Student Information

Full Name : Bilal Özlü Id Number : 1942614

Answer 1

a.

```
\{\ \mathbf{x}^a\mathbf{y}^a\mathbf{z}^b:\,\mathbf{a},\!\mathbf{b}\geq 0\ \}\,\cup\,\{\ \mathbf{x}^a\mathbf{y}^b\mathbf{z}^a:\,\mathbf{a},\!\mathbf{b}\geq 0\ \}
```

b.

U = (x,y)* \$V (x,y)* : left and right side of \$V\$ are reverse of each other. V = (x,y)* So the language is: UV : $\underbrace{(x,y)}_{W}$ * \$(x,y)* $\underbrace{(x,y)}_{W}$ * (x,y)* .

c.

The regular expression is: $x(x^9)^* + ((z,y)(z,y))^*$

Answer 2

a.

Assume that L_1 is a context free language.

Since L_1 is infinite, we can apply Pumping Lemma.

Let $a = 2^m 1^m$. Then, $L_1 = aa^R 2^{|a|} = 2^m 1^m 1^m 2^m 2^{2m}$

By Pumping Lemma, a can be decomposed as a=uvxyz with $|vxz| \le m$ and $|vy| \ge 1$ such that $uv^ixy^iz \in L_1$ for $i \ge 0$.

b.

 L_2 is a CFL.

•A is context free.

$$S \rightarrow xSz \mid T$$

$$T \to yTz \mid \varepsilon$$

•B is a regular language.

 $S \to XY$

$$X \rightarrow x \mid xx \mid xxx \mid \dots \mid x^{100} \mid \varepsilon$$

$$Y \rightarrow y \mid yy \mid yyy \mid ... \mid y^{100} \mid \varepsilon$$

Note that if B is a RL, also \overline{B} is a RL.

$$L_2 = A \setminus B = A \cap \overline{B}$$
 is context-free.

Intersection of a CFL and a RL is a context-free language because we can construct a new NPDA machine that accepts the NPDA of that context free language and the DFA of that regular language.

c.

Assume that L_3 is a context free language. Since L_3 is infinite, we can apply Pumping Lemma. Pick a string $w = a^k b^k c^{k^2}$, $w \in L_3$.

By Pumping Lemma w can be decomposed as w = uvxyz with $|vxz| \le k$ and $|vy| \ge 1$ such that $uv^ixy^iz \in L_3$ for $i \ge 0$.

Now, We will examine all the possible locations of string vxz in w.

 \bullet Case 1

for i=0

$$\underbrace{aaa...a}_{.\ uvxy}\underbrace{aabb...bcc...c}_{z}$$

$$uv^{0}xy^{0}z = a^{k-|vy|}b^{k}c^{k^{2}} \notin L_{3}$$

 \bullet Case 2

for i=0

$$\underbrace{aaa...a}_{. uv}\underbrace{ab}_{x}\underbrace{b...b}_{y}\underbrace{bcc...b}_{z}$$

$$uv^{0}xy^{0}z = a^{k-|v|}b^{k-|y|}c^{k^{2}} \notin L_{3}$$

•Case 3

for i=0

$$\underbrace{aaa...ab}_{.}\underbrace{b...b}_{vxy}\underbrace{bcc...c}_{z}$$
$$uv^{0}xy^{0}z = a^{k}b^{k-|vy|}c^{k^{2}} \notin L_{3}$$

 \bullet Case 4

for i=0

$$\underbrace{\begin{array}{l} \underline{aaa...ab}}_{\mathbf{u}} \underbrace{\begin{array}{l} \underline{b...b}}_{\mathbf{v}} \underbrace{\begin{array}{l} \underline{bc}}_{\mathbf{x}} \underbrace{cc...c}_{\mathbf{yz}} \\ \underline{uv^0xy^0z} = \underline{a^k} \underline{b^{k-|v|}} \underline{c^{k^2-|y|}} \notin L_3 \end{array}}$$

 \bullet Case 5

for i=0

$$\underbrace{aaa...abb...bc}_{\substack{\textbf{v} \\ \textbf{v} \\$$

Case 6

v or y containing "ab" or "bc"

If i>0, uv^ixy^iz would be a...ab...bc...cb...c or a...ab...ba...ab...b...c...c. And it would not be in L_3 .

There are no other cases to examine, and we got contradiction in all cases above.

So, L_3 is not context-free.

d.

L₄ =
$$\overline{L}$$
 = (1,2)* - L
L₄ = {(1,2)* - 1*2*} \cup { 1ⁿ2^m : n>m } \cup { 1ⁿ2^m : m>2n }

If each of the three parts of L_4 is context-free, we can see that L_4 is context-free, since union operator is closed for CFLs.

• $\{(1,2)^* - 1^*2^*\}$ is a regular language. Because $(1,2)^*$ and 1^*2^* are regular clearly and set differ-

ence is closed for RLs. And also every RL is a CFL.

 \bullet { 1^n2^m : n>m } is a context free language.

