NUMPY PROGRAM

```
In [1]: import numpy as np
        a = [1,2,3,4]
        sum = np.sum(a)
        print("Sum of array elements is", sum)
        min = np.min(a)
        print("Minimum of array elements is",min)
        max = np.max(a)
        print("Maximum of array elements is",max)
        mean = np.mean(a)
        print("Mean of array elements is", mean)
        med = np.median(a)
        print("Median of array elements is", med)
        cor = np.corrcoef(a)
        print("Correaltion coefficiant of array elements is",cor)
        std = np.std(a)
        print("standard deviation of array elements is",std)
        Sum of array elements is 10
        Minimum of array elements is 1
        Maximum of array elements is 4
        Mean of array elements is 2.5
        Median of array elements is 2.5
        Correaltion coefficiant of array elements is 1.0
        standard deviation of array elements is 1.118033988749895
In [2]: mat = [[1,2,3,4],[3,5,6,8],[8,9,3,4]]
        sum = np.sum(mat)
        print("Sum of matrix elements is",sum)
        min = np.min(mat)
        print("Minimum of the matrix:",min)
        max = np.max(mat)
        print("Maximum of the matrix:",max)
        mean = np.mean(mat)
        print("Mean of the matrix:",mean)
        med = np.median(a)
        print("Median of the matrix:",med)
        cor = np.corrcoef(mat)
        print("Correaltion coefficiants of the matrix elements:\n",cor)
        std = np.std(mat)
        print("standard deviation of array elements is",std)
        Sum of matrix elements is 56
        Minimum of the matrix: 1
        Maximum of the matrix: 9
        Mean of the matrix: 4.66666666666667
        Median of the matrix: 2.5
        Correaltion coefficiants of the matrix elements:
                        0.99227788 -0.78935222]
         [[ 1.
         [ 0.99227788 1.
                                  -0.70710678]
         [-0.78935222 -0.70710678 1.
                                              11
        standard deviation of array elements is 2.4608038433722337
        mat = np.array([[1,7,3,4],[3,5,6,8],[10,9,3,4]])
In [3]:
        print(mat)
        sum = np.sum(mat, axis=1)
        print("Sum of array elements row-wise", sum)
        sum = np.sum(mat, axis=0)
        print("Sum of array elements column-wise", sum)
        min = np.min(mat, axis=1)
```

```
print("Row-wise minimum of the matrix:",min)
max = np.max(mat,axis=0)
print("Column-wise maximum of the matrix:",max)

[[ 1  7  3   4]
  [ 3  5  6  8]
  [10  9  3  4]]
Sum of array elements row-wise [15  22  26]
Sum of array elements column-wise [14  21  12  16]
Row-wise minimum of the matrix: [1  3  3]
Column-wise maximum of the matrix: [10  9  6  8]
```

lambda

```
In [4]:
         def sum(a,b):
              return a+b
          sum(4,5)
 Out[4]:
 In [5]: def cube(x):
              return x*x*x
          cube(4)
 Out[5]:
 In [6]:
         lambda_cube = lambda y: y*y*y
          lambda_cube(5)
         125
 Out[6]:
 In [7]:
          sum = lambda a,b:a+b
          sum(4,5)
 Out[7]:
         add = lambda num: num + 4
 In [8]:
          print( add(6) )
         10
         def greater(a,b):
 In [9]:
              if a>b:
                  return a
              else:
                  return b
          greater(4,5)
Out[9]:
In [10]: Max = lambda a, b : a if(a > b) else b
         Max(4,5)
Out[10]:
```

```
my_list= [5,7,2,8,6]
In [11]:
          my_list_squared = []
          for i in my_list:
              i_squared = i**2
              my_list_squared.append(i_squared)
          my_list_squared
         [25, 49, 4, 64, 36]
Out[11]:
In [12]: my_list_squared = [i**2 for i in my_list]
          my_list_squared
         [25, 49, 4, 64, 36]
Out[12]:
         my_list_squared = list(map(lambda i: i**2, my_list))
In [13]:
          my_list_squared
         [25, 49, 4, 64, 36]
Out[13]:
```

Map

```
def add4(x):
In [14]:
             return x+4
         list1 = [4,6,7,8,9]
         list2 = list(map(add4,list1))
         list2
         [8, 10, 11, 12, 13]
Out[14]:
         list3 = list(map(lambda x:x+4,list1))
In [15]:
         [8, 10, 11, 12, 13]
Out[15]:
         set_of_strings = ['abc','def','xyz']
In [16]:
         string_map_22 = list(map(lambda my_string: my_string + '_2022', set_of_strings))
         string_map_22
         ['abc_2022', 'def_2022', 'xyz_2022']
Out[16]:
```

Filter()

Reduce

```
In [19]: from functools import reduce
    def sum(x,y):
        return x+y

    list1 = [6,7,8,9]
    s = reduce(sum,list1)
    s

Out[19]: 30
```

Write a NumPy program to create a 3x3 matrix with values ranging from 2 to 10

```
In [24]: x = np.arange(2, 11).reshape(3,3)
print(x)

[[ 2  3   4]
      [ 5  6  7]
      [ 8  9  10]]
```

Write a NumPy program to create a null vector of size 10 and update sixth value to 11

```
In [25]: x = np.zeros(10)
         print(x)
         print("Update sixth value to 11")
         x[6] = 11
         print(x)
         [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
         Update sixth value to 11
         [0. 0. 0. 0. 0. 11. 0. 0. 0.]
         item_list = ['Bread', 'Milk', 'Eggs', 'Butter', 'Cocoa']
In [7]:
         student_marks = [78, 47, 96, 55, 34]
         hetero_list = [ 1,2,3.0, 'text', True, 3+2j ]
In [8]: student_marks = [78, 47, 96, 55, 34]
         for i in range(len(student_marks)):
             student_marks[i]+=5
         print(student_marks)
         [83, 52, 101, 60, 39]
```

```
%%time
In [9]:
         #Used to calculate total operation time
         list1 = list(range(1,1000000))
         list2 = list(range(2,1000001))
         list3 = []
         for i in range(len(list1)):
             list3.append(list1[i]+list2[i])
         Wall time: 533 ms
In [10]:
         import numpy as np
         student_marks_arr = np.array([78, 92, 36, 64, 89])
         student_marks_arr
         array([78, 92, 36, 64, 89])
Out[10]:
In [11]: car_attributes = [[18, 15, 18, 16, 17],[130, 165, 150, 150, 140],[307, 350, 318, 30
         #creating a numpy array from car_attributes list
         car_attributes_arr = np.array(car_attributes)
         car_attributes_arr
         array([[ 18, 15, 18, 16, 17],
Out[11]:
                [130, 165, 150, 150, 140],
                [307, 350, 318, 304, 302]])
         car_attributes_arr.shape
In [12]:
         (3, 5)
Out[12]:
In [13]:
         car_attributes_arr.dtype
         dtype('int32')
Out[13]:
In [14]:
         car_attributes = [[18, 15, 18, 16, 17],[130, 165, 150, 150, 140],[307, 350, 318, 30
         #converting dtype
         car_attributes_arr = np.array(car_attributes, dtype = 'float')
         print(car_attributes_arr)
         print(car_attributes_arr.dtype)
         [[ 18. 15. 18. 16. 17.]
          [130. 165. 150. 150. 140.]
          [307. 350. 318. 304. 302.]]
         float64
```

Accessing element from 1D array.

```
In [15]: cars = np.array(['chevrolet chevelle malibu', 'buick skylark 320', 'plymouth satel'
#accessing the second car from the array
cars[1]

Out[15]: 'buick skylark 320'
```

Accessing elements from a 2D array

```
In [16]: car_names = ['chevrolet', 'buick', 'ply', 'amc', 'ford']
horsepower = [130, 165, 150, 150, 140]
```

```
car_hp_arr = np.array([car_names, horsepower])
        car_hp_arr
        Out[16]:
In [17]:
        car_hp_arr[0]
        array(['chevrolet', 'buick', 'ply', 'amc', 'ford'], dtype='<U11')</pre>
Out[17]:
In [18]:
        car_hp_arr[1]
        array(['130', '165', '150', '150', '140'], dtype='<U11')
Out[18]:
In [19]:
        car_hp_arr[0,1]
        'buick'
Out[19]:
        car_hp_arr[0,-1]
In [20]:
         'ford'
Out[20]:
```

Slicing from 1D array

```
In [21]: #creating an array of cars
    cars = np.array(['chevrolet', 'buick', 'ply', 'amc', 'ford'])
    #accessing a subset of cars from the array
    cars[1:4]

Out[21]: array(['buick', 'ply', 'amc'], dtype='<U9')</pre>
```

Slicing from a 2D array

```
In [22]: |
         car_names = ['chevrolet', 'buick', 'ply', 'amc', 'ford']
         horsepower = [130, 165, 150, 150, 140]
         acceleration = [18, 15, 18, 16, 17]
         car_hp_acc_arr = np.array([car_names, horsepower, acceleration])
         car_hp_acc_arr
        array([['chevrolet', 'buick', 'ply', 'amc', 'ford'],
Out[22]:
               ['130', '165', '150', '150', '140'],
               ['18', '15', '18', '16', '17']], dtype='<U11')
In [23]:
         car_hp_acc_arr[0:2]
        Out[23]:
In [24]:
         car_hp_acc_arr[0:2, 3:5]
         array([['amc', 'ford'],
Out[24]:
               ['150', '140']], dtype='<U11')
In [25]:
         car_hp_acc_arr[0:3, 0:3]
        array([['chevrolet', 'buick', 'ply'],
Out[25]:
               ['130', '165', '150'],
               ['18', '15', '18']], dtype='<U11')
```

The engineers at XYZ Custom Cars want to know about the mean and median of horsepower

```
In [26]: #creating a list of 5 horsepower values
    horsepower = [130, 165, 150, 150, 140]
    #creating a numpy array from horsepower list
    horsepower_arr = np.array(horsepower)
    #mean horsepower
    print("Mean horsepower = ",np.mean(horsepower_arr))

Mean horsepower = 147.0

In [27]: print("Minimum horsepower: ", np.min(horsepower_arr))
    print("Maximum horsepower: ", np.max(horsepower_arr))

Minimum horsepower: 130
    Maximum horsepower: 165
```

Finding the index of minimum and maximum values:

```
In [28]: #creating a list of 5 horsepower values
horsepower = [130, 165, 150, 150, 140]
#creating a numpy array from horsepower list
horsepower_arr = np.array(horsepower)
print("Index of Minimum horsepower: ", np.argmin(horsepower_arr))
print("Index of Maximum horsepower: ", np.argmax(horsepower_arr))

Index of Minimum horsepower: 0
Index of Maximum horsepower: 1
```

The engineers at XYZ Custom Cars want to know the horsepower of cars that are greater than or equal to 150

```
In [29]: #creating a list of 5 horsepower values
    horsepower = [130, 165, 150, 140]
    #creating a numpy array from horsepower list
    horsepower_arr = np.array(horsepower)
    x = np.where(horsepower_arr >= 150)
    print(x) # gives the indices
    # With the indices , we can find those values
    horsepower_arr[x]

    (array([1, 2, 3], dtype=int64),)
    array([165, 150, 150])

In [30]: horsepower_arr[3]

Out[30]: 150
```

```
In [31]: horsepower_arr[[1,4]]
Out[31]: array([165, 140])
```

The Engineers at XYZ Custom Cars want to create a separate array consisting of filtered values of horsepower greater than 135.

```
In [32]: #creating a list of 5 horsepower values
horsepower = [130, 165, 150, 150, 140]
#creating a numpy array from horsepower list
horsepower_arr = np.array(horsepower)
#creating filter array
x = horsepower_arr > 135
print(x.dtype)
newarr = horsepower_arr[x]
print(x)
print(newarr)
bool
[False True True True]
[165 150 150 140]
```

The engineers at XYZ Custom Cars want the horsepower in sorted order.

```
In [33]: #creating a list of 5 horsepower values
    horsepower = [130, 165, 150, 150, 140]
    #creating a numpy array from horsepower list
    horsepower_arr = np.array(horsepower)
    #using sort(array)
    print('original array: ', horsepower_arr)
    print('Sorted array: ', np.sort(horsepower_arr))
    print('original array after sorting: ', horsepower_arr)
    sortedarray = np.sort(horsepower_arr)
    print(sortedarray)

original array: [130 165 150 150 140]
    Sorted array: [130 140 150 150 165]
    original array after sorting: [130 165 150 150 140]
    [130 140 150 150 165]
```

array.sort() function modifies the original array by default, whereas the sort(array) function does not

```
In [34]: horsepower = [130, 165, 150, 150, 140]
    horsepower_arr = np.array(horsepower)
    np.sort(horsepower_arr)
    print(horsepower_arr)
```

```
horsepower_arr.sort()
print(horsepower_arr)

[130 165 150 150 140]
[130 140 150 150 165]

In [35]: #creating a list of 5 horsepower values
horsepower = [130, 165, 150, 150, 140]
#creating a numpy array from horsepower list
horsepower_arr = np.array(horsepower)
#using sort(array)
print('original array: ', horsepower_arr)
horsepower_arr.sort()
print('original array after sorting: ', horsepower_arr)

original array: [130 165 150 150 140]
original array after sorting: [130 140 150 150 165]
```

The mathematical operations can be performed on Numpy arrays. Numpy makes use of optimized, pre-compiled code to perform mathematical operations on each array element. This eliminates the need of using loops, thereby enhancing the performance. This process is called vectorization. Numpy provides various mathematical functions such as sum(), add(), sub(), log(), sin() etc. which uses vectorization.

```
In [36]:
         student_marks_arr = np.array([78, 92, 36, 64, 89])
         print(np.sum(student_marks_arr))
         359
In [37]: 11 = [2,3,4,5]
         12 = [4,5,6,7]
         13 = 11+12
         13
Out[37]: [2, 3, 4, 5, 4, 5, 6, 7]
         additional_marks = [2, 2, 5, 10, 1]
In [38]:
         student marks arr =student marks arr+additional marks
         student_marks_arr
Out[38]: array([80, 94, 41, 74, 90])
         student_marks_arr = np.array([78, 92, 36, 64, 89])
In [39]:
         student marks arr = np.add(student marks arr, additional marks)
         student_marks_arr
         array([80, 94, 41, 74, 90])
Out[39]:
```

"Broadcasting" refers to the term on how Numpy handles arrays with different shapes during arithmetic operations. Array of smaller size is stretched or copied across the larger array.

```
In [40]:
         # Array 1
         array1=np.array([5, 10, 15])
         # Array 2
         array2=np.array([5])
         array3= array1 * array2
         array3
         array([25, 50, 75])
Out[40]:
In [41]: # Array 1
         array1=np.array([0,1,2])
         # Array 2
         array2=np.array([5])
         array3= array1 + array2
         array3
         array([5, 6, 7])
Out[41]:
In [42]: # Array 1
         array1=np.array([[1,1,1],[1,1,1],[1,1,1]])
         \#array1 = np.ones([3,3])
         # Array 2
         array2=np.array([0,1,2])
         array3= array1 + array2
         array3
         array([[1, 2, 3],
Out[42]:
                 [1, 2, 3],
                 [1, 2, 3]])
In [43]:
         # Array 1
         array1=np.array([[1,1,1],[1,1,1],[1,1,1]])
         \#array1 = np.ones([3,3])
         # Array 2
         array2=np.array([0,1,2])
         array3= array1 + array2
         array3
         array([[1, 2, 3],
Out[43]:
                 [1, 2, 3],
                 [1, 2, 3]])
         #Students marks in 4 subjects
In [44]:
         students_marks = np.array([[67, 45],[90, 92],[66, 72],[32, 40]])
         students_marks
         array([[67, 45],
Out[44]:
                 [90, 92],
                 [66, 72],
                 [32, 40]])
```

Represent the above data in a 10x2 array. In each row, the first element should contain day number and second element should contain steps walked.

```
In [47]:
         import numpy as np
         #Creating a 2D array
         Day_number = np.arange(1,11)
         Steps walked = [6012,7079,6886,7230,4598,5564,6971,7763,8032,9569]
         arr = np.array([Day number, Steps walked])
         arr = arr.T
         arr
         array([[
                    1, 6012],
Out[47]:
                  2, 7079],
                   3, 6886],
                   4, 7230],
                   5, 4598],
                   6, 5564],
                  7, 6971],
                  8, 7763],
                  9, 8032],
                [ 10, 9569]])
```

Lee notices that the tracker's battery dies every day at 7 pm. Lee discovers that on an average, he walks 2000 steps every day after 7 pm. Perform an appropriate operation on your array to add 2000 steps to all the observations.

```
In [48]: new_arr= arr[:,1] + 2000
    arr[:,1]=new_arr
    arr
```

Write a program that returns the steps walked if the steps walked are more than 9000.

Print an array containing steps walked in sorted order.

```
In [50]: sortedArr = arr[arr[:,1].argsort()]
    print('Sorted 2D Numpy Array')
    print(sortedArr)

Sorted 2D Numpy Array
[[     5 6598]
     [     6 7564]
     [     1 8012]
     [     3 8886]
     [     7 8971]
     [     2 9079]
     [     4 9230]
     [     8 9763]
     [     9 10032]
     [     10 11569]]
```

Vectorized Operations

```
In [51]: import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import matplotlib.pyplot as plt

In [52]: v1 = np.random.rand(1000000, 1)
v2 = np.random.rand(1000000, 1)
```

Multiplication by a Scalar

```
start = time.process_time()
In [53]:
          v1_scaled = np.zeros((1000000, 1))
          for i in range(len(v1)):
              v1\_scaled[i] = 2 * v1[i]
          end = time.process_time()
          print("Scaling vector Answer = " + str(v1_scaled))
          print("Time taken = " + str(1000*(end - start)) + " ms")
          Scaling vector Answer = [[0.01606641]
           [1.18871072]
           [1.37933358]
           [0.91803805]
           [0.72178821]
           [0.60712981]]
          Time taken = 3703.125 \text{ ms}
          start = time.process_time()
In [54]:
          v1_scaled = np.zeros((1000000, 1))
          v1_scaled = 2 * v1
          end = time.process_time()
          print("Scaling vector Answer = " + str(v1_scaled))
          print("Time taken = " + str(1000*(end - start)) + " ms")
          Scaling vector Answer = [[0.01606641]
           [1.18871072]
           [1.37933358]
           . . .
           [0.91803805]
           [0.72178821]
           [0.60712981]]
          Time taken = 0.0 \text{ ms}
```

Dot Products

```
In [55]: start = time.process_time()
    product = 0

for i in range(len(v1)):
        product += v1[i] * v2[i]

end = time.process_time()

print("Dot product Answer = " + str(product))
    print("Time taken = " + str(1000*(end - start)) + " ms")

Dot product Answer = [250052.02591175]
    Time taken = 4234.375 ms

In [56]: start = time.process_time()
    product = 0
```

```
product = np.dot(v1.T, v2)
end = time.process_time()

print("Dot product Answer = " + str(product))
print("Time taken = " + str(1000*(end - start)) + " ms")

Dot product Answer = [[250052.02591175]]
Time taken = 0.0 ms
```

Element Wise multiplication

```
In [57]: start = time.process_time()
          answer = np.zeros((1000000, 1))
          for i in range(len(v1)):
              answer[i] = v1[i] * v2[i]
          end = time.process_time()
          print("Element Wise answer = " + str(answer))
          print("Time Taken = " + str(1000*(end - start)) + " ms")
          Element Wise answer = [[0.00738031]]
           [0.25075942]
          [0.47414855]
           [0.15277981]
          [0.10664533]
          [0.16544372]]
          Time Taken = 2734.375 ms
In [58]: start = time.process_time()
          answer = np.zeros((1000000, 1))
          answer = v1 * v2
          end = time.process_time()
          print("Element Wise answer = " + str(answer))
          print("Time Taken = " + str(1000*(end - start)) + " ms")
          Element Wise answer = [[0.00738031]
           [0.25075942]
          [0.47414855]
          [0.15277981]
          [0.10664533]
          [0.16544372]]
          Time Taken = 0.0 \text{ ms}
```

