Examination

End Semester Examination - Nov/Dec 2024

Name of the Course

B.Tech. (IT & Mathematical Innovations)

Name of the Paper

Modelling Continuous Changes through Ordinary

Differential Equations

Unique Paper Code

3122612301

Semester

III

Duration

3 hours

Maximum Marks

90

Instruction to students:

Attempt any <u>six</u> questions. <u>Question number 1 is compulsory.</u> Each question carries equal marks.

QY) Fill in the blanks

 $(1.5 \times 10 = 15 \text{ marks})$

- a) The integrating factor of the differential equation $\frac{dy}{dx} + \frac{x}{1-x}y = 1-x$ is _____
- b) Solution of the differential equation $\ln\left(\frac{dy}{dx}\right) = ax + by$ is _____
- c) The differential equation whose solution is given by $y(x) = (A + Bx + Cx^2)e^{3x}$ is
- d) The Laplace inverse transform of $\frac{1}{s^2 + 2s}$ is _____
- e) A particle, initially at the origin moves along x-axis according to the rule $\frac{dy}{dt} = y + 3$, where y is the displacement. The time taken by the particle to traverse a distance of 45 units is ______
- f) The complimentary solution of the differential equation $\frac{d^2y}{dx^2} + a^2y = 0$ is _____
- g) The Laplace transformation of $f(t) = t^2 \sinh at$ is _____
- h) In terms of the step function, the following graph can be represented as _____

- i) The value of a for which the equation $(ye^{2xy} + x) + bxe^{2xy}y' = 0$ is exact is
- j) The solution of the differential equation $x^2y'' + xy' + y = 0$ is ______

Q2) (a) Find the complete solution of the second order differential equation

$$x^2y$$
" + xy " - $25y = x^5$, $y(1) = 3$, y " (1) = 5

- (b) Show that the equation $(y + x(x^2 + y^2)^2)dx + (y(x^2 + y^2)^2 + x)dy = 0$ is exact and hence solve it. (10 + 5 = 15 marks)
- Q3) A shallow reservoir has a one square kilometer surface and an average water depth of 2 meters. Initially it is filled with fresh water but at time t = 0 water contaminated with a liquid begins flowing into the reservoir at the rate of 200 thousand cubic meters per month. The well mixed water in the reservoir flows out at the same rate.
 - a. Find the amount of pollutant in the reservoir at any time t.
 - b. If the incoming water has a pollutant concentration of 10 L/m³, sketch a rough graph of pollutant concentration. From the graph determine the long term pollutant content in the reservoir.
 - c. Find the time that it takes the pollutant concentration in the reservoir to reach 5 L/m³.
 (15 marks)
- Q4) Consider the circuit shown in the Figure. The current I through the inductor and the voltage V across the capacitor satisfy the system of differential equations

$$L\frac{dI}{dt} = -R_1I - V, \quad C\frac{dV}{dt} = I - \frac{V}{R_2}$$

- a. Write the system of equations as a single second order differential equation
- b. Write the equation as X' = AX. Find a condition on R_1 , R_2 , C, and L that must be satisfied if the eigenvalues of the coefficient matrix are to be real and different. If the condition is satisfied, show that both eigenvalues are negative.
- c. Find the general solution of the system if $R_1 = 1$, $R_2 = 3/5$, L = 2 and C = 2/3 units. Show that $I(t) \to 0$ and $V(t) \to 0$ as $t \to \infty$, regardless of the initial values I(0) and V(0).
- Q5) A population of sterile rabbits X(t) is preyed upon by a population of foxes Y(t). A model for this population interaction is the pair of differential equations

$$\frac{dX}{dt} = -aXY, \qquad \frac{dY}{dt} = bXY - cY$$

where a, b and c are positive constants.

- (a) Eliminate t to obtain a relationship between the population of foxes and rabbits.
- (b) Give a rough sketch of the phase plane trajectories, indicating the direction of movement along the trajectories. Justify your sketch.
- (c) According to the model, is it possible for the foxes to completely wipe out the rabbit population? Give reasons. (15 marks)

Q6) Consider the harvesting model

$$\frac{dX}{dt} = rX\left(1 - \frac{X}{K}\right) - hX$$

where r is the growth rate, K is the carrying capacity of the population and h is the rate at which the population is harvested.

Find the population at any time t. Find the non-zero equilibrium populations and the critical harvesting rate at which the population becomes extinct. (15 marks)

- Q7) Use the method of series solution to the equation xy'' + 2y' + xy = 0. Find the indicial equation. Show that for the smaller root of the indicial equation the solution can be written as $y = c_1 \frac{\cos x}{x} + c_2 \frac{\sin x}{x}$ (15 marks)
- Q8) a) Plot the graph for u(t) + u(t-1) + u(t-2). Show that $\mathcal{L}\{\sum_{n=0}^{\infty} u(t-n)\} = \frac{e}{s(e-1)}$, where $\mathcal{L}\{f(t)\}$ represents the Laplace transformation of the function and the function

$$u(t-n) = \begin{cases} 0 \text{ for } t < n \\ 1 \text{ for } t \ge n \end{cases}$$

is the unit step function.

b) Use Laplace transformations to solve the following differential equation

$$y'' - 2y' + 2y = \cos t$$
; $y(0) = 1$, $y'(0) = 0$ (7½ + 7½ = 15 marks)

Table of Laplace Transforms

	-() (-())	4	lace		$E(z) = O(\mathcal{L}(z))$
	$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}\$		$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathcal{L}\{f(t)\}$
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	cos(at)	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2-a^2}{\left(s^2+a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b)-a\sin(b)}{s^2+a^2}$
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
19.	$e^{at} \sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$e^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$e^{at} \sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$e^{at} \cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_c(t) = u(t-c)$ Heaviside Function	$\frac{\mathbf{e}^{-cs}}{s}$	26.	$\frac{\delta(t-c)}{\text{Dirac Delta Function}}$	\mathbf{e}^{-cs}
27.	$u_c(t) f(t-c)$	$e^{-cs}F(s)$	28.	$u_c(t)g(t)$	$e^{-cs} \mathcal{L}\left\{g\left(t+c\right)\right\}$
	$e^{ct}f(t)$	F(s-c)	30.	t'' f(t), n = 1, 2, 3,	
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$	32.	$\int_0^t f(v)dv$	$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$		1	f(t+T)=f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$
37.	$f^{(n)}(t)$	$s''F(s)-s'^{n-1}f(0)-s'^{n-2}f'(0)\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$			