research design

adam okulicz-kozaryn
adam.okulicz.kozaryn@gmail.com

this version: Monday 1st November, 2021 17:21

<u>outline</u>

intuition

research design basics

level of analysis

DID and program evaluation (Wheelan, 2013, ch13)

<u>outline</u>

intuition

research design basic

DID and program evaluation (Wheelan, 2013, ch13)

level of analysis

intuition 3/5

statistics

- it's just storytelling! what data are telling? when i want to tell? what the audience needs to know?
- "statistics is the science of learning from data"
- "the science of collecting and analyzing data for the purpose of drawing conclusions and making decisions."
- good data are the key! GIGO (Wheelan, 2013, ch7)
- what to study?:
- what you're interested in (and usually knowledgable about)
- what is doable (there are realtively easily accessible data)
- what will further your career (think beyond graduation!)[sth local/work related, applied, policy relevent]

intuition 4/55

eg: use data to disprove your convictions!

 i knew it by heart that cities are places of largest inequalities
 https://projects.newyorker.com/story/subway

but so are unequal rural areas!
 https://www.google.com/search?q=pew+inequalit+by+county&ie=utf-8&oe=utf-8

correlation of pop siz and gini just .1

intuition 5/55

setup: critique res, or better yet do it yourself

- design the problem: start with a question/res idea eg?
- then formulate hypothesis(es): brief testable statement(s)
 expressed with measurable vars eg?
- get the data: download or collect/IRB (takes time/discouraged)
- summarize/analyze the data (statistics)
- interpret, communicate
- many just summarize/analyze, but need to communicate/interpret!—what does it mean?
- o interpret in the most simple way possible
- most people don't understand statistics

intuition 6/55

the hourglass (Trochim)

intuition 7/55

narrow down, focus in

- have tendency to overcomplicate/ grand research questions
- start simple/can complicate later if resources/time
- much easier/faster to contribute locally than scholarly
- be specific about what exactly/what aspect YOU are looking at...
- too broad ideas cannot be tested
- o may break it down into several specific hypotheses
- anyone having any hypotheses? give me few examples?
- (note how it differes from research question!)

intuition 8/55

operationalize: have a hypothesis

- hypothesis: brief and clear statement that can be tested
- measured with variables and specified "+" or "-" effect
- express your idea in observable/measurable terms
- translate words/idea into a mathematical relationship
- eg increase in X is associated with decrease in Y
- o where X and Y are specific variables
- o say, income increases happiness
- and then use research methods, interpret results

and answer initial questions

intuition 9/5

the trick/shortcut

- easiest way to do res is to just replicate exisiting one!
- o and add a little twist from yourself
- find a paper you really like and replicate it with a little twist from yourself :)

- sure, do follow trochim's hourglass
- but can also just do it, dive in, and and poke around
- also even if you only do qual; it does help to sprinkle it with quant!

intuition 10/55

wrap-up

- end every class discussing what we covered and quick look at next week
- end with a review Q&A,
- give some examples (essp in pub pol and pub adm) for concepts covered
- students will discuss concepts from the class
- quick look at next class

intuition 11/55

outline

intuition

research design basics

DID and program evaluation (Wheelan, 2013, ch13)

level of analysis

research design basics 12/55

qualitative vs quantitative

- much of the following applies whether you do qualitative or quantitative research
- research design is a class itself
- o we will cover only basics; for more:
- O http://www.socialresearchmethods.net/kb/design.php

research design basics 13/55

external validity (Wheelan, 2013, ch10)external validity is about generalizability

o how about just RU-Camden ? o no! people at Law school, computational biology are likely

o can i say something about RU in general by analyzing you?

- to be different o and even per PA, I would ideally like to have a random
- sampling o note: random sampling is different from randomization or
 - random assignment (experiment)
- O http://knowledge.sagepub.com/view/researchdesign/n146.xml#n146 let's have a thorough discussion like 15min, give examples,

people confuse it, think it's sth more than just plain

generalizability and representativness from sample to research design basics 14/55

internal validity

- internal validity is about causality
- you have internal validity if you can claim that X causes Y
- o eg some drug X causes some disease Y to disappear
- O http://knowledge.sagepub.com/view/researchdesign/n43.xml#n43

