- 6 Mise en Place d'une Simulation Mécanique avec Plusieurs Objets et un Environnement
 - Dans ce TP-TD, nous avons modélisé une machine à café sous forme d'un automate multiagent (SMA).

Nous allons maintenant l'analyser sous deux aspects :

- 1. Explication technique : Comment l'automate fonctionne.
- 2. Modélisation mathématique : Définition formelle avec des équations et diagrammes.

1. Explication Technique

- Notre machine à café multi-agent fonctionne avec plusieurs agents autonomes qui interagissent.
- Elle suit le paradigme des systèmes multi-agents (SMA) en intelligence artificielle.

Chaque agent est autonome, il ne contrôle pas les autres, mais il communique via des messages.

Agent	Rôle	Action
Agent Principal	Coordonne l'ensemble du système	Ordonne les transitions entre agents
Agent Boisson	Gère les boissons disponibles	Vérifie si une boisson est en stock
Agent Paiement	Gère l'argent inséré	Vérifie si l'utilisateur a payé
Agent Préparation	Prépare et livre la boisson	Active la fabrication du café

• États et Transitions

Un automate à états finis (AEF) définit la logique du système global.

<u>États de la machine :</u>

- 1. Menu: L'utilisateur peut choisir une boisson.
- 2. Attente Paiement : L'utilisateur doit insérer de l'argent.
- 3. Validation : L'Agent Paiement vérifie si la somme est suffisante.
- 4. Préparation : L'Agent Préparation fabrique la boisson.
- 5. Livraison : L'utilisateur reçoit la boisson et la monnaie.

Transitions possibles:

État actuel	Action utilisateur	Nouvel État
Menu	Choix de la boisson	Attente Paiement
Attente Paiement	Insertion d'argent	Validation
Validation	Solde suffisant	Préparation
Préparation	Temps de fabrication	Livraison
Livraison	Boisson livrée	Menu

Chaque état représente une situation et chaque transition correspond à une interaction.

2. Modélisation Mathématique

Nous allons maintenant décrire ce système de manière formelle en utilisant des modèles mathématiques d'automates.

Définition Mathématique Un automate fini déterministe (AFD) est défini comme : $A=(Q,\Sigma,\delta,q0,F)$

où:

- Q : Ensemble des états.
- Σ: Ensemble des entrées (actions utilisateur).
- $\delta: Q \times \Sigma \to Q$: Fonction de transition qui détermine le prochain état.
- q0 : État initial.
- F : États finaux.

2. Modélisation Mathématique

Dans notre cas:

- Q={Menu,AttentePaiement,Validation,Pre´paration,Livraison}
- Σ={choisir_boisson,inse'rer_argent,ve'rifier_paiement,pre'parer,livrer}
- q0=Menu
- F={Menu} (la machine retourne toujours au menu après une commande)

La fonction de transition est :

```
\delta(q,a) = \begin{cases} Menu \rightarrow AttentePaiement & \text{si } a = choisir\_boisson \\ AttentePaiement \rightarrow Validation & \text{si } a = ins\acute{e}rer\_argent \\ Validation \rightarrow Pr\acute{e}paration & \text{si solde suffisant} \\ Pr\acute{e}paration \rightarrow Livraison & \text{après fabrication} \\ Livraison \rightarrow Menu & \text{une fois servie} \end{cases}
```

3. Modèle Multi-Agent en lA

- Notre machine à café n'est pas seulement un AEF, c'est aussi un système multi-agent.
- Nous utilisons un modèle mathématique basé sur les agents.

Définition du SMA

Un système multi-agent (SMA) est défini par : SMA=(A1,A2,...,An,E,C)

où:

- Ai sont les agents (ex : Boisson, Paiement, Préparation...).
- E est l'environnement (ex : stock de café, argent inséré...).
- C est l'ensemble des communications entre agents.

Chaque agent suit un modèle d'état : Ai=(S,P,A)

où:

- S : États possibles de l'agent.
- P : Perceptions de l'environnement.
- A : Actions possibles.

Exemple pour l'Agent Paiement :

```
S = \{AttentePaiement, Validation\}
P = \{montant\_re 
abla oldsymbol{u}, solde\}
A = \{accepter, refuser\}
```

Communication entre Agents

Les agents échangent des messages pour coopérer :

- Agent Principal → Agent Boisson : "L'utilisateur a choisi Espresso."
- Agent Boisson → Agent Principal : "Prix = 1.50€."
- Agent Principal → Agent Paiement : "Vérifie si l'argent est suffisant."
- Agent Paiement → Agent Principal : "Paiement validé."
- Agent Principal → Agent Préparation : "Prépare la boisson."
- Agent Préparation → Agent Principal : "Boisson prête."