# HX1230 liquid crystal display module



Guangxi studious Technology Co., Ltd.

2017.01

# table of Contents

| 1 Outline                                                    |          | 1 |
|--------------------------------------------------------------|----------|---|
| 2 Pin                                                        |          | 1 |
| 3 operating                                                  |          | 1 |
| 3.1 Operation Timing                                         |          | 1 |
| 3.2 Instruction Set                                          |          | 2 |
| 3.3 DDRAM MAP (Memory map)                                   |          | 3 |
| 3.4 Initialization process                                   |          | 3 |
| 3.4.1. Reset                                                 |          | 3 |
| 3.4.2 An internal power supply disposed                      |          | 3 |
| 3.4.3 Set the highlighted                                    |          | 3 |
| 3.4.4 All set point display                                  | <u>'</u> | 4 |
| 3.4.5 Set display switch                                     |          | 4 |
| 3.4.6 Setting scan start line                                |          | 4 |
| 3.4.7 Set up DDRAM of Y address                              |          | 4 |
| 3.4.8 Set up DDRAM of X High three low nibble address        |          | 4 |
| 3.4.9 Remove DDRAM Memo <mark>ry d</mark> ata (clear screen) |          | 5 |
| 3.5 Routine                                                  |          | 5 |

### 1 Outline

HX1230 The liquid crystal display module Is a simple structure, compact monochrome dot-matrix display;

- Resolution 96, line 68
- Only need four IO can drive
- Single LED backlight, lower power consumption
- Maximum serial rate 4.0Mbits / s
- External RST (reset) pin input
- Voltage range: 2.7V ~ 5.0V
- Low power consumption for battery powered system
- Temperature range: -25 ~ 70 °C



| Pin Symb | ol       | Function Description | Remark                     |
|----------|----------|----------------------|----------------------------|
| 1        | <u> </u> | Module reset         | Active Low                 |
| 2        | CE       | Module Enable        | Active Low                 |
| 3        | N/C      | Suspended            |                            |
| 4        | DIN      | Serial Data          | Data out pin               |
| 5        | CLK      | Serial Clock         | Rising, DIN effective data |
| 6        | VCC      | LCD power supply     | 3.3-5.0V                   |
| 7        | BL       | Backlight Power      | 3.3-5.0V                   |
| 8        | GND      | Ground               |                            |

# 3 operating

#### 3.1 Operation Timing

RST pin is used to reset the display module, the reset time is recommended 10ms  $\sim$  100ms.

CE pin only valid serial data is low. Serial data pin DIN, the data format as shown in FIG.

Consists of a control bit D / C, add a parameter byte (high to low post) composed 9Bit format, when the D / C data / instruction control bit is 1, the data byte following the parameters; if D / C control bit is 0, the parameter is an instruction byte behind;

Studious technological innovation produced http://shop111128253.taobao.com/
TEL: 15676107689/15277013241



Map 1 Instruction format

Serial Clock CLK, when the rising edge of CLK, the data Din to be sampled.



