

Task Overview

					ข้อจำกัด	จำนวน	
	โจทย์		ข้อมูล	ข้อจำกัด	หน่วย	ଅ୍ ମ	คะแนน
	EUND	นำเข้า	ส่งออก	เวลา	ความ	ทด	เต็ม
					จำหลัก	สอบ	
1.	กับดักจอมปลอม (Fake_Trap)			1 s.	128 MB	10	100
2.	ป้อมปราการลุค (Fortress_Luke)			1 s.	128 MB	20	100
3.	คุกของเลอา (Prison_Leia)			1 s.	128 MB	10	100
4.	มาเรียงหนังสือ (Book_Sort)			1 s.	128 MB	10	100
5.	ชื่อไคโลเร็น (Kylo_Ren)			1 s.	128 MB	20	100
6.	เบนและโซโล (Ben_Solo)			1 s.	128 MB	10	100
7.	โปรเป่ายิ้งฉุบ (PRS_Expert)	out	tput	1 s.	128 MB	10	100
8.	ทุบเลขศูนย์หนึ่ง (Zeroone_Beat)	Standard Input	Standard Output	1 s.	128 MB	10	100
9.	ซึ่งหน้าบ้านบ้าน (Face_Suburb)	ndar	darc	1 s.	128 MB	10	100
10.	งานทำการออร์ (OR_Do)	Star	Stan	1 s.	128 MB	10	100
11.	ขอค้นข้อมูล (Find_Data)		•	1 s.	128 MB	10	100
12.	ตูนเชื่อมตัวเลข (Toon_Connect)			1 s.	128 MB	10	100
13.	เสกต้นไม้เจ (Tree_J)			1 s.	128 MB	10	100
14.	เรย์ดาวแจคคู (Rey_Jakku)			1 s.	128 MB	10	100
15.	ดูกระดาษทอม (Paper_Tom)			1 s.	128 MB	10	100
16.	พอมพ์จัดเรียงคำ (Word_Pomp)			1 s.	128 MB	10	100

เวลาสอบ: 4 ชั่วโมง

โจทย์ทั้งหมด: 16 ข้อ

พยายามทำทุกข้อ ^^

1. กับดักจอมปลอม (Fake_Trap)

โดย นายอัครพนธ์ วัชรพลากร

ณ กาแล็กซื่อันไกลพ้น ที่อยู่ของหมู่ดาวมากมาย สหพันธ์พาณิชย์กับดาวนาบู เกิดความขัดแย้งทางด้านการค้า ซึ่งได้มีการส่งเจไดคือ ไควกอน จีน และโอบีซิ่ว เข้าไปแก้ปัญหาอย่างลับๆ แต่ทำให้รู้ความจริงว่า สหพันธ์พาณิชย์ ได้ ร่วมมือกับดาร์ธ ซิเดียส สั่งการให้มีการรุกรานดาวนาบูและสั่งให้ตามฆ่าเจไดทั้งสอง

ท้ายที่สุดไควกอน จีนก็ตายลง (ตายง่ายจัง ๕๕+) ส่วนโอบีซิ่วได้ติดอยู่ในกับดักจอมปลอมซึ่งเป็นตารางขนาด R x C โดยหากโอบีซิ่วสามารถหาค่าน้อยที่สุดในตารางออกมาได้ถูกต้องก็จะรอดพ้นจากกับดักจอมปลอมนี้

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยเจไดโอบีซิ่วให้รอดพ้นจากกับดักจอมปลอมนี้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก R C ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ R, C ไม่เกิน 1,000 อีก R บรรทัดต่อมา รับตัวเลขจำนวน C จำนวนห่างกันหนึ่งช่องว่าง โดยตัวเลขดังกล่าวมีค่าสัมบูรณ์ไม่เกิน 1,000,000,000

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงค่าที่จะช่วยให้โอบีซิ่วรอดพ้นจากกับดักจอมปลอมได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 5	1
8 4 6 9 2	
5 2 3 1 7	
4 7 3 5 10	

2. ป้อมปราการลุค (Fortress_Luke)

โดย นายอัครพนธ์ วัชรพลากร

เมื่อโอบีซิ่วรอดพ้นจากกับดักจอมปลอม ก็ได้มาอยู่ในป้อมปราการของลุคสกายวอล์คเกอร์ ป้อมปราการลุคเป็นป้อมขนาดใหญ่จำนวน 8 ป้อม ล้อมรอบเมืองไว้ ดังแสดงในรูปที่ 1

