Lab₀₅

Student name:

Course: CS 4, Fall 2024 – Professor: Carlos Moreno Due date: 9/18/24 @ 8:00pm

For this lab assignment, you will apply a mixture of search algorithms to the state space graph below. Assume that when expanding a node, the EXPAND function yields successors in reverse alphabetical order (e.g., when expanding node *S*, the first successor node is *E*).

Part A

Apply the depth-first search algorithm to find a solution. Draw out the search tree to show this. What is the solution that DFS will return? What is the total path cost of that solution?

Part B

Suppose the problem is using the following heuristic function h(n):

State	Estimate
S	2
A	2
В	1
С	3
D	2
E	1
F	1
G	0

Apply the greedy best-first search algorithm to find a solution. Draw out the search tree to show this. What is the solution that GBFS will return? What is the total path cost of that solution?

Total Path cost is 3+15=18

Part C

Apply the A* search algorithm to find a solution. Draw out the search tree to show this. What is the solution that A* will return? What is the total path cost of that solution?

