Lax comma categories: descent and exponentiability

Rui Prezado Universidade de Aveiro

 109^{th} Peripatetic Seminar on Sheaves and Logic

17 November 2024

Let \mathbb{A} be a 2-category, X an object of \mathbb{A} , \mathbb{B} a full sub-2-category of \mathbb{A} .

Let \mathbb{A} be a 2-category, X an object of \mathbb{A} , \mathbb{B} a full sub-2-category of \mathbb{A} .

The lax comma (2-)category $\mathbb{B} \downarrow X$ has

Let \mathbb{A} be a 2-category, X an object of \mathbb{A} , \mathbb{B} a full sub-2-category of \mathbb{A} .

The lax comma (2-)category $\mathbb{B} \downarrow X$ has

• objects: morphisms $f \colon B \to X$ of \mathbb{A} with B in \mathbb{B} ,

Let \mathbb{A} be a 2-category, X an object of \mathbb{A} , \mathbb{B} a full sub-2-category of \mathbb{A} .

The lax comma (2-)category $\mathbb{B} \downarrow X$ has

- objects: morphisms $f: B \to X$ of \mathbb{A} with B in \mathbb{B} ,
- morphisms $f \to g$: 2-cells θ of \mathbb{A} of the form

where b is a morphism in \mathbb{B} .

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

The category $\mathsf{Set} \Downarrow \mathcal{X}$ consists of

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

The category $\mathsf{Set} \Downarrow \mathcal{X}$ consists of

• objects: functors $X \colon A \to \mathcal{X}$

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

The category $\mathsf{Set} \Downarrow \mathcal{X}$ consists of

• objects: functors $X \colon A \to \mathcal{X}$

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

The category $\mathsf{Set} \Downarrow \mathcal{X}$ consists of

• objects: functors $X: A \to \mathcal{X}$, that is, set-indexed families $(X_a)_{a \in A}$ of objects $X_a \in \mathcal{X}$.

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

The category $\mathsf{Set} \Downarrow \mathcal{X}$ consists of

- objects: functors $X: A \to \mathcal{X}$, that is, set-indexed families $(X_a)_{a \in A}$ of objects $X_a \in \mathcal{X}$.
- morphisms $(X_a)_{a\in A} \to (Y_b)_{b\in B}$: natural transformations

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

The category $\mathsf{Set} \Downarrow \mathcal{X}$ consists of

- objects: functors $X: A \to \mathcal{X}$, that is, set-indexed families $(X_a)_{a \in A}$ of objects $X_a \in \mathcal{X}$.
- morphisms $(X_a)_{a\in A} \to (Y_b)_{b\in B}$: natural transformations

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

The category $\mathsf{Set} \Downarrow \mathcal{X}$ consists of

- objects: functors $X: A \to \mathcal{X}$, that is, set-indexed families $(X_a)_{a \in A}$ of objects $X_a \in \mathcal{X}$.
- morphisms $(X_a)_{a\in A} \to (Y_b)_{b\in B}$: natural transformations

that is, set-indexed families $(\theta_a: X_a \to Y_{f(a)})_{a \in A}$ of morphisms in \mathcal{X} .

Let $\mathbb{A} = \mathsf{CAT}$, $\mathbb{B} = \mathsf{Set}$, and \mathcal{X} a category.

The category $\mathsf{Set} \Downarrow \mathcal{X}$ consists of

- objects: functors $X: A \to \mathcal{X}$, that is, set-indexed families $(X_a)_{a \in A}$ of objects $X_a \in \mathcal{X}$.
- morphisms $(X_a)_{a\in A} \to (Y_b)_{b\in B}$: natural transformations

that is, set-indexed families $(\theta_a: X_a \to Y_{f(a)})_{a \in A}$ of morphisms in \mathcal{X} .

Thus, Set $\Downarrow \mathcal{X} = \mathsf{Fam}(\mathcal{X})$.

Let $\mathbb{A} = \mathbb{B} = \text{Ord}$, and X an ordered set.

Let $\mathbb{A} = \mathbb{B} = \text{Ord}$, and X an ordered set.

The category $\mathsf{Ord} \Downarrow X$ consists of

Let $\mathbb{A} = \mathbb{B} = \text{Ord}$, and X an ordered set.

The category $\mathsf{Ord} \downarrow X$ consists of

• objects: monotone maps $\alpha \colon A \to \mathcal{X}$

Let $\mathbb{A} = \mathbb{B} = \text{Ord}$, and X an ordered set.

The category $\mathsf{Ord} \downarrow X$ consists of

• objects: monotone maps $\alpha \colon A \to \mathcal{X}$

Let $\mathbb{A} = \mathbb{B} = \text{Ord}$, and X an ordered set.

The category $\mathsf{Ord} \Downarrow X$ consists of

• objects: monotone maps $\alpha \colon A \to \mathcal{X}$, that is, ordered families $(\alpha(a))_{a \in A}$ of elements $\alpha(a) \in X$.

