Extracting { structure }

What ways do we think about numbers?

$$v = \sum_{n=0}^{k} a_n b^n = a_0 b^0 + a_1 b^1 + \dots + a_n b^n + \dots + a_k b^k$$

$$b \ge 2, \quad 0 \le a_n < b$$

What other ways could we think about numbers?

$$v = integer\langle k \rangle = \{ p_0, p_1, p_2, \dots, p_k \}$$

$\mathbb{Z}^+(v)$	$\mathbb{Z}_{new}^+(v)$
0	Ø
1	{0}
2	{1}
3	{0,1}
4	{2}
45	{0,2,1}

$$v = \pm integer\langle k \rangle = \{0/1 \in p_{-1}, p_0, p_1, p_2, \dots, p_k \}$$

$$v = \frac{p}{q} \ni (p,q) \in \mathbb{Z} \land gcd(p,q) \equiv 1$$

$$v = rational\langle k \rangle = \{ \pm p_{-1}, \pm p_0, \pm p_1, \pm p_2, \dots, \pm p_k \}$$

$\mathbb{R}^{\pm}(v)$	$\mathbb{R}_{new}^{\pm}(v)$
1/2	{0, -1}
1/3	{0,0, -1}
1/4	$\{0, -2, 0\}$
1/5	{0,0,0,-1}
-5/7	{1,0,0,1, -1}
11/5	$\{0,0,0,-1,0,1\}$

$$v = complex \langle k \rangle = \{ r_{-1}, r_0, r_1, r_2, \dots, r_k \}$$

$\mathbb{C}(v)$	$\mathbb{C}_{new}(v)$
$\sqrt{2}$	$\{\{0\},\{0,-1\}\}$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	$\{\{0\},\{0,-1\},\{0,0,-1\}\}$
³ /7.5	$\{\{0\},\{1,0,-1\},\{0,0,-1\},\{0,0,-1\}\}$
i	{{1}}
$\sqrt{-6}$	{{1}},{0,-1},{0,0,-1}}
$\sqrt{2}\sqrt{2}$	{{0}, {0,{0, -1}}}

STATE STATES

We can keep going, but there is an issue!

How can we decouple it?

How could we represent it better?

How could we compute it?

```
class Atomic {
  public:
  Atomic() : atoms({}) {}
  Atomic(const std::initializer_list<Atomic> & Γ) : atoms {Γ} {}
  Atomic (const Atomic & \zeta) = default;
  friend Atomic operator*(const Atomic & \alpha, const Atomic & \beta) {
       if (!\alpha.atoms.size()) return \beta;
       if (!\beta.atoms.size()) return \alpha;
       if (!α.atoms.size() && !β.atoms.size()) return {};
       Atomic µ;
       \mu.atoms.resize(std::max(\alpha.atoms.size(), \beta.atoms.size()));
       for (int element = 0; element < \mu.atoms.size(); element++) {
           \mu.atoms[element] = (element < \alpha.atoms.size() ? \alpha.atoms[element] : Atomic {{}}) *
                                 (element < \beta.atoms.size() ? \beta.atoms[element] : Atomic \{\{\}\}\});
       return µ;
  private:
       std::vector<Atomic> atoms;
```


How about leveraging temporary defeat?

friend Atomic operator+(const Atomic & α , const Atomic & β);

We're further than we started!

Where else can we go?

