ADS CCEE Mock Test1

musalesanket19@gmail.com Switch account

Not shared

Draft saved

* Indicates required question

MCQ

Consider the following undirected graph with edge weights as shown: *

1 point

The number of minimum-weight spanning trees of the graph is ----

Which of the following is True about the Spanning Tree? * 1 point	
A spanning is a minimal set of edges in a graph that contains no cycle, connects all the vertices	
A spanning is a maximal set of edges in a graph that connects all vertices.	
A Graph will have only one possible spanning tree	
None of the above	
Which of the following algorithm solves the all-pair shortest path * 1 point algorithm?	
O Prim's algorithm	
O Dijkstra's algorithm	
O Bellman-Ford algorithm	
Floyd-Warshall's algorithm	
Statement 1: When applying the Backtracking algorithm, all choices made * 1 point can be undone when needed.	
Statement 2: When applying the Backtracking algorithm, the worst-case scenario is, that it exhaustively tries all paths, traversing the entire search space	
Both, Statements 1 and 2, are true	
Statement 1 is true, Statement 2 is false	
O Statement 2 is true, Statement 1 is false	
O Both, Statements 1 and 2, are false	

A hash function h defined h(key)=key mod 7, with linear probing, is used to insert the keys 44, 45, 79, 55, 91, 18, and 63 into a table indexed from 0 to 6. What will be the location of key 18?	* 1 point
O 3	
4	
O 5	
O 6	
Which one of the following is an application of Stack Data Structure? *	1 point
	1
Managing function calls	
The stock span problem	
Arithmetic expression evaluation	
All of the above	
The time required to search an element in a linked list of length n is *	1 point
O(log n)	
O(n)	
O(1)	
O(n2)	

The integrity of transmitted data can be verified by using *	1 point
Hash Message Authentication Code (HMAC)	
Timestamp comparison	
O Data length comparison	
O None of these	

Consider the following sequence of operations on an empty stack indicated * 1 point by **'S'**. Push(54);push(52);pop();push(55);push(62);s=pop(); Consider the following sequence of operations on an empty queue indicated by 'Q' enqueuer(21); enqueuer(24); dequeuer(); enqueuer(28); enqueuer(32); q=dequeuer(); The value of (**S+Q**) is ------62 68

!

Let $G = (V, G)$ be a weighted undirected graph and let T be a Minimum * 1 point Spanning Tree (MST) of G maintained using adjacency lists. Suppose a new weighed edge $(u, v) \in V \times V$ is added to G. The worst-case time complexity of determining if T is still an MST of the resultant graph is $ \Theta(E + V) $
Θ(IEI.IVI)
Θ(El log IVI)
Ο Θ(ΙVΙ)
Suppose prevnode, p, nextnode are three consecutive nodes in a Doubly * 1 point Linked List. Deletion of node p in this Doubly Linked List can be represented by which code snippet?
[getPrev() method returns the prev node and getNext() method returns the next node in DLL.]
[SetPrev() method sets the prev node value and setNext() method sets the next node value in DLL.]
<pre>p.getPrev().setPrev(p.getNext()); p.getNext().setNext(p.getPrev());</pre>
<pre>p.getPrev().setNext(p.getPrev()); p.getNext().setPrev(p.getNext());</pre>
p.getNext().setPrev(p.getPrev()); p.getPrev().setNext(p.getNext());
None of the above
We use a dynamic programming approach when * 1 point
We need an optimal solution
The solution has an optimal substructure
The given problem can be reduced to the 3-SAT problem
O It's faster than Greedy

Consider a binary max-heap implemented using an array. Which one of the * 1 point following arrays represents a binary max-heap?

- 25,12,16,13,10,8,14
- 25,14,16,13,10,8,12
- 25,16,12,13,10,8,14
- **25,14,12,13,10,8,16**

A complete n-ary tree is a tree in which each node has n children or no children. Let I be the number of internal nodes and L be the number of leaves in a complete n-ary tree. If L = 41, and I = 10, what is the value of n?

* 1 point

- O 6
- \bigcirc 3
- \bigcirc 5

The recurrence relation capturing the optimal time of the Tower of Hanoi * 1 point problem with n discs is.---

- T(n) = 2T(n-2)+2
- T(n) = 2T(n-1)+n
- T(n) = 2T(n/2)+1
- T(n) = 2T(n-1)+1

Which is the safest method to choose a pivot element? *	1 point
Choosing a random element as a pivot	
Choosing the first element as a pivot	
Choosing the last element as a pivot	
Median-of-three partitioning method	
Which of the following algorithm design techniques is used in finding all pairs of shortest distances in a graph (Warshall algorithms)?	* 1 point
Dynamic programming	
O Back Tracking	
Greedy	
O Divide & Conquer	
In which of the following tree do the height of the left subtree and the height of the right subtree differ at most by one?	* 1 point
AVL Tree	
C Expression Tree	
Threaded Binary Tree	
O Binary Search Tree	

