

ROUND 2 CASE STUDY

Team: Counting Stars

Nguyen Thanh Hung Lam Hong Ha Nguyen Gia Khanh Dang Thi Thuc Quyen

SP Co. should focus on reducing transportation costs and upgrading the production line for more robust growth

SP Co. uses Sea as the company's major transportation mode

SP. Co is planning to launch a new product: CAN HF in the North

The primary transportation cost was too high

The production capacity of CAN HF in the North is insufficient

How can SP Co. optimize the current primary cost? What is the best solution for SP Co. to successfully launch a new product in the North?

Utilize other transportation routes, from excessive supply of other regions, to offset the insufficient regions

Upgrade the CAN HF production line in the North to enhance production capacity to meet the future demand and improve profit margin

Optimize primary transportation cost and successfully launch new product in the North by upgrading production line

O1 Primary Cost Overview

Sea transportation's low cost created opportunities for SP Co. to deal with the high demand in Southern region

Sea was the most-used transportation mode with the highest efficiency

Primary Volume and Cost by transportation mode, Thousand Tons / million VND, Year 0

Transportation efficiency, transportation volume over capacity (%), Year 0

All routes exploited sea mode's cheap price, especially the Central – South one...

... making South to be the mostreceived region in the chain

02 Operational Analysis & Recommendations

A 3-stage process is conducted to evaluate and optimize the primary transportation cost

PROBLEM 1: CAN HF'S PRODUCTION CAPACITY IN THE CENTRAL

Better production plans should be applied to meet the excessive demand of CAN products

The sales demand for CAN HF in the Central region could not be met...

CAN products' demand and supply by region, Million Rcs, Year 0

... since there is no production capacity for this product line in the Central

CAN product lines' needed production capacity for supply shortage, % of unused production capacity, Year 0

RECOMMENDATION 1: USING NORTH - CENTRAL ROUTE

SP Co. can save a sufficient amount of transportation cost by transferring CAN HF on the North – Central route

SP Co. can make use of North – Central route for CAN HF transportation to meet the supply shortage in Central

CAN products' net change supply after optimization, Hundred thousand Rcs, Year 0

The new transportation recommendation can help SP Co. to save approximate 92% of the current primary cost

CAN products' total primary cost before and after optimization, Million VND, Year 0

PROBLEM 2: PET HF'S PRODUCTION CAPACITY IN THE SOUTH

The supply shortage of PET HF in the South deprived from its reach of maximized production capacity

PET HF supply in the Southern region could not satisfy the sales demand

PET product lines' demand and supply by region, Million Rcs, Year 0

Production Supply Sales Demand 40 35 Million Rcs 15 10 PET CF PET HF North Central South

However, Y0's production capacity of PET HF in the South already reached its maximum

PET product lines' needed production capacity for supply shortage, % of unused production capacity, Year 0

RECOMMENDATION 2: USING CENTRAL - SOUTH ROUTE

PET HF's supply deficiency in the South can be solved through the transportation of those in the Central

The excessive production supply of PET HF in the Central could be transported to the South

PET products' net change in supply after optimization, Hundred thousand RCS, Year 0

By applying the recommendation, SP Co. can effectively reduce the current primary cost by 93%

PET products' primary cost before and after optimization, Million VND, Year 0

PROBLEM 3: RGB HF'S PRODUCTION CAPACITY IN THE CENTRAL

The Southern demand for RGB CF could be satisfied by using the excessive amount from other regions

The production supply of RGB HF did not meet the Central region's demand,...

RGB products' net changes between supply and demand by region, Thousand Rcs, Year 0

which was due to not having a production manufacturer in the Central

RGB HF's demand and capacity in the Central, Rcs, Year 0

RECOMMENDATION 3: USING NORTH - CENTRAL ROUTE

The Southern demand for RGB CF can be satisfied by using the excessive amount from other regions

Moving the remaining amount of RGB HF from the North to the Central...

RGB products' net change in supply after optimization, Thousand RCS, Year 0

... could help SP Co. save approximate 14% of the current transportation cost

RGB HF's cost of transportation from North and South to Central, Thousand VND. Year 0

PROBLEM 4: WATER'S PRODUCTION CAPACITY IN THE CENTRAL

The main cause of the WATER supply shortage in the North lied in the production line's capacity

The WATER's production supply in both Central and South did not satisfy the sales demand

WATER products' demand and supply by region, Million Rcs, Year 0

The production capacity for WATER in the Central reached its maximum

WATER product lines' supply needed to meet region demand, % of unused production capacity, Year 0

RECOMMENDATION 4: USING NORTH - CENTRAL ROUTE

The insufficient supply in the Central would be offset from the amount in the North

Transporting Water with North – Central route can solve the under-supply problem in the Central region

