Final

Jiaying Liu

December 14, 2018

1(a)

The table below summarize data from a clinical trial to compare response to two treatments (a test drug and a placebo).

In this dataset, we have a 2 by 2 contingency table for response and nonresponse of placebo and test_drug. We want to compare response in two group, so we can actually test the response rate in two group

Assume the response in placebo is p1;

Assume the respnse in Treatment is p2

So the Null hypothesis is H_0 : p1 = p2 H_a : $p1 \neq p2$

(b)

test statistic:
$$T = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p_1}(1-\hat{p_1})/n_1 + \hat{p_2}(1-\hat{p_2})/n_2}}$$

(c)

pvalue is 3.122698e-07

(d)

From above p value =3.122698e-07 which is greater smaller than 0.05, so we can reject the null hypothesis. So we can say the response in placebo and test drug is different.

2

(a)

In this question, we want to test whether the students receiving the improved curriculum would perform better than the standard curriculum in their math scores.

Assume the mean of old curriculum is μ_1

Assume the mean of new curriculum is μ_2

So, for the two side test the Null hypothesis is H_0 : $\mu_1 = \mu_2 \; H_a$: $\mu_1 \neq \mu_2$

(b)

The test statistic when variance are different

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{s_1^2/n_1 + s_1^2/n_2}} \approx t_{df}$$

where
$$df = \frac{(n_1-1)(n_2-1)}{(n_1-1)(1-c)^2 + (n_2-1)c^2}$$

$$c = \frac{s_1^2}{s_1^2 + s_2^2}$$

The test statistic when variances are the same:

$$T = \frac{\overline{X} - \overline{Y}}{s_n \sqrt{1/n_1 + 1/n_2}} \approx t_{n_1 + n_2 - 2}$$

where
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

(c)

Both result the p value are about 0.004

```
m_old=41.52
m_new=51.48
n_old=32
n_new=30
```

```
sd old=17.15
sd new=11.01
sp=((n_old-1)*(sd_old)^2+(n_new-1)*(sd_new)^2)/(n_old+n_new-2)
t=(m new-m old)/(sqrt(sp)*sqrt(1/n old+1/n new))
pvalue=1-pt(t,df=(n_old+n_new-2))
cbind(t,pvalue)
##
                        pvalue
## [1,] 2.700961 0.004486804
t=(m \text{ new-m old})/(sqrt((sd \text{ old})^2/n \text{ old}+(sd \text{ new})^2/n \text{ new}))
c=((sd_old)^2/n_old)/(((sd_old)^2/n_old)+((sd_new)^2/n_new))
df=((n_old-1)*(n_new-1))/((n_old-1)*(1-c)^2+(n_new-1)*c^2)
pvalue=1-pt(t,df)
cbind(t,pvalue)
##
                        pvalue
## [1,] 2.738083 0.004192562
```

(d)

From above p value = which is greater smaller than 0.05, so we can reject the null hypothesis. So, we can say the the performance of new curriculum is different from old curriculum. And if we want to test which one is better, we can see the t value is positive value, so the mean of new curriculum is better than old curriculum.

3

$$Y = UX$$

U is a binary outcome with P(U = 1) = p, P(U = 0) = 1 - p

so
$$E(U) = p * 1 + (1 - p) * 0 = p$$

$$E(U^2) = p * 1 + (1 - p) * 0 = p$$

$$V(U) = p(1-p)$$

Because ux is two independent variable so

$$E(Y) = E(UX) = E(U)E(X) = p\mu$$

$$Var(Y) = Var(UX) = E(U^{2}X^{2}) - (E(UX))^{2}$$

$$= var(U)var(X) + Var(U)(E(X))^{2} + Var(X)(E(U))^{2}$$

$$= p(1-p)\sigma^{2} + p(1-p)\mu^{2} + p^{2}\sigma^{2}$$

$$= p\sigma^{2} + p(1-p)\mu^{2}$$

(b)

