PH3102 Quantum Mechanics Assignment 9

Instructor: Dr. Siddhartha Lal Autumn Semester, 2024

Start Date: October 29, 2024 Submission Deadline: November 05, 2024. Submit your answers to the Tutor at the start of the tutorial.

Q1. Perturbing the Infinite Square Well [15 marks]

Consider an infinite square well potential in one dimension defined by

$$V(x) = 0$$
 for $0 < x < a$,
= ∞ elsewhere.

- (a) Will the addition of a small constant positive potential $V_0 > 0$ lying in the spatial range $a/3 \le x \le 2a/3$ to the infinite square well change the ground state energy and ground state wavefunction? If so, explain the reason for the changes without doing any explicit calculations? (Hint: Note and indicate whether the ground state energy and the peak of the ground state wavefunction is expected to increase or decrease upon introducing the perturbation.)
- (b) Treating the potential V_0 as a perturbation, calculate the first order correction to the ground state energy.
- (c) By noting carefully the nature of perturbation potential V_0 (and without carrying out any explicit calculations!), can you anticipate which states of the infinite square well problem can possibly mix with one another due to the perturbation V_0 ? Using this insight, compute the second order correction to the ground state energy due to V_0 arising from mixing with only the lowest allowed excited state. Also, write down the complete ground state energy including the first and second order corrections you have computed.
- (d) Now compute the first order correction to the ground state wavefunction due to V_0 arising from mixing with only the lowest allowed excited state. Also, write down the complete ground state wavefunction including the first order correction you have computed.
- (e) Now consider a negative $V_0 < 0$ in the same problem, and using the results obtained above, write the complete energy and wavefunction for the ground state including all the corrections till the orders you computed earlier.
- (f) Sketch in a single plot the perturbed ground state wavefunction for (i) $V_0 > 0$, (ii) $V_0 < 0$ and (iii) the unperturbed problem. What do you observe from the three wavefunctions?

Q2. Perturbation theory for a 3-level problem. [25 marks]

The Hamiltonian for a 3-level system is given by the matrix

$$H = \begin{pmatrix} -u & v & 0 \\ v & u & 0 \\ 0 & 0 & u' \end{pmatrix} \; ; \quad u, u', v > 0 \; . \tag{1}$$

The goal is to apply perturbation theory to approximate the eigenvalues of H.

- (a) First, write this matrix as the sum of two matrices $H = H_0 + V$, such that H_0 is the diagonal part of the Hamiltonian matrix given above while V is the off-diagonal part. We will consider H_0 as the zeroth Hamiltonian, and V as the perturbation.
- (b) Now, write down the eigenstates $|\psi_1^{(0)}\rangle$, $|\psi_2^{(0)}\rangle$ and $|\psi_3^{(0)}\rangle$ and eigenvalues $E_1^{(0)}$, $E_2^{(0)}$ and $E_3^{(0)}$ of H_0 . [1 mark] (c) Next, find the eigenvalues $E_1^{(2)}$, $E_2^{(2)}$ and $E_3^{(2)}$ of H to second order in perturbation theory, using the expressions derived in the class.
- (d) Also, find the eigenstates $\psi_1^{(1)}, \psi_2^{(1)}$ and $\psi_3^{(1)}$ of H to first order in perturbation theory.
- (e) Now, solve the problem exactly by diagonalising the matrix H. Obtain the perturbative result from the exact result by a suitable approximation. In which regime of parameters is this approximation valid? What does this say about the validity of perturbation theory in this problem?
- (f) Calculate the wavefunction renormalisation Z in the ground state. How does it behave as the parameters are tuned beyond the regime of validity of perturbation theory?