ORDONNANCEMENT EN ATELIERS SPÉCIALISÉS

- Ordonnancement = détermination conjointe des dates d'exécution d'un ensemble d'opérations et des ressources mobilisées dans cette exécution
- Pb général dans chaîne logistique (LP, appro/prod synchrone, industries de process, projet)
- Solutions ⇒ performance/survie
- Contexte:
 - \mathcal{E} commandes ou OF pour produire $q_i \ge 1$ de la reférence i / CT, découpage temporel fin
 - Système Productif en AS, job shop, atelier à cheminements multiples)

• pb NP dur \Rightarrow utilisation d'heuristiques & qq algo de solution exacte (pb simples)

Terminologie

- Tâches (= job = OF \neq projet) \subset Eopérations ordre lié par gamme
- **CP** (machine, atelier...); une pération est réalisée par un CP
- préemption = possibilité d'interrompre une opération pour en passer une autre avant de la reprendre plus tard (⇒ problèmes préemptifs)
- Cas particulier des ateliers à cheminement unique ($flow\ shop$) où possibilité $t_{ij}=0$

Exemple de pb de FS et de solution

OF	1	2	3	4	5	6	7	8	9	10
Machine A	10	12	10	8	0	11	7	6	8	14
Machine B	9	14	17	10	0	12	14	13	0	0
Machine C	13	11	13	12	13	8	14	15	11	13
Machine D	14	17	14	14	15	12	0	8	17	11
Machine E	22	8	13	15	10	19	0	17	11	14

• Atelier à cheminements libres (open shop): ordre quelconque

• Cadre d'analyse

		Trobleme			
		Statique	Dynamique		
Univers	Certain				
Univers	Aléatoire				

Problème

SECTION	I INTRODUCTION AUX MODÈLES STATIQUES D'ORDONNANCEMENT
I-1	Modèles statiques – Cas des coûts de lancement indépendants de l'ordonnancement retenu
I-1.1	Ordonnancement de n tâches nécessitant l'intervention d'un seul centre de production
I-1.2	Ordonnancement de n tâches nécessitant l'intervention de 2 centres de production
I-1.3	Ordonnancement de 2 tâches nécessitant l'intervention de m centres de production
I-1.4	Ordonnancement de n tâches nécessitant l'intervention de m centres de production
I-1.5	Ordonnancement de n tâches nécessitant l'intervention de m centres de production (cheminement libre – open shop)
I-1.6	Ordonnancement de n tâches nécessitant l'intervention de m centres de production (ordre de passage quelconque)
I-2	Modèles statiques: cas du coût de lancement total variable avec l'ordonnancement retenu
I-3	Tentative de caractérisation de l'approche statique
SECTION	II L'APPROCHE ALÉATOIRE DYNAMIQUE

SECTION I INTRODUCTION AUX MODÈLES STATIQUES D'ORDONNANCEMENT

- I-1 Modèles statiques Cas des coûts de lancement indépendants de l'ordonnancement retenu
- Hypothèses communes implicites: ordre intangible, temps de transport et de lancement nuls, temps opératoires certains, pas de recouvrement
- I-1.1 Ordonnancement de n tâches nécessitant l'intervention d'un seul centre de production
- Durée d'exécution des tâches indépendant de l'ordonnancement
- critères d'évaluation ⇒ ordo ≠
- Pb intéressant: goulot d'étranglement

I-1.1.1 L'ordonnancement suivant la règle du temps opératoire minimum (règle TOM)

I-1.1.1.1 Exemple introductif

• Exemple.

Tâche i	1	2	3	4	5
Temps opératoire t _i (en centième d'heure)	50	150	80	200	30

Solution possible:

Ordre de passage <i>j</i>	1	2	3	4	5
Tâche programmée <i>j</i>	3	4	1	5	2
Temps d'exécution T _j	80	200	50	30	150
Date \mathbf{A}_{j} de fin de la tâche j	80	280	330	360	510

I-1.1.1.2 Graphique de Gantt

- **Graphique de Gantt** = Diagramme de Gantt = technique de visualisation utilisation moyens productifs et/ou de l'avancement de l'exécution de tâches (Gantt, 1917; prêtres égyptiens)
- Conventions

- Réalisation
 - Dépassement de quantités produites

• Dépassement de temps

• Conventions: Z (aucun travail exécuté), A (exécutant absent), M (manque de matière première), R (réparation).

