Kolokwium nr 2 z analizy matematycznej I.2

26 maja 2022, 14:30 - 17:45

Rozwiązanie każdego zadania **należy** umieścić na **osobnej kartce**, wyraźnie podpisanej (drukowanymi literami) imieniem, nazwiskiem i numerem indeksu.

Proszę również podać nr grupy ćwiczeniowej lub nazwisko osoby prowadzącej ćwiczenia.

Należy szczegółowo uzasadniać rozwiązania powołując się na odpowiednie twierdzenia udowodnione na wykładzie lub ćwiczeniach.

1. (10p)

(a) Obliczyć całkę nieoznaczoną:

$$\int \frac{x}{\operatorname{tg}^2 x} dx.$$

(b) Niech $f:[-1,1]\to\mathbb{R}$ będzie funkcją ciągłą. Wykazać, że

$$\int_{0}^{\pi/2} f(\cos x) dx = \int_{0}^{\pi/2} f(\sin x) dx.$$

2. (10p) Zbadać zbieżność jednostajną ciągu

$$f_n(x) = \frac{2^n x + 2^n}{2^n x^2 + 1}$$

na przedziale

a)
$$\left[\frac{1}{2}, 2\right]$$
, b) $\left(0, \frac{1}{2}\right)$.

3. (15p) Niech $\alpha \in \mathbb{R}$ i

$$s(x) = \sum_{n=1}^{\infty} \frac{x}{4 + n^{\alpha} x^2}.$$

- (a) Wyznaczyć zbiór parametrów α , dla których funkcja s jest dobrze określona na całym \mathbb{R} .
- (b) Wyznaczyć zbiór parametrów α , dla których s jest różniczkowalna na $\mathbb{R} \setminus \{0\}$.
- (c) Wykazać, że dla $\alpha>2$ funkcja sjest ciągła na całym $\mathbb{R}.$
- (d) Wykazać, że dla $\alpha \in (1,2]$ funkcja snie jest ciągła w $x_0 = 0.$

4. (10p) Niech $f(x) = \sum_{n=0}^{\infty} a_n x^n$ dla wszystkich $x \in (-r,r)$, gdzie r jest pewną liczbą dodatnią. Załóżmy, że f(0) = -1 oraz

$$(1+x^2)f'(x) = f(x)$$
 dla $x \in (-r, r)$.

- (a) Wyznaczyć zależność rekurencyjną definiującą ciąg a_n .
- (b) Znaleźć $f^{(4)}(0)$.
- (c) Znaleźć jawny wzór na f, który jest poprawny na pewnym otoczeniu $x_0 = 0$.

5. (10p) Określmy ciąg funkcyjny $f_n:\mathbb{R}\to\mathbb{R}$ zależnością rekurencyjną

$$f_1(x) = e^x$$
 $f_n(x) = \sin^2(f_{n-1}(x))$ dla $n > 1$.

Rozstrzygnąć czy szereg $\sum_{n=1}^{\infty}f_n(x)$ jest zbieżny jednostajnie na $\mathbb{R}.$