```
Copyright 1985-2017 StataCorp LLC
                                15.1
  Statistics/Data Analysis
                                       StataCorp
                                     4905 Lakeway Drive
                                     College Station, Texas 77845 USA
                                     800-STATA-PC
                                                            http://www.stata.com
                                     979-696-4600
                                                            stata@stata.com
                                     979-696-4601 (fax)
Single-user Stata perpetual license:
      Serial number: 301506228769
        Licensed to: Luca Tiberti
                      PEP
Notes:
     1. Unicode is supported; see help unicode_advice .
running c:\ado\personal\profile.do ...
. doedit "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_sem
> aines 10-11\versions\BLOC4_COPY2.do"
. do "C:\Users\lutib\AppData\Local\Temp\STD2dd8_000000.tmp"
. // EXERCICE 1
. // Q1
. clear
. input w_1 w_2 w_3
          w_1
                     w_2
                               w_3
 1.2
        10
            6
  2.4
         6
              0
 3.8
            12
         8
 4.6
         6
              8
 5. 14 10
              4
 6.12
              6
  7. end
. gen poor_union = (w_1<7) \mid (w_2<7) \mid (w_3<7)
. mean poor_union
Mean estimation
                                 Number of obs
                     Mean Std. Err.
                                         [95% Conf. Interval]
                 .8333333
                           .1666667
                                            .404903
                                                        1.261764
 poor_union
```

. imdp_uhi w_1 w_2 w_3, pl1(7) pl2(7) pl3(7)

M.D. Poverty index : Union headcount index

	Estimate	STE LB		UB
Population	0.833	0.167	0.497	1.169

. // Q2

. gen poor_inter = $(w_1<7)$ & $(w_2<7)$ & $(w_3<7)$

. mean poor_inter

Mean estimation

Number of obs =

6

	Mean	Std. Err.	[95% Conf.	Interval]
poor_inter	.1666667	.1666667	2617636	.595097

. imdp_ihi w_1 w_2 w_3, pl1(7) pl2(7) pl3(7)

M.D. Poverty index : Intersection headcount index

	Estimate	STE	LB	UB
Population	0.167	0.167	-0.169	0.503

. // Q3

. /*

> The intersection headcount index is more sensitive, since we count only those with fu > 11 multiple deprivations.

> */

. . . .

. // Q4

. gen dep_1 = $(w_1<7)$

. gen dep_2 = $(w_2<7)$

. gen dep_3 = $(w_3<7)$

. egen sum_dep = rowtotal(dep_*)

. gen af_poor = (sum_dep>=2)

. gen $w_af_poor = (sum_dep /3)* af_poor$

. /* Alkire and Foster HO and MO */
. mean af_poor w_af_poor

Mean estimation Number of obs =

	Mean	Std. Err.	[95% Conf.	Interval]
af_poor	.5	.2236068	0747996	1.0748
w_af_poor	.3888889	.1808758	0760671	.8538449

. // Q5

. imdp_afi w_1 w_2 w_3, dcut(2) w1(1) p11(7) w2(1) p12(7) w3(1) p13(7)

Alkire and Foster (2007) MDP indices

The relative contribution of dimensions to the Alkire and Foster (2007) MDP indices estimated at population level (results in %).

Dimensions	MO	M1	M2
w_1	42.86	47.37	40.23
	5.48	17.81	26.07
w_2	28.57	10.53	2.30
	11.40	5.90	1.49
w_3	28.57	42.11	57.47
	11.40	16.96	25.91

.

. // Q6

.

```
. gen poor_union_targ1 = (w_1+2<7) | (w_2<7) | (w_3<7)
```

- . gen poor_union_targ2 = $(w_1<7)$ | $(w_2+2<7)$ | $(w_3<7)$
- . gen poor_union_targ3 = $(w_1<7)$ | $(w_2<7)$ | $(w_3+2<7)$

- . gen poor_inter_targ1 = $(w_1+2<7)$ & $(w_2<7)$ & $(w_3<7)$
- . gen poor_inter_targ2 = $(w_1<7)$ & $(w_2+2<7)$ & $(w_3<7)$
- . gen poor_inter_targ3 = $(w_1<7)$ & $(w_2<7)$ & $(w_3+2<7)$

. mean poor_union*

Mean estimation

Number of obs =

	Mean	Std. Err.	[95% Conf.	Interval]
poor_union	.8333333	.1666667	.404903	1.261764
poor_union_targ1	.8333333	.1666667	.404903	1.261764
poor_union_targ2	.8333333	.1666667	.404903	1.261764
poor_union_targ3	.6666667	.2108185	.1247404	1.208593