We already know X from $SC(p_1, \mu_1, \sigma_1)$ and Y from $SC(p_2, \mu_2, \sigma_2)$, $\delta = E(X) - E(Y)$. Suppose we wanted to test the null hypothesis H0: $\delta = 0$ at a signicance level of α with power $1 - \beta$ at $\delta = \delta_1 > 0$ So with the formular in the ltecture notes, we can drivde the sample as

$$\begin{split} n &= \frac{Var(X) + Var(Y)}{\delta_1^2} (Z_{1-\beta} + Z_{1-\alpha/2})^2 \\ &= \frac{p_1 \sigma_1^2 + p_1 (1 - p_1) \mu_1^2 + p_2 \sigma_2^2 + p_2 (1 - p_2) \mu_2^2}{(p_1 \mu_1 - p_2 \mu_2)^2} (Z_{1-\beta} + Z_{1-\alpha/2})^2 \end{split}$$

(c)

```
p1=0.8

p2=0.85

lam1=1

lam2=1.1

m1=1/lam1

m2=1/lam2

s1=1/lam2^2

v1=p1*s1+p1*(1-p1)*m1^2

v2=p2*s2+p2*(1-p2)*m2^2

c1=p1*m1-p2*m2

n=(v1+v2)/(c1^2)*((1.97+1.282)^2)

n

## [1] 24981.27
```

So the n is 24981 and the sample size is 2*24981=49962

(d)

A tpye I error occors if we reject the null hypothesis when the null hypothesis is true.

A power occurs if we reject the null hypothesis when the alternative hypothesis is ture.

So we have the simulation showing bellow.

```
p1 = 0.8
p2 = 0.8
lam1=1
lam2=1
n1=10000 # testing 10,000 times
t1err=0
for (i in 1:n1){
n=24981
z1=rexp(n,rate=lam1)
u1=rbinom(n,1,p1)
x=z1*u1
z2=rexp(n,rate=lam2)
u2=rbinom(n,1,p2)
y=z2*u2
   if (((t.test(x,y,mu=0,alternative = "two.sided",var.equal = FALSE))$
p.value)<=0.05) (t1err=t1err+1)</pre>
cat("Type I error rate in percentage is", (t1err/n1)*100,"%")
## Type I error rate in percentage is 4.81 %
p1=0.8
p2=0.85
lam1=1
lam2=1.1
m1=1/lam1
m2=1/lam2
n1=10000 # testing 10,000 times
t2err=0
for (i in 1:n1){
n=24981
z1=rexp(n,rate=lam1)
u1=rbinom(n,1,p1)
x=z1*u1
z2=rexp(n,rate=lam2)
u2=rbinom(n,1,p2)
y=z2*u2
if (((t.test(x,y, mu=0))$p.value)<=0.05) (t2err=t2err+1)
}
cat("power is", (t2err/n1)*100,"%")
## power is 89.86 %
```

task1

/*1.1*/
proc means data=final MEAN STDERR;
var HbA1c_level;
class Visit_number Control_treatment;
run;

The SAS System

The MEANS Procedure

	Analysis Variable	: HBA10	_level	
Visit_number	Control_treatment	N Obs	Mean	Std Error
1	Control	188	8.3290323	0.0826197
	Treatment	200	8.3939394	0.0837901
2	Control	186	8.6579235	0.1000459
	Treatment	192	8.7305263	0.0941217
3	Control	184	9.0774725	0.1132738
	Treatment	186	8.9432432	0.1014603
4	Control	180	9.1156425	0.1135777
	Treatment	180	9.0622222	0.1087088
5	Control	175	9.1620690	0.1222654
	Treatment	179	8.9268571	0.1085785
6	Control	164	9.0327160	0.1158673
	Treatment	166	8.8366460	0.1168847
7	Control	147	8.9618056	0.1262005
	Treatment	144	8.7929078	0.1082870
8	Control	110	8.8268519	0.1337585
	Treatment	103	8.6718447	0.1343981
9	Control	48	9.0375000	0.2263969
	Treatment	56	8.6875000	0.2022770

```
To test the different in mean

Two-sample t test

/*1.2*/

proc ttest data=final;

class Control_treatment;

var HbA1c_level;

run;
```

