Сравнение производительности bcache, dm-cache, flashcache, gflash

май 2015

Данное тестирование систем кэширования с помощью флэш накопителей предназначено для сравнения производительности в режиме отложенной записи (далее **writeback**) для основных типов нагрузки при различных состояниях систем кэширования, а также предназначено для понимания их работы и целесообразности применения.

Участники тестирования:

bcache - включен в ядро **Linux** (www.kernel.org/doc/Documentation/bcache.txt);

dm-cache - включен в ядро **Linux** (www.kernel.org/doc/Documentation/device-mapper/cache.txt);

flashcache - модуль для ядра **Linux** (github.com/facebook/flashcache); - модуль geom для **FreeBSD** (github.com/geomflash/geomflash).

Платформа для тестирования:

MB - Intel® Server Board S1200BTL;

CPU - Intel® Xeon® Processor E3-1230 (8M Cache, 3.20 GHz);

RAM - 16GB;

HDD - WD Black 2TB.

Диски для системы кэширования:

cache - Samsung SSD 850 PRO 256GB (далее **ssd**);

data - WD Re 4TB (далее **hdd**).

Операционная система:

Linux ubuntu 3.16.0-31-generic для bcache, dm-cache, flashcache; FreeBSD 10.1-RELEASE-p5 для gflash.

Программа тестирования:

fio-2.1.11 (ioengine=libaio) для bcache, dm-cache, flashcache;

fio-2.1.9 (ioengine=sync) для **qflash** (выбор sync связан с реализацией **fio** в FreeBSD).

Тестирование выполняется с помощью sh-скрипта и включает в себя:

- идентификацию операционной системы и дисков для системы кэширования;
- проверку состояния **ssd**;
- создание блочного устройства с кэшированием на **ssd**;
- вывод начальной статистики;
- последовательное выполнение специально подобранных заданий **fio** (всего 21 задание);
- каждое задание **fio** завершается выводом системной статистики;
- все данные тестирования записываются в файл для последующего анализа.

Для каждой системы кэширования создан свой sh-скрипт, учитывающий особенности создания кэша и отображения статистики в процессе работы. Все системы при создании настроены на кэширование запросов любого размера и типа нагрузки. Все остальные параметры оставлены по умолчанию.

Все файлы тестирования доступны на github.com/geomflash/geomflash/test_cache.

Перед началом анализа данных тестирования коротко опишем основные факторы, влияющие на производительность системы кэширования в режиме **writeback**:

- тип запроса ввода-вывода (чтение, запись);
- размер запроса ввода-вывода;
- тип нагрузки (последовательная, случайная, смешанная);

- состояние **ssd** очищенный или заполненный (количество очищенных блоков влияет на скорость записи флэш накопителя);
- количество незаписанных блоков (далее **dirty**) определяет режим работы отложенной записи.

Для получения максимальной скорости записи перед началом тестирования **ssd** очищается и проводится перезагрузка системы.

Для определения состояния **ssd** проводится тест случайного чтения 4КВ-блоками одним потоком. У заполненного **ssd** скорость чтения приблизительно равна заявленным 10000 iops (Samsung_ SSD_850_PRO_Data_Sheet_rev_2_0.pdf). У очищенного **ssd** скорость чтения значительно превосходит 10000 iops (для **Linux** около 22000 iops, для **FreeBSD** около 30000 iops).

Далее создается блочное устройство с кэшированием на **ssd**, выдерживается пауза 10 секунд, снимается начальная статистика.

Для анализа из статистики блочного устройства с кэшированием на **ssd** используется только количество **dirty** блоков. Из статистики **ssd** и **hdd** количество считанной и записанной информации. Собранная информация оформляется в виде сравнительных таблиц. Анализ производительности производится относительно **ssd** или **hdd**, в зависимости от условий задания. Производительность **ssd** отличается в **Linux** и **FreeBSD**, поэтому сравнение с **ssd** производится для каждой операционной системы отдельно. В Linux **I/O Scheduler** для **ssd** и **hdd** оставлен по умолчанию **deadline** (для **ssd** сравнение с **noop** показало незначительные различия в производительности). Также производится абсолютное сравнение производительности между системами кэширования. Для понимания работы кэширования анализируется количество записанной и считанной информации с **ssd** и **hdd**.