Which of the following are not Associative Containers? *	1 point
priority queue	
O map	
O multimap	
O multiset	
The value returned by Hash Function is called as *	1 point
O Digest	
Hash value	
O Hash code	
O All of these	
What is a memory-efficient double-linked list? *	1 point
Each node has only one pointer to traverse the list back and forth	
The list has breakpoints for faster traversal	
An auxiliary singly linked list acts as a helper list to traverse through the doubly linked list	
None of the mentioned	

A digraph is said to be COMPLETE, if it has N vertices andedges. *	1 point
O N*N	
○ N-1	
N*(N-1)	
N*(N-1)/2	
In the worst case, the number of comparisons needed to search a singly linked list of length n for a given element is	* 1 point
● O(log2 n)	
O(n/2)	
○ O(log2 n − 1)	
O(n)	
If you want to store the name and marks of N students, which of the following is the correct choice?	* 1 point
An array of structures that contains names and marks as a field.	
A structure containing arrays of Names and arrays of Marks	
An array of names and an Array of marks	
All of the above	

What are the time complexities of finding the 8th element from the beginning and the 8th element from the end in a singly linked list? Let n be the number of nodes in a linked list, you may assume that n > 8.	* 1 point
O(1) and O(n)	
O(1) and O(1)	
O(n) and O(1)	
O(n) and O(n)	
Let 'm' and 'n' be the number of edges and vertices in a graph G, respectively. Which of the following is the time complexity of Kruskal's algorithm to find the minimum spanning tree of G?	* 1 point
O(n log n)	
O(m log m)	
O(n2)	
O(m2)	
Depth First Search graph traversal method makes use of data structure.	* 1 point
O Tree	
Stack	
Queue	
C Linked list	

A tree node with no children is called a node. *	1 point
Leaf node	
Root node	
O Parent node	
Ancestor node	
Let A[1n] be an array of n distinct numbers. If $i < j$ and A[i] > A[j], then the pair (i , j) is called an inversion of A. What is the expected number of inversions in any permutation on n elements?	* 1 point
n(n-1)/2	
n(n-1)/4	
O n(n+1)/4	
O 2n[logn]	
What is the best method to go for the game-playing problem? *	1 point
Optimal Search	
Random Search	
Heuristic Search	
Stratified Search	

Which of the following types of Linked List support forward and backward traversal?	* 1 point
Singly Linked List	
Doubly Linked List	
Circular Singly Linked List	
O All of these	
In the worst case, the number of comparisons needed to search a singly linked list of length n for a given element is	* 1 point
O log2 n	
O n/2	
O log2 (n-1)	
o n	
Identify the correct sequence of the below actions for implementing decisions?	* 1 point
I. Create an action plan	
II. Prioritize actions and assign roles	
III. Break solution into action steps	
IV. Follow-up at milestones	
O I, III, II, IV	
I, II, III, IV	
I, IV, II, III	
O IV, III, II, I	

What would be the order in which edges are added to form a minimum * 1 point spanning tree using Kruskal's and Prim's algorithms for the following graph:

- (Kruskal's AB CD CF AE FE and Prim's AB AE FE CF CD
- Kruskal's AB CD CF FE AE and Prim's AB AE FE CF CD
- Kruskal's AB CD CF FE AE and Prim's AB AE FE CD CF
- Kruskal's CD AB CF FE AE and Prim's AB AE FE CF CD

Consider the following array.

* 1 point

23,32,45,69,72,73,89,97

Which algorithm out of the following options uses the least number of comparisons (among the array elements) to sort the above array in ascending order?

- Selection sort
- Merge sort
- Insertion sort
- Quicksort using the last element as a pivot

Which one of the following is the tightest upper bound that represents the time complexity of inserting an object into a binary search tree of n nodes?	* 1 point
O(1)	
O(logn)	
O(n)	
O(nlogn)	
Let H be a binary min-heap consisting of n elements implemented as an array. What is the worst-case time complexity of an optimal algorithm to find the maximum element in H?	* 1 point
Ο Θ(1)	
Θ(log n)	
Θ (n)	
$\Theta(n \log n)$	
The height of a binary tree is the maximum number of edges in any root-to-leaf path. The maximum number of nodes in a binary tree of height h is:	* 1 point

- O 2^h -1
- 2^(h-1) 1
- 2^{(h+1)-1}
- 2*(h+1)

The postfix equivalent of prefix expression * + a b – c d is *	1 point
ab+cd-*	
<pre>abcd+-*</pre>	
O ab+cd*-	
○ ab+-cd*	
The worst-case time complexity for the linear search algorithm is *	1 point
O(n)	
O(log n)	
\bigcirc O(n ²)	
O(n log n)	
Back Submit	Clear form

Back Submit Clear form

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms