Data Structures and Algorithms

Chapter 4

Learning Objectives

- Learn what algorithm analysis is
- Understand big-oh notation
- Be able to calculate worst-case runtime given an algorithm (in pseudocode or real implementation)

- A problem is an input-output relationship
- An algorithm is a finite sequence of steps which solves a problem.

Example:

- Problem multiplication of n digit numbers
- Algorithm grade school multiplication algorithm

- A **problem** is an input-output relationship
- An algorithm is a finite sequence of steps which solves a problem.

- Efficiency of algorithms can be analyzed in terms of memory/space usage and in terms of running time.
- We will focus on running time analysis.
- Running time of an algorithm depends on the input size.
- We express running time as a function of the input size n.

Running times of two sorting algorithms

Algorithm Analysis

Why not just compare different approaches by implementing them and measuring run time?

- Experiments must be performed on the same hardware/software configurations
- Experiments can only be done on a limited set of test inputs
- Algorithm must be fully implemented in order to study it experimentally

- Running times of an algorithm may be different for different inputs of the same size.
- For example, elapsed times of insertion sort algorithm on an array of 100,000 integers:
 - Best case: 1 ms, when elements are sorted in nondecreasing order
 - Average case: 12,145 ms, when elements are randomly distributed
 - Worst case: 24,810 ms, when elements are sorted in the reverse order
- Often, we perform only the worst-case analysis

Algorithm Analysis

Mathematical Functions

```
• f(n) = c (constant)
```

- $f(n) = c \log n \pmod{n}$
- f(n) = cn (linear)
- f(n) = cn log n (n log n)
- $f(n) = cn^2$ (quadratic)

Rate of growth of different functions:

n	log n	n	n log n	n ²	n ³	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4096	65536
32	5	32	160	1024	32768	4294967296
64	6	64	384	4096	262144	1.84467E+19
128	7	128	896	16384	2097152	3.40282E+38
256	8	256	2048	65536	16777216	1.15792E+77
512	9	512	4608	262144	134217728	1.3408E+154

- When we analyze the running time of algorithms, we do not look at the actual running times.
- Instead, we focus on the rate of growth, i.e., how fast or slowly the running time grows as the input size increases.
- This is called asymptotic analysis.
- We use O (big-oh), Ω (big-omega), and Θ(big-theta) notations.

• $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \le cg(n) \text{ for } n \ge n_0\}$

Algorithm Analysis

Rate of Growth

•
$$f(n) = 5n^3 + 2n^2 + 8n + 4 => f(n) = O(n^3)$$

Proof:
 $f(n) = 5n^3 + 2n^2 + 8n + 4$
 $\leq 5n^3 + 2n^3 + 8n^3 + 4n^3$
 $= 19n^3$
If we let $g(n) = n^3$, $c = 19$ and $n_0 = 1$, then $f(n) \leq cg(n)$ for all $n \geq n_0$
So, $f(n) = O(n^3)$

- Note: $f(n) = O(n^4)$, $f(n) = O(n^5)$, . . .
- We always look for "lowest" function.

Algorithm Analysis

Rate of Growth

•
$$f(n) = 3n + 2 => O(n)$$

•
$$f(n) = 5n^3 + 2n^2 + 8n + 4 \Rightarrow O(n^3)$$

•
$$f(n) = 2n^2 + 2n \log n + 2n + 4 => O(n^2)$$

•
$$f(n) = 2n \log n + 10n - 6 => O(n \log n)$$

•
$$f(n) = 5n + 23\log n => O(n)$$

•
$$f(n) = 3\log n + 10 => O(\log n)$$

• $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \ge cg(n) \text{ for } n \ge n_0\}$

- $f(n) = 3n \log n 2n => f(n) = \Omega (n \log n)$
- $f(n) = 5n^3 + 2n^2 + 8n + 4 \Rightarrow f(n) = \Omega(n^3)$

• $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

- $f(n) = 3n \log n + 4n + 5\log n => f(n) = \Theta(n \log n)$
- $f(n) = 5n^3 + 2n^2 + 8n + 4 \Rightarrow f(n) = \Theta(n^3)$

