

Shri Vile Parle Kelavani Mandal'

Institute Technology , Dhule

Department of Information Technology

Design and Analysis of Algorithms Lab

Name: Saurabh D patil

Roll No: 48

PRN: 2254491246049

Class: Second Year (IT)

Modified Warshall (All Pair Shortest Path)

Theory:

The Floyd-Warshall algorithm, named after its creators Robert Floyd and Stephen Warshall, is a fundamental algorithm in computer science and graph theory. It is used to find the shortest paths between all pairs of nodes in a weighted graph. This algorithm is highly efficient and can handle graphs with both positive and negative edge weights, making it a versatile tool for solving a wide range of network and connectivity problems.

Algorithm:

step 1:

Initialize the solution matrix same as the input graph matrix as a first step.

Step 2:

Then update the solution matrix by considering all vertices as an intermediate vertex.

Step 3:

The idea is to pick all vertices one by one and updates all shortest paths which include the picked vertex as an intermediate vertex in the shortest path.

Step 4:

When we pick vertex number k as an intermediate vertex, we already have considered vertices $\{0, 1, 2, ... k-1\}$ as intermediate vertices.

Step 5:

For every pair (i, j) of the source and destination vertices respectively, there are two possible cases.

- 1 .k is not an intermediate vertex in shortest path from i to j. We keep the value of dist[i][j] as it is.
- 2. k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] as dist[i][k] + dist[k][j], if dist[i][j] > dist[i][k] + dist[k][j]

Problem: Find the all pair shortest path for the following graph (source vertex is 1)

Solution:

 A^0 :

	1	2	3	4
1	0	3	∞	∞
2	8	0	12	5
3	4	∞	0	-1
4	2	-4	∞	0

Find the matrix for vertex 1

 A^1 considering 1 as an intermiadiatary vertex

 A^1 :

	1	2	3	4
1	0	3	∞	∞
2	8	0	12	5
3	4	7	0	-1
4	2	-4	8	0

1)
$$A^{0}[2,3]$$
 $A^{0}[2,1] + A^{0}[1,3]$
 $12 < \infty + \infty$

2)
$$A^{0}[2,4]$$
 $A^{0}[2,1] + A^{0}[1,4]$
5 $< \infty + \infty$

3)
$$A^{0}[3,2]$$
 $A^{0}[3,1] + A^{0}[1,2]$
 ∞ $4 + 3$
 ∞ > 7

4)
$$A^{0}[3,4]$$
 $A^{0}[3,1] + A^{0}[1,4]$
-1 $<$ 4 $+$ ∞

5)
$$A^{0}[4,2]$$
 $A^{0}[4,1] + A^{0}[1,2]$
 -4 $2 + 3$
 -4 $<$ 5

6)
$$A^{0}[4,3] = A^{0}[4,1] + A^{0}[1,3]$$

 $\infty = 2 + \infty$

Find the matrix for vertex 2

A² considering 2 as an intermiadiatary vertex

 A^2 :

	1	2	3	4
1	0	3	∞	∞
2	∞	0	12	5
3	4	7	0	-1
4	2	-4	8	0

1)
$$A^{1}[1,3]$$
 $A^{1}[1,2] + A^{1}[2,3]$
 ∞ $3 + 12$
 ∞ > 15
2) $A^{1}[1,4]$ $A^{1}[1,2] + A^{1}[2,4]$
 ∞ $3 + 5$
 ∞ > 8
3) $A^{1}[3,1]$ $A^{1}[3,2] + A^{1}[2,1]$
 $4 < 7 + \infty$
4) $A^{1}[3,4]$ $A^{1}[3,2] + A^{1}[2,4]$
 $-1 < 7 + 5$
5) $A^{1}[4,1]$ $A^{1}[4,2] + A^{1}[2,1]$
 $2 < -4 + \infty$
6) $A^{1}[4,3]$ $A^{1}[4,2] + A^{1}[2,3]$
 ∞ $-4 + 12$
 ∞ > 8

Find the matrix for matrix of vertex 3

A³ considering 3 as an intermiadiatary vertex

 A^3 :

	1	2	3	4
	0	3	5	8
1				
	16	0	12	5
2				
	4	7	0	-1
3				
	2	-4	8	0
4				

1)
$$A^{2}[1,2]$$
 $A^{2}[1,3] + A^{2}[3,2]$
 $3 < 15 + 7$
2) $A^{2}[1,4]$ $A^{2}[1,3] + A^{2}[3,4]$
 $8 < 15 + (-1)$
3) $A^{2}[2,1]$ $A^{2}[2,3] + A^{2}[3,1]$
 ∞ $12 + 4$
 ∞ > 16
4) $A^{2}[2,4]$ $A^{2}[2,3] + A^{2}[3,4]$
 5 $12 + (-1)$
 $5 > 11$
5) $A^{2}[4,1]$ $A^{2}[4,3] + A^{2}[3,1]$
 $2 < 8 + 4$
6) $A^{2}[4,3]$ $A^{2}[4,2] + A^{2}[2,3]$
 $-4 < 8 + 7$

Find the matrix for matrix of vertex 4

A⁴ considering 4 as an intermiadiatary vertex

 A^4 :

	1	2	3	4
1	0	3	5	8
2	14	0	12	5
3	1	3	0	-1
4	2	-4	8	0

1)
$$A^{4}[1,2]$$
 $A^{4}[1,4] + A^{4}[4,2]$
 3 8 $+$ 4
 3 $<$ 12
2) $A^{4}[1,3]$ $A^{4}[1,4]$ $+ A^{4}[4,3]$
 5 8 $+$ 8
 5 $<$ 16
3) $A^{4}[2,1]$ $A^{4}[2,4]$ $+ A^{4}[4,1]$
 16 12 $+$ 2
 16 $>$ 14
4) $A^{4}[2,3]$ $A^{4}[2,4]$ $+ A^{4}[4,3]$
 12 5 $+$ 8
 12 $<$ 13
5) $A^{4}[3,1]$ $A^{4}[3,4]$ $+ A^{4}[4,1]$
 4 -1 $+$ 2
 4 $>$ 1
 $6)$ $A^{4}[3,2]$ $A^{4}[3,4]$ $+ A^{4}[4,2]$
 7 -1 $+$ 4