				The	SAS	Sys	ter	n				
				The T	TEST	Proce	edu	ire				
				Varial	ole: H	BA1C	le	vel				
	Control_tre	atment	N	Mea	n Sto	l Dev	St	td Err	Min	imum	m	
	Control		1366	8.896	4 1	.4713	0	.0398	5	.4000	16.90	00
	Treatment		1389	8.791	1 1	.3782	0	.0370	5	6.6000	16.80	00
	Diff (1-2)			0.105	3 1	.4251	0	.0543				
Contr	ol_treatmen	t Metho	od	М	ean	95%	CL	Mean	S	td Dev	95% CL	Std Dev
Contr	ol				964	8.81	8.8183 8		8.9745		1.4181	1.5286
Treat	ment			8.7	911	8.7186		8.8637 1		1.3782	1.3288	1.4315
Diff (1	1-2)	Poole	ed	0.1	0.1053 -		21	21 0.2117		1.4251	1.3884	1.4638
Diff (1	I-2)	Satte	rthwai	te 0.1	053	-0.001	0.211		8			
		Method		Vari	ances		DF	t Valu	ue F	Pr > t		
		Pooled		Equa	I	27	53	53 1.9		0.0527		
		Satterth	nwaite	Unec	ual	2734	1.7	1.9	94 (0.0528		
				Equa	lity of	Varia	nce	es				
		Meth	od I	Num D	F De	n DF	F	Value	Pr	> F		
		Fold	ed F	136	5	1388		1.14	0.0	154		

From the above table for the result of t sample t-test, we can see that from the third table, both pooled and Satterthwaite test show that the p-value is greater than 0.05 which mean the mean of HBA1C_level in treatment group and control group are the same. Also, we can see that from the fourth table, it shows the test for equality of variance, and the p-value is 0.154 smaller than 0.05, so we can say the variances in two groups are different, so we use the Satterthwaite test. And the result show there are same in two group.

• Comparing different in control and treatment in each visit

```
library(reshape)
final=read.csv("D:/GWU-A1C-Graphs.csv", header = TRUE)
final_trt=final[final[,"Control.treatment"]=="Treatment", ]
final_ctr=final[final[,"Control.treatment"]=="Control", ]

## t-test
t=c()
for (i in 1:9){
t[i]=t.test(final_trt[which(final_trt$Visit.number==i),2],final_ctr[which(final_ctr$Visit.number==i),2])$p.value
}
t

## [1] 0.5815507 0.5974327 0.3779963 0.7342190 0.1512219 0.2344077 0.31
06682
## [8] 0.4145858 0.2517682
```

Both p-value for visit in two group are greater than 0.05, so there are no different between each visit in each group.

```
/*1.3 Two sample Wilcoxon Rank test*/
proc nparlway data=final wilcoxon;
class Control_treatment;
var HbA1c_level;
run;
```

		Th	The SAS			e						
Wilcox		ores	(Rank Sums)) fo	r Variab	le HBA1C_	level					
Control_treatme	Sum of Expected Std Dev Under H0 Under H0											
Control	13	66	1921362.50	188	32348.0	20868.0661	1 1406.56113					
Treatment	13	889	1875027.50	191	14042.0	20868.0661	1 1349.91181					
	Ave	ега	ge scores we	re i	used for	ties.	1					
		W	Icoxon Two-	Can	nnle Te	et						
	Statist		ICOXOII TWO-	Jan	•	362.5000						
	Otation				1021	332.3333						
	Norma	al A	pproximation	1								
	Z					1.8696						
	One-S	ide	d Pr > Z			0.0308						
	Two-S	ide	d Pr > Z		0.0615							
	t Appr	oxi	mation									
,	One-S	ide	d Pr > Z			0.0308						
	Two-S	ide	d Pr > Z			0.0617						
	Z incl	ude	es a continuity	у со	orrection	n of 0.5.						
			Kruskal-Wa	llis	Test							
	Chi-Square				3.4953							
		[)F		1							
		F	Pr > Chi-Squa	re	0.0615							

From the above figure, it shows the result of Wilcoxon rank test. Based on the two-side test, we can see the p-value of normal approximation and t approximation are both equal to 0.06 which is greater than 0.05. Again, we cannot reject the null hypothesis which mean the mean of two treatment are same.

Comparing different in control and treatment in each visit

```
## Wilcoxon rank sum test
W=C()
for (i in 1:9){
w[i]=wilcox.test(final_trt[which(final_trt$Visit.number==i),2],final_ct
r[which(final_ctr$Visit.number==i),2])$p.value
}
W
## [1] 0.79841141 0.52683378 0.44754128 0.74241548 0.17020682 0.0900438
## [7] 0.48364829 0.27122339 0.23632318
```

Both p-value for visit in two group are greater than 0.05, so there are no different between each visit in each group.

```
/*1.4 Permutation test*/
proc multtest data=final permutation;
class Control treatment;
test mean(HbA1c level);
run;
```

Comparing different in control and treatment

Above figure show the result mean t test of permutation test. The p-value of permutation test is 0.0527 which is also greater than 0.05. So, under the permutation test, the result is also the same, there are not different of mean between two group.

• Comparing different in control and treatment in each visit

```
## permutation test
permu_test=function(x,y){
nx=length(x)
ny=length(y)
n=nx+ny
T0=t.test(x,y,var.equal = TRUE)$statistic
xy=c(x,y)
M=9999
T=0
for (i in 1:M){
permxy=sample(xy,n)
permx=permxy[c(1:nx)]
permy=permxy[-c(1:nx)]
T[i]=t.test(permx,permy,var.equal = TRUE)$statistic
pvalue=sum(abs(T)>=abs(T0))/M
return(pvalue)
}
p=c()
for (i in 1:9){
p[i]=permu test(final trt[which(final trt$Visit.number==i),2],final ctr
[which(final ctr$Visit.number==i),2])
}
р
## [1] 0.5917592 0.5986599 0.3807381 0.7355736 0.1487149 0.2345235 0.31
38314
## [8] 0.4170417 0.2586259
```

So, with above three kind of test from parameter to non-parameter methods, the p value both greater than 0.05 and the result both show that there are no different of mean HbA1c-level between treatment and control group in each visit.

Task2

In this task, we are going to test the change in HbA1c level from baseline, so the first thing we need to do is to calculate the different of each visit with the baseline.

```
/*2*/
proc sql;
create table final2 as
select PATID, Visit number, HBA1C level as baseline
from final
where Visit number=1
group by PATID;
proc sql;
create table final3 as
select a.*,b.baseline
FROM final as a, final2 as b
WHERE a.PATID=b.PATID;
data final3;
set final3;
different=HBA1C level-baseline;
data final3;
set final3;
if Visit number=1 then delete;
run;
```

VIEWT/	ABLE: Work.Final3						
	Visit_number	HBA1C_level	PATID	Control_treatment	Age	baseline	different
1	2	8.8	1800	Control	11.1266256	8.9	− 0. 1
2	3	9.6	1800	Control	11.1266256	8.9	0. 7
3	4	10.5	1800	Control	11.1266256	8.9	1.6
4	5	10.2	1800	Control	11.1266256	8.9	1.3
5	6	9.6	1800	Control	11.1266256	8.9	0.7
6	7	8.9	1800	Control	11.1266256	8.9	0
7	2	11.5	1801	Control	11.56468173	10.9	0.6
8	3	11.6	1801	Control	11.56468173	10.9	0.7
9	4	11.6	1801	Control	11.56468173	10.9	0.7
10	5	11.5	1801	Control	11.56468173	10.9	0.6
11	6	9. 7	1801	Control	11.56468173	10.9	-1.2
12	7	9.8	1801	Control	11.56468173	10.9	-1.1
13	2	7. 1	1802	Treatment	12.32854209	6.9	0.2
14	3	7. 1	1802	Treatment	12.32854209	6.9	0.2
15	4	8.3	1802	Treatment	12.32854209	6.9	1.4
16	5	7.5	1802	Treatment	12.32854209	6.9	0.6
17	6	7.3	1802	Treatment	12.32854209	6.9	0.4
18	7	6.8	1802	Treatment	12.32854209	6.9	- 0. 1
19	8	7.3	1802	Treatment	12.32854209	6.9	0.4
20	2	9	1803	Control	13.21013005	7. 7	1.3
21	3	7. 7	1803	Control	13.21013005	7. 7	0
22	4	8.1	1803	Control	13.21013005	7. 7	0.4
23	5	8.5	1803	Control	13.21013005	7. 7	0.8
24	6	8.6	1803	Control	13.21013005	7. 7	0.9
25	7	9	1803	Control	13.21013005	7. 7	1.3
26	8	8.8	1803	Control	13.21013005	7. 7	1.1
<							>

