

Lecture 1

Course Information, Historical and Top-level view of computer hardware

Prepared By:

Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: shadman9085@gmail.com

Instructor information

- Shadman Shahid [SHD/HAD]
- Available at room UB80708:
 - Timing: Refer to routine.
- Reachable via mail at any time: ext.shadman.shahid@bracu.ac.bd
- Research Interest: Photonics in computational devices

Course outline

Basically, study **four types** of devices.

(Application centric usage)

OP-AMP

Diodes

MOSFET

• BJT

Application: Amplification and Switching

Course Outcome

CO1

Understand and compare the **characteristics** and **operation** of electronic devices

CO2

Analyze electronic circuits made from these devices

CO3

<u>Design various electronic</u> <u>circuits</u> for power-generation and analog signal-processing applications.

A list of applications (non-exhaustive)

Switching

- Rectifiers
- Analog-to-digital (ADC)
- Digital-to-analog conversion (DAC)
- Arithmetic operations on analog Signals, e.g, summing, subtracting, exponentiation and generating voltage waveforms of different shapes.

Amplification

- Regulators
- Small-signal Amplifiers

Marks Distribution

Assessment	Percentage	Total number of assessments	Number of assessment to be graded
Attendance	8%	-	-
Assignment	12%	6	Best N-1
Quiz	15%	4	Best N-1
Midterm	20%	1	1
Final	20%	1	1
Lab	25%	-	-

A top-down decomposition of a computer

- System
- Module
- Logic gates
- Circuits
- Electronic Devices (Process technology)

Abstraction Levels

Logic gates -> Electronic Devices

Electronic Devices:

- 1. Transistors (BJT/MOSFET/ JFET/FinFET)
- 2. Diodes

Amplification and **Switching**

MOSFET realization of a NOT gate.

Historical Perspective

Mechanical gears

(1822 - <u>Difference Engine</u>, Analytical Engine)

Has it always been like this?

Electrical switches and mechanical relays

• Eras of Computer evolution:

(1944 - Harvard Mark 1)

1. Gen 1: Mechanical to Vacuum Tubes (17th -1940s):

(1951 – 1959)

2. Gen 2: Transistors (BJT) (1950s): Short-lived

Switchover to *transistors* from

vacuum Tubes

3. Gen 3: Integrated Circuitry (1960s - Present) VLSI

<u>Microcomputers</u> -> Laptops, Smartphones

WWI: 1914 - 1918 WWII: 1939 - 1945

Vacuum Tubes (1946 - ENIAC)

Electron Flow ON

Electron Flow OFF

Small changes in *Grid* voltage translate to large voltages at the Anode

Thermionic <u>Tri</u>ode AMPLIFICATION

Computer Systems / Processors with BJT (60s)

Computer System	Year
IBM System/360	1964
DEC PDP Series	1960 (PDP-1), 1965 (PDP-8), 1970 (PDP-11)
Control Data Corporation 6600	1964
IBM System/370	1970
Cray-1	1976

IBM System/360 hybrid BJT circuit

Computer Systems / Processors with MOSFET (70s - Present)

(Red: Feature size)

Moore's Law

The number of transistors in a microchip doubles every two years

122 YEARS OF MOORE'S LAW

Current scenario and the future

- Ongoing chip shortage!
- Two type of companies:
 - 1. Fabless design companies: AMD

Apple etc.

2. Foundries: Intel

TSMC

Samsung

Global Foundries

Moore's Law is approaching an end. Possible alternatives for the future:

- 1. Quantum Computing
- 2. Neuromorphic Computing
- 3. Optical Computing

An Integrated Circuit Layout of a Processor

Appendix 1

NEW SKU's PROCESSOR DETAILS INTEL TURBO BOOST BASE INTEL TURBO BOOST THERMAL INTEL RCP PROCESSOR CLOCK **TECHNOLOGY 3.0 TECHNOLOGY 3.0** CORES/ MEMORY PROCESSOR SOCKET CODE NAME DESIGN LITHOGRAPHY SMART PRICING NUMBER SPEED MAXIMUM SINGLE CORE **MAXIMUM ALL CORES** THREADS SUPPORT GRAPHICS SUPPORT POWER CACHE (GHZ) TURBO FREQUENCY (GHZ) TURBO FREQUENCY (GHZ) 10" Gen Intel® Core Two channels **Products formerly** 4/8 3.7 4.4 42 65W **7 MB** Intel® UHD 730 FCLGA1159 1295 14+++ nm 13-10100 DDR4-2933 Comet Lake **Products formerly** 10th Gen Intel® Core® Two channels 3.8 4.5 43 4/8 62W **9 MB** 14+++ nm Intel® UHD 730 FCLGATIS9 1495 DDR4-2933 13-10300 Comet Lake 10th Gen Intel® Core® Two channels Products formerly 4.0 4.7 4.5 4/8 91W 9 MB Intel® UHD 730 FCLGA1159 1595 14+++ nm 13-10320 DDR4-2933 Comet Lake 10" Gen Intel® Core® Two channels **Products formerly** 4.1 4.8 4.6 4/8 Intel® UHD 730 FCLGA1159 1795 91W 9 MB 14+++ nm DDR4-2933 13-10350K Comet Lake 1011 Gen Intel® Core® Two channels Products formerly 4.4 4.2 6/12 65W Intel® UHD 730 FCLGA1159 3.0 12 MB 14+++ nm 1795 15-10400 DDR4-3200 Comet Lake 10th Gen Intel® Core™ Two channels Products formerly 4.6 3.1 4.4 6 / 12 65W 12 MB 14+++ nm Intel® UHD 730 FCLGA1159 1995 i5-10500 DDR4-3200 Cornet Lake 10" Gen Intel® Core® Two channels Products formerly 32 4.8 4.6 6/12 65W 12 MB Intel® UHD 730 FCLGA1159 2295 14+++ nm DDR4-3200 15-10600 Comet Lake 10th Gen Intel® Core Two channels **Products formerly** 3.7 4.9 4.7 6/12 95W 12 MB Intel® UHD 730 FCLGA1159 2695 14+++ nm i5-10600K DDR4-3200 Comet Lake 101 Gen Intel® Core® Iwo channels Products formerly 3.1 4.9 4.6 8 / 15 65W 16 MB Intel® UHD 730 FCLGA1159 3395 14 + + + nm 17-10700 DDR4-3200 Comet Lake 10" Gen Intel® Core" Two channels Products formerly 3.6 4.8 8/16 95W 16 MB Intel® UHD 730 FCLGA1159 3895 14+++ nm DDR4-3200 17-10700K Comet Lake 10 Gen Intel® Core Two channels **Products formerly** 27 5.0 4.2 10/ 20 65W 20 MB 14+++ nm FCLGA1159 4095 DDR4-3200 19-10800F Comet Lake 10th Gen Intel® Core® Two channels Products formerly 3.2 5.1 4.4 95W FCLGA1159 4495 10 / 20 20 MB 14+++ nm i9-10900F DDR4-3200 Comet Lake 10 Gen Intel® Core Two channels Products formerly 3.4 5.2 4.6 10 / 20 105W 20 MB 14+++ nm FCLGA1159 1995 DDR4-3200 i9-10900KF Comet Lake

List of resources used in this slide

- Course Handout
- Abstraction levels diagram
- History of Computers
- More about Vacuum Tubes Veritasium YouTube
- More information about Semiconductor chip industry
- Moore's Law

Lecture 1

Alt. Representation, CSE250 Review, IV Characteristics

Prepared By:

Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: shadman9085@gmail.com

Alternative Circuit Representation: Line diagrams

Steps to decompose circuits to line diagram

- 1. Set a ground so that number of **floating voltage** sources are minimized.
- 2. Detach the ground
- 3. Convert the non-floating voltage sources (current sources) into:
 - Arrow : (→) Fixed/Constant voltage source
 - Open circle dot: (-0) Input/Output node voltage (may or may not be a source)
 - Filled circle dot: (- Known node voltage (may or may not be a source)
- 4. Keep passive elements as they are.

