МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ

по лабораторной работе №1.05 «Исследование колебаний физического маятника»

> Выполнил: Хороших Дмитрий - Р3217 Преподаватель: Хуснутдинова Наира Рустемовна

Содержание

1	Введение	3
2	Результаты измерений и их обработка 2.1 Прямые измерения	6
3	Вывод	8
4	Приложение	9

1. Введение

1. Цель работы:

Изучить характеристики затухающих колебаний физического маятника.

2. Задачи:

- 1. Измерить период затухающих колебаний.
- 2. Определить зависимость амплитуды затухающих колебаний физического маятника от времени.
- 3. Определить зависимость периода колебаний от момента инерции физического маятника.
- 4. Определить преобладающий тип трения.
- 5. Определить экспериментальную и теоретическую приведённые длины маятника при его разных конфигурациях.

3. Объект исследования:

Стенд лаборатории механики (Маятник Обербека)

4. Схема установки:

Рис. 1.1: Стенд лаборатории механики

1. Шкала 2. Груз 3. Рукоятка сцепления 4. Передняя крестовина

5. Метод экспериментального исследования:

Многократный прямой замер времени затухания колебаний и их периода.

6. Рабочие формулы:

Период физического и математического маятника, их связь через приведённую длину:

$$T = 2\pi \sqrt{\frac{I}{mgl}} = 2\pi \sqrt{\frac{l_{\rm np}}{g}} \tag{1}$$

Связь логарифма отношения амплитуд с коэффициентом затухания:

$$\ln \frac{A}{A_0} = -\beta t \tag{2}$$

Полный момент инерции:

$$I = I_0 + m_{\rm rp} \left(R_{\rm верх.}^2 + R_{\rm ниж.}^2 + 2R_{\rm 60k.}^2 \right) \tag{3}$$

7. Измерительные приборы:

№ п/п	Наименование	Тип	Используемый диапазон	Погрешность прибора
1	Секундомер смартфона	Электронный	0 - 999.99 сек	0.01 сек
2	Шкала	Ручной	-30° - 30°	1°

8. Параметры установки:

Параметр	Значение
Масса груза на крестовине	408.0 ± 0.5 r
Расстояние первой риски от оси	57.0 ± 0.5 mm
Расстояние между рисками	25.0 ± 0.2 mm
Высота груза на крестовине	40.0 ± 0.5 mm

2. Результаты измерений и их обработка

2.1. Прямые измерения

Измерим время десяти (N=10) колебаний маятника при положении боковых грузов на 3-й риске и начальном отклонении в 30° :

t_1 , c	t_1 , c	t_3 , c	$t_{\rm cp},{ m c}$	T, c
17.93	17.80	17.98	17.90	1.79

Таблица 1: Результаты измерения времени 10 колебаний

Измерим время, когда амплитуда отклонения маятника от равновесного положения будет равна 25° , 20° , 15° , 10° , 5° , при положении боковых грузов на 3-й риске и начальном отклонении в 30° :

Амплитуда откл. Время	25°	20°	15°	10°	5°
t_1 , c	37.47	87.33	142.36	209.50	311.79
t_2 , c	43.19	87.64	137.17	200.88	301.37
t_3 , c	48.70	98.66	150.23	219.46	311.31
$t_{ m cp},{ m c}$	43.12	91.21	143.25	209.95	308.16
Δt , c	13.94	16.02	16.32	23.08	14.60

Таблица 2: Результаты измерений времени до достижения амплитуд отклонения.

Также измерим время десяти (N=10) колебаний маятника при различных расстояниях боковых грузов от центра (от 1-й до 6-й риски):

Число рисок	t_1 , c	t_2 , c	t_3 , c	$t_{\rm cp},{ m c}$	T, c	ΔT , c
1	16.19	16.07	16.06	16.1067	1.6107	0.0180
2	17.02	16.72	17.03	16.9233	1.6923	0.0437
3	18.02	18.12	18.00	18.0467	1.8047	0.0160
4	19.37	19.12	19.39	19.2933	1.9293	0.0374
5	20.73	20.52	20.63	20.6267	2.0627	0.0261
6	21.92	22.09	21.83	21.9467	2.1947	0.0328

Таблица 3: Результаты измерений времени 10-ти колебаний при различных положениях боковых грузов.

