Reti di Calcolatori

Introduzione

Università degli Studi di Verona Dipartimento di Informatica

Docente: Damiano Carra

Acknowledgement and contacts

□ Credits

- Part of the material is based on slides provided by the following authors
 - Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach," 4th edition, Addison-Wesley, July 2007.
 - · Antonio Corghi

□ Contacts

- Main source of information
 - · course web site
- Office hours (→ Ca' Vignal 2, 1st floor, #82)
 - · Check the website
 - Based on agreement (via email)
- Email

damiano.carra@univr.it

Organizzazione

- ☐ Teoria + esercizi
- □ Argomenti
 - Modelli a strati (OSI e TCP/IP)
 - Cenni al livello applicativo
 - Livello di trasporto (TCP)
 - Livello rete (IP)
 - Livello Data Link
- ☐ Esercizi numerici svolti in classe
- ☐ Sul sito del corso si trova il dettaglio delle lezioni svolte
 - Lucidi
 - Giorni di lezione / esercitazione
 - Attenzione! Per impegni vari alcune lezioni possono saltare

3

Modalità d'esame

- ☐ Scritto, basato su esercizi come quelli svolti in classe
 - Conteniene domande sulla parte teorica
- ☐ Orale, come integrazione dello scritto se:
 - Scritto vicino alla sufficienza
 - Richiesto dallo studente
 - Ci sono dubbi sullo scritto

Libri di testo

- ☐ J. Kurose, K. Ross, "Reti di calcolatori e Internet. Un approccio top-down," Addison-Wesley
- □ B.A. Forouzan, F. Mosharraf, "Reti di calcolatori. Un approccio top-down," McGraw-Hill
- □ NEW! O. Bonaventure et al., "Computer Networking: Principles, Protocols and Practice"
 - Online free book, solo in inglese
 - https://scm.info.ucl.ac.be/release/cnp3/Book/html/
- □ Altri testi consigliati
 - A.Tanenbaum, "Reti di Calcolatori," Pearson, Prentice Hall
 - D. Comer, "Internetworking with TCP/IP" vol. 1

■ NOTA IMPORTANTE

 Le slides non costituiscono materiale di studio, ma solo di supporto, da usare come riferimento per capire quali argomenti sono stati trattati a lezione

5

Introduzione

Scopo del corso

- ☐ Fornire le basi delle tecnologie per "Reti di Computer"
 - ad es. Local Area Network, Internet, ...
- ☐ Ci occuperemo delle problematiche associate a
 - protocolli di comunicazione
 - architetture dei diversi elementi che compongono una rete
- ☐ Approccio "top-down"
 - dal livello applicativo
 - · trasmissione di messaggi
 - al livello fisico
 - trasmissione di bit

7

Top-down o Bottom-up? Esempio: invio di una lettera

Indice degli argomenti

- □ Cos'è Internet?
- ☐ Ai confini della rete
 - * sistemi terminali, reti di accesso
- □ Il nucleo della rete
 - commutazione di circuito e di pacchetto, struttura della rete
- Ritardi, perdite e throughput nelle reti a commutazione di pacchetto
- □ Reti sotto attacco: la sicurezza
- □ Storia di Internet

Che cos'è Internet?

Che cos'è Internet

- Un protocollo definisce il formato e l'ordine dei messaggi scambiati fra due o più entità in comunicazione
 - es.: TCP, IP, HTTP, Skype, Fthernet
- □ *Internet*: "rete delle reti"
 - struttura gerarchica
 - Internet pubblica e intranet private
- Standard Internet
 - * RFC: Request for comments
 - IETF: Internet Engineering Task Force

Cos'è Internet

- Infrastruttura di comunicazione per applicazioni distribuite:
 - Web, VoIP, e-mail, giochi, ecommerce, condivisione di file

Servizi forniti alle applicazioni:

- servizio affidabile dalla sorgente alla destinazione
- Servizio "best effort" (non affidabile) senza connessione

Cos'è un protocollo?

Protocolli umani:

- □ "Che ore sono?"
- "Ho una domanda"
- Presentazioni
- ... invio di specifici messaggi
- ... quando il messaggio è ricevuto, vengono intraprese specifiche azioni, o si verificano altri eventi

Protocolli di rete:

- Dispositivi hardware e software, non umani
- □ Tutta l'attività di comunicazione in Internet è governata dai protocolli

Un protocollo definisce il formato e l'ordine dei messaggi scambiati tra due o più entità in comunicazione, così come le azioni intraprese in fase di trasmissione e/o ricezione di un messaggio o di un altro evento

Cos'è un protocollo?

Protocollo umano e protocollo di rete

D: Conoscete altri protocolli umani?

