

MATHEMATICS TARGET IIT JEE

TRIGONOMETRIC EQUATION (PHASE-II)

THEORY AND EXERCISE BOOKLET

CONTENTS

S.NO.		TOPIC	PAGE NO.		
	▲ TUEODV W	VITH COLVED EXAMPLES	2 21		

JEE Syllabus :						
General solution o	lution of trigonometric equations.					

A. SOLUTION OF TRIGONOMETRIC EQUATIONS

A solution of trigonometric equation is the value of the unknown angle that satisfies the equation.

e.g. if
$$\sin \theta = \frac{1}{\sqrt{2}}$$
 $\Rightarrow \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}, \frac{11\pi}{4}, \dots$

Thus, the trigonometric equation may have infinite number of solutions (because of their periodic nature) and can be classified as : (1) Principal solution (2) General solution.

- (1) **Principal solutions**: The solutions of trigonometric equation which lie in the interval $[0, 2\pi)$ are called **principal solutions**.
- **Ex.1** Find the Principal solutions of the equation $\sin x = \frac{1}{2}$.

i.e.
$$\frac{\pi}{6}$$
 and $\frac{5\pi}{6}$ which lie in [0, 2π) and whose sine is $\frac{1}{2}$

- $\therefore \quad \text{Principal solutions of the equation sinx} = \frac{1}{2} \text{are } \frac{\pi}{6}, \frac{5\pi}{6}$
- (2) **General solution**: The expression involving an integer `n' which gives all solutions of a trigonometric equation is called **General solution**.

(a) If
$$\sin\theta = \sin\alpha \Rightarrow \theta = n\pi + (-1)^n\alpha$$
 where $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $n \in I$.

(b) If $\cos\theta = \cos\alpha \ \Rightarrow \ \theta = 2\,n\,\pi \ \pm \ \alpha$ where $\alpha \in [0\ ,\ \pi]$, $n \in I$.

(c) If
$$\tan\theta = \tan\alpha \Rightarrow \theta = n\pi + \alpha$$
 where $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $n \in I$.

- (d) If $\sin^2\theta = \sin^2\alpha \Rightarrow \theta = n\pi \pm \alpha$.
- (e) $\cos^2 \theta = \cos^2 \alpha \Rightarrow \theta = n \pi \pm \alpha$.
- (f) $\tan^2 \theta = \tan^2 \alpha \Rightarrow \theta = n\pi \pm \alpha$. [Note: α is called the principal angle]
- **Ex.2** Solve $\sec 2\theta = -\frac{2}{\sqrt{3}}$

$$\textbf{Sol.} \quad \sec 2\theta = - \quad \frac{2}{\sqrt{3}} \Rightarrow \cos 2\theta = -\frac{\sqrt{3}}{2} \Rightarrow \cos 2\theta = \cos \frac{5\pi}{6} \Rightarrow 2\theta = 2n\pi \pm \frac{5\pi}{6} \text{, } n \in I \Rightarrow \theta = n\pi \pm \frac{5\pi}{12} \text{$$

- **Ex.3** Solve $\tan \theta = 2$
- **Sol.** \because tan $\theta = 2$ (i). Let 2 tan $\alpha \Rightarrow$ tan $\theta = \tan \alpha \Rightarrow \theta = n\pi + \alpha$, where $\alpha = \tan^{-1}(2)$, $n \in I$

Ex.4 Solve
$$\cos^2\theta = \frac{1}{2}$$

Sol.
$$\because \cos^2 \theta = \frac{1}{2} \Rightarrow \cos^2 \theta = \left(\frac{1}{\sqrt{2}}\right)^2 \Rightarrow \cos^2 \theta = \cos^2 \frac{\pi}{4} \Rightarrow \theta + n\pi \pm \frac{\pi}{4}, n \in I$$

Ex.5 Solve
$$4 \tan^2 \theta = 3 \sec^2 \theta$$

Sol.
$$\therefore$$
 4 tan² θ = 3sec² θ ...(i) For equation (i) to be defined $\theta \neq (2n + 1) \frac{\pi}{2}$, $n \in I$

$$\therefore \quad \text{equation (i) can be written as} : \frac{4\sin^2\theta}{\cos^2\theta} = \frac{3}{\cos^2\theta} \qquad \qquad \therefore \qquad \theta \neq (2n+1) \; \frac{\pi}{2} \; , \; n \in I$$

$$\Rightarrow 4 \sin^2 \theta = 3 \qquad \therefore \cos^2 \theta \neq 0$$

$$\Rightarrow \sin^2\theta = \left(\frac{\sqrt{3}}{2}\right)^2 \qquad \Rightarrow \sin^2\theta = \sin^2\frac{\pi}{3} \quad \Rightarrow \quad \theta + n\pi \pm \frac{\pi}{3}, \, n \in I$$

В. SOLUTIONS OF EQUATIONS BY FACTORISING

Ex.6 Solve
$$(2 \sin x - \cos x) (1 + \cos x) = \sin^2 x$$

Sol. :
$$(2 \sin x - \cos x) (1 + \cos x) = \sin^2 x$$

$$\Rightarrow$$
 $(2 \sin x - \cos x)(1 + \cos x) - (1 - \cos x)(1 + \cos x) = 0 \Rightarrow $(1 + \cos x)(2 \sin x - 1) = 0$$

$$\Rightarrow$$
 1 + cos x = 0

or
$$2 \sin x - 1 = 0 \Rightarrow \cos x = -1$$
 or $\sin x = \frac{1}{2}$

or
$$\sin x = \frac{1}{2}$$

$$\Rightarrow$$
 x = $(2n + 1)\pi$, n \in I or $\sin x = \sin \frac{\pi}{6}$, n \in I \Rightarrow x + $n\pi (-1)^n \frac{\pi}{6}$, n \in I

∴ Solution of given equation is
$$(2n + 1) \pi$$
, $n \in I$ or $n\pi + (-1)^n \frac{\pi}{6}$, $n \in I$

Ex.7 Solve the equation
$$\sin^3 x \cos x - \sin x \cos^3 x = \frac{1}{4}$$
.

Sol. The equation can be written as
$$4 \sin x \cos x (\sin^2 x - \cos^2 x) = 1$$
,

$$\Rightarrow$$
 -2 sin 2x cos 2x = -sin 4x = 1 \Rightarrow x = - $\frac{\pi}{8}$ + k . $\frac{\pi}{2}$ (k = 0, ± 1, ± 2,....)

Ex.8 Solve the equation
$$\frac{1}{\sin^2 x} - \frac{1}{\cos^2 x} - \frac{1}{\tan^2 x} - \frac{1}{\cot^2 x} - \frac{1}{\sec^2 x} - \frac{1}{\csc^2 x} = -3$$

Sol. Using the well-known trigonometric formulas, write the equation in the following way :
$$\csc^2 x - \sec^2 x - \cot^2 x - \tan^2 x - \cos^2 x - \sin^2 x = -3$$
 ...(1)

Since $\csc^2 x = 1 + \cot^2 x$ and $\sec^2 x = 1 + \tan^2 x$, the above equation is reduced to the form $\tan^2 x = 1$

$$\Rightarrow x = \frac{\pi}{4} + k \frac{\pi}{2}.$$

Ex.9 Find the general solution of the equation
$$\frac{1 + \sin x + \sin^2 x + \sin^3 x + + \sin^n x + + \sin^n x +}{1 - \sin x + \sin^2 x - \sin^3 x + ...(-1)^n \sin^n x +} = \frac{4}{1 + \tan^2 x}$$

where
$$x \neq k\pi + \frac{\pi}{2}$$
, $k \in I$.

Sol. Nr of LHS =
$$\frac{1}{1-\sin x}$$
; Dr of LHS = $\frac{1}{1+\sin x}$

hence
$$\frac{1+\sin x}{1-\sin x} = \frac{4}{\sec^2 x} = 4\cos^2 x = 4(1-\sin x)(1+\sin x)$$

hence
$$4(1 - \sin x)^2 = 1$$
 \Rightarrow $(1 - \sin x)^2 = \frac{1}{4} \Rightarrow$ $(1 - \sin x) = \frac{1}{2}$ or $-\frac{1}{2}$

$$\therefore \quad \sin x = \frac{1}{2} \quad \text{or} \quad \sin x = \frac{3}{2} \ \text{(rejected)} \quad \therefore \quad \sin x = \sin \frac{\pi}{6} \qquad \Rightarrow \quad x = n\pi + (-1)^n \frac{\pi}{6}, \quad n \in I$$

Ex.10 Find the general solution of the equation $\sin^3 x(1 + \cot x) + \cos^3 x(1 + \tan x) = \cos 2x$.