table 2 HX1230 Instruction Set

|                                         | - / -                     |             |        |         | Con    | nmand b | yte   |        |          |                                                                                                       |
|-----------------------------------------|---------------------------|-------------|--------|---------|--------|---------|-------|--------|----------|-------------------------------------------------------------------------------------------------------|
| instruction                             | D/C                       | D7 E        | 6 D5 I | 94 D3 I | 02     |         |       | D1     | D0       | description                                                                                           |
| An internal power suppl                 | y <mark>is</mark> pβovide | ed <b>0</b> | 0      | 1       | 0 W    | 3 W2 \  | W1 W0 | when W | are "11  | 11", open;<br>When W is "1000", closed;                                                               |
| Contrast settings                       | 0                         | 1           | 0      | 0 B     | 4 B3 B | 2       |       | B1     | B0 HX    | I230 model (not available);                                                                           |
| Set reverse video                       | 0                         | 1           | 0      | 1       | 0      | 0       | 1     | 1      | When N / | R When N / R is "0", the normal display;<br>When N / R is "1", displayed in reverse;                  |
| All set points 0                        |                           | 10          |        | 10      |        | 0       | 1     | 0      | When the | N / O if N / O is "0", to close the whole display;<br>When the N / O is "1", opens the whole display; |
| Set display switch                      | 0                         | 10          |        | 10      |        | 1       | 1     | 1      | When the | o N / S when N / S is "0", the display is turned off;<br>When N / S is "1", the display is opened;    |
| Set the DDRAM Y address                 | 0                         | 1           | 0      | 11      |        | 0 Y2    | 2 Y1  |        | RAM ac   | ldresses provided Y0 Y<br>0≤Y≤7                                                                       |
| Set the DDRAM low f address 0           | our X                     | 0           | 0      | 00      |        | хз х    | 2 X1  |        | X0 X ad  | dress of RAM is provided                                                                              |
| X address is set upper the bits 0 DDRAM | iree                      | 0           | 0      | 01      |        | 0 X     | 6 X5  |        | X4       | 0≤Y≤95                                                                                                |
| Setting scan start line 0               |                           | 0           | 1      | S5 S    | 4      | S3 S    | 2     | S1     | Setting  | scan start line S0 S: 0≤Y≤63                                                                          |
| Write data                              | 1                         | D7 D        | 6 D5 E | 94 D3 I | )2 D1  |         |       |        | Writing  | data to the display D0 in RAM                                                                         |

# 3.3 DDRAM MAP (Memory map)



Map 3 HX1230 Memory Map

HX1230 display module DDRAM memory is an array of rows 9, 36, as shown in FIG. 3; 1 in each DDRAM write, the column address is automatically incremented point to the next byte DDRAM; 96 byte line when finished, will automatic row address plus one; when wrote the last line of the last one, it will automatically jump back row address 0, 0's.

currently using HX1230 display module, The modulus should be provided: a female code, reverse, row line;

### 3.4 Initialization process

#### 3.4.1. Reset

Connected to the power supply, and the internal registers DDRAM Contents undefined, must give RST A reset pulse signal. Reset time is recommended 10ms - 100ms.

#### 3.4.2 An internal power supply is provided

|                          |        |      |        |    | С   | ommand by |        |         |         |                                    |
|--------------------------|--------|------|--------|----|-----|-----------|--------|---------|---------|------------------------------------|
| instruction              | D/C    | D7 D | 6 D5 E | )4 |     | D3        | D2     | D1      | D0      | description                        |
| Set an internal power so | urce 0 | 0    | 0      | 1  | 0 W | 3 W2 W1   | W0 whe | n W are | "1111", | open;<br>When W is "1000", closed; |

#### 3.4.3 Set reverse video

|                   |     |      |        |    | С           | ommand by |             |   |        |                                                                                      |
|-------------------|-----|------|--------|----|-------------|-----------|-------------|---|--------|--------------------------------------------------------------------------------------|
| instruction       | D/C | D7 D | 6 D5 E | )4 | D3 D2 D1 D0 |           | description |   |        |                                                                                      |
| Set reverse video | 0   | 1    | 0      | 1  | 0           | 0         | 1           | 1 | When N | R When N / R is "0", the normal display;<br>When N / R is "1", displayed in reverse; |



### 3.4.4 All set point display

|                     | - / - |    |    |    | Com | mand by | te |    |          |                                                    |
|---------------------|-------|----|----|----|-----|---------|----|----|----------|----------------------------------------------------|
| instruction         | D/C   | D7 | D6 | D5 | D4  | D3      | D2 | D1 | D0       | description                                        |
| Set all significant | 0     | 1  | 0  | 1  | 0   | 0       | 1  | 0  | When the | N / O if N / O is "0", to close the whole display; |
| Illustrates the p   | oint  |    |    |    |     |         |    |    |          | When the N / O is "1", opens the whole display;    |

