Tutorial 6: Functional Dependency & Normalization (Solutions) CS3402 Database Systems

- Examine the Branch table shown below.
- a) Why this table is not in 1NF?
- b) Describe and illustrate the process of normalizing the data shown in this table to 3NF.

BranchNo	BranchAddress	TelNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618, 503-555-2727,
		503-555-6534
B002	City Center Plaza, Seattle, WA 98122	206-555-6756, 206-555-8836
B003	14 – 8th Avenue, New York, NY 10012	212-371-3000
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131, 206-555-4112

Question 1 (Answer)

- a) TelNo is an attribute with atomic values, but with multi-values. Thus, the table is NOT in 1NF.
- b) Create another relation specifically for TelNo with BranchNo as a foreign key.

Branch

<u>BranchNo</u>	BranchAddress
B001	8 Jefferson Way, Portland, OR 97201
B002	City Center Plaza, Seattle, WA 98122
B003	14 – 8th Avenue, New York, NY
	10012
B004	16 – 14th Avenue, Seattle, WA 98128

BranchTel

BranchNo	<u>TelNo</u>
B001	503-555-3618
B001	503-555-2727
B001	503-555-6534
B002	206-555-6756
B002	206-555-8836
B003	212-371-3000
B004	206-555-3131
B004	206-555-4112

- Examine the StaffBranchAllocation table shown below.
 - {StaffNo, BranchNo} is the primary key.
 - FDs: StaffNo → {Name, Position} and BranchNo → BranchAddress
- a) Why this table is not in 2NF?
- b) Describe and illustrate the process of normalizing the data shown in this table to 3NF.

StaffNo	<u>BranchNo</u>	BranchAddress	Name	Position	HoursPerWeek
S4555	B002	City Center Plaza, Seattle, WA 98122	Ellen Layman	Assistant	16
S4555	B004	16 - 14th Avenue, Seattle, WA 98128	Ellen Layman	Assistant	9
S4612	B002	City Center Plaza, Seattle, WA 98122	Dave Sinclair	Assistant	14
S4612	B004	16 – 14th Avenue, Seattle, WA 98128	Dave Sinclair	Assistant	10

Question 2 (Answer)

- a) The primary key of StaffBranchAllocation table is {Staff No, BranchNo}. StaffNo → {Name, Position} and BranchNo → BranchAddress are not fully functional dependencies. The non-key attributes are not fully dependent on the key. Thus, the table is NOT in 2NF.
- b) Remove BranchAddress, Name, Position from StaffBranchAllocation relation to capture the partial functional dependencies separately.

Branch

BranchNo	BranchAddress
B002	City Center Plaza, Seattle, WA 98122
	Seattle, WA 98122
B004	16 – 14th Avenue,
	Seattle, WA 98128
	·

Staff

StaffNo	Name	Position
S4555	Ellen	Assistant
	Layman	
S4612	Dave	Assistant
	Sinclair	

StaffBranchAllocation

<u>StaffNo</u>	<u>BranchNo</u>	HoursPerWeek
S4555	B002	16
S4555	B004	9
S4612	B002	14
S4612	B004	10

- Examine the **BranchManager** table shown below.
 - BranchNo is the primary key
 - FD: MgrStaffNo → MgrName
- a) Why this table is not in 3NF?
- b) Describe and illustrate the process of normalizing the data shown in this table to 3NF.

<u>BranchNo</u>	BranchAddress	TelNo	MgrStaffNo	MgrName
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618	S1500	Tom Daniels
B002	City Center Plaza, Seattle, WA 98122	206-555-6756	S0010	Mary Martinez
B003	14 – 8th Avenue, New York, NY 10012	212-371-3000	S0145	Art Peters
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131	S2250	Sally Stern

Question 3 (Answer)

- a) There exists a non-key attribute transitively dependent on the key, i.e.,
 MgrName depends on MgrStaffNo and MgrStaffNo depends on
 BranchNo, i.e., BranchNo → MgrStaffNo and MgrStaffNo → MgrName
- b) Create another relation which specifically captures the dependency MgrStaffNo → MgrName

Branch

<u>BranchNo</u>	BranchAddress	TelNo	MgrStaffNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618	S1500
B002	City Center Plaza, Seattle, WA 98122	206-555-6756	S0010
B003	14 – 8th Avenue, New York, NY 10012	212-371-3000	S0145
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131	S2250

ManagerStaff

MgrStaffNo	MgrName
S1500	Tom Daniels
S0010	Mary Martinez
S0145	Art Peters
S2250	Sally Stern

- Examine the table shown below and the set of functional dependency on its attributes:
 - CourseRmAlloc (CourseId, CourseName, Year, Lecturer, Enrollment, RoomId, RoomCapacity, Day, Time)
- a) Find all candidate keys of this table.
- b) Decompose this table into a design into BCNF.