Sol.
$$\sin^2 x(\cos x + \sin x) + \cos^2 x (\cos x + \sin x) = \cos 2x$$

 $(\cos x + \sin x)(\cos^2 x + \sin^2 x) = (\cos x + \sin x)(\cos x - \sin x)$

$$(\cos x + \sin x)(\cos^2 x + \sin^2 x) = (\cos x + \sin x)(\cos x - \sin x)$$

$$\therefore (\cos x + \sin x)[\cos x - \sin x - 1)] = 0$$

$$\therefore$$
 either $\cos x + \sin x = 0....(1)$ or $\cos x - \sin x = 1....(2)$

from (1)
$$\tan x = -1$$
 or $1 - \sin 2x = 1$ \Rightarrow $\sin 2x = 0$

$$\text{If} \quad \tan \, x = -\, 1 = \tan \biggl(-\frac{\pi}{4} \biggr) \qquad \therefore \qquad x = x = n\pi - \frac{\pi}{4} \, , \ n \, \in \, I$$

If $\sin 2x = 0 \Rightarrow 2x = n\pi \Rightarrow x = \frac{n\pi}{2}$ this is to be rejected because of the tan x or cot x will not be

$$\text{defined so } x = \left(n\pi - \frac{\pi}{4}\right), \quad n \, \in \, I$$

Ex.11 Find the solutions of the equation, $\log_{\sqrt{2}\sin x}(1+\cos x)=2$ in the interval $x\in[0,2\pi]$.

Sol.
$$2 \sin^2 x = 1 + \cos x$$
; $2 \cos^2 x + \cos x - 1 = 0$ $\Rightarrow \cos x = \frac{1}{2}$ or -1 $\Rightarrow x = \frac{\pi}{3}$, π , $\frac{5\pi}{3}$ but $x = \pi$ and $\frac{5\pi}{3}$ are rejected $\Rightarrow x = \frac{\pi}{3}$

Ex.12 Find the general solution of the trigonometric equations,

(a)
$$\sec\left(\frac{\pi}{4} + x\right) + \sec\left(\frac{\pi}{4} - x\right) = 2\sqrt{2}$$
, (b)
$$\begin{vmatrix} 1 & \cos x & \cos^2 x \\ 1 & \cos \alpha & \cos^2 \alpha \\ 1 & -\cos \alpha & -\cos^2 \alpha \end{vmatrix} = 0 \text{ where } \alpha \in \left(0, \frac{\pi}{2}\right)$$

What happens if $\alpha = \pi/2$.

Sol. (a)
$$\frac{\sqrt{2}}{\cos x - \sin x} + \frac{\sqrt{2}}{\cos x + \sin x} = 2\sqrt{2}$$
 or $\frac{2\cos x}{\cos 2x} = 2$ \Rightarrow $\cos 2x = \cos x$

Hence 2 x = 2 n π ± x, positive sign , x = 2 n π ; negative sign , x = $\frac{2n\pi}{3}$

Hence the general solution is $x=\frac{2n\pi}{3}$, $n\in I$ as $2n\pi$ is a subset of $\frac{2n\pi}{3}$

(b)
$$\begin{vmatrix} 0 & \cos x - \cos \alpha & \cos^2 x - \cos^2 \alpha \\ 0 & 2 \cos \alpha & 0 \\ 1 & -\cos \alpha & \cos^2 \alpha \end{vmatrix} = 0$$

$$\Rightarrow$$
 2 cos α (cos² x - cos² α) = 0 \Rightarrow cos² x = cos² α (cos $\alpha \neq 0$) \Rightarrow x = n $\pi \pm \alpha$

If $\alpha = \frac{\pi}{2}$ the equation becomes an identity and hence true $\forall x \in R$.

C. SOLUTIONS OF EQUATIONS REDUCIBLE TO QUADRATIC EQUATIONS

- **Ex.13** Solve the equation $\sin^2 x(\tan x + 1) = 3 \sin x (\cos x \sin x) + 3$.
- **Sol.** The given equation makes no sense when $\cos x = 0$; therefore we can suppose that $\cos x \neq 0$. Noting that the right-hand member of the equation is equal to $3 \sin x \cos x + 3 \cos^2 x$, and dividing both members by $\cos^2 x$, we obtain $\tan^2 x (\tan x + 1) = 3 (\tan x + 1)$,

$$\Rightarrow (\tan^2 x - 3) (\tan x + 1) = 0 \Rightarrow x_1 = -\frac{\pi}{4} + k\pi, x_2 = \frac{\pi}{3} + k\pi, x_3 = -\frac{\pi}{3} + k\pi.$$

- **Ex.14** Find the general solution set of the equation $\log_{\tan x}(2 + 4 \cos^2 x) = 2$.
- **Sol.** $2 + 4\cos^2 x = \tan^2 x \Rightarrow 3 + 4\cos^2 x = \sec^2 x \Rightarrow 4\cos^4 x + 3\cos^2 x 1 = 0$ let $\cos^2 x = t \Rightarrow 4t^2 + 3t - 1 = 0 \Rightarrow (4t - 1)(t + 1) = 0 \Rightarrow t = 1/4 \text{ or } t = -1$

$$\Rightarrow \cos^2 x = \frac{1}{4} \text{ or } \cos^2 x = -1 \text{ (not possible)} \quad \Rightarrow \quad \cos^2 x = \cos^2 \frac{\pi}{3} \quad \Rightarrow \quad x = n\pi + \frac{\pi}{3}, \ n \in I$$

- **Ex.15** The equation $\cos^2 x \sin x + a = 0$ has roots when $x \in (0, \pi/2)$ find 'a'.
- **Sol.** $1 \sin^2 x \sin x + a = 0 \implies \sin^2 x + \sin x (a + 1) = 0$ (let $\sin x = t$)

$$\therefore t^2 + t - (a+1) = 0, \quad t \in (0, 1) \Rightarrow t = \frac{-1 \pm \sqrt{1 + 4(a+1)}}{2} \Rightarrow t = \frac{-1 \pm \sqrt{4a + 5}}{2} \text{ (reject - ve sign)}$$

$$\therefore t = \frac{-1 + \sqrt{4a + 5}}{2} \qquad \text{now } 0 < \frac{-1 + \sqrt{4a + 5}}{2} < 1$$

$$\Rightarrow$$
 0 < -1 + $\sqrt{4a+5}$ < 2 or 1 < $\sqrt{4a+5}$ < 3

$$\Rightarrow$$
 1 < 4a + 5 < 9 \Rightarrow -4 < 4a < 4 \Rightarrow -1 < a < 1 \Rightarrow a \in (-1, 1)

Ex.16 Solve the equation
$$\cot^2 x = \frac{1 + \sin x}{1 + \cos x}$$

Sol. The given equation only makes sense for $x \ne k\pi$. For these values of x it can be rewritten in the form $\cos^3 x + \cos^2 x = \sin^3 x + \sin^2 x$.

Transferring all terms to the left-hand side of the equation and factoring it we get

$$(\cos x - \sin x) (\sin^2 x + \cos^2 x + \sin x \cos x + \sin x + \cos x) = 0.$$

There are two possible cases here which are considered below.

(a)
$$\sin x - \cos x = 0$$
, then $x_1 = \frac{\pi}{4} + k\pi$;(1)

(b)
$$\sin^2 x = \cos^2 x + \sin x \cos x + \sin x + \cos x = 0$$
.(2)

Equation (2) has the solutions
$$x_2 = -\frac{\pi}{2} + 2k\pi$$
(3) and $x_3 = (2k + 1)\pi$(4)

But the values of x determined by formula (4) are not roots of the original equations, since the original equation is only considered for $x \neq k\pi$. Consequently, the equation has the roots defined by formulas (1) and (3).

