





# Self-Guided Robust Graph Structure Refinement

Yeonjun In, Kanghoon Yoon, Kibum Kim, Kijung Shin, Chanyoung Park

Korea Advanced Institute of Science and Technology (KAIST)

{yeonjun.in, ykhoon08, kb.kim, kijungs, cy.park}@kaist.ac.kr

## **Adversarial Attacks on Graphs**

Deep graph learning methods are vulnerable to adversarial attacks!





### **Graph Structure Refinement:**

refines a given graph structure by minimizing the impact of adversarial edges.

# **Graph structure refinement (GSR) methods**

(a) Feature-based GSR: encourage the nodes with similar features to be connected



→ Assumption: node features should NOT be attacked.

## **Graph structure refinement (GSR) methods**

(b) Multi-faceted GSR: exploit the high-order structural similarity besides feature similarity



→ Assumption: the amount of structure attack should be moderate.

## **Existing GSR methods are limited by narrow assumptions!**

**Assumption 1.** node features should NOT be attacked.

**Assumption 2.** the amount of structure attack should be moderate.

- Can NOT be always satisfied in real-world applications
- Their practicality and applicability are <u>highly limited</u>

### Solution

## Key idea:

Utilize a clean proxy graph structure in addition to the node feature information.



Free from two narrow assumptions

## Where and how to get the clean proxy structure?

Find the <u>clean sub-graph</u> in the given graph itself!



Attacked graph structure

# Self-Guided Robust Graph Structure Refinement (SG-GSR)

### **GSR module:** SuperGAT [Kim and Oh]

• Basically, GAT. But, attention weights are estimated by a link predictor.

$$L_{\mathcal{V}} = -\sum_{i \in \mathcal{V}^L} \sum_{c=1}^{C} \mathbf{Y}_{ic} \log \widehat{\mathbf{Y}}_{ic} \qquad L_{\mathcal{E}}^l = -\left(\frac{1}{|\mathcal{E}|} \sum_{(i,j) \in \mathcal{E}} \log \phi_{ij}^l + \frac{1}{|\mathcal{E}^-|} \sum_{(i,j) \in \mathcal{E}^-} \log(1 - \phi_{ij}^l)\right) \implies \text{ Jointly optimize}$$

#### **Clean sub-graph Extraction**



- 1. Extract edges with BOTH high structural proximity and feature similarity (Done offline)
- 2. Learn GSR module to minimize a training loss:

$$\operatorname{argmin} L_{\mathcal{V}} + L_{\tilde{\mathcal{E}}}^{l}$$

## Challenges on the extracted sub-graph

- (a) To extract the clean sub-graph, we removed numerous clean edges as well as adv edges.
- (b) The limited structural information hinders the predictive power of GNNs



- Small sub-graph almost has clean edges
- But, the removed edges contain many clean edges



 Performance of GSR trained on clean small sub-graph is limited compared to the upperbound



**Challenge 1: Loss of Structural Information** 

# Challenges on the extracted sub-graph

- (c) Node deg. distribution of the clean sub-graph gets more imbalanced
  - > High degree nodes would dominate the edge set of sub-graph.
- (d) It hinders the generalization ability of GSR module to low-degree nodes.





 Acc drop is more significant in low degree when attack is added



**Challenge 2. Imbalanced Node Degree Distribution** 

## Dealing with the Challenges of Sub-graph Extraction

## **Graph Augmentation:**

- Supplement the structural information.
- Add edges important for predicting node labels to the sub-graph.
- Three Importance measures
  - 1) Class homophily: JSD between the class prediction probability of two nodes.
  - 2) Feature smoothness: node feature similarity between two nodes
  - 3) Structure proximity: node embedding similarity between two nodes (node2vec)



## Dealing with the Challenges of Sub-graph Extraction

## **Graph Augmentation:**

Towards scalability



#### **Inefficient solution**

It requires computing the JSD between all node pairs in every epoch  $\rightarrow$  Time consuming  $O(|\tilde{\mathcal{V}}|^2)$ 

