50.039 Theory and Practice of Deep Learning W13S1 – End and Review

Matthieu De Mari

Some admin stuff

Final exam

- Content will be everything from W1 to W12 included.
- Similar format as MidTerm.
- Details for exam (location, assignments, etc.) to be sent via email.

Big project

No extension will be given (have to give grades to OSA!)

Some admin stuff

Conferences (to replace classes this week)

Paypal: Friday 22nd, 11.30am

Gojek: Thursday 21st, 10am

Over Zoom, links to be sent later.

Attendance is mandatory (unless you have clashes with other courses, in which case you will be excused).

So this is the end

What's next?

Advanced attacks and Defense mechanisms (W8++)

Many more mechanisms when it comes to attacking and defending a Neural Network, e.g. new types of attacks, such as:

- Poisoning attacks (attempt to poison the dataset so the NN cannot retrain properly),
- Weights changes (attempt to change a small subset of the weights of the NN to prevent it from working in certain ways),
- Etc.

https://www.comp.nus.edu.sg/~reza/courses/cs6231/

Advanced word embedding and NLP problems (W9++)

Many more mechanisms when it comes to embedding and language related problems.

- E.g. more advanced embeddings
- Typical tasks in NLP (chatbots, context propagation, sentiment analysis, translation, etc.)
- Go for the Term 8 NLP course!

https://istd.sutd.edu.sg/undergraduate/courses/50040-natural-language-processing

Advanced Graph Neural Networks (W10++)

We barely scratched the surface of Graph Theory. If you need to study a new math theory, let it be graph theory!

Good graph theory course here:

https://ocw.mit.edu/courses/mathematics/18-217-graph-theory-and-additive-combinatorics-fall-2019/

 More advanced problems and concepts on Graph Neural Networks in lectures 1-9 of course here:

https://www.cs.ox.ac.uk/teaching/courses/2020-2021/advml/

Advanced Graph Neural Networks (W10++)

Also, keep in mind that Neural Networks are graphs...

- So technically, we could build a Neural Network, which receives another Neural Network as its input...!
- What could be the uses for such a technique?
- Meta-learning? (i.e. training an AI to train another AI?!)
 https://machinelearningmastery.com/meta-learning-in-machine-learning/

Advanced Generative Models (W11++)

- Advanced GANs, operating on other types of data than just images (sound, text, etc.)
- Very good online course here:

https://cs236g.stanford.edu/

Advanced Reinforcement Learning (W12++)

Barely scratched the surface about Reinforcement Learning.

- Currently considering to create a RL course at SUTD for Term 8.
 Thoughts?
- Otherwise, the reference course on RL is the one from David Sliver (the man behind AlphaGo!)

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

And https://www.davidsilver.uk/teaching/

Advanced Interpretability (W12++)

- Rather an ongoing field in research at the moment.
- Not that many course out there, but worth keeping an eye out...

More concepts, problems and architectures on Computer Vision

Ask for the course materials of the Computer Vision Term 7 course for more advanced concepts on CV, such as:

- More advanced loss functions like triplet loss,
- Advanced architectures like siamese networks,
- Video data models,
- Etc.

https://istd.sutd.edu.sg/undergraduate/courses/50035-computer-vision

More concepts, problems and architectures on Computer Vision

 Also, always good to go for an image processing course to understand typical image transformation and problems out there.

```
https://www.coursera.org/learn/image-
processing?ranMID=40328&ranEAID=*GqSdLGGurk&ranSiteID=.GqSdL
GGurk-GV4LxEnPMuMd1.8y4AurRA&siteID=.GqSdLGGurk-
GV4LxEnPMuMd1.8y4AurRA&utm_content=10&utm_medium=partner
s&utm_source=linkshare&utm_campaign=*GqSdLGGurk
```

Bayesian and Statistical Learning (Variational AutoEncoders were 101).

A good entry point for Bayesian Deep Learning

https://medium.com/@ODSC/introduction-to-bayesian-deep-learning-f7568f524c90

Lectures 10-End

https://www.cs.ox.ac.uk/teaching/courses/2020-2021/advml/

A bit of advanced optimization and game theory never hurts...

