ELECTRONIC DRAFT CAPTURE

BACKGROUND OF THE INVENTION

The present invention relates to processing financial transaction authorization requests from merchants. More specifically, the present invention relates to a payment processing gateway for use in processing financial transaction authorization requests and a protocol accessing such a gateway.

retail transaction, Ina purchaser 10 purchases a retail product from a merchant. Retail transactions have been used throughout much of human history. Having evolved from a simple barter system, been an ongoing trend to make there has transactions more efficient and convenient for the 15 consumer and the merchant. As an alternative to barter, money was used to represent the value of items to allow more flexibility in such transactions. the realization Next, there was that the involved in the transaction did not need to be 20 physically present at the transaction time. example, a debit ledger can be maintained by merchant and used to record sales in which credit was extended to the consumer. This allowed the consumer to pay for the goods at a future date. Checking systems are also employed in which a check is issued allowing the recipient to draw on those funds from a bank.

Charge, debit cards, electronic checks and the like ("financial cards") provide far more convenience to the consumer than the use of physical checks. Originally, copies of receipts from such

financial card transactions were simply maintained by the merchant and periodically processed. Eventually real time authorization techniques were provided by financial card issuers. In such systems, a merchant is able to obtain an authorization from the financial card issuer prior to completion of the transaction. Various types of authorization can be used, for example an authorization can be obtained through oral communication, such as through telephone call. Authorizations can also be obtained through digital communication techniques.

10

15

20

25

30

Presently, many retail locations point of sale (POS) devices in which a magnetic strip on a financial card is "swiped" through a card reader. Data on a "smartcard" chip can also be read. The data can be read using a magnetic sensor, electrical contacts, a radio frequency (RF) connection, or through other techniques. The card reader or a device connected to the reader, initiates a telephone call with an authorization center. The authorization center is able to immediately authorize or decline a particular transaction. The point of sale device informs personnel at the retail location of the result of the authorization request. If the transaction is questionable, the merchant can required to obtain further information for verifying the card holding prior to providing authorization for the transaction. With the advent of the Internet, such authorization procedures are moving away from point to point telephone connections and

beginning to exploit the connectivity that Internet provides. In such transactions, a device at point of sale uses a secure communication technique, such as a Secure Socket Layer (SSL), to communicate with a authorization gateway. The gateway is capable of simultaneously communicating with point of sale devices from multiple merchants. The gateway contacts the appropriate financial institution regarding the authorization request and relays the result of the authorization request back to appropriate point of sale device through the Internet connection. There is an ongoing need to improve the performance and convenience of such transactions.

10

SUMMARY OF THE INVENTION

sale 15 A gateway server, point of and protocol are provided for processing device financial transactions. A public network interface is couple to a public network configured to communicate financial authorization requests. 20 Financial transaction authorization requests include, for example, transaction specific data, or store/location invariant merchant data and a supplemental header. A gateway processor processes the financial transaction authorization requests and 25 couples to a financial network interface configured to couple to at least one financial network. gateway provides a response to the point of sale device based upon data received from the financial network and the financial authorization request. The

response can also be based upon configuration or validation data maintained by the gateway.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram showing a payment processing gateway coupling a point of sale device to financial institutions across public and financial networks.

FIG. 2 is a block diagram showing the point of sale device of FIG. 1 in greater detail.

10 FIG. 3 is a block diagram showing the payment processing gateway of FIG. 1 in greater detail.

FIG. 4 is a block diagram of a general computing environment in which embodiments of the present invention may be practiced.

FIG. 5 is a block diagram showing an authorization request data packet.

FIG. 6 is a block diagram showing an authorization response data packet.

20 DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

15

25

30

The present invention provides a protocol and implementation to support various forms electronic fund transaction types. Examples electronic fund transactions are those which are based upon credit cards, charge cards, debit cards, check verification, gift cards, coupons, etc. As used herein, these various types of electronic transactions referred "financial are to as transactions" or "financial cards," although physical card is not required. Various transaction types are supported including the types "authorize", "void", "return", "settle", etc.