O http://knowledge.sagepub.com/view/researchdesign/n192.xml#n192

research design basics 15/55

causality

- much of research design is about causality
- \circ want to show $X \to Y$
- correlation is necessary for causality
- o but not sufficient (eg http://www.tylervigen.com/)
- careful! humans have illusion of causality: tend to see causality where there is none!
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488611
- http://onlinelibrary.wiley.com/doi/10.1348/000712610X532210/abstract

research design basics 16/55

INUS condition (Mackie, 1980)

- very useful way of thinking about causality:
 Insufficient but Non-redundant part of
 - Unnecessary but Sufficient Condition
- most causes are INUS conditions
- eg a cigarette as a cause of forrest fire
- o it's Insufficient, because by itself it is not enough, eg you

also need oxygen, dry leaves, etc

- o it is contributing to fire, hence Non-redundant
- and **along with other stuff** (oxygen, dry leaves etc) it constitutes Unnecessary but Sufficient Condition
- o it's not necessary for fire, it can be lightening, etc
- but it's sufficient it's enough to start the fire

INUS condition

- IN is your X
- US is set of X's (your X+other X's)
- the bottom line is that there are always:
- o multiple alternative causes
- o and multiple steps in causal process
- or you could say there is a train of causality:
- o multiple things have to happen for outcome to occur
- say airplane fall: multiple things had to happen:
- o pilot, traffic control, weather, etc
- same with everything: career success, marriage, etc

research design basics 18/55

basic concepts

- Y: a dependent variable, outcome
- X: an independent variable, predictor
- ∘ (T: (treatment), like X)
- Z: some other variable
- want to show $X \to Y$; X affects (causes) Y
- \circ and not the other way round $(Y \to X)$
- \circ and not $Z \to Y$; eg $X(CO_2)$,Y(temp), $Z(sun\ temp)$
- o it is difficult to argue!
- after all, there are unknown unknowns(Z's that we are unaware of)

research design basics 19/55

the gold standard [ask IRB appr!]

- the experimental design give few examples
- only with experiment can confidently argue causality
- and it is because randomization takes care of the known and unknown predictors of the outcome (draw a picture of 2 groups of people)
- o in other words, it establishes a counterfactual (next slides)
- but wait !
- most of the time we cannot have an experimental design because it is unethical and politically impossible eg we cannot randomly assign kids to bad school or to smoking http://www.socialresearchmethods.net/kb/desexper.php

research design basics 20/55

causality without experiment?

- maybe, but you need to do lots of work...
- essentially you want to exclude alternative explanations
- so you act like a devil's advocate...
- and try to abolish your story / find an alternative explanation
- if you cannot find any, then your story is right ...

until disproved

research design basics 21/55

The Problem put another way: Counterfactual esentially need to compare:

o to what would have been (Y), had the treatment not

- \circ what happened to the outcome (Y) due to the treatment (T or X)
- appenedeg we got a new teacher and now kids perform better on
- to know whether the teacher caused better performance we would need to know what would have happened to SAT scores without this teacher (scores might have gone up due to Z),

SAT

The Problem put another way: Counterfactual

- the problem is that we do not observe counterfactual (we can try to infer it though)
- counterfactual is the effect of all knowns/unknowns
- (incl. unknown unknowns)
- how do we deal with lack of counterfactual
- do an experiment!
- (or if you cannot, try to estimate or infer it somehow)

research design basics 23/

threats to internal validity

- can still argue causality, but think about threats!
- time: history, maturation, regression to the mean
- o things develop over time in a certain way
- selection bias, self selection
- o does smoking causes cancer?
- o maybe less healthy people select to smoke?
- something else (Z) happened that caused Y
- reverse causality
- http://knowledge.sagepub.com/view/researchdesign/n192.xml#n192

research design basics 24/55

reverse causality OR chicken-egg dilemma

- try to find some other X that measures the same or similar concept and that cannot be caused by Y
- eg instead of education → wage; do father's education → wage (your wage can reverse cause your education, but not your father's education)
- find some exogenous (external) shock: policing↔crime
- but terror attack/alert →policing→crime; we know that policing→crime; not the other way round
- o Wheelan (2013, p227) is giving the same example!
- or dating happiness—which comes first? happy folks more likely to be dated!

