Accelerating Biomolecular Nuclear Magnetic Resonance Assignment with A*

Joel Venzke, Paxten Johnson, Rachel Davis, John Emmons, Katherine Roth, David Mascharka, Leah Robison, Timothy Urness and Adina Kilpatrick

> Department of Mathematics and Computer Science Drake University

> > joel.venzke@drake.edu

April 25,2014

Overview

Introduction

- Introduction
 - Motivation
 - Applications
- NMR Assignment Background
 - Nuclear Magnetic Resonance Spectroscopy
 - Data Collection and Manual Assignment
- Automation Algorithm
 - Preprocessing
 - Assignment
 - Goal State
- Conclusion
 - Results
 - Outlook

Motivation

Introduction

Motivation

- Nuclear Magnetic Resonance Spectroscopy
 - Gain knowledge about protein structure
 - Study how mutations lead to diseases
- Problems
 - Generates large amounts of data
 - Data analysis is slow and error prone
- Goal
 - Automate the assignment process
 - Decrease human error
 - Increase productivity

Applications

•0

Introduction

Applications

- Studying Mutations
 - Protein Folding
 - Biological effects
- Pharmaceuticals
 - Block proteins leading to mutations
 - Prevent onset of disease

Applications

Introduction 0

Mutation Example

Nuclear Magnetic Resonance (NMR)

- NMR: phenomenon in which atomic nuclei absorb and re-emit EM radiation
- Alignment of nuclear magnetic spins in constant magnetic field
- 2 EM radiation pulses disturb alignment
 - Chemical Shift Values Generated
 - Resonant frequency depends on environment
 - Deviation from the Larmor Frequency creates chemical shift values

Nuclear Magnetic Resonance Spectroscopy

Assigned Chemical Shift Values

Weighted Change in Chemical Shift

Nuclear Magnetic Resonance Spectroscopy

NMR Experiments

- HNCACB experiment
 - ullet Generates \mathcal{C}_{lpha} and \mathcal{C}_{eta} residue i and i-1
- CBCA(CO) NH experiment
 - Generates C_{α} and C_{β} for residue i
 - Confirms residue data

Nuclear Magnetic Resonance Spectroscopy

Backbone Structure

HNCACB

Data Collection and Manual Assignment

Manual Methods

- Most time consuming part
- Missing and ambiguous data forces chunks to be skipped
- Prone to human error

Data Collection and Manual Assignment

Timeline

Automation Algorithm

Automating Assignment

- Initialization
- @ Generating child nodes
- Goal State
- Solution State

Preprocessing

Initialization

- Expected amino acid sequence
 - Converted to expected chemical shift values
 - Stored as the reference protein chain
- NMR experiment's chemical shift data
 - C_{α} and C_{β} for residue i and i-1
 - Stored in a tile
- Missing data
 - Place holder tile generation
- Grouping

Preprocessing

Grouping

Assignment

Starting the assignment

Automation Algorithm

OOO

OOOOOO

Assignment

Starting the assignment

Assignment

Cost Calculation

- Accuracy matching the protein chain residue
- Accuracy matching the tile above current tile
- Cost of placing all previous tiles

Assignment

0000000

Assignment

Assignment

Automation Algorithm 000000

Assignment

Automation Algorithm

0000

Goal State

Goal State

0000

Goal State

Goal State

Automation Algorithm

0000

Goal State

Goal State

Goal State

Solution State

Results

Compared to Naive Approach

14.1% of the possible combinations

Results

Time of Assignment

Results

Child Nodes Generated

Future Goals

- Parallelization
 - Decrease assignment time
 - Allow for larger data sets
- Machine learning
 - Optimize cost calculation
 - Increase accuracy of assignment
 - Decrease assignment time
- Custom data structure
 - Limit storing repetitive data
 - Faster node selection and generation

Acknowledgments

- Dr. Tim Urness (Mathematics and Computer Science)
- Dr. Adina Kilpatrick (Physics)
- Rachel Davis (research colleague)
- John Emmons (research colleague)
- Katherine Roth (research colleague)
- David Mascharka (research colleague)
- Leah Robison (research colleague)

Bibliography

- Sean Cahill and Mark Girvin. Introduction to 3d triple resonance experiments. 2012.
- Peter Guntert. Automated structure determination from NMR spectra, European Biophysics Journal, 38 (2009), 129–143.
- Flemming M. Poulsen. A brief introduction to nmr spectroscopy of proteins.

Thank You

