Exploratory Data Analysis

Andy Wang 305609128

2024-07-13

Overview

Files

- 1. customer_info_train.csv, customer_info_test.csv contains customer demographic info
- 2. amazon_order_details_train.csv, amazon_order_details_test.csv contains each order's specific info
- 3. train.csv, test.csv primary data file used for modelling

Imports

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
library(ggplot2)
library(tidymodels)
## -- Attaching packages ------ tidymodels 1.2.0 --
                          v rsample
                                        1.2.1
## v broom
                1.0.6
## v dials
                1.2.1
                          v tibble
                                        3.2.1
                1.0.7
                                        1.3.1
## v infer
                          v tidyr
## v modeldata
                1.4.0
                                        1.2.1
                          v tune
## v parsnip
                1.2.1
                         v workflows
                                        1.1.4
## v purrr
                1.0.2
                         v workflowsets 1.1.0
                          v yardstick
## v recipes
                1.0.10
                                       1.3.1
```

```
## -- Conflicts -----
                                         ----- tidymodels_conflicts() --
## x purrr::discard() masks scales::discard()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
## x recipes::step() masks stats::step()
## * Search for functions across packages at https://www.tidymodels.org/find/
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
      smiths
library(lubridate)
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
      date, intersect, setdiff, union
##
```

File 1: train.csv

```
train_path <- "../ucla-stats-101-c-2024-su-regression/train.csv"
train <- read.csv(train_path)
#train <- train %>% select(-order_totals)
head(train)
```

```
q_demos_state year month order_totals log_total count count_female count_male
## 1
           Alabama 2018
                                   1774.01 3.248956
                           1
                                                         53
                                                                      49
## 2
           Alabama 2018
                            2
                                   2015.14 3.304305
                                                         49
                                                                      47
                                                                                  2
## 3
           Alabama 2018
                            3
                                   1689.01 3.227632
                                                         51
                                                                      48
                                                                                  3
## 4
           Alabama 2018
                            4
                                   3303.88 3.519024
                                                         47
                                                                      42
           Alabama 2018
                                   1922.96 3.283970
## 5
                                                         43
                                                                      41
                            5
## 6
           Alabama 2018
                            6
                                   2497.19 3.397452
                                                         62
                                                                      57
     count_less5 count_5to10 count_over10 count_hh1 count_hh2 count_hh3 count_hh4
## 1
             17
                          33
                                        3
                                                 15
                                                             9
                                                                      17
                                                                                12
## 2
              19
                          26
                                        4
                                                  15
                                                             4
                                                                      18
                                                                                12
## 3
                          30
                                        3
                                                  15
              18
                                                            10
                                                                      15
                                                                                11
## 4
              19
                          27
                                        1
                                                   9
                                                             6
                                                                      17
                                                                                15
## 5
                          30
                                        2
                                                  10
                                                             7
              11
                                                                      16
                                                                                10
## 6
              22
                          39
                                        1
                                                  15
                                                             8
                                                                      23
                                                                                16
     count_howmany1 count_howmany2 count_howmany3 count_howmany4 count_1824
## 1
                                 7
                                               1
                                                                           0
## 2
                 36
                                 5
                                                 1
                                                                7
```

##	3		40		6		C)		5		0
##	4		39		3		C)		5		0
##	5		31		5		C)		7		0
##	6		44		8		5	j		5		1
##		count_2534	count_3	3544 co	unt_4554	cou	int_5564	count_	65up	count_ur	nd25k	
##	1	10		10	29		3		0		1	
##	2	6		7	29		7		0		4	
##	3	8		10	26		7		0		4	
##	4	11		9	17		10		0		5	
##	5	6		9	23		5		0		1	
##	6	7		13	34		7		0		2	
##		count_2549k	count_	_5074k	count_759	99k	count_10	0149k	count	_150kup	count	_lessHS
##	1	23		8		0		19		2		0
##	2	18		3		2		17		5		0
##	3	17		7		0		19		4		0
##	4	14		10		0		12		6		0
##	5	11		7		1		17		6		0
##	6	17		10		2		26		5		0
##		count_HS co	unt_B c	count_G								
##	1	8	29	16								
##	2	13	24	12								
##	3	8	24	19								
##	4	18	15	14								
##	5	5	22	16								
##	6	14	28	20								

Variables

index variables - q_demos_state - US state where orders were placed - year - year where orders were placed - month - month where orders were placed

user info - count - total number of orders placed - count_female - number of orders placed by those who responded female to survey question - count_male - number of orders placed by those who responded male to survey question - count_less5 - number of orders placed by those who responded "place less than 5 orders per month on Amazon" - count_5to10 - "5 to 10 orders per month on Amazon" - count_over10 - "over 10 orders per month on Amazon"

household size variables - count_hh1 - household size = 1 - count_hh2 - household size = 2 - count_hh3 - household size = 3 - count_hh4 - household size = 4+

account sharing variables - $count_howmany1$ - how many people in the household use/share the amazon account = 1 - $count_howmany2$ - how many people in the household use/share the amazon account = 2 - $count_howmany3$ - how many people in the household use/share the amazon account = 3 - $count_howmany4$ - how many people in the household use/share the amazon account = 4

customer age variables - $count_1824$ - age 18-24 - $count_2534$

- count_3544
- count_4554
- count_5564
- count_65up

customer income variables - count_und25k - under 25k - count_2549k - 25k to 49k - count_5074k

- count 7599k
- count_100149k 100k to 149k count_150kup over 150k

customer education variables - count_lessHS - less than HS - count_HS - HS diploma - count_B - Bachelor's degree - count_G - graduate / professional degree

Correlation Matrix

