Práctica 0: Propiedades algebraicas

Comisión: Rodrigo Cossio-Pérez y Leonardo Lattenero

1. Hallar todos los valores de x que responden a la ecuación

(a)
$$2x - 7x - 5 = 0$$

(b)
$$(3x-1)^2 - 1 = 9x^2 + 12$$

(c)
$$\frac{2-x}{x-1} = 3$$

(d)
$$\frac{-2x+1}{x+1} = \frac{4x-7}{-2(x+6)}$$

(e)
$$6(x+9) = 2(3x + \frac{37}{2}) + 17$$

2. Simplificar las siguientes expresiones algebraicas

(a)
$$4. (3^x)^2 - 3^{2x+1}$$

3. Decidir si las siguientes expresiones son equivalentes

(a)
$$(2x+5)(x+3)$$
 y $2x^2+11x+15$

** Son equivalentes

(b)
$$5.2^{x+1} \frac{5.2^x}{2}$$

** No son equivalentes

(c)
$$2x^2 + 4x - 6$$
 y $(x - 1)(x + 3)$

** No son equivalentes

4. Hallar todos los valores de x que responden a la inecuación

(a)
$$2x + 1 > 0$$

(b)
$$\frac{3x-5}{x-1} < 0$$

(c)
$$\frac{-4x-2}{x+1} > 1$$

(d)
$$(x-2)(x+1) > 0$$

(e)
$$-8(x-2)(2x+7) < 0$$

5. Analizar si que valen las siguientes propiedades y justificarlo

** Válido. Como x > 0 y $\sqrt{2} > 1$: $x < \sqrt{2} < \sqrt{2}x + 1$

(a)
$$x < \sqrt{2}x + 1 \text{ para } x < 0$$

(b)
$$\frac{x-1}{2} < x \text{ para } x > 0$$

(d)
$$a^2 > a$$

(b)
$$\frac{x}{2} < x \text{ para } x > 0$$

** Válido. Como $x > 0$: $x > \frac{x}{2} > \frac{x}{2} - \frac{1}{2}$

** Inválido. Si
$$a=0.1$$
 se tiene que $a^2=0.01$. Nota:
La propiedad vale para $a>1y$ también para $a<0$.

Si sumamos 1, se tiene a + 1 > c + 1

(c) Si se tienen
$$a > b > c$$
, esto implica que $a+1 > c+1$

(e)
$$3^x < 3^{x+1}$$
 para $x \in \mathbb{N}$

** Valido.
$$a > b > c$$
 implica $a > c$ por transitividad.

** Válido. Como
$$1 < 3$$
, multiplicamos por 3^x (que

es positivo) y obtenemos $3^x < 3.3^x$. Finalmente,

por propiedades de la potenciación, $3^x < 3^{x+1}$.

(f) Si a > b, entonces $a^x > b^x$

** Inválido. Si x = 0 se tiene que $a^0 = b^0 = 1$. Nota, a propiedad es válidad para x > 0.

6. Hallar el conjunto de valores del parámetro $k \in \mathbb{R}$ que cumplen la condición

(a) La parábola
$$x^2 + kx + 4$$
 tiene una única raíz.

(b) La parábola
$$kx^2 + 4x + 2$$
 tiene dos raíces reales.

(c) La parábola
$$\frac{1}{2}x^2 - 3x + 2k$$
 no tiene raíces reales.

7. Indicar a qué conjunto numérico $(\mathbb{N}, \mathbb{Z}, \mathbb{Q} \text{ o } \mathbb{R})$ pertenecen los siguientes números y dar ejemplos que justifiquen

(a)
$$3x + 5$$
 con $x \in \mathbb{N}$

** Pertenece a N, por ser la suma de dos números naturales.

(b)
$$4x^2 \operatorname{con} x \in \mathbb{N}$$

** Pertenece a N, por ser el producto de números naturales.

(c)
$$\frac{x^2}{3} + 1 \operatorname{con} x \in \mathbb{N}$$

** Pertenece a Q, por ser el cociente de dos números naturales.

(d)
$$-6x + 1 \operatorname{con} x \in \mathbb{N}$$

** Pertenece a Z, por ser la suma de un número entero negativo y un número natural.

(e)
$$x^2 + x + 1$$
 con $x \in \mathbb{Z}$

** Pertenece a Z, por ser la suma de tres números enteros.

(f)
$$x + \frac{1}{2} \operatorname{con} x \in \mathbb{Z}$$

** Pertenece a Q, por ser la suma de un número entero y un número racional.

(g)
$$\frac{1}{x-1}$$
 con $x \in \mathbb{Z}$ y $x \neq 1$

** Pertenece a Q, por ser el cociente de un número entero y un número entero distinto de cero.

(h)
$$3\sqrt{x} \operatorname{con} x \in \mathbb{N}$$

** Pertenece a \mathbb{R} , por ser la raíz cuadrada de un número natural.

(i)
$$\frac{x^2}{x-4}$$
 con $x \in \mathbb{Z}$ y $x \neq 4$

** Pertenece a \mathbb{Q} , por ser el cociente de un número entero y un número entero distinto de cero.

$$(j) \frac{\sqrt{3}x - 3}{2} \operatorname{con} x \in \mathbb{Z}$$

** Pertenece a \mathbb{R} , por ser el cociente de un número irracional y un número entero.

(k)
$$x + 3 \operatorname{con} x \in \mathbb{Q}$$

** Pertenece a Q, por ser la suma de dos números racionales.

(1)
$$\frac{1}{x}$$
 con $x \in \mathbb{Q}$ y $x \neq 0$

** Pertenece a \mathbb{Q} , por ser el cociente de dos números racionales.

(m)
$$\sqrt{x} \operatorname{con} x \in \mathbb{Q}$$

** Pertenece a \mathbb{R} , por ser la raíz cuadrada de un número racional.

8. Graficar las siguientes funciones, indicando sus elementos notables (ordenada/abscisas al origen, vértice, etc.)

(a)
$$y = -4x + 2$$

(b)
$$y = \frac{2}{3}x - 1$$

(c)
$$y = x^2 + 4x + 4$$

(d)
$$y = -(x-1)^2 + 3$$

9. Analizar las siguientes situaciones geométricas

- (a) Averiguar si la recta y = 2x + 1 y la recta y = 2x 5 son paralelas
- (b) Averiguar si la recta y = 2x + 1 y la recta y = 3x + 1 son perpendiculares
- (c) Hallar una recta perpendicular a la recta y=2x+1 que pase por el punto (1,2)
- (d) Hallar una recta paralela a la recta $y=\frac{1}{3}x+1$ que pase por el punto (1,1)
- (e) Calcular la intersección de las rectas y=2x+1 y y=3x-1
- (f) Calcular la intersección de la rectay=2x+1 y la parábola $y=x^2+1$
- (g) Averiguar si a recta y=-x+3 se intersecta con la parábola $y=x^2+2x+5$
- (h) Dar una recta perpendicular a la recta x=2 que pase por el punto (1,5)