Predicting Kinase Selectivity Using Machine Learning

Challenge

Use a machine learning model to rank kinases based on their likelihood of being inhibited by a specific compound

Use results to predict selectivity profiles for the specific inhibitors

3

Aspects of the Challenge

- Large volume of kinase inhibitor combinations
- Many variables and data to consider Significant effects on inhibitor binding
 - Kinase mutations
 - Kinase Families
 - Kinase amino sequences
 - Inhibitor binding modes
 - Inhibitor SMILES strings
- Importance of selectivity score
 - Low S (closer to 0%)
 - High selectivity, selective inhibitor
 - High S (closer to 100%)
 - Low selectivity, broader effects,, might cause side effects
- Developing an appropriate machine learning model to compute the data effectively and produce accurate predictions

Task Strategy Options

Regression

- Predicting continuous numerical values (K_d)
- Provides exact constants
- Flexibility in choosing own threshold
- Easy to generate new data points for unknown inhibitors and kinases
- Useful for ranking

Classification

- Less sensitive to outliers
- Less ml model feature tuning needed
- Easy to interpret
- Reduced sensitivity to minor errors and fluctuations in data

Possible Strategy

Use both classification and regression to improve efficiency and accuracy

Classification

- Binary classification Affinity and No Affinity
 - Significant percentage of 10001 K_d values, consider as No Affinity

Regression

- Apply regression to set classified as having an affinity
- Predict K_d values

Model Selection

Model Options

- Random Forest
- XGBoost
- Neural Network
- LSTM
- Q-Learning
- Policy Gradient

Our Model - XGBoost

- High performance
- Fast
 - Low training time
- Feasible in given time
- Gradient Boosted Trees
- Useful and powerful for both classification and regression tasks

			Training	Feasibility in	Expected
Model	Pros	Cons	Time	24 Hours	Performance
Random Forest	Fast, easy, interpretable	No sequential modeling, may overfit	1-2 hours	High	Moderate
XGBoost	High performance, fast	No sequential modeling	1-2 hours	High	Moderate to High
Neural Network (MLP)	Captures complex patterns	Slower to train, needs tuning	3-5 hours	Medium	High (if tuned well)
LSTM	Models sequential dependencies	Slow to train, complex preprocessing	4-6 hours	Medium	High (if tuned well)
Q-Learning (DQN)	Optimizes for long- term reward	Slow, complex setup	6-8 hours	Low	High (if trained
Policy Gradient	Directly optimizes score	Very slow, unstable	8-12 hours	Low	High (if trained

Feature Matrix

Goal:

- Create a feature matrix with one entry for each kinase-inhibitor combination
- Features for kinases and inhibitors

Strategy

- Identify most significant pieces of data and variables that affect the affinity of kinases and inhibitors - Set as features (input)
- Use provided dissociation constants as output for model training
- Desired predictions are K_d values

Confidential

Copyright ©

Data Processing

Kinase Group

Kinase group likely to display characteristics, and similar inhibitor affinities

Processing

Label encoding

Kinase Amino Sequence

Protein sequence directly determines binding and dissociation constants

Processing

- ProteinBERT takes protein chain, applies deep learning, outputs NumPy array
- PCA reduces
 ProteinBERT array from 16000 features to 300, while preserving 100% variability

Kinase Mutations

Mutations can directly affect binding sites. Also allosteric changes, hydrophobicity, electrostatic change, etc.

Processing

Label encoding

Data Processing

Inhibitor Binding Moes

Type 1 vs Type 2: Bind to ATP-binding site in active DFG-in conformation vs Bind to inactive DFG-out conformation of kinases. Affect affinity especially in conjunction with mutations.

Processing

Label Encoding

Inhibitor SMILES strings

Chemical structure important for finding patterns that might affect affinity with kinases.

Processing

 RDKit takes SMILES strings as input and generaties corresponding molecular fingerprints that can be processed by a machine learning model

Results

Regression

Evaluating the best depth for the tree on the Training data

Final Test MAE: 2194.18 nM

Final Test MAE: 1761.68 nM

Classification

Classification on testing data withheld from the training set Test Accuracy: 77.02% Classification Report: precision recall f1-score support 0.65 0.46 0.54 1164 0.80 0.90 0.85 2814 0.77 3978 accuracy 0.73 0.68 0.69 3978 macro avg weighted avg 0.77 0.76 0.76 3978

Regression

Regression results after excluding data points of uncorrelated data

Best max_depth: 2 with Validation MAE: 1354.64


```
Final Test MAE: 1175.68 nM
[1209.6311 125.54259 461.14877 9.014175 1389.2921 ]
[[3.5e+03]
[4.7e+02]
[2.4e+00]
[4.7e+03]]
```

Results on 12 withheld inhibitors

```
X_test shape: (5304, 559)
Binary Classification Accuracy: 60.84%
Classification Report:
              precision
                            recall f1-score
                                               support
           0
                   0.35
                              0.23
                                        0.28
                                                   1744
                   0.68
                              0.80
                                        0.73
                                                   3560
                                        0.61
                                                  5304
    accuracy
   macro avg
                   0.51
                              0.51
                                        0.50
                                                  5304
weighted avg
                   0.57
                              0.61
                                        0.58
                                                  5304
```

Classification

Classification on testing data withheld from the training set Test Accuracy: 77.02% Classification Report: precision recall f1-score support 0.65 0.46 0.54 1164 0.80 0.90 0.85 2814 0.77 3978 accuracy 0.73 0.68 0.69 3978 macro avg weighted avg 0.77 0.76 0.76 3978

Result Validation

Evaluation Metrics

We decided to use MAE to calculate the $\rm K_d$ accuracy. As our end predictions are the exact $\rm K_d$, MAE was the most appropriate method to evaluate our methods.

We decided to use accuracy, precision, recall, and F1 to evaluate accuracy of the classification model.

Conclusions

- Initially, our goal was to build a classification model that could predict whether a kinase-inhibitor interaction had a dissociation constant (Kd) below or above 3000 nM. However, after evaluating the model's performance, we found that it struggled to make accurate predictions in this range.
- Specifically, we treated compounds with a recorded Kd of 100001 nM (which signifies no detectable binding) as one class and those with measurable affinity as the other. This binary approach significantly improved model performance, making it easier to distinguish between compounds that bind and those that do not (although the results were still not good)
- We noticed that the regression model that included all data performed better than the one that got rid of uncorrelated data