, DEGAUSSING
Δ. 1-451-319-22 1-452-126-11	DEFLECTION YOKE (Y9FXC) MAGNET
<u>А. 1-532-747-11</u> 1-544-252-11	FUSE, GLASS TUBE (5A/125V) SPEAKER
1-555-724-00	MIDE CDOUND

-724-00 WIRE, GROUND -151-05 CRT (A20JKU10X) -651-05 CRT (M20JMP10X)

ACCESSORIES & PACKING MATERIALS ******************

PART NO.	DESCRIPTION	REMARK
1-551-812-11 1-690-871-11 2-990-241-02 2-990-242-01 *3-704-301-01	CGRD, POWER (10A/125Y) CABLE (MINI DIN) 8P HOLDER (A), PLUG HOLDER (B), PLUG BAG (STANDARD), PROTEC	TION
3-754-506-11 4-034-835-01 *4-034-954-01 *4-034-955-01 *4-034-956-01	MANUAL, INSTRUCTION PLATE, TALLY INDIVIDUAL CARTON CUSHION (UPPER) (ASSY) CUSHION (LOWER) (ASSY)	(PVM-8041Q ONLY)
*4-035-602-01	INDIVIDUAL CARTON	(PVM-8044Q ONLY)

PVM-8041Q/8044Q

SONY. SERVICE MANUAL

US Model Canadian Model

PVM-8041Q Chassis No. SCC-E96A-A PVM-8044Q Chassis No. SCC-E96C-A

SUPPLEMENT-1

INTRODUCTION

• B board: The transistor is changed to the pair transistor (Q189).

The diodes are changed to the three-terminal diodes.

(D185, D186, D187, D188, D191, D390 and D1382)

• D board : The transistors are changed to the pair transistors.

(Q569, Q576, Q579 and Q599)

The diodes are changed to the three-terminal diodes.

(D520, D521, D848, D1620, D1622 and D1623)

· S board: The pattern is modified.

Note)

Before using the circuit board, confirm that the parts number shown below and the parts number of the circuit board which is being used in your set are the same.

Board (Complete No.)	Board Part. No.
B (A-1135-700-A)	1-641-716-15
D (A-1346-018-A)	1-641-717-16
S (A-1394-343-A)	1-641-719-15

TABLE OF CONTENTS

Section	<u>Title</u>	Page				
1. DIA	GRAMS					
1-1.	Circuit Boards Location	. 3				
1-2.	Printed Wiring Boards and					
	Schematic Diagrams	• 3				
	S Board · · · · · · · · · · · · · · · · · · ·					
	D Board	. 7				
	B Board · · · · · · · · · · · · · · · · · · ·	• 16				
76						
2 FIF	CTRICAL PARTS LIST	. 31				

(CAUTION)

SHORT CIRCUIT THE ANODE OF THE PICTURE TUBE AND THE ANODE CAPTOTHE METAL CHASSIS, CRT SHIELD, OR CARBON PAINTED ON THE CRT, AFTER REMOVING THE ANODE.

WARNING!!

AN ISOLATION TRANSFORMER SHOULD BE USED DURING ANY SERVICE TO AVOID POSSIBLE SHOCK HAZARD, BECAUSE OF LIVE CHASSIS.

THE CHASSIS OF THIS RECEIVER IS DIRECTLY CONNECTED TO THE AC POWER LINE.

SAFETY-RELATED COMPONENT WARNING!

COMPONENTS IDENTIFIED BY SHADING AND MARK A ON THE SCHEMATIC DIAGRAMS, EXPLODED VIEWS AND IN THE PARTS LIST ARE CRITICAL TO SAFE OPERATION. REPLACE THESE COMPONENTS WITH SONY PARTS WHOSE PART NUMBERS APPEAR AS SHOWN IN THIS MANUAL OR IN SUPPLEMENTS PUBLISHED BY SONY. CIRCUIT ADJUSTMENTS THAT ARE CRITICAL TO SAFE OPERATION ARE IDENTIFIED IN THIS MANUAL. FOLLOW THESE PROCEDURES WHENEVER CRITICAL COMPONENTS ARE REPLACED OR IMPROPER OPERATION IS SUSPECTED.

(ATTENTION)

APRES AVOIR DECONNECTE LE CAP DE L'ANODE, COURTCIRCUITER L'ANODE DU TUBE CATHODIQUE ET CELUI DE L'ANODE DU CAPAU CHASSIS METALLIQUE DE L'APPAREIL, OU AU COUCHE DE CARBONE PEINTE SUR LE TUBE CATHODIQUE OU AU BLINDAGE DU TUBE CATHODIQUE.

ATTENTION!!

AFIN D'EVITER TOUT RISQUE D'ELECTROCUTION PROVENANT D'UN CHÁSSIS SOUS TENSION, UN TRANSFORMATEUR D'ISOLEMENT DOIT ETRE UTILISÉ LORS DE TOUT DÉPANNAGE. LE CHÁSSIS DE CE RÉCEPTEUR EST DIRECTEMENT RACCORDÉ À L'ALIMENTATION SECTEUR.

ATTENTION AUX COMPOSANTS RELATIFS ÁLA SÉCURITÉ!!

LES COMPOSANTS IDENTIFIÉS PAR UNE TRAME ET PAR UNE MAPQUE À SUR LES SCHÉMAS DE PRINCIPE, LES VUES EXPLOSÉES ET LES LISTES DE PIECES CONT D'UNE IMPORTANCE CRITIQUE POUR LA SÉCURITÉ DU FONCTIONNEMENT. NE LES REMPLACER QUE PAR DES COMPOSANTS SONY DONT LE NUMÉRO DE PIÉCE EST INDIQUÉ DANS LE PRÉSENT MANUEL OU DANS DES SUPPLÉMENTS PUBLIÉS PAR SONY. LES RÉGLAGES DE CIRCUIT DONT L'IMPORTANCE EST CRITIQUE POUR LA SÉCURITÉ DU FONCTIONNEMENT SONT IDENTIFIES DANS LE PRÉSENT MANUEL. SUIVRE CES PROCÉDURES LORS DE CHAQUE REMPLACEMENT DE COMPOSANTS CRITIQUES, OU LORSQU'UN MAUVAIS FONCTIONNEMENT EST SUSPECTÉ.

