Solucion de Ecuaciones No Lineales

Rubn Cuadra A01019102

March 15, 2016

Abstract

Manual de usuario: 'ortogonaliza.m', el objetivo de este documento es documentar la implementacion de Gram-Schmidt como metodo numericos

0.1 Introduccion

El codigo consiste en un archivo llamado de la misma manera que la funcion el cual recibe 2 argumentos y nos regresa 2 respuestas

 ${f V}$ Es un arreglo con vectores que seran ortogonalizados

eps es nuestro criterio para decidir si se agrega como vector ortogonalizado al retorno, este se compara con la magnitud del vector obtenido (Explicación mas adelante)

0.2 Comprension del algoritmo

0.2.1 Gram-Schmidt

Busca generar un conjunto de vectores que genere el mismo subespacio vectorial que los vectores iniciales

El algoritmo usado es:

$$\mathbf{u}_k = \mathbf{v}_k - \sum_{j=1}^{k-1} \frac{\langle \mathbf{u}_j, \mathbf{v}_k \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \mathbf{u}_j \tag{1}$$

Paso 1

Agregar el Primer vector al retorno $VO_1 = V_1$,

Paso 2

Generamos un ciclo desde 2 hasta e total de vectores en V (Ya que la posicion 1 ya fue asignada en el paso anterior)

Paso 3

Inicializamos una variable temp=0

Paso 4

Generamos un ciclo con el total de columnas en **VO** de manera que: $temp = \sum_{j=1}^{Col(VO)} \frac{\langle \mathbf{u}_j, \mathbf{v}_k \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \mathbf{u}_j$

Paso 5

Obtenemos el vector ortogonal usando $VO_i - temp$

Paso 6

Comparamos $\frac{{\bf u}_k}{\sqrt{\langle {\bf u}_k, {\bf u}_k \rangle}} > eps$ lo que es equivalente a la magnitud del vector ortonormal

Paso 7

Si se cumple: Agregamos el vector orotonomal a $VO_{ultimaposicion+1}$

Al final se regresa VO y R, donde R = columnas(VO)

0.3 Ejemplo

Mandamos a llamar la funcion desde un archivo main.m. Usando el argumento:

```
V = transpose([2\ 0\ 1;\ 3\ 2\ 0;\ 1\ 1\ 1]);
Llamamos la funcion:
[VO R] = ortogonaliza(V);
El resultado VO seria:
VO =[
   2.00000
              0.60000
                        -0.34483
   0.00000
              2.00000
                         0.51724
   1.00000
             -1.20000
                         0.68966
y nos devolveria por Rango
R = 3
```

Donde VO serian los vectores Ortogonalizados partiendo desde V

0.4 Conclusion

Es un modulo portable que en realidad solo requiere 1 argumento, el eps no es necesario(Pero se puede definir).

 $^{^0{\}rm Los}$ acentos no se pudieron agregar por cuestion de la codificacion