日本国特許庁 JAPAN PATENT OFFICE

06.11.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 3月 5日

出 顯 番 号 Application Number:

特願2003-059073

[ST. 10/C]:

[JP2003-059073]

出 願 人
Applicant(s):

武田薬品工業株式会社

RECEIVED
3 0 DEC 2003
WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年12月12日

【書類名】 特許願

【整理番号】 B03066

【提出日】 平成15年 3月 5日

【あて先】 特許庁長官殿

【国際特許分類】 A61K 38/00

CO7K 14/705

C12N 15/12

G01N 33/53

【発明者】

【住所又は居所】 茨城県つくば市春日1丁目7番地9 武田春日ハイツ1

402号

【氏名】 日沼 州司

【発明者】

【住所又は居所】 兵庫県神戸市西区春日台7丁目5番5号

【氏名】 小林 真

【発明者】

【住所又は居所】 茨城県つくば市並木3丁目17番地1 ロイヤルコーポ

ヨコタ606号

【氏名】 羽畑 祐吾

【発明者】

【住所又は居所】 茨城県つくば市東2丁目14番地5 仕黒マンション2

0 1

【氏名】 原田 征隆

【発明者】

【住所又は居所】 茨城県牛久市中央1丁目4番地23

【氏名】 大久保 尚一

【発明者】

【住所又は居所】 茨城県結城郡石下町大字国生1444番地の23

【氏名】 吉田 博美

【特許出願人】

【識別番号】

000002934

【氏名又は名称】 武田薬品工業株式会社

【代理人】

【識別番号】

100114041

【弁理士】

【氏名又は名称】

高橋 秀一

【選任した代理人】

【識別番号】 100106323

【弁理士】

【氏名又は名称】 関口 陽

【先の出願に基づく優先権主張】

【出願番号】

特願2002-324189

【出願日】

平成14年11月 7日

【整理番号】

B02356

【先の出願に基づく優先権主張】

【出願番号】

特願2002-367119

【出願日】

平成14年12月18日

【整理番号】

B02396

【手数料の表示】

【予納台帳番号】 005142

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9909276

【包括委任状番号】 0203423

【プルーフの要否】

要

【書類名】明細書

【発明の名称】新規なFPRL1リガンドおよびその用途

【特許請求の範囲】

【請求項1】N末端のメチオニン残基がホルミル化されていてもよい、配列番号:1または配列番号:21で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列からなるペプチド、そのアミドもしくはそのエステルまたはその塩。

【請求項2】N末端のメチオニン残基がホルミル化されていてもよい、配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列からなる請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩。

【請求項3】N末端のメチオニン残基がホルミル化されている配列番号:1または配列番号:16で表されるアミノ酸配列からなる請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩。

【請求項4】N末端のメチオニン残基がホルミル化されている配列番号:21または配列番号:22で表されるアミノ酸配列からなる請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩。

【請求項5】N末端のメチオニン残基がホルミル化され、C末端のイソロイシン 残基が修飾されている配列番号:21または配列番号:22で表されるアミノ酸 配列からなる請求項1記載のペプチド、そのアミドもしくはそのエステルまたは その塩。

【請求項6】N末端のメチオニン残基がホルミル化されていてもよい、配列番号 : 17で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含 有するペプチド、そのアミドもしくはそのエステルまたはその塩。

【請求項7】N末端のメチオニン残基がホルミル化されている配列番号:17、 配列番号:18、配列番号:19または配列番号:20で表されるアミノ酸配列 からなる請求項3記載のペプチド、そのアミドもしくはそのエステルまたはその 塩。

【請求項8】請求項1記載のペプチドまたはその塩を含有してなる医薬。

【請求項9】請求項6記載のペプチドまたはその塩を含有してなる医薬。

【請求項11】喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコプ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の予防・治療剤である請求項8または9記載の医薬。

【請求項12】請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩に対する抗体。

【請求項13】請求項6記載のペプチド、そのアミドもしくはそのエステルまたはその塩に対する抗体。

【請求項14】請求項12記載の抗体を含有してなる診断剤。

【請求項15】請求項13記載の抗体を含有してなる診断剤。

【請求項16】喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の診断剤である請求項14または15記載の診断剤。

【請求項17】(1)配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)①請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と請

求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩を用いることを特徴とする該レセプター蛋白質またはその塩と請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法。

【請求項18】(1)配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)①請求項3記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩を用いることを特徴とする該レセプター蛋白質またはその塩と請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法。

【請求項19】配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質が、配列番号:2、配列番号:4または配列番号:6で表わされるアミノ酸配列からなるG蛋白質共役型レセプター蛋白質である請求項17または18記載のスクリーニング方法。

【請求項20】(1)配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)①請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩と請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩と請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング用キット。

【請求項21】 (1) 配列番号:2で表わされるアミノ酸配列と同一もしくは実

質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)①請求項3記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩と請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング用キット。

【請求項22】請求項17もしくは18記載のスクリーニング方法または請求項20もしくは21記載のスクリーニング用キットを用いて得られる請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩と配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩。

【請求項23】アゴニストである請求項22記載の化合物。

【請求項24】アンタゴニストである請求項22記載の化合物。

【請求項25】請求項1記載のペプチド、そのアミドもしくはそのエステルまたはその塩と配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩を含有してなる医薬。

【請求項26】請求項6記載のペプチド、そのアミドもしくはそのエステルまたはその塩と配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩を含有してなる医薬。

【請求項27】請求項23記載のアゴニストを含有してなる抗炎症剤。

【請求項28】請求項23記載のアゴニストを含有してなる喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(AL

S)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマ チ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性 肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェ ルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移 植、透析低血圧、汎発性血管内凝固症候群の予防・治療剤。

【請求項29】配列番号:4で表されるアミノ酸配列と同一もしくは実質的に同 一のアミノ酸配列を含有することを特徴とするG蛋白質共役型レセプター蛋白質 またはその塩。

【請求項30】配列番号:4で表されるアミノ酸配列からなるG蛋白質共役型レ セプター蛋白質またはその塩。

【請求項31】請求項29記載のG蛋白質共役型レセプター蛋白質をコードする ポリヌクレオチドを含有するポリヌクレオチド。

【請求項32】配列番号:5で表される塩基配列からなるDNA。

【請求項33】請求項31記載のポリヌクレオチドを含有する組換えベクター。

【請求項34】請求項33記載の組換えベクターで形質転換させた形質転換体。

【請求項35】請求項34記載の形質転換体を培養し、請求項29記載のG蛋白 質共役型レセプター蛋白質を生成せしめることを特徴とする請求項29記載のG 蛋白質共役型レセプター蛋白質またはその塩の製造法。

【請求項36】請求項29記載のG蛋白質共役型レセプター蛋白質またはその塩 に対する抗体。

【請求項37】請求項31記載のポリヌクレオチドと相補的な塩基配列またはそ の一部を含有してなるポリヌクレオチド。

【請求項38】請求項29記載のG蛋白質共役型レセプター蛋白質もしくはその 部分ペプチドまたはその塩を含有してなる医薬。

【請求項39】抗炎症剤である請求項38記載の医薬。

【請求項40】喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己 免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗 塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキン ソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関 節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、 悪液質、動脈硬化症、クロイツフェルトーヤコプ病、ウイルス感染、狭心症、心 筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の 予防・治療剤である請求項38記載の医薬。

【請求項41】請求項31記載のポリヌクレオチドを含有してなる医薬。

【請求項42】抗炎症剤である請求項41記載の医薬。

【請求項43】喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の予防・治療剤である請求項41記載の医薬。

【請求項44】請求項31記載のポリヌクレオチドを含有してなる診断剤。

【請求項45】喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の診断剤である請求項44記載の診断剤。

【請求項46】請求項36記載の抗体を含有してなる診断薬。

【請求項47】喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己 免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗

【請求項48】請求項31記載のポリヌクレオチドを用いることを特徴とする請求項29記載のG蛋白質共役型レセプター蛋白質の発現量を変化させる化合物またはその塩のスクリーニング方法。

【請求項49】請求項31記載のポリヌクレオチドを含有してなる請求項1記載のG蛋白質共役型レセプター蛋白質の発現量を変化させる化合物またはその塩のスクリーニング用キット。

【請求項50】請求項48記載のスクリーニング方法または請求項49記載のスクリーニング用キットを用いて得られる請求項29記載のG蛋白質共役型レセプター蛋白質の発現量を変化させる化合物またはその塩。

【請求項51】請求項48記載のスクリーニング方法または請求項49記載のスクリーニング用キットを用いて得られる請求項29記載のG蛋白質共役型レセプター蛋白質の発現量を増加させる化合物またはその塩。

【請求項52】請求項48記載のスクリーニング方法または請求項49記載のスクリーニング用キットを用いて得られる請求項29記載のG蛋白質共役型レセプター蛋白質の発現量を変化させる化合物またはその塩を含有してなる医薬。

【請求項53】請求項48記載のスクリーニング方法または請求項49記載のスクリーニング用キットを用いて得られる請求項29記載のG蛋白質共役型レセプター蛋白質の発現量を増加させる化合物またはその塩を含有してなる医薬。

【請求項54】抗炎症剤である請求項53記載の医薬。

【請求項55】喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己 免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗 塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキン ソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の予防・治療剤である請求項53記載の医薬。

【請求項56】請求項31記載のポリヌクレオチドまたはその一部を用いることを特徴とする請求項29記載のG蛋白質共役型レセプター蛋白質のmRNAの定量法。

【請求項57】請求項36記載の抗体を用いることを特徴とする請求項29記載のG蛋白質共役型レセプター蛋白質またはその塩の定量法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、G蛋白質共役型レセプター蛋白質であるFPRL1に対する新規な 内因性リガンドおよびその用途に関する。

[0002]

【従来の技術】

多くのホルモンや神経伝達物質などの生理活性物質は、細胞膜に存在する特異的なレセプター蛋白質を通じて生体の機能を調節している。これらのレセプター蛋白質のうち多くは共役しているguanine nucleotide-binding protein (以下、G蛋白質と略称する場合がある)の活性化を通じて細胞内のシグナル伝達を行ない、また、7個の膜貫通領域を有する共通した構造をもっていることから、G蛋白質共役型レセプター蛋白質あるいは7回膜貫通型レセプター蛋白質(7TMR)と総称される。

G蛋白質共役型レセプター蛋白質は生体の細胞や臓器の各機能細胞表面に存在し、それら細胞や臓器の機能を調節する分子、例えば、ホルモン、神経伝達物質および生理活性物質等の標的として生理的に重要な役割を担っている。レセプター蛋白質は生理活性物質との結合を介してシグナルを細胞内に伝達し、このシグ

ナルにより細胞の賦活や抑制といった種々の反応が惹起される。

各種生体の細胞や臓器の内の複雑な機能を調節する物質と、その特異的レセプター蛋白質、特にはG蛋白質共役型レセプター蛋白質との関係を明らかにすることは、各種生体の細胞や臓器の機能を解明し、それら機能と密接に関連した医薬品開発に非常に重要な手段を提供することとなる。

例えば、生体の種々の器官では、多くのホルモン、ホルモン様物質、神経伝達物質あるいは生理活性物質による調節のもとで生理的な機能の調節が行なわれている。特に、生理活性物質は生体内の様々な部位に存在し、それぞれに対応するレセプター蛋白質を通してその生理機能の調節を行っている。生体内には未知のホルモンや神経伝達物質その他の生理活性物質も多く、それらのレセプター蛋白質の構造に関しても、これまで報告されていないものが多い。さらに、既知のレセプター蛋白質においてもサブタイプが存在するかどうかについても分かっていないものが多い。

生体における複雑な機能を調節する物質と、その特異的レセプター蛋白質との 関係を明らかにすることは、医薬品開発に非常に重要な手段である。また、レセ プター蛋白質に対するアゴニスト、アンタゴニストを効率よくスクリーニングし 、医薬品を開発するためには、生体内で発現しているレセプター蛋白質の遺伝子 の機能を解明し、それらを適当な発現系で発現させることが必要であった。

近年、生体内で発現している遺伝子を解析する手段として、cDNAの配列をランダムに解析する研究が活発に行なわれており、このようにして得られたcDNAの断片配列がExpressed Sequence Tag (EST) としてデータベースに登録され、公開されている。しかし、多くのESTは配列情報のみであり、その機能を推定することは困難である。

オーファンG蛋白質共役型レセプター蛋白質の1つとして、ヒトFPRL1が知られている(非特許文献 1)、マウスFPRL2(非特許文献 2)。FPRL1のアゴニストとしては、これまでにバクテリア由来の1 MLP、HIV由来の1 BP 1 BO 1 BO

などの部分ペプチド、脂質であるリポキシンA4などが報告されている(非特許 文献3)。

また、FPRL1 (リポキシン A_4 レセプター蛋白質) が抗炎症作用に寄与していることが報告されている(非特許文献 4)。

[0003]

【非特許文献1】

J. Biol. Chem. 267(11), 7637-7643(1992)

[0004]

【非特許文献2】

J. Immunol. 169, 3363-3369 (2002)

[0005]

【非特許文献3】

Int. Immunopharmacol. 2巻、1-13頁、2002年

[0006]

【非特許文献4】

Nature Medicine, Published online 7 October 2002; doi:10.1038/nm786

[0007]

【発明が解決しようとする課題】

本発明は、オーファンG蛋白質共役型レセプター蛋白質であるFPRL1に対する内因性の新規なリガンド、該リガンドとFPRL1との結合性を変化させる化合物(アンタゴニスト、アゴニスト)またはその塩のスクリーニング方法などを提供することを目的とする。

[0008]

【課題を解決するための手段】

本発明者らは、上記の課題を解決するために、鋭意研究を重ねた結果、ブタ胃抽出液からFPRL1に結合する新規な内因性リガンドを単離精製することに成功した。さらに、本発明者らは、ラット由来の新規なFPRL1をコードするDNAをクローニングすることに成功した。本発明者らは、これらの知見に基づいて、さらに研究を重ねた結果、本発明を完成するに至った。

すなわち、本発明は、

- (1) N末端のメチオニン残基がホルミル化されていてもよい、配列番号:1または配列番号:21で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列からなるペプチド、そのアミドもしくはそのエステルまたはその塩、
- (2) N末端のメチオニン残基がホルミル化されていてもよい、配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列からなる上記
 - (1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩、
- (3) N末端のメチオニン残基がホルミル化されている配列番号:1または配列番号:16で表されるアミノ酸配列からなる上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩、
- (4) N末端のメチオニン残基がホルミル化されている配列番号:21または配列番号:22で表されるアミノ酸配列からなる上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩、
- (5) N末端のメチオニン残基がホルミル化され、C末端のイソロイシン残基が 修飾されている配列番号:21または配列番号:22で表されるアミノ酸配列か らなる上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその 塩、
- (6) N末端のメチオニン残基がホルミル化されていてもよい、配列番号:17 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するペプチド、そのアミドもしくはそのエステルまたはその塩、
- (7) N末端のメチオニン残基がホルミル化されている配列番号:17、配列番号:18、配列番号:19または配列番号:20で表されるアミノ酸配列からなる上記(3)記載のペプチド、そのアミドもしくはそのエステルまたはその塩、
 - (8) 上記(1) 記載のペプチドまたはその塩を含有してなる医薬、
 - (9)上記(6)記載のペプチドまたはその塩を含有してなる医薬、
 - (10) 抗炎症剤である上記(8) または(9) 記載の医薬、
- (11) 喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性 溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭

- (12)上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはそ の塩に対する抗体、
- (13)上記(6)記載のペプチド、そのアミドもしくはそのエステルまたはそ の塩に対する抗体、
- (14)上記(12)記載の抗体を含有してなる診断剤、
- (15)上記(13)記載の抗体を含有してなる診断剤、
- (16)喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の診断剤である上記(14)または(15)記載の診断剤、
- (17) (1) 配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)①上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩を用いることを特徴とする該レセプター蛋白質またはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルま

- (18) (1) 配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)①上記(3)記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩を用いることを特徴とする該レセプター蛋白質またはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法、
- (19)配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質が、配列番号:2、配列番号:4または配列番号:6で表わされるアミノ酸配列からなるG蛋白質共役型レセプター蛋白質である上記(17)または(18)記載のスクリーニング方法、
- (20) (1)配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)①上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング用キット、
- (21) (1) 配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)①上記(3)記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と上記(

- 1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング用キット、
- (22)上記(17)もしくは(18)記載のスクリーニング方法または上記(20)もしくは(21)記載のスクリーニング用キットを用いて得られる上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩と配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩、
 - (23) アゴニストである上記(22) 記載の化合物、
 - (24) アンタゴニストである上記(22) 記載の化合物、
- (25)上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩と配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩を含有してなる医薬、
- (26)上記(6)記載のペプチド、そのアミドもしくはそのエステルまたはその塩と配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩を含有してなる医薬、
 - (27)上記(23)記載のアゴニストを含有してなる抗炎症剤、
- (28)上記(23)記載のアゴニストを含有してなる喘息、アレルギー疾患、 炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトー デス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発 性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS) 、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様 脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎 、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルト

- ーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、 透析低血圧、汎発性血管内凝固症候群の予防・治療剤、
- (29)配列番号:4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするG蛋白質共役型レセプター蛋白質またはその塩、
- (30)配列番号:4で表されるアミノ酸配列からなるG蛋白質共役型レセプター蛋白質またはその塩、
- (31)上記(29)記載のG蛋白質共役型レセプター蛋白質をコードするポリ マクレオチドを含有するポリヌクレオチド、
 - (32) 配列番号:5で表される塩基配列からなるDNA、
 - (33)上記(31)記載のポリヌクレオチドを含有する組換えベクター、
 - (34)上記(33)記載の組換えベクターで形質転換させた形質転換体、
 - (35)上記(34)記載の形質転換体を培養し、上記(29)記載のG蛋白質 共役型レセプター蛋白質を生成せしめることを特徴とする上記(29)記載のG 蛋白質共役型レセプター蛋白質またはその塩の製造法、
 - (36)上記(29)記載のG蛋白質共役型レセプター蛋白質またはその塩に対する抗体、
 - (37)上記(31)記載のポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチド、
 - (38)上記(29)記載のG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩を含有してなる医薬、
 - (39) 抗炎症剤である上記(38) 記載の医薬、
 - (40) 喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞

- 、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の予防・ 治療剤である上記 (38) 記載の医薬、
 - (41)上記(31)記載のポリヌクレオチドを含有してなる医薬、
 - (42) 抗炎症剤である上記(41) 記載の医薬、
- (43) 喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の予防・治療剤である上記(41)記載の医薬、
 - (44)上記(31)記載のポリヌクレオチドを含有してなる診断剤、
- (45) 喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の診断剤である上記(44)記載の診断剤、
 - (46)上記(36)記載の抗体を含有してなる診断薬、
- (47) 喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クロ

- ーン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質、動脈硬化症、クロイツフェルトーヤコプ病、ウイルス感染、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の診断剤である上記(46)記載の診断剤、
- (48)上記(31)記載のポリヌクレオチドを用いることを特徴とする上記(29)記載のG蛋白質共役型レセプター蛋白質の発現量を変化させる化合物またはその塩のスクリーニング方法、
- (49)上記(31)記載のポリヌクレオチドを含有してなる上記(1)記載の G蛋白質共役型レセプター蛋白質の発現量を変化させる化合物またはその塩のス クリーニング用キット、
- (50)上記(48)記載のスクリーニング方法または上記(49)記載のスクリーニング用キットを用いて得られる上記(29)記載のG蛋白質共役型レセプター蛋白質の発現量を変化させる化合物またはその塩、
- (51)上記(48)記載のスクリーニング方法または上記(49)記載のスクリーニング用キットを用いて得られる上記(29)記載のG蛋白質共役型レセプター蛋白質の発現量を増加させる化合物またはその塩、
- (52)上記(48)記載のスクリーニング方法または上記(49)記載のスクリーニング用キットを用いて得られる上記(29)記載のG蛋白質共役型レセプター蛋白質の発現量を変化させる化合物またはその塩を含有してなる医薬、
- (53)上記(48)記載のスクリーニング方法または上記(49)記載のスクリーニング用キットを用いて得られる上記(29)記載のG蛋白質共役型レセプター蛋白質の発現量を増加させる化合物またはその塩を含有してなる医薬、
 - (54) 抗炎症剤である上記(53) 記載の医薬、
- (55)喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、脳出血、脳梗塞、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症、髄膜炎、糖尿病、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎、毒血症、クローン病、潰瘍性大腸炎、慢性肺炎、珪肺、肺サルコイドーシス、肺結核、悪液質

- 、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染、狭心症、心筋梗塞 、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群の予防・ 治療剤である上記(53)記載の医薬、
- (56)上記(31)記載のポリヌクレオチドまたはその一部を用いることを特徴とする上記(29)記載のG蛋白質共役型レセプター蛋白質のmRNAの定量法、
- (57)上記(36)記載の抗体を用いることを特徴とする上記(29)記載の G蛋白質共役型レセプター蛋白質またはその塩の定量法を提供する。

[0010]

さらに、本発明は、

- (58) (i) FPRL1、その部分ペプチドまたはその塩と、①上記(1) または(3) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩とを接触させた場合と、(ii) FPRL1、その部分ペプチドまたはその塩と、①上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩、および試験化合物とを接触させた場合との比較を行なうことを特徴とする上記(17) 記載のスクリーニング方法、
- (59) (i) ①標識した上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩をFPRL1、その部分ペプチドまたはその塩に接触させた場合と、(ii) ①標識した上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩、および試験化合物をFPRL1、その部分ペプチドまたはその塩に接触させた場合における、標識した上記(1) 記載のペプ

チド、そのアミドもしくはそのエステルまたはその塩のFPRL1、その部分ペプチドまたはその塩に対する結合量を測定し、比較することを特徴とする上記(17)記載のスクリーニング方法、

(60) (i) ①標識した上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩をFPRL1を含有する細胞に接触させた場合と、(ii) ①標識した上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩、および試験化合物をFPRL1を含有する細胞に接触させた場合における、標識した上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩の該細胞に対する結合量を測定し、比較することを特徴とする上記(17) 記載のスクリーニング方法、

(61) (i) ①標識した上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩をFPRL1を含有する細胞の膜画分に接触させた場合と、(ii) ①標識した上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩、および試験化合物をFPRL1を含有する細胞の膜画分に接触させた場合における、標識した上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩の該細胞の膜画分に対する結合量を測定し、比較することを特徴とする上記(17) 記載のスクリーニング方法、

(62) (i) ①標識した上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩を、FPRL1をコードするDNAを含有するDNA

を含有する組換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現したFPRL1に接触させた場合と、(ii)①標識した上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩、および試験化合物を当該質転換体の細胞膜に発現したFPRL1に接触させた場合における、標識した上記(1)記載のペプチド、そのアミドもしくはそのエステルまたはその塩のFPRL1に対する結合量を測定し、比較することを特徴とする上記(17)記載のスクリーニング方法、

- (63) (i) FPRL1を活性化する化合物をFPRL1を含有する細胞に接触させた場合と、(ii) FPRL1を活性化する化合物および試験化合物をFPRL1を含有する細胞に接触させた場合における、FPRL1を介した細胞刺激活性を測定し、比較することを特徴とする上記(17)記載のスクリーニング方法、
- (64) FPRL1を活性化する化合物を、FPRL1をコードするDNAを含有するDNAを含有する組換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現したFPRL1に接触させた場合と、FPRL1を活性化する化合物および試験化合物を当該形質転換体の細胞膜に発現したFPRL1に接触させた場合における、FPRL1を介する細胞刺激活性を測定し、比較することを特徴とする上記(17)記載のスクリーニング方法、
- (65) FPRL1を活性化する化合物が①上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(1) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩である上記(63) または(64) 記載のスクリーニング方法、
- (66) FPRL1を含有する細胞またはその膜画分を含有することを特徴とする上記(20) 記載のスクリーニング用キット、
- (67) FPRL1をコードするDNAを含有するDNAを含有する組換えべク ターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜

- (68) (i) FPRL1、その部分ペプチドまたはその塩と、①上記(1) または(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②該レセプター蛋白質またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩とを接触させた場合と、(ii) FPRL1、その部分ペプチドまたはその塩と、①上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩とがはそのエステルまたはその塩とか結合性を変化させる化合物またはその塩、および試験化合物とを接触させた場合との比較を行なうことを特徴とする上記(18)記載のスクリーニング方法、
 - (69) (i) ①標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩をFPRL1、その部分ペプチドまたはその塩に接触させた場合と、(ii) ①標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩、および試験化合物をFPRL1、その部分ペプチドまたはその塩に接触させた場合における、標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩のFPRL1、その部分ペプチドまたはその塩に対する結合量を測定し、比較することを特徴とする上記(18) 記載のスクリーニング方法、
 - (70) (i) ①標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩をFPRL1を含有する細胞に接触させた場合と、(ii) ①標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルま

たはその塩または②FPRL1またはその塩と上記(6)記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩、および試験化合物をFPRL1を含有する細胞に接触させた場合における、標識した上記(6)記載のペプチド、そのアミドもしくはそのエステルまたはその塩の該細胞に対する結合量を測定し、比較することを特徴とする上記(18)記載のスクリーニング方法、

(71) (i) ①標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩をFPRL1を含有する細胞の膜画分に接触させた場合と、(ii) ①標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩、および試験化合物をFPRL1を含有する細胞の膜画分に接触させた場合における、標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩の該細胞の膜画分に対する結合量を測定し、比較することを特徴とする上記(18) 記載のスクリーニング方法、

(72) (i) ①標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩を、FPRL1をコードするDNAを含有するDNAを含有する組換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現したFPRL1に接触させた場合と、(ii) ①標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる標識した化合物またはその塩、および試験化合物を当該質転換体の細胞膜に発現したFPRL1に接触させた場合における、標識した上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩のFPRL1に対する結合量を測定し、比較することを

(73) (i) FPRL1を活性化する化合物をFPRL1を含有する細胞に接触させた場合と、(ii) FPRL1を活性化する化合物および試験化合物をFPRL1を含有する細胞に接触させた場合における、FPRL1を介した細胞刺激活性を測定し、比較することを特徴とする上記(18)記載のスクリーニング方法、

