Spatial methods for extreme value analysis

Samuel A. Morris

17 Mar 2016

Motivation

- Average behavior is important to understand, but it does not paint the whole picture
 - e.g. When constructing river levees, engineers need to be able to estimate a 100-year or 1000-year flood levels
 - e.g. Probability of ambient air pollution exceeding a certain threshold level
- Estimating the probability of rare events is challenging because these events are, by definition, rare
- Spatial extremes is promising because it borrows information across space
- Spatial extremes is also useful for estimating probability of extremes at sites without data

Defining extremes

- Key in extreme value analysis is to define extremes
- Typically done in one of two ways
 - Block maxima (red dots)
 - Values over threshold considered extreme

Figure: Hypothetical monthly data

Non-spatial analysis: Block maxima

Fisher-Tippett-Gnedenko theorem

- Let X_1, \ldots, X_n be i.i.d.
- Consider the block maximum $M_n = \max(X_1, \dots, X_n)$
- ullet If there exist normalizing sequences $a_n>0$ and $b_n\in\mathcal{R}$ such that

$$\frac{M_n-b_n}{a_n}\stackrel{d}{\to} G(z)$$

then G(z) follows a generalized extreme value distribution (GEV) (Gnedenko, 1943)

• This motivates the use of the GEV for block maximum data

Non-spatial analysis: Block maxima

GEV distribution

$$G(y) = \Pr(Y < y) = \left\{ egin{array}{ll} \exp\left\{-\left[1 + \xi\left(rac{y - \mu}{\sigma}
ight)
ight]^{-1/\xi}
ight\} & \xi
eq 0 \ \exp\left\{-\exp\left(-rac{y - \mu}{\sigma}
ight)
ight\} & \xi = 0 \end{array}
ight.$$

where

- $m{\bullet}$ $\mu \in \mathcal{R}$ is a location parameter
- $\sigma > 0$ is a scale parameter
- $\xi \in \mathcal{R}$ is a shape parameter
 - Unbounded above if $\xi \geq 0$
 - Bounded above by $(\mu \sigma)/\xi$ when $\xi < 0$
- Challenges:
 - Lose information by only considering maximum in a block
 - Underlying data may not be i.i.d.

Non-spatial analysis: Peaks over threshold

Pickands-Balkema-de Haan theorem

- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} F$
- If there exist normalizing sequences $a_T>0$ and $b_T\in\mathcal{R}$ such that for any $x\geq 0$, as $T\to\infty$

$$\Pr\left(\frac{X-b_T}{a_T} > x \mid X > T\right) \stackrel{d}{\to} H(x),$$

where T is a thresholding value, then H(x) follows a generalized Pareto distribution (GPD) (Balkema and de Haan, 1974)

Non-spatial analysis: Peaks over threshold

Select a threshold, T, and use the GPD to model the exceedances

$$H(y) = P(Y < y) = \begin{cases} 1 - \left[1 - \xi\left(\frac{y - T}{\sigma}\right)\right]^{-1/\xi} & \xi \neq 0\\ 1 - \exp\left\{\frac{y - T}{\sigma}\right\} & \xi = 0 \end{cases}$$

where

- $\sigma > 0$ is a scale parameter
- ullet $\xi \in \mathcal{R}$ is a shape parameter
 - Unbounded above if $\xi \geq 0$
 - Bounded above by $(T \sigma)/\xi$ when $\xi < 0$
- Challenges:
 - Sensitive to threshold selection
 - Temporal dependence between observations (e.g. flood levels don't dissipate overnight)

Max-stable processes for spatial data

- Consider i.i.d. spatial processes $x_j(s)$, j = 1, ..., J
- Let $M_J(\mathbf{s}) = \bigvee_{i=1}^J x_j(\mathbf{s}_i)$ be the block maximum at site \mathbf{s}
- If there exists normalizing sequences $a_J(s)$ and $b_J(s)$ such that for all sites, s_i , i = 1, ..., d,

$$\frac{M_J(s) - b_J(s)}{a_J(s)} \stackrel{d}{\to} G(s)$$

then G(s) is a max-stable process (Smith, 1990)

