Sequence labeling with OTransfer Learning

การกำกับข้อมูลลำดับด้วยการเรียนรู้แบบถ่ายโอน

Pongsathon Janyoi, Ph.D. College of Computing, Khon Kaen University

Outline

- **01**.Introduction to Sequence labeling
- **02.** Part of Speech Tagging
- **03.** Named Entities Recognition
- **04.** Traditional approaches
- **05.** Neural approaches

Sequence labeling

 Identifying a categorical label to each token (e.g. word, phrase) of a sequence

S

Sequence labeling

- Main Tasks of Sequence Labeling:
 - Part-of-speech (POS) Tagging
 - Named-entity recognition
 - Chunking

Part of Speech Tagging

- Words can be classified into grammatical categories
- Part of speech, Word classes, POS, POS tags
- 8 parts of speech attributed to Dionysius Thrax of Alexandria (c. 1st C. BCE):
 - noun, verb, pronoun, preposition, adverb, conjunction, participle, article
- Many NLP tasks require POS:
 - Machine Translation, Grammar checking, Summarization

Part-of-Speech Tagging

- Assigning a part-of-speech to each word in a text.
- Words often have more than one POS.
- Book:
 - VERB: (Book that flight)
 - NOUN: (Hand me that book).

Part-of-Speech Tagging

Map from sequence x₁,...,x_n of words to y₁,...,y_n of POS tags

"Universal Dependencies" Tagset

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
Open Class	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
S		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
Closed Class Words	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
lass	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
sed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
G10	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
er.	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Sample "Tagged" English sentences

- There/PRO were/VERB 70/NUM children/NOUN there/ADV ./PUNC
- Preliminary/ADJ findings/NOUN were/AUX reported/VERB in/ADP today/NOUN 's/PART New/PROPN England/PROPN Journal/PROPN of/ADP Medicine/PROPN

How difficult is POS tagging in English?

- E.g., *back*
 - earnings growth took a back/ADJ seat
 - a small building in the back/NOUN
 - a clear majority of senators back/VERB the bill
 - enable the country to buy back/PART debt
 - I was twenty-one back/ADV then

Named Entity tagging

- The task of named entity recognition (NER):
 - find spans of text that constitute proper names
 - tag the type of the entity.

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Named Entity tagging

ลุงตู่ต่อว่าผู้สื่อข่าวที่ตึกไทยคู่ฟ้าเมื่อเช้า

ลุง	ର୍ଗୁ	ต่อว่า	ผู้สื่อข่าว	ที่	ตึกไทยคู่ฟ้า	เมื่อ	เช้า
Noun	PNoun	Verb	Noun	Adj	PNoun	ADP	Noun
B-PER	I-PER	0	0	0	B-PLACE	B-TIME	I-TIME

LST20 Corpus

- LST20 Corpus
 - Dataset for training fundamental Thai language processing tasks
 - Featured linguistic information
 - Word boundaries for word segmentation
 - Named entities for named entity recognition
 - Clause boundaries for clause segmentation
 - Sentence boundaries for sentence segmentation
 - News genres for document classification
 - CoNLL-2003 format: tab-separated columns

Words	3,163,034
Named entities	288,020
Clauses	248,181
Sentences	74,180
Distinct words	46,692
Genres	15
News articles	3,745

Available at https://aiforthai.in.th

LST20 Corpus

Format: CoNLL-2003 Style

- Four columns
 - Word
 - POS tag
 - Named entity
 - Clause boundary
- Notes
 - Each column is separated by a tab
 - Empty line marks sentence boundary

