Accurate Traffic Light Detection using Deep Neural Network with Focal Regression Loss

Bak Gyeongmin

Goal

- · Vision-based traffic light detection algorithm
 - Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS)
 require ability to detect surrounding objects
 - Traffic light (TL) is one of most important elements to detect
 - A vehicle should be able to detect the traffic lights and take proper actions based on the signal of traffic lights
 - · A vehicle can avoid traffic accidents

Problems to Detect TL

- Traffic light is too small
 - A TL at 50 m occupies only 12x4 px in 1280x720 an image
 - CNN easily lose of details of small object (TL)
- Numerous background examples dominate training procedure
 - foreground:background = 1:12543 in our experiments

Proposed Methods

- Deconvolutional Deep Neural Network for TL detection
 - YOLOv2 based, Encoder-decoder hourglass structure
 - Preserve information of small TLs to end of the network
 - Improve detection accuracy of small TLs
 - Freestyle anchor box
 - · defined by offsets, width, and height
 - Predict bounding box candidates more densely
- Focal Regression Loss
 - Reduce loss of easy examples
 - Prevent easy background examples to dominate training procedure
 - Used to train proposed TL detector

Deconvolutional Deep Neural Network for TL Detection

Overview

5

- Consists of 3 sub-networks
 - Encoder network : encode an input image to feature maps
 - **Decoder network**: refine encoder network's output
 - Detector network :

predict bounding boxes, confidences, class scores

Encoder Network

- Make an input image to feature maps
- Use ResNet-101 as Encoder network
 - Detailed structure with 224×224 image input

Layer name	Output size	Filter (kernel, #, stride)
conv1	112 × 112	7×7, 64, 2
pool1	56 × 56	3×3 max pool, 2
res2x	56×56	[(1×1, 64), (3×3, 64), (1×1, 256)] ×3
res3x	28×28	[(1×1, 128), (3×3, 128), (1×1, 512)] ×4
res4x	14×14	[(1×1, 256), (3×3, 256), (1×1, 1024)] ×23
res5x	7×7	[(1×1, 512), (3×3, 512), (1×1, 2048)] ×3

Feature Maps of Encoder Network

- Early feature map
 - A feature map from an early (= close to input) layer
 - Retain detailed information
 - Has less contextual information
- Late feature map
 - A feature map from a late (= far from input) layer
 - Has abstracted information

Required to detect small objects

Decoder Network

- Combines encoder network's feature maps
 - Upsamples late feature maps to match the resolution with early feature maps by using deconvolutional layer.
 - Combines upsampled late feature maps and early feature maps.
- The <u>final result feature map</u> contains <u>details</u> as well as strong contextual information.
- f_0 =res5c, f_1 =res4b22, f_2 =res3b3, f_3 =res2c

Detector Network

- Detect traffic lights from decoder network's result
- Configuration of final result is based on YOLOv2
 - When final feature map has spatial resolution of $W \times H$, then the input image is divided into $W \times H$ grid cells.
 - Each grid cell corresponds to each cell of the final feature map
 - Bounding box predictions are spatially based on anchor boxes

Detector network

Final result configuration

Anchor Box Definition

- Existing anchor box (in YOLOv2)
 - Defined by width and height, then located at center of a grid cell
 - Anchor box for a small traffic light is much smaller than a grid cell
 - Can not cover whole area of a grid cell with a small anchor box
- Freestyle anchor box
 - Defined by offsets, width, and height $(a = (o^x, o^y, a^w, a^h))$
 - Can be located at arbitrary location in a grid cell
 - Cover whole area of a grid cell with small anchor boxes

Freestyle Anchor Box Definition

•
$$j$$
-th anchor box : $\mathbf{a}_j = (o_j^x, o_j^y, a_j^w, a_j^h)$

• *j*-th anchor box placed at *i*-th grid cell :

$$\mathbf{a}_{ij} = \left(g_i^x + o_j^x, g_i^y + o_j^y, a_j^w, a_j^h\right)$$
$$= \left(a_{ij}^x, a_{ij}^y, a_{ij}^w, a_{ij}^h\right)$$

A bounding box whose center falls in aii :

$$\boldsymbol{b_{ij}} = \left(b_{ij}^{x}, b_{ij}^{y}, b_{ij}^{w}, b_{ij}^{h}\right)$$

• Relative representation form of b_{ij} to a_{ij} :

$$\begin{aligned} \boldsymbol{t_{ij}^{bb}} &= \left(t_{ij}^{x}, t_{ij}^{y}, t_{ij}^{w}, t_{ij}^{h}\right), \\ t_{ij}^{x} &= \left(b_{ij}^{x} - a_{ij}^{x}\right) / a_{ij}^{w} + 0.5, \\ t_{ij}^{y} &= \left(b_{ij}^{x} - a_{ij}^{y}\right) / a_{ij}^{h} + 0.5, \\ t_{ij}^{w} &= \ln(b_{ij}^{w} / a_{ij}^{w}), \\ t_{ij}^{h} &= \ln(b_{ij}^{h} / a_{ij}^{h}). \end{aligned}$$

