

2022 SIGKDD Applied Data Science Track

Recommendation in Offline Stores: A Gamification Approach for Learning the Spatiotemporal Representation of Indoor Shopping

Jongkyung Shin

Changhun Lee*

Chihyeon Lim*

Ulsan National Institute of Science and Technology (UNIST)

Ulsan, Republic of Korea

Yunmo Shin

Junseok Lim

Retailtech Co., Ltd.

Seoul, Republic of Korea

Background: Previous Attempts in Offline Retail

Data analytics using cameras (for reduction of congestion)

Smart shopping cart

Location based recommender system using beacon (Bluetooth)

^[1] https://www.prodcotech.com/shopper-paths-heatmaps/

^[2] https://www.arabnews.com/node/1705276/business-economy

^[3] https://www.plotprojects.com/blog/beacon-technology-in-retail-strategies-to-boost-sale:

Main Goal: Interactive recommender system for offline store

X Note: we assume this recommender system is for general customers (not for individual customer). Because many customers in offline stores may utilize smart devices (e.g., smart shopping carts) without logging-in owing to privacy concerns.

Unique Features of Offline Retail Stores

Main difference from e-commerce: Physical constraints (e.g., space, structure)

(1) Impossible movement

(2) Different items are exposed by location

<Comparison of customer behavior in the offline and online store>

Customer's behavior	Environment				
Customer's benavior	Online store	Offline store			
Entrance	Access Homepage/App	Visit a store			
Search items	Use search engine	Walk around the store			
Confirm recommended items	Watch through the device's screen	(Watch through the device's screen)			
Adopt recommended items	Click the 'add on basket' button	Move toward item and load it			
Purchase and pay	Click the 'payment' button	Move to counter and payment			

- (1) Current location determines where customers can go
- (2) Current location determines what customers can see

Customer's spatial condition changes shopping behavior

Context of customers can be continually changed by their location and structure of offline store

Unique Features of Offline Retail Stores

Congestion has Inverted U-shaped relationship with sales [4]

The retailers need to balance the trade-off between the <u>congestion</u> and <u>sales</u> of stores appropriately

[4] Yue Pan and Jennifer Christie Siemens. 2011. The differential effects of retail density: An investigation of goods versus service settings. Journal of Business Research 64, 2 (2011), 105–112

Research Goal & Main Challenge

Main Goal: Interactive recommender system for offline store

- (1) To capture <u>spatiotemporal context</u> of customers
- (2) To control <u>sales operation</u> from the perspective of retailer

Main Challenge: Hard to collect data that represent the spatiotemporal context and customer's feedback

- Devices that can collect customers' in-store behaviors are available only at a few store
- Installation of new sensors or devices costs a great deal of money

Gamification approach for learning the spatiotemporal representation

Floor plan and plan-o-gram

Recurrent convolutional network (RCN)

Pixel world environment

User model

Recommender system

Example of Interactive Training Process

Red circle: current location of user model

Black circle: user model's movement

Yellow star: location of an item in the initial purchase plan

Blue star: location of the recommended item that user model accepts

< Recurrent convolutional network (RCN) >

Reinforcement Learning for Recommendation and Operations Control

Operations Control

<u>To maximize the sales</u> → Maximize total price of (accepted) recommended items (TPR)

<u>To minimize the congestion in store</u> → Minimize length of shopping (LOS)

Reward function: $R(\hat{x}_{1:T}) = (1 - \lambda) \log TPR_{scale}(\hat{x}_{1:T}) - \lambda \log LOS_{scale}(\hat{x}_{1:T})$

Result of Pre-trained Recurrent Convolutional Network

- Performance comparison between RCN and sequential recommender systems
- The model considering spatiotemporal context works more effectively than the models that consider only a temporal context

Model -	Item-brand-level relevance						
	HR@1	HR@5	Prec@5	NG@5	Prec@20	NG@20	MAP@20
PoP	0.0001	0.0175	0.0035	0.0073	0.0019	0.0137	0.0025
SeqPoP	0.0044	0.0312	0.0062	0.0172	0.0040	0.0308	0.0042
GRU4Rec	0.0073	0.0360	0.0072	0.0209	0.0044	0.0311	0.0056
Caser	0.0014	0.0051	0.0018	0.0035	0.0021	0.0090	0.0023
SASRec	0.0237	0.0374	0.0076	0.0303	0.0036	0.0389	0.0067
Ours	0.0296	0.0918	0.0196	0.0611	0.0107	0.0873	0.0161

Result of Interactive Training

- Test result of our model trained according to different λ values
- LOS control works as expected and TPR is maximized at $\lambda = 0.5$

	λ	Metric				
	Λ	Acceptance Rate (%)	LOS	TPR (\$)	logP	
Offline	-	3.650	153.13	19.50	-24.64	
Online	1.0	2.288	124.11	6.14	-0.003	
	0.75	2.288	124.11	6.14	-0.006	
	0.5	3.215	157.78	95.97	-15.59	
	0.25	2.033	137.96	29.16	-29.81	
	0.0	2.083	126.38	31.46	-28.45	

Table 2: The result of controlled recommendation

Figure 5: Recommendation control and policy convergence through online learning

Reward function: $R(\hat{x}_{1:T}) = (1 - \lambda) \log TPR_{scale}(\hat{x}_{1:T}) - \lambda \log LOS_{scale}(\hat{x}_{1:T})$

Example of results visualized in the 2D-pixel world

Online learning ($\lambda = 0.5$)

Online learning $(\lambda = 1)$

Online learning $(\lambda = 0)$

Only LOS control

Conclusion & Future Work

Conclusion

- We believe that our work will contribute to advancing many location-based services for offline stores, shopping malls, event venues,
 theme parks, production yards, and other physical environments that can be transformed into virtual environments
- The advantage of gamification approach
 - Do not need any devices that capture the spatiotemporal contexts in training
 - ▶ Can analyze the controllability of recommender system in terms of sales operation under the interactive scenario

Future Work

- Solving the existing problem of Recsys: Scalability issue, Personalization
- Reflecting the frequently changing sales management
- Development of an automatic generation engine that transform the floor plan into the pixel world.

Thank you

Paper

Presenter: Jongkyung Shin

E-mail: shinjk1156@unist.ac.kr

Github

