The χ -Divergence for Approximate Inference

Adji Bousso Dieng Columbia University

Collaborators

Bayesian inference

data - x

latent variables - z

probabilistic model - $p(\mathbf{x}, \mathbf{z})$

Goal: Compute $p(\mathbf{z}|\mathbf{x})$

Bayesian inference

How to compute $p(\mathbf{z}|\mathbf{x})$

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})}$$

- ightarrow easy for conjugate models
- \rightarrow intractable for most cases

Variational inference

$$\begin{array}{l} \mathrm{D}(p(\mathbf{z}\,|\,\mathbf{x})\|q(\mathbf{z}\,|\,\theta)) \geq 0 \\ \mathrm{D}(p(\mathbf{z}\,|\,\mathbf{x})\|q(\mathbf{z}\,|\,\theta)) = 0 \iff p(\mathbf{z}\,|\,\mathbf{x}) = q(\mathbf{z}\,|\,\theta) \text{ a.e.} \end{array}$$

Variational inference

Pick a tractable family of approximating distribution $q(\mathbf{z} \mid \theta)$

Pick a divergence measure $D(p(\mathbf{z} \mid \mathbf{x}) || q(\mathbf{z} \mid \theta))$

Optimize this divergence over θ

$$q^*(\mathbf{z} \mid \theta^*) = \underset{q(\mathbf{z} \mid \theta)}{\operatorname{arg \, min}} \ \mathrm{D}(p(\mathbf{z} \mid \mathbf{x}) || q(\mathbf{z} \mid \theta))$$

Use $q^*(\mathbf{z} \,|\, \theta^*)$ as a surrogate to $p(\mathbf{z} \,|\, \mathbf{x})$

Which divergence measure to choose?

Divergence measures

$$D_f(p||q) = \int f\left(\frac{p(x)}{q(x)}\right) q(x) dx$$

$$\rightarrow f$$
 convex and $f(1) = 0$

 \rightarrow Special cases:

$$KL(q||p)$$
 (BBVI) and $KL(p||q)$ (\approx EP)

$$D_{\alpha}(q||p)(\mathsf{VR}_{\alpha})$$
 and $D_{\alpha}(p||q)$ (CHIVI)

Divergence measures

Three types of behaviors:

zero-forcing, zero-avoiding, neither

Variational inference with KL(q||p)

$$\mathrm{KL}(q(\mathbf{z} \mid \theta) \| p(\mathbf{z} \mid \mathbf{x})) = E_{q(\mathbf{z} \mid \theta)} \left[\log \left(\frac{q(\mathbf{z} \mid \theta)}{p(\mathbf{z} \mid \mathbf{x})} \right) \right]$$

→ Maximizes the evidence lower bound

$$\mathsf{ELBO}(\theta) = E_{q(\mathbf{z} \mid \theta)} \left[\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z} \mid \theta) \right]$$

ightarrow Perform Stochastic optimization using Monte Carlo estimates of $\nabla_{\theta} ELBO(\theta)$

Variational inference with KL(q||p)

$$\begin{split} \mathsf{ELBO}(\theta) &= E_{q(\mathbf{z} \mid \theta)} \Big[\log p(\mathbf{x} | \mathbf{z}) \Big] - \mathsf{KL}(q(\mathbf{z} \mid \theta) \| p(\mathbf{z})) \\ \nabla_{\theta} ELBO(\theta) &= E_{q(\mathbf{z} \mid \theta)} \left[\nabla_{\theta} \Big(\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z} \mid \theta) \Big) \right] \end{split}$$

- → uses unbiased gradients
- ightarrow very efficient and works well in many settings
- → underdispersion ... too confident
- ightarrow model overpruning in VAEs

Variational inference with $D_{\alpha}(q||p)$

$$D_{\alpha}(q(\mathbf{z} \mid \theta) || p(\mathbf{z} \mid \mathbf{x})) = \frac{1}{\alpha - 1} \log \int p(\mathbf{z} \mid \mathbf{x})^{1 - \alpha} q(\mathbf{z} \mid \theta)^{\alpha} d\mathbf{z}$$

