## Cours 3: Rappels de probabilités

A- Notions de base

B- Variables aléatoires

C- Lois classiques

D-Convergence de v.a.

### A- Notions de base

#### Théorie des probabilités

- ✓ Décrit le comportement de phénomènes dont le résultat est soumis au hasard
- ✓ permet de modéliser la fréquence de réalisation d'« évènements » aléatoires.

## A.1 Notions de base : quelques définitions

- ✓ Expérience aléatoire E: expérience dont le résultat ne peut pas être déterminé avec certitude a priori.
- $\checkmark$  Univers de  $\mathcal{E}$  = ensemble des résultats possibles de  $\mathcal{E}$ . On le note  $\Omega$ .
- $\checkmark$  **Résultat élémentaire de**  $\mathcal{E}$  = résultat possible de  $\mathcal{E}$ . C'est un élément de  $\Omega$  . On le note  $\overline{\omega}$

```
Ex1: \mathcal{E}: "lancer d'un dé régulier "

\Omega = \{1,2,3,4,5,6\} = [|1,6|],

\omega = 2 est un résultat possible
```

Ex2: ε "jet de deux pièces de monnaie distinguables".
Ω={(P,P); (P,F); (F,P); (F,F)}.
ω= (P,P) est un résultat possible

Ex3:  $\mathcal{E}$ : "lancer d'un crayon sur une feuille de papier de dim l\* L. Chaque point de la feuille est repéré par son abscisse et son ordonnée.

$$\Omega = = \{(x,y), x \in [o,l], y \in [o,L]\}$$
infini

$$\omega = (1/2, L/2)$$

- $\checkmark$  Ensemble  $\mathcal{P}(\Omega)$  des parties de  $\Omega$ : ensemble constitué de tous les sous-ensembles (parties) de  $\Omega$
- Evènement (aléatoire)
   = une partie (sous-ensemble) de Ω
   = assertion, qui peut ou non se réaliser suivant l'issue de ε.
- Réalisation d'un événement : Soit A un évènement de Ω. Soit ω le résultat de l'expérience

A se réalise 
$$\Leftrightarrow \omega \in A$$

 ${\bf CP}$ :  ${\bf A}$ = ${\bf \Omega}$  se réalise toujours. On l'appelle évènement certain.

 $A=\varnothing$  ne se réalise jamais. On l'appelle évènement impossible.

A={w} s'appelle événement élémentaire.

Exo: Si  $\Omega = \{a, b, c\}, \mathcal{P}(\Omega)$  a 8 éléments.

l'ensemble vide :  $\emptyset$ 

les parties à un élt. : { a },{b}, {c}

les parties à deux élts. :  $\{b,c\},\{a,c\},\{a,b\}$ les parties à trois éléments :  $\{a,b,c\}=\Omega$ 

Ex1: A=« le lancer est pair »={2,4,6}.

Ex2: A= « on obtient deux piles »={(P,P)}

Si le résultat de  $\mathcal{E}$  est  $\omega$ =(F,P) alors A ne se réalise pas.

Ex3: A=« le lancer a une abscisse >l/2 »=]l/2,l]\*[o,L]

- ✓ Opérations sur les évènements
- Complémentaire de A\_: événement constitué des résultats élémentaires de  $\Omega$  qui ne sont pas dans A. Soit  $\omega$  le résultat de l'expérience :

$$\overline{A} = \{\omega \in \Omega, \omega \notin A\}$$

( $\overline{A}$  se réalise ssi A ne se réalise pas : non A).

Réunion\_de A et B: évènement constitué des résultats élémentaires de  $\Omega$  qui appartiennent à A <u>ou</u> à B (ou aux deux). Soit ω le résultat de l'expérience :

$$A \cup B = \{ \omega \in \Omega, \omega \in A \text{ ou } \omega \in B \}$$

 $(A \cup B \text{ se réalise ssi A se réalise ou B se réalise : A ou B}).$ 



Intersection de A et B: évènement constitué des résultats élémentaires de  $\Omega$  qui appartiennent à la fois à A et à B. Soit ω le résultat de l'expérience

$$A \cap B = \{ \omega \in \Omega, \, \omega \in A \text{ et } \omega \in B \}$$

 $(A \cap B \text{ se réalise ssi A et B se réalisent : A et B}).$ 

- Relations particulières :
  - Inclusion : A est inclus dans B ssi tout élément de A appartient à B :

$$A \subset B \iff (\omega \in A \Rightarrow \omega \in B)$$

(Si A est réalisé alors B est réalisé).



