INTRODUCTION:

- Searching a graph means systematically following the edges of the graph so as to visit the vertices of the graph.
- A graph-searching algorithm can discover much about the structure of a graph.
- Techniques for searching a graph are at the heart of the field of graph algorithms. **Eg:** Many algorithms begin by searching their input graph to obtain this structural information. Other graph algorithms are organized as simple elaborations of basic graph-searching algorithms.

NOTE:

- In describing the running time of a graph algorithm on a given graph G = (V, E), we usually measure the **size of the input in terms of the number of vertices** |V| and the number of edges |E| of the graph. This means that there are two relevant parameters describing the size of the input, not just one.
- Inside asymptotic notation (such as O-notation or -notation), and only inside such notation, the symbol V denotes |V| and the symbol E denotes |E|.
 Eg: For example, we might say, "the algorithm runs in time O(V E)," meaning that the algorithm runs in time O(|V| |E|).
- In pseudocode, we denote the vertex set of a graph G by V[G] and its edge set by E[G].

Representations of graphs

- There are **two standard ways** to represent a graph G = (V, E): as a collection of adjacency lists or as an adjacency matrix.
- Either way is applicable to both directed and undirected graphs.
- The adjacency-list representation is usually preferred, because it provides a compact way to represent *sparse* graphs (|E| is much less than $|V|^2$)
- An adjacency-matrix representation may be preferred, however, when the graph is dense $(|E| \text{ is close to } |V|^2 \text{ OR when we need to be able to tell quickly if there is an edge connecting two given vertices.)}$
 - Eg: For example, two of the all-pairs shortest-paths algorithms assume that their input graphs are represented by adjacency matrices
- Most of the graph algorithms presented here assume that an input graph is represented in adjacency-list form.

The adjacency-list representation

- The *adjacency-list representation* of a graph G = (V, E) consists of an array Adj of |V| lists, one for each vertex in V.
- For each $u \in V$, the adjacency list Adj[u] contains all the vertices v such that there is an edge $(u, v) \in E$. (That means Adj[u] consists of all the vertices adjacent to v in v
- The vertices in each adjacency list are typically stored in an arbitrary order.

- If G is a directed graph, the sum of the lengths of all the adjacency lists is |E|, since an edge of the form (u, v) is represented by having v appear in Adj[u]. If G is an undirected graph, the sum of the lengths of all the adjacency lists is 2 |E|, since if (u, v) is an undirected edge, then u appears in v's adjacency list and vice versa.
- For both directed and undirected graphs, the adjacency-list representation has the desirable property that the amount of **memory it requires is** $\Theta(V + E)$.
- A potential disadvantage of the adjacency-list representation is that there is no quicker way to determine if a given edge (u, v) is present in the graph than to search for v in the adjacency list Adj[u]. (This disadvantage can be remedied by an adjacency-matrix representation of the graph, at the cost of using asymptotically more memory.)

The adjacency-matrix representation

- For the adjacency-matrix representation of a graph G = (V, E), we assume that the vertices are numbered $1, 2, \ldots, |V|$ in some **arbitrary** manner.
- Then the adjacency-matrix representation of a graph G consists of a $|V| \times |V|$ matrix $A = (a_{ij})$ such that

$$a_{ij} = \begin{cases} 1 & if (i,j) \in E \\ 0 & otherwise \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0	0

	1	2	3	4	5	6
1	0	1	0	1	0 1 1 0 0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

- The adjacency matrix of a graph requires $\Theta(V^2)$ memory, independent of the number of edges in the graph.
- Observe the symmetry along the main diagonal of the adjacency matrix in an undirected graph.
- Although the adjacency-list representation is asymptotically at least as efficient as the
 adjacency-matrix representation, the simplicity of an adjacency matrix may make it
 preferable when graphs are reasonably small.

// simplified versions of DFS & BFS

(Any particular graph algorithm may depend on the way G is maintained in memory. Here we assume G is maintained in memory by its adjacency structure.)

During the execution of our algorithms, each vertex (node) N of G will be in one of three states, called the status of N, as follows:

STATUS = 1: (Ready state) The initial state of the vertex N.

STATUS = 2: (Waiting state) The vertex N is on a (waiting) list, waiting to be processed.

STATUS = 3: (Processed state) The vertex N has been processed.

DFS

- **Algorithm 8.5 (Depth-first Search):** This algorithm executes a depth-first search on a graph G beginning with a starting vertex A.
- **Step 1.** Initialize all vertices to the ready state (STATUS = 1).
- Step 2. Push the starting vertex A onto STACK and change the status of A to the waiting state (STATUS = 2).
- Step 3. Repeat Steps 4 and 5 until STACK is empty.
- Step 4. Pop the top vertex N of STACK. Process N, and set STATUS (N) = 3, the processed state.
- Step 5. Examine each neighbor J of N.
 - (a) If STATUS (J) = 1 (ready state), push J onto STACK and reset STATUS (J) = 2 (waiting state).
 - (b) If STATUS (J) = 2 (waiting state), delete the previous J from the STACK and push the current J onto STACK.
 - (c) If STATUS (J) = 3 (processed state), ignore the vertex J. [End of Step 3 loop.]
- Step 6. Exit.

BFS

- Algorithm 8.6 (Breadth-first Search): This algorithm executes a breadth-first search on a graph G beginning with a starting vertex A.
- **Step 1.** Initialize all vertices to the ready state (STATUS = 1).
- Step 2. Put the starting vertex A in QUEUE and change the status of A to the waiting state (STATUS = 2).
- Step 3. Repeat Steps 4 and 5 until QUEUE is empty.
- Step 4. Remove the front vertex N of QUEUE. Process N, and set STATUS (N) = 3, the processed state.
- Step 5. Examine each neighbor J of N.
 - (a) If STATUS (J) = 1 (ready state), add J to the rear of QUEUE and reset STATUS (J) = 2 (waiting state).
 - (b) If STATUS (J) = 2 (waiting state) or STATUS (J) = 3 (processed state), ignore the vertex J.

[End of Step 3 loop.]

Step 6. Exit.

Example: Suppose the DFS Algorithm is applied to the graph in shown below, The vertices will be processed in the following order:

A, D, L, K, C, J, M, B

Vertex	Adjacency list
A	B, C, D
В	A
C	A, K
D	A, K, L
J	L, M
K	C, D, L
L	D, J, K
M	J

<u>Solⁿ</u>

STACK	Vertex
A	A
D, C, B	D
L, K, C, B	L
K, J, ₭, C, B	K
C, J, ₡, B	C
J, B	J
M, B	M
В	В
Ø	

Example: Suppose the BFS Algorithm is applied to the graph in shown below, The vertices will be processed in the following order:

A, B, C, D, K, L, J, M

Vertex	Adjacency list
A	B, C, D
В	A
C	A, K
D	A, K, L
J	L, M
K	C, D, L
L	D, J, K
M	J

<u>Solⁿ</u>

QUEUE	Vertex	
A	A	
D, C, B	В	
D, C	С	
D	D	
L, K	K	
L	L	
J	J	
M	M	
Ø		

