## INSTITUTO POLITÉCNICO NACIONAL

Centro de Investigación en Computación



**ASIGNATURA:** 

Metaheurísticas

Actividad #9:

Guía Taller Laboratorio 4

PROFESORA:

Dra. Yenny Villuendas Rey

PRESENTA:

Juan René Hernández Sánchez

Adriana Montserrat García Carrillo



#### 1. Introducción

El término de búsqueda heurística viene del griego *heuriskein*, que significa encontrar. El enfoque heurístico intenta reducir el tamaño del árbol cortando nodos pocos prometedores. Además, está orientado a reducir la cantidad de búsqueda requerida para encontrar una solución.

El algoritmo heurístico "Ascensión de Colinas" toma su nombre de la semejanza que tiene con un alpinista, quien desea alcanzar rápidamente el pico de una montaña, este selecciona la dirección de ascenso mayor a partir de la posición actual. Por lo tanto, en este trabajo se estudió el algoritmo de Ascensión de Colinas con Mutación Aleatoria (RMHC), que es una variante del de Ascensión de Colinas; donde a partir de un estado, se genera otro mediante procesos aleatorios. Posee las siguientes características: no se inspeccionan todos los estados sucesores, sólo el generado, y si el estado generado supera al anterior, se considera como el estado actual.

Es importante recordar los ingredientes que conforman a los problemas de optimización, los cuales son:

- · Función objetivo.
- Conjunto de parámetros (desconocidos) los cuales afectan el valor de la función objetivo. Se deben encontrar los parámetros que maximizan o minimizan la función objetivo.
- Conjunto de restricciones que restringen los valores que se pueden asignar.

En el presente trabajo se implementó el algoritmo de RMHC para la solución de problemas de minimización de distintas funciones.

### 2. Desarrollo

Asignatura: Metaheurísticas

Actividad No.9 Guía Taller No.4

Título: Solución de problemas mediante Ascensión de Colinas

#### Contenido:

- Métodos heurísticos de solución de problemas.
- Ascensión de Colinas con mutación aleatoria

**Objetivo:** Implementar algoritmos de Ascensión de Colinas, en lenguajes de alto nivel, para la solución de problemas de competencia.

# 1. Analice detalladamente las seis funciones definidas en el documento "Funciones de prueba.pdf". [1] [2]

| Nombre de la función          | Ref. | Fórmula                                                                                                                          | Punto mínimo                        | Valor<br>mínimo |
|-------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|
| Alpine 1 Function             | [1]  | $f_1(x) = \sum_{i=1}^{D}  x_i \sin(x_i) + 0.1x_i $                                                                               | x* = f(0,0)                         | f(x*)=0         |
| Dixon & Price Function        | [2]  | $f_2(\mathbf{x}) = (x_1 - 1)^2 + \sum_{i=2}^{D} i(2\sin(x_i) - x_{i-1})^2$                                                       | $x^* = f(2(\frac{2^{i}-2}{2^{i}}))$ | f(x*)=0         |
| Quintic Function              | [3]  | $f_3(\mathbf{x}) = \sum_{i=1}^{D}  x_i^5 - 3x_i^4 + 4x_i^3 - 2x_i^2 - 10x_1 - 4 $                                                | x* = f(-1 or 2)                     | f(x*)=0         |
| Schwefel 2.23 Function        | [4]  | $f_4(\mathbf{x}) = \sum_{i=1}^{D} x_i^{10}$                                                                                      | x* = f(0,0)                         | f(x*)=0         |
| Streched V Sine Wave Function | [5]  | $f_5(x) = \sum_{i=1}^{D-1} (x_{i+1}^2 + x_i^2)^{0.25} \left[ \sin^2 \left\{ 50 (x_{i+1}^2 + x_i^2)^{0.1} \right\} + 0.1 \right]$ | x* = f(0,0)                         | f(x*)=0         |
| Sum Squares Function          | [6]  | $f_6(x) = \sum_{i=1}^{D} i x_i^2$                                                                                                | x* = f(0,0)                         | f(x*)=0         |