- Especially when trying to optimize two cooperating or competing neural networks! (GANs, actor-critic, etc.)
- Great courses here:

https://oyc.yale.edu/economics/econ-159

And

https://online.stanford.edu/courses/soe-ycs0002-game-theory

CUDA masters are the king of the world these days...

- BigTech companies are looking for experts that can help with machine learning and custom GPU implementations
- The most obvious way to learn is from Nvidia courses themselves, some give certifications, but it is an investment...

https://developer.nvidia.com/cud a-education-training

CUDA Education & Training

Accelerate Your Applications

Learn using step-by-step instructions, video tutorials and code samples.

- Accelerated Computing with C/C++
- Accelerate Applications on GPUs with OpenACC Directives
- Accelerated Numerical Analysis Tools with GPUs
- Drop-in Acceleration on GPUs with Libraries
- GPU Accelerated Computing with Python

Could computing is also very valuable...

 Similarly, a certification in AWS or Microsoft Azure of Google Cloud for cloud computing machine/deep learning is of high value these days!

Quantum is the next best thing?

Quantum computers are expected to be the next big thing in Computer Science in general.

- This will also apply to AI/ML/DL...
- This means we will get to train larger networks, faster. (This is currently a limit for many applications these days).
- Picking up on quantum computing is never a bad idea (but careful, possibly the most difficult topic out there!)

https://towardsdatascience.com/dont-ask-what-quantum-computing-can-do-for-machine-learning-cc44feeb51e8

https://pennylane.ai/qml/whatisqml.html

More stuff

- Advanced Probability and Statistics (a.k.a. Statistical Learning) is always a great plus...
 - https://www.statlearning.com/
- Neuroscience should probably be part of any serious AI curriculum... [NeuroAI] Barron et al., "What insects can tell us about the origins of consciousness", 2015.
- Etc.

More stuff

- Using DL to solve complex differential equations.
 https://medium.com/swlh/artificial-intelligence-can-now-solve-a-mathematical-problem-that-can-make-researchers-life-easier-9602c869128
- General AI, i.e. designing an AI will full human cognitive capabilities (vision, hearing, speech, movement, etc.).
 https://www.forbes.com/sites/forbestechcouncil/2021/07/16/the-future-of-artificial-general-intelligence/?sh=c9223323ba99
- Etc.

The important message is...

Your learning should not stop after SUTD...

Keep learning to stay up to date, this is a very fast evolving field...

So, good luck on your continuing studies!

More importantly

DL/AI is a very active and fast-paced field.

- Keep your watchlist of papers and authors up to date.
- I have mentioned researchers, which I believe are among the most notable influencers of the Deep Learning community.

 Will be adding some more on the next slides. "A good professor should have this constant concern: teaching his students how to continue without him."

 André Gide, Nobel Prize of Literature in 1947

- Yann LeCun: Chief Al Scientist at Facebook Al, Professor at New York University, inventor of CNNs, creator of MNIST dataset, third one of the three GodFathers of Deep Learning.
 - https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=fr
- Demis Hassabis: Co-founder of DeepMind, AlphaGo. Several contributions in Reinforcement Learning. https://scholar.google.com/citations?hl=en&user=dYpPMQEAAAAJ
- Alex Graves: Professor at University of Toronto. Several contributions in Reinforcement Learning.
 https://scholar.google.co.uk/citations?user=DaFHynwAAAAJ&hl=en
- Michael I. Jordan: Professor at UC Berkeley, co-inventor of LDA. https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=fr

- Christian Szegedy: Research Scientist at Google Research, many contributions including Inception BatchNorm, Attacks, etc. https://scholar.google.com/citations?user=3QeF7mAAAAAJ&hl=en
- Leon Bottou: Researcher at Facebook AI, co-inventor of Wasserstein GANs and many contributions to NLP. https://scholar.google.fr/citations?user=kbN88gsAAAAJ&hl=fr
- Dzmitry Bahdanau: Researcher at ServiceNow, several contribution to NLP including attention models. https://scholar.google.de/citations?user=Nq0dVMcAAAAJ&hl=en
- Kyunghyun Cho: Professor at New York University, with many contributions to NLP and Computer Vision. https://scholar.google.co.uk/citations?user=0RAmmIAAAAAJ&hl=en