Α	В	С	
Н		D	
G	F	E	

5	6	3	
6		6	
3	6	5	

รูปที่ 1 แสดงโครงสร้างและตำแหน่งของป้อม รูปที่ 2 แสดงตัวอย่างการจัดจำนวนทหารในแต่ละป้อม ทุก ๆ ครั้งศัตรูจะบุกมาทำลายเมืองจากทาง ทิศเหนือ ทิศใต้ ทิศตะวันออก หรือทิศตะวันตก ทางใดทางหนึ่ง เท่านั้น โดยทหารที่ประจำการในป้อมที่ตั้งอยู่ทางทิศที่ศัตรูบุก และป้อมข้างเคียงซ้ายขวามีหน้าที่ขับไล่ศัตรู แต่ เนื่องจากไม่สามารถคาดเดาทิศที่ศัตรูจะบุกได้ จึงได้กำหนดเงื่อนไขสำหรับการจัดสรรทหารเพื่อประจำการในแต่ละ ป้อม ดังต่อไปนี้

- จำนวนทหารที่ขับไล่ศัตรูรวมในแต่ละทิศ (เหนือ, ใต้, ออก, ตก) ต้องมีจำนวนที่เท่ากัน
- ทหารที่ประจำการในป้อมที่ตั้งอยู่ทิศตรงข้ามกัน ต้องมีจำนวนเท่ากัน
- ในป้อมบางป้อม อาจไม่มีทหารประจำการเลยก็ได้
 รูปที่ 2 แสดงตัวอย่างการจัดสรรทหารจำนวน 40 นาย เพื่อประจำการในแต่ละป้อมตามเงื่อนไขที่กำหนด
 โดยมีจำนวนทหารที่ประจำในแต่ละทิศ คือ 14 (5 + 6 + 3 = 14) เท่ากันหมด ซึ่งเป็นวิธีหนึ่งที่ทำได้ถูกต้อง
 <u>งานของคณ</u>

จงเขียนโปรแกรมเพื่อรับจำนวนทหารทั้งหมด และ จำนวนทหารที่ประจำแต่ละทิศ แล้วจงหาจำนวนวิธีการ จัดวางทหารทั้งหมด โดยให้ตอบคำถามนี้ 20 ครั้ง

<u>ข้อมูลนำเข้า</u>

มีจำนวน 20 บรรทัด แต่ละบรรทัดรับจำนวนทหารทั้งหมด (A) และ จำนวนทหารที่ประจำในแต่ละทิศ (B)

โดย 25% ของชุดข้อมูลทดสอบจะมี A ไม่เกิน 600 และ B ไม่เกิน 200

50% ของชุดข้อมูลทดสอบจะมี A ไม่เกิน 10,000 และ B ไม่เกิน 3,000

75% ของชุดข้อมูลทดสอบจะมี A ไม่เกิน 10,000,000 และ B ไม่เกิน 3,000,000 และ

100% ของชุดข้อมูลทดสอบจะมี A ไม่เกิน 200,000,000 และ B ไม่เกิน 100,000,000 ซึ่งการที่จะได้ คะแนนเต็มในข้อนี้ โปรแกรมที่ส่งจะต้องทำงานได้อย่างมีประสิทธิภาพ

<u>ข้อมูลส่งออก</u>

มีจำนวน 20 บรรทัด แต่ละบรรทัดแสดงจำนวนของการจัดสรรทหารตามเงื่อนไขของข้อมูลนำเข้า

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
40 15	11
30 12	10
60 40	0
50 18	12
66 26	20
36 11	5
36 16	15
36 18	19
56 20	13
56 22	17
44 18	15
32 14	13
42 20	20
36 16	15
38 14	10
38 16	14
34 20	0
36 16	15
44 14	7
34 14	12

3. คุกของเลอา (Prison_Leia)

โดย นายอัครพนธ์ วัชรพลากร

ต่อมาเจไดโอบีซิ่วต้องมาบุกคุกของเลอา ซึ่งมีทหารจุ๋มบุ๋ม และ ป้อนแป้น เป็นทหารคุมอยู่