#### 2. Implemente dichas funciones.

```
#Alpine 1 Function
def fitness1(funcion):
   valmax = 0
   for i in funcion:
        valmax += abs(i*(math.sin(i))+0.1*(i))
    return valmax
#Dixon & Price Function
def fitness2(funcion):
    valmax = (funcion[0] - 1)**2
    for i in range(1, len(funcion)):
        valmax += i*(2*math.sin(funcion[i])-funcion[i-1])**2
    return valmax
#Quintic Function
def fitness3(funcion):
   valmax = 0
   for i in funcion:
        valmax += abs((i**5)-(3*(i**4))+(4*(i**3))-(2*(i**2))-(10*i)-4)
    return valmax
#Schwefel 2.23 Function
def fitness4(funcion):
   valmax = 0
    for i in funcion:
        valmax += i**10
    return valmax
```

```
#Streched V Sine Wave Function

def fitness5(funcion):
    valmax = 0
    for i in range(len(funcion)-1):
        valmax += ((funcion[i+1]**2 +
funcion[i]**2)**0.25)*((math.sin(50*((funcion[i+1]**2 +
funcion[i]**2)**0.1))**2)+0.1)
    return valmax

#Sum Squares Function

def fitness6(funcion):
    valmax = 0
    for j, xi in enumerate(funcion):
        valmax += j * (xi**2)
    return valmax
```

3. Implemente el algoritmo de RMHC para la solución de los problemas de minimización de las funciones anteriores. Considere D=10 y posteriormente D=30 dimensiones.

```
import random
import copy
import math
#Alpine 1 Function
def fitness1(funcion):
    valmax = 0
    for i in funcion:
        valmax += abs(i*(math.sin(i))+0.1*(i))
    return valmax
#Dixon & Price Function
def fitness2(funcion):
    valmax = (funcion[0] - 1)**2
    for i in range(1, len(funcion)):
        valmax += i*(2*math.sin(funcion[i])-funcion[i-1])**2
    return valmax
#Quintic Function
def fitness3(funcion):
    valmax = 0
    for i in funcion:
        valmax += abs((i^{**}5)-(3^{*}(i^{**}4))+(4^{*}(i^{**}3))-(2^{*}(i^{**}2))-(10^{*}i)-4)
    return valmax
```

```
#Schwefel 2.23 Function
def fitness4(funcion):
   valmax = 0
    for i in funcion:
        valmax += i**10
    return valmax
#Streched V Sine Wave Function
def fitness5(funcion):
    valmax = 0
    for i in range(len(funcion)-1):
        valmax += ((funcion[i+1]**2 +
funcion[i]**2)**0.25)*((math.sin(50*((funcion[i+1]**2 +
funcion[i]**2)**0.1))**2)+0.1)
    return valmax
#Sum Squares Function
def fitness6(funcion):
    valmax = 0
    for j, xi in enumerate(funcion):
        valmax += j * (xi**2)
    return valmax
def mutar_bit(locus, funcion):
    new_funcion = funcion.copy()
    new_funcion[locus] = random.uniform(-10, 10)
    return new_funcion
#n representa a D, posteriormente n será igual 30
n = 10
#N representa el número de evaluaciones
N = 500
funcion_x = []
for i in range(n):
    funcion_x.append(random.uniform(-10, 10))
fitness_actual = fitness1(funcion_x)
eval = 1
while eval < N:
    locus = random.randint(0, n-1)
    nueva_funcion_x = mutar_bit(locus, funcion_x)
    nueva fitness = fitness1(nueva funcion x)
```

```
eval += 1

if nueva_fitness <= fitness_actual:
    funcion_x = nueva_funcion_x
    fitness_actual = nueva_fitness

print("\n")
print("Valores Finales: ", funcion_x)
print("fitness igual a: ", fitness_actual)
print("\n")</pre>
```

- 4. Reporte los resultados obtenidos. Para ello, realice 20 ejecuciones independientes, con la siguiente configuración:
- a. Considere un total de 500 evaluaciones de la función objetivo.
- b. Muestre el mejor, peor, promedio, mediana y desviación estándar de los resultados en las 20 ejecuciones.

