Nội dung ôn tập

- I. Lý thuyết: 6 chương
- II. Bài tập Diode, Zener, led
- III. Bài tập BJT, FET
- IV. Bài tập: hệ nhị phân, hệ thập phân Đơn giản hàm dùng đại số Boole Cổng logic

Fflop: mạch đếm lên xuống bất đồng bộ.

- V. Linh kiện có vùng điện trở âm
- VI. OPAMP IC ổn áp

I Câu hỏl:

١.

- 1. Vẽ mạch chỉnh lưu toàn kỳ? Viết công thức tính điện áp ra V_{dc}?
- 2. Vẽ mạch chỉnh lưu bán kỳ? Vẽ dạng sóng ra? V_{dc}?
- 3. Cho biết đặc tính van của chuyển tiếp P N?
- 4. So sánh giữa BJT và FET?
- 5. Ưu và nhược điểm của điện trở R_E trong mạch khuếch đạI?
- 6. Vẽ và giải thích đặc tuyến V-A của SCR? Tại sao nói SCR là linh kiện có vùng điện âm?
- 7. Các phương pháp mở SCR? Tắt SCR?
- 8. Cho biết các dạng mạch phân cực của BJT?
- 9. Cho biết các dạng mạch phân cực của JFET?
- 10. Hoạt động, đặc tuyến V-A của UJT?

II. Bài tập diode

Cấu hình diode nối tiếp với ngõ vào DC

Bài 1: Xác định V₀ và ID trong hình

Bài 2: Xác định Vo và ID trong hình

Bài 3: Xác định Vo1 và Vo2 trong hình

Cấu hình diode song song và song song - nối tiếp

Bài 4: Xác định Vo và ID trong hình

Bài 5: Xác định Vo và I trong hình

Bài 6: Xác định Vo1, Vo2 và I trong hình

Bài 7: Xác định Vo và ID trong hình

Cổng AND/ OR

Bài 8: Xác định Vo trong hình với cả 2 ngõ vào đều 0V (hình 1) Bài 9: Xác định Vo trong hình với cả 2 ngõ vào đều 10V (hình 1)

Bài 10: Xác định Vo trong hình với cả 2 ngõ vào đều 0V (hình 2) Bài 11: Xác định Vo trong hình với cả 2 ngõ vào đều 10V (hình 2)

Bài 12: Xác định Vo cho cổng OR mức logic âm

Bài 13: Xác định Vo cho cổng AND mức logic âm

Chỉnh lưu bán kỳ

Bài 14: Cho biết dạng sóng V_i, V_d, i_d với ngõ vào là dạng sóng sin có tần số 60Hz

Bài 15: Lặp lại bài 14 với silicon diode, ngõ vào là dạng sóng sin có tần số 60Hz Bài 16: Cho biết dạng sóng của VL và iL, ngõ vào là dạng sóng sin có tần số 60Hz

Bài 17: Cho biết dạng sóng của Vo và xác định Vdc, ngõ vào là dạng sóng sin có tần số 60Hz

Bài 18: Cho biết dạng sóng của Vo và iR, ngõ vào là dạng sóng sin có tần số 60Hz

Bài 19

- a. Cho P_{max} = 14mW cho mỗl diode, hãy xác định giá trị dòng điện lớn nhất của mỗi diode,
- b. Xác định I_{max} để V_{imax} = 160V
- c. Xác định giá trị dòng điện qua mỗi diode với $V_m = 160V$.
- d. Nếu chỉ một diode hoạt động hãy cho biết giá trị dòng điện qua diode và so sánh với giá trị max.

Chỉnh lưu toàn kỳ

Bài 21:

Xác định ngõ ra V₀ của mạch.

Bài 22: Vẽ dạng sóng ngõ ra Vo của mạch và xác định giá trị điện áp dc với ngõ vào dạng sin có ViP = 30V.

Bài 23: Vẽ dạng sóng ngõ ra Vo của mạch và xác định giá trị điện áp dc. Với ngõ vào dạng sin có Vip = 10V, R1 = R2 = $3.3k\Omega$, R= $8.2k\Omega$

Mạch xén

Bài 24: Vẽ dạng sóng ngõ ra V_0 của mạch với ngõ vào là dạng sóng sin có $V_p = 20V$

Bài 25: Vẽ dạng sóng ngõ ra Vo của mạch.