→ Maximizes the variational Renyi lower bound

$$\begin{split} \mathcal{L}(\theta) &= \frac{1}{1-\alpha} \log E_{q(\mathbf{z}\,|\,\theta)} \left[\left(\frac{p(\mathbf{x},\mathbf{z})}{q(\mathbf{z}\,|\,\theta)} \right)^{1-\alpha} \right] \\ \hat{\mathcal{L}}(\theta) &= \frac{1}{1-\alpha} \log \frac{1}{K} \sum_{k=1}^{K} \left[\left(\frac{p(\mathbf{x},\mathbf{z}_{k})}{q(\mathbf{z}_{k}\,|\,\theta)} \right)^{1-\alpha} \right] \text{ where } \mathbf{z}_{k} \sim q(\mathbf{z}\,|\,\theta) \end{split}$$

ightarrow Perform Stochastic optimization using noisy estimates of $\nabla_{\theta} \mathcal{L}(\theta)$

Variational inference with $D_{\alpha}(q||p)$

$$\nabla_{\theta} \mathcal{L}(\theta) = E_{q(\mathbf{z} \mid \theta)} \left[\frac{w^{1-\alpha}}{E_{q(\mathbf{z} \mid \theta)}(w^{1-\alpha})} \nabla_{\theta} \log w \right]$$
$$\log w = \log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z} \mid \theta)$$

- → uses biased gradients
- ightarrow works well in many settings
- → underdispersion by the nature of the divergence
- ightarrow cannot handle upper bounds

Variational inference with $D_{\alpha}(p||q)$

→ Equivalent to minimizing:

$$D_{\chi}(p(\mathbf{z} \mid \mathbf{x}) \| q(\mathbf{z} \mid \theta)) = \frac{1}{n} E_{q(\mathbf{z} \mid \theta)} \left[\left(\frac{p(\mathbf{z} \mid \mathbf{x})}{q(\mathbf{z} \mid \theta)} \right)^{n} \right], \ n = 1 + \alpha$$

 \rightarrow Equivalent to minimizing the χ upper bound:

$$\mathsf{CUBO}_n(\theta) = \frac{1}{n} \log E_{q(\mathbf{z} \mid \theta)} \left[\left(\frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z} \mid \theta)} \right)^n \right]$$

→ Equivalent to minimizing:

$$\mathcal{L}(\theta) = \exp(n * \mathsf{CUBO}(\theta))$$

ightarrow Perform Stochastic optimization using noisy estimates of $\nabla_{\theta} \mathcal{L}(\theta)$

Variational inference with $D_{\alpha}(p||q)$

$$\nabla_{\theta} \mathcal{L}(\theta) = E_{q(\mathbf{z} \mid \theta)} \Big[w^n \ \nabla_{\theta} \log w \Big]$$

- → uses unbiased gradients
- → overdispersed posterior approximations
- → performs upper bound minimization
- \rightarrow enables sandwich estimation of the evidence
- ightarrow black box alternative to EP

Sandwich estimation

$$\mathsf{ELBO}(\theta) \le \log p(\mathbf{x}) \le \mathsf{CUBO}_n(\theta)$$

$$\lim_{n\to 0} \mathsf{CUBO}_n(\theta) = \mathsf{ELBO}(\theta)$$

Sandwich estimation

CHIVI for probit regression

Table: Test error for Bayesian probit regression.

Dataset	BBVI	EP	CHIVI
Pima	0.235 ± 0.006	0.234 ± 0.006	0.222 ± 0.048
Ionos	0.123 ± 0.008	0.124 ± 0.008	0.116 ± 0.05
Madelon	0.457 ± 0.005	0.445 ± 0.005	0.453 ± 0.029
Covertype	0.157 ± 0.01	0.155 ± 0.018	0.154 ± 0.014

CHIVI for Cox processes

Table: Average L_1 error for posterior uncertainty estimates (ground truth from HMC).

-	Curry	Demarcus	Lebron	Duncan
CHIVI	0.060	0.073	0.0825	0.0849
BBVI	0.066	0.082	0.0812	0.0871

Take-away message

CHIVI

- → uses unbiased gradients
- → favors overdispersed posterior approximations
- → performs upper bound minimization
- \rightarrow enables sandwich estimation of the evidence
- \rightarrow is a black box alternative to EP
- → needs variance reduction techniques