

Turbine Hot Section Material Development

Turbine Hot Section Material Development

Blade team: Rebecca MacKay, Jim Nesbitt, Tim Gabb, Anita Garg, Rick Rogers, Jim Smialek, Mike Nathal

Disk Team: Tim Gabb, Jack Telesman, Chantal Sudbrack, Susan Draper, Anita Garg, Jim Nesbitt, Rick Rogers, Frank Ritzert

NASA Subsonic Transport System Level Metrics

.... technology for dramatically improving noise, emissions, & performance

TECHNOLOGY BENEFITS*	TECHNOLOGY GENERATIONS (Technology Readiness Level = 4-6)		
	N+1 (2015)	N+2 (2020**)	N+3 (2025)
Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-71 dB
LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%	-80%
Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%	-80%
Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%	-60%

^{*} Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines

^{**} ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015

[‡] CO₂ emission benefits dependent on life-cycle CO_{2e} per MJ for fuel and/or energy source used

Achieving N+2, N+3 Goals Requires Improved Materials Capability for Increased Turbine Temperatures

System Studies Results

Tong et al, 2009 Guynn et al, 2009 Benzakein, 2008

Roadmap For Metallic Blade System

Roadmap For Metallic Blade System

Development of High Temperature, Low Density Turbine Blade Alloys

Objective:

- Combine experiments and models to develop advanced turbine blade superalloys for a balance of all required mechanical and environmental properties
- Optimize low density superalloy (LDS) single crystals for transitioning to industry

Approach:

- Design-of-Experiments approach for alloy development balancing creep strength, oxidation resistance, density, and microstructural stability.
- Compare to predictions from commercially-available software tools based on multi-component thermodynamic modeling
- Initial LDS alloys identified with +75°F capability; optimization round added +25°F
- Alloy/Bond Coat/TBC co-optimization
 - Quantify the effect of substrate composition on TBC life with two different bond coats.
 - Quantify the effect of substrate composition and bondcoat on cyclic oxidation behavior without the TBC topcoat

Relative Performance of Low Density Superalloys (LDS) Against Baseline Rene N5

- Improvements in creep life of patented Round 1 alloy (LDS-1101) over commercial blade alloy (Rene N5) without reducing oxidation resistance
- Optimized alloy (LDS-4583) shows further increases in density-compensated creep capability over Round 1 alloy

Alloy Design Using ICME* Tools: LDS Alloy Data Can Be Used To Improve State-of-the-art Models.

Electron micrograph of alloy microstructure. Volume fraction of dark γ' phase is crucial for alloy strength.

- New models closely predict microstructures from alloy compositions, whereas available, physics-based models grossly under-predicted amount of strengthening γ phase
- Fundamental studies on influence of microstructural parameters on creep life being finalized and journal article underway

Effect of substrate alloy composition on the thermal barrier coating (TBC) lifetime

Coatings:

- SOA commercial platinum aluminide bond coat
- SOA commercial ZrO₂-7wt.%Y₂O₃ top coat

* Triplicate tests

No Hf 105 1-hr Cycles

0.15 wt.% 265 1-hr Cycles

Hf addition provides greater TBC lifetime 10

Similar TBC lifetimes observed on LDS alloy and commercial alloy

Coatings:

- SOA commercial platinum aluminide bond coat
- SOA commercial ZrO₂-7wt.%Y₂O₃ top coat

LDS1101+Hf 265 1-hr Cycles

As-Coated Variable Control of the Co

CMSX-4 305 1-hr Cycles

^{*} Triplicate tests

Advanced bond coats show potential for increased TBC lifetime

Coatings: (1) SOA commercial platinum aluminide bond coat
(2) Advanced NiAl bond coat
SOA commercial ZrO₂-7wt.%Y₂O₃ top coat

(2) NiAl Bond Coat 386 1-hr Cycles

PtAl Bond Coat

265 1-hr Cycles

Cyclic oxidation behavior of coated LDS alloys

∆W - Weight Change

No difference between LDS and CMSX-4 alloys with commercial platinum aluminide coating,

- ◆The most advanced turbine disks now in production operate at peak rim temperatures of ~1300°F(704°C) and are made from powder metallurgy (PM) alloys. Dual microstructure heat treatments are used to attain fine grain size in the bore for strength & fatigue resistance; and coarse grain size in the rim for creep & dwell fatigue resistance.
- ◆The Air Force is pursuing an improved PM superalloy, to attain a peak rim temperature near 1400°F(760°C) using this approach.
- NASA SFW needs1500°F(815°C) peak rim temperature to attain N+3 goals. This points to the need for more revolutionary concepts ⇒ hybrid disk
- ◆ First step: quantify maximum temperature capability of 3rd generation PM disk alloy and cast blade alloys, to select bore and rim materials.

