Hyperion: Titan Submarine EDL

Dan Brogan, Nikita Persikov, Phillip Chung, David Bacher, Dante Dorantes

Why Titan?

- Titan is the only celestial body (besides Earth) with stable liquid bodies
- Lakes of Titan are known to be rich in hydrocarbons, but exact composition is unknown
- These lakes are theorized to allow for possibility of simple life forms (similar to Earth's deep sea vents)
- Mysterious, and relatively unexplored = prime candidate for exploration
- Team Hyperion is proposing unmanned sub to be splashed down into Kraken Mare

Titan EDL Environment

Gravity:

1.354 m/s²

Atmospheric Composition: 77% N₂, 20% Ar, 3% CH₄

Surface Atmospheric Density:

5.50 kg/m³

Surface Temperature:

92 K

- Biggest challenge is cryogenic temp of atmosphere and methane lake (will use heat byproduct from RTG power to keep sub warm)
- Benefit from low g and thick atmosphere

[R. Brown et al., "Titan From Cassini-Huygens." 2010.]

Level 1: Science and Mission Requirements

- Splash down in Titan's polar liquid methane lake, Kraken Mare
- Must be capable of moving through liquid methane lakes on Titan's surface
- Operate for two years
- Take panoramic pictures of lakebed
- Investigate chemical composition of lake using optical spectroscopy
- Take temperature and pressure measurements (during EDL and in lake)
- Take microscopic pictures of collected samples
- Transmit science data directly back to Earth

Level 2: Entry System Requirements

- Entry vehicle + sub should not experience more than 5 g's during entry or splashdown
- Collect telemetry data during EDL
- Land directly in Kraken Mare (splashdown required for payload security)
- Withstand peak heat flux of 86 W/cm²
- Withstand peak heat load of 9,900 J/cm²
- Speed at splashdown must be no more than 27 m/s
- Submarine shall supply the entry vehicle with 187 W of power to support telemetry data collection and entry ACS

Testing

- Arcjet test to determine recession rate and temp at various heat fluxes (60 to 250 W/cm²)
- Gases used in test chamber would resemble those on Titan (77% N_2 , 20% Ar, and 3% CH_4)
- Thermocouples placed at various depths of heat shield
- Hypersonic wind tunnel for drag testing (loads, stress, stability, parachute deployment)

Orbital Mechanics

- Entry Conditions based on the orbital path of Cassini/Huygens
- Entry Velocity 6 km/s
- FPA 8.5 degrees

Relative Velocity and Distance to Saturn

Relative Velocity and Distance to Titan

EDL Overview

Ballistic Coefficient Separation

Separation	Stage	Ballistic Coefficient (kg/m^2)
Mach	Aftbody	69
Mach 5	Sub & Heat Shield	377
NA L 4	Sub & Chute	17
Mach 1	Heat Shield	28

Different EOMs used in each regime to reflect change in dynamics:

Hypersonic:

$$V = V_e \exp\left(\frac{\rho_o}{2\beta A sin(\gamma)}e^{-Ah}\right)$$

Supersonic:

$$V_k = V_{k-1} + [g - \frac{1}{2m_{sub-fore}} \rho_0 exp(-Ah_{k-1})V_{k-1}^2 [C_{Dev}S_{ev}] \Delta t$$

Subsonic:

$$V_{k} = V_{k-1} + [g - \frac{1}{2m_{sub}}\rho_{0}exp(-Ah_{k-1})V_{k-1}^{2}[C_{Dev}S_{ev} + C_{Dp}S_{p}]\Delta t$$

Key Mission Profiles

Peak Heat Flux: 86 W/cm²

Entry Velocity: 6.0 km/s

Final Velocity:

Downrange Distance: 8,600.0 km

Altitude of Peak Heating:

2.8 m/s

180 km

Total Integrated Heat Load:

9900 J/cm²

Hypersonic Entry

Aeroshell Geometry

Forebody Diameter: 2 m
 Nose Radius: 0.5 m
 Total EV Length: 6 m
 Sphere-Cone Angle: 60°

Heat Shield Material: Lockheed Martin MI-15

Tested heat flux limit: 150 W/cm²
Heat of Ablation: 6,276 kJ/kg
Required Thickness: 3.3 cm
TPS Mass (1.5 SF): 79 kg

Structure

Peak Deceleration Load: 51 kN
 Material: Aluminum
 Mass: 302 kg

Mach > 5

Hypersonic Entry Event	Key Mission Parameter	Key Value	Units
A	Altitude	1,400	km
Atmospheric Entry	Mach	23	- (= /)
n lu e	Altitude	180	km
Peak Heating	Heat Flux	86	W/cm^2
D D	Altitu <mark>d</mark> e	158	km
Peak Deceleration	Deceleration	5	g's

