

Лекция 2

Координаты в аффинном пространстве

Содержание лекции:

В настоящей лекции мы вводим в аффинное пространство координаты. Репер, или система координат может быть введена непосредственно применением векторизации аффинного пространства, однако есть более естественный способ это сделать.

Ключевые слова:

Система координат, барицентрическая комбинация, центр тяжести, аффинная независимость, барицентрические координаты.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

2.1 Координаты в аффинном пространстве

Системой координат в аффинном пространстве $\mathbb{A}_{\mathbb{k}}$ называется пара $C_O = \left(O, \{\vec{e}_j\}_{j=1}^n\right)$, состоящая из произвольно выбранной точки $O \in \mathbb{S}$ и произвольно выбранного базиса $\{\vec{e}_j\}_{j=1}^n$ пространства \mathbb{V} .

 $Nota\ bene$ При векторизации ${\rm vect}_O$ пространства относительно точки O координатами точки P будет набор $\{\xi^j\}_{i=1}^n,$ такой что

$$P \to \text{vect}_O(P) = \overrightarrow{OP} = \sum_{i=1}^n \xi^j \vec{e_j}.$$

Nota bene Пусть $\{\xi^j\}_{j=1}^n$ - координаты точек P в системе координат C_O и $\{\eta^j\}_{j=1}^n$ - координаты точки Q в той же системе. Тогда из соотношения

$$\overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{v},$$

следует выражение для координат вектора \vec{v} :

$$\vec{v} = \sum_{j=1}^{n} \left(\eta^j - \xi^j \right) \vec{e}_j.$$

2.2 Барицентрическая комбинация

Барицентрической линейной комбинацией точек $\{P_i\}_{i=0}^m \in \mathbb{A}_{\Bbbk}$ аффинного пространства \mathbb{A}_{\Bbbk} называется выражение вида

$$\sum_{i=0}^{m} \alpha^{i} P_{i}, \quad \text{где} \quad \sum_{i=0}^{m} \alpha^{i} = 1 \quad \alpha^{i} \in \mathbb{k}.$$

Nota bene При векторизации vect_O аффинного пространства барицентрическая линейная комбинация задает точку $Q \in \mathbb{S}$, чей радиус-вектор равен

$$\overrightarrow{OQ} = \sum_{i=0}^{m} \alpha^{i} \overrightarrow{OP_{i}}$$

Лемма 2.1. Точка Q - результат барицентрической линейной комбинации точек $\{P_i\}_{i=0}^m$ - определена корректно.

Пусть O' - другая точка, тогда

$$\overrightarrow{O'Q} = \overrightarrow{O'O} + \overrightarrow{OQ} = \overrightarrow{O'O} + \sum_{i=1}^{k} \alpha^i \overrightarrow{OP_i} = \sum_{i=1}^{k} \alpha^i \left(\overrightarrow{O'O} + \overrightarrow{OP_i} \right) = \sum_{i=1}^{k} \alpha^i \overrightarrow{O'P_i},$$

где было использовано свойство $\sum_{i=0}^{m} \alpha^i = 1$.

•

Пример 2.1. Центр тяжести системы точек $\{P_0, P_1, \dots P_m\}$:

$$center(P_0, P_1, \dots, P_m) = \frac{1}{m+1} (P_0 + P_1 + \dots + P_m).$$

Nota bene Барицентрическая комбинация $\lambda P + \mu Q$ двух точек P и Q есть точка R, лежащая на прямой PQ, и обладающая свойством

$$\overrightarrow{PR} = \frac{\mu}{\lambda} \overrightarrow{RQ}.$$

Лемма 2.2. Непустое множество $\mathbb{P}_{\mathbb{k}} \subset \mathbb{A}_{\mathbb{k}}$ является плоскостью тогда и только тогда, когда вместе с любыми двумя различными точками оно содержит проходящую через них прямую.

← Утверждение очевидно.

 \Rightarrow Пусть $\mathbb{P}_{\mathbb{k}}$ обладает указанным свойством и $P_0 \in \mathbb{P}_{\mathbb{k}}$. Покажем, что множество

$$\mathbb{U} = \{ \vec{u} \in \mathbb{U} : \quad P_0 + u \in \mathbb{P}_{\mathbb{k}} \} \subset \mathbb{V},$$

