Pequeños comentarios al apunte "Elementos de Cálculo Numérico" de R. Durán, S. Lasalle y J. Rossi

- (página 25) En la demostración de $||A||_2 = \sqrt{\rho(A^T A)}$ para una matriz A arbitraria, se utiliza que $A^T A$ es positiva semidefinida (y por lo tanto, todos los autovalores son no-negativos) para probar la igualdad tomando $\mu_j = \mu_{\text{máx}}$. Esto se puede demostrar fácilmente por la igualdad $z^T A^T A z = (Az)^T A z = ||Az||_2^2 \ge 0$.
- (página 40, punto 1.) Tanto el algoritmo de Cholesky como el de Gauss tienen complejidad $O(N^3)$, pero la cantidad de productos de los algoritmos comúnmente utilizados es $N^3/6$ para Cholesky y $N^3/3$ para Gauss.
- (página 44, demostración del Teorema 3.4). En la demostración de la desigualdad $\rho(A) \leq ||A||$, la afirmación ||A|| en \mathbb{R} es igual a ||A|| en \mathbb{C} vale para las normas comunes $|| ||_1$, $|| ||_2$, $|| ||_\infty$, usando las extensiones usuales a \mathbb{C} , pero una norma inducida en \mathbb{R} puede no estar definida para elementos en \mathbb{C} , y se necesita una demostración más general.

A continuación se da la demostración de esa desigualdad tomada de "Matrices: Theory and Applications", de Denis Serre (Proposición 4.1.6, página 66):

Proposición 1. Para cualquier norma inducida $\| \|$ en $\mathbb{R}^{n \times n}$, se cumple $\rho(A) \leq \|A\|$.

Demostración. El caso $K = \mathbb{C}$ es simple, utilizando el argumento en el apunte.

Para el caso $K = \mathbb{R}$, fijamos una norma inducida $N_{\mathbb{C}}$ en $\mathbb{C}^{n \times n}$ y sea $N_{\mathbb{R}}$ la restricción a $\mathbb{R}^{n \times n}$. Es fácil ver que $N_{\mathbb{R}}$ es una norma en $\mathbb{R}^{n \times n}$ (verifica los axiomas de norma), aunque no necesariamente es una norma inducida.

Dada ahora una norma inducida $\| \|$ en $\mathbb{R}^{n \times n}$, tenemos por la equivalencia de normas en cualquier espacio vectorial de dimensión finita que

$$\rho(A)^k = \rho(A^k) \le N_{\mathbb{C}}(A^k) = N_{\mathbb{R}}(A^k) \le C||A^k|| \le C||A||^k,$$

para alguna constante C > 0. Por lo tanto,

$$\rho(A) \le C^{1/k} ||A||$$

y tomando límite $k \to \infty$ de ambos lados, obtenemos $\rho(A) \le ||A||$.

• (página 47, demostración del Corolario 3.7) Es sencillo pero no es inmediato ver que si $||B^k||^{1/k} \to \rho(B)$ vale para una norma particular, vale para cualquier norma por equivalencia de normas.

Dada una norma $\| \|$, existen C_1 y C_2 tales que

$$C_1 \|B^k\|_{\infty} \le \|B^k\| \le C_2 \|B^k\|_{\infty}$$

y por lo tanto

$$C_1^{1/k} \|B^k\|_{\infty}^{1/k} \le \|B^k\|^{1/k} \le C_2^{1/k} \|B^k\|_{\infty}^{1/k}.$$

Tomando límites,

$$\lim_{k\to\infty} C_1^{1/k} \|B^k\|_\infty^{1/k} \leq \lim_{k\to\infty} \|B^k\|^{1/k} \leq \lim_{k\to\infty} C_2^{1/k} \|B^k\|_\infty^{1/k},$$

y como $C_1^{1/k} \to 1$ y $C_2^{1/k} \to 1$ se obtiene

$$\rho(B) \le \lim_{k \to \infty} \|B^k\|^{1/k} \le \rho(B)$$

y por lo tanto lím $_{k\to\infty}\,\|B^k\|^{1/k}=\rho(B).$

• (página 72, segundo párrafo) Se está utilizando el desarrollo de Taylor de orden 1 (con término de error) centrado en x_n .