Sisteme bloc ca PRF

► Am văzut că sistemele de criptare bloc folosesc *PRF*;

Securitatea Sistemelor Informatice

2/18

Paradigma confuzie-difuzie

- Se construiește funcția F, pe baza mai multor funcții aleatoare f_i de dimensiune mai mică;
- Considerăm F pe 128 biți și 16 funcții aleatoare f_1, \ldots, f_{16} pe câte 8 biți;
- ▶ Pentru $x = x_1 || \dots || x_{16}, x \in \{0, 1\}^{128} x_i \in \{0, 1\}^8$:

$$F_k(x) = f_1(x_1)||\dots||f_{16}(x_{16})|$$

▶ Spunem că $\{f_i\}$ introduc confuzie în F.

Sisteme bloc ca PRF

▶ În criteriile de evaluare pentru adoptarea AES s-a menționat: The security provovided by an algorithm is the most important factor... Algorithms will be judged on the following factors...

The extent to which the algorithm output is indistinguishable from a random permutation on the input block.

▶ Întrebare: Cum se obțin *PRF* în practică?

Securitatea Sistemelor Informatice

3/18

Rețele de substituție - permutare

F încă nu este PRF dar

- ► F se transformă în PRF în 2 pași:
 - ▶ Pasul 1: se introduce difuzie prin amestecarea (permutarea) biţilor de ieşire;
 - ► Pasul 2: se repetă o rundă (care presupune confuzie și difuzie) de mai multe ori;
- ▶ Repetarea *confuziei* și *difuziei* face ca modificarea unui singur bit de intrare să fie propagată asupra tuturor biților de ieșire;

Rețele de substituție - permutare

- O rețea de substituție-permutare este o implementare a construcției anterioare de *confuzie-difuzie* în care funcțiile $\{f_i\}$ sunt **fixe** (i.e. nu depind de cheie) si se numesc permutări;
- \blacktriangleright { f_i } se numesc S-boxes (Substitution-boxes);
- ► Cum nu mai depind de cheie, aceasta este utilizată în alt scop;
- ▶ Din cheie se obțin mai multe **chei de rundă** (*sub-chei*) în urma unui proces de derivare a cheilor (*key schedule*);
- ► Fiecare cheie de rundă este XOR-ată cu valorile intermediare din fiecare rundă.

Securitatea Sistemelor Informatice

6/18

Rețele de substituție - permutare

- Există 2 principii de bază în proiectarea rețelelor de substituție permutare:
 - ► **Principiul 1**: Inversabilitatea S-box-urilor;
 - dacă toate S-box-urile sunt inversabile, atunci rețeaua este inversabilă:
 - necesitate funcțională (pentru decriptare)
 - ▶ Principiul 2: Efectul de avalanșă
 - ▶ Un singur bit modificat la intrare trebuie să afecteze toți biții din secvența de ieșire;
 - necesitate de securitate.

Rețele de substituție - permutare

Securitatea Sistemelor Informatice

7/18

Exemplu: AES - Advanced Encryption Standard

- ▶ ianuarie 1997 NIST anunță competiția pentru selecția unui nou sistem de criptare bloc care să înlocuiască DES;
- septembrie 1997 15 propuneri: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and Twofish;
- ▶ 1998, 1999 au loc 2 workshop-uri în urma carora ramân 5 finalişti: MARS, RC6, Rijndael, Serpent, Twofish;
- octombrie 2000 după un al treilea workshop se anunță câștigătorul: Rijndael.
- ► AES este folosit in multe standarde comerciale: IPsec, TLS, IEEE 802.11i (WPA2), SSH, Skype, etc.

Securitatea Sistemelor Informatice 8/18 , Securitatea Sistemelor Informatice

9/18

AES - Advanced Encryption Standard

[http://keccak.noekeon.org/team.html]

Rijndael = Rijmen + Daemen

Securitatea Sistemelor Informatice

10/18

Securitatea sistemului AES

- ► Singurele atacuri netriviale sunt asupra AES cu număr redus de runde:
 - ► AES-128 cu 6 runde: necesită 2⁷² criptări;
 - ► AES-192 cu 8 runde: necesită 2¹⁸⁸ criptări;
 - ► AES-256 cu 8 runde: necesită 2²⁰⁴ criptări.
- Nu există un atac mai eficient decât căutarea exhaustivă pentru AES cu număr complet de runde.

"It is free, standardized, efficient, and highly secure."
(J.Katz, Y.Lindell, Introduction to Modern Cryptography)

Descriere AFS

- ► AES este o rețea de substituție permutare pe 128 biți care poate folosi chei de 128, 192 sau 256 biți;
- Lungimea cheii determină numărul de runde:

Lungime cheie (biţi)	128	192	256
Număr runde	10	12	14

- ► Folosește o matrice de octeți 4 × 4 numită **stare**;
- ▶ Starea inițială este mesajul clar ($4 \times 4 \times 8 = 128$);
- ► Starea este modificată pe parcursul rundelor prin 4 tipuri de operații: AddRoundKey, SubBytes, ShiftRows, MixColumns;
- leșirea din ultima rundă este textul criptat.

Securitatea Sistemelor Informatice

11/18

Rețele Feistel

- ► Se aseamănă rețelelor de substituție-permutare în sensul că păstrează aceleași elementele componente: S-box, permutare, procesul de derivare a cheii, runde;
- Se diferențiază de rețelele de substituție-permutare prin proiectarea de nivel înalt;
- ► Introduc avantajul major că S-box-urile NU trebuie să fie inversabile:
- Permit așadar obținerea unei structuri *inversabile* folosind elemente *neinversabile*.

Horst Feistel (1915 - 1990)

[Wikipedia]

- Structurile simetrice utilizate în construcția sistemelor bloc poartă numele lui Feistel;
- Munca sa de cercetare la IBM a condus la sistemul de criptare Lucifer şi mai târziu la DES.

Securitatea Sistemelor Informatice

15/18

Rețele Feistel

- Intrarea în runda i se împarte în 2 jumătăți: L_{i-1} și R_{i-1} (i.e. Left și Right);
- leşirile din runda *i* sunt:

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus f_i(R_{i-1})$$

Funcțiile f_i depind de cheia de rundă, derivând dintr-o funcție publică \hat{f}_i :

$$f_i(R) = \widehat{f_i}(k_i, R)$$

Rețele Feistel

Securitatea Sistemelor Informatice

16/18

Rețele Feistel

- ightharpoonup Rețelele Feistel sunt inversabile indiferent dacă funcțiile f_i sunt inversabile sau nu;
- Fie (L_i, R_i) ieșirile din runda i;
- ▶ Intrările (L_{i-1}, R_{i-1}) în runda i sunt:

$$R_{i-1} = L_i$$

$$L_{i-1} = R_i \oplus f_i(R_{i-1})$$