2.2. Косвенные измерения и обработка результатов

Используя результаты измерений зависимости амплитуды от времени, представленные в таблице 2, построим график зависимости амплитуды колебаний от времени A(t):

Рис. 2.1: График зависимости угловой амплитуды колебаний маятника A от времени t.

2.2.1. Определение доминирующего типа трения

Подробнее рассмотрим график 2.1. Заметим, что амплитуда колебаний уменьшается не линейно, а по более сложной функции, напоминающей экспоненту (за каждые 50 секунд амплитуда уменьшается примерное в 1.25 раз). Такое затухание свойственно **вязкому трению**.

Для определения степени влияния вязкого трения на затухания колебаний аппроксимируем график $\ln \frac{A}{A_0} = -\beta t$ по МНК и найдём коэффициент затухания β :

Рис. 2.2: График зависимости логарифма отношения амплитуд от времени.

При аппроксимации коэффициента затухания получаем:

$$\beta \approx 0.00546 \pm 0.0004 \text{ cek}^{-1}$$

И время затухания:

$$au = rac{1}{eta} pprox 183.12 \; \mathrm{cek}$$

Вычислим расстояния центров грузов от оси а также их их моменты инерции. К тому же, найдём полный момент инерции физического маятника I:

Риски	1	2	3	4	5	6		
$R_{\text{верх}}$, мм	77.00							
ΔR_{Bepx} , mm	0.56							
$R_{\text{ниж}}$, мм	202.00							
$\Delta R_{\text{ниж}}$, мм	1.15							
$R_{\text{бок}}$, мм	77.00	102.00	127.00	152.00	177.00	202.00		
$\Delta R_{\rm fok}$, mm	0.56	0.59	0.69	0.82	0.98	1.15		
$I_{\rm rp}$, kr * m ²	0.0239	0.0276	0.0322	0.0379	0.0446	0.0524		
I , $K\Gamma * M^2$	0.0319	0.0356	0.0402	0.0459	0.0526	0.0604		
ΔI , KF * M ²	0.0002	0.0002	0.0002	0.0003	0.0003	0.0004		
$l_{\text{пр эксп}}$, мм	643.99	710.95	808.46	924.02	1056.15	1195.65		
$l_{\text{пр теор}}$, мм	625.03	696.56	788.08	899.58	1031.06	1182.53		

Таблица 4: Приведённые длины и промежуточные значения.

Построим график $T^2(I)$ и, аппроксимируя его прямой по МНК, найдём произведение ml:

Рис. 2.3: График зависимости квадрата периода от момента инерции.

Воспользовавшись МНК, получаем:

$$4\pi^2 \frac{I}{mgl} \approx 78.91$$
 $ml \approx 0.051 \; \mathrm{Kr^*M}$

Предположив, что основная масса маятника сосредоточена в грузах на спицах, найдём из полученного значения ml расстояние до оси вращения от цетра масс $l_{\text{теор}}$:

$$l_{\text{reop.}} = \frac{ml}{4*m_{\text{rpy}^3}} = 31.3 \text{ MM}$$

По периодам колебаний найдём экспериментальну приведённую длину $l_{\rm np.}$ и, используя расчитанное $l_{\rm reop.}$, найдём $l_{\rm np.\ reop.}$. Внесём полученные значения в таблицу 4.

3. Вывод

Таким образом, в ходе выполнения лабораторной работы удалось, измерив время затухания и периоды колебаний маятника при разлчных конфигурациях боковых грузов:

1. Определить, что преобладающим типом трения в процессе затухании является - **вязкий** тип трения .

На рисунке 2.1 легко видеть, что амплитуда колебаний затухает по экспоненциальному закону, что свойственно не сухому, а вязкому типу трения.

2. Проверить, что приведённая длина, полученная экспериментальынм путём, близка к приведённой длине теоретической.

При этом с возрастанием расстояния боковых грузов от центра и, соответственно, возрастанием момента инерции маятника, приведённая длина увеличивается.

4. Приложение

Проект этой лабораторной работы, содержащий файлы с Python-кодом, использованным для вычислений и исходные TeX-файлы доступен по - ссылке.