Practical Machine Learning Course Project

D. Ulrich

Synopsis

The training and test data are taken from the following study: Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human '13). Stuttgart, Germany: ACM SIGCHI. 2013.

The goal of this project is to predict the manner in which they did the exercise. The description should adress the following questions:

- -how the model was built.
- -how cross validation was used.
- -what the expected out of sample error is.
- -what choices were done.

At the beginning the packages needed to produce the results are loaded.

```
library(caret,quietly=TRUE)
```

```
## Warning: package 'caret' was built under R version 3.2.2
```

```
## Warning: package 'ggplot2' was built under R version 3.2.2
```

library(AppliedPredictiveModeling, quietly=TRUE)

```
## Warning: package 'AppliedPredictiveModeling' was built under R version
## 3.2.2
```

```
library(rpart.plot,quietly=TRUE)
```

```
## Warning: package 'rpart.plot' was built under R version 3.2.2
```

```
## Warning: package 'rpart' was built under R version 3.2.2
```

library(randomForest, quietly=TRUE)

```
## Warning: package 'randomForest' was built under R version 3.2.2
```

```
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
```

Question

In the study, six participants participated in a dumbell lifting exercise five different ways. The five ways, as described in the study, were "exactly according to the specification (Class A), throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class C), lowering the dumbbell only halfway (Class D) and throwing the hips to the front (Class E). Class A corresponds to the specified execution of the exercise, while the other 4 classes correspond to common mistakes."

By processing data gathered from accelerometers on the belt, forearm, arm, and dumbell of the participants in a machine learning algorithm, the question is can the appropriate activity quality (class A-E) be predicted?

Input data

In a next step the data are loaded:

```
file_train <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
file_test <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
#download.file(url=file_train, destfile=pml-training.csv, method="curl")
#download.file(url=file_test, destfile=pml-testing.csv, method="curl")

train <- read.table('pml-training.csv', na.strings=c("NA",""), header = TRUE, sep =
',')
test <- read.table('pml-testing.csv', na.strings=c("NA",""), header = TRUE, sep = ',')

colnames_train <- colnames(train)
colnames_test <- colnames(test)</pre>
```

Features

Next I decided to eliminate columns with NA and other nonnumerical columns that are useless for prediction.

```
# Count the number of non-NAs in each col.
nonNAs <- function(x) {</pre>
  as.vector(apply(x, 2, function(x) length(which(!is.na(x)))))
# Build vector of missing data or NA columns to drop.
colcnts <- nonNAs(train)</pre>
drops <- c()</pre>
for (cnt in 1:length(colcnts)) {
  if (colcnts[cnt] < nrow(train)) {</pre>
    drops <- c(drops, colnames_train[cnt])</pre>
  }
}
# Drop NA data and the first 7 columns as they're unnecessary for predicting.
train <- train[,!(names(train) %in% drops)]</pre>
train <- train[,8:length(colnames(train))]</pre>
test <- test[,!(names(test) %in% drops)]</pre>
test <- test[,8:length(colnames(test))]</pre>
```

In a further step I make sure there are no variables with near zero variability.

```
nsv <- nearZeroVar(train, saveMetrics=TRUE)
nsv
```