I-1.1.1.3 La règle TOM

• Dans exemple: 5! ordonnancements possibles

• Date d'achèvement $A_j = \sum_{h=1}^{\infty} T_h$

• Date moyenne d'achèvement \overline{A}

Tâche i	1	2	3	4	5
Temps opératoire t_i (en centième d'heure)	50	150	80	200	30

Ordre de passage <i>j</i>	1	2	3	4	5	
Tâche programmée <i>j</i>	3	4	1	5	2	
Temps d'exécution T _j	80	200	50	30	150	
Date $\frac{\mathbf{A}_{j}}{\mathbf{A}_{j}}$ de fin de la tâche j	80	280	330	360	510	

$$\overline{A} = 312$$

•
$$\overline{A} = \frac{1}{5} \cdot \sum_{J=1}^{5} A_J = \frac{80 + 280 + 330 + 360 + 510}{5} = 312$$

• Généralisation
$$\overline{A} = \frac{1}{n} \cdot \sum_{j=1}^{n} A_j = \frac{1}{n} \cdot \sum_{j=1}^{n} \left(\sum_{k=1}^{j} T_k \right) = \frac{1}{n} \cdot \sum_{j=1}^{n} (n-j+1)T_j$$

• Règle d'ordonnancement \overline{TOM} (SPT rule, SOT rule) minimise \overline{A}

$$T_1 \le T_2 \le \ldots \le T_j \le T_{j+1} \le \ldots \le T_n$$

Tâche i	1	2	3	4	5
Temps opératoire t_i (en centième d'heure)	50	150	80	200	30

Ordre de passage j	1	2	3	4	5
Tâche programmée	5				
T_j	30				
$\overline{\mathrm{A}_{j}}$	30				

Règle d'ordonnancement TOM (SPT rule, SOT rule) minimise $\overline{\mathbf{A}}$

$$T_1 \le T_2 \le \ldots \le T_j \le T_{j+1} \le \ldots \le T_n$$

Tâche i	1	2	3	4	5
Temps opératoire t_i (en centième d'heure)	50	150	80	200	30

Ordre de passage j	1	2	
Tâche programmée	5	1	
T_j	30	50	
A_{j}	30	80	

• Règle d'ordonnancement \overline{TOM} (SPT rule, SOT rule) minimise \overline{A}

$$T_1 \le T_2 \le \ldots \le T_j \le T_{j+1} \le \ldots \le T_n$$

Tâche i	1	2	3	4	5
Temps opératoire t_i (en centième d'heure)	50	150	80	200	30

Ordre de passage j	1	2	3	
Tâche programmée	5	1	3	
T_j	30	50	80	
A_{j}	30	80	160	

Règle d'ordonnancement $\overline{\text{TOM}}$ (SPT rule, SOT rule) minimise $\overline{\text{A}}$

$$T_1 \le T_2 \le \ldots \le T_j \le T_{j+1} \le \ldots \le T_n$$

Tâche i	1	2	3	4	5
Temps opératoire t _i (en centième d'heure)	50	150	80	200	30

Ordre de passage j	1	2	3	4	
Tâche programmée	5	1	3	2	
T_j	30	50	80	150	
A_{j}	30	80	160	310	

• Règle d'ordonnancement \overline{TOM} (SPT rule, SOT rule) minimise \overline{A}

$$T_1 \le T_2 \le \ldots \le T_j \le T_{j+1} \le \ldots \le T_n$$

Application

Tâche i	1	2	3	4	5
Temps opératoire t_i (en centième d'heure)	50	150	80	200	30

Ordre de passage j	1	2	3	4	5
Tâche programmée	5	1	3	2	4
T_j	30	50	80	150	200
A_{j}	30	80	160	310	510