ภายในคุกของเลอา นักโทษส่วนใหญ่เป็นนักคณิตศาสตร์ที่วัน ๆ สนใจแต่สมการกำลังสองที่เขียนรูปทั่วไปได้ ว่า $Ax^2 + Bx + C = 0$ โดยสามารถแยกตัวประกอบได้เป็น (ax + b)(cx + d) = 0 เมื่อ A = ac, B = ad + bc, C = bd และ a, b, c, d เป็นจำนวนเต็ม และ a, c > 0 นักโทษเหล่านี้เชี่ยวชาญมาก โอบีซิ่ววันนี้จะต้องมาประลอง คณิตศาสตร์ให้ชนะนักโทษในคุกของเลอาให้จงได้

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อรับ A, B และ C จากนั้น จงหาค่าของ a, b, c และ d ออกมา

<u>ข้อมูลนำเข้า</u>

บรรทัดเดียว รับจำนวนเต็ม A, B และ C ตามลำดับคั่นด้วยช่องว่าง โดยที่ 1 <= A <= 100; -10000 <= B <= 10000 และ -100 <= C <= 100

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนเต็ม a, b, c และ d ที่เป็นไปตามเงื่อนไขคั่นด้วยช่องว่าง 1 ช่อง หากมีคำตอบที่ เป็นไปได้หลายชุด ให้ตอบคำตอบที่มีค่า a น้อยที่สุด หากมีคำตอบที่มีค่า a น้อยที่สุดเท่ากันหลายชุด ให้ตอบคำตอบ ที่มีค่า b น้อยที่สุดในบรรดาคำตอบเหล่านั้น และหากไม่มีคำตอบที่เป็นไปได้เลย ให้พิมพ์คำว่า No Solution

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 5 1	1 1 4 1
1 1 1	No Solution

4. มาเรียงหนังสือ (Book_Sort)

โดย นายอัครพนธ์ วัชรพลากร

ต่อมาเจไดชิ่วจะต้องมาเรียงหนังสือเพื่อหาความรู้สู่ความเป็นอมตะ โดยเขาต้องการจะเรียงหนังสือแบบ Insertion Sort นั่นคือ เอาหนังสือมาเรียงทีละเล่ม และหาว่าหนังสือเล่มนั้นเป็นเล่มที่เท่าไหร่ในกองหนังสือทั้งหมด ก่อนหน้ารวมเล่มนี้ด้วย เช่น ถ้ามีหนังสือ 5 เล่ม ได้แก่ GreedyMethod, DivideConquer, Maximumflow, DynamicProgramming และ Graph ดังนั้นลำดับการเรียงหนังสือจะเป็นดังนี้

ลำดับ	หนังสือเล่มปัจจุบัน	รายชื่อหนังสือก่อนหน้า เรียงตามหนังสือ	คำตอบ
1.	GreedyMethod	GreedyMethod	1
2	DividoConquer	DivideConquer	1
2.	DivideConquer	GreedyMethod	1
		DivideConquer	
3.	Maximumflow	GreedyMethod	3
		Maximumflow	
	DivideConquer DynamicProgrammir	DivideConquer	
4.		DynamicProgramming	2
4.	DynamicProgramming	GreedyMethod	2
		Maximumflow	
		DivideConquer	
		DynamicProgramming	
5.	Graph	Graph	3
		GreedyMethod	
		Maximumflow	

<u>งานของคุณ</u>

จงตอบลำดับการเรียงหนังสือตามวิธีข้างต้น

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N แทนจำนวนหนังสือทั้งหมด โดยที่ N ไม่เกิน 30,000 อีก N บรรทัดต่อมา แสดงชื่อหนังสือเป็นตัวอักษรภาษาอังกฤษยาวไม่เกิน 20 ตัวอักษร 30% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 1,000

<u>ข้อมูลส่งออก</u>

N บรรทัด แต่ละบรรทัด แสดงลำดับของหนังสือปัจจุบัน ถ้ามีหนังสือที่ชื่อเหมือนกัน หนังสือเล่มที่นำมาเรียง ก่อนจะถือว่าอยู่ลำดับก่อนหน้า

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	1
GreedyMethod	1
DivideConquer	3
Maximumflow	2
DynamicProgramming	3
Graph	

