MATH 567: FUNCTIONAL ANALYSIS (FALL 2020 SEMESTER)

SHEREEN ELAIDI AS TAUGHT BY PROF. LIN; LAST UPDATED: SEPTEMBER 6, 2020

This class is about linear functional analysis. This has a lot in common with linear algebra in infinite-dimensional spaces. We can think of this as infinite-dimensional linear algebra. There are two main applications of this: (a) geometry and topology in infinite dimensions and (b) solving PDEs. Recall that in regular linear algebra, we used those tools to solve linear systems. The infinite-dimensional equivalent to this is a PDE. In this class, we'll focus on the second application of functional analysis.

1. Basic Functional Analysis

This corresponds to Chapters 4 and 5 of the textbook.

1.1. Banach Spaces and General Topology. Let X be a vector space. Recall that this means that it is closed under addition and scalar multiplication.

Definition 1.1 (Norm). A norm on a vector space $X, ||\cdot|| : X \to [0, \infty[$, satisfies the following three properties:

- (1) $||x|| = 0 \iff x = 0.$
- (2) (Homogeneity): $||\lambda x|| = |\lambda|||x||$ for each $x \in X$, $\lambda \in \mathbb{R}$.
- (3) (Triangle Inequality): $||x + y|| \le ||x|| + ||y||$.

Definition 1.2 (Completeness / Banach Space). X is **complete** if every Cauchy sequence converges. $(X, ||\cdot||)$ is a **Banach space** if it is a complete normed vector space.

Definition 1.3 (Dense Subset). $Y \subseteq X$ is **dense** if

(1) $\overline{Y} = X$ (one thing we need to note: \overline{Y} is the closure, but we need to ask ourselves "in which topology"?). This is equivalent to:

$$\forall \varepsilon > 0, \ \forall x \in X, \ \exists y \in Y \ \text{s.t.} \ ||x - y|| < \varepsilon.$$

And also equivalent to,

$$\forall x \in X, \ \exists \{y_n\} \subseteq Y \text{ s.t. } y_n \to y \in X.$$

Definition 1.4 (Strong Topology). The **strong topology** is the topology induced by the norm, $||\cdot||$ (the open sets are characterized by the balls, $B_r := \{x \mid ||x|| < r\}$). In this topology, the definitions of density given above are equivalent.

Definition 1.5 (Separable). X is **separable** if \exists a countable dense subset.

We have the following equivalent definitions of compactness.

Definition 1.6 (Compactness 1). $E \subseteq X$ is **compact** if every open cover of E admits a finite subcover.

Definition 1.7 (Compactness 2). Every sequence has a convergent sub-sequence.

Definition 1.8 (Compactness 3). For any sequence $\{x_n\} \subseteq E$, there exists $\{x_{n_k}\}$ and $x^* \in E$ such that $x_{n_k} \to x^* \in E$.

Definition 1.9 (Pre-Compact). $E \subseteq X$ is **pre-compact** if \overline{E} is compact.

Date: Fall 2020 Semester.

1.2. Euclidean Space \mathbb{R}^n . Let $x \in \mathbb{R}^n$. This is denoted by $(x_1, ..., x_n)$. Then, recall,

$$||x|| = ||x||_{\ell^2} = \left(\sum_{j=1}^n x_j^2\right)^{1/2}.$$

We also have these other typical norms on Euclidean space:

$$||x||_{\ell^{1}} = \sum_{j=1}^{n} |x_{j}|$$

$$||x||_{\ell^{p}} = \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p}$$

$$||x||_{\ell^{\infty}} = \max_{1 \le j \le n} |x_{j}|.$$

Definition 1.10 (Equivalent Norms). We say that two norms, $|\cdot|$ and $||\cdot||$, are equivalent if and only if there exist two constants a and b such that

$$(1.11) a||x|| \le |x| \le b||x|| \forall x \in X.$$

In words, this is saying that you can't be big on one norm but small in another. These norms are comparable; they are bounded by constants on either side.

