Breast Cancer Classification

Asma Ahmed Al-Thagafi

Table of contents:

X

01

Project overview:

02

Data Preparation:

03

Machine Learning Models

04

Results:

Project overview:

Recently, The healthcare sector is poised for a radical transformation led by artificial intelligence and machine learning techniques and is powered by an abundance of data sources.

In this project:

I am going to use machine learning techniques to help in the early detection of breast cancer which will increase chances of treatment.

02

Data Preparation:

I used the UCI Machine Learning Repository for breast cancer dataset.

Importing and cleaning data:

```
In [81]: df = pd.read_csv('breast-cancer-wisconsin.txt')
df.head()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15855 entries, 0 to 15854
Data columns (total 12 columns):
 # Column
                                 Non-Null Count Dtype
                                  15855 non-null int64
                                  15855 non-null int64
     Clump Thickness
                                 15855 non-null int64
     Uniformity of Cell Size
                                 15827 non-null object
    Uniformity of Cell Shape
                                 15827 non-null object
     Marginal Adhesion
                                 15827 non-null object
     Single Epithelial Cell Size 15827 non-null object
```

6 Single Epithelial Cell Size 15827 non-null object 7 Bare Nuclei 15827 non-null object 8 Bland Chromatin 15827 non-null object 9 Normal Nucleoli 15827 non-null object 10 Mitoses 15827 non-null object 10 Mitoses 15827 non-null object

10 Mitoses 15827 non-null object 11 Class 15827 non-null object dtypes: int64(3), object(9)

Out[81]:

memory usage: 1.5+ MB

	Index	ID	Clump Thickness		Uniformity of Cell Shape	Marginal Adhesion	5 1	Bare Nuclei	Bland Chromatin	Normal Nucleoli	Mitoses	Class
0	0	1241035	7	8	3	7	4	5	7	8	2	4
1	1	1107684	6	10	5	5	4	10	6	10	1	4
2	2	691628	8	6	4	10	10	1	3	5	1	4
	3	1226612	7	5	6	3	3	8	7	4	1	4
4	4	1142706	5	10	10	10	6	10	6	5	2	4

Pre-prossising Steps:

Visualization of the data

Machine Learning Models

To build a ML model which classifies breast cancer:

- 1- Splitting the dataset to training data=80% and testing data=20%.
- 2- Train the data by used:

Logistic Regression, k-nearest neighbors algorithm, Random Forest.

X Logistic Regression:

```
In [74]: #Using Logistic Regression
 from sklearn.linear_model import LogisticRegression
 log = LogisticRegression(random_state = 0)
 log.fit(X_train, y_train)
 print('Logistic Regression Training Accuracy:', log.score(X_train, y_train))
 #Check precision, recall, f1-score
 print(classification_report(y_test, log.predict(X_test)))
 Logistic Regression Training Accuracy: 0.9583333333333334
              precision recall f1-score support
                            0.96
                   0.90
                                      0.93
                                                  46
                   0.98
                             0.94
                                      0.96
                                                  87
                                      0.95
                                                 133
     accuracy
                   0.94
                             0.95
                                      0.94
                                                 133
   macro avg
 weighted avg
                   0.95
                             0.95
                                      0.95
                                                 133
```

k-nearest neighbors algorithm:

```
In [79]: #Using KNeighborsClassifier
 knn = KNeighborsClassifier(n_neighbors=5)
 knn.fit(X_train, y_train)
 print('KNeighborsClassifier Training Accuracy:', knn.score(X train, y train))
 #Check precision, recall, f1-score
 print(classification_report(y_test, knn.predict(X_test)))
 KNeighborsClassifier Training Accuracy: 0.9678030303030303
               precision
                          recall f1-score
                                               support
                    0.98
                              0.97
                                        0.97
                                                    59
                    0.97
                              0.99
                                        0.98
                                                    74
                                        0.98
                                                   133
     accuracy
                    0.98
                              0.98
                                        0.98
                                                   133
    macro avg
 weighted avg
                    0.98
                              0.98
                                        0.98
                                                   133
```

X Random Forest:

```
In [72]: #Using Random Forest Classifier
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.metrics import classification_report
 from sklearn.metrics import accuracy_score
 forest = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
 forest.fit(X_train, y_train)
 print('Random Forest Classifier Training Accuracy:', forest.score(X train, y train))
 #Check precision, recall, f1-score
 print(classification_report(y_test, forest.predict(X_test)))
 Random Forest Classifier Training Accuracy: 0.9924242424242424
              precision recall f1-score support
                   0.88
                             0.96
                                       0.92
                                                  46
                   0.98
                             0.93
                                       0.95
                                                  87
                                       0.94
                                                 133
     accuracy
                             0.94
                                       0.93
    macro avg
                   0.93
                                                 133
 weighted avg
                   0.94
                             0.94
                                       0.94
                                                  133
```

04

Results:

After applying the different classification models, I got the accuracies with different models below:

- 1. Logistic Regression 0.95%
- 2. Nearest Neighbors 0.96%
- 3. Random Forest Classification 0.99%

Random Forest Classification gave the best results for this dataset

ROC Curve

Resources:

- 1. <u>https://github.com/Al-asma/T5</u>
- 2. https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29
- 3. https://medium.com/swlh/breast-cancer-classification-using-python-e83719e5f97d

Thank you for your attention

-Any Quistion?

