6.006 Introduction to Algorithms

Lecture 2: Peak Finding

Prof. Erik Demaine

Today

- Peak finding (new problem)
 - 1D algorithms
 - 2D algorithms
- Divide & conquer (new technique)

Finding Water... IN SPACE

- You are Geordi LaForge
- Trapped on alien mountain range
- Need to find a pool where water accumulates
- Can teleport, but can't see

http://en.wikipedia.org/wiki/File:GeordiLaForge.jpg

Finding Water... IN SPACE

• <u>Problem:</u> Find a local minimum or maximum in a terrain by sampling

1D Peak Finding

• Given an array A[0..n-1]:

$$A:-\infty$$
 1 2 6 5 3 7 4 $-\infty$ 0 1 2 3 4 5 6

 A[i] is a **peak** if it is not smaller than its neighbor(s):

$$A[i-1] \le A[i] \ge A[i+1]$$

where we imagine

$$A[-1] = A[n] = -\infty$$

• Goal: Find any peak

"Brute Force" Algorithm

Test all elements for peakyness

for
$$i$$
 in range (n) :
if $A[i-1] \le A[i] \ge A[i+1]$:
return i

Algorithm 1½

- $\max(A)$
 - Global maximum is a local maximum

$$m = 0$$

for i in range $(1, n)$:
if $A[i] > A[m]$:
 $m = i$

return m

Cleverer Idea

- Look at any element A[i] and its neighbors A[i-1] & A[i+1]
 - If peak: return i
 - Otherwise: locally rising on some side
 - Must be a peak in that direction
 - So can throw away rest of array, leaving A[:i] or A[i+1:]

		<u> </u>		61			
<i>A</i> :	1	2	6	(5)	3	7	4
	0	1	2	3	4	5	6

Where to Sample?

- Want to minimize the worst-case remaining elements in array
 - Balance A[:i] of length i with A[i+1:] of length n-i-1
 - -i = n-i-1
 - -i = (n-1)/2: middle element
 - Reduce n to (n-1)/2

Algorithm

```
peak1d(A, i, j):
     m = |(i + j)/2|
     if A[m-1] \le A[m] \ge A[m+1]:
          return m
     elif A[m-1] > A[m]:
          return peak1d(A, i, m - 1)
     elif A[m] < A[m + 1]:
          return peak1d(A, m + 1, j)
```

Divide & Conquer

- General design technique:
- **1. Divide** input into part(s)
- **2. Conquer** each part recursively
- **3. Combine** result(s) to solve original problem

- 1D peak:
- 1. One half
- 2. Recurse
- 3. Return

Divide & Conquer Analysis

- **Recurrence** for time T(n) taken by problem size n
- **1. Divide** input into part(s): $n_1, n_2, ..., n_k$
- **2. Conquer** each part recursively
- **3. Combine** result(s) to solve original problem

$$T(n) =$$

divide cost +

$$T(n_1) + T(n_2) + \cdots + T(n_k)$$

+ combine cost

1D Peak Finding Analysis

- <u>Divide</u> problem into 1 problem of size $\sim \frac{n}{2}$
- Divide cost: O(1)
- Combine cost: O(1)
- Recurrence:

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

Solving Recurrence

T(n) =
$$T\left(\frac{n}{2}\right) + c$$
 to keep track of constant

 $T(n) = T\left(\frac{n}{4}\right) + c + c$
 $T(n) = T\left(\frac{n}{4}\right) + c + c$
 $T(n) = T\left(\frac{n}{8}\right) + c + c + c$
 $T(n) = T\left(\frac{n}{2^k}\right) + c k$
 $T(n) = T\left(\frac{n}{2^{\log n}}\right) + c \log n$
 $T(n) = T(1) + c \log n$
 $T(n) = \Theta(\log n)$

2D Peak Finding

- Given $n \times n$ matrix of numbers
- Want an entry not smaller than its (up to)
 4 neighbors:

9	3	5	2	4	9	8
7	2	5	1	4	0	3
9	8	9	3	2	4	©
7	6	3	1	3	2	3
9	0	6	0	4	6	4
8	9	8	0	(5)	3	0
2	1	2	1	1	1	

Divide & Conquer #0

 Looking at center element doesn't split the problem into pieces...

9	3	5	2	4	9	8
7	2	5	1	4	0	3
9	8	9	3	2	4	8
7	6	3	1	3	2	3
9	0	6	0	4	6	4
8	9	8	0	15	3	0
2	1	2	1	1	1	1

Divide & Conquer #1/2

- Consider max element in each column
- 1D algorithm would solve max array in O(lg n) time
- But $\Theta(n^2)$ time to compute max array

Divide & Conquer #1

9

- Look at center column
- Find global max within
- If peak: return it
- Else:
 - Larger left/right neighbor
 - Larger max in that column
 - Recurse in left/right half
- Base case: 1 column
 - Return global max within

9	3	5	2	4	9	8
7	2	15	1	4	0	3
9	8	9	3	2	4	8
7	6	3	1	3	2	3
9	0	6	0	4	6	4
8	9	8	0	5	3	0
2	1	2	1	1	1	1

Analysis #1

- O(n) time to find max in column
- O(lg n) iterations
 (like binary search)
- $O(n \lg n)$ time total

9	3	5	2	4	9	8
7	2	15	1	4	0	3
9	8	9	3	2	4	8
7	6	3	1	3	2	3
9	0	6	0	4	6	4
8	9	8	0	5	3	0
2	1	2	1	1	1	1

• Can we do better?

Divide & Conquer #2

- Look at boundary, center row, and center column (window)
- Find global max within
- If it's a peak: return it
- Else:
 - Find larger neighbor
 - Can't be in window
 - Recurse in quadrant, including green boundary

0	0	0	0	0	0	0	0	0
0	9	ന	15	2	4	9	8	0
0	7	2	15	1	4	0	3	0
0	9	8	9	3	2	4	8	0
0	7	6	3	1	3	2	3	0
0	9	0	6	0	4	6	4	0
0	8	9	8	0	5	3	0	0
0	2	1	2	1	1	1	1	0
0	0	0	0	0	0	0	0	0

Correctness

- Lemma: If you enter a quadrant, it contains a peak of the overall array [climb up]
- Invariant: Maximum element of window never decreases as we descend in recursion
- Theorem: Peak in visited quadrant is also peak in overall array

```
5
    9
                             9
                        4
\mathbf{0}
              3
                        4
         9
              8
                             3
```

-> proofs in recitation

Analysis #2

• Reduce $n \times n$ matrix to $\sim \frac{n}{2} \times \frac{n}{2}$ submatrix in O(n) time (|window|)

$$T(n) = T\left(\frac{n}{2}\right) + c n$$

$$T(n) = T\left(\frac{n}{4}\right) + c\frac{n}{2} + c n$$

$$T(n) = T\left(\frac{n}{8}\right) + c\frac{n}{4} + c\frac{n}{2} + cn$$

$$T(n) = T(1) + c\left(1 + 2 + 4 + \dots + \frac{n}{4} + \frac{n}{2} + n\right)$$

Divide & Conquer Wrapup

- Leads to surprisingly efficient algorithms
- Not terribly general, but still quite useful
- We'll use it again in
 - Module 4 (sorting)
 - Module 8 (geometry)

http://en.wikipedia.org/wiki/File:CaesarTusculum.jpg