Texture Classification Report: Grass vs Wood

Xinyi Wang & Yijie Cao

1. Methods

We implemented a texture classification system to distinguish between grass and wood images using the following techniques:

1. Feature Extraction:

- a. Gray Level Co-occurrence Matrix (GLCM): Extracted features include contrast, dissimilarity, homogeneity, energy, correlation, and ASM at multiple distances and angles.
- b. Local Binary Patterns (LBP): Used multiscale LBP with radii [1, 2, 3] and points [8, 16, 24] to capture local texture patterns.
- c. Histogram of Oriented Gradients (HOG): Implemented a simplified version to capture gradient information.
 - d. Haralick-like features: Extracted additional texture features based on GLCM properties.

2. Classifiers:

- a. Support Vector Machine (SVM)
- b. Random Forest
- c. Ensemble (Voting Classifier combining SVM and Random Forest)

3. Data Augmentation:

Applied rotation (90°, 180°, and 270°) and rescaling (0.5x and 2x) to increase dataset diversity.

4. SMOTE:

Used Synthetic Minority Over-sampling Technique to address class imbalance.

5. Hyperparameter Tuning:

Employed GridSearchCV with StratifiedKFold cross-validation for both SVM and Random Forest models.

2. Results

Model	Validation	Test	Grass	Grass	Wood	Wood
	Accuracy	Accuracy	Precision	Recall	Precision	Recall
SVM	0.9839	0.8599	1.00	0.76	0.73	1.00

Random Forest	0.9812	0.8369	1.00	0.73	0.72	1.00
Ensemble	Not provided	0.8316	1.00	0.70	0.73	1.00

Precision Comparison:

- SVM: Grass - 1.00, Wood - 0.73

- Random Forest: Grass - 1.00, Wood - 0.72

- Ensemble: Grass - 1.00, Wood - 0.73

3. Discussion

1. Model Performance Comparison:

- SVM outperformed other models in test accuracy (85.99%).
- All models showed perfect precision for grass classification (1.00).
- Wood classification precision was lower, with SVM and Ensemble (0.73) slightly outperforming Random Forest (0.72).
 - The Ensemble model did not significantly improve upon individual models' performance.

2. Feature Effectiveness:

- The combination of GLCM, LBP, HOG, and Haralick-like features effectively captured diverse texture information.
 - Multi-scale LBP approach likely contributed to the high precision in grass classification.

3. Class Imbalance:

- Despite SMOTE application, all models showed perfect recall for wood but lower recall for grass, indicating persistent class imbalance issues.

4. Overfitting Concerns:

- High validation accuracies (>98%) compared to test accuracies (~83-86%) suggest potential overfitting.

(generate by the visualize_output.py)

4. Previous Testing output

test.py output:

test1.py output:

Test4 .py output:

GLCM Model GLCM Accuracy: GLCM Classificat pr	f1-score	support				
Grass Wood	0.66 0.64	0.77 0.50	0.71 0.56	52 42		
accuracy macro avg weighted avg	0.65 0.65	0.63 0.65		94 94 94		
GLCM Confusion Matrix: [[40 12] [21 21]] LBP Model Evaluation LBP Accuracy: 0.8297872340425532 LBP Classification Report: precision recall f1-score supp						
Grass Wood	1.00 0.72	0.69 1.00	0.82 0.84	52 42		
accuracy macro avg weighted avg	0.86 0.88	0.85 0.83		94 94 94		
LBP Confusion Ma [[36 16] [0 42]] * Running on loc	51					

Tuning GLCM mod						
Tuning LBP mode Optimized GLCM		200112011	. 1 0			
Optimized LBP v						
Optimized GLCM	test accura	acy: 0.82	9787234042			
Optimized LBP to			7872340425	532		
GLCM Model GLCM Accuracy:						
GLCM Classifica						
	recision		f1-score	support		
Grass	1.00	0.69	0.82	52		
Wood	0.72	1.00	0.84	42		
accuracy			0.83	94		
macro avg	0.86	0.85	0.83	94		
weighted avg	0.88	0.83	0.83	94		
GLCM Confusion I	Matrix:					
[[36 16]						
[0 42]] LBP Model	Evaluation					
LBP Accuracy:						
LBP Classificat	ion Report	:				
p	recision	recall	f1-score	support		
Grass	1.00	0.69	0.82	52		
Wood	0.72	1.00	0.84	42		
accuracy			0.83	94		
macro avg	0.86	0.85	0.83	94		
weighted avg	0.88	0.83	0.83	94		
LBP Confusion M	atrix:					
[[36 16]						
[0 42]]						
* Running on lo	cal URL:	http://12	7.0.0.1:78	62		

Test 2.py output:

	• (venv) sophiawa			Pro pythoni	Project2 %	python3 test2.py	
	Train set size: Validation set Test set size: Sample train im Sample validati Sample test ima Sample test ima Sample test fea Tuning SVM mode Tuning Random F SVM Validation SVM Test Accura SVM Classificat	size: 372 564 age shape: on image s ge shape: ature shap on feature ture shap on forest mode Accuracy: cy: 0.8315	thape: (12 (128, 128 e: 135 e shape: 1 e: 135 el 1.0 6602836879	28, 128) 3)		o (venv) sophiawang@Sophias-MacBook-Pro pythonProject2 % python3 test Train set size: 1236 Validation set size: 372 Test set size: 564 Extracting features Applying SMOTE Tuning SMM model Tuning Random Forest model SVM Validation Accuracy: 1.0000 SVM Test Accuracy: 0.8316 SVM Classification Report:	4.,
	p	recision	recall	f1-score	support	precision recall f1-score support	
	Grass Wood	1.00 0.73	0.70 1.00	0.82 0.84	312 252	Grass 1.00 0.70 0.82 312 Wood 0.73 1.00 0.84 252	
	accuracy			0.83	564	accuracy 0.83 564	
	macro avg	0.86	0.85	0.83	564	macro avg 0.86 0.85 0.83 564	
	weighted avg	0.88	0.83	0.83	564	weighted avg 0.88 0.83 0.83 564	
	SVM Confusion M [[217 95] [0 252]]	atrix:				SVM Confusion Matrix: [[217 95] [0 252]]	
	Random Forest V Random Forest T Random Forest C	est Accura	cy: 0.829 ion Repor	7872340425		Random Forest Validation Accuracy: 1.0000 Random Forest Test Accuracy: 0.8298 Random Forest Classification Report: precision recall f1-score support	
					• • •	Grass 1.00 0.69 0.82 312	
	Grass Wood	1.00 0.72	0.69 1.00	0.82 0.84	312 252	Wood 0.72 1.00 0.84 252	
	WOOd	0.72	1.00	0.04	232		
	accuracy			0.83	564	accuracy 0.83 564 macro avg 0.86 0.85 0.83 564	
	macro avg weighted avg	0.86 0.88	0.85 0.83	0.83 0.83	564 564	weighted avg 0.88 0.83 0.83 564	
Random Forest Confusion Matrix: [[216 96] [0 252]]					304	Random Forest Confusion Matrix: [[216 96] [0 252]]	
Ensemble Validation Accuracy: 1.0 Ensemble Test Accuracy: 0.8315602836879432				336879432		Ensemble Validation Accuracy: 1.0000 Ensemble Test Accuracy: 0.8316 Ensemble Classification Report:	
	Ensemble Classi	fication F recision		f1-score	support	precision recall f1-score support	
	P		recatt	11-20016	Support	Grass 1.00 0.70 0.82 312	
	Grass	1.00	0.70	0.82	312	Wood 0.73 1.00 0.84 252	
	Wood	0.73	1.00	0.84	252		
	accuracy			0.83	564	accuracy 0.83 564	
	macro avg	0.86	0.85	0.83	564	macro avg	
	weighted avg	0.88	0.83	0.83	564	weighted avy 0.00 0.03 0.03 504	

Test 5.py output:

test6_final_version.py output:

5.Conclusion

Our texture classification system achieved high accuracy in distinguishing between grass and wood textures, with SVM performing the best at 85.99% test accuracy. All models demonstrated perfect precision for grass classification, indicating high confidence in positive grass predictions.

Key Findings:

- 1. SVM model showed the best overall performance.
- 2. Perfect precision for grass classification across all models.
- 3. Lower precision for wood classification, indicating room for improvement.
- 4. Potential overfitting issue observed due to high validation accuracies.

Potential Improvements:

- 1. Explore deep learning methods, such as CNNs and transfer learning, for feature extraction and classification.
- 2. Implement more sophisticated ensemble techniques like Stacking or Boosting algorithms.
- 3. Conduct feature selection and optimization, exploring other texture analysis techniques like Gabor filters.
- 4. Implement more diverse data augmentation techniques and class balancing methods.
- 5. Apply model regularization techniques such as L1/L2 regularization or Dropout to reduce overfitting.

- 6. Use nested cross-validation for more accurate model performance and generalization assessment.
- 7. Perform in-depth analysis of misclassified cases, especially for wood class predictions.
- 8. Expand the dataset and introduce more texture classes to enhance model generalizability.
- 9. Employ advanced hyperparameter optimization techniques like Bayesian optimization.
- 10. Investigate methods to improve model inference speed while maintaining high accuracy for real-time applications.

By implementing these improvements and exploring new directions, we aim to further enhance the model's performance in texture classification tasks, achieving higher accuracy and better generalization capabilities.

5. References

Haralick, R. M., et al. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics.

Ojala, T., et al. (2002). Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE TPAMI.

Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. CVPR'05. Chawla, N. V., et al. (2002). SMOTE: Synthetic Minority Over-sampling Technique. JAIR. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, 2011.