## Generalized functions Exercise sheet 2

**Exercise 1.** Let V be a finite dimensional topological vector space over  $\mathbb{R}$ . Prove that, if V is Hausdorff, then V is homeomorphic to  $\mathbb{R}^{\dim V}$ .

**Exercise 2.** Let V be a locally convex topological vector space. Show that the following conditions are equivalent for V Hausdorff:

- (1) V is metrizable.
- (2) V is first countable; i.e., that each point  $v \in V$  has a countable neighborhood basis.
- (3) There exists a countable family of seminorms  $\{\nu_i\}_{i\in\mathbb{N}}$  which defines the topology on V.

Conclude that a locally convex topological vector space V is Fréchet if and only if it is complete and satisfies either of the conditions above.

Hint for the implication (3) $\Rightarrow$ (2): show that a seminorm  $\nu$  on V gives rise to a bounded map  $d_{\nu}(x,y) = \frac{\nu(x-y)}{1+\nu(x-y)}$  on V, which satisfies all metric axioms except for the fact that  $d_{\nu}(x,y) = 0$  does not imply  $x \neq y$ . What can you say about  $\sum_{i=1}^{\infty} 2^{-i} d_{\nu_i}(\cdot,\cdot)$ ?

**Exercise 3.** Let V be a topological vector space over  $\mathbb{R}$ , and  $0 \in U \subseteq V$  a open and convex.

- (1) Show that U is balanced (i.e.  $\lambda U \subseteq U$  whenever  $|\lambda| \le 1$ ) if and only if U is symmetric (i.e. U = -U).
- (2) Show that there exists an open, convex and balanced set  $W \subseteq U$  with  $0 \in W$ .

**Exercise 4.** Let V a topological vector space over  $\mathbb{R}$ , and let  $0 \in C$  be an open, balanced and convex subset.

- (1) Show that  $N_C(v) := \inf \{ \lambda \in \mathbb{R}_{>0} : \lambda^{-1}v \in C \}$  defines a seminorm on V.
- (2) Assume further that V is normed and C is bounded. Show that  $N_C$  defines a norm on V.
- (3) With the assumptions of (2), let  $\|\cdot\|$  denote the norm of V. Show that  $N_C$  is equivalent to  $\|\cdot\|$ , i.e. there exist  $c_1, c_2 > 0$  such that  $c_1 N_C(v) \le \|v\| \le c_2 N_C(v)$  for all  $v \in V$ .

*Hint*: Consider the values  $\sup \{||u|| : u \in C\}$  and  $\inf \{||u|| : u \notin C\}$ .

(4) Find a locally convex topological vector space that admits no continuous norm.

**Exercise 5.** Given a topological vector space V over  $\mathbb{R}$ , let  $V^{\sharp}$  denote the complete dual of V (i.e. the space of all linear maps  $V \to \mathbb{R}$ ) and  $V^*$  denote the continuous dual of V.

Let  $W \subseteq V$  be locally convex topological vector spaces.

- (1) Show that the restriction map  $V^{\sharp} \to W^{\sharp}$  is surjective.
- (2) Show that the restriction map  $V^* \to W^*$  is surjective.

**Exercise 6.** Let  $V, \bar{V}$  be topological vector spaces, with  $\bar{V}$  complete, and a continuous linear map  $\iota: V \to \bar{V}$ .

- (1) \* Show that a subspace  $W \subseteq \overline{V}$  is closed if and only if it is complete.
- (2) Show that the following are equivalent.
  - (a)  $\iota$  is a homeomorphism of V onto  $\iota(V)$ , and  $\iota(V)$  is dense in  $\bar{V}$ .
  - (b) For every complete space W and any map  $f: V \to W$ , there exists a unique map  $F: \bar{V} \to W$  such that  $f = F \circ \iota$ .

A space  $\bar{V}$  satisfying the above conditions is called the *completion* of V.

Remark: You may use the conclusions of items (1) and (3) in the proof of (2), even if you choose not to submit them.

(3) \* Construct the completion of V (see [1, Theorem 5.2]).

## Exercise 7.

- (1) \* Let V be a locally convex topological vector space. Show that if V is first countable and sequentially complete, then V is complete.
- (2) Prove that  $C^{\infty}(\mathbb{R})$  is complete.

## References

