

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación IIC3633 - Sistemas Recomendadores

Personalized Transformer for Explainable Recommendation

Grupo 12: Daniel Alegría, Gabriel Catalán y Benjamín Faúndez

19/06/2025

Autores

Lei Li¹ Yongfeng Zhang² Li Chen¹

¹Hong Kong Baptist University, Hong Kong, China

²Rutgers University, New Brunswick, USA

¹{csleili,lichen}@comp.hkbu.edu.hk

²yongfeng.zhang@rutgers.edu

Resumen

- Contexto
- Problema de recomendación
- Contribución
- Estado del arte y marco teórico
- Detalle solución
- Evaluación
- Referencias
- Preguntas

Contexto

- v1 Martes, 25 de Mayo 2021
- v2 Sábado, 5 de Junio 2021
- ¿Qué estaba pasando en la escena de la IA?

Contexto: NLG

- Generación de lenguaje natural y sistemas recomendadores
- Usuarios no quieren solo una recomendación, sino que una explicación que justifique la recomendación

Contexto: Imaginen...

Problema de recomendación

- Oración $\hat{E}_{u,i}$ para un par (u,i)
- PETER también puede estimar $\hat{r}_{u,i}$
- Se pueden incorporar características de los artículos F_{u,i}

Limitaciones de los Transformers estándar

Contribución

- Según los autores: primer modelo basado en Transformer con generación de lenguaje natural personalizada
- Recomienda y explica
- Tarea: predicción de contexto
- Pequeño y eficiente

Estado del arte y marco teórico

- Recomendación explicable: LSTM; Hochreiter and Schmihuber, 1997. GRU; Cho et al., 2014
- Transformer: Vaswani et al., 2017. Devlin et al., 2019
- Generación personalizada: atributos personales;
 Zheng et al., 2020. Títulos de películas; Zhou et al.,
 2020. Características del artículo; Ni et al.,

Solución: Arquitectura PETER

Representación de Entradas

Ejemplo de secuencia:

$$S = [u, i, f_1, f_2, \langle bos \rangle, e_1, e_2, ..., e_{15}]$$

Máscara de atención de PETER

Generación de Explicación

$$\mathcal{L}_e = -\frac{1}{|T|} \sum_{(u,i) \in T} \frac{1}{|E_{u,i}|} \sum_{t=1}^{|E_{u,i}|} \log c_{2+|F_{u,i}|+t}^{e_t}$$

Generación paso a paso:

$$\langle \textit{bos} \rangle \rightarrow \text{"the"} \rightarrow \text{"hotel"} \rightarrow \text{"is"} \rightarrow ... \rightarrow \langle \textit{eos} \rangle$$

Predicción de Contexto

Mapeo ID → Palabras

Posición 2 (ítem) predice TODAS las palabras simultáneamente:

$$\mathcal{L}_c = -rac{1}{|T|} \sum_{(u,i) \in T} rac{1}{|E_{u,i}|} \sum_{t=1}^{|E_{u,i}|} \log c_2^{e_t}$$

Predicción de Rating

Aprendizaje Multitarea

$$\mathcal{J} = \min_{\Theta} \left(\lambda_e \mathcal{L}_e + \lambda_c \mathcal{L}_c + \lambda_r \mathcal{L}_r \right)$$

$$\mathcal{L}_e$$
Explicación
$$\lambda_e = 1,0$$

$$\mathcal{L}_c$$
Contexto
$$\lambda_c = 1,0$$

$$\mathcal{L}_r$$
Rating
$$\lambda_r = 0,1$$

Evaluación

- Dataset
- Métricas
- Modelos
- Resultados

Evaluación: Dataset

Se utilizaron tres Datasets

- Yelp
- Amazon
- TripAdvisor

	Yelp	Amazon	TripAdvisor
#users	27,147	7,506	9,765
#items	20,266	7,360	6,280
#records	1,293,247	441,783	320,023
#features	7,340	5,399	5,069
#records / user	47.64	58.86	32.77
#records / item	63.81	60.02	50.96
#words / exp	12.32	14.14	13.01

Evaluación: Métricas

- RMSE
- MAE
- BLEU-1
- BLEU-4
- ROUGE-1
- ROUGE-2
- USR
- FMR
- FCR
- DIV

Métricas: BLEU-n

Calcula qué tan parecida es la explicación del modelo con la explicación de testing utilizando n-gram

BLEU Score =
$$BP \cdot \exp\left(\sum_{i=1}^{n} w_i \cdot \log(p_i)\right)$$
 (1)

- BP corresponde a una penalización si es que la explicación generada por el modelo es más corta que la baseline
- w_i corresponde al peso que se le da a cada i-gram
- p_i es la coincidencia de los i-gram del modelo con la i-gram baseline

Métricas: Rouge-n

Calcula distintas métricas en base a la superposición de los n-grams de la explicación generada y la explicación testing.

