Topología – 2° cuatrimestre 2015

Resuelto de práctica 7

Ejercicio para entregar

Vamos por partes!

 $1. \Longrightarrow)$

Supongamos que E es compacto y T_2 , entonces como p es continua tenemos que p(E) = B es compacto. Por otro lado sean $x, y \in B$ y sean $u \in E_x$ y $v \in E_y$ y $U \ni u, V \ni v$ entorno abiertos disjuntos por ser T_2 E; entonces por el ejercicio 5 de la práctica tenemos que p es abierta y $p(U) \ni x$ y $p(V) \ni y$ son entornos abiertos disjuntos en B. Por ende B es T_2 .

 $2. \iff$

Supongamos que B es compacto y T_2 . Afirmo que como $p^{-1}(b)$ es finito $\forall b \in B$ entonces p es cerrada! Sea A un cerrado en E y $x \notin p(A)$ entonces como p es revestimiento tenemos que $\exists U \ni x \ / \ p^{-1}(U) = \coprod_{i=1}^n V_i \operatorname{con} p|_{V_i}$ un homeo. Notemos que en realidad intersecando $\operatorname{con} p(A)^c$ podemos tomar $U \subset p(A)^c$. Sea entonces $V := \bigcap_{i=1}^n p(V_i)$ notemos que $x \in V$ trivialmente y que $V \subset p(V_1) \simeq U \subset p(A)^c$ y por ende $x \in V \subset p(A)^c$ o sea que p(A) es cerrado. Entonces si consideramos los pullback:

$$\begin{array}{ccc} X & \xrightarrow{f} & E \\ g \middle\downarrow & & p \middle\downarrow \\ Y & \xrightarrow{\overline{f}} & B \\ h \middle\downarrow & & \pi \middle\downarrow \\ Z & \xrightarrow{\overline{f}} & \{*\} \end{array}$$

Entonces notemos que como p es revestimiento y los revestimientos son estables por cambio de base, entonces g es revestimiento, como π es propia por ser B compacto tenemos que h es cerrada y como la fibra de p es finita tenemos que g es cerrada por lo anterior, por lo que hg es cerrada; entonces tenemos que $p\pi: E \to \{*\}$ es propia y entonces E es compacto.

Por otro lado Sean $x, y \in E$ y consideremos p(x) y p(y). Si $x, y \in E_{p(x)}$ entonces los V_i del revestimiento sirven pues ellos son disjuntos. Si no, sean U, V entornos abiertos disjuntos respectivos de p(x) y p(y) si consideramos la intersección de U y V con los entornos que existen por el revestimiento $U_{p(x)}$ y $V_{p(y)}$ tenemos que $\exists \widetilde{U}, \widetilde{V}$ entornos abiertos disjuntos de p(x) y p(y) tal que $p^{-1}(\widetilde{U}) = \coprod_{i=1}^{n} U_{x_i}$ y $p^{-1}(\widetilde{V}) = \coprod_{i=1}^{n} V_{y_i}$. Llamemos $U_{x_{i_0}} \ni x$ y $V_{y_{i_0}} \ni y$ estos entonces son abiertos disjuntos de E pues son homeomorfos a abiertos disjuntos de E. Entonces E es E

Revestimientos y Aplicaciones del Teorema de Brouwer y Borsuk-Ulam.

1. Pruebe que si X es un espacio e Y es discreto, entonces la proyección $p_X: X \times Y \to X$ es un revestimiento

Demostración Tenemos $p_X: X \times Y \to X$ veamos que es un revestimiento!

- p es trivialmente continua y survectiva
- Sea $x_0 \in X$, entonces tenemos que $x_0 \in X$, con X abierto y $X = \coprod_{y \in Y} X \times \{y\}$ donde cada $X \times \{y\}$ es abierto pues es producto de abiertos y $p_X|_{X \times \{y\}}$ es un homeomorfismo con inversa $i_y : x \mapsto (x,y)$.

2. Pruebe que si $p: E \to B$ es un revestimiento, la fibra $E_b = p^{-1}(b)$ es un subespacio discreto de E para todo $b \in B$. Pruebe adem \tilde{A} is que si B es conexo, todas las fibras tienen el mismo cardinal.

Demostración Sea $p: E \to B$ y $b \in B$, entonces como p es revestimiento $\exists U \ni b$ abierto de B tal que $p^{-1}(U) = \coprod_{i \in I} V_i$ con V_i abiertos disjuntos y $p|_{V_i}: V_i \to B$ es homeo.

Supongamos que $\exists j_0 \in I$ tal que $|p^{-1}(b) \cap V_{j_0}| > 1$ y sean $v_1, v_2 \in V_{j_0}$ dichos elementos tal que $p(v_1) = p(v_2) = b$, pero entonces $p|_{V_{j_0}}$ no es inyectiva y por ende no es homeo! Abs!

Por ende $p^{-1}(b) \cap V_i = \{v_i\} \ \forall i \in I$, y si E_b tiene la topología subespacio entonces de la ecuación anterior se ve que es discreto.

