

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (10) 1011236 A

З (5D) В 01 J 23/22; С 07 C 11/02

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3339705/23-04
(22) 21.09.81
(46) 15.04.83. Бюл. № 14
(72) В.И.Никонов, С.В.Адельсон,
Ф.Г.Жагфаров, Е.М.Рудык, Г.П.Крей-
нина и Т.Н.Мухина
(71) Московский ордена Октябрьской
Революции и ордена Трудового Крас-
ного Знамени институт нефтехими-
ческой и газовой промышленности
им. И.М.Губкина
(53) 66.097.3(088.8)
(56) 1. Авторское свидетельство СССР
№ 882597, кл. С 07 С 4/06, 1979.
2. Авторское свидетельство СССР
по заявке 3275768/23-04,
кл. В 01 J 23/10, 1981.
3. Авторское свидетельство СССР
по заявке 2984901/23-04,
кл. С 01 G 11/04, В 01 J 23/22, 1980
(прототип).

(54) (57) КАТАЛИЗАТОР ДЛЯ ПИРОЛИЗА
УГЛЕВОДОРОДНОГО СЫРЬЯ, содержащий
ванадат калия, промотор и синтети-
ческий корунд, о т л и ч а ю щ и й
с я тем, что, с целью снижения
коксуюемости и повышения активности
катализатора, в качестве промотора
он содержит окись бора при следую-
щем соотношении компонентов, мас.%:

Ванадат	5,0-6,5
калия	
Окись	
бора	1,0-3,0
Синтетичес- кий корунд	
	Остальное

SU (10) 1011236 A

Изобретение относится к катализаторам для процесса пиролиза углеводородного сырья.

Известен ванадиевый катализатор для пиролиза нефтяного сырья, содержащий 1,3 - 5,5 мас.% ванадата калия, 5 нанесенный на синтетический корунд. На данном катализаторе в процессе каталитического пиролиза прямогонного бензина ромашкинской нефти при 750°C, объемной скорости подачи бензина 2,5 ч⁻¹, подачи водяного пара 25 мас.% от массы бензина, выход этилена 37,6 мас.%, пропилена 14,2 мас.%, бутадиена 5,8 мас.% на сырье [1].

Недостатками этого катализатора являются низкий выход этилена и сравнительно большое образование в процессе пиролиза продуктов уплотнения, кокса 0,5(мас.% в расчете на сырье).

Известен катализатор для пиролиза углеводородного сырья, содержащий 8 - 12 мас.% окиси индия, 3-5 мас.% окиси калия и фаянсовый носитель [2]. 25

Недостатком этого катализатора является увеличенная коксуюемость (3,9 мас.% за 4 ч работы) в процессе пиролиза.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому является катализатор для пиролиза углеводородного сырья, содержащий ванадат калия, промотор, в качестве которого катализатор содержит углекислый калий, и синтетический корунд, при следующем соотношении компонентов мас.%:

Ванадат калия	3,5-6,5	30
Сульфат калия	0,1-3,0	40

Синтетический корунд Остальное [3].

Недостатки этого катализатора - высокая коксуюемость и низкая активность в процессе пиролиза. Так, при 780°C и времени контакта 0,1 с, мас-с-сом отношении водяной пар : бензин 1:1, выход этилена составляет 40,5 мас.% пропилена 13,8 мас.%, бутилена 5,0 мас.%, а содержание кокса катализатора 0,2 мас.% на пропущенное сырье или 1,5 мас.% на катализатор.

Цель изобретения - снижение коксуюемости и повышение активности катализатора для пиролиза углеводородного сырья.

Указанная цель достигается катализатором - углеводородного сырья, содержащим ванадат калия, промотор - 60 окись бора и синтетический корунд при следующем соотношении компонентов, мас.%:

Ванадат калия	5,0-6,5	65
---------------	---------	----

Окись бора 1,0-3,0

Синтетический корунд Остальное

Использование предлагаемого катализатора дает возможность реализовать следующие его преимущества. Активность катализатора увеличивается, о чем свидетельствует повышение выхода непредельных углеводородов C₂-C₄ 64,2 - 64,4 мас.% (против 62,5 мас.% известного катализатора). Коксуюемость снижается до 0,10 - 0,15 мас.% на сырье или 1,0 - 1,15 мас.% на катализатор и по истечении 5 ч работы она составляет 0,06 - 0,07 или 0,5-1,1 мас.%, на сырье или катализатор, соответственно. Для известного катализатора коксуюемость после 5 ч работы составляет 0,08 мас.% на сырье или 1,2 мас.% на катализатор.

Предлагаемый катализатор без регенерации и потери активности проработал свыше 800 ч.

Катализатор готовят следующим образом.

