

Lecture #17

Combinational Circuits

Lecture #17: Combinational Circuits

- 1. Introduction
- 2. Analysis Procedure
- 3. Design Methods
- 4. Gate-Level (SSI) Design
- 5. Block-Level Design
- 6. Summary of Arithmetic Circuits
- 7. Example: 6-Person Voting System
- 8. Magnitude Comparator
- 9. Circuit Delays

1. Introduction

- Two classes of logic circuits
 - Combinational
 - Sequential

Combinational Circuit

 Each output depends entirely on the immediate (present) inputs.

Sequential Circuit

Each output depends on both present inputs and state.

2. Analysis Procedure

 Given a combinational circuit, how do you analyze its function?

What is this circuit?

$$F2 = (A'+B')' = A \cdot B$$

- Steps:
 - 1. Label the inputs and outputs.
 - 2. Obtain the functions of intermediate points and the outputs.
 - 3. Draw the truth table.
 - 4. Deduce the functionality of the circuit

3. Design Methods

- Different combinational circuit design methods:
 - Gate-level design method (with logic gates)
 - Block-level design method (with functional blocks)
- Design methods make use of logic gates and useful function blocks
 - These are available as Integrated Circuit (IC) chips.
 - Types of IC chips (based on packing density): SSI, MSI, LSI, VLSI, ULSI.
- Main objectives of circuit design:
 - Reduce cost (number of gates for small circuits; number of IC packages for complex circuits)
 - Increase speed
 - Design simplicity (re-use blocks where possible)

4. Gate-Level (SSI) Design: Half Adder (1/2)

- Design procedure:
 - State problem
 Example: Build a Half Adder.
 - 2. Determine and label the inputs and outputs of circuit. Example: Two inputs and two outputs labelled, as shown below.

3. Draw the truth table.

Χ	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

4. Gate-Level (SSI) Design: Half Adder (2/2)

4. Obtain simplified Boolean functions.

Example:
$$C = X \cdot Y \mid min + erm$$

$$S = X' \cdot Y + X \cdot Y' = X \oplus Y$$

5. Draw the logic diagram.

4. Gate-Level (SSI) Design: Full Adder (1/5)

- Half adder adds up only two bits.
- To add two binary numbers, we need to add 3 bits (including the carry).
 - Example:

1 1 1 0 carry
0 0 1 1 X
+ 0 1 1 1 Y
1 0 1 0 S

Need Full Adder (so called as it can be made from two half adders).

$$\begin{array}{c|c}
X \longrightarrow & \Sigma \\
Y \longrightarrow & \mathbf{Full} \\
Z \longrightarrow & \mathbf{Adder} & \mathbf{C}
\end{array}$$

$$(X + Y + Z)$$

4. Gate-Level (SSI) Design: Full Adder (2/5)

Truth table:

Х	Υ	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Note:

Z - carry in (to the current position)

C - carry out (to the next position)

	_ C						
X YZ	00	01	11	10			
0	0	0	1	0			
1	0	1	1	1			

Using K-map, simplified SOP form:

$$C = ? X.Y + X.Z + Y.Z$$

$$S =$$
? $X'.Y'.Z + X'.Y.Z' + X.Y'.Z' + X.Y.Z$

4. Gate-Level (SSI) Design: Full Adder (3/5)

• Alternative formulae using algebraic manipulation:

$$C = X \cdot Y + X \cdot Z + Y \cdot Z$$

$$= X \cdot Y + (X + Y) \cdot Z$$

$$= X \cdot Y + ((X \oplus Y) + X \cdot Y) \cdot Z$$

$$= X \cdot Y + (X \oplus Y) \cdot Z + X \cdot Y \cdot Z$$

$$= X \cdot Y + (X \oplus Y) \cdot Z$$

$$S = X' \cdot Y' \cdot Z + X' \cdot Y \cdot Z' + X \cdot Y' \cdot Z' + X \cdot Y \cdot Z$$

$$= X' \cdot (Y' \cdot Z + Y \cdot Z') + X \cdot (Y' \cdot Z' + Y \cdot Z)$$

$$= X' \cdot (Y \oplus Z) + X \cdot (Y \oplus Z)'$$

$$= X \oplus (Y \oplus Z)$$

4. Gate-Level (SSI) Design: Full Adder (4/5)

Circuit for above formulae:

$$C = X \cdot Y + (X \oplus Y) \cdot Z$$

 $S = X \oplus (Y \oplus Z) = (X \oplus Y) \oplus Z$ (XOR is associative)

Full Adder made from two Half-Adders (+ an OR gate).

4. Gate-Level (SSI) Design: Full Adder (5/5)

Full Adder made from two Half-Adders (+ an OR gate).

4. Gate-Level (SSI) Design: Code Converters

 Code converter – takes an input code, translates to its equivalent output code.

- Example: BCD to Excess-3 code converter.
 - Input: BCD code
 - Output: Excess-3 code

4. BCD to Excess-3 Code Converter (1/3)

Digit	BCD code	Excess-3 code	
0	0000	0011	
1	0001	0100	
2	0010	0101	
3	0011	0110	
4	0100	0111	
5	0101	1000	
6	0110	1001	
7	0111	1010	
8	1000	1011	
9	1001	1100	

4. BCD to Excess-3 Code Converter (2/3)

Truth table:

K-maps:

Just definition of BCD

4. BCD to Excess-3 Code Converter (3/3)

$$X =$$
?

$$Z =$$
?

5. Block-Level Design

- More complex circuits can also be built using block-level method.
- In general, block-level design method (as opposed to gate-level design) relies on algorithms or formulae of the circuit, which are obtained by decomposing the main problem to sub-problems recursively (until small enough to be directly solved by blocks of circuits).
- First example shows how to create a 4-bit parallel adder using block-level design.
- Using 4-bit parallel adders as building blocks, we can create the following:
 - BCD-to-Excess-3 Code Converter
 - 16-bit Parallel Adder

5. 4-bit Parallel Adder (1/4)

 Consider a circuit to add two 4-bit numbers together and a carry-in, to produce a 5-bit result.

5-bit result is sufficient because the largest result is:

$$1111_2 + 1111_2 + 1_2 = 11111_2$$

5. 4-bit Parallel Adder (2/4)

- SSI design (gate-level design) technique should not be used here.
- Truth table for 9 inputs is too big: 29 = 512 rows!

$X_4X_3X_2X_1$	$Y_4Y_3Y_2Y_1$	C ₁	C ₅	S ₄ S ₃ S ₂ S ₁
0000	0000	0	0	0000
0000	0000	1	0	0001
0000	0001	0	0	0001
	•••			•••
0101	1101	1	1	0011
1111	1111	1	1	1111

Simplification becomes too complicated!

5. 4-bit Parallel Adder (3/4)

- Alternative design possible.
- Addition formula for each pair of bits (with carry in),

$$C_{i+1}S_i = X_i + Y_i + C_i$$

has the same function as a full adder:

$$C_{i+1} = X_i \cdot Y_i + (X_i \oplus Y_i) \cdot C_i$$

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C = 1100$$
 $X = 1010$
 $Y = 1110$
 $X + Y = 1100$

```
3 inputs: Carry in, X, Y
```

² outputs: Carry Out, Sum

5. 4-bit Parallel Adder (4/4)

Cascading 4 full adders via their carries, we get:

- Note that carry is propagated by cascading the carry from one full adder to the next.
- Called Parallel Adder because inputs are presented simultaneously (in parallel). Also called Ripple-Carry Adder.

5. BCD to Excess-3 Converter: Revisit (1/2)

- Excess-3 code can be converted from BCD code using truth table:
- Gate-level design can be used since only 4 inputs.
- However, alternative design is possible.
- Use problem-specific formula:

Excess-3 code = BCD Code + 0011₂

	BCD				Ехсе	ess-3		
	Α	В	С	D	W	X	Υ	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0
10	1	0	1	0	Χ	X	X	Х
11	1	0	1	1	Χ	Χ	Χ	X
12	1	1	0	0	Χ	Χ	Χ	X
13	1	1	0	1	Х	Χ	Χ	Х
14	1	1	1	0	X	Х	Х	Χ
15	1	1	1	1	Χ	Χ	Χ	Χ

5. BCD to Excess-3 Converter: Revisit (2/2)

Block-level circuit:

4 bit parallel adder has 9 inputs 5 outputs

A BCD to Excess-3 Code Converter

aka connecting

0 to ground

1 to VCC

Note: In the lab, input 0 (low) is connected to GND, 1 (high) to Vcc.

5. 16-bit Parallel Adder

- Larger parallel adders can be built from smaller ones.
- Example: A 16-bit parallel adder can be constructed from four 4-bit parallel adders:

A 16-bit parallel adder

$$\begin{array}{ccc}
\downarrow^{4} & = & \downarrow \downarrow \downarrow \downarrow \\
S_{4}..S_{1} & S_{4}S_{3}S_{2}S_{1}
\end{array}$$

6. Summary of Arithmetic Circuits (1/4)

Half adder

6. Summary of Arithmetic Circuits (2/4)

6. Summary of Arithmetic Circuits (3/4)

4-bit parallel adder

6. Summary of Arithmetic Circuits (4/4)

- Cascading 4 full adders (FAs) gives a 4-bit parallel adder.
 - Classical method: 9 input variables \rightarrow 29 = 512 rows in truth table!
- Cascading method can be extended to larger adders.
 - Example: 16-bit parallel adder.

7. Example: 6-Person Voting System

- Application: 6-person voting system.
 - Use FAs and a 4-bit parallel adder.
 - Each FA can sum up to 3 votes.

8. Magnitude Comparator (1/4)

- Magnitude comparator: compares 2 unsigned values A and B, to check if A>B, A=B, or A<B.
- To design an *n*-bit magnitude comparator using classical method, it would require 2²ⁿ rows in truth table!
- We shall exploit regularity in our design.
- Question: How do we compare two 4-bit unsigned values A (a₃a₂a₁a₀) and B (b₃b₂b₁b₀)?

```
If (a_3 > b_3) then A > B

If (a_3 < b_3) then A < B

If (a_3 = b_3) then if (a_2 > b_2) ...
```

8. Magnitude Comparator (2/4)

Let $A = A_3A_2A_1A_0$, $B = B_3B_2B_1B_0$; $x_i = A_i \cdot B_i + A_i' \cdot B_i'$

8. Magnitude Comparator (3/4)

Block diagram of a 4-bit magnitude comparator

8. Magnitude Comparator (4/4)

A function F accepts a 4-bit binary value ABCD, and returns 1 if 3 ≤ ABCD ≤ 12, or 0 otherwise. How would you implement F using magnitude comparators and a suitable logic gate?

A ₃ A ₂ A ₁ A ₀	4-bit Comp
B ₃ B ₂ B ₁ B ₀	(A < B) (A > B) (A = B)

```
A<sub>3</sub>
A<sub>2</sub>
A<sub>1</sub>
A<sub>1</sub>
Comp
A<sub>0</sub>

B<sub>3</sub>
(A < B)
B<sub>2</sub>
(A > B)
B<sub>1</sub>
(A = B)
```


9. Circuit Delays (1/5)

• Given a logic gate with delay t. If inputs are stable at times t₁, t₂, ..., t_n, then the earliest time in which the output will be stable is:

$$\max(t_1, t_2, ..., t_n) + t$$

 To calculate the delays of all outputs of a combinational circuit, repeat above rule for all gates.

9. Circuit Delays (2/5)

 As a simple example, consider the full adder circuit where all inputs are available at time 0. Assume each gate has delay t.

 Outputs S and C experience delays of 2t and 3t respectively.

9. Circuit Delays (3/5)

More complex example: 4-bit parallel adder.

9. Circuit Delays (4/5)

Analyse the delay for the repeated block.

where X_i, Y_i are stable at 0t, while C_i is assumed to be stable at mt.

Performing the delay calculation:

9. Circuit Delays (5/5)

Calculating:

```
When i=1, m=0; S_1 = 2t and C_2 = 3t
When i=2, m=3; S_2 = 4t and C_3 = 5t
When i=3, m=5; S_3 = 6t and C_4 = 7t
When i=4, m=7; S_4 = 8t and C_5 = 9t
```

In general, an n-bit ripple-carry parallel adder will experience the following delay times:

$$S_n = ((n-1)2 + 2) t$$

 $C_{n+1} = ((n-1)2 + 3) t$

- Propagation delay of ripple-carry parallel adders is proportional to the number of bits it handles.
- Maximum delay: ((n-1)2+3) t

Quick Review Questions

DLD pages 128 – 129
 Questions 6-1 to 6-4.

Block level has the problem of dependency, easy to implement but timing might take longer, since inputs might depend on previous output

End of File