With above statement, I was able to create the different of HBA1C between baseline and follow up visit in each PATID.

/*2.1 Mean and SE*/
proc means data=final3 MEAN STDERR;
var different;
class Visit_number Control_treatment;
run;

The SAS System

The MEANS Procedure

	Analysis Variabl	e : diffe	rent	
Visit_number	Control_treatment	N Obs	Mean	Std Error
2	Control	186	0.3237569	0.0844198
	Treatment	192	0.3920213	0.0653892
3	Control	184	0.7155556	0.1027457
	Treatment	186	0.5890710	0.0836115
4	Control	180	0.7644068	0.1045120
	Treatment	180	0.6764045	0.0872099
5	Control	175	0.8578035	0.1166623
	Treatment	179	0.5693642	0.0919695
6	Control	164	0.7279503	0.1213255
	Treatment	166	0.5157233	0.0954149
7	Control	147	0.6741259	0.1230450
	Treatment	144	0.4892086	0.0922934
8	Control	110	0.6757009	0.1310056
	Treatment	103	0.3900990	0.1350944
9	Control	48	1.0127660	0.2249189
	Treatment	56	0.3870370	0.1899289

```
/*2.2 Two sample t test*/
proc ttest data=final3;
class Control_treatment;
var different;
run;
```

				T	ne S	AS	Syst	ter	n					
				The	TTE	ST	Proce	du	re					
				V	'arial	ole:	differ	ent	t					
	Control_tre	atment	N	Me	ean	Std	Dev	St	d Err	Mi	nimum	Maxi	mum	
	Control		1169	0.6	883	1.	4165	0	.0414		-3.7000	10	.0000	
	Treatment		1175	0.5	197	1.	1548	0	.0337		-3.2000	6	.1000	
	Diff (1-2)			0.1	685	1.	2920	0	.0534					
Control treatment Me			nod		Mean		95% C		CL Mean		Std Dev	95% (CL Sto	d Dev
Cont	trol			0.68		83	0.607	0	0.7696		1.4165	1.361	13 1	.4764
Trea	tment				0.519		7 0.453		0.5858		1.1548	1.109	99 1	.2035
Diff ((1-2)	Poo	led		0.1685		0.0639		0.2732		1.2920	1.256	60 1	.3301
Diff ((1-2)	Satt	erthwa	aite	ite 0.1685		0.0638		0.2733					
		Method		Va	arian	ces	[)F	t Valu	ıe	Pr > t			
		Pooled		Ed	qual		23	42	3.	16	0.0016			
Satterthwaite		Ur	nequa	ıl	2246	.2	3.	16	0.0016	i				
Equality of Variances														
		Meth	od	Num	DF	De	n DF	F	Value	P	r > F			
		Fold	ed F	1	1168		1174		1.50	<	0001			

Form the above result of two sample t test from the different between treatment and control group. With the test of equality of variances, we know that the variance of two group are different, so we use the outcome of Satterthwaite test. And we can see the p value of Satterthwaite is 0.0016 smaller than the 0.05, so we can reject the null hypothesis which meant there are a significant different of change for baseline and follow up in the treatment and control group.