(74) FPRL1を活性化する化合物を、FPRL1をコードするDNAを含有するDNAを含有する組換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現したFPRL1に接触させた場合と、FPRL1を活性化する化合物および試験化合物を当該形質転換体の細胞膜に発現したFPRL1に接触させた場合における、FPRL1を介する細胞刺激活性を測定し、比較することを特徴とする上記(18)記載のスクリーニング方法、(75) FPRL1を活性化する化合物が①上記(6)記載のペプチド、そのア

(75) FPRL1を活性化する化合物が①上記(6) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩または②FPRL1またはその塩と上記

(3) 記載のペプチド、そのアミドもしくはそのエステルまたはその塩との結合性を変化させる化合物またはその塩である上記(73)または(74)記載のスクリーニング方法、

(76) FPRL1を含有する細胞またはその膜画分を含有することを特徴とする上記(21)記載のスクリーニング用キット、および

(77) FPRL1をコードするDNAを含有するDNAを含有する組換えべクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現したFPRL1を含有することを特徴とする上記(21)記載のスクリーニング用キット等を提供する。

[0011]

【発明の実施の形態】

本発明で使用されるFPRL1は、配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するレセプター蛋白質である。

FPRL1は、例えば、ヒトや哺乳動物(例えば、モルモット、ラット、マウス、ウサギ、プタ、ヒツジ、ウシ、サルなど)のあらゆる細胞(例えば、脾細胞

、神経細胞、グリア細胞、膵臓 β 細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T 細胞、B 細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞など)や血球系の細胞、またはそれらの細胞が存在するあらゆる組織、例えば、脳、脳の各部位(例、嗅球、扁頭核、大脳基底球、海馬、視床、視床下部、視床下核、大脳皮質、延髄、小脳、後頭葉、前頭葉、側頭葉、被殼、尾状核、脳染、黒質)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、腸管、血管、心臓、胸腺、脾臓、顎下腺、末梢血、末梢血球、前立腺、睾丸、精巣、卵巣、胎盤、子宮、骨、関節、骨格筋など、特に、脾臓、骨髄、腸管、単球、マクロファージなどの免疫担当臓器と免疫担当細胞に由来する蛋白質であってもよく、また合成蛋白質であってもよい。

[0012]

配列番号:2で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号:2で表わされるアミノ酸配列と約85%以上、好ましくは90%以上、より好ましくは約95%以上の相同性を有するアミノ酸配列などが挙げられる。

本発明の配列番号:2で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を含有する蛋白質としては、例えば、配列番号:2で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号:2で表わされるアミノ酸配列と実質的に同質の活性を有する蛋白質などが好ましい。

実質的に同質の活性としては、例えば、リガンド結合活性、シグナル情報伝達作用などが挙げられる。実質的に同質とは、それらの活性が性質的に同質であることを示す。したがって、リガンド結合活性やシグナル情報伝達作用などの活性が同等(例、約0.01~100倍、好ましくは約0.5~20倍、より好ましくは約0.5~2倍)であることが好ましいが、これらの活性の程度や蛋白質の分子量などの量的要素は異なっていてもよい。

[0013]

また、FPRL1としては、a) 配列番号: 2、配列番号: 4または配列番号: 6で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が欠失したアミノ酸配列、b) 配列番号: 2、配列番号: 4または配列番号: 6で表わされるアミノ酸配列に1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が付加したアミノ酸配列、c) 配列番号: 2、配列番号: 4または配列番号: 6で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはd) それらを組み合わせたアミノ酸配列を含有する蛋白質なども用いられる。

[0014]

本明細書におけるFPRL1は、ペプチド標記の慣例に従って、左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)である。配列番号:1で表わされるアミノ酸配列を含有するFPRL1をはじめとするFPRL1は、C末端がカルボキシル基(一COOH)、カルボキシレート(一COO ̄)、アミド(一CONH2)またはエステル(一COOR)の何れであってもよい。

ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソプロピルもしくはn-ブチルなどの C_{1-6} アルキル基、例えば、シクロペンチル、シクロヘキシルなどの C_{3-8} シクロアルキル基、例えば、フェニル、 $\alpha-$ ナフチルなどの C_{6-1} 2アリール基、例えば、ベンジル、フェネチルなどのフェニルー C_{1-2} アルキル基もしくは $\alpha-$ ナフチルメチルなどの $\alpha-$ ナフチルー C_{1-2} アルキル基などの C_{7-1} 4アラルキル基のほか、経口用エステルとして汎用されるピバロイルオキシメチル基などが用いられる。

FPRL1がC末端以外にカルボキシル基(またはカルボキシレート)を有し

ている場合、カルボキシル基がアミド化またはエステル化されているものも本発明のFPRL1に含まれる。この場合のエステルとしては、例えば上記したC末端のエステルなどが用いられる。

さらに、FPRL1には、上記した蛋白質において、N末端のメチオニン残基のアミノ基が保護基(例えば、ホルミル基、アセチルなどの C_{2-6} アルカノイル基などの C_{1-6} アシル基など)で保護されているもの、N端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば、-OH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチルなどの C_{2-6} アルカノイル基などの C_{1-6} アシル基など)で保護されているもの、あるいは糖鎖が結合したいわゆる糖蛋白質などの複合蛋白質なども含まれる。

本発明のFPRL1の具体例としては、例えば、配列番号:2で表わされるアミノ酸配列からなるヒト由来FPRL1 (J. Biol. Chem. 267(11), 7637-7643(1992))、配列番号:4で表わされるアミノ酸配列からなるラット由来FPRL1、配列番号:6で表わされるアミノ酸配列からなるマウス由来FPRL2 (J. Immunol. 169, 3363-3369 (2002)) などが用いられる。

配列番号:4で表わされるアミノ酸配列からなるラット由来FPRL1は新規な蛋白質である。

[0015]

FPRL1の部分ペプチド(以下、部分ペプチドと略記する場合がある)としては、上記したFPRL1の部分ペプチドであれば何れのものであってもよいが、例えば、FPRL1の蛋白質分子のうち、細胞膜の外に露出している部位であって、実質的に同質のレセプター結合活性を有するものなどが用いられる。

具体的には、配列番号:1で表わされるアミノ酸配列を有するFPRL1の部分ペプチドとしては、疎水性プロット解析において細胞外領域(親水性(Hydrop hilic)部位)であると分析された部分を含むペプチドである。また、疎水性(Hydrophobic)部位を一部に含むペプチドも同様に用いることができる。個々のドメインを個別に含むペプチドも用い得るが、複数のドメインを同時に含む部分の

本発明の部分ペプチドのアミノ酸の数は、上記した本発明のレセプター蛋白質の構成アミノ酸配列のうち少なくとも20個以上、好ましくは50個以上、より好ましくは100個以上のアミノ酸配列を有するペプチドなどが好ましい。

実質的に同一のアミノ酸配列とは、これらアミノ酸配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有するアミノ酸配列を示す。

ここで、「実質的に同質のレセプター活性」とは、上記と同意義を示す。「実 質的に同質のレセプター活性」の測定は上記と同様に行なうことができる。

[0016]

また、本発明の部分ペプチドは、上記アミノ酸配列中の1または2個以上(好ましくは、 $1\sim10$ 個程度、さらに好ましくは数個($1\sim5$ 個))のアミノ酸が欠失し、または、そのアミノ酸配列に1または2個以上(好ましくは、 $1\sim20$ 個程度、より好ましくは $1\sim10$ 個程度、さらに好ましくは数個($1\sim5$ 個))のアミノ酸が付加し、または、そのアミノ酸配列中の1または2個以上(好ましくは、 $1\sim10$ 個程度、より好ましくは数個、さらに好ましくは $1\sim5$ 個程度)のアミノ酸が他のアミノ酸で置換されていてもよい。

また、本発明の部分ペプチドはC末端がカルボキシル基(-COOH)、カルボキシレート(-COO⁻)、アミド(-CONH₂)またはエステル(-COOR)の何れであってもよい。本発明の部分ペプチドがC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、カルボキシル基がアミド化またはエステル化されているものも本発明の部分ペプチドに含まれる。この場合のエステルとしては、例えば上記したC末端のエステルなどが用いられる。

さらに、本発明の部分ペプチドには、上記したFPRL1と同様に、N末端のメチオニン残基のアミノ基が保護基で保護されているもの、N端側が生体内で切断され生成したGInがピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。

本発明のFPRL1またはその部分ペプチドの塩としては、酸または塩基との

[0017]

本発明のFPRL1またはその塩は、上記したヒトや哺乳動物の細胞または組織から自体公知のレセプター蛋白質の精製方法によって製造することもできるし、後に記載する本発明のFPRL1をコードするDNAを含有する形質転換体を培養することによっても製造することができる。また、後に記載する蛋白質合成法またはこれに準じて製造することもできる。

ヒトや哺乳動物の組織または細胞から製造する場合、ヒトや哺乳動物の組織または細胞をホモジナイズした後、酸などで抽出を行ない、該抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。

[0018]

本発明のFPRL1もしくはその部分ペプチドまたはその塩またはそのアミド体の合成には、通常市販の蛋白質合成用樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、4ーベンジルオキシベンジルアルコール樹脂、4ーメチルベンズヒドリルアミン樹脂、PAM樹脂、4ーヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4ー(2・,4・一ジメトキシフェニルーヒドロキシメチル)フェノキシ樹脂、4ー(2・,4・一ジメトキシフェニルーFmocアミノエチル)フェノキシ樹脂などを挙げることができる。このような樹脂を用い、αーアミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とする蛋白質の配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂から蛋白質を切り出すと同時に各種保護基を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的の蛋白質またはそのアミド体を取得する。

上記した保護アミノ酸の縮合に関しては、蛋白質合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としては、DCC、N, N'ージイソプロピルカルボジイミド、NーエチルーN'ー(3ージメチルアミノプロリル)カルボジイミドなどが用いられる。これらによる活性化にはラセミ化抑制添加剤(例えば、HOBt、HOOBt)とともに保護アミノ酸を直接樹脂に添加するか、または、対称酸無水物またはHOBtエステルあるいはHOOBtエステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することができる。

[0019]

保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、蛋白質縮合 反応に使用しうることが知られている溶媒から適宜選択されうる。例えば、N, Nージメチルホルムアミド, N, Nージメチルアセトアミド, Nーメチルピロリドンなどの酸アミド類、塩化メチレン, クロロホルムなどのハロゲン化炭化水素類、トリフルオロエタノールなどのアルコール類、ジメチルスルホキシドなどのスルホキシド類、ピリジン, ジオキサン, テトラヒドロフランなどのエーテル類、アセトニトリル, プロピオニトリルなどのニトリル類、酢酸メチル, 酢酸エチルなどのエステル類あるいはこれらの適宜の混合物などが用いられる。反応温度は蛋白質結合形成反応に使用され得ることが知られている範囲から適宜選択され、通常約−20~50℃の範囲から適宜選択される。活性化されたアミノ酸誘導体は通常1.5~4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場合には保護基の脱離を行うことなく縮合反応を繰り返すことにより十分な縮合を行なうことができる。反応を繰り返しても十分な縮合が得られないときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をアセチル化することができる。

[0020]

 フェニルホスフィノチオイル、Fmocなどが用いられる。

カルボキシル基は、例えば、アルキルエステル化(例えば、メチル、エチル、プロピル、プチル、ターシャリープチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、2ーアダマンチルなどの直鎖状、分枝状もしくは環状アルキルエステル化)、アラルキルエステル化(例えば、ベンジルエステル、4ーニトロベンジルエステル、4ーメトキシベンジルエステル、4ークロロベンジルエステル、ベンズヒドリルエステル化)、フェナシルエステル化、ベンジルオキシカルボニルヒドラジド化、ターシャリープトキシカルボニルヒドラジド化、トリチルヒドラジド化などによって保護することができる。

セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基などの低級アルカノイル基、ベンゾイル基などのアロイル基、ベンジルオキシカルボニル基、エトキシカルボニル基などの炭酸から誘導される基などが用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、tーブチル基などである。

チロシンのフェノール性水酸基の保護基としては、例えば、Bz1、C12 — Bz1、2 — Z

ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4-メトキシ -2,3,6-トリメチルベンゼンスルホニル、DNP、ベンジルオキシメチル 、Bum、Boc、Trt、Fmocなどが用いられる。

[0021]

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル [アルコール (例えば、ペンタクロロフェノール、2,4 - ジニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、Nーヒドロキシスクシミド、Nーヒドロキシフタルイミド、HOBt) とのエステル] などが用いられる。

原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミド が用いられる。 保護基の除去(脱離)方法としては、例えば、Pdー黒あるいはPdー炭素などの触媒の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合液などによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ピペリジン、ピペラジンなどによる塩基処理、また液体アンモニア中ナトリウムによる還元なども用いられる。上記酸処理による脱離反応は、一般に約-20~40℃の温度で行なわれるが、酸処理においては、例えば、アニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1,4ーブタンジチオール、1,2ーエタンジチオールなどのようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2,4ージニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1,2ーエタンジチオール、1,4ーブタンジチオールなどの存在下の酸処理による脱保護以外に、希水酸化ナトリウム溶液、希アンモニアなどによるアルカリ処理によっても除去される。

[0022]

原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその保護 基の脱離、反応に関与する官能基の活性化などは公知の基または公知の手段から 適宜選択しうる。

蛋白質のアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸のαーカルボキシル基をアミド化して保護した後、アミノ基側にペプチド(蛋白質)鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端のαーアミノ基の保護基のみを除いた蛋白質とC末端のカルボキシル基の保護基のみを除去した蛋白質とを製造し、この両蛋白質を上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護蛋白質を精製した後、上記方法によりすべての保護基を除去し、所望の粗蛋白質を得ることができる。この粗蛋白質は既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望の蛋白質のアミド体を得ることができる。

蛋白質のエステル体を得るには、例えば、カルボキシ末端アミノ酸のα-カル

ボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、蛋白質の アミド体と同様にして、所望の蛋白質のエステル体を得ることができる。

[0023]

本発明のFPRL1の部分ペプチドまたはその塩は、自体公知のペプチドの合成法に従って、あるいは本発明のFPRL1を適当なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれによっても良い。すなわち、本発明のFPRL1を構成し得る部分ペプチドもしくはアミノ酸と残余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合方法や保護基の脱離としては、例えば、以下のa)~e)に記載された方法が挙げられる。

- a) M. Bodanszky および M.A. Ondetti、ペプチド シンセシス (Peptide Synthesis), Interscience Publishers, New York (1966年)
- b) SchroederおよびLuebke、ザ ペプチド(The Peptide), Academic Press, New York (1965年)
 - c) 泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)
- d) 矢島治明 および榊原俊平、生化学実験講座 1、 蛋白質の化学IV、205、(1977年)
 - e) 矢島治明監修、続医薬品の開発 第14巻 ペプチド合成 広川書店

また、反応後は通常の精製法、例えば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶などを組み合わせて本発明の部分ペプチドを精製単離することができる。上記方法で得られる部分ペプチドが遊離体である場合は、公知の方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法によって遊離体に変換することができる。

[0024]

本発明のFPRL1をコードするポリヌクレオチドとしては、上記した本発明のFPRL1をコードする塩基配列(DNAまたはRNA、好ましくはDNA)を含有するものであればいかなるものであってもよい。該ポリヌクレオチドとしては、本発明のFPRL1をコードするDNA、mRNA等のRNAであり、二

本鎖であっても、一本鎖であってもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNA:RNAのハイブリッドでもよい。一本鎖の場合は、センス鎖(すなわち、コード鎖)であっても、アンチセンス鎖(すなわち、非コード鎖)であってもよい。

本発明のFPRL1をコードするポリヌクレオチドを用いて、例えば、公知の 実験医学増刊「新PCRとその応用」15(7)、1997記載の方法またはそれに準じ た方法により、本発明のFPRL1のmRNAを定量することができる。

本発明のFPRL1をコードするDNAとしては、ゲノムDNA、ゲノムDNA、ゲノムDNAライブラリー、上記した細胞・組織由来のcDNA、上記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、上記した細胞・組織よりtotalRNAまたはmRNA画分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する)によって増幅することもできる

具体的には、本発明のヒトFPRL1をコードするDNAとしては、例えば、配列番号:3で表わされる塩基配列を含有するDNA、または配列番号:3で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号:2で表わされるアミノ酸配列からなるヒトFPRL1と実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有するレセプター蛋白質をコードするDNAであれば何れのものでもよい。

本発明のラットFPRL1をコードするDNAとしては、例えば、配列番号: 5で表わされる塩基配列を含有するDNA、または配列番号: 5で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号: 4で表わされるアミノ酸配列からなるラットFPRL1と実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有するレセプター蛋白質をコードするDNAであれば何れのものでもよい。

本発明のマウスFPRL2をコードするDNAとしては、例えば、配列番号: 7で表わされる塩基配列を含有するDNA、または配列番号:7で表わされる塩

配列番号:3、配列番号:5または配列番号:7で表わされる塩基配列とハイブリダイズできるDNAとしては、例えば、配列番号:3、配列番号:5または配列番号:7で表わされる塩基配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

[0025]

ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング(Molecular Cloning) 2 nd(J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989)に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。より好ましくは、ハイストリンジェントな条件に従って行なうことができる。

該ハイストリンジェントな条件とは、例えば、ナトリウム濃度が約 $19\sim40$ mM、好ましくは約 $19\sim20$ mMで、温度が約 $50\sim70$ \mathbb{C} 、好ましくは約 $60\sim65$ \mathbb{C} の条件を示す。特に、ナトリウム濃度が約19 mMで温度が約65 \mathbb{C} の場合が最も好ましい。

より具体的には、配列番号:2で表わされるアミノ酸配列からなるヒトFPR L1をコードするDNAとしては、配列番号:3で表わされる塩基配列からなる DNAなどが用いられる。

配列番号:4で表わされるアミノ酸配列からなるラットFPRL1をコードするDNAとしては、配列番号:5で表わされる塩基配列からなるDNAなどが用いられる。

配列番号:6で表わされるアミノ酸配列からなるマウスFPRL2をコードするDNAとしては、配列番号:7で表わされる塩基配列からなるDNAなどが用いられる。

本発明のFPRL1をコードするDNAの塩基配列の一部、または該DNAと相補的な塩基配列の一部を含有してなるポリヌクレオチドとは、下記の本発明の部分ペプチドをコードするDNAを包含するだけではなく、RNAをも包含する意味で用いられる。

[0026]

本発明に従えば、FPRL1遺伝子の複製または発現を阻害することのできる アンチセンス・ポリヌクレオチド(核酸)を、クローン化した、あるいは決定さ れたFPRL1をコードするDNAの塩基配列情報に基づき設計し、合成しうる 。そうしたポリヌクレオチド(核酸)は、FPRL1遺伝子のRNAとハイブリ ダイズすることができ、該RNAの合成または機能を阻害することができるか、 あるいはFPRL1関連RNAとの相互作用を介してFPRL1遺伝子の発現を 調節・制御することができる。FPRL1関連RNAの選択された配列に相補的 なポリヌクレオチド、およびFPRL1関連RNAと特異的にハイブリダイズす ることができるポリヌクレオチドは、生体内および生体外でFPRL1遺伝子の 発現を調節・制御するのに有用であり、また病気などの治療または診断に有用で ある。用語「対応する」とは、遺伝子を含めたヌクレオチド、塩基配列または核 酸の特定の配列に相同性を有するあるいは相補的であることを意味する。ヌクレ オチド、塩基配列または核酸とペプチド(蛋白質)との間で「対応する」とは、 ヌクレオチド(核酸)の配列またはその相補体から誘導される指令にあるペプチ ド(蛋白質)のアミノ酸を通常指している。FPRL1遺伝子の5、端へアピン ループ、5,端6-ベースペア・リピート、5,端非翻訳領域、ポリペプチド翻 訳開始コドン、蛋白質コード領域、ORF翻訳開始コドン、3'端非翻訳領域、 3、端パリンドローム領域、および3、端へアピンループは好ましい対象領域と して選択しうるが、FPRL1遺伝子内の如何なる領域も対象として選択しうる

[0027]

0

目的核酸と、対象領域の少なくとも一部に相補的でハイブリダイズすることができるポリヌクレオチドとの関係は、対象物と、「アンチセンス」であるということができる。アンチセンス・ポリヌクレオチドは、2ーデオキシーDーリボー

スを含有しているポリデオキシリボヌクレオチド、Dーリボースを含有している ポリリボヌクレオチド、プリンまたはピリミジン塩基のNーグリコシドであるそ の他のタイプのポリヌクレオチド、あるいは非ヌクレオチド骨格を有するその他 のポリマー(例えば、市販の蛋白質核酸および合成配列特異的な核酸ポリマー) または特殊な結合を含有するその他のポリマー(但し、該ポリマーはDNAやR NA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつ ヌクレオチドを含有する)などが挙げられる。それらは、2本鎖DNA、1本鎖 DNA、2本鎖RNA、1本鎖RNA、さらにDNA:RNAハイブリッドであ ることができ、さらに非修飾ポリヌクレオチド(または非修飾オリゴヌクレオチ ド)、さらには公知の修飾の付加されたもの、例えば当該分野で知られた標識の あるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌク レオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例え ば非荷電結合(例えば、メチルホスホネート、ホスホトリエステル、ホスホルア ミデート、カルバメートなど)を持つもの、電荷を有する結合または硫黄含有結 合(例えば、ホスホロチオエート、ホスホロジチオエートなど)を持つもの、例 えば蛋白質(ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シ グナルペプチド、ポリーL-リジンなど)や糖(例えば、モノサッカライドなど)などの側鎖基を有しているもの、インターカレント化合物(例えば、アクリジ ン、プソラレンなど)を持つもの、キレート化合物(例えば、金属、放射活性を もつ金属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有す るもの、修飾された結合を持つもの(例えば、αアノマー型の核酸など)であっ てもよい。ここで「ヌクレオシド」、「ヌクレオチド」および「核酸」とは、プ リンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型 塩基をもつようなものを含んでいて良い。こうした修飾物は、メチル化されたプ リンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその 他の複素環を含むものであってよい。修飾されたヌクレオチドおよび修飾された ヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上の水酸基が ハロゲンとか、脂肪族基などで置換されていたり、あるいはエーテル、アミンな どの官能基に変換されていてよい。

本発明のアンチセンス・ポリヌクレオチド(核酸)は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。本発明のアンチセンス核酸は次のような方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸をより安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし毒性があるならアンチセンス核酸の毒性をより小さなものにする。

こうして修飾は当該分野で数多く知られており、例えば J. Kawakami et al., Pharm Tech Japan, Vol. 8, pp.247, 1992; Vol. 8, pp.395, 1992; S. T. Cro oke et al. ed., Antisense Research and Applications, CRC Press, 1993 などに開示がある。

本発明のアンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、結合を含有していて良く、リボゾーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子治療により適用されたり、付加された形態で与えられることができうる。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例えば、ホスホリピド、コレステロールなど)といった粗水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例えば、コレステリルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸の3、端あるいは5、端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3、端あるいは5、端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それ

に限定されるものではない。

アンチセンス核酸の阻害活性は、本発明の形質転換体、本発明の生体内や生体外の遺伝子発現系、あるいはG蛋白質共役型レセプター蛋白質の生体内や生体外の翻訳系を用いて調べることができる。該核酸それ自体公知の各種の方法で細胞に適用できる。

[0029]

本発明の部分ペプチドをコードするDNAとしては、上記した本発明の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、上記した細胞・組織由来のcDNA、上記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、上記した細胞・組織よりmRNA画分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する) によって増幅することもできる。

具体的には、本発明の部分ペプチドをコードするDNAとしては、例えば、(1)配列番号:3、配列番号:5または配列番号:7で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または(2)配列番号:3、配列番号:5または配列番号:7で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、本発明のヒトFPRL1、ラットFPRL1またはマウスFPRL2と実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有するレセプター蛋白質をコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号:3、配列番号:5または配列番号:7で表わされる塩基配列ハイブリダイズできるDNAとしては、例えば、配列番号:3、配列番号:5または配列番号:7で表わされる塩基配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

[0030]

本発明のFPRL1またはその部分ペプチド(以下、本発明のFPRL1と略記する場合がある)を完全にコードするDNAのクローニングの手段としては、本発明のFPRL1の部分塩基配列を有する合成DNAプライマーを用いてPCR法によって増幅するか、または適当なベクターに組み込んだDNAを本発明のFPRL1の一部あるいは全領域をコードするDNA断片もしくは合成DNAを用いて標識したものとのハイブリダイゼーションによって選別することができる。ハイブリダイゼーションの方法は、例えば、モレキュラー・クローニング(Molecular Cloning)2nd(J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989)に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。

[0031]

DNAの塩基配列の変換は、PCRや公知のキット、例えば、MutanTMーsuper Express Km (宝酒造(株))、MutanTMーK (宝酒造(株))などを用いて、ODAーLA PCR法、Gapped duplex法、Kunkel法などの自体公知の方法あるいはそれらに準じる方法に従って行なうことができる。

クローン化されたFPRL1をコードするDNAは目的によりそのまま、または所望により制限酵素で消化したり、リンカーを付加したりして使用することができる。該DNAはその5、末端側に翻訳開始コドンとしてのATGを有し、また3、末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することもできる。

本発明のFPRL1の発現ベクターは、例えば、(イ)本発明のFPRL1をコードするDNAから目的とするDNA断片を切り出し、(ロ)該DNA断片を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。

[0032]

ベクターとしては、大腸菌由来のプラスミド(例、pBR322、pBR32

5、pUC12、pUC13)、枯草菌由来のプラスミド(例、pUB110、pTP5、pC194)、酵母由来プラスミド(例、pSH19、pSH15)、 λファージなどのバクテリオファージ、レトロウイルス、ワクシニアウイルス、バキュロウイルスなどの動物ウイルスなどの他、pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neoなどが用いられる。

本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。例えば、動物細胞を宿主として用いる場合は、SR α プロモーター、SV 4 0 プロモーター、LTRプロモーター、CMVプロモーター、HSV-TKプロモーターなどが挙げられる

