Analisi 2

Equazioni differenziabili a variabili separabili $y' = -2xy^2$

- 1. Cerco soluzioni costanti: $y' = 0 \Rightarrow -2xy^2 = 0 \Rightarrow y = 0$
- 2. Separo le variabili: $\frac{y'}{y^2} = -2x \Rightarrow \int y^{-2} dy = \int -2x dx \Rightarrow -\frac{1}{y} = -2\frac{x^2}{2} + c \Rightarrow y = \frac{1}{x^2 + c}$

Equazioni differenziali lineari

 $y' + 2y = e^x$

- 1. Cerco soluzioni costanti: $\mu(x) = e^{\int P(x)dx}$
- 2. Moltiplico l'equazione originale per il fattore integrante: $\mu(x)y' + \mu(x)P(x)y = \mu(x)Q(x). \text{ Il lato sinistro diventa una derivata di un prodotto: } \frac{d}{dx}(\mu(x)y) = \mu(x)Q(x) \text{ che diventa } \mu(x)y = \int \mu(x)Q(x)dx + C$
- 3. Isolo la variabile y: $y = \frac{1}{\mu(x)} \left(\int \mu(x) Q(x) dx + C \right)$

Risolvere e^{tM}

- 1. Calcolo autovalori di $M: \lambda_1, \lambda_2$
- 2. Calcolo autovettori di $M: v_1, v_2$
- 3. Costruisco la matrice $S=\begin{pmatrix}v_1&v_2\end{pmatrix}$ e la matrice diagonale $\Lambda=\begin{pmatrix}\lambda_1&0\\0&\lambda_2\end{pmatrix}$ e la matrice $S^{-1}.$
- 4. $e^{tM} = Se^{t\Lambda}S^{-1}$
- 5. Per problema di Cauchy omogeneo: $y(t) = e^{tM}y(0)$
- 6. Per problema di Cauchy non omogeneo: $y(t) = e^{tM}y(0) + e^{tM} \int_0^t e^{-sM}Q(s)ds$

Problemi di Cauchy

Es: Risolvi il problema di Cauchy: $y'(t) = y^2(t)$ con y(0) = -1

- 1. Ricavo le soluzioni costanti: $y'(t) = 0 \Rightarrow y^2(t) = 0 \Rightarrow y(t) = 0$
- 2. Separo le variabilie: $\frac{dy}{dx}=y^2\Rightarrow \int y^{-2}dy=\int dx\Rightarrow -\frac{1}{y}=x+c$
- 3. Usando la 2° eq. del sistema ricavo c: $y(0) = -1 \Rightarrow -\frac{1}{-1} = 0 + c \Rightarrow c = 1$
- 4. ottengo la soluzione: $y(t) = \frac{-1}{t+1}$

Equazioni di Bernoulli

Es: trova una soluzione generale dell'equazione di Bernoulli $y'=e^ty+y^{10}.\ [y=0]$

La forma generale è: $y' = a(x)y + b(x)y^{\alpha}$ con $\alpha \neq 1$ y = 0 è soluzione costante.

- 1. dividere per y^{α} : $\frac{y'}{y^{10}} = e^t y^{-9} + 1$
- 2. introduco $Z(x)=y^{1-\alpha}=y^{-9}.$ Riscrivendo in funzione di Z,l'eq sarà lineare.
- 3. Derivo Z e sostituisco: $Z' = -9y^{-10}y' \Rightarrow y' = -\frac{1}{9}Z'y^{10}$ $\frac{-9Z'y^{10}}{y^{10}} = e^tZ + 1 \Rightarrow Z' = \frac{-e^tZ}{9} \frac{1}{9}$ Allora $a(x) = -\frac{-e^t}{9}$ e $b(x) = \frac{1}{9}$
- 4. Ottenuta l'eq. lineare sirolvo come sopra separando le variabili.

EDO II

- 1. Scrivo polimio caratteristico: Es: $y'' 5y' 6y = 0 \Rightarrow \lambda^2 5\lambda 6 = 0$
- 2. Calcolo Δ e i valori di λ_1 e λ_2 e omogenea y_{omo}
 - $\Delta > 0 \Rightarrow y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
 - $\Delta = 0 \Rightarrow \lambda_1 = \lambda_2 \Rightarrow y(x) = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_2 x}$
 - $\Delta < 0 \Rightarrow \lambda = m \pm ni \Rightarrow y(x) = e^{mx} [c_1 \cos(nx) + c_2 \sin(nx)]$
- 3. Calcolo la soluzione particolare y_p Es: y'' + 9y = sin(3t)
 - Scrivo y_p basandomi su y_{omo} : $y_p = [A\cos(3t) + B\sin(3t)] \cdot t$ NB: Visto che $\sin(3t)$ è già soluzione dell'omogenea, aggiungo t
 - $\begin{array}{l} \bullet \quad \text{Calcolo} \ y_p' \in y_p'': \\ y_p' = Acos(3t) + Bsin(3t) + t \left(-3Asin(3t) + 3Bcos(3t) \right) \\ y_p'' = -3Asin(3t) + 3Bcos(3t) \\ \left(-3Asin(3t) + 3Bcos(3t) \right) + t \left(-9Acos(3t) 9Bsin(3t) \right) \end{array}$
 - L'eq è $y_p'' + 9y = sin(3t)$: sostituisco y_p : $y_p'' + 9y_p = -6Asin(3t) + 6Bcos(3t) + 9Atcos(3t) + 9Btsin(3t) = sin(3t)$
 - Svolgo i calcoli e ottengo A e B: $A = -\frac{1}{6}$ e B = 0
 - Sostiuisco A e B in y_p e ottengo la soluzione completa: $y_p(t) = -\frac{1}{\kappa}t\cos(3t)$
 - Scrivo la soluzione finale: $y = y_{omo} + y_p$

