

POWER MANAGEMENT

88PG8x7 Family Field Programmable DSP Switcher™

1 MHz, 4.5A Peak Current-Limit Step-Down Regulator with AnyVoltage $^{\text{TM}}$ Technology

Advance Datasheet, Patent Pending

Doc. No. MV-S102867-00, Rev. F October 30, 2007

88PG8x7 1 MHz, 4.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology

Document	Document Status			
Advance Information	This document contains design specifications for initial product development. Specifications may change without notice. Contact Marvell Field Application Engineers for more information.			
Preliminary Information	This document contains preliminary data, and a revision of this document will be published at a later date. Specifications may change without notice. Contact Marvell Field Application Engineers for more information.			
Final Information	This document contains specifications on a product that is in final release. Specifications may change without notice. Contact Marvell Field Application Engineers for more information.			
Revision Code: Rev. F				
Advance Technical Publication: 0.31				

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.

Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications.

With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any such information. Copyright © 2007. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas, Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell. Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks of Marvell. All other trademarks are the property of their respective owners.

Doc. No. MV-S102867-00 Rev. F

Page 2

Document Classification: Proprietary Information

October 30, 2007, Advance

¹⁾ Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;

²⁾ Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are controlled for national security reasons by the EAR; and,

³⁾ In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML").

1 MHz, 4.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology

OVERVIEW

The 88PG8x7 family is intelligent digital synchronous Step-Down (Buck) switching regulators with on-chip Low-Drop-Out (LDO) regulator controllers housed in a 3 mm X 3 mm QFN-16 package. Internally self-compensated, these step-down regulators require no external compensation and work with low-ESR output capacitors to simplify the design, minimize the board space, and reduce the amount of external components. The switching frequency for the step-down regulator is 1 MHz, allowing the use of low profile surface mount inductors and low value capacitors. The stepdown regulator includes programmable output voltage to provide the user the ability to easily set the output voltage with external resistors, logic control, or serial data interface. The output voltage range is 0.72V to 3.63V.

The LDO regulator controller with an external P-Channel MOSFET forms a low dropout regulator capable of driving 800 mA output current. The output voltage of the LDO regulator is fixed. See the "Ordering Information" section for more details.

Other key features of the 88PG8x7 family include soft start and auto power MOSFET detection for the LDO regulator controller, an internal current limit for the step-down regulator, an undervoltage lockout, thermal shutdown, over voltage protection, and a Power-On Reset (POR) signal.

FEATURES

- Tiny 3 mm X 3 mm QFN-16 package
- 1 MHz Switching frequency
- Low quiescent current of 1.9 mA (typ.)
- Stable with ceramic output capacitors
- No external compensation required
- Over 95% efficiency
- Peak switch current limit up to 4.5A
- Input voltage range: 2.75V to 5.5V
- Serial / Logic Programmability
- Any Voltage[™] Technology provides 64 output voltage selections to provide flexibility
- Programmable output voltage range:
 - 0.72V to 3.63V
- P-Channel LDO regulator controller with programmable current limit
- Lead-free Packages
- Built-in undervoltage lockout
- Over voltage protection
- Thermal shutdown protection
- Output voltage margining capability

APPLICATION

- Portable computing
- Disk drive power supplies
- 3.3V PCI Express Bus

Figure 1: Typical High Efficiency 5V to 0.8V/3A Step-Down Regulator

Table of Contents

SEC	TION 1.	SIGNAL DESCRIPTION	10
1.1	Pin Conf	iguration	10
1.2	Pin Type	Definitions	11
1.3	Pin Desc	ription	11
SEC	TION 2.	ELECTRICAL SPECIFICATIONS	13
2.1	Absolute	Maximum Ratings	13
2.2	Recomm	ended Operating Conditions	13
2.3	Electrica	I Characteristics	14
2.4	Switchin	g Step-down Regulator	15
2.5	LDO Reg	julator Controller	17
SEC	TION 3.	FUNCTIONAL DESCRIPTION	18
3.1	_	on and Start-upgital Soft Start	
3.2	3.2.1 Se 3.2.2 Lo	oltage Setting erial Programmability ogic Programmability utput Voltage – AnyVoltage™ Technology	21 22
3.3		mable Current Limit for the LDO Regulator Controller	
3.4	Undervo	Itage Lockout (UVLO)	27
3.5	Over Vol	tage Protection (OVP)	28
3.6	Power-O	n Reset (POR)	29
3.7	Thermal	Shutdown	30
3.8	Adaptive	Transient Response	30
3.9	Using Ce	eramic Input Capacitors	31
3.10	Sequenti	al Power up	32
3.11	Disable t	he LDO Function	34

SEC	CTION 4. FUNCTIONAL CHARACTERISTICS	35
4.1	Start-up Waveforms	35
4.2	Short-Circuit Waveforms	36
4.3	Switching Waveforms	37
4.4	Load Transient Waveforms 4.4.1 Step-Down Regulator 4.4.2 LDO Regulator	39
4.5	Output Voltage Transient Waveforms	
4.6	Line Transient Waveforms	43
SEC	CTION 5. TYPICAL CHARACTERISTICS	44
5.1	Efficiency Graphs	
5.2	Load Regulation	44
5.3	Dropout Voltage	45
5.4	RDS (ON) Resistance	45
5.5	IC Case and Inductor Temperature	46
5.6	P-Channel MOSFET (FDS642P) Thermal Characteristics	47
5.7	Input Voltage Graphs	49
5.8	Temperature Graphs	52
SEC	CTION 6. APPLICATIONS INFORMATION	55
6.1	PC Board Layout Considerations and Guidelines for 88PG8x7	
6.2	Bill of materials for 88PG8x7	60
SEC	CTION 7. MECHANICAL DRAWING	65
7.1	88PG8x7 Mechanical Drawing	65
7.2	Dimensions	66
7.3	Typical Pad Layout Dimensions	67

88PG8x7 1 MHz, 4.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology

	7.3.1 Recommended Solder Pad Layout	67
SEC	CTION 8. ORDERING INFORMATION	68
8.1	Ordering Part Numbers and Package Markings	68
8.2	Sample Ordering Part Number	69
8.3	Package Marking	69
	8.3.1 Sample Package Marking and Pin 1 Locations	

List of Tables

Table 1:	Product Selector Table	10
Table 2:	Pin Type Definitions	11
Table 3:	Pin Description	11
Table 4:	Default Value of Data Field	22
Table 5:	Voltage and Percentage Set	22
Table 6:	Output Voltage Setting	22
Table 7:	Any Voltage Programming Table for 1% Resistors	23
Table 8:	Any Voltage Programming Table for 5% Resistors	24
Table 9:	Output Voltage Option Steps	25
Table 10:	P-Channel MOSFET Selection	26
Table 11:	88PG847 BOM	60
Table 12:	88PG837 BOM	60
	88PG827 BOM	
	88PG817 BOM	
Table 15:	88PG807 BOM	63
Table 16:	LDO Option BOM	63
Table 17:	Ceramic Capacitor Cross Reference	64
Table 18:	88PG8x7 Ordering Part Numbers	69

List of Figures

Figure 1:	Typical High Efficiency 5V to 0.8V/3A Step-Down Regulator	3
Figure 2:	88PG8x7 Family 3X3 mm QFN-16 Package - Top View	10
Figure 3:	88PG8x7 Block Diagram	18
Figure 4:	Output Voltage Window	19
Figure 5:	Soft Startup	20
Figure 6:	Soft Startup	20
Figure 7:	Inductor Current Steps at Startup	20
Figure 8:	First Switching Cycle	20
Figure 9:	Serial Programmability	21
Figure 10:	Startup Sequence	25
	Soft Startup	
Figure 12:	Maximum Output Current for the FDS642P P-Channel MOSFET	27
Figure 13:	UVLO and OVP Waveforms	28
Figure 14:	Power-On Reset Waveforms	29
Figure 15:	Adaptive Transient Response	30
Figure 16:	Inrush with 22 µF Ceramic	31
Figure 17:	Inrush with 22 μF Ceramic + 100 μF TA	31
Figure 18:	Start-Up Waveforms of two 88PG847 devices	32
Figure 19:	Power Sequence of Two 88PG8x7 devices	33
Figure 20:	88PG847B device without LDO Output	34
Figure 21:	Startup Using the Shutdown Pin	35
Figure 22:	Turn Off Using the Shutdown Pin	35
Figure 23:	Startup Sequence	35
Figure 24:	Soft Startup	35
Figure 25:	UVLO and OVP Thresholds	36
Figure 26:	Step-Down Short-Circuit Response	36
-	LDO Short-Circuit Response	
Figure 28:	Switching Waveforms - PWM mode	37
Figure 29:	Switching Waveforms - PWM mode	37
-	Switching Waveforms - DCM Mode	
Figure 31:	Switching Waveforms - DCM Mode-Zoom	37
Figure 32:	PWM Output Ripple Voltage	38
Figure 33:	Fast Load Rise Time	39
Figure 34:	Slow Load Rise Time	39
Figure 35:	Fast Load Fall Time	39
•	Slow Load Fall Time	
Figure 37:	Load Transient Response	40
	Double-Pulsed Load Response	
Figure 39:	Load Transient Response	40
Figure 40:	Double-Pulsed Load Response	40

Figure 41:	Load Transient Response	41
Figure 42:	V _{OUT} = 1.0V to 1.2V with No Load	42
Figure 43:	V _{OUT} = 1.0V to 1.5V with No Load	42
Figure 44:	V _{OUT} = 1.0V to 1.2V with I _{LOAD} = 3A	42
Figure 45:	V _{OUT} = 1.0V to 1.2V with I _{LOAD} = 3A	42
Figure 46:	V_{OUT} = 1.2V to 1.0V with I_{LOAD} = 3A	43
Figure 47:	V _{OUT} = 1.5V to 1.0V with I _{LOAD} = 3A	43
Figure 48:	Line Transient @ V _{IN} = 3.6	43
Figure 49:	Line Transient @ V _{IN} = 4.5	43
Figure 50:	Simplified Schematic	56
Figure 51:	88PG8x7 PCB Board Schematic	57
	Top Silk-Screen, Top Traces, Vias and Copper (Not to scale)	
Figure 53:	Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)	59
Figure 54:	Sample Part Number	68
Figure 55:	88PG847 Package Marking and Pin 1 Location	69

Table 1 provides information about other devices from the same product family.

Table 1: Product Selector Table

Part Number	Peak Current Limit	DC Loading	
88PG847x	4.5A	3.0A	
88PG837x	3.0A	2.0A	
88PG827x	2.5A	1.6A	
88PG817x	1.5A	1.0A	
88PG807x	0.75A	0.5A	

The devices listed in Table 1 have the same input and output voltage range for the step-down regulator.

Section 1. Signal Description

1.1 Pin Configuration

Figure 2: 88PG8x7 Family 3X3 mm QFN-16 Package - Top View

Doc. No. MV-S102867-00 Rev. F

1.2 Pin Type Definitions

Table 2: Pin Type Definitions

Pin Type	Definitions
I	Input only
0	Output only
S	Supply
NC	Not Connected
GND	Ground

1.3 Pin Description

Table 3 provides pin descriptions for the 88PG8x7.

Table 3: Pin Description

Pin #	Pin Name	Pin Type	Pin Function	
1	ILIM	I	Current-Limit Sense Pin for the LDO Regulator A built-in offset of 50 mV (typical) between SVIN and ILIM in conjunction with the sense resistor is used to set the current-limit threshold for the LDO regulator controller. Connecting this pin to SVIN disables the internal current limit circuitry. When the LDO controller is not used, the LDR pin must be left floating, the LFB pin must be connected to GND, and connect ILIM to VIN. This will reduce the supply current.	
2	LDR	0	LDO Regulator Controller Driver Connect to the gate of an external P-channel MOSFET. The external P-Channel MOSFET needs to have a threshold of -2.5V or -1.8V and input capacitance (Ciss) of less than 1000 pF. When the LDO controller is not used, the LDR pin must be left floating, the LFB pin must be connected to GND, and connect ILIM to VIN. This will reduce the supply current.	
3	SFB	1	Switching Regulator Feedback Senses the output voltage of the switching regulator.	
4	CG	I	Connect to Ground This pin must be connected to ground.	
5,7	SW	0	Switch Node Internal power MOSFET drain. This pin must connect to an external inductor.	
6	PGND	GND	Power Ground The power ground must connect to the negative terminal of the input and output capacitors.	

Table 3: Pin Description (Continued)

Pin #	Pin Name	Pin Type	Pin Function	
8	PVIN	S	Power Input Voltage Internal power MOSFET source. Connect the decoupling capacitors between PVIN and PGND and position it as close as possible to the IC.	
9	SVIN	S	Signal Input Voltage The input voltage is 2.75V to 5.5V for internal circuitry. Connect a 0.1 µF decoupling capacitor between SVIN and SGND and position it as close as possible to the IC.	
10	POR	0	Power-On Reset Power-On Reset is an open drain output to indicate the status of the output voltage. The output pin goes high 40 ms after the output voltage is within the specified tolerance.	
11	SHDN	I	Shutdown Logic high (\geq 2.0V) disables the switching step-down regulator and the LDO regulator controller. In shutdown, the switch node for the step-down regulator is high impedance. Logic low (\leq 0.8V) enables the step-down switching regulator and the LDO regulator controller. The high signal has to be at least 20 μ s to disable both regulators.	
12	SDI	I	Serial Data Input: The input data into this pin is used to program the output voltage (see section 3.2). This pin must be connected to ground if not used.	
13	SGND	GND	Signal ground: This pin must connect to the power ground.	
14	VSET	I	Voltage Set 1) This is used for selecting the output voltage level, when it is connected to SGND or SVIN in conjunction with PSET connection to SGND or SVIN. 2) Connect to an external resistor to ground to set the output voltage of the step-down switching regulator. See the "Electrical Character istics" table for resistor values and Output Voltage Setting section. The total capacitance across this pin and SGND should be equal to 25 pF or less. Use resistors with tolerance 5% or better.	
15	PSET	I	Percent Set 1) This is used for selecting the output voltage level when it is connected to SGND or SVIN in conjunction with VSET connection to SGND or SVIN. 2) Connect an external resistor to ground to set the output voltage of the step-down switching regulator. See the "Electrical Characteristics" table for resistor values and Output Voltage Setting section. Use resistor value with tolerance 5% or better.	
16	LFB	I	LDO Regulator Controller Feedback Sense the output voltage of the LDO regulator. Connect to the drain of the P-channel MOSFET. When the LDO controller is not used, the LDR pin must be left floating, the LFB pin must be connected to GND, and connect ILIM to SVIN. This will reduce the supply current.	

Section 2. Electrical Specifications

2.1 Absolute Maximum Ratings¹

Parameter	Symbol	Range	Units
Signal Input Voltage to SGND = PGND	S _{VIN}	-0.3 to 6.0	V
Power Input Voltage to SGND = PGND	P _{VIN}	-0.3 to 6.0	V
Switch Voltage to SGND = PGND	V _{SW}	-0.3 to (S _{VIN} +0.3)	V
Switching Regulator Feedback Voltage to SGND = PGND	V _{SFB}	-0.3 to (S _{VIN} +0.3)	V
Voltage Set to SGND = PGND	V _{VSET}	-0.3 to (S _{VIN} +0.3)	V
Percentage Set Voltage to SGND=PGND	V _{PSET}	-0.3 to (S _{VIN} +0.3)	V
Current Limit Voltage to SGND=PGND	V _{ILIM}	-0.3 to (S _{VIN} +0.3)	V
LDO Regulator Controller Driver Voltage to SGND=PGND	V_{LDR}	-0.3 to (S _{VIN} +0.3)	V
LDO Regulator Controller Feedback Voltage to SGND=PGND	V_{LFB}	-0.3 to (S _{VIN} +0.3)	V
Shutdown Voltage to SGND = PGND	V _{SHDN}	-0.3 to (S _{VIN} +0.3)	V
POR Voltage to SGND = PGND	V _{POR}	-0.3 to (S _{VIN} +0.3)	V
SDI Voltage to SGND = PGND	V _{SDI}	-0.3 to (S _{VIN} +0.3)	V
Operating Temperature Range ²	T _{OP}	-40 to 85	°C
Maximum Junction Temperature	T _{JMAX}	125	°C
Storage Temperature Range	T _{STOR}	-65 to 150	°C
ESD Rating ³		2	kV

^{1.} Exceeding the absolute the maximum rating may damage the device

2.2 Recommended Operating Conditions¹

Parameter	Symbol	Range	Units
Signal Input Voltage	S _{VIN}	2.75 to 5.5	V
Power Input Voltage	P _{VIN}	2.75 to 5.5	V
Package Thermal Resistance ²	θ_{JA}	70	°C/W
	θЈС	19	°C/W

^{1.} This device is not guaranteed to function outside the specified operating range

^{2.} Specifications over the -40 °C to 85 °C operating temperature ranges are assured by design, characterization and correlation with statistical process controls

^{3.} Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 k Ω in series with 100 pF

^{2.} Test on 4-layer (JESD51-7) and vias (JESD51-5) board

2.3 Electrical Characteristics

The following applies unless otherwise noted: $S_{VIN} = P_{VIN} = V_{VSET} = V_{PSET} = 5.0V$, $V_{OUT} = 1.5V$, $V_{SHDN} = V_{CG} = SGND = PGND$, $L_{(BUCK)} = 1.3 \ \mu\text{H}$, $C_{OUT \ (BUCK)} = 2 \ x \ 22 \ \mu\text{F}$ (Ceramic), PFET= FDC642P, $C_{OUT \ (LDO)} = 10 \ \mu\text{F}$ (Ceramic), $T_A = 25 \ ^{\circ}\text{C}$. **Bold values indicate -40 ^{\circ}\text{C} \le T_A \le 85 \ ^{\circ}\text{C}.**

Parameter	Symbol	Conditions	Min	Type	Max	Units
Signal Input Voltage Range	S _{VIN}	S _{VIN} = P _{VIN}	2.75		5.5	V
Power Input Voltage Range	P _{VIN}		2.75		5.5	V
Total Quiescent Current		No load, with LDO		1.9		mA
		No load, Without LDO, $V_{LIM} = PV_{IN}$, $V_{LDR} = Float$, $V_{LFB} = 0V$		1.2		mA
Shutdown Supply Current	I _{SVIN}	$V_{SHDN} = S_{VIN} = 5.0V$		1	50	μΑ
Undervoltage Lockout	V _{UVLO}	High threshold, SV _{IN} increasing		2.65	2.70	V
		Low threshold, SV _{IN} decreasing		2.55	2.60	V
Over-voltage Protection	V _{OVP}	High threshold, SV _{IN} increasing		5.7		V
		Low threshold, SV _{IN} decreasing		5.6		V
Shutdown Threshold Voltage	V _{SHDN}	Enable regulators			0.8	V
		Disable regulators	2.0			V
Shutdown Pin Input Current	I _{SHDN}	V _{SHDN} = 5.0V			5.0	μА
		V _{SHDN} = 0V			5.0	μΑ
Over-temperature Thermal Shutdown	T _{OTS}	T _J increasing (Disable regulators)		150		°C
		T _J decreasing (Enable regulators)		105		°C