REF.NO.	PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
Q208 Q209 Q210 Q211 Q212	8-729-255-12 8-729-255-12 8-729-255-12	TRANSISTOR 2SA116 TRANSISTOR 2SC255 TRANSISTOR 2SC255 TRANSISTOR 2SC255 TRANSISTOR 2SK94	1-0 1-0			R167 R168 R169 R170 R171		METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	180K 220 47K	0.50% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
Q 299	8-729-422-27	TRANSISTOR 2SD601	A-Q			R172	1-216-043-00				1/10W 1/10W	
		ISTOR>				R173 R174 R175	1-216-069-00 1-216-057-00	METAL GLAZE METAL GLAZE	560 68K 6.8K 2.2K	5% 5%	1/10W 1/10W	
R101 R102 R103 R104 R105	1-216-089-00 1-216-025-00 1-216-091-00 1-216-061-00 1-216-025-00	METAL GLAZE 47K METAL GLAZE 100 METAL GLAZE 56K METAL GLAZE 3.3 METAL GLAZE 100	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R176 R177 R178 R179 R180	1-216-065-00 1-216-073-00 1-216-089-00 1-216-081-00 1-216-679-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	4.7K 10K 47K 22K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R106 R107 R108 R109 R110	1-216-065-00 1-216-025-00 1-216-113-00 1-216-065-00 1-216-049-00	METAL GLAZE 4.7 METAL GLAZE 100 METAL GLAZE 470 METAL GLAZE 4.7 METAL GLAZE 1K	K 5% 5% K 5% K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R181 R182 R183 R184	1-216-071-00 1-216-683-11 1-216-691-11 1-216-699-11	METAL CHIP METAL CHIP METAL CHIP METAL CHIP	8.2K 22K 47K 100K	5% 0.50% 0.50% 0.50%	1/10W 1/10W 1/10W 1/10W	
R111 R112	1-216-063-00 1-216-049-00	METAL GLAZE 3.9	K 5%	1/10W 1/10W		R185 R186	1-216-073-00 1-216-113-00	METAL GLAZE METAL GLAZE	10K 470K	5% 5%	1/10W 1/10W	
R113 R114 R115	1-249-401-11 1-216-045-00 1-216-061-00	CARBON 47 METAL GLAZE 680 METAL GLAZE 3.3	5% K 5%	1/4W 1/10W 1/10W 1/10W	F	R187 R188 R189 R190 R191	1-216-073-00 1-216-113-00 1-216-103-00 1-216-107-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 470K 180K 270K 100K	5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R117 R118 R119 R120 R121	1-216-073-00 1-216-025-00 1-216-647-11 1-216-647-11 1-216-025-00	METAL GLAZE 100	5% 0.50% 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W		R192 R193 R194 R195	1-216-103-00 1-216-105-00 1-216-089-00 1-216-113-00	METAL GLAZE METAL GLAZE		5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R122 R123 R124 R125 R126	1-216-083-00 1-216-073-00 1-216-073-00 1-216-083-00 1-216-093-00	METAL GLAZE 27M METAL GLAZE 10M METAL GLAZE 10M METAL GLAZE 27M METAL GLAZE 68M	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R196 R197 R198 R199	1-216-073-00 1-216-671-11 1-216-049-00 1-216-065-00	METAL GLAZE METAL CHIP METAL GLAZE	10K 6.8K	5% 0.50%	1/10W	
R127	1-216-037-00			1/10W 1/10W 1/10W		R200 R201	1-216-065-00 1-216-043-00	METAL GLAZE METAL GLAZE	4.7K 560	5% 5%	1/10W 1/10W	
R128 R129 R130 R131	1-216-083-00 1-216-067-00 1-216-097-00 1-216-089-00		5% 5% K 5% K 5%	1/10W 1/10W 1/10W 1/10W		R202 R203 R204 R205	1-216-033-00 1-216-045-00 1-216-073-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE	220 680 10K 10K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R132 R133 R134 R135 R136	1-216-057-00 1-216-079-00 1-216-645-11 1-216-645-11 1-216-091-00	METAL CHIP 560 METAL CHIP 560	0.50% 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W		R206 R207 R208 R209	1-216-043-00 1-216-045-00 1-216-671-11 1-216-043-00	METAL GLAZE METAL CHIP	680 6.8K 560	5% 0.50% 5%	1/10W	
R137 R138	1-216-045-00 1-216-657-11	METAL GLAZE 680 METAL CHIP 1.8	5%	1/10W 1/10W		R210 R211	1-216-033-00 1-216-099-00	METAL GLAZE METAL GLAZE	220 120K	5% 5%	1/10W 1/10W	
R139 R140 R141	1-216-079-00 1-216-653-11 1-216-063-00	METAL GLAZE 180 METAL CHIP 1.2 METAL GLAZE 3.9	5% K 0.50% K 5%	1/10W 1/10W 1/10W		R212 R213 R214 R215	1-216-065-00 1-216-043-00 1-216-043-00 1-216-127-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 560 560 1.8M	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R142 R143 R145 R146 R147	1-216-073-00 1-216-085-00 1-216-065-00 1-216-037-00 1-216-089-00	METAL GLAZE 10M METAL GLAZE 33M METAL GLAZE 4.7M METAL GLAZE 330 METAL GLAZE 47M	5% K 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R216 R217 R218 R219	1-216-043-00 1-216-033-00 1-216-295-00 1-216-043-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220 0 560	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R148 R155	1-216-671-11 1-216-655-11	METAL CHIP 6.8 METAL CHIP 1.5	K 0.50%	1/10W 1/10W		R220 R221	1-216-043-00 1-216-035-00	METAL GLAZE METAL GLAZE			1/10W 1/10W	
R157 R158 R160	1-216-679-11 1-216-677-11 1-216-065-00	METAL CHIP 15METAL CHIP 12METAL GLAZE 4.7	0.50% 0.50% K 5%	1/10W 1/10W 1/10W		R222 R223 R224 R225	1-216-033-00 1-216-073-00 1-216-073-00 1-216-095-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220 10K 10K 82K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R161 R163 R164 R165 R166	1-216-089-00 1-216-073-00 1-216-677-11 1-216-107-00 1-216-681-11	METAL GLAZE 47H METAL GLAZE 10H METAL CHIP 12H METAL GLAZE 270 METAL CHIP 18H	5% 0.50% K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R226 R227 R228 R229	1-216-073-00 1-216-035-00 1-216-065-00 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 270 4.7K 470K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	

REF.NO.	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R230 R231 R232 R233 R234	1-216-081-00 1-216-113-00 1-216-105-00 1-216-073-00 1-216-041-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	22K 470K 220K 10K 470	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R301 R302 R303 R304 R305	1-216-065-00 1-216-113-00 1-216-065-00 1-216-049-00 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 470K 4.7K 1K 1K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R235 R236 R237 R238 R239	1-216-041-00 1-216-077-00 1-216-025-00 1-216-065-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	470 15K 100 4.7K 4.7K	5%	1/10W 1/10W 1/10W 1/10W 1/10W		R306 R306 R307 R308 R309 R310	1-216-089-00 1-216-089-00 1-216-089-00 1-216-089-00 1-216-089-00 1-216-033-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	47K 220 47K 47K 220	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R240 R241 R242 R243 R244 R245	1-216-033-00 1-216-073-00 1-216-051-00 1-216-113-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220 10K 1.2K 470K 4.7K		1/10W 1/10W 1/10W 1/10W 1/10W		R311 R312 R313 R314 R315 R316	1-216-089-00 1-216-089-00 1-216-033-00 1-216-089-00 1-216-113-00 1-216-105-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	47K 47K 220 47K 470K 220K	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W 1/10W	
R246 R247 R248 R249 R250	1-216-679-11 1-216-103-00 1-216-093-00 1-216-095-00 1-216-109-00 1-216-101-00	METAL GLAZE METAL GLAZE METAL GLAZE	180K 68K 82K 330K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R317	1-216-109-00 1-216-105-00 1-216-099-00 1-216-099-00 1-216-043-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	330K 220K 120K 120K 120K 560	5 % % % % % % % % % % % % % % % % % % %	1/10W 1/10W 1/10W 1/10W 1/10W	
R251 R252 R253 R254 R255	1-216-105-00 1-216-101-00 1-216-101-00 1-216-033-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	150K 220K 150K 150K 220		1/10W 1/10W 1/10W 1/10W 1/10W		R322 R323 R324 R325 R326	1-216-109-00 1-216-109-00 1-216-109-00 1-216-097-00 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	330K 330K 330K 100K 470K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	4
R256 R258 R259 R260	1-216-107-00 1-216-041-00 1-216-073-00 1-216-025-00 1-216-035-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	3.3K 270K 470 10K 100		1/10W 1/10W 1/10W 1/10W 1/10W		R328 R329 R330 R331 R332	1-216-073-00 1-216-107-00 1-216-105-00 1-216-025-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 270K 220K 100 100K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R262 R263 R264 R265	1-216-097-00 1-216-029-00 1-216-065-00 1-216-067-00 1-216-073-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	270 100K 150 4.7K 5.6K		1/10W 1/10W 1/10W 1/10W 1/10W		R333 R334 R335 R336 R337	1-216-097-00 1-216-025-00 1-216-099-00 1-216-095-00 1-216-105-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100K 100 120K 82K 220K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R267 R268 R269 R270	1-216-081-00 1-216-103-00 1-216-081-00 1-216-025-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 10K 22K 180K 22K		1/10W 1/10W 1/10W 1/10W 1/10W		R338 R339 R340 R341 R342	1-216-025-00 1-216-099-00 1-216-095-00 1-216-105-00 1-216-047-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100 120K 82K 220K 820	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R272 R273 R275 R276	1-216-103-00 1-216-113-00 1-216-081-00 1-216-037-00 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470K 22K 330	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W			1-216-053-00 1-216-664-11 1-216-661-11 1-216-105-00 1-216-061-00	METAL GLAZE METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE	1.5K 3.6K 2.7K 220K 3.3K	5% 0.50% 0.50% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R278 R280 R281 R282	1-216-059-00 1-216-061-00 1-216-061-00 1-216-037-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	2.7K 3.3K 3.3K 330	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R349 R350 R351 R352 R353	1-216-650-11 1-216-653-11 1-216-650-11 1-216-653-11 1-216-650-11	METAL CHIP METAL CHIP METAL CHIP METAL CHIP METAL CHIP	910 1.2K 910 1.2K 910	0.50% 0.50% 0.50% 0.50% 0.50%	1/10W 1/10W	
R284 R286 R287 R288 R289 R290	1-216-059-00 1-216-061-00 1-216-061-00 1-216-037-00 1-216-049-00 1-216-059-00	METAL GLAZE	2.7K 3.3K 3.3K 330 1K 2.7K	5%% 5%% 5%% 5%%	1/10W 1/10W 1/10W 1/10W		R354 R355 R356 R357 R358	1-216-653-11 1-216-113-00 1-216-113-00 1-216-095-00 1-216-113-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.2K 470K 470K 82K 470K	0.50% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R292 R293 R295 R296 R297	1-216-051-00 1-216-061-00 1-216-057-00 1-216-659-11 1-216-659-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP METAL CHIP	3.3K 3.3K 2.2K 2.2K	5% 5% 5% 5% 0.50% 0.50%	1/10W 1/10W 1/10W 1/10W		R359 R360 R363 R364 R365	1-216-081-00 1-216-089-00 1-216-069-00 1-216-073-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	22K 47K 6.8K 10K 10K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R298 R300	1-216-065-00 1-216-065-00	METAL GLAZE METAL GLAZE	4.7K 4.7K	5%	1/10W 1/10W 1/10W		R366 R367	1-216-244-00 1-216-244-00	METAL GLAZE METAL GLAZE	82K 82K	5% 5%	1/8W 1/8W	