 $\overline{A} = 218$

• Règle d'ordonnancement \overline{TOM} (SPT rule, SOT rule) minimise \overline{A}

$$T_1 \le T_2 \le \ldots \le T_j \le T_{j+1} \le \ldots \le T_n$$

Application

Tâche i	1	2	3	4	5
Temps opératoire t _i (en centième d'heure)	50	150	80	200	30

Ordre de passage <i>j</i>	1	2	3	4	5
Tâche programmée	5	1	3	2	4
T_j	30	50	80	150	200
A_{j}	30	80	160	310	510

$$\overline{A} = 218$$

• Remarques:

- priorité varie en sens inverse de valeur du critère (c'est général)
- TOM

 → V(A) mini (ici 174,06 contre 139,05 ordonnancement initial)
- TOM minimise retard algébrique moyen: retard algébrique $(T_j d_j) \neq \text{retard vrai Max}(0, T_j d_j)$
- attente d'une tâche se définit comme l'intervalle de temps séparant l'arrivée d'une tâche dans le système, du début de son exécution
- Si arrivées dynamiques et préemption: TOM minimise \overline{A}

I-1.1.2 La règle TOM pondéré

- Importance ≠ (marge financière...)
- Pondération u_i ($u_i \ge 1$) traduisant priorité accordée à i
- Temps d'attente moyen pondéré $\overline{A} = \frac{1}{n} \cdot \sum_{j=1}^{n} u_j A_j$ minimisé par règle TOM pondéré

(règle de Smith)
$$\frac{T_1}{u_1} \le \frac{T_2}{u_2} \le \dots \le \frac{T_j}{u_j} \le \frac{T_{j+1}}{u_{j+1}} \le \dots \le \frac{T_n}{u_n}$$

Tâche i	1	2	3	4	5
Temps opératoire t _i	50	150	80	200	30
Pondération u _i	1	2	1	2	3
t _i /u _i	50	75	80	100	10
Ordre de passage de la tâche i	2	3	4	5	1
Ordre de passage j					
Tâche programmée					
T_h/u_h					
$T_h \cdot u_h$					
$\sum_{h=1}^{j} T_h \cdot u_h$					

Tâche i	1	2	3	4	5
Temps opératoire t_i	50	150	80	200	30
Pondération u _i	1	2	1	2	3
t _i /u _i	50	75	80	100	10
Ordre de passage de la tâche <i>i</i>					1
Ordre de passage j	1				
Tâche programmée	5				
T_h/u_h	10				
$T_h \cdot u_h$	90				
$\sum_{h=1}^{j} T_h \cdot u_h$	90				

Tâche i	1	2	3	4	5
Temps opératoire t _i	50	150	80	200	30
Pondération u _i	1	2	1	2	3
t _i /u _i	50	75	80	100	10
Ordre de passage de la tâche i	2				1
Ordre de passage <i>j</i>	1	2			
Tâche programmée	5	1			
T_{h}/u_{h}	10	50			
$T_h \cdot u_h$	90	50			
$\sum_{h=1}^{j} T_h \cdot u_h$	90	140			

Tâche i	1	2	3	4	5
Temps opératoire t _i	50	150	80	200	30
Pondération u _i	1	2	1	2	3
t _i /u _i	50	75	80	100	10
Ordre de passage de la tâche <i>i</i>	2	3			1
Ordre de passage j	1	2	3		
Tâche programmée	5	1	2		
T_h/u_h	10	50	75		
$T_h \cdot u_h$	90	50	300		
$\sum_{h=1}^{j} T_h \cdot u_h$	90	140	440		

Tâche i	1	2	3	4	5
Temps opératoire t _i	50	150	80	200	30
Pondération u _i	1	2	1	2	3
t _i /u _i	50	75	80	100	10
Ordre de passage de la tâche i	2	3	4	5	1
Ordre de passage j	1	2	3	4	
Tâche programmée	5	1	2	3	
T_h/u_h	10	50	75	80	
$T_h \cdot u_h$	90	50	300	80	
$\sum_{h=1}^{j} T_h \cdot u_h$	90	140	440	520	

• Exemple

Tâche i	1	2	3	4	5
Temps opératoire t _i	50	150	80	200	30
Pondération u _i	1	2	1	2	
t _i /u _i	50	75	80	100	
Ordre de passage de la tâche i	2	3	4	5	
Ordre de passage j	1	2	3	4	5
Tâche programmée	5	1	2	3	4
T_h/u_h	10	50	75	80	100
$T_h \cdot u_h$	90	50	300	80	400
$\sum_{h}^{j} T_{h} \cdot u_{h}$	90	140	440	520	920

 $\overline{A} = 422$

I-1.1.3 Ordonnancement suivant la règle de la date de livraison minimale

• Introduction de dates de livraison.

