2016-02-08 9:00 -0500

Definition (Closed sets)

Let X be a space. We say that A is closed if X-A is open.

Definition (Closed sets)

Let X be a space. We say that A is closed if X - A is open.

Remark

Unless we explicitly say otherwise, ${\mathbb R}$ will denote the space of the real numbers with usual topology.

Definition (Closed sets)

Let X be a space. We say that A is closed if X - A is open.

Remark

Unless we explicitly say otherwise, $\mathbb R$ will denote the space of the real numbers with usual topology.

Definition (Closed sets)

Let X be a space. We say that A is closed if X - A is open.

Remark

Unless we explicitly say otherwise, \mathbb{R} will denote the space of the real numbers with usual topology.

Examples

• Any interval of the form $[a, b] \subseteq X$, where X has the order topology, is closed.

Definition (Closed sets)

Let X be a space. We say that A is closed if X - A is open.

Remark

Unless we explicitly say otherwise, \mathbb{R} will denote the space of the real numbers with usual topology.

- Any interval of the form $[a, b] \subseteq X$, where X has the order topology, is closed.
- The set $[0,1) \subseteq \mathbb{R}$ is not closed (nor open).

Definition (Closed sets)

Let X be a space. We say that A is closed if X - A is open.

Remark

Unless we explicitly say otherwise, \mathbb{R} will denote the space of the real numbers with usual topology.

- Any interval of the form $[a, b] \subseteq X$, where X has the order topology, is closed.
- The set $[0,1) \subseteq \mathbb{R}$ is not closed (nor open).
- In a discrete topology, any set is closed.

Definition (Closed sets)

Let X be a space. We say that A is closed if X - A is open.

Remark

Unless we explicitly say otherwise, \mathbb{R} will denote the space of the real numbers with usual topology.

- Any interval of the form $[a, b] \subseteq X$, where X has the order topology, is closed.
- The set $[0,1) \subseteq \mathbb{R}$ is not closed (nor open).
- In a discrete topology, any set is closed.
- In a cofinite topology on X, exactly X and their finite subsets are closed.

Theorem (Properties of closed sets) Let X be a space. Then:

Theorem (Properties of closed sets) Let X be a space. Then: (C1) \emptyset and X are closed.

Theorem (Properties of closed sets)

Let X be a space. Then:

(C1) ∅ and X are closed.

(C2) If A_{α} is closed for each $\alpha \in I$, then $\bigcap_{\alpha \in I} A_{\alpha}$ is closed.

Theorem (Properties of closed sets)

Let X be a space. Then:

- (C1) \emptyset and X are closed.
- **(C2)** If A_{α} is closed for each $\alpha \in I$, then $\bigcap_{\alpha \in I} A_{\alpha}$ is closed.
- **(C3)** If A_1 , A_2 are closed, then $A_1 \cup A_2$ is closed.

Theorem (Properties of closed sets)

Let X be a space. Then:

- (C1) Ø and X are closed.
- **(C2)** If A_{α} is closed for each $\alpha \in I$, then $\bigcap_{\alpha \in I} A_{\alpha}$ is closed.
- **(C3)** If A_1 , A_2 are closed, then $A_1 \cup A_2$ is closed.

Proof.

Exercise.

Theorem (Properties of closed sets)

Let X be a space. Then:

- (C1) \emptyset and X are closed.
- **(C2)** If A_{α} is closed for each $\alpha \in I$, then $\bigcap_{\alpha \in I} A_{\alpha}$ is closed.
- **(C3)** If A_1 , A_2 are closed, then $A_1 \cup A_2$ is closed.

Proof.

Exercise.

Remark

We can prove that if a collection of subsets of \boldsymbol{X} satisfies the previous conditions, then their complements form a topology.

Theorem (Closed in subspaces)

Let Y be a subspace of X. Then $A \subseteq Y$ is closed in Y if and only if there is $C \subseteq X$ closed in X such that $A = C \cap Y$.

Theorem (Closed in subspaces)

Let Y be a subspace of X. Then $A \subseteq Y$ is closed in Y if and only if there is $C \subseteq X$ closed in X such that $A = C \cap Y$.

Proof

Theorem (Closed in subspaces)

Let Y be a subspace of X. Then $A \subseteq Y$ is closed in Y if and only if there is $C \subseteq X$ closed in X such that $A = C \cap Y$.

Proof

• Let A closed in Y. Then Y - A is open in Y, so there is U open in X with $Y - A = Y \cap U$.

Theorem (Closed in subspaces)

Let Y be a subspace of X. Then $A \subseteq Y$ is closed in Y if and only if there is $C \subseteq X$ closed in X such that $A = C \cap Y$.

Proof

- Let A closed in Y. Then Y A is open in Y, so there is U open in X with $Y A = Y \cap U$.
- We prove then that $A = (X U) \cap Y$.

Theorem (Closed in subspaces)

Let Y be a subspace of X. Then $A \subseteq Y$ is closed in Y if and only if there is $C \subseteq X$ closed in X such that $A = C \cap Y$.

Proof

- Let A closed in Y. Then Y A is open in Y, so there is U open in X with $Y A = Y \cap U$.
- We prove then that $A = (X U) \cap Y$.
- ullet The proof of the converse is an exercise. \Box

Theorem (Closed in subspaces)

Let Y be a subspace of X. Then $A \subseteq Y$ is closed in Y if and only if there is $C \subseteq X$ closed in X such that $A = C \cap Y$.

Proof

- Let A closed in Y. Then Y A is open in Y, so there is U open in X with $Y A = Y \cap U$.
- We prove then that $A = (X U) \cap Y$.
- ullet The proof of the converse is an exercise. \Box

Theorem (Closed in closed)

Let Y be a subspace of X. If Y is closed in X and $A \subseteq Y$ is closed in Y, then A is closed in X.

Links

• Closed set - Wikipedia, the free encyclopedia

Exercises

• Is there a nondiscrete space where the open sets are the same as the closed sets?

Exercises

- Is there a nondiscrete space where the open sets are the same as the closed sets?
- Show that if A is closed in X and B is closed in Y, then A x B is closed in X x Y.