Element Wise Matrix Multiplication

```
In []: m1 = np.random.rand(10000, 10000)
    m2 = np.random.rand(10000, 10000)
    answer = np.zeros((10000, 10000))
```

```
start = time.process_time()
          for i in range(m1.shape[0]):
              for j in range(m1.shape[1]):
                   answer[i, j] = m1[i, j] * m2[i, j]
          end = time.process_time()
          print("Element Wise Matrix answer = " + str(answer))
          print("Time Taken = " + str(1000*(end - start)) + " ms")
          answer = np.zeros((10000, 10000))
In [60]:
          start = time.process_time()
          answer = np.multiply(m1, m2)
          end = time.process_time()
          print("Element Wise Matrix answer = " + str(answer))
          print("Time Taken = " + str(1000*(end - start)) + " ms")
          Element Wise Matrix answer = [[0.29585707 0.47037833 0.28423336 ... 0.05270216 0.4
          9971171 0.01541464]
           [0.08171883 0.48599659 0.51932325 ... 0.00679934 0.09085834 0.38656662]
            [0.44280843 \ 0.52113339 \ 0.04118208 \ \dots \ 0.12256153 \ 0.16887633 \ 0.73663934] 
            \left[ 0.01070294 \ 0.00467872 \ 0.03780787 \ \dots \ 0.7297074 \ 0.07283657 \ 0.0353923 \ \right] 
            [0.1659375 \quad 0.01745508 \ 0.09423007 \ \dots \ 0.04291333 \ 0.30375337 \ 0.16461444] 
           [0.27243572 0.89540811 0.58656314 ... 0.0940314 0.41941846 0.06509439]]
          Time Taken = 375.0 \text{ ms}
```

Time-complexity Plot

```
sizes = [10, 100, 1000, 10000, 1000000, 10000000]
In [62]:
         complexity = pd.DataFrame(columns=['sizes', 'for_loop', 'numpy'])
         complexity['sizes'] = sizes
         for loops = []
In [63]:
         numpy = []
         for size in sizes:
             v1 = np.random.rand(size, 1)
             v2 = np.random.rand(size, 1)
             #For loop implementation
             start = time.process_time()
             product = 0
             for i in range(len(v1)):
                 product += v1[i] * v2[i]
             end = time.process time()
             for_loops.append(1000*(end-start))
             #Vectorized implementation
             start = time.process time()
             product = 0
```

```
product = np.dot(v1.T, v2)

end = time.process_time()
numpy.append(1000*(end - start))
```

```
In [64]: complexity['for_loop'] = for_loops
    complexity['numpy'] = numpy
    complexity
```

```
Out[64]:
                  sizes
                         for_loop numpy
           0
                    10
                             0.000
                                     0.000
                             0.000
                                     0.000
           1
                   100
           2
                  1000
                           15.625
                                     0.000
           3
                 10000
                           46.875
                                     0.000
                                     0.000
           4
                100000
                          703.125
                                     0.000
               1000000
                         4656.250
           6 10000000 43843.750
                                    15.625
```

WEEK-3

PANDAS PROGRAMS(1)

Out[1]: Chemistry Physics Mathematics English
Subodh 67 45 50 19

 Ram
 90
 92
 87
 90

 Abdul
 66
 72
 81
 72

 John
 32
 40
 12
 68

The teacher wants to create a new column called total and the value of each row in total column should be the sum of all marks of each student

```
In [2]: marks_df['Total'] = marks_df['Chemistry'] + marks_df['Physics'] + marks_df['Mathematics'] + m
    marks_df
```

Mathematics English Out[2]: **Chemistry Physics** Total Subodh 67 45 50 19 181 90 92 87 90 Ram 359 **Abdul** 291 66 72 81 72 John 32 40 12 68 152

Drop the Total column

```
In [3]: marks_df.drop(columns = 'Total', inplace = True)
marks_df
```

Out[3]:		Chemistry	Physics	Mathematics	English
	Subodh	67	45	50	19
	Ram	90	92	87	90
	Abdul	66	72	81	72
	John	32	40	12	68

The teacher wants to award five bonus marks to all the students.

```
In [5]: new_marks = marks_df + 5
new_marks
```

Out[5]:		Chemistry	Physics	Mathematics	English
	Subodh	72	50	55	24
	Ram	95	97	92	95
	Abdul	71	77	86	77

John

Out

The teacher wants to increase the marks of all the students as follows-

73

Chemistry: + 5, Physics: + 10, Mathematics: +10, English: + 2,

```
In [6]: new_marks = marks_df + [5,10,10,2]
    new_marks
```

[6]:		Chemistry	Physics	Mathematics	English
	Subodh	72	55	60	21
	Ram	95	102	97	92
	Abdul	71	82	91	74
	John	37	50	22	70

The teacher wants to get the total marks scored in each subject

The teacher wants to get the total marks scored by each student.

The teacher wants to hide the marks of the students who scored less than 35 marks and display Fail in place of those marks

In [9]:	<pre>f = marks_df < 35 marks_df.mask(f, 'Fail')</pre>								
Out[9]:		Chemistry	Physics	Mathematics	English				
	Subodh	67	45	50	Fail				
	Ram	90	92	87	90				
	Abdul	66	72	81	72				

68

Fail

PANDAS PROGRAMS(2)

Fail

John

Perform the following operation on Autompg.csv of XYZ Custom Cars company using Pandas

```
In [10]: import numpy as np import pandas as pd
```

Read data from an existing file

```
import pandas as pd
import numpy as np
df = pd.read_csv('auto_mpg.csv')
df.head()
```

Out[11]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
	1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
	2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
	3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
	4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

Engineers at XYZ Custom Cars want to know how many cars are Fuel efficient

MPG > 29, Horsepower < 93.5, Weight < 2500

```
In [12]: df.loc[(df['mpg'] > 29) & (df['horsepower'] < 93.5) & (df['weight'] < 2500)]</pre>
```

•		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	51	30.0	4	79.0	70.0	2074	19.5	71	europe	peugeot 304
	52	30.0	4	88.0	76.0	2065	14.5	71	europe	fiat 124b
	53	31.0	4	71.0	65.0	1773	19.0	71	japan	toyota corolla 1200
	54	35.0	4	72.0	69.0	1613	18.0	71	japan	datsun 1200
	129	31.0	4	79.0	67.0	1950	19.0	74	japan	datsun b210
	•••									
	384	32.0	4	91.0	67.0	1965	15.7	82	japan	honda civic (auto)
	385	38.0	4	91.0	67.0	1995	16.2	82	japan	datsun 310 gx
	391	36.0	4	135.0	84.0	2370	13.0	82	usa	dodge charger 2.2
	394	44.0	4	97.0	52.0	2130	24.6	82	europe	vw pickup
	395	32.0	4	135.0	84.0	2295	11.6	82	usa	dodge rampage

81 rows × 9 columns

264

18.1

8

302.0

Out[12]:

Engineers at XYZ Custom Cars want to know how many cars are Muscle cars

Displacement >262, Horsepower > 126, Weight in range[2800, 3600]

df.loc[(df['displacement'] > 262) & (df['horsepower'] > 126) & (df['weight'] >=2800) & (df['w In [13]: Out[13]: cylinders displacement horsepower weight acceleration model_year origin name chevrolet 8 0 18.0 307.0 130.0 3504 70 12.0 usa chevelle malibu plymouth 2 18.0 8 318.0 150.0 3436 11.0 70 usa satellite 16.0 304.0 150.0 3433 12.0 70 usa amc rebel sst 140.0 70 17.0 8 302.0 3449 10.5 ford torino usa dodge 15.0 8 383.0 170.0 3563 10.0 70 usa challenger se buick estate 13 14.0 8 455.0 225.0 3086 10.0 70 usa wagon (sw) dodge dart 121 15.0 8 318.0 150.0 3399 73 11.0 usa custom 166 13.0 302.0 129.0 3169 12.0 75 ford mustang ii usa mercury 8 251 20.2 302.0 139.0 3570 12.8 78 usa monarch ghia chevrolet monte 262 19.2 8 305.0 145.0 3425 13.2 78 usa carlo landau

139.0

3205

11.2

78

usa

ford futura

Engineers at XYZ Custom Cars want to know how many cars are SUVs

Horsepower > 140, Weight > 4500

In [14]: df.loc[(df['horsepower'] > 140) & (df['weight'] >=4500)]

_			-	_		-		
n	1.1	+	1	7	/	-	0	
\cup	и	L		-	\neg	-	۰	

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
25	10.0	8	360.0	215.0	4615	14.0	70	usa	ford f250
28	9.0	8	304.0	193.0	4732	18.5	70	usa	hi 1200d
42	12.0	8	383.0	180.0	4955	11.5	71	usa	dodge monaco (sw)
43	13.0	8	400.0	170.0	4746	12.0	71	usa	ford country squire (sw)
44	13.0	8	400.0	175.0	5140	12.0	71	usa	pontiac safari (sw)
67	11.0	8	429.0	208.0	4633	11.0	72	usa	mercury marquis
68	13.0	8	350.0	155.0	4502	13.5	72	usa	buick lesabre custom
90	12.0	8	429.0	198.0	4952	11.5	73	usa	mercury marquis brougham
94	13.0	8	440.0	215.0	4735	11.0	73	usa	chrysler new yorker brougham
95	12.0	8	455.0	225.0	4951	11.0	73	usa	buick electra 225 custom
103	11.0	8	400.0	150.0	4997	14.0	73	usa	chevrolet impala
104	12.0	8	400.0	167.0	4906	12.5	73	usa	ford country
105	13.0	8	360.0	170.0	4654	13.0	73	usa	plymouth custom suburb
137	13.0	8	350.0	150.0	4699	14.5	74	usa	buick century luxus (sw)
156	16.0	8	400.0	170.0	4668	11.5	75	usa	pontiac catalina
159	14.0	8	351.0	148.0	4657	13.5	75	usa	ford ltd

