					TRIPLE LETTER SCORE				TRIPLE LETTER SCORE				TRIPLE LETTER SCORE	
4	101	OUBLE ETTER SCORE				DOUBLE LETTER SCORE		DOUBLE LETTER SCORE			L,	DOUBLE LETTER SCORE		
RIPLE VORD CORE	ONTARIO		DOUBLE LETTER SCORE			N ₁	A,	T,	U,	R,	A,	L,		TRIPLE WORD SCORE
		DOUBLE LETTER SCORE				DOUBLE LETTER SCORE		DOUBLE LETTER SCORE			N ₁	DOUBLE LETTER SCORE		
	TRIPLE LETTER SCORE				TRIPLE LETTER SCORE				TRIPLE LETTER SCORE		G ₂		TRIPLE LETTER SCORE	
				DOUBLE WORD SCORE						DOUBLE WORD SCORE	U,			
OUBLE ETTER CORE			DOUBLE WORD SCORE				DOUBLE LETTER SCORE				A ₁			DOUBLE LETTER SCORE
		DOUBLE WORD SCORE	C3	0,	M_3	P ₃	U,	T,	1,	N ₁	G ₂	DOUBLE WORD SCORE		
	DOUBLE WORD SCORE				TRIPLE LETTER SCORE				TRIPLE LETTER SCORE		E,		DOUBLE WORD SCORE	
TRIPLE WORD SCORE			DOUBLE LETTER SCORE				TRIPLE WORD SCORE				DOUBLE LETTER SCORE			TRIPLE WORD SCORE

What is natural language computing?

Getting computers to understand everything we say and write.

In this class (and in the field generally), we are interested in learning the <u>statistics of language</u>.

Increasingly, computers give insight into how humans process language, or generate language themselves.

What is Natural Language Computing?

- The computer science (and statistics) behind natural language processing (NLP), also known as computational linguistics (CL).
- Applications
 - Text Classification
 - Automatic translation between languages
 - Automatic speech transcription
 - Spoken language understanding
 - Information Retrieval
 - Text/speech Summarization

Examples

What can natural language do?

A key component of **human-computer interaction**.

"Can you summarize 2001: A Space Odyssey?"

We've made progress, but why are these things *still* hard to do?

A little deeper

- Language has hidden structures, e.g.,
 - How are sounds and text related?
 - e.g., why is this:

not a 'ghoti' (enou**gh**, w**o**men, na**ti**on)?

- How are words combined to make sentences?
 - e.g., what makes 'colourless green ideas sleep furiously' correct in a way unlike 'furiously sleep ideas green colourless'?
- How are words and phrases used to produce meaning?
 - e.g., if someone asks 'do you know what time it is?', why is it inappropriate to answer 'yes'?
- We need to organize the way we think about language...

Categories of linguistic knowledge

• Phonology: the study of patterns of speech sounds. e.g., "read" \rightarrow /r iy d/

• Morphology: how words can be <u>changed</u> by inflection or derivation.

e.g., "read", "reads", "reader", "reading", ...

Syntax: the <u>ordering and structure</u> between words and phrases (i.e., grammar).

e.g., NounPhrase \rightarrow article adjective noun

<u>Semantics</u>: the study of how <u>meaning</u> is created by words and phrases.

e.g., "book" \rightarrow (

Pragmatics: the study of meaning in contexts.

e.g., explanation span, refutation span

Ambiguity – Phonological

Phonology:

the study of patterns of speech sounds.

```
"read" \rightarrow /r iy d/
                                                                            as in 'I like to read'
                               "read" \rightarrow /r eh d/
                                                                            as in 'She read a book'
    Problem for
 speech synthesis
                               "object" \rightarrow /aa<sup>1</sup> b jh eh<sup>0</sup> k t /
                                                                            as in 'That is an object'
                               "object" \rightarrow /ah<sup>0</sup> b jh eh<sup>1</sup> k t /
                                                                            as in 'I object!'
                               "too" \leftarrow /t uw/
                                                                            as in 'too much'
    Problem for
                              "two" \leftarrow /t uw/
                                                                            as in 'two beers'
speech recognition
```

- Ambiguities can often be resolved in context, but not always.
 - e.g., /h aw t uw r eh^1k ah ?? n ay^2zs (b|p) iy ch/
 - → 'how to recognize speech'
 - → 'how to wreck a nice beach'

Resolution with syntax

• If you hear the sequence of speech sounds

/b ah f ae I ow b ah f ae I ow b ah f ae I ow b ah f ae I ow/

b ah f ae I ow b ah f ae I ow b ah f ae I ow/

which word sequence is being spoken?

- → "Buff a low buff a lobe a fellow Buff a low buff a lobe a fellow..."
- → "Buffalo buff aloe buff aloe buff aloe buff aloe buff aloe ..."
- → "Buff aloe buff all owe Buffalo buff a lobe ..."
- → "Buff aloe buff all owe Buffalo buff aloe buff a lobe ..."
- → "Buffalo buffalo buffalo buffalo buffalo buffalo buffalo"

• It's obvious (to us) that the last option is most likely because we have knowledge of **syntax**, i.e., grammar.

NLP as artificial intelligence

NLP involves resolving ambiguity at all levels.

