PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-079768

(43) Date of publication of application: 18.03.2003

(51)Int.CI.

A63B 53/04

(21)Application number : 2002-138792

(71)Applicant: BRIDGESTONE SPORTS CO LTD

(22)Date of filing:

14.05.2002

(72)Inventor: MATSUNAGA HIDEO

(30)Priority

Priority number: 2001204996

Priority date: 05.07.2001

Priority country: JP

(54) GOLF CLUB HEAD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a golf club head which can make an initial driving angle higher and can increase distance even when a golfer of a low head speed uses the golf club head. SOLUTION: The golf club head has a face section 2 made of titanium or titanium alloy, a crown section 3, a sole section 4, a side section 5 and a hosel section 6. The side section 5 is completely integrated on the back side and the heel side 8 from the toe side. The side section 5 and the hosel section 6 are integrally cast. The face section 2, the crown section 3 and the sole section 4 are all separately molded. The face section 2, the crown section 3, the sole section 4, and the side section 5 are integrated by welding, by which the golf club head is constituted. The modulus of longitudinal elasticity of the crown section 3 is lower than the moduli of longitudinal elasticity of all of the face section 2, the sole section 4, the side section 5, and the hosel section 6.

LEGAL STATUS

[Date of request for examination]

07.05.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of ... rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2003-79768 (P2003-79768A)

(43)公開日 平成15年3月18日(2003.3.18)

(51) Int.Cl.7 A 6 3 B 53/04

識別記号

FΙ A 6 3 B 53/04 テーマコート*(参考) 2 C 0 0 2

В

審査請求 未請求 請求項の数5 OL (全 10 頁)

(21)出願番号

特願2002-138792(P2002-138792)

(22)出魔日

平成14年5月14日(2002.5.14)

(31) 優先権主張番号 特願2001-204996 (P2001-204996)

(32) 優先日

平成13年7月5日(2001.7.5)

(33)優先権主張国

E本 (JP)

(71)出廣人 592014104

プリヂストンスポーツ株式会社 東京都品川区南大井6丁目22番7号

(72)発明者 松永 英夫

埼玉県秩父市大野原20番地 ブリヂストン

スポーツ株式会社内

(74)代理人 100086911

弁理士 重野 剛

Fターム(参考) 20002 AA02 CH08 MM04 MM07 PP02

PP03

(54) 【発明の名称】 ゴルフクラブヘッド

(57)【要約】

【課題】 ヘッドスピードが遅いゴルファーが使用して も、打ち出し角度が高くなり、飛距離を増大させること ができるゴルフクラブヘッドを提供する。

【解決手段】 ゴルフクラブヘッドは、チタン又はチタ ン合金製のフェース部2と、クラウン部3と、ソール部 4と、サイド部5と、ホゼル部6とを有する。サイド部 5は、トウ側からバック側及びヒール側8ですべて一体 となっている。サイド部5とホゼル部6とは一体に鋳造 されている。フェース部2、クラウン部3及びソール部 4は、いずれも別々に成形されている。このフェース部 2、クラウン部3、ソール部4及びサイド部5が溶接に より一体化されることによりゴルフクラブヘッドとされ る。クラウン部3の縦弾性率はフェース部2、ソール部 4、サイド部5及びホゼル部6のいずれの縦弾性率より も低いものとなっている。

【特許請求の範囲】

【請求項1】 少なくともフェース部、ソール部、サイド部及びクラウン部を有する金属製の中空のゴルフクラブへッドにおいて、

該クラウン部を構成する金属材料が最も縦弾性率が低い ことを特徴とするゴルフクラブヘッド。

【請求項2】 請求項1において、少なくとも前記クラウン部が他の部分と別体でプレス成形され、該他の部分に対し接合されていることを特徴とするゴルフクラブへッド。

【請求項3】 請求項1又は2において、前記クラウン 部の厚みが、0.5~1.2mmであることを特徴とす るゴルフクラブヘッド。

【請求項4】 請求項1ないし3のいずれか1項において、該ゴルフクラブヘッドを形成する金属がチタン又はチタン合金であり、クラウン部の縦弾性率が10500kgf/mm²以下であり、ソール部の縦弾性率が11000kgf/mm²以上であることを特徴とするゴルフクラブヘッド。

