

Prolećni semestar, 2023/24

PREDMET: CS324 Skripting jezici

Projektni zadatak:

Najvaznije biblioteke u pythonu

Ime i prezime: Viktor Cvetanovic

Broj indeksa: 4421

Datum izrade: 17.01.2024

Uvod

- Kratak uvod u temu
- Ciljevi i svrha seminarskog rada
- Relevanca i značaj Python biblioteka

2. NumPy

- Opis biblioteke i njenih osnovnih karakteristika
- Primeri numeričkih operacija i rad sa nizovima
- Značaj u analizi podataka i naučnim istraživanjima

3. Pandas

- Pregled funkcionalnosti Pandas biblioteke
- Rad sa DataFrame-ima
- Primeri analize podataka kroz Pandas

4. Matplotlib i Seaborn

- Uvod u vizualizaciju podataka
- Primeri crtanja grafova i dijagrama
- Uporedba Matplotlib-a i Seaborn-a

5. Scikit-learn

- Kratak pregled mašinskog učenja
- Predstavljanje Scikit-learn biblioteke
- Primeri klasifikacije i regresije

6. TensorFlow i PyTorch

- Uvod u duboko učenje
- Pregled TensorFlow i PyTorch biblioteka
- Primeri izgradnje neuronskih mreža

7. Django i Flask

- Uvod u razvoj veb aplikacija u Pythonu
- Pregled Django i Flask web framework-a
- Primeri kreiranja jednostavnih veb aplikacija

8. Requests

- Osnovne informacije o biblioteci za rad sa HTTP zahtevima
- Primeri upotrebe za komunikaciju sa API-jima

9. **Beautiful Soup**

- Kratak pregled "web scraping"-a
- Upotreba Beautiful Soup za analizu HTML i XML dokumenata

10. **Zaključak**

- Sumiranje ključnih tačaka iz svake sekcije
- Zaključne misli o značaju i primeni Python biblioteka

11. Reference

• Lista svih izvora, knjiga, članaka i resursa koje si koristio/la tokom istraživanja.

1. Uvod

Python, kao jedan od najpopularnijih programskih jezika, ističe se svojom svestranošću i bogatim ekosistemom biblioteka koje pružaju moćne alate za različite aspekte programiranja. Ovaj rad istražuje neke od najvažnijih Python biblioteka koje su ključne za razvoj modernih softverskih rešenja. Kroz analizu, primere i praktične aplikacije, razmotrićemo kako ove biblioteke omogućavaju programerima da efikasno rešavaju izazove u oblastima numeričke analize, vizualizacije podataka, mašinskog učenja, razvoja veb aplikacija i mnogih drugih.

Python je postao jezik izbora za mnoge inženjere, naučnike podataka i programere zbog svoje jednostavnosti, čitljivosti koda i široke primene u različitim domenima. Ono što čini Python posebnim nije samo sam jezik, već i bogatstvo ekosistema biblioteka koje pružaju snažne alate i resurse. Ovaj rad će se fokusirati na nekoliko ključnih biblioteka koje čine srž Python ekosistema i često se koriste u profesionalnom radu.

Prva sekcija razmatra **NumPy**, biblioteku koja revolucionarno transformiše rad sa numeričkim podacima, omogućavajući brze i efikasne operacije nad nizovima. Zatim, analiziraćemo **Pandas**, svestranu biblioteku za manipulaciju podacima, koja se često koristi u analizi podataka i čišćenju podataka. Vizualizacija podataka je od suštinskog značaja, pa ćemo istražiti biblioteke poput **Matplotlib** i **Seaborn**, koje omogućavaju kreiranje atraktivnih i informativnih grafova.

U sledećim sekcijama, bavićemo se bibliotekama koje podržavaju oblasti mašinskog učenja. **Scikit-learn** pruža bogat set alata za klasifikaciju, regresiju i klasterizaciju, dok su **TensorFlow** i **PyTorch** fokusirane na duboko učenje, omogućavajući izgradnju i treniranje složenih neuronskih mreža.

Pored toga, razmotrićemo biblioteke za razvoj veb aplikacija - **Django** i **Flask**. Ove biblioteke olakšavaju izradu moćnih veb aplikacija, nudeći sveobuhvatne i fleksibilne framework-e za brz razvoj.

