

Electrónica 5

CODIGO:	248	CREDITOS:	6
	Ingeniería Mecánica		
ESCUELA:	Eléctrica	AREA A LA QUE PERTENECE:	Electrónica
PRE REQUISITO:	Electrónica 3	POST REQUISITO:	Electrónica 6
TRE REGUISITO.	Liectionica 3	TOST REQUISITO.	Liectionica 0
CATEGORIA:	Obligatorio		
	Ingrid Rodríguez de		
CATEDRÁTICO (A):	Loukota	AUXILIAR:	Diego Roche
EDIFICIO:	T-3	SECCIÓN:	Única
			Laboratorio de
SALON DEL CURSO:	Martes y Jueves: 410	SALON DEL LABORATORIO:	Electrónica
HORAS POR SEMANA DEL		HORAS POR SEMANA DEL	
CURSO:	3	LABORATORIO:	Variable
DÍAS QUE SE IMPARTE EL	·	DIAS QUE SE IMPARTE EL	
CURSO:	Martes y jueves	LABORATORIO:	Variado
	Martes 16:30 a 18:10		
HORARIO DEL CURSO:	Jueves 17:20 a 18:10	HORARIO DEL LABORATORIO:	Variado

DESCRIPCIÓN DEL CURSO: el estudiante deberá comprender el funcionamiento interno de un microprocesador y microcontrolador ARM, basándose en esto para relacionar los conceptos de lógica binaria, y así poder establecer relaciones básicas con los diferentes dispositivos exteriores que se le puedan conectar y desarrollar infinidad de aplicaciones en el campo de la electrónica.

OBJETIVOS GENERALES: conocer la arquitectura y funcionamiento de los microprocesadores genéricos y de los microcontroladores ARM Cortex-M. Poder conectar el microcontrolador con su entorno y lograr crear un sistema. Saber programar un microcontrolador, y lograr dar solución a diferentes problemas con poca circuitería.

METODOLOGÍA: clases magistrales, investigaciones, discusiones, tareas, uso de simuladores de microcontrolador Texas Instruments.

EVALUACIÓN DEL RENDIMIENTO ACADEMICO: la zona del curso se compone de 2 exámenes parciales de 25 puntos cada uno, tareas y cortos con valor de 5 puntos, laboratorio con 20 puntos y el examen final de 25 puntos. Las evaluaciones se realizan con fechas según el calendario oficial de actividades, siendo en su mayoría de pregunta directa o bien serie de falso y verdadero, en el caso del segundo parcial se utilizará algún simulador para lograr comprender mejor la programación del microprocesador.

La zona mínima estará regida al reglamento de la Facultad de Ingeniería, la cual es de 36 puntos y la nota de promoción de 61 puntos. Se sugiere al estudiante que la asistencia sea lo más regular, y se les incentiva tomándola diariamente.

De acuerdo con el Normativo de Evaluación y Promoción del estudiante de pregrado de la Facultad de Ingeniería, se procederá así:

	=	
PROCEDIMIENTO	INSTRUMENTO DE EVALUACIÓN	PONDERACIÓN
	Parciales (2)	50
	Tareas y Cortos	5
	Laboratorio	20
Total de la Zona		75%
Evaluación Final		<u>25%</u>
Nota de Promoción		100%

CONTENIDO PROGRAMATICO Y CALENDARIZACIÓN:				
Contenido	Actividad			
Arquitectura interna de los microprocesadores y microcontroladores	Exposición oral de cada uno de los elementos internos de los microprocesadores genéricos y de los microcontroladres ARM Cortex-M			
2. Memoria y Puertos de entrada/salida	Exposición oral presentando a la memoria y los puertos de entrada/salida.			
3. Modos de direccionamiento	Exposición oral de los tipos de direccionamiento para los microprocesadores Intel y Z80; y su variación para los microcontroladores.			
4. Programación en lenguaje ensamblador	Exposición oral de las diferentes fases de la programación del lenguaje ensamblador. Presentación del programa simulador de un microcontrolador, y la programación del mismo.			
5. Interrupciones	Exposición oral de la interrupción y los diferentes tipos que existen.			
6. Puertos	Lectura de los puertos serial, paralelo y usb. Con énfasis de cómo valerse de ellos en futuras aplicaciones.			

BIBLIOGRAFÍA:

- Valvano, J. Introduction to ARM Cortex-M microcontrollers. Volumen 1. 5^{ta} edición. 2014.
- Caprile, S. Desarrollo con microcontroladres ARM Cortex-M. Argentina, 2013.
- Lanbridge, J. Profesional embedded ARM development.
- Furber, S. **ARM system-on-chip arquitecture.** 2nd edition.
- Brey, B. **Los microprocesadores Intel**. 7^a edición. Editorial Prentice Hall. México, 2001.
- García, C. El universo digital del IBM PC, AT y PS/2. 4ª edición. Ediciones Grupo Universitario de Informática. España, 1997.

Contenido:

Contenido.					
#	Tema	Fechas importantes			
1	Registros y unión de éstos en un sistema de microprocesadores	25/febrero 1er parcial			
2	Arquitectura interna del microprocesador	8-19/abril receso estudiantil y semana santa			
3	Buses, memorias y puertos E/S en microprocesadores	21/abril 2do parcial			
4	Modos de direccionamiento				
5	Introducción a sistemas embebidos				
6	 Arquitectura Cortex-M 				
7	 Registros 				
8	 Reset 				
9	 Memoria 				
10	Modos de operación				
11	Lenguaje ensamblador para Cortex-M				
12	Sintaxis				
13	 Modos de direccionamiento y operandos 				
14	Instrucciones: acceso a memoria, operaciones				
	lógicas, de rotación, aritméticas				
15	Pila				
16	Funciones y control de flujo				
17	CISC vrs. RISC				
18	Conceptos básicos de puertos de entrada y salida				
19	Interfaces para puerto serial y paralelo				
20	UART				

Director: Armando Rivera Alonzo. Coordinador área: Julio César Solares Peñate. Profesora: Ingrid Rodríguez de Loukota