

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 19 de febrero de 2019

Nombre y apellido:		Padrón:
Cuatrimestre de cursada:	Turno:	

- Para aprobar la **nota** debe sumar 5 puntos en total.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta es respondida incorrectamente resta la mitad del puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- [½ pt.] 1) Transporte de portadores en semiconductores: Explicar los distintos fenómenos de transporte. ¿Qué es la movilidad? ¿Cómo se relaciona con la conductividad del semiconductor, con el nivel de dopaje y con la temperatura?
- [1 pt.] 2) Se tiene una estructura MOS con los siguientes parámetros: $|V_T| = 1 \text{ V}$, $N_D = 10^{16} \text{ cm}^{-3}$, Gate de polisilicio tipo N. Se aplica $V_{GB} = 3 \text{ V}$. Considere $V_{th} = 25.9 \text{ mV}$. Calcule la caída de tensión en el óxido y en el semiconductor
- $[\frac{1}{2} \text{ pt.}]$ 3) Se tiene un circuito con una fuente $v_S(t) = V_S + v_s(t)$, una resistencia R y un diodo $(V_S = 3 \text{ V}, R = 1 \text{ k}\Omega)$. Considere un factor de idealidad de la juntura n = 1,4. Se sabe que el diodo está polarizado en directa. ¿Cuál es la cota máxima de $|v_s(t)|$ de manera tal que el modelo de pequeña señal tenga un error menor al 10%?
- [1 pt.] 4) Se tiene un transistor JFET canal P ($|V_P|=0.7\,\mathrm{V},\,|I_{DSS}|=1\,\mathrm{mA}$). El gate del mismo está a $V_{DD}=5\,\mathrm{V},\,$ el drain está conectado a tierra a través de una $R_D=1\,\mathrm{k}\Omega$ y el source está conectado a V_{DD} utilizando un diodo Zener de 1,3 V, con su cátodo a V_{DD} . ¿En qué régimen está polarizado el transistor?
- [½ pt.] 5) Se tiene un transistor MOSFET canal P ($|V_T|=2\,\mathrm{V},\,\lambda=0.08\,\mathrm{V}^{-1}$) conectado en modo diodo con una resistencia serie $R=330\,\Omega,$ una fuente $V_{DD}=5\,\mathrm{V}.$ Se mide la corriente de drain y se obtiene $I_D=4.5\,\mathrm{mA}.$ Calcular el valor de $k=1/2~\mu~C'_{ox}~W/L.$
- $[\frac{1}{2}$ pt.] 6) Se tiene un transistor MOSFET con substrato tipo P y poli-silicio tipo N. ¿Cómo debe ser V_{BS} para variar el V_T a valores más negativos?
- [½ pt.] 7) Dado un TBJ PNP, con los datos según la tabla. Calcule la ganancia de corriente del transistor en modo activo directo.

	N	μ_n	μ_p	$\mid W \mid$
E	$8 \times 10^{17} \mathrm{cm}^{-3}$	$500\mathrm{cm^2/Vs}$	$200\mathrm{cm^2/Vs}$	$12\mu\mathrm{m}$
	$3 \times 10^{16} \mathrm{cm}^{-3}$,	,	
C	$2 \times 10^{14} \mathrm{cm}^{-3}$	$1400\mathrm{cm^2/Vs}$	$500\mathrm{cm^2/Vs}$	$30\mu\mathrm{m}$

[½ pt.] 8) Para un proceso de fabricación CMOS de sustrato tipo P, indicar en qué orden se deben aplicar las máscaras para la fabricación de un inversor complementario.

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 19 de febrero de 2019

[½ pt.] 9) ¿Qué función CMOS implementa el circuito de la figura?

- [1 pt.] 10) Se tiene una fuente de señal con $R_s = 1 \,\mathrm{k}\Omega$ y $v_s(t) = 20 \,\mathrm{mV}$ pico. La misma se conecta a la entrada de un amplificador emisor común implementado con un TBJ NPN. Calcule la ganancia del circuito A_{vs} , sabiendo que la alimnetación del circuito es $V_{DD} = 5 \,\mathrm{V}$, los parámetros del transistor son $\beta = 330 \,\mathrm{y} \,V_A = 10 \,\mathrm{V}$, y que el transitor está polarizado con una resistencia de base de decenas de $\mathrm{k}\Omega$ y con una resistencia de colector $R_C = 220 \,\Omega$ a la salida, obteniéndose una corriente de colector $I_C = 14 \,\mathrm{mA}$. (Considerar $V_{th} = 25,9 \,\mathrm{mV}$).
- [½ pt.] 11) Se tiene un amplificador emisor común implementado con un transistor PNP con $\beta=300~{\rm y}$ $V_A=120~{\rm V}$. El circuito de polarización tiene una única resistencia $R_B=120~{\rm k}\Omega$, una $R_C=100~{\rm \Omega}$ y se alimenta con $V_{CC}=3,3~{\rm V}$. Calcular la tensión pico de la señal de salida (v_o) , sabiendo que se tiene una fuente de $v_s(t)=5~{\rm mV}$ pico y una $R_s=50~{\rm \Omega}$ acoplada mediante un capacitor a la entrada del amplificador.
- [1 pt.] 12) Se tiene un amplificador Source común (canal N y $|V_T| = 0.5 \,\mathrm{V}$) polarizado con una R_D entre drain y una fuenta de CC de $V_{DD} = 3 \,\mathrm{V}$, y un potenciómetro de $200 \,\mathrm{k}\Omega$ cuyos extremos están conectados entre tierra y V_{DD} y su punto medio al Gate. La fuente de señal tiene una amplitud de $450 \,\mathrm{mV}$ pico y una $R_s = 66 \,\mathrm{k}\Omega$. La fuente de señal se acopla mediante un capacitor a la entrada del amplificador. Se obtiene una $V_{GS} = V_{DS} = 1.5 \,\mathrm{V}$ y una $I_D = 10 \,\mathrm{mA}$. Verifique si el amplificador distorsiona, evaluando las tres causas de distorsión conocidas.
- [½ pt.] 13) Dispositivos semiconductores de potencia: ¿Cuáles son las características constructivas de los dispositivos de potencia y sus concecuencias en el funcionamiento?
- $[\frac{1}{2}$ pt.] 14) Considere un circuito serie con tiristor $(R_{on}=1\,\Omega)$ y una resistencia $R=100\,\Omega$, alimentado por una señal cuadrada de con tensión $\pm 20\,\mathrm{V}$, período de 20 ms y un ciclo de trabajo del 50 %. El circuito de disparo genera un pulso cada 10 ms y está desfasado 5 ms respecto de la señal cuadrada. Calcular la potencia disipada en la carga.
- [1 pt.] 15) Se tiene un SCR que disipa como máximo 8 W. El circuito trabaja en un ambiente de temperatura controlada menor a 50°C. El SCR controla la conducción de una carga resistiva de $10\,\Omega$. Se saben los siguientes datos de los SCR: $\theta_{ja}=30^{\circ}\text{C/W}$ y $P_{max}(@T_C=30^{\circ}\text{C})=20\,\text{W},\,T_{j,max}=130\,^{\circ}\text{C}$. Calcular el valor de la resistencia térmica del disipador necesario para disipar la potencia.