#### **Efficient solution**

- 1) We construct k-NN graphs of nodes in  $\tilde{\mathcal{V}}$  based on the FS and SP,  $\tilde{\mathcal{E}}_k^{FS}$  and  $\tilde{\mathcal{E}}_k^{SP}$ , respectively.  $\tilde{\mathcal{E}}^{aug} = \tilde{\mathcal{E}} \cup \tilde{\mathcal{E}}_k^{FS-JSD} \cup \tilde{\mathcal{E}}_k^{SP-JSD}$
- 2) We compute the JSD values of the edges in  $\widetilde{\mathcal{E}}_k^{\mathrm{FS}}$  and  $\widetilde{\mathcal{E}}_k^{\mathrm{FS}-\mathrm{JSD}}$  and  $\widetilde{\mathcal{E}}_k^{\mathrm{FS}-\mathrm{JSD}}$ .
- 3) Complexity is alleviated  $O(\left|\tilde{\mathcal{V}}\right|^2) \to O(\left|\tilde{\mathcal{E}}_k^*\right|), \left|\tilde{\mathcal{V}}\right|^2 \gg \left|\tilde{\mathcal{E}}_k^*\right|$

## Dealing with the Challenges of Sub-graph Extraction

## **Group-Training:**

- Balance the node degree distribution.
- Split the edge sets into multiple sub-groups.
  - $\tilde{\mathcal{E}}_{\mathrm{LL}}^{\mathrm{aug}}$ ,  $\tilde{\mathcal{E}}_{\mathrm{HL}}^{\mathrm{aug}}$ ,  $\tilde{\mathcal{E}}_{\mathrm{HH}}^{\mathrm{aug}}$
- $ilde{\mathcal{E}}_{ ext{LL}}^{ ext{aug}}, ilde{\mathcal{E}}_{ ext{HL}}^{ ext{aug}}$  and  $ilde{\mathcal{E}}_{ ext{HH}}^{ ext{aug}}$  get more balanced than  $ilde{\mathcal{E}}^{ ext{aug}}$





Design a balanced link prediction loss

• 
$$L_E^l = L_{\tilde{\mathcal{E}}_{\mathrm{LL}}^{\mathrm{aug}}}^l + L_{\tilde{\mathcal{E}}_{\mathrm{HL}}^{\mathrm{aug}}}^l + L_{\tilde{\mathcal{E}}_{\mathrm{HH}}^{\mathrm{aug}}}^l$$



## **Summary of SG-GSR**

## **Training loss**

### Inference

$$L_{\text{final}} = L_{\tilde{\mathcal{V}}} + \lambda_E \sum_{l=1}^{L} L_E^l$$

• The learned link predictor assigns low weights to adv. edges



| Domain            | Dataset                    | # Nodes                  | # Edges                  | # Features            | # Classes   |
|-------------------|----------------------------|--------------------------|--------------------------|-----------------------|-------------|
| Citation graph    | Cora<br>Citeseer<br>Pubmed | 2,485<br>2,110<br>19,717 | 5,069<br>3,668<br>44,338 | 1,433<br>3,703<br>500 | 7<br>6<br>3 |
| Blog graph        | Polblogs                   | 1,222                    | 16,714                   | /                     | 2           |
| Co-purchase graph | Amazon                     | 13,752                   | 245,861                  | 767                   | 10          |
| Co-review graph   | Garden<br>Pet              | 7,902<br>8,664           | 19,383<br>69,603         | 300<br>300            | 5<br>5      |

**Existing benchmarks** 

New benchmarks we introduced

For the existing benchmarks, we artificially generate the attacked graph.

- Structure attack: metattack, nettack
- Structure-feature attack: random gaussian noise 50% in addition to the structure attack

For the new benchmarks, we **simulate real-world fraudsters' attacks** on e-commerce systems.

