1 Отношения

Определение. Отношением ω множеств X и Y называется любое подмножество их декартова произведения.

Если
$$X=Y$$
 отношения на X Либо $(x,y)\in\omega, x\in X, y\in Y$ Либо $x\omega y$

Примеры:

1.
$$X = Y = \mathbb{R}$$
 $\omega = \langle = \{(x,y) : x < y\} \subset X \times Y$
2. $x\omega y \Leftrightarrow \{(x,y) : x^2 + y^2 = 4\} \subset X \times Y$
3. $f: X \to Y$ $(x,y) \in \omega \Leftrightarrow y = f(x)$
т.е. $\omega = \{(x,f(x)) : x \in X\} \subset X \times Y$
4. $X \times Y$ - отношение $\subset X \times Y$

Определение. $\omega \subset X \times Y$

Областью определения
$$\omega\{x\in X:\exists y\in Y\;(x,y)\in\omega\}$$
 Множество значений $\omega\{y\in Y:\exists x\in X\;(x,y)\in\omega\}$ Обратное отношение $\omega^{-1}\;\{(y,x):(x,y)\in\omega\}\subset Y\times X$

Определение. Отношение ω на X ($X \times X$) называется

- ullet Рефлексивным, если $\forall x \in X \quad (x,x) \in \omega$
- Антирефлексивным, если $(x,y) \in \omega \Rightarrow x \neq y$
- Симметричным, если $(x,y) \in \omega \Rightarrow (y,x) \in \omega$
- Антисимметричным, если $(x,y) \in \omega, (y,x) \in \omega \Rightarrow x=y$
- Транзитивным, если $(x,y) \in \omega, (y,z) \in \omega \Rightarrow (x,z) \in \omega$

Определение. Отношение w на X называется эквивалентностью, если оно:

- 1. Рефлективно.
- 2. Симметрично.
- 3. Транзитивно.

$$w = \sim$$

Определение. Классом эквивалентности называется

$$[a] = \overline{a} = \{x \in X : x \sim a\}$$

Определение. Разбиением множества X называется система подмножеств

$$\pi(x) = \{X_i, i \in I\} : 1. X_i \cup X_j = \emptyset, i \neq j$$

$$2. X_{i \in I} = X$$

Теорема. X - множество

- 1. ∀ разбиение X задает некоторую эквивалентность.
- 2. Верно обратное: эквивалентность задает разбиение X.

Доказательство.

1.
$$X = \bigcup_{i \in I} X_i, X_i \cap X_j = \emptyset$$
, если $i \neq j$. $x \sim y \Leftrightarrow x, y \in X_i$

- а) Рефлексивно $x \sim x$ истина
- б) Симметрично $x \sim (x, y \in X_i) \Rightarrow y \sim x$, т.к. $y, x \in X_i$
- в) Транизитивно $x, y \in X_i, y, z \in X_i \Rightarrow x, z \in X_i$
- 2. $X_i = [x]$; если $x \sim y$, то $x, y \in X_i$

Проверим, что $\pi(x)$ - разбиение

а)
$$?X_i \cap X_j = \emptyset, i \neq j$$

если $\exists x \in X_i \cap X_j \Rightarrow$

если
$$\exists x \in X_i \cap X_j \Rightarrow$$
 $x \in X_i \& x \in X_j \Rightarrow x \sim a \ X_i = [a], x \sim b \ X_j = [b] \Rightarrow a \sim b \Rightarrow X_i = X_j$ 6) $\bigcup_{i \in I} X_i$ следует из построения

Следствие. Разбиение X взаимно-однозначно соответствует с \sim на X

$\mathbf{2}$ Фактормножество

Определение. На X задано \sim Множество, состоящее из классов эквивалентности, называется фактормножество.

$$X/\sim (X/\sim) = \{[x] : x \in X\}$$

Определение. $p:X\to X/\sim$ называется проекцией p(x)=[x]

Определение. $f:X\to Y$ отобр. $\overline{f}:X/\omega_f\to Y$ называется индуцированным f([x]) = f(x)

3 Отношения порядка

Определение. Отношением ω на X называется отношением порядка, если:

- 1. Рефлексивно.
- 2. Антисимметрично.
- 3. Транзитивно.

X - частично упорядоченное множество.

Если $\forall x,y \in X \quad (x,y) \in \omega$, то X линейно упорядоченно или цепь.