Sistemi di EDO

Metodo 1: sostituzione

Metodo 2: matriciale

$$\begin{cases} y_1' = y_1 + 2y_2 \\ y_2' = 4y_1 + 3y_2 \end{cases}$$

- 1. Ricavo A: $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$
- 2. Calcolo det(A- λ I): $det(A \lambda I) = (1 \lambda)(3 \lambda) 8 = 0$
- 3. Ricavo autovalori: $\lambda^2-4\lambda-5=0\Rightarrow (\lambda-5)(\lambda+1)=0$ quindi $\lambda_1=5$ e $\lambda_2=-1$
- 4. Calcolo gli autovettori associati:

$$\lambda_1 = 5 \Rightarrow \begin{bmatrix} -4 & 2\\ 4 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix} \Rightarrow x_1 = 2x_2$$

analogo per $\lambda_2 = -1$: $x_1 = -x_2$

5. Ottengo la soluzione: $y(t) = W(t) \cdot \underline{c}$ con W(t) matrice wronskiana e \underline{c} vettore delle costanti. Quindi $\underline{y}(t) = c_1 \mu_1 e^{\lambda_1 t} + c_2 \mu_2 e^{\lambda_2 t}$ con μ_1 e μ_2 autovettori. Quindi $\underline{y}(t) = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{5t}$

Serie

Telescopica: $\sum_{n=n_0}^{\infty} a_n \text{ con } a_n = b_{(n+1)} - b_n$ Geometrica: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ se |x| < 1 converge.

Geometrica complessa $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ se |z| < 1 converge. Posso ridurre una telescopica a una geometrica con n = 0

$$\sum_{n=2}^{\infty} \left(\frac{2}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n - \frac{2}{3}^0 - \frac{2}{3}^1$$

Bata sottrarre $b^0, b^1, \ldots, b^{n_0-1}$

Serie di potenze

 $\sum_{n=0}^{\infty} a_n (x - x_0)^n \in \mathbf{R}. \text{ di conv.}$ Es: $\sum_{n=0}^{\infty} \frac{x^n}{2n} = \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot x^n$

- 1. Calcolo il raggio di convergenza:
 - (a) $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$
 - (b) $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$
- 2. Dato R studio le frontiere dell'insieme di convergenza: $x \in (-2,2)$ $x = -2 \Rightarrow \sum_{n=0}^{\infty} \frac{-2^n}{2n} = \sum_{n=0}^{\infty} -1^n$ oscilla, quindi non converge. $x = 2 \Rightarrow \sum_{n=0}^{\infty} \frac{(-2)^n}{2n} = \sum_{n=0}^{\infty} 1^n = +\infty$ diverge. Dato che diverge in entrambi i casi escludo le frontiere: I = (-2,2)

Dunque converge semplicemente e non totalmente. Esercizio serie di potenze con serie geometrica:

$$\frac{1}{1+x^4} = \sum (-x^4)^n$$
Moltiplico per 2x:
$$\frac{2x}{1+x^4} = \sum 2x(-x^4)^n = 2\sum (-1)^n x^{4n+1}$$
Integro:
$$\int \frac{2x}{1+x^4} dx = \sum 2(-1)^n \int x^{4n+1} dx = \sum (-1)^n \frac{x^{4n+2}}{2n+1}$$

Convergenza

- $\bullet\,$ Convergenza in media quadratica: f periodica e regolare a tratti
- $\bullet\,$ Convergenza puntuale: $x \neq \pi + 2k\pi$ dove è f è continua
- Convergenza totale: f è continua (non è unica condizione) Serie di potenze su intervallo chiuso converge totalmente.
 NB: Totale implica puntuale e media quadratica.
- Sia $\sum_{n=1}^{\infty} (-1)^n a_n$ una serie con $a_n \geq 0$, se $\lim_{n \to \infty} a_n = 0$ e $a_{n+1} \leq a_n$ per $n \geq n_0$, allora per il criterio di Leibniz, la serie converge.
- Se la serie di Fourier ha derivata prima continua ed è limitata in un intervallo allora converge totalmente.
- Se ho serie geometrica con numeratore contentente sin o cos e il denominatore è una potenza di n allora la serie converge totalmente.
- Una serie di potenze ha convergenza totale in ogni intervallo chiuso contenuto nell'insieme di convergenza.
- Una SDF converge totalmente se $\sum (|a_n| + |b_n|) < \infty$ converge

Serie di Fourier

- 1. La serie generale è $f(x) = a_0 + \sum_{k=1}^{\infty} (a_k k \cos(kx) + b_k \sin(kx))$
- 2. Si calcola $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$
- 3. Si calcola $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$
- 4. Si calcola $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$

NB:

- Se la funzione è pari allora $b_k = 0$, se è dispari allora $a_k = 0$
- Se la funzione è pari si può trasformare: $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx$. Al posto di π potrebbe esserci $\frac{\pi}{2}$. La stessa trasformazione vale anche per a_k .
- Se la serie di Fourier è di una funzione a tratti bisogna valutare ogni intervallo.
- Somma della serie di Fourier: $F(x) = \lim_{m \to \infty} F_m(x)$

Curve

- Chiusa? Verificare se la funzione è uguale agli estremi. Es: $r(t) = (t^2, t^2 + 1, \cos(t)) \text{ con } t \in [-\pi, \pi] \Rightarrow r(-\pi) = r(\pi)$
- Regolare? se la derivata prima è sempre diversa da 0. Es: $r'(t) = (2t, 2t, -\sin(t))$ se $t = 0 \Rightarrow r'(0) = 0$ non è regolare.
- Lunghezza: $\int_a^b ||r'(t)|| dt$. Es: $||r'(t)|| = \sqrt{9\sin^2(t)\cos^4(t) + 9\cos^2(t)\sin^4(t)}$ la lunghezza è $\mathcal{L} = \int_{0}^{2\pi} ||r'(t)|| dt = 6$
- Versore tangente $T(t) = \frac{r'(t)}{\|r'(t)\|}$
- Versore ortogonale: inverto le componenti e cambio il segno di una rispetto al versore tangente.

