

第1章 数据/数据预处理

- 1.1 数据对象与数据属性
- 1.2 数据的基本统计描述
- 1.3 数据预处理
 - 数据清洗
 - 数据抽样
 - 数据降维
- 1.4 距离与相似度计算

●数据集:多个同类数据对象的集合

□初始的数据:图像、声音、文本、数据库记录

□最终的形式:矩阵/表格

● 对数据的第一印象(影响后续方法的选择)

✓ Dimensionality: 维度

□ 维度之间有没有相关性

✓ Sparsity: 稀疏度

□ 数据出现的次数

✓ Distribution: 分布

□ 高斯?均匀?

	team	coach	pia y	ball	score	game	n wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

- ●数据对象的基本元素
- ✓数据行(数据对象): samples 样本, examples 样例, instances 用例, data points 数据点, objects 对象, tuples 元组.
- ✓数据列(数据属性): attribute 属性, dimensions 维度, features 特征, variables 变量

	team	coach	pia y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

- ●数据的取值类别
 - 标称属性 (Nominal) :
 - 有序: 成绩 = { A,B,C,D,F }
 - 无序: 颜色= {black, blond, brown, grey, red, white }
 - 邮政编码、电话号码
 - 二进制属性 (Binary)
 - 对称的二进制: gender
 - 不对称的: 检查结果={positive, negtive}
 - 数值属性 (Numeric):
 - 区间标度: 气温 = (-50, 50)
 - 比率标度: 湿度= (0,100): 潮湿的程度20是10的2倍, 所以称之为比率

●数据类型的相互转换

□标称属性: 有序数关系的标称属性的处理

$$r_i \in \{1, ..., M_i\}$$
 $z_i = \frac{r_i - 1}{M_i - 1}$

□标称属性: 无序数关系,例如: 红、黄、蓝、绿

• 方法1: 简单匹配:相等为0,不相等为1 (one hot 编码,独热编码)

• 方法2: 编码为一系列的二进制属性: 可以人为的设定不同取值之间的距离

原有属性: 颜色	新属性:	新属性: 黄	新属性: 绿	新属性: 蓝
红	1	0	0	0
绿	0	0	1	0
蓝	0	0	0	1

问题1: 冗余

问题2: 颜色之间距离是否客

观

1.2 数据的基本统计描述

- 基本的数据特征
- 1.中心趋势度描述: 中位数,均值,众数
- 2.数据的分散度量:
 max, min 极大极小值、quantiles 四分位数、
- 3.数据的离群点

1.2 数据的基本统计描述

●3. 离群点的选择

1.2 数据的基本统计描述

●基本度量的应用:

□数据归一化:

• 1)特征数值对最后结果的作用不受物理度量数值的影响; 2)模型输入的需要

- □数据离散化:应该如何划分数据
- 出于模型(决策树)的需要,使用区间标签或者概念标签替代数值: 年龄: 20->青年。
- □数据连续化:应该如何生成合理的数据分布

1.3 数据预处理

- 1.3.1数据清洗
- 为什么要数据清洗:
 - 是否准确 Accuracy: correct or wrong, accurate or not
 - 是否完整 Completeness: not recorded, unavailable, …
 - 是否一致 Consistency: some modified but some not, dangling, …
 - 是否及时 Timeliness: timely update?
 - 是否可信 Believability: how trustable the data are correct?
- 情况:
 - 空值或默认值: Occupation= " " (missing data) "NULL"
 - *不合理值: Salary=* "-10" (an error)
 - 不一致值: Age= "42", Birthday= "03/07/2018"
 - 一致但使用不同的记录规则: "甲 乙 丙", "A, B, C"; 2017/9 和 9/2017

1.3 数据预处理——数据清洗

- ・手段1: 人工修改
- 手段2: 直接删除: 直接删除数据行, 删除缺失过多的列
- 手段3: 自动填写的处理方法:
 - 增加一个"未知"类别 e.g., "unknown": 具有一定的意义
 - 填写本字段的均值、出现概率最大的值
 - 填写本类均值 (在更小类别中: 例如男生的平均身高, 而不是全体学生的)
 - 局部分析(临近点分析):
 - 1) 计算与缺失数据临近的数据点,查看字段值;
 - 2) 插值: 在时间序列中, 样本的顺序提供的临近点信息;

