Next

•Chapter 2:

Pushdown Automata

More examples of CFLs

- $L(G) = \{0^n1^{2n} \mid n = 1, 2, \dots \}$
- L(G) = {xx^R | x is a string over {a,b}}
- L(G) = {x | x is a string over {1,0} with an equal number of 1's and 0's}

Next: Pushdown automata (PDA)

Add a stack to a Finite Automaton

- Can serve as type of memory or counter
- More powerful than Finite Automata
- Accepts Context-Free Languages (CFLs)
- Unlike FAs, nondeterminism makes a difference for PDAs. We will only study nondeterministic PDAs and omit treatment of Det-PDAs.

Pushdown Automata

Pushdown automata are for context-free languages what finite automata are for regular languages.

PDAs are *recognizing automata* that have a single stack (= memory):

Last-In First-Out pushing and popping

Non-deterministic PDAs can make nondeterministic choices (like NFA) to find accepting paths of computation.

Informal Description PDA (1)

input w = 00100100111100101

Informal Description PDA (2)

input w = 00100100111100101

Formal Description of a PDA

A Pushdown Automata M is defined by a six tuple $(Q,\Sigma,\Gamma,\delta,q_0,F)$, with

- Q finite set of states
- Σ finite input alphabet
- Γ finite stack alphabet
- q₀ start state ∈ Q
- F accepting states ⊆Q
- Δ transition relation

$$\Delta$$
: (Q × Σ_{ε} × Γ_{ε}) x (Q × Γ_{ε})

•where Σ_{ϵ} is Σ U { ϵ } (and Γ_{ϵ} is Γ U { ϵ })

PDA for $L = \{ 0^{n}1^{n} | n \ge 0 \}$

Example 2.9:

The PDA first pushes "\$ 0ⁿ" on stack.

Then, while reading the 1ⁿ string, the zeros are popped again.

If, in the end, \$ is left on stack, then "accept"

Machine Diagram for 0ⁿ1ⁿ

On w = 000111 computation: $(q_1,000111,\epsilon) \vdash (q_2,000111\$) \vdash (q_2,00111,0\$)$ $\vdash (q_2,0111,00\$) \vdash (q_2,111,000\$) \vdash (q_3,11,00\$)$ $\vdash (q_3,1,0\$) \vdash (q_3,\epsilon,\$) \vdash (q_4,\epsilon,\epsilon)$ This final q_4 is an accepting state

Machine Diagram for 0ⁿ1ⁿ

On w = 0101 (state; stack) evolution: $(q_1,0101,\epsilon) \vdash (q_2,0101,\$) \vdash (q_2,101,0\$) \vdash (q_3,01,\$) \vdash (q_4,01,\epsilon) ...$

But we still have part of input "01".

There is no accepting path.

An important example

- L = {aibjak | i=j or i=k }
- (Example 2.16, p 115. 3rd ed Sipser)

Try L = {ww^R| w is any binary string }

PDAs and CFL

Theorem 2.20 (2.12 in 2nd Ed Sipser):

A language L is context-free if and only if there is a pushdown automata M that recognizes L.

Two step proof:

- 1) Given a CFG G, construct a PDA M_G
- 2) Given a PDA M, make a CFG G_M

Converting a CFL to a PDA

- Lemma 2.21 in 3rd Ed
- The PDA should simulate the derivation of a word in the CFG and accept if there is a derivation.
- Need to store intermediate strings of terminals and variables. How?

Idea

- Store only a suffix of the string of terminals and variables derived at the moment starting with the first variable.
- The prefix of terminals up to but not including the first variable is checked against the input.
- A 3 state PDA is enough p 120 3rd Ed.

Converting a PDA to a CFG

- Lemma 2.27 in 3rd Ed
- Design a grammar equivalent to a PDA
- Idea: For each pair of states p,q we have a variable A_{pq} that generates all strings that take the automaton from p to q (empty stack to empty stack).

Some details

Assume

- Single accept state
- Stack emptied before accepting
- Each transition either pops or pushes a symbol
- Can create rules for all the possible cases (p 122 in 3rd Ed)