

KENYATTA UNIVERSITY SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY SCO400 PROJECT SOLUTION DESIGN

PROJECT TITLE: <u>COVID-19 CASELOAD AND MORTALITY</u> ANALYSIS AND PREDICTION WITH MACHINE LEARNING

submitted by

by

Name: IAN MOSES NJARI

Reg No: **J17/0803/2017**

on

May 4th, 2021

SUPERVISOR: Mr. Joseph Muriuki, M.Sc.

This solution design document is submitted in partial fulfillment of the requirements for a Bachelor of *Science (Computer Science) Degree* at Kenyatta University

Table of Contents

Introduc	ction	3
	on Architecture Design	
	Data Preprocessing modules	
	Data Stores	
	/eb Application	
	rss Design	
3. Datab	pase Design	9
	ace Design	
Conclusi	ion Notes	12

Introduction

This document outlines the design principles of the final product. It comprises of the design process, data formats, data preprocessing and interface design prototypes.

1. Solution Architecture Design

The final system will have the following components;

- a) Data pre-processing modules,
- b) Data-stores,
- c) The web application made up of;
 - Global choropleth/heat map,
 - Interactive Plotly Dashboard,
 - Report Generator,
 - Cases Forecasting Engine.

1.1 Data Preprocessing modules

After the preview of the data in a <u>Jupyter Notebook</u>, the code will be transferred to a python script that loads the data, processes it(described in the Process Design section of this document) and processes it and stores it the data stores.

A preview of the notebook is shown below;

1.2 Data Stores

The data stores are CSV/XSLX files containing the raw data, preprocessed data and other necessary files.

An example of the data files is shown below;

The data will then be fetched during plotting, analysis and Forecasting.

1.3 Web Application

The web application comprises the following modules;

- Global choropleth/heat map,
- Interactive Plotly Dashboard,
- Report Generator,
- Cases Forecasting Engine.

Below is a site map of the Web Application:

2. Process Design

The process begins through activation of an automatic script that fetches the data from the JHU CSSE repository. The code is as follows;

For cases data,

```
cases= pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/CO
VID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_
covid19_confirmed_global.csv')
```

For deaths data,

```
deaths= pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/C
OVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series
    covid19 deaths global.csv')
```

The cases data is in this format,

	Country/Region	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20	1/28/20	1/29/20	1/30/20		4/15/21	4/16/21	4/17/21	4/18/21	4/19/21	4/20/21	4/21/21
0	Afghanistan	0	0	0	0	0	0	0	0	0		57534	57612	57721	57793	57898	58037	58214
1	Albania	0	0	0	0	0	0	0	0	0		129128	129307	129456	129594	129694	129842	129980
2	Algeria	0	0	0	0	0	0	0	0	0	0.0	119142	119323	119486	119642	119805	119992	120174
3	Andorra	0	0	0	0	0	0	0	0	0		12641	12712	12771	12805	12805	12874	12917
4	Angola	0	0	0	0	0	0	0	0	0		23951	24122	24300	24389	24518	24661	24883
		100	1000	1001	100	1000	1400	100	1000	322			2.0	222			222	
187	Vietnam	0	2	2	2	2	2	2	2	2		2758	2772	2781	2785	2791	2800	2812
188	West Bank and Gaza	0	0	0	0	0	0	0	0	0		276407	278135	279753	280741	282270	284280	286028
189	Yemen	0	0	0	0	0	0	0	0	0		5657	5715	5770	5812	5858	5918	5960
190	Zambia	0	0	0	0	0	0	0	0	0	100	90532	90750	90844	90918	90942	91042	91119
191	Zimbabwe	0	0	0	0	0	0	0	0	0		37422	37534	37699	37751	37859	37875	37980

Drop all columns from the first date to the second last.

