Números índices

Prof. Regis Augusto Ely

Departamento de Economia Universidade Federal de Pelotas (UFPel)

Setembro 2011 - Revisão Janeiro 2013

1 Números índices

Os números índices são indicadores que medem alterações entre grandezas do mesmo tipo ou variações entre grandezas diferentes. Ex: evolução de preços, salários, etc.

1.1 Índice simples de preço

Se quisermos calcular alterações no preço de apenas um produto, então, sendo P_t o preço no período t, e P_0 o preço no período 0, temos:

$$I_{t/0} = \frac{P_t}{P_0} \times 100 \tag{1}$$

O período 0 é chamado de **período base**. O período t é chamado **período corrente**. Note que o valor dos índices em qualquer período corrente (t=1,2,3,...) são calculados em função do período base 0. O valor do índice no período base é sempre 100, visto que $I_{0/0} = \frac{P_0}{P_0} \times 100$.

 $I_{0/0} = \frac{\dot{P}_0}{P_0} \times 100$. Se tivermos n produtos diferentes, para calcular o valor do índice em cada período de tempo podemos somar os preços no período corrente e no período base, construindo um **índice simples de preço agregado**:

$$I_{t/0} = \frac{\sum_{i=1}^{n} P_{i,t}}{\sum_{i=1}^{n} P_{i,0}} \times 100 \tag{2}$$

As propriedades desse índice simples de preço são:

1. Transitividade: $I_{t/0} = I_{t/k} \times I_{k/0}$, com t > k > 0

2. Reversibilidade: $I_{t/0} = \frac{1}{I_{o/t}}$

3. Encadeamento:
$$I_{t/0} = I_{t/(t-1)} \times I_{(t-1)/(t-2)} \times \cdots \times I_{1/0} = \sum_{j=1}^{t} I_{j/(j-1)}$$

No índice simples de preço, todos os preços têm o mesmo peso. É natural ponderarmos estes preços pelas quantidades produzidas de cada bem, visto que o preço de bens produzidos em maior quantidade deve ter uma importância maior no nosso índice de preço. Ao fazer essa ponderação, temos três tipos de índices diferentes.

1.2 Índice de Laspeyres

O índice de preço de Laspeyres pondera os preços pelas quantidades no período base (Q_0) . Logo:

$$I_L^{Preco} = \frac{\sum_{i=1}^n P_{i,t} Q_{i,0}}{\sum_{i=1}^n P_{i,0} Q_{i,0}} \times 100$$
 (3)

Para observar quanto as quantidades variaram, podemos construir um índice de quantidades de Laspeyres, onde as quantidades são ponderadas pelos preços no período base (P_0) :

$$I_L^{Quant} = \frac{\sum_{i=1}^n P_{i,0} Q_{i,t}}{\sum_{i=1}^n P_{i,0} Q_{i,0}} \times 100$$
 (4)

1.3 Índice de Paasche

O índice de preço de Paasche pondera os preços pelas quantidades no período corrente (Q_t) . Logo:

$$I_P^{Preco} = \frac{\sum_{i=1}^n P_{i,t} Q_{i,t}}{\sum_{i=1}^n P_{i,0} Q_{i,t}} \times 100$$
 (5)

O índice de quantidade de Paasche é ponderado pelos preços no período corrente (P_t) :

$$I_P^{Quant} = \frac{\sum_{i=1}^n P_{i,t} Q_{i,t}}{\sum_{i=1}^n P_{i,t} Q_{i,0}} \times 100$$
 (6)

1.4 Índice de Fischer

Ao ponderar os preços pelas quantidade apenas no período base ou apenas no período corrente, não consideramos as variações nas quantidades ao longo de todo o período de tempo analisado. O índice de Fischer tenta contornar essa falha através da média geométrica dos índices de Laspeyres e Paasche.

O índice de preço de Fischer é uma média geométrica dos índices de preço de Laspeyres e Paasche. Logo:

$$I_F^{Preco} = \sqrt{I_L^{Preco} \times I_P^{Preco}} \tag{7}$$

O índice de quantidade de Fischer é uma média geométrica dos índices de quantidade de Laspeyres e Paasche. Logo:

$$I_F^{Quant} = \sqrt{I_L^{Quant} \times I_P^{Quant}}$$
 (8)

Referências

Feijo, C. et al (2007). Contabilidade Social. Ed. Campus.