

Der Business Analytics Club für SAS User

"MACHINE LEARNING" IN DER SAS ANALYTIK PLATTFORM

Mihai Paunescu Gerhard Svolba

ANSÄTZE FÜR DIE MODELLIERUNG

Vgl. Breimann (2001)

MACHINE LEARNING

EINORDNUNG DER ANSÄTZE

sas°club

Machine Learning

Supervised Learning

Unsupervised Learning

Semisupervised Learning

ALGORITHMEN IN SAS (1)

Algorithmus	SAS Enterprise Miner	SAS Prozeduren	Literatur
Regression	High Performance Regression LARS Partial Least Squares	ADAPTIVEREG GAM HPGENSELECT HPLOGISTIC HPREG HPQUANTSELECT	Panik 2009
Decision Tree	High Performance Tree	ARBOR HPSPLIT	De Ville and Neville 2013
Gradient Boosting	Gradient Boosting	ARBOR	Friedman 2001
Neural network	AutoNeural High Performance Neural Neural Network	HPNEURAL NEURAL	Rumelhart, Hinton, and Williams 1986
Random Forest	High Perfromance Forest	HPFOREST	Breiman 2001b

SUPERVISED LEARNING

RANDOM FOREST

ALGORITHMEN IN SAS (2)

Algorithmus	SAS Enterprise Miner	SAS Prozeduren	Literatur
Support Vector Machines	High Performance Support Vector Machine	HPSVM	Cortes and Vapnik 1995
Naive Bayes	Bayesian Network	HPBNET	Friedman, Geiger, and Goldszmidt 1997
Neighbors	Memory Based Reasoning	DISCRIM	Cover and Hart 1967
Gaussian processes			Seeger 2004

sas°club

Machine Learning

Supervised Learning

Unsupervised Learning

Semisupervised Learning

ALGORITHMEN IN SAS (1)

Algorithmus	SAS Enterprise Miner	SAS Prozeduren	Literatur
A priori rules	Association Link Analysis	Assoc, Rulegen, Taxonomy	Agrawal, Imieliński, and Swami 1993
K-means clustering	Cluster High Performance Cluster	FastClus HPClus	Hartigan and Wong 1979
Mean shift clustering			Cheng 1995
Spectral Clustering		Custom solution through Base SAS and the DISTANCE and PRINCOMP procedures	Von Luxburg 2007
Kernel Density Estimation		KDE	Silverman 1986

ALGORITHMEN IN SAS (2)

Algorithmus	SAS Enterprise Miner	SAS Prozeduren	Literatur
Kernel PCA		Custom solution through Base SAS and the CORR, PRINCOMP, and SCORE procedures	Schölkopf, Smola, and Müller 1997
Sparse PCA			Zou, Hastie, and Tibshirani 2006
Singular value decomposition		HPTMINE IML, SPSVD	Golub and Reinsch 1970
Self organizing maps	SOM/Kohonen Node		Kohonen 1984
Nonnegative matrix factorization			Lee and Seung 1999

UNSUPERVISED LEARNING

BEISPIEL: PATIENTEN MIT AUFFÄLLIGEN BEHANDLUNGEN

- Fragestellung: Identifiziere Patienten mit auffälliger Behandlungshistorie.
- Daten:

wurdon

- Demographische Patientendaten (z.B. Alter, Einkommen, Geschlecht)
- Patienten Behandlungshistorie (130 unterschiedliche Behandlungsarten)

· Liste von Patienten, die als auffällig galten und für eine manuelle Prüfung selektiert

wurde	n.				₁ id (global_proc_id	count
	⊚ id	🔌 age	gender	1	7561	22	1
1	306535165	65-74	F	2	7561	25	1
2	742231134	65-74	F	3	7619	17	1
3	928807201	75-84	M	4	7619	34	1
4	83686538	<65	F	5	10479	2	1
5	755607449	65-74	F	6	10479	9	1
6	247750664	75-84	F	7	10479	26	1
7	141100339	<65	M	8	10479	87	1
8	547433468	<65	M	9	13515	14	1
9	719408667	65-74	F	10	13515	26	1
10	769089007	75-84	M	11	15213	19	1
11	841546119	65-74	F	12	15213	25	1
				13	15213	26	1
				14	15213	27	1
				15	15213	99	1
				16	15213	112	1
		l' 45/0A0	0500 0045 :	17	16017	22	1
port.sas.com/	/resources/papers/pro	ceedings15/SAS	2520-2015.zip	18	16017	26	1
				19	16017	68	1