2.4 Switching Step-down Regulator

The following applies unless otherwise noted: $S_{VIN} = P_{VIN} = V_{VSET} = V_{PSET} = 5.0V$, $V_{OUT} = 1.5V$, $V_{SHDN} = V_{CG} = SGND = PGND$, $L = 1.3 \,\mu\text{H}$, $C_{OUT} = 2 \, \text{x} \, 22 \,\mu\text{F}$ (Ceramic), $T_A = 25 \,^{\circ}\text{C}$. **Bold values indicate -40 ^{\circ}\text{C} \leq T_A \leq 85 \,^{\circ}\text{C}**.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Output Voltage		R _{VSET} = 11K, PWM mode		0.8		
		V _{VSET} = SGND, V _{PSET} = SGND, PWM mode				
		R _{VSET} = 18.7K, PWM mode		1.0		
		V _{VSET} = SGND, V _{PSET} = SVIN, PWM mode				
		R _{VSET} = 31.6K, PWM mode		1.2		
		$V_{VSET} = SVIN, \ V_{PSET} = SGND, PWM mode$				V
		R _{VSET} = 53.6K, PWM mode		1.5		
		V_{VSET} = SVIN, V_{PSET} = SVIN, PWM mode				
		R _{VSET} = 97.6K, PWM mode		1.8		
		R _{VSET} = 165K, PWM mode		2.5		
		R _{VSET} = 280K, PWM mode		3.0		
		R _{VSET} = 475K, PWM mode		3.3		
Percentage Set		R _{PSET} = 11K		-10		
		R _{PSET} = 18.7K		-7.5		
		R _{PSET} = 31.6K		-5		
		R _{PSET} = 53.6K		-2.5		%
		R _{PSET} = 97.6K		2.5		
		R _{PSET} = 165K		5		
		R _{PSET} = 280K		7.5		
		R _{PSET} = 475K		10		
Output Voltage Line Regulation	V _{LNREG}	$S_{VIN} = P_{VIN} = 3.0V \text{ to } 5.0V$ $V_{OUT} = 1.5V$ $I_{LOAD} = I_{OUT(MAX)}/4$		0.10		%
Output Voltage Load Regulation	V _{LDREG}	$S_{VIN} = P_{VIN} = 5.0V$ $V_{OUT} = 1.5V$ $I_{LOAD} = I_{OUT(MAX)}/4 \text{ to}$ $I_{OUT(MAX)}$		0.10		%
Switching Frequency	f _{SW}	PWN mode		0.9		MHz

2.4 Switching Step-down Regulator (Continued)

The following applies unless otherwise noted: $S_{VIN} = P_{VIN} = V_{VSET} = V_{PSET} = 5.0V$, $V_{OUT} = 1.5V$, $V_{SHDN} = V_{CG} = SGND = PGND$, $L = 1.3 \,\mu\text{H}$, $C_{OUT} = 2 \,x \,22 \,\mu\text{F}$ (Ceramic), $T_A = 25 \,^{\circ}\text{C}$. **Bold values indicate -40 ^{\circ}\text{C} \leq T_A \leq 85 \,^{\circ}\text{C}**.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Minimum Peak Switch	I _{LIM}	88PG847		4.5		
Current Limit		88PG837				
		88PG827		2.5		Α
		88PG817		1.5		
		88PG807		0.75		
Output Current	l _{OUT}	88PG847 L = 1.3 μH			3.0	
		88PG837 L = 2.0 μH			2.0	
		88PG827 L = 3.3 μH			1.6	A
		88PG817 L = 4.7 μH			1.0	
		88PG807 L = 4.7 μH			0.5	
Switch Leakage Cur- rent	I _{LSW}	$S_{VIN} = P_{VIN} = V_{SHDN} = 5.0V$ $V_{SW} = 5V$		1		μА
		$S_{VIN} = P_{VIN} = V_{SHDN} = 5.0V$ $V_{SW} = 0V$		1	50	
Power-On Reset Threshold	V _{PORTH}	V _{OUT} ≥ 1.35V		V _{OUT} * 90%		V
Voltage		V _{OUT} < 1.32V		V _{OUT} - 130 mV		
Power-On Reset Out- put Low Voltage	V _{PORL}	I _{SINK} = 2 mA, V _{SHDN} = SGND = PGND			0.4	V
Power-On Reset Leak- age Current	I _{POR}	V _{SHDN} = 5.0V		1		μА
Power-On Reset Delay	t _{RESET}			40		ms

2.5 LDO Regulator Controller

The following applies unless otherwise noted: S_{VIN} = P_{VIN} = 5.0V, V_{SHDN} = SGND = PGND, PFET= FDC642P, $C_{OUT~(LDO)}$ = 10 μ F, T_A = 25 °C. **Bold values indicate -40** °C \leq T_A \leq 85 °C.

Parameter	Symbol	Conditions	Min	Туре	Max	Units
88PG8X7B Output Voltage	V _{OUT}	I _{LOAD} = 10 mA		3.3		V
88PG8X7E Output Voltage	V _{OUT}	I _{LOAD} = 10 mA		2.5		V
Output Voltage		Room Temp, I _{LOAD} = 10 mA		±1		%
		Over Temp, I _{LOAD} = 10 mA		±2		
Line Regulation	V _{LNREG}	$S_{VIN} = P_{VIN} = 3.5V \text{ to}$ 5.0V, $V_{OUT} = 3.3V$, $I_{LOAD} = 10 \text{ mA}$		0.1		%
Load Regulation	V _{LDREG}	$S_{VIN} = P_{VIN} = 5.0V,$ $V_{OUT} = 3.3V, I_{LOAD} =$ 10 mA to 800 mA		0.1		%
Current-Limit Threshold	V _{ILTH}	S _{VIN} -V _{ILIM}		50		mV

Section 3. Functional Description

88PG8x7

Figure 3: 88PG8x7 Block Diagram

3.1 Regulation and Start-up

The step-down switching regulator uses Pulse Width Modulation (PWM) and Pulse Frequency Modulation (PFM) modes to regulate the output voltage using digital control. The mode of operation depends on the level of output current and the output voltage.

In steady states, the step-down switching regulator monitors the current flowing through the inductor to determine if the regulator is handling heavy or light load applications. For heavy load applications, the step-down regulator operates in the PWM mode (B and C) to minimize the ripple current for optimum efficiency and to minimize the ripple output voltage. The step-down regulator operates in the PFM and Discontinuous Conduction Mode (DCM) (A) to limit the switching actions for optimum efficiency in light load applications. In this mode, the average output voltage is slightly higher than the average output voltage for heavy transient load applications.

Figure 4: Output Voltage Window

3.1.1 Digital Soft Start

During start-up, the 88PG8x7 provides a soft start function. Soft start reduces surge currents from input voltage and provides well-controlled output voltage rise characteristics. Figure 5 shows that the rise time for a 88PG8x7 increases from 20 μ s at for a 0.8V output to 70 μ s for a 3.3V output with a 20 mA load. Higher load current or larger output capacitance will increase the rise time. The load current is increased to 3A (1.1 ohms) in Figure 6. The 3.3V output rise time nearly doubles to 130 μ s with this load.

The 88PG8x7 has an internal switch current limit that operates on a cycle-by-cycle basis and limits the peak switch current. During soft start, the current limit threshold begins at approximately 34% of the peak current limit threshold and ramps to 100% in 7 steps at 25 μ s per step (see Figure 7). During the switch first cycle, the high-side switch stays on until the switch current reaches the first current limit threshold (see Figure 8) which takes less than 1 μ s. Then, the high-side switch turns off for a fixed off-time. If the output voltage is still low in 25 μ s, then the current limit threshold increases to the next level. As can be seen from Figure 4, only 25 μ s or 1 current step is required for the output to reach 0.8V and 75 μ s or 3 current steps for 3.3V.

During soft start, the 88PG8x7 feeds a relatively constant current to the output capacitor in the first two steps. The average switch current during this period is approximately 2A. If more then 2 steps are required, then the switch current limit (I_{LIM}) will need to increase. The output voltage rise time is dependent on the value of the output capacitor, the output voltage, the load current (I_{OUT}), and the internal switch current limit circuitry and can be calculated using the following equation.

Rise Time
$$= \frac{(C_{OUT} \times V_{OUT})}{(I_{LIM} - I_{OUT})}$$
$$= \frac{2 \times 22 \mu F \times 3.3 V}{2.0 A - 0 A}$$

 $= 72.6 \mu S$

Figure 5: Soft Startup

 $I_{LOAD} = 20 \text{ mA}$

 C_{OUT} = 2 x 22 μ F

Figure 7: Inductor Current Steps at Startup

 I_{LOAD} = Heavy Load

Figure 6: Soft Startup

50 μs/DIV

 $V_{OUT} = 3.3V$

 $I_{\mathsf{LOAD}} = 1.1\Omega$

Figure 8: First Switching Cycle

500 ns/DIV

Output Voltage Setting

3.2.1 **Serial Programmability**

The output voltage of the step-down switching regulator can also program by using 18-bit serial data into the SDI

Figure 9: Serial Programmability

WRITE MODE Start Stop Chip Registor **DATA FIELD** Select Address "0" "0" pulse Pulse pulse Pulse pulse Pulse pulse Pulse The period of a pulse is 1 μ s +/- 200 ns $V_{HIGH} > 2.4V$ <u>D7</u> <u>D6</u> <u>D5</u> <u>D4</u> <u>D3</u> <u>D2</u> <u>D1</u> <u>D0</u> $V_{Low} < 0.8V$ BIT BIT BIT BIT BIT BIT 6 5 3 2 7 4 1 0

For "1" pulse, the high is $0.75 \mu s +/- 150 ns$ and the low period is $0.25 \mu s+/-50 ns$

"0" pulse

For "0" pulse, the high is 0.25 μ s +/- 50 ns and the low period is 0.75 μ s+/-150 ns

The write operation:

- 1) Each write sequence needs 18 pulses to complete.
- 2) During a non-write operation, the input needs to be at V_{LOW} (<0.8V).
- 3) In between two successive write operations, the SDI input needs to be at V_{LOW} (<0.8V) for a minimum of 10 μs

The first 4 bits (MSB-bits) of the data field are used to select the output voltage where the second 4 bits (LSB-bits) of the data field are used to trim the output voltage (percent of output voltage). The default value for the data field is as follows:

Table 4: Default Value of Data Field

	Data Field							
Description	Voltage Set Percent Set			t				
Bits	7	7 6 5 4			3	2	1	0
Default Value	0	0	1	0	0	1	0	0

On power up, the output voltage is set according to VPSET and VVSET. The output voltage can then be field programmed by setting bit 3 and bit 7 to "1". The output voltage and percent set are selected according to Table 5.

