Microprocessor Micro Syllabus BSc. CSIT, IOST, TU

Microprocessor

Course Title: Microprocessor

Course No: CSC162

Full Marks: 60 + 20 + 20

Pass Marks: 24 + 8 + 8

Nature of the Course: Theory + Lab Credit Hrs: 3

Semester: II

Course Description: This course contains fundamental concepts of Microprocessor operations, basic I/O interfaces and Interrupts operations.

Course Objectives: The course objective is to introduce the operation, programming and application of microprocessor.

Course Contents:

Unit 1: Introduction (4 Hrs.)

- Definition of microprocessor and its application
- Evolution of microprocessor, Von Neumann and Harvard architecture
- Components of microprocessor
 - Microprocessor: Arithmetic and Logic Unit (ALU), Control Unit (CU), Registers
 - Memory
 - Input / Output
- System Bus: Data, Address and Control Bus
- Microprocessor with Bus Organization

Unit 2: Basic Computer Architecture (7 Hrs.)

- 8085 Microprocessor Architecture and Operations
 - Address, Data And Control Buses
 - Internal Data Operation and Registers
 - Externally Initiated Operations
 - Addressing Modes
 - Memory and Memory Operations
 - Flag and Flag Register
 - 8085 Pin Diagram and Functions
 - Multiplexing and De-multiplexing of address/data bus
 - Generation Of Control Signals
- 8086 Microprocessor

- Logical Block Diagram
- Segment Registers,
- Memory Segmentation
- Bus Interface Unit and Execution Unit
- Pipelining

Unit 3: Instruction Cycle (3 Hrs.)

- Instruction Cycle, Machine Cycle and T-states
 - Machine Cycle of 8085 Microprocessor: op-code fetch, memory read, memory write, I/O read, I/O write, interrupt
- Fetch and Execute Operation, Timing Diagram
 - Timing Diagram of MOV, MVI, IN, OUT, LDA, STA
- Memory Interfacing and Generation of Chip Select Signal

Unit 4: Assembly Language Programming (10 Hrs.)

- Programming with Intel 8085 Microprocessor
 - Instruction and Data Format
 - Mnemonics and Operands
 - Instruction Sets
 - Data Transfer:- MOV, IN, OUT, STA, LDA, LXI, LDAX, STAX, XCHG
 - Arithmetic and Logic:- ADD, SUB, INR, DCR, AND, OR, XOR, CMP, RLC, RRC, RAL, RAR
 - Branching:- JMP, JNZ, JZ, JNC, JC, CALL
 - Stack:- PUSH, POP
 - Multiplication and Division
 - Simple Sequence Programs, Branching, Looping
 - Array(Sorting) and Table Processing
 - Decimal to BCD Conversion
- Programming with Intel 8086 microprocessor
 - Macro Assembler
 - Assembling and Linking
 - Assembler Directives, Comments
 - Instructions: LEA, MUL, DIV, LOOP, AAA, DAA
 - INT 21H Functions
 - 01H, 02H, 09H, 0AH, 4CH
 - INT 10H Functions (Introduction Only)
 - 00H, 01H, 02H, 06H, 07H, 08H, 09H, 0AH

- Simple String and Character Manipulation Programs
- Debugging

Unit 5: Basic I/O, Memory R/W and Interrupt Operations (6 Hrs.)

- Memory mapped I/O, I/O Mapped I/O and Hybrid I/O
- Direct Memory Access (DMA)
 - Introduction, Advantage and Application
 - 8237 DMA Controller and Interfacing
- Interrupt
 - 8085 Interrupt Pins and Priority
 - Maskable and Non-maskable Interrupts
 - RST Instructions
 - Vector and Polled Interrupt
- 8259 Interrupt Controller
 - Block Diagram and Explanation
 - Priority Modes and Additional Features

Unit 6: Input/ Output Interfaces (6 Hrs.)

- Parallel Communication Introduction and Applications
- Serial Communication
 - Introduction and Applications
 - Introduction to Programmable Communication Interface 8251
 - Basic Concept of Synchronous and Asynchronous Modes
- Simple I/O, Strobe I/O, Single handshake I/O, Double handshake I/O
- 8255A and it's Working
 - Block Diagram
 - Modes of Operation
 - Control Word
- RS-232 Introduction, Pin Configuration (9 pin and 25 pin) and function of each pin, Interconnection between DTE-DTE and DTE-DCE

Unit 7: Advanced Microprocessors (9 Hrs.)

- 80286: Architecture (Block Diagram), Registers, (Real/Protected mode), Privilege Levels, Descriptor Cache, Memory Access in GDT and LDT, Multitasking, Addressing Modes, Flag Register
- 80386: Architecture (Block Diagram), Register organization, Memory Access in Protected Mode, Paging (Up to LA to PA)

Laboratory Works:

The laboratory work includes Assembly language programming using 8085/8086/8088 trainer kit. The programming should include: Arithmetic operation, base conversion, conditional branching etc. The lab work list may include following concepts:

- 1. Assembly language program using 8085 microprocessor kit and 8085 microprocessor simulator.
- 2. Use of all types of instructions and addressing modes.
- 3. Program including basic arithmetical, logical, looping, bitwise and branching.
- 4. Assembly language programming using 8086 microprocessor emulator, using any types of Assembler, including the different functions of 21H.

Text Books:

1. Ramesh S.Gaonkar, Microprocessor Architecture, Programming, and Applications with 8085. Prentice Hall

Reference Books:

- 1. A.P.Malvino and J.A.Brown, Digital Computer Electronics, 3rd Edition, Tata McGraw Hill D.V.Hall, Microprocessors and Interfacing—Programming and Hardware, McGraw Hill
- 2. 8000 to 8085 Introduction to 8085 Microprocessor for Engineers and Scientists, A.K.Gosh, Prentice Hall

Model Question

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60

Microprocessor (CSC 162) Pass Marks: 24

Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable.

The figures in the margin indicate full marks.

Group A (Long Answer Question Section)

Attempt any TWO questions.

(2x10=20)

- 1. Draw logical block diagram of 8086 microprocessor and explain its segmented memory structure.
- 2. What is machine cycle and instruction cycle? Draw a timing diagram for STA 2000h memory instruction. (Choose any memory locations for loading STA 2000h instruction)

3. Write an assembly language program to sort an array in ascending order using 8 bit microprocessor. (Assume appropriate array data and address where minimum array size of 10 should be considered)

Group B (Short Answer Question Section)

Attempt any EIGHT questions.

(8x5=40)

- 4. Draw pin diagram of 8085 microprocessor with appropriate labelling.
- 5. Specify the output in PORT1 after the execution of the following program. Write comments for each instruction.

MVI A, AAH

MOV B, A

RRC

XRA B

OUT PORT1

HLT

- 6. What is DMA? Explain the sequence of events that occurs during DMA operation?
- 7. What is addressing mode? Explain different addressing mode in 8085 microprocessor.
- 8. Write a program to reverse a given a string using 16 bit microprocessor.
- 9. Explain memory interfacing in 8085 microprocessor along with appropriate diagram.
- 10. What are different operating modes in 80286 microprocessor? Explain in brief about each mode.
- 11. "Interrupt based I/O is efficient compared to polled I/O". Justify this statement with general working mechanism in both methods.
- 12. Write Short Notes (Any Two):
 - a) Macro Assembler
 - b) BSR Mode
 - c) System Bus