Homework: page 148-149, #1-4, 6, 8

Heine-Borel Theorem

 $\emptyset \neq S \subset \mathbb{R}$ is compact iff S is closed and bounded.

Proof.

 \longrightarrow

Done.

 \leftarrow

Suppose: S is closed and bounded.

Let: $S \subset \bigcup_{\alpha \in I} G_{\alpha}$ where G_{α} is open $\forall \alpha \in I$

Since is is bounded, sup S, inf $S \in \mathbb{R}$ both exist.

Define, for $x \in \mathbb{R}$,

 $S_x = S \cap (-\infty, x].$

 $S \subset \bigcup_{x \in S} N(x, \epsilon)$

 $\beta = \{ \mathbf{x} \in \mathbb{R} : \mathbf{S}_x \text{ has a finite subcover from the } \mathbf{G}_{\alpha}\text{'s} \}$

 $\beta \neq \emptyset$, inf $S \in \beta$

 $S_{infS} = S \cap (-\infty, \inf S]$

We need to prove that S has a finite subcover of the G_{α} 's.

If β is unbounded above, then $\exists z \in \beta \text{ st } z > \sup S$.

Then $S_z = S \cap (-\infty, z] = S$

Since $S_z = S$ has a finite subcover of the G_{α} 's, we see that, in this case, S is compact.

We prove that β is unbounded above using contradiction.

Suppose: β is bounded above.

Thus, sup $\beta \in \mathbb{R}$ exists.

Case i): sup $\beta \in S$.

In this case, $\exists \ \epsilon \in I \text{ st sup } \beta \in G_{\alpha_0}$

Since G_{α_0} is open, $\exists \epsilon_0 > 0$ st

 $N(\sup \beta, \epsilon_0) = (\sup \beta - \epsilon_0, \sup \beta + \epsilon_0) \subset G_{\alpha_0}$

By the definition of the supremum,

 $\exists x_0 \in \beta st$

 $\sup \beta - \epsilon_0 < y_0 \le \sup B < \sup B + \frac{\epsilon_0}{2} < \sup \beta + \epsilon_0$

Since $x_0 \in \beta_1$, $\exists k \in \mathbb{N}$ and $\{\alpha_1, \alpha_2, ... \alpha_n\} \subset I$

st $S_{x_0} \subset \bigcup_{i=1}^k G_{\alpha_i}$

-Side Note

$$S_{x_0} = S \cap (-\infty, x_0]$$

$$S_{sup\beta} + \frac{\epsilon_0}{2}$$

$$= S \cap (-\infty, \sup \beta + \frac{\epsilon_0}{2}]$$

This produces the contradiction that (sup $\beta + \frac{\epsilon_0}{2}$) $\in \beta$

Case ii):

sup $\beta \in \mathbb{R} \setminus S$, which is open since S is closed.

Thus, $\exists \epsilon_1 > 0 \text{ st N}(\sup \beta, \epsilon_1) \subset \mathbb{R} \setminus S$

Side Note

 $\sup - \exp 1$, $\sup B$, $\sup B + \exp 1/2$, $\sup B + \exp 1$

As in case i), $\exists x_1 \in \beta$ st

$$\sup \beta - \epsilon_1 < x_1 \le \sup \beta < \sup \beta + \frac{\epsilon_1}{2} < \sup \beta + \epsilon_1$$

From (1),
$$N(\sup \beta, \epsilon_1) = (\sup \beta - \epsilon_1, \sup \beta + \epsilon_1 \cap S = \emptyset)$$

—-(——]——-)— supB-ep0, x0inB, supB, supBplusEpOver2, supBplusEp0

Notice that:

$$S_{x_1} = S \cap (-\infty, x_1] = S \cap (-\infty, \sup \beta + \frac{\epsilon_1}{2}]$$

Again we obtain the contradiction that (sup $\beta + \frac{\epsilon_1}{2}$) $\in \beta$

Hence, result by contradiction.

Theorem 3.5.6: Bolzano - Weierstrass Theorem

If a bounded set $S \subset \mathbb{R}$ contains an infinite number of points, then there exists at least one point in \mathbb{R} that is an accumulation point of S.

Proof.

