PHY407: Computational Physics Fall, 2015

Lecture 11: Random Processes, Part 2

Summary & Status

- ☑ Weeks 1-3: Programming basics, numerical errors, numerical integration and differntiation.
- ☑ Weeks 4-5: Solving linear & nonlinear systems and Fourier transforms.
- ✓ Week 6: ODEs Part 1: RK4, Leapfrog, Verlet, adaptive time stepping; customizing python output
- ☑ Week 7: ODEs Part 2: Bulirsch-Stoer, Boundary Value Problems/shooting,
- ☑ Weeks 8-9: PDEs Part 1: Elliptic equation solvers, leapfrog time stepping, FTCS, Crank-Nicholson, Spectral Methods
- ☑ Week 10: Stochastic methods, Part 1: random numbers, monte carlo integration
- ☐ Week 11: Stochast methods, Part 2: recap, statistical mechanics ideas, simulated annealing approach to optimization.
- ☐ Week 12 (no lab): recap, discussion, extensions.

PHY407: Computational Physics Fall, 2015

Lecture 11: Random methods/stochastics Part 2

- Recap from last week
- Statistical mechanics ideas
- The "Metropolis" algorithm
- Simulated Annealing

Recap from last week

- Python's (pseudo) random number generator is the Mersenne Twister
- Transformation of distributions, e.g.

For uniformly distributed z, Poisson distribution $p(x) = \mu e^{-\mu x}$ obtained from

$$x = -\frac{1}{\mu} \ln(1 - z)$$

- Using random number sequence to generate fractal structures.
- Monte Carlo integration.

Monte Carlo: Importance Sampling

- Name two reasons we need Monte Carlo integration...
- Hit or Miss integration and mean value method have errors that vary as N^{-1/2}
- Importance sampling chooses weights that favour largest integration values:

$$I = \int_{a}^{b} f(x) dx = \left\langle \frac{f(x)}{w(x)} \right\rangle_{w} \int_{a}^{b} w(x) dx$$

$$\left\langle \frac{f(x)}{w(x)} \right\rangle_{w} = \frac{\int_{a}^{b} \left(\frac{f(x)}{w(x)} \right) w(x) dx}{\int_{a}^{b} w(x) dx} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_{i})}{w(x_{i})}, \quad x_{i} \text{ from } p(x) \propto w(x)$$

• For a system in equilibrium at temperature T, the probability of finding the system in any particular microstate 'i' is given by:

$$P(E_i) = \frac{\exp(-\beta E_i)}{Z}, \qquad Z = \sum_{i=1}^{ALL} \exp(-\beta E_i), \qquad \beta = \frac{1}{k_B T}$$

- where E_i is the energy of state i, and k_B is Boltzmann's constant.
- System undergoes transitions between microstates with probability of being in a particular microstate P(E_i)
- To calculate a macroscopic property during a measurement, like the total energy, or magnetization, we need to average over the many microstates that the system visits during the measurement.

 For a system in equilibrium at temperature T, the probability of finding the system in any particular microstate 'i' is given by:

$$P(E_i) = \frac{\exp(-\beta E_i)}{Z}, \qquad Z = \sum_{i=1}^{ALL} \exp(-\beta E_i), \qquad \beta = \frac{1}{k_B T}$$

 For a system in equilibrium at temperature T, the probability of finding the system in any particular microstate 'i' is given by:

$$P(E_i) = \frac{\exp(-\beta E_i)}{Z}, \qquad Z = \sum_{i=1}^{ALL} \exp(-\beta E_i), \qquad \beta = \frac{1}{k_B T}$$

At given T, what determines the probability of a particular microstate?

 For a system in equilibrium at temperature T, the probability of finding the system in any particular microstate 'i' is given by:

$$P(E_i) = \frac{\exp(-\beta E_i)}{Z}, \qquad Z = \sum_{i=1}^{ALL} \exp(-\beta E_i), \qquad \beta = \frac{1}{k_B T}$$

At given T, what determines the probability of a particular microstate?

Ε

What states are more likely? Those with high E or those with low E?

 For a system in equilibrium at temperature T, the probability of finding the system in any particular microstate 'i' is given by:

$$P(E_i) = \frac{\exp(-\beta E_i)}{Z}, \qquad Z = \sum_{i=1}^{ALL} \exp(-\beta E_i), \qquad \beta = \frac{1}{k_B T}$$

At given T, what determines the probability of a particular microstate?

E

What states are more likely? Those with high E or those with low E?

low E (e.g. E $<< k_B T$) \rightarrow exp(-E/ $k_B T$) bigger than state with higher E

The Problem of Large Numbers

If we want to measure a quantity 'X' over the macrostate:

$$< X > = \sum_{i=1}^{ALL} X_i P(E_i)$$

where X_i is the value of the quantity in the i^{th} microstate and P is the probability of finding the system in that microstate.