Point of sale (POS) terminals communicate directly over a public network such as the Internet, or through a retail server system which couples to the public network, to a payment processing gateway server. The payment processing gateway server provides a link between authorization requests received from the public network and at least one financial network. The financial network provides communications with at least one financial institution which is capable of authorizing the particular transaction. The financial network can be a private network or can be a secure link over a public network.

10

15

FIG. 1 is a simplified block diagram of an electronic fund transaction processing system 10 in accordance with one example embodiment of the present invention. The transaction processing system includes a point of sale (POS) device 12 which. 20 couples to a public network 14, such as the Internet. A payment processing gateway 16 couples to the public network 14 and is in communication with the point of sale device 12. The payment processing gateway 16 couples to at least one financial network 18A, 18B. 25 . . 18N. The financial network 18A-N can be a private network or a secure communication link over a public network such as the Internet. At least one financial institution 20A, 20B . . . 20N couples to each of the 30 respective financial networks 18A, 18B . . . 18N.

Any number of financial institutions 20A-N can couple to a single financial network 18A-N.

5

10

15

20

25

30

point of sale device 12 physically located at a retail location such as a retail The device 12 store. can comprise individual cash register, for example, or can be a retail server system which is used to connect to multiple point of sale devices. Such a retail server system can provide additional functionality such as inventory control, theft prevention, etc. The retail server system can be implemented in a separate server in a peer-to-peer architecture. The retail location can include a local area network which couples to the point of sale device 12. In some systems, wireless networks are provided. aspect, the present invention reduces communication overhead on such networks.

FIG. 2 is a simplified block diagram of point of the sale device 12 shown in FIG. 1 and which includes a user input/output 30. The input/output 30 can comprise, for example, a display, keyboard, a touch screen, pointing device, reader such as a magnetic card reader, RFID reader, magnetic stripe reader, smarteard reader, voice recognition device or the like, weighing scale, or any of the various inputs and outputs discussed below or known in the art. The input/output 30 couples to a processor system 32 which includes a memory 34. 34 is Memory used for storing programming instructions as well as data. A network interface 36

is used to couple the processor system 32 to the public network 14 over a physical layer 38. User input/output 30 is used to initiate a financial card authorization request by processor 32. Processor 32 formats the request in accordance with the appropriate protocol format for transmission network interface 36 over the physical layer 38. The physical layer 38 can be any type of network In addition, processor system 32 can connection. perform other functions such as maintain inventory, perform cash register operations, provide instructions to an operator, provide information or advertisements to a consumer, etc.

10

payment processing gateway 16. Gateway 16 includes a network interface 40 configured to couple to the public network 14 through physical layer 42. A processor system 44 includes a memory 47 which contains programming instructions and data. Processor system 44 couples to public network 14 through interface 40 and to financial networks 18A-N through a network interface 46. Network interface 46 couples to financial network 18A-N through physical layer 48.

In operation, gateway 16 receives

25 authorization requests from point of sale device 12

over public network 14. The authorization requests

are formatted in accordance with the appropriate

transmission protocol for transmission over financial

network 18A-N to a respective financial institution

30 20A-N. When gateway 16 receives a response to an

authorization request from the appropriate financial institution 20A-20N, the result is relayed back to the respective point of sale device 12 through the 14. public network In accordance with transmission protocol, the response transmission is identified such that the point of sale device 12 is able to determine to which authorization request the response message relates. However, such a transaction identification is not required when a single 10 authorization request is sent over a synchronous connection, such as a single credit card transaction. In this case, the point of sale device 12 can wait for a return value to an httpost, or wait on a dedication socket, as there are no other transactions : 15 be followed. However, if multiple which must transaction authorization requests are sent, either at the point of sale device or through a retail if multiple transactions server system, or bundled into a single message, or for some other 20 reason a synchronous responses are supported, such a transaction identification can be used.

As illustrated below in greater detail, processor system 44 can have other inputs, outputs or configurations. The network interface 46 and physical layer 48 can be in accordance with any appropriate standard or protocol.