### 3.4.5 Set display switch

|                      |  |    |    |    | Com | ımand by |    |    |          |                                                                                                  |
|----------------------|--|----|----|----|-----|----------|----|----|----------|--------------------------------------------------------------------------------------------------|
| instruction D / C    |  | D7 | D6 | D5 | D4  | D3       | D2 | D1 | D0       | description                                                                                      |
| Set display switch ( |  | 10 |    | 10 |     | 1        | 1  | 1  | When the | N / S when N / S is "0", the display is turned off;<br>When N / S is "1", the display is opened; |

# 3.4.6 Setting scan start line

|                   |    |      |    |    | Comm | and byte |    |    |        |                                |
|-------------------|----|------|----|----|------|----------|----|----|--------|--------------------------------|
| instruction D / C |    | D7   | D6 | D5 | D4   | D3       | D2 | D1 | D0     | description                    |
| Setting scan play | 0. |      | 1  | S5 | S4   | S3       | S2 | S1 | Sottin | g scan start line S0 S: 0≤Y≤63 |
| Starting line     |    | , de | •  | 35 | 34   | 33       | 32 | 31 | Settii | g scar start line 30 3. 021203 |

# 3.4.7 Set up DDRAM of Y address

|                             |     |    |    |    | Comma |    |    |    |       |                            |
|-----------------------------|-----|----|----|----|-------|----|----|----|-------|----------------------------|
| instruction                 | D/C | D7 | D6 | D5 | D4    | D3 | D2 | D1 | D0    | description                |
| Y address provid<br>DDRAM 0 | ed  | 1  | 0  | 1  | 1     | 0  | Y2 | Y1 | The F | RAM address Y0 of Y: 0≤Y≤7 |

## 3.4.8 Set up DDRAM of X High three low nibble address

|                                           |       |    |    |    | Comm |      |         |         |         |             |
|-------------------------------------------|-------|----|----|----|------|------|---------|---------|---------|-------------|
| instruction                               | D/C   | D7 | D6 | D5 | D4   | D3   | D2      | D1      | D0      | description |
| Set the DDRAM low for address 0           | our X | 0  | 0  | 0  | 0    | X3 X | 2 X1 X0 | setting | the X F | AM Address: |
| X address is set upper th<br>bits 0 DDRAM | ree   | 0  | 0  | 0  | 1    | 0    | X6 X    | 5 X4    |         | 0≤Y≤95      |



#### 3.4.9 Remove DDRAM Memory data (clear screen)

```
set_XY (0,0);
                       // Set coordinates.
for (i = 0; i <9; i ++) {
       for (j = 0; j <96; j ++) {
               write_LCD (0x00,1);}}
```

#### 3.5 Routine

```
Note: suitable for routine studious Technology Co., Ltd. Guangxi produced models HX1230 display module
      wiring:
            RST -> P1.0 CE
            -> P1.1 DIN ->
            P1.2 CLK ->
            P1.3 BL -> P1.4
#include "stc12c5a60s2.h"
#include <stdio.h>
#include "char_tab.h"
sbit HX_RST = P1 ^ 0;
                            // Define the reset pin
sbit HX_CE = P1 ^ 1;
                             // Definitions enable pin
sbit HX_DIN = P1 ^ 2;
                             // Defined data pins
sbit HX_CLK = P1 ^ 3;
                             // Defined clock pin
sbit HX_BL = P1 ^ 4;
                              // Defined backlight pin
void delay (unsigned int t);
                                                         // Delay function
void write_HX (char volue, bit DC);
                                                          // to HX1230 Display Module Writes a command / data
DC = 0: instruction DC = 1: data
void initinal_HX (void);
                                                          // initialization HX1230 screen
void set_XY (unsigned char x, unsigned char y); // Positioning coordinates
void clr_HX (void);
                                                           // Clear screen function
void Display_Picture (char * ch);
                                                           // Display image function
void english_display8x8 (char x, char y, char input);
                                                                       // Display a 8 * 8 English characters
void sping_english8x8 (char x, char y, char * ch);
                                                                        // To display a string 8x8 String
void display_betty_logo (int power);
                                                                       // Display power
```