Indice degli argomenti

- □ Cos'è Internet?
- ☐ Ai confini della rete
 - * sistemi terminali, reti di accesso
- □ Il nucleo della rete
 - commutazione di circuito e di pacchetto, struttura della rete
- Ritardi, perdite e throughput nelle reti a commutazione di pacchetto
- □ Reti sotto attacco: la sicurezza
- □ Storia di Internet

Uno sguardo da vicino alla struttura di rete

- ai confini della rete:
 applicazioni e sistemi
 terminali
- □ reti, dispositivi fisici: collegamenti cablati e wireless
- □ al centro della rete:
 - router interconnessi
 - la rete delle reti

Ai confini della rete

□ sistemi terminali (host):

- fanno girare programmi applicativi
- es.: Web, e-mail
- situati all'estremità di Internet

architettura client/server

- L'host client richiede e riceve un servizio da un programma server in esecuzione su un altro terminale
- es.: browser/server Web; client/ server e-mail

□ architettura peer to peer

- uso limitato (o inesistente) di server dedicati
- es.: Skype, Bit Torrent

Reti d'accesso e mezzi fisici

D: Come collegare sistemi terminali e router esterni?

- reti di accesso residenziale
- reti di accesso aziendale (università, istituzioni, aziende)...
- reti di accesso mobile

Ricordate:

- ampiezza di banda (bit al secondo)?
- condivise o dedicate?

Reti di acceso residenziale (domestiche)

Componenti di una tipica rete da abitazione:

- □ DSL o modem via cavo
- router/firewall/NAT
- Ethernet

Accesso aziendale: reti locali (LAN)

- Una LAN collega i sistemi terminali di aziende e università all'edge router
- □ Ethernet:
 - 10 Mb, 100 Mb, 1 Giga,
 10 Giga
 - Moderna configurazione: sistemi terminali collegati mediante uno switch Fthernet
- □ Le LAN: Capitolo 5

Accesso wireless

- Una rete condivisa d'accesso wireless collega i sistemi terminali al router
 - attraverso la stazione base, detta anche "access point"
- LAN wireless:
 - 802.11b/g (WiFi): 11 o 54Mbps
- rete d'accesso wireless geografica
 - gestita da un provider di telecomunicazioni
 - ~ 1 Mbps per i sistemi cellulari (EVDO, HSDPA)...
 - E poi (?): WiMax per aree più grandi

Indice degli argomenti

- □ Cos'è Internet?
- □ Ai confini della rete
 - * sistemi terminali, reti di accesso
- □ Il nucleo della rete
 - commutazione di circuito e di pacchetto, struttura della rete
- Ritardi, perdite e throughput nelle reti a commutazione di pacchetto
- □ Reti sotto attacco: la sicurezza
- □ Storia di Internet

In nucleo della rete: la rete delle reti

- □ Struttura di Internet: fondamentalmente gerarchica
- □ al centro: "ISP di livello 1" (es.: Verizon, Sprint, AT&T, Cable&Wireless), copertura nazionale/ internazionale
 - Comunicno tra di loro come "pari"

ISP di livello 1 - Un esempio: Sprint

Struttura di Internet: la rete delle reti

□ ISP di livello 2: ISP più piccoli (nazionali o distrettuali)

 Si può connettere solo al alcuni ISP di livello 1, e possibilmente ad altri ISP di livello 2

Struttura di Internet: la rete delle reti

□ ISP di livello 3 e ISP locali (ISP di accesso)

Reti "ultimo salto" (last hop network), le più vicine ai sistemi terminali

Struttura di Internet: la rete delle reti

un pacchetto passa attraverso un sacco di reti!

Il nucleo della rete

- Quesito fondamentale: come vengono trasferiti i dati attraverso la rete?
 - commutazione di circuito: circuito dedicato per l'intera durata della sessione (rete telefonica)
 - commutazione di pacchetto: i messaggi di una sessione utilizzano le risorse su richiesta, e di conseguenza potrebbero dover attendere per accedere a un collegamento

Il nucleo della rete: commutazione di circuito

Risorse punto-punto riservate alla "chiamata"

- ampiezza di banda, capacità del commutatore
- risorse dedicate: non c'è condivisione
- prestazioni da circuito (garantite)
- necessaria l'impostazione della chiamata

Il nucleo della rete: commutazione di circuito

Risorse di rete (ad es. ampiezza di banda, bandwidth) suddivise in "pezzi"

- ciascun "pezzo" viene allocato ai vari collegamenti
- le risorse rimangono inattive se non utilizzate (non c'è condivisione)
- suddivisione della banda in "pezzi"
 - divisione di frequenza
 - * divisione di tempo

Commutazione di circuito: FDM e TDM

Il nucleo della rete: commutazione di pacchetto

Il flusso di dati punto-punto viene suddiviso in *pacchetti*

- ☐ I pacchetti degli utenti A e B condividono le risorse di rete
- Ciascun pacchetto utilizza completamente il canale
- □ Le risorse vengono usate a seconda delle necessità

Larghezza di banda suddivisa in pezzi" Allocazione dedicata Risorse riservate

Contesa per le risorse

- La richiesta di risorse può eccedere il quantitativo disponibile
- congestione: accodamento dei pacchetti, attesa per l'utilizzo del collegamento
- store and forward: il commutatore deve ricevere l'intero pacchetto prima di poter cominciare a trasmettere sul collegamento in uscita

Commutazione di pacchetto: multiplexing statistico

La sequenza dei pacchetti A e B non segue uno schema prefissato Condivisione di risorse su richiesta \Rightarrow multiplexing statistico.

TDM: ciascun host ottiene uno slot di tempo dedicato unicamente a quella connessione.