#### Node classification performance under artificially generated adversarial attack

Table 1: Node classification performance under non-targeted attack (i.e., *metattack*) and feature attack. OOM indicates out of memory on 12GB TITAN Xp. OOT indicates out of time (24h for each run is allowed).

| Dataset  | Setting                              | SuperGAT                         | RGCN                             | ProGNN                           | GEN                              | ELASTIC                          | AirGNN                           | SLAPS                            | RSGNN                            | CoGSL                             | STABLE                           | EvenNet                          | SE-GSL                           | SG-GSR                           |
|----------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Cora     | Clean<br>+ Meta 25%<br>+ Feat attack | 85.4±0.3<br>62.6±1.7<br>56.5±0.6 | 84.0±0.1<br>53.4±0.3<br>49.4±0.9 | 82.9±0.3<br>70.7±0.2<br>47.7±0.5 | 83.9±0.8<br>67.4±1.2<br>45.2±2.4 | 85.5±0.4<br>67.5±0.8<br>55.9±1.6 | 83.6±0.3<br>63.0±0.7<br>50.4±0.6 | 75.1±0.2<br>75.0±0.5<br>49.2±0.1 | 85.1±0.3<br>81.8±0.3<br>65.7±2.1 | 80.2±0.3<br>63.6±0.3<br>49.6±1.5  | 85.1±0.3<br>79.0±0.4<br>52.2±0.1 | 85.5±0.4<br>75.0±0.3<br>56.5±0.5 | 85.5±0.3<br>70.2±0.4<br>51.8±0.5 | 85.5±0.1<br>83.1±0.5<br>67.6±1.4 |
| Citeseer | Clean<br>+ Meta 25%<br>+ Feat attack | 75.1±0.2<br>64.5±0.6<br>57.1±0.9 | 73.0±0.4<br>58.6±0.9<br>50.3±0.6 | 72.5±0.5<br>68.4±0.6<br>52.6±0.2 | 75.5±0.3<br>71.9±0.8<br>50.4±1.1 | 74.7±0.4<br>66.3±1.0<br>60.8±1.3 | 73.2±0.3<br>62.2±0.6<br>58.1±1.1 | 73.6±0.1<br>73.1±0.6<br>52.3±0.4 | 74.4±1.1<br>73.9±0.7<br>64.0±0.3 | <b>76.2±0.1</b> 71.6±0.7 57.4±1.5 | 75.5±0.7<br>73.4±0.3<br>58.4±0.4 | 74.2±0.2<br>71.6±0.3<br>59.7±0.4 | 76.1±0.5<br>70.3±0.8<br>59.0±0.9 | 75.4±0.2<br>75.2±0.1<br>66.8±1   |
| Pubmed   | Clean<br>+ Meta 25%<br>+ Feat attack | 84.0±0.5<br>74.4±1.8<br>58.4±0.3 | 86.9±0.1<br>82.0±0.3<br>44.9±0.8 | OOM<br>OOM                       | 86.5±0.5<br>80.1±0.3<br>52.6±0.2 | 88.1±0.1<br>85.4±0.1<br>55.3±0.6 | 87.0±0.1<br>84.2±0.0<br>62.3±0.1 | 83.4±0.3<br>83.1±0.1<br>53.3±0.8 | 84.8±0.4<br>84.7±0.5<br>65.2±0.3 | OOM<br>OOM                        | 85.5±0.2<br>81.6±0.6<br>54.7±0.7 | 87.5±0.2<br>87.2±0.2<br>64.6±3.9 | OOT<br>OOT                       | 87.6±0.2<br>87.3±0.2<br>65.5±0.5 |
| Polblogs | Clean<br>+ Meta 25%                  | 96.0±0.3<br>79.6±2.0             | 95.4±0.1<br>66.9±2.2             | 93.2±0.6<br>63.2±4.4             | 96.1±0.4<br>79.3±7.7             | 95.7±0.3<br>63.6±1.5             | 95.0±0.7<br>57.3±4.4             | 54.1±1.3<br>52.2±0.1             | 93.0±1.8<br>65.0±1.9             | 95.2±0.1<br>51.9±0.2              | 95.6±0.4<br>75.2±3.4             | 95.6±0.4<br>59.1±6.1             | 95.2±0.6<br>68.3±1.2             | 96.2±0.1<br>87.8±0.7             |
| Amazon   | Clean<br>+ Meta 25%<br>+ Feat attack | 82.5±1.1<br>76.0±1.6<br>75.2±0.5 | 82.2±1.3<br>73.2±0.7<br>71.1±2.3 | OOM<br>OOM                       | 90.2±0.2<br>85.6±0.9<br>85.1±0.6 | 89.6±0.1<br>86.7±0.2<br>85.4±0.3 | 87.6±0.8<br>85.6±0.4<br>83.3±0.2 | 79.6±0.8<br>79.0±0.3<br>71.8±0.6 | 89.6±1.2<br>86.9±1.6<br>85.0±1.5 | OOM<br>OOM                        | 88.8±0.4<br>81.7±0.3<br>79.5±0.8 | 88.8±0.5<br>85.4±1.5<br>85.3±0.8 | OOT<br>OOT                       | 91.1±0.2<br>89.2±0.2<br>87.2±0.4 |

