THE PUTPIO U 6 DEC 2000

10/517128

The Patent Office Concept House Cardiff Road Newport South Wales **NP10 8QQ**

REC'D 1 5 AUG 2003

WIPO

PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

7 July 2003

PRIORITY DOCUMENT

L. Mahoney

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

b) there is an inventor who is not named as an

c) any named applicant is a corporate body.

applicant, or

See note (d))

The Patent Office Request for grant of a patent THE PATENT OFFICE (See the notes on the back of this form. You can also get an (See the notes on the pack of the Patent Office to help you fill in Cardiff Road Newport 6 JUN 2002 this form) South Wales NP10 8QQ **RULF 97** NEWPORTS\AM\P11610GB Your reference DB JUK soos 0213019.3 2. Patent application number (The Patent Office will fill in this part) 3. Full name, address and postcode of the or of JOHN CLARK each applicant (underline all surnames) THE PADDOCK RUMBLINGBRIDGE ROAD MUCKHART CLACKMANNANSHIRE FK14 7JH Patents ADP number (if you know it) SCOTLAND UNITED KINGDOM 23971814001 If the applicant is a corporate body, give the country/state of its incorporation UNITED KINGDOM Title of the invention DRILLING ATTACHMENT CRUIKSHANK & FAIRWEATHER Name of your agent (if you bave one) 19 ROYAL EXCHANGE SQUARE GLASGOW "Address for service" in the United Kingdom G1 3AE to which all correspondence should be sent SCOTLAND (including the postcode) UNITED KINGDOM 547002 Patents ADP number (if you know it) Date of filing 6. If you are declaring priority from one or more Country Priority application number earlier patent applications, give the country (if you know it) (day / montb / year) and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number 7. If this application is divided or otherwise Date of filing Number of earlier application derived from an earlier UK application, (day / month / year) give the number and the filing date of the earlier application 8. Is a statement of inventorship and of right to grant of a patent required in support of NO this request? (Answer 'Yes' If: a) any applicant named in part 3 is not an inventor, or

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.

Do not count copies of the same document

Continuation sheets of this form

Description

45 / Lm

Claim(s)

Abstract

16 Alla/

Drawing(s)

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

I/We request the grant of a patent on the basis of this application.

Signature

CRUIKSHANK & FAIRWEATHER

5 JUNE 2002

Date

12. Name and daytime telephone number of person to contact in the United Kingdom

ANDREW SHANKS 0141 221 5767

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

DRILLING ATTACHMENT

The present invention relates to a drill attachment, and in particular, to a drill attachment for use in wet and dry drilling operations.

Drilling bores in walls and the like may be achieved using a suitable drill bit coupled to a drilling unit such as a domestic hand held drill or an industrial drill, for example. Where small diameter bores are required it is usually sufficient to use a solid drill bit. However, where larger diameter bores are required it is conventional to use a core drill bit which consists of a tubular member having a central bore and having cutting elements, such as diamond impregnated segments,

In order to improve the quality of bores drilled with core drill bits, and to extend the useable life of the cutting elements, it is known to provide means for extracting the dust which is produced during a drilling operation from the central bore of the core bit. This prevents clogging of the hole being drilled, provides a cleaner working environment, provides additional cooling to the cutting elements, and ultimately improves the quality of bores which are produced, requiring little or no tidying or "making good".

Dust extraction, commonly referred to as dry drilling, may be achieved by coupling a vacuum or suction device to a special attachment mounted between the drill unit and the core bit. The special attachment allows for dust to be extracted from the bore of the core bit, into the adapter, and into a collection bag or the like associated with the vacuum or suction device.

Dust extraction is a practical method of improving drilling capabilities and efficiency. However, drilling operations are required in particularly hard 10 materials, such as granites, concretes, hard engineering and facing bricks, and clay materials and the like, dry drilling is often inefficient and in extreme cases, unachievable. In such situations, it is known to inject a lubricating drilling fluid, such as water, into the 15 area of drilling, a procedure commonly referred to as wet This reduces friction between the cutting drilling. being drilled, cools elements and the material cutting elements and assists in controlling the drilling dust, which is forced out of the hole when drilling. 20

Wet drilling may be accomplished by placing a wet drilling attachment between the drill unit and the core bit, said wet drilling attachment being coupled to a fluid supply which passes through said unit and into the bore of the core drill bit.

A number of problems exist in currently known dry and wet drilling procedures. For example, each type of drilling generally requires a separate attachment to be coupled between the drilling unit and the core bit, which requires extra equipment to be stored and easily accessed on site. Furthermore, attachments which are capable for use in both dry and wet drilling operations are frequently limited in the maximum core bit diameter with which they may be used, particularly for wet drilling. Additionally, current systems which utilise a combined dry and wet attachment are prone to clogging, as dust trapped therein from use in a dry drilling operation may become saturated during wet drilling if the unit is not properly cleaned after each type of use.

It is an object of at least one aspect of the present invention to obviate, or at least mitigate, the aforementioned problems in the prior art.

According to a first aspect of the present invention, there is provided a drill attachment for coupling a tubular cutting member having a bore to drive means for rotating the cutting member, the drill attachment comprising:

a housing defining first and second fluid conduits; and

and having fluid transmitting first and second end

٩٠

portions in fluid communication with the respective first and second fluid conduits, the first end portion being adapted for coupling to one of a tubular cutting member and a drive means and the second end portion being adapted for coupling to the other of the tubular cutting member and the drive means.

Preferably, at least one of said first and second end portions of the drive shaft is adapted for coupling to a tubular cutting member when dry drilling is required. Additionally, preferably at least one of said first and second end portions of the drive shaft is adapted for coupling to a tubular cutting member when wet drilling is required.

In a preferred embodiment of the present invention,

one of said first and second end portions of the drive
shaft is adapted for coupling to a tubular cutting member
when dry drilling is required, and the other of said
first and second end portions is adapted for coupling to
a tubular cutting member when wet drilling is required.

Dry drilling, as noted herein, involves extracting dust produced during a drilling operation from the bore of the cutting member. Wet drilling, on the other hand, involves feeding a drilling fluid, such as water, into the bore of a tubular cutting member during drilling, which lubricates the material being drilled and cools the

cutting member, improving drilling efficiency and increasing the useable life of the cutting member.