Commutazione di pacchetto: store-and-forward

- Occorrono L/R secondi per trasmettere (push out) un pacchetto di L bit su un collegamento in uscita da R bps
- store and forward: /intero pacchetto deve arrivare al router prima che questo lo trasmetta sul link successivo
- ritardo = 3L/R (supponendo che il ritardo di propagazione sia zero)

Esempio:

- □ L = 7,5 Mbits
- □ R = 1,5 Mbps
- □ ritardo = 15 sec

approfondiremo tra breve il ritardo \dots

Confronto tra commutazione di pacchetto e commutazione di circuito

La commutazione di pacchetto consente a più utenti di usare la rete!

- □ 1 collegamento da 1 Mpbs
- Ciascun utente:
 - 100 kpbs quando è "attivo"
 - attivo per il 10% del tempo
- commutazione di circuito:
 - 10 utenti
- commutazione di pacchetto:
 - con 35 utenti, la probabilità di averne > 10 attivi è inferiore allo 0,0004

D: come è stato ottenuto il valore 0,0004?

Confronto tra commutazione di pacchetto e commutazione di circuito

La commutazione di pacchetto è la "scelta vincente?"

- Ottima per i dati a raffica
 - · Condivisione delle risorse
 - Più semplice, non necessita l'impostazione della chiamata
- Eccessiva congestione: ritardo e perdita di pacchetti
 - Sono necessari protocolli per il trasferimento affidabile dei dati e per il controllo della congestione
- □ D: Come ottenere un comportamento circuit-like?
 - è necessario fornire garanzie di larghezza di banda per le applicazioni audio/ video
 - è ancora un problema irrisolto (cfr Capitolo 7)

Indice degli argomenti

- □ Cos'è Internet?
- ☐ Ai confini della rete
 - * sistemi terminali, reti di accesso
- □ Il nucleo della rete
 - commutazione di circuito e di pacchetto, struttura della rete
- Ritardi, perdite e throughput nelle reti a commutazione di pacchetto
- □ Reti sotto attacco: la sicurezza
- □ Storia di Internet

Come si verificano ritardi e perdite?

I pacchetti si accodano nei buffer dei router

- □ il tasso di arrivo dei pacchetti sul collegamento eccede la capacità del collegamento di evaderli
- 🗖 i pacchetti si accodano, in attesa del proprio turno

Quattro cause di ritardo per i pacchetti

- 1. Ritardo di elaborazione del nodo:
 - controllo errori sui bit
 - determinazione del canale di uscita
- 2. Ritardo di accodamento
 - attesa di trasmissione
 - livello di congestione del router

Ritardo nelle reti a commutazione di pacchetto

- 3. Ritardo di trasmissione (L/R):
- R=frequenza di trasmissione del collegamento (in bps)
- L=lunghezza del pacchetto (in bit)
- □ Ritardo di trasmissione = L/R
- 4. Ritardo di propagazione (d/s)
- d = lunghezza del collegamento fisico
- s = velocità di propagazione del collegamento (~2×108 m/sec)
- □ Ritardo di propagazione = d/s

L'analogia del casello autostradale

- □ Le automobili viaggiano (ossia "si propagano") alla velocità di 100 km/h
- □ Il casello serve (ossia "trasmette") un'auto ogni 12 secondi
- □ auto~bit; colonna ~ pacchetto
- D: quanto tempo occorre perché le 10 auto in carovana si trovino di fronte al secondo casello?
- □ Tempo richiesto al casello per trasmettere l'intera colonna sull'autostrada = 12*10 = 120 sec
- □ Tempo richiesto a un'auto per viaggiare dall'uscita di un casello fino al casello successivo: 100km/ (100km/h)= 1 hr
- R: 62 minuti

L'analogia del casello autostradale

- Le auto ora "si propagano" alla velocità di 1000 km/h
- Al casello adesso occorre 1 min per servire ciascuna auto
- D: le prime auto arriveranno al secondo casello prima che le ultime auto della colonna lascino il primo?
- □ Sì! Dopo 7 minuti, la prima auto sarà al secondo casello, e tre auto saranno ancora in coda davanti al primo casello.
- □ Il primo bit di un pacchetto può arrivare al secondo router prima che il pacchetto sia stato interamente trasmesso dal primo router!
 - Si veda l'applet sul sito web

Ritardo di nodo

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- □ d_{proc} = ritardo di elaborazione (*processing delay*)
 - in genere pochi microsecondi, o anche meno
- □ d_{queue} = ritardo di accodamento (*queuing delay*)
 - dipende dalla congestione
- \Box d_{trans} = ritardo di trasmissione (*transmission delay*)
 - = L/R, significativo sui collegamenti a bassa velocità
- □ d_{prop} = ritardo di propagazione (*propagation delay*)
 - * da pochi microsecondi a centinaia di millisecondi

Ritardo di accodamento

- R=frequenza di trasmissione (bps)
- L=lunghezza del pacchetto (bit)
- a=tasso medio di arrivo dei pacchetti

La/R = intensità di traffico

- □ La/R ~ 0: poco ritardo
- □ La/R -> 1: il ritardo si fa consistente
- □ La/R > 1: più "lavoro" in arrivo di quanto possa essere effettivamente svolto, ritardo medio infinito!

