Седьмое домашнее задание: DP СПБ, Академический Университет, 14 октября 2014

Содержание

За	дачи.		2
1	Задача А.	Очередь [0.5 секунд, 256 mb]	2
2	Задача В.	Joseph Problem [0.5 секунд, 256 mb]	3
3	Задача С.	Гвоздики [0.5 секунд, 256 mb]	4
4	Задача D.	Плохая подстрока [0.5 секунд, 256 mb]	5
5	Задача Е.	Поле [0.5 секунд, 256 mb]	6
6	Задача F.	Рюкзак [0.5 секунд, 256 mb]	7
7	Задача G .	Шаблоны [1 секунда, 16 mb]	8
8	Задача Н.	Функция [0.5 секунд, 256 mb]	9
9	Задача I.	Котята с пирожками [0.5 секунд, 256 mb]	10
10	Задача J.	Longpath. Длиннейший путь [0.5 секунд, 256 mb]	11
Бо	онус		12
11	Задача К.	Почтовые отделения [1 секунда, 256 mb]	12
12	Задача L.	Идеальный путь [1 секунда, 256 mb]	13
13	Задача М.	Психотренинг [0.5 секунд, 256 mb]	14

В некоторых задачах большой ввод и вывод. Имеет смысл пользоваться супер быстрым вводом-выводом: http://acm.math.spbu.ru/~sk1/algo/input-output/

Задачи

1 Задача А. Очередь [0.5 секунд, 256 mb]

В очереди в магазин стоят люди. Человек i хочет купить товар a_i . Изначально в магазине ничего нет. Происходят события следующих типов:

- 1. В момент времени T поступил один экземпляр товара A.
- 2. В момент времени T в конец очереди встал человек, который хочет купить товар A.

Нужно промоделировать процесс и для каждого человека определить, сколько он будет стоять в очереди. Замечание: как только первый в очереди может купить то, что хочет, он сразу мгновенно покупает и уходит.

Формат входных данных

Число событий $N,~1\leqslant N\leqslant 10\,000$. Далее события в порядке возрастания времени T. Каждое событие описывается так: Type~T~A,~где Type~-тип события. $1\leqslant A\leqslant 10\,000,~$ $1\leqslant T\leqslant 60\,000$

Формат выходных данных

Для каждого человека (в том порядке, в котором люди вставали в очередь) выведите, сколько человек простоял в очереди. Если он так и остался стоять, выведите -1.

queue.in	queue.out
9	20 40 20 0 -1
2 10 1	
2 20 1	
1 30 1	
2 40 2	
1 50 2	
1 60 1	
1 70 3	
2 80 3	
2 90 1	

2 Задача В. Joseph Problem [0.5 секунд, 256 mb]

N мальчиков стоят по кругу. Они начинают считать себя по часовой стрелке, счет ведется с единицы. Как только количество посчитанных достигает p, последний посчитанный (p-й) мальчик покидает круг, а процесс счета начинается со следующего за ним мальчика и вновь ведется с единицы.

Последний оставшийся в кругу выигрывает.

Можете ли вы посчитать, номер выигрывшего мальчика в исходном кругу? (мальчики нумеруются числами от 1 до N по часовой стрелке, начиная с того самого мальчика, с которого начинался счет).

Формат входных данных

Во входном файле два целых числа — N и P ($1 \leq N, P \leq 10^6$).

Формат выходных данных

Выведите номер выигрывшего мальчика.

joseph.in	joseph.out
3 4	2

Задача С. Гвоздики [0.5 секунд, 256 mb]

На прямой дощечке вбиты гвоздики. Любые два гвоздика можно соединить ниточкой. Требуется соединить какие-то пары гвоздиков ниточками так, чтобы к каждому гвоздику была привязана хотя бы одна ниточка, а суммарная длина всех ниточек была минимальна.

Формат входных данных

В первой строке входного файла записано число N — количество гвоздиков ($2 \le N \le 100$). В следующей строке записано N чисел — координаты всех гвоздиков (неотрицательные целые числа, не превосходящие $10\,000$).

Формат выходных данных

В выходной файл нужно вывести единственное число — минимальную суммарную длину всех ниточек.

nails.in	nails.out
5	6
4 10 0 12 2	

4 Задача D. Плохая подстрока [0.5 секунд, 256 mb]

Найдите, сколько существует строк заданной длины n, состоящих только из символов 'a', 'b' и 'c', и не содержащих подстроки "ab".

Формат входных данных

Во входном файле задано n ($0 \le n \le 22$).

Формат выходных данных

Выведите количество таких строк.

badsubs.in	badsubs.out
0	1
3	21
11	46368

5 Задача Е. Поле [0.5 секунд, 256 mb]

Отряду нужно пересечь прямоугольное поле размера $m \times n$ квадратов, двигаясь из левого верхнего угла в правый нижний и перемещаясь между соседними квадратами только в двух направлениях—вправо и вниз. Поле не очень ровное, но у отряда есть карта, на которой отмечена высота каждого квадрата. Опасность перехода с квадрата высоты h_1 на соседний квадрат высоты h_2 оценивается числом $|h_2 - h_1|$; опасность всех переходов в пути суммируется. Выясните, какова минимальная опасность пути из квадрата (1, 1) в квадрат (m, n).

