МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Российский университет дружбы народов"

Факультет физико-математических и естественных наук

Математический институт им. С.М. Никольского

Курсовая работа

по дисциплине: "Функциональные пространства"

Выполнил:

Студент группы НМТ6д-01-19

А. Д. Коротков

Руководитель курсовой работы: профессор математического института им. С.М. Никольского д.ф.-м.н., В.И. Буренков

Оглавление

1.	Введение	1
2.	Теория меры	1
3.	Интеграл Лебега	3
4.	Доказательство теоремы	4
5.	список литературы	5

1. Введение

Пусть $\frac{1}{p}+\frac{1}{p'}=1,\ 1\leq p\leq\infty,\ \mu$ - стандартная лебегова мера в \mathbb{R}^n для некоторого $n\in\mathbb{N},$ Е - множество, измеримое по μ . Для $g\in L_{p'}(E)$ (вообще говоря, $L_{p'}(E),\ L_p(E)$ - пространства комплекснозначных функций) рассматривалась задача поиска нормы функционала $A_g:L_p(E)\to\mathbb{C}$ вида $A_g(f)=\int_E fgd\mu\ (f\in L_p(E)).$ Было получено, что $||A_g||=||g||_{p'}.$ В данной работе будет рассмотрен случай $g\not\in L_{p'}(E),\ g$ - измерима (то есть $(B(\mathbb{R}^n),B(\mathbb{C}))$ - измерима).

Для начала напомним некоторые важные определения, которые мы будем использовать в дальнейшем, приведём теоремы, некоторые из которых докажем, на доказательство других сошлёмся, если будет удобно.

2. Теория меры

Опр.1. Пусть X - некоторое множество, множество всех подмножеств множества X обозначим как 2^X . Тогда подмножество $\Sigma \subset 2^X$ называется σ -алгеброй, если

- 1. $X \in \Sigma$ (то есть X единица системы Σ).
- 2. Σ замкнуто относительно операции взятия дополнения: $\forall A \in \Sigma$ имеем $X \setminus A \in \Sigma$.
- 3. Σ замкнуто относительно операции счётного объединения: для любой системы $(A_k \in \Sigma | k \in \mathbb{N})$ имеем $A = \bigcup_{k \in \mathbb{N}} A_k \in \Sigma$

Опр.2. Пусть X - некоторое множество, $\mathcal{T} = \mathcal{T}_X \subset 2^X$ называется топологией на X, если

- 1. $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.
- 2. $\forall U_1, U_2 \in \mathcal{T}$ имеем $U_1 \cap U_2 \in \mathcal{T}$.
- 3. Объединение произвольного семейства множеств, принадлежащих \mathcal{T} , принадлежит \mathcal{T} ; то есть $\forall A, \ \forall (U_{\alpha} \in X | \alpha \in A)$ имеем $\bigcup_{\alpha \in A} A_{\alpha} \in \mathcal{T}$.

Пара (X, \mathcal{T}_X) называется топологическим пространством; если топология ясна из контекста, то будем писать просто X.

Опр.3. Пусть X - топологическое пространство. Борелевская σ -алгебра B(X) на X - это σ -алгебра, состоящая из множеств, полученных операциями счётного объединения, счётного пересечения, разности множеств из \mathcal{T}_X .

Опр.4. Пусть W - некоторое множество, $\Sigma \subset 2^W$ - σ -алгебра. Тогда функция $\mu: \Sigma \to \mathbb{R} \bigcup \{\infty\}$ называется мерой (σ -аддитивной) на σ -алгебре Σ , если она обладает следующими свойствами:

- 1. Неотрицательность. $\forall A \in \Sigma$ имеем $\mu(A) \geq 0$.
- 2. Счётная аддитивность (σ -аддитивность). Для любого счётного семейства попарно непересекающихся множеств ($A_k \in \Sigma | k \in \mathbb{N}$) имеем $\sum\limits_{k=0}^{\infty} \mu(A_k) = \mu(\bigsqcup\limits_{k=1}^{\infty} A_k)$. Тройку (X, Σ, μ) будем называть пространством с мерой, где $X \in \Sigma$ -единица σ -алгебры Σ , то есть

Тройку (X, Σ, μ) будем называть пространством с мерой, где $X \in \Sigma$ -единица σ -алгебры Σ , то есть $\forall A \in \Sigma$ имеем $A \subset X$.

