Вопрос 1

1. Оптимальный прием сигналов. Согласованный фильтр.

2. Оптимальный прием сигналов.

- 2.1. Задача обнаружения сигналов.
- 2.1.1. Постановка задачи обнаружения.

Пусть на вход устройства обнаружения поступает аддитивная смесь: сигнал + шум:

$$y_i = S_i + \eta_i \tag{2.1}$$

i —дискретное время $y_i=y(t_i),\ S_i=S(t_i),\ \eta_i=\eta(t_i),\ t_i=\Delta t i,\ \Delta t$ - шаг дискретизации, η_i — аддитивный шум , S_i — полезный сигнал, причем, $\mathrm{E}\eta_i=0$, $\mathrm{E}\eta_i^{\ 2}=\sigma_\eta^{\ 2}$, E — оператор математического ожидания.

Задача обнаружения - это задача проверки двух статистических гипотез:

 H_1 : на входе приёмника присутствует сигнал в смеси с шумом $y_i = S_i + \eta_i$,

 H_0 : на входе приёмника есть только шум $y_i = \eta_i$;

$$i=\overline{l;n}$$
 п-объём выборки. y_1 , y_2 ,..., y_n . Обозначим $\vec{y}_n = (y_1, y_2,...,y_n)$.

Требуется синтезировать оптимальный (по какому-нибудь критерию) алгоритм обработки выборки \vec{y}_n с целью принять решение γ_1 - о верности гипотезы H_1 или решение γ_0 - о верности гипотезы H_0 .

- Т. к. полезный сигнал наблюдается в шумах, то при принятии решения неизбежны ошибки. Возможны ошибки двух родов:
- 1. α вероятность ложной тревоги. Принимается решение γ_1 , в то время как имеет место гипотеза H_0 .
- 2. β —вероятность пропуска сигнала. Принимается решение γ_0 , а на самом деле имеет место гипотеза H_1 .

Согласованный фильтр — линейный фильтр, на выходе которого получается максимально возможное пиковое отношение сигнал/шум при приёме полностью известного сигнала на фоне БГШ.

Критерий оптимальности согласованного фильтра:

$$q_{\rm B} = q_{\rm Bmax} \,, \tag{2.16}$$

т. е. на выходе согласованного фильтра должно реализоваться максимальное отношение сигнал/шум.

$$=> q_{\rm B} = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} \frac{|S(j\omega)|^2}{G_{\eta}(\omega)} d\omega (2.19)$$

и
$$q_{\scriptscriptstyle \rm B}=q_{\scriptscriptstyle \rm Bmax}$$
 , если $K(j\omega)\cdot\sqrt{G_\eta(\omega)}=C_0\cdot \frac{S^*(j\omega)e^{-j\omega t_0}}{\sqrt{2\pi G_\eta(\omega)}}=>$

$$K(j\omega) = const \cdot \frac{S^*(j\omega)}{G_{\eta}(\omega)} \cdot e^{-j\omega t_0}$$
 (2.20)

Формула (2.20) — оптимальная КЧХ фильтра, (2.19) — максимальное отношение сигнал/шум на выходе фильтра для произвольной стационарной помехи со спектральной плотностью мощности $G_{\eta}(\omega)$. Такая обработка оказывается не является оптимальной. Однако, она оптимальна , если $\eta(t)$ — гауссовский шум со спектральной плотностью мощности $G_{\eta}(\omega) = \frac{N_0}{2}$. В этом случае оптимальный фильтр называется согласованным.

Т.о. АЧХ согласованного фильтра ~ амплитудному спектру сигнала, а ФЧХ равна сумме фазового спектра сигнала, взятого с обратным знаком , и фазового спектра задержки:

$$\varphi(\omega) = -\varphi_c(\omega) - \omega t_0 \tag{2.23}$$

Тогда функциональная схема, согласованного с видео импульсом, фильтра имеет вид, показанный на рисунке 2.2. На рисунке 2.3. изображены этапы формирования сигнала на выходе С.Ф.

Рисунок 2.2. Структурная схема СФ с видеоимпульсом.

$$S_1(t)$$
 constU

$$S_2(t)$$
 T
 t

Рисунок 2.3. Формирование сигнала на выходе фильтра, согласованного с видеоимпульсом.

Вопрос 2

Оптимальное декодирование линейных блоковых кодов. Синдромное декодирование.

6.1.2. Оптимальное декодирование линейных блоковых кодов.

Блоковый (n,k) код способен обнаружить $d_{\min}-1$ ошибку и исправить $\left\lfloor \frac{1}{2} (d_{\min}-1) \right\rfloor$ ошибок, где $\lfloor \bullet \rfloor$ - наибольшее целое, содержащееся в аргументе.

