>>> IF013 - Fundamentos Teóricos de Informática
>>> Licenciatura de Sistemas - UNPSJB - Sede Trelew

Name: Celia Cintas † , Pablo Navarro ‡ , Samuel Almonacid $^\$$

Date: August 7, 2017

[-]\$ _

[†]cintas@cenpat-conicet.gob.ar, cintas.celia@gmail.com, @RTFMCelia

 $^{^{\}ddagger}$ pnavarro@cenpat-conicet.gob.ar, pablo1n7@gmail.com

[§]almonacid@cenpat-conicet.gob.ar, almonacid.samuel.tw@gmail.com

>>> Unidad 1

- 1. Autómatas finitos. Reconocedores. Traductores. Diagrama de estados. Autómatas finitos no deterministas.
- 2. Equivalencia entre autómatas finitos deterministas y no deterministas. Morfismos sobre autómatas. Autómata Cociente.
- 3. Propiedades de lenguajes aceptados por Autómatas Finitos. Expresiones y lenguajes regulares.
- 4. Propiedades algebraicas de los lenguajes regulares. Equivalencia entre autómatas finitos y lenguajes regulares.
- 5. Teorema de Kleene. Gramáticas regulares. Relación entre gramáticas regulares y autómatas finitos.
- 6. Usos y aplicaciones de los autómatas finitos y lenguajes regulares.

[1. Unidad 1]\$ _ [2/33]

>>> Autómatas Finitos No Determinísticos

Hay dos formas posibles de entender cómo funciona un AFND.

- * Cuando hay varias alternativas, el AFND elige alguna de ellas.
- * Imaginarse que el AFND está en varios estados a la vez. Si luego de leer la cadena puede estar en un estado final, acepta la cadena.

En cualquier caso, es bueno por un rato no pensar en cómo implementar un AFND.

>>> Autómatas Finitos No Determinísticos

Definición

Un AFND es la 5-upla $M=(K,\Sigma,\delta,S,F)$, donde K,Σ,δ y F tienen el mismo significado que en AFD, pero $\delta:K\times\Sigma\to P(K)$.

Definición

La función de transición se puede generalizar para que acepte cadenas en Σ , es decir $\hat{\delta}:K\times\Sigma^*\to P(K)$.

$$\begin{split} \hat{\delta}(q,\lambda) &= \{q\} \\ \hat{\delta}(q,xa) &= \{p: \exists r \in \hat{\delta}(q,x) | p \in \delta(r,a)\} \text{ con } x \in \Sigma^* \text{ y } a \in \Sigma \end{split}$$

>>> Autómatas Finitos No Determinísticos (Cont.)

Definición

Se dice que una cadena x es aceptada por un AFND $M=(K,\Sigma,\delta,S,F)$ si y solo si $\delta(S,x)\cap F\neq\emptyset$

Definición

Dado un AFND $M=(K,\Sigma,\delta,S,F)$, el lenguaje aceptado por M, el cual se denotará L(M), es el conjunto de cadenas aceptadas por M y se define como:

$$L(M) = \{x : \delta(S, x) \cap F \neq \emptyset\}$$

>>> Autómatas Finitos No Determinísticos (Cont.)

Podemos extender la función de transición aún más, haciendo que mapee conjuntos de estados y cadenas en conjuntos de estados, es decir:

Definición

Función de transición $\delta: P(K) \times \Sigma^* \to P(K)$, dada por:

$$\delta(P, x) = \bigcup_{k \in P} \delta(k, x)$$

Para todo AFD existe un AFND y para cada AFND existe un AFD equivalente.

>>> Autómatas Finitos No Determinísticos (Cont.)

Ejemplo: AFND que acepte el lenguaje de las cadenas formadas por concatenación de 0 o más cadenas de ab o aba (sin importar el orden).

$$M = (K, \Sigma, \delta, S, F)$$

$$K = \{k_0, k_1, k_2, k_3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{k_0\}$$

$$S = k_0$$

$$\delta \mid a \quad b$$

$$k_0 \mid \{k_1\} \mid \{k_3\} \mid \{k_0, k_2\} \mid \{k_3\} \mid \{$$

Sea un AFND $M=(K,\Sigma,\delta,S,F)$ donde:

$$K = \{k_0, k_1, k_2\}$$

$$\Sigma = \{a, b\}$$

$$F = \{k_1\}$$

$$S = k_0$$

$$\frac{\delta \mid a \quad b}{k_0 \mid \{k_0, k_1\} \mid \{k_1\} \mid \{k_2\} \mid \{k_0, k_1\} \mid \{k_2\} \mid \{k_3\} \mid \{k_4\} \mid \{k_4\}$$

Obtengamos un AFD M^\prime que reconozca el mismo lenguaje utilizando el teorema anterior.

