Lista de exercícios No. 2 - Processamento de Imagens

Gustavo Lopes Rodrigues

14 de maio de 2022

Questão 1.

$$\mathbf{a}) \ f(x) = \cos(\omega x)$$

intervalo =
$$0 \le x < 2$$

$$\omega = \frac{2\pi}{P}, \, \omega = \frac{2\pi}{2} = \pi$$

P = tamanho do intervalo

vetor =
$$[cos(0*\pi), cos(1*\pi)]$$

$$\mathbf{vetor} = [1, -1]$$

b)
$$F(0) = \frac{1}{2} * \left[1(\frac{\cos(0)}{2} - \frac{isen(0)}{2}) - 1(\frac{\cos(0)}{2} - \frac{isen(0)}{2})\right]$$

$$F(0) = \frac{1}{2} * \left[1(\frac{1}{2} - \frac{0}{2}) - 1(\frac{1}{2} - \frac{isen(0)}{2}) \right]$$

$$F(0) = \frac{1}{2} * [1 - 1]$$

$$F(0) = 0$$

$$F(1) = \tfrac{1}{2} * [1(\tfrac{\cos(0)}{2} - \tfrac{isen(0)}{2}) - 1(\tfrac{\cos(2*\pi*-1)}{2} - \tfrac{isen(2*\pi*-1)}{2})]$$

$$F(1) = \frac{1}{2} * \left[1 - 1\left(\frac{1}{2} - \frac{i0}{2}\right)\right]$$

$$F(1) = \frac{1}{2} * [1 - 1(-1 - isen\pi)]$$

$$F(1) = \frac{1}{2} * [2] = 1$$

a	0	1
u	0	0

c) **vetor** =
$$[1, -1]$$

Questão 2.

$$f(x) = \cos(\omega x)$$

intervalo =
$$0 \le x < 2$$

$$\omega = \frac{2\pi}{P}, \, \omega = \frac{2\pi}{2} = \pi$$

P = tamanho do intervalo

$$\mathbf{vetor} = [\cos(0*\pi), \cos(1*\pi)]$$

$$\mathbf{vetor} = [1, -1]$$

$$F(0) = \frac{1}{2} * [1(\frac{\cos(0)}{2} - \frac{isen(0)}{2}) - 1(\frac{\cos(0)}{2} - \frac{isen(0)}{2})]$$

$$F(0) = \frac{1}{2} * [1(\frac{1}{2} - \frac{0}{2}) - 1(\frac{1}{2} - \frac{isen(0)}{2})]$$

$$F(0) = \frac{1}{2} * [1 - 1]$$

$$F(0) = 0$$

$$F(1) = \tfrac{1}{2} * [1(\tfrac{\cos(0)}{2} - \tfrac{isen(0)}{2}) - 1(\tfrac{\cos(2*\pi*-1)}{2} - \tfrac{isen(2*\pi*-1)}{2})]$$

$$F(1) = \frac{1}{2} * \left[1 - 1\left(\frac{1}{2} - \frac{i0}{2}\right)\right]$$

$$F(1) = \frac{1}{2} * [1 - 1(-1 - isen\pi)]$$

$$F(1) = \frac{1}{2} * [2] = 1$$

a	0	1
u	0	0

 $\mathbf{vetor} = [1, -1]$

Questão 3.

Questão 4.

-1	0	1
-2	0	2
-1	0	1

Tabela 1: Imagem A

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 2: Imagem B

k	k	k	k
k	k	k	k

Questão 5.

k	k	k	k
k	k	k	k

Questão 6.

