Bayesian Optimization from Scratch

...Just use a library for real-world applications, ok?

Decisions, Decisions

Our psuedo-code is implemented in simple_univariate_BO

- $x^* =$ the current candidate optimum
- while $i = 1..n_{it}$:
 - $x' = \operatorname{argmax}_{x} \{ g(x) \mid l \le x \le u, \tilde{f}(x) < f(x^{*}) \}$ # Find candidate
 - \blacksquare if no such x' exists, then return x^*
 - If $f(x') < f(x^*)$, then $x^* = x'$
 - lacksquare update $ilde{f}$ # Refine the surrogate model

In the implementation, a few key choices were made:

- How to pick the initial candidate optimum?
- Which surrogate model to use?
- How to optimize over the surrogate?
- $lue{g}$ Which acquisition function $m{g}$ to use?

Initial Candidate

It is common to initialize BO by sampling a few solutions

- This can be done uniformly at random
- ...Or we can use smarter approach

We sue the simplest approach, i.e.:

■ (Uniform) Random sampling to obtain a few evaluations

```
X = np.random.uniform(l, u, size=(init_points, 1))
y = f(X)
```

■ Then just pick the best point as a candidate optimum

```
best_idx = int(np.argmin(y))
best_x = X[best_idx]
best_y = X[best_idx]
```


Surrogate and Optimization Strategy

As a surrogate, we use a Gaussian Process

As a kernel we use a RBF + noise combination:

```
kernel = RBF(1, (1e-6, 1e0)) + WhiteKernel(1, (min_noise, 1e0))
```

- The first kernel parameters are initial guessesfor gradient descent
- The second parameters are bounds for the training process

For the optimization part, we use grid search

- ...Since we are doing only univariate optimization
- ...And evaluating the surrogate model is fast enough

In practice, we define a fixed grid of points to be be evaluated:

```
x = np.linspace(l, u, n_samples_gs)
```


Starting Situation

Let's start with a pool of 5 randomly sampled points

- lacksquare The candidate optimum is the sample with the lower f
- lacktriangle The GP model estimates μ and σ for all points in our optimization grid

In [3]: sol, state = util.simple univariate_BO(f, 0, 1, init_points=5, max_it=0, seed=42, return_state=1 util.plot series(state['mu'], samples=state['samples'], std=state['std'], target=target, samples 0.75 0.50 0.25 0.00 -0.25-0.500.0 0.4

Acquisition Function

Finally, we need to pick an acquisition function

- A good acquisition function should balance exploration and exploitation
- Let's examine a few common choices

Probability of improvement

This is defined as the estimated probability of obtaining an improvement:

$$a_{PI}(x) = \mathbb{E}[\mathbb{1}_{f(x) \le y^*}] = \int_{-\infty}^{y^*} \phi(y, \mu_{f(x)}, \sigma_{f(x)}) dy =$$

$$\Phi(y^*, \mu_{f(x)}, \sigma_{f(x)})$$

- PRO: clear interpretation
- CON: does not account for the magnitude of improvement

Acquisition Function

Finally, we need to pick an acquisition function

- A good acquisition function should balance exploration and exploitation
- Let's examine a few common choices

Expected improvement

This is defined as the expected value of the improvement itself:

$$a_{EI}(x) = \mathbb{E}[\max(0, y^* - f(x))] = \int_{-\infty}^{y^*} (y^* - y)\phi(y, \mu_{f(x)}, \sigma_{f(x)})dy =$$

$$(y^* - \mu_{f(x)})\Phi(y^*, \mu_{f(x)}, \sigma_{f(x)}) + \sigma_{f(x)}\phi(y^*, \mu_{f(x)}, \sigma_{f(x)})$$

- PRO: accounts for exploitation (via the first term)
- PRO: accounts for exploration (via the second term)
- CON: the trade-off between the two cannot be controlled

Acquisition Function

Finally, we need to pick an acquisition function

- A good acquisition function should balance exploration and exploitation
- Let's examine a few common choices

Lower Confidence Bound

This is the lower bound of a given confidence interval

$$a_{LCB}(x) = \mu_{f(x)} - Z_{\alpha}\sigma_{f(x)}$$

Where Z_lpha is the coefficient needed to get the lpha% confidence interval

- PRO: accounts for exploitation and exploration
- PRO: the trade-off can be controlled
- CON: the trade-off needs to be controlled :-)

