Guía N°6: Problemas de Valores Iniciales Parte III

Cálculo Numérico 521230, 2022-2

Los problemas a resolver con ayuda del computador han sido marcados con (C).

1. (C) Considere las siguientes ecuaciones diferenciales de orden superior.

a) $\begin{cases} y''(x) + 2y'(x) - y(x) &= 2 + 4x - x^2, \quad x \in [0, 1] \\ y(0) &= 0, \quad \text{cuya solución exacta es } y(x) = x^2. \end{cases}$ b) $\begin{cases} y'''(t) - 2y''(t) + ty(t) &= te^{2t}, \quad t \in [0, 1] \\ y(0) &= 1, \quad \text{cuya solución exacta es } y(t) = e^{2t}. \\ y'(0) &= 2, \quad y''(0) &= 4 \end{cases}$ cuya solución exacta es $y(t) = e^{2t}.$

Para cada ecuación realice lo siguiente:

- Redúzcala a un sistema de ecuaciones de primer orden.
- Aproxime la solución del sistema obtenido utilizando el método de **Euler Explícito** con distintos tamaños de paso. ¿Con cuál de ellos es el error en 1 menor o igual a 10⁻⁴?.
- Aproxime la solución del sistema obtenido utilizando el método de **Euler Implícito** con distintos tamaños de paso. ¿Con cuál de ellos es el error en 1 menor o igual a 10⁻⁴?.
- 2. (C) Programe el método de Runge-Kutta RK_{44} :

$$\begin{split} \frac{\text{Algoritmo (RK4)}}{\text{Para } i = 0, \dots, N-1} \\ x_i &= a+ih \\ k_1 &= hf(x_i, y_i) \\ k_2 &= hf(x_i + \frac{h}{2}, y_i + \frac{1}{2}k_1) \\ k_3 &= hf(x_i + \frac{h}{2}, y_i + \frac{1}{2}k_2) \\ k_4 &= hf(x_i + h, y_i + k_3) \\ y_{i+1} &= y_i + \frac{1}{6}[k_1 + 2(k_2 + k_3) + k_4] \\ \text{fin } i. \end{split}$$

FIGURA 1. Algoritmo de Runge-Kutta RK_{44} .

1

Utilice el método de Runge-Kutta RK_{44} programado para resolver los siguientes PVIs del. Graficar la solución exacta y la aproximación obtenida.

a) y'(x) = 2x, y(0) = 0, $x \in [0, 1]$, cuya solución exacta es $y(x) = x^2$, b) $y'(x) = -\sin(x)$, y(0) = 1, $x \in [0, \pi]$, cuya solución exacta es $y(x) = \cos(x)$, c) $y'(t) = 1 + \frac{y}{t}$, y(1) = 1, $t \in [1, 6]$, cuya solución exacta es $y(t) = t(1 + \ln(t))$.