Tarea Examen 1

Profesor: Luis Jesús Turcio Cuevas Ayudantes: Jesús Angel Cabrera Labastida, Hugo Víctor García Martínez

- 1) La tarea se entrega de forma presencial durante la clase del 7 de marzo.
- II) Los equipos para realizar la tarea deberan contar con **mínimo 4** integrantes y **máximo 6**.
- III) Se pueden usar resultados vistos en clase, **siempre y cuando** se mencione claramente cuándo y dónde se usan.
- IV) Cada ejercicio tiene un valor de dos puntos para un total de diez. Hay un ejercicio adicional con valor de un punto, éste se calificará únicamente con cero o su valor total.

Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, \mathcal{S} , a menos que se indique lo contrario.

Ejercicio 1 Demuestra que $f: A \rightarrow B$ es mono si y sólo si f es inyectiva.

Ejercicio 2 Sea m: $S \rightarrow A$ un subobjeto y considera su flecha característica $\chi_m \colon A \rightarrow \Omega$. Demuestra que para cualquier elemento generalizado $x \colon X \rightarrow A$ se satisface: $x \in_A$ m $\iff \chi_m x = \nu_X$, donde ν_X es la composición de $!_X \colon X \rightarrow 1$ con $\nu \colon 1 \rightarrow \Omega$.

ZFC

Para los ejercicios de esta sección se podrán utilizar únicamente los axiomas de ZFC vistos hasta el momento en clase.

Ejercicio 3 Demuestre las siguientes equivalencias o implicaciones. En cada inciso indique claramente qué axiomas de ZFC se utilizan durante la prueba.

- I) El axioma de extensionalidad implica el enunciado $\forall x \forall y (\forall w (x \in w \leftrightarrow y \in w) \rightarrow x = y)$.
- II) El enunciado $\forall x \exists p \forall w (\forall z (z \in x \rightarrow z \in w) \rightarrow w \in p)$ es equivalente al axioma de potencia.
- III) El enunciado $\forall x \forall y \exists p \forall w (w \in p \leftrightarrow (p \in x \lor p = y))$ implica el axioma del par.

Ejercicio 4 Todas las colecciones de este ejercicio son conjuntos. Prueba dos de los siguientes incisos:

- I) $x \subseteq \mathcal{P}(y)$ si y sólo si $\bigcup x \subseteq y$.
- II) Si $x \neq \emptyset$, entonces $y \in \bigcap \{\mathscr{P}(\alpha) \mid \alpha \in x\}$ ocurre sólo si $y \subseteq \bigcap x$.
- III) $\bigcup \{\mathscr{P}(\mathfrak{a}) \mid \mathfrak{a} \in \mathfrak{X}\} \subseteq \mathscr{P}(\bigcup \mathfrak{X})$ pero no siempre $\bigcup \{\mathscr{P}(\mathfrak{a}) \mid \mathfrak{a} \in \mathfrak{X}\} \neq \mathscr{P}(\bigcup \mathfrak{X}).$
- IV) $(\bigcup x) \cap (\bigcup y) = \bigcup \{a \cap b \mid (a, b) \in x \times y\}.$

Ejercicio 5 Sean x un conjunto y f una función con dominio x. Prueba lo siguiente:

- I) Si $A \in \mathcal{P}(\mathcal{P}(X))$ es no vacío, entonces $f[\bigcap A] \subseteq \bigcap \{f[a] \mid a \in A\}$.
- II) f es inyectiva si y sólo si para cada $A \in \mathcal{P}(\mathcal{P}(X))$ no vacío se tiene que $\bigcap \{f[a] \mid a \in A\} \subseteq f[\bigcap A]$.

Adicional

Ejercicio Sean X, Y conjuntos y f : X \rightarrow Y. Se define la función g : $\mathscr{P}(X) \rightarrow \mathscr{P}(Y)$ para cada $\alpha \in \mathscr{P}(X)$ como $g(\alpha) = \{y \in Y \mid f^{-1}[\{y\}] \subseteq \alpha\}.$

- 1) Demuestra que si $a \in \mathcal{P}(X)$ y $b \in \mathcal{P}(Y)$, entonces $b \subseteq g(a)$ si y sólo si $f^{-1}[b] \subseteq a$.
- II) Prueba que para todo $A \in \mathscr{P}(\mathscr{P}(X)) \setminus \{\varnothing\}$ se tiene $g(\bigcap A) = \bigcap \{g(\alpha) \mid \alpha \in A\}$.

Soluciones de los Ejercicios

Solución 1

Supongamos que $f: A \to B$ es mono y consideremos dos elementos globales $a_1, a_2: 1 \to A$ tales que el siguiente diagrama conmuta

$$1 \xrightarrow{\alpha_1 \atop \alpha_2} A \xrightarrow{f} B.$$

Como f es mono se sigue que $a_1 = a_2$. Por lo tanto, f es inyectiva.

Supongamos ahora que $f: A \to B$ es inyectiva y supongamos que el siguiente diagrama conmuta

$$T \xrightarrow{x} A \xrightarrow{f} B. \tag{1}$$

Para mostrar que x = y usamos que 1 es separador. Así, tomemos un elemento global $t: 1 \to T$ y veamos que xt = yt. Como el diagrama en (1) conmuta, se sigue que

$$1 \xrightarrow{t} T \xrightarrow{x} A \xrightarrow{f} B = 1 \xrightarrow{xt} A \xrightarrow{f} B.$$

conmuta. Como f es inyectiva, se sigue que xt = yt. Por lo tanto, x = yy así f es mono.

Solución 2

Supongamos que $x \in_A m$, es decir, existe $h: X \to S$ tal que el siguiente diagrama conmuta

Con esto la igualdad que queremos se sigue de la conmutatividad del siguiente diagrama

Ahora supongamos que $\chi_m x = \nu_X$. Esto significa que el cuadrado exterior del siguiente diagrama conmuta y por la propiedad universal del producto fibrado existe h: $X \to S$ que hace conmutar al triangulo de la derecha del siguiente diagrama

Por lo tanto, $x \in_A m$.