Московский государственный университет имени М. В. Ломоносова

Факультет Вычислительной Математики и Кибернетики Кафедра Математических Методов Прогнозирования

КУРСОВАЯ РАБОТА

«Исследование методов аугментации аудиоданных» «Research of audio data augmentation methods»

Выполнил:

студент 5 курса 517 группы Лукьянов Павел Александрович

Научный руководитель: д.ф-м.н., профессор

Дьяконов Александр Геннадьевич

Содержание

5	Заключение	17			
	4.2 Анализ полученных результатов	16			
	4.1 Результаты экспериментов	15			
4	ычислительные эксперименты				
3	Предлагаемые подходы к аугментации				
2	Существующие методы аугментации				
1	Введение	3			

Аннотация

В данной работе исследуются методы аугментации звуковых данных. На двух задачах аудиоклассификации проверяется эффективность как давно известных методов аугментации, так и предложенных в данной работе подходов. Результаты экспериментов показывают перспективность некоторых из предложенных методов.

1 Введение

Исследование методов аугментации очень актуально в настоящее время. Понятию аугментации сложно дать точное определение, в данной работе под ней будем понимать создание новых данных на основе уже имеющихся. С помощью аугментации можно существенно расширить объем обучающей выборки, что особенно хорошо в тех случаях, когда исходных данных не очень много. Применение аугментации способно повысить обобщающую способность модели.

Аугментация данных используется при решении многих задач глубинного обучения, связанных с обработкой изображений, текстов, звуковых данных. Классическим примером задачи, в которой используется аугментация, является задача классификации [2], [3]. Применение аугментации позволяет добиться лучшего качества в задаче автоматического распознавания речи [1].

В данной работе будем исследовать применение методов аугментации в задаче аудиоклассификации. Соответственно, аугментация будет применяться к звуковым данным, а именно к мел-спектрограммам [1], которые, в свою очередь, будут подаваться на вход нейронной сети как изображения.

Обычная спектрограмма получается после применения оконного преобразования Фурье к коротким кускам речевого сигнала. После же применения мел-фильтров к этой спектрограмме и получается мел-спектрограмма [8], в которой частота выражена в мелах.

В данной работе мел-спектрограммы нормализуются следующим образом:

 $value = \frac{value - mean}{std}$, где mean – математическое ожидание значений мелспектрограммы, std – стандартное отклонение.

Такая нормализация, в частности, важна для корректного обоснования некоторых методов аугментации, описанных в следующих разделах.

2 Существующие методы аугментации

В этом разделе представлены известные методы аугментации аудиоданных, которые будем исследовать и на основе которых будут предложены некоторые из новых подходов.

Здесь и далее считаем, что FreqSize — размерность мел-спектрограммы по частотной оси, TimeSize — размерность мел-спектрограммы по временной оси. S — матрица значений мел-спектрограммы.

Также введем матрицу M(I, J), где I, J - множества индексов:

$$M(I,J) = \{M(i,j)\} = egin{cases} 0, & (i,j) \in I \times J, \\ 1, & \text{иначе.} \end{cases}$$

Стоит рассматривать только случаи, когда в представленных ниже аугментациях значения t, f, shift ненулевые. В противном случае (t=0, или f=0, или shift =0) мел-спектрограмма никак не изменяется.

1. TimeMasking 1. [1]

 $t \sim U\{0,T\}, t_0 \sim U\{0, \text{TimeSize} - 1 - t\}, \, T$ - параметр аугментации.

В результате применения аугментации:

$$S \to S \cdot M(\{0, \dots, \text{FreqSize} - 1\}, \{t_0, \dots, t_0 + t - 1\})$$

Рис. 1: TimeMasking

2. FreqMasking 2. [1]

 $f \sim U\{0,F\} f_0 \sim U\{0, {\rm FreqSize} - 1 - f\}, \ F$ - параметр аугментации.

В результате применения аугментации:

$$S \to S \cdot M(\{f_0, \dots, f_0 + f - 1\}, \{0, \dots, \text{TimeSize} - 1\})$$

3. Noise 3. [2]

К каждому значению в мел-спектрограмме добавляется $g \sim N(0, \sigma)$ (для каж-

Рис. 2: FreqMasking

дого значения мел-спектрограммы генерируется свое g), где σ - параметр ауг-ментации (в данной работе $\sigma=0.01$).

