Clase Lase Algebra de Funciones

Las funciones tienen lógicamente la posibilidad de operarse entre ellas.

Las operaciones que conocemos de la aritmética son:

- 1. Suma
- 2. Diferencia
- 3. Multiplicación
- 4. División

Las funciones se pueden operar a través de estas operaciones.

Ejemplo 1:

Dadas las funciones $f(x) = x^2 y g(x) = x + 1$. Determinar:

- 1. Suma
- 2. Diferencia
- 3. Multiplicación
- 4. División

Solución

Se hacen las siguientes operaciones

$$f(x) = x^2 \mathbf{y} g(x) = x + 1$$

O Suma: $f(x) + g(x) = x^2 + x + 1$

O Diferencia:

$$f(x) - g(x) = x^2 - (x+1)$$

= $x^2 - x - 1$

O Multiplicación:

$$f(x) \cdot g(x) = x^{2}(x+1)$$
$$= x^{3} + x^{2}$$

O División:
$$\frac{f\left(x\right)}{g\left(x\right)} = \frac{x^2}{x+1}$$

Ejemplo 2:

Dadas las funcines $f(x) = x^3 - 1$ y g(x) = x + 1. Determinar:

- 1. Suma
- 2. Diferencia
- 3. Multiplicación
- 4. División

Solución

Se hacen las siguientes operaciones

$$f(x) = x^3 - 1 \mathbf{y} g(x) = x + 1$$

O Suma:

$$f(x) + g(x) = x^3 - 1 + x + 1$$

= $x^3 + x$

O Diferencia:

$$f(x) - g(x) = x^{3} - 1 - (x+1)$$

$$= x^{3} - 1 - x - 1$$

$$= x^{3} - x - 2$$

O Multiplicación:

$$f(x) \cdot g(x) = (x^3 - 1)(x + 1)$$

= $x^4 + x^3 - x - 1$

O División: $\frac{f(x)}{g(x)} = \frac{x^3 - 1}{x + 1}$

Ejercicios

- 1. En los siguientes ejercicios defina f + g, f g, $f \times g$ y $f \div g$
 - a) f(x) = x 5 y $g(x) = x^2 1$
 - **b)** $f(x) = \sqrt{x} \mathbf{y} g(x) = x^2 + 1$
 - c) $f(x) = \sqrt{x-4}$ y $g(x) = x^2 4$

12.1 Composición de Funciones

La composición de funciones es una de las operaciones de las funciones, en la cual dados f(x) y g(x), se define la composición como f(g(x)) o $(f \circ g)(x)$ en donde el argumento de f es sustituido por la función g(x).

Ejemplo 3:

Determinar la función resultante de f(g(x)) si $f(x) = \sqrt{x}$ y $g(x) = 25 - x^2$

Solución

Se procede a realizar

$$f\left(x\right) = \sqrt{x}$$

luego

$$f\left(g\left(x\right)\right) = \sqrt{25 - x^2}$$

Determinar el dominio:

- O El dominio de la función f se define para los $x \in \mathbb{R}^+$
- O El dominio de la función g son todos los reales
- O El dominio de la función $f\circ g$ se define como

$$25 - x^2 \ge 0$$

$$(5-x)(x+5) \ge 0$$

por lo tanto el dominio de la función compuesta esta dado por

$$x \in [-5, 5]$$

Ejemplo 4:

Determinar la función resultante de f(g(x)) si f(x) = x y g(x) = 2x + 3. Determinar el dominio de cada función y luego la de la función resultante.

Solución

Se procede a realizar

$$f\left(x\right) =x$$

luego

$$f\left(g\left(x\right)\right) = 2x + 3$$

- O El dominio de f se define para todos los reales
- O El dominio de g se define para todos los reales
- O El dominio de $f \circ g$ se define para todos los reales.

Ejemplo 5:

Determinar la función resultante de f(g(x)) si $f(x) = x^2 + 2x + 1$ y g(x) = x - 1. Determinar el dominio de cada función y luego la de la función resultante.

