Inwersja i biegunowe

Adam Naskręcki

29 września 2022

1 Teoria

- **Def. 1.** Inwersją względem okręgu ω o środku O i promieniu r > 0 nazywamy przekształcenie płaszczyzny bez punktu O w płaszczyznę bez punktu O, które punkt $P \neq O$ przekształca na punkt P^* leżący na półprostej \overrightarrow{OP} taki, że $OP \cdot OP^* = r^2$. Punkt O nazywamy środkiem inwersji, a r promieniem inwersji.
- **Def. 2.** Dla funkcji $f: X \to Y$ i podzbioru $A \subseteq X$, obrazem A w funkcji f nazywamy zbiór $f[A] = \{ y \in Y : \underset{a \in A}{\exists} y = f(a) \}$
- Obserwacja 1. Inwersja jest bijekcją i inwolucją (złożona sama ze sobą daje identyczność). Oznacza to, że rozwiązanie problemu po przekształceniu go inwersją jest równoważne rozwiązaniu go w oryginalnym sformulowaniu, bo używając tej samej inwersji, wracamy do wyjściowej konfiguracji.
- **Obserwacja 2.** Jeżeli $f: X \to Y$ jest bijekcją i $A, B \subseteq X$, to $f[A \cap B] = f[A] \cap f[B]$. Oznacza to w szczególności, że inwersja zachowuje przecięcia zbiorów.
- **Obserwacja 3.** Jeżeli O jest środkiem inwersji f, $X,Y \neq O$ punktami na płaszczyźnie, a $X^* := f(X)$, $Y^* := f(Y)$, to $\triangle OXY \sim \triangle OY^*X^*$.
- **Obserwacja 4.** Aby skonstruować obraz punktu P, znajdującego się poza okręgiem ω , w inwersji względem tego okręgu, wystarczy narysować styczne do ω z P. Wtedy środek odcinka łączącego punkty styczności jest poszukiwanym obrazem.
- **Twierdzenie 1.** Niech ω będzie okręgiem o środku w O a f inwersją względem ω . Wówczas poniższe stwierdzenia są prawdziwe.
- (1) Obrazem prostej przechodzącej przez O, w f, jest ta sama prosta.
- (2) Obrazem prostej nieprzechodzącej przez O, w f, jest okrąg przechodzący przez O a styczna do tego okręgu w O jest równoległa do wyjściowej prostej.
- (3) Obrazem okręgu przechodzącego przez O, w f, jest nieprzechodząca przez O prosta.
- (4) Obrazem okręgu nieprzechodzącego przez O, w f, jest okrąg nieprzechodzący przez O 1.
- **Uwaga.** W powyższym twierdzeniu i dalszej części wykładu pisząc lub mówiąc o okręgach i prostych przechodzących przez O mamy na myśli zbiory, które uzupełnione o punkt O tworzą odpowiednio okręgi i proste.
- **Def. 3.** Kątem między prostą ℓ i okręgiem ω takimi, że $A \in \omega, \ell$, nazywamy kąt nierozwarty pomiędzy ℓ a styczną do ω w A.
- **Def. 4.** Kątem między okręgami ω_1, ω_2 takimi, że $A \in \omega_1, \omega_2$, nazywamy kąt nierozwarty pomiędzy stycznymi do ω_1, ω_2 w punkcie A.
- Twierdzenie 2. Inwersja zachowuje kąty pomiędzy prostymi i okręgami.
- **Def. 5.** Niech ω będzie okręgiem o środku w O. Biegunową punktu $P \neq O$ nazywamy prostą prostopadłą do OP i przechodzącą przez obraz P w inwersji wzlędem ω .
- **Def. 6.** Niech ω będzie okręgiem o środku w O. Biegunem prostej ℓ nieprzechodzącej przez O nazywamy

¹Środek okręgu NIE przechodzi na środek okręgu będącego obrazem, ale środki te są współliniowe ze środkiem inwersji.

Inwersja i biegunowe Adam Naskręcki

obraz rzutu O na ℓ w inwersji względem ω .

Twierdzenie 3. (Lemat La Hire, prawo wzajemności biegunowych) Jeśli punkt X należy do biegunowej punktu Y względem okręgu ω , to punkt Y należy do biegunowej punktu X względem ω .

Wniosek 1. Jeśli chcemy pokazać, że punkt A należy do prostej ℓ wystarczy pokazać, że biegun prostej ℓ względem ω leży na biegunowej punktu A względem ω .

Wniosek 2. Jeśli chcemy pokazać, że trzy punkty są współliniowe, wystarczy udowodnić, że ich biegunowe względem ω są współpękowe i na odwrót - jeśli chcemy pokazać, że trzy proste są współpękowe, wystarczy pokazać, że ich bieguny względem ω są współliniowe.

2 Przykłady

1. (Tw. Ptolemeusza) Dane są parami różne punkty na płaszczyźnie A, B, C, D. Wykazać, że $AB \cdot CD + BC \cdot DA \geq AC \cdot BD$ oraz równość zachodzi wtedy i tylko wtedy gdy A, B, C, D leżą na jednym okręgu w tej kolejności.

