Exploring data

Rote analysis vs. snooping

Spurious correlations

There's a whole website about this

The best you can

► Identify scientific questions

- Identify scientific questions
- ▶ Distinguish between exploratory and confirmatory analysis

- Identify scientific questions
- Distinguish between exploratory and confirmatory analysis
- ► Pre-register studies when possible

- Identify scientific questions
- Distinguish between exploratory and confirmatory analysis
- Pre-register studies when possible
- ► Keep an exploration and analysis journal

- Identify scientific questions
- Distinguish between exploratory and confirmatory analysis
- Pre-register studies when possible
- Keep an exploration and analysis journal
- ► Explore predictors and responses separately at first

- Identify scientific questions
- Distinguish between exploratory and confirmatory analysis
- Pre-register studies when possible
- Keep an exploration and analysis journal
- Explore predictors and responses separately at first

Outline

Individual variables

Bivariate data

Multiple dimensions

Multiple factors

► Look at location and shape

- ► Look at location and shape
- ► Maybe with different sets of grouping variables

- ► Look at location and shape
- ► Maybe with different sets of grouping variables
- ▶ Contrasts

- ► Look at location and shape
- Maybe with different sets of grouping variables
- Contrasts
 - ► Parametric vs. non-parametric

- ► Look at location and shape
- ► Maybe with different sets of grouping variables
- Contrasts
 - Parametric vs. non-parametric
 - ► Exploratory vs. diagnostic

- ► Look at location and shape
- Maybe with different sets of grouping variables
- Contrasts
 - Parametric vs. non-parametric
 - Exploratory vs. diagnostic
 - ► Data vs. inference

- ► Look at location and shape
- Maybe with different sets of grouping variables
- Contrasts
 - Parametric vs. non-parametric
 - Exploratory vs. diagnostic
 - Data vs. inference

Means and standard errors

Means and standard deviations

Means and standard deviations

Means and standard deviations (repeat)

Next steps?

Non-parametric (repeat)

Non-parametric (repeat)

Bike example

Standard errors

Standard errors

Standard deviations

Data shape and weight

► In general:

- ► In general:
 - ► If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)

- ► In general:
 - ► If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ▶ If not, just embrace "logs" (log10 particles per ul is from 3–8)

- ► In general:
 - ► If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ▶ If not, just embrace "logs" (log10 particles per ul is from 3–8)
 - ▶ But remember these are not physical values

- ► In general:
 - ► If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ▶ If not, just embrace "logs" (log10 particles per ul is from 3–8)
 - But remember these are not physical values
- ► I love natural logs, but not as axis values

Log scales

- ► In general:
 - ▶ If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ▶ If not, just embrace "logs" (log10 particles per ul is from 3–8)
 - But remember these are not physical values
- I love natural logs, but not as axis values
 - Except to represent proportional difference!

Log scales

- ► In general:
 - ▶ If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ▶ If not, just embrace "logs" (log10 particles per ul is from 3–8)
 - But remember these are not physical values
- ▶ I love natural logs, but not as axis values
 - Except to represent proportional difference!

Outline

Individual variables

Bivariate data

Multiple dimensions

Multiple factors

► Banking is a real thing

- ► Banking is a real thing
 - ► Even though many examples are bogus

- Banking is a real thing
 - Even though many examples are bogus
- ► Since the point is make patterns visually clear, trial-and-error is usually as good as algorithm

- Banking is a real thing
 - Even though many examples are bogus
- Since the point is make patterns visually clear, trial-and-error is usually as good as algorithm
 - ► But it is worth considering

- Banking is a real thing
 - Even though many examples are bogus
- Since the point is make patterns visually clear, trial-and-error is usually as good as algorithm
 - But it is worth considering

Sunspots

Smoking data

Smoking data

► Depending on how many data points you have, scatter plots may indicate relationships clearly

- Depending on how many data points you have, scatter plots may indicate relationships clearly
- ► They can often be improved with trend interpolations

- Depending on how many data points you have, scatter plots may indicate relationships clearly
- ▶ They can often be improved with trend interpolations
 - ► Interpolations may be particularly good for discrete responses (count or true-false)