#### ✓ Resultados con D = 10

Tabla de Fitness para D = 10

| Función  | Mejor       | Peor        | Promedio    | Mediana     | Desviación Estándar |
|----------|-------------|-------------|-------------|-------------|---------------------|
| F1       | 1.217596741 | 0.090578949 | 0.442647784 | 0.39293625  | 0.272357217         |
| F2       | 55.6891453  | 1.90531574  | 20.32991462 | 16.12422627 | 13.98360807         |
| F3       | 30.41182359 | 1.141753806 | 8.81557735  | 7.288663567 | 6.22072919          |
| F4       | 0.103540541 | 3.10862E-06 | 0.012208823 | 0.000984463 | 0.024593258         |
| F5       | 2.701923723 | 1.385216107 | 2.102710511 | 2.1042192   | 0.383728814         |
| F6       | 13.64362453 | 0.580774099 | 3.280579006 | 2.756663509 | 2.851170743         |
| Promedio | 17.29460907 | 0.850606968 | 5.830606348 | 4.777948877 | 3.956031215         |

| F1          | F2          | F3          | F4          | F5          | F6          |
|-------------|-------------|-------------|-------------|-------------|-------------|
| 0.311908063 | 13.86267489 | 1.141753806 | 0.010991972 | 2.660095983 | 4.63010238  |
| 0.313027561 | 17.23671365 | 6.688586066 | 0.001503019 | 2.390978745 | 5.055183304 |
| 0.198021736 | 16.16426304 | 9.454237045 | 0.03527755  | 2.152513282 | 3.586614211 |
| 0.250388313 | 26.76838002 | 13.08133131 | 6.24E-05    | 1.93119822  | 3.780591087 |
| 0.443379284 | 32.94604634 | 11.01491885 | 8.49E-05    | 2.357724498 | 13.64362453 |
| 0.321238188 | 11.273227   | 11.37324606 | 0.000945893 | 2.103466889 | 3.09185913  |
| 0.686559251 | 28.48341101 | 9.571568386 | 0.002281304 | 2.578992628 | 1.291084313 |
| 0.49906489  | 43.06334367 | 6.765494202 | 0.020059782 | 1.849949497 | 1.177446912 |
| 0.337728625 | 8.302285074 | 30.41182359 | 0.000206563 | 1.765920304 | 4.715526872 |
| 0.463905286 | 8.34850302  | 1.876185166 | 0.001000449 | 1.741641184 | 3.138854236 |
| 0.729720008 | 2.51044738  | 7.811832931 | 0.000685696 | 2.104971511 | 3.231715727 |
| 0.424701626 | 16.0841895  | 3.942614344 | 3.11E-06    | 1.613472107 | 2.307982497 |

| 0.374073451 | 16.00682654 | 10.03136392 | 9.48E-06    | 1.385216107 | 1.337867729 |
|-------------|-------------|-------------|-------------|-------------|-------------|
| 0.133207557 | 27.68051311 | 6.148039894 | 4.44E-05    | 1.874831944 | 0.580774099 |
| 0.411799049 | 11.76223083 | 6.240830431 | 0.000968476 | 2.59236755  | 5.488831615 |
| 1.217596741 | 1.90531574  | 8.745093728 | 0.103540541 | 2.218875458 | 2.421467888 |
| 0.176205583 | 10.0249942  | 6.599294339 | 0.03223237  | 1.691792711 | 2.118740551 |
| 0.875160948 | 55.6891453  | 4.841421105 | 0.030315936 | 2.466115584 | 0.808892636 |
| 0.594690571 | 38.07149084 | 15.64871168 | 3.59E-06    | 2.701923723 | 1.086134278 |
| 0.090578949 | 20.41429115 | 4.923200137 | 0.003959015 | 1.872162301 | 2.118286127 |

