>

HOTEL RATING CLASSIFICATION

Project presented by **Group 4**

MENTOR: SRI VINOD

17/11/2020

- 01

>

Group Members Group 4

— 02

AKSHAY JADHAV

ANIKET POUL

PRASANNA BHAGAT

SHASHIKIRAN.M

SRUTHI SANKAR P.M

Business Objective

This is a sample dataset which consists of 20,000 reviews and ratings for different hotels and our goal is to examine how travellers are communicating their positive and negative experiences in online platforms for staying in a specific hotel and major objective is what are the attributes that travellers are considering while selecting a hotel. With this manager can understand which elements of their hotel influence more in forming a positive review or improves hotel brand image

Project Architecture / Project Flow

-04

Understanding of Data

>

1.Dataset contains 20491 observations and 2 variables(Review and Rating)

— 05

2. Review is object type and Rating is integer type

3.Dataset has no null values

1.Rating column has 5 unique values. Rating 1 to 5

2. This dataset is biased or imbalanced

Most of the reviews have wordlength below 150 and a few have more than 250 words

>

Visualization

Histogram Barplot

Text Preprocessing

In Text classification, text preprocessing is the first step in the process of building a model. Whenever we have textual data, we need to apply several pre-processing steps to the data to transform words into numerical features that work with machine learning algorithms. We used NLTK library for text preprocessing

The various text preprocessing steps are:

- 1 Tokenization
- 2 -Normalization
- 3 Removing Numbers
- 4 Removing Punctuations
- 5 Stopwords Removal
- 6- Lemmatization

WordCloud

- Visualization Technique in which the size of each word will represent the frequency of that text data.
- From cleaned review data the most repeated words are 'room','time','day','great','resort','nice','beach','good','night', 'breakfast','restaurant'.

— 13

Bar Plot using Counter Function Most frequent 30 words in reviews

In reviews people are talking more about Room, Staff, Stay, Location, Food, Beach, breakfast, resort etc

From wordcloud based on rating we can say taht there are positive and negative comments on Room, resort, night, stay etc

Sentiment analysis using TextBlob

Sentiment Analysis is the process of determining whether a piece of writing is positive, negative or neutral.

TextBlob gives two scores Polarity scores and Subjectivity scores

Polarity is float which lies in the range of [-1,1] where 1 means positive statement and -1 means a negative statement. subjectivity is a matric between 0 and 1(1 is highly subjective)

some positive reviews based on polarity score

		Review	Rating	polarity	subjectivity
nice rooms experience monaco seattle good nt 3 0.294420 0.605208 unique great stay wonderful time monaco locati 5 0.504825 0.691228	0	nice expensive parking got good deal stay anni	4	0.208744	0.687000
3 unique great stay wonderful time monaco locati 5 0.504825 0.691228	1	ok nothing special charge diamond member hilto	2	0.248633	0.523295
	2	nice rooms experience monaco seattle good nt	3	0.294420	0.605208
4 great stay great stay went seahawk game awesom 5 0.471154 0.629396	3	unique great stay wonderful time monaco locati	5	0.504825	0.691228
	4	great stay great stay went seahawk game awesom	5	0.471154	0.629396

some negative reviews baesd on the polarity score

	Review	Rating	polarity	subjectivity
42	warwick bad good reviews warwick shocks staff	2	-0.080000	0.633333
44	austin powers decor familiar seattlewhere shee	2	-0.043056	0.533333
65	hated inn terrible roomservice horrible staff	1	-0.633333	0.725000
76	stay clear internet reservation friday rang ho	1	-0.142857	0.547619
77	single rooms like hospital rooms single rooms	1	-0.164947	0.330026

16

Pie-Chart percentage of Sentiments

94.3%reviews are positive based on the polarity score. So data is highly biased or imbalnced

There are some positive comments on room, beach, stay, restaurant, food

18

There are some negative comments on room, stay, staff, place, night, service, food, bathroom, small, dirty, restaurant, manager

