A New Learning Algorithm for Stochastic Feedforward Neural Nets

Yichuan Tang, Ruslan Salakhutdinov –ICML2013

Repoter: Yunfei WANG

Multilayer Perceptrons(MLPs)

Input Hidden Hidden Output

$$a_{1}^{(2)} = f(W_{11}^{(1)}x_{1} + W_{12}^{(1)}x_{2} + W_{13}^{(1)}x_{3} + b_{1}^{(1)})$$

$$a_{2}^{(2)} = f(W_{21}^{(1)}x_{1} + W_{22}^{(1)}x_{2} + W_{23}^{(1)}x_{3} + b_{2}^{(1)})$$

$$a_{3}^{(2)} = f(W_{31}^{(1)}x_{1} + W_{32}^{(1)}x_{2} + W_{33}^{(1)}x_{3} + b_{3}^{(1)})$$

$$h_{W,b}(x) = a_{1}^{(3)} = f(W_{11}^{(2)}a_{1}^{(2)} + W_{12}^{(2)}a_{2}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + b_{1}^{(2)})$$

We assume that y has a Gaussian distribution with an x-dependent mean given by the output of MLPs

$$p(y|\mathbf{x}) \sim \mathcal{N}(y|\mu_y, \sigma_y^2)$$
$$\mu_y = \sigma(W_2\sigma(W_1\mathbf{x} + bias_1) + bias_2)$$

Sigmoid Belief Net (SBN)

For structured prediction problems, we are interested in modeling a conditional distribution p(Y|X) that is multimodal, namely learning one to many functions from X to Y.

One way to model the multi-modality is making the hidden variables stochastic.

Sigmoid Belief Net (SBN) is a stochastic feedforward neural network with binary hidden, input, and output variables.

Given the same X, different hidden configurations leads to different output values of Y.

Motivation of SFNN

MLPs are popular models used for non-linear regression and classification tasks. MLPs model the conditional distribution of the predictor variables y given input variables x.

However, this predictive distribution is assumed to be unimodal. For tasks such as structured prediction problems, the conditional distribution should be one-to-many mappings.

Using only discrete hidden units is suboptimal when modeling realvalued output y.

For a finite number of discrete hidden states, each one is a Gaussian $p(y|h) = \mathcal{N}(y|\mu(h), \sigma_y^2)$, where the mean $\mu(h) = W_2^T h + bias_2$ When x varies, only the probability of choosing a specific hidden state is changed via p(h|x).

A smoother p(y|x) can be learned if $\mu(h)$ is a deterministic function of x as well.

Stochastic Feedforward Neural Network

Highlights

- To better model continuous data, SFNNs have hidden layers with both discrete stochastic and deterministic units.
- 2 Present a novel Monte Carlo variant of the Generalized Expectation Maximization algorithm for learning. Importance sampling is used for the E-step for inference,
- ③ Error backpropagation is used by the M-step to improve a variational lower bound on the data log-likelihood.

Turning part of the hidden variables in a MLP into stochastic nodes, Sigmoid Belief Nets induce a rich multimodal distribution in the output space.

Advantages of SFNN

- We can draw exact samples from the model without resorting to Markov chain Monte Carlo.
- Stochastic units form a distributed code to represent an exponential number of mixture components in output space.
- As a directed model, learning does not need to deal with a global partition function.
- Combination of stochastic and deterministic hidden units can be jointly trained using the backpropagation algorithm.

Formulation of SFNNs

- SFNNs contain binary stochastic hidden variables $\, \mathbf{h} \in \{0,1\}^N \,$
- For simplicity, we can construct a SFNN with one hidden layer.

The conditional distribution is obtained by marginalizing out the latent stochastic hidden variables:

$$p(y|\mathbf{x}) = \sum_{\mathbf{h}} p(y, \mathbf{h}|\mathbf{x}) \tag{1}$$

SFNN is a directed graphical model, the joint distribution can be factorized as:

$$p(y, \mathbf{h}|\mathbf{x}) = p(y|\mathbf{h})p(\mathbf{h}|\mathbf{x})$$
 (2)

For modeling real-valued y, we can have $p(y|\mathbf{h}) = \mathcal{N}(y|W_2\mathbf{h} + bias_2, \sigma_y^2)$ and $p(\mathbf{h}|\mathbf{x}) = \sigma(W_1\mathbf{x} + bias_1)$.

Monte Carlo

What is the average height f of people p in Cambridge C?

$$E_{p \in \mathcal{C}}[f(p)] \equiv \frac{1}{|\mathcal{C}|} \sum_{p \in \mathcal{C}} f(p)$$
, "intractable"?