これらのうち、CMVプロモーター、SR α プロモーターなどを用いるのが好ましい。宿主がエシェリヒア属菌である場合は、trpプロモーター、lacプロモーター、recAプロモーター、 λ PLプロモーター、lppプロモーターなどが、宿主がバチルス属菌である場合は、SPO1プロモーター、SPO2プロモーター、penPプロモーターなど、宿主が酵母である場合は、PHO5プロモーター、PGKプロモーター、PGKプロモーター、PGKプロモーター、PGKプロモーター、PGKプロモーター、PGKプロモーター、PGKプロモーター、PGKプロモーター、PGKプロモーター、PDTロモーター、PDTロモーターなどが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、PDプロモーターなどが好ましい。

[0033]

発現ベクターには、以上の他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジン(以下、SV40oriと略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素(以下、dhfrと略称する場合がある)遺伝子〔メソトレキセート(MTX)耐性〕、アンピシリン耐性遺伝子(以下、Amprと略称する場合がある)、ネオマイシン耐性遺伝子(以下、Neorと略称する場合がある、G418耐性)等が挙げられる。特に、CHO(dhfr⁻)細胞を用いてdhfr遺伝子を選択マーカーとして使用する場合、目的遺伝子をチミジンを含まない培地によっても選択できる。

また、必要に応じて、宿主に合ったシグナル配列を、本発明のレセプター蛋白

質のN端末側に付加する。宿主がエシェリヒア属菌である場合は、 $PhoA \cdot \nu$ グナル配列、 $OmpA \cdot \nu$ グナル配列などが、宿主がバチルス属菌である場合は、 $\alpha-r$ ミラーゼ・シグナル配列、サブチリシン・シグナル配列などが、宿主が酵母である場合は、 $MF\alpha \cdot \nu$ グナル配列、 $SUC2 \cdot \nu$ 0グナル配列など、宿主が動物細胞である場合には、インシュリン・シグナル配列、 $\alpha-$ 1、 $\alpha-$ 1、 $\alpha-$ 1、 $\alpha-$ 1、 $\alpha-$ 1、 $\alpha-$ 1、 $\alpha-$ 2 、 $\alpha-$ 3 が動物細胞である場合には、インシュリン・シグナル配列、 $\alpha-$ 4 、 $\alpha-$

このようにして構築された本発明のFPRL1をコードするDNAを含有するベクターを用いて、形質転換体を製造することができる。

[0034]

宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、 昆虫、動物細胞などが用いられる。

エシェリヒア属菌の具体例としては、エシェリヒア・コリ(Escherichia coli) K12・DH1 [プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA),60巻,160(1968)],JM103 [ヌクイレック・アシッズ・リサーチ (Nucleic Acids Research),9巻,309(1981)],JA221 [ジャーナル・オブ・モレキュラー・バイオロジー(Journal of Molecular Biology),120巻,517(1978)],HB101 [ジャーナル・オブ・モレキュラー・バイオロジー,41巻,459(1969)],C600 [ジェネティックス(Genetics),39巻,440(1954)] などが用いられる。

バチルス属菌としては、例えば、バチルス・ズブチルス(Bacillus subtilis
) MI114 [ジーン, 24巻, 255(1983)], 207-21 [ジャーナル・オブ・バイオケミストリー (Journal of Biochemistry), 95巻, 87(1984)] などが用いられる。

酵母としては、例えば、サッカロマイセス セレビシエ (Saccharomyces cere visiae) AH22, AH22R⁻, NA87-11A, DKD-5D、20B-12、シゾサッカロマイセス ポンベ (Schizosaccharomyces pombe) NCYC 1913, NCYC2036、ピキア パストリス (Pichia pastoris) などが 用いられる。

[0035]

昆虫細胞としては、例えば、ウイルスがAcNPVの場合は、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell; Sf細胞)、Trichoplusia niの中腸由来のMG1細胞、Trichoplusia niの卵由来のHigh Five TM細胞、Mamestra brassicae由来の細胞またはEstigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合は、蚕由来株化細胞(Bombyx mori N; BmN細胞)などが用いられる。該Sf細胞としては、例えば、Sf 9細胞(ATCC CRL1711)、Sf 2 1細胞(以上、Vaughn, J.L.ら、イン・ヴィボ(In Vivo),13,213-217.(1977))などが用いられる。

昆虫としては、例えば、カイコの幼虫などが用いられる〔前田ら、ネイチャー (Nature), 315巻, 592(1985)〕。

動物細胞としては、例えば、サル細胞COS-7, Vero, チャイニーズハムスター細胞CHO(以下、CHO細胞と略記)、dhfr遺伝子欠損チャイニーズハムスター細胞CHO(以下、CHO(dhfr) 細胞と略記)、マウス L細胞, マウスAtT-20、マウスミエローマ細胞、ラットGH3、ヒトFL 細胞などが用いられる。

[0036]

エシェリヒア属菌を形質転換するには、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンジイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA), 69巻, 2110(1972)やジーン(Gene), 17巻, 107(1982)などに記載の方法に従って行なうことができる

バチルス属菌を形質転換するには、例えば、モレキュラー・アンド・ジェネラル・ジェネティックス (Molecular & General Genetics), 168 巻, 111 (1979)などに記載の方法に従って行なうことができる。

酵母を形質転換するには、例えば、メッソズ・イン・エンザイモロジー(Meth ods in Enzymology), 194巻, 182-187(1991)、プロシージングズ・オプ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 75巻, 1929(1978)

などに記載の方法に従って行なうことができる。

昆虫細胞または昆虫を形質転換するには、例えば、バイオ/テクノロジー(Bi o/Technology), 6, 47-55(1988)などに記載の方法に従って行なうことができる。

動物細胞を形質転換するには、例えば、細胞工学別冊8新細胞工学実験プロトコール.263-267(1995)(秀潤社発行)、ヴィロロジー(Virology),52巻,456(1973)に記載の方法に従って行なうことができる。

このようにして、FPRL1をコードするDNAを含有する発現ベクターで形質転換された形質転換体が得られる。

宿主がエシェリヒア属菌、バチルス属菌である形質転換体を培養する際、培養に使用される培地としては液体培地が適当であり、その中には該形質転換体の生育に必要な炭素源、窒素源、無機物その他が含有せしめられる。炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖など、窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質、無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどが挙げられる。また、酵母エキス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは約5~8が望ましい。

[0037]

エシェリヒア属菌を培養する際の培地としては、例えば、グルコース、カザミノ酸を含むM 9 培地 [ミラー(Miller),ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス(Journal of Experiments in Molecular Genetics),4 3 1 - 4 3 3,Cold Spring Harbor Laboratory,New York 1 9 7 2〕が好ましい。ここに必要によりプロモーターを効率よく働かせるために、例えば、3 β - インドリル アクリル酸のような薬剤を加えることができる

宿主がエシェリヒア属菌の場合、培養は通常約15~43℃で約3~24時間 行ない、必要により、通気や撹拌を加えることもできる。

宿主がバチルス属菌の場合、培養は通常約30~40℃で約6~24時間行な

い、必要により通気や撹拌を加えることもできる。

宿主が酵母である形質転換体を培養する際、培地としては、例えば、バークホールダー(Burkholder)最小培地〔Bostian, K. L. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA),77巻,4505(1980)〕や0.5%カザミノ酸を含有するSD培地〔Bitter, G. A. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA),81巻,5330(1984)〕が挙げられる。培地のpHは約5~8に調整するのが好ましい。培養は通常約20℃~35℃で約24~72時間行ない、必要に応じて通気や撹拌を加える。

[0038]

宿主が昆虫細胞または昆虫である形質転換体を培養する際、培地としては、Gr ace's Insect Medium (Grace, T.C.C., ネイチャー (Nature), 195, 788(1962)) に非動化した 10% うシ血清等の添加物を適宜加えたものなどが用いられる。 培地の p H は約 $6.2 \sim 6.4$ に調整するのが好ましい。培養は通常約 27%で 約 $3 \sim 5$ 日間行ない、必要に応じて通気や撹拌を加える。

宿主が動物細胞である形質転換体を培養する際、培地としては、例えば、約5~20%の胎児牛血清を含むMEM培地[サイエンス(Science),122巻,501(1952)],DMEM培地[ヴィロロジー(Virology),8巻,396(1959)],RPMI 1640培地[ジャーナル・オブ・ザ・アメリカン・メディカル・アソシエーション(The Journal of the American Medical Association)199巻,519(1967)],199培地[プロシージング・オブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディスン(Proceeding of the Society for the Biological Medicine),73巻,1(1950)]などが用いられる。pHは約6~8であるのが好ましい。培養は通常約30~40℃で約15~60時間行ない、必要に応じて通気や撹拌を加える。

以上のようにして、形質転換体の細胞内、細胞膜または細胞外に本発明のFP RL1を生成せしめることができる。

[0039]

本発明のFPRL1を培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体あるいは細胞を破壊したのち、遠心分離やろ過によりFPRL1の粗抽出液を得る方法などが適宜用いられる。緩衝液の中に尿素や塩酸グアニジンなどの蛋白質変性剤や、トリトンXー100 TMなどの界面活性剤が含まれていてもよい。培養液中にFPRL1が分泌される場合には、培養終了後、それ自体公知の方法で菌体あるいは細胞と上清とを分離し、上清を集める。

このようにして得られた培養上清、あるいは抽出液中に含まれるFPRL1の精製は、自体公知の分離・精製法を適切に組み合わせて行なうことができる。これらの公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDSーポリアクリルアミドゲル電気泳動法などの主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティークロマトグラフィーなどの特異的新和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法などの等電点の差を利用する方法などが用いられる。

[0040]

かくして得られるFPRL1が遊離体で得られた場合には、自体公知の方法あるいはそれに準じる方法によって塩に変換することができ、逆に塩で得られた場合には自体公知の方法あるいはそれに準じる方法により、遊離体または他の塩に変換することができる。

なお、組換え体が産生するFPRL1を、精製前または精製後に適当な蛋白修 飾酵素を作用させることにより、任意に修飾を加えたり、ポリペプチドを部分的 に除去することもできる。蛋白修飾酵素としては、例えば、トリプシン、キモト リプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グリコシダー ぜなどが用いられる。

[0041]

本発明のFPRL1に対する抗体は、本発明のFPRL1を認識し得る抗体であれば、ポリクローナル抗体、モノクローナル抗体の何れであってもよい。

本発明のFPRL1に対する抗体は、本発明のFPRL1を抗原として用い、 自体公知の抗体または抗血清の製造法に従って製造することができる。

[0042]

〔モノクローナル抗体の作製〕

(a) モノクローナル抗体産生細胞の作製

本発明のFPRL1は、哺乳動物に対して投与により抗体産生が可能な部位に それ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を 高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投 与してもよい。投与は通常2~6週毎に1回ずつ、計2~10回程度行なわれる 。用いられる哺乳動物としては、例えば、サル、ウサギ、イヌ、モルモット、マ ウス、ラット、ヒツジ、ヤギが挙げられるが、マウスおよびラットが好ましく用 いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原を免疫された温血動物、例えば、マウスから抗体価の認められた個体を選択し最終免疫の2~5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を骨髄腫細胞と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、後記の標識化レセプター蛋白質と抗血清とを反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方法[ネイチャー(Nature)、256巻、495頁(1975年)]に従い実施することができる。融合促進剤としては、例えば、ポリエチレングリコール(PEG)やセンダイウイルスなどが挙げられるが、好ましくはPEGが用いられる

骨髄腫細胞としては、例えば、NS-1、P3U1、SP2/0などが挙げられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞(脾臓細胞)数と骨髄腫細胞数との好ましい比率は $1:1\sim20:1$ 程度であり、PEG(好ましくは、PEG1000 \sim PEG6000)が $10\sim80\%$ 程度の濃度で添加され、約 $20\sim40$ °C、好ましくは約 $30\sim37$ °Cで約 $1\sim10$ 分間インキュベートすることにより効率よく細胞融合を実施できる。

[0043]

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、レセプター蛋白質の抗原を直接あるいは担体とともに吸着させた固相(例、マイクロプレート)にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体(細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる)またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したレセプター蛋白質を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに準じる方法に従って行なうことができるが、通常はHAT(ヒポキサンチン、アミノプテリン、チミジン)を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1~20%、好ましくは10~20%の牛胎児血清を含むRPMI1640培地、1~10%の牛胎児血清を含むGIT培地(和光純薬工業(株))またはハイブリドーマ培養用無血清培地(SFM−101、日水製薬(株))などを用いることができる。培養温度は、通常20~40℃、好ましくは約37℃である。培養時間は、通常5日~3週間、好ましくは1週間~2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

[0044]

(b) モノクローナル抗体の精製

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法〔例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体(例、DEAE)による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法〕に従って行なうことができる。

[0045]

[ポリクローナル抗体の作製]

本発明のポリクローナル抗体は、それ自体公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原(FPRL1抗原)とキャリアー蛋白質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に哺乳動物に免疫を行ない、該免疫動物から本発明のFPRL1に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。

哺乳動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に関し、キャリアー蛋白質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミン、ウシサイログロブリン、キーホール・リンペット・ヘモシアニン等を重量比でハプテン1に対し、約0.1~20、好ましくは約1~5の割合でカプルさせる方法が用いられる。

また、ハプテンとキャリアーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有する活性エステル試薬等が用いられる。

縮合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自体あるいは 担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全 フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投 与は、通常約2~6週毎に1回ずつ、計約3~10回程度行なうことができる。

ポリクローナル抗体は、上記の方法で免疫された哺乳動物の血液、腹水など、 好ましくは血液から採取することができる。

[0046]

本発明のFPRL1リガンドは、配列番号:1、配列番号:17または配列番号:21で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するペプチド、好ましくは配列番号:1、配列番号:17または配列番号:21で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列からなるペプチドである。

FPRL1リガンドは、ヒトや非ヒト温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、ブタ、ヒツジ、ウシ、サル等)の細胞(例えば、肝細胞、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞等)もしくはそれらの細胞が存在するあらゆる組織、例えば、脳、脳の各部位(例、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、血管、心臓、胸腺、脾臓、唾液腺、末梢血、前立腺、睾丸、卵巣、胎盤、子宮、骨、軟骨、関節、骨格筋等に由来するポリペプチドであってもよく、組換えポリペプチドであってもよく、合成ポリペプチドであってもよい。

[0047]

「実質的に同一」とはFPRL1リガンドの活性、例えば、FPRL1への結合活性、細胞内シグナル伝達活性、抗炎症作用など、生理的な特性などが、実質的に同じことを意味する。アミノ酸の置換、欠失、付加あるいは挿入が、ポリペ

非極性(疎水性)アミノ酸としては、アラニン、ロイシン、イソロイシン、バリン、プロリン、フェニルアラニシ、トリプトファン、メチオニンなどがあげられる。極性(中性)アミノ酸としてはグリシン、セリン、スレオニン、システイン、チロシン、アスパラギン、グルタミンなどがあげられる。陽電荷をもつ(塩基性)アミノ酸としてはアルギニン、リジン、ヒスチジンなどがあげられる。負電荷をもつ(酸性)アミノ酸としては、アスパラギン酸、グルタミン酸などが挙げられる。

[0048]

配列番号:1、配列番号:17または配列番号:21で表されるアミノ酸配列と実質的に同一のアミノ酸配列としては、該アミノ酸配列を含有するペプチドが、配列番号:1、配列番号:17または配列番号:21で表されるアミノ酸配列からなるFPRL1リガンドと実質的に同一の活性(性質)を有する限り、特に限定されるものではなく、例えば配列番号:1、配列番号:17または配列番号:21で表されるアミノ酸配列と約80%以上、好ましくは約85%以上、さらに好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列等が挙げられる。

上記の実質的に同質の活性(性質)としては、例えば、配列番号:1、配列番号:17または配列番号:21で表されるアミノ酸配列からなるFPRL1リガンドのFPRL1への結合活性、細胞内シグナル伝達活性、抗炎症作用などが定性的に同質であることを示す。

また、配列番号:1、配列番号:17または配列番号:21で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含有するFPRL1リガンドとしてより具体的には、例えば、a)配列番号:1、配列番号:16、配列番号:17、配列番号:18、配列番号:19、配列番号:20、配列番号:21または配列番

号:22で表されるアミノ酸配列中の1または2個以上(例えば1~3個程度、好ましくは1または2個)のアミノ酸が欠失したアミノ酸配列、b)配列番号:1、配列番号:16、配列番号:17、配列番号:18配列番号:19、配列番号:20、配列番号:21または配列番号:22で表されるアミノ酸配列に1または2個以上(例えば1~3個程度、好ましくは1または2個)のアミノ酸が付加したアミノ酸配列、c)配列番号:1、配列番号:16、配列番号:17、配列番号:18配列番号:19、配列番号:16、配列番号:17、配列番号:18配列番号:19、配列番号:20、配列番号:21または配列番号:22で表されるアミノ酸配列中の1または2個以上(例えば1~3個程度、好ましくは1または2個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはd)それらの欠失・付加・置換を組み合わせたアミノ酸配列からなるペプチドなどが用いられる。上記のようにアミノ酸配列が挿入、欠失または置換されている場合、その挿入、欠失または置換の位置としては、特に限定されない。

[0049]

また、FPRL1リガンドには、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。

さらに、FPRL1リガンドには、おのおののN末端またはC末端などにエピトープ(抗体認識部位)となりうる任意の外来ペプチド配列(例えば、FLAG、Hisタグ、HSVタグなど)を有しているものも含まれる。

FPRL1リガンドは、ペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)である。配列番号:1で表されるアミノ酸配列からなるペプチドをはじめとするFPRL1リガンドは、C末端がカルボキシル基(-COOH)、カルボキシレート(-COO⁻)、アミド(-CONH₂)またはエステル(-COOR)であってもよい。

ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソプロピルもしくはn-プチル等の C_{1-6} アルキル基、例えば、シクロペンチル、シクロヘキシル等の C_{3-8} シクロアルキル基、例えば、フェニル、 α ーナフチル等の C_{6-1} 2 アリール基、例えば、ベンジル、フェネチル等のフェニルー C_{1-2} アルキル基もしくは α ーナフチルメチル等の α ーナフチルー C_1

-2 アルキル基等の C_{7-14} アラルキル基のほか、経口用エステルとして汎用されるピバロイルオキシメチル基等が用いられる。

FPRL1リガンドがC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、カルボキシル基がアミド化またはエステル化されているものも本願明細書におけるFPRL1リガンドに含まれる。この場合のエステルとしては、例えば上記したC末端のエステル等が用いられる。

[0050]

さらに、FPRL1リガンドには、N末端のアミノ酸残基(例、メチオニン残基)のアミノ基が保護基(例えば、ホルミル基、アセチル基等のC₁₋₆アルカノイル等のC₁₋₆アシル基等)で保護されているもの、生体内で切断されて生成するN末端のグルタミン残基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えばーOH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基等)が適当な保護基(例えば、ホルミル基、アセチル基等のC₁₋₆アルカノイル基等のC₁₋₆アシル基等)で保護されているもの、糖鎖が結合したいわゆる糖ポリペプチド等の複合ポリペプチド、C末端のアミノ酸残基が修飾されているもの等も含まれる。特に、N末端のメチオニン残基のアミノ基がホルミル基で保護されている場合が好ましく、この場合、さらに上記した保護、修飾等を受けていてもよい。

具体的には、FPRL1リガンドとしては、例えば、

- (1) N末端のメチオニン残基がホルミル化されている配列番号:1で表わされるアミノ酸配列からなるブタ型FPRL1リガンド(P3)、
- (2) N末端のメチオニン残基がホルミル化されている配列番号:16で表わされるアミノ酸配列からなるヒト型FPRL1リガンド(P3)、
- (3) N末端のメチオニン残基がホルミル化されている配列番号:17で表わされるアミノ酸配列からなるブタ型FPRL1リガンド(P1) A、
- (4) N末端のメチオニン残基がホルミル化されている配列番号:18で表わされるアミノ酸配列からなるプタ型FPRL1リガンド(P1) B、
- (5) N末端のメチオニン残基がホルミル化されている配列番号:19で表わされるアミノ酸配列からなるヒト型FPRL1リガンド(P1) A、

- (6) N末端のメチオニン残基がホルミル化されている配列番号:20で表わされるアミノ酸配列からなるヒト型FPRL1リガンド(P1)B、
- (7) N末端のメチオニン残基がホルミル化されている配列番号:21で表されるアミノ酸配列からなるブタ型FPRL1リガンド(P4)、
- (8) N末端のメチオニン残基がホルミル化されている配列番号:22で表されるアミノ酸配列からなるヒト型FPRL1リガンド(P4)、
- (9) N末端のメチオニン残基がホルミル化され、C末端のイソロイシン残基が 修飾されている配列番号:21で表されるアミノ酸配列からなるブタ型FPRL 1リガンド(P4)、
- (10) N末端のメチオニン残基がホルミル化され、C末端のイソロイシン残基が修飾されている配列番号:22で表されるアミノ酸配列からなるヒト型FPR L1リガンド(P4)などが好ましく用いられる。

さらに、本発明のFPRL1リガンドとしては、前述した「配列番号:1、配列番号:17または配列番号:21で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するペプチド」以外に、ホルミル化されているアミノ酸またはN末端のアミノ酸残基(例、メチオニン残基)がホルミル化されているペプチド(ただし、バクテリア由来のホルミル化されたMLPを除く)であれば、同様に使用することができる。「N末端のアミノ酸残基がホルミル化されているペプチド」の「ペプチド」部分は、生体内由来のペプチドであってもよいし、合成ペプチドであってもよい。「ペプチド」部分のアミノ酸の数は、通常2~50個、好ましくは2~20個である。

FPRL1リガンドは塩であってもよく、該塩としては、生理学的に許容される酸(例、無機酸、有機酸)や塩基(例、アルカリ金属塩)等との塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩等が用いられる。

[0051]

FPRL1リガンドは、前述したヒトや非ヒト温血動物の細胞または組織から 公知のポリペプチドの精製方法によって製造することもできるし、後述のペプチ ド合成法に準じて製造することもできる。

ヒトや非ヒト哺乳動物の組織または細胞から製造する場合、ヒトや非ヒト哺乳動物の組織または細胞をホモジナイズした後、酸等で抽出を行ない、得られた抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィー等のクロマトグラフィーを組み合わせることにより精製単離することができる。

FPRL1リガンドまたはそのアミド体の合成には、通常市販のポリペプチド合成用樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、4ーベンジルオキシベンジルアルコール樹脂、4ーメチルベンズヒドリルアミン樹脂、PAM樹脂、4ーヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4ー(2', 4'ージメトキシフェニルーヒドロキシメチル)フェノキシ樹脂、4ー(2', 4'ージメトキシフェニルード面οcアミノエチル)フェノキシ樹脂等をあげることができる。このような樹脂を用い、αーアミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とするポリペプチドの配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂からポリペプチドを切り出すと同時に各種保護基を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的のポリペプチドまたはそれらのアミド体を取得する。

上記した保護アミノ酸の縮合に関しては、ポリペプチド合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としては、DCC、N, N'ージイソプロピルカルボジイミド、NーエチルーN'ー(3ージメチルアミノプロリル)カルボジイミド等が用いられる。これらによる活性化にはラセミ化抑制添加剤(例えば、HOBt、HOOBt)とともに保護アミノ酸を直接樹脂に添加するかまたは、対応する酸無水物またはHOBtエステルあるいはHOOBtエステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することができる。

[0052]

保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、ポリペプチ ド縮合反応に使用しうることが知られている溶媒から適宜選択されうる。例えば 、N.N-ジメチルホルムアミド、N.N-ジメチルアセトアミド,N-メチル ピロリドン等の酸アミド類、塩化メチレン,クロロホルム等のハロゲン化炭化水 素類、トリフルオロエタノール等のアルコール類、ジメチルスルホキシド等のス ルホキシド類、ピリジン、ジオキサン、テトラヒドロフラン等のエーテル類、ア セトニトリル,プロピオニトリル等のニトリル類、酢酸メチル,酢酸エチル等の エステル類あるいはこれらの適宜の混合物等が用いられる。反応温度はポリペプ チド結合形成反応に使用され得ることが知られている範囲から適宜選択され、通 常約−20~50℃の範囲から適宜選択される。活性化されたアミノ酸誘導体は 通常1.5~4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、 縮合が不十分な場合には保護基の脱離を行なうことなく縮合反応を繰り返すこと により十分な縮合を行なうことができる。反応を繰り返しても十分な縮合が得ら れないときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸 をアセチル化することによって、後の反応に影響を与えないようにすることがで きる。

[0053]

カルボキシル基は、例えば、アルキルエステル化(例えば、メチル、エチル、プロピル、プチル、tープチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、2ーアダマンチル等の直鎖状、分枝状もしくは環状アルキルエステル化)、アラルキルエステル化(例えば、ベンジルエステル、4ーニトロベンジルエステル、4ーメトキシベンジルエステル、4ークロロベンジルエステル、ベンズヒドリルエステル化)、フェナシルエステル化、ベンジルオキシカルボニルヒドラジド化、トリチルヒドカルボニルヒドラジド化、トリチルヒド

ラジド化等によって保護することができる。

セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基等の低級 (C_{1-6}) アルカノイル基、ベンゾイル基等のアロイル基、ベンジルオキシカルボニル基、エトキシカルボニル基等の炭酸から誘導される基等が用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、t-ブチル基等である。

チロシンのフェノール性水酸基の保護基としては、例えば、Bz1、 $C1_2$ – Bz1、2 – ニトロベンジル、Br-Z、t – ブチル等が用いられる。

ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4-メトキシ -2,3,6-トリメチルベンゼンスルホニル、DNP、ベンジルオキシメチル 、Bum、Boc、Trt、Fmoc等が用いられる。

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル [アルコール (例えば、ペンタクロロフェノール、2,4 - ジニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、Nーヒドロキシスクシミド、Nーヒドロキシフタルイミド、HOBt)とのエステル] 等が用いられる。

原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミド が用いられる。

[0054]

保護基の除去(脱離)方法としては、例えば、Pdー黒あるいはPdー炭素等の触媒の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合液等による酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ピペリジン、ピペラジン等による塩基処理、また液体アンモニア中ナトリウムによる還元等も用いられる。上記酸処理による脱離反応は、一般に約-20~40℃の温度で行なわれるが、酸処理においては、例えば、アニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1,4-ブタンジチオール、1,2-エタンジチオール等のようなカチオン捕捉剤

