ЦВЕТНОЕ ОПТИЧЕСКОЕ СТЕКЛО И ОСОБЫЕ СТЕКЛА

Каталог

Под редакцией члена-корреспондента АН СССР, доктора химических наук, профессора Г. Т. Петровского

Москва 1990 УДК [666.22: [666.24+666.266.5+ +666.266.7]+681.7.031] (085.2)

Составители: К. И. Арефьева, Н. И. Гребенщикова, Э. Е. Корнилова, Е. А. Лисицына, С. П. Лунькин, А. Е. Якунинская (часть І "Цветное оптическое стекло"); Л. В. Грачева, Н. П. Дорофеева, О. С. Дымшиц, Е. А. Кислицкая, В. Ф. Кокорина, Т. И. Чуваева, В. А. Цехомский (часть ІІ "Особые стекла")

В НАСТОЯЩЕМ КАТАЛОГЕ ПРИВЕДЕНЫ СПЕКТРАЛЬНЫЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ЦВЕТНЫХ ОПТИЧЕСКИХ СТЕКОЛ, БЕСКИСЛОРОДНЫХ ИНФРАКРАСНЫХ ОПТИЧЕСКИХ СТЕКОЛ, ФОТОХРОМНЫХ СТЕКОЛ И ОПТИЧЕСКИХ СИТАЛЛОВ.

І. ЦВЕТНОЕ ОПТИЧЕСКОЕ СТЕКЛО

Цветное оптическое стекло предназначено для изготовления светофильтров с избирательным поглощением светового излучения в широком диапазоне длин волн, которое формируется крутыми границами в различных областях спектра, узкими и размытыми полосами поглощения и определяется природой центров окраски, т. е. различными типами электронных переходов.

Ниже приводится краткое описание центров окраски, обеспечивающих устойчивые воспроизводимые спектральные характеристики в цветных оптических стеклах.

Полосы поглощения с максимумом в ультрафиолетовой области обусловлены электронными переходами с переносом заряда. В этом случае электронные переходы происходят между орбиталями лигандов и орбиталями иона структурообразователя или иона переходного элемента в высшем валентном состоянии и сопровождаются существенным перераспределением электронной плотности. Такие переходы называют переходами с переносом заряда, а полосы поглощения, соответствующие им, полосами переноса заряда. Последние имеют высокую интенсивность — молярный коэффициент экстинкции $\epsilon > 10^3$.

В центрах окраски, образованных кристаллами сульфидов, селенидов и сульфоселенидов металлов, перенос заряда происходит из валентной зоны в зону проводимости. Положение полос поглощения по спектру определяется как химической природой сульфоселенидов, так и режимом повторной термооб-

работки (наводки). Интенсивность полос поглощения также очень высокая: $\epsilon{>}10^3$.

В центрах окраски, образованных редкоземельными и переходными элементами, электронные переходы происходят между d- или f-уровнями, расщепленными кристаллическим полем стеклообразующей матрицы. Светопоглощение определяется механизмом электроколебательного взаимодействия, основой которого является смещение f- или d-орбиталей активатора (красителя) и p-орбиталей лиганда. Степень смещения этих орбиталей определяет интенсивность полос поглощения: $10^{-3} < \varepsilon < 10^2$. Полосы поглощения располагаются по всему видимому диапазону, захватывая ближнюю ультрафиолетовую и инфракрасную области спектра.

В стеклах, содержащих растворенные металлы (медь, серебро, золото), центры окраски формируются при повторной термообработке (наводке) в виде коллоидных частиц размером 20—30 нм. При этом стекла окращиваются в красный, желтый и пурпурный цвет. Спектр поглощения определяется как собственным избирательным поглощением атомов металла, так и рассеянием света коллоидными частицами.

В настоящем каталоге приведены числовые значения величин, характеризующих спектральные, физические и химические свойства цветного оптического стекла. Кроме того, содержатся некоторые сведения, поясняющие приводимые

данные о свойствах стекол и их обозначениях, которые облегчают пользование каталогом и позволяют правильно выбирать стекла для светофильтров.

В табл. I.2 даны основные назначения светофильтров из цветных стекол. Табл. I.3 содержит коды ОКП марок цветных оптических стекол и характеристики их свойств: плотности ρ (кг/дм³), температурного коэффициента пинейного расширения $\ll \cdot 10^7$ (град $^{-1}$), температуры отжига T_0 (°C), химической устойчивости (к влажной атмосфере и кислотоустойчивости), оптического коэффициента напряжения $B \cdot 10^{12}$ (Πa^{-1}), твердости по сощлифовыванию H_S относительно твердости К8 и показателя преломления \mathcal{N}_e (или \mathcal{N}_D , если \mathcal{N}_e невозможно измерить).

В табл. І.4 приведены показатели преломпения $n_{\rho}, n_{\rho}, n_{\rho}, n_{\rho}$ и n_{c} для стекол ряда марок.

Спектральные характеристики стекол представлены в табл. І.5. Для удобства сравнения они даются сразу для нескольких стекол, имеющих однородные или близкие по значению спектральные свойства. В некоторых случаях этот порядок нарушен, поскольку не всегда имеется несколько однотипных стекол или, наоборот, их больше, чем можно поместить на одной странице.

Спектральные свойства стекол характеризуются числовыми значениями показателей поглощения или оптической плотности (приводятся на четных страницах) и спектральными кривыми коэффициентов пропускания (приводятся на нечетных страницах).

В табл. I.5 (с. 46—106 и 118—150) представлены показатели поглощения $\alpha(A)$ стекол в ультрафиолетовой, видимой и инфракрасной областях спектра. Диапазон длин волн и интервалы между приводимыми величинами показателей поглощения изменяются в зависимости от характера спектральных свойств и назначения стекол. Спектральные кривые коэффициентов пропускания $\mathcal{T}(A)$ даны для стекол, имеющих толщину 3 мм, т. е. близкую к наиболее часто используемой рабочей толщине светофильтров.

Для большой группы желтых, оранжевых и красных стекол в табл. I.5 (с. 98, 108-116) приведены значения не показателей поглощения, а оптической плотности $\mathcal{D}(\mathcal{A})$. Это обусловлено тем, что для них определяющей величиной является установленное для каждой марки стекла положение границы поглощения \mathcal{A}_{np} , которое по технологическим условиям и в зависимости от размеров светофильтров может быть достигнуто в пределах изменения толщины от 2 до $10\,$ мм, а по особому заказу — и при других значениях. Величины оптической плотности и спектральные кривые коэффициентов пропускания этих стекол даны для толщины, обеспечивающей установленные значения \mathcal{A}_{np} , которая в данном частном случае равна 5 мм (для стекла марки ЖС10 — 6 мм, марки ИКС970-1 — 7 мм).

Цветовые координаты стекол для стандартных источников излучения А и В представлены в табл. І.6 и на рис. І.54-І.57. В табл. І.6 приведены значения общего визуального коэффициента пропускания \mathcal{T} (%), числовые значения координат цвета х и у для стекол толщиной от 0,5 до 5 мм. На цветовые треугольники (рис. І.54, І.56) нанесены координаты цвета ж и у в виде кривых, показывающих изменение цвета стекла с изменением толщины от 1 до 5 мм. Кружками отмечены координаты цвета светофильтров из стекол толщиной 3 мм и светофильтров из желтых, оранжевых и красных стекол толщиной, обеспечивающей установленные значения λ_{np} ; заштрихованными кружками обозначены координаты цвета для светофильтров толщиной 2 мм. Для стекол, цвет которых мало изменяется с изменением толщины (большая часть нейтральных, желтых, оранжевых и красных стекол), цветовая характеристика определяется одной точкой. Координаты цветности желтых, оранжевых и красных селенокадмиевых стекол различных марок соединены одной линией, что указывает на непрерывность изменения цвета стекла от одной марки к другой.

Для удобства пользования средняя часть цветовых треугольников, в которой обозначены стекла со слабо выраженной окраской или очень светлые, изображена в большем масштабе (рис. I.55, I.57).

На рис. I.58-I.64 показаны графики температурных изменений спектрального поглощения типовых стекол в диапазоне температур от 20 до 400°C. На

рис. I.65—I.66 даны графики изменения спектров поглощения стекол марок УФС1, УФС2 и УФС6 под действием ультрафиолетового излучения.

В табл. 1.7 приведены данные о яркости люминесценции стекол в относительных единицах, а также о ее цвете.

На рис. І.67, І.68 и в табл. І.8, І.9 представлены спектральные кривые коэффициентов пропускания и значения оптической плотности комбинированных светофильтров, составленных из двух или трех стекол, различных назначений.

ОБОЗНАЧЕНИЯ СТЕКОЛ

Каждому стеклу присвоены марка, состоящая из двух или трех букв и цифр, и код ОКП. Первая или две первые буквы являются начальными буквами наименования цвета, а последняя, одинаковая для всех стекол буква "С" — начальной буквой слова "стекло". Цифра в марке стекла обозначает порядковый номер его разработки: чем меньше цифра, тем раньше это стекло было освоено промышленностью. Так, например, наименование СС2 означает синее стекло второе, ЖЗС5 — желто-зеленое стекло пятое. Стекла, помещенные в каталоге, которые изготовлялись до его выпуска, сохраняют прежние обоэначения.

Стекла различных типов располагаются в каталоге в следующем порядке: ультрафиолетовые (УФС), синие и фиолетовые (СС и ФС), сине-зеленые (СЗС), зеленые (ЗС), желтые (ЖС), желто-зеленые (ЖЗС), оранжевые (ОС), красные

(КС), инфракрасные (ИКС), пурпурные (ПС), нейтральные (НС), темные (ТС) и, наконец, белые стекла (БС) с различной границей пропускания в ультрафиолетовой области спектра.

Цветное оптическое стекло выпускается для нужд народного хозяйства и на экспорт в заготовках размером (диаметр или длина наибольшей стороны) не более 250 мм, стекла марок ЖС10 — ЖС18, ОС11 — ОС24, КС10 — КС28 и ИКС970-1 в заготовках размером не более 400 мм.

СПЕКТРАЛЬНАЯ ХАРАКТЕРИСТИКА СТЕКОЛ

Спектральная характеристика стекол выражается числовыми значениями показателя поглощения $\alpha_{\mathcal{A}}$ или оптической плотности $\mathcal{D}_{\mathcal{A}}$ для различных длин волн и спектральными кривыми коэффициента пропускания $\mathcal{T}_{\mathcal{A}}$.

Показатель поглощения $\alpha_{\mathcal{A}}$ стекла для света длиной волны \mathcal{A} определяется из выражения:

$$\alpha_A = -lg \tau_A/l$$
,

где \mathcal{T}_{A} — коэффициент пропускания стекла толщиной \mathcal{L} (мм) для монохроматического света длиной волны \mathcal{A} .

Оптическая плотность $\mathcal{D}_{\mathcal{A}}$ массы стекла для монохроматического света с длиной волны \mathcal{A} связана с показателем поглощения $\alpha_{\mathcal{A}}$ и коэффициентом пропускания $\mathcal{T}_{\mathcal{A}}$ следующим образом:

$$D_{\mathcal{A}} = \mathcal{L}g \, \mathcal{T}_{\mathcal{A}} = \alpha_{\mathcal{A}} \cdot 1 .$$

Для расчета оптической плотности светофильтров кроме поглощения света необходимо учитывать потери на отражение от поверхностей образца стекла и вводить соответствующую поправку.

Коэффициент пропускания $\mathcal{T}_{\mathcal{A}}'$ светофильтра толщиной 1 (мм) при перпендикулярном падении монохроматического света данной длины волны равен:

$$\tau_{A}' = (1-\rho)^{2} \cdot \tau_{A} = (1-\rho)^{2} \cdot 10^{-\alpha_{A} \cdot l}$$

где ho- коэффициент отражения.

Оптическая плотность $\mathcal{D}_{3}^{\ \prime}$ светофильтра для данной длины волны равна:

$$D_{A}^{\prime = -1}g \tau_{A}^{\prime = D_{A} + D_{\rho m} = \alpha_{A} \cdot 1 + D_{\rho m},$$

где $\mathcal{D}_{\rho m}$ – поправка на многократное отражение спектра излучения от поверхностей образца.

Показатель преломления π , коэффициент отражения ρ и поправка на отражение $\mathcal{D}_{\rho m}$. Коэффициент отражения для расчета поправки на многократное отражение $\mathcal{D}_{\rho m}$ определяется по формуле Френеля:

$$\rho = (n-1)^2/(n+1)^2$$
,

где n — показатель преломления стекла.

Поправка на отражение определяется из выражения:

Для видимой области спектра поправка на многократное отражение спектра излучения от поверхностей образца при измерении на спектрофотометре рассчитывается по формуле:

$$D_{\rho m}^{=-1}g[2n_e/(n_e^2+1)]$$
.

Для ультрафиолетовой и инфракрасной областей спектра \mathcal{D}_{pm} следует рассчитывать, используя π для соответствующих длин волн.

Величины λ_{mox} и λ_{np} характеризуют стекла длиной волны, соответствующей максимуму пропускания в рабочей части спектра, или границей пропускания. За границу пропускания условно принята длина волны, для которой коэффициент пропускания в два раза меньше максимального его значения для данного стекла или, что одно и то же, для которой оптическая плотность на 0,3 больше, чем наименьшее ее значение. Величиной λ_{np} обычно характеризуются стекла, круто срезающие коротковолновую область спектра (стекла марок ЖС, ОС, КС и ИКС).

Изменение спектрального поглощения от варки к варке. В каталоге приведены числовые значения показателей поглощения стекол, полученных в производственных условиях. Значения $\mathcal{L}(A)$ и $\mathcal{D}(A)$ стекол других варок могут несколько отличаться от данных, приведенных в каталоге. Допустимые отклонения определяются ГОСТом 9411—81, ведомственными нормалями или частными техническими условиями и предусматриваются при заказах. Если требуются более точные данные о спектральных характеристиках стекол, то необходимо определить их путем непосредственных измерений.

Общий визуальный коэффициент пропускания стекол рассчитывается по формуле:

$$\tau = \int \tau_{A} I_{A} v_{A} d_{A} / \int I_{A} v_{A} d_{A} ,$$

При определении общего коэффициента пропускания готовых светофильтров необходимо учитывать многократное отражение от двух полированных поверхностей стекла.

ПРОЧИЕ СВОЙСТВА СТЕКОЛ

Температурное изменение спектрального поглощения. Светофильтры, изготовленные из стекол и других материалов (желатины, пластмасс или растворов красителей), при эксплуатации в большинстве случаев сильно нагреваются, так как устанавливаются перед источником света, излучающим одновременно видимые и тепловые пучи. При повышении температуры спектральное поглощение изменяется, а при охлаждении, как правило, восстанавливается. На рис. I.58—I.64 даны графики оптической плотности типовых стекол при температуре 20, 100, 300 и 400°С. Рядом с графиками указаны марки стекол, спектры поглощения которых изменяются с изменением температуры аналогично приведенным. Температурные изменения спектров поглощения измерялись посредством введения

в оптическую систему спектрофотометра малогабаритной печи с терморегулятором, в которую помещался образец стекла. Температура регулировалась по тер-

мопаре, установленной у самой поверхности стекла.

Общим для всех стекол является смещение при нагревании коротковолновой границы и полос поглощения независимо от того, в каком участке спектра они расположены, в область более длинных волн, размывание полос поглощения и увеличение плотности в минимумах. В некоторых случаях эти изменения настолько велики, что могут резко ухудинить спектральные свойства светофильтров. Так, например, поглощение инфракрасного излучения стеклом СЗС24 ослабевает в два раза. Полоса поглощения стекла ЗС7 в красной части спектра также ослабевает почти в два раза при одновременном повышении поглощения в минимумах. Граница поглощения желтых, оранжевых и красных стекол при повыщении температуры на каждые 100°C смещается на 10-15 нм, что может соответствовать переходу стекла в стекло следующей марки этого типа. Особенно сильно смещается граница поглощения темно-красных стекол марок КС17, КС18, КС19, КС28, КС29 и ИКС970-1. Температурные изменения спектров поглощения следует учитывать при использовании стекол в качестве светофильтров.

Теплофизические свойства стекол. Термостойкость характеризует способность материала выдерживать без разрушения однократные или многократные перепады температур. Термостойкость К находится в сложной зависимости от свойств и состава стекла. Стекла делятся на нетермостойкие (K<100°C) и термо-

стойкие (К>100°С). Оценивать термостойкость можно по формуле Шотта-Винкельмана:

$$K = S \sigma_{\rho} \sqrt{\lambda/c\rho} / \alpha E$$
,

где S — константа, учитывающая форму и размер изделия; G_{ρ} — предел прочности на растяжение; $\sqrt{\lambda/c\rho}$ — коэффициент температуропроводности; α — температурный коэффициент линейного расширения (ТКЛР); E — модуль упругости.

Таким образом, чем выше температуропроводность и ниже ТКЛР, тем более термостойким будет стекло.

Термическое расширение стекол. Нагревание тела при постоянном давлении вызывает увеличение линейных размеров и объема. Термическое расширение характеризуется коэффициентом объемного расширения β и температурным коэффициентом линейного расширения α . На практике используют ТКЛР, измеренный в диапазоне температур от 20 до 300°C.

Температура отжига. В процессе производства цветного оптического стекла важным этапом является отжиг, который позволяет максимально ослабить остаточные напряжения и привести стекло каждой заготовки и всей партии к единому в пределах допусков показателю преломления, т. е. получить оптически однородное стекло.

Температурой отжига принято считать температуру, отвечающую вязкости 10^{12} Па·с (близка к температуре стеклования). Каждое стекло имеет свою температуру отжига, зависящую от его химического состава.

Оптический коэффициент напряжения. При расчете режимов отжига стекла учитываются его фотоупругие свойства. Фотоупругость стекла выражается оптическим коэффициентом напряжения (ОКН) В, равным разности приращений показателя преломления стекла для света с колебаниями, параллельными и перпендикулярными действию напряжений при их изменении на 10^{12} Па, т. е. ОКН характеризует двойное лучепреломление, возникающее при напряжении 10^{12} Па. В каталоге значения оптического коэффициента напряжения указаны с точностью до $0.15 \cdot 10^{12}$ Па $^{-1}$.

Относительная твердость по сошлифовыванию. Твердость стекла в значительной мере определяет трудоемкость процесса его обработки. Кроме того, стекло с малой твердостью больше подвержено царапанию, а это затрудняет получение и сохранение полированной поверхности высокой степени чистоты. Как и многие свойства, твердость стекла зависит от его химического состава. Относительная твердость по сошлифовыванию определяется отношением объема сошлифованного стекла марки К8 (ВК7 фирмы "Шотт") к объему стекла данной марки, сошлифованного при тех же условиях обработки.

Химическая устойчивость стекол. Химической устойчивостью цветного оптического стекла называют сопротивляемость его полированной поверхности

действию различных веществ, с которыми оптические детали контактируют в процессе изготовления и при эксплуатации. Между сопротивляемостью стекол действию различных разрушающих сред прямой связи нет: стекло может сильно разрушаться от растворов кислот, но быть вполне устойчивым к влажной атмосфере и наоборот. В табл. 1.3 приведены данные по химической устойчивости цветных оптических стекол.

Устойчивость силикатных стекол к влажной атмосфере определяется при выдержке их в течение 2–20 ч при температуре 50°С и относительной влажности 85%. По устойчивости к влажной атмосфере силикатные стекла подразделяются на следующие группы: А (выдержка в течение 20 ч — изменений нет); Б (выдержка от 20 до 5 ч — капельный налет); В (выдержка от 5 до 2 ч — капельный налет); Г (выдержка в течение 2 ч — капельный налет).

Устойчивость несиликатных стекол к влажной атмосфере определяется так же, как и для селикатных, но при температуре 60°С. По этому свойству несиликатные стекла подразделяются на следующие группы: с (выдержка в течение 20 ч — изменений нет); у (выдержка от 20 до 5 ч — наблюдается разрушение); д (выдержка от 5 до 2 ч — наблюдается разрушение); дд. (выдержка менее 2 ч — наблюдается разрушение).

Детали из силикатных стекол групп ${\bf B}$ и ${\bf \Gamma}$ и несиликатных стекол групп д и дд следует применять после предварительной защиты.

По кислотоустойчивости цветные оптические стекла (силикатные и несиликатные) делятся на шесть групп, определяемых стандартным снижением коэффициента отражения стекла на 0,4%: 1 - требует травления более 5 ч; 2 - требует травления от 1 до 5 ч; 3 – требует травления от 0,25 до 1 ч; 4 – требует травления в течение 0,25 ч, 5 - требует травления в течение 1 ч; 6 - требует травления менее 0,25 ч. Первые четыре группы относятся к воздействию 0,1 н уксусной кислоты, а пятая и шестая - к воздействию дистиллированной воды.

Испытания по определению кислотоустойчивости стекол проводятся при тем-

пературе 50°С.

Рекомендуется применять цветные оптические стекла первых трех групп. Изменение спектрального поглощения под влиянием ультрафиолетового излучения. Спектральные свойства стекол, пропускающих ультрафиолетовые лучи и предназначенных для работы с источниками ультрафиолетового излучения, могут изменяться в результате длительного облучения ультрафиолетовым светом. К ним относятся стекла марок УФС1, УФС5, УФС2, УФС6, ПС11, БС12, БСЗ, БС4, а также марок СЗС24, ЗС7, СЗС23 и некоторых других. Изменение спектральной характеристики светофильтров, изготовленных из этих стекол, зависит от мощности источника, времени облучения, толщины светофильтра и положения границы пропускания стекла в ультрафиолетовой области спектра. Чем более короткие волны пропускает стекло, тем в большей степени оно теряет свою прозрачность. На рис. 1.65 и 1.66 представлены кривые увеличения оптической плотности светофильтров из стекол марок УФС1, УФС2 и УФС6 при облучении их различными источниками в течение 14-15 ч. На рис. І.66 даны кривые увеличения оптической плотности светофильтров из стекла марки УФС1, наиболее сильно подверженного действию ультрафиолетового излучения, в зависимости от времени облучения их лампами ПРК-2 и СВД-120А. При использовании лампы ПРК-2 светофильтр из стекла марки УФС1 становится непригодным для пропускания линии ртутного спектра 254 нм через 50-100 ч облучения. При более мощных источниках излучения пля равного увеличения плотности требуется меньше времени.

Прозрачность стекла можно восстановить почти полностью путем термообработки. В табл. І.1 приведены рекомендуемые режимы термообработки светофильтров из стекол марок УФС1, УФС5, УФС2 и УФС6 размером 80Х80Х5 мм. При этих режимах стекла не деформируются и их поверхность не повреждается. Допускаются изменение температуры выдержки в пределах ±20°Си некоторое увеличение длительности выдержки.

Марка	Скорость	Выдер	ВХОК С	Скорость сни-		
СТЕКЛА	подъема темпера- туры до темпера- туры вы- держки, ОС/ч	оС. тура, темпера—	время, ч	ратуры до 100°С, °С/ч		
уфС1, уфС5	30-40	450	5-10	15-20		
уфС2 УФС6	25-35 30-50	400 300	2-5 2-5	15-20 15-20		

Примечание. Скорость снижения температуры ниже 100°C – инерционная.

КОМБИНИРОВАННЫЕ СВЕТОФИЛЬТРЫ

Многие светофильтры не могут быть получены в одном стекле. Оптимальные, наиболее близкие к теоретическим светофильтры с определенным ходом спектральных кривых, как правило, получаются при составлении двух или трех цветных стекол.

Светофильтры для выделения линий ртутного спектра. В табл. I.8 указаны марки и толщина стекол, составляющих светофильтры для выделения наиболее интенсивных линий спектра ртутных источников света и получения монохроматического излучения значительной интенсивности. В той же таблице приведены коэффициенты пропускания светофильтров для линий ртутного спектра и значения чистоты выделения линий спектра светофильтрами. На рис. I.67 представлены спектральные кривые коэффициентов пропускания трех комплектов светофильтров, отличающихся чистотой выделения основных линий ртутного спектра. При использовании светофильтров следует учитывать, что стекла марок ЖС и ОС, входящие в них, люминесцируют. Поэтому во избежание нежелательного дополнительного засвечивания комбинированные светофильтры должны быть обращены к приемнику излучения нелюминесцирующей стороной.

Светофильтр, приводящий спектральную чувствительность селенового фотоэлемента к спектральной чувствительности глаза. Состоит из стекол марок

Стекла для конверсионных светофильтров. Конверсионные светофильтры предназначены для преобразования цветовой температуры источников излучения. Синие светофильтры (стекла марок СС16, СС17, СС18) повышают цветовую температуру источников света, оранжевые светофильтры (стекла марок ОС19, ОС20) понижают ее.

Конверсионные светофильтры используются при цветной фото-, кино- и телесъемке — приводят в соответствие спектральный состав источника света и цветовой баланс носителя изображения (фотоматериала), а также применяются в светотехнике.

Светофильтры устанавливают на источники освещения или на объективы съемочной аппаратуры.

Марка стекла	Назначение 4
уфС1	Люминесцентный анализ; выделение области 240-420 нм
УФС5	Люминесцентный анализ; выделение области 250-400 нм
УФС2	Люминесцентный анализ; выделение области 270-380 нм; в комбинации с ЖСЗ выделение линии ртути 313 нм
УФС6	Люминесцентный анализ; выделение области 310-390 нм; в комбинации с БС7, БС6 БС5 выделение линии ртути 365 нм
УФС8	Люминесцентный анализ; арматура для источников ультрафиолетового света (термически устойчивое); выделение области 320-390 нм
ФС1	Выделение области 330-460 нм
ФС6	Выделение областей 290-460 и 720-1200 нм
CC2	Белый сигнальный для источников света с цветовой тем-
CC4	Выделение области 340-470 нм

Марка стекла	Назначение
CC9 CC1 CC8 CC5 CC15 CC16, CC17, CC18 C3C17 C3C7 C3C8 C3C9 C3C23	Светофильтр дневного света; цветное освещение Синий сигнальный; дветное освещение Трехцветная проекция; выделение области 370-500 нм Ультрафиолетовая микроскопия; выделение области 360-490 нм. В комбинации с ЖС11, ЖС12 выделение линии ртути 436 нм Светофильтры, повышающие цветовую температуру Светофильтр дневного света (в комбинации с ПС5 и ПС14) Поглощение области 580-1200 нм. Цветное освещение Поглощение области 580-1200 нм Поглощение области 580-2500 нм Поглощение области 680-1200 нм; в комбинации со стеклами ОС14, КС10, КС11, КС13 выделение участков спектра в области 580-660 нм Поглощение области 620-1500 нм; в комбинации со стеклами ОС11, ОС12, ОС13, ОС14 выделение участеклами ОС11, ОС12, ОС13, ОС14 выделение

Марка стекла	нагансан
C3C22	Поглощение области 580-700 нм; в комбинации со стек- лами ЖС16, ЖС17, ЖС18 и ОС11 выделение участков спектра в области 480-540 нм
C3C20	Поглощение области 540-730 нм; выделение области 360-550 нм; в комбинации с ЖС12 или ЖС16 выделе- ние области 460-580 нм
C3C26	Теплозащитное, не имеющее избирательной окраски; в комбинации с другими стеклами выделяет участки спектра в области 680-800 нм
C3C24, C3C27	Теплозащитное; поглощение области 750-3000 нм (и дальше)
C3C25	Теплозащитное; поглощение области 700-3000 нм (и дальше)
C3C15	Светофильтр для сенситометрии
C3C5	Теплозащитное; поглощение области 700-3000 нм (и дальше)
C3C16	Теплозащитное - термически устойчивое
3C8	Приведение кривой спектральной чувствительности се- ленового фотоэлемента к кривой чувствительности гла- за (в комбинации с ЖЗС18)

Марка с т екла	Назначение
3C7	Выделение узких участков спектра; в комбинации с ОС13- линии ртутного спектра 578 нм; в комбинации с СЗС22 и ЖС18 - области 510-530 нм
3C10	Тройное цветоделение; выделение области 500-600 нм; воспроизведение кривой чувствительности глаза
3C1	Трехцветная проекция; выделение области 480-570 нм; фотография
3C11	Трехцветная проекция; выделение области 480-570 нм; фотография
3C3	Зеленый сигнальный светлый; цветное освещение
Ж3С19	Ультрафиолетовая микроскопия; поглощение области спектра короче 500 нм
ж3С5	Фотография; цветное освещение
жзс6	Фотография; цветное освещение
ж3С18	Приведение кривой спектральной чувствительности селено- вого фотоэлемента к кривой чувствительности глаза (в комбинации с 3С8); выделение области 520-620 нм
жзс9	Цветное освещение
ж3С1	Светофильтр для дальномеров
Ж3С12	Светофильтр для дальномеров

Марка стекла	Назначение
Ж3С17	Светофильтр для дельномеров
ЖС4	Поглощение ультрафиолетовой области спектра
жсз	Выделение линии ртутного спектра 313 нм (в комбинации с УФС2)
ЖС19	Люминесцирующие экраны
ЖС20	Выделение области 280-320 нм (в комбинации с УФС5 или УФС2)
ЖC21	Выделение области 400-2800 нм
ЖС10	Поглощение ультрафиолетовой области спектра (короче 390 нм); в комбинации с ПС13 выделение линии ртутного спектра 405 нм
ЖС11	Поглощение ультрафиолетовой области спектра (короче 410 нм); в комбинации с СС15 выделение линии ртутного спектра 436 нм
ЖС12	Фотография; в комбинации с СЗС2О выделение участков спектра в области 450-540 нм
ЖС16	Фотография; в комбинации с СЗС21, СЗС22 и СЗС20 вы-
ЖС17	деление участков спектра в области 470-570 нм Фотография; наблюдательные приборы; в комбинации с C3C21 и C3C22 выделение области 480-570 нм