REF.NO. PART NO.	DESCRIPTION			REMARK	REF. NO.	PART NO.	DESCRIPTION				REMARK
R368 1-216-055- R369 1-216-248- R370 1-216-115- R371 1-216-067- R372 1-216-115-	OO METAL GLAZE OO METAL GLAZE OO METAL GLAZE OO METAL GLAZE OO METAL GLAZE	1.8K 5% 120K 5% 560K 5% 5.6K 5% 560K 5%	1/10W 1/8W 1/10W 1/10W 1/10W		R1040 R1042 R1043 R1044 R1045	1-216-025-00 1-216-047-00 1-216-057-00 1-216-061-00 1-216-125-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100 820 2.2K 3.3K 1.5M		1/10W 1/10W 1/10W 1/10W 1/10W	
R374 1-216-115- R375 1-216-683- R376 1-216-663- R378 1-216-025- R379 1-216-641-	1 METAL CHIP 1 METAL CHIP 0 METAL GLAZE 1 METAL CHIP	390 0.50	1/10W 0% 1/10W 0% 1/10W 1/10W 0% 1/10W		R1046 R1047 R1048 R1049 R1050	1-216-047-00 1-216-057-00 1-216-061-00 1-216-125-00 1-216-689-11 1-216-085-00 1-216-085-00 1-216-059-00 1-216-059-00 1-216-093-00 1-216-097-00 1-216-097-00 1-216-109-00 1-216-109-00 1-216-109-00 1-216-109-00 1-216-109-00 1-216-109-00 1-216-109-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	39K 4.7K 1K 33K 2.7K 220K	0.50% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R380 1-216-668- R381 1-216-089- R382 1-216-025- R383 1-216-641- R384 1-216-668-	O METAL GLAZE 1 METAL CHIP 1 METAL CHIP	5.1K 0.50 47K 5% 100 5% 390 0.50 5.1K 0.50	1/10W 1/10W 1/10W 1/10W 1/10W 1/10W		R1051 R1053 R1054 R1055 R1056	1-216-105-00 1-216-091-00 1-216-093-00 1-216-097-00 1-216-037-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220K 56K 68K 100K 330 4.7K	59	1/10W 1/10W 1/10W 1/10W 1/10W	
R385 1-216-117-0 R386 1-216-025-0 R387 1-216-641- R388 1-216-668- R389 1-216-089-0 R390 1-216-105-0	O METAL GLAZE 1 METAL CHIP 1 METAL CHIP O METAL GLAZE	390 0.50 5.1K 0.50 47K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1057 R1058 R1059 R1060 R1061	1-216-109-00 1-216-109-00 1-216-109-00 1-216-109-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	330K 330K 330K 330K		1/10W 1/10W 1/10W 1/10W 1/10W	
R390 1-216-105-0 R391 1-216-081-0 R392 1-216-113-0 R393 1-216-085-0 R394 1-216-113-0		220K 5% 22K 5% 470K 5% 33K 5% 470K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1063 R1064 R1065 R1066	1-216-103-00 1-216-103-00 1-216-103-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	180K 180K 180K 180K 10K	5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	1/10W 1/10W 1/10W 1/10W 1/10W	
R398 1-249-434- R399 1-216-073-(R1001 1-216-073-(R1002 1-216-047-(R1003 1-216-055-(1 CARBON O METAL GLAZE O METAL GLAZE O METAL GLAZE	27K 5% 10K 5% 10K 5% 820 5%	1/4W 1/10W 1/10W 1/10W		R1068 R1069 R1070 R1071	1-216-073-00 1-216-049-00 1-216-133-00 1-216-085-00 1-216-113-00 1-216-099-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 1K 3.3M 33K 470K 120K		1/10W 1/10W 1/10W 1/10W 1/10W	
R1004 1-216-061-0 R1005 1-216-047-0 R1006 1-216-055-0 R1007 1-216-061-0	O METAL GLAZE O METAL GLAZE O METAL GLAZE	1.8K 5% 3.3K 5% 820 5% 1.8K 5% 3.3K 5%	1/10W 1/10W 1/10W 1/10W		R1073 R1075 R1076 R1077	1-216-131-11 1-216-065-00 1-216-101-00 1-216-103-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	2.7M 4.7K 150K 180K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1009 1-216-053-0 R1010 1-216-061-0 R1011 1-216-033-0 R1012 1-216-051-0	O METAL GLAZE O METAL GLAZE O METAL GLAZE	820 5% 1.5K 5% 3.3K 5% 220 5% 1.2K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1080 R1081 R1082 R1083	1-216-097-00 1-216-105-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	2.7M 100K 100K 220K 4.7K 3.9K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1015 1-216-033-0 R1016 1-216-089-0 R1017 1-216-045-0	O METAL GLAZE 2 O METAL GLAZE 4 O METAL GLAZE 6	1.2K 5% 100K 5% 220 5% 47K 5% 680 5%	1/10W 1/8W 1/10W 1/10W 1/10W		R1086	1-216-063-00 1-216-073-00 1-216-121-00 1-216-047-00 1-216-049-00	METAL GLAZE	10K	5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1018 1-216-043-0 R1019 1-216-033-0 R1020 1-216-089-0 R1021 1-216-045-0 R1022 1-216-025-0	O METAL GLAZE 2 O METAL GLAZE 4 O METAL GLAZE 6 O METAL GLAZE 1	560 5% 220 5% 47% 5% 680 5% 100 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1091 R1092 R1093 R1094 R1095	1-216-049-00 1-216-049-00 1-216-121-00 1-216-075-00 1-216-075-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1K 1K 1M 12K 12K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1023 1-216-073-0 R1024 1-216-025-0 R1025 1-216-033-0 R1026 1-216-061-0 R1027 1-216-101-0	O METAL GLAZE	10K 5% 100 5% 220 5% 3.3K 5% 150K 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1096 R1200 R1201 R1207 R1208	1-216-075-00 1-216-699-11 1-218-754-11 1-216-061-00 1-216-065-00	METAL GLAZE METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE	12K 100K 120K 3.3K 4.7K	5% 0.50% 0.50% 5%	1/10W 1/10W	
R1028 1-216-033-0 R1029 1-216-061-0 R1030 1-216-089-0 R1031 1-216-033-0 R1032 1-216-061-0	O METAL GLAZE 3 O METAL GLAZE 4 O METAL GLAZE 2	220 5% 3.3K 5% 47K 5% 220 5% 3.3K 5%	1/10W 1/10W 1/10W 1/10W 1/10W	!	R1220 R1221 R1222 R1223 R1225	1-216-055-00 1-216-055-00 1-216-055-00 1-216-689-11 1-215-876-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL OXIDE	1.8K 1.8K 1.8K 39K 15K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W 1W F	,
R1033 1-216-081-0 R1035 1-216-073-0 R1036 1-216-089-0 R1038 1-216-081-0) METAL GLAZE 1) METAL GLAZE 4	22K 5% 10K 5% 47K 5% 22K 5%	1/10W 1/10W 1/10W 1/10W		R1226 R1227	1-215-876-00 1-215-876-00 1-249-421-11	METAL OXIDE METAL OXIDE CARBON	15K 15K 2.2K	5%	1W F 1W F 1/4W F	•