```
correlation_mat <- train %>%
  select(-order_totals) %>%
  select_if(is.numeric) %>%
  cor()
melted_cormat <- melt(correlation_mat)</pre>
# Get upper triangle of the correlation matrix
get_upper_tri <- function(cormat){</pre>
  cormat[lower.tri(cormat)] <- NA</pre>
  return(cormat)
}
# Use correlation between variables as distance
reorder_cormat <- function(cormat){</pre>
  dd <- as.dist((1-cormat)/2)</pre>
  hc <- hclust(dd)
  cormat <-cormat[hc$order, hc$order]</pre>
}
# Reorder the correlation matrix
cormat <- reorder_cormat(correlation_mat)</pre>
upper_tri <- get_upper_tri(cormat)</pre>
# Melt the correlation matrix
melted_cormat <- melt(upper_tri, na.rm = TRUE)</pre>
# Create a heatmap
ggplot(melted_cormat, aes(Var2, Var1, fill = value)) +
  geom_tile(color = "white") +
  scale_fill_gradient2(
    low = "blue",
    high = "red",
    mid = "white",
    midpoint = 0,
    limit = c(-1, 1),
    space = "Lab",
    name = "Pearson\nCorrelation"
  theme_minimal() + # minimal theme
  theme(
    axis.text.x = element_text(angle = 90, size = 9)
  ) +
  coord_fixed()
```


Distribution Plots

```
# Distribution Plots
# Histogram of log_total
ggplot(train, aes(x = log_total)) +
  geom_histogram(bins = 30, fill = "blue", alpha = 0.7) +
  theme_minimal() +
  labs(title = "Distribution of log_total", x = "log_total", y = "Count")
```


Time Series Plots

```
# Time Series Plots
# Line Plot of log_total over time
timeseries <- train %>%
group_by(year, month) %>%
summarise(log_total = sum(log_total), count = sum(count)) %>%
mutate(date = ymd(paste(year, month, "01", sep = "-"))) %>%
select(date, log_total, count) %>%
ungroup()

## 'summarise()' has grouped output by 'year'. You can override using the
## '.groups' argument.
## Adding missing grouping variables: 'year'

ggplot(timeseries, aes(x = date, y = log_total)) +
geom_line(color = "blue") +
theme_minimal() +
labs(title = "log_total Over Time", x = "Date", y = "log_total")
```