Tâche i	1	2	3	4	5
Date de livraison d _i souhaitée (en centième d'heures)	100	300	410	400	200
Temps opératoire t_i (en centième d'heures)	50	150	80	200	30
Marge $d_i - t_i$	50	150	330	200	170

• Conséquences de TOM sur retards vrais

Ordre de passage j (règle TOM)	1	2	3	4	5
Tâche programmée	5	1	3	2	4
A_{j}	30	80	160	310	510
Date de livraison d _j souhaitée	200	100	410	300	400
Retard vrai: max $(0, A_j - d_j)$	0	0	0	10	110

Retard minimal: 0 Retard maximal: 110 Retard moyen: 24

Minimisation du retard vrai maximum est minimisé par règle de Jackson ordonnançant par dates \uparrow de livraison $d_1 \le d_2 \le ... \le d_i \le d_{i+1} \le ... \le d_n$

Tâche i	1	2	3	4	5
Date de livraison d _i souhaitée (en centième d'heures)		300	410	400	200
Temps opératoire t_i (en centième d'heures)	50	150	80	200	30

Ordre de passage j	1		
Date de livraison d _j souhaitée	100		
Tâche programmée	1		
Temps opératoire T_j	50		
A_j	50		
Retard vrai maximal	0		

Tâche i	1	2	3	4	5
Date de livraison d _i souhaitée (en centième d'heures)	100	300	410	400	200
Temps opératoire t_i (en centième d'heures)	50	150	80	200	30

Ordre de passage j	1	2		
Date de livraison d _j souhaitée	100	200		
Tâche programmée	1	5		
Temps opératoire T_j	50	30		
A_j	50	80		
Retard vrai maximal	0	0		

Tâche i	1	2	3	4	5
Date de livraison d _i souhaitée (en centième d'heures)		300	410	400	200
Temps opératoire t _i (en centième d'heures)	50	150	80	200	30

Ordre de passage j	1	2	3	
Date de livraison d _j souhaitée	100	200	300	
Tâche programmée	1	5	2	
Temps opératoire T_j	50	30	150	
A_j	50	80	230	
Retard vrai maximal	0	0	0	

Tâche i	1	2	3	4	5
Date de livraison d _i souhaitée (en centième d'heures)		300	410	400	200
Temps opératoire t _i (en centième d'heures)	50	150	80	200	30

Ordre de passage j	1	2	3	4	
Date de livraison d _j souhaitée	100	200	300	400	
Tâche programmée	1	5	2	4	
Temps opératoire T_j	50	30	150	200	
A_j	50	80	230	430	
Retard vrai maximal	0	0	0	30	

Application.

Tâche i	1	2	3	4	5
Date de livraison d _i souhaitée (en centième d'heures)		300	410	400	200
Temps opératoire t _i (en centième d'heures)	50	150	80	200	30

Ordre de passage <i>j</i>	1	2	3	4	5
Date de livraison d _j souhaitée	100	200	300	400	410
Tâche programmée	1	5	2	4	3
Temps opératoire T_j	50	30	150	200	80
A_{j}	50	80	230	430	510
Retard vrai maximal	0	0	0	30	100

Retard minimal: 0 Retard maximal: 100 Retard moyen: 26 $\overline{A} = 260$

A = 260 $\sigma = 183, 74$

• Remarque: règle de Jackson minimise retard max mais pas le retard moyen (ici plus faible avec TOM); pas de règle simple pour y parvenir (ici 1 - 5 - 2 - 3 - 4)

Si arrivée dynamique et préemption: même propriété

I-1.1.4 Ordonnancement suivant la règle de la marge minimale

• Ordonnancement par valeurs croissantes de marges $(d_i - t_i) \Rightarrow$ maximise le retard le plus faible possible $d_1 - T_1 \le d_2 - T_2 \le ... \le d_i - T_i \le d_{i+1} - T_{i+1} \le ... \le d_n - T_n$

