```
In [53]:
          # data handeling libraries
          import pandas as pd
          import numpy as np
          from collections import OrderedDict
          # data visualisation libraries
          import matplotlib.pyplot as plt
          import seaborn as sns
          ## library to filter warnings
          import warnings
          warnings.filterwarnings ("ignore")
          ##preprocessing library
          from sklearn.preprocessing import StandardScaler
          from sklearn.decomposition import PCA
          ## model bulding libraries
          from sklearn.model_selection import train_test_split,cross_val_score,GridSearchCV,le
          ## model evaluation libraries
          from sklearn.metrics import r2_score, mean_squared_error
          ## machien learning model libraries
          from sklearn.linear model import LinearRegression,Lasso,Ridge
          from sklearn.tree import DecisionTreeRegressor
          from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor,GradientBoostin
          from sklearn.neighbors import KNeighborsRegressor
          from sklearn.svm import SVR
          import xgboost
          from xgboost import XGBRegressor
          ## importing clustering
          from sklearn.cluster import KMeans
In [2]:
          df = pd.read_excel("Capstone Project.xlsx")
          df.head()
```

Out[2]:		cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
	0	141.3	212.0	0.0	203.5	0.0	971.8	748.5	28	29.89
	1	168.9	42.2	124.3	158.3	10.8	1080.8	796.2	14	23.51
	2	250.0	0.0	95.7	187.4	5.5	956.9	861.2	28	29.22
	3	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28	45.85
	4	154.8	183.4	0.0	193.3	9.1	1047.4	696.7	28	18.29

```
In [3]:
          df.shape
```

(1030, 9)

Out[3]:

```
In [4]:
         def custom summary(df):
             result = []
             for col in df.columns:
                 if df[col].dtype != '0':
                      stats = OrderedDict ({
                          'Feature_Name' : col,
                          'Count':df[col].count(),
                          'Minimum':df[col].min(),
                          'Quarter 1':df[col].quantile(0.25),
                          "Mean":df[col].mean(),
                          'Median':df[col].median(),
                          'Quarter 3':df[col].quantile(0.75),
                          'Maximum':df[col].max(),
                          "Variance":df[col].var(),
                          'Standard Deviation':df[col].std(),
                          "Kurtosis":df[col].kurt(),
                          'Skewness':df[col].skew()
                          'IQR':df[col].quantile(0.75) - df[col].quantile(0.25)
                     })
                      result.append(stats)
             result = pd.DataFrame(result)
             ##skewness type
             skewtype =[]
             for i in result['Skewness']:
                 if i<=-1:
                      skewtype.append('Highly Negatively Skewed')
                 elif i<= -0.5:
                      skewtype.append('Moderately Negatively Skewed')
                 elif -0.5 < i < 0 :
                      skewtype.append('Approx Normal Distribution (-ve)')
                 elif 0 <= i < 0.5:
                      skewtype.append('Approx Normal Distribution (+ve)')
                 elif 0.5<= i < 1:
                      skewtype.append('Moderately Positively Skewed')
                 elif i >= 1:
                      skewtype.append('Highly Positively Skewed')
             result['Skew Type'] = skewtype
            ## Kurtosis Type
             k type = []
             for i in result['Kurtosis']:
                 if i <= -1:
                     k_type.append('Highly Platykurtic Curve')
                 elif -1 < i <= -0.5:
                     k type.append('Moderately Platykurtic Curve')
                 elif -0.5 < i <= 0.5:
                     k_type.append('Mesokurtic Curve')
                 elif 0.5<= i < 1:
                     k type.append('Moderately Leptokurtic Curve')
                 elif i >= 1:
                     k_type.append('Highly Leptokurtic Curve')
```

```
result['Kurtosis_Type'] = k_type

#Outlier detection

Upper_limit = stats['Quarter 3'] + 1.5*stats['IQR']

lower_limit = stats['Quarter 1'] -1.5*stats['IQR']

if len([x for x in df[col] if (x < lower_limit) or (x > Upper_limit)]) > 0:

    outlier_comment = 'has outliers'
    outlier_percentage = len([x for x in df[col] if (x < lower_limit) or (x > Up
else:
    outlier_comment = 'no outliers'
    outlier_percentage = 0

result['outlier_comment'] = outlier_comment

result['outlier_percentage'] = outlier_percentage

return result
```

In [5]:

custom_summary(df)