Theorem 1.12. All norms on \mathbb{R}^n are equivalent (all norms in finite dimensions are equivalent).

Proof. Let $||\cdot||$ be the Euclidean norm, and let $|\cdot|$ be another norm. Let $\{e_i\}_{i=1}^n$ be the standard basis of \mathbb{R}^n ; recall that this is $e_i = (0, ..., 1, ..., 0)$ where the 1 is in the ith slot. Since this is a basis, for $x \in X$:

$$x = \sum_{i=1}^{n} x_i e_i.$$

By the reverse triangle inequality,

$$||x| - |y|| \le |x - y|$$

$$= \left| \sum_{i=1}^{n} (x_i - y_i) e_i \right|$$

$$\le \sum_{i=1}^{n} |x_i - y_i||e_i|$$

$$\le \underbrace{\left(\sum_{i=1}^{n} |e_i|^2 \right)^{1/2}}_{:=C} \left(\sum_{i=1}^{n} |x_i - y_i|^2 \right)^{1/2} \quad \text{(Cauchy-Schwarz)}$$

$$< C||x - y|| \qquad (*),$$

where C is some number. Norms are continuous; $x \mapsto ||x||$ is continuous $S = \{x \mid ||x|| = 1\}$ (the unit ball). By (*), $x \mapsto |x|$ is continuous on S. S is closed and bounded on \mathbb{R}^n which means that S is compact. By the extreme value theorem, this means that there exist two constants $a, b \in \mathbb{R}$ such that

$$(1.13) a \le |x| \le b \forall x \in S.$$

Observe that $|x|=0 \iff x=0$, which implies that a>0. For any $y\in\mathbb{R}^n$, let $x:=\frac{y}{||y||}\in S$. Then,

$$a \leq \left| \frac{y}{||y||} \right| \leq b \iff a \leq \frac{1}{||y||} |y| \leq b \iff a ||y|| \leq |y| \leq b ||y|| \quad \forall y \in \mathbb{R}^n \setminus \{0\}.$$

The case of y = 0 is straightforward. This proves that any norm in a finite-dimensional vector space are equivalent. Note that this proof rests on the fact that we have a basis.

Remark 1.14. \mathbb{R}^n is separable in any norm. The typical countable dense subset of \mathbb{R}^n is \mathbb{Q}^n . We will see in infinite-dimensions that all norms are not equivalent.

1.3. The Spaces of C^r , $C^{r,\gamma}$ of Continuous Functions.

Definition 1.15 (C^0) . Let $\Omega \subseteq \mathbb{R}^n$ be open. Then,

$$C^0(\Omega) := \{ f \mid \Omega \to \mathbb{R} \text{ s.t. } f \text{ is continuous on } \Omega \}$$

$$C^0(\overline{\Omega}) := \{ f \mid \overline{\Omega} \to \mathbb{R} \text{ s.t. } f \text{ is continuous on } \overline{\Omega} \}.$$

This implies that $f \in C^0(\overline{\Omega})$ is bounded and uniformly continuous.

Definition 1.16 ($||\cdot||_{\infty}$). The standard norm on $C^0(\Omega)$ is

(1.17)
$$||u||_{\infty} := \sup_{x \in \Omega} |u(x)| \leftrightarrow \text{ uniform convergence.}$$

Proposition 1.18. (1) $(C^0(\Omega), ||\cdot||_{\infty})$ is a Banach space.

(2) If $\Omega \subseteq \mathbb{R}^n$ is bounded, then $C^0(\overline{\Omega})$ is separable.

We will only give a sketch of the proof.

Proof. (1) The uniform limit of continuous functions is continuous.