Table 5: Voltage and Percentage Set

	Data Field		d	V _{OUT} (V)	Data Field			d	Percent Set	
Bits	7	6	5	4		3	2	1	0	
Value	1	0	0	0	0.8	1	0	0	0	-10%
	1	0	0	1	1.0	1	0	0	1	-7.5%
	1	0	1	0	1.2	1	0	1	0	-5.0%
	1	0	1	1	1.5	1	0	1	1	-2.5%
	1	1	0	0	1.8	1	1	0	0	+2.5%
	1	1	0	1	2.5	1	1	0	1	+5.0%
	1	1	1	0	3.0	1	1	1	0	+7.5%
	1	1	1	1	3.3	1	1	1	1	+10%

All combinations of the VSET (Table 7) can be used with all combinations of the PSET (Table 7) to provide maximum flexibility in output voltage selection (Table 5).

3.2.2 Logic Programmability

The output voltage of the step-down switching regulator can be programmed by connecting VSET and PSET pins to SGND and/or SVIN. This can be very useful for standard output voltages. This method will eliminate the use of an external resistor to set the output voltage.

Table 6: Output Voltage Setting

V _{VSET}	V _{PSET}	V _{out}
SGND	SGND	0.8V
SGND	SVIN	1.0V
SVIN	SGND	1.2V
SVIN	SVIN	1.5V
SGND	11 kΩ <u><</u> R _{PSET} <u><</u> 475 kΩ	Hi-Z

3.2.3 Output Voltage – AnyVoltage™ Technology

The output voltage of the step-down switching regulator is programmed by using Table 7 or Table 8 to select resistor values for VSET and PSET pin. The VSET pin sets the output voltage and the PSET pin trims the set voltage to a percentage value. For example, to program 2.25V output, a 165 k Ω resistor is selected for the VSET pin, and an 11 k Ω resistor is selected for the PSET pin. The 165 k Ω resistor sets the output voltage to 2.5V and the 11 k Ω resistor trims the set voltage by -10%.

Using the VSET resistor's value greater than 619 k Ω or less than 7.68 k Ω disables the step-down switching regulator and sets the SW pin to high impedance. If the VSET resistor's value is outside the 5% tolerance, the output can be either higher or lower than the set voltage.

Using resistor values greater than 619 k Ω or less than 7.68 k Ω for the PSET pin does not affect the set voltage. When the PSET pin is not used, it must be connected to ground. Like the VSET resistor, the percent value can be either higher or lower if the PSET resistor's value is outside the 5% tolerance.

Table 7: Any Voltage Programming Table for 1% Resistors

			PSET								
		-10.0%	-7.5%	-5.0%	-2.5%	0%	2.5%	5.0%	7.5%	10.0%	
		11k	18.7k	31.6k	53.6k	GND	97.6k	165k	280k	475k	
	11k	0.720	0.740	0.760	0.780	0.800	0.820	0.840	0.860	0.880	
	18.7k	0.900	0.925	0.950	0.975	1.000	1.025	1.050	1.075	1.100	
	31.6k	1.080	1.110	1.140	1.170	1.200	1.230	1.260	1.290	1.320	
ᆸ	53.6k	1.350	1.388	1.425	1.463	1.500	1.538	1.575	1.613	1.650	
VSET	97.6k	1.620	1.665	1.710	1.755	1.800	1.845	1.890	1.935	1.980	
	165k	2.250	2.313	2.375	2.438	2.500	2.563	2.625	2.688	2.750	
	280k	2.700	2.775	2.850	2.925	3.000	3.075	3.150	3.225	3.300	
	475k	2.970	3.053	3.135	3.218	3.300	3.383	3.465	3.548	3.630	

Table 8: Any Voltage Programming Table for 5% Resistors

			PSET									
		-10.0%	-7.5%	-5.0%	-2.5%	0%	2.5%	5.0%	7.5%	10.0%		
		11k	18k	30k	51k	GND	100k	160k	270k	470k		
	11k	0.720	0.740	0.760	0.780	0.800	0.820	0.840	0.860	0.880		
	18k	0.900	0.925	0.950	0.975	1.000	1.025	1.050	1.075	1.100		
	30k	1.080	1.110	1.140	1.170	1.200	1.230	1.260	1.290	1.320		
ᆸ	51k	1.350	1.388	1.425	1.463	1.500	1.538	1.575	1.613	1.650		
VSET	100k	1.620	1.665	1.710	1.755	1.800	1.845	1.890	1.935	1.980		
	160k	2.250	2.313	2.375	2.438	2.500	2.563	2.625	2.688	2.750		
	270k	2.700	2.775	2.850	2.925	3.000	3.075	3.150	3.225	3.300		
	470k	2.970	3.053	3.135	3.218	3.300	3.383	3.465	3.548	3.630		

The VSET and PSET resistors are read once during start-up before the output voltage is turned on. After the output voltage is turned on, the output voltage can change to different values using serial programming interface. Otherwise to configure the output to a different voltage, power has to recycle or the 88PG8x7 has to turn OFF and back ON using the shutdown pin.

Figure 10 shows the startup waveforms of the 88PG8x7. Once the input voltage (V_{IN}) is above the under voltage lockout (UVLO) upper threshold (UTH), the VSET and PSET pin become active. Current is first sourced out of PSET pin and then the VSET pin, in exponentially increasing steps. After each step there is a blanking time before the VSET voltage is compared to an internal 1.2V reference. If the VSET voltage is below internal reference voltage, the current source proceeds to the next step. Once the VSET voltage is above the internal reference voltage the sequence stops and the output voltage (VOUT) is allowed to turn on. The Figure 11 shows the VSET waveform for VSET = 2.5V and PSET = -5% output. The 88PG8x7 keeps track of how many steps are required to determine the appropriate output voltage. Table 9 provides the number of steps necessary for each output voltage option. Using a VSET resistor of 165 k Ω requires the current source to step 4 times, and a PSET resistor of 31.6 k Ω requires 7 steps.

Figure 10: Startup Sequence

Figure 11: Soft Startup

Table 9: Output Voltage Option Steps

Step	VOUT (V)	R _{VSET} (kΩ)
1	0	0
2	3.3	475
3	3.0	280
4	2.5	165
5	1.8	97.6
6	1.5	53.6
7	1.2	31.6
8	1.0	18.7
9	0.8	11

Step	PSET (%)	R _{PSET} (kΩ)
1	0	0
2	+10	475
3	+7.5	280
4	+5.0	165
5	+2.5	97.6
6	-2.5	53.6
7	-5.0	31.6
8	-7.5	18.7
9	-10	11

The 88PG8x7 provides an innovative technique to set the output voltage. During start-up it reads the value of external resistors, which are located outside the regulator's feedback loop to program the output voltage. By placing the output voltage programming resistor outside the regulator's feedback loop, its tolerance does not affect the accuracy of the output voltage. Normally, adjustable regulators use 1% resistors to set the output voltage. However, these resistors are located inside the feedback loop, introducing as much as 2% of initial accuracy error to the output voltage, resulting in an overall initial accuracy of 3%. Whereas, the 88PG8x7 initial accuracy is 2% for any of the eight output voltages.

The VSET and PSET pins are sensitive to excessive leakage currents and stray capacitance. The output voltage can potentially be programmed to the lower output voltage if there is contamination, which introduces excessive leakage current on the VSET and PSET pin, especially for the 3.3V output or +10%. The parasitic resistance on these nodes must be greater than 3 M Ω and the stray capacitance must be less than 25 pF; otherwise, a 3.3V output can potentially end up at 3V.

3.3 Programmable Current Limit for the LDO Regulator Controller

A sense resistor is placed between SVIN and ILIM pin to program the current limit of the LDO regulator controller. The following equation is used to determine the value of the sense resistor.

$$I_{LIM} = \frac{50mV(Typical)}{R_{SENSE}(m\Omega)}$$

When the LDO regulator controller is in current limit, the internal current-limit circuitry turns off the LDO regulator controller and holds the LDO regulator controller in the off state for 1ms (typical hold time). After the hold-time is expired, the LDO regulator controller is enabled. The current-limit circuitry continues to disable and enable the regulator until the current limit is removed.

The LDO regulator P-channel MOSFET can be selected from the following list based on the required threshold voltage of either -2.5V or -1.8V and a gate capacitance of less than 1000 pF.

