

Exercício

Seja (G, um grupo com elemento neutro e.)

- (a) Prove que se $x^2 = e$, para todo $x \in G$, então G é um grupo abeliano.
- (b) Mostre que se $\underline{x} \in \underline{G}$ é tal que $\underline{x}^2 = \underline{x}$, então \underline{x} é o elemento neutro.

$$-xy=yx$$
, $\forall x,y \in G$.

Solvao:

a) SETAM X, Y & G. como

(x,y) = C

X+Y+G, PEIA HIPOTESE TEMOS

$$A = (X_{x} y) = (X_{x} y) \times (X_{x} y)$$

$$A = 0$$

(Xxy) < (xxy) = C

(xxy) (xxy) xy = Cxy

 $(\checkmark \chi)$

(Xxy)xxxc=y

(xxy) xx = y

$$(\chi_{\star}y)_{\star}(\chi_{\star}\chi) = y_{\star}\chi$$

(Xxy) C = Yxx

Xx y = yx X PORTANTO, 6 É UM GRUPO ABE.

SETA $\chi^{-1}eG$ o INVERSO DE γ .

ASSIM $(X \times X) \times X_{-7} = X \times X_{-7}$ Xxe= e LOGO, X=C, como Que nimos. #