の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる 2,4ージニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1,2ーエタンジチオール、1,4ーブタンジチオール等の存在下の酸処理による脱保護以外に、 希水酸化ナトリウム溶液、希アンモニア等によるアルカリ処理によっても除去される。

原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその保護 基の脱離、反応に関与する官能基の活性化等は公知の基または公知の手段から適 「官選択しうる。

[0055]

FPRL1リガンドのアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸のαーカルボキシル基をアミド化して保護した後、アミノ基側にペプチド(ポリペプチド)鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端のαーアミノ基の保護基のみを除いたポリペプチドとC末端のカルボキシル基の保護基のみを除去したポリペプチドとを製造し、この両ポリペプチドを上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護ポリペプチドを精製した後、上記方法によりすべての保護基を除去し、所望の粗ポリペプチドを得ることができる。この粗ポリペプチドは既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望のFPRL1リガンドのアミド体を得ることができる。

FPRL1リガンドのエステル体を得るには、例えば、カルボキシ末端アミノ酸の α ーカルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、FPRL1リガンドのアミド体と同様にして、所望のポリペプチドのエステル体を得ることができる。

FPRL1リガンドは、公知のペプチドの合成法に従っても製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれによっても良い。すなわち、FPRL1リガンドを構成し得る部分ペプチドもしくはアミノ酸と残余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合方法や保

- ①M. Bodanszky および M.A. Ondetti、ペプチド・シンセシス (Peptide Synthesis), Interscience Publishers, New York (1966年)、
- ②SchroederおよびLuebke、ザ・ペプチド(The Peptide), Academic Press, New York (1965年)、
- ③泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)、
- ④矢島治明 および榊原俊平、生化学実験講座 1、 タンパク質の化学IV、205、(1977年)、および
- ⑤矢島治明監修、続医薬品の開発、第14巻、ペプチド合成、広川書店。

また、反応後は通常の精製法、例えば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶等を組み合わせて本発明のポリペプチド、本発明の部分ペプチドを精製単離することができる。上記方法で得られるポリペプチドが遊離体である場合は、公知の方法あるいはそれに準じる方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法あるいはそれに準じる方法によって遊離体または他の塩に変換することができる。

FPRL1リガンドに対する抗体は、本発明のFPRL1に対する抗体と同様にして製造することができる。

[0056]

FPRL1リガンドは抗炎症作用などを有しているので、FPRL1リガンド、FPRL1、FPRL1をコードするDNA(以下、本発明のDNAと略記する場合がある)、FPRL1リガンドまたはFPRL1に対する抗体(以下、本発明の抗体と略記する場合がある)、本発明のDNAに対するアンチセンスDNA(以下、本発明のアンチセンスDNAと略記する場合がある)は、以下の用途を有している。

(1) 本発明のFPRL1の機能不全に関連する疾患の予防および/または治療 剤

FPRL1リガンドは抗炎症作用などを有するので、FPRL1リガンドもしくはFPRL1またはそれをコードするポリヌクレオチド(例、DNA等)など

に異常があったり、欠損している場合あるいは発現量が異常に減少または亢進し ている場合、例えば、喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病 (Addison's disease)、自己免疫性溶血性貧血、全身性エリスマトーデス、乾 せん、リウマチ、中枢神経障害(例えば、脳出血及び脳梗塞等の脳血管障害、頭 部外傷、脊髄損傷、脳浮腫、多発性硬化症等)、神経変性疾患(例えば、アルツ ハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症)、 髄膜炎、糖尿病、関節炎(例、慢性関節リウマチ、変形性関節症、リウマチ様脊 椎炎、痛風性関節炎、滑膜炎)、毒血症(例、敗血症、敗血症性ショック、内毒 素性ショック、グラム陰性敗血症、トキシックショック症候群)、炎症性腸疾患 (例、クローン病(Crohn's disease)、潰瘍性大腸炎)、炎症性肺疾患(例、 慢性肺炎、珪肺、肺サルコイドーシス、肺結核)、あるいは悪液質(例、感染に よる悪液質、癌性悪液質、後天性免疫不全症候群(エイズ)による悪液質)、動 脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染(例、サイトメガロウイ ルス、インフルエンザウイルス、ヘルペスウイルス等のウイルス感染)、狭心症 、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候 群などの種々の疾病が発症する。

[0057]

したがって、生体内においてFPRL1リガンドまたはFPRL1が減少しているために、FPRL1リガンドの生理作用が期待できない(FPRL1リガンドまたはFPRL1の欠乏症)患者がいる場合に、a)FPRL1リガンドまたはFPRL1を該患者に投与し、FPRL1リガンドまたはFPRL1の量を補充したり、b)(イ)FPRL1をコードするDNAを該患者に投与し発現させることによって、あるいは(ロ)対象となる細胞にFPRL1をコードするDNAを挿入し発現させた後に、該細胞を該患者に移植することなどによって、患者の体内におけるFPRL1リガンドまたはFPRL1の量を増加させ、FPRL1リガンドの作用を充分に発揮させることができる。

したがって、a) FPRL1リガンド、b) FPRL1またはc) FPRL1をコードするDNAを、FPRL1リガンドまたはFPRL1の機能不全に関連する疾患の予防および/または治療剤などの医薬として使用することができる。

具体的には、FPRL1リガンド、FPRL1または本発明のDNAは、例え ば、抗炎症剤として、さらには、例えば喘息、アレルギー疾患、炎症、炎症性眼 疾患、アジソン病(Addison's disease)、自己免疫性溶血性貧血、全身性エリ スマトーデス、乾せん、リウマチ、中枢神経障害(例えば、脳出血及び脳梗塞等 の脳血管障害、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症等)、神経変性疾患 (例えば、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症 (ALS) 、エイズ脳症)、髄膜炎、糖尿病、関節炎(例、慢性関節リウマチ、変形性関節 症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎)、毒血症(例、敗血症、敗血症 性ショック、内毒素性ショック、グラム陰性敗血症、トキシックショック症候群)、炎症性腸疾患(例、クローン病(Crohn's disease)、潰瘍性大腸炎)、炎 症性肺疾患(例、慢性肺炎、珪肺、肺サルコイドーシス、肺結核)、あるいは悪 液質(例、感染による悪液質、癌性悪液質、後天性免疫不全症候群(エイズ)に よる悪液質)、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染(例、 サイトメガロウイルス、インフルエンザウイルス、ヘルペスウイルス等のウイル ス感染)、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発 性血管内凝固症候群などの予防・治療剤として、低毒性で安全な医薬として使用 することができる。

FPRL1リガンドまたはFPRL1を上記予防・治療剤として使用する場合は、常套手段に従って製剤化することができる。

[0058]

一方、本発明のDNAを上記予防・治療剤として使用する場合は、本発明のDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。本発明のDNAは、そのままで、あるいは摂取促進のための補助剤とともに、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与できる。

例えば、a) FPRL1リガンド、b) FPRL1またはc)本発明のDNAは、 必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル 剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液と

[0059]

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラ チン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セル ロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨 化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリ ンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤な どが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料に さらに油脂のような液状担体を含有することができる。注射のための無菌組成物 は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産 出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方するこ とができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他 の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナ トリウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、 エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリ コール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用い られ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用して もよい。

[0060]

また、上記予防・治療剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤など

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物 (例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど) に対して投与することができる。

例えば、FPRL1リガンドの投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、炎症患者(体重60kgとして)においては、一日につき約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、炎症患者(体重60kgとして)においては、一日につき約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

本発明のDNAの投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、炎症患者(体重60kgとして)においては、一日につき約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、炎症患者(体重60kgとして)においては、一日につき約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

[0061]

(2) 遺伝子診断剤

本発明のDNAおよびアンチセンスDNAは、プローブとして使用することにより、ヒトまたは哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)における本発明のFPRL1またはその部分ペプ

チドをコードするDNAまたはmRNAの異常(遺伝子異常)を検出することができるので、例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断剤として有用である。

本発明のDNAまたはアンチセンスDNAを用いる上記の遺伝子診断は、例えば、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法(ゲノミックス(Genomics),第5巻,874~879頁(1989年)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ユーエスエー(Proceedings of the National Academy of Sciences of the United States of America),第86巻,2766~2770頁(1989年))などにより実施することができる。

例えば、ノーザンハイブリダイゼーションによりFPRL1の発現低下が検出 された場合やPCR-SSCP法によりDNAの突然変異が検出された場合は、 例えば、喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病(Addison's disease)、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマ チ、中枢神経障害(例えば、脳出血及び脳梗塞等の脳血管障害、頭部外傷、脊髄 損傷、脳浮腫、多発性硬化症等)、神経変性疾患(例えば、アルツハイマー病、 パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症)、髄膜炎、糖尿 病、関節炎(例、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性 関節炎、滑膜炎)、毒血症(例、敗血症、敗血症性ショック、内毒素性ショック 、グラム陰性敗血症、トキシックショック症候群)、炎症性腸疾患(例、クロー ン病 (Crohn's disease)、潰瘍性大腸炎)、炎症性肺疾患 (例、慢性肺炎、珪 肺、肺サルコイドーシス、肺結核)、あるいは悪液質(例、感染による悪液質、 癌性悪液質、後天性免疫不全症候群(エイズ)による悪液質)、動脈硬化症、ク ロイツフェルトーヤコブ病、ウイルス感染(例、サイトメガロウイルス、インフ ルエンザウイルス、ヘルペスウイルス等のウイルス感染)、狭心症、心筋梗塞、 うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群などの疾病 である、または将来罹患する可能性が高いと診断することができる。

[0062]

発現量を変化させる化合物のスクリーニングに用いることができる。

すなわち、本発明は、例えば、(i) 非ヒト哺乳動物のa) 血液、b) 特定の臓器、c) 臓器から単離した組織もしくは細胞、または(ii) 形質転換体等に含まれる本発明のFPRL1のmRNA量を測定することによる、本発明のFPRL1の発現量を変化させる化合物のスクリーニング方法を提供する。

[0063]

本発明のFPRL1のmRNA量の測定は具体的には以下のようにして行なう

(i) 正常あるいは疾患モデル非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的にはアルツハイマー病モデルラット、マウス、ウサギなど)に対して、薬剤(例えば、免疫調節薬など)あるいは物理的ストレス(例えば、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えば、脳、肝臓、腎臓など)、または臓器から単離した組織、あるいは細胞を得る。

得られた細胞に含まれる本発明のFPRL1のmRNAは、例えば、通常の方法により細胞等からmRNAを抽出し、例えば、TaqMan PCRなどの手法を用いることにより定量することができ、自体公知の手段によりノーザンブロットを行うことにより解析することもできる。

(ii) 本発明のFPRL1を発現する形質転換体を上記の方法に従い作製し、 該形質転換体に含まれる本発明のFPRL1のmRNAを同様にして定量、解析 することができる。

[0064]

本発明のFPRL1の発現量を変化させる化合物のスクリーニングは、

(i)正常あるいは疾患モデル非ヒト哺乳動物に対して、薬剤あるいは物理的ストレスなどを与える一定時間前(30分前~24時間前、好ましくは30分前~12時間前、より好ましくは1時間前~6時間前)もしくは一定時間後(30

分後~3日後、好ましくは1時間後~2日後、より好ましくは1時間後~24時間後)、または薬剤あるいは物理的ストレスと同時に被検化合物を投与し、投与後一定時間経過後(30分後~3日後、好ましくは1時間後~2日後、より好ましくは1時間後~24時間後)、細胞に含まれる本発明のFPRL1のmRNA量を定量、解析することにより行なうことができ、

(ii) 形質転換体を常法に従い培養する際に被検化合物を培地中に混合させ、 一定時間培養後(1日後~7日後、好ましくは1日後~3日後、より好ましくは 2日後~3日後)、該形質転換体に含まれる本発明のFPRL1のmRNA量を 定量、解析することにより行なうことができる。

[0065]

本発明のスクリーニング方法を用いて得られる化合物またはその塩は、本発明のFPRL1の発現量を変化させる作用を有する化合物であり、具体的には、(イ)本発明のFPRL1の発現量を増加させることにより、FPRL1を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²+遊離、細胞内cAMP生成、細胞内cAMP生成抑制、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を増強させる化合物、(ロ)本発明のFPRL1の発現量を減少させることにより、該細胞刺激活性を減弱させる化合物である。

該化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

上記スクリーニング方法で得られる化合物は、

(1)本発明のFPRL1の発現量を増加し、本発明のFPRL1の機能不全に 関連する疾患を予防・治療する化合物、具体的には、喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病(Addison's disease)、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、中枢神経障害(例えば、脳出血及び脳梗塞等の脳血管障害、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症等)、神経変性疾患(例えば、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化 症(ALS)、エイズ脳症)、髄膜炎、糖尿病、関節炎(例、慢性関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎)、毒血症(例、敗血症、敗血症性ショック、内毒素性ショック、グラム陰性敗血症、トキシックショック症候群)、炎症性腸疾患(例、クローン病(Crohn's disease)、潰瘍性大腸炎)、炎症性肺疾患(例、慢性肺炎、珪肺、肺サルコイドーシス、肺結核)、あるいは悪液質(例、感染による悪液質、癌性悪液質、後天性免疫不全症候群(エイズ)による悪液質)、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染(例、サイトメガロウイルス、インフルエンザウイルス、ヘルペスウイルス等のウイルス感染)、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群などを予防・治療する化合物、または

(2) 本発明のFPRL1の発現量を減少させ、本発明のFPRL1の発現過多に起因する疾患を予防・治療する化合物などである。

[0066]

したがって、上記スクリーニング方法で得られる本発明のFPRL1の発現量 を増加する化合物は、例えば、抗炎症剤として、さらには、例えば喘息、アレル ギー疾患、炎症、炎症性眼疾患、アジソン病(Addison's disease)、自己免疫 性溶血性貧血、全身性エリスマトーデス、乾せん、リウマチ、中枢神経障害(例 えば、脳出血及び脳梗塞等の脳血管障害、頭部外傷、脊髄損傷、脳浮腫、多発性 硬化症等)、神経変性疾患(例えば、アルツハイマー病、パーキンソン病、筋萎 縮性側索硬化症(ALS)、エイズ脳症)、髄膜炎、糖尿病、関節炎(例、慢性 関節リウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎)、毒 血症(例、敗血症、敗血症性ショック、内毒素性ショック、グラム陰性敗血症、 トキシックショック症候群)、炎症性腸疾患(例、クローン病(Crohn's disea se)、潰瘍性大腸炎)、炎症性肺疾患(例、慢性肺炎、珪肺、肺サルコイドーシ ス、肺結核)、あるいは悪液質(例、感染による悪液質、癌性悪液質、後天性免 疫不全症候群(エイズ)による悪液質)、動脈硬化症、クロイツフェルトーヤコ プ病、ウイルス感染(例、サイトメガロウイルス、インフルエンザウイルス、ヘ ルペスウイルス等のウイルス感染)、狭心症、心筋梗塞、うっ血性心不全、肝炎 、移植、透析低血圧、汎発性血管内凝固症候群などの予防・治療剤として、低毒

一方、上記スクリーニング方法で得られる本発明のFPRL1の発現量を減少させる化合物は、本発明のFPRL1の発現過多に起因する疾患の予防および/または治療剤などの医薬として使用することができる。

[0067]

本発明のスクリーニング方法を用いて得られる化合物またはその塩を医薬組成物として使用する場合、常套手段に従って製剤化することができる。

例えば、該化合物は、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物を生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、Dーソルビトール、Dーマンニトール、塩化ナトリウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50

[0068]

また、上記予防・治療剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルプミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。

該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、炎症患者(体重60kgとして)においては、一日につき約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、炎症患者(体重60kgとして)においては、一日につき約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~20mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

[0069]

(4) 本発明の抗体を用いる診断方法

FPRL1リガンドに対する抗体は、本発明のFPRL1リガンドを特異的に 認識することができるので、被検液中のFPRL1リガンドの検出や中和に使用 することができる。

本発明のFPRL1に対する抗体は、本発明のFPRL1を特異的に認識することができるので、被検液中のFPRL1の検出や中和に使用することができる

以下、本発明のFPRL1に対する抗体を用いるFPRL1の定量法について 説明するが、FPRL1リガンドに対する抗体を用いるFPRL1リガンドの定 量法も同様にして実施することができる。

すなわち、本発明は、

- (i) 本発明の抗体と、被検液および標識化されたFPRL1とを競合的に反応させ、該抗体に結合した標識化されたFPRL1の割合を測定することを特徴とする被検液中のFPRL1の定量法、および
- (ii)被検液と担体上に不溶化した本発明の抗体および標識化された本発明の別の抗体とを同時あるいは連続的に反応させたのち、不溶化担体上の標識剤の活性を測定することを特徴とする被検液中のFPRL1の定量法を提供する。

[0070]

上記(ii)の定量法においては、一方の抗体がFPRL1のN端部を認識する 抗体で、他方の抗体がFPRL1のC端部に反応する抗体であることが望ましい。

また、FPRL1に対するモノクローナル抗体を用いてFPRL1の定量を行うことができるほか、組織染色等による検出を行なうこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子の $F(ab')_2$ 、Fab'、あるいはFab画分を用いてもよい。

本発明の抗体を用いるFPRL1の定量法は、特に制限されるべきものではなく、被測定液中の抗原量(例えば、FPRL1量)に対応した抗体、抗原もしくは抗体-抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられるが、感度、特異性の点で、後述するサンドイッチ法を用いるのが特に好ましい。

[0071]

標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例

えば、 $\begin{bmatrix}125I\end{bmatrix}$ 、 $\begin{bmatrix}131I\end{bmatrix}$ 、 $\begin{bmatrix}3H\end{bmatrix}$ 、 $\begin{bmatrix}14C\end{bmatrix}$ などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、 β -ガラクトシダーゼ、 β -グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチンーアビジン系を用いることもできる。

抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常FPRL1あるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方法でもよい。担体としては、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等があげられる。

サンドイッチ法においては不溶化した本発明のモノクローナル抗体に被検液を 反応させ(1次反応)、さらに標識化した別の本発明のモノクローナル抗体を反 応させ(2次反応)たのち、不溶化担体上の標識剤の活性を測定することにより 被検液中の本発明のFPRL1量を定量することができる。1次反応と2次反応 は逆の順序に行っても、また、同時に行なってもよいし時間をずらして行なって もよい。標識化剤および不溶化の方法は前記のそれらに準じることができる。ま た、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用抗体 に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる等 の目的で2種類以上の抗体の混合物を用いてもよい。

[0072]

本発明のサンドイッチ法によるFPRL1の測定法においては、1次反応と2次反応に用いられる本発明のモノクローナル抗体は、FPRL1の結合する部位が相異なる抗体が好ましく用いられる。すなわち、1次反応および2次反応に用いられる抗体は、例えば、2次反応で用いられる抗体が、FPRL1のC端部を認識する場合、1次反応で用いられる抗体は、好ましくはC端部以外、例えばN端部を認識する抗体が用いられる。

競合法では、被検液中の抗原と標識抗原とを抗体に対して競合的に反応させたのち、未反応の標識抗原(F)と、抗体と結合した標識抗原(B)とを分離し(B/F分離)、B, Fいずれかの標識量を測定し、被検液中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B/F分離をポリエチレングリコール、前記抗体に対する第2抗体などを用いる液相法、および、第1抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。

イムノメトリック法では、被検液中の抗原と固相化抗原とを一定量の標識化抗 体に対して競合反応させた後固相と液相を分離するか、あるいは、被検液中の抗 原と過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反応の標識化抗 体を固相に結合させたのち、固相と液相を分離する。次に、いずれかの相の標識 量を測定し被検液中の抗原量を定量する。

また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果生じた不溶性の沈降物の量を測定する。被検液中の抗原量が僅かであり、少量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフロメトリーなどが好適に用いられる。

これら個々の免疫学的測定法を本発明の定量方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて本発明のFPRL1の測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参照することができる。

例えば、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、 入江 寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)、石川栄治 ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編「酵素免 疫測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら編「酵素免疫 測定法」(第3版)(医学書院、昭和62年発行)、「Methods in ENZYMOLOGY」 Vol. 70(Immunochemical Techniques(Part A))、同書 Vol. 73(Immunochemical Techniques(Part B))、同書 Vol. 74(Immunochemical Techniques(Part C))、同書 Vol. 84(Immunochemical Techniques(Part D : Selected Immunoassays))、同書 Vol. 92(Immunochemical Techniques(Part E : Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 121(Immunochemical Techniques(Part I : Hybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)などを参照することができる。

以上のようにして、本発明の抗体を用いることによって、本発明のFPRL1 を感度良く定量することができる。

[0073]

さらには、本発明の抗体を用いてFPRL1の濃度を定量することによって、 FPRL1の濃度の減少が検出された場合、例えば、例えば喘息、アレルギー疾 患、炎症、炎症性眼疾患、アジソン病(Addison's disease)、自己免疫性溶血 性貧血、全身性エリスマトーデス、乾せん、リウマチ、中枢神経障害(例えば、 脳出血及び脳梗塞等の脳血管障害、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症 等)、神経変性疾患(例えば、アルツハイマー病、パーキンソン病、筋萎縮性側 索硬化症(ALS)、エイズ脳症)、髄膜炎、糖尿病、関節炎(例、慢性関節リ ウマチ、変形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎)、毒血症(例、敗血症、敗血症性ショック、内毒素性ショック、グラム陰性敗血症、トキシ ックショック症候群)、炎症性腸疾患(例、クローン病(Crohn's disease)、 潰瘍性大腸炎)、炎症性肺疾患(例、慢性肺炎、珪肺、肺サルコイドーシス、肺 結核)、あるいは悪液質(例、感染による悪液質、癌性悪液質、後天性免疫不全 症候群(エイズ)による悪液質)、動脈硬化症、クロイツフェルトーヤコブ病、 ウイルス感染(例、サイトメガロウイルス、インフルエンザウイルス、ヘルペス ウイルス等のウイルス感染)、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植 、透析低血圧、汎発性血管内凝固症候群などの疾病である、または将来罹患する 可能性が高いと診断することができる。

また、FPRL1の濃度の増加が検出された場合には、例えば、FPRL1の 過剰発現に起因する疾患である、または将来罹患する可能性が高いと診断するこ

[0074]

(5)本発明のFPRL1とFPRL1リガンドとの結合性またはシグナル伝達を変化させる化合物(アゴニスト、アンタゴニストなど)のスクリーニング方法、および本発明のFPRL1とFPRL1リガンドとの結合性またはシグナル伝達を変化させる化合物を含有する医薬

本発明のFPRL1を用いるか、または組換え型FPRL1の発現系を構築し、該発現系を用いたレセプター結合アッセイ系を用いることによって、FPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物(例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など)またはその塩を効率よくスクリーニングすることができる。

このような化合物には、(イ)FPRL1を介して細胞刺激活性を有する化合物(いわゆる、本発明のFPRL1に対するアゴニスト)、(ロ)FPRL1を介する細胞刺激活性を阻害する化合物(いわゆる、本発明のFPRL1に対するアンタゴニスト)、(ハ)FPRL1リガンドと本発明のFPRL1との結合力を増強する化合物、あるいは(二)FPRL1リガンドと本発明のFPRL1との結合力を減少させる化合物などが含まれる。

細胞刺激活性としては、例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内 C a ² +遊離、細胞内 c AMP生成、細胞内 c GMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c - f o s の活性化、p Hの低下などを促進する活性または抑制する活性などが挙げられ、なかでも細胞内 c AMP生成抑制活性が好ましい。

すなわち、本発明は、(i)本発明のFPRL1とFPRL1リガンドとを接触させた場合と(ii)本発明のFPRL1とFPRL1リガンドおよび試験化合物とを接触させた場合との比較を行なうことを特徴とするFPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明のスクリーニング方法においては、(i)と(ii)の場合における、例えば、FPRL1に対するFPRL1リガンドの結合量、細胞刺激活性などを測

FPRL1リガンドとしては、前記したFPRL1リガンドに代えて、FPR L1リガンドと本発明のFPRL1との結合性を変化させる化合物またはその塩 (例えば、低分子合成化合物、好ましくは低分子合成アゴニスト)を用いることができる。FPRL1リガンドと本発明のFPRL1との結合性を変化させる化合物またはその塩は、後述するスクリーニング方法を用いて得ることができる。本発明のスクリーニング方法においては、これらFPRL1リガンドと本発明の FPRL1との結合性を変化させる化合物またはその塩も含めてFPRL1リガンドと称する。

[0075]

より具体的には、本発明は、

- a) 標識したFPRL1リガンドを、本発明のFPRL1に接触させた場合と、標識したFPRL1リガンドおよび試験化合物を本発明のFPRL1に接触させた場合における、標識したFPRL1リガンドの該FPRL1に対する結合量を測定し、比較することを特徴とするFPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法、
- b) 標識したFPRL1リガンドを、本発明のFPRL1を含有する細胞または該細胞の膜画分に接触させた場合と、標識したFPRL1リガンドおよび試験化合物を本発明のFPRL1を含有する細胞または該細胞の膜画分に接触させた場合における、標識したFPRL1リガンドの該細胞または該膜画分に対する結合量を測定し、比較することを特徴とするFPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法、
- c) 標識したFPRL1リガンドを、本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現したFPRL1に接触させた場合と、標識したFPRL1リガンドおよび試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明のFPRL1に接触させた場合における、標識したFPRL1リガンドの該FPRL1に対する結合量を測

定し、比較することを特徴とするFPRL1リガンドと本発明のFPRL1との 結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方 法、

[0076]

- d) 本発明のFPRL1を活性化する化合物(例えば、本発明のFPRL1に対するFPRL1リガンドなど)を本発明のFPRL1を含有する細胞に接触させた場合と、本発明のFPRL1を活性化する化合物および試験化合物を本発明のFPRL1を含有する細胞に接触させた場合における、FPRL1を介した細胞刺激活性を測定し、比較することを特徴とするFPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法、および
- e) 本発明のFPRL1を活性化する化合物(例えば、本発明のFPRL1に対するFPRL1リガンドなど)を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明のFPRL1に接触させた場合と、本発明のFPRL1を活性化する化合物および試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明のFPRL1に接触させた場合における、レセプター蛋白質を介する細胞刺激活性を測定し、比較することを特徴とするFPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法を提供する。

