

proof of class equation theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfClassEquationTheorem}$

Date of creation 2013-03-22 14:20:52 Last modified on 2013-03-22 14:20:52

Owner gumau (3545) Last modified by gumau (3545)

Numerical id 4

Author gumau (3545)

Entry type Proof Classification msc 20D20 X is a finite disjoint union of finite orbits: $X = \bigcup_i Gx_i$. We can separate this union by considerating first only the orbits of 1 element and then the rest: $X = \bigcup_{j=1}^{l} \{x_{i_j}\} \cup \bigcup_{k=1}^{s} Gx_{i_k} = G_X \cup_{k=1}^{s} Gx_{i_k}$ Then using the orbit-stabilizer theorem, we have $\#X = \#G_X + \sum_{k=1}^{s} [G:G_{x_{i_k}}]$ where for every k, $[G:G_{x_{i_k}}] \geq 2$, because if one of them were 1, then it would be associated to an orbit of 1 element, but we counted those orbits first. Then this stabilizers are not G. This finishes the proof.