Solución

Se procede a realizar

$$f\left(x\right) = x^2 + 2x + 1$$

luego

$$f(g(x)) = (x-1)^{2} + 2(x-1) + 1$$
$$= x^{2} - 2x + 1 + 2x - 2 + 1$$
$$= x^{2}$$

- O El dominio de la función f son todos los reales
- O El dominio de la función g son todos los reales
- O El dominio de la función $f \circ g$ son todos los reales

Ejercicios

En los siguientes ejercicios dadas las funciones f y g determine $f\left(g\left(x\right)\right)$ y $g\left(f\left(x\right)\right)$ y determine el dominio de las funciones resultantes.

1.
$$f(x) = \sqrt{x} \mathbf{y} g(x) = -\frac{1}{x}$$

2.
$$f(x) = \sqrt{x^2 - 1}$$
 y $g(x) = \sqrt{x - 1}$

3.
$$f(x) = x^2 - 1$$
 y $g(x) = \frac{1}{x}$

12.2 Función par e Impar

- 1. Una función f es una función **par** si para cada x del dominio de f, $f\left(-x\right)=f\left(x\right)$
- 2. Una función f es una función \mathbf{impar} si para cada x del dominio de f , $f\left(-x\right)=-f\left(x\right)$

Ejemplo 6:

Realizar la gráfica de la función $f\left(x\right)=x^{2}$ y determinar si es par o impar

$$f(x) = x^{2}$$
$$f(-x) = (-x)^{2}$$
$$f(x) = x^{2}$$

Figura 12.1: Gráfica de la función $f\left(x\right)=x^{2}$

Se observa que la gráfica de la función es simétrica con respecto al eje y, por lo tanto es una función par.

Ejemplo 7:

Realizar la gráfica de la función

$$f(x) = x^3 - 9x$$

y determinar si es par o impar

$$f(x) = x^3 - 9x$$

$$f(-x) = (-x)^3 - 9(-x)$$

$$= -x^3 + 9x$$

$$= -(x^3 - 9x)$$

$$= -f(x)$$

por lo tanto la función $f\left(x\right)$ es impar

Figura 12.2: Gráfica de la función $f(x) = x^3 - 9x$

Se observa que la gráfica es simétrica con respecto al origen, se dice que la función es impar.

Al calcular

$$f(-x) = (-x)^{3} - 9(-x)$$
$$= -x^{3} + 9x$$
$$-f(x) = -(x^{3} - 9x)$$

lo que nos comprueba que la función es impar.

Ejemplo 8:

Realizar la gráfica de la función

$$f\left(x\right) = \sqrt{25 - x^2}$$

Clase 12 Álgebra de Funciones

$$f(x) = \sqrt{25 - x^2}$$
$$f(-x) = \sqrt{25 - (-x)^2}$$
$$= \sqrt{25 - x^2}$$
$$= f(x)$$

por lo tanto es una función par.

Figura 12.3: Gráfica de la función $f(x) = \sqrt{25 - x^2}$

Se observa que la gráfica es simétrica con respecto al eje y, se dice que la función es par.

Al calcular

$$f(-x) = \sqrt{25 - (-x)^2}$$

 $f(x) = \sqrt{25 - x^2}$

lo cual nos confirma que la función es par.

Ejemplo 9:

Realizar la gráfica de la función

$$f(x) = x^4 - 3x^3 - 24x^2 + 28x + 48$$

Clase 12 Álgebra de Funciones

$$f(x) = x^4 - 3x^3 - 24x^2 + 28x + 48$$

$$f(-x) = (-x)^4 - 3(-x)^3 - 24(-x)^2 + 28(-x) + 48$$

$$= x^4 + x^3 - 24x^2 - 28x + 48$$

Por lo tanto la función no es par o impar

Figura 12.4: Gráfica de la función $f(x) = x^4 - 3x^3 - 24x^2 + 28x + 48$

O Al calcular f(-x) tenemos

$$f(-x) = (-x)^4 - 3(-x)^3 - 24(-x)^2 + 28(-x) + 48$$
$$= x^4 + 3x^3 - 24x^2 - 28x + 48$$

lo cual no es ni $-f\left(x\right)$ ni $f\left(x\right)$, por lo tanto la función no es par ni impar.

Ejercicios

En los siguientes ejercicios **determine analíticamente** si la función es par, impar o ninguna de esos dos tipos.

- 1. $f(x) = \frac{x^3 x}{x^2 + 1}$
- **2.** $f(x) = \frac{|x|}{x^2 + 1}$
- 3. $g(z) = \frac{z-1}{z+1}$