Ritardi e percorsi in Internet

- Ma cosa significano effettivamente ritardi e perdite nella "vera" Internet?
- <u>Traceroute:</u> programma diagnostico che fornisce una misura del ritardo dalla sorgente al router lungo i percorsi Internet punto-punto verso la destinazione.
 - invia tre pacchetti che raggiungeranno il router i sul percorso verso la destinazione
 - il router i restituirà i pacchetti al mittente
 - il mittente calcola l'intervallo tra trasmissione e risposta

Ritardi e percorsi in Internet

traceroute: da gaia.cs.umass.edu a www.eurecom.fr

```
Tre misure di ritardo da gaia.cs.umass.edu a cs-gw.cs.umass.edu

1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms

2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms

3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms

4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms

5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms

6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms

7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms

8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms

9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms

10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms

11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms

12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms

13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms

14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms

15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms

16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms

17 ***

18 ***

** significa nessuna risposta (risposta persa, il router non risponde)

19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Perdita di pacchetti

- una coda (detta anche buffer) ha capacità finita
- quando il pacchetto trova la coda piena, viene scartato (e quindi va perso)
- □ il pacchetto perso può essere ritrasmesso dal nodo precedente, dal sistema terminale che lo ha generato, o non essere ritrasmesso affatto

Throughput

- throughput: frequenza (bit/unità di tempo) alla quale i bit sono trasferiti tra mittente e ricevente
 - * instantaneo: in un determinato istante
 - * medio: in un periodo di tempo più lungo

Throughput (segue)

 \square $R_s < R_c$ Qual è il throughput medio end to end?

 $\square R_s > R_c$ Qual è il throughput medio end to end?

Collo di bottiglia

Collegamento su un percorso punto-punto che vincola un throughput end to end

Throughput: scenario Internet

- □ throughput end to end per ciascuna connessione: $min(R_c,R_s,R/10)$
- □ in pratica: R_c o R_s è spesso nel collo di bottiglia

10 collegamenti (equamente) condivisi collegamento collo di bottiglia R bit/sec

Indice degli argomenti

- □ Cos'è Internet?
- ☐ Ai confini della rete
 - * sistemi terminali, reti di accesso
- □ Il nucleo della rete
 - commutazione di circuito e di pacchetto, struttura della rete
- Ritardi, perdite e throughput nelle reti a commutazione di pacchetto
- □ Reti sotto attacco: la sicurezza
- □ Storia di Internet

Sicurezza di rete

- □ Il campo della sicurezza di rete si occupa di:
 - * malintenzionati che attaccano le reti di calcolatori
 - come difendere le reti dagli attacchi
 - come progettare architetture immuni da attacchi
- □ Internet non fu inizialmente progettato per la sicurezza
 - ❖ Visione originaria: "un gruppo di utenti che si fidavano l'uno dell'altro collegati a una rete trasparente" ☺
 - I progettisti del protocollo Internet stanno recuperando
 - Un occhio alla sicurezza in tutti i livelli

I malintenzionati installano malware negli host attraverso Internet

- □ Il malware può raggiungere gli host attraverso virus, worm, o cavalli di Troia.
- □ Malware di spionaggio può registrare quanto viene digitato, i siti visitati e informazioni di upload.
- □ Gli host infettati possono essere "arruolati" in botnet, e usati per lo spamming e per gli attacchi di DDoS.
- □ Il malware è spesso auto-replicante: da un host infettato può passare ad altri host

I malintenzionati installano malware negli host attraverso Internet

□ Cavalli di Troia

- Parte nascosta di un software utile
- Oggi si trova spesso su alcune pagine web (Active-X, plugin)...

Virus

- L'infezione proviene da un oggetto ricevuto (attachment di e-mail), e mandato in esecuzione
- Auto-replicante: si propaga da solo ad altri host e utenti

■ Worm:

- L'infezione proviene da un oggetto passivamente ricevuto che si auto-esegue
- Auto-replicante: si propaga da solo ad altri host e utenti

Worm Sapphire: scans/sec aggregati nei primi 5 minuti di diffusione (CAIDA, UWisc data)

I malintenzionati attaccano server e infrastrutture di rete

- □ Negazione di servizio (DoS): gli attaccanti fanno sì che le risorse (server, ampiezza di banda) non siano più disponibili al traffico legittimo sovraccaricandole di traffico artefatto
- Selezione dell'obiettivo
- Irruzione negli host attraverso la rete
- Invio di pacchetti verso un obiettivo da parte degli host compromessi

I malintenzionati analizzano i pacchetti

