US Stock Performance Exploration and Prediction

Machine Learning driven approach to understand the factors affecting US Stock Markets

Ву:

Yash Mishra, Anirudh Pandey, Mithil Ghinaiya, Vraj Chokshi

Introduction

- Stock Markets are one of the most exciting and lucrative fields to study.
- We try to understand this dynamic and unpredictable chaos using machine learning models.
- We also explore if public opinion affects stocks.

Problem Statement

 Current year's financial information is used to predict. We later explore the affect of public sentiments.

- Predicting Class has two values: 0 and 1. '1' identifies stocks that one should BUY at the start of the year and sell at the end of the year for a profit.
- Correct prediction will help people allocate their finances better and earn more profits.

Data Set

 Kaggle-"Financial Indicators of US stocks (2014-2018)" 2014: 3808x225

Publicly traded company's yearly 10-K filings

2015: 4120x225 2016: 4797x225

 Five CSV files with 225 columns each. Total 22,077 rows

Past Work

- Nguyen et al. (2015) got 54% accuracy with SVM.
- Attigeri et al. (2015) got 70% accuracy with LR.
- Dang, Duong (2016) got 73% accuracy with SVM.
- But these works focus on few companies only. While we handle 4116 unique companies and 5 years of data.

1. Data Understanding and Cleaning

 Observed big outliers. Had to filter US companies using their ticker symbols.

- Outlier were treated.
 - Poor Results with: Winsorize, Log Transformation, 75-25 percentile, 90-10 percentile, IQR outlier treatment.
 - Anything beyond 2.5 SD unit was discarded.

1. Data Understanding and Cleaning

- Missing values had to be treated.
 - White space shows missing value.

 Columns with low variance were also removed

2. Exploratory Data Analysis

 Sector-wise analysis shows majority (59%) of the companies are profitable.

Class variable is not strongly correlated to any columns.

3. Important Features

 "Average Inventory" and "Earning Yields" identified as important by Lasso and Ridge Regression.

 Lasso and Ridge differ from the 3rd feature.

4. Data Preparation for Classification

- PCA done on normalized and standardized data.
 - Columns explain 95% variance
 - Classification done on both datasets.
- Train-Test split: 80-20
 - Validation data not used because outlier treatment removed many rows
 - 70-30, 75-25 split led to poor precision.

Variance explained after Standardization

Stand. Train Size	3581 x 69
Stand. Test Size	896 x 69
Norm. Train Size	3581 x 37
Norm. Test Size	896 x 37

4. Classification

- Metric: PRECISION: TP/(TP+FP)
 - It's okay if you don't get RICH.
 - Losing money is not acceptable.
 - Minimize FALSE-POSITIVES
- 10-fold CV done on training data for hyper parameter tuning.
- Standardization showed better results than normalization.

Models	Precision
Decision Tree	0.786
Random Forest	0.750
	0.700

5. Public Opinion Analysis

 We scrapped Tweets from 2014 to 2018 to find relation between public opinion and company's performance in the stock market.

Results

 Average Inventory and Earning Yields are important indicators of company's performance.

 Decision Tree model has the highest precision (0.786). But only 62% accuracy.

• Public Sentiment is a good but inconsistent indicator of company's stock performance.

FINAL THOUGHTS

 There is a reason why there is only one Warren Buffet.

- No ML model can always guarantee you profit.
- One needs to be wise about his investments.

