模式识别的理论与方法 Pattern Recognition

裴继红

Chapter 2 (Part 1): Bayesian Decision Theory

(Sections 2.1-2.2)

概率、条件概率、联合概率

- 概率
- 条件概率
- 联合概率

Introduction

- 鲈鱼/鲑鱼的例子
 - -类别状态, 先验的(prior)

类别状态是一个随机变量

• 假设捕获的鲈鱼和鲑鱼数量是等概率的

$$P(\omega_1) = P(\omega_2)$$
 (等先验概率)

$$P(\omega_1) + P(\omega_2) = 1$$
 (排他性、穷尽性)

基本概念

• 类别状态.

令 ω 表示类别状态. 则 ω 是一个随机变量.

(例如: 对鲈鱼 $\omega = \omega_1$, 对鲑鱼 $\omega = \omega_2$)

先验概率.

 $\Rightarrow P(\omega_1)$ 和 $P(\omega_2)$ 分别表示 ω_1 和 ω_2 的先验概率.

简单决策规则

• 决策规则

在只有先验信息的条件下。

但是,一般来说上述决策规则会出现大量错误....

条件信息

- 使用类条件信息
 - 类条件概率 $P(x \mid \omega_1)$ 和 $P(x \mid \omega_2)$ 描述了不同的 类别(鲈鱼和鲑鱼)中的个体在亮度 (lightness)分布上的差异

类条件概率密度函数

令 x 是一个连续的随机变量, $p(x \mid \omega)$ 是给定类别 ω 后 x 的概率密度.

例如,在给定类别为鲑鱼类时,该类别中亮度不同的鱼的概率分布记为:

p(lightness | salmon)?

或者,在给定类别为鲈鱼类时,该类别中亮度不同的鱼的概率分布记为:

p(lightness | sea bass)?

条件概率密度函数

- 类条件概率密度函数(class-conditional probability density functions)表示的是在类 $\omega_{\rm i}$ 中,给定的特征测量值为 x 的模式的概率密度。
- 若 x 表示鱼的亮度, 上图的两条曲线可以描述两类鱼在不同亮度下的比例。
- 在规范化的密度函数中,每条曲线下的面积都是 1.0.

后验,似然概率,证据 Posterior, likelihood, evidence

$$P(\omega_j \mid x) = P(x \mid \omega_j) P(\omega_j) / P(x)$$

在两类情况下

$$P(x) = \sum_{j=1}^{2} P(x \mid \omega_j) P(\omega_j)$$

Posterior = (Likelihood · Prior) / Evidence

贝叶斯公式(Bayes Formula)

如何使用先验、类条件密度获得类别状态的概率?

Bayes 公式.

Bayes 决策:

若 $P(\omega_1|x) > P(\omega_2|x)$, 则决策为 ω_1 , 否则决策为 ω_2

后验概率(Posterior probabilities)

- 如图Fig. 2.1所示是先验(priors)概率分别为 $P(\omega_1) = 2/3$ 和 $P(\omega_2) = 1/3$ 时,计算出的后验概率密度(Posterior probabilities)的曲线。
- 在这种情况下,若一个模式的特征测量值为 x=14,则该模式在类 ω_2 中的概率约为 0.08, 在 ω_1 中的约为 0.92。对每个x, 后验概率之和为 1.0

Bayes 决策

决策是由后验概率给出的,

x 是一个观测数据:

若
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True 类状态 = ω_1

若
$$P(\omega_1 \mid x) < P(\omega_2 \mid x)$$
 True 类状态 = ω_2

这样:

当我们观测到一个特定 x 时,决策的错误概率为:

$$P(error \mid x) = P(\omega_1 \mid x)$$
 , 如果决策为 ω_2

$$P(error \mid x) = P(\omega_2 \mid x)$$
,如果决策为 ω_1

Bayes 规则的简化

Bayes 公式.

$$P(\omega_{j}|x) = \frac{p(x|\omega_{j})P(\omega_{j})}{p(x)}$$

证据 p(x) 对所有类别状态都是相同的,在决策时可以省略。

规则:

若 $P(x|\omega_1)P(\omega_1)>P(x|\omega_2)P(\omega_2)$ 判定为类别 ω_1 , 否则为 ω_2

分析:

若 $P(x|\omega_1)=P(x|\omega_2)$ 则决策只依赖于先验概率.

若 $P(\omega_1) = P(\omega_2)$ 则决策只依赖于似然概率.