PVM-8041Q/8044Q

REF.NO. PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R1229 1-249-421-11 R1230 1-249-421-11 R1231 1-216-029-00 R1232 1-216-029-00 R1233 1-216-029-00	CARBON CARBON METAL GLAZE METAL GLAZE METAL GLAZE	2.2K 2.2K 150 150 150		1/4W 1/4W 1/10W 1/10W 1/10W	F	R1349 R1350 R1351		METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 10K 10K 10K 10K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1234 1-216-029-00 R1235 1-216-029-00 R1236 1-216-029-00 R1237 1-249-419-11 R1238 1-249-419-11	METAL GLAZE METAL GLAZE METAL GLAZE CARBON CARBON	150 150 150 1.5K 1.5K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/4W 1/4W	F F	R1353 R1371 R1372 R1373 R1392	1-216-115-00 1-216-057-00 1-216-057-00 1-216-057-00 1-216-089-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	560K 2.2K 2.2K 2.2K 47K	5% 5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1239 1-249-419-11 R1270 1-216-079-00 R1271 1-216-057-00 R1280 1-216-109-00 R1290 1-216-071-00	CARBON METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.5K 18K 2.2K 330K 8.2K	5% 5% 5% 5%	1/4W 1/10W 1/10W 1/10W 1/10W	F	R1393	1-216-095-00 <var< td=""><td>METAL GLAZE IABLE RESISTOR</td><td></td><td></td><td>1/10W</td><td></td></var<>	METAL GLAZE IABLE RESISTOR			1/10W	
R1291 1-216-081-00 R1294 1-216-069-00 R1295 1-216-109-00 R1296 1-216-095-00 R1297 1-216-071-00	METAL GLAZE METAL GLAZE METAL GLAZE	22K 6.8K 330K 82K 8.2K		1/10W 1/10W 1/10W 1/10W 1/10W		RV102 RV103 RV104	1-241-763-11 1-241-763-11 1-238-009-11 1-238-009-11 1-241-627-11	RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI	RMET 4. RBON 22 RBON 22	7K 20 20		
R1298 1-216-071-00 R1299 1-216-071-00 R1300 1-216-089-00 R1301 1-216-065-00 R1302 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 8.2K 47K 4.7K 4.7K		1/10W 1/10W 1/10W 1/10W 1/10W		RV108 RV109 RV110	1-241-627-11 1-241-627-11 1-241-630-11 1-241-765-11 1-241-630-11	RES, ADJ, CAI RES, ADJ, CEI RES, ADJ, CAI	RBON 1K RBON 10 RMET 22 RBON 10	K PK PK DK		
R1303 1-216-113-00 R1304 1-216-091-00 R1305 1-216-093-00 R1306 1-216-063-00 R1307 1-216-041-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470K 56K 68K 3.9K 470	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	·	RV112 RV113 RV114 RV115	1-238-019-11 1-241-631-11	RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI	RBON 47 RBON 47 RBON 47 RBON 22	'K 'K 'K ?K		
R1308 1-216-041-00 R1309 1-216-063-00 R1310 1-216-119-00 R1313 1-216-101-00 R1314 1-216-053-00	METAL GLAZE METAL GLAZE METAL GLAZE	470 3.9K 820K 150K 1.5K		1/10W 1/10W 1/10W 1/10W 1/10W		RV119 RV120 RV121	1-241-631-11 1-241-631-11 1-241-631-11 1-241-631-11 1-241-631-11	RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI	RBON 22 RBON 22 RBON 22 RBON 22	2K 2K 2K 2K		
R1315 1-216-077-00 R1320 1-216-083-00 R1321 1-216-093-00 R1322 1-216-037-00 R1323 1-216-057-00	METAL GLAZE METAL GLAZE METAL GLAZE	15K 27K 68K 330 2.2K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		RV124 RV125	1-241-631-11 1-241-628-11 1-241-627-11 1-241-627-11 1-241-631-11	RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI	RBON 2. RBON 1K RBON 1K	2K ((
R1324 1-216-121-00 R1325 1-216-085-00 R1326 1-216-065-00 R1327 1-216-099-00 R1328 1-216-099-00	METAL GLAZE METAL GLAZE METAL GLAZE	1 M 33 K 4.7 K 120 K 120 K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	,	SEP101	<mod 1-808-654-11</mod 	ULE> Module Stal>				
R1329 1-216-093-00 R1330 1-216-063-00 R1331 1-216-051-00 R1332 1-216-057-00 R1333 1-216-057-00	METAL GLAZE METAL GLAZE METAL GLAZE	68K 3.9K 1.2K 2.2K 2.2K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		X101 X102 ******	1-527-722-00	OSCILLATOR, VIBRATOR, CR	YSTAL		*****	******
R1334 1-216-055-00 R1335 1-216-035-00 R1336 1-216-089-00 R1337 1-216-113-00 R1338 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE	1.8K 270 47K 470K 1K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W			1-533-189-11 *3-738-015-01	COVER, (DIA.	***** 6) CAI	RBON VI	R	
R1339 1-216-097-00 R1340 1-216-097-00 R1341 1-216-111-00 R1342 1-216-694-11 R1343 1-216-121-00	METAL GLAZE METAL GLAZE METAL CHIP	100K 100K 390K 62K 1M	5% 5% 5% 0.50% 5%	1/10W 1/10W 1/10W 1/10W 1/10W			<caf< td=""><td>SCREW (M3X10</td><td>), P, S</td><td>Š₩`(+)</td><td>20%</td><td>174</td></caf<>	SCREW (M3X10), P, S	Š₩`(+)	20%	174
R1344 1-216-073-00 R1345 1-216-055-00 R1346 1-216-047-00 R1347 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 1.8K 820 10K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W		C501 C502 C503 C504 C505	1-124-477-11 1-124-907-11 1-126-103-11 1-124-902-00 1-106-381-12	ELECT ELECT ELECT	47MF 10MF 470MF 0.47MF 0.039P		20% 20% 20% 20% 10%	16V 50V 16V 50V 100V

