Prova P2[100%]

NOME: _____RA:____

1 Depois de um longo tempo das conexões terem sido realizadas determine v_x se um resistor de 45Ω estiver conectado entre x e y.

 $v_x =$

2 Usando a arvore própria de ramos 25Ω, 20 Ω, 100V e 150V, desenhe nela os cortes fundamentais necessários e determine v_4 através do **método dos cortes fundamentais.**

 $V_4 =$

3 Para o circuito acima e usando a arvore própria de ramos 25 Ω , 20 Ω , 100V e 150V, desenhe nela os laços fundamentais necessários e determine v_4 através do **método dos laços fundamentais.**

V₄=

 $\underline{\textbf{4}}$ Determine as correntes i_2 e i_3

5 Para o circuito acima e usando o **teorema de compensação** determine a fonte de compensação e as novas correntes i_2 e i_3 se o valor do resistor de $5k\Omega$ mudar para $10k\Omega$

$$\mathbf{f}_{c}$$
= \mathbf{i}_{2} = \mathbf{i}_{3} =

6 Depois de um longo tempo aberta, a chave é fechada em t=0, aberta em t=5 seg e fechada novamente em t=7 seg , determine $i_L(5seg)$, $i_L(7seg)$ e $i_L(15seg)$ para $R_1=R_2=R_3=1\Omega$, L=2,5H e E=10V.

 $\overline{2}$ Para o circuito acima e, considerando o regime periódico (fechada por 5 seg e aberta por 2 seg), determine os valores máximo e mínimo, i_{Lmax} e i_{Lmin} da corrente i_{L}

8 Determine a <u>resposta ao degrau</u> da tensão no capacitor e da tensão em R_1 devido a fonte E_A =20u(t) [V] Dados: R_1 =20 Ω , R_2 =20 Ω , C_1 =20F.

9 Para o circuito acima determine a <u>resposta ao impulso</u> da tensão no capacitor e da tensão em R_2 devido a fonte $I_B = 40u(t)$ [A]

$$V(C_1) = V(R_2) =$$

10 Considerando o op-amp ideal determine $v_x(t)$ para v(0) = 2V , e $i_A(t)$ = 5t² u(t), R_1 =250 Ω , R_2 =200 Ω , C=0,05uf.