Table 2: Node classification performance under targeted attack (i.e., nettack) and feature attack.

| Dataset  | Setting       | SuperGAT | RGCN     | ProGNN   | GEN      | ELASTIC         | AirGNN   | SLAPS    | RSGNN    | CoGSL    | STABLE   | EvenNet         | SE-GSL    | SG-GSR   |
|----------|---------------|----------|----------|----------|----------|-----------------|----------|----------|----------|----------|----------|-----------------|-----------|----------|
| Cora     | Clean         | 83.1±1.0 | 81.5±1.1 | 85.5±0.0 | 82.7±3.5 | 86.4±2.1        | 79.9±1.1 | 70.7±2.3 | 84.3±1.0 | 76.3±0.6 | 85.5±1.0 | 85.1±1.6        | 85.5 ±1.0 | 86.4±1.1 |
|          | + Net 5       | 60.6±2.8 | 55.8±0.6 | 67.5±0.0 | 61.5±3.9 | 67.5±2.1        | 61.0±2.5 | 68.7±2.6 | 73.1±1.5 | 61.9±0.6 | 76.3±0.6 | 66.3±1.2        | 68.7±0.6  | 77.1±1.7 |
|          | + Feat attack | 59.4±2.5 | 52.6±0.6 | 57.8±0.0 | 47.0±2.0 | 63.1±1.8        | 54.2±1.0 | 39.0±3.0 | 71.9±0.6 | 46.6±0.6 | 64.7±1.5 | 60.6±2.0        | 59.0±0.5  | 72.7±1.1 |
| Citeseer | Clean         | 82.5±0.0 | 81.0±0.0 | 82.5±0.0 | 82.5±0.0 | 82.5±0.0        | 82.5±1.3 | 81.5±0.8 | 84.1±0.0 | 81.5±0.8 | 82.5±0.0 | 82.5±0.0        | 82.5±0.0  | 85.7±2.2 |
|          | + Net 5       | 54.5±4.9 | 50.3±3.7 | 71.5±0.0 | 77.3±1.5 | 79.9±0.9        | 70.4±2.0 | 81.0±1.3 | 78.8±2.0 | 79.9±0.8 | 82.5±0.0 | 79.9±2.1        | 82.5±0.0  | 83.1±0.8 |
|          | + Feat attack | 49.2±1.3 | 47.1±3.3 | 68.3±0.0 | 40.2±4.6 | 57.7±4.0        | 52.9±3.0 | 70.9±2.7 | 74.6±2.6 | 46.0±2.6 | 65.1±3.4 | 63.5±4.8        | 77.8±1.5  | 83.1±2.7 |
| Pubmed   | Clean         | 87.6±0.4 | 89.8±0.0 | OOM      | 89.8±0.0 | 90.5±0.3        | 90.9±0.2 | 80.5±1.5 | 88.4±0.5 | OOM      | 89.3±0.5 | 90.9±0.5        | OOT       | 90.9±1.9 |
|          | + Net 5       | 70.6±0.7 | 70.1±0.3 | OOM      | 72.0±0.0 | 85.8±0.3        | 83.0±0.9 | 80.5±1.5 | 87.8±1.3 | OOM      | 83.3±0.3 | 72.2±0.7        | OOT       | 88.0±0.3 |
|          | + Feat attack | 70.4±1.2 | 61.5±1.3 | OOM      | 61.8±0.0 | <b>78.1±0.8</b> | 77.1±0.9 | 56.6±2.0 | 76.5±0.7 | OOM      | 73.1±0.7 | 67.9±0.9        | OOT       | 75.8±2.0 |
| Polblogs | Clean         | 97.7±0.4 | 97.4±0.2 | 97.1±0.3 | 97.8±0.2 | 97.8±0.3        | 97.3±0.2 | 54.1±1.3 | 96.4±0.7 | 96.9±0.2 | 97.5±0.2 | <b>97.9±0.4</b> | 97.0±0.4  | 97.9±0.2 |
|          | + Net 5       | 95.9±0.2 | 93.6±0.5 | 96.1±0.6 | 94.8±1.2 | 96.2±0.3        | 90.0±0.9 | 51.4±3.4 | 93.4±0.7 | 89.6±0.6 | 96.1±0.4 | 94.2±1.1        | 95.1±0.3  | 96.5±0.2 |

