Project	AI-powered Nutrition Analyzer for fitness Enthusiasts
Name	
Name	INBARASAN .M
Roll no	620619104007
Team ID	PNT2022TMID41475

Importing Package

```
from
google.colab
import drive
drive.mount('
/content/drive
')
impor
panda
s as
pd
impor
t
seabo
rn as
snsim
port
nump
y as
np
from matplotlib import pyplot as ply
%matplotlib inline
```

1.Loading dataset

$\label{eq:creditScore} CreditScore \\ Geography \\ Age_{df\ =pd.read_csv("/content/Churn_Modelling.csv")}$

df							
RowNumbe	CustomerI	Surname	CreditScor	Geograph	Gende	Ag	Tenu
r	d		e	y	r	e	r

0	1	0.275616	Hargrave	619	France	Female	42	
1	2	0.326454	Hill	608	Spain	Female	41	
2	3	0.214421	Onio	502	France	Female	42	
3	4	0.542636	Boni	699	France	Female	39	
4	5	0.688778	Mitchell	850	Spain	Female	43	
•••								
9995	9996	0.162119	Obijiaku	771	France	Male	39	
9996	9997	0.016765	Johnston	516	France	Male	35	
			e					
9997	9998	0.075327	Liu	709	France	Female	36	
9998	9999	0.466637	Sabbatini	772	Germany	Male	42	
9999	10000	0.250483	Walker	792	France	Female	28	

 $10000 \text{ rows} \times 14 \text{ columns}$

Visualization

a) Univariate analysis

sns.displot (df.Gender)

<seaborn.axisgrid.FacetGrid at 0x7fa2127ec990>

 $\boldsymbol{df.plot.line}()$

 $<\!matplotlib.axes._subplots. Axes Subplot \quad at \quad 0x7fa21262e890\!>$

 $sns.lmplot("Tenure", "NumOfProducts", df, hue="NumOfProducts", \ fit_reg=False);$

CreditScoreAge/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning FutureWarning

df.describe()						
	RowNumbe r	CustomerId	CreditScore	Age	Tenure	Balanc
coun t	10000.00000	10000.00000	10000.00000	10000.00000	10000.00000	10000.00000
mea n	5000.50000	0.500980	650.528800	36.533900	5.012800	76485.88928
std	2886.89568	0.287757	96.653299	6.473843	2.892174	62397.40520
min	1.00000	0.000000	350.000000	20.000000	0.000000	0.00000
25 %	2500.75000	0.251320	584.000000	32.000000	3.000000	0.00000

50 %	5000.50000	0.500170	652.000000	37.000000	5.000000	97198.54000
75 %	7500.25000	0.750164	718.000000	40.000000	7.000000	127644.2400 0
max	10000.00000	1.000000	850.000000	50.000000	10.000000	250898.0900 0

Handle the missing values

data =
pd.read_csv("/content/Churn_Modelling.c
sv")pd.isnull(data["Gender"])

0	False				
1	False				
2	False				
3	False				
4	False				
	•••				
9995	False				
9996	False				
9997	False				
9998	False				
9999	False				
Name:	Gender,	Length:	10000,	dtype:	bool

Find the outliers and replace the outliers

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning FutureWarning FutureWarning smatplotlib.axes_subplots.AxesSubplot at 0x7fa21390b290>

0	42				
1	41				
2	42				
3	39				
4	43				
	••				
9995	39				
9996	35				
9997	36				
9998	42				
9999	28				
Name:	Age,	Length:	10000,	dtype:	int64

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning FutureWarning matplotlib.axes._subplots.AxesSubplot at 0x7fa213879fd0>

9997 9998	36 42	
9996	35	
9995	39	
4	43	
3	39	
2	42	
1	41	
0	42	

Check for categorical Columns and perform encoding

 $\label{lem:creditScore} \begin{tabular}{ll} CreditScoreGeography \\ pd.get_dummies(df,columns=["Gender","Age"],prefix=["Age","Gender"]).head() \\ \end{tabular}$

RowNumbe	CustomerI	Surnam	CreditScor	Geograph	Tenur	Balance	Nu

r		d	e	e	y	e		m
0	1	0.275616	Hargrave	619	France	2	0.00	
1	2	0.326454	Hill	608	Spain	1	83807.86	
2	3	0.214421	Onio	502	France	8	159660.8 0	
3	4	0.542636	Boni	699	France	1	0.00	
4	5	0.688778	Mitchell	850	Spain	2	125510.8 2	

 $5 \text{ rows} \times 45 \text{ columns}$

Split the data into dependent and independent Variables

• Split the data into independent Variables

```
X = df.iloc[;; :-1].values print(X)

[[1 0.2756161271095934 'Hargrave' ... 1 1 101348.88]
        [2 0.32645436399201344 'Hill' ... 0 1 112542.58]
        [3 0.21442143454311946 'Onio' ... 1 0 113931.57]
        ...
        [9998 0.07532731440183227 'Liu' ... 0 1 42085.58]
        [9999 0.4666365320074064 'Sabbatini' ... 1 0 92888.52]
        [10000 0.25048302125293276 'Walker' ... 1 0 38190.78]]
```

• Split the data into dependent Variables

```
Y =
df.iloc[:, -
1].valuespr
int(Y)

[1 0 1 ...
1 1 0]

Scale the
```

indepen dent

import pandas as pd
from sklearn.preprocessing import
MinMaxScalerscaler = MinMaxScaler()
df[["CustomerId"]]=
scaler.fit_transform(df[["CustomerId"]]) print(df)

	RowNumbe	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	<u>r</u>	0.275616	Hargrave	619	France	Female	42
1	2	0.326454	Hill	608	Spain	Female	41
2	3	0.214421	Onio	502	France	Female	42
3	4	0.542636	Boni	699	France	Female	39
4	5	0.688778	Mitchell	850	Spain	Female	43
•••	•••	•••	•••	•••	•••	•••	•••
9995	9996	0.162119	Obijiaku	771	France	Male	39
9996	9997	0.016765	Johnstone	516	France	Male	35
9997	9998	0.075327	Liu	709	France	Female	36
9998	9999	0.466637	Sabbatini	772	Germany	Male	42
9999	10000	0.250483	Walker	792	France	Female	28
	Tenure	Balance No	umOfProducts	HasCrCard	sActiveMen	nber \	
0	2	0.00	1	1		1	
1	1	83807.86	1	0		1	
2	8 1	59660.80	3	1		0	
3	1	0.00	2	0		0	
4	2 1	25510.82	1	1		1	
•••	•••	•••	•••	•••		•••	
9995	5	0.00	2	1		0	
9996	10	57369.61	1	1		1	
9997	7	0.00	1	0		1	
9998	3	75075.31	2	1		0	
9999	4 13	30142.79	1	1		0	

E	stimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
•••	•••	•••
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

Split the data into training and testing

```
from sklearn.model_selection import
train_test_splittrain_size=0.8X = df.drop(columns =
['Tenure']).copy()y
= df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)test_size=0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem,test_size=0.5)print(X_train.shape),
print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
        (8000, 13)
        (8000,)
        (1000, 13)
        (1000,)
        (1000, 13)
        (1000,)
        (None, None)
```