FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2015.

Veiledning: 3. og 4. februar. Innleveringsfrist: Fredag 6. februar kl 16.

Øving 4

Oppgave 1

En viss mengde enatomig ideell gass gjennomløper kretsprosessen vist på figuren. Hva er adiabatkonstanten for en slik gass? Langs hvilke deler av kretsprosessen tilføres og fjernes varme fra gassen? Beregn virkningsgraden η . [Hint: Det kan forenkle litt å beregne temperaturene i punktene a, b og c i forhold til hverandre. Da kan en unngå beregning av arbeid. Alternativt kan arbeidet bestemmes ved integrasjon.] Hva er, for sammenligningens skyld, virkningsgraden η_C for en Carnot-varmekraftmaskin som arbeider mellom to reservoar med temperaturer lik henholdsvis den største og den minste temperatur som opptrer i prosessen i figuren? [Som nevnt i forelesningene, er η_C den maksimale virkningsgraden for en varmekraftmaskin som opererer mellom to gitte temperaturer.]

Oppgave 2

Ei elv skal brukes som lavtemperaturreservoar for et stort varmekraftverk med virkningsgrad $\eta=0.40$. Av økologiske grunner begrenses varmen som dumpes i elva til 1500 MW. Hva er den maksimale elektriske effekten kraftverket kan levere, og hva er tilført varmeenergi som da trengs for å drive kraftverket? Hvor stor vannføring, f.eks i enheten tonn/s, trengs dersom temperaturstigningen i elva skal begrenses til 5 K? (Vannets varmekapasitet er 1 cal/gK.)

Oppgave 3

En van der Waals gass har tilstandsligning

$$p = \frac{nRT}{V - b} - \frac{a}{V^2}$$

Her er a > 0 og b > 0 konstanter som tar hensyn til at partikler vekselvirker attraktivt ved lange avstander (a > 0) og at partikler har et endelig lite volum (b > 0). Videre er n antall mol partikler i gassen, R er den molare gasskonstanten, T er gassens temperatur, og V er volumet gassen er inneholdt i.

Bruk den termodynamiske identititet TdS = dU + pdV til beregne $C_p - C_v$ for van der Waals gassen. Her er C_p og C_v varmekapasiteten til gassen ved henholdsvis konstant trykk p og konstant volum V. Hva er størst av $C_p - C_v$ for ideell gaas og van der Waals gass?

Oppgave 4. Oppvarming (Flervalgs-oppgave)

a) Et ideelt "Carnot-kjøleskap" holder konstant temperatur 4°C ("lavtemperaturreservoaret") i et kjellerrom der temperaturen er 13°C ("høytemperaturreservoaret"). Hva er kjøleskapets effektfaktor, dvs forholdet mellom varmen som trekkes ut av kjøleskapet og arbeidet som kjøleskapets motor må utføre? (Tips: For syklisk reversibel prosess er $\Delta S=0$ og $\Delta U=0$.)

- A) Ca 0.55
- B) Ca 1.4
- C) Ca 11
- D) Ca 31

b) Figuren viser en kretsprosess for et mol ideell gass, med $p_0=1$ atm og $V_0=5$ L. Omlag hvor stort arbeid utfører gassen pr syklus?

- A) 10 J
- B) 40 J
- C) 10 kJ
- Ď) 40 kJ

c) Ranger temperaturene i de fire hjørnene av kretsprosessen i oppgave b.

- A) $T_a < T_b < T_c < T_d$
- B) $T_a < T_b < T_d < T_c$
- C) $T_a < T_d < T_b < T_c$
- D) $T_a < T_b = T_d < T_c$

d) Dersom gassen i oppgave b hadde ekspandert isotermt fra tilstand b til en tilstand med trykk p_0 , og deretter blitt komprimert ved konstant trykk tilbake til tilstand a og så varmet opp ved konstant volum til tilstand b osv, omtrent hvor stort arbeid ville gassen da ha utført pr syklus?

- A) 2.0 J
- B) 6.5 J
- C) 2.0 kJ
- D) 6.5 kJ

e) Figuren viser en Otto-syklus, dvs en reversibel idealisering av en 4-takts bensinmotor. Temperaturen i hjørnene 1-4 er hhv T_1-T_4 . Hva kan du si om virkningsgraden η_O til denne prosessen, i forhold til størrelsen $1-T_1/T_3$? (Tips: T_1 og T_3 er hhv prosessens minimale og maksimale temperatur.)

- A) $\eta_O < 1 T_1/T_3$
- B) $\eta_O > 1 T_1/T_3$
- C) $\eta_O = 1 T_1/T_3$
- D) $\eta_O = \sqrt{1 T_1/T_3}$

f) Bensin/luft-blandingen i oppgave e har varmekapasitet C_V (ved konstant volum). Hva blir da arbeidet utført av bensin/luft-blandingen pr syklus av Otto-prosessen?

A)
$$C_V(T_4 - T_2)$$

B)
$$C_V(T_3 - T_1)$$

C)
$$C_V(T_1 - T_2 + T_3 - T_4)$$

D)
$$C_V(T_4 + T_3 - T_2 - T_1)$$

g) "Trinn nr 1" i Carnotprosessen er en isoterm utvidelse. Dersom arbeidssubstansen er en ideell gass, er det da ingen endring i indre energi (siden U=U(T)), og Q=W, dvs tilført varme Q omsettes i sin helhet i arbeid W. Er ikke dette i strid med termodynamikkens 2. lov?

- A) Jo, prosessen er ikke mulig.
- B) Nei, omdanning av varme til arbeid er ikke det eneste som skjer i prosessen.
- C) Jo, 2. lov gjelder ikke.
- D) Nei, 2. lov kan ikke anvendes for ideell gass.

Noen svar og opplysninger:

Oppgave 1: $\eta = 0.23, \, \eta_C = 0.69.$

Oppgave 2: 72 tonn/s.