Introducción al aprendizaje automático

•••

#2. Modelos probabilísticos y no paramétricos

Regresión

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i, y_i)\}_{i=1}^N = \{(x_1, y_1), \cdots, (x_N, y_N)\}$$

 El problema de regresión consiste en estimar f(x) a partir de estos datos

Regresión polinomial

- En verde se ilustra la función "verdadera" (inaccesible)
- Las muestras son uniformes en x y poseen ruido en y
- Utilizaremos una <u>función de costo</u> (error cuadrático)
 que mida el error en la predicción de y mediante f(x)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Regresión polinomial. Solución por MV

Distribución gaussiana

$$\mathcal{N}(x|\mu,\sigma^2)$$

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} exp \left\{ -\frac{1}{2\sigma^2} (x-\mu)^2 \right\}$$

- Siempre positiva, integra a 1
- precisión $\beta = 1/\sigma^2$
- valor esperado $\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x \, dx = \mu$
- varianza $var[x] = \mathbb{E}[x^2] \mathbb{E}[x]^2 = \sigma^2$

Máxima verosimilitud (MV)

- Muestras iid
- Función de verosimilitud $p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$
- Logaritmo de la función de verosimilitud $\ln p(\mathbf{x}|\mu,\sigma^2) = -\frac{1}{2\sigma^2}\sum_{n=1}^N(x_n-\sigma)^2 \frac{N}{2}\ln\sigma^2 \frac{N}{2}\ln(2\pi)$
- Media muestral por MV $\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$
- Varianza muestral por MV $\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n \mu_{ML})^2$

Revisando el ajuste de curvas

• Objetivo: predecir valores de salida t para nuevas entradas x, en base a un conjunto de pares de entrenamiento $(x_1,t_1), \ldots, (x_N,t_N)$.

 Para capturar la incertidumbre sobre los valores de salida, podemos asumir que, dado un x, el valor de t se genera a partir de una gaussiana de media y(x; w) (la curva polinomial)

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

Probabilidades bayesianas

- Conocimiento "a priori" sobre los parámetros en p(w) (prior)
- Efecto de las observaciones $D=\{t_1, \dots t_N\}$ en el proceso de inferencia sobre w se expresa mediante p(w|D) (likelihood)
- La incertidumbre sobre w después de observar D (posterior)

$$p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D})}$$
posterior \propto likelihood \times prior

• El denominador p(D) es un factor de normalización

Revisando el ajuste de curvas

• Entrenamiento por MV, asumiendo muestras iid y distribución $p(t|x,w,\beta)$:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}, \beta^{-1})\right)$$

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln (2\pi)$$

 La solución por MV, después de notar que los últimos dos términos no dependen de w y que β es un factor de escala, se obtiene de forma equivalente minimizando el error cuadrático medio:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(n_n, \mathbf{w}) - t_n)^2$$

Revisando el ajuste de curvas

También podemos utilizar MV para estimar β:

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \{ y(x_n, \mathbf{w}_{ML}) - t_n \}^2$$

 Con w y β podemos hacer predicciones sobre x mediante la "distribución predictiva"

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1})$$

Si consideramos un prior Gaussiano sobre w

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\right\}$$

Máximo a posteriori (MAP)

Posterior ∞ likelihood x prior

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

• Tomando el logaritmo de la función de verosimilitud de $p(w|x, t, \alpha, \beta)$ y considerando como antes sólo los términos que dependen de w

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

resulta en error cuadrático con regularización L, de parámetro $\lambda = \alpha/\beta$

Regresión logística

Clasificación basada en probabilidades

• Objetivo: dar la probabilidad de que una instancia x sea de una clase y, es decir, aprender p(y|x)

Recordar:

$$0 \le p(evento) \le 1$$

 $p(evento) + p(\neg evento) = 1$

Regresión lineal

- Función de predicción lineal $y = f_w(x) = \langle x, w \rangle = \sum_{k=1}^{\infty} x_k w_k$
- Función de costo: $L(w) = \sum_{i=1}^{N} (y^i \langle x^i, w \rangle)^2$
- Ecuaciones normales

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \mathbf{X} = \begin{bmatrix} x_1^1 & \dots & x_k^1 & \dots & x_K^1 \\ \vdots & & \vdots & & \\ x_1^N & \dots & x_k^N & \dots & x_K^N \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_k \\ \vdots \\ w_K \end{bmatrix}$$

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{w}$$

$$L(\mathbf{w}) = \mathbf{e}^T \mathbf{e}$$

$$L(\mathbf{w}) = \mathbf{e}^T \mathbf{e} + \lambda \mathbf{w}^T \mathbf{w} \longrightarrow \mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Error cuadrático en clasificación

- Es conveniente: mínimo global único y solución en forma cerrada
- Pero, ¿es una medida del error de clasificación? ¿es adecuada?

Error cuadrático en clasificación

$$y_{\pm} \in \{-1, 1\}$$

$$l(y, f(x)) = (y - f(x))^{2}$$

$$y^{2=1} = y^{2}(y - f(x))^{2}$$

$$= (y^{2} - yf(x))^{2}$$

$$y^{2=1} = (1 - yf(x))^{2}$$

- No es robusta frente a outliers
- Penaliza predicciones que son buenas

Regresión logística

- Aproximación probabilística al problema de clasificación
- La función de predicción $h_w(x)$ debe dar una aproximación de p(y=1|x,w)
- $0 \le h_w(x) \le 1$

$$h_w(x) = g(w^T x) = \frac{1}{1 + \exp(-w^x)}$$

WARNING: draft mode begins

Interpretation of Hypothesis Output

$$h_{\boldsymbol{\theta}}(\boldsymbol{x})$$
 = estimated $p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Example: Cancer diagnosis from tumor size

$$\boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Note that: $p(y = 0 | x; \theta) + p(y = 1 | x; \theta) = 1$

Therefore, $p(y = 0 | x; \theta) = 1 - p(y = 1 | x; \theta)$

Another Interpretation

Equivalently, logistic regression assumes that

$$\log \underbrace{\frac{p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})}{p(y=0 \mid \boldsymbol{x}; \boldsymbol{\theta})}}_{\text{odds of y = 1}} = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d$$

Measure	Min	Max	Name
Pr(Y = 1)	0	1	"probability"
$\frac{\Pr(Y=1)}{1-\Pr(Y=1)}$	0	~	"odds"
$\log\left(\frac{\Pr(Y=1)}{1-\Pr(Y=1)}\right)$	-∞	∞	"log-odds" or "logit"

Side Note: the odds in favor of an event is the quantity p/(1-p), where p is the probability of the event

E.g., If I toss a fair dice, what are the odds that I will have a 6?

• In other words, logistic regression assumes that the log odds is a linear function of $oldsymbol{x}$

Logistic Regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g\left(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}\right)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\theta^{\mathsf{T}}\boldsymbol{x} \text{ should be large } \underbrace{\begin{array}{c} 0.5 \\ \text{positive} \\ \text{values for negative instances} \end{array}}_{\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}} \text{ should be large } \underbrace{\begin{array}{c} 0.5 \\ \text{positive} \\ \text{values for positive instances} \end{array}}_{\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}} \text{ should be large } \underbrace{\begin{array}{c} 0.5 \\ \text{positive} \\ \text{values for positive instances} \end{array}}_{\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}} \text{ should be large } \underbrace{\begin{array}{c} 0.5 \\ \text{positive} \\ \text{values for positive instances} \end{array}}_{\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}} \text{ should be large } \underbrace{\begin{array}{c} 0.5 \\ \text{positive} \\ \text{values for positive instances} \end{array}}_{\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}} \text{ should be large } \underbrace{\begin{array}{c} 0.5 \\ \text{positive} \\ \text{values for positive instances} \end{array}}_{\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}} \text{ should be large } \underbrace{\begin{array}{c} 0.5 \\ \text{positive} \\ \text{p$$

- Assume a threshold and...
 - Predict y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict y = 0 if $h_{\theta}(x) < 0.5$

Logistic Regression

• Given $\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots, \left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^d, \ y^{(i)} \in \{0, 1\}$

Model:
$$h_{\boldsymbol{\rho}}(\boldsymbol{x}) = a(\boldsymbol{\theta}^{\intercal}\boldsymbol{x})$$

• Model:
$$h_{m{ heta}}(m{x}) = g\left(m{ heta}^{\intercal}m{x}
ight)$$

$$g(z) = \frac{1}{1+e^{-z}}$$

Logistic Regression Objective Function

Can't just use squared loss as in linear regression:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

Using the logistic regression model

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

results in a non-convex optimization

A probabilistic criterion for training a classifier

Training set: $\{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}, \mathbf{x} \in \mathbb{R}^M, y \in \{0, 1\}$

y: discrete observations: model as samples from Bernoulli distribution

$$P(y = 1|\mathbf{x}, \mathbf{w}) = f(\mathbf{x}, \mathbf{w})$$

$$P(y = 0|\mathbf{x}, \mathbf{w}) = 1 - f(\mathbf{x}, \mathbf{w})$$

$$P(y|\mathbf{x}) = (f(\mathbf{x}, \mathbf{w}))^y (1 - f(\mathbf{x}, \mathbf{w}))^{1-y}$$

