1 A proof of focalisation

Let $\vdash \Gamma$; Π denote a sequent of LL_{foc} as defined in [Laurent04].

We define the focalised syntactic phase model as (M, I, \bot, φ) where M is the free commutative monoid over formulas of LL with ?A and ?A, ?A identified, $I = \{?\Gamma \mid \Gamma \in M\}, \bot = \{\Gamma \in M \mid \vdash \Gamma; \}$, and $\varphi(X) = \{X\}^{\bot}$ for positive atoms X. Let $\llbracket A \rrbracket$ be the interpretation of a formula A in this model.

Note that $I \subseteq 1$ because of the ?w rule, so $[\![!A]\!] = ([\![A]\!] \cap I)^{\perp \perp}$.

For a formula A, let |A| denote the number of main negative subformulas in A. Define Ψ_A as an |A|-ary monotonous operator on $\mathcal{P}(M)$ by induction:

- $\circ \ \Psi_N(N_1) = N_1 \text{ if } N \text{ is negative}$
- $\circ \ \Psi_X() = \{X^\perp\}$

$$\Psi_{B \otimes C}(B_1, \dots, B_{|B|}, C_1, \dots, C_{|C|}) = \Psi_B(B_1, \dots, B_{|B|}) \cdot \Psi_C(C_1, \dots, C_{|C|})$$

$$\circ \ \Psi_{B \oplus C}(B_1, \dots, B_{|B|}, C_1, \dots, C_{|C|}) = \Psi_B(B_1, \dots, B_{|B|}) \cup \Psi_C(C_1, \dots, C_{|C|})$$

- $\circ \ \Psi_1() = \{\emptyset\}$
- $\circ \Psi_0() = \emptyset$
- $\circ \ \Psi_{!B}() = \{B\}^{\perp} \cap I$

Lemma 1. For any formula A with main negative subformulas $A_1, \ldots, A_{|A|}$,

$$\Psi_A(\{A_1\}^{\perp}, \dots, \{A_{|A|}\}^{\perp})^{\perp \perp} \subseteq \{A\}^{\perp}$$

Proof. To simplify the notation, let $\vdash \Gamma$; N mean $\vdash \Gamma$, N; when N is a negative formula. Let $Foc(A) = \{\Gamma \in M \mid \vdash \Gamma; A\}$. Clearly $Foc(A) \subseteq \{A\}^{\perp}$ by the *foc* rule.

We prove by induction on A that $\Psi_A(\operatorname{Foc}(A_1), \ldots, \operatorname{Foc}(A_{|A|})) \subseteq \operatorname{Foc}(A)$:

- \circ If A is negative, the result is trivial.
- o If A=X, then $\Psi_X()=\{X^\perp\}\subseteq \operatorname{Foc}(X)$ by the ax rule.
- \circ If $A = B \otimes C$, then we have

$$\Psi_A(\operatorname{Foc}(A_1), \dots, \operatorname{Foc}(A_{|A|})) = \Psi_B(\operatorname{Foc}(B_1), \dots, \operatorname{Foc}(B_{|B|})) \cdot \Psi_C(\operatorname{Foc}(C_1), \dots, \operatorname{Foc}(C_{|C|}))$$

$$\subseteq \operatorname{Foc}(B) \cdot \operatorname{Foc}(C)$$

by the induction hypothesis; moreover,

$$\frac{\vdash \Gamma; B \quad \vdash \Delta; C}{\vdash \Gamma, \Delta; B \otimes C} \otimes$$

hence $Foc(B) \cdot Foc(C) \subseteq Foc(B \otimes C)$, from which the result follows.

 \circ If $A = B \oplus C$, then we have

$$\Psi_A(\operatorname{Foc}(A_1),\ldots,\operatorname{Foc}(A_{|A|})) = \Psi_B(\operatorname{Foc}(B_1),\ldots,\operatorname{Foc}(B_{|B|})) \cup \Psi_C(\operatorname{Foc}(C_1),\ldots,\operatorname{Foc}(C_{|C|}))$$

$$\subseteq \operatorname{Foc}(B) \cup \operatorname{Foc}(C)$$

by the induction hypothesis; moreover,

$$\frac{\vdash \Gamma; B}{\vdash \Gamma; B \oplus C} \oplus_{1} \quad \frac{\vdash \Delta; C}{\vdash \Delta; B \oplus C} \oplus_{2}$$

hence $\operatorname{Foc}(B) \cup \operatorname{Foc}(C) \subseteq \operatorname{Foc}(B \oplus C)$, from which the result follows.

- ∘ If A = 1, clearly $\Psi_1() = \{\emptyset\} \subseteq Foc(1)$ by the 1 rule.
- If A = 0, clearly $\Psi_0() = \emptyset \subseteq Foc(0)$.
- \circ If A = !B, then $\Psi_{!B}() = \{B\}^{\perp} \cap I$, and

$$\frac{\vdash ?\Gamma, B;}{\vdash ?\Gamma; !B}$$
!

hence $\{B\}^{\perp} \cap I \subseteq \operatorname{Foc}(!B)$, from which the result follows.