. mean poor_inter*

Mean estimation

Number of obs =

	Mean	Std. Err.	[95% Conf.	Interval]
poor_inter poor_inter_targ1 poor inter targ2	.1666667 .1666667	.1666667 .1666667	2617636 2617636	.595097
poor_inter_targ3	.1666667	.1666667	2617636	.595097

. /* With the union approach, we focus in less deprived individuals (the case of indiv > idual number 6, the is only deprived in dimension 3) */

. /* With the intersection approach, we focus in $\ensuremath{\text{we}}$ focus in most deprived individuals > (the case of individual number 3, and we target the dimension 2) */

. // EXERCICE 2

. // Q1

```
. clear
. input w_1 w_2 w_3
          w_1
                               w_3
                     w_2
 1. 2
        10
             6
  2.4
         6
              0
 3.8
         8
              12
 4.6
         6
              8
 5.14 10
              4
 6.12
              6
 7. end
. cap drop ngap*
. gen ngap1 = (7-w_1)/7*(7>w_1)
. gen ngap2 = (7-w_2)/7*(7>w_2)
. gen ngap3 = (7-w_3)/7*(7>w_3)
. gen pi = ((1/3)*ngap1^1 + (1/3)*ngap2^1 + (1/3)*ngap3^1)^(1/1)
. if ngap1==0 \& ngap2==0 \& ngap3==0 replace pi=0
. qui sum pi
. scalar BC_0 = r(mean)'
. dis "The B&C index = " \%6.3f BC_0
The B&C index = 0.183
. // Q2
. imdp_bci w_1 w_2 w_3, alpha(1) gamma(1) b1(0.3333333) p11(7) b2(0.3333333) p12(7) b3(
> 0.3333333) pl3(7)
   M.D. Poverty index : Bourguignon and Chakravarty (2003)
                    Estimate
                                        STE
                                                        LB
                                                                        UB
Population
                         0.183
                                          0.079
                                                           0.023
                                                                           0.342
```

```
. // Q3
. gen nw_1 = (w_1+ w_2+w_3)/3
. gen nw_2 = (w_1+ w_2+w_3)/3
```

```
. gen nw_3 = (w_1 + w_2 + w_3)/3

. imdp_bci nw_1 nw_2 nw_3, alpha(1) gamma(1) b1(0.3333333) pl1(7) b2(0.3333333) pl2(7)

> b3(0.3333333) pl3(7)
```

M.D. Poverty index : Bourguignon and Chakravarty (2003)

	Estimate	STE	LB	UB
Population	0.119	0.084	-0.050	0.288

```
. /*
> The BC index decreases because the expenditure share of each dimension of each indiv
> idual (1/3)
> matches with the normative imposed expenditure shares (the parameter beta = 1/3).
  Thus, the generated utility is high and gap is low.
. // Q4
. gen b1=w_1/(w_1+w_2+w_3)
. gen b2=w_2/(w_1+w_2+w_3)
. gen b3=w_3/(w_1+w_2+w_3)
. replace pi = (b1*ngap1^1 + b2*ngap2^1 + b3*ngap3^1)^(1/1)
(5 real changes made)
. qui sum pi
. scalar BC_0 = r(mean)'
. dis "The B&C index = " %6.3f BC_0
The B&C index = 0.094
. /*
> The BC index decreases because now the beta parameters of each individual matches wi
> th their observed expenditure shares
> and this optimizes the utility.
> */
end of do-file
. do "C:\Users\lutib\AppData\Local\Temp\STD2dd8_000000.tmp"
. // EXERCICE 3
. // Q1
end of do-file
```

- . use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_semain > es 10-11\versions\Canada_Incomes&Taxes_1996_2005_random_sample_2.dta", clear (Enquete sur la dynamique du travail et du revenu, 1996: FAMILLES ECONOMIQUES (FE) . do "C:\Users\lutib\AppData\Local\Temp\STD2dd8_000000.tmp" . preserve . keep if year==2005 (91,629 observations deleted) . #delimit ; delimiter now; . cnpe T B N, xvar(X) hsize(hhsize) type(dnp) min(1000) max(31000) > title(Marginal rates of taxes and benefits) > subtitle(Canada 2005) > xtitle(Gross income) > ytitle(Estimated marginal rates) . #delimit cr delimiter now cr . restore . // Q2 . preserve . keep if year==1999
- . digini X N, hs(hhsize)

