Vypracoval(a): UČO:

Skupina:

2. [2 body] Mějme Turingův stroj $\mathcal{M} = (Q, \Sigma, \Gamma, \triangleright, \sqcup, \delta, q_0, q_{accept}, q_{reject})$, kde

$$Q = \{q_0, q_A, q, q_r, q_{back}, q_{accept}, q_{reject}\},$$

$$\Sigma = \{a, b\},$$

$$\Gamma = \{\triangleright, \sqcup, X, a, b\}$$

a přechodová funkce δ je určena následující tabulkou:

	\triangleright	Ц	X	a	b
q_0	(q_0, \triangleright, R)	(q_{accept}, \sqcup, R)	(q_{accept}, X, R)	(q_A, X, R)	(q, X, R)
q_A	(q_A, \triangleright, R)	(q_{accept}, \sqcup, R)	(q_{accept}, X, R)	(q, a, R)	(q, b, R)
q	(q, \rhd, R)	(q_r, \sqcup, L)	(q_r, X, L)	(q, a, R)	(q, b, R)
q_r	(q_r, \triangleright, R)	(q_r, \sqcup, R)	(q_{reject}, X, L)	(q_{back}, X, L)	(q_{back}, X, L)
q_{back}	(q_{back}, \rhd, R)	(q_{back}, \sqcup, R)	(q_0, X, R)	(q_{back}, a, L)	(q_{back}, b, L)

- a) Napište výpočet Turingova stroje \mathcal{M} na vstupním slově baaba. Výpočet pište jako posloupnost konfiguraci, kde každé dvě po sobě následující konfigurace jsou v relaci krok výpočtu.
- b) Najděte slovo délky alespoň 3, které stroj $\mathcal M$ zamítá, a napište výpočet stroje $\mathcal M$ nad tímto slovem.
- a) Připomeňme, že konfigurace Turingova stroje je definována jako trojice $(q, z, n) \in Q \times \{y \sqcup^{\omega} \mid y \in \Gamma^*\} \times \mathbb{N}_0$, kde q je aktuální stav, $y \sqcup^{\omega}$ je obsah pásky a n je pozice hlavy na pásce (viz 9. přednáška, slajd 2). Relace krok výpočtu (\vdash) je definována na 3. slajdu 9. přednášky. Výpočet nad slovem baaba tedy začíná v konfiguraci $(q_0, \triangleright baaba \sqcup^{\omega}, 0)$.

$$(q_{0}, \triangleright baaba\sqcup^{\omega}, 0) \vdash (q_{0}, \triangleright baaba\sqcup^{\omega}, 1) \qquad \vdash (q, \triangleright Xaaba\sqcup^{\omega}, 2)$$

$$\vdash (q, \triangleright Xaaba\sqcup^{\omega}, 3) \qquad \vdash (q, \triangleright Xaaba\sqcup^{\omega}, 4)$$

$$\vdash (q, \triangleright Xaaba\sqcup^{\omega}, 5) \qquad \vdash (q, \triangleright Xaaba\sqcup^{\omega}, 6)$$

$$\vdash (q_{r}, \triangleright Xaaba\sqcup^{\omega}, 5) \qquad \vdash (q_{back}, \triangleright XaabX\sqcup^{\omega}, 4)$$

$$\vdash (q_{back}, \triangleright XaabX\sqcup^{\omega}, 3) \qquad \vdash (q_{back}, \triangleright XaabX\sqcup^{\omega}, 2)$$

$$\vdash (q_{back}, \triangleright XaabX\sqcup^{\omega}, 1) \qquad \vdash (q_{0}, \triangleright XaabX\sqcup^{\omega}, 2)$$

$$\vdash (q_{A}, \triangleright XXabX\sqcup^{\omega}, 3) \qquad \vdash (q, \triangleright XXabX\sqcup^{\omega}, 4)$$

$$\vdash (q, \triangleright XXabX\sqcup^{\omega}, 5) \qquad \vdash (q_{r}, \triangleright XXabX\sqcup^{\omega}, 4)$$

$$\vdash (q_{back}, \triangleright XXaXX\sqcup^{\omega}, 3) \qquad \vdash (q_{back}, \triangleright XXaXX\sqcup^{\omega}, 2)$$

$$\vdash (q_{0}, \triangleright XXaXX\sqcup^{\omega}, 3) \qquad \vdash (q_{A}, \triangleright XXXXXX\sqcup^{\omega}, 4)$$

$$\vdash (q_{accent}, \triangleright XXXXXX\sqcup^{\omega}, 5)$$

A tedy stroj \mathcal{M} slovo baaba akceptuje.

Vypracoval(a): UČO: Skupina:

b) Z předchozího výpočtu a definice přechodové funkce Turingova stroje \mathcal{M} lze vypozorovat, jak funguje. Postupně vždy nahradí nejlevější znak a nebo b na pásce znakem X a poté také nejpravější znak a nebo b znakem X. Toto se opakuje, dokud na pásce zbývají znaky a nebo b.

Stroj \mathcal{M} akceptuje, pokud poslední znak nahrazený za X byl a, nebo pokud po nahrazení nejpravějšího znaku ve slově nezbyly žádné znaky a a b. Z toho se dá odvodit, že Turingův stroj \mathcal{M} rozhoduje jazyk všech slov, která mají sudou délku, nebo je jejich prostřední symbol a. Jinými slovy

$$L(\mathcal{M}) = (\{a,b\}^2)^* \cup \{wav \mid |w| = |v|\}.$$

Tedy jedno ze slov délky alespoň 3, které stroj \mathcal{M} neakceptuje, je aba. Vypočet nad tímto slovem je:

$$(q_{0}, \triangleright aba \sqcup^{\omega}, 0) \vdash (q_{0}, \triangleright aba \sqcup^{\omega}, 1) \qquad \vdash (q_{A}, \triangleright Xba \sqcup^{\omega}, 2)$$

$$\vdash (q, \triangleright Xba \sqcup^{\omega}, 3) \qquad \vdash (q, \triangleright Xba \sqcup^{\omega}, 4)$$

$$\vdash (q_{r}, \triangleright Xba \sqcup^{\omega}, 3) \qquad \vdash (q_{back}, \triangleright XbX \sqcup^{\omega}, 2)$$

$$\vdash (q_{back}, \triangleright XbX \sqcup^{\omega}, 1) \qquad \vdash (q_{0}, \triangleright XbX \sqcup^{\omega}, 2)$$

$$\vdash (q, \triangleright XXX \sqcup^{\omega}, 3) \qquad \vdash (q_{r}, \triangleright XXX \sqcup^{\omega}, 2)$$

$$\vdash (q_{reject}, \triangleright XXX \sqcup^{\omega}, 1)$$