

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 March 2001 (22.03.2001)

PCT

(10) International Publication Number
WO 01/20003 A2

(51) International Patent Classification⁷: C12N 15/54.
15/11, 9/12, C12Q 1/68, A01K 67/027, G01N 33/68

Saint-Orens-De-Gameville (FR). ROGEL-GAILLARD,
Claire [FR/FR]; 156, rue Léon Maurice Nordmann,
F-75013 Paris (FR). IANNUCCELLI, Nathalie [FR/FR];
7, boulevard des Alouettes, F-31320 Castanet-Tolosan
(FR). GELLIN, Joël [FR/FR]; 8, allée des Amazones,
F-31320 Auzerville (FR). LE ROY, Pascale [FR/FR]; 32,
avenue Saint Marc, F-91300 Massy (FR). CHARDON,
Patrick [FR/FR]; 17, rue de Petite Fontaine, F-91430
Vauhallan (FR).

(21) International Application Number: PCT/EP00/09896

(22) International Filing Date:
11 September 2000 (11.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
99402236.6 10 September 1999 (10.09.1999) EP
00401388.4 18 May 2000 (18.05.2000) EP

(71) Applicant (for all designated States except US):
INSTITUT NATIONAL DE LA RECHERCHE
AGRONOMIQUE (INRA) [FR/FR]; 147, rue de l'Université,
F-75007 Paris (FR).

(74) Agents: VIALLE-PRESLES, Marie-José et al.; Cabinet
Ores, 6, avenue de Messine, F-75008 Paris (FR).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(71) Applicants and

(72) Inventors: ANDERSSON, Leif [SE/SE]; Bergagatan 30,
S-752 39 Uppsala (SE). LOOFT, Christian [DE/DE];
Mittelweg 3 c, 24802 Bokelholm (DE). KALM, Ernst
[DE/DE]; Schmalholt 1, 24239 Achterwehr (DE).

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MILAN, Denis
[FR/FR]; 3 bis, chemin du Tricou, F-31670 Labège (FR).
ROBIC, Annie [FR/FR]; 33, rue des Capitouls, F-31650

Published:

*Without international search report and to be republished
upon receipt of that report.*

[Continued on next page]

(54) Title: VARIANTS OF THE GAMMA CHAIN OF AMPK, DNA SEQUENCES ENCODING THE SAME, AND USES THEREOF

WO 01/20003 A2

(57) Abstract: The invention concerns variants of the gamma chain of vertebrate AMP-activated kinase (AMPK), as well as nucleic acid sequences encoding said variants and use thereof for the diagnosis or treatment of dysfunction of energy metabolism.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

VARIANTS OF THE GAMMA CHAIN OF AMPK, DNA SEQUENCES
ENCODING THE SAME, AND USES THEREOF.

The present invention relates to new variants
of the γ chain of AMP-activated protein kinase (AMPK), to
5 genes encoding said variants and to uses thereof.

AMPK has a key role in regulating the energy
metabolism in the eukaryotic cell (HARDIE et al., Annu.
Rev. Biochem., 67, 821-855, 1998; KEMP et al., TIBS, 24,
22-25, 1999). Mammalian AMPK is a heterotrimeric complex
10 comprising a catalytic α subunit and two non-catalytic β
and γ subunits that regulate the activity of the α
subunit. The yeast homologue (denoted SNF1) of this
enzyme complex is well characterised; it comprises a
catalytic chain (Snf1) corresponding to the mammalian α
15 subunit, and regulatory subunits: Sip1, Sip2 and Gal83
correspond to the mammalian β subunit, and Snf4
correspond to the mammalian γ subunit. Sequence data show
that AMPK homologues exist also in *Caenorhabditis elegans*
and *Drosophila*.

20 It has been observed that mutations in yeast
SNF1 and *SNF4* cause defects in the transcription of
glucose-repressed genes, sporulation, thermotolerance,
peroxisome biogenesis, and glycogen storage.

In the mammalian cells, AMPK has been proposed
25 to act as a "fuel gauge". It is activated by an increase
in the AMP:ATP ratio, resulting from cellular stresses
such as heat shock and depletion of glucose and ATP.
Activated AMPK turns on ATP-producing pathways (e.g.
fatty acid oxidisation) and inhibits ATP-consuming
30 pathways (e.g. fatty acid and cholesterol synthesis),
through phosphorylation of the enzymes acetyl-CoA
carboxylase and hydroxymethylglutaryl-CoA (HMG-CoA)
reductase. It has also been reported to inactivate *in*
vitro glycogen synthase, the key regulatory enzyme of
35 glycogen synthesis, by phosphorylation (HARDIE et al.,

1998, *supra*); however, whether glycogen synthase is a physiological target of AMPK *in vivo* remained unclear.

Several isoforms of the three different AMPK subunits are present in mammals. In humans, PRKAA1 on 5 human chromosome (HSA) 5p12 and PRKAA2 on HSA1p31 respectively encode isoforms $\alpha 1$ and $\alpha 2$ of the α subunit, PRKAB1 on HSA12q24.1 and PRKAB2 (not yet mapped) respectively encode isoforms $\beta 1$ and $\beta 2$ of the β subunit, and PRKAG1 on HSA12q13.1 and PRKAG2 on HSA7q35-q36 10 respectively encode isoforms $\gamma 1$ and $\gamma 2$ of the γ subunit (OMIM database, <http://www.ncbi.nlm.nih.gov/omim/>, July 1999). HARDIE et al., [1998, *supra*] also mention the existence of a third isoform ($\gamma 3$) of the γ subunit of AMPK but do not provide any information about it. Analysis of 15 the sequences of these γ subunits shows that they are essentially composed of four cystathione β synthase (CBS) domains whose function is unknown. No phenotypic effect resulting from a mutation in either of the AMPK subunits has yet been documented.

20 On the other hand, it has been observed that most Hampshire pigs have a high intramuscular glycogen concentration. In these pigs, glycogenolysis which occurs after slaughtering leads to an important decrease of the pH, resulting in acid meat having a reduced water-holding 25 capacity and giving a reduced yield of cured cooked ham.

The locus (named RN) associated with high muscular content of glycogen was first identified by family segregation analysis of phenotypic data from Hampshire pigs (LE ROY et al., Genet. Res., 55, 33-40, 30 1990). A fully dominant allele, RN, correlated with high glycogen content occurs at a high frequency in most Hampshire populations while pigs from other breeds are assumed to be homozygous for the normal, recessive rn^+ allele. Subsequent studies showed that RN carriers have a 35 large increase (about 70%) of glycogen in skeletal muscle

but not in liver (MONIN et al., in 38th ICoMST, Clermont-Ferrand, FRANCE, 1992).

The large difference in glycogen content between *RN* and *rn*⁺ pigs leads to marked differences in meat quality and technological yield (ENFÄLT et al., J. Anim. Sci., 75, 2924-2935, 1997). The *RN* allele is therefore of considerable economical significance in the pig industry and most breeding companies would like to reduce or eliminate this dominant mutation.

10 The *RN* phenotype can be determined by measuring the glycolytic potential in muscle biopsies from live animals, or after slaughter (MONIN et al., Meat Science, 13, 49-63, 1985). However, this method has severe limitations for application in practical breeding programs. The accuracy of the test is not 100%: as there 15 is some overlap in the phenotypic distribution of *RN* and *rn*⁺, the test is not able to distinguish *RN/RN* homozygotes and *RN/rn*⁺ heterozygotes. Further, the sampling of muscle biopsies on live animals is invasive 20 and costly.

Thus, there is a strong need for the development of a simple diagnostic DNA test for the *RN* locus. Moreover, the dramatic phenotypic effect of the *RN* gene in pigs implies that this gene has an important role 25 in the regulation of carbohydrate metabolism in skeletal muscle in other vertebrates, in particular mammals.

Skeletal muscle and liver are the two major reservoirs of glycogen in mammals and the observation of an increased muscular glycogen while liver glycogen is 30 normal suggests that the *RN*⁻ phenotype maybe due to a mutation in a gene expressed in muscle but not in liver. The inventors have previously reported that the *RN* gene is located on pig chromosome 15 (MILAN et al., Mamm. Genome, 7, 47-51, 1996; MARIANI et al., Mamm. Genome, 7, 35 52-54, 1996; LOOFT et al., Genetics Selection Evolution, 28, 437-442, 1996). They have now discovered that the *RN*

allele is associated with a non-conservative mutation in a gene encoding a new muscle-specific isoform of the AMP-activated protein kinase (AMPK) γ chain.

The various aspects of the present invention
5 are based upon the discovery and characterisation of this mutation and the identification and isolation of the mutant gene.

According to the invention it is shown that a mutation in a γ chain of AMPK results in an altered
10 regulation of carbohydrate metabolism, demonstrating that AMPK is an essential component of said metabolism. It is also provided a nucleic acid sequence encoding a muscle-specific isoform of the γ chain of AMPK. Thus it is provided means to regulate carbohydrate metabolism, more specifically to detect and/or correct potential or actual dysfunctions of the regulation of carbohydrate metabolism, in particular in skeletal muscle.

The invention provides a polypeptide comprising an amino acid sequence having at least 70%
20 identity or at least 85% similarity, preferably 80% identity or at least 90% similarity, more preferably at least 90% identity or at least 95% similarity, and still more preferably at least 95% identity or at least 99% similarity, with the polypeptide SEQ ID NO: 2. The invention also provides an isolated nucleic acid sequence encoding said polypeptide, as well as the complement of said nucleic acid sequence.

Said polypeptide represents a new muscle-specific isoform of the γ chain of AMPK, and will also be
30 hereinafter referred as Prkag3; the gene encoding said polypeptide will also be hereinafter referred as PRKAG3.

According to a preferred embodiment of the invention, said polypeptide comprises an amino acid sequence having at least 75% identity, preferably at
35 least 80% identity with the polypeptide SEQ ID NO: 28.

"Identity" of a sequence with a reference sequence refers to the percent of residues that are the same when the two sequences are aligned for maximum correspondence between residues positions. A polypeptide 5 having an amino acid sequence having at least X% identity with a reference sequence is defined herein as a polypeptide whose sequence may include up to 100-X amino acid alterations per each 100 amino acids of the reference amino acid sequence. Amino acids alterations 10 include deletion, substitution or insertion of consecutive or scattered amino acid residues in the reference sequence.

"Similarity" of a sequence with a reference sequence refers to the percent of residues that are the same or only differ by conservative amino acid 15 substitutions when the two sequences are aligned for maximum correspondence between residues positions. A conservative amino acid substitution is defined as the substitution of an amino acid residue for another amino acid residue with similar chemical properties (e.g. size, 20 charge or polarity), which generally does not change the functional properties of the protein. A polypeptide having an amino acid sequence having at least X% similarity with a reference sequence is defined herein as a polypeptide whose sequence may include up to (100-X) 25 non-conservative amino acid alterations per each 100 amino acids of the reference amino acid sequence. Non-conservative amino acids alterations include deletion, insertion, or non-conservative substitution of 30 consecutive or scattered amino acid residues in the reference sequence.

For instance:

* searching the "GenBank nr" database using BLASTp (ALTSCHUL et al., Nucleic Acids Res., 25, 3389-35 3402, 1997) with default settings and the whole sequence

SEQ ID NO: 2 as a query, the higher percents of identity or similarity with SEQ ID NO: 2 were found for:

- $\gamma 1$ subunit of human AMPK: 65% identity or 82% similarity (score: 399);

5 - $\gamma 1$ subunit of rat AMPK: 65% identity or 82% similarity (score: 399);

- $\gamma 1$ subunit of murine AMPK: 64% identity or 80% similarity (score: 390);

10 - γ subunit of Drosophila AMPK: 53% identity or 75% similarity (score: 332);

- Yeast Snf4: 33% identity or 56% similarity (score: 173);

* searching the "GenBank nr" database using BLASTp with default settings and the whole sequence
15 SEQ ID NO: 28 as a query, the higher percents of identity or similarity were found for:

- $\gamma 1$ subunit of human AMPK: 64% identity or 80% similarity (score: 403);

20 - $\gamma 2$ subunit of human AMPK: 62% identity or 83% similarity (score: 425);

- $\gamma 1$ subunit of rat AMPK: 61% identity or 77% similarity (score: 404);

- $\gamma 1$ subunit of murine AMPK: 63% identity or 79% similarity (score: 394);

25 - γ subunit of Drosophila AMPK: 52% identity or 76% similarity (score: 340).

Polypeptides of the invention include for instance any polypeptide (whether natural, synthetic, semi-synthetic, or recombinant) from any vertebrate species, more specifically from birds, such as poultry, or mammals, including bovine, ovine, porcine, murine, equine, and human, and comprising, or consisting of, the amino acid sequence of either:

- a functional Prkag3; or

35 - a functionally altered mutant of Prkag3.

"Functional" refers to a protein having a normal biological activity. Such a protein may comprise silent mutations inducing no substantial change in its activity, and having no noticeable phenotypic effects.

5 Non-limitative examples of functional Prkag3 are:

- a porcine Prkag3 comprising at least the sequence represented in the enclosed sequence listing under SEQ ID NO: 2; this includes, for instance the polypeptide SEQ ID NO: 28;
- a human Prkag3 comprising at least the sequence represented in the enclosed sequence listing under SEQ ID NO: 4; this includes for instance the polypeptide SEQ ID NO: 30.

10 The invention also includes splice variants of Prkag3: for instance, the nucleotide sequence SEQ ID NO: 27, and the corresponding amino-acid sequence SEQ ID NO: 28 on one hand, and the nucleotide sequence SEQ ID NO: 31 and the corresponding amino-acid sequence SEQ ID NO: 32 on the other hand represent two different splice variants of porcine Prkag3.

15 A "functionally altered mutant" of a protein comprises one or several mutations inducing a change in its activity. Such mutations include in particular deletions, insertions, or substitutions of amino acid residues in a domain essential for the biological activity of said protein. They may result for instance in a partial or total loss of activity, or conversely in an increase of activity, or in an impairment of the response to regulatory effectors. Deletions, insertions, or non-conservative substitutions are more likely to result in a critical effect on the biological activity; however conservative substitutions may also induce a noticeable effect, if they occur at an important position of an active site of the protein.

Non-limitative examples of functionally altered mutants of Prkag3 are:

- the R41Q variant resulting from the non-conservative substitution of an arginine residue in position 41 of SEQ ID NO: 2 or SEQ ID NO: 4 by a glutamine residue (this substitution results in an important increase of the glycogen content, inducing an increased glycolytic potential of the skeletal muscle);
- the V40I variant resulting from the substitution of a valine residue in position 40 of SEQ ID NO: 2 or SEQ ID NO: 4 by an isoleucine residue (this substitution results in a decrease of the glycogen content and thus of the glycolytic potential of the skeletal muscle).

These substitutions occur inside a portion of the first CBS domain that is highly conserved between Prkag3 and the previously known isoforms of the γ subunit of AMPK.

Residue numbers for Prkag3 refer to the amino acid numbering of SEQ ID NO: 2 or SEQ ID NO: 4. Alignment of human and porcine Prkag3 sequences with previously known $\gamma 1$ and $\gamma 2$ isoforms is shown in Figure 3.

The invention also provides mutants of Prkag3 which may for instance be obtained by deletion of part of a Prkag3 polypeptide. Said mutants are generally functionally altered. They may have an identity with the overall Prkag3 sequence lower than 70%. However, the identity of the non-deleted sequences of said mutants, when aligned with the corresponding Prkag3 sequences and more specifically with the corresponding sequences from SEQ ID NO: 2, should remain higher than 70%. Said mutants may for instance result from the expression of nucleic acid sequences obtained by deletion or insertion of a nucleic acid segment, or by a punctual mutation introducing a nonsense codon, in a nucleic acid sequence encoding a functional Prkag3.