- Juergen Schmidhuber: Professor at King Abdullah University of Science and Technology, co-inventor of LSTMs. https://scholar.google.com/citations?user=gLnCTglAAAAJ&hl=fr
- Sepp Hochreiter: Professor at Johannes Kepler University Linz, coinventor of LSTMs.
 https://scholar.google.at/citations?user=tvUH3WMAAAAJ&hl=en
- Fred Cummins: Professor at University College Dublin, contributions to LSTMs and NLP. https://scholar.google.com/citations?user=E-vg2zQAAAAJ&hl=fr
- Terrence Sejnowski: Professor at UC San Diego, Boltzmann machines.

https://scholar.google.ca/citations?user=m1qAiOUAAAAJ&hl=en

- Peter Norvig: Director of Research at Google, co-author of the other Bible of Deep Learning https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en http://aima.cs.berkeley.edu/
- **Stuart Russell**: **Professor** at **UC Berkely**, co-author of the other Bible of Deep Learning https://scholar.google.com/citations?user=20y3OXYAAAAJ&hl=en
- Francois Chollet: Researcher at Google. The man behind the Keras framework and Xception.

https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

- Trevor Hastie: Professor at Stanford, co-autor of the Bible of Statistical Learning.
 - https://scholar.google.ca/citations?user=tQVe-fAAAAAJ&hl=enhttps://hastie.su.domains/ElemStatLearn/download.html
- Robert Tibshirani: Professor at Stanford, co-autor of the Bible of Statistical Learning. Inventor of the LASSO algorithm. https://scholar.google.ca/citations?user=ZpG_cJwAAAAJ&hl=en
- Vladimir Vapnik: Retired Professor, inventor of SVMs and many other concepts. Worked with Yann LeCun at Facebook AI. https://scholar.google.com/citations?user=vtegaJgAAAAJ&hl=fr

- Andrej Karpathy: Director of AI at Tesla. Many contributions to Computer Vision (Imagenet) and NLP (RNNs). (Probably better to follow him than Elon Musk.) https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=fr
- Li Fei-Fei: Professor at Stanford. Many contributions to Computer Vision (Imagenet).
 https://scholar.google.com/citations?user=rDfyQnIAAAAJ&hl=fr
- Ilya Sutskever: Co-founder of OpenAI.
 Many contributions to Computer Vision (Imagenet) and Reinforcement Learning.
 Co-inventor of Dropout layers and Tensorflow.
 https://scholar.google.com/citations?user=x04W_mMAAAAJ&hl=fr

- Anil K. Jain: Professor at Michigan State University. Many contributions to Computer Vision and Statistical Learning. https://scholar.google.com/citations?user=g-ZXGsAAAAJ&hl=fr
- Jitendra Malik: Professor at UC Berkeley. Many contributions to Computer Vision and Statistical Learning. https://scholar.google.com/citations?user=oY9R5YQAAAAJ&hl=fr
- **Sebastian Thrun**: **Stanford**, cool stuff on **robotics**. https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=fr
- Daphne Koller: CEO at InSitro, some cool courses on Coursera, she might be the co-founder of Coursera (?). https://scholar.google.com/citations?user=5lqe53lAAAAJ&hl=en

- Andrew Ng: Professor at Stanford, co-creator of Coursera. Has one of the best online courses on Deep Learning. https://scholar.google.com/citations?user=mG4imMEAAAAJ&hl=en
- Jeremy Howard: Research Scientist at University of San Francisco, a good scout for notable research papers on Twitter and TED talks. https://scholar.google.com/citations?user=ZWdEJ54AAAAJ&hl=en
- Yaser S. Abu-Mostafa: Professor at CalTech, one of the best professors for Deep Learning out there. https://dblp.org/pid/69/3008.html
- Rachel L. Thomas: University of San Francisco, FastAI, some great TED conferences on AI and Deep Learning. https://scholar.google.com/citations?user=BDsAYUsAAAAJ&hl=en