[3. AFND a AFD]\$ _

>>> Conversión de AFND a AFD (cont.)

Construyamos un AFD $M' = (K', \Sigma', \delta', S', F')$ donde:

$$K' = \{\{k_0\}, \{k_1\}, \{k_2\}, \{k_0, k_1\}, \{k_0, k_1, k_2\}\}\}$$

$$\Sigma' = \Sigma$$

$$F' = \{\{k_1\}, \{k_0, k_1\}, \{k_0, k_1, k_2\}\}\}$$

$$S' = \{k_0\}$$

δ	a	b	Aceptador
$s_0 = \{k_0\}$	$\{k_0, k_1\}$	$\{k_1\}$	0
$s_1 = \{k_1\}$	$\{k_2\}$	$\{k_0, k_1\}$	1
$s_2 = \{k_2\}$	$\{k_2\}$	$\{k_2\}$	0
$s_3 = \{k_0, k_1\}$	$\{k_0, k_1, k_2\}$	$\{k_0, k_1\}$	1
$s_4 = \{k_0, k_1, k_2\}$	$\{k_0, k_1, k_2\}$	$\{k_0, k_1, k_2\}$	1

[3. AFND a AFD]\$ _ [9/33]

[3. AFND a AFD]\$ _ [10/33]

>>> Equivalencia entre AFD y AFND

Teorema

Sea L un lenguaje aceptado por un autómata finito no determinista, entonces existe un autómata finito determinista que también acepta L.

Demostración

Sea $M=(S,\Sigma,\delta,s_0,F)$ un autómata finito no determinista que acepta L. Para probar el teorema debemos probar:

- st que podemos construir M' determinista, a partir de M.
- * M' acepta el mismo lenguaje que M.

[3. AFND a AFD]\$ _ [11/33]

>>> Equivalencia entre AFD y AFND

Demostración

Construimos un autómata finito determinista $M'=(S',\Sigma,\delta',s_0',F')$ tal que :

- * $S'\subseteq P(S)$. Los estados de M' serán identificados con subconjuntos del conjunto de estados de M. Notación: un elemento de S' se notará como $\langle s_1, s_2, \cdots s_i \rangle$ donde $\{s_1, s_2, \cdots, s_i\} \subseteq S$.
- * $F' = \{s_i' \in S' | s_i' \supseteq \{s_j\} \ y \ s_j \in F\}$. F' es el conjunto de todos los estados de S' que contengan por lo menos un elemento de F (es decir, un estado aceptador de M).
- * Σ es el alfabeto de entrada.
- * $s_0' = \langle s_0 \rangle = \{s_0\}$. s_0' será el conjunto que contiene como único estado al inicial de M.

[3. AFND a AFD]\$ _

>>> Conversión de AFND a AFD (cont.)

Demostración

la función δ' es la extensión de δ a conjuntos:

$$\delta'(\langle s_1,s_2,\cdots,s_i\rangle,a)=\langle p_1,p_2,\cdots,p_j\rangle$$
 si y solo si $\delta(\{s_1,s_2,\cdots,s_i\},a)=\{p_1,p_2,\cdots,p_j\}$.

$$\delta'(\zeta,a) = igcup_{i=1}^n \delta(s_i,a)$$
, donde $\zeta = \langle s_1,s_2,\cdots,s_n
angle$

Con esto tenemos definido M' a partir de M.

[3. AFND a AFD]\$ _ [13/33]

>>> Conversión de AFND a AFD (cont.)

Demostración

Ahora necesitamos probar que $\delta'(s_0',x)=\langle q_1,q_2,\cdots,q_i\rangle$ si y solo si $\delta(s_0,x)=\{q_1,q_2,\cdots,q_i\}$ para toda cadena x.

- * base inductiva: long(x)=0, $x=\lambda$ y la demostración trivial es que $s_0'=\langle s_0 \rangle$.
- * paso inductivo: long(x) = l es decir $\delta'(s_0', x) = \langle p_1, p_2, \cdots, p_n \rangle$ si y solo si $\delta(s_0, x) = \{p_1, p_2, \cdots, p_n\}$, sea $a \in \Sigma$, debemos probar que vale para long(xa) = l + 1.

Por definición de δ' :

$$\delta'(s_0', xa) = \delta'(\delta'(s_0', x), a)$$

por hipótesis de inducción, tenemos:

$$\delta'(s_0',x)=\langle p_1,p_2,\cdots,p_n
angle$$
 si y solo si

$$\delta(s_0,x)=\{p_1,p_2,\cdots,p_n\}$$
, reemplazando la definición

$$\delta'(\langle p_1, \cdots, p_n \rangle, a) = \langle q_1, \cdots, q_k \rangle$$
 si y solo si $\delta'(\{p_1, \cdots, p_n\}, a) = \{q_1, \cdots, q_k\}$

[3. AFND a AFD]\$ _ [14/33]

Definición

Un Autómata Finito No Deterministico con transiciones λ es una quintupla (Q,Σ,δ,q_0,F) . Donde Q,Σ,q_0,F tienen el mismo significado que en AFND pero δ se define como:

$$\delta: Q \times (\Sigma \cup \lambda) \to P(Q)$$

Definición

La Clausura- λ de un estado q, se denota como $Cl_{\lambda}(q)$ es el conjunto de estados alcanzables desde q con transiciones λ . El estado q pertenece a su clausura.

>>> Autómatas Finitos $AFND - \lambda$ (Cont.)

>>> Conversión Autómatas Finitos $AFND-\lambda$ a AFND

Dado un AFND- λ es posible construir un AFND equivalente sin transiciones vacías que reconoce el mismo lenguaje.

- * Estados importantes del AFND $-\lambda$ y estado inicial del AFND $-\lambda$.
- * Σ de AFND = Σ de AFND $-\lambda$.
- * Estado inicial de AFND = AFND $-\lambda$.
- * $\delta(e_i, x) = e_k$ siendo e_i, e_k estados importantes.
- * Estados finales del AFND : estados finales del AFND $-\lambda$ y todos los estados e_i del AFND $-\lambda$ para los cuales existe un camino con transiciones λ , en el AFND $-\lambda$, a algún estado final del AFND $-\lambda$.

[3. AFND a AFD]\$ _

>>> Conversión Autómatas Finitos $AFND - \lambda$ a AFND (Cont.)

Cómo sería este Autómata sin transiciones λ ?

[3. AFND a AFD]\$ _ [18/33]

>>> Conversión Autómatas Finitos $AFND-\lambda$ a AFND (Cont.)

[3. AFND a AFD]\$ _

>>> Conversión Autómatas Finitos $AFND-\lambda$ a AFND (Cont.)

[3. AFND a AFD]\$ _

>>> Homomorfismos sobre AFD

Definición

Sean $M=(S,\Sigma,s_0,\delta,f_0)$ y $M'=(S',\Sigma,s_0',\delta',f_0')$ dos AFD reconocedores.

Un homomorfismo g del autómata finito M al autómata finito M' es una función $g:S\to S'$ tal que para cualquier $i\in\Sigma\ y\ s\in S$:

$$g(s_0) = s'_0$$

$$g(\delta(s, i)) = \delta'(g(s), i)$$

$$f_0(s) = f'_0(g(s))$$

$$S \times \Sigma \xrightarrow{g} S' \times \Sigma$$

$$\delta \downarrow \delta'$$

$$S' \times \Sigma \xrightarrow{g} S' \times \Sigma$$

>>> Autómata Cociente

Definición

Sean $M=(S,\Sigma,s_0,\delta,f_0)$ y M' dos AFR y g un homomorfismo entre los autómatas M y M'. Denominaremos Autómata cociente $M/g=(S'',\Sigma,[s_0],\delta'',f_0'')$ al AFR tal que:

- * S'' es el conjunto de estados de M/g, tal que cada uno es una clase de equivalencia [s] de estados de M determinada por g. Todos los elementos de [s] tienen asociado el mismo estado en M y la misma salida.
- * Σ el alfabeto de entrada de M.
- * El estado inicial $[s_0]$ es la clase del estado inicial de M .
- * f_0'' es la función de salida.
- * δ'' es la función de próximo estado definida mediante $\delta([s_i],i)=[\delta(s_i,i)]$.