Формат входных данных

В первой строке входного файла заданы два числа m и n через пробел $(1 \le m, n \le 100)$. В следующих n строках записано по m чисел в каждой; i-ое число j-ой из этих строк соответствует высоте квадрата (i,j). Все высоты — целые числа в диапазоне от 1 до 100, включительно.

Формат выходных данных

Выведите в выходной файл одно число — минимальную опасность пути из квадрата (1, 1) в квадрат (m, n).

field.in	field.out
2 2	0
1 1	
1 1	
4 2	6
1 2 3 5	
3 8 4 7	
2 3	4
1 2	
2 3	
3 1	

6 Задача F. Рюкзак [0.5 секунд, 256 mb]

Найдите максимальный вес золота, который можно унести в рюкзаке вместительностью S, если есть N золотых слитков с заданными весами.

Формат входных данных

В первой строке входного файла запианы два числа — S и N (1 \leqslant S \leqslant 10 000, 1 \leqslant N \leqslant 300).

Далее следует N неотрицательных целых чисел, не превосходящих $100\,000$ — веса слитков.

Формат выходных данных

Выведите искомый максимальный вес.

knapsack.in	knapsack.out
10 3	9
1 4 8	
20 4	19
5 7 12 18	

7 Задача G. Шаблоны [1 секунда, 16 mb]

Многие операционные системы используют шаблоны для ссылки на группы объектов: файлов, пользователей, и т. д. Ваша задача — реализовать простейший алгоритм проверки шаблонов для имен файлов.

В этой задаче алфавит состоит из маленьких букв английского алфавита и точки ('.'). Шаблоны могут содержать произвольные символы алфавита, а также два специальных символа: '?' и '*'. Знак вопроса ('?') соответствует ровно одному произвольному символу. Звездочка '*' соответствует подстроке произвольной длины (возможно, нулевой). Символы алфавита, встречающиеся в шаблоне, отображаются на ровно один такой же символ в проверяемой строчке. Строка считается подходящей под шаблон, если символы шаблона можно последовательно отобразить на символы строки таким образом, как описано выше. Например, строчки "ab", "aab" и "beda. подходят под шаблон "*a?", а строчки "bebe", "a" и "ba" — нет.

Формат входных данных

Первая строка входного файла определяет шаблон P. Вторая строка S состоит только из символов алфавита. Ее необходимо проверить на соответствие шаблону. Длины обеих строк не превосходят $10\,000$. Строки могут быть пустыми — будьте внимательны!

Формат выходных данных

Если данная строка подходит под шаблон, выведите YES. Иначе выведите NO.

patterns.in	patterns.out
k?t*n	YES
kitten	
k?t?n	NO
kitten	

8 Задача Н. Функция [0.5 секунд, 256 mb]

Вычислите функцию:
$$f(n) = \begin{cases} 1 & \text{если } n \leqslant 2 \\ f(\lfloor 6*n/7 \rfloor) + f(\lfloor 2*n/3 \rfloor) & \text{если } n \bmod 2 = 1 \\ f(n-1) + f(n-3) & \text{если } n \bmod 2 = 0 \end{cases}$$

Формат входных данных

Входные данные содержат натуральное число $n\ (1\leqslant n\leqslant 10^{12}).$

Формат выходных данных

Выведите значение функции по модулю 2^{32} .

function.in	function.out
7	10

9 Задача І. Котята с пирожками [0.5 секунд, 256 mb]

Однажды n котят решили покушать пирожков. Однако котят много, поэтому им непросто выбрать начинку, которая всех порадует. Известно, что группа из не более чем k котят всегда может прийти к консенсусу, а вот большая группа обязательно разобъётся на две, принципиально несогласные друг с другом. Котята — существа справедливые, поэтому размеры этих групп будут отличаться не более чем на один.

 Γ руппы, размер которых всё ещё окажется больше k после такого разделения, продолжат спорить и разделяться на меньшие по тому же принципу. Определите, сколько групп котят в итоге отправятся за пирожками.

Формат входных данных

В единственной строке входного файла записаны целые числа n и k — количество котят и критический размер группы, соответственно $(1 \le n, k \le 10^{18})$. Числа записаны без ведущих нулей.

Формат выходных данных

Выведите единственное целое число—итоговое количество групп. Число должно быть также записано без ведущих нулей.

kittens.in	kittens.out
17 4	5

10 Задача J. Longpath. Длиннейший путь [0.5 секунд, 256 mb]

Дан ориентированный граф без циклов. Требуется найти в нем длиннейший путь.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и дуг графа соответственно. Следующие m строк содержат описания дуг по одной на строке. Ребро номер i описывается двумя натуральными числами b_i и e_i — началом и концом дуги соответственно $(1 \leq b_i, e_i \leq n)$.

