第14讲

综合测试

一、选择题 本题共 6 小题,每小题 4 分,共 24 分

- 1. $-\frac{1}{2}$ 的相反数是 ().

 - A. $\frac{1}{2}$ B. $-\frac{1}{2}$ C. 2 D. -2

- 2. $\sqrt{16}$ 的平方根是 ().

- A. 4 B. -4 C. ±4 D. ±2
- 3. 已知a、b、c 在数轴上位置如图,则 $\left|a+b\right|+\left|a+c\right|-\left|b-c\right|=$ ().

- A. 0 B. 2a + 2b C. 2b 2c D. 2a + 2c

- 4. $\frac{4\pi x^2 y^4}{9}$ 的系数与次数分别为().

- A. $\frac{4}{9}$, 7 B. $\frac{4}{9}\pi$, 6 C. 4π , 6 D. $\frac{4}{9}\pi$, 4
- 5. 下列式子中, 计算正确的是().
 - A. $2a^2 + 2b^2 = 2a^2b^2$ B. $2a^2 \cdot 2b^2 = 2a^2b^2$

- C. $2a^2 \cdot 3a^3 = 6a^5$ D. $2a^2 \cdot 3a^3 = 6a^6$

- 已知 a 是给定的整数, 记 F(x) = a x + |x a|, 若 $F(1) + F(2) + \cdots + F(2018) = 56$, 则a的值为().
 - A. 6 B. 7
- C. 8
- D. 9

本题共6小题,每小题4分,共24分

- 7. 比较大小: $\frac{\sqrt{15}-1}{3}$ _____1(填写">"或"<").
- 若代数式 $3a^{x+7}b^4$ 与代数式 $-a^4b^{2y}$ 是同类项,则 x^y 的值是 .
- 10. 计算: (a+2b-3)(a-2b-3)=_____.
- 11. 已知方程 $(m-2)x^{|m|-1}=3$ 是关于x的一元一次方程,则m的值为_____.

12. a是不为1的有理数,我们把 $\frac{1}{1-a}$ 称为a的差倒数. 如:2的差倒数是 $\frac{1}{1-2}=-1$, -1的差倒数是 $\frac{1}{1-(-1)} = \frac{1}{2}$. 已知 $a_1 = -\frac{1}{3}$, a_2 是 a_1 的差倒数, a_3 是 a_2 的差倒数,

 a_4 是 a_3 的差倒数,…,依此类推,则 a_{2011} =_____.

三、解答题

本题共 8 小题,13~18 每小题 6 分,19、20 每小题 8 分,共 52 分

13. 计算:
$$-1 - \left[(2-3)^2 - \left(1 - 0.5 \times \frac{1}{3} \right) \right] \times \left[12 - \left(-3 \right)^2 \right]$$
.

14.
$$1\frac{1}{101} - 2\frac{2}{101} + 3\frac{3}{101} - 4\frac{4}{101} + \dots + 99\frac{99}{101} - 100\frac{100}{101}$$
.

15. 先化简,再求值: $\left[(a-2b)^2 - (a-4b)(3a-b) \right] \div (2a)$,其中 a 是 27 的立方根,b 是 4 的算术平方根.

学习数学,需要一颗平静的心

16. 已知代数式 $ax^3 + bx + c$,当 x = 0 时的值为 2 ;当 x = 3 时的值为 1 ;求当 x = -3 时,代数式的值.

17. 解方程:
$$\frac{5x+4}{3} + \frac{x-1}{4} = 2 - \frac{5x-5}{12}$$
.

18. 解方程组:

$$\begin{cases} x + 2y + 3z = 5 \\ 2x + 3y + 6z = 9 \\ 5x + 3y + 9z = 15 \end{cases}$$

19. 解不等式组:
$$\begin{cases} 2x-3(x-2) \ge 4 \\ \frac{2x-1}{5} < \frac{x+1}{2} \end{cases}$$
 , 并求其非负整数解.

20. 如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.

- (1) 可求得 $x = ____$,第 2017 个格子中的数为_____.
- (2) 判断:前m个格子中所填整数之和是否可能为2018?若能,求出m的值,若不能,请说明理由.

四、附加题 本题共 2 小题, 每小题 10 分, 共 20 分

21. 如图,是一个"有理数转换器"(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器).

- (1) 当小明输入3,-4, $\frac{5}{9}$,-201这四个数时,这四次输出的结果分别是.
- (2) 你认为当输入什么数时, 其输出结果是0.
- (3) 你认为这个"有理数转换器"不可能输出什么数.
- (4) 有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的数是什么数.

- 22. 已知数轴上的点 A 和点 B 之间的距离为 28 个单位长度,点 A 在原点的左边,距离原点 8 个单位长度,点 B 在原点的右边.
 - (1) 求A、B两点所对应的数.
 - (2) 数轴上点 A 以每秒1个单位长度出发向左运动,同时点 B 以每秒3个单位长度的速度向左运动,在点 C 处追上了点 A ,求 C 点对应的数.
 - (3) 已知在数轴上点 M 从点 A 出发向右运动,速度为每秒1个单位长度,同时点 N 从点 B 出发向右运动,速度为每秒2个单位长度,设线段 NO 的中点为 P (O 为原点),在运动的过程中线段 PO-AM 的值是否变化?若不变,求其值:若变化,请说明理由.