*大多数数据表的数据行和数据列默认是无顺序的

1.3 数据预处理——数据清洗

- 面对具有噪声的数据:
 - 分箱(离散化:不需要特征具有高分辨率)
 - 平滑(零均值噪声)
 - 剔除离群点

1.3 数据预处理——检测何时需要处理

- 数据依赖性检测
 - 1) 使用元数据Metadata (e.g., domain, range, dependency, distribution)
 - 编码使用的不一致
 - 数据表示的不一致 2017/9 和 9/2017
 - 2) 规则检查 (与数据库课程内容类似)
 - 唯一性规则
 - 连续性规则
 - 空值规则

1.3 数据预处理——数据抽样

- 数据抽样的作用:
 - 1)数据集太大,只需要计算其中一部分就可以得到较好的模型与结果; (注意事项:抽样后的数据集与原数据集具有一致的数据分布;)
 - 2) 划分训练集与测试集; (用于训练模型的数据与用于测试模型优劣的数据必须不尽相

同;分布应该一致)

几个名词:

- ◆验证集(在模型训练的过程中使用)
- ◆交叉验证
- 方法: 有放回抽样、无放回抽样

1.3 数据预处理——数据降维

- □选择出对后续数据分析有用的数据列(数据列的组合与变换)
- ●极大地影响模型的训练效果
- 主成分分析(PCA)
- · 奇异值分解(SVD)
- 人工

相似性与相异性计算是最本质的数据计算

- ■数据行的相似性
 - ●相似性、相异性、临近性、距离:表达了同一个内涵
 - ●标称属性、二进制属性怎么计算?
- ■数据列的相似性
 - ●正相关/负相关/不相关
 - ●意义:减少存储/避免计算出错/特征提取的需要

数据结构:相似矩阵

数据矩阵

point	attribute1	attribute2
x1	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

距离矩阵

	<i>x1</i>	<i>x2</i>	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x2</i>	3.61	0		
<i>x3</i>	5.1	5.1	0	
<i>x4</i>	4.24	1	5.39	0

- 广义的距离
- 例如闵可夫斯基距离: L-h norm

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

- 只要符合下列条件,都可以作为距离的度量
 - d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (正定性Positive definiteness)
 - d(i, j) = d(j, i) (对称性Symmetry)
 - d(i, j) ≤ d(i, k) + d(k, j) (三角不等式Triangle Inequality)

- *h* = 1: L-1 距离 (曼哈顿距离)
 - 在每个特征上的距离的绝对值之和

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{ip} - x_{jp}|$$

- h = 0: L-0距离
 - 数值不同的特征的数量

$$d(i,j) = (|x_{i1} - x_{j1}|^0 + |x_{i2} - x_{j2}|^0 + ... + |x_{ip} - x_{jp}|^0)$$

- $h \to \infty$.
 - 距离最大的特征之间的距离,作为数据点的距离

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

举例:

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x 1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x4	3	1	5	0

余弦相似度: 不考虑绝对的数值所造成的差异

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

• $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$,

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$\begin{aligned} d_1 \bullet d_2 &= 5*3 + 0*0 + 3*2 + 0*0 + 2*1 + 0*1 + 0*1 + 2*1 + 0*0 + 0*1 = 25 \\ ||d_1|| &= (5*5 + 0*0 + 3*3 + 0*0 + 2*2 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| &= (3*3 + 0*0 + 2*2 + 0*0 + 1*1 + 1*1 + 0*0 + 1*1 + 0*0 + 1*1)^{0.5} = (17)^{0.5} &= 4.12 \\ \cos(d_1, d_2) &= 0.94 \end{aligned}$$

1.4 数据的相似性与距离——列的相似性

• 数值属性

二进制属性: 注意非对称情况下的处理

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

	1	0	sum
1	q	r	q+r
0	s	t	s+t
sum	q + s	r+t	p

Jaccard 系数等同于相关性

$$d(i, j) = \frac{r+s}{q+r+s+t}$$

$$d(i, j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q+r+s}$$

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

• 二进制属性:卡方检验

• 例子

姓名	会下棋	喜欢科幻
小明	1	1
小红	0	0
小刚	1	0
0 0 0		

	会下棋	不会下棋	Sum (行)
喜欢科幻小说	250(90)	200(360)	450
不喜欢科幻小说	50(210)	1000(840)	1050
Sum(列.)	300	1200	1500

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$