UPS avril 2017

Corrigé de l'épreuve de mathématiques du concours X-ESPCI-ENS

Question 1.a. Soit $M \in \mathcal{M}_n(\mathbb{C})$. Soit C > 0.

On fait l'hypothèse $||\mathbf{M}|| \leqslant \mathbf{C}$, c'est-à-dire $\sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{||\mathbf{M}x||_1}{||x||_1} \leqslant \mathbf{C}$.

Pour tout x non nul de \mathbb{C}^n , on a donc la majoration $\frac{||\mathbf{M}x||_1}{||x||_1} \leq \mathbf{C}$. On multiplie par $||x||_1$, qui est positif, ce qui donne $||\mathbf{M}x||_1 \leq \mathbf{C}||x||_1$.

Cette inégalité est également valable si x est nul.

Réciproquement, on fait l'hypothèse $\forall x \in \mathbb{C}^n : ||\mathbf{M}x||_1 \leq \mathbf{C}||x||1$.

Pour tout vecteur x non nul de \mathbb{C}^n , on en déduit l'inégalité $\frac{||\mathbf{M}x||_1}{||x||_1} \leqslant \mathbf{C}$ car $||x||_1 > 0$, donc $||\mathbf{M}|| \leqslant \mathbf{C}$.

On a prouvé l'équivalence
$$||\mathbf{M}|| \leq \mathbf{C} \iff \forall x \in \mathbb{C}^n : ||\mathbf{M}x||_1 \leq \mathbf{C}||x||_1$$
.

Au final, remarquons qu'on a prouvé en particulier l'inégalité $||Mx||_1 \le ||M|| \times ||x||_1$ et qu'on possède une méthode pour majorer ||M|| dans le cas général. Ces deux points serviront fréquemment dans ce qui suit.

Question 1.b. $\boxed{1}$ Déjà, la fonction $M \mapsto ||M||$ est à valeurs réelles positives.

2 Soit $M \in \mathcal{M}_n(\mathbb{C})$ tel que ||M|| = 0. À la question précédente, on n'a pas utilisé le caractère strict de l'inégalité C > 0. On peut donc écrire

$$\forall x \in \mathbb{C}^n : ||\mathbf{M}x||_1 \leqslant 0.$$

Par positivité de la norme, on obtient donc $\forall x \in \mathbb{C}^n : ||Mx||_1 = 0$, c'est-à-dire $\forall x \in \mathbb{C}^n : Mx = 0$. Les colonnes de la matrice M sont les produits Me_i , où (e_1, \ldots, e_n) désigne la base canonique de \mathbb{C}^n . Ainsi, les colonnes de M sont nulles donc M est la matrice nulle.

 $\boxed{3}$ Soit $M \in \mathcal{M}_n(\mathbb{C})$. Soit $\lambda \in \mathbb{R}$.

Soit $x \in \mathbb{C}^n$. Exploitons l'homogénéité de la norme $|| \cdot ||_1$.

$$||\lambda \mathbf{M}x||_1 = |\lambda| \times ||\mathbf{M}x||_1 \leqslant |\lambda| \times ||\mathbf{M}|| \times ||x||_1.$$

On en déduit la majoration $||\lambda M|| \le |\lambda| \times ||M||$ d'après 1.a.

Si $\lambda = 0$, on obtient $||\lambda M|| \le 0$ donc $||\lambda M|| = 0 = |\lambda| \times ||M||$.

Si $\lambda \neq 0$, on effectue la substitution $(M, \lambda) \leftarrow (\lambda M, 1/\lambda)$ dans l'inégalité $||\lambda M|| \leq |\lambda| \times ||M||$, pour obtenir $||M|| \leq ||\lambda M||/|\lambda|$, c'est-à-dire $||\lambda M|| \geq |\lambda| \times ||M||$.

On obtient donc $||\lambda M|| = |\lambda| \times ||M||$ dans tous les cas.

Remarque. Ce raisonnement est encore valable si on prend λ dans \mathbb{C} . Ce n'est pas requis par la définition d'une norme mais cette extension est utile plus loin (à la question 8).

4 Soient M et N dans $\mathcal{M}_n(\mathbb{C})$. L'inégalité triangulaire pour la norme $|| \ ||_1$ donne

$$\forall x \in \mathbb{C}^n, \quad ||(M+N)x||_1 \le ||Mx||_1 + ||Nx||_1 \le ||M|| \times ||x||_1 + ||N|| \times ||x||_1.$$

On en déduit l'inégalité $||M + N|| \le ||M|| + ||N||$ par application de 1.a.