- 3. Pruebe que las siguientes funciones son revestimientos:
 - a) $p: \mathbb{R} \to S^1, p(x) = (\cos \theta(2\pi x), \sin(2\pi x)).$
 - b) $f: S^1 \to S^1$, $f(z) = z^n$, $n \in \mathbb{N}$ fijo.
 - c) $p: S^n \to P^n$ la provección al plano provectivo.
 - d) G grupo topológico, H subgrupo discreto de G y $p:G\to G/H$ la proyección al cociente.
 - e) $p: E \to B, p(x,y) = (e^{2\pi i x}, e^{2\pi i y}), \text{ donde } E = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{Z} \text{ ó } y \in \mathbb{Z}\} \text{ y } B = \{(z,w) \in S^1 \times S^1 : z = 1 \text{ ó } w = 1\}.$
 - **Demostración** a) Sea q=(1,0) y sea $U:=S^1-\{q\}$, entonces notemos que $p^{-1}(U)=\coprod_{n\in\mathbb{N}}(n,n+1)$ y que $\forall n\in\mathbb{N}$ $p((n,n+1))=S^1-\{q\}$ y es un homeomorfismo con inversa $\hat{p}(s)=El$ único t tal que p(t)=s pue Por otro lado si hacemos lo mismo con q=(-1,0) y los abiertos $(n+\frac{1}{2},n+\frac{3}{2})$ tenemos lo mismo. Por ende p es un revestimiento!
 - b) Sea q=(1,0) y sea $U:=S^1-\{q\}$ entonces notemos que $p^{-1}(U)=\{z\in S^1\ ,\ Im(z)>0\}\bigcup\{z\in S^1\ ,\ Im(z)<0\}$ y cada uno de ellos es homeomorfo, vía p, a U.

 Análogamente con q=(-1,0) Y todo igual salvo que tomamos Re(z) en vez de Im(z), por ende p es un revestimiento!
 - c) Veamos que es revestimiento! Para eso vamos por partes:
 - Como p es cociente es automáticamente sobreyectiva y continua
 - Sea $x \in S^n/_{x \sim -x}$ notemos que un abierto $U \ni x$ en $\mathbb{R}P^n$ es U = p(V) con $V \in S^n$ abierto pues $\mathbb{R}P^n$ tiene la topología cociente. Pero $S^n \hookrightarrow \mathbb{R}^{n+1}$ es un subespacio cerrado y por ende tiene inducida la topología métrica, por lo que podemos elegir $V \in S^n$, $\operatorname{diam}(V) < \delta$ con $\delta > 0$ dado y V abierto!

Con esto en mente, sea $\delta > 0$ tal que si $x \in U \subset \mathbb{R}P^n$, entonces $p^{-1}(U) = V \cup -V$ con -V es conjunto de antípodas de V y tal que $V \cup -V = \emptyset$. O sea, si $x \in \mathbb{R}P^n$ entonces la fibra de un abierto de x es la unión de dos abiertos uno en cada casquete de S^n ; pero como $p|_V: V \to \mathbb{R}P^n \cap U$ y $p|_{-V}: -V \to \mathbb{R}P^n \cap U$ son inyectivas(por construcción), sobreyectivas, continuas y abiertas entonces son homeomorfismos. Por ende, $\forall x \in \mathbb{R}P^2 \ \exists U \ni x$ abierto parejamente cubierto.

- d) ??
- e) Veamos que p es revestimiento!
 - Notemos que $E = p_x^{-1}(\mathbb{Z}) \cup p_y^{-1}(\mathbb{Z})$ y como \mathbb{Z} es cerrado de \mathbb{R} y las proyecciónes continuas, entonces E es un subespacio cerrado del producto. De la misma manera $B = p_z^{-1}(\{\bar{1}\}) \cup p_w^{-1}(\{\bar{1}\})$ donde $\bar{1} := \overline{(0,1)} := 1$ y por ende B también es cerrado.
 - Como pi_X y pi_Y son continuas y las i_i son iniciales, entonces p es continua en XxY y como E es un subespacio cerrado entonces p es continua en E.
 - Sea $(z, w) \in S^1$ entonces $z = e^{i2\pi\theta_1}$ y w = 1 (o viceversa) entonces $p((\theta_1, 1)) = (z, w)$ y p es sobre.

- Sea $(z, w) \in B$ y supongamos sin pérdida de generalidad que w = 1, y supongamos que $z \neq 1$ entonces $U = S^1 \{1\} \times \{1\}$ es abierto en B y $(z, w) \in U$; además $p^{-1}(U) = \coprod_n (n, n+1) \times \{n\}$ donde $V_n := (n, n+1) \times \{n\}$ es abierto en E y $p|_{V_n}$ es continua, sobre-yectiva, inyectiva y abierta y por ende homeomorfismo. Como si $z = \{1\}$ podemos tomar $U = S^1 \{-1\} \times \{1\}$ y la cuenta es la misma, llegamos a que p es revestimiento.
- 4. Pruebe que $p: \mathbb{R}_{>0} \to S^1$ definida por $p(x) = (\cos \theta(2\pi x), \sin(2\pi x))$ es un homeomorfismo local pero no es un revestimiento.