Entry (GNC)

- EV mechanisms are controlled by the submarine computer.
- Submarine computer used to control:
 - ACS
 - Aeroshell separation
 - Parachute deployment
 - Telemetry data collection

Ballistic Entry

MRE-5.0 Monopropellant Thruster

Supersonic Descent

Aftbody Separation

• Ballistic Coefficient Separation Factor: > 22

Forebody Drag Coefficient

- Highly Dependent on Mach in Supersonic Regime
- Used Spline of Data to Obtain Proper Values

Supersonic Event	Key Mission Parameter	Key Value	Units
A fall - d. C	Altitude	135	km
Aftbody Separation	Mach	5	NE.

Subsonic Descent & Landing

Simultaneous Parachute Deploy & Heat Shield Separation

• Ballistic Coefficient Separation Factor: > 1.5

Disk-Gap-Band Parachute

• Diameter: 12 m

Materials: Kevlar Lines, Nylon Canopy

Deployment: Mortar

Trim Angle: 10°

Splashdown Method

Pencil Dive Approach - Minimizes Impact Area

• 5g Splashdown Velocity Limit: 27 m/s

Splashdown Acceleration: 0.5 m/s^2

Heat Shield Separation

Subsonic Event	Key Mission Parameter	Key Value	Units
Parachute Deploy	Altitude	117	km
&	Mach	1	(=2)
Heat Shield Separation	Chute Opening Load	42	kN
100	Altitude	0	km
Splashdown	Final Velocity	2.8	m/s
	Peak Load	524	N

Submarine Specifications

Mass: 964.41 kg

• Length: 5.87 m

Maximum Width: 1.75 m

Item	Mass (kg)
Structure	446
Pressure Sensors (8 units)	1.6
Temperature Sensors (10 units)	0.014
Power System	130
Thermal Control	100
Ballast Tanks	15
Compressor	16.5
Microscopic Imager	9
Submarine Telecom	30.5
Panoramic Cameras	0.3
Attitude and Position Sensors	118
Propulsion	20.6
Command and Data Handling (C&DH)	44
Attitude Control System	32.9
Total	964.4

Communications Approach

- Autonomous through EDL phases
- Communications link established after landing during surface operations
 - Waits for command from Earth to start a selected mission plan
 - Autonomously navigate through Kraken Mare for 8 hours collecting sensor data
 - Transmit sensor data DTE to Deep Space Network (DSN) for 16 hours (amounts to a total of 288 Mb per day of sensor data) and repeat sequence
- Assumptions:
 - 4-m transmitting diameter to close link (assumes phased array on submarine can provide similar transmitting antenna gain)
 - Selected 9 GHz frequency (X-band) compatible with DSN
 - Includes standard practice 3 dB Required Link Margin and also 1 dB
 Uncertainty Link Margin
 - Losses are rough estimates
- Resultant SNR or Eb/No = 3.1 dB
 - Aligns closely with DPSK modulation format at % code rate (required Eb/No = 2.99 dB)

<u>Parameter</u>	Linear Value	dB Value	
Transmit			
Transmitting Antenna Diameter	4 m		
Efficiency of Transmitting Antenna	0.7		
Selected Frequency	9 GHz		
Transmitting Antenna Gain	99.5 kW	50.0 dB	
Transmitted Power	90 W	19.5 dB	
Line Loss	0.8	1.0 dB	
EIRP	7,163 kW	70.5 dB	
Range and Atmospheric			
Range	1.27E+9 km		
Space Loss		293.6 dB	
Atmospheric Loss		2 dB	
Receive			
Receiving Antenna Diameter	34 m		
Efficiency of Receiving Antenna	0.7		
Selected Frequency	9 GHz		
Receiving Antenna Gain	7,188 kW	68.6 dB	
Attenuation Loss		3.0 dB	
Temperature Noise of Receiving Antenna	200 K	23.0 dB	
Data Rate	5 kbps	37.0 dB	
Required Link Margin		3.0 dB	
Uncertainty Link Margin		1.0 dB	
Eb/No		3.1 dB	

Submarine Specifications (Power)

- Power required: 723 W
- 2 Stirling radioisotope generators (SRG) power the submarine
- Largest contributor: submarine propulsion
- Thermal Control System only requires the input power to operate the SRG
- Science equipment requires negligible power

Item	Power (W)
Pancam	6.5
Sample Intake System	22
Microscope Camera	2.5
Spectroscope	2.5
ACS and C&DH	123
Thermal Control System	20
Submarine Propulsion	440
Telecommunications	106.3
Total	723

