Chi square

Ling572 Advanced Statistical Methods for NLP January 24, 2019

Chi square

- An example: is gender a good feature for predicting footwear preference?
 - A: gender
 - B: footwear preference

- Bivariate tabular analysis:
 - Is there a relationship between two random variables A and B in the data?
 - How strong is the relationship?
 - What is the direction of the relationship?

Raw frequencies

	Sandal	Sneaker	Leather shoe	Boots	Others
Male	6	17	13	9	5
Female	13	5	7	16	9

Feature: Male/Female

Classes: {Sandal, Sneaker,}

Two distributions

Observed distribution (O):

	Sandal	Sneaker	Leather	Boot	Others
Male	6	17	13	9	5
Female	13	5	7	16	9

Expected distribution (E):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male						50
Female						50
Total	19	22	20	25	14	100

Two distributions

Observed distribution (O):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male	6	17	13	9	5	50
Female	13	5	7	16	9	50
Total	19	22	20	25	14	100

Expected distribution (E):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male	9.5	11	10	12.5	7	50
Female	9.5	11	10	12.5	7	50
Total	19	22	20	25	14	100

Chi square

Expected value =

row total * column total / table total

$$\chi^2 = (6-9.5)^2/9.5 + (17-11)^2/11 + \dots$$
$$= 14.026$$

Calculating χ^2

Fill out a contingency table of the observed values [

Compute the row totals and column totals

 Calculate expected value for each cell assuming no association [] E

Compute chi square: (O-E)²/E

When r=2 and c=2

_

	$ar{c_i}$	c_i	total
$ar{t_k}$	а	b	a+b
t_k	С	d	c+d
total	a+c	b+d	N

	$ar{c_i}$	c_i	total
$ar{t_k}$	$\frac{(a+c)(a+b)}{N}$	$\frac{(b+d)(a+b)}{N}$	a+b
t_k	$\frac{(a+c)(c+d)}{N}$	$\frac{(b+d)(c+d)}{N}$	c+d
total	a+c	b+d	N

$$\chi^2 = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} = \frac{(ad - bc)^2 N}{(a+b)(a+c)(b+d)(c+d)}$$

 χ^2 test

Basic idea

 Null hypothesis (the tested hypothesis): no relation exists between two random variables.

• Calculate the probability of having the observation with that χ^2 value, assuming the hypothesis is true.

If the probability is too small, reject the hypothesis.

Requirements

 The events are assumed to be independent and have the same distribution.

The outcomes of each event must be mutually exclusive.

At least 5 observations per cell.

Collect raw frequencies, not percentages

Degree of freedom

• Degree of freedom df = (r - 1) (c - 1)

r: # of rows c: # of columns

• In this Ex: df=(2-1)(5-1)=4

χ^2 distribution table

	0.10	0.05	0.025	0.01	0.001
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458

df=4 and 14.026 > 13.277

- **→**p<0.01
- there is a significant relation

χ² to P Calculator

http://vassarstats.net/newcs.html

Steps of χ^2 test

- Select significance level p₀
- Calculate χ²
- Compute the degrees of freedomdf = (r-1)(c-1)
- Calculate p given χ^2 value (or get the χ^2_0 for p_0)
- if p < p₀ (or if $\chi^2 > \chi^2_0$) then reject the null hypothesis.

Summary of χ^2 test

 A very common method for determining whether two random variables are independent

- Many good tutorials online
 - Ex:

http://en.wikipedia.org/wiki/Chi-square_distribution

Additional slides

χ^2 example

- Shared Task Evaluation:
 - Topic Detection and Tracking (aka TDT)
- Sub-task: Topic Tracking Task
 - Given a small number of exemplar documents (1-4)
 - Define a topic
 - Create a model that allows tracking of the topic
 - I.e. find all subsequent documents on this topic
 - Exemplars: 1-4 newswire articles
 - 300-600 words each

Challenges

- Many news articles look alike
 - Create a profile (feature representation)
 - Find terms that are strongly associated with current topic
- Not all documents are labeled
 - Only a small subset belong to topics of interest
 - Differentiate from other topics AND 'background'

Approach

- X² feature selection:
 - Assume terms have binary representation
 - Positive class term occurrences from exemplar docs
 - Negative class term occurrences from
 - other class exemplars, 'earlier' uncategorized docs
 - Compute X² for terms
 - Retain terms with highest X² scores
 - Keep top N terms
- Create one feature set per topic to be tracked

Tracking Approach

- Build vector space model
 - Feature weighting: tf*idf
 - Distance measure: Cosine similarity

- Select documents scoring above threshold
- Result: Improved retrieval