The invention also provides a functionally altered mutant of a γ subunit of AMPK, wherein said mutant comprises at least one mutation responsible for said functional alteration located within the first CBS 5 domain, and preferably within the region thereof aligned with the region spanning from residue 30 to residue 50 of SEQ ID NO:2 or SEQ ID NO:4. Said mutation may result from the insertion, deletion, and/or substitution of one amino-acid or of several amino-acids, adjacent or not.

10 More preferably the mutation is located within the region aligned with the region spanning from residue 35 to residue 45 of SEQ ID NO:2 or SEQ ID NO:4, for instance within the region spanning from residue 65 to residue 75 of the γ_1 isoform.

15 According to a particular embodiment, said mutation is a non-conservative substitution, preferably a R→Q substitution. According to another particular embodiment, said mutation is a conservative substitution, preferably a V→I substitution.

20 Advantageously, the mutation is located at a residue corresponding to residue 41 of SEQ ID NO:2 or SEQ ID NO:4, for instance in the case of the γ_1 isoform, at residue 70, or at a residue corresponding to residue 40 of SEQ ID NO:2 or SEQ ID NO:4, for instance in the case 25 of the γ_1 isoform, at residue 69.

The invention also provides a heterotrimeric AMPK wherein the γ subunit consists of a polypeptide of the invention.

The invention also provides isolated nucleic acid sequences encoding any of the above-defined functional or functionally altered Prkag3 or functionally altered mutants of a γ subunit of AMPK, and nucleic acid sequences complementary of any one of these nucleic acid sequences.

35 This includes particularly any isolated nucleic acid having the sequence of any of the naturally

occurring alleles of a *PRKAG3* gene, as well as any isolated nucleic acid having the sequence of an artificial mutant of a *PRKAG3* gene, provided that said nucleic acid does not consist of the EST GENBANK
5 AA178898.

This also includes any isolated nucleic acid having the sequence of a natural or artificial mutant of a *PRKAG1* or a *PRKAG2* gene, wherein said mutant encodes a functionally altered $\gamma 1$ or $\gamma 2$ subunit of AMPK as defined
10 above.

Nucleic acids of the invention may be obtained by the well-known methods of recombinant DNA technology and/or of chemical DNA synthesis. These methods also allow to introduce the desired mutations in a naturally
15 occurring DNA sequence.

Examples of nucleic acids encoding naturally occurring alleles of a *PRKAG3* gene are represented by SEQ ID NO: 1, which encodes a naturally occurring allele of the porcine gene and SEQ ID NO: 3, which encodes a
20 naturally occurring allele of the human gene. These sequences may be used to generate probes allowing the isolation of *PRKAG3* from other species or of other allelic forms of *PRKAG3* from a same species, by screening a library of genomic DNA or of cDNA.

25 The invention also includes genomic DNA sequences from any vertebrate species, more specifically from birds, such as poultry, or mammals, including in particular bovine, ovine, porcine, murine, equine, and human, comprising at least a portion of a nucleic acid
30 sequence encoding a polypeptide of the invention, preferably a portion of a *PRKAG3* gene, and up to 500 kb, preferably up to 100 kb of a 3' and/or of a 5' adjacent genomic sequence.

Such genomic DNA sequences may be obtained by
35 methods known in the art, for instance by extension of a nucleic acid sequence encoding a polypeptide of the

invention, employing a method such as restriction-site PCR (SARKAR et al., PCR Methods Applic., 2, 318-322, 1993), inverse PCR (TRIGLIA et al., Nucleic Acids Res., 16, 8186, 1988) using divergent primers based on a Prkag3 5 coding region, capture PCR (LAGERSTROM et al., PCR Methods Applic., 1, 111-119, 1991), or the like.

The invention also includes specific fragments of a nucleic acid sequence encoding a polypeptide of the invention, or of a genomic DNA sequence of the invention 10 as well as nucleic acid fragments specifically hybridising therewith. Preferably these fragments are at least 15bp long, more preferably at least 20bp long.

"Specific fragments" refers to nucleic acid fragments having a sequence that is found only in the 15 nucleic acids sequences encoding a polypeptide of the invention, and is not found in nucleic acids sequences encoding related polypeptides of the prior art. This excludes the nucleic acid fragments that consist of a sequence shared with one of the known PRKAG1 or PRKAG2 20 genes.

"Specifically hybridising fragments" refers to nucleic acid fragments which can hybridise, under stringent conditions, only with nucleic acid sequences encoding a polypeptide of the invention, without 25 hybridising with nucleic acid sequences encoding related polypeptides of the prior art. This excludes the nucleic acid fragments that consist of the complement of a sequence shared with one of the known PRKAG1 or PRKAG2 genes.

30 Nucleic acid fragments that consist of the EST GENBANK AA178898 or the EST GENBANK W94830 or the complements thereof are also excluded.

Said specific or specifically hybridising nucleic acid fragments may for example be used as primers 35 or probes for detecting and/or amplifying a nucleic acid sequence encoding a polypeptide of the invention. The

invention encompasses set of primers comprising at least one primer consisting of a specific or specifically hybridising nucleic acid fragment as defined above.

The invention also provides recombinant
5 vectors comprising a nucleic acid sequence encoding a polypeptide of the invention. Vectors of the invention are preferably expression vectors, wherein a sequence encoding a polypeptide of the invention is placed under control of appropriate transcriptional and translational
10 control elements. These vectors may be obtained and introduced in a host cell by the well-known recombinant DNA and genetic engineering techniques.

The invention also comprises a prokaryotic or eukaryotic host cell transformed by a vector of the
15 invention, preferably an expression vector.

A polypeptide of the invention may be obtained by culturing the host cell containing an expression vector comprising a nucleic acid sequence encoding said polypeptide, under conditions suitable for the expression
20 of the polypeptide, and recovering the polypeptide from the host cell culture.

A heterotrimeric AMPK wherein the γ subunit consists of a polypeptide of the invention may be obtained by expressing, together or separately, a nucleic acid sequence encoding a polypeptide of the invention, a nucleic acid sequence encoding an α subunit, and a nucleic acid sequence encoding a β subunit, and reconstituting the heterotrimer.
25

The polypeptides thus obtained, or immunogenic fragments thereof may be used to prepare antibodies, employing methods well known in the art. Antibodies directed against the whole Prkag3 polypeptide and able to recognise any variant thereof may thus be obtained. Antibodies directed against a specific epitope of a
30 particular variant (functional or not) of Prkag3 or antibodies directed against a specific epitope of a
35

functionally altered mutant having a mutation in the first CBS domain of a γ subunit of AMPK, and able to recognise said variant or functionally altered mutant may also be obtained.

5 As shown herein, mutations in a γ subunit of AMPK, and particularly mutations in the first CBS domain of a γ subunit of AMPK are likely to cause disorders in the energy metabolism (e.g. diabetes, obesity) in vertebrates, including humans. Further, mutations in the 10 first CBS domain or other parts of the *PRKAG3* gene are likely to cause disorders in the muscular metabolism leading to diseases such as myopathy, diabetes and cardiovascular diseases.

15 The present invention provides means for detecting and correcting said disorders.

More specifically, the present invention is directed to methods that utilise the nucleic acid sequences and/or polypeptidic sequences of the invention for the diagnostic evaluation, genetic testing and 20 prognosis of a metabolic disorder.

For example, the invention provides methods for diagnosing of metabolic disorders, more specifically carbohydrate metabolism disorders, and preferably disorders correlated with an altered, in particular an excessive, glycogen accumulation in the cells, resulting from a mutation in a gene encoding a γ subunit of AMPK, wherein said methods comprise detecting and/or measuring the expression of a functionally altered *PRKAG3* gene, or of a functionally altered mutant of a γ subunit of AMPK 25 having a mutation within the first CBS domain in a nucleic acid sample obtained from a vertebrate, or detecting a mutation in the *PRKAG3* gene or in a sequence encoding the first CBS domain of a γ subunit of AMPK in the genome of a vertebrate suspected of having such a 30 disorder.

35

According to a preferred embodiment of the invention, the disorder is correlated with an altered, in particular an excessive, glycogen accumulation in the muscular cells and results from the expression of a 5 functionally altered *PRKAG3* gene.

The expression of a functionally altered *Prkag3*, or of a functionally altered mutant of a γ subunit of AMPK having a mutation within the first CBS domain may be detected or measured using either polyclonal or 10 monoclonal antibodies specific for the functionally altered polypeptides of the invention, as defined above. Appropriate methods are known in the art. They include for instance enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell 15 sorting (FACS).

The nucleotide sequences of the invention may be used for detecting mutations in the *PRKAG3* gene or in a sequence encoding the first CBS domain of a γ subunit of AMPK, by detection of differences in gene sequences or in 20 adjacent sequences between normal, carrier, or affected individuals.

The invention provides a process for detecting a mutation in the *PRKAG3* gene or in a sequence encoding the first CBS domain of a γ subunit of AMPK wherein said 25 process comprises:

- obtaining a nucleic acid sample from a vertebrate;
- checking the presence in said nucleic acid sample of a nucleic acid sequence encoding a mutant *Prkag3*, or a 30 mutant of a γ subunit of AMPK having a mutation within the first CBS domain, as defined above.

According to a preferred embodiment of the invention there is provided a method for detecting a nucleic acid sequence comprising a mutation in the *PRKAG3* gene or in a sequence encoding the first CBS domain of a γ 35 subunit of AMPK wherein said process comprises:

- obtaining a nucleic acid sample from a vertebrate;

- contacting said nucleic acid sample with a nucleic acid probe obtained from a nucleic acid of the invention and spanning said mutation, under conditions of specific hybridisation between said probe and the mutant sequence to be detected;
- detecting the hybridisation complex.

Preferably, the process of the invention further comprises, prior to hybridisation, PCR amplification from the nucleic acid sample, of a sequence comprising at least the portion of the *PRKAG3* sequence or of the sequence encoding the first CBS domain of the γ subunit of AMPK wherein the mutation is to be detected.

Methods allowing the specific hybridisation of a probe only with a perfectly matching complementary sequence, and useful for the detection of punctual mutations are known in the art. They include for instance Allele Specific PCR (GIBBS, Nucleic Acid Res., 17, 2427-2448, 1989), Allele Specific Oligonucleotide Screening (SAIKI et al., Nature, 324, 163-166, 1986), and the like.

A mutation in the *PRKAG3* gene may also be detected through detection of polymorphic markers closely linked to said mutation.

The invention also provides means for identifying said polymorphic markers, and more specifically polymorphic markers comprised within a genomic DNA sequence comprising at least a portion of a *PRKAG3* gene, and up to 500 kb, preferably 300 kb, more preferably up to 100 kb of a 3' and/or of a 5' adjacent sequence.

Said polymorphic markers may be obtained for instance, by screening a genomic DNA library from a vertebrate with a probe specific for the *PRKAG3* gene, in order to select clones comprising said nucleic acid sequence and flanking chromosomal sequences, and identifying a polymorphic marker in said flanking chromosomal sequences. The allele(s) of a polymorphic

marker associated with a given mutant allele of the PRKAG3 gene may also easily be identified by use of a genomic DNA library from an individual wherein the presence of said mutant allele has previously been 5 detected by hybridisation with a nucleic acid probe of the invention.

Polymorphic markers include for instance, single nucleotide polymorphisms (SNP), microsatellites, insertion/deletion polymorphism and restriction fragment 10 length polymorphism (RFLP). These polymorphic markers may be identified by comparison of sequences flanking the PRKAG3 gene obtained from several individuals. Microsatellites may also be identified by hybridisation with a nucleic acid probe specific of known 15 microsatellite motifs.

Once a polymorphic marker has been identified, a DNA segment spanning the polymorphic locus may be sequenced and a set of primers allowing amplification of said DNA segment may be designed.

20 The invention also encompasses said DNA primers.

Detection of a mutation in the PRKAG3 gene may be performed by obtaining a sample of genomic DNA from a vertebrate, amplifying a segment of said DNA spanning a 25 polymorphic marker by polymerase chain reaction using a set of primers of the invention, and detecting in said amplified DNA the presence of an allele of said polymorphic marker associated with said mutation.

By way of example, polymorphic markers which 30 may be obtained according to the invention, and DNA primers allowing the detection of polymorphic markers closely linked to the RN allele of porcine PRKAG3 gene are listed in Table 1 hereinafter.

According to a preferred embodiment of the 35 invention, the vertebrate is a mammal, preferably a farm animal and more preferably a porcine, and the mutation to

be detected produces a functionally altered Prkag3. The detection of said mutation allows to predict whether said mammal or the progeny thereof is likely to have an intramuscular glycogen concentration higher or lower than
5 the average. An example of such a mutation produces a functionally altered Prkag3 having a R41Q substitution, and resulting in an increased glycogen content in the skeletal muscle.

Another example of such a mutation produces a
10 functionally altered Prkag3 having a V40I substitution, and resulting in a decreased glycogen content in the skeletal muscle. In farm animals having such a mutation, glycogenolysis which occurs after slaughtering is less important than in normal animals, resulting in a higher
15 pH and in a potential better quality of the meat.

The present invention also includes kits for the practice of the methods of the invention. The kits comprise any container which contains at least one specific fragment of a nucleic acid sequence of the
20 invention, or at least one nucleic acid fragment able to specifically hybridise with a nucleic acid sequence of the invention. Said nucleic acid fragment may be labelled. The kits may also comprise a set of primers of the invention. They may be used in conjunction with
25 commercially available amplification kits. They may also include positive or negative control reactions or markers, molecular weight size markers for gel electrophoresis, and the like.

Other kits of the invention may include
30 antibodies of the invention, optionally labelled, as well as the appropriate reagents for detecting an antigen-antibody reaction. They may also include positive or negative control reactions or markers.

The invention further provides means for
35 modulating the expression of vertebrate genes encoding a γ subunit of AMPK, and more specifically of the PRKAG3 gene

and/or the synthesis or activity of the products of said genes.

A purified AMPK heterotrimer comprising wild-type or mutant Prkag3 subunit, or a functionally altered 5 mutant γ subunit having a mutation in the first CBS domain, may be used for screening *in vitro* compounds able to modulate AMPK activity, or to restore altered AMPK activity. This may be done, for instance, by:

10 - measuring the binding of the compound to said heterotrimer, using for example high-throughput screening methods; or,

- measuring changes in AMPK kinase activity, using for example high-throughput screening methods.

High throughput screening methods are 15 disclosed, for instance, in "High throughput screening: The Discovery of Bioactive Substances", J.P. DEVLIN (Ed), MARCEL DEKKER Inc., New York (1997).

Nucleic acids of the invention may be used for therapeutic purposes. For instance, complementary 20 molecules or fragments thereof (antisense oligonucleotides) may be used to modulate AMPK activity, more specifically in muscular tissue.

Also, a nucleic acid sequence encoding a functional Prkag3 may be used for restoring a normal AMPK 25 function.

Transformed cells or animal tissues expressing a wild-type or mutant Prkag3, or a functionally altered mutant of a γ subunit of AMPK as defined above, or expressing an AMPK comprising said mutant Prkag3, or said 30 functionally altered mutant of a γ subunit of AMPK, may be used as *in vitro* model for elucidating the mechanism of AMPK activity or for screening compounds able to modulate the expression of AMPK.

