Module - 2

Data Analytics

Units for Discussion

Unit - 1

Fundamentals of Data Analytics

DISCLAIMER

The content is curated from online/offline resources and used for educational purpose only.

D\(\breeq\) Mart Walmart \(\breeq\).

Learning Objectives

- What is Data?
- What is Data Analytics?
- Why we need to learn Data Analytics?
- Types of Data Analytics
- Data Ecosystem
- What is Data Analysis?
- Key Steps in a Data Analysis Process
- Data Analytics vs. Data Analysis
- Data Warehouse
- NoSQL Database
- CRUD operation in MongoDB
- Pymongo

What is Data?

- Data can be defined as a collection of facts and figures that are used for analysis or a survey.
- It is a series of representations of various values of that quantity.
- When data has been organized in a structured manner, it is referred to as information.

Sources of Data

Relational Databases

APIs and Web Services

Data Streams, and Feeds.

Flat files and XML Datasets

Web Scraping

What is Data Analytics?

- The term "data analytics" describes the methods used to analyze data in order to increase productivity and financial gain.
- It is the procedure of deriving valuable, useful insights from the analysis of raw data, which are then used to guide and inform wise business decisions.
- In order to analyze different behavioral patterns, data is extracted from a variety of sources, cleaned up, and categories.

Why we need to learn Data Analytics?

Why we need to learn Data Analytics?

Types of Data Analytics

Descriptive Analytics

Diagnostic Analytics

Predictive Analytics

Prescriptive Analytics

Descriptive Analytics

- The simplest type of analytics is descriptive analytics, which serves as the base for all other types.
- It enables you to quickly summarise what occurred or is happening by drawing trends from the raw data.
- When used in business, it gives the analyst a view of important metrics and measurements used by the company.

Diagnostic Analytics

- This type compares concurrent trends or movements, reveals correlations between variables, and, when possible, establishes causal relationships.
- The question of why something happened can now be answered by comparing historical data to other data.
- Diagnostic analytics offers in-depth perceptions into a specific issue.

Predictive Analytics

- The use of predictive analytics provides an answer to the question, "What might happen in the future?" by making predictions about present trends or events.
- It makes use of the outcomes of descriptive and diagnostic analytics to find clusters and exceptions as well as make predictions about future trends.

Prescriptive Analytics

- Prescriptive analytics assists in providing recommendations for action.
- Prescriptive analytics helps by making suggestions for taking action.
- Prescriptive analytics is a type of advanced analytics that offers many benefits, such as sophisticated analysis based on deep learning or machine learning.

Data Ecosystem

- A data ecosystem is a collection of business applications and infrastructure that is used to gather and analyze data.
- It enables businesses to develop better marketing, pricing, and business plans by helping them better understand their customers.
- All the programming languages, algorithms, applications, and underlying infrastructure that are used to gather, process, and store data are collectively referred to as the "data ecosystem".

Different Components of a Modern Data Ecosystem

Key Players in the Data Ecosystem

Data Engineer

Data Scientists

Business Intelligence Analysts

Data Analysts

Business Analysts

What is Data Analysis?

 Data analysis is the process of cleaning, transforming, and processing raw data in-order to extract actionable, relevant information that assists businesses in making informed decisions. The procedure reduces the risks associated with decision-making by providing useful insights and statistics, which are frequently presented in charts, images, tables, and graphs.

Key Steps in a Data Analysis Process

Defining the question

Collectin g the data

Cleaning the data

Analyzing the data

Sharing your results

Data Analytics vs. Data Analysis

Data Analytics	Data Analysis	
Data analytics is a type of traditional or	Data analysis is a subset of analytics that is	
generic analytics that is used in businesses to	used in businesses to evaluate data and gain	
make data-driven decisions.	insights.	
It has one or more users and is typically used	It entailed defining the data, investigating it,	
for data collection and inspection.	cleaning it up, and modifying it to produce a	
	useful result.	
It is divided into several stages, such as data	In order to process data, raw data must first	
collection and business data inspection.	be defined in a meaningful way before	
	relevant information can be extracted from it	
	via data cleaning and conversion.	
It uses a variety of technologies to process	It analyses data using a variety of tools,	
data, including Tableau, Python, Excel,	including SPARK, Google Fusion tables,	
Google Analytics, and others.	Node XL, Excel, and others.	

