Procesos estocásticos (86.09)

- Vectores Aleatorios Gaussianos
- Transformación afín

Vectores aleatorios gaussianos

Variable aleatoria con distribución normal

$$X \sim N(\mu, \sigma^2)$$

$$f_X(x) = rac{1}{\sqrt{2\pi} \; \sigma} \mathrm{exp} \left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

Vectores aleatorios gaussianos

Vector aleatorio gaussiano

$$\mathbf{X} \sim \mathcal{N}(\mu_{\mathbf{X}}, C_{\mathbf{X}})$$

Cada una de sus componentes es una VA con distribución normal, cada una con su media y varianza. No necesariamente independientes.

Vectores aleatorios gaussianos

Función de densidad conjunta:

$$f_{\mathbf{X}}(\mathbf{x}) = rac{1}{(2\pi)^{N/2} \ |C_X|^{1/2}} \mathrm{exp}\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu}_X)^T C_X^{-1}(\mathbf{x}-oldsymbol{\mu}_X)
ight)$$

Donde:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \qquad \boldsymbol{\mu}_X = \begin{bmatrix} \mu_{X_1} \\ \mu_{X_2} \\ \vdots \\ \mu_{X_N} \end{bmatrix} \qquad C_X = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_N) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_N) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_N, X_1) & \operatorname{Cov}(X_N, X_2) & \cdots & \operatorname{Var}(X_N) \end{bmatrix}$$

Vectores aleatorios gaussianos (N=2)

Caso particular
$$\mathbf{x} = [x \ y]^T \in \mathbb{R}^2$$

Sin perder generalidad, veamos el caso **normal bivariado** de media nula y covarianza C_x .

$$f_{\mathbf{X}}(\mathbf{x}) = rac{1}{2\pi \ |C_X|^{1/2}} \mathrm{exp}\left(-rac{1}{2}\mathbf{x}^T C_X^{-1}\mathbf{x}
ight)$$

Podemos expresar la matriz de covarianza $C_{\chi} \in \mathbb{R}^{2\times 2}$ y su inversa C_{χ}^{-1} en términos de las varianzas y coeficiente de correlación:

$$C_X = egin{bmatrix} \sigma_X^2 &
ho\sigma_X\sigma_Y \
ho\sigma_X\sigma_Y & \sigma_Y^2 \end{bmatrix} \hspace{1cm} C_X^{-1} = rac{1}{\sigma_X^2\sigma_Y^2(1-
ho^2)} egin{bmatrix} \sigma_Y^2 & -
ho\sigma_X\sigma_Y \ -
ho\sigma_X\sigma_Y & \sigma_X^2 \end{bmatrix}$$

Veamos qué pasa con el exponente:
$$\mathbf{x}^T C_X^{-1} \mathbf{x} = \frac{1}{1-\rho^2} \left(\frac{x^2}{\sigma_X^2} - \frac{2\rho \, xy}{\sigma_X \sigma_Y} + \frac{y^2}{\sigma_Y^2} \right)$$

Vectores aleatorios gaussianos (N=2)

Caso particular $\mathbf{x} = [x \ y]^T \in \mathbb{R}^2$

Evaluando los puntos de la superficie que tienen una $f_X(\mathbf{x})$ = cte, obtenemos las curvas de nivel (Elipses para la normal bivariada)

$$egin{aligned} rac{1}{2\pi \ |C_X|^{1/2}} \exp\left(-rac{1}{2}\mathbf{x}^T C_X^{-1}\mathbf{x}
ight) = \mathrm{cte} \ & \exp\left(-rac{1}{2}\mathbf{x}^T C_X^{-1}\mathbf{x}
ight) = \mathrm{cte} \ 2\pi |C_X|^{1/2} \ & \mathbf{x}^T C_X^{-1}\mathbf{x} = -2\ln\left(\mathrm{cte} \ 2\pi |C_X|^{1/2}
ight) = \mathrm{cte} \ & rac{x^2}{\sigma_X^2} - rac{2
ho \, xy}{\sigma_X \sigma_Y} + rac{y^2}{\sigma_Y^2} = \mathrm{cte} \ (1-
ho^2) = \mathrm{cte} \ & \end{aligned}$$

