

第四讲

- ◆ 带ε-转移的有限自动机
- ◆ 正则表达式
- ◆ 右线性文法与正则集

第四节 有 ε 转换的NFA

■一、定义

概念: 当输入空串 (无输入) 时,也能引起 状态的转移.

输入"002"时的转移格局:

$$q_0 \xrightarrow{0} q_0 \xrightarrow{0} q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{2} q_2$$

ε -NFA 的形式定义

一个 ε - NFA 是一个五元组 $A = (Q, T, \delta, q_0, F)$.

- ◆有限状态集
- ◆有限輸入符号集
- ◆转移函数
- ◇一个开始状态
- ◆一个终态集合

$$q_0 \in Q$$

$$F \subseteq Q$$

◆与NFA的不同之处

$$\delta: \mathbf{Q} \times (\mathbf{T} \cup \{\mathcal{E}\}) \rightarrow \mathbf{2}^{\mathbf{Q}}$$

ε -NFA 必何接受輸入符号串

- ◆ 该 E-NFA 可以接受的字符串的:
 - 3.14
 - +.314
 - 314.

二、 ε -闭包 (closure) 概念

 \diamondsuit 状态 q 的 ϵ - 闭包,记为 ϵ - CLOSURE 或 ECLOSE, 定义为从 q 经所有的 ϵ 路径可以到达的状态 (包括q自身),

- ε CLOSURE (q0) = {q0, q1, q2}
- ε CLOSURE (q1) = { q1, q2}
- ε CLOSURE (q2) = {q2}

■ 状态子集I 的ε-闭包:

$$\epsilon$$
 -CLOSURE(I) = \cup ϵ -CLOSURE(q)

例:

$$\epsilon$$
 -CLOSURE({q1, q2})
$$= \epsilon$$
 -CLOSURE(q1) \cup ϵ -CLOSURE(q2)
$$= \{ q1, q2 \}$$

■ Ia 概念:

对于状态子集 $I \subseteq Q$,任意 $a \in T$,定义Ia如下:

 $Ia = \varepsilon$ -Closure(P)

其中P = δ (I, a). 即P是从I中的状态经过一条标a的边可以到达的状态集合

例: $I = \{q0, q1\}$, 求 I_1


```
I_1 = \varepsilon - CLOSURE (\delta (I, 1))
= \varepsilon - CLOSURE (\delta (q0, q1), 1))
= \varepsilon - CLOSURE (\Phi \cup \{q1\})
= \{q1, q2\}
```


扩展转移函数适合于输入字符串

- \diamondsuit 设一个 ε NFA, δ : $\mathbb{Q} \times \mathbb{T} \cup \{\varepsilon\} \rightarrow 2^{\mathbb{Q}}$
- \diamondsuit 扩充定义 δ' : $\mathbf{Q} \times \mathbf{T}^* \to 2^{\mathbf{Q}}$
- \diamondsuit 对任何 $q \in Q$,定义:
 - 1 δ' (q, ε) = ε-CLOSURE (q)
 - 2 δ'(q, ωa)=ε-CLOSURE(P)
- 其中 $P = \{ p |$ 存在 $r \in \delta'(q, \omega) \land p \in \delta(r, a) \}$

注意: 此时 $\delta(q, a) \neq \delta'(q, a)$,

因为 $\delta(q, a)$ 表示由q出发,只陷着标a 的路径所能到达的状态,而 $\delta'(q, a)$ 表示由q出发,陷着标a (包括 ϵ 转换在肉) 的路径所能到达的状态.

ε-NFA中,δ与δ' 函数的不同

$$\varepsilon$$
-CLOSURE(q0) = {q0, q2}
 ε -CLOSURE(q1) = {q1, q2}
 ε -CLOSURE(q2) = {q2}
 ε -CLOSURE(q3) = {q3}

\Rightarrow 举例 计算 δ' (q₀, a)

```
δ'(q0, ε) = ε-CLOSURE(q0) = {q0, q2}

δ'(q0, a) = ε-CLOSURE(δ(δ'(q0, ε), a))

=ε-CLOSURE(δ(q0, q2), a)

=ε-CLOSURE(δ(q0, a) ∪ δ(q2, a))

=ε-CLOSURE({q1} ∪ {q3})

={q1, q2} ∪ {q3}

={q1, q2, q3}
```