Рис. 3: Noise

4. TimeShift 4. [2]

Сдвигаем все значения мел-спектрограммы относительно временной оси влево или вправо на |shift|, где $\text{shift} \sim U\{-\text{max_shift}, \text{max_shift}\}$, max_shift - параметр аугментации. Направление сдвига определяется знаком shift: если shift > 0, происходит сдвиг вправо, если shift < 0 - влево. Пустая область, образующаяся в результате сдвига, заполняется нулями.

5. RandomErasing 5. [3] Случайное вырезание прямоугольника в мел-спектрограмме. $t \sim U\{0,T\}, t_0 \sim U\{0, \text{TimeSize} - t - 1\},$

Рис. 4: TimeShift

 $f \sim U\{0, F\}, f_0 \sim U\{0, \text{FreqSize} - f - 1\}, T, F$ - параметры аугментации.

В результате применения аугментации:

$$S \to S \cdot M(\{f_0, \dots, f_0 + f - 1\}, \{t_0, \dots, t_0 + t - 1\})$$

Рис. 5: RandomErasing

Стоит отметить, что в связи с нормализацией мел-спектрограммы замена некоторых значений на 0 в результате применения аугментации – это замена на математическое ожидание [1].

3 Предлагаемые подходы к аугментации

Ниже представлены предлагаемые возможные подходы к аугментации звуковых данных:

1. FreqShift 6.

Аналог TimeShift, только теперь сдвиг происходит относительно частотной оси. shift $\sim U\{-\text{max_shift}, \text{max_shift}\}$, max_shift - параметр аугментации. Направление сдвига определяется знаком shift: если shift >0, происходит сдвиг вниз, если shift <0 - вверх. Пустая область, образующаяся в результате сдвига, заполняется нулями.

Рис. 6: FreqShift

2. TimeNoising 7.

 $t \sim U\{0,T\}, t_0 \sim U\{0, {\rm TimeSize} - t - 1\}, \, T$ - параметр аугментации.

Ко всем значениями мел-спектрограммы, индексы которых принадлежат множеству $\{0,\ldots,\mathrm{FreqSize}-1\}\times\{t_0,\ldots,t_0+t-1\}$, добавляется значение $g\sim N(0,\sigma)$ (для каждого значения мел-спектрограммы генерируется свое g), где σ - параметр аугментации (в данной работе $\sigma=0.1$). Идея метода заключается в том, чтобы зашумлять не всю мел-спектрограмму, а только отдельные ее участки.

3. FreqNoising 8.

 $f \sim U\{0,F\}, f_0 \sim U\{0,FreqSize-f-1\}, \ F$ - параметр аугментации.

Ко всем значениями мел-спектрограммы, индексы которых принадлежат множеству $\{f_0,\ldots,f_0+f-1\}\times\{0,\ldots,\mathrm{TimeSize}-1\}$, добавляется значение $g\sim N(0,\sigma)$ (для каждого значения мел-спектрограммы генерируется свое g), где σ - параметр аугментации (в данной работе $\sigma=0.1$).

Рис. 7: TimeNoising

Рис. 8: FreqNoising

4. TimeCycleShift 9.

Циклический сдвиг всех значений мел-спектрограммы относительно временной оси влево или вправо на |shift|, где $\text{shift} \sim U\{-\text{max_shift}, \text{max_shift}\}$, max_shift - параметр аугментации. Направление сдвига выбирается так же, как и в TimeShift.

5. FreqCycleShift 10.

Циклический сдвиг всех значений мел-спектрограммы относительно частотной оси вверх или вниз на |shift|, где $\text{shift} \sim U\{-\text{max_shift}, \text{max_shift}\}$, max_shift - параметр аугментации. Направление сдвига выбирается так же, как и в FreqShift.

Рис. 9: TimeCycleShift

Рис. 10: FreqCycleShift

6. TimeSpecialShift 11.

Сдвиг всех значений мел-спектрограммы относительно временной оси влево или вправо на |shift|, где $\text{shift} \sim U\{-\text{max_shift}, \text{max_shift}\}$, max_shift - параметр аугментации. Направление сдвига выбирается так же, как и в TimeShift. Пустая область, образующаяся в результате сдвига, заполняется значениями из исходной спектрограммы S[0:FreqSize-1;0:|shift|-1] в случае сдвига вправо или S[0:FreqSize-1;TimeSize-|shift|:TimeSize-1] в противном случае. Идея метода заключается в том, чтобы пустой участок, образующийся в результате сдвига, заполнять не нулями, а значениями из соседнего участка.

