Verykool USA INC.

Mobile Phone

Main Model: s353 Serial Model: N/A

November 11, 2013

Report No.: 13070501-FCC-R1

Modifications made to the product: None

This Test Report is Issued Und	ler the Authority of:	
Kahn. Yang	Alex. Lin	
Kahn Yang	Alex Liu	
Compliance Engineer	Technical Manager	EMISSIAN NEONEEPWARF AREA

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

SIEMIC, INC.
Accessing global market

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 2 of 65 www.siemic.com.cn

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

SIEMIC (Shenzhen - China) Laboratories Accreditations for Conformity Assessment

Country/Region	Scope		
USA	EMC, RF/Wireless, Telecom		
Canada	EMC, RF/Wireless, Telecom		
Taiwan	EMC, RF, Telecom, Safety		
Hong Kong	RF/Wireless ,Telecom		
Australia	EMC, RF, Telecom, Safety		
Korea	EMI, EMS, RF, Telecom, Safety		
Japan	EMI, RF/Wireless, Telecom		
Singapore	EMC, RF, Telecom		
Europe	EMC, RF, Telecom, Safety		

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 3 of 65 www.siemic.com.cn

This page has been left blank intentionally.

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 4 of 65 www.siemic.com.cn

CONTENTS

1.	EXECUTIVE SUMMARY & EUT INFORMATION	5
2.	TECHNICAL DETAILS	6
3	MODIFICATION	7
3.	TEST SUMMARY	8
4.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
ANI	NEX A. TEST INSTRUMENT & METHOD	.45
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	.48
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	.61
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	.64
ANI	NEX F. DECLARATION OF SIMILARITY	.65

1. EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programmed was to demonstrate compliance of the Verykool USA INC., Mobile Phone and model: s353 against the current Stipulated Standards. The Mobile Phone has demonstrated compliance with the FCC Part 22(H) & FCC Part 24(E): 2013.

EUT Information

EUT

Description : Mobile Phone

Main Model: s353 [Model s353 type A (two SIM card) & type B (one SIM card), details refer to

Declaration Letter.

Serial Model N/A

UMTS-FDD Band V/GSM850: -0.89 dBi

UMTS-FDD Band II/PCS1900: 1.28 dBi

Antenna Gain : Bluetooth: 0.0015 dBi

WIFI: .00015 dBi

Battery:

Model: W97135A4/A5

Spec: 3.7V 1300mAh 4.81Wh

Input Power : Limited charger voltage: 4.2V

Adapter:

Model: UT-AB-D3A1+102Y

Input: AC 100-264V 50/60Hz 0.2A

Output: DC 5V 500mA

GSM850: 31.30 dBm

Maximum Conducted

PCS1900: 29.50 dBm

AV Power to

Antenna

: UMTS-FDD Band V: 22.49 dBm

UMTS-FDD Band II: 22.12 dBm

GSM850: 29.41 dBm / ERP

Maximum PCS1900:25.75 dBm / EIRP

Radiated : UMTS-FDD Band V : 22.22dBm / ERP ERP/EIRP UMTS-FDD Band II : 22 dBm / EIRP

Classification

Per Stipulated

: FCC Part 22(H) & FCC Part 24(E): 2013

Test Standard

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 6 of 65 www.siemic.com.cn

	2. TECHNICAL DETAILS
Purpose	Compliance testing of Mobile Phone with stipulated standard
Applicant / Client	Verykool USA INC. 3636 Nobel Drive, Suite 325, San Diego, CA 92122
Manufacturer	Wingtech Group 6F G Area Beijing road east 668,high-tach king world, Wingtech Group, Shanghai, China 200001
Laboratory performing the tests	SIEMIC (Shenzhen - China) Laboratories Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-0755-2601 4629 / 2601 4953 Fax: +86-0755-2601 4953-810 Email: China@siemic.com.cn
Test report reference number	13070501-FCC-R1
Date EUT received	November 01, 2013
Standard applied	FCC Part 22(H) & FCC Part 24(E): 2013
Dates of test	November 04, 2013 to November 08, 2013
No of Units	#1
Equipment Category	PCE
Trade Name	Verykool
RF Operating Frequency (ies)	GSM850 TX : 824.2 ~ 848.8 MHz; RX : 869.2 ~ 893.8 MHz PCS1900 TX : 1850.2 ~ 1909.8 MHz; RX : 1930.2 ~ 1989.8 MHz UMTS-FDD Band V TX : 826.4 ~ 846.6 MHz; RX : 871.4 ~ 891.6 MHz UMTS-FDD Band II TX :1852.4 ~ 1907.6 MHz; RX : 1932.4 ~ 1987.6 MHz 802.11b/g/n: 2412-2462 MHz Bluetooth & BLE: 2402-2480 MHz
Number of Channels	299CH (PCS1900) and 124CH (GSM850) UMTS-FDD Band V: 102CH UMTS-FDD Band II: 277CH Bluetooth: 79CH 802.11b/g/n: 11CH BLE: 40CH
Modulation	GSM / GPRS: GMSK UMTS-FDD: QPSK 802.11b/g/n: DSSS/OFDM Bluetooth: GFSK& π /4DQPSK&8DPSK BLE: GFSK
GPRS Multi-slot class	8/10/12
FCC ID	WA6S353