Опр.5. Элементы σ -алгебры назовём измеримыми множествами. Когда на данной σ -алгебре также введена мера μ , элементы σ -алгебры называются измеримыми относительно меры μ .

Опр.6. Пусть X и Y - два произвольных множества, и пусть в них выделены две системы подмножеств $\Sigma_X \subset 2^X$ и $\Sigma_Y \subset 2^Y$ соответственно. Функция $f: X \to Y$ называется (Σ_X, Σ_Y) -измеримой, если $\forall A \in \Sigma_Y$ имеем $f^{-1}(A) \in \Sigma_X$.

Опр.7. Пусть (X, Σ, μ) - пространство с мерой, $f: X \to \mathbb{C}$, на \mathbb{C} введена стандартная топология, которая порождает борелевскую σ -алгебру $B(\mathbb{C})$. Тогда $(\Sigma, B(\mathbb{C}))$ -измеримую функцию f будем называть μ -измеримой, или просто измеримой, когда мера ясна из контекста.

Лемма 1. Пусть $k \in \mathbb{N}, (\mathbb{R}^k, \mathcal{T}_{\mathbb{R}^k})$ - пространство \mathbb{R}^k со стандартной топологией. Тогда всякое открытое множество $U \in \mathcal{T}_{\mathbb{R}^k}$ представимо в виде счётного объединения открытых брусов, то есть $U=\bigcup\ I_{1m} imes ... imes I_{km},$ где I_{rm} - открытые интервалы, I_{rm} может равняться пустому множеству. **Доказательство.** Пусть $U \in \mathcal{T}_{\mathbb{R}^k}$. Для каждого $x \in U$ существует $r_x \in \mathbb{R}_+$, такой что открытый шар $U_x = B(x, r_x) = \{y \in \mathbb{R}^k | d(x, y) < r_x\} \subset U$ (определение открытого множества в метрическом пространстве) (можно сослаться на лекции функана в РУДН!!!!). Внутри каждого шара U_x рассмотрим брусы R_x с вершинами в рациональных точках, такие что $x \in R_x$. Брус $R_x = (a_{1x}, b_{1x}) \times ... \times (a_{kx}, b_{kx})$ однозначно описывается 2*k рациональными числами, то есть $\#\{R_x|x\in U\}=\mathbb{N}$. Тогда элементы последнего множества можно перенумеровать: $\{R_x | x \in U\} = \{R_i | i \in \mathbb{N}\}.$

Таким образом, так как $\forall x \in U \exists i_0 \in \mathbb{N}: x \in \widetilde{R}_{i_0}, \text{ то } U \subset \bigcup_{i \in \mathbb{N}} \widetilde{R}_i.$ С другой стороны, так как $\forall i \in \mathbb{N} \ \widetilde{R}_i \subset U$, to $U \supset \bigcup_{i \in \mathbb{N}} \widetilde{R}_i$.

Лемма 2. Пусть W- некоторое множество. Для произвольного индексного множества A, произвольной системы $(U_{\alpha} \subset W | \alpha \in A)$ и отображения $f: V \to W$ выполнено:

1.
$$f^{-1}(\bigcup U_{\alpha}) = \bigcup f^{-1}(U_{\alpha}).$$

$$2. f^{-1}(\bigcap_{\alpha \in A} U_{\alpha}) = \bigcap_{\alpha \in A} f^{-1}(U_{\alpha}).$$

$$\begin{array}{l} 1. \ f^{-1}(\bigcup\limits_{\alpha\in A}U_{\alpha})=\bigcup\limits_{\alpha\in A}f^{-1}(U_{\alpha}).\\ \\ 2. \ f^{-1}(\bigcap\limits_{\alpha\in A}U_{\alpha})=\bigcap\limits_{\alpha\in A}f^{-1}(U_{\alpha}).\\ \\ 3. \ \forall \alpha,\beta\in A \ \text{имеем}\ f^{-1}(U_{\alpha}\setminus U_{\beta})=f^{-1}(U_{\alpha})\setminus f^{-1}(U_{\beta}) \end{array}$$