Rouge score = {
$$Precision@n-gram$$
,
 $Recall@n-gram$, $F1@n-gram$ } (2)

Donde:

 Precision@n-gram corresponde a la división entre el numero de n-grams que coinciden en la superposición y el numero de n-grams totales generado por el modelo

Métricas: Rouge-n

- Recall@n-gram corresponde a la división entre el numero de n-grams que coinciden en la superposición y el numero de n-grams totales del baseline.
- F1@n-gram es la métrica usual vista en clases usando las dos métricas anteriores.

Métricas: Unique Sentence Ratio (USR)

Calcula la división entre el número de explicaciones únicas y el número de explicaciones totales.

$$USR = \frac{|S|}{N}$$
 (3)

- *S* es el set de explicaciones únicas
- *N* es el numero de explicaciones totales.

Métricas: Feature Matching Ratio (FMR)

Mide cuándo una explicación generada tiene alguna característica de la explicación baseline

$$\mathsf{FMR} = \frac{1}{N} \sum_{u,i} \delta(f_{u,i} \in \hat{S}_{u,i}) \tag{4}$$

- N es el numero de explicaciones totales.
- Ŝ_{u,i} es la explicación generada para algún par usuario-item
- $\delta(x) = 1$ si x es TRUE y $\delta(x) = 0$ para cualquier otro caso.

Métricas: Feature Coverage Ratio (FCR)

Mide cuántas características diferentes hay dentro de todas las explicaciones.

$$FCR = \frac{N_g}{|\mathcal{F}|} \tag{5}$$

- N_g es el numero de características diferentes dentro de las explicaciones generadas por el modelo
- lacksquare es el conjunto de todas las características.

Métricas: Feature Diversity (DIV)

Mide la intersección de las características entre cualquier par de explicaciones generadas.

$$DIV = \frac{2}{N \cdot (N-1)} \sum_{u,u',i,i'} \left| \hat{\mathcal{F}}_{u,i} \cap \hat{\mathcal{F}}_{u',i'} \right|$$
 (6)

- N es el numero de explicaciones totales.
- $\hat{\mathcal{F}}_{u,i}$ son el conjunto de las características presentes en una explicación generada por el modelo para el usuario u y para el item i
- $\hat{\mathcal{F}}_{u',i'}$ son el conjunto de las características presentes en una explicación generada por el modelo para el usuario u' y para el item i'

Evaluación: Modelos

Modelos de explicación

- Transformer
- NRT
- Att2Seq
- PETER
- *ACMLM
- *NETE
- *PETER+

Modelos de recomendación

- NRT
- PETER
- *NETE
- PMF
- SVD++

Todos los modelos con * aceptan características como input para el entrenamiento.

Evaluación: Resultados de explicabilidad

	Explainability				Text Quality							
	FMR↑		DIV↓	USR↑	B1↑	B4↑	R1-P↑	R1-R↑	R1-F↑	R2-P↑	R2-R↑	R2-F↑
			Yelp									
Transformer	0.06	0.06	2.46	0.01	7.39	0.42	19.18	10.29	12.56	1.71	0.92	1.09
NRT	0.07	0.11	2.37	0.12	11.66	0.65	17.69	12.11	13.55	1.76	1.22	1.33
Att2Seq	0.07	0.12	2.41	0.13	10.29	0.58	18.73	11.28	13.29	1.85	1.14	1.31
PETER	0.08**	0.19**	1.54**	0.13	10.77	0.73**	18.54	12.20	13.77**	2.02**	1.38**	1.49**
ACMLM	0.05	0.31	0.95	0.95	7.01	0.24	7.89	7.54	6.82	0.44	0.48	0.39
NETE	0.80	0.27	1.48	0.52	19.31	2.69	33.98	22.51	25.56	8.93	5.54	6.33
PETER+	0.86**	0.38**	1.08	0.34	20.80**	3.43**	35.44**	26.12**	27.95**	10.65**	7.44**	7.94**
				Amazon								
Transformer	0.10	0.01	3.26	0.00	9.71	0.59	19.68	11.94	14.11	2.10	1.39	1.55
NRT	0.12	0.07	2.93	0.17	12.93	0.96	21.03	13.57	15.56	2.71	1.84	2.05
Att2Seq	0.12	0.20	2.74	0.33	12.56	0.95	20.79	13.31	15.35	2.62	1.78	1.99
PETER	0.12**	0.21	1.75**	0.29	12.77	1.17**	19.81	13.80	15.23	2.80	2.08**	2.20**
ACMLM	0.10	0.31	2.07	0.96	9.52	0.22	11.65	10.39	9.69	0.71	0.81	0.64
NETE	0.71	0.19	1.93	0.57	18.76	2.46	33.87	21.43	24.81	7.58	4.77	5.46
PETER+	0.77**	0.31**	1.20**	0.46	19.75**	3.06**	34.71**	23.99**	26.35**	9.04**	6.23**	6.71 **
						Trip	Advisor					
Transformer	0.04	0.00	10.00	0.00	12.79	0.71	16.52	16.38	15.88	2.22	2.63	2.34
NRT	0.06	0.09	4.27	0.08	15.05	0.99	18.22	14.39	15.40	2.29	1.98	2.01
Att2Seq	0.06	0.15	4.32	0.17	15.27	1.03	18.97	14.72	15.92	2.40	2.03	2.09
PETER	0.07**	0.13	2.95**	0.08	15.96**	1.11*	19.07	16.09	16.48**	2.33	2.17	2.09
ACMLM	0.07	0.41	0.78	0.94	3.45	0.02	4.86	3.82	3.72	0.18	0.20	0.16
NETE	0.78	0.27	2.22	0.57	22.39	3.66	35.68	24.86	27.71	10.20	6.98	7.66
PETER+	0.89**	0.35	1.61	0.25	24.32**	4.55**	37.48**	29.21**	30.49**	11.92**	8.98**	9.24**