On a montré que || || est une norme sur $\mathcal{M}_n(\mathbb{C})$.

Question 2. Soient A et B dans $\mathcal{M}_n(\mathbb{C})$. En appliquant 1.a dans le sens \Rightarrow , on obtient

$$\forall x \in \mathbb{C}^n$$
, $||(AB)x||_1 \le ||A|| \times ||Bx||_1 \le ||A|| \times ||B|| \times ||x||_1$.

En appliquant 1.a dans le sens \Leftarrow , on en déduit l'inégalité $||A \times B|| \le ||A|| \times ||B||$.

Question 3. Posons $S(A) = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} |a_{i,j}| \right)$ et notons j_0 un indice qui réalise ce maximum.

En notant de nouveau (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n , on observe l'égalité

$$Ae_{j_0} = \begin{pmatrix} a_{1,j_0} \\ \vdots \\ a_{n,j_0} \end{pmatrix}$$
 puis $S(A) = ||Ae_{j_0}||_1$.

L'égalité $||e_{j_0}||_1 = 1$ donne alors $S(A) = \frac{||Ae_{j_0}||_1}{||e_{j_0}||_1} \le ||A||$.

Pour l'inégalité réciproque, prenons x quelconque dans \mathbb{C}^n .

$$Ax = A \times \sum_{j=1}^{n} x_j e_j = \sum_{j=1}^{n} x_j \times Ae_j.$$

L'inégalité triangulaire de la norme $|| ||_1$ donne alors

$$||\mathbf{A}x||_1 \le \sum_{k=1}^n |x_j| \times ||\mathbf{A}e_j||_1.$$

Pour tout $j \in [1, n]$, on observe les relations

$$||Ae_j||_1 = \sum_{i=1}^n |a_{i,j}| \le S(A)$$

donc

$$||Ax||_1 \le \sum_{k=1}^n |x_j| \times S(A) = S(A) \times ||x||_1.$$

D'après 1.a, on en déduit la majoration $||A|| \leq S(A)$.

Par double inégalité, on a prouvé l'égalité
$$||\mathbf{A}|| = \max_{1 \leq j \leq n} \left(\sum_{i=1}^{n} |a_{i,j}| \right)$$
.

Question 4. C'est énervant : on nous demande de prouver une propriété du cours.

 $\boxed{1}$ On commence par supposer que la suite $(\mathbf{A}^{(k)})_{k\in\mathbb{N}}$ converge vers la matrice B. Pour tout $k\in\mathbb{N}$, on remarque l'encadrement

$$0 \le ||\mathbf{A}^{(k)} - \mathbf{B}|| \le \sum_{j=1}^{n} \sum_{i=1}^{n} |a_{i,j}^{(k)} - b_{i,j}|.$$

Chaque terme du membre de droite tend vers 0 quand k tend vers $+\infty$ donc, par le théorème des gendarmes, on voit que $||\mathbf{A}^{(k)} - \mathbf{B}||$ tend vers 0 quand k tend vers $+\infty$.

2 Réciproquement, on suppose que $||A^{(k)} - B||$ tend vers 0 quand k tend vers $+\infty$. Soit $(i, j) \in [1, n]^2$. Pour tout $k \in \mathbb{N}$, on observe l'encadrement

$$0 \leqslant \left| a_{i,j}^{(k)} - b_{i,j} \right| \leqslant \sum_{s=1}^{n} \left| a_{s,j}^{(k)} - b_{s,j} \right| \leqslant ||\mathbf{A}^{(k)} - \mathbf{B}||.$$

On en déduit que $a_{i,j}^{(k)}$ tend vers $b_{i,j}$ quand k tend vers $+\infty$. Ainsi, la suite $(A^{(k)})_{k\in\mathbb{N}}$ converge vers la matrice B.

Question 5.a. Le calcul donne

$$\mathbf{P}_{b}^{-1}\mathbf{A}\mathbf{P}_{b} = \begin{pmatrix} a_{1,1} & ba_{1,2} & b^{2}a_{1,3} & \cdots & b^{n-1}a_{1,n} \\ 0 & a_{2,2} & ba_{2,3} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & b^{2}a_{n-2,n} \\ \vdots & & \ddots & \ddots & ba_{n-1,n} \\ 0 & \cdots & \cdots & 0 & a_{n,n} \end{pmatrix}.$$

On en déduit que $P_b^{-1}AP_b$ tend vers la matrice $diag(a_{1,1},\ldots,a_{n,n})$ quand b tend vers 0.