Engineers at XYZ Custom Cars want to know how many cars are Racecars

Weight <2223, acceleration > 17

Out[15]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	19	26.0	4	97.0	46.0	1835	20.5	70	europe	volkswagen 1131 deluxe sedan
	32	25.0	4	98.0	NaN	2046	19.0	71	usa	ford pinto
	51	30.0	4	79.0	70.0	2074	19.5	71	europe	peugeot 304
	53	31.0	4	71.0	65.0	1773	19.0	71	japan	toyota corolla 1200
	54	35.0	4	72.0	69.0	1613	18.0	71	japan	datsun 1200
	55	27.0	4	97.0	60.0	1834	19.0	71	europe	volkswagen model 111
	56	26.0	4	91.0	70.0	1955	20.5	71	usa	plymouth cricket
	79	26.0	4	96.0	69.0	2189	18.0	72	europe	renault 12 (sw)
1	102	26.0	4	97.0	46.0	1950	21.0	73	europe	volkswagen super beetle
1	17	29.0	4	68.0	49.0	1867	19.5	73	europe	fiat 128
1	29	31.0	4	79.0	67.0	1950	19.0	74	japan	datsun b210
1	31	32.0	4	71.0	65.0	1836	21.0	74	japan	toyota corolla 1200
1	45	32.0	4	83.0	61.0	2003	19.0	74	japan	datsun 710
1	81	33.0	4	91.0	53.0	1795	17.5	75	japan	honda civic cvcc
1	195	29.0	4	85.0	52.0	2035	22.2	76	usa	chevrolet chevette
1	196	24.5	4	98.0	60.0	2164	22.1	76	usa	chevrolet woody
1	98	33.0	4	91.0	53.0	1795	17.4	76	japan	honda civic
2	216	31.5	4	98.0	68.0	2045	18.5	77	japan	honda accord cvcc
2	218	36.0	4	79.0	58.0	1825	18.6	77	europe	renault 5 gtl
2	244	43.1	4	90.0	48.0	1985	21.5	78	europe	volkswagen rabbit custom diesel
2	246	32.8	4	78.0	52.0	1985	19.4	78	japan	mazda glc deluxe
2	247	39.4	4	85.0	70.0	2070	18.6	78	japan	datsun b210 gx
3	803	31.8	4	85.0	65.0	2020	19.2	79	japan	datsun 210
3	310	38.1	4	89.0	60.0	1968	18.8	80	japan	toyota corolla tercel
3	322	46.6	4	86.0	65.0	2110	17.9	80	japan	mazda glc
3	324	40.8	4	85.0	65.0	2110	19.2	80	japan	datsun 210
3	325	44.3	4	90.0	48.0	2085	21.7	80	europe	vw rabbit c (diesel)
3	30	40.9	4	85.0	NaN	1835	17.3	80	europe	renault lecar deluxe
3	31	33.8	4	97.0	67.0	2145	18.0	80	japan	subaru dl

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
346	32.3	4	97.0	67.0	2065	17.8	81	japan	subaru
347	37.0	4	85.0	65.0	1975	19.4	81	japan	datsun 210 mpg
348	37.7	4	89.0	62.0	2050	17.3	81	japan	toyota tercel
376	37.0	4	91.0	68.0	2025	18.2	82	japan	mazda glc custom l
377	31.0	4	91.0	68.0	1970	17.6	82	japan	mazda glc custom
379	36.0	4	98.0	70.0	2125	17.3	82	usa	mercury lynx l
394	44.0	4	97.0	52.0	2130	24.6	82	europe	vw pickup

XYZ Custom cars want the data sorted according to the number of cylinders.

	٦		-1/-	11 2 4	1.					
]:	at.s	sort_v	alues (by	= 'cylinders)					
5]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	111	18.0	3	70.0	90.0	2124	13.5	73	japan	maxda rx3
	71	19.0	3	70.0	97.0	2330	13.5	72	japan	mazda rx2 coupe
	334	23.7	3	70.0	100.0	2420	12.5	80	japan	mazda rx-7 gs
	243	21.5	3	80.0	110.0	2720	13.5	77	japan	mazda rx-4
	267	27.5	4	134.0	95.0	2560	14.2	78	japan	toyota corona
	•••		•••							
	86	14.0	8	304.0	150.0	3672	11.5	73	usa	amc matador
	285	17.0	8	305.0	130.0	3840	15.4	79	usa	chevrolet caprice classic
	286	17.6	8	302.0	129.0	3725	13.4	79	usa	ford ltd landau
	92	13.0	8	351.0	158.0	4363	13.0	73	usa	ford ltd
	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu

398 rows × 9 columns

There is a requirement in which the cars that have lowest acceleration must be assessed. It is also to be checked that which cars have higher horsepower despite having lower acceleration.

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
11	14.0	8	340.0	160.0	3609	8.0	70	usa	plymouth 'cuda 340
7	14.0	8	440.0	215.0	4312	8.5	70	usa	plymouth fury iii
9	15.0	8	390.0	190.0	3850	8.5	70	usa	amc ambassador dpl
6	14.0	8	454.0	220.0	4354	9.0	70	usa	chevrolet impala
116	16.0	8	400.0	230.0	4278	9.5	73	usa	pontiac grand prix
•••									
195	29.0	4	85.0	52.0	2035	22.2	76	usa	chevrolet chevette
59	23.0	4	97.0	54.0	2254	23.5	72	europe	volkswagen type 3
326	43.4	4	90.0	48.0	2335	23.7	80	europe	vw dasher (diesel)
394	44.0	4	97.0	52.0	2130	24.6	82	europe	vw pickup
299	27.2	4	141.0	71.0	3190	24.8	79	europe	peugeot 504

398 rows × 9 columns

Out[17]:

PANDAS PROGRAMS(3)

Consider the rainfall dataset. This data contains region(district) wise rainfall across India. Perform the following operations for the dataset

```
In [18]: import numpy as np
import pandas as pd

import numpy as np
df = pd.read_csv('rainfall.csv')
df
```

Out[20]:	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	V
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.0	3
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.2	2
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.1	1!
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.1	:
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.9	;
•••				•••									
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3	308.4	343.2	1
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3	263.1	234.9	1
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7	266.2	359.4	2
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9	230.7	213.1	!
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5	163.1	157.1	1

641 rows × 19 columns

Check for missing values, if any and drop the corresponding rows.

In [21]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):

Data	columns (total	19 columns):	
#	Column	Non-Null Count	Dtype
0	STATE_UT_NAME	641 non-null	object
1	DISTRICT	641 non-null	object
2	JAN	641 non-null	float64
3	FEB	641 non-null	float64
4	MAR	641 non-null	float64
5	APR	641 non-null	float64
6	MAY	641 non-null	float64
7	JUN	641 non-null	float64
8	JUL	641 non-null	float64
9	AUG	641 non-null	float64
10	SEP	641 non-null	float64
11	OCT	641 non-null	float64
12	NOV	641 non-null	float64
13	DEC	641 non-null	float64
14	ANNUAL	641 non-null	float64
15	Jan-Feb	641 non-null	float64
16	Mar-May	641 non-null	float64
17	Jun-Sep	641 non-null	float64
18	Oct-Dec	641 non-null	float64
dtvpe	es: float64(17)	obiect(2)	

dtypes: float64(17), object(2)

memory usage: 95.3+ KB

Find the district that gets the highest annual rainfall.

```
In [22]: sorted_df = df.sort_values(by = 'ANNUAL', ascending=False)
highest = sorted_df.iloc[0,1]
print("District that gets the highest annual rainfall:",highest)

District that gets the highest annual rainfall: TAMENGLONG
```

Display the top 5 states that get the highest annual rainfall.

[23]:	sort	ed_df.head(5)												
t[23]:		STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NC
	55	MANIPUR	TAMENGLONG	48.5	229.6	224.5	431.5	539.9	1158.7	1820.9	1522.1	726.3	376.1	144
	47	MEGHALAYA	JAINTIA HILLS	33.8	44.1	115.1	282.3	598.8	1316.1	1591.3	933.8	826.3	517.7	11(
	46	MEGHALAYA	EAST KHASI HI	15.4	24.1	129.7	312.5	733.7	1476.2	1518.4	1019.4	607.8	277.9	4(
	12	ARUNACHAL PRADESH	UPPER SIANG	74.3	176.7	362.6	397.5	408.7	801.9	653.0	417.9	686.0	264.9	86
	598	KARNATAKA	UDUPI	1.4	0.4	4.1	29.4	193.8	1081.0	1371.6	902.2	404.9	223.8	74
														•
1 [25]:	new_o	df = df.drop([' df	JAN','FEB',	'MAR'	,'JUN'	, 'JUI	.','SE	P', '0	CT','DE	C'],ax	is=1)			

\cap	n+	Γ	25	٦	
\cup	uц	L	2)	Т	۰

•		STATE_UT_NAME	DISTRICT	APR	MAY	AUG	NOV	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct- Dec
	0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	117.0	358.5	271.9	315.2	2805.2	165.2	540.7	1207.2	892.1
	1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	90.5	374.4	423.1	275.8	3015.7	69.7	483.5	1757.2	705.3
	2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	53.4	343.6	460.9	198.6	2913.3	48.6	405.6	1884.4	574.7
	3	ARUNACHAL PRADESH	LOHIT	358.5	306.4	427.8	34.1	3043.8	123.0	841.3	1848.5	231.0
	4	ARUNACHAL PRADESH	EAST SIANG	216.5	323.0	711.2	29.5	4034.7	112.8	645.4	3008.4	268.1
	•••											
63	36	KERALA	IDUKKI	150.4	232.6	527.3	172.9	3302.5	35.5	426.6	2276.2	564.2
63	37	KERALA	KASARGOD	46.9	217.6	636.3	84.6	3621.6	3.3	272.9	3007.5	337.9
63	38	KERALA	PATHANAMTHITTA	184.9	294.7	352.7	213.5	2958.4	65.0	553.5	1715.7	624.2
63	39	KERALA	WAYANAD	83.3	174.6	592.9	93.6	3253.1	13.1	275.4	2632.1	332.5
64	40	LAKSHADWEEP	LAKSHADWEEP	48.9	171.7	217.5	117.7	1600.0	35.5	232.4	998.5	333.6

641 rows × 11 columns

Display the state-wise mean rainfall for all the months using a pivot table

```
In [26]: new_df = new_df.drop(['ANNUAL'],axis=1)
  table = pd.pivot_table(new_df,index=['STATE_UT_NAME'])
  table
```

Out[26]:

