${\bf Spektrometer}$

Gregor Žunič
7.3.2020

1 Uvod

Spektrometer meri porazdelitev svetlobnega toka. Uporabljali bomo optični spektroskop na prizmo. Deluje tako, da prizma razcepi svetlobo na več barv. Detektor je kar naše oko - merimo samo vidni spekter. Najbolj občutljivo je pri 555 nm, kjer je razmerje 683 lm/W.

Osnovne komponente spektroskopa so:

- 1. Vstopna reža in koliminator divergentni snop pretvori v vzporednega
- 2. Na sredini nje prizma iz treh zljepljenih prizm z različnimi koeficienti.
- 3. Teleskop, ki zbere sliko v gorišče

Ker opazovani spekter ni monokromatski dobimo veliko barv. Disperzija je odvisna od valovne dolžine in je podana z Sellmeiejevo formulo:

$$n(\lambda)^2 = 1 + \frac{A\lambda^2}{\lambda^2 - \lambda_0^2},$$

kjer je A moč oscilatorja in λ_0 valovna dolžina pri resonanci.

Čim manjša je reža, ostrejša je slika, vendar je pri tem opazovanje toka težje. To pomeni, da je nastavitev kompromis med ločljivostjo $(\Delta \lambda/\lambda)$ in svetlostjo. Ločljivost manjšajo tudi uklonski efekti na optičnih elementih. Izognemo se jim, z dobro določeno valovno dolžino. Iz tega sledi, da je velikost slike omejena navzdol in je podana kot

$$\Delta D \approx f \frac{\lambda}{R},$$

kjer je B širina izhodnega snopa in f goriščna razdalja teleskopske leče. Torej lahko ločljivost označimo kot,

$$\frac{\Delta \lambda}{\lambda} \approx (S \frac{\mathrm{d}n}{\mathrm{d}\lambda})^{-1}$$

Vrste spektrov. Spektri so zvezni in diskretni. Zvezni prihajajo iz trdnih snovi (volfram). Barva je odvisna od materiala. Črtasti sevajo plini. Odvisna je od energije fotonov med prehodi v orbitalah. Razporeditev po frekvencah ima pri teoretičnih spektralnih črtah obliko lonrentzove funkcije:

$$P_L(\nu) = \frac{\alpha_L/\pi}{(\nu - \nu_0)^2 + \alpha_L^2}$$

kjer je v vakumu $\alpha_L = h/(2\tau)$, kjer je τ čas prehoda sevanja. Zaradi trkov je $alpha_L$ odvisna od T in P:

$$\alpha_L(T, P) = \alpha_0 \frac{P}{P_0} (\frac{T_0}{T})^{1/2}$$

 α_0 pa je polovična širina pri standardnih pogojih. Odvisen je tudi od Dopplerja in tako dobimo

$$P_D(\nu) = \frac{1}{\alpha_D \sqrt{\pi}} \exp \left[-\left(\frac{\nu - \nu_0}{\alpha_D}\right)^2 \right]$$

 $\alpha_D = \nu_0 \sqrt{2k_b T/(mc^2)}$ in m masa delca.

Prisotna sta oba efekta, zato je razporeditev konvolucija - Voigtov profil.

Vsaka snov absorbira prav tisto svetlobo, ki jo lahko tudi absorbira. Z merjenjem absorbirane svetlobe je mogoče ugotoviti zgradbo. Sprektri v vesolju so najbolj odvisni od Dopplerja, kar nam pomaga ugotoviti njihovo hitrost.

2 Naloga

- 1. Umerite kotno skalo spektroskopa s spektralnimi črtami Hg in H_2 .
- 2. Izmerite valovne dolžine spektralnih črt v spektru varčne žarnice. Primerjajte spekter s tistim, izmerjenim v Hg pod točko 1.
- 3. Izmerite centralno valovno dolžino in ocenite spektralno širino rdeče, rumene, zelene in modre svetleče diode (LED).
- 4. Opazujte zvezni spekter volframove žarnice in oceni valovno dolžino najsvetlejšega (rumenega) dela in zapišite intervale, ki jih pokrivajo posamezne barve.
- 5. Opazujte absorpcijski spekter NO_2 tako, da cevko s plinom presevate z belo svetlobo.
- 6. Izmerite valovne dolžine črt v spektru He in Ne.

3 Meritve

Meritve so direktno prepisane iz datoteke meritev.

Tabela 1: Ampula Hg

Barva	φ [°]	Tablična λ [nm]
Modrovijolična	169°25'	436
Zelena	173°35'	546
Rumena	174°15'	577
Rumena	174°20'	579

Tabela 2: Ampula H₂

Barva	ϕ [°]	Tablična λ [nm]
Svetlomodra	171°45'	486
Rdeča	175°50'	656
Modrovijolična	$169^{\circ}25'$	

Tabela 3: Varčna žarnica

Barva	ϕ [°]
Vijolična	169°25'
Modrozelena	171°35'
Zelena	173°40'
Rumena	174°20′
Rumena	$174^{\circ}25'$
Rdeča	175°20'

Tabela 4: Absorbacijski spekter NO_2

[°]
172°20'
172°10'
171°45'
171°25'
171°10'
170°45'
170°40'

Tabela 5: Ampula Ne

Barva	ϕ [°]	Tablična λ [nm]
Rdeča	175°10'	618.3
Rdeča	175°30'	640.2
Oranžna	174°50'	594.3
Rumena	174°30'	585.2
Zelena	173°20'	540