Out[5]:		Feature_Name	Count	Minimum	Quarter 1	Mean	Median	Quarter 3	Maximum	Varianc
	0	cement	1030	102.00	192.375	281.167864	272.900	350.000	540.0	10921.58022
	1	slag	1030	0.00	0.000	73.895825	22.000	142.950	359.4	7444.12481
	2	ash	1030	0.00	0.000	54.188350	0.000	118.300	200.1	4095.61654
	3	water	1030	121.80	164.900	181.567282	185.000	192.000	247.0	456.00265
	4	superplastic	1030	0.00	0.000	6.204660	6.400	10.200	32.2	35.68678
	5	coarseagg	1030	801.00	932.000	972.918932	968.000	1029.400	1145.0	6045.67735
	6	fineagg	1030	594.00	730.950	773.580485	779.500	824.000	992.6	6428.18779

	Feature_Name	Count	Minimum	Quarter 1	Mean	Median	Quarter 3	Maximum	Varianc
7	age	1030	1.00	7.000	45.662136	28.000	56.000	365.0	3990.43772
8	strength	1030	2.33	23.710	35.817961	34.445	46.135	82.6	279.08181

conclusions from the custom summary

```
# 1 from the above custom summary we can say that there are no any null values.
# 2 from the above data we can say that age is highly positively skewed
# 3 cement,slag,ash,superplastic this features are moderately positively skewed
# 4 age and superplastic is highly leptokurtic.
# 5 ash is highly platykurtic.
# 6 almost all columns in the dataset has outliers and in same %
# so there are high chances that some particular records are noisy.
# 7 from maximum age we can say that data is for yearly data.
```

```
In [7]:
         def outlier_treatment(df,col,method="quartile",strategy = "median"):
             col_data = df[col]
             # using quartile method to find outliers
             if method == "quartile":
                 q2 = df[col].median()
                 q1 = df[col].quantile(0.25)
                 q3 = df[col].quantile(0.75)
                 iqr = q3-q1
                 lowerlimit = q1 - 1.5*iqr
                 upperlimit = q3 + 1.5*iqr
              # using std dav method to find outliers
             elif method == "standerd daviation":
                 col_mean = df[col].mean()
                 col_std = df[col].std()
                 lowerlimit = col_mean - 2*col_std
                 upperlimit = col mean + 2*col std
             else:
                 print("Pass a correct method")
             # printing outliers
             outliers = df.loc[( col_data < lowerlimit ) | (col_data > upperlimit) ,col]
             outlier_density = round(len(outliers)/len(df),2)
             if len(outliers) == 0 :
                 print(f"the column {col} has no outliers")
                 print(f"the column {col} has outliers")
                 print("the outlier percentage is", outlier_density)
                 print("outliers of column are : ")
                 display(df[( col_data < lowerlimit ) | (col_data > upperlimit)])
```

```
## replacing outliers
if strategy == "median":
    df.loc[( col_data < lowerlimit ) | (col_data > upperlimit) ,col] = df[col].m

elif strategy == "mean":
    df.loc[( col_data < lowerlimit ) | (col_data > upperlimit) ,col] = df[col].m

else:
    print("Pass a correct strategy")

return (df)
```

ODT plots : Outlier detection plot

- in this we plot three graphs
- 1 Boxplot for descriptive statistics
- 2 histogram with outliers
- 3 histogram without outliers

```
In [8]:
         def odt plot(df,col):
             f,(ax1,ax2,ax3) = plt.subplots(1,3,figsize=(20,20))
             # plotting boxplot
             sns.boxplot(df[col],ax=ax1)
             ax1.set_title(col + " Boxplot")
             ax1.set_xlabel("Boxplot")
             ax1.set ylabel("Values")
             # plotting Histogram with outliers
             sns.distplot(df[col],ax=ax2)
             ax2.set_title(col + " Histogram with outliers")
             ax2.set_xlabel("Density")
             ax2.set_ylabel("Values")
             # plotting Histogram without outliers
             y = outlier_treatment(df,col)
             sns.distplot(y[col],ax=ax3)
             ax3.set_title(col + " Histogram without outliers")
             ax3.set xlabel("Density")
             ax3.set ylabel("Values")
```

```
for col in df.columns:
        odt_plot(df,col)
```

the column cement has no outliers the column slag has outliers the outlier percentage is 0.0 outliers of column are :

 cement
 slag
 ash
 water
 superplastic
 coarseagg
 fineagg
 age
 strength

 918
 239.6
 359.4
 0.0
 185.7
 0.0
 941.6
 664.3
 28
 39.44

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
990	239.6	359.4	0.0	185.7	0.0	941.6	664.3	7	25.42

the column ash has no outliers the column water has outliers the outlier percentage is 0.01 outliers of column are :

