In [1]: import pandas as pd import numpy as np
import matplotlib.pyplot as plt

 ${\color{red}\textbf{import}} \text{ seaborn } {\color{red}\textbf{as}} \text{ sns}$

import chart_studio.plotly as py
import plotly.graph_objs as go

from plotly.offline import plot

In [2]: df=pd.read_csv("C:\\Users\\Admin\\Downloads\\SolarPrediction.csv")

Out[2]:		UNIXTime	Data	Time	Radiation	Temperature	Pressure	Humidity	WindDirection(Degrees)	Speed	TimeSunRise	TimeSunS
	0	1475229326	9/29/2016 12:00:00 AM	23:55:26	1.21	48	30.46	59	177.39	5.62	06:13:00	18:13:(
	1	1475229023	9/29/2016 12:00:00 AM	23:50:23	1.21	48	30.46	58	176.78	3.37	06:13:00	18:13:(
	2	1475228726	9/29/2016 12:00:00 AM	23:45:26	1.23	48	30.46	57	158.75	3.37	06:13:00	18:13:(
	3	1475228421	9/29/2016 12:00:00 AM	23:40:21	1.21	48	30.46	60	137.71	3.37	06:13:00	18:13:0
	4	1475228124	9/29/2016 12:00:00 AM	23:35:24	1.17	48	30.46	62	104.95	5.62	06:13:00	18:13:(
	32681	1480587604	12/1/2016 12:00:00 AM	00:20:04	1.22	44	30.43	102	145.42	6.75	06:41:00	17:42:(
	32682	1480587301	12/1/2016 12:00:00 AM	00:15:01	1.17	44	30.42	102	117.78	6.75	06:41:00	17:42:(
	32683	1480587001	12/1/2016 12:00:00 AM	00:10:01	1.20	44	30.42	102	145.19	9.00	06:41:00	17:42:(
	32684	1480586702	12/1/2016 12:00:00 AM	00:05:02	1.23	44	30.42	101	164.19	7.87	06:41:00	17:42:(
	32685	1480586402	12/1/2016 12:00:00 AM	00:00:02	1.20	44	30.43	101	83.59	3.37	06:41:00	17:42:(

32686 rows × 11 columns

In [3]: df.describe(include='all')

Out[3]:

	UNIXTime	Data	Time	Radiation	Temperature	Pressure	Humidity	WindDirection(Degrees)	Speed	1
count	3.268600e+04	32686	32686	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000	
unique	NaN	118	8299	NaN	NaN	NaN	NaN	NaN	NaN	
top	NaN	12/1/2016 12:00:00 AM	16:20:18	NaN	NaN	NaN	NaN	NaN	NaN	
freq	NaN	288	24	NaN	NaN	NaN	NaN	NaN	NaN	
mean	1.478047e+09	NaN	NaN	207.124697	51.103255	30.422879	75.016307	143.489821	6.243869	
std	3.005037e+06	NaN	NaN	315.916387	6.201157	0.054673	25.990219	83.167500	3.490474	
min	1.472724e+09	NaN	NaN	1.110000	34.000000	30.190000	8.000000	0.090000	0.000000	
25%	1.475546e+09	NaN	NaN	1.230000	46.000000	30.400000	56.000000	82.227500	3.370000	
50%	1.478026e+09	NaN	NaN	2.660000	50.000000	30.430000	85.000000	147.700000	5.620000	
75%	1.480480e+09	NaN	NaN	354.235000	55.000000	30.460000	97.000000	179.310000	7.870000	
max	1.483265e+09	NaN	NaN	1601.260000	71.000000	30.560000	103.000000	359.950000	40.500000	

In [4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 32686 entries, 0 to 32685
         Data columns (total 11 columns):
          #
              Column
                                        Non-Null Count Dtype
                                         -----
              UNIXTime
          0
                                        32686 non-null int64
          1
              Data
                                        32686 non-null object
                                        32686 non-null object
          2
              Time
          3
              Radiation
                                        32686 non-null
                                                          float64
          4
              Temperature
                                        32686 non-null int64
          5
              Pressure
                                        32686 non-null
                                                          float64
          6
                                        32686 non-null
                                                          int64
              Humidity
          7
              WindDirection(Degrees) 32686 non-null
                                                          float64
          8
                                        32686 non-null
              Speed
                                                          float64
          9
              TimeSunRise
                                        32686 non-null
                                                          obiect
          10 TimeSunSet
                                        32686 non-null
                                                          object
         dtypes: float64(4), int64(3), object(4)
         memory usage: 2.7+ MB
In [5]: df.shape
         (32686, 11)
Out[5]:
In [6]: df.isnull().sum()
         UNIXTime
                                     0
Out[6]:
         Data
                                     0
         Radiation
                                     0
                                     0
         Temperature
         Pressure
                                     0
         Humidity
                                     0
         WindDirection(Degrees)
                                     0
         Speed
                                     0
         TimeSunRise
                                     0
         TimeSunSet
                                     0
         dtype: int64
In [7]: df.drop(columns=['Data','Time'],inplace=True) #droping the columns which are not required
In [8]: df
                 UNIXTime Radiation Temperature Pressure Humidity WindDirection(Degrees) Speed TimeSunRise TimeSunSet
Out[8]:
             0 1475229326
                                                                                       5 62
                                                                                                            18:13:00
                               1 21
                                            48
                                                  30.46
                                                             59
                                                                               177 39
                                                                                                 06:13:00
             1 1475229023
                               1.21
                                            48
                                                  30.46
                                                             58
                                                                               176.78
                                                                                       3.37
                                                                                                06:13:00
                                                                                                            18:13:00
             2 1475228726
                                                             57
                                                                               158.75
                                                                                                 06:13:00
                               1.23
                                            48
                                                  30.46
                                                                                       3.37
                                                                                                            18:13:00
             3 1475228421
                                            48
                                                                               137 71
                               1 21
                                                  30 46
                                                             60
                                                                                       3 37
                                                                                                06:13:00
                                                                                                            18:13:00
             4 1475228124
                               1.17
                                            48
                                                  30.46
                                                             62
                                                                               104.95
                                                                                       5.62
                                                                                                 06:13:00
                                                                                                            18:13:00
            ...
         32681 1480587604
                                                  30 43
                                                             102
                                                                               145.42
                                                                                       6 75
                                                                                                06:41:00
                                                                                                            17:42:00
                               1 22
                                            44
         32682 1480587301
                               1.17
                                            44
                                                  30.42
                                                             102
                                                                               117.78
                                                                                       6.75
                                                                                                06:41:00
                                                                                                            17:42:00
         32683 1480587001
                               1.20
                                            44
                                                  30.42
                                                             102
                                                                               145.19
                                                                                       9.00
                                                                                                 06:41:00
                                                                                                            17:42:00
         32684 1480586702
                               1 23
                                            44
                                                  30 42
                                                             101
                                                                               164 19
                                                                                       7 87
                                                                                                 06:41:00
                                                                                                            17:42:00
         32685 1480586402
                               1.20
                                                  30.43
                                                             101
                                                                                83.59
                                                                                       3.37
                                                                                                 06:41:00
                                                                                                            17:42:00
        32686 rows × 9 columns
In [9]: #changing the data in datetime format
         df['TimeSunRise'] = pd.to_datetime(df['TimeSunRise'], format='%H:%M:%S')
         df['TimeSunSet'] = pd.to_datetime(df['TimeSunSet'], format='%H:%M:%S')
         df['TSRhour'] = df['TimeSunRise'].dt.hour.astype(int)
         df['TSRmin'] = df['TimeSunRise'].dt.minute.astype(int)
         df['TSShour'] = df['TimeSunSet'].dt.hour.astype(int)
         df['TSSmin'] = df['TimeSunSet'].dt.minute.astype(int)
         df.drop(columns=['TimeSunRise', 'TimeSunSet'], inplace=True)
         df
```

Out[10]:		UNIXTime	Radiation	Temperature	Pressure	Humidity	WindDirection(Degrees)	Speed	TSRhour	TSRmin	TSShour	TSSmin
	0	1475229326	1.21	48	30.46	59	177.39	5.62	6	13	18	13
	1	1475229023	1.21	48	30.46	58	176.78	3.37	6	13	18	13
	2	1475228726	1.23	48	30.46	57	158.75	3.37	6	13	18	13
	3	1475228421	1.21	48	30.46	60	137.71	3.37	6	13	18	13
	4	1475228124	1.17	48	30.46	62	104.95	5.62	6	13	18	13
	32681	1480587604	1.22	44	30.43	102	145.42	6.75	6	41	17	42
	32682	1480587301	1.17	44	30.42	102	117.78	6.75	6	41	17	42
	32683	1480587001	1.20	44	30.42	102	145.19	9.00	6	41	17	42
	32684	1480586702	1.23	44	30.42	101	164.19	7.87	6	41	17	42
	32685	1480586402	1.20	44	30.43	101	83.59	3.37	6	41	17	42
;	32686 r	rows × 11 co	lumns									

