

Discrete distributions

Michael Friendly

Discrete distributions: Basic ideas

- Quantitative data: often assumed Normal (μ , σ^2) unreasonable for CDA
- Binomial, Poisson, Negative binomial, ... are the building blocks for CDA
- Form the basis for modeling techniques
 - logistic regression, generalized linear models, Poisson regression
- Data:
 - outcome variable (k = 0, 1, 2, ...)
 - counts of occurrences (n_{ν}) : accidents, words in text, males in families of size k

Examples: binomial

Human sex ratio (Geissler, 1889): Is there evidence that Pr(male) = 0.5?

Saxony families

Saxony families with 12 children having k = 0, 1, ... 12 sons.

k	0	1	2	3	4	5	6	7	8	9	10	11	12
n_k	3	24	104	286	670	1033	1343	1112	829	478	181	45	7

Examples: count data

Federalist papers: Disputed authorship

- 77 essays by Alexander Hamilton, John Jay, James Madison to persuade voters to ratify the US constitution, all signed with pseudonym "Publius"
 - Who wrote each?
 - 65 known, 12 disputed (H & M both claimed sole authorship)
- Mosteller & Wallace (1984): analysis of frequency distns of key "marker" words: from, may, whilst, ...
- e.g., blocks of 200 words: occurrences (k) of "may" in how many blocks

```
> data(Federalist, package = "vcd")
> Federalist
nMay
```

Count data: models

For each word ("from", "may", "whilst", ...)

- Fit a probability model (Poisson, NegBin)
- Estimate parameters (λ, θ)
- → Calculate log Odds (Hamilton vs. Madison)
- → All 12 disputed papers most likely written by Madison

Example: Type-token distributions

- Basic count, k: number of "types"; frequency, n_k: number of instances observed
 - Frequencies of distinct words in a book or literary corpus
 - Number of subjects listing words as members of the semantic category "fruit"
 - Distinct species of animals caught in traps
- Differs from other distributions in that the frequency for k = 0 is unobserved
- Distribution is often extremely skewed (J-shaped)

Table: Number of butterfly species n_k for which k individuals were collected

Individuals (k)	1	2	3	4	5	6	7	8	9	10	11	12	
Species (n _k)	118	74	44	24	29	22	20	19	20	15	12	14	
Individuals (k)	13	14	15	16	17	18	19	20	21	22	23	24	Sι
Species (n_k)	6	12	6	9	9	6	10	10	11	5	3	3	5

5

Questions:

What is the total pop. of butterflies in Malaysia? How many wolves remain in Canada NWT? How many words did Shakespeare know?

Discrete distributions: Questions

- General questions
 - What process gave rise to the distribution?
 - What is the form: uniform, binomial, Poisson, negative binomial, ... ?
 - → Fit & estimate parameters
 - Visualize goodness of fit
 - → Use in some larger context to tell a story
- Examples
 - Families in Saxony: might expect Bin(n=12, p); p=0.5?
 - Federalist papers: Perhaps Poisson(λ)
 - Butterfly data: Perhaps a log-series distribution?

Ь

Fitting discrete distributions

Lack of fit:

- Lack of fit tells us something about the process giving rise to the data
- Poisson: assumes constant small probability of the basic event
- Binomial: assumes constant probability and independent trials
- Negative binomal: allows for overdispersion, relative to Poisson

Motivation:

- Models for more complex categorical data use these basic discrete distributions
- Binomial (with predictors) → logistic regression
- Poisson (with predictors) → poisson regression, loglinear models
- • many of these are special cases of generalized linear models

Common discrete distributions

Discrete distributions are characterized by a probability function, $Pr(X = k) \equiv p(k)$, that the random variable X has value k.

