Programming Languages: Imperative Program Construction Practicals 5: Loop Constuction I

Shin-Cheng Mu

Autumn Term, 2022

1. Derive a program for the computation of square root.

con
$$N$$
: Int $\{0 \le N\}$
var x : Int
squareroot
 $\{x^2 \le N < (x+1)^2\}$.

Solution: Try using $x^2 \le N$ as the invariant and $\neg (N < (x+1)^2)$ as the guard. The program:

con
$$N : Int \{0 \le N\}$$

var $x : Int$
 $x := 0$ -- Pf0
 $\{x^2 \le N, bnd : N - x\}$ -- Pf1
do $(\neg (N < (x + 1)^2)) \rightarrow$
 $x := x + 1$ -- Pf2
od
 $\{x^2 \le N < (x + 1)^2\}$ -- Pf3

Pf0.

$$(x^2 \leqslant N)[x \backslash 0]$$

$$\equiv 0^2 \leqslant N$$

$$\equiv 0 \leqslant N.$$

Pf1. To show that the bound is non-negative:

$$0 \le N - x$$

$$\equiv x \le N$$

$$\Leftarrow \{x \le x^2 \text{ for integer } x\}$$

$$x^2 \le N$$

$$\Leftarrow x^2 \le N \land \neg (N < (x+1)^2).$$

To show that the bound decreases:

$$(N - x < C)[x \setminus x + 1]$$

$$\equiv N - x - 1 < C$$

$$\Leftarrow N - x = C$$

$$\Leftarrow N - x = C \land x^2 \leqslant N \land \neg (N < (x + 1)^2).$$

Note: what would happen had we chosen $N - x^2$ as the bound?

$$(x^{2} \leqslant N)[x \backslash x + 1]$$
Pf2. $\equiv (x + 1)^{2} \leqslant N$
 $\Leftarrow x^{2} \leqslant N \land \neg (N < (x + 1)^{2})$.

Pf3. Certainly,

$$x^{2} \leqslant N \land \neg (\neg (N < (x+1)^{2}))$$

$$\equiv x^{2} \leqslant N < (x+1)^{2}.$$

- 2. Find substitutions (on variables) that satisfy the following implications. (As a convention, variables start with small letters while constants start with capital letters. We assume that all variables and constants are *Int*.)
 - (a) $(x = 2 \times E)[? \setminus ?] \Leftarrow x = E$.
 - (b) $(x = 2 \times E + A)[? \setminus ?] \Leftarrow x = E$.
 - (c) $(x = f E)[? ?] \Leftarrow x = E$, for some function f.
 - (d) $(x = A)[?\?] \Leftarrow x = 2 \times A + B \wedge ...$ You may need to discover an additional side condition in place of ... to make the implication valid.
 - (e) $(A = 2 \times b \times x + c)$ [?\?] $\Leftarrow A = b \times x + c \wedge ...$ Again you may need an additional condition in
 - (f) $(A = B \times x + B + C)[? \setminus ?] \Leftarrow A = B \times x + C$.
 - (g) $(A = B \times x / 2 + 2 \times C)[? \setminus ?] \Leftarrow A = B \times x + C \wedge ...$

Solution:

- (a) $[x \setminus 2 \times x]$.
- (b) $[x \setminus 2 \times x + A]$.
- (c) $[x \mid f x]$.
- (d) One may choose $[x\setminus((x-B)/2)]$, and the side condition would be *even* (x-B). That is,

$$(x = A)[x \setminus ((x - B) / 2)]$$

$$\equiv (x - B) / 2 = A$$

$$\Leftarrow x = 2 \times A + B \wedge even(x - B) .$$

- (e) $[x \setminus (x/2)]$ with additional condition *even* x, $[b \setminus (b/2)]$ with additional condition *even* b, or $[c \setminus (c-b \times x)]$.
- (f) [x | x 1].
- (g) $[x \setminus (2 \times x 2 \times C / B)]$, with side condition $2 \times C$ 'mod' B = 0, that is B divides $2 \times C$.
- 3. **The Zune problem**. Let *D* be the number of days since 1st January 1980. What is the current year? Assume that there exists a function $daysInYear : Int \rightarrow Int$ such that daysInYear i, with $i \ge 1980$, yields the number of days in year *i*, which is always a positive number. Derive a program having two variables *y* and *d* such that, upon termination, *y* is the current year, and *d* is the number of days since the beginning of this year.
 - (a) How would you specify the problem? The specification may look like:

```
con D: Int \{0 \le D\}
var y, d: Int
zune
\{???\}
```

What would you put as the postcondition? In this postcondition, is 1st January 1980 day 0 or 1?

Solution: One of the possibilities is

```
\langle \Sigma i : 1980 \leqslant i < y : daysInYear i \rangle + d = D \wedge 0 \leqslant d < daysInYear y.
```

This specification implies that 1st January 1980 is day 0 and, days in year i are counted as 0, 1 ... daysInYear i - 1.

(b) Derive the program.

Pf0.

