IBM HACKATHON PROJECT

PREDICTING ELIGIBILITY FOR THE CHALLENGE

Presented By:

Student name: Poorvi Mathur

College Name & Department : JECRC Foundation (AI&DS)

OUTLINE

- Problem Statement
- Technology used
- Wow factor
- End users
- Result
- Conclusion
- Git-hub Link
- Future scope
- IBM Certifications

PROBLEM STATEMENT

Problem statement 34 - Predicting Eligibility for The Challenge: using Machine Learning The National Social Assistance Program (NSAP) is a flagship social security and welfare program by the Government of India. It aims to provide financial assistance to the elderly, widows, and persons with disabilities belonging to belowpoverty-line (BPL) households. The program consists of several sub-schemes, each with specific eligibility criteria. Manually verifying applications and assigning the correct scheme can be a time consuming and error-prone process. Delays or incorrect allocation can prevent deserving individuals from receiving timely financial aid. Your task is to design, build, and evaluate a multi-class classification model that can accurately predict the most appropriate NSAP scheme for an applicant based on their demographic and socio-economic data. The goal is to create a reliable tool that could assist government agencies in quickly and accurately categorizing applicants, ensuring that benefits are delivered to the right people efficiently.

TECHNOLOGY USED

IBM cloud lite services

Watsonx.ai Studio

Jupyter Notebook

Python libraries

IBM Granite model

IBM CLOUD SERVICES USED

- IBM Cloud Watsonx Al Studio
- IBM Cloud Watsonx Al runtime
- IBM Cloud Agent Lab
- IBM Jupyter Notebook
- IBM Granite foundation model

WOW FACTORS

This model serves as a vital tool that helps government agencies move from reactive policy to proactive, data-driven strategy, ensuring resources reach the right people more efficiently.

Unique features:

- Predictive Resource Planning: Anticipates future scheme needs by location and time.
- Actionable Policy Insights: Explains the reasons behind predictions to inform policy decisions.
- Automated Data Auditing: Flags data anomalies for quality control and investigation.
- Targeted Recommendations: Suggests which schemes to prioritize to increase program impact.

END USERS

The end users of this model would be government officials and policymakers working within the National Social Assistance Program (NSAP) and related social welfare departments.

- District and State-Level Administrators
- Data Analysts and Auditors
- Policymakers at the National Level

IBM wa	atson	x.ai St	udio	Q Search	in your workspa	ces					l	lpgrade	(Э ф	Poorvi N	1athur's Accou	nt ∨ Dallas \	·
rojects /	NSA	P Eligib	oility Prediction	n / NSAP_Da	ta_Exploration_a	ınd_Preproces	sing						不 、	· «	ে ∾	<u> </u>	: (i)	O
Edit			Kernel He	•	~												ĕ Python	Truste
[5]:	fi	nyear	lgdstatecode	statename	Igddistrictcode	districtname	schemecode	totalbeneficiaries	totalmale	totalfemale	totaltransgende	r totals	c total	st totalge	n totalobc	totalaadhaar	totalmobilenumbe	er
	0	2025- 2026	1	JAMMU AND KASHMIR	1	ANANTNAG	IGNDPS	108	72	36		0	0	3 10	4 1	108	6	59
	1	2025- 2026	1	JAMMU AND KASHMIR	1	ANANTNAG	IGNOAPS	8438	5059	3379		0 3	7 2.	35 808:	3 83	8371	719	90
	2	2025- 2026	1	JAMMU AND KASHMIR	1	ANANTNAG	IGNWPS	202	0	202		0	1	5 18	0 6	200	15	59
	3	2025- 2026	1	JAMMU AND KASHMIR	10	POONCH	IGNDPS	310	211	99)	0	77 200	0 33	234	11	10
	4	2025- 2026	1	JAMMU AND KASHMIR	10	POONCH	IGNOAPS	5958	3958	2000		0	2 13	17 436	7 242	3875	228	37
	5	2025- 2026	1	JAMMU AND KASHMIR	10	POONCH	IGNWPS	382	0	382		0	0 (55 298	8 19	260	9	90
	6	2025- 2026	1	JAMMU AND KASHMIR	11	PULWAMA	IGNDPS	95	63	32		0	0	6 8	1 8	94	9	93
	7	2025-	1	JAMMU AND	11	PHIWAMA	IGNOAPS	5021	2911	2110		า	1 1	7 444	3 380	5021	493	35

CONCLUSION

- Problem: Predicted the predominant NSAP scheme for a district using an aggregated dataset.
- Solution: Developed a robust machine learning model using Python and IBM Watson Studio, covering the entire data science workflow.
- Impact: The model provides a practical tool for government agencies to make data-driven decisions, improving resource planning and program efficiency.

GITHUB LINK

https://github.com/poorvi-mathur/NSAP_PREDICTION.git

FUTURE SCOPE

- Individual Eligibility Prediction
- Geospatial Integration
- Real-Time Analytics
- Causal Inference
- Time-Series Forecasting
- Enhanced Al Capabilities

IBM CERTIFICATIONS

Getting Started with Artificial Intelligence

IBM SkillsBuild

RAG LAB certificate

7/24/25, 6:54 PM

Completion Certificate | SkillsBuild

IBM **SkillsBuild** Completion Certificate

This certificate is presented to

POORVI MATHUR

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

