Workshop Kaskade 7 & Applications Getting Started

M. Weiser, L. Lubkoll

Zuse Institute Berlin

Contents

Kaskade 7 in a nutshell

- what's it good for
- toolkit structure

PDE problem classes

- mathematical structure of variational problems
- examples: Poisson & Stokes
- notation

Tutorial

- describing variables, variational functionals, ansatz and test spaces
- obtaining grids
- assembly, solution, output
- examples: Poisson & Stokes

Kaskade 7 in a Nutshell

What's it good for?

Target problems

second order PDEs: elliptic $-\operatorname{div}(\sigma\nabla u)=f$ Poisson

$$-2\mu\Delta u - \lambda\nabla\mathrm{div}u = f$$
 Lamé-Navier

parabolic $\dot{T} = \Delta T + f$ heat equation

systems of PDEs: optimization
$$\begin{bmatrix} I & \Delta \\ \alpha & B^* \end{bmatrix} \begin{bmatrix} y \\ u \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ f \end{bmatrix}$$
 KKT

flow
$$\begin{bmatrix} -\Delta & \nabla \\ \operatorname{div} & \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}$$
 Stokes

... and much more

What it is... and what not

Kaskade 7 is

- ✓ a finite element library (toolbox)
 - you are in control
 - mix and match what you need
 - easily extended as required
- a research code
 - flexible
 - living, evolving
- well documented
 - for a research code
 - targeted towards developers
 - doxygen, tutorial, course ware
- ✓ a tool for real programmers
 - powerful
 - steep learning curve

and it is not

(and not intended to be)

- x a finite element code (framework)
 - can do only what it's designed for
 - follows pre-fabricated scenarios
- **X** a production code
 - stable releases
 - for standard problem types
 - full fledged with pre- and postprocessing
- an unorganized pile of code

- **X** a toy for script kiddies
 - with point-and-click GUI

Toolkit Structure

Short History of Kaskade 7

1989	Concepts of an adaptive finite element code (Deuflhard/Leinen/Yserentant) Kaskade 1 (C, by P. Leinen)
1991	Kaskade 2 (C, by B. Erdmann & R. Roitzsch)
1992	Kaskade 3 (C++, by R. Beck)
1994	Kaskade 4 (C++, extended implementation by R. Beck)
1996	Kaskade 5 (C++, new implementation by R. Beck)
2000	Kaskade 6 (C++, new implementation by L. Zschiedrich et al.)
	(→ commercial code JCMwave)
2007	Kaskade 7 (C++, new implementation based on Dune by M. Weiser)

Kaskade:

a sequence of independent codes sharing the same mathematical spirit

ALL STATE CASC

Restaurant "La Grande Cascade", Paris

Short History of Kaskade 7

1989	Concepts of an adaptive finite element code (Deuflhard/Leinen/Yserentant) Kaskade 1 (C, by P. Leinen)
1991	Kaskade 2 (C, by B. Erdmann & R. Roitzsch)
1992	Kaskade 3 (C++, by R. Beck)
1994	Kaskade 4 (C++, extended implementation by R. Beck)
1996	Kaskade 5 (C++, new implementation by R. Beck)
2000	Kaskade 6 (C++, new implementation by L. Zschiedrich et al.)
	(→ commercial code JCMwave)
2007	Kaskade 7 (C++, new implementation based on Dune by M. Weiser)

Kaskade:

a sequence of independent codes sharing the same mathematical spirit

ZIB, Heilbronner Str., Berlin

Short History of Kaskade 7

1989	Concepts of an adaptive finite element code (Deuflhard/Leinen/Yserentant) Kaskade 1 (C, by P. Leinen)
1991	Kaskade 2 (C, by B. Erdmann & R. Roitzsch)
1992	Kaskade 3 (C++, by R. Beck)
1994	Kaskade 4 (C++, extended implementation by R. Beck)
1996	Kaskade 5 (C++, new implementation by R. Beck)
2000	Kaskade 6 (C++, new implementation by L. Zschiedrich et al.)
	(→ commercial code JCMwave)
2007	Kaskade 7 (C++, new implementation based on Dune, by M. Weiser)

