Devoir surveillé n°1

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Exercice 1.

Pour $n \in \mathbb{N}$, on pose $S_n = \sum_{i=0}^n \sum_{j=i}^n \binom{j}{i}$.

- 1. Calculer S_0 , S_1 et S_2 .
- 2. Calculer les sommes $\sum_{k=0}^{n} {n \choose k}$ et $\sum_{k=0}^{n} 2^k$.
- **3.** En intervertissant l'ordre de sommation, calculer S_n pour tout $n \in \mathbb{N}$.

EXERCICE 2.

- **1.** Soient k, l, n des entiers naturels tels que $l \le k \le n$.
 - $\textbf{a. Montrer que} \, \binom{n}{k} \binom{k}{l} = \binom{n}{l} \binom{n-l}{k-l}.$
 - **b.** En déduire que si l < n, $\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{k}{l} = 0$.
- **2.** Soit (a_n) et (b_n) deux suites réelles vérifiant :

$$\forall n \in \mathbb{N}, \ b_n = \sum_{k=0}^n \binom{n}{k} a_k$$

Montrer que

$$\forall n \in \mathbb{N}, \ \alpha_n = (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} b_k$$

Exercice 3.

Dans tout l'énoncé, n désigne un entier naturel supérieur ou égal à 3.

Dans la deuxième question de cet exercice, la notation $\sum_{0 \le 2k \le n}$ signifie que la somme porte sur les indices k tels que

$$0 \leqslant 2k \leqslant n$$
.

De même, $\sum_{0 \le 2k+1 \le n}$ signifie que la somme porte sur les indices k tels que $0 \le 2k+1 \le n$.

Cela permet notamment de séparer élégamment les termes d'indices pairs et impairs d'une somme sans avoir à considérer la parité de $\mathfrak n$:

$$\sum_{k=0}^{n} \alpha_{k} = \sum_{0 \leqslant 2k \leqslant n} \alpha_{2k} + \sum_{0 \leqslant 2k+1 \leqslant n} \alpha_{2k+1}$$

- **1.** On définit la fonction f_n telle que $f_n(x) = (x+1)^n$ pour tout $x \in \mathbb{R}$.
 - a. Donner une expression développée de $f_n(x)$ à l'aide de la formule du binôme de Newton.
 - **b.** En calculant $f'_n(1)$ de deux manières, simplifier la somme $\sum_{k=0}^n k \binom{n}{k}$.
 - **c.** En calculant $f_n''(1)$ de deux manières, simplifier la somme $\sum_{k=0}^n k(k-1) \binom{n}{k}$.
 - **d.** Déduire des questions précédentes une expression simple de $\sum_{k=0}^{n} k^2 \binom{n}{k}$.
- 2. On définit la fonction g_n telle que $g_n(x) = f_n(x) + f_n(-x)$ pour tout $x \in \mathbb{R}$.
 - $\textbf{a.} \ \ \text{Montrer que } g_n(x) = 2 \sum_{0 \leqslant 2k \leqslant n} \binom{n}{2k} x^{2k} \ \text{pour tout } x \in \mathbb{R}.$
 - **b.** En calculant $g_n'(1)$ de deux manières, montrer que $\sum_{0 \le 2k \le n} k \binom{n}{2k} = 2^{n-3}n$.
 - $\textbf{c.} \ \ \text{En calculant } g_n''(1) \ \text{de deux manières, montrer que} \sum_{0\leqslant 2k\leqslant n} k^2 \binom{n}{2k} = 2^{n-5} n(n+1).$

Exercice 4.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $\binom{2n+2}{n+1} = \frac{2(2n+1)}{n+1} \binom{2n}{n}$.
- 2. En déduire par récurrence que :

$$\forall n \in \mathbb{N}^*, \ \frac{4^n}{2\sqrt{n}} \leqslant \binom{2n}{n} \leqslant \frac{4^n}{n^{\frac{1}{3}}}$$

EXERCICE 5.

On considère la suite (F_n) définie par $F_0=0,\,F_1=1$ et par la relation de récurrence

$$\forall n \in \mathbb{N}, \; F_{n+2} = F_n + F_{n+1}$$

- **1.** Calculer F₂, F₃, F₄ et F₅.
- 2. Montrer que pour tout $n\geqslant 5,$ $F_n\geqslant n.$ Que peut-on en déduire quant à la limite de la suite (F_n) ?
- 3. a. Montrer que pour tout $n \in \mathbb{N}^*$, $1 + \sum_{k=0}^{n-1} F_k = F_{n+1}$.
 - $\textbf{b.} \ \ \text{Montrer que pour tout } n \in \mathbb{N}^*, \sum_{k=0}^{n-1} F_{2k+1} = F_{2n}.$
 - **c.** Montrer que pour tout $n \in \mathbb{N}^*$, $1 + \sum_{k=0}^{n-1} F_{2k} = F_{2n-1}$.
- 4. a. Résoudre l'équation $x^2=x+1$. On notera α la solution positive et β la solution négative. Que vaut le produit $\alpha\beta$?
 - $\textbf{b.} \ \ \text{Montrer que pour tout } n \in \mathbb{N}, \\ F_n = \frac{1}{\sqrt{5}} \, (\alpha^n \beta^n).$
 - $\textbf{c.} \ \ \text{Soit} \ (p,q,r) \in \mathbb{N}^3 \ \text{tel que} \ p \geqslant r. \ \text{Montrer que} \ F_p F_{q+r} (-1)^r F_{p-r} F_q = F_{p+q} F_r.$