Modélisation du trafic routier

<u>Objectif</u>:Déterminer si une limitation des vitesses des automobiles permet de réduire la congestion routière.

Plan

- I .Choix du modèle
- II.Étude théorique
- III.Étude expérimentale
- IV.Simulation informatique

I.Choix du modèle

Une seule voie d'autoroute

étude Unidimensionnelle

- Pas de dépassements
- Pas de contacts entre les voitures
- Lorsqu'une voiture avance,
 celle qui est derrière prend
 sa place

• Concept de Trou d'électron :

C'est une façon simple d'analyser le mouvement d'un grand nombre d'électrons au sein d'un réseau cristallin

Analogies

Loi d'Ohm
j vecteur densité de courants électriques
hétérogénéité de potentiel V
conductivité électrique γ
j = − γ.gradV

Loi de Fourier

j_{Th} vecteur densité de flux thermique

hétérogénéité de température T

conductivité thermique λ

$$j_{Th} = -\lambda.gradT$$

On choisit alors de modéliser le trafic routier par un phénomène de transfert thermique :

Voitures	électrons
Vitesse maximale permise sur l'autoroute	Conductivité du matériau
Densité de voitures	Température

Régi par l'équation au dérivées partielles :

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

Avec $K=\lambda/\rho$ c : Diffusivité thermique

Pour renforcer le modèle :

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}.$$

Équation de Burgers

On peut transformer cette équation en utilisant la transformation de Hopf-Cole :

$$u = -rac{2
u}{\phi}rac{\partial\phi}{\partial x}$$

En portant dans l'équation il vient :

$$\frac{\partial}{\partial x} \left(\frac{1}{\phi} \frac{\partial \phi}{\partial t} \right) = \frac{\partial}{\partial x} \left(\frac{\nu}{\phi} \frac{\partial^2 \phi}{\partial x^2} \right)$$

Par intégration par rapport à x il s'introduit une "constante" d'intégration fonction du temps que l'on note g(t), déterminée par les conditions aux limites :

$$rac{\partial \phi}{\partial t} =
u rac{\partial^2 \phi}{\partial x^2} + g(t)\phi$$

Le nouveau changement de variable $\psi = \phi e^{\int g dt}$ permet d'écrire :

$$\frac{\partial \psi}{\partial t} = \nu \frac{\partial^2 \psi}{\partial x^2}$$

On retrouve l'équation de la diffusion thermique ou « équation de la chaleur »

Mise en application

- Des capteurs de températures sont placés à des intervalles réguliers de 10cm
- Longueur de la barre : 64cm
- Longueur du cylindre plastique : 3cm

Matériau	Diffusivité Thermique En m²/s
Fer	2.3×10-5
Acier	1.2×10−5
Plastique	0.04x10-5

II.étude théorique

1) Impulsion de Dirac comme condition à l'origine

$$\frac{\partial u(x,t)}{\partial t} = D \frac{\partial^2 u(x,t)}{\partial x^2}$$

• On utilise une transformée de Fourier :

$$f(k) = rac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) \exp(-ikx) dx$$

• On calcule la transformée de Fourier inverse en prenant en compte la condition à l'origine et sachant que

$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$

On trouve :

$$u(x,t)=rac{1}{2\sqrt{Dt\pi}}\exp(-rac{x^2}{4Dt})$$

2) Gaussienne comme condition à l'origine

 On procède de même que pour l'impulsion de Dirac mais on prend :

$$u(x,0)=\exp(-rac{x^2}{2})$$

• On trouve:

$$u(x,t)=rac{\sqrt{2}}{\sqrt{4Dt+2}}exp(-rac{x^{_2}}{4Dt+2})$$

3) Condition initiale quelconque

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}, \quad a > 0$$

avec la condition initiale : $u(x,0) = \varphi(x)$ où $\varphi(x)$ est la température à l'instant t=0.

 $\underline{Solution}$: Pour résoudre l'équation ci-dessus, on considère la transformée de Fourier par rapport à la variable x seulement. On a

$$u(x,t) = \frac{1}{4\pi\sqrt{a\pi t}} \int_{-\infty}^{\infty} \varphi(y) e^{-\frac{(x-y)^2}{16a\pi^2 t}} dy.$$

Fer 4) Résolution numérique

III.étude expérimentale

Interprétation des résultats

• Erreur de l'hypothèse

Modélisation erronée

Phénomènes non pris en compte

Grande incertitude

IV.Simulation informatique

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}$$

• On discrétise l'équation de burgers par la méthode d'Euler explicite :

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + u_i^n \frac{u_i^n - u_{i-1}^n}{\Delta x} = \nu \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}$$

• Si on a une condition à l'origine, la seule inconnue est : u_i^{n+1}

$$u_i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n) + \nu \frac{\Delta t}{\Delta x^2} (u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$

• Condition à l'origine , à t=0 :

Existence d'un embouteillage

Mise en application de l'hypothèse

Valeur moyenne : 2.792

Valeur moyenne : 2.762

Valeur moyenne :2.749

Conclusion