

Neural Networks for Semantic Segmentation

Machine Learning Course

Antonio Castellucci Michela Crulli

Introduction

- Semantic segmentation
- Applications
- Neural networks for semantic segmentation

• DUC + HDC

- Approach
- Results

Deeplab V3+

- Approach
- Results

ICNet

- Approach
- Results

NAS

- Introduction
- DARTS
- Auto-DeepLab

Conclusions

Semantic Segmentation

• The goal of semantic image segmentation is to label *each pixel* of an image with a corresponding class of what is being represented where:

$$L = \{I_{1_1} I_{2'} \dots, I_k\}$$
 $X = \{X_{1_1} X_{2'} \dots, X_N\}$

X is a 2D image of $W \times H = N$ pixels \times

Introduction

Applications

- GeoSensing
- Autonomous driving
- Facial Segmentation
- Precision Agriculture

Neural Networks for semantic segmentation

Before:

- Features hand-written
- Random Forest, Boosting
- Prediction of only central pixel of a patch

With gpu's growth:

- Neural Networks
- Convolutional Neural Networks

Neural Networks for semantic segmentation

3 key components:

- A fully convolutional network (FCN)
- Conditional Random Fields (CRF)
- Dilated convolution (Atrous convolution)

Common improvements:

- Deeper FCN models
- More powerful CRFs

Understanding Convolution for Semantic Segmentation

(Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, Garrison Cottrel, 2018)

DUC + HDC: Encoding

Possible solution for denser feature maps:

Atrous convolution:

Kernel: 3x3 Dilation rate: 3

Dilation rate: 5

$$y[i] = \sum_{k} x[i + r \cdot k]w[k]$$

- Problem:
 - Gridding Problem

$$K = 3$$

$$r = 2$$

$$r = 2$$

DUC + HDC: Encoding

- Solution: Hybrid Dilated Convolution (HDC)
 - different dilatation rate r

maximum distance between two nonzero values

Mi = max[
$$M_{i+1}$$
-2 r_i , M_{i+1} -2(M_{i+1} - r_i), r_i]
 $M_n = r_n$, $M_2 \le K$

DUC + HDC: Decoding

Problem: Bilinear Upsampling

Solution: Dense Upsampling Convolution (DUC)

Dataset: PASCAL VOC2012

- 20 foreground object classes
- 1 background class
- 1456 training images, 1449 validation images and 1456 test images
- Usually, the training set is augmented to have 10582 images

Dataset: Cityscapes

- Street scenes from 50 different cities
- High quality pixel-level annotations of 5 000 frame
- 20 000 weakly annotated frames
- 19 classes

DUC + HDC: Results

• Dataset: Cityscapes

Method	mxNet	mloU
Custom DUC+HDC	0.11.0	81.9
Original DUC+HDC	1.5.1	80.1

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

(Liang- Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam, 2018)

Deeplab V3

• Going deeper without atrous convolution: location/spatial information is lost at the deeper layers.

Going deeper with atrous convolution: information lost in decoding phase.

• Deeplab V3+

(a) Spatial Pyramid Pooling

(b) Encoder-Decoder

(c) Encoder-Decoder with Atrous Con

Deeplab V3+

Deeplab v3+: Results

Dataset: Pascal VOC 2012

Method	Backbone	os	mloU
Custom Tensorflow	ResNet 101	16	77.31
Original Tensorflow	ResNet 101	16	78.85
Custom Pytorch	ResNet 101	16	78.31
Custom Pytorch	Mobilnet	16	70.89

Dataset: Cityscapes

Method	Backbone	os	mloU
Custom Pytorch	Mobilnet	16	72.1
Original Tensorflow	ResNet 101	16	81.9

ICNet for Real-Time Semantic Segmentation on High-Resolution Images

(Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, 2018)

Quality Vs Speed

Convolution Speed Analysis (PSPNet50)

Cascade Feature Fusion (CFF)

Cascade Label Guidance (CLG)

$$\mathcal{L} = -\sum_{t=1}^{\mathcal{T}} \lambda_t \frac{1}{\mathcal{Y}_t \mathcal{X}_t} \sum_{y=1}^{\mathcal{Y}_t} \sum_{x=1}^{\mathcal{X}_t} \log \frac{e^{\mathcal{F}_{\hat{n},y,x}^t}}{\sum_{n=1}^{\mathcal{N}} e^{\mathcal{F}_{n,y,x}^t}}$$