- **Ex.17** Solve the equation $2 (7 + \sin 2x) \sin^2 x + (7 + \sin 2x) \sin^4 x = 0$.
- **Sol.** The left member of the equation being equal to

2 - (7 + sin 2x) (sin² x - sin⁴x) = 2 - (7 + sin 2x) sin² x . cos² x = 2 - (7 + sin 2x)
$$\frac{1}{4}$$
 sin² 2x,

we can put $t = \sin 2x$ and rewrite the equation in the form $t^3 + 7t^2 - 8 = 0$ (1)

It is readily see that equation (1) has the roots $t_1 = 1$. The other two roots are found form the equation $t^2 + 8x + 8 = 0$ (2)

Solving this equation we find $t = -4 + 2\sqrt{2}$ and $t = -4 - 2\sqrt{2}$.

These roots should be discarded because they are greater than unity in their absolute values. Consequently, the roots of the original equation coincide with the roots of the equation $\sin 2x = 1$. $x = \pi/4 + k\pi$

- **Ex.18** Solve the equation $\sin^8 x + \cos^8 x = \frac{17}{32}$
- **Sol.** Using the identity $(\sin^2 x + \cos^2 x)^2 = 1$ we get $\sin^4 x + \cos^4 x = 1 \frac{1}{2} \sin^2 2x$,

whence
$$\sin^8 x + \cos^8 x = \left(1 - \frac{1}{2}\sin^2 2x\right)^2 - \frac{1}{8}\sin^4 2x = \frac{17}{32}$$

$$\Rightarrow \qquad 1 - \sin^2 2x + \frac{1}{8} \sin^4 2x = \frac{17}{32} \qquad \Rightarrow \sin^4 2x - 8 \sin^2 2x + \frac{15}{4} = 0.$$

Solving we get
$$\sin^2 2x = 4 \pm \frac{7}{2}$$
, $\sin^2 2x = \frac{1}{2}$, $2x = \frac{\pi}{4} + k\frac{\pi}{2}$; whence $x = \frac{2k+1}{8}\pi$.

- **Ex.19** Find all solutions of the equation $(\tan^2 x 1)^{-1} = 1 + \cos 2x$, which satisfy the inequality $2^{x+1} 8 > 0$
- **Sol.** Let us reduce the initial trigonometric equation to the form $(1 + \cos 2x) \left(1 + \frac{1}{2\cos 2x}\right) = 0$.

The following values of x are solutions of this equation $x = -\frac{\pi}{2} + \pi n$, $x = \pm \frac{\pi}{3} + \pi k$, n, $k \in Z$.

By the hypothesis, we must choose those values of x which satisfy the inequalities

$$2^{x+1}-8>0$$
, $\cos x\neq 0$. The values we need are $x=\pm \frac{\pi}{3}+\pi n, n\in N$

- **Ex.20** For what a is the equation $\sin^2 x \sin x \cos x 2 \cos^2 x = a$ solvable? Find the solutions.
- **Sol.** Multiplying the right member of the equation by $\sin^2 x + \cos^2 x = 1$ we reduce it to the form $(1 \alpha) \sin^2 x \sin x \cos x (a + 2) \cos^2 x = 0$(1)

First let us assume that $a \ne 1$. Then form (1) is follows that $\cos x \ne 0$, since otherwise we have $\sin x = \cos x = 0$ which is impossible. Dividing both members of (1) by $\cos^2 x$ and putting $\tan x = t$ we get the equation $(1 - a)t^2 - t - (a + 2) = 0$(2)

Equation (1) is solvable if and only if the roots of equation (2) are real, i.e. if its discriminant is non-negative $D = -4a^2 - 4a + 9 \ge 0$(3)

Solving inequality (3) we find
$$-\frac{\sqrt{10}+1}{2} \le a \le \frac{\sqrt{10}-1}{2}$$
(4)

Let t_1 and t_2 be the roots of equation (2). Then the corresponding solutions of equation (1) have the form $x_1 = \arctan t_1 + k\pi$, $x_2 = \arctan t_2 + k\pi$,

Now let us consider the case a = 1.

In this case equation (1) is written in the form $\cos x (\sin x + 3 \cos x) = 0$

and has the following solutions : $x_1 = \frac{\pi}{2} + k\pi$, $x_2 = -arc \tan 3 + k\pi$.

- **Ex.21** Determine all the values of a for which the equation $\sin^4 x 2 \cos^2 x + a^2 = 0$ is solvable. Find the solutions.
- **Sol.** Applying the formula $\sin^4 x = \left(\frac{1-\cos 2x}{2}\right)^2$, $\cos^2 x = \frac{1+\cos 2x}{2}$ and putting $\cos 2x = t$

we rewrite the given equation in the form $t^2 - 6t + 4a^2 - 3 = 0$ (1)

The original equation has solutions for a given value of a if and only if, for his value of a, the roots t_1 and t_2 of the equation (1) are real and at least one of these roots does not exceed unity in its absolute

value. Solving equation (1), we find
$$t_1 = 3 - 2\sqrt{3-a^2}$$
, $t_2 = 3 + 2\sqrt{3-a^2}$.

Hence the rotos of equation (1) are real if $|a| \le \sqrt{3}$ (2)

If condition (2) is fulfilled, then $t_2 > 1$ and, therefore, this root can be dicarded. Thus, the problem is reduced to finding the values of a satisfying condition (2), for which $|t_1| \le 1$, i.e.,

$$-1 \le 3 - 2\sqrt{3-a^2} \le 1.$$
(3)

From (3) we find
$$-4 \le -2 \sqrt{3-a^2} \le -2$$
, $\Rightarrow 2 \ge \sqrt{3-a^2} \ge 1$(4)

Since the inequality $2 \ge \sqrt{3-a^2}$ is fulfilled for $|a| \le \sqrt{3}$, the system of inequalities (4) is reduced to

the inequality
$$\sqrt{3-a^2} \ge 1$$
, $\Rightarrow \mid a \mid \le \sqrt{2}$.

Thus, the original equation is solvable if $|a| \le \sqrt{2}$, and its solutions are

$$x = \pm \frac{1}{2} \arcsin (3 - 2 \sqrt{3 - a^2}) + k\pi.$$

D. SOLVING EQUATIONS BY INTRODUCING AN AUXILIARY ARGUMENT

- **Ex. 22** Solve $\sin x + \cos x = \sqrt{2}$
- **Sol.** : $\sin x + \cos x = \sqrt{2}$ (i) Here a = 1, b = 1
 - ... divide both sides of equation (i) by $\sqrt{2}$, we get $\sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} = 1$
 - $\Rightarrow \quad \sin \, x \; . \; \sin \, \frac{\pi}{4} \; + \; \cos \, x \; . \; \cos \, \frac{\pi}{4} \; = \; 1 \; \Rightarrow \quad \cos \left(x \frac{\pi}{4} \right) \; = \; 1 \qquad \quad \Rightarrow \quad x \frac{\pi}{4} \; = \; 2n\pi, \; n \in I$
 - $\Rightarrow \quad x = 2n\pi + \frac{\pi}{4}, \ n \in I \qquad \therefore \qquad \text{Solution of given equation is } 2n\pi + \frac{\pi}{4}, \ n \in I$
- **Ex.23** Solve the equation $\cos 7x \sin 5x = \sqrt{3} (\cos 5x \sin 7x)$.
- **Sol.** Rewrite the equation in the form $\frac{1}{2}\cos 7x + \frac{\sqrt{3}}{2}\sin 7x = \frac{\sqrt{3}}{2}\cos 5x + \frac{1}{2}\sin 5x$
 - or $\sin\frac{\pi}{6}\cos7x + \cos\frac{\pi}{6}\sin7x = \sin\frac{\pi}{3}\cos5x + \cos\frac{\pi}{3}\sin5x$, i.e. $\sin\left(\frac{\pi}{6} + 7x\right) = \sin\left(\frac{\pi}{3} + 5x\right)$.
 - But $\sin \alpha = \sin \beta$ if and only if either $\alpha \beta = 2k\pi$ or $\alpha + \beta = (2m + 1)\pi$ (k, m = 0, ± 1, ± 2,).
 - Hence $\frac{\pi}{6} + 7x \frac{\pi}{3} 5x = 2k\pi$ or $\frac{\pi}{6} + 7x \frac{\pi}{3} 5x = (2m + 1)\pi$.
 - Thus, the roots for the equation are $x = \frac{\pi}{12}(12k+1),$ $x = \frac{\pi}{24}(4m+1)$ (k, m = 0, ± 1, ± 2,....).
- **Ex.24** Solve the equation $\frac{a\sin x + b}{b\cos x + a} = \frac{a\cos x + b}{b\sin x + a} (a^2 \neq 2b^2)$
- **Sol.** Noting that (b cos x + a) (b sin x + a) \neq 0 (otherwise the equation has no sense), we discard the denominators and get ab sin² x + (a² + b²) sin x + ab = ab cos² x + (a² + b²) cos x + ab, whence (a² + b²) (sin x cos x) ab (sin² x cos² x) = 0. Therefore, the original equation is reduced to the following two equations:
 - 1°. $\sin x = \cos x$, whence $x = \frac{\pi}{4} + k\pi$ and 2°. $\sin x + \cos x = \frac{a^2 + b^2}{ab}$.
 - But the latter equation has no solutions because $\frac{a^2+b^2}{|ab|} \ge 2$.
 - $\text{whereas} \quad |\sin x + \cos x| = \sqrt{2} \left| \sin x. \frac{1}{\sqrt{2}} + \cos x. \frac{1}{\sqrt{2}} \right| = \sqrt{2} \left| \sin \left(x + \frac{\pi}{4} \right) \right| \leq \sqrt{2} \\ \Rightarrow \quad x = \frac{\pi}{4} + k\pi \sin x + k\pi \sin$