Find w that maximizes the likelihood of labels in the training set

$$-L(\mathbf{w}) = C(\mathbf{w}) = \log P(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \sum_{i=1}^{N} \log P(y^i|\mathbf{x}^i, \mathbf{w})$$
$$= \sum_{i} y^i \log f(\mathbf{x}^i, \mathbf{w}) + (1 - y^i) \log(1 - f(\mathbf{x}^i, \mathbf{w}))$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

Cost of a single instance:

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

Can re-write objective function as

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \operatorname{cost}\left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)}\right)$$

Compare to linear regression:
$$J(\pmb{\theta}) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\pmb{\theta}} \left(\pmb{x}^{(i)} \right) - y^{(i)} \right)^2$$

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If y = 1

- Cost = 0 if prediction is correct
- As $h_{\theta}(\boldsymbol{x}) \to 0, \cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{\theta}(x) = 0$, but y = 1

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\theta}(\boldsymbol{x})) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties

Regularized Logistic Regression

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

• We can regularize logistic regression exactly as before:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \sum_{j=1}^d \theta_j^2$$

$$= J(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

$$[1:d] => \text{exclude the bias!}$$

$$\theta^* = \arg\min_{\theta} J(\theta)$$

Logistic vs Linear Regression

Problemas multiclase

Multi-Class Classification

Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

Multi-Class Logistic Regression

For 2 classes:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})} = \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to y = 0}} \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to y = 1}}$$

• For C classes {1, ..., C}:

$$p(y = c \mid \boldsymbol{x}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_C) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

Called the softmax function

Implementing Multi-Class Logistic Regression

• Use
$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$
 as the model for class c

- Gradient descent simultaneously updates all parameters for all models
 - Same derivative as before, just with the above $h_c(\mathbf{x})$
- Predict class label as the most probable label

$$\max_{c} h_c(\boldsymbol{x})$$

What is multiclass classification?

- · An input can belong to one of K classes
- Training data: Input associated with class label (a number from 1 to K)
- Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less.

- Otherwise, the problem is not multiclass classification
- If an input can be assigned multiple labels (think tags for emails rather than folders), it is called multi-label classification

Binary to multiclass

- Can we use a binary classifier to construct a multiclass classifier?
 - Decompose the prediction into multiple binary decisions

- How to decompose?
 - One-vs-all
 - All-vs-all
 - Error correcting codes

1. One-vs-all classification

Assumption: Each class individually separable from all the others

- Learning: Given a dataset $D = \{(x_i, y_i)\}$ $x \in \mathbb{R}^n$ $y \in \{1, 2, \dots, K\}$
 - Decompose into K binary classification tasks
 - For class k, construct a binary classification task as:
 - Positive examples: Elements of D with label k
 - Negative examples: All other elements of D
 - Train K binary classifiers \mathbf{w}_1 , \mathbf{w}_2 , \cdots \mathbf{w}_K using any learning algorithm we have seen

1. One-vs-all classification

Assumption: Each class individually separable from all the others

• Learning: Given a dataset
$$D = \{(x_i, y_i)\}$$

$$x \in \mathbb{R}^n$$

$$y \in \{1, 2, \dots, K\}$$

- Train K binary classifiers \mathbf{w}_1 , \mathbf{w}_2 , \cdots \mathbf{w}_K using any learning algorithm we have seen
- Prediction: "Winner Takes All" argmax_i w_i^Tx

Visualizing One-vs-all

One-vs-all may not always work

Black points are not separable with a single binary classifier

The decomposition will not work for these cases!

w_{green}^Tx > 0 for green inputs

???

2. All-vs-all classification

Sometimes called one-vs-one

Assumption: Every pair of classes is separable

- Learning: Given a dataset $D = \{(x_i, y_i)\}, \quad y \in \{1, 2, \dots, K\}$
 - For every pair of labels (j, k), create a binary classifier with:
 - Positive examples: All examples with label j
 - Negative examples: All examples with label k
 - Train $\binom{K}{2} = \frac{K(K-1)}{2}$ classifiers to separate every pair of labels from each other

2. All-vs-all classification

Sometimes called one-vs-one

- Assumption: Every pair of classes is separable
- Learning: Given a dataset $D = \{(x_i, y_i)\}, \quad \substack{x \in \mathbb{R}^n \\ y \in \{1, 2, \dots, K\}}$
 - Train $\binom{K}{2} = \frac{K(K-1)}{2}$ classifiers to separate every pair of labels from each other
- Prediction: More complex, each label get K-1 votes
 - How to combine the votes? Many methods
 - Majority: Pick the label with maximum votes
 - · Organize a tournament between the labels

All-vs-all classification

- Every pair of labels is linearly separable here
 - When a pair of labels is considered, all others are ignored

Problems

- 1. O(K²) weight vectors to train and store
- 2. Size of training set for a pair of labels could be very small, leading to overfitting of the binary classifiers
- 3. Prediction is often ad-hoc and might be unstable

 Eg: What if two classes get the same number of votes? For a tournament, what is the sequence in which the labels compete?

