Introduction to Compilation

Lexical Analysis

You are here

Role of lexical analyzer

• Recognize tokens and ignore white spaces, comments

• Generates token stream

Error reporting

Diagram is here

From characters to tokens

- What is a token?
 - Roughly a "word" in the source language
 - Identifiers
 - Values
 - Language keywords
 - Really anything that should appear in the input to syntax analysis
- Technically
 - Usually a pair of (type, value)

Tokens vs. lexemes

Token type	Example lexemes
Identifier	x, y, z, foo, bar
NUM	42
FLOATNUM	3.141592654
STRING	"so long, and thanks for all the fish"
LPAREN	(
RPAREN)
IF	if
•••	

From characters to tokens

Token Stream

<ID,"x"> <EQ> <ID,"b"> <MULT> <ID,"b"> <MINUS> <INT,4> <MULT> <ID,"a"> <MULT> <ID,"c">

Tokens – using symbol table

Example. Let us consider the following assignment statement:

```
E := M * C * *2
```

then the following pairs (token,attribute) are passed to the Parser:

```
(id, pointer to symbol-table entry for E)
(assign-op, )
(id, pointer to symbol-table entry for M)
(mult-op, )
(id, pointer to symbol-table entry for C)
(exp-op, )
(num, integer value 2).
```

- Some Tokens have a null attribute: the Token is sufficient to identify the Lexeme.
- From an implementation point of view, each token is encoded as an integer number.

Errors in lexical analysis

Error Handling

Many errors cannot be identified at this stage.

- Example: "fi (a==f(x))". Should "fi" be "if"? Or is it a routine name?
 - We will discover this later in the analysis.
 - At this point, we just create an identifier token.

How can we define tokens?

- Keywords easy!
 - if, then, else, for, while, …
- Identifiers?
- Numerical Values?
- Strings?
- Characterize unbounded sets of values using a bounded description?

Regular Expressions

Basic Patterns	Matching		
x	A single letter 'x' from the alphabet		
	Any character, usually except a new line		
[xyz]	Any of the characters x,y,z		
Repetition Operators			
R?	An R or nothing (ε R)		
R*	Zero or more occurrences of R		
R+	One or more occurrences of R (RR*)		
Composition Operators			
R1R2	An R1 followed by R2		
R1 R2	Either an R1 or R2		
Grouping			
(R)	R itself		

Examples

- ab*|cd? =
- (a|b)+=
- (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)* =

Escape characters

- What is the expression for one or more + symbols?
 - -(+)+ won't work
 - -()+)+ will
- backslash \ before an operator turns it to standard character
- *,\?,\+,...

Shorthands

- Use names for expressions
 - letter = a | b | ... | z | A | B | ... | Z
 - letter_ = letter | _
 - digit = 0 | 1 | 2 | ... | 9
 - id = letter_ (letter_ | digit)*
- Use "-" to denote a range
 - letter = a-z | A-Z
 - digit = 0-9

Examples

- if = if
- then = then
- relop = < | > | <= | >= | = | <>

- digit = 0-9
- digits = digit+

Example

A number is:

```
number = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)^+

(\epsilon | . (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)^+)

(\epsilon | E(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)^+)
```

 Using shorthands it can be written as (this time with negative exponent as well):

```
\begin{array}{rcl} & \text{digit} & \rightarrow & 0 \mid 1 \mid \cdots \mid 9 \\ & \text{digits} & \rightarrow & \text{digit}^+ \\ & \text{optional-fraction} & \rightarrow & (.\text{digits})? \\ & \text{optional-exponent} & \rightarrow & (\text{E}(+ \mid -)?\text{digits})? \\ & \text{num} & \rightarrow & \text{digits optional-fraction optional-exponent} \end{array}
```

Ambiguity

- if = if
- id = letter_ (letter_ | digit)*
- "if" is a valid word in the language of identifiers... so what should it be?
- How about the identifier "iffy"?
- Solution
 - Always find longest matching token
 - Break ties using order of definitions... first definition wins (=> list rules for keywords before identifiers)

Creating a lexical analyzer

- Input
 - List of token definitions (pattern name, regex)
 - String to be analyzed
- Output
 - List of tokens

How do we build an analyzer?