25

30

FIG. 4 illustrates an example of a suitable computing system environment 100 on which the invention may be implemented. System environment 100 can implement point of sale device 12 and/or payment

processing gateway 16. The devices, for example payment processing gateway 16, can be implemented multiple environments 100. The computing system environment 100 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environment 100 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 100.

5

10

30

The invention implemented can be numerous other general purpose or special purpose configurations. computing system environments or 15 of well-known computing Examples systems, and/or configurations environments, that suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, 20 microprocessor-based systems, programmable consumer network PCs, minicomputers, mainframe electronics, computers, telephony systems, dedicated hardware, distributed computing environments that include any of the above systems or devices, and the 25 like.

The invention may be described general context of computer-executable instructions, program modules, being executed by a such as include computer. Generally, program modules routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. In some embodiments, the invention is designed to be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules are located in both local and remote computer storage media including memory storage devices.

10 With reference to FIG. 4, an exemplary system for implementing the invention includes a one or more general-purpose computing devices in the form of a computer 110. Components of computer 110 may include, but are not limited to, a processing unit 15 120, a system memory 130, and a system bus 121 that system components including couples various system memory to the processing unit 120. The system bus 121 may be any of several types of bus structures including a memory bus or memory controller, 20 peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, 25 Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.

Computer 110 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by

30

computer 110 and includes both volatile nonvolatile media, removable and non-removable media. By way of example, and not limitation, readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage 10 media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage 15 devices, or any other medium which can be used to store the desired information and which can accessed by computer 110. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a 🕏 20 modulated data signal such as a carrier wave or other transport mechanism and includes any information The term "modulated data signal" delivery media. signal that has one or more of its 25 characteristics set or changed in such a manner as to encode information in the signal. By way of example, limitation, communication media includes and not wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of 30

any of the above should also be included within the scope of computer readable media.

The system memory 130 includes computer storage media in the form of volatile nonvolatile memory such as read only memory (ROM) 131 random access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as during startis typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of and not limitation, FIG. illustrates · 3 example, operating system 134, application programs 135, other program modules 136, and program data 137.

10

15

20

25

30

The computer 110 may also include other removable/non-removable volatile/nonvolatile computer ; storage media. By way of example only, illustrates a hard disk drive 141 that reads from or ; writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156 such as a CD ROM or other optical media. Other removable/nonremovable, volatile/nonvolatile computer media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile

disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 141 is typically connected to the system bus 121 through a non-removable memory interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable memory interface, such as interface 150.

The drives and their associated computer storage media discussed above and illustrated in FIG. 4, provide storage of computer readable instructions, data structures, program modules and other data for the computer 110. In FIG. 4, for example, hard disk drive 141 is illustrated as storing operating system 144, application programs 145, other program modules 146, and program data 147. Note that 15 these components can either be the same as or different from operating system 134, application programs 135, other program modules 136, and program data 137. Operating system 144, application programs 145, other program modules 146, and program data 147 are given 20 different numbers here to illustrate that, minimum, they are different copies.

A user may enter commands and information into the computer 110 through input devices such as a keyboard 162, a microphone 163, and a pointing device 161, such as a mouse, trackball or touch pad. Other input devices (not shown) may include a joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 120 through a user input

interface 160 that is coupled to a system bus, but other interface connected by and structures, such as a parallel port, game port or a universal serial bus (USB). The system bus may be implemented using any appropriate techniques. monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190. In addition to the monitor, computers may also include other peripheral output devices such as speakers 197, printer 196, pole displays, modems, network interface cards, etc. which may be connected through an output peripheral interface 195.

10

30

The computer 110 is operated in a networked 15 environment using logical connections to one or more remote computers, such as a remote computer 180. remote computer 180 may be a personal computer, a hand-held device, a server, a router, a network PC, a device or other common network node, 20 typically includes many or all of the elements described above relative to the computer 110. logical connections depicted in FIG. 4 include a local area network (LAN) 171 and a wide area network (WAN) 173, but may also include other networks.... Such 25 networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170. The WAN

networking environment is provided by the public network 14 or private networks 18A-N. The computer 110 typically includes a modem 172 network interface card, or other means for establishing communications over the WAN 173, such as the Internet. A network connection to the WAN may also be through a gateway, router, proxy, or other connection to the WAN over the LAN. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or other appropriate In a networked environment, program mechanism. modules depicted relative to the computer 110, or portions thereof, may be stored in the remote memory storage device. By way of example, and 4 illustrates remote application limitation, FIG. programs 185 as residing on remote computer 180. be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.