Ordre de passage <i>j</i>	1	2	3	4	5
$d_j - T_j$	50	150	170	200	330
Tâche programmée	1	2	5	4	3
Temps d'exécution T _j	50	150	30	200	80
A_j	50	200	230	430	510
d_j	100	300	200	400	410
Retard vrai maximal	0	0	30	30	100

Retard minimal: 0 Retard maximal: 100

Retard moyen: 32

 $\sigma = 165, 6$

I-1.1.5 Modélisation générale par la PLN

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

I-1.2.1 Cas du même ordre de passage sur les centres de production A et B

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche <i>i</i>	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	
Rang						

Algorithme de Johnson

- **Étape 1**b: Chercher *i* dont t_{ij} (avec j = A ou B) est minimum
- **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
- Étape 3b: Supprimer *i* des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

I-1.2.1 Cas du même ordre de passage sur les centres de production A et B

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	
Rang						

- Algorithme de Johnson
 - **Étape 1**b: Chercher *i* dont t_{ij} (avec j = A ou B) est minimum
 - **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3b: Supprimer *i* des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

I-1.2.1 Cas du même ordre de passage sur les centres de production A et B

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	B
Rang					1	

- Algorithme de Johnson
 - **Étape 1**b: Chercher *i* dont t_{ii} (avec j = A ou B) est minimum
 - **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3þ: Supprimer *i* des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

I-1.2.1 Cas du même ordre de passage sur les centres de production A et B

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	B
Rang					1	

Algorithme de Johnson

- **Étape 1**b: Chercher *i* dont t_{ij} (avec j = A ou B) est minimum
- **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
- Étape 3þ: Supprimer i des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

I-1.2.1 Cas du même ordre de passage sur les centres de production A et B

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	B
Rang					1	

- Algorithme de Johnson
 - **Étape 1**b: Chercher *i* dont t_{ij} (avec j = A ou B) est minimum
 - **Étape 2**b:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3þ: Supprimer i des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

I-1.2.1 Cas du même ordre de passage sur les centres de production A et B

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	B
Rang	2				1	

- Algorithme de Johnson
 - **Étape 1**b: Chercher *i* dont t_{ij} (avec j = A ou B) est minimum
 - **Étape 2**b:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3þ: Supprimer *i* des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

I-1.2.1 Cas du même ordre de passage sur les centres de production A et B

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	B
Rang	2				1	

Algorithme de Johnson

- **Étape 1**b: Chercher *i* dont t_{ij} (avec j = A ou B) est minimum
- **Étape 2**b:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
- Étape 3b: Supprimer i des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	B
Rang	2				1	

- Algorithme de Johnson
 - **Étape** 1b: Chercher *i* dont t_{ij} (avec j = A ou B) est minimum
 - **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3b: Supprimer i des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	
Rang	2	5			1	

- Algorithme de Johnson
 - **Étape 1**b: Chercher *i* dont t_{ii} (avec j = A ou B) est minimum
 - **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3þ: Supprimer i des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	
Rang	2	5			1	

- Algorithme de Johnson
 - **Étape 1**b: Chercher *i* dont t_{ii} (avec j = A ou B) est minimum
 - **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3þ: Supprimer i des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	
Rang	2	5			1	

- Algorithme de Johnson
 - **Étape 1**b: Chercher *i* dont t_{ij} (avec j = A ou B) est minimum
 - **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3b: Supprimer *i* des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche <i>i</i>	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	
Rang	2	5		4	1	

- Algorithme de Johnson
 - **Étape 1**þ:
 - **Étape 2**b:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3þ: Supprimer *i* des tâches restant à programmer

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	
Rang	2	5		4	1	

- Algorithme de Johnson
 - **Étape 1**þ:
 - **Étape 2**b:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3þ: Supprimer i des tâches restant à programmer

I-1.2 tâches nécessitant l'intervention de 2 centres de production

• Seul critère repris: minimisation du temps total d'exécution de tous les travaux

I-1.2.1 Cas du même ordre de passage sur les centres de production A et B

- Pb de flow shop à 2 centres de production
- Exemple

Numéro de la tâche i	1	2	3	4	5	
t_{iA}	50	150	80	200	30	
t_{iB}	60	50	150	70	200	
Rang	2	5	3	4	1	

