

[Chapter 1] (part2)
Algorithms :
Efficiency, Analysis,
And Order

Representative Order Functions

- $\Theta(\lg n)$
- \bullet $\Theta(n)$: linear
- $\Theta(n \lg n)$
- $\Theta(n^2)$: quadratic
- \bullet $\Theta(n^3)$: cubic
- \bullet $\Theta(2^n)$: exponential
- \bullet $\Theta(n!)$: combinatorial

Example

The quadratic term eventually determines

n	$0.1n^{2}$	$0.1n^2 + n + 100$
10	10	120
20	40	160
50	250	400
100	1,000	1,200
1,000	100,000	101,100

Growth Rates of Some Complexity Functions

Execution Times for Algorithms with the Given Time Complexities

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = 2^n$
10	$0.003 \mu \mathrm{s}^*$	$0.01~\mu \mathrm{s}$	$0.033~\mu {\rm s}$	$0.10 \; \mu { m s}$	$1.0~\mu \mathrm{s}$	$1 \mu s$
20	$0.004~\mu\mathrm{s}$	$0.02~\mu\mathrm{s}$	$0.086~\mu\mathrm{s}$	$0.40~\mu\mathrm{s}$	$8.0~\mu s$	$1~\mathrm{ms}^\dagger$
30	$0.005~\mu\mathrm{s}$	$0.03~\mu\mathrm{s}$	$0.147~\mu \mathrm{s}$	$0.90~\mu\mathrm{s}$	$27.0~\mu \mathrm{s}$	1 s
40	$0.005~\mu\mathrm{s}$	$0.04~\mu\mathrm{s}$	$0.213~\mu\mathrm{s}$	$1.60~\mu\mathrm{s}$	$64.0~\mu \mathrm{s}$	18.3 min
50	$0.006~\mu \mathrm{s}$	$0.05~\mu\mathrm{s}$	$0.282~\mu\mathrm{s}$	$2.50~\mu \mathrm{s}$	$125.0~\mu\mathrm{s}$	13 days
10^{2}	$0.007~\mu\mathrm{s}$	$0.10~\mu \mathrm{s}$	$0.664~\mu\mathrm{s}$	$10.00~\mu \mathrm{s}$	1.0 ms	$4 \times 10^{13} \text{ years}$
10^{3}	$0.010~\mu \mathrm{s}$	$1.00~\mu \mathrm{s}$	$9.966~\mu \mathrm{s}$	$1.00~\mathrm{ms}$	1.0 s	
10^{4}	$0.013~\mu\mathrm{s}$	$10.00~\mu\mathrm{s}$	$130.000 \; \mu \mathrm{s}$	100.00 ms	16.7 min	
10^{5}	$0.017~\mu\mathrm{s}$	$0.10 \mathrm{\ ms}$	$1.670~\mathrm{ms}$	$10.00 \ s$	11.6 days	
10^{6}	$0.020~\mu\mathrm{s}$	$1.00~\mathrm{ms}$	19.930 ms	$16.70 \min$	31.7 years	
10^{7}	$0.023~\mu\mathrm{s}$	$0.01 \mathrm{\ s}$	$2.660 \mathrm{\ s}$	$1.16 \mathrm{days}$	31,709 years	
10^{8}	$0.027~\mu\mathrm{s}$	$0.10 \mathrm{\ s}$	$2.660 \mathrm{\ s}$	115.70 days	$3.17 \times 10^7 \text{ years}$	
10^{9}	$0.030~\mu\mathrm{s}$	$1.00 \mathrm{\ s}$	$29.900~\mathrm{s}$	31.70 years		

Rigorous Definition to Order: Big O

- Definition: (Asymptotic Upper Bound)
 - For a given complexity function f(n), O(f(n)) is the set of complexity functions g(n) for which there exists some positive real constant c and some non-negative integer N such that for all $n \ge N$,

$$g(n) \le c \times f(n)$$

 $g(n) \in O(f(n))$

Big O Notation: Definition

- Meaning of $g(n) \in O(f(n))$
 - Although g(n) starts out above cf(n) in the figure, eventually it falls beneath cf(n) and stays there.
 - If g(n) is the time complexity for an algorithm, eventually the running time of the algorithm will be at least as good as f(n)
 - f(n) is called as an asymptotic upper bound (of what?) (i.e. g(n) cannot run slower than f(n), eventually)

Big O Notation: Example

- Meaning of $n^2+10n \in O(n^2)$
 - Take c = 11 and N = 1.
 - Take c = 2 and N = 10.
 - If n^2+10n is the time complexity for some algorithm, eventually the running time of the algorithm will be at least as fast (good) as n^2
 - $11n^2$ is an asymptotic upper bound for the time complexity function of n^2+10n .

