

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

ÁREA DEPARTAMENTAL DE ENGENHARIA DE ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES

Trabalho Prático de Rádio-Comunicações
Prof. Pedro Vieira
Novembro de 2020
Ano letivo 2020/2021

1. Formulação do Problema

Imagine que num futuro próximo é colaborador numa empresa em que uma das áreas de negócio consiste no dimensionamento de ligações por feixe hertziano. Tem disponível um posto de trabalho, devidamente equipado com um computador pessoal e com acesso a uma plataforma de desenvolvimento de software. Com base nos conhecimentos adquiridos durante o seu percurso académico, a sua chefia pede-lhe para desenvolver uma aplicação que auxilie o dimensionamento de ligações por feixe hertziano a projetar pela empresa.

De forma a validar a ferramenta, é importante que desenvolva algumas simulações, fazendo variar os parâmetros principais. Os resultados obtidos deverão ser apresentados num relatório técnico a entregar à sua chefia, de modo a que esta proceda à avaliação do trabalho desenvolvido...

2. Objetivos de Aprendizagem

Pretende-se, com este trabalho, que os alunos consolidem os conhecimentos adquiridos nas aulas, relativamente a:

- dimensionamento de uma ligação rádio ponto-a-ponto;
- modelos de propagação sobre terra plana e sobre terra esférica;

- influência da atmosfera numa ligação via rádio atenuação introduzida pelos gases atmosféricos, hidrometeoritos e efeitos refractivos na atmosfera;
- propagação por difracção introdução do perfil de terreno, perdas por difracção em Terra esférica e devido a obstáculos em lâmina.

3. Linhas de Orientação

De forma a organizar o seu trabalho e permitir uma avaliação mais eficiente, são propostas nesta secção algumas linhas de orientação. Estas linhas de orientação pretendem guiar o aluno ao longo do trabalho, propondo tarefas que constituirão a configuração base do trabalho a efectuar.

O grupo de trabalho será constituído por um <u>mínimo de 2 e um máximo de 3 alunos</u>. Em situações excecionais, o número de elementos do grupo poderá ser diferente do indicado, mediante aprovação do docente responsável.

A escolha da plataforma de desenvolvimento do trabalho é deixada ao critério do grupo de trabalho.

O trabalho não pretende ter uma configuração rígida. O aluno pode e deve ter espírito crítico ao nível do desenvolvimento de novas funcionalidades na sua aplicação, bem como ser inovador nas simulações e comentários a apresentar.

3.1. Parte I – Desenvolvimento da Aplicação

Elabore uma aplicação que implemente as seguintes funcionalidades mínimas:

- 1. Desenho do raio direto.
- 2. Desenho do primeiro elipsóide de Fresnel e indicação se este se encontra desobstruído pelo terreno.
- 3. Cálculo do ganho da antena de emissão e de recepção (é necessário conhecer o diâmetro do prato e o rendimento da antena).

- 4. Cálculo da atenuação nos guias (é necessário conhecer o comprimento dos guias e a atenuação respetiva em dB/Km).
- 5. Cálculo da atenuação de espaço livre.
- 6. Cálculos das horizontais à superfície da Terra no emissor e receptor bem como os respetivos ângulos de fogo.
- 7. Cálculo da localização do ponto de reflexão e factor de divergência.
- 8. Diferença de fase entre o campo associado ao raio direto e o associado ao raio refletido no terreno (deverá ser calculado o coeficiente de Fresnel).
- 9. Comparação Terra Plana-Terra Esférica. Análise da Diferença de fase.
- 10. Cálculo da potência total recebida em Terra Plana e Terra Esférica.
- 11. Cálculo da atenuação provocada pelo vapor de água e pelo oxigénio presente na atmosfera, em função da temperatura e humidade relativa.
- 12. Cálculo da atenuação provocada pela chuva, não excedida numa determinada percentagem do tempo, relativamente à média anual ou ao pior mês, numa determinada zona
- 13. Modelação dos Efeitos Refrativos na Atmosfera
- 14. Implementação do método de cálculo de Difração em Terra Esférica existente na recomendação P.526-5 da ITU-R.
- 15. Implementação do método de cálculo associado ao fenómeno Dispersão Troposférica, existente na recomendação P.617-1 da ITU-R.
- 16. Perdas por Difração devido ao Terreno usando o método de *Deygout*.

3.2. Desenvolvimento de Cenários e Análise de Resultados

Usando a aplicação anteriormente desenvolvida, considere os seguintes cenários.

