PUB-NO: <u>JP361219520A</u>
DOCUMENT-IDENTIFIER: JP 61219520 A
TITLE: ELECTRIC DISCHARGE MACHINE

PUBN-DATE: September 29, 1986

INVENTOR-INFORMATION:

NAME

OKABE, TAKAO KOMORI, AKIHIRO COUNTRY

ASSIGNEE-INFORMATION:

NAME

BROTHER IND LTD

COUNTRY

APPL-NO: JP60060129

APPL-DATE: March 25, 1985

US-CL-CURRENT: 219/69.13

INT-CL (IPC): B23H 1/02; B23H 7/04

ABSTRACT:

PURPOSE: To increase the number of discharge pulses within a certain time and improve machining efficiency by closing a switching element by means of a pulse generated at every set time in accordance with a machining condition and applying voltage between electrodes in an electric discharge machine.

CONSTITUTION: A field-effect transistor 5 as a switching element is provided in the electric discharge driving circuit of an electric discharge machine. The transistor 5, is connected to a discharge passage between a part between a wire electrode 4 and a workpiece electrode 2 and a DC power source 1, opens and closes the discharge circuit to generate discharge in a machining gap G, and applies voltage between both electrode 2, 4 from the power source 1. And, a current detecting circuit 9 detects a discharge which is carried out between both electrodes 2, 4 with the transistor 5 being turned on, and generates a detecting signal. And, further, a first delaying means which outputs an operating signal based on the detecting signal of the circuit 9, means of generating a pulse signal regardless of the detecting signal, and a switching control means which controls the transistor 5 as the switching element are provided.

COPYRIGHT: (C)1986, JPO&Japio

⑲ 日本国特許庁(JP)

①特許出願公開

® 公開特許公報(A) 昭61-219520

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和61年(1986)9月29日

B 23 H 1/02

7/04

7908-3C Z-8308-3C

審査請求 未請求 発明の数 1 (全7頁)

母発明の名称 放電加工機

②特 願 昭60-60129

❷出 願 昭60(1985) 3月25日

砂発 明 者 岡 部

孝 男

名古屋市瑞穂区堀田通9丁目35番地 ブラザー工業株式会

社内

砂発明者 小森

昭 弘

名古屋市瑞穂区堀田通9丁目35番地 ブラザー工業株式会

社内

の出 願 人 ブラザー工業株式会社

名古屋市瑞穂区堀田通9丁目35番地

砂代 理 人 弁理士 後藤 勇作

明解等

1. 発明の名称

放電加工機

2. 特許請求の範囲

故電電極と被加工物電極とを相対的に移動させるとともに、それらの電極間に電圧を印加してそれらの加工関際に放電を発生させ、その故電エネルギーにより被加工物を加工する故電加工機において、

前記電極間と電源との放電路上に接続され、前 配加工関隊に放電を発生させるように前記放電路 を開閉して前配電源より前記両電極間に電圧を印 加するスイッチング案子と、

そのスイッチング素子がターンオンされた状態 において前配両電極間で放電が発生したことを検 出して検出信号を発生する放電発生検出手段と、

その故電発生検出手段に接続され、その検出手段の検出信号に基づいて第一の設定時間後に作動 信号を出力する第一の遅延手段と、 前記放電発生検出手段の検出信号とは関係なく 第二の設定時間毎にパルス信号を発生するパルス 信号発生手段と、

そのパルス信号発生手段のパルス信号が存在する時、前記スイッチング業子をクーンオンし、前記第一の遅延手段の作動信号に基さスイッチング 業子をクーンオフするスイッチング制御手段 とを備えた放電加工機。

3. 発明の詳細な説明

「産業上の利用分野」

本発明は、被加工物電極と放電電極との間に電 圧を印加したときの放電現象を利用して被加工物 を加工するようにした放電加工機に関する。

「従来の技術」

ワイヤーカット放電加工において安定して放電 を繰返すためには、一回の放電毎に必要充分なる 放電休止時間が必要であると考えられていた(特 開昭56-89434号)。本出職人自身の先の出職に係

2.5

٠٠.