Character classification

```
#define is_end_of_input(ch) ((ch) == '\0');

#define is_uc_letter(ch) ('A'<= (ch) && (ch) <= 'Z')

#define is_lc_letter(ch) ('a'<= (ch) && (ch) <= 'z')

#define is_letter(ch) (is_uc_letter(ch) || is_lc_letter(ch))

#define is_digit(ch) ('0'<= (ch) && (ch) <= '9')

...
```

Main reading routine

```
Token get next token() {
do {
 char c = getchar();
 switch(c) {
  case is letter(c): return recognize identifier(c);
  case is_digit(c) : return recognize number(c);
} while (c != EOF);
```

But we have a much better way!

 Generate a lexical analyzer automatically from token definitions

- Main idea
 - Use finite-state automata to match regular expressions

Overview

 Construct a nondeterministic finite-state automation (NFA) from regular expression (automatically)

 Determinize the NFA into a deterministic finite-state automaton (DFA)

DFA can be directly used to identify tokens

Reminder: Finite-State Automaton

- Deterministic automaton
- $M = (\Sigma, Q, \delta, q_0, F)$
 - $-\Sigma$ alphabet
 - Q finite set of state
 - $-q_0 \in Q$ initial state
 - $F \subset Q final states$
 - $-\delta: Q \times \Sigma \rightarrow Q$ transition function

Reminder: Finite-State Automaton

- Non-Deterministic automaton
- $M = (\Sigma, Q, \delta, q_0, F)$
 - $-\Sigma$ alphabet
 - Q finite set of state
 - $-q_0 \in Q$ initial state
 - $F \subseteq Q final states$
 - $-\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$ transition function
- Possible ε-transitions
- For a word w, M can reach a number of states or get stuck. If some state reached is final, M accepts w.

From regular expressions to NFA

- Step 1: assign expression names and obtain pure regular expressions R1...Rm
- Step 2: construct an NFA Mi for each regular expression Ri
- Step 3: combine all Mi into a single NFA

Ambiguity resolution: prefer longest accepting word

Basic constructs

Composition

Repetition

What now?

- Naïve approach: try each automaton separately
- Given a word w:
 - Try M1(w)
 - Try M2(w)
 - **—** ...
 - Try Mn(w)

Requires resetting after every attempt

Combine automata

Ambiguity resolution

- Recall...
- Longest word
- Tie-breaker based on order of rules when words have same length

- Recipe
 - Turn NFA to DFA
 - Run until stuck, remember last accepting state,
 this is the token to be returned

Corresponding DFA

Examples

abaa: gets stuck after aba in state 12, backs up to state (5 8 11) pattern is a*b+, token is ab abba: stops after second b in (6 8), token is abb because it comes first in spec

Maximal lexemes strategy

Solution 1. Use Automata with Lookahead.

Example: Automaton for id with lookahead.

- The label other refers to any character not indicated by any other edges living the node;
- The * indicates that we read an extra character and we must retract the forward input pointer by one character.

From NFA to DFA

- NFA are hard to simulate with a computer program.
 - There are many possible paths for a given input string caused by the nondeterminism;
 - 2. The acceptance condition says that there must be *at least one* path ending with a final state;
 - 3. We may need to find all the paths before accepting/excluding a string.
- The algorithm to map an NFA to a DFA is called the Subset Construction.
- Main Idea: Each DFA state corresponds to a set of NFA states, thus encoding
 all the possible states an NFA could reach after reading an input symbol.
- The algorithm makes use of the operation ε-closure: Given a set of states,
 T, ε-closure(T) returns the set of NFA states reachable from some s ∈ T on
 ε-transition only.

