Система закономерностей построения и развития технических систем

Предисловие

Настоящий перечень закономерностей, определяющих построение и развитие технических систем (TC), разработан в июне 1981 года и откорректирован в мае 1983 года. Содержание данного документа докладывалось на Горьковской областной конференции «Проблемы развития научно-технического творчества ИТР» в 1983 году, а также было использовано при написании глав 2 и 4 книги «Рациональное творчество» (М.: Речной транспорт, 1990).

Б.И.Голдовский

I. «Базовые» закономерности

(из которых могут выводиться закономерности построения и развития ТС)

А. Законы диалектики

- 1.1.Закон единства и борьбы противоположностей
- 1.2. Закон отрицания-отрицания
- 1.3. Закон перехода количества в качество

Б. Общесистемные закономерности, законы природы

- 1.4. Избыточность систем в каждой системе есть скрытые свойства, не реализуемые (не используемые) при данной структуре системы и надсистемы
 - 1.5. Рост целостности систем по мере их развития
- 1.6. Каждая самоорганизующаяся система стремится к сохранению равновесия, к стабильности (принцип «гомеостаза» или «гомеостазиса»)
- 1.7. Открытые (взаимодействующие с окружением) системы могут существовать только при осуществлении обмена с окружением веществом, энергией и информацией [можно считать законом природы]
- 1.8. Специализация систем в процессе развития как путь повышения эффективности функционирования
- 1.9. Неравнозначность состава (формы движения материи), структуры и параметров внутреннего функционировании для функционирования и развития систем
- 1.10. Соответствие между сложностью и целостностью системы и затратами на изменение системы или части её
- 1.11. Искусственно создаваемые системы должны обладать свойством совместимости с другими системами и с окружающей средой
 - 1.12. Соответствие между сложностью функции и сложностью структуры системы
- 1.13. Соответствие между сложностью системы (формы движения материи и структуры) и возможностями её развития
- 1.14. Широта функционирования системы (количество и многообразие функций) должна соответствовать многообразию требований, налагаемых окружением (многообразию условий функционирования)
- 1.15. Определяющая роль формы движения материи в функционировании и развитии системы. Усложнение формы движения материи в процессе её развития [закон природы]

В. Общественные (экономические) законы

- 1.16. Определяющая роль познания в возможности использования в технике той или иной формы движения материи
- 1.17. Опережающий рост общественных потребностей по сравнению с возможностями их удовлетворения

- 1.18. Конечность (ограниченность) ресурсов и возможностей общества, природы и человека (принципиальная, для заданного момента времени)
 - 1.19. Принципиальная бесконечность (неограниченность) потребностей общества
 - 1.20. Определяющая роль экономики в осуществлении реализации той или иной ТС
 - 1.21. Неравнозначность качественно разных потребностей и затрат для общества
- 1.22. Влияние степени развития науки на пути и формы развития ТС (чем меньше знаний, тем больше ошибок)
- 1.23. Непрерывный рост (качественный и количественный) общественных потребностей [производная от 1.19]
- 1.24. Непрерывный рост общей эффективности общественного производства [следствие противоречия между 1.18 и 1.19]
- 1.25. Соответствие между потребительской стоимостью (ценностью потребности для общества) и затратами на неё [следствие 1.21]
 - 1.26. Всякая экономия в конце концов сводится к экономии времени
- 1.27. Приоритет удовлетворения общественной потребности перед повышением общей эффективности производства [следствие 1.21]
- 1.28. Определяющая роль общего развития уровня техники в возможности реализации TC

II. «Методологические» закономерности развития ТС (наиболее общие)

- 2.1. Движущей силой развития техники является противоречие между общественной потребностью и возможностью её удовлетворения с помощью имеющихся технических средств (общественно-техническое противоречие) [проявление 1.1, следствие 1.17 и противоречия между 1.18 и 1.19]
- 2.2. Развитие ТС происходит путем слияния противоположностей типа «источник воздействия приемник воздействия»(инструмент изделие; источник энергии приемник энергии; управляющий управляемый и т.п.) в одном элементе (универсализация) и раздвоения одного элемента на эти противоположности (специализация) [проявление 1.1]
- 2.3. Каждой TC присуща определенная совокупность TП, обострение и разрешение которых определяет пути развития данной TC [проявление 1.1, одна из причин появления противоречия 2.1]
- 2.4. Изменение TC при разрешении TП в процессе развития происходит путем инверсии одного из существенных признаков TC, определяющих существование и обострение TП [проявление 1.2, форма разрешения противоречия 2.3]
- 2.5. В процессе развития ТС происходит возврат к прежним формам на новом уровне (развитие «по спирали») по мере появления новых средств разрешения ТП, обострение которых привело к отрицанию этих форм [проявление 1.2, следствие 2.4 и 2.3, связано с 2.13]
- 2.6. По мере развития ТС ценность сторон, способствующих улучшению взаимодействия с НС, растет [следствие 1.5]
- 2.7. Надсистема консервативнее TC (почти всегда, как правило, особенно на уровне самоорганизации предприятие, отрасль и т.п.) [следствие 1.6 и 1.10; чем сложнее HC, тем справедливее]
- 2.8. Каждой ГПФ (потребности) соответствует определенная совокупность функциональных параметров, образующих (определяющих) «функционально-параметрическую нишу» [проявление 1.3, следствие 2.20]
- 2.9. Устойчивое состояние ТС соответствует заполнению определенной «функционально-параметрической ниши» (отсутствие «конкуренции») [аналогия с биологией, следствие 2.20, отдаленное следствие 1.6 и 2.8]