[0077]

本発明のスクリーニング方法の具体的な説明を以下にする。

まず、本発明のスクリーニング方法に用いる本発明のFPRL1としては、上記した本発明のFPRL1を含有するものであれば何れのものであってもよいが、本発明のFPRL1を含有する哺乳動物の臓器の細胞膜画分が好適である。しかし、特にヒト由来の臓器は入手が極めて困難なことから、スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたヒト由来のFPRL1などが適している。

本発明のFPRL1を製造するには、上記の方法が用いられるが、本発明のD

NAを哺乳細胞や昆虫細胞で発現することにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片には相補DNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。本発明のFPRL1をコードするDNA断片を宿主動物細胞に導入し、それらを効率よく発現させるためには、該DNA断片を昆虫を宿主とするバキュロウイルスに属する核多角体病ウイルス(nuclear polyhedrosis virus; NPV)のポリヘドリンプロモーター、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SRaプロモーターなどの下流に組み込むのが好ましい。発現したレセプターの量と質の検査はそれ自体公知の方法で行うことができる。例えば、文献〔Nambi, P. ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(J. Biol. Chem.),267巻,19555~19559頁,1992年〕に記載の方法に従って行なうことができる。

したがって、本発明のスクリーニング方法において、本発明のFPRL1を含有するものとしては、それ自体公知の方法に従って精製したFPRL1であってもよいし、該FPRL1を含有する細胞を用いてもよく、また該FPRL1を含有する細胞の膜画分を用いてもよい。

[0078]

本発明のスクリーニング方法において、本発明のFPRL1を含有する細胞を 用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい 。固定化方法はそれ自体公知の方法に従って行なうことができる。

本発明のFPRL1を含有する細胞としては、該FPRL1を発現した宿主細胞をいうが、該宿主細胞としては、大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが好ましい。

細胞膜画分としては、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン(Kinematica社製)のよる破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられる。細

胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画 法が主として用いられる。例えば、細胞破砕液を低速(500~3000rpm)で短時間(通常、約1~10分)遠心し、上清をさらに高速(15000~3000rpm)で通常30分~2時間遠心し、得られる沈澱を膜画分とする。 該膜画分中には、発現したFPRL1と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

該FPRL1を含有する細胞や膜画分中のFPRL1の量は、1細胞当たり $10^3 \sim 10^8$ 分子であるのが好ましく、 $10^5 \sim 10^7$ 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

[0079]

FPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物をスクリーニングする上記のa) \sim c)を実施するためには、例えば、適当なFPRL1画分と、標識したFPRL1リガンドが必要である。

FPRL1画分としては、天然型のFPRL1画分か、またはそれと同等の活性を有する組換え型FPRL1画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性、シグナル情報伝達作用などを示す。

標識したFPRL1リガンドとしては、例えば $\begin{bmatrix} 3 & H \end{bmatrix}$ 、 $\begin{bmatrix} 1 & 2 & 5 & I \end{bmatrix}$ 、 $\begin{bmatrix} 1 & 4 & C \end{bmatrix}$ 、 $\begin{bmatrix} 3 & 5 & S \end{bmatrix}$ などで標識されたFPRL1リガンドなどが用いられる。

具体的には、FPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物のスクリーニングを行なうには、まず本発明のFPRL1を含有する細胞または細胞の膜画分を、スクリーニングに適したバッファーに懸濁することによりFPRL1標品を調製する。バッファーには、 $pH4\sim10$ (望ましくは $pH6\sim8$)のリン酸バッファー、トリスー塩酸バッファーなどのFPRL1リガンドとFPRL1との結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的で、CHAPS、Tween-80 (花王-アトラス社)、ジギトニン、デオキシコレートなどの界面活性剤をバッファーに加えることもできる。さらに、プロテアーゼによるレセ

プターやFPRL1リガンドの分解を抑える目的でPMSF、ロイペプチン、E-64(ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。 $0.01\,\mathrm{m}\,\mathrm{l}\sim 10\,\mathrm{m}\,\mathrm{l}$ の該レセプター蛋白質溶液に、一定量($5000\,\mathrm{c}\,\mathrm{p}\,\mathrm{m}\sim 50000\,\mathrm{c}\,\mathrm{p}\,\mathrm{m}$)の標識したFPRL1リガンドを添加し、同時に $10^{-4}\,\mathrm{M}\sim 10^{-10}\,\mathrm{M}$ の試験化合物を共存させる。非特異的結合量(NSB)を知るために大過剰の未標識のFPRL1リガンドを加えた反応チューブも用意する。反応は約 $0\sim 50\,\mathrm{C}$ 、望ましくは約 $4\sim 37\,\mathrm{C}$ で、約20分~24時間、望ましくは約30分~3時間行う。反応後、ガラス繊維濾紙等で濾過し、適量の同バッファーで洗浄した後、ガラス繊維濾紙に残存する放射活性を液体シンチレーションカウンターまたは γ ーカウンターで計測する。拮抗する物質がない場合のカウント(B $_0$) から非特異的結合量(NSB)を引いたカウント(B $_0$ -NSB)を100%とした時、特異的結合量(B-NSB)が、例えば、50%以下になる試験化合物を拮抗阻害能力のある候補物質として選択することができる。

[0080]

FPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物スクリーニングする上記のd) ~e) の方法を実施するためには、例えば、FPRL1を介する細胞刺激活性を公知の方法または市販の測定用キットを用いて測定することができる。

具体的には、まず、本発明のFPRL1を含有する細胞をマルチウェルプレート等に培養する。スクリーニングを行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質(例えば、アラキドン酸、cAMPなど)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、cAMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。

試験化合物としては、例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが用いられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい

また、試験化合物としては、本発明のFPRL1の活性部位の原子座標および リガンド結合ポケットの位置に基づいて、リガンド結合ポケットに結合するよう に設計された化合物が好ましく用いられる。本発明のFPRL1の活性部位の原 子座標およびリガンド結合ポケットの位置の測定は、公知の方法あるいはそれに 準じる方法を用いて行うことができる。

[0081]

FPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング用キットは、本発明のFPRL1、本発明のFPRL1を含有する細胞、または本発明のFPRL1を含有する細胞の膜画分を含有するものなどである。

本発明のスクリーニング用キットの例としては、次のものが挙げられる。

- 1. スクリーニング用試薬
- a) 測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

孔径0.45μmのフィルターで濾過滅菌し、4℃で保存するか、あるいは用時調製しても良い。

b) FPRL1標品

本発明のFPRL1を発現させたCHO細胞を、12穴プレートに5×10⁵個/穴で継代し、37℃、5%CO₂、95%airで2日間培養したもの。

c)標識FPRL1リガンド

市販の[3H]、[125I]、[14C]、[35S]などで標識したFPRL1リガンド

水溶液の状態のものを4℃あるいは−20℃にて保存し、用時に測定用緩衝液にて1μMに希釈する。

d) FPRL1リガンド標準液

FPRL1リガンドを0.1%ウシ血清アルブミン(シグマ社製)を含む PB Sで1mMとなるように溶解し、-20で保存する。

[0082]

- 2. 測定法
- a) 12穴組織培養用プレートにて培養した本発明のFPRL1発現CHO細胞を、測定用緩衝液1mlで2回洗浄した後、490μlの測定用緩衝液を各穴に加える。
- b) $10^{-3} \sim 10^{-10}$ Mの試験化合物溶液を 5μ 1加えた後、標識FPR L1リガンドを 5μ 1加え、室温にて1時間反応させる。非特異的結合量を知るためには試験化合物の代わりに 10^{-3} MのFPRL1リガンドを 5μ 1加えておく。
- c) 反応液を除去し、1mlの洗浄用緩衝液で3回洗浄する。細胞に結合した標識FPRL1リガンドを0.2N NaOH-1%SDSで溶解し、4mlの液体シンチレーターA (和光純薬製) と混合する。
- d) 液体シンチレーションカウンター(ベックマン社製)を用いて放射活性を 測定し、Percent Maximum Binding (PMB)を次の式で求める。

 $PMB = [(B-NSB) / (B_0-NSB)] \times 100$

PMB: Percent Maximum Binding

B :検体を加えた時の値

NSB:Non-specific Binding (非特異的結合量)

B₀ :最大結合量

[0083]

FPRL1に対するアゴニストであるかアンタゴニストであるかの具体的な評価方法は以下の(i)または(ii)に従えばよい。

- (i)前記a)~c)のスクリーニング方法で示されるバインディング・アッセイを行い、FPRL1リガンドと本発明のFPRL1との結合性を変化させる(特に、結合を阻害する)化合物を得た後、該化合物が上記した細胞刺激活性を有しているか否かを測定する。細胞刺激活性を有する化合物またはその塩は本発明のFPRL1に対するアゴニストであり、該活性を有しない化合物またはその塩は本発明のFPRL1に対するアンタゴニストである。
- (ii) (a)試験化合物を本発明のFPRL1を含有する細胞に接触させ、上記した細胞刺激活性を測定する。細胞刺激活性を有する化合物またはその塩は本発明のFPRL1に対するアゴニストである。
 - (b)本発明のFPRL1を活性化する化合物(例えば、リガンド)を本発明のFPRL1を含有する細胞に接触させた場合と、本発明のFPRL1を活性化する化合物および試験化合物を本発明のFPRL1を含有する細胞に接触させた場合における、本発明のFPRL1を介した細胞刺激活性を測定し、比較する。本発明のFPRL1を活性化する化合物による細胞刺激活性を減少させ得る化合物またはその塩は本発明のFPRL1に対するアンタゴニストである。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、FPRL1リガンドと本発明のFPRL1との結合性またはシグナル伝達を変化させる作用を有する化合物であり、具体的には、(イ)レセプターを介して細胞刺激活性を有する化合物(いわゆる、本発明のFPRL1に対するアゴニスト)、(ロ)該細胞刺激活性を有しない化合物(いわゆる、本発明のFPRL1に対するアンタゴニスト)、(ハ)FPRL1リガンドと本発明のFPRL1との結合力を増強する化合物、あるいは(ニ)FPRL1リガンドと本発明のFPRL1との結合力を対少させる化合物である。

該化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

本発明のFPRL1に対するアゴニストは、FPRL1リガンドが有する生理 活性と同様の作用を有しているので、FPRL1リガンドが有する生理活性に応 じて安全で低毒性な医薬として有用である。 本発明のFPRL1に対するアンタゴニストは、FPRL1リガンドが有する 生理活性を抑制することができるので、FPRL1リガンドの生理活性を抑制す るための安全で低毒性な医薬として有用である。

FPRL1リガンドと本発明のFPRL1との結合力を増強する化合物は、FPRL1リガンドが有する生理活性を増強するための安全で低毒性な医薬として有用である。

[0084]

FPRL1リガンドと本発明のFPRL1との結合力を減少させる化合物は、 FPRL1リガンドが有する生理活性を減少させるためのFPRL1リガンドの 生理活性を抑制するための安全で低毒性な医薬として有用である。

具体的には、本発明のスクリーニング方法またはスクリーニング用キットを用 いて得られる化合物またはその塩、特にアゴニストまたはFPRL1リガンドと 本発明のFPRL1との結合力を増強する化合物またはその塩は、例えば、抗炎 症剤として、さらには、例えば喘息、アレルギー疾患、炎症、炎症性眼疾患、ア ジソン病(Addison's disease)、自己免疫性溶血性貧血、全身性エリスマトー デス、乾せん、リウマチ、中枢神経障害(例えば、脳出血及び脳梗塞等の脳血管 障害、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症等)、神経変性疾患(例えば 、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ 脳症)、髄膜炎、糖尿病、関節炎(例、慢性関節リウマチ、変形性関節症、リウ マチ様脊椎炎、痛風性関節炎、滑膜炎)、毒血症(例、敗血症、敗血症性ショッ ク、内毒素性ショック、グラム陰性敗血症、トキシックショック症候群)、炎症 性腸疾患(例、クローン病(Crohn's disease)、潰瘍性大腸炎)、炎症性肺疾 患(例、慢性肺炎、珪肺、肺サルコイドーシス、肺結核)、あるいは悪液質(例 、感染による悪液質、癌性悪液質、後天性免疫不全症候群(エイズ)による悪液 質)、動脈硬化症、クロイツフェルトーヤコプ病、ウイルス感染(例、サイトメ ガロウイルス、インフルエンザウイルス、ヘルペスウイルス等のウイルス感染) 、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内 凝固症候群の予防・治療剤として、低毒性で安全な医薬として使用することがで きる。

[0085]

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる 化合物またはその塩を上記の医薬組成物として使用する場合、常套手段に従って 製剤化することができる。

例えば、該化合物は、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物を生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、Dーソルビトール、Dーマンニトール、塩化ナトリウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリ

コール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

[0086]

また、上記予防・治療剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物 (例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど) に対して投与することができる。

該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、炎症患者(体重60kgとして)においては、一日につき約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、炎症患者(体重60kgとして)においては、一日につき約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

[0087]

(6) 細胞膜における本発明のFPRL1またはその部分ペプチドの量を変化させる化合物を含有する医薬

本発明の抗体は、本発明のFPRL1を特異的に認識することができるので、 細胞膜における本発明のFPRL1の量を変化させる化合物のスクリーニングに 用いることができる。

- (i) 非ヒト哺乳動物のa) 血液、b) 特定の臓器、c) 臓器から単離した組織 もしくは細胞等を破壊した後、細胞膜画分を単離し、細胞膜画分に含まれる本発 明のFPRL1を定量することによる、細胞膜における本発明のFPRL1の量 を変化させる化合物のスクリーニング方法、
- (ii) 本発明のFPRL1を発現する形質転換体等を破壊した後、細胞膜画分を単離し、細胞膜画分に含まれる本発明のFPRL1を定量することによる、細胞膜における本発明のFPRL1の量を変化させる化合物のスクリーニング方法
- (iii) 非ヒト哺乳動物のa)血液、b)特定の臓器、c)臓器から単離した組織もしくは細胞等を切片とした後、免疫染色法を用いることにより、細胞表層での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することによる、細胞膜における本発明のFPRL1の量を変化させる化合物のスクリーニング方法を提供する。
- (iv) 本発明のFPRL1を発現する形質転換体等を切片とした後、免疫染色法を用いることにより、細胞表層での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することによる、細胞膜における本発明のFPRL1の量を変化させる化合物のスクリーニング方法を提供する。

[0088]

細胞膜画分に含まれる本発明のFPRL1の定量は具体的には以下のようにして行なう。

(i) 正常あるいは疾患モデル非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的にはアルツハイマー病モデルラット、マウス、ウサギなど)に対して、薬剤(例えば、免疫調節薬など)あるいは物理的ストレス(例えば、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えば、脳、肝臓、腎臓など)、または臓器から単離した組織、あるいは細胞を得る。得られた臓器、組織または細胞等を、例えば、適当な緩衝液(例えば、トリス塩酸緩衝液、リン酸緩衝液、ヘペス緩衝液など)等に懸濁し、臓器、組織あ

るいは細胞を破壊し、界面活性剤(例えば、トリトンX100TM、ツイーン20TMなど)などを用い、さらに遠心分離や濾過、カラム分画などの手法を用いて細胞膜画分を得る。

細胞膜画分としては、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン(Kinematica社製)のよる破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500~3000rpm)で短時間(通常、約1~10分)遠心し、上清をさらに高速(15000~3000rpm)で通常30分~2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、発現したFPRL1と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

細胞膜画分に含まれる本発明のFPRL1は、例えば、本発明の抗体を用いたサンドイッチ免疫測定法、ウエスタンブロット解析などにより定量することができる。

かかるサンドイッチ免疫測定法は上記の方法と同様にして行なうことができ、 ウエスタンプロットは自体公知の手段により行なうことができる。

(ii) 本発明のFPRL1を発現する形質転換体を上記の方法に従い作製し、 細胞膜画分に含まれる本発明のFPRL1を定量することができる。

[0089]

細胞膜における本発明のFPRL1の量を変化させる化合物のスクリーニングは、

(i) 正常あるいは疾患モデル非ヒト哺乳動物に対して、薬剤あるいは物理的ストレスなどを与える一定時間前(30分前~24時間前、好ましくは30分前~12時間前、より好ましくは1時間前~6時間前)もしくは一定時間後(30分後~3日後、好ましくは1時間後~2日後、より好ましくは1時間後~24時間後)、または薬剤あるいは物理的ストレスと同時に被検化合物を投与し、投与

後一定時間経過後(30分~3日後、好ましくは1時間~2日後、より好ましくは1時間~24時間後)、細胞膜における本発明のFPRL1の量を定量することにより行なうことができ、

(ii) 形質転換体を常法に従い培養する際に被検化合物を培地中に混合させ、 一定時間培養後(1日~7日後、好ましくは1日~3日後、より好ましくは2日 ~3日後)、細胞膜における本発明のFPRL1の量を定量することにより行な うことができる。

細胞膜画分に含まれる本発明のFPRL1の確認は具体的には以下のようにして行なう。

- (iii) 正常あるいは疾患モデル非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的にはアルツハイマー病モデルラット、マウス、ウサギなど)に対して、薬剤(例えば、免疫調節薬など)あるいは物理的ストレス(例えば、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えば、脳、肝臓、腎臓など)、または臓器から単離した組織、あるいは細胞を得る。得られた臓器、組織または細胞等を、常法に従い組織切片とし、本発明の抗体を用いて免疫染色を行う。細胞表層での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することにより、定量的または定性的に、細胞膜における本発明のFPRL1の量を確認することができる。
- (iv) 本発明のFPRL1を発現する形質転換体等を用いて同様の手段をとることにより確認することもできる。

[0090]

本発明のスクリーニング方法を用いて得られる化合物またはその塩は、細胞膜における本発明のFPRL1の量を変化させる作用を有する化合物であり、具体的には、(イ)細胞膜における本発明のFPRL1の量を増加させることにより、FPRL1を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内 Ca^2 +遊離、細胞内CAMP生成、細胞内CAMP生成抑制、細胞内CGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、C-fosの活性化、DHO低下などを促進する活性または抑制す

る活性など)を増強させる化合物、(ロ)細胞膜における本発明のFPRL1の量を減少させることにより、該細胞刺激活性を減弱させる化合物である。

該化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

細胞膜における本発明のFPRL1の量を増加させることにより、細胞刺激活 性を増強させる化合物は、本発明のFPRL1の機能不全に関連する疾患の予防 および/または治療剤などの医薬として使用することができる。具体的には、該 化合物は、例えば、抗炎症剤として、さらには、喘息、アレルギー疾患、炎症、 炎症性眼疾患、アジソン病(Addison's disease)、自己免疫性溶血性貧血、全 身性エリスマトーデス、乾せん、リウマチ、中枢神経障害(例えば、脳出血及び 脳梗塞等の脳血管障害、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症等)、神経 変性疾患(例えば、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症)、髄膜炎、糖尿病、関節炎(例、慢性関節リウマチ、変 形性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎)、毒血症(例、敗血症 、敗血症性ショック、内毒素性ショック、グラム陰性敗血症、トキシックショッ ク症候群)、炎症性腸疾患(例、クローン病(Crohn's disease)、潰瘍性大腸 炎)、炎症性肺疾患(例、慢性肺炎、珪肺、肺サルコイドーシス、肺結核)、あ るいは悪液質(例、感染による悪液質、癌性悪液質、後天性免疫不全症候群(エ イズ)による悪液質)、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感 染(例、サイトメガロウイルス、インフルエンザウイルス、ヘルペスウイルス等 のウイルス感染)、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血 圧、汎発性血管内凝固症候群の予防・治療剤として、低毒性で安全な医薬として 使用することができる。

細胞膜における本発明のFPRL1の量を減少させることにより、細胞刺激活性を減弱させる化合物は、本発明のFPRL1の発現過多に起因する疾患に対する安全で低毒性な予防・治療剤として有用である。

本発明のスクリーニング方法を用いて得られる化合物またはその塩を医薬組成物として使用する場合、常套手段に従って製剤化することができる。

例えば、該化合物は、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物を生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

[0091]

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラ チン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セル ロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨 化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリ ンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤な どが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料に さらに油脂のような液状担体を含有することができる。注射のための無菌組成物 は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産 出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方するこ とができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他 の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナ トリウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、 エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリ コール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用い られ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用して もよい。

また、上記予防・治療剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物 (例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど) に対して投与することができる。

該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、炎症患者(体重60kgとして)においては、一日につき約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、炎症患者(体重60kgとして)においては、一日につき約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

[0092]

(7)本発明のFPRL1に対する抗体を含有してなる医薬

本発明のFPRL1に対する抗体の中和活性とは、該FPRL1の関与するシグナル伝達機能を不活性化する活性を意味する。従って、該抗体が中和活性を有する場合は、該FPRL1の関与するシグナル伝達、例えば、該FPRL1を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²+遊離、細胞内cAMP生成、細胞内cAMP生成抑制、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、cーfosの活性化、pHの低下などを促進する活性または抑制する活性など)を不活性化することができる。

したがって、本発明のFPRL1に対する中和抗体は、FPRL1の過剰発現やFPRL1リガンド過多などに起因する疾患の予防・治療剤として用いることができる。

上記予防・治療剤は、前記した本発明のFPRL1を含有する医薬と同様にし

[0093]

(8) 本発明のアンチセンスDNAを含有してなる医薬

本発明のアンチセンスDNAは、FPRL1の過剰発現やFPRL1リガンド 過多などに起因する疾患の予防・治療剤として用いることができる。

例えば、該アンチセンスDNAを用いる場合、該アンチセンスDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。該アンチセンスDNAは、そのままで、あるいは摂取促進のために補助剤などの生理学的に認められる担体とともに製剤化し、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与できる。

さらに、該アンチセンスDNAは、組織や細胞における本発明のDNAの存在 やその発現状況を調べるための診断用オリゴヌクレオチドプローブとして使用す ることもできる。

[0094]

(9) 本発明のDNA導入動物の作製

本発明は、外来性の本発明のDNA(以下、本発明の外来性DNAと略記する)またはその変異DNA(本発明の外来性変異DNAと略記する場合がある)を有する非ヒト哺乳動物を提供する。

すなわち、本発明は、

- [1] 本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物、
- [2] 非ヒト哺乳動物がゲッ歯動物である第〔1〕記載の動物、
- [3] ゲッ歯動物がマウスまたはラットである第〔2〕記載の動物、および
- 〔4〕本発明の外来性DNAまたはその変異DNAを含有し、哺乳動物において 発現しうる組換えベクターを提供するものである。

本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物(以下、本発明のDNA転移動物と略記する)は、未受精卵、受精卵、精子およびその始原細胞を含む胚芽細胞などに対して、好ましくは、非ヒト哺乳動物の発生における胚発生の段階(さらに好ましくは、単細胞または受精卵細胞の段階でかつ一般

に8細胞期以前)に、リン酸カルシウム法、電気パルス法、リポフェクション法、凝集法、マイクロインジェクション法、パーティクルガン法、DEAEーデキストラン法などにより目的とするDNAを転移することによって作出することができる。また、該DNA転移方法により、体細胞、生体の臓器、組織細胞などに目的とする本発明の外来性DNAを転移し、細胞培養、組織培養などに利用することもでき、さらに、これら細胞を上述の胚芽細胞と自体公知の細胞融合法により融合させることにより本発明のDNA転移動物を作出することもできる。

非ヒト哺乳動物としては、例えば、ウシ、ブタ、ヒツジ、ヤギ、ウサギ、イヌ、ネコ、モルモット、ハムスター、マウス、ラットなどが用いられる。なかでも、病体動物モデル系の作成の面から個体発生および生物サイクルが比較的短く、また、繁殖が容易なゲッ歯動物、とりわけマウス(例えば、純系として、C57 BL/6系統,DBA2系統など、交雑系として、B6C3F1系統,BDF1系統,B6D2F1系統,BALB/c系統,ICR系統など)またはラット(例えば、Wistar, SDなど)などが好ましい。

哺乳動物において発現しうる組換えベクターにおける「哺乳動物」としては、 上記の非ヒト哺乳動物の他にヒトなどがあげられる。

[0095]

本発明の外来性DNAとは、非ヒト哺乳動物が本来有している本発明のDNAではなく、いったん哺乳動物から単離・抽出された本発明のDNAをいう。

本発明の変異DNAとしては、元の本発明のDNAの塩基配列に変異(例えば、突然変異など)が生じたもの、具体的には、塩基の付加、欠損、他の塩基への置換などが生じたDNAなどが用いられ、また、異常DNAも含まれる。

該異常DNAとしては、異常な本発明のFPRL1を発現させるDNAを意味 し、例えば、正常な本発明のFPRL1の機能を抑制するFPRL1を発現させ るDNAなどが用いられる。

本発明の外来性DNAは、対象とする動物と同種あるいは異種のどちらの哺乳動物由来のものであってもよい。本発明のDNAを対象動物に転移させるにあたっては、該DNAを動物細胞で発現させうるプロモーターの下流に結合したDNAコンストラクトとして用いるのが一般に有利である。例えば、本発明のヒトD

NAを転移させる場合、これと相同性が高い本発明のDNAを有する各種哺乳動物 (例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど) 由来のDNAを発現させうる各種プロモーターの下流に、本発明のヒトDN Aを結合したDNAコンストラクト (例、ベクターなど)を対象哺乳動物の受精卵、例えば、マウス受精卵へマイクロインジェクションすることによって本発明のDNAを高発現するDNA転移哺乳動物を作出することができる。

[0096]

本発明のFPRL1の発現ベクターとしては、大腸菌由来のプラスミド、枯草 菌由来のプラスミド、酵母由来のプラスミド、λファージなどのバクテリオファ ージ、モロニー白血病ウイルスなどのレトロウイルス、ワクシニアウイルスまた はバキュロウイルスなどの動物ウイルスなどが用いられる。なかでも、大腸菌由 来のプラスミド、枯草菌由来のプラスミドまたは酵母由来のプラスミドなどが好 ましく用いられる。

