Broadcasting With Side Information

Ramakrishna Gummadi (UIUC, USA) Amin Shokrollahi (EPFL, Switzerland) RS Sreenivas (UIUC, USA)

ITW, 2010

Broadcasting with Side Information

- Central Server
- Broadcast Audience with arbitrary side information

Aim: Binary linear codes with minimal transmissions
 Example: Code 1+3, 2+4

Literature on Index Codes

- Proposed by [Birk and Kol, Trans IT 2006]
- Optimal linear code was characterized as a rank minimization problem by [Bar Yossef et al, FOCS 2006]

Optimal Code from minimizing the rank of:

$$\begin{bmatrix} x_1 & x_2 & 1 & 0 \\ x_3 & x_4 & 0 & 1 \\ x_5 & 1 & 0 & x_4 \\ x_6 & 0 & 1 & x_7 \\ 1 & x_8 & x_9 & x_{10} \end{bmatrix}$$

Some practical issues

- \S Intractability of rank minimization
- § Collecting ARQ from a large audience
- § Losses/Erasures
- § Encoding/Decoding Complexity

Random Linear Coding

- Coefficients c_i chosen iid non zero with probability 0.5
- Decoding by matrix inversion
- Code remains uniformly random even after subtracting out side information
- Random matrices are close to full rank w.h.p. ⇒ asymptotically optimal code

Random Linear Coding

- § Intractability of Computing the Code
- § Collecting ARQ from a large audience
- § Losses/Erasures
- § Encoding/Decoding Complexity

Matrix inversion is too expensive for large block lengths!

Fountain Codes: background

Encoding:

- Degree distribution object of optimization
- Degree, d sampled independently for each coded packet (expected value is complexity of coding)
- A uniform random subset of size d ex-or-ed to form coded packet

Decoding:

- Fountain Coded Stream

 (Source)
- 1. Collect $\phi(k)$ packets (code is good if $\phi(k) \sim k$)
- 2. Sift for a degree 1 packet and mark it as decoded
- 3. Subtract the decoded packet off from other coded packets and repeat.

- [Luby, 2006]: There exists degree distribution (the "soliton") for which decoding recovers all packets whp from asymptotically *k* coded packets
- Claim via analysis of the asymptotic evolution of degree one packets
- Encoding/Decoding complexities are logarithmic in blocklength (huge improvement over RLC)

Analysis of Iterative Decoding

For degree dist $P(z) = \sum_i p_i z^i$, fraction of recovered packets from rk coded packets given as:

$$s(r,P) = \inf\{z \in [0,1) : rP'(z) + \log(1-z) < 0\} \land 1$$

[Darling and Norris, Ann. of Appl. Prob 2006]

Analysis of Iterative Decoding

For degree dist $P(z) = \sum_i p_i z^i$, fraction of recovered packets from rk coded packets given as:

$$s(r,P) = \inf\{z \in [0,1) : rP'(z) + \log(1-z) < 0\} \land 1$$

- § Example: Just send a random packet at each time. We have the coupon collector setting.
- P(z) = z. Then, s(r, P) < 1 for any constant r, which is true because its impossible to collect k distinct coupons using rk attempts for any constant r.

Analysis of Iterative Decoding

For degree dist $P(z) = \sum_i p_i z^i$, fraction of recovered packets from rk coded packets given as:

$$s(r, P) = \inf\{z \in [0, 1) : rP'(z) + \log(1 - z) < 0\} \land 1$$

[Darling and Norris, Ann. of Appl. Prob 2006]

§ Example: Soliton distribution used in LT codes is defined by

$$P(z) = \sum_{i>2} \frac{z^i}{i(i-1)}$$

which implies
$$P'(z) = -\log(1-z)$$
 and $s(1,P) = 1$.

Decoding with Side Information

- \S Let $1-\alpha$ be a fraction that denotes side information
- $\S P(z)$ is the distribution used for coding.
- Q(z) is the limiting projected distribution after subtracting out the side information.

Decoding with Side Information

- \S Let $1-\alpha$ be a fraction that denotes side information
- $\S P(z)$ is the distribution used for coding.
- $\$ Q(z) is the limiting projected distribution after subtracting out the side information.

Define:

$$s_{\alpha}(r, P) = \inf\{z \in [0, 1) : r\alpha P'(1 - \alpha + \alpha z) + \log(1 - z) < 0\} \land 1$$

Analysis: Decoding with Side Information

Optimization problem of interest for complete recovery:

$$r_{lpha}^{*}=\min_{P}r$$
 subject to : $s_{lpha}(r,P)=1$

Trivial bounds: $1 \le r_{\alpha}^* \le \frac{1}{\alpha}$

- 1. Can't communicate more than what was sent \Rightarrow need at least $r \geq \frac{\alpha k}{\alpha k}$
- 2. Ignore side information $\Rightarrow k$ packets sufficient, hence $r \leq \frac{k}{\alpha k}$.