Question 5.b. La norme $|| \ ||$ est une fonction continue de $\mathcal{M}_n(\mathbb{C})$ dans \mathbb{R} (car elle est 1-lipschitzienne). On en déduit que $||P_b^{-1}AP_b||$ tend vers $||\operatorname{diag}(a_{1,1},\ldots,a_{n,n})||$ quand b tend vers 0. Cette limite, notée ℓ , est égale à $\max(|a_{i,j}|; 1 \leq j \leq n)$.

Cette limite est strictement inférieure à 1 par hypothèse. Notons $r=(1+\ell)/2$, ce qui est dans $]\ell,1[$. D'après la définition de la limite, il existe $b_0>0$ tel que pour tout b dans $]0,b_0]$, le nombre $||P_b^{-1}AP_b||$ soit majoré par r. On obtient donc en particulier l'inégalité $||P_{b_0}^{-1}AP_{b_0}||<1$.

Question 5.c. Gardons la notation b de la question précédente. Une itération de l'inégalité de la question 2 donne

$$\forall k \in \mathbb{N}^*, \quad 0 \leqslant ||(\mathbf{P}_b^{-1} \mathbf{A} \mathbf{P}_b)^k|| \leqslant ||\mathbf{P}_b^{-1} \mathbf{A} \mathbf{P}_b||^k.$$

L'inégalité $||\mathbf{P}_b^{-1}\mathbf{A}\mathbf{P}_b|| < 1$ donne que $||\mathbf{P}_b^{-1}\mathbf{A}\mathbf{P}_b||^k$ tend vers 0 quand k tend vers $+\infty$.

Rappelons l'identité $(P_b^{-1}AP_b)^k=P_b^{-1}A^kP_b$. L'inégalité de la question 2 donne maintenant

$$0\leqslant ||\mathbf{A}^k||\leqslant ||\mathbf{P}_b||\times ||(\mathbf{P}_b^{-1}\mathbf{A}\mathbf{P}_b)^k||\times ||\mathbf{P}_b^{-1}||,$$

si bien que $||\mathbf{A}^k||$ tend également vers 0.

La suite de matrices $(\mathbf{A}^k)_{k\in\mathbb{N}^*}$ converge vers la matrice nulle.

Question 6. Pour la matrice $A_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, on trouve $Sp(A_1) = \{0; 1\}$ donc $\rho(A_1) = 1$.

Pour la matrice $A_2=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, on trouve $Sp(A_2)=\{0\}$ donc $\rho(A_2)=0.$

Pour la matrice $A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, on trouve $Sp(A_3) = \{0; 1\}$ donc $\rho(A_3) = 1$.

Pour la matrice $A_4=\begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}$, on trouve $Sp(A_4)=\{i\sqrt{2};-i\sqrt{2}\}$ donc $\rho(A_4)=\sqrt{2}.$

Pour la matrice $A_5 = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$, on trouve $Sp(A_5) = \{1; 4\}$ donc $\rho(A_5) = 4$.

Question 7. La propriété (i) est vraie en raison de l'égalité

$$\operatorname{Sp}(\mu A) = \{ \mu x ; x \in \operatorname{Sp}(A) \}.$$

Pour prouver cette égalité, on remarque pour commencer l'égalité $Sp(0 \times A) = \{0\}$ puis, si $\mu \neq 0$, on remarque l'égalité

$$\operatorname{Ker}(\mu A - \mu x I_n) = \operatorname{Ker}(A - x I_n),$$
 qui donne $\mu x \in \operatorname{Sp}(\mu A) \iff x \in \operatorname{Sp}(A).$

La propriété (ii) est fausse. On peut prendre $A = A_2$ et $B = {}^t\!A_2$, ce qui donne $A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Dans ce cas, on a donc $\rho(A+B) = 1$ et $\rho(A) + \rho(B) = 0$ donc $\rho(A+B) > \rho(A) + \rho(B)$.

La propriété (iii) est fausse. On peut prendre $A = A_2$ et $B = {}^t A_2$, ce qui donne $AB = A_1$. Dans ce cas, on a donc $\rho(AB) = 1$ et $\rho(A)\rho(B) = 0$ donc $\rho(AB) > \rho(A)\rho(B)$.

Les propriétés (iv) et (v) sont vraies car les matrices P⁻¹AP et ^tA ont le même spectre que A.

Question 8. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soit λ une valeur propre de A telle que $|\lambda| = \rho(A)$. Soit x un vecteur propre de A associé à la valeur propre λ .

Les relations $Ax = \lambda x$ et $x \neq 0$ donnent

$$|\lambda| = \frac{||\mathbf{A}x||_1}{||x||_1}$$

donc $\rho(A) \leq |A|$.

Question 9. On fait l'hypothèse $\rho(A) < 1$. La matrice A est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$ (car son polynôme caractéristique est scindé sur \mathbb{C}) donc il existe une matrice P de $GL_n(\mathbb{C})$ telle que la matrice $T = P^{-1}AP$ soit triangulaire supérieure. Les coefficients diagonaux de T sont les valeurs propres de A donc leurs modules sont strictement inférieurs à 1.

La matrice T vérifie donc les hypothèses de la question 5, si bien que la suite de matrices $(T^k)_{k\in\mathbb{N}^*}$ converge vers la matrice nulle.

Par le même raisonnement qu'en 5.c, on en déduit que la suite $(A^k)_{k\in\mathbb{N}^*}$ converge vers la matrice nulle.

Question 10.a. On reprend le raisonnement de la question 8 : soit $\lambda \in \operatorname{Sp}(A)$ telle que $|\lambda| = \rho(A)$. Soit x un vecteur propre de A associé à la valeur propre λ .

Soit $k \in \mathbb{N}^*$. On trouve

$$A^k x = A^{k-1} \lambda x = A^{k-2} \lambda^2 x = \dots = \lambda^k x$$

puis, le vecteur x étant non nul, on obtient $|\lambda^k| = ||\mathbf{A}^k x||_1/||x||_1$ donc $\rho(\mathbf{A})^k \leq ||\mathbf{A}^k||$.

Question 10.b. 1 Soit $\alpha \in]0, \rho(A)]$. Pour tout $k \in \mathbb{N}^*$, on observe alors l'inégalité

$$\left| \left| \left(\frac{\mathbf{A}}{\alpha} \right)^k \right| \right| = \frac{||\mathbf{A}||^k}{\alpha^k} \geqslant \left(\frac{\rho(\mathbf{A})}{\alpha} \right)^k \geqslant 1$$

d'après 10.a.

On en déduit que $||(A/\alpha)^k||$ ne tend vers pas 0 quand k tend vers $+\infty$ donc α n'est pas dans E_A .

2 Soit $\alpha \in]\rho(A), +\infty[$. L'identité 7.i donne $\rho(A/\alpha) = \rho(A)/\alpha < 1$ donc la suite $((A/\alpha)^k)_{k \in \mathbb{N}^*}$ converge vers la matrice nulle d'après le résultat de la question 9, si bien que α est dans E_A .

On a prouvé l'égalité
$$E_A =]\rho(A), +\infty[.$$

Question 11. Pour tout $k \in \mathbb{N}^*$, on connaît l'inégalité $\rho(A) \leq ||A^k||^{1/k}$, qui découle de 10.a.

Soit $\varepsilon > 0$. D'après 10.b, la suite de matrices de terme général $\left(\frac{A}{\rho(A) + \varepsilon}\right)^k$ tend vers la matrice nulle. Il existe donc un entier $k_{\varepsilon} \ge 1$ tel que

$$\forall k \geqslant k_{\varepsilon}, \quad \left| \left| \frac{\mathbf{A}^k}{(\rho(\mathbf{A}) + \varepsilon)^k} \right| \right| \leqslant 1,$$

ce qui donne ensuite $||\mathbf{A}^k||^{1/k} \leqslant \rho(\mathbf{A}) + \varepsilon$.

Récapitulons:

$$\forall \varepsilon > 0, \quad \exists k_{\varepsilon} \in \mathbb{N}^*, \quad \forall k \geqslant k_{\varepsilon}, \quad \rho(A) \leqslant ||A^k||^{1/k} \leqslant \rho(A) + \varepsilon.$$

On a prouvé que la suite $(||\mathbf{A}^k||^{1/k})_{k \in \mathbb{N}^*}$ converge vers $\rho(\mathbf{A})$.

Question 12. Introduisons les coefficients des matrices en présence

$$\mathbf{A}^k = (a_{i,j}^{(k)})_{1 \leqslant i,j \leqslant n} \qquad \text{et} \qquad \mathbf{A}_+^k = (b_{i,j}^{(k)})_{1 \leqslant i,j \leqslant n}.$$

Pour tout k dans \mathbb{N}^* , notons \mathbf{I}_k l'énoncé

$$\forall (i,j) \in [1,n]^2, \quad \left| a_{i,j}^{(k)} \right| \leqslant b_{i,j}^{(k)}.$$

L'énoncé I_1 est vrai par définition des $b_{i,j}$.