Bài 26: Vẽ dạng sóng ngõ ra Vo của mạch.

Bài 27: Vẽ dạng sóng ngõ ra Vo của mạch.

Bài 28: Vẽ dạng sóng ngõ ra Vo của mạch và xác định giá trị điện áp dc.

Bài 29: Vẽ dạng sóng ngõ ra Vo với f = 1kHz

Bài 30:

Cho diode lý tưởng hãy thiết kế mạch với dạng sóng ngõ vào và ngõ ra như sau:

Bài 31:

Cho diode silicon, hãy thiết kế mạch với dạng sóng ngõ vào và ngõ ra như sau:

Zener:

1. Cho mạch như hình vẽ, V_I = 30V = const, điện trở R_L thay đổi. Biết V_Z =15V, Z_{max} = 65mA, R_S =200 Ω . Hãy xác định phạm vi ứng dụng thay đổI cho phép của R_L sao cho điện áp trên tảI làm ổn định ở mức 15V.

2. Cho mạch như hình vẽ, $R_S = 300\Omega$, $R_L = 1200\Omega$, zener có $V_Z = 10V$, $I_{Zmin} = 10$ mA, $I_{Zmax} = 30$ mA, $P_{max} = 0.4W$. Hãy xác định phạm vi thay đổI của V_i để có điện áp trên tảI ổn định ở mức 10V.

III. Bài tập BJT - FET

Mạch phân cực cố định cực E chung:

Bài 1: Cho mach phân cực như hình vẽ với β=150 hãy xác định

- 1. Xác định trị phân cực Ic, Vc, Ve, Vce .
- 2. Phương trình đường tải ADLL

Bài 2: Cho mạch phân cực như hình hãy xác định: Các giá trị điện trở trong mạch với điểm làm việc $I_{CQ}=2mA$, $\beta=70$.

Mạch phân cực cầu phân áp:

Bài 1: Cho mạch như hình với β = 100

- 1. Tìm phương trình đường tảI một chiều ADLL
- 2. Xác định giá trị điện trở R_1 , R_2 khi cho giá trị $I_{CQ} = 4.05$ mA.

Bài 2: Cho mạch phân cực như hình, với transistor có β =100.

Hãy thiết kế một mạch phân cực dùng cầu chia điện thế với nguồn điện V_{CC} =12V, BJT sử dụng có β =100 và làm việc tạI điểm tĩnh (I_{CQ} =4mA, V_{CEQ} =8V). Chọn V_{E} =1/10 V_{CC} .

Mạch phân cực hồi tiếp từ collector:

Bài 1: cho mạch như hình vẽ hãy xác định:

- 1. Phương trình đường tải tĩnh ADLL
- 2. Xác định giá trị Icq và VCEQ tạI điểm làm việc tĩnh Q

Bài 2: Hãy thiết kế một mạch phân cực hồl tiếp từ collector để có $I_{CQ} = 3mA$, $V_{CEQ} = 10V$, điện áp nguồn $V_{CC} = 24V$, $R_C = 10R_E$.

- 1) JFET:
- a) Mạch phân cực cố định:

Ví dụ 1 : Xác định dòng cực máng I_D và điện áp cực máng – nguồn V_{DS} cho mạch điện phân cực cố định ở hình sau :

Giải:

$$V_{GS} = V_{GG} = -1.5V$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right) = 12 \, mA \left(1 - \frac{-1,5V}{-4V} \right)^2 = 4,69V$$

$$V_D = V_{DD} - I_D R_D = 12V - (4,69 \, mA)(1,2 \, k\Omega) = 6,4V$$

$$V_{DS} = V_D - V_S = 6.4V - 0V = 6.4V$$

Câu 1 : Xác định dòng cực máng và điện áp cực máng - nguồn của mạch điện ở hình sau : + 16V

Câu 2 : Xác định dòng cực máng và điện áp cực máng - nguồn của mạch điện ở hình sau : $^{+\,16\text{V}}$