LEARNING PATIENTEN MIT AUFFÄLLIGEN BEHANDLUNGEN

Daten verdichten: Singular Value Decomposition

```
proc hptmine
  data = repo.transaction coo;
    svd
       k=10
       row= global proc id
       col= id
       entry= count
       outdocpro= svdpro;
  performance nthreads= 4;
run;
```

	⊚ id	global_proc_id	(i) count
1	7561	22	1
2	7561	25	1
3	7619	17	1
4	7619	34	1
5	10479	2	1
6	10479	9	1
7	10479	26	1
8	10479	87	1
9	13515	14	1
10	13515	26	1
11	15213	19	1
12	15213	25	1
13	15213	26	1
14	15213	27	1 1
15	15213	99	1
16	15213	112	1
17	16017	22	1
18	16017	26	1
19	16017	68	1

LEARNING PATIENTEN MIT AUFFÄLLIGEN BEHANDLUNGEN

- 1000 Cluster erstellen und den Anteil an geprüften Patienten in jeden Cluster berechnen
- Patienten in den 6 Cluster mit den höchsten Anteil sind auffällig.

proc hpclus

```
data= patient history std
 outstat= patient cluster profile1000
 maxclusters= 1000 maxiter= 100 seed= 12345
 standardize= none impute= none noc= none;
 input
     ENCODED GENDER ENCODED AGE ENCODED INCOME
       /* SVD FEATURES: COL1-COL10 */
     COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10;
  /* COPY THESE TO THE OUTPUT SET */
 id ID REVIEW FLAG GENDER AGE INCOME COL1 COL2 COL3
     COL4 COL5 COL6 COL7 COL8 COL9 COL10;
 score out= patient cluster label1000;
 performance threads= 4;
run;
```

LEARNING PATIENTEN MIT AUFFÄLLIGEN BEHANDLUNGEN

- Assoziationsanalyse:
 - Gemeinsam auftretende Behandlungen unter den geprüften und den anderen Patienten.

proc assoc

```
data= repo.review transaction coo(keep= id global proc id)
   dmdbcat= work.fraudulent transaction cat
   out= freq fraud trans group
   items= 2
   support= 30;
   customer id;
   target global proc id;
run;
```

OUNT		
682	1	2
769	1	3
34	1	4
51	1	5

UNSUPERVISED BEISPIEL

Sasch LEARNING PATIENTEN MIT AUFFÄLLIGEN BEHANDLUNGEN

- Assoziationsanalyse:
 - Finde Behandlungskombinationen, die NUR bei den geprüften Patienten häufig auftreten.
 - Suche unter allen Patienten solche mit diesen Behandlungskombinationen.

sasclub

Machine Learning

Supervised Learning

Unsupervised Learning

Semisupervised Learning

ALGORITHMEN IN SAS (1)

Algorithmus	SAS Enterprise Miner	SAS Prozeduren	Literatur
Denoising autoencoders		HPNEURAL NEURAL	Vincent et al. 2008
Expectation maximization			Nigam et al. 2000
Manifold regularization			Belkin, Niyogi, and Sindhwani 2006
Transductive support vector machine			Joachims 1999

SEMI-SUPERVISED LEARNING

BEISPIEL STACKED DENOISING AUTOENCODER

 Fragestellung: Extrahiere wenige repräsentative Merkmale.

Daten:

- Jedes Bild besteht aus 28x28 pixel.
- 784 Variablen und jedes Bild ist eine Zeile im Dataset.
- · Variablen haben Werte zwischen 0 und 255.
- 1 Zielvariable für den Wert der Zahl.

digit	pix1	pix2	 pix784	TARGET (LABEL)
1	0	8	 0	4
2	0	3	 0	3
3	244	1	 0	2
4	78	3	 3	7
5	0	0	 4	8
42000	3	0	 	9

SEMI-SUPERVISED LEARNING

STACKED DENOISING AUTOENCODER MIT NEURONALEN NETZEN

proc neural

data= autoencoderTraining dmdbcat= work.autoencoderTrainingCat performance compile details cpucount= 12 threads= yes;

```
archi MLP hidden= 5;
hidden 300 / id= h1;
hidden 100 / id= h2;
hidden 2 / id= h3 act= linear;
hidden 100 / id= h4;
hidden 300 / id= h5;
```

input corruptedPixel1-corruptedPixel400 / id= i level= int std= std; target pixel1-pixel400 / act= identity id= t level= int std= std;

initial random=123; prelim 10 preiter=10; freeze h1->h2; freeze h2->h3; freeze h3->h4; freeze h4->h5; train technique= congra maxtime= 129600 maxiter= 1000; freeze i->h1; thaw h1->h2; train technique= congra maxtime= 129600 maxiter= 1000; freeze h1->h2; thaw h2->h3; train technique= congra maxtime= 129600 maxiter= 1000; freeze h2->h3; thaw h3->h4; train technique= congra maxtime= 129600 maxiter= 1000; freeze h3->h4; thaw h4->h5; train technique= congra maxtime= 129600 maxiter= 1000; thaw i->h1; thaw h1->h2; thaw h2->h3; thaw h3->h4; train technique= congra maxtime= 129600 maxiter= 1000;

code file= 'C:\Path\to\code.sas'; run;

