Federated Learning in Mobile Edge Networks: A Comprehensive Survey

Filipe Maciel - Seminários de tópicos em sistemas distribuídos (federated learning)

Objetivos do artigo

- Federated Learning sobre Multi-Access Edge Computing;
 a. Ficará de fora da apresentação a parte sobre segurança e privacidade.
- 2. Federated Learning para Multi-Access Edge Computing.

Agenda

- 1. O que é Multi-Access Edge Computing?
- 2. Custo de comunicação do FL;
- 3. Alocação de recursos para FL.

O que é multi-access edge computing?

- Infra estrutura que trás o tráfego e os serviços próximos ao consumidor/gerador.
 - o Processamento local.
 - Reações mais rápidas às requisições dos usuários;
 - Redução de custos para apps de baixa latência;
 - Evita tráfego no núcleo da rede.

Protocolo de treinamento

Fonte: Towards Federated Learning at Scale: System Design (MLSys 2019)

O protocolo não é adequado para:

- Cenários assíncronos;
- Agregação baseada em otimização diferente de SGD-Batch;
- Outras topologias que não estrela;
- 4. Enlaces assimétricos;
- Meios de comunicação não confiáveis.

Técnicas de redução de custo:

- Computação na borda ou nos dispositivos finais:
 - Aumentar essa computação para diminuir a quantidade de rodadas de treino.
 - Desenvolver algoritmos de convergência mais rápida.
- Compressão de modelo:
 - Transformar o modelo em uma versão mais compacta, sem reduzir a qualidade do treino.

Técnicas de redução de custo:

- Atualização baseada em importância:
 - Selecionar os modelos locais de maior relevância, ou apenas pesos, para serem transmitidos na rodada.

Computação na borda ou nos dispositivos finais:

- A. Aumento da computação nos dispositivos;
- B. Treinamento em dois fluxos com modelo global como referência;
- C. Agregação em servidor edge intermediário.

FedAvg

HierFAVG

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

```
Server executes: initialize w_0 for each round t=1,2,\ldots do m \leftarrow \max(C \cdot K,1) S_t \leftarrow (random set of m clients) for each client k \in S_t in parallel do w_{t+1}^k \leftarrow ClientUpdate(k,w_t) w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k ClientUpdate(k,w): // Run on client k \in S_t (split \mathcal{P}_k into batches of size S_t) for each local epoch S_t from 1 to S_t do for batch S_t do
```

return w to server

Algorithm 1: Hierarchical Federated Averaging (HierFAVG)

```
1: procedure HierarchicalFederatedAveraging
            Initialized all clients with parameter w_0
  3:
            for k = 1, 2, ..., K do
                 for each client i = 1, 2, ..., N in parallel do
  5:
                       \boldsymbol{w}_{i}^{\ell}(k) \leftarrow \boldsymbol{w}_{i}^{\ell}(k-1) - \eta \nabla F_{i}(\boldsymbol{w}_{i}^{\ell}(k-1))
  6:
 7:
                 if k \mid \kappa_1 = 0 then
                       for each edge \ell = 1, \ldots, L in parallel do
  9:
                            \mathbf{w}^{\ell}(k) \leftarrow \text{EdgeAggregation}(\{\mathbf{w}_{i}^{\ell}(k)\}_{i \in \mathcal{C}^{\ell}})
                            if k \mid \kappa_1 \kappa_2 \neq 0 then
10:
                                  for each client i \in \mathcal{C}^{\ell} in parallel do
11:
                                       \boldsymbol{w}_i^{\ell}(k) \leftarrow \boldsymbol{w}^{\ell}(k)
12:
13:
                                  end for
14:
                             end if
15:
                       end for
                  end if
16:
17:
                 if k \mid \kappa_1 \kappa_2 = 0 then
                       \boldsymbol{w}(k) \leftarrow \text{CloudAggregation}(\{\boldsymbol{w}^{\ell}(k)\}_{\ell=1}^{L})
18:
19:
                       for each client i = 1 \dots N in parallel do
                            \boldsymbol{w}_{i}^{\ell}(k) \leftarrow \boldsymbol{w}(k)
20:
21:
                       end for
22:
                 end if
            end for
24: end procedure
25: function EdgeAggregation(\ell, \{w_i^{\ell}(k)\}_{i\in\mathcal{C}^{\ell}}) //Aggregate locally
           \boldsymbol{w}^{\ell}(k) \leftarrow \frac{\sum_{i \in \mathcal{C}^{\ell}} |\mathcal{D}_{i}^{\ell}| \boldsymbol{w}_{i}^{\ell}(k)}{|\mathcal{D}^{\ell}|}
           return w^{\ell}(k)
28: end function
29: function CLOUDAGGREGATION(\{w^{\ell}(k)\}_{\ell=1}^{L}) //Aggregate globally
           return w(k)
32: end function
```