Curve di livello

Disegna una curva di livello 3 della funzione $f(x,y) = e^{x^2+y}$ Scrivo $e^{x^2+y}=3$. (3 è il valore del livello)

Integrali curvilinei

$$\int_{\gamma} f ds = \int_{a}^{b} f(r(t)) \left\| r'(t) \right\| dt$$

Es: $\delta(x, y, z) = \frac{x^2 |y|}{\sqrt{\frac{4}{6}x^2 + \frac{9}{4}y^2}}, \mathbb{I} = [0, 2], r(\theta) = (3\cos(\theta), 2\sin(\theta), 1),$

$$||r'(\theta)|| = \sqrt{9sin^2(\theta) + 4cos^2(\theta)}$$

1. Calcolo
$$\delta(r(\theta))$$
: sostituisco le x di $r(\theta)$:
$$\delta(r(\theta)) = \frac{9cos^2(\theta)|2sin(\theta)|}{\sqrt{\frac{4}{9}9cos^2(\theta) + \frac{9}{2}4sin^2(\theta)}}$$

2. Calcolo l'integrale:
$$\int \delta(r(\theta)) \|r'(\theta)\| = \int_0^2 9(\cos(\theta))^2 2|\sin(\theta)|d\theta = 24$$

Dominio

Tipologie:

- Limitato: si può inscrivere in un cerchio
- Illimitato: non si può inscrivere in un cerchio
- Aperto: Tutta la frontiera non appartiene al dominio
- Chiuso: Tutta la frontiera appartiene al dominio
- Né aperto né chiuso: la frontiera appartiene solo in parte al dominio
- Connesso: dati due punti all'interno del dominio, posso collegarli senza uscire dal dominio

Limiti

Limiti notevoli:

- $\lim_{z\to 0} \frac{\sin z}{\sin z} = 1 \Leftrightarrow \sin(z)_{(z\to 0)} \sim z$
- $\lim_{z\to 0} \frac{e^z-1}{} = 1 \Leftrightarrow e^z 1_{(z\to 0)} \sim z$
- $\lim_{z\to 0} \frac{\log(1+z)}{z} = 1 \Leftrightarrow \log(1+z)_{(z\to 0)} \sim z$
- $\lim_{z\to 0} \frac{1-\cos z}{1-z^2} = 1 \Leftrightarrow (1-\cos z)_{(z\to 0)} \sim \frac{1}{2}z^2$
- $\lim_{z\to 0} \frac{(1+z)-1}{\alpha^z} = 1 \Leftrightarrow (1+z)^{\alpha} 1_{(z\to 0)} \sim \alpha z$

Risoluzione di limiti:

- 1. Controllo se posso usare limiti notevoli
- 2. Converto in coordinate polari (NB: il limite diventarà $\rho \to 0$)

Es:

$$\begin{split} & lim_{(x,y)\to(0,0)} \frac{1+x^2y}{\sqrt{2x^2+y^2}} = lim_{(x,y)\to(0,0)} \frac{x^2y}{\sqrt{2x^2+y^2}} \\ & = lim_{\rho\to0} \frac{\rho^2 cos^2(\theta)\rho sin(\theta)}{\sqrt{2\rho^2 cos^2(\theta)+\rho^2 sin^2(\theta)}} = lim_{\rho\to0} \frac{\rho cos^2(\theta)sin(\theta)}{\sqrt{2cos^2(\theta)+sin^2(\theta)}} = 0 \end{split}$$

Differenziabilità

- f è differenziabile in $x_0 \in \mathbb{D}(f)$ se $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-\langle \nabla f(x_0),h\rangle}{\|h\|}=0$, quindi se esiste il gradiente $\nabla f(x_0)$
- Differenziabilità implica derivabilità
- $\nabla f(x,y) = (f_x(x,y), f_y(x,y))$
- Teorema gradiente: $\frac{\delta f}{\delta v}(P) = \langle \underline{v} \cdot \nabla f(P) \rangle$ dove $\frac{\delta f}{\delta v}$ è la derivata direzionale di f lungo v versore, P punto.

Es:
$$f(x,y) = x^2y^3 P(2,3)$$

- 1. Controllo se f(x,y) è continua.
- 2. Calcolo derivate parziali: $f_x = 2xy^3$ e $f_y = 3x^2y^2$
- 3. Calcolo gradiente: $\nabla(2,3) = (4 \cdot 3^3, 12 \cdot 3^2)$
- 4. Calcolo derivata direzionale: $\frac{\delta f}{\delta v}(2,3) =$ $\langle (108, 108) \cdot (\cos(\alpha), \sin(\alpha)) \rangle = 108(\cos(\alpha) + \sin(\alpha))$. NB: Se non ho v allora pongo $(cos(\alpha), sin(\alpha))$
- Teorema ortogonalità gradiente: Se $f: \mathbb{R}^n \to \mathbb{R}$ è differenziabile, allora $\nabla f(\mathbf{x}) \cdot \mathbf{v} = 0$ per ogni vettore \mathbf{v} tangente alla curva di livello di f in \mathbf{x} .
- Posso calcolare la pendenza: (retta tangente)
 - Pendenza minima: $f_{\min} = -\|\nabla f(x_0, y_0)\|$
 - Direzione minima: $v_{\min} = -\frac{\nabla f(x_0, y_0)}{\|\nabla f(x_0, y_0)\|}$
 - Pendenza massima: $f_{\text{max}} = \|\nabla f(x_0, y_0)\|$
 - Direzione massima: $v_{\text{max}} = \frac{\nabla f(x_0, y_0)}{\|\nabla f(x_0, y_0)\|}$

