Dies ist der Titel der Abschlussarbeit der sich auch über mehrere Zeilen erstrecken kann

Abschlussarbeit

zur Erlangung des akademischen Grades Master of Science (M.Sc.)

an der

Hochschule für Technik und Wirtschaft Berlin Fachbereich Wirtschaftswissenschaften II Studiengang Angewandte Informatik

Prüfer: Max Mustermann
 Prüfer: Max Mustermann

Eingereicht von: Max Mustermann

Matrikelnummer: s0000000 Datum der Abgabe: 25.04.2017

Inhaltsverzeichnis

1	Einleitung	1
2	Finite Differenzen der stationären Gleichung 2.1 Lineare stationäre Gleichung	2
3	Nicht Lineare stationäre Gleichung	4
4	Implizite Einschrittverfahren 4.1 Entwicklung	6
A]	Abbildungsverzeichnis	

1 Einleitung

In dieser Hausarbeit sollen die Grundlagen einer Simulation der Dynamik in neuartigen Perowskit-Solarzellen gelegt werden. Diese Art der Dünnschicht Solarzellen erreicht hohe Wirkungsgerade von über 20% und ist somit für die Forschung von großer Interesse[Prof.Dr.AndreasZeiser.April2021].

2 Finite Differenzen der stationären Gleichung

Im folgendem Kapitel soll die stationäre Verteilung der Ladungsträger bei kontinuierlicher Bestrahlung modelliert werden. Dadurch kann die zeitliche Abhängigkeit vernachlässige werden $(\frac{\partial u}{\partial t} = 0)$

Die allgemeine DGL ist gegeben durch:

$$\frac{\partial u}{\partial t} = D \cdot \frac{\partial^2 u}{\partial z^2} - (k1 + k2 \cdot N_D) \cdot u - k2u^2 + s(t, z)$$
(2.1)

Mit $\frac{\partial u}{\partial t} = 0$ folgt die stationäre Gleichung:

$$D \cdot \frac{du}{dt} - (k_1 + k_2 N_D) \cdot u - k_2 \cdot u^2 = -s(z), \quad 0 < z < d$$
 (2.2)

mit den Randbedingungen:

$$D \cdot \frac{\partial u}{\partial z}(0) = S_L u(0), \quad D \frac{\partial u}{\partial z}(d) = -S_R u(d)$$
 (2.3)

2.1 Lineare stationäre Gleichung

Im folgenden Kapitel soll nur der in u lineare Anteil der stationären, zeitunabhängigen Gleichung (Eq. 2.2) ohne den quadratischen Term $-k_2u^2$ behandelt werden [**Prof.Dr.AndreasZeiser.April**2]

$$D\frac{\partial^2 u}{\partial z^2} - kz = -s(z), \qquad 0 < z < d, \tag{2.4}$$

3 Nicht Lineare stationäre Gleichung

Nichtlineare DGL:

$$D\frac{\partial^2 u}{\partial z^2} - (k_1 + k_2 N_D)u - k_2 u^2 = -s(z)$$
(3.1)

Diskretisierung der DGL:

$$D\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} - k \cdot u_i - k_2 \cdot u_i^2 = z_i$$
(3.2)

Mit den Randbedingung:

$$D \cdot \frac{\partial u}{\partial z}(0) = S_L u(0), \quad D \frac{\partial u}{\partial z}(d) = -S_R u(d)$$
 (3.3)

Und den Approximationen der ersten Ableitung der Randbedingungen:

$$u'(0) \approx \frac{u_1 - u_{-1}}{2h} \quad u'(d) \approx \frac{u_{N+1} - u_{N-1}}{2h}$$
 (3.4)

Damit folgt für die Randbedingung:

$$D \cdot \frac{u_1 - u_{-1}}{2h} = S_L u_0, \quad D \frac{u_{N+1} - u_{N-1}}{2h} = -S_R u_N$$
 (3.5)

umgestellt nach u_{-1}

$$u_{-1} = -\frac{S_L 2h}{D} \cdot u_0 + u_1 \tag{3.6}$$

umgestellt nach u_{N+1}

$$u_{N+1} = -\frac{S_R 2h}{D} \cdot u_N + u_{N-1} \tag{3.7}$$

Damit folgt für die Funktion F(u) = b:

$$F_{0} = \frac{D}{h^{2}}u_{1} - \frac{2D + kh^{2}}{h^{2}}u_{0} + \frac{D}{h^{2}} \cdot \left(-\frac{S_{L}2h}{D} \cdot u_{0} + u_{1}\right) - k_{2}u_{0}^{2}$$

$$\vdots$$

$$F_{i} = \frac{D}{h^{2}}u_{i+1} - \frac{2D + kh^{2}}{h^{2}}u_{i} + \frac{D}{h^{2}} \cdot u_{i-1} - k_{2}u_{i}^{2}$$

$$\vdots$$

$$\vdots$$

$$F_{N} = \frac{D}{h^{2}}\left(-\frac{S_{R}2h}{D} \cdot u_{N} + u_{N-1}\right) - \frac{2D + kh^{2}}{h^{2}}u_{N} + \frac{D}{h^{2}}u_{N-1} - k_{2}u_{N}^{2}$$

Vereinfacht zu :

$$F_{0} = 2 \cdot \frac{D}{h^{2}} u_{1} - \left(\frac{S_{L}2h + 2D + kh^{2}}{h^{2}}\right) u_{0} - k_{2} u_{0}^{2}$$

$$\vdots$$

$$F_{i} = \frac{D}{h^{2}} u_{i+1} - \frac{2D + kh^{2}}{h^{2}} u_{i} + \frac{D}{h^{2}} \cdot u_{i-1} - k_{2} u_{i}^{2}$$

$$\vdots$$

$$F_{N} = -\frac{2D + kh^{2} + S_{R}2h}{h^{2}} u_{N} + 2\frac{D}{h^{2}} u_{N-1} - k_{2} u_{N}^{2}$$

4 Implizite Einschrittverfahren

4.1 Entwicklung

 δ (4.1)

Abbildungsverzeichnis