

Data Mining

Task-4 Apply Apriori on Online Retail Dataset

137 | Vishal Baraiya | 23010101014

Apriori Algorithm Implementation Assignment

Objective:

You will implement the **Apriori algorithm** from scratch (i.e., without using any libraries like mlxtend) to find frequent itemsets and generate association rules.

Dataset:

Use the Online Retail Dataset from Kaggle. You can filter it for a specific country (e.g., United Kingdom) and time range to reduce size if needed.

Step 1: Data Preprocessing

- Load the dataset
- Remove rows with missing values
- Filter out rows where Quantity <= 0
- Convert Data into Basket Format
- Implement code below

Load the dataset

```
In [1]: import pandas as pd
    from collections import defaultdict
    from math import ceil
    import matplotlib.pyplot as plt
```

In [2]: OnlineRetail = pd.read_csv("D:\\VS_CODES\\DataMining\\ProjectDataMining\\Dataset\\O
OnlineRetail

Out[2]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID		
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0		
	1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0		
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0		
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850.0		
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850.0		
	•••	•••		•••	•••	•••	•••	•••		
	541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	12/9/2011 12:50	0.85	12680.0		
	541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	12/9/2011 12:50	2.10	12680.0		
	541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	12/9/2011 12:50	4.15	12680.0		
	541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	12/9/2011 12:50	4.15	12680.0		
	541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	12/9/2011 12:50	4.95	12680.0		
541909 rows × 8 columns										

Preprocess as per the instructions above | We have already done in TASK 2

```
In [3]: # Remove missing values from the CustomerID column
        df = OnlineRetail.dropna(subset=['CustomerID'])
        # Remove canceled orders, which start with 'C' in the InvoiceNo
        df = df[~df['InvoiceNo'].astype(str).str.contains('C')]
        # Keep only positive quantities
        df = df[df['Quantity'] > 0]
        # Filter for a specific country to reduce dataset size
        df = df[df['Country'] == 'United Kingdom']
        # Strip leading/trailing whitespace from item descriptions
        df['Description'] = df['Description'].str.strip()
        # Now, create the basket format
        basket = (df.groupby(['InvoiceNo', 'Description'])['Quantity']
                   .sum().unstack().reset_index().fillna(0)
                   .set_index('InvoiceNo'))
        # Convert to a binary (one-hot encoded) format
        # basket = basket.applymap(lambda x: 1 \text{ if } x > 0 \text{ else } 0)
        basket = (basket > 0).astype(int)
        basket
```

Out[3]:

Description	10 COLOUR SPACEBOY PEN	12 COLOURED PARTY BALLOONS	12 DAISY PEGS IN WOOD BOX	12 EGG HOUSE PAINTED WOOD	12 HANGING EGGS HAND PAINTED	12 IVORY ROSE PEG PLACE SETTINGS	12 MESSAGE CARDS WITH ENVELOPES
InvoiceNo							
536365	0	0	0	0	0	0	0
536366	0	0	0	0	0	0	0
536367	0	0	0	0	0	0	0
536368	0	0	0	0	0	0	0
536369	0	0	0	0	0	0	0
•••	•••	•••		•••		•••	
581582	0	0	0	0	0	0	0
581583	0	0	0	0	0	0	0
581584	0	0	0	0	0	0	0
581585	0	0	0	0	0	0	0
581586	0	0	0	0	0	0	0

16649 rows × 3833 columns

Step-by-Step Procedure:

1. Generate Frequent 1-Itemsets

Count the frequency (support) of each individual item in the dataset. Keep only those with support \geq min_support. \rightarrow Result is L1 (frequent 1-itemsets) 2. Iterative Candidate Generation (k = 2 to n) While L(k-1) is not empty: a. Candidate Generation

Generate candidate itemsets Ck of size k from L(k-1) using the Apriori property: Any (k-itemset) is only frequent if all of its (k-1)-subsets are frequent. b. Prune Candidates Eliminate candidates that have any (k-1)-subset not in L(k-1). c. Count Support For each transaction, count how many times each candidate in Ck appears. d. Generate Frequent Itemsets Form Lk by keeping candidates from Ck that meet the min_support. Repeat until Lk becomes empty. Implement the following functions:

 get_frequent_itemsets(transactions, min_support) - Returns frequent itemsets and their support

- 2. generate_candidates(prev_frequent_itemsets, k) Generates candidate
 itemsets of length k
- 3. calculate_support(transactions, candidates) Calculates the support count for each candidate