Ex.25 Solve the equation $2 \sin 17x + \sqrt{3} \cos 5x + \sin 5x = 0$

Sol. Dividing both sides of the equation by 2, we reduce it to the form $\sin 17 x + \sin \left(5x + \frac{\pi}{3}\right) = 0$,

whence we obtain
$$2 \sin \left(11x + \frac{\pi}{6}\right) \cos \left(6x - \frac{\pi}{6}\right) = 0 \Rightarrow x_1 = -\frac{\pi}{66} + \frac{k\pi}{11}, x_2 = \frac{\pi}{36} + \frac{(2k+1)\pi}{12}$$

- **Ex.26** Solve the equation $\sin^3 x + \cos^3 x = 1 \frac{1}{2} \sin 2x$.
- **Sol.** Using the formula for the sum of cubes of two members we transform the left-hand side of the equation in the following way: $(\sin x + \cos x) (1 \sin x \cos x) = \left(1 \frac{1}{2} \sin 2x\right) (\sin x + \cos x)$.

Hence, the original equation takes the form $\left(1-\frac{1}{2}sin2x\right)$ (sin x + cos x - 1) = 0.

The expression in the first brackets is different from zero for all x. Therefore it is sufficient to consider the equation $\sin x + \cos x - 1 = 0$. The latter is reduced to the form

$$\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$
 \Rightarrow $x_1 \ 2\pi k, x_2 = \frac{\pi}{2} + 2\pi k$

E. SOLVING EQUATIONS BY TRANSFORMING A SUM OF TRIGONOMETRIC FUNCTIONS INTO A PRODUCT

Ex.27 Solve $\cos 3x + \sin 2x - \sin 4x = 0$

Sol.
$$\cos 3x + \sin 2x - \sin 4x = 0$$
 \Rightarrow $\cos 3x + 2\cos 3x \cdot \sin (-x) = 0$ \Rightarrow $\cos 3x - 2\cos x \cdot \sin x = 0$

$$\Rightarrow$$
 cos 3x (1 - 2 sin x) = 0 \Rightarrow cos 3x = 0 or 1 - 2 sin x = 0

$$\Rightarrow \ \, 3x = (2n+1) \, \, \frac{\pi}{2} \, , \, n \in I \, \, \text{or} \, \sin x = \frac{1}{2} \qquad \Rightarrow \qquad x = (2n+1) \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or} \, x = n\pi + (-1)^n \, \, \frac{\pi}{6} \, , \, n \in I \, \, \text{or}$$

∴ solution of given equation is (2n + 1) $\frac{\pi}{6}$, n ∈ I or $n\pi + (-1)^n \frac{\pi}{6}$, n ∈ I

F. SOLVING EQUATIONS BY TRANSFORMING A PRODUCT OF TRIGONOMETRIC FUNCTIONS INTO A SUM

Ex.28 Solve $\sin 5x \cdot \cos 3x = \sin 6x \cdot \cos 2x$

$$\therefore$$
 sin 5x . cos 3x = sin 6x . cos 2x \Rightarrow 2sin 5x . cos 3x = 2sin 6x . cos 2x

$$\Rightarrow$$
 $\sin 8x + \sin 2x = \sin 8x + \sin 4x \Rightarrow \sin 4x - \sin 2x = 0$

$$\Rightarrow$$
 2 sin 2x . cos 2x - sin 2x = 0 \Rightarrow sin 2x (2 cos 2x - 1) = 0

$$\Rightarrow \sin 2x = 0 \text{ or } 2\cos 2x - 1 = 0 \qquad \Rightarrow 2x = n\pi, n \in I \text{ or } \cos 2x = \frac{1}{2}$$

$$\Rightarrow \quad x = \frac{n\pi}{2}, \ n \in I \qquad \text{or} \qquad 2x = 2n\pi \pm \frac{\pi}{3}, \ n \in I \qquad \Rightarrow \qquad x = n\pi \pm \frac{\pi}{6}, \ n \in I$$

 $\therefore \quad \text{Solution of given equation is} \quad \frac{n\pi}{2}, \ n \in I \text{ or } \quad n\pi \, \pm \, \frac{\pi}{6}, \ n \in I$

Ex.29 Solve the equation $\cot x - 2 \sin 2x = 1$

Sol. First solution: The equation becomes senseless for $x = k\pi$. For all the other values of x it is equivalent to the equation $\cos x - \sin x = 2 \sin 2x$. $\sin x$

we obtain $\cos x - \sin x = \cos x - \cos 3x$, $\sin x = \cos 3x$,

$$\text{whence sin } x = \sin\left(\frac{\pi}{2} - 3x\right). \text{ Consequently, } 2\sin\left(2x - \frac{\pi}{4}\right)\cos\left(x - \frac{\pi}{4}\right) = 0 \\ \Rightarrow x_1 = \frac{\pi}{8} + \frac{k\pi}{2} \text{ , } x_2 = \frac{3\pi}{4} + k\pi = 0 \\ \Rightarrow x_3 = \frac{\pi}{8} + \frac{k\pi}{2} \text{ , } x_4 = \frac{3\pi}{4} + k\pi = 0 \\ \Rightarrow x_4 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_4 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_4 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_4 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_4 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{8} + \frac{\kappa}{2} + \kappa = 0 \\ \Rightarrow x_5 = \frac{\pi}{8} + \frac{\kappa}{8} + \frac{\kappa}$$

Second solution : putting tan x = t, we get the equation $t^3 + 3t^2 + t - 1 = 0$.

Factoring the left member, we obtain $(t+1)(t+1-\sqrt{2})(t+1+\sqrt{2})=0$.

whence $(\tan x)_1 = 1$, $(\tan x)_2 = \sqrt{2} - 1$, $(\tan x)_3 = -1 - \sqrt{2}$.

$$\Rightarrow x_1 = \frac{3\pi}{4} + k\pi; x_2 = \arctan(\sqrt{2} - 1) + k\pi, x_3 = -\arctan(1 + \sqrt{2}) + k\pi.$$

G. SOLVING EQUATIONS BY A CHANGE OF VARIABLE

- (i) Equations of the form $P(\sin x \pm \cos x, \sin x \cdot \cos x) = 0$, where P(y,z) is a polynomial, can be solved by the change $\cos x \pm \sin x = t \Rightarrow 1 \pm 2 \sin x \cdot \cos x = t^2$.
- (ii) Equations of the form of $a \cdot \sin x + b \cdot \cos x + d = 0$, where a, $b \cdot d$ are real numbers & a, $b \neq 0$ can be solved by changing $\sin x \cdot d$ cos x into their corresponding tangent of half the angle.
- (iii) Many equations can be solved by introducing a new variable. eg. the equation $\sin^4 2x + \cos^4 2x = \sin 2x \cdot \cos 2x$ changes to

$$2(y+1)\left(y-\frac{1}{2}\right) = 0$$
 by substituting, $\sin 2x \cdot \cos 2x = y$.