Analisi dei pacchetti (packet sniffing):

- media broadcast (Ethernet condivisa, wireless)
- un'interfaccia di rete legge/registra tutti i pacchetti (password comprese!) che l'attraversano

 Il software usato per il Laboratorio alla fine di questo capitolo è un packet-sniffer (gratis!)

I malintenzionati usano indirizzi sorgente falsi

☐ *IP spoofing:* invio di pacchetti con un indirizzo sorgente falso

I malintenzionati registrano e riproducono

record-and-playback: "sniffano" dati sensibili (password, ad esempio), per poi utilizzarli in un secondo tempo

Indice degli argomenti

- □ Cos'è Internet?
- ☐ Ai confini della rete
 - * sistemi terminali, reti di accesso
- □ Il nucleo della rete
 - commutazione di circuito e di pacchetto, struttura della rete
- Ritardi, perdite e throughput nelle reti a commutazione di pacchetto
- □ Reti sotto attacco: la sicurezza
- □ Storia di Internet

Storia di Internet

1961-1972: sviluppo della commutazione di pacchetto

- □ 1961: Kleinrock la teoria delle code dimostra l'efficacia dell'approccio a commutazione di pacchetto
- □ 1964: Baran uso della commutazione di pacchetto nelle reti militari
- 1967: il progetto ARPAnet viene concepito dall'Advanced Research Projects Agency
- 1969: primo nodo operativo ARPAnet

- **1972**:
 - dimostrazione pubblica di ARPAnet
 - NCP (Network Control Protocol), primo protocollo tra nodi
 - Primo programma di posta elettronica
 - ARPAnet ha 15 nodi

THE ARPA NETWORK

Storia di Internet

1972-1980: Internetworking e reti proprietarie

- 1970: rete satellitare ALOHAnet che collega le università delle Hawaii
- □ 1974: Cerf e Kahn architettura per l'interconnessione delle reti
- □ 1976: Ethernet allo Xerox PARC
- ☐ Fine anni '70: architetture proprietarie: DECnet, SNA, XNA
- ☐ Fine anni '70: commutazione di pacchetti: ATM ante-litteram
- □ 1979: ARPAnet ha 200 nodi

Le linee guida di Cerf e Kahn sull'internetworking:

- minimalismo, autonomia per collegare le varie reti non occorrono cambiamenti interni
- modello di servizio best effort
- router stateless
- controllo decentralizzato

definiscono l'attuale architettura di Internet

Storia di Internet

1980-1990: nuovi protocolli, proliferazione delle reti

- □ 1983: rilascio di TCP/IP
- □ 1982: definizione del protocollo smtp per la posta elettronica
- 1983: definizione del DNS per la traduzione degli indirizzi IP
- □ 1985: definizione del protocollo ftp
- 1988: controllo della congestione TCP

- nuove reti nazionali: Csnet, BITnet, NSFnet, Minitel
- □ 100.000 host collegati

Storia di Internet

1990-2000: commercializzazione, Web, nuove applicazioni

- ☐ Primi anni '90: ARPAnet viene dismessa
- 1991: NSF lascia decadere le restrizioni sull'uso commerciale di NSFnet
- ☐ Primi anni '90: il Web
 - ipertestualità [Bush 1945, Nelson 1960's]
 - * HTML, HTTP: Berners-Lee
 - 1994: Mosaic, poi Netscape
- ☐ Fine '90 : commercializzazione del Web

Fine anni '90 - 2007:

- arrivano le "killer applications": messaggistica istantanea, condivisione di file P2P
- sicurezza di rete
- 50 milioni di host, oltre 100 milioni di utenti
- velocità nelle dorsali dell'ordine di Gbps

Storia di Internet

2008:

- ~ 500 milioni di host
- □ Voice, Video over IP
- Applicazioni P2P: BitTorrent (condivisione di file) Skype (VoIP), PPLive (video)...
- Più applicazioni: YouTube, gaming
- u wireless, mobilità

Reti di Calcolatori

Modello a strati

Università degli Studi di Verona Dipartimento di Informatica

Docente: Damiano Carra

Modello di comunicazione

- ☐ Quando un sistema vuole scambiare informazioni con un altro sistema, nasce il problema della *comunicazione*
- ☐ La comunicazione tra sistemi racchiude in sé due sottoproblemi:
 - 1. il linguaggio utilizzato
 - 2. la modalità di scambio (trasmissione) delle informazioni
- ☐ Il primo passo per affrontare la questione è creare un *modello* che ne descriva le caratteristiche
- ☐ In tale modello, chiameremo:
 - linguaggio: comunicazione logica
 - modalità di scambio: comunicazione fisica

Esempio

□l'informazione è stata scambiata

- a livello logico da una persona ad un'altra
- a livello fisico attraversando diversi sistemi

☐ da notare che, a seconda del mezzo utilizzato, ho caratteristiche di comunicazione fisica differenti, mentre la comunicazione logica rimane inalterata

3

□Altro esempio: diplomatico alle nazioni unite

- a livello logico, il diplomatico pensa di parlare ai suoi colleghi
- a livello fisico egli parla solo con il suo interprețe.

Alcune problematiche associate alla comunicazione

□Logica

- linguaggio utilizzato
 - · significato dei messaggi
- regole per lo scambio di informazione
 - modalità instaurazione connessioni
 - algoritmi per instradamento
- modalità di trasferimento (simplex, half duplex, ...)
- ...

□ Fisica

- indirizzamento
- controllo degli errori
- affidabilità
- sequenzialità
- segmentazione
- multiplazione
- controllo di flusso
- modalità di trasmissione del segnale
- ...

Approccio a livelli

- ☐ Approccio "divide et impera"