Write reusable functions for each part of the algorithm.

```
In [4]: def basket_to_transactions(basket_df):
            Convert a 0/1 one-hot basket DataFrame (rows=invoices, cols=items)
            into a list of frozensets, one per transaction.
            return [frozenset(row.index[row.gt(0)]) for , row in basket df.iterrows()]
        def generate_candidates(prev_frequent_itemsets, k):
            Join + prune step of Apriori (without itertools.combinations).
            prev frequent itemsets: iterable[frozenset] of size k-1
            k: target size of candidates
            returns: set[frozenset] of size-k candidates
            prev_list = list(prev_frequent_itemsets)
            prev_set = set(prev_list)
            candidates = set()
            for i in range(len(prev list)):
                for j in range(i + 1, len(prev_list)):
                    union = prev_list[i] | prev_list[j]
                    if len(union) == k:
                        # prune: all (k-1)-subsets must be frequent
                        valid = True
                        for item in union:
                             subset = union - frozenset([item]) # remove one element
                            if subset not in prev set:
                                 valid = False
                                 break
                        if valid:
                            candidates.add(union)
            return candidates
        def calculate support(transactions, candidates):
            Count support (absolute frequency) of each candidate
            without itertools.combinations.
            transactions: list[frozenset]
            candidates: set[frozenset]
            returns: dict{candidate frozenset: count}
            counts = defaultdict(int)
            if not candidates:
                return counts
```

```
for t in transactions:
        for cand in candidates:
                                 # check directly if candidate is in transaction
            if cand.issubset(t):
                counts[cand] += 1
    return counts
def get_frequent_itemsets(transactions, min_support):
   Run Apriori and return frequent itemsets.
   n tx = len(transactions)
   if n tx == 0:
        return {}, {}
   if 0 < min support < 1:</pre>
        min_count = ceil(min_support * n_tx)
   else:
        min_count = int(min_support)
   # Step 1: L1 singletons
   item counts = defaultdict(int)
   for t in transactions:
        for item in t:
            item_counts[frozenset([item])] += 1
    Lk_counts = {it: c for it, c in item_counts.items() if c >= min_count}
    support counts = dict(Lk counts)
   prev_L = set(Lk_counts.keys())
   k = 2
   # Step 2: iterate
   while prev L:
        Ck = generate candidates(prev L, k)
        Ck_counts = calculate_support(transactions, Ck)
        Lk_counts = {it: c for it, c in Ck_counts.items() if c >= min_count}
        support_counts.update(Lk_counts)
        prev_L = set(Lk_counts.keys())
        k += 1
    support = {it: c / n_tx for it, c in support_counts.items()}
    return support_counts, support
```

Step 3: Generate Association Rules

- Use frequent itemsets to generate association rules
- For each rule A => B, calculate:
 - Support
 - Confidence
- Only return rules that meet a minimum confidence threshold (e.g., 0.5)

👉 Implement rule generation function below

```
In [5]: def generate_association_rules(support_counts, support, min_confidence):
            Generate association rules from frequent itemsets (without itertools.combinatio
            support counts: dict{frozenset: count}
            support: dict{frozenset: relative_support}
            min confidence: minimum confidence threshold
            returns: list of (antecedent, consequent, support, confidence, lift)
            rules = []
            for itemset in support.keys():
                 if len(itemset) < 2:</pre>
                     continue # skip singletons
                 itemset list = list(itemset)
                 # generate all possible non-empty proper subsets manually
                 n = len(itemset_list)
                 for mask in range(1, 1 << n): # from 1 to (2^n - 1)</pre>
                     antecedent = frozenset([itemset list[idx] for idx in range(n) if (mask
                     consequent = itemset - antecedent
                     if not antecedent or not consequent:
                         continue
                     conf = support[itemset] / support[antecedent]
                     if conf >= min confidence:
                         lift = conf / support[consequent]
                         rules.append((antecedent, consequent, support[itemset], conf, lift)
             return rules
```

Step 4: Output and Visualize

- Print top 10 frequent itemsets
- Print top 10 association rules (by confidence or lift)

(c) Output results below

Print Top 10 Frequent Itemsets (min_support=0.03)

```
In [6]: # Convert one-hot basket to transaction list
transactions = basket_to_transactions(basket)

# Run Apriori to get frequent itemsets
support_counts, support = get_frequent_itemsets(transactions, min_support=0.03)
print("Total frequent itemsets:", len(support))
```

```
# Sort frequent itemsets by support (descending)
 top10 itemsets = sorted(support.items(), key=lambda x: x[1], reverse=True)[:10]
 print("Top 10 Frequent Itemsets:\n")
 for items, sup in top10 itemsets:
     print(f"{tuple(sorted(items))} → support={sup:.4f} ({support counts[items]} occ
Total frequent itemsets: 89
Top 10 Frequent Itemsets:
('WHITE HANGING HEART T-LIGHT HOLDER',) → support=0.1132 (1884 occurrences)
('JUMBO BAG RED RETROSPOT',) → support=0.0869 (1447 occurrences)
('REGENCY CAKESTAND 3 TIER',) → support=0.0847 (1410 occurrences)
('ASSORTED COLOUR BIRD ORNAMENT',) → support=0.0781 (1300 occurrences)
('PARTY BUNTING',) → support=0.0775 (1291 occurrences)
('LUNCH BAG RED RETROSPOT',) → support=0.0673 (1120 occurrences)
('SET OF 3 CAKE TINS PANTRY DESIGN',) → support=0.0605 (1007 occurrences)
('LUNCH BAG BLACK SKULL.',) → support=0.0598 (996 occurrences)
("PAPER CHAIN KIT 50'S CHRISTMAS",) → support=0.0568 (945 occurrences)
('NATURAL SLATE HEART CHALKBOARD',) → support=0.0563 (938 occurrences)
```

Print Top 10 Rules (min_confidence=0.3)

Visualization (Bar Chart of Supports)

```
In [8]: # Take top 10 itemsets
labels = ['+'.join(sorted(items)) for items, _ in top10_itemsets]
values = [sup for _, sup in top10_itemsets]

plt.figure(figsize=(10,5))
plt.barh(labels, values)
plt.xlabel("Support")
plt.title("Top 10 Frequent Itemsets")
```


