EE2160 CAD LABORATORY - PYTHON EXERCISE 2

Matrix Algebra

- 1. Create a Python program that generates a random matrix based on the following user inputs obtained during run-time:
 - matrix dimensions
 - probability distribution
 - matrix structure identity, diagonal, bi-diagonal, block diagonal, symmetric, skew-symmetric, Toeplitz, circulant, sparse, stochastic, and doubly stochastic
 - if block diagonal or sparse, input block-sizes or sparsity factor (number of non-zero elements), respectively

Write the generated matrices to a file.

- 2. Create a Python program that reads matrices from a file and does the following:
 - (a) Matrix addition, multiplication, Kronecker product, Hadamard product, pseudo-inverse
 - (b) Computation of determinant, rank, Eigen values, Eigen vectors
 - (c) Computation of p-norm, where the value of p > 1 is given by the user

Append the results to the file containing the matrices.

- 3. Create a Python program that reads a matrix $\bf A$ and vector $\bf b$ from a file and computes:
 - (a) \mathbf{x} that solves $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - (b) if not solvable, then gives an error message
 - (c) if there are many solutions, then gives the least squares solution