参考如下:

Xiaojie雷达之路---profile、chirp、advframe、frame的设置及关系

/mss/Source/system/hal/RF/cfg_Ext.h

```
extern void Cfg_AdvFrameCfgInitParams (rlAdvFrameCfg_t* ptrAdvFrameCfg);
extern void Cfg_FrameCfgInitParams (rlFrameCfg_t* ptrFrameCfg);
extern void Cfg_ProfileCfgInitParams (uint8_t profileNum, rlProfileCfg_t*
ptrProfileCfg);
extern void Cfg_ChirpCfgInitParams (uint32_t chirpNum, rlChirpCfg_t* ptrChirpCfg);
extern void Cfg_LowPowerModeInitParams (rlLowPowerModeCfg_t* ptrLowPowerMode);
extern void Cfg_ChannelCfgInitParams (rlChanCfg_t* ptrChannelCfg);
extern void Cfg_ADCOutCfgInitParams (rlAdcOutCfg_t* ptrADCOutCfg)
```

/MSS_2944/Source/system/hal/RF/cfg.c

AdvFrameCfg

```
/**

* @b Description

* @n

* The function initializes the frame configuration with the default

* parameters.

*

* @param[out] ptrAdvFrameCfg

* Pointer to the adavance frame configuration

*意思是: 高级帧配置数据的指针容器

* @retval

* Not applicable

*/

void Cfg_AdvFrameCfgInitParams (rlAdvFrameCfg_t* ptrAdvFrameCfg)
```

函数功能:

这个函数允许在mmWave前端配置高级帧。高级帧是一系列的chirp以及这个序列如何随着时间的推移而重复。==用户首先需要定义一个profile和一系列的chirps(与profile相关)。然后,该函数

定义如何对这些chirp进行排列。==多个chirp被循环产生一个脉冲。可以将多个burst分组以创建sub-frame。多个sub-frame(最多4个)可以分组以创建高级帧。该函数可以定义高级帧的属性,如子帧中的burst的数量、burst中的chirps和loops的数、要发送的sub-frame序列、要发送的frames的数量,帧的周期性和触发方法。这个API在内部要调用两个API,一个调用RadarSS及进行传感器配置,另一个调用MasterSS进行数据路径的配置。

为了提供frame中chirp的最大灵活性,advanced frame提供了将frame分解为不同的 subframe (最多四个?),每个sub-frame由多个burst组成(多达64次),每个burst最多 可以由512个不同的chirp组成,每个chirp要与4个profile中的一个关联

FrameCfg

(未用到,用到了advframecfg)

函数功能:

此函数允许在毫米波前端配置FMCW帧。一帧基本上是一系列的chirp,以及这种序列如何随着时间的推移而重复。用户首先需要定义一个profile和一组chirp(与一个profile相关联)。然后,这个函数定义如何对这些chirps进行排序。同一个chirp可以简单的循环以创建一个大的FMCW帧,或者可以对多个独特的chirp进行排序来创建帧,Chirp Start和end Index定义了如何在一个帧中对它们进行排序。该API还允许配置要传输的帧数,帧的周期性和触发器方法。触发方法可以是基于SW-API的触发器或基于HW-SYNC-IN的触发器。这个API内部调用两个API,一个调用RadarSS进行使感器配置,另一个调用MasterSS进行数据路径配置

Profilecfg

```
/**

* @b Description

* @n

* The function initializes the profile configuration with the default

* parameters.

* @param[in] profileNum

* Profile number to be initialized

* @param[out] ptrProfileCfg

* Pointer to the profile configuration

* @retval

* Not applicable

* 函数功能:

* 这个函数用于设置mmWave Front end的chirp profilecfg, 一个profile就像一个模板,

* 其中包含有关FMCW信号的粗略信息,如起始频率、chirp斜率、chirp持续时间、发生功能等。

* API允许通过将profile数组与profile计数一起传递来设置多个profiles

*/

void Cfg_ProfileCfgInitParams (uint8_t profileNum, rlProfileCfg_t* ptrProfileCfg)
```

2944:

profile0

idle time	ADC Vavid start time	Ramp End Time	TX_start time	Тс
3	3	57	1	57+3=60

profile1

idle time	ADC Vavid start time	Ramp End Time	TX_start time	Тс
3	3	44	1	3+44=47

profile2,3未用到

其他factor同上

Chirpcfg

```
* @b Description
      The function initializes the chirp configuration with the default
      parameters.
* @param[out] chirpNum
      Chirp Number to be configured
* @param[out] ptrChirpCfg
      Pointer to the chirp configuration
* @retval
      Not applicable
* 函数功能:
* 此函数用于在chirp profile的顶部设置chirp到chirp的变化,用于首先应该使用
* Cfg_ProfileCfgInitParams定义一个profile。然后,这个Cfg_ChirpCfgInitParams函数
* 通过将chirp与Cfg_ProfileCfgInitParams API
* 中定义的特定的profile关联起来配置chirp。此外,用户能使用此API定义profile中的
* 参数的精细抖动。此配置使用的抖动只是Cfg ProfileCfgInitParams中编程参数的附加值。
* 此API允许配置1个到512个chirp。它还允许配置每个chirp使用哪些发射通道
*/
void Cfg_ChirpCfgInitParams (uint32_t chirpNum, rlChirpCfg_t* ptrChirpCfg)
```

注意:

可以设置多达512个独特的chirp,能被存储在毫米波前端的专用存储器中。因此,用户不需要再运行时对chirp进行编程。也可以使用Cfg_FrameCfgInitParams再一个帧中对这些chirp进行排序,以产生更大的FMCW信号。

天线排列见《2944_750M波形.xlsx》

四者(profile、chirp、advframe、frame)总结

如您所见,根据所需的应用,chirp配置需要进行不同的设置。但是如果我们需要同时支持多种模式,例如短程和中程,怎么板使用单一雷达设备?Tl雷达的advanced frame配置允许在一个frame中可以有多个chirp配置的灵活性。frame可以使用"sub frame"序列,其中每个sub-frame代表不用的雷达模式。这个rlSetAdvFrameConfig帮助启用这种配置。有关详细信息,请参见在DPF包中的"毫米波雷达接口控制文件"

该帧由最多四个这样的sub frame构成,并且每个子帧可以具有不同的chirps。不同的chirps也可以使用不同的发射机(可能有不同的天线配置)。图9显示了不同的chirp配置文件和子帧的示例可以形成一个帧。 advanced frame的时序要求如下: inter-burst时间应>=50usec, inter subframe时间应为>=100usec, 帧间时间为>=200usec。

profile是chirp的模板,profile只是对chirp进行粗略的配置,而对chirp进行配置的时候,可以通过指定profileId来确定要指定哪一个profile,advframe和frame的区别在于frame只能由chirp构成,而advframe由subframe组成,而subframe由burst组成,burst由chirp组成,下图两幅图说明advframe和frame的区别.

Implementing MIMO Radar on mmWave Sensors

下图11显示了为TDM-MIMO操作配置设备的步骤,图12显示了为BPM-MIMO操作配置设备的步骤。有关与轮廓、啁啾和帧配置对应的消息描述,请参见

2944定义了3个profile0, 1, 3

定义了512个chirp,分别匹配了三个profil和4个RX channel

