${\bf MATH~2023-Multivariable~Calculus}$

Lecture #11 Worksheet March 14, 2019

Problem 1. Sketch the following curves in polar coordinates:

(a) $r=\ln\theta$

 $r = \cos 2\theta$ (b)

(c) $r = \cos 3\theta$

 $r = \cos\frac{\theta}{2}$ (d)

(e) $r = 2 + \cos 3\theta$

 $r = 1 + \sin \theta$

Problem 2. Find the volume:

(a) Under $z = x^2 + y^2$ and inside the cyliner $x^2 + y^2 = 2x$

(b) Under the sphere $x^2+y^2+z^2=9$ and inside the cylinder $x^2+y^2=4$

(c) Bounded by $z = x^2 + y^2$ and z = 7

(d) Bounded by $z = 3x^2 + 3y^2$ and $z = 4 - x^2 - y^2$

Problem 3. Convert the following integral into polar coordinates:

(a)
$$\int_0^a \int_{-\sqrt{a^2 - y^2}}^{\sqrt{a^2 - y^2}} dx dy$$

(b)
$$\int_0^{\frac{1}{2}} \int_{\sqrt{3}y}^{\sqrt{1-y^2}} dx dy$$

(c)
$$\int_{\frac{1}{\sqrt{2}}}^{1} \int_{\sqrt{1-x^2}}^{x} dxdy + \int_{1}^{\sqrt{2}} \int_{0}^{x} dxdy + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} dxdy$$