Марка стекла	Назначение
жс18	Фотография; в комбинации с C3C21 и C3C22 выделение области 480-570 нм
OC11,	Фотография; наблюдательные приборы; в комбинации с ПС7
OC21	выделение линии ртутного спектра 546 нм
OC12,	фотография; наблюдательные приборы; в комбинации с СЗС21
OC22	выделение области 540-570 нм
OC13,	Фотография; в комбинации с ЗС7 выделение линии ртутного
OC23-1	спектра 578 нм
OC14,	Фотография; в комбинации с СЗС21 выделение участков
OC24	спектра в области 580-600 нм
OC17	Наблюдательные приборы
OC6	Колориметрия: объективная фотометрия
oC5	Желтый сигнальный; наблюдательные приборы; цветное освещение
OC19,	Светофильтры, понижающие цветовую температуру
OC20	
KC10	Выделение области спектра от 600 нм; в комбинации с
	СЗС21 выделение участков спектра в области 600-610 нм

Марка стекла	Назначение					
KC11, KC21	Выделение трети спектра; красный сигнальный светлый					
KC13, KC23	Треживетная проекция; красный сигнальный					
KC14, KC24	Фотография					
KC15, KC25	Светофильтр для оптических пирометров; фотография					
KC17, KC27	Выделение области 670-2800 нм					
KC18, KC28	Выделение области 680-2800 нм					
KC19	Выделение области 700-2800 нм					
ИКС1	Выделение области 850-3000 нм					
ИКС5	Выделение области 860-3000 нм					
ИКСЗ	Выделение области 900-3000 нм					

Продолжение табл. 1.2

Мар ка стекла	Назначение
икс6	Выделение области 900-3000 нм
икс7	Выделение области 950-3000 нм
ИКС970-1	Выделение области 970-3000 нм
ПС5	Светофильтр дневного света (в комбинации с СЗС17 и ПС14)
ПС14	Светофильтр дневного света (в комбинации с СЗС17 и ПС5)
ПС7	Выделение линии ртутного спектра 546 нм (в ком- бинации с ОС11 или ОС12); градуировочный све- тофильтр
псв	Колориметрия; поглощение области 500-550 нм
ПС11	Выделение области 240-460 нм; поглощение об- ласти 460-660 нм
ПС13	Выделение линии ртутного спектра 405 нм (в ком- бинеции с БС8 или ЖС10)
HC1	Защитные очки от яркого света
HC2	Защитные очки от яркого света

Марка стекла	Назначение
нсз	Защитные очки от яркого света
HC6	Фотометрия, спектрофотометрия
HC7	Фотометрия, спектрофотометрия
HC8	Фотометрия, спектрофотометрия
HC9	Фотометрия, спектрофотометрия
HC10	Фотометрия, спектрофотометрия
HC11	Фотометрия, спектрофотометрия
HC12	Фотометрия, спектрофотометрия
HC13	Ослабление яркости излучения раскаленных предметов
	при измерении их температуры оптическим пирометром
HC14	Защитные очки от солнечного света
TC6	Защитные очки от солнечного света
TC9	Защитные очки от солнечного света
TC10	Защитные очки от солнечного света
TC3	Защитные очки при электросварке
EC12	Пропускание ультрафиолетового излучения до 240 нм
BC3	Пропускание ультрафиолетового излучения до 270 нм
EC4	Пропускание ультрафиолетового излучения до 290 нм
EC7	Пропускание ультрафиолетового излучения до 360 нм
EC8	Пропускание ультрафиолетового излучения до 380 нм

Таблица I.3

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ЦВЕТНЫХ ОПТИЧЕСКИХ СТЕКОЛ

Марка отекла	Код ОК		ſ	T ₀	æ ·10'	$H_{\mathcal{S}}$	B · 10 12	Химическая устойчивость	
	ROH UK	$n_e(n_p)$						к влажной атмосфере	КИСЛОТО- УСТОЙЧИВОСТЬ
YOCI	44 9240 00	00 (I,540)	2,84	490	(89)*	0,39	1,80		I
70 C5	44 9240 20	00 (I,540)	2,84	480	104	0,40	1,80	д	2
79 C2	44 9240 IO	00 (1,557)	2,65	480	93	0,51	1,80	д	I
76 C6	44 9240 30	00 (1,520)	2,58	490	102(92)*	I,05	2,90	A	I
76 C8	44 9240 40	00 (1,509)	2,46	540	60	I.II	2,80	A	5
QCI	44 924I 00	00 (1,524)	2,53	520	103	I,II	2,60	В	I
© C6	44 9241 10	00 (1,495)	2.40	600	59	1,05	2,90	A	I
CC2	44 9242 IO	00 1,522	2,51	520	103	I,I4	2,50	Б	I
CC4	44 9242 20	00 (1,522)	2,51	520	104	I,14	2,50	5	I
CC9	44 9242 60	00 1,519	2,52	520	103	1,15	2,50	Б	I
CCI	44 9242 00	00 1,525	2,51	520	104	I,I4	2,50	Б	I
CC8	44 9242 50	00 1,522	2,52	500	102(91)*	1,12	2,50	ъ	I
CC5	44 9242 30	00 I,585	3,25	470	89	0,67	3,10	B	2
CCI5	44 9243 00	00 1,515	2,48	475	103	0,92	2,90	В	2
CCIB	44 9243 30	00 I,497	2,50	530	90(83)	0,76	3,75	В	6

Mapra OTOREA	Код ОКП	$n_e(n_p)$	P	<i>T₀</i>	d · 107	Hg	B · 10 12	Химическая устойчивость	
						′′8	D 10	К влажной атмосфере	КИСЛОТО- УСТОЙЧИВОСТ
CC16	44 9243 1000	I,497	2,50	530	90(83)	0,76	3,75	В	6
CC17	44 9243 2000	I,497	2,50	530	90(83)	0,76	3,75	В	6
C3C7	44 9244 2000	1,516	2,57	460	103	1.04	2,50	В	2
C3C17	44 9244 7000	1,519	2,50	520	101	1,13	2,60	Б	I
C3C8	44 9244 3000	1,519	2,59	450	103	I,04	2,50	В	2
C3C9	44 9244 4000	I,524	2,6I	440	103	I,03	2,50	В	2
CSC23	44 9245 I000	I,540	2,84	380	108	0,33	3,20	<u> </u>	5
C3CSI	44 9244 9000	I,545	2,86	380	100	0,30	3.40	0	6
03022	44 9245 0000	1.562	2,93	400	100(98)*	0,28	3,20	<u> </u>	6
CSC20	44 9244 8000	I.497	2,27	420	94	0,68	3,65		5
C3C26	44 9245 4000	I,536	2,84	480	92	0,36	1,90		2
3024	44 9245 2000	I,520	2,55	650	55	0,78	2,70		2
23C25	44 9245 3000	1,517	2,54	620	55	0.76	2,70	0	2
9C15	44 9244 5000	I,530	2,64	520	99	I.I4	2.90	Б	I
905	44 9244 1000	1,531	2,63	520	99	1.13	2.90		I

					7		7 10 12	Химическая у	стойчивость
Mapka CTORIA	код ОКП	$n_e(n_p)$	Р	T_{o}	x ·10'	H_S	B · 10	к влажной атмосфере	КИСЛОТО- УСТОЙЧИВОСТЬ
C3CI6	44 9244 6000	1,519	2,60	560	67	1,16	3,10	A	I
C3C27	44 9245 5000	I,505	2,44	570	59	0,66	2,20	С	
308	44 9247 0000	1,533	2,83	370	105(99)*	0,33	3,25	д	6
907	44 9246 9000	1,537	2,85	360	72	0,89	3,40		5
9010	44 9247 1000	1,537	2,83	380	100	0,34	3,25	c	5
	44 9246 5000	1,526	2,52	520	103	1,12	2,50	В	I
301	44 9247 2000	1,553	2,83	480	113	0,91	2,80	Б	I
3CII	44 9246 7000	1,525	2,52	520	99	1,09	2,60	Б	2
X3C5	44 9248 2000	1,524	2,50	540	102	1,12	2,50	Б	I
1306	44 9248 3000	1.524	2.50	540	102	1,12	2,50	Б	I
	44 9248 9000	1,539	2,84	390	108	0,35	3,20	c	I
ESC18	44 9249 0000	1,754	4,80	390	83	0,60	1,20	A	6
E3C19		1,524	2,50	540	102	1,12	2,60	Б	
¥309	44 9248 4000	1,524	2,52	540	102	1,12	2,50	В	Ι
E3CI2	44 9248 6000	I 529	2,53	520	100	1.11	2,65	В	1

Марка	Кол	OKIT	n (n)	•	_T	x ·107	и	D . 10 12	Химическая	устойчивость
марки Стекла	под		$n_e(n_p)$	P	T_0	a 10	H _S	B · 10	к влажной атмосфере	КИСЛОТО- УСТОЙЧИВО-Т
X3 C17	44 9248	8000	(1,529)	2,53	520	100(93)*	1,10	2,65	В	I
EC4	44 9250	1000	I,639	3,69	500	105	0,63	2,70	A	3
EC3	44 9250	0000	1,538	2,78	520	104	0,78	2,80	A	5
EC19	44 9250	8000	1,517	2,40	560	65	0.75	3,20	В	3
EC 20	44 9250	9000	I,537	2,82	490	104	0,38	I,75	С	2
ECIO	44 9250	2000	I,525	2,64	540	102	0,90	3,10	A	. 2
ECII	44 9250	3000	I,525	2,64	540	102	0,90	3,10	Б	2
ICI2	44 9250	4000	I,525	2,64	540	102	0,90	3,10	Б	2
XC16	44 9250	5000	I,525	2,64	540	102	0,90	3,10	Б	2
E C17	44 9250	6000	I,525	2,64	540	102	0,90	3,10	Б	2
EC18	44 9250	7000	.I ,525	2.64	540	102(95)*	0,90	3,10	Б	2
XC3I	44 9251	0000	1,469	2,25	430	34	1,39	3,50	A	I
œп	44 9252	8000	1,525	2,64	540	102	0,90	3,50	В	2
0CI2	44 9252	9000	I,525	2,64	540	102	0,90	3,50	В	2
OCI3	44 9253	0000	1,528	2,64	540	102(95)*	0,90	3,50	В	2

					. 7		72 12	Химическая	устойчивость
Марка отекла	Код ОКП	$n_e(n_D)$	P	T_o	x ·107	H_S	B · 10	к влажной атмосфере	кислото- устойчивости
	44 9253 I000	(1,523)	2,64	540	102(95)*	0,90	3,50	В	2
0C17	44 9253 2000	1,525	2,64	540	102	0,90	3,40	В	2
0C2I	44 9253 5000	1,536	2,74	580	108	0,70	3,60	B	3
0C22	44 9253 6000	1,535	2,74	580	801	0,70	3,60	В	3
0C23-I	44 9253 4000	1.535	2,74	580	801	0,70	3,60	В	3
0024	44 9253 7000	1,535	2,74	580	108	0.70	3,60	В	3
006	44 9252 7000	1,525	2,55	520	104	1,23	2,25	В	I
0C5	44 9252 6000	I,525	2,55	520	104	1,22	2,20	В	I
0C19	44 9253 8000	I,543	2,48	560	70(63)	0,95	2,80	A	4
0020	44 9253 9000	1,543	2,58	560	75(68)	0,93	2,90	A	4
KC IO	44 9254 6000	(I,525)	2,64	540	108	0,90	3,20	В	2
KCII	44 9254 7000	(1,525)	2,64	540	108	0,90	3,20	В	2
KCI3	44 9254 8000	(1,525)	2,64	540	108	0,90	3,20	В	2
KCI4	44 9254 9000	(1,525)	2,64	540	108	0,90	3,20	В	2
KCI5	44 9255 0000	(1,525)	2,64	540	108(95)	0,90	3,20	В	2

Vowen	Код	OKT	7 (7)		T	x ·107	,,	P . 40 12	Химическая	усто йчив ость
Марка Стекла		UNII	$n_e(n_p)$	ſ	T_o	a · 10	H_s	B · 10'	к влажной атмосфере	КИСЛОТО- УСТОЙЧЕВОСТ
KCI7	44 9255	1000	(1,525)	2,64	540	108	0,90	3,20	В	2
KC18	44 9255	2000	(1,525)	2,64	540	108	0,90	3,20	В	2
KC19	44 9255	3000	(1,525)	2,64	540	108	0,90	3,20	В	2
KC3I	44 9255	6000	(1,536)	2,74	580	108	0,70	3,60	В	4
KC23	44 9255	7000	(1,536)	2,74	580	108	0,70	3,60	В	4
KC24	44 9255	8000	(1,535)	2,74	580	108	0,70	3,60	В	4
KC 25	44 9255	9000	(1,535)	2,74	580	108	0,70	3,60	В	4
KC27	44 9255	4000	(1,530)	2,64	580	106	0,75	3,60	В	4
KC28	44 9255	5000	(1,530)	2,64	580	106	0,75	3,60	В	4
икс970-1	44 9258	4000	(1,530)	2,58	540	IIO	1,21	2,50	В	3
NECI	44 9256	5000	(1,525)	2,53	520	99	1,12	2,50	В	I
иксз	44 9256	6000	(1,525)	2,53	520	100	I,I2	2,50	Б	2
MIKC5	44 9256	7000	(1,533)	2,73	465	100	0,86	3,10	В	2
NINC6	44 9256	8000	(1,541)	2,74	465	100(93)*	0,86	3,10	В	2
икс7	44 9256	9000	(1,556)	2,82	500	99	0.87	3,10	В	2

Окончание табл. І.3

Marma	Koz OKI	7 (7)	:	7	d 10	ע	B · 10 12	Химпческая	ALDOEARDOLD &
CTOKER CTOKER	son can	$n_e(n_p)$	P	To	D. 10	H _S	B N.	к влажной атмосфере	VCTORTEBOOTI
HCI2	44 9262 5000	(1,529)	2,46	490	72	0.91	3,30	A .	3
HCI3	44 9262 6000	1,511	2,42	510	72	0,89	3,30	A	5
HCI4	44 9262 7000	1,500	2,38	520	53	0,98	3,50	Ē	4
TC6	44 9264 4000	I,528	2,52	520	107	1,14	2,50	В	I
TC9	44 9254 7000	1.520	2,52	520	91	1,12	2,50	Б	I
TCIO	44 9264 6000	I,525	2,51	510	105	1,14	2,50	A	I
TC3	44 9264 2000	(1,527)	2,53	520	105	1,08	2,60	В	I
EC3	44 9266 0000	1,517	2,52	540	87	0,96	3,30	A	I
BC4	44 9266 1000	1,521	2,38	480	99	0,89	2,65	Б	I
BC7	44 9266 4000	I.654	3.72	450	96	0.68	2,90	. A	2
EC8_	44 9266 5000	I,730	4,22	440	88	0,60	2,30	A	2
RCI2	44 9266 7000	1,510	2,47	560	81	1.10	2,90	A	I

 $^{^{\}prime\prime}$ в скобках даны вначения ТКЕР, измеренные на интерференционном дилатометре типа ФИЗО с точкостью $^{\pm1}\cdot 10^{7}$ I/град.

					7		P . 40 12	Химическая	устойчивость
Марка стекла	код ОКП	$n_e(n_B)$	${\cal P}$	T_{o}	x · 10 ⁷	H_S	B · 10	к влажной атмосфере	кислото- устойчивость
DC5	44 9260 0000	1,677	4,09	420	85	0,64	2,10	. A .	2
IICI4	44 9260 5000	I,479	2,27	410	76	0,70	4,20	В	5
IIC7	44 9260 I000	1,536	2,72	510	98	I,04	2,60	A	I
IIC8	44 9260 2000	1,608	3,56	460	96	. 0,67	2,75	Б	2
ICII	44 9260 3000	1,535	2,83	470	104	0,40	1.80	д	I
IICI3	44 9260 4000	1.594	3,26	460	II2	0,70	3,20	В	4
HCI	44 9261 6000	1,523	2,52	520	102	I,I6	2,50	Б	I
HC2	44 926I 7000	1,525	2,52	520	100	I,I6	2,10	ā	I
HC3	44 9261 8000	1,528	2,52	520	100	I,I4	2,60	Б	I
HC6	44 9261 9000	I,500	2,42	490	73(66)*	0,93	3,35	A	5
HC7	44 9262 0000	1,500	2,42	490	73	0,93	3,35	A	5
HC8	44 9262 I000	1,505	2,42	490	73	0,93	3,35	A	5
HC9	44 9262 2000	1,507	2,42	490	72	0,91	3,30	A	5
HCIO	44 9262 3000	(1,511)	2,42	490	72	0,91	3,30	A	5
HCII	44 9262 4000	(1,516)	2,43	490	72	0,91	3,30	A	5

ПОКАЗАТЕЛИ ПРЕЛОМЛЕНИЯ ЦВЕТНЫХ ОПТИЧЕСКИХ СТЕКОЛ ДЛЯ РАЗНЫХ ДЛИН ВОЛН

Таблица I.4

п _л Л, нн	ng 435,83	n _F	л _е 546,07	n _D 589,29	.n _c 656,27
CCI	1,534	1,529	I,525	1,523	1,520
CC5	1,598				
CC8	1,535	-			
CC9	1,528	1,523	1,519	I,5I7	1,515
CC16	1,506	1,500	I,497	I,495	I,492
C3C7	1,525	1,520	1,516	I,5I4	

Продолжение табл. І.4

n _a A, hm	n _g 435,83	n _F 486,I3	72 e 546,07	77 589,29	.7c 656,27
C3CI7	1,528	1,523	1,519	1,517	1,515
C3C23	I,548	1,543	1,540	1,538	1,535
C3C2I	1,534	I,548	I,545	1,542	-
C3C22	1,572	1,566	1,562		
C3C2O	1,504	1,500	I,497	I,495	I,492
C3C24	1,527	1,523	1,520	1,518	1,515
C3C15	1,539	I,535	1,530	1,528	1,525
C3C5	I,54I	I,536	1,531	1,529	1,526

n _A A, HH	ng 435,83	n _F	π _e 546,07	n _D 589,29	. n _c 656,27
C3C16	1,528	I,522	1,519	1,516	1,514
308		I,537	1,533	1,531	1,528
X3C18			1,539	I,537	1,534
EC4	1,657	1,646	1,639	I,635	1,630
жсз		1,543	1,538	I,536	1,533
MCI9		1,520	1,517	1,515	1,513
EC2 0		1,540	I,537	I,535	1,533
0013			I,528	1,524	1,521
OCI4				1,523	1,521
0020	I,552	I,547	I,543	1,540	1,538

n _a a, hh	ng 435,83	n _F 486,13	π _e 546,07	77 589,29	.70 656,27
OC6		1,529	1,525	I,523	1,520
005			I,525	I,522	I,520
KCI5				(1,525)	1,530
IIC7	I,546	I,54I	1,536		1,531
HC6_	I,508	I,504	1,500	I,498	I,496
BC3	1,525	1,521	1,517	1,515	1,513
EC4	I,530	I,525	1,521	I,5I8	1,516
BC7	I,674	I,663	I,654	I,650	1,644
EC8	I,757	I,742	I,730	I,723	1,716
EC 12	I,518	I,514	1,510	I,508	1,506

СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ЦВЕТНЫХ ОПТИЧЕСКИХ СТЕКОЛ

Таблица I.5

	MAC1	370 C5		M CI	70 C5		YOCI	УФС 5		Y OCI	370 C5
2,HM	. a	(A)	1,HM	a (A)		J,HM	a	(A)	A, HM	a	(A)
220	3.00	4.0	460	I,I0	1.50	700	0.120	0.110	1250	0.45	0.37
230	0.92	1.29	470	1,20	1.31	710	0.091	0.096	1300	0.48	0.43
240	0.32	0.39	480	I.33	1.17	720	0.080	0.102	1350	0.51	0.46
250	0.133	0.140	490	I.43	1.13	730	0.085	0.113	1400	0,50	0,48
260	0.072	0.063				740	0.095	0.132	1450	0.47	0.48
270	0.045	0.035	500	I.70	1.17	750	0.110	0.160		,	
280	0,025	0,018	510	I.95	I.26	760	0.125	0.185			
290	0,013	0,010	520	2,30	1,42	780	0.155	0.24	1500	0.47	0.48
			530	2,40	I,50]		1600	0.47	0.44
300	0.008	0.007	540	2.50	I.48	800	0.185	0.28	1700	0.47	0.40
310	0:006	0.005	550	2,50	I.46	820	0.21	0.32	1800	0.43	0.40
320	0.004	0,003	560	2,75	1.60	840	0.22	0.34	1900	0.40	0.40
330	0.003	0.003	570	3.25	1.85	860	0.24	0.36			
340	0,004	0,003	580	3,50	2.10	880	0.25	0.36	1		
350	0.005	0,006	590	3.30	2.00				2000	0.34	0.39
360	0.008	0.009				900	0.25	0.36	2100	0.30	0.36
370	0.016	0.020	600	3,20	I.85	920	0.26	0.35	2200	0.28	0.34
380	0,035	0,054	610	3.10	I.75	940	0.25	0.33	2300	0.25	0.32
390	0.094	0.160	620	3.00	1.70	960	0.25	0.31	2400	0.23	0.3I
			630	2,85	I,60	980	0,24	0,29	2500	0,24	0,31
400	0,23	0,41	640	2,40	1,35				2600	0,25	0,31
410	0,47	0,87	650	1,75	I,03	1000	0,23	0,27	2700	0,27	0,34
420	0,72	1,34	660	I.I5	0.70	1050	0.22	0.23	2800	0.37	0.40
430	0,94	1.70	670	0.64	0.42	1100	0.26	0,23	2900	0.63	0.58
440	1,03	I,85	680	0,36	0,26	1150	0.33	0.27	3000	1.10	1.01
450	I,07	1,70	690	0,190	0,155	1200	0,40	0,33	i		1

3 my

Рис. І.1

Продолжение табл. І.5

	70C2	70 C6		₹ 000	уфС6		79C2	79 C6		79 C2	УФ С6
A, HM	a	(A)	1,HM	a (1)		λ,μ M	a	(A)	A, HM	a(A)	
220	5.2		460	>6	5.5	700	0.65	0.90	1250	1.90	I.55
230	3.8		470	>6	4.9	710	0.54	0.58	1300	2,20	I,55
240	2.7	I	480	>6	5.2	720	0.49	0.41	1350	2,35	1.40
250 260	I.44		490	>6.0	5.2	730	0.54	0.31	1400	2,40	I,40
260	0,67	>6				740	0,63	0,28	I450	2,40	1,50
270	0.34	3,I	500	>6	5,4	750	0,75	0,30	1 .		\top
280	0,170	1.75	510	>6	5,8	760	0.91	0.36			
290	0,090	0,92	520	>6	>6	780	1.27	0.47	1500	2.40	1,60
			530	>6	>6				1600	2,40	1.60
300	0,053	0.48	540	>6	>6	800	I.50	0.57	1700	2.20	1.55
310	0.037	0.25	550	>6	5.8	820	1.75	0.67	1800	2,20	I,60
320	0,028	0,130	560	>6	5,6	840	1,95	0.78	1900	2,20	1,50
330	0,026	0,074	570	>6	>6	860	2,10	0,86			
340	0,029	0,045	580	>6	>6	880	2,15	0,90			
350	0,036	0,035	590	>6	>6				2000	1,90	1,30
360	0,055	0.033	1			900	2,15	0.93	2100	I,70	1,15
370	0.108	0.047	600	>6	>6	920	2.15	0.94	2200	I,50	0.98
380 -	0.27	0.104	610	>6	>6	940	2.10	0.96	2300	1.30	0.85
390	0.81	0.30	620	>6	>6	960	2.00	0.96	2400	T.16	0.84
			630	>6	>6	980	1,90	0,97	2500	1,05	0,70
400	2,20	0,83	640	>6	>6				2600	I.00	0.52
410	4.6	1.85	650	5.5	>6	1000	1.70	0.99	2700	I.05	0,60
420.	>6	3,2	660	3.6	>6	1050	I.45	I.IO	2800	I.35	0.63
430	>6	4,3	670	2,25	5.0	1100	1.32	1.22	2900	1,90	0.57
440	> 6	5.I	680	1.36	2,90	1150	I.55	I.40	3000	2,20	0,53
450	>6	5.5	690	0.82	1.65	1200	I.75	1.50			Ţ

Рис. 1.2

Продолжение табл. І.5

	7 0 C8		379 C8		70C8	!	340C8
A, HM	a (A)	A, HM	a (A)	J,HM	a (A)	A, HM	a(A)
220		460	2,30	700	0,970	I250	1,05
230		470	2,45	710	0,650	1300	1.18
240		480	2,70	720	0,470	I350 <u> </u>	1.18
250	>6	490	2,95	730	0,380	1400	1,23
260	4.5			740	0.330	I450	1.23
270	3.2	500	3.2	750	0.320		
280	2.10	510	3.4	760	0.330		1/-
290	1,23	520	3.5	780	0.380	1500	1.31
	T ***	530	3.4		<u> </u>	1600	1.31
300	0,710	540	3,I	800	0.420	1700	I.24
	0.420	550	3.I	820	0.450	1800	I.24
310 320	0,260	560	3,5	840	0,460	1900	I,24
330	0,165	570	3,9	860	0,470		
340	0,110	580	4,5	880	0,470		
350	0.087	590	4,5			2000	1.20
360	0.108			900	0.470	2100	1.03
370	0.137	600	4.5	920	0.470	2200	0,930
380	0.250	610	4.I	940	0.470	2300	0.810
390	0.510	620	3.8	960	0.480	2400	0.740
		630	3,9	980	0.480	2500	0,590
400	0.950	640	3.8			2600	0.520
410	I.49	650	3.7	1000	0.500	2700	0.480
420	1.90	660	3.4	1050	0.560	2800	0.440
430	2.20	670	2,75	1100	0.660	2900	0.540
440	2,30	680	2,15	1150	0,760	3000	0,730
450	2.30	690	1.50	1200	0,850		<u></u>

Рис. І.3

	9 C6	9 CI		9 C6	OCI		Ф С6	Φ CI		Ф С6	ΦCI
2, HM	a	(A)	1,HM	а	(Å)	A,HM	а	(A)	A, HM	а	(A)
220			460	0,45	0,30	700	I,28	0,75	1250	0,48	0,73
230			470	0,68	0,47	710	0.77	0,58	1300	0,51	0,74
240	>6		480	0,95	0,71	720	0,43	0,47	1350	0,52	0,68
250	3,5		490	I,19	1,04	730	0,24	0,43	1400	0,55	0,65
260	2.6					740	0.130	0.41	1450	0.58	0,69
270	1.10		500	I.47	1.36	750	0.067	0.41			
280	0.57	≥ 6	510	I.65	I.75	760	0.036	0.41			
290	0.31	5.5	520	I.75	2.30	780	0.014	0.41	_1500	0.59	0.71
			530	1,75	2,65				1600	0,53	0.62
300	0.190	2,6	540	1.65	2,65	800	0,011	0.41	1700	0,52	0,59
310	0.122	I.40	550	I.55	2.30	820	0.012	0.41	1800	0,53	0,55
320	0,084	0,79	560	1,50	2,10	840	0,014	0.40	1900	0,48	0,37
330	0.058	0.44	570	1.75	2,50	860	0.017	0.38			
340	0,043	0,25	580	2,20	3,3	880	0.020	0.37			
350	0.032	0.144	590	2.85	4.0				2000	0,38	0,24
360	0.025	0.075				900	0.024	0.36	2100	0.30	0.17
370	0.022	0.040	600	3.2	4.0	920	0.029	0.34	2200	0.26	0.12
_380	0.023	0.033	610	3.2	3.8	940	0.035	0.32	2300	0.21	0.080
390	0.026	0.033	620	3.1	3.8	960	0.042	0.31	2400	0.17	0.060
			630	2,95	3.9	980	0,052	0.30	2500	0.14	0.040
400	0,035	0,036	640	3,10	4,0	4			2600	0,12	0,060
410	0,056	0,050	650	3,4	3,9	1000	0,064	0,30	2700	0,16	0,14
420	0.082		660	3.5	3.6	1050	0.110	0.32	2800	0,35	0,20
430	0.126	0.106	670	3.1	2.75	IIOO	0.185	0.38	2900	0.42	0.22
440	0.190	0.150	680	2.70	I.80	1150	0.27	0.49		0.37	0.21
450	0,30	0.21	690	1.95	1.10	1200	0.38	0.64			1

Рис. І.4

	ccs	CC4		CCS	CC4		CCS	CC4		CC2	CC4
λ , HM	a	(2)	A,HM	а	(A)	A,HM	а	(A)	A, HM	a	(A)
220			460	0,033	0,20	700	0.041	0.24	1250	0.065	0.40
230			470	0,050	0,31	710	0,021	0.104	1300	0.072	0.44
240			480	0,075	0,48	720	0,010	0,057	1350	0,070	0,43
250		>6	490	0,106	0,69	730	0,005	0,025	1400	0,068	_0,42
260	>6	5,0				740	0,004	0,013	1450	0,072	0,44
270	4.5	3,5	500	0,140	0,86	750	0,003	0,007			
280	2.60	I.80	510	0.190	I,I4	760	0,002	0,005			
290	I.45	1.03	520	0,22	1,43	780	100,0	0,005	1500	0,077	0,47
			530	0,26	1,64				1600	0,072	0,44
300	0.67	0.55	540	0.26	1.62	800	0.001	0.005	1700	0,073	0,45
310	0.32	0.25	550	0.22	1.38	820	0.001	0.007	1800	0.070	0.43
320	0.144	0.108	560	0,20	1.28	840	0.001	0.008	1900	0.057	0.35
330	0.056	0.062	570	0.23	I.55	860	0.001	0.009			
340	0.022	0.032	580	0.31	2.00	880	0.001	0.011			<u>L</u>
350	0.008	0.015	590	0.39	2.45		L		2000	0.042	0.26
360	0.003	0.008				900	0.001	0.013	2100	0.029	0.18
370	0.003	0.008	600	0.38	2,45	920	0.002	0.015	2200	0.020	0.12
380	0.004	0.010	610	0.36	2.30	940	0.002	0.019	2300	0.011	0.070
390	0.005	0.013	620	0.35	2,25	960	0,003	0,023	2400	0,008	0.050
			630	0.36	2.30	980	0.004	0.029	2500	0.008	0.030
400	0,006	0,017	640	0.37	2,40				2600	0.008	0.030
410	0,008	0,025	650	0,37	2,30	1000	0,005	0.037	2700	0,030	0,050
420	0,010	0,047	660	0,32	2.00	1050	0.011	0.073	2800	0.100	0.15
430	0,014	0,070	670	0,25	I,55	1100	0,022	0,140	2900	0,13	0,25
440	0,018	0,100	680	0,17	0,97	1150	0,037	0.23	3000	0.13	0.24
450	0,025	0.140	690	0,085	0,49	1200	0,052	0.31			L