Source	:	
	-	

Popular Data Analysis Tools

Database

- Database is the collection of organized data that is structured and stored electronically on a computer system.
- Databases can store data in the form of tables depending upon the type of database. The database's primary goal is to store a huge amount of data.

Examples of some databases: MySQL, Oracle, MongoDB, PostgreSQL, SQL Server, etc.

What is Data Warehouse?

- A data warehouse is a data management system that stores current and historical data from multiple sources in a business-friendly manner for easier insights and reporting.
- Data warehouses are typically used for business intelligence (BI), reporting and data analysis.

Key Components of data warehouse?

- Source data is any individual set of data like databases, Excel spreadsheets, individual application reports, etc.
- A data lake serves as a central repository for all raw, unstructured (i.e., not organized) data.
- Like a data lake, a data warehouse centralizes your data, but it's well-organized and set up for efficient analysis.
- Data marts are curated data sets created for specific use cases.

Introduction to NoSQL

- The term NoSQL, short for "not only SQL," refers to non-relational databases that use a non-tabular format to store data, rather than in rule-based, relational tables like relational databases.
- NoSQL databases use a flexible schema model that supports a wide variety of unstructured data, such as documents, key-value, wide columns, graphs, and more.
- Organizations choose NoSQL databases for their flexibility, horizontal scalability, and ease of development.

SQL vs NoSQL

Property	SQL Databases	NoSQL Databases
Data model	Relational	Nonrelational
Structure	Table-based, with columns and rows	Document based, key-value pairs, graph, or wide-column
Query language	Structured Query Language (SQL)	Varies from database to database
ACID transactions	Supported	Supported, depending on the specific NoSQL database
Ability to add new properties	Need to alter the schema first	Possible without disturbing anything

Features of NoSQL

Below are some of the important features of NoSQL:

- Dynamic Schemas
- Replication
- Auto Sharding
- Eliminated Downtime
- Distributed
- Simple API

Different Types of NoSQL Databases

- NoSQL databases use a different approach. Based on a approach there are five main types of NoSQL databases:
- Column databases Amazon SimpleDB, HBase, and Apache Cassandra are examples column stores.
- Document databases MongoDB, Couchbase, and CouchDB are examples of document databases.
- Key-Value databases Examples of key-value stores include Redis, Riak, and Amazon DynamoDB
- Graph database Neo4j, OrientDB, and ArangoDB etc.
- In-Memory databases- Redis, Memcached, and Apache Ignite are few examples.

Introduction to MongoDB

- MongoDB is a NoSQL, open-source document database that is created using C++.
- It is used to store high-volume data.
- It stores data in a type of JSON format called BSON.
- MongoDB Atlas is a cloud database solution for contemporary applications that is available globally.
- It is a highly scalable, flexible, and distributed NoSQL database.

Core MongoDB Concept

- MongoDB stores data records as documents (specifically BSON documents) which are gathered together in collections. A database stores one or more collections of documents.
- Field is a key value pair in a document. A document can have zero or more fields, which are like columns in relational databases.

Core MongoDB Concept

What is Collection?

- A collection in MongoDB is a group of MongoDB documents.
- Collections are just like tables in relational databases, they also store data, but in the form of documents. A single database is allowed to store multiple collections.
- An example of a collection is shown below:

```
{
    na
    ag
        na
        st     ag
            name: "al",
            age: 18,
            status: "D",
                groups: [ "politics", "news" ]
        }
        Collection
```


Core MongoDB Concept

What is Document?

- In MongoDB, all data within databases and collections are stored in documents.
- MongoDB documents are made up of key-value or field-value pairs which are just like JSON. But these
 documents are stored in BSON (Binary JSON) format in MongoDB.
- Here is an example of a document that contains data about an employee.

```
"employee_name": "Amar",
    "employee_skills": "UI Design",
    "employee_salary": 40000,
    "employee_status": true,
}
```


MongoDB Datatypes

In MongoDB, the documents are stores in BSON. BSON data format supports various data-types. The following are some of the most often used data types in MongoDB.