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(p^{(s)}),$$
 for random survey of S people $\{p^{(s)}\} \in \mathcal{C}$

Monte Carlo approximates expectations with a sample average In general:

$$\int f(x)P(x) \, dx \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

Example: making predictions

$$p(x|\mathcal{D}) = \int P(x|\theta, \mathcal{D}) P(\theta|\mathcal{D}) d\theta$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} P(x|\theta^{(s)}, \mathcal{D}), \quad \theta^{(s)} \sim P(\theta|\mathcal{D})$$

Properties of Monte Carlo

Estimator:
$$\int f(x)P(x) dx \approx \hat{f} \equiv \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

Estimator is unbiased:

$$\mathbb{E}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)} [f(x)] = \mathbb{E}_{P(x)} [f(x)]$$

Variance shrinks $\propto 1/S$:

$$\operatorname{var}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S^2} \sum_{s=1}^{S} \operatorname{var}_{P(x)} [f(x)] = \operatorname{var}_{P(x)} [f(x)]$$

A dumb approximation of π

$$P(x,y) = \begin{cases} 1 & 0 < x < 1 \text{ and } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\pi = 4 \iint \mathbb{I}\left((x^2 + y^2) < 1\right) P(x, y) \, dx \, dy$$

Importance sampling

Instead rewrite the integral as an expectation under Q:

$$\int f(x)P(x) \, dx = \int f(x)\frac{P(x)}{Q(x)}Q(x) \, dx, \qquad (Q(x) > 0 \text{ if } P(x) > 0)$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{P(x^{(s)})}{Q(x^{(s)})}, \quad x^{(s)} \sim Q(x)$$

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation. Divide and multiply any integrand by a convenient distribution.

Importance sampling applies Monte Carlo to 'any' sum/integral

Formulation of SFNNs

• Since $\mathbf{h} \in \{0,1\}^N$ is a vector of N Bernoulli random variables, p(y|x) has up to 2^N models

Computation costs come with modeling flexibility of SFNN. How can we obtain p(y|x) with 2^N components conditioned on \mathbf{x} ? Monte Carlo approximation with M samples for its estimation:

$$p(y|\mathbf{x}) \simeq \frac{1}{M} \sum_{m=1}^{M} p(y|\mathbf{h}^{(m)})$$
 $\mathbf{h}^{(m)} \sim p(\mathbf{h}|\mathbf{x})$ (3)

In SFNNs, we assume a conditional diagonal Gaussian distribution on the output space:

$$\log p(\mathbf{y}|\mathbf{h}, \mathbf{x}) \propto -\frac{1}{2} \sum_{i} \log \sigma_i^2 - \frac{1}{2} \sum_{i} \frac{(y_i - \mu(\mathbf{h}, \mathbf{x}))^2}{\sigma_i^2}$$

Learning procedure of SFNNs- E step

For any approximating distribution q(h), we can write down the following variational lower bound on the data log-likelihood:

$$\log p(y|\mathbf{x}) = \log \sum_{\mathbf{h}} p(y, \mathbf{h}|\mathbf{x})$$

$$= \sum_{\mathbf{h}} q(\mathbf{h}) \log \frac{p(y, \mathbf{h}|\mathbf{x}; \theta)}{q(\mathbf{h})} + \text{KL}(q(\mathbf{h})||p(\mathbf{h}|y, \mathbf{x}))$$

$$\geq \sum_{\mathbf{h}} q(\mathbf{h}) \log \frac{p(y, \mathbf{h}|\mathbf{x}; \theta)}{q(\mathbf{h})}$$
(4)

For the tightest lower bound, q(h) need to be the exact p(h, y|x)

Learning procedure of SFNNs- M step

Let Q be the expected complete data log-likelihood, which is a lower bound on the log-likelihood. We wish to maximize the lower bound:

$$Q(\theta, \theta_{old}) = \sum_{\mathbf{h}} p(\mathbf{h}|y, \mathbf{x}; \theta_{old}) \log p(y, \mathbf{h}|\mathbf{x}; \theta)$$
(5)
$$= \sum_{\mathbf{h}} \frac{p(\mathbf{h}|y, \mathbf{x}; \theta_{old})}{p(\mathbf{h}|\mathbf{x}; \theta_{old})} p(\mathbf{h}|\mathbf{x}; \theta_{old}) \log p(y, \mathbf{h}|\mathbf{x}; \theta)$$

$$\simeq \frac{1}{M} \sum_{m=1}^{M} w^{(m)} \log p(y, \mathbf{h}^{(m)}|\mathbf{x}; \theta), \quad \mathbf{h}^{(m)} \sim p(\mathbf{h}|\mathbf{x}; \theta_{old})$$

