Processador RAMSES

Prof. Sérgio Luis Cechin

RAMSES Compatibilidade

- Tudo o que se faz com o RAMSES pode ser feito no NEANDER...
- …entretanto, o RAMSES é mais eficiente do que o NEANDER
- Todo código escrito para o NEANDER pode rodar no RAMSES...
- ...uma vez que, o RAMSES incorpora todos os recursos do NEANDER

Características Gerais

- Incorpora os recursos do NEANDER
- Acrescenta
 - Modos de endereçamento
 - Registradores
 - Registros de estado
 - Instruções
- É capaz de executar qualquer programa construído para o NEANDER
 - É "código-compatível"

Características específicas (1)

- Largura dos dados e endereços: 8 bits
 - Tamanho da memória: 256 bytes
- Representação dos dados em complemento de 2
 - Afeta a forma com a ULA efetua seus cálculos
- Registradores de uso geral (8 bits)
 - A, equivalente ao encontrado no NEANDER
 - B

Características específicas (2)

- Registradores específicos (8 bits)
 - Registrador X
 - 8 bits
 - Usado como índice no acesso à memória
 - Pode ser usado como registrador de uso geral
 - Registrador PC
 - 8 bits
 - Apontador de programa
 - Equivalente ao do NEANDER

Características específicas (3)

- Registrador de estado
 - Código de condição N (1 bit)
 - Se 1, indica valores negativos (complemento de 2)
 - Equivalente ao do NEANDER
 - Código de condição Z (1 bit)
 - Se 1, indica valor zero
 - Equivalente ao do NEANDER
 - Código de condição C (1 bit)
 - Se 1, indica a ocorrência de vai-um (números sem sinal)

Formato das Instruções (1)

- Formato das instruções NEANDER
- Observar a parte don't care

Formato das Instruções (2)

- A parte don't care será usada para
 - Indicar o registro (A, B ou X), nos bits 2 e 3
 - 00, 01 ou 10, respectivamente
 - Indicar o modo de endereçamento, nos bits 0 e 1

Modos de Endereçamento

- São quatro
 - Modo direto (igual ao do NEANDER)
 - Código = 00

 código
 Registro
 0

- Modo indireto
 - Código = 01
- Modo imediato
 - Código = 10
- Modo indexado
 - Código = 11

Registro

Registro

0 1

1 0

código

código

Modos de Endereçamento

Modo Direto

- Único modo compatível com o NEANDER
- O endereço do operando está no segundo byte da instrução
- Operando = MEM (segundo byte da instrução)
- Operação:
 - Busca de instrução (Fetch)
 - RI ← MEM(PC)
 - PC ← PC + 1
 - Acesso no modo direto
 - Operando ← MEM (MEM (PC))

Exemplo

- Carregar "A", usando modo direto
 - Considere que a instrução ocupa os endereços H03 e H04
 - Considere que o segundo byte da instrução é H93
 - Considere que o endereço H93 contém HA5

Pergunta!

- Considerando o modo direto, qual é o valor do operando, se o segundo byte da instrução for H80?
- Considere o seguinte conteúdo da memória
 - MEM(H80) = H87
 - MEM(H81) = H86
 - MEM(H82) = H85
 - MEM(H83) = H84
 - MEM(H84) = H83
 - MEM(H85) = H82
 - MEM(H86) = H81
 - MEM(H87) = H80

Modo Indireto

- Usado na carga de vetores (substitui alteração de código)
- O endereço do endereço do operando está no segundo byte da instrução
- Operando = MEM (MEM (segundo byte da instrução))
- Operação:
 - Busca de instrução (Fetch)
 - RI ← MEM(PC)
 - PC ← PC + 1
 - Acesso no modo indireto
 - Operando ← MEM (MEM (PC)))

- Exemplo
 - Carregar "A", usando modo indireto
 - Considere que a instrução ocupa os endereços H03 e H04
 - Considere que o segundo byte da instrução é H81
 - Considere que o endereço H81 conté H93
 - Considere que o endereço H93 contém HA5

Pergunta!

- Considerando o modo indireto, qual é o valor do operando, se o segundo byte da instrução for H80?
- Considere o seguinte conteúdo da memória
 - MEM(H80) = H87
 - MEM(H81) = H86
 - MEM(H82) = H85
 - MEM(H83) = H84
 - MEM(H84) = H83
 - MEM(H85) = H82
 - MEM(H86) = H81
 - MEM(H87) = H80

Modo Imediato

- Usado na carga de constantes
- O operando está no segundo byte da instrução
- Operando = segundo byte da instrução
- Operação:
 - Busca de instrução (Fetch)
 - RI ← MEM(PC)
 - PC ← PC + 1
 - Acesso no modo imediato
 - Operando ← MEM (PC)

- Exemplo
 - Carregar "A", usando o modo imediato
 - Considere que a instrução ocupa os endereços H03 e H04
 - Considera que o segundo byte da instrução contém HA5

Pergunta!