5. ชื่อไคโลเร็น (Kylo Ren)

โดย นายอัครพนธ์ วัชรพลากร

ต่อมาโอบีซิ่วก็ต้องพ่ายแพ้ให้กับบุคคลที่ชื่อไคโลเร็น ผู้มีสมุนมากมาย ได้แก่ #ทีมตั้ม และ #ทีมบอมบ์

ไคโลเร็นชอบจำนวนตัวประกอบมาก เช่น ตัวเลข 6 มีจำนวนตัวประกอบเป็น 4 ได้แก่ 1, 2, 3 และ 6 ในขณะที่ตัวเลข 16 มีจำนวนตัวประกอบเป็น 5 ได้แก่ 1, 2, 4, 8 และ 16 เป็นต้น วันนี้ไคโลเร็นมีคำถามมาถามคุณ และคุณจะต้องตอบคำถามให้ได้

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อตอบคำถามไคโลเร็นว่า ตั้งแต่จำนวนเต็มบวก A ถึง B มีกี่จำนวนที่มีจำนวนตัวประกอบ เท่ากับ C?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 100 อีก Q บรรทัดต่อมา รับจำนวนเต็มบวก A B และ C ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ 1 <= A <= B <= 1,000,000 และ 1 <= C <= 500

โดย 25% ของชุดข้อมูลทดสอบจะมี 1 <= A <= B <= 1,000

50% ของชุดข้อมูลทดสอบจะมี 1 <= A <= B <= 10,000

75% ของชุดข้อมูลทดสอบจะมี 1 <= A <= B <= 100,000 และ

100% ของชุดข้อมูลทดสอบจะมี 1 <= A <= B <= 1,000,000 ซึ่งการที่จะได้คะแนนเต็มในข้อนี้ โปรแกรม

ที่ส่งจะต้องทำงานได้อย่างมีประสิทธิภาพ

<u>ข้อมูลส่งออก</u>

Q บรรทัด แต่ละบรรทัดตอบคำถามของไคโลเร็น ตามลำดับของข้อมูลนำเข้า

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	1
1 10 1	2
494	5
5 17 2	

คำอธิบายตัวอย่างที่ 1

คำถามแรก ตั้งแต่ 1 ถึง 10 มีตัวเลขที่มีจำนวนตัวประกอบเท่ากับ 1 ทั้งสิ้น 1 จำนวน ได้แก่ 1 คำถามที่สอง ตั้งแต่ 4 ถึง 9 มีตัวเลขที่มีจำนวนตัวประกอบเท่ากับ 4 ทั้งสิ้น 2 จำนวน ได้แก่ 6 และ 8 คำถามที่สาม ตั้งแต่ 5 ถึง 17 มีตัวเลขที่มีจำนวนตัวประกอบเท่ากับ 2 ทั้งสิ้น 5 จำนวน ได้แก่ 5, 7, 11, 13 และ 17 นั่นเอง

6. เบนและโซโล (Ben Solo)

โดย นายภานุ วจะโนภาส

ไคโลเร็นนั้นเดิมชื่อเบน และเป็นลูกชายของฮาน โซโล วันนี้เบนและโซโลต้องมาทะเลาะเพื่อเรื่องของไม้ฉาก รูปสามเหลี่ยมดังภาพ

เบนมีไม้ฉากทั้งสิ้น 4 อัน โดยไม้ฉากแต่ละอันมีความยาวด้านที่ตั้งฉากกันเป็น x_i และ y_i เบนจะนำไม้ฉาก ทั้งหมดมาจัดวางเป็นรูปสามเหลี่ยมมุมฉากโดยให้ด้าน 2 ด้านของไม้ฉากแต่ละชิ้นขนานกับแกน X และแกน Y ซึ่ง สามารถหมุนหรือพลิกไม้ฉากอย่างไรก็ได้ เบนบอกว่าเรื่องแบบนี้มันทำไม่ได้หรอก แต่โซโลบอกว่ามันสร้างรูป สามเหลี่ยมมุมฉากได้ จึงวานคุณมาตัดสินข้อพิพาทนี้

<u>งานของคุณ</u>

จงหาความยาวของด้าน 2 ด้านที่ตั้งฉากกันของสามเหลี่ยมมุมฉากที่เกิดจากการจัดวางไม้ฉากทั้ง 4 อัน (มีสอง ด้านให้ตอบด้านความยาวน้อยกว่าก่อน) ถ้าไม่สามารถทำได้ให้ตอบ -1