Solution: We choose $\langle \Sigma i : 1980 \leqslant i < y : daysInYear i \rangle + d = D \land 0 \leqslant d$ as the loop invariant, and $\neg (d < daysInYear y)$ as guard. During the development we will see that we need $1980 \leqslant y$ in the invariant, to allow splitting. The resulting program is:

```
con D: Int \{0 \le D\}

var y, d: Int

y, d:= 1980, D -- Pf0

\{\langle \Sigma i: 1980 \le i < y: daysInYear \ i \rangle + d = D \land 1980 \le y \land 0 \le d, bnd: d\}

do d \ge daysInYear \ y \rightarrow -- Pf1

d:= d - daysInYear \ y -- Pf2

y:= y+1

od

\{\langle \Sigma i: 1980 \le i < y: daysInYear \ i \rangle + d = D \land 0 \le d < daysInYear \ y\} -- Pf3

(\langle \Sigma i: 1980 \le i < y: daysInYear \ i \rangle + d = D \land 1980 \le y \land 0 \le d)[y, d \land 1980, D]
\equiv \langle \Sigma i: 1980 \le i < 1980: daysInYear \ i \rangle + D = D \land 1980 \le 1980 \land 0 \le D
\equiv 0 + D = D \land 0 \le D
\equiv 0 \le D.
```

Pf1. That $0 \le d$ follows from the loop invariant. To show that d decreases, we need to know that d aysInYear y is always positive:

```
 ((d < C)[y \setminus y + 1])[d \setminus d - daysInYear y] 
 \equiv d - daysInYear y < C 
 \Leftarrow \{ daysInYear y \text{ positive } \} 
 d = C 
 \Leftarrow \langle \Sigma i : 1980 \leqslant i < y : daysInYear i \rangle + d = D \land 1980 \leqslant y \land 0 \leqslant d \land d \geqslant daysInYear y \land d = C
```

Pf2. Assuming $1980 \le y$, consider

```
\langle \Sigma i : 1980 \le i < y : daysInYear i \rangle [y \setminus y + 1]
= \langle \Sigma i : 1980 \le i < y + 1 : daysInYear i \rangle
= \{ \text{ since } 1980 \le y, \text{ splitting off } i = y \}
\langle \Sigma i : 1980 \le i < y : daysInYear i \rangle + daysInYear y .
```

Therefore,

```
 ((\langle \Sigma i : 1980 \leqslant i < y : daysInYear \ i \rangle + d = D \land \\ 1980 \leqslant y \land 0 \leqslant d)[y \backslash y + 1])[d \backslash d - daysInYear \ y] \\ \equiv \langle \Sigma i : 1980 \leqslant i < y + 1 : daysInYear \ i \rangle + (d - daysInYear \ y) = D \land \\ 1980 \leqslant y + 1 \land 0 \leqslant d - daysInYear \ y \\ \Leftarrow \left\{ \text{ calculation above, } 1980 \leqslant y + 1 \Leftarrow 1980 \leqslant y \right\} \\ \langle \Sigma i : 1980 \leqslant i < y : daysInYear \ i \rangle + daysInYear \ y + (d - daysInYear \ y) = D \land \\ 1980 \leqslant y \land d \geqslant daysInYear \ y
```

 $\Leftarrow \langle \Sigma i : 1980 \leqslant i < y : daysInYear i \rangle + d = D \land 1980 \leqslant y \land 0 \leqslant d \land d \geqslant daysInYear y$.

```
Pf3. Certainly,  \langle \Sigma i : 1980 \leqslant i < y : daysInYear \ i \rangle + d = D \land 1980 \leqslant y \land 0 \leqslant d \land \\ \neg \ (d \geqslant daysInYear \ y) \Rightarrow \\ \langle \Sigma i : 1980 \leqslant i < y : daysInYear \ i \rangle + d = D \land 0 \leqslant d < daysInYear \ y \ .
```

4. Assuming that $-\infty$ is the identity element of (\uparrow) . Derive a solution for:

```
con N: Int \{N \ge 0\}
con A: array [0..N) of Int
var r: Int
S
\{r = \langle \uparrow i: 0 \le i < N: A[i] \rangle \}.
```

Solution:

con
$$N: Int \{N \ge 0\}$$

con $A: array [0..N)$ of Int
var $r, n: Int$
 $r, n: = -\infty, 0$ -- Pf0
 $\{r = \langle \uparrow i: 0 \le i < n: A[i] \rangle \land 0 \le n \le N, bnd: N-n\}$
do $n \ne N \rightarrow$ -- Pf1
 $r: = r \uparrow A[n]$ -- Pf2
 $n: = n+1$
od
 $\{r = \langle \uparrow i: 0 \le i < N: A[i] \rangle \}$ -- Pf3

Pf0.

