EECS 340: Assignment 3

Shaochen (Henry) ZHONG, sxz517 Yuhui ZHANG, yxz2052

Due and submitted on 02/20/2020 EECS 340, Dr. Koyutürk

Problem 1

(a)
$$T(n) = bT(n/a) + \Theta(n)$$

For this recurrance, we have a comparsion between $n^{\log_a b}$ and n. Since it is given that 1 < a < b, there must be $\log_a b > 1$. Therefore we may say that there must be a $n^{\epsilon} = \frac{n^{\log_a b}}{n}$ where $0 < \epsilon = \log_a b - 1$.

Now we have $f(n) = n = O(n^{(\log_a b) - \epsilon})$, where $0 < \epsilon = \log_a b - 1$, we can apply case 1 of the master theorem and conclude that the solution is $T(n) = \Theta(n)$.

(b)
$$T(n) = a^2 T(n/a) + \Theta(n^2)$$

For this recurrence, we have a comparison between $n^{\log_a a^2}$ and n^2 , thus n^2 and n^2 . As now we have $f(n) = \Theta(n^2)$, we can apply case 2 of the master theorem and conclude that the solution is $T(n) = \Theta(n \cdot \log n)$

(c)
$$T(n) = T(\lambda n) + n^{\lambda}$$

We may rewrite it as $T(n) = T\left(\frac{n}{\frac{1}{\lambda}}\right) + n^{\lambda}$. Thus, we have a comparsion between $n^{\log_{\frac{1}{\lambda}} 1}$ and n^{λ} , which is equivalent as n^0 and n^{λ} , then we have $f(n) = \Omega(n^{\log_b a + \epsilon})$ for $\epsilon = \lambda$. We may also show $af(\frac{n}{b}) \leq cf(n)$ for $1 \cdot f\left(\frac{n}{\frac{1}{\lambda}}\right) = f(\lambda n)$. Combined, together, we can apply case 3 of the master theorem and conclude that the solution is $T(n) = \Theta(n^{\lambda})$.

(d)
$$T(n) = aT(\frac{n}{a}) + \Theta(n^{\lambda}(\log n)^b)$$

For this recurrence, we have a comparsion between $n^{\log_a a}$ and $n^{\lambda}(\log n)^b$, which is equivalent to comparing n and $n^{\lambda}(\log n)^b$. We may prove that n is polynomially larger than $n^{\lambda}(\log n)^b$ by analyzing:

W.T.S.
$$\lim_{n \to \infty} \frac{n^{\epsilon} \cdot n^{\lambda} (\log n)^{b}}{n} = 0$$

$$\lim_{n \to \infty} \frac{n^{\lambda} (\log n)^{b}}{n^{1 - \epsilon - \lambda}} = 0$$

$$\implies 1 - \epsilon - \lambda > 0 \Rightarrow \epsilon < 1 - \lambda$$
(2)

Thus, we have $f(n) = O(n^{\log_b a - \epsilon})$ for $\epsilon < 1 - \lambda$. Then, we can apply *case 1* of the master theorem and conclude that the solution is $T(n) = \Theta(n)$.

Problem 2

(a) For any constant $0 < \alpha < 1$, if $T(n) = T(\alpha n) + T((1 - \alpha)n) + \Theta(n)$, then $T(n) = O(n \log n)$

Guess $T(n) = O(n \log n)$

Thus there must be constants c, c' for $c, c' \in \mathbb{Z}^+$ s.t. $T(n) \le cn \log n - c'n$.