Câu 3 : Sử dụng giá trị nào của R_D để có điện áp cực máng là +8V trong mạch điện ở hình sau : $_{+\,16V}$

Câu 4: Tìm V_{DS} trong mạch điện ở hình sau :

Câu 5 : Giá trị nào của nguồn cực cổng cần để có dòng $I_D = 5 m A$ trong mạch điện ở hình sau :

b) Mạch tự phân cực của FET:

Ví dụ

Câu 1 : Xác định điện áp phân cực V_{D} cho mạch điện ở hình sau :

Câu 2 : Xác định điện áp V_S cho mạch điện ở hình sau :

Câu 3 : Điện áp V_{DS} bằng bao nhiều trong mạch điện ở hình sau :

Câu 4 : Giá trị của RS bằng bao nhiêu trong mạch điện ở hình sau để dời điểm phân cực tới VGS = -2V : +20V

Câu 5 : Xác định dòng điện cực máng trong mạch điện ở hình sau :

Câu 6 : Xác định điện áp V_S trong mạch điện ở hình sau

Câu 7 : Tìm giá trị của V_{DS} trong mạch điện ở hình sau :

c) Mạch tự phân cực bằng cầu phân áp:

Bài 1: Xác định dòng cực máng và điện áp cực máng – nguồn của mạch điện ở hình sau:

Bài 2: Sử dụng giá trị nào của R_D để có điện áp cực máng là +8V trong mạch điên ở hình sau :

IV. Bài tập hệ nhi phân-đại số boole- Flipflop

1. Đổi từ hệ nhị phân sang thập phân:

1100111100[2] =

111101111_[2] =

ĐổI từ số thập phân sang số nhị phân

1000[10] =

712_[10] =

128[10] =

2. Đơn giản hàm dùng đại số Boole

$$Y = A(A + B) + A(\bar{A} + B)$$

$$Y = A + AB + A\overline{B}$$

3. Chứng minh

$$A(A+B) = A$$

$$A(\bar{A} + B) = AB$$

$$A + \bar{A}B = A + B$$

4. Cho 1 biểu thức Boole

$$Y = A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C}$$

- 1) Vẽ sơ đồ logic
- 2) Lập bảng sự thật
- 3) Viết hàm Y dưới dạng tích của các tổng
- 5 .Cho 1 hàm logic 3 biến:

$$y = ABC + \overline{ABC} + \overline{C}(A \oplus B)$$

a/ Rút gọn hàm logic y.

b/ Vẽ y bằng các cổng logic

c/ Vẽ y sau khi rút gọn dùng các cổng logic.

6.Cho 1 hàm logic 3 biến:

$$y = ABC + \overline{A}B\overline{C} + A\overline{B}\overline{C} + \overline{A}\overline{B}C$$

a/ Rút gọn hàm logic y.

b/ Vẽ y bằng các cổng logic

c/ Vẽ y sau khi rút gọn dùng các cổng logic.

- 5. Thiết kế mạch đếm xuống không đồng bộ MOD8?
- 6. Thiết kế mạch đếm lên bất đồng bộ MOD6?
- 7. Thiết kế mạch đếm lên bất đồng bộ MOD7?
- 8. Thiết kế mạch đếm lên bất đồng bộ MOD9?
- Thiết kế mạch đếm lên bất đồng bộ MOD10?
- 10. Thiết kế mạch đếm lên bất đồng bộ MOD11?
- 11. Thiết kế mạch đếm lên bất đồng bộ MOD12?
- 12. Thiết kế mạch đếm lên bất đồng bộ MOD13?

V. Linh kiện có vùng điện trở âm

1.

- 1) Giải thích hoạt động của mạch dao động tích thoát dùng UJT
- 2) Vẽ dạng sóng ra tạl Vc, VR

Công thức tính chu kỳ dao động của mạch T=?

Bài tập mẫu 1:

Mắc mạch như hình 13.46. Cho R_{BB} =9 $K\Omega$, η=0.5, R_{B1} =0.1 $K\Omega$, I_V =10mA, V_V =10mA, I_P =10 μA .