Soit $k \in \mathbb{N}^*$. On suppose que l'énoncé I_k est vrai. Soit (i, j) un couple d'indices entre 1 et n. La formule du produit matriciel donne

$$a_{i,j}^{(k+1)} = \sum_{\ell=1}^{n} a_{i,\ell} a_{\ell,j}^{(k)}.$$

On applique l'inégalité triangulaire puis on utilise l'hypothèse I_k .

$$\left| a_{i,j}^{(k+1)} \right| \leqslant \sum_{ell=1}^{n} \underbrace{\left| a_{i,\ell} \right|}_{=b_{i,\ell}} \underbrace{\left| a_{\ell,j}^{(k)} \right|}_{\leqslant b_{\ell,j}^{(k)}} \leqslant \sum_{\ell=1}^{n} b_{i,\ell} b_{\ell,j}^{(k)} = b_{i,j}^{(k+1)}.$$

L'énoncé I_{k+1} est prouvé.

Par récurrence, l'énoncé I_k est vrai pour tout $k \in \mathbb{N}^*$.

Prenons maintenant k quelconque dans \mathbb{N}^* et considérons un indice j tel que $||\mathbf{A}^k|| = \sum_{i=1}^n \left| a_{i,j}^{(k)} \right|$. L'énoncé \mathbf{I}_k donne

$$||\mathbf{A}^k|| \le \sum_{i=1}^n b_{i,j}^{(k)} \le ||\mathbf{A}_+^k||$$
 puis $||\mathbf{A}^k||^{1/k} \le ||\mathbf{A}_+^k||^{1/k}$.

En faisant tendre k vers $+\infty$, on obtient l'inégalité $\rho(A) \leq \rho(A_+)$.

Question 13. Encore un raisonnement par récurrence. Pour tout entier $k \ge 2$, notons J_k l'énoncé « Pour tout (z_1, \ldots, z_n) de \mathbb{C}^n qui vérifie l'égalité $|z_1 + \cdots + z_n| = |z_1| + \cdots + |z_n|$, le vecteur (z_1, \ldots, z_n) est colinéaire à $(|z_1|, \ldots, |z_n|)$. »

Soit $(z_1, z_2) \in \mathbb{C}^2$ tel que $|z_1 + z_2| = |z_1| + |z_2|$. Notons $r_1 = |z_1|$ et $r_2 = |z_2|$ et introduisons θ_1 et θ_2 dans \mathbb{R} tels que

$$z_1 = r_1 e^{i\theta_1}$$
 et $z_2 = r_2 e^{i\theta_2}$.

Le calcul donne $|z_1 + z_2|^2 = r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_1 - \theta_2)$ et $(|z_1| + |z_2|)^2 = r_1^2 + r_2^2 + 2r_1r_2$. On en déduit que le produit $r_1r_2(1 - \cos(\theta_1 - \theta_2)) = 0$ est nul.

Si $r_1 = 0$, on a alors $(z_1, z_2) = e^{i\theta_2}(|z_1|, |z_2|)$.

Si $r_2 = 0$, on a alors $(z_1, z_2) = e^{i\theta_1}(|z_1|, |z_2|)$.

Si $\cos(\theta_1 - \theta_2) = 0$, alors θ_1 et θ_2 sont congrus modulo 2π donc $e^{i\theta_1} = e^{i\theta_2}$ donc $(z_1, z_2) = e^{i\theta_1}(|z_1|, |z_2|)$.

L'énoncé J_2 est prouvé.

Soit $k \ge 2$ pour lequel J_k est vrai. Prenons (z_1, \ldots, z_{n+1}) tel que $|z_1 + \cdots + z_{k+1}| = |z_1| + \cdots + |z_{k+1}|$.

Supposons dans un premier temps que z_{k+1} est nul, ce qui donne $|z_1 + \cdots + z_k| = |z_1| + \cdots + |z_k|$. L'hypothèse J_k donne alors l'existence de $\lambda \in \mathbb{C}$ tel que $(z_1, \ldots, z_k) = \lambda(|z_1|, \ldots, |z_k|)$. La nullité de z_{k+1} donne alors $(z_1, \ldots, z_{k+1}) = \lambda(|z_1|, \ldots, |z_{k+1}|)$.

