Spiking Neural Nexworks (SNN)
Pross event-driven Low-powered
Cons: thard to train complex dynamics of neurons I non-differentiable spike sperak
Information 655 (under/over-activation problem)
SNN: Mimic how information is excoded and processed in the human brain by employing spiking neurons as computation units.
4DNN [270]: (DNN) a real value (continuous) transmit info
(SNIN) precise timing (temporal a sories of spikes Spike of spike trains to convey information trains between neurons Spikes (discrete)
Temporal Aspects in Information Transmission

Event-driven Computation: the spiking neurons
integrate inputs into a Membrane potential when
Spikes are received and generate (five) spikes
When the membrane potential reaches a certain
threshold, 1/2 ofter
DNN-to-SNN:
DNN Import Pre-trained Parameters
input to threshold Mean voltage
Mean
Vinearij (t) = Vinearij (t-1) + Zi(t) - Vilipi (t) Spike input of
integrated value input of Spike

/ Unit Step function

$$\frac{\sum_{j}^{l}(t)}{\sum_{i}^{l}(t)} = \frac{\sum_{i}^{l} W_{i,j} \Theta_{i}^{l-l}(t) + b_{j}^{l}}{\sum_{i}^{l}(t)}$$

Firing rate: N

N: total number of spikes

T: given time step T

Layer Norm:

$$\tilde{\mathcal{N}} = \mathcal{N} \frac{\lambda^{17}}{\lambda^{1}}$$

$$\mathcal{L} = \frac{\mathcal{L}}{\lambda}$$

λ :	Maximun	activation	ns calculated	From
	the tr	aining set	· (in layer	e l 1