Revisiting the strong coupling limit of lattice QCD

Philippe de Forcrand ETH Zürich and CERN

with Michael Fromm (ETH)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation

25⁺ years of analytic predictions:

80's: Kluberg-Stern et al., Kawamoto-Smit, Damgaard-Kawamoto

$$T_c(\mu=0) = 5/3, \ \mu_c(T=0) = 0.66$$

90's: Petersson et al., $1/g^2$ corrections

00's: detailed (μ, T) phase diagram: Nishida, Kawamoto,...

08: Ohnishi, Münster & Philipsen,...

How accurate is mean-field (1/d) approximation?

Almost no Monte Carlo crosschecks:

89: Karsch-Mütter \rightarrow MDP formalism $\rightarrow \mu_c(T=0) \sim 0.63$

92: Karsch et al. $T_c(\mu = 0) \approx 1.40$

99: Azcoiti et al., MDP ergodicity ??

06: PdF-Kim, HMC \rightarrow hadron spectrum \sim 2% of mean-field

Can one trust the details of analytic phase-diagram predictions?

Phase diagram according to Nishida (2004)

Very similar to conjectured phase diagram of $N_f = 2$ QCD

 $Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\mathcal{D}(U) + m)\psi)$, no plaquette term $(\beta = 0)$

- One KS fermion field (ie. 4 "tastes"): 6 d.o.f. per site
- $\not D(U) = \frac{1}{2} \sum_{x,y} \eta_y(x) (U_y(x) U_y^{\dagger}(x \hat{v})), \quad \eta_y(x) = (-)^{x_1 + ... + x_{v-1}}$
- Chemical potential $\mu \to \exp(\pm a\mu)U_{\pm 4}$

Ph. de Forcrand SQCD XQCD, July 2008

$$Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\not D(U) + m)\psi)$$
, no plaquette term ($\beta = 0$)

- One KS fermion field (ie. 4 "tastes"): 6 d.o.f. per site
- $\not D(U) = \frac{1}{2} \sum_{x,v} \eta_v(x) (U_v(x) U_v^{\dagger}(x \hat{v})), \quad \eta_v(x) = (-)^{x_1 + ... + x_{v-1}}$
- Chemical potential $\mu \to \exp(\pm a\mu)U_{\pm 4}$
- Alternative 1: integrate over fermions

$$Z = \int \mathcal{D} U \det(\mathcal{D}(U) + m) \rightarrow \text{HMC, etc...}$$

Ph. de Forcrand

 $Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\not D(U) + m)\psi)$, no plaquette term ($\beta = 0$)

- One KS fermion field (ie. 4 "tastes"): 6 d.o.f. per site
- $\not D(U) = \frac{1}{2} \sum_{x,v} \eta_v(x) (U_v(x) U_v^{\dagger}(x \hat{v})), \quad \eta_v(x) = (-)^{x_1 + \dots + x_{v-1}}$
- Chemical potential $\mu \to \exp(\pm a\mu)U_{\pm 4}$
- Alternative 1: integrate over fermions

$$Z = \int \mathcal{D} U \det(\not D(U) + m) \rightarrow \text{HMC, etc...}$$

• Alternative 2: integrate over links

Rossi & Wolff

- → Color singlet degrees of freedom:
- Monomer (meson $\bar{\psi}\psi$) $M(x) \in \{0,1,2,3\}$
- Dimer (meson hopping), non-oriented $n_v(x) \in \{0,1,2,3\}$
- Baryon hopping, oriented $\bar{B}B_v(x) \in \{0,1\} \rightarrow \text{self-avoiding loops } C$

Ph. de Forcrand

 $Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\not D(U) + m)\psi)$, no plaquette term ($\beta = 0$)

- One KS fermion field (ie. 4 "tastes"): 6 d.o.f. per site
- $\not D(U) = \frac{1}{2} \sum_{x,v} \eta_v(x) (U_v(x) U_v^{\dagger}(x \hat{v})), \quad \eta_v(x) = (-)^{x_1 + ... + x_{v-1}}$
- Chemical potential $\mu \to \exp(\pm a\mu)U_{\pm 4}$
- Alternative 1: integrate over fermions

$$Z = \int \mathcal{D} U \det(\mathcal{D}(U) + m) \rightarrow \text{HMC, etc...}$$