Since $A_1, \ldots, A_{|A|}$ are negative, we have

$$\Psi_A(\{A_1\}^{\perp}, \dots, \{A_{|A|}\}^{\perp})^{\perp \perp} = \Psi_A(\operatorname{Foc}(A_1), \dots, \operatorname{Foc}(A_{|A|}))^{\perp \perp}$$

$$\subseteq \operatorname{Foc}(A)^{\perp \perp}$$

$$\subseteq \{A\}^{\perp \perp \perp} = \{A\}^{\perp}$$

Lemma 2. For any formula A with main negative subformulas $A_1, \ldots, A_{|A|}$,

$$[\![A]\!] \subseteq \Psi_A([\![A_1]\!], \dots, [\![A_{|A|}]\!])^{\perp \perp}$$

Proof. By induction, using positivity results from [Girard99, appendix F]: $(X^{\perp \perp} \cdot Y^{\perp \perp})^{\perp \perp} \subseteq (X \cdot Y)^{\perp \perp}$ and $(X^{\perp \perp} \cup Y^{\perp \perp})^{\perp \perp} \subseteq (X \cup Y)^{\perp \perp}$.

- $\circ \:$ If A is negative, then $[\![A]\!] = [\![A]\!]^{\perp \perp}$ is clear because $[\![A]\!]$ is a fact.
- \circ If A = X, let $\Gamma \in \{X\}^{\perp}$ and $\Delta \in \{X^{\perp}\}^{\perp}$. We have

$$\frac{\vdash \Gamma, X; \quad \vdash X^{\perp}, \Delta;}{\vdash \Gamma, \Delta;} \quad \textit{n-cut}$$

from which $\{X\}^{\perp} \subseteq \{X^{\perp}\}^{\perp \perp}$ follows; therefore $[\![X]\!] = \{X\}^{\perp} \subseteq \{X^{\perp}\}^{\perp \perp} = \Psi_X()^{\perp \perp}$.

 \circ If $A = B \otimes C$, then

$$\begin{split} \llbracket B \otimes C \rrbracket &= (\llbracket B \rrbracket \cdot \llbracket C \rrbracket)^{\bot \bot} \\ &\subseteq (\Psi_B(\llbracket B_1 \rrbracket, \dots, \llbracket B_{|B|} \rrbracket)^{\bot \bot} \cdot \Psi_C(\llbracket C_1 \rrbracket, \dots, \llbracket C_{|C|} \rrbracket)^{\bot \bot})^{\bot \bot} \quad \text{by the induction hypothesis} \\ &\subseteq (\Psi_B(\llbracket B_1 \rrbracket, \dots, \llbracket B_{|B|} \rrbracket) \cdot \Psi_C(\llbracket C_1 \rrbracket, \dots, \llbracket C_{|C|} \rrbracket))^{\bot \bot} \\ &= \Psi_{B \otimes C}(\llbracket B_1 \rrbracket, \dots, \llbracket B_{|B|} \rrbracket, \llbracket C_1 \rrbracket, \dots, \llbracket C_{|C|} \rrbracket)^{\bot \bot} \end{split}$$

 \circ If $A = B \oplus C$, then

$$\begin{split} [\![B \oplus C]\!] &= ([\![B]\!] \cup [\![C]\!])^{\perp \perp} \\ &\subseteq (\Psi_B([\![B_1]\!], \dots, [\![B_{|B|}]\!])^{\perp \perp} \cup \Psi_C([\![C_1]\!], \dots, [\![C_{|C|}]\!])^{\perp \perp})^{\perp \perp} \quad \text{by the induction hypothesis} \\ &\subseteq (\Psi_B([\![B_1]\!], \dots, [\![B_{|B|}]\!]) \cup \Psi_C([\![C_1]\!], \dots, [\![C_{|C|}]\!]))^{\perp \perp} \\ &= \Psi_{B \oplus C}([\![B_1]\!], \dots, [\![B_{|B|}]\!], [\![C_1]\!], \dots, [\![C_{|C|}]\!])^{\perp \perp} \end{split}$$

- \circ If A = 1 then $[1] = {\emptyset}^{\perp \perp}$ by definition.
- \circ If A = 0 then $[0] = \emptyset^{\perp \perp}$ by definition.
- \circ If A = !B then

$$\begin{split} [\![!B]\!] &= ([\![B]\!] \cap I)^{\perp \perp} \\ &\subseteq (\Psi_B([\![B_1]\!], \dots, [\![B_{|B|}]\!])^{\perp \perp} \cap I)^{\perp \perp} \qquad \text{by the induction hypothesis} \\ &\subseteq (\{B\}^{\perp} \cap I)^{\perp \perp} \qquad \text{by lemma 1} \\ &= \Psi_{!B}()^{\perp \perp} \end{split}$$

Lemma 3. For any formula A, $[A] \subseteq \{A\}^{\perp}$.