ε-closure algorithm

```
\epsilon-closure(T)
  CL_T := T; /* Current Closure of T */
  NOT_EX := CL_T; /* Not Examined States */
                        /* Updates the Closure of T */
  repeat
     NEW_CL := \emptyset;
     for each t in NOT_EX do
        Q := \delta(t, \epsilon);
        if Q ⊈ CL_T then
           NEW_CL := NEW_CL \cup (Q - CL_T);
     end
     CL_T := CL_T \cup NEW_{CL};
     NOT_{EX} := NEW_{CL};
  until NEW_CL == \emptyset
return CL_T /* \epsilon-Closure of T */
```

NFA to DFA definition

Let NFA = (S, V, δ, s_0, F) then the equivalent DFA = $(S', V, \delta', s'_0, F')$ where:

- $S' \subseteq 2^S$. With $[s_1, \ldots, s_n]$ we denote an element in S', which stands for the set of states $\{s_1, \ldots, s_n\}$.
- $s'_0 = [\epsilon\text{-closure}(\{s_0\})];$
- F' is the set of states in S' containing some element in F;
- $\delta'([s_1, \ldots, s_n], a) = [q_1, \ldots, q_m]$ iff $\{q_1, \ldots, q_m\} = \epsilon$ -closure $(\delta(\{s_1, \ldots, s_n\}, a))$, where $\delta(\{s_1, \ldots, s_n\}, a) = \bigcup_{i=1}^n \delta(s_i, a)$.

NFA to DFA – Subset construction algorithm

```
Subset_Construction() /* Subset Construction algorithm */
  DS := \{\epsilon-closure(\{s_0\})\}; /* Current Deterministic states */
                             /* Not Examined States */
  NOT_EX := DS;
                                /* DFA Construction */
  repeat
     NEW_DS := \emptyset;
     for each T in NOT_EX do
        for each symbol a \in V do
           Q := \epsilon-closure(\delta(T, a));
           if Q \notin DS then NEW_DS := NEW_DS \cup Q;
           \delta'(T,a) := Q; /* DFA's Transition Function update */
        end
     end
     DS := DS \cup NEW_DS; /* DFA's States update */
     NOT_EX := NEW_DS;
  until NEW_DS == ∅
return DS, \delta'
                             /* DFA's States and Transition Function */
```

NFA to DFA example

- ϵ -closure(1) = {1, 2, 3, 5}
- Create a new state A = {1, 2, 3,
 5} and examine transitions out of it
- •move(A, a) = $\{3, 6\}$
- •Call this a new subset state = B = {3, 6}
- •move(A, b) = $\{4\}$
- \cdot move(B, a) = {6}
- •move(B, b) = $\{4\}$
- •Complete by checking move(4, a); move(4, b); move(6, a); move(6, b)

NFA to DFA example 2

State minimization

- Resulting DFA can be quite large
 - Contains redundant or equivalent states

State minimization - strategy

- Idea find groups of equivalent states and merge them
 - All transitions from states in group G1 go to states in another group G2
 - Construct minimized DFA such that there is 1 state for each group of states

Basic strategy: identify distinguishing transitions

State minimization - algorithm

```
P \leftarrow \{F, \{Q-F\}\}\
while (P is still changing)
    T \leftarrow \{\}
    for each set s ∈ P
       for each \alpha \in \Sigma
          partition s by \alpha
              into s,, s, ..., s,
          T \leftarrow T \cup S_1, S_2, ..., S_k
   if T \neq P then
       P \leftarrow T
```

State minimization - example

example: $(\underline{a} | \underline{b})^* \underline{abb}$

	Curr ent Partition	Split on <u>a</u>	Split on <u>b</u>
P_0	$\{s_4\} \{s_0, s_1, s_2, s_3\}$	none	$\{s_0, s_1, s_2\} \{s_3\}$
P ₁	$\{s_4\}\{s_3\}\{s_0, s_1, s_2\}$	none	$\{s_0, s_2\}\{s_1\}$
P ₂	$(s_4)(s_3)(s_1)(s_0, s_2)$	none	None

final state

Summary of Construction

- Describe tokens as regular expressions.
- Regular expressions are turned into NFA.
- NFA is turned to DFA via subset constriction.
- State minimization of DFA.
- Lexical analyzer simulates the run of an automata with the given transition table on any input string.

Good News

- Construction is done automatically by common tools
- lex is your friend
 - Automatically generates a lexical analyzer from declaration file
- Advantages: short declaration file, easily checked, easily modified and maintained

Intuitively:

- Lex builds DFA table
- Analyzer simulates (runs) the DFA on a given input