Komutativna algebra - 10. domača naloga

Benjamin Benčina, 27192018

19. maj 2020

<u>Nal. 1:</u> Pokažimo, da je $R \subseteq R'$ celostna razširitev natanko tedaj, ko je $R[x] \subseteq R'[x]$ celostna razširitev.

Za implikacijo iz leve v desno predpostavimo, da je R' celosten nad R. Potem je R' celosten tudi nad R[x] na naraven način. Prav tako je polinom $x \in R[x]$ celosten nad R[x] trivialno. Ker so vsote in produkti celostnih elementov spet celostni (spomnimo se, da vsi celostni elementi tvorijo kolobar) in ker so vsi elementi iz R'[x] R'-linearne kombinacije polinoma x in njegovih potenc (vštevši ničelno potenco), implikacija sledi.

Za obratno implikacijo privzemimo, da je R'[x] celosten nad R[x], in vzemimo $a \in R'$. Iščemo moničen polinom iz R[x], ki uniči a. Ker je $a \in R' \subseteq R'[x]$, obstaja moničen polinom $p \in R[x][y]$, ki uniči a. Ta polinom (dveh spremenljivk) združimo po potencah x in dobimo

$$p_0(y) + xp_1(y) + \dots + x^n p_n(y),$$

ki je še vedno isti polinom, ki uniči a (torej, če vstavimo y=a, dobimo 0). Vendar, če vstavimo y=a, dobimo polinomsko enačbo oblike P(x)=0. Ker je polinom ničelen natanko tedaj, ko ima ničelne vse koeficiente, ima P(x) ničelen konkretno tudi konstantni člen. Torej že polinom $p_0(y) \in R[y] \cong R[x]$ uniči a in tudi druga implikacija sledi.

<u>Nal. 2:</u> Razširitev $R \subseteq R'$ zadošča lastnosti gor grede, če zanjo zadošča zaključek gor grede izreka (9.16), torej če za vsaka dva praideala $P \in \operatorname{Spec} R$ in $P' \in \operatorname{Spec} R'$, kjer $P = P' \cap R$, ter praideal $Q \in \operatorname{Spec} R$, kjer $P \subseteq Q$, obstaja praideal $Q' \in \operatorname{Spec} R'$, da je $P' \subseteq Q'$ in $Q = Q' \cap R$. Pokažimo, da razširitev $R \subseteq R'$ zadošča lastnosti gor grede natanko tedaj, ko je za vsaka dva praideala $P \in \operatorname{Spec} R$ in $P' \in \operatorname{Spec} R'$, kjer $P = P' \cap R$, naravna preslikava $\varphi \colon \operatorname{Spec}(R'/P') \to \operatorname{Spec}(R/P)$ surjektivna.

Podrobneje si oglejmo naravno preslikavo φ . Ker je $R \subseteq R'$, je φ definirana s predpisom

$$Q' + P' \mapsto (Q' + P') \cap R = \underbrace{Q' \cap R}_{Q \triangleleft R} + \underbrace{P' \cap R}_{P},$$

kjer je sQ'+P' označen praideal Q'/P'. Surjektivnost preslikave φ torej pomeni, da za vsak praideal Q+P obstaja praideal Q'+P', da $\varphi(Q'+P')=Q+P$. Tukaj se spomnimo, da so praideali v kvocientnem kolobarju R/P točno praideali v R, ki vsebujejo P (in analogno za R'/P'). Surjektivnost preslikave φ torej pomeni, da za vsak praideal $Q \supseteq P$ obstaja praideal $Q' \supseteq P'$, za katerega (po definiciji φ) velja $Q' \cap R = Q$, kar je očitno ekvivaletna izjava definiciji lastnosti gor grede.