 Therefore, max-stable processes are the standard model for block maxima

Multivariate representations

- Marginally at each site, observations follow a GEV distribution
- For a finite collection of sites the representation for the multivariate GEV (mGEV) is

$$\Pr(\mathbf{Z} \leq \mathbf{z}) = G^*(\mathbf{z}) = \exp[-V(\mathbf{z})]$$
 $V(\mathbf{z}) = d \int_{\Delta_d} \bigvee_{i=1}^d \frac{w_i}{z_i} H(dw)$

where

- \bullet V(z) is called the exponent measure
- $\Delta_d = \{ \mathbf{w} \in \mathcal{R}^d_+ \mid w_1 + \dots + w_d = 1 \}$
- H is a probability measure on Δ_d
- $\int_{\Delta_d} w_i H(\mathsf{d} w) = 1/d$ for $i = 1, \ldots, d$

Multivariate GEV challenges

- ullet Only a few closed-form expressions for V(z) exist
- Two common forms for V(z)
 - Symmetric logistic (Gumbel, 1960)

$$V(\mathbf{z}) = \left[\sum_{i=1}^{n} \left(\frac{1}{z_i}\right)^{1/\alpha}\right]^{\alpha}$$

Asymmetric logistic (Coles and Tawn, 1991)

$$V(\mathbf{z}) = \sum_{l=1}^{L} \left[\sum_{i=1}^{n} \left(\frac{w_{il}}{z_i} \right)^{1/\alpha_l} \right]^{\alpha_l}$$

where $w_{il} \in [0,1]$ and $\sum_{l=1}^{L} w_{il} = 1$

Multivariate peaks over threshold

- Few existing methods
- Often use max-stable methods due to the relationship between GEV and GPD
- Joint distribution function given by Falk et al. (2011)

$$H(z)=1-V(z)$$

where V(z) is defined as in the GEV

Extremal dependence: χ statistic

- Correlation is the most common measure of dependence
 - Focuses on the center and not tails
 - This makes it irrelevant for extreme value analysis
- ullet Extreme value analysis focuses on the χ statistic (Coles et al., 1999), a measure of extremal dependence given by

$$\chi(h) = \lim_{c \to \infty} \Pr[Y(\mathbf{s}) > c \mid Y(\mathbf{t}) > c]$$

where
$$h = ||\mathbf{s} - \mathbf{t}||$$

• If $\chi(h) = 0$, then observations are asymptotically independent at distance h

Existing challenges

- Multivariate max-stable and GPD models have nice features, but they are
 - Computationally challenging (e.g, the asymmetric logistic has $2^{n-1}(n+2) (2n+1)$ free parameters)
 - Joint density only available in low dimensions
- Some recent approaches
 - Bayesian hierarchical model (Reich and Shaby, 2012)
 - Pairwise likelihood approach (Huser and Davison, 2014)
- Many opportunities to explore new methods

Max-stable processes: A hierarchical representation (Reich & Shaby, 2012)

- Let $\widetilde{\mathbf{Y}} \sim \mathsf{GEV}_n[\mu(\mathbf{s}), \sigma(\mathbf{s}), \xi(\mathbf{s})]$ be a realization from multivariate generalized extreme value distribution
- Consider a set of L knots, $\mathbf{v}_1, \dots, \mathbf{v}_L$
- Model the spatial dependence using

$$\theta(\mathbf{s}) = \left[\sum_{l=1}^{L} A_l w_l(\mathbf{s})^{1/\alpha}\right]^{\alpha}$$

where

- \bullet A_I are i.i.d. positive stable random effects
- $w_l(\mathbf{s})$ are a set of non-negative scaled kernel basis functions, scaled so that $\sum_{l=1}^{L} w_l(\mathbf{s}) = 1$
- $\alpha \in (0,1)$ is a parameter controlling strength of spatial dependence (0: high, 1: independent)

Max-stable processes: A hierarchical representation (Reich & Shaby, 2012)

ullet When conditioning on heta

$$\widetilde{Y}(\mathbf{s}_i) \mid A_I \overset{ind}{\sim} \mathsf{GEV}[\mu^*(\mathbf{s}_i), \sigma^*(\mathbf{s}_i), \xi^*(\mathbf{s}_i)]$$

$$A_I \overset{iid}{\sim} \mathsf{PS}(\alpha)$$

where

•
$$\mu^*(\mathbf{s}_i) = \mu(\mathbf{s}) + \frac{\sigma(\mathbf{s})}{\xi(\mathbf{s})} [\theta(\mathbf{s})^{\xi(\mathbf{s})} - 1]$$

•
$$\sigma^*(\mathbf{s}_i) = \alpha \sigma(\mathbf{s}) \theta(\mathbf{s})^{\xi(\mathbf{S})}$$

•
$$\xi^*(\mathbf{s}) = \alpha \xi(\mathbf{s})$$

Dimension reduction for spatial extremes

- Reich and Shaby (2012) can be computationally challenging
- Computing time is driven by the positive stable random effects
- By default, knots may be placed at spatial locations
- One possibility is to use fewer knots
 - Need to decide how many knots to use
 - Need to decide where to place them
- Another possibility is a new basis representation