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
66	237.0	92.0	71.0	247.0	6.0	853.0	695.0	28	28.63
263	236.9	91.7	71.5	246.9	6.0	852.9	695.4	28	28.63
432	168.0	42.1	163.8	121.8	5.7	1058.7	780.1	28	24.24
462	168.0	42.1	163.8	121.8	5.7	1058.7	780.1	100	39.23
587	168.0	42.1	163.8	121.8	5.7	1058.7	780.1	3	7.75
740	140.0	164.0	128.0	237.0	6.0	869.0	656.0	28	35.23
789	168.0	42.1	163.8	121.8	5.7	1058.7	780.1	56	32.85
826	139.7	163.9	127.7	236.7	5.8	868.6	655.6	28	35.23
914	168.0	42.1	163.8	121.8	5.7	1058.7	780.1	14	17.82

the column superplastic has outliers the outlier percentage is 0.01 outliers of column are :

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
44	531.3	0.0	0.0	141.8	28.2	852.1	893.7	91	59.2
156	531.3	0.0	0.0	141.8	28.2	852.1	893.7	28	56.4
232	469.0	117.2	0.0	137.8	32.2	852.1	840.5	56	69.3
292	469.0	117.2	0.0	137.8	32.2	852.1	840.5	91	70.7
538	531.3	0.0	0.0	141.8	28.2	852.1	893.7	7	46.9
744	469.0	117.2	0.0	137.8	32.2	852.1	840.5	7	54.9
816	469.0	117.2	0.0	137.8	32.2	852.1	840.5	28	66.9
838	531.3	0.0	0.0	141.8	28.2	852.1	893.7	56	58.8
955	469.0	117.2	0.0	137.8	32.2	852.1	840.5	3	40.2
1026	531.3	0.0	0.0	141.8	28.2	852.1	893.7	3	41.3

the column coarseagg has no outliers the column fineagg has outliers the outlier percentage is 0.0

outliers of column are :

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
129	375.0	93.8	0.0	126.6	23.4	852.1	992.6	91	62.5
447	375.0	93.8	0.0	126.6	23.4	852.1	992.6	7	45.7
504	375.0	93.8	0.0	126.6	23.4	852.1	992.6	3	29.0
584	375.0	93.8	0.0	126.6	23.4	852.1	992.6	56	60.2
857	375.0	93.8	0.0	126.6	23.4	852.1	992.6	28	56.7

the column age has outliers the outlier percentage is 0.06 outliers of column are :

Outil	.613 01 1	COTUMIT	ai C	•					
	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
51	331.0	0.0	0.0	192.0	0.0	978.0	825.0	180	39.00
64	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
93	427.5	47.5	0.0	228.0	0.0	932.0	594.0	180	41.84
99	237.5	237.5	0.0	228.0	0.0	932.0	594.0	180	36.25
103	380.0	0.0	0.0	228.0	0.0	932.0	670.0	180	53.10
133	236.0	0.0	0.0	193.0	0.0	968.0	885.0	365	25.08
144	302.0	0.0	0.0	203.0	0.0	974.0	817.0	180	26.74
149	380.0	95.0	0.0	228.0	0.0	932.0	594.0	270	41.15
152	322.0	0.0	0.0	203.0	0.0	974.0	800.0	180	29.59
157	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30
159	304.0	76.0	0.0	228.0	0.0	932.0	670.0	365	55.26
198	266.0	114.0	0.0	228.0	0.0	932.0	670.0	365	52.91
199	277.0	0.0	0.0	191.0	0.0	968.0	856.0	180	32.33
207	190.0	190.0	0.0	228.0	0.0	932.0	670.0	180	46.93
256	525.0	0.0	0.0	189.0	0.0	1125.0	613.0	270	67.11
262	266.0	114.0	0.0	228.0	0.0	932.0	670.0	270	51.73
270	500.0	0.0	0.0	200.0	0.0	1125.0	613.0	270	55.16
297	475.0	0.0	0.0	228.0	0.0	932.0	594.0	270	42.13
302	342.0	38.0	0.0	228.0	0.0	932.0	670.0	180	52.12
312	236.0	0.0	0.0	193.0	0.0	968.0	885.0	180	24.10
313	540.0	0.0	0.0	173.0	0.0	1125.0	613.0	270	74.17
323	139.6	209.4	0.0	192.0	0.0	1047.0	806.9	360	44.70
359	475.0	0.0	0.0	228.0	0.0	932.0	594.0	180	42.62
361	277.0	0.0	0.0	191.0	0.0	968.0	856.0	360	33.70
370	266.0	114.0	0.0	228.0	0.0	932.0	670.0	180	48.70
393	342.0	38.0	0.0	228.0	0.0	932.0	670.0	365	56.14
448	331.0	0.0	0.0	192.0	0.0	978.0	825.0	360	41.24
465	427.5	47.5	0.0	228.0	0.0	932.0	594.0	365	43.70
484	237.5	237.5	0.0	228.0	0.0	932.0	594.0	365	39.00
539	304.0	76.0	0.0	228.0	0.0	932.0	670.0	180	50.95
570	190.0	190.0	0.0	228.0	0.0	932.0	670.0	270	50.66
581	525.0	0.0	0.0	189.0	0.0	1125.0	613.0	180	61.92
594	339.0	0.0	0.0	197.0	0.0	968.0	781.0	180	36.45
601	339.0	0.0	0.0	197.0	0.0	968.0	781.0	365	38.89