Далее описывается цель заданий **fio** и анализ полученных результатов.

Оценка максимальной скорости чтения большими блоками

Исходное состояние: кэш пуст, ssd очищен, dirty=0.

Выполняется троекратное последовательное чтение 8GB блоками по 128KB.

	KB/s	iops	cache	(ssd)	data	(hdd)	dirty
	100/3		read	write	read	write	(MB)
	1rw=	=readbs	=128kiode	epth=1siz	e=8goffse	et=1g	
hdd	173630	1356					
bcache	173236	1353	0	8407740	8388608	0	0
dm-cache	173620	1356	0	4	8388608	0	0
flashcache	132811	1037	0	8388608	8388608	0	0
gflash	173616	1356	248	28	8388632	0	0
	2rw=	=readbs	=128kiode	epth=1siz	e=8goffse	et=1g	
bcache	350548	2738	8175488	213200	213120	0	0
dm-cache	31746	248	8388856	9175044	8388608	0	0
flashcache	269245	2103	8388608	0	0	0	0
gflash	173656	1356	272	8454144	8388608	0	0
	3rw=	=readbs	=128kiode	epth=1siz	e=8goffse	et=1g	
bcache	363789	2842	8388608	12	0	0	0
dm-cache	309829	2420	8388608	4	0	0	0
flashcache	269956	2109	8388608	0	0	0	0
ssd_linux	448373	3502					
gflash	390458	3050	8388880	0	0	0	0
ssd_FreeBSD	497811	3889					

Три последовательных чтения выбраны, потому что кэширование чтения может происходить по первому чтению (**bcache, flashcache**), по второму чтению - (**gflash**) либо настраиваться (**dm-cache** - настроен кэшировать после второго чтения).

Первое чтение (задание №1):

bcache - читает с **hdd** и записывает (кэширует) блоки на **ssd**, скорость чтения равна максимальной скорости чтения с **hdd**;

dm-cache - читает с **hdd** и помечает прочитанные блоки (увеличивает счетчики чтений блоков), на **ssd** запись (кэширование) не производится, скорость чтения равна максимальной скорости чтения с **hdd** (незначительная запись 4КВ на **ssd** наверно связана с особенностями работы данной системы кэширования и в дальнейшем не будет приниматься во внимание);

flashcache - читает с **hdd** и записывает (кэширует) блоки на **ssd**, скорость чтения на 23% ниже максимальной скорости чтения с **hdd**;

gflash - читает с **hdd**, на **ssd** запись (кэширование) не производится, скорость чтения равна максимальной скорости чтения с **hdd** (дополнительное чтение с **hdd** 248КВ и запись (кэширование) 28КВ на **ssd** связано с особенностями функционирования **FreeBSD** и в дальнейшем будет считаться накладными расходами данной операционной системы и не будет приниматься во внимание).

Второе чтение (задание №2):

bcache - читает с **ssd** (97%) и с **hdd** (3%). Записывает (кэширует) прочитанные с **hdd** 3% информации на **ssd** (непонятна причина, почему при первом чтении в кэш не попал весь объём считанных с **hdd** данных). Скорость чтения на 22% ниже максимальной скорости чтения с **sdd**;

dm-cache - читает с **hdd** 8GB и читает с **ssd** 8GB. Записывает (кэширует) на **ssd** 8,75GB. Скорость чтения на 82% ниже максимальной скорости чтения с **hdd** (такое странное поведение и соответственно крайне низкую скорость чтения можно попытаться объяснить только такой последовательностью действий: при поступлении запроса на чтение 128KB, если читаемый блок подлежит кэшированию, то производится чтение с **hdd** блока размером 256KB (размер блока кэша), запись данного блока на **ssd** и уже затем чтение 128KB блока с **ssd**, если 128KB блок находится уже в кэше, то чтение производится с **ssd**, возможно я ошибаюсь, но иного объяснения у меня не получается);

flashcache - читает с **ssd**, скорость чтения на 40% ниже максимальной скорости чтения с **ssd**; **gflash** - читает с **hdd** и записывает (кэширует) блоки на **ssd**, скорость чтения равна максимальной скорости чтения с **hdd**.