Since we need only the total cases on the last day for our map.

```
cols=df1[df1.columns[1:-1]]
df2=df1.drop(cols,axis=1)
```

The data frame is now in this format;

	Country/Region	4/24/21
0	Afghanistan	58730
1	Albania	130409
2	Algeria	120736
3	Andorra	13024
4	Angola	25492
	***	3844
187	Vietnam	2833
188	West Bank and Gaza	290259
189	Yemen	6105
190	Zambia	91317
191	Zimbabwe	38064

This data frame is unioned with country code data from plotly documentation to help with plotting of the choropleth map and output into a data store;

Perform inner join on the map code and cases(df2)

This step eliminates countries (Holy See,North Macedonia and Micronesia) and cruise ships (Diamond Princess and MS Zaandam)in the cases dataset.

df5=pd.merge(df2,df4,how='inner',left_on=['Country/Region'],right_on=['COUNTRY'])
df5=df5.drop('COUNTRY',axis=1)
df5

	Country/Region	4/24/21	CODE
0	Afghanistan	58730	AFG
1	Albania	130409	ALB
2	Algeria	120736	DZA
3	Andorra	13024	AND
4	Angola	25492	AGO
182	Vietnam	2833	VNM
183	West Bank and Gaza	290259	WBG
184	Yemen	6105	YEM
185	Zambia	91317	ZMB
186	Zimbabwe	38064	ZWE

187 rows × 3 columns

The process is repeated for the deaths data.

To obtain data for cases line plots, the initial data frame is transposed, new headers allocated, and data types changed to achieve the following data;

plot_df=df2.rename_axis(None, axis=1)
plot_df

	Date	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia		United Kingdom	Uruguay	Uzbekistan	Vanuatu	Venezuela
0	2020- 01-22	0	0	0	0	0	0	0	0	0	555	0	0	0	0	0
1	2020- 01-23	0	0	0	0	0	0	0	0	0	888	0	0	0	0	0
2	2020- 01-24	0	0	0	0	0	0	0	0	0		0	0	0	0	0
3	2020- 01-25	0	0	0	0	0	0	0	0	0		0	0	0	0	0
4	2020- 01-26	0	0	0	0	0	0	0	0	4		0	0	0	0	0
			444				(a.c.		640	200					142	acr.
454	2021- 04-20	58037	129842	119992	12874	24661	1217	2743620	209485	29576	100	4408644	169327	87225	3	185736
455	2021- 04-21	58214	129980	120174	12917	24883	1217	2769552	210518	29594		4411068	172601	87551	4	186745
456	2021- 04-22	58312	130114	120363	12942	25051	1217	2796768	211399	29638	100	4413834	175891	87935	4	188063
457	2021- 04-23	58542	130270	120562	13007	25279	1222	2824652	212114	29653	200	4416588	179537	88280	4	189381

The data is used to plot as well as stored in a data store as well.

The data will be used to predict the number of cases with a TimeSeries Forecasting model later.

3. Database Design

The project does not implement any traditional databases. Instead, excel and coma separated values (CSV) files are used to implement the data storage mechanism.

The data schema in the data files are as follows;

```
Cases
Cases (
 country/region char not null,
 22/1/2020 int,
.....
01/5/2021 int
)
CaseMapdata
Casemapdata (
Country/region char not null,
Total cases int not null,
CODE char not null
)
Deaths
Cases (
 country/region char not null,
 22/1/2020 int,
 01/5/2021 int
)
DeathsMapdata
Casemapdata (
Country/region char not null,
```

Total cases int not null,

```
CODE char not null
)
Cases_plot
Cases_plot(
Date date-time not null,
Afghanistan int not null,
Albania int not null,
Zambia int not null,
Zimbabwe int not null
)
Deaths_plot
Deaths_plot(
Date date-time not null,
Afghanistan int not null,
Albania int not null,
Zambia int not null,
Zimbabwe int not null
)
```

5. Interface Design

The Web application shall have Navigation links as shown below;

On clicking the links, the user will be re-directed to the following pages (prototypes);

Conclusion Notes

The illustrations shown in this document may differ from the final deliverables.