- Dataset: Cityscapes
 - Experiments on gtx 1070 max-q

Method	Model	DR	mloU	Time(ms)	Frame(fps)
ICNetC	30k_bn	no	67,35	66	15,14
ICNetC	90k_bn	no	80,08	69	14,33

• Experiments on TitanX Maxwell

Method	Model	DR	mloU	Time(ms)	Frame(fps)
ICNetO	30k	no	67,7	33	30,3
ICNetO	90k	no	70,6	33	30,3

One-shot approach:

learning model architecture parameters and weights together

DARTS: Differentiable Architecture Search

(Hanxiao Liu, Karen Simonyan, Yiming Yang 2019)

DARTS: Search Space

Cell Architecture

Each intermediate node is computed based on all of its predecessors:

$$x^{(j)} = \sum_{i < j} o^{(i,j)}(x^{(i)})$$

DARTS: Continuous Relaxation and Optimization

Softmax over all possible operations:

$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

A discrete architecture can be obtained by replacing each mixed operation o (i,j) with the most likely operation:

$$o^{(i,j)} = \operatorname{argmax}_{o \in \mathcal{O}} \ \alpha_o^{(i,j)}$$

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$

s.t.
$$w^*(\alpha) = \operatorname{argmin}_w \mathcal{L}_{train}(w, \alpha)$$

DARTS: Approximate Architecture Gradient

First Order Approximation

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
s.t.
$$w^*(\alpha) = \operatorname{argmin}_{w} \quad \mathcal{L}_{train}(w, \alpha)$$

$$\nabla_{\alpha} \mathcal{L}_{val}(w^*(\alpha), \alpha) \approx \nabla_{\alpha} \mathcal{L}_{val}(w - \xi \nabla_w \mathcal{L}_{train}(w, \alpha), \alpha)$$
 (1)

Algorithm 1: DARTS – Differentiable Architecture Search

Create a mixed operation $\bar{o}^{(i,j)}$ parametrized by $\alpha^{(i,j)}$ for each edge (i,j) while not converged do

- 1. Update weights w by descending $\nabla_w \mathcal{L}_{train}(w, \alpha)$
- 2. Update architecture α by descending $\nabla_{\alpha} \mathcal{L}_{val}(w \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha), \alpha)$

Replace $\bar{o}^{(i,j)}$ with $o^{(i,j)} = \mathrm{argmax}_{o \in \mathcal{O}} \; \alpha_o^{(i,j)}$ for each edge (i,j)

DARTS: Approximate Architecture Gradient

Second Order Approximation

Applying chain rule to the approximate architecture gradient (eq. 1) yields:

$$\nabla_{\alpha} \mathcal{L}_{val}(w', \alpha) - \xi \nabla_{\alpha, w}^{2} \mathcal{L}_{train}(w, \alpha) \nabla_{w'} \mathcal{L}_{val}(w', \alpha)$$
 (2)

where:
$$w' = w - \xi \nabla_w \mathcal{L}_{train}(w, \alpha)$$

Let be
$$\epsilon$$
 a small scalar and $w^{\pm} = w \pm \epsilon \nabla_{w'} \dot{\mathcal{L}}_{val}(w', \alpha)$

Then:

$$\nabla_{\alpha,w}^{2} \mathcal{L}_{train}(w,\alpha) \nabla_{w'} \mathcal{L}_{val}(w',\alpha) \approx \frac{\nabla_{\alpha} \mathcal{L}_{train}(w^{+},\alpha) - \nabla_{\alpha} \mathcal{L}_{train}(w^{-},\alpha)}{2\epsilon}$$

$$O(|\alpha||w|)$$
 to $O(|\alpha|+|w|)$

Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

(Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan Yuille, Li Fei-Fei Johns Hopkins University - Google - Stanford University)

Auto-DeepLab: Network Level Search Space

Cell Architecture:

Network Architecture: 4

Auto-DeepLab: Cell Architecture

Cell Architecture

- a cell is a directed acyclic graph consisting of B blocks.
- a block i in cell I may be specified using a 5-tuple (I_1, I_2, O_1, O_2, C) , where $I_1, I_2 \subseteq I_i^I, O_1, O_2 \subseteq O$ and $C \subseteq C$.
- The cell's output tensor H_I is simply the concatenation of the blocks' output tensors $H_1^I,, H_B^I$ in this order.
- The set of possible input tensors, I_i^l , consists of the output of the previous cell H^{l-1} , the output of the previous-previous cell H^{l-2} , and previous blocks' output in the current cell $\{H_1^l, \dots, H_{i-1}^l\}$.

