CSE 546 HW1

DAVID FLEMING

Contents

Question 1	1
1.1	1
1.2	1
1.3	2
Question 2	3
2.1	3
2.2	3
2.3	3

Question 1

1.1. Since

(1)
$$E[X] = \int max(X_1, X_2) f(x) dx_1 dx_2$$

where f(x) = 1 is the PDF for the uniform random variates. We consider two regions, one below the line defined by $X = X_1 = X_2$ and one above said line for our integrations. This gives us the following integral:

(2)
$$E[X] = \int_0^1 \int_{x_2}^1 x_1 dx_1 dx_2 + \int_0^1 \int_{x_1}^1 x_2 dx_2 dx_1$$
$$= \int_0^1 (\frac{1}{2} - \frac{1}{2}x_2^2) dx_2 + \int_0^1 (\frac{1}{2} - \frac{1}{2}x_1^2) dx_1$$
$$= (\frac{1}{2}x_2 - \frac{1}{6}x_2^2)|_0^1 + (\frac{1}{2}x_1 - \frac{1}{6}x_1^2)|_0^1$$
$$= \frac{2}{3}$$

1.2. Since

(3)
$$Var[X] = E[X^2] - E[X]^2$$

and we now know E[X] = 2/3, we solve the integral presented above but with the integrand squared as follows

$$E[X^{2}] = \int_{0}^{1} \int_{x_{2}}^{1} x_{1}^{2} dx_{1} dx_{2} + \int_{0}^{1} \int_{x_{1}}^{1} x_{2}^{2} dx_{2} dx_{1}$$

$$= \int_{0}^{1} \left(\frac{1}{3} - \frac{1}{3}x_{2}^{3}\right) dx_{2} + \int_{0}^{1} \left(\frac{1}{3} - \frac{1}{3}x_{1}^{3}\right) dx_{1}$$

$$= \left(\frac{1}{3}x_{2} - \frac{1}{12}x_{2}^{4}\right)|_{0}^{1} + \left(\frac{1}{3}x_{1} - \frac{1}{12}x_{1}^{4}\right)|_{0}^{1}$$

$$= \frac{1}{2}$$

which when combined with the definition for Var[X] gives

(5)
$$Var[X] = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{18}$$

1.3. Since

(6)
$$Cov[X, X_1] = E[XX_1] - E[X]E[X_1]$$

and we know E[X] from 1.1 and $E[X_1] = 1/2$ is the trivial result for the uniform distribution from [0, 1], we need only calculate the first term as follows:

(7)
$$E[XX_1] = \int_0^1 \int_{x_2}^1 x_1^2 dx_1 dx_2 + \int_0^1 \int_{x_1}^1 x_2 x_1 dx_2 dx_1$$

$$= \int_0^1 (\frac{1}{3} - \frac{1}{3}x_2^3) dx_2 + \int_0^1 x_1 (\frac{1}{2} - \frac{1}{2}x_1^2) dx_1$$

$$= (\frac{1}{3}x_2 - \frac{1}{12}x_2^4)|_0^1 + (\frac{1}{4}x_1^2 - \frac{1}{8}x_1^4)|_0^1$$

$$= \frac{3}{8}$$

giving us

(8)
$$Cov[X, X_1] = E[XX_1] - E[X]E[X_1] = \frac{3}{8} - \frac{21}{32} = \frac{1}{24}$$

Note: For this question, I collaborated with Matt Wilde.

QUESTION 2

2.1. For the log-likelihood of G given λ and i.i.d. samples, we have

(9)

$$LL = \log (P(G|\theta))$$

$$= \Pi_i^n P(G_i|\theta)$$

$$= \log \left(\frac{\lambda^{\sum_i^n k_i} e^{-\lambda n}}{\Pi_i^n k_i!}\right)$$

$$= \sum_i^n k_i \log \lambda - \lambda n - \log \Pi_i^n k_i!$$

2.2. To compute the MLE for λ in general,

(10)
$$\frac{\partial}{\partial \lambda} \left[LL \right] = 0$$

which yields

(11)
$$0 = \frac{\partial}{\partial \lambda} \left(\sum_{i=1}^{n} k_{i} \log \lambda - \lambda n - \log \prod_{i=1}^{n} k_{i}! \right)$$
$$= \frac{\sum_{i=1}^{n} k_{i}}{\lambda} - n$$
$$\hat{\lambda}_{MLE} = \frac{\sum_{i=1}^{n} k_{i}}{n}$$

2.3. For the observed set G, I use Eqn. 11 to compute λ_{MLE} as

(12)
$$\hat{\lambda}_{MLE} = \frac{4+1+3+5+5+1+3+8}{8} = 3.75$$

Note: For this question, I collaborated with Matt Wilde.