- String
- Integer
- Double
- Boolean
- Array
- Object
- Timestamp
- Date
- Binary
- Null

MongoDB Datatypes

- **String** String type is used to simply represent text. The strings in BSON are UTF-8 which allow us to represent most international characters in BSON strings without any problems.
- **Integer -** The integer data type is used to store numeric values. It can store 32-bit or 64-bit integers which depends on the server.
- **Double -** The double datatype is used to store numeric values with 8 bytes floating-point.
- Boolean The boolean datatype is used to store boolean (true or false) values.

```
"employee_name": "Amar ",
    "employee_salary": 40000,
    "employee_score": 85.44,
    "employee_status": true,
}
```


MongoDB Datatypes

- **Arrays** Arrays are used to store multiple values of the same type under a single key. For example employee_skills.
- **Date -** The date datatype is used to store date and time in Unix-time format. Unix timestamps can be easily converted to and from the JavaScript Date object.
- Timestamp The timestamp type is a special type for internal MongoDB use and is not associated with the regular Date type.

```
"employee_name": "Amar ",

"employee_skills": ["UI Design", "Graphic Design", "2D
Animation"],

"employee_dob": ISODate("2006-02-
10T10:50:42.389Z"),

"item_created": Timestamp(1412180887, 1),
```


MongoDB Datatypes

- Object This data type is used to store embedded documents within a document. An embedded document
 is a series of nested documents in key: value pair format.
- In the given example, the item_dimensions field is an embedded document as it contains its own set of key-value pairs.

```
"item_code": "1234-ABCD",
"item_price": 49.99,
"item_dimensions": {
       "item_height": 1200,
       "item width": 100,
       "item depth": 900,
"item_availability": true,
```


Lab - 1

MongoDB Installation in Windows

Basic Commands in MongoDB

Creating Database

- At the top of the hierarchy, in the MongoDB server, is database entity. There can be multiple databases on a single server.
- To create a database, MongoDB provides the command:

use DATABASE_NAME

This command:

- is used when a user wants to switch from one database to another.
- will create a new database if it doesn't exist; otherwise, it will select the existing database.

Basic Command in MongoDB

Listing Database

To enlist all databases in MongoDB Server, MongoDB provides the command:

show dbs

Output:

```
> show dbs
CompanyABCDepartments 0.000GB
CompanyABCStaff 0.000GB
admin 0.000GB
config 0.000GB
local 0.000GB
```


Basic Command in MongoDB

Creating Collections inside Database

- MongoDB provides the db.createCollection() method to create collection inside database.
- Syntax to create a collection:

db.createCollection(COLLECTION_NAME, OPTIONS)

The first parameter is the name of the collection which is a string and the other is an options object which is
used to configure the collection.

```
mydb> db.createCollection("my_test_collection")
{ ok: 1 }
```


Basic Command in MongoDB

Showing collections inside MongoDB

MongoDB provides show collections method to enlist all the collections inside database.

• Syntax to show collection:

show collections

For example:

You can see my_test_collection in mydb database.

CRUD is an acronym for Create, Read, Update, and Delete. CRUD operations in MongoDB are used to manipulate data in databases.

- To add new documents to a collection, use the Create operation.
- Data from a collection is retrieved using the Read operation.
- The Update operation is used to edit existing documents in a collection.
- A collection of documents can be deleted using the Delete procedure.

С	Insert()
R	find()
U	update()
D	remove()

Create

Create (or insert) operations add new documents to a collection. There are two ways to add new documents to a collection:

- db.collection.insertOne()
- db.collection.insertMany()

insertOne() operation allows us to create individual documents in a collection, while the insertMany() operation is used to create multiple documents in a single operation

Read

 Read operations retrieve documents from a collection. Here is the method in Mongodb to retrieve information:

db.collection.find()

• find() operation will return everything from a collection if you call it without any parameters. On the other hand, we can specify any filter or criteria to retrieve information from a collection using:

db.collection.find(query)

Update

- In MongoDB, the "update" operation is used to modify existing documents in a collection.
- The updateOne() method is used to update a single document that matches a specified filter.

