Лабораторная работа 4.3.2 Дифракция света на ультразвуковой волне в жидкости

Иван Сладков

19 февраля 2022 г.

1 Аннотация

В данной работе проводится изучение дифракции света на синусоидальной акустической решётке, а также наблюдение фазовой решётки методом тёмного поля.

2 Теоретические сведения

Пусть фаза световых колебаний на передней поверхности жидкости равна нулю. Тогда на задней поверхности (т.е. в плоскости z=0) она равна

$$\varphi = knL = \varphi_0(1 + m\cos\Omega x),$$

где L – толщина слоя жидкости в кювете, $k=2\pi/\lambda$ – волновое число для света, λ – длина световой волны, $\varphi_0=kn_0L$. Таким образом, в плоскости z=0 фаза световых колебаний является периодической функцией координаты x, иными словами — УЗ-волна в жидкости создаёт фазовую дифракционную решётку.

Её функция пропускания:

$$t(x) = e^{im\cos\Omega x} \stackrel{m \leqslant 1}{\approx} 1 + \frac{im}{2} e^{i\Omega x} + \frac{im}{2} e^{-i\Omega x}.$$
 (1)

При освещении этой решётки плоской нормально падающей волной амплитуды a имеем за решёткой (при z>0):

$$f(x,z) = ae^{ikz} + \frac{iam}{2}e^{i(\Omega x + \sqrt{k^2 - \Omega^2}z)} + \frac{iam}{2}e^{i(-\Omega x + \sqrt{k^2 - \Omega^2}z)}$$

При изучении дифракции методом тёмного поля будем удалять компоненту $f_0 = ae^{ikz}$ ставя проволочку в соответствующем месте фурье-плоскости. В этом состоит метод тёмного поля в изучении фазовоконтрастных объектов.

При небольших амплитудах звуковой волны показатель преломления жидкости п меняется по закону

$$n = n_0(1 + m\cos\Omega x),$$

где Ω — волновое число УЗ волны, $m \ll 1$ — глубина модуляции УЗ волны.

В общем случае после прохождения через кювету световое поле представляет совокупность не трёх, а большого числа плоских волн, распространяющихся под углами, определяемыми условием

$$\Lambda \sin \theta_m = m\lambda, \ m \in \mathbb{Z}. \tag{2}$$

Каждая из этих волн соответствует одному из максимумов в дифракционной картине Фраунгофера. Определяя на опыте положение дифракционных максимумов различного порядка, можно по формуле ()2) найти длину Λ УЗ-волны и вычислить скорость v распространения ультразвуковых волн в жидкости, если известна частота ν колебаний кварцевого излучателя:

$$v = \Lambda \nu$$
.

3 Оборудование и инструментальные погрешности

Схема экспериментальной установки отображена на рис. 1.

В работе используются:

Оптическая скамья

Рис. 1: Схема экспериментальной установки

Осветитель: $\lambda = 6400 \pm 200 \text{ Å}$ Длиннофокусные объективы

Кювета с жидкостью

Кварцевый излучатель с микрометрическим винтом: $l=10~{
m мкм/дел}$

Генератор ультразвуковой частоты: $\Delta=\pm0.1~\mathrm{k}\Gamma\mathrm{u}$

Линза

Вертикальная нить на рейтере

Микроскоп

Источник света Л с помощью конденсора К проецируется на входную (коллиматорную) щель S. Входная щель ориентирована горизонтально и прикрыта красным светофильтром Ф. Коллиматорный объектив О₁ посылает параллельный пучок на кювету с водой С. Излучатель Q, погружённый в кювету, создаёт УЗ-волну. Вертикальное перемещение излучателя осуществляется винтом I, тонкая подача — лимбом II. При определённых положениях излучателя волна становится стоячей.

4 Результаты измерений и обработка данных

Все измерения и расчёты в СИ.