7. FreqSpecialShift 12.

Сдвиг всех значений мел-спектрограммы относительно частотной оси вверх или

Рис. 11: TimeSpecialShift

вниз на |shift|, где $\text{shift} \sim U\{-\text{max_shift}, \text{max_shift}\}$, max_shift - параметр аугментации. Направление сдвига выбирается так же, как и в FreqShift. Пустая область, образующаяся в результате сдвига, заполняется значениями из исходной спектрограммы S[0:|shift|-1;0:TimeSize-1] в случае сдвига вниз или S[FreqSize-|shift|:FreqSize-1;0:TimeSize-1] в противном случае.

Рис. 12: FreqSpecialShift

8. TimeSwapAugmentation 13.

 $t \sim U\{0,T\}, t_0 \sim U\{t, \text{TimeSize} - 1 - t\}, \, T$ - параметр аугментации.

В результате применения аугментации:

 $S[0:\operatorname{FreqSize}-1;t_0:t_0+t-1] \leftrightarrow S[0:\operatorname{FreqSize}-1;t_0-t:t_0-1]$

Идея метода заключается в перестановке соседних участков.

Рис. 13: TimeSwapAugmentation

9. FreqSwapAugmentation 14. $f \sim U\{0, F\}, f_0 \sim U\{f, \text{FreqSize}-1-f\}, F$ - параметр аугментации.

В результате применения аугментации:

$$S[f_0:f_0+f-1;0:\mathsf{TimeSize}-1] \leftrightarrow S[f_0-f:f_0-1;0:\mathsf{TimeSize}-1]$$

Рис. 14: FreqSwapAugmentation

10. TimeReplyMasking 15.

 $t \sim U\{0,T\}, t_0 \sim U\{t, \mathrm{TimeSize} - 1 - 2t\},\, T$ - параметр аугментации.

Участок $S[0:{\it FreqSize}-1;t_0:t_0+t-1]$ заменяется на один из участков

 $S[0: {\rm FreqSize}-1, t_0-t: t_0-1], S[0: {\rm FreqSize}-1; t_0+t: t_0+2t-1]$ в зависимости от направления. Направление выбирается с вероятностью 0.5. Идея метода похожа на идею в TimeSpecialShift.

Рис. 15: TimeReplyMasking

11. FreqReplyMasking 16.

 $f \sim U\{0,F\}, f_0 \sim U\{f, {\rm FreqSize}-1-2f\}, \ F$ - параметр аугментации. Участок $[f_0:f_0+f-1;0:{\rm TimeSize}-1]$ заменяется на один из участков $[f_0-f:f_0-1;0:{\rm TimeSize}-1], [f_0+f:f_0+2f-1;0:{\rm TimeSize}-1]$ в зависимости от направления. Направление выбирается с вероятностью 0.5.

Рис. 16: FreqReplyMasking

12. TimeRandomSwap 17.

 $t\sim U\{0,T\}, t_1\sim U\{t, {\rm TimeSize}-1-t\}, t_2\sim U\{t, {\rm TimeSize}-1-t\}, |t_1-t_2|>=t,$ T - параметр аугментации.

В результате применения аугментации:

 $S[0:\operatorname{FreqSize}-1;t_1:t_1+t-1] \leftrightarrow S[0:\operatorname{FreqSize}-1;t_2:t_2+t-1]$

Идея метода заключается в перестановке произвольных участков.

Рис. 17: TimeRandomSwap

13. FreqRandomSwap 18.

$$f \sim U\{0,F\}, f_1 \sim U\{f, \text{FreqSize}-1-f\}, f_2 \sim U\{f, \text{FreqSize}-1-f\}, |f_1-f_2|>=f,$$
 F - параметр аугментации.