Доказательство. 1. $f^{-1}(\bigcup_{\alpha\in A}U_{\alpha})=\{x\in V|f(x)\in\bigcup_{\alpha\in A}U_{\alpha}\}=\{x\in V|\exists \alpha_{0}\in A:f(x)\in U_{\alpha_{0}}\}.$ Тогда следующая схема завершает доказательство 1:

$$x \in f^{-1}(\bigcup_{\alpha \in A} U_{\alpha}) \Leftrightarrow x \in V : \exists \alpha_0 \in A : f(x) \in U_{\alpha_0} \Leftrightarrow x \in V : \exists \alpha_0 \in A : x \in f^{-1}(U_{\alpha_0}) \subset V \Leftrightarrow x \in \bigcup_{\alpha \in A} f^{-1}(U_{\alpha}).$$

2.
$$f^{-1}(\bigcap_{\alpha \in A} U_{\alpha}) = \{x \in V | f(x) \in \bigcap_{\alpha \in A} U_{\alpha}\} = \{x \in V | \forall \alpha \in A : f(x) \in U_{\alpha}\}.$$

Тогда следующая схема завершает доказательство 2:

$$x \in f^{-1}(\bigcap_{\alpha \in A} U_{\alpha}) \Leftrightarrow x \in V : \forall \alpha \in A \ f(x) \in U_{\alpha} \Leftrightarrow x \in V : \forall \alpha \in A \ x \in f^{-1}(U_{\alpha}) \subset V \Leftrightarrow x \in \bigcap_{\alpha \in A} f^{-1}(U_{\alpha}).$$

$$3. \ \forall \alpha, \beta \in A \ f^{-1}(U_{\alpha} \setminus U_{\beta}) = \{x \in V | f(x) \in U_{\alpha} \setminus U_{\beta}\} = \{x \in V | f(x) \in U_{\alpha}, f(x) \notin U_{\beta}\} = \{x \in V | f(x) \in U_{\alpha}, f(x) \notin U_{\beta}\}$$

$$= f^{-1}(U_{\alpha}) \cap (V \setminus f^{-1}(U_{\beta})) = f^{-1}(U_{\alpha}) \setminus f^{-1}(U_{\beta}).$$

Лемма 3. Функция $f:X o\mathbb{C}$ измерима тогда и только тогда, когда вещественнозначные функции u = Ref, v = Imf являются $(\Sigma_X, B(\mathbb{R}))$ -измеримыми.

Доказательство. Достаточность. Пусть $R = I_1 \times I_2$ - некий брус, где I_1, I_2 -открытые интервалы в \mathbb{R} . Тогда R-открыт, $R \in B(\mathbb{R}^2)$; $I_1, I_2 \in B(\mathbb{R})$. Известно, что $\mathbb{C} \cong \mathbb{R}^2$, в качестве гомоморфизма можно взять g(z) = (x, y) = (Rez, Imz). Покажем, что $f^{-1}(g^{-1}(R)) = u^{-1}(I_1) \cap v^{-1}(I_2)$.

$$f^{-1}(g^{-1}(R)) = \{x \in \mathbb{X} | f(x) \in g^{-1}(R)\} = \{x \in \mathbb{X} | g(f(x)) \in R = I_1 \times I_2\} = I_1 \times I_2\} = I_1 \times I_2$$

$$= \{x \in \mathbb{X} | u = Ref(x) \in I_1, v = Imf(x) \in I_2\} = \{x \in \mathbb{X} | u(x) \in I_1\} \cap \{x \in \mathbb{X} | v(x) \in I_2\} = u^{-1}(I_1) \cap v^{-1}(I_2)$$

Но множества $u^{-1}(I_1), v^{-1}(I_2)$ измеримы, так как u,v $(\Sigma_X, B(\mathbb{R}))$ -измеримы по условию. Следовательно, в силу замкнутости Σ_X относительно операции объединения, множество $u^{-1}(I_1) \cap v^{-1}(I_2) = f^{-1}(g^{-1}(R))$ измеримо. Далее по лемме 1 любое множество $U \in \mathcal{T}_{\mathbb{R}^2}$ может быть представлено, как счётное объединение брусов $R_i(U), i \in \mathbb{N},$ и по лемме 2 получаем, что $f^{-1}(g^{-1}(U)) = f^{-1}g^{-1}((\bigcup_{i \in \mathbb{N}} R_i(U))) = f^{-1}g^{-1}((\bigcup_{i \in \mathbb{N}} R_i(U)))$