Postive reviews -Histogram

polarity is right skewed

Negative reviews_Histogram

Polarity left skewed

positive review Bigrams

[('nice', 'hotel'), ('hotel', 'expensive'), ('expensive', 'parking'), ('parking', 'got'), ('got', 'good'), ('good', 'deal'), ('deal', 'stay'), ('stay', 'hotel'), ('hotel', 'anniversary'), ('anniversary', 'arrived'), ('arrived', 'late'), ('late', 'evening'), ('evening', 'took'), ('took', 'advice'), ('advice', 'previous'), ('previous', 'reviews'), ('reviews', 'valet'), ('valet', 'parking'), ('parking', 'check'), ('check', 'quick'), ('quick', 'easy'), ('easy', 'little'), ('little', 'disappointed'), ('disappointed', 'nonexistent'), ('nonexistent', 'view'), ('view', 'room'), ('room', 'room'), ('room', 'clean'), ('clean', 'nice'), ('nice', 'size'),

Top 15 most frequent Bigrams

```
[(('staff', 'friendly'), 2043),
  (('punta', 'cana'), 1550),
  (('great', 'location'), 1494),
  (('hotel', 'great'), 1435),
  (('walking', 'distance'), 1387),
  (('friendly', 'helpful'), 1307),
  (('hotel', 'staff'), 1161),
  (('stayed', 'hotel'), 1128),
  (('room', 'service'), 1102),
  (('recommend', 'hotel'), 1048),
  (('minute', 'walk'), 1044),
  (('staff', 'helpful'), 1006),
  (('room', 'clean'), 998),
  (('stayed', 'nights'), 962),
  (('highly', 'recommend'), 915)]
```

Here wecan see that most frequent positive comments are

Friendly and helpful Staff

- Great Location
- Room Service
- Room Clean
- Highly recommend

Bar Plot using Counter Function Most frequent Positive bigrams

Polarity based Positive review Trigrams

```
[('nice', 'hotel', 'expensive'),
('hotel', 'expensive', 'parking'),
('expensive', 'parking', 'got'),
('parking', 'got', 'good'),
('got', 'good', 'deal'),
('good', 'deal', 'stay'),
('deal', 'stay', 'hotel'),
('stay', 'hotel', 'anniversary'),
('hotel', 'anniversary', 'arrived'),
('anniversary', 'arrived', 'late'),
('arrived', 'late', 'evening'),
('late', 'evening', 'took'),
('evening', 'took', 'advice'),
('took', 'advice', 'previous'),
('advice', 'previous', 'reviews'),
 ('previous', 'reviews', 'valet'),
('reviews', 'valet', 'parking'),
('valet', 'parking', 'check'),
('parking', 'check', 'quick'),
('check', 'quick', 'easy'),
('quick', 'easy', 'little'),
('easy', 'little', 'disappointed'),
('little', 'disappointed', 'nonexistent'),
('disappointed', 'nonexistent', 'view'),
('nonexistent', 'view', 'room'),
('view', 'room', 'room'),
('room', 'room', 'clean'),
('room', 'clean', 'nice'),
('clean', 'nice', 'size'),
('nice', 'size', 'bed'),
```

Most frequent Trigramst

```
[(('staff', 'friendly', 'helpful'), 687),
(('hotel', 'great', 'location'), 528),
(('old', 'san', 'juan'), 341),
 (('highly', 'recommend', 'hotel'), 245),
(('flat', 'screen', 'tv'), 227),
 (('king', 'size', 'bed'), 223),
(('stayed', 'hotel', 'nights'), 202),
 (('hotel', 'staff', 'friendly'), 200),
 (('easy', 'walking', 'distance'), 186), _____ 22
(('free', 'internet', 'access'), 183),
(('hotel', 'good', 'location'), 172),
(('la', 'carte', 'restaurants'), 165),
(('staff', 'helpful', 'friendly'), 157),
(('returned', 'night', 'stay'), 157),
(('good', 'value', 'money'), 153)]
```

Bar Plot using Counter Function Most frequent Positive trigrams

- 23

24

Positive features/Reviews

Top positive features/reviews related to hotel on the basis of N-grams and wordcloud are

