CSE 152A: Computer Vision

Manmohan Chandraker

Lecture 16: Regularization

Overall goals for the course

- Introduce fundamental concepts in computer vision
- Enable one or all of several such outcomes
 - Pursue higher studies in computer vision
 - Join industry to do cutting-edge work in computer vision
 - Gain appreciation of modern computer vision technologies
- Engage in discussions and interaction
- This is a great time to study computer vision!

Course Details

Course details

- Class webpage:
 - https://cseweb.ucsd.edu/~mkchandraker/classes/CSE152A/Winter2024/
- Instructor email:
 - mkchandraker@ucsd.edu
- Grading
 - 35% final exam
 - 40% homework assignments
 - 20% mid-term
 - 5% self-study exercise
 - Ungraded quizzes
- Aim is to learn together, discuss and have fun!

Course details

- TAs
 - Nicholas Chua: nchua@ucsd.edu
 - Tarun Kalluri: <u>sskallur@ucsd.edu</u>
 - Sreyas Ravichandran: srravichandran@ucsd.edu
- Tutors
 - Kun Wang, Kevin Chan, Zixian Wang: <u>kuw010</u>, tsc003, <a href="mailto:ziw081)@ucsd.edu
- Discussion section: M 3-3:50pm
- TA office hours and tutor hours to be posted on webpage
- Piazza for questions and discussions:
 - https://piazza.com/ucsd/winter2024/cse152a

Self-Study Assignment

- We have 39 submissions
- Students and instructors will vote for the top-5 studies by Mar 10
 - Top-5 studies presented in-class by the teams during Mar 15 lecture
- Anonymized submissions are available on Google drive:
 - https://drive.google.com/drive/u/1/folders/104WRTi23jY0nh2mli0PpTaUzrxOcSJno
- Voting form is available here:
 - https://forms.gle/e1jrJfF3dKFYWCdY9
- Criteria you might consider for voting:
 - Depth and correctness of analysis
 - Aesthetics and quality of presentation
 - Whether you find the presentation interesting

Recap

Learning a Hierarchy of Feature Extractors

- Hierarchical and expressive feature representations
- Trained end-to-end, rather than hand-crafted for each task
- Remarkable in transferring knowledge across tasks

Two-layer perceptron network

Learning weights: Gradient descent

Update rules for each parameter:

$$egin{align} w_k
ightarrow w_k' &= w_k - \eta rac{\partial C}{\partial w_k} \ b_l
ightarrow b_l' &= b_l - \eta rac{\partial C}{\partial b_l} \ \end{pmatrix}$$

$$\Delta C pprox rac{\partial C}{\partial v_1} \Delta v_1 + rac{\partial C}{\partial v_2} \Delta v_2$$

Small changes in parameters to leads to small changes in output

$$\Delta C pprox \nabla C \cdot \Delta v$$

$$abla C \equiv \left(rac{\partial C}{\partial v_1},rac{\partial C}{\partial v_2}
ight)^T$$

Gradient vector!

$$\Delta v = -\eta
abla C$$

 $\Delta v = -\eta
abla C$ Change the parameter using learning rate (positive) and gradient vector!

$$v
ightarrow v' = v - \eta
abla C$$
 Update rule!

Stochastic gradient descent

Gradient from entire training set:

$$\nabla C = \frac{1}{n} \sum_{x} \nabla C_{x}$$

- For large training data, gradient computation takes a long time
 - Leads to "slow learning"
- Instead, consider a mini-batch with m samples
- If sample size is large enough, properties approximate the dataset

$$rac{\sum_{j=1}^{m}
abla C_{X_j}}{m} pprox rac{\sum_{x}
abla C_x}{n} =
abla C.$$

Overcoming issues: SGD with momentum

Momentum update:

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

SGD+Momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Build up velocity as a running mean of gradients.

Backpropagation

• In order to differentiate a function z = f(g(x)) w.r.t x, we can do the following:

Let
$$y = g(x)$$
, $z = f(y)$, $\frac{dz}{dx} = \frac{dz}{dy} \times \frac{dy}{dx}$

Let $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, g maps from \mathbb{R}^m to \mathbb{R}^n , and f maps from \mathbb{R}^n to \mathbb{R} . If y = g(x) and z = f(y), then

$$\frac{\partial z}{\partial x_i} = \sum_{k} \frac{\partial z}{\partial y_k} \frac{\partial y_k}{\partial x_i}$$

This is all you need to know to get the gradients in a neural network!