Comparação acurácia x tempo de execução:

Compressão de modelos:

- Poda ("esparsificação"): redução de conexões (pesos) na rede.
 - Exclui-se parte das conexões de um neurônio, todo o neurônio e até camadas inteiras.
- Subamostragem: formação de um subconjunto aleatório da rede.
- Quantização: redução de bits para representação dos pesos em uma rede.
 - Redução de pontos flutuantes de 64 ou 32 bits para representação em 16 bits, 8 bits ou até menores.

FEDZIP: A Compression Framework for Communication-Efficient Federated Learning

- 1. Poda baseada em Top-z;
- 2. Quantização com k-means;
- 3. Compressão com codificação de huffman.

Resultados: atinge taxas de compressão de até 1085× e preserva até 99% de largura de banda e 99% de energia para clientes durante a comunicação.

Fedzip:

Algorithm 1 FedZip. The clients are indexed by m; P_m is a set of data for the mth client, E is the number of local epochs, C_M is the number of all clients for FedAvg, η is the learning rate, and B is the local mini-batch size.

```
1: procedure Server Execution:
          initialize w_{t=0}
         for round t = 1, 2, \dots do
              m \leftarrow max(C.M, 1)
              S_t \leftarrow \text{(random set of } m \text{ clients)}
              for client mth \in S_t in parallel do
 6:
                   msg_{t+1}^m, \theta_{t+1}^m \leftarrow ClientUpdate(m, w_t)
                   w_{t+1}^m \leftarrow decoding(msg_{t+1}^m, \theta_{t+1}^m)
              end for
         end for
10:
          w_{t+1} \leftarrow \sum_{m=1}^{M} \frac{n_m}{n} w_{t+1}^m
12: end procedure
13: procedure CLIENT UPDATE(M, W):
14:
          B \leftarrow (\text{split } P_m \text{ into batches of size } B)
          for local epoch i from 1 to E do
15:
              for batch b \in B do
16:
                   w \leftarrow w - \eta \nabla l(w, b)
17:
18:
              end for
         end for
19:
         encoding(\Delta w):
20:
21:
                msg_{t+1}^m, \theta_{t+1}^m \leftarrow encoding(w)
         return msg_{t+1}^m, \theta_{t+1}^m to the Server
23: end procedure
```

```
Algorithm 2 Encoding framework; c_i refers to the jth centroid among clusters. As it is mentioned, |c_i| = 3 means we
                      have three centroids.
                       1: procedure ENCODING:
Fedzip:
                               Sparsification
                                   w \leftarrow top\text{-}z(w)
                               Quantization
                                   w \leftarrow K\text{-}means(w)
                              for each Centroid of w_m \in w do
                                   w_i \leftarrow c_i
                              end for
                               Encoding
                               select one of the methods below to build
                          the update message
                                   1\text{-}msg_{t+1}^m, \theta \leftarrow \text{Huffman}(w)
                      11:
                                   2\text{-}msg_{t+1}^m, \theta \leftarrow \text{Exact Position}(w)
                                   3-msg_{t+1}^m, \theta \leftarrow \text{Difference of Address Position}(w)^2
                      13:
                               send the decoding table
                      14:
                      15: end procedure
                      16: procedure SERVER:
                               Decoding
                      17:
                      18:
                                      w \leftarrow \operatorname{decoding}(msq, \theta)
                      19: end procedure
```

Fedzip:

Methods	Model	Convergence	Training	Test	Loss	Size of Updates	Compression	Number of	Round (N)
		Speed	Accuracy	Accuracy		$(MB)^1$	Rate	Clients and C	
FedAvg	CNN	baseline	99.44	98.03	0.013	4.79	1x	50,	20
500							E=1, B=32	C=1	
FedSGD	CNN	low	99.04	97.65	0.031	4.79	1x	50,	100
							E=1, B=32	C=0	
FedZip	CNN	same	99.34	97.79	0.026	0.0078	Up to 1085 x	50,	20
		SP-041.				P302407401 (3901)	E=1, B=32	C=1	
FedAvg	VGG16	baseline	99.82	94.82	0.1708	134.54	1x	50,	20
02.9							E=1, B=32	C=1	
FedSGD	VGG16	low	99.02	92.59	0.6213	134.54	1x	50,	100
							E=1, B=32	C=0	
FedZip	VGG16	same	99.42	93.30	0.5719	0.6911	Up to 194 x	50,	20
							E=1, B=32	C=1	