Третье чтение (задание №3):

Все системы кэширования производят чтение только из кэша (ssd).

Итоги:

Скорость чтения во время кэширования по сравнению с максимальной скоростью чтения с **hdd**:

gflash 100%; bcache 100%; flashcache 76%; dm-cache 18%.

Скорость чтения из кэша по сравнению с максимальной скоростью чтения с **ssd**:

bcache 81%; gflash 78%; dm-cache 69%; flashcache 60%. Абсолютная скорость чтения из кэша:

gflash 100%; bcache 93%; dm-cache 79%; flashcache 69%.

Объём записанных метаданных по сравнению с объемом кэшируемых данных составляет:

flashcache 0,0% (удивительный результат, по факту метаданные в кэш не записываются);

gflash 0,8%; bcache 2,8%; dm-cache 9,4%.

Выводы: чтение большими блоками, исходя из результатов тестирования, нужно оценивать в двух фазах - скорость чтения при записи в кэш (кэширование) и чтение из кэша.

gflash и **bcache** кэширование - очень хорошо, чтение из кэша - хорошо;

flashcache кэширование - удовлетворительно, чтение из кэша - удовлетворительно;

dm-cache кэширование - плохо (возникло предположение, что такая низкая производительность из-за большого размера блока кэша в 256КВ. Проверено - при уменьшении размера блока кэша до 128КВ производительность становится ещё ниже), чтение из кэша - немного лучше чем у **flashcache**.

Оценка максимальной скорости чтения малыми блоками из кэша

Исходное состояние: кэш заполнен данными на 8GB, **dirty**=0.

Выполняется случайное чтение 4КВ-блоками из кэшированной области размером 8GB.

	KB/s	iops	cache	(ssd)	data	(hdd)	dirty
	100/3	LOPS -	read	write	read	write	(MB)
4	-rw=randrea	dbs=4k	iodepth=1	size=1g	offset=1g	filesize=9ç	J
bcache	33569	8392	1048576	0	0	0	0
dm-cache	33061	8265	1048576	4	0	0	0
flashcache	34153	8538	1048576	0	0	0	0
ssd_Linux	35877	8969					
gflash	37560	9390	1048848	0	0	0	0
ssd FreeBSD	39343	9835					
5	-rw=randread	dbs=4k	iodepth=32	2size=4g	offset=1g	filesize=9	g
bcache	397263	99315	4194304	0	0	0	0
dm-cache	387644	96910	4194304	4	0	0	0
flashcache	399953	99988	4194304	0	0	0	0
ssd_Linux	397301	99325					
gflash	398244	99560	4198792	0	0	0	0
ssd FreeBSD	397866	99466			-		

Итоги:

При очереди *QD=1 (задание №4)* скорость чтения из кэша по сравнению с максимальной скоростью чтения с **ssd** составляет:

gflash 95%;

flashcache 95%; bcache 94%; dm-cache 92%

Абсолютная скорость чтения из кэша:

 gflash
 100%;

 flashcache
 91%;

 bcache
 89%;

 dm-cache
 88%.

При очереди *QD=32 (задание №5)* скорость чтения из кэша по сравнению с максимальной скоростью чтения с **ssd** составляет:

flashcache 100%; gflash 100%; bcache 100%; dm-cache 98%.

Абсолютная скорость чтения из кэша:

flashcache 100%; gflash 100%; bcache 99%; dm-cache 97%.

Выводы: скорость чтения малыми блоками из кэша у всех систем кэширования почти равна максимальной скорости чтения с **ssd**. Можно только отметить небольшое отставание **dm-cache**.

Следующие задания будут связаны с работой кэша в режиме **writeback**, поэтому для понимания необходимо кратко описать алгоритмы работы и различия в архитектуре систем кэширования.

В режиме writeback данные записываются сначала в кэш (ssd) и затем переносятся в основное хранилище (hdd). При записи в кэш записываются данные и метаданные. Метаданные необходимы для возобновления работы кэша после перезагрузки системы. Для режима writeback важную роль играет максимально возможный объем незаписанных (dirty) данных на hdd. До достижения этого порога кэш находится в режиме заполнения. При полном заполнении переходит в форсированный режим. В режиме заполнения алгоритм отложенной записи определяет, как данные будут переноситься на hdd. Основная задача данного алгоритма способствовать максимальной производительности, поэтому настройка может производиться по различным критериям (по временному интервалу, в зависимости от текущей нагрузки на блочное устройство или другим критериям). В режиме заполнения скорость записи может приближаться к максимальной скорости записи ssd. В форсированном режиме необходимо постоянно записывать dirty блоки для освобождения места в кэше. Поэтому в форсированном режиме максимальная скорость записи oграничивается максимальной скоростью записи hdd.

