flowReMix

(temporary name)

A **Mixture** of **Mixed** Beta-Binomial **Regression** Models for Analyzing **Flow**-Cytometry Count data

February 20, 2017

Outline

- Introduction to Flow-Cytometry
- Motivation
- Models:
 - A Marginal Model
 - A Joint HMRF model
- Data analysis.
- Computation

Introduction to Cytometry Count Data

The RV144 HIV Vaccine Study

- 286 Subjects
 - 246 Cases
 - 40 Controls
- 2 Types of stimulus
 - HIV virus
 - Negative control
- 6 types of cytokines.

Marginal Counts for RV144

Motivation: COMPASS

ANALYSIS

COMPASS identifies T-cell subsets correlated with clinical outcomes

 $\label{limited} Lin^1, Greg Finak^1, Kevin Ushey^1, Chetan Seshadri^2, Thomas R Hawn^2, Nicole Frahm^1, Thomas J Scriba^3, Hassan Mahomed^3, Willem Hanekom^3, Pierre-Alexandre Bart^4, Giuseppe Pantaleo^4, Georgia D Tomaras^5, Supachai Rerks-Ngarm^6, Jaranit Kaewkungwal^7, Sorachai Nitayaphan^8, Punnee Pitisuttithum^9, Nelson L Michael^{10}, Jerome H Kim^{10}, Merlin L Robb^{11}, Robert J O'Connell^{12}, Nicos Karasavvas^{12}, Peter Gilbert^1, Stephen C De Rosa^{1,13}, M Juliana McElrath^{1,2,13} & Raphael Gottardo^1$

Or in general, with immune response

Motivation: COMPASS

ANALYSIS

COMPASS identifies T-cell subsets correlated with clinical outcomes

 $\label{limited} Lin Lin^1, Greg Finak^1, Kevin Ushey^1, Chetan Seshadri^2, Thomas R Hawn^2, Nicole Frahm^1, Thomas J Scriba^3, Hassan Mahomed^3, Willem Hanekom^3, Pierre-Alexandre Bart^4, Giuseppe Pantaleo^4, Georgia D Tomaras^5, Supachai Rerks-Ngarm^6, Jaranit Kaewkungwal^7, Sorachai Nitayaphan^8, Punnee Pitisuttithum^9, Nelson L Michael^{10}, Jerome H Kim^{10}, Merlin L Robb^{11}, Robert J O'Connell^{12}, Nicos Karasavvas^{12}, Peter Gilbert^1, Stephen C De Rosa^{1,13}, M Juliana McElrath^{1,2,13} & Raphael Gottardo^1$

Or in general, with immune response.

How do current methods work? (Approximately)

Current models are baseline/stimulation models.

- Unstimulated blood sample are compared stimulated ones.
- Goal is to identify subsets that respond to stimulation.

For the *i*th subject out of *n*,

$$p_{i0} \sim Dir(\alpha_0, \beta_0)$$

Let $\tau_i \in \{0,1\}^p$ be a vector indicating whether a subject shows response in one of the p cell subsets:

$$au_i \sim extit{Bin}(w),$$
 $p_{i1, au=0} \sim \delta(p_{i0, au=0})$ $p_{i1, au=1}|p_{i0, au=0} \propto extit{Dir}(lpha_1,eta_1)$

How do current methods work? (Approximately)

Current models are baseline/stimulation models.

- Unstimulated blood sample are compared stimulated ones.
- Goal is to identify subsets that respond to stimulation.

For the *i*th subject out of *n*,

$$p_{i0} \sim Dir(\alpha_0, \beta_0)$$

Let $\tau_i \in \{0,1\}^p$ be a vector indicating whether a subject shows response in one of the p cell subsets:

$$au_i \sim extit{Bin}(w),$$
 $p_{i1, au=0} \sim \delta(p_{i0, au=0})$ $p_{i1, au=1}|p_{i0, au=0} \propto extit{Dir}(lpha_1,eta_1)$

How do current methods work? (Approximately)

Current models are baseline/stimulation models.