- a. Xác định R_{B1} và R_{B2} lúc UJT chưa dẫn.
- b. Tính điện áp cần thiết để làm UJT dẫn Vp.
- c. Giá trị R₁ nằm trong khoảng giá trị nào?
- d. Xác định tần số dao động khi R_{B1} =100 Ω .
- e. Vẽ dạng sóng ra trên tụ trong một chu kỳ.
- f. Vẽ dạng sóng ra trên điện trở R_2 .

Giải:

$$\eta = \frac{R_{B1}}{R_{B1} + R_{B2}} = 0,6$$

$$\Rightarrow R_{B1} = 0,6(R_{B1} + R_{B2}) = 0,6.5 = 3 (K\Omega)$$

$$\Rightarrow$$
 $R_{B2} = R_{BB} - R_{B1} = 5 - 3 = 2 (K\Omega)$

b. Điện áp cần thiết để UJT dẫn:

$$V_p = 0.7 + \frac{(R_{B1} + R_2)V}{R_{BB} + R_2} = 0.7 + \frac{(3+0.1)12}{5+0.1} = 0.7 + 7.294 = 8 (V)$$

c. R₁ nằm trong khoảng giá trị:

$$\frac{V - V_{V}}{I_{V}} < R_{1} < \frac{V - V_{P}}{I_{P}}$$

$$\Rightarrow \frac{12 - 1}{10} < R_{1} < \frac{12 - 8}{0.01}$$

$$\Rightarrow 1.1K\Omega < R_{1} < 400K\Omega$$

d. Thời gian nạp của tụ (thời gian UJT chưa dẫn):

$$t_{\text{naip}} = R_1 C \ln \frac{V - V_V}{V - V_D} = 50.0, 1.10^{-6} \ln \frac{12 - 1}{12 - 8} = 50.0, 1.10^{-6} \ln \frac{11}{4} = 5,05$$
 (ms)

Thời gian xả của tụ (thời gian UJT dẫn):

$$t_{xa0} = (R_{B1} + R_2)C \ln \frac{V_P}{V_V} = (3+0.1).0.1.10^{-6} \ln \frac{8}{1} = 0.31.10^{-6}.2.08 = 0.64 \ (\mu s)$$

Chu kỳ sóng ra:

$$T = t_{\text{naio}} + t_{xa\hat{u}} = 5.05 + 0,64 = 5,69 (ms)$$

Tần số sóng ra:

$$f = \frac{1}{T} = \frac{1}{5.69} = 176 (Hz)$$

Bài tập mẫu 2:

Cho η =0,8, V_P=10,3V và R_{B2}=5K Ω . Tính R_{B1}, V_{BB}.

<u>Giải:</u>

Ta có:

$$\Rightarrow R_{R1} = 0.8(R_{R1} + R_{R2})$$

$$\Rightarrow$$
 0, 2 $R_{R1} = 0.8R_{R2}$

$$\Rightarrow R_{\scriptscriptstyle B1} = 4R_{\scriptscriptstyle B2} = 4.5 = 20 \, (K\Omega)$$

$$V_P = \eta V_{RR} + V_D$$

$$\Rightarrow V_{BB} = \frac{V_P - V_D}{\eta} = \frac{10, 3 - 0, 7}{0, 8} = 12 (V)$$

2. Vẽ v giải thích 1 mạch ứng dụng của SCR, TRIAC?

Bài tập 1:

Cho mạch điều khiển công suất xoay chiều như sau, giải thích hoạt động của mạch khi điều chỉnh biến trở. Vẽ dạng sóng trên tải ở 3 vị trí min, max, điểm giữa củabiến trở.

Bài tập 2:

Cho mạch điều khiển độ sáng của đèn như sau, giải thích hoạt động của mạch khi điều chỉnh biến trở. Vẽ dạng sóng trên tải ở 3 vị trí min, max, điểm giữa _____ của biến trở.