三、ε-NFA 的 语 言

- \diamondsuit 後一个 ε NFA M = (Q, T, δ , q_0 , F)
- ◆定义 M 的语言:

$$L(M) = \{ \omega \mid \delta'(q_0, \omega) \cap F \neq \emptyset \}$$

即 满足 $\delta'(q0, \omega)$ 含有F的一个状态

四、有 ε 转换的NFA与无 ε 转换的NFA的等价

1. ε -NFA<==>NFA

具有ε转移的NFA是不具ε转移的NFA的一般情况, 所以只要证明下面的定理即可:

定理: 如果L被一个具有 ε 转移的NFA接收, 那么 L可被一个不具 ε 转移的NFA 接收.

证明思路: 构造一个不具 ϵ 转移的NFA, 证明其接收具有 ϵ 转移的NFA所接受的语言.

从 ε-NFA 构造等价的 无ε NFA

 \diamondsuit 设 M = (Q, T, δ, q₀, F) 是一个 ε - NFA,可构造一个无ε 的 NFA M₁ = (Q, T, δ₁, q₀, F₁),

■ 对任何 $a \in T$, $\delta_1(q, a) = \delta'(q, a)$. $F_1 = \begin{cases} F \cup \{q0\} \ \text{若ε-CLOSURE}(q0) \cap F \neq \emptyset \\ F \ \text{否则} \end{cases}$

从ε-NFA构造等价的 无ε NFA

证明: 采用归纳法证明 δ 1 $(q0,\omega) = \delta$ $(q0,\omega)$, $|\omega| >= 1$.

当
$$|w|=0$$
,即 $w=\varepsilon$ 时,不一定相等.

$$ootnotesize \delta_1(q0,\ arepsilon) = \{q0\},$$
 $\overline{m}\delta'(q0,\ arepsilon) = arepsilon ext{-}CLOSURE(q0)$
因此,从 $|\omega|=1$ 开始证明

当|ω|=1时,定义相等。
 由δ₁定义

$$\delta_1$$
 (q0, a) = δ' (q0, a)
College of Computer Science & Technology, BUPT

设当 $|\omega|$ <=n时, δ_1 (q0, ω)= δ '(q0, ω),则当 $|\omega|$ =n+1时, 左侧= δ1(q0,ωa) $=\delta_1(\delta 1 \ (q0, \ \omega), \ a)$ $=\delta 1 (\delta' (q0, \omega), a)$

 $=\delta 1 (R, a)$

 $= U \delta 1$ (q, a)

 $= U \delta' (q, a)$

 $=\delta'(R, a)$

 $=\delta'(\delta' (q0, \omega), a)$

=δ' (q0, ω a)

= 右侧

的一个状态

由归纳假设

设 $R = \delta'$ (q0, ω)

 $q \in R$

g ∈R. 由δ1定义

 $R = \delta' (q0, \omega)$

再证: δ_1 (q0, ω) 含F1的一个状态当且仅当 δ ' (q0, ω) 含F

4

证明同时展示了一种将 ε-NFA转化为NFA的方法.

ε-NFA <==> DFA

例:将ε-NFA转换为NFA.

课堂作业

将 ε -NFA转换为NFA和DFA.

第五节 正则集和正则式

- ◆正則集,字母表上一些特殊形式的字符串的集合, 是正則式所表示的集合.
- ◆正则式: 用类似代数表达式的方法表示正则语言。
- ◆运算:作用于语言上的三种代数运算
 - 联合 (union)
 - _ 遙楼 (concatenation)
 - (星) 闭包 (closure)

正则表达式 (regular expression)

◆ 归纳定义正则表达式的下:

基础: ϵ , φ , a (a ϵ T) 都是正则式 (原子正则式),

相应的正则集为 $\{\epsilon\}$, ϕ , $\{a\}$

归纳:如果A和B是正则式,且分别代表集合L(A)和L(B),

则(A+B), (A.B), A* 也是正则式,分别表示以下正则集.

