# Messbericht Transistor als Schalter

Felix Schiller Sebastian Littau E1FS2

Reutlingen, am 12.04.2016

| Schiller | , Felix   |
|----------|-----------|
| Littau.  | Sebastian |

# $Messbericht \\ Transistor\ als\ Schalter$

2

# Inhaltsverzeichnis

| l Messaufgabe                 |     |                                                                          |  |  |  |  |
|-------------------------------|-----|--------------------------------------------------------------------------|--|--|--|--|
| 2                             | Mes | essung                                                                   |  |  |  |  |
|                               | 2.1 | Messschaltung                                                            |  |  |  |  |
|                               | 2.2 | Aufbau der Schaltung                                                     |  |  |  |  |
|                               | 2.3 | Messwerttabelle                                                          |  |  |  |  |
|                               | 2.4 | Berechnung der Gleichstromverstärkung $B$ und Verlustleistung $P_V$      |  |  |  |  |
|                               | 2.5 | Übersteuerungsgrenze                                                     |  |  |  |  |
|                               | 2.6 | Zweifache Sättigung                                                      |  |  |  |  |
|                               | 2.7 | Ruhestrom im Transistor                                                  |  |  |  |  |
|                               | 2.8 | Durchlass- und Sperrwiderstand                                           |  |  |  |  |
| 3 Auswertung und Erkenntnisse |     |                                                                          |  |  |  |  |
|                               | 3.1 | Grafische Darstellung der Messwerte                                      |  |  |  |  |
|                               | 3.2 | Warum erreicht die Kennlinie die X-Achse nicht?                          |  |  |  |  |
|                               | 3.3 | An welchem Punkt der Arbeitsgeraden tritt die größte Verlustleistung auf |  |  |  |  |
| 4                             | Anv | vendungen                                                                |  |  |  |  |
| •                             | 4.1 | Schaltverstärker                                                         |  |  |  |  |
|                               | 4.2 | Bistabile Kippstufe                                                      |  |  |  |  |
|                               | 4.3 | Astabiler Multivibrator                                                  |  |  |  |  |
|                               | 1.0 |                                                                          |  |  |  |  |
|                               |     | 2.012 2.013 3.13                                                         |  |  |  |  |
|                               |     | 4.3.2 Aufbau der Schaltung                                               |  |  |  |  |
|                               |     | 4.3.3 Funktionsweise der astabilen Kippstufe                             |  |  |  |  |
|                               |     | 4.3.4 Veränderungen der Kapazitäten und Widerstände                      |  |  |  |  |

# 1 Messaufgabe

Um das prinzipielle Schaltverhalten eines Transistors zu bestimmen, kann man diesen über den Basisstrom ansteuern und dann die Werte im Hauptstromkreisërmitteln. Dabei erkennt man die Funktionsweise des Transistors im Schaltbetrieb.

# 2 Messung

# 2.1 Messschaltung



# 2.2 Aufbau der Schaltung

In der oben gezeichneten Schaltung wird die Gleichstromverstärkung eines 2N3055 Transistors getestet. Als Schutzwiderstand vor der Basis des Transistors dient  $R_s$  mit  $10\Omega$  und 2W Leistung. Mit der Widerstandsdekade  $R_B$  wird der Eingangsstrom in die Basis fein justiert. Der Strom  $I_B$ , der durch diese Strecke fließt wird mit einem Tischmultimeter von Agilent gemessen.

In der Collector-Emitter Strecke ist ein Lastwiderstand  $R_L$  mit  $11\Omega$  und 8W Leistung vorgeschalten. Der LAststrom wird hier mit dem Unigor A43 Analogmultimeter gemessen. Die Spannungen  $U_{CB}$ ,  $U_{BE}$  und  $U_{CE}$  werden mit dem Fluke Multimeter gemessen.

