1. IDENTIFICACION

Materia: PROPIEDADES ELECTRICAS DE LOS

MATERIALES

Códigos: SIRE: 6063 EIQ: IQ-ET36

Prelación: IQ-5027, IQ-5017

Ubicación:ElectivaTPLU:3-0-0-3Condición:Electiva

Departamento: Química Industrial y Aplicada

2. **JUSTIFICACION**

Es importante que nuestros egresados entiendan un poco más de los fenómenos eléctricos de los materiales. No se pretende crear un experto, se pretende informar a un individuo sobre ciertos fenómenos físicos comunes que suceden al nivel molecular y atómico.

3. REQUERIMIENTOS

Conocimientos de Física general.

4. OBJETIVOS

GENERALES

El objetivo de este curso es el de presentar al estudiante en forma general, las bases de la física del estado sólido y sus aplicaciones inmediatas. Se estudiarán materiales semicondutores, dieléctricos y magnéticos, con sus propiedades y las teorías que los rigen.

ESPECIFICOS

Capítulo 1

- Familiarizar al estudiante con la teoría básica de la física del estado sólido.
- Señalar propiedades de los materiales fundamentadas en la teoría básica.

Capítulo 2

• Familiarizar al estudiante con los semiconductores, propiedades y características.

Capítulo 3

• Introducir materiales dieléctricos, propiedades y aplicaciones específicas.

Capítulo 4

• Familiarizar al estudiante con materiales magnéticos, sus propiedades y aplicaciones.

Capítulo 5

• Introducir el fenómeno de superconductividad. Materiales que presentan este fenómeno y aplicaciones.

5. CONTENIDO PROGRAMATICO

CAPITULO 1. TEORIA BASICA

Teoría de los electrones libres. Fermi-Dirac. Teoría de bandas: Kronig-Penney, Ziman, Feynman. Masa efectiva, número efectivo de electrones libres, número de estados posibles por banda. Metales y aislantes.

CAPITULO 2.. SEMICONDUCTORES INTRINSECOS, EXTRINSECOS

Electrón como partícula – conductividad. Principios de dispositivos semiconductores, unión p-n. Rectificación, transistor, unión metal-semiconductor, Zener, Túnel. Fabricación.

CAPITULO 3. APROXIMACION MICROSCOPICA, MACROSCOPICA. POLARIZACION. CONSTANTE DIELECTRICA

Campo efectivo. Piezoelectricidad. Ferroeléctricos. Fibras ópticas, proceso Xerox.

CAPITULO 4. APROXIMACION MACROSCOPICA

Teoría microscópica. Histéresis.

CAPITULO 5. EFECTO DE UN CAMPO MAGNETICO

Energía de superficie. Intervalo separador de energía.

6. METODOLOGIA.

- Cursos tradicionales.
- Asignaciones de investigación bibliográfica sobre aplicaciones de materiales en circuitos modernos.

7. RECURSOS.

Tiza, pizarrón, videos.

8. **EVALUACION**

- Exámenes escritos al final de cada capítulo que corresponden a 5 exámenes parciales.
- Trabajos de investigación, que corresponde, junto con su exposición pública, a un examen parcial.
- El promedio de los cinco exámenes parciales corresponden al 60% de la nota final del estudiante.
- 1 exámen final que corresponde al 40% de la nota final del estudiante.

9. **BIBLIOGRAFIA.**

Solymar, L. y D. Walsh. "Lectures on the Electrical Properties of Materials". Oxford University Press, Second Edition, Oxford, London, 1979.

Kittel, Charles. "Introduction to Solid State Physics". John Wiley & Sons, inc., U.S.A., 1956.

Dekker, Adrianus J. "Solid State Physics". Prentice-Hall, Inc., U.S.A., 1957.

10. VIGENCIA

Desde: Semestre B-2001.