Numerical Optimization

Unconstrained Optimization (I)

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Global Minimum

Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}$ Consider the problem,

Constrained optimization problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$

s.t. $\mathbf{x} \in X$

Definition

 $x^* \in X$ is is said to be a *global minimum* of f over X if $f(x^*) \le f(x) \quad \forall x \in X$.

Question: Under what conditions on f and X does the function f attain its maximum and/or minimum in the set X?

Global Minimum

• $X = \mathbb{R}, f : X \to \mathbb{R}$ defined as $f(x) = x^3$.

f attains neither a minimum nor a maximum on X

Note: X is closed, but not bounded; that is, X is not a compact set closed by [-inf,inf]

• $X = (a, b), f : X \to \mathbb{R}$ defined as f(x) = x.

f attains neither a minimum nor a maximum on X

Note:

- X is bounded, but not closed; that is, X is not a compact set
- f does attain infimum at a and supremum at b

• $X = [-1, 1], f : X \to \mathbb{R}$ defined as f(x) = x if -1 < x < 1 and 0 otherwise.

f attains neither a minimum nor a maximum on X

Note:

- X is closed and bounded; X is compact
- f is not continuous on X

Weierstrass' Theorem

Theorem

Let $X \subset \mathbb{R}^n$ be a nonempty compact set and $f: X \to \mathbb{R}$ be a continuous function on X. Then, f attains a maximum and a minimum on X; that is, there exist \mathbf{x}_1 and \mathbf{x}_2 in X such that

$$f(\mathbf{x}_1) \geq f(\mathbf{x}) \geq f(\mathbf{x}_2) \quad \forall \mathbf{x} \in X.$$

Note: Weierstrass' Theorem provides only *sufficient* conditions for the existence of optima.

•
$$X = [a,b], f: X \to \mathbb{R}$$

• f(x) not continuous; but f attains a minimum

• $X = \mathbb{R}, f : X \to \mathbb{R}$ defined as $f(x) = (x - 2)^2$.

• f(x) continuous, X not compact; but f attains a minimum

Global Minimum

Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}$ Consider the problem,

Constrained optimization problem

$$\min_{x} \quad f(x)$$
s.t. $x \in X$

constrained

Definition

 $x^* \in X$ is is said to be a *global minimum* of f over X if $f(x^*) \le f(x) \quad \forall \ x \in X$.

 Global minimum is difficult to find or characterize for a general nonlinear function

Local Minimum

Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}$ Consider the problem,

Constrained optimization problem

$$\min_{x} \quad f(x)$$

s.t. $x \in X$

Definition

 $x^* \in X$ is is said to be a *local minimum* of f if there is a $\delta > 0$ such that $f(x^*) \le f(x) \quad \forall \ x \in X \cap B(x^*, \delta)$.

Strict Local Minimum

Definition

 $x^* \in X$ is is said to be a *strict local minimum* of f if $f(x^*) < f(x)$ $\forall x \in X \cap B(x^*, \delta), x \neq x^*$.

Global Minimum and Local Minimum

- Every global minimum is also a local minimum.
- It may not be possible to identify a global min by finding all local minima

• f does not have a global minimum

Optimization Problems

Let
$$X \subseteq \mathbb{R}^n$$
 and $f: X \to \mathbb{R}$

Constrained optimization problem:

$$\min_{x} \quad f(x)$$

s.t. $x \in X$

Unconstrained optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$

Now, consider
$$f: \mathbb{R} \to \mathbb{R}$$

• Unconstrained one-dimensional optimization problem:

$$\min_{x \in \mathbb{R}} f(x)$$

Let $f: \mathbb{R} \to \mathbb{R}$

Unconstrained problem

$$\min_{x \in \mathbb{R}} f(x)$$

- What are *necessary and sufficient conditions* for a local minimum?
 - Necessary conditions: Conditions satisfied by every local minimum
 - Sufficient conditions: Conditions which guarantee a local minimum
- Easy to characterize a local minimum if f is sufficiently smooth

First Order Necessary Condition

Let $f: \mathbb{R} \to \mathbb{R}, f \in \mathcal{C}^1$.

Consider the problem, $\min_{x \in \mathbb{R}} f(x)$

Result (First Order Necessary Condition)

If x^* is a local minimum of f, then $f'(x^*) = 0$.

Proof.

Suppose $f'(x^*) > 0$. $f \in C^1 \Rightarrow f' \in C^0$.

Let $D = (x^* - \delta, x^* + \delta)$ be chosen such that $f'(x) > 0 \quad \forall x \in D$.

Therefore, for any $x \in D$, using first order truncated Taylor series,

$$f(x) = f(x^*) + f'(\bar{x})(x - x^*)$$
 where $\bar{x} \in (x^*, x)$.

Choosing $x \in (x^* - \delta, x^*)$ we get,

$$f(x) < f(x^*)$$
, a contradiction.

Similarly, one can show, $f(x) < f(x^*)$ if $f'(x^*) < 0$.