Пусть C_i - переданное кодовое слово, $Y = C_i + e$ - принятое кодовое слово, где e - вектор ошибок. Тогда

$$YH^{T} = (C_{i} + e)H^{T} = C_{i}H^{T} + eH^{T} = eH^{T} = S$$
, T.K. $C_{i}H^{T} = 0_{1 \le (n-k)}$.

Произведение

$$YH^T = eH^T = S (6.8)$$

называется **синдромом**. S - характеристика образцов ошибок. Существует 2^n возможных образцов ошибок, но только 2^{n-k} синдромных. Следовательно, разные образцы ошибок приводят к одинаковым синдромам.

Для декодирования составляется таблица размером , $2^k \times 2^{n-k}$ которая называется стандартным расположением для заданного кода.

C_1	C_2	C_3		C_{2^k}
e_2	$C_2 + e_2$	$C_3 + e_2$		$C_{2^k} + e_2$
e_3	$C_2 + e_3$	$C_3 + e_3$		$C_{2^k} + e_3$
:	:	:	:	:
$e_{2^{n-k}}$	$C_2 + e_{2^{n-k}}$	$C_3 + e_{2^{n-k}}$	•••	$C_{2^k} + e_{2^{n-k}}$

Первый столбец — образцы ошибок, первая строка — все возможные кодовые слова, начиная с кодового слова, состоящего из одних нулей. Каждую строку называют смежным классом, а первый столбец — лидеры смежных классов. Таким образом, смежный класс состоит из всевозможных принимаемых кодовых слов, получающегося от частного образца ошибки (лидера смежного класса).

Пример. Задан код (5,2) с порождающей матрицей
$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
.

Тогда
$$2^k=2^2=4, 2^{n-k}=2^{5-2}=8$$
, проверочная матрица $H=\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$.

Стандартное расположение (таблица декодирования):

 $X_{*} = (01)$

 $X_{\cdot} = (00)$

Таблица 1.

 $X_{\cdot} = (1.1)$

$A_1 = (00)$	$A_2 = (01)$	$A_3 = (10)$	$A_4 = (11)$
00000	01011	10101	11110
00001	01010	10100	11111
00010	01001	10111	11100
00100	01111	10001	11010
01000	00011	11101	10110
10000	11011	00101	01110
11000	10011	01101	00110
10010	11001	00111	01100

 $X_2 = (10)$

Образцы ошибок с весом 2 были выбраны так, чтобы соответствующие ей синдромы отличались от тех, которые соответствуют одиночным ошибкам.

Для заданного кода минимальное кодовое расстояние $d_{\min} = 3$. Его можно определить по формуле (6.3) для разрешенных кодовых комбинаций (первая строка таблицы 1), исключая из рассмотрения нулевое кодовое слово.

e_{i}	S_i
00000	000
00001	001
00010	010
00100	100
01000	011
10000	101
11000	110
10010	111

Пусть принято кодовое слово Y. Находим синдром $S = YH^T$, далее выбираем соответствующий этому синдрому наиболее правдоподобный вектор ошибки \hat{e} (по таблице 2). Тогда оценка передаваемого кодового слова

Рисунок 6.2. Структурная схема декодера.

Данный код может обнаружить 2 $(d_{\min} - 1 = 3 - 1 = 2)$ ошибки, исправить все одиночные ошибки $(\left\lfloor \frac{1}{2} (d_{\min} - 1) \right\rfloor = 1)$ и только 2 двойные, синдромы которых отличаются от синдромов одиночных ошибок. Подтвердим сказанное на примере.

Пусть принимаемое кодовое слово Y = (11111), где $C_i = (01011) = C_2$, e = (10100).

Тогда
$$S = (11111) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (001)$$
 . Полученному синдрому соответствует вектор

ошибки $\hat{e} = (00001) = e_1$. По (6.9) находим оценку переданного кодового слова $\hat{C} = (11111) \oplus (00001) = (11110) = C_4 \neq C_2$. Т.е получаем ошибку декодирования.

Вывод. Алгоритм (6.9) работает по критерию максимального правдоподобия (МП) или по критерию минимального расстояния. Он обеспечивает минимальную вероятность ошибки декодирования в двоичном симметричном канале связи.

Задача

Задача. Рассчитайте амплитуды гармоник тока через НЭ, ВАХ которого аппроксимирована полиномом $i=u+2u^2; u(t)=U_m\cos(\omega_1 t)+V_m\cos(\omega_2 t)$.