• Disjonction ou incompatibilité: A et B sont disjoints ssi A et B n'ont pas d'éléments communs :

A et B disjoints 
$$\Leftrightarrow (A \cap B = \emptyset)$$

(A et B disjoints : A et B sont incompatibles).



- Système complet d'évènements : Soient  $A_1$ ,  $A_2$ , ...,  $A_n$  n événements. On dit que  $(A_1, A_2, ..., A_n)$  constitue un système complet d'événements si ils forment une partition de  $\Omega$ :
  - ils sont deux à deux incompatibles

$$\forall p \neq q \quad A_p \cap A_q = \emptyset$$

- si leur réunion est l'événement certain  $\Omega$ 

$$\bigcup_{p=1}^{n} A_p = \Omega$$



Ex:  $(A, \overline{A})$  forme un système complet d'évènements.

- $\checkmark$  Tribu d'évènements de  $\Omega$ , espace probabilisable
- Fribu d'un ensemble de parties de  $\Omega$ : Soit  $\mathcal{A} \in \mathcal{P}(\Omega)$ .  $\mathcal{A}$  est une tribu ou sigmaalgèbre si elle contient  $\Omega$  et est stable par complémentation et réunion dénombrable. On dit alors que  $(\Omega, \mathcal{A})$  est un espace probabilisable.

Exemples: Tribu grossière  $A = \{\emptyset, \Omega\}$ 

Tribu des parties (appelée aussi tribu discrète)  $\mathcal{A} = \mathcal{P}(\Omega)$ 

Tribu des boréliens  $A=\{]a,+\infty[$ ,  $a\in \mathbb{Q}$  (ou  $\mathbb{R}$ ) $\}$ , lorsque  $\Omega=\mathbb{R}$ 

Tribu des boréliens  $A=\{]a,b[$ , a< b,  $(a,b)\in I^2\}$ , lorsque  $\Omega=I$  intervalle de  $\mathbb{R}$ 

Autres exemples de tribus  $\mathcal{A} = \{A, \overline{A}, \emptyset, \Omega\}$ 

 $\Omega = \{a,b,c,d\}, A = \{\emptyset,\{a\},\{b,c,d\},\Omega\}$ 

Choix d'une tribu : se fait en fonction de l'information qu'on a sur le problème. lorsque l'univers est fini ou dénombrable, on travaille généralement avec la tribu discrète. Lorsque l'univers est infini ( $\Omega = \mathbb{R}$  ou I) on travaille avec la tribu borélienne.

**Probabilité**= fonction permettant de « mesurer » la chance de réalisation d'un évènement de  $\mathcal{P}(\Omega)$  (ou plus généralement d'une tribu  $\mathcal{A}$ )

**Définition**: Soit (Ω, $\mathcal{A}$ ) un espace probabilisable. Une probabilité sur (Ω, $\mathcal{A}$ ) est une application  $P: \mathcal{A} \rightarrow [0,1]$  satisfaisant les 3 axiomes suivants :

$$0 \le P(A) \le 1, \forall A \in \mathcal{A}$$

$$P(\Omega) = 1$$

$$P(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} P(A_i), \quad \forall (A_i)_{i \in \mathbb{N}} \quad \text{ensemble dénombrable}$$

$$\text{d'évènements disjoints}$$

Dès lors que P est définie,  $(\Omega, A, P)$  s'appelle un espace probabilisé.

**✓ Opérations sur les probab** 

$$P(\phi) = 0$$

$$P(\overline{A}) = 1 - P(A)$$

$$P(A) \le P(B) \text{ si } A \subset B$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(\cup A_i) \le \sum P(A_i)$$

$$0 \le P(A_i) \le 1$$

CP: Si P(A)=0 alors A est *presque* impossible. On écrit  $A = \emptyset$  p.s. Si P(A)=1 alors A est *presque* sûr. On écrit  $A = \Omega$  p.s.

