

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2022

QUÍMICA

TEMA 3: ENLACES QUÍMICOS

- Junio, Ejercicio B3
- Reserva 1, Ejercicio B3
- Reserva 2, Ejercicio B3
- Reserva 3, Ejercicio B3
- Reserva 4, Ejercicio B3
- Julio, Ejercicio B3

Dados los siguientes compuestos: NaF, CH₄y CH₃OH

- a) Justifique el tipo de enlace interatómico que presentan.
- b) Ordénelos razonadamente de menor a mayor punto de ebullición.
- c) Justifique la solubilidad de estos compuestos en agua.
- **QUIMICA. 2022. JUNIO EJERCICIO B3**

RESOLUCIÓN

a) El NaF es un compuesto con enlace iónico, que se da entre elementos de muy distinta electronegatividad (metal y no metal).

El CH₄ es un compuesto covalente, que se da entre elementos de parecida electronegatividad (no metal y no metal).

El CH₃OH es un compuesto covalente, que se da entre elementos de parecida electronegatividad (no metal los tres elementos).

b) CH₄ < CH₃OH < NaF

El de mayor punto de ebullición es el NaF, ya que es un compuesto iónico. El CH₃OH tiene mayor punto de ebullición que el CH₄ ya que sus moléculas están unidas por puentes de hidrógeno. El de menor punto de ebullición es el CH₄ ya que sus moléculas están unidas por débiles fuerzas de Van der Waals.

c) El NaF es soluble en agua ya que es un compuesto iónico. El ${\rm CH_3OH}$ también es soluble en agua ya que es una molécula polar. El ${\rm CH_4}$ no es soluble en agua, ya que debido a la geometría, la molécula es apolar.

Justifique:

- a) ¿Qué compuesto tendrá mayor dureza, LiBr o KBr?.
- b) ¿Qué tipo de fuerzas hay que vencer para vaporizar agua?.
- c) ¿Por qué la longitud del enlace C-C va disminuyendo en la serie etano-eteno-etino?.
- QUÍMICA. 2022. RESERVA 1. EJERCICIO B3

RESOLUCIÓN

- a) El de mayor dureza es el LiBr pues tiene mayor energía reticular. Ya que suponiendo que cristalizan en el mismo tipo de red y como la carga de los iones es la misma en los dos casos, y puesto que el tamaño del anión es el mismo, la única diferencia entre ellos está en el tamaño del catión. El tamaño del catión aumenta en este orden: Li < K y la energía reticular es menor cuanto mayor es el radio del catión, ya que habrá más separación entre las cargas eléctricas.
- b) Cuando se vaporiza agua se sigue teniendo la misma sustancia pero en estado gaseoso, es decir, habrá que romper los enlaces que mantienen unidas a las moléculas de agua en estado liquido para que estas queden libres, es decir, hay que romper los enlaces de hidrógeno.
- c) Por que en el etano el enlace es simple, en el eteno es doble y en el etino es triple.

Conteste razonadamente:

- a) ¿Presenta enlaces múltiples la molécula de N,?.
- b) Según TRPECV, ¿toda molécula triatómica es lineal?.
- c) ¿Por qué el punto de fusión del MgO es mayor que el del K2O?.
- **OUÍMICA. 2022. RESERVA 2. EJERCICIO B3**

RESOLUCIÓN

- a) Verdadera. La configuración electrónica del N es: $1s^2 2s^2 2p^3$. Al tener 3 electrones desapareados forma 3 enlaces. En la molécula de nitrógeno tenemos un triple enlace (1 enlace σ y 2 enlaces π).
- b) Falsa. Según la teoría TRPECV las moléculas estables adquieren la orientación que provoca menor repulsión entre los pares de electrones que rodean al átomo central (enlazantes y no enlazantes). Según sea el número de pares de electrones alrededor del átomo central tendremos diversas geometrías.
- c) Verdadera. Los dos tienen el mismo anión O^{2-} , pero los cationes son distintos y el Mg^{2+} tiene mayor carga que el K^+ , por lo tanto, tendrá mayor energía reticular según la fórmula de Born-Landé

$$U = \frac{N \cdot A \cdot Z_1 \cdot Z_2 \cdot e^2}{d_e} \left(1 - \frac{1}{\mu}\right)$$

Al tener mayor energía reticular el MgO su punto de fusión será mayor.

