

MATEMÁTICAS

MATEMÁTICAS DISCRETAS

Tarea 2

Alexander Mendoza 6 de octubre de 2023

Tarea 2

1. Sean $f:A\to B$ y $g:C\to D$ funciones. Se define la función

$$f \times g : A \times C \to B \times C$$

por $(f \times g)(a,c) = (f(a),g(c))$, para cada $(a,c) \in A \times C$. Demuestre que $f \times g$ es biyectiva, si y sólo si f y g son biyectivas.

Demostración. Empecemos demostrando que si $f \times g$ es biyectiva, entonces $f \ y \ g$ son biyectivas.

Demostremos primero que las funciones son inyectivas. Supongamos que $f \times g$ es biyectiva. Luego, sean $a_1, a_2 \in A$ y $c_1, c_2 \in C$ tal que se cumple que $f(a_1) = f(a_2)$ y $g(c_1) = g(c_2)$. Luego tenemos lo siguiente

$$(f(a_1), g(c_1)) = (f(a_2), g(c_2))$$
 Por definición de par ordenado.
 $(f \times g)(a_1, c_1) = (f \times g)(a_2, c_2)$ Por definición de $f \times g$
 $(a_1, c_1) = (a_2, c_2)$ Por biyectividad de $f \times g$

De esto concluímos que $a_1 = a_2$ y $c_1 = c_2$, esto por definición de par ordenado. Por lo tanto f y g son inyectivas.

Demostremos ahora que las funciones son sobreyectivas. Supongamos que $f \times g$ es biyectiva. Luego, sean $b \in B$ y $d \in D$, luego $(b,d) \in B \times D$ por definición de producto cartesiano. Así, por biyectividad de $f \times g$, existe $(a,c) \in A \times C$ tal que $(f \times g)(a,c) = (b,d)$, con esto tenemos lo siguiente

$$(f\times g)(a,c)=(b,d)$$

$$(f(a),g(c))=(b,d)$$
 Por definición de $f\times g$

Por definición de par ordenado, podemos concluir que f(a) = b y g(c) = d. Por lo tanto f y g son sobreyectivas. Como ambas son inyectivas y sobreyectivas, entonces f y g son biyectivas.

2. Sean $f: X \to Y$ una función. Se define $\hat{f}: \mathcal{P}(X) \to \mathcal{P}(Y)$ por: $\hat{f}(A) = f(A)$, para cada $A \subseteq X$. Demuestre que f es biyectiva si y sólo si \hat{f} es biyectiva.

Demostración. Demostremos primero que si f es biyectiva, entonces \hat{f} también lo es.

Sea f biyectiva y sean $A_1, A_2 \in \mathcal{P}(X)$ tal que $\hat{f}(A_1) = \hat{f}(A_2)$, con esto tenemos lo siguiente

$$\hat{f}(A_1) = \hat{f}(A_2)$$

$$f[A_1] = f[A_2]$$
 Por definición de \hat{f}
$$A_1 = A_2$$
 Por biyectividad de f

Así \hat{f} es inyectiva. Demostremos ahora sobreyectividad. Sea $B \in \mathcal{P}(Y)$, luego $B \subseteq Y$, así existe $A \in X$ tal que f[A] = B, esto por sobreyectividad de f. De esta manera $f[A] = \hat{f}(A) = B$, por lo tanto \hat{f} es sobreyectiva.

Con esto tenemos que \hat{f} es biyectiva.

Sigamos ahora con la demostración de la recíproca. Supongamos que \hat{f} es biyectiva y sean $a_1, a_2 \in X$ tal que $f(a_1) = f(a_2)$, luego $f[\{a_1\}] = f[\{a_2\}]$. Así por definición de \hat{f} , $\hat{f}(\{a_1\}) = \hat{f}(\{a_2\})$, como \hat{f} es inyectiva, tenemos que $\{a_1\} = \{a_2\}$, así $a_1 = a_2$. Por lo tanto f es inyectiva.

Demostremos ahora la sobreyectividad de f. Sea $b \in Y$, luego $\{b\} \in \mathcal{P}(Y)$, así, por sobreyectividad de \hat{f} , existe $A \in \mathcal{P}(X)$ tal que $\hat{f}(A) = \{b\}$, por definición de función y de igualdad de conjuntos, A contiene un único elemento, sea este a, luego

$$\begin{split} \hat{f}(\{a\}) &= \{b\} \\ f[\{a\}] &= \{b\} \\ f(a) &= b \end{split} \qquad \text{Por definición de imagen directa} \end{split}$$

De esta manera, f es sobreyectiva. Por lo tanto f es biyectiva.

Veamos el recíproco ahora, sea f biyectiva y sean $A_1, A_2 \in \mathcal{P}(X)$ tal que $\hat{f}(A_1) = \hat{f}(A_2)$. Con esto tenemos

$$f(A_1) = f(A_2)$$
 Definición de \hat{f}
 $A_1 = A_2$ Biyectividad de f

Así f es inyectiva.

Para demostrar sobreyectividad, sea $B \in \mathcal{P}(Y)$. Luego sabemos que $B \subseteq (Y)$, como f es biyectiva, tenemos que para todo $b \in B$ existe $a \in X$ tal que f(a) = b, seas A el conjunto que contiene a todos estos a, luego f(A) = B, por definición de $\hat{f}, \hat{f}(A) = B$.