AUG

Jan-Feb

APR

Mar-May

MAY

Jun-Sep

Oct-l

NOV

	AFK	AUG	Jan-reb	Juli-Sep	IVIAI	iviai-iviay	1404	OCt-I
STATE_UT_NAME								
ANDAMAN And NICOBAR ISLANDS	86.966667	385.300000	94.500000	1616.266667	358.833333	476.600000	263.200000	724.033
ANDHRA PRADESH	19.873913	179.426087	13.673913	639.534783	48.765217	78.734783	58.965217	213.130
ARUNACHAL PRADESH	275.162500	378.600000	146.981250	1784.037500	300.262500	740.443750	43.187500	255.912
ASSAM	181.266667	377.370370	47.448148	1641.200000	333.870370	592.900000	24.922222	172.811
BIHAR	16.865789	289.481579	22.413158	1022.478947	51.673684	78.413158	6.715789	77.250
CHANDIGARH	14.800000	287.500000	83.200000	844.200000	30.100000	78.100000	9.900000	65.100
CHATISGARH	13.116667	375.338889	20.850000	1145.772222	17.483333	43.577778	8.494444	76.150
DADAR NAGAR HAVELI	0.000000	655.900000	0.700000	2316.900000	7.400000	7.400000	10.500000	49.100
DAMAN AND DUI	0.100000	394.600000	1.050000	1481.800000	4.150000	4.450000	12.400000	48.400
DELHI	8.900000	245.500000	32.700000	636.200000	19.300000	43.500000	5.600000	34.700
GOA	7.800000	683.800000	0.600000	2980.900000	87.750000	96.100000	35.000000	200.900
GUJARAT	0.507692	257.630769	1.176923	879.188462	4.803846	6.453846	10.826923	37.523
HARYANA	7.619048	190.909524	35.942857	511.004762	14.642857	36.000000	5.266667	31.609
HIMACHAL	47.683333	322.325000	162.375000	925.100000	54.358333	189.675000	16.908333	94.441
JAMMU AND KASHMIR	82.268182	167.918182	169.622727	471.868182	65.136364	267.390909	27.159091	107.736
JHARKHAND	18.662500	310.316667	32.158333	1093.904167	45.875000	81.054167	10.212500	96.320
KARNATAKA	36.773333	209.256667	4.723333	858.913333	88.166667	132.103333	44.350000	198.876
KERALA	109.021429	417.950000	25.742857	2046.142857	244.728571	384.821429	151.535714	480.685
LAKSHADWEEP	48.900000	217.500000	35.500000	998.500000	171.700000	232.400000	117.700000	333.600
MADHYA PRADESH	3.270000	331.048000	22.050000	938.396000	7.006000	17.762000	10.042000	54.102
MAHARASHTRA	6.974286	314.585714	8.265714	1135.771429	19.925714	32.897143	18.588571	101.654
MANIPUR	150.766667	451.800000	77.722222	1715.344444	213.377778	446.555556	56.000000	257.011
MEGHALAYA	211.228571	584.371429	36.585714	2654.042857	430.042857	716.028571	39.571429	276.185
MIZORAM	152.600000	440.588889	41.511111	1694.888889	321.322222	570.177778	64.633333	309.744
NAGALAND	134.227273	350.872727	46.154545	1313.854545	213.381818	410.627273	38.554545	170.063
ORISSA	36.653333	363.346667	33.180000	1146.516667	70.723333	134.830000	30.400000	151.593
PONDICHERRY	12.275000	116.425000	52.175000	362.025000	40.825000	69.825000	395.150000	894.450
PUNJAB	12.160000	172.415000	50.445000	502.185000	16.165000	54.225000	6.085000	41.690
RAJASTHAN	3.303030	194.554545	10.069697	530.075758	10.627273	17.745455	6.254545	23.706
SIKKIM	206.900000	434.600000	124.850000	1790.750000	323.550000	661.050000	30.950000	261.700
TAMIL NADU	42.596875	91.571875	32.928125	330.840625	67.531250	128.196875	184.625000	468.040
TRIPURA	220.750000	356.475000	44.875000	1497.225000	391.575000	705.950000	43.300000	231.075
UTTAR	5.318310	291.232394	30.340845	837.145070	15.561972	30.987324	4.576056	56.971

	APR	AUG	Jan-Feb	Jun-Sep	MAY	Mar-May	NOV	Oct-I
STATE_UT_NAME								
PRADESH								
UTTARANCHAL	29.815385	426.784615	99.484615	1229.769231	58.392308	139.876923	9.238462	88.907
WEST BENGAL	56.647368	361.573684	34.115789	1401.073684	139.489474	224.110526	19.389474	151.126 •

Display the count of districts in each state.

```
df.groupby(['STATE_UT_NAME']).count()['DISTRICT']
In [27]:
          STATE UT NAME
Out[27]:
          ANDAMAN And NICOBAR ISLANDS
                                            3
                                           23
          ANDHRA PRADESH
          ARUNACHAL PRADESH
                                           16
                                           27
          ASSAM
          BIHAR
                                           38
          CHANDIGARH
                                            1
          CHATISGARH
                                           18
          DADAR NAGAR HAVELI
                                            1
                                            2
          DAMAN AND DUI
          DELHI
                                            9
                                            2
          GOA
          GUJARAT
                                           26
                                           21
          HARYANA
          HIMACHAL
                                           12
          JAMMU AND KASHMIR
                                           22
                                           24
          JHARKHAND
          KARNATAKA
                                           30
          KERALA
                                           14
          LAKSHADWEEP
                                            1
          MADHYA PRADESH
                                           50
          MAHARASHTRA
                                           35
          MANIPUR
                                            9
                                            7
          MEGHALAYA
          MIZORAM
                                            9
          NAGALAND
                                           11
          ORISSA
                                           30
                                            4
          PONDICHERRY
          PUNJAB
                                           20
          RAJASTHAN
                                           33
          SIKKIM
                                            4
                                           32
          TAMIL NADU
          TRIPURA
                                            4
          UTTAR PRADESH
                                           71
          UTTARANCHAL
                                           13
          WEST BENGAL
                                           19
          Name: DISTRICT, dtype: int64
```

For each state, display the district that gets the highest rainfall in May. Also display the recorded rainfall.

```
In [28]: pivot = pd.pivot_table(data=df,index='STATE_UT_NAME',values=['DISTRICT','MAY'],aggfunc=['max'
    print(pivot)
```

	max		sum
	DISTRICT	MAY	MAY
STATE_UT_NAME			
ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	374.4	1076.5
ANDHRA PRADESH	WEST GODAVARI	96.6	1121.6
ARUNACHAL PRADESH	WEST SIANG	453.0	4804.2
ASSAM	UDALGURI(DARA	604.0	9014.5
BIHAR	WEST CHAMPARAN	155.7	1963.6
CHANDIGARH	CHANDIGARH	30.1	30.1
CHATISGARH	SURGUJA	38.6	314.7
DADAR NAGAR HAVELI	DNH	7.4	7.4
DAMAN AND DUI	DIU	7.4	8.3
DELHI	WEST DELHI	19.3	173.7
GOA	SOUTH GOA	94.3	175.5
GUJARAT	VALSAD	12.5	124.9
HARYANA	YAMUNANAGAR	27.9	307.5
HIMACHAL	UNA	91.7	652.3
JAMMU AND KASHMIR	UDHAMPUR	111.4	1433.0
JHARKHAND	WEST SINGHBHUM	86.1	1101.0
KARNATAKA	YADGIR	193.8	2645.0
KERALA	WAYANAD	300.4	3426.2
LAKSHADWEEP	LAKSHADWEEP	171.7	171.7
MADHYA PRADESH	VIDISHA	19.9	350.3
MAHARASHTRA	YAVATMAL	60.2	697.4
MANIPUR	UKHRUL	539.9	1920.4
MEGHALAYA	WEST GARO HIL	733.7	3010.3
MIZORAM	SERCHHIP	351.4	2891.9
NAGALAND	ZUNHEBOTO	325.6	2347.2
ORISSA	SUNDARGARH	136.8	2121.7
PONDICHERRY	YANAM	43.6	163.3
PUNJAB	TARN TARAN	25.6	323.3
RAJASTHAN	UDAIPUR	20.7	350.7
SIKKIM		355.4	1294.2
TAMIL NADU	VIRUDHUNAGAR	141.5	2161.0
TRIPURA	WEST TRIPURA		1566.3
UTTAR PRADESH	VARANASI	38.6	1104.9
UTTARANCHAL	UTTARKASHI	102.1	759.1
WEST BENGAL	WEST MIDNAPOR	345.4	2650.3
		3.3.7	_0,0.,

PANDAS PROGRAMS(4)

Reshaping Pandas Data frames with Melt & PivotReshaping Pandas Data frames with Melt & Pivot

Melt

4

*Melt is used for converting multiple columns into a single column, which is exactly what I need here.#

```
In [29]: import pandas as pd

In [30]: 

df = pd.DataFrame(data = {
    'Day' : ['MON', 'TUE', 'WED', 'THU', 'FRI'],
    'Google' : [1129,1132,1134,1152,1152],
    'Apple' : [191,192,190,190,188],
    'Samsung' : [191,192,190,190,188]
})
df
```

```
Day Google Apple Samsung
                   191
0 MON
           1129
                             191
    TUE
           1132
                   192
                             192
   WED
           1134
                   190
                             190
    THU
           1152
                   190
                             190
    FRI
           1152
                   188
                             188
```

Out[30]:

```
In [31]: reshaped_df = df.melt(id_vars=['Day'])
    reshaped_df
```

```
Out[31]:
               Day
                     variable value
              MON
                      Google
                              1129
               TUE
                      Google
                              1132
           2
               WED
                      Google
                               1134
           3
               THU
                      Google
                               1152
           4
                FRI
                      Google
                               1152
              MON
                                191
                       Apple
           6
               TUE
                       Apple
                                192
           7
               WED
                       Apple
                                190
                                190
           8
               THU
                       Apple
           9
                FRI
                                188
                       Apple
          10
              MON
                    Samsung
                                191
          11
               TUE Samsung
                                192
               WED
          12
                    Samsung
                                190
               THU Samsung
          13
                                190
          14
                FRI Samsung
                                188
```

```
In [32]: reshaped_df.columns
Out[32]: Index(['Day', 'variable', 'value'], dtype='object')
In [33]: reshaped_df.columns = [['Day', 'Company', 'Closing Price']]
reshaped_df
```