Рис. I.5

	CCI	CC5		CCI	CC5		CCI	CC5]	CCI	CC5
2, HM	а	(A)	A,HM	a (A)		λ,μM	а	(A)	A, HM	α	(A)
260			500	0,079	0,35	730	0,20	0,38	1300	0,080	0,49
270			510	0,100	0,49	740	0,20	0,38	1350	0,075	0,50
280	>6		520	0,124	0,70	750	0,21_	0.37	1400	0,070	0,46
290	4,0		530	0,145	0.95	760	0,21	0.38	1450	0,065	0,45
300	2.0		540	0.150	1.16	780	0.21	0.39			
310	I.OI		550	0,138	1,17			,			
320	0,48	>6	560	0,135	1.02	800	0,21	0.40	1500	0,060	0,48
330	0,21	2,8	570	0,160	1.07	820	0.21	0.40	1600	0.055	0.43
340	0,100	I,52	580	0,200	1,35	840	0.20	0.41	1700	0.050	0.42
350	0,040	1,00	590	0.25	1.80	860	0.20	0.41	1800	0.045	0.39
360	0.025	0.57				880	0.190	0.41	1900	0.040	0.27
370	0.018	0.32	600	0.27	I.85				1		1
380	0,014	0.180	610	0.27	1.80	900	0.190	0.40			
390	0.010	0.110	620	0.28	I.80	920	0.180	0.39	2000	0.035	0.17
			630	0,29	I.85	940	0.170	0.39	2100	0.030	0.11
400	0,009	0.080	640	0.30	2.00	960	0.160	0.38	2200	0.030	0.070
410	0,010	0,055	650	0.32	I.95	980	0.150	0.36	2300	0.027	0.050
420	0,012	0,050	660	0.31	1.70				2400	0.025	0.030
430	0.014	0.050	670	0.28	1.40				2500	0.027	0,020
440	0.017	0.050	680	0.25	0.88	1000	0.145	0,35	2600	0.030	0,020
450	0,020	0,060	690	0,22	0.58	1050	0.128	0.33	2700	0.047	0.030
460	0,026	0,070		↓		IIOO	0.116	0.32	2800	0.011	0.070
470	0,033	0.100	700	0.20	0.46	II50	0.109	0.33	2900	0.021	0.12
480	0.045	0.160	710	0.190	0.41	1200	0.100	0.37	3000	0.019	0.12
490	0.062	0.25	720	0.190	0.38	1250	0.090	0.44	-		+-

	CC9	CC8		CC9	CC8		CC9	CC8		CC9	CC8
λ , hm	a	(A)	A,HM	а	(A)	A,HM	а	(A)	A, HM	α	(A)
260	>6		500	0,077	0,40	730	0,039	I.II	1300	0,041	0.40
270	5,5		510	0,087	0,52	740	0,039	I,II	1350	0.040	0.34
280	2,70		520	0,098	0,65	750	0,039	1,10	1400	0,039	0,30
290	1,50		530	0,108	0,74	760	0,039	1,10	1450	0,040	0,28
300	0.90	>6.	540	0.107	0.77	780	0.041	1.12	1.		
310	0,40	4,5	550	0,094	0,71				1		
320	0,21	2,40	- 560	0,090	0,72	800	0,041	I,IO	1500	0,041	0,27
330	0,099	1,50	570	0,102	0,85	820	0,041	1,10	1600	0,040	0,23
340	0,044	0,68	580	0,124	1,08	840	0,041	1,04	1700	0,039	0,21
350	0,020	0,38	590	0,145	I,36	860	0,041	1.01	1800	0,036	0,20
360	0,010	0,180				880	0,041	0,98	1900	0,033	0,17
370	0,006	0.120	600	0,146	1,38						
380	0,008	0,090	610	0,142	I,4I	900	0,039	0,94			
390	0,006	0.080	620	0.140	I.48	920	0,038	0.89	2000	0,030	0,13
			630	0,145	1,55	940	0,036	0,83	2100	0,028	0,100
400	0,011	0,070	640	0.150	1,60	960	0,035	0.78	2200	0,025	0,076
410	0.021	0.070	650	0.150	I.65	980	0.034	0.72	2300	0.022	0.060
420	0.035	0.070	660	0.140	I.65				2400	0.020	0.050
430	0.047	0.080	670	0.113	I.50				2500	0.020	0.040
440	0.057	0.090	680	0.088	1,32	1000	0.033	0,66	2600	0,026	0.040
450	0,058	0,110	690	0,059	1,19	1050	0.031	0.59	2700	0.045	0.050
460	0,059	0,135		1		1100	0,032	0,55	2800	0,11	0,090
470	0,060	0,170	700	0.046	1,13	1150	0,034	0,50	2900	0.15	0,14
480	0,063	0,24	710	0,042	I,II	1200	0,036	0,48	3000	0,16	0,14
490	0,069	0,33	720	0,040	I,II	1250	0,040	0.43		1	└

Рис. 1.7

	CC IS	CC16		CCI5	CCI6		CCI5	CCIE		CC15	CC16
λ , HM	a	(A)	λ , HM	a	(A)	<i>λ,нм</i>	- 0	(A)	A, HM	а	(A)
260			500	0,75	0,033	730	0,91	0,010	1300	0,86	0,022
270			510	1,06	0,035	740	0,91	0,006	1350	0,86	0,023
280			520	1,31	0,033	750	0,93	0,005	1400	0,80	0,023
290	>6	>3	530	1,80	0,031	760	0,95	0,004	1450	0,75	0,024
300	3,5	I.80	540	2,00	0,030	780	0,97	0,003			
310	1.90	1.50	550	I.90	0.031						
320	0,93	I,40	560	1,70	0,030	800	0,97	0,003	I500	0,77	0,024
330	0,48	1,20	570	1,80	0,045	820	0,97	0,003	1600	0,75	0,024
340	0,26	0,93	580	2,40	0,051	840	0,97	0,003	1700	0,63	0,025
350	0,160	0,659	590	3,00	0,054	860	0,94	0,004	1800	0,63	0,024
360	0.103	0.416				.880	0.91	0.004	1900	0.56	0,024
370	0.075	0,206	600	3,1	0,056						
380	0.060	0.098	610	2,95	0,057	900	0,86	0,005			1
390	0,049	0,038	620	2,90	0,059	920	0,84	0,005	2000	0,43	0,024
			630	2,95	0,062	940	0,80	0,006	2100	0,32	0,023
400	0,046	0,009	640	3,3	0,068	960	0,77	0,007	2200	0,24	0,023
410	0.048	0,003	650	3.3	0.073	980	0.73	0.008	2300.	0,18	0,022
420	0.052	0.002	660	2.9	0.074				2400	0.14	0,021
430	0.064	0.002	670	2,40	0,068				2500	0.12	0.023
440	0,079	0.004	680	1,75	0.054	1000	0.69	0.009	2600	0.12	0.026
450	0,103	0,008	690	1,29	0,041	1050	0,64	0,010	2700	0,12	0,030
460	0,140	0,013				1100	0,60	0,013	2800	0,14	0,090
470	0,22	0,019	700	I,04	0,031	1150	0,64	0.016	2900	0,20	0,170
480	0,35	0,026	710	0,93	0,029	1200	0.72	0,020	3000	0,23	0,150
490	0,55	0,031	720	0,92	0,017	1250	0.80	0,021		<u>i</u>	

Рис. 1.8

	CC 17	CCIB		CC17	CCIB		CCI7	CCIS		CCI7	CCI8
λ , HM	a	(A)	A,HM	а	(A)	λ , μ μ	а	(A)	A, HM	α	(A)
260			500	0.012	0.093	730	0.003	0.020		0,009	0,034
270	>6		510	0.012	0.095	740	0,001	0.014	1350	0,009	0,035
280	1,60		520	0.010	0.092	750	0.001	0.012	I400	0,010	0,036
290	0.874	>6	530	0.010	0.086	760	0.001	0,009	I450	0,010	0,036
300	0,674	2,36	540	0,010	0,085	780	0.001	0,008			
310	0.527	I.70	550	0.010	0.088						
320	0.465	1,54	560	0.014	0.100	800	0.00I	0,008	1500	0.010	0.036
330	0,411	1,37	570	0,017	0,116	820	0,001	0,008	1600	0.010	0.036
340	0,330	1,08	580	0,019	0,135	. 840	0,001	0,009	1700	0,010	0,038
350	0,239	0,75	590	0.021	0,147	860	0,001	0,010	1800	0,010	0,036
360	0,156	0,477				880	100,0	0,011	1900	0,010	0,033
370	0,061	0,404	600	0,024	0,152						
380	0,026	0,206	610	0,021	0,154	900	0,002	0.011			
390	0,009	0,082	620	0.023	0.159	920	0,003	0.012	2000	0,015	0,031
			630	0.024	0.166	940	0.006	0.014	2100	0.014	0,030
400	0,002	0,044	640	0,026	0,180	960	0,004	0,014	2200	0,014	0,030
410	0,001	0,028	650	0,028	0.192	980	0,004	0,015	2300	0,012	0,027
420 .	0,001	0,025	660	0,026	0,186				2400	0,011	0,025
430	0,001	0,025	670	0,022	0,176				2500	0,014	0,027
440	0,001	0,029	680	0,016	0,141	1000	0,004	0,018	2600	0,017	0.030
450	0,004	0,038	690	0,012	0,103	1060	0,004	0,018	2700	0,020	0,047
460	0,005	0,050				IIOO	0,006	0.025	2800	0,045	0,II
470	0,008	0,065	700	0,010	0,071	1150	0,008	0,028	2900	0,14	0.21
480	0,010	0,076	710	0,008	0,045	1200	0,008	0,032	3000	0,10	0,19
490	0,012	0,086	720	0,005	0,031	1250	0,008	0,033			
					-						

Рис. І.9

•	C3C5	C3C16		C3C5	C3CI6		C3C5	C3C16	٠. ا	C3C5	C3C16
2,HM	а	(2)	1,HM	a	(1)	λ , μ M	· a	(A)	A, HM	a	(1)
260			500	0,030	0,03I	730	0.34	0.26	1300	0,62	0,48
270			510	0,030	0,032	740	0,37	0,28	1350	0,60	0,43
280		•	520	0.032	0,033	750	0.40	0,30	1400	0,55	0,38
290	>6	>6	530	0.035	0.034	760	0.42	0.32	I450	0,50	0,34
300	4.3	3,8	540	0,040	0,036	780	0.47	0.36			
310	2,70	2,20	550	0,045	0,039						<u> </u>
320	1.52	I.37	560	0.050	0.043	800	0.52	0.39	I500	0.40	0.30
330	0.88	0.76	570	0.060	0.047	820	0.55	0.43	1600	0.32	0,25
340	0,46	0,39	. 580	0.070	0,052	840	0,58	0.47	1700 ·	0,28	0,24
350	0.25	0.24	590	0.085	0.060	860	0.62	0.50	1800	0.27	0,23
360	0.140	0.145				880	0,64	0,52	1900	6,27	0,22
370	0.080	0.101	600	0.095	0.065					<u> </u>	
380	0.050	0.086	610	0.110	0.074	_900	0.67	0.54			
390	0.040	0.067	620	0.125	0.083	920	0.69	0.56	-2000	0.27	0.21
			630	0.140	0.097	940	0.71	0,58	2100	0.27	0.20
400	0.035	0.057	640	0.160	0.109	960	0.72	0.60	2200	0.26	0.19
410	0.032	0.052	650	0.180	0.123	980	0.73	0,60	2300	0.26	0.18
420	0.030	0.050	660	0.20	0.138			↓	2400	0,25	0.16
430	0.030	0.048	670	0.22	0.155			<u> </u>	2500	0,25	0.75
440	0.030	0.045	680	0.24	0.170	1000	0.74	0.61	2600	0.25	0.15
450	0,030	0.042	690	0.26	0.190	1050	0.74	0.62	2700	0.25	0.19
460	0,030	0,039				1100	0,72	0.62	2800	0,35	0.30
470	0,030	0,036	700	0.28	0.21	1150	0.70	0.60	2900	0.50	0.40
480	0,030	0.033	710	0.30	0.23	1200	0.68	0.56	3000	0.50	0.33
490	0,030	0,032	720	0.32	0,25	1250	0.65	0.52	 	+-	+-

Рис. І.10

	C3CI7	C3C7		C3C17	C3C7		CSCI7	CBC7	1 5	CSCI7	CSC7
A, HM	a	(2)	J. HM	al	ચ	λ. нм	a	(A)	1, ны	a/	2)
260			500	0.010	0.017	730	0,20	0,59	1300	0,044	0,15
270			510	0,011	0,024	740	0,20	0,60	1350	0,036	0,13
280	>6.	Ж	520	0,014	0,034	750	0,20	0,6I	I400	0,029	0.11
290	3,7	5,5	530	0,018	0,046	760	0.21	0.61	T450	0.025	0,096
300	2,2	3,3	540	0,023	0,062	780	0.21	0.62			
310	·I,03	I,55	550	0,029	0,079						
320	0.47	0.75	560	0,037	0.100	800	0,21	0,62	1500	0,020	0,080
330	0.21	0.35	570	0.046	0.130	820	0,20	0,61	1600	0,016	0,060
340	0,096	0,170	580	0.055	0.160	840	0,190	0,60	I700	0,013	0.045
350	0,047	0,086	590	0.066	0.T85	860	0.180	0,57	T800	0,011	0.030
360	0,026	0,049				880	0.175	0.56	T900	0.011	0.020
370	0.018	0.033	600	0,077	0,21						
380	0.016	0.026	610	0.089	0.25	900	0,170	0,52			
390	0.011	0.019	620	0.101	0.28	920	0,160	0,50	2000	0,012	0,014
			630	0.113	0.32	940	0,150	0,47	2100	0,014	0,010
400	0,010	0,015	640	0,125	0,35	960	0.140	0.44	2200	0.016	0.007
410	0,010	0.013	650	0,136	0,39	980	0.130	0,41	2300	0.018	0.006
420	0.010	0:011	660	0,147	0.42				2400	0,020	0,006
430	0.010	0.010	670	0.158	0.45				2500	0,024	0,009
440"	0,010	0,010	680	0,168	0,48	1000	0,120	0,39	2600	0,036	0,015
450	0,010	0,009	690	0,177	0,51	1050	0.100	0,33	2700	0.037	0,040
460	0.010	0.009				1100	0.085	0.28	2800	0.100	0.080
470	0.009	0.009	700	0.186	0.53	1150	0,073	0,25	2900	0,26	0,11
480 490	0,008	0,010	710	0.190	0.55	1200	0,063	0,21	3000	0,28	0,11
490	0,009	0,012	720	0,20	.0,57	1250	0,053	0,18			

Рис. І.11

	C3C8	C3C9		CSC8	CSC9		C3C8	CSC9		CSC8	C3C9
A, HM	a	(1)	1.HM-	al	3)	λ, HM	а	()	1. нм	a()	
260		Ι	500	0,041	0,128	730	1,35	2,70	I300	0,37	0,79
270			510	0,055	0,150	740	1,37	2,75	I350	0,32	0,69
280		i -	520	0.076	0,190	750	1,39	2,80	I400	0,28	0,60
290	>6		530	0,099	0,24	760	1,40	2,85	I450	0,23	0,52
300	5,0	>6	540	0,138	0,30	780	I,43	2,90			
310	3,00	6,0	550	0.18	0,39			T.			
320	I,55	3,8	560	0.23	0.49	800	1,43	2,90	I500	0,20	0,45
330	0.79	2,40	570	0,29	0,61	820	1,41	2,90	1600	0.16	0.34
340	0.43	I.44	580	0,35	0,72	840	1,37	2,80	I700	0.110	0.25
350	0.26	0.96	590	0,42	0,85	860	1,34	2,75	I800	0.076	0.T8
360	0,170	0,68				880	I,28	2,65	1900	0,055	0,14
370	0.123	0.52	600	0,50	I,00						
380	0.094	0.41	610	0,56	1,15	900	1.23	2,55			
390	0.076	0.34	620	0,64	1,30	920	1,17	2,45	2000	0.042	0.100
			630	0,73	I,46	940	I,I0	2,30	2100	0,033	
400	0,063	0,28	640	0.82	I.65	960	1,04	2,20	2200	0,024	0,046
410	0.052	0.24	650	0.89	1.80	980	0.97	2.10	2300	0.018	0.035
420	0.043	0.20	660	0,98	1,95				2400	0.017	0,030
430	0,038	0,175	670	I,04	2,10				2500	0.020	0,028
440	0,034	0,150	680	1.10	2,25	1000	0,91	1,95	2600	0,028	0,030
450	0,029	0.135	690	1.18	2,35	1050	0.79	1.70	2700	0.039	0.037
460	0.027	0.122	 	- 00	0.15	1100	0.67	J-43	2800	0.090	0.065
470	0,027	0,115	700	1,23	2,45	1150	0,58	1,22	2900	0.12	O-IO
480	0,028	0,110	710	I,27	2,50	1200	0,50	1,05	3000	0,12	0,11
490	0,033	0.115	720	I,32	2,60	1250	0,44	0,92	1	1	

Рис. І.12

	CSCI 5	Í	CBCI5		CSCI5		CSCI5_
A,HM	a(\lambda)	λ. κм	a(X)	λ, им	α(λ)	1. HM	a(1)
260	>6	500	0,005	730	0,126	1300	0.220
270	4,5	510	0,006	740	0.136	1350	
280	2,90	520	0,007	750	0.142	I400	0,190
290	2,00	530	0,008	760	0.150	1450	0,180
300	1.26	540	0,010	780	0,165		
310	0.720	550	0.013				
320		560		800	0,180	1500	0,160
330	0,360	570	0.015	820	0,190	1600	0.120
340	0,110	580	0,022 -	840	0.210	1700	0.100
350	0.055	590	0,027	860	0.220	1800 1900	0,100
360				880	0,230	1900	0.100
370	0.024	600	0.032		_		
380	0,009	610	0,037	900	0.230		
390	0,005	620	0,042	920	0.240	2000	0,100
		630	0,049	940	0,250	2100	0,100
400	0,004	640	0,055	960	0.250	2200	0,095
410	0,004	650	0.062	980	0,250	2300	0.090
420	0,004	660	0.068			2400	0.085
430	0,003	670	0,076			2500	0.080
440	0,003	680	0,085	1000	0.250	2600	0,080
450	0.003	690.	0,094	I050	0,250	2700	0.100
460	0.003			1100	0,250	2800	0.170
470	0,003	700	0.100	1150	0,240	2900	0.250
480	0,003	710	0,110	1200	0,235	3000	0,260
490	0,004	720	0,118	1250	0.230		

Рис. І.13

Продолжение табл. 1.5

	C3C23	C3C20		C3C23	C3C20		C3C23	C3C20	0	,C8C23	C3C20
λ , hm	α	() .	λ,нм	a	(λ)	λ,нм	α('入)	λ, нм	α	()
220			460	0,001	0,018	700	0,47	1,30	1250	0,47	0,055
230			470	0,001	0,025	710	0,53	0,79	1300	0,42	0,070
240		4,4	480	0,001	0,036	720	0,58	0,40	1350	0,36	0.100
250		3,7	490	0,001	0,054	730	0,64	0,160	1400	0,30	0.15
260		3,2				740	0,70	0.068	I450	0.23	0.20
270		2,70	500	0,001	0,077	750	0.75	0.024			
280	>6	2,35	510	0,002	0,110	760	0.80	0_009			Γ
290	5.5	I.95	520	0,003	0,147	780	0,90	0,002	1500	0,19	0,32
			530	0,005	0,20				1600	0,15	0,39
300	2,00	1,55	540	0,008	0,24	800	0,98	0,002	I700	0,11	0,36
310	0,93	I,24	55Q	0,013	0,32	820	I,04	0,002	1800	0.090	0.36
320	0,40	0,96	560	0,019	0.41	840	I.08	0.003	1900	0.074	0.37
330	0.170	0.70	570	0.028	0.52	860	LII	0.003]	Γ'	
340	0.072	0.49	580	0.038	0.61	880	1.13	0.004			
350	0.031	0.34	590	0.054	0.25		1		2000	0,067	0,34
360	0,015	0,22				900	1,13	0,005	2100	0.065	0.30
370	800,0	0,140	600	0,070	0,97	920	I.II	0.006	2200	0.068	0.25
380	0,004	0,087	610	0.095	I.29	940	I.07	0.007	2300	0,073	0,20
390	0,004	0,053	620	0.120	I.46	960	1.03	0.008	2400	0,083	0,15
	1		630	0.150	T.50	980	0.97	0.009	2500	0,100	0,12
400	0,003	0,033	640	0 T85	T 52				2600	0.12	0.15
410	0,003	0,,022	650	0,22	1,70	1000	0,93	0.011	2700	0.15	0.38
420	0,002	0,016	660	0.27	1.85	1050	0.82	0.016	2800	0.22	0.75
430	0.002	0.013	670	0.31	1.80	IIOO	0.72	0.021	2900	0.45	I 30
440	0.002	0.015	680	0.36	T 25	1150	0,63	0,028	3000	1,20	2.10
450	0,002	0,017	690	0,42	I,70	1200	0,55	0,038			<u> </u>

Рис. І.14

	C3C2I	C3C22		C3C2I	C3C22		C3C2I	C3C22		CSC2I	C3C22
A, HM	α	())	λ, ям	α	() ()	l, HM	2/	λ)	J.KM	01	ሊ }
300	>6		530	0,015	0,048	750	2,10	>6	1300	1.11	3,00
310	2,89		540	0,023	0.076	760	2,20	>6	I350	0,93	2,50
320	I,34	>6	550	0.036	0.116	780	2.45	>6	I400_	0,77	2,05
330	0,57	2,50	560	0.056	0.180	•	,		I450	0,59	I,70
340	0.23	1.10	570	0,081	0,26	1					
350	0.093	0.49	580	0,117	0,37	800	2,65	>6			
360	0,038	0,21	590	0,165	0,50	820	2,75	>6	1500	0,48	I.39
370	0,016	0,094				840	2,90	>6	1600	0,33	0.92
380	0,007	0,046	600	0.21	0.67	860	2.95	>6	I700	0.22	0.62
390	0.004	0.025	610	0.28	0.86	880	3.00	->6	1800	0,14	0,44
			620	0,34	1,09		Ţ,		1900	0,090	0,32
400	0,003	0,017	630	0,44	I,34				·		
410	0,002	0,011	640	0,54	I,65	900	2,95	>6			
420	0,001	0,009	650 660	0,62	2,00	920	2,90	>6	2000	0,080	₹0,24
430	0.001	0.008		0.76	2.40	. 940	2.75	>6	5100	0,080	0,20
440	0.001	0.007	670	0,90	2,80	960	2,70	7%	2200	0,080	0,17
450	0,001	0,007	680	1,02	3,3	980	2,55	>6	2300	0,080	0,16
460	0,001	0,007	690	1,19	3,6				2400	0.080	0.15
470	0,001	0,007	<u> </u>						2500	0.090	0.75
480	0.001	0.007				1000	2,50	6,1	2600	0,12	0,16
490	0.002	0.008	700	I,32	4,0	1050	2,20	5,5	2700	0,16	0,21
	ł		710	I,48	4,5 .	IIOO	1,90	5,0	2800	0,35	0,42
500	0,003	0,011	720	I,65	5,0	1150	I,65	4,3	2900	1.15	1.15
510	0,005	0,018	730	I.75	5.4	1200	1,40	3.9	3000	2.10	T.90
520	0,008	0,028	740	1.90	5.8	1250	I.25	3.4		1	

Рис. I.15

	C3C26	C3C24		C8026	C3C24	ļ	CBC26	C3C24		CSC26	CSC24
λ , hm	α	(a)	λ,нм	α	(1)	λ.нм	a	λ)	А,нм		(1)
220		Τ	460	0.021	0.012	700	0,043	0,094	1250	0,90	0,97
230		>6	470	0.018	0.011	710	0,051	0,106	1300	0,83	0,97
240		6 ج	480	0.016	0.009	720	0,059	0,116	1350	0,77	0,97
250	>6	4,2	490	0.016	0-009	730	0,068	0,135	1400	0,72	1,01
260	3,5	I.84				740	0,079	0,145	I450	0,72	1,01
270	I.73	0.27	500	0,016	0,009	750	0,089	0,160			
280	0.76	0.40	510	0.016_	0,009	760	0.105	0.180			
290	0.36	0.24	520	0.016	0.010	780	0.135	0.22	I500	0,61	0,93
			530	0.016	0.011				1600	0,57	0.89
300	0,195	0,140	540	0.016	0.010	800	0,180	0,25	1700	0,52	0,84
310	0,100	0,077	550	0,014	0,010	620	0,23	0,29	I800	0,52	0,70
320	0.058	0.041	560	0,013	0,011	840	0,29	0,34	I900	0,54	0,67
-330	0.040	0.022	570	0,013	0.012	860	0.36	0,39			
340	0.031	0.014	580	0.012	0,013	880	0.45	0.44			
350	0,025	0,009	590	0.013	0.016				2000	0,61	0,67
360	150,0	0,006				900	0,52	0,49	2100	0,67	0,67
370	0.020	0,004	600	0,013	0,019	920	0,60	0,54	2200	0,67	0,69
380	0.019	0.004	610	0,013	0,023	940	0,69	0.59	2300	0,72	0,72
390	0.019	0.006	620	0,014	0,028	960	0.76	0.65	2400	0,72	0.68
			630	0.016	0.034	980	0.84	0.69	2500	0.72	0.65
400	0,020	0,009	640	0.020	0.040				2600	0.72	0,65
410	0,020	0,010	650	0,022	0,047	1000	0,88	0,75	2700	0,65	0,57
420	0.019	0.011	660	0,024	0,054	1050	0,96	0,84	2800	0,63	0,55
430	0.019	0.012	670	0.027	0,062	1100	0.94	0.90	2900	0,72	0,65
440	0,019	110,0	680	0.031	0.072	1150	0.89	0.95	3000	0.90	0.77
450	0,020	O,OLI	690	0.037	0.082	1200	0.90	0.96			

Рис. І.16

	C3C25	03027		C3C25	C3C27		C3C25	C3C27		C3C25	C3C27
λ , HM	а	(A)	A, HM	a	(A)	λ ,HM	а	(A)	A, HM	α	(A)
220			460	0,021	0,010	700	0,170	0,086	1250	1,83	I,04
230			470	0,018	0,009	710	0,190	0,106	1300	I,85	I,04
240			480	0,017	0,009	720	0,210	0.127	I350	1,87	1,00
250			490	0,017	0,009	730	0,235	0,147	_I400	I,90	0,960
260	3.6	1.50				740	0.260	0.166	_I450	I.83	0.915
270	2,23	0,870	500	0.016	0.008	750	0.290	0.164			
280	0,850	0,250	510	0,018	0,009	760	0.320	0.203			
290	0,580	0,172	520	0.019	0.010	780	0.390	0.249	T500	1.75	0.868
			530	0,019	0.010				1600	1.60	0.780
300	0.310	0.094	540	0.019	0,009	800	0.470	0.296	1700	I.45	0.692
310	0,206	0.06I	550	0.018	0.009	820	0.550	0.353	I800	1.32	0,604
320	0.102	0.028	560	0.019	0.009	840	0.630	0.410	1900	1.30	0.617
330 _	0.068	0.020	570	0.022	0.010	860	0.735	0.471			
340	0.035	0.011	580	0.024	0.011	880	0.820	0.532	L'	1	
350	0.023	0.007	590	0.029	0.014				2000	I.28	0,630
360	0.014	0.004				900	0,920	0,595	2100	1.26	0.644
370	0.012	0.004	600	0.034	0.016	920	1.02	0,658	2200	I,25	0,625
380	0,010	0,003	610	0,041	0,020	940	1,12	0,704	2300	I.24	0,606
390	0,013	0,005	620	0,048	0,025	960	1,22	0,750	2400	1,23	0,586
1			630	0,059	0,031	980	1,32	0,800	2500	I,I5	0,530
400	0.017	0.008	640	0.070	0.037				2600	1.07	0.474
410	0.020	0.010	650	0.082	0.044	1000	I.42	0.850	2700	0.980	0.418
420	0.022	0.011	660	0.093	0.052	1050	1,56	0.917	2800	0.990	0.401
430	0,020	0.010	670	0.111	0.061	1100	1.70	0.984	2900	I.OI	0.384
440	0,019	0,010	680	0,130	0,070	1150	I,75	1,01	3000	1,02	0,366
450	0,019	0,009	690	0,150	0,078	1200	I,80	1,04			

