Cryptography based on CVP_∞

Thomas Plantard

Centre for Computer and Information Security Research University Of Wollongong

 $\begin{array}{c} http://www.uow.edu.au/\text{-}thomaspl\\ thomaspl@uow.edu.au \end{array}$

Lattice Based Cryptography

Tools

- Lattice Theory
- Closest Vector Problem
- I_{∞} -norm

Objectives

- Digital Signature
- Cryptosystem
- Efficiency and Security

Outline

- Lattice Theory
 - Lattice
 - Inclusion
 - Closest Vector Problem
 - Other NP-Hard Problems
- New Vector Reduction
 - Rectangular Matrix
 - Algorithm
- GGH and GGHSign
 - Lattice Based Cryptography
 - GGHSign Scheme
 - GGH Scheme
- 4 How to...
 - ... choose a "good" basis?
 - ... choose a "bad" basis?
 - ... use a good basis to have a good vector reduction?
- Comparison
 - Time Complexity
 - Space Complexity
 - Security
- Conclusion

Lattice Theory

- Lattice Theory
 - Lattice
 - Inclusion
 - Closest Vector Problem
 - Other NP-Hard Problems
- New Vector Reductio
 - Rectangular Matrix
 - Algorithm
- GGH and GGHSign
 - Lattice Based Cryptography
 - GGHSign Scheme
 - GGH Scheme
 - How to
 - ... choose a "good" basis?
 - ... choose a "bad" basis?
 - ... use a good basis to have a good vector reduction?
- Comparison
 - Time Complexity
 - Space Complexity
 - Security
- Conclusion

Lattice

Definition of a Lattice

ullet All the integral combinations of $d \leq n$ linearly independent vectors over ${\mathbb R}$

$$\mathcal{L} = \mathbb{Z} \, \mathbf{b}_1 + \dots + \mathbb{Z} \, \mathbf{b}_d = \{ \lambda_1 \mathbf{b}_1 + \dots + \lambda_d \mathbf{b}_d \, : \, \lambda_i \in \mathbb{Z} \}$$

- d dimension.
- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_d)$ is a basis.

An Example

$$\mathbf{B} = \begin{pmatrix} 5 & \frac{1}{2} & \sqrt{3} \\ \frac{3}{5} & \sqrt{2} & 1 \end{pmatrix} \tag{1}$$

$$d = 2 \le n = 3$$

In this work

- Full-rank lattice : d = n
- Integer Basis: $B \in \mathbb{Z}^{n,n}$

A lattice \mathcal{L}

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} \tag{2}$$

A lattice $\mathcal L$

$$UB = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ -3 & 11 \end{pmatrix}$$
 (3)

A lattice $\mathcal L$

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ 13 & 21 \end{pmatrix} \tag{4}$$

A lattice $\mathcal L$

$$\mathbf{UB} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 29 & 31 \\ 21 & 26 \end{pmatrix} \tag{5}$$

Inclusion

Problem: $v \stackrel{?}{\in} \mathcal{L}$

- Input: A vector $v \in \mathbb{Z}^n$
- Input: A basis $B \in \mathbb{Z}^{n,n}$ of a lattice $\mathcal{L}(B)$
- Output: YES if there exists a vector

$$\exists k \stackrel{?}{\in} \mathbb{Z}^n, kB = v$$

Solution

- $k = vB^{-1}$, $k \stackrel{?}{\in} \mathbb{Z}^n$
- $k = vB^{-1} \mod 1, k \stackrel{?}{=} 0$
- Polynomial with any basis

Inclusion

Example

- Input: A vector v = (20, 20)
- Input: A basis $\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix}$

Solution

•
$$k = vB^{-1} = (20, 20) \begin{pmatrix} \frac{16}{103} & -\frac{5}{103} \\ -\frac{6}{103} & \frac{8}{16} \end{pmatrix} = (\frac{220}{103}, \frac{60}{103})$$

- $k = vB^{-1} \mod 1 = (\frac{14}{103}, \frac{60}{103}) \neq 0$
- $(20,20) \not\in \mathcal{L}(\mathcal{B})$

Problem

- Input: A vector $v \in \mathbb{Z}^n$
- Input: A basis $B \in \mathbb{Z}^{n,n}$ of a lattice $\mathcal{L}(B)$
- Output: A vector $w \equiv v \pmod{\mathcal{L}}$ with ||w|| minimal.

$$w = v + kB$$
 $k \in \mathbb{Z}^n$ with $||w||$ minimal

Equivalence

- $u \equiv v \pmod{\mathcal{L}(B)}$
- $(u-v) \in \mathcal{L}(B)$
- $k \in \mathbb{Z}^n$, u = v + kB

Reduction

- $u = v \mod \mathcal{L}(B)$
- $\not\exists w \equiv v \pmod{\mathcal{L}(B)}, \quad ||w|| < ||u||$

Norms

I_p -Norm

• I_p -norm $||v||_p$ of a vector v

$$\|v\|_p = \left(\sum_{i=0}^{n-1} |v_i|^p\right)^{1/p}$$

Used Norm

- Euclidean Norm $||v||_2$ of a vector v: $||v||_2 = \sqrt{\sum_{i=0}^{n-1} (v_i)^2}$
- Infinity Norm $||v||_{\infty}$ of a vector v: $||v||_{\infty} = \max_{i=0}^{n-1} |v_i|$

Complexity

- NP-Hard under any norm (EmdeBoas'81) with Preprocessing (Regev and Rosen '06)
- $O(n^{\frac{n}{2}})$ deterministic (Kannan'83, Hanrot and Stehle'07)
- $O(2 + \frac{1}{\epsilon})^n$ probabilistic (Blomer and Naewe'07)

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} \tag{6}$$

A Vector: (20, 20)

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} \tag{6}$$

A Vector: $(20, 20) \equiv (20, 20) - (5, 16) = (15, 4)$

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} \tag{6}$$

A Vector: $(20, 20) \equiv (15, 4) - (8, 5) = (7, -1)$

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} \tag{6}$$

A Vector: $(20,20) \equiv (7,-1) - (8,5) = (-1,-6)$

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} \tag{6}$$

A Vector: $(20,20) \equiv (-1,-6) \pmod{\mathcal{L}}$

Closest Vector Problem

A Solution: Babai's Round-Off

- $w = v \lceil k \rfloor B$

A good Approximation of CVP

- Polynomial Time
- Quality depends on B
- Babai's use a LLL-reduction of B (Lenstra, Lenstra and Lovasz'82)

Closest Vector Problem

Example

- Input: A vector v = (20, 20)
- Input: A basis $\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix}$

A Solution

•
$$k = vB^{-1} = (20, 20) \begin{pmatrix} \frac{16}{103} & -\frac{5}{103} \\ -\frac{6}{103} & \frac{8}{16} \end{pmatrix} = (\frac{220}{103}, \frac{60}{103})$$

•
$$w = \lceil k \rfloor B = (20, 20) - (2, 1) \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = (20, 20) - (21, 26)$$

•
$$(20,20) \equiv (-1,-6)$$

NP-Hard Problems around CVP

CVPP: Closest Vector Problem with Preprocessing.

- Preprocessing on B.
- Input: w
- Output: $v = w \mod \mathcal{L}(B)$

Covering Radius

- Input: B
- Output: $\nu(B) = \min_{\forall w} \| w \mod \mathcal{L}(B) \| \le \nu(B)$

GDD: Garanteed Decoding Distance.

- Input: w, B
- Output: $v \equiv w \pmod{\mathcal{L}(B)}$ with $||v|| \leq \nu(B)$

New Vector Reduction

- Lattice Theory
 - Lattice
 - Inclusion
 - Closest Vector Problem
 - Other NP-Hard Problems
- New Vector Reduction
 - Rectangular Matrix
 - Algorithm
- GGH and GGHSigr
 - Lattice Based Cryptography
 - GGHSign Scheme
 - GGH Scheme
 - How to
 - ... choose a "good" basis?
 - ... choose a "bad" basis?
 - ... use a good basis to have a good vector reduction?
- Comparison
 - Time Complexity
 - Space Complexity
 - Security
- Conclusion

Rectangular Matrix

Rectangular Basis

- A Basis B = D M
- D dominant diagonal matrix
- ullet M noise matrix $M_{i,j}$ small

Consequence

- $k = vB^{-1}$
- $k = v(D M)^{-1}$
- $k = vD^{-1}(1 MD^{-1})^{-1}$
- $k = vD^{-1}$ $(1 + MD^{-1} + (MD^{-1})^2 + (MD^{-1})^3 + \dots)$

Spectral Radius of a matrix A, $\rho(A)$

- Theorem: $1 + A + A^2 + A^3 + \dots$ converge if $\rho(A) < 1$.
- $|\lambda_0| \leq |\lambda_1| \leq \cdots \leq |\lambda_{n-1}| \leq \rho(A)$
- $\rho(A) \le ||A|| \quad \forall ||.||$

Input

- Input: A vector $v \in \mathbb{Z}^n$
- Input: A basis $B = (D M) \in \mathbb{Z}^{n,n}$ of a lattice $\mathcal{L}(B)$
- Output: A vector $w \equiv v \mod \mathcal{L}$ with $\|wD^{-1}\|_{\infty} < 1$

Algorithm

- $w \leftarrow v$
- $\text{ ountil } \| w D^{-1} \|_{\infty} < 1$
 - $0 \quad k \leftarrow wD^{-1}$

Spectral Radius

Theorems

Ending:

$$\frac{\|1 - MD^{-1}\|_{\infty}}{1 - \|MD^{-1}\|_{\infty}} < 1$$

Unicity:

$$\frac{\|v\|}{\lambda_1(D)} + \frac{\nu(D)}{\lambda_1(D)} + \|MD^{-1}\| < 1 \quad \forall \|.\|$$

• If parameters polynomial on $n \Rightarrow$ number of loops $O(\log(n))$.

Conjecture

• Ending: $\rho(MD^{-1}) < \frac{1}{2}$

Spectral Radius of a matrix A, $\rho(A)$

∀||.||

$$\lim_{k\to\infty}\|A^k\|=\rho(A)^k$$

∀||.||

$$\rho(A) < ||A||$$

Figure: Average number of loops used to reduce a message vector to a signature vector.

An example

Input

• A vector v = (22, 14) and a basis B = D - M

$$D = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, \quad M = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 6 & -1 \\ -1 & 4 \end{pmatrix}$$
 (7)

Algorithm

- $w \leftarrow (22, 14)$
- ② $k \leftarrow wD^{-1} = \left[\frac{22}{5}, \frac{14}{5}\right]$

$$w = [22, 14] - [4, 3] \begin{pmatrix} 6 & -1 \\ -1 & 4 \end{pmatrix} = (22, 14) - (21, 8) = (1, 6)$$

- **4** $k \leftarrow wD^{-1} = [\frac{1}{5}, \frac{6}{5}]$
- $w \leftarrow w \lceil k \rfloor B$ $w = [1, 6] - [0, 1] \begin{pmatrix} 6 & -1 \\ -1 & 4 \end{pmatrix} = (1, 6) - (-1, 4) = (2, 2)$

Output

$$w = (2, 2) \equiv (22, 14) \pmod{\mathcal{L}}$$

GGH and **GGHS**ign

- Lattice Theory
 - Lattice
 - Inclusion
 - Closest Vector Problem
 - Other NP-Hard Problems
- New Vector Reductio
 - Rectangular Matrix
 - Algorithm
- GGH and GGHSign
 - Lattice Based Cryptography
 - GGHSign Scheme
 - GGH Scheme
 - How to
 - ... choose a "good" basis?
 - ... choose a "bad" basis?
 - ... use a good basis to have a good vector reduction?
 - Comparison
 - Time Complexity
 - Space Complexity
 - Security
- Conclusion

Lattice Based Cryptography

Cryptography based on SVP

- 1997. Ajtai-Dwork first theoretical cryptosystem based on Lattice Theory.
- 1998. Nguyen and Stern: heuristic attack on AD.
- 1999. Improvement of Cai and Cusick
- 2003. Improvement by Regev.

Cryptography based on CVP

- 1997. Goldreich, Goldwasser and Halevi: first efficient cryptosystem:GGH and GGHSign.
- 1999. GGH cryptanalyzed by Nguyen.
- 2001. GGH Improved By Micciancio, with some open questions.

GGHSign Cryptanalyzis

- 2002: first leaked found by Gentry and Szydlo.
- 2003: theoretical attack by Szydlo.
- 2006: Cryptanalysis of GGHSign by Nguyen and Regev.
- 2006. Crypto question Regev

GGHSign

Setup:

- i) Compute a secret "good" basis G.
- ii) Compute a public "bad" basis B with

$$\mathcal{L}(G) = \mathcal{L}(B)$$
.

Sign:

- i) Hash: $m \in \{0,1\}^* \rightarrow v \in \mathbb{Z}^n$
- ii) Signature: $w = v \mod \mathcal{L}(G)$.

Verify:

- i) Hash: $m \in \{0,1\}^* \rightarrow v \in \mathbb{Z}^n$
- ii) Check: $w v \in \mathcal{L}(B)$

GGH

Setup:

- i) Compute a secret "good" basis G.
- ii) Compute a public "bad" basis B with

$$\mathcal{L}(G) = \mathcal{L}(B)$$
.

Encrypt:

i) Add lattice noise: c = m + kB with $k \in \mathbb{Z}^n$ random.

Decrypt:

i) Reduce: $w = v \mod \mathcal{L}(G)$.

GGH-GGHSign Security

Security

- "bad basis" Difficult good basis" good basis bad basis" Easy bad basis bad basis
- A good vector reduction with a "good basis": Easy. A good vector reduction with a "bad basis": Difficult.
- 3 Inclusion with any basis: Easy.
- 4 Add a random lattice point: Easy.

Question

- How to choose a "good" basis?
- How to choose a "bad" basis?
- How to use a good basis to have a good vector reduction?