Demostración Por partes!:

- Sea x > 0 y $x \in U \subset R_{>0}$ un entorno de x tal que diam(U) < 1, entonces $p|_U : U \to S^1 \cap p(U)$ es inyectiva (pues diam(U) < 1), sobreyectiva, continua (pues restringo a un subespacio abierto) y abierta (pues si $V \subset U$ es abierto, entonces $V = p^{-1}(p(U))$ es abierto y entonces como p es cociente p(U) es abierto); por ende es un homeomorfismo local.
- Sea $1 := \overline{(0,1)} \in S^1$ y $1 \in U \subset S^1$ un entorno abierto del 1, entonces notemos que $p^{-1}(U) = (0,\epsilon) \cup \coprod_n (n,n+1)$ donde $p_{(n,n+1)}$ es un homeo entre (n,n+1) y U pero $(0,\epsilon) \not\cong U$ y por ende p no es revestimiento.
- 5. Pruebe que si $p: E \to B$ es un revestimiento, entonces p es abierta y por lo tanto es cociente.

Demostración Sea $U \subset E$ abierto y sea $y = p(x) \in p(U)$, entonces como p es revestimiento tenemos que $\exists V \ni y$ con $V \subset B$ tal que $p^{-1}(V) = \coprod_{i \in I} U_i$. Como $p(x) = y \in V$ entonces $\exists i_0 \in I$ tal que $x \in U_{i_0}$, sea entonces $U \cap U_{i_0}$ que es un abierto de E y contiene a x, Como $p|_{U_{i_0}}$ es homeo, en particular es abierta y entonces $p(U \cap U_{i_0}) = p|_{U_{i_0}}(U \cap U_{i_0}) := V_y$ es abierto, $y \in V_y$ y $V_y \subset V$ trivialmente pues $p(U_{i_0}) = V$, por ende y = p(x) es punto interior de p(U) y p es abierta

6. Pruebe que si $p: E \to B$ y $p': E' \to B'$ son revestimientos, entonces $p \times p': E \times E' \to B \times B'$ también lo es. Usar este resultado para calcular el grupo fundamental del toro.

Demostración Vayamos por partes!

- $p \times p'$ es continua por ser producto de continua, a su vez es sobreyectiva por lo mismo
- Sea $(b,b') \in B \times B'$, como p es revestimiento entonces $\exists b \in V \subset B$ tal que $p^{-1}(V) = \coprod_i U_i$, a su vez como p' es revestimiento entonces $\exists b' \in V' \subset B'$ tal que $p'^{-1}(V') = \coprod_i U_i'$. Por ende sea $(b,b') \in V \times V'$, entonces $p^{-1}(V \times V') = \coprod_i U_i \times \coprod_j U_j' = \coprod_{i,j} U_i \times U_j'$ y como $p|_{U_i}$ es homeo y $p'|_{U_i'}$ es homeo, entonces $p \times p'|_{U_i \times U_j'}$ es homeo y $p \times p'$ es revestimiento.

Entonces tenemos el revestimiento $p \times p : \mathbb{R} \times \mathbb{R} \to S^1 \times S^1 \simeq T$ con $p(t) = e^{2\pi i t}$ y donde al punto base $(1,1) \in T$ se tiene que $E_{(1,1)} \simeq \mathbb{Z} \times \mathbb{Z}$, por ende tenemos los morfismos inducidos:

$$\pi_1(\mathbb{R}^2, (0,0)) \xrightarrow{p_*} \pi_1(T, (1,1)) \xrightarrow{\phi_*} \mathbb{Z} \times \mathbb{Z}$$

Pero como \mathbb{R}^2 es contráctil se tiene que ϕ_* es una biyección y solo nos falta ver que es morfismo de grupos! Recordemos que $\phi_*([\gamma]) = \widetilde{\gamma}^{e_0}(1)$ donde $e_0 \in p^{-1}((1,1))$ y en nuestro caso tomaremos el (0,0). Sean $\widetilde{\gamma}^{(0,0)}, \widetilde{\omega}^{(0,0)}$ caminos levantados del toro y $\tau: I \to \mathbb{R}^2$ dado por $t \mapsto \widetilde{\omega}^{(0,0)}(t) + \widetilde{\gamma}^{(0,0)}(1)$, el chiste es que este es otro camino levantado de ω que empieza en donde $\widetilde{\gamma}^{(0,0)}$ termina, y por ende al aplicar ϕ_* nos va a dar lo que queremos! Notemos que $p\tau(t) = p(\widetilde{\omega}^{(0,0)}(t) + \widetilde{\gamma}^{(0,0)}(1)) = p(\widetilde{\omega}^{(0,0)}(t)) = \omega(t)$

pues $\widetilde{\gamma}^{(0,0)}(1) \in \mathbb{Z} \times \mathbb{Z}$ pero $\tau(0) = \widetilde{\omega}^{(0,0)}(0) + \widetilde{\gamma}^{(0,0)}(1) = (0,0) + \widetilde{\gamma}^{(0,0)}(1) = \widetilde{\gamma}^{(0,0)}(1)$ y tenemos lo que decíamos. Por ende $\widetilde{\gamma}^{(0,0)} * \tau$ esta bien definido y $p(\widetilde{\gamma}^{(0,0)} * \tau) = p(\widetilde{\gamma}^{(0,0)}) * p(\tau) = \gamma * \omega$ que el último siempre esta bien definido pues son lazos en (1,1). O sea que el siguiente diagrama conmuta:

$$\begin{array}{ccc}
& \mathbb{R}^2 \\
& \widetilde{\gamma}^{(0,0)} * \tau & p \\
& I & \uparrow & T
\end{array}$$

Y como $\widetilde{\gamma}^{(0,0)} * \tau(0) = (0,0)$ entonces por el teorema de unicidad del levantamiento de caminos tenemos que $\widetilde{\gamma}^{(0,0)} * \tau = \widetilde{\gamma * \omega}^{(0,0)}$ por ende $\phi_*([\gamma * \omega]) = \widetilde{\gamma * \omega}^{(0,0)}(1) = \widetilde{\gamma}^{(0,0)} * \tau(1) = \tau(1) = \widetilde{\omega}^{(0,0)}(1) + \widetilde{\gamma}^{(0,0)}(1) = \phi_*([\omega]) + \phi_*([\gamma])$ y por ende ϕ_* es un isomorfismo, por lo que $\pi_1(T(1,1)) \simeq \mathbb{Z} \times \mathbb{Z}$.