0			
	MON	Google	1129
1	TUE	Google	1132
2	WED	Google	1134
3	THU	Google	1152
4	FRI	Google	1152
5	MON	Apple	191
6	TUE	Apple	192
7	WED	Apple	190
8	THU	Apple	190
9	FRI	Apple	188
	MON	Samsung	191
11	TUE	Samsung	192
12	WED	Samsung	190
13	THU	Samsung	190
14	FRI	Samsung	188
		9	
	haped_		nelt(id_vars=
4]:	Day	Company	Closing Price
4]: 0		Company Google	Closing Price
0	MON	Google	1129
0	MON TUE	Google Google	1129
0 1 2	MON TUE WED	Google Google	1129 1132 1134
0 1 2 3	MON TUE WED THU FRI	Google Google Google	1129 1132 1134 1152
0 1 2 3 4	MON TUE WED THU FRI	Google Google Google Google	1129 1132 1134 1152 1152
0 1 2 3 4 5	MON TUE WED THU FRI MON TUE	Google Google Google Google Apple	1129 1132 1134 1152 1152 191
0 1 2 3 4 5	MON TUE WED THU FRI MON TUE	Google Google Google Google Apple Apple	1129 1132 1134 1152 1152 191 192
0 1 2 3 4 5 6 7	MON TUE WED THU FRI MON TUE WED	Google Google Google Google Apple Apple Apple Apple	1129 1132 1134 1152 1152 191 192 190
0 1 2 3 4 5 6 7 8	MON TUE WED THU FRI MON TUE WED THU	Google Google Google Google Apple Apple Apple	1129 1132 1134 1152 1152 191 192 190
0 1 2 3 4 5 6 7 8	MON TUE WED THU FRI MON TUE WED THU FRI	Google Google Google Google Apple Apple Apple Apple Apple Apple	1129 1132 1134 1152 1152 191 192 190 190
0 1 2 3 4 5 6 7 8 9	MON TUE WED THU FRI MON TUE WED THU FRI MON	Google Google Google Google Apple Apple Apple Apple Apple Apple Samsung	1129 1132 1134 1152 1152 191 192 190 190 188 191
0 1 2 3 4 5 6 7 8 9 10 11 12	MON TUE WED THU FRI MON TUE WED THU FRI MON TUE WED WED WED WED	Google Google Google Google Google Apple Apple Apple Apple Apple Samsung Samsung	1129 1132 1134 1152 1152 191 192 190 188 191 192 190
0 1 2 3 4 5 6 7 8 9 10	MON TUE WED THU FRI MON TUE WED THU FRI MON TUE THU	Google Google Google Google Apple Apple Apple Apple Apple Samsung Samsung	1129 1132 1134 1152 1152 191 190 190 188 191 192

Unmelt/Reverse Melt/Pivot

Out[33]: Day Company Closing Price

Reverse of the melt operation which is called as Pivoting we convert a column with multiple values into several columns of their own. The pivot() method on the dataframe takes two main arguments index and

columns. The index parameter is similar to id_vars we have seen before i.e., It is used to specify the column you don't want to touch. The columns parameter is to specify which column should be used to create the new columns.

```
reshaped_df.pivot(index='Day', columns='Company')
In [35]:
Out[35]:
                               Closing Price
          Company Apple Google Samsung
               Day
                             1152
                                       188
               FRI
                      188
              MON
                      191
                             1129
                                       191
              THU
                      190
                             1152
                                       190
               TUE
                      192
                             1132
                                       192
              WED
                      190
                             1134
                                       190
In [36]:
          original_df = reshaped_df.pivot(index='Day', columns='Company')['Closing Price'].reset_index(
          original_df.columns.name = None
          original_df
Out[36]:
              Day Apple Google Samsung
               FRI
                     188
                            1152
                                      188
          1 MON
                     191
                            1129
                                      191
             THU
                     190
                            1152
                                      190
              TUE
                     192
                            1132
                                      192
             WED
                     190
                            1134
                                      190
```

PANDAS POGRAMS(5)

Map in Pandas

```
In [37]:
         import pandas as pd
          import numpy as np
          technologies= {
                  'Duration':['30days','50days','30days','35days','40days'],
                   'Fee' :[22000,25000,23000,np.NaN,26000]
         df = pd.DataFrame(technologies)
         print(df)
           Duration
                         Fee
             30days 22000.0
             50days 25000.0
             30days 23000.0
         3
             35days
                         NaN
             40days 26000.0
         df['Fee'] = df['Fee'].map(lambda x: x - (x*10/100))
In [38]:
          print(df)
```

```
Duration
                         Fee
             30days 19800.0
             50days 22500.0
             30days 20700.0
         3
             35days
                         NaN
             40days 23400.0
         def fun1(x):
In [39]:
             return x/100
         df['Discount'] = df['Fee'].map(lambda x:fun1(x))
         print(df)
           Duration
                         Fee Discount
             30days 19800.0
                                 198.0
             50days 22500.0
                                 225.0
         2
             30days 20700.0
                                 207.0
         3
             35days
                         NaN
                                 NaN
             40days 23400.0
                                 234.0
         df['Service'] = df['Fee'].map(lambda x: x - (x*10/100))
In [40]:
Out[40]:
            Duration
                            Discount Service
                        Fee
                               198.0 17820.0
              30days 19800.0
         1
                               225.0 20250.0
              50days 22500.0
              30days 20700.0
                               207.0 18630.0
         3
              35days
                                NaN
                                       NaN
                       NaN
              40days 23400.0
                               234.0 21060.0
         df['Fee'] = df['Fee'].map('{} RS'.format)
In [41]:
         df['Discount'] = df['Discount'].map('{} RS'.format)
         print(df)
           Duration
                            Fee Discount Service
             30days 19800.0 RS 198.0 RS 17820.0
             50days 22500.0 RS 225.0 RS 20250.0
             30days 20700.0 RS 207.0 RS 18630.0
         3
             35days
                         nan RS
                                 nan RS
                                               NaN
             40days 23400.0 RS 234.0 RS 21060.0
         df['Service'] = df['Service'].map('{} RS'.format, na_action='ignore')
In [42]:
         print(df)
           Duration
                            Fee Discount
                                              Service
             30days 19800.0 RS 198.0 RS 17820.0 RS
             50days
                     22500.0 RS
                                 225.0 RS 20250.0 RS
                     20700.0 RS
                                 207.0 RS 18630.0 RS
             30days
         3
                         nan RS
                                 nan RS
             35days
                                                  NaN
             40days 23400.0 RS 234.0 RS 21060.0 RS
```

PANDAS PROGRAMS(6)

Aggregate functions in Pandas

```
marks_df
Out[44]:
                   Chemistry Physics
          Subodh
                          67
                                  45
                          90
             Ram
                                  92
            Abdul
                          66
                                  72
                          32
                                  92
             John
                          72
                                  72
          Nandini
                          45
                                  34
             Zoya
                          60
                                  72
           Shivam
            James
                          98
                                  45
In [45]:
          marks_df.Chemistry.sum()
Out[45]:
          marks_df['Chemistry'].sum()
In [46]:
          530
Out[46]:
          marks_df['Physics'].mean()
In [47]:
          65.5
Out[47]:
          marks_df.mean()
In [48]:
                        66.25
          Chemistry
Out[48]:
                        65.50
          Physics
          dtype: float64
In [49]:
          marks_df.sum()
          Chemistry
                        530
Out[49]:
          Physics
                        524
          dtype: int64
In [50]:
          marks_df.count()
          Chemistry
                        8
Out[50]:
          Physics
                        8
          dtype: int64
          marks_df.agg(['min', 'max','sum','mean','median'])
In [51]:
Out[51]:
                  Chemistry Physics
             min
                       32.00
                                34.0
             max
                       98.00
                                92.0
                      530.00
                               524.0
             sum
                       66.25
                                65.5
            mean
                       66.50
                                72.0
          median
          print(marks_df)
In [52]:
```

marks_df.groupby("Physics").max()

marks_df = pd.DataFrame(marks, index = ['Subodh', 'Ram', 'Abdul', 'John', 'Nandini', 'Zoya',

		Chemistr	у	Physics
	Subodh	6	7	45
	Ram	9	0	92
	Abdul	6	6	72
	John	3	2	92
	Nandini	7	2	72
	Zoya	4	5	34
	Shivam	6	0	72
	James	9	8	45
Out[52]:	(Chemistry		
	Physics			
	34	45		
	45	98		
	72	72		
	92	90		

PANDAS PROGRAMS(7)

Generating a date range

```
In [53]:
          import pandas as pd
           from datetime import datetime
           import numpy as np
In [54]:
          range_date1 = pd.date_range(start ='1/1/2019', end ='1/08/2019',freq='D') #days
           print(range_date1)
          DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04',
                            '2019-01-05', '2019-01-06', '2019-01-07', '2019-01-08'],
                          dtype='datetime64[ns]', freq='D')
           range_date3 = pd.date_range(start ='1/1/2019', end ='1/08/2020',freq='M') #months
In [55]:
           print(range date3)
          DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30', '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31', '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31'],
                          dtype='datetime64[ns]', freq='M')
In [56]:
           range_date2 = pd.date_range(start ='1/1/2019', end ='1/02/2019',freq='H') #hours
           print(range_date2)
          DatetimeIndex(['2019-01-01 00:00:00', '2019-01-01 01:00:00',
                            '2019-01-01 02:00:00', '2019-01-01 03:00:00', '2019-01-01 04:00:00', '2019-01-01 05:00:00',
                            '2019-01-01 06:00:00', '2019-01-01 07:00:00',
                            '2019-01-01 08:00:00', '2019-01-01 09:00:00',
                            '2019-01-01 10:00:00', '2019-01-01 11:00:00',
                            '2019-01-01 12:00:00', '2019-01-01 13:00:00',
                            '2019-01-01 14:00:00', '2019-01-01 15:00:00',
                            '2019-01-01 16:00:00', '2019-01-01 17:00:00',
                            '2019-01-01 18:00:00', '2019-01-01 19:00:00',
                            '2019-01-01 20:00:00', '2019-01-01 21:00:00',
                            '2019-01-01 22:00:00', '2019-01-01 23:00:00',
                            '2019-01-02 00:00:00'],
                          dtype='datetime64[ns]', freq='H')
          range_date4= pd.date_range(start ='1/1/2019', end ='1/08/2020',freq='3M') #3months
           print(range_date4)
```

```
DatetimeIndex(['2019-01-31', '2019-04-30', '2019-07-31', '2019-10-31'], dtype='datetime64[n
          s]', freq='3M')
In [58]: range_date5 = pd.date_range(start ='1/1/2019', end ='1/08/2020', freq=None) #days by default
          print(range_date5)
          DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04',
                           '2019-01-05', '2019-01-06', '2019-01-07', '2019-01-08',
                           '2019-01-09', '2019-01-10',
                           '2019-12-30', '2019-12-31', '2020-01-01', '2020-01-02',
                           '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06',
                           '2020-01-07', '2020-01-08'],
                          dtype='datetime64[ns]', length=373, freq='D')
In [59]:
          range_date6= pd.date_range(start ='1/1/2019', end ='1/2/2019', freq='min') #minutes
          print(range_date6)
          DatetimeIndex(['2019-01-01 00:00:00', '2019-01-01 00:01:00',
                            '2019-01-01 00:02:00', '2019-01-01 00:03:00',
                           '2019-01-01 00:04:00', '2019-01-01 00:05:00', '2019-01-01 00:06:00', '2019-01-01 00:07:00',
                           '2019-01-01 00:08:00', '2019-01-01 00:09:00',
                           '2019-01-01 23:51:00', '2019-01-01 23:52:00',
                           '2019-01-01 23:53:00', '2019-01-01 23:54:00', '2019-01-01 23:56:00',
                           '2019-01-01 23:57:00', '2019-01-01 23:58:00', '2019-01-01 23:59:00', '2019-01-02 00:00:00'],
                          dtype='datetime64[ns]', length=1441, freq='T')
In [60]:
          range_date7 = pd.date_range(start ='1/1/2018', periods = 13)
          print(range_date7)
          DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
                            '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08',
                           '2018-01-09', '2018-01-10', '2018-01-11', '2018-01-12',
                           '2018-01-13'],
                          dtype='datetime64[ns]', freq='D')
In [61]:
          range date7 = pd.date range(end ='1/13/2018', periods = 13)
          print(range_date7)
          DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
                           '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08', '2018-01-09', '2018-01-10', '2018-01-11', '2018-01-12',
                           '2018-01-13'],
                          dtype='datetime64[ns]', freq='D')
In [62]: print(type(range_date1[1]))
```