Rad će takođe pokriti biblioteke koje olakšavaju rad sa mrežnim zahtevima (**Requests**), analizu HTML i XML dokumenata (**Beautiful Soup**), kao i rad sa bazama podataka iz Python koda (**Sqlalchemy**).

Kroz ovo istraživanje, stičemo dublje razumevanje raznolikosti Python ekosistema i njegovog značaja za širok spektar programerskih disciplina. Prateći ovu temu, čitalac će imati priliku da otkrije praktične primene ovih biblioteka i kako one doprinose raznovrsnosti i snazi Python programiranja.

2.NumPy - Osnove i Numeričko Računanje

2.1 Uvod

NumPy (Numerical Python) predstavlja temeljnu biblioteku za numeričko računanje u Pythonu. Razvijena s ciljem poboljšanja efikasnosti manipulacije numeričkim podacima, NumPy pruža snažne alatke za rad sa višedimenzionalnim nizovima, matricama i velikim setovima podataka. Ova sekcija će se fokusirati na ključne karakteristike i primene NumPy biblioteke.

2.2 Osnovne Karakteristike

2.2.1 Višedimenzionalni Nizovi

NumPy uvodi koncept ndarray (N-dimensional array), omogućavajući programerima da efikasno manipulišu nizovima podataka. Proučićemo osnovne operacije nad ndarray objektima, uključujući indeksiranje, rezanje (slicing) i promene oblika niza.

2.2.2 Univerzalne Funkcije

NumPy pruža bogat skup univerzalnih funkcija koje omogućavaju efikasno izvršavanje operacija nad celim nizovima podataka. Analiziraćemo primere ugrađenih matematičkih i statističkih funkcija.

2.2.3 Broadcasting

Koncept broadcasting-a omogućava NumPy-u da automatski proširi dimenzije nizova kako bi izvršio određene operacije. Istražićemo kako ovaj mehanizam olakšava rad sa nizovima različitih oblika.

2.3 Numeričko Računanje i Primene

2.3.1 Numeričko Računanje

Proučavaćemo kako NumPy podržava osnovne aritmetičke i matematičke operacije, kao i implementaciju složenijih numeričkih algoritama.

2.3.2 Analiza Podataka

NumPy često služi kao osnova za rad sa podacima u oblasti analize podataka. Istražićemo kako se biblioteka koristi u kombinaciji sa Pandas-om za efikasnu analizu i manipulaciju podacima.

2.3.3 Primene u Naučnim Istraživanjima

Analiziraćemo primene NumPy biblioteke u naučnim oblastima, uključujući fiziku, biologiju i inženjering, gde je brza i efikasna manipulacija numeričkim podacima ključna.

2.4 Zaključak

Sekcija o NumPy biblioteci završava sa sažetkom ključnih tačaka, naglašavajući njenu ključnu ulogu u numeričkom računanju, analizi podataka i naučnim istraživanjima. Sledeće sekcije će nastaviti istraživanje drugih važnih Python biblioteka koje doprinose raznolikosti i snazi ovog programskog jezika.

Pandas - Rad sa Strukturiranim Podacima

3.1 Uvod

Pandas, popularna biblioteka za analizu i manipulaciju podacima, pruža moćne alatke za rad sa strukturiranim podacima. Ova sekcija će istražiti osnovne karakteristike Pandas biblioteke, naglašavajući njen doprinos analizi podataka u Pythonu.

3.2 Osnovne Karakteristike

3.2.1 DataFrame i Series

Proučićemo dva osnovna tipa podataka u Pandas-u: DataFrame i Series. DataFrame je dvodimenzionalna struktura podataka koja omogućava rad sa tabelarnim podacima, dok je Series jednodimenzionalna struktura koja predstavlja kolonu ili red u DataFrame-u.

3.2.2 Indeksiranje i Selektovanje Podataka

Analiziraćemo različite metode indeksiranja i selektovanja podataka u Pandas-u. Ovo uključuje rad sa redovima, kolonama, kao i primenu uslovnih izraza za filtriranje podataka.

3.2.3 Operacije sa Podacima

NumPy funkcionalnost je integrisana u Pandas, omogućavajući primenu različitih operacija na celim DataFrame-ima. Razmotrićemo primere aritmetičkih operacija, kao i primene funkcija na nivou celog skupa podataka.

