Gaussian Elimination & LU Decompositions

Square System of Equations

Consider

$$Ax = b$$

where

$$A = [a_{ij}] \longleftarrow n \times n \text{ matrix}$$

$$b \leftarrow n \times 1$$
 vector.

In expanded form,

$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + \cdots + a_{2n}x_n = b_2$
 \vdots
 $a_{n1}x_1 + \cdots + a_{nn}x_n = b_n$

Gaussian Elimination

Carl Friedrich Gauss (1777-1855)

A Summary of the Evolution of Gaussian Elimination

Gaussian Elimination With No Pivoting (GENP)

$$A \longrightarrow A^{(1)} \longrightarrow \cdots \longrightarrow A^{(n-1)} =: U$$
 (upper triangular). $b \longrightarrow b^{(1)} \longrightarrow \cdots \longrightarrow b^{(n-1)}$.

Gaussian Elimination With No Pivoting (GENP)

$$A \longrightarrow A^{(1)} \longrightarrow \cdots \longrightarrow A^{(n-1)} =: U$$
 (upper triangular). $b \longrightarrow b^{(1)} \longrightarrow \cdots \longrightarrow b^{(n-1)}$.

Step 1: Create zeros in the first column of A:

$$A \longrightarrow \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} \end{bmatrix}}_{=:A^{(1)}}; b \longrightarrow \underbrace{\begin{bmatrix} b_1 \\ b_2^{(1)} \\ \vdots \\ b_n^{(1)} \end{bmatrix}}_{=:b^{(1)}}$$

where

$$a_{ij}^{(1)} = a_{ij} - \underbrace{\frac{a_{i1}}{a_{11}}}_{=:m:} a_{1j}; \quad b_i^{(1)} = b_i - \frac{a_{i1}}{a_{11}} b_1; \quad i = 2:n, j = 2:n.$$

Here $a_{11} \leftarrow$ pivot (assumed non zero); $m_{i1} \leftarrow$ multipliers;

Step k: Create zeros in column k of $A^{(k-1)}$:

The same operations are performed on $b^{(k-1)}$:

$$b^{(k-1)} \longrightarrow \left[egin{array}{c} b_1 \ b_2^{(1)} \ dots \ b_k^{(k-1)} \ b_{k+1}^{(k)} \ dots \ b_n^{(k)} \end{array}
ight] =: b^{(k)}$$

where for i = k + 1 : n, j = k + 1 : n,

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \underbrace{\frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}}_{=:m_{ik}} a_{kj}^{(k-1)}; \quad b_{i}^{(k)} = b_{i}^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} b_{k}^{(k-1)};$$

Here $a_{kk}^{(k-1)} \leftarrow$ pivot (assumed non zero); $m_{ik} \leftarrow$ multipliers;

Step n-1: Create a zero in the (n, n-1) of $A^{(n-2)}$:

$$A^{(n-2)} \longrightarrow egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ & & \ddots & \vdots \\ & & a_{nn}^{(n-1)} \end{bmatrix}; \ b^{(n-2)} \longrightarrow b^{(n-1)};$$
 $=:A^{(n-1)} \ (also \ called \ U)$

where assuming pivot $a_{n-1,n-1}^{(n-2)} \neq 0$ and using multiplier

$$m_{n,n-1} := \frac{a_{n,n-1}^{(n-2)}}{a_{n-1,n-1}^{(n-2)}},$$

$$a_{nn}^{(n-1)} = a_{nn}^{(n-2)} - m_{n,n-1}a_{n-1,n}^{(n-2)}; \quad b_n^{(n-1)} = b_n^{(n-2)} - m_{n,n-1}b_{n-1}^{(n-2)}.$$

Step n-1: Create a zero in the (n, n-1) of $A^{(n-2)}$:

$$A^{(n-2)} \longrightarrow egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \ & & \ddots & \vdots \ & & & \vdots \ & & & \vdots \ & & & & \vdots \ \end{pmatrix}; \ b^{(n-2)} \longrightarrow b^{(n-1)};$$
 $=:A^{(n-1)} \ (also \ called \ U)$

where assuming pivot $a_{n-1,n-1}^{(n-2)} \neq 0$ and using multiplier

$$\begin{split} m_{n,n-1} &:= \frac{a_{n,n-1}^{(n-2)}}{a_{n-1,n-1}^{(n-2)}}, \\ a_{nn}^{(n-1)} &= a_{nn}^{(n-2)} - m_{n,n-1} a_{n-1,n}^{(n-2)}; \quad b_n^{(n-1)} = b_n^{(n-2)} - m_{n,n-1} b_{n-1}^{(n-2)}. \end{split}$$

- ▶ The system is transformed to $Ux = b^{(n-1)}$.
- ▶ The pivots at each step are on the diagonal of *U*!
- ► All steps have to be repeated to solve any new system Ax = c if the multipliers used in the GENP are not saved.