Conveniently, at least one of said first and second portions of the drive shaft is adapted transmitting dust extracted from the bore of a tubular cutting member, and at least one of said first and second portions of the drive end shaft is adapted transmitting an appropriate drilling fluid such as water to the bore of a tubular cutting member.

10 Preferably, one of said first and second fluid transmitting end portions of the drive shaft is adapted for transmitting dust extracted from the bore of a tubular cutting member, and the other of said first and second end portions of the drive shaft is adapted for transmitting water or other appropriate drilling fluid to the bore of a tubular cutting member.

Conveniently, when dry drilling is required, a suction device, such as a vacuum pump or domestic or industrial vacuum cleaner, is coupled to one of the first 20 and second fluid conduits in the housing. Alternatively, when wet drilling is required, a drilling fluid supply, such as a water supply is coupled to one of the fluid conduits in the housing. The drilling fluid may be pumped from a fluid reservoir or alternatively may be tapped from a mains supply.

Preferably, one of said first and second fluid conduits is adapted for coupling to a suction device or the like, and the other of said first and second fluid conduits is adapted for coupling to a fluid supply.

A suction device or a fluid supply or the like may 5 required fluid conduit coupled to the appropriate extraction or supply hose. Said supply or extraction hose may be connected to the first or second fluid conduit using a threaded connection or a jubilee adjustable hose suitable other 10 clip or Alternatively, any hose may be connected to the first or second fluid conduit by way of a nipple and sliding should be noted that arrangement. Ιt collar connecting means may be used as would readily be selected by a person of skill in the art. 15

member is coupled to the end portion of the drive shaft adapted for transmitting dust from the bore of the tubular cutting member, the drive means is coupled to the other end portion thereof, and a vacuum pump or the like is connected to the first or second fluid conduit in fluid communication with the end portion of the drive shaft to which the cutting member is coupled. On the other hand, for wet drilling, the tubular cutting member and the drive means are coupled to the opposite end portions of the drive shaft from that required for dry

20

drilling, and a drilling fluid supply is connected to the fluid conduit in fluid communication with the end portion of the drive shaft to which the cutting member is coupled. That is, the tubular cutting member is coupled to the end of the drive shaft adapted for transmitting an appropriate drilling fluid, and the drive means is coupled to the other end thereof.

Preferably, the drive shaft is bearing mounted within the housing of the drill attachment. Preferably 10 also, the drive shaft is retained within said housing using circlips, for example. However, it should be noted that any means of retaining the drive shaft within the housing may be used as would readily be selected by a person of skill in the art.

- Preferably, the drive shaft comprises a first axial 15 bore which extends partially through the drive shaft from the first fluid transmitting end portion thereof, and terminates at a point within the drive Conveniently, the drive shaft comprises at least one radial bore which extends from the outer surface of the 20 drive shaft and merges with said first axial bore. Preferably, said at least one radial bore merges with the first axial bore in the region of the terminating end of said first axial bore.
- 25 Advantageously, two radial bores are provided and are preferably diametrically aligned such that a first

diametric bore is defined which extends through the drive shaft in a direction normal to the axial direction of the drive shaft.

Similarly, the drive shaft preferably comprises a second axial bore which extends partially through the 5 second fluid transmitting shaft from the portion thereof, and terminates at a point within the the drive Preferably, shaft drive shaft. comprises at least one radial bore which extends from the outer surface of the drive shaft and merges with said 10 second axial bore. Preferably, said at least one axial bore merges with the second axial bore in the region of the terminating end of said second axial bore.

Conveniently, two radial bores are provided and are preferably diametrically aligned such that a second diametric bore is defined which extends through the drive shaft in a direction normal to the axial direction of the drive shaft.

20 the length of the drive shaft is such that said bores are substantially aligned with a respective first and second fluid conduit in the housing. Thus, said first and second axial bores and respective radial bores permit fluid communication between the first end portion of the drive shaft and the first fluid conduit in the housing,

and between the second end portion of the drive shaft and the second fluid conduit in the housing.

In a preferred embodiment of the present invention, one of said first and second axial bores and associated at least one radial bore in the drive shaft is adapted for transmitting dust from the bore of a cutting member to the respective fluid conduit in the housing. Preferably, the other of said first and second axial bores and associated at least one radial bore is adapted for transmitting a suitable drilling fluid from the respective fluid conduit in the housing to the bore of a cutting member.

Conveniently, the drive shaft comprises fluid seals located on either of the at least one radial bore through which drilling fluid may be supplied in order to prevent leakage of said drilling fluid.

15

20

25

Advantageously, one end of a tubular cutting member for use with the drill attachment comprises coupling means for coupling to the drive shaft, and another opposite end of the tubular cutting member comprises cutting elements for effecting drilling.

Preferably, the coupling means includes threaded coupling means, wherein, for example, the tubular cutting member may comprise a male threaded portion which is received within a female threaded portion provided on an end portion of the drive shaft. Alternatively, the

cutting member may comprise a female threaded portion which receives a male threaded portion provided at an end portion of the drive shaft.

In a preferred embodiment, the drive shaft comprises

means for preventing rotation within the housing when a
tubular cutting member is coupled thereto using a
threaded connection. Such rotation prevention means may
be in the form of diametrically opposed land portions
located at at least one end portion of the drive shaft,
said land portions providing gripping means for a tool to
restrain the drive shaft from rotational motion. The
land portions may be adapted to be gripped by an open
mouthed wrench or an adjustable pipe wrench, or the like.

Preferably also, the coupling means of the tubular cutting member is provided on a shank portion associated therewith. The shank portion may be formed integrally with the cutting member or may be independently coupled thereto, as discussed in more detail below.

20 permitting fluid transmission between the bore of the cutting member and one of the first and second fluid conduits in the housing when in use. Preferably, the arrangement is such that fluid transfer is possible through the throughbore in the shank portion, through one of the first and second axial bores and through a respective at least one radial bore associated therewith,

and into the region of the respective first and second fluid conduits in the housing, and vice versa.

