Elastic Scaling in an NFV-based Evolved Packet Core

Faiber Botina Anacona Kelly Tatiana Tobar

Advisor: MSc. Carlos Hernan Tobar Co-Advisor: PhD. Oscar Mauricio Caicedo

University of Cauca

2018

Outline

- Motivating scenario
- 2 Background
- Our solution
 - Baseline vEPC
 - Vertical scaling
 - Horizontal scaling
 - Elastic scaling
- 4 Conclusions

1. Motivating scenario

5th Generation mobile networks

Figure 1: 5G requirements

1. Motivating scenario

5th Generation mobile networks

Figure 2: 5G subscriptions

2. Background

Virtual Evolved Packet Core (vEPC)

Figure 3: vEPC

2. Background

Elastic scalability

Figure 4: Scale out and scale up

Elastic scaling mechanism

Figure 5: Elastic scaling mechanism

Baseline vEPC architecture

Figure 6: Baseline architecture

Baseline vEPC specification

ENTITY	HARDWARE RESOURCES					
	RAM	CPUs	STORAGE			
RAN	4 GB	4	10 GB			
MME	1 GB	1	10 GB			
HSS	2 GB	1	10 GB			
SGW	1 GB	1	10 GB			
PGW	1 GB	1	10 GB			

Table 1: Individual component specification

Figure 7: Baseline evaluation

ENTITY	config	configuration 1		configuration 2		configuration 3		configuration 4	
CIVIIII	RAM	CPU	RAM	CPU	RAM	CPU	RAM	CPU	
MME	1	2	1	1	1	2	1	3	
SGW	1	1	1	2	1	2	1	3	
PGW	1	1	1	1	1	1	1	1	

Table 2: Individual component specification

Figure 8: Throughput

Figure 9: Latency

Figure 10: MME CPU utilization

Figure 11: SGW CPU utilization

Figure 12: PGW CPU utilization

Figure 13: Horizontal scaling architecture

FNTITY	HARDWARE RESOURCES				
EIVIIIT	RAM	CPUs	STORAGE		
RAN	4 GB	4	10 GB		
MME	1 GB	1	10 GB		
HSS	2 GB	1	10 GB		
SGW	1 GB	1	10 GB		
PGW	1 GB	1	10 GB		
LOAD BALANCER	2 GB	1	10 GB		
DATA STORE	2 GB	2	15 GB		

Table 3: Individual component specification

Figure 14: Throughput

Figure 15: Latency

Elastic scaling mechanism

Type of scaling	Number of concurrent users			
Type of scaling	50 users	100 users	150 users	
Baseline	90.47%	98.54%	99.82%	
Vertical	68.85%	90.30 %	96.17%	
Horizontal	68.25%	78.5%	87.99%	

Table 4: Elastic scaling mechanism

Elastic scaling mechanism

Figure 16: Elastic scaling mechanism

4. Conclusions

- Analyzing the behavior of individual vEPC entities allowed us to make proper use of resources by scaling only those entities that need to be scaled
- The analysis of vEPC performance for control traffic should not focus only on MME
- Performing an elastic scaling mechanism requires an performance analysis of the baseline, the types of scaling (i.e., horizontal and vertical) and when it is required
- Ensuring a high vEPC performance through an elastic scalability mechanism requires the definition of decision parameters based on target performance metrics

Thank You