Ce raisonnement se généralise au cas où au moins un des z_i est nul.

Supposons maintenant que tous les z_i sont non nuls.

L'inégalité triangulaire donne

$$|z_1 + \dots + z_k + z_{k+1}| \le |z_1 + \dots + z_k| + |z_{k+1}| \le |z_1| + \dots + |z_k| + |z_{k+1}|.$$

Ces trois nombres sont donc égaux, ce qui donne en particulier

$$|z_1 + \dots + z_k| + |z_{k+1}| = |z_1| + \dots + |z_k| + |z_{k+1}|$$
 donc $|z_1 + \dots + z_k| = |z_1| + \dots + |z_k|$.

L'hypothèse J_k permet d'en déduire qu'il existe $\lambda \in \mathbb{C}$ tel que $(z_1, \ldots, z_k) = \lambda(|z_1|, \ldots, |z_k|)$.

On peut aussi organiser l'inégalité triangulaire sous la forme

$$|z_1 + z_2 + \dots + z_{k+1}| \le |z_1| + |z_2 + \dots + z_{k+1}| \le |z_1| + |z_2| + \dots + |z_{k+1}|$$

et en déduire l'égalité $|z_2 + \ldots + z_{k+1}| = |z_2| + \cdots + |z_{k+1}|$. L'hypothèse J_k permet d'en déduire qu'il existe un $\mu \in \mathbb{C}$ tel que $(z_2, \ldots, z_{k+1}) = \mu(|z_2|, \ldots, |z_{k+1}|)$.

Le fait que z_2 soit non nul donne $\lambda = z_2/|z_2| = \mu$ donc finalement $(z_1, \ldots, z_{k+1}) = \lambda(|z_1|, \ldots, |z_{k+1}|)$.

L'énoncé J_{k+1} est prouvé. Par récurrence, l'énoncé J_k est vrai pour tout entier $k \ge 2$.

Question 14. Le produit ${}^{t}yAx$ s'écrit de deux manières

$${}^t y A x = {}^t y \lambda x = \lambda {}^t y x$$
 et ${}^t y A x = {}^t ({}^t A y) x = {}^t (\mu y) x = \mu {}^t y x.$

On en tire l'égalité $(\lambda - \mu)^t yx = 0$ puis t yx = 0 car $\lambda \neq \mu$. On remarque enfin l'égalité t yx = t xy, qui donne finalement t xy = 0.

Question 15.a. La récurrence est déjà initialisée par l'hypothèse $Aw \ge \mu w$.

Remarquons pour plus tard que le produit de deux matrices positives est une matrice positive. Idem avec une somme.

Soit $k \in \mathbb{N}^*$ tel que $A^k w \ge \mu^k w$. La colonne $A^k w - \mu^k w$ est positive et la matrice A est positive donc la colonne $A^{k+1}w - \mu^k Aw$ est positive. De même, la colonne $\mu^k (Aw - \mu w)$ est positive.

Par somme, la colonne $A^{k+1}w - \mu^{k+1}w$ est positive, ce qui donne $A^{k+1} \geqslant \mu^{k+1}w$.

Par récurrence, l'inégalité $A^k w \ge \mu^k w$ est valable pour tout $k \in \mathbb{N}^*$.

Les vecteurs en présence sont à coefficients positifs. On en déduit l'inégalité $||A^k w||_1 \ge \mu^k ||w||_1$ puis

$$\frac{||\mathbf{A}^k w||_1}{||w||_1} \geqslant \mu^k$$
 puis $||\mathbf{A}^k|| \geqslant \mu^k$ et $||\mathbf{A}^k||^{1/k} \geqslant \mu$,

ce qui donne $\rho(A) \ge \mu$ en faisant tendre k vers $+\infty$ (question 11).

Question 15.b. L'hypothèse $Aw > \mu w$ s'écrit

$$(Aw)_1 > \mu w_1 \quad \dots \quad (Aw)_n > \mu w_n.$$

Notons λ le plus petit des nombres $(Aw)_i/w_i$ où i décrit l'ensemble (non vide) des indices tels que $w_i > 0$. On a alors $Aw \ge \lambda w$ et $\lambda > \mu$.

Le résultat de la question précédente donne $\rho(A) \ge \lambda$ donc $\rho(A) > \mu$.