Otra forma: Sabemos que $\pi_1(S^1,1) \simeq \mathbb{Z}$, entonces por el ejercicio 16 de la práctica 6 tenemos que $\pi_1(T,(1,1)) = \pi_1(S^1 \times S^1,(1,1)) \simeq \pi_1(S^1(1))^2 \simeq \mathbb{Z} \times \mathbb{Z}$

7. Sean $p: X \to Y$ y $q: Y \to Z$ revestimientos. Pruebe que si $q^{-1}(z)$ es finito para cada $z \in Z$, entonces $qp: X \to Z$ es un revestimiento.

Demostración Como composición de continuas es continua y composición de sobreyectivas es sobreyectiva, tenemos que ver que cada punto contiene un abierto parejamente cubierto! Sea $z \in Z$, como q es revestimiento tenemos que $\exists z \in U \subset Z$ tal que $q^{-1}(U) = \coprod_{i \in I} V_i$ con $V_i \subset Y$ abiertos y $q|_{V_i}: V_i \to U$ son homeomorfismos; ahora como por hipótesis $E_z := q-1(z)$ es finito, y por el ejercicio 2 es discreto tenemos que I es finito. Sea $y_i \in E_z$, entonces como p es revestimiento sabemos que $\exists y_i \in \widetilde{V}_i \subset Y$ tal que $p^{-1}(\widetilde{V}_i) = \coprod_{j \in J} W_{ij}$ con $W_{ij} \subset X$ abiertos y $p|_{W_{ij}}$ homeomorfismos. Entonces veamos $\widetilde{U} := q(\bigcap_{i=1}^n V_i \cap \widetilde{V}_i) \cap U$ cumple!

- $z \in \widetilde{U}$ pues $z \in U$ por hip y $q^{-1}(z) = E_z \subset \bigcap_{i=1}^n V_i \cap \widetilde{V}_i$ (pues cada $V_i \simeq_q U$) y por ende $z \in q(\bigcap_{i=1}^n V_i \cap \widetilde{V}_i)$
- \blacksquare $\widetilde{(}U)$ es abierto pues $\bigcap_{i=1}^n V_i \cap \widetilde{V}_i$ es abierto y qes abierta por el ej 5 y Ues abierto
- $(qp)^{-1}(\widetilde{U}) = p^{-1}(q^{-1}(\widetilde{U})) = p^{-1}(\bigcap_{i=1}^{n} V_i \cap \widetilde{V}_i \cap q^{-1}(U)) = \star \text{ (Pues } q \text{ es sobre)} \star = p^{-1}(\bigcap_{i=1}^{n} V_i \cap \widetilde{V}_i) = \bigcap_{i=1}^{n} p^{-1}(V_i \cap \widetilde{V}_i) = \bigcap_{i=1}^{n} p^{-1}(V_i) \cap \coprod_{j \in J} W_{ij}) = \coprod_{j \in J} \bigcap_{i=1}^{n} p^{-1}(V_i) \cap W_{ij} := \coprod_{j \in J} X_j \text{ donde como la intersección es finita y } p \text{ es continua tenemos que } X_j \text{ es abierto. Ahora } qp|_{X_i} \text{ es un homeo entre } X_i \simeq \widetilde{U} \text{ pues } p \text{ es homeo entre } W_{ij} \text{ y } \widetilde{V}_i \text{ y entonces al restringir a } p^{-1}(V_i) \text{ lo sigue siendo con } \widetilde{V}_i \cap V_i, \text{ ahora } q \text{ es homeo entre } V_i \text{ y } U \text{ y por ende al restringir a } \widetilde{V}_i \text{ lo sigue siendo con } U \cap \widetilde{V}_i \text{ y luego lo sigue siendo entre } \bigcap_{i=1}^{n} V_i \cap \widetilde{V}_i \text{ y } \widetilde{U}.$

Por ende para $z\in Z$ hallamos $\widetilde{U}\ni z$ un abierto de Z parejamietno cubierto por qp y por ende qp es revestimiento

8. Pruebe que los revestimientos son estables por cambio de base. En particular, si $p:E\to B$ es revestimiento y $A\subset B$, entonces $p|_{p^{-1}(A)}:p^{-1}(A)\to A$ es revestimiento.

Demostración Veamoslo! Sea $p: E \to B$ un revestimiento y $g: X \to B$ una funcion continua, sea $P := \{(s,t) \in X \times E \mid g(s) = p(t)\}$ el pullback clásico del diagrama:

$$P \xrightarrow{p_E} E$$

$$p_X \downarrow \qquad p \downarrow$$

$$X \xrightarrow{g} B$$

Veamos que p_X es revestimiento!

