Common distributions in Julia, Python and R

Please report errors on https://github.com/sylvaticus/commonDistributionsInJuliaPythonR

Loading packages

• Julia: using Distributions

• Python: from scipy import stats

• R: library(extraDistr)

Discrete distributions

• Discrete Uniform : Complete ignorance

• Bernoulli : Single binary trial

• Binomial: Number of successes in independent binary trials

• Categorical : Individual categorical trial

• Multinomial: Number of successes of the various categories in independent multinomial trials

• Geometric: Number of independent binary trials until (and including) the first success (discrete time to first success)

• Hypergeometric: Number of successes sampling without replacement from a bin with given initial number of items representing successes

• Multivariate hypergeometric: Number of elements sampled in the various categories from a bin without replacement

• **Poisson**: Number of independent arrivals in a given period given their average rate per that period length (or, alternatively, rate per period multiplied by number of periods)

· Pascal: Number of independent binary trials until (and including) the n-th success (discrete time to n-th success).

Name	Parameters	Support	PMF	Expectations	Variance	CDF
D. Unif	a,b ∈ Z with b ≧	$x \in \{a, a + 1,, b\}$	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a)(b-a+2)}{12}$	$\frac{x-a+1}{b-a+1}$
Bern	p ∈ [0,1]	x ∈ {0,1}	$p^x(1-p)^{1-x}$	p	p(1-p)	$\sum_{i=0}^x p^i (1-p)^{1-i}$
Bin	p ∈ [0,1], n in N ⁺	$x\in \{0,,n\}$	$\binom{n}{x}p^x(1-p)^{1-x}$	np	np(1-p)	$\sum_{i=0}^{x} \binom{n}{i} p^i (1-p)^{1-i}$
Cat	$p_1,p_2,,p_K$ with $p_k \in [0,1]$ and $\sum_{k=1}^K p_k = 1$	x ∈ {1,2,,K}	$\prod_{k=1}^K p_k^{1(k=x)}$			
Multin	$n,p_1,p_2,,p_K$ with $p_k \in [0,1],$ $\sum_{k=1}^K p_k = 1$ and $n \in N^+$	$x \in \mathbb{N}_0^K$	$inom{n}{x_1,x_2,,x_K}\prod_{k=1}^K p_k^{x_K}$			
Geom	p ∈ [0,1]	$x \in N^+$	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$1-(1-p)^x$
Hyperg	$n_s, n_f, n \in \mathbb{N}_0$	$x\in \mathbb{N}_0$ with $x\leq n_s$	$\frac{\binom{n_s}{x}\binom{n_f}{n-x}}{\binom{(n_s+n_f)}{n}}$	$nrac{n_s}{n_s+n_f}$	$n rac{n_s}{n_s+n_f} rac{n_f}{n_s+n_f} rac{n_s+n_f+n}{n_s+n_f+1}$	
Multiv hyperg	$n_1,n_2,,n_K, \ n ext{ with } n \in \ \mathbb{N}_+,n_i \in \mathbb{N}_0$	$x \in \mathbb{N}_0^K$ with $x_i \leq n_i \ orall i,$ $\sum_{i=1}^K x_i = n$	$\frac{\prod_{i=1}^{K} \binom{n_i}{x_i}}{\binom{\sum_{i=1}^{K} n_i}{n}}$	$nrac{n_i}{\sum_{i=1}^K n_i}$	$n^{\sum_{j=1}^{K} n_j - n}_{\sum_{j=1}^{K} n_j - 1} rac{n_i}{\sum_{j=1}^{K} n_j} \left(1 - rac{n_i}{\sum_{j=1}^{K} n_j} ight)$	
Pois	λ in R ⁺	$x \in N_0$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	

Name	Parameters	Support	PMF	Expectations	Variance	CDF
Pasc	n ∈ N ⁺ , p in [0,1]	x ∈ [n, n+1, , ∞)	$\binom{x-1}{n-1} p^n (1-p)^{x-n}$	$\frac{n}{p}$	$\frac{n(1-p)}{p^2}$	

Distribution	Julia	Python (stats.[distributionName])	R
Discrete uniform	DiscreteUniform(lRange,uRange)	randint(lRange,uRange)	dunif(lRange,uRange)
Bernoulli	Bernoulli(p)	bernoulli(p)	bern(p)
Binomial	Binomial(n,p)	binom(n,p)	binom(n,p)
Categorical	Categorical(ps)	Not Av.	cat(ps)
Multinomial	Multinomial(n, ps)	multinomial(n, ps)	mnom(n,ps)
Geometric	Geometric(p)	geom(p)	geom(p)
Hypergeometric	Hypergeometric(nS, nF, nTrials)	hypergeom(nS+nF,nS,nTrials)	hyper(nS, nF, nTrias)
Mv hypergeometric	Not Av.	multivariate_hypergeom(initialNByCat,nTrials)	mvhyper(initialNByCat,nTria
Poisson	Poisson(rate)	poisson(rate)	pois(rate)
Negative Binomial	NegativeBinomial(nSucc,p)	nbinom(nSucc,p)	nbinom(nSucc,p)

