

基于树莓派开发 I2C 裸机驱动

软件所智能软件中心PLCT实验室 汪辰

目录

I2C 总线物理拓扑

I2C 总线通信协议

树莓派 I2C 接口

中国科学院软件研究所 Institute of Software Chinese Academy of Sciences

I2C 总线物理拓扑

- SCL 为时钟线, SDA 为数据线。 在总线空闲状态时,这两根线 一般被上拉电阻拉高,保持高 电平。
- I2C 总线上的设备有主(Master)/ 从(Slave) 之分,每一个设备既可以作主设备也可以是从设备。 每一个从设备都必须对应一个唯一的地址。
- I2C 通信方式为半双工,因为 只有一根 SDA 线,所以同一时 间只可以实现单向通信。

I2C 总线通信协议 (1)

传输开始和结束

- 总线上数据的传输必须以一个起始信号作为开始条件,以一个结束信号作为传输的停止条件,并且起始和结束信号总是由主设备产生。
 - 总线在空闲状态时,SCL 和SDA 都保持着高电平,当SCL 为高电平而 SDA 由高到低产生一次跳变,表示发起一个起始条件。当 SCL 为高而 SDA 由低到高产生一次跳变,表示发生一个停止条件。
- 起始条件产生后,总线处于忙状态,由负责本次数据传输的主从设备独占,其他I2C器件无法访问总线;而在停止条件产生后,本次数据传输的主从设备将释放总线,总线再次处于空闲状态。

I2C 总线通信协议 (2)

数据的传输

- 设备间以 SCL 线上的每个时钟脉冲周期为单位在 SDA 线上按 bit 传输数据。
- 数据传输以字节为单位,高位优先发送;发送方传输完一个字节后,接收方拉低
 SDA线,在总线上产生一个 bit 的 ACK 信号表示正确应答,此时才认为一个字节真正的被传输完成;如果接收方不执行拉低
 SDA线的操作,即总线上产生的是一个bit 的 NACK 信号,则表示接受方返回错误或者无响应。
- 主设备在发起传输有效数据之前要先指定从设备的地址,大多数从设备的地址是7位的,协议规定再给地址添加一个最低位用来表示接下来数据传输的方向,0表示主设备向从设备写数据,1表示主设备向从设备读数据。

I2C 总线通信协议 (3)

SCAS 中国科学院软件研究所 Institute of Software Chinese Academy of Sciences Intelligent Soft

一个完整的真实例子

- 1. 由主机发起,在SCL为高电平时,SDA 由高到低切变,形成开始信号;
- 2.接着是7位地址和1位读写标志,这里7位地址为0111100,即0x3c;最后一位为0表示写操作;
- 3.接着在下一个时钟,主机以高电平状态 释放 SDA,这时从机响应,将 SDA 拉低 表示 ACK;
- 4. 接着是两个 8 位数据 00101110 与响应,即0x2E;
- 5. 其它数据和最后的停止位,图中被截掉了。

树莓派 I2C 接口 (1)

与 I2C 有关的引脚

There are three BSC masters inside BCM. The register addresses starts from

BSC0: 0x7E20_5000
BSC1: 0x7E80_4000
BSC2: 0x7E80_5000

	Pull	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
GPIO0	High	SDA0	SA5	<reserved></reserved>			7.
GPIO1	High	SCL0	SA4	<reserved></reserved>			
GPIO2	High	SDA1	SA3	<reserved></reserved>			60
GPIO3	High	SCL1	SA2	<reserved></reserved>		1	6)
0004	1 15 - 1-	ODOLIZA	014				ADM TO
GPIO28	2	SDA0	SA5	PCM_CLK	<reserved></reserved>		
GPIO29	51	SCL0	SA4	PCM_FS	<reserved></reserved>		
ODIOM	Lau	roomed 1	CAO	DOM DIN	отол		ATAL
GPIO44	N N	GPCLK1	SDA0	SDA1	<reserved></reserved>	SPI2_CE1_N	
GPIO45	-	PWM1	SCL0	SCL1	<reserved></reserved>	SPI2 CE2 N	

树莓派 I2C 接口 (2)

与 I2C 有关的寄存器

I2C Address Map						
Address Offset	Register Name	Description	Size			
0x0	<u>C</u>	Control	32			
0x4	<u>s</u>	Status	32			
0x8	DLEN	Data Length	32			
0xc	A	Slave Address	32			
0x10	FIFO	Data FIFO	32			
0x14	DIV	Clock Divider	32			
0x18	DEL	Data Delay	32			
0x1c	CLKT	Clock Stretch Timeout	32			

谢谢

欢迎交流合作