В режиме writeback выход со строя кэша с большой вероятностью влечет за собой потерю всех данных. В bcache, dm-cache и flashcache надежность функционирования writeback кэша может обеспечиваться путем создания raid1 из ssd дисков. В gflash имеется встроенный механизм объединения в raid1 для writeback кэша выделенного объема оперативной памяти (ram) и такого же объема на ssd. Преимущество данного метода заключается в отсутствии чтения с ssd во время выполнения отложенной записи и увеличении скорости чтения при наличии данных в ram. Недостатком является малый объем writeback кэша (ограничен объемом свободной оперативной памяти в системе) и дополнительным копированием в оперативную память при кэшировании.

Для **gflash** в данном тестировании размер **writeback** кэша определен в 4GB, для остальных систем размер **writeback** кэша и настройки оставлены по умолчанию.

Оценка максимальной скорости записи большими блоками

Исходное состояние: кэш заполнен данными на 8GB, dirty=0.

Выполняется последовательная запись 4GB блоками по 128KB в некэшированную область. Объем записи в 4GB выбран, исходя из минимального размера **writeback** кэша у **gflash**.

	KB/s	iops	cache	(ssd)	data	(hdd)	dirty
	1.5, 5	Lops	read	write	read	write	(MB)
	6rw=w	vritebs	=128kiode	epth=1siz	e=4goffse	t=25g	
bcache	320714	2505	1108	4202388	456	132	4096
dm-cache	22481	175	8390548	8782668	4195136	8388608	0
flashcache	266711	2083	21824	4326012	0	19968	4077
ssd_Linux	417515	3261					
gflash	457793	3576	272	4227072	0	39680	4056
ssd FreeBSD	462386	3612					

Скорость записи на **ssd** зависит от количества свободных (незаписанных) блоков. В нашем случае на **ssd** записано немного больше 8GB, поэтому сравнение происходит с максимальной скоростью записи на очищенный **ssd**.

Итоги:

Скорость записи по сравнению с максимальной скоростью записи на очищеный **ssd** составляет:

gflash 99%; bcache 77%; flashcache 64%; dm-cache 5%.

Абсолютная скорость записи:

gflash 100%; bcache 70%; flashcache 58%; dm-cache 5%.

Объем записанных метаданных по сравнению с объемом записываемых данных составляет:

bcache 0,2%; gflash 0,8%; flashcache 3,1%; dm-cache 109,4%.

Выводы:

gflash - очень хорошо;

bcache - хорошо;

flashcache - удовлетворительно;

dm-cache - очень плохо (происходит малопонятный обмен блоками между **hdd** и **ssd**, в итоге имеем значительные объёмы чтения и записи на дисках и отсутствие **dirty** блоков, то есть по факту **dm-cache** не является **writeback** кэшем).

Оценка скорости записи большими блоками при выполнении фоновой отложенной записи

Исходное состояние: кэш заполнен данными на 12GB, **dirty** блоков около 4GB (**dm-cache** в расчет не принимается).

Выполняется последовательная запись 512GB (восемь раз по 64GB) блоками по 128KB. Объём записи в 512GB выбран для двукратной перезаписи кэша (**ssd**). Цель данного теста - заполнить весь объем **writeback** и заставить кэш форсированно переносить (записывать) данные на **hdd.** Также данный тест позволит оценить работу системы кэширования с флэш накопителем (особенность флэш памяти - падение скорости при перезаписи).

	KB/s	iops	cache	(ssd)	data	(hdd)	dirty
	KB/S	TOPS	read	write	read	write	(MB)
	7rw=v	vritebs	=128kiode	epth=1siz	e=64goffs	set=29g	
hdd	173641	1356					
bcache	216387	1690	34064672	67237920	0	34052096	36352
dm-cache	21639	169	134221596	140509188	67108928	134217728	0
flashcache	174976	1366	14368776	69792812	0	14368128	55581
gflash	172792	1349	272	67633152	0	67086080	4076
	8rw=v	vritebs	=128kiode	epth=1siz	e=64goffs	set=93g	
bcache	133232	1040	86754592	67247740	0	86732800	17203
dm-cache	21265	166	134221596	140509188	67108928	134217728	0
flashcache	108076	844	24731956	69789072	0	24981052	96722
gflash	171675	1341	272	67633160	0	67120000	4068
	rw=wri	itebs=1	28kiodept	th=1size=	64goffset	t=157g	
bcache	188410	1471	56192800	67241640	0	56189440	27853
dm-cache	19071	148	134221596	140509188	67108928	134217728	0
flashcache	108492	847	25199136	66649276	184	28430328	134494
gflash	171650	1341	272	67633152	0	67126400	4048
	9rw=w	ritebs=	=128kiode	pth=1size	e=64goffs	et=221g	
bcache	166331	1299	68243232	67243924	0	68269568	26726
dm-cache	32026	250	72259420	75643540	36128320	103237120	0
flashcache	82571	645	29937052	58286996	52	41412848	159588
gflash	171335	1338	176	67633196	96	67096832	4060
	10rw=v	vritebs	=128kiode	epth=1siz	e=64goffs	set=285g	
bcache	160191	1251	70820640	67243436	0	70798848	23142
dm-cache	171205	1337	1796	4	64	67108864	0
flashcache	60388	471	35052888	48899116	20	55912760	170521
gflash	170901	1335	248	67633188	24	67094528	4076
	11rw=v	vritebs	=128kiode	epth=1siz	e=64goffs	set=349g	
bcache	167171	1306	67188000	67243268	0	67207168	23040
dm-cache	170635	1333	1796	4	64	67108864	0
flashcache	53127	415	38197788	42715372	508	65210528	172375
gflash	170242	1330	272	67633152	0	67116544	4068
	12rw=v	vritebs	=128kiode	epth=1siz	e=64goffs	set=413g	
bcache	170296	1330	66103584	67242644	0	66087424	23962

dm-cache	170702	1333	1796	4	64	67108864	0				
flashcache	50063	391	39768036	40511104	172	69003140	170525				
gflash	170334	1330	272	67633156	0	67099136	4076				
	13rw=writebs=128kiodepth=1size=64goffset=477g										
bcache	168797	1318	66743072	67244372	0	66739712	24371				
dm-cache	170140	1329	1796	4	64	67108864	0				
flashcache	49962	390	39314076	40219264	8	68795084	168878				
gflash	169826	1326	176	67633196	96	67128576	4056				
hdd	170110	1328									

Для наглядности представим полученные данные в виде графиков.

Выводы:

gflash - очень хорошо (скорость ожидаемо упала до максимальной скорости записи **hdd** и стабильно продержалась до конца теста. Объём **dirty** блоков около 4GB);

bcache - хорошо (вначале небольшие колебания относительно максимальной скорости записи **hdd**. Объём **dirty** блоков достигал 36GB. Затем скорость стабилизировалась и продержалась до конца теста. Объём **dirty** блоков стабилизировался около 23GB);

flashcache - плохо (скорость все время падала. Когда кэш заполнился, система кэширования перестала справляться с записью в кэш и стала писать часть данных прямо на **hdd**. Есть подозрение, что не учитываются свойства флэш памяти при записи. В конце задания скорость упала до 29% от максимальной скорости записи **hdd**. Объём **dirty** блоков всё время рос и достиг к концу задания 168GB);

dm-cache - очень плохо (до полного заполнения кэша опять происходит малопонятный обмен блоками между **hdd** и **ssd**. Очень низкая скорость записи. Значительные объёмы чтения и записи на дисках. Традиционное отсутствие **dirty** блоков. После заполнения кэша, запись производилась только на **hdd** с соответствующей скоростью).

Оценка скорости кэширования чтения большими блоками при выполнении фоновой отложенной записи

Исходное состояние: кэш заполнен, выполняется отложенная запись, объём **dirty** блоков можно увидеть в предыдущей таблице (*задание* №13).