- Sea $x \in X$ y consideremos $g(x) \in B$, entonces como p es sobreyectiva $\exists t \in E$ tal que p(t) = g(x) y entonces $(x,t) \in P$ y $p_X(x,t) = x$, por ende p_X es sobreyectiva. Notemos que probamos que las sobreyectivas son estables por cambio de base.
- Es trivial por conmutatividad que las continuas son estables por cambio de base
- Sea $x \in X$ y consideremos $g(x) \in B$, entonces como p es revestimiento sabemos que $\exists g(x) \in U \subset B$ tal que $q^{-1}(U) = \coprod_i V_i$ con $V_i \subset E$ abiertos y $V_i \simeq U$. Notemos que $W := g^{-1}(U)$ es abierto en X y cumple que $g(W) \subset U$, veamos que $x \in W$ esta parejamente cubierto! Para eso $p_X^{-1}(W) = p_X^{-1}(g^{-1}(U)) = (gp_X)^{-1}(U) = (pp_E)^{-1}(U) = p_E^{-1}(\coprod_i V_i) = \coprod_i p_E^{-1}(V_i)$ y los $p_E^{-1}(V_i)$ son abiertos de P, faltaría ver que $p_X|_{p_E^{-1}(V_i)}$ es un homeomorfismo. Para esto notemos el siguiente diagrama:

$$\begin{array}{ccc}
p_E^{-1}(V_i) & \xrightarrow{p_E} & V_i \\
p_X \downarrow & & p \downarrow \\
q^{-1}(U) & \xrightarrow{g} & U
\end{array}$$

Como entonces $p_E^{-1}(V_i)$ es el pullback de ese diagrama, entonces como los homeomorfismos son estables por cambio de base, tenemos que $p_X|_{p_E^{-1}(V_i)}$ es un homeomorfismo.

9. Sea B un espacio conexo y localmente conexo, y sea $p: E \to B$ un revestimiento. Pruebe que si C es una componente conexa de E, entonces $p|_C: C \to B$ es un revestimiento.

Demostración Notemos primero que como p es revestimiento E hereda las propiedas locales de B, veamoslo! Sea $x \in E$ y veamos $p(x) \in B$, entonces como p es revestimiento $\exists p(x) \in U \subset B$ abierto tal que $p^{-1}(U) = \coprod_i V_i$, notemos que U lo podemos tomar conexo!

■ Sea $\widetilde{U} \ni x$ el entorno abierto y conexo de x y U el parejamente cubierto, sea $\widehat{U} := U \cap \widetilde{U}$, entonces $p^{-1}(\widehat{U}) = \coprod_i V_i \cap p^{-1}(\widetilde{U})$ y trivialmente $V_i \cap p^{-1}(\widetilde{U}) \simeq_p \widehat{U}$, que es lo que queríamos

Entonces, volviendo, tomamos el U original conexo y por ende como $V_i \simeq U$ tenemos que V_i los abiertos de E son conexos y por ende E es localmente conexo. Ahora si con esto dicho, veamos que $p|_C$ es revestimiento.

- Sea $b \in B$ y $U \ni b$ el entorno abierto conexo parejamente cubierto, entonces como $\exists V_i \subset X$ con $V_i \simeq U$ en particular $\exists v_i \in V_i \ / \ p(v_i) = b \ \forall \ i \in I$. Sea C la componente conexa, entonces como los V_i son conexos, $\exists i_0 \in I \ / V_{i_0} \subset C$ y por ende $v_{i_0} \in C$ y $p(v_{i_0}) = b$. Por ende $p|_C$ es sobreyectiva. Trivialmente como restringir es inicial, $p|_C$ es continua.
- Sea todo como lo anterior, o sea $x \in U \subset X$ y $p^{-1}(U) = \coprod_{i \in I} V_i$ y veamos $p^{-1}|_C(U) = \coprod_{i \in I} V_i \cap C$. Como V_i son conexos y C es una componente conexa, tenemos que $V_i \subset C$ o $V_i \cap C = \emptyset$, sea $J \subset I$ los indices que sobreviven, entonces $V_j \cap C = V_j \ \forall j \in J$. Entonces tenemos que $p^{-1}|_C(U) = \coprod_{j \in J} V_j$ y como los $V_j \simeq_p U$ entonces por ser todo igual $V_j \simeq_{p|_C} U$ y entonces U esta parejamente cubierto. Notemos que B automáticamente queda conexo pues es la imagen por p de C. (No use conexión, esta mal??)
- 10. Sea $p: \mathbb{R} \to S^1$ el revestimiento usual. Pruebe que $f: X \to S^1$ puede levantarse a una función continua $\tilde{f}: X \to \mathbb{R}$ tal que $p\tilde{f} = f$ si y sólo si f es null homotópica.

Demostración Veamoslo por partes!

Supongamos que $\exists \widetilde{f}: X \to \mathbb{R}$ tal que $f = p\widetilde{f}$ entonces como \mathbb{R} es contráctil tenemos que $\widetilde{f} \simeq C_{x_0}$ y por ende $f = p\widetilde{f} \simeq C_r$, o sea f es nul-homotópica.