- Considerando o modo imediato, qual é o valor do operando, se o segundo byte da instrução for H80?
- Considere o seguinte conteúdo da memória
 - MEM(H80) = H87
 - MEM(H81) = H86
 - MEM(H82) = H85
 - MEM(H83) = H84
 - MEM(H84) = H83
 - MEM(H85) = H82
 - MEM(H86) = H81
 - MEM(H87) = H80

Modo Indexado

- Requer um registro de índice, chamado de RX (ou X)
- O segundo byte da instrução é chamado de deslocamento
 - Número com sinal, representado em complemento de 2
- O <u>endereço do operando</u> é calculado
 - Soma: RX + deslocamento
- Operando = MEM (X + Segundo byte da instrução)
- Operação:
 - Busca de instrução (Fetch)
 - RI ← MEM(PC)
 - PC ← PC + 1
 - Acesso no modo indexado
 - Operando ← MEM (X + MEM (PC))
- Exemplo
 - Carregar "A", usando o modo indexado
 - Considere que a instrução ocupa os endereços H03 e H04
 - Considere que RX = H8D
 - Considere que o segundo byte da instrução vale H06
 - Considere que o endereço H93 contém HA5

Pergunta!

- Considerando o modo indexado, qual é o valor do operando, se o segundo byte da instrução for H80 e o registrador X contiver H04?
- Considere o seguinte conteúdo da memória
 - MEM(H80) = H87
 - MEM(H81) = H86
 - MEM(H82) = H85
 - MEM(H83) = H84
 - MEM(H84) = H83
 - MEM(H85) = H82
 - MEM(H86) = H81
 - MEM(H87) = H80

Pergunta!

- Considerando o modo indexado, qual é o valor do operando, se o segundo byte da instrução for H87 e o registrador X contiver HFD?
- Considere o seguinte conteúdo da memória
 - MEM(H80) = H87
 - MEM(H81) = H86
 - MEM(H82) = H85
 - MEM(H83) = H84
 - MEM(H84) = H83
 - MEM(H85) = H82
 - MEM(H86) = H81
 - MEM(H87) = H80

Representação Simbólica

(para uso no Daedalus)

- Modo direto (modo=00)
 - <endereço>
 - Ex: H93 e NSYMB
- Modo indireto (modo=01)
 - <endereço>,I
 - Ex: H93,I e NSYMB,I
- Modo imediato (modo=10)
 - #<valor>
 - Ex: #H93 e #NSYMB
- Modo indexado (modo=11)
 - <endereço>,X
 - Ex: H93,X e NSYMB,X

Modos de Endereçamento e os Desvios

- Instruções de transferência (storage e load)
 - O operando é um dado
 - O operando é usado durante a execução
- Instruções de desvio
 - O operando é uma instrução
 - O desvio indica qual a próxima instrução a ser executada
 - Isso é feito alterando-se o valor do PC
 - O operando é usado no próximo ciclo de busca
 - O operando é lido no próximo ciclo de busca
- Conclusão
 - O endereçamento nas instruções de desvio devem ter uma leitura a menos, durante a execução
 - Esta leitura será realizada no próximo ciclo de busca

Modo Direto e os Desvios

- Instruções de transferência
 - Operando = MEM (MEM (PC))
- Instruções de desvio
 - O destino, no desvio, é sempre o PC
 - $PC \leftarrow MEM (PC)$
 - No próximo ciclo de busca
 - O destino do ciclo de busca é o RI
 - RI ← MEM(PC)
 - $RI \leftarrow MEM (MEM (PC))$

Modo Indireto e os Desvios

- Instruções de transferência
 - Operando = MEM (MEM (MEM (PC)))
- Instruções de desvio
 - O destino é sempre o PC
 - $PC \leftarrow MEM (MEM (PC))$
 - No próximo ciclo de busca
 - O destino é o RI
 - RI ← MEM(PC)
 - − RI ← MEM (MEM (MEM (PC)))

Modo Imediato e os Desvios

- Modo ilegal para os desvios (= NOP)
- Instruções de transferência
 - Operando = MEM (PC)
- Instruções de desvio
 - O destino é sempre o PC
 - PC ← PC ?????

Modo Indexado e os Desvios

- Instruções de transferência
 - Operando = MEM (X + MEM (PC))
- Instruções de desvio
 - O destino é sempre o PC
 - $PC \leftarrow X + MEM (PC)$
 - No próximo ciclo de busca
 - O destino é o RI
 - RI ← MEM(PC)
 - RI ← MEM (X + MEM (PC))

Processador RAMSES

Prof. Sérgio Luis Cechin