• Common discrete distributions have the following forms:

Discrete distribution	Probability function, $p(k)$	Parameters
Binomial	$\binom{n}{k}p^k(1-p)^{n-k}$	p = Pr (success); n = # trials
Poisson	$e^{-\lambda}\lambda^k/k!$	λ = mean
Negative binomial	$\binom{n+k-1}{k}p^n(1-p)^k$	p; $n = #$ successful trials
Geometric	$p(1-p)^k$	p
Logarithmic series	$\theta^k/[-k\log(1-\theta)]$	θ

1

Discrete distributions: R

R functions: {d, p, q, r}

- d____ density function, Pr(X=k) = p(k)
- p____ cumulative probability, $F(k) = \sum_{X \le k} p(k)$
- quantile function, find $k = F^{-1}(p)$, smallest value such that $F(k) \ge p$
- r____ random number generator

Discrete	Density (pmf)	Cumulative	Quantile	Random #
distribution	function	(CDF)	CDF^{-1}	generator
Binomial	dbinom()	pbinom()	qbinom()	rbinom()
Poisson	dpois()	ppois()	qpois()	rpois()
Negative binomial	dnbinom()	pnbinom()	qnbinom()	<pre>rnbinom()</pre>
Geometric	dgeom()	pgeom()	qgeom()	rgeom()
Logarithmic series	dlogseries()	plogseries()	qlogseries()	rlogseries()

Binomial distribution

The binomial distribution, Bin(n,p), #ways to get k pr(k events) Pr(n-k non-events) $Bin(n,p): \Pr\{X=k\} \equiv p(k) = \binom{n}{k} p^k (1-p)^{n-k} \qquad k=0,1,\ldots,n \ , \tag{1}$

arises as the distribution of the number of events of interest ("successes") which occur in *n* independent trials when the probability of the event on any one trial is the *constant* value p = Pr(event).

Examples

- Toss 10 fair coins how many heads? Bin(10, ½)
- Toss 12 fair dice- how many 5s or 6s? Bin(12, 1/3)

Mean, variance, skewness:

Binomial distribution

Binomial distributions for k = 0, 1, 2, ..., 12 successes in n=12 trials, for 4 values of p

- Mean = n p
- Variance is maximum when $p = \frac{1}{2}$
- Skewed when p ≠ ½

DDAR Fig 3.9, pp 76-77

13

15

Poisson distribution

The Poisson distribution, $Pois(\lambda)$,

$$Pois(\lambda): \Pr\{X = k\} \equiv p(k) = \frac{e^{-\lambda} \lambda^k}{k!} \qquad k = 0, 1, \dots$$
 (2)

gives the probability of an event occurring $k=0,1,2,\ldots$ times over a *large number of independent* trials, when the probability, p, that the event occurs on any one trial (in time or space) is *small and constant*. Examples:

- Number of highway accidents at some given location
- Defects in a manufacturing process
- Number of goals scored in soccer games

Table: Total goals scored in 380 games in the Premier Football League, 1995/95 season

Total goals	0	1	2	3	4	5	6	7
Number of games	27	88	91	73	49	31	18	3

14

Poisson distribution

Poisson distributions for $\lambda=1,4,10$ 0.5 10 15 20 0.3 0.3 0.2 0.1 0.0 5 10 15 20 0.1 0 5 10 15 20Number of events (k)

Mean, variance, skewness:

$$\mathsf{Mean}[\mathsf{X}] = \lambda$$

 $Var[X] = \lambda$ $Skew[X] = \lambda^{-1/2}$

 $\mathsf{MLE} \colon \hat{\lambda} = \bar{x}$

Properties:

Sum of Pois
$$(\lambda_1, \lambda_2, \lambda_3, ...) = Pois(\sum \lambda_i)$$

Approaches N(λ , λ) as n $\rightarrow \infty$

Negative binomial distribution

The Negative binomial distribution, NBin(n, p),

NBin
$$(n, p)$$
: Pr $\{X = k\} \equiv p(k) = \binom{n+k-1}{k} p^n (1-p)^k \qquad k = 0, 1, ..., \infty$

is a waiting time distribution. It arises when n trials are observed with constant probability p of some event, and we ask how many non-events (failures), k, it takes to observe n successful events.

Example: Toss a coin; what is probability of getting k = 0, 1, 2, ... tails before n = 3 heads?