■ ← (

Ahora volvamos! Sea $x \in X$ miremos $f(x) \in S^1$, como f es nullhomotópica, entonces se que $f \simeq C_{s_0}$ con $s_0 \in S^1$ y como S^1 es arco-conexo se que $\exists \alpha$ camino de s_0 a f(x). Sea ahora $r_0 \in E_{s_0} \subset \mathbb{R}$ y consideremos $\widetilde{\alpha}^{r_0}$ el camino levantado de α en \mathbb{R} , notemos que $p(\widetilde{\alpha}^{r_0}(t)) = f(t)$ y por ende definimos $\widetilde{f}(x) = \widetilde{\alpha}^{r_0}(1)$, veamos que esta bien definida, que es continua y que hace conmutar el diagrama!

- Supongamos que $\alpha, \omega: I \to S^1$ son dos caminos que unen s_0 con f(x), entonces $\alpha*\overline{\omega}$ es un lazo en s_0 . Afirmo que $\alpha*\overline{\omega}^{r_0}$ es un lazo en r_0 ; efectivamente pues f es null-homotópica y entonces $[\alpha*\overline{\omega}] = [C_{s_0}] = 0$ y $[0] \in \{[\omega] \in \pi_1(S^1, s_0) / \widetilde{\omega}^{r_0}(1) = r_0\} = p_*(\pi_1(\mathbb{R}, r_0)) = 0$ pues \mathbb{R} es simplemente-conexo. Entonces $\widetilde{\alpha}^{r_0}*\widetilde{\omega}^{r_1}$ es un lazo en r_0 donde $r_1 = \widetilde{\alpha}^{r_0}(1)$. Por lo tanto $\overline{\widetilde{\omega}^{r_1}}(0) = r_0$ y es otro levantado α , por ende por el levantamiento único de caminos tenemos que $\overline{\widetilde{\omega}^{r_1}} = \widetilde{\omega}^{r_0}$ y cuando evaluamos en t = 1 tenemos que $\widetilde{\omega}^{r_0}(1) = \overline{\widetilde{\omega}^{r_1}}(1) = \widetilde{\omega}^{r_1}(0) = r_1 = \widetilde{\alpha}^{r_0}(1)$ y por ende \widetilde{f} esta bien definida.
- Sea $x \in X$ y sea $U \ni f(x)$ el entorno parejamente cubierto, entonces $p^{-1}(U) = \coprod_j W_j$. Sea $j_0 \in J$ tal que $\widetilde{f}(x) \in W_{j_0}$ y consideremos $q := p|_{W_{j_0}}^{-1} : U \to W_{j_0}$ el homeomorfismo correspondiente. Ahora si, sea $W \ni \widetilde{f}(x)$ un entorno abierto y veamos $p(W \cap W_{j_0})$ que es abierto de S^1 pues $p|_{W_{j_0}}$ es homeo, entonces $V := f^{-1}(p(W \cap W_{j_0}))$ es un abierto de X pues f es continua. Veamos que $\widetilde{f}(V) \subset W$ y probariamos la continuidad de $\widetilde{f}!!$ Dado $x' \in V$ sea $\alpha : I \to S^1$ tal que $\alpha(0) = x$ y $\alpha(1) = x'$, entonces $q(\alpha)$ que es un levantamiento de α y $q\alpha(0) = \widetilde{f}(x)$; entonces $\widetilde{f}(x') = q\alpha(1) \in W_{j_0} \cap W \subset W$ pues $\alpha(1) \in f(V) \subset p(W_{j_0} \cap W)$ por lo que $q\alpha(1) \in qf(V) \subset qp(W_{j_0} \cap W) = W_{j_0} \cap W$ pues q es la inversa de $p|_{W_{j_0}}$. Por ende probamos que dado $W \ni f(x)$ entorno abierto, $\exists V \ni x$ entorno abierto tal que $\widetilde{f}(V) \subset W$ y por ende \widetilde{f} es continua.
- Por contrucción es trivial que hace conmutar el diagrama!
- 11. Sea G un grupo topológico y X un G-espacio (ver ej. 31 práctica 2). Decimos que la acción es libre si $gx \neq x$ para todo $x \in X$ y todo $g \in G$, $g \neq e$. Decimos que la acción es propiamente discontinua si para todo $x \in X$ existe U entorno abierto de x tal que $gU \cap U = \emptyset$ para todo $g \in G$, $g \neq e$.
 - a) Pruebe que si G es finito, X es Hausdorff y la acción es libre, entonces es propiamente discontinua.
 - b) Pruebe que si G actúa en X y la acción es propiamente discontinua, entonces la proyección $p: X \to X/G$ es un revestimiento.
 - c) Sea $X = \mathbb{R} \times [0,1] \subset \mathbb{R}^2 = \mathbb{C}$. Sea $G \subset \operatorname{Aut}(X)$ el subgrupo generado por ϕ ,donde $\phi(z) = \bar{z} + 1 + i$. Pruebe que la acción de G en X es propiamente discontinua, y que X/G es homemomorfo a la banda de Mobius.
 - d) Calcular el grupo fundamental de la banda de Mobius.

Demostración ???