Analysis and Comparison

- Lattice Theory
 - Lattice
 - Inclusion
 - Closest Vector Problem
 - Other NP-Hard Problems
- New Vector Reduction
 - Rectangular Matrix
 - Algorithm
- GGH and GGHSigr
 - Lattice Based Cryptography
 - GGHSign Scheme
 - GGH Scheme
- How to...
 - ... choose a "good" basis?
 - ... choose a "bad" basis?
 - ... use a good basis to have a good vector reduction?
- Comparison
 - Time Complexity
 - Space Complexity
 - Security
- Conclusion

How to choose a "good" basis?

GGH

Rectangular Matrix

$$G = \lfloor \sqrt{n} + 1 \rfloor Id - [-4, 4]^{n, n}$$

Micciancio

LLL-reduced basis

$$G = [-n, n]^{n,n}$$

Us

• Signature: G = D - M such $\rho(MD^{-1}) < \frac{1}{2}$

$$\left\lceil \frac{4}{3} \sqrt{n} \right\rceil Id - [-1, 1]^{n, n}$$

• Encryption: G = D - M such $\|MD^{-1}\|_{\infty} < \frac{1}{4}$

$$4nId - [-1,1]^{n,n}$$

GGH

$$B = \prod U_i G$$

$$U_i \in \left\{ egin{pmatrix} 1 & * & * & * & * \ & 1 & * & * & * \ & & 1 & * & * \ & & & 1 & * \ \end{pmatrix}, egin{pmatrix} 1 & & & & & \ & 1 & & & & \ & * & 1 & & \ & * & * & 1 \ & & * & * & 1 \ \end{pmatrix}, egin{pmatrix} 1 & & & & & \ & 1 & & & \ & & * & 1 & & \ & & * & 1 & & \ \end{pmatrix}, egin{pmatrix} 1 & & * & & & \ & 1 & * & & \ & & 1 & & & \ & & & 1 & & \ \end{pmatrix}
ight\}$$

Micciancio

Hermite Normal Form of G

How to choose a "bad" basis?

Us

• Signature: Optimal HNF

$$H = \begin{pmatrix} * & & & \\ * & 1 & & \\ * & & 1 & \\ * & & & 1 \\ * & & & & 1 \end{pmatrix}$$

• Encryption: $B = \prod U_i G$.

How to use a good basis to have a good vector reduction?

GGH

- Babai's Round-off.
- $\bullet \ \|m\|_{\infty} < rac{1}{2\|G^{-1}\|_{\infty}}$ and exact arithmetic for No Decryption Error

Micciancio

- Babai Nearest Plane.
- More exact but slower.

Us

- Our method with loops.
- No floating-point arithmetic.

Analysis and Comparison

- Lattice Theory
 - Lattice
 - Inclusion
 - Closest Vector Problem
 - Other NP-Hard Problems
- New Vector Reductio
 - Rectangular Matrix
 - Algorithm
- GGH and GGHSigr
 - Lattice Based Cryptography
 - GGHSign Scheme
 - GGH Scheme
 - How to
 - ... choose a "good" basis?
 - ... choose a "bad" basis?
 - ... use a good basis to have a good vector reduction?
- Comparison
 - Time Complexity
 - Space Complexity
 - Security
- Conclusion

Time Complexity

Figure: GGH-Micciancio Cryptosystem Timing in ms.

Space Complexity

Figure: Average I_{∞} -norm of signature-vector using different reduction method.

Figure: Signature-message on \mathbb{R}^2 for Babai's reduction and our reduction.

Analysis and Comparison

- Lattice Theory
 - Lattice
 - Inclusion
 - Closest Vector Problem
 - Other NP-Hard Problems
- New Vector Reductio
 - Rectangular Matrix
 - Algorithm
- GGH and GGHSigr
 - Lattice Based Cryptography
 - GGHSign Scheme
 - GGH Scheme
 - How to
 - ... choose a "good" basis?
 - ... choose a "bad" basis?
 - ... use a good basis to have a good vector reduction?
- Comparison
 - Time Complexity
 - Space Complexity
 - Security
- Conclusion

New version of GGH-Micciancio's Space and Time Complexity.

Space Complexity

Secret Key Size	$O(n^2)$
Public Key Size	$O(n^2 \log n)$
Message Size	$O(n \log n)$
Encrypted Size	$O(n \log n)$

Time Complexity

SetUp Time	$O(n^3 \log^2 n)$
Encryption Time	$O(n^2 \log n)$
Decryption Time	$O(n^2 \log^2 n)$

Conclusion

Improvement of GGHSign

- Faster
- Shorter Signature: ± half.
- Not broken

Improvement of GGH

- Faster
- No Decryption Error

Open Questions