Looting the LUTs

FPGA Optimization of AES and AES-like Ciphers for Authenticated Encryption

Mustafa Khairallah¹ Anupam Chattopadhyay¹ Thomas Peyrin¹

¹Nanyang Technological University, Singapore mustafam001@e.ntu.edu.sg

11 December, 2017

Outline

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

Plan

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

Outline

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

FPGA Architecture

Motivation

¹http://www.mdpi.com

Outline

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

AES Boyar's Sbox: Boolean Optimization [BMP13]

Sbox Evolution:Xilinx FPGA

Motivation

AES Boyar's Sbox:Forward Top Layer [BMP13] Motivation

y_{14}	=	$x_3 + x_5$	y_{13}	=	$x_0 + x_6$	y_9	=	$x_0 + x_3$
y_8	=	$x_0 + x_5$	t_0	=	$x_1 + x_2$	y_1	=	$t_0 + x_7$
y_4	=	$y_1 + x_3$	y_{12}	=	$y_{13} + y_{14}$	y_2	=	$y_1 + x_0$
y_5	=	$y_1 + x_6$	y_3	=	$y_5 + y_8$	t_1	=	$x_4 + y_{12}$
y_{15}	=	$t_1 + x_5$	y_{20}	=	$t_1 + x_1$	y_6	=	$y_{15} + x_7$
y_{10}	=	$y_{15} + t_0$	y_{11}	=	$y_{20} + y_9$	y_7	=	$x_7 + y_{11}$
y_{17}	=	$y_{10} + y_{11}$	y_{19}	=	$y_{10} + y_8$	y_{16}	=	$t_0 + y_{11}$
y_{21}	=	$y_{13} + y_{16}$	y_{18}	=	$x_0 + y_{16}$			

Outline

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

Parallelisable Modes: ECB Motivation

Problem Motivation

We usually do not take the potential for parallel execution into account in hardware evaluation, as opposed to software.

Plan

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

Parallel AEAD Round Based Architecture

Key Scheduling

In order to minimize the key scheduling overhead, it is performed in only one pipeline stage and then shifted N cycles using SRL.

Pipeline Registers

The pipeline registers can add a huge overhead over the simple round implementation.

Plan

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

Zero Overhead Pipeline Sub-optimal

Design Flow

1 Synthesize the combinational circuit without pipelining.

Design Flow

- 1 Synthesize the combinational circuit without pipelining.
- 2 Determine the LUT structure and the best locations to insert pipeline registers.

Design Flow

- Synthesize the combinational circuit without pipelining.
- 2 Determine the LUT structure and the best locations to insert pipeline registers.
- 3 Resynthesize and compare the number of slices (the differences should be near 0).

Zero Overhead Pipeline Optimal

Figure: The AES encryption data path from BSQ+08

Plan

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

Example: AES MixColumns

$$\begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix}$$

$$p = 2 \cdot a \oplus 3 \cdot b \oplus c \oplus d$$

Example: AES MixColumns Bit Decomposition

$$\begin{bmatrix} a_6 & a_5 & a_4 & a_3 & a_2 & a_1 & a_0 & 0 \\ 0 & 0 & 0 & a_7 & a_7 & 0 & a_7 & a_7 \\ b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 & 0 \\ 0 & 0 & 0 & b_7 & b_7 & 0 & b_7 & b_7 \\ b_7 & b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 \\ c_7 & c_6 & c_5 & c_4 & c_3 & c_2 & c_1 & c_0 \\ d_7 & d_6 & d_5 & d_4 & d_3 & d_2 & d_1 & d_0 \end{bmatrix}$$

Example: AES MixColumns Bit Decomposition

$$\begin{bmatrix} a_6 & a_5 & a_4 & a_3 & a_2 & a_1 & a_0 & a_7 \\ b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 & b_7 \\ 0 & 0 & 0 & x & x & 0 & x & 0 \\ b_7 & b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 \\ c_7 & c_6 & c_5 & c_4 & c_3 & c_2 & c_1 & c_0 \\ d_7 & d_6 & d_5 & d_4 & d_3 & d_2 & d_1 & d_0 \end{bmatrix}$$

$$x = a_7 \oplus b_7$$

Example: Inverse AES MixColumns

$$p = F \cdot (a \oplus b \oplus c \oplus d) \oplus (a \oplus 2 \cdot c \oplus 2 \cdot d) \oplus 4 \cdot (b \oplus d)$$

Example: Inverse AES MixColumns

Example: Inverse AES MixColumns

Implementation ²	M^3	$M \cdot N$	Ours
LUTs/output bit	3.375	2.25	1.875

Plan

- 1 Motivation
 - FPGA
 - ASIC Optimization
 - Authenticated Encryption
- 2 Architecture
- 3 Zero Overhead Pipeline
- 4 Linear Functions: Technology Mapping
- 5 Results

Results

Algorithm	Family	lmpl.	Throughput	Slices	Efficiency
			(Gbps)		(Mbps/slice)
		Ours	8.0	347	23.00
	Virtex 5	BSQ+08	4.5	400	11.20
AES Encryption		LXY13	46.0	3,579	12.88
	Virtex 6	Ours	9.5	247	38.46
	virtex 0	LXY13	64.1	3.121	20.55
AES Decryption	Virtex 5	Ours	6.1	294	20.7
ALS Decryption		BSQ+08	4.5	550	7.6
Deoxys-I-128	Virtex 6	Ours	3.8	861	4.5
Deoxys 1-120		CERG	2.2	946	2.57
Deoxys-I-128	Virtex 6	Ours	3.5	566	6.2
Encryption Only	virtex 0	Axel Poschmann & Marc Stöttinger	1	920	1.12
LED	Spartan 3	Ours	0.51	204	2.5
FED		APP14	0.19	204	0.97

Future Work

- Automate the pipeline selection flow.
- Design an algorithm for FPGA mapping of other primitives.
- Lightweight implementations of the CAESAR Competition finalists.

Thank you!

Any Questions?!