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
620	332.5	142.5	0.0	228.0	0.0	932.0	594.0	180	39.78
622	380.0	95.0	0.0	228.0	0.0	932.0	594.0	180	40.76
623	380.0	0.0	0.0	228.0	0.0	932.0	670.0	270	53.30
632	304.0	76.0	0.0	228.0	0.0	932.0	670.0	270	54.38
642	198.6	132.4	0.0	192.0	0.0	978.4	825.5	180	41.72
696	307.0	0.0	0.0	193.0	0.0	968.0	812.0	180	34.49
713	190.0	190.0	0.0	228.0	0.0	932.0	670.0	365	53.69
720	380.0	95.0	0.0	228.0	0.0	932.0	594.0	365	43.70
721	500.0	0.0	0.0	200.0	0.0	1125.0	613.0	180	51.04
754	254.0	0.0	0.0	198.0	0.0	968.0	863.0	365	29.79
755	349.0	0.0	0.0	192.0	0.0	1047.0	806.0	360	42.13
776	540.0	0.0	0.0	173.0	0.0	1125.0	613.0	180	71.62
850	427.5	47.5	0.0	228.0	0.0	932.0	594.0	270	43.01
861	310.0	0.0	0.0	192.0	0.0	970.0	850.0	180	37.33
878	237.5	237.5	0.0	228.0	0.0	932.0	594.0	270	38.41
900	254.0	0.0	0.0	198.0	0.0	968.0	863.0	180	27.63
901	475.0	0.0	0.0	228.0	0.0	932.0	594.0	365	41.93
919	310.0	0.0	0.0	192.0	0.0	970.0	850.0	360	38.11
951	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
957	307.0	0.0	0.0	193.0	0.0	968.0	812.0	365	36.15
971	349.0	0.0	0.0	192.0	0.0	1047.0	806.0	180	41.05
985	350.0	0.0	0.0	203.0	0.0	974.0	775.0	180	32.72
995	380.0	0.0	0.0	228.0	0.0	932.0	670.0	365	52.52
1017	139.6	209.4	0.0	192.0	0.0	1047.0	806.9	180	44.21
1028	342.0	38.0	0.0	228.0	0.0	932.0	670.0	270	55.06

the column strength has outliers the outlier percentage is 0.0 outliers of column are :

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
192	315.0	137.0	0.0	145.0	5.9	1130.0	745.0	28	81.75
732	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
950	389.9	189.0	0.0	145.9	22.0	944.7	755.8	91	82.60
1003	323.7	282.8	0.0	183.8	10.3	942.7	659.9	56	80.20

multivariate analysis

```
for col in df.columns:
    if col != "strength":
        f,ax = plt.subplots(figsize = (10,10))
        sns.regplot(x=df[col],y=df["strength"],ax=ax).set_title(f"Relationship between the columns in the columns i
```


conclusions of multi-covariate analysis

- 1.strength and cement has positive correlation 49%
- 2.strength and slag has slight positive correlation 12%
- 3.strength and ash has slightly negative correlation 9%
- 4.strength and water has negative correlation 30%
- 5.strength and superplastic has positive correlation 34%
- 6.strength and coarsagg has negative correlation 17%
- 7.strength and fineagg has negative correlation 17%
- 8.strength and age has positive correlation 50%

finding out correlation percentage

```
def correlation_target(df,t_col):
    ind_var = df.drop(t_col,axis=1).columns
    corr_result = []
    for col in ind_var:
        corr_result.append(df[t_col].corr(df[col]))

    result_df = pd.DataFrame([ind_var,corr_result],index=["variable","correaltion"])
    return result_df.sort_values("correaltion",ascending=False)
```

Out[13]:

```
In [12]:
           correlation_target(df,"strength")
Out[12]:
                variable correaltion
          7
                           0.499711
                    age
          0
                           0.493518
                 cement
             superplastic
                           0.342633
          1
                    slag
                           0.129561
                          -0.097973
          2
                    ash
          5
                          -0.173234
               coarseagg
          6
                          -0.176113
                 fineagg
          3
                          -0.300043
                  water
In [13]:
           ## checking for multi-collinearity
           cor = df.corr()
           f,ax = plt.subplots(figsize=(15,15))
           sns.heatmap(cor,annot=True)
          <AxesSubplot:>
```



```
In [14]:
# conclusions of multicollinearity check
# 1.superplatic and ash 45%
# 2.superplatic and water 66%
# 3.slag and ash 32%
# 4.slash and fineagg 31%
# 5.water and fineagg 33%
# 6.cement and ash 40%
```