Table 10: P-Channel MOSFET Selection

Package	Vishay	Fairchild
Super SOT-6		FDC642P FDC634P
Super SOT-3 / micro 3		FDN340P FDN302P
SO-8	Si4433DY	FDS9431A
SC75-6 FLMP		FDJ127P
TO-263AB (D2-Pack)		FDP4020P
TSOP-6	Si3443DV	
SC70-6		FDG330P
SOT-23	Si2333DS	
1206-8 Chip FET	Si5473DC	
SC-89 (6-lead)	Si1039X	
SC75A/SC-89 (3-lead)	Si1012R/X	

3.3.1 Maximum LDO Output Current

The FDS642P is design to provide up to 800 mA of continuous output current. However, the tiny Super SOT-6 package can dissipate up to 0.7W. If the input and output voltage are close, then the full 800 mA is achieved, see Figure 12. As the input voltage increases, the IC dissipates more power, limiting the maximum output current. The output current has to decrease in order to keep the power dissipation under its 0.7W limit.

Figure 12: Maximum Output Current for the FDS642P P-Channel MOSFET

3.4 Undervoltage Lockout (UVLO)

At start-up, the 88PG8x7 incorporates undervoltage-lockout circuitry to enable the step-down switching regulator and the LDO controller when the input voltage is above 2.65V (typical). After the 88PG8x7 is enabled and the input voltage is lowered, the highest value of the minimum input voltage for both regulators to remain enabled is 2.55V (typical).

3.5 Over Voltage Protection (OVP)

The 88PG8x7 incorporates an over voltage protection circuitry to disable the step-down switching regulator and LDO controller when the input voltage is above 5.7V (typical). The step-down switching regulator and LDO controller are enabled when the input voltage is below 5.6V (typical).

Figure 13: UVLO and OVP Waveforms

3.6 Power-On Reset (POR)

The Power-On Reset (POR) pin is an active-high, open-drain output pin. This output is held low when the output voltage of the step-down regulator is below the threshold. When the output voltage is above the threshold, the Power-On Reset pin goes high 40 ms later. Setting the output voltage greater than 1.35V, the threshold voltage is 0.9% * V_{OUT} (typical). Setting the output voltage less than 1.32V, the threshold voltage is V_{OUT} – 130 mV (typical). A built-in 25 μ s (t_{DELAY}) delay is incorporated to prevent nuisance tripping.

Figure 14: Power-On Reset Waveforms

3.7 Thermal Shutdown

When the junction temperature of the 88PG8x7 exceeds 150 °C (typical), the thermal shutdown circuitry disables the step-down regulator. The step-down switching regulator is enabled when the junction temperature is decreased to 105 °C (typical).

3.8 Adaptive Transient Response

The 88PG8x7 device's Smart Technology allows the step-down switching regulator to quickly respond to the multiple step loads and maintain stability over a wide range of applications. Figure 15 shows an example of a second step-load applied while the output voltage of the step-down switching regulator increased due to the inductive kick from the first step-load.

Condition: V_{IN} = 5.0V, R_{SVIN} = 10 Ω , C_{SVIN} = 0.1 μ F, C_{PVIN} = 10 μ F, L = 1.3 μ H, C_{OUT} = 2 x 22 μ F, V_{OUT} = 1.2V, I_{LOAD} = 1A to 3A.

Figure 15: Adaptive Transient Response

The worst case overshoot (V_{SOAR}) during a full-load to light-load transient due to stored inductor energy (Figure 15) can be calculated as:

$$V_{SOAR} = \frac{\Delta I_{LOAD(MAX)}^{2} \times L}{2 \times C_{OUT} \times V_{OUT}}$$

Although the V_{SOAR} cannot be eliminated, its amplitude can be controlled based on the C_{OUT} capacitor value. The appropriate C_{OUT} value can easily be calculated for the acceptable V_{SOAR} level for each specific application.

$$C_{OUT} = \frac{\Delta I_{LOAD(MAX)}^2 \times L}{2 \times V_{SOAR} \times V_{OUT}}$$

Doc. No. MV-S102867-00 Rev. F

3.9 Using Ceramic Input Capacitors

Ceramic capacitors' low ESR, small case size and high ripple current ratings make them ideal for switching regulator applications. However, Tantalum or electrolytic capacitors must be placed in parallel with the ceramic capacitors in "Hot-Plug" application such as when using an AC-DC wall adaptor. If a wall adaptor is "Hot-Plugged" into the input supply, high transient current runs through the adaptor's long wires and produce ringing at the input (V_{IN}) of the 88PG8x7, see Figure 16. During this period, the 88PG8x7 is still "OFF" and the current I_{IN} is used to charge the input capacitor. At worst, these voltage spikes can be as high as twice the input voltage. To dampen the ringing, a small 47 μ F to 100 μ F Tantalum capacitor with an ESR in the range of 0.2 ohm to 1.0 ohm must be added, as shown in Figure 17.

Figure 16: Inrush with 22 μF Ceramic

Figure 17: Inrush with 22 μF Ceramic + 100 μF TA

Ceramic input capacitor must not be replaced with any other type of capacitor and choose only X5R or X7R dielectric. These have the best voltage and temperature characteristics. Any type of capacitor can be placed in parallel with the input capacitor as long as the Ceramic input capacitor in placed next to the IC. If Tantalum input capacitor is used, it must be rated for switching regulator applications and the operating voltage be derated by 50%.

3.10 Sequential Power up

Figure 18 shows a detailed start-up sequence waveforms of two 88PG847 devices cascaded together as shown in Figure 19. When the input voltage is above the under-voltage-lockout upper threshold (UVLO UTH) of 2.65V, the LDO output (V_{OUT1}) starts a slow ramp up and finishes in about 3 ms. Roughly, 3 ms after the input voltage is above the UVLO UTH the 2.5V (V_{OUT2}) output ramps up. The power-on-reset (POR) signal goes high 45 ms after V_{OUT1} and V_{OUT2} outputs are regulating. The POR signal enables U2 and the 1.5V output (V_{OUT3}) ramps up 3 ms later.

Figure 18: Start-Up Waveforms of two 88PG847 devices

Page 32

Figure 19: Power Sequence of Two 88PG8x7 devices

3.11 Disable the LDO Function

The LDO function can be disabled by connecting the ILIM pin to SVIN pin, and the LFB pin to ground. Also, the LDR pin is left floating, see Figure 20. Disabling the LDO function will lower the no-load supply current from 1.9 mA to 1.2 mA.

Figure 20: 88PG847B device without LDO Output

Section 4. Functional Characteristics

The following applies unless otherwise noted: $T_A = 25^{\circ}C$, $R_{SVIN} = 10\Omega$, $C_{SVIN} = 0.1~\mu\text{F}$, $C_{PVIN} = 2~x~22~\mu\text{F}$, $L = 1.3~\mu\text{H}$, C_{OUT} (BUCK) = 2 X 22 μF , PFET = FDC642P, C_{OUT} (LDO) = 10 μF .

4.1 Start-up Waveforms

NOTE: When the input voltage rises above the UVLO's upper threshold, then there is a delay (4 ms typ) before the step-down regulator's output voltage turns on.

Figure 21: Startup Using the Shutdown Pin

Figure 22: Turn Off Using the Shutdown Pin

1 ms/DIV

 $V_{IN} = 5.0V$ $V_{IDO} = 3.3V$

 I_{LOAD} = No Load

t_{DLY}~ 4.0 ms

V_{BUCK}= 1.2V

 $V_{IN} = 5.0V$

I_{LOAD} = No Load

 $V_{1,DO} = 3.3V$

V_{BUCK}= 1.2V

Figure 23: Startup Sequence

Figure 24: Soft Startup

 $V_{IN} = 5.0V$ $V_{LDO} = 3.3V$

V_{BUCK}= 1.2V

 I_{LOAD} = No Load V_{I}

 $V_{IN} = 5.0V$

V_{BUCK}= 1.2V

 $V_{LDO} = 3.3V$

I_{LOAD} = No Load

Figure 25: UVLO and OVP Thresholds

100 ms/DIV

 $V_{IN} = 0$ to 6.0V $V_{UVLO(HTH)} = 2.65V$

 V_{LDO} = 3.3V $V_{UVLO(LTH)}$ = 2.55V

 V_{BUCK} = 1.0V $V_{OVP(HTH)}$ = 5.8V

 $I_{LOAD(BUCK)} = 1A$ $V_{OVP(LTH)} = 5.7V$

 $I_{LOAD(BUCK)} = 500 \text{ mA}$

4.2 Short-Circuit Waveforms

Figure 26: Step-Down Short-Circuit Response

Figure 27: LDO Short-Circuit Response

4.3 Switching Waveforms

NOTE: For repeatability of measuring output ripple (V_{BUCK (P-P)}) for the BUCK regulator, the standard test procedure limits the scope bandwidth to 20 MHz and uses a coax cable with very short leads terminated into 50Ω. The coax leads must be routed away from the switching node as much as possible.