db.collectionName.updateOne(filter, update)

The updateMany() method is used to update multiple documents that match a specified filter.

db.collection.updateMany(filter, update)

Delete

- In MongoDB, the "delete" operation is used to remove documents from a collection.
- The deleteOne() method is used to remove a single document that matches a specified filter.

db.collectionName.deleteOne(filter, options)

The deleteMany() method is used to remove multiple documents that match a specified filter.

db.collectionName.deleteMany(filter, options)

Comparison operators in MongoDB

• Some of the comparison operator are given below:

Name	Description
<u>\$eq</u>	Matches values that are equal to a specified value.
<u>\$gt</u>	Matches values that are greater than a specified value.
<u>\$gte</u>	Matches values that are greater than or equal to a specified value.
<u>\$in</u>	Matches any of the values specified in an array.
<u>\$It</u>	Matches values that are less than a specified value.
<u>\$Ite</u>	Matches values that are less than or equal to a specified value.
<u>\$ne</u>	Matches all values that are not equal to a specified value.
<u>\$nin</u>	Matches none of the values specified in an array.

Logical operators in MongoDB

• Some of the Logical operators are given below:

Name	Description
\$and	We use this operator to join query clauses with a logical AND and return the documents matching the given conditions of both clauses.
\$or	We use the \$or operator to join query clauses with a logical OR and return the documents matching the given conditions of either clause.
\$nor	We use the \$nor operator to join query clauses with a logical NOR and return the documents which fail to match both the clauses.
\$not	We use the \$not operator to invert the effect of the query expressions and return documents that do not match the query expression.

Lab - 2

CRUD Operations in MongoDB

PyMongo

- PyMongo is a Python library containing tools for working with MongoDB, and is the recommended way
 to work with MongoDB from Python.
- PyMongo create a connection to the MongoDB using Python.
- Perform all operation like create, read, update and delete (CRUD).

Installing PyMongo

• PyMongo can be installed using pip:

pip install pymongo

Prerequisites

- Ensure that you have installed the latest version of Python on your machine.
- MongoDB installed on your local machine.

• From the command-line tool, install the PyMongo by typing the command given below.

python -m pip install pymongo

Lab - 3

CRUD Operations in MongoDB Using Python

Conclusion

- Implementing data analytics into the business model means companies can help reduce costs by identifying more efficient ways of doing business. A company can also use data analytics to make better business decisions.
- NoSQL database are non-tabular databases and stores data differently than relational database.
- MongoDB is a document database. It stores data in a type of json format called BSON.
- MongoDB Query API used to perform CRUD operation.
- PyMongo is the official MongoDB driver for synchronous Python applications. You have learn how to connect and use MongoDB from your Python application and performed various crud operations.

Source:

References

- https://bootcamp.berkeley.edu/resources/coding/learn-data-analytics/introduction-to-dataanalytics/
- https://data-flair.training/blogs/power-bi-tutorial/
- https://www.w3schools.com/python/python_mysql_getstarted.asp
- https://www.tutorialspoint.com/python/python_database_access.htm
- https://intellipaat.com/blog/tutorial/data-analytics-tutorial/data-analytics-lifecycle/#no3
- https://online.hbs.edu/blog/post/types-of-data-analysis
- https://www.tutorialspoint.com/power_bi/power_bi_introduction.htm

- 1. To get insights from the data, many analysts and data scientists rely on _____.
- a) Data warehouse
- b) Data visualization
- c) Data mining
- d) All of the above

Answer: B

Data visualization

2. Data Analysis is a process of _____

- a) Data Cleaning
- b) Transforming of data
- c) Inspecting data
- d) All of the above

Answer: D

All of the above

3. Which is not a type analytics

- a) Predictive
- b) Diagnostic
- c) Prescriptive
- d) Perspective

Answer: DPerspective

- 4. Data Analytics uses ____ to get insights from data.
- a) Statistical figures
- b) Numerical aspects
- c) Statistical methods
- d) None of the mentioned above

Answer: C

Statistical methods

5. What type of database is MongoDB?.

- a) Relational
- b) Document Oriented
- c) Key value
- d) Graph

Answer: B

Document Oriented

Thank You