В результате применения аугментации:

$$S[f_1:f_1+f-1;0:\text{TimeSize}-1]\leftrightarrow S[f_2:f_2+f-1;0:\text{TimeSize}-1].$$

Рис. 18: FreqRandomSwap

4 Вычислительные эксперименты

Методы аугментации будем анализировать применительно к задачам аудиоклассификации. Для этой цели будем использовать 2 набора данных: AudioMnist [7] и HeartBeatSounds [6]. Датасет AudioMnist состоит из 3000 записей (файлов формата .wav), на которых некоторый человек произносит одну из 10 цифр. Соответственно, задача классификации заключается в том, чтобы определить какую конкретно цифру произносит человек на записи.

Датасет HeartBeatSounds представляет собой записи звуков сердцебиения (656 файлов формата .wav). Задача - определить, к какому из 3 типов относятся звуки на записи: normal, murmur, extrastole.

В этих двух датасетах оставим только те записи, длина которых больше некоторого порогового значения. Из оставшихся файлов в каждом датасете извлекаем фиксированные по длине куски записи. Это необходимо для того, чтобы мелспектрограммы были одного размера.

Для решения задач классификации будем использовать нейронные сети архитектур resnet18 и resnet50 и алгоритм оптимизации Adam. Нейронная сеть будет обучаться 75 эпох в случае AudioMnist и 70 эпох в случае HeartBeatSounds. Функция потерь - кросс-энтропия.

В данной работе значения параметров F и T для всех типов аугментаций, где используются эти параметры, считаем равными $0.1 \cdot \text{FreqSize} - 1$ и $0.1 \cdot \text{TimeSize} - 1$ соответственно. Параметр max_shift будем считать равным $0.1 \cdot \text{FreqSize} - 1$ в случае сдвигов относительно частотной оси и $0.1 \cdot \text{TimeSize} - 1$ в случае сдвигов относительно временной оси.

Для оценивания качества классификации будем использовать Accuracy – долю верно классифицированных объектов.

Датасеты разбиваются на train_0 и test в отношении 4:1. train_0, в свою очередь, разбивается на train и valid в том же отношении. Обучение происходит на выборке train. После обучения берется лучший по Ассигасу результат на валидационной выборке valid и считается Ассигасу на тестовой выборке test. Именно по Ассигасу на тестовой выборке будем оценивать эффективность методов аугментации.

Датасеты разбиваются на train, valid и test при 5 разных фиксированных random_seed. Результаты, соответственно, усредняются. В процессе обучения аугментация применяется к каждому сэмплу в каждом батче.

4.1 Результаты экспериментов

Результаты экспериментов представлены в таблице 1. В ней используются следующие сокращения:

R18 = resnet18

R50 = resnet50

AM = AudioMnist

HB = HeartBeatSounds

Метод аугментации	R18 + AM	R18 + HB	R50 + AM	R50 + HB
No Augmentation	0.954 ± 0.01	0.83 ± 0.016	0.953 ± 0.009	$\textbf{0.824}\pm\textbf{0.018}$
TimeMasking	0.952 ± 0.006	0.829 ± 0.014	0.956 ± 0.006	0.826 ± 0.007
FreqMasking	0.952 ± 0.004	0.829 ± 0.014	0.957 ± 0.004	0.825 ± 0.013
Noise	0.958 ± 0.006	0.837 ± 0.009	0.951 ± 0.009	0.821 ± 0.015
RandomErasing	0.962 ± 0.005	0.823 ± 0.01	0.951 ± 0.01	0.817 ± 0.013
TimeShift	0.961 ± 0.006	0.866 ± 0.014	0.957 ± 0.003	0.863 ± 0.015
FreqShift	0.937 ± 0.013	0.818 ± 0.01	0.939 ± 0.013	0.821 ± 0.01
TimeNoising	0.96 ± 0.003	0.818 ± 0.01	0.956 ± 0.008	0.816 ± 0.018
FreqNoising	0.957 ± 0.004	0.829 ± 0.013	0.952 ± 0.01	0.823 ± 0.019
TimeCycleShift	0.962 ± 0.006	0.87 ± 0.01	0.956 ± 0.014	0.872 ± 0.017
FreqCycleShift	0.937 ± 0.013	0.819 ± 0.004	0.929 ± 0.018	0.818 ± 0.017
TimeSpecialShift	0.953 ± 0.011	0.865 ± 0.011	0.952 ± 0.006	0.858 ± 0.015
FreqSpecialShift	0.942 ± 0.006	0.821 ± 0.011	0.943 ± 0.007	0.835 ± 0.007
TimeSwapAugmentation	0.957 ± 0.009	0.835 ± 0.015	0.95 ± 0.011	0.833 ± 0.015
FreqSwapAugnentation	0.952 ± 0.006	0.812 ± 0.016	0.953 ± 0.008	0.828 ± 0.019
TimeReplyMasking	0.957 ± 0.006	0.834 ± 0.017	0.953 ± 0.006	0.826 ± 0.022
FreqReplyMasking	0.959 ± 0.008	0.819 ± 0.016	0.953 ± 0.006	0.815 ± 0.01
TimeRandomSwap	0.96 ± 0.003	0.835 ± 0.008	0.96 ± 0.005	0.823 ± 0.021
FreqRandomSwap	0.957 ± 0.005	0.822 ± 0.009	0.947 ± 0.007	0.828 ± 0.007