Dimension reduction for spatial extremes

• Another measure of spatial dependence is the pairwise extremal coefficient: ϑ_{ii} .

$$P(Z_i < c, Z_j < c) = P(Z_i < c)^{\vartheta_{ij}} \in (1, 2).$$

 In the positive stable random effects model, the extremal coefficient has the form

$$\vartheta_{ij} = \sum_{l=1}^{L} \left(w_l(\mathbf{s}_i)^{1/\alpha} + w_l(\mathbf{s}_j)^{1/\alpha} \right)^{\alpha}.$$

• What if we could use a low-dimensional representation for the w_l terms?

Empirical basis functions

- Generate L basis functions, $B_1(s_i), \ldots, B_L(s_i)$, and use these as $w_l(s_i)$
- Three steps:
 - 1. Obtain an initial estimate of the extremal coefficient for each pair of locations, $\hat{\vartheta}_{ij}$
 - 2. Spatially smooth these initial estimates $\hat{\vartheta}_{ij}$ using kernel smoothing to obtain $\tilde{\vartheta}_{ij}$
 - 3. Estimate the spatial dependence parameters α and B_1, \ldots, B_L by minimizing the difference between model-based coefficients, ϑ_{ij} , and smoothed coefficients, $\tilde{\vartheta}_{ij}$

Empirical basis functions

 We can describe the contribution of the /th basis function to the pairwise extremal coefficients as

$$v_I = \sum_{i=1}^n B_{iI}/n$$

where *n* is the number of sites

- This approach speeds up computation in two ways.
 - 1. Reduction in number of parameters being fit by MCMC
 - 2. Typically $L \ll n$
 - ullet e.g. Wildfire, can perform close to full model with L=15 knots for n=159 counties

Data application

• Wildfire acreage burned in GA, 1965 - 2014

Figure: Time series of log(acres burned) for 25 randomly selected counties.

Data application

- Data are not max-stable, so we use a site-specific threshold
- Threshold originally selected using a spatially smoothed $\hat{q}(0.95)$

Figure: Spatially smoothed $\hat{q}(0.95)$

Analysis

- Spatio-temporal model for GEV parameters including a linear time trend and interaction with basis functions
 - $\mu(\mathbf{s}, t) = \beta_{0,\mu} + \beta_{1,\mu}t + \gamma_{1,\mu}B_1 + \cdots + \gamma_{L,\mu}B_L + \delta_{1,\mu}B_1t + \cdots + \delta_{L,\mu}B_Lt$
 - $\log(\sigma)(\mathbf{s},t) = \beta_{0,\sigma} + \beta_{1,\sigma}t + \gamma_{1,\sigma}B_1 + \cdots + \gamma_{L,\sigma}B_L + \delta_{1,\sigma}B_1t + \cdots + \delta_{L,\sigma}B_Lt$
 - ullet is constant across space
- Prior distributions:
 - $\mu(\mathbf{s},t)$: coefficients $\stackrel{iid}{\sim} N(0,\sigma_{\mu}^2)$
 - $\log(\sigma)(\mathbf{s}, t)$: coefficients $\stackrel{iid}{\sim} N(0, \sigma_{\sigma}^2)$
 - $\xi \sim N(0, 0.25)$
- Independent IG(0.1, 0.1) priors on σ_{μ}^2 and σ_{σ}^2

Model comparisons

- Comparing two different spatial process constructions
 - Extremal coefficient basis functions (ECB)
 - Gaussian kernel basis functions (GKB)
- Comparing two basis function structures for marginal distributions
 - Extremal coefficient basis functions (ECB)
 - 2-dimensional B splines (2BS) (in progress)
- Considering L = 4, 9, 16, 25 knots
 - When L=4 for 2BS, we use a 2nd order spatial model for $\mu(\mathbf{s},t)$ and $\log(\sigma)(\mathbf{s},t)$

2d B splines

Figure: Four 2-dimensional B splines with L=9

Results

Figure: Average quantile score for selected quantiles and timing comparisons

Remaining questions

- What's the best way to select the threshold for this application?
 - Mean residual plots are helpful, but can be challenging since not all sites have same marginal parameters
 - Cross-validation is time intensive
- Are there better options for the spatial aspect of the marginal parameters?
- Are there better ways to pick the number of knots?
 - ullet Potentially add knots until the smallest v_I is less than some threshold