Justifique la veracidad o falsedad de las siguientes proposiciones:

- a) El compuesto formado al enlazarse los elementos A(Z=11) y B(Z=8) es un sólido conductor de la electricidad cuando está fundido.
- b) El punto de fusión del NaCl es menor que el del MgCl₂.
- c) Los siguientes compuestos están ordenado por puntos de fusión decreciente $\,$ NaF > $\,$ F $_2$ > HF . QUÍMICA. 2022. RESERVA 3. EJERCICIO B3

RESOLUCIÓN

- a) Verdadera. El A(Z=11) es el sodio y el B(Z=8) es el oxígeno. Por lo tanto, al ser un compuesto iónico conduce la electricidad cuando está fundido.
- b) Verdadera. Los dos tienen el mismo anión Cl^- , pero los cationes son distintos y el Mg^{2+} tiene mayor carga que el Na^+ , por lo tanto, tendrá mayor energía reticular según la fórmula de Born-Landé

$$U = \frac{N \cdot A \cdot Z_1 \cdot Z_2 \cdot e^2}{d_e} \left(1 - \frac{1}{\mu}\right)$$

Al tener mayor energía reticular el MgCl₂ su punto de fusión será mayor.

c) Falsa. El orden será: $NaF > HF > F_2$: El de mayor punto de fusión es el NaF ya que es un compuesto iónico. El siguiente es el HF ya que es un compuesto covalente polar y las fuerzas de unión son de Van der Waals. El último será el F_2 que es un compuesto covalente puro y por lo tanto, las fuerzas de unión serán más débiles.

Dadas las moléculas BeF₂ y CH₃Cl:

- a) Determine las correspondientes estructuras de Lewis.
- b) Prediga la geometría que presentan según TRPECV.
- c) Justifique la polaridad de las moléculas.
- QUÍMICA. 2022. RESERVA 4. EJERCICIO B3

RESOLUCIÓN

a) Las estructuras de Lewis son:

- b) La molécula de fluoruro de berilio es una molécula del tipo AB 2, (dos pares de electrones compartidos y 0 pares de electrones sin compartir), tendrá forma lineal. La molécula de cloruro de metilo es del tipo AB 4 (cuatro zonas de máxima densidad electrónica alrededor del carbono que corresponden a los cuatro pares de electrones compartidos). Su geometría será tetraédrica pero irregular. El cloro es más electronegativo, atrae más a los pares de electrones y los hidrógenos se cerrarán un poco formando entre sí un ángulo algo menor que 109'5°.
- c) La molécula de fluoruro de berilio es apolar ya que debido a su geometría se anulan los momentos dipolares de los dos enlaces polares. La molécula de cloruro de metilo es polar con dipolo eléctrico dirigido hacia el cloro.

Dadas las especies químicas H₂S y PCl₃:

- a) Represente las estructuras de Lewis de cada molécula.
- b) Justifique la geometría de cada molécula según la TRPECV.
- c) Indique la hibridación que presenta el átomo central en cada molécula.
- QUÍMICA. 2022. JULIO. EJERCICIO B3

RESOLUCIÓN

a) La estructura de Lewis indica cuantos electrones se comparten y cuantos no, al formarse una molécula:

$$\begin{array}{c} \circ \circ \\ H-S-H \\ \circ \circ \end{array} \qquad \begin{array}{c} \circ \circ \\ Cl-P-Cl \\ | \\ Cl \end{array}$$

b) La molécula de sulfhídrico es una molécula del tipo AB ₂E ₂, (dos pares de electrones enlazantes y dos no enlazantes), tendrá forma angular.

La molécula de PCl_3 es una molécula del tipo AB_3E , (tres pares de electrones enlazantes y uno no enlazante), tendrá forma de pirámide triangular.

c) En el sulfhídrico, el azufre presenta una hibridación sp³. En el PCl₃, el fósforo presenta una hibridación sp³.