```
# Line Plot of count over time
ggplot(timeseries, aes(x = date, y = count)) +
  geom_line(color = "green") +
  theme_minimal() +
  labs(title = "Total Orders Over Time", x = "Date", y = "Count")
```


Geographical Plots

```
# Geographical Plots
# Assuming you have a state map dataset named `us_states` with state abbreviations
us_states <- map_data("state")</pre>
states <- train %>%
 mutate(q_demos_state = tolower(q_demos_state)) %>%
  group_by(q_demos_state) %>%
 summarize(avg_total = mean(order_totals)) %>%
  select(q_demos_state, avg_total) %>%
 ungroup()
# Merge the state data
states <- us_states %>%
 left_join(states, by = c("region" = "q_demos_state"))
ggplot(states, aes(map_id = region, fill = avg_total)) +
  geom_map(map = us_states, color = "white") +
  expand_limits(x = us_states$long, y = us_states$lat) +
  theme_minimal() +
 labs(title = "Average order_total by State", fill = "Avg order_totals")
```


Scatter Plots

```
# Scatter Plots
# Scatter plot of log_total vs count_male
ggplot(train, aes(x = count_male, y = log_total)) +
  geom_point(alpha = 0.5) +
  theme_minimal() +
  labs(title = "log_total vs Count of Male Orders", x = "Count of Male Orders", y = "log_total")
```



```
# Scatter plot of log_total vs count_female
ggplot(train, aes(x = count_female, y = log_total)) +
  geom_point(alpha = 0.5) +
  theme_minimal() +
  labs(title = "log_total vs Count of Female Orders", x = "Count of Female Orders", y = "log_total")
```



```
# Pair Plot
# Using GGally package for a pair plot
library(GGally)

## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2

ggpairs(train %>% select(log_total, count_female, count_male, count_1824, count_und25k))
```


Bar Plots TODO: FIX THIS

```
# Bar Plots
# Bar Plot of average order_totals by age group
age_vars <- c("count_1824", "count_2534", "count_3544", "count_4554", "count_5564", "count_65up")
ages <- train %>%
  select(q_demos_state, year, month, order_totals, all_of(age_vars)) %>%
  pivot_longer(cols = age_vars, names_to = "age_group", values_to = "count")
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use 'all_of()' or 'any_of()' instead.
##
     # Was:
##
     data %>% select(age_vars)
##
     # Now:
##
##
     data %>% select(all_of(age_vars))
## See <a href="https://tidyselect.r-lib.org/reference/faq-external-vector.html">https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last lifecycle warnings()' to see where this warning was
## generated.
ages <- ages %>%
  group_by(age_group) %>%
```

```
summarize(avg_total = mean(order_totals))

ggplot(ages, aes(x = age_group, y = avg_total, fill = age_group)) +
    geom_bar(stat = "identity") +
    theme_minimal() +
    labs(title = "Average order_totals by Age Group", x = "Age Group", y = "Avg order_totals")
```


Box Plots

```
# Box Plot of log_total by state
# Calculate the median log_total for each state
state_medians <- train %>%
    group_by(q_demos_state) %>%
    summarize(median_log_total = median(log_total)) %>%
    arrange(median_log_total)

# Reorder the levels of q_demos_state based on the median log_total
state_medians <- train %>%
    mutate(q_demos_state = factor(q_demos_state, levels = state_medians$q_demos_state))

# Box Plot of log_total by state with sorted states
ggplot(state_medians, aes(x = log_total, y = q_demos_state)) +
    geom_boxplot() +
```

```
theme_minimal() +
labs(title = "Box Plot of log_total by State", y = "State", x = "log_total")
```

Box Plot of log_total by State


```
# Box Plot of log_total by month
ggplot(train, aes(x = factor(month), y = log_total)) +
  geom_boxplot() +
  theme_minimal() +
  labs(title = "Box Plot of log_total by Month", x = "Month", y = "log_total")
```