FDs:

- 1. CourseId → CourseName
- 2. CourseName → Courseld
- 3. $\{Courseld, Year\} \rightarrow Lecturer$
- 4. {Courseld, Year} → Enrollment
- 5. RoomId → RoomCapacity
- 6. {Roomld, Year, Day, Time} → Courseld
- 7. {Courseld, Year, Day, Time} → Roomld

Question 4 (Answer) (1/6)

- a) There are three candidate keys in this table (based on their closure of attribute sets):
 - Year, Day, Time, Courseld
 - Year, Day, Time, CourseName
 - Year, Day, Time, Roomld

Question 4(a) (Answer) (2/6)

- R={CourseId, CourseName, Year, Lecturer, Enrollment, RoomId, RoomCapacity, Day, Time}
- X={Courseld}

FDs:

- 1. CourseId → CourseName
- 2. CourseName → Courseld
- 3. {Courseld, Year} → Lecturer
- 4. {Courseld, Year} → Enrollment
- 5. RoomId → RoomCapacity
- 6. {Roomld, Year, Day, Time} → Courseld
- 7. {Courseld, Year, Day, Time} → Roomld

	oldX+ (Before)	FD	X+ (After)	$X^+ = oldX^+$?
1st Iteration	{Courseld}	CourseId → CourseName	{CourseId, CourseName}	False
2 nd Iteration	{CourseId, CourseName}	$CourseName \to CourseId$	{CourseId, CourseName}	True

• X⁺ = {CourseId, CourseName} (Since X⁺ does not include all the attributes in R, X={CourseId} is not a candidate key.)

Question 4(a) (Answer) (3/6)

FDs:

- CourseId → CourseName
- CourseName → Courseld
- {Courseld, Year} → Lecturer
- $\{Courseld, Year\} \rightarrow Enrollment$
- RoomId → RoomCapacity {RoomId, Year, Day, Time} → CourseId
- {Courseld, Year, Day, Time} → Roomld
- R={Courseld, CourseName, Year, Lecturer, Enrollment, RoomId, RoomCapacity, Day, Time}
- X={Year, Day, Time, RoomId}

	oldX+ (Before)	FD	X+ (After)	X+ = oldX+?
1st Iteration	{Year, Day, Time, Roomld}	$\begin{array}{l} RoomId \to RoomCapacity \\ \{RoomId,Year,Day,Time\} \to \\ CourseId \end{array}$	{Year, Day, Time, RoomId, RoomCapacity, CourseId}	False
2 nd Iteration	{Year, Day, Time, RoomId, RoomCapacity, CourseId}	Courseld → CourseName {Courseld, Year} → Lecturer {Courseld, Year} → Enrollment {Courseld, Year, Day, Time} → Roomld	{Year, Day, Time, Roomld, RoomCapacity, CourseId, CourseName, Lecturer, Enrollment}	False
3 rd Iteration	{RoomId, Year, Day, Time, RoomCapacity, CourseId, CourseName, Lecturer, Enrollment}	CourseName → CourseId	{RoomId, Year, Day, Time, RoomCapacity, CourseId, CourseName, Lecturer, Enrollment}	True

• X⁺ = {Roomld, Year, Day, Time, RoomCapacity, CourseId, CourseName, Lecturer, Enrollment} (Since X⁺ includes all the attributes in R, X={Year, Day, Time, Roomld} is a candidate key.)

Question 4(b) (Answer) (4/6)

- b) This table can be decomposed into the following in BCNF (so also in 3NF):
 - CourseTeaching(Courseld, Year, Lecturer, Enrollment)
 - Room(RoomId, RoomCapacity)
 - CourseRoomAlloc(Courseld, Year, Day, Time, RoomId)
 - Course(CourseId, CourseName)

Question 4(b) (Answer) (5/6)

- R = {CourseId, CourseName, Year, Lecturer, Enrollment, RoomId, RoomCapacity, Day, Time}
- Candidate keys
 - Year, Day, Time, Courseld
 - {Year, Day, Time, CourseName}
 - {Year, Day, Time, Roomld}
- CourseId → CourseName violates BCNF
 - R = {Courseld, Year, Lecturer, Enrollment, RoomId, RoomCapacity, Day, Time}
 - R₁ = {Courseld, CourseName}
- {Courseld, Year} → Lecturer violates BCNF
 - R = {Courseld, Year, Enrollment, RoomId, RoomCapacity, Day, Time}
 - R₁ = {CourseId, CourseName}
 - R₂ = {Courseld, Year, Lecturer}

FDs:

- 1. CourseId → CourseName
- 2. CourseName → Courseld
- 3. $\{Courseld, Year\} \rightarrow Lecturer$
- 4. {Courseld, Year} → Enrollment
- 5. RoomId → RoomCapacity
- 6. {Roomld, Year, Day, Time} → Courseld
- 7. {Courseld, Year, Day, Time} → Roomld

Question 4(b) (Answer) (6/6)

- {Courseld, Year} → Lecturer violates BCNF
 - R = {Courseld, Year, Enrollment, RoomId, RoomCapacity, Day, Time}
 - R₁ = {CourseId, CourseName}
 - R₂ = {Courseld, Year, Lecturer}
- {Courseld, Year} → Enrollment violates BCNF
 - R = {Courseld, Year, Roomld, RoomCapacity, Day, Time}
 - R₁ = {CourseId, CourseName}
 - R₂ = {Courseld, Year, Lecturer, Enrollment}
- RoomId → RoomCapacity violates BCNF
 - R = {Courseld, Year, Roomld, Day, Time}
 - R₁ = {CourseId, CourseName}
 - R₂ = {Courseld, Year, Lecturer, Enrollment}
 - R₃ = {RoomId, RoomCapacity}
- {RoomId, Year, Day, Time} → Courseld does not violate BCNF
- {Courseld, Year, Day, Time} → Roomld does not violate BCNF

FDs:

- 1. CourseId → CourseName
- 2. CourseName → Courseld
- 3. $\{Courseld, Year\} \rightarrow Lecturer$
- 4. {Courseld, Year} → Enrollment
- 5. RoomId → RoomCapacity
- 6. {Roomld, Year, Day, Time} → Courseld
- 7. {Courseld, Year, Day, Time} → Roomld