Kosmologie

(Sommersemester 2018)

Thema 2: Rotverschiebung und Entfernungen. Die kosmische Nahzone

Aufgabe 1: Vergleich von Entfernungen

- a) Vergleichen Sie bis zur Ordnung z^2 die folgenden Entfernungen miteinander:
 - die radiale Entfernung $D(t_0)$ einer Galaxie zum heutigen Zeitpunkt (Empfangsentfernung)
 - die radiale Entfernung $D(t_e)$ der Galaxie zum Zeitpunkt der Emission des heute empfangenen Lichtes (Emissionsentfernung)
 - die Leuchtkraft-Entfernung D_L der Galaxie
 - die Winkeldurchmesser-Entfernung D_A .

Bei welcher Rotverschiebung z unterscheiden sich die vier Entfernungen um mehr als zehn Prozent? Welche "Entfernung" entspricht dieser Rotverschiebung bei einer Hubble-Zahl $H_0 = 70 \, \frac{\mathrm{km}}{\mathrm{s\cdot Mpc}}$?

- b) Entwickeln Sie die $R\ddot{u}ckblickzeit$ $(t_0 t_e)$ jeweils bis zur zweiten Ordnung einmal nach Potenzen der Rotverschiebung z und zum anderen nach Potenzen des Verhältnisses $\frac{D(t_0)}{c}$, worin $D(t_0)$ die radiale Entfernung zur Empfangszeit t_0 bedeutet.
- c) Zeigen Sie, daß sich der Hubble-Parameter mit der Rotverschiebung z gemäß

$$H(z) = H_0 [1 + (1 + q_0)z - \dots]$$

ändert.

Aufgabe 2: Galaxienzählungen

Eine Population von Licht- oder Radioquellen sei gleichmäßig im Universum verteilt. Ihre heutige Anzahldichte sei $n(t_0)$.

- a) Berechnen Sie die heute von der Erde aus beobachtbare Anzahl $N(z_*)$ solcher Quellen, deren Rotverschiebung z kleiner als $z_* \ll 1$ ist. Nehmen Sie dabei an, daß die Anzahl von derartigen Quellen in einem bestimmten mitbewegten Volumen konstant bleibt.
- b) Die genannten Quellen sollen alle die einheitliche Leuchtkraft L haben. Berechnen Sie die heute von der Erde aus beobachtbare Anzahl $N(F_*)$ dieser Quellen, deren Fluß F größer als F_* ist. Die Leuchtkraft-Entfernung sei sehr klein im Vergleich zur Hubble-Länge $\frac{c}{H_0}$.
- c) Alle Galaxien dieser Population mögen bei einer bestimmten Rotverschiebung $z \ll 1$ einen kurzen Helligkeitsausbruch von der Dauer des Eigenzeit-Intervalls Δt erleiden. Danach sollen Galaxien weder verlöschen noch neu entstehen. Bestimmen Sie die Anzahl N(z) der in dieser Phase des Helligkeitsausbruchs befindlichen Galaxien, die heute am Himmel sichtbar sind.

bitte wenden

Aufgabe 3: Winkeldurchmesser- und Eigenbewegungs-Entfernung

- a) Zwei Galaxien mit den mitbewegten radialen Koordinaten χ_1 und χ_2 sollen sich mit dem bei $\chi=0$ befindlichen Beobachter (nahezu) auf einer Sehlinie befinden. Ihre Rotverschiebungen seien z_1 und z_2 mit $z_2>z_1$.
 - Berechnen Sie die Winkeldurchmesser-Entfernung $D_A(1,2)$ zu der Galaxie mit der Rotverschiebung z_2 , wie sie von einem Beobachter auf der Galaxie mit der Rotverschiebung z_1 gemessen würde und weisen Sie damit nach, daß Winkeldurchmesser-Entfernungen nicht additiv sind, daß also nicht $D_A(2) = D_A(1) + D_A(1,2)$ gilt.
 - Formulieren Sie für einen räumlich flachen ROBERTSON-WALKER-Kosmos, ($\varepsilon = 0$), ein "Additionstheorem" für Winkeldurchmesser-Entfernungen.
- b) Falls sich eine Galaxie transversal mit der (Eigen-)Geschwindigkeit v bewegt und demzufolge eine Winkelgeschwindigkeit $\frac{d\delta}{dt}$ beobachtbar ist, ist ihre Eigenbewegungs-Entfernung durch

$$D_{M}=rac{v}{\left(rac{\mathrm{d}\delta}{\mathrm{d}t}
ight)}$$

definiert.

- Machen Sie sich für den Euklidischen und statischen Fall klar, daß diese Definition naheliegend ist.
- Berechnen Sie D_M analog zur Winkeldurchmesser-Entfernung D_A mit Hilfe des ROBERT-SON-WALKER-Linienelementes und unter Beachtung der Tatsache, daß rotverschobene Vorgänge dem Beobachter verlangsamt erscheinen.
- Mit welchem anderen Entfernungs-Konzept stimmt die Eigenbewegungs-Entfernung in der kosmischen Nahzone überein?