1er TC Álgebra I	Nombre y Apellidos:	Grupo:	BAT A
p(x) tiene un 1.1. Sea $q(x) = x$ 1.2. Para el valor 2. Diga Verdade	The second seco	2. (x) , tiene grado rones simples en $\mathbb R$, $b \in M_{3X1}(\mathbb R)$, en	máximo? Justifique. $2 ext{ de } rac{1}{p(x)}$. ntonces:
1er TC Álgebra I	Nombre y Apellidos:	_ Grupo:	BAT B
tiene una raíz 1.1. Sea $q(x) = x$ 1.2. Para el valor 2. Diga Verdade	$x^4 - 4x^3 + (10 + a)x^2 - (12 + 2a)x + 8 + 2a, a \in \mathbb{R}, a \neq 0$. Decay $z \in \mathbb{C}$ tal que, $ z - i - 2 = 1$ y $Im\left(z + \sqrt{2}\cos\frac{7\pi}{4}\right) = 2$. $x^3 - 5x^2 + 11x - 15$. ¿Para qué valor de $a \in \mathbb{R}$ el $mcd(p(x), q(x), a \neq 0)$ de a determinado en 1.1., plantee la descomposición en fracción en o Falso. Justifique en cada caso. Sean $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $n \in \mathbb{N}$	(x)), tiene grado rones simples en $\mathbb R$, entonces:	máximo? Justifique. \mathbb{R} de $^1\!/_{p(x)}$.
1er TC Álgebra I	Nombre y Apellidos:	Grupo:	BAT A
p(x) tiene un 1.1. Sea $q(x) = x$ 1.2. Para el valor	$e^4 - 10x^3 + (37 + a)x^2 - (66 + 8a)x + 68 + 17a, a \in \mathbb{R}, a \neq 0$ ha raíz $z \in \mathbb{C}$ tal que, $ z - i - 3 = 1$ y $Im\left(z + \sqrt{2} cis^{-7\pi}/4\right) = x^3 - 5x^2 + 11x - 15$. ¿Para qué valor de $a \in \mathbb{R}$ el $mcd(p(x), q(x))$ de a determinado en 1.1., plantee la descomposición en fracción en o Falso. Justifique en cada caso. Sean $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $n \in \mathbb{N}$, n	2. (x) , tiene grado rones simples en $\mathbb R$	máximo? Justifique. \mathbb{R} de $^1\!/_{n(x)}$.
	Nombre y Apellidos: = $x^4 - 4x^3 + (10 + a)x^2 - (12 + 2a)x + 8 + 2a, a \in \mathbb{R}, a \neq 0$		

- 1. Sea $p(x)=x^4-4x^3+(10+a)x^2-(12+2a)x+8+2a$, $a\in\mathbb{R}$, $a\neq 0$. Demuestre o refute lo siguiente: p(x) tiene una raíz $z\in\mathbb{C}$ tal que, |z-i-2|=1 y $Im\left(z+\sqrt{2}\cos\frac{7\pi}{4}\right)=2$.
- 1.1. Sea $q(x) = x^3 5x^2 + 11x 15$. ¿Para qué valor de $a \in \mathbb{R}$ el mcd(p(x), q(x)), tiene grado máximo? Justifique.
- 1.2. Para el valor de a determinado en 1.1., plantee la descomposición en fracciones simples en \mathbb{R} de $\frac{1}{p(x)}$.
- 2. Diga Verdadero o Falso. Justifique en cada caso. Sean $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $n \in \mathbb{N}$, entonces:
- 2.1. $A^n = \begin{pmatrix} 1 & 0 & 0 \\ n & 1 & 0 \\ n & 0 & 1 \end{pmatrix}$. 2.2. El SEL AX = 0, es compatible indeterminado. 2.3 $A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$