```
In [11]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32686 entries, 0 to 32685 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	UNIXTime	32686 non-null	int64
1	Radiation	32686 non-null	float64
2	Temperature	32686 non-null	int64
3	Pressure	32686 non-null	float64
4	Humidity	32686 non-null	int64
5	WindDirection(Degrees)	32686 non-null	float64
6	Speed	32686 non-null	float64
7	TSRhour	32686 non-null	int32
8	TSRmin	32686 non-null	int32
9	TSShour	32686 non-null	int32
10	TSSmin	32686 non-null	int32
and the same		1.164(3)	

dtypes: float64(4), int32(4), int64(3) memory usage: 2.2 MB

In [12]: Y = df[['Radiation']]
X = df.drop(columns=['Radiation'])

In [14]: X

Out[14]:

:		UNIXTime	Temperature	Pressure	Humidity	WindDirection(Degrees)	Speed	TSRhour	TSRmin	TSShour	TSSmin
	0	1475229326	48	30.46	59	177.39	5.62	6	13	18	13
	1	1475229023	48	30.46	58	176.78	3.37	6	13	18	13
	2	1475228726	48	30.46	57	158.75	3.37	6	13	18	13
	3	1475228421	48	30.46	60	137.71	3.37	6	13	18	13
	4	1475228124	48	30.46	62	104.95	5.62	6	13	18	13
326	81	1480587604	44	30.43	102	145.42	6.75	6	41	17	42
326	82	1480587301	44	30.42	102	117.78	6.75	6	41	17	42
326	83	1480587001	44	30.42	102	145.19	9.00	6	41	17	42
326	84	1480586702	44	30.42	101	164.19	7.87	6	41	17	42
326	85	1480586402	44	30.43	101	83.59	3.37	6	41	17	42

32686 rows × 10 columns

In [15]: Y

	Radiation
0	1.21
1	1.21
2	1.23
3	1.21
4	1.17
32681	1.22
32682	1.17
32683	1.20
32684	1.23
32685	1.20

Out[15]:

32686 rows × 1 columns

```
In [16]: plt.plot(Y)
   plt.show
```

Out[16]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [17]: X.info()
Y.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 32686 entries, 0 to 32685 Data columns (total 10 columns):

```
Non-Null Count Dtype
#
   Column
0
    UNIXTime
                             32686 non-null
                                             int64
    Temperature
                             32686 non-null
2
                             32686 non-null
    Pressure
                                             float64
3
    Humidity
                             32686 non-null
                                             int64
4
    WindDirection(Degrees)
                                             float64
                             32686 non-null
5
    Speed
                             32686 non-null
                                             float64
                             32686 non-null
6
    TSRhour
                                             int32
                             32686 non-null
7
    TSRmin
                                             int32
8
    TSShour
                             32686 non-null
                                             int32
                             32686 non-null int32
    TSSmin
```

dtypes: float64(3), int32(4), int64(3)

memory usage: 2.0 MB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32686 entries, 0 to 32685
Data columns (total 1 columns):
Column Non-Null Count Diving

