Nucleotide diversity

Nucleotide variation, haplotypic diversity, and neutrality tests in 22 Picea abies loci sequenced across seven populations

		Total				Nonsynonymous sites				Silent sites				Haplotype diversity			Neutrality tests	
Gene	n	L	S (singl.)	θ_{Wt}	$\pi_{t}{}^{a}$	L	S	θ_{Wa}	π_{a}	L	S	θ_{Ws}	$\pi_{\rm s}$	$N_{\rm h}~({ m SD})$	H_{e}	(SD)	D^a	Н
col1	46	3,196	76 (28)	5.41	3.03	881	1	0.26	0.47	2263	74	7.44	4.08	36	0.985	(0.009)	-1.57**	-5.47
cry	52	918	4(2)	0.97	0.57	595	4	1.49	0.87	321	0	0	0	4	0.418	(0.076)	-0.93	-4.88
ebs	50	730	16 (8)	4.89	2.26	317	2	1.41	0.25	407	14	7.68	3.86	12	0.481	(0.087)	-1.67*	_
gi	48	772	7 (3)	2.04	1.28	243	2	1.85	1.56	521	5	2.16	1.17	7	0.546	(0.073)	-1.00	-1.21
pat1	40	420	3 (1)	1.69	1.95	162	1	1.45	2.37	256	2	1.84	1.70	3	0.396	(0.077)	0.35	-0.04
phynrI	54	759	8 (5)	2.33	1.22	585	4	1.50	0.43	171	4	5.14	3.94	8	0.619	(0.050)	-1.27	0.56
phynrII	35	689	2(1)	0.71	0.24	535	1	0.45	0.11	152	1	1.60	0.73	3	0.165	(0.082)	-1.28*	0.06
phyo	44	1,776	19 (8)	2.47	1.58	1016	5	1.13	1.35	759	14	4.24	1.88	20	0.910	(0.027)	-1.16	0.21
phyP	49	794	4(1)	1.13	1.15	599	1	0.37	0.66	193	3	3.49	2.67	5	0.509	(0.073)	0.04	-0.30
phyP2	53	273	5 (2)	4.08	2.05	211	2	2.09	0.53	62	3	10.64	7.20	6	0.440	(0.078)	-1.18	-1.42
vip3	54	762	6 (3)	1.73	0.57*	353	1	0.62	0.10	400	5	2.74	0.99	6	0.234	(0.077)	-1.68**	0.41
se121	41	440	4(3)	2.14	0.55	ND	ND	ND	ND	ND	ND	ND	ND	5	0.230	(0.086)	-1.76**	0.23
se129	49	275	2(0)	1.64	1.85	ND	ND	ND	ND	ND	ND	ND	ND	3	0.471	(0.068)	0.24	-0.73
se1100	40	346	6 (0)	4.12	3.95	83	0	0	0	263	6	5.36	5.19	7	0.831	(0.031)	-0.09	0.53
se1151	49	480	8 (5)	3.77	2.11	ND	ND	ND	ND	ND	ND	ND	ND	9	0.687	(0.076)	-1.19	0.40
se1358	49	447	8 (3)	4.01	2.88	355	4	2.53	1.54	92	4	9.77	8.04	8	0.684	(0.056)	-0.78	0.32
se1364	47	552	4(1)	1.64	1.32	228	0	0	0	321	4	2.83	2.28	5	0.423	(0.080)	-0.44	0.59
se1368	47	429	5 (3)	2.66	1.04	87	1	2.59	0.49	340	4	2.67	1.19	4	0.201	(0.048)	-1.49	-2.98
se1390	49	495	13 (4)	5.89	4.83	309	4	2.91	2.88	182	9	11.06	8.25	15	0.922	(0.015)	-0.54	1.33
se1391	47	503	4(1)	1.80	1.02	ND	ND	ND	ND	ND	ND	ND	ND	4	0.304	(0.083)	-0.99	0.46
xy225	48	209	6 (3)	6.47	3.42	50	0	0	0	155	6	8.74	4.63	7	0.582	(0.074)	-1.21	0.62
xy1420	49	571	20(4)	7.86	6.81*	400	5	2.80	2.31	169	15	21.24	17.56	21	0.955	(0.011)	-0.56	-4.22
Total	—	$15,\!836$	230 (89)	—		7109	38		_	7288	175	_	_	207	-	_		

1.30 0.88

Average 47

719 10.5 (4) 3.16 2.08

5.81 3.99

9 (8)

0.545 (0.254) -0.92

-0.74