• Comparing different in control and treatment in each visit

```
MyData=read.csv("d:/final3.csv")
MyData_trt=MyData[MyData[,"Control_treatment"]=="Treatment", ]
MyData_ctr=MyData[MyData[,"Control_treatment"]=="Control", ]
## t-test
t=c()
for (i in 2:9){
```

However, when it comes to the mean of change in each visit of two group, there are some different. For the visit 2 to 8, there are no different because the p value greater than 0.05. But for visit 9, since the p value is 0.036 smaller thnn 0.05, there exist significant different between two group in the visit 9 compare with baseline.

```
/*2.3 Willcoxon*/
proc nparlway data=final3 wilcoxon;
class Control_treatment;
var different;
run;
```

• Comparing different in control and treatment

		The SAS	System				
	Т	he NPAR1WA	Y Procedure	•			
		res (Rank Su d by Variable			t		
Control_treatme	nt N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score		
Control	1169	1423026.50	1370652.50	16380.5807	1217.30240		
Treatment	1175	1325313.50	1377687.50	16380.5807	1127.92638		
	Avera	age scores we	re used for	ties.			
_		/ilcoxon Two-					
	Statistic		14230	026.5000			
		Approximatio	n				
	<u></u>			3.1973			
	One-Sid	ed Pr > Z		0.0007			
-	「wo-Sid	ed Pr > Z		0.0014			
1	Approx	imation					
_	One-Sid	ed Pr > Z		0.0007			
		ed Pr > Z		0.0014			
	Z includ	es a continuit	y correction	of 0.5.			
		Kruskal-Wa	Illie Toet]			
			10.2229				
		Chi-Square DF	10.2229				
		Pr > Chi-Squa	<u> </u>	-			
		i - Ciii-3qua	0.0014				

From the above result of Wilcoxon score rand test, based on the two-sided test, we can see both p value of normal approximation and t approximation are equal to 0.0014 which is smaller than 0.05. So, again, with the Wilcoxon test, it shows that there exist the different of change in two group.

• Comparing different in control and treatment in each visit

```
w=c()
for (i in 2:9){
w[i]=wilcox.test(MyData_trt[which(MyData_trt$Visit_number==i),7],MyData
_ctr[which(MyData_ctr$Visit_number==i),7])$p.value
}
w
## [1]     0.79458171     0.49480739     0.32325318     0.05709312     0.08856235
## [7]     0.37311802     0.06537382     0.03802862
```

From the Wilcoxon result, it also have the same result like t test, the p value of visit 2 to 8 is greater than 0.05 but the p value of visit 9 is smaller than 0.05, so visit 9 is only one that have the different of change in each level in two group.

```
/*2.4 Permutation test*/
proc multtest data=final3 permutation;
class Control_treatment;
test mean(different);
run;
```

		The	SAS	S Sys	ter	n		
	٦	The Mu	ılttes	st Proc	edu	ıre		
		Mode	el In	forma	tion	ı		
	Test for co	ontinuo	ous v	/ariab	es	Mea	ın t-test	
	Degrees o	of Free	dom	Meth	bo	Poo	led	
	Tails for c	ontinu	ous	tests		Two	-tailed	
	Strata we	ights				Non	е	
	P-value a	djustm	ent			Perr	mutation	
	Center co	ntinuo	us va	ariable	es	No		
	Number o	f resan	nple	S		2000	00	
	Seed					989	115001	
	۸ ما:،	unto d C	`antı	not Co	- ff	lalan	4	
	Adju	usted C	Onu				tment	
	Contrast			Cont			atment	
	Trend	Cente	rod		0.5	He	0.5	
	Heliu	Cente	ieu		J.5		0.5	
	Conti	nuous	Vari	able 1	ab	ulatio	ons	
Variable	Control_trea	tment	Nur	nObs	M	ean	Standa	rd Deviation
different	Control			1169	0.6	883		1.4165
different	Treatment	eatment 1175 0.5						1.1548
			- 14	alues				
	Variable			utation				
	Variable		ast	Rav		erm	utation	
	different	Trend		0.0016)		0.0016	

Above figure show the result mean t test of permutation test. The p-value of permutation test is 0.0016 which is also smaller than 0.05. So, under the permutation test, the result is also the same, there exist different of change between two group.