Ex.30 Solve $\sin x + \cos x = 1 \sin x$. $\cos x$

Sol.
$$\because$$
 $\sin x + \cos x = 1 \sin x \cdot \cos x$...(i) Let $\sin x + \cos x = t$

$$\Rightarrow \quad \sin^2 x + \cos^2 x + 2 \sin x \cdot \cos x = t^2 \qquad \Rightarrow \qquad \sin x \cdot \cos x = \frac{t^2 - 1}{2}$$

Now put $\sin x + \cos x = t$ and $\sin x \cdot \cos x = \frac{t^2 - 1}{2}$ in (i), we get $t = 1 + \frac{t^2 - 1}{2}$

$$\Rightarrow t^2 - 2t + 1 = 0 \Rightarrow t = 1 \quad (\because t = \sin x + \cos x) \Rightarrow \sin x + \cos x = 1 \quad(ii)$$

divide both sides of equation (ii) by $\sqrt{2}\,,$ we get

$$\Rightarrow \quad \sin x \; . \; \frac{1}{\sqrt{2}} \; + \cos x \; . \; \frac{1}{\sqrt{2}} \; = \; \frac{1}{\sqrt{2}} \quad \Rightarrow \quad \cos \left(x - \frac{\pi}{4} \right) \; = \; \cos \; \frac{\pi}{4} \qquad \quad \Rightarrow \quad x - \frac{\pi}{4} \; = \; 2n\pi \, \pm \, \frac{\pi}{4}$$

- (i) if we take positive sign, we get $x = 2n\pi + \frac{\pi}{2}$, $n \in I$
- (ii) if we take negative sign, we get $x = 2n\pi$, $n \in I$

Ex.31 Solve the equation $\sin 2x - 12 (\sin x - \cos x) + 12 = 0$

Sol. Putting $\sin x - \cos x = t$ and using the identity $(\sin x - \cos x)^2 = 1 - 2 \sin x \cos x$, we rewrite the original equation in the form $t^2 + 12t - 13 = 0$.

This equation has the roots $t_1 = -13$ and $t_2 = 1$. But $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right)$, and thus,

 \mid t \mid \leq $\sqrt{2}$. Consequently, the root t_1 = -13 must be discarded. Therefore, the original equation is

reduced to the equation $\sin\left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$. $\Rightarrow x_1=\pi+2k\pi, x_2=\frac{\pi}{2}+2k\pi.$

- **Ex.32** Solve the equation $1 + 2 \csc x = -\frac{\sec^2 \frac{x}{2}}{2}$.
- **Sol.** Transform the given equation to the form $2 \cos^2 \frac{x}{2} (2 + \sin x) + \sin x = 0$.

Using the formula $2 \cos^2 \frac{x}{2} = 1 + \cos x$ and opening the brackets, we obtain

$$2 + 2 (\sin x + \cos x) + \sin x \cdot \cos x = 0.$$
(1)

By the substitution $\sin x + \cos x = t$ equation (1) is reduced to the quadratic equation $t^2 + 4t + 3 = 0$ whose roots are $t_1 = -1$ and $t_2 = -3$. Since $|\sin x + \cos x| \le \sqrt{2}$, the original equation can only be satisfied by the roots of the equation $\sin x + \cos x = -1$(2)

Solving equation (2), we obtain $x_1 = -\frac{\pi}{2} + 2k\pi$ and $x_2 = (2k + 1)\pi$.

here x_2 should be discarded because $\sin x_2 = 0$, and therefore the original equation makes no sense for

$$x = x_2$$
 \Rightarrow $x = -\frac{\pi}{2} + 2k\pi$

- **Ex.33** Solve the equation $\sin x + \cos x 2 \sqrt{2} \sin x \cos x = 0$.
- **Sol.** Designating $\sin x + \cos x = t$ and using the equation $\sin x \cos x = (t^2 1)/2$, we reduce the equation to a new equation with respect to $t : \sqrt{2}t^2 t \sqrt{2} = 0$.

The numbers $t_1 = \sqrt{2}$, $t_2 = -\frac{1}{\sqrt{2}}$ are roots of this quadratic equation.

Thus the solution of the initial equation reduces to the solution of the trigonometric equations:

$$\sin x + \cos x = \sqrt{2}, \sin x + \cos x = -\frac{1}{\sqrt{2}}.$$

Multiplying both sides of these equations by the number $\frac{1}{\sqrt{2}}$, we reduce them to two simpler equations:

$$\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x = 1 \Leftrightarrow \sin x \cos \frac{\pi}{4} + \sin \frac{\pi}{4} \cos x = 1 \Leftrightarrow \sin \left(x + \frac{\pi}{4} \right) = 1.$$

$$\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x = -\frac{1}{2} \Leftrightarrow \sin \left(x + \frac{\pi}{4}\right) = -\frac{1}{2}.$$

The solutions of the equations $\sin \left(x + \frac{\pi}{4} \right) = 1$ and $\sin \left(x + \frac{\pi}{4} \right) = -\frac{1}{2}$ are

$$x = \frac{\pi}{4} + 2\pi k$$
, $k \in Z$; $x = (-1)^{n+1} \frac{\pi}{6} - \frac{\pi}{4} + \pi n$, $n \in Z$.

- **Ex.34** Solve the equation $\frac{1}{2}(\sin^4 x + \cos^4 x) = \sin^2 x \cos^2 x + \sin x \cos x$
- **Sol.** We obtain the equation $\sin^2 2x + \sin 2x 1 = 0$

Solving it, we get
$$\sin 2x = \frac{\sqrt{5}-1}{2} \Rightarrow x = (-1)^k \frac{1}{2} \arcsin \frac{\sqrt{5}-1}{2} + \frac{k\pi}{2}$$

- **Ex.35** Find tan $\frac{\alpha}{2}$ if $\sin \alpha + \cos \alpha = \frac{\sqrt{7}}{2}$ and the angle α lies between 0° and 45°.
- **Sol.** Using formulas, we reduce the given relation $\sin \alpha + \cos \alpha = \frac{\sqrt{7}}{2}$ to the form

$$(2 + \sqrt{7}) \tan^2 \frac{\alpha}{2} - 4 \tan \frac{\alpha}{2} - (2 - \sqrt{7}) = 0$$

Solving this equation with respect to $\tan \frac{\alpha}{2}$, we obtain $\left(\tan \frac{\alpha}{2}\right)_1 = \frac{3}{2+\sqrt{7}} = \sqrt{7} - 2$ & $\left(\tan \frac{\alpha}{2}\right)_2 = \frac{\sqrt{7}-2}{3}$

Let us verify whether the above values of tan $\frac{\alpha}{2}$ satisfy the conditions of the problem.

Since $0<\frac{\alpha}{2}<\frac{\pi}{8}$, we have the condition $0<\tan\frac{\alpha}{2}<\tan\frac{\pi}{8}=\sqrt{2}-1$.

The value $\left(\tan\frac{\alpha}{2}\right)_2 = \frac{\sqrt{7}-2}{3}$ satisfies this condition because $\frac{\sqrt{7}-2}{3} < \sqrt{2}-1$. The root $\sqrt{7}-2$ should be discarded since $\sqrt{7}-2 > \sqrt{2}-1$.

Ex.36 Solve $3 \cos x + 4 \sin x = 5$

Sol.
$$\therefore$$
 $3 \cos x + 4 \sin x = 5$ \therefore $\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 - \tan^2 \frac{x}{2}}$ & $\sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$

$$\Rightarrow 3\left(\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)+4\left(\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)=5 \qquad(ii)$$

Let
$$\tan \frac{x}{2} = t$$
 : equation (i) becomes $3\left(\frac{1-t^2}{1+t^2}\right) + 4\left(\frac{2t}{1+t^2}\right) = 5$ \Rightarrow $4t^2 - 4t + 1 = 0$

$$\Rightarrow (2t-1)^2 = 0 \Rightarrow t = \frac{1}{2} (\because t = \tan \frac{x}{2}) \Rightarrow \tan \frac{x}{2} = \frac{1}{2} \Rightarrow \tan \frac{x}{2} = \tan \alpha, \text{ where } \tan \alpha = \frac{1}{2}$$

$$\Rightarrow \tan \frac{x}{2} = n\pi + a \Rightarrow x = 2n\pi + 2\alpha \text{ where } \alpha = \tan^{-1}\left(\frac{1}{2}\right), n \in I$$

Ex.37 Solve the equation
$$2 + \cos x = 2 \tan \frac{x}{2}$$

Sol. Write the equation in the following form :
$$\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = 2 \left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} - 1 \right)$$

After some simple transformations it is reduced to the equation

$$\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right) \left(3\cos^{2}\frac{x}{2} + 2\sin^{2}\frac{x}{2} + \sin\frac{x}{2}\cos\frac{x}{2}\right) = 0.$$

The equation $3\cos\frac{x}{2} + 2\sin^2\frac{x}{2} + \sin\frac{x}{2}\cos\frac{x}{2} = 0$ is equivalent to the equation

$$2 \tan^2 \frac{x}{2} + \tan \frac{x}{2} + 3 = 0$$
 and has no real solutions. $x = \frac{\pi}{2} + 2k\pi$.

