GUIA FVM MECANICA COMPUTACIONAL INGENIERIA EN INFORMATICA

Norberto Marcelo Nigro ^{a,1} Gerardo Franck ^{a,2} Diego Sklar ^{a,3}

^a Facultad de Ingenieria y Ciencias Hidricas de la Universidad Nacional del Litoral (FICH-UNL), Ciudad Universitaria, 3000 Santa Fe, ARGENTINA

1 EJERCICIO 1

Resolver por el método de volúmenes finitos centrado en las celdas y en 1 dimension la ecuación

$$v\frac{d\varphi}{dx} = \frac{d}{dx}(\kappa \frac{d\varphi}{dx}) + f \qquad \forall x \in [0, 1]$$
 (1)

con $\kappa = 1$, f = 1, v = 100 y condiciones de contorno

$$\varphi(x=0) = 0$$

$$\frac{d\varphi}{dx}(x=1) = 1$$
(2)

Divida el dominio en 5 celdas de tamaño uniforme y muestre la ecuación a resolver para cada celda

- a) Usando un esquema centrado (CD)
- b) Usando un esquema upwind (UD)
- c) Compare las soluciones y justifique

¹ e-mail nnigro@intec.unl.edu.ar

² e-mail gerardofranck@yahoo.com.ar

³ e-mail diegosklar@gmail.com

Finalmente resuelva el sistema de ecuaciones y grafique la solución. Justifique el resultado.

2 EJERCICIO 2

Resolver el mismo problema anterior en forma no estacionaria usando un esquema tipo Crank-Nicholson con una condicion inicial $\varphi = 0 \ \forall x \in [0, 1]$.

- a) Muestre la solucion en 5 instantes de tiempo equiespaciados dentro del intervalo 0 < t < 0.01 segundos.
- b) Muestre la solución estacionaria del problema.

3 EJERCICIO 3

En el problema 1 cambie la condición de contorno Dirichlet del extremo ixquierdo por una condición mixta del tipo $\kappa \frac{d\varphi}{dx} + h(\varphi - \varphi_{\infty}) = 0$ donde como antes $\kappa = 1$ y ahora h = 1.

4 EJERCICIO 4

Generar una geometria en 2D como se muestra en la figura a continuación en GiD y exportarla a openFOAM para ser usada en la próxima guia cuando resolvamos problemas escalares en 2D. Muestre algunas imagenes de la geometría y de la malla obtenida. Utilice para los parámetros libres, X,Y,L,W,S,H valores que estén aproximadamente en escala con lo que aparece en la figura. Esos valores son de libre elección.

Fig. 1. Problema 1