CDI-II

Integral tripla em coordenadas cilindricas

Exercícios

- 1. Calcule:
 - (a) $\iiint_S \sqrt{x^2+y^2} dx dy dz$ onde S é o sólido delimitado pelo cilíndro $x^2+y^2=16$ e entre os planos z=-5 e z=4
 - (b) $\iiint_S z dx dy dz$ onde S é o sólido delimitado pelo paraboló
ide $z = x^2 + y^2$ e o plano z = 4
 - (c) O volume do sólido $S=\left\{ \left(x;y;z\right);y\geq0$ e
 $8-x^{2}-y^{2}\leq z\leq12-x^{2}-y^{2}\right\}$
 - (d) $\iiint_S z dx dy dz$ onde S é o sólido delimitado pelos planos z=0 e z=x+y+5 e pelos cilindros $x^2+y^2=4$ e $x^2+y^2=9$.
 - (e) O volume do sólido S que é delimitado pelo con
e $z=\sqrt{x^2+y^2}$ e abaixo da esféra $x^2+y^2+z^2=2$
- 2. Reescreva as integrais abaixo em coordenadas cilíndricas e calcule:

(a)
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} x^2 + y^2 dz dx dy$$

(b)
$$\int_{0}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0\sqrt{x^2+y^2}}^{\sqrt{10-x^2+y^2}} xydzdxdy$$