research design basics 25/55

natural experiment

- again most of the time you cannot have an experiment
- but there are natural experiments or exogenous shocks
- exogenous meaning that they are caused externally (like an experimenter's randomization) and somewhat randomly (at least with relation to a problem at hand
- eg earthquake (any weather, eg storm); terrorist attack;
 policy change (less random)
- any other examples of natural experiments?
 also see Wheelan (2013, p231-)
- a pretty cool one is with schooling→lexp
- natural experiment is different min school requirementby state and over time

research design basics 26/55

examples of designing research

- say a major employer comes in,
- o say Subaru in its block group
- or Salvation Army in its block group (Crammer Hill)
- look at housing prices (can proxy economic development)
- https://www.zillow.com/research/data/
- or gentrification, eg race by bl gr in the area https://www.policymap.com/maps
- can get many variables at bl gr level!

research design basics 27/55

>>>probably stop here and pick up next wk

or before designs shown in graphs

ex post facto: very common; *no* design observational, correlational; you'll most likey do or read

- observational, correlational; you'll most likey do or read this
- we start investigation "after the fact"
- no time involved, don't know whether X precedes Y
- both, X and Y are observed at the same time examples?
 (but X must precede Y in order to be causal)
- practically impossible to argue causality here
- but cheap and big N, and good external validity
 useful, many "causes" were discovered using observational
- studies
- eg smoking→cancer was found out using ex post facto
 http://knowledge.sagepub.com/view/researchdesign/n145.xml
- http://knowledge.sagepub.com/view/researchdesign/n271.xml#n271 research design basics

before-after (pre-post): blackboard: schematic

- measured Y, then do X, and then measured Y again
- eg measured readership at the library , buy some cool stats books ; measured readership again
- eg measured crime rate , put more police on the streets ;
 measured crime again
- eg measured soup consumption , changed soup ; measured soup consumption again
- anyone did pre/post? eg working at school?
- o tried new programs, new approaches?
- o or simply pre-post without T, say to identify highest and lowest gain students

research design basics 30/55

(two group) comp chng: blackboard: schematic

- eg Hypothesis: police with better guns fights crime better
- measured crime rate in 2010 in Camden and Newark
- \circ in 2011 give super guns to police in Camden , (but not in Newark)
- o in 2012 measured crime rate Camden and Newark
- if crime rate dropped more in Camden than in Newark, then we have evidence that the guns worked
- o https://www.stata.com/why-use-stata/i/boxplot.png

research design basics 31/55

interrupted time series:

- eg the new anti-unemployment program in Camden decreased unemployment
- get data about unemployment in Camden 1990-2010
- say the unemployment program began in 2001
- produce a time series plot (mark a vertical line in 2001: intervention/treatment)
- if there was a change in trend after 2001, conclude the program worked

research design basics 32/55

interrupted time series:

• in general look at the trend

research design basics 33/55

interrupted time series:

• look at the trend: may be difficult to see response

research design basics 34/55

• more powerful: take away $T \rightarrow$ effect dies

research design basics 35/55

Interrupted time series with a control Interrupted Time Series

Average number of constant-size prescriptions per continuously eligible Medicaid patient per month among multiple drug recipients

Adapted from: Soumerai et al, N Engl J Med 1987

research design basics 36/55

interrupted time series with a control

research design basics 37/55

<u>outline</u>

intuition

research design basics

DID and program evaluation (Wheelan, 2013, ch13)

level of analysis

difference in difference (p.235 Wheelan, 2013)

- just 'before after' with a comparison group
- did sth to one group, and not to the other group
- o over time (pre post) see if there is any difference
- like we discussed earlier in res_des.pdf
- blackboard: fig: first from p236, and then from p237
- o and pictures similar to those from res_des.pdf follow

DID

Illustrating Difference-in-Difference Estimate of Average Program Effect

discontinuity analysis (p.238 Wheelan, 2013)

- can use when there is some rigid cutoff for something, say:
- remedial program for F grades
- o prison sentence for a crime
- then compare those who just made it (C-, or a ticket)
- v those who didn't (F, prison)—but they were just above the cutoff
- the cool thing is that the two groups are similar, especially:
- o not really any difference whatsoever with respect to cause
- o so the treatment is arbitrary (random), so we have experiment!

of treatment!

a general example of using res des

- new jersey state government workforce profile 2010
- http://www.nj.gov/csc/about/publications/workforce/pdf/ wf2010.pdf
- p37: minorities in state govt over time
- how increase internal validity?
- compare to PA, DE, NY etc
- factor in minority population; applications
- do experiments! many already done! again, read lit!!
- o say people with black names apply for jobs
- students with Asian names email professors
- and both, employers and professors discriminate against!

eg: tacit knowledge is the key!