 - il problema della comunicazione (logica e fisica) viene suddiviso in sottoproblemi
 - ciascun sotto-problema viene trattato separatamente
- ☐ L'informazione passa attraverso una "catena di montaggio" in cui essa viene trasformata in modo da poter essere spedita
 - ogni passo della catena assolve ad una funzione specifica
 - confezione del prodotto, imballaggio, decisione della destinazione, ...
- ☐ Dall'altra parte ci sarà una catena di montaggio *inversa* che restituisce l'informazione
- ☐ Tradizionalmente questa catena di montaggio viene rappresentata "in verticale", come una serie di livelli (o layer, strati)
 - ogni livello assolve ad un compito ben preciso e svolge una serie di funzioni specifiche

5

Esempio

Modello a strati

- ☐ Ogni livello interagisce solo con i due adiacenti (comunicazione fisica):
 - riceve il messaggio dal livello superiore (o inferiore)
 - lo elabora
 - lo passa al livello inferiore (o superiore)
- ☐ In genere, nell'elaborazione del messaggio, viene aggiunta dell'informazione
 - l'informazione aggiunta non e' altro che il risultato della funzioni svolte da quel livello
- ☐ Il livello N colloquia con il suo omologo (*peer*) di un'altra macchina (*comunicazione logica*)

7

Esempio

livello 1

Perché il modello a strati?

- ☐ Per ogni livello vengono definiti
 - i servizi che esso deve offrire
 - le funzioni che deve svolgere
 - le primitive che deve mettere a disposizione
- □ NON viene definito il MODO in cui implementare i servizi / funzioni
 - modularità
 - intercambiabilità
- ☐ Rientra nella concezione di "divide et impera" / catena di montaggio
 - esempio: confezionamento di un prodotto
 - alla postazione N della catena, il prodotto viene confezionato (la postazione offre un servizio di confezionamento; la funzione da svolgere sono controllo del riempimento, suddivisione del prodotto in più confezioni, ...)
 - non ha importanza se il confezionamento viene fatto da una macchina o da una persona

9

Definizioni

- □Tra ogni coppia di livelli adiacenti esiste un'*interfaccia*
- □L'interfaccia definisce i *servizi* offerti dal livello sottostante a quello superiore
- □Ogni livello può offrire più di un servizio al livello superiore
- □Per espletare il servizio, ogni livello compie una serie di *funzioni*
- □I servizi vengono fruiti attraverso *primitive*

Servizi, funzioni e primitive

☐ Gli elementi attivi in ogni livello del sistema vengono detti <i>entità</i>

- ☐ Un <u>servizio</u> è una prestazione fornita dall'entità di livello inferiore ad una entità di livello superiore
- ☐ Le <u>funzioni</u> sono un'insieme di attività (elaborazione, analisi, aggiunte) che nell'insieme creano il servizio
 - Per poter espletare un servizio, l'entità svolge una serie di funzioni
- ☐ Le <u>primitive</u> sono delle comunicazioni tra entità per poter usufruire del servizio offerto (richiesta del servizio e ricezione di informazioni sul servizio)
 - sono caratterizzate da parametri tra cui: informazione da trasferire, indicazione del destinatario, caratteristiche del servizio richiesto, ...

☐ In definitiva:

 attraverso le primitive, un livello richiede al livello sottostante un servizio; il servizio viene soddisfatto attraverso lo svolgimento di funzioni

11

Esempio: il servizio di spedizione merci

ш	prodotto	confezionato	4000	occoro	chadita	3 D	ogozionto
- 11	1010000110	COMEZIONALO				al He	-907 MINE

- ☐ Il reparto confezionamento usufruisce del servizio spedizioni del reparto spedizioni
- ☐ Il prodotto viene passato da un reparto all'altro con una richiesta di utilizzo del servizio (primitiva)
- ☐ Il servizio di spedizioni svolge le seguenti funzioni:
 - controlla la correttezza del destinatario
 - se il pacco da spedire è troppo piccolo per giustificare un viaggio, aspetta che arrivino altri pacchi per quella destinazione
 - in alternativa, se sono già presenti dei pacchi tali da caricare un camion, fa partire il camion
 - ...

☐ In definitiva:

- il reparto confezionamento
 - richiede il recapito del prodotto dal cliente (primitiva)
 - vedrà recapitato il prodotto dal cliente (servizio)
- il recapito è avvenuto grazie ad una serie di funzioni svolte dal reparto spedizioni

Primitive

Request: richiesta di un servizio

Indication: indicazione di evento

Response: risposta all'indicazione

Confirm: conferma della richiesta

□Non bisogna dimenticare che la finalità di una richiesta di un servizio è sempre quella della comunicazione, ovvero se un'entità fa una richiesta di servizio è perché vuole comunicare con la sua entità pari

□Da questo segue che, per ogni Request, esiste un'Indication all'entità pari

□ Inoltre, se viene richiesto il riscontro, ad una coppia Request - Indication corrisponde una coppia Response - Confirm

Nota: le primitive hanno carattere locale ed è il linguaggio utilizzato dai diversi livelli per comunicare tra loro

13

Servizi

- ☐ Esistono due <u>categorie</u> di servizi
 - connection oriented
 - in questa categoria ricadono servizi che "simulano" una connessione punto-punto
 - garantiscono la consegna sequenziale