- Unstimulated blood sample are compared stimulated ones.
- Goal is to identify subsets that respond to stimulation.

For the *i*th subject out of *n*,

$$p_{i0} \sim Dir(\alpha_0, \beta_0)$$

Let $\tau_i \in \{0,1\}^p$ be a vector indicating whether a subject shows response in one of the p cell subsets:

$$au_i \sim extit{Bin}(w),$$
 $p_{i1, au=0} \sim \delta(p_{i0, au=0})$ $p_{i1, au=1}|p_{i0, au=0} \propto extit{Dir}(lpha_1,eta_1)$

Controlled Human Malaria Infection Study

- 9 Tanzanian adults were infected with Malaria.
 - +3 controls.

- Blood samples were collected at 6 time points.
 - Day 0, day 9, blood parasitemia, Day 28, Day 56, Day 168.
- Two types of stimulation:
 - Infected/uninfected blood-cells.

113 measured cell-types divided into 8 groups.

Controlled Human Malaria Infection Study

Motivation - Unique Challanges

- Dependence
 - Within sample between cell subsets.
 - Within subject / across time.

- Heterogenous treatment effect
- Over-dispersed Binomial counts

Motivation - A Regression Model

- We want to be able to include covariates:
 - Batch effects.
 - · Other covariates such as age, gender...

- Longitudal data.
- More than one stimulation.
- Explicit dependence model:
 - For the observed proportions.
 - For response/non-response.

Motivation - A Regression Model

- We want to be able to include covariates:
 - Batch effects.
 - · Other covariates such as age, gender...

- Longitudal data.
- More than one stimulation.
- Explicit dependence model:
 - For the observed proportions.
 - For response/non-response.

Motivation - A Regression Model

- We want to be able to include covariates:
 - Batch effects.
 - Other covariates such as age, gender...

- Longitudal data.
- More than one stimulation.
- Explicit dependence model:
 - For the observed proportions.
 - For response/non-response.

Indexing: i-subject, I- stimulation/time-point.

Binomial count data ⇒ Logistic model.

$$logit(p_{il}) = X_{il}\beta$$

$$y_{il} \sim \mathsf{Binom}(N_{il}, p_{il})$$

Dependence ⇒ 'random' subject baseline:

$$\mathsf{logit}(oldsymbol{
ho}_{il}) = X_{il}eta +
u$$
 $u_i \sim N(0, \sigma^2)$

Indexing: i-subject, I- stimulation/time-point.

Binomial count data ⇒ Logistic model.

$$logit(p_{il}) = X_{il}\beta$$

$$y_{il} \sim \mathsf{Binom}(N_{il}, p_{il})$$

Dependence ⇒ 'random' subject baseline:

$$ext{logit}(p_{il}) = X_{il}\beta + \nu_i$$
 $u_i \sim N(0, \sigma^2)$

Indexing: i-subject, I- stimulation, k- cluster.

Non-response ⇒ Mixture-Model:

$$logit(p_{ilk}) = X_{il}\beta + T_{il}\tau_k + \nu_i$$

- T a matrix of covariates related to the treatment.
- τ_k equals 0 if k = 0 or $\tau \neq 0$ if k = 1.

Model can be estimated via an EM algorithm

Indexing: i-subject, I- stimulation, k- cluster.

Non-response ⇒ Mixture-Model:

$$logit(p_{ilk}) = X_{il}\beta + T_{il}\tau_k + \nu_i$$

- T a matrix of covariates related to the treatment.
- τ_k equals 0 if k = 0 or $\tau \neq 0$ if k = 1.

Model can be estimated via an EM algorithm

Wellness of Fit Evaluation

How do we evaluate the model?

- We fit the model without information regarding the true treatment allocation.
- The model should be able to discriminate between vaccinees and placebos.
- We use three type of figures:
 - Scatter plots w/classification information.
 - Receiver-Operator Curves.
 - False Detection Rates.

Wellness of Fit Evaluation

How do we evaluate the model?

- We fit the model without information regarding the true treatment allocation.
- The model should be able to discriminate between vaccinees and placebos.
- We use three type of figures:
 - Scatter plots w/classification information.
 - Receiver-Operator Curves.
 - False Detection Rates.