L(A) ∪ **L(B)**

(语言A/语言B的串)

L(A).L(B)

(两个语言中的串的连接)

L(A) *

(语言A中的串的多次连接)

◆ 仅通过有限次使用以上两步定义的表达式,才是字母表T上的正则式。这些正则式所表示的字符串集合是T上的正则集。

正则表达式算符优先级

- ◆ 算符优先级 (precedence) 像次为
 - * (closure)
 - 连接 (concatenation)
 - + (union)

定义: 若两个正则式表示相同的正则集,则称这两个正则式相等。 即 R1=R2 <==> L(R1)=L(R2)

注1:正则集是T*的子集。

注2:L+包含 ϵ 当且仅当L包含 ϵ 。

注3:每个正则集至少对应一个正则式(可有无穷多

个正则式)

正则表达式举例

◆ 常 p 55 例 1

正则集	正则式
T上所有 a 和 b 组成的字符串集合	$(1) (a+b)^*$
T上所有以 a 为首后跟任意个 b 的字符串集合	(2) ab*
T上所有以 b 为首后跟由 a 和 b 组成的字符串集合	(3) $b(a+b)^*$
T上所有含有两个连续 a 或两个连续 b 的字符串集合	(4) (a+b) * (aa+bb)(a+b) *

◆表示此下语言的正则表达式:语言中的每个字符串由爱替的 0's 和 1's 构成

$$-(01)^* + (10)^* + 0(10)^* + 1(01)^*$$

$$-(\varepsilon + 1)(01)^*(\varepsilon + 0)$$

$$-\left(\varepsilon+0\right)(10)^{*}\left(\varepsilon+1\right)$$

语言的联合 (union) 运算

```
\diamondsuit 两个语言 L 和 M 的联合 L \cup M = \{ w \mid w \in L \lor w \in M \} \diamondsuit 举例 \& L = \{ 001, 10, 111 \}, M = \{ \varepsilon, 001 \}, 则 L \cup M = \{ \varepsilon, 10, 001, 111 \}
```


语言的连接 (concatenation) 运算

 \diamondsuit 两个语言 L 和 M 的连接 $L\cdot M=\{\ w_1w_2\ |\ w_1\in L\wedge w_2\in M\ \}$ \diamondsuit 有时记 $L\cdot M$ 为 LM \diamondsuit 举例 $\iff L=\{\ 001,10,111\ \},\ M=\{\varepsilon,\ 001\},$ 则 $LM=\{\ 001,\ 10,\ 111,\ 001001,\ 10001,\ 111001\}$

语言的闭包 (closure) 运算

◆语言L的闭包

$$L^* = \{ w^n \mid w \in L \land n \geq 0 \}, 其中w^n 为w的n 决连接$$

或 $L^* = L^0 \cup L^1 \cup L^2 \cup ... = \cup_{i \geq 0} L^i$,其中
 $L^0 = \{ \varepsilon \}, L^1 = L, L^2 = LL, ...$

◆ 舉例

接 L = { 0, 11 }, 则

 $L^* = \{ \varepsilon, 0, 11, 00, 011, 110, 1111, 000, 0011, 0110, 01111, 1100, 11011, 11110, 111111, ... \}$

4

正则式的性质

交换律(commutativity)和结合律(associativeity)

(1)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

(2) (
$$\alpha \beta$$
) $\gamma = \alpha (\beta \gamma)$

(3)
$$\alpha + \beta = \beta + \alpha$$

等幂律 (idempotent law)

(4)
$$\alpha + \alpha = \alpha$$

分配律(distributive law)

(5)
$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$$

(6)
$$(\beta + \gamma) \alpha = \beta \alpha + \gamma \alpha$$

-

正则式的性质

幺允 (identities) 和零允 (annihilators)

(7)
$$\alpha + \phi = \phi + \alpha = \alpha$$

(8)
$$\alpha \ \varphi = \varphi \ \alpha = \varphi$$

(9)
$$\alpha \ \epsilon = \epsilon \ \alpha = \alpha$$

与闭包相关的定律

(10)
$$(a *)* = a *$$

(11)
$$\alpha * = \alpha + \alpha *$$

$$\phi^* = \varepsilon$$
 $\varepsilon^* = \varepsilon$
 $L^+ = LL^* = L^*L$ (L^+ 的定义)
 $L^* = L^+ + \varepsilon$

