Department of Computer Science and Engineering

Begum Rokeya University, Rangpur.

2nd Year 2nd Semester Final Examination, 2017 (Session: 2015-16)

Course Code: CSE 2201 Course Title: Object Oriented Programming

Time: 3.00 Hours

Answer Any Five from the Given Questions

(Note: Answer the question sequentially. Numbers in the right margin indicate marks for each question.)

- Why JAVA is called platform independent language? Why C/C++ language is not? (a) 1.
 - What are the benefits of Object Oriented Programing/ over Structured/procedural programming?
 - Describe the scope of all visibility modifiers used in JAVA. (b) (c)
 - How can you ensure data field encapsulation? (d)
- What is the default value of an object reference declared as an instance variable? Can a top level class be 2 (a)
 - What is autoboxing and autounboxing? Are the following statement correct? If yes/not, then why? (b)
 - Integer x = 3 + Integer (5);i.
 - Integer x = 3; ii.
 - Double x = 3.0;
 - Does any method in the String class change the contents of the string? What is the output of the following program? Show reason behind your answer. (c)

public class Test {

```
String text;
public void Test(String s) {
text = s; }
public static void main(String[] args) {
Test test = newTest("ABC");
System.out.println(test);}}
```

Full Marks: 50

2

3

3

2

4

- What is a round-off error? Can integer and floating point operations cause round-off errors? Why? (a) 3.
 - What is the difference between Comparable and Comparator?
 - What is meant by Method Overriding? Explain with example. (b)
- What is the uses/necessity of using abstract class/interface in JAVA? Describe with proper code segment. (c) (a) 4.
 - With example describe the scope of and uses of instance and static variable/method. (b)
 - Describe the role of this keyword. What is wrong in the following code? Give reasons to your answer and (c) correct it if any error?

```
public class C {
private int p;
public C() {
System.out.println("C's no-arg constructor invoked");
this(0);}
public C(int p) {
 p = p; 
 public void set P(int p) {
 p = p; }
```

5.	a)	Define Java thread. Explain the Java thread model.								
	b)	How to create a Java thread? Explain how different ways help in implementing the Java thread.								
	c)	Write about network programming in java with proper example.	3							
6.	(a)	What is Exception handling in java? Why is it used? Write a java code to simulate the way a stack mechanisms works with exception handling, throwing and dealing with exceptions such as stack is full (if you want to add more elements into the stack).								
	(b) (c)	What is the advantage of using exception handling? Does the following code throw any exception? long value = long.Max_VALUE+1; System.out.println(value); What is checked and unchecked exception? What RuntimeException will the following code show, if any?								
		i). public classTest { public static void main(String[] args) {System.out.println(1/0);} } ii) public classTest { public static voidmain(String[] args) {int[] list = new int[5];	,							
7.	(a)	What is the difference between a Window and a Frame? Which package has light weight components? What is the difference between Swing and AWT components?								
	(b)	What is the relationship between clipping and repainting under AWT? Which method of the Component 3 class is used to set the position and size of a component? How?								
	(c)	What are benefits of using Generic types in JAVA? How do you declare a generic type in a class?								
	(d)	Can you create an instance using new E() for a generic type E? Why?								

Begum Rokeya University, Rangpur

Department of Computer Science and Engineering 2nd Year 2nd Semester, B. Sc. (Engg.) Examination- 2017

Course Code: CSE 2203 Course Title: Operating System and Systems Programming

Time: 3 hours Full Marks: 50

N.B.

- a) Answer any FIVE of the following questions.
- b) The figures at right side indicate full marks of the question.

1,	a)	List five services provided by an operating system and explain how each creates convenience for users.	3							
	b)	Describe some of the challenges of designing operating systems for mobile devices compared with designing operating systems for traditional PCs.	3							
	c)	How are iOS and Android similar? How are they different?	2							
	d)	What are the purposes of system programming?	2							
2.	a)	What is Process Control Block (PCB)?	1							
	b)	What are the advantages and disadvantage of FIFO, Optimal and LRU page replacement algorithm?								
	c)		5							
3.	a)	How do you define a Critical –Section in OS? Discuss about the problems arose in Critical-Section.	3							
	b)	Why do we need to synchronize a Process? How efficiently can we do it? What are the 4 approaches?								
	c)	How can you solve the classical Readers-Writers problem through synchronization of processes?	3							
4.	a)	What are the criteria to measure the performance of any CPU scheduling algorithm?								
	b)	Write down some properties of CPU scheduling algorithm.								
	c)	What is the virtual memory? What are the advantages of virtual memory?								
5.	a)	When a Deadlock is occurred in OS? Discuss with resource allocation graph.								
	b)	Define key terms: (i) Deadlock prevention (ii) Deadlock avoidance and (iii) Deadlock 3 detection.								
	c)		4							
		P ₁ 1000 1750 P ₂ 1354 2356 P ₃ 0632 0652 P ₄ 0014 0656 Answer the following questions using the banker's algorithm:								
		i) What is the content of the matrix Need?								