#### SG-GSR consistently outperforms the baselines.

#### Under structure-attack,

- 1) SG-GSR outperforms multi-faceted methods
  - Thanks to the clean sub-graph extraction.
- 2) SG-GSR outperforms feature-based methods
  - Thanks to exploiting rich structural information.

#### Under structure-feature attack

- 1) SG-GSR outperforms feature-based methods
  - Leveraging the structural information alleviates the weakness of feature-based method.

#### Node classification performance under E-commerce fraud

Table 3: Node classification under e-commerce fraud.

|          | Gar      | den            | Pet      |                |  |  |
|----------|----------|----------------|----------|----------------|--|--|
| Methods  | Clean    | + Fraud        | Clean    | + Fraud        |  |  |
| SuperGAT | 86.0±0.4 | 81.8±0.3       | 87.3±0.1 | 80.6±0.3       |  |  |
| RGCN     | 87.1±0.5 | 81.5±0.3       | 86.6±0.1 | $78.5 \pm 0.2$ |  |  |
| ProGNN   | OOT      | OOT            | OOT      | OOT            |  |  |
| GEN      | 87.1±0.6 | 82.2±0.0       | 88.5±0.6 | 81.1±0.3       |  |  |
| ELASTIC  | 88.4±0.1 | 82.9±0.1       | 88.9±0.1 | $81.3 \pm 0.2$ |  |  |
| AirGNN   | 87.1±0.2 | $80.9 \pm 0.4$ | 88.5±0.1 | $79.3 \pm 0.3$ |  |  |
| SLAPS    | 79.3±0.8 | $74.6 \pm 0.2$ | 81.4±0.2 | $75.8 \pm 0.2$ |  |  |
| RSGNN    | 81.8±0.6 | $76.3 \pm 0.0$ | 81.6±0.4 | $74.2 \pm 0.0$ |  |  |
| CoGSL    | OOM      | OOM            | OOM      | OOM            |  |  |
| STABLE   | 84.3±0.3 | $81.0 \pm 0.3$ | 87.9±0.2 | $80.8 \pm 0.2$ |  |  |
| EvenNet  | 86.3±0.2 | 81.3±0.4       | 88.5±0.2 | $81.0 \pm 0.1$ |  |  |
| SE-GSL   | 82.0±0.4 | 77.3±0.6       | 87.9±0.4 | 77.5±0.7       |  |  |
| SG-GSR   | 88.3±0.1 | 83.3±0.2       | 89.4±0.1 | 81.9±0.1       |  |  |

- Product-product graph from Amazon product review data.
  - Node feature: product review texts
  - Graph structure: co-review relationships by the same user
  - Node label: product categories
- Fraudsters randomly write fake product reviews on the numerous products.
  - Numerous malicious co-review edges are added to the graph structure.
  - Noisy random review are injected into the node features.
- SG-GSR also works well under attacks that are plausible in the real-world systems.

#### Contribution

This is the first work proposing new graph datasets that closely imitate a real-world e-commerce system containing malicious fraudsters.

We expect these datasets to foster practical research in adversarial attacks on GNNs

#### **Analysis of Refined Graph**





### Attention weight analysis compared to SuperGAT

- Large attention weights for the clean edges
- small attention weights for the adversarial edges

### **Community structure reconstruction**

Successfully remove the inter-class/community edges by the proposed GSR module.