Question 15.c. Soit un indice ℓ distinct de k. Le calcul donne

$$(\mathbf{A}w')_{\ell} - \mu w'_{\ell} = \underbrace{\sum_{j=1}^{n} a_{\ell,j} w_j - \mu w_{\ell}}_{\geqslant 0} + \underbrace{a_{\ell,k} \varepsilon}_{\geqslant 0} > 0.$$

Il reste un coefficient de $Aw' - \mu w'$ à étudier

$$(\mathbf{A}w')_k - \mu w'_k = \underbrace{\sum_{j=1}^n a_{k,j} w_j - \mu w_k}_{\text{noté } x_k} - (\mu - a_{k,k}) \varepsilon.$$

Le nombre x_k vaut $(Aw)_k - w_k$. Il est donc strictement positif, ce qui permet de choisir $\varepsilon > 0$ de sorte que $x_k - (\mu - a_{k,k})\varepsilon > 0$, comme précisé ci-dessous.

Si $\mu - a_{k,k} \leq 0$, il suffit de prendre $\varepsilon = 1$.

Si $\mu - a_{k,k} > 0$, il suffit de prendre $\varepsilon = x_k/(2(\mu - a_{k,k}))$.

Pour un tel choix de ε , on a alors $Aw' > \mu w'$ et w' est un vecteur positif non nul donc $\rho(A) > \mu$ d'après 15.b.

Question 16.a. Soit $i \in [1, n]$. L'égalité $(Ax)_i = \lambda x_i$ s'écrit

$$\sum_{i=1}^{n} a_{i,j} x_j = \lambda x_i.$$

On applique l'inégalité triangulaire

$$\sum_{j=1}^{n} |a_{i,j}x_j| \geqslant |\lambda| \times |x_i| \qquad \text{c'est-\`a-dire} \qquad \sum_{j=1}^{n} a_{i,j}(v_0)_j \geqslant \rho(\mathbf{A})(v_0)_i.$$

C'est vrai pour tout indice i donc $Av_0 \ge \rho(A)v_0$.

Si on suppose que cette inégalité n'est pas une égalité alors on est dans le cadre des hypothèses de la question 15.c avec $\mu = \rho(A)$ et $w = v_0$ donc $\rho(A) > \rho(A)$, ce qui est absurde.

Cette absurdité prouve l'égalité $Av_0 = \rho(A)v_0$.

Question 16.b. Soit k un indice tel que $x_k \neq 0$. On obtient alors les relations

$$\rho(\mathbf{A}) = \frac{(\mathbf{A}v_0)_k}{(v_0)_k} = \frac{1}{|x_k|} \sum_{j=1}^n a_{k,j} |x_j| \geqslant a_{k,k} > 0.$$

Soit $i \in [1, n]$. On a alors

$$(v_0)_i = \frac{(Av_0)_i}{\rho(A)} = \frac{1}{\rho(A)} \sum_{i=1}^n a_{i,j} |x_j| \geqslant \frac{1}{\rho(A)} a_{i,k} |x_k| > 0.$$

Toutes les coordonnées de v_0 sont strictement positives.

Question 16.c. L'inégalité triangulaire écrite à la question 16.a est finalement une égalité. En particulier, on a

$$\left| \sum_{j=1}^{n} a_{1,j} x_j \right| = \sum_{j=1}^{n} |a_{i,j} x_j|.$$

Le cas d'égalité de la question 13 donne donc l'existence de $\mu \in \mathbb{C}$ tel que

$$(a_{1,1}x_1,\ldots,a_{1,n}x_n)=\mu(a_{1,1}|x_1|,\ldots,a_{1,n}|x_n|).$$

Les $a_{1,j}$ étant tous non nuls, il vient

$$(x_1,\ldots,x_n) = \mu(|x_1|,\ldots,|x_n|).$$

Ainsi, le vecteur x est colinéaire à v_0 . Ces vecteurs sont donc associés à la même valeur propre. Cela prouve l'égalité $\lambda = \rho(A)$.

Question 17.a. Soit $x \in F$. Le calcul donne

$${}^{t}(Ax)w_{0} = {}^{t}x {}^{t}Aw_{0} = \rho(A) {}^{t}xw_{0} = 0$$

donc Ax appartient à F. Le sous-espace F est donc stable par φ_A .

Un autre calcul donne ${}^tv_0w_0 = \sum_{i=1}^n (v_0)_i(w_0)_i > 0$ donc v_0 n'est pas dans F. La droite $\mathbb{C}v_0$ et F sont donc en somme directe.