Column Non-Null Count Dtype
--- ---0 Radiation 32686 non-null float64

dtypes: float64(1)
memory usage: 255.5 KB

AllFeatures

```
x\_train, x\_test, y\_train, y\_test = train\_test\_split(X, Y, test\_size=0.3, random\_state=42, shuffle= \textbf{True})
In [21]: from sklearn.ensemble import RandomForestRegressor
          regr = RandomForestRegressor(max_depth=25, random_state=3)
          regr.fit(x_train, y_train)
         C:\Users\Admin\AppData\Local\Temp\ipykernel_25756\3187189820.py:3: DataConversionWarning:
         A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n samples,), for ex
         ample using ravel().
         RandomForestRegressor(max_depth=25, random_state=3)
In [22]: Allfeatures=regr.score(x_train, y_train)
         Allfeatures
         0.9868391602559925
In [23]: regr.score(x_test, y_test)
         0.9066664115231688
In [24]: #VarianceThreshold
In [25]: x train 1,x test 1,y train 1,y test 1 = x train.copy(),x test.copy(),y train.copy(),y test.copy()
In [26]: x_train_1.var(axis=0)
Out[26]: UNIXTime
                                    9.059136e+12
         Temperature
                                    3.856347e+01
         Pressure
                                    2.998423e-03
         Humidity
                                    6.757779e+02
         WindDirection(Degrees)
                                    6.892881e+03
                                    1.198967e+01
         Speed
         TSRhour
                                    0.000000e+00
         TSRmin
                                    2.411419e+02
         TSShour
                                    2.269559e-01
                                    2.526056e+02
         TSSmin
         dtype: float64
In [27]: from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
         scaled_x_train_1= scaler.fit_transform(x_train_1)
In [28]: fig,ax=plt.subplots()
         x=X.columns
         y=scaled_x_train_1.var(axis=0)
         ax.bar(x,y,width=0.8)
         ax.set_xlabel('Features')
ax.set_ylabel('Variance')
         ax.set_ylim(0,0.1)
          for index, value in enumerate(y):
              plt.text(x=index,y=value+0.001,s=str(round(value, 3)),ha='center')
          fig.autofmt_xdate()
         plt.tight_layout()
         C:\Users\Admin\AppData\Local\Temp\ipykernel_25756\944144619.py:15: UserWarning:
         Tight layout not applied. The bottom and top margins cannot be made large enough to accommodate all axes decora
```

tions.


```
In [29]: from sklearn.metrics import f1_score

In [30]: sel_x_train_1=x_train_1.drop(['Speed','TSRhour','Pressure'],axis=1)
    sel_x_test_1=x_test_1.drop(['Speed','TSRhour','Pressure'],axis=1)
    sel_y_train_1=x_train_1.drop(['Speed','TSRhour','Pressure'],axis=1)
    sel_y_test_1=x_test_1.drop(['Speed','TSRhour','Pressure'],axis=1)
    regr.fit(sel_x_train_1,sel_y_train_1)

Out[30]: RandomForestRegressor(max_depth=25, random_state=3)
```

```
varianceScore=regr.score(sel_x_train_1,sel_y_train_1)
In [31]:
           varianceScore
           0.9919279105929851
Out[31]:
In [32]: regr.score(sel_x_test_1,sel_y_test_1)
           0.9403113414068358
Out[32]:
In [33]: fig,ax=plt.subplots()
           x=['All features','Variance']
y=[Allfeatures, varianceScore]
           ax.bar(x,y,width=0.6)
           ax.set_xlabel('Feature selection methods')
ax.set_ylabel('Score')
           ax.set_ylim(0,1.1)
           for index, value in enumerate(y):
    plt.text(x=index,y=value+0.001,s=str(round(value, 3)),ha='center')
           fig.autofmt_xdate()
           plt.tight_layout()
```


Feature selection methods

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js