Let $\mathbb{A} = \mathbb{B} = \text{Ord}$, and X an ordered set.

The category $\mathsf{Ord} \Downarrow X$ consists of

- objects: monotone maps $\alpha \colon A \to \mathcal{X}$, that is, ordered families $(\alpha(a))_{a \in A}$ of elements $\alpha(a) \in X$.
- morphisms $\alpha \to \beta$: a monotone map $f: A \to B$ satisfying

Let $\mathbb{A} = \mathbb{B} = \text{Ord}$, and X an ordered set.

The category $\mathsf{Ord} \Downarrow X$ consists of

- objects: monotone maps $\alpha \colon A \to \mathcal{X}$, that is, ordered families $(\alpha(a))_{a \in A}$ of elements $\alpha(a) \in X$.
- morphisms $\alpha \to \beta$: a monotone map $f: A \to B$ satisfying

Let $\mathbb{A} = \mathbb{B} = \text{Ord}$, and X an ordered set.

The category $\mathsf{Ord} \downarrow X$ consists of

- objects: monotone maps $\alpha \colon A \to \mathcal{X}$, that is, ordered families $(\alpha(a))_{a \in A}$ of elements $\alpha(a) \in X$.
- morphisms $\alpha \to \beta$: a monotone map $f: A \to B$ satisfying

$$\begin{array}{c}
A \xrightarrow{h} B \\
X \xrightarrow{\theta} X
\end{array}$$

that is, $\alpha(a) \leq \beta(f(a))$ for all $a \in A$.

The lax comma category $\mathbb{A} \Downarrow X$ is the total category of $Grothendieck\ construction$ of the 2-functor

The lax comma category $\mathbb{A} \Downarrow X$ is the total category of $Grothendieck\ construction$ of the 2-functor

$$\begin{split} \mathbb{A}^{\mathsf{op}} &\to \mathsf{CAT} \\ A &\mapsto \mathbb{B}(A,X) \\ f \colon A \to B \mapsto - \cdot f \colon \mathbb{B}(B,X) \to \mathbb{B}(A,X) \end{split}$$

The lax comma category $\mathbb{A} \Downarrow X$ is the total category of $Grothendieck\ construction$ of the 2-functor

$$\begin{split} \mathbb{A}^{\mathsf{op}} &\to \mathsf{CAT} \\ A &\mapsto \mathbb{B}(A,X) \\ f \colon A \to B \mapsto - \cdot f \colon \mathbb{B}(B,X) \to \mathbb{B}(A,X) \end{split}$$

that is, we have a fibration $\mathbb{A} \Downarrow X \to \mathbb{A}$.

Properties of X determine the properties of $\mathbb{A} \downarrow X$:

• Existence of limits/completeness (Gray 1966)

- Existence of limits/completeness (Gray 1966)
- Existence of colimits/cocompleteness (Gray 1966)

- Existence of limits/completeness (Gray 1966)
- Existence of colimits/cocompleteness (Gray 1966)
- Distributivity of colimits over limits (Clementino, Lucatelli Nunes, P. 2024)

- Existence of limits/completeness (Gray 1966)
- Existence of colimits/cocompleteness (Gray 1966)
- Distributivity of colimits over limits (Clementino, Lucatelli Nunes, P. 2024)
- Topologicity (Wyler 1981, Clementino, Lucatelli Nunes, P. 2024)

- Existence of limits/completeness (Gray 1966)
- Existence of colimits/cocompleteness (Gray 1966)
- Distributivity of colimits over limits (Clementino, Lucatelli Nunes, P. 2024)
- Topologicity (Wyler 1981, Clementino, Lucatelli Nunes, P. 2024)
- Effective descent morphisms (Clementino, Lucatelli Nunes, P. 2024)

- Existence of limits/completeness (Gray 1966)
- Existence of colimits/cocompleteness (Gray 1966)
- Distributivity of colimits over limits (Clementino, Lucatelli Nunes, P. 2024)
- Topologicity (Wyler 1981, Clementino, Lucatelli Nunes, P. 2024)
- Effective descent morphisms (Clementino, Lucatelli Nunes, P. 2024)
- Exponentiable objects (Clementino, Lucatelli Nunes, P. 2024)

Cartesian closedness

Theorem (Lucatelli Nunes, Vákár 2024)

Let \mathcal{X} be a infinitary distributive category. The following are equivalent:

Theorem (Lucatelli Nunes, Vákár 2024)

Let \mathcal{X} be a infinitary distributive category. The following are equivalent:

• \mathcal{X} is cartesian closed.

Theorem (Lucatelli Nunes, Vákár 2024)

Let \mathcal{X} be a infinitary distributive category. The following are equivalent:

- \mathcal{X} is cartesian closed.
- $Fam(\mathcal{X})$ is cartesian closed.

Theorem (Clementino, Lucatelli Nunes 2023)

We consider the lax comma category $\mathsf{Ord} \downarrow X$, for X a complete ordered set.

