TD10-Applications linéaires

1 Généralités, noyau, image

Exercice 1

Montrer que les applications suivantes sont linéaires.

1. L'application $f: \mathbb{R}^4 \longrightarrow \mathcal{M}_2(\mathbb{R})$ définie par :

$$\forall (x,y,z,t) \in \mathbb{R}^4 \quad f((x,y,z,t)) = \begin{pmatrix} 2x-t & y+t \\ 3x+z & 0 \end{pmatrix}.$$

2. L'application h définie sur $\mathbb{R}_2[x]$ par

$$\forall P \in \mathbb{R}_2[x] \quad h(P) = xP(x+1) - (x+1)P(x).$$

3. L'application $g: \mathcal{M}_4(\mathbb{R}) \longrightarrow \mathbb{R}$ définie par

$$\forall M \in \mathcal{M}_4(\mathbb{R}) \quad g(M) = M_{1,1} + M_{2,2} + M_{3,3} + M_{4,4}.$$

Exercice 2

Montrer que les applications suivantes sont des endomorphismes.

1. L'application f définie sur $\mathbb{R}_2[x]$ par

$$\forall P \in \mathbb{R}_2[x] \quad f(P) = x^2 P'(x) - 2x P(x).$$

2. L'application ψ définie sur $\mathcal{M}_2(\mathbb{R})$ par

$$\forall X \in \mathcal{M}_2(\mathbb{R}) \quad \psi(X) = AX - XB$$

où
$$A = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Exercice 3

Décrire chacun de ces espaces comme le noyau d'une application linéaire.

1.
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - 2y + 4z = 0\}.$$

2.
$$G = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y = 0 \text{ et } 2x + z = t\}.$$

3.
$$H = \{ P \in \mathbb{R}_n[x] \mid P(1) = P'(1) \}.$$

Exercice 4

Déterminer une base du noyau et de l'image des applications linéaires suivantes.

- 1. Les applications f et h de l'exercice 1.
- 2. L'application f de l'exercice 2.
- 3. L'application $f: \mathbb{R}_2[x] \longrightarrow \mathbb{R}^3$ définie par

$$\forall P \in \mathbb{R}_2[x] \quad f(P) = (P(0), P(1), P(2)).$$

Exercice 5

Soit f l'application définie sur \mathbb{R}^3 par

$$\forall (x, y, z) \in \mathbb{R}^3 \quad f((x, y, z)) = 3x - y + z.$$

- 1. Montrer que f est linéaire.
- 2. Déterminer Im(f). En déduire dim(ker(f)).
- 3. Déterminer une base de ker(f).

Exercice 6

Soit f l'application définie par

$$f: \mathcal{M}_3(\mathbb{R}) \longrightarrow \mathbb{R}^3$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \longmapsto (a+e+i,c+e+g,a+c+g+i).$$

- 1. Montrer que f est linéaire.
- 2. Sans calcul, justifier que f n'est pas injective.
- 3. Déterminer une base de ker(f) et sa dimension.

4. En déduire que f est surjective.

Exercice 7

Soit E un espace vectoriel de dimension 3 et $f \in \mathcal{L}(E)$ une application non nulle telle que $f^2 = 0$.

- 1. Montrer que $Im(f) \subset ker(f)$.
- 2. Montrer que $\dim(\ker(f)) \ge 2$. En déduire que $\operatorname{rg}(f) = 1$.

2 Matrice d'une application linéaire et changement de bases

Exercice 8

Soit

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longmapsto (2x - y + z, 3x - z).$

- 1. Montrer que f est linéaire. Est-elle injective?
- 2. Déterminer la matrice A représentative de f dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .
- 3. À l'aide de la matrice A déterminer :
 - (a) f((1,2,1));
 - *(b)* ker(*f*);
 - (c) Im(f).

Exercice 9

Soit $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$. On considère l'application φ définie par :

$$\varphi: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$
$$M \longmapsto AM - MA.$$

- 1. Montrer que φ est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. Écrire la matrice C de φ dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.
- 3. Déterminer le noyau de φ à l'aide de la matrice C. En déduire $\operatorname{rg}(\varphi)$.
- 4. On note $\mathcal C$ l'ensemble des matrices qui commutent avec A, c'est-à-dire l'ensemble des matrices M telles que AM=MA.
 - (a) Montrer que C est un espace vectoriel.
 - (b) Déterminer une base de C.