- staff helpful, friendly and efficient
- Great Location
- Room clean and nice
- Highly recommend
- Flat screen Tv
- Free Wifi and wonderful server
- free and best breakfast
- wonderful stay
- Free wine, tea and coffee service
- Bathroom attractive ,large with great soaking tub
- Car service price is reasonable
- Huge open space
- good lighting
- large and good building

Polarity based Negative Bigrams

```
[('warwick', 'bad'),
('bad', 'good'),
 ('good', 'reviews'),
 ('reviews', 'warwick'),
 ('warwick', 'shocks'),
 ('shocks', 'staff'),
 ('staff', 'quite'),
('quite', 'rude'),
('rude', 'rooms'),
 ('rooms', 'fairly'),
 ('fairly', 'dirty'),
 ('dirty', 'cut'),
('cut', 'asked'),
 ('asked', 'bandaid'),
 ('bandaid', 'requested'),
 ('requested', 'bottle'),
 ('bottle', 'opener'),
 ('opener', 'better'),
 ('better', 'serviceaustin'),
 ('serviceaustin', 'powers'),
('powers', 'decor'),
 ('decor', 'familiar'),
 ('familiar', 'hotel'),
 ('hotel', 'seattlewhere'),
```

Most Frequent negative bigrams

```
[(('star', 'hotel'), 86),
(('punta', 'cana'), 83),
(('credit', 'card'), 75),
(('room', 'service'), 68),
(('customer', 'service'), 67),
(('hotel', 'room'), 63),
(('stay', 'hotel'), 62),
(('stayed', 'hotel'), 56),
(('air', 'conditioning'), 52),
(('room', 'small'), 48),
(('hotel', 'stayed'), 46),
(('worst', 'hotel'), 46),
(('hotel', 'staff'), 43),
(('got', 'room'), 42),
(('desk', 'staff'), 41)]
```

Bar Plot using Counter Function Most frequent Negative bigrams

Polarity based Negative review trigrams

```
[('warwick', 'bad', 'good'),
('bad', 'good', 'reviews'),
('good', 'reviews', 'warwick'),
 ('reviews', 'warwick', 'shocks'),
 ('warwick', 'shocks', 'staff'),
 ('shocks', 'staff', 'quite'),
 ('staff', 'quite', 'rude'),
('quite', 'rude', 'rooms'),
 ('rude', 'rooms', 'fairly'),
 ('rooms', 'fairly', 'dirty'),
 ('fairly', 'dirty', 'cut'),
 ('dirty', 'cut', 'asked'),
 ('cut', 'asked', 'bandaid'),
 ('asked', 'bandaid', 'requested'),
 ('bandaid', 'requested', 'bottle'),
 ('requested', 'bottle', 'opener'),
 ('bottle', 'opener', 'better'),
 ('opener', 'better', 'serviceaustin'),
 ('better', 'serviceaustin', 'powers'),
 ('serviceaustin', 'powers', 'decor'),
 ('powers', 'decor', 'familiar'),
 ('decor', 'familiar', 'hotel'),
 ('familiar', 'hotel', 'seattlewhere'),
```

Most frequent Negative trigrams

```
[(('worst', 'hotel', 'stayed'), 21),
(('king', 'size', 'bed'), 8),
(('worst', 'hotel', 'experience'), 7),
 (('make', 'matters', 'worse'), 7),
 (('old', 'san', 'juan'), 7),
(('year', 'old', 'son'), 7),
 (('resort', 'punta', 'cana'), 7),
 (('melia', 'caribe', 'tropical'), 6),
 (('long', 'story', 'short'), 6),
 (('stayed', 'hotel', 'nights'), 6),
 (('far', 'worst', 'hotel'), 6),
 (('husband', 'stayed', 'hotel'), 5),
 (('charges', 'credit', 'card'), 5),
 (('needless', 'say', 'sleep'), 5),
 (('better', 'places', 'stay'), 5),
 (('room', 'called', 'desk'), 5),
 (('disturb', 'sign', 'door'), 5),
 (('desk', 'staff', 'rude'), 5),
 (('called', 'desk', 'told'), 5),
 (('water', 'pressure', 'shower'), 5),
 (('hotel', 'great', 'location'), 5),
(('la', 'carte', 'restaurants'), 5),
 (('spoke', 'little', 'english'), 5),
 (('credit', 'card', 'details'), 5),
 //'noval' 'convico' 'nlan'\ E\
```