-	_	
	_	

REF.NO.	PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION			REMARK
C506 C507 C508 C509 C510	1-124-903-11 1-106-367-00 1-124-903-11 1-136-173-00 1-136-161-00	MYLAR Elect	1MF 0.01MF 1MF 0.47MF 0.047MF	20% 10% 20% 5%	50V 100V 50V 50V 50V	C840 C841 C843 C844 C845	1-163-209-00 1-163-209-00 1-124-902-00 1-124-902-00 1-124-477-11	ELECT 0		5% 20% 20%	50V 50V 50V 50V 25V
C511 C512 C513 C514 C515	1-124-903-11 1-106-375-12 1-106-375-12 1-106-371-00 1-124-925-11	MYLAR MYLAR MYLAR	1MF 0.022MF 0.022MF 0.015MF 2.2MF	20% 10% 10% 10% 20%	50V 100V 100V 100V 50V	C846 C847 C848 C849	1-124-907-11 1-124-916-11 1-131-351-00	ELECT 10 ELECT 2: TANTALUM 4 CERAMIC CHIP 0	OMF 2MF .7MF	20% 20% 20% 10% 10% 20%	50V 50V 35V 50V 50V
C516 C517 C518 C519 C520	1-124-925-11 1-130-480-00 1-163-245-11 1-124-927-11 1-163-129-00	FILM CERAMIC CHIP ELECT CERAMIC CHIP	4.7MF 330PF	20% 5% 5% 20% 5%	50V 50V 50V 50V 50V	C1602 C1603 C1604 C1605 C1606	1-164-161-11 1-104-348-11 1-128-500-51 1-124-922-11 1-163-009-11	CERAMIC CHIP O	.0022MF 5MF 000MF	10% 20% 20% 20% 10%	50V 50V 50V 50V 50V
C521 C523 C524 C525 C526		MYLAR CERAMIC CERAMIC CERAMIC	10MF 0.0068MF 680PF 330PF 100PF	20% 10% 10% 5%	50V 100V 50V 50V 50V	C1607 C1608 C1609 C1610 C1611	1-124-907-11 1-124-916-11 1-163-009-11 1-124-927-11 1-124-482-11	ELECT 22 CERAMIC CHIP 0 ELECT 4 ELECT 32	OMF 2MF .001MF .7MF 3MF	20% 20% 10% 20% 20%	50V 50V 50V 35V
C527 C528 C529 C530 C531		ELECT CERAMIC CHIP TANTALUM	47MF 15PF 6.8MF	20% 10% 20% 5% 10%	50V 50V 50V 50V 16V	C1613 C1614 C1615 C1620	1-164-232-11 1-124-465-00 1-163-133-00	CERAMIC CHIP O. CERAMIC CHIP O. ELECT O. CERAMIC CHIP 47	.01MF .47MF 70PF	5% 10% 10% 20% 5%	50V 50V 50V 50V
C533 C534 C535 C536	1-124-557-11 1-124-927-11 1-124-768-11 1-136-161-00 1-124-927-11	ELECT ELECT FILM ELECT	1000MF 4.7MF 4.7MF 0.047MF 4.7MF	20% 20% 20% 5% 20%	25V 50V 50V 50V 50V	}	1-163-035-00	CERAMIC CHIP IC CERAMIC CHIP O NECTOR>		5%	50V 50V
C537 C538 C539 C540 C541	1-124-484-11 1-124-910-11 1-136-113-00 1-163-017-00 1-163-035-00	CERAMIC CHIP	0.047MF	20% 20% 5% 10%	35V 50V 200V 50V 50V	CN502 CN504 CN505	1-506-477-11 *1-564-507-11 *1-564-509-11	PLUG, CONNECTOR PIN, CONNECTOR PLUG, CONNECTOR PLUG, CONNECTOR PLUG, CONNECTOR	12P R 4P R 6P		
C542 C545 C546 C547 C548	1-126-103-11 1-126-101-11 1-124-907-11 1-124-907-11 1-124-907-11	ELECT ELECT ELECT ELECT	470MF 100MF 10MF 10MF 10MF	20% 20% 20% 20% 20%	16V 16V 50V 50V 50V	CN508 CN509	*1-564-104-00 *1-564-506-11 <dio< td=""><td>PIN, CONNECTOR PLUG, CONNECTOR DE></td><td>(B3P-VH) : R 3P</td><td>3P</td><td></td></dio<>	PIN, CONNECTOR PLUG, CONNECTOR DE>	(B3P-VH) : R 3P	3 P	
C549 C550 C551 C552 C553	1-124-907-11 1-124-907-11 1-124-927-11 1-101-004-00 1-126-103-11	CERAMIC	10MF 10MF 4.7MF 0.01MF 470MF	20% 20% 20% 20%	50V 50V 50V 50V 16V	D501 D502 D503 D504 D506	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46 8-719-908-03	DIODE MA110 DIODE MA110 DIODE MA110 DIODE MA110 DIODE GPO8D			
C563 C564 C567 C568 C569	1-106-383-00 1-163-009-11 1-124-907-11 1-130-736-11 1-130-471-00	MYLAR CERAMIC CHIP ELECT FILM FILM	10MF 0.01MF 0.001MF	10% 10% 20% 5%	100V 50V 50V 50V 50V	D507 D508 D511 D512 D514	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110 DIODE MA110 DIODE MA110 DIODE MA110			
C570 C571 C572 C574 C575	1-106-351-00 1-106-351-00	CERAMIC CHIP ELECT CERAMIC MYLAR MYLAR	470MF 0.01MF 0.0022MF 0.0022MF	5% 20% 10% 10%	50V 50V 50V 100V 100V	D520 D521 D831 D832 D833	8-719-800-76 8-719-800-76 8-719-404-46 8-719-404-46 8-719-404-46	DIODE 1SS226 DIODE 1SS226 DIODE MA110 DIODE MA110 DIODE MA110			
C831 C832 C833 C834 C835	1-163-009-11 1-163-121-00 1-163-209-00	ELECT ELECT CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	150PF 0.0015MF	20% 20% 10% 5%	50V 50V 50V 50V	D834 D835 D836 D848 D1601	8-719-404-46 8-719-109-89 8-719-977-69 8-719-800-76 8-719-105-XX	DIODE MA110 DIODE RD5.6ES-E DIODE DTZ24B DIODE 1SS226 DIODE RD6.2M-B1			
	1-136-163-00	ELECT CERAMIC CHIP FILM MYLAR	10MF 0.0015MF 0.068MF 0.0022MF	20% 5% 5% 10%	50V 50V 50V 100V	D1603 D1606 D1607	8-719-977-61 8-719-981-00 8-719-981-00	DIODE DTZ20B DIODE ERC81-004 DIODE ERC81-004			

The components identified by shading and mark Δ are critical for safety.

Replace only with part number specified.