We have first created a time series then converted this data into dataframe and use random function to generate the random data and map over the dataframe.

<class 'pandas. libs.tslibs.timestamps.Timestamp'>

```
In [64]: print(df.head(10))
                date values
        0 2019-01-01
        1 2019-01-02
                         22
        2 2019-01-03
                         39
        3 2019-01-04
                         86
        4 2019-01-05
                         17
        5 2019-01-06
                        88
        6 2019-01-07
                         33
        7 2019-01-08
                         70
```

In order to do time series manipulation, we need to have a datetime index so that dataframe is indexed on the timestamp.

```
In [65]: df['datetime'] = pd.to_datetime(df['date'])
    df = df.set_index('datetime')
    df.drop(['date'], axis = 1, inplace = True)
    df
```

Out[65]: values

datetime	
2019-01-01	41
2019-01-02	22
2019-01-03	39
2019-01-04	86
2019-01-05	17
2019-01-06	88
2019-01-07	33
2019-01-08	70

```
In [ ]:
```

Consider the credit card dataset which contains the following columns:

- · CLIENTNUM: Primary key of the dataset
- Attrition_Flag: Indicates if a customer is retained or attrited
- · Customer_Age: Age of the customer
- · Gender: Gender of the customer
- Dependent count: Number of people dependent on the customer
- · Education Level: Highest level of education of the customer
- · Income Category: Range of income of the customer
- · Credit Limit: Credit card limit
- · Total Revolving Bal: Pending balance of the credit
- Avg_Purchase: Amount of purchase made by the customer on credit card
- Total Trans Amt: Total transaction amount

```
In [2]: #Importing the necessary Libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm

In [3]: #Importing the required dataset

credit_df = pd.read_csv("CreditCard_DV.csv")
credit_df #showing a single row in the df

Out[3]: CLIENTNUM Attrition_Flag Customer_Age Gender Dependent_count Education_Level Income_Category Credit_Limit Total_Revolving_Bal Avg_Purchase Total_Trans_Amt

0 768805383 Existing Customer 45 M 3 High School 60K-80K 12691.0 777 11914.0 1144

1 818770008 Existing Customer 49 F 5 Graduate Less than $40K 8256.0 864 7392.0 1291
```

	CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Income_Category	Credit_Limit	Total_Revolving_Bal	Avg_Purchase	Total_Trans_Amt
0	768805383	Existing Customer	45	М	3	High School	60 <i>K</i> -80K	12691.0	777	11914.0	1144
1	818770008	Existing Customer	49	F	5	Graduate	Less than \$40K	8256.0	864	7392.0	1291
2	713982108	Existing Customer	51	М	3	Graduate	80K - 120K	3418.0	0	3418.0	1887
3	769911858	Existing Customer	40	F	4	High School	Less than \$40K	3313.0	2517	796.0	1171
4	709106358	Existing Customer	40	М	3	Uneducated	60K - 80K	4716.0	0	4716.0	816
95	719712633	Existing Customer	64	М	1	Graduate	Less than \$40K	1709.0	895	814.0	1673
96	772629333	Existing Customer	45	М	3	Graduate	40 K - 60 K	3454.0	1200	2254.0	1313
97	720336708	Existing Customer	53	М	3	Doctorate	40 K - 60 K	3789.0	1706	2083.0	1609
98	802013583	Existing Customer	56	М	3	College	\$120K +	9689.0	2250	7439.0	1158
99	711887583	Attrited Customer	47	М	2	Unknown	80K-120K	5449.0	1628	3821.0	836

100 rows × 11 columns

Create a bivariate plot to find if there is a correlation between credit card limit and average purchase made on the card.

```
In [4]: #To Plot the data as a scatter plot
        ax = credit_df.plot("Credit_Limit", "Avg_Purchase", kind="scatter", color = "red", marker = "o", figsize=(10,7))
        #To add labels and title to the output
        ax.set xlabel("Credit Limit") #sets label for x-axis
        ax.set_ylabel("Avg_Purchase") #sets label for y-axis
        ax.set_title("Credit_Limit vs Avg_Purchase",fontsize=16)
                                                                    #sets title for the graph
```

Out[4]: Text(0.5, 1.0, 'Credit_Limit vs Avg_Purchase')

Visualise the distribution of values for credit card limit and average purchase made on the card. Also, identify the outliers in the data, if any.

```
In [5]: credit_df["Credit_Limit"].describe()
Out[5]: count
                   100.000000
                 10881.756000
        std
                 10056.333148
                  1438.300000
        min
        25%
                  3309.250000
        50%
                  6666.000000
        75%
                 14746.500000
                 34516.000000
        Name: Credit_Limit, dtype: float64
```

```
In [6]: ax = credit_df["Credit_Limit"].plot(kind="box")
    ax.set_title("Credit limit title")
```

Out[6]: Text(0.5, 1.0, 'Credit limit title')


```
In [7]: fig, ax1 = plt.subplots(1, 1)

#The following lines of code change the alignment from vertical to horizontal
ax1.boxplot(credit_df["Credit_Limit"])

#The following lines of code are used to add labels to axes and title to the graph
ax1.set_title('Distribution of Credit_Limit')
ax1.set_xlabel('Credit Limit')

#In case of any superimposition of the subplots, the following functions caters the aesthetics
fig.tight_layout()
```



```
In [8]: fig, (ax1, ax2) = plt.subplots(1, 2)

#The following lines of code change the alignment from vertical to horizontal
ax1.boxplot(credit_df["Credit_Limit"])
ax2.boxplot(credit_df["Avg_Purchase"])

#The following lines of code are used to add labels to axes and title to the graph
ax1.set_title('Distribution of Credit_Limit')
ax1.set_xlabel('Credit Limit')

ax2.set_xlabel('Average Purchase')
ax2.set_xlabel("Avg Purchase")

#In case of any superimposition of the subplots, the following functions caters the aesthetics
fig.tight_layout()
```



```
In [9]: cr_limit_arr = credit_df["Credit_Limit"]
         # finding the 1st quartile
         g1 = np.quantile(cr limit arr, 0.25)
         # finding the 3rd quartile
         q3 = np.quantile(cr_limit_arr, 0.75)
         med = np.median(cr limit arr)
         # finding the igr region
         iqr = q3-q1
         # finding upper and Lower whiskers
         upper bound = q3+(1.5*iqr)
         lower_bound = q1-(1.5*iqr)
         print("IQR:",iqr)
         print("upper_bound:",upper_bound)
         print("lower_bound:",lower_bound)
         IOR: 11437.25
         upper_bound: 31902.375
         lower_bound: -13846.625
In [10]: outliers = cr_limit_arr[(cr_limit_arr <= lower_bound) | (cr_limit_arr >= upper_bound)]
         print('The following are the outliers in the boxplot of Credit Limit:\n',outliers)
         The following are the outliers in the boxplot of Credit Limit:
                34516.0
          6
         40
               32426.0
              34516.0
         45
              34516.0
         61
         65
              34516.0
         70
              34516.0
              34516.0
         81
         84
             34516.0
         Name: Credit_Limit, dtype: float64
In [11]: x = credit_df['Credit_Limit']
         v = x[(x == 34516)]
Out[11]: 6
               34516.0
         45
              34516.0
         61
              34516.0
         65
              34516.0
```

70

81 84 34516.0 34516.0

34516.0

Name: Credit_Limit, dtype: float64

```
In [12]: avg purchase = credit df["Avg Purchase"]
         # finding the 1st quartile
         q1 = np.quantile(avg purchase, 0.25)
         # finding the 3rd quartile
         q3 = np.quantile(avg_purchase, 0.75)
         med = np.median(avg purchase)
         # finding the igr region
         iqr = q3-q1
         # finding upper and Lower whiskers
         upper bound = q3+(1.5*iqr)
         lower bound = q1-(1.5*igr)
         print("IOR:",iqr)
         print("upper_bound:",upper_bound)
         print("lower_bound:",lower_bound)
         IOR: 11790.425
         upper bound: 31022.887499999997
         lower bound: -16138.812499999996
In [13]: outliers = avg purchase[(avg purchase <= lower bound) | (avg purchase >= upper bound)]
         print('The following are the outliers in the boxplot of Average Purchase:\n',outliers)
         The following are the outliers in the boxplot of Average Purchase:
               32252.0
              31848.0
         40
         45
              34516.0
         61
              34516.0
         65
              33001.0
         70
              32753.0
         81
              32983.0
         84
              33297.0
         Name: Avg Purchase, dtype: float64
         Provide a visual representation of the number of customers in each income group using a bar chart.
In [14]: categories = credit df["Income Category"].unique()
         categories
Out[14]: array(['$60K - $80K', 'Less than $40K', '$80K - $120K', '$40K - $60K',
                '$120K +', 'Unknown'], dtype=object)
In [15]: count df = pd.DataFrame(credit df[["Income Category"]].groupby(by= "Income Category").size().reset index())
         count df.columns = [["Income Category", "Count"]]
         count df
Out[15]:
            Income_Category Count
```