Example: Find the largest element

- Total running time, f(n) = c1 + c2 + c3(n 1) + c4
- f(n) = O(n)

Example: Three-way set disjointness problem (solution 1)

```
public static boolean disjoint1(int[] groupA, int[] groupB, int[] groupC) {
  for (int a : groupA)
  for (int b : groupB)
  for (int c : groupC)
   if ((a == b) && (b == c))
    return false
  return true;
}
```

•
$$f(n) = O(n^3)$$

Example: Three-way set disjointness problem (solution 2)

```
public static boolean disjoint1(int[] groupA, int[] groupB, int[] groupC) {
  for (int a : groupA)
  for (int b : groupB)

  if (a == b)

  for (int c : groupC)

  if (b == c)

  return false

  return true;

}
```

•
$$f(n) = O(n^2)$$

Example: Element uniqueness problem (solution 1)

• In the worst case, $f(n) = (n - 1) + (n - 2) + ... + 1 = O(n^2)$

Example: Element uniqueness problem (solution 2)

```
public static boolean unique2(int[] data) {
  int n = data.length;
  int[] temp = Arrays.copyOf(data, n); // make copy of data
  Arrays.sort(temp); // and sort the copy, O(n log n)
  for (int j=0; j < n-1; j++) // for loop takes O(n)
  if (temp[j] == temp[j+1]) // check neighboring entries
  return false; // found duplicate pair
  return true; // if we reach this, elements are unique
}</pre>
```

• In the worst case, $f(n) = O(n \log n) + O(n) = O(n \log n)$

Caveat with Analysis

- O() runtime shows how the runtime of an algorithm changes as the input size gets large
- O() runtime ignores constant terms in the expression
- A large constant term could be more important than the O() runtime if the input size isn't expected to be very large
- Example: 10⁷n could be worse than n²

Proof Techniques

- To disprove a statement, it is sufficient to show a counterexample.
- To prove a statement, we must show it is true for all objects in the domain under consideration.
- Exhaustive proof, direct proof, proof by contraposition, proof by contradiction, mathematical induction
- Loop invariant method: to prove the correctness of an algorithm (or a program), which involves a loop.

Proof Techniques Proof by Contradiction

- To prove P → Q: Assume Q is false and find a contradiction.
- Example: If an even integer is added to another even integer, the result is an even integer.

Proof:

- Let x and y be two even integers. Let z = x + y.
- Let's assume that z is an odd integer (negating the conclusion of the given statement).
- Since x is even, it can be rewritten as x = 2n, for some integer n.
- Since y is even, it can be rewritten as y = 2m, for some integer m.
- Since z is odd (this we assumed), it can be rewritten as z = 2k + 1, for some integer k.

Proof Techniques Proof by Contradiction

- Proof (continued)
 - Then, we have:

$$-X+Y=Z$$

$$-2n+2m=2k+1$$

$$-2n+2m-2k=1$$

$$-2(n+m-k)=1$$

 This is a contradiction because the left hand side is an even number and the right hand side is 1, which is odd.

Proof Techniques Induction

- Consists of base case (or base step) and inductive step.
- To prove a predicate P(n) is true for all positive integers n.
 - Base case: Show that P(1) is true
 - Inductive step: Assume that P(k) is true, and prove P(k + 1) is also true. This assumption is called *inductive hypothesis*.
- See the example in the next slide.

Proof Techniques

Induction

• Example: Prove that for any positive integer n, $2^n > n$

Base case: n = 1: We must show that $2^1 > 1$.

LHS = 2^1 = 2, RHS = 1. So, LHS > RHS

Induction step: $(n \ge 1)$.

Inductive hypothesis: Assume the statement is true for n = k, i.e., $2^k > k$ (for all $k \ge 1$).

We show that it is also true for n = k + 1, i.e., $2^{k+1} > k + 1$ LHS = $2^{k+1} = 2 \times 2^k > 2k$ (by the inductive hypothesis) $2k = k + k \ge k + 1 = RHS$.

So, LHS > RHS.

References

 M.T. Goodrich, R. Tamassia, and M.H. Goldwasser, "Data Structures and Algorithms in Java," Sixth Edition, Wiley, 2014.