Les composants identifies par une trame et une marque A sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

REF.NO.	PART NO.	DESCRIPTION	REMARK	REF.NO.	PART NO.	DESCRIPTION		REMARK
D1609 D1610 D1611	8-719-977-49	DIODE MA110 TRANSISTOR N13T1		Q532 Q569 Q576 Q579 Q599	8-729-907-26 8-729-920-48	TRANSISTOR 2SD601 TRANSISTOR IMX1 TRANSISTOR IMH2 TRANSISTOR IMH2 TRANSISTOR IMH2	A-Q	
D1617 D1618 D1620 D1621	8-719-510-12	DIODE DTZ15B DIODE DTZ15B DIODE MA152WK DIODE DIOSC4M		Q833 Q834 Q835 Q836 Q1601	8-729-216-22 8-729-422-27 8-729-422-27 8-729-255-12 8-729-422-27	TRANSISTOR 2SA110 TRANSISTOR 2SD60 TRANSISTOR 2SC60 TRANSISTOR 2SC25 TRANSISTOR 2SD60	A-Q A-Q 1-0 A-Q	
D1623 D1626 D1627 D1628	8-719-400-18 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110		Q1603 Q1604 Q1605 Q1606	8-729-216-22 8-729-119-80 8-729-133-42	TRANSISTOR 2SD601 TRANSISTOR 2SA116 TRANSISTOR 2SC268 TRANSISTOR 2SC233	A-Q 2-G 8-LK 4-L	
	8-719-404-46 8-719-404-46 <fus< td=""><td>DIODE MA110</td><td></td><td>Q1608 Q1609 Q1610</td><td>8-729-422-27 8-729-422-27</td><td>TRANSISTOR 2SD601 TRANSISTOR 2SD601 TRANSISTOR 2SD601</td><td>A-Q A-Q A-Q</td><td></td></fus<>	DIODE MA110		Q1608 Q1609 Q1610	8-729-422-27 8-729-422-27	TRANSISTOR 2SD601 TRANSISTOR 2SD601 TRANSISTOR 2SD601	A-Q A-Q A-Q	
F1601A	. 1-532-777-21	FUSE, MICRO (SECONDARY) (1.25A/1	25V)	Q1611 Q1612	8-729-422-27 8-729-422-27	TRANSISTOR 2SD601 TRANSISTOR 2SD601	A-Q A-Q	
I C502	<ic> 8-759-909-70 8-759-100-60 8-759-801-98</ic>	IC CX23025 IC UPC1377C		Q1614 Q1615 Q1616	8-729-422-27 8-729-216-22 8-729-216-22	TRANSISTOR 2SD601 TRANSISTOR 2SD601 TRANSISTOR 2SA116 TRANSISTOR 2SA116 TRANSISTOR 2SA116	A-Q 2-G 2-G	
I C504	8-759-701-79 8-759-009-51	IC MC7812CT IC MC14538BF		Q1618	8-729-216-22	TRANSISTOR 2SA116	2-G	
I C832	8-759-509-29 8-759-509-37	IC XRU4070BF			<res< td=""><td>ISTOR></td><td></td><td></td></res<>	ISTOR>		
I C833	8-759-009-51 8-759-509-91	IC MC14538BF		R501 R502 R503 R504 R505	1-216-089-00 1-216-089-00 1-249-437-11 1-216-073-00 1-249-393-11	METAL GLAZE 47M METAL GLAZE 47M CARBON 47M METAL GLAZE 10M CARBON 10	5% 5% 5%	1/10W 1/10W 1/4W F 1/10W 1/4W F
JR510	1-216-295-00	METAL GLAZE 0 5% 1/10W		R506 R507	1-216-071-00 1-216-059-00	METAL GLAZE 8.2 METAL GLAZE 2.7	K 5%	1/10W 1/10W
	<c01< td=""><td></td><td></td><td> R508 R509 R510</td><td>1-216-085-00 1-216-687-11 1-216-683-11</td><td>METAL GLAZE 33M METAL CHIP 33M METAL CHIP 22M</td><td>5% 0.50%</td><td>1/10W 1/10W 1/10W</td></c01<>			R508 R509 R510	1-216-085-00 1-216-687-11 1-216-683-11	METAL GLAZE 33M METAL CHIP 33M METAL CHIP 22M	5% 0.50%	1/10W 1/10W 1/10W
L501 L502 L503 L506 L1601	1-412-530-31	INDUCTOR 33MMH INDUCTOR 15UH COIL, CHOKE (PMC) 39OUH INDUCTOR 27UH COIL (WITH CORE) 47UH		R511 R512	1-216-675-11	METAL CHIP 10k	0.50% K 0.50% K 5% K 0.50%	1/10W 1/10W
L1602 L1603	1-402-785-11 1-410-397-21	COIL, CHOKE 600UH FERRITE BEAD INDUCTOR		R516 R517	1-216-073-00 1-218-762-11		5%	1/10W 1/10W
	<tra< td=""><td>NSISTOR></td><td></td><td>R518 R519 R520</td><td>1-249-422-11 1-216-085-00 1-216-677-11</td><td>CARBON 2.7 METAL GLAZE 338 METAL CHIP 120</td><td>K 5%</td><td>1/4W F 1/10W 1/10W</td></tra<>	NSISTOR>		R518 R519 R520	1-249-422-11 1-216-085-00 1-216-677-11	CARBON 2.7 METAL GLAZE 338 METAL CHIP 120	K 5%	1/4W F 1/10W 1/10W
Q501 Q502 Q503 Q504 Q505	8-729-901-01 8-729-901-01 8-729-901-06 8-729-901-01 8-729-422-27	TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTA144EK TRANSISTOR DTC144EK TRANSISTOR 2SD601A-Q		R521 R522 R523 R524 R525	1-216-067-00 1-216-107-00 1-216-081-00 1-216-049-00 1-216-434-11	METAL CUIT 12F METAL GLAZE 5.6 METAL GLAZE 27C METAL GLAZE 22F METAL GLAZE 1K METAL OXIDE 1.8	K 5% K 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W 1W F
Q508 Q509 Q510 Q512 Q513	8-729-422-27 8-729-422-27 8-729-901-06 8-729-422-27 8-729-216-22	TRANSISTOR 2SD601A-Q TRANSISTOR 2SD601A-Q TRANSISTOR DTA144EK TRANSISTOR 2SD601A-Q TRANSISTOR 2SA1162-G		R526 R527 R528 R529 R530	1-216-079-00 1-249-437-11 1-216-073-00 1-216-073-00 1-216-089-00	METAL GLAZE 18M CARBON 47M METAL GLAZE 10M METAL GLAZE 10M METAL GLAZE 47M	5% 5% 5% 5%	1/10W 1/4W F 1/10W 1/10W 1/10W
Q514 Q515 Q518 Q519	8-729-216-22 8-729-313-42 8-729-422-27 8-729-422-27	TRANSISTOR 2SA1162-G TRANSISTOR 2SD1134-C TRANSISTOR 2SD601A-Q TRANSISTOR 2SD601A-Q		R531 R532 R533	1-216-089-00 1-216-097-00 1-216-089-00	METAL GLAZE 478	5% K 5%	1/10W 1/10W 1/10W