る袋顧昭59-53193 号は、この点を重視して放電。 休止時間と放電時間との和を一定に定めるプログ プマブルタイマを備え、はた面相度選択スペラグ。 こうり 異数無さルス数を増加することができて、加工 により改定された放電時間が放電開始より経過し た時オフ信号を発生する遅延回路と、この遅延回 路のオフ信号によってリセットされ、前記プログ (なっぷ) ラマブルタイマの駆動信号によってセットされる フリップフロップ回路とを備えるものであった。 そして、弟4図に示されるように、電流の電圧と 加工関隊の大きさおよび状態とによって決まる[不良] 行う合うからの加工関隊に放電を発生させるように確認放 る放電時間(負荷時間) Ta と、必要充分なる固定 された放電休止時間 Tb との合計時間をデザイグ ルの時間 To として放電加工を行なうものであっ たが、この従来の故羅加工機では、プログラマブ 発生する故電発生検出手段と、その故電発生検出 ルタイマにより放戦時間Taと放電休止時間 Tb と の和が予め定められていたので、所定時間 To 内 における故電パルス数を増すことができず、加工 能率を上げることができなかった。

-3-

生手段のパルス信号が存在する時、世紀スイッチ ング集子をターンオンし、前記第一の運運手段の 作動信号に基モスイッチング業子をダーンオフす るスイッチング制御手段、ベルカコアに、カイ

1. 然准各位、第三次、范敦

しゃみんだい こうまとをや

*** とも備えた故電加工機が提供される。

1.

「作用」

上記構成によれば、第一の遅延手段により面報 度などに応じて放策が継続されるべき第一の設定 時間が任意に設定され、またこれをは無関係にパ ルス信号発生手段により被加工物の被厚などに応 でで第二の設定時間が任意に設定されるだめ、放 電休止時間が固定されることなく原則として収厚 などの加工条件に応じた第二の設定時間毎に放電 パルスが発生するので、放電休止時間が短縮され、 紋電パルス数が増加される。

【実施例!

次に、本発明の一実施併を図面について説明す ۵.

(1) (1) (発明が解決しようとする問題点)

本発明は上記の問題に鑑みてなされたものであ 能率を向上することができる故電加工機を提供す 2 2 25 30 ることを目的とする。

1.75

....「問題点を解決するための手段」。

しかして、本発明によれば、放電電極および被 · (A) 加工物質極関と電源との放電路上に接続され、モ yigeを印加するスイッチング業子と、そのスイッチン グ案子がダーンオンされた状態において前記両電 ・ 「極関で放電が発生したことを検出して検出信号を 手段に接触され、その輸出手段の輸出機器に基づ いて第一の設定時間後に作動信号を出力する第一 の運動手段と、前記放電発生検出手段の検出信号 とは関係なく第二の設定時間毎にパルス信号を発 生するパルス信号発生手段と、そのパルス信号発

-4-

第1団はこの一実施例による拡電加工機の放電 駆動回路の全体を表わす回路図、第2図はその放 電鋼御回路および中央処理装置との関連を示す回 路図、第3図は放電制御回路のタイミングチャー 李 医红色 化光层 トである.

電板としてが直流電板1の一端は、被加工物2 に接続されるとともに、同じく電波をなす充電コ ンデンザ3の一種に接続されている。まだ、被加 工製2と加工関隊Gを介して対向し、相対的に移 動可能なワイヤ電極もは、スイッチング業子とし ·ての電界効果トランジスタ(以下単にFETという) 5、ダイオード6、無誘導抵抗よりなる電流検出 抵抗でおよびゲイオード8を介して直流電報1の 他端に接続されており、かつ前記ワイヤ電極もは PET5 を介して光電コンダンサ3の差額に接続を れている。また、電流検出抵抗了の両端には周知 構成によるアイゾレータなどを有する故電検出の ための言法論出回路のおお終されており、その言 沈検出回路9の出力信号路は放電制御回路10に 導入され、放電制御回路10の出力信号路は FET 5 のゲート増子に導入されている。なお、被加工 物 2 およびワイヤ電極 4 の両端と並列に、ダイオ ード 1 1 と抵抗 1 2 の直列回路が接続されている。