Experiments: Probability of Improvement

Let's try to iterate once using a_{PI} as acquisition function

■ The new points is very close to the initial candidate optimum

Experiments: Probability of Improvement

Let's try to iterate once using a_{PI} as acquisition function

After 10 iterations we reach a local optimum

...And we get stuck: this is unfortunately common for a_{PI}

Experiments: Expected Improvement

Let's try to iterate once using a_{EI} as acquisition function

■ The first point is very similar to that of a_{PI}

Experiments: Expected Improvement

Let's try to iterate once using a_{EI} as acquisition function

■ ...But we reach a comparable solution faster (5 vs 10 iterations)

Experiments: Lower Confidence Bound

Let's try to iterate once using a_{LCB} as acquisition function

■ The first point is less close to y^* than a_{PI} and a_{EI}

Experiments: Lower Confidence Bound

Let's try to iterate once using a_{LCB} as acquisition function

After 5 iterations we have basically found the global optimum

Bayesian Optimization for Policy Definition

Back to where we started

Back to Our Motivating Problem

We will use BO to tackle our policy definition problem

$$\operatorname{argmin}_{\theta} \sum_{k \in K} cost(f(x_k \, \omega^*), 0.5)$$

with:
$$\omega^* = \operatorname{argmin}_{\omega} \{ L(y, \mathbb{1}_{\hat{y} \ge \theta}) \mid y = f(x, \omega) \}$$

We need to optimize over heta

- But since we have now access to a powerful new tool
- ...We will throw in an extra parameter, i.e. the class weights

The reason is that we have an imbalanced dataset

- ...But the usual balancing rule does not work well
- Making the classes equally important (i.e. inverse frequencies as weights)
- ...Leads to mistakes early on, and hence to suboptimal policies

Our Chosen Optimizer

We will use the scikit-optimize python module

...Which provides a somewhat rough (but fast) implementation of BO

We start by defining our cost function

Our Chosen Optimizer

We will use the scikit-optimize python module

...Which provides a somewhat rough (but fast) implementation of BO

■ Then we specify the bounds for the two parameters

```
box = { 'thr': (0.0, 0.05), 'c0_weight': (1., 5.) }
```

...And finally we start the optimization process

- skopt relies on a GP with a Matern Kernel as a surrogate model
- lacksquare The gp_hedge function is a probabilistic combination of a_{PI}, a_{EI}, a_{LCB}

Optimizing the Policy

Let's use the approach to optimize our policy

We will use BO to fine-tune the our earlier classifier

- Starting from a pre-trained model enables using few epochs per iteration
- The results may vary slighly since training is stochastic

Optimizing the Policy

We can inspect the cost values obtained during search

```
In [12]: samples = pd.Series(res.func_vals)
         best = pd.Series([np.min(samples.iloc[:i]) for i in range(1, len(samples)+1)])
         util.plot series(best, samples=samples, figsize=figsize, xlabel='#iter', ylabel='best', samples
           -13000
           -14000
           -15000
           -16000
           -17000
           -18000
```


Evaluation

Finally, we can evaluate the optimized model

```
In [13]: tr_pred2 = np.round(nn2.predict(tr_s[dt_in]).ravel())
    ts_pred2 = np.round(nn2.predict(ts_s[dt_in]).ravel())
    tr_c2, tr_f2, tr_s12 = cmodel.cost(tr['machine'].values, tr_pred2, 0.5, return_margin=True)
    ts_c2, ts_f2, ts_s12 = cmodel.cost(ts['machine'].values, ts_pred2, 0.5, return_margin=True)
    print(f'Cost: {tr_c2} (training), {ts_c2} (test)')
    print(f'Avg. fails: {tr_f2/len(tr_mcn)} (training), {ts_f2/len(ts_mcn)} (test)')
    print(f'Avg. slack: {tr_s12/len(tr_mcn):.2f} (training), {ts_s12/len(ts_mcn):.2f} (test)')

Cost: -18654 (training), -6947 (test)
    Avg. fails: 0.0 (training), 0.0 (test)
    Avg. slack: 15.80 (training), 13.54 (test)
```

The results are significantly better than the old classifier

```
In [14]: print(f'Cost: {tr_c} (training), {ts_c} (test)')
    print(f'Avg. fails: {tr_f/len(tr_mcn)} (training), {ts_f/len(ts_mcn)} (test)')
    print(f'Avg. slack: {tr_sl/len(tr_mcn):.2f} (training), {ts_sl/len(ts_mcn):.2f} (test)')

Cost: -16760 (training), -6356 (test)
    Avg. fails: 0.0 (training), 0.0 (test)
    Avg. slack: 26.31 (training), 23.05 (test)
```