Using Bayes Theorem, importance weight $w^{(m)}$ can be rewritten as:

$$w^{(m)} = \frac{p(\mathbf{h}^{(m)}|y, \mathbf{x}; \theta_{old})}{p(\mathbf{h}^{(m)}|\mathbf{x}; \theta_{old})} = \frac{p(y|\mathbf{h}^{(m)}, \mathbf{x}; \theta_{old})}{p(y|\mathbf{x}; \theta_{old})}$$
(6)

The denominator of $w^{(m)}$ can be approximated using Eq. 3, therefore:

$$w^{(m)} \simeq \frac{p(y|\mathbf{h}^{(m)}; \theta_{old})}{\frac{1}{M} \sum_{m=1}^{M} p(y|\mathbf{h}^{(m)}; \theta_{old})}$$
(7)

Learning procedure of SFNNs- M step

For convenience, we dene the partial objective of the m-th sample as

$$Q^{(m)} \triangleq w^{(m)} \left(\log p(y|\mathbf{h}^{(m)}; \theta) + \log p(\mathbf{h}^{(m)}|\mathbf{x}; \theta) \right). \tag{8}$$

We can then approximate our objective function $Q(\theta, \theta_{old})$ with M samples from the proposal:

$$Q(\theta, \theta_{old}) \simeq \frac{1}{M} \sum_{m=1}^{M} Q^{(m)}(\theta, \theta_{old})$$

For our generalized M-step, we seek to perform gradient ascent on Q:

$$\frac{\partial Q}{\partial \theta} \simeq \frac{1}{M} \sum_{m=1}^{M} \frac{\partial Q^{(m)}(\theta, \theta_{old})}{\partial \theta}$$

$$= \frac{1}{M} \sum_{m=1}^{M} w^{(m)} \frac{\partial}{\partial \theta} \left\{ \log p(y|\mathbf{h}^{(m)}; \theta) + \log p(\mathbf{h}^{(m)}|\mathbf{x}; \theta) \right\}$$

EM algorithm for SFNNs

```
Given training D dimensional data pairs: \{\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\}\,
n = 1 \dots N. Hidden layers \mathbf{h}^1 \& \mathbf{h}^4 are deterministic,
\mathbf{h}^{2} \& \mathbf{h}^{3} are hybrid. \theta = \{W^{1,2,3,4,5}, bias, \sigma_{u}^{2}\}
repeat
   //Approximate\ E-step:
   Compute p(\mathbf{h}^2|\mathbf{x}^{(n)}) = Bernoulli(\sigma(W^2\sigma(W^1\mathbf{x}^{(n)})))
   \mathbf{h}_{determ}^2 \leftarrow p(\mathbf{h}_{determ}^2 | \mathbf{x}^{(n)})
    for m = 1 to M (importance samples) do
        Sample: \mathbf{h}_{stoch}^2 \sim p(\mathbf{h}_{stoch}^2 | \mathbf{x}^{(n)}).
        let \mathbf{h}^2 be the concatenation of \mathbf{h}_{stoch}^2 and \mathbf{h}_{determ}^2.
       p(\mathbf{h}^3|\mathbf{x}^{(n)}) = Bernoulli(\sigma(W^3\mathbf{h}^2))
       \mathbf{h}_{determ}^3 \leftarrow p(\mathbf{h}_{determ}^3 | \mathbf{x}^{(n)})
        Sample: \mathbf{h}_{stoch}^3 \sim p(\mathbf{h}_{stoch}^3 | \mathbf{x}^{(n)})
        let \mathbf{h}^3 be the concatenation of \mathbf{h}^3_{stoch} and \mathbf{h}^3_{determ}.
```

```
Compute p(\mathbf{y}|\mathbf{x}^{(n)}) = \mathcal{N}(\sigma(W^5\sigma(W^4\mathbf{h}^3)); \sigma_y^2) end for

Compute w^{(m)} for all m, using Eq. 7.

//M\text{-step:}
\Delta\theta \leftarrow 0
for m = 1 to M do
Compute \frac{\partial Q^{(m)}(\theta, \theta_{old})}{\partial \theta} \text{ by Backprop.}
\Delta\theta = \Delta\theta + \partial Q^{(m)}/\partial\theta
end for
\theta_{new} = \theta_{old} + \frac{\alpha}{M}\Delta\theta, //\alpha \text{ is the learning rate.}
until convergence
```