Homework #5 Solutions

Please write your answers on a separate sheet of paper, and include at least some intermediate steps and English words.

This homework covers sections 3.1-3.4.

1 Consider the linear programming problem

Maximize
$$z = 5x_1 + 10x_2$$

subject to
 $x_1 + 3x_2 \le 50$
 $4x_1 + 2x_2 \le 60$
 $x_1 \le 5$
 $x_1, x_2 \ge 0$

- (a) State the dual of the preceding LPP.
- (b) Given that (5,15) is an optimal solution to this LPP, use the Duality Theorem and the principle of complementary slackness to find optimal solution to the dual.

Answer: The dual of this LPP is:

Minimize
$$z' = 50w_1 + 60w_2 + 5w_3$$

subject to
$$w_1 + 4w_2 + w_3 \ge 5$$

$$3w_1 + 2w_2 \ge 10$$

$$w_1, w_2, w_3 \ge 0$$

For part (b), let's begin by recalling the principle:

Principle of Complementary Slackness: Let \underline{x} be an optimal solution to an LPP and let \underline{w} be an optimal solution to the dual problem. Suppose that when we plug \underline{x} into the *i*th inequality of the primal problem has slack (i.e., is not tight). Then the *i*th component of \underline{w} is 0.

We can also apply the dual of this principle, which states that if we plug \underline{w} into the dual problem and see that the jth inequality of the this problem has slack, then the jth component of x is 0.

Plugging (5,15) into the primal problem, we see that the second inequality becomes $4(5) + 2(15) \le 60$, which has slack. Therefore $w_2 = 0$ by the Principle of Complementary Slackness.

Then we look at the second inequality in the dual problem. It states that $3w_1 + 2w_2 \ge 10$. But now we know that $w_2 = 0$, so this says $3w_1 \ge 10$. If this inequality had slack, then the dual version of the Principle of Complementary Slackness would say that $x_2 = 0$. But this can't be the case, because $x_2 = 15 \ne 0$. Therefore this inequality is tight, so $3w_1 = 10$, and thus $w_1 = 10/3$.

Math 354 Summer 2004

Similarly, the first inequality in the dual problem can't have slack, so substituting $w_1 = 10/3$ and $w_2 = 0$, we see that

$$\frac{10}{3} + w_3 = 5,$$

so $w_3 = 5/3$.

Therefore $w_1 = 10/3$, $w_2 = 0$, and $w_3 = 5/3$ gives an optimal solution to the dual problem.

2 The tableau below represents a solution to a linear programming problem that satisfies the optimality criterion, but is infeasible. Use the dual simplex method to restore feasibility.

		5	6	0	0	0	0	
\underline{c}_B		x_1	x_2	x_3	x_4	x_5	x_6	\underline{x}_B
5	x_1	1	0	0	-1	1	0	4
6	x_2	0	1	0	1	$-\frac{2}{3}$	0	$\frac{10}{3}$
0	x_3	0	0	1	7	-8	0	2
0	x_6	0	0	0	0	$-\frac{1}{3}$	1	$-\frac{1}{3}$
		0	0	0	1	1	0	40

Answer: We choose x_6 as our departing variable, and then the only choice we have for an entering variable is x_5 . After one pivot, the final tableau is

		5	6	0	0	0	0	
\underline{c}_B		x_1	x_2	x_3	x_4	x_5	x_6	\underline{x}_B
5	x_1	1	0	0	-1	0	3	3
6	x_2	0	1	0	1	0	-2	4
0	x_3	0	0	1	7	0	-24	10
0	x_6	0	0	0	0	1	-3	1
		0	0	0	1	0	3	39

This corresponds to the basic feasible solution $\underline{x} = \begin{bmatrix} 3 \ 4 \ 10 \ 0 \ 1 \ 0 \end{bmatrix}^T$.

- 3 In class on Monday we divided linear programming problems into three classes:
 - (A) No feasible solutions
 - (B) Feasible solutions, finite optimal objective value
 - (C) Feasible solutions, arbitrarily large objective values

The two-phase simplex method can solve all the problems of type (B).

What would happen if I made a typo on the final exam and asked you to use the two-phase method on a problem of type (A), that is, a problem with no feasible solutions? How far could you get?

Answer: You would be able to set up the first phase of the two-phase method and solve it. However, at least one of the artificial variables would remain positive, so you wouldn't have a basic feasible solution to the original problem with which to begin phase 2.