• Alternative 2: integrate over links

Rossi & Wolff

- → Color singlet degrees of freedom:
- Monomer (meson $\bar{\psi}\psi$) $M(x) \in \{0,1,2,3\}$
- Dimer (meson hopping), non-oriented $n_{V}(x) \in \{0,1,2,3\}$
- Baryon hopping, oriented $\bar{B}B_{v}(x) \in \{0,1\} \rightarrow \text{self-avoiding loops } C$

$$Z(m,\mu) = \sum_{\{M,n_{V},C\}} \prod_{x} \frac{3!}{M(x)!} m^{M(x)} \prod_{x,v} \frac{(3 - n_{V}(x))!}{3! n_{V}(x)!} \prod_{\text{loops } C} \rho(C)$$
with constraint $(M + \sum_{\pm v} n_{V})(x) = 3 \ \forall x \notin \{C\}$

SQCD

Ph. de Forcrand XQCD, July 2008

MDP Monte Carlo

$$Z(m,\mu) = \sum_{\{M,n_{v},C\}} \prod_{x} \frac{3!}{M(x)!} m^{M(x)} \prod_{x,v} \frac{(3 - n_{v}(x))!}{3! n_{v}(x)!} \prod_{loops \ C} \rho(C)$$
with constraint $(M + \sum_{\pm v} n_{v})(x) = 3 \ \forall x \notin \{C\}$

3 difficulties:

• sign of $\prod_C \rho(C)$:

associate \pm baryon loops with (1212.. & 2121..) polymer loops weight: $\pm \cosh \frac{\mu}{\tau} + 1 \rightarrow \text{much milder sign problem}$

MDP ensemble Karsch & Mütter

MDP Monte Carlo

$$Z(m,\mu) = \sum_{\{M,n_{v},C\}} \prod_{x} \frac{3!}{M(x)!} m^{M(x)} \prod_{x,v} \frac{(3 - n_{v}(x))!}{3! n_{v}(x)!} \prod_{loops \ C} \rho(C)$$
with constraint $(M + \sum_{\pm v} n_{v})(x) = 3 \ \forall x \notin \{C\}$

3 difficulties:

- sign of $\prod_{C} \rho(C)$: associate \pm baryon loops with (1212.. & 2121..) polymer loops weight: $\pm \cosh \frac{\mu}{\tau} + 1 \rightarrow \text{much milder sign problem}$ MDP ensemble Karsch & Mütter
- changing monomer number difficult: weight $\sim m^{\sum_x M(x)}$ monomer-changing update (Karsch & Mütter) restricted to $m \sim o(1)$

Ph. de Forcrand

MDP Monte Carlo

$$Z(m,\mu) = \sum_{\{M,n_{v},C\}} \prod_{x} \frac{3!}{M(x)!} m^{M(x)} \prod_{x,v} \frac{(3-n_{v}(x))!}{3! n_{v}(x)!} \prod_{loops \ C} \rho(C)$$
with constraint $(M + \sum_{\pm v} n_{v})(x) = 3 \ \forall x \notin \{C\}$

3 difficulties:

- sign of $\prod_{C} \rho(C)$: associate \pm baryon loops with (1212.. & 2121..) polymer loops weight: $\pm \cosh \frac{\mu}{\tau} + 1 \rightarrow \text{much milder sign problem}$ MDP ensemble Karsch & Mütter
- changing monomer number difficult: weight $\sim m^{\sum_x M(x)}$ monomer-changing update (Karsch & Mütter) restricted to $m \sim o(1)$
- tight-packing constraint \rightarrow local update inefficient, esp. as $m \rightarrow 0$

SQCD Ph. de Forcrand XQCD, July 2008

$$Z(m,\mu) = \sum_{\{M,n_{V},C\}} \prod_{x} \frac{3!}{M(x)!} m^{M(x)} \prod_{x,v} \frac{(3 - n_{V}(x))!}{3! n_{V}(x)!} \prod_{\text{loops } C} \rho(C)$$
with constraint $(M + \sum_{\pm v} n_{V})(x) = 3 \ \forall x \notin \{C\}$

3 difficulties:

- sign of $\prod_C \rho(C)$: associate \pm baryon loops with (1212.. & 2121..) polymer loops weight: $\pm \cosh \frac{\mu}{T} + 1 \rightarrow \text{much milder sign problem}$ MDP ensemble Karsch & Mütter
- changing monomer number difficult: weight $\sim m^{\sum_x M(x)}$ monomer-changing update (Karsch & Mütter) restricted to $m \sim \mathcal{O}(1)$
- tight-packing constraint \rightarrow local update inefficient, esp. as $m \rightarrow 0$

Solved with worm algorithm (Prokof'eev & Svistunov)