- Algorithme de Johnson
 - **Étape 1**þ:
 - **Étape 2**þ:
 - Si j = A placer i à la première place disponible
 - Si j = B placer i à la dernière place disponible
 - Étape 3b: Supprimer i des tâches restant à programmer

Solution optimale 5-1-3-4-2

Ordonnancement en ateliers spécialisés

I-1.2.2 Cas de la non-unicité de l'ordre de passage sur les centres de production A et B

- Algorithme de Jackson
 - partition en 4 de l'ensemble initial
 - {A}: toutes les tâches ne nécessitant que l'intervention de A
 - {B} toutes les tâches ne nécessitant que l'intervention de B
 - {AB} toutes les tâches passant par A puis B
 - {BA} toutes les tâches passant par B puis A
 - ordonnancement optimal
 - algorithme de Johnson sur $\{AB\} \Rightarrow$ séquence 1
 - algorithme de Johnson sur $\{BA\} \Rightarrow$ séquence 2
 - ordre quelconque sur $\{A\} \Rightarrow$ séquence 3
 - ordre quelconque sur $\{B\} \Rightarrow$ séquence 4
 - Sur le centre A séquences 1 puis 3 puis 2
 - Sur le centre B séquences 2 puis 4 puis 1

	Tâche					
		1	2	2		
	TO	rang	TO	rang		
A	1	4	2	1		
В	2	2	3	2		
С	4	5	3	3		
D	4	1	1	4		
Е	3	3	2	5		

- I-1.4 Ordonnancement de n tâches nécessitant l'intervention de m centres de production
- I-1.4.1 Ordonnancement de n tâches nécessitant l'intervention de 3 centres de production (ordre identique de passage)
- Application algorithme Johnson sur A-B-C si $\underset{i}{Max}(t_{iB}) \leq \underset{i}{Min}(t_{iA})$ ou $\underset{i}{Max}(t_{iB}) \leq \underset{i}{Min}(t_{iC})$ sur pb fictif
 - machine virtuelle α regroupant A et B \Rightarrow $t_{iAB} = t_{iA} + t_{iB}$
 - machine virtuelle γ regroupant A et C \Rightarrow $t_{iAB} = t_{iC} + t_{iB}$

Tâche i	t_{iA}	t_{iB}	t_{iC}
1	7	1	6
2	4	3	2
3	3	2	4
4	8	2	1
5	5	1	3
	$\min t_{iA} = 3$	$\max t_{iB} = 3$	$\min t_{iC} = 1$

B dominé par A (mais pas par C)

Tâche i	t_{iAB}	t_{iBC}
1	8	7
2	7	5
3	5	6
4	10	3
5	6	4

• Soluttion

I-1.4.2 Ordonnancement de n tâches nécessitant l'intervention de m centres de production (ordre identique de passage)

I-1.4.2.1 Le modèle de base

- (n!)^m ordonnancements possibles
- Algorithme CDS
 - exemple 5 CP (A à E)

	Temps d'exécution en 1/10ème d'heure				
Tâche i	t_{iA}	t_{iB}	t_{iC}	t_{iD}	
1	50	43	15	4	
2	89	99	95	77	
3	7	47	20	98	
4	8	64	12	94	
5	61	19	65	14	
6	1	80	66	78	

• résolution des 4 problèmes suivants:

$${A} - {E};{AB} - {DE};{ABC} - {CDE};{ABCD} - {BCDE}$$

I-1.4.2.2 Prise en compte des temps de montage / démontage dépendants de l'ordre de passage des tâches

Pour mémoire

I-1.4.2.3 Ordonnancement de n tâches nécessitant l'intervention de m centres de production (ordre identique de passage – *sans attente*)

Pour mémoire

I-1.4.2.4 Le *flow shop* hybride

Pour mémoire

I-1.5	Ordonnancement de n tâches nécessitant l'intervention de m centres de
	production (cheminement libre – open shop)

Pour mémoire

I-1.6 Ordonnancement de n tâches nécessitant l'intervention de m centres de production (ordre de passage quelconque)

- Aucun résultat analytique
- Démarche heuristique si goulot d'étranglement: piloter le système en s'appuyant sur un ordonnancement défini pour ce goulot
- Exemple

