Protocolo de Internet

Prof. Carlos Louzada

O que é o número IP?

- É o número que identifica um dispositivo de rede (ou Internet).
- Para entender melhor o conceito, fazemos uma semelhança com o telefone: Todos os telefones, fixos ou móveis, tem um número atribuído que identificálo e permite a comunicação.
- Basta discar o número da pessoa com quem quero conversar para iniciar a comunicação.

O que significa IP?

- IP significa "Internet Protocol" e é um número que identifica um dispositivo em uma rede (um computador, impressora, roteador, etc.).
- Estes dispositivos são parte de uma rede e são identificados por um número de IP único na rede.
- O endereço IP é composto por 4 números (até 3 dígitos) e separados por "." (ponto).
- Os valores que podem assumir estes números variam entre 0 e 255, por exemplo, um endereço de IP pode ser 192.168.66.254 (quatro números entre 0 e 255 separados por pontos).

Tipos de IPs

• **IP Público:** IP é chamado de endereço IP público que é visível a partir da Internet. É geralmente aquele com o seu roteador ou modem.

Uma das formas de descobrir é acessando http://www.meuip.com.br/

• IP Privado: O endereço IP privado é aquele que pertence a uma rede privada. Este é geralmente o IP da placa de rede do seu computador, uma impressora de rede ou o roteador de rede.

Uma das formas de descobrir é acessando digitando o comando ipconfig no prompt de comando.

IP Público

Mais informações

- O IP (Internet Protocol) é o principal protocolo de comunicação da Internet.
- Ele é o responsável por endereçar e encaminhar os pacotes que trafegam pela rede mundial de computadores.

O que são pacotes

- Pacotes são os blocos de informações enviados na Internet e podem ser considerados como as cartas enviadas pelo serviço de correios.
- Os pacotes da Internet são divididos em duas partes: o cabeçalho, que, como um envelope, possui as informações de endereçamento da correspondência, e dados, que é a mensagem a ser transmitida propriamente dita.

 Na imagem abaixo, observa-se um esquema do cabeçalho do protocolo IP.

Cada **pacote** possui um endereço de destino e um endereço de origem e, a cada roteador no caminho, o endereço de destino é verificado e o pacote encaminhado para o próximo salto no caminho.

IPv4

- Atualmente, a versão mais utilizada do protocolo é a versão 4, que possui 32 bits no campo de endereço.
- Assim, existem quatro bilhões de endereços, aproximadamente.
- Esse número de endereços, embora grande, está próximo de ser totalmente utilizado e, a cada ano, aumenta-se a especulação sobre o uso da versão 6 do protocolo.

IPv6

 A nova versão, por possuir 128 bits no campo de endereço, possibilita a inclusão na Internet de aproximadamente 256.000.000.000.000.000.000.000.000.000 trilhões de dispositivos na Internet, ou seja, seria como se pudéssemos endereçar, por exemplo, todos os grãos de areia de um deserto.

IPv4

- O endereço da versão 4 do protocolo IP, é dividido em quatro grupos de 8 bits, denominados octetos, ou seja, quatro números de 0 a 255, separados por pontos.
- O endereço IP é distribuído de forma hierárquica, formando sub-redes.
- Inicialmente, classificou-se as redes da Internet em 3 tipos: classe A, classe B e classe C.

Classes de endereços

- Originalmente, o espaço do endereço IP foi dividido em poucas estruturas de tamanho fixo chamados de "classes de endereço".
- As três principais são a classe A, classe B e classe C.
- Examinando os primeiros bits de um endereço, o software do IP consegue determinar rapidamente qual a classe, e logo, a estrutura do endereço.

- Classe A: Primeiro bit é 0 (zero)
- Classe B: Primeiros dois bits são 10 (um, zero)
- Classe C: Primeiros três bits são 110 (um, um, zero)
- *Classe D*: (endereço *multicast*): Primeiros quatro bits são: **1110** (um, um, um, zero)
- Classe E: (endereço especial reservado):
 Primeiros quatro bits são 1111 (um, um, um, um)

Classes de endereços de IPs

Classe	Gama de Endereços	Nº de Endereços por Rede
А	0.0.0.0 até 127.255.255.255	16 777 216
В	128.0.0.0 até 191.255.255.255	65 536
С	192.0.0.0 até 223.255.255.255	256
D	224.0.0.0 até 239.255.255.255	Multicast
E	240.0.0.0 até 255.255.255.254	Uso futuro; atualmente reservada a testes pela IETF

Classe especiais

 Existem classes especiais na Internet que não são consideradas públicas, não são consideradas como endereçáveis, são reservadas, por exemplo, para a comunicação com uma rede privada ou com o computador local ("localhost").

