Automaten en Berekenbaarheid

Pieter Vanderschueren

Academiejaar 2023-2024

Inhoudsopgave

1	Talen en automaten
	1.1 Wat is een taal?
	1.2 Een algebra van talen
	1.3 Reguliere expressies en reguliere talen
	1.4 Eindge toestandsautomaten
	1.5 De algebra van NFA's
	1.6 Van RE naar NFA
2	Talen en berekenbaarheid
3	Herschrijfsystemen
4	Andere rekenparadigmas
5	Talen en complexiteit

1 Talen en automaten

1.1 Wat is een taal?

Definitie 1.1: String over een alfabet Σ

Een string over een alfabet Σ is een eindige opeenvolging van nul, één of meer elementen van Σ .

Definitie 1.2: Taal L over een alfabet Σ

Een taal L over een alfabet Σ is een verzameling van strings over Σ .

1.2 Een algebra van talen

Definitie 1.3: Een algebra- of algebraïsche structuur

Een algebra- of algebraïsche structuur is een verzameling met daarop een aantal inwendige operaties: dikwijls binaïre operaties, maar unaïr of met grotere ariteit kan ook. Zo wordt de verzameling van alle talen over een alfabet Σ een algebra als we als operaties unie, doorsnede, complement, etc. definïeren. Meer concreet: als L_1 en L_2 twee talen zijn, dan is

- de unie ervan een taal: $L_1 \cup L_2$
- de doorsnede ervan een taal: $L_1 \cap L_2$
- het complement ervan een taal: $\overline{L_1}$

Eigenschap 1.1: Concatenatie van twee talen

Gegeven twee talen L_1 en L_2 over hetzelfde alfabet Σ , dan noteren we de concatenatie van L_1 en L_2 als L_1L_2 en definiëren we:

$$L_1L_2 = \{xy | x \in L_1, y \in L_2\}$$

Eigenschap 1.2: De Kleene ster van een taal

De Kleene ster van een taal wordt gedefinieerd als volgt:

$$L^* = \cup_{n \ge 0} L^n$$

1.3 Reguliere expressies en reguliere talen

Definitie 1.4: Reguliere Expressie (RE) over een alfabet Σ

E is een **reguliere expressie** over een alfabet Σ indien E van de vorm is

- (
- φ
- a waarbij $a \in \Sigma$
- (E_1E_2) waarbij E_1 en E_2 reguliere expressies zijn over Σ
- (E_1^*) waarbij E_1 een reguliere expressies is over Σ
- $(E_1|E_2)$ waarbij E_1 en E_2 reguliere expressies zijn over Σ

Definitie 1.5: Reguliere taal

Een reguliere expressie E bepaalt een reguliere taal L_E over hetzelfde alfabet Σ als volgt:

- als $E = a \text{ (met } a \in \Sigma) \text{ dan is } L_E = \{a\}$
- als $E = \epsilon$ dan is $L_E = {\epsilon}$
- als $E = \phi$ dan is $L_E = \emptyset$
- als $E = (E_1 E_2)$ dan $L_E = L_{E_1} L_{E_2}$
- als $E = (E_1)^*$ dan $L_E = L_{E_1}^*$
- als $E = (E_1|E_2)$ dan $L_E = L_{E_1} \cup L_{E_2}$

1.4 Eindge toestandsautomaten

Definitie 1.6: Niet-deterministische eindige toestandsautomaat (NFA)

Een niet-deterministische eindige toestandsautomaat is een 5-tal $(Q, \Sigma, \delta, q_s, F)$ waarbij

- \bullet Q een eindige verzameling toestanden is
- Σ is een eindig alfabet
- $\bullet~\delta$ is de overgangsrelatie van de automaat
- q_s is de starttoestand
- $F \subset Q$ is de verzameling eindtoestanden

Definitie 1.7: Een string s wordt aanvaard door een NFA

Een string s wordt aanvaard door een NFA $(Q, \Sigma, \delta, q_s, F)$ indien er een sequentie $q_s = q_0 \stackrel{a_0}{\to} \dots \stackrel{a_{n-1}}{\to} q_n$ van overgangen bestaat met $q_n \in F$ zodat s de ϵ -compressiew, wat bekomen wordt door in ϵ te schrappen in de string, is van $a_0 \dots a_{n-1}$.

Dus: Voor toestanden p,q en string $w \in \Sigma^*$ schrijven we $p \stackrel{w}{\leadsto} q$ indien er een sequentie van overangen $p \stackrel{a_0}{\to} \dots \stackrel{a_{n-1}}{\to} q$ bestaat zodat w de ϵ -compressie is van $a_0 \dots a_{n-1}$.

Definitie 1.8: De taal door een NFA M bepaald

Een taal L wordt bepaald door een NFA M, indien L de verzameling van strings is die M aanvaardt. We noteren de taal van M als L_M .

Definitie 1.9: Equivalentie van twee NFA's

Twee NFA's worden equivalent genoemd als ze dezelfde taal bepalen.

1.5 De algebra van NFA's

Eigenschap 1.3: De unie van twee NFA's

Gegeven: $NFA_1 = (Q_1, \Sigma, \delta_1, q_{s_1}, \{q_{f_1}\})$ en $NFA_2 = (Q_2, \Sigma, \delta_2, q_{s_2}, \{q_{f_2}\})$

De unie $NFA_1 \cup NFA_2$ is de $NFA = (Q, \Sigma, \delta, q_s, F)$ waarbij

- $Q = Q_1 \cup Q_2 \cup \{q_s, q_f\}$
- $F = \{q_f\}$
- δ is gedefnieerd als:

$$- \forall q \in Q_i \setminus \{q_{f_i}\}, \ x \in \Sigma_{\epsilon}, \ i = 1, 2: \ \delta(q, x) = \delta_i(q, x)$$

$$- \delta(q_s, \epsilon) = \{q_{s_1}, q_{s_2}\}$$

$$- \forall x \in \Sigma : \delta(q_s, x) = \emptyset$$

$$-i = 1, 2 : \delta(q_{f_i}, \epsilon) = \{q_f\}$$

$$- \forall x \in \Sigma, i = 1, 2 : \delta(q_{f_i}, x) = \emptyset$$

1.6 Van RE naar NFA

2 Talen en berekenbaarheid

3 Herschrijfsystemen

4 Andere rekenparadigmas

5 Talen en complexiteit