Синтетический корундовый носитель, содержащий, мас.%:

Окись кремния	0,5-2,5
Окись железа	0,1-0,15
Окись титана	0,01-0,25
Окись кальция	0,01-0,15
Окись магния	0,01-0,15
Окись калия	0,01-0,15
Окись натрия	0,01-0,15
Альфа - окись алюминия	Остальное,

прокаливают при 750 - 780°C в муфельной печи 6 ч. Охлажденный до комнатной температуры корундовый носитель загружают в водяной раствор, содержащий 20% ванадата калия и 0,4 - 3,7% борной кислоты и выдерживают в растворе 1,0 - 5,0 ч при 60-90°C с перемешиванием.

Полученную катализаторную массу отделяют от раствора, после чего сушат 4 ч при 90 - 100°C.

После сушки катализатор прокаливают в муфельной печи в течение 5,0 - 6,0 ч при 750 - 760°C.

При мер 1 (сравнительный). Синтетический корундовый носитель, содержащий, мас.%:

Окись кремния	0,5
Окись железа	0,01
Окись титана	0,01
Окись кальция	0,01
Окись магния	0,01

Окись калия 0,01
Окись натрия 0,01
Альфа - окись алюминия 99,44

Прокаливают при 750°C в муфельной печи 6 ч. Охлажденный до комнатной температуры корундовый носитель загружают в водный раствор, содержащий 20% ванадата калия и 0,4% борной кислоты и выдерживают в растворе в течение 4 ч при 60°C с перешиванием. Полученную катализаторную массу отделяют от раствора, после чего сушат 4 ч при 90°C. После сушки катализатор прокаливают 6 ч при 750°C.

Катализатор, полученный указанным способом имеет состав, мас.:

Ванадат калия	3,5
Окись бора	0,1
Синтетический корунд	Остальное 20

П р и м е р 2. Условия приготовления аналогичны примеру 1 за исключением того, что корундовый носитель пропитывают в водной растворе, содержащем 20% KVO₃ и 1,3% борной кислоты.

Результаты каталитического пиролиза прямогонного бензина
 $t = 780^{\circ}\text{C}$, время контакта 0,1 с, массовое соотношение
водяной пар : бензин 1:1

Катализа-	Выход на пропущенное сырье, мас.%							
	H ₂	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₃ H ₈	C ₂ H ₂	C ₃ H ₆	C ₄ H ₁₀
Известный 1				37,6				14,2
Известный 3	1,3	16,1	1,66	40,5	0,4	0,3	13,8	0,1
По примеру 1	1,2	14,8	2,3	37,0	0,4	0,1	13,0	0,2
По примеру 2	1,3	13,0	3,5	40,5	0,4	0,2	15,9	0,1
По примеру 3	1,2	14,6	2,2	40,9	0,4	0,2	14,9	0,2
Сравнительные примеры								
5% KVO ₃ - 0,5% B ₂ O ₃ синтети- ческий ко- рунд - ос- тальное	1,2	14,0	2,0	35,0	0,4	0,1	13,6	0,2
6% KVO ₃ - 3,5% B ₂ O ₃ синтети- ческий ко- рунд - ос- тальное	1,2	14,8	2,2	40,0	0,4	0,2	14,0	0,2

Катализатор имеет состав, мас.%:

Ванадат калия	5,0
Окись бора	1,0
Синтетический корунд	

П р и м е р 3. Условия приготовления аналогичны примеру 1 за исключением того, что корундовый носитель, имеет состав, мас.%:

Окись кремния	2,5
Окись железа	0,15
Окись титана	0,15
Окись кальция	0,15
Окись магния	0,15
Окись калия	0,15
Окись натрия	0,15

пропитывают в водном растворе, содержащем 20% ванадата калия и 3,7% борной кислоты.

Катализатор имеет состав, мас.%:

Ванадат калия	6,5
Окись бора	3,0

Синтети-
ческий корунд

Результаты испытания предлагаемого катализатора в сравнении с известными представлены в таблице.

Катализа- тор	Выход на пропущенное сырью, мас. %				На катали- затор	На сырье
	C ₄	C ₄ H ₆	Непре- дель- ных уг- леводо- родов	Коксуюемость (содер- жание кокса, мас. % через 5 ч)		
Известный 1		5,8		2,0		0,2
Известный 3	3,2	5,0	62,5	1,2		0,08
По примеру 1	2,7	4,7	57,5	1,3		0,13
По примеру 2	3,0	5,0	64,4	1,1		0,07
По примеру 3	3,2	5,0	64,2	0,5		0,06
5% КО - 0,5% ВО синтети- ческий ко- рунд - ос- тальное	2,5	4,5	55,7	-		0,3
6% КО - 3,5% ВО синтети- ческий ко- рунд - ос- тальное	3,2	4,9	62,3	-		0,1

Составитель Т. Белослюдова
 Редактор И. Касарда Техред Л. Пекарь Корректор В. Бутяга

Заказ 2623/9 Тираж 535 Подписьное
 ВНИИПИ Государственного комитета СССР
 по делам изобретений и открытий
 113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4