Estremi liberi

(calcolo estremi relativi) $f(x,y) = 2x^2 + y^3 - 3x^2 - 3y \text{ con } \mathbb{D} = \mathbb{R}^2$

1. Studio il ∇ e lo pongo = 0

$$\nabla f = 0 \Rightarrow \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \Rightarrow \left\{ 6x^2 - 6x = 03y^2 - 3 = 0 \right\}$$

- 2. I punti sono tutte le possibili coppie che risolvono il sistema: A(0,-1), B(0,1), C(1,-1), D(1,1)
- 3. Creo la H_F e calcolo il det.

$$H_f = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} 12x - 6 & 0 \\ 0 & 6y \end{pmatrix} \Rightarrow det(H_f) = 36y(2x - 1)$$

- 4. Studio det per ogni punto: $det(H_A) = \dots$
 - (a) det > 0 e $f_{xx} > 0 \Rightarrow$ minimo
 - (b) det > 0 e $f_{xx} < 0 \Rightarrow$ massimo
 - (c) $det < 0 \Rightarrow$ punto di sella
- 5. Se det = 0
 - Studio segno: $Sgn(f(x,y) f(x_0,y_0))$ dati $x_0 = 0$ e $y_0 = 0$: $sqn(f(x,y)) = sqn(2x^2 - 3xy^2 + y^4)$
 - $2x^2 3xy^2 + y^4 > 0$
 - Faccio disegno qualitativo
 - Studio disegno. In questo caso intorno all'origine ho + e quindi è un punto di sella.

Estremi vincolati

$$z = f(x, y) = x^3 - xy^2$$

- 1. Scrivo e disegno le restrizioni:
 - Restrizione di f su OA: $\begin{cases} f(x,0) = x^3 \\ 0 \le x \le 1 \end{cases}$
 - Restrizione di f su AB: $\begin{cases} f(1,y) = 1 y^2 \\ -1 \le y \le 1 \end{cases}$
 - Restrizione di f su BC: $\begin{cases} f(x,1) = x^3 x \\ -1 \le y \le 1 \end{cases}$
 - Restrizione di f su OC: $\begin{cases} f(0,y) \to 0 & \text{Linea di livello} \\ -1 \le y \le 1 \end{cases}$
- 2. Trovo i candidati: MAX: A(1,0) e $MIN: D(\frac{1}{1/2},1)$
- 3. Se avessi più candidati dovrei vedere il valore di f nei punti candidati e confrontarli.

Metodo comodo

(moltiplicatori di Lagrange)

Vincolo: $x^2 + y^2 = 1$, funzione $f(x, y) = e^{x^2 - y}$

1. Scrivo il sistema composto da $f_x = \lambda V$ e $f_y = \lambda V$

$$\begin{cases} 2xe^{x^2 - y} = 2\lambda x \\ -e^{x^2 - y} = 2\lambda y \\ x^2 + y^2 = 1 \end{cases}$$

2. Risolvo il sistema e scrivo i punti

$$\begin{cases} x=0 \\ y=\pm 1 \end{cases} \qquad \begin{cases} x=\pm \frac{\sqrt{3}}{2} \\ y=-\frac{1}{2} \end{cases} \qquad P_1,P_2,P_3,P_4$$

3. Studio $f(P_i)$ e scrivo MAX e MIN: $max f = e^{\frac{5}{4}}$ e $min f = e^{-1}$

Integrali

Primitive notevoli:

- $\bullet \int 1dx = x + c$
- $\int \frac{1}{z} dx = \log|x| + c$
- $\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + c$

- $\int a^x dx = \frac{a^x}{\log(a)} + c$
- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $\forall n \neq -1$
- $\int \sin x dx = -\cos x + c$
- $\int \cos x dx = \sin x + c$
- $\int \cos(nx)dx = \frac{1}{n}\sin(nx)$
- $\int \sin(nx)dx = -\frac{1}{n}\cos(nx)$
- $\int \frac{1}{1+x^2} dx = \arctan x + c$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$
- $\int \frac{1}{\sqrt{x^2-1}} dx = \arccos x + c$

Integrazione per parti: $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$ Integrazione per sostituzione: $\int f(g(x))g'(x)dx = \int f(u)du$ con u = g(x) e du = g'(x)dx. Cambiano anche gli estremi di integrazione da a a g(a), uguale per b.

Per le derivate vale la regola del quozionte:

$$D\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

integrali tripli

 $\iint_{\Omega} f(x,y,z) dx dy dz \text{ con }$ $\Omega = \{(x,y,z) \in \mathbb{R}^3 | x \geq 0, y \geq 0, z \geq 0, x+y+z \leq 2 \}$

1. Studio il vincolo Ω disegnandolo: è un tetraedro con vertici in $(0,0,0),\,(2,0,0),\,(0,2,0)$ e (0,0,2)

- 2. Devo scomporre il vincolo per ottenere i limiti di integrazione: $0 \le x \le 2, \ 0 \le y \le 2 x, \ 0 \le z \le 2 x y$. nei vincoli degli integrali più esterni non devono apparire le variabili degli integrali più interni.
- 3. Calcolo l'integrale: $\int_0^2 \int_0^{2-x} \int_0^{2-x-y} f(x,y,z) dz dy dx$ $\iint \left(\int_0^{2-x-y} xz dz \right) dx dy$
- ottengo un integrale doppio che posso risolvere analogaente a come ho fatto sopra.

