CS57300 PURDUE UNIVERSITY MARCH 19, 2019

DATA MINING

ANNOUNCEMENT

- Midterm grade is out!
 - Mean: 40.1, median 38, standard deviation: 8.1
- Assignment 4 is out!
 - Implement decision trees, bagging, and random forests
 - Due on March 31 (Sunday), 11:59pm
 - If you use any extension days, specify it clearly on your pdf report!

ANNOUNCEMENT

- Final project pitch
 - In-class pitch (March 26, Tuesday): 2 minutes of presentations; 1 minute of Q&A
 - Content to include: (1) the topic you proposed to work on; (2) why you are excited about it;
 (3) what's the expected outcome of your project
 - Pitch slides due on March 24 (Sunday), 11:59pm
 - Pitch presentation order will be decided soon
 - Distance student: please submit your pitch video via Blackboard before March 26, 11:59pm
- Next class: Guest lecture by Professor Yexiang Xue (Deep learning)

CONVENTIONAL CLASSIFICATION

ENSEMBLE CLASSIFICATION

BAGGING

- Bootstrap aggregating
- Main assumption
 - Combining many *unstable* predictors in an ensemble produces a *stable* predictor (i.e., <u>reduces variance</u>)
 - Unstable predictor: small changes in training data produces large changes in the model (e.g., trees)
- Model space: non-parametric, can model any function if an appropriate base model is used

BAGGING

TREATMENT OF INPUT DATA

sample with replacement

CHOICE OF BASE CLASSIFIER

• unstable predictor (e.g., fullygrown decision tree)

PREDICTION AGGREGATION

averaging/majority voting

RANDOM FORESTS

- Random forests is a variant that aims to improve on bagged decision trees by reducing the correlation between the models
 - Each tree is learned from a bootstrap sample (same as before)
 - For each tree split, a random sample of k features is drawn first, and **only** those features are considered when selecting the best feature to split on (typically $k=\sqrt{p}$ or $k=\log p$, p is the total number of features)

RANDOM FORESTS

TREATMENT OF INPUT DATA

sampling with replacement

CHOICE OF BASE CLASSIFIER

 decision tree (limited attributes are considered at each node)

PREDICTION AGGREGATION

averaging/majority voting

BOOSTING

 Bagging and random forests share the same idea of combining multiple models that are trained on bootstrapped samples of the training data

- Mimic learning the model from different training data
- Each model has an equal amount of say (i.e., equal weights) in influencing the aggregated prediction
- Boosting
 - Combine multiple "complementary" models
 - Aggregate model predictions by considering how accurately each model can predict

BOOSTING EXAMPLE

Model: Decision stump

If $x_i > c$, then "+"; otherwise "-"

BOOSTING EXAMPLE: ROUND 1

Construct "complementary" models? Re-weighting!

BOOSTING EXAMPLE: ROUND 2

BOOSTING EXAMPLE: ROUND 3

BOOSTING EXAMPLE: AGGREGATING

ADABOOST

• Given N training examples $(x_1, y_1), ..., (x_N, y_N)$, assign every example in with an equal weight $D_1(i)=1/N$

- For t=1:T
 - Learn model $h_t(x)$ to minimize the weighted error: $\epsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i] = \sum_{i=1}^N D_t(i) I(h_t(x_i) \neq y_i)$
 - Set the weight of this model: $\alpha_t = \frac{1}{2}ln(\frac{1-\epsilon_t}{\epsilon_t})$
 - Update training example weights: up-weight the examples that are incorrectly classified and downright examples that are correctly classified: $D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$ where $Z_t = \sum_{t=0}^{N} D_t(i)exp(-\alpha_t y_i h_t(x_i))$ is a normalization factor
- To classify new test instance x', apply each model $h_t(x)$ to x' and take weighted vote of predictions

$$H(x') = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t h_t(x'))$$

BOOSTING INTUITION: UNDERSTANDING ALPHA

$$\alpha_t = \frac{1}{2} ln(\frac{1 - \epsilon_t}{\epsilon_t})$$

Low error rate: Large (positive) voting power

Error rate close to 0.5: small voting power

High error rate: Large (negative) voting power

BOOSTING INTUITION: UNDERSTANDING RE-WEIGHTING

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

- When $h_t(x_i) = y_i$, the prediction is correct; $D_{t+1}(i) \propto D_t(i) exp(-\alpha_t)$
- When $h_t(x_i) != y_i$, the prediction is incorrect; $D_{t+1}(i) \propto D_t(i) exp(\alpha_t)$

WHY ADABOOST WORKS?

- Minimize exponential loss $\sum_{i=1}^{N} exp(-y_i f_T(x_i))$ greedily, where $f_T(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$
- ▶ How to get $f_T(x)$ from $f_{T-1}(x)$?

$$\begin{split} \sum_{i=1}^{N} exp(-y_i f_T(x_i)) &= \sum_{i=1}^{N} exp(-y_i f_{T-1}(x_i)) exp(-y_i \alpha_T h_T(x_i)) \\ &\propto \sum_{i=1}^{N} D_T(i) exp(-y_i \alpha_T h_T(x_i)) \\ &= \sum_{y_i \neq h_T(x_i)} D_T(i) e^{\alpha_T} + \sum_{y_i = h_T(x_i)} D_T(i) e^{-\alpha_T} \\ &= \epsilon_T e^{\alpha_T} + (1 - \epsilon_T) e^{-\alpha_T} = \epsilon_T (e^{\alpha_T} - e^{-\alpha_T}) + e^{-\alpha_T} \quad \text{Set} \quad \alpha_T = \frac{1}{2} ln(\frac{1 - \epsilon_T}{\epsilon_T}) \end{split}$$

BOOSTING: HOW TO LEARN A MODEL ON WEIGHTED SAMPLES?

- Directly modify the scoring function
 - Weighted log likelihood $\sum_{i=1}^{N} D_{t}(i)log(P(y_{i}|x_{i}))$ (e.g., logistic regression)
 - Weighted squared loss $\sum_{i=1}^{N} D_t(i)(y_i o_i)^2$ (e.g, neural network)
- Nhat about models that are learned through heuristic search (e.g., decision trees)?
 - Weighted version of selection criteria: $H(A) = -\sum_{v} wp(x_A = v)log(wp(x_A = v))$, where $wp(x_A = v) = \sum_{v} D_t(i)l(x_i(A) = v)$
 - Re-sample the training examples according to D_t

BOOSTING

- Main assumption
 - Combining many weak (but stable) predictors in an ensemble produces a strong predictor (i.e., reduces bias)
 - Weak predictor: only weakly predicts correct class of instances (e.g., decision stumps)
- Model space: non-parametric, can model any function if an appropriate base model is used

BOOSTING

TREATMENT OF INPUT DATA

re-weight examples

CHOICE OF BASE CLASSIFIER

weak predictor (e.g., decision stump)

PREDICTION AGGREGATION

weighted vote