\$120K +

40K - 60K

60K - 80K

80K - 120K

Unknown

Less than \$40K

11

15

22

23

22 7

```
In [16]: count_df.set_index('Income_Category', inplace = True)
          count df
Out[16]:
                           Count
           Income_Category
                 ($120K +,)
                              11
               (40K - 60K,)
                              15
               (60K - 80K)
                              22
              (80K-120K,)
                              23
           (Less than $40K,)
                              22
                              7
                (Unknown,)
```

```
In [17]: count_df['Count'].plot(kind="barh")
    plt.title("number of customers in each income group")
    plt.xlabel("Income_Category")
    plt.ylabel("Count")
```

Out[17]: Text(0, 0.5, 'Count')

Plot the frequency distribution of the total transaction amount.

```
In [18]: credit_df["Total_Trans_Amt"].min()
Out[18]: 602
In [19]: credit_df["Total_Trans_Amt"].max()
Out[19]: 2339
In [20]: credit_df["Total_Trans_Amt"].max() - credit_df["Total_Trans_Amt"].min()
Out[20]: 1737
```

```
In [21]: credit_df["Total_Trans_Amt"].plot(kind="hist")
    plt.title("frequency distribution of the total transaction amount", fontsize=16)
    plt.legend()
```

Out[21]: <matplotlib.legend.Legend at 0x26f979d0d30>

Graphically represent the percentage of customers retained and those attrited. Highlight the latter by slicing it apart from the main pie

```
In [22]: Attrition_df= pd.DataFrame(credit_df[["Attrition_Flag"]].groupby(by= ["Attrition_Flag"]).size().reset_index())
    Attrition_df.columns = [["Attrition_Flag", "Count"]]
    Attrition_df
Out[22]: Attrition_Flag Count
```

Attrition_riag Count
 Attrited Customer 7
 Existing Customer 93

In [23]: Attrition_df.set_index('Attrition_Flag', inplace = True)
 Attrition df

Out[23]: Count

Attrition_Flag

(Attrited Customer,) 77

(Existing Customer,) 93

```
In [24]: explode = (0.05, 0.05)
Attrition_df.plot(kind='pie', y='Count', autopct='%1.0f%%',explode=explode)
```

Out[24]: <AxesSubplot:ylabel='(Count,)'>

Consider the Cars93 dataset which contains the following columns:

Manufacturer

Model

Type

Price

MPG.city

MPG.highway

Cylinders

EngineSize

Horsepower etc

```
In [25]: #Importing the required dataset
```

```
cars_df = pd.read_csv("Cars93.csv")
columns = ["Manufacturer", "Model", "Type", "Price", "MPG.city", "MPG.highway", "Horsepower", "Rear.seat.room", "Passengers"]
cars_df[columns].head()
```

Out[25]:

	Manufacturer	Model	Туре	Price	MPG.city	MPG.highway	Horsepower	Rear.seat.room	Passengers
0	Acura	Integra	Small	15.9	25	31	140	26.5	5
1	Acura	Legend	Midsize	33.9	18	25	200	30.0	5
2	Audi	90	Compact	29.1	20	26	172	28.0	5
3	Audi	100	Midsize	37.7	19	26	172	31.0	6
4	BMW	535i	Midsize	30.0	22	30	208	27.0	4

Visualize the spread of data for the 'Price' column

Visualize the distribution of price for compact and large type of cars

```
In [27]: fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_figwidth(10)
fig.set_figheight(7)

#The following lines of code change the alignment from vertical to horizontal

ax1.boxplot(cars_df["Horsepower"])
ax2.boxplot(cars_df["NPG.city"])

#The following lines of code are used to add labels to axes and title to the graph

ax1.set_title('Horsepower')
ax1.set_xlabel('Horsepower')
ax2.set_title('City Mileage')
ax2.set_title('City Mileage')
ax2.set_xlabel("City Mileage (in miles per US gallon)")
#In case of any superimposition of the subplots, the following functions caters the aesthetics
fig.tight_layout()
```


Visualize the distribution of price for each type of car

```
In [28]: fig, ax = plt.subplots(2, 3)
         fig.set_figwidth(10)
         fig.set_figheight(7)
         fig.suptitle("Multiple Box Plots", fontsize=16)
         ax[0][0].boxplot(cars_df["Price"][cars_df["Type"]=="Compact"])
         ax[0][0].set title('Compact')
         ax[0][1].boxplot(cars_df["Price"][cars_df["Type"]=="Large"])
         ax[0][1].set_title('Large')
         ax[0][2].boxplot(cars_df["Price"][cars_df["Type"]=="Midsize"])
         ax[0][2].set_title('Midsize')
         ax[1][0].boxplot(cars_df["Price"][cars_df["Type"]=="Small"])
         ax[1][0].set_title('Small')
         ax[1][1].boxplot(cars_df["Price"][cars_df["Type"]=="Sporty"])
         ax[1][1].set title('Sporty')
         ax[1][2].boxplot(cars_df["Price"][cars_df["Type"]=="Van"])
         ax[1][2].set_title('Van')
```

Out[28]: Text(0.5, 1.0, 'Van')

Multiple Box Plots

Visualize the correlation between Horsepower and Mileage in the city

```
In [29]: ax = cars_df.plot(["Horsepower"],["MPG.city"],kind="scatter", color = "black",marker = "*",figsize=(10,7))
#To add labels and title to the output
ax.set_xlabel("Horsepower") #sets label for x-axis
ax.set_ylabel("MPG.city") #sets label for y-axis
ax.set_title("Horsepower vs MPG.city",fontsize=16) #sets title for the graph
```

Out[29]: Text(0.5, 1.0, 'Horsepower vs MPG.city')

Visualize the correlation between Horsepower and Mileage in the city for each type of car

Out[30]: <matplotlib.legend.Legend at 0x26f992770d0>

Scatter plot of horsepower and mileage

Visualize and compare Mileage in the city for each type of DriveTrain using a bar chart

```
In [31]: fig = plt.figure()
    fig.set_figwidth(10)
    fig.set_figheight(7)
    plt.bar(cars_df["DriveTrain"], cars_df["MPG.city"],width=0.2,label="Mileage in city")
    plt.suptile("DriveTrain" vs MPG.city",fontsize=16)
    plt.xlabel("DriveTrain")
    plt.ylabel("MPG.city")
    plt.legend()
```

Out[31]: <matplotlib.legend.Legend at 0x26f991f9040>

DriveTrain vs MPG.city


```
In [33]: plt.barh(cars_df["DriveTrain"], cars_df["MPG.city"],height=0.2,label="Mileage in city")
    plt.suptitle("DriveTrain vs MPG.city",fontsize=16)
    plt.xlabel("DriveTrain")
    plt.ylabel("MPG.city")
    plt.legend()
```

Out[33]: <matplotlib.legend.Legend at 0x26f9947f520>

Visualize the relationship between "No of Passengers" for each "type of car" using a stacked bar chart

```
In [38]: grouped_data = cars_df[["Passengers","Type"]].groupby(by= ["Passengers","Type"]).size()
         grouped_data
Out[38]: Passengers Type
                     Sporty
                                 2
         2
                     Compact
                                 1
                     Midsize
                                 2
                     Small
                                 8
                     Sporty
                                12
         5
                     Compact
                                13
                                15
                     Midsize
                     Small
                                13
                                 2
         6
                     Compact
                     Large
                                11
                     Midsize
                                 5
                     Van
                                 8
                     Van
                                 1
         dtype: int64
In [39]: grouped data = cars df[["Passengers","Type"]].groupby(by= ["Passengers","Type"]).size().unstack()
         grouped data
Out[39]:
               Type Compact Large Midsize Small Sporty Van
          Passengers
                  2
                        NaN
                              NaN
                                     NaN
                                           NaN
                                                  2.0 NaN
                  4
                         1.0
                              NaN
                                      2.0
                                            8.0
                                                  12.0 NaN
                  5
                         13.0
                              NaN
                                      15.0
                                           13.0
                                                  NaN NaN
                         2.0
                              11.0
                                      5.0
                                           NaN
                                                  NaN NaN
                              NaN
                                                  NaN
                                                       8.0
                        NaN
                                     NaN
                                           NaN
                        NaN
                              NaN
                                                  NaN 1.0
                                     NaN
                                           NaN
In [40]: #combining the above 2 steps
         grouped_data = cars_df[["Passengers","Type"]].groupby(by= ["Passengers","Type"]).size().unstack().reset_index()
         grouped_data
Out[40]: Type Passengers Compact Large Midsize Small Sporty Van
             0
                       2
                             NaN
                                   NaN
                                           NaN
                                                NaN
                                                        2.0 NaN
                                                       12.0 NaN
                       4
                              1.0
                                   NaN
                                           2.0
                                                 8.0
             2
                       5
                                                13.0
                                                       NaN NaN
                              13.0
                                   NaN
                                           15.0
             3
                       6
                              2.0
                                   11.0
                                           5.0
                                                NaN
                                                       NaN NaN
                       7
                             NaN
                                   NaN
                                           NaN
                                                NaN
                                                       NaN
                                                            8.0
```

NaN

NaN

NaN

NaN

NaN 1.0

In [43]: #Stacked Bar Graph can be plotted using the grouped data, as follows:
 grouped_data.plot(x="Passengers",kind="bar",stacked=True,colormap=cm.Paired,figsize=(10,7))
 #Matplotlib has built-in colormaps. Here, 'Paired' is used.

Out[43]: <AxesSubplot:xlabel='Passengers'>

mtcars.csv dataset

In [4]: mtcar_df = pd.read_csv("mtcars.csv")
 mtcar_df

Out[4]:

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
26	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

```
In [16]: temp= mtcar_df['am'].value_counts()
    print(temp)
    temp.plot.bar()
    plt.title("Frequency distribution of transmission types")
    plt.xlabel("Transmission types")
    plt.ylabel("Count")

    0     19
    1     13
    Name: am, dtype: int64

Out[16]: Text(0, 0.5, 'Count')
```