- 12. Sea $p: E \to B$ una fibración. Sean $e \in E$, b = p(e).
 - a) Puebe que si B es simplemente conexo, entonces la inclusión de la fibra E_b en E induce un epimorfismo $i_*: \pi_1(E_b, e) \to \pi_1(E, e)$.
 - b) Pruebe que si la fibra E_b es simplemente conexa, entonces $p_*: \pi_1(E,e) \to \pi_1(B,b)$ es un isomorfismo.
 - c) Pruebe que si E es simplemente conexo, entonces hay una biyección entre $\pi_1(B,b)$ y $\pi_0(E_b)$.
 - **Demostración** a) Sea $[\omega] \in \pi_1(E, e)$ un lazo, entonces consideremos $p_*([\omega]) = [p\omega] \in \pi_1(B, b)$, como B es simplemente conexo tenemos que $[p\omega] = [C_b]$, o sea que $\exists H : I \times I \to B$ continua

tal que $H_0 = p\omega$ y $H_1 = C_b$. Como p es fibración esta H se levanta a $\widetilde{H}: I \times I \to E$ tal que $\widetilde{H}_0 = \widetilde{p\omega}^e$ y $\widetilde{H}_1 = \widetilde{C_b}^e = C_e$, pero $\widetilde{p\omega}^e = \omega$ y por ende $\omega \simeq_{\widetilde{H}} C_e$ y por ende $i_*([C_e]) = [\omega]$ y i_* es epimorfismo.

- b) Veamoslo por partes!
 - Monomorfismo Sea $[\alpha] \in \pi_1(E, e)$ tal que $p_*([\alpha]) = 0$, entonces $p\alpha \simeq C_b$ y como p es fibración tenemos que $\widetilde{p\alpha}^e = \alpha \simeq \widetilde{C_b}^e = C_e$ y por ende $[\alpha] = [C_e] = [0]$ y p_* es monomorfismo.
 - Epimorfismo Sea $[0] \neq [\omega] \in \pi_1(B, b)$ y consideremos $\widetilde{\omega}^e$ veamos que este es un lazo en e! ??
- c) ??
- 13. Sabiendo que $\pi_1(S^1) = \mathbb{Z}$, calcule el grupo fundamental de los siguientes espacios.
 - a) $X = S^1 \times [0, 1]$, un cilindro.
 - b) $X = S^1 \times \mathbb{R}$, un cilindro infinito.
 - c) $X = \mathbb{R}^2 \setminus \{0\}$, el plano pinchado.
 - d) X = M, la banda de Möbius.
 - e) $X = T = S^1 \times S^1$, el toro usual.
 - f) $X = \mathbb{R}^3 \setminus L$, donde L es una recta o un plano.

Demostración a) Nosotros ya sabemos que $X \simeq X \times I \ \forall X$ espacio topológico vía la homotopía lineal H((x,t),s) = (x,t+s(0-t)) y entonces, en particular $\pi_1(S^1,s) = \pi_1(S^1 \times I,s) = \mathbb{Z}$ pues el π_1 es un invariante homotópico.

- b) Como ya probamos en la práctica pasada que, como [0,1] es un compacto convexo de \mathbb{R} , $I \simeq \mathbb{R}$ entonces $S^1 \simeq S^1 \times I \simeq S^1 \times \mathbb{R}$ y entonces $\pi_1(S^1 \times \mathbb{R}, s) = \mathbb{Z}$
- c) Notemos que $1_{\mathbb{R}^2 \{0\}} \simeq \frac{\hat{x}}{\|\hat{x}\|}$ via $H(\hat{x}, t) = \frac{(1 t)1_{\mathbb{R}^2 \{0\}} + t\frac{\hat{x}}{\|\hat{x}\|}}{\|(1 t)1_{\mathbb{R}^2 \{0\}} + t\frac{\hat{x}}{\|\hat{x}\|}\|}$ y como $\frac{\hat{x}}{\|\hat{x}\|}|_{S^1} = 1_{S^1}$ tenemos que $\mathbb{R}^2 \{0\} \simeq S^1$ (rel S^1) y por ende $\pi_1(\mathbb{R}^2 \{0\}, r) = \mathbb{Z}$
- d) Notemos que $M = I \times I/(0,x) \sim (1,1-x)$ y notemos que $S^1 \cong I \times I/(0,\frac{1}{2}) \sim (1,\frac{1}{2})$ entonces podemos sospechar que $S^1 \simeq M$. Sea $H: M \times I \to S^1$ dada por $H(\overline{(x,t)},s) = \overline{(x,t)}(1-s) + (s)\overline{(x,\frac{1}{2})}$, es fácil ver como hicimos en la práctica 6 que esta H es la proyección de la homotopía lineal en $I \times I$ que compuesta con la proyección al cociente de S^1 respeta q_M y por ende es continua y vale lo que queremos! Entonces $\pi_1(M,s) = \pi_1(S^1,s) = \mathbb{Z}$
- e) Como hicimos en el ejercicio 6 $\pi_1(T,(1,1)) = \pi_1(S^1 \times S^1,(1,1)) \simeq \pi_1(S^1(1))^2 \simeq \mathbb{Z} \times \mathbb{Z}$
- f) Veamoslo por separado!
 - L es una recta En este caso notemos que $\mathbb{R}^3 - L \simeq \mathbb{R}^3 - L'$ donde $L' = \{x = 0, y = 0\}$ pues $\exists Q \ GL_3(\mathbb{R}) \ / \ Q(L) = L'$ y entonces $H = 1_x t + (1 - t)Qx$ es la homotopía que nos da lo anterior! Pero ahora notemos que $\mathbb{R}^3 - L' \simeq S^1 \times \mathbb{R}$ pues $\mathbb{R}^3 - L' = \mathbb{R} \times \mathbb{R}^2 - \{0\}$ y éste último ya probamos que $\mathbb{R}^2 - \{0\} \simeq S^1$. Pero entonces $\pi_1(\mathbb{R}^3 - L, r) = \pi_1(\mathbb{R}^3 - L', r') = \pi_1(\mathbb{R} \times \mathbb{R}^2 - \{0\}, r'') = \pi_1(S^1 \times \mathbb{R}, s') = \pi_1(S^1, s) = \mathbb{Z}$
 - L es un plano En este caso $\mathbb{R}^3 - L \simeq \mathbb{R}^3_{x<0} \times \mathbb{R}^3_{x>0}$ pues nuevamente $\exists Q \; GL_3(\mathbb{R}) \; / \; Q(L) = \{z=0\}$ y con la misma homotopía, pero $\mathbb{R}^3_{x<0} \cup \mathbb{R}^3_{x>0} \simeq \mathbb{R}^3_{x<0} \times \mathbb{R}^3_{x>0}$ trivialmente, lo que da lo dicho. Entonces $\pi_1(\mathbb{R}^3 - L, r) = \pi_1(\mathbb{R}^3_{x<0}, r) \times \pi_1(\mathbb{R}^3_{x>0}, r') = \pi_1(\mathbb{R}^3, r) \times \pi_1(\mathbb{R}^3, r') = 0$ pues $\mathbb{R}^3_{x<0} \simeq \mathbb{R}^3$ e idem el otro, y entonces son simplemente conexos.

