

Intro to Azure Machine Learning and Security Considerations for the ML lifecycle

Who we are

Fatos Ismali

Joe Plumb

Data & Analytics team @ Horosoft

Data Science Initiative

https://www.meetup.com/data-science-initiative/

Data Science Initiative

Explore Messages

() London, United Kingdom

3 2,917 members · Public group

Start a new group

Organized by Fatos Ismali

Share: 🕶 🔰 in

About Events

Members

Photos

Discussions

More

Manage group $\ensuremath{\checkmark}$

Create event 🗸

What we're about

The Data Science Initiative (DSI) is an initiative that aims to create an environment where anyone with a passion for Data Science can learn this fiel...

Organizer

Notifications

Data Science Described

Data Analysis

- Create, Read, UpdateDelete
- Programming and Control
- Reporting
- Business Intelligence
- Statistics and Data Mining
- Story Telling

Scientific Process

- Define the Question
- (Create Hypothesis)
- Create a Repeatable Test
- Publish Results

- Artificial Intelligence
 - Machine Learning
 - Deep Learning

Progression

Machine Learning

The Formal Definition:

"A computer program is said to learn from experience E with respect to some class of tasks I and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

Tom M. Mitchell, Professor at Carnegie Mellon University, USA

Machine Learning Simplified

Features Label

Image	OpenTop	ClosedBottom	HoldsLiquid	Hand-Sized	IsCup
	TRUE	TRUE	TRUE	TRUE	TRUE
3	TRUE	TRUE	TRUE	TRUE	TRUE
C.	TRUE	TRUE	TRUE	TRUE	TRUE
	FALSE	FALSE	FALSE	FALSE	FALSE

Model - *lf*:

- Open top = *TRUE*
- Closed bottom = TRUE
- Holds liquid = TRUE
- Hand-sized = *TRUE*
- ...

Then

• CUP = TRUE

Score:

- CUP = TRUE
- CERTAINTY = 90%

Machine Learning Uses and Algorithm Families

Which action (Reinforcement Learning)

Languages and Libraries

Language	Libraries		
R	Standard Libraries and Packages, E1071, rpart, randomForest, caret, kernlab, glmnet, ROCR, gbm, party, arules, tree, klaR, Rweka, ipred, lars, earth, CORElearn, mboost		
Python	TensorFlow, Scikit-Learn, Numpy, Keras, PyTorch, LightGBM, Eli5, SciPy, Theano, Pandas		
Platform-Specific (Spark, Hadoop, etc.)	MLLib, PySpark, SparkR, (Spark), Etc.		
SQL (data selection and preparation)	N/A		
Java (primarily data preparation)	ADAMS, Deeplearning4j, ELKI, JavaML, JSAT, Mahout, MALLET, Massive Online Analysis, RapidMiner, Weka.		

Project Roles in Machine Learning

Data Scientist	ML Engineer	Business Analyst	IΤ	Al Architect
Is this going to let me do new or better kinds of models and analysis?	Will this let me put this into production and operate at scale, but still give me visibility?	Is this something I can use myself without becoming a DS PHD?	Is this going to be supported, secure, compliant, and integrated with our IT infrastructure	 Does my organization have the resources and infrastructure to successfully use AI/ML?

ML Ops - Lifecycle

ML Ops – Lifecycle Complexity

Prepare Experiment Deploy **Business Understanding Model Explainability Model Scoring / Deployment Model Tracking Model Registry Batch Model Tuning Model Management Streaming Visual Machine Learning Model Reproducibility Real-time Automated Machine Learning Model Compliance Model Portability Bias Detection Model Monitoring Data Drift Detection** Prepare Data **Build Model** Train & Register and Build Image Schedule Jobs (Notebooks & IDEs) Test Model Manage Model Deploy Service Monitor Model

Model complexity

Type (Data Volume, Model type, Model complexity)

Type I

Type I

Simple single-threaded models leveraging traditional supervised and unsupervised machine learning techniques on easily accessible datasets

Type II

Type II

Single-threaded models leveraging more advanced techniques in addition to traditional ML. For instance, deep learning and reinforcement learning, natural language processing, computer vision, sound processing.