Рис. І.17

	3C8	SCI		308	3CI		308	BCI		308	BCI
Л,нн	α/	'λ)	Д,нм	а	()	Д,нм	0/	(X)	Д.нм	a()	
300		>6	530	0,015	0,140	750	0,48	I,06	1300	0,14	0,21
310		3,6	540	0.016	0.150	760	0,50	I,04	1350	0,11	0,17
320	>6	2.9	550	0.020	0.780	780	0,56	I,OI	1400	0,081	0,15
330	5.T	3.7	560	0,025	0.22				I450	0,059	0,13
340	4.2		570	0,036	0,27						
350	3,5	5.9 >6	580	0,048	0,34	800	0,59	0,99			
360	2,90	>6	590	0,065	0,4I	820	0,62	0,96	1500	0,040	0,12
370	2,45	>6	1000	1 1	1	840	0,64	0,93	1600	0,030	0,100
380	2.00	>6	600	0,084	0,50	860	0,64	0,89	I700	0,028	0,090
390	T_55	5.9	610	0,108	0,58	880	0.63	0.85	I800	0,031	0,080
	1-23	1 - 2	620	0,130	0,68				1900	0.039	0.070
400	1,20	3,9	630	0,160	0.76						
410	0.88	2,75	640	0.190	0.83	900	0,60	0,82			
420	0.64	2.10	650		0.89	920	0,56	0,77	2000	0,053	0,060
430		T.48	660	0.22	0,94	940	0.52	0.72	2100	0,071	0.050
440	0,46	1,08	670 .	0,28	0,98	960			2200_	0,095	0,050
450	0,22	0,80	680	0,31	1.00	980	0,44	0,62	2300	0.12	0.050
460	0.150	0,62	690	0.33	I_04	T			2400	0.15 0,21	0.050
470	0.095	0.47							2500	0,21	0,060
480	0.064	0.38				1000	0.40	0.58	2600	0,31	0,090
490	0.04I	0,29	700	0,36	I,06	1050			2700	0.53	0.15
777			710	0,38	I.07	1100	0,28	0,42	2800	1.30 2,5	0,23
500	0.027	0,23	720	0.40	I.07	1150	0,24	0,36	2900	2,5	
510	0.020	0.180	730	0.43	T-07	1200	0.21	0.30	3000	2.8	0.39
520	0.016	0.150	740	0,45	Î,06	1250	0.17	0.26			

Рис. І.18

Продолжение табл. 1.5

	303		303
A, HM	a(1)	λ,μμ	a(1)
300	4,2	780	I,38
320	2,00		
340	0,700	800	1,36
360	0,190	850	1,24
380	0,076	900	I,II
400	0,080	950	0,98
420	0,190		
440	0,300	1000	0,83
450	0,320	1100	0,59
460	0,310	1200	0,44
480	0,250	1300	0,32
		1400	0,22
500	0,180	1500	0,170
520	0,150	1600	0,140
540	0,190	1700	0,120
560	0,260	1800	0,100
580	0,410	1900	0,090
600	0,590		
620	0,800	2000	0,080
640	1,00	2200	0,070
660	I,I4	2400	0,070
680	1,25	2600	0,120
700	1,35	2800	0,240
720	1,38	3000	0,440
740	1,39		
760	1,39		

Рис. І.19

Продолжение табл. І.5

		, ,				_			
	3C7		307		307		307		307
λ , hh	a(A)	Д, нм	a(2)	λ, πm	a(2)	λ, HM	a (λ)	A.M	a(2)
250	>6	500	0,280	730	0.015	960	0,060	I850	0,070
260	5,5	510	0,065	740	0.016	970	0.065	1900	0,070
270	3.6	520	0.026	750	0.020	980	0.085	1950	0.090
280	I.60	530	0.150	760	0.025	990_	0.130	2000	0,150_
290	1.02	540	0.400	770	0.038	1000	0,200	2050	0,240
300	0,650	550	0.300	780	0,059	1025	0,400	2100	0,300
310	0,450	560	0,032	790	0,085	1050	0,670	2150	0,340
320	0,350	570	0.024	1		1075	0,920	2200	0,390
330	0,250	580	0,061	800	0,104	1100	1,09	2250	0,440
340	0,100	590	0,160	810	0,125	1125	1,20	2300	0,400
350	0,140		,	820	0.136	1150	1,21	2350	0,330
360	0,105	600	0,260	830	0,160	II75	0,700	2400	0,250
370	0,076	610	0,420	840	0.175	1200	0,270	2450	0,210
380	0,058	620	0.730	850	0.190	1250	0,071	2500	0,200
390	0,045	630	I.04	860	0,210	1300	0,052	2550	0,220
400	0,040	640	0,830	870	0,220	1350	0,137	2600	0,230
410	0,056	650	0,810	880	0.235	1400	0,310	2650	0,260
420	0,170	660	I,02	890	0,250	I450	.0,430	2700	0,350
430	0,350	670	I.44			1500	0,490	2750	0,450
440	0,270	680	0,210	900	0,260	1550	0,450	2800	0,620
450	0,240	690	0.056	910	0,240	1600	0,340	2850	0,800
460	0,250			920	0,190	1650	0,270	2900	I,02
470	0,360	700	0.022	930	0.140	1700	0,150	2950	1,23
480	0,600	710	0.016	940	0.095	1750	0,080	3000	I,49
490	0,630	720	0,015	950	0,070	1800	0,074		

Рис. I.20

	3010	3011		3010	- 3CII		3010	3CII		3010	3011
λ , hm	а	(1)	A,HM	* a	(A)	A,HM	a	(1)	A, HM	a	(A)
300			530	0,180	0,150	750	0,59	I,42	1300	0,005	0,49
310			540	0,140	0,170	760	0,54	I,43	I350	0,004	0,45
320			550	0,130	0,21	780	0,49	I,43	I400	0,004	0.41
330			560	0,140	0,27				1450	0,005	0,38_
340	i		570	0,165	0,34				£ •		
350			580	0,22	0,42	800	0,47	I,43			
360		>6	590	0,29	0,51	820	0,45	I,43	I500	0,007	0,34
370		5,6				840	0,43	I,39	1600	0,010	0,29
380	>6	4,8	600	0,37	0,62	860	0,40	1,36	1700	0,014	0,25
390	5,5	3,9	610	0.49	0,72	880	0,36	1,32	I800	0,020	0.22
			620	0,62	0,84				1900	0,029	0,18
400	3,3	3,2	630	0,74	0,95		L		<u>.</u>		
410	2,50	2,60	640	0.80	1.04	900	0.32	1.27			
420	2,00	I,90	650	0,85	1,12	920	0,27	1.22	2000	0.038	0.15
430	1.60	I.46	660	0.93	1.20	940	0.22	1.16	2100	0.048	0.13
440	1,40	1,07	670	0.91	1,26	960	0.170	I.II	2200	0.060	0.11
450	1,20	0,77	680	0,88	1,29	980	0.130	I.03	2300	0.073	0.090
460	1,03	0,57	690	0,94	1,38			<u>L</u>	2400	0,086	0,080
470	0,86	0,42							2500	0,100	0,070
480	0,73	0,33				1000	0,102	0,99	2600	0,12	0,060
490	0,58	0,26	700	0,90	I.40	1050	0,060	0.86	2700	0.15	0.055
			710	0.84	1.41	1100	0.034	0.74	2800	0.22	0.060
500	0.45	0.21	720	0.77	I.4I	1150	0.019	0,55	2900	0.55	0.075
510	0,33	0.170	730	0.70	I.45	1200	0.014	0.59	3000	1.26	Q,II
520	0,24	0.150	740	0,64	1.43	1250	0,008	0,54			1

Рис. I.21

	X 3C9	ESCI		103C9	ESCI		X3C9	ESCI		X3C9	X 3CI
A, HM	a	(X)	1, нм	a	(لا)	1,нм	- 0/	IJ.	J.xm	·a()	.)
300	4,3		530	0,068	0,180	750	0,31	0,74	1300	0,070	0,18
310	2,50		540	0,065	0,170	760	0,30	0,72	1350	0,055	0,16
320	2,25		550	0.068	0.180	780	0,29	0.69	I400	0.045	0.140
330	2.90		560	0.076	0.20				I450	0.040	0.120
340	4,8		570	0.096	0.24					1	
350	>6		580	0,112	0,30	800	0,28	0,67			
360	>6		590	0,140	0,37	820	0,27	0,66	I500	0,035	0,110
370	> 6					840	0,25	0,65	T600	0,030	0,090
380	> 6		600	0.170	0.45	860	0.24	0.63	I700	0.025	0.080
390	4,8		.610	0,21	0,53	880	0.22	0.61	T800a	0,022	0.070
	1		620	0,24	0,61				1900	0,020	0,060
400	3,2		630	0,26	0,69				<u> </u>	<u> </u>	
410	2,30	>6	640	0,28	0,75	900	0,21	0,57		<u> </u>	
420	1,60	5,0	650	0,30	_0.81	920	0,20	0.53	2000	0.020	0.040
430	1,08	3,30	_660	0.31	0.84	940	0.190	0.50	2100	0.020	_0_030
440	0,74	2,50	670	0,32	0,84	960	0,180	0,47	2200	0,020	0,020
450	0,57	I,85	680	0,32	0,83	.980	0,165	0,45	2300	0,021	0,020
460 ·	0.44	1.32	690	0,32	0.84	<u> </u>		<u> </u>	2400	0,022	0,020
470	0.32	0.95		_					2500	0.025	0.020
480	0.24	0.71				1000	0,155	0,43	2600	0.030	0.030
490	0,180	0,51	700	0,33	0,85	1050	0,130	0,38	2700	0.040	0,040
× .			710	0,33	0,83	IIOO	0,112	0,33	2800	0,060	
500	0,126	0,38	720	0,32	0.81	II50	0,100	0,28	2900	0,090	0,090
510	0.100	0,28	730	0,32	0,78	1200	0,090	0,24	3000	0,11	0.14
520	0.080	0,22	740	0,31	0.76	1250	0,080	0.21			

Рис. I.22

	X3C5	X 3C6		E3C5	₹3 06		M3C5	жэс6		X2C5	#3C6
λ , HM	a	(A)	A, HM	а	(A)	A,HM	a	(A)	A, HM	α	(A)
260			500	0,058	0,100	730	0,036	0,064	1300	0,003	0,005
270		14	510	0,040	0.074	740	0,034	0,057	1350	0,003	0,005
280	>6	>6	520	0,031	0,056	750	0,029	0,050	1400	0,003	0,005
290	3,8	3,8	530	0,022	0,045	760	0,025	0,042	1450	0,003	0,005
300	1,70	I,70	540	0,018	0,040	780	0,018	0,029			
310	0,86	I.II	550	0.018	0.038						
320	0,72	1.05	560	0.020	0.040	800	0.015	0.020	I500	0.003	0.005
330	1,00	1,29	570	0.027	0.042	820	0.011	0.017	1600	0.003	0.005
340	1.60	2,60	580	0.032	0.050	840	0.009	0.014	1700	0.003	0.005
350	2,45	5.10	590	0.038	0,060	860	0.008	0.012	1800	0,003	0,005
360	3.2	>6				880	0.007	0.011	1900	0,003	0,006
370	3.2	>6	600	0.043	0.070					<u> </u>	
380	2.50	5.2	610	0.048	0.080	900	0.007	0.010	<u> </u>		
390	1.60	3.4	620	0.051	0.094	920	0.006	0.009	2000	0.004	0,006
			630	0,055	0,105	940	0,006	0,009	2100	0,005	0,007
400	1,07	2,30	640	0,058	0,110	960	0,005	0,008	2200 -	0,005	0,008
410	0,75	I,65_	650	0,060	0,110	980	0,005	0,008	2300	0,007	0,010
420	0,53	1,21	660	0,060	0,110				2400	0,008	0.012
430	0,38	0,89	670	0,058	0,100			_	2500	0.013	0.015
440	0,28 0,2I	0.68	680 690	0.053	0,092	1000	8,884	0.007	2600	0.020	0.022
450			690	0,050	0,09Q			0,007	2700	0,030	
460	0,160	0,34		1	<u></u>	1100	0,004	0,006	2800	0,045	0,045
470	0,122	0,25	700	0,048	0,087	1150	0,004	0,006	2900_	0,085	0,085
480	0,097	0,180	710	0,046	0,080	1200	0,004	0,006	3000	0,110	0,110
490	0,070	0,130	720	0,040	0,070	1250	0,003	0,005	<u>L</u> .		1

Рис. I.23

	MBCIS	MSCI7		X3CI2	X3CI7		X3CI2	E3CI7		X3CI2	XBCI7
A,HM	a	رلا) الله	λ, нм	α	/ \ \)	l, HM	01.	N)	J,RM	al	J)
300			530	0,62	I,42	750	1,65	1,90	1300	0,55	0.75
310		r	540	0,60	I.40	760	1,60	1,90	1350	0.50	0.65
320			550	0,62	I.43	780	1,60	1,90	1400	0,45	0,60
330			560	0.65	I.47				1450	0,37	0,55
340 ·			570	0,72	I.47						
350			580	0,80	1,55	800	1,60	I.90	-		
360			590	0,92	1,60	820	1.55	1.90	1500	0.30	0.50
370			1			840	1,55	1,85	1600	0.30	0,45
380			600	I.04	1.75	860	1,55	I,85	1700	0,25	0,42
390	> 6		_6I0	I.04 I,18	1,90	880	I.48	1.80	1800	0,20	0.40
			620	I,35	2,15				1900	0.20	0.40
400 .	5,5		630	I,47	2,30						
4T0	5,0	>6	640	1,51	2,40	900	1,44	1,80			\top
420	4,2	6,0	650	I,65	2.45	920	1,38	I,75	2000	0,20	0,40
430	3.5	5.2	.660	I.75	2.40	940	1,32	I,65	2100	0,18	0,40
440	2.85	4.3	670	1.70	2.30	960	1,26	1.60	2200	0,18	0.40
450	2.85 2,35	3,5	680	1,70	2,15	980	1,20	I.55	2300	0.17	0.37
460	1,85	2,95	690	I,70	2,10		T		2400	0.16	0.35
470	1,55	2,55							2500	0,15	0,31
480	1,27	2,30				1000	1,12	I,45	2600	0,15	0,30
490	I.00	2.05	700	1,70	2,00	1050	0,98	I,30	2100	0,15	0,31
			710	1,70	I,95	1100	0,88	I.I5	2800	0,16	0.40
500	0,82	1,85	720	1.70	1,90	1150	0.78	I.05	2900	0.18	0.50
510	0,72	1,60	730	I,65	I_90	1200	0.70	0.90	3000	0.20	0.55
520	0,66	1,50	740	I,65	I,90	1250	0,60	0,80			

Рис. 1.24

	E3C18	E3C19		X3 C18	E3C19		M3C18	K3C19		M3CI8	M3C19
2, HM	а	(A)	A, HM	a	(1)	A,HM	а	(A)	A, HM	α	(1)
220			460	0,440	I,87	700	0,260	0,020	1250	0,001	0,001
230			470	0,410	1,21	710	0,260	0,015	1300	100,0	100,0
240	0,650		480	0,340	0,710	720	0,250	0,010	1350	0,002	0,001
250	0,500		490	0.270	0,410	730	0.230	0,009	1400	0,003	0,001
260	0.400					740	0.210	0.006	1450	0.004	0.001
270	0.300		500	0.200	0.230	750	0.190	0.003			
280	0,230		510	0,140	0,130	760	0,170	0,002			
290	0.170		520	0,089	0,073	780	0,120	0,001	1500	0,006	100,0
			530	0,058	0,042				1600	0,010	0,001
300	0,130		540	0,032	0,026	800	0,077	0,001	1700	0,016	0,001
310	0.094		550	0.017	0,015	820	0,051	0,001	1800	0,024	100,0
320	0,074		560	0,015	0.013	840	0,032	0,001	1900	0,036	0,001
330	0,063		570	0,016	0,010	860	0,017	0,001			
340	0.058		580	0,020	0,011	880	0.012	0.001			
350			590	0.029	0.015				2000 2100	0.052	0.001
360	0.058	1				900	0,008	0,001	2100	0,071	0.001
370	0,075		600	0,041	0,019	920	0,004	0,001	2200	0,097	0.001
380	0,103		610	0,059	0,022	940	0,003	100,0	2300	0,130	0,001
390	0.150		620	0,079	0,026	960	0,002	0,001	2400	0,160	0,001
			630	0,104	0,028	980	0,002	0.001	2500	0,200	0,001
400	0,200		640	0.140	0.029				2600	0.270	100.0
410	0.260		650	0.170	0.030	1000	0.002	0.001	2700	0.350	0.002
420	0.330	T .	660	0.200	0.027	T050	0.001	0.001	2800	I,00	0,003
430	0,380	>6	670	0,230	0,027	IIOO	0,001	100,0	2900	2,10	0,012
440	0,430	4,5	680	0,250	0,023	1150	100,0	0,001	3000	2,4	0,062
450	0,440	2,90	690	0,260	0,019	1200	0,001	0.001			

Рис. I.25

	XC3	XC4		XC3	IIC4		жсз	XC4		EC3	EC4
J,HM	- a/	(1)	А.нм	al	<i>λ</i>)	д. нм	. a	/λ1 .	д, нм	ai	(a)
260	>6		500	0,007	0,009	730	0.003	0.002	1300	100,0	0,001
270	5.2		510	0,005	0,009	740	0.003	0.002	1350	0,001	100,001
280	2.50		520	0,004	0,008	750	0.003	0.002	I400	0,001	0,001
290	0,95		530	0,003	0,007	760_	0,002	100,001	I450	100,0	100.0
300	0,41		540	0,002	0,006	780	0,001	100,0			
310	0,24		550	0,002	0,005		I				
320	0,30		560	0.002	0.005	800	100,0	100,00	I500	0,001	100,0
330			570	0.002	0.:005	820	0.001	0.001	1600	0,001	0,001
340	0.53		580	0.003	.0.4005	840	0.001	.0.00I	1700	0,001	100,0
350	I,50	>6	590	0,003	0,005	860	0,001	0,001	1800	0,001	0,001
360	I,85	2,55				880	100,0	100.0	1900	0.001	0.001
370	I.70	1.16	600	0.004	0.004			,			
380	I.25	0.60	610	-0,005	0,004	900	0.001	0.001			
390	0.74	0.33	620	0,005	0,003	920	0,001	0,001	2000	100,0	0,001
			630	0,006	0,003	940	0,001	0,001	2100	0,001	100,0
400	0,39	0,190	640	0,006	0,003	960	100,0	0,001	2200	0,002	0.002
410	0.24	.0.107	650	0.007	0.003	980	0.001	0,001	2300	0.003	0.004
420	0.170	0.069	660	0.007	0.003				2400	0,005	0,006
430	0,123	0,046	670	0,007	0,003				2500	0,007	0,010
440	0,082	0,033	680_	0,006	0,003	1000	0,001	0,001	2600	0,013	0,017
450	0,052	0,025	690	0,005	0,002	I050_	0,001	0,001	2700	0.023	0.029
460	0.036	0.019				1100	0,001	100,0	2800	0.055	0.055
470	0.023	0.015	700.	0,005	0,002	II50	0.001	100.0	2900	0,14	0.105
480	0,014	0,013	710	0,004	0,002	T200	0,001	0,001	3000	0,15	0,17
490	0,009	0,011	720	0,004	0,002	I250	0,001	0,001	1		

Рис. I.26

	MCIO	KCII	MCI5	XCI6	XCI7		KCIO	KCII	XCI2	MCI6	ECI7
2,44		Оптическа	и плотнос	Th D (A)	стекол	l, HM	O	тическая	плотност	ъ <i>II (</i> Д) (CTOROJI
370	>10	6.8	Ţ			600	0,005	0,005	0,005	0,005	0,010
380	3.4	5.9				620	0,006	0,006	0,006	0,006	0,011
390	0.72	3.9				640	0,008	0,008	0,008	0,008	0,012
400	0,31	1,95	T			660	0,010	0,010	0,010	0,010	0,013
410	0,170	0,75	>10			680	0,012	0,012	0,012	0,012	0,014
420	0,110	0,33	9.20			700	0,015	0,015	0,015	0.015	0.015
430	0,072	0.180	2.85			750	0,020	0,020	0,020	0.020	0.020
440	0.056	0.115	0.85	חדל		800	0.025	0.025	0.025	0.025	0.025
450	0,046	0,085	0,32	5,6		850	0,030	0,030	0,030	0,030	0,030
460	0,037	0,060	0,190	I,55	>10	900	0,035	0,035	0,035	0,035	0,035
470	0,031	0,045	0.130	0.32	6.3	950	0,040	0,040	0,040	0,040	0,040
480	0.026	0.033	0.085	0.150	L.36	1000	0,041	0.041	0.04I_	0.041	0.041
490	0.021	0.025	0.055	0.075	0.32	1200	0.043	0.043	0.043	0.043	0.043
500	0,016	0,018		0,045	0,130	1400		0,036	0,036	0,036	0,036
510	0,013	0,014	0,030	0,030	0,080	1600	0,029	0,029	0,029	0,029	0,029
520	0,011	0,011	0,021	0.02I	0,054	1800	0,025	0,025	0,025	0,025	0,025
530	0,009	0,009	0.015	0.015	0.035	2000	0,026	0,26	0,026	0,026	0,026
540	0.007	0.007	0.010	0.010	0.025	2200	0,033	0.033	0.033	0.033	0.033
550	0.006	0.006	0.007	0.007	0.018	2400	0.045	0.045	0.045	0-045	0.045
560	0,005	0,005	0,006	0,006	0,015	2600	0,13	0,13	0,13	0,13	0,13
570	0,005	0,005	0,005	0,005	0,012	2800	0,60	0,60	0,60	0,60	0,60
580	0,005	0,005	0.005	0,005	0.010	3000	0,80	0,80	0,80	0.80	0.80
590	0.005	0.005	0.005	0.005	0.010						

П р и м е ч а н и е. Приседеные значения оптической плотности для стекол ${\tt MCII}$, ${\tt MCI2}$, ${\tt MCI6}$ и ${\tt MCI7}$ сыли получены при томпине 6 мм. Ближие к этим значения оптической плотности для стекол других варок могут бить получены при томпине от 2 до 10 мм, если величини ${\it A}_{np}$ судут собилалить о приведенными.

Рис. I.27

	ECI9	XC20		ACI9	XC20		ECI9	XC20		ECI9	XC20
A,HM	a	() ()	λ,нм	α	(λ)	λ,нм	a(λ)	λ, нм		())
220		3,6	460	0,052	0,53	700	0,002	0,001	1250	0,001	0,006
230		I.85	470	0,032	0,45	710	0,002	0,001	1300	0,001	0,005
240		1.14	480	0,035	0,37	720	0,002	0,001	1350	0,001	0,005
250		0.57	490	0.035	0.28	730	0,001	0,001	1400	0,001	0,005
260		0.32				740	0,001	0.001	1450	0,001	0,006
270		0,21	500	0,030	0,20	750	0.001	0.001		<u> </u>	<u> </u>
280		0.144	510	0,017	0,134	760	0,001	0,001	<u> </u>	A 007	0 000
290		0,106	520	0,005	0,084	780	0,002	0,001	1500	0,001	0,007
230			530	0,002	0,055				1600	0,001	0,009
300	>6	0.089	540	0.002	0.034	800	0,002	0,001	1700	0,001	0,013
310	4.5	0.106	550	0.001	0.022	820	0,002	100.0	1800	100,00	0,019
320	2.5	0.193	560	0.001	0.014	840	0,002	0.001	1900	0,001	0,024
330	1:30	0,31	570	0.001	0.009	860	0.002	0.002			<u> </u>
340	0,53	0.45	580	0,001	0,007	880	0.002	0.002			<u> </u>
350	0.21	0.56	590	0,001	0,007				2000	0,001	0,033
360	0.090	0.59				900	0,002	0,003	2100	0,002	0,038
370	0.067	0.55	600	0.001	0.007	920	0,002	0.006	2200	0,004	0,046
380	0.071	0,47	610	0.001	0.011	940	0.002	0.0I0 8,0I2	2300	0,006	0,057
390	0,110	0,38	620	0,001	0,012	960	0,002		2400	0,009	0.052
	-,	i i	630	0,001	0,011	980	0,001	0,016	2500	0.020	0,094
400	0.170	0.34	640	0,001	0,005				2600	0.040	0.13
410	0.210	0.37	650	0,001	0,002	1000	0,001	0,020	2700	0,065	0,19
420	0.190	0,43	660	0.002	0.001	1050	0,001	0.011	2800	0,18	0,32
430	0,160	0,50	670	0.002	Danot	1100	100.0	0.008	2900	0,27	0,60
440	0.110	0.58	680	0,002	0,001	1150	0,001	0,007	3000	0,23	1,2
450	0,060	0.57	690	0,002	0,001	1200	0,001	0,006			

Рис. 1.28

Продолжение табл. 1.5

	EC51		IC2I
2,HM	a(2)	2,HM	a(h)
320	2,22	700	0,002
340	J.50	720	0,002
350	1.18	740	0,002
360	0.610	750	0,002
380	0.165	760	100,0
400	0,050	780	100,0
420	0,022	800	0,001
440	010.0	840	0,001
450	0,008	880	0,001
460	0,007	920	100,0
480 .	0,006	960	0,001
500	0,005	1000	0,001
520	0,004	1100	0.001
540	0,003	1500	0.001
550	0,003	1300	0,001
560	0,003	1400	0,001
580	0,003	1500	0,001
600	0.002	1800	0.001
620	0,002	2100	100.0
640	0.002	2400	0.007
650		2700	0,027
660	0,002	3000	0,150
680	0,002	+	
000	V,00E		

Рис. I.29

	006	. 005		006	0C5		006	005]	006	005
A,HM	a	/ 1)	J.MM.	a	(A)	λ, им.	a	<i>(</i> \(\lambda\)	λ, нм	a	(2)
260		-	500	0.110	0.48	730	0,021	0,062	1300	0,028	0,052
270	>6		510	0.092		740	0,022	0,060	1350	0,027	0,049
280	4,5		520	0,075	0,41	750	0,022	0,059	1400	0,026	0,046
290	2,10	>6	530	0,062	0,31	760	0,023	0,058	1450	0.024	0.042
300	1,08	3,5	540	0,050	0,26	780	0,025	0,057		L .	
310	0,64	2,20	550	0,040	0.23						T
320	0.48	1,80	560	0,035	0.20	800	0.027	0.057	1500	0,022	0,038
330	0.4I	1,55	570	0.030	0.170	820	0,028	0,057	1600	_0,019	0,035
340	0.37	1.33	580	0.025	0.150	840	0,029	0,059	1700	0,018	0,032
350	0.34	1.24	590	0.022	0.130	860	0,030	0,060	1800	0,019	0.030
360	0,32	1,18				980	0,030	0,060	1900	0.020	0.030
370	0,30	1,16	600	0,022	0.120						
380	0,29	1,15	610	0.020	0.110	900	0.030	0.060	}		
390	0.29	1.15	620	0.019	0.100	920	0.030	0.060	2000	0,020	0,030
			630	0,019	0,090	940	0.030	0.060	2100	0,020	0.030
400	0,29	1,16	640	0,018	0,085	960	0,030	0,060	2200	0.020	0.030
410	0,30	1,17	650	0,018	0,080	980	0.030	0.060	2300	0.020	0.030
420	0,30	I,16	660	0.018	0.075				2400	0,022	0,030
430	0.29	1,12	670	0.019	0_072				2500	0,025	0,032
440	0.27	1.03	680	0,019	0,070	1000	0,030	0,060	2600	0,030	0.035
450	0,24	0,94	690	0,019	0,068	1050	0,030	0.060	2700	0.040	0.045
460	0,20	0,83				1100	0.030	0.060	2800	0,070	0,070
470	0.180	0.73	700	0,020	0,066	1150	0,029	0,058	2900	0,12	0,12
480	0.160	0.64	710	0,020	0,064	1200	0,029	0,056	3000	0.15	0.15
490	0 T30	0.55	. 720	0.021	0.062	1250	0,028	0.054			Ι

Рис. I.30

Продолжение табл. 1.5

	0 C19	0020		0C19	0020		0019	0020		∞1 9	0020
I, HM	а	(A)	A,HM	а	(A)	A,HM	а	(A)	A, HM	а	(A)
260	3	3	500	0,015	0,035	730	0.001	0,002	1300	0,003	0,006
270	0,594	0,827	510	0,014	0,034	740	0,001	0,002	1350	0,003	0,006
280	0,320	0,590	520	0,013	0,032	750	0,001	0,002	1400	0,003	0,006
290	0,258	0,388	530	0,012	0,030	760	0,001	0,002	1450	0,003	0,006
300	0.180	0,277	540	0.011	0.029	780	0.001	0.002			
310	0.110		550	0.011	0.027						
310 320	0,078	0.150 0,100	560	0.010	0.023	800	0,001	0,002	1500	0,003	0,006
330	0,060	0,082	570	0,008	0,020	820	0,001	0,002	1600	0,004	0,008
340	0,045	0,070	580	0,007	0,017	840	0,001	0,002	1700	0,004	0.008
350	0,052	0.092	590	0,006	0,013	860	0,001	0.002	1800	0,005	0,010
360	0.055	0,108				880	0,001	0,002	1900	0,005	0,010
370	0,040	0,088	600	0,005	0,011						
380	0,029	0,059	610	0,004	0,009	900	0,001	0,002			
390	0,014	0,030	620	0.004	0,008	920	0.001	0,002	2000	0,006	0,012
	1,111	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	630	0.003	0.007	940	0.001	0.002	2100	0.007	0.014
400	0.008	0.018	640		0.006	960	0.00T			0.009	
400 410	0,008	0.018	650	0,003	0,005	980	0,001	0,002	2200 2300	0,012	0.018
420	0,087	0,187	660	0,002	0,004				2400	0,015	0,030
430	0,065	0,130	670	0,002	0,004				2500	0,020	0,040
440	0,040	0,088	680	0,002	0,004	1000	0,001	0,002	2600	0,029	0,058
450	0.034	0.072	690	0.002	0.004	I050	0.001	0.002	2700	0.035	0.070
460	0.020	0.048				IIOO	0.001	0.002	2800	0.065	0.130
470	0.018	0.040	700	0.001	0.003	1150	0.001	0.002	2900	0.090	0.780
480	0.017	0.038	7.10	0.001	0.003	1200	0.002	0.004	3000	0.120	0.240
490	0.016	0.036	720	0.001	0.002	1250	0.003	0.006			

Рис. І.31

Продолжение табл. 1.5

1	ICI8	OCII	OCI2	OCI3	OCI4	1	XCI8	OCII	OCI2	OCI3	OCI4
2,##	Ontr	ическая г	иотность.	D(A) or	экол	A,HM	Ontra	теская пл	OTHOCTS.	D (A) cre	
480	> 10		>10			700	0,015	0.015	0.015	0.015	0.015
490	4,5		8,5	>10		720	0,017	0,017	0.017	0.017	0.017
500	1,10	>10	8,2	9.9		740	0,019	0.019	0,019	0,019	0,019
510	0,32	7,65	8,5	8.9		760	0,021	0.022	0.022	0.022	0.022
520	0,155	2.80	7.9	_7.8		780	0,023	0.025	0,025	0.025	0.025
530	0.075	0.58	5.4	6.7		800	0,025	0.028	0.028	0.028	0.228
535		0.30				850	0.030	0.034	0.034	0.034	0.034
540	0.050	0.190	T.87	5.4	≥10	900	0.035	0.038	0.038	0.038	0.038
550	0,030	0,080	0,32	3,0	7,6	950	0,040	0,045	0.045	0.045	0.045
560	0,021	0,040	0,100	0,79	3,6	1000	0,041	0,049	0.049	0.049	0.049
565			<u></u>	0,32		1200	0.043	0.049	0.049	0.049	0.049
570	0,017	0,030	0,040	0,175	1,15	1400	0,036	0,040	0,040	0,040	0,040
580	0,015	0,020	0,025	0,070	0,32	1600	0,029	0,030	0,030	0,030	0,030
590	0,015	0,017	0,020	0,040	0.080	18 00	0,025	0,032	0,032	0,032	0.032
600	0,015	0,015	0,017	0,025	0.045	2000	0,026	0,032	0,032	0,032	0,032
610	0,015	0,013	0,015	0,019	0.025	2200	0,033	0,038	0,038	0.038	0.038
620	0,015	0,012	0,013	0.015	0.018	2400	0,045	0,046	0,046	0,046	0.046
640	0.015	0.012	0.012	0.012	0.013	2600	0,13	0,083	0.083	0.083	0.083
650	0.015	0.011	170.0	0.011	0.011	2800	0,60	0,76	0.76	0.76	0.76
660	0,015	0,011	0,011	0,011	0,011	3000	0.80	I.00	1.00	1.00	1.00
680	0,015	0,012	0,012	0,012	0,012					-	

П р и м е ч а и и е. Приведенные вначения оптической плотности для стекся иста, ССП, ССП2, ССП3 и ССП4 были получены при толивне 5 мм. Клизкие к этим вначения оптической плотности для отекся других варок мо-гут быть получены при толивне от 2 до 10 мм, если величины д_{ар} будут совпадать с приведенными.