上記のDNA発現調節を行なうプロモーターとしては、例えば、①ウイルス(例、シミアンウイルス、サイトメガロウイルス、モロニー白血病ウイルス、JC ウイルス、乳癌ウイルス、ポリオウイルスなど)に由来するDNAのプロモータ ー、②各種哺乳動物(ヒト、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラ ット、マウスなど)由来のプロモーター、例えば、アルプミン、インスリンII 、ウロプラキンII、エラスターゼ、エリスロポエチン、エンドセリン、筋クレ アチンキナーゼ、グリア線維性酸性タンパク質、グルタチオンSートランスフェ ラーゼ、血小板由来成長因子eta、ケラチンK1,K10およびK14、コラーゲ ンΙ型およびΙΙ型、サイクリックΑΜΡ依存タンパク質キナーゼβΙサブユニ ット、ジストロフィン、酒石酸抵抗性アルカリフォスファターゼ、心房ナトリウ ム利尿性因子、内皮レセプターチロシンキナーゼ(一般にTie 2と略される) 、ナトリウムカリウムアデノシン3リン酸化酵素(Na,K-ATPase)、 ニューロフィラメント軽鎖、メタロチオネインIおよびIIA、メタロプロティ ナーゼ1組織インヒビター、MHCクラスI抗原(H-2L)、H-ras、レ ニン、ドーパミンβー水酸化酵素、甲状腺ペルオキシダーゼ(TPO)、ペプチ ド鎖延長因子 1α (EF -1α)、 β アクチン、 α および β ミオシン重鎖、ミオ

シン軽鎖 1 および 2 、ミエリン基礎タンパク質、チログロブリン、Thy-1、免疫グロブリン、H鎖可変部(VNP)、血清アミロイドPコンポーネント、ミオグロビン、トロポニンC、平滑筋 α アクチン、プレプロエンケファリンA、バソプレシンなどのプロモーターなどが用いられる。なかでも、全身で高発現することが可能なサイトメガロウイルスプロモーター、ヒトペプチド鎖延長因子 1 α (EF-1 α)のプロモーター、ヒトおよびニワトリ β アクチンプロモーターなどが好適である。

上記ベクターは、DNA転移哺乳動物において目的とするメッセンジャーRNAの転写を終結する配列(一般にターミネーターと呼ばれる)を有していることが好ましく、例えば、ウイルス由来および各種哺乳動物由来の各DNAの配列を用いることができ、好ましくは、シミアンウイルスのSV40ターミネーターなどが用いられる。

[0097]

その他、目的とする外来性DNAをさらに高発現させる目的で各DNAのスプライシングシグナル、エンハンサー領域、真核DNAのイントロンの一部などをプロモーター領域の5¹ 上流、プロモーター領域と翻訳領域間あるいは翻訳領域の3¹ 下流 に連結することも目的により可能である。

正常な本発明のFPRL1の翻訳領域は、ヒトまたは各種哺乳動物(例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来の肝臓、腎臓、甲状腺細胞、線維芽細胞由来DNAおよび市販の各種ゲノムDNAライブラリーよりゲノムDNAの全であるいは一部として、または肝臓、腎臓、甲状腺細胞、線維芽細胞由来RNAより公知の方法により調製された相補DNAを原料として取得することが出来る。また、外来性の異常DNAは、上記の細胞または組織より得られた正常なFPRL1の翻訳領域を点突然変異誘発法により変異した翻訳領域を作製することができる。

該翻訳領域は転移動物において発現しうるDNAコンストラクトとして、前記のプロモーターの下流および所望により転写終結部位の上流に連結させる通常のDNA工学的手法により作製することができる。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽

本発明の外来性正常DNAを転移させた非ヒト哺乳動物は、交配により外来性 DNAを安定に保持することを確認して、該DNA保有動物として通常の飼育環 境で継代飼育することが出来る。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに過剰に存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の外来性DNAが過剰に存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有する

導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを過剰に有するように繁殖継代することができる。

[0098]

本発明の正常DNAを有する非ヒト哺乳動物は、本発明の正常DNAが高発現させられており、内在性の正常DNAの機能を促進することにより最終的に本発明のFPRL1の機能亢進症を発症することがあり、その病態モデル動物として利用することができる。例えば、本発明の正常DNA転移動物を用いて、本発明のFPRL1の機能亢進症や、本発明のFPRL1が関連する疾患の病態機序の解明およびこれらの疾患の治療方法の検討を行なうことが可能である。

また、本発明の外来性正常DNAを転移させた哺乳動物は、本発明のFPRL 1の増加症状を有することから、本発明のFPRL1に関連する疾患に対する治療薬のスクリーニング試験にも利用可能である。

一方、本発明の外来性異常DNAを有する非ヒト哺乳動物は、交配により外来

性DNAを安定に保持することを確認して該DNA保有動物として通常の飼育環境で継代飼育することが出来る。さらに、目的とする外来DNAを前述のプラスミドに組み込んで原料として用いることができる。プロモーターとのDNAコンストラクトは、通常のDNA工学的手法によって作製することができる。受精卵細胞段階における本発明の異常DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の異常DNAが存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の異常DNAを有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫は、その胚芽細胞および体細胞の全てに本発明の異常DNAを有する。導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを有するように繁殖継代することができる。

[0099]

本発明の異常DNAを有する非ヒト哺乳動物は、本発明の異常DNAが高発現させられており、内在性の正常DNAの機能を阻害することにより最終的に本発明のFPRL1の機能不活性型不応症となることがあり、その病態モデル動物として利用することができる。例えば、本発明の異常DNA転移動物を用いて、本発明のFPRL1の機能不活性型不応症の病態機序の解明およびこの疾患を治療方法の検討を行なうことが可能である。

また、具体的な利用可能性としては、本発明の異常DNA高発現動物は、本発明のFPRL1の機能不活性型不応症における本発明の異常FPRL1による正常FPRL1の機能阻害 (dominant negative作用) を解明するモデルとなる。

また、本発明の外来異常DNAを転移させた哺乳動物は、本発明のFPRL1 の増加症状を有することから、本発明のFPRL1またはの機能不活性型不応症 に対する治療薬スクリーニング試験にも利用可能である。

また、上記2種類の本発明のDNA転移動物のその他の利用可能性として、例 えば、

- ①組織培養のための細胞源としての使用、
- ②本発明のDNA転移動物の組織中のDNAもしくはRNAを直接分析するか、

- ③DNAを有する組織の細胞を標準組織培養技術により培養し、これらを使用して、一般に培養困難な組織からの細胞の機能の研究、
- ④上記③記載の細胞を用いることによる細胞の機能を高めるような薬剤のスクリーニング、および
- ⑤本発明の変異FPRL1を単離精製およびその抗体作製などが考えられる。

[0100]

さらに、本発明のDNA転移動物を用いて、本発明のFPRL1の機能不活性型不応症などを含む、本発明のFPRL1に関連する疾患の臨床症状を調べることができ、また、本発明のFPRL1に関連する疾患モデルの各臓器におけるより詳細な病理学的所見が得られ、新しい治療方法の開発、さらには、該疾患による二次的疾患の研究および治療に貢献することができる。

また、本発明のDNA転移動物から各臓器を取り出し、細切後、トリプシンなどの蛋白質分解酵素により、遊離したDNA転移細胞の取得、その培養またはその培養細胞の系統化を行なうことが可能である。さらに、本発明のFPRL1産生細胞の特定化、アポトーシス、分化あるいは増殖との関連性、またはそれらにおけるシグナル伝達機構を調べ、それらの異常を調べることなどができ、本発明のFPRL1およびその作用解明のための有効な研究材料となる。

さらに、本発明のDNA転移動物を用いて、本発明のFPRL1の機能不活性型不応症を含む、本発明のFPRL1に関連する疾患の治療薬の開発を行なうために、上述の検査法および定量法などを用いて、有効で迅速な該疾患治療薬のスクリーニング法を提供することが可能となる。また、本発明のDNA転移動物または本発明の外来性DNA発現ベクターを用いて、本発明のFPRL1が関連する疾患のDNA治療法を検討、開発することが可能である。

[0101]

(10)ノックアウト動物

本発明は、本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞および本

発明のDNA発現不全非ヒト哺乳動物を提供する。

すなわち、本発明は、

- [1] 本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞、
- [2] 該DNAがレポーター遺伝子(例、大腸菌由来の β -ガラクトシダーゼ遺伝子)を導入することにより不活性化された第[1] 項記載の胚幹細胞、
 - [3] ネオマイシン耐性である第[1] 項記載の胚幹細胞、
 - [4] 非ヒト哺乳動物がゲッ歯動物である第[1] 項記載の胚幹細胞、
 - 〔5〕ゲッ歯動物がマウスである第〔4〕項記載の胚幹細胞、
 - [6] 本発明のDNAが不活性化された該DNA発現不全非ヒト哺乳動物、
- 〔7〕該DNAがレポーター遺伝子(例、大腸菌由来のβーガラクトシダーゼ遺伝子)を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうる第〔6〕項記載の非ヒト哺乳動物
- [8] 非ヒト哺乳動物がゲッ歯動物である第[6] 項記載の非ヒト哺乳動物、
- [9]ゲッ歯動物がマウスである第[8]項記載の非ヒト哺乳動物、および
- [10] 第[7] 項記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞とは、該非ヒト哺乳動物が有する本発明のDNAに人為的に変異を加えることにより、DNAの発現能を抑制するか、もしくは該DNAがコードしている本発明のFPRL1の活性を実質的に喪失させることにより、DNAが実質的に本発明のFPRL1の発現能を有さない(以下、本発明のノックアウトDNAと称することがある)非ヒト哺乳動物の胚幹細胞(以下、ES細胞と略記する)をいう。

非ヒト哺乳動物としては、前記と同様のものが用いられる。

本発明のDNAに人為的に変異を加える方法としては、例えば、遺伝子工学的 手法により該DNA配列の一部又は全部の削除、他DNAを挿入または置換させ ることによって行なうことができる。これらの変異により、例えば、コドンの読 み取り枠をずらしたり、プロモーターあるいはエキソンの機能を破壊することに

[0102]

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞(以下、本発明のD NA不活性化ES細胞または本発明のノックアウトES細胞と略記する)の具体 例としては、例えば、目的とする非ヒト哺乳動物が有する本発明のDNAを単離 し、そのエキソン部分にネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子 を代表とする薬剤耐性遺伝子、あるいは 1 a c Z (βーガラクトシダーゼ遺伝子)、cat(クロラムフェニコールアセチルトランスフェラーゼ遺伝子)を代表 」とするレポーター遺伝子等を挿入することによりエキソンの機能を破壊するか、 あるいはエキソン間のイントロン部分に遺伝子の転写を終結させるDNA配列(例えば、polyA付加シグナルなど)を挿入し、完全なメッセンジャーRNAを合 成できなくすることによって、結果的に遺伝子を破壊するように構築したDNA 配列を有するDNA鎖(以下、ターゲッティングベクターと略記する)を、例え ば相同組換え法により該動物の染色体に導入し、得られたES細胞について本発 明のDNA上あるいはその近傍のDNA配列をプローブとしたサザンハイブリダ イゼーション解析あるいはターゲッティングベクター上のDNA配列とターゲッ ティングベクター作製に使用した本発明のDNA以外の近傍領域のDNA配列を プライマーとしたPCR法により解析し、本発明のノックアウトES細胞を選別 することにより得ることができる。

また、相同組換え法等により本発明のDNAを不活化させる元のES細胞としては、例えば、前述のような既に樹立されたものを用いてもよく、また公知 EvansとKaufmaの方法に準じて新しく樹立したものでもよい。例えば、マウスのES細胞の場合、現在、一般的には129系のES細胞が使用されているが、免疫学的背景がはっきりしていないので、これに代わる純系で免疫学的に遺伝的背景が明らかなES細胞を取得するなどの目的で例えば、C57BL/6マウスやC57BL/6の採卵数の少なさをDBA/2との交雑により改善したBDF1マウス(C57BL/6とDBA/2とのF1)を用いて樹立したものなども良好に用いうる。BDF1マウスは、採卵数が多く、かつ、卵が丈夫であるという利点に加えて、C57BL/6マウスを背景に持つので、これを用いて得られたES

細胞は病態モデルマウスを作出したとき、C57BL/6マウスとバッククロスすることでその遺伝的背景をC57BL/6マウスに代えることが可能である点で有利に用い得る。

また、ES細胞を樹立する場合、一般には受精後3.5日目の胚盤胞を使用するが、これ以外に8細胞期胚を採卵し胚盤胞まで培養して用いることにより効率よく多数の初期胚を取得することができる。

また、雌雄いずれのES細胞を用いてもよいが、通常雄のES細胞の方が生殖 系列キメラを作出するのに都合が良い。また、煩雑な培養の手間を削減するため にもできるだけ早く雌雄の判別を行なうことが望ましい。

[0103]

ES細胞の雌雄の判定方法としては、例えば、PCR法によりY染色体上の性決定領域の遺伝子を増幅、検出する方法が、その1例としてあげることができる。この方法を使用すれば、従来、核型分析をするのに約106個の細胞数を要していたのに対して、1コロニー程度のES細胞数(約50個)で済むので、培養初期におけるES細胞の第一次セレクションを雌雄の判別で行なうことが可能であり、早期に雄細胞の選定を可能にしたことにより培養初期の手間は大幅に削減できる。

また、第二次セレクションとしては、例えば、Gーバンディング法による染色体数の確認等により行うことができる。得られるES細胞の染色体数は正常数の100%が望ましいが、樹立の際の物理的操作等の関係上困難な場合は、ES細胞の遺伝子をノックアウトした後、正常細胞(例えば、マウスでは染色体数が2n=40である細胞)に再びクローニングすることが望ましい。

このようにして得られた胚幹細胞株は、通常その増殖性は大変良いが、個体発生できる能力を失いやすいので、注意深く継代培養することが必要である。例えば、STO繊維芽細胞のような適当なフィーダー細胞上でLIF(1~10000/ml)存在下に炭酸ガス培養器内(好ましくは、5%炭酸ガス、95%空気または5%酸素、5%炭酸ガス、90%空気)で約37℃で培養するなどの方法で培養し、継代時には、例えば、トリプシン/EDTA溶液(通常0.001~0.5%トリプシン/0.1~5mM EDTA、好ましくは約0.1%トリプシン/

ES細胞は、適当な条件により、高密度に至るまで単層培養するか、または細胞集塊を形成するまで浮遊培養することにより、頭頂筋、内臓筋、心筋などの種々のタイプの細胞に分化させることが可能であり [M. J. Evans及びM. H. Kaufman, ネイチャー (Nature) 第292巻、154頁、1981年; G. R. Martin プロシーディングス・オブ・ナショナル・アカデミー・オブ・サイエンス・ユーエスエー (Proc. Natl. Acad. Sci. U.S.A.) 第78巻、7634頁、1981年; T. C. Doetschmanら、ジャーナル・オブ・エンブリオロジー・アンド・エクスペリメンタル・モルフォロジー、第87巻、27頁、1985年〕、本発明のES細胞を分化させて得られる本発明のDNA発現不全細胞は、インビトロにおける本発明のFPRL1または本発明のFPRL1の細胞生物学的検討において有用である。

[0104]

本発明のDNA発現不全非ヒト哺乳動物は、該動物のmRNA量を公知方法を 用いて測定して間接的にその発現量を比較することにより、正常動物と区別する ことが可能である。

該非ヒト哺乳動物としては、前記と同様のものが用いられる。

本発明のDNA発現不全非ヒト哺乳動物は、例えば、前述のようにして作製したターゲッティングベクターをマウス胚幹細胞またはマウス卵細胞に導入し、導入によりターゲッティングベクターの本発明のDNAが不活性化されたDNA配列が遺伝子相同組換えにより、マウス胚幹細胞またはマウス卵細胞の染色体上の本発明のDNAと入れ換わる相同組換えをさせることにより、本発明のDNAをノックアウトさせることができる。

本発明のDNAがノックアウトされた細胞は、本発明のDNA上またはその近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析またはターゲッティングベクター上のDNA配列と、ターゲッティングベクターに使用したマウス由来の本発明のDNA以外の近傍領域のDNA配列とをプライマーとした

該キメラ動物の生殖細胞の一部が変異した本発明のDNA座をもつ場合、このようなキメラ個体と正常個体を交配することにより得られた個体群より、全ての組織が人為的に変異を加えた本発明のDNA座をもつ細胞で構成された個体を、例えば、コートカラーの判定等により選別することにより得られる。このようにして得られた個体は、通常、本発明のFPRL1のヘテロ発現不全個体であり、本発明のFPRL1のヘテロ発現不全個体同志を交配し、それらの産仔から本発明のFPRL1のホモ発現不全個体を得ることができる。

[0105]

卵細胞を使用する場合は、例えば、卵細胞核内にマイクロインジェクション法でDNA溶液を注入することによりターゲッティングベクターを染色体内に導入したトランスジェニック非ヒト哺乳動物を得ることができ、これらのトランスジェニック非ヒト哺乳動物に比べて、遺伝子相同組換えにより本発明のDNA座に変異のあるものを選択することにより得られる。

このようにして本発明のDNAがノックアウトされている個体は、交配により得られた動物個体も該DNAがノックアウトされていることを確認して通常の飼育環境で飼育継代を行なうことができる。

さらに、生殖系列の取得および保持についても常法に従えばよい。すなわち、 該不活化DNAの保有する雌雄の動物を交配することにより、該不活化DNAを 相同染色体の両方に持つホモザイゴート動物を取得しうる。得られたホモザイゴ ート動物は、母親動物に対して、正常個体1,ホモザイゴート複数になるような 状態で飼育することにより効率的に得ることができる。ヘテロザイゴート動物の 雌雄を交配することにより、該不活化DNAを有するホモザイゴートおよびヘテ ロザイゴート動物を繁殖継代する。

また、本発明のDNA発現不全非ヒト哺乳動物は、本発明のFPRL1により 誘導され得る種々の生物活性を欠失するため、本発明のFPRL1の生物活性の 不活性化を原因とする疾病のモデルとなり得るので、これらの疾病の原因究明及 び治療法の検討に有用である。

[0106]

(10a) 本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物のスクリーニング方法

本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物のスクリーニングに用いることができる。

すなわち、本発明は、本発明のDNA発現不全非ヒト哺乳動物に試験化合物を 投与し、該動物の変化を観察・測定することを特徴とする、本発明のDNAの欠 損や損傷などに起因する疾病に対して治療・予防効果を有する化合物またはその 塩のスクリーニング方法を提供する。

該スクリーニング方法において用いられる本発明のDNA発現不全非ヒト哺乳 動物としては、前記と同様のものがあげられる。

試験化合物としては、例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などがあげられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

具体的には、本発明のDNA発現不全非ヒト哺乳動物を、試験化合物で処理し、無処理の対照動物と比較し、該動物の各器官、組織、疾病の症状などの変化を 指標として試験化合物の治療・予防効果を試験することができる。

試験動物を試験化合物で処理する方法としては、例えば、経口投与、静脈注射などが用いられ、試験動物の症状、試験化合物の性質などにあわせて適宜選択することができる。また、試験化合物の投与量は、投与方法、試験化合物の性質などにあわせて適宜選択することができる。

[0107]

該スクリーニング方法において、試験動物に試験化合物を投与した場合、例えば、該試験動物の炎症症状が約10%以上、好ましくは約30%以上、より好ましくは約50%以上改善した場合、該試験化合物を上記の疾患に対して治療・予防効果を有する化合物として選択することができる。

該スクリーニング方法を用いて得られる化合物は、上記した試験化合物から選 ばれた化合物であり、本発明のFPRL1の欠損や損傷などによって引き起こさ れる疾患(例えば、喘息、アレルギー疾患、炎症、炎症性眼疾患、アジソン病(Addison's disease)、自己免疫性溶血性貧血、全身性エリスマトーデス、乾せ ん、リウマチ、中枢神経障害(例えば、脳出血及び脳梗塞等の脳血管障害、頭部 外傷、脊髄損傷、脳浮腫、多発性硬化症等)、神経変性疾患(例えば、アルツハ イマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、エイズ脳症)、髄 膜炎、糖尿病、関節炎(例、慢性関節リウマチ、変形性関節症、リウマチ様脊椎 炎、痛風性関節炎、滑膜炎)、毒血症(例、敗血症、敗血症性ショック、内毒素 性ショック、グラム陰性敗血症、トキシックショック症候群)、炎症性腸疾患(例、クローン病(Crohn's disease)、潰瘍性大腸炎)、炎症性肺疾患(例、慢 性肺炎、珪肺、肺サルコイドーシス、肺結核)、あるいは悪液質(例、感染によ る悪液質、癌性悪液質、後天性免疫不全症候群(エイズ)による悪液質)、動脈 硬化症、クロイツフェルトーヤコブ病、ウイルス感染(例、サイトメガロウイル ス、インフルエンザウイルス、ヘルペスウイルス等のウイルス感染)、狭心症、 心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧、汎発性血管内凝固症候群 など)に対する安全で低毒性な治療・予防剤などの医薬として使用することがで きる。さらに、上記スクリーニングで得られた化合物から誘導される化合物も同 様に用いることができる。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸、有機酸など)や塩基(例、アルカリ金属など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プ

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記した本発明のFPRL1とFPRL1リガンドとの結合性またはシグナル伝達を変化させる化合物を含有する医薬と同様にして製造することができる。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど)に対して投与することができる。

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、該化合物を経口投与する場合、一般的に炎症患者(体重60kgとして)においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、該化合物を注射剤の形で通常、炎症患者(体重60kgとして)に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

[0108]

(10b) 本発明のDNAに対するプロモーターの活性を促進または阻害する化 合物をスクリーニング方法

本発明は、本発明のDNA発現不全非ヒト哺乳動物に、試験化合物を投与し、 レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。

上記スクリーニング方法において、本発明のDNA発現不全非ヒト哺乳動物としては、前記した本発明のDNA発現不全非ヒト哺乳動物の中でも、本発明のDNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝

ページ: 106/

子が本発明のDNAに対するプロモーターの制御下で発現しうるものが用いられる。

試験化合物としては、前記と同様のものがあげられる。

レポーター遺伝子としては、前記と同様のものが用いられ、βーガラクトシダーゼ遺伝子(lacZ)、可溶性アルカリフォスファターゼ遺伝子またはルシフェラーゼ遺伝子などが好適である。

本発明のDNAをレポーター遺伝子で置換された本発明のDNA発現不全非ヒト哺乳動物では、レポーター遺伝子が本発明のDNAに対するプロモーターの支配下に存在するので、レポーター遺伝子がコードする物質の発現をトレースすることにより、プロモーターの活性を検出することができる。

例えば、本発明のFPRL1をコードするDNA領域の一部を大腸菌由来の β ーガラクトシダーゼ遺伝子(lacZ)で置換している場合、本来、本発明のFPRL1の発現する組織で、本発明のFPRL1の代わりに β ーガラクトシダーゼが発現する。従って、例えば、5ープロモー4ークロロー3ーインドリルー β ーガラクトピラノシド(Xーgal)のような β ーガラクトシダーゼの基質となる試薬を用いて染色することにより、簡便に本発明のFPRL1の動物生体内における発現状態を観察することができる。具体的には、本発明のFPRL1欠損マウスまたはその組織切片をグルタルアルデヒドなどで固定し、リン酸緩衝生理食塩液(PBS)で洗浄後、Xーgalを含む染色液で、室温または37℃付近で、約30分ないし1時間反応させた後、組織標本を1mM EDTA/PBS溶液で洗浄することによって、 β ーガラクトシダーゼ反応を停止させ、呈色を観察すればよい。また、常法に従い、1acZをコードするmRNAを検出してもよい。

上記スクリーニング方法を用いて得られる化合物またはその塩は、上記した試験化合物から選ばれた化合物であり、本発明のDNAに対するプロモーター活性を促進または阻害する化合物である。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、有機酸など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好まし

[0109]

本発明のDNAに対するプロモーター活性を促進する化合物またはその塩は、 本発明のFPRL1の発現を促進し、該FPRL1の機能を促進することができ るので、例えば、本発明のFPRL1の機能不全に関連する疾患の予防および/ または治療剤などの医薬として使用することができる。具体的には、該化合物は 、例えば、抗炎症剤として、さらには、例えば喘息、アレルギー疾患、炎症、炎 症性眼疾患、アジソン病(Addison's disease)、自己免疫性溶血性貧血、全身 性エリスマトーデス、乾せん、リウマチ、中枢神経障害(例えば、脳出血及び脳 梗塞等の脳血管障害、頭部外傷、脊髄損傷、脳浮腫、多発性硬化症等)、神経変 性疾患(例えば、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(A LS)、エイズ脳症)、髄膜炎、糖尿病、関節炎(例、慢性関節リウマチ、変形 性関節症、リウマチ様脊椎炎、痛風性関節炎、滑膜炎)、毒血症(例、敗血症、 敗血症性ショック、内毒素性ショック、グラム陰性敗血症、トキシックショック 症候群)、炎症性腸疾患(例、クローン病(Crohn's disease)、潰瘍性大腸炎)、炎症性肺疾患(例、慢性肺炎、珪肺、肺サルコイドーシス、肺結核)、ある いは悪液質(例、感染による悪液質、癌性悪液質、後天性免疫不全症候群(エイ ズ)による悪液質)、動脈硬化症、クロイツフェルトーヤコブ病、ウイルス感染 (例、サイトメガロウイルス、インフルエンザウイルス、ヘルペスウイルス等の ウイルス感染)、狭心症、心筋梗塞、うっ血性心不全、肝炎、移植、透析低血圧 、汎発性血管内凝固症候群の予防・治療剤として、低毒性で安全な医薬として使 用することができる。

本発明のDNAに対するプロモーター活性を阻害する化合物またはその塩は、本発明のFPRL1の発現を阻害し、該FPRL1の機能を阻害することができるので、例えば、本発明のFPRL1の発現過多に関連する疾患などの予防・治療剤などの医薬として有用である。

[0110]

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記した本発明のFPRL1またはその塩とFPRL1リガンドとの結合性を変化させる化合物を含有する医薬と同様にして製造することができる。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物 (例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、プタ、ウシ、ウマ、ネコ、イヌ、サルなど) に対して投与することができる。

