

Prof. Dr. Dorin Andrica Asist. Drd. Tudor Micu 1st Semester, 2018-2019

Geometry 1 (Analytic Geometry)

Exercise Sheet 13

Exercise 1. Find:

1. the foci of the ellipse $\mathcal{E} : 9x^2 + 25y^2 - 225 = 0$;

2. the foci of the hyperbola $\mathcal{H}: \frac{x^2}{9} - \frac{y^2}{4} - 1 = 0;$

3. the focus and the director line of the parabola $y^2 - 24x = 0$.

Exercise 2. Sketch the graph of $y = -\frac{3}{4}\sqrt{16-x^2}$.

Exercise 3. Find the intersection points between:

1. the line $d_1: x + 2y - 7 = 0$ and the ellipse $\mathcal{E}: x^2 + 3y^2 - 25 = 0$;

2. the line $d_2: 2x - y - 10 = 0$ and the hyperbola $\mathcal{H}: \frac{x^2}{20} - \frac{y^2}{5} - 1 = 0$;

Exercise 4. Find the position of the line d: 2x + y - 10 = 0 relative to the ellipse $\mathcal{E}: \frac{x^2}{9} + \frac{y^2}{4} - 1 = 0$.

Exercise 5. Find the area of the triangle determined by the asymptotes of the hyperbola $\mathcal{H}: \frac{x^2}{4} - \frac{y^2}{9} - 1 = 0$ and the line d: 9x + 2y - 24 = 0.

Exercise 6. Find the equation of the parabola having the focus F(-7,0) and the director line x-7=0.

Exercise 7. Find the equation of the tangent line(s) to:

- 1. the ellipse $\mathcal{E}: x^2 + 4y^2 20 = 0$, orthogonal on the line $d_1: 2x 2y 13 = 0$;
- 2. the hyperbola $\mathcal{H}: \frac{x^2}{20} \frac{y^2}{5} 1 = 0$, orthogonal to the line $d_2: 4x + 3y 7 = 0$;
- 3. the parabola $P: y^2 8x = 0$, parallel to $d_3: 2x + 2y 3 = 0$.

Exercise 8. Find the equations of the tangent line(s) to:

- 1. the ellipse $\mathcal{E}: \frac{x^2}{25} + \frac{y^2}{16} 1 = 0$, passing through $P_1(10, -8)$;
- 2. the hyperbola $\mathcal{H}: \frac{x^2}{3} \frac{y^2}{5} 1 = 0$ passing through $P_2(1, -5)$;
- 3. the parabola $\mathcal{P}: y^2 36x = 0$, passing through $P_3(2,9)$.

Exercise 9. Find the equation of the tangent line to the parabola $y^2 - 4x = 0$ at the point P(1,2).

Exercise 10. Let $\mathcal{P}_1: y^2 - 2px = 0$ and $\mathcal{P}_2: y^2 - 2qx = 0$ be two parabolas with 0 < q < p. A mobile tangent to \mathcal{P}_2 intersects \mathcal{P}_1 at M_1 and M_2 . Find the geometric locus of the midpoint of the segment $[M_1M_2]$.

Exercise 11. Let A, B and C be three distinct points on the parabola of equation $y^2 = 2px$. The tangent lines at A, B, respectively C to the parabola determine a triangle A'B'C'. Prove that the line passing through the centers of gravity of the triangles $\triangle ABC$ and $\triangle A'B'C'$ is parallel to Ox.

Bonus exercises

Exercise 12. Find the geometric locus of:

- 1. the orthogonal projections of a focus of an ellipse on the tangent lines to the ellipse;
- 2. the orthogonal projections of a focus of an hyperbola on the tangent lines to the hyperbola;
- 3. the orthogonal projections of the focus of a parabola on the tangent lines to the parabola.

Exercise 13. Let d_1 and d_2 be two variable orthogonal lines, passing through the point A(a,0) of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and let P_1 and P_2 be the intersection points of these two lines and the ellipse. Prove that the line P_1P_2 passes through a fixed point.

Exercise 14. Let a, b and c be the tangent lines at three distinct points of a parabola and ABC the triangle determined by the tangents. Prove that the focus of the parabola belongs to the circumscribed circle of the triangle ABC.