- Typically, this sum has an enormous number of terms.
- Simple example: single mole of gas has 10^{23} molecules. Assume each molecule had only 2 possible quantum states (gross underestimation), then the total number of microstates of the mole of gas is: $3^{10^{23}}$ which is HUGE.

Monte Carlo Summation in Stat. Mech.

- Huge number of terms in sum

 use Monte Carlo summation
- Randomly sample the terms in the sum and only use those as an estimate. Replace:

$$< X > = \sum_{i=1}^{ALL} X_i P(E_i)$$

with a sum over 'N' randomly sampled microstates:

$$\langle X \rangle = \frac{\sum_{k=1}^{N} X_k P(E_k)}{\sum_{k=1}^{N} P(E_k)}$$

 the denominator is needed to ensure the total probability over the sampled states is 1.

Monte Carlo Summation in Stat. Mech.

 It is only worth keeping the big terms in the sum if we want to compute this:

$$< X > = \sum_{i=1}^{ALL} X_i P(E_i)$$

• There are a lot of states with $P(E_i)$ really small, with $E_i >> k_B T$, which is the case for most of the states:

$$P(E_i) = \frac{\exp(-E_i / k_B T)}{Z}$$

- To get a good estimate for the sum, need to preferentially choose terms where the integrand is non-negligible.
- So we should use importance sampling!

Importance Sampling

For an integral:

$$I = \int_a^b f(x) dx = \int_a^b w(x) \frac{f(x)}{w(x)} dx$$

$$\Rightarrow I = \left\langle \frac{f(y)}{w(y)} \right\rangle_{w} \int_{a}^{b} w(x) dx \approx \frac{1}{N} \sum_{k=1}^{N} \frac{f(y_{k})}{w(y_{k})} \int_{a}^{b} w(x) dx$$

• For a sum (what we have):

$$< X > = \sum_{i=1}^{ALL} X_i P(E_i) \approx \frac{1}{N} \sum_{k=1}^{N} \frac{X_k P(E_k)}{w_k} \sum_{i=1}^{ALL} w_i$$

What to choose for weight w to reduce the variance?

Importance Sampling

• For an integral:

$$I = \int_a^b f(x) dx = \int_a^b w(x) \frac{f(x)}{w(x)} dx$$

$$\Rightarrow I = \left\langle \frac{f(y)}{w(y)} \right\rangle_{w} \int_{a}^{b} w(x) dx \approx \frac{1}{N} \sum_{k=1}^{N} \frac{f(y_{k})}{w(y_{k})} \int_{a}^{b} w(x) dx$$

• For a sum (what we have):

$$< X > = \sum_{i=1}^{ALL} X_i P(E_i) \approx \frac{1}{N} \sum_{k=1}^{N} \frac{X_k P(E_k)}{w_k} \sum_{i=1}^{ALL} w_i$$

- What to choose for weight w to reduce the variance?
- P(E_i)! (Let's keep terms with with large P)

$$< X > \approx \frac{1}{N} \sum_{k=1}^{N} \frac{X_k P(E_k)}{P(E_k)} \sum_{i=1}^{ALL} P(E_i)$$

Importance Sampling in Stat. Mech.

$$\langle X \rangle \approx \frac{1}{N} \sum_{k=1}^{N} \frac{X_k P(E_k)}{P(E_k)} \sum_{i=1}^{ALL} P(E_i)$$

- Two ways we can simplify this expression. What are they?
- (1)

• (2)

Importance Sampling in Stat. Mech.

$$\langle X \rangle \approx \frac{1}{N} \sum_{k=1}^{N} \frac{X_k P(E_k)}{P(E_k)} \sum_{i=1}^{ALL} P(E_i)$$

- Two ways we can simplify this expression. What are they?
- (1) Cancel out the P's in the first sum:

$$\Rightarrow \langle X \rangle \approx \frac{1}{N} \sum_{k=1}^{N} X_k \sum_{i=1}^{ALL} P(E_i)$$

• (2) Sum of probabilities over all states is 1:

$$\Rightarrow < X > \approx \frac{1}{N} \sum_{k=1}^{N} X_k$$

Importance Sampling in Stat. Mech.

$$\langle X \rangle = \frac{1}{N} \sum_{k=1}^{N} X_k$$

wow that's much simpler!

but remember: you are now choosing your k's from a non-uniform distribution p

our sampling points k come from:

$$p_{k} = \frac{w_{k}}{\sum_{i=1}^{ALL} w_{i}} = \frac{P(E_{k})}{\sum_{i=1}^{ALL} P(E_{i})} = P(E_{k})$$

• So essentially, to find the macroscopic <X> we randomly choose terms in the sum based on their Boltzmann probabilities.

Markov Chain Method

• One thing left to deal with: How do we pick states with probability $P(E_k)$? Recall:

$$P(E_k) = \frac{\exp(-\beta E_k)}{Z}, \qquad Z = \sum_{i=1}^{ALL} \exp(-\beta E_i), \qquad \beta = \frac{1}{k_B T}$$

- To do it this way, we need Z, which is a sum over all states. But if we could do this, we wouldn't need Monte Carlo in the first place!
- Solution: Use the Markov Chain Method:
 - text goes into details on how to implement this method with a Metropolis algorithm
 - I will summarize it algorithmically...

Markov Chain Method: The Algorithm

- 1. Choose a random starting state
- Calculate the energy of that state E_i
- Choose a transition to a new state uniformly at random from allowed set
- 4. Calculate the energy of this new state
- 5. Calculate the acceptance probability for this transition:

$$P_a = \begin{cases} 1 & \text{if } E_j \leq E_i \\ \exp[-\beta(E_j - E_i)] & \text{if } E_j > E_i \end{cases}$$
 • Always accept a lower energy state. Sometimes accept a higher energy state. • Accept higher energy more often for higher temperature.

- higher temperature.
- Accept/reject the move according to the acceptance probability
- Measure the quantity you want 'X' in its current state & store it
- 8. Repeat from step 2.

Ok, lets try applying it...

Ising Model

- Simple model of ferromagnetism, but demonstrates many of the physical characteristics of fancier models.
- Assume an object is made up of a collection of dipoles (e.g. electron spins) and the net magnetization is the sum of the magnetization of all the spins
- Ising model:
 - assume the spins can only point up or down.
 - the spins interact and favor parallel alignment of pairs of spins
 - the interactions are non-zero only between nearest neighbours (i.e. distance dependent).

Ising Model

The macroscopic energy given by:

$$E = -J \sum_{\langle ij \rangle} s_i s_j$$

where s = 1 if spin is up & s = -1 if spin is down.

Notice that the lowest energy occurs if the spins all line up.

 Spins can randomly flip as the system visits a set of allowable states given its temperature. At any particular moment the system may

look like:

Example: 1D Ising Model

- create array of dipoles, initial state: random spins
- Calculate energy & magnetization of state
- use Metropolis algorithm:
 - create new state: flip 1 spin randomly
 - calculate new total energy
 - calculate acceptance probability
 - decide whether to accept or reject new state
 - store 'new' energy & magnetization
 - repeat
- All right, lets do it...

2-D Ising Model

- Goal: what happens at different T.
- What you should find:
- Low T: macroscopic magnetization occurs, but there are fluctuations in the microstates.
- Increasing T: lower macroscopic magnetization, more fluctuations
- Increase above a critical T (Curie temperature): no macroscopic magnetization, large fluctuations.

Phase Transitions in the Ising Model

- Critical T: marks a phase transition.
- Above this value: no magnetization in system
- Below this value: magnetization.
- Note: there is no background magnetic field, so the system is symmetric about what sign of magnetization to acquire. This will depend strongly on the initial state of the system.
- Show simulations from python program...

(for those who took nonlinear: physics: what kind of bifurcation is this?)

Simulated Annealing

- Using Monte Carlo simulations to find GLOBAL minima/ maxima.
- In Ch. 6 we talked about ways of finding local mimima (e.g. golden ratio search).
- How it works: rewrite max/min problem as looking for a "ground state energy" of a system.
 - function f that you want the max/min: make this the energy function.
 - how could you find ground state: reduce temperature until you reach the ground state.

Simulated Annealing

- Issue: if you reduce temperature too quickly: might get caught in a local min instead of the global min.
- Solution: reduce temperature slowly. This way system has time to explore many microstates and find a good approximation to the global minimum.
- Visual Analogy: particle in a bumpy potential. Too low energy: get stuck in nearest local minimum. Keep low energy but allow some random 'kicks' in energy: can kick out of local minimum and continue heading to global minimum.

Example: Traveling Salesman

- Famous NP-hard problem: What is the shortest route to visit a given set of locations on a map?
- Want global minimum of distance
- start with random route, swap 2 cities, use Metropolis algorithm to determine whether to keep the swap
- 'energy' in this case is the total distance of the route

You will explore this problem using code from the book.

show salesman.py

Example: Minimization of a Function

- You will use simulated annealing to find the global minimum of a function f(x,y).
- Should be pretty straightforward to adapt from salesman.py.

PHY407: Computational Physics Fall, 2015

Lecture 11: Random methods/stochastics Part 2

- Recap from last week
- Statistical mechanics ideas
- The "Metropolis" algorithm
- Simulated Annealing