Curvas de nivel – Gaussiana multivariada

Vector descorrelacionado y normalizado

$$C_X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $x^2 + y^2 = 1$ Suponer $cte = 1$ y

Vector descorrelacionado

$$C_X = egin{bmatrix} \sigma_X^2 & 0 \ 0 & \sigma_Y^2 \end{bmatrix}$$

$$rac{x^2}{\sigma_X^2} + rac{y^2}{\sigma_Y^2} = 1$$

Curvas de nivel – Gaussiana multivariada

Vector correlacionado

$$C_X = egin{bmatrix} \sigma_X^2 &
ho\sigma_X\sigma_Y \
ho\sigma_X\sigma_Y & \sigma_Y^2 \end{bmatrix}$$

$$rac{x^2}{\sigma_X^2} - rac{2
ho\,xy}{\sigma_X\sigma_Y} + rac{y^2}{\sigma_Y^2} = 1$$

Vector correlacionado y desplazado

$$C_X = egin{bmatrix} \sigma_X^2 &
ho\sigma_X\sigma_Y \
ho\sigma_X\sigma_Y & \sigma_Y^2 \end{bmatrix} \qquad oldsymbol{\mu} = egin{bmatrix} \mu_x \ \mu_y \end{bmatrix}$$

$$rac{(x-\mu_x)^2}{\sigma_X^2} - rac{2
ho\left(x-\mu_x
ight)(y-\mu_y)}{\sigma_X\sigma_Y} + rac{(y-\mu_y)^2}{\sigma_Y^2} = 1$$

Vectores aleatorios gaussianos (N=2)

Vectores aleatorios gaussianos (N=2)

Vector aleatorio normal estándar

Vector aleatorio

VeA normal estándar

VAs normales estándar

$$\mathbf{Z} = egin{bmatrix} Z_1 \ dots \ Z_N \end{bmatrix} \in \mathbb{R}^N & \mathbf{Z} \sim N(\mathbf{0}, I) \ \mathbf{0} \in \mathbb{R}^N \ I \in \mathbb{R}^{N imes N}$$

$$\mathbf{Z} \sim N(\mathbf{0}, I)$$

$$\mathbf{0} \in \mathbb{R}^N$$

$$I \in \mathbb{R}^{N imes N}$$

$$Z_i \sim N(0,1) \; ; \; i=1,\ldots,N$$

$$Cov(Z_iZ_j) = 0 \; ; \forall i \neq j$$

Función de densidad normal estándar multivariada

$$f_{\mathbf{Z}}(\mathbf{z}) = rac{1}{(2\pi)^{N/2}} \mathrm{exp}\left(-rac{1}{2}\mathbf{z}^T\mathbf{z}
ight)$$

Vector aleatorio normal estándar

$$\mu_{\mathbf{Z}} = \mathbb{E}\left[\mathbf{Z}
ight] = egin{bmatrix} 0 \ dots \ 0 \end{bmatrix}$$

$$C_Z = egin{bmatrix} \operatorname{Var}(Z_1) & \operatorname{Cov}(Z_1, Z_2) & \cdots & \operatorname{Cov}(Z_1, Z_N) \ \operatorname{Cov}(Z_2, Z_1) & \operatorname{Var}(Z_2) & \cdots & \operatorname{Cov}(Z_2, Z_N) \ dots & dots & \ddots & dots \ \operatorname{Cov}(Z_N, Z_1) & \operatorname{Cov}(Z_N, Z_2) & \cdots & \operatorname{Var}(Z_N) \end{bmatrix} = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{bmatrix}$$

Una transformación afín es un caso más general que una transformación lineal, ya que incluye también una traslación de la media en un vector constante **b**.

