

COS 212 Tutorial 6: Version B

- 30/03/2012
- \bullet 50minutes
- 3 questions for a total of 30 marks.

Name:	
Student/staff Nr:	
Marker (office use):	
Question 1 B*-Trees	(9 marks)
1.1 Describe the problem that arises when the root node to this problem.	n a B^* -tree needs to split. Also suggest (a) solution(s) (3
Answer:	
Solution: There are not enough keys to divide be 2/3 full	tween siblings and new root so that siblings remain
Suggestion: Because inserts always happen in leaf n	odes, allow new root's children to underflow for now.
1.2 Use your suggestion from the previous question and initially empty B^* -tree where $m = 9$. Only draw your	

10,11,12,13,14,15,16,17,18,19,20,50,51,52,53,54,55,56,57,58,59,60,40,39,38,37,36,35,34

Λ	nswer:	
	nswer:	

1.3 What is the minimum number of keys that may be contained in a B^* -tree of order 11 (m = 11) and height 3? (1) Answer:

Solution: Root is 1.

The number of keys in each node is $\lfloor \frac{22-1}{3} \rfloor = 7$

Each node (except the root) has 8 children.

$$1+ 2*(7) + 2*8*(7) = 127 \text{ keys}$$

Question 2 B⁺-Trees......(14 marks)

2.1 What is the maximum height that a ${\bf B}^+$ -tree which contains n keys can have?

(1)

Answer:

Solution:

The fullness of each leaf is $\lceil \frac{m}{2} \rceil$ and all data are contained in the leaf nodes so there are $\frac{n}{\lceil \frac{m}{2} \rceil}$ leaf nodes.

We need $\frac{\lceil \frac{m}{2} \rceil}{2}$ parents to split these leaves and each parent takes $\lceil \frac{m}{2} \rceil + 1$ children.

The min number of keys is $2(\frac{\lceil \frac{m}{2} \rceil}{2})^{h-1} = n$

solve for h so we get:

$$h-1=2*log_{\frac{\lceil\frac{m}{2}\rceil}{2}}n$$

So the height is:

$$h=2*log_{\frac{\lceil\frac{m}{2}\rceil}{2}}n+1$$

2.2 In terms of searching, is there an advantage of using a standard B-tree over a B⁺-tree? Motivate your answer.

Answer:

Solution: Data is in the internal nodes as well and can be retrieved quicker.

B+ trees have all data in the leaf nodes so before data can be retrieved traversal proceeds to the lowest level.

2.3 For B-trees m cannot be even. Is this also the case for B⁺-trees? Motivate your answer.

(2)

(2)

Solution: Because copies and not keys are sent up and not data one can safely split internal nodes by omitting separators between siblings and dividing children sensibly.

Answer:

 $2.4\,$ A key in an internal node for a $\mathrm{B^{+}}$ is not always deleted. Why is this and when will it be required that these keys be deleted?

Solution: Separator children meaning sha	${\bf r}{\bf s}$ need only be prefixes, allows for more space in internal nodes meaning more allower trees.
nswer:	
sert the following key	ys, in the given order, into a prefix B ⁺ -tree of order 5. Only draw your final tree.
bert the following key	
2222, 33345, 45678	3, 110866, 110877, 110856, 33444, 444098, 120899, 321123.
	3, 110866, 110877, 110856, 33444, 444098, 120899, 321123.
2222, 33345, 45678 nswer:	3, 110866, 110877, 110856, 33444, 444098, 120899, 321123.
	3, 110866, 110877, 110856, 33444, 444098, 120899, 321123.

Solution: They are still good guides for searching and deletion may become expensive.

They are deleted as soon as their children merge because of a delete.

Answer:

(2)

(5)

Question 3 Tries......(7 marks)

3.1 What is the height of a trie containing only the following words? Also mention how you determined your answer.

need, needs, no, exception, excuse, excused, ether, man, mouse, electroencepphalographically, electricity.

Answer:

Solution: 8

3.2 Apply the compressTrie algorithm to the trie from the previous question and draw the compressed version on this trie.

Answer: