Design & Analysis of Algorithms

Tutorial - 7

Name > MOHAK KALA Section > D Class R.No. > 29 Univ. R. No. =) 2014727

Det is an algorithmic poradigm bot builds up a solution by adjoining smaller pieces together, always choosing the next piece that offers be most obvious and immediate benefit.

We should use greedy approach wherever a lossly optimal solution is also globally optimal

0	Name	! TC !	50
	Activity Selection	$O(n\log n) \longleftrightarrow O(n)$	0(1)
	Job Sequencing	$(0(n^2) \longleftrightarrow 0(n \log n))$	0(n)
	Fractional knapsock	O(n logn) con o(n)	0(n)
	Huffman Encoding !	0(n log n) (->0(logn)!	0(n)

(3) a=45, d=20, b=23, e=19, c= 22, f=15

= 364 bits

(9) A 2-tree is used to implement Huffman encoding algorithm. It is a binary tree where every rode has either 2 - Wild on no child.

Applications of Huffman Encoding =>

- · Pats compression is long files without any loss.
- · To implement troffic roots with traffic margitude

Ans-5

			The Wardy					_
1	V	10	5	15	7	6	18	3
1	W	2	3	5	7	1	4	1
1	V/w	5	1-67	3	1	6	4-5	3
1	100							

k = 15-1-2-4-5-1-2 = 0 Profit = 30 + 10 + 18 + 15 + 3 + 3 - 34 = 79-34

V	6	10	18	15	3	5
W	1	2	4	5	1	3
V/w	6	5	4-5	3	3	1.67

Ans-6 Fractional knapsock: It is awing a greedy approach as we have divided our profits to the smallest writ possible & then builds upon it.

Huffman Encoding: It is using the greedy approach as we have divided our profits to the smallest wit possible & ther builds upon it.

Huffman Encoding: It is using the greety approach as it always places the node with the lower brequercy further from the parent node.

Ans - 8

	Profit	Deodlire	
a	20	2	
Ь	15	2	0 1 2
C	10	1	b a d
d	5	3	
e	1	3	Probit = 20+15+5
1			=40

Ans-9 Times when not to use greedy approach

- when the approach involves a lot of consumptions, a such as "pick always the -----'
- · We should avoid greedy approach on complex implemental
- · When we are making performance critical applications.

Eg =) Dijkstra's algorithm is very unoptimized for graphs with negative at edges.

We can't first the distance of the pair [n, c] - it gives 0, Hough it is -200

Ars-10 Normally, the line complexity of Job sequencing is O(n2) but we car improve it using a Priority Queue, made of Max Mesp.

Algorithm :-

1. Sort the job based on desdlines

2. Iterste be erd & colculate be available slots b/w 2 consecutive deadlines include all data in Max-Heap

3. If vere are stots available & Here was jobs is the max heap, include the job ID with max profit & deadlines in the result.

Sort the array based on deadlines Time Complexity =) O (n log (n)) Space Complexity => 0 (n)