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 100

อีก Q บรรทัดต่อมา รับจำนวนเต็มบวก 8 จำนวน ได้แก่ x_1 , y_1 , x_2 , y_2 , x_3 , y_3 , x_4 และ y_4 ตามลำดับห่างกัน หนึ่งช่องว่าง โดยตัวเลขดังกล่าวจะมีค่าตั้งแต่ 1 ถึง 100

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดแสดงคำตอบของแต่ละคำถามเรียงตามลำดับข้อมูลนำเข้า

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	2 4
1 2 1 2 1 2 1 2	-1
1 2 2 3 3 1 2 4	

7. โปรเป่ายิ้งฉุบ (PRS Expert)

โดย นายณัฐภัท กาญจนประภาส

และแล้วก็ถึงวันจันทร์ ไคโลเร็นก็ต้องมาเจอกับต้นโพธิ์...

ต้นโพธิ์เป็นโปรเป่ายิ้งฉุบ เขาเล่นเป่ายิ้งฉุบเก่งมากจึงคิดค้นกติกาการเล่นเกมนี้ขึ้นมาใหม่ โดยเกมใหม่นี้มีผู้ เล่น N คนแต่ละคนมีหมายเลข 1 ถึง N ยืนเรียงกันเป็นวงกลม

กฎของเกมมีอยู่ว่าทุกคนจะเป่ายิงฉุบพร้อมกัน และคนที่ i จะจำไว้ว่าตัวเองเป่ายิ้งฉุบชนะคนที่ i+1 และ i+2 ทั้งหมดกี่คน แน่นอนว่าคนที่ N จะเป่ากับคนที่ 1 และ 2 ส่วนคนที่ N-1 จะเป่ากับคนที่ N และ 1

ในข้อนี้ต้นโพธิ์จะให้ตัวเลขที่แต่ละคนได้จำไว้มา แล้วถามว่าตัวเลขเหล่านี้สามารถเป็นตัวเลขที่ถูกต้องตามกฎ ของเกมนี้ได้หรือไม่?

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อตอบคำถามของต้นโพธิ์ โปรเป่ายิ้งฉุบ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 5 ในแต่ละคำถามรับข้อมูลดังนี้ บรรทัดแรก รับจำนวนเต็มบวก N แทนจำนวนผู้เล่น โดยที่ N ไม่เกิน 100,000 บรรทัดที่สอง รับจำนวนเต็ม Ai (0 <= Ai <= 2) ทั้งหมด N จำนวน แทนตัวเลขที่จำมาของผู้เล่น

<u>ข้อมูลส่งออก</u>

Q บรรทัด ถ้าตัวเลขที่ได้รับมาสามารถเป็นตัวเลขที่ถูกต้องของกฎของเกมนี้ได้ ให้ตอบว่า Valid ถ้าไม่ได้ให้ ตอบว่า Invalid

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	Valid
5	Invalid
20111	
5	
2 2 1 0 0	

คำอธิบายตัวอย่างที่ 1

มีสองคำถาม ได้แก่

คำถามแรก ถ้าผู้เล่นคนที่ 1 ถึง N ออก ค้อน กรรไกร กรรไกร กรรไกร กระดาษ ตามลำดับ ตัวเลขที่แต่ละคน จำได้ก็จะเป็นชุดตัวเลข 2, 0, 1, 1 และ 1 นั่นเอง จึงตอบว่าสามารถเป็นตัวเลขที่ถูกต้องได้

คำถามที่สอง ไม่ว่าแต่ละคนจะออกยังไง ก็ไม่มีทางจะจำตัวเลขได้เหมือนอินพุต จึงตอบว่า Invalid

8. ทุบเลขศูนย์หนึ่ง (Zeroone_Beat)

โดย นายเมธัส เกียรติชัยวัฒน์

ถัดจากวันจันทร์ ก็เข้าสู่วันอังคาร วันอังคารก็ต้องสีชมพู ชมพูแค่ไหน ก็ดูในรูปสิ อิอิ