Рис. 1.32

	0 CI 7	0021	0022	0C23-I	0C24		0017	0021	0022	0C23-I	0024
X,HM	0пт	ическая г	иотность	D(A)ct	екол	2,HM	Ont	ическая і	потность	D(A)	текол
480	I,76					700	0.012	0.012	0.024	0.005	0.005
490	1,50					720	0,010	0,015	0,028	0,005	0,005
500	1,32					740	0,010	0,017	0,032	0,005	0,007
510	1,16	>6				760	0,010	0,020	0,038	0.005	0,009
520	0,920	2,80				780	0.010	0.024	0.043	0.005	0,012
530	0,620	0,580	>6	>6		800	0.010	0.027	0.050	0,006	0.015
535					1	850	0.010	0.031	0.057	0.006	0.019
540	0,300	0,190	I.87	3,35		900	0,012	0,035		0,006	
550	0.160	0.080	0.315	0.840	>6	950	0,012	0,040	0,069	0,007	0,027
560	0,100	0,040	0.100	0.300	3.140	1000	0,012	0,045	0,075	0,008	0,030
565						1200	0,012	0,045	0,075	0,009	0,025
570	0,048	0,025	0,043	0,110	I,I50	1400	0,010	0,035	0.062	0.007	0.021
580	0,028	0,018	0,032	0,044	0,305	1600	0,010	0,030	0,05L	0,006	0,020
590	0,022	0,015	0,025	0,025	0,080	1800	0,010	0,030	0,045	0,005	0,020
600	0,020	0,013	0,020	0,013	0,050	2000	0,010	0,033	0,045	0,006	0,023
610	0,018	0,012	0,017	0,010	0,035	2200	0,018	0,040	0,047	0,006	0,028
620	0,018	0,011	0,015	0,007	0,025	2400	0,030	0,050	0.050	0,003	0,035
640	0,016	0,010	0,015	0,005	0,015	2600	0.058	0,157	0.330	0.186	0,175
650	0,016	0,010	0,015	0,005	0,010	2800	0.130	0.410	0.708	0.507	0,430
660	0,014	0,010	0.017	0,005	0,008	3000	0.240	0.810	1.185	0.958	0.800
680	0,012	0,011	0,020	0,005	0,005	_					

П римечание. Приведенные значения оптической плотности для стекол ОС21, ОС22, ОС23-I и ОС24 были получены при голщине 5 мм. Близкие к этим значения оптической плотности могут быть получены для стекол других варок и при толщине от 2 до 10 мм, если величини $A_{R,\rho}$ бупут совпадать с приведенными. Значения оптической плотности ОСI7 получены для стекла толщиной 2 мм, но могут быть также получены и при толщине от 1,5 до 3 мм.

Рис. І.33

1	KCIO	KCII	KCI3	KCI4	KC15	1	KCIO	KCII	KCI3	KCI4	KCI5
1,HH	Оптиче	ская плот	THOOTS ,	D(A) 01	екол	2,HM	CHTEVE	ская пло	THOOFS Z	(A) CTE	ROM
500						730	0,015	0,015	0,015	0,015	0,015
510	,			*		740	0,015	0,015	0,015	0,015	0,015
520					,	· 750	0,015	0.015	0,015	0,015	0,01
530	1.1			>10		760	0,017	0,017	0.017	0.017	0,01
540	> 10	>10		10,0	>10	770	0,017	0.017	0,017	0.017	0,01
550	9,7	10,0		8,5	9,7	780	0,019	0,019	0,019	0,019	0,019
560	8,6	8,9		6,9	8,5	790	0,019	0,019	0,019	0,019	0,01
570	6,7	7,7		6,5	7,2	800	0,023	0,023	0,023	0,023	0,02
580	3,9	6,3		6.4	6.5	850	0,026	0,026	0,026	0,026	0,02
590	1,36	4.0	>10	6.7	6,3	900	0,033	0,033	0,033	0,033	0,03
600	0,32	1,21	8,9	7,3	6,4	950	0,035	0,035	0,035	0,035	0,03
610	0,110	0,32	5,0	_ 6,5	6,8	1000	0,038	0,038	0,038	0,038	0,03
620	0,050	0,115	1,20	3,3	6,7	1200	0,037	0,037	0,037	0,037	0,03
630	0,028	0,050	0.31	1,12	3,3	1400	0,030	0,030	0,030	0,030	0,03
640	0.021	0.035	0.095	0.32	0.95	1600	0.025	0.025	0.025	0.025	0.02
650	0.018	0.030	0.040	0.130	0.32	1800	0.025	0.025	0.025	0.025	0.02
660	0.017	0.025	0.027	0.070	0.120	2000	0.027	0.027	0.027	0.027	0.02
670	0.016	0,020	0,020	0,040	0,050	2200	0,032	0,032	0,032	0,032	0,03
680	0,016	0,018	0,018	0,025	0,025	2400	0,047	0,047	0.047	0,047	0,04
690	0,016	0,016	0,016	0,020	0,020	2600	0,100	0,100	0,100	0,000	0,10
700	0,015	0,016	0,016	0,017	0,016	2800	0,60	0,60	0,60	0,60	0,60
710	0.015			0.015	0.015	3000	0.86	0.86	0.86	0.86	0.86
720	0.015	0.015	0.015	0.015	0.015	_		i —			

римечания. Примеденные значения оптической плотности или стекси КСПО, КСП, КСПЗ, КСП4 и КСП3, КСП4 и КСП5, КСП5, КСП4 и КСП5, КСП4 и КСП5, КСП4 и КСП5, КСП5, КСП4 и КСП5, КСП5,

Рис. 1.34

Продолжение табл. 1.5

	KCI7	KCIS	KCI9	KC2I	кс23		KCI7	KCI8	KCI9	KC2I	KC23
2,HM	Ontra	неская пл	отность Д	(A)crer	юл	J,HM	Опт	гическая г			
500						730	0,020	0,045	0,050	0,017	0,016
510						740	0,018	0,040	0,045	0,018	0,017
520						750	0,017	0,037	0,040	0,018	0,017
530						760	0.017	0.035	0.038	0.019	0.018
540						- 770	0.017	0.035	0,037	0,020	810,0 810,0
550		-				780	0,019	0,035	0,036	0,021	0,019
560						790	0,021	0,035	0,036	0,023	0,019
570		>10	-			800	0,023	0,034	0,035	0,024	0,020
580		9.5	>10	>6		850	0,026	0,033	0,034	0,030	0,022
590		8,9	9,9	3,975		900	0,033	0.033	0,033	0,036	0,025
600		8,5	9,2	1,210		950	0,035	0,035	0,035	0,041	0,026
610		7,9	8,9	0,320	> 4	1000	0,038	0,038	0,038	0,047	0,028
620	>10	7,3	8,0	0,115	1,200	1200	0,037	0,037	0,037	0,045	0,025
630	9,2	6,5	7,5	0,050	0,315	1400	0,030	0,030	0,030	0,037	0,020
640	7,5.	5,8	7,I	0,037	0,095	1600	0,025	0,025	0,025	0,030	0,019
650	4,8	5,2	6,5	0,030	0.040	1800	0,025	0,025	0,025	0,028	0,020
660	I,65	4,4	5,6	0,025	0,028	2000	0,027	0.027	0,027	0,033	0,027
670	0,320		4,5	0,022	0,020	2200	0,032	0,032	0,032	0,039	0,036
680	0,100		2,70	0,020	0,017	2400	0,047	0,047	0,047	0,057	0,048
690	0,050	0,200	1,000	0,018	0,016	2600	0.100	0.100	0-100	0.242	0.179
700	0,035	0.110	0.320	0.012	0.015	2800	0,600	- 0,600	0.600	0.531	0.428
710	0,030	0,070	0,125	0,016	0,015	3000	0,860	0,860	0.086	0.925	
720	0,025	0,055	0,070	0,017	0,016						

П римечание. Приведенные значения оптической плотности для стекол КСІ7, КСІ8, КСІ9, КС21 в КС23 были получены при толщине 5 мм. Близкие к этим значения оптической плотности для стекол других варок могут быть получены и при толщине от 2 до 10 мм, если величины $\mathcal{A}_{\pi\rho}$ будут совпадать с приведенными.

Рис. 1.35

	KC24	KC25	KC27	KC28	икс970-1		KC24	KC25	KC27	KC26	икс970-1
<i>ℷ,⊪</i>	Оптич	еская плот	HOCTS D (A) стекол		A,HM	Опт	ическая п	лотность	∄ (从) c	Tekol
600	> 6					860	0,026	0,016	0,002	0,002	1,80
610	>4					880	0,028	0,017	0,002	0,002	1,30
620	3,3	> 4		14.		900	0,030	0,018	0,001	0,001	1,032
630	1,12	3,3	> 10	> IO		920	0,031	0,016	0,001	0,001	0,95
640	0,315	0,95	9,2	9,8		940	0,032	0,017	0,001	0,001	0,65
650	0,130	0,310	4,2	7,1		960	0,035	0,016	0,001	0,001	0,42
660	0,070	0,120	1,38	4,48	> 10	970	0,035	0,016	0,001	0,001	0,35
670	0,040	0,060	0,260	2,06	> 10	960	0,036	0,015	0,001	0,001	0,29
680	0,035	0,025	0,098	0,70	> 10						
690	0,028	0,018	0,048	0,210	10,0	1000	0,037	0,015	0,001	100,0	0,200
700	0,020	0,015	0,027	0,070	9.6	IIOO	0,036	0,014	0,001	0,001	0,150
710	0,017	0,012	0,017	0,025	9,2	1300	0,032	0,012	0,001	0,001	0,150
720	0,015	0,010	0,013	0,020	3,8	1500	0,026	0,010	0,001	0,001	0,150
730	0,015	0,008	0,012	0,015	8.4	. I800	0,020	0,011	0,005	0,005	0,150
740	0,015	0,006	0,011	0,010	8,0	2100	0,025	0,014	0,015	0,015	0,150
750	0,015	0,005	0,008	0,009	7.6*	2400	0,040	0,025	0,021	0,021	0,150
760	0,016	0,005	0,005	0,005	7,2	2700	0,360	0,055	0,060	0,060	0,387
770	0,017	0,006	0,005	0,005	6,8	3000	0,80	0,595	0,075	0,075	0,975
780	0,018	0,007	0,005	0,005	6,4						
790	0,019	0,009	0,005	0,005	5,9						
800	0,020	0,010	0,004	0,004	5,5						
820	0,222	0,012	0,003	0,003	4,2	1					
840	0,024	0,010	0,003	0,003	3,4						

Примечание. Приведениме значения оптической плотности для стекол КС24, КС25, КС27, КС28 были получения для стекол толщиной 5 мм, для ИКС970-I —7 мм. Билякие к этим значения оптической плотности для стекол других варок могут быть получени и при толщине от 2 до 10 мм, для стекла ИКС970-I при толщине от 6 до 12 мм, если величини $\mathcal{A}_{n\rho}$ будут совпедать с приведенными.

Рис. І.36

Продолжение табл. І.5

	NKCI	икс5		NKCI	икс5		NKCI	икс5		NKCI	иксэ
2, HM	a/	(د	λ, нм	al.	λ)	λ, нм	a/.	λ)	Д,нм	a/d	J _
300	>6	>6	720	1.20	I.80	1350	0,011	0,009	3000	0,090	0.090
320	2,50	2,90	740	1.03	I.46	1400	0,010	0,009	3100	0.100	0.095
340	I,I5	I,60	760	0.86	I.20	1450	0,010	0,009	3200	0,14	0,12
360	0,75	I,85	780	0.69	0.96	1500	0,010	0,009	3300	0,17	0,16
380	0.70	I,55			10,20	1550	0.010	0.009	3400	0,21	0,21
			800	0,55	0,75	1600		0.009	3500	0,23	0,24
400	0,90	0,85	820 .	0,46	0,60	1650	010,0	0,009	3600	0,24	0,25
420	1,60	1,48	840	0.39	0.46	1700	0,010	0,009	3700	0,24	0,27
440	2,75	3,1	860	0.31	0,35	1750	0,010	0,009	3800	0,24	0,28
460	4,I	4,7	880	0.23	0.27	1800	0,010	0,010	3900	0,20	0,28
480	4,4	6,I		1		1850	0,010	0,010			
			900	0,160	0,20	1900	0,010	0.011			
500	4.4	6,I	920	0,100	0,150	1950	0.010	0.012	4000	0.21	0.28
520	4 . I	6.0	940	0,070	0,115				4100	0.23	0.29
540	3.8	5.5	960	0,050	0,086	2000	0.011	0.012	4200	0.24	0.32
560	3.3	4.8	980	0,035	0,068	2100	0.012	0.014	4300	0.32	0.38
580	2,85	4.8 4,I				2200	0,014	0,016	4400	0,40	0,47
		L.	1000	0,030	0,051	2300	0,016	0,017	4500	0,50	0,60
600	2,45	3,6	1050	0,025	0,028	2400	0,020	0,019	4600	0,65	0,85
620	2,20	3,3	1100	0.020	0.017	2500	0,024	0,021	4700	0,95	1,10
640	2,00	2,90	1150	0.017	0.012	2600	0,030	0,023	4800	1,27	I,23
660	1,80	2,60	1200	0,015	0,010	2700	0,040	0,027	4900	I,65	I,38
680	I,60	2,35	1250	0,013	0,009	2800	0,052	0,040	5000	1,85	1,60
700	1,36	2,05	1300	0,012	0,009	2900	0,070	0,085			

Рис. I.37

	иксз	икс6	1	иксз	NKC6		иксз	NKC6		иксз	nkce
J,HM	a/	(A)	λ, нм	al.	1)	λ, нм	a	(X)	λ,нм	a/A	
300	,		720	3,5	3,7	1350	0,034	0,018	3000	0.13	0,090
320	>6		740	3,0	3,0	1400	0,032	0,017	3100	0.13	0.100 0,13
340	3,5		760	2,60	2,50	1450	0,030	0,016	3200	0,15	
360	4,4		780	2,05	2,00	1500	0,029	0,015	3300	0,17	0,15
380	4,I					1550	0,028	0.014	3400	0,18	0,19
			800	1,60	I,60	1600	0.028	0.013	3500	0,19	0,22
400	3,2		820	1,35	1,28	1650	0.028	0.012	3600	0,19	0,24
420	5,3		840	1,12	0,99	1700	0.028	0.011	3700	0,19	0,24
440	>6		860	0,88	0,76	1750	0,028	0.011	- 3800	0,19	0,24
460	>6 >6		880	0,67	0,57	1800	0,028	0,009	3900	0,19	0,24
480	>6					1850	0,028	0,009			
			900	0,48	0,44	1900	0,028	0,009			
4500	>6	1	920	0.37	0,32	1950	0,028	0,009	4000	0,19	0,24
520	>6		940	0,29	0,25				4100	0.20	0.25
540	>6		960	0,23	0,190	2000	0,028	0,009	4200	0,21	0,30
560	>6		980	0.180	0.147	2100	0.028	0.009	4300	0.28	0.35
580	>6					2200	0.028	0.016	4400	0.35	0.45
			1000	0,160	0,114	2300	0.029	0.011	4500	0.50	0.60
600	>6		1050	0,110	0,063	2400	0,030	0,013	4600	0,65	0.85
620	>6	>6	1100	0,080	0,039	2500	0,032	0,014	470C	0.95 1,27	I.02 I,20
640	5,8	6,0	1150	0,060	0,027	2600	0,035	0,017	4800		
660 `	5,2	5,4	1200	0,048	0,022	2700	0,045	0,022	4900	I,63	I,35
680	4,6	4,9	1250	0,041	0,020	2800	0,065	0,035	5000	I,85	1,60
700	3,9	4,3	1300	0,036	0,019	2900	0,095	0,085			

Рис. 1.38

Продолжение табл. 1.5

	NKC7	1	икс?	1	икс7	ൎૺ.	ИКС7
1, HM	<i>α</i> /λ)	λ, нм	a(1)	λ, нм	a(1)	λ.нм	વ(૫)
300		720	5,7	1350	0,025	3000	0.090
320		740	4,6	1400	0,023	3100	0,105
340		760	3,8	1450	0,022	3200	0,130
360		780	3,1	1500	0,020	3300	0,150
380				1550	0.019	3400	0,170
-		800	2,50	1600	0.019	3500	0,190
400		820	1,95	1650	0,016	3600	0,190
420		840	1,49	1700	0,015	3700	0.190
440		860	I,I4	1750	0,013	3800	0.190
460		880	0.87	1800	0.012	3900	0.180
480				1850	0.011		
		900	0,660	1900	0.010		
500		920	0,500	1950	0.009	4000	0,180
520		940	0,370			4100	0,190
540		960	0,280	2000	0,009	4200	0,210
\$60		980	0,220	2100	0,009	4300	0,260
500				2200	0,010	4400	0,350
		1000	0.160	2300	0,011	4500	0,470
600		1050	0.084	2400	0,012	4600	0,650
620		1100	0.047	2500	0.013	4700	0,900
640		1150		2600	0.014	48CG	1.10
660		1200	0,031	2700	0.018	4900	I.27
680		1250	0,029	2800	0,030	5000	1.50
700	>6	1300	0,027	2900	0,085		

Рис. 1.39

	пс5	псіз		ncs i	псіз		IIC5	IIC13	· -	ncs	псіз
			ا	a/	21	J. XX	- 01	λ)	1, HM	al.	
1,HM	a	<u>ر (</u>	J. KM			730	0,009	0.51	1300	0,001	0,001
260			500	0,049	1,96	740	0.008	0.48	1350	0,001	0,001
270			510	0,049	2,00	750	0.008	0.44	1400	0,001	100,0
280			520	0.049	I.98 I.94	760	0,000	8,40	T450	0.001	0.001
290	>6	>6	530	0,048	1,88	780	0,006	0,32			
300	5,5	4.5	540	0,046		760					
310	2,85	2.50	550_	0,043	1,78	800	0,004	0,25	I500	0,001	0,002
320	T. 45	I.50	560	0,041	I,69 I,54	820	0.003	0,20	1600	0,001	0,002
330	0,60	0,80	570	0,038		840	0,002	0.150	1700	100,0	0,003
340	0,25	0,43	580	0_033	I.44	860	0.002	0.120	1800	0,001	0,003
350	0.128	0,24	590	0.029		880	0,001	0,087	1900	0.002	0.004
360	0.071	0.140	600	0.027	1,22	1 000				ļ	
370	0,040			0.025	1.13	900	0,001	0,065		- 000	0.004
380	0,025	0,073	610	0.023	1.06	920	0.001	0.048	2000	۵,002	0,004
390	0,016	0,075	620 630	0.023	0.98	940	0.001	0.035	2100	0,003	0,005
	0,013	0,110	640	0,020	0,92	960	0,001	0,026	2200	0.004	0,006
400	0,015	0,20	650	0.018	0,37	980	0,001	0,019	2300	8,005	0.008
410	0.020	0,38	660	0.017	0.83			 	2400	0,003	0,013
420	0,025	0,57	670	0.016	0.78				2500	0.040	0.017
430	0.031	0,81	680	0.014	0.73	1000	100.0	0.015	2600	0,090	0.022
440	0.036	1.12	690	0,013	0,68	I050	0,001	0,004	2700		0.036
450 460	0.041	1,38				1100	100,0	0,003	2800	8:15	1 8;88
470	0.045	1,57	700	0,012	0,64	1150	0.001	0,002	2900	0,16	0,09
480 -	0.047	I.74	710	0.011	0.60	1200	0.001	0.002	3000	- - - -	1
490	0.048	1.88	720	0.010	0.55	1250	0.001	10001	_+		

Рис. 1.40

,	DC7-	,	DC7	3.444	nc7	A, HM	DC7		nc7	7	IIC7
એ, HM	ais)	A,HM	a(A)	A,HM	a(A)	V1, HM	a (A)	A, HM	$a(\lambda)$	A, HM	a (A)
240		400	0,005	555	0.010	700	0,004	860	0,034	1550	0,015
250	> 6	410	0,002	560	0,012	710	0,003	870	0,095	I600	0,015
260	2,50	420	0,005	565	0,023	720	0,009	880	0,133	1650	0,012
270	1,61	430	0,042	570	0,505	730	0,072	890	0,100	1700	0,008
280	1,00	440	0,014	573	0,700	735	0,180	900	0,030	1750	0,006
290	0,590	450	0,013	575	0,625	740	0,340	920	0.007	1800	0.007
		460	0,026	580	0,475	745	0,370	940	0,002	1850	0,008
300	0.350	470	0,037	586	0,845	750	0,260	960	0,002	1900	0.011
310	0,220	475	0,044	590	0,567	755	0,145	980	0,001	1950	0,010
320	0,140	480	0,037	595	0,845	760	0,090	1000	0,002	2000	0,006
330	0.108	485	0,018	600	0,165	770	0,032	IC50	0,002	2100	0,005
340	0.052	490	0,009	610	0.068	780	0,044	IIOO	0,082	2200	0,007
350	0,250	500	0.025	620	0,006	790	0,149	1150	100,0	2300	0,020
		510	0.073	630	0,009			1200	0,003	Z400	0,057
355	0,225	520	0.075	640	0,003	800	0,300	1250	0,004	2500	0,050
360	0,230	528	0.179	650	0,002	810	0,250	1300	0,003	2600	0,030
365	0,070	530	0.175	660	0,002	820	0,127	I350	0,004	2700	0,036
370	0.006	540	0.042	670	0,010	830	0,040	1400	0,007	2800	0,150
380	0.004	545	0.016	680	0,025	840	0,009	1450	0,009	2900	0,220
390	0,003	550	0.009	690	0.016	850	0,006	1500	0,013	3000	0,210

Рис. I.41

1	IIC8	1	TC8	اا	IIC8	1	IEC8	,	TC8
A,HM	a(A)	A, HM	a(A)	A, HM	a(A)	2,44	a(A)	2,411	a(A)
280	>6	450	0,620	620	0,160	800	0,020	1350	0,004
290	4,0	460	0,630	630	0,130	820	0,018	1400	0,004
		470	0,660	640	0,110	840	0,016	I450	0,003
300	2,55	480	0,700	650	0,089	860	0.014	I500	0.003
310	1,75	490	0,800	660	0,077	880	0,013	1600	0,003
320	1,30			670	0,066			I700	0,002
330	1,00	500	0,960	680	0,058	900	0,012	1800	0,002
340	0,800	510	1,20	690	0,050	920	0,010	1900	0,002
350	0,720	520	1,47			940	0,009		
360	0,700	530	I,62			960	0,009	2000	0,003
370	0,690	540	1,48	700	0,045	980	0,008	2100	0,004
380	0,680	550	1,18	710	0.040			2200	0,004
390	0,670	560	0,840	720	0,037			2300	0,005
		570	0,600	- 730	0,034	1000	0,008	2400	0,007
		580	0,440	740	0,032	1050	0,007	2500	0,011
408	0,660	590	0,320	750	0,029	IIOO	0,006	2600	0,019
410	0,640			760	0,027	II50	0,005	2700	0,033
420	0,630	Ī		770	0,025	1200	0,005	2800	0,055
430	0,630	600	0,250	780	0.023	1250	0,005	2900	0,093
440	0,630	610	0,190	790	150.0	1300	0,004	3000	0,180

Рис. 1.42

Продолжение табл. І.5

	пси	IICI4		ncii	IICI4		пси	IICI4		ncii	IICI4
λ , HM		(A)	А, нм		(A)	λ ,HM	а	(A)	A, HM	α	(A)
220	0,330		460	0,220	0,021	700	0,033	0.004	1250	0.080	0,012
230	0.130		470	0,330	0,028	710_	0,021	0,003	1300	0.090	0,013
240	0,077		480	0.420	0,035	720	0.015	0.002	1350	0.110	0.013
250	0.055	>6	490	0.500	0.041	730	0.012	0.001	1400	0,120	0.013
260	0.035	4.0				740	0.012	0,001	1450	0.130	0.012.
270	0.021	2.30	500	0.610	0.046	750	0.013	0.001			
280	0,010	I,60	510	0,740	0,050	760	0,014	0.001			
290	0,006	1,01	520	0,880	0,053	780	0.016	0.001	T500	0.130	0.012
			530	0,960	0,055				1600	0,130	0.011
300	0,003	0,610	540	0,990	0,057	800	0,019	0,002	1700	0,120	0,011
310	0.002	0.370	550	0.990	0.063	820	0.023	0.002	1800	0.110	0.011
320	100,0	0,240	560	I,II	0,068	840	0,028	0.003	1900	0,110	0,011
330	100.0	0,160	570	I,3I	0,070	860	0,033	0,003			
340	0,001	0,095	580	I,44	0,068	880	0,039	0,004			
350	100,0	0,051	590	1,37	0,063				2000	0,110	0,011
360 .	0,002	0,026		†		900	0,045	0.004	5100	0.120	0.012
370	0,003	0.017	600	1.30	0.061	920	0.050	0.005	2200	0.130	0.014
380	0,004	0.010	610	I.25	0.058	940	0.054	0.006	2300	0.140	0.017
390	0.007	0.007	620	I.22	0.052	960	0,058	0.006	2400	0.150	0.021
	V1001	7100	630	1.08	0.045	980	0.060	0.007	2500	0.160	0.026
400	0.011	0.005	640	0.900	0.038			ļ	2600	0.210	0.034
410	0.018	0.005	650	0.670	0.031	1000	0.062	0.008	2700	0,320	0,044
420	0.032	0,006	660	0.450	0.025	1050	0.062	0.009	2800	0.570	0.120
430	0.050	0.008	670	0.230	0.019	IIOO	0.063	0.009	2900	1.02	0.330
440	0,085	0,010	680	0,120	0,013	1150	0,068	0.010	3000	I.55	0.680
450	0,140	0,014	690	0,061	0,008	1200	0,074	0.011	<u> </u>		<u> </u>