【請求項5】 請求項4において、クラウン部の縦弾性率とソール部の縦弾性率との差が $1000\sim3000$ kgf/mm 2 であることを特徴とするゴルフクラブヘッド。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金属製中空ゴルフクラブヘッドに係り、特にウッド型又はそれに近似した形状のゴルフクラブヘッドに関するものである。

[0002]

【従来の技術】ドライバーやフェアウェーウッドなどの ウッド型ゴルフクラブヘッドとして、中空の金属製のも のが広く用いられている。一般に、図2に示されるよう に、中空のウッド型のゴルフクラブヘッド1は、ボール をヒットするためのフェース部2と、ゴルフクラブヘッ ドの上面部を構成するクラウン部3と、ゴルフクラブへ ッドの底面部を構成するソール部4と、ゴルフクラブへ ッドのトウ側、バック側及びヒール側の側面部を構成す るサイド部5と、ホゼル部6とを有している。このゴル フクラブヘッド1のホゼル部6にシャフト7が挿入さ れ、接着剤等によって固定される。なお、最近では、ユ ーティリティクラブと称されるゴルフクラブヘッドも多 く市販されており、このユーティリティゴルフクラブへ ッドの1種として、上記ウッド型ゴルフクラブヘッドに 類似した(即ち、フェース部、ソール部、サイド部及び クラウン部を有した) ゴルフクラブヘッドも各種市販さ れている。

【0003】この中空ゴルフクラブヘッドを構成する金属としては、アルミニウム合金、ステンレスやチタン合金が用いられているが、近年は特にチタン合金が広く用いられている。

[0004]

[0006]

【課題を解決するための手段】本発明のゴルフクラブへッドは、少なくともフェース部、ソール部、サイド部及びクラウン部を有する金属製の中空のゴルフクラブへッドにおいて、該クラウン部を構成する金属材料が最も縦弾性率が低いことを特徴とするものである。

【0007】本発明のゴルフクラブヘッドにおいては、クラウン部の縦弾性率をソール部などの他の部材よりも小さくしており、これにより、インパクト時のボールの打ち出し角度を高くすることができる。この結果、ヘッドスピードの遅いゴルファーが使用しても打ち出し角が高くなり、飛距離を伸ばすことができる。

【0008】本発明のゴルフクラブヘッドは、少なくともクラウン部が他の部分と別体でプレス成形され、該他の部分に対し溶接等によって接合されていることが好ましい。特に、フェース部、ソール部、サイド部及びクラウン部がそれぞれ別体に成形され、接合されていることが好ましい。このようにすれば、各部を構成する金属材料としてそれぞれ各部に好適な縦弾性率を有した金属材料を選択することができる。

【0009】このサイド部は、トウ側、バック側、ヒール側が一連一体となっていてもよく、さらに2又は3個以上の部分に分けられて別体に成形されてもよい。

【0010】本発明のゴルフクラブヘッドでは、通常の場合、さらにホゼル部を有する。このホゼル部は、ソール部、サイド部又はクラウン部のいずれか1又は2以上の部分と一体に成形されてもよく、これらのいずれとも別体に成形されてもよい。

【0011】クラウン部を撓み易くするために、クラウン部の厚みを0.5~1.2mmとすることが好ましい。

【0012】本発明では、ゴルフクラブヘッドを形成する金属がチタン又はチタン合金であり、クラウン部の縦弾性率が10500kgf/mm²(102.9×109Pa)以下であり、ソール部の縦弾性率が11000kgf/mm²(107.8×109Pa)以上であることが好ましい。また、クラウン部の縦弾性率とソール

部の縦弾性率との差は1000~3000kgf/mm² (9.8×10⁹~29.4×10⁹Pa)であることが好ましい。

【0013】本発明は、特に250cc特に300ccとりわけ350ccを超える体積を有した大型のゴルフクラブヘッドに適用するのに好適である。このゴルフクラブヘッドとしてはドライバーが例示される。ただし、本発明は、フェアウェーウッドや、ウッド型に類似したユーティリティゴルフクラブヘッド等にも適用可能である。

[0014]