Bar Plot using Counter Function Most frequent Negative trigrams

Negative-Trigram-Wordcloud

30

3

Negative features/Review

Top negative points to be noted to improve the hotel's brand image on the basis of Ngrams and wordcloud are

- Worst hotel stayed, Awful night stay, Hotel charges additional charges on credit card, Worst vacation, Horrible experience
- Staff and room service related:

Staff unwelcoming and rude

Staff smoking intentionally, cigerette smell in room

Terrible service

worst

Room and infrastructure related

Rooms like hospital rooms

beds hard, blanket rough

Small double bed

nasty frige with odor of rotten vegetables

Dirty and tiny carpet

Geyser issue-took cold shower

Noisy elevator

Tiles loose

Broken switches and sagged LCD Tv

Digital box not working

AC not working

Dirty bathroom

• Noise issue:

Cant sleep in night due to the sounds of walking and talking

Noisy neighbours

Noise from road ,can't sleep,wink night

TOPIC MODELING

Topic modeling is a statistical modeling for discovering te abstract that occur in a collection of documents. It helps to uncover the hidden structure in a collection of texts

Most common algorithms used to perform topic modeling are

- Latent Dirichlet Allocation(LDA)
- Latent Semantic Analysis (LSA)
- Probabilistic Latent Semantic Analysis(PLSA)

TOPIC MODELING - LDA

- 4 topics seletced by using Topic Modeling'
- Topic 1 Room + Location
- Topic 2 Beach + Room+ Resort + Food
- Topic 3 **Staff** + Room + Stay
- Topic 4 **Room Service** and **Hotel service**

- Area of the circle represents the importance of the topic.
- Distance between the center of the circle represents the similarity between the topic.
- Bar represents total frequency of 33 term in entire dataset.
- Dark Bar represents the extent to which it belongs to that topic.

FEATURE EXTRACTION

Machine only knows numbers .So here we have to convert text data into a numerical format called vectors (Words in reviews are converting into vectors). The process of conversion of unstructured text data into structured format is called Feature Extraction

Feature extraction techniques:

- Bag Of Words(Count Vectorization)
- TFIDF Vectorization
- Word Embedding(Word2Vec)

TFIDF -Feature Extraction

In TFIDF we get diifferent values rather than zeroes and 1's TFIDF follows weight scheme &it gives an idea about how important a word is.

WORD EMBEDDING(Word2Vec)

In which each word is represented by using a vector in three dimensional space. Words **36** with similar meaning should have similar representation. These representation helps to identify synonyms, antonyms and various other relationship between words. Word2Vec uses simple neural network.

in Word2Vec feature extraction a word is known by the neighborhood words. Word2Vec helps to predict what word comes next and what is the context of the word to be used. Word2Vec predict the target word based on the context word and viceversa

MODEL BUILDING

Machine learning algorithms used for the text classification are

- 1. Random Forest Classifier
- 2. Support Vector Machine
- 3. Logistic Regression
- 4. Boosting
- 5.**KNN**
- 6. Decision Tree
- 7. Naive Bayes

Model Building

we classified reviews based on the rating and labelled the reviews, positive (Rating>3), neutral(Rating=3) and negative(Rating<3)

```
Review Rating
                                                                    label
      nice hotel expensive parking got good deal sta...
                                                              4 positive
      ok nothing special charge diamond member hilto...
                                                             2 negative
      nice rooms experience hotel monaco seattle go...
                                                              3 neutral
      unique great stay wonderful time hotel monaco ...
                                                             5 positive
                                                                positive
      great stay great stay went seahawk game awesom...
      best kept secret rd time staying charm star be...
                                                             5 positive
20486
      great location price view hotel great quick pl...
                                                              4 positive
20487
      ok looks nice modern outside desk staff partic...
                                                              2 negative
20488
20489
      hotel theft ruined vacation hotel opened sept ...
                                                              1 negative
       people talking believe excellent ratings hotel...
                                                              2 negative
20490
```