- 2.10. Количественные изменения в TC обязательно приводят к такому качественному изменению, как обострение ТП [проявление 1.3, влияние на 2.2]
- 2.11. Скачкообразное изменение параметров внешнего функционирования ТС требует её качественного изменения [проявление 1.3]
- 2.12. Определяющая роль физического принципа действия в функционировании и развитии TC [форма проявления 1.15]
- 2.13. Усложнение формы движения материи в ТС по мере её развития [форма проявления 1.15, следствие 2.12, связь с 2.5; форма разрешения противоречия между 5.6 и 2.23, связь с 5.7; одновременно является закономерностью изменения состава ТС]
 - 2.14. Существует иерархия оптимума:
- для «функционально-параметрической ниши» (суммы параметров внешнего функционирования) оптимальный физический принцип;
 - для физического принципа оптимальная структура ТС;
- для структуры оптимальные параметры внутреннего функционирования TC [эвристическое положение, следствие 1.9, 1.15 и 2.12]
- 2.15. Имеющиеся развитые TC для развития поглощают больше ресурсов, чем новые, нарождающиеся (у первых больше развита HC)

Доминирующее поглощение ресурсов теми	Реализация любой из возможностей
ТС, что есть	развития ТС ограничивает вероятность
	реализации других возможностей

[следствие 1.6, 1.18 и 2.7]

2.16. Принцип минимальных изменений в TC в процесса развития: параметры внутреннего функционирования → структура → физический принцип

[следствие 2.15, а также 1.6, 1.18 и 2.7; форма разрешения противоречия между 1.6 и 2.22-2.23]

- 2.17. Принцип ступенчатой оптимизации TC (происходит после каждого изменения TC на соответствующем уровне):
 - поиск оптимального физического принципа
 - поиск оптимальной структуры
 - поиск оптимальных параметров внутреннего функционирования [следствие 2.14 и 2.16]
- 2.18. Влияние развития одних TC (одних областей техники) на другие TC (области техники):
 - перенос решений
 - «расползание» физического принципа действия по отраслям

[следствие 2.15 и 2.12, а также инвариантности функций по отношению к разным областям техники]

2.19. Полезные выходы (способности, ГПФ) ТС должны соответствовать потребностям окружения (общественным или техническим)

[следствие 1.11; 1-е условие приемлемости ТС]

2.20. Входы (потребности) TC не должны превышать возможностей (ресурсов) окружения

[следствие 1.11; 2-е условие приемлемости ТС]

2.21. Неполезные (вредные) выходы TC должны быть допустимы (приемлемы) для окружения

[следствие 1.11; 3-е условие приемлемости ТС]

2.22. Непрерывность роста функциональной эффективности TC (в первую очередь – параметров внешнего функционирования)

[следствие 1.23 и 2.19]

2.23. Непрерывность роста общей эффективности ТС (стремление к абсолютно идеальной системе, повышение степени идеальности, уменьшение избыточности ТС)

[следствие 1.24, 2.19 и 2.20, отчасти следствие 2.21; форма разрешения противоречия между 2.22 и 1.18]

2.24. Вытеснение человека из технических систем. «Труд человека всё более заменяется трудом машин» при выполнении функций:

- транспортная
- энергетическая
- -технологическая
- -контрольно-регулирующая
- -принятия решений

Направление развития

[следствие 2.22 и 1.18 – конечность, ограниченность возможностей человека; соответствует социальному значению техники; одновременно – закономерность изменения состава TC, одно из проявлений 6.2]

2.25. Соответствие между возможностью реализации сложной части ТС и сложностью самой ТС (сложная подсистема приживается обычно в сложной ТС; сложная техника требует сложной организации)

[следствие 1.28, отчасти – следствие 1.12]

2.26. Соответствие между важностью функции и затратами на нее (чем важнее, тем больше дополнительные затраты)

[следствие 1.25, отчасти – 2.19]

- 2.27. Приоритет функциональной эффективности ТС перед общей эффективностью (идеальностью):
 - выполнение функции важнее повышения интенсивности
 - повышение интенсивности важнее повышения идеальности
- повышение идеальности процесса важнее повышение идеальности технического средства

[следствие 1.27 и 1.26]

- 2.28. Изменение использования физического принципа по мере развития ТС:
- преодоление параметрического порога (максимум функционального параметра)
- повышение общей эффективности (КПД, качество)
- устранение нежелательных эффектов (вредных выходов) [следствие 2.27 и 1.21 для обеспечения условий 2.19, 2.20 и 2.21] 2.29. Допустимость ухудшений в ТС до определенного порога [следствие 2.3, 2.10 и 1.21, форма проявления 1.3]

III. Закономерности построения работоспособных TC (для всех TC)

3.1. Должна быть обеспечена функциональная полнота ТС (сумма ЭПФ должна обеспечивать выполнение $\Gamma\Pi\Phi$)

[следствие 2.19, а также системности нашего мира]

3.2. Должна быть обеспечена энергетическая проводимость ТС и, соответственно, полнота энергоцепочек, обеспечивающих функционирование

[следствие 1.7, отчасти 3.1; влияние от 3.3 в плане интенсивности энергообмена и от 3.4 в плане динамичности и управляемости энергоцепочек]

3.3. Должно быть обеспечено преодоление характерного для ТС параметрического порога (соответственно должна быть обеспечена определенная интенсивность энергообмена)

[следствие 1.3 и 2.8; отчасти – 2.22 и 3.1]

3.4. Должна быть обеспечена минимально необходимая степень управляемости (изменяемости, динамичности) ТС и её частей (соответственно должна быть обеспечена определенная степень динамичности и управляемости энергоцепочек)

[следствие 1.14, отчасти – 3.1, одна из форм реализации 2.23]

IV. Закономерности изменения функционирования TC

4.1. Стремление принципа действия ТС к проникновению в соседние функциональные ниши

[следствие 1.23, 2.22 и 2.15 за счет 1.4]

4.2. Рост специализации ТС в процессе развития (сужение функции и обеспечение постоянства условий функционирования за счет надсистемы)

[следствие 1.14, форма проявления 1.8 и 2.2; форма разрешения ТП между полезными выходами; взаимосвязь с 4.4]

4.3. Повышение универсальности TC и её элементов (при стабильности состояния HC)

[форма проявления 2.2; следствие-средство для обеспечения 2.23; форма разрешения ТП, следствие 4.4]

4.4. Ограниченность изменений HC, обеспечивающих рентабельность (эффективность) узкой специализации TC

[следствие 1.18, 1.6 и 2.7; связь с 4.2]

V. Закономерности изменения структуры ТС

5.1. Неравномерность развития частей TC – скорость изменения различных частей различна

[следствие 1.21, 1.25 и 2.26, а также – в основном- негомогенности реальных систем; приводит к реальному (фактическому, наблюдаемому) обострению ТП – связь с 2.3]

5.2. Негармоничность развития частей TC – одни части в развитии значительно обгоняют другие

[следствие 1.21. 1.25, 2.26 и 2.29; форма разрешения противоречия между 1.18 и 1.19; связь с 2.3 – как и у 5.1]

5.3. Увеличение количества и разнородности взаимосвязей между элементами TC (HC)

[следствие 4.3 и средство реализации 2.23]

5.4. Рост динамизма TC (при заданной степени широты функционирования). Ступени роста динамизма:

1) Минимальный уровень, А) Простой динамизм – перемещение в пространстве частей ТС соответствующий диапазону изменения условий функционирования (рули на Б) сложный динамизм: а) изменение формы, конфигурации самолете) 2) Изменение взаимодействия во времени, б) изменение внутренних свойств устраняющее явно вредные выходы, (например, агрегатного состояния) мешающие интенсификации [2.22] в) обмен с окружением (отброс + (убирающиеся шасси) регенерация)

3) Изменение свойств и взаимодействий элементов, обеспечивающих повышение общей эффективности, качества функционирования, снижение затрат в НС и т.п. [2.23] (механизация крыла)

[следствие 4.3 и 2.28; средство реализации 2.23]