#### 2.3 Messwerttabelle

| $I_B$ in mA | $I_C$ in mA | $U_{CE}$ in V | $U_BE$ in V | B     | $P_V$ in mW |
|-------------|-------------|---------------|-------------|-------|-------------|
| 0           | 0.049       | 10.01         | 0.031       | n/a   | n/a         |
| 1           | 56.2        | 9.3           | 0.683       | 56.2  | 532         |
| 2           | 115         | 8.63          | 0.7         | 57.5  | 1009        |
| 3           | 176         | 7.9           | 0.72        | 58.6  | 1342        |
| 4           | 239         | 7.17          | 0.74        | 59.75 | 1742        |
| 5           | 300         | 6.48          | 0.75        | 60    | 1976        |
| 6           | 368         | 5.77          | 0.77        | 61.3  | 2157        |
| 7           | 430         | 5.02          | 0.78        | 61.4  | 2193        |
| 8           | 490         | 4.3           | 0.8         | 61.25 | 2141        |
| 9           | 550         | 3.6           | 0.81        | 61.1  | 2012        |
| 10          | 610         | 2.9           | 0.82        | 61    | 1798        |
| 11          | 668         | 2.24          | 0.84        | 60.7  | 1520        |
| 12          | 717         | 1.67          | 0.86        | 59.7  | 1217        |
| 13          | 770         | 1.0           | 0.87        | 59.23 | 783         |
| 14          | 802         | 0.64          | 0.88        | 57.2  | 522         |
| 15          | 816         | 0.47          | 0.89        | 54.4  | 390         |
| 16          | 822         | 0.38          | 0.91        | 51.37 | 318         |
| 17          | 827         | 0.35          | 0.9         | 48.64 | 295         |
| 18          | 830         | 0.325         | 0.9         | 46.11 | 275         |
| 19          | 831         | 0.31          | 0.91        | 43.73 | 263         |
| 20          | 832         | 0.21          | 0.91        | 41.6  | 247         |

# 2.4 Berechnung der Gleichstromverstärkung B und Verlustleistung $P_V$

Der Transistor verstärkt das Basisstrom, der über die Widerstandsdekade als Eingangssignal angelegt wird. Auf der Kollektor-Emmitter-Strecke fließt der verstärkte Strom. Diese Gleichstromverstärkung B lässt sich berechnen.

$$B = \frac{I_C}{I_B}$$

Der Transistor hat einen veränderlichen Innenwiderstand. An diesem fällt ein Teil der Spannung ab und wird in Wärme umgewandelt diese Verlusleistung berechnet sich zu

$$P_V = U_{CE} \cdot (I_C + I_B)$$

# 2.5 Übersteuerungsgrenze

Die Übersteuerungsgrenze des Transistors ist erreicht, wenn die Spannung  $U_{CB}$  auf 0 abfällt. In der oben aufgebauten schaltung ist das bei den folgenden Werten der Fall:

$$U_{BE} = 0.89V$$

$$U_{CE} = 0.83V$$

$$I_{B} = 13,95mA$$

$$I_{C} = 785mA$$

$$P_{V} = 663.12mW$$

# 2.6 Zweifache Sättigung

Im nächsten Schritt wird der Basisstrom  $I_B$  verdoppelt. Die folgenden Werte können gemessen werden:

$$U_{BE} = 0.926V$$

$$U_{CE} = 0.25V$$

$$I_{B} = 27.6mA$$

$$I_{C} = 835mA$$

$$P_{V} = 215.65mW$$

Mit steigender Übersteuerung sinkt die die Kollektor-Emitter-Spannung und damit auch der Durchlasswiderstand und die Verlustleistung. Der Transistor wird zum fast spannungsfreien Leiter. Obwohl der Durchlasswiderstand mit steigender Übersteuerung kleiner wird, ist die Übersteuerung nicht immer anzustreben, weil sie die Ausschaltzeit des Transistors stark erhöht.

# 2.7 Ruhestrom im Transistor

Um den Ruhestrom durch den Transistor messen zu können wird die Verbindung zwischen  $R_B$  und der Basis gekappt. In unserem Aufbau lag er bei  $I_C = 49nA$ .

