Ejercicio 4

Parte a

El problema de optimización equivalente con la variable de slack t es

$$\begin{aligned} & \min_{(\mathbf{p}, \mathbf{g}, \mathbf{t})} g_1 + t \\ & \text{sujeto a: } p_1 + p_3 - g_1 = 0 & (\lambda_1) \\ & p_2 + p_3 + g_2 = d_2 & (\lambda_2) \\ & p_1 - p_2 = d_3 & (\lambda_3) \\ & p_1 + p_2 - p_3 = 0 & (\nu) \\ & p_2 \leq R & (\mu_1) \\ & - p_2 \leq R & (\mu_2) \\ & g_1 \geq 0 & (\mu_3) \\ & g_2 \geq 0 & (\mu_4) \\ & t \geq \max\{0, 4(g_2 - 40MW)\} & (\mu_t) \end{aligned}$$

Notar que la ultima restricción se puede dividir en 2 restricciones. De esta forma el problema a resolver por computadora es

$$\begin{aligned} & \underset{(\mathbf{p}, \mathbf{g}, \mathbf{t})}{\min} \ g_1 + t \\ & \text{sujeto a:} \ p_1 + p3 - g_1 = 0 & (\lambda_1) \\ & p_2 + p3 + g_2 = d_2 & (\lambda_2) \\ & p_1 - p_2 = d_3 & (\lambda_3) \\ & p_1 + p_2 - p3 = 0 & (\nu) \\ & p_2 \leq R & (\mu_1) \\ & - p_2 \leq R & (\mu_2) \\ & g_1 \geq 0 & (\mu_3) \\ & g_2 \geq 0 & (\mu_4) \\ & t \geq 0 & (\mu_5) \\ & t \geq 4(g_2 - 40MW) & (\mu_6) \end{aligned}$$

Parte b

Para esta parte se fijan los parámetros R y d_3 en:

$$\begin{cases} R = 30 \text{MW} \\ d_3 = 10 \text{MW} \end{cases}$$

Se resuelve el problema variando d_2 entre los enteros en el rango entre 0 y 205. Las gráficas que se obtienen se pueden ver en la Figura 1.

Figure 1: Gráficas de parámetros obtenidos en función de d_2

Lo primero a destacar es que se observan dos claros "quiebres" en las cuatro gráficas. Estos se dan en los valores correspondientes a $d_2=30MW$ y $d_2=140MW$. Los dos quiebres se corresponden a interpretaciones intuitivas de la realidad.

El primer quiebre se da debido a que mientras se consuman menos de 40MW el generador 2 es capaz de suministrar toda la potencia a costo 0, pero cuando se supera este valor el costo de generación de g_2 sera 4 por cada MW extra, mientras que el costo de g_1 es 1 por cada MW, siendo más barato encender el generador 1. El quiebre se da en $d_2 = 30$ ya $d_1 = 10MW$ y $d = d_1 + d_2 = 40MW$.

El segundo quiebre se debe a que por la linea de 2 a 3 puede pasar un máximo de $|p_2| < R = 30MW$, lo que lleva a que no es posible suministrar toda la potencia que se desee desde g_1 a d_2 (recordar que por la restricción $p_3 = p_1 + p_2$ tampoco se puede enviar directo desde g_1 a d_2 por p_3). Este quiebre es en $d_2 = 140MW$ ya que lleva a que por p_2 se lleven más de los 30MW permitidos, lo que lleva que se deba volver a encender el generador 1. Las explicaciones anteriores

se corresponden a interpretaciones intuitivas del problema en cuestión. Ahora analicemos numéricamente los resultados obtenidos para los multiplicadores, para esto se presentan las gráficas de λ_2 , λ_3 , μ_1 , μ_2 los cuales son de interés. Notar que bien se podría analizar, por ejemplo el valor obtenido de λ_1 , pero esto no tiene una interpretación clara de la realidad ya que implicaría relajar más la igualdad, que quiere decir que el consumo de potencia sea mayor a la generación, lo cual no es posible y por lo tanto se decide no analizar. En la Figura 2 se observa las gráficas mencionadas

Figure 2: Gráficas de parámetros obtenidos en función de d_2

Para interpretar las gráficas anteriores es útil el $Teorema\ de\ Sensibilidad\ (TdS)$. Mirando la grafica de μ_1 se observa que su valor es 0 hasta que se active su restriccion, cuando esto ocurre su valor salta a 9, lo que indica que (por el Tds) ante un incremento en dR en R, el costo se decrementara en 9dR. Es decir, podría ser de vital importancia aumentar la capacidad maxima de transmisión entre 2 y 3.

En tanto, en la grafica de μ_2 se ve que esta es siempre 0, por cuestiones

numericas algunos valores son cercanos a 2e - 8.

Para responder la pregunta de para que valores d_2 es conveniente ofrecer energia gratis en 3, es necesario mirar la grafica de λ_3 .

- En esta se observa que en un principio $\lambda_3 = 0$, lo que implica que al modificar d_3 el costo no se vera afectado, esto se debe a que aun puedo continuar entregando potencia a costo 0 desde g_1 .
- Luego $\lambda_3 = -1$, lo que lleva a que aumentos en d_3 produzcan un aumento en el costo.
- Por ultimo, y mas importante, cuando d_2 es mayor a 140MW, se tiene que $\lambda_3 = 2$; esto quiere decir que si aumentamos d_3 el costo disminuye! Siendo esto absolutamente contra intuitivo.

Lo anterior se puede explicar debido a que cuando en d_2 se solicita mucha potencia lo más conveniente seria que la suministrase el generador 1, pero esto no es posible por la restricción $|p_2| < R$. Sin embargo, si hacemos que d_3 consuma potencia, el valor de p_2 disminuirá cumpliendo así la restricción; y a pesar de disminuir p_2 se puede suministrar suficiente potencia por p_3 como para que sea más económico regalar energía a 3 que prender el generador 2.

Por completitud, se añadió la gráfica de $\lambda_2(d_2)$, que indica que $\lambda_2 < 0$ para todo d_2 , indicando que siempre que se aumente el consumo en 2 se aumentara su costo. Además, esto se puede corroborar en la Figura 3.

Figure 3: Costo óptimo al variar d_2 y demás parámetros fijos.