HNPE: Leveraging Global Parameters for Neural Posterior Estimation

P. Rodrigues, T. Moreau, G. Louppe, A. Gramfort

Inverse problems

Inferring parameters of a model from observations is a fundamental scientific challenge.

Inverse problems

Inferring parameters of a model from observations is a fundamental scientific challenge.

Key challenge: Non-injective models

Close and quiet or far and loud?

Amplified weak or attenuated strong?

Key challenge: Non-injective models

Other recordings from the same subject

Amplified weak or attenuated strong?

 \Rightarrow Leverage observations with common *global* parameter.

Our contributions

- ▶ Hierarchical model to account for extra observations $\mathcal{X} = \{x_1, \dots x_N\}$,
- ► Adapt normalizing flows to approximate the posterior, [Papamakarios et al. 2019]
- \blacktriangleright Use DeepSet architecture to account for invariance in $\mathcal{X},$ [Zaheer et al. 2017]
- ▶ Show its capability on a toy problem and a real neuroscience model.

Results: Jansen & Rit Neural Mass Model

- ► Observations *x* are EEG signals.
- \blacktriangleright θ are physiological properties of the brain.

Results: Jansen & Rit Neural Mass Model

- ► Observations *x* are EEG signals.
- \blacktriangleright θ are physiological properties of the brain.

HNPE: Leveraging Global Parameters for Neural Posterior Estimation

P. Rodrigues, T. Moreau, G. Louppe, A. Gramfort

Come visit our poster for more details!