## ✓ Resultados con D = 30

Tabla de Fitness para D = 30

| Función  | Mejor       | Peor        | Promedio    | Mediana     | Desviación Estándar |
|----------|-------------|-------------|-------------|-------------|---------------------|
| F1       | 10.36535183 | 3.663024179 | 5.798259936 | 5.224225174 | 1.75014681          |
| F2       | 1076.813615 | 409.8393035 | 663.3497252 | 607.810802  | 213.2672347         |
| F3       | 629.0793999 | 104.8850106 | 175.9581075 | 143.0852847 | 118.0529381         |
| F4       | 100997.2236 | 4.245946077 | 14667.10952 | 1339.930787 | 29082.76813         |
| F5       | 13.42461684 | 8.371325943 | 9.907679597 | 9.65272149  | 1.293332605         |
| F6       | 514.7020229 | 124.1497342 | 277.1511467 | 256.4472523 | 115.1860281         |
| Promedio | 17206.93476 | 109.1923908 | 2633.212407 | 393.6918454 | 4922.052968         |

| F1          | F2          | F3          | F4          | F5          | F6          |
|-------------|-------------|-------------|-------------|-------------|-------------|
| 4.082396387 | 767.8065358 | 152.3299767 | 987.91154   | 9.361988815 | 303.1556962 |
| 4.489794443 | 608.9970216 | 307.5850174 | 923.2003342 | 10.09589179 | 181.5673494 |
| 7.135802542 | 433.484174  | 122.8309358 | 4.245946077 | 9.783867403 | 282.0984458 |
| 7.682311221 | 975.0719849 | 111.940133  | 5.40E+02    | 9.521575577 | 181.0264345 |
| 4.49429603  | 956.4593064 | 165.9612031 | 5.26E+02    | 9.195292782 | 188.5577308 |
| 5.346066986 | 661.1344524 | 115.1391069 | 58.51934874 | 13.42461684 | 180.5601739 |
| 5.102383361 | 483.5564267 | 247.1302144 | 17520.64836 | 10.64155963 | 215.3394231 |
| 6.523597729 | 995.6075506 | 136.1038178 | 386.0484087 | 8.422958027 | 514.7020229 |
| 3.663024179 | 835.3018587 | 161.5411024 | 45461.66721 | 8.399660024 | 487.1750903 |
| 6.189039175 | 499.5621709 | 116.5460726 | 1691.950033 | 8.371325943 | 318.6023938 |
| 7.279150947 | 606.6245824 | 104.8850106 | 19845.32186 | 8.864997056 | 124.1497342 |
| 4.497196901 | 484.3957561 | 111.7677996 | 2.57E+03    | 8.922200882 | 423.5690503 |
| 4.076033836 | 711.502803  | 111.5576591 | 9.52E+02    | 10.1259108  | 456.5355453 |
| 7.55382133  | 1076.813615 | 629.0793999 | 1.01E+05    | 11.93601738 | 214.5649323 |
| 7.23173216  | 443.6855416 | 148.0800351 | 85553.6679  | 11.39009248 | 268.9069302 |
| 4.767845246 | 509.9104419 | 111.2235225 | 23.43609311 | 10.46120633 | 190.3923514 |
| 4.061781593 | 603.3922561 | 184.2640223 | 880.6701982 | 9.518950867 | 243.9875744 |
| 10.36535183 | 774.4788839 | 189.5912076 | 4066.287078 | 8.841228322 | 151.6628567 |
| 7.060141887 | 409.8393035 | 153.515378  | 6.06E+03    | 10.91509667 | 343.1323258 |
| 4.363430935 | 429.3698384 | 138.0905343 | 4290.897846 | 9.959154327 | 273.3368729 |

c. Muestre el mejor, peor, promedio, mediana y desviación estándar de los tiempos de ejecución (en segundos) en las 20 ejecuciones.