- Depending on how many data points you have, scatter plots may indicate relationships clearly
- ▶ They can often be improved with trend interpolations
 - Interpolations may be particularly good for discrete responses (count or true-false)

Seeing the density better

Seeing the density worse

Maybe fixed

A loess trend line

Two loess trend lines

Many loess trend lines

► Local smoother (locally flat, linear or quadratic)

- ► Local smoother (locally flat, linear or quadratic)
- ► Neighborhood size given by alpha

- ► Local smoother (locally flat, linear or quadratic)
- ► Neighborhood size given by alpha
 - ▶ Points in neighborhood are weighted by distance

- ► Local smoother (locally flat, linear or **quadratic**)
- Neighborhood size given by alpha
 - Points in neighborhood are weighted by distance
- ► Check help function for loess

- ► Local smoother (locally flat, linear or **quadratic**)
- Neighborhood size given by alpha
 - Points in neighborhood are weighted by distance
- Check help function for loess

► Loess is local, but not robust

- ► Loess is local, but not robust
 - ► Uses least squares, can respond strongly to outliers

- ► Loess is local, but not robust
 - Uses least squares, can respond strongly to outliers
- ▶ R is has a very flexible function called rlm to do robust fitting

- ► Loess is local, but not robust
 - Uses least squares, can respond strongly to outliers
- ▶ R is has a very flexible function called rlm to do robust fitting
 - ► Not local

- ► Loess is local, but not robust
 - Uses least squares, can respond strongly to outliers
- ▶ R is has a very flexible function called rlm to do robust fitting
 - ► Not local
 - ▶ But can be combined with splines

- ► Loess is local, but not robust
 - Uses least squares, can respond strongly to outliers
- ▶ R is has a very flexible function called rlm to do robust fitting
 - Not local
 - But can be combined with splines

Fitting comparison

Density plots

► Contours

Density plots

- Contours
 - ► use _density_2d() to fit a two-dimensional kernel to the density

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the density
- ▶ hexes

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the
 density
- hexes
 - use geom_hex to plot densities using hexes

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the density
- hexes
 - use geom_hex to plot densities using hexes
 - this can also be done using rectangles for data with more discrete values

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the density
- hexes
 - use geom_hex to plot densities using hexes
 - this can also be done using rectangles for data with more discrete values

Contours

Contours

Contours

Hexes

Hexes

► Use clear gradients

- Use clear gradients
- ► If zero has a physical meaning (like density), go in just one direction

- Use clear gradients
- ► If zero has a physical meaning (like density), go in just one direction
 - e.g., white to blue, white to red

- Use clear gradients
- If zero has a physical meaning (like density), go in just one direction
 - e.g., white to blue, white to red
 - ► If the map contrasts with a background, zero should match the background

- Use clear gradients
- ▶ If zero has a physical meaning (like density), go in just one direction
 - e.g., white to blue, white to red
 - ▶ If the map contrasts with a background, zero should match the background
- ► If there's a natural *middle*, you can use blue to white to red, or something similar

- Use clear gradients
- ▶ If zero has a physical meaning (like density), go in just one direction
 - e.g., white to blue, white to red
 - If the map contrasts with a background, zero should match the background
- ► If there's a natural *middle*, you can use blue to white to red, or something similar

Outline

Individual variables

Bivariate data

Multiple dimensions

Multiple dimensions

► Three dimensional data is a lot like two-d with densities: contour plots are good

Multiple dimensions

► Three dimensional data is a lot like two-d with densities: contour plots are good

► Pairs plots: pairs, ggpairs

Multiple dimensions

- ► Three dimensional data is a lot like two-d with densities: contour plots are good
- ▶ Pairs plots: pairs, ggpairs

Pairs example

Outline

Individual variables

Bivariate data

Multiple dimensions

► Use boxplots and violin plots

- ► Use boxplots and violin plots
- ► Make use of facet_wrap and facetgrid

- ► Use boxplots and violin plots
- Make use of facet_wrap and facetgrid
- ► Use different combinations (e.g., try plots with the same info, but different factors on the axes vs. in the colors or the facets)

- ► Use boxplots and violin plots
- Make use of facet_wrap and facetgrid
- Use different combinations (e.g., try plots with the same info, but different factors on the axes vs. in the colors or the facets)