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 7 of 65 www.siemic.com.cn

3 MODIFICATION

NONE

3. TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

PCE

Test Results Summary

Test Standard	Description	Product Class	Pass / Fail
§ 1.1307, § 2.1093	RF Exposure (SAR)	See Above	Pass
§2.1046; § 22.913 (a); § 24.232 (c)	RF Output Power	See Above	Pass
§ 2.1047	Modulation Characteristics	See Above	N/A
§ 2.1049; § 22.905 § 22.917; § 24.238	99% & -26 dB Occupied Bandwidth	See Above	Pass
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	See Above	Pass
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	See Above	Pass
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	See Above	Pass
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	See Above	Pass

Note: Testing was performed by configuring EUT to maximum output power status, the declared output power class for different.

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 9 of 65 www.siemic.com.cn

4. <u>MEASUREMENTS, EXAMINATION AND DERIVED</u> <u>RESULTS</u>

5.1 §1.1307, §2.1093- RF Exposure (SAR)

Test Result: Pass

The EUT is a portable device, thus requires SAR evaluation; please refer to SIEMIC SAR Report: 13070501-FCC-H

5.2 §2.1046 ;§22.913 (a); §24.232 (c)- RF Output Power

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3. Environmental Conditions Temperature 25°C Relative Humidity 55%

Atmospheric Pressure 1010mbar

4. Test date: November 04, 2013 Tested By: Kahn Yang

Procedures: (According with KDB 971168)

For Conducted Power:

- 1. The transmitter output port was connected to base station.
- 2. Set EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different test mode.
- 4. The instrument must have an available measurement/resolution bandwidth that is equal to or exceeds the OBW. If this capability is available, then the following procedure can be used to determine the total peak output power.
 - a) Set the RBW \geq OBW.
 - b) Set VBW $\geq 3 \times RBW$.
 - c) Set span $\geq 2 \times RBW$
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Ensure that the number of measurement points \geq span/RBW.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - 1) Use the peak marker function to determine the peak amplitude level.

For ERP/EIRP: (According with TIA 603B)

- 1. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Sample Calculation:

EUT Field Strength (dBm) = Reading (Signal generator) + Antenna Gain (substitution antenna) - Cable loss (From Signal Generator to substitution antenna)

Test Result: Pass

Remark: Conducted Burst Average power for reporting purposes only

Conducted Power

GSM Mode:

Burst Average Power (dBm);								
Band		GSN	1 850			GSN	11900	
Channel	128	190	251	Tune up Power tolerant	512	661	810	Tune up Power tolerant
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/
GSM Voice (1 uplink),GMSK	31.20	31.30	31.20	32±1	29.00	29.20	29.50	29±1
GPRS Multi-Slot Class 8 (1 uplink),GMSK	31.13	31.15	31.14	32±1	28.99	29.19	29.42	29±1
GPRS Multi-Slot Class 10 (2 uplink),GMSK	30.02	30.03	30.02	30±1	28.37	28.56	28.82	27±1
GPRS Multi-Slot Class 12 (4 uplink),GMSK	27.22	27.25	27.24	27±1	25.50	25.92	25.93	25±1

Remark:

GPRS, CS1 coding scheme.

 $Multi-Slot\ Class\ 8\ ,\ Support\ Max\ 4\ downlink,\ 1\ uplink\ ,\ 5\ working\ link$

Multi-Slot Class 10 , Support Max 4 downlink, 2 uplink , 5 working link

Multi-Slot Class 12 , Support Max 4 downlink, 4 uplink , 5 working link

Note: Since GSM mode has higher power, so the test items below were not performed to GPRS mode.

