SAS® GLOBAL FORUM 2017

April 2 - 5 | Orlando, FL

Presenter

Paul Edwards, Senior Manager, Risk Models, Scotiabank

Paul Edwards is a senior manager on the Canadian Retail Models & Analytics team. Paul has worked in the financial sector since 2013 holding roles in risk modeling and fraud analytics. Paul has used SAS for 3 years.

Boosting for Credit Scorecards and Similarity to WOE Logistic Regression

Objectives

- The need for transparency in models
- The desire for machine learning
- Consumer risk models
 - Scorecards
 - Weight-of-evidence (WOE) Regression
- Boosting
 - How it works
 - Highlights of boosting
 - How it is similar to WOE techniques
- Real AdaBoost macro
 - Example

Transparency

- Modeling has undergone a renaissance
 - New machine learning algorithms
 - Powerful computers
 - Data-driven decision making has lead to large profits¹

- Modeling departments at Financial Institutions are at a crossroads
 - Executives want some of the famed value of advanced methods
 - Others want models that are easy to understand & use
 - Regulators & auditors
 - Front line staff
 - Implementation teams (IT)

Consumer Risk Models

Introduction

- Risk modelers have developed methodology that is easy to implement and effective
 - The methodology is based on decision trees and regression
- Characteristics are binned and each bin receives a score proportional to risk

Characteristic	Bin	Score points
	No past loan delinquency	21
Past loan delinquency	One past loan delinquency event	5
	More than one past loan delinquency event	0
Credit utilization	Low credit utilization (<30%)	25
	Medium credit utilization (30-80%)	10
	High credit utilization (>80%)	0

Consumer Risk Models

Scorecards

- This makes the models easy to understand, communicate and implement
- An applicant falls into just one bin per characteristic
 - The applicants gets one score from each characteristic. Total score is summed
 - Applicant proceeds down scorecard summing up a final score

Characteristic	Bin	Score points
	No past loan delinquency	21
Past loan delinquency	One past loan delinquency event	5
	More than one past loan delinquency event	0
Credit utilization	Low credit utilization (<30%)	25
	Medium credit utilization (30-80%)	10
	High credit utilization (>80%)	0

Consumer Risk Models

Building Scorecards

The bins for each characteristic are determined by a decision tree

Characteristic	Bin	Score points
	No past loan delinquency	21
Past loan delinquency	One past loan delinquency event	5
	More than one past loan delinquency event	0
	Low credit utilization (<30%)	25
Credit utilization	Medium credit utilization (30-80%)	10
	High credit utilization (>80%)	0

The scorecard add the contributions from each tree

Building Trees for Scorecard

- 1. Gather (binary) training data
 - $Y \in \{0,1\}$: your target variable. In consumer risk, Y=1 indicates an applicant will become delinquent
 - $x: \{x_1, x_2, ..., x_i\}$: predictor variables (characteristics; e.g. credit utilization)

Applicant	Υ	x ₁	x ₂	 X _j
111	0	0.1	Α	•
112	1	0.9	Α	1
113	0	0.0	В	6

Building Trees for Scorecard

- 2. Build a decision tree, splitting x_i into uniforms bins of Y
 - As an illustration, say x_1 is credit utilization

Building Trees for Scorecard

Weight-of-evidence

- 3. Standardize the avg(Y) in each bin using "weight-of-evidence" (WOE)
 - WOE is measures the "purity" of Y in the bin. A bin with most Y=0 events has large value

General equations

For credit utilization bin 1

Credit utilization <30%

1: 20 (1%)

0: 1980 (99%)

N: 2000

WOE: 0.61

$F_{G,j}(k) = \frac{N_{j,k}^{Y=0}}{N_k^{Y=0}}$ $F_{B,j}(k) = \frac{N_{j,k}^{Y=1}}{N_k^{Y=1}}$

WOE_{j,k} =
$$\log \left(\frac{F_{G,j}(k)}{F_{B,j}(k)} \right)$$

$$F_{G,1}(1) = \frac{1980}{9600}$$

$$F_{B,1}(1) = \frac{20}{400}$$

WOE_{1,1} =
$$\log \left(\frac{F_{G,1}(1)}{F_{B,1}(1)} \right)$$

= 0.61

Building and Weighting Trees

Weight-of-evidence

- New function $W_i(x_i)$ sorts characteristic j into appropriate bin and outputs the WOE value of that bin
- Examples

•
$$W_1(x_1 = 40\%) = 0.06$$
 • $W_1(x_1 = 85\%) = -0.57$

•
$$W_1(x_1 = 85\%) = -0.57$$

• $W_1(x_1 = 90\%) = -0.57$

Weighting Trees

Logistic regression

Logistic regression

$$logit(P(Y = 1)) = \beta_0 + \sum_{j=1}^{M} \beta_j W_j(x_j)$$

- Recall $W_i(x_i)$ is a WOE tree: One term (one tree) per characteristic
- The β coefficients allow different contribution from each tree/characteristic
- Binning variables and standardizing with WOE allows
 - non-linear relationships to be modelled
 - categorical or missing data to be modelled naturally
- Non-linear version of logistic regression!