NB se passo a coordinate polarie o sferiche, l'integrale doppio diventa: $\int_{-\pi}^{\pi} e^{-\alpha} \cos \theta$

$$\iint g(\rho, \theta) \rho d\rho d\theta \qquad \begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

Varie

Prodotto tra matrici:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a \cdot e + b \cdot g & a \cdot f + b \cdot h \\ c \cdot e + d \cdot g & c \cdot f + d \cdot h \end{pmatrix}$$

Calcolo autovalori:

$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0 \Rightarrow (a - \lambda)(d - \lambda) - bc = 0$$

Calcolo autovettori:

$$\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Determinante:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Formule duplicazione:

 $sin(2\alpha) = 2sin(\alpha)cos(\alpha)$

 $cos(2\alpha) = cos^2(\alpha) - sin^2(\alpha)$

 $cos(2\alpha) = 1 - 2sin^2(\alpha)$

 $\cos(2\alpha) = 2\cos^2(\alpha) - 1$

Identità di Parseval:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

Equazione piano tangente a funzione f(x,y) in (x_0,y_0) :

 $\begin{aligned}
z &= f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) \\
&= \nabla f(x_0, y_0) \cdot (x - x_0, y - y_0) + f(x_0, y_0)
\end{aligned}$

Matrice hessiana:

$$H_f = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$

Rotore

 $\nabla \times \underline{v}$ con \underline{v} vettore direzione.

Rotore nullo implica che il campo è conservativo.

Per un campo vettoriale $\mathbf{F} = (F_1, F_2, F_3)$ in \mathbb{R}^3 , la divergenza è definita come: div $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$

Dove $\nabla \cdot$ rappresenta l'operatore divergenza, che applicato a ${\bf F}$ somma le derivate parziali delle componenti del campo rispetto alle loro rispettive variabili.

Sviluppo in serie di Mac Laurin:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

Serie di Taylor funzione di due variabili del secondo ordine:
 $f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + \frac{1}{2}f_{xx}(a,b)(x-a)^2 + f_{xy}(a,b)(x-a)(y-b) + \frac{1}{2}f_{yy}(a,b)(y-b)^2$
Scala degli infiniti:

Per $x \to \infty$:

$$\log(x) < x \approx kx < x^2 < x^3 < e^x < e^{x^2} < x! < x^x$$
 Per $x \to 0$:
$$x^x < x! < e^{-x^2} < e^{-x} < x^3 < x^2 < x \approx kx < \log(x)$$
 Teorema di Schwarz:

Ordine derivate parziali è irrilevante: $f_{xy} = f_{yx}$

Teorema di Weierstrass: Ogni funzione continua su un intervallo chiuso è limitata e raggiunge il massimo e il minimo.

Esistenza e unicità locale di soluzione di un problema di Cauchy: Siano $f:A\subseteq\mathbb{R}^{n+1}\to\mathbb{R}$, con A aperto in \mathbb{R}^n ; $(t_0,y^0)\in A$, con $t_0\in\mathbb{R}^n$ e $y^0\in\mathbb{R}$ $K:=[t_0-r,t_0+r]\times\overline{B}_b(y^0)$ un compatto contenuto in A. Allora se f continua in A e le derivate parziali di f rispetto a y_i sono continue in A, allora esiste $\delta>0$ e esiste un'unica soluzione al problema di Cauchy:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y^0 \end{cases} \quad \forall t \in [t_0 - \delta, t_0 + \delta]$$

Esempio integrazione serie geometrica:

$$arctan(x^2) = \int \frac{2x}{1+x^4} dx = \sum_{n=0}^{\infty} 2(-1)^n \int x^{4n+1} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{4n+2}$$

Prodotto vettoriale tra due vettori:

$$\underline{a} \times \underline{b} = \begin{pmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} = (a_2b_3 - a_3b_2)i - (a_1b_3 - a_3b_1)j + (a_1b_2 - a_2b_1)k$$

Prodotto scalare tra due vettori:

 $\underline{a} \cdot \underline{b} = a_1b_1 + a_2b_2 + a_3b_3$

Teorema 1. Teorema Formula risolutiva per EDO lineari $1\,^\circ$ ordine

 $a, b: J \subseteq \mathbb{R} \to \mathbb{R}$ y'(t) = a(t)y(t) + b(t)L'integrale generale è dato dalla formula:

$$y(t) = e^{A(t)} + \left(\int e^{-A(x)} b(x) dx + c \right) \quad \forall c \in \mathbb{R}$$

dove A(t) è una primitiva di a.

Dimostrazione 1. da sapere all'esame

- Porto ay sulla sinistra y' ay = b
- Moltiplico l'equazione per e^{-A} $e^{-A}y' - e^{-A}ay = e^{-A}b$
- Riconosco $y'(t)e^{-A(t)} a(t)y(t)e^{-A(t)} = (y(t)e^{-A(t)})$ Quindi la EDO iniziale si riscrive equivalentemente: $(ye^{-A})' = be^{-A}$
- • Integro $y(t)e^{-A(t)} = \int be^{-A(t)}dt + c$
- Moltiplico tutto per $e^{A(t)}$ $y(t) = e^{A(t)} \left(\int be^{-A(t)} dt + c \right)$

Teorema 2. Teorema di struttura dell'integrale generale di EDO del 2° ordine lineari omogenee

Siano $a, b, c: I \subseteq \mathbb{R} \to \mathbb{R}$ funzioni continue $e \ a \neq 0$ in I. L'integrale generale dell'eg omogenea

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$

è uno spazio vettoriale di dimensione 2, cioè le soluzioni sono tutte e sole della forma:

$$y_0(t) = c_1 y_{0_1} + c_2 y_{0_2} \quad \text{con } c_1, c_2 \in \mathbb{R}^n$$

dove y_{0_1}, y_{0_2} sono due soluzioni linearmente indipendenti.