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 12 of 65

www.siemic.com.cn

UMTS Mode:

UMTS-FDD Band V

Band/ Time Slot configuration	Channel	Frequency	Average power (dBm)
- Total	4132	826.4	22.28
RMC	4175	835.0	22.49
12.2kbps	4233	846.6	22.38
	4132	826.4	22.27
HSDPA	4175	835.0	22.47
Subtest1	4233	846.6	22.33
	4132	826.4	22.26
HSDPA	4175	835.0	22.48
Subtest2	4233	846.6	22.36
*****	4132	826.4	22.27
HSDPA	4175	835.0	22.48
Subtest3	4233	846.6	22.37
HSDPA Subtest4	4132	826.4	22.28
	4175	835.0	22.48
	4233	846.6	22.37
TIGLIDA	4132	826.4	22.2
HSUPA Subtest1	4175	835.0	22.47
Subtest1	4233	846.6	22.36
HCHDA	4132	826.4	22.27
HSUPA Subtest2	4175	835.0	22.48
Subtest2	4233	846.6	22.37
HCHDA	4132	826.4	22.28
HSUPA Subtest3	4175	835.0	22.48
Subtests	4233	846.6	22.37
HSUPA	4132	826.4	22.27
Subtest4	4175	835.0	22.48
Subicsi4	4233	846.6	22.37
HSUPA	4132	826.4	22.27
Subtest5	4175	835.0	22.48
Buotesta	4233	846.6	22.38

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 13 of 65 www.siemic.com.cn

UMTS-FDD Band II

Band/ Time Slot configuration	Channel	Frequency	Average power (dBm)
	9262	1852.4	22.12
RMC	9400	1880.0	21.91
12.2kbps	9538	1907.6	21.56
	9262	1852.4	22.11
HSDPA Subtest1	9400	1880.0	21.90
	9538	1907.6	21.56
	9262	1852.4	22.11
HSDPA	9400	1880.0	21.89
Subtest2	9538	1907.6	21.55
******	9262	1852.4	22.10
HSDPA Subtest3	9400	1880.0	21.90
	9538	1907.6	21.56
YYGD D I	9262	1852.4	22.12
HSDPA Subtest4	9400	1880.0	21.91
	9538	1907.6	21.55
HOLLDA	9262	1852.4	22.11
HSUPA Subtest1	9400	1880.0	21.90
Subtest1	9538	1907.6	21.55
Harry	9262	1852.4	22.10
HSUPA Subtest2	9400	1880.0	21.91
Sublest2	9538	1907.6	21.54
HOLLDA	9262	1852.4	22.11
HSUPA Subtest3	9400	1880.0	21.90
Sublests	9538	1907.6	21.55
HCHDA	9262	1852.4	22.11
HSUPA Subtest4	9400	1880.0	21.90
Subjest4	9538	1907.6	21.56
HSUPA	9262	1852.4	22.11
Subtest5	9400	1880.0	21.89
Subicsis	9538	1907.6	21.55

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 14 of 65 www.siemic.com.cn

ERP & EIRP (worst case) ERP for Cellular Band (Part 22H)

Frequency (MHz)	Substituted level (dBm)	Antenna Polarization	Antenna Gain correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
824.2	23.12	V	6.8	0.53	29.39	38.45
824.2	22.25	Н	6.8	0.53	28.52	38.45
836.6	23.14	V	6.8	0.53	29.41	38.45
836.6	22.24	Н	6.8	0.53	28.51	38.45
848.8	23.00	V	6.9	0.53	29.37	38.45
848.8	22.24	Н	6.9	0.53	28.61	38.45

EIRP for PCS Band (Part 24E)

Frequency (MHz)	Substituted level (dBm)	Antenna Polarization	Antenna Gain correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
1850.2	18.71	V	7.88	0.85	25.74	33
1850.2	16.59	Н	7.88	0.85	23.62	33
1880	18.65	V	7.88	0.85	25.68	33
1880	16.57	Н	7.88	0.85	23.6	33
1909.8	18.74	V	7.86	0.85	25.75	33
1909.8	16.58	Н	7.86	0.85	23.59	33

ERP for UMTS-FDD Band V (Part 22H)

Frequency (MHz)	Substituted level (dBm)	Antenna Polarization	Antenna Gain correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
826.40	15.92	V	6.8	0.53	22.19	33
826.40	14.04	Н	6.8	0.53	20.31	33
835.00	15.95	V	6.8	0.53	22.22	33
835.00	14.12	Н	6.8	0.53	20.39	33
846.60	15.83	V	6.9	0.53	22.2	33
846.60	14.10	Н	6.9	0.53	20.47	33

EIRP for UMTS-FDD Band II (Part 24E)

Frequency (MHz)	Substituted level (dBm)	Antenna Polarization	Antenna Gain correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
1852.40	14.97	V	7.88	0.85	22	33
1852.40	13.31	Н	7.88	0.85	20.34	33
1880.00	14.95	V	7.88	0.85	21.98	33
1880.00	13.27	Н	7.88	0.85	20.3	33
1907.60	14.85	V	7.86	0.85	21.86	33
1907.60	13.36	Н	7.86	0.85	20.37	33

5.3 §2.1047 - Modulation Characteristic

According to FCC \S 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

5.4 §2.1049, §22.917, §22.905 & §24.238 - Occupied Bandwidth

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyser was connected to the antenna terminal.