【発明の実施の形態】以下、図面を参照して実施の形態 について説明する。図1は実施の形態に係るゴルフクラ ブヘッドの分解斜視図である。

【0015】このゴルフクラブヘッドは、フェース部2と、クラウン部3と、ソール部4と、サイド部5と、ホゼル部6とを有する。このサイド部5は、トウ側からバック側及びヒール側8ですべて一体となっている。また、この実施の形態では、サイド部5とホゼル部6とが一体に鋳造により成形されている。フェース部2、クラウン部3及びソール部4は、いずれも別々に成形されている。

【0016】このフェース部2、クラウン部3、ソール部4及びホゼル部付きサイド部5が溶接により一体化されることによりゴルフクラブヘッドとされる。ホゼル部6はソール部4にまで達するように設けられてもよく、サイド部4にまで達しないように設けられてもよい。溶接後は、必要に応じ各種の研磨、塗装等の仕上げ処理を施して製品ゴルフクラブヘッドとされる。

【0017】このゴルフクラブヘッドを構成する各部分はチタン又はチタン合金よりなる。クラウン部3の縦弾性率は他の部分即ちフェース部2、ソール部4、サイド部5及びホゼル部6のいずれの縦弾性率よりも低いものとなっている。

【0018】このようにクラウン部3の縦弾性率を低くしているため、インパクト時のボールの打ち出し角度が高い。そのため、ヘッドスピードが遅いゴルファーが使用しても、大きな飛距離を得ることが可能である。

【0019】なお、クラウン部とソール部との縦弾性率の差が1000kgf/mm²(9.8×109 Pa)以上とりわけ1500kgf/mm²(14.7×109 Pa)以上あると、クラウン部がより撓み易くなり、より大きな飛距離を得ることが可能となる。なお、クラウン部の縦弾性率とソール部の縦弾性率との差は、過大であると打出し角は高くなるが、打球時のボールの反発力が低下し、飛距離が減少するため、通常は3000kgf/mm²(29.4×109 Pa)以下とりわけ2600kgf/mm²(24.5×109 Pa)以下であることが好ましい。

【0020】この実施の形態では、サイド部5はトウ側

からバック側及びヒール側まで一連一体となっているが、2個又は3個以上の小部分に分割されていてもよい。また、この実施の形態では、サイド部5とホゼル部6とが一体となっているが、別々に成形されてもよい。さらに、この実施の形態では、ソール部4がサイド部5と別体となっているが、ソール部4とサイド部5とを一体に成形してもよい。

【0021】フェース部2及びクラウン部3はそれぞれ 他の部分と別々に成形されるのが好ましい。

【0022】この成形方法について次に説明する。フェース部2及びクラウン部3についてはチタン合金の板材をプレス成形するのが好ましい。

【0023】フェース部は、圧延加工(好ましい圧延率は10~40%、特に15~30%)したチタン合金であってもよい。

【0024】クラウン部を構成する圧延されたチタン合金は、その圧延方向がフェース面に対して90°±10°の向きとされることが好ましい。

【0025】この圧延加工とは、2個または複数個のロールよりなる圧延機を回転させ金属の可鍛性を利用して常温または高温でロールの間に金属を通過させる加工である。

【0026】圧延加工により、チタン合金材料の厚さを 微妙に調整できる。更に、例えば引っ張り強度の向上 等、機械的性質も改善できる。

【0027】縦弾性率の低いチタン合金を用いたクラウン部の肉厚をサイド部やソール部に比べ薄くすると、更に撓みやすくなりボールが高く上がり易くなる。また、クラウン部の肉厚がサイド部やソール部と同等の厚さとなるように圧延加工した場合にも、クラウン部は、縦弾性係数が低く撓みやすくなると共に、引っ張り強度等機械的性質が改善され、繰り返し変形にも強くなる。

【0028】また、一般に圧延材は圧延方向によって機械的性質が異なるため、クラウン部の撓みに最も強くなるように方向を合わせること、即ち、圧延方向がフェース面に対し略垂直に、具体的には90°±10°となるようにすることが好ましい。なお、圧延は複数回行われてもよく、この場合、各圧延方向を異ならせてもよい。【0029】チタン合金の圧延率は、好ましくは10%~40%、特に好ましくは15~30%である。この圧延率であれば、チタン合金の機械的性質が向上し、引っ張り強度などが向上すると共に、8型チタニウム合金の場合は、縦弾性率が高くなる。なお、圧延率が10%よりも低いと圧延の効果が不十分となる。