REF.NO. PART NO. DESCRIPTION		REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R536 1-212-881-11 FUSIBLE 100 R537 1-215-867-00 METAL OXIDE 470 R538 1-216-095-00 METAL GLAZE 82K	5% 1W 5% 1/10W	F	R852 R853 R854 R855 R856 R856	1-216-675-11 1-216-105-00 1-218-754-11 1-216-697-11 1-216-699-11 1-216-686-11	METAL GLAZE METAL CHIP METAL CHIP METAL CHIP	120K 82K 100K	0.50% 1 5% 1 0.50% 1 0.50% 1	1/10W 1/10W 1/10W 1/10W	
R542 1-216-075-00 METAL GLAZE 12K R543 1-216-065-00 METAL GLAZE 4.7			R857 R858 R859 R860 R861 R862	1-216-686-11 1-216-061-00 1-216-436-00 1-216-675-11 1-216-671-11 1-216-675-11	METAL CHIP METAL GLAZE METAL OXIDE METAL CHIP METAL CHIP METAL CHIP	3.3K 3.9K 10K 6.8K 10K	0.50% 1 5% 1 0.50% 1 0.50% 1 0.50% 1	1/10W IW F 1/10W 1/10W	
R545	5% 1/10W 5% 1/10W 5% 1/10W K 5% 1/10W		R863	1-249-435-11 1-216-049-00 1-216-695-11 1-216-089-00 1-216-667-11	CARRON	33K 1K 68K 47K 4.7K	5% 1 5% 1 0.50% 1	1/4W F 1/10W 1/10W 1/10W	
R553 1-216-689-11 METAL GLAZE 39K R554 1-216-073-00 METAL GLAZE 10K	5% 1W K 5% 1/10W 5% 1/10W 5% 1/10W	F	R1507 R1508 R1509 R1510	1-216-081-00 1-216-073-00 1-216-065-00 1-249-425-11	METAL GLAZE METAL GLAZE METAL GLAZE CARBON	22K 10K 4.7K 4.7K 220	59 1	1/10W 1/10W 1/10W 1/10W F	
	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W			1-216-033-00 1-216-049-00 1-216-017-00 1-216-031-00 1-216-053-00 1-216-685-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1 K 47	5% 1 5% 1	1/10W 1/10W 1/10W 1/10W 1/10W	
R561 1-216-081-00 METAL GLAZE 22K R562 1-216-053-00 METAL GLAZE 1.5 R563 1-216-061-00 METAL GLAZE 3.3 R564 1-249-415-11 CARBON 680 R565 1-216-059-00 METAL GLAZE 2.7	5% 1/10W K 5% 1/10W K 5% 1/10W 5% 1/4W K 5% 1/10W	F	R1602 R1603 R1604	1-216-681-11 1-216-671-11 1-249-433-11	METAL CHIP METAL CHIP METAL CHIP CARBON METAL GLAZE	27K 18K	0.50% 1 0.50% 1	1/10W 1/10W	
R566 1-216-025-00 METAL GLAZE 100 R567 1-216-095-00 METAL GLAZE 82K R568 1-216-063-00 METAL GLAZE 3.9 R569 1-216-063-00 METAL GLAZE 3.9 R570 1-216-093-00 METAL GLAZE 68K	5% 1/10W K 5% 1/10W K 5% 1/10W		R1606 R1607 R1608 R1609	1-216-070-00 1-216-071-00 1-216-065-00 1-216-069-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 4.7K 6.8K	5% 1 5% 1	1/10W 1/10W 1/10W 1/10W	
R571 1-216-089-00 METAL GLAZE 47K R572 1-216-095-00 METAL GLAZE 82K R573 1-216-063-00 METAL GLAZE 3.9 R574 1-216-063-00 METAL GLAZE 3.9 R575 1-216-105-00 METAL GLAZE 220	5% 1/10W 5% 1/10W K 5% 1/10W K 5% 1/10W K 5% 1/10W		R1611	1-216-057-00 1-216-057-00 1-215-913-11 1-216-025-00 1-216-067-00 1-216-657-11 1-216-629-11	METAL GLAZE METAL GLAZE METAL OXIDE METAL GLAZE METAL GLAZE	2.2K 2.2K 220 100 5.6K	5% 1 5% 3 5% 1	1/10W 1/10W BW F 1/10W 1/10W	
	X 5% 1/10W X 5% 1/10W 5% 1/4W 5% 1/4W	F F	R1617	1-216-659-11		2. 2K	0.50% 1 0.50% 1 0.50% 1	1/10W	
R591 1-216-063-00 METAL GLAZE 3.9 R592 1-216-033-00 METAL GLAZE 220 R831 1-216-049-00 METAL GLAZE 1K R832 1-216-075-00 METAL GLAZE 12K R833 1-216-065-00 METAL GLAZE 4.7	X 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R1621 R1622 R1623 R1624 R1625	1-216-073-00 1-216-073-00 1-216-073-00 1-216-246-00 1-216-061-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 10K 10K 10K 100K 3.3K	5% 1 5% 1 5% 1	1/10W 1/10W 1/10W 1/10W 1/8W 1/10W	
R834 1-216-059-00 METAL GLAZE 2.7 R835 1-216-081-00 METAL GLAZE 22K R836 1-216-049-00 METAL GLAZE 1K R837 1-216-075-00 METAL GLAZE 12K	K 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R1626 R1627 R1628 R1629	1-216-065-00 1-216-049-00 1-216-073-00 1-216-683-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	4.7K 1K 10K 22K	5% 1 5% 1 5% 1	1/10W 1/10W 1/10W 1/10W	
R838 1-216-049-00 METAL GLAZE 1K R839 1-216-061-00 METAL GLAZE 3.3 R840 1-216-097-00 METAL GLAZE 100 R841 1-216-093-00 METAL GLAZE 68K R842 1-216-093-00 METAL GLAZE 68K	X 5% 1/10W X 5% 1/10W 5% 1/10W		R1630 R1631 R1632 R1633 R1634	1-216-683-11 1-216-057-00 1-216-042-00 1-216-109-00 1-216-099-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	22K 2.2K 510 330K 120K	5% 1 5% 1	1/10W 1/10W 1/10W 1/10W 1/10W	
R843 1-216-065-00 METAL GLAZE 4.7 R844 1-216-077-00 METAL GLAZE 15K R847 1-216-049-00 METAL GLAZE 1K R850 1-216-085-00 METAL GLAZE 33K R851 1-216-669-11 METAL CHIP 5.6	5% 1/10W 5% 1/10W 5% 1/10W		R1635 R1636 R1640	1-216-097-00 1-216-073-00 1-216-063-00 1-216-073-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100K 10K 3.9K 10K 10K	5% 1 5% 1	1/10W 1/10W 1/10W 1/10W 1/10W 1/10W	

 The components identified by in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation.
 Should replacement be required, replace only with the value originally used. Les composants identifies par une trame et une marque A sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie. The components îdentified by shading and mark \triangle are critical for safety.

Replace only with part number specified.