วันนี้ไคโลเร็นจะต้องมาทุบเลขศูนย์หนึ่ง เริ่มต้นมีสตริงที่ประกอบด้วยตัวเลข 0 หรือ 1 เท่านั้นยาว N หลัก ในข้อนี้เราจะสนใจลำดับย่อยเฉพาะตัวเลขที่มีความแตกต่างกันสลับหลักกันไป เช่น 010101... หรือ 101010... เท่านั้น เช่น สตริง 001001 สตริงนี้จะมีความยาวเป็น 4 คือ 0101 หรือ สตริง 1010001 สตริงนี้จะมี ความยาวเป็น 5 คือ 10101 กล่าวคือ ตัวเลขที่เหมือนกันเมื่ออยู่ติดกันจะนับเพียงหลักเดียวเท่านั้นนั่นเอง

ในข้อนี้คุณสามารถทุบตัวเลขได้อีกไม่เกิน K ครั้ง การทุบตัวเลขคือการเปลี่ยนตัวเลขทั้งช่วง A ถึง B ใด ๆ (A <= B เสมอ) โดยการเปลี่ยนตัวเลขคือการเปลี่ยน 0 เป็น 1 หรือ เปลี่ยน 1 เป็น 0 ในทุก ๆ ตัว ตั้งแต่ A ถึง B เช่น สตริง 001001 ถ้าคุณสามารถทุบตัวเลขได้ 2 ครั้ง เมื่อเปลี่ยนลำดับที่ 2-6 (001001 -> 010110) และ 5-6 (010110 -> 010101) ทำให้สตริงสุดท้ายเป็น 010101 และสตริงนี้จะมีความยาว 6 คือ 010101 หรือ สตริง 00100001 ถ้าคุณสามารถทุบตัวเลขได้ 1 ครั้ง เมื่อเปลี่ยนลำดับที่ 2-4 (00100001 -> 01010001) ทำให้สตริงสุดท้ายเป็น 01010001 และสตริงนี้จะมีความยาวคือ 6 ซึ่งมากสุดเท่าที่จะเป็นไปได้แล้ว

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาความยาวสตริงที่ยาวที่สุด เมื่อทุบสตริงเป็นจำนวน K ครั้ง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็ม N K (1 <= N <= 100,000; 1 <= K <= N)
บรรทัดต่อมา รับสตริงจำนวน N ตัวอักษร โดยสตริงนี้จะประกอบไปด้วยเลข 0 กับ 1 เท่านั้น
ประมาณ 40% ของชุดทดสอบ จะมี N, K ไม่เกิน 1,000

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว ความยาวสตริงที่ยาวที่สุดที่สามารถทำได้ เมื่อทุบสตริงเป็นจำนวน K ครั้ง

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 2	6
001001	
7 1	5
0010000	

9. ซึ่งหน้าบ้านบ้าน (Face_Suburb)

โดย นายเมธัส เกียรติชัยวัฒน์

ต่อมาไคโลเร็นก็ต้องมาเจอกับกอล์ฟและป่านซึ่งหน้าบ้านบ้านมาก (หน้าน้องดูไม่แพงเลย)

กอล์ฟและป่านได้สอนให้ไคโลเร็นรู้จักจำนวนฟิโบนัชชี หรือ เลขฟิโบนัชชี (Fibonacci number) คือจำนวน ต่าง ๆ ที่อยู่ในลำดับจำนวนเต็มตามสมการ $F_n = F_{n-1} + F_{n-2}$; $F_0 = 0$, $F_1 = 1$ ซึ่งมีตัวเลขดังต่อไปนี้ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 ... จากนั้นกอล์ฟและป่านก็มีโค้ดบ้านบ้านมาให้ ดังนี้

```
#include <stdio.h>
#include <stdlib.h>
#include <fibonacci>
#define mod 1000007

using namespace std;

int main()
{
    int i,j,n,count = 0;
    scanf("%d",&n);
    for(i = 1;i <= n; i++)
    {
        for(j = 1;j < i; j++)
        {
            count += abs((fibonacci(i)%mod) - (fibonacci(j)%mod));
            count %= mod;
        }
        }
        printf("%d\n",count);
        return 0;
}</pre>
```


<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาค่าของ count จากโปรแกรมบ้าน ๆ ที่กอล์ฟและป่านให้มา

<u>ข้อมูลนำเข้า</u>

บรรทัดเดียว รับจำนวนเต็มบวก n โดยที่ n ไม่เกิน 100,000

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว ค่าของ count จากโปรแกรมบ้าน ๆ นี้

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	0
3	2

10. งานทำการออร์ (OR_Do)

โดย นายภานุ วจะโนภาส

ต่อมาก็ได้เข้าสู่โจทย์ข้อปานกลางข้อแรกกัน...