Suppose: $\exists S \subset \mathbb{R}$ where S has an infinite number of points and S is bounded but $S' = \emptyset$

Since cl $S = S \cup S' = S \cup \emptyset = S$, we can see by Theorem 3.4.17 a) that S is closed.

Since S is also bounded, it follows by the Heire-Borel theorem that S is compact.

Let: $x \in S$

Then $\mathbf{x} \not\in \mathbf{S}'$, so $\exists \ \epsilon \ _x > 0$ st

$$N(x, \epsilon_x) \cap S = \{x\}$$

-Side Note-

x-ep(x?), x, yMemS, xplusep(x?)

If $x \in S'$, then:

$$\neg [\forall \ \epsilon > 0, \ N^*(x, \epsilon) \ \cap \ S \neq \emptyset]$$

$$\exists \epsilon > 0 \text{ st } N(x, \epsilon) \cap S = \{x\}$$

Then:

$$S \subset \bigcup_{x \in S} N(x, \epsilon_x)$$

$$\exists k \in \mathbb{N} \text{ and } \{x_1, x_2, \dots x_k\} \subset S$$

$$S \subset \bigcup_{i=1}^k N(x_{i_1}, \epsilon_{i_1})$$

However, S
$$\cap$$
 ($\bigcup_{i=1}^{k} N(x_{i_1}, \epsilon_{i_1})$) = {x₁, x₂, ... x_k}

This produces the contradiction that S contains a **finite** number of points.

Hence,
$$S' \neq \emptyset$$

Theorem 3.5.7 (F.I.P.)

Let: $\{K_{\alpha}\}_{{\alpha}\in I}$ be a family of compact sets, where I is an index.

Suppose that the intersection of any finite subfamily of the K_{α} 's has a nonempty intersection.

Then $\bigcap_{\alpha \in I} K_{\alpha} \neq \emptyset$

Proof.

Assume that $\bigcap_{\alpha \in I} K_{\alpha} = \emptyset$

Then $\mathbb{R} \setminus (\bigcap_{\alpha \in I} K_{\alpha}) = \bigcup_{\alpha \in I} (\mathbb{R} \setminus K_{\alpha}) = \mathbb{R}$

Notice, by the Heine-Borel Theorem that $\mathbb{R} \setminus K_{\alpha}$ is open $\forall \alpha \in I$.

Let: $\alpha _0 \in I$

Since K_{α_0} is compact,

 $\exists \ k \in \mathbb{N} \ \text{and} \ \{\alpha_1, \, \alpha_2, \ldots \, \alpha_n\} \subset I \ \text{st}.$

 $K_{\alpha_0} \subset \bigcup_{\alpha \in I} (\mathbb{R} \setminus K_{\alpha}) \subset \bigcup_{i=1}^k (\mathbb{R} \setminus K_{\alpha_0})$

-Side Note

If $A \subset B$, then $\mathbb{R} \setminus B \subset \mathbb{R} \setminus A$

Let $x \in \mathbb{R} \setminus B$.

Then $x \notin B$.

So, $x \notin A$.

Thus, $x \in \mathbb{R} \setminus A$

$$\mathbb{R} \setminus (\bigcup_{i=1}^k (\mathbb{R} \setminus \mathbf{K}_{\alpha})) \subset \mathbb{R} \setminus K_{\alpha_0}$$

So

$$\bigcap_{i=1}^k K_{\alpha_i} \subset \mathbb{R} \setminus K_{\alpha_0}$$

We obtain the contradiction that:

$$\bigcap_{i=0}^k K_{\alpha_i} = \emptyset$$

Hence, result.

Corollary 3.5.8 Nested Intervals Theorem

Let: $\{A_n\}_{n=1}^{\infty}$ be a family of nonempty closed bounded intervals in \mathbb{R} st $A_{n+1} \subset A_n \ \forall \ n \in \mathbb{N}$

Then:

$$\bigcap_{n=1}^{\infty} A_n \neq \emptyset$$

Proof.

We use Theorem 3.5.7.

Will this be contradiction?

Suppose: $\forall k \in \mathbb{N}$, that $\{n_1, n_2, ... n_k\} \subset \mathbb{N}$

Then,

$$\bigcap_{i=1}^k A_{ni} = A_m \neq \emptyset$$

where

 $m = \max \{n_1, n_2, ... n_k\}$

-Side Note