Cross-lingual Sentence Compression for Subtitles

Motivation

Wilker Aziz Sheila de Sousa Lucia Specia

w.aziz@wlv.ac.uk
sheilacastilhoms@gmail.com
l.specia@sheffield.ac.uk

May 29, 2012

Outline

- Motivation
- 2 Related Work
- Method
- 4 Experimental Setup
- 6 Results
- 6 Conclusion and Future Work

Scenario

Relevant commercial application

Scenario

Motivation

Relevant commercial application

Increasing demand for generation of audiovisual content

Scenario

Relevant commercial application

- Increasing demand for generation of audiovisual content
 - The EC estimated a turnover of 633M€ in 2008¹ ¹SUMAT: http://www.sumat-project.eu

Relevant commercial application

- Increasing demand for generation of audiovisual content
 - The EC estimated a turnover of 633M€ in 2008¹ ¹SUMAT: http://www.sumat-project.eu

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com 1.specia@sheffield.ac.uk

Availability of resources

Relevant commercial application

- Increasing demand for generation of audiovisual content
 - The EC estimated a turnover of 633M€ in 2008¹ ¹SUMAT: http://www.sumat-project.eu
- Availability of resources
 - 54 languages, 1K bitexts, 8.3G tokens, 1.2G segments² ²OpenSubtitles: http://opus.lingfil.uu.se

Subtitles have to fit

Subtitles have to fit

• the space available on the screen

Results

Problem

Subtitles have to fit

- the **space** available on the screen
- a time slot so that they can be read

Motivation

Subtitles have to fit

- the **space** available on the screen
- a time slot so that they can be read

Native speakers and/or second language learners

Subtitles have to fit

- the **space** available on the screen
- a time slot so that they can be read

Native speakers and/or second language learners

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com 1.specia@sheffield.ac.uk

Audio transcripts (sometimes)

Motivation

Subtitles have to fit

- the space available on the screen
- a time slot so that they can be read

Native speakers and/or second language learners

Audio transcripts (sometimes)

Foreign viewers

Motivation

Subtitles have to fit

- the space available on the screen
- a time slot so that they can be read

Native speakers and/or second language learners

Audio transcripts (sometimes)

Foreign viewers

Translations

Motivation

Subtitles have to fit

- the space available on the screen
- a time slot so that they can be read

Native speakers and/or second language learners

Audio transcripts (sometimes)

Foreign viewers

- Translations
 - manual (?)

Conclusion and Future Work

Motivation

Subtitles have to fit

- the space available on the screen
- a time slot so that they can be read

Native speakers and/or second language learners

Audio transcripts (sometimes)

Foreign viewers

- Translations
 - manual (?)
 - amateur (OpenSubtitles data)

Task: English (en) to Brazilian Portuguese (pt)

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Motivation

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Motivation

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹ Episodes not in OpenSubtitles (same pre-processing²)

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Motivation

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹ Episodes not in OpenSubtitles (same pre-processing²) Malformed subtitles

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹ Episodes not in OpenSubtitles (same pre-processing²) Malformed subtitles

• 33.5% pt: 10 ± 7 chars over

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Evidence

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹ Episodes not in OpenSubtitles (same pre-processing²) Malformed subtitles

- 33.5% pt: 10 ± 7 chars over
- 36.28% en: 8.85 ± 6.73 chars over

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹ Episodes not in OpenSubtitles (same pre-processing²) Malformed subtitles

- 33.5% pt: 10 ± 7 chars over
- 36.28% en: 8.85 ± 6.73 chars over
- 45.2% pt longer than en: 5 ± 4.5 chars over

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹ Episodes not in OpenSubtitles (same pre-processing²) Malformed subtitles

- 33.5% pt: 10 ± 7 chars over
- 36.28% en: 8.85 ± 6.73 chars over
- 45.2% pt longer than en: 5 ± 4.5 chars over

Malformed Google translations

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Results

Evidence

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹ Episodes not in OpenSubtitles (same pre-processing²) Malformed subtitles

- 33.5% pt: 10 ± 7 chars over
- 36.28% en: 8.85 ± 6.73 chars over
- 45.2% pt longer than en: 5 ± 4.5 chars over

