Digital sufficiency behaviors to deal with intermittent energy sources in data center

ICT4S'24 @ Stockholm, Sweden

Jolyne Gatt, Maël Madon, Georges Da Costa

IRIT. Université de Toulouse. France

June 25, 2024

Introduction

• Energy efficiency:

Koomey's law = doubling the number of computations per kWh every 1.57 years

Introduction

• Energy efficiency:

Koomey's law = doubling the number of computations per kWh every 1.57 years

• Rebound effect:

Global trends in digital and energy indicators, 2015-2022			
	2015	2022	Change
Internet users	3 billion	5.3 billion	+78%
Internet traffic	0.6 ZB	4.4 ZB	+600%
Data centre workloads	180 million	800 million	+340%
Data centre energy use (excluding crypto)	200 TWh	240-340 TWh	+20-70%
Crypto mining energy use	4 TWh	100-150 TWh	+2300-3500
Data transmission network energy use	220 TWh	260-360 TWh	+18-64%
Causas Interna		4	

Source: International Energy Agency

Sufficiency

• Efficiency is not enough: sufficiency

Digital sufficiency (Santarius et al., 2022 [2])

Any strategy aimed at directly or indirectly decreasing the absolute level of resource and energy demand from the production or application of IT.

- What would "sufficiency" mean for data centers?
 - ightarrow voluntary limitation, empower and involve the user
- this study: estimate the potential of "sufficiency behaviors" for data center users in a context of intermittent energy production

Model

- Model
- Experimental campaign
- Results

Data center model

Renewable energy production

• Objective: minimize underproduction (a.k.a. "brown energy")

ex: fewer nodes for image processing

ex: fewer nodes for image processing

ex: only 5 outputs instead of 10

ex: fewer nodes for image processing

Time Degrad

ex: only 5 outputs instead of 10

ex: lower accuracy in a linear solver

Space Degrad

job' r/2

Time Degrad

ex: fewer nodes for image processing

ex: only 5 outputs instead of 10

ex: lower accuracy in a linear solver

• job final state = $n \times see_you_later + b$, $b \in \{ Rigid, Reconfig, Space Degrad, Time Degrad \}$

3-state energy model

- 3-color state for energy production:
 - green state: everything is fine (production $\geq 100\%$ max conso)
 - yellow state: some disturbance (production $\geq 50\%$ max conso)
 - red state: system critical (production < 50% max conso).

3-state energy model

- 3-color state for energy production:
 - green state: everything is fine (production $\geq 100\%$ max conso)
 - yellow state: some disturbance (production $\geq 50\%$ max conso)
 - red state: system critical (production < 50% max conso).

Energy-aware behaviors

Energy-aware behaviors

• choice of behavior at random depending on the state

Experimental campaign

- Mode
- Experimental campaign
- Results

Experimental setup

• **Software:** Batsim + Batmen

- IT workload: filtered version of MetaCentrum from Parallel Workload Archive
 - June 1 to November 11, 2014 (4.5 months)
 - 650000 jobs and 500 users
- Energy production data:
 - 145 m² solar panels
 - weather data Toulouse 2019 from Renewable Ninja (days aligned with IT)
- IT platform:
 - 42 18-core machines
- Scheduler: bin-packing scheduler which shutdown machine when idle.

Experimental campaign

- $\alpha = \text{probability of modifying a job in red / yellow}$
- 6 scenari:
 - full rigid ($\alpha = 0$)
 - low effort ($\alpha = .25$)
 - medium effort ($\alpha = .5$)
 - big effort ($\alpha = .75$)
 - max effort ($\alpha = 1$)
 - full renounce/degrad/reconfig in red
- each scenario run 30 times to minimize the effect of randomness

- Mode
- Experimental campaign
- Results

- How much does user effort impact energy consumption?
 - → if 50% jobs modified in red/yellow (medium effort), underproduction reduced by 8%
 - ightarrow if 100% jobs modified in red/yellow (max effort), underproduction reduced by 18%

- How much does user effort impact energy consumption?
 - → if 50% jobs modified in red/yellow (medium effort), underproduction reduced by 8%
 - ightarrow if 100% jobs modified in red/yellow (max effort), underproduction reduced by 18%
- Energy savings linear with effort

Results: ratio energy/effort

Results: ratio energy/effort

- \rightarrow marginal gains increase with α : "the more people who make an effort, the greater the impact of a user's additional effort"
- → gains with yellow windows of the same scale than with red

• 3-state energy model and user behaviors to adapt job to energy consumption

- 3-state energy model and user behaviors to adapt job to energy consumption
- Possible improvements:
 - thresholds on instantaneous available energy
 - collaboration with the scheduler
 - more realistic replay method
 - social science studies (willingness to adopt behaviors, impact of eco-feedback)

- 3-state energy model and user behaviors to adapt job to energy consumption
- Possible improvements:
 - thresholds on instantaneous available energy
 - collaboration with the scheduler
 - more realistic replay method
 - social science studies (willingness to adopt behaviors, impact of eco-feedback)
- First step towards studying sufficiency and not efficiency

- 3-state energy model and user behaviors to adapt job to energy consumption
- Possible improvements:
 - thresholds on instantaneous available energy
 - collaboration with the scheduler
 - more realistic replay method
 - social science studies (willingness to adopt behaviors, impact of eco-feedback)
- First step towards studying sufficiency and not efficiency
- Simulation campaign reproducible

Merci!

- Questions?
- Do not hesitate to contact me :-)
 - www.irit.fr/~Mael.Madon
 - mael.madon@m4x.org