

Fundamentos Físicos y Tecnológicos

Curso 2020/2021

Relación de problemas 6

1. Calcular el cociente v_2/v_1 en el circuito de la Figura 1 suponiendo que el amplificador no está saturado y que $R_1=10~\mathrm{k}\Omega,~R_2=50~\mathrm{k}\Omega,~R_3=25~\mathrm{k}\Omega,~R_i=500~\mathrm{k}\Omega,~R_o=0~\mathrm{k}\Omega$ y $A=10^5$. ¿Depende el resultado del valor de R_3 ? Razonar la respuesta. (Sol: $\frac{v_2}{v_1}=-5$)

Figura 1

2. Una fuente v_f sin conexión a tierra se llama fuente flotante. Este tipo de señal puede amplificarse a través del circuito de la Figura 2, determinar la ganancia (v_o/v_f) de dicho proceso de amplificación. $(Sol:-R_2/R_1)$

Figura 2

3. Encontrar v_o en función de v_1 y v_2 en el circuito de la Figura 3. (Sol: $v_o = \frac{R_4(R_1 + R_2)}{R_1(R_3 + R_4)}v_2 - \frac{R_2}{R_1}v_1$)

Figura 3

4. Encontrar los valores de v_1 y v_2 en el circuito de la Figura 4. (Sol: $v_1=1.8V$ $v_2=-2.8V$)

Figura 4

Figura 5

- 5. Encontrar los valores de v_1 y v_2 en el circuito de la Figura 5. (Sol: $v_1 = 2.6V$ $v_2 = -2.4V$)
- 6. En el circuito de la Figura 6, $R_s=1k\Omega,$ encontrar $v_1,\,v_2,\,v_o,\,i_s,\,i_1$ e i_f como función de v_s para
 - a) $R_f = \infty$.
 - b) $R_f = 40k\Omega$.

Figura 6

- 7. En el circuito de la Figura 7, $R=1k\Omega,$ $C=1\mu F,$ L=1mH y $v_1(t)=\sin 2000t.$ Asumiendo que $v_2(0)=0$, encontrar la expresión de $v_2(t)$ para t>0. (Sol: $v_2(t)=0.5(\cos 2000t-1)$)
- 8. Para el circuito de la Figura 8
 - (a) Calcula el valor máximo que puede tomar v_1 en región lineal si $A=10^5,\,R_i$ es muy grande y R_o prácticamente cero.

Figura 7

- (b) Dibuja v_2 si $A=10^5,\,R_i$ es muy grande, R_o prácticamente cero y $v_1=100\,\mathrm{sen}\,2\pi t$ $\mu\mathrm{V}.$
- (c) ¿Cómo cambiaría el apartado (b) si se considera el modelo lineal ideal para el AO?
- (d) ¿Cómo cambiaría el apartado (b) si v_1 se conectara a la entrada no inversora y v_o a la inversora?

Datos: $V_{CC} = 5$ V y $v_o = 0$ V. $(Sol: (a)50 \ \mu V \ (b) \ v_2(t) = 10 \sin 2\pi t \ V \ si \ 0s < t < 1/12s, v_2(t) = 5$ V $si \ 1/12s < t < 5/12s, v_2(t) = 10 \sin 2\pi t \ V \ si \ 5/12s < t < 7/12s, v_2(t) = -5$ V $si \ 7/12s < t < 11/12s \ y \ v_2(t) = 10 \sin 2\pi t \ V \ si \ 11/12s < t < 1s \ (c) \ v_2(t) = 5$ V $si \ 0s < t < 1/2s \ y \ v_2(t) = -5$ V $si \ 1/2s < t < 1s \ (d)v_2(t) = -10 \sin 2\pi t \ V \ si \ 0s < t < 1/12s, v_2(t) = -5$ V $si \ 1/12s < t < 5/12s, v_2(t) = -10 \sin 2\pi t \ V \ si \ 5/12s < t < 7/12s, v_2(t) = 5$ V $si \ 7/12s < t < 11/12s \ y \ v_2(t) = -10 \sin 2\pi t \ V \ si \ 11/12s < t < 1s)$

Figura 8

9. En el circuito de la Figura 9 $v_s = \sin 100t$. Encontrar v_1 , v_2 así como la potencia suministrada por la fuente. Si quisiéramos amplificar v_1 , ¿cuánto valdría la ganancia? ¿Cómo cambiaría el resultado si a la salida del AO hubiese un condensador de capacidad C en lugar de la resistencia R?. (Sol: $v_1 = 0.6 \sin 100t(V)$, $v_2 = -2 \sin 100t(V)$ y $A = -\frac{10}{3}$. Los resultados no cambian al poner un condensador.)

Figura 9

Figura 10

- 10. Encontrar en el circuito de la Figura 10 v_C , i_1 , v_2 y R_{in} , la resistencia de entrada vista por la fuente de la figura. (Sol: $v_2 = -10V$, $v_C = 6V$, $i_1 = 5mA$ y $R_{in} = 4.2k\Omega$)
- 11. Encontrar v_o en función de v_1 y v_2 en el circuito de la Figura 11. (Sol: $v_o = v_2 + (R_2/R_1)(v_2 v_1)$)

Figura 11

12. Encontrar v_o en función de v_1 y v_2 en el circuito de la Figura 12. (Sol: $v_o = (1+R_2/R_1)(v_2-v_1)$)

Figura 12

- 13. Calcular la función de transferencia y pintar el diagrama de Bode de cada uno de los circuitos de las Figuras 13a $(R_1 = 1k\Omega, R_2 = 10k\Omega, C = 0.1\mu F)$, 13b $(R_1 = 1k\Omega, R_2 = 10k\Omega, C = 0.1\mu F)$, 13c $(R_1 = 10k\Omega, R_2 = 100k\Omega, C_1 = 0.8\mu F, C_2 = 80pF)$ y 13d $(R_1 = 1k\Omega, R_2 = 9k\Omega, C_1 = 8\mu F, C_2 = 0.9nF)$.
- 14. Calcular la potencia en las fuentes de tensión y corriente justificando si es consumida o suministrada así como el valor de V_D en el circuito de la figura 14 si R_1 = 4.7 M Ω , R_2 = 300 Ω , R_3 = 1 k Ω , R_4 = R_5 = 500 Ω , R_6 = 33 k Ω , R_7 = 4.7 k Ω , R_8 = 370 Ω , V_1 = 20 mV, V_2 = -6V, V_3 = 10mV y I= 3 μ A.(Sol: P_I = 0,012 μ W, P_{V_1} = 0W, P_{V_3} = 0,678 μ W, P_{V_2} = 0,139W, V_D = 2,58V)

Figura 13

Figura 14

- 15. Un rectificador de media onda es un circuito que sirve para eliminar la parte negativa o positiva de una señal de corriente alterna. Un rectificador de precisión de media onda puede construirse con dos diodos, dos resistencias y un AO mediante el circuito de la figura 15. Pinta v_C y v_D en el circuito de la figura anterior. ¿En cuál de las dos señales anteriores se consigue el efecto de rectificación? Justifica tu respuesta. Datos: $R_1 = 1 \text{ k}\Omega$, $R_2 = 1 \text{ k}\Omega$, $V_{\gamma} = 0.65 \text{ V}$, $v_s(t) = \sin 2\pi t \text{ V}$.
- 16. Calcular la potencia en las fuentes de tensión y corriente y en el diodo del circuito de la figura 16 si R_1 = 1 k Ω , R_2 = 2 k Ω , R_3 = 3 k Ω , R_4 = 4 k Ω , R_5 = 5 k Ω , V_D = 3 V, V_γ = 0.6 V y I =1 mA. (Sol: P_I = IV_E = 1,44 mW, P_d = I_4V_d = 0,168 mW, P_{V_1} = I_1V_1 = 57 μW)
- 17. Si $v_s(t) = 5 \sin 3t$ mV, calcula v_D en t = 0.25 s en el circuito de la figura 17 si $R_1 = 100 \Omega$, $R_2 = 1 \text{ k}\Omega$, $R_3 = 3.3 \text{ k}\Omega$, $R_4 = 100 \text{ k}\Omega$ y $i = 3 \cdot 10^{-3} v_i(A)$. (Sol: $v_D(t = 0.25s) = 0.929 \text{ V}$)
- 18. Calcula la potencia consumida por la resistencia R_4 el circuito de la figura 18 si R_1 = 1 k Ω , R_2 = 2 k Ω , R_3 = 3 k Ω , R_4 = 4 k Ω , R_5 = 5 k Ω , R_6 = 6 k Ω , L_1 = 4H, L_2 = 5H,

Figura 15

Figura 16

Figura 17

 $i = 3\cos\left(2\ 10^3t + 0.5\right) \text{ mA y } v_s = 7\cos\left(10^3t - 0.2\right) \text{ V}.$ (Sol: $p(t) = 4\left(4\cos\left(2\ 10^3t + 2.07\right) + 1.75\cos\left(10^3t + 1.37\right)\right)^2 \ mW$)

Figura 18