Backpropagation: application of chain rule in a certain order, taking advantage of forward propagation to efficiently compute gradients.

2D feature map (obtained by sliding k' x k' x c filter all across the input)

Next convolutional layer has c' channels, where each channel is a 2D feature map arising from convolutions of the input 3D volume with a k'x k'x c filter

CSE 152A, WI24: Manmohan Chandraker

Slide: Lazebnik

Pooling operations

Aggregate multiple values into a single value

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Receptive fields in CNNs

- The area in the input image "seen" by a unit in a CNN
- Units in deeper layers will have wider receptive fields
- Wider receptive fields allow more global reasoning across entire image
- Pooling leads to more rapid widening of receptive fields

[Christian Perone]

[Tang et al., 2022]

1 x 1 convolutions

1 x 1 convolution layers also possible, equivalent to a dot product.

Types of Neural Networks

Neural Network

Convolutional Neural Network

Setting up the loss function

Setting up the loss function

Softmax: maps the network outputs to probabilities

Convolutional Neural Networks

Key operations in a CNN

CSE 152A, WI24: Manmohan Chandraker

Source: R. Fergus, Y. LeCun

Key operations in a CNN

Rectified Linear Unit (ReLU)

Source: R. Fergus, Y. LeCun

CSE 152A, WI24: Manmohan Chandraker

Key operations in a CNN

Source: R. Fergus, Y. LeCun

CSE 152A, WI24: Manmohan Chandraker

Transfer Learning in CNNs

Transfer Learning

- Assume two datasets, T and S
- Dataset S is
 - fully annotated, plenty of images
 - ullet We can build a model $h_{\mathcal{S}}$
- Dataset T is
 - Not as much annotated, or much fewer images
 - \circ The annotations of T do not need to overlap with S
- \circ We can use the model $h_{\mathcal{S}}$ to learn a better h_{T}
- This is called transfer learning

My dataset: 1,000

 h_A

Fine-tune h_T using h_S as initialization

- Even if our dataset T is not large, we can train a CNN for it
- Pre-train a network on the dataset S

Fine-tune h_T using h_S as initialization

- Even if our dataset T is not large, we can train a CNN for it
- Pre-train a network on the dataset S
- Assume the parameters of S are already a good start near our final local optimum
- Use them as the initial parameters for our new CNN for the target dataset

$$\theta_{\mathrm{T},\,l}^{(t=0)} = \theta_{\mathrm{S},\,l}$$
 for some layers $l=1,2,...$

Fine-tune h_T using h_S as initialization

- Even if our dataset T is not large, we can train a CNN for it
- Pre-train a network on the dataset S
- Assume the parameters of S are already a good start near our final local optimum
- Use them as the initial parameters for our new CNN for the target dataset

$$\theta_{\mathrm{T},\,l}^{(t=0)} = \theta_{\mathrm{S},\,l}$$
 for some layers $l=1,2,...$

- This is a good solution when the dataset T is relatively big
 - \circ E.g. for Imagenet S with approximately 1 million images
 - For a dataset T with more than a few thousand images should be ok
- What layers to initialize and how?

- Classifier layer to loss
 - The loss layer essentially is the "classifier"
 - ullet Same labels ullet keep the weights from $h_{\mathcal{S}}$
 - Different labels → delete the layer and start over
 - When too few data, fine-tune only this layer

Classifier layer fc8

Fully connected layer fc7

Fully connected layer fc6

Convolutional Layer 5

Convolutional Layer 4

Convolutional Layer 3

Convolutional Layer 2

Convolutional Layer 1

- Classifier layer to loss
 - The loss layer essentially is the "classifier"
 - ullet Same labels ullet keep the weights from $h_{\mathcal{S}}$
 - Different labels
 delete the layer and start over
 - When too few data, fine-tune only this layer
- Fully connected layers
 - Very important for fine-tuning
 - Sometimes you need to completely delete the last before the classification layer if datasets are very different
 - Capture more semantic, "specific" information
 - Always try first when fine-tuning
 - If you have more data, fine-tune also these layers

Classifier layer fc8

Fully connected layer fc7

Fully connected layer fc6

Convolutional Layer 5

Convolutional Layer 4

Convolutional Layer 3

Convolutional Layer 2

Convolutional Layer 1

- Upper convolutional layers (conv4, conv5)
 - Mid-level spatial features (face, wheel detectors ...)
 - Can be different from dataset to dataset
 - Capture more generic information
 - Fine-tuning pays off
 - Fine-tune if dataset is big enough