Fedzip:

Atualização baseada em importância:

- Atualização apenas de pesos relevantes:
 - eSGD: Communication Efficient Distributed Deep Learning on the Edge
- Atualização de modelos relevantes:
 - CMFL: Mitigating Communication Overhead for Federated Learning

CMFL:

$$\mathbf{x}_t = \mathbf{x}_{t-1} - \sum_{k=1}^D \eta_k \nabla f_k(\mathbf{x}_t) = \mathbf{x}_{t-1} + \sum_{k=1}^D \mathbf{u}_{k,t}$$

$$e(\mathbf{u}, \bar{\mathbf{u}}) = \frac{1}{N} \sum_{j=1}^{N} I(\operatorname{sgn}(u_j) = \operatorname{sgn}(\bar{u}_j))$$

$$I(\operatorname{sgn}(u_j) = \operatorname{sgn}(\bar{u}_j)) = 1$$

Algorithm 1 Communication-Mitigated FL

```
1: procedure GLOBALOPTIMIZATION
           Input: Client set \mathbb{C} = \langle c_1, \dots, c_D \rangle
           Initialize the global model \mathbf{x}_0 and the global update \bar{\mathbf{u}}_0
  3:
           for each iteration t = 1, 2, ... do
  5:
                 for all client c_k \in \mathbb{C} do in parallel
                      (s_{k,t}, u_{k,t}) \leftarrow \text{LocalUpdate } (k, \mathbf{x}_{t-1}, \bar{\mathbf{u}}_{t-1})
                \mathbb{S}^t \leftarrow \{\mathbf{u}_{k,t} | s_{k,t} \text{ is True}\}
                                                                           > relevant updates
                \bar{\mathbf{u}}_t \leftarrow \frac{1}{|\mathbb{S}^t|} \sum_{\mathbf{u}_{k,t} \in \mathbb{S}^t} \mathbf{u}_{k,t}

⊳ global update

                 \mathbf{x}_t \leftarrow \mathbf{x}_{t-1} + \bar{\mathbf{u}}_t
10: procedure LOCALUPDATE
            Input: Client index k, Model \mathbf{x}_{t-1} and Update \bar{\mathbf{u}}_{t-1}
11:
           Execute the local training and obtain the local update \mathbf{u}_{k,t}
12:
13:
           s_{k,t} \leftarrow \text{CheckRelevance } (\bar{\mathbf{u}}_{t-1}, \mathbf{u}_{k,t})
14:
           if s_{k,t} is False then
                 \mathbf{u}_k \leftarrow \text{NULL}
15:
                                                              16:
           return (s_{k,t}, \mathbf{u}_{k,t})
17: procedure CHECKRELEVANCE
18:
            Input: Global update \bar{\mathbf{u}}_{t-1} and Client-side update \mathbf{u}_{k,t}
19:
           Calculate the relevance e(\mathbf{u}_{k,t}, \bar{\mathbf{u}}_{t-1}) following Eq. (9)
20:
           if e(\mathbf{u}_{k,t}, \bar{\mathbf{u}}_{t-1}) < v(t) then
                 return True
21:
22:
           else
                 return False

    identify irrelevant updates

23:
```

CMFL:

Resumo:

- Custos de comunicação devem ser considerados para FL em grande escala, para tecnologias de comunicação com baixa largura de banda e dispositivos com restrições de energia;
- Técnicas:
 - Reduzir a quantidade de bits transmitidos por atualização ou reduzir atualizações de modelos do cliente para servidor;
- Considerar custo benefício dessa redução do custo com a acurácia;

- Seleção de participantes:
 - Treinamento tem gargalo no dispositivo mais lento.
 Então, objetivo é selecionar subconjunto de participantes que minimize esse gargalo.
- Gestão conjunta de recursos de computação e rádio:
 - Desenvolvimento de novas tecnologias de rádio que favoreçam o FL.
 - Não será comentado.