Type II-A (Parallel training)

Type II-A (Parallel training)

Traditional ML models and more complex models (e.g. Deep Learning) leveraging parallel training of multiple models

Type II-B (Distributed training – Spark based)

Type II-B (Distributed training – Spark based)

Leveraging distributed processing engines such as Spark for distributing training of ML models and data processing

Machine Learning on Azure

Domain specific pretrained models To simplify solution development Vision Language Speech Search Familiar Data Science tools To simplify model development Visual Studio Code Command line Azure Notebooks Popular frameworks To build advanced deep learning solutions TensorFlow ONNX PyTorch Scikit-Learn **Productive services** To empower data science and development teams Azure Azure Machine Machine **Databricks** Learning VMs Learning Powerful infrastructure To accelerate deep learning

GPU

FPGA

CPU

Machine Learning on Azure

Automated machine learning UI

Visual interface

Machine learning notebooks

Automated machine learning UI

Visual interface

Machine learning notebooks

https://arxiv.org/abs/1705.05355

New capabilities in Azure Machine Learning service

Automated machine learning UI

Visual interface

Machine learning notebooks

New capabilities in Azure Machine Learning service

Automated machine learning UI

Visual interface

Machine learning notebooks

Security Considerations for the ML lifecycle

Security considerations for any system

Security Components – User Access Authentication and Authorization

- **Users** authenticate with their user identity to access and provision services in Azure. Same identity for portal, PaaS, cli. Fine-grained RBAC across environments.
- Service Principal is a security identity granted access rights to applications and services to enable secure, automated
 execution of tasks.
- <u>Create a Service Principal</u>, then <u>grant access permissions</u> to services via management groups (<u>further reading</u>).
- Apply <u>principle of least privilege</u> i.e. only those privileges which are essential to perform its intended function.
 - Azure Machine Learning: Custom role allowing Microsoft.MachineLearningServices/workspaces/*/write (believe new AAD roles are coming soon)
 - Azure Blob/Azure Data Lake Storage: <u>Storage Blob Data Reader</u> (watch out for ACLs!)
 - Azure Databricks: Contributor permissions on the Databricks workspace. Generate authentication token manually (PAT token) or via CLI and store in Key Vault
 - Azure DevOps: New SP created when ARM Service Connection created.

Security components – Secrets Management Key Vault

- Secure store for secrets in your pipelines and workflows. Easy to <u>provision</u>, <u>store</u>, and <u>get secrets</u>.
- Create and store your Service Principal secret in Key Vault
- AML creates its own key vault on deployment to manage its secrets you'll need to create your own for secrets for your project
- Use a <u>separate Key Vault per application per environment</u>. Reference secrets using the same variable name to ensure code portability between environments
- <u>Configure key rotation</u> with Azure Automation for keys that you manage. Storage accounts used by AML can be <u>updated using the SDK</u>.
- Setup and store variables and service connections in Azure DevOps/GitHub/Jenkins

Security Components – Data encryption Safeguard data according to your needs

- **Encryption at rest** AML stores snapshots, output, and logs in the Storage account that's tied to the workspace. All the data stored in Azure Blob storage is encrypted at rest with Microsoft-managed keys. You can bring your own keys too.
- If your workspace contains sensitive data, recommended to <u>set the hbi_workspace flag</u> while creating your workspace.
- Encryption in transit Ensure external scoring endpoints are <u>secured using TLS</u>.

Security components – Networking Perimeter security

- Azure Machine Learning relies on other Azure services for compute resources. These can be created
 in a virtual network.
- You can enable Azure Private Link for your AML workspace. Private Link allows you to restrict communications to your workspace from an Azure Virtual Network. **Currently in preview**, and is available in the US East, US West 2, US South Central regions.
- Private Link vs Service endpoints
 - "The main difference between the two is Private Link introduces a private IP for a given instance of the PaaS Service and the service is accessed via the private IP. A Service Endpoint uses the public IP address of the PaaS Service when accessing the service." [Source]
 - Private Link = VNET to PaaS Instance. Service endpoint = VNET to PaaS Service.
- Vnet integration
 - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-enable-virtual-network

