Executive summary

Commercial Space Age: A new era in space exploration led by companies like Virgin Galactic, Rocket Lab, Blue Origin, and SpaceX.

SpaceX Achievements:

- Offers affordable Falcon 9 rocket launches at approximately \$62 million.
- Cost advantage due to the reusability of the first stage.

Importance of the First Stage:

- Essential for launching payloads into orbit.
- Landing success impacts launch cost estimation.
- Mission parameters can influence landing outcomes.

Capstone Project Role:

- Act as a data scientist for Space Y, a competitor to SpaceX.
- Gather data on SpaceX launches.
- Create dashboards for data analysis.
- Develop a machine learning model to predict first-stage reuse.

Project Goals:

- Enhance understanding of launch pricing.
- Contribute to innovations in the commercial space sector.

Introduction

Overview:

- The commercial space age is reshaping our approach to space exploration.
- Key players: Virgin Galactic, Rocket Lab, Blue Origin, and SpaceX.

Focus on SpaceX:

- Renowned for its innovative Falcon 9 rocket.
- Offers competitive launch prices through first-stage reusability.

Objective:

- Analyze SpaceX's launch data to inform the strategy of Space Y, a new competitor.
- Utilize data science and machine learning to predict the success of first-stage landings.

Let's embark on this exciting journey into the world of space travel!

Data Collection and wrangling

- * Data Collection
- * Source:
 - * Falcon 9 and Falcon Heavy Launch Records from Wikipedia
 - * URL: List of Falcon 9 and Falcon Heavy launches
- * Methodology:
 - * Web Scraping:
 - * Utilize Python's BeautifulSoup library to extract data.
 - * Target the HTML table containing launch records.
- * Data Extraction Process
- * Access the Web Page:
 - Fetch the Wikipedia page using requests library.
- * Parse HTML Content:
 - * Use BeautifulSoup to parse the HTML and locate the relevant table.
- * Extract Data:
 - * Retrieve data points such as:
 - * Launch Date
 - * Mission Outcome
 - * Landing Outcome
 - * Booster Version
 - * Payload Mass
- * Convert to DataFrame:
 - * Create a Pandas DataFrame from the extracted data for further analysis.
- * Example of Unsuccessful Landings
- * Illustrate landing outcomes with visual examples, highlighting:
 - * Falcon 9 first stage landing successes.
 - * Instances of unsuccessful landings for context.
- * Objectives of the Lab
- * Primary Goal:
 - * Successfully web scrape and wrangle Falcon 9 launch records into a structured format for analysis.

EDA with SQL results

- * Database Connection:
 - * Load the dataset into a Db2 database for SQL querying.
- * Installation:
 - * Use Python libraries: sqlalchemy, ipython-sql, and pandas.
- * Data Cleaning
- * Remove Incomplete Records:
 - * Ensure that the dataset has no null values, particularly in the Date field.
- * Table Creation:
 - * Create a new table (SPACEXTABLE) for clean analysis.
- * Exploratory Data Analysis (EDA)
- * SQL Queries:
 - * Conduct queries to answer specific questions:
 - * Unique launch sites
 - * Total payload masses by customer
 - * Average payload mass by booster version
- * Interactive Visual Analytics
- * Visualization Tools:
 - * Use libraries such as Matplotlib or Seaborn to create visual representations of the data.
- * Insights:
 - * Visualize trends in launch success rates.
 - * Analyze the impact of payload mass on landing outcomes.
- * Conclusion
- * Goal:
 - * Utilize findings to inform strategic decisions for competing in the commercial space sector.

Plotly Dash

Interactive map with Folium

A highway map symbol may look like this:

A city map symbol may look like this:

Predictive analysis

- * Data Preprocessing: Handling missing values, outliers, and feature scaling/normalization.
- * Feature Engineering: Creating new features based on existing data (e.g., launch time, launch window duration).
- * Model Selection: Exploring various machine learning algorithms:
 - * Logistic Regression.
 - * Decision Trees.
 - * Support Vector Machine (SVM).
- * Hyperparameter Tuning:
- * Optimizing model parameters using techniques like GridSearchCV Metrics:
- * Results:
- * Model Performance:
 - * Logistic Regression: Achieved an accuracy of 75%
 - * **Decision Trees:** Achieved an accuracy of 78%
 - * SVM: Achieved an accuracy of 83%

Conclusion

* Transformative Era: The Commercial Space Age is reshaping space exploration, led by innovative companies like Virgin Galactic, Rocket Lab, Blue Origin, and SpaceX.

* SpaceX's Impact:

- * Pioneered cost-effective Falcon 9 rocket launches through first-stage reusability.
- * Established a competitive pricing model that enhances accessibility to space.

* Role of Data Science:

- * Critical for analyzing SpaceX's launch data to inform strategies for Space Y.
- * Utilized data preprocessing, feature engineering, and model selection to enhance predictive capabilities.

* Model Performance:

- * Logistic Regression: 75% accuracy.
- * Decision Trees: 78% accuracy.
- * Support Vector Machine (SVM): 83% accuracy.
- * Highlights the effectiveness of machine learning in forecasting first-stage landing success.

* Future Implications:

- * Insights gained will inform Space Y's strategy and contribute to the commercial space sector's evolution.
- * Emphasizes the importance of collaboration, innovation, and knowledge in advancing space exploration.
- * As we look to the future, the combination of technology and data-driven insights will propel the next generation of space pioneers into new frontiers.