A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 7EC	Bookmark	Show all steps: ON
-------------------------	----------	--------------------

Problem

Let p be a prime number, and ω a primitive pth root of unity in the field F.

Conclude: If $x^p - a$ is *not* irreducible in F[x], it has a root (namely, $b^s a^t$) in F.

We have proved: x^p – a either has a root in. F or is irreducible over F.

Step-by-step solution

Step 1 of 4

Here, objective is to prove $x^p - a$ has a root $b^s a^t$ in F.

Consider $x^p - a$ is not irreducible in F(x)

Comment

Step 2 of 4

Consider the polynomial $\chi^p - a$.

The root of above polynomial is a primitive p^{th} root of unity

$$x^p - a = 0$$

$$x = \sqrt[p]{a} \omega$$

Then, the root $d = \sqrt[p]{a}$, ω is the p^{th} root of unity.

Comment

Step 3 of 4

Consider the polynomial $x^p - a \in F(x)$

P is a prime and $x^p - a$ is reducible in F(x)

Let us assume d_1, d_2, \dots, d_p are the roots of $\chi^p - a$

Then,

$$x^{p} - a = (x - d_{1})(x - d_{2}).....(x - d_{p})$$

p(x) is equal to the product of m number of these factors.

$$p(x) = (x - d_1)(x - d_2)....(x - d_m)$$
. Since, degree $p(x) = m$

Comment

Step 4 of 4

Let the Constant term of above equation is b,

Which is the product of d_1, d_2, \dots, d_m

$$b = (d_1 d_2 d_m)$$

$$b = \sqrt[p]{a} \sqrt[p]{a}$$

$$b = \omega^k (\sqrt[p]{a})^m$$

$$b = \omega^k d^m$$

$$b = (\sqrt[p]{a})^m \qquad (\because \omega^k = 1)$$

$$b^p = a^m$$

$$b^{sp} = a^{sm}$$
Consider $(b^s a^t)^p = (b^{sp} a^{tp})$

$$= (a^{sm} a^{tp})$$

$$= a^{sm+tp}$$

$$= a \qquad (\because sm + tp = 1)$$

Then, $b^s a^t = \sqrt[p]{a}$

Hence, $x^p - a$ has a root $b^s a^t$ in F.

Comment