H. SOLVING EQUATIONS WITH THE USE OF THE BOUNDNESS OF THE FUNCTIONS SIN X & COS X

- **Ex.38** Solve the equation $\frac{1-\tan x}{1+\tan x} = 1 + \sin 2x.$
- **Sol.** The equation makes no sense for $x = \frac{\pi}{2} + k\pi$ and for $x = -\frac{\pi}{4} + k\pi$. For all the other values of x it is

equivalent to the equation
$$\frac{\cos x - \sin x}{\cos x + \sin x} = 1 + \sin 2x$$
.

After simple transformations we obtain $\sin x (3 + \sin 2x + \cos 2x) = 0$.

It is obvious that the equation $\sin 2x + \cos 2x + 3 = 0$ has no solution, and therefore, the original equation is reduced to the equation $\sin x = 0 \Rightarrow x = k\pi$

- **Ex.39** Solve the equation $(\sin x + \cos x) \sqrt{2} = \tan x + \cot x$.
- **Sol.** Let us transform the equation to the form $\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{1}{2\sin x\cos x}$ or $\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{\sin 2x}$,

i.e.
$$\sin\left(x + \frac{\pi}{4}\right) \sin 2x = 1$$
.(1)

We have $|\sin \alpha| \le 1$, and therefore (1) holds

$$\text{if either sin}\left(x+\frac{\pi}{4}\right)=1 \qquad \text{and} \quad \sin 2x=-1 \quad \text{or} \quad \sin\left(x+\frac{\pi}{4}\right)=1 \quad \text{and} \quad \sin 2x=1.$$

But the first two equations have no roots in common while the second two equations have the common

roots $x=\frac{\pi}{4}+2k\pi$. Consequently the roots of the given equation are $x=\frac{\pi}{4}+2k\pi$.

- **Ex.40** Solve the equation $\sin^{2n-1} x + 2 \cos^{2n-1} x = 2$, where $n \in \mathbb{N}$.
- **Sol.** Obviously no solution is possible if $\frac{\pi}{2} < x < 2\pi$ as LHS < 2.

$$\text{If } 0 < x < \frac{\pi}{2} \text{, then LHS} = \sin^{2n-1} x + 2 \cos^{2n-1} x < \sin^2 x + 2 \cos^2 x = 1 + \cos^2 x < 2 \text{ when } n \in \mathbb{N} - \{1\}.$$

Obviously, a solution exists only when x = 0 \Rightarrow The general solution is $x = 2m\pi$, $m \in I$.

When n = 1
$$\sin x + 2 \cos x = 2$$
 $\sin \frac{x}{2} \left(2 \sin \frac{x}{2} - \cos \frac{x}{2} \right) = 0$

$$\Rightarrow \ \, \text{either } x = 2k_{1}\pi \text{ or } x = 2k_{2}\pi + 2 \, \text{tan}^{-1} \, \frac{1}{2} \, , \, k_{1}, \, k_{2} \in \mathrm{I}.$$

Ex.41 Find all possible real values of x and y satisfying $\sin^2 x + 4 \sin^2 y - \sin x - 2 \sin y - 2 \sin x$. $\sin y + 1 = 0$.

Sol. Given equation can be rewritten as
$$\sin^2 x - \sin x (1 + 2) (1 + 2 \sin y) + 4 \sin^2 y - 2 \sin y + 1 = 0$$

$$\Rightarrow \sin x \frac{(1+2\sin y) \pm \sqrt{(1+2\sin y)^2 - 4(4\sin^2 y - 2\sin y + 1)}}{2}$$

$$\Rightarrow \sin x = \frac{(1 + 2\sin y) \pm \sqrt{-3 - 12\sin^2 y + 12\sin y}}{2} = \frac{(1 + 2\sin y) \pm \sqrt{-3(2\sin y - 1)^2}}{2}$$

Since sinx is real,
$$\Rightarrow$$
 2 sin y - 1 = 0 or sin y = 1/2 and sin x = $\frac{1+1}{2}$ = 1

$$\Rightarrow$$
 $y = n_1 \pi + (-1)^n \frac{\pi}{6}$, $x = (4n_2 + 1) \frac{\pi}{2}$ where n_1 , $n_2 \in I$.

Ex.42 Solve the equation
$$\cos^2\left[\frac{\pi}{4}(\sin x + \sqrt{2}\cos^2 x)\right] - \tan^2\left(x + \frac{\pi}{4}\tan^2 x\right) = 1$$
.

Sol.
$$\cos^2 \left[\frac{\pi}{4} (\sin x + \sqrt{2} \cos^2 x) \right] - \tan^2 \left(x + \frac{\pi}{4} \tan^2 x \right) = 1$$

since square of the cosine of any argument doesn't exceed 1, the given equation holds true if and only

if we have, simultaneously
$$\cos^2\left[\frac{\pi}{4}(\sin x + \sqrt{2}\cos^2 x)\right] = 1$$
 ...(1)

and
$$\tan \left(x + \frac{\pi}{4} \tan^2 x \right) = 0$$
 ...(2) from (1), $\sin x + \sqrt{2} \cos^2 x = 4k$...(3) $\forall k \in I$

but
$$|\sin x + \sqrt{2} \cos^2 x| \le |\sin x| + \sqrt{2} |\cos^2 x| \le 1 + \sqrt{2} < 4$$
 so, equation (3) has no solution for $k \ne 0$ for $k = 0$

$$\sin x + \sqrt{2} \cos^2 x = 0$$
 or, $\sqrt{2} \sin^2 x - \sin x - \sqrt{2} = 0$ or, $\sin x = \frac{-1}{\sqrt{2}}, \sqrt{2}$

but $\sin x = \sqrt{2}$ is not possible. so only solution to the equation (1) is

$$X_1 = \frac{-\pi}{4} + 2 n\pi_1 X_2 = \frac{5\pi}{4} + 2n\pi_1 n = 0, \pm 1, \pm 2...$$

for
$$x_1 = \frac{-\pi}{4} + 2n\pi$$
, equation (2) becomes an identity but $x_2 = \frac{5\pi}{4} + 2n\pi$ doesn't satisfy equation (2)

so, solution to the original equation $x = \frac{-\pi}{4} + 2n\pi \ \forall \ n \in I$

Ex.43 Find the general solution of the equation, $\sin 3x + \cos 4x - 4 \sin 7x = \cos 10x + \sin 17x$.

 $(\sin 17x - \sin 3x) - \cos 10x - \cos 4x + 4 \sin 7x = 0 \Rightarrow 2 \cos 10x \sin 7x + 2 \sin 7x \sin 3x + 4 \sin 7x = 0$ Sol.

$$\Rightarrow$$
 sin 7x (cos 10x - sin 3x + 2) = 0 Hence sin 7x = 0 \Rightarrow x = $\frac{n\pi}{7}$, n \in I

or
$$\cos 10x - \sin 3x + 2 = 0$$
 \Rightarrow $\cos 10x = -1$ and $\sin 3x = 1$ given $x = (4n + 1) \frac{\pi}{6}$

i.e.
$$x = -\frac{3\pi}{6}^*$$
, $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{9\pi}{6}^*$, $\frac{13\pi}{6}$, $\frac{17\pi}{6}$, $\frac{21\pi}{6}^*$,, $\frac{33\pi}{6}$

Those starred also satisfy $\cos 10x = -1$, the general term of which is

$$x=3\left(4k-1\right)\,\frac{\pi}{6} \quad k\in I \qquad \text{Hence } x=\frac{n\,\pi}{7} \quad \text{or } 3\left(4k-1\right)\,\frac{\pi}{6} \quad \text{where } n,\,k\in I$$

I. SIMULTANEOUS EQUATIONS

- **Ex.44** Solve the system of equations form $\frac{\sin x = \csc x + \sin y,}{\cos x = \sec x + \cos y.}$
- Sol. Transform the system to the $\begin{cases} \sin^2 x = 1 + \sin x \sin y, \\ \cos^2 x = 1 + \cos x \cos y. \end{cases}$ (1)

Adding together the equations of system (1) and subtracting the first equation form the second we

obtain the system
$$\cos 2x - \cos(x = y) = 0,$$

$$1 + \cos(x - y) = 0.$$

The first equation of system (2) can be rewritten as $\cos 2x - \cos (x+y) = 2 \sin \left(\frac{3x+y}{2}\right) \sin (y-x) = 0$.

