

RAPPORT DE TRAVAUX PRATIQUE CHIMIE REACTION D'OXYDOREDUCTION

MEMBRES DU GROUPE

EVALUATEUR

. DJOSSOU Kokou Armand Light

M. FAMBI

- . DOH Kodzo Ben
- . SEGUE Yao Louis Freeman

DATE: 01/12/2024

Sommaire

- INTRODUCTION
- EXPERIENCE 1
- EXPERIENCE 2
- EXPERIENCE 3
- EXPERIENCE 4
- EXPERIENCE 5
- EXPERIENCE 6
- CONCLUSION

INTRODUCTION

Par définition une réaction d'oxydoréduction est une réaction mettant en présence un oxydant et un réducteur et conduisant à des transferts d'électrons . Par ces séances de travaux pratiques nous avons pu mettre en évidence plusieurs réactifs pour observer les réactions d'oxydations et de réduction .

1. EXPERIENCE 1 : Réduction des ions du cuivre par le fer métallique

1.1. Réactifs

- . Morceau de fil de fer
- . Solution de sulfate de cuivre (CuSO4)

1.2. Manipulation

Mettons dans une éprouvette un morceau de fil de fer et ajoutons 2 ml d'une solution 0.5N de sulfate de cuivre

1.3. Observation

La solution de sulfate de cuivre a progressivement perdu sa couleur bleue et le fil de fer devient rougeatre (depot des ions cuivre sur le metal fer)

1.4. Réaction

. Fe
$$\rightarrow$$
 Fe2+ + 2 e −

. Cu2+ + 2
$$e$$
− \rightarrow Cu

1.5. Transfert d'électron

- Le fer métallique (Fe) cède deux électrons pour devenir
 l'ion fer Fe2+
- . L'ion Cu2+ capte deux électrons pour devenir du cuivre métallique

1.6. Réaction Globale

$$Cu2+ + Fe \rightarrow Cu + Fe2+$$

2. EXPERIENCE 2: Oxydation des ions de fer Fe2+ par le permanganate de potassium KMnO4

2.1. Réactifs

- . solution de permanganate de potassium
- . solution d'acide nitrique
- . solution de sulfate de fer

2.2. Manipulation

- Versons dans une éprouvette 2 ml d'une solution 0.001N de KMnO4;
- Ajoutons quelques 2 à 3 gouttes de solution 2N de l'acide sulfurique;
- Ajoutons goutte par goutte une solution 0.5N de sulfate de fer 2 jusqu'à la décoloration

2.3. Observation

La solution violette de permanganate de potassium se décolore progressivement avec l'ajout de la solution de sulfate de fer

2.4. Réactions

MnO4- + 8H+ + 5
$$e$$
- \rightarrow Mn2+ + 4H2O
Fe2+ \rightarrow Fe3+ + e -

2.5. Transfert d'électrons

En milieu acide, l'ion permanganate (MnO4-) est réduit en ion manganèse Mn2+ L'ion Fe2+ est oxydé en ion Fe3+

2.6. Réaction Globale

$$MnO4- + 5Fe2+ + 8H+ \rightarrow Mn2+ + 5Fe3+ + 4H2O$$

- **3. EXPERIENCE 3** : Réduction de l'acide nitrique par le cuivre
- 3.1. Réactifs
- . Fil de cuivre
- . Solution d'acide nitrique
- 3.2. Manipulation

Mettre dans une éprouvette un morceau de fil de cuivre et ajouter 2 ml de solution de l'acide nitrique.

3.3. Observation

On note la formation de bulles de gaz et une dissolution progressive du cuivre dans la solution d'acide nitrique. On réalise aussi la formation d'une solution bleue a la fin

3.4. Réactions

Cu
$$\rightarrow$$
 Cu2+ + 2 e - NO3- + 2H+ + e - \rightarrow NO2 + H2O

3.5. Transfert d'électrons

- Le cuivre libère deux électrons pour se transformer en ions cuivre (Cu2+);

- En présence des ions hydrogène, les ions nitrate (NO3-) libèrent un électron pour former l'oxyde d'azote

3.6. Réaction Globale

$$Cu + 4HNO3 \rightarrow Cu(NO3)2 + 2NO2 + 2H2O$$

4. EXPERIENCE 4 : Réaction d'auto oxydoréduction

4.1. Réactifs

- cristaux d'iode
- solution de soude (NaOH)
- solution d'acide sulfurique

4.2. Manipulation

- mettre dans une éprouvette 2 à 3 cristaux d'iode
- ajouter dans un premier temps 2 ml de la solution de soude
- ensuite ajouter à la solution obtenue 2 ml de solution 2N de l'acide sulfurique

4.3. Observation

En mettant de la solution de NaOH sur les cristaux d'iode, il y a eu dissolution des cristaux d'iode et formation d'une solution de couleur brunatre.

Avec l'ajout de l'acide sulfurique on observe une coloration jaune avec formation et depot d'iode

4.4. Réactions

$$12 + 2e^{-} \rightarrow 2I^{-}$$

 $12 + 60H^{-} \rightarrow 103^{-} + 6e^{-} + 3H20$

4.5. Transfert d'électron

- Une partie des molécules d'iode (12) est réduite en ions iodure (I-) en perdant deux électrons
- Une autre partie des molécules d'iode (I2) est oxydée en ion iodate (IO3-) en captant six molécules d'ions OH-
- 4.6. Réaction globales

$$312 + 60H \rightarrow 5I - + 103 - + 3H20$$

- **5. EXPERIENCE 5** : Oxydation de l'alcool éthylique par le permanganate de potassium en milieu acide et en milieu basique
- 5.1. En milieu acide
- 5.1.1. Réactifs

- l'alcool éthylique
- solution de permanganate de potassium
- solution d'acide sulfurique

5.1.2. Manipulation

- mettons dans une éprouvette 1 ml de solution de permanganate de potassium
- ajoutons 1 ml de solution 2N de l'acide sulfurique
- ajoutons 2 ml d'alcool éthylique
- chauffons l'éprouvette

5.1.3. Observation

L'ajout de l'acide sulfurique à la solution de permanganate de potasium n'apporte pas de modification mais l'ajout de l'alcool éthylique a éclaircit la solution

Après chauffage, la solution devient incolore et dégage une odeur.

5.1.4. Réactions

C2H5OH + H2O
$$\rightarrow$$
 CH3COOH + 4 e - + 4H+ MnO4- + 8H+ + 5 e - \rightarrow Mn2+ + 4H2O

5.1.5. Transfert d'électron

En milieu acide, le permanganate (MnO4-) est réduit en ion manganèse (Mn2+) en captant 8 molécules d'ions H+

L'alcool éthylique est oxydé en acide acétique (CH3COOH).

5.1.6. Réaction globale

4 MnO4− + 5 C2H5OH + 12 H+ → 4 Mn2+ + 5 CH3COOH + 11 H2O

5.2.1: En milieu basique

5.2.1. Réactifs

- l'alcool éthylique
- solution de permanganate de potassium
- solution d soude

5.2.2. Manipulation

- mettons dans une éprouvette 1 ml de solution de permanganate de potassium
- ajoutons 1 ml de solution 2N de soude
- ajoutons 2 ml d'alcool éthylique

5.2.3. Observations

L'ajout de la soude au permanganate de potassium donne une coloration qui s'éclaircit avec l'ajout de l'alcool éthylique

5.2.4. Réactions

C2H5OH + 3OH
$$\rightarrow$$
 CH3COO $-$ + 4H2O + 4 $e-$ MnO4 $-$ + $e \rightarrow$ MnO42 $-$

5.2.5. Transfert d'électron

En milieu basique, le permanganate est réduit en ion manganate (MnO42-)

L'alcool éthylique est oxydé en acétate (CH3COO-).

5.2.6. Réaction globale

MnO4- + C2H5OH + 2OH-
$$\rightarrow$$
 MnO42- + CH3COO- + 2H2O

Conclusion