De esta manera \hat{f} es bivectiva.

3. Sea $f:X\to Y$ una función. $A,B\subseteq X$ y $C,D\subseteq Y$. Demuestre que:

- a) Si $A \subseteq B$, entonces $f(A) \subseteq f(B)$.
 - **Demostración.** Sea $a' \in f(A)$, luego a' = f(a) para algún $a \in X$, luego, por hipótesis, $a \in B$, así $f(a) \in f(B)$ lo cual implica que $a' \in f(B)$. Por lo tanto $f(A) \subseteq f(B)$.
- b) Si $C \subseteq D$, entonces $f^{-1}(C) \subseteq f^{-1}(D)$. **Demostración.** Sea $x \in f^{-1}(C)$, luego $f(x) \in C$, por hipótesis tenemos que $f(x) \in D$, luego $x \in f^{-1}(D)$. Por lo tanto $f^{-1}(C) \subseteq f^{-1}(D)$.
- 4. Sea $f:X\to Y$ una función. Considere la relación sobre $X:a\sim b$ si f(a)=f(b).
 - a) Demuestre que esta es una relación de equivalencia

Para demostrar que es una relación de equivalencia debemos demostrar que es reflexiva, transitiva y simétrica.

Reflexividad. Sea $a \in X$, luego f(a) = f(a) por definición de función, luego $a \sim a$. Por lo tanto es reflexiva.

Transitividad. Sean $a, b, c \in X$ tal que $a \sim b$ y $b \sim c$, luego f(a) = f(b) y f(b) = f(c), así f(a) = f(c), esto por transitividad de igualdad, luego $a \sim c$. Por lo tanto es transitiva.

Simetría. Sean $a, b \in X$, tal que $a \sim b$, luego f(a) = f(b), por simetría de igualdad, f(b) = f(a), así $b \sim a$. Por lo tanto es simétrica.

- b) Para la función $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2 + x 6$, encuentre $\mathbb{R}/_{\sim}$.
- 5. considere (\mathbb{N},\leq) con el orden usual. Sobre $\mathbb{N}\times\mathbb{N}$ se define la relación: $(a,b)\preceq(c,d)$ si $a\leq c$ y $b\leq d$.
 - a) Demuestre que esta es una relación de orden sobre $\mathbb{N} \times \mathbb{N}$

Demostración. Para demostrar que es una relación de orden, debemos demostrar que es reflexiva, transitiva y antisimétrica.

Reflexividad. Sea $(a,b) \in \mathbb{N} \times \mathbb{N}$, luego $a \leq a$ y $b \leq b$, por lo tanto $(a,b) \prec (a,b)$.

Transitividad. Sea $(a,b),(c,d),(x,y) \in \mathbb{N} \times \mathbb{N}$ tal que $(a,b) \leq (c,d)$ y $(c,d) \leq (x,y)$, luego $a \leq c, b \leq d, c \leq x$ y $d \leq y$, esto por definición de orden de parejas ordenadas. Por transitividad de la igualdad, $a \leq x$ y $b \leq y$, por lo tanto $(a,b) \leq (x,y)$

Antisimetría. Sean $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$ tal que $(a,b) \leq (c,d)$ y $(c,d) \leq (a,b)$, luego $a \leq c$, $c \leq a$, $b \leq d$ y $d \leq b$, por antisimetría del orden de los naturales, a = c y b = d, luego por definición de igualdad de parejas ordenadas tenemos (a,b) = (c,d).

b) ¿Es un orden total?, ¿un buen orden?, ¿hay primer elemento?, ¿hay elementos maximales?.

Orden total. Sean $(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$, por $a,b,c,d \in \mathbb{N}$, por tricotomía tenemos que aleqc o c < a y $b \le d$ o b < d. Consideremos el caso en el que c < a y $b \le d$, con esto, $(a,b) \not\preceq (c,d)$. Por lo tanto no es orden total.

Buen orden. Sea $A \subseteq \mathbb{N} \times \mathbb{N}$ y sean $B = \{b \in \mathbb{N} | (\exists c \in \mathbb{N})((b,c) \in A)\}$ y $C = \{c \in \mathbb{N} | (\exists c \in \mathbb{N})((b,c) \in A)\}$. Luego $C, B \subseteq \mathbb{N}$, por el principio del buen orden, C y B son bien ordenados, esto es que existe $b' \in B$ tal que $b' \leq x$ para todo $x \in B$, y de manera similar, existe $c' \in C$ tal que $c' \leq x$ para todo $x \in C$, luego $(b',c') \preceq (x,y)$, por lo tanto $(b',c') \preceq (x,y) \in A$.

Primer elemento. Si $0 \in \mathbb{N}$, el primer elemento es (0,0).

Elemento maximal. No hay elementos maximales.

c) Para $A = \{(1,1), (1,2), (3,4), (2,2), (5,9), (5,4)\}$, encuentre: $A_*, A^*, Sup(A)$ e Inf(A).

$$B^* = \{(a, b) \in \mathbb{N} \times \mathbb{N} | a \ge 5 \land b \ge 9\}$$

$$B_* = \{(1, 1)\}$$

$$Sup(B) = (5, 9)$$

$$Inf(B) = (1, 1)$$