正则式的性质

右线性文法与正则式

右(左)线性文法又称为正则文法,右线性文法与正则式可以用来代表同一正则语言。二者具有等效性。

例: 文法 $S \rightarrow aS$, $S \rightarrow a$

对应正则式: a+, 或者a*a

从右线性文法导出正则式

求解规则:

设 $x \to \alpha x + \beta$, $\alpha \in T^*$, $\beta \in (N+T)^*$, $x \in N$ 则x的解为 $x = \alpha^* \beta$

证明:

 $x \to \alpha x + \beta$ 表示 $x \neq \alpha x$ 有两个生成式: $x \to \alpha x$ 和 $x \to \beta$, 生成的语言为(β , $\alpha \beta$, $\alpha \alpha \beta$, $\alpha \alpha \alpha \beta$, ...), 显然该语言可用正则式 $\alpha * \beta$ 表示。

书p56, 例2 书p57, 例3

例 2 设右线性文法 $G = (\{S,A,B\},\{a,b\},P,S)$

生成式 P 如下:

以上生成式写成联立方程为

$$S \rightarrow aA, S \rightarrow bB, S \rightarrow b$$

$$A \rightarrow bA \cdot A \rightarrow \varepsilon$$

$$B \rightarrow bS$$

73 /11. /3

$$S = aA + bB + b$$
$$A = bA + \varepsilon$$

$$B=bS$$

对式(2)利用规则 R 和性质 $\alpha \cdot \epsilon = a$,得

$$A = b^*$$

将式(4)和式(3)代入式(1)中的A、B,得

$$S = ab^* + bbS + b = bbS + ab^* + b$$
$$= (bb)^* (ab^* + b)$$

所以由 G 产生的语言,用正则式表示为 $(bb)^*(ab^*+b)$ 。

例 3 设右线性文法 $G = (\{A,S\},\{a\},P,S)$ 生成式 P 如下:

$$S \rightarrow a, S \rightarrow aA, A \rightarrow aS$$

以上生成式写成联立方程为

$$S = aA + a$$

$$A = aS$$

将式(2)代入式(1)中的A,得

$$S=aaS+a=(aa)^*a$$

表示的正则集是任意一对(包括 0 对)aa 后跟一个 a,即{ $a^{2n+1} | n \ge 0$ }。

第六节 正则集和右线性文法

- > 正则集是由右线性文法产生的语言
- > 由右线性文法产生的语言都是正则集

(一). 求证正则集是由右线性文法产生的语言

证明方法:

找出相应的右线性文法, 使之产生的语言是这些正则集。

1. 首先从最简单的正则式出发,求证其正则集 Φ ,{ ϵ },{a}是右线性语言。

证明:

对正则集Φ,

有右线性文法G={{S}, T, Φ, S}, 使L(G)= Φ

对正则集{ε},

有右线性文法G={{S}, T, {S->ε}, S}, 使L(G)= {ε}

对正则集{a},

有右线性文法G={{S}, T, {S->a}, S}, 使L(G)= {a}

2. 将对由并,积,闭包形成的正则集的证明,改为对右线性语言的证明。

设在字母表T上,有语言 L_1 和 L_2 ,则 L_1 \cup L_2 , L_1 . L_2 , L_1* 都是右线性语言。

证明方法:分别找出相应的右线性文法。

4

(a). 求证L₁∪ L₂是右线性语言

构造G = (N, T, P, S) 产生L,使L= $L_1 \cup L_2$ 其中 $N = N_1 \cup N_2 \cup \{S\}$,S为新的非终结符; $P = P_1 \cup P_2 \cup \{S -> S_1, S -> S_2\}$ $T = T_1 \cup T_2$

先证**L** ⊆ **L**₁ ∪ **L**₂ :

在G中,由G的定义,对于任意,意味着或者(按G1的产生式),或者(按G2的产生式)

即文法G的每个句子或由 G_1 产生,或由 G_2 产生。

 \therefore L(G) \subseteq L(G₁) \cup L(G₂)

再证 L₁ ∪ L₂ ⊆ L:

设有ω∈L1∪ L2,则存在推导

$$S_{1 G_1} = >^+ \omega \otimes S_{2 G_2} = >^+ \omega$$

命题得证#

(b). 求证L₁L₂是右线性语言

构造G=(N, T, P, S) 其中N=N₁ U N₂, S=S₁, 生成式P为: 若A->αB ∈P₁, 则它也属于P 若A->α∈P₁, 则A->αS₂∈P P₂⊆ P

先证 L(G₁). L(G₂) ⊆ L(G)

若有任意 $S_1 = >* ω_1 与 S_2 = >* ω_2 分别属于<math>G_1$ 和 G_2 定义的语言中,那么有 $S_1 = >α_1A = >α_2B = >α_3C = > ... = > ω_1$ 和 $S_2 = > β_1A_1 = > β_2B_2 = > β_3C_3 = > ... = > ω_2$,

- $\therefore S => S_1 => \alpha_1 A => \alpha_2 B => \alpha_3 C => \dots => \omega_1.S_2 => * \omega_1. \omega_2$
- \therefore L(G₁). L(G₂) \subseteq L(G)

(b). 求证L₁.L₂是右线性语言

再证 L(G)⊆ L(G₁). L(G₂)

若有S =>
$$S_1$$
 => $\alpha_1 A$ => $\alpha_2 B$ => $\alpha_3 C$ =>...
=> $\omega_1 . S_2$ => * $\omega_1 . \omega_2$

那么则必然在 G_1 和 G_2 中同时有

$$S_1 => \alpha_1 A => \alpha_2 B => \alpha_3 C => \dots => \omega_1$$

$$S_2 => \beta_1 A_1 => \beta_2 B_2 => \beta_3 C_3 => ... => \omega_2$$

$$\therefore$$
 L(G) \subseteq L(G₁). L(G₂)

命题得证#

(c). 求证L₁*是右线性语言

证明: 构造G=(N, T, P, S)

其中; $N=N_1$ US, S∉N₁, S是一个新的非终结符,

生成式P为: 如果 $A \rightarrow \alpha B \in P_1$,则 $A \rightarrow \alpha B \in P$ 。

如果 $A \rightarrow \alpha \in P_1$,则 $A \rightarrow \alpha S \in P$

 $S \rightarrow S_1$, $S \rightarrow \varepsilon \in P_0$

先证 L(G)⊆ L(G1)*

若有S => S₁ =>
$$ω$$
₁ S => * $ω$ ₁ $ω$ ₂ S =>...

$$=>* \omega_1 \omega_2 ... \omega_i.S => \omega_1 \omega_2 ... \omega_i$$

则在G₁中必然有

$$S_1 = >^* \omega_1 \; ; \; S_1 = >^* \omega_2 \; ; \; S_1 = >^* \omega_i$$

 \therefore L(G) \subseteq L(G₁)*

(c). 求证L₁*是右线性语言(续)

若G₁中有

$$S_1 = >^* \omega_1 \; ; \; S_1 = >^* \omega_2 \; ; \; S_1 = >^* \omega_1$$

则在G中必然有

$$S => S_1 => \omega_1 S => * \omega_1 \omega_2 S => ...$$

=>* $\omega_1 \omega_2 ... \omega_i .S => \omega_1 \omega_2 ... \omega_i$

 \therefore L(G₁)* \subseteq L(G)

因此 L* 可以用右线性文法描述。

证毕#

(二). 证明由右线性文法产生的语言是正则集

思路:

由给定的右线性文法可找出正则式,而正则式表示的语言即为正则集。

方法:

对右线性文法构造标准形式的正规表达式方程组,应用规则 $x=\alpha x+\beta=>x=\alpha^*\beta$ 进行消元,求解方程组,即可得出正规表达式。

由 (一) 和 (二)即可得出下定理:

定理:一个语言是正则集,当且仅当该语言为右线性语言。

1

课堂练习

◆ Exercise 对于以上自动机,已经求出其语言的一个正规表达式此下

$$(0+1)*1(0+1)+(0+1)*1(0+1)(0+1)$$

使用分配律求出两种不同的更简单的与之等价的表达式。

◆参考结果

(1)
$$(0+1)*1(\varepsilon+0+1)(0+1)$$

(2)
$$(0+1)*1(0+1)(\varepsilon+0+1)$$

课后练习

chap3 习题

习题15, 1, 4, 5