Roadmap For Turbine/Compressor Disks

Aviation Safety

1500°F Hybrid Turbine Disk

Varied Grain Size in PM Disk Superalloy LSHR and Cast Blade Superalloy Mar-M247LC, Added Single Crystal LDS

LSHR at 15 µm Grain Size Had Superior Strength

- and Ductility Near 1300°F(704°C), Needed for Hybrid Disk Bore and Web

But Single Crystal LDS Had Highest Strength and Ductility Near Hybrid Disk Rim Goal Temperature of 1500°F(815°C)

Single Crystal LDS Also Had Superior Creep Resistance at Hybrid Disk Rim Temperature of 1500°F(815°C)

Single Crystal LDS Had Superior Creep Over Hybrid Disk Rim Temperature Range

Creep benefit of LDS extends down to 1300°F(704°C)

Single Crystal LDS Showed Better Dwell Fatigue Resistance at Hybrid Disk Rim Temperature of 1500°F(815°C)

Tests at 1300°F(704°C) now getting underway

Influence of high temperature exposures on notched fatigue life of an advanced disk superalloy

Oxidation damage to ME3 disk surface

Hot Corrosion Trials on LSHR

- 32 h corrosion in air at 700°C using a salt paste of NaS₂O₄ and MgSO₄

Oxidation Resistance: LDS Showing Slower, More Stable Oxide Growth at Hybrid Disk Rim Temperature of 1500°F(815°C)

Disk alloys ME3, A10, LSHR form Cr_2O_3 external scale with Al_2O_3 subscale

LDS forms Al₂O₃ external scale

815° C (1500° F), 440 h

Roadmap For Turbine/Compressor Disks

2012 2010 2011 2013 2014 2015 2016 2017 2018 2019 **Understand life limiting failure** 1300F disk life system mechanisms for *current* disk (alloy + coating); in alloys and mitigation collaboration with industry and AFRL Feasibility of 1400 F coating **TRL - 6 Understand chemistry-**1400F+ disk alloy 1400 F disk component processing-microstructuresystem (alloy + coating) development - potential ERA relationships (adv alloys) to concept; collaboration follow-on identify development path to with AFRL and industry. 1500F Hot spin test **AFRL 6.2: Hybrid Disk Program TRL - 5 Graded Prop Disk processing: Location** specific lifing; Next Gen alloy dev. **TRL - 4 Downselect 1500F** disk concept 1500 F disk system concept screening (Hybrid disk) 1500 F disk system development **Proposed NRA: Hybrid** disk design trade studies Proposed NRA: Hybrid disk joining dev

Aviation Safety

Diffusion Brazing Used to Bond Single Crystal to PM Alloy

Subsonic Fixed Wing Project

26

3D Strain Mapping During Tensile Testing of Hybrid Disk Coupon: ME3/BRB/CMSX-4: Room Temperature

3D Strain Mapping During Tensile Testing of Hybrid Disk Coupon: ME3/BRB/CMSX-4: 650°F(350°C)

3D Strain Mapping During Tensile Testing of Hybrid Disk Coupon: ME3/BRB/CMSX-4: 1300°F(700°C)

Conclusions

- Low density single crystals have very attractive balance of capabilities for turbine blades:
 - Improved temperature capability at lower weight (+100°F)
 - Thermal barrier /bond coat compatibility has been demonstrated
 - Looking to expand collaborative efforts with industry
- Compressor/turbine disk development being emphasized via coordinated efforts among NASA, DoD, and industry
 - N+2 requirements point to an extension of powder metallurgy-based approaches
 - Growing importance of environmental effects on mechanical properties
 - Projected N+3 requirements point to a hybrid architecture
 - Some building blocks to hybrid architecture concepts have been addressed
 - Relative performance of PM, SX, and cast alloys in critical mechanical properties
 - Tensile strength, creep life, dwell fatigue life, oxidation and corrosion resistance
 - Mechanical behavior of bonded specimens