Tabela 6: Ampula Helij

Barva	ϕ [°]	Tablična λ [nm]
Rumena	174°30'	587.6
Rdeča	175°55'	667.8
Zelena	172°10′	501.6
Zelena	171°50'	492.2
Modra	171°	471.3
Vijolična	169°55'	447.1

<u>Tabela</u> 7: Volframska žarnica

Barva	$\phi_1[\ ^\circ]$	$\phi_2[\ ^\circ]$
Vijolična	167°30'	170°20'
Modra	170°20'	171°40'
Zelena	171°40'	173°20'
Rumena	173°20'	174°30'
Oranžna	174°30'	$175^{\circ}25'$
Rdeča	175°25'	176°10'

Tabela 8: Led dioda

Barva	$\phi_1[\ ^\circ]$	$\phi_2[\ ^\circ]$	$\phi_{\max}[^{\circ}]$
Modra	168°5'	175°5'	171°5′
Rumena	173°5'	175°35'	174°5'

4 Rezultati in izračuni

Najprej je potrebno umeriti spektrometer. To storimo, z meritvijo (tabelne vrednosti) pri Hg in H₂. Vrednosti umerimo z fit-om na funkcijo oblike:

$$\phi = c_1 + c_2 \lambda + c_3 \sqrt{\lambda} \tag{1}$$

Če to funkcijo podamo na tabele 3 in 3, dobimo graf

Slika 1: Umeritev sprektrometra

Vrednosti parametrov pa so (v enote kota).

$$\begin{array}{lcl} c_1 & = & 68,9 \pm 11,1 \\ c_2 & = & (-0,136 \pm 0,021) \, \mathrm{nm}^{-1} \\ c_3 & = & (7,66 \pm 0,97) \, \mathrm{nm}^{-1/2} \end{array}$$

Zdaj, ko so znani parametri lahko enačbi (1) priredimo inverz (kvadratna enačba s pozitivno rešitvijo - negativna ni pravilna):

$$\lambda = \left(\frac{-c_3 + \sqrt{c_3^2 - 4c_2(c_1 - \phi)}}{2c_2}\right)^2 \tag{2}$$

Napaka, ki jo inverz poda, je seveda odvisna od velikosti ϕ vendar je očitno kar precej velika, ker so natančnosti c_2 in c_3 zgolj na 10%. Če jo poskusimo oceniti, dobimo, da je napaka okoli 12% (za ne premajhne vrednosti kota).

4.1 Spekter varčne žarnice

Sedaj lahko nalogo (2) izračunamo tako, da za vsako vrednost kota uporabimo inverz funkcije 2. Za izmerjen spekter varčne žarnice dobimo

Barva	ϕ [°]	$\lambda \text{ [nm]}$
Vijolična	169°25'	434
Modrozelena	171°35'	485
Zelena	173°40'	550
Rumena	174°20′	576
Rumena	174°25′	580
Rdeča	175°20'	626

Bolj pravilno bi bilo, da bi pri vsakem rezultatu napisal še napako (10%), vendar je problem, da je ta napaka očitno zelo precenjena, ker model deluje kar vredu. Spekter je izjemno podoben spektru Hg. Vendar je malo bolj obsežen kot v naših navodilih.

4.2 Spekter LED diode

Barva	ϕ_1 [°]	ϕ_2 [°]	ϕ_{\max} [°]	$\lambda_{\rm max} \ [{\rm nm}]$	$\lambda_1 [\mathrm{nm}]$	$\lambda_2 [\mathrm{nm}]$
Modra	168°05'	175°'05'	171°'05'	473	408	612
Rumena	173°05'	175°'35'	174°'05'	566	530	642

4.3 Volframska žarnica

Naloga je, da ocenimo valovne dolžine intervalov. Za ocenitev najsvetlejšega dela ni podatkov.

Barva	ϕ_1 [°]	ϕ_2 [°]	$\lambda_1 [\mathrm{nm}]$	$\lambda_2 \text{ [nm]}$
Vijolična	167°30'	170°20'	397	455
Modra	170°20'	171°40'	455	488
Zelena	171°40'	173°20'	488	538
Rumena	173°20'	174°30'	538	584
Oranžna	174°30'	175°25'	584	631
Rdeča	175°25'	176°10'	631	689

4.4 Spekter $N0_2$

Iz prejšnjega računa, lahko zdaj še ocenim barve v spektru $N0_2$.

ϕ_1 [°]	$\lambda_1 [\mathrm{nm}]$	Barva
172°20'	506	Zelena
172°10'	502	Zelena
171°45'	490	Zelena
171°25'	481	Modra
171°10'	475	Modra
170°45'	464	Modra
170°40'	462	Modra

4.5 Valovne dolžine pri He in Ne

Najprej sem izračunal spekter za Helij:

Barva	ϕ [°]	Tablična λ [nm]	$\lambda \text{ [nm]}$
Rumena	174°30'	588	584
Rdeča	175°55'	668	667
Zelena	172°10′	502	502
Zelena	171°50'	492	492
Modra	171°0	471	471
Vijolična	169°55'	447	445

Nato še za Neon.

Barva	ϕ [°]	Tablična λ [nm]	$\lambda \text{ [nm]}$
Rdeča	175°10'	618	617
Rdeča	175°30'	640	637
Oranžna	174°50'	594	599
Rumena	174°30'	585	584
Zelena	173°20'	540	538

Kot vidimo, se rezultati zelo prikrivajo.

5 Zaključek

V celoti so v vaji meritve zelo blizu dejanski sliki, ki jo zelo lahko preverimo, tudi napake so precej majhne.