Dimostrazione 2. da sapere all'esame

- L'integrale generale dell'omogenea è: $W = \{ y \in V : ay''(t) + by'(t) + cy(t) = 0 \}$
- $W \ e$ un sottospazio vettoriale di $V \Leftrightarrow e$ chiuso rispetto alla somma e rispetto al prodotto per uno scalare. Questo è vero grazie al principio di sovrapposizione (caso particolare dell'omogenea).
- Devo dimostrare che W ha dimensione 2.
 - i) Determinare 2 soluzioni lineari indipendenti dell'equazione y_{0_1}, y_{0_2}
 - ii) Dimostrare che ogni soluzione y della EDO si scrive come combinazione lineare di y_{0_1}, y_{0_2}
 - i) Scelgo y₀₁ soluzione del problema di Cauchy.

$$\left\{ \begin{array}{l} ay_{0_{1}}^{\prime\prime}(t)+by_{0_{1}}^{\prime}(t)+cy_{0_{1}}(t)=0\\ y_{0_{1}}(0)=1\\ y_{0_{1}}^{\prime}(0)=0 \end{array} \right.$$

Verifico che y_{0_1}, y_{0_2} sono soluzioni lineari indipendenti. Se per assurdo fossero una multiplo dell'altra $y_{0_1}(t) = \lambda y_{0_2}(t) \quad \forall t$

In particolare, per t = 0 avrei $y_{0_1}(0) = \lambda y_{0_2}(0)$ avrei trovato $1 = \lambda \cdot 0$ assurdo.

ii) Sia $y_0(t)$ soluzione dell'EDO, cerco $c_1, c_2 \in \mathbb{R}$ tali che $y_0(t) = c_1 y_{0_1}(t) + c_2 y_{0_2}(t)$ $y_0(t) = c_1 y_{0_1}(t) + c_2 y_{0_2}(t) = c_1$ $y_0'(t) = c_1 y_{0_1}'(t) + c_2 y_{0_2}'(t) = c_2$

In conclusione la funzione:

$$z(t) = y_0(0) \cdot y_{01}(t) + y'_0(0) \cdot y_{02}(t)$$

risolve lo stesso problema di Cauchy di $y_0(t)$ e quindi. grazie al teorema di esistenza e unicità di Cauchy, coincidono:

$$y_0(t) = z(t) \quad \forall t,$$

 $cioè y_0(t)$ si scrive come combinazione lineare di y_{0_1}, y_{0_2} con coefficienti $c_1 = y_0(0)$ e $c_2 = y_0'(0)$.

Teorema 3. Calcolo del raggio di convergenza

Data una serie di potenze reale $\sum_{n=0}^{\infty} a_n (x-x_0)^n$

- i) se il limite esiste. $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{|a_n|}{|a_{n-1}|}$ allora la serie di potenze ha raggio di convergenza R.
- ii) se esiste il limite $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$ allora la serie di potenze ha raggio di convergenza R

Dimostrazione 3. da sapere all'esame

La serie di potenze converge assolutamente nel punto $\overline{x} \in \mathbb{R}$ se e

 $\sum_{n=0}^{\infty} |a_n| |\overline{x} - x_0|^n$ converge.

- se il criterio del rapporto è applicabile, ho convergenze se e $\lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|} = R$
- se il criterio della radice è applicabile, la serie converge se $\lim_{n\to\infty} \sqrt[n]{b_n} < 1$ e non converge se $\lim_{n\to\infty} \sqrt[n]{b_n} > 1$ infatti, $\lim_{n\to\infty} \sqrt[n]{b_n} < 1 \Leftrightarrow \lim_{n\to\infty} (|a_n| \cdot |\overline{x} - x_0|^n)^{\frac{1}{n}} < 1$ $\frac{1}{\lim_{n\to\infty}|\overline{x}-x_0|} \cdot \lim_{n\to\infty}|a_n|^{\frac{1}{n}} < 1 \iff |\overline{x}-x_0| < \frac{1}{\lim_{n\to\infty}|a_n|^{\frac{1}{n}}} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{|a_n|}} = R$

Teorema 4. Calcolo dei coefficienti di Fourier

Sia $f: \mathbb{R} \to \mathbb{R}, 2\pi$ una funzione periodica e somma di una serie trigonometrica

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

Supponiamo inoltre di poter integrare termine a termine. Allora:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Dimostrazione 4. da sapere all'esame

• Integro f in $(-\pi, \pi)$, uso integrazione termine a termine e formula di ortogonalità:

$$\int_{-\pi}^{\pi} f(x)dx = \int_{-\pi}^{\pi} \left(a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right) \right) dx$$

$$= \int_{-\pi}^{\pi} a_0 dx + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos(nx) dx + \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin(nx) dx$$

$$a_0 = \int_{-\pi}^{\pi} 1 dx = 2\pi a_0$$

• Per trovare a_n , moltiplico f per $\cos nx$, integro in $(-\pi, \pi)$, uso l'integrabilità termine a termine ele formule di ortogonalità:

$$\int_{-\pi}^{\pi} f(x) \cos(nx) dx =$$

$$\int_{-\pi}^{\pi} \left(a_0 + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right) \right) \cos(nx) dx$$

$$= a_0 \int_{-\pi}^{\pi} \cos(nx) dx + \sum_{k=1}^{\infty} a_k \int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx +$$

$$\sum_{k=1}^{\infty} b_k \int_{-\pi}^{\pi} \sin(kx) \cos(nx) dx$$

$$= a_n \int_{-\pi}^{\pi} \cos^2(nx) dx = a_n \pi$$

• Per trovare b_n , moltiplico per $\sin(nx)$

Criterio di Leibniz: una serie del tipo $\sum_{k=0}^{\infty} (-1)^k a_k$ converge se a_k è