Auto-DeepLab: Cell Architecture

Cell Architecture

Every block's output tensor depends on:

i.
$$H_i^l = \sum_{H_j^l \in \mathcal{I}_i^l} O_{j o i}(H_j^l)$$

ii.
$$\bar{O}_{j\to i}(H^l_j) = \sum_{O^k \in \mathcal{O}} \alpha^k_{j\to i} O^k(H^l_j)$$

where
$$\sum_{k=1}^{|\mathcal{O}|} \alpha_{j o i}^k = 1$$
 $orall i, j$ $\alpha_{j o i}^k \geq 0$ $orall i, j, k$

Together with Eq. (i) and Eq. (ii), the cell level update may be summarized as:

$$H^l = \operatorname{Cell}(H^{l-1}, H^{l-2}; \alpha)$$

Auto-DeepLab: Network Architecture

Network Architecture

Each *layer I* will have at most 4 hidden state {⁴H^I, ⁸H^I, ¹⁶H^I, ³²H^I}, with the upper left superscript indicating the spatial resolution.

The network level update is:

$$^{s}H^{l} = \beta^{l}_{\frac{s}{2} \to s} \operatorname{Cell}(^{\frac{s}{2}}H^{l-1}, {^{s}H^{l-2}}; \alpha)$$

$$+ \beta^{l}_{s \to s} \operatorname{Cell}(^{s}H^{l-1}, {^{s}H^{l-2}}; \alpha)$$

$$+ \beta^{l}_{2s \to s} \operatorname{Cell}(^{2s}H^{l-1}, {^{s}H^{l-2}}; \alpha)$$

where s = 4, 8, 16, 32 and l = 1, 2, ..., L.

• The scalars β are normalized $\beta_{s \to \frac{s}{2}}^l + \beta_{s \to s}^l + \beta_{s \to 2s}^l = 1$ such that:

$$\beta_{s \to \frac{s}{2}}^{l} + \beta_{s \to s}^{l} + \beta_{s \to 2s}^{l} = 1 \qquad \forall s, l$$

$$\beta_{s \to \frac{s}{2}}^{l} \ge 0 \quad \beta_{s \to s}^{l} \ge 0 \quad \beta_{s \to 2s}^{l} \ge 0 \qquad \forall s, l$$

Auto-DeepLab: Optimization

Optimization

- Apply first-order approximation and partition the training data into two disjoint sets *trainA* and *trainB*.
- The optimization alternates between:
 - 1. Update network weights w by $\nabla_w \mathcal{L}_{trainA}(w, \alpha, \beta)$
 - 2. Update architecture α, β by $\nabla_{\alpha,\beta} \mathcal{L}_{trainB}(w, \alpha, \beta)$

where the loss function *L* is the cross entropy calculated on the semantic segmentation mini-batch.

Auto-DeepLab: Decoding Discrete Architecture

Decoding Discrete Architecture

Cell architecture

Decoding by first retaining the 2 strongest predecessors for each block:

$$\max_{k,O^k \neq zero} \alpha_{j \to i}^k$$

Network Architecture

Auto-DeepLab: Results

Search results

filter_multiplier 8, crop_size 512

filter_multiplier 4, crop_size 224

MloU

filter_multiplier 8, crop_size 224

Auto-DeepLab: Results

Retrain results

Cityscapes

Method	F	Crop-Size	mloU(%)
Auto-DeepLab-Half	32	256	69.41
Auto-DeepLab-S	20	512	79.74
Auto-DeepLab-M	32	512	80.04
Auto-DeepLab-L	48	512	80.33

Multi-Scale + Coarse

Auto-DeepLab-L	48	512	82.1
•			

 Understanding and Robustifying Differentiable Architecture Search (Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox & Frank Hutter, ICLR 2020)

a simple heuristic:

Let $\underline{\lambda}_{max}^{\alpha}(i)$ denote the value of λ_{max}^{α} smoothed over k = 5 epochs around i;

then, we stop if $\lambda^{\alpha}_{max}(i-k)/\lambda^{\alpha}_{max} < 0.75$ and return the architecture from epoch i-k.

Results comparison

Cityscapes

Method	ImageNet	mloU(%)
HDC+DUC	✓	81.9 (+1,8)
DeepLabv3+	✓	81.9 (-9,8)
ICNet	✓	80.08 (+9,48)
AutoDeepLab		82.1 (-12,69)

Thanks for the attention!