LST20 Corpus

POS Tagset

Tags	Names	Brief Descriptions	Tags	Names	Brief Descriptions
AJ	Adjective	Attribute, modifier, or description of a noun	NN	Noun	Person, place, thing, abstract concept, and proper name
AV	Adverb	Word that modifies or qualifies an	NU	Number	Quantity for counting and calculation
		adjective, verb, or another adverb	PA	Particle	Politeness, intention, belief, question
AX	Auxiliary	Tense, aspect, mood, and voice	PR.	Pronoun	Word used to refer to an element in
CC	Connector	Conjunction and relative pronoun	1 16	Tionoun	the discourse
CL	Classifier	Class or measurement unit to which a noun or an action belongs	PS	Preposition	Location, comparison, instrument, exemplification
FX Prefix		Inflectional (nominalizer, adjectivizer,	PU	Punctuation	Punctuation mark
	adverbializer, and courteous verbalizer), and derivational		vv	Verb	Action, state, occurrence, and word that forms the predicate part
IJ	Interjection	Exclamation word	XX	Others	Unknown category
NG	Negator	Word of negation	707	211010	,

^{*} Green texts = content word | Black texts = function word | Red texts = undesirable (yet they still exist)

Named Entities

- Named entity, in its core usage, means anything that can be referred to with a proper name.
- Most common 4 tags:
 - PER (Person): "Anna"
 - LOC (Location): "Khon Kaen City"
 - ORG (Organization): "Khon Kaen University"
 - GPE (Geo-Political Entity): "Ban Non Muang, Khon Kaen"

Why is NER an Important?

- Sentiment analysis: consumer's sentiment toward a particular company or person?
- Question Answering: answer questions about an entity?
- Information Extraction: Extracting facts about entities from text.

Why NER is hard?

Segmentation

- In POS tagging, no segmentation problem since each word gets one tag.
- In NER we have to find and segment the entities!
- Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

BIO Tagging

- How can we turn this structured problem into a sequence problem like POS tagging, with one label per word?
- [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

BIO Tagging

• [PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC

Chicago] route.

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	0
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	0
the	O
Chicago	B-LOC
route	O
•	O

BIO Tagging variants: IO and BIOES

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	0	0	O
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	O	0	O
the	O	0	O
Chicago	I-LOC	B-LOC	S-LOC
route	0	0	O
•	0	0	0

How to tag POS or NE?

Approach for sequence modeling

- Supervised Machine Learning given a human-labeled training set of text annotated with tags
- Statistical based:
 - Hidden Markov Models (HMM)
 - Conditional Random Fields (CRF)
- Neural based:
 - Neural sequence models
 - Large Language Models (like BERT), finetuned

- HMM is based on augmenting the Markov chain.
- A Markov chain is a model predicting the probabilities of sequences of random variables

Figure 8.8 A Markov chain for weather (a) and one for words (b), showing states and transitions. A start distribution π is required; setting $\pi = [0.1, 0.7, 0.2]$ for (a) would mean a probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

- Markov assumption:
 - When predicting the future, the past doesn't matter, only the present.

$$P(q_i = a|q_1...q_{i-1}) = P(q_i = a|q_{i-1})$$

Where, q1,q2,...,qi is a sequence of state variables

Markov chain is specified by the following components:

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11}a_{12} \dots a_{N1} \dots a_{NN}$	a transition probability matrix A , each a_{ij} represent-
	ing the probability of moving from state i to state j , s.t.
	$\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the
	probability that the Markov chain will start in state i.
	Some states j may have $\pi_j = 0$, meaning that they cannot
	be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

a bigram language model , edge expressing the probability p(wi |wj)

- Events we are interested in are <u>hidden</u>: we don't observe them directly
- For example, we don't normally observe part-of-speech tags in a text

- A hidden Markov model (HMM) allows us to talk about:
 - Observed events hidden Markov model (like words that we see in the input)
 - Hidden events (like part-of-speech tags)

	`
$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A, each a_{ij} representing the probability
	of moving from state i to state j, s.t. $\sum_{i=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods, also called emission probabili-
	ties , each expressing the probability of an observation o_t being generated
	from a state q_i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that
	the Markov chain will start in state i. Some states j may have $\pi_i = 0$,
	meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Markov Assumption: $P(q_i|q_1,...,q_{i-1}) = P(q_i|q_{i-1})$

Output Independence: $P(o_i|q_1,\ldots,q_i,\ldots,q_T,o_1,\ldots,o_i,\ldots,o_T)=P(o_i|q_i)$