Analysis: Decoding with Side Information

Optimization problem of interest for complete recovery:

$$r_{lpha}^{*}=\min_{P}r$$
 subject to : $s_{lpha}(r,P)=1$

Trivial bounds: $1 \le r_{\alpha}^* \le \frac{1}{\alpha}$

Some Natural Questions:

- § Can a soliton based distribution exploit side info?
- \S Are there capacity achieving distributions for general α ?
- \S Is a constant approximation possible? (i.e. or is r_{α}^* uniformly bounded as $\alpha \to 0$?)

Analysis: Decoding with Side Information

Optimization problem of interest for complete recovery:

$$r_{lpha}^{*}=\min_{P}r$$
 subject to : $s_{lpha}(r,P)=1$

Trivial bounds: $1 \le r_{\alpha}^* \le \frac{1}{\alpha}$

Some Natural Questions:

- § Can a soliton based distribution exploit side info? No, as good as throwing away all side information
- § Are there capacity achieving distributions for general α ? No, at least 10% inefficiency unavoidable
- § Is a good approximation possible? (i.e. is r_{α}^* uniformly bounded as $\alpha \to 0$?) Yes, by 2

Performance of LT-Soliton with Side Information

- How does soliton perform? $P(z) = \sum_{i \ge 2} \frac{1}{i(i-1)} z^i$
- Want to keep the following quantity non-negative as $z \to 1$ for as small an r as possible.

$$rQ'(z) + \log(1 - z)$$

$$= r\alpha \sum_{i \ge 1} \frac{(1 - \alpha + \alpha z)^i}{i} + \log(1 - z)$$

$$= r\alpha |\log \alpha| + (r\alpha - 1)|\log(1 - z)|$$

- Thus, s_α(r, P) = 1 ⇒ r > 1/α
 Soliton as good as no coding for complete recovery.
- Next task: edit *P* so as to achieve a smaller *r*.

Modified Soliton for Side Information

- For soliton, we had $rQ'(z) + \log(1-z) = r\alpha |\log \alpha| + (r\alpha 1)|\log(1-z)|$
- Consider the *k*-shifted soliton: $P(z) = \sum_{i \ge k+1} \frac{k}{i(i-1)} z^i$

$$rQ'(z) + \log(1-z)$$

$$= r \sum_{i \ge k} \alpha k \frac{(1-\alpha+\alpha z)^i}{i} + \log(1-z)$$

$$\ge \dots \dots$$

$$\ge r\alpha k (|\log \alpha| - \log(1.82k)) + (r\alpha k - 1)|\log(1-z)|$$

- Now we only need $r > \frac{1}{\alpha k}$ as long as $k \le \frac{1}{1.82\alpha}$.
- implies upper bound on r_{α}^* as $1/(\alpha \lfloor 1/1.82\alpha \rfloor)$

Lower Bounds on r_{α}^*

Do capacity achieving distributions exist for $0 < \alpha < 1$?

$$r_{lpha}^* = \min_P r$$
 subject to : $s_{lpha}(r,P) = 1$

- Above optimization can be seen as an LP with infinite variables and constraints
- Can lower bound r_{α}^* by using feasible solutions to the dual
- Closely intermediate analysis of fountain codes [Sanghavi, ITW 2007]

Lower Bounds on r_{α}^*

Lower bounds on r_{α}^* numerically computed via LP duality:

Do capacity achieving distributions exist for 0 < α < 1? Not without upto a 10% inefficiency

Systematic Codes

- Apply degree distribution to I
- Transformation from S to I defined such that $C_1, \ldots, C_{k'}$ contain S (uncoded).

Systematic Codes

- Transmit code starting only from $c_{k'+1}$
- Think of side information as the non-erased symbols from the systematic part.
- Beats the lower bound for purely degree distribution based codes
- Encoding/Decoding complexity depends on the transformation steps between S and I
- Need to store additional data in the form of I at the encoder
- Don't need an estimate of α

Conclusion

- Systematic Versions necessary to achieve rate optimality in the presence of side information
- Possible to achieve 2-approximation of optimal rate via direct degree distribution coding if we have a good upper bound to α
- Soliton based coding can not exploit side information for complete decoding

Thanks!