

Solving Problems by Searching

[RN2] Sec 3.1-3.5 [RN3] Sec 3.1-3.4

CS486/686 University of Waterloo Lecture 2: Sept 13, 2012

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

3

Outline

- Problem solving agents and search
- Examples
- Properties of search algorithms
- Uninformed search
 - Breadth first
 - Depth first
 - Iterative Deepening

4

Introduction

- Search was one of the first topics studied in AI
 - Newell and Simon (1961) General Problem Solver
- Central component to many Al systems
 - Automated reasoning, theorem proving, robot navigation, VLSI layout, scheduling, game playing,...

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

5

Problem-solving agents

```
function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action static: seq, an action sequence, initially empty state, some description of the current world state goal, a goal, initially null problem, a problem formulation state \leftarrow \text{UPDATE-STATE}(state, percept) if seq is empty then do goal \leftarrow \text{FORMULATE-GOAL}(state) problem \leftarrow \text{FORMULATE-PROBLEM}(state, goal) seq \leftarrow \text{SEARCH}(problem) action \leftarrow \text{FIRST}(seq) seq \leftarrow \text{REST}(seq) return action
```

6

Examples of Search Problems 5 6 5 3 4 6 Start State Goal State States: Locations of 8 tiles and blank States: Arrangement of 0 to 8 queens on the board Initial State: Any state Initial State: No queens on the board Succ Func: Generates legal states that result from trying 4 actions (blank up, Succ Func: Add a queen to an empty down, left, right) Goal test: Does state match desired Goal test: 8 queens on board, none configuration attacked Path cost: Number of steps Path cost: none 8 CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

Common Characteristics

- All of those examples are
 - Fully observable
 - Deterministic
 - Sequential
 - Static
 - Discrete
 - Single agent
- Can be tackled by **simple** search techniques

Chance

Infinite number of states

Hidden states

All of the above

11

Searching

- We can formulate a search problem
 - Now need to find the solution
- We can visualize a state space search in terms of trees or graphs
 - Nodes correspond to states
 - Edges correspond to taking actions
- We will be studying search trees
 - These trees are constructed "on the fly" by our algorithms

12

Data Structures for Search

- Basic data structure: Search Node
 - State
 - Parent node and operator applied to parent to reach current node

Expanding Nodes

13

• Expanding a node

 Applying all legal operators to the state contained in the node and generating nodes for all corresponding

Generic Search Algorithm

 Initialize search algorithm with initial state of the problem

2. Repeat

- If no candidate nodes can be expanded, return failure
- Choose leaf node for expansion, according to search strategy
- 3. If node contains a goal state, return solution
- Otherwise, expand the node, by applying legal operators to the state within the node. Add resulting nodes to the tree

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

15

Implementation Details

- We need to only keep track of nodes that need to be expanded (fringe)
 - Done by using a (prioritized) queue
- 1. Initialize queue by inserting the node corresponding to the initial state of the problem
- 2. Repeat
 - 1. If queue is empty, return failure
 - 2. Dequeue a node
 - 3. If the node contains a goal state, return solution
 - 4. Otherwise, expand node by applying legal operators to the state within. Insert resulting nodes into queue

Search algorithms differ in their queuing function!

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

Breadth-first search

All nodes on a given level are expanded before any nodes on the next level are expanded.

Implemented with a FIFO queue

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

17

Evaluating search algorithms

- Completeness: Is the algorithm guaranteed to find a solution if a solution exists?
- Optimality: Does the algorithm find the optimal solution (Lowest path cost of all solutions)
- Time complexity
- Space complexity

Variables

b	Branching factor			
d	Depth of shallowest goal node			
m	Maximum length of any path in the state space			

18

Judging BFS

- Complete:
 - Yes, if b is finite
- Optimal:
 - Yes, if all costs are the same
- Time:
 - $-1+b+b^2+b^3+...+b^d = O(b^d)$
- Space:
 - O(b^d)

All uninformed search methods will have exponential time complexity \otimes

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

19

Uniform Cost Search

- · A variation of breadth-first search
 - Instead of expanding shallowest node it expands the node with lowest path cost
 - Implemented using a priority queue

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

21

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

23

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

25

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

Judging DFS

- Complete:
 - No, might get stuck going down a long path
- Optimal:
 - No, might return a solution which is deeper (i.e. more costly) than another solution
- Time:
 - O(bm), m might be larger than d
- Space:
 - − O(bm) ©

Do not use DFS if you suspect a large tree depth

27

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

Depth-limited search

- We can avoid the problem of unbounded trees by using a depth limit, I
 - All nodes at depth I are treated as though they have no successors
 - If possible, choose I based on knowledge of the problem
- Time: O(b^l)
- Memory: O(bl)
- Complete?: No
- Optimal?: No

28

Iterative-deepening

 General strategy that repeatedly does depthlimited search, but increases the limit each time

Iterative-deepening

IDS is not as wasteful as one might think.

Note, most nodes in a tree are at the bottom level. It does not matter if nodes at a higher level are generated multiple times.

Breadth first search:

```
1 + b + b^2 + ... + b^{d-1} + b^d
E.g. b=10, d=5: 1+10+100+1,000+10,000+100,000 = 111,111
```

Iterative deepening search:

```
(d+1)*1 + (d)*b + (d-1)*b^2 + ... + 2b^{d-1} + 1b^d
E.g. 6+50+400+3000+20,000+100,000 = 123,456
```

Complete, Optimal, O(bd) time, O(bd) space

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
 - Assume no knowledge about the problem (general but expensive)
 - Mainly differ in the order in which they consider the states

Criteria	BFS	Uniform	DFS	DLS	IDS
Complete	Yes	Yes	No	No	Yes
Time	O(b ^d)	$O(b^{ceiling(C^*/\epsilon)})$	O(bm)	O(b ^l)	O(b ^d)
Space	O(bd)	$O(b^{ceiling(C^*/\epsilon)})$	O(bm)	O(bl)	O(bd)
Optimal	Yes	Yes	No	No	Yes

CS486/686 Lecture Slides (c) 2012 K. Larson and P.Poupart

31

Summary

- Iterative deepening uses only linear
 space and not much more time than other uninformed search algorithms
 - Use IDS when there is a large state space and the maximum depth of the solution is unknown
- Things to think about:
 - What about searching graphs?
 - Repeated states?

Next Class

• Informed search techniques

33