- if you know sth about state govt
- you know that it is concentrated in Trenton
- o (one student said so)
- hence, the key is population characteristics
- around Trenton!

next step

- if you are interested in program evaluation:
- O quick http://www.socialresearchmethods.net/kb/evaluation.php
- o in-depth, advanced: Mohr (1995), Shadish et al. (2002)

outline

intuition

research design basics

DID and program evaluation (Wheelan, 2013, ch13)

level of analysis

level of analysis 46/5

levels of analysis

- you are familiar with term Unit of Analysis (U/A)
- there are many levels
- there are states, counties, metropolitan areas, cities, etc
- and you often get different and even opposite conclusions depending on what level you are looking at

level of analysis 47/5

aggregate data

- in regional development research much of the data is aggregate
- eg income, home ownership rate at county level are sums of person-level values divided by population
- with aggregate data you are losing information you don't know the variability and the distribution

level of analysis 48/9

ecological fallacy

- it happens when you make conclusions about individual units based on group data
- eg on vacation in Hawaii you meet a person from Camden
- o and you think: "she must be a criminal"
- that Camden has the highest crime rate in the U.S. does not mean that everybody in Camden is a criminal
- now say, you meet a person that graduated from Harvard
- o and you think "she must be a genius"
- again, just because Harvard is ranked as a best university
 (U.S. News) does not mean that every Harvard graduate is a genius

http://www.socialresearchmethods.net/kb/fallacy.php

atomistic fallacy

- an opposite of ecological fallacy
- making inferences about groups based on individual data
- eg you found that rising individual income reduces risk of coronary heart disease (eg people stress out that they are relatively poor, they are missing out...)
- but it does not mean that increasing incomes of states would decrease coronary disease rate for a state ...
- http://www.paho.org/english/dd/ais/be_v24n3-multilevel.htm

level of analysis 50/9

different levels, different effects

- variables at different levels may have opposite effects
- eg if i increase your salary, you'll be happier
- but if i increase salary of everybody in your county you'll be less happy
- would you like to live in a world where you make \$100k
 and the average is \$150k
- or would you like to live in a world where you make \$75k
 and everybody and the average is \$50k
- people chose the second scenario
- "a rich guy is a one who makes \$100 more than his wife's sister's husband"

level of analysis 51/55

contextual effects

- a closely related concept is of contextual effects
- whatever you study it takes place somewhere and place matters
- \bullet so it is not only characteristics of the U/A that predict your outcome
- \bullet but also the context (characteristics of larger units in which U/A is nested)
- student is nested within a classroom, a classroom within school, a school within a district, etc etc
- a firm is nested within a city/metropolitan area/town, which is nested within a state, which is nested within a country

level of analysis 52/55

happiness is contagious (Fowler and Christakis, 2008)

level of analysis 53/55

your research project

- you should address some of the above issues in your research project
- again, a useful thing to do is be devil's advocate
- ask yourself how/why what you are saying is not true
- think about alternative explanations
- what are the limitations of your study

level of analysis 54/5

wrap-up

- end every class discussing what we covered and quick look at next week
- end with a review Q&A,
- give some examples (essp in pub pol and pub adm) for concepts covered
- students will discuss concepts from the class
- quick look at next class

level of analysis 55/5

- Network: Longitudinal Analysis Over 20 Years in the Framingham Heart Study," British Medical Journal, Vol. 3, January 09.

 MACKIE, J. (1980): The cement of the universe, Clarendon Press Oxford.
- MAZUR, A. (2011): "Does increasing energy or electricity consumption improve quality of life in industrial nations?" Energy Policy, 39, 2568–2572.

FOWLER, J. H. AND N. A. CHRISTAKIS (2008): "Dynamic Spread of Happiness in a Large Social

MOHR, L. B. (1995): Impact Analysis for Program Evaluation, Sage, Beverly Hills CA, second edition ed.

SHADISH, W. R., T. D. COOK, AND D. T. CAMPBELL (2002): Experimental and quasi-experimental