Рис. І.43

	HCI	HCI2		HCI	HCI2		HCI	HC12		HCI	HCI2
A, HM	α((۱	Д, ны	α(λ)	Д,нм	۵/۸)	д.км	0()	.)
300	۶6		530	0,072	3,4	750	0,020	I,95	1300	0.044	I.23
310	2,10		540	0,073	3,3	760	0,022	I,95	1350	0.042	1,13
320	0,95		550	0,070	3,3	780	0.027	I.85	I400		1,05
330	0,40		560	0,066	3,4				I450	0,039	0,98
340	0,20		570	0.068	3.4						
350	0,100		580	0.072	3.5	800	0,030	I,80			
360	0.041	>6	590	0.075	3.5	820	0,036	1,80	I500	0.039	0.93
370	0.022	5.5				840	0,038	I,75	1600	0.039	0,87
380	0,019	5,3	600	0,078	3,5	860	0.040	1.75	1700	0.038	0.83
390	0,022	4,5	610	0.079	3.4	880	0.041	I.75	I800	0,037	0,79
			620	0.079	3.4				1900	0,034	0,75
400	0.029	4.T	630	0.080	3.4		1		<u> </u>	l	L
410		3.8	640	0,081	3,3	900	0,043	1,75			0.70
420_	0,039	3,4	650	0,076	3,2	920	0,045	. I.75	2000	0,033	0,68
430	0,066	3,6	660	0.070	3.I	940	0.046	I.75	2100	0,033	0,62
440	0,079	3,3	670	0.056	2.95	960	0.048	I.75 I.75	2200	0,034	0,54
450	0.081	3.2	680	0.047	2.73	980	0,050	I,75	2300	0.037	0.46
460	0.080	3.2	690	0,037	2,55				2400	0.040	0.43
470	0,075	3,2				T			2500	0.042	0.44
480	0,073	3,2				1000	0,050	1,75	2600	0,055	0.50
490	0.071	3.3	700	0.030	2,35	1050	0,050	I,75	2700	0,066	0,59
		1	710	0.025	2.25	1100	0,050	I,75	2800	0.088	0.67
500	0,070	3,4	720	0,022	2,10	1150	0,047	I,60	2900	0.11	0.73
510	D,070	3,4	730	0,020	2,05	1200	0,047	I,55	3000	0.13	0.72
520	0,071	. 3,4	740	0,020	-2,00	1250	0,047	I.36		1	

Рис. 1.44

Продолжение табл. 1.5

	HCS	HC3		HC2	нсз		HC2	HC3	1	HC2	HC3
l, HM	а	(A)	1,HM	а	(1)	J,HM	а	(1)	2, HM		(A)
300			530	0.24	0,46	750	0,060	0,097	1300	0,112	0,20
310	>6		540	0,24	0,45	760	0,055	0,097	1350	0,106	0,19
320	3,00	>6	550	0,22	0,44	780	0,065	0,106	I400	0,100	0,18
330	I.40	3,2	560	.0,21	0,43				1450	0,098	0,18
340	0.70	1.70	570	0.21	0.40						
350	0.29	0.70	580	0.23	0.40	800	0.080	0.133			
360	0,165	0.41	590	0.25	0.42	820	0.090	0.150	I500	0.096	0.17
370	0.090	0.27				840	0.095	0.165	1600	0.092	0.17
380	0.077	0,20	600	0,25	0,46	860	0,100	0,170	1700	0,090	0,17
390	0,073	0,18	610	0,25	0,48	880	0,103	0.180	1800	0,090	0,16
	0,00		620	0.25	0.49				1900	0.090	0.16
400	0,060	0,20	630	0,26	0,52				<u> </u>		
410	0,101	0,24	640	0,26	0,52	900	0,105	0.190			
420	0,140	0,38	650	0,25	0,48,	920	0.110	0.20	2000	0.090	0.16
430	0,24	0,50	660	0,22	0.41	940	0.117	0,21	2100	0,090	0,16
440	0.29	0.54	670	0.185	0.32	960	0.120	0.21	2200	0.087	0.15
450	0.29	0.55	680	0.130	0.24	960	0.120	0.22	2300	0.083	0.15
460	0,28	0,54	690	0.100	0.180				2400	0.080	0.15
470	0.26	0.5I		1					2500	0.083	0.16
		0.48				1000	0.120	0.22	2600	0.095	0.17
480 490	0,24	0,47	700	0,080	0,144	1050	0.123	0.22	2700	0.15	0.18
	1	1	710	0,070	0,120	1100	0,130	0,22	2800	0.15	0.21
500	0,23	0,46	720	0,067	0,107	1150	0,130	0.22	2900	0.19	0.25
510	0,23	0,46	730	0,065	0,100	1200	0,134	0.22	3000	0,22	0,28
520	0,23	0,46	740	0,062	0,099	I250	0.120	0.21			<u> </u>
	+	1 / -							1	1	

Рис. I.45

	HC6	HC7		HC6	HC7	1	HC6	HC7		HC6	HC7
2, HM	α/.	λ)	λ, ны	α	())	Д,нм	ala	.)	J.KM	· a())
300	>6	>6	530	0,051	0,107	750	0,078	0,124	1300	0,13	0,20
310	2,90	4.2	540	0,050	0,107	760	180,0	0,129	1350	0,12	0,18
320	I.43	2.20	550	0,050	0,106	780	0.089	0,139	1400	0,104	0,16
330	0.70	T.T3	560	0,051	0.107				1450	0,093	0,14
340	0,37	0,62	570	0,052	0.109						
350	0,21	0,37	580		0.113	800	0,103	0,15			
360	0.129	0,24	590	0.054	0.TT7	82 <i>0</i>	0,105	0,16	1500	0,080	0,14
370	0.104	0.20			1	840	0.118	0,17	1600	0,070	0,12
380	0.127	0.22	600	0,055	0.118	860	0.123	0.18	1700	0,060	0,11
390	0,074	0,148	610	0.055	0.117	880	0.730	0.19	1800	0.052	0.100
			620	0.058	10.115				1900	0.050	0.092
400	0.062	0.123	630	0,057	0,116			• •			
410	0.066	0.127	640	0,059	0.II7	900	0,136	0,20			T
420	0,071	0,127	650	0.060	0.118	920	0.141	0.21	2000	0,045	0.084
#30 ·	0,065	0,123	660	0.060	0.118	940	÷0.142	0.22	2100	0.040	0.080
440	0,066	0,125	670	0,061	0,117	960	0,155	0,23	2200	0.040	0.075
450 ,	0.061	0.116	680	0,062	0,116	980	0,160	0,23	2300	0-043	0.075
450	0.055	0.112	690	0,063	0.113		•		2400	0,052	0,076
470	0.054	0.109		1					2500	0,065	0,080
480	0.053	0.109	1			1000	0,160	0,24	2600	0,085	0.090
490	0,053	0.III	700	0,064	0,112	1050	0,170	0,25	2100	0.12	0.13
			710	0,065	0,112	1100	0,175	.0,25	2800	0.18	0.20
500	0.053	0.111	720	0,068	0,114	1150	0,175	0,25	2900	0.24	0.33
510	0.052	C-III	730	0,070	0,116	1200	0.170	0.24	3000 /	0,30	0,49
520	0,051	0,108	740	0.074	0.120	1250	0.150	0.22			

Рис. І.46

Продолжение табл. І.5

	HCB	нсэ		HC8	HC9		HC8	HC9		HC8	HC9
2, HM		() () ()	√λ,ны	a	/ \ /	Д.нм	a(۸)	2.км	a()	~~~
300		1	530	0,26	0,55	750	0,27	0.44	1300	0,44	0.51
310	79	>6	540	0,26	0,55	760	0.27	0.45	I350	0.39	0.45
320	4,2	5,7	550	0,26	0,55	780	0.29	0.45	1400	0.36	0,41
330	1,90	4,2	560	0,26	0,55				1450	0,33	0,35
340	1,15	2,30	570	0.27	0,56				<u> </u>	<u> </u>	₩-
350	0,75	1.55	580	0.27	0.56	800	0,31	0,47		\	
360	0,54	1,12	590	0.27	0.57	820	0,33	0.49	1500	0,31	0,36
370	0.43	0.91		1		840	0.35	0.51	1600	0.28	0.33
380		0.89	600	0,28	0,57	860	0.37	0.53	1700	0,26	0,30
390	0,33	0.70	610	0.27	0.56	880	0.39	0.55	1800	0.23	0,28
320			620	0.27	0.56		<u> </u>		1900	0,21	0,45
400	0,29	0,62	630	0.27	0.55					-	├
410	0.29	0.61	640	0,27	0,55	900	8:41	0.57		0.20	0,23
420	0.29	0.60	650	0,27	0,55	920		0,59	2000	0,19	0,21
430	0.28	0.58	660	0,27	0.54	940	0,44	0,61	2100	0.17	0,19
440	0.28	0.58	670	0.27	0,53	960	0,46	0,63	2200		
450	0.27	0.56	680	0,26		980	0,47	0.64	2300	0,16	0,17
460	0.26	0.54	690	0,26	0,48			——	2400	0.15	0.16
470	0.26	0.54							2500	0.15	0.17
480	0.26	0.54				1000	0,49	0,66	2600	8.17	0.23
490	0.26	0.55	700	0,25	0,46	I050	0,52	0,67	2700		
			710	0,25	0,45	1100	0,54	<u>.0.68</u>	2800	0,28	0.30
500	0.27	0,56	720	0,25	0,44	I150	0.54	0.67	2900	0.41	0.44
510	0.27	0.56	730	0,25	0,44	1200	0.51	_ 0,63_	3000	0,62	0,61
520	0.27	0.56	740	0,26	0,44	1250	0,48	0,58			

Рис. I.47

	HCIO	HCII	1	HCIO	HCII	Ì	ECIO	HCII	1	HCIO	HCII
1, <i>HM</i>		(A)	д, им	αι	ر _{لا} ر)	1.нм	0(λ)	Д, нм	al	
-,			530	0,87	I,90	750	0,75	1,26	1300	0,90	0,98
300			540	0,86	1.90	760	0.75	I,24	1350	0,80	0.91
310	\ <u></u>	├	550	0.85	I,90	780	0.78	1.21	1400	0.71	0.83
320	>6		560	0.86	1.90				1450	0.64	0.76
330	5,5	 -	570	0.87	1.90					<u> </u>	
340	3,5	>6	500			100	0.81	1,19			
350	2,30	5,3	590	0.88	1.90 1,90	820	0.84	1,18	1580	0,60	0,72
360	1,70	3.7	350	- 0,05	+ = ,,,,	840	0.87	1.18	1688	0,54	0,66
370	1.38	2,20	600	0.90	1.90	860	0.90	1.18	1700	0,50	0.62
310	1.35	3.00	610	0.89	1.90	880	0.93	T.20	1800	0.46	0.58
390	1,10	2,60	620	0.87	1.85		T .		1900	0,42	0,54
	-	10.00	630	0.86	1.80	+		T			
400	0.99	2.30	640	0.86	1.80	900	0,96	1.21			
410	0,95	2.20	650	0.86	1,75	920	0.99	I.24	2000	0.38	0.51
420	0.93	2,10	660	0.85	1.70	940	1.02	T 22	2100	0.33	0.42
430	0,90	2.05	670	0.83	1.65	960	I,05	I,27	2200	0,29	0,43
440	0,90		680	0.81	I.60	980	1,08	I,28	2300	0,27	0,37
450	0,88	1.95	690	0.78	1,50	+-			2400	0,26	0.32
460	0.85	I90		- 0,10	1,50				2500	0.26	0.31
470	0.85	1.90			+	1000	1,10	1,29	2600	0.27	0.31
480	0.85	1.90	 	2 26	I.43	1050	1,12	I,28	2700	0,30	0,34
490_	0,86	1.90	700	8,76	1:37	1100	1,12	I,25	2800	0,38	0.40
			710	0,74	I,34	1150	1.10	1.21	2900	0,50	0.53
500	0.87	1.90	720	0.74	1.31	1200	1.06	T.T5	3000	0.63	0.76
\$10	0.88	I.90	730	0,74	1,28	1250	0.98	1,08			T

Рис. 1.48

				HOT!	HCI3	_	HC14	HCI3		HCI4	HCI3
	HCI4	HCI3		HCI4	HULD		BC14	ucto	. 1		
2,HM	a/	(L)	Д,нм	α	'እ)	λ,нм.	0/	l)	λ.κM	4()	.)
300	-		530	0,172	0,970	750	0,300	0,740	1300	0.610	0.740
310			540	0,170	0,950	760	0,325	0,730	1350	0,545	0,730
320	2,13		550	0,170	0,920	780	0,360	0,730	1400	0,480	0,660
330		>6	560	0,170	0,910				I450	0,447	0,600
340	0,830	4.6	570	0.170	0,900						
350	0.570	2,90	580	0.170	0.890	800	0,390	0,740		<u> </u>	
360	0.430	2.10	590	0.177	0.870	820	0,430	0,750	1500	0,415	0,580
370	0.365	T-70				840	0,470	0,750	1600	0,393	0,550
380	0,300	1,60	600	0,180	0,850	860	0,500	0,760	1700	0,371	0,530
390	0,252	1,33	610	0,177	0.840	880	0,530	0.770	1800	0,350	0,520
		1	620	0,175	0,830				1900	0,333	0,490
400	0.205	1.21	630	0.180	0.810			<u> </u>			└
410	0.192	1.14	640	0.185	0.800	900	0,560	0,790	<u> </u>		1
420	0.180	I.II	650	0,190	0,790	920	0,590	0,800	2000	0,316	0,450
430	0,180	1,08	660	0,200	0,780	940	0,615	0.810	2100	0,300	0,430
440	0,180	I,08	670	0,210	0,770	960	0.640	0.820	2200	0,273	0.400
450	0,180	I.04	680	0,220	0.750	980	0.657	0.830	2300	0.246	0.380
460	0.180	I.OI	690	0.230	0.740				2400	0.220	0.360
470	0.180	0.990							2500	0,215	0,340
480	0.180	0.980				1000	0,675	0.840	2600	0,210	0,340
490	0.180	0,980	700	0,240	0,730	1050	0.697	0.840	2700	0,205	0,380
			710	0,255	0.740	IIOO	0.720	0.830	2800	0,280	0.570
500	0.180	0.970	720	0.270	0.740	1150	0,700	0,820	2900	0.355	0.730
510	0.177	0.970	730	.0.280	0.740	1200	0,680	0.810	3000	0,430	0,770
520	0.175	0,970	740	0,290	0,740	1250	0.645	0,760			

Рис. 1.49

Продолжение табл. І.5

1	TC9	TC3		TC9	TC3		TC9	TC3		TC9	TC3
2, HM	a	(A)	A, HM	a	(A)	A,HM	а	(A)	A, HM	а	(A)
300			530	0,185	2,15	750	0,090	2,25	1300	0.170	0,720
310			540	0,190	2,05	760	0,100	2,20	I350	0,160	0,620
320	3,00		550	0,190	2,00	780_	0.110	2.20	1400	0,150	0,560
330			560	0,190	I,95				I450	0,140	0,480
340	0.660		570	0.180	1,95						
350	. 0,210		580	0,170	I,95	800	0,120	2,15			
360	0,070		590	0,165	2,00	820	0,130	2,10	I500	0,130	0,430
370	0,045					840	0.140	2.00	1600	0.130	0,350
380	0,020		600	0,160	2,05	860	0.150	1.95	1700	0.130	0,280
390	0,036	>6	610	0,170	2,15	880	0.160	1.85	1800	0.130	0,240
			620	0,180	2,25	1			1900	0,133	0,200
400	0.050	546	630	0,180	2,30					<u> </u>	
410	0.110	3.2	640	0,180	2,40	900	0,170	1,80			<u> </u>
420	0.170	2.65	650	0.170	2,45	920	0,180	I,70	2000	0,136	0,170
430	0.215	2,65	660	0.150	2,50	940	0,185	I.65	2100	0,140	0.150
440	0,260	2,70	670	0,125	2,50	960	0,190	1,60	2200	0,133	0.140
450	0,280	2;75	680	0.100	2,55	980	0.195	1.50	2300	0.127	0.130
460	0,270	2,75	690	0.090	2,60				2400	0.120	0.120
470	0,250	2.70							2500	0.107	0.130
480	0,230	2.65				1000	0.200	1.42	2600	0.094	0.150
490	0.215	2.60	700	0.080	2.60	1050	0.205	1.22	2700	0,080	
			710	0,080	2,55	1100	0,210	1.07	2800	0,110	0,180
500	0.200	2,50	720	0.080	2,50	II50	0.205	0.97	2900	0.140	
510	0,190	2,35	730	0,085	2,45	1200	0.200	0.90	3000	0.170	0.240
520	0,180	2,25	740	0,090	2,35	1250	0.185	0.80	<u> </u>	↓	+
	1 -2	1								1	<u> </u>

Рис. 1.50

Продолжение табл. 1.5

\$\lambda\$, HM \$\alpha\$ (\$\lambda\$) \$\lambda\$, HM \$\alpha\$ (\$\lambda\$) \$\lambda\$, HM 300 530 0,290 0,380 750 310 540 0,269 0,370 760 320 >6 550 0,241 0,370 780 330 4,2 560 0,217 0,360 340 1,95 0,900 570 0,210 0,335 350 0,935 0,410 580 0,207 0,310 800 360 0,586 0,210 590 0,210 0,305 820 370 0,430 0,180 340 0,195 0,300 860	a (A)	A, HM	- (4)
310 540 0,269 0,370 760 320 >6 550 0,241 0,370 780 330 4,2 560 0,217 0,360 340 1,95 0,900 570 0,210 0,335 350 0,936 0,410 580 0,207 0,310 800 360 0,586 0,210 590 0,210 0,305 820 370 0,430 0,180 840	0.125 0.120		a (A)
320 >6 550 0,24I 0,370 780 330 4,2 560 0,217 0,360 340 1,95 0,900 570 0,210 0,335 350 0,935 0,410 580 0,207 0,310 800 360 0,586 0,210 590 0,210 0,305 820 370 0,430 0,180 840		1300 0,3	189 0,230
330 4,2 560 0,217 0,360 340 1,95 0,900 570 0,210 0,335 350 0,935 0,410 580 0,207 0,310 800 360 0,586 0,210 590 0,210 0,305 820 370 0,430 0,180 840	0,131 0,130	1350 0,	180 0,215
340 I,95 0,900 570 0,210 0,335 350 0,935 0,410 580 0,207 0,310 800 360 0,586 0,210 590 0,210 0,305 820 370 0,430 0,180 840	0,140 0,120	I400 0.	163 0,200
340 I.95 0.900 570 0.210 0.335 350 0.935 0.410 580 0.207 0.310 800 360 0.586 0.210 590 0.210 0,305 820 370 0.430 0,180 840		I450 0,	I50 0,I85
360 0,586 0,210 590 0,210 0,305 820 370 0,430 0,180 840			
370 0,430 0,180 840	0.149 0.170		
0.0 1000 01200	0,155 0,190	I500 0.	137 0.170
	0.166 0.210	1600 0.	130 0.173
	0,170 0,225	I700 0,	110 0,176
390 0,340 0,150 610 0,185 0,315 880	0,182 0,240	1800 0,	103 0,180
620 0,180 0,330		1900 0.	095 0,183
400 0.325 0.150 630 0.170 0.325			
410 0,320 0,290 640 0,171 0,320 900	0.185 0.250		
420 0,340 0,430 650 0,166 0,290 920	0.260	2000 0.	087 0.186
430 0,350 0,550 660 0,159 0,240 940	0.195 0.265.	2100 0.	081 0.190
440 0,367 0,670 670 0,145 0,195 960	0,202 0,270	2200 0.	073 0.177
450 0,370 0,670 680 0,130 0,150 980	0.210 0.275	2300 0.	071 0.164
460 0,370 0,630 690 0,119 0,125	1	2400 0,	070 0,150
470 0,370 0,575		2500 0,	074 0,133
480 0.363 0.520 1000	0.207 0.280	2600 0.	080 0.116
490 0,350 0,485 700 0,114 0,100 1050	0.210 0.250	2700 0.	093 0.100
710 0.112 0.100 1100	0.212 0.220	2800 0,	IIO 0,I43
500 0.340 0.450 720 0.114 0.100 1150	0.210 0.245	2900 0.	130 0.186
510 0.330 0.420 730 0.117 0.105 1200	0.208 0.270	3000 0.	I4I 0.230
520 0.309 0.390 740 0.II9 0.II0 I250			
	0,200 0,250		

Рис. 1.51

Продолжение табл. І.5

1	BC4	BC7	EC8	4	EC4	BC7	EC8
A, HM		a(A)		A, HM	a (A)		
250	> 6			500	0,000	0,000	0,000
260	4.I			600	0,000	0,000	0,000
270	2,15			700	0,000	0,000	0,000
280	I,II			800	0,000	0,000	0,000
290	0,420			900	0,000	0,000	0,000
300	0,180			1000	0,000	0,000	0,000
310	0,079	,		1200	0,000	0,000	0,000
320	0,038	4,8		I400	0,002	0,000	0,000
330	0,018	1,95		1600	0,007	0,000	000,000
340	0,009	0,850	4,5	1800	110,0	0,000	0,000
350	0,004	0,330	1,52				
360	0,002	0,133	0,550	2000	0,020	0,000	0,000
370	0,002	0,060	0,220	2100	0,026	0,001	0,001
380	0,001	0,031	0,102	2200	0,034	0,002	0,002
390	0,000	0,016	0,050	2300	0,045	0,003	0,003
	1			2400	0,062	0,005	0,005
400	0,000	0,009	0,026	2500	0,093	0,007	0,007
410	0,000	0,004	0,014	2600	0,150	0,011	0,010
420	0,000	0,003	9,008	2700	0,220	0,024	0,020
430	0,000	0,002	0,005	2800	0,320	0,055	0,050
440	0,000	0,001	0,002	2900	0,450	0,110	0,110
450	0,000	0,000	0,001	3000	0,450	0,160	0,150

Рис. 1.52

Окончание табл. 1.5

	ECI2	БСЭ		EC12	EC3
2,HM	a (A	,	A,HM	α (:	
200	1,10	2,5	450	0,000	0,000
210	0,85	2,2			
220	0,70	1,90	500	0,000	0,000
230	0,59	I,55	600	0,000	0,000
240	0,47	1,22	700	0,000	0,000
250	0,37	0,94	800	0,000	0,000
260	0,27	0.68	900	0,000	0,000
270	0.180	0,43			
280	0.103	0.25	1000	0,000	0,000
290	0,056	0,132	1200	0,000	0,000
300	0.029	0,066	1400	0,000	0,001
310	0,015	0.034	1600	0,000	0,002
320	0,007	0,020	1800	0,000	0,003
330	0,003	0,013			
340	100.0	0,007	2000	0,001	0,005
350	0.001	0,004	2100	0,002	0,007
360	0.000	0.002	2200	0,003	0,009
370	0,000	0,001	2300	0,005	0,011
380	0,000	0,000	2400	0,008	0.014
390	0,000	0,000	2500	0,012	0,018
400	0,000	0,000	2600	0.017	0,027
410	0,000	0,000	2700	0,045	0.047
420	TOO.0	0,000	2800	0,29	0,075
430	0.000	0,000	2900	0,40	0,130
440	0,000	0,000	3000	0,33	0,20

Рис. I.53

КООРДИНАТЫ ЦВЕТНОСТИ И ВИЗУАЛЬНЫЙ КОЭФФИЦИЕНТ ПРОПУСКАНИЯ СТЕКОЛ ДЛЯ ИСТОЧНИКОВ А И В

Таблица I.6

Maura	Толина,	ис:	REELO	A	Kor	OARRX	В
CLOYER	100000	×	7	₹ _A	I	7	T _B
Y OCI	I	0,3840	0,1900	2,0	0,2370	0,1060	1,9
y 0 C5	I	0,4880	0,3550	3,0	0,3490	0,3250	3,0
79C2	I	0,7190	0,2570	0,072	0,6630	0,2310	0,036
7006	1			0.037	0,3780	0,1010	0,018
yoca	I	<u> </u>		0,028	0,1910	0,0230	0,018
eci	2	0,1597	0,0172	0,160	0,1605	0,0155	0,410
0 06	2	0.1646	0.0211	0,120	0,1630	0,0162	0,290
002	2	0,3082	0,3171	25,2	0,2233	0,2131	27,9
CC4	2	0,1638	0,0384	0,460	0,1577	0,0265	0,960
CC9	2	0.4088	0,4001	52,0	0,3089	0,3269	53,7
CCI	2	0,3495	0,3728	37,3	0,2569	0,2764	40,4
CC8	2	0,1570	0,1260	3,0	0,1520	0,0780	4,5
CC5	2	0,1424	0,0715	2,0	0,1458	0,0505	3,4
CCIS	2	0,1502	0,0322	0,60	0,1530	0,0271	1,3
CC16	2	0,4398	0,4070	83,0	0,3402	0,3472	83,6
CC17	2	0,4237	0,4037	66,7	0,3233	0,3352	68,0

Продолжение табл. І.6

Mapus CTORES	Толина,) X	RHHFOFO	A	Яс	REHPOT	В
CTOREA	100	I	7	T _A	2	7	T.
CCIB	2	0,4099	0,4004	55,5	0,3097	0,3250	57,2
C3C7	2	0,3435	0,4137	53,6	0,2601	0,3233	58,8
CBCI7	2	0,4120	0,4130	78,8	0,3120	0,3450	81,9
CSC8	2	0,2528	0,3965	30,9	0,1993	0,2868	36,7
2909	2	0,1731	0,3626	13,3	0,1539	0,2530	17,2
C3C23	3	0,3730	0,4270	59,1	0,2790	0,3470	65,0
C9C2I	2	0,3209	0,4324	56,2	0,2496	0,3367	62,6
CBC22	2	0,2142	0,4103	33,6	0,1796	0,2933	41,0
CBC20	2	0,1789	0,3221	18,9	0,1587	0,2136	24,5
C9C26	2	0,4467	0,4093	86,9	0,3484	0,3638	87,0
C3C24	2	0,4365	0,4082	80,0	0,3360	0,3484	80,6
C3C25	2	0,4318	0,4140	79,3	0,3350	0,3540	80,4
CBC15	2	0,4310	0,4110	82,2	0,3332	0,3496	83,5
2305	2	0,4041	0,4172	65,6	0,3084	0,3464	68,2
CEC 16	2	0,4230	0,4178	65,2	0,3280	0,3561	66,8
C3C27	2	0.4410	0,4105	87,4	0,3432	0,3529	87.9

Marrea	Толина,	Ис	REHPOT	A	Ис	TOTER	В
Madka C Tekl a	MM.	x	7	TA	x	7	$\tau_{_{\mathcal{B}}}$
308	2	0,4252	0,4683	70,5	. 0,3496	0,4424	73,0
307	2	0,3920	0,5000	45,I	0,3327	0,4470	47,I
3010	2	0,3970	0,5840	26,5	0,3696	0,6036	28,0
3CI	2.	0,3324	0,5952	23,I	0,2917	0,5932	25,8
SCII	2	0,2753	0,6008	19,6	0,2361	0,5758	22,9
903	2	0,2551	0,4965	21,5	0,2104	0,3942	24,0
X305	2	0,4660	0,4468	79,0	0,3871	0,4303	79,0
10306	2	0,4731	0,4723	75,5	0,4093	0,4821	75,5
E3C18	2	0,4850	0,4745	69,7	0,4296	0,4801	68,3
E3CI9	3	0,5230	0,4670	69,4	0,4820	0,5040	66,0
1 43C9	2	0,4330	0,5107	51,3	0,3776	0,5212	53,2
ESCI	2	0,3653	0,5965	22,7	0,3303	0,6215	25,4
E3CI2	. 2	0,3045	0,6635	2,7	0,2851	0,6749	3,0
13C17	I	0,4130	0,5550	2,3	0,3720	0,5750	2,4
¥C4	2	0,4530	0,4120	87,4	0,3560	0,3620	87,2
TC3	2	0,4574	0,4225	90,1	0,3654	0,3831	90,0

Марка	Толщина,	И	сточник с	A	Ис	704HF	В
СТОКЛА	184	I	У	$\tau_{_{A}}$		У	$\tau_{\scriptscriptstyle B}$
MCI9	3	0,4687	0,4290	89,6	0,3818	0,3995	88,6
EC 20	3	0,5320	0,4537	74,8	0,4892	0,4826	70,2
ECIO	6	0,4529	0,4131	1,68	0,3564	0,3635	89,0
ECII	5	0,4573	0,4186	89,5	0,3636	0,3755	89,1
MCI2	. 5	0,4754	0,4392	86,8	0,3956	0,4255	£5 , 9
MCI6	5	0,4884	0,4521	87,2	0,4196	0,4592	85,7
ECI7	5	0,5069	0,4680	87,0	0,455I	0,5004	84,6
EC18	5	0,5143	0,4700	85,6	0,4683	0,5061	82,5
OCII	5	0,5592	0,4384	69,9	0,5300	0,4670	63,I
OCI5	5	0,5857	0,4133	61,1	0,5636	0,4352	. 52,9
oci3	5	0,6316	0,3680	43,0	0,6200	0,3796	34,2
OCI4	5	0,6452	0,3544	38,3	0,6364	0,3633	29,7
QCI7	2	0,5640	0,4300	73,0	0,5210	0,4710	69,0
0C23-I	5	0,6022	0,3971	54,4	0,5839	0,4153	45,8
006	2	0,4946	0,4307	76,I	0,4186	0,4183	74,3
0C5	2	0.5607	0.4230	44.8	0.5178	0.4459	4,65

Марка	Толщика,	. и	C T O T H H K	A	Ио	M H H P O T	В
OTOREA	MM .	I	У	$ au_{A}$	x -	У	τ_B
OCI9	2	0,4569	0,4123	88,2	0,3605	0,3644	87,6
KCIO	5	0,6813	0,3185	24,6	0,6778	0,3220	17.7
KCII	5	0,702I	0,2978	15,6	0,7005	0,2994	10,8
KCI3	5	0,7151	0,2848	8,9	0,7143	0,2857	5,9
KCI4	5	0,7269	0,2731	3,4	0,7266	0,2734	2,2
KC15	5	0,7313	0,2687	1,6	0,7312	0,2688	1,0
KCI7	5	0,7326	0,2674	1,1	0,7324	0,2676	0,63
KCI8	5	0,7347	0,2653	0,31	0,7347	0,2653	0,16
KCI9	. 5	0,7360	0,2640	0,081	0,7365	0,2635	0,038
IIC5	.3	0,4595	0,4010	69,7	0,3602	0,3449	67,4
TICI4	3	0,4391	0,386I	62,6	0,3313	0,3188	62,7
пс7	2	0,4313	0,3749	57,I	0,3150	0,3091	58,4
IIC8	2	0,6405	0,3289	16,2	0,5901	70,3135	13,2
ncii	3	0,2253	0,0540	0,73	0,1739	0,0271	0,92
псіз	2	0,4017	0,1271	0,22	0,2457	0,0456	0,16
HCI	2	0,4442	0,4094	63,5	0,3456	0.3531	63,7

Marka Otoka	Тожина,	. N	N M H F O T O	A	Ис	REFOR	В
CTOKEA	MM	I	7	$ au_A$	x	y	tB
HC2	2	0,4460	0,4156	29,9	0,3491	0,3629	30,0
HC3	2	0,4524	0,4196	11,4	0,3564	0,3716	II.64
HC6	2	0,4457	0,4122	71,3	0,3482	0,3585	71,5
HC7	2	0,4431	0,4116	44,5	0,3455	0,3563	44,7
HC8	2	0,4440	0,4103	25,2	0,3456	0,3547	25,4
HC9	2	0,4430	0,4095	6,1	0,3438	0,3547	6,2
HCI0	2	0,4472	0,4073	1,4	0,3469	0,3522	1,4
HCII	I	0,4690	0,4060	1,3	0,3660	0,3610	1,3
HCI2	0,5	0,4500	0,3960	2,0	0,3450	0,3390	2,0
HCI3	2	0,5024	0,4090	2,1	0,4137	0,3857	2,0
TC6	2	0,5242	0,4154	25,0	0,4489	0,4035	23,3
TCIO	2	0,5065	0,4277	18,7	0,4296	0,4145	17,9
TC3	I	0,4740	0,4730	0,80	0,4160	0,4620	0,80

Примечания в процентах. $\tau_{_{\!A}}, \tau_{_{\!B}}$ – визуальный коэффициент процускания в процентах.