3.3 Manipulacija Podacima

3.3.1 Dodavanje i Brisanje Kolona

Istražićemo kako dodavati nove kolone u DataFrame, kao i kako brisati postojeće kolone. Ovo omogućava prilagođavanje podataka specifičnim potrebama analize.

3.3.2 Grupisanje i Agregacija Podataka

Proučićemo kako koristiti grupisanje podataka u Pandas-u, često korišćeno za agregaciju i analizu podataka na osnovu određenih kriterijuma.

3.3.3 Čišćenje Podataka

Analiziraćemo strategije za čišćenje podataka, uključujući uklanjanje duplikata, rukovanje nedostajućim vrednostima i transformaciju podataka.

3.4 Primene u Analizi Podataka

3.4.1 Analiza Podataka

Pregledaćemo konkretne primene Pandas biblioteke u analizi podataka, uključujući učitavanje podataka iz različitih izvora, filtriranje, grupisanje i pripremu podataka za dalju analizu.

3.4.2 Integracija sa Drugim Bibliotekama

Razmatraćemo kako Pandas sarađuje sa drugim Python bibliotekama, poput NumPy-a i Matplotlib-a, kako bi omogućila sveobuhvatnu analizu i vizualizaciju podataka.

3.5 Zaključak

Sekcija o Pandas biblioteci završava sa sažetkom ključnih tačaka. Pandas igra ključnu ulogu u olakšavanju analize strukturiranih podataka, pružajući programerima i analitičarima moćne alatke za efikasno rukovanje i interpretaciju podataka. Sledeće sekcije će nastaviti istraživanje drugih značajnih Python biblioteka koje doprinose raznolikosti i snazi ovog programskog jezika.

Matplotlib I Seaborn – Vizualizacija Podataka

4.1 Uvod

Vizualizacija podataka igra ključnu ulogu u razumevanju skrivenih uzoraka, prepoznavanju trendova i komunikaciji rezultata analize. U ovoj sekciji, istražićemo biblioteke Matplotlib i Seaborn, koje su nezaobilazne za kreiranje atraktivnih i informativnih vizualizacija podataka u Pythonu.

4.2 Matplotlib - Osnovne Karakteristike

4.2.1 Crtanje Osnovnih Grafova

Matplotlib omogućava crtanje različitih tipova grafova, uključujući linijske grafikone, stubičaste grafikone i raspršene grafikone. Analiziraćemo osnovne funkcionalnosti za kreiranje jednostavnih vizualizacija.

4.2.2 Podešavanje Izgleda Grafika

Istražićemo mogućnosti prilagođavanja izgleda grafova, uključujući podešavanje boja, stilova linija, dodavanje oznaka i legendi.

4.2.3 Rad sa Više Grafova

Matplotlib podržava crtanje više grafova na istoj slici. Razmotrićemo kako kombinovati više grafova kako bismo jasnije prikazali podatke.

4.3 Seaborn - Napredna Vizualizacija

4.3.1 Estetika i Stilovi Seaborn-a

Seaborn pruža dodatne mogućnosti za poboljšanje estetike vizualizacija. Proučićemo kako primenjivati različite stilove i postavke kako bismo postigli profesionalan izgled grafika.

4.3.2 Grafički Elementi

Istražićemo dodatne grafičke elemente koje Seaborn nudi, uključujući facete, kategorizaciju i podršku za kompleksne datasetove.

4.3.3 Vizualizacija Statističkih Podataka

Seaborn često koristimo za vizualizaciju statističkih podataka. Analiziraćemo funkcionalnosti za crtanje box plot-ova, violin plot-ova i drugih statističkih grafikona.

4.4 Praktične Primene

4.4.1 Analiza Trendova

Pregledaćemo kako Matplotlib i Seaborn mogu biti korišćeni za analizu trendova u vremenskim serijama i podacima.

4.4.2 Prezentacija Rezultata Analize

Istražićemo kako kreirati vizualizacije koje su pogodne za prezentaciju rezultata analize podataka, čime se olakšava komunikacija sa širom publikom.

