

UNIVERSITE ABDELMALEK ESSAADI Ecole Nationale des Sciences Appliquées Al Hoceima

CP-II, Semestre 4

2pt

Devoir Surveillé d'Analyse 4

Année 2018/2019

24 avril 2019, durée: 2h.

Prof: F.MORADI

N.B: il sera tenu compte de la Rédaction et de la Clarté de la Réponse "RCR".

	Exercice 1 : (5points)
1pt	1- Calculer l'intégrale $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos x)^2 dx$.
	2- En utilisant le changement de variables, $x - \frac{3}{2} = \frac{1}{2} sint$, calculer
1.5pt	l'intégrale $J = \int_1^2 \sqrt{-x^2 + 3x - 2} dx$. (Ecrivez le trinôme $(-x^2 + 3x - 2)$ sous sa forme réduite : $a(x + b)^2 + c$).
	3- En utilisant une intégration par parties, calculer l'intégrale
1pt	$K = \int_0^{\frac{1}{2}} \frac{4t^2}{(1-t^2)^2} dt.$
1.5pt	4- En utilisant le changement de variables, $t = \sqrt{\frac{x-1}{x+1}}$, calculer
	l'intégrale $L = \int_{1}^{\frac{5}{3}} \sqrt{\frac{x-1}{x+1}} dx$
	Exercice 2 : (4points) 1- Calculer les limites suivantes

 $\lim_{n\to+\infty}\int_0^1 \frac{e^t}{1+t^n}dt$, $\lim_{n\to+\infty}\int_0^1 \frac{e^{-nt}}{1+t}dt$.

1pt 1pt	2- Montrer que: $\lim_{n\to+\infty} \int_1^{+\infty} \frac{e^{-x}}{x} x^{\frac{1}{n}} dx = \int_1^{+\infty} \frac{e^{-x}}{x} dx.$ 3- En déduire que: $\lim_{n\to+\infty} n \int_1^{+\infty} e^{-x^n} dx = \int_1^{+\infty} \frac{e^{-x}}{x} dx$
	Exercice 3: (7points) Soit $f(x) = \int_{x}^{2x} e^{-t^2} dt$, pour $x \in \mathbb{R}$.
0.5pt 1pt 1.5pt 1pt 1pt 1pt	 Montrer que f est impaire. Montrer que : ∀x∈ℝ⁺: 0 ≤ f(x) ≤ xe^{-x²} et en déduire la limite lim_{x→+∞} f(x). Montrer que f est de classe C¹ sur ℝ et calculer f'(x). Dresser le tableau de variations de f sur ℝ⁺ puis sur ℝ. Calculer f''(x) sur ℝ. Etudier la convexité de f sur ℝ⁺ puis sur ℝ. Soit y > 0, on pose : F(y) = ∫₀^y f(x)dx. Montrer que : F(y) = yf(y) + ½(e^{-4y²} - 2e^{-y²} + 1).
2pt 2pt	Exercice 4: (4points) 1. Calculer les intégrales multiples suivantes : $I = \int_0^1 \left(\int_0^x x^2 e^{xy} dy \right) dx ,$ $J = \int_0^{\frac{\pi}{4}} \left(\int_0^{\frac{\pi}{4}} \left(\int_0^{\frac{\pi}{4}} \sin(x + y + z) dx \right) dy \right) dz .$ 2. Calculer l'intégrale : $K_x = \int_0^x t^2(x - t) dt$, et en déduire l'intégrale : $L = \int_0^1 \int_0^{1-x} x^2 y^2 (1 - x - y) dx dy$