Таблица 1: Результаты экспериментов

4.2 Анализ полученных результатов

Стоит отметить, что в данных экспериментах аугментация применяется не очень агрессивно. Вероятно, увеличение значений параметров аугментаций позволило бы улучшить результаты. Также стоит сказать, что в некоторых случаях с применением аугментаций моделе требуется большее количество эпох, в данной работе число эпох фиксировано.

Полученные результаты показывают:

- Сдвиги относительно частотной оси (FreqShift, FreqCycleShift, FreqSpecialShift) показали плохие результаты, приводящие почти во всех случаях к ухудшению качества.
- Некоторые аугментации (например, TimeNoising) привели к улучшению качества на одном датасете (AudioMnist), но в то же время привели к значительному снижению качества на другом датасете (HeartBeatSounds).
- Сдвиги относительно временной оси (TimeShift, TimeCycleShift, TimeSpecialShift) показали хорошие результаты, особенно на датасете HeartBeatSounds. Однако TimeSpecialShift проигрывает в результатах обычному TimeShift, поэтому TimeSpecialShift, на мой взгляд, не является достаточно перспективным для дальнейших исследований. Метод же TimeCycleShift проявил себя лучше остальных в данных экспериментах.
- Методы TimeSwapAugmentation, TimeReplyMasking, TimeRandomSwap оказались достаточно стабильными в данных экспериментах. Поэтому они являются перспективными для дальнейших исследований.
- Остальные методы аугментации, которые не упоминались выше, не привели к стабильным результатам, что, впрочем, не ставит крест на них, поскольку среди этих методов есть известные методы аугментации, активно использующиеся в настоящее время. Все известные подходы к аугментации, за исключением TimeShift, не показали хороших результатов в данных экспериментах.

5 Заключение

В процессе выполнения работы получены следующие результаты:

- Предложены и реализованы подходы к аугментации аудиоданных.
- Проведены вычислительные эксперименты, показывающие эффективность некоторых из предложенных подходов.
- На основании результатов экспериментов сделан вывод о том, что методы TimeCycleShift, TimeSwapAugmentation, TimeReplyMasking, TimeRandomSwap являются наиболее перспективными для дальнейших исследований.

Список литературы

- Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin
 D. Cubuk, Quoc V. Le. SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. 2019.
- [2] Steffen Illium, Robert Muller, Andreas Sedlmeier and Claudia Linnhoff-Popien. Surgical Mask Detection with Convolutional Neural Networks and Data Augmentations on Spectrograms. 2020.
- [3] Haiwei Wu, Lin Zhang, Lin Yang, Xuyang Wang, Junjie Wang, Dong Zhang, Ming Li. Mask Detection and Breath Monitoring from Speech: on Data Augmentation, Feature Representation and Modeling. 2020.
- [4] Sarala Padi, Dinesh Manocha, Ram D.Sriram. Multi-Window Data Augmentation Approach for Speech Emotion Recognition. 2020.
- [5] Yeongtae Hwang, Hyemin Cho, Hongsun Yang, Dong-Ok Won, Insoo Oh, and Seong-Whan Lee. Mel-spectrogram augmentation for sequence-to-sequence voice conversion. 2020.
- [6] Heartbeat Sounds. Classifying heartbeat anomalies from stethoscope audio. https://www.kaggle.com/kinguistics/heartbeat-sounds
- [7] Audio MNIST.

 https://www.kaggle.com/alanchn31/free-spoken-digits
- [8] https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html