- (2) Follows from the Weierstrass approximation theorem: polynomials are dense in $C^0(\overline{\Omega})$; then, consider the polynomials with rational coefficients.
- 1.3.1. Higher-Order Derivatives. Recall some notation from advanced calculus:

(1.19)
$$Du = \nabla u = \text{ gradient of } u = \begin{bmatrix} \partial_1 u \\ \vdots \\ \partial_n u \end{bmatrix}.$$

We consider the **multi-index** $\alpha = (\alpha_1, ..., \alpha_n)$, where $|\alpha| := \alpha_1 + ... + \alpha_n$, and $\forall k \in \mathbb{R}^n$, define $k^{\alpha} := k_1^{\alpha_1} \cdots k_n^{\alpha_n}$. Then, in this notation,

$$D^{\alpha}u = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n} u$$

$$= \frac{\partial^{|\alpha|} u}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$$
 (partial derivative).

Definition 1.20 $(C^r(\Omega))$.

$$(1.21) C^r(\Omega) := \{ f \mid D^{\alpha} f \in C^0(\Omega) \ \forall \ |\alpha| < r \}$$

In words, this means that all partial derivatives less than or equal to r are continuous. Then, we can define the following space:

(1.22)
$$C^{\infty}(\Omega) := \bigcap_{r=1}^{\infty} C^{r}(\Omega).$$

Definition 1.23 (Support of f). The **support** of f is defined as the smallest closed set such that $f \equiv 0$ on $\mathbb{R}^n \setminus \text{supp}(f)$.

(1.24)
$$\operatorname{supp}(f) := \overline{\{x \mid f(x) \neq 0\}}.$$

Definition 1.25 (Compactly Contained). A set $K \subset\subset \Omega$ means that $K \subseteq \Omega$ is compact. We say that K is **compactly contained** in Ω if $K \subset\subset \Omega$, Ω is bounded, and that there exists an $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq \Omega$ for all $x \in K$. This is equivalent to for all $x \in K$,

(1.26)
$$\exists \ \varepsilon > 0 \text{ s.t. } d(x, \partial \Omega) \coloneqq \inf_{y \in \partial \Omega} |x - y| > \varepsilon.$$

Definition 1.27 $(C_c^r(\Omega))$.

$$(1.28) C_c^r(\Omega) := \{ f \mid f \in C^r(\Omega), \operatorname{supp}(f) \subset \subset \Omega \}.$$

Definition 1.29 (Norm on $C^r(\overline{\Omega})$). Let Ω be bounded. Then,

(1.30)
$$||f||_{C^r} := \sum_{|\alpha| \le r} \sup_{x \in \Omega} |D^{\alpha} f(x)|.$$

Proposition 1.31. Let $\Omega \subseteq \mathbb{R}^n$ be bounded. Then, $C^r(\Omega)$ is a separable Banach space (in fact, all you need for separable is that it is bounded) for all $r < \infty$.

Remarks 1.32. $C_c^r(\Omega)$ is not complete. $C^{\infty}(\Omega)$ is not complete. However, subspaces of C^{∞} is still complete with some norm.

We also introduce,

Definition 1.33 (Hölder Continuous $C^{0,\gamma}(\Omega)$). $f:\Omega\to\mathbb{R}$ is **Hölder Continuous** with exponent $\gamma\in[0,1[$ if there exists a C such that

$$(1.34) |f(x) - f(y)| \le C||x - y||^{\gamma}.$$

If $\gamma = 1 \Rightarrow f$ is Lipschitz Continuous.

Also,

$$[f]_{C^{0,\gamma}(\Omega)} \coloneqq \sup_{x,y \in \Omega} \frac{|f(x) - f(y)|}{||x - y||^{\gamma}}$$

is called the **Hölder seminorm**. This is nor a norm, but we can make it a norm:

Definition 1.35 $(||\cdot||_{C^{0,\gamma}})$.

(1.36)
$$||f||_{C^{0,\gamma}(\Omega)} := ||f||_{\infty} + [f]_{C^{0,\gamma}(\Omega)}.$$

On the homework, you'll show that

$$(C^{0,\gamma}(\Omega),||f||_{C^{0,\gamma}(\Omega)})$$

is complete.