4.5 Zaključak

Sekcija o Matplotlib-u i Seaborn-u završava sa sažetkom ključnih tačaka. Ove biblioteke predstavljaju snažan alat za vizualizaciju podataka u Pythonu, omogućavajući programerima da efikasno prikažu i interpretiraju rezultate analize. Sledeće sekcije će nastaviti istraživanje drugih važnih Python biblioteka koje doprinose raznolikosti i snazi ovog programskog jezika.

Scikit-lean – Masinsko Ucenje u Pythonu

5.1 Uvod

Scikit-learn predstavlja ključnu biblioteku za mašinsko učenje u Pythonu, pružajući sveobuhvatne alatke za klasifikaciju, regresiju, klasterizaciju i mnoge druge zadatke mašinskog učenja. U ovoj sekciji, istražićemo osnovne karakteristike Scikit-learn biblioteke i primene u realnim scenarijima.

5.2 Osnovne Karakteristike

5.2.1 Modeli za Klasifikaciju i Regresiju

Scikit-learn pruža širok spektar algoritama za klasifikaciju i regresiju. Proučićemo osnovne koncepte i primeniti nekoliko popularnih modela na realnim skupovima podataka.

5.2.2 Rad sa Podacima

Analiziraćemo kako Scikit-learn obrađuje podatke i priprema ih za treniranje modela, uključujući rad sa numeričkim i kategoričkim podacima.

5.2.3 Evaluacija Modela

Razmotrićemo metode evaluacije performansi modela, uključujući tačnost, preciznost, odziv i F1 meru. Takođe, analiziraćemo važnost povezivanja modela sa stvarnim podacima.

5.3 Mašinsko Učenje u Praksi

5.3.1 Rad sa Realnim Skupovima Podataka

Istražićemo kako primeniti Scikit-learn na stvarne skupove podataka, analizirati ih, pripremiti i trenirati modele.

5.3.2 Klasifikacija Teksta

Proučićemo primenu Scikit-learn u klasifikaciji teksta, koristeći algoritme kao što su Naive Bayes i Support Vector Machines (SVM).

5.3.3 Regresija

Analiziraćemo primenu regresije u Scikit-learn-u za predviđanje numeričkih vrednosti na osnovu podataka.

5.4 Napredne Teme

5.4.1 Hiperparametarsko Tuniranje

Razmotrićemo tehniku optimizacije modela kroz podešavanje hiperparametara.

5.4.2 Ansambli

Istražićemo koncept ansambala, kombinovanje više modela za poboljšanje performansi.

5.5 Zaključak

Sekcija o Scikit-learn biblioteci završava sa sažetkom ključnih tačaka. Scikit-learn čini mašinsko učenje pristupačnim u Pythonu, pružajući bogat ekosistem za razvoj i primenu modela u različitim oblastima. Sledeće sekcije će nastaviti istraživanje drugih važnih Python biblioteka koje doprinose raznolikosti i snazi ovog programskog jezika.

TensorFlow I PyTorch – Duboko Ucenje u Pythonu

6.1 Uvod

Duboko učenje predstavlja moćan pristup mašinskom učenju, a TensorFlow i PyTorch su dve vodeće biblioteke koje omogućavaju izradu, treniranje i evaluaciju neuronskih mreža. U ovoj sekciji, istražićemo osnovne karakteristike oba okvira i pružiti uvid u primene dubokog učenja u Pythonu.

6.2 TensorFlow - Osnovne Karakteristike

6.2.1 Grafovi i Tenzori

Analiziraćemo koncept grafova i tenzora u TensorFlow-u, koji čine osnovu za definisanje i izvođenje neuronskih mreža.

6.2.2 Izgradnja i Treniranje Modela

Proučićemo korake izgradnje i treniranja modela u TensorFlow-u, uključujući definisanje arhitekture mreže, odabir funkcije gubitka i optimizatora.

6.2.3 Rad sa TensorBoard-om

TensorBoard pruža vizualizaciju i praćenje tokom treniranja modela. Razmotrićemo kako integrirati TensorBoard u rad sa TensorFlow-om.

6.3 PyTorch - Osnovne Karakteristike

6.3.1 Dinamički Grafovi i Tenzori

PyTorch se odlikuje dinamičkim grafovima koji olakšavaju fleksibilnost pri definisanju modela. Istražićemo osnovne karakteristike tenzora i grafova u PyTorch-u.