EV Specifications (Mass and Volume)

- EV Mass: 421.1 kg
- Aftbody structural mass is the largest contributor
- Submarine size drove aftbody design
- Heat shield is the second largest mass on the EV
- Other components added negligible mass

Item	Mass (kg)
Heat Shield	79.0
Separation Mechanism (Including Power System)	11.4
Pressure Sensors	1.6
Temperature Sensors	0.014
ACS Thrusters	8
ACS Fuel	0.1
ACS Fuel Tank	1.4
Aftbody Structural Mass	302.1
Parachute and Mortars	17.5
Total	421.1

Entry Vehicle Features		
Diameter (m)	2	
Nose Radius (m)	0.5	
Sphere-Cone Angle (deg)	60	
Length (m)	6	
Parachute Diameter (m)	12	

EV Specifications (Power)

- Power Required: 188 Watts
- The processing and control is outsourced to the submarine computers
- The EV systems will
 - Record atmospheric data
 - Control flight path
 - Detach aftbody
 - Deploy parachute
 - Detach heat shield

Item	Power (W)
EDL Telemetry Data Recording System	123
EDL ACS	63
Aeroshell Separation System	1
Parachute Release System	1
Total	188

References

- [1] J. Allen., A. J. Eggers. "A Study of the Motion and Aerodynamic Heating of Ballistic Missiles Entering the Earth's Atmosphere at High Supersonic Speeds." *National Advisory Committee for Aeronautics*. March 1915.
- [2] K. Sutton, R. A. Graves. "A General Stagnation-Point Convective Heating Equation for Arbitrary Gas Mixtures." National Aeronautics and Space Administration. Nov. 1971.
- [3] J. Barcena. "Advanced Materials for High Temperature Application." *Tecnalia*. Jan. 2018.
- [4] K. C. Clausen, H. Hassan, M. Verdant, P. Couzin, G. Huttin, M. Brisson, C. Sollazzo J.-P. Lebreton. "The Huygens Probe System Design." ESA.. June. 2002.
- [5] T. Knacke. "Parachute Recovery Systems Design Manual." Naval Weapons Center. March 1991.
- [6] Oleson S.R., Lorenz, R.D. and Paul, M.V., "Phase I Final Report: Titan Submarine." NASA/TM-2015-218831
- [7] Smith, B.P., et al., "A Historical Review of Inflatable Aerodynamic Decelerator Technology Development" 978-1-4244-3888-4/10, 2010 IEEE
- [8] Bell, J., "The Panoramic Camera (Pancam)". NASA Mars Exploration Rovers, web.
- [9] I. Clark, A. Hutchings, C. Tanner, R. Braun. "Supersonic Aerodynamic Decelerators for Use on Future Robotic Missions to Mars." Georgia Institute of Technology. 2008.
- [10] "Falcon User's Guide." SpaceX. April. 2020.
- [11] Electrical power. "NASA Science: Mars 2020 Perseverance Rover", mars.nasa.gov, web.
- [12] https://www.rocket.com/sites/default/files/documents/In-Space%20Data%20Sheets%204.8.20.pdf
- [13] F. M. White. "Fluid Mechanics." University of Rhode Island. 2016.
- [14] G. Lee, W. Lee, R. Manning, C. Szalai. "Cassini/Huygens Probe Entry, Descent, and Landing (EDL) at Titan." NASA Engineering and Safety Center. May. 2005.
- [15] https://www.sciencedirect.com/science/article/abs/pii/S0011227515001162#:~:text=Data%20from%20Cassini%20Huvgens%20indicates.surface%20temperature%20around%2093%20K
- [16] GP:50. "Cryogenic Pressure Transducer," www.gp50.com, web.
- [17] Omega, "Cryogenic Temperature Silicon Diode Sensors," www.omega.nl, web.
- [18] AmScope, "Microscope Digital Camera," www.amscope.com, web.
- [19] https://descanso.jpl.nasa.gov/DPSummary/Descanso3--Cassini2.pdf
- [20] http://propagation.ece.gatech.edu/ECE6390/project/Fall2010/Projects/group7/Project%20Website_v3_files/Page550.htm
- [21] W. Weaver. "The Force of Impact on a Sphere Striking a Water Surface."
- [22] Wertz, J. R., Everett, D. F., & Puschell, J. J. (2011). Spacecraft Subsystems I Propulsion. In Space mission engineering: The new SMAD (pp. 532-535). Torrance: Microcosm Press.
- [23] Northrop Grumman, "Pressurant Tanks Data Sheets Sorted by Volume," www.northropgrumman.com, web.
- [24] ftp://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/spk/zzarchive/