10

15

20

25

30

In aspect, the present invention one provides protocol for transmission new authorization requests and/or authorization responses between point of sale device 12 and payment processing gateway 16 over public network 14. configured for protocol can be optimized implementation with retail management software which operates on a retail server system running on the 16. embodiments, data can gateway In some preconfigured or otherwise previously stored in a

database in memory 47 on the payment processing gateway 16 such that the data does not need to be retransmitted over the public network 14. This provides increased security while reducing transmission overhead.

5

10

15

20

25

30

In one aspect, a supplemental header pre-pended to the authorization request "payload". Figure 5 is a block diagram showing an example authorization request 200. Authorization request 200 includes a transaction specific data field 202, cache-key field 204 and a cacheable data field 206. The supplemental header field 208 is shown pre-pended to the authorization request 200 on top of the cacheable data 206. The supplemental header carries a small amount of data which is used as a key to index... a database in payment processing gateway 16. example of such a field is one which identifies the financial contract(s) and terms of operation for a particular acquiring banks or financial networks and the payment gateway provider. Such a "contract ID" field can be used by the payment processing gateway 16 to access a small list of valid contract IDs. This accessing can be through a simple in-memory list or an in-memory hash table to improve performance. If a particular transaction request arrives at the payment processing gateway 16 with an invalid contract ID, the payment processing gateway 16 can reject the authorization request because a valid contract is not properly identified for the particular merchant who sent the authorization request 200. Ιn another

example, the contract ID can be used to reference a particular subset of a group of valid financial networks, for example, an issuing financial institution frequently used more than one financial network and an acquiring bank or financial institution will indicate which subset of the various networks can be used by the merchant.

10

15

20

25

30

The rejection from the payment processing gateway 16 can be in the form of an authorization or transaction response transmission 230 shown in Figure 6. A transaction response can include a transaction identification header field 232 and a response data field 234. The transaction identification field 232 identifies a particular transaction to which the response 230 is applicable. For example, a merchant may issue multiple transaction authorization requests 200 within a short period of time and the transaction identification field 232 is used to particular response with the appropriate request. As discussed above, the transaction ID is not required in all embodiments. The response field 234 includes the data indicates which response to the authorization request 200 such as "authorized", "declined", "hold card", "cut card", "bad card", "call issuer for further information", or request additional information from purchaser, the example, to verify the authenticity of the card holder. As discussed below, the gateway 16 can also request transmission of cacheable data to populate a cache. If the contract ID for the supplemental header

208 is invalid, the payment processing gateway 16 can provide a response 234 to the authorization request 200 which indicates that the contract is invalid.

The contract ID field can also be used to audit transactions by payment processing gateway 16. This auditing can be used to ensure that merchants utilizing the payment processing gateway 16, or the financial institutions utilizing payment processing gateway 16, are properly charged for the use of the service. Further, the contact ID field can be used to analyze transactions to determine the source of the destination of the transactions, transaction, particular merchants involved, particular terms of the contract, etc. In one specific example, the contract identification comprises two bytes of 8 bits each.

10

15

20

25

30

In another example, the supplemental header 208 includes a payment type field. The payment type field is used to provide information to the payment processing gateway 16 as to which particular should financial network 18A-N be used for authorizing the transaction. For example, particular financial network 18A-N may be for credit transactions of a particular type of debit card, while another financial network 18A-N may be for use with credit cards. Other financial networks may be directed to advance payment types such as gift cards, coupons, smart credit cards, "microcredits", etc. "Microcredits" are directed to a credit format in which small dollar amount transactions may be

performed through credit in a cost effective manner. The payment type field can also indicate the particular protocol used by the back-end financial network 18A-N and often within payload of the transmission, i.e., the transaction specific data 202.