Definition 1.37 $(C^{r,\gamma})$.

$$(1.38) C^{r,\gamma}(\Omega) := \{ f \mid f \in C^r(\Omega) \text{ and } |D^{\alpha}f(x) - D^{\alpha}f(y)| \le C||x - y||^{\gamma} \ \forall \ |\alpha| = r \}$$

The norm of this space is given by,

(1.39)
$$||f||_{C^{r,\gamma}} := ||f||_{C^r} + \sup_{|\alpha|=r} [D^{\alpha}f]_{C^{0,r}}.$$

Remark 1.40. If $f \in C^{0,\gamma}(\Omega)$, Ω bounded, then $f \in C^{0,\alpha}(\Omega)$ for all $0 < \alpha \le \gamma$

Remark 1.41. (Rademacher's Theorem). If $f \in C^{0,1}$, then f is differentiable a.e.

1.4. Integration Theorems.

Theorem 1.42 (Monotone Convergence Theorem). If $f_n \uparrow f$ pointwise for almost every x, then

(1.43)
$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx = \int_{\Omega} f(x) dx.$$

Theorem 1.44 (Fatou's Lemma). Let $\{f_n\}$ be a sequence of measurable functions that are all positive. Then,

(1.45)
$$\int_{\Omega} \liminf_{n \to \infty} f_n(x) \le \liminf_{n \to \infty} \int_{\Omega} f_n(x) dx$$

Theorem 1.46 (Dominated Convergence Theorem). Assume that $\{f_n\}$ are measurable, $f_n \to f$ pointwise a.e. Then, if $|f_n(x)| \leq g(x)$ for all $n \in \mathbb{N}$ for almost every x, where $g \in L^1(\Omega)$, then

(1.47)
$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx = \int_{\Omega} f(x) dx$$

This is the theorem that you use when you want to differentiate under integrals.

Theorem 1.48. The space $C_c^0(\mathbb{R}^n)$ is dense in $L^1(\mathbb{R}^n)$.

Theorem 1.49 (Fubini-Tonelli). For all $f: X \times Y \to \mathbb{R}^n$,

(1.50)
$$\int_{X} \int_{Y} |f(x,y)| dy dx = \int_{Y} \int_{X} |f(x,y)| dx dy = \int_{X \times Y} |f(x,y)| d(x,y).$$

If, moreover, $f \in L^1(X \times Y)$,

(1.51)
$$\int_X \int_Y f(x,y) dy dx = \int_Y \int_X f(x,y) dx dy = \int_{X \times y} f(x,y) d(x,y)$$

1.5. Elementary L^p Spaces.

Definition 1.52 (L^p) . Fix $1 \le p < \infty$, let $\Omega \subseteq \mathbb{R}^n$. Then, we define the L^p space to be

(1.53)
$$L^p(\Omega) := \{ f : \Omega \to \mathbb{R} \mid f \text{ measurable } |f|^p \in L^1(\Omega) \}$$

with the following norm,

(1.54)
$$||f||_{L^p} := \left[\int_{\Omega} |f(x)|^p \right]^{1/p}.$$

Definition 1.55 (L^{∞}) . We define L^{∞} to be:

(1.56)
$$L^{\infty}(\Omega) := \{ f : \Omega \to \mathbb{R} \mid f \text{ measurable }, \exists C \text{ s.t. } |f(x)| \leq C \text{ a.e. } \},$$

with the following norm,

$$(1.57) ||f||_{L^{\infty}} = ||f||_{\infty} = \inf\{c \mid |f(x)| \le c \text{ a.e.}\}\$$

This definition implies that $f(x) \leq ||f||_{\infty}$ almost everywhere. Below are some fundamental tools that we'll be using

Theorem 1.58 (Hölder's Inequality). Let $1 \le p, p' \le \infty$. If $f \in L^p(\Omega)$, $g \in L^{p'}(\Omega)$ and 1/p + 1/p' = 1, then $fg \in L^1$ and

(1.59)
$$\int |fg| dx \le ||f||_p ||g||_{p'}$$

Theorem 1.60 (Minkowski's Inequality). For all $p \in [1, \infty]$,

$$(1.61) ||f+g||_p \le ||f||_p + ||g||_p.$$

As a consequence of [Minkowski's Inequality, L^p is a vector space.