Continuous distributions

- Uniform Complete ignorance, pick at random, all equally likely outcomes
- Exponential Waiting time to first event whose rate is λ (continuous time to first success)
- Laplace Difference between two i.i.d. exponential r.v.
- Normal The asymptotic distribution of a sample means
- Multivariate normal
- Erlang Time of the n-th arrival
- Cauchy The ratio of two independent zero-means normal r.v. (heavy tail)
- Chi-squared The sum of the squared of iid standard normal r.v. (or the I-2 squared norm), the variance of a normal sample
- T distribution The distribution of a sample means
- F distribution: The ratio of the ratio of two indep X2 r.v. with their relative parameter
- Beta distribution The Beta distribution
- Gamma distribution Generalisation of the exponential, Erlang and chi-square distributions

Name	Parameters	Support	PMF	Expectations	Variance	CDF
Unif	a,b ∈ R with b ≧ a	x \in [a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{x-a}{b-a}$
Expo	$\lambda \in \mathbb{R}^+$	x ∈ R⁺	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$1 - e^{-\lambda x}$
Laplace	$\mu \in R$ (location), $b \in R^+$ (scale)	x∈R	$rac{1}{2b}e^{-rac{ x-\mu }{b}}$	μ	$2b^2$	
Normal	$\mu \in R, \sigma^2 \in R^+$	x∈R	$rac{1}{\sigma\sqrt{2\pi}}e^{rac{-(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	
Multiv Normal	$\mu \in R^{d}, \Sigma \in R^{d imes d}$	x ∈ R ^d	$\frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	μ	Σ	
Erlang	$n \in N^+, \lambda \in R^+$	$x \in R_+$	$\frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!}$	$\frac{n}{\lambda}$	$\frac{n}{\overline{\lambda}^2}$	
Cauchy	$x_0 \in R$ (location), $\gamma \in R^+$ (scale)	x∈R	$\frac{1}{\pi\gamma(1+(\frac{x-x_0}{\gamma})^2)}$	NDEF	NDEF	

Name	Parameters	Support	PMF	Expectations	Variance	CDF
Chi-sq	$d \in N^+$	$x \in R^+$	$rac{1}{2^{d/2}\Gamma(d/2)}x^{(rac{d}{2}-1)}e^{-rac{x}{2}}$	d	2d	
Т	v ∈ R ⁺	x∈R	$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$			
F	$d_1 \in N^+ d_2 \in N^+$	x ∈ R⁺	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB\left(\frac{d_1}{2},\frac{d_2}{2}\right)}$	$rac{d_2}{d_2-2}$ for $d_2>2$	$rac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$ for $d_2>4$	
Beta	$\alpha, \beta \in R^+$	x ∈ [1,0]	$rac{1}{B(lpha,eta)}x^{lpha-1}(1-x)^{eta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Gamma	$\alpha \in R^+$ (shape), $\beta \in R^+$ (rate)	$x \in R^+$	$rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	

Beta function : $B(\alpha,\beta)=rac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}=rac{\alpha+\beta}{\alpha\beta}$ Gamma function: $\Gamma(x)=(x-1)!\ \forall x\in N$

Distribution	Julia	Python (stats.[distributionName])	R
Uniform	Uniform(lRange,uRange)	uniform(lRange,uRange)	unif(lRange,uRange)
Exponential	Exponential (rate)	expon(rate)	exp(rate)
Laplace	Laplace(loc, scale)	laplace(loc,scale)	laplace(loc,scale)
Normal	Normal(µ,sqrt(σsq))	norm(μ,math.sqrt(σsq))	norm(μ,sqrt(σsq))
Erlang	Erlang(n,rate)	erlang(n,rate)	Use gamma
Cauchy	Cauchy (μ, σ)	cauchy(μ, σ)	cauchy (μ, σ)
Chisq	Chisq(df)	chi2(df)	chisq(df)
T Dist	TDist(df)	t(df)	t(df)
F Dist	FDist(df1, df2)	f(df1, df2)	f (df1,df2)
Beta Dist	Beta(shapeα,shapeβ)	beta(shapeα,shapeβ)	beta(shapeα,shapeβ)
Gamma Dist	Gamma(shapeα,1/rateβ)	gamma(shapeα,1/rateβ)	gamma(shapeα,1/rateβ)

Note: The Negative Binomial returns the number of failures before n successes instead of the total trials to n successes as the Pascal distribution

Usage

	Julia	Python	R
Mean	mean(d)	d.mean()	
Variance	var(d)	d.var()	
Median	median(d)	d.median()	
Sample	rand(d)	d.rvs()	r[distributionName](1,distributionParameters), e.g. runif(1,10,20)
Quantiles $(F^{-1}(y))$ with $y = CDF(x)$	quantile(d,y)	d.ppf(y)	$ \begin{array}{c} q[\mbox{distributionName}] \; (y, \; \mbox{distributionParameters}) \; , \\ e.g. \; qunif (0.2,10,20) \end{array} $
PDF/PMF	pdf(d,x)	d.pmf(x) for discrete r.v. and d.pdf(x) for continuous ones	<pre>d[distributionName](x, distributionParameters), e.g. dunif(15,10,20)</pre>
CDF	cdf(d,x)	d.cdf(x)	$\label{eq:problem} \begin{split} & \texttt{p[distributionName]} \; (\texttt{x, distributionParameters}) \; , \\ & \textbf{e.g.} \; \; \texttt{punif(15,10,20)} \end{split}$