 $S \to 1A$

 $A \rightarrow 1A \mid 1A2 \mid \varepsilon$

• { $1^n 2^m : m > 2n$ } is a context free language.

 $S \to A2$

 $A \rightarrow A2 \mid 1A22 \mid \varepsilon$

So, L_4 is context-free.

Answer 3

a.

b.

State String Stack

 $[q_0, 01000, \lambda]$

 $[q_3, 1000, \lambda]$

 $[q_3, 000, x]$

 $[q_4, \quad 00, \qquad x]$

 $[q_4, 0, \lambda]$

 $[q_5, \lambda, \lambda]$

"01000" is accepted.

c.

Firstly, we need to trace all computations of the string "00100" 1 $\begin{bmatrix} q_0,\,00100,\,\lambda \ \end{bmatrix} \\ \begin{bmatrix} q_3,\,0100,\,&\lambda \ \end{bmatrix} \\ \begin{bmatrix} q_3,\,100,\,&x \ \end{bmatrix} \\ \begin{bmatrix} q_3,\,00,\,&xx \ \end{bmatrix} \\ \begin{bmatrix} q_3,\,0,\,&xxx \ \end{bmatrix} \\ \begin{bmatrix} q_3,\,0,\,&xxx \ \end{bmatrix}$

Rejected.

 $\begin{array}{c} 3 \\ \left[q_0,\, 00100,\, \lambda\,\right] \\ \left[q_3,\, 0100,\, \quad \lambda\,\right] \\ \left[q_3,\, 100,\, \quad x\,\right] \\ \left[q_3,\, 00,\, \quad xx\,\right] \\ \left[q_4,\, 0,\, \quad xx\,\right] \\ \left[q_4,\, \lambda,\, \quad x\,\right] \\ \text{Rejected.} \end{array}$

 $\begin{array}{c} 4 \\ [q_0,\,00100,\,\lambda\,\,] \\ [q_3,\,0100,\,\,\,\,\lambda\,\,] \\ [q_3,\,100,\,\,\,\,\,x\,\,] \\ [q_3,\,00,\,\,\,\,xx\,\,] \\ [q_4,\,0,\,\,\,\,xx\,\,] \\ [q_5,\,\lambda,\,\,\,\,xx\,\,] \\ \text{Rejected.} \end{array}$

 $\begin{array}{c} 5 \\ [q_0,\, 00100,\, \lambda \] \\ [q_3,\, 0100,\, \ \lambda \] \\ [q_4,\, 100,\, \ \lambda \] \\ \text{Rejected}. \end{array}$

There is no accepted one. Hence, $00100 \notin L(M)$.

Answer 4

a.

• $L_1 \cup (L_2 \setminus R)$ is context free.

Because, $L_2 \setminus R = L_2 \cap \overline{R}$ is context free.

If R is a regular language, \overline{R} is also regular, since regular languages are closed under complementation.

And intersection of a CFL and a RL is a context-free language, because we can construct a new NPDA machine that accepts the NPDA of that context free language and the DFA of that regular language.

Now we know that $(L_2 \setminus R)$ is a CFL, also L_1 is a CFL.

Since context free languages are closed under union operation, $L_1 \cup (L_2 \setminus R)$ is context free.

• $R \setminus (L_1 \cup L_2)$ may or may not be context free.

As context free languages are closed under union operation, $(L_1 \cup L_2)$ is a context free language. Let's say $L_1 \cup L_2 = L$ (a CFL).

 $(R \setminus L)$ does not have to be context free.

 $(R \setminus L) = (R \cap \overline{L})$, but \overline{L} may not be context free, since the context-free languages are not closed under complementation.

b.

In order to show that G is ambiguous, we need to show a string that can be given by two different parse trees.

The string "xxy" has two different left-most derivations:

$$S \Rightarrow XY \Rightarrow XxY \Rightarrow xxY \Rightarrow xxy$$

$$S \Rightarrow xxY \Rightarrow xxy$$

Since "xxy" has two different left-most derivations, G is ambiguous.

c.

 $L = \{ x^i y^i z^i : i \ge 0 \}$ is can be recognized by M, but not recognized by N.

Because it is well known that L is not context free, it cannot be recognized by N(1 stack PDA).

However L can be recognized by M(2 stack PDA) and it can be seen below.

⇒ Push all initial "x"s to a stack. Push the following "y"s to the other stack.

When a "z" is read, pop one "x" and one "y" from the stacks.

Since there is a "x" and a "y" for each "z", when the inputs end and the two stacks be empty, it will be accepted.

It can be seen that M is at least powerful as N, because a 2 stack PDA can simulate a 1 stack PDA, by not using it's second stack.

And, above, we saw that $L = \{ x^i y^i z^i : i \ge 0 \}$ is recognized by M, but not recognized by N.

That means, M(a 2 stack PDA) can recognize every language which N(a 1 stack PDA) can recognize, also M can recognize at least one different language(L) that cannot be recognized by N. So, M is more powerful than N.