Inferential Approach to Mining Surprising Patterns in Hypergraphs

Nil Geisweiller, Ben Goertzel AGI-19, Shenzhen

Reframing learning as reasoning

$$\mathcal{T} \vdash \mathcal{F}$$

Reframing mining surprising patterns as reasoning

- 1. Learning frequent patterns
- 2. Assessing their surprisingness

Inference Control Meta-learning

Learning how to reason efficiently.

- Unified Rule Engine
 - Evolves Inference Trees TODO: add pic
 - Control Rules to select premises and rules

Inference Control Meta-learning

Learning how to reason efficiently.

- Unified Rule Engine
 - Evolves Inference Trees TODO: add pic
 - Control Rules to select premises and rules
- Learn Control Rules for efficient reasoning TODO: diagram with learning control rules controlling inference.

Mining Frequent Patterns

Greedy algorithm:

- S: minimum support
- P, Q: patterns
- C: pattern pool
- \mathcal{D} : database
- 1. Select P from C
- 2. Select *specialization Q* of *P* such that $S \leq \text{support}(Q, \mathcal{D})$
- 3. Add Q to C
- 4. Repeat

Mining Frequent Patterns as Reasoning

$$\frac{\mathcal{S} \leq \operatorname{support}(\mathcal{Q}, \mathcal{D}) \quad \operatorname{spec}(\mathcal{Q}, P)}{\mathcal{S} \leq \operatorname{support}(P, \mathcal{D})} \, (\mathsf{AP})$$

TODO: make mini inference tree expansion example.

Mining Surprising Patterns

TODO: show example of empirical and estimate probability distributions (multi-modal estimate for the multi-world aspect).

Definition

surprise: contrary to expectation

Mining Surprising Patterns as Reasoning

TODO

Examples