На вклейке I

Рис. I.54. Цветовой треугольник стекол для источника A (2848К)
Рис. I.55. Цветовой треугольник стекол для источника A (средняя часть)

На вклейке II

Рис. I.56. Цветовой треугольник стекол для источника В (4800К) Гис. I.57. Цветовой треугольник стекол для источника В (средняя часть)

ТЕМПЕРАТУРНЫЕ ИЗМЕНЕНИЯ СПЕКТРАЛЬНОГО ПОГЛОЩЕНИЯ ЦВЕТНЫХ ОПТИЧЕСКИХ СТЕКОЛ

Рис. 1.58

159

Рис. 1.59

Рис. I.60

Рис. I.61

Рис. I.62

Рис. 1.64

ИЗМЕНЕНИЯ СПЕКТРАЛЬНОГО ПОГЛОЩЕНИЯ СТЕКОЛ УФС1, УФС2 И УФС6 ПОД ДЕЙСТВИЕМ УЛЬТРАФИОЛЕТОВОГО СВЕТА

Увеличение оптической плотности светофильтров из стекол УФС1 и УФС2 в зависимости от типа ртутных ламп

Рис. 1.65

Увеличение оптической плотности светофильтров из стекла УФС6 в зависимости от типа ртутных ламп

Увеличение оптической плотности при 250 нм светофильтров из стекла УФС1 толщиной 3 мм в зависимости от времени облучения лампами ПРК-2 и СВД-120 А

Рис. 1.66

Manua	Обл	ас ть возбуж ден ия		***
Марка с текл а	250-410 нм	280-380 нм	310-400 нм	Цвет свечения
CC2	0,005	0,004	0,003	Голубой
CC9	0,070	0,053	0,026	Голубой
CC1	0,060	0,043	0,029	Голубой
C3C17	0,490	0,400	0,210	Голубой
C3C7	0,120	0,090	0,060	Голубой
C3C8	0,006	0,005	0,005	Голубой
C3C23	0,004	0,002	0,002	Голубой
C3C20	0,003	0,003	0,001	Голубой
C3C15	0,008	0,008	0,005	Белый
3C7	0,190	0,130	0,019	Белый
ЖС4	0,002	0,001	0,001	Белый
жсз	0,008	0,007	0,001	Голубой
ЖС19	100,000	57,100	52,000	Желто- зеленый
ЖС10	11,600	6,800	8,040	Зеленовато- желтый
ЖС11	6,700	3,810	4.880	Желтый
ЖС12	3,850	1,980	2,420	Желтый
ЖС16	2,400	1,160	1,520	Желтый

	O fu	тасть возбу ж дениз	I	
Марка стекла	250-410 нм	280-380 нм	310-400 нм	Цвет свечения
ЖС17	1,780	.1 ,0 30	1,270	Оранжевый
ЖС18	1,300	0,690	0,910	Оранжевый
OC11	1,750	1,185	1,310	Оранжевый
OC12	2,500	1,450	1,610	Оранжевый
OC13	0,290	0,772	0,173	Оранжевый
O C14	1,200	0,680	0,745	Красный
OC17	2,400	1,330	1,280	Оранжевый
OC6	0,003	0,002	0,001	Желтый
KC10	0,028	0,016	0,024	Красный
KC11	0,031	0,025	0,024	Красный
KC13	0,041	0,034	0,028	Красный
ПС5	0,013	0,010	0,008	Белый
ПС14	0,004	0,002	0,001	Белый
ПС7	0,019	0,014	0,010	Белый
BC12	0,003	0,002	0,001	Голубой
БС3	0,013	0,010	0,007	Голубой
BC4	0,051	0,035	0,009	Голубой
BC7	0,019	0,013	0,014	Голубой
EC8	0,020	0,012	0,012	Белый

Выде- ляе- мая	та выде- ликии Р %	Мар- ка	Толщина в мм (по данным										ĭ
линия н.м.	Ч истота лемия лин	стек- ла	катало- га) или к _{пр} в н.ч	297	303	313	334	365	405	436	546	578	611
313 303	99,0	{ ЖС3 УФС2	4,0 2,0	0,7	3,7	9,3	0,1	<0,001	0,000	0,000	0,000	0,000	0,000
	95,5	ЖС3 УФС2	2,0 2,0	6,9	16,6	27,0	3,2	0,01	0,000	0,000	0,000	0,000	0,000
	90,0	ЖС3 УФС2	1,2	17,4	30,2	41,1	11,6	0,4	0,000	0,000	0,000	0,000	0,000
365	99,8	{БС7 {УФС6	1,2 3,0	0,000	0,000	0,000 	1,5	55,0	0,01	0,000	0,000 	0,000	0,000
405	99,4	∤ЖС10 ПС13	$\lambda_{np} = 390$	0,000	0,000	0,000	0,000	0,000	16,5	0,05	0,000	0,000	0,000
	96,3	ЖС10 ПС13	$\lambda_{np} = 390$	0,000	0,000	0,000	0,000	0,000	25,0	0,4	0,0001	0,003	0,023
	91,0	ЖС10 ПС13	$\lambda_{np} = 390$ 2.5	0,000	0,000	0,000	0,000	0,000	31,5	1,4	0,003	0,025	0,15

Выде- ляе- мая	жа выде-	Map- ka	Толщина в мм (по данным	1	Коз	ффици рт	ienm i	n ponyo	кани. тра 1	я т % при х	для в нм	ЛИНИ	ŭ
AUKUR H.M.	Чистот лекия ли	стек- Ја	гек- катало-		303	313	334	365	405	436	546	578	611
436	99,8	ЖС12 СС15	$\lambda_{np} = 435$	0,000	0,000	0,000	0,000	0,000	0,06	32,4	0,01	0,002	0,00
	95,5	CC15	$\lambda_{np} = 420$	0,000	0,000	0,000	0,000	0,000	4,9	52,5	0,10	0,025	0,00
	94,3	ЖС11 СС15	$\lambda_{np} = 420$ 1,2	0,000	0,000	0,000	0,000	0,000	5,0	55,0	0,4	0, 12	0,03
546	99,1	OC11 NC7 C3C21	λ _{πρ} =535	0,000	0,000	0,000	0,000	0,000	0,000	0,001	40,1	0, 1	1,7
	97,5	ЖС18 ПС7 С3С21	λ _{np} =510	0,000	0,000	0,000	0,000	0,000	0,000	0,001	59,0	0,2	13,2
	93,2	ЖС18 ПС7	λ _{пр} =510	0,000	0,000	0,000	0,000	0,000	0,000	0,001	67,7	0,35	45,0
578	99,3	(OC13	λ _{np} =565	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	53,8	4,2
	95	OC13 3C7	λ _{пр} =565	0,00 0	0,000	0,000	0,000	0,000	0,000	0,000	0,003	68,0	31,8
	90	OCI3	λ _{пр} =565	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,010	76.5	87.8

Спектральные кривые пропускания для выделения линий ртутного спектра

Л, нм	D _{задан.}	D caer.	А,нм	D _{зедан,}	D _{CBeT.}	1,нм	D _{задан.}	D CBet.
400 410	3,30 2,82	2,74 2,26	520 530	0,24		640	0,65	0,695
420	2,34	1,95	540	0,180 0,140	0,191 0,135	650 660	0,785	0,815 0,935
430 440	1,89 1,60	1,71 1,55	550 560	0,125 0,125	0,107 0,115	670 680	1,03 1,06	1,055 1,155
450 460	1,42 1,24	1,38 1,25	570 580	0,140	0,138	690	1,07	1,21
470 480	1,08	1,08	590	0,176 0,231	0,173 0,224	700 710	1,12 1,24	1,27 1,31
490	0,915 0,75	0,875 0,685	600 610	0,300 0,380	0,285 0,370	720 730	1,36 1,54	1,33 1,34
500 510	0,575 0,385	0,51 0,37	620 630	0,470 0,561	0,453 0,562	740 750	1,69 1,84	1,34 1,35

Примечание. В значениях р_{задан, и} рсвет, учтено отражение от двух повержностей склеенного светофильтра.

Спектральная кривая пропускания светофильтра, составленного из стекол 3С8 и ЖЗС18

ІІ. ОСОБЫЕ СТЕКЛА

ОСОБЫЕ СТЕКЛА В НАСТОЯЩЕМ КАТАЛОГЕ ПРЕДСТАВЛЕНЫ БЕСКИСЛОРОДНЫМИ ИНФРАКРАСНЫМИ ОПТИЧЕСКИМИ СТЕКЛАМИ, ФОТОХРОМНЫМИ СТЕКЛАМИ И ОПТИЧЕСКИМИ СИТАЛЛАМИ.

1. БЕСКИСЛОРОДНЫЕ ИНФРАКРАСНЫЕ ОПТИЧЕСКИЕ СТЕКЛА

Бескиспородные инфракрасные оптические стекла предназначены для изготовления деталей приборов, работающих в диапазоне длин волн 0,7–17,0 мкм.

Смещение края фундаментальных полос поглощения в инфракрасную область спектра обусловлено заменой кислорода в составе стекол его аналогами в Периодической системе элементов Д. И. Менделеева — серой, селеном, теллуром.

Поскольку бескислородные стекла являются диэлектриками с полупроводниковым типом остаточной проводимости, положение края электронной полосы поглощения определяется межзонными переходами, а, следовательно, шириной запрещенной эоны, величина которой зависит от состава стекла.

Стекла марок ИКС27 и ИКС33 — бескислородные светофильтры, их спектры пропускания формируются при повторной термообработке (наводке), в результате чего образуются центры окраски, представляющие собой квазикристаллические частицы размером 1,5—6 мкм, обусловливающие избирательное поглощение и рассеяние света.

В табл. II.1.1 содержатся марки и основные назначения бескиспородных инфракрасных оптических стекол. По диапазону прозрачности стекла разделяются на три группы: стекла, прозрачные в области спектра 0,7—11 мкм (ИКС23, ИКС24); стекла, прозрачные в области спектра 1—17 мкм (ИКС28, ИКС29, ИКС34, ИКС32, ИКС35); светофильтры (ИКС27, ИКС33).

В табл. II.1.2 даны значения показателей преломления стекол для основных длин волн в области спектра 1-14 мкм.

В табл. II.1.3 приведены значения показателей преломления для длин волн 2,0 и 10,0 мкм, дисперсии и коэффициента дисперсии для диапазонов длин волн 1,8–2,2 мкм и 8,0–12,0 мкм, а в табл. II.1.4 — температурные абсолютные коэффициенты показателя преломления $\beta_{\alpha\delta c}$ (t,λ) .

На рис. II.1.1 дана диаграмма типа Аббе для бескислородных стекол в координатах $n_{2,0}-y_{2,0}$.

В табл. II.1.5 показаны изменения показателей преломления $\Delta n_{2,0}$ стекол в зависимости от скорости снижения температуры (отжиговые числа). Значения двулучепреломления заготовок стекол в рабочем направлении для $\lambda = 2,0$ мкм приведены в табл. II.1.6.

В табл. II.1.7 содержатся значения коэффициента пропускания \mathcal{T}_{λ} , показателя ослабления \mathcal{E}_{λ} (см $^{-1}$) и поправок на многократное отражение от обеих поверхностей детали $\mathcal{D}_{\rho m}$.

На рис. II.1.2—II.1.4 представлены спектральные кривые коэффициентов пропускания.

Толщина контрольных образцов основных марок стекол 10 мм, коэффициент пропускания светофильтров ИКС27 и ИКС33 определяется при толщине 3 мм, т. е. близкой к наиболее часто используемой рабочей толщине светофильтров.

Положение коротковолновой границы стекла ИКС27 смещается путем термообработки в пределах 1,7—3,7 мкм и может быть заранее задано заказчиком, ИКС33 является стеклом-фильтром для третьего атмосферного окна.

Стекло ИКС28 также может быть использовано в качестве фильтра для третьего атмосферного окна: его длинноволновая граница пропускания соответствует прозрачности атмосферы, смещение коротковолновой границы до 8 мкм достигается отражающими и просветляющими покрытиями. Интегральное пропускание фильтра толщиной 8—10 мм в диапазоне 8,0—12,0 мкм составляет 60%.

В табл. И.1.8 приведены коды ОКП бескислородных инфракрасных оптических стекол и характеристики их свойств: шлотности \mathcal{D} (кг·дм⁻³), модуля упругости $\mathbf{E}\cdot 10^{-7}$ (Па), прочности на изгиб $\mathbf{G}\cdot 10^{-5}$ (Па), оптического коэффициента напряжения $\mathbf{B}\cdot 10^{12}$ (Па⁻¹) для $\mathbf{A}=2,0$ мкм, микротвердости $\mathbf{H}\cdot 10^{-7}$ (Па), относительной твердости по сошпифовыванию \mathbf{H}_{S} , коэффициента поперечной деформации \mathbf{M} , химической устойчивости к влажной атмосфере и кислотоустойчивости, диэлектрической проницаемости $\mathbf{E}(f,t)$, тангенса угла диэлектрических потерь \mathbf{f}_{g} $\mathbf{b}\cdot 10^{4}$ при частоте 9547 МГц, удельного омического сопротивления \mathbf{D} (Ом·см) при температуре 20 и 150°C, магнитооптической постоянной (постоянной Верде) \mathbf{h}_{A} (угл. мин· \mathbf{A}^{-1}) для $\mathbf{A}=1,1523$ мкм при температуре $\mathbf{20}^{\circ}$ С.

В табл. II.1.9 даны значения температурного коэффициента линейного расширения \mathcal{L}_t (°C⁻¹) для температур в диапазонах от -60 до +20°C и от +20°C до T_s , температуры стеклования T_s (°C), температуры размягчения $T_{\text{разм.}}$ (°C), теплопроводности $\mathcal{A} \cdot 10$ (Вт·м⁻¹·°C⁻¹), удельной теплоемкости С (Дж·кг⁻¹·°C⁻¹), температуропроводности $\mathcal{A} \cdot 10^8$ (м²·с), максимальной температуры эксплуатации T_3 (°C), соответствующей вязкости 10^{17} Па·с.

В табл. II.1.10 приведены значения температур (°C), соответствующие логарифму вязкости $g \gamma$ от 12 до 1.

ОБОЗНАЧЕНИЯ СТЕКОЛ

Каждому бескислородному инфракрасному оптическому стеклу присвоена марка, состоящая из трех букв и двух цифр. Буквы являются начальными в названии "инфракрасное стекло", цифры обозначают порядковый номер разработки: чем меньше цифра, тем раньше это стекло было освоено промышленностью.

Стекла марок ИКС23, ИКС24, ИКС28, ИКС29, ИКС34, ИКС25 выпускаются в заготовках размером 25-370 мм (наибольшая масса 25 кг); ИКС32 — 25-150 мм при отношении диаметра или диагонали заготовки к ее толщине от 3:1 до 10:1; ИКС27 — 25-100 мм при толщине не менее 5 мм; ИКС33 — 30-50 мм при толщине 6-7 мм.

Все свойства бескислородных стекол определяются в основном теми же методами, что и для оксидных стекол. В связи с этим в данном разделе каталога приведены некоторые уточнения, специфические для инфракрасных стекол.

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ, ДИСПЕРСИЯ, КОЭФФИЦИЕНТ ДИСПЕРСИИ

Основными характеристиками оптических свойств бескислородных инфракрасных стекол являются показатель преломления, дисперсия и коэффициент дисперсии, абсолютная величина которых определяется их химическим составом.

Commence of the second

Показатель преломления n_A стекол в области спектра 1—14 мкм измерен гониометрическим методом при температуре 20°C и давлении 101,32 кПа. Точность измерения $\pm 1 \cdot 10^{-4}$.

Дисперсия определяется как разность показателей преломления для двух длин волн, рассчитывается для интервалов $n_{10} - n_{20}$ и $n_{10} - n_{100}$.

длин волн, рассчитывается для интервалов $n_{18} - n_{2,2}$ и $n_{8,0} - n_{12,0}$. Коэффициент дисперсии для этих же интервалов спектра рассчитывается по формулам:

$$y_{2,0} = \frac{n_{2,0} - 1}{n_{1,8} - n_{2,2}}$$
, $y_{10,0} = \frac{n_{10,0} - 1}{n_{8,0} - n_{12,0}}$,

где n и ν при $\lambda = 1.8$; 2.0; 2.2; 8.0; 10.0; 12.0.

На диаграмме типа Аббе (рис. II.1.1) кроме бескислородных стекол для сравнения приведены оптические кристаллы, область оптических оксидных стекол обозначена пунктиром.

Изменение показателя преломления от скорости охлаждения. За номинальные приняты значения показателей преломления, полученные при скорости охлаждения $5^{\circ}\text{C} \cdot \text{q}^{-1}$. Снижение скорости охлаждения приводит к увеличению показателя преломления, повышение скорости охлаждения — к его уменьшению. Погрешность определения $\pm 30 \cdot 10^{-4}$.

Температурные абсолютные коэффициенты показателя преломления β_{abc} . (°C⁻¹) определяются как средние в диапазоне температур от 20 до 120°C для спектрального диапазона от 2,0 до 12,0 мкм.

Изменение оптических постоянных от варки к варке. Предельное отклонение показателей преломления $\Delta\eta_{2,0}$ и $\Delta\eta_{10,0}$ равняется $\pm 30\cdot 10^{-4}$, предельное отклонение дисперсии $\Delta(\eta_{1,8}-\eta_{2,2})$ и $\Delta(\eta_{8,0}-\eta_{12,0})$ равняется $\pm 50\cdot 10^{-5}$. По требованию заказчика могут быть изготовлены партии стекол с отклонениями $\Delta R = \pm 10\cdot 10^{-4}$, $\Delta V = \pm 30\cdot 10^{-5}$.

СПЕКТРАЛЬНАЯ ХАРАКТЕРИСТИКА СТЕКОЛ

Спектральная характеристика стекол выражается числовыми значениями коэффициента пропускания, показателя ослабления и спектральными кривыми пропускания.

Рабочая область пропускания определяется длиной волны, для которой коэффициент пропускания составляет половину его максимального значения.

Спектральный коэффициент пропускания $\mathcal{T}_{\mathcal{A}}$ определяется как отношение прошедшего через стекло потока излучения $\phi_{\mathcal{A}}$ к падающему потоку $\phi_{\mathbf{0}}$ по формуле:

$$T_{\lambda} = \Phi_{\lambda} / \Phi_{0}.$$

Величина 1— \mathcal{T}_{λ} характеризует полные потери света, обусловленные ослаблением и отражением от полированных поверхностей детали.

Показатель ослабления $\mathcal{E}_{\mathcal{A}}(\text{см}^{-1})$ рассчитывается по данным измерения коэффициента пропускания и показателя преломления по формуле:

$$\varepsilon_{A} = (D_{A} - D_{pm})/\ell,$$

где $D_{A} = -lg \frac{\pi}{A}$ оптическая плотность; $D_{DM} = -lg \left[2n_{A}/(n_{A}^{2}+1) \right]$ поправка на многократное отражение от двух поверхностей (здесь n_{A} — показатель преломления при длине волны A); ℓ — толщина образца в направлении прохождения луча (см).

По величине коэффициента пропускания и показателя ослабления стекла целятся на две категории. Пропускание стекол первой категории выше, чем второй, в среднем на 5%.

Температурное изменение пропускания определяется положением фундаментальных полос поглощения. В области прозрачности величина пропускания не меняется. Для примера на рис. II.1.3 пунктиром обозначена спектральная кривая собственного излучения стекла ИКС25 при температуре 160°C.

Изменение спектрального пропускания под воздействием излучения. При эблучении стекол гамма-излучением дозой $10^7 \mathrm{P}$ коэффициент пропускания в рабочей области спектра не изменяется.

Просветление бескислородных стекол. Может быть осуществлено двумя эпособами. Химическое просветление для области спектра 0,6—10 мкм максимально увеличивает пропускание детали на 23—30%. Резистивное, или электронно-лучевое испарение просветляющих веществ в вакууме увеличивает коэффициент пропускания в области спектра 8,0—14,0 мкм до 0,90—0,98.

ОСНОВНЫЕ НАЗНАЧЕНИЯ БЕСКИСЛОРОДНЫХ ИНФРАКРАСНЫХ ОПТИЧЕСКИХ СТЕКОЛ

Таблица II.1.1

Марка стекла	Назначение
ИКС23	Линзовый объектив, оптический клин, призма, защит-
	ная пластина, колпак для диапазона длин волн 0,7-
· .	9 мкм
икс24	Линзовый объектив, оптический клин, призма, защить
	ная пластина, колпак для диапазона длин волн 0,8-
	11 мкм
икс28	Линзовый объектив, оптический клин, призма, защит
	ная пластина, колпак для диапазона длин волн 1,2-
	12,5 мкм. Может быть использован в качестве филь-
	тра для диапазона 8-12,5 мкм при нанесении интер-
	ференционных покрытий
ИКС29,	
икС34	ная пластина, колпак для диапазона длин волн 1,0-
икс32	Линзовый объектив, оптический клин, призма, защит-
	ная пластина, колпак для диапазона длин волн 1,5-
	15,5 MKM
ИКС25	Линэовый объектив, оптический клин, призма, защит-
	ная пластина, колпак для диапазона длин волн 1,5-
Ì	17 мкм
икс27	Светофильтр со смещающейся границей пропускания в
ŀ	диапазоне длин волн 1,7-3,7 мкм, прозрачен до 16 мкм
иксзз	Светофильтр для диапазона длин волн 7,5-16,5 мкм

ПОКАЗАТЕЛИ ПРЕЛОМЛЕНИЯ БЕСКИСЛОРОДНЫХ ИНФРАКРАСНЫХ ОПТИЧЕСКИХ СТЕКОЛ

Таблица II.1.2

Длина	_		llor.	азатель пре	NEHBILMOLE	7, CTEKKA	MBDKR		
BOTHH,	NRC23	VKC24	NIKC28	ИКС29	NKC34	WKC32	NKC25	MRC27	иксзз
1,0	2,4816	2,4640							
8,I	2,4303	2,4134	2,7394	2,6443	2,6339	3,0447	2,8160	,	
2,0	2,4261	2,4098	2,7285	2,638I	2,6283	3,035I	2.8081		
2,2	2,4232	2,4062	2,7276	2,6333	2,6241	3,0257	2,8022		
3,0	2,4163	2,3990	2,7120	2,6225	2,6147	3,0072	2,7894		
4,2	2,4108	2,3937	2,7060	2,6168	2,6091	2,9971	2,7840		
5,0	2,4086	2,3911	2,7026	2,6141	2,6067	2,9926	2,7804	2,688	
5,8	2,4056	2,3887	2,7003	2,6122	2,6048	2,9892	2,7785		
7,0	2,4009	2,3845	2,6968	2,6090	2,6020	2,9864	2,7752	2,682	2,682
0,8	2,3965	2,3806	2,6940	2,6065	2,5995	2,9810	2,7728		2,679
9,0	2,3922	2,3764	2,6908	2,6036	2,5971	2,9767	2,7703		2,676
10.0			2,6875	2,6006	2,5941	2,9731	2,7675		2,673
0,11			2,6833	2,5971	2,5909	2,9685	2,7645		2,670
12,0			2,6788	2,5934	2,5873	2,9635	2,7612		2,665
13,0				2,5892	2,5832		2,7579		2,662
14,0				2,5846	2,5788		2,7542		2,658

Таблица II.1.3

Марка Стекла	n _{2,0}	n _{10,0}	n _{1,8} -n _{2,2}	n ₈ - n ₁₂	$\frac{n_{2,0}-1}{n_{1,0}-n_{2,2}}$	$\frac{n_{10,0}-1}{n_{0}-n_{12}}$
ИКС23	2,4261		0,0071		201	
VIXC24	2,4098		0,0072		196	
MIXC28	2,7285	2,6875	0,0118	0,0152	146	III
MXC29	2,6381	2,6006	0,0110	0,0131	149	122
NIKC34	2,6283	2,5941	0,0098	0,0122	166	131
NIC32	3,0351	2,9731	0,0190	0,0175	107	113
MRC 25	2,8081	2,7675	0,0138	0,0116	131	152

Таблица II.1.4

Mapka		\$ adc.(t, 1)·10 ⁷ .	oc-I man	A (100M)		
CTOKIA	2,0	2,6	3,4	4,6	5,0	6.0-7.0	8,0-12,0
ижс23	90	80	70	70	70	70	
MKC24	500	480	460	420	420	420 °	
MKC28	540	470	430	400	400	400	400
MKC29	580	520	490	440	440	440	440
HKC34	1090	1030	970	960	960	960	960
NEXC3S	1420	1350	1320	1280	1280	1280	1280
VIXC25	620	550	500	460	460	460	460
ИКС27			700	680	680	680	680
	1	1	1			1	

Таблица II.1.5

					4 0 11 11	цан
Марка стекла	$\Delta n_{2,0}$	IO ⁴ при	скорости	охлажден	ия, ^О С/ч	
	0,5	I,0	2,5	5,0	10,0	20,0
икс23	47	3 3	15	0	-14	-29
VKC24	52	. 37	17	0	~ I5	-3I
NKC28	36	25	II	0	- IO	-21
ИКС29	29	21	9	0	-8	-17
ИКС34	0	0	0	0	0	. 0
икс 32	15	10	4	0	- 5	-10
икс25	36	25	II	0	-10	-21

Таблица II.1.6

Марка	Двулучепреломле	ние для Л =2,0 мж	м, ни/см, не бо
стекла	І категория	2 категория	3 категория
икс23	60	150	300
MKC24	20	50	100
ИКС28	150	400	800
MKC29	. I50	350	700
ИКС34	60	150	300
икс 32	130	300	600
ИКС 25	200	500	1000

СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ БЕСКИСЛОРОДНЫХ ИНФРАКРАСНЫХ ОПТИЧЕСКИХ СТЕКОЛ

Таблица II.1.7

Марка стекла	А, ыкы	$ au_{\!\scriptscriptstyle A}$	$\mathcal{E}_{_{\!\mathcal{A}},\scriptscriptstyle{CM}}^{_{\!-I}}$	D _{pm}	Марка стекла	А, мим	T _A	\mathcal{E}_{λ} ,cm ^{-I}	$\mathcal{D}_{\rho m}$
NKC23	I.4 2.0 3.0 4.0-7.5 8.0 9.0 I.4 2.0-3.5	0,66 0,68 0,60 0,68 0,65 0,42 0,63 0,65	0,02 0,07 0,02 0,05 0,23 0,05	0,156 0,154 0,151 0,150 0,148 0,148 0,152 0,150	NKC 29	2,0 2,8 3,5 4,5 5,5 6,3 7,0-II,0 I2,0	0,60 0,57 0,62 0,57 0,65 0,65 0,62 0,66	0,04 0,07 0,03 0,07 0,01 0,03 0,01 0,05	0,178 0,177 0,176 0,176 0,175 0,175 0,174 0,173
ИКС28	4.0 4.5-7.0 7.8 IO.0 2.0 4.0-8.0	0,60 0,67 0,55 0,58 0,60 0,63	0,07 0,03 0,II 0,09 0,03 0,02	0,148 0,148 0,146 0,145 0,190 0,186	NIKC34	I3,0-I4,0 I,4 2,0 3,0-II,0 I2,5 I4,0	0,5I 0,60 0,62 0,65 0,45 0,55	0,I3 0,04 0,03 0,02 0,I7 0,09	0,172 0,180 0,177 0,174 0,172 0,171
	9,0 10,0 11,0 12,0	0,60 0,56 0,53 0,50	0,04 0,07 0,09 0,12	0,185 0,185 0,184 0,184	икс25	2,0 3,0 4,0-12,0 14,0	0,56 0,60 0,6I 0,43	0,05 0,02 0,02 0,16	0,199 0,197 0,195 0,193
MKC32	2,0 3,0-10,0 11,0 12,0 14,0	0,53 0,60 0,56 0,35 0,40	0,05 0,0I 0,03 0,24	0,226 0,220 0,218 0,218	ИКС27 ИКС33	I6,0 6,0-I0,0 I0,0-I2,0 I3,0	0,43 0,63 0,60 0,50	0,06 0,15 0,12	0,184 0,183 0,18I