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、本発明のDNAに対するプロモーター活性を促進する化合物を経口投与する場合、一般的に炎症患者(体重60kgとして)においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、本発明のDNAに対するプロモーター活性を促進する化合物を注射剤の形で通常、炎症患者(体重60kgとして)に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

このように、本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩をスクリーニングする上で極めて有用であり、本発明のDNA発現不全に起因する各種疾患の原因究明または予防・治療薬の開発に大きく貢献することができる。

また、本発明のFPRL1のプロモーター領域を含有するDNAを使って、その下流に種々の蛋白質をコードする遺伝子を連結し、これを動物の卵細胞に注入していわゆるトランスジェニック動物(遺伝子移入動物)を作成すれば、特異的にそのFPRL1を合成させ、その生体での作用を検討することも可能となる。さらに上記プロモーター部分に適当なレポータ遺伝子を結合させ、これが発現す

[0111]

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclature による略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

DNA :デオキシリボ核酸

c D N A : 相補的デオキシリボ核酸

A : アデニン

T :チミン

G : グアニン

C:シトシン

RNA :リボ核酸

mRNA :メッセンジャーリボ核酸

dATP :デオキシアデノシン三リン酸

dTTP :デオキシチミジン三リン酸

dGTP :デオキシグアノシン三リン酸

dCTP :デオキシシチジン三リン酸

ATP : アデノシン三リン酸

EDTA :エチレンジアミン四酢酸

SDS :ドデシル硫酸ナトリウム

[0112]

Glv:グリシン

Ala :アラニン

Val :バリン

Leu :ロイシン

Ile :イソロイシン

Ser :セリン

Thr :スレオニン

Cys :システイン

Met :メチオニン

Glu :グルタミン酸

Asp :アスパラギン酸

Lys :リジン

Arg :アルギニン

His :ヒスチジン

Phe :フェニルアラニン

Tyr : チロシン

Trp :トリプトファン

Pro :プロリン

Asn :アスパラギン

Gin :グルタミン

pGlu :ピログルタミン酸

* :終止コドンに対応する

Me :メチル基

Et :エチル基

Bu :ブチル基

Ph:フェニル基

TC :チアゾリジン-4(R)-カルボキサミド基

[0113]

また、本明細書中で繁用される置換基、保護基および試薬を下記の記号で表記する。

Tos: pートルエンスルフォニル

CHO :ホルミル

B z 1 :ベンジル

時願2003-059073

Cl₂B_zl : 2, 6-ジクロロベンジル

Bom

:ベンジルオキシメチル

 \mathbf{Z}

:ペンジルオキシカルボニル

C1-Z

:2-クロロベンジルオキシカルボニル

Br-Z

:2-プロモベンジルオキシカルボニル

Вос

:tープトキシカルボニル

DNP

: ジニトロフェノール

Trt

: トリチル

Bum

: t ープトキシメチル

Fmoc

: N-9-フルオレニルメトキシカルボニル

HOBt

:1-ヒドロキシベンズトリアゾール

HOOBt: 3,4- \overline{y} $\overline{y$

1,2,3ーベンゾトリアジン

HONB :1-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド

DCC : N、N'ージシクロヘキシルカルボジイミド

[0114]

本明細書の配列表の配列番号は、以下の配列を示す。

配列番号:1

本発明のブタ型FPRL1リガンド(P3)のアミノ酸配列を示す。

配列番号:2

ヒト由来FPRL1のアミノ酸配列を示す。

配列番号:3

ヒト由来FPRL1をコードする c DNAの塩基配列を示す。

配列番号: 4

ラット由来FPRL1のアミノ酸配列を示す。

配列番号:5

ラット由来FPRL1をコードするcDNAの塩基配列を示す。

配列番号:6

マウス由来FPRL1のアミノ酸配列を示す。

配列番号: 7

マウス由来FPRL1をコードするcDNAの塩基配列を示す。

配列番号:8

参考例1で用いたプライマー1の塩基配列を示す。

配列番号:9

参考例1で用いたプライマー2の塩基配列を示す。

配列番号:10

実施例5で用いたプライマー3の塩基配列を示す。

配列番号:11

実施例5で用いたプライマー4の塩基配列を示す。

配列番号:12

実施例5で用いたプライマー5の塩基配列を示す。

配列番号:13

実施例5で用いたプライマー6の塩基配列を示す。

配列番号:14

実施例5で用いたプライマー7の塩基配列を示す。

配列番号:15

実施例5で用いたプライマー8の塩基配列を示す。

配列番号:16

本発明のヒト型FPRL1リガンド(P3)のアミノ酸配列を示す。

配列番号:17

本発明のブタ型FPRL1リガンド(P1)Aのアミノ酸配列を示す。

配列番号:18

本発明のブタ型FPRL1リガンド(P1)Bのアミノ酸配列を示す。

配列番号:19

本発明のヒト型FPRL1リガンド(P1)Aのアミノ酸配列を示す。

配列番号:20

本発明のヒト型FPRL1リガンド(P1)Bのアミノ酸配列を示す。

配列番号:21

本発明のブタ型FPRL1リガンド(P4)のアミノ酸配列を示す。

配列番号:22

本発明のヒト型FPRL1リガンド(P4)のアミノ酸配列を示す。

後述の実施例5で得られた形質転換体Escherichia coli J M 1 0 9 / p U C 1 8 - r F P R L 1 は 2 0 0 3 年 1 月 1 0 日 から茨城県 つくば 市東1丁目1番地1 中央第6(郵便番号305-8566)の独立行政法人産 業技術総合研究所 特許生物寄託センターに寄託番号FERM BP-8274 として寄託されている。

[0115]

【実施例】

以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範 囲を限定するものではない。なお、大腸菌を用いての遺伝子は、モレキュラー・ クローニング (Molecular cloning) に記載されている方法に従った。

[0116]

実施例1 ヒトFPRL1-GFPを発現させたCHO細胞における、フォルス コリン添加によって増加させた細胞内 c AMP量のブタ胃抽出液フラクションに よる抑制作用

ヒトFPRL1-GFPを発現させたCHO細胞をアッセイ用培地(HBSS (GibcoBRL) に 0. 1% ウシ血清アルブミン、および、 0. 2 mM IBMXを 添加したもの)にて洗浄した後、37℃、5%СО2条件下で30分培養した。 アッセイ用培地にて希釈した各濃度のブタ胃抽出液フラクション (0.05 g/ well, 0.5g/well) を添加し、その後フォルスコリン $1\mu M$ となる ように添加した。37℃、5%CO2条件下で30分培養した。培養上清を捨て て、cAMP screen kit(アプライドバイオシステムズ社)のプロ トコールに従い、細胞内の c AMP量をプレートリーダー(ARVO sxマル チラベルカウンター、Wallac社)を用いて測定した。

その結果、ベクターのみを導入したCHO細胞(mock)に比べ、FPRL1 -GFP遺伝子を導入したCHO細胞特異的に、フォルスコリン添加によって増 加させた細胞内 c AMP量のブタ胃抽出液フラクション (0.05g/well

および0.5g/well) による用量依存的かつ特異的な減少が検出された(図1)。

[0117]

実施例2 プタ胃からの内因性FPRL1リガンドP3の精製

実施例1で見出されたヒト型FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性をブタ胃のペプチド粗画分から精製した。

まず、ブタ胃4kgをミリQ水8L中で煮沸し、酢酸を1Mとなるように加え 、ポリトロンでホモジナイズした。一晩撹拌した後、遠心にて上清を得た。上清 にトリフルオロ酢酸(TFA)を0.05%となるように加え、C18カラム(Prep C18 125点;Waters) にアプライした。カラムに結合し たペプチドを0.5%TFAを含む30、50%アセトニトリルでステップワイ ズに溶出した。30%アセトニトリル画分を二倍量の20mM酢酸アンモニウム . (pH4.7) で希釈し、イオン交換カラム HiPrep CM-Sepha rose FF (Pharmacia) にアプライした。イオン交換カラムに結 合したペプチドを10%アセトニトリルを含む20mM酢酸アンモニウム(pH 4. 7) 中の0~1. 0M NaClの濃度勾配で溶出した。もっとも多くヒト 型FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性が含 まれていた0.1~0.2M NaCl画分に3倍量の冷アセトンを加え、遠心 にて沈殿を除き上清をエバポレートにて濃縮した。濃縮された上清に0.1%と なるようTFAを加え、逆相HPLCカラム SOURCE 15RPC 20 ml (Pharmacia) にてさらなる分離を行った。RESOURCE R PCの分離は10~30%アセトニトリルの濃度勾配で行い、ヒト型FPRL1 - GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性は、複数のピーク に分かれて溶出された。これら活性ピークのうちアセトニトリル濃度26%で溶 出される画分を、YMC-Pack Pro C18カラムにて分離した。YM C-Pack Pro C18カラムの分離は22~26%アセトニトリルの濃 度勾配で行い、活性画分はアセトニトリル濃度24%で溶出された。さらに、こ の活性画分を10%アセトニトリルを含む20mM酢酸アンモニウム (p H 4. 7) 中での0~0.5M NaClの濃度勾配を用いた陽イオン交換カラム T

[0118]

実施例3 プタ内因性FPRL1リガンドP3の質量分析

実施例 2 で生成されたブタ内因性 FPRL1 リガンド P3 フラクションを、まず、Voyager-DE PRO (ABI) にてマトリックスアシスティッドレーザーデソープションイオン化飛行時間型質量分析したところ(図3)、m/z 1724.8、1741.6、1772.7が出現した。

次に、FPRL1リガンドP3フラクションをQ-Tof Ultima API (Micromass) にてエレクトロスプレイイオン化質量分析し、同機種付属の解析ソフトMassLynxで解析した。多価イオンが混在する生データ(図4)では主として3価イオンm/z 575.30、580.64が出現し、これらをMassLynx機能の一つ "MaxEnt3" 処理にて一価イオンに変換したところ(データ示さず)m/z 1723.88、m/z 1739.89を得た。これらの結果から、FPRL1リガンドの分子関連イオン(M+H+)はm/z 1723.88で、m/z 1739.89はm/z 1723.88の酸化体と考えられた。

次に、Q-Tof Ultima APIにてMS/MS測定した。m/z 575.3、580.6を親イオンにして測定したところ、両スペクトルで、多数のフラグメントイオンが共通して出現した。解析のしやすさから酸化体の3価のイオンm/z 580.6を親イオンにして測定したスペクトルをMaxEnt3処理したもので(図5)を配列解析した。この結果を元にデータベース検索して、本物質の配列を、Nホルミル化されたブタcytochrome c oxidaseのN末端13残基であると推定した。配列は以下の通り:CHO

Met (O) -Phe-Val-Asn-Arg-Trp-Leu-Tyr-Ser-Thr-Asn-His-Lys。非酸化体は、本推定構造の1位Metが酸化されていないものと推定される。

[0119]

実施例4 プタ内因性FPRL1リガンドP3の内部配列分析

実施例3で推定されたプタ内因性FPRL1リガンドP3の構造を確認するために、トリプシン消化後N末端配列分析した(図6)。その結果、推定構造の5位ArgのC末端側で切断されて生成する断片ペプチドの配列を確認することができた。

[0120]

参考例1 マウス脾臓由来FPRL2をコードする c DNAのクローニングと発現ベクターの構築

マウス脾臓 c DNA(Marathon-Ready TM c DNA;Clontech社)を鋳型として、マウスFPRL2の配列情報(Accession #071180;NCBI)をもとに設計した2個のプライマー、プライマー1(配列番号:8)及びプライマー2(配列番号:9)を用いてPCRを行なった。PCRにはPyrobest DNA polymerase(宝酒造)を用い、①98 C ・1分の後、②98 C ・10秒、 55^{C} ・30秒、 72^{C} ・60秒を35回の後、③ 72^{C} ・2分の伸長反応を行なった。反応後、増幅産物を制限酵素 Sal I 及び XbaIで切断した後、プラスミドベクターpAKKO-111Hに挿入して発現ベクターを構築した。その塩基配列を解析した結果、配列番号:6で表されるアミノ酸配列からなるマウスFPRL2をコードするcDNA配列(配列番号:7)を得た。

[0121]

実施例 5 ラット脾臓由来FPRL1をコードする c DNAのクローニングとその塩基配列の決定及び発現ベクターの構築

ラット脾臓mRNAからMarathonTM cDNA Amplific ation Kit (Clontech社)を用いてcDNAを合成し、その末端にアダプターを付加した。これを鋳型として、2個のプライマー、プライマー

3(配列番号:10)及びプライマー4(配列番号:11)を用いてPCRを行 なった。PCRにはAdvantage 2 Polymerase mix (Clontech社) を用い、①96℃・1分、②96℃・10秒、72℃・2 分を5回、③96℃・10秒、70℃・2分を5回、④96℃・10秒、68℃ ・2分を25回の後、⑤72℃・5分の伸長反応を行なった。反応後、増幅産物 をTOPO TA Cloning Kit (Invitrogen社)の処方 にしたがってプラスミドベクターpCR2. 1TOPO(Invitrogen 社) に挿入し、これを大腸菌 J M 1 0 9 (宝酒造) に導入してクローニングした 。個々のクローンの塩基配列を解析した結果、新規G蛋白質共役型レセプター蛋 白質の一部をコードするcDNA配列を得た。この配列情報をもとに2個のプラ イマー、プライマー5(配列番号:12)及びプライマー6(配列番号:13) を設計し、上述のラット脾臓mRNAから合成したcDNAを鋳型としてMar athonTM cDNA Amplification Kit (Clont ech社)の処方に従ってそれぞれ5′-RACE及び3′-RACEを行なっ た。PCRは上述のものと同様に行ない、反応後増幅産物をTOPO TA C loning Kit (Invitrogen社)の処方にしたがってプラスミ ドベクターpCR2. 1TOPO (Invitrogen社) に挿入し、これを 大腸菌JM109(宝酒造)に導入してクローニングした。個々のクローンの塩 基配列を解析した結果、新規G蛋白質共役型レセプター蛋白質の一部をコードす るcDNA配列を得た。これらの配列情報からさらに2個のプライマー、プライ マー7(配列番号:14)及びプライマー8(配列番号:15)を設計し、上述 のラット脾臓mRNAから合成したcDNAを鋳型としてPCRを行なった。P CRにはPyrobest DNA polymerase (宝酒造)を用い、 ①98℃・1分の後、②98℃・10秒、55℃・30秒、72℃・60秒を3 5回の後、③72℃・2分の伸長反応を行なった。反応後、増幅産物を制限酵素 Sal I及びXbaIで切断した後、プラスミドベクターpAKKO-111 Hに挿入して発現ベクターを構築した。これを制限酵素Sal I及びNhe Iで切断して挿入断片を切出し、プラスミドベクターpUC119に挿入してこ れらの塩基配列を解析した結果、配列番号:4で表されるアミノ酸配列からなる ラットの新規G蛋白質共役型レセプター蛋白質をコードするcDNA配列(配列番号:5)を得た。このcDNAより導き出されるアミノ酸配列(配列番号:4)を含有する新規タンパク質をラットFPRL1と命名した。また、このプラスミドを保持する形質転換体を、大腸菌(Escherichia coli)JM109/pUC119-rFPRL1と命名した。

[0122]

実施例 6 ラット脾臓由来FPRL1をコードするcDNAを含有するプラスミ ドの作製

[0123]

実施例7 ブタ胃からの内因性FPRL1リガンドP1の精製

実施例1で見出されたヒト型FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性をブタ胃のペプチド粗画分から精製した。

まず、ブタ胃12kgをミリQ水8L中で煮沸し、酢酸を1Mとなるように加え、ポリトロンでホモジナイズした。一晩撹拌した後、遠心にて上清を得た。上清にトリフルオロ酢酸(TFA)を0.05%となるように加え、С18カラム(Prep С18 125Å; Waters)にアプライした。カラムに結合したペプチドを0.5%TFAを含む30、50%アセトニトリルでステップワイズに溶出した。30%アセトニトリル画分を二倍量の20mM酢酸アンモニウム(pH4.7)で希釈し、イオン交換カラム HiPrep CMーSepharose FF(Pharmacia)にアプライした。イオン交換カラムに結合したペプチドを10%アセトニトリルを含む20mM酢酸アンモニウム(pH4.7)中の0~1.0M NaClの濃度勾配で溶出した。もっとも多く

ヒト型FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性 が含まれていた0.1~0.2M NaC1画分に3倍量の冷アセトンを加え、 遠心にて沈殿を除き上清をエバポレートにて濃縮した。濃縮された上清に0.1 %となるようTFAを加え、逆相HPLCカラムSOURCE 15RPC Oml (Pharmacia) にてさらなる分離を行った。SOURCE 1 5 R P C の分離は 1 0 ~ 3 0 %アセトニトリルの濃度勾配で行い、ヒト型FPR L1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性は、複数のピ ークに分かれて溶出された。これら活性ピークのうちアセトニトリル濃度22% で溶出される画分を、YMC-Pack Pro C18カラムにて分離した。 YMC-Pack Pro C18カラムの分離は18~22%アセトニトリル の濃度勾配で行い、活性画分はアセトニトリル濃度21%で溶出された。さらに 、この活性画分を10%アセトニトリルを含む20mM酢酸アンモニウム(pH 4.7) 中での 0.0 5 ~ 0.3 M NaClの濃度勾配を用いた陽イオン交換 カラムTSK gel CM-SW (トーソー) で分離した。主たるヒト型FP RL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性は、NaC 1 濃度 0. 17 Mで溶出された。CM-2SWカラムの活性画分に 0. 1%とな るようTFAを加え、15~17%アセトニトリルの濃度勾配を用いた逆相カラ ムdiphenyl 219TP5215 (Vydac) で分離した。16. 5%アセトニトリル濃度で溶出された活性画分 e_{μ} RPC C2/C18 SC 2. 1/10 (アマシャムバイオサイエンス) で最終精製し、ヒト型FPRL1 - G F P 発現 C H O 細胞特異的な細胞内 c A M P 産生抑制活性と一致する単一の ピークを得た(図7)。

[0124]

実施例8 ブタ内因性FPRL1リガンドP1の質量分析

実施例 7 で精製されたブタ内因性 FPRL1 リガンド P1 フラクションを、まず、Voyger DE Pro(ABI) にてマトリックスアシスティッドレーザーデソープションイオン化飛行時間型質量分析したところ(図 8)、m/z 1921、1937、1952 が出現した。

次に、FPRL1リガンドP1をQ-Tof Ultima API (Mic

romass)にてエレクトロスプレイイオン化質量分析し、同機種付属の解析ソフトMassLynxで解析した。多価イオンが混在する生データ(図9および図10)では $M+2H^2+(m/z)960.52$)、 $M+3H^3+(m/z)640.99$)、 $M+4H^4+(m/z)481.00$)出現し、これらを装置付属のソフトMaxEnt3処理にて一価イオンに変換したところm/z1920.0を得た。

次に、Q-Tof Ultima APIにてMS/MS測定した。M+2H2+、M+4H4+を親イオンにして測定したスペクトルをMaxEnt3処理したもので配列を解析した(図11および図12)。この結果を元にデータベース検索して、本物質の配列を、Nホルミル化されたブタcytochromebのN末端ペプチドと推定した。配列は以下の通りである。CHO-Met-Thr-Asn-Ile-Arg-Lys-Ser-His-Pro-Leu-Met-Lys-Ile-Ile-Asn(配列番号:17)。

[0125]

実施例9 ブタ内因性FPRL1リガンド P1の内部配列分析

実施例 8 で推定されたブタ内因性 FPRL1 リガンド P1 の構造を確認するために、N-ホルミル基を切断する処理(<math>25% TFA,、55%、2時間)の後N末端配列分析した(図<math>13)。その結果、推定構造1位Met 以降の9残基の配列を確認することができた。

[0126]

実施例10 ブタ胃からの内因性FPR1リガンドP1と化学合成標品の活性比較

実施例7で精製されたブタ内因性FPRL1リガンドP1とその構造解析より推測されたN末端がホルミル化されたブタ型ブタ型Cytochrome B N末端15アミノ酸を含有する16アミノ酸ペプチド(formyl-MTNIRKSHPLMKIINN、配列番号:18)の活性をヒト型FPRL1発現CHO細胞における細胞内cAMP産生抑制活性を指標に比較した(図14)。その結果、最終精製標品と合成品は同等の活性を示した。

[0127]

実施例11 ブタ胃からの内因性FPRL1リガンドP4の精製

実施例1で見出されたヒト型FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性をブタ胃のペプチド粗画分から精製した。

まず、ブタ胃8kgをミリQ水16L中で煮沸し、酢酸を1Mとなるように加 え、ポリトロンでホモジナイズした。一晩撹拌した後、遠心にて上清を得た。上 清にトリフルオロ酢酸 (TFA) を 0. 05%となるように加え、C18カラム (Prep C18 125点;Waters) にアプライした。カラムに結合 したペプチドを0.5%TFAを含む10、30、50%アセトニトリルでステ ップワイズに溶出した。30%アセトニトリル画分を二倍量の20mM酢酸アン モニウム (pH4.7) で希釈し、イオン交換カラムHiPrep СM-Se pharose FF (Pharmacia) にアプライした。イオン交換カラ ムに結合したペプチドを10%アセトニトリルを含む20mM酢酸アンモニウム (p H 4 . 7)中の 0 ~ 1 . 0 M N a C l の濃度勾配で溶出した。もっとも多 . くヒト型FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活 性が含まれていた0.1~0.2M NaC1画分に3倍量の冷アセトンを加え 、遠心にて沈殿を除き上清をエバポレートにて濃縮した。濃縮された上清に0. 1%となるようTFAを加え、逆相HPLCカラム SOURCE 15RPC 20ml (Pharmacia) にてさらなる分離を行った。RESOURC RPCの分離は10~30%アセトニトリルの濃度勾配で行い、ヒト型FP RL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性は、複数の ピークに分かれて溶出された。これら活性ピークのうちアセトニトリル濃度28 %で溶出される画分を、YMC-Pack Pro C18カラムにて分離した 。YMC-Pack Pro C18カラムの分離は24~28%アセトニトリ ルの濃度勾配で行い、活性画分はアセトニトリル濃度26%で溶出された。さら に、この活性画分を10%アセトニトリルを含む20mM酢酸アンモニウム(p H 4. 7) 中での 0. 0 5 ~ 0. 3 M N a C l の濃度勾配を用いた陽イオン交 換カラム TSK gel CM-SW(トーソー)で分離した。主たるヒト型 FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性は、N a C 1 濃度 0 . 1 8 Mで溶出された。C M - 2 S W カラムの活性画分に 0 . 1 % となるようTFAを加え、20~22%アセトニトリルの濃度勾配を用いた逆相

[0128]

実施例12 ブタ内因性FPRL1リガンドP4の質量分析

実施例11で生成されたプタ内因性FPRL1リガンド P4フラクションを Q-Tof U1tima API (Micromass) にてエレクトロスプレイイオン化質量分析し、同機種付属の解析ソフトMassLynxで解析した。多価イオンが混在する生データでは主として3価イオン(図16)した。モノアイソトープイオンはm/z 660.2485。加えて酸化された分子由来のイオンも出現した。

次に、Q-Tof Ultima APIにてMS/MS測定した。酸化体の3価イオン665.60、2価イオンm/z 989.88を親イオンにして測定したスペクトルをMaxEnt3処理したもので配列を解析した(図17および図18)。解析の結果推定された配列は、Nホルミル化されたプタcytochrome c oxidaseのN末端15アミノ酸残基の配列と一致した。配列は以下の通り:formylMet-Phe-Val-Asn-Arg-Trp-Leu-Tyr-Ser-Thr-Asn-His-Lys-Asp-Ile-X(配列番号:21-X。Xは未確定構造)。

[0129]

実施例13 プタ内因性FPRL1リガンド P4の内部配列分析

実施例12で推定されたブタ内因性FPRL1リガンド P4の構造を確認するために、ブタ内因性FPRL1リガンドP4を、Nーホルミル基を除去する加水分解条件で処理後、N末端配列分析した。すなわち、FPRL1リガンドP4フラクション40、35 μ 1を採取し、SAVANTにより液量を減らし、100 μ 1 25%TFA-水を添加して55℃にて2時間反応させ、SAVANTで液量を減らした後全量をN末端配列分析した(図19)。その結果、推定構造の1位Met以下13アミノ酸残基の配列を確認することができた。

[0130]

【発明の効果】

本発明のFPRL1リガンド、本発明のFPRL1、または本発明のFPRL 1をコードするDNAは、例えば、抗炎症剤として使用することができる。

本発明のFPRL1リガンドとFPRL1とを用いることによって、FPRL 1リガンドとFPRL1との結合性を変化させる化合物を効率良くスクリーニン ・グすることができる。

[0131]

【配列表】

SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> A Novel Ligand For FPRL1 And Its Use