Mulicollenearity check 2 (VIF Method)

- VIF stands for varaiance inflation factor
- In VIF we regress every independant variable with each other and find the r-square
- after finding r-square we use below VIF formula to find VIF index
- VIF index = 1/1-r.square
- if VIF is more than 5 then we say that multi-collinearity exists

```
def vif(ind_var):
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    result_df = pd.DataFrame()
```

Out[16]

```
result_df["Feature"] = ind_var.columns
result_df["vif"] = [variance_inflation_factor(ind_var.values,i)for i in range(in
return result_df
```

```
In [16]: vif(df.drop("strength",axis=1)) ## as the VIF value is very high he data is multi-co
```

:		Feature	vif
	0	cement	14.291158
	1	slag	3.342314
	2	ash	4.415840
	3	water	81.963087
	4	superplastic	5.724145
	5	coarseagg	86.938582
	6	fineagg	68.664404
	7	age	2.368372

as the data has the lot of multicollinerity applying PCA

```
In [17]:
          def apply_pca(x):
              col = []
              n_{comp} = len(x.columns)
              # step1: applying standerd scaler
              x = StandardScaler().fit_transform(x)
              # step2: applying PCA
              for i in range(1,n_comp):
                   pca = PCA(n components = i)
                  p_components = pca.fit_transform(x)
                  evr = np.cumsum(pca.explained_variance_ratio_)
                   if evr[i-1] > 0.9:
                      n components = i
                      break
              ## creating the DataFrame
              for j in range(1,n_components+1):
                  col.append("PC_"+str(j))
              result_df = pd.DataFrame(p_components,columns=col)
              return result_df
In [18]:
          x = df.drop("strength",axis=1)
          x.head()
```

```
Out[18]:
                                 ash water superplastic coarseagg
               cement
                         slag
                                                                       fineagg
                                                                                 age
           0
                 141.3
                        212.0
                                 0.0
                                       203.5
                                                      0.0
                                                                971.8
                                                                          748.5
                                                                                  28
           1
                 168.9
                         42.2
                                      158.3
                                                     10.8
                                                               1080.8
                                                                          796.2
                               124.3
                                                                                  14
           2
                 250.0
                          0.0
                                95.7
                                      187.4
                                                      5.5
                                                                956.9
                                                                          861.2
                                                                                  28
           3
                 266.0 114.0
                                                                932.0
                                                                          670.0
                                                                                  28
                                 0.0
                                      228.0
                                                      0.0
           4
                 154.8 183.4
                                 0.0
                                      193.3
                                                      9.1
                                                               1047.4
                                                                          696.7
                                                                                  28
In [19]:
            y = df[["strength"]]
            y.head()
Out[19]:
               strength
           0
                  29.89
           1
                  23.51
           2
                  29.22
           3
                  45.85
                  18.29
           4
In [20]:
            x_pca = apply_pca(x)
In [21]:
            x pca.head()
Out[21]:
                   PC_1
                              PC_2
                                         PC_3
                                                    PC_4
                                                                PC_5
                                                                           PC<sub>6</sub>
           0
               1.810919
                           1.331664 -1.284484 -0.306148 -0.067652 -0.886110
              -1.823833
                         -0.573436 -1.058973
                                                 0.893130
                                                           -0.913984
                                                                      -0.751061
               -0.739819
                          -0.463200 -0.541643
                                                -1.033210 -0.308068
                                                                       0.611045
                2.766368
                           0.602978
                                     -0.512532
                                                 0.008806
                                                            0.086415
                                                                       0.850548
               0.892523
                           0.966627 -0.863624
                                                 1.148561
                                                           -0.064439 -1.221228
```

