Merged problem

$$min. \sum_{\phi} \sum_{s \in Q} \sum_{ij \in E} t_{ij} x_{ij}^{\phi s} + \alpha \sum_{ij \in E} \frac{\eta_{ij} \sum_{s \in Q} x_{ij}^{ps}}{u_{ij}}$$

$$\tag{1}$$

subject to

$$\sum_{\substack{n|j=n, ij\in E}} x_{ij}^{\phi s} - \sum_{\substack{n|i=n, ij\in E}} x_{ij}^{\phi s} = b_n^{\phi s} \ \forall n\in N, \ s\in Q, \ \phi\in\{p,c\} \tag{2}$$

$$0 \leq \sum_{s \in O} x_{ij}^{cs} + \eta_{ij} \sum_{s \in O} x_{ij}^{ps} \leq u_{ij} \ orall ij \in E$$

$$x_{ij}^{cs},~x_{ij}^{ps}\geq 0~orall ij\in E,~s\in Q$$

Dual of this problem

$$max. \sum_{\phi} \sum_{s \in Q} \sum_{n \in N} b_n^{\phi s} \theta_n^{\phi s} - \sum_{ij \in E} \lambda_{ij} u_{ij}$$
 (6)

subject to

$$- heta_i^{cs} + heta_j^{cs} - \lambda_{ij} \le t_{ij} \ orall ij \in E, s \in Q$$
 (7)

$$- heta_i^{ps} + heta_j^{ps} - \lambda_{ij} \leq t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} \ orall ij \in E, s \in Q$$
 (8)

$$\lambda_{ij} \geq 0 \ \forall ij \in E$$
 (9)

Dual complementarity condition

$$\lambda_{ij}^*(u_{ij} - \sum_{s \in Q} x_{ij}^{cs*} - \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*}) = 0 \ \forall ij \in E, s \in Q$$
 (10)

$$\lambda_{ij}^* \ge 0 \ \forall ij \in E \tag{11}$$

Primal complementarity condition

$$\sum_{s \in Q} x_{ij}^{cs*}(t_{ij} + \theta_i^{cs*} - \theta_j^{cs*} + \lambda_{ij}^*) = 0 \quad \forall (i, j) \in E$$
(13)

$$\sum_{s \in Q} x_{ij}^{cs*} \geqq 0 \quad orall (i,j) \in E$$
 (14)

$$t_{ij} + heta_i^{cs*} - heta_j^{cs*} + \lambda_{ij}^* \geqq 0 \quad orall (i,j) \in E, s \in Q$$
 (15)

$$\sum_{s \in O} x_{ij}^{ps*}(t_{ij} + \alpha \frac{\eta_{ij}}{u_{ij}} + \theta_i^{ps*} - \theta_j^{ps*} + \eta_{ij}\lambda_{ij}^*) = 0 \quad \forall (i,j) \in E$$

$$\sum_{s \in O} x_{ij}^{ps*} \geqq 0 \quad \forall (i,j) \in E$$
 (17)

$$t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} + heta_i^{ps\,*} - heta_j^{ps\,*} + \eta_{ij} \lambda_{ij}^{*} \geqq 0 \quad orall (i,j) \in E, s \in Q$$

Proposition 1

• λ_{ij}^* represents the link delay time that appears when the capacity constraint is activated.

Proof.

• λ_{ij}^* is always determined as following equation due to the complementarity slackness condition.

$$\lambda_{ij}^* egin{cases} = 0 & ext{if} & 0 \leqq \sum_{s \in Q} x_{ij}^{cs*} + \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij} \ \geq 0 & ext{if} & \sum_{s \in Q} x_{ij}^{cs*} + \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} = u_{ij} \end{cases}$$

Proposition 2

• The solution of MMCF of car is consistent with the UE condition equation.

Proof.

• There are four possible cases.

	car	sum	${\lambda_{ij}}^*$
C1	0	$0 \leq \sum_{s \in Q} {x_{ij}^{ps}}^* < u_{ij}$	0
C2	$0 < \sum_{s \in Q} x_{ij}^{cs*} < u_{ij}$	$0 \leq \sum_{s \in Q} x_{ij}^{cs*} + \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij}$	0
C3	0	u_{ij}	+
C4	$0 < \sum_{s \in Q} x_{ij}^{cs*} \leq u_{ij}$	u_{ij}	+

• When $0 < \sum_{s \in Q} x_{ij}^{cs*} + \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij}$, that is, when the capacity constraint is **not activated**, $\lambda_{ij}^* = 0$ and θ_n^{cs*} satisfies the following two conditions.(C1 and C2)

$$\begin{cases} \theta_{j}^{cs*} \leq t_{ij} + \theta_{i}^{cs*} & \text{if} \quad \sum_{s \in Q} x_{ij}^{cs*} = 0\\ \theta_{j}^{cs*} = t_{ij} + \theta_{i}^{cs*} & \text{if} \quad 0 < \sum_{s \in Q} x_{ij}^{cs*} < u_{ij} \end{cases}$$
(20)

