Brief Announcement: Highly Dynamic and Fully Distributed Data Structures

John Augustine

augustine@cse.iitm.ac.in

Antonio Cruciani

antonio.cruciani@aalto.fi

Iqra Altaf Gillani

iqraaltaf@nitsri.ac.in

Peer to Peer Networks

Prevailing Definition: A network of peers, ideally fully decentralized

Key Challenges:

Highly dynamic
High churn

Underlying Internet (Complete Connectivity)

Model: Dynamic Network with Churn (DNC)

Synchronous: All nodes follows the same clock. In each round $r = 1, 2, 3, \ldots$

- each node sends/receives polylog(n) messages per round
- the message size is polylog(n)
- nodes perform local computations

Adversarial Dynamism:

An **oblivious** adversary (knows the algorithm but not the coin toss outcomes) designs the churn

$$\mathcal{G} = \left(G^0, G^1, \dots, G^r, \dots\right)$$

Our Problem

Goal: Given a churn rate of up to $\mathcal{O}(n/\log n)$ per round, maintain a distributed approximate data structure efficiently

Data Structure: Skip List

Dynamic Resource Competitiveness

$$\underbrace{\#CreatedEdges + \#Messages}_{Workload} \leq \beta \cdot Churn(t_{start} - \alpha, t_{end})$$

$$\alpha = \mathcal{O}(\log n)$$

$$\beta = \mathsf{polylog}(n)$$

Overview of the maintenance phase

 $\mathcal{O}(\log n)$ rounds Bootstrap Phase

Algorithm initialization

Adversary wakes up

Churn rate of up to $\mathcal{O}(n/\log n)$ per round

Maintenance Phase

We need to cope with the churn

The Overlay Network

Commitee

Clique of $\Theta(\log n)$ random nodes

Nodes *periodically* change their committee (randomly)

Cannot be destroyed whp

SPARTAN : Overlay Network ([Augustine et al. J.P.D.C. 2021]

Overview of the results

Theorem 1 A distributed skip-list (or skip-graph) can be maintained against a churn rate of $\mathcal{O}(n/\log n)$.

Corollary 1 Each node can hold k = polylog(n) elements of the data structure.

Theorem 2 Any data structure \mathcal{D} that admits a T-rounds maintenance cycle can be maintained using our framework against a churn rate of $\mathcal{O}(n/T)$

Thank You

The Live and Clean Networks

Clean Network

Live Network

Covering for Churned Nodes

Clean Network

Live Network

Clean Network

Live Network

Clean Network

Buffer Network

Live Network

Clean Network

Live Network

Clean Network Update Phase $\mathcal{O}(1)$ Live Network