является подпространством. Ясно, что $0 \in \mathbb{U}$ и если $\vec{u} \in \mathbb{U}$, а $\lambda \in \mathbb{k}$, то $P_0 + \lambda \vec{u}$ лежит на прямой, проходящей через точки P_0 и $P_0 + \vec{u}$. Следовательно $\lambda \vec{u} \in \mathbb{U}$. Пусть теперь $\vec{u}_1, \vec{u}_2 \in \mathbb{U}$ и $\lambda \in \mathbb{k}$, так что $\lambda \notin \{0,1\}$, тогда точка $P = P_0 + \vec{u}_1 + \vec{u}_2$ лежит на прямой, проходящей через точки

$$P_1 = P_0 + \lambda \vec{u}_1 \in \mathbb{P}_k, \quad P_2 = P_0 + \frac{\lambda}{\lambda - 1} \vec{u}_2 \in \mathbb{P}_k,$$

а именно:

$$P = \frac{1}{\lambda} P_1 + \frac{\lambda - 1}{\lambda} P_2 \quad \Rightarrow \quad P \in \mathbb{P}_k.$$

Аффинная независимость

Система точек $\{P_i\}_{i=0}^m$ называется **аффинно-независимой**, если никакую из этих точек нельзя представить в виде барицентрической линейной комбинации остальных.

Лемма 2.3. Система точек $\{P_i\}_{i=0}^m$ аффинно-независима тогда и только тогда, когда система векторов $\left\{\overline{P_0P_i}\right\}_{i=1}^k$ линейно-независима.

 \leftarrow Предположим, что $\{P_i\}_{i=0}^m$ - аффинно-зависима и

$$P_0 = \sum_{i=1}^{m} \alpha^i P_i, \quad \sum_{i=1}^{m} \alpha^i = 1,$$

тогда векторизация относительно точки P_0 дает

$$\vec{0} = \overrightarrow{P_0P_0} = \sum_{i=1}^m \alpha^i \overrightarrow{P_0P_i}, \quad \sum_{i=1}^m \alpha^i = 1,$$

и значит система векторов $\left\{\overrightarrow{P_0P_i}\right\}_{i=1}^k$ линейнозависима.

⇒ Предположим, что

$$\sum_{i=1}^{m} \alpha^i \overrightarrow{P_0 P_i} = \vec{0}.$$

Возможны два случая:

• $\sum_{i=1}^m \alpha^i \neq 0$, тогда без ограничения общности можно считать, что

$$\sum_{i=1}^{m} \alpha^{i} = 1 \quad \Rightarrow \quad P = \sum_{i=1}^{m} \alpha^{i} P_{i} \quad \Rightarrow \quad \overrightarrow{P_{0}P} = \sum_{i=1}^{m} \alpha^{i} \overrightarrow{P_{0}P_{i}} = \overrightarrow{0}, \quad \Rightarrow \quad P = P_{0}.$$

• $\sum_{i=1}^m \alpha^i = 0$, но $\alpha^1 \neq 0$, тогда используем соотношение:

$$\overrightarrow{P_0P_i} = -\overrightarrow{P_1P_0} + \overrightarrow{P_1P_i},$$

получаем линейную комбинацию

$$\alpha^0 \overrightarrow{P_1 P_0} + \sum_{i=2}^m \alpha^i \overrightarrow{P_1 P_i} = \vec{0},$$

в которой

$$\alpha^0 = -\sum_{i=1}^m \alpha^i = 0 \quad \Rightarrow \quad \alpha^0 + \sum_{i=2}^m \alpha^i = -\alpha^1 \neq 0,$$

и значит P_1 является барицентрической линейной комбинацией точек $\{P_0, P_2, \dots P_m\}$.

Барицентрические координаты

Теорема 2.1. Пусть dim $\mathbb{A}_{\mathbb{k}} = n$ и $\{P_i\}_{i=0}^n$ - аффинно-независимая система точек в $\mathbb{A}_{\mathbb{k}}$. Тогда каждая точка $Q \in \mathbb{A}_{\mathbb{k}}$ единственным образом представляется в виде

$$Q = \sum_{i=0}^{n} \xi^{i} P_{i}, \quad \sum_{i=0}^{n} \xi^{i} = 1.$$

Утверждение теоремы можно записть в виде

$$\overrightarrow{P_0Q} = \sum_{i=1}^n \xi^i \overrightarrow{P_0P_i}, \quad \xi^i \in \mathbb{k}.$$

Отсюда следует, что в качестве $\{\xi^i\}_{i=1}^n$ можно взять координаты вектора $\overrightarrow{P_0Q}$ в базисе $\{\overrightarrow{P_0P_i}\}_{i=1}^n$. После этого ξ^0 определяется равенством

$$\xi^0 = 1 - \sum_{i=1}^n \xi^i.$$

Совокупность чисел $\xi^0, \xi^1, \dots, \xi^k$ называется **барицентрическими координатами** точки $P \in \mathbb{A}_{\mathbb{k}}$ относительно системы точек $\{P_i\}_{i=0}^n$.