Входной граф не содержит циклов и петель.

 $n \le 10\,000, m \le 100\,000.$

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число — количество дуг в длиннейшем пути.

longpath.in	longpath.out
5 5	3
1 2	
2 3	
3 4	
3 5	
1 5	

Бонус

11 Задача К. Почтовые отделения [1 секунда, 256 mb]

Вдоль прямой дороги расположены деревни. Дорога представляется целочисленной осью, а расположение каждой деревни задается одним целым числом — координатой на этой оси. Никакие две деревни не имеют одинаковых координат. Расстояние между двумя деревнями вычисляется как модуль разности их координат.

В некоторых, не обязательно во всех, деревнях будут построены почтовые отделения. Деревня и расположенное в ней почтовое отделение имеют одинаковые координаты. Почтовые отделения необходимо расположить в деревнях таким образом, чтобы общая сумма расстояний от каждой деревни до ближайшего к ней почтового отделения была минимальной.

Формат входных данных

В первой строке содержатся два целых числа: количество деревень n ($1 \le n \le 300$) и количество почтовых отделений m ($1 \le m \le 30$), $m \le n$. Вторая строка содержит n целых чисел в возрастающем порядке, являющихся координатами деревень. Для каждой координаты x верно $1 \le x \le 10^4$.

Формат выходных данных

Первая строка выходного файла должна содержать одно целое число — общую сумму расстояний от каждой деревни до её ближайшего почтового отделения. Вторая строка должна содержать m целых чисел в возрастающем порядке. Эти числа являются искомыми координатами почтовых отделений. Если для заданного расположения деревень есть несколько решений, необходимо найти любое из них.

post.in	post.out
10 5	9
1 2 3 6 7 9 11 22 44 50	2 7 22 44 50

12 Задача L. Идеальный путь [1 секунда, 256 mb]

Есть лабиринт развлечений из n комнат и m цветных переходов между комнатами. Участник изначально попадает в комнату 1, цель — добраться до комнаты n. Несколько участников одновременно стартуют из комнаты 1. Каждый участник пройдет некоторым путем из комнаты 1 в комнату n, записывая цвета переходов, по которым прошел. Выиграет участник с кратчайшей последовательностью, а если таких несколько, с лексикографически меньшей среди кратчайших. Эндрю тоже участвует и очень хочеть выиграть. Помогите ему, найдите кратчайшую, а из таких лексикографически минимальную последовательность переходов из 1 в n.

Замечание

Последовательность (a_1, a_2, \ldots, a_k) лексикографически меньше последовательности (b_1, b_2, \ldots, b_k) если существует i такое, что $a_i < b_i$ и $a_j = b_j$ для всех j < i.

Формат входных данных

Первая строка содержит целые числа n и m — количество комнат и переходов соответственно ($2 \le n \le 100\,000$, $1 \le m \le 200\,000$). Следующие m строк содержат описания переходов. Каждый переход задается тремя целыми числами: a_i , b_i и c_i — номера комнат, которые он соединяет, и цвет перехода ($1 \le a_i, b_i \le n, 1 \le c_i \le 10^9$). Каждый переход может быть использован в обоих направлениях. Две комнаты могут быть соединены несколькими переходами, также может быть переход из комнаты в саму себя. Гарантируется, что из комнаты 1 можно как-нибудь попасть в комнату n.

Формат выходных данных

На первой строке выведите k — длину кратчайшей последовательности переходов из комнаты 1 в комнату n. На следующей строке k чисел — цвета переходов в порядке их прохождения.

ideal.in	ideal.out
4 6	2
1 2 1	1 3
1 3 2	
3 4 3	
2 3 1	
2 4 4	
3 1 1	

13 Задача М. Психотренинг [0.5 секунд, 256 mb]

На очередном психологическом тренинге n участников сборов играют в занимательную игру. Участники игры рассаживаются по кругу и получают номера от 1 до n против часовой стрелки. После этого главный психолог отсчитывает против часовой стрелки k-го участника игры, начиная с первого. Этот участник выходит из круга и может идти на ужин. А остальные продолжают участие в тренинге. Главный психолог отсчитывает еще k участников, начиная со следующего после выбывшего. Участник, который оказался k-ым, тоже покидает тренинг, и так далее.

Участники сборов решили сесть в круг таким образом, чтобы один вредный тип пошел ужинать последним. Для этого они хотят установить, какой номер он должен для этого получить. Помогите им.

Формат входных данных

Входной файл содержит два целых числа: n и k ($1 \le n \le 10^{18}$, $1 \le k \le 1000$).

Формат выходных данных

Выведите в выходной файл одно число — номер участника, который пойдет на ужин последним.

psyche.in	psyche.out
5 3	4