第2図に示されるように、電流検出回路9には、 第一の運転手段をなす遅延回路13が接続されて いる。この遅低同路13は、信号を入力されてか ら負荷時間に相当する設定時間to 後に短時間の パルスによる作動信号を出力するものであり、こ の数定時間tp は中央処理装置(CPO) 1 4によっ て、面粗皮遊択スイッチ15の操作に応じて任意 に設定される。放御郷御同路10内には、宿流検 出回路9の検出信号に関係なく、ある任意に設定 された設定時間(放催サイクルタイム)ts 毎にこ く短時間のパルス信号を発生するプログラマブル タイマ16が設けられている。プログラマブルタ イマ16は、パルス信号数半手段をなすものであ り、その放電サイクルタイムLs はCPU 1 4に僧 えられたキーポード17の操作により、被加工物 2の板厚、ワイヤ電極4のワイヤ径、加工関隊G に供給される水の電気伝導度、放電エネルギー

-7-

第3図に示されるごとく、プログラマブルタイ マ16が第1回目のパルスを発生すると、このパ ルスはFF18のクロック端子CLK に加えられる。 遅延回路13の出力信号は発生していないため、 FF18のクリア婚子CLR はローレベルにあるので、 このFF1 8 はセットされ出力増子Qにハイレベル の出力信号を発生し、アンドゲート19を介して FET 5のゲート端子にこの出力信号が加えられ、 FET 5はターンオンする。そして、直流電源1お よび充電コンデンサるから被加工物でおよびワイ ヤ電価4に電圧が印加される。若千の無負荷時間 が経過すると、それらの放電間隙Gに放電が発生 し、電流検出回路9から検出信号SGが発生され遅 延回路13に加えられる。遅延回路13は、検出 信号SGを加えられた時より負荷時間to を経過す ると短時間だけパルス倡号を生じ、この倡号をFF 18のクリヤ嫡子CLR に加える。FF18はクリヤ 端子CLR に信号を加えられることによって出力端 子Qの出力信号を削減するため、FET 5はゲート 増子に信号を加えられなくなりターンオフする。

(FET5をターンオフする時間)などの加工条件に応じて設定される。プログラマブルタイマ16は、そのタイマ16の出力信号に基いてハイレベルの出力信号を発生するところの、スイッチング制制手段をなすフリップフロップ(以下単にFFという)18のクロック増子CLKに接続されている。FF18のクリヤ端子CLRに前配遅延回路13の出力信号が導入されており、遅延回路13の出力信号がベイレベルのときFF18はクリヤされて出力信号を削減する(ローレベルとなる)。

FF18の出力信号は、放電調御回路10の始動を制御するためのアンドゲート19を介してFET5のゲート鎖子に導入されている。

「作動」

上記標底において、アンドゲート19に始動信号Dis onが導入されると、このアンドゲート19か関かれ、放電制御回路10のFF18からFET 5のゲート端子に出力信号を与えることが可能となる。

-8-

そして、放電間際Gの放電は扱小な時間ののちに 終了する。

放電サイクルタイムtsの後に、第2回目のパルスがプログラマブルタイマ16より発生されると、このパルスがFF18のクロック端子CLKに加えられることにより、FF18はこのパルスの立上り時点に出力端子Qに出力信号を発生し、アンドゲート19を介してFET5のゲート増子にこの出力信号が加えられるため、FET5はターンオンし、被加工物2とワイヤ電価4に直流電波1および光電コンデンサ3から電圧が加えられ、若干の無負荷時間の後にこれらの放電間際Gに放電が発生する。電流検出回路9からは検出信号SGが発生され、負荷時間13のパルスはFF18に加えられ、FF18は出力増子Qの出力信号を削減してFET5をターンオフする。

