Topology

Ashan Jayamal

2024-02-13

Contents

1	Topological Spaces.	5
2	Continuous functors	7

4 CONTENTS

Chapter 1

Topological Spaces.

Definition 1.1. A topology on a set X is a collection $\mathcal T$ of subsets of X such that

- (T1) ϕ and X are in $\mathcal T$ (ref:T1);
- (T2) Any union of subsets in \mathcal{T} is in \mathcal{T} ;
- (T3) The finite intersection of subsets in \mathcal{T} is in \mathcal{T} .

Chapter 2

Continiuous functions.

Definition 2.1. A topology on a set X is a collection $\mathcal T$ of subsets of X such that

- (T1) ϕ and X are in \mathcal{T} (ref:T1);
- (T2) Any union of subsets in \mathcal{T} is in \mathcal{T} ;
- (T3) The finite intersection of subsets in \mathcal{T} is in \mathcal{T} .

Proof. It is trivial