Conveniently, the drill attachment is for use with a selection of tubular cutting members having various bore diameters. For example, the drill attachment may be for use with cutting members having bore diameters of around 20 to 250 mm and above.

Preferably, large diameter tubular cutting members, particularly those for use in dry drilling operations, 10 have a plurality of extraction apertures in the base thereof, adjacent to the coupling means, in order to dust extraction rates than accommodate larger through the shank portion. solely possible Advantageously, tubular cutting members having a bore greater than around 70 mm, diameter and preferably 15 greater than 80 mm, comprise dust extraction apertures in the base thereof.

In one embodiment, where large diameter tubular cutting members are used, an adapter may be provided which comprises the coupling means for coupling to the end portion of the drive shaft, upon which adapter the tubular cutting member is mounted. Preferably, the adapter comprises a plurality of radially extending mounting pins which are received within engaging slots provided in the tubular cutting member. This arrangement may be described as a bayonet type fitting.

The adapter may comprise a male threaded portion provided on a shank portion for coupling to the end of the drive shaft. Thus, as noted above, the shank portion may be indirectly coupled to the cutting member.

5 Preferably the shank portion includes a throughbore which permits fluid communication between the bore of the cutting member and one of the first and second fluid conduits in the housing, via the respective bores in the drive shaft.

Alternatively, the adapter may comprise a female threaded portion which couples to the end of the drive shaft, either directly, or indirectly using a double sided, male threaded, female-to-female thread adapter, for example.

15 Conveniently, tubular cutting members having a bore diameter greater than around 70 mm, and preferably greater than 80 mm are coupled to the drive shaft using an adapter.

Preferably, the adapter further comprises a 20 plurality of extraction apertures through which dust may also be extracted from the bore of the cutting member.

Preferably also, where dust extraction is effected through extraction apertures, either in the base of a tubular cutting member or through an adapter as described above, the dust is drawn into a chamber in the housing and through one of the first and second fluid conduits.

chamber is preferably an annular chamber defined between the outer surface of a portion of the drive shaft and the inner surface of a portion of the housing. Additionally, the chamber is preferably located within the region surrounding one of said first and second axial bores in the drive shaft. Preferably also, the chamber is open at one end providing an opening through which dust may be drawn into said chamber. Thus, arrangement requires that only one side of the drilling attachment is adapted for dry drilling when large bore cutting members are used and dust is to be extracted through extraction apertures as well as through a shank portion used to couple the cutting member to the drive Preferably, the chamber is located at a first side of the drill attachment and is in communication with the first fluid conduit the housing.

10

15

The side of the drilling attachment comprising the chamber may also be used for wet drilling, wherein means are provided for closing the opening through which dust is extracted into the chamber during dry drilling. Such means may include an annular body mounted within the opening, which annular body comprises a plurality of apertures which remain open during dry drilling, but which are closed during wet drilling to prevent leakage of drilling fluid. The apertures may be selectively

opened and closed by use of an annular plate mounted on or within said annular body, which annular plate has corresponding apertures which are aligned with those of the annular body during dust extraction, but which are misaligned with the apertures of the annular body, in order to close said apertures, during wet drilling. Preferably, a fluid sealing arrangement is provided between the annular body and annular plate in order to maintain sealing integrity and to prevent leakage of the drilling fluid.

Advantageously, the chamber is in selective fluid communication with one of the first and second fluid conduits in the housing, such that a fluid path between the chamber and said fluid conduit is open when dust is extracted through the extraction apertures; that is, when large diameter cutting members are used.

and the fluid conduit may be achieved by use of a sliding collar provided on the housing, and preferably on the inner surface of the housing at the location of the chamber. The collar is preferably moveable in an axial direction from a first position where the fluid path is closed, to a second position where the fluid path is open.

25 Preferably, the drive shaft has an annular ring mounted on the outer surface thereof, said ring having

substantially the same outer diameter as the inner diameter of the portion of the housing defining the chamber. 'Preferably, the ring is aligned with the fluid conduit in fluid communication with the chamber, and more 5 preferably along the centre-line thereof. Thus, when the collar is moved to close the fluid path between the fluid conduit and the chamber, that is, towards position, a first end of the collar will abut a side face of the ring, therefore closing a portion of the fluid conduit and consequently said fluid path. Thus, any dust extracted from the bore of the cutting member will be drawn through the throughbore in the shank portion, through the respective bores in the drive shaft, and subsequently through the portion of the fluid conduit which remains open. In this position, a second end of the 15 collar, opposite said first end, is substantially aligned with the opening of the chamber.

When large diameter cutting members are used in dry drilling operations where dust is extracted through the shank portion and extraction apertures, the collar is extended from the housing towards the second, open position, towards the base of the cutting member, wherein the second end of the collar is substantially aligned with the base of the cutting member. This, therefore, opens the fluid path between the chamber and the associated fluid conduit and also provides an enclosed

path through which dust may be extracted from the bore of the cutting member, through the extraction apertures and into the chamber within the housing, substantially minimising the leakage of dust particles into the atmosphere.

Conversely, when small diameter cutting members are used in dry drilling operations where dust is extracted through the throughbore in the shank portion only, the collar is retracted into the housing towards the first position, closing the fluid path between the chamber and the associated fluid conduit. When the drill attachment is in use, closing said fluid path will prevent recirculation of extracted dust into the chamber and prevent any reduction in the extraction flow rate provided by a suction device attached to said fluid conduit associated with said chamber.

10

15

Preferably, tubular cutting members used with the drill attachment may be used in both wet and dry drilling operations. However, large diameter tubular cutting members having extraction apertures in the base thereof preferably comprise means for blocking said apertures in order to prevent drilling fluid from pouring from the bore of the cutting member. Such blocking means may include, for example, plugs which are fitted within the apertures, or may alternatively include a plate rotatably mounted on the cutting member or appropriate adapter,

said plate being rotatable to selectively open and close the extract apertures.

In some circumstances, where it is required to drill into relatively thick walls or the like, an extension portion may be used. Said extension portion may comprise an elongate tubular member having a throughbore and including threaded portions at either end thereof for coupling to the drive shaft and a tubular cutting member or appropriate cutting member adapter. Thus, a fluid path will exist between the bore of the cutting member and one of the first and second fluid conduits in the housing via the throughbore of the extension portion and the respective bores of the drive shaft.