- Agregação adaptativa:
 - Adaptar a frequência de agregações para incrementar a eficiência do treino em condições de restrição de recursos.
- Mecanismos de incentivo:
 - Dispositivos podem se negar a participar de treinamento porque consome recursos.
 Mecanismos de incentivo à colaboração devem ser pensados.

<u>Client Selection for Federated Learning with Heterogeneous</u> <u>Resources in Mobile Edge</u>

Protocol 2 Federated Learning with Client Selection. K is the number of clients, and $C \in (0,1]$ describes the fraction of random clients that receive a resource request in each round.

- 1: Initialization in Protocol II
- 2: Resource Request: The MEC operator asks [K×C] random clients to participate in the current training task. Clients who receive the request notify the operator of their resource information.
- 3: Client Selection: Using the information, the MEC operator determines which of the clients go to the subsequent steps to complete the steps within a certain deadline.
- 4: Distribution: The server distributes the parameters of the global model to the selected clients.
- 5: Scheduled Update and Upload: The clients update global models and upload the new parameters using the RBs allocated by the MEC operator.
- 6: Aggregation in Protocol 1.
- 7: All steps but Initialization are iterated for multiple rounds until the global model achieves a desired performance or the final deadline arrives.

Seleção: o máximo de clientes possível dentro de um limite de tempo (Distribution+Update+Upload).

$$\begin{split} \Theta_i \coloneqq & \begin{cases} 0 & \text{if } i = 0; \\ T_i^{\text{UD}} + T_i^{\text{UL}} & \text{otherwise,} \end{cases} \\ T_i^{\text{UD}} & = & \sum_{j=1}^i \max\{0, t_{k_j}^{\text{UD}} - \Theta_{j-1}\}, \\ T_i^{\text{UL}} & = & \sum_{j=1}^i t_{k_j}^{\text{UL}}. \\ \\ \max_{\mathbb{S}} & |\mathbb{S}| \\ \text{s.t.} & T_{\text{round}} \ge T_{\text{cs}} + T_{\mathbb{S}}^{\text{d}} + \Theta_{|\mathbb{S}|} + T_{\text{agg}}. \end{split}$$

```
Algorithm 3 Client Selection in Protocol 2
Require: Index set of randomly selected clients \mathbb{K}'
  1: Initialization \mathbb{S} \leftarrow \{\}, T^{\mathrm{d}}_{\mathbb{S}=\emptyset} \leftarrow 0, \Theta \leftarrow 0
  2: while |\mathbb{K}'| > 0 do
 \begin{array}{ll} 3: & x \leftarrow \arg\max_{k \in \mathbb{K}'} \frac{1}{T_{\mathbb{S} \cup k}^{\mathrm{d}} - T_{\mathbb{S}}^{\mathrm{d}} + t_{k}^{\mathrm{UL}} + \max\{0, t_{k}^{\mathrm{UD}} - \Theta\}} \\ 4: & \mathrm{remove} \ x \ \mathrm{from} \ \mathbb{K}' \end{array}
  5: \Theta' \leftarrow \Theta + t_r^{\text{UL}} + \max\{0, t_r^{\text{UD}} - \Theta\}
  6: t \leftarrow T_{cs} + T_{SUx}^{d} + \Theta' + T_{agg}
  7: if t < T_{\text{round}} then
  8: \Theta \leftarrow \Theta'
                 add x to \mathbb{S}
            end if
11: end while
 12: return S
```

IID

Mathad	CIFAR-10			
Method	ToA@0.5	ToA@0.75	Accuracy	
FedLim $(T_{ m round}=3\ m min)$	38.1	209.2	0.77	
FedCS				
$T_{\text{round}} = 3 \min (r = 0\%)$	25.8	132.7	0.79	
$T_{\text{round}} = 3 \min (r = 10\%)$	27.9	138.1	0.78	
$T_{\text{round}} = 3 \min (r = 20\%)$	31.1	178.3	0.78	
$T_{\text{round}} = 1 \text{ min } (r = 0\%)$	NaN	NaN	0.50	
$T_{\text{round}} = 5 \text{ min } (r = 0\%)$	41.0	166.6	0.79	
$T_{\rm round} = 10 \text{ min } (r = 0\%)$	75.7	281.7	0.76	

