Probabilidade e Estatística - Parte I

Introdução à Estatística

 Frase atribuída a Benjamin Disraeli (primeiro-ministro britânico, 1804-1881):

"Existem 3 tipos de mentira: mentira, mentiras escabrosas e a estatística";

- Pascal e a possibilidade de existência de Deus;
- mal uso da estatística (estatística de crimes, crises, etc, etc...);
- coleta de informações em diferentes processos (indústria, comércio, governo...);
- exemplos: testes de eficácia de remédio, pesquisas eleitorais, controle de qualidade de circuitos integrados;
- o que se faz com estes dados? é possível inferir informações importantes?

Abordagens em Estatística

- est. descritiva série de variáveis (média, desvio padrão, etc) usadas a fim de mostrar a tendência geral dos dados coletados;
- **est. inferencial** métodos avançados que tentam inferir propriedades gerais da distribuição da população,

INTERPRETAÇÕES DE PROBABILIDADE

Interpretação Subjetiva

- · probabilidades dadas por um indivíduo;
- muda de indivíduo para indivíduo;
- impossível de que seja livre de erros e contradições.

Interpretação clássica

- assume que todos os resultados têm iguais probabilidades de ocorrer;
- interpretação circular (probabilidade que depende da probabilidade);
- nada é dito sobre as probabilidades que não são iguais.

Frequentista

- é a razão (proporção) em que determinado processo deve ocorrer se o experimento for repetido um número grande de vezes;
- assume que o experimento é repetido exatamente da mesma forma;
- nada é dito sobre a quantidade de vezes que o experimento deverá ser feito;
- só se aplica ao experimento que pode ser repetido.

Teoria Matemática da Probabilidade

- embora a indicação de uma probabilidade a um evento seja matéria de controvérsia, há uma base matemática sólida sobre quais operações podem ser feitas sobre estas probabilidades
- · dois temas:
 - métodos de calcular a probabilidade de certos eventos dadas probabilidades iniciais;
 - métodos de revisar esta probabilidade caso determinados aspectos do experimento sejam determinados.

EXPERIMENTOS E EVENTOS

experimento é qualquer processo, real ou hipotético, cujos resultados podem ser identificados de antemão.

evento é um *conjunto* (de um ou mais) possíveis resultados do experimento.

TEORIA DE CONJUNTOS

Começemos com a parte matemática.

Espaço de amostras

é o conjunto de todos os possíveis resultados de um experimento.

Exemplo 1

Um dado de jogos tradicional

- · contém 6 faces;
- 6 possíveis resultados $S=\{1,2,3,4,5,6\};$
- S é um espaço de amostras;
- evento A: encontrar um número par: $A = \{2, 4, 6\}$
- evento B: encontrar um número maior do que 2:

MATEMÁTICA DE CONJUNTOS

- Seja S um espaço de amostras;
- se s é um dos possíveis resultados de S temos $s \in S$;
- um evento pode ser um conjunto de resultados de S (ex: número par para cima no lançamento de um dado);
- se A e B são dois eventos:
 - se todos os elementos de A estão em B também, dizemos $A\subset B$;
 - analogamente dizemos $B \supset A$;
- sejam A, B e C eventos e S um espaço de amostras:
 - se $A \subset B$ e $B \subset A$, então A = B;
 - se $A \subset B$ e $B \subset C$, então se A ocorrer então C ocorrerá também;
 - exemplo:
 - * $A = \{6\}$
 - * $B = \{4, 5, 6\}$
 - * $C = \{2, 3, 4, 5, 6\}$
- o conjunto vazio \emptyset faz parte de S;
- Ø representa qualquer resultado que não pode ocorrer.

CONJUNTOS CONTÁVEIS E INCONTÁVEIS

citos finitos são contáveis;

citos contáveis infinitos mesmo sendo infinito, se um conjunto tiver uma correspondência 1 a 1 com um número natural (ex: cito de números naturais N);

cjtos incontáveis quando não é possível de se fazer esta correspondência (ex: cjto de números reais \mathbb{R}).

OPERAÇÕES COM CONJUNTOS

complemento

O complemento A^c de um conjunto A pertencente a um espaço S é todo elemento de S que não faz parte de A.

Exemplo:

- $S = \{1, 2, 3, 4, 5, 6\}$
- $A = \{2, 4, 6\}$
- $A^c = \{1, 3, 5\}$

Diagrama de Venn:

- se A é um evento, A^c também é um evento.
- $(A^c)^c = A$
- $\emptyset^c = S$
- $S^c = \emptyset$

União de 2 Conjuntos

se A e B forem dois conjuntos, temos que a **união** de A e B são todos os eventos que só estão em A, mais todos os elementos que só estão em B mais os elementos que estão em ambos. Notação $A \cup B$.

