Section 2.6 Exercises

David Piper

October 3, 2020

- 2.35 Let P:18 is odd and Q:25 is even. Then $P\iff Q$ can be written as 18 is odd if and only if 25 is even. Furthermore $P\iff Q$ is true.
- 2.37 For the open sentences P(x): |x-3| < 1 and $Q(x): x \in (2,4)$ over the domain \mathbb{R} the biconditional $P(x) \iff Q(x)$ can be stated in a few different ways including the following.
 - 1. |x-3| < 1 if and only if $x \in (2,4)$.
 - 2. |x-3| < 1 is equivalent to $x \in (2,4)$.
- 2.39 For the following open sentences P(x) and Q(x) over a domain S, determine all values of $x \in S$ for which the biconditional $P(x) \iff Q(x)$ is true.
 - (a) $P(x): |x|=4; Q(x): x=4; S=\{-4,-3,1,4,5\}$. This has the following corresponding truth table.

x	-4	3	1	4	5
P(x)	Т	F	F	Т	F
Q(x)	F	F	F	Τ	F

From this truth table we can observe that $P(x) \iff Q(x)$ is false when x = -4 and true for all other vales of $x \in S$.

(b) $P(x): x \ge 3; Q(x): 4x-1 > 12; S = \{0,2,3,4,6\}$. This has the following corresponding truth table.

X	0	2	3	4	6
P(x)	F	F	Т	Т	\overline{T}
Q(x)	F	F	F	Τ	T

From this truth table we can observe that $P(x) \iff Q(x)$ is false when x = 3 and true for all other vales of $x \in S$.

(c) $P(x): x^2=16; Q(x): x^2-4x=0; S=\{-6,-4,0,3,4,8\}$. This has the following corresponding truth table.

X	-6	-4	0	3	4	8
$\frac{P(x)}{Q(x)}$					T T	

From this truth table we can observe that $P(x) \iff Q(x)$ is false when x = -4 and when x = 0 and true for all other vales of $x \in S$.

2.41 The task is to determine all values of n in the domain $S = \{1, 2, 3\}$ for which the following is a true statement: A necessary and sufficient condition for $\frac{n^3 + n}{2}$ to be even is that $\frac{n^2 + n}{2}$ is odd.

First we may observe that this question is really a biconditional question with two open sentences over the domain S. Given this, we can rewrite the problem by saying that we are given two sentences P(n): $\frac{n^3+n}{2}$ is even and Q(n): $\frac{n^2+n}{2}$ is odd over the domain $S=\{1,2,3\}$.

This has the following truth table.

n	1	2	3	
$\overline{P(n)}$	F	F	F	
Q(n)	Τ	Τ	F	

From this truth table we can observe that $P(n) \iff Q(n)$ is true when n = 3 and is false for all other vales of $n \in S$.

2.43 Given two open sentences $P(n): \frac{(n+4)(n+5)}{2}$ is odd and $Q(n): 2^{n-2}+3^{n-2}+6^{n-2}>(2.5)^{n-1}$ over the domain $S=\{1,2,3\}$. We need to

2

determine three distinct elements a, b, c in S such that $P(a) \Longrightarrow Q(a)$ is false, $Q(b) \Longrightarrow P(b)$ is false and $P(c) \Longleftrightarrow Q(c)$ is true.

First let us observe that these statements have the following truth table.

n	1	2	3
$\overline{P(n)}$	Т	Т	F
Q(n)	F	Τ	Τ

From this truth table we can observe that $P(a) \implies Q(a)$ is false when $a=1,\ Q(b) \implies P(b)$ is false when $b=3,\ \text{and}\ P(c) \iff Q(c)$ is true when c=2.

2.45 Given two open sentences $P(n): 2^n - 1$ is prime and Q(n): n is prime over the domain $S = \{2, 3, 4, 5, 6, 11\}$. We need to determine all values of $n \in S$ for which $P(n) \iff Q(n)$ is a true statement.

First let us observe that these statements have the following truth table.

n	2	3	4	5	6	11
P(n)	Т	Т	F	Т	F	F
Q(n)	Τ	Τ	F	Τ	F	Τ

From this truth table we can observe that $P(n) \iff Q(n)$ is false when n = 11 and true for all other values of $n \in S$.