 $\bigcup_{i\in\mathbb{N}} f^{-1}g^{-1}((R_i(U))).$ Множество $f^{-1}(g^{-1}(U))\in\Sigma_X$, как счётное объединение множеств $f^{-1}g^{-1}((R_i(U)))\in\Sigma_X$. Таким образом, уже показано, что $\forall U\in\mathcal{T}_{\mathbb{R}^2}$ имеем $f^{-1}(g^{-1}(U))\in\Sigma_X$, а так как g- гомеоморфизм, то $\forall U\in\mathcal{T}_{\mathbb{C}}$ имеем $f^{-1}(U)\in\Sigma_X$. Затем, пользуясь операциями разности, счётного объединения, счётного пересечения множеств леммой 2 и свойствами Σ_X (забыл упомянуть свойства!!!!), получаем, что $\forall U\in B(\mathbb{C})$ имеем $f^{-1}(U)\in\Sigma_X$, а значит функция f измерима.

Необходимость. Пусть функция f-измерима. $Rez, Imz: \mathbb{C} \to \mathbb{R}$ -непрерывные функции, то есть $\forall U \in \mathcal{T}_{\mathbb{R}}$ имеем $Re^{-1}(U) \in \mathcal{T}_{\mathbb{C}}, Im^{-1}(U) \in \mathcal{T}_{\mathbb{C}}$. Тогда $u = Re \circ f, v = Im \circ f, \forall U \in \mathcal{T}_{\mathbb{R}}$ имеем $u^{-1}(U) = f^{-1}(Re^{-1}(U)) \in \Sigma_X$, $v^{-1}(U) = f^{-1}(Im^{-1}(U)) \in \Sigma_X$. Затем, пользуясь операциями разности, счётного объединения, счётного пересечения множеств, леммой 2 и свойствами Σ_X , получаем, что $\forall U \in B(\mathbb{R})$ имеем $u^{-1}(U) \in \Sigma_X$, $v^{-1}(U) \in \Sigma_X$.

Teop.1. Если последовательность измеримых функций $f_n: X \to \mathbb{C}$ сходится к функции f(x) почти всюду на X, то f(x) также измерима.

Доказательство. $f_n(x) \to f(x)$ почти всюду, при $n \to \infty \Leftrightarrow Ref_n(x) \to Ref(x), Im f_n(x) \to Im f(x)$ почти всюду, при $n \to \infty$.

По лемме 3 из измеримости $f_n(x)$ следует измеримость $Ref_n(x), Imf_n(x)$. Тогда по теореме 4' из [1,страница 305] получаем, что функции Ref(x), Imf(x) измеримы, как пределы измеримых функций. Тогда, снова используя лемму 3, получаем, что f(x) измерима.

Опр. 8. Пусть (E, Σ, μ) - пространство с мерой. Мера μ называется σ -конечной, если существует счётное семейство измеримых множеств $(e_i \in \Sigma | i \in \mathbb{N}, \mu(e_i) < \infty)$ такое, что $E = \bigcup_{i=1}^{\infty} e_i$.

3. Интеграл Лебега

Опр. 9. Функция $f: X \to \mathbb{C}$, определённая на некотором пространстве X с заданной на нём мерой, называется простой, если она измерима и принимает не более чем счётное число значений.

Теор.2. Функция f(x), принимающая не более чем счётное число различных значений

$$y_1, ..., y_n, ...,$$

измерима в том и только том случае, если все множества

$$A_n = \{x : f(x) = y_n\}$$

измеримы.

Доказательство. - см. [1, страница 311]

Теор.3. Для измеримости функции $f: X \to \mathbb{C}$ необходимо и достаточно, чтобы она могла быть представлена в виде предела равномерно сходящейся последовательности простых измеримых функций. **Доказательство.** Измеримость функции f равносильна измеримости Ref, Imf- вещественнозначных функций. А для вещественнозначных функций теорема была доказана в [1, страница 311].

Пусть f - некоторая простая функция на X, принимающая значения

$$y_1, ..., y_n, ...; y_i \neq y_i$$
 при $i \neq j$,

и пусть A - некоторое измеримое подмножество X. Естественно определить интеграл от функции f по множеству A равенством

$$\int_{A} f(x)d\mu = \sum_{n} y_{n}\mu(A_{n}), \text{ где } A_{n} = \{x : x \in A, f(x) = y_{n}\}, (1)$$

Опр. 10. Простая функция f называется интегрируемой или суммируемой (по мере μ) на множестве A, если ряд (1) абсолютно сходится. Если f интегрируема, то сумма ряда (1) называется интегралом от f по множеству A.

Опр. 11. Назовём функцию f интегрируемой (суммируемой) на множестве A, если существует последовательность простых интегрируемых на A функций $\{f_n\}$, сходящаяся равномерно к f. Предел

$$I = \lim_{n \to \infty} \int_{\Lambda} f_n(x) d\mu$$

обозначим

$$\int_{\Lambda} f(x)d\mu$$

и назовём интегралом функции f по множеству A.

Корректность данного определения проверяется в [1, на странице 314].

Опр. 12. Пусть E - некоторое измеримое множество. Для $p \in (0, \infty)$ определим пространство

$$L_p(E) = \{ f : E \to \mathbb{C} | ||f||_{L_p(E)} = (\int_E |f(x)|^p d\mu)^{\frac{1}{p}} < \infty \};$$

а для $p=\infty$ пространство

$$L_{\infty}(E) = \{f: E \rightarrow \mathbb{C} | \ ||f||_{L_{\infty}(E)} = \inf_{E' \subset E: \mu(E \backslash E') = 0} \sup_{x \in E'} |f(x)| < \infty \}$$

Лемма 4. Если ограниченная простая функция $f: E \to \mathbb{C}$, такая что $\exists e \subset E: \mu(e) < \infty$, и $f \equiv 0$ на множестве $E \setminus e$ (то есть f исчезает), то $f \in L_p(E) \ \forall p \in (0, \infty]$.

Доказательство. Пусть f - ограниченная исчезающая простая функция, $(y_i \in \mathbb{C}|i \in \mathbb{N})$ - семейство её значений (не обязательно различных). Тогда $||f||_{L_{\infty}(E)} = \max_{i \in \mathbb{N}} |y_i| =: C < \infty$, следовательно, $f \in L_{\infty}(E)$. Для $p \in (0,\infty)$ рассмотрим интеграл $||f||_{L_p(E)} = (\int\limits_E |f(x)|^p d\mu)^{\frac{1}{p}} = (\int\limits_e |f(x)|^p d\mu)^{\frac{1}{p}} \le (\int\limits_e C^p d\mu)^{\frac{1}{p}} = (\int\limits_e |f(x)|^p d\mu)^{\frac{1}{p}} d\mu$

 $=C*\mu(e)^{\frac{1}{p}}<\infty.$ Таким образом, $f\in L_p(E)$

Теор.4.Пусть (E, Σ, μ) - пространство с мерой. Мера μ является σ -конечной тогда и только тогда, когда существует измеримая функция f такая, что $\forall x \in E \ f(x) > 0$, и $\int_E f d\mu < \infty$.

4. Доказательство теоремы

Теор.5. Пусть (E, Σ, μ) - пространство с мерой, где μ - σ -конечная мера. Пусть также $\frac{1}{p}+\frac{1}{p'}=1, 1\leq p\leq \infty, g$ - измеримая функция. Тогда для функционала $A_g:L_p(E)\to \mathbb{C}, A_g(f)=\int_E fg d\mu$ имеем $||A_g||:=\sup_{f\in L_p(E),||f||_{L_p(E)}\neq 0}\frac{|A_g(f)|}{||f||_{L_p(E)}}=||g||_{L_{p'}(E)}.$

Доказательство. Случай $g \in L_{p'}(E)$ был доказан на лекции. Рассмотрим случай $g \notin L_{p'}(E)$, то есть $||g||_{L_{p'}(E)} = \infty$. Функция g измерима, тогда по теореме 3 существует равномерно сходящаяся к g последовательность простых функций $\{g_k\}_{k=1}^{\infty}$, имеем

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall k > N \ \forall x \in E \ |g(x) - g_k(x)| < \varepsilon$$

В частности,

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall k > N \ \sup_{x \in E} |g(x) - g_k(x)| < \varepsilon$$

Далее,

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall k > N \ (g - g_k) \in L_{\infty}(E)$$
, более того, $||g - g_k||_{L_{\infty}(E)} < \varepsilon$

 $\forall e \subset E : \mu(e) < \infty$ имеем $L_{\infty}(e) \subset L_{p'}(e)$ (ссылка!!!)