Se A e B forem conjuntos:

- $A \cup B = B \cup A$
- $A \cup \emptyset = A$
- $A \cup A = A$
- $A \cup S = S$
- $A \cup A^c = S$
- se $A \subset B$, então $A \cup B = B$

União de vários conjuntos

Podemos extender a notação de união para mais de um conjunto.

$$A_1 \cup A_2 \cup ...A_n = \bigcup_{i=1}^n A_i$$

Não importa a ordem em que é feita a união:

$$A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C)$$

A união de conjuntos de elementos contáveis (finito ou infinito) é um evento.

Interseção de conjuntos

A intersecção dos conjuntos A e B é o conjunto de resultados que está *ao mesmo tempo* nos conjuntos A e B. A notação é $A \cap B$.

Se A e B forem conjuntos:

• $A \cap B = B \cap A$

- $A \cap \emptyset = \emptyset$
- $A \cap A = A$
- $A \cap S = A$
- $A \cap A^c = \emptyset$
- se $A \subset B$, então $A \cap B = A$

Intersecção de vários conjuntos

Podemos extender a notação de intersecção para mais de um conjunto.

$$A_1 \cap A_2 \cap \dots A_n = \bigcap_{i=1}^n A_i$$

Não importa a ordem em que é feita a união:

$$A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C)$$

Eventos mutualmente exclusivos

Dois eventos A e B são ditos mutualmente exclusivos quando $A\cap B=\emptyset$. Em outras palavras, ambos eventos não podem ocorrer ao mesmo tempo.

PROPRIEDADES ADICIONAIS DE CONJUNTOS

· lei de De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$
 ou $(A \cap B)^c = A^c \cup B^c$

prova:

• propriedade distributiva:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 ou $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• para dois conjuntos A e B, temos que $A \cap B$ e $A \cap B^c$ são dois conjuntos mutualmente excludentes. Adicionalmente:

$$A = (A \cap B) \cup (A \cap B^c)$$

е

$$A \cup B = B \cup (A \cap B^c)$$

A DEFINIÇÃO DE PROBABILIDADE

Cada evento A possui uma probabilidade Pr(A) de ocorrer.

Axiomas:

- 1. para cada A, $Pr(A) \ge 0$
- 2. Pr(S) = 1

 se temos um conjunto infinito de eventos mutualmente exclusivos, então:

$$\operatorname{Pr}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \operatorname{Pr}\left(A_i\right)$$

Definição de probabilidade

É a especificação de um número para $\Pr(A)$ para um evento A, número este que tem que satisfazer todas as 3 condições preditas acima. Em uma interpretação *frequentista*, seria a fração, dentro de um conjunto de n experimentos, que o evento A ocorre. Este número será realista à medida que n é maior.

Como consequência temos os seguintes teoremas:

$$Pr(\emptyset) = 0$$

Consideremos a sequência infinita de $A_1, A_2...$ de forma que $A_i = \emptyset$, para i = 1, 2, ... Estes eventos são mutualmente exclusivos pois $\emptyset \cap \emptyset = \emptyset$.

$$\Pr\left(\emptyset\right) = \Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \Pr\left(A_i\right) = \sum_{i=1}^{\infty} \Pr\left(\emptyset\right)$$

O único número que tem a propriedade acima é o zero.

Probabilidade de um conjunto finito de eventos mutualmente exclusivos

Consideremos um conjunto infinito de eventos de forma que os eventos $A_1,\,A_2,\,...,\,A_n$ são mutualmente exclusivos e $A_i=\emptyset$ para i>n. Assim:

$$\Pr\left(\bigcup_{i=1}^{n} A_i\right) = \Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \Pr(A_i)$$

$$= \sum_{i=1}^{n} \Pr(A_i) + \sum_{i=n+1}^{\infty} \Pr(A_i)$$

$$= \sum_{i=1}^{n} \Pr(A_i) + 0$$

$$= \sum_{i=1}^{n} \Pr(A_i)$$

Para cada evento A, $Pr(A^c) = 1 - Pr(A)$

Prova: Como os eventos A e A^c são mutualmente exclusivos e $A \cup A^c = S$, temos que $\Pr(A) + \Pr(A^c) = \Pr(S)$. Como $\Pr(S) = 1$, temos a prova do teorema.

Se
$$A \subset B$$
, $Pr(A) \leq Pr(B)$

Prova: O evento B pode ser visto como a união de dois eventos: A e $B \cup A^c$. Assim: $\Pr(B) = \Pr(A) + \Pr(B \cup A^c)$. Como $\Pr(B \cup A^c) \ge 0$, temos a prova.

Para qualquer evento $A \subset S$, $0 \leq \Pr(A) \leq 1$

Prova: O evento S pode ser visto como a união de dois eventos: A e A^c . Assim: $\Pr(S)=1=\Pr(A)+\Pr(A^c)$. Como $\Pr(A)\geq 0$, temos a prova.

Para cada dois eventos A e B, $\Pr(A \cap B^c) = \Pr(A) - \Pr(A \cap B)$

Prova: Como vimos anteriormente, os conjuntos $A \cup B$ e $A \cup B^c$ são mutualmente excludentes e:

$$A = (A \cap B) \cup (A \cap B^c)$$

Assim:

$$Pr(A) = Pr(A \cap B) + Pr(A \cap B^{c})$$

Para completarmos a prova, subtraímos $\Pr(A\cap B)$ de ambos os lados da igualdade.

Para cada dois eventos A e B, $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$

Prova: Como vimos anteriormente

$$A \cup B = B \cup (A \cap B^c)$$

Assim:

$$\begin{aligned} \Pr(A \cup B) &= \Pr(B) + \Pr(A \cap B^c) \\ &= \Pr(B) + \Pr(A) - \Pr(A \cap B) \end{aligned}$$

A última linha sai do teorema anterior.

Exemplo 2

Um paciente chega no hospital com sintomas de resfriado. O médico decide que o paciente foi infectado por vírus, bactéria ou ambos. Ele decide que a probabilidade do paciente ter sido infectado por bactéria é pr(B) = 0,7 e a probabilidade do paciente ter sido infectado por vírus é Pr(V) = 0,4. Qual é a probabilidade do resfriado do paciente ter sido causado pelos dois agentes em conjunto?

Como o paciente está realmente gripado, temos que:

$$Pr(B \cup V) = 1.$$

E, além disso:

$$Pr(B \cup V) = Pr(B) + Pr(V) - Pr(B \cap V)$$
$$1 = 0, 7 + 0, 4 - Pr(B \cap V)$$

Logo $Pr(B \cap V) = 0,1.$

Exemplo 3

Se 50% da população de determinada localidade assina o jornal A, 65% assina o jornal B e 85% assina ao menos um dos dois jornais, qual é a porcentagem da população que assina exclusivamente apenas um dos dois jornais (em outras palavras, qual é a porcentagem da população que assina somente o jornal A ou somente o jornal B)?

Podemos identificar, a partir do enunciado do problema, os seguintes termos: $\Pr(A) = 0, 5, \Pr(B) = 0, 65, \Pr(A \cup B) = 0, 85.$ Assim procuramos $\Pr(A \cup B) - \Pr(A \cap B)$, pois o número de pessoas que assina exclusivamente um dos dois jornais será igual ao número de pessoas que assina algum jornal menos o número de pessoas que assina ambos os jornais. Podemos encontrar o termo $\Pr(A \cap B)$ através de:

$$Pr(A \cap B) = Pr(A) + Pr(B) - Pr(A \cup B)$$

= 0, 5 + 0, 65 - 0, 85 = 0, 3

Daí, temos que:

$$Pr(A \cup B) - Pr(A \cap B) = 0.85 - 0.3 = 0.45.$$

ESPAÇO DE AMOSTRAS FINITO

Neste tipo de espaço temos somente um conjunto de n possíveis resultados do experimento. Assim, as condições são:

$$p_i \geq 0$$
, para $i = 1, ..., n$

е

$$\sum_{i=0}^{n} p_i = 1.$$

Espaço de Amostras Simples

Ocorre quando qualquer um dos n resultados tem a mesma probabilidade de ocorrer. Assim a probabilidade do resultado i ocorrer é dada por 1/n. Num caso destes, se um evento possui m resultados, a probabilidade deste evento é dada por:

$$Pr(m) = \frac{m}{n}$$

Exemplo 4

Qual é a probabilidade de termos exatamente 2 coroas quando jogamos 3 moedas?

Considerando que as moedas são independentes umas das outras, temos no total 8 possibilidades de resultados. Destas 8 possibilidades, 3 delas contém exatamente 2 coroas. Assim, a probabilidade buscada é 3/8.