Section 3.3 Part #1

Proof Time!

The derivative of a constant... f(x) = c

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{C - C}{h} = \lim_{h \to 0} \frac{C}{h} = C$$

Power Rule for Positive Integers:

$$f(x) = x^n$$
, ne N

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0}$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + n(x^n + n(x^n + n(x^n + x^n + x^n$$

Constant Multiple
$$f(x) = c \cdot u(x)$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0}$$

$$\lim_{h\to 0} C u(x+h) - C u(x)$$

$$= \lim_{h\to 0} C \cdot (u(x+h) - u(x))$$

$$= \lim_{h\to 0} C \cdot \lim_{h\to 0} u(x+h) - u(x)$$

$$= \lim_{h\to 0} C \cdot \lim_{h\to 0} u(x+h) - u(x)$$

$$f(x) = u(x) \pm v(x)$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0}$$

Sum
$$f(x) = u(x) + V(x)$$

 $f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(h)}{h}$
 $f'(x) = \lim_{h \to \infty} \frac{u(x+h) + V(x+h) - [u(x) + u(x)]}{h}$

=
$$\lim_{h\to 0} \frac{u(x+h) + u(x) - u(x)}{h}$$

= $\lim_{h\to 0} \frac{u(x+h) - u(x)}{h} + \lim_{h\to 0} \frac{u(x+h) - u(x)}{h}$

$$= u'(x) + v'(x)$$

NAME	LAW
Constant Rule	$\frac{d}{dx}(c)=0$
Power Rule	$\frac{d}{dx}(x^n) = nx^{n-1}$
Constant Multiple Rule	$\frac{d}{dx}(cu) = c\frac{du}{dx}$
Sum Rule	$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$
Difference Rule	$\frac{d}{dx}(u-v) = \frac{du}{dx} - \frac{dv}{dx}$

Find the derivative of the following functions:

a)
$$f(x) = x^5 - 3x^4 + 7x^2 - 8$$

$$f(x) = 5x^{4} - (3)(4)x^{3} + 7(2)x^{4} + 0$$
$$= 5x^{4} - 12x^{3} + 14x$$

b)
$$f(x) = x^3 + 2x^2 - \frac{8x}{5} + 3$$

Where does $y = x^3 - 2x^2 - 10x + 5$ have horizontal tangents?