Questão 7.

b) Filtro de suavização pela média

Lembrando: somar todos os elementos e dividir pelo tamanho da kernel (nesse caso por nove)

1	1	1
1	1	1
1	1	1

Tabela 3: Kernel da media

*	*	*	*	*
*	3	4	3	*
*	2	3	3	*
*	2	2	2	*
*	*	*	*	*

Tabela 4: Imagem A com suavização pela média

c) Filtro de suavização pela mediana

Basta encontrar em uma kernel 3x3 o valor de pixel que está no centro da distribuição (mediana)

*	*	*	*	*
*	3	4	2	*
*	1	2	2	*
*	1	2	2	*
*	*	*	*	*

Tabela 5: Imagem A com suavização pela mediana

d)
$$MAX = 255$$

$$N = 25$$

$$r = round(\tfrac{Somatorio}{n}*MAX)$$

s	h(s)	Somatório	r
1	13	13	133
2	6	19	194
3	1	20	204
4	1	21	214
5	2	23	235
6	2	25	255

Tabela 6: Calculando novos valores de A

204	235	194	133	133
133	214	255	194	133
133	133	235	255	194
133	133	133	133	133
133	194	194	194	133

Tabela 7: Imagem A com equalização

S	h(s)	Somatório	r
1	7	7	71
2	4	11	112
5	2	13	133
6	4	17	173
7	3	20	204
8	5	25	255

Tabela 8: Calculando novos valores de B

s	h(s)	Somatório	r
1	10	10	102
2	4	14	143
7	1	15	153
8	4	20	194
9	6	25	255

Tabela 10: Calculando novos valores de C

133	71	112	71	255
173	173	133	173	71
112	71	255	204	204
173	71	112	255	255
204	255	112	71	71

Tabela 9: Imagem B com equalização

102	102	255	102	102
102	102	255	194	153
255	255	255	143	102
102	102	143	194	194
102	143	143	194	255

Tabela 11: Imagem C com equalização

e) Sobel

-1	0	1
-2	0	2
-1	0	1

Tabela 12: Kernel sobel G(x)

*	*	*	*	*
*	13	-3	-14	*
*	13	8	-11	*
*	5	5	-4	*
*	*	*	*	*

Tabela 13: Imagem A com sobel $\mathbf{G}(\mathbf{x})$

-1	-2	-1
0	0	0
1	2	1

Tabela 14: Kernel sobel G(y)

*	*	*	*	*
*	-7	-7	-14	*
*	-11	-14	-7	*
*	-1	-9	-12	*
*	*	*	*	*

Tabela 15: Imagem A com sobel na direção ${\bf Y}$

*	*	*	*	*
*	20	10	28	*
*	24	22	18	*
*	6	14	16	*
*	*	*	*	*

Tabela 16: Imagem A com sobel |G(x)| + |G(y)|

Questão 8.

- a) Quanto a imagem saída, os tons de cinza escuros da imagem foram comprimidos, ficando mais escuros. Mesmo aconteceu com os tons claros, ficando ainda mais claros. Devido a compressão dos tons, houve elementos que foram perdidos para expandir(aumentar) a parte média, tendo no final o mesmo tamanho.
- b) As funções de transformação de histograma, tem como objetivo "pintar" a imagem com outras cores, alterando a distribuição de probabilidades dos tons de cinzas, tendo principalmente uma modificação no contraste
- c) Sim, qualquer uma que tenha um segmento de derivada 0 na sua curva, como por exemplo o fatiamento e a binarização.

Questão 9.

- a) Os elementos de baixa frequência são aqueles que possuem baixa variabilidade na mudança do tons de cinza na imagem(homogênea), então isso seria a região onde tem o fundo preto.
- b) Os elementos de alta frequência seriam aqueles onde há uma brusca modificação do nível do tom de cinza na imagem. Isto seria as bordas e o ruído.
- c) Para obter a imagem B a partir de A, foi aplicado um filtro da média. Pois a imagem teve seus elementos de alta frequência suavizados
- d) O filtro de mediana foi passado para obter a imagem C, o ruído de alta frequência foi suavizado com as bordas preservadas
- e) Por fim, a imagem D é o resultado do filtro de Sobel para detecção de bordas, o que pode explicar os elementos de alta frequência realçados e os de baixa frequência suavizados.