Consider the data

$$\bullet \qquad \Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

- A string of symbols in Σ, gives 3 rows of 0s and 1s.
- · Each row to be a binary number
- $B = \{ w \in \Sigma_3^* \text{ the bottom row of } w \text{ is the same of the top two row } \}$ is the language over Σ_3 .

Already know that "regular languages are closed under reversal".

Then, if prove that B^{R} is regular, then automatically B is regular and vice—versa. So, first have to prove that B^{R} is regular.

A language is said to be regular if some automaton recognizes it.

Let M be the automaton that recognizes B^{R} .

- M has 2 states.
- (i) ϵ_0 , which denotes that the string that we have read so for leads to a carry

0

(ii) c_1 , that stands for carry 1.

Now
$$M = (Q, \Sigma, \delta, q_0, F)$$

Where
$$Q = \{c_0, c_1\}$$

$$\Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \dots \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

$$q_0 = c_0$$

= start state

$$F = \{c_0\}$$

= set of final states.

 δ is given as:

•
$$\delta(c_0, a) = c_0 \text{ if } a = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

•
$$\delta(c_0, a) = c_1$$
 if $a = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

•
$$\delta(c_1, \alpha) = c_1 \text{ if } \alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ or } \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

•
$$\delta(c_1, a) = c_0$$
 if $a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

All other arrows go to trap state. Then, the defined a automation M to recognize B^{E} . Therefore B^{E} is a regular language. As B^{E} is regular, B is also a regular language.