Stefano Mangiola Maria Doyle

Tidy Transcriptomics for Single-cell RNA Sequencing Analyses

Resources for #tidytranscriptomics

The blog about tidy transcriptomics

Home Archives Tags Categories About

Tidy-transcriptomics manifesto

2021-10-13-tidytrancriptomics

Read more...

Powered by Hugo | Theme - Even © 2017 - 2021 ♥ Stefano Mangiola, Maria Doyle

[No Title]

Resources for #tidytranscriptomics

The blog about tidy transcriptomics

Home Archives Tags Categories About

Tidy-transcriptomics manifesto

2021-10-13-tidytrancriptomics

Read more...

Powered by Hugo | Theme - Even © 2017 - 2021 ♥ Stefano Mangiola, Maria Doyle

[No Title]

tidybulk: an R tidy framework for modular transcriptomic data analysis

Stefano Mangiola, Ramyar Molania, Ruining Dong, Maria A. Doyle & Anthony T. Papenfuss

Genome Biology 22, Article number: 42 (2021) | Cite this article

Interfacing Seurat with the R tidy universe 8

Stefano Mangiola X, Maria A Doyle, Anthony T Papenfuss X

Bioinformatics, btab404, https://doi.org/10.1093/bioinformatics/btab404

- Reuse existing data structures.
- Compose simple functions with the pipe.
- Embrace functional programming.
- Design for humans.

```
# A tibble: 100 x 8
   observation
                  variable 1 variable 2
   <alue>
                  <chr>
                             (chr)
 1 observation 1
 2 observation 2
  observation 3
 4 observation 4
 5 observation 5
 6 observation 6
 7 observation 7
 8 observation 8
  observation 9
10 observation 10 ...
  … with 90 more rows
```

- Reuse existing data structures.
- Compose simple functions with the pipe.
- Embrace functional programming.
- Design for humans.

```
# A tibble: 100 x 8
   observation
                   variable 1 variable 2 variable 3
   <alue>
                   <chr>>
                               <chr>
                                           tlist>
 1 observation 1
                                            <gg>>
 2 observation 2
                                           <gg>>
   observation 3
                                           <gg>>
  observation 4
                                           <gg>>
 5 observation 5
                                           <gg>>
 6 observation 6
                                           <gg>>
 7 observation 7
                                           <gg>>
 8 observation 8
                                            <gg>>
   observation 9
                                           <gg>>
10 observation 10 ...
                                            <gg>>
  ... with 90 more rows
```

- Reuse existing data structures.
- Compose simple functions with the pipe.
- Embrace functional programming.
- Design for humans.

```
# A tibble: 100 x 8
   observation
                   variable 1 variable 2 variable 3 variable 4
   <alue>
                   <chr>>
                               <chr>>
                                          tist>
                                                      tlist>
 1 observation 1
                                                      <tibble [10 × 2]>
                                           <gg>>
 2 observation 2
                                                      <tibble [10 × 2]>
                                           <gg>>
 3 observation 3
                                                      <tibble [10 × 2]>
                                           <gg>>
 4 observation 4
                                                      <tibble [10 × 2]>
                                           <gg>>
 5 observation 5
                                                      <tibble [10 × 2]>
                                           <gg>>
 6 observation 6
                                                      <tibble [10 × 2]>
                                           <gg>>
 7 observation 7
                                                      <tibble [10 × 2]>
                                           <gg>>
                                                      <tibble [10 × 2]>
 8 observation 8
                                           <gg>>
  observation 9
                                                      <tibble [10 × 2]>
                                           <gg>>
10 observation 10 ...
                                                       <tibble [10 × 2]>
                                           <gg>>
  ... with 90 more rows
```

- Reuse existing data structures.
- Compose simple functions with the pipe.
- Embrace functional programming.
- Design for humans.

```
# A tibble: 100 x 8
                   variable 1 variable 2 variable 3 variable 4
                                                                        variable 5
   observation
   <alue>
                   <chr>>
                              <chr>
                                          (list)
                                                     (list)
                                                                         tlist>
 1 observation 1
                                                      <tibble [10 × 2]> <lm>
                                          <gg>>
                                                      <tibble [10 × 2]> <lm>
 2 observation 2
                                          <gg>>
 3 observation 3
                                                      <tibble [10 × 2]> <lm>
                                          <gg>>
 4 observation 4
                                                      <tibble [10 × 2]> <lm>
                                          <gg>>
                                                      <tibble [10 × 2]> <lm>
 5 observation 5
                                          <gg>>
 6 observation 6
                                                      <tibble [10 × 2]> <lm>
                                          <gg>>
 7 observation 7
                                                      <tibble [10 × 2]> <lm>
                                          <gg>>
 8 observation 8
                                                      <tibble [10 × 2]> <lm>
                                          <gg>>
 9 observation 9
                                                      <tibble [10 × 2]> <lm>
                                          <gg>>
10 observation 10 ...
                                                      <tibble [10 × 2]> <lm>
                                          <gg>>
# ... with 90 more rows
```