Marginal Model - Results

Figure: Scatter plot for T4+/CD154+ - Marginal Model

Marginal Model - Results

Figure: ROC/FDR plots for T4+/CD154+ - Marginal Model

Finak et al. (2013) - MIMOSA

Figure: Comparison with MIMOSA (univariate COMPASS)

Subject-Response Model

Performing analysis for each cell-subset at a time doesn't use all of the information available.

- Random Effects are correlated, can be estimated better simultaneously.
- Correlation structure might be of interest in itself.
- Response is very likely not independent across cell-subsets.
- We might be able to improve classification of response by looking at several cell-subsets at once.

Subject-Response Model

Performing analysis for each cell-subset at a time doesn't use all of the information available.

- Random Effects are correlated, can be estimated better simultaneously.
- Correlation structure might be of interest in itself.
- Response is very likely not independent across cell-subsets.
- We might be able to improve classification of response by looking at several cell-subsets at once.

Subject-Response Model

Performing analysis for each cell-subset at a time doesn't use all of the information available.

- Random Effects are correlated, can be estimated better simultaneously.
- Correlation structure might be of interest in itself.
- Response is very likely not independent across cell-subsets.
- We might be able to improve classification of response by looking at several cell-subsets at once.

Indexing: i-subject, I- stimulation, j- subset, k- cluster.

Denote cluster (Response) by a $k \in \{0, 1\}^p$ vector with 1 indicating a responsive subset.

We assume an Ising model for the dependence structure between subsets:

$$P(k) \propto \sum_{j=1}^{p} k_j \theta_j + \sum_{s \neq t} k_t k_s \theta_{st},$$

$$P(k_j = 1 | k_{-j}) = \theta_j + \sum_{t \neq j} k_t \theta_{tj}.$$

We can induce sparsity through an ℓ_1 penalty.

Indexing: i-subject, I- stimulation, j- subset, k- cluster.

Denote cluster (Response) by a $k \in \{0, 1\}^p$ vector with 1 indicating a responsive subset.

We assume an Ising model for the dependence structure between subsets:

$$P(k) \propto \sum_{j=1}^{p} k_j \theta_j + \sum_{s \neq t} k_t k_s \theta_{st},$$

$$P(k_j = 1 | k_{-j}) = \theta_j + \sum_{t \neq j} k_t \theta_{tj}.$$

Indexing: i-subject, I- stimulation, i- subset, k- cluster.

Denote cluster (Response) by a $k \in \{0, 1\}^p$ vector with 1 indicating a responsive subset.

We assume an Ising model for the dependence structure between subsets:

$$P(k) \propto \sum_{j=1}^{p} k_j \theta_j + \sum_{s \neq t} k_t k_s \theta_{st},$$

$$P(k_j = 1 | k_{-j}) = \theta_j + \sum_{t \neq j} k_t \theta_{tj}.$$

We can induce sparsity through an ℓ_1 penalty.

Indexing: i-subject, I- stimulation, j- subset, k- cluster.

$$egin{aligned}
u_i &\sim \textit{N}_p(0, \Sigma), \ k_i &\sim \mathsf{Ising}(heta), \ \mathsf{logit}(\mu_{ijlk}) &= \textit{X}_{ijl}eta + \textit{T}_{ijl} au_{k_i} +
u_{ij}, \ y_{ijlk} &\sim \mathsf{Binom}(\textit{N}_{il}, \mu_{ijlk}). \end{aligned}$$

HMRF Modle - Results

Figure: Scatter Plot for HMRF Modle Model

Subset-Response Model - Results

Figure: ROC for HMRF Modle

Subset-Response Model - Results

Figure: FDR for HMRF Modle

Simulated Data Experiment

- Posterior probabilities are not well calibrated.
 - · Might be due to true non-response.
- Is the optimization algorithm estimating the model properly?
- Does the model fit the data well?
- To find out:
 - We generate data according to the estimated model.
 - Fit should be perfect.
 - Is the artificial data similar to the real data?

