Sujet 1

I | Question de cours

Retrouver l'équation différentielle sur θ du pendule simple non amorti à l'aide du TPM.

$\Pi \mid ext{Quelques notions de ski } (\star)$

$\left(\mathbf{A}\right)$

Leçon n° 1: le remonte-pente

On considère une skieuse de masse m remontant une pente d'angle α à l'aide d'un téléski. Celui-ci est constitué de perches de longueur L accrochées à un câble parallèle au sol situé à une hauteur h.

On néglige les frottements de la neige sur les skis.

- 1. Quelles sont les trois forces que subit la skieuse?
- 2. Que sait-on sur chacune d'elles a priori?

On considère une skieuse de 50kg sur une pente de 15% (c'est-à-dire que la skieuse s'élève de 15 m lorsqu'elle parcourt horizontalement $100 \,\mathrm{m}$). La force exercée par la perche sur la skieuse sera supposée fixée et égale à $F = 100 \,\mathrm{N}$.

3. Existe-t-il un angle limite β_l pour lequel le contact entre les skis et le sol serait rompu?

On suppose maintenant que sa trajectoire est rectiligne et sa vitesse constante.

4. Quelle relation les 3 forces que subit la skieuse doivent-elles vérifier?

On note β l'angle que forme la perche du téléski avec la perpendiculaire à la pente.

- 5. Représenter les trois forces sur une même figure en repérant bien les angles α et β .
- 6. En déduire une relation entre m, g, α, β et F (la norme de la force exercée par la perche).
- 7. En négligeant la distance entre la rondelle et le sol, exprimer F en fonction m, g, α, h et L. Comment varie F avec α et h? Commenter.

B Leçon n° 2 : le virage

La skieuse est toujours sur le remonte pente et aborde une zone horizontale où sa trajectoire est un cercle de centre C et de rayon d. Sa célérité est toujours constante. On suppose pour les questions suivantes que la perche est contenue dans le plan formé par la droite SC et la verticale.

vue de dessus

8. Que peut-on dire de son accélération?

On a représenté ci-dessus différentes vues de la situation où la skieuse est modélisée par un point matériel S posé sur le sol. On néglige les frottements, on note \overrightarrow{F} la force exercée par la perche du téléski et γ l'angle qu'elle forme avec la verticale.

- 9. Déterminer $F = ||\vec{F}||$ en fonction de $m, v = ||\vec{v}||$ la célérité, d et γ .
- 10. En déduire $R = ||\vec{R}||$ en fonction de toutes les autres données.
- 11. Comment évolue R lorsque la célérité augmente ?
- 12. En pratique la perche n'est pas rigoureusement orthogonale à la trajectoire mais est également dirigée vers l'avant. Expliquer pourquoi.

Sujet 2

${ m I} \;\;|\; { m Question \; de \; cours}$

Énoncer et démontrer les théorèmes de la puissance mécanique et de l'énergie mécanique.

${ m II} \, \, ig| { m Pendule \, conique}$

Dans un champ uniforme de pesanteur \overrightarrow{g} vertical et vers le bas, un point matériel M de masse m tourne à la vitesse angulaire ω constante autour de l'axe (Oz) dirigé vers le haut en décrivant un cercle de centre O et de rayon R. M est suspendu à un fil inextensible de longueur L et de masse négligeable, fixé en un point A de (Oz). L'angle α de (Oz) avec AM est constant.

1.

- (a) Quel système de coordonnées utiliser ?
- (b) Effectuer un bilan des forces s'appliquant à la masse et les écrire dans la base choisie.
- (c) Appliquer le PFD puis exprimer $\cos \alpha$ en fonction de g, L et ω . En déduire que la vitesse angulaire doit forcément être supérieure à une vitesse angulaire limite ω_{lim} pour qu'un tel mouvement puisse être possible.
- (d) Que dire du cas où ω devient très grande?
- (e) Application numérique : calculer α pour $L=20\,\mathrm{cm}$ et $\omega=3\,\mathrm{tours}\,\mathrm{s}^{-1}$.

Sujet 3

I | Question de cours

Retrouver les énergies potentielles de forces classiques (poids, rappel élastique, force newtonienne en K/r^2).

II Oscillations d'un anneau sur un cerceau

Un cerceau de centre O et de rayon R est maintenu dans un plan vertical, et un anneau de masse m assimilé à un point matériel M peut glisser sans frottements le long de ce cerceau.

- 1. Qu'est-ce que l'hypothèse « sans frottements » implique pour la réaction du cerceau sur l'anneau ?
- 2. Écrire le PFD appliqué à l'anneau et le projeter dans une base adaptée.
- 3. En déduire l'équation différentielle régissant le mouvement.

On se place dans l'approximation des petits angles ($|\theta| < \theta_0 = 20^\circ$). Initialement, l'anneau est situé à la verticale en-dessous de O et il est lancé vers la droite, avec une vitesse initiale de norme v_0 .

- 4. En déduire l'équation horaire du mouvement.
- 5. À quelle condition sur v_0 l'approximation des petits angles est-elle vérifiée?