Asymptotic Notations

RAM: The Random-Access Machine

- RAM stands for Random Access Machine, which is a very useful model of computation.
 - can access any memory location in constant time
 - each basic instruction requires one unit of time
 - running time proportional to the number of operations

We will study functions ff(m) that asymptotically isonnegative, i.e., there exists constant NN such that

$$ff(m) \geq 0$$
 for all $n \geq NN$.

Four important summations

-1+2+3+4+...+n = n(n+1)/2

- $-1+1/2+1/4+1/8+...+(1/2)^n = (1 (1/2)^{n+1})/(1-1/2)$
- $1+x+x^2+x^3+...+x^n = (1-x^{n+1})/(1-x)$, provided that |x|<1

 $1^2+2^2+3^2+...+n^2 = n(n+1)(2n+1)/6$

 \blacksquare 1+1/2+1/3+1/4+...+1/n \in (ln(n) + 1/n, ln(n) + 1)

Proofs

Theorem 1 (arithmetic sequence): For any positive integer n, we have

$$1 + 2 + \dots + n = \frac{n(n+1)}{2} \tag{1}$$

Proof. We prove this using mathematical induction.

Base Case: For n = 1, the left-hand-side (LHS) of (1) is 1, and the right-hand-side (RHS) of (1) is also 1. This shows that (1) is true for n = 1.

Induction Step: Assume that (1) is true for n = k, where k is some positive integer. We will show that if (1) is also true for n = k + 1.

Since (1) is true for n = k, we have

$$1 + 2 + \dots + k = \frac{k(k+1)}{2}.$$
 (2)

Therefore we have

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = (k+1)\left[\frac{k}{2} + 1\right]$$
 (3)

$$= (k+1)\frac{k+2}{2} = \frac{(k+1)[(k+1)+1]}{2}.$$
 (4)

Hence (1) is also true for n = k + 1. By the principle of mathematical induction, we have proved that (1) is true for all integer $n \ge 1$.

Proofs

Theorem 2 (geometric sequence): For any real number x such that $x \neq 1$ and any positive integer n, we have

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}.$$
 (1)

Proof. We have

$$(1-x) \times \sum_{i=0}^{n} x^{i} = 1 - x^{n+1}.$$
 (2)

Since $x \neq 1$, we can divide both sides of (2) by (1-x) to get (1).

Theorem 3 (sum of squares): For any positive integer n, we have

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$
 (3)

The proof is similar to that of Theorem 1.

Proofs

Theorem 4 (harmonic sequence): For any integer $n \geq 2$, we have

$$\ln(n) + \frac{1}{n} < \sum_{i=1}^{n} \frac{1}{i} < \ln(n) + 1. \tag{1}$$

Proof. For any integer $i \ge 1$ and $x \in (i, i + 1)$, we have $\frac{1}{i+1} < \frac{1}{x} < \frac{1}{i}$.

$$\frac{1}{i+1} < \frac{1}{x} < \frac{1}{i}.\tag{2}$$

Therefore, we have

$$\frac{1}{i+1} < \int_{i}^{i+1} \frac{1}{x} dx < \frac{1}{i}.$$
 (3)

Using the left inequality of (3), we have

$$\sum_{i=1}^{n} \frac{1}{i} = 1 + \sum_{i=2}^{n} \frac{1}{i} = 1 + \sum_{i=1}^{n-1} \frac{1}{i+1} < 1 + \sum_{i=1}^{n-1} \int_{i}^{i+1} \frac{1}{x} dx \tag{4}$$

$$=1+\int_{1}^{n}\frac{1}{x}dx=1+\ln(n).$$
 (5)

Using the right inequality of (3), we have

$$\sum_{i=1}^{n} \frac{1}{i} = \sum_{i=1}^{n-1} \frac{1}{i} + \frac{1}{n} > \sum_{i=1}^{n-1} \int_{i}^{i+1} \frac{1}{x} dx + \frac{1}{n}$$
 (6)

$$= \int_{1}^{n} \frac{1}{x} dx + \frac{1}{n} = \ln(n) + \frac{1}{n}.$$
 (7)

This proves the theorem.

Takeaways

- -1+2+3+4+...+n = n(n+1)/2
- $-1+x+x^2+x^3+...+x^n = (1-x^{n+1})/(1-x)$, provided |x|<1
- $1^2+2^2+3^2+...+n^2 = n(n+1)(2n+1)/6$
- \blacksquare 1+1/2+1/3+1/4+...+1/n ∈ (ln(n) + 1/n, ln(n) + 1)

- We will use these frequently in this course.
- Know them (and their variants) by heart.

Definitions of Big-O, Big- Ω , and Big- Θ

Let g(n) be an asymptotically non-negative function of variable n. $O(g(n)) = \{f(n) | \exists c_f > 0 \text{ and } N_f > 0 \text{ s.t. } f(n) \leq c_f \times g(n) \text{ for all } n \geq N_f \}.$ $\Omega(g(n)) = \{f(n) | \exists c_f > 0 \text{ and } N_f > 0 \text{ s.t. } f(n) \geq c_f \times g(n) \text{ for all } n \geq N_f \}.$ $\Theta(g(n)) = \{f(n) | \exists c_f > 0, d_f > 0, \text{ and } N_f > 0 \text{ s.t. } c_f \times g(n) \leq f(n) \leq d_f \times g(n) \text{ for all } n \geq N_f \}.$

Note that c_f , d_f , and N_f are constants, for the given function f(n).

Note that $O(g(n)), \Omega(g(n)), \Theta(g(n))$ are sets of functions, for each given g(n).

- Big-O: asymptotic upper bound
- **Big-**Ω: asymptotic lower bound
- Commonly uses choices of g(n)
 - 1, log(n), n, n log(n), n², n³, 2ⁿ.

Proof example for Big-O

Prove that $f(n) = 10n^2 + 20000$ is an element of $O(n^2)$.

Proof Idea: We need to find constants c > 0 and N > 0 such that

$$10n^2 + 20000 \le c \times n^2, \forall n \ge N.$$
 (1)

Since

$$10n^2 + 20000 > 10n^2, (2)$$

we have to choose c>10 for inequality (1) to hold for some integer $N\geq 1$. Let's try c=11. In this case, (1) is equivalent to

$$11n^2 \ge 10n^2 + 20000, \forall n \ge N. \tag{3}$$

(3) is equivalent to

$$n^2 \ge 20000, \forall n \ge N,\tag{4}$$

which is equivalent to

$$n \ge \sqrt{20000} \approx 141.42, \forall n \ge N. \tag{5}$$

Now we know that we can pick $c_f = 11$ and $N_f = 142$ in our proof.

Proof. We pick $c_f = 11$ and $N_f = 142$. Then for all $n \ge N_f$, we have

$$f(n) = 10 \times n^2 + 20000 \tag{6}$$

$$\leq c_f \times n^2 + (20000 - n^2) \tag{7}$$

$$\leq c_f \times n^2. \tag{8}$$

This proves that $f(n) \in O(n^2)$.

Example: O(1), O(5), O(1000000)

- f(n) = 1, for all $n \ge 1$.
- f(n) = 0, for all $n \ge 1$.
- **I** = f(n) = 1 + 1/n, for all $n \ge 1$.
- **I** $f(n) = (1 + 1/n)^n$, for all $n \ge 1$.
- f(n) = 10000000000, for all n ≥1.

- What about f(n) = n?
- What about f(n) = log(n)?
- Is O(1) equal to O(5)?

Example: O(log(n))

- If $f(n) \in O(1)$, then $f(n) = O(\log(n))$.
- **I** f(n) = € + $\frac{1}{2}$ + $\frac{1}{3}$ + $\frac{1}{4}$ + ... + $\frac{1}{n}$, for all n ≥ 1.

- What about f(n) = n?
- What about $f(n) = log(n)^2$?

Example: O(n), O(2n+5), O(3n+1000000)

- If $f(n) \in O(1)$, then f(n) = O(n).
- $f(n) = \overline{+}$, for all $n \ge 1$.
- f(n) = 8n + 10000, for all n ≥1.

- What about $f(n) = n^2$?
- What about $f(n) = n \log(n)$?
- Is O(n) equal to O(2n+5)?

Example: O(n²)

I = f(n) = 1 + 2 + 3 + 4 + ... + n, for all n ≥ 1.

- What about $f(n) = n^3$?
- What about $f(n) = n^2 \log(n)$?

Example: O(n³)

I f(n) =
$$1^2 + 2^2 + 3^2 + ... + n^2$$
, for all n ≥ 1.

- What about $f(n) = n^4$?
- What about $f(n) = n^3 \log(n)$?

Proof example for Big- Ω

Prove that $f(n) = 0.01n^2 + 20000$ is an element of $\Omega(n^2)$.

Proof Idea: We need to find constants c > 0 and N > 0 such that

$$0.01n^2 + 20000 \ge c \times n^2, \forall n \ge N. \tag{1}$$

Since

$$\lim_{n \to \infty} n^2 = \infty,\tag{2}$$

we have to choose $c \le 0.01$ for inequality (1) to hold for some integer $N \ge 1$. Let's try c = 0.01. In this case, (1) is equivalent to

$$0.01n^2 + 20000 \ge 0.01n^2, \forall n \ge N. \tag{3}$$

(3) is always true for any $N \ge 1$. Now we know that we can pick $c_f = 0.01$ and $N_f = 1$ in our proof.

Proof. We pick $c_f = 0.01$ and $N_f = 1$. Then for all $n \ge N_f$, we have

$$f(n) = 0.01 \times n^2 + 20000 \tag{4}$$

$$\geq c_f \times n^2 + 20000 \tag{5}$$

$$\geq c_f \times n^2. \tag{6}$$

This proves that $f(n) \in \Omega(n^2)$.

Example: $\Omega(1)$, $\Omega(5)$, $\Omega(0.0001)$

- f(n) = 1, for all $n \ge 1$.
- f(n) = log(n), for all n ≥1.
- f(n) = n, for all $n \ge 1$.
- $f(n) = n^2$, for all $n \ge 1$.
- $f(n) = 2^n$, for all $n \ge 1$.

- What about f(n) = 0?
- What about f(n) = 1/n?
- Is $\Omega(1)$ equal to $\Omega(5)$?

Example: $\Omega(\log(n))$

I f(n) = 1 + $\frac{1}{2}$ + 1/3 + $\frac{1}{4}$ + ... + 1/n, for all n ≥ 1.

What about f(n) = 10000?

Example: $\Omega(n)$, $\Omega(2n+5)$, $\Omega(3n+1000000)$

- f(n) = n, for all $n \ge 1$.
- **I** f(n) = 0.0001n 10000, for all n ≥ 1.

- What about f(n) = log(n)?
- Is Ω (n) equal to Ω (2n+5)?

Example: 99(1), **99**(5)

- f(n) = 1, for all $n \ge 1$.
- f(n) = (1+1/n)ⁿ, for all n ≥1.
- **■** f(n) = 0.01, for all $n \ge 1$.
- **■** f(n) = 1000, for all $n \ge 1$.
- If $f(n) \in O(1)$ and $f(n) \cap O(1)$, then $f(n) \in O(1)$
- If $f(n) \subseteq \Theta(1)$, then $f(n) \in O(1)$ and $f(n) \subseteq \Omega(1)$.

Example: $\Theta\Theta(n)$, $\Theta\Theta(5n)$

- If $f(n) \in O(n)$ and $f(n) \cap O(n)$, then $f(n) \in C(n)$
- If $f(n) \subseteq \Theta(n)$, then $f(n) \in O(n)$ and $f(n) \subseteq \Omega(n)$.

Takeaways

- To prove $f(n) \in O(g(n))$, you need to find the constants c_f and N_f , and prove using the definition.
- The pair of constants are not unique. You just need to find a pair that works.
- To prove $f(n) \in \Omega(g(n))$, you need to find the constants c_f and N_f , and prove using the definition.
- To prove $f(n) \in \Theta(g(n))$, you need to find the constants c_f , d_f , N_f , and prove using the definition.

Asymptotic bounds

Asymptotic bounds

- \blacksquare f(n)≤g(n) implies f(n)∈O(g(n)).
- **I** f(n)∈O(g(n)) does not imply f(n)≤g(n).
- Example
- f(n) = 1000n for all n, g(n) = n for all n.
- We have $f(n) \in O(g(n))$.
- Similarly, $f(n) \in \Omega(g(n))$ does not imply $f(n) \geq g(n)$.

Mathematical Proofs for Asymptotic Notations

- There are two main methods to analyze asymptotic notations
- Method 1: Use definitions
- Method 2: Use limit on the ratio of the two

```
functions
If m_m
\frac{ff(m)}{gg(n)} = C > 0) then f(n) \in \Theta(g(n))
If m_m
\frac{ff(m)}{gg(n)} < \infty, then f(n) \in \Theta(g(n))
If m_m
\frac{gg(n)}{ff(m)} < \infty, then f(n) \in \Omega(g(n))
```

Some Facts

- $O(1) \subseteq O(\ln (n)) \subseteq O(n) \subseteq O(n \ln(n)) \subseteq O(n^2)$
 - $\square \Omega(n^2) \subseteq \Omega(n \mid n \mid n)) \subseteq \Omega(n) \subseteq \Omega(\ln(n)) \subseteq \Omega(n^2)$

Commonly used (bad) notations

- When we read f(n) = O(g(n)), read it as $f(n) \in O(g(n))$
- When we read $f(n) = \Omega(g(n))$, read it as $f(n) \in \Omega(g(n))$

- When we read $O(n) = O(n^2)$, read it as $O(n) \subseteq O(n^2)$.
- When we read $Ω(n^2) = Ω(n)$, read it as $Ω(n^2) \subseteq Ω(n)$.

Properties

Transitivity:

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) imply f(n) = \Theta(h(n)), f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)), f(n) = \Omega(g(n)) and g(n) = \Omega(h(n)) imply f(n) = \Omega(h(n)), f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)), f(n) = \omega(g(n)) and g(n) = \omega(h(n)) imply f(n) = \omega(h(n)).
```

Reflexivity:

$$f(n) = \Theta(f(n)),$$

$$f(n) = O(f(n)),$$

$$f(n) = \Omega(f(n)).$$

Properties

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Example Proof

FACT: $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ implies $f(n) \in O(h(n))$. **Proof.** Since $f(n) \in O(g(n))$, there exist constants $c_1 > 0$ and $N_1 \ge 1$ such that

$$f(n) \le c_1 \times g(n), \forall n \ge N_1. \tag{1}$$

Since $g(n) \in O(h(n))$, there exist constants $c_2 > 0$ and $N_2 \ge 1$ such that

$$g(n) \le c_2 \times h(n), \forall n \ge N_2. \tag{2}$$

Let $c = c_1 \times c_2$ and $N = \max\{N_1, N_2\}$. Then we have

$$f(n) \le c_1 \times g(n), \ \forall n \ge N,$$
 (3)

$$g(n) \le c_2 \times h(n), \ \forall n \ge N.$$
 (4)

Therefore for any $n \geq N$, we have

$$f(n) \le c_1 \times g(n) \tag{5}$$

$$\leq c_1 \times c_2 \times h(n) \tag{6}$$

$$= c \times h(n). \tag{7}$$

This proves that $f(n) \in h(n)$.

Summary

- The Random Access Machine
- Four commonly used formulas
- Big-O, Big-Ω, Big- Θ notations