Water supply increased after optimization, Thousand RCS, Year 0

Thus, the current transportation cost could save up to 80%

Water products' primary cost before and after optimization, Million VND, Year 0

OPERATIONAL PROBLEMS & RECOMMENDATIONS SUMMARY

The according problems and recommendations analysis would allow SP Co. to reduce the primary cost by 89%

Problems

- Shortage in supply for **CAN HF**in the Central due to the absence
 of the according production line
 in the region
- Excessive demand for PET HFin the South although the production line was maximized
 - Shortage in supply for **RGB HF**in the Central due to the absence
 of the according production line
 in the region
- Excessive demand for WATERin the South although the production line was maximized

Recommendations

- Use North-Central route
- Use Central-South route

Use North-Central route

Use North-Central route

Utilize excessive supply from other region to **offset** the insufficient one

Impacts Primary cost changes after optimization, Million VND, Year 0

New Product Launch Planning

OPTION 1: TRANSFER CAN HF FROM SOUTH TO NORTH AND CAN CF FROM NORTH TO SOUTH

Production optimizing plan to supply CAN HF and CAN HF New in the North, Million VND, Year 1

Production optimizing plan to transport CAN CF from North to South, Million VND, Year 1

Primary volume (RCS)	ary Volume (Rcs)	s)	
----------------------	------------------	----	--

From	То	CAN HF CAN CF 777,434		
North	South			
South	North	410,813		
Warehouse Rental in the South (million VM	329			

Primary Volume (Tons)

From	То	CAN HF CAN CF			
North	South	88			
South	North	48			

Transportation Cost (Million VND)

	From	То	CAN HF CAN CF			
	North	South	40			
	South	North	23			
Transportation Cost (Million VND)			63			

Total cost of Option 1 (million VND)	392
--------------------------------------	-----

OPTION 2 ANALYSIS: HIRE A CO-PACKING SERVICE FOR CAN HF (NEW) IN THE NORTH

CAN HF cost breakdowns per rcs

Net Present Value of Cost (USD)

Co-packing fee 22,000

Primary Cost from the Co-packer 1,000

Total cost per raw case (VND/Rcs) 23,000

Unit cost

23,000

VND/Rcs

(constant)

Total Sales Demand

150,000

Rcs

(varied)

Total cost

3,450,000,000

VND

(varied by sales demand)

OPTION 3 ANALYSIS: UPGRADE PRODUCTION LINE IN THE NORTH

Initial investment structure CAPEX OPEX		0% 0%	Maintainance Life cycle	2.50	0% OPEX 7 years	WACC Inflation		9% 4%
Year	0	1	2	3	4	5	6	7
Initial investment	1,000,000							
Maintenance Cost		17,500	18,200	18,928	19,685	20,473	21,291	22,143
Total cost	1,000,000	17,500	18,200	18,928	19,685	20,473	21,291	22,143
Present Value of Cost	1,000,000	16,055	15,319	14,616	13,945	13,306	12,695	12,113

1.098.049

PRODUCT LAUNCH STRATEGY COMPARISON

Carefully evaluate the advantages and disadvantages of each option supports the decision-making process

Transfer CAN products Hire a co-packing service **Upgrade production line Option** More responsive to unexpected demand Satisfies immediate demand Benefits from the efficiency and expertise of the 3rd party Zero primary transportation cost Does not require investment in machinery and labors Saves time and focuses on other **Pros** Increases production capacity by 67% to production activities meet future demand Saves machinery and labor cost Economies of scale Easily subject to disruptions, supply chain Requires a large amount of initial outlay Incurs the most expensive cost becomes less responsive and 7-year commitment Loses control of packing quality and Transportation cost is highly varied by Might incur serious loss when CAN HF production process sales demand new does not perform well Cons Costs are highly varied by sales demand Unable to scale up production capacity when demands unexpectedly soar

Bounded by outsourcing contracts

Inaccurate supply/demand planning might incur serious financial and inventory loss

To successfully launch the new product, Option 3 is the optimal strategy for SP Co., with the utilization of Option 1 while waiting for production line upgrade

Transfer CAN products Hire a co-packing service **Upgrade production line Option** Although a huge investment outlay is required, upgrading production line Despite being less responsive, Option The efficiency of co-packing service will allow SP Co. to scale up 1 can provide immediate supply to cannot compensate for the high cost production capacity to meet future meet current demand if sufficient of outsourcing demand and improve profit margin planning effort is made **Evaluation** thanks to economies of scale SHORT-TERM STRATEGY **DROPPED** LONG-TERM STRATEGY M01/Year 1 Year 2 - Year 7 Year 0 M02 – M12 / Year 1 Execute **Planning Execute Option 3** Option 1 **Execution Upgrading** Lead time to upgrade Implement Option 1 to meet Option 3 represents a sustainable production line production line in demand, avoid sale loss in 1 month supply chain which is more flexible to Option 3 takes 1 while waiting for the upgrade of cope with unexpected circumstances

production line in Option 3

month