✓ Axiome des probabilités totales :  $(A_i)_{1 \le i \le n}$  système complet d'évènements :

$$\forall B \in \mathcal{A}, \quad P(B) = \sum_{i=1}^{n} P(B \cap A_i)$$



#### ✓ Construction pratique d'une probabilité en univers fini ou dénombrable

On suppose que l'ensemble des événements possibles est fini ou dénombrable. On note  $\Omega = \{\omega_1, ..., \omega_n, ....\}$  l'ensemble des résultats possibles.

- > on définit la probabilité  $P_i$  de chaque résultat élémentaire  $\omega_i$  on a alors une suite  $(p_1,...,p_{n...})$  de nombres tels que :  $0 \le p_i \le 1$   $\sum_{i=1}^{n} p_i = 1$
- > la probabilité d'un événement quelconque A est donné par

$$P(A) = \sum_{\omega_i \in A} p_i$$

ightharpoonup CP d'un univers fini équiprobable : Lorsqu'il n'y a pas lieu d'attacher aux différents évènements élémentaires des probabilités différentes, on a pour tout ωi,  $p_i = p$ . On dit que l'univers est équiprobable. Lorsque l'univers est fini, de cardinal  $|\Omega|$ , on a  $p_i = p = 1/|\Omega|$ . On définit alors la probabilité P comme précédemment : soit A un événement quelconque.

$$P(A) = \frac{|A|}{|\Omega|}$$

Cette probabilité est appelée probabilité uniforme sur  $\Omega$ .

- *Ex 2*:  $\mathcal{E}$ : "jet de deux pièces de monnaie distinguables ".  $\Omega$ ={(P,P); (P,F); (F,P); (F,F)} est équiprobable. Soit A= "On obtient au moins une fois P "={(P,P); (P,F); (F,P)}. P(A)=3/4
- Ex1bis:  $\mathcal{E}$ : « jet d'un dé pipé : le 6 apparaît 2 fois plus que les autres ». W non équiprobable : p1=p2=p3=p=p5=p; p6=2p, p tel que :5p+2p=1, p=1/7
  A=« le lancer est pair »; P(A)=p2+p4+p6=4/7.
- Ex3 :  $\mathcal{E}$ =« lancer de la mine de crayon ». Soit A un événement (surface sur la feuille) de  $\Omega$  d'aire A. Si tous les emplacements sur la feuille ont la même chance d'être atteints, intuitivement, on peut définir P(A) = A/l\*L Par contre,  $P(\{(x,y\})=0$  (lorsque  $\Omega$  est infini, on admet que la probabilité de tomber sur un point particulier est nulle).

## A.4 Notions de base: probabilité conditionnelle, indépendance

✓ Probabilité conditionnelle de A sachant B:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

(probabilité que A se réalise sachant que B se réalise). C'est une probabilité sur B.

✓ Indépendance de deux évènements A et B

$$P(A \cap B) = P(A)P(B)$$
$$P(A/B) = P(A)$$

$$P(A/B) = P(A)$$

Rq : Deux évènements disjoints ne sont pas indépendants. P(B/A) = P(B)

$$P(B/A) = P(B)$$

Indépendance mutuelle d'une séquence d'évènements  $(A_i)$ 

$$\forall I \in \mathcal{P}(2,..n), \quad P(\bigcap_{I} A_{i}) = \prod_{I} P(A_{i})$$