Malformed Google translations

• 42.35% pt: 11.6 ± 8.7 chars over

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Motivation

Task: English (en) to Brazilian Portuguese (pt) 8K bisegments from recent episodes of 3 TV series¹ Episodes not in OpenSubtitles (same pre-processing²) Malformed subtitles

- 33.5% pt: 10 ± 7 chars over
- 36.28% en: 8.85 ± 6.73 chars over
- 45.2% pt longer than en: 5 ± 4.5 chars over

Malformed Google translations

- 42.35% pt: 11.6 ± 8.7 chars over
- 63% pt longer than en: 5.5 ± 4.3 chars over

¹Dexter, How I met your mother and Terranova

²Text-based sentence alignment

Evidence - Reference

Motivation

Post-editing/Compression

Evidence - BLEU by show

Evidence - BLEU by show

Google: surprising?!

Evidence - BLEU by episode

Evidence - BLEU by episode

Episode

Amateur subtitlers do **post-edit!**

Translation for Subtitles

Several attempts

Translation for Subtitles

Several attempts

Motivation

Several approaches: RBMT, EBMT and SMT

Translation for Subtitles

Several attempts

- Several approaches: RBMT, EBMT and SMT
- Modest training data

Results

Several attempts

- Several approaches: RBMT, EBMT and SMT
- Modest training data
- Modest evaluation setups

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com 1.specia@sheffield.ac.uk

Results

Several attempts

- Several approaches: RBMT, EBMT and SMT
- Modest training data
- Modest evaluation setups
 - Small test sets

Several attempts

Motivation

Several approaches: RBMT, EBMT and SMT

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com 1.specia@sheffield.ac.uk

- Modest training data
- Modest evaluation setups
 - Small test sets
 - Subjective evaluation

Several attempts

- Several approaches: RBMT, EBMT and SMT
- Modest training data
- Modest evaluation setups
 - Small test sets
 - Subjective evaluation
 - Few human annotators for evaluation

Few attempts

Compression for Subtitles

Few attempts

Motivation

Handcrafted source-language rules

Compression for Subtitles

Few attempts

- Handcrafted source-language rules
- Word substitution: shorter, but similar (in context)

Few attempts

- Handcrafted source-language rules
- Word substitution: shorter, but similar (in context)
- Modest evaluation setups

Compression for Subtitles

Few attempts

Motivation

- Handcrafted source-language rules
- Word substitution: shorter, but similar (in context)
- Modest evaluation setups

Out of the subtitling domain

Compression for Subtitles

Few attempts

Motivation

- Handcrafted source-language rules
- Word substitution: shorter, but similar (in context)

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com l.specia@sheffield.ac.uk

Modest evaluation setups

Out of the subtitling domain

General purpose sentence compression

Few attempts

Motivation

- Handcrafted source-language rules
- Word substitution: shorter, but similar (in context)
- Modest evaluation setups

Out of the subtitling domain

 General purpose sentence compression "achieve an overall (document-level) compression rate"

Cross-lingual Sentence Compression

Motivation

Give an SMT system the means to control for length

Motivation

Give an SMT system the means to control for length

• Tuning: with adequate dataset, SMT should get closer to reproducing well-formed subtitles

Results

Cross-lingual Sentence Compression

Give an SMT system the means to control for length

- 1 Tuning: with adequate dataset, SMT should get closer to reproducing well-formed subtitles
- Model: constrain the length of the output text based on the duration of the subtitle

Cross-lingual Sentence Compression

Give an SMT system the means to control for length

- 1 Tuning: with adequate dataset, SMT should get closer to reproducing well-formed subtitles
- Model: constrain the length of the output text based on the duration of the subtitle

Compressing on demand

Length Constraints

Device-dependent norms Cintas and Remael [2007]

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com l.specia@sheffield.ac.uk

Length Constraints

Motivation

Device-dependent norms Cintas and Remael [2007]

- about 40 chars/line
- maximum of 2 lines/screen
- minimum duration: 1 second
- maximum duration: 6 seconds

Length Constraints

Motivation

Device-dependent norms Cintas and Remael [2007]

- about 40 chars/line
- maximum of 2 lines/screen
- minimum duration: 1 second
- maximum duration: 6 seconds