- ii) Is the system in a safe state?
- iii) If a request from process P_1 arrives for (0, 4, 2, 0) can the request be granted immediately?
- 6. a) What is paging and segmentation in OS?
 - b) Discuss the address translation process of a CPU with proper diagram. Hence, mention about 4 additional hardware/software (if any) required to enhance the performance.

2

c) Consider a logical address space of 256 pages with a 4-KBpage size, mapped onto a physical 4

		memory of 64 frames. i) How many bits are required in the logical address? ii) How many bits are required in the physical address?	
7.	a) b) c)	What is demand paging and page fault? How can we handle page fault? Discuss with proper diagram. Consider the following page reference string: 7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2 3, 0, 1 Assuming demand paging with three frames, how many page faults would occur for the following page replacement algorithms? i) LRU replacement ii) FIFO replacement iii) Optimal replacement	1 3

Begum Rokeya University, Rangpur Department of Computer Science and Engineering 2nd Year 2nd Semester, B. Sc. (Engg.) Examination- 2017 Course: MAT 2221 (Numerical Methods)

N.F	3.: A	Time: 3 1 nswer any <u>F</u>		he follov	ving questi	ons. The f	igures :	at righ	t side i		Marks: 50 ill marks of	the	
	stior		100007.0		0.1								
1.	a)	Discuss ab	out num	erical err	ors with ex	amples.						5	
		i) Define significant figures. How many significant figures are in the number 0.050?							2.5				
ii) Let p = 0.54617 and q = 0.54601. Use four-digit arithmetic to determine the absolute and relative errors using rounding and cho									to app	approximate p - q and			
2.	a)	Write an algorithm of Bisection method to find a solution to f(x) = 0, give the function f is continuous on [a, b] where f(a) and f(b) have opposite signs.											
	b)	Use the Ne decimal pl	ewton-Ra	aphson n	nethod to fi	nd a root	of the	equati	on x ⁴ -x	-10 = 0	up to three	5	
3.	a)	Use the Newton forward difference formula to construct interpolating polynomials of 5 degree two and three. Approximate $f(0.43)$ for both cases if $f(0) = 1$, $f(0.25) = 1.64872$, $f(0.5) = 2.71828$ and $f(0.7) = 4.48169$.											
	b)					egers						5	
			X	1	2	3	M-2-30	4		5			
			f(x)	1	1.414			2		2.2361			
4.	a)	of 2.4 usin	g this po	lynomia	grange into 1 . $1 \times 1 $		77 883			inic the s	quare root	5	
4.	a)	r ma me a	X	0.0	0.1	0.2	0.3	tuoic.	0.4			**	
			f(x)	1.10517	1.22140	1.34	986	1.491	82			
	b)	Establish one-third i		juadratui	e formula	for equidi	stance	ordina	ates an	d derive	Simpson's	5	
š.	a)	Using the	trapezoio	lal rule e	valuate f	2 <u>t dt</u>				34		5	
	b)	Using the trapessatal rate evaluate $J_{-2.5+2t}$									5		
6.	a)	Using Ga arithmetic		eliminati	on with b	ackward	substit	ution	and tv	vo- digit	rounding	5	
						$+ x_2 + 2x$							
						$4x_2 - x_3$ $x_2 - 3x_3$							
	b)	Reduce the	e matrix		A1 T	$x_2 - 3x_3$						5	
	47	-											
		1 2 -	3 0										
		1 2 - 1 1 2 - 1 1 2 - 1	3 0										
		1 2 -	3 0										
		Li Z	. 0]										
7.	a)	Derive sec	cond orde	er Runge	- Kutta me	ethod for s	olving	IVP.				5	
	b)	Use Rung	e-Kutta f	ourth or	der method	to estimat	e y at x	$\zeta = 0.2$, 0.4 w	hen		5	
		$\frac{dy}{dx} = 1 + $	y ² with	y(0) = 0	and assume	e h = 0.2.							

