MATH 725 NOTES INNER PRODUCT SPACES

MARIO L. GUTIERREZ ABED

Basics of Inner Product Spaces

Definition. Let V be a vector space over \mathbb{F} (where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$). An inner product on V is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{F}$ with the following properties:

- For all $v \in V$, the inner product $\langle v, v \rangle$ is real and $\langle v, v \rangle \geq 0$ and $\langle v, v \rangle = 0 \iff v = 0$. (Positive definiteness)
- \bullet For $u, v \in V$, we have

$$\langle u, v \rangle = \overline{\langle v, u \rangle}$$
 (Conjugate symmetry)

- For all $u, v, w \in V$ and $\alpha, \beta \in \mathbb{F}$, we have $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle \qquad (Linearity in the first coordinate)$
- Combining the linearity in the first coordinate with conjugate symmetry, in the complex case we get

 \star

$$\langle w, \alpha u + \beta v \rangle = \overline{\langle \alpha u + \beta v, w \rangle} = \overline{\alpha} \overline{\langle u, w \rangle} + \overline{\beta} \overline{\langle v, w \rangle} = \overline{\alpha} \langle w, u \rangle + \overline{\beta} \overline{\langle w, v \rangle}.$$

A vector space V, together with an inner product, is called an **inner product space**.

<u>Remark</u>: The very last property on the definition is referred to as **conjugate linearity** in the second coordinate. Thus, a complex inner product is linear in its first coordinate and conjugate linear in its second coordinate. This is often described by saying that the inner product is **sesquilinear** (sesqui means "one and a half times"). In the real case when $\mathbb{F} = \mathbb{R}$, the inner product is linear in both coordinates—a property referred to as **bilinearity**.

Examples. 1) The vector space \mathbb{R}^n is an inner product space under the **standard inner product**, or **dot product**, defined by

$$\langle (r_1,\ldots,r_n),(s_1,\ldots,s_n)\rangle = r_1s_1+\cdots+r_ns_n.$$

The inner product space \mathbb{R}^n is often called the n-dimensional Euclidean space.

2) The vector space \mathbb{C}^n is an inner product space under the standard inner product defined by $\langle (r_1,\ldots,r_n),(s_1,\ldots,s_n)\rangle = r_1\overline{s_1}+\cdots+r_n\overline{s_n}.$

The inner product space is often called the n-dimensional unitary space.

3) The vector space C[a,b] of all continuous complex-valued functions on the closed interval [a,b] is a complex inner product space under the inner product

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \, dx.$$

4) One of the most important inner product spaces is the vector space ℓ^2 of all real (or complex) sequences (s_n) with the property that $\sum |s_n|^2 < \infty$, under the inner product

$$\langle (s_n), (t_n) \rangle = \sum_{n=0}^{\infty} s_n \overline{t_n}.$$

<u>Remark</u>: Of course, for this last inner product to make sense, the sum on the right must converge. To see that this is indeed the case, note that if $(s_n), (t_n) \in \ell^2$, then

$$0 \le (|s_n| - |t_n|)^2$$

= $|s_n|^2 - 2|s_n||t_n| + |t_n|^2$
 $\implies 2|s_nt_n| \le |s_n|^2 + |t_n|^2$.

This yields

$$2\left|\sum_{n=0}^{\infty} s_n \overline{t_n}\right| \le 2\sum_{n=0}^{\infty} |s_n t_n| \le \sum_{n=0}^{\infty} |s_n|^2 + \sum_{n=0}^{\infty} |t_n|^2 < \infty.$$

Lemma 1. If V is an inner product space and $\langle u, x \rangle = \langle v, x \rangle$ for all $x \in V$, then u = v.

