Solving linear systems of equations

§3.7 Gerschgorin's Theorems

MA385 - Numerical Analysis 1

November 2018

<<< Annotated slides >>>

There are some extra details posted as an "Appendix" to this section

The goal of this final section is to learn a technique for estimating eigenvalues of matrices.

The idea dates from 1931, and is a simple as it is useful. Although known to mathematicians in the USSR, the original paper was not widely read.

ИЗВЕСТИЯ АКАДЕМИИ НАУК СООР. 1931

BULLETIN DE L'ACADÉMIE DES SOIENCES DE L'URSS

Closse des sciences mathématiques et naturelles

иловентаметам екполецтС ауди жынновтоотоо и

UBER DIE ABGRENZUNG DER EIGENWERTE EINER MATRIX

Von S. GERSCHGORIN

(Présenté par A. Krylov, membre de l'Académia des Sciences)

It received main-stream attention in the West following the work of Olga Taussky (*A recurring theorem on determinants*, American Mathematical Monthly, vol 56, p672–676. 1949.)

See also https://www.math.wisc.edu/hans/paper_archive/other_papers/hs057.pdf

(See Section 5.4 of Süli and Mayers).

Theorem 3.32 (Gerschgorin's First Theorem)

Given a matrix $A \in \mathbb{R}^{n \times n}$, define the n Gerschgorin Discs, D_1, D_2, \ldots, D_n as the discs in the complex plane where D_i has centre a_{ii} and radius r_i :

$$r_i = \sum_{j=1, j \neq i}^n |a_{ij}|.$$

So $D_i = \{z \in \mathbb{C} : |a_{ii} - z| \le r_i\}$. All the eigenvalues of A are contained in the union of the Gerschgorin discs.

First we'll do on example, tuen (Thursday) a proof.

Gerschgorin's First Theorem (94/103)

Proof. Suppose
$$\lambda$$
 is an eigenvalue of A .

That is $Ax = \lambda x$, for a vector x , and $\lambda \in C$. Let i be such that $|x_i| = ||x||_{\infty}$

So $(Ax)_i = \lambda x_i = \sum_{j=1}^{n} a_{ij} x_j = \lambda x_i$

So $a_{ii} x_i + \sum_{j=1}^{n} a_{ij} x_j = \lambda x_i$

Thus $(a_{ii} - \lambda)x_i = \sum_{j=1}^{n} a_{ij} x_j$

Thus $(a_{ii} - \lambda)x_i = \sum_{j=1}^{n} a_{ij} x_j$

Then $|a_{ii} - \lambda| \leq \sum_{j=1}^{n} |a_{ij}| ||x_j|| \leq \sum_{j=1}^{n} |a_{ij}| = \Gamma_i$

The proof makes no assumption about A being symmetric, or the eigenvalues being real. However, if A is symmetric, then its eigenvalues are real and so the theorem can be simplified: the eigenvalues of A are contained in the union of the intervals $I_i = [a_{ii} - r_i, a_{ii} + r_i], \text{ for } i = 1, \dots, n.$

Let

$$A = \begin{pmatrix} 4 & -2 & 1 \\ -2 & -3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 or e e vals of A

0, a centred on
$$a_{11}=4$$
, radius = $[-2]+[1]=3$.
That is $D_1 = [1, 7]$
 $D_1 = a_{22} = -3$, $r_2 = [-2]+[0]=2$. So $D_2 = [-5, -1]$
 $D_3 = [1, 3]$

Theorem 3.34 (Gerschgorin's Second Theorem)

Given a matrix $A \in \mathbb{R}^{n \times n}$, let the n Gerschgorin disks be as defined in Theorem 3.32. If k of discs are disjoint (have an empty intersection) from the others, their union contains k eigenvalues.

Proof: not covered in class. If interested, see the appendix, or the textbooks.

In particular, if a disk is disjoint from all the others , it contains I signivalve.

Example 3.35

Locate the regions contains the eigenvalues of $% \left\{ 1\right\} =\left\{ 1\right\} =\left\{$

30 ene ε) vals ore in [3,5] U [-8,0]

$$A = \begin{pmatrix} -3 & 1 & 2 \\ 1 & 4 & 0 \\ 2 & 0 & -6 \end{pmatrix}$$

(The eigenvalues are approximately -7.018, -2.130 and 4.144.)