Evaluación: Análisis de tiempo

	Time	Epochs	Time/Epoch
ACMLM	97.0	3	32.3
PETER+	57.7	25	2.3

Evaluación: Análisis cualitativo

	Top-15 Context Words	Explanation
Ground-truth		the rooms are spacious and the bathroom has a large tub
PETER	<eos> the and a pool was with nice is very were to good in of</eos>	the pool area is nice and the gym is very well equipped <eos></eos>
PETER+	<eos> the and a was pool with to nice good very were is of in</eos>	the rooms were clean and comfortable <eos></eos>
Ground-truth		beautiful lobby and nice bar
PETER	<eos> the and a was were separate bathroom with shower large very had in is</eos>	the bathroom was large and the shower was great <eos></eos>
PETER+	<eos> the and a was bathroom shower with large in separate were room very is</eos>	the lobby was very nice and the rooms were very comfortable <eos></eos>

Evaluación: Resultados de recomendación

	Ye	elp	Ama	azon	TripAdvisor		
	R↓	M↓	R↓	M↓	R↓	$M\downarrow$	
PMF	1.09	0.88	1.03	0.81	0.87	0.70	
SVD++	1.01	0.78	0.96	0.72	0.80	0.61	
NRT	1.01	0.78	0.95	0.70	0.79	0.61	
NETE	1.01	0.79	0.96	0.73	0.79	0.60	
PETER	1.01	0.78	0.95	0.71	0.81	0.63	

Evaluación: Análisis de ablación

	Explainability FMR FCR DIV				Text Qualit	Recommendation		
				USR	BLEU-1	BLEU-4	RMSE	MAE
Disable \mathcal{L}_c	0.06 ↓	0.03 ↓	5.75↓	0.01 \	15.37 ↓	0.86↓	0.80↑	0.61 ↑
Disable \mathcal{L}_r	0.07	$0.14 \uparrow$	2.90 ↑	0.10 ↑	16.16 ↑	1.15 ↑	3.23 ↓	3.10 ↓
Left-to-Right Masking	0.07	$0.15 \uparrow$	$2.68 \uparrow$	0.12 ↑	15.73 ↓	1.11	0.87 ↓	$0.68 \downarrow$
PETER	0.07	0.13	2.95	0.08	15.96	1.11	0.81	0.63

Referencias

- Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
- Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding.

Referencias

- Yinhe Zheng, Rongsheng Zhang, Minlie Huang, and Xiaoxi Mao. 2020. A pre-training based personalized dialogue generation model with persona-sparse data.
- Kun Zhou, Wayne Xin Zhao, Shuqing Bian, Yuanhang Zhou, Ji-Rong Wen, and Jingsong Yu. 2020. Improving conversational recommender systems via knowledge graph based semantic fusion.
- Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. 2017. Neural rating regression with abstractive tips generation for recommendation.
- Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhou, and Ke Xu. 2017. Learning to generate product reviews from attributes.

Referencias

- Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations using distantly-labeled reviews and fine-grained aspects.
- Lei Li, Yongfeng Zhang, and Li Chen. 2020c.
 Generate neural template explanations for recommendation.
- Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic matrix factorization.
- Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted collaborative filtering model.

Preguntas

