penguins_analysis

October 23, 2025

1 Análisis de Palmer Penguins con Trees

Dataset de pingüinos para clasificación con Random Forest y XGBoost

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  from sklearn.ensemble import RandomForestClassifier
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import accuracy_score, classification_report
  import xgboost as xgb
```

1.1 1. Gradient Descent 3D (función simple)

```
[2]: from mpl_toolkits.mplot3d import Axes3D
     # Función y gradiente
     def f(x, y):
         return x**2 + y**2
     def grad_f(x, y):
         return np.array([2*x, 2*y])
     # Inicialización
     x_vals = [2.0]
     y_vals = [1.5]
     eta = 0.1
     n_{iter} = 20
     x, y = x_vals[0], y_vals[0]
     for _ in range(n_iter):
         grad = grad_f(x, y)
         x = eta * grad[0]
         y -= eta * grad[1]
         x_vals.append(x)
         y_vals.append(y)
```

```
z_{vals} = [f(x, y) \text{ for } x, y \text{ in } zip(x_{vals}, y_{vals})]
# Crear malla 3D
X = np.linspace(-2, 2, 100)
Y = np.linspace(-2, 2, 100)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
# Gráfica 3D
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
# Superficie
ax.plot_surface(X, Y, Z, alpha=0.6, cmap='viridis', edgecolor='none')
# Ruta de descenso
ax.plot(x_vals, y_vals, z_vals, color='red', marker='o', label='Trayectoria GD')
ax.scatter(0, 0, 0, color='black', s=50, label='Minimo global')
# Etiquetas
ax.set_title("Gradient Descent en f(x,y) = x^2 + y^2")
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("f(x,y)")
ax.legend()
plt.tight_layout()
plt.show()
```

Gradient Descent en $f(x, y) = x^2 + y^2$


```
[3]: # Cargar dataset de penguins
penguins = sns.load_dataset('penguins')
print("Dataset original:")
print(penguins.head())
print(f"\nShape: {penguins.shape}")
print(f"\nValores nulos:\n{penguins.isnull().sum()}")
```

Dataset original:

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	\
0	Adelie	Torgersen	39.1	18.7	181.0	
1	Adelie	Torgersen	39.5	17.4	186.0	
2	Adelie	Torgersen	40.3	18.0	195.0	

```
3 Adelie Torgersen
                                     {\tt NaN}
                                                    NaN
                                                                       NaN
    4 Adelie Torgersen
                                    36.7
                                                   19.3
                                                                     193.0
       body_mass_g
                       sex
            3750.0
                      Male
    0
    1
            3800.0 Female
    2
            3250.0 Female
               NaN
                       NaN
            3450.0 Female
    Shape: (344, 7)
    Valores nulos:
    species
                          0
                          0
    island
    bill_length_mm
                          2
    bill_depth_mm
                          2
    flipper_length_mm
                          2
    body_mass_g
                          2
    sex
                         11
    dtype: int64
[4]: # Preprocesamiento: eliminar nulos y seleccionar variables numéricas
     penguins_clean = penguins.dropna()
     # Variables numéricas como features
     X = penguins_clean[['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', |
     y = penguins_clean['species']
     print(f"Datos limpios: {X.shape}")
     print(f"Clases: {y.unique()}")
    Datos limpios: (333, 4)
    Clases: ['Adelie' 'Chinstrap' 'Gentoo']
[5]: # Dividir en entrenamiento y prueba
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,_
     →random_state=42)
     # Entrenar Random Forest
     rf = RandomForestClassifier(n_estimators=100, random_state=42)
     rf.fit(X_train, y_train)
     # Evaluar
     y_pred = rf.predict(X_test)
     print("Accuracy en test:", accuracy_score(y_test, y_pred))
     print("\nReporte de clasificación:")
```

print(classification_report(y_test, y_pred))

Accuracy en test: 0.99

Reporte de clasificación:

	precision	recall	f1-score	support
Adelie	0.98	1.00	0.99	48
Chinstrap	1.00	0.94	0.97	18
Gentoo	1.00	1.00	1.00	34
accuracy			0.99	100
macro avg	0.99	0.98	0.99	100
weighted avg	0.99	0.99	0.99	100

```
[6]: # Obtener importancias MDI (feature_importances_)
     importances = rf.feature_importances_
     # Emparejar con nombres de características
     feat_imp = pd.Series(importances, index=X.columns)
     # Ordenar de mayor a menor
     feat_imp_sorted = feat_imp.sort_values(ascending=False)
     print("Importancias MDI de las variables:")
     print(feat_imp_sorted)
     # Visualizar
     feat_imp_sorted.plot(kind='bar', color='skyblue')
     plt.title("Importancia de variables (MDI) - Random Forest (Penguins)")
     plt.ylabel("Importancia normalizada")
     plt.xlabel("Variables")
     plt.xticks(rotation=45, ha='right')
     plt.tight_layout()
     plt.show()
```

Importancias MDI de las variables:

dtype: float64

1.2 3. XGBoost con Palmer Penguins

```
[7]: # XGBoost requiere etiquetas numéricas para clasificación
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
y_encoded = le.fit_transform(y)

print("Mapeo de clases:")
for i, clase in enumerate(le.classes_):
    print(f"{i}: {clase}")
Mapeo de clases:
```

mapeo de Clases

- 0: Adelie
- 1: Chinstrap
- 2: Gentoo

```
[8]: # Separar en train/test con etiquetas codificadas
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.

-3, random_state=42)
```

```
# Crear y entrenar modelo XGBoost Classifier
model = xgb.XGBClassifier(
    n_estimators=300,
    learning_rate=0.05,
    max_depth=5,
    subsample=0.8,
    colsample_bytree=0.8,
    random_state=42
)
model.fit(X_train, y_train)

# Evaluar desempeño
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nReporte de clasificación:")
print(classification_report(y_test, y_pred, target_names=le.classes_))
```

Accuracy: 0.99

Reporte de clasificación:

	precision	recall	f1-score	support
Adelie	0.98	1.00	0.99	48
Chinstrap	1.00	0.94	0.97	18
Gentoo	1.00	1.00	1.00	34
accuracy			0.99	100
macro avg	0.99	0.98	0.99	100
weighted avg	0.99	0.99	0.99	100

Importancia de variables (Gain) - Penguins

1.3 4. Comparación de importancias

```
print("\nComparación normalizada de importancias:")
print(comparison_norm.sort_values(by='Random Forest (MDI)', ascending=False))

# Visualizar comparación
comparison_norm.plot(kind='bar', figsize=(10, 6))
plt.title("Comparación de Importancia de Variables: Random Forest vs XGBoost")
plt.ylabel("Importancia Normalizada")
plt.xlabel("Variables")
plt.xticks(rotation=45, ha='right')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
```

Comparación normalizada de importancias:

	Random Forest (MDI)	XGBoost (Gain)
bill_length_mm	1.000000	0.970629
bill_depth_mm	0.854482	0.935314
flipper_length_mm	0.640691	1.000000
body_mass_g	0.206458	0.396550