34

MODEL BUILDING-TFIDF Vectorization

Model (TF-IDF approach)	Classification Report						
Random Forest		precision	recall	f1-score	support		
Classifier	negative	0.93	0.19	0.32	649		
Train accuracy=100%	neutral			0.01			
	positive		1.00				
	accuracy			0.77	4099		
	macro avg	0.90	0.40	0.40	4099		
	weighted avg		0.77	0.70	4099		
SUPPORT VECTOR MACHINE Train accuracy= 99.7	negative neutral positive accuracy macro avg weighted avg	1.00 0.79 0.89	0.35 0.02 1.00	0.50 0.03 0.88 0.80 0.47	649 408 3042 4099 4099		
Logistic Regression Train accuracy= 84	negative neutral positive	precision 1.00 0.00 0.75	recall 0.06 0.00 1.00	f1-score 0.11 0.00 0.86	support 649 408 3042	:	
	accuracy macro avg weighted avg	0.58 0.71	0.35 0.75	0.75 0.32 0.65	4099 4099 4099	Activ	

	1				
eXtreme Gradient Boosting (XG		precision	recall	f1-score	support
Boosting (XO	negative	0.86	0.10	0.17	649
	_	0.69			
Train accuracy=75	1	0.76			
Good model	p				00.2
	accuracy			0.76	4099
		0.77	0.37		
	weighted avg			0.67	
	weighted avg	0.77	0.70	0.07	4033
		precision	recall	il-score	support
KNN					
Train accuracy=81.6	_	0.74			649
Train accuracy of the	neutral				408
	positive	0.79	0.97	0.87	3042
	accuracy			0.78	
	macro avg				
	weighted avg	0.73	0.78	0.73	4099
DECISION TREE		precision	recall	f1-score	support
DECISION TREE		F			
Train accuracy= 100	negative	0.48	0.43	0.45	649
	neutral				
	positive		0.88		
	p0010110	0.02			
	accuracy			0.74	4099
	macro avg	0.51	0.48	0.49	4099
	weighted avg		0.74	0.72	4099
	mergnoed avg	0.71	0.74	0.72	-2000
I					

Comparatively better model is XGB model

MODEL BUIDING-Word2Vec Feature Extraction

Word Embedding- Models (Word2Vec)		Classificat	ion Repor	t	
B		precision	recall	f1-score	support
Random Forest	negative	0.76	0.68	0.72	649
Classifier		0.76			I
Train accuracy=100%	positive				I
	positive	0.03	0.50	0.51	3042
	accuracy			0.83	4099
		0.66	0.56		
	weighted avg				I
Naïve Bayes Train accuracy=70.99	_	0.64 0.15 0.80	0.41 0.17 0.85	0.16 0.83 0.71 0.49	649 408 3042 4099
Logistic Regression		0.75	0.73		649
Train accuracy=84	neutral positive	0.34 0.89	0.15 0.96	0.21 0.92	408 3042
	accuracy macro avg weighted avg	0.66 0.81	0.61 0.84	0.84 0.62 0.82	4099 4099 4099 Activ

I	I					
eXtreme Gradient		precision	recall	f1-score	support	
Boosting	negative	0.75	0.70	0.73	649	
(XG Boosting) Train accuracy=84	1	0.32			408	
Train accuracy-64	positive	0.86	0.97	0.91	3042	
	accuracy			0.84	4099	
	macro avg	0.64	0.57	0.58	4099	
	weighted avg	0.79	0.84	0.80	4099	
DECISION TREE		precision	recall	f1-score	support	
Train accuracy=100	negative	0.53	0.54	0.54	649	
	neutral	0.14	0.16	0.15	408	
	positive					
	accuracy			0.72	4099	
	macro avg	0.51	0.51	0.51	4099	1
	weighted avg	0.73	0.72	0.72	4099	T
KNN						
Train accuracy=85		precision	recall	f1-score	support	
	negative	0.66	0.64	0.65	649	
	neutral	0.20	0.11	0.14	408	
	positive	0.86	0.93	0.89	3042	
	accuracy			0.80	4099	
	macro avg					
	weighted avg	0.77	0.80	0.78	4099	