Piano tangente: $z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ Formula Taylor ordine n: $f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$ Resto di Peano: $R_n(x) = o[(x - x_0)^n]$

Resto di Lagrange: $R_n(x) = \frac{f^{n+1}(c)}{(n+1)!}(x-x_0)^{n+1}$ NB: c è cost incogn Derivata direzionale: $D_v f(x_0, y_0) = \nabla f(x_0, y_0) \cdot v$ prodotto scalare Derivate e int utili:

$$\begin{split} &\frac{\delta}{\delta x} n cos(kx^m) = -kmnx^{m-1} sin(kx^m) \\ &\frac{\delta}{\delta x} n x^j cos(kx^m) = nx^{j-1} cos(kx^m) - kmx^m sin(kx^m) \\ &\frac{\delta}{\delta x} x^j e^{mx} = x^{j-1} e^{mx} (j+mx) \\ &\int x^j e^{mx} dx = \frac{e^{mx} (mx-1)}{m^2} + c \\ &\frac{\delta}{\delta x} log(x+k) = \frac{1}{x+k} \\ &\int log(x+k) = (k+x) log(x+k) - x + c \end{split}$$

Teorema 5. Invarianza della lunghezza di una curva per riparametrizzazioni

 $[a,b] \subseteq \mathbb{R} \ e \ r : [a,b] \to \mathbb{R}^3 \ la \ parametrizzazione \ di \ una \ curva \ rego$ lare avente sostegno γ .

 $underline[v]: [c,d] \to \mathbb{R}^3, \ \underline{v}(s) = \underline{r}(\phi(s)) \ \dot{e} \ una \ parametrizzazione$ equivalente con sosteano δ .

Allora: $lunghezza(\gamma) = lunghezza(\delta)$

Dimostrazione 5. da sapere all'esame

 $lunghezza(\gamma) := \int_a^b \|\underline{r}'(t)\| dt$ $lunghezza(\delta) := \int_{c}^{d} \|\underline{v}'(s)\| ds$

$$\|\underline{v}'(s)\| = \|\underline{r}'(\phi(s))\| \cdot |\phi'(s)|$$

Quindi lunghezza(δ) = $\int_{c}^{d} ||\underline{r}'(\phi(s))|| \cdot |\phi'(s)| ds$ Posso definizione di parametrizzazione eqauivalente, ϕ è biunivoca, cioè sempre crescente o sempre decrescente. Supponiamo $\phi'(s) > 0$ per ogni $s \in [c, d]$.

Allora lunghezza(δ) = $\int_{c}^{d} ||\underline{r}'(\phi(s))|| \cdot \phi'(s) ds$. Cambio di variabile nell'integrale $t = \phi(s)$ e $dt = \phi'(s)ds$

 $\int \|\underline{r}'(t)\| dt = \text{lunghezza}(\gamma)$

Teorema 6. Differenziabile implica continua

Siano $A \subseteq \mathbb{R}^2$ aperto, $\underline{x}_0 \in A$ e $f: A \to \mathbb{R}$ differenziabile in \underline{x}_0 . Allora $f \ \dot{e} \ continua \ in \ \underline{x}_0$.

Dimostrazione 6. da sapere all'esame

Dobbiamo dimostrare che: $\lim_{x\to x_0} f(x) = f(x_0)$ Essendo f differenziabile in \underline{x}_0 :

$$f(\underline{x}) - f(\underline{x}_0) = \langle \nabla f(\underline{x}_0), \underline{x} - \underline{x}_0 \rangle + o(\|\underline{x} - \underline{x}_0\|)$$
$$|f(\underline{x}) - f(\underline{x}_0)| = |\langle \nabla f(\underline{x}_0), \underline{x} - \underline{x}_0 \rangle + o(\|\underline{x} - \underline{x}_0\|)|$$

disuguaglianza triangolare: $\leq |\langle \nabla f(\underline{x}_0), \underline{x} - \underline{x}_0 \rangle| + o(||\underline{x} - \underline{x}_0||)$

Cauchy-Schwarz: $\leq \|\nabla f(\underline{x}_0)\| \cdot \|\underline{x} - \underline{x}_0\| + o(\|\underline{x} - \underline{x}_0\|)$

Quindi:

$$\lim_{x \to x_0} |f(\underline{x}) - f(\underline{x})| = 0$$

cioè

$$\lim_{\underline{x} \to \underline{x}_0} f(\underline{x}) = f(\underline{x}_0)$$

Teorema 7. Formula del gradiente

 $A \subseteq \mathbb{R}^2$ aperto, $\underline{x}_0 \in A$ e $f: A \to \mathbb{R}$ differenziabile in \underline{x}_0 . Allora f ammette derivate direnzionali in ogni direzione v e inoltre

$$\frac{\partial f}{\partial v}(\underline{x}_0) = \langle \nabla f(\underline{x}_0), \underline{v} \rangle$$

Dimostrazione 7. da sapere all'esame

Devo dimostrare che

$$\lim_{t\to 0} \frac{f(\underline{x}_0+t\underline{v})-f(\underline{x}_0)}{t} = \langle \nabla f(\underline{x}_0),\underline{v}\rangle$$

Scelgo h = tv nella definizione di differenziabilità:

$$f(\underline{x}_0 + t\underline{v}) - f(\underline{x}_0) = \langle \nabla f(\underline{x}_0), t\underline{v} \rangle + o(||t\underline{v}||)$$

Divido per t e faccio il limite $t \to 0$:

$$\lim_{t \to 0} \frac{f(\underline{x}_0 + t\underline{v}) - f(\underline{x}_0)}{t} = \langle \nabla f(\underline{x}_0), \underline{v} \rangle$$

Teorema 8. ortogonalità del gradiente alle curve di livello ovvero direzione di crescita nulla

Sia $A \subseteq \mathbb{R}^2$ aperto, $x_0 \in A$ e $f: A \to \mathbb{R}$ differenziabile in A. L'insieme di livello I_k è il sostegno di una curva regolare \underline{r} . Allora:

$$\langle \nabla f(\underline{r}(t)), \underline{r}'(t) \rangle = 0 \quad \forall t$$

Dimostrazione 8. da sapere all'esame

Per ipotesi I_k coincide con il sostegno della curva regolare r(t),

$$I_k = \{\underline{r}(t), t \in J\}$$

In particolare f(r(t)) = k per ogni $t \in J$.

