Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium Aparatury Automatyzacji						
Numer i temat ćwiczenia: Ćwiczenie 2. Układ regulacji temperatury (SIEMENS)						
Grupa ćwiczeniowa: Wtorek 17:00-19:15 , Zespół: 3						
Lp.	Imię i nazwisko	Ocena	Podpis			
1.	Katarzyna Wątorska					
2.	Sonia Wittek					
3.	Karolina Świerczek					
Data wykonania ćwiczenia: 04.06.2019						

1. Schemat i opis konfiguracji systemu

Celem ćwiczenia było zapoznanie się z budową i programowaniem sterownika SIEMENS SIMATIC S7-1200 oraz panelu operatorskiego SIMATIC HMI Basic. Za pomocą pakietu narzędziowego SIMATIC STEP 7 zrealizowałyśmy układu regulacji temperatury. Obiektem regulacji był walec aluminiowy zamocowany w oporowym wkładzie grzejnym o mocy 400 W, zasilanym impulsowo z wyjścia sterownika sygnałem sieciowym 230 V. Współczynnik wypełnienia sygnału sterującego był modulowany poziomem sygnału wyjściowego sterownika. Na obu końcach walca znajdowały się symetrycznie zamocowane dwa termometry Pt100; jeden z nich był połączony z wejściem sterownika w systemie czteroprzewodowym, a drugi z gniazdami na przedniej ścianie obudowy. Obiekt umieszczony został w metalowej obudowie z wbudowanym wentylatorem uruchamianym w celu dodatkowego chłodzenia.

Konfigurację rozpoczęłyśmy od dodania do utworzonego w TIA PORTAL projektu sprzętu znajdującego się na stanowisku laboratoryjnym, tj. jednostki centralnej CPU 1212 C, modułu wyjść PWM, modułu wyjść oraz wejść analogowych, switcha sieciowego CSM 1277 SIMATIC NET i panelu operatorskiego HMI. Następnie elementy te odpowiednio skonfigurowałyśmy i połączyłyśmy zgodnie z instrukcją, czego efekt przedstawia poniższy schemat:

Rys 1. Połączone elementy sterownika PLC.

2. Prosty program sterowania logicznego

Stworzyłyśmy algorytm sterowania logicznego, zaczynając od zdefiniowania nazw zmiennych w tabeli z nazwami symbolicznymi PLC tags oraz ich zaadresowania, w wyniku czego otrzymałyśmy:

PLC tags							
	Name	Data type	Address	Retain	Visible in HMI	Accessible from HMI	
√ 01	RTD_Input0	Word	%IW112	False	True	True	
- ■	RTD_Input0_Tag	Int	%MW6	False	True	True	
√ 00	PWM_Output0	Int	%QW1000	False	True	True	
-11	Heater_Value	Int	%MW2	False	True	True	
- 111	RLO_Fan	Bool	%Q0.0	False	True	True	
√ 111	Fan_ON	Bool	%M128.0	False	True	True	
√ 01	Manual	Bool	%M128.1	False	True	True	
1	poziom_0	Int	%MW10	False	True	True	
-111	poziom_1	Int	%MW12	False	True	True	
- ■	SP	Int	%MW14	False	True	True	

Rys 2. Zdefiniowane i zaadresowane zmienne.

Następnie skonfigurowałyśmy wejście RTD oraz wyjście PWM zgodnie z parametrami pokazanymi na rys. 3. i rys. 4.

Rys 3. Konfiguracja wejścia RTD.

Rys 4. Konfiguracja wyjścia PWM.

W pliku źródłowym bloku organizacyjnego OB1 umieściłyśmy:

• blok CTRL_PWM, odpowiadający za przekazywanie sygnału impulsowego wyjściowego.

 bloki realizujące odczyt temperatury i przeliczające go na stopnie Celsjusza (z dokładnością do jednego stopnia)

```
MOVE
EN ENO

**MW6

"RTD_Input0" IN **OUT1 TRTD_Input0_Tag"

**RTD_Input0_Tag"

**IN1

OUT TRTD_Input0_Tag"

10 IN2
```

• regulator dwupołożeniowy bez histerezy

 blok odpowiadający za możliwość nadpisywania sterowania wyliczonego przez funkcję regulatora wartością ustawianą ręcznie

```
MM128.1

"Manual"

EN ENO

WQW1000

"Heater_Value" — IN ♣ OUT1 — "PWM_Output0"
```

blok uruchamiający manualnie dodatkowe chłodzenie w postaci wentylatora

```
%M128.0
"Fan_ON"
"RLO_Fan"
( )
```

Regulator jest realizowany przez funkcję, której wejścia to zadana wartość temperatury, aktualna wartość temperatury, wartość sterowania w stanie "0" oraz wartość sterowania w stanie "1". Wynikiem jej działania jest sterowanie przypisane do stanów "0" i "1": jeśli wartość zmierzona jest równa lub większa od wartości zadanej to sterowanie przyjmuje poziom "0"; w przeciwnym przypadku sterowanie ma poziom "1". Wyjście z tej funkcji jest podawane na sprzętowe wyjście PWM przyjmujące wartości z zakresu 0..100. Funkcję przedstawia rysunek 5.