Link to Machine Learning

Weak learners

- The key to connecting WOE logistic regression with boosting methods is to understand that $W_i(x_i)$ is itself a predictive model of P(Y=1)
 - A "weak learner" in ML parlance

Υ	β_1	W ₁ (x ₁)	X ₁
?	0.55	-0.57	0.86
?	0.55	0.61	0.00
?	0.55	0.61	0.04

A record with a negative WOE is more likely Y=1

Link to Machine Learning

Weak learners

- Our confidence grows as we add trees
- Record 1 looks even more likely to be Y=1

Υ	β_1	W ₁ (x ₁)	x ₁	β_2	$W_2(x_2)$	x ₂
?	0.55	-0.57	0.86	0.65	-1.2	5
?	0.55	0.61	0.00	0.65	1.0	1
?	0.55	0.61	0.04	0.65	2.0	0

Link to Machine Learning

Strong learner

- All three trees agree that the first record is Y=1
 - The probability P(Y=1) is proportional to $\beta_1W_1(x_1)+\beta_2W_2(x_2)+\beta_3W_3(x_3)$

Υ	β_1	W ₁ (x ₁)	x_1	β ₂	$W_2(x_2)$	X ₂	β ₃	$W_3(x_3)$	X ₃
?	0.55	-0.57	0.86	0.65	-1.2	5	0.11	-0.2	5.5
?	0.55	0.61	0.00	0.65	1.0	1	0.11	0.4	-1.1
?	0.55	0.61	0.04	0.65	2.0	0	0.11	0.4	0.0

- · Adding weak learners to form a strong one is a motivating principle in ML
 - This is possibly why WOE regression works

- Real AdaBoost 1 add weak learner trees: $H_j(x_j)$ just like $W_j(x_j)$
- But Real AdaBoost builds trees stage wise,
 - 1. Build $H_1(x_1)$ (i.e., bin x_1 using a tree)
 - 2. Estimate residual $w = Y H_1(x_1)$
 - Build $H_2(x_2)$ weighted by residuals. Two (equivalent) ways to think about this:
 - Resample your training data, proportional to w, then build $H_2(x_2)$
 - The second tree tries hard to predict the difficult cases about which the previous tree was wrong
 - 4. Repeat
- H returns the weighted log odds of the bin, rather than the WOE of the bin

$$G(P(Y = 1)) = \sum_{j=1}^{M} H_j(x_j);$$
 $H_j(x_j) = \frac{1}{2} log \left(\frac{P_w(Y = 1|x_j)}{P_w(Y = 0|x_j)} \right)$

Highlights

- Adaptive binning "wrings out" any variance left in the model
 - SAS EM credit scoring add-on builds all WOE trees first, then does regression.
 - Minimizes multicolinearity & remove need for variable reduction
- Automatic, but modifiable
 - Real AdaBoost can automatically fit a model even automatically detecting variable interactions
 - A business partner may insist on a certain variable, which could be added at from of AdaBoost series
- Established technique
- No fitted Coefficients
 - No regression step. The authors prove that a β =1 coefficient will always minimizes error
- Scorecards
 - A Real AdaBoost model is a sum of a series of trees. The model can be expressed as a scorecard
- Extensible
 - Boosting (though not Real AdaBoost) can be done on non-binary targets

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

They wrote the book on machine learning!

USERS PROGRAM

SAS[®] GLOBAL FORUM 2017

Macro

A brief example of macro usage (synthetic data)

Original input data							
ID	COL1	COL2	COL3	COL4	COL5	DF	
1	1.241	1.617	-0.808	-1.286	-2.463	0	
2	-0.535	1.200	-0.969	-2.597	2.085	1	
3	-1.014	0.356	1.063	0.444	-0.006	1	
4	0.690	-0.357	0.708	-0.605	0.821	0	

Macro outputs

The scored data set

	Original input data							New columns				
ID	COL1	COL2	COL3	COL4	COL5	DF	f1	 f10	adascore	p_df1	p_df0	ada- predict_df
1	1.241	1.617	-0.808	-1.286	-2.463	0	0.143	-0.085	0.350	0.587	0.413	1
2	-0.535	1.200	-0.969	-2.597	2.085	1	0.143	0.038	0.495	0.621	0.379	1
3	-1.014	0.356	1.063	0.444	-0.006	1	0.024	0.038	0.431	0.606	0.394	1

Scorecard

LEAF	rule	score	ADATREENUMBER
1	;COL2<-0.99	-0.183	1
2	;COL2>=-0.99;COL2<-0.07	-0.059	1
3	;COL2>=-0.07;COL2<0.57	0.024	1
4	;COL2>=0.57	0.143	1

Macro outputs

- Graphical trees
 - A helper program included in macro can generate graphical trees

Tree #1 in Real AdaBoost model

Questions

• Thanks for your attention!

Contact	Try the macro
paul.edwards2@scotiabank.com	 The most up-to-date macro will always be on github*
Questions & comments welcome	 https://github.com/pedwardsada/real _adaboost

^{*} Pull requests are welcome! Submit your bugs and patches