### HX1230 display module manuals

```
void english_display8x16 (char x, char y, char input);
                                                              // Display a 16 * 8 English characters
void sping_english8x16 (char x, char y, char * ch);
                                                              // To display a string 16x8 character of
/ ***************************
     Function Name: Delay () Function
     Description: program delay
void delay (unsigned int t) {
     unsigned int i, j; for (i =
     0; i <t; i ++) {
          for (j = 0; j < 1000; j ++); \} 
 ******** *******************
     Function Name: write_LCD (char volue, bit DC) Description: to HX1230 display module Write
     a byte instructions or data
void write_HX (char volue, bit DC) // Write a lcd Instruction / data DC = 0: instruction DC = 1: data
     int i;
     HX_CE = 0;
                              // Enable HX1230 Display Module Operations
     HX_DIN = DC;
                              // Instructions or data
     HX_CLK = 1;
                                // Generating a rising edge of the write control bit
     HX\_CLK = 0;
     for (i = 0; i <8; i ++)
                             // Write a command or data byte
          if (volue & 0x80) {
                HX_DIN = 1;
          else {
                HX_DIN = 0;
          HX_CLK = 1; volue =
         volue << 1; HX_CLK = 0;}
     HX_CE = 1;
                                // Ban HX1230 The operation display module
```

```
Function Name: initinal_LCD (void)
     Function Description: Initializes control registers module HX1230
 *************************
void initinal_HX (void)
                          // initialization lcd
     HX\_CLK = 0;
     HX_RST = 0; delay
     (50); HX_RST = 1;
     HX_CE = 0; delay
     (1); HX_CE = 1;
     delay (1);
     write_HX (0x2f, 0);
                                // Set the internal power supply ( ON: 0x2f / OFF: 0x28) , Internal power switch is turned on
     write_HX (0x90,0);
                                // Set contrast (not used)
     write_HX (0xa6,0);
                                // Set reverse display (normal: 0Xa6 / Anti obvious: 0xa7 ), Normal display settings
     write_HX (0xa4,0);
                                // Setting all of the display point (closed: 0XA4 / ON: A5) , Close full display
     write_HX (0xaf, 0);
                                // Display setting switch (open: 0xAF / shut down: 0xAE) Open display
     write_HX (0x40,0);
                                // Setting scan start line, the scanning start line is provided 0
                                // Set up DDRAM of Y Address, set RAM of Y Address 0
     write_HX (0xb0,0);
     write_HX (0x10,0);
                                // Set up DDRAM of X High three addresses, RAM of X High three address is 0
     write_HX (0x00,0);
                                // Set up DDRAM of X The low four addresses, RAM of X The lower four bits of address \theta
     clr_HX ();}
 ******** *******************
     Function Name: set_XY (unsigned char x, unsigned char y) Function
     Description: Sets the coordinate memory DDRAM
***********************************
void set_XY (unsigned char x, unsigned char y)
                                                            // Positioning coordinates
     write_HX (0xb0 + y, 0);
                                                            // Set up DDRAM of Y address
     write_HX (0x10 | ((x & 0x7f) >> 4), 0);
                                                            // Set up DDRAM of X High three addresses
     write_HX (0x0f & x, 0);
                                                            // Set up DDRAM of X The lower four bits of address
 **********************
     Function name: void clr_HX (void)
```

```
Description: clear screen
 ************************************
void clr_HX (void)
                          // Clear screen function
    unsigned char i, j; set_XY (0,0); // Set
    coordinates.
    for (i = 0; i <9; i ++) {
         for (j = 0; j <96; j ++) {
             write_HX (0x00,1);}}}
Function name: void Display_Picture (char * ch)
    Description: a display size of 96 * 68 pictures
***********************************
void Display_Picture (char * ch)
                                      // Display image function
    unsigned char i, j;
    set_XY (0,0); // Set coordinates.