【0030】サイド部5については、これを単独で成形するときにはプレス成形によって成形するか又は鋳造によって成形するのが好ましい。サイド部5とホゼル部6とを一体に成形する場合には、鋳造によるのが好ましい。ホゼル部6を単独で成形するときには、鋳造によってもよく、パイプ状の押出成形材に切削加工してもよ

く、棒状の押出成形材に穿孔等の切削加工を施してもよ い。

【0031】ソール部4は、これを単独で成形するときには、鋳造又はプレス成形を採用することができるが、高級弾性率とするためには鋳造によるのが好ましい。このソール部4は、サイド部5、あるいはサイド部5及びホゼル部6と共に一体に鋳造又は鍛造により成形されてもよい。ソール部4、サイド部5及びホゼル部6を一体に鋳造する場合には、複雑な形状の部分であっても容易に精密に成形することができる。

【0032】なお、鋳造若しくは鍛造でソール部及びサイド部を一体で成形する場合には、部分的に肉厚を異なる成形体を容易に製造することができる。例えばソール部を厚くしたり、ソール部にリブを設けたりした成形体を容易に製造することができる。

【0033】本発明では、少なくともソール部4及びサイド部5をプレス成形で製作してもよい。ソール部、サイド部等を金属製の板材のプレス成形により製作することにより、それぞれの部分の厚みを変えたり、異なる縦弾性率の材料を組み合わせることができる。

【0034】別体に成形されたそれぞれの部分を接合するには、溶接するのが好ましい。

【0035】このゴルフクラブヘッドを構成する金属材料について次に説明する。フェース部2、クラウン部3、ソール部4及びサイド部5はチタン合金製とされることが好ましく、ホゼル部6は純チタン又はチタン合金製とされることが好ましい。サイド部5とホゼル部6とを一体に鋳造するときには、当然ながら、両者は同一材料よりなる。

【0036】クラウン部3のチタン合金としては、縦弾性率が10500kgf/mm²(102.9×109 Pa)以下の β 型チタン合金が好ましく、例えばTi-15V-3Cr-3Sn-3Al、Ti-13V-11Cr-3Al、Ti-15Mo-5Zr、Ti-15Mo-5Zr、Ti-15Mo-5Zr、Ti-15Mo-5Zr0、Ti-15Mo-4Zr0、Ti-22V-4Al0の分子である。【0037】フェース部2としては前述した β 型チタン合金や後述する $\alpha-\beta$ 型チタン合金のどちらでも良い。【0038】ソール部4としては、縦弾性率が11000kgf/mm²(107.8×109 Pa)以上の $\alpha-\beta$ 型チタン合金のTi-6Al0

【0038】 ソール部4としては、縦弾性率が1100 0kgf/mm 2 (107.8×10^9 Pa)以上の α - β 型チタン合金のTi-6Al-4V、Ti-6Al-6V-2Sn、ほぼ α 型のチタン合金のTi-8Al-1Mo-1Vが例示されるが、縦弾性率がこの範囲であるように熱処理された β 型チタン合金のTi-3Al-8V-6Cr-4Mo-4Zr、Ti-22V-4Al-6Hいることができる。

【0039】サイド部5としては、上記のクラウン部の チタン合金及びソール部のチタン合金が好適である。

【0040】ホゼル部の構成材料としては、純チタン又は $\alpha-\beta$ 型チタン合金のTi-3A1-2Vや、これにさらにイオウ及び希土類元素を加えて切削性を改善したチタン合金が例示される。

【0041】一般に、8型チタン合金は熱処理形態の相違により縦弾性率が変化する。次の表1に各種のチタン合金及び純チタンの処理形態と縦弾性率並びに当該チタン又はチタン合金の縦弾性率を示す。