1		2		3		4		5	
Machine	durée								
A	5	A	3	С	8	В	5	D	7
С	7	В	5	A	4	D	4	С	15
D	9	С	10	В	3	С	6	A	4
-	-	D	4	-	-	В	7	-	-

- **Principe**: détermination du goulot / machine fictive avant / machine fictive après; hyp implicite de capacité infinie avant et après goulot
- **Goulot**: A (5+3+4+0+4=16); B (0+5+3+5+0=13); **C**(7+10+8+6+15=**46**); D(9+4+0+4+7=24)
 - Amont: cumul travail ⇒ date d'arrivée (au + tôt) dans goulot
 - Aval: dte de livraison cumul travail aval = dates de livraison (au + tard) goulot
 - tâches n'utilisant le goulot: fusion avec amont ou traitées à part

Ordonnancement en ateliers spécialisés

Application

Tâche 1		Tâche 2		Tâche 3		Tâche 4		Tâche 5	
Machine	durée								
Avant C	5	Avant C	8	Avant C	0	Avant C	9	Avant C	7
С	7	С	10	С	8	С	6	С	15
Après C	9	Après C	4	Après C	7	Après C	7	Après C	4

- Résolution ordo sur goulot (simple embeded one-resource problem) ici règle TOM dynamique
 - . en T = 0: chargement de la tâche 3 immédiatement disponible (durée 8);
 - . en T = 5: arrivée de la tâche 1 (durée 7);
 - . en T = 7: arrivée de la tâche 5 (durée 15);
 - . en T = 8: fin de la tâche 3, libération de la machine C; arrivée de 2 (durée 10); chargement de 1 (en application de la règle TOM, les tâches 1 et 5 étant candidates);
 - . en T = 9: arrivée de 4 (durée 6);
 - . en T = 15: fin de la tâche 1, libération de la machine C; chargement de la tâche 4 (en application de la règle TOM, les tâches 4 et 5 étant candidates);
 - . en T = 21: fin de 4, libération de la machine C; chargement de la tâche 2 (en application de la règle TOM, les tâches 2 et 5 étant candidates);
 - en T = 31: fin de la tâche 2, libération de la machine C; chargement de la tâche 5 (candidat unique);
 - . en T = 46: fin de la tâche 5
- Date de début dans goulot = date de livraison de l'amont et date de sorte du goulot = date d'arrivée de l'aval / règles de priorité locales utilisées en amont et aval (S/OPN...)

Ordonnancement en ateliers spécialisés

I-2 Modèles statiques: cas du coût de lancement total variable avec l'ordonnancement retenu

Pour mémoire

I-2.1 Présentation de l'algorithme de Little, Marty, Sweeney & Karel Pour mémoire

I-2.2 Remarques complémentaires

Pour mémoire

I-2.2.1 Détermination empirique de la tournée

Pour mémoire

I-2.2.2 Détermination optimale de tournées multiples

Pour mémoire

I-2.2.3 Problème stochastique du voyageur de commerce

Pour mémoire

I-2.2.4 Complexité des problèmes concrets

Pour mémoire

I-3 Tentative de caractérisation de l'approche statique

Pour mémoire

I-3.1 Critère d'optimisation

Pour mémoire

I-3.2 Liste des hypothèses décrivant le système productif

Pour mémoire

I-3.3 Méthodes de résolution

Pour mémoire

SECTION II L'APPROCHE ALÉATOIRE DYNAMIQUE

 Variables aléatoires de caractéristiques stables ⇒ recherche comportement système (variables d'état caractériasant «régime de croisière») résultant ensemble de règles de décision

II-1 L'approche par la théorie des files d'attente

- Caractéristiques:
 - Arrivées aléatoires des tâches dans SP
 - SP = un ou plusieurs postes de travail, fonctionnant en parallèle ou en série
 - Loi de service pour chaque poste de travail
 - Discipline de file d'attente
 - Résultats analytiques = E(variable d'état) caractérisant **régime stationnaire**.
- Peu de résultats (configuration très simple)

II-2 L'approche simulatoire

- Monte-Carlo pour obtenir info pour systèmes complexes, éventuellement perturbés
- Utilisé à partir des années 60 (coût acceptable) / trentaine de simulateurs disponibles

II-2.1 La simulation de systèmes réels

- Recherche de règles de décision générales (tables de décision) ou contingente (pb spécifique)
- Supériorité de règle: contingente, attention à généralisations abusives

II-2.2 La simulation de systèmes fictifs

• Hypothèses précises: nombre de CP, gammes, durées, arrrivées, lotissement, temps de transfert, perturbations...

