Assignment C

Common Notations

We use the following notation:

 S_t : Stock price at time t

 σ : Volatility of the Stock (assumed constant)

r : Interest rate

T : Time to option expiration (in years)

K : Strike price

 W_t : Brownian motion process N(0,1) : Standard normal distribution

 $(A - B)^+$: Max(A-B, 0)

Generating Random Inputs

Where applicable, you may use the function shown below to generate input values randomly: float random_data(float low, float hi) { float r = (float)rand() / (float)RAND MAX;

return low + r * (hi - low);

```
For example, you may use this function to populate the input matrices in Assignment 1, and initialize the input values in option pricing assignments.
```

Measuring Running Time using Chrono

- ▶ We use a timer to measure the execution times of a program.
- ► We have many choices to get such timing measurements. Code snippet below shows how to use chrono in the C++ Standard Library.

```
#include <chrono>
using namespace std::chrono;
int main()
   high_resolution_clock::time_point t1 =
       high_resolution_clock::now();
   do_the_works();
   high_resolution_clock::time_point t2 =
      high_resolution_clock::now();
   std::cout << "Elapsed time: " <<
      duration cast<milliseconds>(t2 - t1).count() << " ms";</pre>
```

Defined in chrono header.

Assignment C(C/C++)

- ▶ Due: June 24 by 6 PM.
- Write a function to price European style Call options using a binomial tree.
- ▶ Jarrow-Rudd tree is explained below but you may use any other type (e.g. CRR) of your choice.
- Measure time taken to price 1 million options.
- You are not required to use techniques such as vectorization/multithreading for this assignment.
- ▶ Aim of this assignment is to get the students to think about performance and set the stage for week 1 lecture.
- ▶ As long as anyone makes a genuine and an honest attempt to solve this problem one will get full points for this assignment, even if the solution is not complete.

The Jarrow-Rudd Binomial Tree

- We will use a binomial tree to simulate the paths of the underlying stochastic process.
- ▶ Jarrow-Rudd tree assumes the random value (z=N(0, 1)) takes +1 or -1 with equal (risk neutral) probability of 1/2 at every node in the tree.
- If we know the stock price at time t, Equations 1 and 2 give us possible values for the stock prices at time $t + \Delta t$.

Stock Price Process

▶ This leads to stock price at time $t + \Delta t$:

$$z = 1: S_{t+\Delta t}^{U} = S_t \exp^{((r-\sigma^2/2)\Delta t + \sigma\sqrt{\Delta}t)}$$
 (1)

$$z = -1: S_{t+\Delta t}^{D} = S_{t} \exp^{((r-\sigma^{2}/2)\Delta t - \sigma\sqrt{\Delta}t)}$$
 (2)

We refer to these two stock prices as $S_{t+\Delta t}^{U}$ and $S_{t+\Delta t}^{D}$ to mean the stock prices at up and down nodes respectively, at time $t + \Delta t$.

- ► We simulate how the stock prices would evolve on the tree using Equations 1 and 2:
 - divide time to expiration, T, into equal N parts such that $\Delta t = T/N$
 - ightharpoonup discretize W_t such that

$$\Delta W_t = \sqrt{\Delta t} N(0, 1) \tag{3}$$

and assume the underlying Brownian motion can only move a fixed amount up or down at each time step.

- (In the case of Jarrow-Rudd tree, the random variable N(0, 1) given in Equation 3 takes +1 or -1 with an equal probability of 1/2.)
- we start from the left of the tree, i.e. t=0 and build the binary tree for the stock price process at every Δt increment

▶ A full binomial tree with 3 times steps (N=3) is shown next.

- ► Such a construction yields a binomial tree.
- ▶ This tree recombines by construction.
- Recombining means: if you start from a node at time t, an up move at time t followed by a down move at time $t + \Delta t$ and a down move at time t followed by an up move at time $t + \Delta t$ end up at the same node at time $t + 2\Delta t$ $S_{\Delta t}^D = S_0 \exp((r \sigma^2/2)\Delta t \sigma\sqrt{\Delta}t)$

$$S_{\Delta t}^{DU} = S_0 \exp^{((r-\sigma^2/2)\Delta t + \sigma\sqrt{\Delta}t)} = S_0 \exp^{2(r-\sigma^2/2)\Delta t} = S_{\Delta t}^{UD}$$

- ► Recombining trees do not grow very large when we increase the number of time steps.
- ► Note:
 - 1. The arrows show the direction of path simulation.
 - Superscripts D, DD, U, UU etc. denote how many levels the stock price has gone up or down from the initial value.
 U denotes an up movement; D denotes a down movement.

Pricing an European Option

We use the stock prices at each node on the tree to calculate the option price:

- ▶ The option payoff at time t=T, i.e. $C(S_T)$, is given by the options payoff function.
 - ightharpoonup Call: $C(S_T) = max(S_T K, 0)$
 - Put: $C(S_T) = max(K S_T, 0)$
- ► The option payoff at time t, $C(S_t)$, is given by the discounted expectation of the option payoffs at time $t + \Delta t$:

$$C_{t} = [p_{u}C_{t+\Delta t}^{U} + p_{d}C_{t+\Delta t}^{D}] exp^{-r\Delta t} \qquad p_{u} = p_{d} = 0.5$$
 (4)
$$C_{t}$$

Pricing an European Option

- Risk neutral probabilities associated with each path (p_u and p_d) is 0.5 (by construction) for Jarrow-Rudd trees.
- Starting from the right (t = T) back-propagate the option prices to find the price of the option at time zero.
- The price of option at time t, i.e. C_t is given by the discounted expectation of prices at time $t+\Delta t$, given in Equation 4.

Notes:

- 1. The arrows show the direction of the calculation.
- Superscripts D, DD, U, UU etc. correspond to the stock price levels.
- 3. 0.5 Risk neutral probability value in Equation 4 applies to Jarrow-Rudd trees only. Other types of trees may have different risk neutral probabilities.

▶ A full binomial tree with 3 time steps (N=3) is shown below:

▶ The option price at time zero (t = 0) is given by C_0 .