Avances del proyecto integrador

Importancia y ejemplos

¿Qué podemos utilizar si desconozco la media poblacional?

Definiciones

Una variable aleatoria (X) es una función que asigna un número real a cada resultado en el espacio muestral de un experimento aleatorio.

La media (X) o valor esperado es una variable aleatoria discreta X, denotada por μ .

Cada observación, X_1 , X_2 , . . . X_n , forman una muestra aleatoria.

La variable aleatoria discreta

La variable aleatoria discreta más sencilla es aquella que toma sólo un número finito de valores posibles, cada uno con la misma probabilidad.

Esta variable aleatoria X toma los valores x_1, x_2, \ldots, x_n . Entonces la probabilidad se puede describir como:

$$f_{\mathcal{X}}(x_i) = \frac{1}{n}$$

Distribución uniforme discreta

La media de la variable aleatoria discreta (X) es:

$$\mu_{x} = \frac{b+a}{2}$$

La desviación estándar de X es

$$\sigma_{x} = \sqrt{\frac{(b-a+1)^{2}-1}{12}}$$

Lanzar un dado legal

Distribución de probabilidad para los lanzamientos de un dado legal de seis caras

Sustituyendo

La media de la variable aleatoria discreta (X) es:

$$\mu_x = \frac{b+a}{2} = \frac{6+1}{2} = 3.5$$

La desviación estándar de X es

$$\sigma_{x} = \sqrt{\frac{(6-1+1)^{2}-1}{12}} = 1.707$$

¿Qué podemos utilizar si desconozco la media poblacional y desconozco las probabilidades de la variable aleatoria?

Teorema del límite central

Es la exposición y descripción de un conjunto de datos de un fenómeno y se compone de verdades admitidas sin demostración que sirven como base para posteriores razonamientos <mark>lógicos</mark> y que permiten aproximar magnitudes mediante la secuencia de números, estimando la tendencia central y dispersión de parámetros.

Media muestral

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Muestra aleatoria de tamaño 2 de una población normal

¿Cuántas observaciones tenemos por <u>cada muestra</u> en el experimento?

Dos

¿Por qué?

Sumas de las caras superiores de dos dados

Primer dado						
Segundo dado	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

$$\bar{X} = \frac{X_1 + X_2}{n}$$

Primer dado						
Segundo dado	1	2	3	4	5	6
1	1	1.5	2	2.5	3	3.5
2	1.5	2	2.5	3	3.5	4
3	2	2.5	3	3.5	4	4.5
4	2.5	3	3.5	4	4.5	5
5	3	3.5	4	4.5	5	5.5
6	3.5	4	4.5	5	5.5	6

$$\bar{X}_i = \frac{X_1 + X_2}{n}$$

			Primer dado			
Segundo dado	1	2	3	4	5	6
1	$ar{X}_1$	\bar{X}_2	\bar{X}_3	$ar{X}_{4}$	$ar{X}_5$	\bar{X}_6
2	$ar{X}_2$	\bar{X}_3	$ar{X}_4$	$ar{X}_5$	\bar{X}_6	$ar{X}_7$
3	\bar{X}_3	$ar{X}_4$	$ar{X}_5$	\bar{X}_6	$ar{X}_7$	$ar{X}_8$
4	$ar{X}_4$	$ar{X}_5$	\bar{X}_6	$ar{X}_7$	$ar{X}_8$	$ar{X}_{9}$
5	$ar{X}_5$	\bar{X}_6	$ar{X}_7$	$ar{X}_8$	$ar{X}_{9}$	$ar{X}_{10}$
6	\bar{X}_6	$ar{X}_7$	$ar{X}_8$	$ar{X}_{9}$	$ar{X}_{10}$	$ar{X}_{11}$

Se agrupan los números y se suman las probabilidades para graficar los datos

Medias muestrales $\overline{X_i}$	Probabilidad	Suma de probabilidades
1	1/36	1/36
1.5	1/36	2/36
2	1/36	3/36
2.5	1/36	4/36
3	1/36	5/36
3.5	1/36	6/36
4	1/36	5/36
4.5	1/36	4/36
5	1/36	3/36
5.5	1/36	2/36
6	1/36	1/36

Valores posibles de la variable aleatoria continua

Distribución muestral de las medias muestrales para dos dados

Importancia

Teorema del límite central

- El teorema del límite central funciona bien para muestras pequeñas en poblaciones continuas, unimodales, y simétricas.
- En muchos casos de interés práctico, si $n \ge 30$, la aproximación normal será satisfactoria sin importar cuál es la forma de la población.
- Si n < 30, el teorema del límite central funciona si la distribución de la población no esta muy alejada de una distribución normal.

El teorema del límite central dice que, las sumas y medias de muestras aleatorias de observaciones tomadas de una población tienden a tener una distribución aproximadamente normal.

La importancia del teorema del límite central radica en inferir una media desconocida y una varianza desconocida mediante el uso de estadísticas y probabilidades.

Parte de lo que se va a calificar en el proyecto integrador

Teorema del límite central y muestreo del trabajo

Exposiciones

Graficar las medias muestrales del lanzamiento de tres, cinco y diez dados, la exposición es individual o en parejas.

n = 2

n = 5

2.3 2.6

1 1.3 1.6

3

3.3 3.6

Número observado en la cara del dado

4

4.3 4.6 5

¿Describe el procedimiento para obtener la media poblacional utilizando probabilidades?

¿Describe el procedimiento para obtener la media poblacional utilizando muestras?

¿Cuántas observaciones tienes que hacer en el proyecto integrador?

¿Cuántos eventos u ocurrencias hay en el experimento del proyecto integrador?

¿Cual es la probabilidad de que ocurra un evento u ocurrencia?

¿Cual es el valor esperado en el proyecto integrador?

¿Cual es la variación en el proyecto integrador?

¿Para que me sirve el estudio de tiempos y movimientos en el proyecto integrador?

Bibliografía