- Reuse existing data structures.
- Compose simple functions with the pipe.
- Embrace functional programming.
- Design for humans.

```
# A tibble: 100 x 8
                    variable 1 variable 2 variable 3 variable 4
   observation
                                                                             variable 5 variable 6
                                                                                                          variable 7
   <alue>
                    (chr)
                                 <chr>>
                                             (list)
                                                         (list)
                                                                              st>
                                                                                          (list)
                                                                                                          (list)
 1 observation 1
                                                         <tibble [10 × 2]> <lm>
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
 2 observation 2
                                                         <tibble [10 × 2]> <lm>
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
 3 observation 3
                                                         <tibble [10 × 2]> <lm>
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
 4 observation 4
                                                         <tibble [10 × 2]> <lm>
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
                                                         <tibble [10 × 2]> <lm>
 5 observation 5
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
                                                         <tibble [10 × 2]> <lm>
 6 observation 6
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
 7 observation 7
                                                         <tibble [10 × 2]> <lm>
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
                                                         <tibble [10 × 2]> <lm>
 8 observation 8
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
 9 observation 9
                                                         <tibble [10 × 2]> <lm>
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
10 observation 10 ...
                                                         <tibble [10 × 2]> <lm>
                                                                                          <Seurat[,80]> <SnglCllE[,80...</pre>
                                             <gg>>
# ... with 90 more rows
```

The big picture

The big picture

Analysis infrastructure for single-cell data (Seurat and SingleCellExperiment)

Data container

```
Bioconductor OPEN SOURCE SOFTWARE FOR BIOINFORMATICS
```



```
An object of class Seurat
230 features across 80 samples within 1 assay
Active assay: RNA (230 features, 20 variable features)
2 dimensional reductions calculated: pca, tsne
```

<

Analysis infrastructure for single-cell data (Seurat and SingleCellExperiment)

Data container

Analysis

Manipulation

```
Bioconductor OPEN SOURCE SOFTWARE FOR BIOINFORMATICS
```

```
class: SingleCellExperiment
dim: 51958 3000
metadata(0):
assays(2): counts logcounts
rownames(51958): DDX11L1 WASH7P ... RP11-141019.1 RP11
rowData names(0):
colnames(3000): CCAGTCACACTGGT-1 ATGAGCACATCTTC-1 ... (
colData names(7): file orig.ident ... G2M.Score ident
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
```

Bioconductor community

scran/scater

```
colData(data)
reducedDims(data, "umap")
subset(data, , class=="A")
data$info = info

data = data |> cbind(cohort_info[
    match(data$sample, cohort_info$sample)
    ,])
subset(data, , !is.na(sample_id))
```



```
An object of class Seurat
230 features across 80 samples within 1 assay
Active assay: RNA (230 features, 20 variable features)
2 dimensional reductions calculated: pca, tsne
```

Seurat SeuratWrappers community

```
data[[]]
Embeddings(x, "umap")
subset(data, class == "A")
data$info = info

data@meta.data = data[[]] |> left_join(cohort_info, by="sample")
subset(data, !is.na(sample_id))
```