Note that
$$A=A^{T}$$
, so all its Eigenvalues are Real. Next $\cdot 0_{1}$ is centred an $a_{11}=-3$, has radius $\Gamma_{1}=3$ $\cdot 0_{2}$ " $a_{22}=4$, " $\Gamma_{2}=1$ $\cdot 0_{3}$ " $a_{33}=-6$, " $\Gamma_{3}=2$.

Example 3.36

Use Gerschgorin's Theorems to find an upper and lower bound for the Singular Values of the matrix

Singular Values

$$A = \begin{pmatrix} 4 & -1 & 2 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
. Square roots of the Eigenvals of

Hence give an upper bound for $\kappa_2(A)$. $\mathbf{B} = \mathbf{A}^{\mathsf{T}} \mathbf{A}$

Exercises (99/103)

Exercise 3.20

A real matrix $A = \{a_{i,j}\}$ is Strictly Diagonally Dominant if

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{i,j}|$$
 for $i = 1, \dots, n$.

Show that all strictly diagonally dominant matrices are nonsingular.

Exercise 3.21

Let

$$A = \begin{pmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & -3 \end{pmatrix}$$

Use Gerschgorin's theorems to give an upper bound for $\kappa_2(A)$.

Proof of Gerschgorin's First Theorem (Thm 3.32)

Let λ be an eigenvalues of A, so $Ax = \lambda x$ for the corresponding eigenvector x. Suppose that x_i is the entry of x with largest absolute value. That is $|x_i| = ||x||_{\infty}$. Looking at the i^{th} entry of the vector Ax we see that

$$(A\boldsymbol{x})_i = \lambda x_i \implies \sum_{i=1}^n a_{ij} x_j = \lambda x_i.$$

This can be rewritten as

$$a_{ii}x_i + \sum_{\substack{j=0\\j\neq i}}^n a_{ij}x_j = \lambda x_i,$$

which gives

$$(a_{ii} - \lambda)x_i = -\sum_{\substack{j=0\\j\neq i}}^n a_{ij}x_j$$

By the triangle inequality,

$$|a_{ii} - \lambda||x_i| = |\sum_{\substack{j=0\\j\neq i}}^n a_{ij}x_j| \le \sum_{\substack{j=0\\j\neq i}}^n |a_{ij}||x_j| \le |x_i| \sum_{\substack{j=0\\j\neq i}}^n |a_{ij}|,$$

since $|x_i| \ge |x_j|$ for all j. Dividing by $|x_i|$ gives

$$|a_{ii} - \lambda| \le \sum_{\substack{j=0\\j \ne i}}^{n} |a_{ij}|,$$

as required.

By the triangle inequality,

$$|a_{ii} - \lambda||x_i| = |\sum_{\substack{j=0\\j\neq i}}^n a_{ij}x_j| \le \sum_{\substack{j=0\\j\neq i}}^n |a_{ij}||x_j| \le |x_i| \sum_{\substack{j=0\\j\neq i}}^n |a_{ij}|,$$

since $|x_i| \ge |x_j|$ for all j. Dividing by $|x_i|$ gives

$$|a_{ii} - \lambda| \le \sum_{\substack{j=0\\j \ne i}}^{n} |a_{ij}|,$$

as required.

By the triangle inequality,

$$|a_{ii} - \lambda||x_i| = |\sum_{\substack{j=0\\j\neq i}}^n a_{ij}x_j| \le \sum_{\substack{j=0\\j\neq i}}^n |a_{ij}||x_j| \le |x_i| \sum_{\substack{j=0\\j\neq i}}^n |a_{ij}|,$$

since $|x_i| \ge |x_j|$ for all j. Dividing by $|x_i|$ gives

$$|a_{ii} - \lambda| \le \sum_{\substack{j=0\\j \ne i}}^{n} |a_{ij}|,$$

as required.

<<< Slides 102 and 103 are missing from this version. See http://www.maths.nuigalway.ie/~niall/MA385/3-7-Gerschgorin.pdf