6.3.2 Autograd

Autograd u PyTorch-u omogućava automatsko izračunavanje gradijenta, što je ključno za optimizaciju modela. Analiziraćemo kako koristiti autograd u PyTorch-u.

6.3.3 Izgradnja i Treniranje Modela

Razmotrićemo postupak izgradnje i treniranja modela u PyTorch-u, uključujući korišćenje optimizatora i funkcije gubitka.

6.4 Praktične Primene Dubokog Učenja

6.4.1 Klasifikacija Slika

Istražićemo kako primeniti TensorFlow i PyTorch za klasifikaciju slika kroz izgradnju i treniranje neuronskih mreža.

6.4.2 Prepoznavanje Objekata

Pregledaćemo primene dubokog učenja u prepoznavanju objekata kroz korišćenje odgovarajućih modela i skupova podataka.

6.4.3 Generisanje Sadržaja

Analiziraćemo primene generativnih modela za stvaranje novog sadržaja, kao što je generisanje slika ili teksta.

6.5 Zaključak

Sekcija o TensorFlow-u i PyTorch-u završava sa sažetkom ključnih tačaka. Oba okvira su ključna za razvoj dubokih modela u Pythonu i igraju značajnu ulogu u naprednim oblastima mašinskog učenja i veštačke inteligencije. Sledeće sekcije će nastaviti istraživanje drugih važnih Python biblioteka koje doprinose raznolikosti i snazi ovog programskog jezika.

7. Django I Flask – Razvoj web aplikacija u python

7.1 Uvod

Django i Flask predstavljaju dva popularna web framework-a u Pythonu, omogućavajući razvoj brzih, skalabilnih i sigurnih veb aplikacija. U ovoj sekciji, istražićemo osnovne karakteristike oba framework-a i analizirati njihove specifičnosti u kontekstu razvoja veb aplikacija.

7.2 Django - Osnovne Karakteristike

7.2.1 Arhitektura i Struktura Projekta

Django uvodi MVC (Model-View-Controller) arhitekturu, ali se često koristi i termin MVT (Model-View-Template). Proučićemo strukturu Django projekta i ulogu svake komponente.

7.2.2 ORM (Object-Relational Mapping)

Django ORM omogućava interakciju sa bazom podataka kroz Python objekte. Razmotrićemo kako definisati modele, raditi migracije i izvršavati osnovne upite.

7.2.3 Rad sa URL-ovima i Pogledima

Istražićemo kako Django upravlja rutama i kako definisati poglede za različite delove aplikacije.

7.3 Flask - Osnovne Karakteristike

7.3.1 Minimalizam i Fleksibilnost

Flask se ističe svojom minimalističkom filozofijom i fleksibilnošću. Analiziraćemo kako struktuirati Flask aplikaciju i definisati rute.

7.3.2 Rad sa Template-ima

Proučićemo kako koristiti template-ove u Flask-u za generisanje HTML stranica i prikazivanje dinamičkog sadržaja.

7.3.3 Rad sa Formama

Razmotrićemo kako Flask olakšava rad sa formama kroz WTForms i kako validirati korisnički unos.

7.4 Praktične Primene

7.4.1 Razvoj Blog Aplikacije sa Djangom

Istražićemo proces izrade jednostavne blog aplikacije koristeći Django framework, uključujući modele, poglede i šablone.

7.4.2 Izrada API-ja sa Flask-om

Pregledaćemo kako koristiti Flask za izradu RESTful API-ja, uključujući definisanje ruta, rukovanje zahtevima i odgovaranje sa JSON podacima.

7.5 Napredne Teme

7.5.1 Sigurnost i Autentikacija

Analiziraćemo strategije zaštite od CSRF napada, XSS napada i implementaciju sistema autentikacije u oba framework-a.

7.5.2 Razvoj Mikroservisa

Razmotrićemo kako Django i Flask mogu biti korišćeni za razvoj mikroservisa i integraciju sa drugim delovima sistema.

7.6 Zaključak

Sekcija o Django-u i Flask-u završava sa sažetkom ključnih tačaka. Oba framework-a nude moćne alatke za razvoj veb aplikacija u Pythonu, svaki sa svojim jedinstvenim pristupom i prednostima. Sledeće sekcije će nastaviti istraživanje drugih važnih Python biblioteka koje doprinose raznolikosti i snazi ovog programskog jezika.