model_building

```
In [23]: #1 normal model building
#2 cross validation
#3 hyper parameter tunning

In [24]: def train_and_test_split(x,y,test_size=0.3):
    return train_test_split(x,y,test_size=test_size,random_state=40)

In [25]: def build_model(model_name,estimator,x,y):
    x_train,x_test,y_train,y_test = train_and_test_split(x,y)
    estimator.fit(x_train,y_train)
    y_pred = estimator.predict(x_test)
    r2score = r2_score(y_test,y_pred)
```

```
rmse = np.sqrt(mean_squared_error(y_test,y_pred))
               temp = [model name, r2score, rmse]
               return temp
In [26]:
          build_model("Linear_Regression", LinearRegression(), x_pca, y)
          ['Linear_Regression', 0.6719558938761188, 9.32019549758269]
Out[26]:
In [27]:
          def build_multiple_model(x,y):
               result_df = pd.DataFrame(columns=["Model_Name", "R2_Score", "RMSE"])
               result_df.loc[len(result_df)] = build_model("Linear_Regression", LinearRegression
               result df.loc[len(result df)] = build model("Lasso Reression", Lasso(),x,y)
               result_df.loc[len(result_df)] = build_model("Ridge_Regression",Ridge(),x,y)
               result_df.loc[len(result_df)] = build_model("KNN_Regression", KNeighborsRegressor
               result_df.loc[len(result_df)] = build_model("Decision_Tree_Regression",DecisionT
               result_df.loc[len(result_df)] = build_model("Random_Forest_Regression",RandomFor
               result_df.loc[len(result_df)] = build_model("Adaboost_Regression",AdaBoostRegres
               result_df.loc[len(result_df)] = build_model("GBoost_Regression",GradientBoosting
               result_df.loc[len(result_df)] = build_model("XGB_Regression",XGBRegressor(),x,y)
               result_df.loc[len(result_df)] = build_model("Support_Vector_Regression",SVR(),x,
               return result_df.sort_values("R2_Score",ascending=False)
In [28]:
          build multiple model(x pca,y)
                                               RMSE
Out[28]:
                       Model Name R2 Score
            Random_Forest_Regression
                                    0.851051 6.280261
          8
                                    0.843865 6.429975
                     XGB_Regression
          7
                   GBoost_Regression
                                    0.827281 6.762842
          3
                     KNN Regression
                                   0.751607 8.110144
          6
                 Adaboost_Regression
                                    0.740296 8.292745
                                    0.734247 8.388763
          4
              Decision_Tree_Regression
          0
                    Linear_Regression
                                    0.671956 9.320195
          2
                    Ridge_Regression
                                    0.671954 9.320220
          1
                     Lasso_Reression
                                    0.655825 9.546597
            Support_Vector_Regression
                                   0.653021 9.585403
In [29]:
          def k fold cv(x,y,fold=10):
               score_lr = cross_val_score(LinearRegression(),x,y,cv=fold)
               score_la = cross_val_score(Lasso(),x,y,cv=fold)
               score_rd = cross_val_score(Ridge(),x,y,cv=fold)
               score_dtr = cross_val_score(DecisionTreeRegressor(),x,y,cv=fold)
               score_knn = cross_val_score(KNeighborsRegressor(),x,y,cv=fold)
               score rf = cross val score(RandomForestRegressor(),x,y,cv=fold)
               score_ad = cross_val_score(AdaBoostRegressor(),x,y,cv=fold)
               score g = cross val score(GradientBoostingRegressor(),x,y,cv=fold)
               score xgb = cross val score(XGBRegressor(),x,y,cv=fold)
```

```
score_svr = cross_val_score(SVR(),x,y,cv=fold)

score = [score_lr,score_la,score_rd,score_knn,score_rf,score_ad,score_models = ["Linear Regression","Lasso Regression","Ridge Regression","Decision Tr

result = []

for i in range(0,len(models)):
    score_mean = np.mean(score[i])
    score_std = np.std(score[i])
    model_name = models[i]
    temp = [model_name,score_mean,score_std]
    result_append(temp)

result_df = pd.DataFrame(result,columns=["model_name","score_mean","score_std"])

return result_df.sort_values("score_mean",ascending=False)
```

In [30]:

k_fold_cv(x_pca,y)