Proof. By induction:

 $\circ \ \text{ If } A = X^{\perp} \text{, we have } \{X^{\perp}\} \subseteq \operatorname{Foc}(X) \subseteq \{X\}^{\perp} \text{, therefore } \llbracket X^{\perp} \rrbracket = \llbracket X \rrbracket^{\perp} = \{X\}^{\perp \perp} \subseteq \{X^{\perp}\}^{\perp}.$

 \circ If A = B & C, we have $[\![B \& C]\!] = [\![B]\!] \cap [\![C]\!] \subseteq \{B\}^{\perp} \cap \{C\}^{\perp}$ by the induction hypothesis; moreover,

$$\frac{\vdash \Gamma, B; \quad \vdash \Gamma, C;}{\vdash \Gamma, B \& C;} \&$$

hence $\{B\}^{\perp} \cap \{C\}^{\perp} \subseteq \{B \ \& \ C\}^{\perp}$, from which the result follows.

 $\circ \ \text{ If } A = B \ \ \ C, \text{ let } \Gamma \in \llbracket B \ \ \ \ C \rrbracket = (\llbracket B \rrbracket^\perp \cdot \llbracket C \rrbracket^\perp)^\perp. \text{ By the induction hypothesis, } \llbracket B \rrbracket \subseteq \{B\}^\perp, \text{ hence } B \in \{B\}^{\perp\perp} \subseteq \llbracket B \rrbracket^\perp, \text{ and similarly } C \in \llbracket C \rrbracket^\perp, \text{ therefore } \vdash B, C, \Gamma; \text{ . Moreover,}$

$$\frac{\vdash \Gamma, B, C;}{\vdash \Gamma, B \, \mathcal{R} \, C;} \, \, \mathcal{R}$$

hence $\Gamma \in \{B \ ^{\gamma}\!\!\!/\ C\}^{\perp},$ therefore $[\![B \ ^{\gamma}\!\!\!/\ C]\!\!\!] \subseteq \{B \ ^{\gamma}\!\!\!/\ C\}^{\perp}.$

- $\circ \text{ If } A = \top, \text{ we have } \llbracket \top \rrbracket = M = \{\top\}^{\perp} \text{ by the } \top \text{ rule.}$
- \circ If $A = \bot$, we have $\llbracket \bot \rrbracket = \bot \subseteq \{\bot\}^{\bot}$ by the \bot rule.
- $\circ~$ Otherwise, A is a positive formula with main negative subformulas $A_1,\dots,A_{|A|}.$ Then,

Corollary 3.1. For any multiset of formulas $\Gamma = A_1, \ldots, A_n$, $\llbracket \Gamma \rrbracket \subseteq \{\Gamma\}^{\perp}$.

Proof. By lemma 3, we have $\llbracket A_i \rrbracket \subseteq \{A_i\}^{\perp}$ for all $1 \leq i \leq n$, hence $\{A_i\} \subseteq \{A_i\}^{\perp \perp} \subseteq \llbracket A_i \rrbracket^{\perp}$, therefore $\{\Gamma\} = \{A_1\} \cdots \{A_n\} \subseteq \llbracket A_1 \rrbracket^{\perp} \cdots \llbracket A_n \rrbracket^{\perp}$.

Thus,
$$\llbracket \Gamma \rrbracket = \llbracket A_1 \rrbracket \ \mathfrak{P} \cdots \mathfrak{P} \ \llbracket A_n \rrbracket = (\llbracket A_1 \rrbracket^{\perp} \cdots \llbracket A_n \rrbracket^{\perp})^{\perp} \subseteq \{\Gamma\}^{\perp}.$$

Theorem 4 (Focalised completeness). *If a sequent* $\vdash \Gamma$ *of LL is valid in all phase models, then* $\vdash \Gamma$ *has a focalised proof.*

Proof. In particular $\emptyset \in \llbracket \Gamma \rrbracket$, hence $\emptyset \in \{\Gamma\}^{\perp}$ by corollary 3.1, therefore there is a proof π of $\vdash \Gamma$; in LL_{foc}. Then, using [Laurent04, section 3.2], we get a proof π' of $\vdash \Gamma$; in LL_{Foc}. Finally, by [Laurent04, proposition 2], π'° is a cut-free, focalised proof of $\vdash \Gamma$ in LL.

Combining this with the soundness theorem for phase models, we get:

Corollary 4.1 (Focalisation). *Every provable sequent* $\vdash \Gamma$ *of LL has a focalised proof.*

References

[Laurent04] Olivier Laurent. 'A proof of the focalization property of linear logic'. Apr. 2004. URL: https://web.archive.org/web/20210225023814/https://perso.ens-lyon.fr/olivier.laurent/llfoc.pdf.

[Girard99] Jean-Yves Girard. 'On the Meaning of Logical Rules I: Syntax Versus Semantics'. In: *Computational Logic.* Springer Berlin Heidelberg, 1999, pp. 215–272. ISBN: 978-3-642-58622-4.