最小化错误概率

• 最小化错误概率

若
$$P(\omega_1|x) > P(\omega_2|x)$$
 时,决策为 ω_1 ; 否则决策为 ω_2

因此:

$$P(error \mid x) = min [P(\omega_1 \mid x), P(\omega_2 \mid x)]$$
 (Bayes decision)

错误概率

什么是错误概率?

$$P(error|x) = \begin{cases} P(\omega_1) & \text{if we decide} & \omega_2 \\ P(\omega_2) & \text{if we decide} & \omega_1 \end{cases}$$

Bayes 规则可以使错误概率最小化吗?

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error|x) p(x) dx$$

如果对每一个 x 我们都使错误最小化

P(error|x) 是否可以尽可能小?

回答是 "yes".

贝叶斯决策理论 - 连续特征情况

对前面的决策思想进行一般化

- ① 特征的数量可使用一个以上
- ② 类别状态的数量可用于两类以上
- ③ 不仅仅做出类别状态的决策,可以允许采取某种行为
- ④ 引入损失函数 (loss of function) 比使用错误概率 (probability of error) 更具有一般性

贝叶斯决策理论 - 连续特征情况

- 允许采取某种行动,而不仅仅只是分类
 - 首先,要允许拒识的可能性

即在近似或坏的情况下, 拒绝做出决策!

损失函数 (Loss Function)

损失函数规定了在采取每一种行为时需要付出的代价

�

 $\{\omega_1, \omega_2, ..., \omega_c\}$ 是具有个 c 类的类状态集合

\$

 $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ 是可能采取的行为集合

条件风险(Conditional Risk)

总风险

$$R = Sum \ of \ all \ R(\alpha_i \mid x) \ for \ i = 1,...,a$$

Conditional risk

最小化 **R** 最小化 $R(\alpha_i | x)$ for i = 1, ..., a

$$R(\alpha_i \mid x) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid x)$$

for
$$i = 1, ..., a$$

Bayes 风险决策

选择行为 α_i ,使得风险 $R(\alpha_i | x)$ 为最小,即

在这种情况下的 R 称为贝叶斯风险(Bayes risk)

= 等价于所能得到的最好的性能!

损失函数小结

令 $\{\omega_1, \omega_2, \dots, \omega_c\}$ 是可能的类状态.

令 $\{a_1, a_2, \dots, a_k\}$ 是可能的行为.

损失函数

 $\lambda(a_i|\omega_j)$ 是类状态为 ω_j 时采取行为 a_i 引起的损失

假设我们观测到了一个特定的x,考虑采取行为 a_i . 如果真实的类状态是 ω_i ,则损失为 $\lambda(a_i|\omega_i)$

期望损失
$$R(a_i|x) = \sum_j \lambda(a_i|\omega_j) P(\omega_j|x)$$

(这也称为条件风险.)

决策: 选择使条件风险最小化的行为

(**可能的最好性能 **)

两类时的风险决策问题

假设

 α_l : 在类别为 ω_l 时采取的行为

 α_2 : 在类别为 ω_2 时采取的行为

 $\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$ 当真实状态为时 ω_j ,决策为状态 ω_i 而引起的损失

条件风险:

$$R(\alpha_1 \mid x) = \lambda_{11} P(\omega_1 \mid x) + \lambda_{12} P(\omega_2 \mid x)$$

$$R(\alpha_2 \mid x) = \lambda_{21} P(\omega_1 \mid x) + \lambda_{22} P(\omega_2 \mid x)$$

两类问题的决策

规则如下:

若 $R(\alpha_1 \mid x) \leq R(\alpha_2 \mid x)$

则采取行为 α_1 : 此时做出的"决策为 α_1 "

与上述规则等价的规则为:

决策为 ω_1 若:

 $(\lambda_{21} - \lambda_{11}) P(x \mid \omega_1) P(\omega_1) > (\lambda_{12} - \lambda_{22}) P(x \mid \omega_2) P(\omega_2)$

否则,决策为 ω_2

两类情况

对该问题的另一种描述如下.

决策为 ω_1 ,若

$$\frac{p(x|\omega_{1})}{p(x|\omega_{2})} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{p(\omega_{2})}{p(\omega_{1})}$$
| likelihood ratio | constant

描述为:

决策为 ω_1 ,如果W然比大于一个给定的阈值。

注意:该阈值独立于观测量 x.

似然比(Likelihood ratio)

前述规则等价于下面的规则:

if
$$\frac{P(x/\omega_1)}{P(x/\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

则采取行为 α_l (此时决策为 ω_l) 否则采取行为 α_2 (此时决策为 ω_2)

最优决策

若似然比大于一个独立于输入模式x的阈值,则决策为 ω_l 是最优决策