Out[30]:		model_name	score_mean	score_std
	8	XGBoost Regression	0.873262	0.036061
	5	Random forest Regression	0.866264	0.033087
	7	GBoost Regression	0.829250	0.050252
	4	KNN Regression	0.767825	0.055738
	3	Decision Tree Regression	0.762318	0.058614
	6	Adaboost Regression	0.723020	0.043631
	9	Support vector machines Regression	0.703117	0.042765
	2	Ridge Regression	0.663935	0.059437
	0	Linear Regression	0.663928	0.059476
	1	Lasso Regression	0.649837	0.049887

```
In [31]:
         def hyperparameter_tunning(x,y,fold=10):
            param_knn = {"n_neighbors":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]}
            param_adb = {"n_estimators" : [1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,
                 "learning_rate" : [0.00001,0.0001,0.001,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.
            param_gb = {"alpha": [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0],"learning_rate"
            param xgb = {'learning rate' : [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
                 'reg lambda' : [1,2,3,4,5,6,7,8,9,10],
                 'max_depth': [1,2,3,4,5,6,7,8,9,10]}
            param_rf = {"n_estimators":[10,20,30,40,50,60,70,80,90,110,130,150,170,190], 'min
                      "bootstrap":[True,False]}
            tunned_lasso=GridSearchCV(Lasso(),param_ls,cv=fold)
            tunned_ridge=GridSearchCV(Ridge(),param_rd,cv=fold)
            tunned knn=GridSearchCV(KNeighborsRegressor(),param knn,cv=fold)
            tunned adb=GridSearchCV(AdaBoostRegressor(),param adb,cv=fold)
            tunned_gb=GridSearchCV(GradientBoostingRegressor(),param_gb,cv=fold)
            tunned_xgb=GridSearchCV(XGBRegressor(),param_xgb,cv=fold)
            tunned rf=GridSearchCV(RandomForestRegressor(),param rf,cv=fold)
```

```
tunned lasso.fit(x,y)
              tunned_ridge.fit(x,y)
              tunned knn.fit(x,y)
              tunned_adb.fit(x,y)
              tunned_gb.fit(x,y)
              tunned xgb.fit(x,y)
              tunned_rf.fit(x,y)
              tunned = [tunned_lasso,tunned_ridge,tunned_knn,tunned_adb,tunned_gb,tunned_xgb,t
              models = ["Lasso", "Ridge", "KNeighborRegressor", "AdaBoostRegressor", "GradientBoos
              for i in range (0,len(tunned)):
                  print("model", models[i])
                  print("best_parameters",tunned[i].best_params_)
In [32]:
          hyperparameter_tunning(x_pca,y,fold=10)
         model Lasso
         best_parameters {'alpha': 0.1}
         model Ridge
         best_parameters {'alpha': 6}
         model KNeighborRegressor
         best_parameters {'n_neighbors': 4}
         model AdaBoostRegressor
         best_parameters {'learning_rate': 1.0, 'n_estimators': 60}
         model GradientBoostingRegressor
         best_parameters {'alpha': 0.6, 'learning_rate': 0.3}
         model XGBRegressor
         best_parameters {'learning_rate': 0.1, 'max_depth': 10, 'reg_lambda': 7}
         model RandomForestRegressor
         best_parameters {'bootstrap': True, 'min_impurity_decrease': 0.0, 'n_estimators': 15
In [37]:
         def k fold cv tunned(x,y,fold=10):
              score lr = cross val score(LinearRegression(),x,y,cv=fold)
              score la = cross val score(Lasso(alpha = 0.1),x,y,cv=fold)
              score_rd = cross_val_score(Ridge(alpha= 6),x,y,cv=fold)
              score_dtr = cross_val_score(DecisionTreeRegressor(),x,y,cv=fold)
              score_knn = cross_val_score(KNeighborsRegressor(n_neighbors= 4),x,y,cv=fold)
              score_rf = cross_val_score(RandomForestRegressor(bootstrap= True, min_impurity_d
              score ad = cross val score(AdaBoostRegressor(learning rate= 1.0, n estimators= 6
              score g = cross val score(GradientBoostingRegressor(alpha= 0.6, learning rate= 0
              score_xgb = cross_val_score(XGBRegressor(learning_rate= 0.1, max_depth= 10, reg_
              score_svr = cross_val_score(SVR(),x,y,cv=fold)
              score = [score_lr,score_la,score_rd,score_dtr,score_knn,score_rf,score_ad,score_
              models = ["Linear Regression","Lasso Regression","Ridge Regression","Decision Tr
              result = []
              for i in range(0,len(models)):
                  score_mean = np.mean(score[i])
                  score std = np.std(score[i])
                  model name = models[i]
                  temp = [model_name,score_mean,score_std]
                  result.append(temp)
```

```
result_df = pd.DataFrame(result,columns=["model_name","score_mean","score_std"])
return result_df.sort_values("score_mean",ascending=False)
```

In [50]: k_fold_cv_tunned(x_pca,y,fold=10)

Out[50]:		model_name	score_mean	score_std
	8	XGBoost Regression	0.887288	0.035679
	5	Random forest Regression	0.866422	0.031719
	7	GBoost Regression	0.859156	0.050244
	4	KNN Regression	0.771068	0.054454
	3	Decision Tree Regression	0.767302	0.063291
	6	Adaboost Regression	0.732104	0.036805
	9 Supp	ort vector machines Regression	0.703117	0.042765
	1	Lasso Regression	0.664143	0.058426
	2	Ridge Regression	0.663951	0.059242

Linear Regression

clustering

0

```
labels = KMeans(n_clusters=2,random_state=42).fit_predict(x)
sns.scatterplot(x=x.cement,y=y.strength,hue= labels)
```

0.663928 0.059476

Out[41]: <AxesSubplot:xlabel='cement', ylabel='strength'>


```
In [42]: sns.scatterplot(x=x.slag,y=y.strength,hue= labels)
```

Out[42]: <AxesSubplot:xlabel='slag', ylabel='strength'>


```
In [43]: ## Only cement has clusters with strength
```

Out[44]: labels
0 0
1 0

2 0

3 1

4 0

In [45]: df_new = df.join(df_labels,how="inner")

In [46]: df_new.head()