Classifier layer fc8

Fully connected layer fc7

Fully connected layer fc6

Convolutional Layer 5

Convolutional Layer 4

Convolutional Layer 3

Convolutional Layer 2

Convolutional Layer 1

Classifier layer fc8 Upper convolutional layers (conv4, conv5) Mid-level spatial features (face, wheel detectors ...) Fully connected layer fc7 Can be different from dataset to dataset Capture more generic information Fully connected layer fc6 Fine-tuning pays off Convolutional Layer 5 Fine-tune if dataset is big enough Convolutional Layer 4 Lower convolutional layers (conv1, conv2) They capture low level information Convolutional Layer 3 This information does not change usually Convolutional Layer 2 Probably, no need to fine-tune but no harm trying Convolutional Layer 1

Strategy for fine-tuning

Amount of data needed

- \circ For layers initialized from $h_{\mathcal{S}}$ use a mild learning rate
 - · Remember: your network is already close to a near optimum
 - · If too aggressive, learning might diverge
 - A learning rate of 0.001 is a good starting choice (assuming 0.01 was the original learning rate)
- For completely new layers (e.g. loss) use aggressive learning rate
 - · If too small, the training will converge very slowly
 - Remember: the rest of the network is near a solution, this layer is very far from one
 - · A learning rate of 0.01 is a good starting choice
- If datasets are very similar, fine-tune only fully connected layers
- If datasets are different and you have enough data, fine-tune all layers

Transfer learning is a common choice

Girshick, "Fast R-CNN", ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Over-Fitting and Regularization

Cost function for training

- The network tries to approximate the function y(x) and its output is a
- We use a quadratic cost function, or MSE, or "L2-loss".

CSE 152A, WI24: Manmohan Chandraker

Over-fitting

 Instead of 60000 training images, we use only 1000 training images and check the performance on the test data.

Over-fitting

 Instead of 60000 training images, we use only 1000 training images and check the performance on the test data.

- More data might prevent over-fitting
- But not always feasible to have more data that is relevant.

Regularization reduces over-fitting

- If not enough data, can instead limit model complexity.
- Regularization places constraints on the model, so reduces its complexity.

L2 regularization

L2 regularization:

Let C_0 be original cost. Define $C = C_0 + \frac{\lambda}{2n} \sum_{w} w^2$

- The first term is just the usual $C_o \equiv \frac{1}{2n} \sum_{n=1}^{\infty} \|y(x) a\|^2$
- Here λ is the regularization parameter and n is the size of our training set.

Partial derivatives:

$$\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \frac{\lambda}{n} w$$

Update rule:

$$W \to W - \frac{\eta \partial C_0}{\partial w} - \frac{\eta \lambda}{n} W$$

CSE 152A, WI24: Manmohan Chandraker

L1 regularization

L1 regularization:

$$C = C_o + \frac{\lambda}{n} \sum_{w} |w|$$

The first term is just the usual $C_o \equiv \frac{1}{2n} \sum_{n=1}^{\infty} \|y(x) - a\|^2$

Partial derivatives:

$$\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \frac{\lambda}{n} sgn(w)$$

Update rule:

$$w \to w - \frac{\eta \partial C_0}{\partial w} - \frac{\eta \lambda}{n} sgn(w)$$
CSE 152A, WI24: Manmohan Chandraker

L2 or L1 regularization

- In L1 case, the weights shrink by a constant amount towards 0.
- In L2 case, the weights shrink by an amount that is proportional to w.
- When the weight has a large magnitude |w|, then the L1 regularization shrinks less than the L2.
- When the weight has a small magnitude |w|, then the L1 regularization shrinks more than the L2.
- The net result is that the L1 regularization focuses on the weights of a few important connections and the rest are driven to zero.

Regularization reduces over-fitting

Dropout as a regularization

- Modify the network itself
 - Randomly delete half the hidden neurons in the network
 - Repeat several times to learn weights and biases
 - At runtime, twice as many neurons, so halve the weights outgoing from a neuron

Dropout as a regularization

- Averaging or voting scheme to decide output
 - Forces neurons to learn independent of others
 - Same training data, but random initializations
 - Each network over-fits in a different way
 - Robustness: average output not sensitive to particular mode

Horizontal flips

Random crops and scales

- Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Color jitter

Simple: Randomize contrast and brightness

Color jitter

Simple: Randomize contrast and brightness

Can do a lot more: rotation, shear, non-rigid, motion blur, lens distortions,