The screening may be performed by adding the 35 compound to be tested to the culture medium of said cells or said tissues, and measuring alterations in energy

metabolism in said cells or said tissues using methods such as measurements of glucose concentrations (levels), glucose uptake, or changes of the ATP/AMP ratio, glycogen or lipid/protein content.

5 The invention provides animals transformed with a nucleic acid sequence of the invention.

In one embodiment, said animals are transgenic animals having at least a transgene comprising a nucleic acid of the invention.

10 In another embodiment, said animals are knockout animals. "Knockout animals" refers to animals whose native or endogenous PRKAG3 alleles have been inactivated and which produce no functional Prkag3 of their own.

15 In light of the disclosure of the invention of DNA sequences encoding a wild-type or mutant Prkag3, or a functionally altered mutant of a γ subunit of AMPK, transgenic animals as well as knockout animals may be produced in accordance with techniques known in the art, 20 for instance by means of *in vivo* homologous recombination.

Suitable methods for the preparation of transgenic or knock-out animals are for instance disclosed in: *Manipulating the Mouse Embryo*, 2nd Ed., by 25 HOGAN et al., Cold Spring Harbor Laboratory Press, 1994; *Transgenic Animal Technology*, edited by C. PINKERT, Academic Press Inc., 1994; *Gene Targeting: A Practical Approach*, edited by A.L. JOYNER, Oxford University Press, 1995; *Strategies in Transgenic Animal Science*, edited by 30 G.M. MONASTERSKY and J.M. ROBL, ASM Press, 1995; *Mouse Genetics: Concepts and Applications*, by Lee M. SILVER, Oxford University Press, 1995.

These animals may be used as models for metabolic diseases and disorders, more specifically for 35 diseases and disorders of glycogen metabolism in muscle. For instance they may be used for screening test

molecules. Transgenic animals may thus be used for screening compounds able to modulate AMPK activity. Knockout animals of the invention may be used, in particular, for screening compounds able to modulate 5 energy metabolism, more specifically carbohydrate metabolism, in the absence of functional Prkag3.

The screening may be performed by administering the compound to be tested to the animal, and measuring alterations in energy metabolism in said 10 animal using methods such as glucose tolerance tests, measurements of insulin levels in blood, changes of the ATP/AMP ratio, glycogen or lipid/protein content in tissues and cells.

Transgenic or knock-out farm animals with 15 modified meat characteristics or modified energy metabolism may also be obtained.

The present invention will be further illustrated by the additional description which follows, which refers to examples of obtention and use of nucleic 20 acids of the invention. It should be understood however that these examples are given only by way of illustration of the invention and do not constitute in any way a limitation thereof.

EXAMPLE 1: ISOLATING THE PRKAG3 GENE

We have screened a porcine Bacterial 25 Artificial Chromosome (BAC) library (ROGEL-GAILLARD et al., Cytogenet and Cell Genet, 851, 273-278, 1999) and constructed a contig of overlapping BAC clones across the region of pig chromosome 15 harbouring the RN gene. These 30 BAC clones were in turn used to develop new genetic markers in the form of single nucleotide polymorphisms (SNPs) or microsatellites (MS) as described in Table 1 below.

Table 1

	BAC clone	Primer sequences	Size of PCR product (bp)	Marker type ^a	Alleles ^b
1	H3	F: 5'-GGAATTCAAGTCAGCCAAC-3' (SEQ ID NO: 5) R: 5'-CTTAAAGACCGTGCTACT-3' (SEQ ID NO: 6)	114 - 138	MS	114, 126, 128, 132*, 134*, 136, 138
2	MS982H1	F: 5'-CTGGAAACCTATATGCTG-3' (SEQ ID NO: 7) R: 5'-TAGGAAATAAAATCACAG-3' (SEQ ID NO: 8)	114 - 157	MS	114, 140, 142*, 144, 146, 150, 158
3	MS479L3	F: 5'-CTCCAGCTCACAGGATGACA-3' (SEQ ID NO: 9) R: 5'-GTTTCTGGAGCTTAGCATCTATCC-3' (SEQ ID NO: 10)	150 - 164	MS	150*, 160, 162, 164
4	MS997M3	F: 5'-GAAGTATCCTGGCTTCTGA-3' (SEQ ID NO: 11) R: 5'-GTTTCTCCAGGTTCAGACATCCAC-3' (SEQ ID NO: 12)	138 - 160	MS	138, 144, 152, 154, 160*
5	MS482H6	F: 5'-GCTTCTGTCGCCCTACTGTAAGACACC-3' (SEQ ID NO: 13) R: 5'-GTTTCTAAGTCTACTGTAAGACACC-3' (SEQ ID NO: 14)	78 - 90	MS	78, 80, 88*, 90
6	MS337H2	F: 5'-CCAAGCTGTGGCTGAAT-3' (SEQ ID NO: 15) R: 5'-CAGCACAGCAGTGCACCTA-3' (SEQ ID NO: 16)	145 - 165	MS	145, 149, 155, 161*, 165*
7	MS127B1	F: 5'-CAAACCTCTCTAGGGGT-3' (SEQ ID NO: 17) R: 5'-GTTTCTGGAAACTCCATATGCCATGG-3' (SEQ ID NO: 18)	94 - 108	MS	94, 100, 108*, 114
8	CMKAR2	F: 5'-AGGGTGGATGGTAGGCTTCA-3' (SEQ ID NO: 19) R: 5'-GTCTCGCTCCCTGAAGGAAGT-3' (SEQ ID NO: 20)	208	SNP	112A*, 112T; 158A*, 158G 176A*, 176G
9	127G63	F: 5'-AGTCACGTGGCATGCTATC-3' (SEQ ID NO: 21) R: 5'-CTCAACTGGATTGAGTCAGT-3' (SEQ ID NO: 22)	409	SNP	234A*, 234C
10	VIL1	F: 5'-TGGCGCAACTGTTATTCT-3' (SEQ ID NO: 23) R: 5'-AGGCAAAGGAAGGACACG-3' (SEQ ID NO: 24)	270	SNP	90T, 90G, 120A, 120G, 166C, 166T
11	NRAMP1	F: 5'-AGCGTGGCATGTTGG-3' (SEQ ID NO: 25) R: 5'-AGAAGGAGACAGACAGGGCGA-3' (SEQ ID NO: 26)	1300	RFLP (SphI)	1: 100+1200 bp 2: 100+200+1000 bp

^aMS=microsatellite; SNP=single nucleotide polymorphism.^bMicrosatellite alleles are designated according to the length of the amplified fragment while SNPs are denoted according to the polymorphic nucleotide. Alleles associated with the RN allele are marked with an asterisk.

The new markers were used together with some previously described markers to construct a high-resolution linkage map. Standard linkage analysis using pedigree data comprising about 1,000 informative meicses 5 for segregation at the *RN* locus made it possible to exclude *RN* from the region proximal to *MS479L3* and distal to microsatellite *Sw936*. Linkage Disequilibrium (LD) analysis was done with the same markers and a random sample of 68 breeding boars from the Swedish Hampshire 10 population, scored for the *RN* phenotype by measuring glycogen content in muscle. The results of LD analysis using the DISMULT program (TERWILLIGER, Am. J. Hum. Genet., 56, 777-787, 1995) are shown in Figure 1. They reveal a sharp LD peak around the markers *MS127B1* and 15 *SNP127G63*. These markers appeared to show complete linkage disequilibrium with the *RN* allele, i.e. *RN* was associated with a single allele at these two loci. The most simple interpretation of this finding is that the *RN* mutation arose on a chromosome carrying these alleles and 20 that the two markers are so closely linked to the *RN* locus that the recombination frequency is close to 0%. The two markers are both present on the overlapping BAC clones 127G6 and 134C9 suggesting that the *RN* gene may reside on the same clone or one of the neighbouring 25 clones.

A shot-gun library of the BAC clone 127G6 was constructed and more than 1,000 sequence reads were collected giving about 500,000 base pair random DNA sequence from the clone. The data were analysed and 30 sequence contigs constructed with the PHRED, PHRAP and CONSED software package (University of Washington Genome Center, <http://bozeman.mbt.washington.edu>). The sequence data were masked for repeats using the REPEATMASKER software (<http://ftp.genome.washington.edu/cgi-bin/RepeatMasker>) and BLAST searches were carried out 35 using the NCBI web site (<http://www.ncbi.nlm.nih.gov>).

Three convincing matches to coding sequences were obtained. Two of these were against human cDNA sequences/genes, KIAA0173 described as being similar to pig tubulin-tyrosine ligase and located on HSA2q (UniGene cluster Hs.169910, <http://www.ncbi.nlm.nih.gov/UniGene/>) and CYP27A1 located on HSA2q33-ter (UniGene cluster Hs. 82568). The results strongly suggested that the pig coding sequences are orthologous to these human genes as it is well established that the RN region is homologous to HSA2q33-36 (ROBIC et al., Mamm. Genome, 10, 565-568, 1999). However, none of these sequences appeared as plausible candidate genes for RN. The third coding sequence identified in BAC 127G6 showed highly significant sequence similarity to various AMP-activated protein kinase γ sequences including the yeast SNF4 sequence. The cDNA sequence of this gene was determined by RT-PCR and RACE analysis using muscle mRNA from an *rn⁺/rn⁺* homozygote. This sequence is shown in Figure 2 and in the enclosed sequence listing under SEQ ID NO: 1.

20 Legend of Figure 2:

5' UTR: 5' untranslated region

3' UTR: 3' untranslated region

CDS: coding sequence

***: stop codon

25 '-': identity to master sequence

'.' : alignment gap

The frame of translation was determined on the basis of homology to other members in the protein family and assuming that the first methionine codon in frame is 30 the start codon. The polypeptidic sequence deduced on this basis is shown in the enclosed sequence listing under SEQ ID NO: 2.

The complete nucleotidic sequence of pig PRKAG3 cDNA is shown in the enclosed sequence listing 35 under SEQ ID NO: 27 and the complete polypeptidic

sequence is shown in the enclosed sequence listing under SEQ ID NO: 28 and in Figure 3.

Figure 3 shows an amino acid alignment constructed with the CLUSTAL W program (THOMPSON et al., 5 Nucleic Acids Research, 22, 4673-4680, 1994) with representative AMPK γ sequences in the nucleotide databases.

Legend of Figure 3:

Sequences used:

10 HumG1: Genbank U42412
MusG1: Genbank AF036535
HumG2: Human PRKAG2 (Genbank AJ249976)
PigG3: pig PRKAG3 (this study)
HumG3: human PRKAG3 (this study)
15 Dros: *Drosophila* (Genbank AF094764)
SNF4 (yeast): Genbank M30470
Both the PRKAG2 and *Drosophila* sequences have longer aminoterminal regions but they do not show significant homology to the aminoterminal region of PRKAG3 and were 20 not included.

Abbreviations:

*: stop codon
'-': identity to master sequence
'..': alignment gap

25 The four CBS domains are overlined and the position of the RN mutation is indicated by an arrow.

Table 2 below shows the amino acid (above diagonal) and nucleotide sequence (below diagonal) identities (in %) among mammalian, *Drosophila* and yeast 30 AMPKG/SNF4 sequences. In the case of pig PRKAG3 and human PRKAG3, the identities were calculated referring to the portions thereof represented respectively by SEQ ID NO: 1 and SEQ ID NO: 3, for the nucleotide sequences, and by SEQ ID NO: 2 and SEQ ID NO: 4, for the amino acid 35 sequences.

TABLE 2

	PigG3	HumG3	HumG1	RatG1	MusG1	HumG2	Dros	SNF4
PigG3	-	97.0	64.2	64.2	63.9	62.6	53.2	34.0
HumG3	90.7	-	63.6	63.6	63.6	62.6	53.5	34.4
HumG1	64.2	64.5	-	96.7	96.3	75.6	60.9	33.5
RatG1	65.8	65.8	88.0	-	97.4	75.3	61.1	33.5
MusG1	65.3	64.8	87.2	92.8	-	74.6	61.7	33.5
HumG2	61.6	61.6	68.1	67.8	65.9	-	63.1	34.5
Dros	58.4	58.4	59.0	59.3	59.0	60.0	-	36.2
SNF4	44.0	44.2	45.4	44.6	45.3	45.7	44.8	-

Figure 4 shows a Neighbor-Joining phylogenetic tree constructed with the PAUP software (SWOFFORD, Phylogenetic analysis using parsimony (and other methods), Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts, 1998) using yeast SNF4 as outgroup; support for branch orders obtained in bootstrap analysis with 1,000 replicates are indicated, scales of tree is indicated at the bottom. The result showed that 10 the pig gene located in the RN region is distinct from mammalian PRKAG1 and PRKAG2 isoforms and most likely orthologous to a human gene represented by the human EST sequence AA178898 (GenBank) derived from a muscle cDNA library. This gene is herein denoted PRKAG3 since it is 15 the third isoform of a mammalian AMP-activated protein kinase γ characterised so far.

The cDNA sequence of this gene was determined by RT-PCR and 5'RACE analysis using human skeletal muscle cDNA (Clontech, Palo Alto, CA). This sequence is shown 20 in Figure 2 and in the sequence listing under SEQ ID NO: 3. The deduced polypeptidic sequence having 97% identity with the porcine sequence SEQ ID NO: 2 (cf. Table 2) is shown on Figure 2 and in the sequence listing under SEQ ID NO: 4.

25 The complete cDNA sequence is also shown in the enclosed sequence listing under SEQ ID NO: 29; the deduced polypeptidic sequence is shown in the enclosed sequence listing under SEQ ID NO: 30 and in Figure 3.

Using the high resolution human TNG radiation hybrid panel : (<http://shgc-www.stanford.edu/RH/TNGindex.html>) we mapped the human homologs of *PRKAG3*, *CYP27A1* and *KIAA0173*, all present in the porcine BAC127G6. The three genes are also very closely linked in the human genome. *PRKAG3* was mapped at a distance of 33 cR_{50.000} from *KIAA0173* and 52 cR_{50.000} from *CYP27A1*, with lod score support of 6.8 and 4.5, respectively.

The established role of AMPK in regulating energy metabolism, including glycogen storage, and its location in the region showing maximum linkage disequilibrium made *PRKAG3* a very strong candidate gene for RN. This was further strengthened by hybridisation analysis of a human multiple tissue northern blots (CLONTECH, Palo Alto, CA) using human *PRKAG1* (IMAGE clone 0362755 corresponding to GenBank entry AA018675), human *PRKAG2* (IMAGE clone 0322735 corresponding to GenBank entry W15439) and a porcine *PRKAG3* probe. The results are shown in Figure 5.

Legend of Figure 5:

H: Heart, B: Brain, Pl: Placenta, L: Lung,
Li: Liver, M: Skeletal muscle, K: Kidney, Pa: Pancreas,
S: Spleen, Th: Thymus, P: Prostate, T: Testis, O: Ovary,
I: Small intestine, C: Colon (mucosal lining),
PBL: Peripheral Blood Leukocyte.

While the *PRKAG1* and *PRKAG2* probes showed a broad tissue distribution of expression, *PRKAG3* showed a distinct muscle-specific expression. This result is also supported by the human EST database where multiple ESTs representing *PRKAG1* and *PRKAG2* have been identified in various cDNA libraries whereas a single EST (GenBank entry AA178898) representing *PRKAG3* has been obtained from a muscle cDNA library. The muscle-specific expression of *PRKAG3* and the lack of expression in liver are entirely consistent with the phenotypic effect of RN, namely that glycogen content is altered in muscle but

normal in liver (ESTRADE et al., Comp. Biochem. Physiol. 104B, 321-326, 1993).