 - connectionless
 - in questa categoria ricadono i servizi che non si preoccupano di instaurare una connessione, ma prevedono il semplice "passaggio" dell'informazione
 - su modello del sistema postale
- ☐ Per ciascuna categoria è possibile inoltre associare una "qualità del servizio" (Quality of Service, QoS)
 - affidabile
 - non ci sono perdite perché il ricevente informa sempre l'avvenuta ricezione
 - non affidabile
 - sono possibili perdite di dati

Servizi

□Attenzione: ogni livello può offrire al livello superiore una serie di servizi

□I servizi offerti possono rientrare nelle due categorie e posso essere affidabili e non.

□La scelta di uno o l'altro servizio viene fatta accedendo al livello attraverso un punto particolare a seconda del servizio richiesto \Rightarrow SAP (Service Access Point)

□Esempio:

- servizio A: connection oriented affidabile
- servizio B: connection oriented non affidabile
- servizio C: connectionless non affidabile
- servizio X: connection oriented affidabile
- servizio Y: connectionless affidabile

15

Funzioni

- ☐ Per espletare il proprio servizio, all'interno ogni livello svolge una serie di funzioni
- ☐ Alcuni tipi di funzioni posso essere:
 - Instaurazione/terminazione delle connessioni
 - Controllo d'errore e controllo di flusso
 - Riordino trame
 - se i pacchetti ricevuti sono fuori sequenza, li riordina prima di consegnarli a livello superiore
 - Multiplazione
 - se più sorgenti vogliono comunicare con la stessa destinazione, unisce i messaggi
 - Segmentazione
 - se il messaggio è troppo grande per il livello inferiore, lo segmenta in più parti; dall'altra parte avverrà il processo inverso, ovvero il riassemblaggio
 - Instradamento
 - sulla base delle informazioni contenute nel messaggio, decide attraverso quale SAP passare l'informazione al livello inferiore
 - Indirizzamento
 - sulla base delle informazioni contenute nel messaggio, decide attraverso quale SAP passare l'informazione a livello superiore

Definizioni

☐ Finora è stata fatta una	panoramica	dell'interazione	tra livelli
→ comunicazione fisica	a		

- □ Ricordiamo che lo scopo finale è la comunicazione tra entità pari, ovvero dello stesso livello su due macchine differenti → comunicazione logica
- ☐ Le problematiche associate alla *comunicazione fisica* vengono risolte con il modello a strati, definendo le primitive, i servizi e le funzioni di ciascun livello
- ☐ Le problematiche associate alla *comunicazione logica* vengono risolte attraverso la definizione di *protocolli*

17

Definizioni

Protocollo

insieme di regole che sovraintendono al colloquio tra entità dello stesso livello

- formato dei messaggi, informazioni di servizio, algoritmi di trasferimento, etc.
- ogni livello ha il suo protocollo specifico che è comprensibile solo dalle entità dello stesso livello
- le entità di livello diverso trattano il contenuto come fosse una scatola chiusa

Stack protocollare

insieme dei protocolli di ciascun livello

Architettura di rete

l'insieme dei livelli e dei rispettivi protocolli

Esempio: architettura di rete

Nota: la comunicazione tra livelli avviene tramite primitive mentre la comunicazione tra entità pari (dello stesso livello) di sistemi diversi avviene tramite protocolli

19

20

Esempio: architettura a 4 livelli

- ☐ Per ogni livello vengono definiti le funzionalità che deve svolgere, ovvero i servizi che deve offrire ai livelli adiacenti
- ☐ Per usufruire di tali servizi, vengono specificate delle primitive che hanno significato a livello locale, ovvero vengono comprese solo dai livelli adiacenti che le usano
- ☐ Infine, per ogni livello viene definito il protocollo che usa: tale protocollo (insieme di regole che sovraintendono...) risulta incomprensibile ai livelli adiacenti, ma comprensibile al livello corrispondente (comunicazione logica)
- esempio: invio di caratteri battuti da una tastiera ad una macchina remota
 - i due livelli applicativi sanno che l'informazione sono dei caratteri (ASCII)
 - al livello di trasporto viene richiesto di instaurare una connessione e trasferire i dati (questo tramite primitive); oltre a tale richiesta viene passato il messaggio
 - il livello di trasporto vede solo dei bit, ma non ne comprende il significato: deve solo trasportarli

Riassunto

- ☐ Finora abbiamo visto come modellizzare la comunicazione
 - fisica → livelli
 - logica → protocollo
- ☐ Abbiamo analizzato le componenti che dovrebbero formare il modello completo
- □ La questione che nasce ora è: com'e' possibile progettare in modo completo un'architettura di rete (protocolli, livelli, servizi, ...)?
- ☐ esempio: regole di progettazione dei livelli
 - ogni livello deve prevedere un meccanismo per identificare univocamente mittente e destinatario.
 - i livelli devono essere scelti in modo da:
 - minimizzare l'informazione trasmessa
 - separare chiaramente le funzioni implementate in ogni livello
 - rendere possibile la sostituzione in modo trasparente

21

Esempio di architettura di rete: il modello di riferimento ISO-OSI