Figure 1.5 The function $n^2 + 10n$ eventually stays beneath the function $2n^2$.

Big O Notation: More Examples

- - Take c = 5 and N = 0, then for all n such that $n \ge N$, $5n^2 \le cn^2$.
- $T(n) = \frac{n(n-1)}{2}$
 - Because, for $n \ge 0$, $\frac{n(n-1)}{2} \le \frac{n^2}{2}$
 - Therefore, we can take $c = \frac{1}{2}$ and N = 0, to conclude that $T(n) \in O(n^2)$.
- $n^2 \in O(n^2 + 10n)$
 - Because, for $n \ge 0$, $n^2 \le 1 \times (n^2 + 10n)$
 - Therefore, we can take c = 1 and N = 0, to conclude that $n^2 \in O(n^2+10n)$

Big O Notation: More Examples (Cont'd)

- $n \in O(n^2)$
 - Take c = 1 and N = 1, then for all n such that $n \ge N$, $n \le 1 \times n^2$.
- $n^3 \in O(n^2)?$
 - Divide both sides by n²
 - Then, we can obtain $n \le c$
 - But it's impossible there exists a constant c that is large enough than a variable n.
 - Therefore, n^3 does not belong to $O(n^2)$.

Figure 1.6 The sets $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$. Some exemplary members are shown.

Rigorous Definition to Order: Ω

- Definition: (Asymptotic Lower Bound)
 - For a given complexity function f(n), $\Omega(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constant c and some non-negative integer N such that for all $n \ge N$,

$$g(n) \ge c \times f(n)$$

• $g(n) \in \Omega(f(n))$

Ω Notation: Definition

- Meaning of $g(n) \in \Omega(f(n))$
 - Although g(n) starts out below cf(n) in the figure, eventually it goes above cf(n) and stays there.
 - If g(n) is the time complexity for some algorithm, eventually the running time of the algorithm will be at least as bad as f(n)
 - f(n) is called as an asymptotic lower bound (of what?) (i.e. g(n) cannot run faster than f(n), eventually)

Ω Notation: Example

- Meaning of $n^2+10n \in \Omega(n^2)$
 - Take c = 1 and N = 0.
 - For all integer $n \ge 0$, it holds that $n^2 + 10n \ge n^2$
 - Therefore, n^2 is an asymptotic lower bound for the time complexity function of n^2+10n . (I.e., n^2+10n belongs to $\Omega(n^2)$)
- $5n^2 \in \Omega(n^2)$
 - Take c = 1 and N = 0.
 - For all integer $n \ge 0$, it holds that $5n^2 \ge 1 \times n^2$
 - Therefore, n^2 is an asymptotic lower bound for the time complexity function of $5n^2$.

Ω Notation: More Examples

- $T(n) = \frac{n(n-1)}{2}$
 - Because, for $n \ge 2$, $n 1 \ge n/2$, so it holds that $\frac{n(n-1)}{2} \ge \frac{n}{2} \times \frac{n}{2} = \frac{1}{4}n^2$
 - Therefore, we can take c = 1/4 and N = 2, to conclude that $T(n) \in \Omega(n^2)$.
- $n^3 \in \Omega(n^2)$
 - Because, for $n \ge 1$, it holds that $n^3 \ge 1 \times n^2$
 - Therefore, we can take c = 1 and N = 1, to conclude that $n^3 \in \Omega(n^2)$

Ω Notation: Last Example

- $n \in \Omega(n^2)$
 - Proof by contradiction.
 - Suppose it is true that $n \in \Omega(n^2)$.
 - Then, for all integer $n \ge N$, there must exist some positive real number c > 0, and non-negative integer N.
 - Let's divide both sides by cn.
 - Then, we will get $1/c \ge n$, which is impossible.
 - Therefore, n does not belong to $\Omega(n^2)$.

Figure 1.6 The sets $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$. Some exemplary members are shown.

Rigorous Definition to Order: ⊕

- Definition: (Asymptotic Tight Bound)
 - For a given complexity function f(n), $\Theta(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constants c and d and some non-negative integer N such that for all $n \ge N$,

$$c \times f(n) \le g(n) \le d \times f(n)$$

- $g(n) \in \Theta(f(n))$, we say that g(n) is order of f(n).
- Example: $T(n) = \frac{n(n-1)}{2}$ $T(n) \in \Theta(n^2)$

Figure 1.6 The sets $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$. Some exemplary members are shown.

Rigorous Definition to Order: Small o

Definition:

■ For a given complexity function f(n), o(f(n)) is the set of complexity functions g(n) satisfying the following: For **every** positive real constant c there exists a non-negative integer N such that for all $n \ge N$,

$$g(n) \le c \times f(n)$$

 $g(n) \in o(f(n))$

Big O vs. Small o

Difference

- Big O: For a given complexity function f(n), O(f(n)) is the set of complexity functions g(n) for which there exists **some** positive real constant c and some non-negative integer N such that for all $n \ge N$
- Small o: For a given complexity function f(n), o(f(n)) is the set of complexity functions g(n) satisfying the following: For *every* positive real constant c there exists a non-negative integer N such that for all $n \ge N$,

$$g(n) \le c \times f(n)$$

• If $g(n) \in o(f(n))$, g(n) is eventually much better than f(n).

Small o Notation: Example

- $n \in o(n^2)$
 - Suppose c > 0. We need to find an N such that, for $n \ge N$, $n \le cn^2$.
 - If we divide both sides by cn,
 - Then, we get $1/c \le n$
 - Therefore, it suffice to choose any $N \ge 1/c$.
 - For example, if c=0.00001, we must take equal to at least 100,000. That is, for $n \ge 100,000$, $n \le 0.00001n^2$.

Small o Notation: Example2

- $n \in o(5n)$?
 - Proof by contradiction.
 - Let c = 1/6. If $n \in o(5n)$, then there must exist some N such that, for $n \ge N$, $n \le \frac{1}{6} \times 5n = \frac{5}{6}n$
 - But it is impossible.
 - This contradiction proves that n is not in o(5n).

Properties of Order Functions

- $g(n) \in O(f(n))$ iff $f(n) \in \Omega(g(n))$
- $g(n) \in \Theta(f(n))$ iff $f(n) \in \Theta(g(n))$
- If b > 1 and a > 1, then $\log_a n \in \Theta(\log_b n)$.
- If b > a > 0, then $a^n \in o(b^n)$.
- For all a > 0, $a^n \in o(n!)$.
- See the following ordering, where k>j>2 and b>a>1.

$$\Theta(\lg n), \Theta(n), \Theta(n \lg n), \Theta(n^2), \Theta(n^j), \Theta(n^k), \Theta(a^n), \Theta(b^n), \Theta(n!)$$

• If $c \ge 0$, $d \ge 0$, $g(n) \in O(f(n))$, and $h(n) \in \Theta(f(n))$, then $c \times g(n) + d \times h(n) \in \Theta(f(n))$

Using a Limit to Determine Order (1/2)

Theorem 1.3

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \begin{cases} c > 0 & g(n) \in \Theta(f(n)) \\ 0 & g(n) \in o(f(n)) \\ \infty & f(n) \in o(g(n)) \end{cases}$$

Example: Theorem 1.3 implies

$$\frac{n^2}{2} \in O(n^3) \quad \text{because} \quad \lim_{n \to \infty} \frac{n^2/2}{n^3} = \lim_{n \to \infty} \frac{1}{2n} = 0$$

Using a Limit to Determine Order (2/2)

Theorem 1.4 (L'Hopital's Rule)

If
$$\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$$
, then

$$\lim_{n\to\infty} \frac{g(n)}{f(n)} = \lim_{n\to\infty} \left(\frac{g'(n)}{f'(n)} \right)$$

Example:

$$\lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln 2}}{1} \right) = 0$$

$$\lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln a}}{\frac{1}{n \ln b}} \right) = \frac{\log b}{\log a} > 0$$