In-tutorial exercise sheet 1

supporting the lecture Mathematical Statistics

(Discussion in the tutorial on 4. November 2015)

Exercise 1.

Let X, Y be two independent normally distributed random variables with variance 1 and X has mean 1 and Y has mean -1 on a common probability space (Ω, \mathcal{A}, P) . Compute the following conditional expectations and identify their distributions:

- a) $\mathbb{E}[X+Y|X]$ and X+Y,
- b) $\mathbb{E}[XY|X]$,
- c) $\mathbb{E}[XY^2|X]$.

Exercise 2.

Let X be a real valued random variable on a probability space (Ω, \mathcal{A}, P) with $\mathbb{E}[X^2] < \infty$ and let $\mathcal{F} \subset \mathcal{A}$ be a sub- σ -algebra. The *conditional variance* is defined as

$$\operatorname{Var}[X|\mathcal{F}] := \mathbb{E}\left[(X - \mathbb{E}[X|\mathcal{F}])^2 \middle| \mathcal{F} \right].$$

Prove the identity

$$\operatorname{Var}[X|\mathcal{F}] = \mathbb{E}[X^2|\mathcal{F}] - (\mathbb{E}[X|\mathcal{F}])^2$$
.

Exercise 3.

Let P be a probability measure on $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$ with $P(z) = \frac{1}{3} \frac{1}{2^{|z|}}$, $B_i := \{i, -i\}$ for all $i \in \mathbb{N}$ and

$$X: (\mathbb{Z}, \mathcal{P}(\mathbb{Z}), P) \to (\mathbb{R}, \mathcal{B}), X(z) = |z|.$$

Calculate the conditional expectation

$$\mathbb{E}[X|\sigma(\{B_i:i\in\mathbb{N}\})].$$