Topic 2: Functions

- understand the terms function, domain, range, one-one function, inverse function and composition of functions;
- identify the range of a given function in simple cases, and find the composition of two given functions:
- determine whether or not a given function is one-one, and find the inverse of a oneone function in simple cases;
- illustrate in graphical terms the relation between a one-one function and its inverse.

Domain, Codomain and Range

There are special name for **what can go into**, and **what can come out** of a function:

What can go into a function is called the **Domain**

What may possibly come out of a function is called the Codomain

What actually comes out of a function is called the Range

Definition of a Function

A function relates each element of a set with exactly one element of another set (possibly the same set).

Let us look at a simple example:

In this illustration:

- the set "A" is the Domain,
- the set "B" is the Codomain,
- and the set of elements that get pointed to in B (the actual values produced by the function) are the Range, also called the Image.

In that example:

• Domain: {1, 2, 3, 4}

• Codomain: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Domain

The **domain** of a function is the complete set of possible values of the independent variable in the function.

Range

The **range** of a function is the complete set of all possible **resulting values** of the dependent variable (*y*, usually) of a function, after we have substituted the domain values.

Example 1:

Find the domain and range for the function $f(x) = x^2 + 2$.

Example 2:

The function $y = \sqrt{x+4}$ has the following graph.

The **domain** of the function is $x \ge -4$, since x cannot take values less than -4.

Example 3:

Consider the following curve, $y = \sin x$.

The **domain** of the function $y = \sin x$ is "all values of x", since there are no restrictions on the values for x.

Example 4:

Find the domain and range function $f(t) = \frac{1}{t+2}$.

Example 5:

Find the domain and range for the function $f(x) = \sqrt{3-x}$.

Exercise 3A – Pure Mathematics 1(page 35) Question 7, 8, 9a),9b),9e) and 13

A Function has special rules:

- It must work for **every** possible input value
- And you can only have **one relationship** for each input value

This can be said in one definition:

A function relates **each element** of a set with **exactly one** element of another set.

The Two Important Things!

- 1. "...each element..." means that every element in **X** is related to some element in **Y**.
- 2. "...exactly one..." means that a function is *single/unique valued*. It will not give back 2 or more results for the same input.

If a relationship does not follow those two rules then it is **not a function** ... it would still be a relationship, just not a function.

Vertical Line Test

On a graph, the idea of **single/unique valued** means that no vertical line would ever cross more than one value. If it **crosses more than once** it is still a valid curve, but it would **not be a function**.

Example 6: Which one of the following is not a function?

A

D

Ε

F

Composition of Functions

"Function Composition" is applying one function to the results of another:

The result of f() is sent through g()

It is written: (g º f)(x)

Which means: g(f(x))

Symbol

The symbol for composition is a small circle: $(g \circ f)(x)$

Note:

- 1. f(x) can be written as f.
- 2. g[f(x)] = gf(x) = gf and usually $fg(x) \neq gf(x)$.
- 3. f[f(x)] can be written as ff or f^2 .
- 4. $f^4 = ffff = fff^2 = ff^3 = f^2f^2$.

Exercise 11A – Pure Mathematics 1(page 162) Question 10, 12, 15, 19 and 20.

Inverse Function

An inverse function goes in the opposite direction!

Symbol

The symbol for inverse is $f^{-1}(x)$.

The cool thing about the inverse is that it should give you back the original value:

If the function f turns the apple into a banana, Then the **inverse** function f⁻¹ turns the banana back to the apple.

So applying a function f and then its inverse f¹ gives us the original value back again:

$$f^{-1}(f(x)) = x$$

We could also have put the functions in the other order and it still works:

$$f(f^{-1}(x)) = x$$

Example 7:

The function: f(x) = 2x + 3

Solution (put "f⁻¹(y)" for "x"): $f^{-1}(y) = (y-3)/2$

Example 8:

Find the inverse of each of these functions.

a)
$$f(x) = \frac{2x+5}{3}$$

b)
$$f(x) = \frac{2x}{3} + 5$$

c)
$$f(x) = 2\left(\frac{x}{3} + 5\right)$$

d)
$$f(x) = \sqrt{x+4}, x \ge -4$$

$$f(x) = 3x^2 + 2, x > 0$$

f)
$$f(x) = \frac{1}{x}, x \ge 0$$

Find the inverse of each of these functions.

a)
$$f(x) = \frac{2x+5}{3}$$
 b) $f(x) = \frac{2x}{3} + 5$ c) $f(x) = 2\left(\frac{x}{3} + 5\right)$ d) $f(x) = \sqrt{x+4}, x \ge -4$ e) $f(x) = 3x^2 + 2, x > 0$ f) $f(x) = \frac{1}{x}, x \ge 0$ g) $f(x) = \frac{1}{1 - \frac{1}{x}}, x \ne 0, -1$ h) $f(x) = x^2 + 6x, x > -3$ i) $f(x) = 2 - 2x - x^2, x \ge -1$

h)
$$f(x) = x^2 + 6x, x > -3$$

7

i)
$$f(x) = 2 - 2x - x^2, x \ge -1$$

Self-Inverse Functions

When $f(x) = f^{-1}(x)$ the function, f(x) is said to be **self-inverse**.

Restricted Domain and One-to-One Functions

1. For an inverse function, $f^{-1}(x)$ to exist the function f(x) must be one-to-one.

2. For a many-to-one function, an inverse can be defined by **restricting the domain** so that, a portion of the function(**one-to-one**) is considered.

Example 9:

The graph $f(x) = x^2$, is a many-to-one function. You are aware that a many to one function does not have an inverse function.

- a) Determine a restricted domain so an inverse function exists.
- b) Find the inverse function $f^{-1}(x) = x^2$.
- c) Sketch y = f(x) and $y = f^{-1}(x)$ on one diagram.

Example 10:

The function $f: x \to 6 + 2x + x^2$ has domain $x \in \Re$ and $x \le k$. Given that f is one to one, determine the greatest possible value of k. When k has this value,

8

- a) Determine the range of *f*.
- b) Find the inverse function $f^{-1}(x)$ and state its domain and range.

Graphing Inverse Functions

If f is a one-one function, the graphs of y = f(x) and y = f(x)⁻¹ are reflections of each other in the line y = x.

$$ff^{-1}(x) = f^{-1}f(x) = x.$$

Or

$$f(x) = f(x)^{-1}$$
 or $f(x) = x$ or $f(x)^{-1} = x$

• graph of f(x) and $f^{1}(x)$ are symmetric across the line y = x. (f(x) and $f^{1}(x)$ are like mirror images)

Domain and Range of y = f(x) and $y = f(x)^{-1}$

- Domain of f(x) is the Range of $f(x)^{-1}$
- Range of f(x) is the Domain of $f(x)^{-1}$

Example 11:

The diagram shows the graph of the function f defined for $x \ge 0$ by $f: x \to 1 + \sqrt{x}$.

- a) Copy the sketch, and show on the same diagram the graph of $f^{-1}(x)$, making clear the relationship between the two graphs.
- b) Give an expression in terms of x for $f^{-1}(x)$, and state the domain of $f^{-1}(x)$.
- c) Find the point of intersection between f(x) and $f^{-1}(x)$.

Exercise 11B – Pure Mathematics 1(page 169) Question 7, 12, 13 and 14(Transformation of graph).