If $\sin(x-y)=0$, then $x-y=k\pi$. But from the second equation of system (2) we find $\cos(x-y)=-1$, $x-y=(2n+1)\pi$.

Consequently, in this case we have an infinitude of solutions : $x - y (2n + 1) \pi$.

$$\text{If } \sin \left(\frac{3x+y}{2} \right) = 0 \text{, then } 3x = y = 2k\pi. \text{ But } x - y = (2n+1) \ \pi \\ \Rightarrow x = \frac{2k+2n+1}{4}\pi \text{, } y = \frac{2k-6n-3}{4}\pi \text{.}$$

- **Ex.45** Solve the system of equations $\sin x \sin y = \frac{\sqrt{3}}{4}$, $\cos x \cos y = \frac{\sqrt{3}}{4}$.
- **Sol.** Adding up the equations of the system, we arrive at an equation

$$\sin x \sin y + \cos x \cos y = \frac{\sqrt{3}}{2} \Leftrightarrow \cos (x - y) = \frac{\sqrt{3}}{2}.$$

Subtracting the first equation of the system from the second. we arrive at an equation $\cos x \cos y - \sin x \sin y = 0 \Leftrightarrow \cos (x + y) = 0$,

Thus the initial system is equivalent to the system cos (x-y) $\frac{\sqrt{3}}{2}$, $x-y=\pm\frac{\pi}{6}+2\pi n$,

$$\Leftrightarrow n,\ k\in Z, \qquad \cos{(x+y)}=0,\ x+y=\frac{\pi}{2}+\pi k,\ \text{whence}\ x=\frac{\pi}{3}+\frac{\pi}{2}(2n+k),\ x=\frac{\pi}{6}+\frac{\pi}{2}\ (2n+k),$$

$$y = \frac{\pi}{6} + \frac{\pi}{2} (k - 2n),$$
 $y = \frac{\pi}{3} + \frac{\pi}{2} (k - 2n).$

$$\Rightarrow \quad \frac{\pi}{3} + \frac{\pi}{2} (2n - k), \qquad \qquad \frac{\pi}{6} + \frac{\pi}{2} (k - 2n); \quad \frac{\pi}{6} + \frac{\pi}{2} (2n + k), \quad \frac{\pi}{3} + \frac{\pi}{2} (k - 2n) \qquad \qquad (k, n \in \mathbb{Z}).$$

J. MISCELLANEOUS QUESTIONS

- **Ex.46** Solve the equation $2 \cot 2x 3 \cot 3x = \tan 2x$.
- **Sol.** The give equation can be rewritten in the form $3\left(\frac{\cos 2x}{\sin 2x} \frac{\cos 3x}{\sin 3x}\right) = \frac{\sin 2x}{\cos 2x} + \frac{\cos 2x}{\sin 2x}$

or
$$\frac{3\sin x}{\sin 2x \sin 3x} = \frac{1}{\sin 2x \cos 2x}.$$

Note that this equation has sense if the condition $\sin 2x \neq 0$, $\sin 3x \neq 0$, $\cos 2x \neq 0$ holds. For the values of x satisfying this condition we have $3 \sin x \cos 2x = \sin 3x$. Transforming the last equation we obtain $\sin x (3 - 4 \sin^2 x - 3 \cos 2x) = 0$ and thus arrive at the equation $2 \sin^3 x = 0$, which is equivalent to the equation $\sin x = 0$. Hence, due to the above note, the original equation has no solutions.

- **Ex.47** Solve the equation $\tan \left(x \frac{\pi}{4}\right) \tan x \tan \left(x + \frac{\pi}{4}\right) = \frac{4\cos^2 x}{\tan \frac{x}{2} \cot \frac{x}{2}}$
- **Sol.** The right-hand side of the equation is not determined for $x = k\pi$ and $x = \pi/2 + m\pi$, because for $x = 2l\pi$ the function cot x/2 is not defined, for $x = (2l\pi + 1)\pi$ the function tan x/2 is not defined and for $x = \pi/2 + m\pi$ the denominator of the right member of the right member vanishes. For $x \ne k\pi$ we have

$$\tan \frac{x}{2} - \cot \frac{x}{2} = \frac{\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2}}{\sin \frac{x}{2} \cos \frac{x}{2}} = -\frac{2\cos x}{\sin x}.$$

Hence, for $x \neq k\pi$ and $x \neq \frac{\pi}{2} + m\pi$ (where k and m are arbitrary integers) the right member of the equation is equal to $-2 \sin x \cos x$.

The left member of the equation has no sense for $x = \frac{\pi}{2} + k\pi$ and $x = \frac{\pi}{4} + \ell$. $\frac{\pi}{2}$ ($\ell = 0, \pm 1, \pm 2, ...$), and for all the other values of x it is equal to –tan x because

$$tan \ \left(x-\frac{\pi}{4}\right)tan\!\left(x+\frac{\pi}{4}\right) = tan\!\left(x-\frac{\pi}{4}\right)cot\!\left\lceil\frac{\pi}{2}-\!\left(x+\frac{\pi}{4}\right)\right\rceil = -tan\!\left(x-\frac{\pi}{4}\right)cot\!\left(x-\frac{\pi}{4}\right) = -1 \ .$$

Thus, if $x \neq k\pi$, $x \neq \frac{\pi}{2} + m\pi$ and $x \neq \frac{\pi}{4} + l\frac{\pi}{2}$, then the original equation is reduced to the form $\tan x = 2 \sin x \cos x$.

This equation has the roots $x=k\pi$ and $x=\frac{\pi}{4}+\ell\frac{\pi}{2}$ It follows that the original equation has no roots.

- **Ex.48** Solve the equation $8 \sin^6 x + 3 \cos 2x + 2 \cos 4x + 1 = 0$
- **Sol.** Applying the formulas $\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$ and $\cos 2\alpha = 2\cos^2\alpha 1$ we rewrite the equation in the form $(1-\cos 2x)^3 + 3\cos 2x + 2(2\cos^2 2x 1) + 1 = 0$,

or
$$7 \cos^2 2x - \cos^3 2x = 0$$
, whence $\cos 2x = 0$, $x = \frac{\pi}{4} + k \frac{\pi}{2}$.

Ex.49 Solve the equation $(1 + k) \cos x \cos(2x - \alpha) = (1 + k \cos 2x) \cos(x - \alpha)$

Sol. Let us rewrite the given equation in the form

$$(1 + k) \cos x \cos (2x - \alpha) = \cos (x - \alpha) + k \cos 2x \cos (x - \alpha).$$
(1)

We have
$$\cos x \cos (2x - \alpha) = \frac{1}{2} [\cos (3x - \alpha) + \cos (x - \alpha)]$$

and
$$\cos (x - \alpha) \cos 2x = \frac{1}{2} [\cos (3x - \alpha) + \cos (x + \alpha)],$$

and therefore equation (1) turns into k [$\cos (x - \alpha) - \cos (x + \alpha)$] = $\cos (x - \alpha) - \cos (3x - \alpha)$, that is k $\sin x \sin \alpha = \sin (2x - \alpha) \sin x$(2)

Equation (2) is equivalent to the following two equations;

(a)
$$\sin x = 0$$
; $x = I\pi$ and (b) $\sin (2x - \alpha) = k \sin \alpha$.

Thus,
$$x = \frac{\alpha}{2} + (-1)^n$$
, $\frac{1}{2}$ arc sin $(k \sin \alpha) + \frac{\pi}{2}$ n.