Simulated Data Experiment

- Posterior probabilities are not well calibrated.
 - Might be due to true non-response.
- Is the optimization algorithm estimating the model properly?
- Does the model fit the data well?
- To find out:
 - We generate data according to the estimated model.
 - Fit should be perfect.
 - Is the artificial data similar to the real data?

Simulated Data Experiment

- Posterior probabilities are not well calibrated.
 - Might be due to true non-response.
- Is the optimization algorithm estimating the model properly?
- Does the model fit the data well?
- To find out:
 - We generate data according to the estimated model.
 - · Fit should be perfect.
 - Is the artificial data similar to the real data?

Simulated Binomial Data - Results

Simulated Binomial Data - Results

Figure: ROC for Simulated Binomial Data

Simulated Binomial Data - Results

Figure: Scatter plot for Simulated Binomial Data

An Overdispersed Model

We are clearly missing some variablility...

Assume a Beta-Binomial Model:

$$\mathsf{logit}(\mu) = X \beta + T au +
u,$$
 $p \sim \mathsf{Beta}(M \mu, M (1 - \mu)), \qquad M > 0,$ $y \sim \mathsf{Binom}(N, p).$

An Overdispersed Model - Recap

Indexing: i-subject, I- stimulation, j- subset, k- cluster.

$$u_i \sim \mathcal{N}(0, \Sigma),
onumber \ k_i \sim \mathsf{Ising}(heta).
onumber \ \mathsf{logit}(\mu_{ijlk}) = X_{ijl}eta + T_{ijl} au_{k_i} +
u_{ij},
onumber \ \mathsf{y}_{ijlk} \sim \mathsf{Beta} ext{-Binomial}(\mathcal{N}_{il}, \mu_{ijlk}, \mathcal{M}_i),
onumber \ \mathsf{v}_{ijlk}$$

How close are we to the distribution of the data?

Overdispersed Model - Results

Figure: Scatter plot for Overdispersed Model

Overdispersed Model - Results

Figure: ROC for Overdispersed Model

Overdispersed Model - Results

Figure: FDR for Overdispersed Model

226 vaccinees, and 36 placebos, 24 cell-subsets.

Figure: Scatter plots for RV144 booleans dataset

Figure: ROC for RV144 booleans dataset

Figure: FDR for RV144 booleans dataset

Figure: Estimated Ising Model

Figure: Estimated Ising Model

Controlled Human Malaria Infection Study

- 9 Tanzanian adults were infected with Malaria.
 - +3 controls.

- Blood samples were collected at 6 time points.
 - Day 0, day 9, blood parasitemia, Day 28, Day 56, Day 168.
- Two types of stimulation:
 - Infected/uninfected blood-cells.

113 measured cell-types divided into 8 groups.

Controlled Human Malaria Infection Study

Figure: Stimulated vs. Unstimulated

Controlled Human Malaria Infection Study

FDR adjusted p-values for Malaria Dataset

	4+	4+/CXCR5+	4+/CXCR5+/PD-1+	8+	8+/CXCR5+	56+dim	56+hi	NK T cells
154+	0.001	0.0045	0.001	0.8	0.7			0.001
CCR7+	0.97	1		0.9	0.7			
CD45A+	0.54	0.5		0.45	0.7			
СМ	0.8	1	1	0.9	0.9			
EM	0.28	0.0001	0.00001	0.9	0.7			
GzB+	0.0345			0.11		0.001	0.00001	0.21
IFNg+	0.0001	0.46	0.28	0.056		0.000001	0.7	0.01
IL2+	0.0001	0.46	0.02	0.6	0.7			0.26
IL21+	0.49	0.46		0.9		0.63	0.14	0.6
IL4+	0.46	0.56		0.68	0.7		0.7	0.28
Naive	0.6	0.55	0.7	0.91	0.7			
PD-1+	0.003			0.53	0.7			
TD	0.4259	0.53	0.51	0.43	0.7			
TNFa+	0.0001	0.09	0.001	0.001		0.03		0.0000001

Thank you!

Questions?

AmitMeir@uw.edu