[3. AFND a AFD]\$ _ [22/33]

>>> Estados Inalcanzables

Definición

Dado un autómata finito $M=(S,\Sigma,s_0,\delta,f_0)$ y un estado $s_i\in S$ tal que $s_i\neq s_0$, se dice que si es un estado inalcanzable de M si no existe una cadena $w\in \Sigma$ tal que $\delta(s_0,w)=s_i$.

$$M = (S, \Sigma, \delta, s_0, f_0)$$

$$S = \{s_0, s_1, s_2, s_3\}$$

$$\Sigma = \{0, 1\}$$

δ	0	1	$ f_0 $
s_0	s_1	s_3	0
s_1	s_3	s_0	0
s_2	s_1	s_3	1
s_0	s_0	s_1	1

[3. AFND a AFD]\$ _ [23/33]

>>> Minimización

El objetivo será aprender a establecer un homomorfismo entre dos AFD M y M', lo cual a su vez nos permitirá definir un método para simplificar autómatas. La idea es que dado un AF M, podamos estudiar si existe un AF M' que realize lo mismo que M pero tenga menos estados.

THE REASON I AM SO INEFFICIENT

[4. Minimización]\$ [24/33]

>>> Algoritmo de Minimización

Entrada: un AF $M=(S,\Sigma,\delta,s_0,F)$ determinista completo.

Salida: el AF ${\cal M}$ minimizado.

- 1. Eliminar del conjunto de estados S a los estados inalcanzables y llamar a este nuevo conjunto T .
- 2. Particionar T en dos clases formadas por los estados 0-equivalentes. Por tratarse de un AF reconocedor tendremos una clase de estados aceptadores y otra de estados no aceptadore
- 3. Asumir k=0.
- 4. Repetir:
 - * Determinar las clases (k+1)-equivalentes como un refinamiento de las k equivalentes, es decir: s_i, s_j son (k+1)-equivalentes si y solo si s_i, s_j son k-equivalentes y $\delta(s_i, i)$, $\delta(s_j, i)$ son k-equivalentes, para todo $i \in \Sigma$.
 - * Incrementar k en 1. hasta que las clases (k+1)-equivalentes sean iguales a las k-equivalentes.
- 5. Usar las clases k-equivalentes determinadas para definir el autómata cociente de M.

[4. Minimización]\$ _ [25/33]

>>> Minimización

$$T = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6\}$$

 M tiene estados inalcanzables? ($T = S$)

[4. Minimización]\$ _ [26/33]

>>> Minimización (Cont.)

$$K_0 = \{s_0, s_2, s_5\} \{s_1, s_3, s_4, s_6\}$$

$$K_1 = \{s_0, s_2\} \{s_5\} \{s_1, s_3, s_4, s_6\}$$

$$K_2 = \{s_0, s_2\} \{s_5\} \{s_1, s_6\} \{s_3, s_4\}$$

$$K_3 = \{s_0, s_2\} \{s_5\} \{s_1, s_6\} \{s_3, s_4\}$$

>>> Método de Thompson: $ER o AFND - \lambda$

Definición

La función Th convierte ERs en AFNDs según las siguientes reglas:

* Para $c \in \Sigma$, Th(c):

* Para $Th(\emptyset)$:

>>> Método de Thompson:
$$ER o AFND - \lambda$$
 (Cont.)

Definición

* Para $Th(E_1|E_2)$:

* Para $Th(E_1.E_2)$:

>>> Método de Thompson: $ER o AFND - \lambda$ (Cont.)

Definición

* $Th(E_1^*)$:

*
$$Th((E_1)) = Th(E_1)$$

>>> Método de Thompson:
$$ER o AFND - \lambda$$
 (Cont.)

$$(ab|aab)^*$$

* a, b:

* concatenación para obtener ab y aab:

(aab)

>>> Método de Thompson: $\overline{ER} o AFND - \lambda$ (Cont.)

$(ab|aab)^*$

* unión para obtener (ab + aab):

* estrella de Kleene para obtener $(ab + aab)^*$

>>> Gracias!

Bibliografía

- 1. Introduction to Automata Theory, Languages, and Computation Hopcroft et. al 2007 (3er ed.)
- 2. Teoría de la Computación Gonzalo Navarro 2011.
- 3. Fundamentos de Cs. de la Computación Juan Carlos Augusto 1995.

[6. The End]\$ _ [33/33]