Recompra Bázica

Kaiki Mello dos Santos

Análise exploratória dos dados

Verificando informações sobre o Dataset

Como é percebido, existem dois pedidos com id de cliente nulos que equivalem a 0.01%, então irei analisar se existem outros pedidos de venda com o mesmo código do pedido para substituir o ID de cliente nulo desses pedidos, caso contrário irei optar por remover esses dados devido que a quantidade pedidos não irá influenciar tanto no resultado final.

Verificando informações sobre os dados de Data

	Data
count	17026
unique	636
top	2022-10-14 00:00:00
freq	484
first	2020-08-19 00:00:00
last	2022-12-31 00:00:00

Vemos que as compras online foram feitas no períodode 19-08-2020 a 31-12-2022.

Prevendo compra do cliente

O objetivo desta seção é criar um modelo usando o dataframe df_data fornecido, para estimar se um determinado cliente comprará algo novamente na loja online.

O dataframe é dividido em dois:

- O primeiro sub-dataframe atribuído à variável Python cliente_comp_dt contém compras feitas por clientes de 19-08-2020 a 30-09-2022. Este dataframe será usado para estudar as compras comportamentais dos clientes online.
- O segundo sub-dataframe atribuído à variável Python cliente_prox_tri será usado para estudar as compras comportamentais dos clientes no próximo trimestre. Ou seja, de 01-10-2022 a 31-12-2022, com ênfase de localizar os clientes que irão comprar no período 01-01-2023 e 14-01-2023.

Descobrimos a primeira data de compra do trimestre e a ultima data de compra anterior ao trimestre pra calcular o próximo dia de compra do usuário.

	ID_Cliente	${\bf UltData Compra Anterior Ao Trisme stre}$	PrimeiraDataCompraTrimestre
0	1	2021-05-27	NaT
1	2	2021-05-26	NaT
2	3	2021-05-17	NaT
3	4	2021-05-17	NaT
4	5	2021-05-16	NaT

Então obtemos o próximo dia de compra:

	ID_Cliente	ProximoDiaCompra
0	12429082030	9999.0
1	12793619292	9999.0
2	1	9999.0
3	2	9999.0
4	12732289533	27.0

Em seguida, definiremos alguns recursos e os adicionaremos ao dataframe dados clientes para construir nosso modelo de aprendizado de máquina.

Usaremos o método de segmentação Recência - Frequência - Valor Monetário. Ou seja, vamos colocar os clientes em grupos com base no seguinte:

- Recência: o comportamento de compra dos clientes com base na data de compra mais recente e quantos dias eles ficaram inativos desde a última compra.
- Frequência: Comportamento de compra dos clientes com base no número de vezes que compram na loja de varejo online.
- Valor/receita monetária: comportamento de compra dos clientes com base na receita que geram.

Depois, aplicaremos o agrupamento de K-means para atribuir aos clientes uma pontuação para cada um dos recursos.

	Recencia
count	2448.000000
mean	160.996732
std	154.353439
min	0.000000
25%	50.000000
50%	109.000000
75%	256.250000
max	772.000000

A recência média é de aproximadamente 161 dias, enquanto a mediana é de 109 dias.

Recência dos clientes em dias

No passo seguinte, apliquei o agrupamento K-means para atribuir uma pontuação de recência. No entanto, precisamos saber quantos clusters para usar o algoritmo K-means. Aplicaremos o método Elbow para determinar quantos clusters precisaremos. O método Elbow simplesmente informa o número de cluster ideal para a inércia ideal.

lrei usar o número de clusters igual a 4. Após obter a pontuação de recência verifico os dados com describe.

	count	mean	std	min	25%	50%	75%	max
RecenciaCluster								
0	143.0	591.657343	90.296078	455.0	507.0	613.0	672.0	772.0
1	506.0	316.063241	52.516475	231.0	281.0	291.5	346.0	452.0
2	787.0	138.179161	39.473052	90.0	108.0	125.0	169.0	226.0
3	1012.0	40.353755	26.243050	0.0	15.0	44.0	60.0	89.0

Observe acima que 3 cobre os clientes mais recentes, enquanto 0 tem os clientes mais inativos. O mesmo é calculado para Frequência e Receitas.

	count	mean	std	min	25%	50%	75%	max
FrequenciaCluster								
0	55.0	33.727273	10.124145	26.0	27.0	31.0	36.5	86.0
1	163.0	17.748466	3.077885	14.0	15.0	17.0	20.0	25.0
2	591.0	8.585448	2.220641	6.0	7.0	8.0	10.0	13.0
3	1639.0	2.273948	1.278162	1.0	1.0	2.0	3.0	5.0

Como foi o caso da Recência, maior número de frequência significa melhores clientes.