Hidden Markov Models: POS Tagging

Transition probabilities (A) represent the probability of a tag

occurring given the previous tag

ความน่าจะเป็นที่ VB จะเกิดต่อจาก MD

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})} \qquad P(VB|MD) = \frac{C(MD,VB)}{C(MD)} = \frac{10471}{13124} = .80$$

 The B emission probabilities, represent the probability, given a tag

ความน่าจะเป็นที่ "will" จะเป็น MD

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$
 $P(will|MD) = \frac{C(MD, will)}{C(MD)} = \frac{4046}{13124} = .31$

Hidden Markov Models: POS Tagging

Figure 8.9 An illustration of the two parts of an HMM representation: the *A* transition probabilities used to compute the prior probability, and the *B* observation likelihoods that are associated with each state, one likelihood for each possible observation word.

HMM tagging as decoding

- Decoding: determining the hidden variables sequence corresponding to the sequence of observations
- Given as input an HMM λ = (A,B) and a sequence of observations O = o₁,o₂,...,o_T, find the most probable sequence of states Q = q₁q₂q₃...q₄.
- For part-of-speech tagging:

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$

ต้องการหา (hidden variables sequence) t1...tn ที่ให้ prob มากสุด ซึ่งก็คือ POS นั่นเอง

POS Tagging Example

Mini POS corpus

Words	Noun เกิด 9 ครั้ง	Modal เกิด 4 ครั้ง	Verb เกิด 4 ครั้ง
Mary	4/9	0	0
Jane	2/9	0	0
Will	1/9	3/4	0
Spot	2/9	0	1/4
Can	0	1/4	0
See	0	0	2/4
pat	0	0	1

POS Tagging Example

Include START <S> and END <E> tags:

	N	М	V	<e></e>
<s></s>	3/4	1/4	0	0
N	1/9	3/9	1/9	4/9
M	1/4	0	3/4	0
V	4/4	0	0	0

Words	N	M	V
Mary	4/9	0	0
Jane	2/9	0	0
Will	1/9	3/4	0
Spot	2/9	0	1/4
Can	0	1/4	0
See	0	0	2/4
pat	0	0	1

	N	М	V	<e></e>
<s></s>	3/4	1/4	0	0
N	1/9	3/9	1/9	4/9
M	1/4	0	3/4	0
V	4/4	0	0	0

3/4*1/9*3/9*1/4*3/4*1/4*1*4/9*4/9=0.00025720164

POS Tagging Example

Delete all the vertices and edges with probability zero

Applying Viterbi algorithm

Optimize the HMM by using the Viterbi algorithm

- HMM often run into unknown words
- But we can use the useful features to HMM
 - E.g. the previous or following words:
 - if the previous word is the, the current tag is unlikely to be a verb
- It's hard for generative models like HMMs to add arbitrary features directly

การที่เราจะใช้ Feature อื่นเพิ่มเติม ทำได้ยาก

- A discriminative sequence model based on log-linear models
- **Linear chain CRF:**
 - Compute the posterior p(Y|X) directly:
 - Assuming we have a sequence of input words $X = x_1...x_n$ and want to compute a sequence of output tags $Y = y_1...y_n$.

$$\hat{Y} = \underset{Y \in \mathscr{Y}}{\operatorname{argmax}} P(Y|X)$$

- CRF does not compute a probability for each tag at each time step
- CRF computes log-linear functions over <u>a set of relevant features</u>
- Assuming we have a sequence of input words $X = x_1...x_n$ and want to compute a sequence of output tags $Y = y_1...y_n$.
- Let's assume we have K features, with a weight w_k for each feature

F_k:

$$p(Y|X) = \frac{\exp\left(\sum_{k=1}^{K} w(F_k(X,Y))\right)}{\sum_{Y' \in \mathscr{Y}} \exp\left(\sum_{k=1}^{K} w_k F_k(X,Y')\right)}$$

CRF as like <u>a giant version of what multinomial</u> <u>logistic regression</u> does for a single token.

