Non-Gaussian responses (week 3?)

30 Jan 2023

Table of contents

Non-Gaussian responses	1
Some answers	1
Why not linear?	2
Logistic regression (ESL \S 4.4)	2
Log-likelihood	3
Newton step	3
Newton vs IRLS	3
Families	4
Regularized versions	4
proximal gradient descent/Newton	4
makeX	4

Non-Gaussian responses

- Why worry about it?
- Isn't least-squares good enough?
- poll (polleverywhere)

Some answers

- heteroscedasticity (Gauss-Markov only applies to homog. variance)
- still unbiased but no longer minimum variance

- maybe we shouldn't (e.g. **linear probability model** in econometrics)
 - adjust for heteroscedasticity with robust/sandwich estimators etc. (White):

$$\hat{\mathbf{V}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{G}\mathbf{X})(\mathbf{X}^{\top}\mathbf{X})^{-1}$$

where
$$\mathbf{G} = \operatorname{Diag}(\hat{\varepsilon}_i^2)$$
 (contrast with $s^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$)

- if we have
- if we have **nonlinear** models, MLEs are no longer unbiased

Why not linear?

- actual nonlinear patterns (but can handle these by transformation/basis expansion)
- unrealistic predictions (e.g. probabilities outside of [0, 1]
- varying effects (e.g. effect of a 1-unit change in x on probability must differ depending on baseline probability)
- Why not transform? **poll** (polleverywhere)

Logistic regression (ESL § 4.4)

- Worst-case scenario (farthest from Gaussian)
- ESL starts with a *multinomial* model:

$$\log\left(\frac{\Pr(G=i|X=x)}{\Pr(G=K|X=x)}\right) = \beta_{i0} + \beta_i^\top x, \quad i \in 1 \dots K-1$$

(and so
$$\Pr(G = K|X = x) = 1/\left(1 + \sum_{i=1}^{K-1} \exp(\beta_{i0} + \beta_i^\top x)\right)$$
)

- independent of baseline/reparameterization
- log-likelihood $\sum \log p_i(x_i; \theta)$ where θ is the complete set of parameters

Log-likelihood

• for two categories, log-likelihood simplifies to

$$\sum_{i=1}^{n} \left(y_i \beta^\top x_i - \log \left(1 + e^{\beta^\top x_i} \right) \right) \\ = \sum_{i=1}^{n} \left(y_i \eta_i - \log \left(1 + \exp(\eta_i) \right) \right)$$

- weight matrix W = Diag(p(1-p))
 - more generally, $Diag(1/Var(\mu))$
- score equation:

$$\begin{aligned} & - \sum_i = 1^N x_i (y_i - p(x_i; \beta)) \\ & - \text{Newton update is } \beta^* - \mathbf{H}^{-1} \mathbf{g} \\ & - \text{gradient: } \mathbf{X}^\top (\mathbf{y} - \mathbf{p}) \end{aligned}$$

- gradient. $\mathbf{X}^{\top}(\mathbf{y} \mathbf{p})$ - generally $\mathbf{X}^{\top}(\mathbf{y} - \mu) = \mathbf{X}^{\top}(\mathbf{y} - g^{-1}(\eta))$
- Hessian: $-\mathbf{X}^{\top}\mathbf{W}\mathbf{X}$
- solution is $(\mathbf{X}^{\top}\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{W}\mathbf{z}$
- where $\mathbf{z} = \mathbf{X} \beta_0 + \mathbf{W}^{-1} (\mathbf{y} \mathbf{p})$ is the adjusted response

Newton step

- iteratively reweighted least squares
- solve

$$\mathbf{X}^{\top}\mathbf{W}\mathbf{X}\beta^* = \mathbf{X}^{\top}\mathbf{W}\mathbf{z}$$

- 4C03 notes
- 4C03 notes 2

Newton vs IRLS

- Newton vs Fisher scoring (expected value of the Hessian); equivalent for the canonical link (e.g. logistic for binary data, log for Poisson data
- link mostly important for interpretation
- can be disregarded (?) if we are going to handle nonlinearity by basis expansion
- convergence? (Mount 2012)

Mount, John. 2012. "How Robust Is Logistic Regression?" Win Vector LLC. https://winvector.com/2012/08/23/how-robust-is-logistic-regression/.

Families

- Gaussian, Poisson, binomial (binary)
- May need to compute scale/dispersion parameter
 - for exponential families, calculate as $\sqrt{D/(n-p)}$ where D is the *deviance* (-2 log likelihood, equal to SSQ for Gaussian)
 - not exactly the MLE but good enough
- over-dispersion: quasi-likelihood
- more complex familes (negative binomial etc.) have an additional, non-collapsible parameters, need to estimate by MLE (or **profiling**)

Regularized versions

- lasso, ridge, or elasticnet
- score equations: $\mathbf{x}^{|top}(\mathbf{y} \mathbf{p}) = \lambda \cdot \operatorname{sign}(\beta_j)$ for **active** variables (non-zero coeffs)
- ridge should still be solvable by data expansion

proximal gradient descent/Newton

- simpler strategies (cyclic coordinate descent) may not work as well
- proximal gradient descent or proximal IRLS:

glmnet family docs

makeX