Figure 28: Switching Waveforms - PWM mode

Figure 29: Switching Waveforms - PWM mode

500 ns/DIV

 $\begin{array}{ll} \textbf{C_{IN}} = \textbf{22} \; \mu \textbf{F} & V_{IN(P-P)} = 190 \; \text{mV} \\ \\ V_{IN} = 5.0 \text{V} & I_{IND(P-P)} = 1.05 \text{A} \\ \\ V_{BUCK} = 1.2 \text{V} & I_{IND(PK)} = 3.4 \text{A} \\ \\ I_{OUT} = 3.0 \text{A} & \text{Freq} = 912 \; \text{kHz} \\ \\ V_{OUT(P-P)} = 6.7 \; \text{mV} \; (\text{Note}) \end{array}$

500 ns/DIV

 $\begin{array}{ll} \textbf{C}_{\text{IN}} = \textbf{2} \ \textbf{x} \ \textbf{22} \ \mu \textbf{F} & \textbf{V}_{\text{IN}(P\text{-}P)} = 89 \ \text{mV} \\ \\ \textbf{V}_{\text{IN}} = 5.0 \textbf{V} & \textbf{I}_{\text{IND}(P\text{-}P)} = 1.05 \textbf{A} \\ \\ \textbf{V}_{\text{BUCK}} = 1.2 \textbf{V} & \textbf{I}_{\text{IND}(PK)} = 3.4 \textbf{A} \\ \\ \textbf{I}_{\text{OUT}} = 3.0 \textbf{A} & \text{Freq} = 912 \ \text{kHz} \end{array}$

 $V_{OUT(P-P)} = 6.7 \text{ mV (Note)}$

Figure 30: Switching Waveforms - DCM Mode

Figure 31: Switching Waveforms - DCM Mode-Zoom

500 ns/DIV

ο μοι Στι

 V_{IN} = 5.0V $I_{IND(PK)}$ = 920 mA V_{BUCK} = 1.2V Freq = 53 kHz I_{OUT} = 24 mA $V_{OUT(P-P)}$ =22 mV (Note)

 $V_{IN} = 5.0V$ $V_{BUCK} = 1.2V$ $I_{OUT} = 24 \text{ mA}$ Ringing Freq = 7.5 MHz

Figure 32: PWM Output Ripple Voltage

100 ms/DIV

 $V_{IN} = 5.0V$

V_{BUCK}= 1.2V

I_{OUT} = 3.0A

 $V_{OUT(P-P)} = 21 \text{ mV (Note)}$

4.4 Load Transient Waveforms

4.4.1 Step-Down Regulator

Figure 33: Fast Load Rise Time

 $V_{IN} = 5.0V$ $V_{BUCK} = 1.2V$

I_{OUT} = 1 A to 3A

 $V_{IN} = 5.0V$

V_{BUCK}= 1.2V

 $I_{OUT} = 1 \text{ A to } 3\text{A}$

 $C_{OUT} = 2 \times 22 \mu F$

 $t_{\text{RISE}} = 1 \text{ A/}\mu\text{s}$

Figure 35: Fast Load Fall Time

 $V_{IN} = 5.0V$ $V_{BUCK} = 1.2V$ $I_{OUT} = 1 A to 3A$

 $C_{OUT} = \textbf{2 x 22} \; \mu \textbf{F}$

 C_{OUT} = 2 x 22 μ F

 $t_{RISE} = 12 \text{ A/}\mu\text{s}$

t_{FALL} = 122 A/μs

Figure 36: Slow Load Fall Time

2 μs/DIV

 $V_{1N} = 5.0V$

V_{BUCK}= 1.2V

 $I_{OUT} = 1 A to 3A$

 C_{OUT} = **2 x 22** μ **F** t_{FALL} = 1 A/ μ s

Figure 37: Load Transient Response

20 μs/DIV

 $I_{LOAD} = 1A \text{ to } 3A$

 $t_{RISF} = 12 \text{ A/}\mu\text{s}$

 $t_{FALL} = 122 \text{ A/}\mu\text{s}$

 $I_{LOAD} = 1A \text{ to } 3A$

 $t_{RISE} = 12 \text{ A/}\mu\text{s}$

 $t_{FALL} = 122 \text{ A/}\mu\text{s}$

$$C_{OUT} = 2 \times 22 \mu F$$

$$V_{CG} = GND$$

Figure 38: Double-Pulsed Load Response

20 μs/DIV

$$V_{IN} = 5.0V$$

$$I_{LOAD} = 1A \text{ to } 3A$$

$$V_{BUCK}$$
= 1.2 V_{OUT} = 2 x 22 μ F

$$t_{\text{RISE}} = 12 \text{ A/}\mu\text{s}$$

$$t_{FALL} = 122 \text{ A/}\mu\text{s}$$

 $V_{CG} = GND$

Figure 39: Load Transient Response

20 μs/DIV

 $V_{IN} = 5.0V$

V_{BUCK}= 1.2V

 $C_{OUT} = 4 \times 22 \mu F$

 $V_{CG} = GND$

20 μs/DIV

$$V_{IN} = 5.0V$$

$$v_{IN} = 5.0v$$

$$I_{LOAD} = 1A \text{ to } 3A$$

$$t_{RISE} = 12 \text{ A/}\mu\text{s}$$

$$C_{OUT} = 4 \times 22 \mu F$$

$$t_{FALL} = 122 \text{ A/}\mu\text{s}$$

 $V_{CG} = GND$

Doc. No. MV-S102867-00 Rev. F

Copyright © 2007 Marvell

Page 40

Document Classification: Proprietary Information

October 30, 2007, Advance

4.4.2 LDO Regulator

Figure 41: Load Transient Response

 $V_{IN} = 5.0V$

 I_{LOAD} = 100 mA to 800 mA

V_{LDO}= 3.3V

 $C_{OUT} = 10 \mu F$

4.5 Output Voltage Transient Waveforms

The following graphs show the effect of changing the step-down regulator's output voltage using the serial interface. Depending on the change in the step-size of the output voltage, the output load, and the output capacitance, the power-on reset pin de-asserts when the changes of the output voltage occur beyond the 25 μ s (typical) delay.

4.5.1 Step-Down Regulator

Figure 42: V_{OUT} = 1.0V to 1.2V with No Load

 $V_{IN} = 5.0V$

 C_{OUT} = (2 x 22) + 1000 μ F

Figure 43: V_{OUT} = 1.0V to 1.5V with No Load

 $V_{IN} = 5.0V$

 C_{OUT} = (2 x 22) +1000 μF

Figure 44: $V_{OUT} = 1.0V$ to 1.2V with $I_{LOAD} = 3A$

 $V_{IN} = 5.0V$

 C_{OUT} = (2 x 22) + 1000 μF

Figure 45: $V_{OUT} = 1.0V$ to 1.2V with $I_{LOAD} = 3A$

 $V_{IN} = 5.0V$

 C_{OUT} = (2 x 22) +1000 μ F

Figure 46: $V_{OUT} = 1.2V$ to 1.0V with $I_{LOAD} = 3A$

$$V_{IN}$$
 = 5.0V C_{OUT} = (2 x 22)+1000 μ F

Figure 47: $V_{OUT} = 1.5V$ to 1.0V with $I_{LOAD} = 3A$

$$V_{IN} = 5.0V$$

$$C_{OUT}$$
= (2 x 22)+1000 μF

4.6 Line Transient Waveforms

Figure 48: Line Transient @ V_{IN} = 3.6

2 ms/DIV

$$V_{IN} = 3.6V$$
 $C_{IN} = 22 \mu F$

$$V_{BUCK} = 1.2V$$
 $I_{LOAD} = 3A$

Figure 49: Line Transient @ V_{IN} = 4.5

 $V_{IN} = 4.5V$

$$C_{IN}$$
= 22 μ F

$$V_{BUCK} = 1.2V$$

$$I_{LOAD} = 3A$$

Section 5. Typical Characteristics

5.1 Efficiency Graphs

5.1.1 Efficiency Graphs in log scale

5.2 Load Regulation

5.3 Dropout Voltage

5.4 RDS (ON) Resistance

5.5 IC Case and Inductor Temperature

The following data was taken using a 1.4 square inch PCB 1 oz. copper and L = 1.3 μ H. Actual results depend upon the size of the PCB proximity to other heat emitting components.

Page 46

5.6 P-Channel MOSFET (FDS642P) Thermal Characteristics

The following data was taken using 1.4 square inch PCB 1 oz. Copper. Actual results depend upon the size of the PCB and proximity to other heat emitting components.

5.7 Input Voltage Graphs

Load = No Load

 $V_{IN} = 5.0V$ Load = No Load

5.7.1 Step-Down Regulator

 $I_{OUT(BUCK)} = 750 \text{ mA}$

 $V_{OUT(BUCK)} = 1.5V$ $I_{OUT(BUCK)} = 750 \text{ mA}$

 $V_{OUT(BUCK)} = 1.5V$

 $I_{OUT(BUCK)} = 1.5A$

 $V_{OUT(BUCK)} = 1.5V$

 $I_{OUT(BUCK)} = 1.5A$

5.7.2 LDO Regulator

 $I_{OUT(LDO)} = 10 \text{ mA}$

 $V_{OUT(LDO)} = 3.3V$

 $I_{OUT(LDO)} = 10 \text{ mA} - 800 \text{ mA}$

5.8 Temperature Graphs

 $I_{OUT(BUCK)} = No Load$ $I_{OUT(LDO)} = No Load$ $I_{OUT(BUCK)} = 10 \text{ mA}$

V_{IN}= 5V

5.8.1 Step-Down Regulator

$$V_{IN} = 5.0V$$

$$I_{OUT(LDO)} = 750 \text{ mA}$$

$$V_{IN} = 5.0V$$

$$V_{OUT(BUCK)} = 1.5V$$

$$I_{OUT(BUCK)} = 750 \text{ mA} - 3A$$

$$V_{IN} = 5.0V$$

$$V_{OUT(BUCK)} = 1.5V$$

$$I_{OUT(BUCK)} = 1.5A$$

$$V_{IN} = 3.0V - 5.0V$$

$$V_{OUT(BUCK)} = 1.5V$$

$$I_{OUT(BUCK)} = 1.5A$$

 $V_{IN} = 5.0V$ $I_{OUT(BUCK)} = 1.5A$

5.8.2 LDO Regulator

$$V_{IN} = 5.0V$$

$$I_{OUT(LDO)} = 10 \text{ mA}$$

$$V_{IN} = 3.5V - 5.0V$$

$$V_{OUT(LDO)} = 3.3V$$

$$I_{OUT(LDO)} = 10 \text{ mA}$$

$$V_{IN} = 5.0V$$

$$V_{OUT(LDO)} = 3.3V$$

$$I_{OUT(LDO)} = 10 \text{ mA} - 800 \text{ mA}$$

$$V_{IN} = 5.0V$$

Section 6. Applications Information

6.1 PC Board Layout Considerations and Guidelines for 88PG8x7

Warning

If you want to avoid noise and abnormal operating behavior, follow these layout recommendations.