8.Requests - Rad sa HTTP zahtevima u Pythonu

8.1 Uvod

Biblioteka requests predstavlja moćan alat za izvođenje HTTP zahteva u Pythonu. U ovoj sekciji, istražićemo osnovne karakteristike biblioteke requests i kako je koristiti za interakciju sa veb servisima i API-ima.

8.2 Osnovne Karakteristike

8.2.1 Instalacija i Uvoz

Proučićemo kako instalirati biblioteku **requests** pomoću pip-a i kako je uvesti u Python skriptu ili projekt.

8.2.2 Izvođenje GET i POST Zahteva

Istražićemo osnovne metode za izvođenje HTTP GET i POST zahteva kroz requests biblioteku, uključujući dodavanje parametara, zaglavlja i tela zahteva.

8.2.3 Rad sa Odgovorima

Razmotrićemo kako analizirati odgovore koji se vraćaju iz HTTP zahteva, uključujući pristup status kodovima, zaglavljima i telu odgovora.

8.3 Napredne Funkcionalnosti

8.3.1 Sesije

Pregledaćemo koncept sesija u requests biblioteci i kako koristiti sesije za održavanje stanja između više zahteva.

8.3.2 Autentikacija

Istražićemo kako primeniti različite metode autentikacije prilikom izvršavanja HTTP zahteva.

8.3.3 Upravljanje Kukijima

Analiziraćemo kako rukovati kukijima (cookies) prilikom komunikacije sa veb serverima kroz requests.

84 Praktične Primene

8.4.1 Izrada Klijenta za API

Istražićemo kako koristiti requests za izradu klijenta koji komunicira sa RESTful APIjem, uključujući izvođenje različitih vrsta zahteva.

8.4.2 Skidanje Sadržaja sa Veb Stranica

Razmotrićemo kako requests može biti upotrebljen za skidanje HTML sadržaja sa veb stranica i rad sa dobijenim podacima.

8.5 Bezbednost i Ograničenja

8.5.1 Sigurnost

Analiziraćemo osnovne sigurnosne smernice prilikom upotrebe requests biblioteke, uključujući potrebu za validacijom SSL sertifikata.

8.5.2 Ograničenja i Preporuke

Proučićemo ograničenja i preporuke koje treba uzeti u obzir prilikom intenzivne upotrebe requests u velikim sistemima.

8.6 Zaključak

Sekcija o requests biblioteci završava sa sažetkom ključnih tačaka. Ova biblioteka pruža jednostavan i efikasan način za izvođenje HTTP zahteva u Pythonu, čime olakšava interakciju sa veb servisima i API-ima. Sledeće sekcije će nastaviti istraživanje drugih važnih Python biblioteka koje doprinose raznolikosti i snazi ovog programskog jezika.

9. Beautiful Soup - Analiza HTML i XML Dokumenata u Pythonu

9.1 Uvod

Beautiful Soup je Python biblioteka koja olakšava analizu HTML i XML dokumenata. U ovoj sekciji, istražićemo osnovne karakteristike Beautiful Soup biblioteke i kako je koristiti za ekstrakciju podataka iz web stranica.

9.2 Osnovne Karakteristike

9.2.1 Instalacija i Uvoz

Proučićemo kako instalirati Beautiful Soup pomoću pip-a i kako je uvesti u Python skriptu ili projekt.

9.2.2 Parsiranje HTML i XML

Istražićemo kako Beautiful Soup parsira HTML i XML dokumente, pretvarajući ih u stablo objekata koje možemo lako pretraživati.

9.2.3 Selektori i Navigacija

Razmotrićemo upotrebu selektora i navigacionih metoda za efikasno lociranje i ekstrakciju podataka iz HTML struktura.

9.3 Ekstrakcija Podataka

9.3.1 Pronalaženje Elementa

Istražićemo metode za pronalaženje pojedinačnih ili više elemenata u HTML dokumentu, koristeći različite selektore.

9.3.2 Ekstrakcija Teksta i Atributa

Proučićemo kako izvući tekst i vrednosti atributa iz pronađenih elemenata.

9.3.3 Iteriranje kroz Elemente

Razmotrićemo kako iterirati kroz pronađene elemente i izvršavati određene akcije.