Floating voltage sources:

Voltage sources which are **not connected the ground** terminal. In the diagram, the **10 V** voltage source is floating

30 V

Line diagrams: Example 1

Line diagrams: Example 2

More Examples

Difficulty: 2/5

Difficulty: 3/5

Example: 2

Example: 3

More Examples

Difficulty: 4/5

Example: 4

Step – (4) Make all the active elements (dc/ac type, voltage/current sources) into single terminals (arrows/circles) using the voltages you wrote as much as you can [THERE MIGHT BE CASES WHERE YOU CAN'T DO THAT]

The fundamentals ...

Ohm's Law -

• the voltage v across a resistor is directly proportional to the current i flowing

through the resistor (R)

$$v \propto i$$
 $v = iR$

KVL: Kirchhoff's voltage law

The <u>algebraic sum</u> of all <u>voltages</u> around a closed path (or loop) is zero.

$$-v_1 + v_2 + v_3 - v_4 + v_5 = 0$$

$$v_2 + v_3 + v_5 = v_1 + v_4$$

Sum of voltage drops = Sum of voltage rises

KVL: Kirchhoff's voltage law

$$-V_{ab} + V_1 + V_2 + V_3 = 0$$

$$V_{ab} = V_1 + V_2 + V_3$$

Equivalent Circuits

KVL – Example 1

Find I and V_{ab} in the circuit

Solution:

KVL

$$-30 + 3I - 10 + 5I + 8 = 0$$

$$I = \frac{32}{8}A = 4A$$

KVL

$$-V_{ab} + 5I + 8 = 0$$

$$V_{ab} = 28 \text{ V}$$

Tip: If you find resistance values in $k\Omega$ instead of Ω , don't convert the $k\Omega$ values to Ω . Just find currents in mA instead of A.

KVL – Example 2

Find v_1, v_2, v_3, i_1, i_2 and i_3 in the circuit

Solution:

KVL in first loop

$$-5 + 2\mathbf{i_1} + 8(\mathbf{i_1} - \mathbf{i_3}) = 0$$

$$10i_1 - 8i_3 = 5$$

KVL in second loop

$$-8(\mathbf{i_1} - \mathbf{i_3}) + 4\mathbf{i_3} - 3 = 0$$

$$-8i_1 + 12i_3 = 3$$

Solving:

$$i_1 = 1.5 \text{ mA}$$
 $v_1 = 3 \text{ V}$
 $i_3 = 1.25 \text{ mA}$ $v_2 = 2 \text{ V}$
 $i_2 = i_1 - i_3 = 0.25 \text{ mA}$ $v_3 = 5 \text{ V}$

Tip: If you find resistance values in $\mathbf{k}\Omega$ instead of Ω , don't convert the $\mathbf{k}\Omega$ values to Ω . Just find currents in $\mathbf{m}\mathbf{A}$ instead of \mathbf{A} .

KCL: Kirchoff's Current Law

The <u>algebraic sum</u> of the <u>currents</u> entering a node (closed boundary)

is equal to the sum of the currents leaving the node.

$$i_1 + (-i_2) + i_3 + i_4 + (-i_5) = 0$$

Current Entering node: Positive

Current Exiting node: Negative

Or vice versa...

KCL- Example 1

Find v_1, v_2, v_3, i_1, i_2 and i_3 in the circuit

Solution:

KCL in node v_a . (PS: $v_a = v_2$)

$$\frac{5 - \mathbf{v_2}}{2} - \frac{\mathbf{v_2} - (-3)}{4} - \frac{\mathbf{v_2} - 0}{8} = 0$$

$$v_2\left(-\frac{1}{2} - \frac{1}{4} - \frac{1}{8}\right) = -\left(\frac{5}{2} - \frac{3}{4}\right)$$

$$v_2 = \frac{7}{4} \cdot \frac{8}{7} \text{ V} = 2 \text{ V}$$
 $v_1 = 5 - v_2 = 3 \text{ V}$
 $v_3 = v_2 - (-3) = 5 \text{ V}$