This distribution is often used as an alternative to the Poisson when

- constant probability p or independence are violated
- \bullet variance is greater than the mean (overdispersion: $\mathsf{Var}[X] > \mathsf{Mean}[X]$)

$$\begin{array}{lll} \operatorname{Mean}(X) & = & nq/p = \mu \\ \operatorname{Var}(X) & = & nq/p^2 \end{array} & \operatorname{Mean}(X) = \mu = \frac{n(1-p)}{p} & \Longrightarrow & p = \frac{n}{n+\mu} \,, \\ \operatorname{Skew}(X) & = & \frac{2-p}{\sqrt{nq}} \,, & \operatorname{Var}(X) = \frac{n(1-p)}{p^2} & \Longrightarrow & \operatorname{Var}(X) = \mu + \frac{\mu^2}{n} \,. \end{array}$$

Negative binomial distributions for n = 2, 4, 6 p = 0.2, 0.3, 0.4

Mean: Increases with *n* Decreases with *p*

DDAR Fig 3.13, p 85

Fitting discrete distributions

Fitting a discrete distribution involves the following steps:

- Estimate the parameter(s) from the data, e.g., p for binomial, λ for Poisson, etc. Typically done using maximum likelihood, but some distributions have simple expressions:
 - Binomial, $\hat{p} = \sum k n_k / (n \sum n_k) = \text{mean } / \text{ n}$
 - Poisson, $\hat{\lambda} = \sum k n_k / \sum n_k = \text{mean}$
- **②** Calculate fitted probabilities, $\hat{p}(k)$ for the distribution, and then fitted frequencies, $N\hat{p}(k)$.
- **3** Assess Goodness of fit: Pearson X^2 or likelihood-ratio G^2

$$X^{2} = \sum_{k=1}^{K} \frac{(n_{k} - N\hat{p}_{k})^{2}}{N\hat{p}_{k}} \qquad G^{2} = \sum_{k=1}^{K} n_{k} \log(\frac{n_{k}}{N\hat{p}_{k}})$$

18

20

Both have asymptotic chisquare distributions, χ^2_{K-s} with s estimated parameters, under the hypothesis that the data follows the chosen distribution.

Fitting & graphing discrete distributions

In R, the vcd and vcdExtra packages provide functions to fit, visualize and diagnose discrete distributions

• Fitting: goodfit() fits uniform, binomial, Poisson,

neg bin, geometric, logseries, ...

Graphing: rootogram() assess departure between

observed, fitted counts

• Ord plot: Ordplot() diagnose form of a discrete

distribution

Robust plots: distplot() handle problems with discrepant counts

Example: Saxony families

```
> data(Saxony, package="vcd")
> Saxony
nMales
0 1 2 3 4 5 6 7 8 9 10 11 12
3 24 104 286 670 1033 1343 1112 829 478 181 45 7
```

Use goodfit() to fit the binomial; test with summary()

Example: Saxony families

The print() method for **goodfit** objects shows the details

> Sax.fit # print Observed and fitted values for binomial distribution with parameters estimated by `ML' count observed fitted pearson residual 0.933 2.140 24 12.089 3.426 71.803 3.800 286 258.475 1.712 670 628.055 1.674 1033 1085.211 -1.585 1343 1367.279 -0.657 1112 1265.630 -4.318 829 854.247 -0.864 478 410.013 3.358 10 181 132.836 4.179 11 26.082 3.704 2.347 3.037

Pay attention to the pattern & magnitudes of residuals, d_k

Pearson $\chi^2 = \sum d_k^2$

21

What's wrong with simple histograms?

Discrete distributions are often graphed as histograms, with a theoretical fitted distribution superimposed

The plot() method for goodfit objects provides some alternatives

> plot(Sax.fit, type = "standing", xlab = "Number of males")

Problems

- Largest frequencies dominate
- Must assess deviations vs. the fitted curve

Hanging rootograms

> plot(Sax.fit, type = "hanging", xlab = "Number of males")

default

Tukey (1972, 1977):

- shift histogram bars to the fitted curve
- → judge deviations vs. horizontal line
- plot $\sqrt{\text{freq}} \rightarrow \text{smaller frequencies}$ are emphasized.

We can now see clearly where the binomial doesn't fit

24

Deviation rootograms

```
> plot(Sax.fit, type = "deviation", xlab = "Number of males")
```


Deviation rootogram:

- emphasize differences between observed and fitted frequencies
- bars now show the residuals (gaps) directly

There are more families with very low or very high number of sons than the binomial predicts.

Q: Why is this so much better than the lack-of-fit test?

25

Example: Federalist papers

```
> data(Federalist, package="vcd")
> Federalist
nMay
    0    1    2    3    4    5    6
156    63    29    8    4    1    1
```

Fit the Poisson distribution

This fits very poorly!