Exercice 10

Soit f l'endomorphisme de $\mathbb{R}_2[x]$ dont la matrice dans la base canonique de $\mathbb{R}_2[x]$ est

$$M = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$$

- 1. Déterminer le noyau et l'image de f.
- 2. (a) Montrer que la famille $(x, x^2 + 1, x^2 1)$ est une base $\mathbb{R}_2[x]$.
 - (b) Déterminer la matrice M' de f dans cette base.
 - (c) Déterminer une matrice P telle que $M' = P^{-1}MP$.

Exercice 11

Soit

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

et ψ l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est A.

- 1. Déterminer le rang de ψ . Est-ce un automorphisme?
- 2. Soit $(x, y, z) \in \mathbb{R}^3$. Déterminer $\psi((x, y, z))$.
- 3. On note u = (1, -1, 0), v = (0, 1, -1) et w = (1, 1, 1).
 - (a) Montrer que (u, v, w) est une base de \mathbb{R}^3 .
 - (b) Déterminer $\psi(u)$, $\psi(v)$ et $\psi(w)$. En déduire la matrice de ψ dans la base (u,v,w).
 - (c) En déduire que A est semblable à une matrice diagonale D que l'on précisera et donner une matrice inversible P telle que $D = P^{-1}AP$.
- 4. Avec la matrice D, déterminer une base de $\ker(\psi)$ et une base de $\operatorname{Im}(\psi)$.

3 Compléments

Exercice 12

On note $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et on considère l'endomorphisme f de

 \mathbb{R}^3 dont la matrice dans la base \mathcal{B} est $A = \begin{pmatrix} 2 & 1 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -1 \end{pmatrix}$.

- 1. Vérifier que l'on a $A^2 \neq 0$ et calculer A^3 .
- 2. Déterminer une base (a) de $\ker(f)$ ainsi qu'une base (b,c) de $\operatorname{Im}(f)$.
- 3. Montrer que $\operatorname{Im}(f^2) = \ker(f)$.

4. Dans la suite, on considère un endomorphisme g de \mathbb{R}^3 tel que :

$$g^2 \neq 0$$
 et $g^3 = 0$.

En désignant par M la matrice de g dans la base canonique de \mathbb{R}^3 on a donc :

$$M^2 \neq 0$$
 et $M^3 = 0$.

On se propose de montrer, dans ce cas plus général, que $\text{Im}\left(g^2\right)=\ker\left(g\right)$.

- (a) Justifier qu'il existe un vecteur u de \mathbb{R}^3 tel que $g^2\left(u\right)\neq 0$.
- (b) Montrer que $(u, g(u), g^2(u))$ est une base de \mathbb{R}^3 , que l'on notera \mathcal{B}' .
- (c) Donner la matrice N de g dans la base \mathcal{B}' .
- (d) Déterminer Im(g) et donner sa dimension. En déduire une base de ker(g). Pour finir, déterminer $\text{Im}(g^2)$ puis conclure.

Exercice 13

Soit E un espace vectoriel de dimension B. On note B le vecteur nul de B. On note B l'application identité de B, et B l'application constante nulle de B dans B:

$$i: E \longrightarrow E$$

$$x \longmapsto x$$

$$\theta: E \longrightarrow E$$

$$x \longmapsto 0_E$$

On considère un endomorphisme f de E tel que :

$$f \neq \theta$$
 , $f^2 + i \neq \theta$, $f \circ (f^2 + i) = \theta$.

- 1. Montrer que f n'est pas bijectif.
- 2. En déduire qu'il existe un vecteur v_1 appartenant à E tel que : $v_1 \neq 0_E$ et $f(v_1) = 0_E$.
- 3. (a) Montrer que $f^2 + i$ n'est pas bijectif.
 - (b) En déduire qu'il existe v_2 appartenant à E tel que : $v_2 \neq 0_E$ et $f^2(v_2) = -v_2$.
- 4. On note $v_3 = f(v_2)$.
 - (a) Montrer : $f(v_3) = -v_2$.
 - (b) Montrer que la famille $\mathcal{B} = (v_1, v_2, v_3)$ est une base de E.
 - (c) Déterminer la matrice C de f dans la base \mathcal{B} .