第3回目のパルスが放電サイクルタイムts の 後にプログラマブルタイマ16より発生された時、 第3図に示された一例では、遅延回路13のパル

スが立下った後であるため、FF18は、そのクリ ·ア雄子CLR がローレベルにあるので、プログラマ ブルタイマ16のパルスがクロック増子CLK に加 「えられることによりセットされ、出力増子Qに出 力信号を発生する。そして、アンドゲート19を 介してFET 5のゲート菓子にこの出力信号が加え られるため、FET 5はターンオンされる。この時、 前配FET 5が放電検出に伴って負荷時間tp 後ク "ーンオフをれてから前記放電サイクルタイムts の時間間隔よりも非常に狙い間隔でFET 5がダー ・ンオンされる。その後、故難関隊Gには故電が発 生される。電流検出国路9から検出信号SGが発生 され、遅新同路13はこの検出信号SGの立上り時 点から負荷時間to 後にパルス信号を発生し、こ のパルス借号の立上りによってFF18は出力信号 を推進するため、FET 5.はオワされる。ハリコ

: 故電サイクルタイムts が経過して第4回目の パルスがプログラマブルタイマ16から発生されると、FF18はセットされて出力信号を発生し、 FET5のゲートにこの出力信号が加えられること

-11-

グイムts がいずれも、CPU 184により設定されるので、設定が容易であり考慮時間が不要であるという利点がある。但し、本発明は上記実施例の ・構成に製定されるものではない。

「効果」

A CAR SERVICE

以上述べたように、本発明の故郷加工機は上記の構成を有するものであり、加工条件に応じて設定された第二の設定時間ごとに発生されるペルスでよりスイッチング業子が閉じられ、両電価値に電圧が印加されるので、加工条件に持わらず故電が止時間が必要充分な値に固定されていた従来の一場合に比較して、所定時間内にはける故電バルスを数を増加することができ、加工銀車を向上することが可能になるという優れた効果がある。

 により、FET 5 がオンされ、放電関隊Gに電圧が印加される。そして、若干の無負荷時間の後に放電開際Gに放電が生じると、電流検出回路 9 から終出個号SGが発生し、遅延回路 1 3 は負荷時間 tp 後に短時間のパルス信号を発生してFF 1 8のクリア増子CLR にこのパルス信号を与える。FF 1 8 はその遅延回路 1 3 のパルス信号の立上り時点で出力信号を削減し、FET 5 をオフさせる。

選帳団路13の出力信号が有る(ハイレベルの)間に、第5回目のサイクルタイムtsが到来してプログラマブルタイマ16からパルスがFF18のクリア増子CLKに入っても、FF18のクリア増子CLRには選帳回路13の出力信号が入っているため、FF18はセットされず、そのFF18の出力増子Qに出力信号は出力されない。そして、次の第6回目のプログラマブルタイマ16のパルスによりFET5はオンされる。

(実施例の利点)

上記実施例によれば、遅延回路13の負荷時間 tp.4およびブリグラマアルグイマ16のサイクル

-12-

中国路図、第3図は放電制制国路のタイミングチャート、第4図は従来の放電加工機における放電周 類を説明するための読形図である。

1 一直施電報、2 一被加工物、3 一光電コンデンサ、4 一ワイナ電板、5 一電界効果トランジスク(FET)、7 一電流検出抵抗、9 一電流検出国路、1 0 一枚電制等国路、1 3 一遅延回路、1 4 一中央処理装置、1 6 一プログラマブルタイマ、1 8 一フリンプフロップ(FF)、G 一加工関限、SG 一検出信号、to、一負荷時間、ts 一枚電サイクルタ

A Company of Asserting Company of the Company of th

能發升 巴斯里 Risks

the same was a great

-144-

第 1 ②

第 2 図

第 4 図

