

Nombre:	Grupo:		
Apellidos:			

Cuestión 1 (1 punto)

Esta cuestión se contestará en esta misma hoja.

- a) Convertir 3F2₁₆ a binario natural, octal y decimal
- b) Convertir 347₈ a BCD
- c) Realizar las operaciones $(64_{10}-27_{10})$ y $(-34_{10}-27_{10})$ mediante una suma binaria de **7 bits** en complemento a 2. Indicar razonadamente si se produce desbordamiento.
- d) Suponiendo un circuito sumador de 7 bits, cuyos sumandos se denominan $a_6...a_0$ y $b_6...b_0$, y la suma $s_6...s_0$, deducir la función lógica que calcula si se ha producido desbordamiento.

Problema 1 (2.5 puntos)

Dada la funciones lógicas expresadas mediante la siguiente tabla de verdad,

abcd	f1	f2
0000	1	1
0001	0	1
0010	Χ	1
0011	1	Χ
0100	0	0
0101	0	0
0110	Χ	0
0111	1	Χ
1000	X	0
1001	0	Χ
1010	Χ	0
1011	1	Χ
1100	0	0
1101	0	Χ
1110	0	1
1111	1	0

se pide:

- a) Expresar las funciones f1 y f2 en su primera y segunda forma canónica
- b) Obtener una expresión lógica simplificada de cada función en forma de suma de productos
- c) Implementar f1 y f2 únicamente con puertas NAND
- d) Realizar f2 con un decodificador de 3 a 8 y con un multiplexor de 16 entradas.

Nota importante: se valorará el uso del menor número de componentes en las soluciones.

Cuestión 1 (1 punto)

a) Convertir 3F2₁₆ a binario natural, octal y decimal

$$3F2_{16} = 0011\ 1111\ 0010_2 = 1762_8 = 3.256 + 15.16 + 2 = 1010_{\ 10}$$

b) Convertir 3478 a BCD

$$347_8 = 3.64 + 4.8 + 7 = 231_{10} = 0010\ 0011\ 0001_{BCD}$$

c) Realizar las operaciones $(64_{10}-27_{10})$ y $(-34_{10}-27_{10})$ mediante una suma binaria de **7** bits en complemento a 2. Indicar razonadamente si se produce desbordamiento.

En 7 bits, el rango es (-64,63). No se puede representar el 64. La primera operación no se puede hacer.

$$34 = 0100010$$
 $-34 = 1011110$
 $27 = 0011011$ $-27 = 1100101$
 $+ 1000011 = -64 + 2 + 1 = -61$

No hay desbordamiento ya que sumamos dos números negativos y el resultado es también negativo.

d) Suponiendo un circuito sumador de 7 bits, cuyos sumandos se denominan $a_6...a_0$ y $b_6...b_0$, y la suma $s_6...s_0$, deducir la función lógica que calcula si se ha producido desbordamiento.

Hay desbordamiento cuando se suman dos positivos y sale negativo, o cuando se suman dos negativos y sale positivo:

$a_6 b_6 s_6$	V
000	0
001	1
010	0
011	0
100	0
101	0
110	1
111	0

a_6/b_6s_6	00	01	11	10
0	0	1	0	0
1	0	0	0	1

$$v = \overline{a_6}\overline{b_6}s_6 + a_6b_6\overline{s_6}$$

a) Expresar las funciones f1 y f2 en su primera y segunda forma canónica

$$f1 = \sum_{4} (0,3,7,11,15) + \bigwedge (2,6,8,10)$$

$$f1 = \prod_{4} (1,4,5,9,12,13,14) \cdot \bigwedge (2,6,8,10)$$

$$f2 = \sum_{4} (0,1,2,15) + \bigwedge (3,7,9,11,13)$$

$$f2 = \prod_{4} (4,5,6,8,10,12,14,15) \cdot \bigwedge (3,7,9,11,13)$$

b) Obtener una expresión lógica simplificada de cada función en forma de suma de productos

ab /cd	00 (01	11	10	
00	1 /	0	<u>{1}</u>	ĹΧ	
01	`-o´	0	11	`X1	
11	_Q_	0	1	۵.,	
10	X `	· 0	[1]	<u>′</u> Χ	
$f1 = c d + \overline{b} \overline{d}$					

ab /cd	00	01	11	10
00	1	1	Χ	1
01	0	0	Χ	0
11	0	Χ	0	(1)
10	0	Χ	Χ	0

$$f2 = \overline{a}\,\overline{b} + a\,b\,c\,\overline{d}$$

Obsérvese que, aunque había más opciones para f2, se ha cogido el grupo común cd, para ahorrar puertas.

c) Realizar f1 y f2 únicamente con puertas NAND

d) Realizar f2 con un decodificador de 3 a 8 y con un multiplexor de 16 entradas.