Preferably, where large diameter cutting members are used in dry drilling operations and dust is to be extracted through extraction apertures, an additional tubular member is provided which surrounds the extension portion and provides an encased path for dust to be drawn from the bore of the cutting member and into the chamber of the drill attachment housing. The additional tubular member may be coupled to the drill attachment via an appropriate adapter, and preferably via a similar adapter to that used for large diameter cutting members, as discussed above.

25 Advantageously, means are provided to secure a pilot drill to the drill attachment. Such means may be

provided on the drive shaft at at least one end portion thereof. The pilot drill securing means may comprise at least one grub screw which extends radially through the drive shaft and grips a pilot drill located within one of the first and second axial bores. Where the at least one grub screw extends through the drive shaft at a portion of the shaft which is contained within the housing, access to said at least one grub screw may be achieved through one of the first and second fluid conduits in the housing of the drill attachment.

Preferably, the drive means is a drilling unit such as a hand held electric drill, pneumatic drill or hydraulic drill or the like.

The drive means may be coupled to the drive shaft by threaded coupling means, for example. Preferably, the drive means comprises a male threaded portion which engages a female threaded portion provided on the drive shaft.

Alternatively, the drive means may be coupled to the drive shaft via an adapter, one end of which adapter may comprise a male threaded portion for coupling to the drive shaft, and the opposite end may comprise a pin adapted to be received in a chuck of the drive means, such as a three jaw Jacobs chuck or an SDS chuck, for example.

Applicant has conveniently termed the drill attachment of the present invention "MULTISWIVEL" (Trade Mark).

According to a second aspect of the present invention, there is provided a drill attachment for coupling a tubular cutting member having a bore to drive means for rotating the cutting member, said drill attachment comprising:

a housing defining a fluid conduit; and

and having a fluid transmitting end portion being in fluid communication with the fluid conduit and being adapted for coupling to a tubular cutting member, and a drive end portion being adapted for coupling to drive means, said housing and said drive shaft together defining a chamber having an opening in selective fluid communication with said fluid conduit.

Preferably, the opening of the chamber in selective fluid communication with fluid conduit is located at the end thereof adjacent the fluid transmitting end portion of the drive shaft.

20

25

Preferably also, the fluid transmitting end portion of the drive shaft is in fluid communication with the fluid conduit via the chamber defined by the drive shaft and the housing.

Preferably, the chamber defined by the housing and the drive shaft is an annular chamber.

Advantageously, the drill attachment is adapted for use in both dry and wet drilling operations. Dry drilling, as noted herein, involves extracting dust produced during a drilling operation from the bore of the cutting member. Wet drilling involves feeding a drilling fluid, such as water, into the bore of the tubular cutting member during drilling, which lubricates the material being drilled and cools the cutting member, improving the drilling efficiency and increasing the useable life of the cutting member.

Conveniently, the fluid transmitting end portion of the drive shaft is adapted for transmitting drilling

15 fluid to the bore of a tubular cutting member.

Additionally, the fluid transmitting end portion of the drive shaft may be adapted for transmitting dust extracted from the bore of a cutting member.

Preferably, the opening in the fluid chamber is 20 adapted for transmitting dust extracted from the bore of a tubular cutting member.

Conveniently, when dry drilling is required, a suction device such as a vacuum pump or domestic or industrial vacuum cleaner, is coupled to the fluid conduit in the housing. Alternatively, when wet drilling is required, a drilling fluid supply, such as a water

supply, is coupled to the fluid conduit defined by the housing.

A suction device or a fluid supply may be coupled to the fluid conduit via an appropriate extraction or supply hose, which extraction or supply hose may be connected to the fluid conduit using a threaded connection or a jubilee clip or other suitable adjustable hose clip or the like. Alternatively, any hose may be connected to the fluid conduit by way of a nipple and sliding collar arrangement. However, it should be understood that any means of connecting a hose to the fluid conduit may be used as would readily be selected by a person of skill in the art.

Preferably, the drive shaft is bearing mounted within the housing of the drill attachment. Preferably also, the drive shaft is retained within said housing using circlips.

In a preferred embodiment of the present invention, the drive shaft comprises an axial bore which extends partially through the drive shaft from the fluid transmitting end portion thereof, and terminates at a point within the drive shaft. Conveniently, the drive shaft comprises at least one radial bore which extends from the outer surface of the drive shaft and merges with said axial bore.

Advantageously, two radial bores are provided and are preferably diametrically aligned such that a first diametric bore is defined which extends through the drive shaft in a direction normal to the axial direction of the drive shaft.

In an alternative embodiment, a number of radial bores are provided which are arranged to define a plurality of diametric bores distributed along the length of the drive shaft.

10 Conveniently, the axial bore and said at least one radial bore permit fluid communication between the fluid transmitting end portion of the drive shaft and the fluid conduit, via said chamber.

In a preferred embodiment, said axial bore and at adapted for jointly bore are radial one 15 least transmitting dust from the bore of a tubular cutting housing. in the conduit the fluid to member Additionally, said axial bore and at least one radial bore are preferably adapted for jointly transmitting drilling fluid from the fluid conduit to the bore of a 20 cutting member.

Advantageously, one end of a tubular cutting member for use with the drill attachment comprises coupling means for coupling to the drive shaft, and another, opposite end of the tubular cutting member comprises cutting elements for effecting drilling.

Preferably, the cutting means includes threaded coupling means, wherein, for example, the tubular cutting member may comprise a male threaded portion which is received within a female threaded portion provided on the fluid transmitting end portion of the drive shaft. Alternatively, the cutting member may comprise a female threaded portion which receives a male threaded portion provided on the fluid transmitting end of the drive shaft.

. 10 . . In a preferred embodiment, the drive shaft comprises means for preventing rotation within the housing when a is coupled thereto tubular cutting member Such rotation prevention means may threaded connection. be in the form of diametrically opposed land portions located on at least one of the fluid transmitting end and 15 shaft, said land portions drive end of the drive providing gripping means for a tool to restrain the drive shaft from rotational motion. The land portions may be adapted to be gripped by an open mouthed wrench or an adjustable pipe wrench, or the like. 20

Conveniently, the coupling means of the tubular cutting member is provided on a shank portion associated therewith. The shank portion may be formed integrally with the cutting member or may be independently coupled thereto, as discussed in more detail below.