2. Environmental Conditions Temperature 25°C Relative Humidity 55%

Atmospheric Pressure 1010mbar

3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

4. Test date: November 07, 2013

Tested By: Kahn Yang

Procedures:

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The 99% and 26 dB occupied bandwidth (BW) of the middle channel for the highest RF powers.
- 3. Details according with KDB 971168 section 4.1 & 4.2.

Test Results: Pass

Cellular Band (Part 22H)

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)
128	824.2	246.6527	319.907
190	836.6	249.7698	316.871
251	848.8	243.1154	312.404

PCS Band (Part 24E)

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)
512	1850.2	243.5112	319.813
661	1880.0	245.1737	317.622
810	1909.8	244.0856	319.210

SIEMIC, INC.

Accessing global markets

RF Test Report for Mobile Phone

Main Model: s353
Serial Model: N/A

To: FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 17 of 65 www.siemic.com.cn

UMTS-FDD Band V (Part 22H)

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
4132	826.4	4.1485	4.694
4175	835.0	4.1542	4.716
4233	846.6	4.1574	4.734

UMTS-FDD Band II (Part 24E)

		,	,
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
9262	1852.4	4.1477	4.721
9400	1880.0	4.1637	4.724
9538	1907.6	4.1632	4.725

Please refer to the following plots.

Cellular Band (Part 22H)

99% Occupied Bandwidth & 26 dB Bandwidth

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s353 Serial Model: N/A To: FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 18 of 65 www.siemic.com.cn

Middle Channel

Occupied Bandwidth 249.7698 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

x dB

-26.00 dB

Transmit Freq Error -800.346 Hz x dB Bandwidth 316.871 kHz*

High Channel

Transmit Freq Error -1.903 kHz x dB Bandwidth 312.404 kHz*

243.1154 kHz

PCS Band (Part 24E)

99% Occupied Bandwidth & 26 dB Bandwidth Low Channel

-2.370 kHz

Transmit Freq Error

KHZ 20.00 d.

Transmit Freq Error -1.292 kHz x dB Bandwidth 317.622 kHz*

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 20 of 65 www.siemic.com.cn

UMTS-FDD Band V (Part 22H)

99% Occupied Bandwidth & 26 dB Bandwidth

SIEMIC, INC. Accessing global markets RF Test Report for Mobile Phone Main Model: s353 Serial Model: N/A To: FCC Part 22(H) & ECC Part 22

FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 21 of 65 www.siemic.com.cn

Middle Channel

Occupied Bandwidth 4.1485 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

x dB

-26.00 dB

Transmit Freq Error 393.246 kHz x dB Bandwidth 4.694 MHz*

High Channel

Transmit Freq Error -411.624 kHz x dB Bandwidth 4.734 MHz*

4.1574 MHz

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s353 Serial Model: N/A To: FCC Part 22(H) & FCC Part 24(E): 2013 Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 22 of 65 www.siemic.com.cn

UMTS-FDD Band II (Part 24E)

99% Occupied Bandwidth & 26 dB Bandwidth

Low Channel

Transmit Freq Error -17.204 kHz x dB Bandwidth 4.721 MHz*

Middle Channel

Occupied Bandwidth 4.1637 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -15.896 kHz x dB Bandwidth 4.724 MHz*

SIEMIC, INC.

Accessing global markets

RF Test Report for Mobile Phone
Main Model: s353
Serial Model: N/A

To: FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 23 of 65 www.siemic.com.cn

Transmit Freq Error -20.478 kHz x dB Bandwidth 4.725 MHz*

<u>5.5 §2.1051, §22.917(a) & §24.238(a) - Spurious Emissions at Antenna</u> Terminals

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3. Environmental Conditions Temperature 25°C

Relative Humidity 56%

Atmospheric Pressure 1010mbar

4. Test date: November 07, 2013 Tested By: Kahn Yang

Standard Requirement:

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

Procedures:

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The Band Edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.
- 3. Details according with KDB 971168 section 6.0.

Test Result: Pass

Refer to the attached plots.

Cellular Band (Part 22H)

30MHz-10G - GSM850

Low Channel

Middle Channel

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 26 of 65 www.siemic.com.cn

PCS Band (Part24E)

30MHz-20G - PCS1900

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 27 of 65 www.siemic.com.cn

Middle Channel

UMTS-FDD Band V (Part 22H)

30MHz-10G - WCDMA 850

Low Channel

Middle Channel

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 29 of 65 www.siemic.com.cn

UMTS-FDD Band II (Part24E)

30MHz-25G-WCDMA1900

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 30 of 65 www.siemic.com.cn

Middle Channel

5.6 §2.1053, §22.917 & §24.238 - Spurious Radiated Emissions

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.

2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 1 GHz - 40 GH is $\pm 6.0 \text{dB}$ (for EUTs $< 0.5 \text{m} \times 0.5 \text{m} \times 0.5 \text{m}$).

4. Environmental Conditions Temperature 26°C Relative Humidity 53%

Atmospheric Pressure 1010mbar

5. Test date: November 07, 2013 Tested By: Kahn Yang

Standard Requirement:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. The spectrum is scanned from 30 MHz up to a frequency including its 10^{th} harmonic.

Procedures: (According with TIA 603B)

- 1. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Sample Calculation:

 $EUT\ Field\ Strength\ (dBm) = Reading\ (Signal\ generator) + Antenna\ Gain\ (substitution\ antenna) - Cable\ loss\ (From\ Signal\ Generator\ to\ substitution\ antenna)$

Test Result: Pass

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 32 of 65 www.siemic.com.cn

Cellular Band (Part 22H)

Low channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1648.4	-30.54	350	1.2	V	7.95	0.78	0	-23.37	-13	-10.37
1648.4	-34.93	155	1.2	Н	7.95	0.78	0	-27.76	-13	-14.76
240.91	-48.50	260	1.5	V	6.3	0.39	0	-42.59	-13	-29.59
239.89	-47.83	70	1.5	Н	6.3	0.39	0	-41.92	-13	-28.92

Middle channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1673.2	-30.55	350	1.2	V	7.95	0.78	0	-23.38	-13	-10.38
1673.2	-35.05	150	1.2	Н	7.95	0.78	0	-27.88	-13	-14.88
239.02	-49.47	250	1.5	V	6.3	0.39	0	-43.56	-13	-30.56
240.11	-48.03	70	1.5	Н	6.3	0.39	0	-42.12	-13	-29.12

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1697.6	-29.67	355	1.2	V	7.95	0.78	0	-22.5	-13	-9.5
1697.6	-35.61	155	1.2	Н	7.95	0.78	0	-28.44	-13	-15.44
241.24	-48.55	255	1.5	V	6.3	0.39	0	-42.64	-13	-29.64
238.65	-48.51	70	1.5	Н	6.3	0.39	0	-42.6	-13	-29.6

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 33 of 65 www.siemic.com.cn

PCS Band (Part 24E)

Low channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3700.4	-45.98	351	1.2	V	10.25	2.73	0	-38.46	-13	-25.46
3700.4	-47.01	155	1.2	Н	10.25	2.73	0	-39.49	-13	-26.49
275.8	-45.77	252	1.5	V	5.5	0.4	0	-40.67	-13	-27.67
269.7	-46.99	70	1.5	Н	5.5	0.4	0	-41.89	-13	-28.89

Middle channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3760	-45.99	359	1.2	V	10.25	2.73	0	-38.47	-13	-25.47
3760	-46.97	157	1.2	Н	10.25	2.73	0	-39.45	-13	-26.45
270.5	-45.87	255	1.5	V	5.5	0.4	0	-40.77	-13	-27.77
272.7	-47.05	75	1.5	Н	5.5	0.4	0	-41.95	-13	-28.95

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3819.6	-44.93	357	1.2	V	10.36	2.73	0	-37.3	-13	-24.3
3819.6	-46.07	155	1.2	Н	10.36	2.73	0	-38.44	-13	-25.44
272.7	-46.07	250	1.5	V	5.5	0.4	0	-40.97	-13	-27.97
273.5	-47.08	70	1.5	Н	5.5	0.4	0	-41.98	-13	-28.98

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 34 of 65 www.siemic.com.cn

UMTS-FDD Band V (Part 22H)

Low channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1652.8	-45.98	355	1.2	V	7.95	0.78	0	-38.81	-13	-25.81
1652.8	-47.97	150	1.2	Н	7.95	0.78	0	-40.8	-13	-27.8
238.0	-54.35	250	1.5	V	6.3	0.39	0	-48.44	-13	-35.44
265.7	-53.89	65	1.5	Н	5.5	0.4	0	-48.79	-13	-35.79