• When $\sum_{s \in Q} x_{ij}^{cs*} + \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} = u_{ij}$, that is, when the capacity constraint is **activated**, $\lambda_{ij}^* (\geq 0)$ and θ_n^{cs*} satisfies the following two conditions.(C3 and C4)

$$\begin{cases} \theta_{j}^{cs*} \leq t_{ij} + \lambda_{ij}^{*} + \theta_{i}^{cs*} & \text{if} \quad \sum_{s \in Q} x_{ij}^{cs*} = 0\\ \theta_{j}^{cs*} = t_{ij} + \lambda_{ij}^{*} + \theta_{i}^{cs*} & \text{if} \quad 0 < \sum_{s \in Q} x_{ij}^{cs*} \leq u_{ij} \end{cases}$$
(21)

- eq.(20) and eq.(21) can be interpreted as follows.
 - When $\sum_{s \in Q} x_{ij}^{cs*} = 0$, that is, when (i,j) links are not used, the sum of zero-flow cost(or equilibrium cost: $t_{ij} + \lambda_{ij}^*$) and the potential of the link origin node is greater than the potential of the link terminal node.
 - When $\sum_{s \in Q} x_{ij}^{cs*} > 0$, that is, when (i,j) link flows exist, the shortest path cost from the origin s to j is the sum of zero-flow cost(or equilibrium cost) and the shortest path cost to i.
- From the above, it is shown that the solution of MMCF of car satisfies definition of the UE condition.

Remarks

- Whether the solution of PT satisfies UE condition is not clear.
- There 7 possible cases.

	car	PT	sum
C1	0	0	0
C2	0	$0 < \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij}$	$0 < \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij}$
C3	0	u_{ij}	u_{ij}
C4	$0 < \sum_{s \in Q} x_{ij}^{cs*} < u_{ij}$	0	$0 < \sum_{s \in Q} x_{ij}^{cs *} < u_{ij}$
C5	$0 < \sum_{s \in Q} x_{ij}^{cs*} < u_{ij}$	$0 < \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij}$	$0 < \sum_{s \in Q} x_{ij}^{cs*} + \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij}$
C6	$0 < \sum_{s \in Q} x_{ij}^{cs*} < u_{ij}$	$0 < \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij}$	u_{ij}
C7	u_{ij}	0	u_{ij}

• When
$$\sum_{s \in Q} x_{ij}^{cs*} = 0$$
, (i)If $\sum_{s \in S} x_{ij}^{ps*} = 0$ (case C1)

$$egin{aligned} heta_{j}^{ps*} & \leq t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} + heta_{i}^{ps*} \ heta_{j}^{cs*} & \leq t_{ij} + heta_{i}^{cs*} \end{aligned}$$

(ii)If $0 < \eta_{ij} \sum_{s \in Q} x_{ij}^{ps*} < u_{ij}$ (case C2)

$$egin{aligned} heta_{j}^{ps*} &= t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} + heta_{i}^{ps*} \ heta_{j}^{cs*} &\leq t_{ij} + heta_{i}^{cs*} \end{aligned}$$

(iii)If $\eta_{ij} \sum_{s \in Q} x_{ij}^{ps\,*} = u_{ij}$ (case C3)

$$egin{aligned} heta_{j}^{ps*} &= t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} + \eta_{ij} \lambda_{ij}^{*} + heta_{i}^{ps*} \ heta_{i}^{cs*} &\leq t_{ij} + \lambda_{ij}^{*} + heta_{i}^{cs*} \end{aligned}$$

• When $0<\sum_{s\in Q}x_{ij}^{cs*}< u_{ij}$, (i)If $\sum_{s\in S}x_{ij}^{ps*}=0$ (case C4)

$$egin{aligned} heta_{j}^{ps*} & \leq t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} + heta_{i}^{ps*} \ heta_{j}^{cs*} & = t_{ij} + heta_{i}^{cs*} \end{aligned}$$

(ii)If $0<\eta_{ij}\sum_{s\in Q}x_{ij}^{ps*}< u_{ij}$ and $0<\sum_{s\in Q}x_{ij}^{cs*}+\eta_{ij}\sum_{s\in Q}x_{ij}^{ps*}< u_{ij}$ (case C5)

$$egin{aligned} heta_{j}^{ps*} &= t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} + heta_{i}^{ps*} \ heta_{j}^{cs*} &= t_{ij} + heta_{i}^{cs*} \end{aligned}$$

(iii)If $0<\eta_{ij}\sum_{s\in Q}x_{ij}^{ps*}< u_{ij}$ and $\sum_{s\in Q}x_{ij}^{cs*}+\eta_{ij}\sum_{s\in Q}x_{ij}^{ps*}=u_{ij}$ (case C6)

$$egin{aligned} heta_{j}^{ps*} &= t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} + \eta_{ij} \lambda_{ij}^* + heta_{i}^{ps*} \ heta_{j}^{cs*} &= t_{ij} + \lambda_{ij}^* + heta_{i}^{cs*} \end{aligned}$$

• When $\sum_{s \in Q} x_{ij}^{cs*} = u_{ij}$ (case C7),

$$egin{aligned} heta_j^{ps*} & \leq t_{ij} + lpha rac{\eta_{ij}}{u_{ij}} + \eta_{ij} \lambda_{ij}^* + heta_i^{ps*} \ heta_j^{cs*} & = t_{ij} + \lambda_{ij}^* + heta_i^{cs*} \end{aligned}$$