#### **Main Ablation Study**

|          | Component Cora |    |          |                |                | Citeseer |                |                |  |  |
|----------|----------------|----|----------|----------------|----------------|----------|----------------|----------------|--|--|
| SE       | GA             | GT | Clean    | + Meta 25%     | + Feat. Attack | Clean    | + Meta 25%     | + Feat. Attack |  |  |
| X        | Х              | X  | 84.3±0.5 | 62.6±1.7       | 56.5±0.6       | 74.2±0.2 | 64.5±0.6       | 57.1±0.9       |  |  |
| ✓        | X              | X  | 84.4±0.5 | $80.6 \pm 0.7$ | $58.6 \pm 1.1$ | 74.6±0.2 | $74.4 \pm 0.4$ | $60.9 \pm 0.5$ |  |  |
| ✓        | Rand           | X  | 83.6±0.4 | $78.0 \pm 1.4$ | $49.9 \pm 1.2$ | 74.9±0.6 | $73.6 \pm 0.4$ | $48.7 \pm 1.7$ |  |  |
| ✓        | C              | X  | 84.6±0.3 | 81.0±0.3       | $60.1 \pm 0.8$ | 74.6±0.2 | $74.3 \pm 0.6$ | $59.0 \pm 0.6$ |  |  |
| ✓        | C, F           | X  | 84.9±0.3 | 81.7±0.1       | $64.1 \pm 0.9$ | 74.5±0.1 | $74.6 \pm 0.6$ | $62.2 \pm 0.6$ |  |  |
| 1        | C, F, S        | X  | 84.6±0.1 | 82.1±0.3       | 64.3±0.7       | 74.8±0.2 | $74.7 \pm 0.4$ | 62.6±0.6       |  |  |
| <b>✓</b> | C, F, S        | ✓  | 85.5±0.1 | 83.4±0.5       | 67.6±1.4       | 75.4±0.2 | 75.2±0.1       | 66.8±1.0       |  |  |

| Dataset  | Attack         | Node        | SG-GSR w/o GT | SG-GSR           | Diff.(%) |
|----------|----------------|-------------|---------------|------------------|----------|
| Cora     | Clean          | high-degree | 85.6±0.5      | 86.7±0.2         | 1.1      |
|          | Clean          | low-degree  | 83.8±0.1      | 84.5±0.6         | 0.7      |
|          | + Meta 25%     | high-degree | 84.4±0.8      | 86.7±0.8         | 2.3      |
|          | + Meta 25%     | low-degree  | 78.2±0.8      | $80.7 \pm 0.1$   | 2.5      |
|          | + Feat. Attack | high-degree | 73.7±1.3      | 76.0±1.5         | 2.3      |
|          | + reat. Attack | low-degree  | 56.9±1.1      | 61.3±1.4         | 4.4      |
|          | Clean          | high-degree | 76.4±0.2      | 77.7± <b>0.4</b> | 1.3      |
|          | Clean          | low-degree  | 73.0±0.4      | $73.2 \pm 0.4$   | 0.2      |
| Citeseer | + Meta 25%     | high-degree | 77.9±0.7      | 78.6±0.2         | 0.7      |
|          | + Wieta 25%    | low-degree  | 70.8±0.3      | 72.1±0.4         | 1.3      |
|          | + Feat. Attack | high-degree | 71.9±0.6      | 73.9±1.1         | 2.0      |
|          | + Teat. Attack | low-degree  | 54.0±0.2      | 60.3±1.0         | 6.3      |

- Ablation studies indicate that
  - 1) SE (sub-graph extraction) is considerably helpful for defending adversarial attacks
  - 2) GA (graph augmentation) supplements the loss of structural information, thereby achieving the robustness
  - 3) GT (group training) improves the generalization ability to low-degree nodes
    - > resulting in the overall performance improvement.

### **Conclusion**

- We have discovered that existing GSR methods are limited by narrow assumptions.
- We propose SG-GSR, which refines the attacked graph structure in a self-guided manner.
- We propose GA and GT in order to address the two technical challenges.
- We verify the effectiveness of SG-GSR through extensive experiments
- We newly introduce graph datasets that mimics fraudsters' attacks on e-commerce systems.







# Thank you for listening!

Please refer to our paper "Self-Guided Robust Graph Structure Refinement"

Contact: yeonjun.in@kaist.ac.kr