NBA 4920/6921 Lecture 11

Linear Model Stepwise Selection Application

Murat Unal

10/05/2021

```
options(digits = 3, scipen = 999)
library(tidyverse)
library(ISLR)
library(cowplot)
library(ggcorrplot)
library(stargazer)
library(corrr)
library(lmtest)
library(sandwich)
library(MASS)
library(car)
library(jtools)
library(caret)
library(leaps)
library(future.apply)
hitters <- ISLR::Hitters
hitters <- na.omit(hitters)
set.seed(2)
```

rm(list=ls())

dim(hitters)				
[1] 263 20				
names(hitters)				
[1] "AtBat"	"Hits"	"HmRun"	"Runs"	"RBI"
[7] "Years"	"CAtBat"	"CHits"	"CHmRun"	"CRun

"Division"

"PutOuts"

"Assi:

"League"

"NewLeague"

[13] "CWalks"

[19] "Salary"

Best subset selection

```
# Draw validation set
hit_validation_data = hitters %>% sample_frac(size = 0.3)
# Create the remaining training set
hit_training_data = setdiff(hitters, hit_validation_data)
```

```
nvars = 19
regfit.best=regsubsets(Salary~.,data=hit_training_data,
                                             nvmax=nvars)
best.sum <- summary(regfit.best)</pre>
best.model <- which.max(best.sum$adjr2)</pre>
best.model
Γ1 10
coef(regfit.best,id=best.model)
```

Hits

6.052

CWalks

-0.912

Walks

5.587

DivisionW

-87.035

CAtBat

-0.130

0.233

PutOut:

AtBat

-1.687

CRBI

1.204

(Intercept)

88.308

CRuns

1.448

Validation set approach

[1] 8

```
validation.mat=model.matrix(Salary~.,
                      data=hit validation data)
val.errors = numeric(nvars)
for(each in 1:nvars){
    coefi = coef(regfit.best,id=each)
    pred = validation.mat[,names(coefi)]%*%coefi
    val.errors[each]=
      mean((hit validation data$Salary-pred)^2)
which.min(val.errors)
```

K-fold cross validation

```
nvars = 19
nfold = 10
# Create folds
fold.list <- createFolds(rownames(hitters),nfold)</pre>
# Empty vector to store the resulting MSEs
cv.errors =matrix(0,nfold,nvars,
                 dimnames =list(NULL,paste (1:nvars)))
for(each in 1:nfold){
 train <- hitters[-fold.list[[each]],]</pre>
validate <- hitters[fold.list[[each]],]</pre>
 best.fit=regsubsets(Salary~., data=train, nvmax =19)
 validation.mat=model.matrix(Salary~.,data=validate)
```

```
..continued from before

for(i in 1:nvars){
   coefi = coef(regfit.best,id=i)
   pred = validation.mat[,names(coefi)]%*%coefi
   cv.errors[each,i] = mean( (validate$Salary-pred)^2)
   }
}
```

```
mean.cv.errors=apply(cv.errors ,2, mean)
best.subset.model <- which.min(mean.cv.errors)
best.subset.model</pre>
```


To obtain the final model we perform best subset selection on the full data set and obtain the 11'-variable model.

best.fit=regsubsets(Salary~.,data=hitters,nvmax =19)

С	pef(best.fit,	·			
(Intercept)	AtBat	Hits	Walks	
	135.751	-2.128	6.924	5.620	

CWalks

CRBI

CAtBat

-0.139

0.289

PutOut:

0.785 -0.82343.112 -111.146This is your final model that you'd deploy to predict the salary of

LeagueN

DivisionW

baseball players.

Forward Stepwise Selection

We can also use the regsubsets() function to perform forward stepwise or backward stepwise selection, using the argument method="forward" or method="backward"

[1] 11

```
coef(regfit.fwd, id=fwd.model)[1:4]
(Intercept) AtBat
                          Hits
```

135.75 -2.13 6.92

coef(regfit.fwd, id=fwd.model)[5:9]

coef(regfit.fwd, id=fwd.model)[10:12]

DivisionW

-111.146

CAtBat CRuns CRBI -0.139 1.455 0.785 -0.823 43.112

0.289

PutOuts Assists

0.269

CWalks LeagueN

Walks

5.62

Validation set approach

Years

```
nvars=19
regfit.fwd=regsubsets(Salary~.,data=hit_training_data,
                      nvmax=nvars.method="forward")
summary(regfit.fwd)
Subset selection object
Call: regsubsets.formula(Salary ~ ., data = hit training data
    method = "forward")
19 Variables (and intercept)
```

