

(An Autonomous Institute)

DESIGN AND IMPLEMENTATION OF MAGNITUDE COMPARATOR

EXPT. NO:

DATE :

AIM: To design and implement

(i) 2 – bit magnitude comparator using basic gates.

(ii) 8 – bit magnitude comparator using IC 7485.

APPARATUS REQUIRED:

Sr. No.	COMPONENT	SPECIFICATION	QTY.
1.	AND GATE	IC 7408	2
2.	X-OR GATE	IC 7486	1
3.	OR GATE	IC 7432	1
4.	NOT GATE	IC 7404	1
5.	4-BIT MAGNITUDE	IC 7485	2
	COMPARATOR		
6.	IC TRAINER KIT	-	1
7.	PATCH CORDS	-	30

THEORY:

The comparison of two numbers is an operator that determines one number is greater than, less than (or) equal to the other number. A magnitude comparator is a combinational circuit that compares two numbers A and B and determines their

(An Autonomous Institute)

relative magnitude. The outcome of the comparator is specified by three binary variables that indicate whether A>B, A=B or A<B.

$$A = A_3 A_2 A_1 A_0$$

$$B = B_3 B_2 B_1 B_0$$

The equality of the two numbers and B is displayed in a combinational circuit designated by the symbol (A=B).

This indicates A greater than B, then inspect the relative magnitude of pairs of significant digits starting from the most significant position. A is 0 and that of B is 0.

We have A<B, the sequential comparison can be expanded as

$$A>B = A3B_3^1 + X_3A_2B_2^1 + X_3X_2A_1B_1^1 + X_3X_2X_1A_0B_0^1$$

$$A < B = A_3{}^1B_3 + X_3A_2{}^1B_2 + X_3X2A_1{}^1B_1 + X_3X_2X_1A_0{}^1B_0$$

The same circuit can be used to compare the relative magnitude of two BCD digits.

Where, A = B is expanded as,

$$A = B = (A_3 + B_3) (A_2 + B_2) (A_1 + B_1) (A_0 + B_0)$$

$$\Psi$$
 Ψ

 \mathbf{x}_1

 \mathbf{X}_2

 \mathbf{x}_0

(An Autonomous Institute)

LOGIC DIAGRAM:

2- BIT MAGNITUDE COMPARATOR

(An Autonomous Institute)

K MAP:

(An Autonomous Institute)

TRUTH TABLE

A1	A0	B1	B0	A > B	A = B	A < B
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

(An Autonomous Institute)

PIN DIAGRAM FOR IC 7485:

LOGIC DIAGRAM:

8- BIT MAGNITUDE COMPARATOR

(An Autonomous Institute)

TRUTH TABLE:

A		В		A>B	A=B	A <b< th=""></b<>
0000	0000	0000	0000	0	1	0
0001	0001	0000	0000	1	0	0
0000	0000	0001	0001	0	0	1

PROCEDURE:

- (i) Connections are given as per circuit diagram.
- (ii) Logical inputs are given as per circuit diagram.
- (iii) Observe the output and verify the truth table.

RESULT: