Algorithm design technique mainly used in optimization problems. can have many féasible solutions but only one solution is optimal. Max. Min. (According to the given problem) in T.P.

Steps in DP:

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
 4. Construct an optimal solution from computed
- information.

Note: If we need only the value of an optimal solution, not the solution itself, then we can omit step-4. Otherwise, we can construct optimal solution from the informations obtained in step-3.

Matrix Chain Multiplication (MCM)

Mostrix multiplication:

- · No. of columns of 1st = No. of rows of 2nd matrix
- · (A.B).C = A. (B.C) => Associative property.
- · A_{2×3}, B_{3×4} => P_{2×4} (To get P_{2×4}, we have to perform 2×3×4=24 no. of scalar multiplications)

McM Problem => We are not Our objective is A, A2 A3 the product to find out how we can fully parenthesize the product so that

2×3 3×4 4×2 of the matrix 3×2 chain.

(A₁·A₂)·A₃ | A₁· (A₂·A₃)
2×3 3×4 4×2 | 2×3 3×4 4×2 it minimizes the no of sealar multiplications.

with pheatron = $2\times3\times4+0+2\times4\times21 = 0+3\times4\times2$ = 40 Scalar multiplications = 36 Scalar multiplications Optimal Parentherization

Formal definition of MCM problem: Given a Chain (A1, A2, ..., An) of n matrices, where for i=1,2,...,n, motrix A; has dimension $P_{i-1} \times P_i$, fully parenthesize the product $P_{i-1} \times P_i$, fully parenthesize the product $P_{i-1} \times P_i$, multiplications.

Example: A_1 A_2 A_3 A_4 A_5 A_5 A_5 A_5 A_5 A_5 A_6 A_7 A_7 A_8 A_8 A_9 A_9 A $\langle 5, 4, 6, 2, 7 \rangle$ > Cost matrix 1 0 120 88 158 m[1,2] | m[2,3] | m[3,4] = 00 48 104 A1. A2 , A2. A3 , A3. A4 5x4 4x6 | 4x6 6x2 | 6x2 2x7 5x4x6=120 | 4x6x2=48 | 6x2x7=84 S Parenthesization ((A).(A2)) m[1,3] $A_1 \cdot A_2 \cdot A_3$ 5x4 4x6 6x2 A. (A2.A3) (A1.A2).A3 $= m[1,1]+m[2,3] = m[1,2] + m[3,3] + 5 \times 6 \times 2$ =0+48+40=88

m[2,4]A2. A3. A4 1 76H7 V 14×2 A2. (A3. A4) (A2. A3). A4 4x6 6x2 2x7, 4x6 6x2 2x7 m[2,2]+m[3,4] / m[2,3]+m[4,4]+4×2×7 +4×6×7 = 48+0+56 = 0 + 84 + 168 = (04) A7.5 (A2. A3. A4) $m[1,4] = min \begin{cases} m[1,1] + m[2,4] + 5 \times 4 \times 7, \\ m[1,2] + m[3,4] + 5 \times 6 \times 7, \end{cases}$ m[1,3]+m[4,4]+5×2×77 (A1.A2). (A3.A4) Ar Az Az Az Ay (A1. A2. A3) " A4 $= \min \left\{ 0 + 104 + 140, 120 + 84 + 210, \frac{120 + 84 + 210}{120 + 30} \right\}$ 88+0+70} = min { 244, 414, 158} = 158 So, we need 158 scalar multiplications for this matrix chain. Optimal parenthesization: ((A1) (A2 A3) (A4)

```
MATRIX-CHAIN-ORDER (p)

n = p^{1/2}
                   n = p.length - 1
                                                                                                   y Time
                2 let m[1...n, 1...n] and s[1...n-1, 2...n] be new tables
             \begin{cases} 3 & \text{for } i = 1 \text{ to } n \\ 4 & m[i, i] = 0 \end{cases}
                        m[i,i] = 0
                                               # l is the chain length
                5
                   for l = 2 to n
                        for i = 1 to n - l + 1
                6
                7
                             i = i + l - 1
                             m[i, j] = \infty
                8
                             for k = i to j - 1
                9
                                 q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j
               10
               11
                                 if q < m[i, j]
               12
                                      m[i,j] = q
                                      s[i, j] = k
               13
               14
                   return m and s
              PRINT-OPTIMAL-PARENS (s, i, j)
                 if i == j
              2
                      print "A"i
                 else print "("
                      PRINT-OPTIMAL-PARENS (s, i, s[i, j])
                      PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)
                      print ")"
 A, A<sub>2</sub> A<sub>3</sub> A<sub>4</sub>

P-0-P(S,1,3) — P-0-P(S,1,1)

P-0-P(S,2,3) — P-0-P(S,3,3)
> P-0-P (34,74)
```

Steps of DP w.r. to MCM problem: 1. Structure of an optimal solution: A: Ai+1 --- Aj, i < j To parenthesize thes product, we must split it between A k and A k+1 for some k in the pange between A wand A k+1 for some k in the pange Then, we first compute the matrices A; Ak and A k+1 Aj and then multiply hem together to produce A; Aj. The cost of parenthesizing in the and L Aj. The cost of parenthesizing is the cost of computing the matrix product A: ... Ax plus the cost of computing Ax+1 ... Aj plus the cost of multiplying them together. 2. Recursively define the value of an optimal solution , îf i=g° m[i,j] = { min { m [i,k] + m[k+1,j] + P_{i-1}·P_k·P_j, if i< j i < k< j } the value of an optimal solution in bottom up fashion: compute m x s tables in bottom up fashion using Matrix_Chain_Order procedure. 4. Constructing an optimal solution (Optional step): Parenthesization step using Print_Optimal_Parens procedure