Dowód: Niech B^*, C^*, D^* będą obrazami odpowiednio punktów B, C, D w inwersji wzlędem okręgu o środku w A (i dowolnym promieniu r > 0). Z Obserwacji 3 wynika, że

$$B^*C^* = \frac{AB^*}{AC}BC = \frac{AC^*}{AB}BC = \sqrt{\frac{AB^* \cdot AC^*}{AB \cdot AC}}BC = \frac{r^2}{AB \cdot AC}BC \Rightarrow BC \cdot DA = \frac{AB \cdot AC \cdot AD}{r^2}B^*C^*, \tag{1}$$

$$AB \cdot CD = \frac{AB \cdot AC \cdot AD}{r^2} C^* D^*, \tag{2}$$

$$AC \cdot BD = \frac{AB \cdot AC \cdot AD}{r^2} B^* D^*. \tag{3}$$

Zatem nasza wyjściowa nierówność wynika z nierówności trójkąta dla $\triangle B^*C^*D^*$ a równość zachodzi wtedy i tylko wtedy gdy C^* leży na odcinku B^*D^* , tzn. wtedy i tylko wtedy gdy A, B, C, D leżą na jednym okręgu w tej kolejności.

2. W trójkącie ABC okrąg ω o środku I jest styczny do boków BC, CA i AB w punktach odpowiednio D, E i F. Proste EF i BC przecinają się w punkcie S. Pokazać, że $SI \perp AD$.

Dowód: Na mocy Twierdzenia 3 łatwo zauważamy, że prosta AD jest biegunową punktu S względem ω , zatem $SI \perp AD$.

3 Zadania

- 1. Punkty A,B,C leżą na jednej prostej w tej kolejności. Niech k i ℓ będą półokręgami o średnicach odpowiednio AB i BC, leżącymi po tej samej stronie rzeczonej prostej. Okrąg t jest styczny do k, do ℓ w punkcie $T \neq C$ i do prostej n, prostopadłej do AB i przechodzącej przez C. Udowodnić, że AT jest styczna do ℓ .
- 2. Niech KL i KN będą stycznymi z punktu K do okręgu k. Punkt M został wybrany dowolnie na póprostej \overrightarrow{KN} za punkt N a punkt P jest drugim punktem przecięcia k z okręgiem opisanym na trójkącie KLM. Punkt Q jest rzutem prostokątnym N na ML. Wykazać, że $\triangleleft MPQ = 2 \triangleleft KML$
- 3. Okrąg Γ jest wpisany w czworokąt ABCD i styczny do boków AB, BC, CD, DA odpowiednio w punktach G, H, K, L. Proste AB i CD przecinają się w punkcie E, proste BC i DA w punkcie F, a proste GK i HL w punkcie P. Dowieść, że jeśli O jest środkiem Γ , to $OP \perp EF$.
- 4. Dany jest sześciokąt wypukły ABCDEF, w którym $\triangleleft FAB + \triangleleft BCD + \triangleleft DEF = 360^\circ$ oraz $\triangleleft AEB = \triangleleft ADB$. Załóżmy, że odcinki AB i DE nie są równoległe. Wykazać, że środki okręgów opisanych na trójkątach AFE, BCD oraz punkt przecięcia prostych AB i DE leżą na jednej prostej.

5. Okrąg Ω jest okręgiem opisanym na trójkącie ABC. Dwusieczna kąta BAC przecina BC w punkcie D, a Ω w punkcie $E \neq A$. Okrąg o średnicy DE przecina Ω po raz drugi w punkcie F. Udowodnić, że AF jest symedianą 2 w trójkącie ABC.

- 6. W trójkącie ABC punkt I to środek okręgu wpisanego. Niech prosta ℓ będzie styczną do okręgu wpisanego różną od jego boków. Na prostej ℓ obieramy punkty X, Y, Z takie, że: $\triangleleft AIX = \triangleleft BIY = \triangleleft CIZ = 90^{\circ}$. Pokazać, że proste AX, BY i CZ są współpękowe.
- 7. Niech ABC będzie trójkątem i niech Q będzie takim punktem, że $AB \perp QB$ i $AC \perp QC$. Okrąg o środku w I jest wpisany w $\triangle ABC$ i jest styczny do AB, BC, CA w punktach D, E, F, odpowiednio. Wykazać, że jeśli póprosta \overrightarrow{QI} przecina EF w punkcie P, to $DP \perp EF$.
- 8. Niech ABC będzie trójkątem ostrokątnym spełniającym AB > AC. Niech Γ będzie okręgiem na nim opisanym, H jego ortocentrum i F spodkiem wysokości z A. Niech M będzie środkiem BC, Q punktem na Γ takim, że $\triangleleft HQA = 90^{\circ}$ i niech K będzie punktem na Γ takim, że $\triangleleft HKQ = 90^{\circ}$. Załóżmy, że A, B, C, K i Q są parami różne i leżą na Γ w tej kolejności. Udowodnić, że okręgi opisane na trójkątach KQH i FKM są styczne.
- 9. W trójkącie ABC okrąg wpisany ω jest styczny do boków BC, CA i AB odpowiednio w punktach D, E i F. Punkty P, Q i R leżą odpowiednio na bokach BC, CA i AB. Punkt X jest punktem przecięcia stycznej do ω poprowadzonej z punktu P różnej od BC z prostą QR. Analogicznie definiujemy punkty Y i Z. Pokazać, że jeśli proste AP, BQ i CR przecinają się w jednym punkcie, to punkty X, Y, Z leżą na jednej prostej.

²Symediana to prosta symetryczna do środkowej względem dwusiecznej.