Example: Federalist papers

Try the Negative binomial distribution

This now fits very well, indeed! Why?

- Poisson assumes that the probability of a given word ("may") is constant across all blocks of text.
- Negative binomial allows the rate parameter λ to vary over blocks of text

Federalist papers: Rootograms

Hanging rootograms for the Federalist papers data, comparing Poisson and Negative binomial

```
> plot(Fed.fit0, main = "Poisson")
> plot(Fed.fit1, main = "Negative binomial")
```


Poisson

Butterfly data

Both Poisson and Negative binomial are terrible fits! What to do??

```
But.fit1 <- goodfit(Butterfly, type="poisson")
But.fit2 <- goodfit(Butterfly, type="nbinomial")
plot(But.fit1, main="Poisson")
plot(But.fit2, main="Negative binomial")</pre>
```

Poisson

Ord plots: Diagnose form of distribution

How to tell which discrete distributions are likely candidates?

- Ord (1967): for each of Poisson, Binomial, Negative binomial, and Logarithmic series distributions,
 - plot of kp_k/p_{k-1} against k is linear
 - $\bullet\,$ signs of intercept and slope \to determine the form, give rough estimates of parameters

Ì	Slope	Intercept	Distribution	Parameter
	(b)	(a)	(parameter)	estimate
ĺ	0	+	Poisson (λ)	$\lambda = a$
	_	+	Binomial (n, p)	p = b/(b-1)
	+	+	Neg. binomial (n,p)	p=1-b
	+	_	Log. series (θ)	$\theta = b$
				$\theta = -a$

- Fit line by WLS, using $\sqrt{n_k 1}$ as weights
- A heuristic method: doesn't always work, but often a good start.

Ord plot: Examples

Butterfly data: The slope and intercept correctly diagnoses the log-series distribution

- + slope
- intercept
- → log-series

31

Ord plots: Examples

Ord plots for the Saxony and Federalist data

- > Ord_plot(Saxony, main = "Families in Saxony", gp=gpar(cex=1), pch=16)
- > Ord_plot(Federalist, main = "Instances of 'may' in Federalist papers", gp=gpar(cex=1), pch=16)

30

Robust distribution plots

- Ord plots lack robustness
 - one discrepant frequency, n_k affects points for both k and k+1
 - the use of WLS to fit the line is a small attempt to minimize this
- Robust plots for Poisson distribution (Hoaglin and Tukey, 1985)
 - For Poisson, plot *count metameter* = $\phi(n_k) = \log_e(k! n_k/N)$ vs. k
 - Linear relation \Rightarrow Poisson, slope gives $\hat{\lambda}$
 - CI for points, diagnostic (influence) plot
 - Implemented in distplot () in the vcd package

For the Poisson distribution, this is called a "poissonness plot"

33

Poissonness plot: Details

- If the distribution of n_k is Poisson(λ) for some fixed λ , then each observed frequency, $n_k \approx m_k = Np_k$.
- Then, setting $n_k = Np_k = e^{-\lambda} \lambda^k/k!$, and taking logs of both sides gives

$$\log(n_k) = \log N - \lambda + k \log \lambda - \log k!$$

which can be rearranged to

$$\phi(n_k) \equiv \log\left(\frac{k! n_k}{N}\right) = -\lambda + (\log \lambda) k$$

- \Rightarrow if the distribution is Poisson, plotting $\phi(n_k)$ vs. k should give a line with
 - intercept = $-\lambda$
 - slope = $\log \lambda$
- Nonlinear relation → distribution is not Poisson
- Hoaglin and Tukey (1985) give details on calculation of confidence intervals and influence measures.

34

Other distributions

This idea extends readily to other discrete data distributions:

- The binomial, Poisson, negative binomial, geometric and logseries distributions are all members of a general power series family of discrete distributions. See: DDAR, Table 3.10 for details.
- This allows all of these to be represented in a plot of a suitable count metameter, $\phi(n_k)$ vs. k. See: DDAR, Table 3.12 for details.
- In these plots, a straight line confirms that the data follow the given distribution.
- Confidence intervals around the points indicate uncertainty for the count metameter.
- The slope and intercept of the line give estimates of the distribution parameters.

distplot: Federalist

Try both Poisson & Negative binomial

distplot(Federalist, type="poisson", xlab="Occurrences of 'may'")
distplot(Federalist, type="nbinomial", xlab="Occurrences of 'may'")

Again, the Poisson distribution is seen not to fit, while the Negative binomial appears reasonable.

distplot: Saxony

For purported binomial distributions, the result is a "binomialness" plot

```
plot(goodfit(Saxony, type="binomial", par=list(size=12)))
distplot(Saxony, type="binomial", size=12, xlab="Number of males")
```


37

Both plots show heavier tails than the binomial distribution. distplot() is more sensitive in diagnosing this

What have we learned?

