Bias-Variance-Noise Decomposition

By: Behzad Asadi

Generalization Error Decomposition

Training: Consider the training dataset

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\},\$$

where samples are drawn i.i.d. according to the distribution $p(\mathbf{x}, y)$. We fit a learner to this dataset which estimates the dependent variable, y_i , using explanatory variables, \mathbf{x}_i .

Expected Test Error: Assuming a regression problem with squared error loss where $h_D(\mathbf{x})$ is the regression function, the expected test error is defined as

$$E_{\left(\mathbf{x},y\right) \sim p\left(\mathbf{x},y\right) \atop D \sim p^{n}\left(\mathbf{x},y\right)} \left[\left(h_{D}(\mathbf{x})-y\right)^{2} \right] = \int_{D} \int_{\mathbf{x}} \int_{y} (h_{D}(\mathbf{x})-y)^{2} p(\mathbf{x},y) p(D) d_{\mathbf{x}} d_{y} d_{D}$$

where training points, D, and test points, (\mathbf{x}, y) , are independent from each other. The expected test error can be divided into three terms as

$$\begin{split} E_{\mathbf{x},y,D} \left[\left(h_D(\mathbf{x}) - y \right)^2 \right] &= E_{\mathbf{x},y,D} \left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) + \bar{h}(\mathbf{x}) - y \right)^2 \right] \\ &= E_{\mathbf{x},D} \left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right)^2 \right] + E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - y \right)^2 \right] \\ &+ 2 E_{\mathbf{x},y,D} \left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right) \left(\bar{h}(\mathbf{x}) - y \right) \right] \end{split}$$

where $\bar{h}(\mathbf{x})$ is the expected model

$$\bar{h}(\mathbf{x}) = E_D[h_D(\mathbf{x})] = \int_D h_D(\mathbf{x})p(D)d_D.$$

Generalization Error Decomposition

The term $E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x})\right)\left(\bar{h}(\mathbf{x}) - y\right)\right]$ is equal to zero

$$\begin{split} E_{\mathbf{x},y,D} \left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right) \left(\bar{h}(\mathbf{x}) - y \right) \right] \\ &= E_{\mathbf{x},y} \left[E_D \left[h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right] \left(\bar{h}(\mathbf{x}) - y \right) \right] \\ &= E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{h}(\mathbf{x}) \right) \left(\bar{h}(\mathbf{x}) - y \right) \right] \\ &= 0. \end{split}$$

The term $E_{\mathbf{x},y}\left[\left(\bar{h}(\mathbf{x})-y\right)^2\right]$ can be similarly divided into three terms as

$$E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - y \right)^2 \right] = E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(x) + \bar{y}(x) - y \right)^2 \right]$$

$$= E_{\mathbf{x}} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(x) \right)^2 \right] + E_{\mathbf{x},y} \left[\left(\bar{y}(x) - y \right)^2 \right]$$

$$+ 2E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(x) \right) \left(\bar{y}(x) - y \right) \right],$$

where $\bar{y}(\mathbf{x})$ is the expected label given \mathbf{x} , calculated as $\bar{y}(\mathbf{x}) = \int_y y p(y \mid \mathbf{x}) dy$, and the last term is equal to zero

$$\begin{split} E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(x) \right) \left(\bar{y}(x) - y \right) \right] &= E_{\mathbf{x}} E_{y|\mathbf{x}} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(x) \right) \left(\bar{y}(x) - y \right) \right] \\ &= E_{\mathbf{x}} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(x) \right) E_{y|\mathbf{x}} \left[\bar{y}(x) - y \right] \right] \\ &= E_{\mathbf{x}} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(x) \right) \left(\bar{y}(x) - \bar{y}(x) \right) \right] \\ &= 0. \end{split}$$

Generalization Error Decomposition

Therefore, we can write the expected test error as

$$\begin{split} E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x})-y\right)^2\right] &= \\ \underbrace{E_{\mathbf{x},D}\left[\left(h_D(\mathbf{x})-\bar{h}(\mathbf{x})\right)^2\right]}_{\text{Variance}} + \underbrace{E_{\mathbf{x}}\left[\left(\bar{h}(\mathbf{x})-\bar{y}(x)\right)^2\right]}_{\text{Bias}^2} + \underbrace{E_{\mathbf{x},y}\left[\left(\bar{y}(x)-y\right)^2\right]}_{\text{Noise}} \end{split}$$

Variance: This part shows changes in the classifier as the result of changes in the training dataset. It is high when we have overfitting, and the learner is over-specialized to the training dataset.

Bias: This part shows the error even when we have infinite training data. It is high when we have underfitting.

Noise: This is due to the noise in the data.

References

- Kilian Weinberger, Lecture Notes, https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html.
- 2. Kevin P. Murphy, Machine Learning: A Probabilistic Perspective.
- Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning.