Exo 3.1.2

$\mathbf{Q}\mathbf{1}$

Cours: $\|\overrightarrow{f_d}\| < \|\overrightarrow{f_s}\|$. Donc $k_d < k_s$.

$\mathbf{Q2}$

Cours: $\tan \alpha_l = k_s$

$\mathbf{Q3}$

Comme l'objet est soumis qu'à la gravité et au frottement dynamique k_d , l'acceleration est par conséquent constante. Donc la distance parcourue $x(t) = \frac{1}{2}.a.t^2$.

Il faut maintenant trouver la valeur de a. La force de frottement cinématique f_c est égale à $k_c.\overrightarrow{f_n}$ avec $f_n=m.g.\cos\alpha$, la force due a la gravité sur l'axe x est $m.g.\sin\alpha$. Donc, la force resultante est $m.g.\sin\alpha-k_c.m.g.\cos\alpha=m.a$. Donc $a=g(\sin\alpha-k_c.\cos\alpha)$ et $x(t)=\frac{1}{2}g(\sin\alpha-k_c.\cos\alpha).t^2$