Both Logistic Regression and XG boosting have high accuracy score=0.84

Model-Accuracy

MODEL (TFIDF)	TRAIN ACCURACY	TEST ACCURACY
RANDOM FOREST CLASSIFIER	100	77
SUPPORT VECTOR MACHINE	99.7	80
LOGISTIC REGRESSION TRAIN ACCURACY	84	75
EXTREME GRADIENT BOOSTING (XG BOOSTING)	75	76
KNN	81.6	78
DECISION TREE	100	74
MODEL (Word2VEC)	TRAIN ACCURACY	TEST ACCURACY
RANDOM FOREST CLASSIFIER	100	83
NAÏVE BAYES	70.99	71
LOGISTIC REGRESSION	84	84
EXTREME GRADIENT BOOSTING (XG BOOSTING)	84	84
DECISION TREE	100	72
KNN	85	80 Go
		1717

_ 4

RESAMPLING-SMOTE

We tried to improve the model accuracy by using resampling technique named SMOTE(Synthetic Minority Oversampling Technique).

We got good accuracy for Random Forest Classifier (96.4) and Logistic Regression (98.34)

RESAMPLED DATA (Balanced Data)-MODEL ACCURACY

RESAMPLED-MODEL (TFIDF)	TRAIN ACCURACY	TEST ACCURACY
RANDOM FOREST CLASSIFIER	100	96.4
LOGISTIC REGRESSION TRAIN ACCURACY	99.94	98.34
EXTREME GRADIENT BOOSTING (XG BOOSTING)	73.71	72.6
KNN	66.47	ngular Snip 66
DECISION TREE	100	84.46
RESAMPLED_MODEL (Word2VEC)	TRAIN ACCURACY	TEST ACCURACY
RANDOM FOREST CLASSIFIER	100	83
NAÏVE BAYES	100	93.32
LOGISTIC REGRESSION	74.5	74.3
EXTREME GRADIENT BOOSTING (XG BOOSTING)	76.31	74.80
DECISION TREE	100	79.03
KNN	87.25	82.69

43

Classification Report- Balanced Data

Random Forest Train accuracy 100%	negative neutral positive accuracy macro avg weighted avg	1.00 0.90 0.97	0.94 0.95 0.99	0.97 jular 50.98 0.95 0.96 0.96	3024 3021 9056 9056
Logistic Regression Train Accuracy= 99.9		precision 0.99 0.99	recall 0.99 0.99	f1-score 0.99 0.99	support 3011 3024
	accuracy macro avg weighted avg			0. <mark>98</mark> 0.98 0.98	9056

	T				
			_		
Decision Tree		precision	recall	f1-score	support
Train Accuracy=100	negative	0.07	0.86	0.87	3011
	neutral		0.88		
	positive		0.81		
	positive	0.04	0.01	0.00	5021
	accuracy			0.85	9056
	macro avg	0.85	0.85	0.85	9056
	weighted avg	0.85	0.85	0.85	9056
KNN	p	recision	recall	f1-score	support
Train Accuracy-66.47					
-	_	0.79			
	neutral		1.00		
	positive	0.00	0.00	0.00	3021
	accuracy			0.66	9056
		0.45	0.66		9056
	weighted avg		0.66		
		precision	recall	f1-score	support
eXtreme Gradient					
Boosting (XG	negative		0.63		
Boosting)	neutral		0.68	0.72	3024
Train	positive	0.66	0.87	0.75	3021
accuracy=73.36				0.70	0056
,	accuracy	0.74	0.73	0.73 0.72	9056 9056
	macro avg weighted avg				9056
	werdured and	0.74	0.73	0.72	5030
	I .				

Deployment

Deployment done by using

- streamlit
- Flask