Once the device is fixed the constraint is a function of the duration (of the source)

Motivation

Phrase-based SMT

Conclusion and Future Work

Motivation

Phrase-based SMT

$$h_{lp}(\bar{f}_1^K, \bar{e}_1^K) = \sum_{k=1}^K \hat{h}_{lp}(\bar{f}_k, \bar{e}_k)$$

Motivation

Phrase-based SMT

$$h_{lp}(\bar{f}_1^K, \bar{\mathbf{e}}_1^K) = \sum_{k=1}^K \hat{h}_{lp}(\bar{f}_k, \bar{e}_k)$$

Given a length constraint $c = g(o_f - i_f)$

Motivation

Phrase-based SMT

$$h_{lp}(ar{f}_1^K,ar{e}_1^K) = \sum_{k=1}^K \hat{h}_{lp}(ar{f}_k,ar{e}_k)$$

Given a length constraint $c = g(o_f - i_f)$

$$h_{lp}(\bar{f}_1^K, \bar{e}_1^K, c) \equiv c - \operatorname{length}(\bar{e}_1^K)$$

Motivation

Phrase-based SMT

$$h_{lp}(ar{f}_1^K,ar{e}_1^K) = \sum_{k=1}^K \hat{h}_{lp}(ar{f}_k,ar{e}_k)$$

Experimental Setup

Given a length constraint $c = g(o_f - i_f)$

$$h_{lp}(\bar{f}_1^K, \bar{e}_1^K, c) \equiv c - \operatorname{length}(\bar{e}_1^K)$$

Decomposing

Results

Motivation

Length Penalty

Phrase-based SMT

$$h_{lp}(\bar{f}_{1}^{K}, \bar{\mathbf{e}}_{1}^{K}) = \sum_{k=1}^{K} \hat{h}_{lp}(\bar{f}_{k}, \bar{\mathbf{e}}_{k})$$

Given a length constraint $c = g(o_f - i_f)$

$$h_{lp}(\bar{f}_1^K, \bar{\mathbf{e}}_1^K, c) \equiv c - \operatorname{length}(\bar{\mathbf{e}}_1^K)$$

Decomposing

$$h_{lp}(\bar{f}_{1}^{K}, \bar{e}_{1}^{K}, c) = \sum_{k=1}^{K} \hat{h}_{lp}(\bar{f}_{k}, \bar{e}_{k}, c)$$

Results

Length Penalty

Phrase-based SMT

$$h_{lp}(ar{f}_1^K,ar{e}_1^K) = \sum_{k=1}^K \hat{h}_{lp}(ar{f}_k,ar{e}_k)$$

Given a length constraint $c = g(o_f - i_f)$

$$h_{lp}(\bar{f}_1^K, \bar{\mathbf{e}}_1^K, c) \equiv c - \operatorname{length}(\bar{\mathbf{e}}_1^K)$$

Decomposing

$$h_{lp}(\bar{f}_1^K, \bar{e}_1^K, c) = \sum_{k=1}^K \hat{h}_{lp}(\bar{f}_k, \bar{e}_k, c)$$

Scaling to a phrase pair

11/23

Length Penalty

Motivation

Phrase-based SMT

$$h_{lp}(\bar{f}_{1}^{K}, \bar{e}_{1}^{K}) = \sum_{k=1}^{K} \hat{h}_{lp}(\bar{f}_{k}, \bar{e}_{k})$$

Given a length constraint $c = g(o_f - i_f)$

$$h_{lp}(\bar{f}_1^K, \bar{\mathbf{e}}_1^K, c) \equiv c - \operatorname{length}(\bar{\mathbf{e}}_1^K)$$

Decomposing

$$h_{lp}(\bar{f}_1^K, \bar{e}_1^K, c) = \sum_{k=1}^K \hat{h}_{lp}(\bar{f}_k, \bar{e}_k, c)$$

Scaling to a phrase pair

$$\hat{h}_{lp}(ar{f},ar{e},c)=c imes rac{ ext{length}(f)}{ ext{length}(f)}- ext{length}(ar{e})$$