• Comparing different in control and treatment in each visit

```
## permutation test
permu_test=function(x,y){
nx=length(x)
```

```
ny=length(y)
n=nx+ny
T0=t.test(x,y,var.equal = TRUE)$statistic
xy=c(x,y)
M=9999
T=0
for (i in 1:M){
permxy=sample(xy,n)
permx=permxy[c(1:nx)]
permy=permxy[-c(1:nx)]
T[i]=t.test(permx,permy,var.equal = TRUE)$statistic
pvalue=sum(abs(T)>=abs(T0))/M
return(pvalue)
}
p=c()
for (i in 2:9){
p[i]=permu test(MyData trt[which(MyData trt$Visit number==i),7],MyData
ctr[which(MyData ctr$Visit number==i),7])
}
р
                0.52025203 0.34543454 0.51275128 0.05190519 0.17421742
## [1]
## [7] 0.23412341 0.13211321 0.03460346
```

Also, the result is the same like previous two test for the each visit in two group.

So, with above three kind of test from parameter to non-parameter methods, the p value of visit 2 to 8 both greater than 0.05 and only visit 9 show the different for its p value smaller than 0.05. So, there is only visit 9 have the significant different for the diff of baseline in treatment and control.

Task3

In this take, we are going to use a linear mixed effect model to test whether the two arms have the same rate of change.

For the mixed linear model:

```
let Y=HbA1c T=visit x: treatment=1; control= 0  
So, we have E(Y)=\beta_0+\beta_1X+\beta_2T+\beta X*T when X=0 control group E(Y)=\beta_0+\beta_2T When X=1 treatment group E(Y)=(\beta_0+\beta_1)+(\beta_2+\beta)T
```

So, in order to test the effect of rate of change in treatment group and control group, we are going to test

```
H0: \beta = 0
```

We can use the R to compute the mixed model, We set the random effect is visit.number and PATID

```
library(lme4)
## Loading required package: Matrix
m2=lmer(HBA1C.level~Control.treatment+Visit.number+Control.treatment*Vi
sit.number+(Visit.number | PATID),data=MyData)
summary(m2)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## HBA1C.level ~ Control.treatment + Visit.number + Control.treatment *
##
      Visit.number + (Visit.number | PATID)
##
      Data: MyData
## REML criterion at convergence: 7928.2
##
## Scaled residuals:
               1Q Median
      Min
                               3Q
                                      Max
## -4.5345 -0.4771 -0.0494 0.4109 5.8248
##
## Random effects:
## Groups
            Name
                         Variance Std.Dev. Corr
## PATID
             (Intercept) 1.16988 1.0816
##
            Visit.number 0.02398 0.1549
                                            -0.20
## Residual
                          0.64166 0.8010
## Number of obs: 2755, groups: PATID, 388
##
## Fixed effects:
##
                                           Estimate Std. Error t value
## (Intercept)
                                                      0.09218 92.386
                                            8.51649
## Control.treatmentTreatment
                                            0.11409
                                                       0.12868
                                                                0.887
## Visit.number
                                            0.09619
                                                       0.01550
                                                                6.205
## Control.treatmentTreatment:Visit.number -0.04174
                                                       0.02188 -1.908
##
## Correlation of Fixed Effects:
               (Intr) Cntr.T Vst.nm
## Cntrl.trtmT -0.716
## Visit.numbr -0.432 0.310
## Cntrl.tT:V. 0.306 -0.432 -0.709
```

From above information of estimation, we need to evaluate the significance of which is the effect of control.treatment:visit.number. we find out that the t value is -1.908

and the absolute value of t is 1.908 which is smaller than 1.96 (the value of $z_{1-\alpha/2}$) so we can not reject the original hypothesis which mean the two arms have same rate of change.