Рис. II.1.2

Рис. II.1.3

Рис. II.1.4

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕСКИСЛОРОДНЫХ ИНФРАКРАСНЫХ ОПТИЧЕСКИХ СТЕКОЛ

Таблица II.1°.8

Marka Cterna	Код ОКП	р, кт•дм ⁻³	E'10 ⁻⁷ .	G'·10 ⁻⁵ , ∏a	B·10 ^{I2} . Ha ^{-I}	H'IO ⁻⁷ , Ha	Hg	Ju		RECAUTO- YCTORYS-
ИКС23	44 9278 1000	3,32	1568	196	-10,20	I47	0,13	0,31	С	I
NKC24	44 9278 2000	3,89	1868	196	-3,26	196	0,11	0,28	0	I
MXC28	44 9278 6000	4,43	I764	I96	-27,03	147	0,14	0,29	c	I
NKC29	44 9278 7000	4,74	1828	196	-22,44	I57	0,15	0,28	c	I
ИКС34	44 9279 2000	4,47	2254	245	-10,00	245	0,15	0,24	c	1
MKC32	44 9279 0000	5,66	2715	196	-20,40	206	0,12	0,26	С	I
MXC25	44 9278 3000	4,72	1868	196	-31,62	147	0,12	0,29	С	I
ИКС27	44 9278 5000	4,89	1960	196	-	I86	0,14	0,28	C	I
ижсзэ	44 9279 1000	4.97	2009	196	-	147	0,14	0,28	٥	I

п

Марка	ε(f, t)	tg 8 · 10⁴		<i>Р</i> , Ом ⁻ см	I-V.HRW'Y-I
стехда			20°C	150°C	уга.мин ж
ИКС23	7,9	2,8	I,2·10 ¹⁷	_	0,065
MKC24	7,5	1,6	2,5.1014	-	0,151
икс28	9,9	5,5	8.0.1012	6,0·10 ⁷	0,120
икс29	9,8	5,0	4,0·10 ¹³	2,5-10 ⁸	0,122
ИКС34	9,4	6,5	<u>-</u>	-	0,116
NIKC32	22,I	6,7	8,9.109	_	0,120
NKC25	10,3	6,5	3.2°10 ^{II}	1,3.107	0,170
MKC27	II,6	29,0	3,3.1015	2.0.109	_
NIKC 33	10.8	36,0	-	-	-

Таблица II.1.9

Марка	a, 107	, °C-I	T _S , OC	Tpasm., °C	λ·10.	c·10-4,	a:10 ⁸ , m ² :c	Ta, oc
CTEKAA	от -60 до от 20 до +20			B4.M_1.0C_1	Marri-I.oc-I	M ² .*c.		
икс23	205	246	150	200	0,333	0,046	19	100
VIKC24	162	182	220	270	0,375	0,054	20	160
икс28	197	220	150	200	0,347	0,036	21	110
VIKC29	183	220	150	200	0,368	0,041	20	110
ИКС34	114	125	350	385	0,300	-	_	250
NKC32	133	147	210	255	0,275	0,030	16,5	130
MKC25	197	220	I50	190	0,343	0,038	21	100
MKC27	_	177	220	270	0,275	0,033	17	170
NIKC33	-	225	140	185	0,280	-	-	70

Таблица II.1.10

Марка	Температура при ℓg η , ${}^{ m o}{ m C}$												
СТЭКЛЯ	I2	II	10	9	8	7	6	5	4	3	2≝	I#	
икс23	162	175	190	205	220	237	256	279	309	347	374	415	
MKC24	239	256	274	295	319	346	378	415	460	507	580	664	
икс28	167	179	193	206	221	239	258	281	309	339	378	423	
икс29	173	190	207	223	239	257	276	302	332	368	396	433	
ИС СЗ4	338	360	382	405	428	45I	473	498	527	553	580	608	
ик. 32	238	248	257	268	281	294	306	330	_	_	_	-	
ИКС25	156	170	183	I98	214	232	253	275	305	336	377	423	
икс27	237	252	268	286	304	324	348	375	407	440	482	530	
иксзз	145	166	187	209	230	254	-	-	-	_	_	-	

ж - значения температур , рассчетанные по формуле Фогеля-Фульчера-Таммана.

2. ФОТОХРОМНЫЕ СТЕКЛА

В оптическом приборостроении, светотехнике, медицинской офтальмологии широкое применение находят фотохромные стекла (ФХС), обратимо изменяющие пропускание в видимой области спектра в зависимости от освещенности и длительности облучения ультрафиолетовым или коротковолновым излучением видимого диапазона. После прекращения облучения пропускание стекла восстанавливается. На рис. II.2.1 показана характерная зависимость изменения пропускания фотохромного стекла при облучении и после его прекращения (так называемая кинетическая кривая).

Рис. II.2.1

Различают два класса фотохромных стекол — гомогенные и гетерогенные. В гомогенных ФХС носителем фотохромных свойств является матрица основного стекла, активированная окислами металлов переменной валентности (европия, церия и др.) и кадмия. Ввиду незначительного фотохромного эффекта эти стекла не имеют большого распространения. В основном используются гетерогенные ФХС, представляющие собой, по меньшей мере, двух-

фазную систему, состоящую из матричного натриево-алюмо-боросиликатного стекла с растворенными в нем светочувствительными микрокристаллами галогенидов серебра или меди, являющимися основными носителями фотохромных свойств. Матричное стекло своим составом и термической историей оказывает влияние на размер, форму и примесный состав светочувствительной фазы, имеющей обычно размер порядка $100-150~\rm{\AA}$. Светочувствительная фаза выделяется в стекле в процессе специальной термической обработки выше T_0 в диапазоне температур $500-600^{\circ}\rm{C}$.

В настоящее время освоены промышленностью и выпускаются крупносерийно фотохромные стекла следующих марок: ФХС2, ФХС4, ФХС6, ФХС7. В табл. II.2.1 указаны их основные назначения и характерный для каждой марки стекла тип светочувствительной фазы.

Под действием активного излучения в светочувствительной фазе фотохромного стекла происходят конкурирующие процессы: с одной стороны, образование центров окраски (ЦО), а с другой, — термическое и оптическое разрушение ЦО, результирующая которых определяет скорость и степень потемнения стекла. После прекращения действия излучения сохраняется только процесс термического разрушения ЦО, вызывающий обесцвечивание стекла (релаксацию).

По существующей гипотезе поглощение ультрафиолетового излучения приводит к возникновению в светочувствительной фазе свободных носителей заря-

да обоего знака, локализация которых на электронных и дырочных центрах захвата образует соответственно электронные и дырочные ЦО. Предполагается, что за ЦО, дающие широкую полосу добавочного поглощения в области 500—600 нм, ответственны коллоидные частицы серебра Ag_{h} (для стекол марок ФХС2, ФХС4, ФХС6) и меди $\mathcal{C}u_{h}$ (для стекол марок ФХС4, ФХС7).

По существующим модельным представлениям о механизме термического распада ЦО предполагается потеря электрона серебряной или медной частицей за счет либо термической ионизации электронных центров захвата, либо взаимодействия центров окраски с подвижными дырками с последующим уходом путем диффузии положительных ионов серебра и меди и разрушением коллоидных частиц. Аналогичный механизм предложен для оптического разрушения ЦО, только потеря электрона происходит за счет поглощения кванта света из спектральной области поглощения ЦО (500—600 нм).

Табл. II.2.2 содержит коды ОКП марок фотохромных стекол и характеристики их физико-химических свойств, измеренных по стандартным методикам: показателя преломления \mathcal{N}_{e} , плотности $\mathcal{P}\left(\kappa \Gamma/д M^{3}\right)$, температуры отжига T_{0} (°C), температурного коэффициента линейного расширения $\mathcal{A} \cdot 10^{7} (\text{град}^{-1})$, твердости по сошлифовыванию $\mathcal{H}_{\mathcal{S}}$ относительно твердости К8, химической устойчивости (к влажной атмосфере и кислотоустойчивости), температуры прессования $T_{\text{пресс.}}$ (°C).

В табл. II.2.3 даны значения спектрального показателя поглошения α (λ)фотохромных стекол в области длин волн 330—1000 нм. По этим данным определены значения граничной длины волны λ гран. для стекол: Φ XC6 — 380 нм, Φ XC7 — 430 нм, Φ XC2 — 445 нм, Φ XC4 — 500 нм.

На рис. II.2.2 представлены спектры поглощения фотохромных стекол в обесцвеченном состоянии до облучения для образцов (здесь и далее) практически применяемых толщин: $\Phi XC2-4$ мм, $\Phi XC4-5$ мм, $\Phi XC6$ и $\Phi XC7-2.5$ мм.

Рис. II.2.3 иллюстрирует изменения спектрального поглощения стекол после облучения. Видно, что наблюдаются сдвиг края поглощения облученных стекол по сравнению с необлученными в длинноволновую область спектра и появление широких полос поглощения с максимумом в области 500—600 нм. Для стекла ФХС4 здесь вводится параметр оптической плотности облученного стекла в широкой спектральной области D_{ϕ} (облучение импульсом 8 Дж/см² длительностью 1,5 мс). Изменение спектрального поглощения в общем случае зависит от интенсивности, длительности, а также от температуры облучения.

В табл. II.2.4 приведены значения основных фотохромных характеристик образцов ФХС практически используемых толщин для данных областей применения. Измерения выполнены по стандартным методикам.

В таблице приняты следующие обозначения: D_o — начальная оптическая плотность стекла в видимой области спектра до воздействия светового излучения; $\Delta D_{150(180)}$ приращение оптической плотности в видимой области спектра при воздействии в течение 150 (180) с излучения, близкого к солнечному по спектральному составу (освещенность на образце 60000 лк); K_p^{150} , % — критерий релаксации — параметр, показывающий степень обесцвечивания потемнения в видимой области спектра (%) через 150 с после прекращения облучения. Кроме того, для стекла Φ XC4 имеются дополнительные обозначения: D_g — оптическая плотность образца в видимой области спектра после облучения световым импульсом сплошного спектрального состава длительностью 1,5 мс при плотности энергии $4,2\cdot10^4$ Дж/см²; $t_p^{0.7}$ — время релаксации потемнения в видимой области спектра — восстановления прозрачности до уровня 0,7 от исходного.

Ниже представлены экспозиционные характеристики стекла Φ XC4 в виде зависимости \mathcal{D}_{ϕ} от плотности энергии импульса длительностью 1,5 мс:

Плотность энергии импульса E, Дж/см ² ·10 ⁴	Оптическая плотность Д
0,1	0,97
10.,	1,1
10	1,9
15	2,0

Приводим также данные по положению максимума спектральной чувствительности фотохромных стекол:

Марка стекла	Максимум спектральной чувствительности λ_{mat} нм
ФХС2.	
ФХС4.	
ФХС7.	385 (без предварительной УФ-засветки);
	400-1000 (после УФ-засветки,
	уровень которой
	для очувствления стекла ФХС7
	к длинноволновому излучению составляет 10 ⁻⁴ Дж/см ²)

Измерение спектральной чувствительности ФХС проводилось для образцов практически применяемых толщин в области максимума спектрального приращения оптической плотности в спектре поглощения стекла для постоянной величины энергетической облученности E=22,6 BT/M² длительностью 150 с.

Спектральная чувствительность галоидомедного стекла ФХС7 имеет особенность, связанную с проявлением эффекта оптической сенсибилизации, сущность которого состоит в увеличении светочувствительности стекла к видимой и длин-

новолновой области спектра после предварительной ультрафиолетовой засветки стекла. Центрами такой длинноволновой чувствительности являются образующиеся при ультрафиолетовом облучении центры окраски типа $\mathcal{C}u_n$, имеющие широкие полосы поглощения в видимой части спектра. Облучение стекла светом из области поглощения центров приводит к дальнейшему росту поглощения в этой области. Если для стекол ФХС2, ФХС4, ФХС6, ФХС7 при первом облучении чувствительность определяется только поглощением в ультрафиолетовой области кристаллической фазы $\mathcal{C}u$ $\mathcal{C}\ell$ (ФХС4, ФХС7) или $\mathcal{C}u$ в $\mathcal{A}g$ $\mathcal{C}u$ $\mathcal{C}u$ (ФХС4), то для стекла ФХС7 после подсветки — дополнительным поглощением центров типа $\mathcal{C}u_n$ в видимой области спектра.

На рис. II.2.4 представлена температурная зависимость фотоиндуцированной добавочной оптической плотности ΔD на длине волны 550 нм для стекол $\Phi XC2$ и $\Phi XC7$ и критерия релаксации K_p^{150} для стекла $\Phi XC2$.

Температурная зависимость потемнения D_{ϕ} стекла ФХС4 и времени релаксации потемнения на длине волны 600 нм до уровня 0,7 при воздействии импульсом 25 Дж/см² длительностью 1 с показана на рис. II.2.5.

ОСНОВНЫЕ НАЗНАЧЕНИЯ ФОТОХРОМНЫХ СТЕКОЛ И ТИП СВЕТОЧУВСТВИТЕЛЬНОЙ ФАЗЫ

Таблица II.2.1

Марка стекла	Назначение	Светочувстви- тельная фаза	Сенсибилизатор светочувстви— тельной фазы
ФХС2	Запись и хранение	AgBr(Cl)	Cu+, Cd2+
ФХС4	информации Защита оптических систем от мощно- го импульсного из- лучения широкого спектрального сос-		Cu ⁺ +CuCl(Br)
ФХС6, ФХС7	Защита органов арения человека от действия солнечно- го излучения; ре- шение специальных задач клинической офтальмологии	AgCl(Br) CuCl	Cu+

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ФОТОХРОМНЫХ СТЕКОЛ

Таблица II.2.2

Марка стекла	Код ОКП	n_e	P	To	æ·10	H _s	Химиче устойчи	ская Вость	Тпресс.
							к влаж ной аты мосфере	кисло- тоус- тойчи- вость	
ФХС2		1,507	2,38	450	60	1,1	A	2	1050
ФХС4	44 9238 1000	1,500	2,35	500	69	1,1	A	2	1080
ФХС6		1,497	2,36	450	63	1,1	A	1	1070
ФХС7	94 8921	1,501	2,34	450	60		Б	4	1040

СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ФОТОХРОМНЫХ СТЕКОЛ

Таблица II.2.3

2	Спектральный	показатель	поглощения	фотохромных	стекол $\alpha(A)$
A, HM	ФХСЗ	ΦXC4	· _	ФХС6	ФХС7
330				0,68	
350				0,33	
370				1. 1	0,48
380	0,35				0,35
400	0,19			0,08	. 0,22
420	0,10				0,16
440	0,06	0,22	=		0,12
450	0,04	0,17		0,06	0,II
500	0,02	0,05		0,03	0,06
550	0,02	0,02			0,03
600	0,02	0,02		0,02	0,02
650	0,02	0,03		0,02	0,02
700	0,02	0,03		0,02	0,05
750	0,02	0,04			0,06
800	0,02	0,04		0,01	0,06
850	0,02	0,04			0,05
1000	0,01	10,0			_

Рис. II.2.2

ФОТОХРОМНЫЕ ХАРАКТЕРИСТИКИ СТЕКОЛ ФХС2, ФХС4, ФХС6 И ФХС7 ДЛЯ РАЗЛИЧНЫХ ОБЛАСТЕЙ ПРИМЕНЕНИЯ

210

Таблица II.2.4

Марка	Ха	рактеристик	а		
стекла	\mathcal{D}_{o}	△ D ₁₅₀	K ^{I50} , %		
ΦXC2	€0,07	0,7	0		
¥AC2	* 0,07	$\Delta \mathcal{D}_{180} = 0.8$	0		
ΦXC6	≼ 0,05	0,5	20-40		
ФХС7	€0, I0	0,5	50		
ΦXC4	0,I2 40,II		95		
		D _B =0,8	£ ^{0,7} =20 c		

Рис. II.2.5

3. ОПТИЧЕСКИЕ СИТАЛЛЫ

Ситаллы, или стеклокристаллические материалы, состоят из двух фаз — стекловидной и кристаллической, образовавшихся в результате специальной термической обработки исходного стекла определенного химического состава.

Оптические ситаллы характеризуются малыми значениями температурного коэффициента линейного расширения и предназначены для изделий, в которых допускаются незначительные изменения линейных и объемных размеров.

Ситалл марки CO115M для использования в проходящем свете не предназначен. Ситаллы марок CO33M, CO313, COK33, COK34 могут использоваться в качестве оптических сред. Так как ситаллы имеют двухфазную структуру, по-казатель светорассеяния при $\lambda=546$ нм составляет $\simeq 3 \cdot 10^{-3}$. Центры окраски в цветных ситаллах образуются при вхождении активатора в ту или иную кристаллическую фазу.

В данном разделе каталога приведены числовые значения величин, характеризующих спектральные, а также физические и химические свойства ситаллов.

В табл. ІІ. 3.1 даны основные назначения светофильтров из ситаллов.

Табл. II.3.2 содержит код ОКП оптического ситалла CO115М и характеристики свойств ситаллов: плотности \mathcal{P} (кг/дм³), температурного коэффициента линейного расширения $\mathcal{A} \cdot 10^7$ (град. 1), показателя преломления \mathcal{P}_e (или \mathcal{P}_D , если \mathcal{P}_e невозможно измерить), температуры отжига T_0 (°C), химической

устойчивости (к влажной атмосфере и кислотоустойчивости — пятнаемости), твердости по сошлифовыванию $\mathcal{H}_{\mathcal{S}}$ относительно твердости оптического стекла К8, оптического коэффициента напряжения В \cdot 10^{12} (Πa^{-1}).

Приведенные в табл. II.3.3 и на рис. II.3.1, II.3.2 спектральные свойства ситаллов характеризуются числовыми значениями показателей поглощения или оптической плотности и спектральными кривыми коэффициента пропускания. Диапазон длин волн изменяется в зависимости от характера спектральных свойств и назначения ситаллов. Спектральные кривые коэффициента пропускания $\mathcal{T}(\mathcal{A})$ даны для ситаллов СОЗ13 и СОЗ3М, имеющих толщину 3 и 10 мм соответственно, т. е. близкую к наиболее часто используемой рабочей толщине светофильтров.

Для красных ситаллов марок СОК33 и СОК34 в табл. II.3.3. приводятся значения не показателя поглощения, а оптической плотности D_3 . Это обусловлено тем, что для них определяющей величиной является установленное положение границы поглощения $A_{\rm пр}$, которое в зависимости от технических требований может быть достигнуто в пределах изменения толщины от 3 до 5 мм. Величины оптической плотности и спектральные кривые коэффициента пропускания этих ситаллов даны для толщины 3 мм.

В табл. II.3.4. для источников излучения A и E (цветовая температура 2848 и 3200 К соответственно) и на цветовом треугольнике для источника A

(рис. II.3.3.) представлены координаты цветности оптических ситаллов. На том же рисунке нанесены координаты цвета х и у ситаллов CO313 и CO314 в виде кривых, показывающих изменение цвета ситалла с изменением его толщины от 2 до 4 мм, заштрихованными треугольниками отмечены координаты цвета ситаллов при толщине 3 мм.

В табл. II.3.4. приведены также значения общего визуального коэффициента пропускания $\mathfrak{T}(\%)$ для источников света A и E.

ОБОЗНАЧЕНИЯ СИТАЛЛОВ

Каждому ситаллу присвоена марка, состоящая из двух или трех букв и цифр. Первые две буквы "CO", одинаковые для всех ситаллов, являются начальными буквами слов "ситалл оптический", а последняя — начальной буквой наи-

менования цвета.

Ситаллы различных типов располагаются в каталоге в следующем порядке: зеленые (СОЗ), красные (СОК) и не имеющие окраски (СО).

В каждом типе ситаллы располагаются в порядке увеличения плотности окраски. Цифра в марке ситалла обозначает порядковый номер его разработки.

СВОЙСТВА СИТАЛЛОВ

Спектральные характеристики ситаллов определяются так же, как и для цветных стекол.

Температурное изменение спектрального поглощения. Светофильтры из ситаллов при эксплуатации в большинстве случаев сильно нагреваются, что необходимо учитывать при их изготовлении. При повышении температуры спектральное поглощение изменяется, а при понижении восстанавливается. Влияние температуры на изменения спектров поглощения определялось по методике, разработанной для цветных стекол. На рис. II.3.4. показаны изменения спектров поглощения ситаллов СОЗ14 и СОКЗЗ в зависимости от изменения температуры от 20 до 400°С при толщине образцов 3 мм.

Измерения проводились для области спектра 400—900 нм. Общим для всех зеленых ситаллов является смещение при нагревании края поглощения в видимую область спектра и уширение полосы поглощения за счет незначительного повышения интенсивности ее длинноволнового края и снижения интенсивности в максимуме. Пропускание в зеленой части спектра при этом уменьшается.

Для красных ситаллов при нагревании характерно небольшое смещение края поглощения в красную область спектра, при этом спектральное пропускание образца уменьшается незначительно.

Термическое расширение. Температурный коэффициент линейного расширения ситаллов α близок к нулю и изменяется нелинейно в широком диапазоне температур (рис. II.3.5.). На практике используют ТКЛР, измеренный в различных диапазонах температур: от +60 до -60° C и от 20 до 420°C (см. табл. II.3.2.).

Термостойкость, коэффициент температуропроводности, температура отжига, оптический коэффициент напряжения, относительная твердость по сошлифовыванию для ситаллов измеряются так же, как и для цветных стекол.

Химическая устойчивость определяется как устойчивость к влажной атмосфере и как кислотоустойчивость (пятнаемость).

ОСНОВНЫЕ НАЗНАЧЕНИЯ ОПТИЧЕСКИХ СИТАЛЛОВ

Таблица II.3.1

Марка ситалла	Габлица II.3 Назначение
C0313	Термостойкий зеленый светофильтр, выделение спек-
COK33, COK34 CO115M CO33M	Термостойкий красный светофильтр, выделение спек-

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ОПТИЧЕСКИХ СИТАЛЛОВ

Таблица II.3.2

Марка	Код СИТ	$n_e(n_y)$	اما	T.	ac ·		H _S	_{B- TO} I2	Химическая устойчивость		
CHTALKA		″e '″∌ ′	<i>,</i>	- 0	о в интервале "S температур,		10	R BXX業- HO数 AT-	KHCJIO-		
		· .		20-420 ±60				мосфере	TORYK- BOCTL		
C03I3**		(1,580)	2,59	620	18,0				A,	I	
COK33*		(1,550)	2,55	620	0±1,5		1,70		A	I	
COK34*		(1,550)	2,58	620	0±2,5		1,70		A	I	
COIISM	44 9290 IOOO	I,539	2.46	630	3,5	0±1,5	1,78		. A	I	
C033M ³⁴		(I,550)	2,53	600	0±1,0	0±1,5	1,70	2,9	A	I	

 $^{^{*}}$ Указанные ситаллы кода ОКП не имерт, так как находятся в стадии разработки промышленного производства.

СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ОПТИЧЕСКИХ СИТАЛЛОВ

Таблица II.3.3

_ / .	C03I3	C033M	. 1	C03I3	COBBM		C03I3	C033M		COSIS	CO33M
2,HM	a	(A) .	λ , μ M	а	(A)	J,HM	а	(1)	A, HM	а	(A)
300	. *		530	0,180	0,045	750	0,220	0,035	I300	0,170	0,045
310			540	0,220	0,045	760	0,210	0,035	· I350	0,140	0,045
320			550	0,250	0,045	780	0,190	0,035	1400	0,120	0,045
330			560	0,280	0,040			,	I450	0.110	0,045
340 350		>2	570	0.310	0,040						
350		2,0	580	0,380	0,040	800	0,170	0,035			
360		I,7	590	0,470	0,040	820	0,140	0,035	1500	0,100	0,040
370		1,0				840	0,130	0,035	1600	0,090	0,040
380		0,180	- 600	0,500	0,040	860.	0,120	0,035	1700	0,090	0,040
390		0,140	610	0,530	0,040	880	0.115	0.035	1800	0,090	0,040
			620	0.530	0,040				1900	0,090	0,040
400	>2.00	0.100	630	0.570	0.040				_		
410	0.160	0.090	640	0.550	0.040	900	0.120	0.035			
420	1.20	0.080	650	0.480	0,040	920	0,130	0,035	2000	0,090	0,04
430	0.950	0.075	660	0,420	0,040	940	0,150	0,040	2100	0,080	0,04
440	0,680	0,070	670	0,380	0,040	_960	0,170	0,040	2200	0,080	0,04
450	0.600	0.065	680	0.360	0,035	980	0.190	0,040	2300	0,070	0,050
460	0,450	0,060	690	0,340	0,035		<u> </u>		2400	0,060	0,050
470	0,330	0,055	<u> </u>		ــــــــــــــــــــــــــــــــــــــ		<u> </u>		2500	-	
480	0,260	0.060			<u> </u>	1000	0.240	0.040	2600		
490	0.210	0.045	700	0.330	0.035	1050	0,290	0.045	2700		
		<u> </u>	710	0.310	0.036	1100	0.320	0.045	2800		
500	0.180	0.045	720	0.300	0.035	1150	0.320	0.045	2900		L
510	0.160	0.045	730	0.270	0.035	1200	0.260	0.045	3000		
520	0.160	0.045	740	0.245	L0.035	1250	0.200	0.045		l	١

Рис. 11.3.1

Окончание табл. II.3.3

1	сокзз	C0K34	1	сокзз	C0K34		
1,44	D ((A)	A,HM	I(X)			
500			730	0.190	0.310		
510			740	0,200	0,310		
520			750	0,200	0,300		
530			760	0,210	0,300		
540	>2	>2	770	0,240	0,340		
550	1,90	>2	780	0,260	0,380		
560	I,64	2,00	790	0,280	0,400		
570	I,58	1,95	800	0,300	0,420		
580	1,53	1,90	850	0,450	0.570		
590	1,43	1,80	900	0,550	0,700		
600	1,23	I,50	950	0,540	0,680		
610	0,980	I,25	1000	0,440	0,590		
620	0,740	0,950	1200	0,440	0,600		
630	0,560	0,730	I400	0,720	0,920		
640	0,380	0,590	1600	1,00	1,23		
650	0,300	0,500	0081	0,900	1,05		
660	0,220	0,400	2000	0,600	0,700		
670	0,200	0,380	2200	0,400	0,440		
680	0,190	0,360	2400	0,320	0,355		
690	0,180	0,340	2600				
700	0,180	0,330	2800				
710	0,180	0,320	3000				
720	0,180	0,310					

КООРДИНАТЫ ЦВЕТНОСТИ И ВИЗУАЛЬНЫЙ КОЭФФИЦИЕНТ ПРОПУСКАНИЯ ОПТИЧЕСКИХ СИТАЛЛОВ ДЛЯ ИСТОЧНИКОВ А И Е

Таблица II.3.4

Марка стекла	Толщина,	Источник А			Источник Е		
		x	у	$ au_A$	x	У	τ_{ϵ}
CO3I3	2	0,349	0,522	22,7	0,325	0,522	23,7
C O 3I3	3	0,297	0,566	12,7	0,277	0,565	13,5
CO3I3	4	0,253	0,603	7.5	0,237	0,601	8,0
C03I4	2	0,300	0,523	17,5	0,277	0,517	I8,5
C03I4	3	0,247	0,557	9,3	0,228	0,550	10,0
C03I4	4	0,205	0,585	5,2	0,190	0,578	5,7
COK33	3	0,678	0,310	7,5	0,670	0,312	6,7
COK34	3	0,695	0,305	4,5	0,692	0,307	3,9

Цветовой треугольник для источника А (2848 K)

ТЕМПЕРАТУРНЫЕ ИЗМЕНЕНИЯ СПЕКТРАЛЬНОГО ПОГЛОЩЕНИЯ ОПТИЧЕСКИХ СИТАЛПОЯ

Рис. II.3.4

КОЭФФИЦИЕНТЫ ТЕМПЕРАТУРНОГО ЛИНЕЙНОГО РАСШИРЕНИЯ ОПТИЧЕСКИХ СИТАЛЛОВ

СОДЕРЖАНИЕ

ЦВЕТНОЕ ОПТИЧЕСКОЕ СТЕКЛО 3	Каталог
I. ОСОБЫЕ СТЕКЛА	,
1. Бескислородные инфракрасные	•
оптические стекла	
2. Фотохромные стекла	Редактор Л. Н. Долгова
3. Оптические ситаллы	Художник В. М. Блохина
	Технический редактор Л. В. Хрупина
	Корректор Т. Н. Иванова
	Спано в набор 9.04.90. Подписано в печать 17.05.90.

цветное оптическое стекло

Формат $90\times60^1/_{32}$. Бумага офсетная. Печать офсетная. Печ. л. 7,125 (+0,125 вкл.). Уч.-изд. л. 17 (+0,02 вкл.).

Ротапринт Дома оптики. 129366, Москва, проспект Мира, 176.

Усл. кр.-отт. 7,25. Тираж 1500 экз. Заказ 59. Дом оптики.129366, Москва, проспект Мира, 176.

и особые стекла