Le sous-espace F est le noyau de $\varphi: x \mapsto {}^t x w_0$, application linéaire de \mathbb{C}^n dans \mathbb{C} . Ce n'est pas l'application nulle donc son rang vaut au moins 1; son image est incluse dans \mathbb{C} et de dimension au moins 1 donc son image est \mathbb{C} . La formule du rang donne donc dim(F) = n - 1.

On en déduit l'égalité $\dim(F) + \dim(\mathbb{C}v_0) = \dim(\mathbb{C}^n)$. La somme de F et $\mathbb{C}v_0$ étant directe, on en déduit que ces deux sous-espaces sont supplémentaires dans \mathbb{C}^n .

Question 17.b. Soit μ une valeur propre de A telle que $\mu \neq \rho(A)$. Soit v un vecteur propre associé. Le résultat de la question 14 donne ${}^t\!vw_0 = 0$ donc $v \in F$.

Supposons que v ait tous ses coefficients réels et positifs (l'un d'entre eux au moins est alors strictement positifs). On obtient alors ${}^t\!v w_0 > 0$, ce qui est contradictoire.

Un tel vecteur propre ne peut donc être associé qu'à la valeur propre $\rho(A)$: l'énoncé (iii) est démontré.

Question 18.a. Soit (v_2, \ldots, v_n) une base de F. La famille $\mathcal{V} = (v_0, v_2, \ldots, v_n)$ est alors une base de \mathbb{C}^n car $\mathbb{C}v_0$ et F sont supplémentaires. La matrice de φ_A relativement à cette base s'écrit

$$\begin{pmatrix} \rho(A) & 0 \\ 0 & B \end{pmatrix},$$

où B est la matrice de ψ relativement à la base (v_2, \dots, v_n) de F, d'où la factorisation $\chi_A = (X - \rho(A))\chi_{\psi}$.

Aucun élément de F n'est à coordonnées strictement positives donc $\rho(A)$ n'est pas une valeur propre de ψ . Or les autres valeurs propres de A ont un module strictement inférieur à $\rho(A)$ donc les racines de χ_{ψ} ont un module strictement inférieur à $\rho(A)$.

On en déduit que $\rho(A)$ est une racine de multiplicité 1 de χ_A .

On connaît l'encadrement $1 \leq \dim(\text{Ker}(A - \rho(A)I_n)) \leq \text{mult}(\rho(A), A) = 1$. On en déduit que l'espace propre de A relatif à la valeur propre $\rho(A)$ est de dimension 1 : c'est la droite dirigée par v_0 .

Question 18.b. Le raisonnement de la question précédente donne $\rho(\psi) < \rho(A)$ donc $\rho(\psi/\rho(A)) < 1$ en exploitant 7.i.

Le résultat de la question 9 permet d'en déduire que la suite de terme général $(\psi/\rho(A))^k$ converge vers l'endomorphisme nul de F.

Soit $x \in F$. L'application linéaire $f \mapsto f(x)$, définie de $\mathcal{L}(F)$ vers F, est continue donc la suite de vecteurs de terme général $\psi/\rho(A)$ ^k(x) converge vers le vecteur nul de F.

En d'autres termes, la suite de vecteurs $(A^k x/\rho(A)^k)_{k\geqslant 1}$ converge vers le vecteur nul.

Question 18.c. Le vecteur x admet une décomposition (unique) sous la forme

$$x = x_1 + x_2, \quad x_1 \in \mathcal{F}, \quad x_2 \in \mathbb{C}v_0.$$

Notons α le nombre complexe tel que $x_2 = \lambda v_0$. On obtient alors

$${}^{t}xw_0 = \underbrace{{}^{t}x_1w_0}_{=0} + \lambda \underbrace{{}^{t}v_0w_0}_{>0} \quad \text{donc} \quad \lambda = \frac{{}^{t}xw_0}{{}^{t}v_0w_0}.$$

Soit $k \in \mathbb{N}^*$. Le calcul donne

$$\frac{\mathbf{A}^k x}{\rho(\mathbf{A})^k} = \frac{\mathbf{A}^k x_1}{\rho(\mathbf{A})^k} + \frac{t_x w_0}{t_{v_0} w_0} v_0.$$

Quand k tend vers $+\infty$, on obtient pour limite le vecteur $\frac{t_x w_0}{t_{v_0} w_0} v_0$, qui est le projeté de x sur $\mathbb{C}v_0$ parallèlement à F.

Le fait que x soit positif et non nul donne $\frac{t_x w_0}{t_{v_0} w_0} > 0$, ce qui achève de démontrer (iv).