Исследование по дифракционной картине. Оценим *по порядку величины* скорость звука как удвоенное расстояние между наиболее чёткими дифракционными картинами:

$$n = 67$$
 дел,

$$\lambda \approx 67*10*2 = 1340 \ \text{mkm}.$$

Отсюда

$$v = \lambda * \nu \approx 1840 \text{ m/c}.$$

Эта величина не является точной, т. к. оценка проводилась по факту наибольшей видимости, поэтому подсчёт погрешностей не имеет смысла.

Определим положения дифракционных полос. Более 5 полос получить не удалось, т. к. генератор имеет низкую чувствительность ручки, а на высоких частотах ($\gtrsim 5~\mathrm{M}\Gamma\mathrm{q}$) выдаёт нестабильную частоту. Результаты в табл. 1.

ν, МΓц	а, мкм, в порядке n					
ν, Μπ μ	0	+1	-1	+2	-2	
1.4570	0	196	-172	384	-344	
2.1515	0	272	-260	_	_	
4.3971	0	584	-540	_	_	

Таблица 1: Результаты измерений

По результатам получим график на рис. 2. В табл. 2 коэффициенты прямых и полученные по ним результаты из формулы

$$v = \nu m f \lambda / l_m = \nu f \lambda / k. \tag{3}$$

Принимаем во внимание погрешности k, т. к. они существенно больше.

Рис. 2: Графики зависимости Y = Y(n)

ν , М Γ ц	1.4570	2.1515	4.3971
k	182 ± 3	266 ± 4	562 ± 12
<i>v</i> , м/с	1430 ± 20	1450 ± 20	1400 ± 30

Таблица 2: Результат расчёта скорости звука

Среднее значение:

$$v = 1430 \pm 50 \text{ m/c},$$

что близко к табличному значению v=1490 м/с, но не сходится в пределах погрешности. Здесь случайная погрешность среднего взята по формуле среднеквадратичного отклонения (стандартной ошибки) и сложена с инструментальной по формуле $\sqrt{\sigma^2 + \delta^2}$.

Исследование методом тёмного поля. Найдём цену деления шкалы микроскопа через период сетки $h=1\,\mathrm{mm}.\ n=22\,\mathrm{дел/kn},\ \mathrm{r.\ e.\ 1}\ \mathrm{дел}=45\,\mathrm{mkm}$

По формуле $\Lambda=45\,$ мкм * $2*n/m\,$ найдём длину ультразвуковой волны. Результаты измерений и расчётов в табл. 3.

ν, МΓц	1.7070	2.0866	4.2673
п, дел	65	44	43
m, линий	8	7	14
Λ , MKM	183	142	69

Таблица 3: Результат измерения длин волны

Отсюда по графику на рис. З найдём скорость звука в жидкости:

$$v = 1419 \pm 40 \text{ m/c},$$

что согласуется с полученными ранее результатами, но вновь не совпадает с табличными данными. В данном случае учтена погрешность только по МНК, т. к. считаем инструментальные погрешности достаточно низкими.

Качественные наблюдения. Закрывая ненулевые максимумы получаем равномерную засветку, так как интенсивность нулевого максимума многократно превышает интенсивность ненулевых (связано со свойствами дифракции Фраунгофера).

Рис. 3: Зависимость $\Lambda = \Lambda(1/\nu)$

5 Вывод

К сожалению, не удалось провести достаточное количество замеров и получить достаточно чётких полос. В основном это связано с особенностями аппаратуры, применяемой в опыте, в особенности, с глючным генератором частоты.

Так или иначе, удалось с неплохой точностью измерить скорость звука в воде используя волны сжатиеразряжение как синусоидальную решётку; кроме того, была изучена дифракция света на такой акустической решётке; был применён и изучен метод тёмного поля в наблюдении фазовых объектов.

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 4 Оптика, 2004
- [2] Кириченко Н. А. Принципы оптики, 2014
- [3] Лабораторный практикум по общей физике. В 3 томах. Том 2. Оптика: учебное пособие под ред. А. В. Максимычева