- ☐ È stato il primo passo nella definizione di un'architettura di rete completa e aperta (non proprietaria)
 - ISO: International Standard Organization
 - OSI: Open System Interconnection
 - modello per l'interconnessione dei sistemi aperti, ovvero dei sistemi che sono aperti alla comunicazione con altri sistemi.
- ☐ Essendo un primo passo nella definizione dell'architettura, è un modello che definisce *funzionalità* raggruppate in livelli, ma non ancora in modo formale protocolli e servizi da usare nei vari livelli
 - non è dunque un'architettura di rete vera e propria
- ☐ Standardizzato nel 1983
 - Modello teorico sviluppato troppo tardi
 - alla pubblicazione di OSI Internet era già una realtà
 - utilizzato come modello di riferimento

Modello OSI: principi

- ☐ Un livello deve essere creato per ogni grado di astrazione
- ☐ Ogni livello deve eseguire funzioni ben definite
- ☐ Le interfacce tra i livelli devono essere definite in modo da minimizzare l'informazione scambiata
- ☐ Il numero di livelli deve essere:
 - sufficientemente grande in modo che le stesse funzioni non siano separate in più livelli
 - sufficientemente piccolo in modo che l'architettura non risulti con funzionalità ridondate

23

Stack OSI

Modello OSI

☐ Strutturato in sette livelli

- primi tre dipendenti dalla rete
- ultimi tre dipendenti dall'applicazione
- quarto livello isola ambiente rete da ambiente applicazione

☐ Sono stati definiti 2 sistemi distinti:

- end system (host): è l'end user coinvolto nella comunicazione
- intermediate system (router): è un elemento il cui compito è solo il trasporto del messaggio
- □ Poiché le funzionalità del router sono quelle di trasporto indipendentemente dal contenuto del messaggio, non è necessario che siano implementati tutti i livelli

25

Livello delle applicazioni

- ☐ Fornisce i servizi (applicazioni) all'utente
- ☐ Fra queste:
 - login remoto
 - file transfer
 - servizi WWW
 - e-mail
 - ...

Livello di presentazione

- ☐ Si occupa dei problemi relativi alla rappresentazione dei dati
 - sintassi dell'informazione
- ☐ Funzioni
 - conversione dei dati dal formato di trasmissione ad un formato utile all'applicazione
 - · codifica e decodifica
 - · compressione dei dati
 - · crittografia
- □ Protocolli
 - definizione del formato dei pacchetti
 - definizione strutture dati complesse
 - definizione dei messaggi per lo scambio di informazioni
 - definizione degli algoritmi per codifica/decodifica, compressione, crittografia, ...

Livello di sessione

- ☐ Consente a due applicazioni di sincronizzarsi e gestire lo scambio dei dati
- ☐ Funzioni:
 - instaurazione e rilascio di una connessione di sessione
 - scambio di dati normali e di dati con priorità
 - gestione del dialogo tra entità comunicanti mediante token
 - sincronizzazione e strutturazione del dialogo
 - gestione delle eccezioni
- ☐ Protocolli
 - definizione del formato dei pacchetti
 - definizione dei messaggi per lo scambio di informazioni
 - definizione degli algoritmi per il controllo della sessione

Livello di trasporto

- ☐ Fornisce un canale di trasporto ideale e privo di errori tra due utenti, indipendentemente dalla rete
- ☐ Funzioni
 - recupero degli errori
 - multiplazione / demultiplazione
 - riordino dei pacchetti
 - controllo della congestione
- ☐ Protocolli
 - definizione del formato dei pacchetti
 - definizione dei messaggi per lo scambio di informazioni
 - definizione degli algoritmi per il controllo della congestione

29

Livello di rete

- ☐ E' responsabile del trasferimento di informazioni tra nodi, indipendentemente dal tipo di collegamento
- ☐ Funzioni:
 - instradamento
 - internetworking
- ☐ Protocolli
 - definizione del formato dei pacchetti
 - definizione dei messaggi per lo scambio di informazioni
 - definizione degli algoritmi per l'instradamento (shortest path, optimal routing)

Livello di data link

- ☐ Fornisce un canale numerico di comunicazione il più possibile affidabile
 - trasferimento di unità logiche di bit (trame) su un collegamento
- ☐ Funzioni:
 - gestione collegamento
 - framing (divisione delle trame)
 - controllo errori
 - controllo di flusso
- □ Protocolli
 - definiscono il formato della trama
 - definiscono i messaggi di feedback per il controllo di flusso
 - definiscono gli algoritmi per la gestione trasmissione

31

Livello fisico

- ☐ Gestisce la trasmissione del segnale su canale fisico
- ☐ Funzioni
 - trasferimento di un flusso seriale di bit
 - attivazione, disattivazione e controllo della connessione fisica
- ☐ Protocolli
 - specificano le caratteristiche elettriche, meccaniche e procedurali
 - ad esempio: trasmissione on-off o antipodale, significato dell'ordine dei bit, formato della flag, ...;

Stack OSI... ...e Stack TCP/IP

7 - Applicazione		Applicaz.: HTTP, E-mail		
6 - Presentazione	Livelli di			
5 - Sessione	applicazione (utente)	Trasporto: TCP - UDP		
4 - Trasporto				
3 - Rete		Rete: IP		
2 - Collegamento dati	Livelli di rete	Collegamento dati: Ethernet, PPP, ATM,		
1 - Fisico		Fisico		