The shank portion preferably includes a throughbore, permitting fluid communication between the bore of the cutting member and the fluid conduit in the housing. Preferably, the arrangement is such that fluid transfer is possible through the throughbore in the shank portion, through the axial and at least one radial bores in the drive shaft, through the chamber defined by the drive shaft and the housing, and through the fluid conduit, and vice versa.

- 10 Conveniently, the drill attachment is for use with a selection of tubular cutting members having various bore diameters. For example, the drill attachment may be for use with cutting members having bore diameters of around 20 to 250 mm and above.
- Preferably, large diameter tubular cutting members, 15 particularly those for use in dry drilling operations, have a plurality of extraction apertures in the base thereof, adjacent to the coupling means, in order to dust extraction rates than larger accommodate portion. shank through the solely possible 20 Advantageously, tubular cutting members having a bore diameter greater than around 70 mm, and preferably greater than 80 mm, comprise dust extraction apertures in the base thereof.
- 25 In one embodiment, where large diameter tubular cutting members are used, an adapter may be provided

which comprises the coupling means for coupling to the fluid transmitting end portion of the drive shaft, upon which adapter the tubular cutting member is mounted. Preferably, the adapter comprises a plurality of radially extending mounting pins which are received within engaging slots provided in the tubular cutting member. This arrangement may be described as a bayonet type fitting.

The adapter may comprise a male threaded portion

10 provided on a shank portion for coupling to the end of
the drive shaft. Thus, as noted above, the shank portion
may be indirectly coupled to the cutting member.

Preferably, the shank portion includes a throughbore
which permits fluid communication between the bore of the

15 cutting member and the fluid conduit in the housing, via
the bores in the drive shaft and via the chamber defined
by the drive shaft and the housing.

Alternatively, the adapter may comprise a female threaded portion which couples to the fluid transmitting end of the drive shaft, either directly, or indirectly using a double sided, male threaded, female-to-female thread adapter, for example.

20

25

Conveniently, tubular cutting members having a bore diameter greater than 80 mm are coupled to the drive shaft using an adapter.

Preferably, the adapter further comprises a plurality of extraction apertures through which dust may be extracted from the bore of the cutting member.

Preferably, where dust extraction is effected through extraction apertures, either in the base of a tubular cutting member or through an adapter as described above, the dust is drawn into the chamber via the opening thereof, which is selected to be in fluid communication with the fluid conduit.

To assist in dust extraction through extraction apertures in the base of a tubular cutting member, the housing may comprise a sliding collar, which collar may be extended from the housing towards the base of a tubular cutting member coupled to the drill attachment in order to provide an encased fluid path between the extract apertures and the opening of the chamber.

Alternatively, the arrangement may be such that when a cutting member is coupled to the drill attachment, the base of the cutting member is sufficiently close to the opening in the chamber to eliminate the requirement for a sliding collar, as noted above.

20

In a preferred embodiment, where large bore tubular cutting members are used in dry drilling operations, dust is extracted from the bore of the cutting member through the throughbore of the shank portion and into the chamber via the bores of the drive shaft, and additionally

through the extract apertures in the base of the cutting member and into the chamber via the opening thereof.

Preferably, when small bore cutting members are used in dry drilling operations, dust is extracted through the throughbore of the shank portion, through the bores of the drive shaft, into the chamber, and through the fluid conduit defined in the housing. In this arrangement, the opening of the chamber is selected to prevent any fluid communication between the opening and the fluid conduit in order to prevent dust escaping from the chamber and into the atmosphere.

10

15

20

When wet drilling is undertaken using large bore cutting members, drilling fluid is preferably transferred to the bore thereof through the fluid conduit into the chamber, through the bores of the drive shaft and through the throughbore in the shank portion. Preferably, the opening of the chamber is selected to prevent any fluid communication between said opening and the fluid conduit in order to prevent spillage of the drilling fluid from the chamber.

Conveniently, selective fluid communication between the opening of the chamber and the fluid conduit may be achieved by way of an annular body mounted within the opening of the chamber, which annular body comprises a plurality of apertures which may be selectively opened and closed by use of an annular plate mounted on or

within said annular body. Preferably, said annular plate has corresponding apertures which are aligned with those of the annular body to provide fluid communication between the opening of the annulus and the fluid conduit, but which are misaligned with the apertures of the annular body in order to close said apertures, and thus prevent fluid communication. Preferably, a fluid sealing arrangement is provided between the annular body and annular plate in order to maintain sealing integrity and to prevent leakage of the drilling fluid.

Preferably, tubular cutting members used with the drill attachment may be used in both wet and dry drilling operations. However, large diameter tubular cutting members having extraction apertures in the base thereof preferably comprise means for blocking said apertures in order to prevent drilling fluid from pouring from the bore of the cutting member when used in wet drilling operations. Such blocking means may include, for example, plugs which are fitted within the extraction apertures, or may alternatively include a plate rotatably mounted on the cutting member or appropriate adapter, said plate being rotatable to selectively open and close the extraction apertures.

In some circumstances, where it is required to drill into relatively thick walls or the like, an extension portion may be used. Said extension portion may comprise

an elongate tubular member having a throughbore and including threaded portions at either end thereof for coupling to the drive shaft and a tubular cutting member or appropriate cutting member adapter. Thus, a fluid path will exist between the bore of the cutting member and the fluid conduit defined in the housing via the throughbore of the extension portion and the bores of the drive shaft.

Preferably, where large diameter cutting members are used in dry drilling operations and dust is to be extracted through extraction apertures, an additional tubular member is provided which surrounds the extension portion and provides an encased path for dust to be drawn from the bore of the cutting member and into the chamber in the drill attachment housing. The additional tubular member may be coupled to the drill attachment via an appropriate adapter, and preferably via a similar adapter to that used for large diameter cutting members, as discussed above.

