▼ LOGISTIC REGRESSION

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
digits= load_digits()
X=digits.data
X.shape
     (1797, 64)
y=digits.target
y.shape
    (1797,)
plt.figure(figsize=(20,4))
for index, (image,label) in enumerate(zip(digits.data[0:5],digits.target[0:5])):
     plt.subplot(1,5,index+1)
     plt.imshow(np.reshape(image, (8,8)),cmap=plt.cm.gray)
     plt.title(label,fontsize=20)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.2, random_state=0)
df= sns.load_dataset("iris")
df.head()
```

	sepal_length	sepal_width	petal_length	petal_width	species	7	Ilı
0	5.1	3.5	1.4	0.2	setosa		
1	4.9	3.0	1.4	0.2	setosa		
2	4.7	3.2	1.3	0.2	setosa		
3	4.6	3.1	1.5	0.2	setosa		

X=df.iloc[:,:1]
y=df.iloc[:,1:]

Colab paid products - Cancel contracts here

① 0s completed at 7:02 PM

×