PRKAG3 sequences were determined from *rn*⁺/*rn*⁺ and *RN*⁻/*RN*⁻ homozygotes by RT-PCR analysis. A comparison 5 revealed a total of seven nucleotide differences four of which were nonsynonymous substitutions was found between the sequence from *rn*⁺ and *RN*⁻ animals, as shown in Table 3 below. Screening of these seven SNPs with genomic DNA from additional *rn*⁺ and *RN*⁻ pigs of different breeds 10 revealed five different PRKAG3 alleles, but only the R41Q missense substitution was exclusively associated with *RN*⁻. This nonconservative substitution occurs in CBS1 which is the most conserved region among isotypic forms of the AMPK γ chain and arginine at this residue (number 70 in 15 Prkag1) is conserved among different isoforms of mammalian AMPK γ sequences as well as in the corresponding *Drosophila* sequence (Figure 3). A simple diagnostic DNA test for the R41Q mutation was designed based on the oligonucleotide ligation assay (OLA; LANDEGREN et al., 20 Science, 241, 1077-1080, 1988). Screening a large number of *RN*⁻ and *rn*⁺ animals from the Hampshire breed as well as large number of *rn*⁺ animals from other breeds showed that the 41Q allele was present in all *RN*⁻ animals but not found in any *rn*⁺ animals, as shown in Table 4 below. The 25 absence of the 41Q allele from other breeds is consistent with the assumption that the *RN* allele originated in the Hampshire breed; the allele has not yet been found in purebred animals from other breeds. In conclusion, the results provide convincing evidence that PRKAG3 is 30 identical to the *RN* gene and that the R41Q substitution most likely is the causative mutation.

Table 3. Comparison of the *PRKAG3* sequences associated with the *rn⁺* and *RN* alleles in different pig populations^a

Associated Allele	<i>RN</i> <i>RN</i> allele	nt83 nt152	Codon					Population ^b
			34	35	40	41	213	
<i>rn⁺</i>			T	L	A	V	Q	H
<i>rn⁺</i>			-	-	-	-	-	L, LW, WB
<i>rn⁺</i>			-	-	-	R	-	
<i>rn⁺</i>			-C-	--T	--T--	--G-	--C	H, L, LW, M, WB
<i>rn⁺</i>			P	-	-	R	-	
<i>rn⁺</i>	-A-	-C-	--T	--T--	--G-	--C	D, H	
<i>rn⁺</i>	N	P	-	-	-	R	-	
<i>rn⁺</i>			-C-	--T	--T--	A--	--C	H, LW, WB, D, L
			P	-	-	I	R	-

ucleotide and codon numbers refer to the numbering of the sequence SEQ ID NO: 1

I=Hampshire, L=Landrace, LW=Large White, M=Meishan, WB=Wild Boar, D=Duroc

D.=not determined, “-” indicates identity to the top sequence.

TABLE 4

RN phenotype	Genotype at nucleotide 593 ^a			Total
	A/A	G/A	G/G	
RN ⁻ , Hampshire ^a	40	87	0	127
RN ⁻ , Hampshire ^{a,b}	0	13	0	13
m ⁺ , Hampshire ^a	0	0	60	60
rn ⁺ , other breeds ^c	0	0	488	488

^arepresent both French and Swedish Hampshire populations^bheterozygosity RN/m⁺ deduced using pedigree information

5 ^cbreeds: Angler Saddleback, n=31; Blond Mangalitsa, n=2; Bunte Bentheimer, n=16; Duroc, n=160; Göttinger Minipig, n=4; Landrace, n=83; Large White, n=72; Meishan, n=8; Piétrain, n=75; Red Mangalitsa, n=5; Rotbunte Husumer, n=15; Schwalbenbauch Mangalitsa, n=7; Schwäbisch Hällische, n=2; European Wild Boar, n=5; Japanese Wild Boar, n=3.

10 ^drefers to the nucleotide numbers of SEQ ID NO: 1

Without being bound to any particular mechanism, it may be hypothesised that the AMPK heterotrimer including PRKAG3 is involved in the regulation of glucose transport into skeletal muscle.

15 It has recently been reported that AMPK activation induced by the AMP analogue AICAR or by muscle contraction leads to an increased glucose uptake in skeletal muscle (BERGERON et al., Am. J. Physiol., 276, E938-944, 1999; HAYASHI et al., Diabetes, 47, 1369-1373, 1998). If this is the function of the AMPK heterotrimer including PRKAG3, R41Q may be a gain-of-function mutation causing a constitutively active holoenzyme, for instance due to the loss of an inactivating allosteric site. If so, the reduced AMPK activity in RN⁻ animals is likely to 20 reflect feed-back inhibition due to the high-energy status of the muscle. An increased uptake of glucose to skeletal muscle is expected to lead to an increase in muscle glycogen content as observed in RN⁻ animals. It has been shown that overexpression of glucose transporter 4 25 (GLUT4) in transgenic mice leads to increased uptake of glucose and increased glycogen storage (TREADWAY et al., J. Biol. Chem., 269, 29956-29961, 1994). This type of gain-of-function model is consistent with the dominance 30

of *RN*⁻ as the presence of a single unregulated copy would have a large effect on AMPK enzyme activity.

An alternative hypothesis on the functional significance of the R41Q substitution associated with the 5 *RN*⁻ allele may also be proposed. Based on the established roles of the yeast SNF1 enzyme in utilisation of glycogen and of mammalian AMPK for inhibiting energy-consuming pathways and stimulating energy-producing pathways, activated AMPK is expected to inhibit glycogen synthesis 10 and stimulate glycogen degradation. If this is the functional role of the isoform(s) containing the PRKAG3 product, the R41Q substitution would be a loss-of-function mutation or a dominant-negative mutation locking the AMPK heterotrimer in an inactive state, and thus 15 inhibiting AMP activation and glycogen degradation. In these cases the phenotypic effect should be explained by haplo-insufficiency, since *RN*⁻ appears fully dominant.

R41Q may thus be a dominant negative mutation, but only if it interferes with multiple isoforms since 20 the major AMPK activity in muscle appears to be associated with the PRKAG1 and 2 isoforms [CHEUNG, et al. *Biochem. J.* 346, 659 (2000)].

The distinct phenotype of the *RN*⁻ mutation indicates that PRKAG3 plays a key role in the regulation 25 of energy metabolism in skeletal muscle. For instance, PRKAG3 is likely to be involved in the adaptation to physical exercise, which is associated with increased glycogen storage. It is also conceivable that loss-of-function mutations in PRKAG3 (or other AMPK genes) may 30 predispose individuals to noninsulin-dependent diabetes mellitus, and AMPK isoforms are potential drug targets for treatment of this disorder.

EXAMPLE 2: DETECTION OF THE R41Q SUBSTITUTION IN PIG PRKAG3

35 A part of PRKAG3 including codon 41 was amplified in 10 µl reactions containing 100 ng genomic

DNA, 0.2 mM dNTPs, 1.5 mM MgCl₂, 4.0 pmol of both forward (AMPKG3F3: 5'-GGAGCAAATGTGCAGACAAG-3') and reverse (AMPKG3R2: 5'-CCCACGAAAGCTCTGCTTCTT-3') primer, 10% DMSO, 1 U of Taq DNA polymerase and reaction buffer (ADVANCED BIOTECH, London, UK). The cycling conditions included an initial incubation at 94°C for 5 min followed by 3 cycles at 94°C (1 min), 57°C (1 min) and 72°C (1 min), and 35 cycles of 94°C (20 sec), 55°C (30 sec) and 72°C (30 sec). Allele discrimination at nucleotide position 122 was done using the oligonucleotide ligation assay (OLA, LANDEGRENN et al., Science, 241, 1077-1080, 1988). The OLA method was carried out as a gel-based assay. Each 10 µl OLA reaction contained 0.5 pmol of each probe SNPRN-A (5'Hex-TGGCCAACGGCGTCCA-3'), SNPRN-G (5'ROX-GGCCAACGGCGTCCG-3') and SNPRN-Common (5'phosphate-AGCGGCACCTTGAAAAAAA-3'), 1.5 U of thermostable AMPLIGASE and reaction buffer (EPICENTRE TECHNOLOGIES, Madison, WI) and 0.5 µl of the AMPKG3F3/AMPKG3R2 PCR product. After an initial incubation at 95°C for 5 min, the following thermocycling profile was repeated 10 times: denaturation at 94°C (30 sec), and probe annealing and ligation at 55°C (90 sec). After OLA cycling, 1 µl of product was heat denatured at 94°C (3 min), cooled on ice, and loaded onto 6% polyacrylamide denaturing gel for electrophoresis on an ABI377 DNA sequencer (PERKIN ELMER, Foster City, USA). The resulting fragment lengths and peak fluorescence were analysed using GENESCAN software (PERKIN ELMER, Foster City, USA).

The OLA-based method for the R41Q mutation was used to determine the genotype of DNA samples collected from 68 Swedish Hampshire animals phenotyped as either RN⁻ or rn⁺ based on their glycolytic potential (GP) value. Figure 6 illustrates typical OLA results from the three possible genotypes. All RN⁻ animals were scored as homozygous A/A (n=28) or heterozygous A/G (n=36) at

nucleotide position 122 whereas the *rn⁺* animals were homozygous G/G (n=4) at this position.

EXAMPLE 3: PREDICTING THE PRESENCE OF THE *RN⁻* ALLELE USING A CLOSELY LINKED MICROSATELLITE, MS127B1

5 A microsatellite 127B1 (*MS127B1*) was cloned from BAC 127G7 containing pig *PRKAG3*. The BAC clone was digested with *Sau3AI* and the restriction fragments subcloned into the *BamHI* site of *pUC18*. The resulting library was probed with a (CA)₁₅ oligonucleotide probe labelled with [γ -32P]-dATP. Strongly hybridising clones were sequenced and primers for PCR amplification of microsatellite loci were designed. Ten μ l PCR reactions were performed containing 100 ng genomic DNA, 0.2 mM dNTPs, 1.5 mM MgCl₂, 4.0 pmol of both forward (MS127B1F:5'-Fluorescein-15 CAAACTCTTCTAGGCGTGT-3') and reverse (MS127B1R:5'-GTTTCTGGAACTTCCATATGCCATGG-3') primers, and 1 U of *Taq* DNA polymerase and reaction buffer (ADVANCED BIOTECH, London, UK). The cycling conditions included an initial incubation at 94°C for 5 min followed by 3 cycles at 94°C (1 min), 57°C (1 min) and 72°C (1 min), and 35 cycles of 94°C (20 sec), 55°C (30 sec) and 72°C (30 sec). The PCR products (0.3 μ l) were separated using 4% polyacrylamide denaturing gel electrophoresis on an ABI377 DNA sequencer (PERKIN ELMER, Foster City, USA). The resulting fragment lengths were analysed using the GENESCAN and GENOTYPER software (PERKIN ELMER, Foster City, USA).

The method was used to determine the genotype of DNA samples collected from 87 Swedish Hampshire animals phenotyped as either *RN⁻* or *rn⁺* based on their 30 glycolytic potential (GP) value. Allele 108 (bp) showed a complete association to the *RN⁻* allele in this material as all *RN⁻* (*RN⁻/RN⁻* or *RN⁻*/rn⁺) animals were homozygous or heterozygous for this allele while no *rn⁺* (*rn⁺/rn⁺*) animals carried this allele, as shown in Table 5 below.

TABLE 5

Animals	n	Genotype				
		94/94	94/108	94/114	100/108	108/108
RN	80	0	37	0	2	41
m ⁺	7	3	0	4	0	0

EXAMPLE 4: DETECTING THE PRESENCE OF THE RN⁻ ALLELE USING A PCR-RFLP TEST

The RN⁻ mutation inactivates a BsrBI site
 5 GAG[^]CGG/CTC[^]GCC (BsrBI RE site is not palindromic). At that site, the RN⁻ sequence is AAGCGGG instead of GAGCGGG.

A 134 bp long fragment of the RN gene is amplified from porcine genomic DNA. The rn⁺ allele is identified after BsrBI digestion, by detection of two
 10 fragments of 83 and 51 bps.

The test is performed as follows:

1° Primer sequences:

Sequence of primers used to amplify the RN mutation region:

15 RNU: 5' GGGAACGATTCAACCTCAAC 3'
 RNL: 5' AGCCCCCTCCTCACCCACGAA 3'

To provide an internal control of digestion, a BsrBI site has been added at the extremity of one of the two primers within a 20 bp long tail. The tail permits
 20 both creation of a BsrBI site (a shorter tail might be sufficient), and an easy discrimination of uncut fragment from other fragments. The use of tailed primers does not affect efficiency and specificity of amplification.

The sequence of the RNL modified primer
 25 including a control tail with a BsrBI site is:

RNL_{BsrA14}: 5'

A₅C₂A₇CCGCTCAGCCCCCTCCTCACCCACGAA 3'

2° PCR reaction mixture used:

30 50 ng DNA
 0.5 Unit Taq polymerase (GIBCO BRL)
 1.5 mM MgCl²
 200 mM dNTP

0.2 μ M each primer

Total reaction volume: 25 μ l

3° PCR conditions used (on OMNIGENE HYBAID thermocycler):

5 1x (5min 95°C)

35x (45sec 57°C, 45sec 72°C, 45sec 95°C)

1x (45sec 57°C, 15min 72°C)

4° Restriction enzyme digestion performed at 37°C for 2 hours:

10 10 μ l PCR product

1x BsrBI BIOLABS buffer

5U BsrBI restriction enzyme (BIOLABS)

Total reaction volume: 15 μ l

5° Size of fragments produced after PCR using primers with control tail and digestion with BsrBI:

Uncut fragment from RN or rn⁺ allele : 154 bp

After digestion of fragment amplified from RN allele : 137 bp + 17 bp

20 After digestion of fragment amplified from rn⁺ allele : 83 bp + 54 bp + 17 bp

Size difference can be identified either after polyacrylamide, agarose/NUSIEVE or agarose gel electrophoresis.

EXAMPLE 5: EFFECT OF V40I POLYMORPHISM ON GLYCOLYTIC POTENTIAL.

Further, a set of 181 rn^{+/rn⁺ homozygous animals (R/R at position 41 of SEQ ID NO: 2) were analyzed for the V40I polymorphism (referring to position 40 of SEQ ID NO: 2) by PCR-RFLP using FokI restriction 30 enzyme. The glycolytic potential was determined in parallel according to the method disclosed by MONIN et al., (Meat Science, 13, 49-63, 1985).}

The results are shown in Table 6 below:

Table 6

Genotype at position 40	Average glycolytic potential	Standard Deviation	Number of typed animals
I/I	178.30	31.13	13
V/I	204.15	37.73	164
V/V	210.83	38.21	104

These results show that the V40I polymorphism has a significant effect on the glycolytic potential in skeletal muscle.