II-2.2.1 Le cas des ateliers spécialisés indépendants

- Conway, Maxwell et Miller: jeu de 8700 tâches, SP à 9 C, 25 règles de priorité myope), arrivées, gammes
- Temps d'Achèvement Moyen \overline{A} : adapté (E(), arrivées non simultanées)
- Principales règles de priorité testées
 - RANDOM (pour étalonnage)
 - PAPS Premier-Arrivé, Premier-Servi (FCFS); performances moyennes voisines de RANDOM
 - TOM Temps Opératoire Minimum (SPT)
 - LWKR, Least Work Remaining

Ordonnancement en ateliers spécialisés

- S/OPN = quotient de la marge (= temps restant avant la livraison, diminué du cumul des temps opératoires restant à réaliser) par le nombre d'opérations restant à exécuter
- WINQ (pour Work in Next Queue); priorité = S TO tâches en attente + éventuellement TO résiduel de tâche en cours)
- Évaluation dynamique; ne repose pas sur même SI (règles ± myopes)
- Exemple: machine A se libérant à l'instant t = 90', charge de travail résiduelle + en attente F=65, G=100, K=0

Tâches	Temps	Opération	suivante	Cumul de tous les	Date de	Nombre d'opérations restant à exécuter	
	opératoire sur la machine A	à exécuter sur la machine	temps opératoire	temps opératoires restant à exécuter à l'instant t = 90	livraison demandée		
a	10	K	22	100	t = 270	4	
b	20	K	10	37	t = 170	3	
С	17	F	9	41	t = 270	2	
d	15	G	4	29	t = 170	4	

- Résultats
 - TOM \Rightarrow a; Winq \Rightarrow a ou b;
 - marge \Rightarrow b (170 37 90 = 43; a=80; c=139; d=51)
 - S/OPN \Rightarrow d

Ordonnancement en ateliers spécialisés

Comparaison des règles.

Règles		RANDOM	FCFS	TOM (SPT)	LWKR	WINQ	SOPN
Nombre moyen instan- tané de tâches en attente dans le système		59,42	58,87	23,25	47,52 40,43		Données non dis- ponibles
	x	74,70	74,43	34,02			66,10
Temps d'achèvement total d'une tâche	σ	Données non dis- ponibles	41,06	53,65	Données non disponibles		16,31

• Remarques:

- Robustesse de TOM si erreur ± 10%
- Partage en urgent et non urgent: performance correcte si < 30% urgent
- TOM retarde **opérations longues** (⇒ bascule périodique sur PEPS)
- Si pas trop engorgé: S/OPT sinon TOM

II-2.2.2 Cas d'une dépendance entre les centres de production

- Performances contingente:
 - indépendance en proba des gammes / pas de structure arborescente des CP
 - polyvalence baisse prédominence de TOM)

SECTION III PERSPECTIVES ACTUELLES DE L'ORDONNANCEMENT EN ATELIERS SPÉCIALISÉS

- Ici SP en ateliers spécialisés, en îlots de fabrication, ou en lignes d'assemblage et/ou de fabrication
- Ordo reste préoccupation (prod à la commande) même si appro/prod synchrone et JAT
- Importance de l'I en procédures (SIAD...) sousestimée par manque de modélisation préalable et qualité SI mais aussi parceque flexibilité physique prvilégiée
- SIAD ordo + mobilisation ponctuelle de ressources ? évaluation éco globale des alternatives

III-1 Les approches possibles

III-1.1 Exemple introductif

Voir Données du problème

- III-1.2 Les solutions possibles
- III-1.2.1 Placement progressif d'ordres de fabrication

Voir Placement progressif

III-1.2.2 Placement chronologiquement progressif d'opérations exécutables

Voir Placement chronologique

Pour mémoire