Theorem (Clementino, Lucatelli Nunes 2023)

We consider the lax comma category $\mathsf{Ord} \Downarrow X,$ for X a complete ordered set. The following are equivalent:

Theorem (Clementino, Lucatelli Nunes 2023)

We consider the lax comma category $\mathsf{Ord} \Downarrow X,$ for X a complete ordered set. The following are equivalent:

• X is cartesian closed.

Theorem (Clementino, Lucatelli Nunes 2023)

We consider the lax comma category $\mathsf{Ord} \Downarrow X,$ for X a complete ordered set. The following are equivalent:

- X is cartesian closed.
- Ord $\Downarrow X$ is cartesian closed.

Theorem (Clementino, Lucatelli Nunes 2023)

We consider the lax comma category $\mathsf{Ord} \Downarrow X,$ for X a complete ordered set. The following are equivalent:

- X is cartesian closed.
- Ord $\Downarrow X$ is cartesian closed.

Theorem (Clementino, Lucatelli Nunes 2023)

We consider the lax comma category $\mathsf{Ord} \Downarrow X,$ for X a complete ordered set. The following are equivalent:

- X is cartesian closed.
- Ord $\Downarrow X$ is cartesian closed.

Theorem (Clementino, Lucatelli Nunes, P. 2024)

We consider the lax comma category $\mathsf{Cat} \Downarrow \mathcal{X}$, for \mathcal{X} a category.

Theorem (Clementino, Lucatelli Nunes 2023)

We consider the lax comma category $\mathsf{Ord} \Downarrow X,$ for X a complete ordered set. The following are equivalent:

- X is cartesian closed.
- Ord $\Downarrow X$ is cartesian closed.

Theorem (Clementino, Lucatelli Nunes, P. 2024)

We consider the lax comma category $\mathsf{Cat} \Downarrow \mathcal{X}$, for \mathcal{X} a category.

If \mathcal{X} is cartesian closed, then so is $\mathsf{Cat} \Downarrow \mathcal{X}$.

Let \mathcal{C} be a category with pullbacks.

Let \mathcal{C} be a category with pullbacks.

$$p^*: \mathcal{C} \downarrow y \to \mathcal{C} \downarrow x$$

Let \mathcal{C} be a category with pullbacks.

$$p^*: \mathcal{C} \downarrow y \to \mathcal{C} \downarrow x$$

We say p is an effective descent morphism (descent morphism) if p^* is monadic (premonadic).

We consider a lax comma category $\mathbb{A} \downarrow X$.

We consider a lax comma category $\mathbb{A} \downarrow X$.

Theorem (Lucatelli Nunes, P. 2024)

If X satisfies mild conditions, then

$$\mathbb{A} \Downarrow X \to \mathbb{A}$$

preserves effective descent morphisms.

Let X be an ordered set whose downsets $\downarrow x$ are complete lattices.

Let X be an ordered set whose downsets $\downarrow x$ are complete lattices.

Theorem (P, 2024)

The descent morphisms in Fam(X) are effective for descent.

Let X be an ordered set whose downsets $\downarrow x$ are complete lattices.

Theorem (P, 2024)

The descent morphisms in Fam(X) are effective for descent.

We consider the lax comma category $\mathsf{Ord} \downarrow X$.

Let X be an ordered set whose downsets $\downarrow x$ are complete lattices.

Theorem (P, 2024)

The descent morphisms in Fam(X) are effective for descent.

We consider the lax comma category $\mathsf{Ord} \downarrow X$.

Theorem (Clementino, P. 2024)

A morphism $f: (\alpha(a))_{a \in A} \to (\beta(b))_{b \in B}$ is an effective descent morphism if and only if

Let X be an ordered set whose downsets $\downarrow x$ are complete lattices.

Theorem (P, 2024)

The descent morphisms in Fam(X) are effective for descent.

We consider the lax comma category $\mathsf{Ord} \downarrow X$.

Theorem (Clementino, P. 2024)

A morphism $f: (\alpha(a))_{a \in A} \to (\beta(b))_{b \in B}$ is an effective descent morphism if and only if

• $f: A \to B$ is an effective descent morphism in Ord,

Let X be an ordered set whose downsets $\downarrow x$ are complete lattices.

Theorem (P, 2024)

The descent morphisms in Fam(X) are effective for descent.

We consider the lax comma category $\mathsf{Ord} \Downarrow X$.

Theorem (Clementino, P. 2024)

A morphism $f: (\alpha(a))_{a \in A} \to (\beta(b))_{b \in B}$ is an effective descent morphism if and only if

- $f: A \to B$ is an effective descent morphism in Ord,
- $f: (\alpha(a))_{a \leqslant a'} \to (\beta(b))_{b \leqslant b'}$ is a descent morphism in $\mathsf{Fam}(X)$.

On-going work

On-going work

• Studying exponentiable objects and effective descent morphisms in Top $\downarrow X$.

On-going work

- Studying exponentiable objects and effective descent morphisms in Top $\downarrow X$.
- Characterization of effective descent morphisms in $\mathsf{Cat} \downarrow X$.

Dank wel!