【0042】 【表1】

結晶 構造	79 =ウム 合金	概彈性率 (kg/mm²)	用途	好ましい使用部
β	Ti-15V-3Cr-3Sn-3Al	10200~10500	銀造	クラウン村部村
β	Ti-13V-11Cr-3AI	8400~10500	銀造	クラウン材部材
β	Ti~15Mo~6Zr	7800~12000	鍛造	クラウン材部材
β	TI15Mo5Zr3AI	8000~12000	鍛造	クラウン材部材
β	Ti-3Al-8V-6Cr-4Mo-4Zr	10700~12600	鍛造	クラウン村部材
β	Ti-22V-4AI	8900~11000		クラウン材部材
α-β	Ti-6Al-4V	11500	鍛造·鋳造	ソール部材
α – β	Ti-6Al-6V-2Sn	11300		ソール部材
near 🏻	Ti-8Al-1Mo-1V	12700	鍛造	ソール部材
	絶チタン	10850		木也"ル部村
α — β	Ti-3AI-2V(+S+希土類)	10900		本也'凡部材

【0043】なお、β型チタン合金の熱処理において、クラウン部に使用する材料について時効硬化処理を行わない様にすると弾性率が低く抑えられるので好ましい。つまり、他のヘッド本体は、例えば同じβ型のチタン合金を使用して、先に時効硬化をしておき、その後クラウン部に時効硬化をしていないβ型のチタン合金を溶接する。このクラウン部に溶接するβ型チタン合金は焼き鈍し処理若しくは溶体化処理されていることが好ましい。クラウン部同様にサイド部もβ型チタン合金を使用して時効処理した状態で使用しても良い。

【0044】ゴルフクラブヘッドの各部の好ましい寸法 について次に説明する。

【0045】クラウン部3の肉厚は、撓み易くするために、1.2mm以下特に1.0mm以下であることが好ましい。なお、強度を確保するために、クラウン部3の肉厚は0.5mm以上特に0.7mm以上であることが好ましい。このクラウン部3は、直接にボールが当る訳ではないので、フェース部2の半分以下の厚みで足りる。

【0046】また、圧延や鋳造によってクラウン部の肉厚を部分的に薄くした場合には、更にクラウン部の撓みを大きくすることができる。

【0047】ホゼル部については、必要な強度を確保できる範囲で肉厚が小さい方が好ましい。特に、ゴルフクラブヘッドの内部に配置されるホゼル部分の厚みを薄くすると、余分な重量を削減でき、フェース面の中心近くに重心点を位置させるように設計し易くなるので、好ましい。

【0048】本発明を適用するのに特に効果的なゴルフクラブへッドは、クラウン部が撓み易い大型ゴルフクラブへッドであり、具体的にはヘッド体積が250cc以上好ましくは、300cc以上、より好ましくは350cc以上のゴルフクラブへッドである。ただし、一般にゴルフクラブへッドは、体積が大きくなるとそれに伴ってゴルフクラブへッドの重量が増加する。この重量が過度に大きくなると、ゴルフクラブをスムーズに振ることが難しくなる。そのため、この重量の制約の点から、ヘッド体積は600cc程度が限度と考えられる。本発明は、ロフト角が7°~15°のドライバーヘッドに適用するのに好ましい。

【0049】このゴルフクラブヘッドのフェースの高さが高い方が、フェース面の上方にボールが当たったときにロフト角が大きくなるので好ましい。具体的には、フェース最大高さは45mm以上、特に50mm以上、とりわけ53mm以上が好ましい。ただし、フェースの高さが100mm以上もあると、スイング時のフェース面の風圧抵抗が大きくなり過ぎ、好ましくない。

【0050】ドライバーヘッドとして使用する場合、クラブ長さは通常43インチ~50インチ程度であるので、スイングバランスを考えると、165~205g程

度のヘッド重量が好ましい。重すぎると、スイングバランスが重くなり、一般ゴルファーが振りきれなくなり、ヘッド重量が軽すぎると、ボールの反発が悪くなるおそれがある。

【0051】本発明においては、フェース部及びサイド部に比べ、クラウン部に縦弾性率の最も低い金属材料を用い、ソール部に最も縦弾性率の高い金属材料を用いてもよい。このように、縦弾性率の違う材料を組み合わせることにより、ソール部の打球時の変形を抑え、クラウン部をより撓ませることができる。

【0052】この態様の一例としては、フェース部、サイド部及びソール部等をTi-22V-4A1の溶接により成形した後、熱処理をし、その後に、熱処理をしていないTi-22V-4A1よりなるクラウン部を溶接して製作したゴルフクラブヘッドが挙げられる。

