AS.180.633: Econometrics

Spring 2020

Homework 5: Suggested Solutions

Instructor: Yingyao Hu By: Tong Zhou

5.4

Show that $\widehat{\theta} = \arg \max_{\theta \in \Theta} \ell_n(\theta) = \arg \max_{\theta \in \Theta} \mathcal{L}_n(\theta)$.

Proof. Since $\mathcal{L}_n(\theta)$ is merely a monotonic transformation of $\ell_n(\theta)$ by definition, maximizers will agree for this two objective functions

5.5

For the regression in-sample predicted values \hat{y}_i show that $\hat{y}_i | \mathbf{X} \sim \mathcal{N}\left(\mathbf{x}_i' \boldsymbol{\beta}, \sigma^2 h_{ii}\right)$ where h_{ii} are leverage values (3.41)

Proof. From **Theorem 5.4**,

$$\widehat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}).$$

Then conditional on X, x_i' becomes constant for each i. By **Theorem 5.2** of Hansen's notes, it follows that $\hat{y}_i = x_i' \hat{\beta}$ follows a normal distribution with mean $x_i' \beta$ and variance $\sigma^2 x_i' (X'X)^{-1} x_i$, i.e.

$$\widehat{y}_i | \mathbf{X} \sim \mathcal{N}(\mathbf{x}_i' \boldsymbol{\beta}, \sigma^2 h_{ii})$$

where $h_{ii} = \mathbf{x}_i'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_i$ by (3.41).

5.6

In the normal regression model, show that the leave-one out prediction errors \tilde{e}_i and the standardized residuals \bar{e}_i are independent of $\hat{\beta}$, conditional on X. (Hint: Use (3.46) and (4.24)).

Proof. By **Theorem 5.6**, \hat{e} is independent of $\hat{\beta}$. From (3.46) and (4.24), since M^* and M become constant conditional on X, \tilde{e} and \bar{e} are also independent of $\hat{\beta}$.

HW_5_Solution 2

5.7

In the normal regression model show that the robust covariance matrix $\hat{V}_{\hat{\beta}}^{HC0}$ $\hat{V}_{\hat{\beta}}^{HC1}$, $\hat{V}_{\hat{\beta}}^{HC2}$ and $\hat{V}_{\hat{\beta}}^{HC3}$ are independent of the OLS estimator $\hat{\beta}$, conditional on X.

Proof. Since the randomness of those four variance estimators is completely sourced from \hat{e}_i^2 for each i when X is controlled, they must be also independent of $\hat{\beta}$ (because \hat{e} is independent of $\hat{\beta}$.)