Method	Fashion-MNIST			
Method	ToA@0.5	ToA@0.85	Accuracy	
FedLim $(T_{ m round}=3~{ m min})$	10.4	66.8	0.90	
FedCS				
$T_{\text{round}} = 3 \min (r = 0\%)$	10.6	33.5	0.91	
$T_{\rm round} = 3 \min (r = 10\%)$	11.3	32.1	0.92	
$T_{\text{round}} = 3 \min (r = 20\%)$	12.7	37.0	0.91	
$T_{\text{round}} = 1 \min (r = 0\%)$	3.0	73.7	0.89	
$T_{\text{round}} = 5 \text{ min } (r = 0\%)$	18.1	48.8	0.92	
$T_{\text{round}} = 10 \text{ min } (r = 0\%)$	42.0	93.3	0.91	

Non-iid

Mathad	CIFAR-10			
Method	ToA@0.35	ToA@0.5	Accuracy	
FedLim $(T_{\text{round}} = 5 \text{ min})$	NaN	NaN	0.31	
FedCS $(T_{\text{round}} = 5 \text{ min})$	91.7	213.7	0.54	
Mathad	Fashion-MNIST			
Method	ToA@0.5	ToA@0.7	Accuracy	
	NaN	NaN	0.46	
FedLim $(T_{\text{round}} = 5 \text{ min})$	- 1 1			

Agregação adaptativa:

- FL síncrona: Agregação somente após todos os updates.
- FL assíncrona: Agregação à medida que updates chegam.
 - Ainda tem problemas de convergência.

<u>Adaptive Federated Learning in Resource Constrained Edge</u> Computing Systems:

- Um algoritmo para determinar a frequência de agregação global para que o recurso disponível seja usado com mais eficiência.
 - o 3 fases: modelo local, agregação em edge, agregação global.
 - Realizar a agregação global após um certo número de agregações locais.
 - Algoritmo adapta a quantidade de agregações intermediárias para execução dentro de recursos limitados no servidor.
 - Melhora modestamente a acurácia e a perda, dentro do limite efetivo de recursos.
 - Realiza prova da convergência dentro desse limite.

Mecanismos de incentivo: incentivar a participação na federação de proprietários de dados com boa qualidade.

Propostas usam (não apenas):

- Teoria dos jogos: Jogo de Stackelberg;
- Teoria dos contratos.

Desafios:

- Clientes não compartilham informações sobre decisões:
 - o Assim, usar uma forma fechada para definição de decisão é impossível;
- Difícil estabelecer a contribuição de cada participante para acurácia do modelo:
 - A acurácia do modelo depende da qualidade do dado e da complexidade do modelo.

<u>A Learning-based Incentive Mechanism for Federated Learning:</u>

- Servidor em nuvem publica uma tarefa para servidores em edge realizarem treinamento a partir de dados coletados de dispositivos IoT;
 - Servidor de parâmetros: Despesa total;
 - Servidores edge: +Lucro = Recompensa do servidor de parâmetros Custo de coleta dos dados.
- Usa jogo de stackelberg;
 - Modela o conflito.
- Usa aprendizado por reforço.
 - o Para decisões não compartilhadas e avaliação de contribuição ambígua;
 - o Aprende pelo histórico de registros de treino.

Modelo:

- 1. Servidor envia modelo anunciando pagamento total $\tau > 0$;
- 2. Cliente decide participação com base nesse valor;
 - a. Assumindo qualidade igual dos dados entre todos clientes e dados IID, a função utilidade é:

$$u_n(x_n, \boldsymbol{x}_{-n}) = \frac{x_n}{\sum_{m=1}^{N} x_m} \tau - c_n^{com} x_n - c_n^{cmp} x_n$$

3. Servidor mede a utilidade da recompensa com:

$$u(\tau) = \lambda g(X) - \tau$$

(a) Parameter server's utility.

(b) Edge nodes' average utility.

(c) Strategy of parameter server.

Resumo:

- A seleção de participantes pode otimizar o processo ao reduzir consumo desnecessário de computação e comunicação;
- FL síncrono depende do participante mais lento para agregação. FL assíncrono além de não ter esse problema, permitiria inserção no treino a qualquer instante;
 - o A assincronia precisa melhorar porque não converge rápido.
- Mecanismos de incentivo são necessários para incentivar dispositivos a cooperarem com o treinamento e não apenas se beneficiarem do esforço coletivo realizado por outros.
 - Ajuda também a modelar o negócio, porque dispositivos podem ser de proprietários concorrentes.