Determining the dependence structure of multivariate extremes

Simpson, Wadsworth and Tawn (2020)

November 30, 2020

Published on Biometrika (2020).

Presented by Liujun Chen.

Introduction

- When modelling in multivariate extreme value analysis, one often needs to exploit extremal dependence features.
- Consider the random vector $X = (X_1, \dots, X_d)$, with $X_i \sim F_i$.
- Consider a subset of these variables $X_C = \{X_i : i \in C\}$, C lies in the power set of $D = \{1, ..., d\}$.
- For any C with $|C| \ge 2$, extremal dependence with X_C can be summarized by

$$\chi_C = \lim_{u \to 1} pr \{F_i(X_i) > u : i \in C\} / (1 - u)$$

if the limit exists.

Introduction

- If $\chi_C > 0$, the variables in X_C are asymptotically dependent (they can take their largest values simultaneously).
- If $\chi_C=0$, the variables in X_C cannot all take their largest values simultaneously.
- However, it is possible that for some $\underline{C} \subset C, \chi_C > 0$.

Introduction

Many models for multivariate extremes are applicable only when

- data exhibit either full asymptotical dependence, entailing $\chi_C > 0$ for all $C \in z^D \setminus \emptyset$ with $|C| \ge 2$.
- or full asymptotical independence $\chi_{i,j} = 0$ for all i < j.

However, it is often the case that some $\chi_{\mathcal{C}}$ are positive while others are zero.

The extremal dependence between variables can thus have a complicated structure.