Definition. If V is an inner product space, the **norm** of $v \in V$ is defined by

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Theorem 1. Here are the basic properties of the norm:

- *i*) $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.
- *ii)* $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in \mathbb{F}$ and $v \in V$.
- *iii*) (Cauchy-Schwarz Inequality) For all $u, v \in V$, we have

$$|\langle u, v \rangle| \leq ||u|| ||v||,$$

with equality if and only if one of u and v is a scalar multiple of the other.

iv) (Triangle Inequality) For all $u, v \in V$, we have

$$||u+v|| < ||u|| + ||v||.$$

with equality if and only if one of u and v is a scalar multiple of the other.

v) For all $u, v, x \in V$, we have

$$||u - v|| \le ||u - x|| + ||x - v||.$$

vi) For all $u, v \in V$, we have

$$|||u|| - ||v||| \le ||u - v||.$$

vii) (The Parallelogram Law) For all $u, v \in V$, we have

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2.$$

Proof. We prove only Cauchy-Schwarz and the triangle inequality. For Cauchy-Schwarz, if either u or v is zero the result follows, so assume that $u, v \neq 0$. Then, for any scalar $\alpha \in \mathbb{F}$,

$$0 \le ||u - \alpha v||^{2}$$

$$= \langle u - \alpha v, u - \alpha v \rangle$$

$$= \langle u, u \rangle - \bar{\alpha} \langle u, v \rangle - \alpha [\langle v, u \rangle - \bar{\alpha} \langle v, v \rangle].$$

Choosing $\bar{\alpha} = \langle v, u \rangle / \langle v, v \rangle$ makes the value in the square brackets equal to 0 and so

$$0 \le \langle u, u \rangle - \frac{\langle v, u \rangle \langle u, v \rangle}{\langle v, v \rangle} = ||u||^2 - \frac{|\langle u, v \rangle|^2}{||v||^2},$$

which is equivalent to the Cauchy-Schwarz inequality. Furthermore, equality holds if and only if $||u - \alpha v||^2 = 0$, that is, if and only if $u - \alpha v = 0$, which is equivalent to u and v being scalar multiples of one another.

Now to prove the triangle inequality, the Cauchy-Schwarz inequality gives

$$||u + v||^{2} = \langle u + v, u + v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$\leq ||u||^{2} + 2||u|||v|| + ||v||^{2}$$

$$= (||u|| + ||v||)^{2},$$

from which the triangle inequality follows. The proof of the statement concerning equality is left to the reader. \Box

Definition. A vector space V, together with a function $\|\cdot\|: V \to \mathbb{R}$ that satisfies the first two properties of the above theorem, along with the triangle inequality property, is called a **normed** linear space. Thus, any inner product space is a normed linear space, under the norm given by the inner product.

It is interesting to observe that the inner product on V can be recovered from the norm, as we show in the following theorem:

Theorem 2 (Polarization Identity). If V is a complex inner product space, then

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2) + \frac{1}{4} i (\|u + iv\|^2 - \|u - iv\|^2).$$

Notice that if V is instead a real inner product space, then we are left with the real part of the right hand side on the equality above. That is,

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2).$$

Definition. Let V and W be inner product spaces and let $\tau \in \mathcal{L}(V, W)$. Then

• τ is called an **isometry** if it preserves the inner product, that is, if

$$\langle \tau(u), \tau(v) \rangle = \langle u, v \rangle \quad \forall \ u, v \in V.$$

A bijective isometry is called an isometric isomorphism. When τ: V → W is a bijective isometry, we say that V and W are isometrically isomorphic.

<u>Remark</u>: It is not hard to show that an isometry is injective and so it is an isometric isomorphism provided it is also surjective. Moreover, if dim $V = \dim W < \infty$, then injectivity implies surjectivity and so the concepts of isometry and isometric isomorphism are equivalent. However, as the following example shows, this is not the case for infinite-dimensional inner product spaces:

Example: Let $\tau : \ell^2 \to \ell^2$ be defined by

$$\tau(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots).$$

Then τ is an isometry (known as the right shift operator), but it is clearly not surjective.

