CS270-B Advanced Digital Image Processing

Lecture 11 Image Reconstruction

(Compress Sensing)

Yuyao Zhang PhD

zhangyy8@shanghaitech.edu.cn

SIST Building-3 420

Outline

- Intuitive Example of Compress Sensing
- Compress Sensing
- Restricted Isometry Property
- Example in Image Reconstruction

Traditional Sensing

- $x \in \mathcal{R}^N$ is a signal
- Make N linear projections

Compress Sensing

- $x \in \mathcal{R}^N$ is a K-sparce signal $(K \ll N)$
- Make $M(K < M \ll N)$ incoherent linear projections

Definition 1.1 (Restricted Isometry Constants): Let F be the matrix with the finite collection of vectors $(v_j)_{j\in J} \in \mathbf{R}^p$ as columns. For every integer $1 \leq S \leq |J|$, we define the S-restricted isometry constants δ_S to be the smallest quantity such that F_T obeys

$$(1 - \delta_S)||c||^2 \le ||F_T c||^2 \le (1 + \delta_S)||c||^2 \tag{1.7}$$

for all subsets $T \subset J$ of cardinality at most S, and all real coefficients $(c_j)_{j \in T}$.

Definition 1.1 (Restricted Isometry Constants): Let F be the matrix with the finite collection of vectors $(v_j)_{j\in J} \in \mathbf{R}^p$ as columns. For every integer $1 \leq S \leq |J|$, we define the S-restricted isometry constants δ_S to be the smallest quantity such that F_T obeys

$$(1 - \delta_S)||c||^2 \le ||F_T c||^2 \le (1 + \delta_S)||c||^2 \tag{1.7}$$

for all subsets $T \subset J$ of cardinality at most S, and all real coefficients $(c_j)_{j \in T}$.

陶哲轩和Candès于2005年给出了更为准确的

要求:观测矩阵Φ应满足约束等距性条件

(Restricted Isometry Property, 简称RIP):

即对于任意和常数,有:

$$(1 - \delta_k) \|c\|_2^2 \le \|\phi c\|_2^2 \le (1 + \delta_k) \|c\|_2^2$$

Baraniuk证明:

RIP的等价条件是观测矩阵和稀疏表示基不相关 (incoherent)

$$y = \Phi \Psi s$$
 $\Phi \leftarrow \overline{A} + \Psi$

相关性的定义:

$$\mu(\Phi, \Psi) = \sqrt{n} \cdot \max_{1 \le k, j \le n} |\langle \varphi_k, \psi_j \rangle|.$$

 μ 的范围: $\mu(\Phi, \Psi) \in [1, \sqrt{n}]$ μ 越小, Φ 和 Ψ 越不相关

陶哲轩和Candès证明:

独立同分布的高斯随机测量矩阵可以成为普适的压缩感知测量矩阵。

CS recovery

- Given $y = \Phi x$ find x } Under-determined
- But there's hope, x is sparse.

Enforce Sparsity

$$\min_{x} ||x||_{L_1}, s(t, ||\Phi \Psi x - y|| < \varepsilon$$

Need $M \approx Klog(N) \ll N$ Solved by linear-programming

Enforce Data Consistency

CS recovery

Not a good idea for CT, why?

Figure 7 Shepp-Logan phantom images reconstructed from 60 and 30 view numbers using CS-based iterative algorithm (column 1), ART (column 2), and FBP (column 3).

Magnetic Resonance Imaging (MRI): Fourier Encoding A natural CS hardware

Basic Components of MRI System

B₀ Field RF Coil: B₁ **Gradient Coil: G**

Magnetic Resonance Phenomenon

"Big" Idea: Magnetic Field Gradient

Pulse Sequence: Excitation, Encoding & Acquisition

K-Space

K-Space Sampling

Nyquist rate: $f = 2*Bw \rightarrow \Delta k_x = 1/FOV_x$, $\Delta k_y = 1/FOV_y$

- Non-Cartesian Sampling
 - Design of gradient waveform
 - ► Image recon needs gridding

MRI – A Natural CS Hardware

Incoherent Cartesian sampling:

Incoherent Sampling

- Scan time reduction: 2.4 times
- Transform: Wavelet

· Scan reduction: x2.4

· Transform: wavelet

Resources

- SparseMRI V0.2: matlab code, examples
 http://www.stanford.edu/~mlustig/SparseMRI.html
- Rice University CS page: papers, tutorials, codes, <u>http://www.dsp.ece.rice.edu/cs/</u>
- IEEE Signal Processing Magazine, special issue on compressive sampling 2008;25(2)

 Blog: <u>http://nuit-blanche.blogspot.com/</u>