# A.4 Notions de base: probabilité conditionnelle, indépendance

- ✓ Théorème de Bayes
- > pour deux évènements A et B:

$$P(A/B) = \frac{P(B/A)P(A)}{P(B)}$$

 $\succ \,$  Généralisation pour un système complet d'évènements  $A_{\!_1}\,,A_{\!_2}\,,\dots\,,A_{\!_n}\,$  :

$$P(B) = \sum_{i=1}^{n} P(B/A_i)P(A_i)$$

$$P(A_{i}/B) = \frac{P(B/A_{i})P(A_{i})}{\sum_{i=1}^{n} P(B/A_{i})P(A_{i})}$$

**Définition :** On suppose une expérience dont l'univers est muni d'une tribu  $\mathcal{A}$  d'évènements et d'une probabilité P (  $(\Omega, \mathcal{A}, P)$  espace probabilisé) . Une variable aléatoire réelle X est une caractère quantitatif, discret ou continu, dont la valeur est fonction du résultat de l'expérience :

$$X: \Omega \to E$$
  
 $\omega \to X(\omega) = x$ 

(E est l'ensemble des valeurs possibles de X)

qui est mesurable, c'est à dire telle que l'image réciproque  $X^{-1}(B) = \{\omega \in \Omega, X(\omega) \in B\}$  de tout élément B de la tribu  $\mathcal{B}$  associée à E est un événement de  $\mathcal{A}$ .

$$\forall B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$$

Rq: Notation: 
$$X^{-1}(B) = \{X \in B\}$$

Alors, on peut attribuer une chance de réalisation à tout élément  $\, B \, de \, \mathcal{B} \,$ 

Rq : la mesurabilité de X dépend des tribus  $\mathcal{A}$  et  $\mathcal{B}$  choisie sur  $\Omega$   $\varepsilon \tau$  E. La tribu  $\mathcal{B}$  est généralement  $\mathcal{P}(E)$  en discret, la tribu borélienne en continu.

Rq : Lorsque X est une variable discrète, la séquence d'évènements  $\{X = x\}$  forme une partition de Ω. On l'appelle partition engendrée par X.

Ex1 : lancer d'un dé régulier.  $(\Omega, P(\Omega), P)$  est un espace probabilisé. Soit X la fonction de  $\Omega$  dans  $\{0,1\}$  valant 1 si le lancer est pair , o sinon. X est une fonction du résultat de l'expérience et elle est mesurable. En effet,  $\mathcal{B}=\{\{0\},\{1\},\{0,1\},\emptyset\}$ 

On a 
$$\{X=0\}=\{1,3,5\}\in \mathcal{P}(\Omega)$$

- ${X=1}={2,4,6} \in \mathcal{P}(\Omega)$
- $\{X \in \{0,1\}\}=\{X=0 \text{ ou } X=1\}=\Omega \in \mathcal{P}(\Omega)$
- $\{X \in \emptyset\} = \emptyset \in \mathcal{P}(\Omega)$

Ex2 : On fait l'expérience E : « on lance 2 pièces de monnaie régulières ». Soit X le nombre de « P » obtenu : X prend les valeurs quantitatives discrètes 0, 10u 2 (E={0,1,2}), selon le résultat de l'expérience :

X est donc une variable aléatoire discrète.

L'évènement engendré par la valeur o est l'évènement  $\{X=0\}=\{(F,F)\}$ L'évènement engendré par la valeur 1 est l'évènement  $\{X=1\}=\{(P,F),(F,P)\}$ L'évènement engendré par la valeur 2 est l'évènement  $\{X=2\}=\{(P,P)\}$ 

On a: 
$$\{X = 0\} \cup \{X = 1\} \cup \{X = 2\} = \Omega$$

Ex 3 : Soit X l'abscisse de la mine : X prend des valeurs quantitatives continues entre 0 et l (E=[0,l]), selon le résultat de l'expérience : si le résultat de l'expérience est  $\omega$ =(x,y) X( $\omega$ )=x. On associe à E et à  $\Omega$  les tribus boréliennes  $\mathcal{A}$  et  $\mathcal{B}$  respectivement engendrées par les ouverts de [0,l] et de [0,l]\*[0,L] (qui contiennent tous les intervalles associés à ces ensembles). Alors, l'image réciproque de tout élément de  $\mathcal{B}$  (tout intervalle I de [0,l] est dans  $\mathcal{A}$  (c'est un intervalle de [0,l]\*[0,L])

 $\{X \in I\} = \{\omega = (x,y), x \in I, y \in [0,L]\} \in \mathcal{B}$ X est donc une variable aléatoire (continue).

#### ✓ Loi d'une variable aléatoire :

La mesurabilité de X assure que l'image réciproque de tout élément  $B \in \mathcal{B}$  est dans  $\mathcal{A}$  donc possède une probabilité. On peut ainsi définir, sur  $(E,\mathcal{B})$  une mesure de probabilité, appelée loi de X et notée  $P_X$  par

$$\forall B \in \mathcal{B}, P_X(B) = P(X^{-1}(B)) = P(X \in B)$$

#### Variable aléatoire réelle discrète

- ✓ Déf : X prend ses valeur dans un ensemble E discret de valeurs réelles (v.a.r.d.).
- ✓ Loi : Séquence des probabilités :

$$p_X(x) = P(X = x), \quad x \in E$$

#### Propriétés:

$$0 \le p_X(x) \le 1$$

$$\sum_{x \in E} p_X(x) = 1$$

$$\forall B \subset \mathcal{B}, p_X(B) = \sum_{x \in B} p_X(x)$$

#### variable aléatoire réelle continue

- ✓ Déf : X prend ses valeur dans un ensemble E continu de valeurs réelles (v.a.r.c.).
- ✓ Loi:  $\forall x \in E, P(X = x) = 0$ Par contre  $P(X \in [x, x + dx[) \neq 0$ La loi de X est définie via la fonction f de  $\mathbb{R}$  dans  $\mathbb{R}$ , appelé densité de

probabilité : 
$$f(x)dx = P(X \in [x, x + dx[)]$$

Propriétés : 
$$0 \le f(x)$$
  

$$\int_{\mathbb{R}} f(x)dx = 1$$

$$\forall B \subset \mathbb{R}, p_X(B) = \int_{B} f(x)dx$$

✓ Présentation : la loi de X est présentée dans un tableau (tableau de la loi de X ou tableau en fréquences):

| $x_i$ | 0   | 1   | 2   |
|-------|-----|-----|-----|
| $p_i$ | 1/4 | 1/2 | 1/4 |

✓ Représentation graphique : diagramme en bâtons



- ✓ Présentation : La loi de X est donnée par la fonction f
- ✓ Représentation graphique : courbe de la densité



#### ✓ Fonction de répartition de la loi de X

Définition: 
$$F: R \to [0,1]$$
  
 $x \to P(X \le x)$ 

Propriétés: (i) F est croissante

(ii) F est continue à droite

(iii) 
$$\lim_{x\to +\infty} F(x) = 1$$
,  $\lim_{x\to -\infty} F(x) = 0$ 

#### Variable discrete

F est une fonction en escalier, continue à droite



$$F(x) = \sum_{y \le x, y \in E} p_X(y)$$

$$P(a \le X < b) = F(b) - F(a)$$

$$P(X > x) = 1 - F(x)$$

#### Variable continue

F est une fonction continue



$$F'(x) = f(x)$$

$$F(x) = \int_{-\infty}^{x} f(t)dt = \text{Aire sous la courbe de la densit\'e avant } x$$

$$P(a \le X < b) = P(a \le X \le b) = F(b) - F(a) = \int_{a}^{b} f(x)dx$$

$$P(X > x) = P(X \ge x) = 1 - F(x) = \int_{x}^{+\infty} f(t)dt$$



• Exemple 2 : On fait l'expérience E : « on lance 2 pièces de monnaie régulières ». Soit X le nombre de « P » obtenu .

| $x_i$ | 0   | 1   | 2   |
|-------|-----|-----|-----|
| $p_i$ | 1/4 | 1/2 | 1/4 |



Exemple 3: E: lancer de la mine de crayon. X= abscisse
 f(x)dx=P[x<X<x+dx]=P({ω=(t,u), x<t<dx, O<u<L})=dx\*L/l \*L si O<=x<=l, O sinon. Donc f(x)=1/l si O<=x<=l, O sinon. On reconnaît:</li>



## B.3 Variable aléatoire réelle (v.a.r): moments

#### Espérance d'une v.a.r.d.

$$E(X) = \sum_{x \in E} x p_X(x)$$
Espérance de Y=g(X), X v.a.r.d.