$$F_k(X,Y) = \sum_{i=1}^n f_k(y_{i-1}, y_i, X, i)$$

a sum of local features for each position *i* in Y

แทนที่จะใช้เฉพาะคำ ก็ใช้ Feature แทน เช่น คำข้างเคียง

• Features in a CRF POS Tagger:

$$F_k(X,Y) = \sum_{i=1}^n f_k(y_{i-1}, y_i, X, i)$$

 a linear-chain CRF, each local feature f_k at position i can depend on any information from: (y_{i-1}, y_i, X,i).

```
\mathbb{1}\{x_i = the, \ y_i = \text{DET}\} เป็น 1 ถ้าเป็นจริง 0 ถ้าเป็นเท็จ \mathbb{1}\{y_i = \text{PROPN}, x_{i+1} = Street, y_{i-1} = \text{NUM}\} \mathbb{1}\{y_i = \text{VERB}, y_{i-1} = \text{AUX}\}
```

• Example : Janet/NNP will/MD back/VB the/DT bill/NN, Xi = back

$$f_{3743}$$
, $y_i = \text{VB}$ and $x_i = \text{back}$
 f_{156} : $y_i = \text{VB}$ and $y_{i-1} = \text{MD}$
 f_{99732} : $y_i = \text{VB}$ and $x_{i-1} = \text{will}$ and $x_{i+2} = \text{bill}$

Feature templates

$$\langle y_i, x_i \rangle, \langle y_i, y_{i-1} \rangle, \langle y_i, x_{i-1}, x_{i+2} \rangle$$

Preparing data for sequence tagging

Generating tags for sequence of tokens via <u>DNN</u>

- The most NLP tasks requires the <u>contextual information</u> (e.g. POS, NER, Word segmentation)
- We cannot get context information by DNN

Generating tags for sequence of tokens via <u>DNN</u>

- The most NLP tasks requires the <u>contextual information</u> (e.g. POS, NER, Word segmentation)
- We cannot get context information by DNN

Why RNN?

- Outputs from previous time steps are taken as inputs for the current time step
- Thus, it can learn the context information

ใช้ Weights อันเดียวกัน

Embedding layer:

RNN Sequence labeling (LSTM, GRU)

Generating tags for sequence of tokens via RNN

NER:

Transfer learning

BERT: Bidirectional Encoder Representations from Transformers

- BERT can be used as an all-purpose pre-trained model finetuned for specific tasks.
- Its goal is to generate a language model
- Bidirectional training using a Transformer Encoder
- BERT was trained on two modeling methods:
 - MASKED LANGUAGE MODEL (MLM)
 - NEXT SENTENCE PREDICTION (NSP)

Transformer

Encoder Decoder

GPT*

Decoder-only

BERT*

Encoder-only

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

- MASKED LANGUAGE MODEL (MLM)
 - 15% of the words in each sequence are replaced with a [MASK] token.

http://jalammar.github.io/illustrated-bert/

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

- Next Sentence Prediction (NSP)
 - Given two sentences (A and B), is B likely to be the sentence that follows A, or not?

http://jalammar.github.io/illustrated-bert/

Using Pretrained Word Embedding

Example: Employing word embedding form BERT

What is the best contextualized embedding for "Help" in that context?

Using Pretrained Word Embedding

- Concatenate or replace the word embedding with pre-trained word embedding
- สามารถเลือกใช้ Embedding vector จาก Pretrained โมเดล อย่างเดียวก็ได้
- อาจจะต้องปรับโครงสร้างโมเดลให้ สอดคล้องกับ input

Finetuning BERT

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Finetuning BERT for sequence tagging

Conclusion

- Introduction to Sequence labeling
- NLP Sequence labeling tasks:
 - POS Tagging
 - NER
- Sequence labeling approaches:
 - HMM
 - CRF
 - RNN

Reference:

Dan Jurafsky and James H., Martin Speech and Language Processing (3rd ed. draft), https://web.stanford.edu/~jurafsky/slp3/