The transaction authorization protocol 200 illustrated in Figure 5 also provides a cache-key field 204. The cache-key 204 can be used to uniquely identify a particular shop or store submitting an authorization request. Merchant data can also be cached, for example for merchants with multiple The payment processing gateway 16 stores. retrieve cache data within memory 34 illustrated in ... Figure 2 based upon the cache-key. The cache data can be merchant or store invariant data information described below in more detail. In one specific embodiment, the cache-key field 204 comprises a 128 bit data field. The data field can be used to carry a GUID (Globally Unique Identifier). In specific example, 12 bytes of the 128 bits identifies a particular merchant while the remaining 4 bytes identifies a particular store of that merchant.

10

15

20

The authorization request 200 may also contain cache-able data 206. Typical prior art financial transaction protocols are capable of carrying a fairly rich set of merchant data, including for example, merchant name (25 bytes), country (3 bytes), state (2 bytes), location (13 bytes), city code/zip code (3 bytes), merchant

category (4 bytes), acquirer bin (6 bytes), time zone differential (3 bytes), merchant category code (4 bytes), extra field separators for ease of viewing (4 bytes) and others. The total can be more than 66 bytes of data for the main authorization message in a T-format authorization request message (direct debit). Typically, all of this data must transmitted with each authorization request.

With the present invention, the transaction invariant data can be cached in memory 34 of payment 10 gateway 16. In typical prior art gateways, such a cache would provide limited benefits due to server performance limitations and the difficulty maintaining state across multiple servers arranged in : 15 a cluster. For example, the state of a particular transaction would be required to be maintained across . a cluster of servers in a performat manner because there is a relatively high volume of authorization request which must be processed in near real time. 20 Further, it is difficult to ensure that cached data is maintained or otherwise restored when a server is reset.

Web servers, for example, tend to be inherently stateless. With the present invention, payment processing gateway 16 is configured as a web server offering a web service which maintains state using a cache as desired in order to support such caching operations. The cache can be through any appropriate caching technique such as a shared file, a database, etc. Preferably, a caching mechanism is

utilized which provides high performance and operates efficiently to support large numbers simultaneous transactions. In aspect, the one merchant invariant data is cached in volatile memory (i.e., RAM) of the payment processing gateway 16. For example, by caching 100 bytes of data per merchant and with 200,000 merchants, 20 megabytes of memory world be utilized.

this caching operation Although is particularly useful for authorization requests, the 10 also be utilized with settlement caching can requests. A settlement request typically occurs less frequently than an authorization request. In settlement request, a number of transactions are typically "batched" together for settlement with the appropriate financial institution. The settlement process involves the transfer of funds from the appropriate financial institution to the account of the merchant.

20 If the payment processing gateway 16 implemented in a number of different servers, such as that provided by a web cluster, the caching data merchant transaction invariant or can be achieved in any appropriate way. Even a small cluster 25 of 2 servers can process a relatively large volume of authorization request traffic. For such a cache to be effective, the state can be maintained for each transaction being serviced by the gateway 16. A state service can be maintained across multiple web servers 30 in a web cluster. Such a state service can be

implemented in a shared server whereby each of the servers in the web cluster can access for the state information. Cache consistency and replication across multiple servers must be maintained for such an implementation. One specific implementation of such a state service is through the .NET framework provided by Microsoft Corporation, of Redmond, Washington. This framework supports a distributed computing environment in which applications may be written in any number of high level languages. The high level 10 languages are compiled to a common runtime language known as CLR (Common Language Runtime). Further, in an embodiment, the CLR can operate across hardware various platforms such that the 15 implementation is hardware independent. In such an embodiment, the payment processing gateway number of distributed consists of а computing systems. Objects can be used to exchange data between the systems and maintain.

In one implementation suitable for a small number of servers, each server maintains its own cache. A single server with sufficient processing capabilities may be capable of processing a substantial number of authorization requests.

25 The state service can operate with a database server, such as an SQL server which can be used to provide backup of stored data. The database can be used to restore the in-memory cache upon system failure of other fault.

In some embodiments, a single database access is employed for each authorization per transaction. For example, a procedure stored in the payment processing gateway 16 can be used to log the transaction to memory, for auditing, reporting, billing or other purposes. The same procedure used to log the data to the database can be used to read the associated cached invariant merchant data back from the database.

10 A web server front end can also be utilized with payment processing gateway 16 which directs web requests from a particular IP (Internet Protocol) address to the same server within the cluster. This particular redirection can be set for any time 15 period, for example a number of days. Such a front . end can be implemented in software or hardware components. With such an implementation, it is not necessary to synchronize the web server cache within the cluster. Instead, each web server within the 20 cluster provided by the payment processing gateway 16 only maintain state for the particular transactions which it is handling.

For small scale applications, a web service can be utilized such as that provided by ASP.NET. A particular ASP.NET page can be provided on each web server within the web cluster and used to update the cache of a given server.

25

30

A custom server can be provided which provides a state server to other computers within the cluster. The server can maintain an in-memory cache

of merchant or store invariant records. The state server can respond to requests from the web cluster. If the state server is reset or otherwise looses data, the web cluster can provide a negative acknowledgement (i.e., NACK) to the merchant/store 12 thereby requesting that a complete data transmission be provided with the next transmission. The transmission of the complete data set can be provided for a desired length of time. This will cause the merchant to provide all of the merchant invariant data such that the database provided by the gateway 16 can be repopulated. During this period, the payment processing gateway 16 can provide the appropriate financial institution 20A-N with all the data received from a particular merchant, mapping various fields as required.

10

15

20

25

30

In embodiments such as those discussed above in which various data is cached within a memory in payment processing gateway 16, software operating at the point of sale device 12 can be configured to periodically transmit the entire data set for a given merchant to the payment processing gateway. This can be used to allow webservers or state servers of gateway 16 to be individually reset without difficulty. For example, the software running on a point of sale device 12 can be configured to submit a set every 2, 8 full data or 24 hours. transmissions such as the authorization response 230 shown in Figure 6 can include an additional data field to allow the payment processing gateway 16 to

indicate that the full merchant data is required. Alternatively, a separate message can be sent by the gateway 16. This data can be sent independently, or can be included in the next transaction request. Further, if only partial data is required, message from the payment processing gateway 16 to the point of sale device 12 can indicate which data field or fields must be re-sent. In such a configuration, the payment processing gateway 16 can continue to accept partial data for a period of time after the initial request is sent. This allows multiple point of sale devices 12 within a store to transmit data to a payment processing gateway 16 which is implemented across multiple servers.

5

10

In order to further reduce the overhead of 15 the messages exchanged across the public network 14, or local networks of the retail location, in one aspect the present invention eliminates redundant or . transmissions. For example, unrequired 20 acknowledgement used in socket-based messages protocols such as the protocol implemented by VisaNet are redundant. This is especially true for protocols In one specific example, based upon HTTPS. acknowledgement (ACK) which is transmitted before a 25 response for a credit card transaction in a single required. transaction mode is not Although acknowledgement can be useful in monitoring operation of the software during debugging, it is not normally required by the point of sale device 12. Other such non-essential transmissions can also be eliminated. 30

The various transmissions between the point of sale device 12 and the payment processing gateway 16, including the authorization request 200 and the authorization response 230, can be implemented using a number of techniques. For example, the protocol can be used in which a packet or partial packet for transmission on a financial network 18A-N is "wrapped" as the payload in the secure This transmission. configuration is particularly useful when integrating point of sale devices 12 which are at retail locations or which are through implemented online merchant website. a Further, this configuration can scale to high transaction volumes as required.

5

10

25

In another example, the payment processing gateway 16 provides an XML service for communication with the point of sale device 12. This configuration is also well suited for integrating point of sale devices 12 which exist at both retail locations and from online merchants.

A secure socket layer (SSL) protocol can be used in which a particular message or packet is carried in an SSL wrapper. This implementation may be required for some debit card transactions and is suited for the high performance required to handle a large volume of transactions. Further, such a protocol can be used to keep a socket open on a financial network 18A-N during the entire transaction process. Server clustering techniques such as thread

pooling, clustering and load balancing can be implemented to support such an SSL protocol.

In another implementation of the present invention. the payment processing gateway 16 provide a back end server process to maintain open payment sockets (or equivalents) through financial networks 18A-N. Such a back end service can be synchronized with a stateless front end coupled to public 14. Although credit network card 10 authorizations can typically be handled as a single synchronous transaction, debit card transactions typically require an additional final acknowledgement from the point of sale device 12 to the payment appropriate : processing 16 the gateway and to 15 financial institution 20A-N over a financial network 18A-N. This additional acknowledgement confirms that received the retailer authorization acknowledgement and that the funds transfer settled. If this acknowledgement is not received, the transaction is automatically reversed and the funds 20 are returned to the customer's account. This can be implemented using a socket based protocol, such as SSL, where a server thread is used to maintain both the front end and back end socket sessions. However, 25 this is more difficult to implement in a web based utilizes such protocol which web servers Microsoft's IIS. As discussed above, web services are inherently stateless. Therefore, without additional implementation, the final acknowledgement may go to a 30 different thread than the original transaction, and

possibly even to a different server in a web cluster. the present invention maintains a In one aspect, service that such thread in the web such acknowledgement can be the appropriate sent to financial institution.

5

10

15

20

25

30

The back end server process typically on a separate common server can be used to maintain an open back end socket over the appropriate financial network 18A-N. In such an embodiment, the socket must be uniquely identified to the front end web server, for example using a GUID which the back end server maps to a specific socket port. The front end web server coupled to the public network 14 will place transaction messages on the appropriate queue. queue is then accessed by the back end server process. The back end server process can be single or multi-threaded and processes messages by assigning a new or existing socket session to appropriate. A new socket session with a financial institute 18A-N is opened at the start of transaction and closed at the end of the transaction. All messages for a given transaction will occur over the same socket. Socket connections for incomplete transactions can be set to time out after a predetermined interval to protect server resources.

Although in typical payment processing systems, the point of sale device is required to provide an acknowledgement to the gateway during a debit card transaction, in one aspect, the present invention operates without the need for such a second

acknowledgement. For example, the gateway can send a second acknowledgement back through the financial network without waiting for the acknowledgement to be received from the point of sale device. This allows the transaction to be stateless within the gateway debit transaction can be and the then easily supported over the HTTPS protocol without the need to use sockets such as SSL, directly. This configuration allows standard web servers to implement the present 10 invention. Without the second acknowledgement from the point of the sale device, an additional safety mechanism can be provided to prevent a duplicate transaction from being processed. For example, the gateway can detect that the same or a similar transaction is being run from the same terminal or 15 store within a specific period of time. If such a transaction is identified by the gateway, the gateway can simply block the transaction or send some type of a message back to the point of sale device indicating 20 an error has occurred or warning that duplicate transaction has been received, request a that the duplicate data should be confirmation processed, request that the data be specifically called in, or simply acknowledge a successfully processed transaction previously. For example, if 25 the same payment instrument is used from the same point of sale terminal within a relatively small time window, for example, one to two minutes, a simple acknowledgement can be provided.

Although the present invention has described with reference to particular embodiments, workers skilled in the art will recognize changes may be made in form and detail without departing from the spirit and scope of the invention. In one aspect, the present invention is configured to operate as a web service. In another aspect, a socket server implementation is used. In general, web: provide transactional functions which services operate across a network such as the Internet. Web 10 services adhere to a shared specification such that they are able to share objects and exchange data. One extension of web services which is well suited for implementation of the present invention is the web 15 services enhancements (WSE) class library available in the Microsoft.NET framework. The present invention is applicable to electronic fund transfers based upon transaction authorization requests, financial cards such requests. Although response to are 20 specifically discussed, the invention relates to any type of payment instrument that can be used. The financial transaction authorization request conveyed from a source, such as a store or merchant, to an authorization provider, such as a financial institution, over public and/or private networks or 25 direct connections.