เมื่อวันจันทร์และวันอังคารผ่านไปแล้ว ต่อมาก็ได้เข้าสู่วันพุธสุดหรรษา...

ไคโลเร็นได้มารู้จักกับสองมิล ผู้เชี่ยวชาญการดำเนินการออร์ (Bitwise OR Operation) ที่มีสัญลักษณ์เป็น | เช่น $10~(1010_2)$ | $3~(0011_2)$ = $11~(1011_2)$ นั่นเอง

ในวันนี้สองมิลจะให้ตัวเลขจำนวนเต็มบวกแก่ไคโลเร็นมาทั้งสิ้น N จำนวน เรียกว่าเป็นตัวเลขตัวที่ 1 จนถึง ตัวเลขตัวที่ N จากนั้นสองมิลจะถามว่าตั้งแต่ตัวเลขตัวที่ A จนถึงตัวเลขตัวที่ B ถ้านำตัวเลขมาทำการออร์กันทั้งหมด (Bitwise OR Operation) จะได้ผลลัพธ์เป็นเท่าไหร่?

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยไคโลเร็นตอบคำถามของสองมิล

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N Q แทนจำนวนตัวเลขทั้งหมดและจำนวนคำถามตามลำดับห่างกันหนึ่ง ช่องว่าง โดยที่ N, Q มีค่าไม่เกิน 100,000

บรรทัดที่สอง รับจำนวนเต็มบวกทั้งสิ้น N จำนวนห่างกันหนึ่งช่องว่าง โดยตัวเลขดังกล่าวจะมีค่าไม่เกิน 2,000,000,000

อีก Q บรรทัดต่อมา รับจำนวนเต็มบวกสองจำนวนคือ A และ B โดยที่ 1 <= A <= B <= N

<u>ข้อมูลส่งออก</u>

บรรทัด แสดงคำตอบของแต่ละคำถามของสองมิล

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 3	2
1 2 4 5 8	15
2 2	13
1 5	
3 5	

11. ขอค้นข้อมูล (Find_Data)

โดย นายอัครพนธ์ วัชรพลากร

ต่อมาไคโลเร็นต้องมาค้นข้อมูลที่อยู่ในหนังสือกัน

หนังสือของไคโลเร็นมีทั้งสิ้น A หน้า หน้าละ B คำ ในแต่ละหน้านั้นจะมีคำศัพท์ดังนี้

-หนังสือหน้าที่ X จะประกอบด้วยคำว่า (X + (i² % 99,999,989)) % 99,999,989 โดยที่ 0 <= i < B และ ไคโลเร็นมีคำที่ต้องการจะค้นทั้งสิ้น N ประโยค ประโยคละ M คำ โดยมีเงื่อนไขดังนี้

-ประโยคที่ Y จะประกอบด้วยคำว่า (Y + (j³ % 99,999,989)) % 99,999,989 โดยที่ 0 <= j < M
ไคโลเร็นต้องการทราบว่าคำในประโยคที่เขาต้องการจะค้นอยู่ในหนังสือทั้งสิ้นกี่คำ แต่บางครั้งคำในหนังสือ
อาจซ้ำกันได้ หรือคำในประโยคที่ค้นก็อาจจะซ้ำกันได้เช่นกัน ในข้อนี้ให้ตอบจำนวนคำที่หาเจอโดยที่ไม่สนใจว่าจะ
เป็นคำที่เคยค้นหามาก่อนหรือไม่

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาว่าไคโลเร็นสามารถหาคำในหนังสือเจอทั้งสิ้นกี่คำ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็ม 4 จำนวน ได้แก่ A คือ จำนวนหน้าในหนังสือ, B คือจำนวนคำในแต่ละหน้า, N คือ จำนวนประโยคที่จะค้น และ M คือจำนวนคำในแต่ละประโยค โดยที่ 1 <= A, B, N, M <= 5,000 และ N \times M <= 5,000,000