    for (i = 0; i <9; i ++) {
         for (j = 0; j <96; j ++) {
             write_HX (* (ch + (i * 96) + j), 1);}}}
*****************************
    Function Name: english_display8x8 (char x, char y, char input) Description:
    English characters a display 8 * 8
void english_display8x8 (char x, char y, char input)
                                                 // Display a 8 * 8 English characters
    char i, * ch;
    ch = ENGLISH_tab8x8 + 8 * (input - 32); set_XY (x, y);
    for (i = 0; i <8; i ++)
```

```
write_HX (* (ch + i), 1);}}
/ ****************************
    Function Name: sping_english8x8 (char x, char y, char * ch) Function: a
    character string display English 8 * 8
void sping_english8x8 (char x, char y, char * ch)
                                                 // To display a string 8x8 String
    char i = 0;
    while (* (ch + i)! = '\ 0') {
         english_display8x8 (x + 8 * i, y, * (ch + i)); i ++;}}
Function Name: display_betty_logo (int power)
    Description: displays battery icon
***********************************
void display_betty_logo (int power)
                                                       // Display power
    char i, volue = 0, Power_mark = 0x00; int k;
    set_XY (80,0); k =
    (0xff-power) / 36; for (i = 0; i
    <k; i ++) {
         Power_mark | = 0x01 << i;}
    for (i = 0; i <10; i ++) {
         volue = *(bettey\_logo + i); if (i > = 2)
         && i <9) {
              if (Power_mark & 0x01 << (i-2)) {
                  volue & = ~ 0x3c;}}
```

```
write_HX (volue, 1);}}
***********************
    Function Name: english_display16x8 (char x, char y, char input) Function Description:
    displaying a 8 * 16 English characters
*************************
void english_display8x16 (char x, char y, char input)
                                                   // Display a 8 * 16 English characters
    char i, * ch;
    ch = ENGLISH_tab8x16 + 16 * (input - 32); set_XY (x, y);
    for (i = 0; i <8; i ++) {
        write_HX (* (ch + i), 1);}
    set_XY (x, y + 1); for (i =
    0; i <8; i ++) {
        write_HX (* (ch + i + 8), 1);}}
/ ***************************
    Function Name: sping_english8x16 (char x, char y, char * ch) Description:
    displaying a string of English 16 * 8
 void sping_english8x16 (char x, char y, char * ch)
                                                           // To display a string 8 * 16 character of
    char i = 0;
    while (* (ch + i)! = '\ 0') {
        english_display8x16 (x + 8 * i, y, * (ch + i)); i ++;}}
*********************
    Function name: void chinese_display (char x, char y, char * ch)
                                                           // display a Chinese character
    Description: a display Chinese characters 16 *
```

```
void chinese_display (char x, char y, char * ch)
                                                             // Display a Chinese character
     char i; set_XY (x, y); for
     (i = 0; i <16; i ++) {
           write_HX (* (ch + i), 1);}
     set_XY (x, y + 1); for (i =
     0; i <16; i ++) {
           write_HX (* (ch + i + 16), 1);}}
/ ***************************
     Function Name: void main (void)
     Description: The main function
**************************************
void main (void) {
     char PChar [30] = 0; int i
     = 0;
     initinal_HX ();
                                                                       // initialization
     while (1) {
           Display_Picture (Tab_Logo);
                                                                       // Display image function
           delay (1000);
           clr_HX ();
                                                                       // Clear screen
           sping_english8x8 (0, 1, "abcdefghijkl");
                                                                       // To display a string 8x8 character of
           sping_english8x16 (0,2, "abdcefghijkl");
           chinese_display (0,4, tab_chinese);
           display_betty_logo (80);
                                                                       // Display power
           sprintf (PChar, "Count:% d", i);
           sping_english8x8 (0, 6, PChar);
                                                                     // To display a string 8x8 character of
           j ++;
           delay (1000);}}
```

TEL: 15676107689/15277013241