Fiche méthode: Nombres et intervalle

Différents nombres

Symbole:

- € se lit « appartient à ». ∉ se lit « n'appartient pas à »
- ⊆ se lit « est inclus dans »
- ⊄ se lit « n'est pas inclus dans »
- \mathbb{R}^* est l'ensemble \mathbb{R} privé de zéro. (et de même N*...)
- \mathbb{R}_+ est l'ensemble des réels positifs (avec le zéro). R^{*} est l'ensemble des réels strictement positifs.
- R_ est l'ensemble des réels négatifs (avec le zéro)
- \mathbb{R}_{-}^{*} est l'ensemble des réels strictement négatifs.
- Ø signifie « ensemble vide »

Application 1 : Compléter par \in ou \notin .

Application 2:

Compléter par ∈ ou ∉ puis donner la forme décimale si elle existe, ou une valeur approchée au centième près.

- $\frac{1}{2} \in \mathbb{D} \operatorname{car} \frac{1}{2} = \frac{5}{10} = 0.5$
- $\frac{1}{2} \notin \mathbb{D}$ caravec 3 on ne peut pas obtenir une puissance de 10
- $\frac{1}{5} \in \mathbb{D} \operatorname{car} \frac{1}{5} = \frac{2}{10} = 0.2$
- $\frac{3}{5} \in \mathbb{D} \operatorname{car} \frac{3}{5} = \frac{6}{10} = 0.6$
- $\frac{1}{8} \in \mathbb{D} \operatorname{car} \frac{1}{8} = \frac{125}{1000} = 0,125$
- $\frac{2}{3} \notin \mathbb{D}$ caravec 3 on ne peut pas obtenir une puissance de 10
- $\frac{1}{6} \notin \mathbb{D}$ car avec 6 on ne peut pas obtenir une puissance de 10

Application 3:

Mettre une croix dans chaque case correspondant aux ensembles auxquels le nombre appartient.

Entiers naturels :

Les entiers naturels sont les nombres

0, 1, 2, 3, ... 100, etc.

L'ensemble des entiers naturels (ou entiers positifs ou nuls) est noté N.

Exemple: 2:28:150 233 sont des entiers naturels.

Entiers relatifs:

Les entiers relatifs sont les nombres :

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$$

L'ensemble des **entiers relatifs** est donc formé des entiers naturels (positifs)et leurs opposés il est noté \mathbb{Z} .

Nombres décimaux :

Soit p un entier relatif et n un entier naturel. Les **nombres décimaux** sont des nombres de la forme :

$$\frac{P}{10^n}$$

L'ensemble des **nombres décimaux** est noté \mathbb{D} .

Exemples:

2,28 est un nombre décimal car : 2,28 = $\frac{228}{100}$ = $\frac{228}{10^2}$ est un nombre décimal aussi car : $\frac{2}{5}$ = $\frac{4}{10}$

 $\frac{1}{2} \approx 0,33333 \dots$ n'est pas un nombre décimal.

Remarque: On peut voir les nombres décimaux comme des nombres « à virgule » avec un nombre fini de chiffres après la virgule.

Nombres rationnels:

Soit p un entier relatif et q un entier naturel non nul. Les nombres rationnels sont des nombres de la forme $\frac{p}{z}$:

L'ensemble des **nombres rationnels** est noté Q.

Exemples: $\frac{1}{2}$; $-\frac{4}{7}$; $\frac{2}{10}$ sont des nombres rationnels.

Nombres réels :

L'ensemble des abscisses des points d'une droite graduée est appelé l'ensemble des nombres réels que

Remarque: L'ensemble des nombres réels est l'ensemble des nombres que l'on utilise.

Nombres irrationnels:

Un nombre réel qui n'est pas rationnel est dit irrationnel.

Exemples: π , $\sqrt{2}$, $\sqrt{3}$... ne sont pas rationnels.