SEMI-SUPERVISED LEARNING

STACKED DENOISING AUTOENCODER MIT NEURONALEN NETZEN

SEMI-SUPERVISED LEARNING

STACKED DENOISING AUTOENCODER MIT NEURONALEN NETZEN VISUALISIERUNG

SEMI-SUPERVISED STACKED DENOISING AUTOENCODER MIT NEURONALEN **LEARNING** NETZEN VERGLEICH ZU PCA

Ersten zwei Hauptkomponenten

MACHINE LEARNING RESSOURCEN

"Overview of Machine Learning with SAS Enterprise Miner"

http://support.sas.com/resources/papers/proceedings14/SAS313-2014.pdf http://support.sas.com/rnd/papers/sasqf14/313 2014.zip

Quellen:

Hall P. 2015. SAS® Does Data Science: How to Succeed in a Data Science Competition

http://support.sas.com/resources/papers/proceedings15/SAS2520-2015.pdf

Agrawal, R., Imieliński, T., and Swami, A. 1993. "Mining Association Rules between Sets of Items in Large Databases." ACM SIGMOD Record 22:207-216.

Belkin, M., Niyogi, P., and Sindhwani, V. 2006. "Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples." Journal of Machine Learning Research 7:2399-2434.

Breiman, L. 2001a. "Random Forests." Machine Learning 45:5–32.

Breiman, L. 2001b. "Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author)." Statistical Science 16:199-231.

Cheng, Y. 1995. "Mean Shift, Mode Seeking, and Clustering." IEEE Transactions on Pattern Analysis and Machine Intelligence 17:790–799. Cortes, C. and Vapnik, V. 1995. "Support-Vector Networks." Machine Learning 20:273–297.

Cover, T. and Hart, P. 1967. "Nearest Neighbor Pattern Classification." IEEE Transactions on Information Theory 13:21–27.

de Ville, B. and Neville, P. 2013. Decision Trees for Analytics Using SAS Enterprise Miner. Cary, NC: SAS Institute Inc.

Friedman, J. H. 2001. "Greedy Function Approximation: A Gradient Boosting Machine." Annals of Statistics 29:1189–1232.

Friedman, N., Geiger, D., and Goldszmidt, M. 1997. "Bayesian Network Classifiers." Machine Learning 29:131–163.

Golub, G. H. and Reinsch, C. 1970. "Singular Value Decomposition and Least Squares Solutions." Numerische Mathematik 14:403-420. Hartigan, J. A. and Wong, M. A. 1979. "Algorithm AS 136: A k-Means Clustering Algorithm." Journal of the Royal Statistical Society, Series

C 28:100-108.

Joachims, T. 1999. "Transductive Inference for Text Classification Using Support Vector Machines." Proceedings of the 16th International Conference on Machine Learning. New York: ACM.

Kohonen, T. 1984. Self-Organization and Associative Memory. Berlin: Springer-Verlag.

Lee, D. D. and Seung, H. S. 1999. "Learning the Parts of Objects by Non-negative Matrix Factorization." Nature 401:788–791.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. 2000. "Text Classification from Labeled and Unlabeled Documents Using EM." Machine Learning 39:103-134.

Panik, M. J. 2009. Regression Modeling: Methods, Theory, and Computation with SAS. Boca Raton, FL: CRC Press.

Schölkopf, B., Smola, A., and Müller, K.-R. 1997. "Kernel Principal Component Analysis." In Artificial Neural Networks—ICANN'97, 583-588. Berlin: Springer.

Seeger, M. 2004. "Gaussian Processes for Machine Learning." International Journal of Neural Systems 14:69-106.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. Vol. 26. Boca Raton, FL: CRC Press.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. A. 2008. "Extracting and Composing Robust Features with Denoising

Autoencoders." Proceedings of the 25th International Conference on Machine Learning. New York: ACM.

Zou, H., Hastie, T., and Tibshirani, R. 2006. "Sparse Principal Component Analysis." Journal of Computational and Graphical Statistics