CLAIMS

- 1) A gamma subunit of a vertebrate AMP-activated kinase (AMPK), wherein said gamma subunit is a polypeptide comprising at least a sequence having at least 70% identity with the polypeptide SEQ ID NO: 2.
- 2) A polypeptide of claim 1, wherein said polypeptide comprises a sequence having at least 95% identity with the polypeptide SEQ ID NO: 2.
- 3) A polypeptide of claim 1, wherein said polypeptide comprises a sequence having at least 75% identity with the polypeptide SEQ ID NO: 28.
- 4) A polypeptide of any of claims 1 to 3, wherein said polypeptide comprises the sequence SEQ ID NO: 2 or SEQ ID NO: 4.
- 5) A polypeptide of claim 4, wherein said polypeptide comprises the sequence SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32.
- 6) A polypeptide which is a functionally altered mutant of a gamma subunit of a vertebrate AMP-activated kinase, wherein said polypeptide has at least a mutation located within the first CBS domain of said gamma subunit.
- 7) A polypeptide of claim 6, wherein the mutation is located within the region of the first CBS domain aligned with the region of a polypeptide of SEQ ID NO: 2 spanning from residue 30 to residue 50.
- 8) A polypeptide of claim 7, wherein the mutation is a R→Q substitution or a V→I substitution.
- 9) A polypeptide of claim 8 selected among:
 - a polypeptide having a sequence resulting from a R→Q substitution at a position corresponding to position 41 in SEQ ID NO: 2;
 - a polypeptide having a sequence resulting from a V→I substitution at the position corresponding to position 40 of SEQ ID NO: 2.

10) A polypeptide which is a mutant of a gamma subunit of a vertebrate AMP-activated kinase, wherein said polypeptide results from a deletion of a part of a polypeptide of any of claims 1 to 5.

5 11) A nucleic acid sequence encoding a polypeptide of any of claims 1 to 10, or the complement thereof, provided that said nucleic acid sequence does not consist of the EST GENBANK AA178898, or of the EST W94830.

10 12) A nucleic acid sequence of claim 11, having the sequence SEQ ID NO: 1, SEQ ID NO:3, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, or the complement thereof.

15 13) A nucleic acid sequence comprising at least a portion of a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10, and up to 500 kb of a 3' and/or of a 5' adjacent genomic DNA sequence, or the complement thereof.

14) A nucleic acid fragment selected among:
20 - a specific fragment of a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10, or of a nucleic acid sequence of claim 13;
- a nucleic acid fragment which specifically hybridises under stringent conditions with a nucleic acid sequence
25 encoding a polypeptide of any of claims 1 to 8, or of a nucleic acid sequence of claim 11;
provided that said nucleic acid fragment does not consist of the EST GENBANK AA178898 or of the EST GENBANK W94830.

30 15) A set of primers for amplifying a nucleic acid sequence of any of claims 11 to 13 or a portion thereof, comprising at least a primer consisting of a nucleic acid fragment of claim 14.

35 16) A recombinant vector comprising a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10.

17) An host cell transformed by a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10.

18) A transgenic animal transformed by a nucleic acid sequence encoding a polypeptide of any of 5 claims 1 to 10.

19) A knockout animal, wherein the gene encoding a polypeptide of any of claims 1 to 5 is inactive.

10 20) A heterotrimeric AMPK wherein the γ subunit consists of a polypeptide of any of claims 1 to 10.

21) A method of detecting a metabolic disorder resulting from a mutation in a gene encoding a γ subunit of AMPK, wherein said process comprises:

15 - obtaining a nucleic acid sample from a vertebrate;

- checking the presence in said nucleic acid of a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10, wherein said polypeptide is 20 functionally altered.

22) A method of claim 21 wherein the disorder is correlated with an altered glycogen accumulation in the muscular cells and results from the expression of a functionally altered allele of a polypeptide of any of 25 claims 1 to 5.

23) A method of any of claims 21 or 22 wherein the presence of the nucleic acid sequence encoding said mutant polypeptide is checked by contacting said nucleic acid sample with a nucleic acid probe obtained from a 30 nucleic acid of claim 14 and spanning said mutation, under conditions of specific hybridisation between said probe and the mutant sequence to be detected, and detecting the hybridisation complex..

24) A method for obtaining a pair of primers 35 allowing to detect a genetic polymorphic marker linked to

a nucleic acid sequence encoding a polypeptide of any of claims 1 to 5, wherein said process comprises:

- screening a genomic DNA library from a vertebrate with a probe specific for a nucleic acid sequence encoding a polypeptide of any of claims 1 to 5, in order to select clones comprising said nucleic acid sequence and flanking chromosomal sequences;

- identifying a polymorphic locus in said flanking chromosomal sequences, and sequencing a DNA segment comprising said polymorphic locus;

- designing primer pairs flanking said polymorphic locus.

25) A method of claim 24 wherein the selected clones comprise at least a portion of a nucleic acid sequence encoding a polypeptide of any of claims 1 to 5, and up to 500 kb of a 3' and/or of a 5' adjacent sequence.

26) A method of any of claims 21 to 25 wherein the vertebrate is a mammal.

20 27) A method of claim 26 wherein said mammal is a pig.

28) A pair of primers obtainable by the process of any of claims 24 to 26.

25 29) A process for detecting a dysfunction of carbohydrate metabolism resulting from the expression of a functionally altered allele of a polypeptide of any of claims 1 to 5 in a vertebrate, wherein said process comprises:

- obtaining a sample of genomic DNA from said 30 vertebrate;

- contacting said DNA with a pair of primers of claim 28 under conditions allowing PCR amplification;

- analysing the PCR product to detect if an allele of a polymorphic marker linked to a nucleic acid 35 sequence encoding a functionally altered allele of a polypeptide of any of claims 1 to 5 is present.

30) A process of claim 29, wherein said functionally altered polypeptide results from a R41Q substitution in SEQ ID NO: 2.

31) A process of any of claims 29 or 30,
5 wherein said vertebrate is a mammal.

32) A process of claim 31 wherein said mammal
is a pig.

33) A process of claim 32 wherein the pair of
primers is selected among:

10 - a pair of primers consisting of SEQ ID NO: 5
and SEQ ID NO: 6;

- a pair of primers consisting of SEQ ID NO: 7
and SEQ ID NO: 8;

15 - a pair of primers consisting of SEQ ID NO: 9
and SEQ ID NO: 10;

- a pair of primers consisting of
SEQ ID NO: 11 and SEQ ID NO: 12;

- a pair of primers consisting of
SEQ ID NO: 13 and SEQ ID NO: 14;

20 - a pair of primers consisting of
SEQ ID NO: 15 and SEQ ID NO: 16;

- a pair of primers consisting of
SEQ ID NO: 17 and SEQ ID NO: 18;

25 - a pair of primers consisting of
SEQ ID NO: 19 and SEQ ID NO: 20;

- a pair of primers consisting of
SEQ ID NO: 21 and SEQ ID NO: 22;

- a pair of primers consisting of
SEQ ID NO: 23 and SEQ ID NO: 24;

30 - a pair of primers consisting of
SEQ ID NO: 25 and SEQ ID NO: 26.

34) Use of a transformed cell of claim 17 to
screen compounds able to modulate AMPK activity.

35) Use of a transgenic animal of claim 18 to
screen compounds able to modulate AMPK activity.

36) Use of a knockout animal of claim 19 to screen compounds able to modulate energy metabolism in the absence of a functional polypeptide of any of claims 1 to 5.

5 37) Use of an heterotrimeric AMPK of claim 20 to screen compounds able to modulate AMPK activity.

1/8

Figure 1

	5' UTR	10	20	30	40	50	60	70	80
Pig	TTCCCTAGAGCAAGGAGAGCCGTTCATGGCCATCCCGAGCTGTAAACCACCAAGCTCAGAAAGAACATGGGACCAGGG								
Hum	-----A-A-C-----A-C-----A-C-----G-----T-----G-----A-A-G-A-								
	90	100	110	120	130	140	150		160
Pig	GAACAAGGCCTCTAGATGGACAAGGAGGAGATGTAGAGGAAGGGGGGCTCCGGGCCCCAGGGAAAGGTCCCCAGTCCA								
Hum	-GC-----A-----TG-----A-----TCG-----G-----A-----A-----T-----A-----G-----G-----								
	170	180	190	200	210	220	230		240
Pig	GGCCAGTTGCTGAGTCCACCGGGCAGGAGGCCACATTCCCAAGGCCACACCCCTGGCCCAAGCCGCTCCCTGGCCAG								
Hum	-----AC-----T-----A-----T-----A-----T-----T-----A-----T-----T-----A-----T-----G-----								
	250	260	270	280	290	300	310		320
Pig	GTGGACAAACCCCCAACAGAGCGGGACATCCTCCCTCTGACTGTGAGCCTCAGCCTCCGACTCCAACACAGACCATCT								
Hum	-----G-----CT-----A-----G-----T-----TG-----A-----TG-----A-----G-----G-----TG-----G-----								
	330	340	350	360	370	380	390		400
Pig	GGATCTGGCATAGAGTCTCAGCCTCGCGCGTCGGGGATGAGCTTGGCTGGGAGAAGAGCACAGCCCCGT								
Hum	---G---C---CG---C---A-A---C-G---A-TG---A-AAG-C---C---G---T---T---								
	410	420	430	440	450	460	470	5'UTR	
Pig	GCCCATCCCCAGAGGTGCTTACCCAGGCTGGCTGGGATGATGAGCTGCAGAAGCCGGGGCCAGGTCTAC								
Hum	-----TG-----GC-----CC-----CA-----T-----A-----C-----A-----G-----A-----C-----C-----A-----								
CDS		10							20
Pig	ATG CAC TTC ATG CAG GAG CAC ACC TGC TAC GAT GCC ATG GCG ACC ACC TCC AAA CTG GTC								
.	Met His Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser Lys Leu Val								
Hum	---G-----G-----G-----G-----A-----T-----A-----T-----G-----A-----A-----								
	Arg	-	-	-	-	-	-	-	-
	30								40
Pig	ATC TTC GAC ACC ATG CTG GAG ATC AAG AAG GCC TTC TTT GCC CTG GTG GCC AAC GGC GTC								
.	Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe Ala Leu Val Ala Asn Gly Val								
Hum	-----G-----G-----G-----G-----T-----A-----T-----A-----G-----A-----								
	50								60
Pig	CGA GCG GCA CCT TTG TGG GAC AGC AAG AAG CAG AGC TTC GTG GGG ATG CTG ACC ATC ACA								
.	Arg Ala Ala Pro Leu Trp Asp Ser Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr								
Hum	--G--A--C---C-A-----T-----T-----T-----T-----T-----T-----T-----T-----T-----								
	70								80
Pig	GAC TTC ATC TTG GTG CTG CAC CGC TAT TAC AGG TCC CCC CTG GTC CAG ATC TAC GAG ATT								
.	Asp Phe Ile Leu Val Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile								
Hum	---C-----T-----C-----T-----C-----T-----T-----T-----T-----T-----T-----T-----								
	90								100
Pig	GAA GAA CAT AAG ATT GAG ACC TGG AGG GAG ATC TAC CTT CAA GGC TGC TTC AAG CCT CTG								
.	Glu Glu His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys Pro Leu								
Hum	---C-----G-----G-----G-----G-----G-----G-----G-----G-----G-----G-----G-----								
	Gln	-	-	-	-	-	-	-	-
	110								120
Pig	GTC TCC ATC TCT CCC AAT GAC AGC CTG TTC GAA GCT GTC TAC GCC CTC ATC AAG AAC CGG								
.	Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr Ala Leu Ile Lys Asn Arg								
Hum	-----T-----T-----T-----T-----T-----A-----A-----A-----A-----A-----A-----								
	Thr	-	-	-	-	-	-	-	-
	130								140
Pig	ATC CAC CGC CTG CCG GTC CTG GAC CCT GTC TCC GGG GCT GTG CTC CAC ATC CTC ACA CAT								
.	Ile His Arg Leu Pro Val Leu Asp Pro Val Ser Gly Ala Val Leu His Ile Leu Thr His								
Hum	---T-----T-----T-----T-----G-----G-----A-----C-----AAC-----A-----C-----								
	Asn	-	-	-	-	-	-	-	-
	150								160
Pig	AAG CGG CTT CTC AAG TTC CTG CAC ATC TTT GGC ACC CTG CTG CCC CGG CCC TCC TTC CTC								
.	Lys Arg Leu Leu Lys Phe Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu								
Hum	--A--C--G-----T-----T-----T-----T-----T-----T-----T-----T-----T-----								
	Ser	-	-	-	-	-	-	-	-

Figure 2

170 180

Pig TAC CGC ACC ATC CAA GAT TTG GGC ATC GGC ACA TTC CGA GAC TTG GCC GTG GTG CTG GAA
 Tyr Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val Leu Glu
 Hum --- --- --T --- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- G

190 200

Pig ACG GCG CCC ATC CTG ACC GCA CTG GAC ATC TTC GTG GAC CGG CGT GTG TCT GCG CTG CCT
 Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg Arg Val Ser Ala Leu Pro
 Hum --A --A --- ----- --T --- ----- ----- ----- ----- ----- ----- ----- ----- A ---

210 220

Pig GTG GTC AAC GAA ACT GGA CAG GTA GTG GGC CTC TAC TCT CGC TTT GAT GTG ATC CAC CTG
 Val Val Asn Glu Thr Gly Gln Val Val Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu
 Hum ----- TG- --T --- --C ----- ----- ----- ----- ----- ----- ----- ----- ----- T -----
 Cys -----

230 240

Pig GCT GCC CAA CAA ACA TAC AAC CAC CTG GAC ATG AAT GTG GGA GAA GCC CTG AGG CAG CGG
 Ala Ala Gln Gln Thr Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg
 Hum --- --- G --- --C ----- ----- ----- ----- ----- ----- ----- ----- ----- A ---
 Ser -----

250 260

Pig ACA CTG TGT CTG GAA GGC GTC CTT TCC TGC CAG CCC CAC GAG ACC TTG GGG GAA GTC ATT
 Thr Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu Val Ile
 Hum --- --A --- --G --A ----- ----- ----- ----- ----- ----- ----- ----- G ----- --C
 Ser -----

270 280

Pig GAC CGG ATT GTC CCG GAA CAG GTG CAC CGC CTG GTG CTC GTG GAT GAG ACC CAG CAC CTT
 Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val Leu Val Asp Glu Thr Gln His Leu
 Hum --- A --- -CT --- --G --- --A --- A-G ----- ----- ----- ----- ----- C --- --T --C
 Ala -----

290 300

Pig CTG GGC GTG GTG TCC CTC TCT GAC ATC CTT CAG GCT CTG GTG CTC AGC CCT GCT GGA ATT
 Leu Gly Val Val Ser Leu Ser Asp Ile Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile
 Hum T --- --- --C --- --C ----- ----- ----- ----- ----- ----- ----- C --C

CDS

Pig GAT GCC CTC GGG GCC TGA
 Asp Ala Leu Gly Ala ***
 Hum -----

3'UTR	10	20	30	40	50	60	70	80
-------	----	----	----	----	----	----	----	----

Pig GAACCTTGGAACCTTGCTCTCAGGCCACCTGGCACACTGGAGCCAGTGAAGGGAGCCGTGGACTCAGCTCTCACCTC
 Hum ---GA-CT--GT-C-CAA--C-A---A-----A-----A-T...-AGAA-----T---

90	100	110	120	130	140	150	160
----	-----	-----	-----	-----	-----	-----	-----

Pig CCCTCAGCCCCACTTGCTGGCTCTGGCTCTGGTCAGGTAGGCTCCGCCGGGGC....CCCTGGCCTCAGCATCAGGCC
 Hum ---A.-C---A-T-----TCA---A-GA-----CTTCT---A---TTCCAAAATTG---T-T---T---T-GT---T-

170	180	190	200	210	220	230	240
-----	-----	-----	-----	-----	-----	-----	-----

Pig CTCAGTCTCCCT.GGGCACCCAGATCTCAGACTGGGGCACCTGAAGATG..GGAGTGGCCCAGCTTATAGCTGAGCAG.C
 Hum ---AAC---T-C----TG-CC-GTG---CCA-----TGA---AT-AA---AACAG-T-AG-CA---TG-AG-T-

250	260	270	280	290	300	310	320
-----	-----	-----	-----	-----	-----	-----	-----

Pig CTTGTG..AAATCTACCAGCATCAAGACT...CACTGTGGGACCCTGCTTG...TCCCATTCTCAGCTGAAATGAT.G
 Hum -C--AACCG-G-GGC--T-G--T-CCC-AGGG-CA-C--T-CT-CA---CCGCCCA---C-GC-GC---CTG-G-C-

330	340	350	360	370	380	390	400
-----	-----	-----	-----	-----	-----	-----	-----

Pig GAGGGCCTATAAGAGGGTGGACAGGGC..CTGGAGTAGAGGCCAGATCAGTGACGT..GCCTTCAGG....ACCTCCG
 Hum --T----C--GTG---TT-A-T-----TT-----T-CCTC-GTTTC-GG-CT--C-AT-G-----CCTTC-G---T

Figure 2 (cont.)