Выполняется троекратное последовательное чтение 8GB блоками по 128KB аналогичное **за- даниям №1, 2, 3.**

	KB/s	iops	cache	(ssd)	data	(hdd)	dirty
	100/5	MD/S TOPS	read	write	read	write	(MB)
	14rv	v=readb	s=128kio	depth=1si	ze=8goffs	set=1g	
bcache	52760	412	14792832	8409104	8388480	14811648	9933
dm-cache	299925	2343	8388612	4	0	0	0
flashcache	28316	221	9260700	4885200	8105984	8978076	160111
gflash	173566	1355	248	24	8388632	85376	3972
	15rv	v=readb	s=128kio	depth=1si	ze=8goffs	set=1g	
bcache	347830	2717	8398080	3328	3328	12800	9932
dm-cache	310471	2425	8388608	4	0	0	0
flashcache	38952	304	10382228	1319492	3702052	5695672	154548
gflash	173566	1355	272	8454144	8388608	87040	3888
	16rv	v=readb	s=128kio	depth=1si	ze=8goffs	set=1g	
bcache	354998	2773	8400896	16	0	12288	9830
dm-cache	309748	2419	8388608	4	0	0	0
flashcache	37299	291	11028304	1065632	2628860	5268556	149403
gflash	380246	2970	8388880	0	0	3805824	172

Итоги:

Скорость чтения во время кэширования **задание №14** по сравнению с **заданием №1** (для **gflash задание №15** по сравнению с **заданием №2**) составляет:

gflash 100% (отложенная запись в режиме заполнения);

bcache 30% (с большой вероятностью можно предположить, что отложенная запись сначала была в форсированном режиме, затем в режиме заполнения);

flashcache 21% (отложенная запись в форсированном режиме);

dm-cache не оценивается (кэш в предыдущем задании во время записи не обновлялся и поэтому чтение производилось с **ssd**).

Скорость чтения из кэша задание №16 по сравнению с заданием №3:

dm-cache100%(отложенная запись не выполнялась);bcache98%(отложенная запись в режиме заполнения);gflash97%(отложенная запись в режиме заполнения);flashcache14%(отложенная запись в форсированном режиме).

Абсолютная скорость чтения из кэша:

gflash 100%; bcache 93%; dm-cache 81%; flashcache 10%.

Выводы:

В данном тестировании из-за различных размеров и алгоритмов работы **writeback** кэша системы кэширования находились в разных режимах работы и оцениваются достаточно условно.

gflash кэширование и чтение из кэша - очень хорошо;

bcache кэширование - удовлетворительно, чтение из кэша - хорошо;

flashcache кэширование и чтение из кэша - плохо;

dm-cache в данных тестах не оценивается.

Оценка скорости чтения малыми блоками из кэша при выполнении фоновой отложенной записи

Исходное состояние: кэш заполнен, выполняется отложенная запись, объём **dirty** блоков можно увидеть в предыдущей таблице (*задание №16*).

Выполняется случайное чтение 4КВ-блоками из кэшированной области размером 8GB аналогичное **заданиям №4**, **5**.

	KB/s	iops	cache	(ssd)	data	(hdd)	dirty
	1.5, 5	1070	read	write	read	write	(MB)
17.	rw=randre	adbs=41	ciodepth=	1size=1g	offset=1g	filesize=9	9 g
bcache	33493	8373	1064448	4	0	15872	9830
dm-cache	33090	8272	1048576	4	0	0	0
flashcache	1572	394	10338232	394920	214808	9504464	140121
gflash	37532	9383	1048848	0	0	179200	0
18	-rw=randrea	dbs=4k	iodepth=3	2size=4g	offset=1g	filesize=	9g
bcache	397942	99485	4199936	0	0	5632	9830
dm-cache	387393	96848	4194304	4	0	0	0
flashcache	11114	2778	7836672	689344	679432	403464	139728
gflash	398282	99570	4198792	0	0	0	0

Итоги:

Задание №17 (QD=1)

Скорость чтения из кэша по сравнению с заданием №4 составляет:

 gflash
 100% (отложенная запись в режиме заполнения);

 bcache
 100% (отложенная запись в режиме заполнения);

 dm-cache
 100% (отложенная запись не выполнялась);

flashcache 4% (отложенная запись в форсированном режиме).