#### ✓ Resultados con D = 10

Tabla de Tiempos (segundos) para D = 10

|            | Tabla de Tiempos (segundos) para $D = 10$ |            |            |            |                     |  |  |
|------------|-------------------------------------------|------------|------------|------------|---------------------|--|--|
| Función    | Mejor                                     | Peor       | Promedio   | Mediana    | Desviación Estándar |  |  |
| F1         | 0.01003838                                | 0.0019877  | 0.00475526 | 0.004987   | 0.001905539         |  |  |
| F2         | 0.01296353                                | 0.0049839  | 0.00817882 | 0.00797832 | 0.002086418         |  |  |
| F3         | 0.02393627                                | 0.00997114 | 0.01495949 | 0.01296663 | 0.003870067         |  |  |
| F4         | 0.00598478                                | 0.00199485 | 0.00371472 | 0.00374329 | 0.000964291         |  |  |
| F5         | 0.03290629                                | 0.01196742 | 0.02175114 | 0.02243984 | 0.006170265         |  |  |
| F6         | 0.00798035                                | 0.0029912  | 0.00518614 | 0.00498819 | 0.00143281          |  |  |
| Promedio   | 0.01563493                                | 0.00564937 | 0.00975759 | 0.00951721 | 0.002738232         |  |  |
|            |                                           |            |            |            |                     |  |  |
| F1         | F2                                        | F3         | F4         | F5         | F6                  |  |  |
| 0.01003838 | 0.0049839                                 | 0.01296449 | 0.00299144 | 0.01196742 | 0.005982399         |  |  |
| 0.00570526 | 0.00600220                                | 0.00007252 | 0.00200025 | 0.01206544 | 0.0020004E0         |  |  |

| F1         | F2         | F3         | F4         | F5         | F6          |
|------------|------------|------------|------------|------------|-------------|
| 0.01003838 | 0.0049839  | 0.01296449 | 0.00299144 | 0.01196742 | 0.005982399 |
| 0.00570536 | 0.00698328 | 0.00997353 | 0.00299025 | 0.01296544 | 0.003989458 |
| 0.00598311 | 0.00698376 | 0.01296449 | 0.00398946 | 0.01496172 | 0.002992392 |
| 0.00299048 | 0.00697875 | 0.00997114 | 1.99E-03   | 0.01496363 | 0.004988909 |
| 0.00299191 | 0.00698161 | 0.01296735 | 2.99E-03   | 0.01714301 | 0.004987955 |
| 0.00698495 | 0.00499797 | 0.01196861 | 0.00399113 | 0.01695943 | 0.004978895 |
| 0.0039866  | 0.00896406 | 0.01196551 | 0.00398946 | 0.01894355 | 0.002993345 |
| 0.00498605 | 0.00598407 | 0.01296592 | 0.00299144 | 0.01695371 | 0.003989935 |
| 0.00299168 | 0.00797987 | 0.01097107 | 0.00297928 | 0.01695514 | 0.004986048 |
| 0.00498796 | 0.00698066 | 0.01195955 | 0.00399089 | 0.0199461  | 0.002991199 |
| 0.00398922 | 0.00898194 | 0.01296449 | 0.00299191 | 0.02593231 | 0.004988432 |
| 0.0019877  | 0.00697994 | 0.01496005 | 3.50E-03   | 0.02692747 | 0.004986763 |
| 0.00598574 | 0.00997305 | 0.01894951 | 2.99E-03   | 0.02493358 | 0.005982161 |
| 0.00598407 | 0.00797677 | 0.01595759 | 3.99E-03   | 0.02692771 | 0.00698328  |
| 0.00598264 | 0.00798011 | 0.0179522  | 0.00598478 | 0.02593136 | 0.006980896 |
| 0.00456786 | 0.00997281 | 0.01894999 | 0.00498509 | 0.03290629 | 0.00398922  |
| 0.0049901  | 0.0089767  | 0.01994705 | 0.00498843 | 0.0279243  | 0.00598526  |
| 0.00298786 | 0.00998759 | 0.02393627 | 0.00398803 | 0.02892733 | 0.005981207 |
| 0.00199485 | 0.01196599 | 0.01795125 | 4.99E-03   | 0.02592564 | 0.007980347 |
| 0.00498867 | 0.01296353 | 0.01894975 | 0.00299191 | 0.02692771 | 0.006984711 |

#### ✓ Resultados con D = 30

Tabla de Tiempos (segundos) para D = 30

| Función  | Mejor      | Peor       | Promedio   | Mediana    | Desviación Estándar |
|----------|------------|------------|------------|------------|---------------------|
| F1       | 0.01097178 | 0.00399184 | 0.00745783 | 0.00698197 | 0.002017985         |
| F2       | 0.01994729 | 0.00896955 | 0.01506054 | 0.01546001 | 0.003484548         |
| F3       | 0.03490925 | 0.02094293 | 0.02812731 | 0.02842629 | 0.004417477         |
| F4       | 0.02592897 | 0.00399327 | 0.01087084 | 0.00947857 | 0.004665474         |
| F5       | 0.04886627 | 0.03190613 | 0.03816409 | 0.03556299 | 0.00596558          |
| F6       | 0.02792311 | 0.00498462 | 0.01311722 | 0.01148164 | 0.005849878         |
| Promedio | 0.02809111 | 0.01246472 | 0.01879964 | 0.01789858 | 0.004400157         |

