Récursivité

· Définition: voir « Récursivité ».

ITI 1120 Module 11: Recursion

@2015 Diana Inkpen, University of Ottawa, All rights reserved

Objectives:

Definition and illustrations
Elements of a recursive function
recursion model
Examples

Sum of integers – the iterative method

Sum of integers numbers from 1 to N:

```
def Sum(int N):
    sum = 0
    for i in range(N):
        sum, = sum + i
    return sum
```

Recursion

- Recursion is a problem resolution technic. It involves a decomposion of a problem P in subproblems smaller and easier to solve.
- With the recursion the sub-problems are of the same type as the problem P, but in a simpler version.
- Example 1 of recursion (base case): what is the sum of numbers beween 1 and N?

1. Somme
$$(4) = 4 + Somme (3)$$

2. Somme
$$(3) = 3 + Somme (2)$$

3. Somme(2) =
$$2 + Somme(1)$$

Somme (N) =
$$\begin{cases} 1 & N = 1 \\ N + Somme (N-1) & N > 1 \end{cases}$$

Somme(N-1)

N

Example for Sum(3)

Recursion Steps

There are 3 composantes in the recursion:

- 1. A test to find out if the problem is simple enough to be solved directly (in a non recursive way): the base case.
- 2. the solution to the simple problem.
- 3. A solution to the problem that includes a solution to one (or more) smaller versions of the same problem or « general solution »

Recursion Model

Recursive functions

1. A recursive function is a function that calls itself!

2. A recursive function must have at least one outgoing condition that can be satisfied.

3. Omitting the base case can lead to an unlimited series of calls.

Recursion example

1. A recursive function is a function that calls itself!

2. A recursive function must have at least one outgoing condition that can be satisfied.

3. Omitting the base case can lead to an unlimited series of calls.