

[Título Completo del Trabajo Autónomo 2]

Alisson Atupaña, Mario Camacho, Lenin Lopez

Universidad Nacional de Chimborazo

Facultad de Ingeniería

Ciencia de Datos e IA

Materia: Modelamiento

Docente: Estalin Mejia H.

Semestre: Tercero

Riobamba - Ecuador

21 de octubre de 2025

1 Introducción

[Escribir la introducción del trabajo. Describir el contexto del problema, su relevancia y justificación.]

1.1 Planteamiento del Problema

[Describir claramente el problema que se abordará en este trabajo.]

1.2 Preguntas de Investigación

ta de investigación

ta de investigación

1.3 Objetivos

1.3.1 Objetivo General

[Escribir el objetivo general del trabajo]

1.3.2 Objetivos Específicos

objetivo específico

objetivo específico

objetivo específico

1.4 Hipótesis

Hipótesis nula (H_0): [Escribir la hipótesis nula]

Hipótesis alternativa (H_1) : [Escribir la hipótesis alternativa]

Donde [explicar los parámetros]. Para la prueba de hipótesis se empleará un nivel de significancia de $\alpha=0.05$.

2 Marco Teórico

[Desarrollar el marco teórico con referencias bibliográficas relevantes. Para citar usar: clave<empty citation> para narrativas o (clave) para parentéticas]

3 Metodología

3.1 Datos

[Describir el dataset utilizado, sus características y procedencia]

3.2 Métodos Estadísticos

[Describir los métodos estadísticos que se utilizarán]

3.3 Software y Herramientas

El análisis estadístico se realizó utilizando el lenguaje de programación R (R Core Team, 2023), empleando los siguientes paquetes:

- ggplot2: Para visualización de datos
- dplyr: Para manipulación de datos

paquetes utilizados

4 Resultados

Se efectuó un análisis estadístico a través de una metodología desarrollada en etapas clave, que se detallarán junto a los resultados obtenidos de dicho proceso estadístico.

4.1 Exploración del Dataset

El análisis se realizó utilizando el dataset correspondiente al estudio, que contiene información relevante para los objetivos planteados. El dataset seleccionado presenta las siguientes características:

- Variable dependiente: [Describir la variable de interés principal]
- Variables independientes: [Describir las variables explicativas utilizadas]

La exploración inicial reveló que el dataset no contiene valores faltantes en las variables de interés, lo que permitió proceder al análisis sin requerir procedimientos de imputación o eliminación de observaciones.

Cuadro 1: Estructura y Completitud del Dataset

Variable	Observaciones	Valores Perdidos	Completitud
Variable 1	[n]	0	100%
Variable 2	[n]	0	100 %
Total	[n]	0	100%

Nota. El dataset no requiere tratamiento de valores perdidos. Todas las observaciones están completas para las variables de estudio.

4.2 Análisis Descriptivo

Se calcularon medidas de tendencia central y dispersión para caracterizar las variables de estudio. La Tabla 2 resume estos estadísticos descriptivos.

Cuadro 2: Estadísticas Descriptivas de las Variables de Estudio

Variable	Media	Mediana	DE	Mín	Máx	n
Variable 1	L J	[valor]			[valor]	
Variable 2	[valor]	[valor]	[valor]	[valor]	[valor]	[n]

Nota. DE = Desviación Estándar; Mín = Mínimo; Máx = Máximo; n = Tamaño de muestra.

Figura 1: Distribuciones de las variables de estudio

Los hallazgos principales del análisis descriptivo incluyen:

ísticas descriptivas

ervada en los datos

e las distribuciones

4.3 Evaluación de Normalidad

Se evaluó la normalidad de las variables mediante la prueba de Shapiro-Wilk (**shapiro1965**), cuya hipótesis nula establece que los datos provienen de una distribución normal.

Cuadro 3: Resultados de la Prueba de Normalidad de Shapiro-Wilk

Variable	Estadístico W	p-valor	Decisión ($\alpha = 0.05$)
Variable 1	[valor]	[valor]	[Decisión]
Variable 2	[valor]	[valor]	[Decisión]

Nota. Nivel de significancia: $\alpha=0.05$. El estadístico W cercano a 1 indica mayor normalidad.

4.4 Análisis de Correlación

Se calculó el coeficiente de correlación de Pearson para evaluar la asociación lineal entre las variables de interés:

Cuadro 4: Resultados del Análisis de Correlación de Pearson

Estadístico	Valor
Coeficiente de correlación (r)	[valor]
Estadístico t	[valor]
Grados de libertad	[valor]
p-valor	[valor]
Intervalo de confianza 95%	[intervalo]

Figura 2: Gráfico de dispersión con línea de tendencia

4.5 Modelo Estadístico

Se ajustó un modelo estadístico apropiado para responder a las preguntas de investigación. El modelo se puede expresar como:

$$Y = \beta_0 + \beta_1 X + \varepsilon \tag{1}$$

Donde Y es la variable dependiente, X es la variable independiente, β_0 es el intercepto, β_1 es la pendiente y ε es el término de error.

4.5.1 Estimación de Coeficientes

Cuadro 5: Coeficientes del Modelo Estadístico

Coeficiente	Estimación	EE	Estadístico t	p-valor
β_0 (Intercepto)	[valor]	[valor]	[valor]	[valor]
β_1 (Pendiente)	[valor]	[valor]	[valor]	[valor]

Nota. EE = Error Estándar.

4.5.2 Bondad de Ajuste

Cuadro 6: Métricas de Bondad de Ajuste del Modelo

Métrica	Valor
Coeficiente de determinación (R^2)	[valor]
Error estándar residual	[valor]
Estadístico F	[valor]
p-valor (prueba F)	[valor]

Figura 3: Gráficos de diagnóstico del modelo

5 Discusión

5.1 Interpretación de los Hallazgos

Los resultados del análisis proporcionan evidencia para evaluar las hipótesis planteadas. Los principales hallazgos se interpretan de la siguiente manera:

hallazgo principal

hallazgo principal

aciones estadísticas

5.2 Limitaciones del Estudio

Es importante reconocer las siguientes limitaciones del presente estudio:

itación identificada

itación identificada

ones metodológicas

5.3 Implicaciones

Los resultados tienen implicaciones importantes tanto desde el punto de vista teórico como práctico:

on teórica principal

práctica principal

ras investigaciones

6 Conclusiones

6.1 Respuestas a las Preguntas de Investigación

Con base en los resultados obtenidos, se responden las preguntas planteadas inicialmente:

Pregunta 1: [Pregunta de investigación]

Respuesta: [Respuesta basada en los resultados]

Pregunta 2: [Segunda pregunta de investigación]

Respuesta: [Segunda respuesta basada en los resultados]

6.2 Recomendaciones

era recomendación

nda recomendación

stigaciones futuras

Basándose en los ha	llazgos del estudio	, se proponen las	siguientes recomer	daciones

7 Referencias

R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/