Prediction Interpretation

- $(p_{ij}^x, p_{ij}^y, p_{ij}^w, p_{ij}^h)$
 - Prediction for bounding box coordinates
 - Correspond to $t_{ij}^{bbox} = \left(t_{ij}^{x}, t_{ij}^{y}, t_{ij}^{w}, t_{ij}^{h}\right)$
 - Absolute form of predicted bounding box \bar{b}_{ij} :

$$\bar{\mathbf{b}}_{ij} = (\bar{b}_{ij}^{x}, \bar{b}_{ij}^{y}, \bar{b}_{ij}^{w}, \bar{b}_{ij}^{h})
\bar{b}_{ij}^{x} = a_{ij}^{w} (\sigma(p_{ij}^{x}) - 0.5) + a_{ij}^{x}
\bar{b}_{ij}^{y} = a_{ij}^{h} (\sigma(p_{ij}^{y}) - 0.5) + a_{ij}^{y}
\bar{b}_{ij}^{w} = a_{ij}^{w} e^{p_{ij}^{w}}
\bar{b}_{ij}^{h} = a_{ij}^{h} e^{p_{ij}^{h}}$$

- p_{ij}^s
 - Confidence of the bounding box
 - $\sigma(p_{ij}^s) = \Pr(object|i,j) * IOU(\bar{b}_{ij}, b_{ij})$
- $\left(p_{ij}^{c_0}, \dots, p_{ij}^{c_{C-1}}\right)$
 - Class probabilities of the bounding box

Focal Regression Loss

Balancing Loss of Foregrounds and Backgrounds

- Main idea: reducing loss of easy examples
 - Most of background examples are easy examples
 - Reducing loss of easy examples to balance between loss of foreground and loss of backgrounds
 - Focus on hard examples

Focal Regression Loss

- Focal Regression Loss
 - - $p \in [0,1]$: regressed value
 - $q \in [0,1]$: regression target
 - $\gamma \ge 0$: focusing parameter
 - $|p-q|^{\gamma}$: modulating factor

• The ratio of the \mathcal{L}^{FR} for |p-q|=0.8 over \mathcal{L}^{FR} for |p-q|=0.2

γ	$\frac{\mathcal{L}^{FR}(\boldsymbol{0}.\boldsymbol{8},\boldsymbol{0})}{\mathcal{L}^{FR}(\boldsymbol{0}.\boldsymbol{2},\boldsymbol{0})}$
0	7.21
2	115.40
5	7385.67

Loss for Proposed TL Detector

- The loss for proposed TL detector
 - $\mathcal{L} = \mathcal{L}_{obj} + \lambda_{bb}\mathcal{L}_{bb} + \lambda_{class}\mathcal{L}_{class}$
 - Based on YOLOv2
 - Weighted sum of 3 sub-losses
- \mathcal{L}_{obj} : Loss for confidence regression
 - Original YOLOv2 uses L2 loss, but we <u>substitute L2 loss to focal regression</u> loss.
 - 1_{ij} : foreground indication function
 - 1_{ij} =1 where a_{ij} has target object, 1_{ij} =0 for otherwise.

$$\mathcal{L}_{obj} = \lambda_{obj} \sum_{i} \sum_{j} 1_{ij} \mathcal{L}^{FR} \left(\sigma(p_{ij}^s), IOU(\bar{b}_{ij}, b_{ij}) \right) + \lambda_{noobj} \sum_{i} \sum_{j} (1 - 1_{ij}) \mathcal{L}^{FR} \left(\sigma(p_{ij}^s), 0 \right)$$

Sub-Loss

- \mathcal{L}_{bb} : Loss for bounding box prediction
 - Same as original YOLOv2's.
 - Foreground : regress to target
 - Background : regress to corresponding anchor box
 - (0.5, 0.5, 0, 0) is the anchor box which is relatively represented by itself

$$\mathcal{L}_{bb} = \sum_{i} \sum_{j} 1_{ij} \left[\left(\sigma(p_{ij}^{x}) - t_{ij}^{x} \right)^{2} + \left(\sigma(p_{ij}^{y}) - t_{ij}^{x} \right)^{2} + \left(p_{ij}^{w} - t_{ij}^{w} \right)^{2} + \left(p_{ij}^{h} - t_{ij}^{h} \right)^{2} \right]$$

$$+ \sum_{i} \sum_{j} (1 - 1_{ij}) \left[\left(\sigma(p_{ij}^{x}) - 0.5 \right)^{2} + \left(\sigma(p_{ij}^{y}) - 0.5 \right)^{2} + \left(p_{ij}^{w} - 0 \right)^{2} + \left(p_{ij}^{h} - 0 \right)^{2} \right]$$

- \mathcal{L}_{class} : loss for classification
 - Use softmax with focal loss
 - $\bar{p}_{ij}^{cls_t}$: probability for class t

$$\begin{split} \bar{p}_{ij}^{c_t} &= \frac{e^{p_{ij}^{c_t}}}{\sum_k e^{p_{ij}^{c_k}}} \\ \mathcal{L}_{class} &= -\sum_i \sum_j 1_{ij} \left(1 - \bar{p}_{ij}^{c_t}\right)^{\gamma} \ln p_{ij}^{c_t} \end{split}$$