Here for chiral limit m = 0 (no monomers: $M(x) = 0 \ \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers M(x), M(y)
- Choose among neighbours of y by local heatbath and move M(y) there heatbath: sampling of 2-point function $\frac{1}{Z_{||}}M(x)M(y)\exp(-S_{||})$
- Keep moving "head" y until $y \to x$, ie. "worm closes" \to new configuration in $Z_{||}$

Worm algorithm for MDP

Here for chiral limit m = 0 (no monomers: $M(x) = 0 \ \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers M(x), M(y)
- Choose among neighbours of y by local heatbath and move M(y) there heatbath: sampling of 2-point function $\frac{1}{Z_{||}}M(x)M(y)\exp(-S_{||})$
- Keep moving "head" y until $y \to x$, ie. "worm closes" \to new configuration in $Z_{||}$

SQCD

Global change obtained from sequence of local updates

Each local step gives information on 2-point function

Very close to Adams & Chandrasekharan for U(N)

Ph. de Forcrand XQCD, July 2008

Worm algorithm for MDP

Here for chiral limit m = 0 (no monomers: $M(x) = 0 \ \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers M(x), M(y)
- Choose among neighbours of y by local heatbath and move M(y) there heatbath: sampling of 2-point function $\frac{1}{Z_{||}}M(x)M(y)\exp(-S_{||})$
- Keep moving "head" y until $y \to x$, ie. "worm closes" \to new configuration in $Z_{||}$

Consistency check with HMC

Ph. de Forcrand

Consistency check with HMC

Ph. de Forcrand

XQCD, July 2008

SQCD

Worst case m = 0:

Can reach $\sim 16^3 \times 4 \ \forall \mu$, ie. adequate

SQCD Ph. de Forcrand XQCD, July 2008

Transition $T = 0, \mu = \mu_c$

Puzzle:

- Mean-field baryon mass is $\approx 3 \implies \text{expect } \mu_c = \frac{1}{3} F_B(T=0) \approx 1$
- Mean-field estimate $\mu_c \sim 0.55 0.66$ much smaller
- Baryon mass ≈ 3 checked by HMC

PdF & Kim

• $\mu_c \approx 0.63$ checked by Karsch & Mütter for T = 1/4 only

Explanation?

- Problem with $m \to 0$ or $T \to 0$ extrapolation of MC data?
- Or nuclear attraction $\sim 1/3$ baryon mass!

Check with m = 0, $T \approx 0$ worm simulations

SQCD

Ph. de Forcrand XQCD, July 2008

Consistency check with Karsch & Mütter

Agreement except at $\mu = 0.68 \sim \mu_c \leftrightarrow \text{ergodicity of local update}$

Reducing the quark mass

As $m \rightarrow 0$, μ_c decreases and transition becomes stronger

Reducing the quark mass

As $m \rightarrow 0$, μ_c decreases and transition becomes stronger

Reducing the quark mass

8.0

0.6

0.4

0.2

0.48

0.5

0.58

0.6

0.62

0.64

0.66

As $m \rightarrow 0$, μ_c decreases and transition becomes stronger

μ

0.56

Ph. de Forcrand XQCD, July 2008 SQCD

0.52

0.54

Varying the mass at fixed T = 1/2

From first-order (m=0) to crossover $(m=0.1) \Rightarrow$ critical mass m_c ?

Critical mass $m_c(T = 1/2)$?

Critical mass $m_c(T=1/2)\sim 0.05$

CEP: compare with Nishida (2004)

m = 0: compare $\mu_c(T = 1/2, T = 1/4)$ with Nishida (2004)

Qualitative agreement, but not quantitative

SQCD

Take $T_c = 5/3$ (mean-field) [MC: 1.40 Karsch] → qualitative agreement, but not quantitative

XQCD, July 2008 Ph. de Forcrand

Conclusions

Summary

- For m = 0, $\mu_c(T = 1/4) \approx 0.62$ ($< m_B/3$) and $\mu_c(T = 1/2) \approx 0.54$
- Critical end-point (not chiral) moves to larger μ as m increases

Outlook

• Improve systematics:

Multicanonical MC for first-order transition at low T Asymmetry γ in Dirac coupling to vary T continuously Check mean-field "scaling" $T=\gamma^2/N_t$ Compare real and imaginary μ

• Determine phase diagram:

Tricritical point for m = 0Critical end-point as a function of m

Extend to 2 KS fields:

Baryon no longer self-avoiding $ightarrow B\pi$ scattering etc.. Isospin μ