## **FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS**



Departamento de Electrónica y Tecnología de Computadores

Grupo F Grado Ingeniería Informática Convocatoria de febrero 2016

Duración: 3 horas

Responde a cada pregunta en hojas separadas. Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.

Lee detenidamente los enunciados antes de contestar

| Nombre | D.N.I. | Grupo |
|--------|--------|-------|

1. a) Calcula el equivalente de Thevenin de la parte recuadrada del circuito siguiente (dejando fuera la resistencia de 1 k $\Omega$  y el condensador de 5 nF) visto desde los terminales A y B. (1.5 puntos)



- b) Usando el equivalente de Thevenin del circuito anterior, calcula la diferencia de tensión entre A y B en el circuito completo (1 punto)
- 2.- Calcula y representa la característica de transferencia del siguiente circuito para cualquier valor de tensión de entrada v<sub>i</sub>. (1.5 puntos)

$$V_{v} = 0.6 V$$



- 3.- Implementa usando lógica CMOS una puerta que realice la operación  $\overline{A \cdot (B+C+D)}$  (1 puntos)
- 4.- Para el circuito de la imagen calcula:
- a) La función de transferencia (1.5 puntos)
- b) El módulo y el argumento de la función de transferencia (1 punto)
- c) El valor de la salida para la entrada  $v_i(t) = 4\cos(30t) + 4\cos(3000t + \pi/2)$  V (1 punto)



5.- Calcule la corriente que circula por la resistencia de 2 k $\Omega$ 

## (1.5 puntos)

Datos: k = 2 mA/V<sup>2</sup>;  $V_T$ =1 V

Región lineal u óhmica:

$$I_{D} = \frac{k}{2} \Big[ 2 (V_{GS} - V_{T}) V_{DS} - V_{DS}^{2} \Big]$$

Región de saturación:

$$I_D = \frac{k}{2} (V_{GS} - V_T)^2$$