$$E(Y) = \sum_{x \in E} g(x) p_X(x)$$

#### Espérance d'une v.a.r.c.

$$E(X) = \int_{R} x f(x) dx$$

Espérance de Y=g(X), X v.a.r.c.

$$E(Y) = \int_{R} g(x) f(x) dx$$

#### Propriétés:

$$E(a) = a$$
  
 $E(aX) = aE(X)$   
 $E(aX + bY) = aE(X) + bE(Y)$   
 $E(XY) = E(X)E(Y)$  si  $X$  et  $Y$   $v$ .  $a$ . indépendantes

Rq: L'espérance peut ne pas exister

## B.3 Variable aléatoire réelle (v.a.r): moments

#### ✓ Définitions

- Variance de X  $V(X) = \sigma_X^2 = E((X E(X))^2)$
- ightharpoonup Ecart-type de X  $\sigma_X = \sqrt{V(X)}$

#### **✓ Propriétés**:

Théorème de Koenig :  $V(X) = E(X^2) - (E(X))^2$ 

$$V(X+a) = V(X)$$

$$V(aX+b) = a^{2}V(X)$$

$$V(X) = 0 \Leftrightarrow X = cste \ p.s.$$

$$V(X) \ge 0$$

$$\sigma_X \ge 0$$

## B.3 Variable aléatoire réelle (v.a.r): moments

✓ Moment centré d'ordre k :  $\mu_k = E((X - E(X))^k)$ 

$$|\mu_1 = 0, \, \mu_2 = Var(X)|$$

Pour une loi symétrique :  $\mu_{2k+1} = 0 \quad \forall k \geq 0$ 

✓ Moment non centré d'ordre k :  $m_k = E(X^k)$ 

$$m_1 = E(X)$$

Coefficient d'asymétrie (skewness) Coefficient d'aplatissement (kurtosis)

$$\gamma_1 = \frac{\mu_3}{\sigma^3}$$

$$\gamma_2 = \frac{\mu_4}{\sigma^4}$$

## B.3 Variable aléatoire réelle (v.a.r): moments

- ✓ Quelques inégalités classiques
- Inégalité de markov

$$\forall k > 0, \quad P(\mid X \mid > k) \le \frac{E(\mid X \mid)}{k}$$

> Inégalité de Bienaymé Tchebychev

$$\forall k > 0, \quad P(\mid X - E(X) \mid > k) \le \frac{V(X)}{k^2}$$

> Inégalité de Jensen; soit g convexe

$$g(E(X)) \le E(g(X))$$

> Inégalité de Hölder

$$E(|XY|) \le E(|X|^p)^{1/p} E(|Y|^q)^{1/q}$$

> CP : Inégalité de Cauchy-Schwarz

$$E(|XY|) \le \sqrt{E(X^2)E(Y^2)}$$
,  $E(|X|) \le \sqrt{E(X^2)}$ 

- ✓ **Définition**: On appelle couple de variables aléatoires, deux variables aléatoires X et Y définies sur le même univers (issues de la même expérience) à valeurs respectivement dans E et F.
- ✓ Loi jointe d'un couple de variables aléatoires :
- > Cas discret : c'est la séquence  $(P(\{X=x\} \cap \{Y=y\}))_{x \in E, y \in F} )$
- Cas continu : c'est la fonction f de R<sup>2</sup> dans R, appelée densité jointe telle que

$$f(x,y)dxdy = P(X \in [x, x+dx] \cap Y \in [y, y+dy]$$

✓ Lois marginales de X

Cas discret:  $P(X = x) = \sum_{y \in F} P(X = x, Y = y)$ 

> Cas continu:

$$f(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

- ✓ Lois conditionnelles de Y sachant X=x
- > Cas discret

$$P(Y = y / X = x) = \frac{P(X = x, Y = y)}{P(X = x)} \quad \forall y \in F$$

> Cas continu

$$f(y/x) = \frac{f(x,y)}{f(x)} \quad \forall y \in R$$

#### **✓ Espérance conditionnelle**

L'espérance conditionnelle E(Y/X) est une variable aléatoire de même loi que X, dont les réalisations possibles sont les valeurs  $\{E(Y/X=x)\}_{x\in E}$ , valeurs des espérances des lois conditionnelles de Y/X=x

