Food Image Recognition (Project Planning)

Team11

Fei Shen - shen.feil@husky.neu.edu Neola Pinto - pinto.ne@husky.neu.edu Rachna Balani - balani.r@husky.neu.edu

Use Cases

Use Case 1 : Customers

❖ Food customers use images to know the food category that they are eating at a restaurant

Use Case 2: Restaurants

❖ Chefs/owners can use the dataset to analyze the data, see the most frequently liked/visited images, and have a report of their most loved dishes.

Use Case 3: Application Users

❖ Food application users upload images to identify the category of their food

Methodology

- 1. Processing images
 - Resizing
 - Rescaling
 - Standardizing
- 1. Algorithms of Artificial Intelligence for multiple food image classification
 - **❖** TensorFlow
 - Convolutional Neural Networks
 - Inception Model
- 1. Potential expansion for more food category classification
- 2. Visualization
 - Zeppelin

Data Sources

ETH Food-101: https://www.vision.ee.ethz.ch/datasets extra/food-101

❖ A dataset of 101 food categories with 101,000 colored images

Initial Plan: Subset 10 - 20 categories with a size of 500 MB - 1 GB

Dataset distribution:

- **❖** Training Dataset 70%
- ❖ Test Dataset 30%

Milestones

Scala Programming

- Image processing Spark/Scala
- Neural network
- Zeppelin

Acceptance Criteria

- ❖ Training data : Accuracy 80%
- ❖ Test data : Accuracy 50%
- The top probability for food classification : $\geq 50\%$

Goals

- * With our classification mechanism we aim to help food customers, foodies, app users, and restaurants to classify foods better!
- It's important to know your food and eat like a boss!
- We'd like to give users the good experience about classifying certain types of food using cutting-edge AI technology, integrating with Scala knowledge!