Middle channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1670	-45.96	355	1.2	V	7.95	0.78	0	-38.79	-13	-25.79
1670	-48.60	160	1.2	Н	7.95	0.78	0	-41.43	-13	-28.43
240.5	-54.63	245	1.5	V	6.3	0.39	0	-48.72	-13	-35.72
268.2	-53.57	70	1.5	Н	5.5	0.4	0	-48.47	-13	-35.47

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1693.2	-46.24	360	1.2	V	7.95	0.78	0	-39.07	-13	-26.07
1693.2	-49.04	160	1.2	Н	7.95	0.78	0	-41.87	-13	-28.87
237.5	-54.44	250	1.5	V	6.3	0.39	0	-48.53	-13	-35.53
270.5	-53.48	75	1.5	Н	5.5	0.4	0	-48.38	-13	-35.38

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 35 of 65 www.siemic.com.cn

UMTS-FDD Band II (Part 24E)

Low channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3704.8	-50.48	353	1.2	V	10.25	2.73	0	-42.96	-13	-29.96
3704.8	-50.01	160	1.2	Н	10.25	2.73	0	-42.49	-13	-29.49
240.5	-51.67	245	1.5	V	6.3	0.39	0	-45.76	-13	-32.76
275.1	-51.18	75	1.5	Н	5.5	0.4	0	-46.08	-13	-33.08

Middle channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3760	-51.01	348	1.2	V	10.25	2.73	0	-43.49	-13	-30.49
3760	-51.02	155	1.2	Н	10.25	2.73	0	-43.5	-13	-30.5
237.5	-50.97	165	1.5	V	6.3	0.39	0	-45.06	-13	-32.06
273.7	-50.88	80	1.5	Н	5.5	0.4	0	-45.78	-13	-32.78

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3815.2	-51.08	355	1.2	V	10.36	2.73	0	-43.45	-13	-30.45
3815.2	-49.81	160	1.2	Н	10.36	2.73	0	-42.18	-13	-29.18
236.9	-51.75	166	1.5	V	6.3	0.39	0	-45.84	-13	-32.84
272.7	-51.24	80	1.5	Н	5.5	0.4	0	-46.14	-13	-33.14

5.7 §22.917(a) & §24.238(a) - Band Edge

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3. Environmental Conditions Temperature 25°C Relative Humidity 56%

Atmospheric Pressure 1010mbar

4. Test date: November 07, 2013 Tested By: Kahn Yang

Standard Requirement:

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

Procedures:

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The Band Edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.
- 3. Details according with KDB 971168 section 6.0.

Test Result: Pass

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 37 of 65 www.siemic.com.cn

Refer to the attached plots.

Cellular Band (Part 22H)

Frequency (MHz)	Emission (dBm)	Limit (dBm)
823.9800	-13.88	-13
849.0150	-13.52	-13

PCS Band (Part 24E)

1 00 Bund (1 urt 2 12)				
Frequency (MHz)	Emission (dBm)	Limit (dBm)		
1849.9775	-15.65	-13		
1910.0200	-13.99	-13		

UMTS-FDD Band V (Part 22H)

Frequency (MHz)	Emission (dBm)	Limit (dBm)
824.000	-23.81	-13
849.000	-21.17	-13

UMTS-FDD Band II (Part 24E)

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1850.000	-20.89	-13
1910.000	-24.33	-13

Note: Offset=Cable loss (4.0) + 10log (3.2/3)=4.0+0.3=4.3 dB

Note: Offset=Cable loss (4.0)+ 10log (3.13/3)=4.0+0.2=4.2 dB

Note: Offset=Cable loss (4.5) + 10log (3.16/3)=4.5+0.3=4.8 dB

Note: Offset=Cable loss (4.5) + 10log (3.14/3)=4.5+0.3=4.8 dB

Note: Offset=Cable loss (4.0)+ 10log (46.9/30)=4.5+2=6.5dB

UMTS-FDD Band V, High Channel

Note: Offset=Cable loss (4.0)+ 10log (47.3/30)=4.5+2=6.0dB

UMTS-FDD Band II, Low Channel

Note: Offset=Cable loss (4.5)+ 10log (47.2/30)=4.5+2=6.5dB

UMTS-FDD Band II, High Channel

Note: Offset=Cable loss (4.5)+ 10log (47.3/30)=4.5+2=6.5dB

5.8 §2.1055, §22.355 & §24.235 - Frequency Stability

1. Environmental Conditions Temperature 25°C Relative Humidity 56%

Atmospheric Pressure 1010mbar

2. Test date: November 08, 2013 Tested By: Kahn Yang

Standard Requirement:

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized frequency block.