4/8

410 420 430 440 450 460 470 480
Pig GGGAGTTAGAGCTGCCCTCTCAGTT.....CAGTICCCCCCTGCTGAGAATG.TCCCTGGAAGGAAGCCAGTTAAT
Hum -----CCC-----TTG---C---CAACGTCGC--C-G---T---A---CTCC-G-C-TTG-CATTTC---G-T-C-G-.
490 500 510 520 530 540 550 560
Pig AAACCTTGGTTGGATGGAATTTCACACTCG.....
Hum --TG--GCA--TC-G--G.....CA-G-AGCAGCCGTTATTATAGAACTGCCCTGGAGGTGGGAGTCCTCCCT
570 580 590 600 610 620 630 640
Pig
Hum CCATTCTTGTCCAGAAAACCTCCCTTAGCTCTCGCAGTGAGCCATGTTCTAGTCTCCAGGGATGGATGGCTTGTATAATGG
650 660 670 680 690 700 710 720
Pig
Hum ACCCCTGAGAATGAGCAATTGAGAAAACAAAAGGAACAATCCATGAACCTAGATTATTGGTTCACTCAAAAT
730 740
Pig
Hum GCTGCAGTCATTGACCTG

Figure 2 (cont.)

5 / 8

P19G3 MSFLEQGESRSHMPSSRAVTTSSERSHGDQCNKASRWTRQEDVBEGGUPPPRECQSRPVAESTGQEAFFPKATPLAQAPLAEVNDNPPTERDILPSDCARS
 HumG3 -EN-S---P---S---IR-KRRA-L---KS---H---Q3---R---T---L---T---D---G---GT---GW-C---T---
 P19G3 ASDSNTDHDLDGIBFSASAAGDEL. GLVEEKPAPCPSPRVLLPRGLWDDDELCKPGAAQVYMMQENTCYDAMATSKLVLIFDTMLEIKKAFFALVANGV
 HumG1 -AG-S---DVE-AT---P-TE-WEC---E---L---R---L-U---QAPP-K---R---I---R---
 HumG1 METVIS-DSSPAVENEHPO-TPESNNS---TS---KS-R---LIP---V---S-QV---T---
 HumG2 AALGPARAGM-EKLEFF-EAEVDSESG---R---RS-K---IVP---V---T-QV---
 Dros RDSRGLPVADPFLEKVNLSDFEDDS-IFVK-FRF-K---LIP---A---V---Q-LV---Y---Y---
 Snf4 MK-TQDSQEKFVSIEQQLAVES.. IRK-LNSK-S---VLPV-YR-IVL--S-LV--SLNV-LQ-SI
 CBS1 → 100

P19G3 RAAPLMDSKRQSFVGMETITDPIEVLRHYRSPPLVQIYEIEEHHKETWREIYIZZJCFKPL..VSI SPNDSLFEAVYALIKNRHRLPVLDPSVCA..V
 HumG3Q.....V.....C.....A.....D.....SS.....R.....K.....I.....E.....N.....T
 HumG1NI.....K-A.....L.....V.....DS.....C.....A.....D.....N.....DA.....D.....S.....K.....I.....I.....N.....A
 HumG2B-T.....SL.....NI.....K-M.....L.....L.....ET.....N.....DA.....D.....S.....K.....I.....I.....N.....A
 DrosB-Q.....KI-QM.....K-NASMRQL.....LD.....DV.....HNQVM.....G-DA.....YD-IKI-HS.....I.....AT-N.....
 Snf4 V9.....TSR-A-L-T.....N-IQY-FSN-D-KFELUDKQLQDQJLKD-EFALGVOQ-IMTA--H-SRP---CLKMLES-SG-I-LI-QDEETIREI-
 CBS2 → 200

P19G3 LHLTMKRLXFLUIFGTLLPRPSFLYRTIQDLGIGTPRDLLAVVLETAPILTLADI FDRRVSALPVNETCQVVGLYSRFDVIIHLAAQQTYNHLD:MNVC
 HumG3S.....S.....C.....C.....S.....S
 HumG1 Y.....I.....KL-I-EF-K-E-MSKSLEE-Q---YANI-M-R-T-VYV-G---QII---D-K-R---DI-K---N---EK---H---VS-T
 HumG2 Y.....I.....QL-MSDM-K-A-MKQNLD-E-YHNI-FIH PDT--IK-N-E-I---D-S-K---DI-K---N---EK---N---IT-T
 Dros Y.....I-R---FLYINE--K-AYMQKSRL-E-YNNIETAD--TS-I---KK-E---L-DSR-RL-DI-AK---N---EK---D-VSLR
 Snf4 VSV--QY-I---VALNCRE...TH--KIP-G--N-I-QDNMKSCQM-T-VIDUQMLTQG--SV-IIID-N-YLINV-EAY--LG-IKGGI--D-SLS--
 CBS3 → 300

P19G3 EALRQRTLCLEGVLSCOPHETLQRVIDRIVREQVHRLVLVDETQHLLQVVSISDILQALVLSPAGIDALGA*
 HumG3S.....A.....A.....A.....A.....A.....A.....A.....A.....A.....A.....A.....A.....A.....A.....A.....A.....A
 HumG1 K---OH---SHYF---K-YL---ETI-N-L-EAE---V---NDVVK-I---TGGEKKP*
 HumG2 Q---QH---SQYF---VK-NKL-I-ETIV---AE---V-N-ADSLV-II---I-T---AKQKETETE*
 Dros K-NEH-NEWF---QK-NLD-S-YTIME---AE---V-NRKVII-II---LY---R-S-EGV
 Snf4 ---MR-SDDF---YT-TKNDK-STIM-N-RKAR---FV---DVGR-V---LT---KYIL-GSN*

6 / 8

Figure 4

7 / 8

Figure 5

8 / 8

$rn+/rn+ ; G/G$ homozygote

$RN-/rn+ ; A/G$ heterozygote

$RN-/RN- ; A/A$ homozygote

Figure 6

1/20

SEQUENCE LISTING

<110> INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE
MILAN, Denis
ANDERSSON, Leif
LOOFT, Christian
ROBIC, Annie
ROGEL-GAILLARD, Claire
IANNUCCELLI, Nathalie
GELLIN, Joël
KALM, Ernst
LE ROY, Pascale
CHARDON, Patrick

<120> VARIANTS OF THE GAMMA CHAIN OF AMPK, DNA SEQUENCES ENCODING
THE SAME, AND USES THEREOF

<130> MJPcb539-99

<140>
<141>

<150> EP 99402236.3
<151> 1999-09-10

<150> EP 00401388.4
>151> 2000-05-18

<160> 32

<210> 1
<211> 1867
<212> DNA
<213> Sus scrofa

<220>
<221> CDS
<222> (472)..(1389)

<400> 1
ttccttagagc aaggagagag ccgttcatgg ccatcccgag ctgttaaccac cagctcagaa 60
agaagccatg gggaccaggg gaacaaggcc tctagatgga caaggcagga ggatgttagag 120
gaagggggggc ctccggggccc gagggaaaggt ccccaagtcca ggccagttgc tgagtccacc 180
gggcaggagg ccacattcccc caaggccaca cccttggccc aagccgctcc cttggccgag 240
gtggacaacc ccccaacaga gcgggacatc ctccccctctg actgtgcagc ctcagccctcc 300
gactccaaca cagaccatct ggatctggc atagagttct cagcctcgcc ggcgtcgggg 360
gatgagcttgc ggcgttgga agagaagcca gccccgtgcc catccccaga ggtgctgtta 420
cccaggctgg gctggatga tgagctgcag aagccggggg cccaggtcta c atg cac 477
Met His
1

ttc atg cag gag cac acc tgc tac gat gcc atg gcg acc agc tcc aaa 525
Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser Lys
5 10 15

2/20

ctg gtc atc ttc gac acc atg ctg gag atc aag aag gcc ttc ttt gcc	573																																																																																																																																																		
Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe Ala																																																																																																																																																			
20	25	25	30	ctg gtg gcc aac ggc gtc cga gcg gca cct ttg tgg gac agc aag aag	621	Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys Lys		35	40	40	45	45	50	cag agc ttc gtg ggg atg ctg acc atc aca gac ttc atc ttg gtg ctg	669	Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val Leu		55	60	60	65	65		cac cgc tat tac agg tcc ccc ctg gtc cag atc tac gag att gaa gaa	717	His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu Glu		70	75	75	80	80		cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc aag	765	His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys		85	90	90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255	
25	30																																																																																																																																																		
ctg gtg gcc aac ggc gtc cga gcg gca cct ttg tgg gac agc aag aag	621																																																																																																																																																		
Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys Lys																																																																																																																																																			
35	40	40	45	45	50	cag agc ttc gtg ggg atg ctg acc atc aca gac ttc atc ttg gtg ctg	669	Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val Leu		55	60	60	65	65		cac cgc tat tac agg tcc ccc ctg gtc cag atc tac gag att gaa gaa	717	His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu Glu		70	75	75	80	80		cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc aag	765	His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys		85	90	90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255									
40	45	45	50	cag agc ttc gtg ggg atg ctg acc atc aca gac ttc atc ttg gtg ctg	669	Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val Leu		55	60	60	65	65		cac cgc tat tac agg tcc ccc ctg gtc cag atc tac gag att gaa gaa	717	His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu Glu		70	75	75	80	80		cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc aag	765	His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys		85	90	90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255											
45	50																																																																																																																																																		
cag agc ttc gtg ggg atg ctg acc atc aca gac ttc atc ttg gtg ctg	669																																																																																																																																																		
Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val Leu																																																																																																																																																			
55	60	60	65	65		cac cgc tat tac agg tcc ccc ctg gtc cag atc tac gag att gaa gaa	717	His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu Glu		70	75	75	80	80		cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc aag	765	His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys		85	90	90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																			
60	65	65		cac cgc tat tac agg tcc ccc ctg gtc cag atc tac gag att gaa gaa	717	His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu Glu		70	75	75	80	80		cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc aag	765	His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys		85	90	90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																					
65																																																																																																																																																			
cac cgc tat tac agg tcc ccc ctg gtc cag atc tac gag att gaa gaa	717																																																																																																																																																		
His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu Glu																																																																																																																																																			
70	75	75	80	80		cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc aag	765	His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys		85	90	90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																													
75	80	80		cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc aag	765	His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys		85	90	90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																															
80																																																																																																																																																			
cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc aag	765																																																																																																																																																		
His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys																																																																																																																																																			
85	90	90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																							
90	95	95		cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813	Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr		100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																									
95																																																																																																																																																			
cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc tac	813																																																																																																																																																		
Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr																																																																																																																																																			
100	105	105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																	
105	110	110		gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861	Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val		115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																			
110																																																																																																																																																			
gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct gtc	861																																																																																																																																																		
Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val																																																																																																																																																			
115	120	120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																											
120	125	125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																													
125	130	130		tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909	Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe		135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																															
130																																																																																																																																																			
tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag ttc	909																																																																																																																																																		
Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe																																																																																																																																																			
135	140	140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																							
140	145	145		ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957	Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg		150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																									
145																																																																																																																																																			
ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957																																																																																																																																																		
Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg																																																																																																																																																			
150	155	155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																	
155	160	160		acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005	Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val		165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																			
160																																																																																																																																																			
acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg gtg	1005																																																																																																																																																		
Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val																																																																																																																																																			
165	170	170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																											
170	175	175		ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053	Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg		180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																													
175																																																																																																																																																			
ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac cgg	1053																																																																																																																																																		
Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg																																																																																																																																																			
180	185	185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																					
185	190	190		cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101	Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly		195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																							
190																																																																																																																																																			
cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg ggc	1101																																																																																																																																																		
Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly																																																																																																																																																			
195	200	200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																															
200	205	205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																																	
205	210	210		ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149	Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr		215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																																			
210																																																																																																																																																			
ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca tac	1149																																																																																																																																																		
Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr																																																																																																																																																			
215	220	220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																																											
220	225	225		aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197	Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu		230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																																													
225																																																																																																																																																			
aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca ctg	1197																																																																																																																																																		
Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr Leu																																																																																																																																																			
230	235	235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																																																					
235	240	240		tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245	Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu		245	250	250	255	255																																																																																																																																							
240																																																																																																																																																			
tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg gaa	1245																																																																																																																																																		
Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu																																																																																																																																																			
245	250	250	255	255																																																																																																																																															
250	255	255																																																																																																																																																	
255																																																																																																																																																			

3/20

gtc att gac cg_g att gtc cg_g gaa cag gt_g cac cg_c ct_g gt_g ctc gt_g 1293
 Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val Leu Val
 260 265 270

 gat gag acc cag cac ctt ct_g gg_c gt_g gt_g tcc ctc tct gac atc ctt 1341
 Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile Leu
 275 280 295 290

 cag gct ct_g gt_g ctc agc cct gct gga att gat gcc ctc ggg gcc tga 1389
 Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala
 295 300 305

 gaaccc_{tt}gga ac_{ttt}gtc tcaggccacc tggcacacct ggaaggccagt gaagggagcc 1449
 gtggactcag ct_{ct}cacttc cc_{ct}cagccc cacttgctgg tctggcttt gttcaggtag 1509
 g_{tc}ccgccccg gggcccctgg cctcagcatc agccccctcag tctccctggg caccagatc 1569
 tcagactggg gcaccctgaa gatggagtg gcccagctta tagctgagca gccttgtgaa 1629
 atctaccagc atcaagactc actgtgggac cactgcttt tcccatttc agctgaaatg 1689
 atggagggcc tcataagagg ggtggacagg gcctggagta gaggccagat cagtgacgtg 1749
 c_{ttt}caggac ctccggggag ttagagctgc cctcttcag tt_{ca}gttccc cc_{ct}gctgag 1809
 aatgtccctg gaaggaagcc agttaataaa ccttggttgg atggaatttc cacactcg 1867

<210> 2
 <211> 305
 <212> PRT
 <213> Sus scrofa

<400> 2
 Met His Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser
 1 5 10 15

 Ser Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe
 20 25 30

 Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser
 35 40 45

 Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu
 50 55 60

 Val Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile
 65 70 75 80

 Glu Glu His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys
 85 90 95

 Phe Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala
 100 105 110

 Val Tyr Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp
 115 120 125

 Pro Val Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu
 130 135 140

4/20

Lys Phe Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu
 145 150 155 160

Tyr Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala
 165 170 175

Val Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val
 180 185 190

Asp Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val
 195 200 205

Val Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln
 210 215 220

Thr Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg
 225 230 235 240

Thr Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu
 245 250 255

Gly Glu Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val
 260 265 270

Leu Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp
 275 280 285

Ile Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly
 290 295 300

Ala
 305

<210> 3
 <211> 2109
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (472)..(1389)

<400> 3
 ttccttagagc aagaaaacag cagctcatgg ccatcaccag ctgtgaccag cagctcagaa 60
 agaatccgtg ggaaacggag ggc当地agcc ttgagatgga caaggcagaa gtc当地ggag 120
 gaagggggagc caccaggtaa gggggaaaggc ccccggtcca ggccaaactgc tgagtccacc 180
 gggctggagg ccacattccc caagaccaca cccttggctc aagctgatcc tgccggggtg 240
 ggc当地ctccac caacagggtg ggactgcctc cc当地tctgact gtacagcctc agctgcaggc 300
 tccagcacag atgatgtgga gctggccacg gagttccacg ccacagaggc ctgggagtgt 360
 gagctagaag gc当地tgc当地gga agagaggcct gccc当地tgc当地 tgc当地ccca 420
 cccaaagctgg gctgggatga cgaactgc当地gg aaacc当地ggcg cccagatcta c atg cgc 477

5/20

Met Arg	
1	
ttc atg cag gag cac acc tgc tac gat gcc atg gca act agc tcc aag	525
Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser Lys	
5	10
15	
cta gtc atc ttc gac acc atg ctg gag atc aag aag gcc ttc ttt gct	573
Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe Ala	
20	25
30	
ctg gtg gcc aac ggt gtg cgg gca gcc cct cta tgg gac agc aag aag	621
Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys Lys	
35	40
45	50
cag agc ttt gtg ggg atg ctg acc atc act gac ttc atc ctg gtg ctg	669
Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val Leu	
55	60
65	
cat cgc tac tac agg tcc ccc ctg gtc cag atc tat gag att gaa caa	717
His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu Gln	
70	75
80	
cat aag att gag acc tgg agg gag atc tac ctg caa ggc tgc ttc aag	765
His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys	
85	90
95	
cct ctg gtc tcc atc tct cct aat gat agc ctg ttt gaa gct gtc tac	813
Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr	
100	105
110	
acc ctc atc aag aac cgg atc cat cgc ctg cct gtt ctt gac ccg gtg	861
Thr Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro Val	
115	120
125	130
tca ggc aac gta ctc cac atc ctc aca cac aaa cgc ctg ctc aag ttc	909
Ser Gly Asn Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe	
135	140
145	
ctg cac atc ttt ggt tcc ctg ctg ccc cgg ccc tcc ttc ctc tac cgc	957
Leu His Ile Phe Gly Ser Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg	
150	155
160	
act atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gct gtg gtg	1005
Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val	
165	170
175	
ctg gag aca gca ccc atc ctg act gca ctg gac atc ttt gtg gac ccg	1053
Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg	
180	185
190	
cgt gtg tct gca ctg cct gtg gtc aac gaa tgt ggt cag gtc gtg ggc	1101
Arg Val Ser Ala Leu Pro Val Val Asn Glu Cys Gly Gln Val Val Gly	
195	200
205	210
ctc tat tcc cgc ttt gat gtg att cac ctg gct gcc cag caa acc tac	1149
Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr Tyr	
215	220
225	

6/20

aac cac ctg gac atg agt gtg gga gaa gcc ctg agg cag agg aca cta 1197
 Asn His Leu Asp Met Ser Val Gly Glu Ala Leu Arg Gln Arg Thr Leu
 230 235 240

tgt ctg gag gga gtc ctt tcc tgc cag ccc cac gag agc ttg ggg gaa 1245
 Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Ser Leu Gly Glu
 245 250 255

gtg atc gac agg att gct cgg gag cag gta cac agg ctg gtg cta gtg 1293
 Val Ile Asp Arg Ile Ala Arg Glu Gln Val His Arg Leu Val Leu Val
 260 265 270

gac gag acc cag cat ctc ttg ggc gtg gtc tcc ctc tcc gac atc ctt 1341
 Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile Leu
 275 280 285 290

cag gca ctg gtg ctc agc cct gct ggc atc gat gcc ctc ggg gcc tga 1389
 Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala
 295 300 305

gaagatctga gtcctcaatc ccaagccaac tgcacactgg aagccaatga aggaattgag 1449
 aacagcttca tttccccaaac cccaaatttgc tggttcagct atgattcagg cttcttcagc 1509
 cttccaaaat tgcctttgcc ttacttgtgc tcccagaacc cttcgggcat gcccagtgca 1569
 ccatgggatg atgaaattaa ggagaacagc tgagtcaagc ttggagggtcc ctgaaccaga 1629
 ggcacttagga ttacccagg gccatctgtg ctccatgccc gccccatcccc ttgccgcctg 1689
 actgggtcgg atggcccccag tgggtttagt cagggcttct ggattccctcg gtttctggc 1749
 tacatatggc ttcagccttc agtcctggg agtcccagct gttgttccca gcaacgtcgc 1809
 cactgccctc ctactctcca ggcttgtca tttcaaggct gctgaaatgc tgcatttcag 1869
 gggccaccat ggagcagccg ttatttatag aactgcctgt tggaggtggg gagtccccc 1929
 tccattcttg tccagaaaac tccttagctc tcgcagttag ccattgttctt agtctccagg 1989
 gatggatggc cttgtatatg gaccctgag aatgagcaat tgagaaaaca aaacaaaagg 2049
 aacaatccat gaacttagat tttattggtt tcactcaaaa tgctgcagtc atttgacctg 2109

<210> 4
<211> 305
<212> PRT
<213> Homo sapiens

<400> 4
Met Arg Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser
 1 5 10 15

Ser Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe
 20 25 30

Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser
 35 40 45

7/20

Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu
 50 55 60

Val Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile
 65 70 75 80

Glu Gln His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys
 85 90 95

Phe Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala
 100 105 110

Val Tyr Thr Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp
 115 120 125

Pro Val Ser Gly Asn Val Leu His Ile Leu Thr His Lys Arg Leu Leu
 130 135 140

Lys Phe Leu His Ile Phe Gly Ser Leu Leu Pro Arg Pro Ser Phe Leu
 145 150 155 160

Tyr Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala
 165 170 175

Val Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val
 180 185 190

Asp Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Cys Gly Gln Val
 195 200 205

Val Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln
 210 215 220

Thr Tyr Asn His Leu Asp Met Ser Val Gly Glu Ala Leu Arg Gln Arg
 225 230 235 240

Thr Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Ser Leu
 245 250 255

Gly Glu Val Ile Asp Arg Ile Ala Arg Glu Gln Val His Arg Leu Val
 260 265 270

Leu Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp
 275 280 285

Ile Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly
 290 295 300

Ala
 305

<210> 5
<211> 20
<212> DNA
<213> Sus scrofa

<400> 5
ggaatttcaa gtcagccaaac

20

8/20

<210> 6
<211> 20
<212> DNA
<213> Sus scrofa

<400> 6
cttcaaaaga ccgtgctact

20

<210> 7
<211> 20
<212> DNA
<213> Sus scrofa

<400> 7
ctggaaacct ctatatgctg

20

<210> 8
<211> 20
<212> DNA
<213> Sus scrofa

<400> 8
tagggaaaata caaatcacag

20

<210> 9
<211> 20
<212> DNA
<213> Sus scrofa

<400> 9
ctccagctca caggatgaca

20

<210> 10
<211> 26
<212> DNA
<213> Sus scrofa

<400> 10
gtttctgcag ctttagcatc tattcc

26

<210> 11
<211> 20
<212> DNA
<213> Sus scrofa

<400> 11
gaagtatcct gggcttctga

20

<210> 12
<211> 26
<212> DNA
<213> Sus scrofa

<400> 12

9/20

gtttctccag gtttccagac atccac

26

<210> 13
<211> 20
<212> DNA
<213> Sus scrofa

<400> 13
gcttcgtct gcccctactt

20

<210> 14
<211> 26
<212> DNA
<213> Sus scrofa

<400> 14
gtttctaagt tctactgtaa gacacc

26

<210> 15
<211> 20
<212> DNA
<213> Sus scrofa

<400> 15
ccaagctgtg gtggctgaat

20

<210> 16
<211> 20
<212> DNA
<213> Sus scrofa

<400> 16
cagcacagca gtgccaccta

20

<210> 17
<211> 19
<212> DNA
<213> Sus scrofa

<400> 17
caaactcttc taggcgtgt

19

<210> 18
<211> 26
<212> DNA
<213> Sus scrofa

<400> 18
gtttctggaa cttccatatg ccatgg

26

<210> 19
<211> 20
<212> DNA
<213> Sus scrofa

10/20

<400> 19
agggtggatg gtaggcttca

20

<210> 20
<211> 20
<212> DNA
<213> Sus scrofa

<400> 20
gtctcgctcc tgaaggaagt

20

<210> 21
<211> 20
<212> DNA
<213> Sus scrofa

<400> 21
agtcacgtgg ccatgctatac

20

<210> 22
<211> 20
<212> DNA
<213> Sus scrofa

<400> 22
ctcaactgga ttgagtcagt

20

<210> 23
<211> 20
<212> DNA
<213> Sus scrofa

<400> 23
ttggcgcaac tgttatttct

20

<210> 24
<211> 19
<212> DNA
<213> Sus scrofa

<400> 24
aggcaaagga agagcacag

19

<210> 25
<211> 18
<212> DNA
<213> Sus scrofa

<400> 25
agccgtgggc atcggtgg

18

<210> 26
<211> 21

11/20

<212> DNA
 <213> Sus scrofa

<400> 26
 agaaggagac agacagggcga

21

<210> 27
 <211> 1873
 <212> ADN
 <213> Sus scrofa

<220>
 <221> CDS
 <222> (1)...(1395)

<400> 27
 atg agc ttc cta gag caa gga gag agc cgt tca tgg cca tcc cga gct 48
 Met Ser Phe Leu Glu Gln Gly Glu Ser Arg Ser Trp Pro Ser Arg Ala
 1 5 10 15

gta acc acc agc tca gaa aga agc cat ggg gac cag ggg aac aag gcc 96
 Val Thr Thr Ser Ser Glu Arg Ser His Gly Asp Gln Gly Asn Lys Ala
 20 25 30

tct aga tgg aca agg cag gag gat gta gag gaa ggg ggg cct ccg ggc 144
 Ser Arg Trp Thr Arg Gln Glu Asp Val Glu Glu Gly Gly Pro Pro Gly
 35 40 45

ccg agg gaa ggt ccc cag tcc agg cca gtt gct gag tcc acc ggg cag 192
 Pro Arg Glu Gly Pro Gln Ser Arg Pro Val Ala Glu Ser Thr Gly Gln
 50 55 60

gag gcc aca ttc ccc aag gcc aca ccc ttg gcc caa gcc gct ccc ttg 240
 Glu Ala Thr Phe Pro Lys Ala Thr Pro Leu Ala Gln Ala Ala Pro Leu
 65 70 75 80

gcc gag gtg gac aac ccc cca aca gag cgg gac atc ctc ccc tct gac 288
 Ala Glu Val Asp Asn Pro Pro Thr Glu Arg Asp Ile Leu Pro Ser Asp
 85 90 95

tgt gca gcc tca gcc tcc gac tcc aac aca gac cat ctg gat ctg ggc 336
 Cys Ala Ala Ser Ala Ser Asp Ser Asn Thr Asp His Leu Asp Leu Gly
 100 105 110

ata gag ttc tca gcc tcg gcg tcg ggg gat gag ctt ggg ctg gtg 384
 Ile Glu Phe Ser Ala Ser Ala Ser Gly Asp Glu Leu Gly Leu Val
 115 120 125

gaa gag aag cca gcc ccg tgc cca tcc cca gag gtg ctg tta ccc agg 432
 Glu Glu Lys Pro Ala Pro Cys Pro Ser Pro Glu Val Leu Leu Pro Arg
 130 135 140

ctg ggc tgg gat gat gag ctg cag aag ccg ggg gcc cag gtc tac atg 480
 Leu Gly Trp Asp Asp Glu Leu Gln Lys Pro Gly Ala Gln Val Tyr Met
 145 150 155 160

cac ttc atg cag gag cac acc tgc tac gat gcc atg gcg acc agc tcc 528
 His Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser
 165 170 175

12/20

aaa ctg gtc atc ttc gac acc atg ctg gag atc aag aag gcc ttc ttt	576
Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe	
180	185
190	
gcc ctg gtg gcc aac ggc gtc cga gcg gca cct ttg tgg gac agc aag	624
Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys	
195	200
205	
aag cag agc ttc gtg ggg atg ctg acc atc aca gac ttc atc ttg gtg	672
Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val	
210	215
220	
ctg cac cgc tat tac agg tcc ccc ctg gtc cag atc tac gag att gaa	720
Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu	
225	230
235	240
gaa cat aag att gag acc tgg agg gag atc tac ctt caa ggc tgc ttc	768
Glu His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe	
245	250
255	
aag cct ctg gtc tcc atc tct ccc aat gac agc ctg ttc gaa gct gtc	816
Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val	
260	265
270	
tac gcc ctc atc aag aac cgg atc cac cgc ctg ccg gtc ctg gac cct	864
Tyr Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro	
275	280
285	
gtc tcc ggg gct gtg ctc cac atc ctc aca cat aag cgg ctt ctc aag	912
Val Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys	
290	295
300	
ttc ctg cac atc ttt ggc acc ctg ctg ccc cgg ccc tcc ttc ctc tac	960
Phe Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr	
305	310
315	320
cgc acc atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gcc gtg	1008
Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val	
325	330
335	
gtg ctg gaa acg gcg ccc atc ctg acc gca ctg gac atc ttc gtg gac	1056
Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp	
340	345
350	
cgg cgt gtg tct gcg ctg cct gtg gtc aac gaa act gga cag gta gtg	1104
Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val	
355	360
365	
ggc ctc tac tct cgc ttt gat gtg atc cac ctg gct gcc caa caa aca	1152
Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr	
370	375
380	
tac aac cac ctg gac atg aat gtg gga gaa gcc ctg agg cag cgg aca	1200
Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr	
385	390
395	400
ctg tgt ctg gaa ggc gtc ctt tcc tgc cag ccc cac gag acc ttg ggg	1248
Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly	
405	410
415	

13/20

```

gaa gtc att gac cgg att gtc cgg gaa cag gtg cac cgc ctg gtg ctc 1296
Glu Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val Leu
        420          425          430

```

gtg gat gag acc cag cac ctt ctg ggc gtg gtg tcc ctc tct gac atc 1344
 Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile
 435 440 445

```

cct cag gct ctg gtg ctc agc cct gct gga att gat gcc ctc ggg gcc 1392
Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala
        450          455          460

```

tga gaaccttggaa acctttgctc tcaggccacc tggcacacacct gaaaqccat 1445

465

gaaggggagcc gtggactca g ctctcacttc ccctcagccc cacttgctgg tctggcttt 1505
gttcaggtag gctccgccccg gggccccctgg cctcagcatc agccccctca g tctccctggg 1565
cacccagatc tcagactggg gcaccctgaa gatgggagtg gcccagctta tagctgagca 1625
gccttgtgaa atctaccagc atcaagactc actgtgggac cactgctttg tcccattctc 1685
agctgaaatg atggagggcc tcataagagg ggtggacagg gcctggagta gaggccagat 1745
cagtgacgtg ctttcaggac ctccggggag tttagagctgc cctctctca g ttcagttccc 1805
ccctgctgag aatgtccctg gaaggaagcc agttaataaa ccttggttgg atgaaatttg 1865
gagagtctg 1873