- 1. This is a 2-layer board with 1 ground plane and 1 routing layer.
- 2. Copy the routing layer in Figure 52 as much as possible and place it on the top layer. The ground plane in Figure 53 can be placed on any other layer. Use the recommend BOM in Table 11 through Table 16. Contact the factory where substitutions are made.
- 3. Review the recommended solder pad layout and notes on page 67. Make sure that you place a dot on the top silk screen to indicated the location of pin 1 for the 88PG8x7 and the FDS742P, see Figure 52. Ensure that the dot is outside the package outline. This way you can visually inspect the package orientation after assembly.
- 4. Do not replace the Ceramic input capacitor with any other type of capacitor. Any type of capacitor can be placed in parallel with the input capacitor as long as the Ceramic input capacitor in placed next to the IC. If Tantalum input capacitor is used, it must be rated for switching regulator applications and the operating voltage be derated by 50%.
- 5. Use either X7R or X5R type ceramic capacitors. If Y5V or Z5U type capacitor are used, then you must double the recommended capacitance value.
- 6. Any type of capacitor can be placed in parallel with the output capacitor.
- Low-ESR capacitors like the POSCAP from Sanyo can replace the Ceramic output capacitors as long as the capacitor value is the same or greater. Note that the Ceramic capacitors provide the lowest noise and smallest foot print solution.
- Use planes for the ground, input and outputs power to maintain good voltage filtering and to keep power losses low.
- 9. If there is not enough space for a power plane for the input supply, then the input supply trace must be at least 3/8 inch wide.
- 10. If there is not enough space for a power plane for the output supplies, then place the output as close to the load as possible with a trace of at least 3/8 inch wide.
- 11. Do not lay out the inductor first. The input capacitor placement is the most critical for proper operation. The AC current circulating through the input capacitor and loop 1 (LP1) are square wave with rise and fall times of 8 ns and slew rates as high as 300 A/µs (see Figure 50). At these fast slew rates, stray PCB inductance can generate a voltage spike as high as 3V per inch of PCB trace, VIND = L * di/dt. Therefore, the Ceramic input capacitor must be place as close as possible to the PVIN and PGND pins with as short and wide trace as possible. Also, the PVIN and PGND traces must be placed on the top layer. This will isolate the fast AC currents from interfering with the analog ground plane.
- 12. The 88PG8x7 has two internal grounds, analog (SGND) and power (PGND). The analog ground ties to all the noise sensitive signals (PSET, VSET, and SVIN) while the power ground ties to the higher current power paths. Noise on an analog ground can cause problems with the IC's internal control and bias signals. For this reason, separate analog and power ground traces are recommended. The signal ground is connected to the power ground at one point, which is the (-) terminal of the output capacitor.
- 13. Keep loop 2 (LP2) as small as possible and connect the (-) terminal of the output capacitor as close to the (-) terminal of the input capacitor. A back-to-back placing of bypass capacitors, as shown in Figure 51, is recommended for best results.

- 14. Keep the switching node (SW) away from the SFB pin and all sensitive signal nodes, minimizing capacitive coupling effects. If the SFB trace must cross the SW node, cross it at a right angle.
- 15. Try not to route analog or digital lines in close proximity to the power supply especially the VSW node. If this can't be avoided, shield these lines with a power plane placed between the VSW node and the signal lines.
- 16. The type of solder paste recommended for QFN packages is "No clean", due to the difficulty of cleaning flux residues from beneath the QFN package.

Figure 50: Simplified Schematic

Figure 51: 88PG8x7 PCB Board Schematic

6.1.1 PC Board Layout Examples for 88PG8x7

- Actual board size = 700 mil x 700 mil; Area = 0.490 Sq. Inches.
- Total copper layers = 2 (Top and Bottom)
- All the components are on the top layer

Figure 52: Top Silk-Screen, Top Traces, Vias and Copper (Not to scale)

Figure 53: Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)

6.2 Bill of materials for 88PG8x7

The following tables list the components used with the 88PG8x7.

Table 11: 88PG847 BOM

Item	Ref	Manufacturer	Manufacturer Part #	Description
1	U1	Marvell Semiconductor	88PG847x	1 MHz, 4.5A Peak Current-Limit Step-Down Regulator with LDO Regulator Controller
2	C1	TDK	C1005X5R1A104K	0.1 μF, ± 10%, X5R, 10V, 0402 Case Size, Ceramic
3	C2	TDK	C2012X5R0J226MT	22 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
4	C3	TDK	C2012X5R0J226MT	22 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
5	C4	TDK	C2012X5R0J226MT	22 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
6	C5	TDK	C2012X5R0J226MT	22 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
7	L1	Toko	#A918BY-1R3M=P3	1.3 μ H, 3.1A, 28.6 m Ω , H = 2 mm, L = 6.2 mm, W = 6.3 mm
8	R1	Panasonic-ECG	ERJ-2RKF10R0X	10Ω, 1/16W, 1%, 0402 Case Size
9	R2			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size
10	R3	Panasonic-ECG	ERJ-2GEJ104X	100 kΩ, 1/16W, 5%, 0402 Case Size
11	R4			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size
12	R5	Panasonic-ECG	ERJ-2GEJ103X	10 kΩ, 1/16W, 5%, 0402 Case Size

Table 12: 88PG837 BOM

Item	Ref	Manufacturer	Manufacturer Part #	Description
1	U1	Marvell Semiconductor	88PG837x	1 MHz, 3.0A Peak Current-Limit Step-Down Regulator with LDO Regulator Controller
2	C1	TDK	C1005X5R1A104K	0.1 μF, ± 10%, X5R, 10V, 0402 Case Size, Ceramic
3	C2			

Table 12: 88PG837 BOM (Continued)

Item	Ref	Manufacturer	Manufacturer Part #	Description
4	C3	TDK	C2012X5R0J226MT	22 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
5	C4			
6	C5	TDK	C2012X5R0J226MT	22 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
7	L1	Toko	A918CY-2R0M=P3	2.0 μ H, 2.47A, 24 $m\Omega$, H = 2 mm, L = 6.2 mm, W = 6.3 mm
8	R1	Panasonic-ECG	ERJ-2RKF10R0X	10Ω, 1/16W, 1%, 0402 Case Size
9	R2			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size
10	R3	Panasonic-ECG	ERJ-2GEJ104X	100 kΩ, 1/16W, 5%, 0402 Case Size
11	R4			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size
12	R5	Panasonic-ECG	ERJ-2GEJ103X	10 kΩ, 1/16W, 5%, 0402 Case Size

Table 13: 88PG827 BOM

Item	Ref	Manufacturer	Manufacturer Part #	Description	
1	U1	Marvell Semiconductor	88PG827x	1 MHz, 2.5A Peak Current-Limit Step-Down Regulator with LDO Regulator Controller	
2	C1	TDK	C1005X5R1A104K	0.1 μF, ± 10%, X5R, 10V, 0402 Case Size, Ceramic	
3	C2				
4	C3	TDK	C2012X5R0J226MT	22 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic	
5	C4				
6	C5	TDK	C2012X5R0J226MT	22 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic	
7	L1	Toko	A918BCY-3R3M=P3	$3.3~\mu H,~1.99A,~39~m\Omega,~H=2~mm,~L=6.2~mm,~W=6.3~mm$	
8	R1	Panasonic-ECG	ERJ-2RKF10R0X	10Ω, 1/16W, 1%, 0402 Case Size	
9	R2			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size	

Table 13: 88PG827 BOM (Continued)

Item	Ref	Manufacturer	Manufacturer Part #	Description	
10	R3	Panasonic-ECG	ERJ-2GEJ104X	100 kΩ, 1/16W, 5%, 0402 Case Size	
11	R4			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size	
12	R5	Panasonic-ECG	ERJ-2GEJ103X	10 kΩ, 1/16W, 5%, 0402 Case Size	

Table 14: 88PG817 BOM

Item	Ref	Manufacturer	Manufacturer Part #	Description	
1	U1	Marvell Semiconductor	88PG817x	1MHz, 1.5A Peak Current-Limit Step-Down Regulator with LDO Regulator Controller	
2	C1	TDK	C1005X5R1A104K	0.1 μF, ± 10%, X5R, 10V, 0402 Case Size, Ceramic	
3	C2				
4	C3	TDK	C2012X5R0J106MT	10 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic	
5	C4				
6	C5	TDK	C2012X5R0J106MT	10 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic	
7	L1	Toko	A918BCY-4R7M=P3	4.7 μ H, 1.59A, 55 m Ω , H = 2 mm, L = 6.2 mm, W = 6.3 mm	
8	R1	Panasonic-ECG	ERJ-2RKF10R0X	10Ω, 1/16W, 1%, 0402 Case Size	
9	R2			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size	
10	R3	Panasonic-ECG	ERJ-2GEJ104X	100 kΩ, 1/16W, 5%, 0402 Case Size	
11	R4			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size	
12	R5	Panasonic-ECG	ERJ-2GEJ103X	10 kΩ, 1/16W, 5%, 0402 Case Size	