Chiamo $F: J \to \mathbb{R}$ la funzione composta $F(t) = f(r(t)) = f \circ r(t)$. Da un lato $F(t) = k \quad \forall t \Rightarrow F'(t) = 0 \quad \forall t.$

D'altro lato, per il teorema di derivazione della funzione compo-

$$F'(t) = \langle \nabla f(\underline{r}(t)), \underline{r}'(t) \rangle \longrightarrow \langle \nabla f(\underline{r}(t)), \underline{r}'(t) \rangle = 0$$

Teorema 9. Classificazione dei punti critici: Criterio della $matrice\ Hessiana$

 $A \subseteq \mathbb{R}^2$ aperto, $f \in C^2(A)$.

 $x_0 = (x_0, y_0) \in A$ punto critico di f allora.

Denotiamo q la fomra quadratica indotta da $H_f(x_0)$, cioè:

$$q(h_1, h_2) = (h_1, h_2) \cdot H_f(\underline{x}_0) \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

Allora:

- i) Se q è definita positiva allora x_0 è punto di minimo.
- ii) Se q è definita negativa allora \underline{x}_0 è punto di massimo.
- iii) Se q è indefinita allora \underline{x}_0 è punto di sella.

Oss: Se q è indefinita il criterio della matrice Hessiana non da informazioni.

Dimostrazione 9. da sapere all'esame

Essendo $\nabla f(x_0) = 0$, la formula di Taylor al secondo ordine di-

$$f(\underline{x}_0 + \underline{h}) = f(\underline{x}_0) + \frac{1}{2}q(\underline{h}) + o(\|\underline{h}\|^2)$$

- i) Se q è definita positiva, cioè $q(\underline{h}) > 0 \quad \forall \underline{h}$
 - $f(x_0 + h) > f(x_0) + o(\|h\|^2)$
 - in una palletta $f(\underline{x}_0 + \underline{h}) > f(\underline{x}_0)$
 - \underline{x}_0 è punto di minimo locale
- ii) Se q è definita negativa, cioè $q(h) < 0 \quad \forall h$
 - $f(x_0 + h) < f(x_0) + o(||h||^2)$
- iii) Se q è indefinita, cioè $\exists \underline{h}_n, \underline{h}_n$ t.c. $q(\underline{h}_n) > 0$ e $q(\underline{h}_n) < 0$
 - $f(\underline{x}_0 + \underline{h}_p) > f(\underline{x}_0) + o(\left\|\underline{h}_p\right\|^2)$
 - $f(x_0 + h_n) < f(x_0) + o(\|h_n\|^2)$
 - \underline{x}_0 è punto di sella

Teorema 10. la trasf. in coordinate sferiche

$$\begin{cases} T_1(r,\phi,\theta) = r\sin\phi\cos\theta \\ T_2(r,\phi,\theta) = r\sin\phi\sin\theta & \text{con } \phi \in (0,\pi) \text{ e } \theta \in [0,2\pi) \\ T_3(r,\phi,\theta) = r\cos\phi \end{cases}$$

Ha determinante Jacobiano:

$$det J(r, \phi, \theta) = r^2 \sin \phi \quad (\text{sempre} > 0)$$

Dimostrazione 10. da sapere all'esame

$$J(r,\phi,\theta) = \begin{pmatrix} \frac{\partial T_1}{\partial r} & \frac{\partial T_1}{\partial \phi} & \frac{\partial T_1}{\partial \theta} \\ \frac{\partial T_2}{\partial r} & \frac{\partial T_2}{\partial \phi} & \frac{\partial T_2}{\partial \theta} \\ \frac{\partial T_3}{\partial r} & \frac{\partial T_3}{\partial \phi} & \frac{\partial T_3}{\partial \theta} \end{pmatrix}$$

$$= \begin{pmatrix} \sin \phi \cos \theta & r \cos \phi \cos \theta & -r \sin \phi \sin \theta \\ \sin \phi \sin \theta & r \cos \phi \sin \theta & r \sin \phi \cos \theta \\ \cos \phi & -r \sin \phi & 0 \end{pmatrix}$$

Sviluppo il determinante sull'ultima riga:

$$\begin{split} \det &J(r,\phi,\theta) = \cos\phi \left[r^2 \cos\phi \sin\phi \cos^2\theta + r^2 \cos\phi \sin\phi \sin^2\theta \right] + \\ & r \sin\phi \left[r \sin^2\phi \cos^2\theta + r \sin^2\phi \sin^2\theta \right] \\ & = \cos\phi \cdot \cos^2\phi \sin\phi + r^2 \sin^2\phi \sin\phi \\ & = r^2 \sin\phi \end{split}$$

Oss: È un cambio di variabili ammissibile nell'integrale perché (T_1, T_2, T_3) di classe C^1 e biunivoca tra gli aperti e inoltre $det J(r, \phi, \theta) \neq 0 \quad \forall (r, \phi, \theta)$