VI. OPAMP - IC ON ÁP

- 1. Dùng IC ổn áp vẽ mạch ổn áp cho ra điện áp +5V?
- 2. Dùng IC ổn áp vẽ mạch ổn áp cho ra điện áp -5V?
- 3. Dùng IC ổn áp vẽ mạch ổn áp cho ra điện áp +12V?
- 4. Dùng IC ổn áp vẽ mạch ổn áp cho ra điện áp -12V?
- 5. Dùng IC ổn áp vẽ mạch ổn áp cho ra điện áp điều chỉnh từ 1.25V đến 15V? Cho biết các giá trị chọn R₁, R₂?

Bài 1: Cho mạch điện như hình vẽ:

$$Uv = 12V$$
; $R1 = 1K$; $Rht = 2.2K$.

Tính Ur = ?

Bài 2: Cho mạch điện như hình vẽ:

$$Uv = 12V$$
; $R1 = 1K$; $Rht = 2.2K$.

Tính Ur = ?

Bài 3: Cho mạch điện như hình vẽ:

$$U1 = 3V; R1 = 1K;$$

$$U2 = 6V; R2 = 1,5K;$$

$$U3 = 9V; R3 = 2K;$$

$$Rht = 4K$$
.

Tính Ur = ?

Bài 4: Cho mạch điện như hình vẽ:

$$U2 = 6V; R2 = 1,5K;$$

$$U3 = 9V; R3 = 2K;$$

Rht = 4K.

Tính Ur = ?

Bài 5: Cho mạch điện như hình vẽ:

$$U1 = 6V$$
; $R1 = 1K$;
 $U2 = 9V$; $R2 = 2K$;
 $R3 = 2K$;
 $Rht = 2,2K$.
 $Tinh Ur = ?$

Bài 6: Cho mạch điện như hình vẽ:

Bài 7: Hãy thiết kế mạch trừ hai điện áp dùng OPM. Biết Ur = 2U1 – 3U2.

<u>Bài 8</u>: Hãy thiết kế mạch cộng hai điện áp dùng OPM. Biết Ur = U1 + 3U2.

Bài 9: Cho mạch điện ổn áp như hình vẽ:

Bài 10: Hãy thiết kế mạch ổn áp dùng IC LM317. Biết ngõ vào 25V, ngõ ra 9V.

Bài 11: cho mạch khuếch đạI như hình vẽ

- 3) Chững minh $A_V = \frac{-R_F}{R_i}$
- 4) Tính hệ số khuếch đạI áp A_V
- 5) Vẽ $V_o(t)$ trong trường hợp:
 - a. $V_{i1}(t) = 15\sin 100\pi t \ (mV)$
 - b. $V_{i2}(t) = 150\sin 100\pi t \text{ (mV)}$

Nhận xét dạng sóng ra V_o(t)

Bài 12

- 1) Chứng minh $A_V = 1 + \frac{R_F}{R_i}$
- 2) Tính A_V
- 3) Vẽ $V_o(t)$ trong trường hợp $V_i(t) = 10 sin 100 \pi t \text{ (mV)}$

Bài 8: Dùng IC ổn áp vẽ mạch ổn áp ra cho điện áp (1.25V dến 30V) cho biết các giá trị chọn R_1, R_2 ?

Bài 13 Cho mạch khuếch đại như hình 3:

Cho $V_{CC} = 12$ (V). Tính:

a/ Hệ số khuếch đại áp A_V.

b/ Giải thích và vẽ dạng sóng điện áp ra $V_0(t)$ trong 2 trường hợp điện áp vào:

 α - $V_{i1}(t) = 15 \sin 100\pi t \ (mV)$.

 $\beta\text{-}\ V_{i2}(t)=150\ sin100\pi t\ (mV).$ Nhận xét dạng sóng $V_0(t).$

Bài 14 Cho mạch khuếch đại như hình 3:

Cho $V_{CC} = 12$ (V). Tính:

a/ Hệ số khuếch đại áp A_V.

b/ Giải thích và vẽ dạng sóng điện áp ra $V_0(t)$ trong 2 trường hợp điện áp vào:

 $\alpha\text{-}\ V_{i1}(t)=15\ sin100\pi t\ (mV).$

 $\beta\text{-}\ V_{i2}(t)=150\ sin100\pi t\ (mV).$ Nhận xét dạng sóng $V_0(t).$