Advantageously, means are provided to secure a pilot drill to the drill attachment. Such means may be provided on the drive shaft at at least one end portion thereof. The pilot drill securing means may comprise at least one grub screw which extends radially through the drive shaft and grips a pilot drill located within one of the first and second axial bores. Where the at least one

grub screw extends through the drive shaft at a portion of the shaft which is contained within the housing, access to said at least one grub screw may be achieved through one of the first and second fluid conduits in the housing of the drill attachment.

Preferably, the drive means is a drilling unit such as a hand held electric drill, pneumatic drill or hydraulic drill or the like.

The drive means maybe coupled to the drive shaft by

threaded coupling means, for example. Preferably, the

drive means comprises a male threaded portion which

engages a female threaded portion provided on the drive

shaft.

Alternatively, the drive means may be coupled to the drive shaft via an adapter, one end of which adapter may comprise a male threaded portion for coupling to the drive shaft, and the opposite end may comprise a pin adapted to be received in a chuck of the drive means, such as a three jaw Jacobs chuck or an SDS chuck, for example.

These and other aspects of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is perspective view of a drill attachment 25 for use in wet and dry drilling operations in accordance

with one embodiment of one aspect of the present invention;

Figure 2 is a sectional perspective view of the drill attachment of Figure 1;

Figure 3 is a sectional perspective view of the drill attachment of Figure 1 used in a dry drilling operation;

Figure 4 is a sectional perspective view of the drill attachment of Figure 1 used in a wet drilling operation;

Figures 5 to 8 show sectional perspective views of the drill attachment of Figure 1 in alternative dry drilling arrangements;

Figures 9 to 11 show sectional perspective views of the drill attachment of Figure 1 in alternative wet drilling arrangements;

Figure 12 is an enlarged view of one end of the drill attachment;

Figure 13 is an enlarged view of another end of the 20 drill attachment;

Figures 14 and 15 are perspective views showing details of a collar portion of the drill attachment; and

Figures 16 and 17 are alternative cross-sectional views of a drill attachment for use in wet and dry drilling operations in accordance with another aspect of the present invention.

Reference is first made to Figure 1 in which there is shown a perspective view of a drill attachment 10 for in dry and wet drilling operations. attachment comprises a housing 12 having a first fluid 5 conduit 14 adapted for connecting to a suction device (not shown) and a second fluid conduit 16 adapted for connecting to a fluid supply (not shown). The drill attachment also comprises a drive shaft 18 rotatably mounted within the housing 12, the drive shaft being adapted for transmitting rotary motion from a drill unit to a tubular cutting member.

10

Reference is now made to Figure 2 in which there is sectional perspective view of the drill attachment 10 shown in Figure 1. As noted above, the drill attachment 10 comprises a housing 12 within which a 15 drive shaft 18 is rotatably mounted via bearings 20. The drive shaft 18 is retained within the housing 12 of the drill attachment via a circlip 21. The drive shaft 18 has fluid transmitting first and second ends 22, 24 which are in fluid communication with the respective 20 first and second fluid conduits 14, 16, said first end 22 being adapted for coupling to one of a tubular cutting member and a drive means such as a drill unit and the second end 24 being adapted for coupling to the other of the tubular cutting member and the drive means.

The drive shaft 18 comprises a first axial bore 26 which extends partially through the drive shaft from the first end 22 thereof, and terminates at a point 28 within the drive shaft. The drive shaft additionally comprises a first diametric bore 30 which extends through the drive shaft and merges with the first axial bore 26 in the region of the terminating end 28 of the first axial bore. Thus, fluid communication between the first end 22 of the drive shaft 18 and the first fluid conduit 14 is achieved via the first axial and diametric bores 26, 30 in the drive shaft 18.

Similarly, the drive shaft 18 also comprises second axial bore 32 which extends from the second end 24 thereof, and terminates at a point 34 within the drive shaft. Also provided is a second diametric bore 36 which extends through the drive shaft 18 and merges with the axial the second terminating end 34 of Accordingly, fluid communication between the second end 24 of the drive shaft 18 and the second fluid conduit 16 (Figure 1) is achieved via the second axial and diametric bores 32, 36 in the drive shaft.

15

20

The drill attachment 10 shown in Figure 2 also comprises an annular chamber 38 which is open at one end 39, which chamber 38 is in selective fluid communication with the first fluid conduit 14 by way of a collar 40 slidably mounted on the inner surface of the housing 12.

The collar 40 is moveable in an axial direction from a first position, as shown in Figure 2, where a fluid path between the chamber and the first fluid conduit 14 is closed, and a second position where a fluid path is opened. When the collar 40 is located in a first position, the end of the collar 40 abuts a side face of a ring 42 mounted on the drive shaft.

The chamber 38 is used for dust extraction when larger diameter tubular cutting members are used, wherein the collar 40 is moved to a second position to open a fluid path between the chamber 38 and the first fluid conduit 14, allowing dust to extracted from the bore of a tubular cutting member, into the chamber 38 via annular opening 39, and through the first fluid conduit 14. The use of the chamber 38 for dust extraction with larger diameter cutting members will be discussed in more detail below.

As shown in Figure 3, when a drilling operation is required to be undertaken with dust extraction, a drill unit (not shown) is coupled to the second end 24 of the drive shaft 18 via an adapter 44, a tubular cutting member 46 is coupled to the first end 22 of the drive shaft 18, and a suction device (not shown) is connected to the first fluid conduit 14. In the embodiment shown, the cutting member 46 is coupled to the first end 22 of the drive shaft 18 via a shank portion 50 which comprises

a male threaded portion 52 which is received within a female threaded portion 54 provided in the first end 22 of the drive shaft 18. As shown, the shank portion 50 is formed integrally with the tubular cutting member 46 and comprises a throughbore 56. Thus, dust produced while drilling may be extracted from the bore 48 of a cutting member, through the throughbore 56 in the shank portion 50, through the bores 26, 30 in the drive shaft 18, and through the first fluid conduit 14.

When dust extraction is undertaken using a smaller diameter cutting member 46 as shown in Figure 3, the collar 40 is located in its first position in order to close a fluid path between the annulus 38 and the first fluid conduit 14 in order to prevent extracted dust to escape into the atmosphere through the annular opening 39.