Mesmo raciocínio é aplicado para Receita.

	count	mean	std	min	25%	50%	75%	max
TotalPedidoCluster								
0	1721.0	274.236729	165.961921	0.0	119.01	238.00	376.00	672.00
1	573.0	1070.700489	305.723094	675.0	803.00	1013.89	1300.88	1785.95
2	129.0	2510.312946	507.539641	1797.0	2098.00	2370.41	2894.24	3892.70
3	25.0	5340.499600	1466.003006	4124.0	4559.20	4998.00	5405.80	11313.90

Agora iremos finalmente somar os recursos do cluster.

	Recencia	Frequencia	Total_do_Pedido
PontuacaoGeral			
2	382.250000	13.000000	462.632500
3	538.267442	3.436047	319.029128
4	295.368321	3.721374	406.600840
5	126.289786	5.731591	631.033076
6	42.660292	6.780652	809.213003
7	49.062500	6.062500	1045.003750
8	190.000000	5.000000	5593.000000

A pontuação acima nos mostra claramente que os clientes com pontuação menor que 4 tem valor baixo, os que tem valor médio ficam entre 4 e 6 e os de valor alto entre 7 e 8.

Como nosso objetivo é estimar se um cliente fará uma compra nas próximas duas semanas, criaremos uma nova coluna NextPurchaseDayRange com valores como 1 ou 0 definidos da seguinte forma:

- Se o valor for 1, então indica que o cliente vai comprar algo nas próximas 2 semanas, ou seja, 14 dias a partir da última compra.
- O valor 0 indica que o cliente comprará algo em mais de 14 dias a partir de sua última compra.

Finalmente nesta seção, vamos ver a correlação entre nossos recursos e rótulo

	MinCorrelationCoeff	MaxCorrelationCoeff
ID_Cliente	-0.706256	0.553122
ProximoDiaCompra	-0.503995	0.517740
Recencia	-0.931819	0.797785
RecenciaCluster	-0.931819	0.935684
Frequencia	-0.913483	0.937441
FrequenciaCluster	-0.913483	0.517740
Total_do_Pedido	-0.845218	0.937441
TotalPedidoCluster	-0.883088	0.892710
PontuacaoGeral	-0.868093	0.935684
Segmento_Baixo-Valor	-0.983257	0.797785
Segmento_Valor-Alto	-0.129933	0.179651
Segmento_Valor-Médio	-0.983257	0.811554
NextPurchaseDayRange	-0.146663	0.231941

Na saída acima, observamos que a Total_do_Pedido e Frequencia tem a maior correlação positiva de 0,94, e com Segmento_Baixo-Valor e Segmento_Valor-Médio tem a maior correlação negativa de -0,99.

visualização da matriz de coeficientes abaixo.

Construindo modelo de aprendizado de máquina

Nesta seção, tenho o que é preciso em relação aos pré-requisitos necessários para construir o modelo de aprendizado de máquina. Depois, divido X e y para obter os conjuntos de dados de treinamento e teste e, em seguida, meço a precisão, F_1 -score, recall e precisão dos diferentes modelos.

```
LogisticRegression [0.9912854 0.99346405]
GaussianNB [0.9912854 0.99346405]
RandomForestClassifier [0.99237473 0.9956427 ]
SVC [0.9912854 0.99346405]
DecisionTreeClassifier [0.98474946 0.99346405]
xgb.XGBClassifier [0.99019608 0.99455338]
KNeighborsClassifier [0.9912854 0.99346405]
```

A partir dos resultados da Figura acima, vemos que o modelo Random Forest está entre os melhores em termos de precisão de métricas e F_1 -score.

Precisão do classificador Random Forest no conjunto de treinamento: 1.00 Precisão do classificador Random Forest no conjunto de teste: 0.99

	precision	recall	f1-score	support	
0	0.99	1.00	1.00	607	
1	0.00	0.00	0.00	5	
accuracy			0.99	612	
macro avg	0.50	0.50	0.50	612	
weighted avg	0.98	0.99	0.99	612	

Por fim realizo as previsões com o modelo. Abaixo a lista com a previsão.