Aplicaciones del Teorema de Brouwer y Borsuk-Ulam.

14. Demuestre que si A es un retracto del disco D^2 , entonces toda función continua $f:A\to A$ tiene un punto fijo.

Demostración Sea $f:A\to A$ continua y sea $x\in D^2$, entonces definimos $\widetilde{f}(x)=f(r(x))$, dado que $A\subset D^2$ tenemos que $\widetilde{f}:D^2\to D^2$ y es continua por ser composición de continuas. Entonces por el teorema de Brower $\exists x_0\in D^2\ /\ \widetilde{f}(x_0)=x_0$, o sea que $f(r(x_0))=x_0$, pero $f(A)\subset A$ y por ende $x_0\in A$, entonces como $ri=1_A$ tenemos que $r(x_0)=x_0$, por lo que $f(x_0)=x_0$ con $x_0\in A$, o sea que f tiene un punto fijo

15. Demuestre que si $f: S^1 \to S^1$ es null-homotópica, entonces tiene un punto fijo y además existe $x \in S^1$ tal que f(x) = -x.

Demostración Si $f:S^1\to S^1$ es null-homotópica entonces $\exists \widehat{f}:D^2\to S^1$ tal que $\widehat{f}|_{S^1}=f$, en particular como $S^1\subset D^2$ es un subespacio cerrado, tenemos una $\widehat{f}:D^2\to D^2$ continua, por Brower yo se que $\exists x_0\ /\widehat{f}(x_0)=x_0$, pero igual que antes $x_0\in S^1$, y como $\widehat{f}|_{S^1}=f$ tenemos que $f(x_0)=x_0!!$

Por otro lado supongamos que si f es null-homotópica, entonces -f también! Entonces bajo las mismas hipótesis y el mismo razonamiento $\exists x_1 \in S^1$ tal que $-f(x_1) = x_1$ por lo que $f(x_1) = -x_1$

16. Teorema de Lusternik-Schnirelmann (para dimensión 2). Pruebe que si S^2 se cubre con tres abiertos, entonces uno de ellos contiene dos puntos antipodales.

Demostración Supongamos que $S^2=U_1\cup U_2\cup U_3$, entonces $S^2=\bigcup_{i=1}^3 F_i$ cerrados tal que $F_1\cap -F_1=\emptyset$ y $F_2\cap -F_2=\emptyset$. Entonces como S^2 es compacto y T_2 entonces es T_5 y por ende por el lema de Uryshon $\exists g_i:S^2\to I$ tal que $g_i(F_i)=0$ y $g_i(-F_i)=1$ continua, sea entonces $f:=(g_1,g_2):S^2\to \mathbb{R}^2$ que es continua. Por Bersok-Ulam $\exists x\in S^2$ tal que f(x)=f(-x), Supongamos que $x\in F_i$ con $i\in\{1,2\}$, entonces $g_i(x)=0=g_i(-x)$ por lo que $-x\in F_i$, ABS! Pues $F_i\cap -F_i=\emptyset$. Entonces $x\in F_3$! Por el mismo argumento a -x tenemos que $-x\in F_3$

17. Pruebe que si $f: S^2 \to S^2$ es continua y $f(x) \neq f(-x)$ para todo x, entonces f es sobreyectiva.

Demostración Supongamos que f no es sobreyectiva y sea $s \in S^2 / Im(f) \subset S^2 - \{s\}$, recordemos que $\exists h: S^2 - \{s\} \to \mathbb{R}^2$ homeomorfismo y entonces $hf: S^2 \to \mathbb{R}^2$ es continua. Por el teo de Bersok-Ulam $\exists x_0 \in S^2$ tal que $hf(x_0) = hf(-x_0)$, pero como h es homeomorfismo, en particular es inyectivo y llegamos a que $f(x_0) = f(-x_0)$ ABS! Entonces f es sobreyectiva