11711 HW1 Additional Improvements

Keyu He

Carnegie Mellon University keyuhe@cmu.edu

1 Introduction

This short report documents the additional features I implemented for HW1: (1) attention masking of right-padding tokens during self-attention, and (2) flexible decoding controls (top-k, top-p (nucleus), and beam search) for text generation.

2 Methods

2.1 Attention Mask on Padding Tokens

Right-padding is necessary to batch variable-length sequences, but it can introduce spurious attention to non-content positions. We compute a binary mask with I for real tokens and 0 for padding, broadcast it to shape [batch, 1, 1, seq_len], and apply it to the attention scores before softmax. Scores at padded key positions are set to $-\infty$, which zeroes their probability mass after softmax, ensuring padded tokens are never attended to. This reduces noise during training/evaluation, stabilizes gradients, and is especially helpful when there is substantial padding (longer sequences or high batch-size variability).

Usage: pass --use_pad_mask to enable this behavior. The flag is wired through data loading, the classifier, and the Llama attention implementation.

2.2 Decoding Controls for Generation

We expose several decoding strategies in generate:

- **Epsilon filtering** (existing method, default $\varepsilon=0.05$): drop tokens with probability $<\varepsilon$. What I added is that if all are dropped (say, if used together with other decoding strategies), we fall back to the argmax token to keep a valid distribution.
- Top-k (--top_k): restrict sampling to the k highest-probability tokens. Conceptually, this imposes a fixed-size candidate set; it sharpens choices but can be brittle if the true mass is spread across many tokens.

- **Top-***p* (--top_p): nucleus sampling keeps the smallest set of tokens whose cumulative probability exceeds *p*. This yields a *dynamic* candidate set that adapts to the uncertainty of the distribution, preserving diversity when the distribution is flat and being selective when it is sharp.
- Beam search (--beam_size, --beam_alpha): maintains multiple partial hypotheses, expanding them by highest log-probability and selecting the best completed sequence. We use optional length normalization with exponent α to avoid short-sequence bias.

3 Experiments and Results

3.1 Classification with Attention Mask

We evaluate on SST and CFIMDB with and without the padding attention mask. Advanced outputs are saved as required: sst-dev-advanced-output.txt, sst-test-advanced-output.txt, cfimdb-dev-advanced-output.txt, cfimdb-test-advanced-output.txt.

Dataset	Setting	Dev Acc	Test Acc
SST	Prompt (baseline)	0.237	0.250
SST	Prompt + Pad Mask (advanced)	0.191	0.179
CFIMDB	Prompt (baseline)	0.490	0.109
CFIMDB	Prompt + Pad Mask (advanced)	0.498	0.756

Table 1: Accuracy with and without the attention pad mask.

3.2 Analysis of Results

SST. The prompt baseline slightly outperforms the masked variant on both dev and test. SST sentences are relatively short; there is limited right-padding, so masking offers little signal-to-noise benefit and can introduce minor distribution shifts

between training and evaluation. The small differences here are consistent with limited padding.

CFIMDB. We observe a large test improvement with masking (dev: $0.490 \rightarrow 0.498$; test: $0.109 \rightarrow 0.756$). CFIMDB reviews are longer with highly variable lengths, so batches contain substantial right-padding. Preventing attention to pads meaningfully improves the model's ability to focus on content tokens, which is reflected in the large test gain. The modest dev change suggests dev/test length distributions differ; masking helps most where padding is heavy.

3.3 Generation with Decoding Variants

We compare vanilla generation, top-k, top-p, and beam search using a fixed prompt. All generations are aggregated in generated-sentences-advanced.txt. Below are short excerpts illustrating qualitative differences (ellipses added for brevity):

Vanilla (temp=0.0)

"... John Wick, is this day. He was playing with his toy car ... he had to be punished ... promised to never do it again."

Vanilla (temp=1.0)

"... John Wick, is the brave girl ... One day John was in his backyard ... 'I'm a hero' ... She was lost. He was ..."

Top-k = 50 (temp=0.0)

"... John Wick, is this day. He was playing with his toy car ... promised to never do it again."

Top-k = 50 (temp=1.0)

"... ran towards her ... 'Lets play!' ... She was a real hero ..."

Top-p = 0.95 (temp=0.0)

"... John Wick, is this day. He was playing with his toy car ... promised to never do it again."

Top-p = **0.95** (temp=**1.0**)

"... he had stolen a pizza! ... John returned the pizza and apologized ..."

Beam (size=5, α =0.7, temp=0.0)

"... John Wick, is this day. He was playing with his toy car ... promised to never do it again."

Beam (size=5, α =0.7, temp=1.0)

"... there too. He loves to play with his toys ... 'Let's play!' ..."

4 Reproducibility

4.1 How to Run

- Run all experiments (includes classification and generation variants):
 bash run_all_experiments.sh (use -no-gpu on CPU-only machines)
- Advanced classification (pad mask) for SST/CFIMDB are invoked by the script via --use_pad_mask, saving to the required *-advanced-output.txt files.
- Generation variants are run and appended to generated-sentences-advanced.txt. To run a specific variant manually, e.g., top-k: python run_llama.py --option generate --top_k 50

5 Discussion

What masking does. It enforces a structural prior that self-attention should only consider real tokens. This reduces spurious correlations and improves stability when there is a lot of paddings.

What beam search is. A discrete search over sequence space that tracks B best partial hypotheses and expands them by likelihood. Length normalization α mitigates favoring short completions. Beam search often improves grammaticality/consistency but can reduce diversity versus sampling.

How k and p work conceptually. Top-k fixes the shortlist size (number of candidates); top-p adapts the shortlist size to the model's uncertainty (sum of prob of the candidates, typically yielding more robust diversity across contexts. Epsilon acts as a light floor on probabilities.