【0053】本発明においては、ソール部の肉厚をクラウン部及びサイド部に比べ厚くしてもよい。具体的には、フェース部に高強度なTi-15Mo-5Zr-3Snを用い、2.5mm板材をプレス成形して作成する。クラウン部にはTi-13V-11Cr-3Alを使用し、1.0mmの板材をプレス成形して作成する。サイド部及びソール部(ホゼル部を含む)は、Ti-6Al-4Vのチタニウム合金を用い鋳造にて成形し、ソール部の厚さを2.5mm、サイド部の厚みを1.6mmとする。これらを溶接により中空のゴルフクラブヘッドとする。

【0054】本発明においては、少なくともソール部を 鋳造若しくは鍛造で製作し、且つフェース側からバック 側に向かってリブを形成してもよい。この構成のゴルフ クラブヘッドは、ソール部の変形が小さいものとなる。 【0055】本発明においては、少なくともソール部を プレス成形により製作し、且つフェース側からバック側 に向かってリブを成形してもよい。この構成のゴルフク ラブヘッドは、ソール部の変形が小さいものとなる。 【0056】本発明においては、少なくともソール部を プレス成形により製作し、且つフェース側からバック側 に向かって屈曲部を連続して設けてもよい。このように 構成した場合には、ソール部の変形を抑えることができ る。

[0057]

【実施例】 [実施例1] ホゼル部6がサイド部5から分離されたこと以外は図1に示す通りの形状の各部分を製造し、これらを溶接により接合して体積285ccのドライバー用ゴルフクラブヘッドを製造した。フェース部2、クラウン部3、ソール部4及びサイド部5はいずれもチタン合金板のプレス成形により製造し、ホゼル部6はチタン合金の棒状体を穿孔して製作した。

【0058】なお、各部分の肉厚は次の通りである。

フェース部: 2.8 mm (均一) クラウン部: 1.0 mm (均一) ソール部 : 1. 15mm (均一) サイド部 : 1. 15mm (均一)

【0059】各部分の材料とその報理性率を表2に示す。表2の通り、フェース部には、反発性能の良い冷間圧延加工を施したTi-15V-3Cr-3Sn-3A1を用い、他の部材について、それぞれ理性率の異なるチタン合金を用いてゴルフクラブへッドを作成した。最も弾性率の高い材料を、Ti-22V-4A1の熱処理材とし、中間の弾性率の材料をTi-15V-3Cr-3Sn-3A1とし、最も低弾性率のチタン合金として、Ti-22V-4A1の熱処理をしていない材料を使用した。クラウン部以外を溶接により接合した後、熱処理し、その後、Ti-22V-4A1(非熱処理材)よりなるクラウン部を溶接してゴルフクラブへッドとした。

【0060】Ti-22V-4A1の非熱処理材は、プレス成形したままの状態のものであり、低弾性である。フェース面は、直接ボールが当たるので、熱処理を行い、溶体化、時効処理等が必要であるが、クラウン部はボールが直接当たらないので、熱処理を行う必要がな

い。なお、比較例のゴルフクラブヘッドについては、ヘッド成形後熱処理を行った。

【0061】このゴルフクラブヘッドに45インチ(114cm)のカーボンシャフトを装着してゴルフクラブを製作した。このゴルフクラブヘッドのスイングロボット(ヘッドスピード43m/sec)での試打評価結果を表3に示す。また、スイングロボット(ヘッドスピード39m/sec)での試打評価結果を表4に示し、人による試打評価結果を表5に示す。

【0062】 [比較例1] クラウン部、ソール部及びサイド部をすべてフェース部を同じチタン合金としたこと以外は実施例1と同様にしてゴルフクラブを製作し、同様にして評価を行った。結果を表3に示す。

【0063】 [比較例2] クラウン部、ソール部及びサイド部の構成材料を表2の通りとした他は実施例1と同様にしてゴルフクラブを製作し、同様にして評価を行った。結果を表3に示す。

[0064]