Main points:

- Discrete distributions involve basic counts of occurrences of some event occurring with varying frequency.
- The ideas and methods for one-way tables are building blocks for analysis of more complex data.
- Commonly used discrete distributions include the binomial, Poisson, negative binomial, and logarithmic series distributions, all members of a power series family.
- Fitting observed data to a distribution \to fitted frequencies, $N\hat{p}_k$, \to goodness-of-fit tests (Pearson X^2 , LR G^2)
- R: goodfit () provides print (), summary () and plot () methods.
- Plotting with rootograms, Ord plots and generalized distribution plots can reveal how orwhere a distribution does not fit.

38

What have we learned?

Some explantions:

- The Saxony data were part of a much larger data set from Geissler (1889) (Geissler in vcdExtra).
 - For the binomial, with families of size n = 12, our analyses give $\hat{p} = \Pr(male) = 0.52$.
 - Other analyses (using more complex models) conclude that p varies among families with the same size.
 - One explanation is that family decisions to have another child are influenced by the boy–girl ratio in earlier children.
- As suggested earlier, the lack of fit of the Poisson distribution for words in the Federalist papers can be explained by context of the writing:
 - Given "marker" words appear more or less often over time and subject than predicted by constant rates (λ) for a given author (Madison or Hamilton)
 - The negative binomial distribution fit much better.
 - The estimated parameters for these texts allowed assigning all 12 disputed papers to Madison.

Looking ahead: PhdPubs data

Example 3.24 in DDAR gives data on the number of publications by PhD candidates in the last 3 years of study

```
data("PhdPubs", package = "vcdExtra")
table(PhdPubs$articles)

##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
## 275 246 178 84 67 27 17 12 1 2 1 1 2 1 1
```

- There are predictors: gender, marital status, number of children, prestige of dept., # pubs by student's mentor
- We fit such models with glm(), but need to specify the form of the distribution
- Ignoring the predictors for now, a baseline model could be glm(articles ~ 1, data=PhdPubs, family = "poisson")

Looking ahead: PhdPubs

```
plot(goodfit(PhdPubs$articles), xlab = "Number of Articles",
    main = "Poisson")
plot(goodfit(PhdPubs$articles, type = "nbinomial"),
    xlab = "Number of Articles", main = "Negative binomial")
```

Poisson

Negative binomial

Poisson doesn't fit: Need to account for excess 0s (some never published) Neg binomial: Sort of OK, but should take predictors into account

Looking ahead: Count data models

Count data regression models (DDAR Ch 11)

- Include predictors
- Allow different distributions for unexplained variation
- · Provide tests of one model vs. another
- Special models handle the problems of excess zeros: zeroinlf(), hurdle()

```
# predictors: female, married, kid5, phdprestige, mentor
phd.pois <- glm(articles ~ ., data=PhdPubs, family=poisson)
phd.nbin <- glm.nb(articles ~ ., data=PhdPubs)

LRstats(phd.pois, phd.nbin)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## phd.pois 3313 3342 1634 909 <2e-16 ***
## phd.nbin 3135 3169 1004 909 0.015 *
## signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

41

42

Looking ahead: Effect plots

Effect plots show the predicted values for each term in a model, averaging over all other factors.

These are better visual summaries for a model than a table of coefficients.

Summary

- Discrete distributions are the building blocks for categorical data analysis
 - Typically consist of basic counts of occurrences, with varying frequencies
 - Most common: binomial, Poisson, negative binomial
 - Others: geometric, log-series
- Fit with goodfit(); plot with rootogram()
 - Diagnostic plots: Ord_plot(), distplot()
- Models with predictors
 - Binomial → logistic regression
 - Poisson \rightarrow poisson regression; logliner models
 - These are special cases of generalized linear models