Абсолютная скорость чтения из кэша:

gflash 100%; bcache 89%; dm-cache 88%; flashcache 4%.

Задание №18 (QD=32)

Скорость чтения из кэша по сравнению с заданием №5 составляет:

gflash 100% (отложенная запись не выполнялась);

bcache 100% (отложенная запись в режиме заполнения);

dm-cache 98% (отложенная запись не выполнялась);

flashcache 3% (отложенная запись в форсированном режиме).

Абсолютная скорость чтения из кэша:

gflash 100%; bcache 100%; dm-cache 97%; flashcache 3%.

Выводы:

У систем кэширования во время выполнения заданий наблюдаются различные режимы работы отложенной записи. Поэтому выводы достаточно условны:

gflash производительность чтения практически не зависит от выполнения отложенной записи в режиме заполнения;

bcache в режиме форсированной записи - удовлетворительно, в режиме заполнения - хорошо;

flashcache в режиме форсированной записи - очень плохо. Из-за большого размера и низкой скорости работы **writeback** кэша, в режим заполнения система так и не вернулась;

dm-cache в данных тестах не оценивается.

Оценка производительности при нагрузке, характерной для баз данных

Исходное состояние: кэш заполнен, состояние систем кэширования можно увидеть в предыдущей таблице (*задание №18*).

Выполняется случайное чтение (67%) и запись (33%) общим объемом 4GB блоками по 8KB в кэшированной области размером 8GB QD=32.

	KB/s	iops	cache	(ssd)	data	(hdd)	dirty
	KB/S	TOPS	read	write	read	write	(MB)
19rw=ra	ndrwrwmi:	xread=67	bs=8kiod	epth=32si	ze=4goff	set=1gfile	size=9g
bcache	147042 72303	18380 9037	2824304	1405412	0	11312	11162
dm-cache	4733 2328	591 290	47046608	1382580	32	44216832	17
flashcache	13355 6568	1669 820	6732832	2399156	178372	4097620	137076
ssd_Linux full	103892 51085	12986 6385					
ssd_Linux clean	302434 148712	37804 18589					
gflash	298031 145389	37253 18173	2608032	1547140	0	104472	1145
ssd_FreeBSD full	114332 55775	14291 6971					
ssd_FreeBSD clean	222904 108740	27863 13592					

Итоги:

Системы кэширования выполняют данное задание в различных режимах работы. Поэтому оцениваются достаточно условно, но результаты данного задания позволяют сделать некоторые интересные выводы. В таблице представлены скорости заполненного (**full**) и очищенного (**clean**) **ssd**.

Абсолютная производительность:

gflash 100% (отложенная запись в режиме заполнения. В данном тесте впервые не удалось избежать чтения из оперативной памяти, было прочитано 210МВ, что составляет около 8% от объёма чтения. Сколько это дало в общий прирост производительности оценить сложно, так как основным сдерживающим фактором в данном тесте является скорость записи. Скорость записи явно превосходит скорость записи заполненного **ssd**, что явно указывает на предварительную очистку флэш памяти перед записью);

bcache 49% (отложенная запись в режиме заполнения. Скорость записи немного превосходит скорость записи заполненного **ssd**, но в два раза уступает скорости очищенного, поэтому однозначно оценить алгоритм записи во флэш память затруднительно);

flashcache 4% (отложенная запись в форсированном режиме. Производительность низкая. Запись во флэш память явно производится без предварительной очистки);

dm-cache 2% (снова очень низкая производительность. Огромные объёмы чтения и записи. Появились первые **dirty** блоки. Это дает право предположить, что **dirty** блоки появляются, если запись прозводится в блоки находящиеся в кэше).

Выводы:

gflash - очень хорошо;

bcache - хорошо; **flashcache** - плохо;

dm-cache - очень плохо.

Оценка скорости записи малыми блоками при выполнении фоновой отложенной записи

Исходное состояние: кэш заполнен, выполняется отложенная запись, объём **dirty** блоков можно увидеть в предыдущей таблице (*задание №19*).

Выполняется случайная запись 4КВ-блоками в некэшированную область размером 8GB.

	KB/s	iops	cache	(ssd)	data	(hdd)	dirty
	1.27 5	1000	read	write	read	write	(MB)
20	rw=randwrit	tebs=4k	iodepth=1	lsize=1g	offset=9g	filesize=1	7g
bcache	43185	10796	14112	1071980	0	12288	12486
dm-cache	709	177	50362060	10602452	8265744	50640176	0
flashcache	2193	548	12944296	1919684	0	13207248	125203
ssd_Linux full	57481	14370					
ssd_Linux clean	109215	27303					
gflash	196916	49228	272	1310720	0	101992	2069
ssd_FreeBSD full	91157	22798					
ssd_FreeBSD clean	115190	28797					
21r	rw=randwrite	ebs=4k	iodepth=32	2size=4g	offset=17	gfilesize=	25g
bcache	91855	22963	25376	4289216	0	23552	16282
dm-cache	1120	279	251508184	13270664	8388624	251739940	29
flashcache	5816	1453	15286156	8002280	0	16725404	125863
ssd_Linux full	58194	14548					
ssd_Linux clean	363017	90754					
gflash	54292	13573	4488	5242880	0	1248180	4093
ssd_FreeBSD full	59773	14943					
ssd_FreeBSD clean	148608	37151					

Итоги:

Задание №20 (QD=1)

Абсолютная скорость записи:

gflash 100% (отложенная запись в режиме заполнения. Скорость записи превосходит даже скорость записи очищенного **ssd**, но это не ошибка. На момент окончания задания количество записанной в кэш информации (данные + метаданные) составляет 125% от количества записываемых данных, значит запись сразу производится на **ssd**. Разгадка данного феномена кроется в архитектуре построения **gflash** и задекларированной возможной потере до четырех последних запросов на запись при аварийном завершении работы. То есть **gflash** умеет "разгонять" скорость записи на малых очередях);

bcache 22% (отложенная запись в режиме заполнения. Обращает на себя внимание очень малое количество записанных метаданных - около 2%. Это явно говорит о группировке в

метаданных информации о большом количестве записываемых блоков и сразу возникает вопрос о надёжности при аварийном завершении работы);

flashcache 1% (отложенная запись в форсированном режиме);

dm-cache 0,4% (*dirty=0*).

Задание №21 (QD=32)

Абсолютная скорость записи:

bcache 100% (отложенная запись в режиме заполнения);

gflash 59% (довольно показательный пример - вначале отложенная запись в режиме заполнения (в момент старта задания **writeback** кэш заполнен приблизительно на 50%) скорость записи высокая. Затем при полном заполнении кэша начинается форсированный режим и скорость записи ограничивается скоростью случайной записи на **hdd**. В результате имеем довольно низкую среднюю скорость);

flashcache 6% (отложенная запись в форсированном режиме);

dm-cache 1% (сложно что-либо комментировать).

Выводы:

Системы кэширования работают в различных режимах работы отложенной записи, но можно сделать некоторые выводы:

bcache и **gflash** традиционно показывают довольно высокую производительность;

flashcache из-за форсированного режима writeback кэша имеет низкую скорость записи;

dm-cache традиционно удивляет очень низкой скоростью записи.

На этом тест завершен.

Объем **dity** блоков на момент окончания теста можно сравнить в последней таблице. Это тот объём данных, который еще предстоит записать системам кэширования в основное хранилище.

Общие выводы

Данный тест не может претендовать на абсолютную объективность, так как существует еще много нерассмотренных нагрузок и режимов работы, но позволяет оценить сильные и слабые стороны систем кэширования.

gflash практически во всех тестах показывает лучшие результаты.

bcache незначительно уступает **gflash**. Это лучшая по прозводительности система кэширования из протестированных на платформе **Linux**. Если с надежностью работы все в порядке, то однозначный выбор для данной платформы.

flashcache сильной стороной является чтение малыми блоками из кэша при отсутствии фоновой отложенной записи, во всех остальных случаях производительность оставляет желать лучшего.

dm-cache самая несбалансированная система кэширования (с одной стороны имеет достаточно неплохую скорость чтения из кэша, с другой очень плохую производительность при помещении данных в кэш). Также не является в классическом понимании **writeback** кэшем и отличается странным (непредсказуемым) поведением.