Datasets

- Bosch Small Traffic Lights Dataset
 - 1280x720 images
 - training set: 5093 images, 10765 annotated TLs
 - test set: 8334 consecutive images, 13486 annotated TLs

19

- 4 classes : red, yellow, green, off
- Specialized for small TL
 - Even annotated to 4x8 px TLs
 - Median width of TLs: 8.5px
- Lisa Traffic Lights Dataset
 - 1280x960 images
 - training set: 13 day clips (14034 images), 97910 annotated TLs
 - test set : 4060 images
 - 5 classes : stop, stopLeft, warning, warningLeft, go
 - Rather inaccurate and inconsistent
 - Median with of TLs: 22px

Experiment for Bosch dataset

• Evaluated 5 models

model	Description
model A	2 deconv blocks
model A+	2 deconv blocks, focal regression loss
model B	3 deconv blocks
model B+	3 deconv blocks, focal regression loss

- Input
 - Extract 224 × 224 sized patches from original image

Model Details

- Decoder network
 - model A, model A+

model B, model B+

- Parameters 24
 - model A, model B

$$\begin{array}{l} \bullet \quad \lambda_{obj} = 50, \lambda_{noobj} = 1, \\ \lambda_{bbox} = 1, \lambda_{class} = 10, \gamma = 2 \end{array}$$

model A+, model B+

•
$$\lambda_{obj} = 30, \lambda_{noobj} = 1,$$

 $\lambda_{bbox} = 1, \lambda_{class} = 10, \gamma = 2$

Training Details

• 2 step training

■ Step1

- Extract patches at random position
- Foreground : Background = 3:1
- Use stochastic gradient descent algorithm (SGD), train with 10^5 iterations
- Learning rate : started at 10^{-7} , decreased by 10^{-1} per 2×10^4 iterations
- It is to stabilize model quickly.

■ Step2

- Extract patches at fixed position like test process
- Use SGD, train with 10^5 iterations
- Learning rate : started at 10^{-7} , decreased by 10^{-1} per 2×10^4 iterations
- · It reduce false alarms

Detection Result (Bosch)

Detection Result

• Experiment for TL detectors on Bosch-TL

Area-under-the-curve (AUC) for each model

Model	$IOU \geq 0.5$			$IOU \geq 0.3$		
	all	$w \geq 5px$	$w \ge 10px$	all	$w \geq 5px$	$w \ge 10px$
Behrendt et al.	0.3267	0.3916	0.5087	0.7019	0.8209	0.7844
model A	0.2175	0.2612	0.2965	0.5215	0.6193	0.6805
model A+	0.5692	0.6073	0.5192	0.796	0.8351	0.7607
model B	0.5130	0.5995	0.5907	0.7354	0.8357	0.8588
model B+	0.5973	0.6806	0.7518	0.8376	0.9039	0.9442

Detection Result

• Experiment for TL detectors on Bosch-TL

mAP for each model

Model	$IOU \geq 0.5$			$IOU \geq 0.3$		
	all	$w \geq 5px$	$w \ge 10px$	all	$w \geq 5px$	$w \ge 10px$
Faster R-CNN	0.53	-	-	-	-	-
Behrendt et al.	0.4*	-	-	-	-	-
Pon et al.	0.46	-	-	-	-	-
model A	0.2010	0.2414	0.3246	0.4802	0.5702	0.6793
model A+	0.5681	0.6131	0.5112	0.7816	0.8253	0.7463
model B	0.5021	0.5865	0.5676	0.6850	0.7736	0.8115
model B+	0.5641	0.6418	0.7289	0.7871	0.8499	0.9058

*: estimated by Pon et al.

bold: largest mAP

DEMO

Traffic Light Detection Intelligent Media Lab, POSTECH

Conclusion

- The proposed TL detector is evaluated on two public TL detection benchmark datasets, then it shows higher mAP and AUC than existing TL detection methods.
- The proposed focal regression loss improves detection accuracy of the TL detector.

References

- K. Behrendt, L. Novak, and R. Botros, "A deep learning approach to traffic lights: Detection, tracking, and classication", in Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE, 2017, pp. 1370-1377.
- M. B. Jensen, K. Nasrollahi, and T. B. Moeslund, "Evaluating state-of-the-art object detector on challenging traffic light data", in Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on. IEEE, 2017, pp. 882-888.
- M. P. Philipsen, M. B. Jensen, A. Mgelmose, T. B. Moeslund, and M. M. Trivedi, "Tracffic light detection: A learning algorithm and evaluations on challenging dataset", in intelligent transportation systems (ITSC), 2015 IEEE 18th international conference on. IEEE, 2015, pp. 2341-2345.
- J. Redmon and A. Farhadi, "Yolo9000: Better, faster, stronger", in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 6517-6525.
- V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation", IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481-2495, 2017.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition", in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
- T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal loss for dense object detection", in 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017, pp. 2999-3007.