Blocos de Endereços Reservados			
CIDR Bloco de Endereços	Descrição	Referência	
0.0.0/8	Rede corrente (só funciona como endereço de origem)	RFC 1700	
10.0.0.0/8	Rede Privada	RFC 1918	
14.0.0.0/8	Rede Pública	RFC 1700	
39.0.0.0/8	Reservado	RFC 1797	
127.0.0.0/8	Localhost	RFC 3330	
128.0.0.0/16	Reservado (IANA)	RFC 3330	
169.254.0.0/16	Zeroconf	RFC 3927	
172.16.0.0/12	Rede privada	RFC 1918	
191.255.0.0/16	Reservado (IANA)	RFC 3330	
192.0.2.0/24	Documentação	RFC 3330	
192.88.99.0/24	IPv6 para IPv4	RFC 3068	
192.168.0.0/16	Rede Privada	RFC 1918	
198.18.0.0/15	Teste de benchmark de redes	RFC 2544	
223.255.255.0/24	Reservado	RFC 3330	
224.0.0.0/4	Multicasts (antiga rede Classe D)	RFC 3171	
240.0.0/4	Reservado (antiga rede Classe E)	RFC 1700	
255.255.255	Broadcast		

Classes de IPs

- Essas classes eram definidas pelo seu tamanho.
- Quando uma empresa adquiria uma rede classe A, ela recebia o primeiro octeto fixo e tinha a liberdade de atribuir internamente todos os endereços nos três últimos octetos.
- A classe C, por outro lado, dava para a empresa apenas 256 endereços diferentes, pois fixava os 3 últimos octetos.

- Tal estrutura se mostrou limitada, pois rapidamente usou-se todas as redes de classe B, pois considerava-se a classe C pequena para uma empresa e a classe A, grande demais.
- Na classe A, podia-se ter aproximadamente 16 milhões de estações.

IPs Privados

Os intervalos de endereços privados são:

- 10.0.0.0 a 10.255.255.255
- 172.16.0.0 a 172.31.255.255
- 192.168.0.0 a 192.168.255.255

Obs.: Os IPs privados são os que podem ser usados dentro de uma rede. Somente eles.

APIPA

A sigla **APIPA** significa *Automatic Private* IP *Addressing*, ou seja, Endereçamento IP Privado Automático.

Existe uma faixa de endereços reservados pelo IETF que são atribuíveis por meio do APIPA:

169.254.0.1 até 169.254.255.254

APIPA

O primeiro e último blocos dessa faixa são reservados, de modo que as estações, na verdade, irão receber endereços localizados na seguinte faixa:

169.254.1.0 até 169.254.254.255

Distribuição de IPs

A distribuição de IPs dentro de uma rede acontece da seguinte forma:

- DHCP; ou
- IP fixo.

DHCP (Dynamic Host Configuration Protocol)

 Quando falamos em redes, existem alguns recursos que são utilizados e facilitam muito a nossa vida, mas nem os percebemos.

- Um deles é o protocolo DHCP.
- É ele o Protocolo de Configuração Dinâmica de Endereços de Rede), é um protocolo utilizado em redes de computadores que permite às máquinas obterem um endereço IP automaticamente.

Por que o DHCP é importante?

- Digamos que você seja o administrador de uma rede.
- Se fosse uma rede doméstica com 3 computadores, não seria trabalhoso atribuir um número de IP e todos os parâmetros necessários para cada um deles.
- Agora, se fossem 100, 200 ou mais, certamente a história seria outra.

Exemplo: Internet do IFAM.

 O protocolo DHCP faz exatamente isto, por meio dele um servidor é capaz de distribuir automaticamente endereços de IP diferentes a todos os computadores à medida que eles fazem a solicitação de conexão com a rede.

• Essa distribuição dos IPs é feita em um intervalo pré-definido configurado no servidor.

 Sempre que uma das máquinas for desconectada o IP ficará livre para o uso em outra.

IP fixo

 O IP fixo evita os problemas de conexão com a internet quando o mesmo endereço IP é atribuído para mais de um computador.

 Além disso, o IP fixo também pode ser usado para descobrir qual computador faz determinada atividade.

• Ex.: impressora compartilhada na rede, precisa de um IP fixo, ou seja, não é recomendado ficar mudando, pois toda vez que for imprimir, terá que descobrir o IP.