For the last expression to make sense, k and α must satisfy the condition $| k \sin \alpha | \le 1$.

Ex.50 Find all solutions of the equation $1 + (\sin x - \cos x) \sin \frac{\pi}{4} = 2 \cos^2 \frac{5}{2} x$,(1)

which satisfy the condition $\sin 6x < 0$(2)

Sol. Let us simplify the initial equation : $1 + (\sin x - \cos x) \sin \frac{\pi}{4}$

$$=2\cos^2\frac{5x}{2}\Leftrightarrow 1+(\sin x-\cos x)\,\frac{\sqrt{2}}{2}\qquad =1+\cos 5x\Leftrightarrow \cos 5x+\cos\left(x+\frac{\pi}{4}\right)=0,$$

$$2\cos\left(3x+\frac{\pi}{8}\right)\cos\left(2x-\frac{\pi}{8}\right)=0.$$

Thus initial equation (1) is equivalent to the equations $\cos\left(3x + \frac{\pi}{8}\right) = 0$, $\cos\left(2x - \frac{\pi}{8}\right) = 0$,(3)

whose roots are equal, respectively, to
$$x=\frac{\pi}{8}+\frac{\pi n}{3}$$
, $n\in Z$, $x=\frac{5\pi}{16}+\frac{\pi n}{2}$, $n\in Z$.

The least common multiple of the periods of the trigonometric functions entering into equation (1) and inequality (2) is equal to 2π . From the obtained solutions of the equation belonging to the interval

 $[0, 2\pi)$ the numbers $\frac{5\pi}{16}$ and $\frac{5\pi}{16}$ + π satisfy inequality (2). All the solutions of the problem can be

obtained by adding number, which are multiples of 2π , to each root obtained $x=\frac{5\pi}{16}+\pi k$ ($k\in Z$)

Ex.51 Solve the equation
$$(\cos x - \sin x) \left(2 \tan x + \frac{1}{\cos x} \right) + 2 = 0$$

Sol. We designate $t=\tan\frac{x}{2}$ and, using the formulas of the universal trigonometric substitution, write the equation in the form $\frac{3t^4+6t^3+8t^2-2t-3}{(t^2+1)(1-t^2)}=0$, its roots are $t_1=\frac{1}{\sqrt{3}}$, $t_2=-\frac{1}{\sqrt{3}}$. Thus the solution of the equation reduces that of two elementary equations $\tan\frac{x}{2}=\frac{1}{\sqrt{3}}$, $\tan\frac{x}{2}-\frac{1}{\sqrt{3}}$(1)

Verification shows that the numbers πn which are roots of the equation $\cos \frac{\pi}{2} = 0$, are not the roots of the given equation, and consequently, all solutions of the initial equation can be found as solutions of equation (1) $\Rightarrow x = \pm \frac{\pi}{3} + 2\pi k \quad (k \in Z)$.

- **Ex.52** Solve the equation, $5 \sin x + \frac{5}{2 \sin x} 5 = 2 \sin^2 x + \frac{1}{2 \sin^2 x}$ if $x \in (0, \pi)$.
- **Sol.** $5\left(\sin x + \frac{1}{2\sin x}\right) 5 = 2\left(\sin^2 x + \frac{1}{4\sin^2 x}\right) = 2\left(\left(\sin x + \frac{1}{2\sin x}\right)^2 1\right)$

Let $\sin x + \frac{1}{2\sin x} = t$ \Rightarrow $5t - 5 = 2(t^2 - 1) \Rightarrow 2t^2 - 5t + 3 = 0 \Rightarrow (2t - 3)(t - 1) = 0$

 \Rightarrow t = 1 or t = 3/2

If t = 1, $2 \sin^2 x - 2 \sin x + 1 = 0$ D < 0 no solution

If t = 3/2, $2 \sin^2 x - 3 \sin x + 1 = 0 \implies \sin x = 1$ or $\sin x = 1/2$

$$\therefore x = \frac{\pi}{2} \qquad \text{or } \frac{\pi}{6}, \frac{5\pi}{6} \implies x \in \left\{ \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6} \right\}$$

- **Ex.53** Solve $|\sin 3x + \sin x| + |\sin 3x \sin x| = \sqrt{3} \cdot -\frac{\pi}{2} < \theta < \frac{\pi}{2}$.
- **Sol.** $|\sin 3x + \sin x| = |2 \sin 3x \cos x| = \sin 3x + \sin x$, $0 \le x < \frac{\pi}{2}$

$$= -\sin 3x - \sin x$$
 , $-\frac{\pi}{2} < x < 0$

 $|\sin 3x - \sin x| = |2\cos 2x\sin x| = \sin 3x - \sin x \qquad , \qquad \left(0 \le x \le \frac{\pi}{4}\right) \cup \left(-\frac{\pi}{2} < x < -\frac{\pi}{4}\right)$

$$=-\sin 3x+\sin x \qquad , \qquad \left(\frac{\pi}{4}< x<\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{4}< x<0\right)$$

$$\Rightarrow |\sin 3x + \sin x| + |\sin 3x - \sin x| = 2\sin 3x = \sqrt{3} \quad 0 \le x \le \frac{\pi}{4} \Rightarrow 3x = np + (-1)^n \frac{\pi}{3}, \ x = \frac{\pi}{9}, \frac{2\pi}{9}$$

=
$$|\sin 3x + \sin x| + |\sin 3x - \sin x| = 2 \sin x = \sqrt{3} + \frac{\pi}{4} < x + \frac{\pi}{2} \Rightarrow x = n\pi + (-1)^n + \frac{\pi}{3} \Rightarrow x = \frac{\pi}{3}$$

As $|\sin 3x + \sin x| + |\sin 3x - \sin x|$ is even function hence $-\frac{2\pi}{9}, -\frac{\pi}{9}, -\frac{\pi}{3}$ will also satisfy it.

- **Ex.54** Find all the values of a for which every real root of the equation $\cos 3x = a \cos x + (4 2 |a|) \cos^2 x$ is a root of the equation $\cos 3x + \cos 2x = 2 \cos x \cos 2x - 1$ and vice versa.
- Sol. Put $\cos x = v$

We get,
$$4 y^3 - 3 y = a y + 2 (2 - |a|) y^2 \Rightarrow 4 y^3 - 2 (2 - |a|) y^2 - (a + 3) y = 0(1) & $4 y^3 - 3 y + 2 y^2 - 1 = 2 y (2 y^2 - 1) - 1 \Rightarrow 4 y^3 - 3 y + 2 y^2 - 1 = 4 y^3 - 2 y - 1 \Rightarrow 2 y^2 - y = 0(2)$$$

y = 0 and $\frac{1}{2}$ are the roots of the equation (2)

Now, we have to find the values of a for which equation (1) have the roots either y = 0, $y = \frac{1}{2}$

This is possible only when third root of the equation (1) is either y = 0, $\frac{1}{2}$ or |y| > 1

clearly y = 0 is a solution of equation (1) $(\because |\cos x| = |y| > 1)$ Now we will henceforth consider the equation $4y^2 - 2(2 - |a|)y - (a + 3) = 0$

One of the root of this equation must be $\frac{1}{2}$.

Substituting $y = \frac{1}{2}$ in to it, we find that $\frac{1}{2}$ is a root, when |a| = a + 4. Now for this value of a the

other root of the equation will be $y = -\frac{(a+3)}{3}$.

Now, value of a will be suitable in the following three cases:

Case I:
$$\frac{a+3}{2} = 0$$
, Case II: $\frac{a+3}{2} = \frac{1}{2}$, Case III: $\left| -\frac{a+3}{2} \right| > 1 \Rightarrow a = -3, a = -4, a < -5, -1 < a < 0.$

Ex.55 Let A and B be acute positive angles satisfying the equalities $3 \sin^2 A + 2 \sin^2 B = 1$;

3 sin 2A - 2 sin 2B = 0. Prove that A + 2B =
$$\frac{\pi}{2}$$
.

From the given relations we get $\sin 2B = \frac{3}{2} \sin 2A$, $3 \sin^2 A = 1 - 2 \sin^2 B = \cos 2B$, Sol.

hence cos (A + 2B) = cos A cos 2B - sin A sin 2B = cos A . 3 sin² A -
$$\frac{3}{2}$$
 sin A sin 2A = 0.