Kaskade:

a sequence of independent codes sharing the same mathematical spirit

ZIB, Takustr. 7, Berlin

PDE Problem Classes

Prototype

Poisson problem

$$-\Delta u = f \quad x \in \Omega$$
$$\nabla u^T n + \gamma (u - u_{\Gamma}) = 0 \quad x \text{ on } \partial \Omega$$

strong formulation

integration by parts (Theorem of Gauß)

$$\int_{\Omega} \nabla u^T \nabla v - fv \, dx + \int_{\partial \Omega} \gamma (u - u_\Gamma) v \, ds = 0 \qquad \text{weak formulation}$$

$$\forall v \in H^1(\Omega)$$

$$\min_{u \in H^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, dx + \int_{\partial \Omega} \frac{\gamma}{2} (u - u_{\Gamma})^2 \, ds \quad \text{variational functional}$$

Prototype

Stokes problem

$$-\Delta u + \nabla p = s \quad x \in \Omega$$
$$-\operatorname{div} u = 0 \quad x \in \Omega$$
$$u = 0 \quad x \text{ on } \partial \Omega$$

strong formulation

integration by parts (Theorem of Gauß)

$$\int_{\Omega} u_x : v_x - p \operatorname{div} v - s^T v \, dx = 0$$

$$\int_{\Omega} -q \operatorname{div} u \, dx = 0$$

$$\forall v \in H_0^1(\Omega)^3, q \in L^2(\Omega)$$

weak formulation

$$\nabla \left[\int_{\Omega} \frac{1}{2} |u_x|_F^2 - p \operatorname{div} u - s^T u \, dx \right] = 0$$

variational functional

Example incompressible Navier-Stokes

$$-\nu \Delta u + u_x u + \nabla p = s$$
$$\operatorname{div} u = 0$$
$$u|_{\partial \Omega} = 0$$

strong formulation

integration by parts (Theorem of Gauß)

$$\int_{\Omega} \nu u_x : v_x + u^T u_x^T v - p \operatorname{div} v - s^T v \, dx = 0$$

$$\int_{\Omega} q \operatorname{div} u \, dx = 0$$

$$\forall v \in H_0^1(\Omega)^3, q \in L^2(\Omega)$$
weak formulation

"General" minimization problems

$$U = U_1 \times \cdots \times U_n$$

$$\min_{u \in U} \int_{\Omega} f(x, u_1, \nabla u_1, \dots, u_n, \nabla u_n) \, dx + \int_{\partial \Omega} g(x, u_1, \dots, u_n) \, ds$$

"General" weak formulations

$$U = U_1 \times \cdots \times U_n$$
 ansatz space

$$V = V_1 \times \cdots \times V_m$$
 test space

$$\int_{\Omega} (F_i(x, u, \nabla u)v_i + \hat{F}_i(x, u, \nabla u)\nabla v_i) dx + \int_{\partial\Omega} G(x, u)v_i ds = 0, \quad i = 1, \dots, m$$

"General" minimization problems

$$U = U_1 \times \cdots \times U_n$$

$$\min_{u \in U} \int_{\Omega} f(x, u_1, \nabla u_1, \dots, u_n, \nabla u_n) \, dx + \int_{\partial \Omega} g(x, u_1, \dots, u_n) \, ds$$

Poisson prototype

$$U = H^1(\Omega)$$

$$f(x, u, \nabla u) = \frac{1}{2} |\nabla u|^2 - su$$

$$g(x,u) = \frac{\gamma}{2}(u - u_{\Gamma})^2$$

"General" stationary problems

$$U = U_1 \times \cdots \times U_n$$

$$\frac{\partial}{\partial u} \left[\int_{\Omega} f(x, u_1, \nabla u_1, \dots, u_n, \nabla u_n) \, dx + \int_{\partial \Omega} g(x, u_1, \dots, u_n) \, ds \right] = 0$$

Stokes prototype

$$U = H_0^1(\Omega)^3 \times L^2(\Omega)$$

$$f(x, u, \nabla u, p, \nabla p) = \frac{1}{2} |\nabla u|^2 - p \operatorname{div} u - s^T u$$

$$g(x, u, p) = \frac{\gamma}{2} |u|^2, \quad \gamma \to \infty$$

"General" weak formulations

$$U=U_1 imes \cdots imes U_n$$
 ansatz space $V=V_1 imes \cdots imes V_m$ test space

$$\int_{\Omega} (F_i(x, u, \nabla u)v_i + \hat{F}_i(x, u, \nabla u)\nabla v_i) dx + \int_{\partial\Omega} G(x, u)v_i ds = 0, \quad i = 1, \dots, m$$

Incompressible Navier Stokes

$$U = V = H_0^1(\Omega)^3 \times L^2(\Omega)$$

$$F_1 = u^T u_x^T - s^T \quad \hat{F}_1 = \nu u_x - p \mathbf{1}^T$$

$$F_2 = \operatorname{div} u \qquad \qquad \hat{F}_2 = 0$$

$$G_1 = \gamma u^T, \quad \gamma \to \infty$$

$$G_2 = 0$$

Reference

Contents

- 1. Elementary PDEs
- 2. PDEs in Science and Technology
- 3. Finite Difference Methods for Poisson Problems
- 4. Galerkin Methods
- 5. Numerical Solution of Linear Elliptic Grid Equations
- 6. Construction of Adaptive Hierarchical Meshes
- 7. Adaptive Multigrid Methods for Linear Elliptic Problems
- 8. Adaptive Solution of Nonlinear Elliptic Problems
- 9. Adaptive Integration of Parabolic Problems

Kaskade 7 Tutorial

PDE and boundary conditon

$$-\Delta y = 1$$
 in $\Omega =]0, 1[^2]$
 $y = 0$ on $\partial \Omega$

Discretization

- triangulation of region (mesh)
- finite elements of order 2

see tutorial/laplace/

main program – definition of mesh and finite element space

```
// two-dimensional space: dim=2
  typedef Dune::UGGrid<dim> Grid;
  // a gridmanager is constructed
  // as connector between geometric and algebraic information
  Dune::FieldVector<double,dim> c0(0.0), dc(1.0);
                                                        // corner and side lengths for unit rectangle
GridManager<Grid> gridManager( createRectangle<Grid>(c0,dc,1.0,true) );
  // construction of linear continuous finite element space
  // for the scalar solution u
  typedef FEFunctionSpace<ContinuousLagrangeMapper<double,LeafView> > H1Space;
H1Space temperatureSpace(gridManager,gridManager.grid().leafView(),1);
  typedef boost::fusion::vector<H1Space const*> Spaces;  // list of used fe-spaces
  Spaces spaces (&temperatureSpace);
  // construct variable list.
  typedef Variable< SpaceIndex<0>, Components<1>, VariableId<0> > Variable 0;
  typedef boost::fusion::vector<Variable 0> VariableDescriptions;
  std::string varNames[1] = { "u" };
  typedef VariableSetDescription<Spaces, VariableDescriptions> VariableSetDesc;
► VariableSetDesc variableSetDescription(spaces, varNames); // contains all information on variables
```


main program – assemble and solve

```
// construct variational functional
  typedef HeatFunctional<double, VariableSetDesc> Functional;
Functional F:
  //construct Galerkin representation
  typedef VariationalFunctionalAssembler<LinearizationAt<Functional> > Assembler;
  typedef VariableSetDesc::CoefficientVectorRepresentation<>::type CoefficientVectors;
Assembler assembler(spaces);
                                                                   // representation of a fe-function
VariableSetDesc::Representation u(variableSetDescription);
  assembler.assemble(linearization(F,u));
                                                      // F'
  CoefficientVectors rhs(assembler.rhs());
  CoefficientVectors
  solution(VariableSetDesc::CoefficientVectorRepresentation<>::init(variableSet));
AssembledGalerkinOperator<Assembler> A(assembler, onlyLowerTriangle); // F"
  // solve with 1 Newton step
  // i.e. solution = solution - A^{-1}*rhs
directInverseOperator(A, directType, property).applyscaleadd(-1.0, rhs, solution);
  u.data = solution.data;
```


main program – output for graphic device

```
// output of solution in VTK format for visualization,
// the data are written as ascii stream into file temperature.vtu,
// possible is also binary, order > 2 is not supported
writeVTKFile(gridManager.grid().leafView(),u,"temperature");
std::cout << "data in VTK format is written into file temperature.vtu \n";</pre>
```