Komutativna algebra - 4. domača naloga

Benjamin Benčina, 27192018

7. april 2020

Nal. 1: Naj bo S multiplikativna množica v komutativnem kolobarju R.

- (a) Pokažimo, da za vsak ideal $I \triangleleft R$ velja enakost $\sqrt{(S^{-1}I)} = S^{-1}\sqrt{I}$. Inkluzija iz leve v desno je očitna. Element je $\frac{a}{s} \in \sqrt{(S^{-1}I)}$ natanko tedaj, ko obstaja tako naravno število n, da je $\left(\frac{a}{s}\right)^n \in S^{-1}I$. Ker pa je S multiplikativna množica in je $s^n \in S$, je to natanko tedaj, ko je $a^n \in I$, oziroma $a \in \sqrt{I}$. Imamo torej $\frac{a}{s} \in S^{-1}\sqrt{I}$. Obratno, naj bo $\frac{a}{s} \in S^{-1}\sqrt{I}$. To se zgodi natanko tedaj, ko obstaja neko naravno število n, da je $a^n \in I$. Vendar pa je S multiplikativna množica in od tod sledi, da je $\left(\frac{a}{s}\right)^n \in S^{-1}I$. Po definiciji je $\frac{a}{s} \in \sqrt{(S^{-1}I)}$.
- (b) Z indukcijo na število generatorjev bomo pokazali, da za poljuben končno generiran R-modul M velja $\operatorname{Ann}(S^{-1}M) = S^{-1}\operatorname{Ann} M$. Naj bo $M = (m_1)$ modul, generiran z enim elementom. Potem M izomorfen $R/\operatorname{Ann} M$ kot R-modul. Po posledici 5.14b iz predavanj lokalizacija spoštuje kvociente, torej iz prejšnje enačbe sledi

$$S^{-1}M \cong S^{-1}(R/\operatorname{Ann} M) \cong (S^{-1}R)/(S^{-1}\operatorname{Ann} M).$$

Potem pa je po definiciji anihilatorja $Ann(S^{-1}M) = S^{-1}Ann M$. Pred indukcijskim korakom moramo dokazati še nekaj stranskih trditev:

- Ann $(M + N) = \text{Ann } M \cap \text{Ann } N$: Vsak element $r \in R$, ki uniči elemente vsote modulov M + N uniči tudi elemente vsakega modula posebej, vsak element $r \in R$, ki uniči vsak elemente vsakega modula posebej, pa seveda uniči tudi elemente vsote.
- lokalizacija spoštuje vsote modulov: Posledica 5.14c iz predavanj.
- lokalizacija spoštuje preseke modulov, tj. $S^{-1}(M\cap N)=S^{-1}M\cap S^{-1}N$: Inkluzija iz leve v desno je očitna iz lasnosti preseka. Za inkluzijo iz desne v levo naj velja $\frac{y}{s}=\frac{z}{t}$ za neke elemente $y\in M, z\in N$ in $s,t\in S$. Potem obstaja element $u\in S$, da velja u(ty-sz)=0, torej $w=uty=usz\in M\cap N$. Od tod sledi, da je $\frac{y}{s}=\frac{w}{stu}\in S^{-1}(M\cap N)$. Torej desna inkluzija res velja.

Končno nadaljujemo z indukcijskim korakom. Naj trditev velja za vse končno generirane module, ki imajo število generatorjev manjše ali enako n in naj bo $M=(m_1,m_2,\ldots,m_{n+1})$ modul, generiran z n+1 elementi. Potem je $M=M_0+N$, kjer je $M_0=(m_1,\ldots,m_n)$ in $N=(m_{n+1})$. Z upoštevanjem zgornjih ugotovitev računamo

$$\begin{split} S^{-1} \operatorname{Ann} M &= S^{-1} \operatorname{Ann} (M_0 + N) = S^{-1} (\operatorname{Ann} M_0 \cap \operatorname{Ann} N) \\ &= S^{-1} \operatorname{Ann} M_0 \cap S^{-1} \operatorname{Ann} N = \operatorname{Ann} (S^{-1} M_0) \cap \operatorname{Ann} (S^{-1} N) \\ &= \operatorname{Ann} (S^{-1} M_0 + S^{-1} N) = \operatorname{Ann} (S^{-1} (M_0 + N)) \\ &= \operatorname{Ann} (S^{-1} M) \end{split}$$

<u>Nal. 2:</u> Pokažimo, da je $l(X \otimes Y) \leq l(X)l(Y)$. Ločimo nekaj posebnih primerov:

• Eden ali oba od modulov X,Y imata dolžino 0. Brez škode za splošnost l(X)=0. Potem po definiciji X=0 in $0\otimes Y=0$. Enačba velja, saj $0\leq 0$.