Begum Rokeya University, Rangpur

Department of Computer Science and Engineering

B.Sc. (Engg.) 2nd year 2nd Semester Final Examination, 2017. (Session: 2015-16) Course Code: MAT 2222 Time: 3.00 hours Total Marks: 50 Course Title: Complex variable Laplace Transformation & Fourier Analysis [N B: Answer any five (5) questions and figures in the right margin indicate full marks] Define complex number system. If $z_1=2+i$, $z_2=3-2i$ and $z_3=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ then find the value of 5 (i) $|3z_1 - 4z_2|$ (ii) $(\bar{z}_3)^4$ b) Define single valued and multiple valued functions. Show that ln(z) has a branch points at 5 Define analytic function. State and prove necessary condition for a function to be analytic. 5 2. Prove that the function $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$ when $z \neq 0$ 5 = 0 when z = 0Is not analytic at origin although the Cauchy Riemann equations are satisfied there. Prove that an analytic function with constant modules is constant. 5 Define harmonic function. Prove that $u = e^{-x}(x \sin y - y \cos y)$ is harmonic. Find y such 5 that f(z) = u + iv is analytic. Define Pole, Removable singularity, Essential singularity, Isolated singularity, and 5 4. singularity at infinity. b) Prove the Cauchy theorem for the case of a triangle. 5 Define Fourier transformation and complex Fourier transform. Find the Fourier transform 5 of F(x) where $F(x) = \begin{cases} 1 & when - a < x < a \\ 0 & when - a > x > a \end{cases}$ Find the finite sine and cosine transform of $\frac{\partial^2 u}{\partial x^2}$, where u is a function of x and t 3 for $0 \le x \le l$, $t \ge 0$. State and prove convolution theorem for Fourier transformation. 6. Use finite Fourier transformation to solve $\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}$ U(0,t) = 0

$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}$$

$$U(0,t) = 0$$

$$U(\pi,t) = 0$$

$$U(x,0) = 2x \text{ where } 0 < x < \pi, t > 0$$

7. a) Find (i) $\frac{1}{2}^{-1} \left\{ \frac{a^3}{s(s+a)^3} \right\}$ 2.5+2.5 (ii) Find laplace transformation of sinkx

 $y''(t) + y(t) = 2e^t$ Laplace transformation solve equation 5 the where y(0) = y'(0) = 2

Department of Computer Science and Engineering Begum Rokeya University, Rangpur

2nd Year 2nd Semester Final Examination, 2017 (Session: 2015-16) Course Code: CSE 2225 Course Title: Introduction to Business Time: 3.00 Hours Full Marks: 50 Answer Any Five from the Given Ouestions (Note: Answer the question sequentially. Numbers in the right margin indicate marks for each question.) Suppose you are a business consultant, how do you identify a successful 5 1. a) businessman? Mention all prerequisites of a successful businessman. b) What are the elements of business environment? 3 c) Mention the objectives of business. 2 2. a) What is scientific management? 2 b) What types of role should be played by a manager? Discuss. 4 Identify and elaborate the core functions of management process. 4 3. a) What is meant by motivation? 2 Discuss the Need Hierarchy theory of motivation. 5 c) What are the sources of motivation? Discuss. 3 4. a) What do you mean by recruitment? 2 Briefly describe the basic components of recruitment process. 4 c) Illustrate the functions of Human resource Management in an organization. 4 5. a) Define conflict. 2 b) What types of Intra-individual goal conflict arise among human being and why? 4 c) Analyze tools to reduce organizational conflict. 4 6. a) Define accounting equation. Explain the classification of financial statement with 6 appropriate example. b) State the golden rules of debit and credit. 4 7. Bop sample opened the Campus Laundromat on September 1, 2015. During the first month of operations following transactions occurred. Sept.1 Bop invested \$20000 cash in business. 2 The company paid \$1000 cash for store rent for September. 3 Purchased washers and dryer's for \$25000, paving \$10000 in cash and signing a \$15000, 6 months, 12% note payable 4 Paid \$1200 for a one year accident insurance policy. 10 Received a bill from The Daily news for advertising the opening of the Laundromat \$200 20 Bob withdrew \$700 cash for personal use.

30 The company determined that cash receipts for laundry services for the

5

month were \$6,200.

Journalize the September transactions.

Open ledger accounts and post the September transactions.

Required: