Data visualization (COSC 480B)

Schedule: MW 14:45-16:00

Homeworks:

- 1) Project proposal in a page (September 10)
- 2) Create a simple interface that has input area, some control button, a viewing window, and an output area (September 24)
- 3) Implement dot plots, line plots, box plots in javascript (October 8)
- 4) Given a text dataset, parse it and visualize it (October 22)
- 5) Implement a simple interface where user will be able to draw lines, points and determine line intersection (November 5)
- 6) Implement a force directed algorithm or stress minimization (November 19)
- 7) Final project: read some paper on a topic, summarize them, suggest future ideas (December 3)

Lectures:

- 1) Overview + projects (August 26):
 - a) Force directed algorithm
 - b) Stress optimization
 - c) Other optimization
 - d) Using map to visualize networks
 - e) Multi-level visualization
 - f) Application of neural networks
 - g) Dynamic network visualization
- 2) HTML (August 30):
 - a) Basics
 - b) Forms
 - c) Graphics
 - d) Media
 - e) APIs
- 3) CSS Basics (September 1)
- 4) CSS (September 6)
 - a) Advanced
 - b) Responsive
 - c) Grid
- 5) Bootstrap Basics (September 8)
- 6) Bootstrap (September 13)
 - a) Grids
 - b) Themes
 - c) Web design tools
- 7) Javascript (September 15)
 - a) Syntex
 - b) Variables

- c) Strings
- d) String operations
- 8) Javascript (September 20)
 - a) Arrays
 - b) Loops
 - c) Switch
 - d) Debugging
- 9) Javascript (September 22)
 - a) Objects
 - b) Functions
 - c) Classes
 - d) Async
- 10) Javascript (September 27)
 - a) HTML DOM
 - b) Browser BOM
 - c) Web APIs
- 11) Javascript (September 29)
 - a) AJAX
 - b) JSON
 - c) jQuery
- 12) Matplotlib (October 4)
- 13) Seaborn (October 6)
 - a) Line charts
 - b) Bar charts
 - c) Heatmaps
 - d) Scatter plot
 - e) Distribution
 - f) Customization
- 14) D3 basics (October 13)
- 15) D3 joins and scales (October 18)
- 16) Text data analysis (October 20)
 - a) Creating, reading and writing
 - b) Indexing, selecting and assigning
 - c) Summary functions and maps
- 17) Text data analysis (October 25)
 - a) Grouping and sorting
 - b) Data types and missing values
 - c) Renaming and combining
- 18) Data visualization principles (October 27)
 - a) The door study
 - b) Some good examples
 - c) Color
- 19) Network/graph basics (November 1)
- 20) Network sparsification (November 3)

- 21) Traditional graph drawing algorithms (November 8)
- 22) Force-directed algorithms (November 10)
- 23) Stress optimization (November 15)
- 24) Crossing minimization using stress (November 17)
- 25) Different aesthetic criteria (November 22)
- 26) Map visualization (November 24)
- 27) Multi-level visualization (November 29)
- 28) Symmetry detection (December 1)
- 29) Dynamic tree visualization (December 6)
- 30) Student presentation (December 8)