

Figura 2.2.10 El límite de esta funci ón cuando $x \to 0$ es cero.

Ejemplo 4

Usar la definición para verificar el "obvio" $\lim_{\mathbf{x}\to\mathbf{x}_0}\mathbf{x}=\mathbf{x}_0$, donde \mathbf{x} y $\mathbf{x}_0\in\mathbb{R}^n$.

Solución

Sea f la función definida por $f(\mathbf{x}) = \mathbf{x}$ y sea N un entorno cualquiera de \mathbf{x}_0 . Tenemos que demostrar que $f(\mathbf{x})$ finaliza en N cuando $\mathbf{x} \to \mathbf{x}_0$. De acuerdo con la definición, tenemos que hallar un entorno U de \mathbf{x}_0 con la propiedad de que si $\mathbf{x} \neq \mathbf{x}_0$ y $\mathbf{x} \in U$, entonces $f(\mathbf{x}) \in N$. Tomamos U = N. Si $\mathbf{x} \in U$, entonces $\mathbf{x} \in N$; dado que $\mathbf{x} = f(\mathbf{x})$, se sigue que $f(\mathbf{x}) \in N$. Por tanto, hemos demostrado que $\lim_{\mathbf{x} \to \mathbf{x}_0} \mathbf{x} = \mathbf{x}_0$. De igual forma tenemos que

$$\lim_{(x,y)\to(x_0,y_0)} x = x_0,$$
 etc.

De aquí en adelante, podemos suponer, sin demostración, la validez de los límites del cálculo de una variable. Por ejemplo, se puede usar que $\lim_{x\to 1} \sqrt{x} = \sqrt{1} = 1$ y $\lim_{\theta\to 0} \text{sen } \theta = \text{sen } 0 = 0$.

Ejemplo 5

Este ejemplo demuestra otro caso en el que el límite no puede simplemente "leerse" de la función. Hallar $\lim_{x\to 1}g(x)$ donde

$$g: x \mapsto \frac{x-1}{\sqrt{x}-1}.$$

Solución

Representamos esta función en la Figura 2.2.11(a).

Vemos que g(1) no está definido, ya que la división por cero no está definida. Sin embargo, si multiplicamos el numerador y el denominador de g(x) por $\sqrt{x} + 1$, determinamos que para todo x en el dominio de g se tiene que

$$g(x) = \frac{x-1}{\sqrt{x}-1} = \sqrt{x} + 1, \quad x \neq 1.$$

La expresión $g^*(x) = \sqrt{x} + 1$ está definida y toma el valor 2 en x = 1; del cálculo de una variable, $g^*(x) \to 2$ cuando $x \to 1$. Pero dado que $g^*(x) = g(x)$ para todo $x \ge 0, x \ne 1$, tenemos que forzosamente $g(x) \to 2$ cuando $x \to 1$.