Procedures:

A communication link was established between EUT and base station. The frequency error was monitored and measured by base station under variation of ambient temperature and variation of primary supply voltage.

Limit: The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Test Results: Pass

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 43 of 65 www.siemic.com.cn

Frequency Stability versus Temperature: The Frequency tolerance of the carrier signal shall be maintained within 2.5ppm of the operating frequency over a temperature variation of -10°C to +55°C at normal supply voltage.

Cellular Band (Part 22H)

	Middle Channel, f ₀ = 836.6 MHz					
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		16	0.0191	2.5		
0		18	0.0215	2.5		
10	3.7	21	0.0251	2.5		
20		22	0.0263	2.5		
30		21	0.0251	2.5		
40		21	0.0251	2.5		
50		25	0.0299	2.5		
55		29	0.0347	2.5		
25	4.2	21	0.0251	2.5		
25	3.5	23	0.0275	2.5		

PCS Band (Part 24E)

	Middle Channel, f ₀ = 1880 MHz					
Temperature (°C)	$\begin{array}{c c} Power Supplied & Frequency \\ \hline (V_{DC}) & Error \\ \hline (Hz) \end{array}$		Frequency Error (ppm)	Limit (ppm)		
-10		17	0.0090	2.5		
0		20	0.0106	2.5		
10	3.7	29	0.0154	2.5		
20		28	0.0149	2.5		
30		34	0.0181	2.5		
40		31	0.0165	2.5		
50		20	0.0106	2.5		
55		17	0.0090	2.5		
25	4.2	22	0.0117	2.5		
2.3	3.5	27	0.0144	2.5		

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 44 of 65 www.siemic.com.cn

UMTS-FDD Band V (Part 22H)

	Million Lo 225 MH					
	Middle Channel, f _o = 835 MHz					
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		11	0.0132	2.5		
0		14	0.0168	2.5		
10	3.7	10	0.0120	2.5		
20		15	0.0180	2.5		
30		13	0.0156	2.5		
40		20	0.0240	2.5		
50		19	0.0228	2.5		
55		17	0.0204	2.5		
25	4.2	17	0.0204	2.5		
25	3.5	15	0.0180	2.5		

UMTS-FDD Band II (Part 24E)

	UNITS-PDD Band II (1 art 24E)					
	Middle Channel, $f_0 = 1880 \text{ MHz}$					
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		7	0.0037	2.5		
0		-1	-0.0005	2.5		
10	3.7	9	0.0048	2.5		
20		-3	-0.0016	2.5		
30		9	0.0048	2.5		
40		8	0.0043	2.5		
50		7	0.0037	2.5		
55		9	0.0048	2.5		
25	4.2	9	0.0048	2.5		
23	3.5	-2	-0.0011	2.5		

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 45 of 65 www.siemic.com.cn

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibratio n Date	Calibration Due Date
RF conducted test				
Agilent ESA-E SERIES SPECTRUM ANALYZER	E4407B	CFG038	10/25/2013	10/24/2014
Power Splitter	1#	1#	02/02/2013	02/01/2014
Universal Radio Communication Tester	CMU200	121393	02/21/2013	02/20/2014
Temperature/Humidity Chamber	1007H	N/A	01/07/2013	01/06/2014
DC Power Supply	E3640A	MY40004013	03/22/2013	03/21/2014
Radiated Emissions				
EMI test receiver	ESL6	100262	11/19/2012	11/19/2013
Positioning Controller	UC3000	MF780208282	11/19/2012	11/19/2013
OPT 010 AMPLIFIER(0.1- 1300MHz)	8447E	2727A02430	11/19/2012	11/19/2013
Microwave Preamplifier($0.5 \sim$ 18GHz)	PAM-118	443008	11/08/2013	11/07/2014
Bilog Antenna (30MHz~6GHz)	JB6	A110712	01/27/2013	01/26/2014
Bilog Antenna (30MHz~2GHz)	JB1	A112107	02/09/2013	02/09/2014
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	071259	11/20/2012	11/19/2013
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	071283	11/20/2012	11/19/2013
SYNTHESIZED SIGNAL GENERATOR	8665B	3744A01293	04/22/2013	04/22/2014
Tunable Notch Filter	3NF- 800/1000-S	AA4	12/14/2012	12/13/2013
Tunable Notch Filter	3NF- 1000/2000-S	AM 4	03/01/2013	02/28/2014
Universal Radio Communication Tester	CMU200	121393	02/21/2013	02/20/2014

Annex A. ii. RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 1GHz (for FCC tests, until the 10^{th} harmonic for operating frequencies ≥ 108 MHz),, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m or 10m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS) or EMC 3m chamber.

