

Natural Language Processing: Seq2seq and Attention

HSE Faculty of Computer Science Machine Learning and Data-Intensive Systems

Table of Content

- Sequence to Sequence (seq2seq)
- Attention
- Practical tips

Machine translation requires training parameters to provide results

Human Translation

Natural Language Processing

 $y^* = \arg\max_{v} p(y|x)$

The "probability" is intuitive and is given by a human translator's expertise

Machine Translation

Ouestions we need to answer

modeling

How does the model for $p(y|x,\theta)$ look like? learning

How to find θ ?

search

How to find the argmax?

Encoder-decoder architecture maps data semantics

Encoder encapsulates a condition for a decoder Language Model

Language Models:
$$P(y_1, y_2, ..., y_n) = \prod_{t=1}^{n} p(y_t | y_{< t})$$

Conditional

Language Models:
$$P(y_1, y_2, ..., y_n, | x) = \prod_{t=1}^{n} p(y_t | y_{< t}, x)$$

condition on source x

A helicopter view on the Encoder-Decoder architecture

Natural Language Processing

Model Loss is a well-known Cross-Entropy

A simple RNN is a valid Encoder-Decoder model

A simple RNN is a valid Encoder-Decoder model

Semantic space of text embeddings

Natural Language Processing

Table of Content

- Sequence to Sequence (seq2seq)
- Attention
- Practical tips

The final hidden state is a bottleneck

Natural Language Processing

A simple Attention overview

Natural Language Processing

Encoder hidden states are weighed according to their attention score

Natural Language Processing

Encoder hidden states are weighed according to their attention score

Table of Content

- Sequence to Sequence (seq2seq)
- Attention
- Practical tips

Weight tying is a way to significantly reduce the amount of parameters

Default (no weight tying)

Weight tying

Finding the next token is not that trivial

$$y' = \arg \max_{y} p(y|x) = \arg \max_{y} \prod_{t=1}^{n} p(y_t|y_{< t}, x)$$
 How to find the argmax?

Greedy Decoding: At each step, pick the most probable token

$$\arg \max_{y} \prod_{t=1}^{n} p(y_{t}|y_{< t}, x) \neq \prod_{t=1}^{n} \arg \max_{y_{t}} p(y_{t}|y_{< t}, x)$$

A beam search illustration

Pick the hypothesis with the highest probability

Temperature: the higher, the more chaotic the choice becomes

$$w_{next} \sim rac{P(w_{next}|X)^{1/ au}}{\sum_{\hat{w}} P(\hat{w}|X)^{1/ au}}$$