Informing the Decoder

XML markup

Motivation

OpenSubtitles

OpenSubtitles

• Training (unconstrained): 14M segments

Motivation

OpenSubtitles

• Training (unconstrained): 14M segments

Episodes not in OpenSubtitles (same pre-processing)

OpenSubtitles

• Training (unconstrained): 14M segments

Episodes not in OpenSubtitles (same pre-processing)

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com 1.specia@sheffield.ac.uk

• Tuning (unconstrained): 2K segments

Motivation

OpenSubtitles

• Training (unconstrained): 14M segments

Episodes not in OpenSubtitles (same pre-processing)

- Tuning (unconstrained): 2K segments
- Tuning (constrained): 1,9K (D), 1,13K (H) and 1,32K (T)

Motivation

OpenSubtitles

Training (unconstrained): 14M segments

Episodes not in OpenSubtitles (same pre-processing)

- Tuning (unconstrained): 2K segments
- Tuning (constrained): 1,9K (D), 1,13K (H) and 1,32K (T)
- Test (unconstrained): 400 sentences per show

• Ip::ideal is the maximum length, given the duration of the source, so that the subtitle can be read

Motivation

- Ip::ideal is the maximum length, given the duration of the source, so that the subtitle can be read
- 2 lp::input is the length of the input text

Conclusion and Future Work

- Ip::ideal is the maximum length, given the duration of the source, so that the subtitle can be read
- 2 lp::input is the length of the input text
 - intuitively one would like to have target subtitles that are close to their source equivalents

- Ip::ideal is the maximum length, given the duration of the source, so that the subtitle can be read
- 2 lp::input is the length of the input text
 - intuitively one would like to have target subtitles that are close to their source equivalents
- Ip::min the minimum of the two above

Length Penalties

- Ip::ideal is the maximum length, given the duration of the source, so that the subtitle can be read
- 2 lp::input is the length of the input text
 - intuitively one would like to have target subtitles that are close to their source equivalents
- Ip::min the minimum of the two above
 - one would like to keep the target length close to the source length while complying with lp:ideal

Systems

Systems

 ${f B}_1$: Google

Results

B₁: Google

B₂: Moses (unconstrained tuning)

Results

Systems

B₁: Google

B₂: Moses (unconstrained tuning)

B₃: Moses (constrained tuning)

Motivation

B₁: Google

B₂: Moses (unconstrained tuning)

B₃: Moses (constrained tuning)

 LP_2 : $B_3 + lp::ideal + lp::input$

Systems

Motivation

B₁: Google

B₂: Moses (unconstrained tuning)

B₃: Moses (constrained tuning)

 \mathbf{LP}_2 : \mathbf{B}_3 + Ip ::ideal + Ip ::input

 $\textbf{LP}_1{:}\ \textbf{B}_3 + lp{::}min$

Motivation

Post-editing

8 Brazilian annotators

- PFT³
- Highlight compliance to length constraints
- Compress only if necessary
- Fix quality only if necessary

HTER Snover et al. [2006]

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com l.specia@sheffield.ac.uk

³http://pers-www.wlv.ac.uk/~in1676/pet

Results

Motivation

Statistical significance in relation to B₃⁴

System	D		Н		Т	
System	TER ↓	LENGTH	TER ↓	LENGTH	TER ↓	LENGTH
B ₃	30.3	116.0	20.0	108.5	33.8	120.2
B ₁	63.6	156.5	52.8	144.3	63.1	152.1
B ₂	35.7	127.3	31.3	126.9	44.1	135.8
LP ₂	29.5	115.5	21.0	109.1	33.4	119.3
LP_1	28.3	115.8	20.7	110.0	34.8	119.8

 $^{^4}$ x. v and z denote results that are significantly better than a baseline (p < 0.01, 0.05 and 0.10, respectively). x, y and z denote results that are significantly worse than a baseline (p < 0.01, 0.05 and 0.10, respectively).