【表2】

	フェース部	クラウン部	ソール部	サイト 都	クラウン部と ソール部との 様弾性平の差 (kgf/mm²)	
夹施例1	Ti-15V-3C;- 3S;r-3Al (冷間圧延村)	TI-22V-4AJ (非熟処理)	TI-22V-4AI (熱処理)	Ti-22V-4AI (熱処理)	2100	
模 弹性 率 (kgf/mm²)	10500	8900	11000	11000		
实施例2	TI-15V-3Cr- 9Sn-3Al (冷間圧延材)	Ti-22V-4AI (非熱処理)	Ti-6AI-4V (熱処理)	Ti-8AI-4V (熱処理)	2500	
模導性率 (kgf/mm²)	10500	8900	1 1500	11500		
実施例3	TI-15V-3Cr- 3Sn-3AI (冷即圧延材)	Ti-22V-4AI (非熟 処理)	TI-15V-3Cr- 3AI (熱処理)	TH15V-3Cr- 3AI (熱処理)	1600	
報弾性率 (kgf/mm²)	10500	8900	10500	10500	1000	
比較例1	Ti-15V-3Or- 3Sn-3Al (冷間圧延材)	Ti-15V-3Or- 3Sn-3AI (熱処理)	Ti-15V-3Or- 3Sn-3A! (熱処理)	Ti-15V-3Or- 3Sn-3Al (熱処理)	0	
模弾性平 (kgf/mm²)	10500	10500	10500	10500		
比較例2	Ti-15V-3Cr- 3Sr-3Al (冷間圧延材)	Ti-22V-4AI (熱処理)	Ti-22V-4AJ (熟処理)	Ti-22V-4AI (熱処理)	0	
模弾性率 (kgf/mm²)	10500	11000	11000	11000		
比较例3	Ti-15V-3Cr- 3Sn-3AI (熱処理)	Ti-15V-3Cr- 3Sr-3A! (熱処理)	Ti-22V-4AI (熱処理)	TI-22V-4AI (約処理)	500	
程彈性率 (kgf/mm²)	10500	10500	11000	11000		
比較例4	Ti-15V-3Gr- 3Sn-3Al (熱処理)	Ti-22V-4AI (非熱処理)	Ti-8Al-1Mo- IV (熱処理)	Ti-8Al-1Mo- 1V (熱処理)	3800	
被弾性率 (kgf/mm²)	10500	0008	12700	12700		

(註) Ti-15V-3Cr-3Sn-3Aliは 8 型チタン合金 Ti-22V-4Aliは 8 型チタン合金

[0065]

【表3】

	ヘット、スピート。 (m/a)	ホ'−ル初速度 (m/s)	打出し角 (度)	パックスピン (rpm)	飛距離 (yard)	総飛距離 (yard)
実施例1	43	60	9.2	2764	201	229
実施併2	43	60	9.3	2862	201	228
実施例3	43	60	9.0	2810	200	227
比較例1	43	60	8.7	2746	199	225
比較例2	43	60	8.3	3014	199	224
比較例3	43	60	8.3	2880	199	225
比較例4	43	59	9.4	3102	197	222

[0066]

【表4】

	^ット゚スピード (m/s)	ポ ール初速度 (m/s)	打出L角 (度)	パックスピン (rpm)	飛距離 (yard)	総釈距離 (yard)
実施例1	39	54.6	9.5	2645	179	202
実施例2	39	54.6	9.5	2672	176	200
実施例3	39	54.6	9.3	2665	179	202
比較例1	39	54.8	9.1	2612	174	197
比較例2	39	54.8	8.5	2690	173	196
比較例3	39	54.1	8.5	2680	173	197
比較例4	39	54.3	9.6	2710	172	196

【0067】 【表5】

	^ッドスピード (m/s)	飛距離 (yard)	総飛距離 (yard)
実施例1	38	176	185
実施例2	38	173	180
実施例3	38	174	182
比較例1	39	163	176
比較例2	38	158	172
比較例3	38	161	174
比較例4	38	170	178

【0068】表3~5の通り、クラウン部、ソール部及びサイド部をすべて同一種類のチタン合金としたゴルフクラブヘッド(比較例1)に比べ、実施例1~3は、0.4~0.5°ほど打ち出し角が高い。また、クラウン部に弾性率の高い材料を用いたゴルフクラブヘッド(比較例2)に比べ、実施例1~3は0.9~1.0°打ち出し角が高い。クラウン部とソール部との縦弾性率の差が500kgf/mm²である比較例3についても同様の傾向が認められる。クラウン部とソール部との縦弾性率の差が3000kgf/mm²よりも大きい比較例4では、打出し角は高いが、飛距離が減少した。