- 5.5. Увеличение степени изменяемости элементов и взаимосвязей в ТС:
- дробление + объединение
- гибкость связей (механические гидравлические, пневматические поля) [следствие 5.3 и 5.4, одно из следствий 2.13]
- 5.6. Усложнение системы в процессе развития (рост сложности структуры) [следствие 5.3, 5.5, 4.3 и 5.17]
- 5.7. Ограничение увеличения сложности структуры TC при заданном физическом принципе (существование порога сложности структуры TC)

[следствие обострения ТП в части надежности, одно из проявлений 2.12, отдаленные следствия 5.6 и 2.3]

- 5.8. Рост целостности ТС (НС) в процессе развития:
- увеличение жесткости связей TC и HC (замена организационных взаимодействий физическими); жесткость связей «ползет вверх» по иерархии систем
- увеличение зависимости TC от HC т HC от TC (TC от ПС, ПС от TC), уменьшение степени самостоятельности частей (в т.ч. энергетической)

[форма проявления 1.5, форма разрешения противоречия между 4.2 и 4.3]

5.9. Переход развития в HC при остановке развития TC (применимо при любом запрете на изменение TC)

[следствие и одна из форм 5.8, разрешение противоречия между необходимостью обеспечения 2.22 и 2.23 и запретом на изменение TC вследствие обострения $T\Pi - 2.3$]

- 5.10. Увеличение использования окружающей среды (для повышения эффективности TC повышение <u>открытости</u> TC):
 - использование вещества всегда, одно из условий жизни человеческой цивилизации
 - использование энергии на начальных этапах развития преобразование по программе (НЭ нерегулярность, невозможность концентрации, параметрический предел)
 - на последующих этапах преобразование по виду (тонкие процессы на микроуровне, фотоэлементы, термояд и т.п.)

[одно из следствий 5.8 и 2.23 по отношению к окружению; форма разрешения ТП]

- 5.11. Уменьшение степени использования окружающей среды (повышение <u>закрытости</u> TC):
 - для преодоления природных ограничений
 - для устранения экологических НЭ
- для повышения эффективности TC в плане использования отходов (при истощении природных ресурсов в особенности)

[одно из следствий 5.8 и 2.21, следствие 2.23. форма разрешения противоречия между 1.18 и 2.22, форма разрешения ТП]

- 5.12. Исключение промежуточных звеньев в ТС и процессах [следствие 2.2 и 2.23]
- 5.13. Введение промежуточных звеньев в ТС и процессы

[следствие 2.2, форма разрешения ТП; для устранения противоречия с 5.12 используются формы 2.23]

5.14. Устранение перерывов в функционировании TC, промежуточных стадий (повышение непрерывности процессов)

[одна из форм 5.12, следствие 2.23]

5.15. Переход к непосредственному взаимодействию (воздействию), сокращение длины энергоцепочек

[одна из форм 5.12. следствие 2.23 и 4.3]

- 5.16. Переход к опосредственному взаимодействию, к прерывности [одна из форм 5.13, для устранения противоречия с 5.14 и 5.15 используются формы 2.23]
- 5.17. Увеличение относительной самостоятельности частей ТС (перемещение в части ТС «первичных» энергетических звеньев двигателей, преобразователей по виду; чаще всего сопровождается усложнением формы движения материи вида энергии, разветвляемой по местным энергоцепочкам)

[следствие 5.15, форма реализации требований 5.4, а также 2.13; форма разрешения ТП]

5.18. Освоение пространства полезным процессом (точка – линия – поверхность – объем)

[форма реализации требований 2.22 и 2.23]

- 5.19. Сокращение пространства. занятого вспомогательными элементами [следствие 2.23, форма разрешения ТП]
- 5.20. Сокращение пространства, занятого основным (полезным) процессом (концентрация процесса в пространстве)

[форма разрешения противоречия между 1.18 и 2.22]

VI. Закономерности изменения состава ТС

- 6.1*. Усложнение формы движения материи в ТС по мере её развития [совпадает с 2.13]
- 6.2*. Вытеснение человека из технических систем в процессе развития [совпадает с 2.24]
- 6.1. Включение человека во вновь создаваемые ТС [следствие 1.20 и 1.28]
- 6.2. Увеличение степени искусственности элементов ТС в процессе развития [одно из следствий 5.11, форма проявления 6.2*]
- 6.3. Единство разнородности однородности элементов ТС (добавки, композиты) [форма проявления 2.2, одна из форм реализации 6.2, отдаленное следствие 2.23]
- 6.4. «Гибридизация» ТС на границах функциональной ниши. Возникновение переходных форм

[следствие и одна из форм реализации 4.1]

6.5. Комплексное использование форм движения материи. Привлечение более низких форм движения материи в ТС с высокими формами движения материи.

[одна из форм разрешения противоречий между 1.18 и 2.22, противоречит 6.1]