$$(r = \langle \uparrow i : 0 \leqslant i < n : A [i] \rangle \land 0 \leqslant n \leqslant N)[r, n \backslash -\infty, 0]$$

$$\equiv -\infty = \langle \uparrow i : 0 \leqslant i < 0 : A [i] \rangle \land 0 \leqslant 0 \leqslant N$$

$$\equiv 0 \leqslant N .$$

Pf1. Apparently, $0 \le n \le N \Rightarrow N - n \ge 0$, and

$$((N - n < C)[n \setminus n + 1])[r \setminus r \uparrow A[n]]$$

$$\equiv N - (n + 1) < C$$

$$\Leftarrow N - n = C.$$

Pf2. We reason:

$$\begin{aligned} &((r = \left\langle \uparrow i : 0 \leqslant i < n : A[i] \right\rangle \land 0 \leqslant n \leqslant N)[n \backslash n + 1])[r \backslash r \uparrow A[n]] \\ &\equiv r \uparrow A[n] = \left\langle \uparrow i : 0 \leqslant i < n + 1 : A[i] \right\rangle \land 0 \leqslant n + 1 \leqslant N \\ &\iff \left\{ \text{ assuming } 0 \leqslant n < N, \text{ split off } i = n \right\} \\ &r \uparrow A[n] = \left\langle \uparrow i : 0 \leqslant i < n : A[i] \right\rangle \uparrow A[n] \land 0 \leqslant n < N \\ &\iff r = \left\langle \uparrow i : 0 \leqslant i < n : A[i] \right\rangle \land 0 \leqslant n \leqslant N \land n \neq N \ . \end{aligned}$$

Pf3. It is immediate that

$$r = \langle \uparrow i : 0 \leq i < n : A[i] \rangle \land 0 \leq n \leq N \land n = N$$

$$\Rightarrow r = \langle \uparrow i : 0 \leq i < N : A[i] \rangle .$$

5. Derive a solution for:

```
con N, X : Int \{0 \le N\}

con A : array [0..N) of Int

var r : Int

S

\{r = \langle \Sigma i : 0 \le i < N : A [i] \times X^i \rangle \}.
```

Solution: For efficiency, add a variable *x* and use the invariant:

$$r = \langle \Sigma i : 0 \leqslant i < n : A [i] \times X^i \rangle \land x = X^n \land 0 \leqslant n \leqslant N$$
.

Denote it by *P*. The program:

con
$$N, X : Int \{0 \le N\}$$

con $A : array [0..N)$ of Int
var $r, x, n : Int$
 $r, x, n := 0, 1, 0$ -- Pf0
 $\{P, bnd : N - n\}$
do $n \ne N \rightarrow$ -- Pf1
 $r, x := r + A [n] \times x, x \times X$ -- Pf2
 $n := n + 1$
od
 $\{r = \langle \Sigma i : 0 \le i < N : A [i] \times X^i \rangle \}$ -- Pf3

Pf0.

$$P[r, x, n \setminus 0, 1, 0]$$

$$\equiv 0 = \langle \Sigma i : 0 \leqslant i < 0 : A[i] \times X^i \rangle \land 1 = X^0 \land 0 \leqslant 0 \leqslant N$$

$$\Leftarrow 0 \leqslant N.$$

Pf1. Apparently, $0 \le n \le N \Rightarrow N - n \ge 0$, and

$$((N - n < C)[n \setminus n + 1])[r, x \setminus r + A[n], x \times X]$$

$$\equiv N - (n + 1) < C$$

$$\Leftarrow N - n = C.$$

Pf2. We reason:

$$\begin{aligned} & ((r = \langle \Sigma i : 0 \leqslant i < n : A[i] \times X^i \rangle \wedge x = X^n \wedge 0 \leqslant n \leqslant N)[n \backslash n + 1])[r, x \backslash r + A[n] \times x, x \times X] \\ & \equiv r + A[n] \times x = \langle \Sigma i : 0 \leqslant i < n + 1 : A[i] \times X^i \rangle \wedge x \times X = X^{n+1} \wedge 0 \leqslant n + 1 \leqslant N \\ & \Leftarrow \quad \big\{ \text{ assuming } 0 \leqslant n < N, \text{ split off } i = n \big\} \\ & r + A[n] \times x = \langle \Sigma i : 0 \leqslant i < n : A[i] \times X^i \rangle + A[n] \times x^n \wedge x \times X = X^{n+1} \wedge 0 \leqslant n < N \\ & \Leftarrow r = \langle \Sigma i : 0 \leqslant i < n : A[i] \times X^i \rangle \wedge x = X^n \wedge 0 \leqslant n \leqslant N \wedge n \neq N \end{aligned} .$$

Pf3. It is immediate that

$$r = \langle \sum i : 0 \leqslant i < n : A[i] \times X^i \rangle \land x = X^n \land 0 \leqslant n \leqslant N \land n = N$$

$$\Rightarrow r = \langle \sum i : 0 \leqslant i < N : A[i] \times X^i \rangle.$$

Another possibility, however, is to define for $0 \le n \le N$:

$$k n = \langle \Sigma i : n \leq i < N : A[i] \times X^{i-n} \rangle,$$

use the invariant $r = k \ n \land 0 \leqslant n \leqslant N$, and decrement n in the loop.