<130> B03066

<150> JP 2002-324189

<151> 2002-11-07

<150> JP 2002-367119

<151> 2002-12-18

<160> 22

<210> 1

<211> 13

<212> PRT

<213> Porcine

<400> 1

Met Phe Val Asn Arg Trp Leu Tyr Ser Thr Asn His Lys

1

5

10

<210> 2

<211> 351

<212> PRT

<213> Human

<400> 2

Met	Glu	Thr	Asn	Phe	Ser	Thr	Pro	Leu	Asn	Glu	Tyr	Glu	Glu	Val	Ser
				5					10					15	
Tyr	Glu	Ser	Ala	Gly	Tyr	Thr	Val	Leu	Arg	Ile	Leu	Pro	Leu	Val	Val
			20					25					30		
Leu	Gly	Val	Thr	Phe	Val	Leu	Gly	Val	Leu	Gly	Asn	Gly	Leu	Val	Ile
		35					40					45			
Trp	Val	Ala	Gly	Phe	Arg	Met	Thr	Arg	Thr	Val	Thr	Thr	Ile	Cys	Tyr
	50					55					60				
Leu	Asn	Leu	Ala	Leu	Ala	Asp	Phe	Ser	Phe	Thr	Ala	Thr	Leu	Pro	Phe
65					70					75					80
Leu	Ile	Val	Ser	Met	Ala	Met	Gly	Glu	Lys	Trp	Pro	Phe	Gly	Trp	Phe
				85					90					95	
Leu	Cys	Lys	Leu	Ile	His	Ile	Val	Val	Asp	Ile	Asn	Leu	Phe	Gly	Ser
			100					105					110		
Val	Phe	Leu	Ile	Gly	Phe	Ile	Ala	Leu	Asp	Arg	Cys	Ile	Cys	Val	Leu
		115					120					125			
His	Pro	Val	Trp	Ala	Gln	Asn	His	Arg	Thr	Val	Ser	Leu	Ala	Met	Lys
	130	,				135					140				
Val	Ile	Val	Gly	Pro	Trp	Ile	Leu	Ala	Leu	Val	Leu	Thr	Leu	Pro	Val
145	1				150	١				155					160
Phe	Leu	Phe	Leu	ı Thr	Thr	Val	Thr	Ile	Pro	Asn	Gly	Asp	Thr	Tyr	Cys
				165	, ·				170	•				175	
Thr	Phe	e Asn	Phe	e Ala	a Ser	Trp	Gly	Gly	Thr	Pro	Glu	Glu	Arg	Leu	Lys
			180)				185	•				190		
Val	Ala	ı Ile	Thi	Met	Let	t Thi	Ala	a Arg	Gly	Ile	lle	Arg	Phe	Val	Ile
		195	5				200)				205	5		
Gly	7 Phe	e Sei	r Lei	ı Pro	o Met	: Sei	: Ile	e Val	Ala	ı Ile	Cys	Туг	Gly	Leu	Ile
	210)				215	5				220)			
Ala	a Ala	a Lys	s Ile	e His	s Lys	s Lys	s Gly	7 Met	: Ile	e Lys	s Ser	Sei	Arg	Pro	Leu

225 230 235 240	
Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro	
245 250 255	
Phe Gln Leu Val Ala Leu Leu Gly Thr Val Trp Leu Lys Glu Met Leu	
260 265 270	
Phe Tyr Gly Lys Tyr Lys Ile Ile Asp Ile Leu Val Asn Pro Thr Ser	
275 280 285	•
Ser Leu Ala Phe Phe Asn Ser Cys Leu Asn Pro Met Leu Tyr Val Phe	
290 295 300	
Val Gly Gln Asp Phe Arg Glu Arg Leu Ile His Ser Leu Pro Thr Ser	
305 310 315 320	
Leu Glu Arg Ala Leu Ser Glu Asp Ser Ala Pro Thr Asn Asp Thr Ala	
325 330 335	
Ala Asn Ser Ala Ser Pro Pro Ala Glu Thr Glu Leu Gln Ala Met	
340 345 350	
<210> 3	
<211> 1053	
<212> DNA	
<213> Human	
<400> 3	
atggaaacca acttctccac tcctctgaat gaatatgaag aagtgtccta tgagtctgct	60
ggctacactg ttctgcggat cctcccattg gtggtgcttg gggtcacctt tgtcctcggg	120
gtcctgggca atgggcttgt gatctgggtg gctggattcc ggatgacacg cacagtcacc	180
accatctgtt acctgaacct ggccctggct gacttttctt tcacggccac attaccattc	240
ctcattgtct ccatggccat gggagaaaaa tggccttttg gctggttcct gtgtaagtta	300
attcacatcg tggtggacat caacctcttt ggaagtgtct tcttgattgg tttcattgca	360
ctggaccgct gcatttgtgt cctgcatcca gtctgggccc agaaccaccg cactgtgagt	420
ctggccatga aggtgatcgt cggaccttgg attcttgctc tagtccttac cttgccagtt	480
ttcctctttt tgactacagt aactattcca aatggggaca catactgtac tttcaacttt	540

gcatcctggg gtggcacccc tgaggagagg ctgaaggtgg ccattaccat gctgacagcc
agagggatta tccggtttgt cattggcttt agcttgccga tgtccattgt tgccatctgc
tatgggctca ttgcagccaa gatccacaaa aagggcatga ttaaatccag ccgtccctta
cgggtcctca ctgctgtggt ggcttctttc ttcatctgit ggtttccctt tcaactggtt
gcccttctgg gcaccgtctg gctcaaagag atgttgttct atggcaagta caaaatcatt
gacatectgg ttaacccaac gageteettg geettettea acagetgeet caaccccatg
ctttacgtct ttgtgggcca agacttccga gagagactga tccactccct gcccaccagt
ctggagaggg ccctgtctga ggactcagcc ccaactaatg acacggctgc caattctgct
tcacctcctg cagagactga gttacaggca atg
<210> 4
<211> 351
<212> PRT
<213> Rat
<400> 4
Met Glu Ala Asn Tyr Ser Ile Pro Leu Asn Val Ser Glu Val Val
5 10 15
Tyr Asp Ser Thr Ile Ser Arg Val Leu Trp Ile Leu Thr Met Val Val
20 25 30
Leu Ser Ile Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile
35 40 45
Trp Val Ala Gly Phe Arg Met Val His Thr Val Thr Thr Cys Phe
50 55 60
Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Val Thr Leu Pro Phe
65 70 75 80
Phe Val Ile Ser Ile Ala Met Lys Glu Lys Trp Pro Phe Gly Trp Phe
85 90 95
Leu Cys Lys Leu Val His Ile Val Val Asp Ile Asn Leu Phe Gly Ser
100 105 110
Val Phe Leu Ile Ala Leu Ile Ala Leu Asp Arg Cys Ile Cys Val Leu

		115					120					125			
His	Pro	Val	Trp	Ala	Gln	Asn	His	Arg	Thr	Val	Ser	Leu	Ala	Arg	Lys
	130					135					140				
Val	Val	Val	Gly	Pro	Trp	Ile	Leu	Ala	Leu	Ile	Leu	Thr	Leu	Pro	Ile
145					150					155					160
Phe	Ile	Phe	Met	Thr	Thr	Val	Arg	Ile	Pro	Gly	Gly	Asn	Val	Tyr	Cys
				165					170					175	
Thr	Phe	Asn	Phe	Ala	Ser	Trp	Gly	Asn	Thr	Ala	Glu	Glu	Leu	Leu	Asn
			180					185					190		
Ile	Ala	Asn	Thr	Phe	Val	Thr	Val	Arg	Gly	Ser	Ile	Arg	Phe	Ile	Ile
		195					200					205			
Gly	Phe	Ile	Met	Pro	Met	Ser	Ile	Val	Ala	Ile	Cys	Tyr	Gly	Leu	Ile
	210					215			•		220				
Ala	Val	Lys	Ile	His	Arg	Arg	Ala	Leu	Val	Asn	Ser	Ser	Arg	Pro	Leu
225					230					235					240
Arg	Val	Leu	Thr	Ala	Val	Val	Ala	Ser	Phe	Phe	Ile	Cys	Trp	Phe	Pro
				245					250					255	
Phe	Gln	Leu	Val	Ala	Leu	Leu	Gly	Thr	Ile	Trp	Phe	Lys	Glu	Ser	Leu
			260					265					270		
Phe	Ser	Gly	Arg	Tyr	Lys	Ile	Leu	Asp	Met	Trp	Val	His	Pro	Thr	Ser
		275					280					285			
Ser	Leu	Ala	Tyr	Phe	Asn	Ser	Cys	Leu	Asn	Pro	Met	Leu	Tyr	Ala	Phe
	290					295					300	ı			
Met	Gly	Gln	Asp	Phe	His	Glu	Arg	Leu	Ile	His	Ser	Leu	Pro	Ser	Ser
305					310					315	i				320
Leu	Glu	Arg	Ala	Leu	Ser	Glu	Asp	Ser	Gly	Gln	Thr	Ser	Asp	Thr	Gly
				325					330	1				335	•
Ile	Ser	Ser	Ala	Leu	Pro	Pro	Val	Asn	Ile	Asp	Ile	Lys	Ala	Ile	;
			340					345	•				350)	

		•	-			
<210> 5						
<211> 1053						
<212> DNA						
<213> Rat						
<400> 5						
atggaagcca	actattccat	ccctctgaat	gtatcagaag	tggttgtcta	tgattctacc	60
atctccagag	ttttgtggat	cctcacaatg	gtggttctct	ccatcacctt	tgtcctgggt	120
gtgctgggta	atggactagt	gatctgggta	gctggattcc	ggatggtaca	cactgtcacc	180
actacctgtt	ttctgaatct	agctttggct	gacttctctt	tcacagtgac	tctaccattc	240
tttgtcatct	caattgctat	gaaagaaaaa	tggccttttg	gatggttcct	gtgtaaatta	300
gttcacattg	tagtagacat	aaacctcttt	ggaagtgtct	tcctgattgc	tttaattgcc	360
ttggaccgct	gcatttgtgt	cctgcatcca	gtctgggctc	agaaccaccg	cactgtgagc	420
ctggctagga	aggtggttgt	tgggccctgg	attttagctc	tgattctcac	tttgcccatt	480
tttattttca	tgactacagt	tagaattcct	ggaggcaatg	tgtactgtac	attcaacttc	540
gcatcctggg	gtaacactgc	tgaagaacta	ttgaacatag	ctaacacttt	tgtaacagtt	600
agagggagca	tcaggttcat	tattggcttc	ataatgccta	tgtccattgt	tgccatctgc	660
tatggactca	tcgctgtcaa	gatccacaga	agagcacttg	ttaattccag	ccgtccatta	720
agagtcctta	cagcagttgt	ggcttccttc	tttatctgtt	ggtttccctt	tcaactggtg	780
gcccttttag	gtacaatctg	gtttaaagag	tcattgttta	gtggtcgtta	caaaattctt	840
gacatgtggg	ttcacccaac	cagctcattg	gcctacttca	atagttgcct	caatccaatg	900
ctctatgctt	tcatgggcca	ggactttcat	gaaagactga	ttcattccct	gccttccagt	960
ctggagagag	ccctgagtga	ggactctggc	caaaccagtg	atacaggcat	cagttctgct	1020
ttacctcctg	taaacattga	tataaaagca	ata			1053
<210> 6						
<211> 351						
<212> PRT						
<213> Mous	e					
<400> 6						

Met Glu Ser Asn Tyr Ser Ile His Leu Asn Gly Ser Glu Val Val

				5					10		•			15	
Tyr	Asp	Ser	Thr	Ile	Ser	Arg	Val	Leu	Trp	Ile	Leu	Ser	Met	Val	Val
			20					25					30		
Val	Ser	Ile	Thr	Phe	Phe	Leu	Gly	Val	Leu	Gly	Asn	Gly	Leu	Val	Ile
		35					40					45			
Trp	Val	Ala	Gly	Phe	Arg	Met	Pro	His	Thr	Val	Thr	Thr	Ile	Trp	Tyr
	50					55					60				
Leu	Asn	Leu	Ala	Leu	Ala	Asp	Phe	Ser	Phe	Thr	Ala	Thr	Leu	Pro	Phe
65					70					7 5					80
Leu	Leu	Val	Glu	Met	Ala	Met	Lys	Glu	Lys	Trp	Pro	Phe	Gly	Trp	Phe
				85					90					95	
Leu	Cys	Lys	Leu	Val	His	Ile	Val	Val	Asp	Val	Asn	Leu	Phe	Gly	Ser
			100					105					110		
Val	Phe	Leu	Ile	Ala	Leu	Ile	Ala	Leu	Asp	Arg	Cys	Ile	Cys	Val	Leu
		115					120					125			
His	Pro	Val	Trp	Ala	Gln	Asn	His	Arg	Thr	Val	Ser	Leu	Ala	Arg	Lys
	130					135	•				140				
Val	Val	Val	Gly	Pro	Trp	Ile	Phe	Ala	Leu	Ile	Leu	Thr	Leu	Pro	Ile
145					150	•				155	•				160
Phe	Ile	Phe	Leu	Thr	Thr	Val	Arg	; Ile	Pro	Gly	Gly	Asp	Val	Tyr	Cys
				165	5				170)				175	
Thr	Phe	Asn	Phe	Gly	Ser	Trp	Ala	Gln	Thr	Asp	Glu	Glu	Lys	Leu	Asn
			180)				185	5				190)	
Thr	Ala	ı Ile	Thr	Phe	e Val	Thi	Thi	Arg	g Gly	7 Ile	e Ile	Arg	g Phe	e Leu	Ile
		195	5				200)				205	5		
Gly	Phe	e Ser	Met	Pro	Met	: Sei	r Ile	e Val	l Ala	a Val	l Cys	Туг	Gly	Leu	Ile
	210)				215	5				220)			
Ala	a Val	Lys	s Ile	e Ası	n Arg	g Arg	g Ası	n Lei	ı Va	l Ası	n Sei	: Sei	r Arg	g Pro	Leu
225	5				230)				23	5				240

Arg Val	Leu	Thr	Ala	Val	Val	Ala	Ser	Phe	Phe	Ile	Cys	Trp	Phe	Pro		
			245					250					255			
Phe Gln	Leu	Val	Ala	Leu	Leu	Gly	Thr	Val	Trp	Phe	Lys	Glu	Thr	Leu		
		260					265					270				
Leu Ser	Gly	Ser	Tyr	Lys	Ile	Leu	Asp	Met	Phe	Val	Asn	Pro	Thr	Ser		
	275					280					285					
Ser Leu	Ala	Tyr	Phe	Asn	Ser	Cys	Leu	Asn	Pro	Met	Leu	Tyr	Val	Phe		
290					295					300						
Met Gly	Gln	Asp	Phe	Arg	Glu	Arg	Phe	Ile	His	Ser	Leu	Pro	Tyr	Ser		
305				310					315					320		
Leu Glu	Arg	Ala	Leu	Ser	Glu	Asp	Ser	Gly	Gln	Thr	Ser	Asp	Ser	Ser		
			325					330					335			
Thr Ser	Ser	Thr	Ser	Pro	Pro	Ala	Asp	Ile	Glu	Leu	Lys	Ala	Pro			
		340					345					350				
<210> 7																
<211> 1	053															
<212> D	NA															
<213> M	louse															
<400> 7	•															
atggaat	cca	acta	ctcc	at c	catc	tgaa	t gg	atca	gaag	tgg	tggt	tta	tgat	tctacc	: 6	60
atctcca	gag	ttct	gtgg	at c	ctct	caat	g gt	ggtt	gtct	cca	tcac	ttt	cttc	cttggt	: 12	20
gtgctgg	gca	atgg	acta	gt g	attt	gggt	a gc	tgga	ttcc	gga	tgcc	aca	cact	gtcacc	: 18	30
actatct	ggt	atct	gaat	ct a	gcat	tggc	t ga	cttt	tctt	tca	cago	aac	tcta	ccatto	24	łO
cttcttg	ttg	aaat	ggct	at g	aaag	aaaa	a tg	gcct	tttg	gct	ggtt	cct	gtgt	aaatta	a 30)0
gttcaca	ttg	tggt	agat	gt a	aacc	tgtt	t gg	aagt	gtct	tct	tgat	tgc	tctc	attgco	36	30
ttggacc	gct	gcat	ttgt	gt t	ctgc	atcc	a gt	ctgg	gctc	aga	acca	ccg	cact	gtgago	42	20
ctggcta	ıgga	aggt	ggtt	gt t	gggc	cctg	g at	tttt	gcto	tga	ttct	cac	tttg	cccatt	t 4 8	30
tttattt	tct	tgac	tact	gt t	agaa	ttcc	t gg	agga	gatg	tgt	atte	tac	atto	aactt	t 54	10

ggatcctggg ctcaaactga tgaagaaaag ttgaacacag ctatcacttt tgtaacaact

600

agagggatca tcaggttcct tattggtttc agcatgccca tgtcaattgt tgctgtttgc	660
tatggactca ttgctgtcaa gatcaacaga agaaaccttg ttaattccag ccgtccttta	720
cgagtcctta cagcagitgt ggcttccttc tttatctgct ggtttccctt tcagcttgtg	780
gcccttttgg gcacagtctg gtttaaagag acattgctta gtggtagtta taaaattctt	840
gacatgtttg ttaacccaac aagctcattg gcttacttca atagttgtct caatccgatg	900
ctctatgttt tcatgggcca ggactttcgt gagagattta ttcattccct gccttatagt	960
cttgagagag ccctgagtga ggattctggt caaaccagtg attcaagcac cagttctact	1020
tcacctcctg cagacattga gttaaaggcc cca	1053
<210> 8	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 8	
aaacagtcga ccaccatgga atccaactac tccatccatc tg 42	
<210> 9	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 9	
ctttctagat catggggcct ttaactcaat gtc 33	
<210> 10	
<211> 24	
<212> DNA	
<213> Artificial Sequence	

<220>

<223> Primer	
<400> 10	
atctgggtag ctggattccg gatg	24
<210> 11	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 11	
tctttcatga aagtcctggc ccatgaa	27
<210> 12	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 12	
aggaattcta actgtagtca tgaa	24
<210> 13	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 13	
acagttagag ggagcatcag gttc	24
<210> 14	

<211> 43

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 14
                                                      43
ataaagtcga ccaccatgga agccaactat tccatccctc tga
<210> 15
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 15
                                               37
aaatctagat catattgctt ttatatcaat gtttaca
<210> 16
<211> 13
<212> PRT
<213> Human
<400> 16
Met Phe Ala Asp Arg Trp Leu Phe Ser Thr Asn His Lys
                                       10
  1
                   5
 <210> 17
 <211> 15
 <212> PRT
 <213> Porcine
 <400> 17
 Met Thr Asn Ile Arg Lys Ser His Pro Leu Met Lys Ile Ile Asn
                                                            15
                                       10
                    5
   1
 <210> 18
```

```
<211> 16
<212> PRT
<213> Porcine
<400> 18
Met Thr Asn Ile Arg Lys Ser His Pro Leu Met Lys Ile Ile Asn Asn
                                       10
                                                            15
  1
                   5
<210> 19
<211> 15
<212> PRT
<213> Human
<400> 19
Met Thr Pro Met Arg Lys Ile Asn Pro Leu Met Lys Leu Ile Asn
                                                            15
                                       10
  1
                   5
<210> 20
<211> 16
<212> PRT
 <213> Human
 <400> 20
 Met Thr Pro Met Arg Lys Ile Asn Pro Leu Met Lys Leu Ile Asn His
                                                             15
                                        10
   1
                   5
 <210> 21
 <211> 15
 <212> PRT
 <213> Porcine
 <400> 21
 Met Phe Val Asn Arg Trp Leu Tyr Ser Thr Asn His Lys Asp Ile
                                                             15
                                        10
   1
                    5
 <210> 22
 <211> 15
```

<212> PRT

<213> Human

<400> 22

Met Phe Ala Asp Arg Trp Leu Phe Ser Thr Asn His Lys Asp Ile

1

5

10

15

【図面の簡単な説明】

【図1】ホルスコリンで刺激しない状態(Basal)に対し、ホルスコリン(FSK)を1μMおよび図中に表示のブタ抽出液フラクション1~12(Frac.1~12)をホルスコリン(FSK)と同時に添加してインキュベーションし、細胞内cAMP量を比較した結果を示す。上の段は0.05g/well相当の抽出液を、下の段は0.5g/well相当の抽出液を添加した結果を示す。右段はヒトFPRL1-GFPを発現していないmock細胞を、左段はヒトFPRL1-GFPを発現させたCHO細胞を用いた結果を示す。縦軸は細胞内cAMP濃度(pmol/well)を示す。

【図2】ブタ胃からの内因性FPRL1リガンドの逆相カラムdiphenyl 219TP52(Vydac)による最終精製結果を示す。上段はクロマトグラフのパターンを示す。図中の実線は214nmの吸光度および溶出のアセトニトリル濃度を示す。中段は、上段の図において活性が溶出され溶出液を分取した部分の拡大図である。214nmの吸光度と分取したフラクションを示す。また、活性と一致したピークにマークしてある。下段は、中段の図で示された分取した各フラクションにおけるヒト型FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性を示す。

【図3】ブタ内因性FPRL1リガンドP3のマトリックスアシスティッドレーザーデソープションイオン化飛行時間型質量装置によるマススペクトルを示す。

【図4】ブタ内因性FPRL1リガンドP3のエレクトロスプレイイオン化質量分析装置によるマススペクトルを示す。横軸は質量/電荷(m/z)、縦軸はもっとも強いシグナルを100%としたときの相対強度を示す。図中シグナルにラベルされている数値はm/zの値を示す。

- 【図5】m/z 580.6を親イオンとしたMS/MSスペクトルを質量分析 装置付属の解析ソフトMaxEnt3を用いて1価変換したものを示す。C末端 側を含む系列(y系列)の一連のイオンによる解析結果をスペクトル上部に記した。
- 【図6】ブタ内因性FPRL1リガンドP3のエレクトロスプレイイオン化質量分析装置によるマススペクトルを示す。ブタ内因性FPRL1リガンドP3の内部配列分析結果を示す。横軸はアミノ酸残基の順番を、縦軸は各サイクルに出現したフェニルチオヒダントイン(PTH)-アミノ酸の量を、図中に表記したアルファベットはアミノ酸の一文字表記を示す。
- 【図7】ブタ胃からの内因性FPRL1リガンドの逆相カラム μ RPC С2 ℓ С18 SC2. 1/10による最終精製結果を示す。上段はクロマトグラフのパターンを示す。図中の実線は215nmの吸光度および溶出のアセトニトリル 濃度を示す。アセトニトリルによる溶出は $22\sim24\%$ の濃度勾配で行なった。中段は、上段の図において活性が溶出され溶出液を分取した部分の拡大図である。215nmの吸光度と分取したフラクションを示す。また、活性と一致したピークに矢印でマークしてある。下段は、中段の図で示された分取した各フラクションにおけるヒト型FPRL1-GFP発現СHO細胞特異的な細胞内 ϵ AMP 産生抑制活性を示す。
- 【図8】ブタ内因性FPRL1リガンドP1のマトリックスアシスティッドレーザーデソープションイオン化飛行時間型質量装置によるマススペクトルを示す。 横軸は質量/電荷(m/z)、縦軸はもっとも強いシグナルを100%としたときの相対強度を示す。図中シグナルにラベルされている数値は、各シグナルの分子関連イオン(M+H+)のm/zの値を示す。
- 【図9】ブタ内因性FPRL1リガンドP1のエレクトロスプレイイオン化質量 分析装置によるマススペクトルを示す。横軸は質量/電荷(m/z)、縦軸はも っとも強いシグナルを100%としたときの相対強度を示す。
- 【図10】図9の3価分子関連イオン($M+3H^{3+}$)の拡大図を示し、図中シグナルにラベルされている数値はm/zの値を示す。
- 【図11】ブタ内因性FPRL1リガンドP1のエレクトロスプレイイオン化質

ページ: 137/

量分析装置によるMS/MSスペクトルを示す。2価イオンを親イオンとしたMS/MSスペクトルである。

- 【図12】プタ内因性FPRL1リガンドP1の4価イオンを親イオンとしたMS/MSスペクトルを示す。質量分析装置付属の解析ソフトMaxEnt3を用いて1価変換したものである。解析結果をスペクトル上部に記した。
- 【図13】ブタ内因性FPRL1リガンドP1の配列分析結果を示す。
- 【図14】ヒト型FPRL1-GFP発現CHO細胞特異的な細胞内 c A M P 産 生抑制活性を示す。▲は実施例 7 で精製された内因性FPRL1リガンドP1の活性を示す。最終精製標品uRPC C 2 / C 1 8 S C 2 . 1 / 1 0 の f r . 2 4 2 5 由来であり、そのペプチド濃度は、最終精製クロマトの 2 1 5 n m の 吸光度からの推定濃度である。●は、合成したN末端がホルミル化されたブタ型 C y t o c h r o m e B N末端 1 5 アミノ酸を含有する 1 6 アミノ酸ペプチド (f o r m y 1 M T N I R K S H P L M K I I N N) の活性を示す。
- 【図15】ブタ胃からの内因性FPRL1リガンドの逆相カラムdiphenyl 219TP5215(Vydac)による最終精製結果を示す。上段は、クロマトグラフのパターンを示す。図中の実線は214nm(上)および280nm(下)の吸光度を示す。矢印は、精製されたFPRL1リガンドP4のピークを示す。下段は、上段の図で示された分取した各フラクションにおけるヒト型FPRL1-GFP発現CHO細胞特異的な細胞内cAMP産生抑制活性を示す。
- 【図16】ブタ内因性FPRL1リガンドP4のマススペクトルを示す。横軸は質量/電荷(m/z)、縦軸はもっとも強いシグナルを100%としたときの相対強度を示す。3価分子関連イオン(m/z660)とその酸化体イオン(m/z665)が出現している。図中シグナルにラベルされている数値はm/zの値を示す。
- 【図17】ブタ内因性FPRL1リガンドP4の酸化体の3価イオンm/z665.60を親イオンとしたMS/MSスペクトルを、質量分析装置付属の解析ソフトMaxEnt3を用いて1価変換したものである。C末端側を含む系列(y系列)の一連のイオンによる解析結果をスペクトル上部に記した。
 - 【図18】プタ内因性FPRL1リガンドP4のm/z989.88を親イオン

ページ: 138/E

としたMS/MSスペクトルを、質量分析装置付属の解析ソフトMaxEnt3 を用いて1価変換したものである。N末端側を含む系列(b系列)の一連のイオンによる解析結果をスペクトル上部に記した。

【図19】ブタ内因性FPRL1リガンドP4の内部配列分析結果を示す。横軸はアミノ酸残基の順番を、縦軸は各サイクルに出現したフェニルチオヒダントイン (PTH) ーアミノ酸の量を、図中表記したアルファベットはアミノ酸の一文字表記を示す。

【書類名】

図面

【図1】

【図4】

【図6】

Mass (m/z)

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【要約】

【課題】 FPRL1リガンドの提供。

【解決手段】 配列番号:1、配列番号:17または配列番号:21で表わされるアミノ酸配列を含有するFPRL1リガンド、該リガンドとFPRL1を用いるFPRL1アゴニスト/アンタゴニストのスクリーニング方法などを提供する。

【選択図】 なし

特願2003-059073

出願人履歴情報

識別番号

[000002934]

1. 変更年月日

1992年 1月22日

[変更理由]

住所変更

住 所

大阪府大阪市中央区道修町四丁目1番1号

氏 名 武田薬品工業株式会社