Geometric Shapes: 3D Curves

Module 3 Lecture 3

3D Curves

Can be only defined parametrically!

for plane curves.

$$x = f_{x}(\tau)$$

$$y = f_{y}(\tau)$$

$$z = f_z(\tau)$$

$$\tau = [\tau_1, \tau_2]$$

3

We have learnt that

- · We think of a 2D curve as a point moving with one degree of freedom (forward and backward)
- 2D curves can be defined analytically by

- Implicit functions

- Slow for rendering f(x,y)=0

- Explicit functions

y=f(x) or x=f(y)- Fast but axes dependent

- Parametric functions One parameter only

x=x(t), y=y(t) $t=[t_1, t_2]$ – Fast and axes independent

• Curves are usually interpolated by polylines – connected segments

Straight Line in 3D

$$x = x_1 + \tau(x_2 - x_1)$$

$$y = y_1 + \tau(y_2 - y_1)$$

$$z = z_1 + \tau(z_2 - z_1)$$

$$\tau = [0,1]$$
 Segment
$$\tau = [0,\infty)$$
 Ray
$$\tau = (-\infty,\infty)$$
 Straight line x_1, y_1, z_1

No explicit and implicit representation!

Experimenting with Parametric Curves

Curves. Summary

- 2D and 3D. A point moving with one degree of freedom (forward and backward)
- Polylines interpolation by connected straight line segments
- 2D:
 - Explicit
 - $\dot{y}=f(x)$ or x=f(y) axes dependent, no arcs and segments
 - Implicit
 - f(x,y)=0 no arcs and segments
 - Parametric

One parameter only. Any curve, even with self-intersections. The concept of a moving point as a function of the parameter. Curve interpolation.

- $x=x(t), y=y(t) t=[t_1, t_2]$
- 3D:
 - Parametric

$$x=x(t)$$
, $y=y(t)$, $z=z(t)$ $t=[t_1, t_2]$

CZ2003

7

5

Experimenting with Parametric Curves

CZ2003

_