实验题目

设计并实现简单 cpu 并完成 1-5 的累加

实验要求

- 1. 64字节存储器,每个存储单元8为宽
- 2. 16 位地址, 8 位数据
- 3. 具有 8 位累加器 AC, 寄存器 R, 零标志位 Z, 16 位地址寄存器 AR, 8 位指令寄存器 IR, 8 位临时寄存器 TR

指令	指令码	操作
NOP	0000 0000	无
LDAC	0000 0001 Г	AC←M[Γ]
STAC	0000 0010 Г	M[Γ]←AC
MVAC	0000 0011	R←AC
MOVR	0000 0100	AC←R
JUMP	0000 0101 Γ	GOTO Г
JMPZ	0000 0110 Г	IF (Z=1) THEN GOTO Γ
JPNZ	0000 0111 Г	IF (Z=0) THEN GOTO Γ

ADD	0000 1000	AC \leftarrow AC+R, IF (AC+R=0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
SUB	0000 1001	AC \leftarrow AC $-$ R, IF (AC $-$ R $=$ 0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
INAC	0000 1010	AC \leftarrow AC+1, IF (AC+1=0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
CLAC	0000 1011	AC←0, Z←1
AND	0000 1100	AC \leftarrow AC \land R, IF (AC \land R=0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
OR	0000 1101	AC \leftarrow AC \lor R, IF (AC \lor R=0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
XOR	0000 1110	AC \leftarrow AC \oplus R, IF (AC \oplus R=0) THEN Z \leftarrow 1 ELSE Z \leftarrow 0
NOT	0000 1111	AC←AC', IF (AC'=0) THEN Z←1 ELSE Z←0

(指令执行的框架图)

分析指令

指令会经过取指, 译码, 执行的过程

必要指令

所有指令都需要经过相同的取指和译码阶段

FETCH1: AR←PC

FETCH2: DR \leftarrow M, PC \leftarrow PC + 1 FETCH3: IR \leftarrow DR, AR \leftarrow PC

指令执行

1-5 累加的程序可能会用到的指令: NOP, ADD, CMP, JMP, MOV, load 指令等。

建立数据通路

实现数据通路的两种方式: 硬布线逻辑, 微程序控制

硬布线逻辑

时序逻辑和组合逻辑产生控制信号

微程序控制

使用存储器查找表方式来输出控制信号

数据通路的实现逻辑:在这里使用硬布线逻辑实现相对的简单的 CPU 数据通路的两种连

接方式: 总线、直连

在所有需要传送数据的部件之间创建一条数据通路

直连方式

在所有需要传送数据的部件之间创建一条数据通路 总线方式 在 CPU 内部创建一条总线,各个部件之间使用总线传递数据 数据通路的连接方式:在这里使用总线的方式连接数据通路。

(实验要求用数据通路

设计并验证

最终布线:

仿真结果