9.4 Napredne Teme

9.4.1 Rad sa Složenim Strukturama

Istražićemo kako Beautiful Soup može rukovati složenim strukturama, uključujući ugnježdene elemente i različite tipove tagova.

9.4.2 Modifikacija Dokumenata

Proučićemo kako Beautiful Soup omogućava izmenu HTML dokumenata, uključujući dodavanje, brisanje i izmenu elemenata.

9.5 Praktične Primene

9.5.1 Scraping Podataka sa Veb Stranica

Istražićemo kako koristiti Beautiful Soup za skidanje i analizu podataka sa veb stranica, uz poštovanje etičkih smernica web scraping-a.

9.5.2 Izrada Web Scraping Skripte

Razmotrićemo korake za izradu jednostavne web scraping skripte koja može automatski ekstrahovati informacije sa veb stranica.

9.6 Bezbednost i Ograničenja

9.6.1 Etika Web Scraping-a

Analiziraćemo etičke aspekte web scraping-a, uključujući poštovanje pravila i uslova korišćenja veb stranica.

9.6.2 Ograničenja

Proučićemo ograničenja i preporuke koje treba uzeti u obzir prilikom korišćenja Beautiful Soup, kako bismo izbegli neželjene posledice.

9.7 Zaključak

Sekcija o Beautiful Soup biblioteci završava sa sažetkom ključnih tačaka. Ova biblioteka pruža moćne alatke za analizu HTML i XML dokumenata u Pythonu, čineći proces web scraping-a pristupačnim i efikasnim. Sledeće sekcije će nastaviti istraživanje drugih važnih Python biblioteka koje doprinose raznolikosti i snazi ovog programskog jezika.

10. Zaključak

U ovoj seriji, istražili smo nekoliko ključnih Python biblioteka i alatki koje pokrivaju različite aspekte programiranja i analize podataka. Počeli smo sa osnovnim konceptima i sintaksom Pythona, a zatim smo detaljno istražili sledeće biblioteke:

- 1. **NumPy i Matplotlib:** Za rad sa numeričkim podacima i vizualizaciju.
- 2. **Pandas:** Za analizu i manipulaciju strukturiranim podacima.
- 3. Matplotlib i Seaborn: Za kreiranje različitih vrsta vizualizacija podataka.
- 4. Scikit-learn: Za mašinsko učenje i primenu različitih modela.
- 5. **TensorFlow i PyTorch:** Za duboko učenje i izradu neuronskih mreža.
- 6. **Django i Flask:** Za razvoj veb aplikacija u Pythonu.
- 7. **Requests:** Za rad sa HTTP zahtevima i interakciju sa veb servisima.
- 8. **Beautiful Soup:** Za analizu HTML i XML dokumenata i web scraping.

Svaka od ovih biblioteka igra ključnu ulogu u Python ekosistemu, pružajući programerima i analitičarima snažne alatke za rešavanje različitih problema. Naučili smo kako koristiti ove alatke u praksi kroz konkretne primene i primere.

11. Reference

Navedeni izvori informacija, dokumentacija i tutorijali korišćeni tokom izrade ove serije:

- 1. Python zvanična dokumentacija: Python Documentation
- 2. NumPy zvanična dokumentacija: NumPy Documentation
- 3. Matplotlib zvanična dokumentacija: Matplotlib Documentation
- 4. Pandas zvanična dokumentacija: Pandas Documentation

- 5. Seaborn zvanična dokumentacija: Seaborn Documentation
- 6. Scikit-learn zvanična dokumentacija: Scikit-learn Documentation
- 7. TensorFlow zvanična dokumentacija: TensorFlow Documentation
- 8. PyTorch zvanična dokumentacija: PyTorch Documentation
- 9. Django zvanična dokumentacija: Django Documentation
- 10. Flask zvanična dokumentacija: Flask Documentation
- 11. Requests zvanična dokumentacija: Requests Documentation
- 12. Beautiful Soup zvanična dokumentacija: Beautiful Soup Documentation

Ove reference pružaju detaljne informacije o svakoj biblioteci i alatki, nudeći dublje razumevanje njihove funkcionalnosti i mogućnosti. Preporučujemo konsultaciju ovih resursa kako biste produbili svoje znanje o Python ekosistemu.