Given
$$T(n) = T(\alpha n) + T((1 - \alpha)n) + \Theta(n)$$

Proof. We may rewrite it as $T(n) = T(\alpha n) + T((1 - \alpha)n) + dn$ for $d \in \mathbb{Z}^+$. Assume the claim $T(k) = ck \log k - c'k$ holds true for T(k) for $k \in [1, n)$, and without loss of generality assume that $\alpha \geq 0.5$, we have:

$$T(k+1) = T(\alpha(k+1)) + T((1-\alpha)(k+1)) + d(k+1)$$

$$\leq [c \cdot \alpha(k+1)\log(\alpha(k+1)) - c'(k+1)] +$$

$$[c \cdot ((1-\alpha)(k+1))\log((1-\alpha)(k+1)) - c'(k+1)] + d(k+1)$$

$$\leq c \cdot \alpha(k+1)\log(\alpha(k+1)) + c(1-\alpha)(k+1)\log(\alpha(k+1)) + d(k+1) - 2c'(k+1)$$

$$\leq (c\alpha + c(k+1) - c\alpha) \cdot \log(\alpha(k+1)) + d(k+1) - 2c'(k+1)$$

$$\leq c(k+1) \cdot \log(\alpha(k+1)) + (d-2c')(k+1)$$

$$\leq c(k+1) \cdot \log(k+1) + (d-2c')(k+1)$$

$$\Rightarrow T(k+1) \leq c(k+1) \cdot \log(k+1) \quad \text{for } c' = \frac{1}{2}d$$

$$(4)$$

As now we have $T(k+1) \le c(k+1) \cdot \log(k+1)$ for $c' = \frac{1}{2}d$, we may say it is true for T(k) for all $k \in [1, n)$.

(b) For any constant k > 0, if $T(n) = \Theta(n) + \sum_{i=1}^k T(\frac{n}{2^i})$, then T(n) = O(n)

Guess $T(n) = O(n \log n)$

Thus, there must be a constant c for $c \in \mathbb{Z}^+$ s.t. $T(n) \leq cn$.

Given
$$T(n) = \Theta(n) + \sum_{i=1}^{k} T(\frac{n}{2^i})$$

Proof. As there must be a constant d for $d \in \mathbb{Z}^+$ s.t. $\Theta(n) \leq dn$ – and therefore causes $T(n) \leq dn + \sum_{i=1}^k T(\frac{n}{2^i})$ – with d for $0 < d \leq c - \sum_{i=1}^k c(\frac{1}{2^i})$. Now we may connect the two equations and get

$$T(n) \le dn + \sum_{i=1}^{k} T(\frac{n}{2^{i}}) \le cn$$

$$\le dn + \sum_{i=1}^{k} c \cdot (\frac{n}{2^{i}}) \le cn$$
(5)

Assume the claim $T(n) \leq dn + \sum_{i=1}^{k} T(\frac{n}{2^i}) \leq cn$ holds true for T(m) for $m \in [1, n)$, consider:

$$T(m+1) \le d(m+1) + \sum_{i=1}^{k} T(\frac{m+1}{2^i})$$

$$\le d(m+1) + \sum_{i=1}^{k} c \cdot (\frac{m+1}{2^i})$$
(6)

$$\leq \underline{dm + \sum_{i=1}^{k} c \cdot (\frac{m}{2^{i}})} + \underline{d + \sum_{i=1}^{k} c \cdot (\frac{1}{2^{i}})}_{=T(1) \leq c(1)}$$
(7)

$$\Longrightarrow T(m+1) \le c(m+1) \tag{8}$$

As now we have $T(m+1) \leq c(m+1)$ for $c \in \mathbb{Z}^+$, we may say it is true for T(m) for all $m \in [1, n)$.

Problem 3

Problem 4

Algorithm 1 QuickMiss(C, D, p, r)

```
1: procedure QUICKMISS(C, D, p, r)

2: if p < r then

3: q \leftarrow \text{Partition}(C, p, r)

4: if C[q] == D[q] then

5: QUICKMISS(C, D, q + 1, r)

6: else

7: QUICKMISS(C, D, p, q - 1)

8: return D[q]
```

Algorithm 2 Partition(A, p, r)

```
1: procedure Partition(A, p, r)
2:
       q \leftarrow p-1
       for i \leftarrow p to r do
3:
           if Compare-Strings(A[i], A[r]) then
4:
               q \leftarrow q + 1
5:
               SWAP(A[i], A[q])
6:
       SWAP(A[q], A[r])
                                                                                \triangleright Exchange the two elements.
7:
       \mathbf{return}\ q
8:
```