18 2025-10-06 | Week 07 | Lecture 18

The nexus question of this lecture: What are the three fundamental linear subspaces associated with a matrix A?

18.1 Three fundamental subspaces

Definition 81 (The fundamental subspaces of A). Let $A \in M_{m \times n}(\mathbb{R})$. There are three important vector spaces associated with A:

- The *column space*, which is the subspace of $M_{m\times 1}(\mathbb{R})$ spanned by the columns of A. Notation: CS(A)
- The **row space**, which is the subspace of $M_{1\times n}(\mathbb{R})$ spanned by the rows of A. Notation RS(A).
- The *null space* which is the subspace of \mathbb{R}^n of vectors x such that Ax = 0. Notation NS(A). The nullspace and the kernel are the same thing.

Remark 82 (Connection between column space and matrix multiplication). The idea of column space is natural. If

$$A = \left[\begin{array}{ccc} | & | & | \\ A_1 & A_2 & \dots & A_n \\ | & | & | \end{array} \right] \in M_{m \times n}(\mathbb{R})$$

then for any vector $x = (x_1, \dots, x_n)^\top \in \mathbb{R}^n$

$$Ax = A_1x_1 + A_2x_2 + \ldots + A_nx_n$$

This is linear combination of the columns of A, so the output Ax is always an element of the column space. Another word for column space is the **image** or **range** of the [linear transformation of the] matrix A.

Definition 83 (rank). The **rank** of a matrix is the dimension of its column space (= dim of row space).

Theorem 84. For $A \in M_{m \times n}(\mathbb{R})$, the dimensions satisfy

$$\dim RS(A) = \dim CS(A)$$

and

$$\underbrace{\dim CS(A)}_{\text{`rank'}} + \underbrace{\dim NS(A)}_{\text{`nullity'}} = \underbrace{n}_{\text{\# cols of } A}$$

The second part is called the rank-nullity theorem. Noting that $rank(A) = \dim CS(A)$ and that $NS(A) = \ker(A)$, we have

18.2 Some examples of computing bases for the three fundamental subspaces

Example 85 (Row space, column space, null space). Let

$$A = \begin{bmatrix} 1 & 0 & -1 & 3 \\ 2 & 1 & 4 & -1 \\ 4 & 1 & 2 & 5 \end{bmatrix} \in M_{3 \times 4}(\mathbb{R}).$$

Find bases for

- (a) RS(A)
- (b) NS(A)

Solution

(a) Wrong:

$$\begin{bmatrix} 1 & 0 & -1 & 3 \end{bmatrix}$$
, $\begin{bmatrix} 2 & 1 & 4 & -1 \end{bmatrix}$, $\begin{bmatrix} 4 & 1 & 2 & 5 \end{bmatrix}$

Better approach:

Idea: row reduction does not change row space, so row reduce until we get a linearly independent set. The reduced row echelon form is

$$A_{\text{RREF}} = \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 6 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (15)

A basis of A_{RREF} is

$$\begin{bmatrix} 1 & 0 & -1 & 3 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 & 6 & 7 \end{bmatrix}$

(since these are linearly independent). Moreover, we note that since row reduction doesn't change the row space,

$$RS(A) = RS(A_{RREF}).$$

and hence

$$\begin{bmatrix} 1 & 0 & -1 & 3 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 & 6 & 7 \end{bmatrix}$

are a basis for RS(A) as well.

(b) We will use the fact that

$$NS(A) = NS(A_{RREF}).$$

So it suffices to find a basis for $NS(A_{RREF})$. Let's do a computation to sese what $NS(A_{RREF})$ looks like. Recall that $NS(A_{RREF})$ consists of the vectors x satisfying

$$A_{\text{RREF}}x = 0 \tag{16}$$

If $x = (x_1, \ldots, x_5)^{\top}$ satisfies Eq. (16), then we have

$$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 6 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Writing this as equations, we have

$$x_1 - x_3 + 3x_4 = 0$$
$$x_2 + 6x_3 - 7x_4 = 0$$
$$0 = 0.$$

Therfore we have:

$$x_1 = x_3 - 3x_4$$
$$x_2 = -6x_3 + 7x_4$$

where x_3, x_4 are free variables.

Therefore if $x \in RS(A_{RREF})$ (equivlently, if x satisfies Eq. (16)), then it has the following form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_3 - 3x_4 \\ -6x_3 + 7x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -6 \\ 0 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ 7 \\ 0 \\ 1 \end{bmatrix}.$$

This shows that the vectors

$$\begin{bmatrix} 1 \\ -6 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 7 \\ 0 \\ 1 \end{bmatrix}$$

span NS(A). Moreover, they are also linearly independent (since two vectors are linearly dependent if and only if they are multiples of each other, which these are clearly not). Therefore

$$\begin{bmatrix} 1 \\ -6 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 7 \\ 0 \\ 1 \end{bmatrix}$$

form a basis for $NS(A_{RREF})$. Since $NS(A_{RREF}) = NS(A)$, they are a basis for NS(A) as well. Since there are two vectors in the basis, dim NS(A) = 2.

End of Example 85. \square