# 2.8 Durchlass- und Sperrwiderstand

Aus den Messwerten von 2.6 und 2.7 kann der Durchlasswiderstand  $R_D$  und der Sperrwiderstand  $R_S$  der Kollektor Emitter-Strecke errechnet werden.

$$R_D = \frac{U_{CE}}{I_C + I_B} = \frac{0.926V}{835mA + 27.6mA} = 1.07\Omega$$

$$R_S = \frac{U_{CE}}{I_C + I_B} = \frac{10V}{49nA} = 204M\Omega$$

# 3 Auswertung und Erkenntnisse

# 3.1 Grafische Darstellung der Messwerte

Der bei jedem eingestellten Basisstrom gemessene Kollektorstrom lässt sich in einem Diagramm darstellen. Gut zu erkennen ist der Sättigungsbereich des Transistors oberhalb von ca. 13mA Basisstrom.



# 3.2 Warum erreicht die Kennlinie die X-Achse nicht?

Es ist im Diagramm zwar schwer zu erkennen, aber der erste Punkt im Diagramm liegt nicht auf der X-Achse. Er entspricht dem Kollektorstrom von bei uns gemessenen 49nA bei nicht verbundener Basis.

# 3.3 An welchem Punkt der Arbeitsgeraden tritt die größte Verlustleistung auf?

Mit Blick in die Messwerttabelle stellt man fest, dass die größte Verlustleistung in der mitte der Arbeitsgeraden, bei ca 7mA, auftritt.

# 4 Anwendungen

# 4.1 Schaltverstärker

Eine Glühlampe für 12V mit 1W Leistung soll über einen Transistor geschaltet werden. Zur Ansteuerung der Basis wird ein Taster verwendet.

#### **Schaltung**

# Platzhalter Schaltplan

Es gibt zwei Möglichkeiten die Schaltung aufzubauen: als Verstärkerschaltung oder in der Sättigung. Je nach Variante ist ein anderer Basiswiderstand  $R_B$  notwendig.

### Verstärkung

Zum optimalen Betrieb der Lampe ist  $I_C = 0.166A$  notwendig. Bei einer angenommenen Gleichstromverstärkung von B = 58 ist folgender Basisstrom notwendig:

$$I_B = \frac{I_C}{B} = \frac{0.166A}{58} = 2.86mA$$

Der Basiswiderstand  $R_B$  muss nun passend dimensioniert werden.

$$\begin{split} R_B &= \frac{U_{RB}}{I_B} \\ &= \frac{12V - U_{BE}}{2.86mA} \\ &= \frac{12V - 0.74V}{2.86mA} \\ &= 3937\Omega \Rightarrow R_B = 4.7k\Omega \end{split}$$

#### Sättigung

Alternativ kann der Transistor in zweifacher Sättigung betrieben werden. Die Basis-Emitter-Spannung bei zweifacher Sättigung wurde vorher zu  $U_{BE}=0.72V$  gemessen, der Basisstrom zu  $I_B=27.6mA$ . Damit lässt sich der Basiswiderstand  $R_B$  anpassen.

$$R_B = \frac{U_{RB}}{I_B}$$

$$= \frac{12V - 0.72V}{27.6mA}$$

$$= 408\Omega \Rightarrow R_B = 470\Omega$$

In beiden Varianten kommt man zu identischen Ergebnissen. die an der Lampe  $H_1$  gemessene Spannung beträgt beides mal  $U_{H_1} \approx 11.7V$ .

# 4.2 Bistabile Kippstufe

#### Schaltplan



Folgende Bauteile wurden in der Schaltung verwendet:

$$T_1 = T_2 = BC140, R_2 = R_3 = 1k\Omega, R_1 = R_4 = 470\Omega, U_B = 7V$$

#### Aufbau der Schaltung

In dem Moment in dem eine Versorgungsspannung an die Schaltung gelegt wird, gibt es noch keinen definierten Zustand. Es ist dem Zufall überlassen, ob  $T_1$  oder  $T_2$  zuerst durchschaltet. Angenommen,  $T_1$  würde zuerst durchschalten, dann würde zunächst einmal die LED  $L_2$  leuchten. An ihr liegt die nötige Spannung an, da  $T_2$  sperrt. Dafür wird der Basisanschluss von  $T_2$  auf Massepotential gebracht, da er über  $R_2$  mit dem Kollektor des durchgeschaltenen  $T_1$  verbunden ist und damit quasi auf Masse liegt. Die LED  $L_1$  leuchtet nicht, da beide Anschlüsse auf dem selben Potential liegen. Wird nun der Schalter  $S_1$  gedrückt, liegt die Basis von  $T_1$  auf Massepotential.  $T_1$  sperrt,  $L_1$  leuchtet auf, und die Basis von  $T_2$  kann über  $R_2$  mit Strom versorgt werden,  $T_2$  schaltet. Auch beim Loslassen von  $S_1$  bleibt dieser Zustand erhalten, da nun die Basis von  $T_1$  durch  $T_2$  auf Massepotential gebracht wird. Der gleiche Vorgang ist natürlich auch umgekehrt mit dem Schalter  $S_2$  möglich. Dieser kann die LED  $L_2$  einschalten und  $L_1$  ausschalten.

#### 4.3 Astabiler Multivibrator

#### 4.3.1 Schaltung

# Platzhalter Schaltplan

Folgende Bauteile wueden in der Schaltung verwendet:

$$T_1 = T_2 = BC140, R_1 = R_2 = 1k\Omega, R_2 = R_3 = 15k\Omega, C_1 = C_2 = 47\mu F, U_B = 7V$$

# 4.3.2 Aufbau der Schaltung

Der astabile Multivibrator ist fast identisch zur bistabilen Kippstufe. Die Schalter werden nun aber durch RC-Glieder ersetzt.

# 4.3.3 Funktionsweise der astabilen Kippstufe

Da es keinen definierten Ausgangszustand gibt, wird zunächst davon ausgegangen, dass der Transistor  $T_1$  gerade durchschaltet. Wenn der Transistor  $T_1$  durchschaltet, dann erlischt zunächst einmal die LED  $L_1$ . Gleichzeitig wird der Transistor  $C_1$  auf der  $T_1$  zugewandten Seite auf Masse gezogen. Dieser negative Spannungssprung (von 7V, wenn  $T_1$  sperrt auf 0V wenn  $T_1$  leitet) wird über den Kondensator  $C_1$  (der Spannungssprung ist wie eine kurzzeitige Wechselspannung, kann also den Kondensator durchdringen) auf die Basis von  $T_2$  übertragen, welcher somit sperrt. Die LED  $L_2$  leuchtet also. Während nun der  $T_1$  leitet, wird  $C_1$  über  $R_2$  langsam aufgeladen und sobald der Kondensator eine Spannung von 0,7V erreicht hat, schaltet  $T_2$  durch. Die LED  $L_2$  erlischt und gleichzeitig wird  $C_2$  am Anschluss bei  $T_2$  auf 0V gezogen und überträgt dadurch wiederrum einen negativen Spannungssprung auf die Basis von  $T_1$ . Dieser sperrt,  $L_1$  leuchtet auf. Nun wird  $C_2$  über  $R_3$  langsam aufgeladen und beim Erreichen von 0,7V leitet  $T_1$  wieder, der Kreislauf beginnt von vorne.

#### 4.3.4 Veränderungen der Kapazitäten und Widerstände

- Bei Verdoppelung der Kapazitäten  $C_1$  und  $C_2$  blinken die LEDs mit deutlich niedrigerer Frequenz. Die größeren Kondensatoren brauchen eine längere Zeit, bis sie auf die Schaltspannung der Transistoren aufgeladen sind.
- Bei Halbierung der Widerstandswerte  $R_2$  und  $R_3$  blinken die LEDs in deutlich höherer Frequenz. Durch die niederohmigeren Widerstände fließt ein höherer Aufladestrom in die Kondensatoren. Die Transistoren schalten nach kürzerer Zeit durch.
- Bei asymmetrischer Änderung der Widerstandswerte und Kapazitäten ändert sich auch die Frequenz hin zm asymmetrischen. Halbiert man z.B. nur  $R_1$  und  $C_2$ , belässt aber  $R_3$  und  $C_1$  auf den ursprünglichen Werten, so blinkt  $L_2$  immer nur kurz auf, während  $L_1$  unverändert lange leuchtet.