- Če nobeden od modulov X, Y nima dolžine 0 in katerikoli od njiju ima dolžino ∞ , potem enačba avtomatično velja, saj je v posplošenem smislu karkoli manjše ali enako ∞ , tudi ∞ .
- Če ima $X \otimes Y$ dolžino 0, enačba avtomatično velja.
- To je prvi netrivialni primer. Recimo, da $l(X), l(Y) < \infty$. Trditev bomo dokazali z indukcijo na dolžino modulov. Najprej naredimo indukcijski korak, da vidimo, kaj bo začetni primer, saj imamo dva modula.

Oglejmo si poljubno eksaktno zaporedje

$$0 \to X' \to X \to X'' \to 0.$$

Za X' in X'' si lahko izberemo na primer jedro in sliko poljubnega neničelnega in neinjektivnega homomorfizma kolobarjev φ z domeno X. Po posledici 4.35 iz predavanj vemo, da je tenzoriranje desno-eksaktno, torej

$$X' \otimes Y \to X \otimes Y \to x'' \otimes Y \to 0.$$

Po aditivnosti dolžine l je l(X) = l(X') + l(X''), konkretno je l(X'), l(X'') < l(X). Po indukciji (na dolžino X) je $l(X' \otimes Y) \leq l(X')l(Y)$ in $l(X'' \otimes Y) \leq l(X'')l(Y)$. Na levi strani zaporedja ni 0, torej $X' \otimes Y \to X \otimes Y$ v splošnem ni injektivna, torej

$$l(X \otimes Y) \le l(X' \otimes Y) + l(X'' \otimes Y) \le l(X')l(Y) + l(X'')l(Y) = (l(X') + l(X''))l(Y) = l(X)l(Y).$$

Opazimo, da enak indukcijski korak deluje tudi, če začnemo z modulom Y. Naš osnovni primer je torej l(X) = l(Y) = 1. Naj bo l(X) = l(Y) = 1, z drugimi besedami sta X in Y preprosta modula. Najprej trdimo, da je vsak preprost R-modul izomorfen R/M, kjer je M maksimalen ideal. Res, izberimo poljuben neničelen element $m \in M$ in si oglejmo homomorfizem modulov $\phi \colon R \to M$ s predpisom $r \to mr$. Upoštevamo izrek o izomorfizmih za module. Ker je im ϕ podmodul v M in je M preprost, je $im\phi = M$ (očitno ϕ ni ničelen homomorfizem). Po izreku o izomorfizmu je $R/\ker \phi \cong \operatorname{im} \phi = M$. Po korespondenčnem izreku za podmodule ni nobenega podmodula (tukaj ideala) med ker ϕ in R, torej je ker ϕ maksimalen ideal.

Od tod sledi, da je $X \cong R/M$ in $Y \cong R/N$ za maksimalna ideala M in N. Sedaj trdimo, da je $R/M \otimes_R /N \cong R/(M+N)$. Dokazali bomo s konstrukcijo izomorfizma. Naj bo na osnovnih tenzorjih definirana preslikava modulov $\varphi \colon R/M \otimes_R R/N \to R/(M+N)$ s predpisom

$$(r+M)\otimes (q+N)\mapsto rq+M+N.$$

Predpis je tako definiran, ker lahko q iz desnega oklepaja prestavimo v levega. Težava je le dobra definiranost preslikave. Zato naj bo r+M=r'+M in q+N=q'+N. Zanima nas, ali rq+M+N=r'q'+M+N. Računamo

$$rq - r'q' + M + N = rq - r'q + r'q - r'q' + M + N = (r - r')q + r'(q - q') + M + N = 0 + M + N.$$

To preslikavo razširimo do homomorfizma modulov. Njej inverz je očitno $rq + M + N \mapsto (rq + M) \otimes (1 + N)$.

Imamo torej $X \otimes Y \cong R/M \otimes R/N \cong R/(M+N)$. Upoštevamo, da sta M in N maksimalna ideala, ki sta seveda vsebovana v M+N, torej $M+N \in \{M,N,R\}$, od tod pa sledi $X \otimes Y \in \{X,Y,0\}$. Želena neenačba sledi.

• Edini preostali primer je $l(X \otimes Y) = \infty$ in $0 < l(X), l(Y) < \infty$, ki pa je v protislovju s prejšnjo točko, saj smo posredno dokazali implikacijo $l(X), l(Y) < \infty \implies l(X \otimes Y) \le l(X)l(Y) < \infty$.