【0069】人による試打では、実施例1,2は、バッ

クスピン量が少なく、比較例1~4と比べ、飛距離により大きな差異が生じた。

【0070】今回の評価では、クラウン部の肉厚を1.0mmとしたが、もっと薄肉にすることにより打ち出し角度はさらに高くなり、また、より低弾性のチタン合金例えば、Ti-15Mo-5ZrやTi-15Mo-5Zr-3A1を用いることによっても打ち出し角度が高くなることが認められた。

【0071】本試験終了後、クラウン部について入念に 探傷したが、亀裂や永久変形は全く見られなかった。

[0072]

【発明の効果】以上の通り、本発明のゴルフクラブヘッドによると、ヘッドスピードが遅いゴルファーが使用しても、打ち出し角度が高くなり、その結果として飛距離を増大させることができる。

【図面の簡単な説明】

【図1】実施の形態に係るゴルフクラブヘッドの分解斜視図である。

【図2】従来のゴルフクラブヘッドの斜視図である。

【符号の説明】

- 1 ゴルフクラブヘッド
- 2 フェース部
- 3 クラウン部
- 4 ソール部
- 5 サイド部
- 6 ホゼル部

【図1】

【図2】

【手続補正書】

【提出日】平成14年9月11日(2002.9.1 1)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0015

【補正方法】変更

【補正内容】

【0015】このゴルフクラブヘッドは、フェース部2と、クラウン部3と、ソール部4と、サイド部5と、ホゼル部6とを有する。このサイド部5は、トウ側からバック側及びヒール側ですべて一体となっている。また、この実施の形態では、サイド部5とホゼル部6とが一体に鋳造により成形されている。フェース部2、クラウン部3及びソール部4は、いずれも別々に成形されている。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

【0016】このフェース部2、クラウン部3、ソール部4及びホゼル部付きサイド部5が溶接により一体化されることによりゴルフクラブヘッドとされる。ホゼル部6はソール部4にまで達するように設けられてもよく、ソール部4にまで達しないように設けられてもよい。溶接後は、必要に応じ各種の研磨、塗装等の仕上げ処理を施して製品ゴルフクラブヘッドとされる。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0038

【補正方法】変更

【補正内容】

【0038】ソール部4としては、縦弾性率が11000kgf/mm² (107.8×10 9 Pa)以上の α - β 型チタン合金のTi-6Al-4V、Ti-6Al-6V-2Sn、ほぼ α 型(near α)のチタン合金のTi-8Al-1Mo-1Vが例示されるが、縦弾性率がこの範囲であるように熱処理された β 型チタン合金のTi-3Al-8V-6Cr-4Mo-4Zr、Ti-22V-4Al5用いることができる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0041

【補正方法】変更

【補正内容】

【0041】一般に、β型チタン合金は熱処理形態の相違により縦弾性率が変化する。次の表1に各種のチタン合金及び純チタンの処理形態と縦弾性率並びに当該チタン又はチタン合金の好ましい使用部を示す。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0042

【補正方法】変更

【補正内容】

[0042]

【表1】

結局 構造	79 二ウム合金	級彈性率 (kg/mm²)	処理影態	好ましい使用部
β	Ti-15V-3Qr-3Sn-3Al	10200~10500	鍛造	クラウン部材
β	Ti-13V-11Cr-3AI	8400~10500	级法	クラウン部材
β	Ti-15Mo-6Zr	7800~12000	都进	クラウン部材
В	Ti-15 Mo-5 Zr-3A J	8000~12000	築造	クラウン部材
β	Ti-3Al-8V-80r-4Mo-4Zr	10700~12600	鍛造	クラウン部材
β	Ti−22V−4AI	8900~11000		クラウン部材
α-β	TI-6AI-4V	11500	假造·铸造	ソール部材
α β	Ti-6Al-6V-2Sn	11300		ソール部材
near Œ	TI-8AI-1Mo-1V	12700	假造	ソール部材
	純チタン	10850		本セ"ル部材
α-β	Ti-3Al-2V(+S+希土類)	10900		#t.U助料