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site or EMC 10m chamber. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 ° to 360 ° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band	Function	Resolution bandwidth	Video Bandwidth
(MHz)			
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Description of Radiated Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the scan on four different antenna heights, 2 antenna polarity, and 360 degrees table rotation. For example, the program was set to run 30 MHz to 1 GHz scan; the program will first start from a meter antenna height and divide the 30 MHz to 1 GHz into 10 separate parts of maximum hold sweeps. Each parts of maximum hold sweep, the program will collect the data from 0 degree to 360 degrees table rotation. After the program complete the 1m scan, the antenna continues to rise to 2m and continue the scan. The step will repeated for all specified antenna height and polarity. This program will perform the Quasi Peak measurement after the signal maximization process and pre-scan routine. The final measurement will be base on the pre-scan data reduction result.

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any)
And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 48 of 65 www.siemic.com.cn

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph 1: EUT External Photo

Whole Package - Top View

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for Mobile Phone
Main Model: s353
Serial Model: N/A

To: FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 49 of 65 www.siemic.com.cn

EUT - Front View

EUT - Rear View

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 50 of 65 www.siemic.com.cn

EUT - Top View

EUT - Bottom View

SIEMIC, INC.

Accessing plocal markets

Title: RF Test Report for Mobile Phone
Main Model: s353
Serial Model: N/A
To: FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 51 of 65 www.siemic.com.cn

EUT - Left View

EUT - Right View

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 52 of 65 www.siemic.com.cn

Annex B.ii. Photograph 2: EUT Internal Photo

Cover Off - Top View type A (two SIM card)

Cover Off - Top View type B (one SIM card)

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 53 of 65 www.siemic.com.cn

Cover Off - Rear Housing View type A (two SIM card)

Cover Off - Rear Housing View type B (one SIM card)

SIEMIC, INC.

Accessing global markets

RF Test Report for Mobile Phone

Main Model: s353

Serial Model: N/A

To: FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 54 of 65 www.siemic.com.cn

Model s353 type A (two SIM card) & type B (one SIM card) 1

Model s353 type A (two SIM card) & type B (one SIM card) 2

SIEMIC, INC.

Accessing plocal markets

Title: RF Test Report for Mobile Phone
Main Model: s353
Serial Model: N/A

To: FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 55 of 65 www.siemic.com.cn

Adapter View

Battery - Top View

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 56 of 65 www.siemic.com.cn

Battery - Bottom View

Mainborad With Shielding - Front View

SIEMIC, INC.

Accessing global markets

RF Test Report for Mobile Phone
Main Model: s353
Serial Model: N/A

To: FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 57 of 65 www.siemic.com.cn

Mainborad Without Shielding - Front View

Mainborad - Rear View

SIEMIC, INC.

Accessing global markets

Title:

RF Test Report for Mobile Phone
Main Model: s353
Serial Model: N/A

Fo:

FCC Part 22(H) & FCC Part 24(E): 2013

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 58 of 65 www.siemic.com.cn

LCD - Top View

LCD - Bottom View

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 59 of 65 www.siemic.com.cn

Bluetooth / BLE / WIFI Antenna View

GSM / PCS/ UMTS Antenna View

Report No: 13070501-FCC-RI Issue Date: November 11, 2013 Page: 60 of 65 www.siemic.com.cn

Annex B.iii. Photograph 3: Test Setup Photo

Radiated Spurious Emissions Test Setup Below 1GHz - Front View

Radiated Spurious Emissions Test Setup Above 1GHz -Front View

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 61 of 65 www.siemic.com.cn

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description (Including Brand Name)	Model	Calibration Date	Calibration Due Date
N/A	N/A	N/A	N/A	N/A

Block Configuration Diagram for Radiated Emissions

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was communicating with base station and set to work at maximum output power.
Others Testing	The EUT was communicating with base station and set to work at maximum output power.

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 63 of 65

www.siemic.com.cn

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

Report No: 13070501-FCC-R1 Issue Date: November 11, 2013 Page: 65 of 65 www.siemic.com.cn

Annex E. DECLARATION OF SIMILARITY

Verykool USA INC.	
-------------------	--

To: SIEMIC, 775 Montague Expressway, Milpitas, CA 95035, USA

Declaration Letter

Dear Sir,

For our new product, the Model No. of this product is s353, includes Type A and Type B, Type A has 2 card slots, Type B has 1 card slot, Type A and Type B are all the same excepts the quantity of card slot.

Thank you!

P PH Director Sunny ches 1/11/13

Printed name/title:

Tel: +858-373-1505

Fax: +858-373-1505

Address: 3636 Nobel Drive, Suite 325, San Diego, CA 92122