$$\mathbf{Y} = A\mathbf{X} + \mathbf{b}$$
 Constantes determinísticas: $A \in \mathbb{R}^{M \times N}$ $\mathbf{b} \in \mathbb{R}^{M}$
$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$\mathbb{E}[\mathbf{X}] \in \mathbb{R}^{N}$$
 $C_X \in \mathbb{R}^{N \times N}$ $\mathbf{b} \in \mathbb{R}^{M}$
$$\mathbb{E}[\mathbf{Y}] \in \mathbb{R}^{M}$$
 $C_Y \in \mathbb{R}^{M \times M}$

Resultado 1

Sea un VeA $\mathbf{X} \subseteq \mathbb{R}^{N}$ de media $\boldsymbol{\mu}_{\mathbf{X}} \subseteq \mathbb{R}^{N}$ y covarianza C_{X} (conocidas) y una transformación afín $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$. La media $\boldsymbol{\mu}_{\mathbf{Y}}$ y covarianza C_{Y} resultan:

$${m \mu}_Y = A{m \mu}_X + {f b}$$

$$C_Y = AC_X A^T$$

Transformación lineal "coloreado"

Resultado 2

A partir de un vector descorrelacionado y normalizado se puede generar otro con una matriz de covarianza arbitraria $C_{\scriptscriptstyle X}$

Interpretación geométrica

$$A = P_X \Lambda_X^{1/2}$$

Se suele denominar "coloreado" el proceso de correlacionar un vector descorrelacionado.

Transformación lineal "blanqueo"

Resultado 3

Proyectamos el vector correlacionado \mathbf{X} en el espacio de direcciones principales (autovectores) para generar el vector \mathbf{Y} (descorrelacionado).

Interpretación geométrica

$$A = P_X^T$$

Se suele denominar "blanqueo" el proceso de descorrelacionar un vector aleatorio..

Transformación lineal "blanqueo y normalización"

Resultado 4

Si además de descorrelacionar un vector \mathbf{X} , necesitamos normalizar para que todas sus componentes tengan varianza unitaria, la transformación resulta:

Interpretación geométrica

$$A = \Lambda_X^{-1/2} P_X^T$$

blanqueamos y normalizamos

Resumen

Se quiere utilizar una transformación afín $\mathbf{Y} = A \mathbf{Z} + \mathbf{b}$ que permita convertir un vector aleatorio con parámetros $\mathbf{C}_{\mathbf{Z}}$ y $\boldsymbol{\mu}_{\mathbf{Z}}$ =0 en otro vector con parámetros $\mathbf{C}_{\mathbf{Y}}$ y $\boldsymbol{\mu}_{\mathbf{Y}}$.

- 1. Genere un vector normal estándar $\mathbf{Z} = [Z_1 Z_2]^T$ de 5000 realizaciones. Grafique el histograma de cada componente y el gráfico de dispersión de \mathbf{Z} .
- 2. Encuentre los parámetros de la transformación A y **b** para que cumpla lo pedido.
- 3. Con la transformación definida, genere 5000 realizaciones de la variable **Y** transformando las muestras del vector **Z**. Para cada componente del vector **Y** generado grafique el histograma.. También haga un gráfico de dispersión.

$$C_X = \begin{bmatrix} 0.70 & 0.90 \\ 0.90 & 1.75 \end{bmatrix} \qquad \qquad \boldsymbol{\mu}_X = \begin{bmatrix} 0.80 \\ 1.90 \end{bmatrix}$$

Genere un vector aleatorio normal de media μ_X y covarianza C_X . Luego aplique una transformación para generar un nuevo vector \mathbf{Y} descorrelacionado (si normalizar) y de media nula. Haga los gráficos de dispersión de ambos vectores (\mathbf{X} e \mathbf{Y}) y sus histogramas de cada componente. También grafique la superficie de la función de densidad teórica para \mathbf{Y} .

$$C_X = \begin{bmatrix} 0.70 & 0.90 \\ 0.90 & 1.75 \end{bmatrix}$$
 $\mu_X = \begin{bmatrix} 0.80 \\ 1.90 \end{bmatrix}$

¿Preguntas?

