DML (Data Manipulation Language)

//insert
INSERT INTO jurusan (id,)
VALUES (V1,V2,...., An);
//update
UPDATE jurusan
SET nama = "Teknik Informatika"
WHERE id = 1;
//delete
DELETE FROM jurusan
WHERE id = 1
//select
SELECT * FROM jurusan;
SELECT id, nama FROM jurusan;

Fungsi Agregat

rungsi Agregat	
COUNT	Mengembalikan jumlah (banyaknya atau kemunculannya) nilai di suatu kolom
SUM	Mengembalikan jumlah (total atau sum) nilai di suatu kolom
AVG	Mengembalikan rata-rata (average) nilai di suatu kolom
MIN	Mengembalikan nilai terkecil (minimal) di suatu kolom
MAX	Mengembalikan nilai terbesar (maximal) di suatu kolom

Contoh agregat

SELECT NIM, SUM(Nilai) as Total FROM Nilai GROUP BY NIM HAVING Total > 200;

Inner Join

SELECT A1, A2, ..., An FROM r1, r2 WHERE r1.join key = r2.join key

SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name;

Subquery

//Ambil semua kodeMatkul yang diambil Dika. //Cari mahasiswa lain yang ambil matkul tersebut.

SELECT DISTINCT k2.nim

FROM krs k2

WHERE k2.kodematkul IN (

SELECT k1.kodematkul

FROM mahasiswa m

JOIN krs k1 ON m.nim = k1.nim

WHERE m.nama = 'Dika'
);

Storage Prosedure

DELIMITER // CREATE PROSEDURE getmhs() **BEGIN** SELECT * FROM mahasiswa; END // DELIMITER; DELIMITER // CREATE PROCEDURE DemoIF(IN bil INT(3)) **BEGIN** DECLARE str VARCHAR(50); IF (bil < 0) THEN SET str = 'BILANGAN NEGATIF'; SET str = 'BILANGAN POSITIF'; END IF: SELECT str; END // **DELIMITER**; DELIMITER // CREATE PROCEDURE CountByGender(IN gender VARCHAR(3), OUT total INT(3)) **BEGIN** SELECT COUNT(nim) INTO total FROM mahasiswa WHERE Jenis Kelamin = gender; END // DELIMITER;

TRANSAKSI

BEGIN
START TRANSACTION;
INSERT INTO trans_demo VALUES
('PostgreSQL');
SAVEPOINT point1;
INSERT INTO trans_demo VALUES
('NoSQL');
ROLLBACK TO SAVEPOINT point1;
INSERT INTO trans_demo VALUES
('FireBird');
COMMIT;
SELECT * FROM trans_demo;
END;

Syarat Normalisasi

1NF: Data harus atomik (nggak boleh list dalam 1 sel)

2NF: 1NF + tidak ada partial dependency(atribut non primer gk bergantung ke 1 primar) **3NF**: 2NF + tidak ada transitive dependency(atribut non primer

gk bergantung ke atribut non primer lain)

4NF (opsional): Hindari multi-valued dependency atau redundansi data

Aljabar Boolean

$$A + A \cdot B = A \cdot (1 + B) = A \cdot 1 = A$$

Penjelasan:

- $A + A \cdot B \rightarrow faktorkan A$
- $\bullet \quad A(1+B) = A \cdot 1 = A$

Soal 2: $\neg(A + B \cdot C)$

Gunakan Hukum De Morgan:

$$\neg(X + Y) = \neg X \cdot \neg Y$$

$$\neg(X \cdot Y) = \neg X + \neg Y$$

Jadi:

$$\neg(\mathbf{A} + \mathbf{B} \cdot \mathbf{C}) = \neg\mathbf{A} \cdot \neg(\mathbf{B} \cdot \mathbf{C})$$

- \rightarrow terusin: $\neg A \cdot (\neg B + \neg C)$
- Penjelasan:
 - $\bullet \quad \neg (A + Y) = \neg A \cdot \neg Y$

Soal 4: $(A + B) \cdot (A + \neg B)$

Pakai distributif:

 $(A + B) \cdot (A + \neg B)$

$$= A + (B \cdot \neg B)$$

- =A+0
- $= \mathbf{A}$

- A

Penjelasan:

- B · ¬B = 0 (karena gak mungkin benar & salah sekaligus)
- $\bullet \quad A+0=A$

$12 \equiv 3 \pmod{9}$

Artinya: 12 dan 3 kongruen modulo 9, alias selisihnya habis dibagi 9:

12 - 3 = 9 → habis dibagi 9

 $a \equiv b \pmod{m}$ berarti:

 $m \mid (a - b) \rightarrow membagi habis selisih a dan b$

Contoh lain:

- $17 \equiv 5 \pmod{12} \rightarrow \text{karena } 17 5 = 12$
- $23 \equiv 2 \pmod{7}$ \rightarrow karena 23 2 = 21, dan 21 habis dibagi 7

 $a \equiv b \pmod{m} \rightarrow a dan b memiliki sisa bagi yang sama saat dibagi m$

Operasi Modulo (Aturan):

- 1. Penjumlahan:
 - $(a + b) \mod m = [(a \mod m) + (b \mod m)] \mod m$
- 2. Pengurangan:
 - $(a b) \mod m = [(a \mod m) (b \mod m)] \mod m$
- 3. Perkalian:

 $(a \times b) \mod m = [(a \mod m) \times (b \mod m)] \mod m$

Teorema Fermat Kecil (Fermat's Little Theorem)

Kalau:

- p adalah bilangan prima
- a adalah bilangan bulat yang tidak habis dibagi p (alias a tidak kongruen 0 mod p)

Hitung 3⁶ mod 7

Kita cek:

- 7 adalah prima
- 3 tidak habis dibagi 7 Maka pakai Fermat:

 $3^{(7-1)} \equiv 1 \mod 7 \rightarrow 3^6 \equiv 1 \mod 7$

Hitung 7^100 mod 13

Karena 13 adalah prima, dan 7 gak habis dibagi 13 →

 $7^{12} \equiv 1 \pmod{13}$

Maka:

 $100 \mod 12 = 4$

Jadi $7^100 \equiv 7^4 \mod 13$

Hitung $7^4 = 2401 \rightarrow 2401 \mod 13 = 9$

Untuk mencari **FPB(a, b)** Gunakan rumus:

 $FPB(a, b) = FPB(b, a \mod b)$

Ulangi sampai hasil mod = 0

Cari FPB(48, 18)

- 1. $48 \mod 18 = 12 \rightarrow FPB(18, 12)$
- 2. $18 \mod 12 = 6 \rightarrow FPB(12, 6)$
- 3. $12 \mod 6 = 0 \rightarrow FPB = 6 \text{ Jawaban: } 6$

FPB(119, 544)

- 1. $544 \mod 119 = 68$
- $2. 119 \mod 68 = 51$
- 3. $68 \mod 51 = 17$
- 4. $51 \mod 17 = 0$

$$FPB = 17$$

Kombinatorika

oil r:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Permutasi dari n objek berbeda:

$$P_n = n!$$

Permutasi sebagian (mengambil r dari n):

$$P(n,r) = rac{n!}{(n-r)!}$$