Cas discret 
$$E(Y/X = x) = \sum_{y \in F} yP(Y = y/X = x), \forall x \in E$$

| E(Y/X)      | E(Y/X=x1) | ••••• | E(Y/X=xn) |
|-------------|-----------|-------|-----------|
| P(E(Y/X)=x) | P(X=x1)   | ••••• | P(X=xn)   |

- Cas continu  $E(Y/X = x) = \int_{R} y f(y/X = x) dy$  prise avec la densité f(x).
- Propriété : espérance de l'espérance conditionnelle E(E(Y/X)) = E(Y)

**✓** Covariance entre X et Y

$$Cov(X,Y) = E((X - E(X))(Y - E(Y))$$

- ✓ Propriétés
  - Théorème de Koenig généralisé Cov(X,Y) = E(XY) E(X)E(Y)

Autres 
$$Cov(X,Y) = Cov(Y,X)$$
  
 $Cov(aX + bY,Z) = aCov(X,Z) + bCov(Y,Z)$   
 $Cov(X,aY + bZ) = aCov(X,Y) + bCov(X,Z)$   
 $Cov(a,Y) = Cov(Y,a) = 0$   
 $V(aX + bY) = a^2V(X) + b^2V(Y) + 2abCov(X,Y)$ 

✓ Vecteur espérance du couple (X, Y)

$$M(X,Y) = \begin{pmatrix} E(X) \\ E(Y) \end{pmatrix}$$

✓ Matrice de variance-covariance

$$\Sigma(X,Y) = \begin{pmatrix} V(X) & Cov(X,Y) \\ Cov(X,Y) & V(Y) \end{pmatrix}$$

Elle est symétrique, semi-définie positive

#### ✓ Corrélation entre X et Y

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$$

$$\rho(X,Y) = Cov(X^*,Y^*)$$

Où X\* et Y\* sont les variables centrées-réduites associées à X et Y.

#### ✓ Propriétés

$$-1 \le \rho(X,Y) \le 1$$
 D'autant plus proche de 1 en valeur absolu que le lien linéaire est fort entre X et Y.

$$|\rho(X,Y)| = 1$$
 Lien linéaire parfait : Y=aX+b

$$\rho(X,Y) = 0$$
 Absence de lien linéaire (pas forcement indépendance entre X et Y)

$$\Rightarrow Cov(X,Y) = 0$$

$$E(XY) = E(X)E(Y)$$

# B.5 Variable aléatoire réelle (v.a.r): indépendance

- **Définition**: On dit que deux variables aléatoires X et Y à valeurs dans (E, $\mathcal{B}$ 1) et (F, $\mathcal{B}$ 2)sont indépendantes si et seulement si pour tout (B1,B2) ∈ (B1,B2), les évènements {X∈ $\mathcal{B}$ 1} et {Y∈ $\mathcal{B}$ 2} sont indépendants.
  - Cas discret

$$\forall (x, y) \in E \times F, P(X = x, Y = y) = P(X = x)P(Y = y)$$

Cas continu

$$\forall (x, y) \in R^2, f(x, y) = f(x)f(y)$$

la loi jointe est égale au produit des lois marginales

**✓ Définition équivalentes** 

$$\forall (x, y) \in E \times F, P(Y = y / X = x) = P(Y = y)$$

$$\forall (x, y) \in R^2, f(y/x) = f(y)$$

✓ **Propriété**: Deux variables aléatoires indépendantes sont non corrélées, la réciproque étant fausse (deux variables n'ayant pas de lien du tout n'ont en particulier pas de lien linéaire, l'inverse étant faux)

# B.5 Variable aléatoire réelle (v.a.r): indépendance

#### ✓ Propriétés :

$$X \perp Y \Leftrightarrow \begin{cases} E(XY) = E(X)E(Y) \\ \cos(X,Y) = r(X,Y) = 0 \\ V(X+Y) = V(X) + V(Y) \end{cases}$$