МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Прикладная математика и информатика»

ОТЧЕТ

по лабораторной работе №5

Тема:

«Разные способы сортировки массивов»

Выполнил: студент группы 3824Б1ПМ4
Пышкина А.С.
подпись
Преподаватель:
-
Преподаватель по предмету
«Языки и методы программирования»
А.Е. Куклин
подпись

Содержание:

Введение	2
Постановка задачи	2
Описание алгоритмов	2-3
Описание программной реализации	3-4
Результаты экспериментов	5
Заключение	5-6
Литература	6
Приложение	6

Введение

Сортировка представляет собой одну из ключевых задач в сфере алгоритмов и структур данных. Этот процесс включает в себя организование элементов в массиве или списке согласно определённому критерию, например, в порядке возрастания или убывания. Эффективные алгоритмы сортировки играют значимую роль в программировании, так как они находят применение в различных областях, включая базы данных, поисковые системы и системы обработки информации.

Я рассматриваю три изученных метода сортировки:

- 1. Сортировка «пузырьком» (BubbleSort)
- 2. Сортировка «выбором» (SelectionSort)
- 3. Сортировка «вставками» (InsertionSort)

Постановка задачи

Задача: разработать программу, которая сортирует заранее созданный массив с использованием трех различных алгоритмов: пузырьковой сортировки, сортировки выбором и сортировки вставками. После выполнения сортировки программа должна предоставить информацию о времени сортировки массива. Целью является определить, какой из методов сортировки наиболее эффективен в зависимости от размера обрабатываемого массива.

Описание алгоритмов

1. Сортировка пузырьком (BubbleSort)

Пузырьковая сортировка - это простой алгоритм сортировки, который повторно сканирует массив, сравнивает соседние элементы изменяет их, если они расположены в неправильном порядке.

В случае неправильного порядка элементов сортировка происходит наоборот. Тогда можно сказать, что массив отсортирован.

Порядок действий:

- 1) Берем первый элемент массива и сравниваем его со следующим.
- 2) Если наш элемент больше, то меняем их местами.
- 3) Делаем так же и с последующими элементами.

2. Сортировка выбором (SelectionSort)

Сортировка выбором — это алгоритм сортировки массива путем нахождения наименьшего элемента из неотсортированной части массива и перемещения его в начало отсортированной части. Он находит элемент

в неотсортированной части массива и перемещает его в начало отсортированной части. Этот процесс повторяется для всех элементов массива.

Порядок действий:

- 1) Разделите массив на отсортированную и неотсортированную части.
- 2) На каждой итерации находите наименьший элемент неотсортированной части.
- 3) Замените найденный элемент первым элементом неотсортированной части.
- 4) Увеличьте границу отсортированной части на один элемент и повторите этот процесс.

3. Сортировка вставкой (InsertionSort)

Сортировка вставкой - это алгоритм, который строит отсортированный массив, вставляя новый элемент в правильную позицию для уже отсортированного элемента. Этот алгоритм особенно эффективен для небольших массивов и частично отсортированных данных.

Порядок действий:

- 1) Начинаем с первого элемента, который считается отсортированным.
- 2) Берем следующий элемент и сравниваем его с отсортированной частью.
- 3) Вставляем элемент в правильное положение, сдвигая все большие элементы вправо.
- 4) Повторяем процесс для всех элементов массива.

Описание программной реализации

В этой программе реализовано три метода сортировки: пузырьковая сортировка, сортировка выбором и сортировка вставками. Пользователь имеет возможность выбрать один из этих методов для упорядочивания массива случайных целых чисел. Далее приведено подробное описание каждой составляющей программы.

1. Подключение библиотек и файлов

- stdio.h: Библиотека для ввода и вывода данных.
- stdlib.h: Библиотека для работы с памятью и генерации случайных чисел.
- time.h: Библиотека для работы с временем, используется для измерения времени выполнения сортировок.
- iostream: Библиотека предоставляет средства ввода-вывода для стандартной консоли.

- function.h: файл, содержащий все функции.
- 2. Алгоритмы сортировки
- Сортировка пузырьком (BubbleSort):

Проходит по массиву и сравнивает соседние элементы, меняя их местами, если они находятся в неправильном порядке. Процесс повторяется до тех пор, пока не будет выполнен полный проход без изменений.

- Сортировка выбором (SelectionSort):

На каждой итерации находит наименьший элемент в неотсортированной части массива и перемещает его в начало отсортированной части.

- Сортировка вставками (Insertion_Sort):

Строит отсортированный массив, вставляя каждый элемент в правильное положение относительно уже отсортированных элементов.

Каждый из алгоритмов реализован в отдельной функции, принимающей массив и его размер в качестве аргументов.

3.Генерация

Для генерации случайных чисел используется функция rand(), инициализированная с помощью srand(time(NULL)), что обеспечивает разнообразие значений при каждом запуске программы.

4. Основная функция

- В основной функции происходит: запрос размера массива у пользователя.
- Объявление переменных.
- Использовании функции для замера времени.

5. Цикл выбора сортировки

В этом блоке программа предлагает пользователю выбрать тип сортировки. В зависимости от выбора, массив «а» копируется во временный массив «b»\ «с»\ «d», чтобы сохранить исходные данные для каждой сортировки.

6. Измерение времени выполнения

Для каждой сортировки используется функция clock() для измерения времени выполнения. Время выполнения сортировки сохраняется в переменной t.

7. Вывод результатов

После завершения сортировок программа выводит время выполнения каждого алгоритма на экран.

Результаты экспериментов

Я проводила эксперименты над массивами, содержащими минимум <u>1000</u> элементов, так как при меньшем их содержании выводиться время, которое трудно сравнивать, ведь различия небольшие.

1000 элементов:

BubbleSort – 0,005c SelectionSort – 0,004c InsertionSort – 0,005c

Лучший результат в этом тесте показал SelectionSort.

5000 элементов:

BubbleSort – 0,009c SelectionSort – 0,005c InsertionSort – 0,006c

Лучший результат в этом тесте показал SelectionSort.

7000 элементов:

BubbleSort – 0,005c SelectionSort – 0,006c InsertionSort – 0,007c

Лучший результат в этом тесте показал BubbleSort.

10000 элементов:

BubbleSort – 0,007c SelectionSort – 0,007c InsertionSort – 0,006c

Лучший результат в этом тесте показал InsertionSort.

Заключение

Из результатов экспериментов видно, что присутствует разница иногда в долю секунды, иногда в пару секунд, но эту разницу можно считать незначительной. В итоге я считаю, что для маленьких массивов можно

выбрать SearchSort, но для больших массивов стоит пользоваться более улучшенными сортировками.

Литература

https://www.cyberforum.ru/c-beginners/thread2268835.html

Приложение

https://github.com/nasti2x/sort