$$\exists N \in \mathbb{N} : \forall k > N \text{ имеем } ||g - g_k||_{L_{p'}(e)} \leq \mu(e)^{\frac{1}{p'}} ||g - g_k||_{L_{\infty}(e)} < \mu(e)^{\frac{1}{p'}} \varepsilon$$

$$||g_k||_{L_{p'}(e)} = ||A_{g_k}^e|| = \sup_{f \in L_p(e), ||f||_{L_p(e)} \neq 0} \frac{|A_{g_k}^e(f)|}{||f||_{L_p(e)}} = \sup_{f \in L_p(e), ||f||_{L_p(e)} \neq 0} \frac{|A_{g_k+g-g}^e(f)|}{||f||_{L_p(e)}} = \sup_{f \in L_p(e), ||f||_{L_p(e)} \neq 0} \frac{|(A_{g-g_k}^e - A_g^e)(f)|}{||f||_{L_p(e)}} \leq ||A_{g-g_k}^e|| + ||A_g^e|| \leq \mu(e)^{\frac{1}{p'}} \varepsilon + ||A_g^e||$$

При $\varepsilon \to 0$, для произвольного $e \subset E: \mu(e) < \infty$, получаем неравенство $||g||_{L_{p'}(e)} \le ||A_g^e|| = ||A_g||$ Если E - такое множество, что $\mu(E) < \infty$, то всё доказано. Если же $\mu(E) = \infty$, то существует счётная система попарно непересекающихся множеств $(e_i \in \Sigma | i \in \mathbb{N}, \mu(e_i) < \infty)$ такая, что $\bigcup_{i=1}^{\infty} e_i = E$.

Тогда
$$||g||_{L_{p'}(E)}=\sum\limits_{i=1}^{\infty}||g||_{L_{p'}(e_i)}\leq\sum\limits_{i=1}^{\infty}||A_g^{e_i}||=||A_g||.$$

5. список литературы

- 1. Энциклопедия Britannica. История численных методов [Электронный ресурс]. URL: https://www.britannica.com/science/numerical-analysis/Historical-background
- 2. Дифференциальное уравнение [Электронный ресурс]: Материал из Википедии свободной энциклопедии : Версия 1014488600, сохранённая в 11:22 UTC 27 марта 2021 / Авторы Википедии // Википедия, свободная энциклопедия. Электрон. дан. Сан-Франциско: Фонд Викимедиа, 2021.
- URL: https://en.wikipedia.org/w/index.php?title=Differential_equation&oldid=1014488600
- 3. Корректно поставленная задача [Электронный ресурс] : Материал из Википедии свободной энциклопедии : Версия 104220521, сохранённая в 23:05 UTC 28 декабря 2019 / Авторы Википедии // Википедия, свободная энциклопедия. Электрон. дан. Сан-Франциско: Фонд Викимедиа, 2019. URL: https://ru.wikipedia.org/?curid=2840565&oldid=104220521
- 4. Устойчивость (динамические системы) [Электронный ресурс] : Материал из Википедии свободной энциклопедии : Версия 111742919, сохранённая в 12:54 UTC 15 января 2021 / Авторы Википедии // Википедия, свободная энциклопедия. Электрон. дан. Сан-Франциско: Фонд Викимедиа, 2021. URL: https://ru.wikipedia.org/?curid=287781&oldid=111742919
- Калиткин, Н.Н. Численные методы / Н.Н. Калиткин под редакцией А.А. Самарского.- Москва: "Наука". Главная редакция физико-математической литературы, 1978. - стр.237-240
- 6. Ланеев, Е.Б. Устойчивое решение некорректных задач продолжения гармонических функций и их приложения в термографии и геофизике / Е.Б. Ланеев. Дисс. на соискание учёной степени доктора

- физико-математических наук, специальность: 05.13.18-математическое моделирование, численные методы и комплексы программ.- стр.113-122
- 7. Самарский А.А. Численные методы / А.А. Самарский, А.В. Гулин.- Москва: "Наука". Главная редакция физико-математической литературы, 1989.- стр. 214-215
- 8. Метод Рунге Кутты // Википедия. [2020]. Дата обновления: 29.09.2020. URL: https://ru.wikipedia.org/?curid=257112&oldid=109559819 (дата обращения: 29.09.2020).
- 9. Документация по библиотеке SciPy для языка программирования Python для научных и инженерных расчётов [Электронный ресурс]. URL: https://www.scipy.org/
- 10. Документация по библиотеке batplotlib для языка программирования Python для построения графиков [Электронный ресурс]. URL: https://matplotlib.org/
- 11. Документация по библиотеке NumPy для языка программирования Python для работы с массивами [Электронный ресурс]. URL: https://numpy.org/