

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC2233 - Programación Avanzada 1^{er} semestre 2017

Actividad 9

Simulación DES

Introducción

¡Sorpresa sorpresa! Un terremoto afectó la zona de Calle Larga, ubicada a 50 kilómetros de la base anti terremotos "Segurita". Producto de esto, los habitantes de Calle Larga optan por huir despavoridos hacia su salvación: Segurita. Lo contactan a Usted (sí, a Usted) para que simule la cantidad de personas que llegarán a la base.

El gran terremoto genera réplicas que ocurren según una distribución **EXPONENCIAL** a una tasa λ y su intensidad puede ser débil o fuerte. En cada simulación $\lambda = 1/\text{randint}(4, 10)$. La réplica tiene atributos, que dependerán de su intensidad. En el cuadro 1 se muestra la distribución de atributos según la intensidad de la réplica.

Intensidad	Débil	Fuerte
Probabilidad de ocurrencia	0.7	0.3
Probabilidad de no sobrevivir caminando	0.1	0.3
Probabilidad de no sobrevivir estando en un vehículo	0.15	0.6
Probabilidad de producir tsunami	0	0.7
Potencia del tsunami producido	0	randint(3, 8)

Cuadro 1: Cuadro de réplicas

Las réplicas pueden producir tsunamis y funcionan de la siguiente manera: tiene un centro que se puede ubicar en **cualquier punto** del camino y un alcance, equivalente a su $potencia \times 4$. La probabilidad de que las personas no sobrevivan al tsunami dentro de un vehículo, como cuando están caminando es de $\frac{potencia}{10}$. Si ocurre un tsunami, éste ocurrirá inmediatamente después de la réplica que lo generó, y alcanza su ancho máximo de manera instantánea.

En Calle Larga viven 100 personas, donde cada una tiene una personalidad, una rapidez (aleatoria entre 5 y 8 distancia por unidad de tiempo) y la posición inicial de una persona está dada por randint (0, 60) km. También, hay 25 vehículos que tienen una rapidez (aleatoria entre 12 y 20 distancia por unidad de tiempo) y una capacidad que depende del tipo de vehículo: los autos pueden llevar 5 personas, y las camionetas 8. Los vehículos son repartidos aleatoriamente entre la población, parten solamente con el conductor y tienen la misma probabilidad de ser autos o camionetas. Un vehículo puede ir agregando gente una vez que se

encuentran con un caminante. Entonces, una vez ocurrida la réplica, un auto puede tanto parar como no para recoger a una persona.

Como se mencionó anteriormente las personas tienen distintas personalidades. Éstas pueden ser:

- **Generoso:** Si el conductor es generoso, la probabilidad de detenerse cuando se encuentra a un caminante es 0.6.
- Egoísta: Si un conductor es egoísta, la probabilidad de detenerse para recoger a un caminante es de 0.3.

Si el vehículo está lleno, la probabilidad de que se detenga es SIEMPRE 0.

La ejecución terminará cuando hayan pasado 200 unidades de tiempo o bien, ninguna persona quede en Calle $Larga^1$.

Para que su trabajo tenga sentido, deberá simular 10 ejecuciones, y al terminar, entregar las siguientes estadísticas **finales**:

- 1. Número de llegados a la base por tipo de vehículo.
- 2. Número de llegados a la base a pie.
- 3. Número de llegados a la base por personalidad.
- 4. Número de víctimas por tipo de Tsunami.
- 5. Número de víctimas por tipo de réplica.
- 6. Tiempo promedio de cada ejecución.

Requerimientos

Deberá ejecutar una simulación en base a los eventos de réplicas y tsunamis.

- Correcta identificación de clases y herencias. (1.5 pts)
- Modelar la simulación (2.4 pts)
 - Incluir distintas personalidades (0.75 pts)
 - Incluir distintos tipos de vehículos (0.5 pts)
 - Incluir réplicas y tsunamis (0.75 pts)
 - Ejecutar 10 simulaciones (0.4 pts)
- Generar estadísticas (2.10 pts)

IMPORTANTE

■ La simulación es de **eventos discretos**, por lo que si hace la simulación síncrona, no obtendrá puntaje.

 $^{^{1}\}mathrm{O}$ llegaron a la base o no sobrevivieron

Notas

- Las réplicas y tsunamis ocurren en un instante.
- El número de vehículos y personas es el mismo para las 10 simulaciones.
- La base se encuentra en el kilómetro 100.
- Si $posicion_del_tsunami \pm \frac{alcance_tsunami}{2} > posicion_de_la_persona$, se puede considerar que está seguro/a.
- Imprimir mensajes (print) que permitan conocer el estado de la simulación en la medida que ocurran los sucesos (eventos, un vehículo acepta recoger a una persona, una persona se sube al vehículo, etc.)

Entrega

■ Lugar: GIT - Carpeta: Actividades/AC09

■ **Hora:** 16:55