- Reasoning with linguistic knowledge
- Reasoning with world knowledge
- We sometimes represent the former with grammars

We tend to use numerical parameters (probabilities?) to distinguish competing hypotheses.

- E.g., is Google a noun or a verb?
- Examples where Google is a noun ("Google makes Android") does not mean Google is never a verb ("Google his name").
- P(noun|Google) > P(verb|Google) > 0.

Aside – Chatbots

- ELIZA (Weizenbaum, 1966): simple pattern matching to imitate a psychiatrist.
- Surprisingly effective despite unsophisticated methods.
- e.g.,

User: Men are all alike.

ELIZA: In what way?

User: They're always bugging us about something or other.

ELIZA: Can you think of a

specific example?

User: My boyfriend made me

come here.

ELIZA: Your boyfriend made you come here. (Jurafsky and Martin, 2009)

Course outline (approximate)

- Introduction, lexical distributions, language modelling, lexical embeddings (3 lectures)
- Features and classification (2 lecture) *
- Entropy and information theory (2 lectures) *
- Neural language models (2 lectures) *
- Machine translation (3 lectures) **
- Large language models (3 lectures) *
- Acoustics and signal processing (3 lectures) *
- Automatic speech recognition (2 lectures) **
- Speech Synthesis (1 lecture) **
- Information retrieval (1 lecture) **
- Summarization (1 lecture) **
- Ethics for NLP (2 lectures)

What we will not cover

- Interpretability of language models...*
- Advanced lexical semantics*
- Question answering (including ChatGPT (=))*
- Information extraction*
- Parsing/generation of natural language*
- Advanced speech recognition and synthesis[¶]
- Cognitively based methods§^
- Semantic inference, semantic change/drift
- Understanding dialogues and conversations[¶]
- Advanced ethics for NLP\$

Preview: Machine translation

美国关岛国际机场及其办公室均接获一 名自称沙地阿拉伯富商拉登等发出的电 子邮件,威胁将会向机场等公众地方发 动生化袭击後,关岛经保持高度戒备。

The U.S. island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as the airport.

- For years, the holy grail of NLP.
- Requires both interpretation and generation.
- Over \$60B spent annually on human translation in 2022 – projected to reach \$96B by 2032
- Machine translation: \$1.1B. \$3B by 2027.
- 1 in every 4M words of content is translated into at least one other language.

Preview: Speech recognition

Preview: Information retrieval

Google

Aside – Spoken Information Retrieval

Overview: NLP

- Is natural language processing (the discipline) hard?
 - Yes, because natural language
 - is highly ambiguous at all levels,
 - is complex and subtle,
 - is fuzzy and probabilistic,
 - involves real-world reasoning.
 - No, because computer science
 - gives us many powerful statistical techniques,
 - allows us to break the challenges down into more manageable features.
- Is Natural Language Computing (the course) hard?
 - More on this soon...

NLP in Industry

CSC401/2511 - Spring 2024

REUTERS®37

UNIVERSITY OF

Natural language computing

- Instructors: Gerald Penn, Sean Robertson, Raeid Saqur (csc401-2024-01@cs)
- Meetings: MW (lecture), F (tutorial) at 10h and 11h
- Languages: English, Python.
- Website: Quercus, www.cs.toronto.edu/~raeidsaqur/csc401/
- You: Understand basic probability, can program, or (grads) can pick these up as we go.
- Syllabus: Key theory and methods in statistical natural language computing.

Focus will be on *neural models*, *language models*,

and their *applications*.

Office hours

Name	Time	Location
Gerald Penn	F 12-2	PT 283
Sean Robertson	TBA	TBA
Raeid Saqur	TBA	TBA

Evaluation policies

• General: Three assignments: 20% (each)

Final 'assessment': 39%

Two ethics surveys: 0.5% (each)

• Lateness: 10% deduction applied to electronic submissions

that are 1 minute late.

Additional 10% applied every 24 hours up to 72

hours total, at which point grade is zero.

• Final: If you fail the final 'assessment',

then you fail the course.

• Ethics: Plagiarism and unauthorized collaboration can

result in a grade of zero on the homework, failure

of the course, or **suspension** from the University.

Assignments

Assignment 1: Corpus statistics, sentiment analysis

task: analyze political bias on Reddit

learn: statistical techniques, features, classification.

Assignment 2: Neural machine translation

task: translate between languages

learn: neural seq2seq and neural anguage models.

Assignment 3: Automatic speech recognition

task: detect lies in speech

learn: signal processing, phonetics, dynamic algo's.

Reading

CHRISTOPHER D. MANNING AND HINRICH SCHÜTZE

http://tinyurl.com/shshhcvm

Assignment 1 – Bias in social media

- Involves:
 - Working with social media data

 (i.e., gathering statistics on some data from Reddit),
 - Part-of-speech tagging (more on this later),
 - Classification.
- Announcements: Piazza forum, email.
- Start early.

Assignment 1 and reading

- Assignment 1 available soon (on course webpage)!
 - Due 9 February
 - TA:

Mahya Mirbagheri <mahya.mirbagheri@mail.utoronto.ca>

• Reading:

Manning & Schütze: Sections 1.3—1.4.2,
 Sections 6.0—6.2.1.