บรรทัดที่สอง รับจำนวนเต็ม A จำนวน คือ X แทนหน้าของหนังสือที่ไคโลเร็นเปิดหา (X <= 2,000,000) บรรทัดที่สาม รับจำนวนเต็ม N จำนวน คือ Y แทนประโยคที่ไคโลเร็นจำได้ (Y <= 2,000,000)

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนคำทั้งหมดที่หาเจอ โดยไม่สนใจว่าคำจะซ้ำหรือไม่

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 1 5 1	2
1 2 5	
5 5 3 0 7	
3 3 5 2	7
3 5 9	
5 4 3 2 1	

คำอธิบายตัวอย่างที่ 2

มี 3 หน้า แต่ละหน้ามี 3 คำ โดยใช้สมการ (\times + (i^2 % 99,999,989)) % 99,999,989 ได้แก่

หน้าที่ 3: มี 3, 4, 7 หน้าที่ 5: มี 5, 6, 9 หน้าที่ 9: มี 9, 10, 13

มี 5 ประโยค แต่ละประโยคมี 2 คำ โดยใช้สมการ (Y + (j 3 % 99,999,989)) % 99,999,989 ได้แก่

ประโยคที่ 5: มี 5*, 6* ประโยคที่ 4: มี 4*, 5* ประโยคที่ 3: มี 3*, 4*

ประโยคที่ 2: มี 2, 3* ประโยคที่ 1: มี 1, 2 (* คือตัวที่เจอในหนังสือ)

จึงตอบว่ามี 6 คำที่เปิดเจอในหนังสือ

12. ตูนเชื่อมตัวเลข (Toon_Connect)

โดย นายณัฐภัท กาญจนประภาส

ต่อมาไคโลเร็นต้องมาเจอกับตูนเทพแห่งการเล่นเกมเชื่อมตัวเลข

เกมเชื่อมตัวเลข เป็นเกมที่มีลำดับตัวเลขยาว N ตัวอยู่สองลำดับวางขนานกันอยู่บนและล่าง ตัวเลขในลำดับมี ตั้งแต่ 1 ถึง N โดยจะมีตัวเลขแต่ละตัวเลขอยู่ 2 ตัวเสมอ คุณจะต้องเชื่อมตัวเลขเดียวกัน โดยเส้นทุกเส้นไม่ตัดกัน แล้วหาว่าสามารถลากเส้นได้มากที่สุดกี่เส้น โดยการลากจะต้องลากลงไปในช่องว่างระหว่างสองลำดับเท่านั้น เช่น N=4, มีตัวเลขในลำดับบนเป็น 1, 2, 3, 1 และมีตัวเลขในลำดับล่างเป็น 4, 3, 4, 2 สามารถลากได้ 2 เส้นดังภาพ

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนเส้นที่เชื่อมตัวเลขที่มากที่สุดที่ลากแล้วเส้นเชื่อมไม่ตัดกัน

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N โดยที่ N ไม่เกิน 50 บรรทัดที่สอง จำนวนเต็มบวก Ai (1 <= Ai <= N) N จำนวน แต่ละจำนวนแทนตัวเลขในลำดับบน บรรทัดที่สาม จำนวนเต็มบวก Bi (1 <= Bi <= N) N จำนวน แต่ละจำนวนแทนตัวเลขในลำดับล่าง

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว จำนวนเส้นที่มากที่สุดที่สามารถลากเชื่อมตัวเลขให้เส้นเชื่อมไม่ตัดกันได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	2
1 4 2 3	
2 4 1 3	
4	2
1 2 3 1	
4 3 4 2	

13. เสกต้นไม้เจ (Tree_J)

โดย นายอัครพนธ์ วัชรพลากร

ขอยกเลิกโจทย์ครับ

14. เรย์ดาวแจคคู (Rey_Jakku)

โดย นายอัครพนธ์ วัชรพลากร

ขอยกเลิกโจทย์ครับ

15. ดูกระดาษทอม (Paper_Tom)

โดย นายอัครพนธ์ วัชรพลากร

ขอยกเลิกโจทย์ครับ

16. พอมพ์จัดเรียงคำ (Word_Pomp)

โดย นายอัครพนธ์ วัชรพลากร

ขอยกเลิกโจทย์ครับ