Resultado 1

Calculamos la media:

$$\mathbf{Y} = A \, \mathbf{X} + \mathbf{b} \quad \Longrightarrow \quad \mathbb{E}[\mathbf{Y}] = A \, \mathbb{E}[\mathbf{X}] + \mathbf{b} \quad \Longrightarrow \quad \boldsymbol{\mu}_Y = A \boldsymbol{\mu}_X + \mathbf{b}$$

Calculamos la covarianza:

$$C_{\mathbf{Y}} = \mathbb{E}\left[(\mathbf{Y} - \mathbb{E}[\mathbf{Y}])(\mathbf{Y} - \mathbb{E}[\mathbf{Y}])^T \right] = \mathbb{E}\left[A\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right) \{A(\mathbf{X} - \mathbb{E}[\mathbf{X}])\}^T \right] =$$

$$= \mathbb{E}\left[A\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)(\mathbf{X} - \mathbb{E}[\mathbf{X}])^T A^T \right] = A \mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^T \right] A^T = A C_{\mathbf{X}} A^T$$

$$C_{\mathbf{Y}} = A C_{\mathbf{X}} A^T$$

Transformación lineal "coloreado"

Resultado 2

$$C_X = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^T]$$

De la transformación $\mathbf{X} = \mathbf{A}\mathbf{Z}$ sabemos que C_{x} resulta:

$$C_X = \mathbb{E}[(A\mathbf{Z})(A\mathbf{Z})^T] = AC_ZA^T = AIA^T$$

Podemos hacer la descomposición espectral de $C_{\rm X}$ y ver que se puede expresar como el producto de una matriz A por su traspuesta $(AA^{\rm T})$:

$$C_X = P_X \Lambda_X P_X^T = P_X \Lambda_X^{1/2} \Lambda_X^{1/2} P_X^T = P_X \Lambda_X^{1/2} (\Lambda_X^{1/2})^T P_X^T = \underbrace{(P_X \Lambda_X^{1/2})}_{A} (P_X \Lambda_X^{1/2})^T = AA^T$$

Transformación lineal "blanqueo"

Resultado 3

Sabemos de resultados anteriores que:

$$C_Y = AC_X A^T = AP_X \Lambda_X P_X^T A^T$$

Viendo la diagonalización de la ecuación anterior, si elegimos que $AP_{\rm X}$ = I, entonces $A=P_{\rm X}^{\ \ T}$ y $C_{\rm Y}$ será igual a una matriz diagonal.

$$C_Y = \underbrace{P_X^T P_X}_I \Lambda_X \underbrace{P_X^T P_X}_I = \Lambda_X$$

Esto implica que la matriz A que descorrelaciona el vector X resulta $P_X^{\ T}$.

Transformación lineal "blanqueo" y normalización

Resultado 4

Buscamos que $C_z = I$:

$$C_Z=AC_XA^T=AP_X\Lambda_XP_X^TA^T=AP_X\Lambda_X^{1/2}(\Lambda_X^{1/2})^TP_X^TA^T=\underbrace{AP_X\Lambda_X^{1/2}(AP_X\Lambda_X^{1/2})^T=I}_{I \text{ Imponemos esta}}$$
 Entonces:

condición

$$AP_X\Lambda_X^{1/2}=I$$

$$AP_X\Lambda_X^{1/2}\Lambda_X^{-1/2}=\Lambda_X^{-1/2} \quad o \quad AP_X=\Lambda_X^{-1/2}$$

$$AP_XP_X^T=\Lambda_X^{-1/2}P_X^T \qquad
ightarrow \qquad A=\Lambda_X^{-1/2}P_X^T$$