OFF PARTE PA

SEQUENCE LISTING

CALIFORNIA INSTITUTE OF TECHNOLOGY TIRRELL, David A.

- <120> FUSION PROTEIN MICROARRAYS AND METHODS OF USE
- <130> CIT1530-1
- <140> US 10/015,956
- <141> 2001-12-10
- <150> US 60/254,516
- <151> 2000-12-08
- <160> 5
- <170> PatentIn version 3.3
- <210> 1
- <211> 136
- <212> PRT
- <213> Artificial sequence
- <220>
- <223> Synthetic construct: Polyanionic domain
- <400> 1
- Ala Gly 1 5 10 15
- Pro Glu Gly Pro Glu Gly Pro Glu Gly Pro Glu Gly Pro 30 25 30
- Glu Gly Pro Glu 35 40 45
- Gly Pro Glu Gly Pro Glu Gly Pro Glu Gly Pro Glu Gly 50 55 60
- Pro Glu Gly Pro Glu Gly Pro Glu Gly Pro Glu Gly Pro 65 70 75 80
- Glu Gly Pro Glu Gly Pro Glu Gly Pro Glu Gly Pro Glu 95
 90
 95
- Gly Pro Glu Gly Pro Glu Gly Pro Glu Gly Pro Glu Gly 100 105 110
- Pro Glu Gly Pro 115 120 125

```
Glu Gly Pro Glu Gly Pro Glu Gly
    130
<210>
       2
<211>
       96
<212> PRT
<213> Artificial sequence
<223> Synthetic construct: Polyanionic domain
<400> 2
Ala Gly Ala Gly
Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly
           20
                               25
Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly
       35
Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly
    50
                                          60
Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly Glu Gly
65
                   70
                                      75
                                                          80
Glu Gly Glu Gly
                                   90
<210> 3
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic construct: 5 lac Z segment
<400> 3
Met Ile Thr Asn Ser
<210> 4
<211> 21
<212> DNA
<213>
      Artificial sequence
<220>
<223> Synthetic construct: Linker
<400> 4
```

•		3	
gatccc	cggg taccgagete g	2	1
<210><211><211><212><213>	21		
<220> <223>	Synthetic construct: Linker		
<400>	5 agct cggtacccgg g	2	1