$$\{((1,1),+), ((2,2),-), ((0,0),+)\}$$

Look at the perceptron update rule with $\eta=0.1$

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k + \eta \sum_{\mathbf{x}_i \in \mathcal{E}} y_i \mathbf{x}_i$$

Classify as + ve if $\mathbf{w}^T \mathbf{x} \ge 0$ else - ve. Start $\mathbf{w}^0 = [-1, -1, 4]^T$. Find \mathbf{w}^1 ?

- (A) \mathbf{w}^1 is independent of η
- (B) \mathbf{w}^1 is parallel to \mathbf{w}^0 , but different.
- (C) \mathbf{w}^1 will be the same as \mathbf{w}^0
- (D) Algorithm has converged. \mathbf{w}^2 will be the same as \mathbf{w}^1
- (E) [Ans] None of the above

$$\{((1,1),+), ((2,2),-), ((0,0),+)\}$$

Look at the perceptron update rule with $\eta=0.1$

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k + \eta \sum_{\mathbf{x}_i \in \mathcal{E}} y_i \mathbf{x}_i$$

Classify as + ve if $\mathbf{w}^T \mathbf{x} \ge 0$ else - ve.

Start
$$\mathbf{w}^0 = [-1, -1, 2]^T$$
. Find \mathbf{w}^1 ?

(A)
$$\mathbf{w}^1$$
 is independent of η

- (B) \mathbf{w}^1 is parallel to \mathbf{w}^0 , but different.
- (C) \mathbf{w}^1 will be the same as \mathbf{w}^0
- (D) \mathbf{w}^2 will be the same as \mathbf{w}^1
- (E) [Ans] None of the above

$$\{((1,1),+), ((2,2),-), ((0,0),+)\}$$

Look at the perceptron update rule with $\eta=0.1$

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k + \eta \sum_{\mathbf{x}_i \in \mathcal{E}} y_i \mathbf{x}_i$$

Classify as + ve if $\mathbf{w}^T \mathbf{x} \ge 0$ else - ve.

Start
$$\mathbf{w}^0 = [-1, -1, 1.9]^T$$
. Find \mathbf{w}^1 ?

- (A) \mathbf{w}^1 is independent of η
- (B) \mathbf{w}^1 is parallel to \mathbf{w}^0 , but different.
- (C) \mathbf{w}^1 will be the same as \mathbf{w}^0
- (C) will be the same as w
- (D) \mathbf{w}^2 will be the same as \mathbf{w}^1
- (E) [Ans] None of the above

$$\{((1,1),+), ((2,2),-), ((0,0),+)\}$$

Look at the perceptron update rule with $\eta=0.1$

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k + \eta \sum_{\mathbf{x}_i \in \mathcal{E}} y_i \mathbf{x}_i$$

Classify as + ve if $\mathbf{w}^T \mathbf{x} > 0$ else - ve.

Start
$$\mathbf{w}^0 = [1, -1, 0]^T$$
. Find \mathbf{w}^1 ?

- (A) [Ans] \mathbf{w}^1 is independent of η
- (B) \mathbf{w}^1 is parallel to \mathbf{w}^0 , but different.
- (b) w is parallel to w, but different
- (C) [Ans] \mathbf{w}^1 will be the same as \mathbf{w}^0
- (D) [Ans] \mathbf{w}^2 will be the same as \mathbf{w}^1
- (E) None of the above

$$\{((1,1),+), ((2,2),-), ((0,0),+)\}$$

Look at the perceptron update rule with $\eta=0.1$

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k + \eta \sum_{\mathbf{x}_i \in \mathcal{E}} y_i \mathbf{x}_i$$

Classify as + ve if $\mathbf{w}^T \mathbf{x} > 0$ else - ve.

Start $\mathbf{w}^0 = [1, -1, 0]^T$. \mathbf{w}^2 is:

Start
$$\mathbf{w}^{\circ} = [1, -1, 0]^{\prime}$$
. \mathbf{w}^{2} is

- (A) [Ans] $[1, -1, 0]^T$
- (B) $[1.2, -0.8, 0.1]^T$
- (C) $[0.8, -1.2, -0.1]^T$
- (D) $[1.4, -0.6, 0.2]^T$
- (E) None of the above