Экспериментальный анализ производительности CFPQалгоритмов

Выполнил: Павел Кеворкянц

Дата: 1 октября 2020

Информация о машине:

- Ubuntu 20.4
- Intel Core i5 9300
- 8 gb RAM

Информация о замерах:

Были произведены замеры алгоритмов вычисления контекстно-свободных запросов: алгоритм Хеллингса, матричное произведение и тензорный алгоритм. Первым двум алгоритмам на вход подавались граф и грамматика в ОНФХ. Тензорному алгоритму подавались пары как с грамматикой в ОНФХ, так и не в ОНФХ. Графы и грамматики были взяты из папки DataForFLCourse. Все замеры проводились для грамматик с названием 'g1', по 5 раз, затем бралось среднее значение.

Точность -5 знаков после запятой. Прочерки в таблицах означает, что вычисление заняло более 1000 секунд.

FullGraph:

graph	tensor	tensor+crf	hellings	MxM
fullgraph_10	0,00914	0,01612	0.02202	0.00055
fullgraph_50	0,08453	0,1345	0.33906	0.00252
fullgraph_100	0,5235	0,8238	4.76155	0.00672
fullgraph_200	2,10448	5,93212	65.13312	0.02606
fullgraph_500	11,35296	23,30663	967,35563	0.14489

Memory Aliases

graph	tensor	tensor+crf	hellings	MxM
bzip2.txt	0.00343	0,00462	0.002573	0.00021
gzip.txt	0,14675	0,22523	19.76711	0.00026
ls.txt	0,00745	0,00912	6.09662	0.00022
pr.txt	0,00325	0,0463	2.7581	0.00021
wc.txt	0,00412	0,01434	0.67755	0.00027

SparseGraph

graph	tensor	tensor+crf	hellings	MxM
G10k-0.001	0,56796			0,02568
G10k-0.01	0,53623	10,58362		0,04361
G10k-0.1	0,23943	2,64958	244,83325	0,00634
G20k-0.001	0,39123			0,01941
G40k-0.001	1,14124			0,16334
G5k-0.001	0,02346	1,3463	20,25235	0,00035
G80k-0.001	4,25023			0,52352

WorstCase

graph	tensor	tensor+crf	hellings	MxM
worstcase_4	0,00324	0,00635	0,00457	0,00084
worstcase_8	0,00853	0,01934	0,016455	0,00078
worstcase_16	0,04667	0,02557	0,03522	0,00953
worstcase_32	0,53667	2,55895	0,23566	0,03312
worstcase_64	6,77352	14,79934	0,12562	0,8456
worstcase_128	70,34637	250,74742	10,93466	0,95563
worstcase_256			276,25235	2,25303
worstcase_512				70,35631
worstcase_1024				803,34632
worstcase_2048				

Выводы:

На первом месте по производительности оказался алгоритм с матричным произведением. Алгоритм Хеллингса оказался самым последним по производительности, кроме тестов с худшими вариантами, где он оказался вторым. В среднем он уступил тензорным алгоритмам. Интересен тот факт, что работа тензорного алгоритма на основе грамматики в ОНФХ оказалось заметно медленнее тензорного алгоритма на основе грамматики не в ОНФХ.

Существенные различия во времени работы алгоритмов тензорного произведения, скорее всего, обусловлены различным количеством состояний рекурсивного автомата, построенного по грамматике.