A wet drilling arrangement will now be described with reference to Figure 4 in which there is shown a further sectional perspective view of the Where a wet drilling operation 20 attachment 10. required to be undertaken, the drill unit (not shown) is coupled to the first end 24 of the drive shaft via an adapter 44 and the tubular cutting member 46 is coupled to the second end 24, wherein the male threaded portion 52 on the shank portion 50 is received within a female 25 threaded portion 58 provided in the second end 24 of the

drive shaft. A drilling fluid supply, such as a water supply, is coupled to the second fluid conduit 16 (Figure 1) and fluid is transmitted through the second fluid conduit 16, through the bores 32, 36 in the drive shaft 18, through the throughbore 56 of the shank portion 50, and into the bore 48 of the tubular cutting member 46.

In order to prevent leakage of drilling fluid from the drill attachment 10, fluid seals 60 are provided on either side of the second diametric bore 36 of the drive shaft.

10

Reference is now made to Figure 5 in which there is a sectional perspective view of the drill attachment 10 when used in a dry drilling operation with a larger diameter tubular cutting member 62. As before, the cutting member 62 is coupled to the first end 22 of 15 the drive shaft 18 via a shank portion 50 having a In this instance, the tubular cutting throughbore 56. member 62 comprises a plurality of extraction apertures thereof, through which extraction base 64 in the apertures 64 dust may additionally be extracted from the 20 bore 66 of the cutting member 62.

In the same way as discussed above, a suction device (not shown) is connected to the first fluid conduit 14 and dust is extracted from the bore 66 of the cutting member 62 through the throughbore 56 in the shank portion 50, through the bores 26, 30 in the drive shaft 18, and

through the first fluid conduit 14. However, dust is also extracted through the fluid conduit 14 via the chamber 38. This is achieved by extending the collar 40 from the housing 12 towards the base of the cutting member 62 such that the collar 40 is located in a second position wherein a fluid path between the chamber 38 and the first fluid conduit 14 is opened. When extended, the collar provides an encased path through which dust extracted through the extraction apertures 64 in the base of the cutting member 62 may pass into the chamber 38, substantially minimising the leakage of dust particles into the atmosphere.

An alternative arrangement is shown in Figure 6 of the drawings wherein the drill attachment 10 is shown in a dry drilling arrangement with a large diameter cutting member 68 coupled thereto. The cutting member 68 is coupled to the first end 22 of the drive shaft 18 via two adapters, a cutting member adapter 70 and a coupling adapter 72. The cutting member 68 is mounted on the cutting member adapter 70 via a bayonet type fitting 74, and the cutting member adapter 70 is coupled to the drive shaft 18 via the coupling adapter 72.

15

20

As shown in Figure 6, the cutting member adapter 70 comprises a central bore 76 having a female threaded 25 portion 78 for coupling to the coupling adapter 72. Additionally, the cutting member adapter 70 comprises a

plurality of extract apertures 80 through which dust may be extracted from the bore 82 of the cutting member 68.

The coupling member 72 comprises a male threaded portion 84 on either end thereof, the male threaded portions 84 for coupling to the female threaded portion 78 in the cutting member adapter 70 and the female threaded portion 54 in the first end 22 of the drive shaft 18. Additionally, the coupling adapter 72 comprises a throughbore 86 through which dust may be transmitted from the bore 82 of the cutting member 68 to the first fluid conduit 14 via the bores 26, 30 in the drive shaft 18.

In use, a suction device (not shown) is connected to the first fluid conduit 14 and the collar 40 is moved towards the cutting member adapter 70 in order to open the fluid path between the fluid conduit 14 and the chamber 38 and to provide an encased path through which dust extracted from the bore 82 of the cutting member 68 via the extraction apertures 80 may pass. Additionally, a drive unit (not shown) is coupled to the second end 24 of the drive shaft via adapter 44.

20

Reference is now made to Figure 7 in which there is shown an arrangement of the present invention for use in drilling into relatively thick walls or the like when dust extraction is required. A cutting member 88 having a bore 90 is coupled to the first end 22 of the drive

extension portion 92 which via an shaft throughbore 94 for transmitting dust therethrough and comprises threaded portions 96 at either end thereof for coupling to the cutting member 88 and the drive shaft 18. As shown in Figure 7, the cutting member 88 is coupled to the extension portion 92 and the extension portion 92 is coupled to the drive shaft 18 via a male-to-female thread It should be noted that said extension adapters 98. extension adapters 98 are only required in this instance due to the presence of a tubular member 100, which is 10 more clearly shown in Figure 8. The tubular member 100 provides an annular path 102 through which dust may pass from the bore 90 of the cutting member 88 via extraction apertures 104 and into the chamber 38 in the drill

In order to allow transmission of dust from the annular path 102 into the chamber 38 in the drill attachment 10, the tubular member 100 comprises a plurality of apertures 106 in the base thereof adjacent the annular opening 39 in the drill attachment.

attachment 10, and subsequently through the fluid conduit

15

20

25

14.

Referring to Figure 9, the drill attachment 10 is shown for use in wet drilling wherein thick wall portions or the like are to be drilled. A tubular cutting member 110 is coupled to the second end 24 of the drive shaft 18 via an extension portion 112 which has a throughbore 114

for transmitting fluid therethrough and comprises threaded portions 116, 118 at either end thereof for coupling to the drive shaft 18 and the cutting member 110 respectively.

The extension portion 112 is more clearly seen in Figure 10 where it is shown that threaded portion 116 is a male threaded portion which couples to the female threaded portion 58 of the second end 24 of the drive shaft, and threaded portion 118 is a female threaded portion which receives a male threaded portion 52 provided on a shank portion 50 of the cutting member 110.

Thus, where wet drilling is to be undertaken with the use of an extension member 112, a fluid supply is connected to the second fluid conduit 16 (Figure 1) and fluid is transmitted through the fluid conduit 116, through the bores 32, 36 in the drive shaft 18, through the throughbore 114 in the extension member 112, through the throughbore 56 in the shank portion 50, and into the bore 120 of the cutting member 110.

20 A similar arrangement as that shown in Figure 9 and 10 is shown in Figure 11 in which a larger diameter tubular cutting member 122 is coupled to the second end 24 of the drive shaft 18. In the embodiment shown, the cutting member is coupled to the drill attachment via an extension portion 112. However, it should be noted that

the cutting member 122 may be coupled directly to the drive shaft 18 of the drill attachment 10.

The cutting member shown in Figure 122 comprises extract apertures 124 in the base thereof which have been 5 blocked by plugs 126 to prevent drilling fluid from pouring from the bore 128 of the cutting member. The provision of such plugs 126 allows cutting members, such as those shown in Figures 5 and 6, to be used in both dry and wet drilling operations, eliminating the requirement for drills dedicated to only one type of drilling.

Reference is now made to Figure 12 in which there is shown an enlarged view of the first end 22 of the drive shaft 18 of the drill attachment 10. A pilot drill 130 is shown mounted within the first axial bore 26 of the drive shaft 18. The pilot drill 130 is secured within the first axial bore 26 by two grub screws 132 which extends radially through the drive shaft 18 and grip a portion of reduced diameter 134 on the pilot drill 130. Access to said grub screws is achieved through the first fluid conduit 14 in the housing 12 of the drill attachment 10.

Referring now to Figure 13, there is shown an expanded view of the second end 24 of the drive shaft 18, upon which second end 24 there is provided means for preventing the drive shaft 18 from rotating when a tubular cutting member is coupled thereto. Such rotation

prevention means are in the form of diametrically opposed land portions 136 located on the drive shaft 18 at the second end 24 thereof, said land portions 136 providing gripping means for a tool to restrain the drive shaft 18 from rotational motion. The land portions 136 may be adapted to be gripped by an open mouthed wrench or an adjustable pipe wrench, or the like.

5

10

15

Various features of the collar 40 of the drill attachment 10 will now be described with reference to Figure 14 and 15. Referring initially to Figure 14A, the comprises a number of axially arranged 40 circumferential depressions 300, which depressions receive an inwardly extending lip 302 provided on the housing 12 of the drill attachment 10. A more detailed view is shown in Figure 14B. The purpose of circumferential depressions 300 and the lip 302 is to retain the collar 40 in the desired position such that the collar 40 cannot inadvertently be pushed back into the housing 12 during a drilling operation, at least not 20 without considerable force being applied. Additionally, the presence of the depressions 300 enables the collar 40 to be retained in a range of extended locations in order to accommodate various sizes of tubular cutting members

Referring now to Figures 15A and 15B, the collar 40 includes a plurality of protruding portions 304 which 25 abut the base of a large tubular cutting member during a

dry drilling operation in order that wear is restricted to the protruding portions 304 and not the face 306 of the collar 40.

An alternative embodiment of the present invention will now be described, initially with reference to Figure A drill attachment 200 for use in wet and dry drilling operations is shown, which drill attachment 200 comprises a housing 202 defining a fluid conduit 204 and a drive shaft 206 rotatably mounted within said housing The drive shaft 206 comprises a fluid transmitting 10 202. end portion 208 for coupling to a tubular cutting member, and a drive end portion 210 for coupling to a drill unit said drive shaft (not shown), 206 adapted for transmitting rotary motion from the drill unit to the tubular cutting member. The fluid transmitting end 15 208 of the drive shaft 206 is communication with the fluid conduit 204 via an annular chamber 212 defined between the housing and the drive The annular chamber 212 has an opening 214 shaft. located at the end of the housing 202 adjacent the fluid 20 transmitting end 208 of the drive shaft 206, said opening of the annular chamber being in selective fluid communication with the fluid conduit 204.

Selective fluid communication between the opening 25 214 of the annular chamber 212 and the fluid conduit 204 is achieved by way of an annular body 216 mounted within

said opening 214, said annular body 216 comprising a plurality of fluid apertures 218 which are selectively opened and closed by use of an annular plate 220 rotatably mounted within the housing 202. The annular plate 220 has corresponding fluid apertures 222 which are aligned with those of the annular body 216 to provide fluid communication between the opening 214 and the fluid conduit 204, but which are misaligned with the apertures 218 of the annular body 216 in order to close said apertures 218, and thus prevent fluid communication.

Fluid communication between the fluid transmitting end 208 and the fluid conduit 204 via the chamber 212 is accomplished via an axial bore 224 in the drive shaft which extends from the fluid transmitting end 208, and a diametric bore 226 which extends through the drive shaft 206 and merges with the axial bore 224.

Thus, during a dry drilling operation, dust may be extracted from the bore of a tubular cutting member, through the bores 224, 226 in the drive shaft 206, into the annular chamber 212, and through the fluid conduit 204, to which a suction device (not shown) is attached. Additionally, during a dry drilling operation using a large diameter cutting member 227, dust may be extracted from the bore of the cutting member through the opening in 214 of the chamber 212, into the chamber 212, and through the fluid conduit 204. This arrangement is

possible when the apertures 218, 220 of the annular body 216 and annular body 220 are aligned, as shown in Figure 16.

However, during dry drilling with small diameter 5. cutting members, the apertures 218, 222 of the annular body and plate 216, 220 are misaligned, as shown in Figure 17, such that dust extracted from the bore of a cutting member 228 through the bores 224, 226 of the drive shaft 206 will not escape through the opening 214 of the chamber 212.

Additionally, during a wet drilling operation, the apertures 218, 222 of the annular body and plate 216, 220 respectively are misaligned so that drilling fluid supplied from an external fluid supply into the chamber 212 will not escape through the opening 214 in the chamber 212.

15

should be understood that embodiments the hereinbefore described are merely exemplary of the present invention and various modifications may be made 20 thereto without departing from the scope of the For example, in the embodiment shown Figures 1 to 15, each end 22, 24 of the drive shaft 18 may be adapted for transmitting both dust and drilling Additionally, the drill unit may be directly fluid. coupled to the required end of the drive shaft without the requirement for an adapter.

50-DRY ASSEMBLY

FIGURE S

III DANKA.

Fleure 7

1 GURE O

FIGURE 12

FIGURE 13

FIGURE 14B

FIGURE 15 A

FIGURE 15B

FIGURE 16

Mange 17