Theorem 3. A linear transformation $\tau \in \mathcal{L}(V, W)$ is an isometry if and only if it preserves the norm, that is, if and only if

$$\|\tau(v)\| = \|v\|.$$

HILBERT SPACES

Definition. A set \mathcal{H} is a **Hilbert space** if it satisfies the following:

- *i)* \mathcal{H} is a vector space over \mathbb{C} (or \mathbb{R}).
- ii) \mathcal{H} is equipped with an inner product $\langle \cdot, \cdot \rangle$, so that
 - $-f \mapsto \langle f, g \rangle$ is linear on \mathcal{H} for every $g \in \mathcal{H}$.
 - $-\langle f, q \rangle = \overline{\langle q, f \rangle}.$
 - $-\langle f, f \rangle > 0$ for all $f \in \mathcal{H}$.
- *iii*) We let $||f|| = \sqrt{\langle f, f \rangle}$. Then ||f|| = 0 if and only if f = 0.
- iv) \mathcal{H} is complete in the metric $d(f,g) = ||f-g|| = \sqrt{\langle f-g, f-g \rangle}$.

Remark 1: Notice that the Cauchy-Schwarz and triangle inequalities

$$|\langle f, g \rangle| \le ||f|| ||g||$$
 and $||f + g|| \le ||f|| + ||g||$

are in fact easy consequences of assumptions i) and ii) of our definition.

<u>Remark 2</u>: Notice that saying that \mathcal{H} a *Hilbert space* is the same as saying that \mathcal{H} is a *Banach space* (i.e., a *complete* normed linear space), with the norm induced by an inner product $\langle \cdot, \cdot \rangle$.

 \star

 \star

Definition. Let \mathcal{H} and \mathcal{H}' be Hilbert spaces with respective inner products $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and $\langle \cdot, \cdot \rangle_{\mathcal{H}'}$ and the corresponding norms $\| \cdot \|_{\mathcal{H}}$ and $\| \cdot \|_{\mathcal{H}'}$. A mapping $U : \mathcal{H} \to \mathcal{H}'$ between these spaces is called unitary if:

- U is linear, i.e., $U(\alpha f + \beta g) = \alpha U(f) + \beta U(g)$.
- U is a bijection.

•
$$||Uf||_{\mathcal{H}'} = ||f||_{\mathcal{H}}$$
 for all $f \in \mathcal{H}$.

Definition. A nonempty set $\mathcal{O} = \{u_i \mid i \in \Lambda\}$ of vectors in an inner product space is said to be an **orthogonal set** if $u_i \perp u_j$ for all $i \neq j \in \Lambda$. If, in addition, each vector u_i is a unit vector, then the set \mathcal{O} is an **orthonormal set**. Thus, a set is orthonormal if

$$\langle u_i, u_j \rangle = \delta_{i,j} \quad \forall i, j \in \Lambda.$$

Note that an orthonormal set \mathcal{O} is **maximal** if and only if $\mathcal{O}^{\perp} = \{0\}$.

Definition. A maximal orthonormal set in an inner product space V is called a **Hilbert basis** for V.

<u>Remark 1</u>: In general, a Hilbert space \mathcal{H} has a Hilbert basis $\{e_i\}$ if the e_i form an orthonormal basis and every element $v \in \mathcal{H}$ can be written as

$$v = \sum_{i=1}^{\infty} a_i e_i$$

for some a_i with $\sum |a_i|^2 < \infty$.

<u>Remark 2</u>: Extreme care must be taken here not to confuse the concepts of a basis for a vector space and a Hilbert basis for an inner product space. To avoid confusion, a vector space basis, that is, a maximal linearly independent set of vectors, is referred to as a *Hamel basis*.

The following example shows that, in general, the two concepts of bases discussed above are not the same:

Example:

• Let $V = \ell^2$ and let M be the set of all vectors of the form

$$e_i = (0, \dots, 0, 1, 0, \dots),$$

where e_i has a 1 in the i^{th} coordinate and 0's elsewhere. Clearly, M is an orthonormal set. Moreover, it is maximal. For if $v = (x_n) \in \ell^2$ has the property that $v \perp M$, then

$$x_i = \langle v, e_i \rangle = 0$$

for all i and so v = 0. Hence, no nonzero vector $v \notin M$ is orthogonal to M. This shows that M is a Hilbert basis for the inner product space ℓ^2 .

• On the other hand, the vector space $\operatorname{span}(M)$ is the subspace S of all sequences in ℓ^2 that have finite support, and since $\operatorname{span}(M) = S \neq \ell^2$, we see that M is not a Hamel basis for the vector space ℓ^2 .

Proposition 1. A Hilbert space \mathcal{H} is separable if and only if \mathcal{H} has a countable Hilbert basis. Moreover, if \mathcal{H} is separable, all Hilbert bases are countable.

Theorem 4. Let V be an inner product space.

i) (Gram-Schmidt Orthogonalization) If $\mathcal{B} = (v_1, v_2, ...)$ is a linearly independent sequence in V, then there is an orthogonal sequence $\mathcal{O} = (u_1, u_2, ...)$ in V for which

$$\operatorname{span}(u_1, \dots, u_n) = \operatorname{span}(v_1, \dots, v_n) \qquad \forall \ n > 0.$$

- ii) If $\dim V = n$ is finite, then V has a Hilbert basis of size n and all Hilbert bases for V have size n.
- iii) If V has a finite Hilbert basis of size n, then $\dim V = n$.

Theorem 5 (Gram-Schmidt Orthogonalization Process). If $\mathcal{B} = (v_1, v_2, ...)$ is a sequence of linearly independent vectors in an inner product space V, then the sequence $\mathcal{O} = (u_1, u_2, ...)$ defined by

$$u_k = v_k - \sum_{i=1}^{k-1} \frac{\langle v_k, u_i \rangle}{\langle u_i, u_i \rangle} u_i$$

is an orthogonal sequence in V with the property that

$$\operatorname{span}(u_1, \dots, u_k) = \operatorname{span}(v_1, \dots, v_k) \qquad \forall \ k > 0.$$

Of course, from the orthogonal sequence (u_i) , we get the orthonormal sequence (w_i) , where $w_i = u_i/\|u_i\|$.

<u>Remark</u>: Orthonormal bases have a great advantage over arbitrary bases. From a computational point of view, if $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V, then each $v \in V$ has the form

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

In general, however, determining the coordinates α_i requires solving a system of linear equations of size $n \times n$. On the other hand, if $\mathcal{O} = \{u_1, \ldots, u_n\}$ is an orthonormal basis for V and

$$v = \alpha_1 u_1 + \dots + \alpha_n u_n,$$

then the coefficients are quite easily computed:

$$\langle v, u_i \rangle = \langle \alpha_1 u_1 + \dots + \alpha_n u_n, u_i \rangle = \alpha_i \langle u_i, u_i \rangle = \alpha_i.$$

Definition. If S is a subspace of a Hilbert space \mathcal{H} , we define the **orthogonal complement** of S by

$$S^{\perp} = \{ f \in \mathcal{H} \mid \langle f, g \rangle = 0 \quad \forall g \in S \}.$$

¹Recall that a space is said to be *separable* if it contains a countable dense subset (e.g. \mathbb{R} is separable because it contains \mathbb{Q} , which is countable and is also dense in \mathbb{R}).

<u>Remark 1</u>: Clearly, S^{\perp} is also a subspace of \mathcal{H} , and moreover $S \cap S^{\perp} = \{0\}$. To see this, note that if $f \in S \cap S^{\perp}$, then f must be orthogonal to itself; thus $0 = \langle f, f \rangle = ||f||$, and therefore f = 0. Moreover, S^{\perp} is itself a closed subspace. Indeed, if $f_n \to f$, then $\langle f_n, g \rangle \to \langle f, g \rangle$ for every g by the Cauchy-Schwarz inequality. Hence if $\langle f_n, g \rangle = 0$ for all $g \in S$ and all $g \in S$ and all $g \in S$ are all $g \in S$ and all $g \in S$.

<u>Remark 2</u>: Having seen the result stated on the above remark, we may ask ourselves whether or not the orthogonal complement S^{\perp} is a vector space complement of S, that is, whether or not $V = S \oplus S^{\perp}$.

It turns out that if S is a finite-dimensional subspace of V, then the answer to this question is yes, but for infinite-dimensional subspaces, S must have the topological property of being complete² (or closed³).

In the next example we show that, in general, $V \neq S \oplus S^{\perp}$:

<u>Example</u>: As in a previous example, let $V = \ell^2$ and let S be the subspace of all sequences of finite support, that is, S is spanned by the vectors

$$e_i = (0, \ldots, 0, 1, 0, \ldots)$$

where e_i has a 1 in the i^{th} coordinate and 0's elsewhere. If $x=(x_n)\in S^{\perp}$, then

$$x_i = \langle x, e_i \rangle = 0$$

$$\implies x = 0$$

$$\implies S^{\perp} = \{0\}$$

$$\implies S \oplus S^{\perp} = S \neq \ell^2.$$

The next lemma shows that closed subspaces enjoy an important characteristic property of Euclidean geometry:

Lemma 2. Suppose S is a closed subspace of \mathcal{H} and $f \in \mathcal{H}$. Then

• There exists a (unique) element $g_0 \in S$ which is closest to f, in the sense that

$$||f - g_0|| = \inf_{g \in S} ||f - g||.$$

• The element $f - g_0$ is perpendicular to S, that is,

$$\langle f - g_0, g \rangle = 0 \quad \forall g \in S.$$

Remark: The situation described in the above lemma can be visualized in Figure 1 below:

²Recall that a *complete* space is one in which every Cauchy sequence converges.

³By a *closed* subspace $S \subset \mathcal{H}$, we mean a subspace S in which for every sequence $\{f_n\} \subset S$ that converges to some $f \in \mathcal{H}$, we have that $f \in S$.

FIGURE 1. Nearest element to f in S.

As the next theorem shows, in the finite-dimensional case, orthogonal complements are also vector space complements. This theorem is often called the *projection theorem*, for reasons that will become apparent when we discuss projection operators:

Theorem 6 (The Projection Theorem). If S is a finite-dimensional subspace of an inner product space V (which need not be finite-dimensional), then

$$V = S \oplus S^{\perp}$$
.

Now, here's the more generalized version of the theorem, in which we do not assume that S is finite:

Theorem 7. If S is a closed subspace of a Hilbert space \mathcal{H} , then

$$\mathcal{H} = S \oplus S^{\perp}$$
.

<u>Remark</u>: The notation in the above theorem means that every $f \in \mathcal{H}$ can be written uniquely as f = g + h, where $g \in S$ and $h \in S^{\perp}$; we then say that \mathcal{H} is the **direct sum** of S and S^{\perp} . This is equivalent to saying that any $f \in \mathcal{H}$ is the sum of two elements, one in S, the other in S^{\perp} , and that $S \cap S^{\perp}$ contains only 0.

With the decomposition $\mathcal{H}=S\oplus S^{\perp}$ one has the natural projection onto S defined by

$$\pi_S(f) = g,$$
 where $f = g + h$ and $g \in S, h \in S^{\perp}$.

The mapping π_S is called the *orthogonal projection* onto S and satisfies the following simple properties:

- $f \mapsto \pi_S(f)$ is linear.
- $\pi_S(f) = f$ whenever $f \in S$.
- $\pi_S(f) = 0$ whenever $f \in S^{\perp}$.
- $\|\pi_S(f)\| \leq \|f\|$ for all $f \in \mathcal{H}$.