(90,975 observations deleted)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
GINI_Dis1 GINI_Dis2	.4526402 .3369835	.0058429	77.4684 75.5907	0.0000	.4411868 .3282448	.4640936 .3457222
diff.	1156568	.0036534	-31.6573	0.0000	1228183	1084953

. restore

. preserve

. keep if year==2002
(91,198 observations deleted)

. digini X N, hs(hhsize)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
GINI_Dis1 GINI_Dis2	.4438926 .3412446	.0062677 .0061853	70.8222 55.1703	0.0000	.4316064 .32912	.4561788 .3533692
diff.	102648	.0041571	-24.6922	0.0000	1107969	0944991

. restore

. preserve

. keep if year==2005 (91,629 observations deleted)

. digini X N, hs(hhsize)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. In	nterval]
GINI_Dis1 GINI_Dis2	.4497718 .3537501	.0055075	81.6653 63.1426	0.0000	.4389757 .342768	.4605679 .3647322
diff.	0960217	.0037898	-25.3369	0.0000	1034506	0885928

. restore

. // Q3

. iprog T, ginc(X) hsize(hhsize) gobs(year) type(t) index(ka)

Index : Kakwani progressivity index

Gross income variable : ${\tt X}$ Household size : hhsize : sweight Sampling weight gobs variable : year

	gobs	Estimate	STE	LB	UB
1993		0.061372	0.003533	0.054447	0.068297
1994		0.075898	0.003858	0.068335	0.083462
1996		0.095611	0.003406	0.088934	0.102287
1997		0.089836	0.005535	0.078985	0.100687
1998		0.101021	0.004634	0.091938	0.110104
1999		0.115967	0.004124	0.107883	0.124051
2000		0.105970	0.003623	0.098869	0.113071
2002		0.111361	0.005013	0.101536	0.121187
2003		0.111909	0.003289	0.105462	0.118356
2004		0.113497	0.003507	0.106623	0.120371
2005		0.124771	0.003457	0.117994	0.131548

. // Q4

. preserve

. keep if year==2005 (91,629 observations deleted)

. cprog T, rank(X) hsize(X) type(t) appr(tr) (8,371 real changes made)

(7,831 real changes made)

. restore

. // Q5

. preserve

. keep if year==2005

(91,629 observations deleted)

. iprog T, ginc(X) hsize(hhsize) gobs(province) type(t) index(ka)

Index : Kakwani progressivity index

Gross income variable : X

: hhsize : sweight : province Household size Sampling weight gobs variable

>	qobs	Estimate	STE	LB	
> UB					
>					
Newfoundland		0.102952	0.008571	0.086095	0.
> 119809					
Prince_Edward_Is	sland	0.087415	0.011291	0.065166	0.
> 109663					
Nova_Scotia		0.105938	0.008141	0.089945	0.
> 121931	ı				
New_Brunswick		0.102859	0.009680	0.083838	0.
> 121880	1				_
Quebec		0.130415	0.006498	0.117668	0.
> 143161	I	0 100550	0.00000	0 116560	•
Ontario		0.128550	0.006008	0.116769	0.
> 140331 Manitoba		0.104015	0.010400	0.083589	0.
> 124441		0.104015	0.010400	0.063369	0.
Saskatchewan		0.103237	0.007024	0.089444	0.
> 117030		01103237	0.00,021	0.003111	••
Alberta		0.127118	0.008994	0.109463	0.
> 144772	l				
British_Columbia	ı	0.145633	0.008678	0.128598	0.
> 162669	I I				
	1				

. igini X, hs(hhsize) hg(province)

Index : Gini index Household size : hhsize Sampling weight : sweight Group variable : province

> > UB	Group	Estimate	STE	LB
>		0.475471 0.424665	0.018922	0.438379

> 0.470484				
3: Nova_Scotia		0.452575	0.015920	0.421368
> 0.483782	·			
4: New_Brunswick		0.455956	0.016077	0.424441
> 0.487470				
5: Quebec		0.438884	0.010564	0.418176
> 0.459591				
6: Ontario		0.450969	0.009944	0.431477
> 0.470461				
7: Manitoba		0.398881	0.014726	0.370014
> 0.427748				
8: Saskatchewan		0.449735	0.014310	0.421684
> 0.477787				
9: Alberta		0.440282	0.015486	0.409927
> 0.470638	1			
10: British_Columbia		0.439922	0.013535	0.413389
> 0.466455				
>	I			
Population		0.449772	0.005507	0.438976
> 0.460568	·			

. restore

. /*

> The highest inequality in Gross incomes in 2005 was in Newfoundland.
> The highest progressivity in Taxes in 2005 was in British_Columbia.
> */

end of do-file