Tidyseurat and tidySingleCellExperiment

Data container

ioconductor

	# A SingleCellExpe	eriment-tibble	abstraction	n: 80 x 15											
CS	# Features=230 /														
1AT	cell	orig.ident	nCount_RNA	nFeature_RNA	RNA_snn_res.0.8	letter.idents	groups	RNA_snn_res.1	PC_1	PC_2	PC_3	PC_4	PC_5	tSNE_1	tSNE_2
ORI	<chr></chr>	<fct></fct>	<dbl></dbl>	<int></int>	<fct></fct>	<fct></fct>	<chr></chr>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl> <</dbl>	dbl> <	dbL>	<dbl></dbl>	<dbl></dbl>
JN.	1 ATGCCAGAACGACT	SeuratProject	70	47	0	A	g2	0	-0.774	-0.900	-0.249 €	.559 @	.465	0.868	-8.10
BIG	2 CATGGCCTGTGCAT			52	0	A	g1	0			0.665	.418 6	.585		-8.77
9	3 GAACCTGATGAACC		87	50	1	В	g2	0		0.180	1.32 2	.01 -6			0.241
ARE	4 TGACTGGATTCTCA	SeuratProject	127	56	0	A	g2	0			-1.00 6	.139 -1		16.3	-11.2
×	5 AGTCAGACTGCACA	SeuratProject	173	53	0	A	g2	0	-0.774		-0.249 E	.559 @	.465	1.91	-11-2
SOF	6 TCTGATACACGTGT	SeuratProject	70	48	0	Α	g1	0			-0.249 6	.559 @	.465	3.15	-9.94
RCE	7 TGGTATCTAAACAG		64	36	0	A	g1	0			-0.312 6	.716 -1		17.9	-9.90
200	8 GCAGCTCTGTTTCT	SeuratProject	72	45	0	A	g1	0			0.693 6	.404 0	.536		-8.39
EN	9 GATATAACACGCAT	SeuratProject	52	36	0	A	g1	0			-0.249 €	.559 6	.465	1.33	-9.68
Ö	10 AATGTTGACAGTCA	SeuratProject	100	41	0	A	g1	0			-0.306 €	.702 -1		17.0	-9.43
	# with 70 more r	rows													

Tidyseurat and tidySingleCellExperiment

Data container

A SingleCellExperiment-tibble abstraction: 80 x 15 10CONDUCTOR cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 (fct) <dbL> <int> <fct> 1 ATGCCAGAACGACT SeuratProject 70 47 0 2 CATGGCCTGTGCAT SeuratProject 85 52 0 3 GAACCTGATGAACC SeuratProject 87 50 1 4 TGACTGGATTCTCA SeuratProject 127 56 0 173 5 AGTCAGACTGCACA SeuratProject 53 0 70 6 TCTGATACACGTGT SeuratProject 48 0 7 TGGTATCTAAACAG SeuratProject 64 36 0 8 GCAGCTCTGTTTCT SeuratProject 72 45 0 9 GATATAACACGCAT SeuratProject 52 36 0 10 AATGTTGACAGTCA SeuratProject 100 41 0 with 70 more rows

Analysis

Bioconductor community

Manipulation

data |> select(contains("UMAP"))
data |> filter(class=="A")
data |> mutate(info = info)
data |> inner_join(cohort_info, by="sample")


```
Seurat-tibble abstraction: 80 x 15
                                nCount_RNA nFeature_RNA RNA_snn_res.0.8
   cell
                  orig.ident
                                                   <int> <fct>
                  <fct>
  ATGCCAGAACGACT SeuratProject
                                         70
                                                      47 0
 2 CATGGCCTGTGCAT SeuratProject
                                         85
                                                      52 0
3 GAACCTGATGAACC SeuratProject
                                         87
                                                      50 1
4 TGACTGGATTCTCA SeuratProject
                                        127
                                                      56 0
5 AGTCAGACTGCACA SeuratProject
                                        173
                                                      53 0
6 TCTGATACACGTGT SeuratProject
                                         70
                                                      48 0
7 TGGTATCTAAACAG SeuratProject
                                         64
                                                      36 0
8 GCAGCTCTGTTTCT SeuratProject
                                         72
                                                      45 0
9 GATATAACACGCAT SeuratProject
                                         52
                                                      36 0
10 AATGTTGACAGTCA SeuratProject
                                        100
                                                      41 0
    with 70 more rows
```

Seurat SeuratWrappers community

```
data
data |> select(contains("UMAP"))
data |> filter(class=="A")
data |> mutate(info = info)

data |> inner_join(cohort_info, by="sample")
```

Tidy operators available

```
as_tibble()
mutate()
bind rows()
left_join() inner_join() *_join()
select() distinct()
count() add_count() summarise()
pull() slice()
filter() sample_n() sample_frac()
rename()
separate() unite() extract()
nest() unnest() map *()
pivot_longer()
join_features()
ggplot()
plotly()
```

What tidy data frameworks are and what are not

NO: data containers

NO: analysis tools

YES: data interface

YES: manipulation, integration, visualisation tools

Therefore, the question "can we go from tidyseurat to Seurat and vice versa" is not relevant, as we never leave

Seurat

SingleCellExperiment