On a $\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{O} \subset \mathbb{R}$

Intervalles

Comparaison	Représentation	Traduction	Autrement dit :	Intervalle
$a \le x \le b$	a 6	x est compris entre a et b	Tous les nombres sont entre a et b (que l'on prend)	[a;b]
$a \le x < b$	a b	x est compris entre a et b (exclu)	Tous les nombres sont entre a (que l'on prend) et b (exclu)	[a; b[
$a < x \le b$	a b	x est compris entre a (exclu) et b	Tous les nombres sont entre a (exclu) et b]a;b]
a < x < b	a b	x est compris entre a (exclu) et b (exclu)	Tous les nombres sont entre a (exclu) et b (exclu)]a; b[
$x \leq b$		x est inférieur ou égal à b	Tous les nombres sont à gauche de <i>b</i> sur la droite.] - ∞; b]
<i>x</i> < <i>b</i>	- b	x est strictement inférieur à b	Tous les nombres sont à gauche de <i>b</i> (exclu) sur la droite.] - ∞ ; b[
$x \ge a$	a [x est supérieur ou égal à a	Tous les nombres sont à droite de a sur la droite.	[<i>a</i> ;+∞[
x > a	a]	x est strictement supérieur à a	Tous les nombres sont à droite de a (exclu) sur la droite.] <i>a</i> ; +∞[

- $x \ge 0$ signifie: Tous les nombres sont positifs x > 0 signifie: Tous les nombres sont strictement positifs
- $x \le 0$ signifie: Tous les nombres sont négatifs x < 0 signifie: Tous les nombres sont strictement négatifs

Intersection et réunion d'intervalles :

L'intersection de deux intervalles I et I est l'ensemble des réels appartenant à I et à I. On le note : $I \cap I$ La réunion de deux intervalles I et I est l'ensemble des réels appartenant à I ou à I. On le note : $I \cup I$

Méthode:

- Pour obtenir l'intersection de deux intervalles : on trace les représentations sur une droite (non graduée) des intervalles avec une couleur différente. L'intersection sera alors quand les deux couleurs se chevauchent.
- Pour obtenir la réunion de deux intervalles : on trace les représentations sur une droite (non graduée) des intervalles avec une couleur différente. La réunion sera alors quand on a au moins une couleur.

Application 4 : Compléter le tableau suivant :

I	J	$I \cup J$	$I \cap J$	Représentation :
$[-4; 3]$ $-4 \le x \le 3$	[1; 5] $1 \le x \le 5$	[-4;5]	[1;3]	-4 1 3 5
$]-\infty; 2[$ $x<2$	$[-4; +\infty[$ $x \ge -4$	$]-\infty;+\infty[=\mathbb{R}$	[-4;2[-4 2
$]-\infty;7]$ $x\leq 2$	$[7; +\infty[$ $x \ge 7$	$]-\infty;+\infty[=\mathbb{R}$	{7 }	7
$[-3; +\infty[$ $x \ge -3$	$] - \infty; -3[$ $x < -3$	$]-\infty;-3$ [U [$-3;+\infty$ [Ø	-3

III. Valeur arondie

Application 5 : On prend le nombre D = 3,1415926535

a) Donner un encadrement de D au centième

 $3.14 \le D \le 3.15$

b) Donner un encadrement de D à l'unité.

 $3 \le D \le 4$

c) Donner un encadrement de D à 10^{-4} .

 $3,1415 \le D \le 3,1416$

d) Donner la valeur arrondie de D au centième.

 $D \approx 3.14$ car le 3^{ème} chiffre après la virgule est $1 \leq 4$

e) Donner la valeur arrondie de D à 10^{-4} près .

 $D \approx 3,1416$ car le 5^{ème} chiffre après la virgule est 9 > 5

Pour arrondir:

Cela consiste, pour un nombre positif, à regarder le chiffre qui suit le dernier chiffre retenu.

- si ce chiffre suivant est 0, 1, 2, 3 ou 4, on ne retient que les chiffres précédents sans les modifier.
- si ce chiffre suivant est 5, 6, 7, 8 ou 9, on retient les chiffres précédents en augmentant d'une unité le dernier chiffre.