| F1         | F2         | F3         | F4         | F5         | F6          |
|------------|------------|------------|------------|------------|-------------|
| 0.0049839  | 0.01096773 | 0.02094293 | 0.00399327 | 0.03522921 | 0.004984617 |
| 0.00636649 | 0.01196527 | 0.02397704 | 0.00798035 | 0.03889513 | 0.006979227 |
| 0.00601411 | 0.01795173 | 0.02194595 | 0.00897431 | 0.04587889 | 0.005022526 |
| 0.00399184 | 0.01795459 | 0.02793336 | 9.98E-03   | 0.04687428 | 0.011988163 |
| 0.00598812 | 0.01795173 | 0.02792788 | 1.10E-02   | 0.0458796  | 0.019932747 |
| 0.00602818 | 0.01895046 | 0.02792382 | 0.00897408 | 0.04886627 | 0.012965202 |
| 0.00599027 | 0.01795363 | 0.02891922 | 0.00897598 | 0.04687405 | 0.020942926 |
| 0.00697732 | 0.01994538 | 0.02992034 | 0.0089767  | 0.04089117 | 0.018948078 |
| 0.0050211  | 0.01994729 | 0.03091598 | 0.01495886 | 0.04288363 | 0.027923107 |
| 0.00598645 | 0.01695514 | 0.03091621 | 0.01296663 | 0.0379076  | 0.014962435 |
| 0.00897169 | 0.01695514 | 0.03291416 | 0.01895094 | 0.03589678 | 0.013960361 |
| 0.01001954 | 0.01796198 | 0.03390789 | 2.59E-02   | 0.03191447 | 0.01894927  |
| 0.00698662 | 0.00896955 | 0.03191447 | 7.97E-03   | 0.03191543 | 0.014966249 |
| 0.01097178 | 0.01296568 | 0.03091812 | 1.10E-02   | 0.03491735 | 0.007979155 |
| 0.00896811 | 0.01296616 | 0.03490925 | 0.01097131 | 0.03190613 | 0.010967731 |
| 0.0099721  | 0.0119679  | 0.03290749 | 0.0079782  | 0.03290939 | 0.010971785 |
| 0.00897598 | 0.01396489 | 0.02394056 | 0.00997329 | 0.03291059 | 0.009972811 |
| 0.00898194 | 0.01097083 | 0.02492881 | 0.00797582 | 0.03391075 | 0.010975122 |
| 0.00997591 | 0.01195359 | 0.02094483 | 1.10E-02   | 0.03291392 | 0.009976864 |
| 0.00798512 | 0.01199222 | 0.02393794 | 0.00898385 | 0.03390718 | 0.008975983 |

## 3. Conclusiones

Al implementar el algoritmo RMHC para la solución de problemas de minimización de distintas funciones se pudo apreciar que, es un algoritmo de gran versatilidad y es posible adaptarlo a casi cualquier problema de optimización.

Además, al obtener los resultados se pudo observar que la función 4 (Schwefel 2.23 Function) fue la que obtuvo el mejor desempeño, tanto en los resultados de la función fitness como en su tiempo de ejecución cuando D fue igual a 10. Por otro lado, la función 1 (Alpine

1 Function) fue la que obtuvo los mejores resultados en tiempo de ejecución y en la función fitness cuando D fue igual a 30.

## 4. Referencias

- [1] Mitchell, M., Holland, J. H., & Forrest, S. (1993). Relative building-block fitness and the building block hypothesis. D. Whitley, Foundations of Genetic Algorithms, 2, 109-126. (Sección 5).
- [2] Schaffer, J.D., et al., A study of control parameters affecting online performance of genetic algorithms for function optimization, in 3rd International Conference on Genetic Algorithms. 1989: San Mateo, California. p. 51-60.