Table 15: 88PG807 BOM

Item	Ref	Manufacturer	Manufacturer Part #	Description
1	U1	Marvell Semiconductor	88PG807x	1 MHz, 0.75A Peak Current-Limit Step- Down Regulator with LDO Regulator Con- troller
2	C1	TDK	C1005X5R1A104K	0.1 μF, ± 10%, X5R, 10V, 0402 Case Size, Ceramic
3	C2			
4	С3	TDK	C2012X5R0J106MT	10 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
5	C4			
6	C5	TDK	C2012X5R0J106MT	10 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
7	L1	TDK	VLF3010AT-4R7MR70	4.7 μ H, 0.7A, 240 m Ω , H = 1 mm, L = 2.6 mm, W = 2.8 mm
8	R1	Panasonic-ECG	ERJ-2RKF10R0X	10Ω, 1/16W, 1%, 0402 Case Size
9	R2			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size
10	R3	Panasonic-ECG	ERJ-2GEJ104X	100 kΩ, 1/16W, 5%, 0402 Case Size
11	R4			See Any Voltage Programming Table, 1/16W, 1%, 0402 Case Size
12	R5	Panasonic-ECG	ERJ-2GEJ103X	10 kΩ, 1/16W, 5%, 0402 Case Size

Table 16: LDO Option BOM

Item	Ref	Manufacturer	Manufacturer Part #	Description
1	Q1	Fairchild	FDC642P	PFET, 2.5V, SuperSOT-6 Package
2	C6	TDK	C2012X5R0J106MT	10 μF, ± 20%, X5R, 6.3V, 0805 Case Size, Ceramic
3	R6	Susumu Co Ltd.	RL1220T-R047-J	0.047Ω, 1/4W, 5%, 0805 Case Size

Table 17: Ceramic Capacitor Cross Reference

Manufacturer	Manufacturer Part #	Description
22 μF	Taiyo-Yuden	CE JMK212BJ226MG-T
	TDK	C2012X5R0J226MT
	Murata	GRM21BR60J226ME39L
10 μF	Taiyo-Yuden	CE JMK212BJ106MG-T
	TDK	C2012X5R0J106MT
	Murata	GRM219R60J106KE190
0.1 μF	Taiyo-Yuden	RM LMK105 BJ104KV-F
	TDK	C1005X5R1A104K

Page 64

Section 7. Mechanical Drawing

7.1 88PG8x7 Mechanical Drawing

7.2 Dimensions

	Dimensions in mm			Dimensions in inch		
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.031	0.035	0.039
A1	0.00	0.02	0.05	0.000	0.001	0.002
А3	0.20 REF			0.008 REF		
b	0.20	0.25	0.30	0.008	0.010	0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
е		0.50 BSC		0.020 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
aaa			0.15			0.006
bbb			0.10			0.004
CCC			0.10			0.004

Notes:

- 1. DIMENSIONS AND TOLERANCES CONFORM TO ASME Y14.5M-1994
- 2. DRAWINGS NOT TO SCALE
- 3. DIMENSIONS ARE IN MILLIMETERS
- 4. TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION
- 5. PIN 1 (0.5 mm) IS LONGER THAN OTHER PINS (0.4 mm)

7.3 Typical Pad Layout Dimensions

7.3.1 Recommended Solder Pad Layout

3x3 QFN-16 Land Pattern (mm)

Non-Solder Mask Defined Terminal See Notes 4 and 5

Notes:

- TOP VIEW
- 2. DRAWING NOT TO SCALE
- 3. DIMENSIONS ARE IN MILLIMETERS
- 4. OVERSIZE SOLDER MASK BY 4 MILS OVER PAD SIZE (2 MIL ANNULAR RING)
- 5. 0.148 mm SOLDER MASK (SM) BETWEEN PADS
- 6. TOLERANCE ±0.05 mm
- 7. PIN 1 IS LONGER THAN OTHER PINS BY 0.1 mm

Section 8. Ordering Information

88PG8x7

8.1 Ordering Part Numbers and Package Markings

Figure 54 shows the ordering part numbering scheme for the 88PG8x7 devices. Contact Marvell® FAEs or sales representatives for complete ordering information.

Figure 54: Sample Part Number

8.2 Sample Ordering Part Number

The standard ordering part numbers for the respective solutions are as follows:

Table 18: 88PG8x7 Ordering Part Numbers¹

Marketing Part Number	Marking	LDO	Ambient Temperature Range ²	Package ³
88PG847B-NAM1	G47B	3.3V	-40 °C to 85 °C	3 X 3 QFN-16
88PG837B-NAM1	G37B	3.3V	-40 °C to 85 °C	3 X 3 QFN-16
88PG827B-NAM1	G27B	3.3V	-40 °C to 85 °C	3 X 3 QFN-16
88PG817B-NAM1	G17B	3.3V	-40 °C to 85 °C	3 X 3 QFN-16
88PG807B-NAM1	G07B	3.3V	-40 °C to 85 °C	3 X 3 QFN-16
88PG847E-NAM1	G47E	2.5V	-40 °C to 85 °C	3 X 3 QFN-16
88PG837E-NAM1	G37E	2.5V	-40 °C to 85 °C	3 X 3 QFN-16
88PG827E-NAM1	G27E	2.5V	-40 °C to 85 °C	3 X 3 QFN-16
88PG817E-NAM1	G17E	2.5V	-40 °C to 85 °C	3 X 3 QFN-16
88PG807E-NAM1	G07E	2.5V	-40 °C to 85 °C	3 X 3 QFN-16

^{1.} Contact Marvell® for details.

8.3 Package Marking

8.3.1 Sample Package Marking and Pin 1 Locations

Figure 55 is an example of the package marking and pin 1 location for the 88PG847 part. Markings for the other variants are similar.

Figure 55: 88PG847 Package Marking and Pin 1 Location

Note: The above example is not drawn to scale. Locations of markings are approximate.

^{2.} Specifications over the -40 °C to 85 °C operating temperature range are assured by design, characterization and correlation with statistical process controls.

^{3.} Package dimensions are in mm.

MOVING FORWARD

FASTER®

Marvell Semiconductor, Inc.

700 First Avenue Sunnyvale, CA 94089

Phone 408.222.2500 Fax 408.752.9028

www.marvell.com

Worldwide Corporate Offices

Marvell Semiconductor, Inc.

700 First Avenue Sunnyvale, CA 94089, USA Tel: 1.408.222.2500 Fax: 1.408.752.9028

Marvell Semiconductor, Inc.

5400 Bayfront Plaza Santa Clara, CA 95054, USA Tel: 1.408.222.2500

Marvell Asia Pte, Ltd.

151 Lorong Chuan, #02-05 New Tech Park, Singapore 556741 Tel: 65.6756.1600 Fax: 65.6756.7600

Marvell Japan K.K.

Shinjuku Center Bldg. 44F 1-25-1, Nishi-Shinjuku, Shinjuku-ku Tokyo 163-0644, Japan Tel: 81.(0).3.5324.0355 Fax: 81.(0).3.5324.0354

Marvell Semiconductor Israel, Ltd.

6 Hamada Street Mordot HaCarmel Industrial Park Yokneam 20692, Israel Tel: 972.(0).4.909.1500 Fax: 972.(0).4.909.1501

Marvell Semiconductor Korea, Ltd.

Rm. 603, Trade Center 159-2 Samsung-Dong, Kangnam-Ku Seoul 135-731, Korea Tel: 82.(0).2.551-6070/6079 Fax: 82.(0).2.551.6080

Radlan Computer Communications, Ltd.

Atidim Technological Park, Bldg. #4 Tel Aviv 61131, Israel Tel: 972.(0).3.645.8555 Fax: 972.(0).3.645.8544

Worldwide Sales Offices

Western US

Marvell

700 First Avenue Sunnyvale, CA 94089, USA Tel: 1.408.222.2500 Fax: 1.408.752.9028 Sales Fax: 1.408.752.9029

Marvell

5400 Bayfront Plaza Santa Clara, CA 95054, USA Tel: 1.408.222.2500

Central US

Marvell

9600 North MoPac Drive, Suite #215 Austin, TX 78759, USA Tel: 1.512.343.0593 Fax: 1.512.340.9970

Eastern US/Canada

Marvell

Parlee Office Park 1 Meeting House Road, Suite 1 Chelmsford, MA 01824 , USA Tel: 1.978.250.0588 Fax: 1.978.250.0589

Europe

Marvell

5 Marchmont Gate Boundary Way Hemel Hempstead Hertfordshire, HP2 7BF United Kingdom Tel: 44.(0).1442.211668 Fax: 44.(0).1442.211543

Worldwide Sales Offices

Western US

Marvell

700 First Avenue Sunnyvale, CA 94089, USA Tel: 1.408.222.2500 Fax: 1.408.752.9028 Sales Fax: 1.408.752.9029

Marvell

5400 Bayfront Plaza Santa Clara, CA 95054, USA Tel: 1.408.222.2500

Central US

Marvell

9600 North MoPac Drive, Suite #215 Austin, TX 78759, USA Tel: 1.512.343.0593 Fax: 1.512.340.9970

Eastern US/Canada

Marvell

Parlee Office Park 1 Meeting House Road, Suite 1 Chelmsford, MA 01824 , USA Tel: 1.978.250.0588 Fax: 1.978.250.0589

Europe

Marvell

5 Marchmont Gate Boundary Way Hemel Hempstead Hertfordshire, HP2 7BF United Kingdom Tel: 44.(0).1442.211668 Fax: 44.(0).1442.211543

For more information, visit our website at: www.marvell.com