Out[46]:		cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength	labels
	0	141.3	212.0	0.0	203.5	0.0	971.8	748.5	28	29.89	0
	1	168.9	42.2	124.3	158.3	10.8	1080.8	796.2	14	23.51	0
	2	250.0	0.0	95.7	187.4	5.5	956.9	861.2	28	29.22	0
	3	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28	45.85	1
	4	1548	183.4	0.0	193 3	9.1	1047 4	696.7	28	18 29	0

```
In [47]: x_new = df_new.drop("strength",axis=1)
```

In [48]: y_new = df[["strength"]]

In [49]: build_multiple_model(x_new,y_new)

		_		_	
\cap	1114	Г	ΛQ	п	0
U	uч		47	- 1	۰

	Model_Name	R2_Score	RMSE
8	XGB_Regression	0.885537	5.505430
5	Random_Forest_Regression	0.873724	5.782552
7	GBoost_Regression	0.873334	5.791462
4	Decision_Tree_Regression	0.783363	7.574004
6	Adaboost_Regression	0.767005	7.854742
2	Ridge_Regression	0.697942	8.943423
0	Linear_Regression	0.697934	8.943552
1	Lasso_Reression	0.697402	8.951418
3	KNN_Regression	0.628237	9.921833
9	Support_Vector_Regression	0.188101	14.662563

after applying clustering accuracy has increased almost 5 %

```
In [52]: k_fold_cv_tunned(x_new,y_new,fold=10)
```

Out[52]:		model_name	score_mean	score_std
	8	XGBoost Regression	0.904985	0.042959
	5	Random forest Regression	0.888420	0.036132
	7	GBoost Regression	0.887132	0.059068
	3	Decision Tree Regression	0.830604	0.051726
	6	Adaboost Regression	0.740663	0.041387
	1	Lasso Regression	0.686926	0.062433
	2	Ridge Regression	0.686677	0.062324
	0	Linear Regression	0.686640	0.062314
	4	KNN Regression	0.684321	0.078541
	9	Support vector machines Regression	0.223931	0.038833

learning curve

```
def genrate_learning_curve(model_name,estimator,x,Y,fold=10):
    train_size,train_score,test_score = learning_curve(estimator=estimator,X=x,y=Y,c
    train_score_mean = np.mean(train_score,axis=1)
    test_score_mean = np.mean(test_score,axis=1)
    plt.plot(train_size,train_score_mean,color="blue")
    plt.plot(train_size,test_score_mean,color="orange")

    plt.xlabel("Samples")
    plt.ylabel("Accuracy")
    plt.title("Learning Curve" + model_name)
    plt.legend("Training accurcy","Testing accurcy")
```

```
In [61]: genrate_learning_curve("XGB",XGBRegressor(),x_new,y_new,fold=10)
```


In [62]: genrate_learning_curve("Random Forest",RandomForestRegressor(),x_new,y_new,fold=10)

Feature Importance by using XGBoost Package

```
In [66]: x_train,x_test,y_train,y_test = train_test_split(x_new,y_new,test_size=0.2,random_st
    xgb = XGBRegressor()
    xgb.fit(x_train,y_train)
```

```
In [67]: xgboost.plot_importance(xgb)
```

Out[67]: <AxesSubplot:title={'center':'Feature importance'}, xlabel='F score', ylabel='Feature';</pre>


```
In [68]:
    x_neww = df[["age","cement","water","coarseagg","fineagg","slag"]]
    y_neww = df[["strength"]]
```

In [69]: k_fold_cv(x_neww,y_neww)

Out[69]:		model_name	score_mean	score_std
	8	XGBoost Regression	0.896645	0.046915
	5	Random forest Regression	0.886192	0.033316
	7	GBoost Regression	0.875495	0.046392
	3	Decision Tree Regression	0.832355	0.052452
	6	Adaboost Regression	0.734975	0.038066
	1	Lasso Regression	0.679548	0.061547
	2	Ridge Regression	0.679539	0.061858
(Linear Regression	0.679539	0.061858
	4	KNN Regression	0.656448	0.088739
	9	Support vector machines Regression	0.261459	0.037619

In [70]: k_fold_cv_tunned(x_neww,y_neww,fold=10)

Out[70]:		model_name	score_mean	score_std
	8	XGBoost Regression	0.905265	0.042435
	7	GBoost Regression	0.890261	0.048877
	5	Random forest Regression	0.885325	0.034559
	3	Decision Tree Regression	0.825229	0.050821
	6	Adaboost Regression	0.739431	0.032794
	1	Lasso Regression	0.679542	0.061827

	model_name	score_mean	score_std
2	Ridge Regression	0.679539	0.061857
0	Linear Regression	0.679539	0.061858
4	KNN Regression	0.668799	0.085377
9	Support vector machines Regression	0.261459	0.037619