$n^{\circ}3 - Trigonométrie 2$ (corrigé)

Notes de Cours

Le cercle trigonométrique

Voici le cercle trigonométrique (de rayon 1), le sens de lecture est l'inverse du sens des aiguilles d'une montre. Les angles remarquables sont marqués de 0 à 2π (en radian) et de 0° à 360°. Les coordonnées des points correspondant à ces angles sont aussi indiquées.

Le point M a pour coordonnées $(\cos x, \sin x)$. La droite (OM) coupe la droite d'équation (x = 1) en T, l'ordonnée du point T est $\tan x$.

Formules trigonométriques

Les formules de base :

$$\cos^2 x + \sin^2 x = 1$$
 $\cos(x + 2\pi) = \cos x$ $\sin(x + 2\pi) = \sin x$

Nous avons les formules suivantes :

$$\cos(-x) = \cos x$$
$$\sin(-x) = -\sin x$$

On retrouve graphiquement ces formules à l'aide du dessin des angles x et -x.

Il en est de même pour les formules suivantes :

$$\cos(\pi + x) = -\cos x \qquad \cos(\pi - x) = -\cos x \qquad \cos(\frac{\pi}{2} - x) = \sin x$$

$$\sin(\pi + x) = -\sin x \qquad \sin(\pi - x) = \sin x \qquad \sin(\frac{\pi}{2} - x) = \cos x$$

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

Valeurs que l'on retrouve bien sur le cercle trigonométrique.

Formules d'addition

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$
$$\sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a$$
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$$

On en déduit immédiatement :

$$\cos(a - b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$
$$\sin(a - b) = \sin a \cdot \cos b - \sin b \cdot \cos a$$
$$\tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

Il est bon de connaître par cœur les formules suivantes (faire a = b dans les formules d'additions):

$$\cos 2a = 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$= \cos^2 a - \sin^2 a$$

$$\sin 2a = 2\sin a \cdot \cos a$$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

I Exercices

1. (SF 46)

Résoudre dans \mathbb{R} , les deux équations $\cos(x) = 0$, $\sin(x) = 1/2$ et $\cos(3x) = -\sqrt{3}/2$. Ecrire précisément la forme des solutions.

Solutions

cos(x) = 0 a pour solution l'ensemble des $k\pi$, où $k \in \mathbb{Z}$.

 $\sin(x) = \frac{1}{2}$ a pour solution l'ensemble des $pi/6 + 2k\pi$ $(k \in \mathbb{Z})$ et $5\pi/6 + 2k\pi$ $(k \in \mathbb{Z})$

$$\cos(3x) = -\sqrt{3}/2$$

$$\Leftrightarrow 3x = \pi/6 + 2k\pi \text{ ou } 3x = -\pi/6 + 2k\pi$$

$$\Leftrightarrow x = \pi/18 + 2k\pi/3 \text{ ou } x = -\pi/18 + 2k\pi/3$$

où $k \in \mathbb{Z}$.

2. (SF 46/212) Exprimer $\cos(\theta + \pi)$ puis $\sin(\theta + \pi/2)$ et enfin $\sin(\theta + 3\pi/2)$ en fonction de $\cos\theta$.

Solutions

$$\cos(\theta + \pi) = -\cos(\theta), \sin(\theta + \pi/2) = \cos(\theta), \sin(\theta + 3\pi/2) = \cos(\theta + \pi) = -\cos(\theta).$$

3. (SF 48) Résoudre, dans \mathbb{R} , l'équation $\cos(x) = \cos(2x)$ avec deux méthodes différentes (en imposant des arguments équivalents ou bien en se ramenant à des arguments en x exclusivement). Bien montrer que les deux expressions de solutions obtenues sont rigoureusement identiques.

Solutions

$$cos(x) = cos(2x)$$

$$\Leftrightarrow x = 2x + 2k\pi \text{ ou } x = -2x + 2k\pi$$

$$\Leftrightarrow x = 2k\pi \text{ ou } x = 2k\pi/3$$

où $k \in \mathbb{Z}$. Une autre résolution est,

$$\cos(x) = \cos(2x)$$

$$\cos(x) = \cos^{2}(x) - \sin^{2}(x)$$

$$\cos(x) = \cos^{2}(x) - [1 - \cos^{2}(x)]$$

$$2\cos^{2}(x) - \cos(x) - 1 = 0$$

dont les solutions sont $\cos(x) = 1$ et $\cos(x) = -\frac{1}{2}$.

4. (SF 48) Déterminer les zéros de la fonction $f: x \mapsto \frac{1}{2} - \sin(2x)$.

Solutions

Il s'agit donc de trouver les x tels que $\sin(2x) = \sin(\frac{\pi}{6})$.

On a alors $2x = \frac{\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$ ou $2x = \pi - \frac{\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$.

Ainsi $x = \frac{\pi}{12} + k\pi$, $k \in \mathbb{Z}$ ou $x = \frac{5\pi}{12} + k\pi$, $k \in \mathbb{Z}$.

- 5. (SF 47) Complétez:
 - (a) $\cos(a+b)$
 - (b) $\sin(a+b)$
 - (c) $\cos(x)^2$ (en fonction de $\cos(2x)$)

Solutions

- (a) $\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$
- (b) $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$
- (c) $cos(x)^2 = \frac{1 + cos(2x)}{2}$
- 6. (SF 47) Simplifier les expressions suivantes :
 - (a) $\sin(\pi/2 x)$
 - (b) $\sin(x + 6\pi)$
 - (c) $\cos(x + \pi/2)$
 - (d) $\cos(\frac{-37\pi}{2})$
 - (e) $\sin(\frac{-17\pi}{4})$

Solutions

- (a) $\sin(\pi/2 x) = \cos(x)$
- (b) $\sin(x + 6\pi) = \sin(x)$
- (c) $\cos(x + \pi/2) = -\sin(x)$
- $(d) \cos(\frac{-37\pi}{2}) = 0$
- (e) $\sin(\frac{-17\pi}{4}) = -\frac{\sqrt{2}}{2}$
- 7. (SF 48)

Quelles sont les solutions de l'inéquation $\sin(t) > 1/\sqrt{2}$ sur l'intervalle $t \in [0, 2\pi]$?

Solutions

On voit sur le cercle trigonométrique que $\sin(t) > 1/\sqrt{2}$ pour $\pi/4 < t < 3\pi/4$.