Average Length Constraints

Motivation

Some datasets require more compression

Set	lp::input	lp::ideal	lp::min
D	28.82 ± 15.43	36.99 ± 14.40	26.03 ± 12.86
Н	28.40 ± 13.81	$\textbf{33.25} \pm \textbf{13.77}$	25.97 ± 12.20
T	28.34 ± 15.22	$\textbf{30.14} \pm \textbf{11.47}$	24.61 ± 11.93

Malformed Subtitles

Motivation

Some outputs are easier to compress

Malformed	B_1	B_2	B ₃	LP ₂	LP_1
MT	44.15	34.41	27.40	24.57	25.65
PE	8.50	9.08	7.0	5.65	5.65

Tuning with Multiple References

Tuning^m: 5 length-compliant reference translations produced for the 1,2K test sentences

Test: 600 unseen sentences (200 from each show) Statistical significance in relation to B_3^{m5}

System	TER ↓	LENGTH
B ₃ ^m	26.8	103.8
B ₃	27.0	106.1
LP_2^m	26.0	103.3
LP ₁ ^m	25.9	103.6

 $^{^{5}}$ x. $_{V}$ and $_{Z}$ denote results that are significantly better than a baseline (p < 0.01, 0.05 and 0.10, respectively). x, y and z denote results that are significantly worse than a baseline (p < 0.01, 0.05 and 0.10, respectively).

Remarks'

Adequately choosing the tuning data is not only sensible, it actually does a big chunk of the job

Remarks

- Adequately choosing the tuning data is not only sensible, it actually does a big chunk of the job
- Controlling the string length can further improve the model's compression capabilities

Remarks

- Adequately choosing the tuning data is not only sensible, it actually does a big chunk of the job
- Controlling the string length can further improve the model's compression capabilities
- Even more in the presence of shorter paraphrases

Remarks

- Adequately choosing the tuning data is not only sensible, it actually does a big chunk of the job
- Controlling the string length can further improve the model's compression capabilities
- Even more in the presence of shorter paraphrases
- LP models select some nice paraphrases, but they also drop words that are usually added back by human translators: articles, prepositions and conjunctions amongst the most frequent cases

Explicitly add paraphrases

- Explicitly add paraphrases
- Model word/phrase deletion

- Explicitly add paraphrases
- Model word/phrase deletion
- Oecouple translation quality and compression in the evaluation

Motivation

- Explicitly add paraphrases
- Model word/phrase deletion
- Oecouple translation quality and compression in the evaluation

Wilker Aziz, Sheila de Sousa, Lucia Specia w.aziz@wlv.ac.uk sheilacastilhoms@gmail.com 1.specia@sheffield.ac.uk

Additional language pairs

- Explicitly add paraphrases
- Model word/phrase deletion
- Oecouple translation quality and compression in the evaluation
- Additional language pairs
- Use a dataset of professional subtitles

- Explicitly add paraphrases
- Model word/phrase deletion
- Oecouple translation quality and compression in the evaluation
- Additional language pairs
- Use a dataset of professional subtitles if we can get one;

Thank you!

References I

Jorge Díaz Cintas and Aline Remael. Audiovisual Translation: Subtitling. Translation Practice Explained. St Jerome Publishing, 2007.

Matthew Snover. Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A Study of Translation Edit Rate with Targeted Human Annotation. In 7th Conference of the Association for Machine Translation in the Americas, pages 223–231. Cambridge, Massachusetts, 2006.

Length Constraints

Duration (s)	Length	Ratio (char/s)	Duration (s)	Length	Ratio (char/s)
1.0000	17	17.0000	3.6667	65	17.7273
1.1667	20	17.1429	3.8333	68	17.7391
1.3333	23	17.2500	4.0000	70	17.5000
1.5000	26	17.3333	4.1667	73	17.5200
1.6667	28	16.8000	4.3333	76	17.5385
1.8333	30	16.3636	4.5000	76	16.8889
2.0000	35	17.5000	4.6667	77	16.5000
2.1667	37	17.0769	4.8333	77	15.9310
2.3333	39	16.7143	5.0000	78	15.6000
2.5000	43	17.2000	5.1667	78	15.0968
2.6667	45	16.8750	5.3333	78	14.6250
2.8333	49	17.2941	5.5000	78	14.1818
3.0000	53	17.6667	5.6667	78	13.7647
3.1667	55	17.3684	5.8333	78	13.3714
3.3333	57	17.1000	6.0000	78	13.0000
3.5000	62	17.7143	-	-	-