Terra Plana e Terra Esférica:

- 1 Andamento da potência recebida, em função da altura da antena de recepção, para as seguintes situações:
 - a. Potência de emissão: 10 W.
 - b. Altura da antena de emissão:40 m

c. Altura da antena de recepção: 0 < Altura Antena <150 m

d. Frequências: 1, 10, 30 e 60 GHz.

e. Distância: 45 km.

Face aos vários cenários apresentados e com base na matéria lecionada na aulas, compare, comente e retire conclusões para as diferentes situações.

2 Variação dos ângulos de fogo de emissão e receção, em função da distância da ligação, para a seguinte situação:

a. Altura da antena de emissão: 40 m

b. Altura da antena de recepção: 150 m

c. Distância: de 1 km a 45 km

Face ao cenário apresentado e com base na matéria lecionada nas aulas, comente e retire conclusões.

3 Comparação Terra Plana-Terra Esférica. Análise da Diferença de fase.

Para uma altura de antenas (emissão e recepção) de 150 m, faça variar a distância de ligação e indique, em função da distância, qual o modelo mais indicado para a representação da ligação (Terra Plana ou Terra Esférica). Considere, para o efeito, o critério da diferença de fase. Comente os resultados.

Influência da Atmosfera:

4 Representação da atenuação provocada pelo vapor de água e pelo oxigénio presente na atmosfera, em função da temperatura e humidade relativa. Comente os resultados

5 Representação da atenuação provocada pela chuva, não excedida numa determinada percentagem do tempo, relativamente à média anual ou ao pior mês, numa determinada zona climática.

Assumindo uma variação linear do índice de refracção, efectue a representação do perfil da ligação em sistema Europeu a partir do conceito de raio equivalente, para os seguintes valores de d*n*/d*h*: -400*10⁻⁶ km⁻¹, -157*10⁻⁶ km⁻¹, -43*10⁻⁶ km⁻¹ e 50*10-6 km⁻¹. Comente os resultados obtidos.

7 Considere uma variação de d*n*/d*h* de -400*10⁻⁶ a 100*10⁻⁶ km⁻¹ em intervalos de 10*10⁻⁶ km⁻¹. Calcule o raio de curvatura do raio óptico assumindo que a direção de saída é tangente à superfície da Terra. Represente num gráfico os vários valores do raio de curvatura do raio óptico normalizado ao raio da Terra (6370 km). Comente os resultados obtidos.

Propagação por Difração em Terra Esférica e Dispersão Troposférica:

8 Para uma ligação por feixe hertziano à sua escolha, (defina valores de potência de emissão, altura de emissão e recepção, ganho de antena de emissão e recepção, etc), faça variar a distância de ligação de 100 a 1000 km com intervalos de 50 km. Elabore um gráfico com a representação da diferença de atenuação de propagação dada pelos métodos de cálculo das perdas por Difração em Terra Esférica e Dispersão Troposférica em função da distância. Retire conclusões.

Propagação por Difração devido ao Terreno:

- 9 Crie a possibilidade de se ler um determinado perfil de terreno a partir de dados existentes num ficheiro Excel e adicione à representação da terra a representação desse mesmo perfil. O ficheiro deverá conter pontos de cota de terreno com espaçamento superior ou igual a 500 m.
- 10 Se existir obstrução da ligação pelo terreno, efetue o cálculo da atenuação introduzida por difracção (considere que os obstáculos são obstáculos em lâmina e use o método de Deygout exposto nas aulas).

4. Elaboração do Relatório Técnico

O relatório deve estar dividido da seguinte forma:

- a) Capa
- b) Índices (geral, tabelas, figuras)
- c) Lista de Acrónimos
- d) Lista de Símbolos
- e) Resumo (dimensão máxima, 250 palavras)
- f) Introdução
- g) Desenvolvimento (poderá estar dividido em vários capítulos)
- h) Conclusões
- i) Bibliografia (livros, sebentas, *sites*, etc...)

Devem ser respeitadas as regras tipográficas habituais, com as seguintes características:

a. Uso da fonte arial, tamanho 11 pt

b. Espaçamento entre linhas de 1.5 e Margens de 2,5 cm

c. Cada uma das secções anteriores deverá ser iniciada numa página ímpar. A numeração de páginas de a) a e) é feita em numeração romana. As restantes

secções corresponderão a numeração arábica.

d. Dimensão total máxima de 25 páginas, excluindo anexos.

5. Datas Importantes:

Publicação do enunciado: 5 de Novembro de 2020.

Entrega do Relatório Técnico (por e-mail): Último dia de aulas.

ISEL, 5 de Novembro de 2020

Pedro Vieira