Lösung Übung DSL Ü3 Semester 1

Paul Wolf

November 23, 2019

Contents

1	A 1	
2	A 2	
3	А3	
	3.1	a) \dots
	3.2	b)
	3.3	c) $(A \triangle B) \cap C = (A \cap C) \triangle (B \cap C) \dots \dots \dots \dots \dots \dots \dots$
		3.3.1 i
		3.3.2 ii
		3.3.3 i
		3.3.4 ii

1 A1

$$X_k = \{1, \dots, k\}$$

$$X_5 \setminus X_4 \cup X_3 \setminus X_2 \cup X_1 = \{1, 3, 5\}$$

$$X_6\setminus X_5\cup X_4\setminus X_3\cup X_2\cup X_1=\{2,4,6\}$$

$$X_n \setminus X_n - 1 \cup X_2 \setminus X_1 = \{4, \dots, n\}$$

2 A2

$$O_z = \varnothing \ n_z' = n_z \cup \{n_z\}$$

Behauptung:

$$n_z \subseteq 2_z^n$$

Beweis:

Ja: $O_z \subseteq 2_z^0 \varnothing \subseteq 2_z^\varnothing$

$$\{1\} \not\subseteq 2^{\{1}\} = \{\varnothing, \{1\}\}$$

IV:

 $n_z \subset 2^{n_z}$

IB:

 $n_z' \subseteq 2^{n_z}$

IS:

$$n'_z = n_z \cup \{n_z\} z \subseteq 2^{n_z} \cup \{n_z\} \subseteq 2^{n_z} \cup \{n_z\} = 2^{n'_z}$$

3 A3

3.1 a)

$$(A \mid B) = A \setminus (A \cap \overline{B}) = A \cap \overline{A \cap B} = A \cap (\overline{A} \cup \overline{B}) = A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B) = \emptyset \cup (A \cap B) = A \cap B$$

3.2 b)

$$(A \cap B) \setminus (A \cap B) = A \cap B \cap (\overline{A \cap C}) = A \cap B \cap (\overline{A} \cap \overline{C}) = (A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C})$$
$$(A \cap B) \cap \overline{C} = (A \cap B) \setminus C$$

3.3 c) $(A\triangle B)\cap C=(A\cap C)\triangle(B\cap C)$

" \subseteq " Sei $x \in A \triangle B \cap C$, d.h. $x \in A \triangle B$ und $x \in C$ zwei Fälle für $x \in A \triangle B$

3.3.1 i

 $x \in A \setminus B, x \in C \Rightarrow x \in A, x \not\subset B, x \in C \Rightarrow x \in A \cap C, x \not\subset B \Rightarrow x \in (A \cap C) \setminus B \Rightarrow x \in (A \cap B) \setminus (B \cap C) \subseteq (A \cap C) \triangle (B \cap C)$

3.3.2 ii

 $x \in B \setminus A, x \in C$ Analog wie i) folgt $x \in (B \cap C) \triangle (A \cap C)$ Also $x \in (A \cap C) \triangle (B \cap C)$ da man Operanten für "A" vertauschen darf $\curvearrowright (A \triangle B) \cap C \subseteq (A \cap C) \triangle (B \cap C)$

" \supseteq " Sei $x \in (A \cup C) \triangle (B \cup C)$ d.h.

3.3.3 i

 $x\in A\cap C, x\not\subset B\cap C\Rightarrow x\in A, x\in C$ Außerdem folgl
t $x\not\subset B,$ da andernfalls $x\not\subset C$ mit
 $A_nx\not\subset B\cap C\Rightarrow x\in A\setminus B\cap C\subseteq (A\triangle B)\cap C$

3.3.4 ii

 $x\in B\cap C, x\not\subset A\cap C$ Analog zu Fall i) folgt $x\in (B\triangle A)\cap C\Rightarrow x\in (A\triangle B)\cap C$ wie vorher auch. $\frown (A\cap C)\triangle (A\cap B)\subseteq A\triangle B\cap C$