##	freqRatio	percentUnique	zeroVar r	ızv
## roll_belt	1.101904	6.7781062	FALSE FAL	.SE
## pitch_belt	1.036082	9.3772296	FALSE FAL	.SE
## yaw_belt	1.058480	9.9734991	FALSE FAL	.SE
## total_accel_belt	1.063160	0.1477933	FALSE FAL	.SE
## gyros_belt_x	1.058651	0.7134849	FALSE FAL	.SE
## gyros_belt_y	1.144000	0.3516461	FALSE FAL	.SE
## gyros_belt_z	1.066214	0.8612782	FALSE FAL	SE
## accel_belt_x	1.055412	0.8357966	FALSE FAL	.SE
## accel_belt_y	1.113725	0.7287738	FALSE FAL	SE
## accel_belt_z	1.078767	1.5237998	FALSE FAL	.SE
## magnet_belt_x	1.090141	1.6664968	FALSE FAL	.SE
## magnet_belt_y	1.099688	1.5187035	FALSE FAL	.SE
## magnet_belt_z	1.006369	2.3290184	FALSE FAL	.SE
## roll_arm	52.338462	13.5256345	FALSE FAL	.SE
## pitch_arm	87.256410	15.7323412	FALSE FAL	.SE
## yaw_arm	33.029126	14.6570176	FALSE FAL	SE
## total_accel_arm	1.024526	0.3363572	FALSE FAL	.SE
## gyros_arm_x	1.015504	3.2769341	FALSE FAL	.SE
## gyros_arm_y	1.454369	1.9162165	FALSE FAL	.SE
## gyros_arm_z	1.110687		FALSE FAL	.SE
## accel_arm_x	1.017341	3.9598410	FALSE FAL	.SE
## accel_arm_y	1.140187	2.7367241	FALSE FAL	SE
## accel_arm_z	1.128000	4.0362858	FALSE FAL	.SE
## magnet_arm_x	1.000000	6.8239731	FALSE FAL	SE
## magnet_arm_y	1.056818			.SE
## magnet arm z	1.036364	6.4468454	FALSE FAL	.SE
## roll dumbbell	1.022388	84.2065029	FALSE FAL	.SE
## pitch_dumbbell	2.277372	81.7449801	FALSE FAL	.SE
## yaw_dumbbell	1.132231	83.4828254	FALSE FAL	SE
<pre>## total_accel_dumbbell</pre>	1.072634	0.2191418	FALSE FAL	.SE
## gyros_dumbbell_x	1.003268			
## gyros_dumbbell_y	1.264957	1.4167771	FALSE FAL	SE
## gyros_dumbbell_z	1.060100	1.0498420	FALSE FAL	SE
## accel_dumbbell_x	1.018018	2.1659362	FALSE FAL	SE
## accel_dumbbell_y	1.053061	2.3748853	FALSE FAL	.SE
## accel_dumbbell_z	1.133333	2.0894914	FALSE FAL	SE
## magnet_dumbbell_x	1.098266			.SE
## magnet_dumbbell_y	1.197740	4.3012945	FALSE FAL	.SE
## magnet_dumbbell_z	1.020833	3.4451126	FALSE FAL	SE
## roll_forearm	11.589286	11.0895933	FALSE FAL	.SE
## pitch_forearm	65.983051	14.8557741	FALSE FAL	.SE
## yaw_forearm	15.322835	10.1467740	FALSE FAL	.SE
## total_accel_forearm	1.128928	0.3567424	FALSE FAL	.SE
## gyros_forearm_x	1.059273	1.5187035	FALSE FAL	.SE
## gyros_forearm_y	1.036554	3.7763735	FALSE FAL	.SE
## gyros_forearm_z	1.122917	1.5645704	FALSE FAL	.SE
## accel_forearm_x	1.126437	4.0464784	FALSE FAL	.SE
## accel_forearm_y	1.059406	5.1116094	FALSE FAL	.SE
## accel_forearm_z	1.006250	2.9558659	FALSE FAL	.SE
## magnet_forearm_x	1.012346	7.7667924	FALSE FAL	.SE
## magnet_forearm_y	1.246914	9.5403119	FALSE FAL	.SE
## magnet_forearm_z	1.000000	8.5771073	FALSE FAL	.SE

```
## classe 1.469581 0.0254816 FALSE FALSE
```

We can see that all of the near zero variance variables (nsv) are FALSE, so there is no need to eliminate any covariates due to lack of variablility.

Algorithm

For the analysis I spilted the data in a training (60%) and a test set (40%).

```
inTrain <- createDataPartition(y=train$classe, p=0.6, list=FALSE)
training <- train[inTrain,]
testing <- train[-inTrain,]</pre>
```

Based on the assumption that we have an nonlinar relationship between the variables and on the concensus in the coursera discussion forums, I chose two different algorithms from the caret package: classification trees (method = rpart) and random forests (method = rf).

Evaluation

I tried the classification tree first. Together with crossvalidation and preprocessing.

```
set.seed(888)
modFit <- train(training$classe ~ ., preProcess=c("center", "scale"), trControl=train
Control(method = "cv", number = 4), data = training, method="rpart")
print(modFit, digits=3)</pre>
```

```
## CART
##
## 11776 samples
##
     52 predictor
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## Pre-processing: centered (52), scaled (52)
## Resampling: Cross-Validated (4 fold)
## Summary of sample sizes: 8832, 8834, 8830, 8832
## Resampling results across tuning parameters:
##
##
             Accuracy Kappa
                               Accuracy SD
                                            Kappa SD
     ср
##
    0.0331 0.516
                       0.3688 0.00562
                                            0.00763
    0.0605 0.400
                       0.1803 0.06557
                                            0.10924
##
##
    0.1162 0.325
                       0.0621 0.04707
                                            0.07172
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.0331.
```