Name	Data type	Default value
▼ Input		
SP	Int	
RTD_Input0_Tag	Int	
poziom_0	Int	
poziom_1	Int	
▼ Output		
PWM_Output0	Int	
InOut		
Temp		
Constant		
▼ Return		
II-polozeniowy	Void	

```
0001 IF #RTD_Input0_Tag>=#SP THEN
0002  #PWM_Output0:=#poziom_0;
0003 END_IF;
0004 IF #RTD_Input0_Tag<#SP THEN
0005  // Statement section IF
0006  #PWM_Output0:=#poziom_1;
0007 END_IF;
0008</pre>
```

Symbol	Address	Туре
#poziom_0		Int
#poziom_1		Int
#PWM_Output0		Int
#RTD_InputO_Tag		Int
#SP		Int

Rys 5. Funkcja realizująca algorytm regulatora dwupołożeniowego bez histerezy.

3. Aplikacja SCADA na panelu operatorskim

Zbudowałyśmy panel operatorski z przełącznikiem trybu pracy, włącznikiem wentylatora, polem do zadawania wartości zadanej, sterowania w stanie "0", sterowania w stanie "1", wartości sterowania w trybie ręcznym, polem odczytu aktualnej temperatury oraz wykresem trendu zmian temperatury.

Rys 6. Zrzut ekranu panelu operatorskiego.

4. Doświadczenie i opracowanie zebranych danych

W kolejnej części ćwiczenia przeprowadziłyśmy doświadczenie polegające na pomiarze temperatury w funkcji czasu po zadaniu pewnej wartości. Wyniki oscylowały wokół wartości zadanej. Nasze pomiary kontynuowałyśmy do momentu, aż zanotowałyśmy dwa maksima i dwa minima lokalne. Doświadczenie wykonałyśmy dla temperatury zadanej równej 50° C oraz 150° C . W obu przypadkach wartość sterowania w stanie "0" wynosiła 0 %, a wartość sterowania w stanie "1" wynosiła 100 %. Zebrane dane przedstawiają poniższe wykresy.

Na wykresach można zaobserwować zarówno zachowanie się obiektu podczas jego podgrzewania, jak i ochładzania, w szczególności możemy zaobserwować działanie Prawa Stygnięcia Newtona podczas ochładzania się obiektu, czyli "Szybkość, z jaką układ stygnie, jest proporcjonalna do różnicy temperatur między układem a otoczeniem" lub, jeśli zapisać to w formie równania (T_R-temperatura otoczenia, T – temperatura obiektu, k – stała stygnięcia dla obiektu):

, a jego rozwiązanie to

$$rac{dT}{dt} = -k\left(T - T_R
ight) = T \left(T - T_R
ight) = \Delta T \left(T -$$

Części wykresu, na których temperatura opada, są więc zbliżone kształtem do funkcji wykładniczej o mniejszym nachyleniu dla obiektu rozgrzanego do około 50°C, a większym dla obiektu rozgrzanego do około 150°C (większa różnica temperatur obiektu i otoczenia).

Na podstawie tych wyników można stwierdzić, że układ regulacji lepiej zachowywał się dla zadanej wartości 50° (odchylenie standardowe = 8,553038; średnia wartość temperatury = 54,00901), niż dla 150° (odchylenie standardowe = 9,28675; średnia wartość temperatury = 139,2162).

5. Wnioski

Podczas ćwiczenia miałyśmy możliwość przećwiczyć tworzenie programu sterującego w środowisku TIA Portal. Nauczyłyśmy się, jak tworzyć prosty regulator, czyli regulator II-położeniowy, używając bloków funkcyjnych i programując go w języku SCL, a także utworzyłyśmy panel sterowania, który pozwalał na sterowanie automatyczne i manualne. Zaobserwowałyśmy działanie regulatora i zachowanie się obiektu regulacji cieplnej w zależności od ustawień regulatora i ustawionej wartości zadanej.