GOALS

- Given a function f(x), understanding the **inverse of** f, denote by $f^{-1}(x)$.
- Find the derivative of f^{-1} at x = a. Notation: $(f^{-1})'(a)$.

RECALL:

- The domain of a function is the set of all input values.
- The range of a function is the set of all output values.

• $g(x) = \frac{1}{\sqrt{x-5}}$ — Find the domain of g.

I. Understanding Inverse Functions

The domain of f is the set $A = \{4, 3, 2, 1\}$

The range of f is the set $B = \{10, 7, 4, 2\}$.

x=5 f(x) is not defined s) x=5 is not in f(3) =

$$f(1) =$$

$$f(4) =$$

Domain except 5. - 095) U (5,00)

Definition: The *inverse function of* f(x) is a <u>new</u> function, denoted by f(x)

The domain of $f^{-1} = \text{Range}$ of ffor one-one The range of $f^{-1} =$ Domain of fIf and only if $f^{-1}(x) = y \iff \mathcal{X} = f(y)$

Using the example of f above, evaluate:

$$f^{-1}(2) = \int belowse g = f(i)$$

$$f^{-1}(4) = 2$$
 because $Y = f(2)$

Domain of + Domain of Example 1: If f(1) = 5, f(3) = 7, and f(8) = 3, find $f^{-1}(7)$, $f^{-1}(5)$, $f^{-1}(3)$.

$$y = f^{-1}(x) = y = 7 = f(y) \Rightarrow y = 3$$

 $y = 3$

$$(3) + (2) = 1$$
 $(3) = 8$

Example 2: (a) Let $f(x) = x^3$, without an explicit formula of $f^{-1}(x)$, could you spot the answer for $f^{-1}(8)$?

$$f^{-1}(8) = y \Rightarrow 8 = f(y) \Rightarrow 8 = y^{3} \Rightarrow y = 2$$

 $\Rightarrow f^{-1}(8) = 2$

(b) Let $f(x) = x^3 + x + 1$ without an explicit formula of $f^{-1}(x)$, could you spot the answer for $f^{-1}(3)$?

$$f^{-1}(3) = y$$
 $\Rightarrow f(y) = 3 \Rightarrow y^3 + y + 1 = 3 \Rightarrow y^3 + y = 2 \Rightarrow y = 1$
 $\Rightarrow f^{-1}(3) = 1$

(c) Find the inverse function of $f(x) = x^3$.

Let
$$f^{-1}(x) = y \Rightarrow x = f(y) \Rightarrow x = y^3$$

Cube roots exist for all real numbers

• For any odd Positive integer n = n of we have $f(x) = x^n$

for n is even =) not one one then
$$f^{-1}(x) = \sqrt{x}$$

=) inverse does not exist.

Remark: The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

Cancellation Equations:

If x is in the domain of f, then

$$f^{-1}(f(x)) = \chi$$

 $\int_{-1}^{-1} (f(x)) = \chi$ If x is in the domain of f^{-1} , then For $f(x) = \chi^3$

$$f(f^{-1}(x)) = x$$

For
$$f(x) = \chi^3$$

$$3\sqrt{\chi^3} \stackrel{?}{=} \chi , (3\sqrt{\chi})$$

One-to-One Functions: A function f is *one-to-one* if

$$x_1 = x_2$$
 whenever $f(x_1) = f(x_2)$

$$f(x_1) \neq f(x_2)$$
 whenever $x_1 \neq x_2$. or $f(\chi_1) = f(\chi_2)$ $\Rightarrow \chi_1 = \chi_2$. In other words, a function is one-to-one if every output comes from ONLY ONE input.

Check:
$$f(x) = x^2$$
 is not one-one.

$$-1 \neq 1$$
 but $f(-1) = (-1)^2 = 1^2 = f(1)$

Horizontal Line Test: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

II. The derivative of $f^{-1}(x)$ at x = a. Notation: $(f^{-1})'(a)$

Derivative Notation

Functions	Derivatives (a	new function)
$f(x)$ $\mathcal{G} = f(x)$	f(x) dy or	$\frac{d}{dx}[f(x)]$

Example 3: Let $f(x) = x^3$, then inverse function of f is $f^{-1}(x) = \sqrt[3]{x}$.

(a) Evaluate
$$f'(1)$$

$$f'(x) = \frac{d}{dx}(x^3) = 3x^{3-1} = 3x^2$$

$$f'(1) = 3(1)^2 = 3$$

(b) Evaluate
$$(f^{-1})'(1)$$

$$f^{-1}(x) = 3\pi x$$

$$(f^{-1})(x) = \frac{d}{dx}(3\pi x)$$

$$= \frac{d}{dx}(x^{3})$$

$$= \frac{d}{dx}(x^{3})$$

Power rule
$$\frac{d}{dx}(x^n) = n x^{n-1}$$
n is a rational number

$$\frac{1}{3}$$

$$(f^{-1})^{1}(1) = \frac{1}{3}(1)^{-2/3} = \frac{1}{3}$$

There is another way of finding $(f^{-1})'(1)$ in example 3 without knowing the explicit formula of $f^{-1}(x)$.

Theorem: If f is one-to-one differentiable function with inverse function f^{-1} and $f'(f^{-1}(a)) \neq 0$, then the inverse function is differentiable at a and

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))} \quad \text{where } a \text{ is a number}$$
 (1)

Example 4: Let $f(x) = x^5 + x^3 + x$, use the formula (1) to find $(f^{-1})'(3)$

$$(f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))}$$

$$= \frac{1}{f'(f^{-1}(3))}$$

$$\Rightarrow f^{-1}(3) = 1$$

$$\Rightarrow f^{-1}(3) = 1$$

$$\Rightarrow f^{-1}(3) = 1$$

$$f'(x) = 5x^{4} + 3x^{2} + 1$$

$$\Rightarrow f'(x) = 5x^{4} + 3x^{2} + 1$$

Example 5: Let $f(x) = 2x + \cos x$. f is a one-to-one function. Find $(f^{-1})'(1)$.

$$(f^{-1})'(1) = \frac{1}{f'(f'(1))} \qquad y = f'(1) + (68)$$

$$y = 0 \Rightarrow 2(6) + (68) = 1$$

$$y = 0 \Rightarrow 2(6) + (68) = 1$$

$$y = 0 \Rightarrow 2(6) + (68) \Rightarrow y = 0$$

$$y = 0 \Rightarrow 2(6) + (68) \Rightarrow y = 0$$

$$y = 0 \Rightarrow 2(6) + (68) \Rightarrow y = 0$$

$$y = 0 \Rightarrow 2(6) + (68) \Rightarrow y = 0$$

$$y = 0 \Rightarrow 2(6) + (68) \Rightarrow y = 0$$

$$y = 0 \Rightarrow 2(6) + (68) \Rightarrow y = 0$$

$$f'(1) = 0 \Rightarrow 2(6) + (68) \Rightarrow y = 0$$

$$f'(2) = 2x + (68)x$$

$$f'(3) = 2x + (-8inx)$$

$$= 2x + (-8inx)$$

Section 6.1 Exercises, page 406: # 3, 5, 7, 17, 23, 39, 40, 41, 42, 43