Run the model with the test set.

```
predictions <- predict(modFit, newdata=testing)
print(confusionMatrix(predictions, testing$classe), digits=4)</pre>
```

```
## Confusion Matrix and Statistics
##
            Reference
##
                Α
## Prediction
                     В
                          C
                               D
                                    Ε
           A 2032
                   643
##
                        628
                             588
                                  219
           В
               37
                   490
                         39
                             214
##
                                  209
##
           C
              159
                   385
                        701
                             484 372
##
           D
                0
                     0
                          0
                               0
                                    0
##
           Ε
                4
                     0
                          0
                               0 642
##
## Overall Statistics
##
##
                 Accuracy : 0.4926
##
                   95% CI: (0.4815, 0.5037)
##
      No Information Rate: 0.2845
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa: 0.3365
##
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.9104 0.32279 0.51243
                                                    0.0000 0.44521
## Specificity
                         0.6299 0.92114 0.78388
                                                    1.0000 0.99938
## Pos Pred Value
                         0.4944 0.49545 0.33365
                                                       NaN 0.99381
## Neg Pred Value
                         0.9465 0.85008 0.88390
                                                    0.8361 0.88889
## Prevalence
                         0.2845 0.19347 0.17436 0.1639 0.18379
## Detection Rate
                         0.2590 0.06245 0.08934
                                                    0.0000 0.08183
## Detection Prevalence
                         0.5238 0.12605 0.26778
                                                    0.0000
                                                           0.08233
## Balanced Accuracy
                         0.7701 0.62197 0.64816
                                                    0.5000 0.72230
```

The accuracy rate is with 0.49 to low for a serious prediction. So I tried the random forests also with crossvalidation and preprocessing.

```
set.seed(888)
modFit <- train(training$classe ~ ., preProcess=c("center", "scale"), trControl=train
Control(method = "cv", number = 4), data = training, method="rf")
print(modFit, digits=3)</pre>
```

```
## Random Forest
##
## 11776 samples
##
      52 predictor
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## Pre-processing: centered (52), scaled (52)
## Resampling: Cross-Validated (4 fold)
## Summary of sample sizes: 8832, 8834, 8830, 8832
## Resampling results across tuning parameters:
##
##
     mtry Accuracy Kappa Accuracy SD Kappa SD
##
     2
           0.990
                     0.987 0.000275
                                         0.000348
##
     27
           0.990
                     0.987 0.001010
                                         0.001279
##
     52
           0.977
                     0.971 0.003070
                                         0.003886
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
```

Run the new model with the test set.

```
predictions <- predict(modFit, newdata=testing)
print(confusionMatrix(predictions, testing$classe), digits=4)</pre>
```

```
## Confusion Matrix and Statistics
##
             Reference
##
                 Α
                            C
## Prediction
                       В
                                 D
                                      Ε
            A 2230
                     23
                            0
##
                                      0
            В
                 1 1493
                           18
                                      0
##
##
            C
                 1
                       2 1349
                                23
##
            D
                 0
                      0
                            1 1263
                                      3
##
            Ε
                 0
                      0
                            0
                                 0 1439
##
## Overall Statistics
##
##
                  Accuracy : 0.9908
##
                    95% CI: (0.9885, 0.9928)
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.9884
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
                                             0.9861
                                                       0.9821
## Sensitivity
                           0.9991
                                    0.9835
                                                                0.9979
## Specificity
                           0.9959
                                    0.9970
                                             0.9960
                                                       0.9994
                                                                1.0000
## Pos Pred Value
                           0.9898
                                    0.9874
                                             0.9811
                                                       0.9968
                                                                1.0000
## Neg Pred Value
                           0.9996
                                    0.9961
                                             0.9971
                                                       0.9965
                                                                0.9995
## Prevalence
                           0.2845
                                    0.1935
                                              0.1744
                                                       0.1639
                                                                0.1838
## Detection Rate
                           0.2842
                                    0.1903
                                              0.1719
                                                       0.1610
                                                                0.1834
## Detection Prevalence
                           0.2872
                                    0.1927
                                              0.1752
                                                       0.1615
                                                                0.1834
## Balanced Accuracy
                           0.9975
                                    0.9903
                                              0.9910
                                                       0.9908
                                                                0.9990
```

With this model we get a accuracy rate of 0.9908. So the out of sample error is: 1-0.9908=0.0092.

Conclusion

With an accuracy rate of 0.9908 the random forrests model with preprocessing an crossvalidation seems accurate for calculating the values of the 20 testing set, which are asked in the second part of the course project.

```
print(predict(modFit, newdata=test))
```

```
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```