REF.NO. PART NO. DESCRIPTION REMARK REF.NO. PART NO. DESCRIPTION		REMARK
R1643 1-216-069-00 METAL GLAZE 6.8K 5% 1/10W C1108 1-163-119-00 CERAMIC CHIP 120PF R1644 1-216-069-00 METAL GLAZE 6.8K 5% 1/10W C1109 1-163-031-11 CERAMIC CHIP 0.01MF R1645 1-216-073-00 METAL GLAZE 10K 5% 1/10W C1110 1-163-117-00 CERAMIC CHIP 100PF R1646 1-216-073-00 METAL GLAZE 10K 5% 1/10W C1110 1-163-117-00 CERAMIC CHIP 100PF R1647 1-216-073-00 METAL GLAZE 10K 5% 1/10W C1111 1-163-018-00 CERAMIC CHIP 0.0056ME	5% 5%	50V 50V 50V
R1647 1-216-069-11 METAL CHIP 2/K 0.50% 1/10W C1111 1-163-018-00 CERAMIC CHIP 0.0050MP C1112 1-126-160-11 ELECT 1MF C1112 1-126-160-11 ELECT 1MF C1113 1-163-119-00 CERAMIC CHIP 120PF C11649 1-216-069-00 METAL GLAZE 6.8K 5% 1/10W C1114 1-163-103-00 CERAMIC CHIP 27PF R1650 1-216-069-00 METAL GLAZE 6.8K 5% 1/10W C1115 1-164-004-11 CERAMIC CHIP 0.1MF	10% 20% 5% 5% 10%	50V 50V 50V 50V 25V
R1653 1-216-069-00 METAL GLAZE 6.8K 5% 1/10W C1118 1-164-004-11 CERAMIC CHIP 0.1MF R1654 1-216-681-11 METAL CHIP 18K 0.50% 1/10W C1119 1-163-020-00 CERAMIC CHIP 0.0082MF R1655 1-216-081-00 METAL GLAZE 22K 5% 1/10W C1120 1-163-097-00 CERAMIC CHIP 15PF	5% 20% 10% 10% 5%	50V 16V 25V 50V 50V
R1656 1-216-643-11 METAL CHIP 470 0.50% 1/10W R1657 1-216-081-00 METAL GLAZE 22K 5% 1/10W C1121 1-163-097-00 CERAMIC CHIP 15PF C1122 1-163-222-11 CERAMIC CHIP 15PF C1123 1-163-097-00 CERAMIC CHIP 15PF R1659 1-216-049-00 METAL GLAZE 3.9K 5% 1/10W C1130 1-163-097-00 CERAMIC CHIP 15PF R1660 1-216-649-11 METAL CHIP 820 0.50% 1/10W C1131 1-163-097-00 CERAMIC CHIP 15PF	5% 0.25PF 5% 5% 5%	50V 50V 50V 50V 50V
R1661 1-216-065-00 METAL GLAZE 4.7K 5% 1/10W <connector></connector>		
<variable resistor=""> CN1101*1-565-488-11 CONNECTOR. BOARD TO BOARD</variable>	ND 12P	
RV501 1-238-019-11 RES, ADJ, CARBON 47K RV502 1-241-631-11 RES, ADJ, CARBON 22K		
<variable resistor=""> CN1101*1-565-488-11 CONNECTOR, BOARD TO BOARD RV501 1-238-019-11 RES, ADJ, CARBON 47K CN1101*1-565-488-11 CONNECTOR, BOARD TO BOARD RV502 1-241-631-11 RES, ADJ, CARBON 22K CN101*1-565-488-11 CONNECTOR, BOARD TO BOARD RV503 1-241-763-11 RES, ADJ, CARBON 22K CN101*1-565-488-11 CONNECTOR, BOARD TO BOARD RV504 1-224-250-XX RES, ADJ, CARBON 22O CN101*1-565-488-11 CONNECTOR, BOARD TO BOARD RV505 1-238-009-11 RES, ADJ, CARBON 22O D1101 8-719-404-46 DIODE MA110 RV506 1-241-627-11 RES, ADJ, CARBON 1K D1102 8-719-404-46 DIODE MA110</variable>		
RV507 1-241-628-11 RES, ADJ, CARBON 2.2K RV508 1-241-627-11 RES, ADJ, CARBON 1K		
RV509 1-238-021-11 RES, ADJ, CARBON 220K RV511 1-241-629-11 RES, ADJ, CARBON 4.7K IC1101 8-752-056-67 IC CXA1214P		
RV511 1-241-629-11 RES, ADJ, CARBON 4.7K RV512 1-241-629-11 RES, ADJ, CARBON 4.7K RV514 1-238-019-11 RES, ADJ, CARBON 47K RV515 1-238-021-11 RES, ADJ, CARBON 220K RV516 1-241-763-11 RES, ADJ, CERMET 4.7K RV831 1-228-997-00 RES, ADJ, METAL GLAZE 100K RV832 1-241-764-11 RES, ADJ, CERMET 10K RV832 1-241-764-11 RES, ADJ, CERMET 10K RV1601 1-241-762-11 RES, ADJ, CERMET 2.2K RV1602 1-241-627-11 RES, ADJ, CERMET 2.2K RV1602 1-241-627-11 RES, ADJ, CARBON 1K ICTIOI 8-752-056-07 IC CXAI214P CCOIL> L1101 1-408-411-00 INDUCTOR 15UH L1102 1-404-496-00 COIL L1103 1-404-496-00 COIL L1104 1-408-411-00 INDUCTOR 15UH L1110 1-412-008-31 INDUCTOR CHIP 15UH L1111 1-412-008-31 INDUCTOR CHIP 15UH		
RV515 1-238-021-11 RES, ADJ, CARBON 220K RV516 1-241-763-11 RES, ADJ, CERMET 4.7K L1101 1-408-411-00 INDUCTOR 15UH RV831 1-228-997-00 RES, ADJ, METAL GLAZE 100K L1102 1-404-496-00 COIL		
RV832 1-241-764-11 RES, ADJ, CERMET 10K L1103 1-404-496-00 COIL L1104 1-408-411-00 INDUCTOR 15UH		
RV1601 1-241-762-11 RES, ADJ, CERMET 2.2K RV1602 1-241-627-11 RES, ADJ, CERMET 2.2K RV1602 1-241-627-11 RES, ADJ, CARBON 1K L1111 1-412-008-31 INDUCTOR CHIP 15UH		
RV1603A1-228-996-11 RES, ADJ, METAL GLAZE 47K		
<relay></relay>		
RY1601 1-515-481-21 RELAY (G2R-212P-V) Q1101 8-729-216-22 TRANSISTOR 2SA1162-G Q1102 8-729-422-27 TRANSISTOR 2SD601A-Q Q1103 8-729-216-22 TRANSISTOR 2SA1162-G Q1104 8-729-216-22 TRANSISTOR 2SA1162-G Q1105 8-729-901-01 TRANSISTOR DTC144EK		
T1601 1-437-216-11 TRANSFORMER, DRIVE Q1106 8-729-901-01 TRANSISTOR DTC144EK		
######################################		
A-1394-343-A S BOARD, COMPLETE ********************** <resistor></resistor>		
R1101 1-216-053-00 METAL GLAZE 1.5K 5% R1102 1-216-067-00 METAL GLAZE 5.6K 5%	1/10W 1/10W	
CAPACITOR> CAPACITOR> COMPACITORS COMPACI	1/10W 1/10W 1/10W	
C1103 1-124-589-11 ELECT 47MF 20% 16V R1106 1-216-059-00 METAL GLAZE 2.7K 5% C1105 1-163-114-00 CERAMIC CHIP 75PF 5% 50V R1107 1-216-071-00 METAL GLAZE 8.2K 5%	1/10W 1/10W	
R1108 1-216-039-00 METAL GLAZE 390 5% C1106 1-163-101-00 CERAMIC CHIP 22PF 5% 50V R1109 1-216-063-00 METAL GLAZE 3.9K 5% C1107 1-164-004-11 CERAMIC CHIP 0.1MF 10% 25V R1110 1-216-069-00 METAL GLAZE 6.8K 5%	1/10W 1/10W 1/10W	

REF. NO.	PART NO.	DESCRIPTION		REMARK
R1111	1-216-065-00	METAL GLAZE	4.7K 5% 1/10W	
R1112	1-216-059-00	METAL GLAZE	2.7K 5% 1/10W	
R1113	1-216-069-00	METAL GLAZE	6.8K 5% 1/10W	
R1114	1-216-055-00	METAL GLAZE	1.8K 5% 1/10W	
R1115	1-216-061-00	METAL GLAZE	3.3K 5% 1/10W	
R1116	1-216-069-00	METAL GLAZE	6.8K 5% 1/10W	
R1117	1-216-061-00	METAL GLAZE	3.3K 5% 1/10W	
R1118	1-216-073-00	METAL GLAZE	10K 5% 1/10W	
R1119	1-216-049-00	METAL GLAZE	1K 5% 1/10W	
R1120	1-216-097-00	METAL GLAZE	100K 5% 1/10W	
R1121	1-216-121-00	METAL GLAZE	1M 5% 1/10W	
R1122	1-216-039-00	METAL GLAZE	390 5% 1/10W	
R1123	1-216-065-00	METAL GLAZE	4.7K 5% 1/10W	
R1124	1-216-029-00	METAL GLAZE	150 5% 1/10W	
R1125	1-216-029-00	METAL GLAZE	150 5% 1/10W	
R1126	1-216-053-00	METAL GLAZE	1.5K 5% 1/10W	
R1127	1-216-043-00	METAL GLAZE	560 5% 1/10W	
R1128	1-216-049-00	METAL GLAZE	1K 5% 1/10W	
R1129	1-216-091-00	METAL GLAZE	56K 5% 1/10W	
R1131	1-216-073-00	METAL GLAZE	10K 5% 1/10W	
R1132	1-216-073-00	METAL GLAZE	10K 5% 1/10W	
R1133	1-216-073-00	METAL GLAZE	10K 5% 1/10W	
R1134	1-216-091-00	METAL GLAZE	56K 5% 1/10W	

<VARIABLE RESISTOR>

RV1101 1-241-629-11 RES, ADJ, CARBON 4.7K RV1102 1-241-628-11 RES, ADJ, CARBON 2.2K

<TRANSFORMER>

T1101 1-404-584-11 COIL