Forced in Forced out AtBat FALSE. FALSE

FALSE FALSE Hits

HmRun FALSE FALSE

FALSE Runs FALSE

RBI FALSE FALSE

FALSE

Walks FALSE FALSE

FALSE

K-fold cross validation

```
nvars = 19
nfold = 10
# Create folds
fold.list <- createFolds(rownames(hitters),nfold)</pre>
# Empty vector to store the resulting MSEs
cv.errors =matrix(0,nfold,nvars,
                 dimnames =list(NULL,paste (1:nvars)))
for(each in 1:nfold){
 train <- hitters[-fold.list[[each]],]</pre>
 validate <- hitters[fold.list[[each]],]</pre>
 best.fit=regsubsets(Salary~., data=train, nvmax =19,
                      method = "forward")
 validation.mat=model.matrix(Salary~.,data=validate)
```

```
..continued from before

for(i in 1:nvars){
   coefi = coef(best.fit,id=i)
   pred = validation.mat[,names(coefi)]%*%coefi
   cv.errors[each,i] = mean( (validate$Salary-pred)^2)
   }
}
```

```
mean.fwd.cv.errors=apply(fwd.cv.errors ,2, mean)
best.fwd.cv.model <- which.min(mean.fwd.cv.errors)
best.fwd.cv.model</pre>
```


To obtain the final model we perform forward stepwise selection on the full data set and obtain the 12-variable model.

(Intercept)	AtBat	Hits	Runs	Walks
135.519	-2.056	7.506	-1.797	6.062
CRuns	CRBI	CWalks	LeagueN	Division
1.559	0.778	-0.835	39.087	-112.644
Assists				
0.243				

This is your final model that you'd deploy to predict the salary of baseball players.

Backward Stepwise Selection

Γ1 11

coef(regfit.bwd, id=bwd.model)

coer(regitt.bw	a, <u>ra-bwa.mo</u>	Id-bwd:model)			
(Intercept)	AtBat	Hits	Walks	CAtBat	
135.751	-2.128	6.924	5.620	-0.139	

LeagueN DivisionW

-111.146

43.112

PutOut:

0.289

CWalks

-0.823

CRBI

0.785

Validation set approach

```
nvars=19
regfit.bwd=regsubsets(Salary~.,data=hit_training_data,
                      nvmax=nvars,method="backward")
validation.mat=model.matrix(Salary~.,
                      data=hit_validation_data)
bwd.val.errors = numeric(nvars)
for(each in 1:nvars){
    coefi = coef(regfit.bwd,id=each)
    pred = validation.mat[,names(coefi)]%*%coefi
    bwd.val.errors[each]=
      mean((hit validation data$Salary-pred)^2)
which.min(bwd.val.errors)
```

[1] 13

K-fold cross validation

```
nvars = 19
nfold = 10
# Create folds
fold.list <- createFolds(rownames(hitters),nfold)</pre>
# Empty vector to store the resulting MSEs
cv.errors =matrix(0,nfold,nvars,
                 dimnames =list(NULL,paste (1:nvars)))
for(each in 1:nfold){
 train <- hitters[-fold.list[[each]],]</pre>
 validate <- hitters[fold.list[[each]],]</pre>
 best.fit=regsubsets(Salary~., data=train, nvmax =19,
                      method = "backward")
 validation.mat=model.matrix(Salary~.,data=validate)
```

```
..continued from before

for(i in 1:nvars){
   coefi = coef(regfit.best,id=i)
   pred = validation.mat[,names(coefi)]%*%coefi
   cv.errors[each,i] = mean( (validate$Salary-pred)^2)
   }
}
```

```
mean.bwd.cv.errors=apply(bwd.cv.errors ,2, mean)
best.bwd.cv.model <- which.min(mean.bwd.cv.errors)
best.bwd.cv.model</pre>
```


To obtain the final model we perform backward stepwise selection on the full data set and obtain the 10'-variable model.

```
best.bwd.fit=regsubsets(Salary~., data=hitters, nvmax =19,
```

	method	= "backward	")	
<pre>coef(best.bwd.f</pre>	it,best.bwd.	cv.model)		
(Intercent)	A+Do+	Ui+a	Wolled	C1+

	moonoa	Daton war a	,	
<pre>coef(best.bwd.</pre>	fit,best.bwd	.cv.model)		
(Intercept)	AtBat	Hits	Walks	CAtBa
162.535	-2.169	6.918	5.773	-0.130

DivisionW

-112.380

PutOuts

0.297

Assist

0.283

This is your final model that you'd deploy to predict the salary of baseball players.

CWalks

-0.831

CRBI

0.774

Let's compare the test error estimates from all approaches