Let

```
L = \begin{bmatrix} 1 & & & & & & & & & & & & \\ m_{21} & 1 & & & & & & & & & \\ m_{31} & m_{32} & \ddots & & & & & & & \\ \vdots & \vdots & & \ddots & & & & & & & \\ m_{k1} & m_{k2} & \cdots & \cdots & 1 & & & & \\ m_{k+1,1} & m_{k+1,2} & \cdots & \cdots & m_{k+1,k} & \ddots & & \\ \vdots & \vdots & & & \vdots & & \vdots & & 1 & \\ m_{n1} & m_{n2} & \cdots & \cdots & m_{nk} & \cdots & m_{n,n-1} & 1 \end{bmatrix}.
```

Let

Then A = LU!

LU **decomposition:** A square matrix A is said to have an LU decomposition if there exists a unit lower triangular matrix L and an upper triangular matrix U such that A = LU.

Let

$$L = \begin{bmatrix} 1 & & & & & & & & & & & & \\ m_{21} & 1 & & & & & & & & & \\ m_{31} & m_{32} & \ddots & & & & & & \\ \vdots & \vdots & & \ddots & & & & & & \\ m_{k1} & m_{k2} & \cdots & \cdots & 1 & & & & \\ m_{k+1,1} & m_{k+1,2} & \cdots & \cdots & m_{k+1,k} & \ddots & & \\ \vdots & \vdots & & & \vdots & & \vdots & & 1 \\ m_{n1} & m_{n2} & \cdots & \cdots & m_{nk} & \cdots & m_{n,n-1} & 1 \end{bmatrix}.$$

Then A = LU! This needs a proof!

LU **decomposition:** A square matrix A is said to have an LU decomposition if there exists a unit lower triangular matrix L and an upper triangular matrix U such that A = LU.

Proof: In step *k* of GENP

$$A^{(k)} = \underbrace{\begin{bmatrix} 1 & & & & & \\ 0 & \ddots & & & & \\ \vdots & \cdots & 1 & & & \\ 0 & & -m_{k+1,k} & \ddots & & \\ \vdots & & \vdots & & \ddots & \\ 0 & \cdots & -m_{nk} & \cdots & 1 \end{bmatrix}}_{=:M_k} A^{(k-1)}$$

Then

$$U = A^{(n-1)} = M_{n-1}M_{n-2}\cdots M_{k}\cdots M_{2}M_{1}A$$

where M_k , k = 1, ..., n-1 are the *multiplier* matrices or *Gauss transforms* of Gaussian Elimination.

Exercise: $b^{(n-1)} = M_{n-1}M_{n-2}\cdots M_1b$.

Note that,

$$U = A^{(n-1)} = M_{n-1} \underbrace{\left(M_{n-2} \cdots \underbrace{\left(M_{k} \cdots \underbrace{\left(M_{2} \underbrace{\left(M_{1} A\right)}_{=A^{(1)}}\right)}\right)}_{=A^{(n-2)}}\right)}_{=A^{(n-2)}}$$

and

$$M_k = I_n - \begin{vmatrix} 0 \\ \vdots \\ 0 \\ m_{k+1,k} \\ \vdots \end{vmatrix} e_k^T, \quad k = 1: n-1,$$

Observe that

$$M_k^{-1} = I_n + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ m_{k+1,k} \\ \vdots \\ m_{kn} \end{bmatrix} e_k^T, \quad k = 1: n-1, \text{ (Prove this!)}$$

 $\blacktriangleright \text{ For } i_1 < \dots < i_p,$

$$M_{i_1}^{-1}\cdots M_{i_p}^{-1}=I_n+\sum_{i=i_1}^{i_p}\left|egin{array}{c} \vdots \\ 0 \\ m_{i+1,i} \\ \vdots \\ m_{r} \end{array}
ight|e_i^T, ext{ (Prove this!)}$$

So $U = M_{n-1}M_{n-2}\cdots M_2M_1A$ implies,

$$A = M_1^{-1} M_2^{-1} \cdots M_{n-1}^{-1} U = \begin{pmatrix} I_n + \sum_{k=1}^{n-1} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ m_{k+1,k} \\ \vdots \\ m_{nk} \end{pmatrix} e_k^T \end{pmatrix} U$$