Úloha 5: Spektrofotometrická kvantitativní analýza

Zadané úlohy

- 1. Sestrojte kalibrační křivku pro spektrofotometrické stanovení koncentrace měď natých iontů.
- 2. Stanovením obsahu mědi v neznámém pevném materiálu identifikujte, o jakou sloučeninu se jedná.

Teoretický úvod

Zařízení, které je využíváno k vypracování této úlohy se nazývá spektrometr. Tento přístroj je založen na získvávání monochormatického záření, které vypovídá po průchodu zkoumannou látkou různou intenzitu. V našem případě je použit pro měření absorbance dvoupaprskový spektrofotometrem, ve kterém prochází záření blankem (provnávacím roztokem) a měřeným vzorkem najednou. K dorpavení fotonů do násobiče je postaránou soustavou zrcadel. Kyvety, kteréžto jsou použity pro roztoky nesmějí absorbovat záření v stanoveném vlnovém rozsahu.

Lambertův-Beerův zákon je vztah mezi absobancí, koncentrací vzorku a absorbujícího prostředí (šírka kyvety). $A_{\lambda} = \epsilon_{\lambda} \cdot c \cdot l$, kde ϵ_{λ} je absorbční koeficient, který je konstantní pro danou látku při vlnové délce záření λ . Platnost tohoto zákona se ověřuje experimentálně, tak že jsou vyneseny hodnoty absorbance naproti naproti koncentrací roztoků. Vynesené bodu se následně lineárně interpolují a vznikne kalibrační křivka.

Postup

Příprava standardních roztoků modré skalice

Bylo označeno pět 10ml odměrných baněk. Do připravených baněk bylo odpipetováno spočítané množství $CuSO_4$ (c=0,150) tak, aby byla kádince koncentrace 0,005, 0,010, 0,015, 0,020 a 0,025 M a dolity destilovanou vodou na objem 10 ml. Roztoky v odměrných baňkách byly pořádně promíchány. Připravené roztoky byly přelity do lékovek označených CuA-CuE. Odsud bylo pomocí automatické pipety přeneseno množství 5,00 ml do nových lékovek popsaných CuST1-CuST5 a poté k nim přidáno 1,00 ml 5% vodného roztoku amoniaku. Lékovky byly pečlivě uzavřeny a promíchány. Bylo pozorováno, že roztok se zbarvil do výrazně modré.

Vzorek	Pipetovaný objem [ml]	Koncentrace roztoku [mol.dm ⁻³]
1	0,335	0,005025
2	0,665	0,00975
3	1,00	0,015
4	1,35	0,02025
5	1,70	0,0255

Tab. 1: pipetovaný objem a koncentrace vzorků

Příprava roztoku neznámého vzorku

Bylo odváženo 74,7 mg neznámého roztoku číslo 56. Vzorek byl rozpuštěn v destilované vodě v 25 ml odměrné baňce. Z roztoku bylo pipetou odebráno 5,00 ml a poté smícháno s 1,00 ml 5% roztoku amoniaku.

Příprava referenčního roztoku

Do lékovky bylo odpipetováno 5,00 ml vody a do něj bylo přidáno 1,00 ml 5%roztoku amoniaku.

Zjištění optimální vlnové délky pro měření

Do dvou vypláchnutých kyvet byl vnesen referenční roztok tak, aby hladina byla cca 6 mm pod jejich horním okrajem a kyvety byly vsunuty do přístroje. Nejdříve bylo provedeno "reference" měření pomocí referenčního roztoku, poté "measure" měření se stejným roztokem. Takto byla stanovena nulová hodnota absorbance. Dále byla kyveta vypláchnuta a naplněna nejkoncentrovanějším roztokem modré skalice, na základě měření bylo zjištěno absorpční maximum při vlnové délce 603 nm, viz graf Absorpční spektrum amoniakálního roztoku modré skalice.

Sestrojení kalibrační křivky

Dále byly naměřeny hodnoty absorbance jednotlivých roztoků při vlnové délce rovnající se 603 nm. Podle naměřených hodnot vynesena kalibrační křivka s ve tvaru regresní rovnice:

Naměřené hodnoty

Vzorek	Pipetovaný objem [ml]	Koncentrace roztoku [mol.dm ⁻³]
1	0,335	0,005025
2	0,665	0,00975
3	1,00	0,015
4	1,35	0,02025
5	1,70	0,0255

Tab. 2: pipetovaný objem a koncentrace roztoků

	Koncentrace	Absorbance
ST1	0,005025	0,1959
ST2	0,00975	0,4166
ST3	0,015	0,6300
ST4	0,02025	0,8078
ST5	0,0255	0,9664
CV	0, 013	0,5597

Tab. 3: Absorbance vzorků

Výpočty

Molární koncentrace vzorků

$$A_{(CV)} = 0,5597$$

$$y = 38,644 \cdot 0,0237$$

$$\to y = A$$

$$\to x = c$$

$$V_{(CV)} = 0,025dm^{3}$$

$$\to c = \frac{A - 0,0237}{38,644}$$

$$c = 0,0139 M$$

Látkové množství

$$n = c \cdot V$$

$$n = 3,48 \cdot 10^{-4} \ mol$$

Molární hmotnost

$$M_{(CV)} = \frac{m}{n}$$

$$M_{(CV)} = 214,65 \ g \cdot mol^{-1}$$

Hmotnostní zlomek

$$\omega = \frac{c \cdot V \cdot M_{Cu}}{m}$$
$$\omega = 0,30$$

Extinkční koeficient

$$A_{(603 nm)} = 0,9664$$

$$c = 0,0255 M$$

$$l = 1 cm$$

$$\rightarrow \epsilon_{(603 nm)} = \frac{A_{(603 nm)}}{c \cdot l}$$

$$\epsilon_{(603 nm)} = 36,90 dm^3 \cdot cm^{-1} \cdot mol^{-1}$$

Závěr

Neznámý vzorek byl s pomocí kalibrační křivky identifikován jako $CuBr_2$. Dále byl spočítán extinkční koeficient v absorpčním maximu $\epsilon_{(603\,nm)}=36,90\,dm^3\cdot cm^{-1}\cdot mol^{-1}$.