Modelos no paramétricos: vecinos más cercanos

Classification

Suppose we are given a training set of N observations

$$(x_1,\ldots,x_N)$$
 and $(y_1,\ldots,y_N), x_i\in\mathbb{R}^d, y_i\in\{-1,1\}$

• Classification problem is to estimate f(x) from this data such that

$$f(x_i) = y_i$$

K Nearest Neighbour (K-NN) Classifier

Algorithm

- For each test point, x, to be classified, find the K nearest samples in the training data
- Classify the point, x, according to the majority vote of their class labels

e.g.
$$K = 3$$

 applicable to multi-class case

Voronoi diagram:

- · partitions the space into regions
- boundaries are equal distance from training points

Classification boundary:

• non-linear

A sampling assumption: training and test data

- Assume that the training examples are drawn independently from the set of all possible examples.
- This makes it very unlikely that a strong regularity in the training data will be absent in the test data.

Generalization

- The real aim of supervised learning is to do well on test data that is not known during learning
- Choosing the values for the parameters that minimize the loss function on the training data is not necessarily the best policy
- We want the learning machine to model the true regularities in the data and to ignore the noise in the data.

Properties and training

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation

- Split training data into training and validation
- Hold out validation data and measure error on this

Summary

Advantages:

- K-NN is a simple but effective classification procedure
- Applies to multi-class classification
- Decision surfaces are non-linear
- Quality of predictions automatically improves with more training data
- Only a single parameter, K; easily tuned by cross-validation

Summary

Disadvantages:

- What does nearest mean? Need to specify a distance metric.
- Computational cost: must store and search through the entire training set at test time. Can alleviate this problem by thinning, and use of efficient data structures like KD trees.

Problemas multiclase (opcional)

3. Error correcting output codes (ECOC)

- · Each binary classifier provides one bit of information
- With K labels, we only need log₂K bits
 - One-vs-all uses K bits (one per classifier)
 - All-vs-all uses O(K2) bits
- Can we get by with O(log K) classifiers?
 - Yes! Encode each label as a binary string
 - Or alternatively, if we do train more than O(log K) classifiers, can we use the redundancy to improve classification accuracy?

Using log₂K classifiers

Learning:

- Represent each label by a bit string
- Train one binary classifier for each bit

	23			
abel#	Code			
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

8 classes, code-length = 3

• Prediction:

- Use the predictions from all the classifiers to create a log₂N bit string that uniquely decides the output
- What could go wrong here?
 - Even if one of the classifiers makes a mistake, final prediction is wrong!

Error correcting output coding

Answer: Use redundancy

- Assign a binary string with each label
 - Could be random
 - Length of the code word L >= log₂K is a parameter

#	Code						
0	0	0	0	0	0		
1	0	0	1	1	0		
2	0	1	0	1	1		
3	0	1	1	0	1		
4	1	0	0	1	1		
5	1	0	1	0	0		
6	1	1	0	0	0		
7	1	1	1	1	1		

8 classes, code-length = 5

• Train one binary classifier for each bit

- Effectively, split the data into random dichotomies
- We need only log₂K bits
- Additional bits act as an error correcting code
- One-vs-all is a special case.
 - How?

How to predict?

Prediction

- Run all L binary classifiers on the example
- Gives us a predicted bit string of length L
- Output = label whose code word is "closest" to the prediction
- Closest defined using Hamming distance
 - · Longer code length is better, better error-correction

#	Code					
0	0	0	0	0	0	
1	0	0	1	1	0	
2	0	1	0	1	1	
3	0	1	1	0	1	
4	1	0	0	1	1	
5	1	0	1	0	0	
6	1	1	0	0	0	
7	1	1	1	1	1	

8 classes, code-length = 5

Example

- Suppose the binary classifiers here predict 11010
- The closest label to this is 6, with code word 11000

Error correcting codes: Discussion

- Assumes that columns are independent
 - Otherwise, ineffective encoding
- · Strong theoretical results that depend on code length
 - If minimal Hamming distance between two rows is d, then the prediction can correct up to (d-1)/2 errors in the binary predictions
- Code assignment could be random, or designed for the dataset/task
- One-vs-all and all-vs-all are special cases
 - All-vs-all needs a ternary code (not binary)