<210> 28

<211> 464

<212> PRT

<213> Sus scrofa

<400> 28

```

Met Ser Phe Leu Glu Gln Gly Glu Ser Arg Ser Trp Pro Ser Arg Ala
      1           5           10          15
Val Thr Thr Ser Ser Glu Arg Ser His Gly Asp Gln Gly Asn Lys Ala
      20          25          30
Ser Arg Trp Thr Arg Gln Glu Asp Val Glu Glu Gly Gly Pro Pro Gly
      35          40          45
Pro Arg Glu Gly Pro Gln Ser Arg Pro Val Ala Glu Ser Thr Gly Gln
      50          55          60
Glu Ala Thr Phe Pro Lys Ala Thr Pro Leu Ala Gln Ala Ala Pro Leu
      65          70          75          80
Ala Glu Val Asp Asn Pro Pro Thr Glu Arg Asp Ile Leu Pro Ser Asp
      85          90          95
Cys Ala Ala Ser Ala Ser Asp Ser Asn Thr Asp His Leu Asp Leu Gly
      100         105         110
Ile Glu Phe Ser Ala Ser Ala Ala Ser Gly Asp Glu Leu Gly Leu Val
      115         120         125
Glu Glu Lys Pro Ala Pro Cys Pro Ser Pro Glu Val Leu Leu Pro Arg
      130         135         140
Leu Gly Trp Asp Asp Glu Leu Gln Lys Pro Gly Ala Gln Val Tyr Met
      145         150         155         160
His Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser
      165         170         175

```

14/20

Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe
 180 185 190
 Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys
 195 200 205
 Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val
 210 215 220
 Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu
 225 230 235 240
 Glu His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe
 245 250 255
 Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val
 260 265 270
 Tyr Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro
 275 280 285
 Val Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys
 290 295 300
 Phe Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr
 305 310 315 320
 Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val
 325 330 335
 Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp
 340 345 350
 Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val
 355 360 365
 Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr
 370 375 380
 Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr
 385 390 395 400
 Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly
 405 410 415
 Glu Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val Leu
 420 425 430
 Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile
 435 440 445
 Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala
 450 455 460

<210> 29
<211> 2115
<212> ADN
<213> Homo sapiens

<220>
<221> CDS
<222> (1)...(1395)

<400> 29

atg	agc	ttc	cta	gag	caa	gaa	aac	agc	agc	tca	tgg	cca	tca	cca	gct	48
Met	Ser	Phe	Leu	Glu	Gln	Glu	Asn	Ser	Ser	Ser	Trp	Pro	Ser	Pro	Ala	
1															15	

gtg	acc	agc	agc	tca	gaa	aga	atc	cgt	ggg	aaa	cgg	agg	gcc	aaa	gcc	96
Val	Thr	Ser	Ser	Glu	Arg	Ile	Arg	Gly	Lys	Arg	Arg	Ala	Lys	Ala		
20															30	

ttg	aga	tgg	aca	agg	cag	aag	tgc	gtg	gag	gaa	ggg	gag	cca	cca	ggt	144
Leu	Arg	Trp	Thr	Arg	Gln	Lys	Ser	Val	Glu	Glu	Gly	Glu	Pro	Pro	Gly	
35															45	

15/20

cag	ggg	gaa	ggt	ccc	cg	tcc	agg	cca	act	gct	gag	tcc	acc	ggg	ctg	192
Gln	Gly	Glu	Gly	Pro	Arg	Ser	Arg	Pro	Thr	Ala	Glu	Ser	Thr	Gly	Leu	
50															60	
gag	gcc	aca	ttc	ccc	aag	acc	aca	ccc	ttg	gct	caa	gct	gat	cct	gcc	240
Glu	Ala	Thr	Phe	Pro	Lys	Thr	Thr	Pro	Leu	Ala	Gln	Ala	Asp	Pro	Ala	
65															80	
ggg	gtg	ggc	act	cca	cca	aca	ggg	tgg	gac	tgc	ctc	ccc	tct	gac	tgt	288
Gly	Val	Gly	Thr	Pro	Pro	Thr	Gly	Trp	Asp	Cys	Leu	Pro	Ser	Asp	Cys	
85															95	
aca	gcc	tca	gct	gca	ggc	tcc	agc	aca	gat	gat	gtg	gag	ctg	gcc	acg	336
Thr	Ala	Ser	Ala	Ala	Gly	Ser	Ser	Thr	Asp	Asp	Val	Glu	Leu	Ala	Thr	
100															110	
gag	ttc	cca	gcc	aca	gag	gcc	tgg	gag	tgt	gag	cta	gaa	ggc	ctg	ctg	384
Glu	Phe	Pro	Ala	Thr	Glu	Ala	Trp	Glu	Cys	Glu	Leu	Glu	Gly	Leu	Leu	
115															125	
gaa	gag	agg	cct	gcc	ctg	tgc	ctg	tcc	ccg	cag	gcc	cca	ttt	ccc	aag	432
Glu	Glu	Arg	Pro	Ala	Leu	Cys	Leu	Ser	Pro	Gln	Ala	Pro	Phe	Pro	Lys	
130															140	
ctg	ggc	tgg	gat	gac	gaa	ctg	cg	aaa	ccc	ggc	gcc	cag	atc	tac	atg	480
Leu	Gly	Trp	Asp	Asp	Glu	Leu	Arg	Lys	Pro	Gly	Ala	Gln	Ile	Tyr	Met	
145															160	
cgc	tcc	atg	cag	gag	cac	acc	tgc	tac	gat	gcc	atg	gca	act	agc	tcc	528
Arg	Phe	Met	Gln	Glu	His	Thr	Cys	Tyr	Asp	Ala	Met	Ala	Thr	Ser	Ser	
165															175	
aag	cta	gtc	atc	ttc	gac	acc	atg	ctg	gag	atc	aag	aag	gcc	ttt	576	
Lys	Leu	Val	Ile	Phe	Asp	Thr	Met	Leu	Glu	Ile	Lys	Lys	Ala	Phe	Phe	
180															190	
gct	ctg	gtg	gcc	aac	ggt	gtg	cg	gca	gcc	cct	cta	tgg	gac	agc	aag	624
Ala	Leu	Val	Ala	Asn	Gly	Val	Arg	Ala	Ala	Pro	Leu	Trp	Asp	Ser	Lys	
195															205	
aag	cag	agc	ttt	gtg	ggg	atg	ctg	acc	atc	act	gac	ttc	atc	ctg	gtg	672
Lys	Gln	Ser	Phe	Val	Gly	Met	Leu	Thr	Ile	Thr	Asp	Phe	Ile	Leu	Val	
210															220	
ctg	cat	cgc	tac	tac	agg	tcc	ccc	ctg	gac	atc	tat	gag	att	gaa	720	
Leu	His	Arg	Tyr	Tyr	Arg	Ser	Pro	Leu	Val	Gln	Ile	Tyr	Glu	Ile	Glu	
225															240	
caa	cat	aag	att	gag	acc	tgg	agg	gag	atc	tac	ctg	caa	ggc	tgc	ttc	768
Gln	His	Lys	Ile	Glu	Thr	Trp	Arg	Glu	Ile	Tyr	Leu	Gln	Gly	Cys	Phe	
245															255	
aag	cct	ctg	tcc	atc	tct	cct	aat	gat	agc	ctg	ttt	gaa	gct	gtc	816	
Lys	Pro	Leu	Val	Ser	Ile	Ser	Pro	Asn	Asp	Ser	Leu	Phe	Glu	Ala	Val	
260															270	
tac	acc	ctc	atc	aag	aac	cg	atc	cat	cgc	ctg	cct	gtt	ctt	gac	ccg	864
Tyr	Thr	Leu	Ile	Lys	Asn	Arg	Ile	His	Arg	Leu	Pro	Val	Leu	Asp	Pro	
275															285	

16/20

gtg tca ggc aac gta ctc cac atc ctc aca cac aaa cgc ctg ctc aag 912
 Val Ser Gly Asn Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys
 290 295 300

ttc ctg cac atc ttt ggt tcc ctg ctg ccc cg^g ccc tcc ttc ctc tac 960
 Phe Leu His Ile Phe Gly Ser Leu Leu Pro Arg Pro Ser Phe Leu Tyr
 305 310 315 320

cgc act atc caa gat ttg ggc atc ggc aca ttc cga gac ttg gct gtg 1008
 Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val
 325 330 335

gtg ctg gag aca gca ccc atc ctg act gca ctg gac atc ttt gtg gac 1056
 Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp
 340 345 350

cgg cgt gtg tct gca ctg cct gtg gtc aac gaa tgt ggt cag gtc gtg 1104
 Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Cys Gly Gln Val Val
 355 360 365

ggc ctc tat tcc cgc ttt gat gtg att cac ctg gct gcc cag caa acc 1152
 Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr
 370 375 380

tac aac cac ctg gac atg agt gtg gga gaa gcc ctg agg cag agg aca 1200
 Tyr Asn His Leu Asp Met Ser Val Gly Glu Ala Leu Arg Gln Arg Thr
 385 390 395 400

cta tgt ctg gag gga gtc ctt tcc tgc cag ccc cac gag agc ttg ggg 1248
 Leu Cys Leu Glu Gly Val Leu Ser Cys Gin Pro His Glu Ser Leu Gly
 405 410 415

gaa gtg atc gac agg att gct cgg gag cag gta cac agg ctg gtg cta 1296
 Glu Val Ile Asp Arg Ile Ala Arg Glu Gln Val His Arg Leu Val Leu
 420 425 430

gtg gac gag acc cag cat ctc ttg ggc gtg gtc tcc ctc tcc gac atc 1344
 Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile
 435 440 445

ctt cag gca ctg gtg ctc agc cct gct ggc atc gat gcc ctc ggg gcc 1392
 Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala
 450 455 460

tga gaagatctga gtcctcaatc ccaagccaac tgcacactgg aagccaatga 1445
 465

aggaatttag aacagcttca tttccccaaac cccaaatttgc tggttcagct atgattcagg 1505
 cttcttcagc cttccaaaat tgccttgcc ttacttgtgc tcccagaacc cttcgggcat 1565
 gcccagtgca ccatgggatg atgaaattaa ggagaacagc tgagtcaagc ttggaggtcc 1625
 ctgaaccaga ggcacttagga ttacccagg gccatctgtg ctccatgccccc gcccattcccc 1685
 ttgccgcctg actgggtcgg atggcccaag tgggttagt cagggcttct ggattcctcg 1745
 gtttctgggc tacctatggc ttcagccttc agtcctggg agtcccagct gttgtccca 1805
 gcaacgtcgc cactgcccctc ctactctcca ggctttgtca tttcaaggtc gctgaaatgc 1865

17/20

tgcatccatggccaccatggagcagccgttatattatagaactgcctgttggaggtggg 1925
 gagtcctccc tccatttttg tccagaaaac tccttagctc tcgcagttagccatgttttt 1985
 agtctccagg gatggatggc cttgtatatg gaccctgag aatgagcaat tgagaaaaca 2045
 aaacaaaagg aacaatccat gaacttagat ttatggtt tcactaaaa tgctgcagtc 2105
 atttgacctg 2115

<210> 30
 <211> 464
 <212> PRT
 <213> Homo sapiens

<400> 30
 Met Ser Phe Leu Glu Gln Glu Asn Ser Ser Ser Trp Pro Ser Pro Ala
 1 5 10 15
 Val Thr Ser Ser Ser Glu Arg Ile Arg Gly Lys Arg Arg Ala Lys Ala
 20 25 30
 Leu Arg Trp Thr Arg Gln Lys Ser Val Glu Glu Gly Glu Pro Pro Gly
 35 40 45
 Gln Gly Glu Gly Pro Arg Ser Arg Pro Thr Ala Glu Ser Thr Gly Leu
 50 55 60
 Glu Ala Thr Phe Pro Lys .Thr Thr Pro Leu Ala Gln Ala Asp Pro Ala
 65 70 75 80
 Gly Val Gly Thr Pro Pro Thr Gly Trp Asp Cys Leu Pro Ser Asp Cys
 85 90 95
 Thr Ala Ser Ala Ala Gly Ser Ser Thr Asp Asp Val Glu Leu Ala Thr
 100 105 110
 Glu Phe Pro Ala Thr Glu Ala Trp Glu Cys Glu Leu Glu Gly Leu Leu
 115 120 125
 Glu Glu Arg Pro Ala Leu Cys Leu Ser Pro Gln Ala Pro Phe Pro Lys
 130 135 140
 Leu Gly Trp Asp Asp Glu Leu Arg Lys Pro Gly Ala Gln Ile Tyr Met
 145 150 155 160
 Arg Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser
 165 170 175
 Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe
 180 185 190
 Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys
 195 200 205
 Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val
 210 215 220
 Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu
 225 230 235 240
 Gln His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe
 245 250 255
 Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val
 260 265 270
 Tyr Thr Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro
 275 280 285
 Val Ser Gly Asn Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys
 290 295 300
 Phe Leu His Ile Phe Gly Ser Leu Leu Pro Arg Pro Ser Phe Leu Tyr
 305 310 315 320
 Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val
 325 330 335

18/20

Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp
 340 345 350
 Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Cys Gly Gln Val Val
 355 360 365
 Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr
 370 375 380
 Tyr Asn His Leu Asp Met Ser Val Gly Glu Ala Leu Arg Gln Arg Thr
 385 390 395 400
 Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Ser Leu Gly
 405 410 415
 Glu Val Ile Asp Arg Ile Ala Arg Glu Gln Val His Arg Leu Val Leu
 420 425 430
 Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile
 435 440 445
 Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala
 450 455 460

<210> 31
<211> 2022
<212> ADN
<213> Sus scrofa

<400> 31
atggagcttg ccgagactaga gcaggcactg cgcagggtcc cggggtccc ggggggctgg 60
gagctggagc aactgaggcc agagggcaga gggcccca ctgcggatac tccctcctgg 120
agcagcctcg ggggacctaa gcatcaagag atgagttcc tagagcaagg agagagccgt 180
tcatggccat cccgagctgt aaccacccagg tcagaaagaa gccatgggga ccaggggaac 240
aaggcctata gatggacaag gcaggaggat ttagaggaag gggggcctcc gggcccgagg 300
gaaggtcccc agtccaggcc agttgttag tccaccgggc aggaggccac attccccaag 360
gccacacccct tggcccaagg cgctcccttg gccgaggtgg acaacccccc aacagagcgg 420
gacatectcc cctctgactg tgcagccca gcctccgact ccaacacaga ccatctggat 480
ctggcatacg agtttcagc ctcggggcg tgggggatg acettgggt ggtggaaagag 540
aaggcagccc cgtgcccattt cccagaggta ctgttaccca ggctgggctg ggatgttag 600
ctgcagaagc cggggggccca ggtctacatg cacttcatgc aggagcacac ctgctacat 660
gccatggcga ccagctccaa actggtcata ttgcacacca tgctggagat caagaaggcc 720
ttctttgccc tggtgccaa cggcgtccga ggcgcacatt tggggacag caagaagcag 780
agcttcgtgg gatgtgtac catcacagac ttcatctgg tgctgcaccc ctattacagg 840
tccccctgg tccagatcta cgagattgaa gaacataaga ttgagacctg gagggagatc 900
taccccaag gctgtttcaa gcctctggc tccatcttc ccaatgacag cctgttcgaa 960
gctgtctacg ccctcatcaa gaaccggatc caccgcctgc cggtccttgc ccctgtctcc 1020
ggggctgtgc tccacatcc cacacataag cggcttcac agttccttgc catcttggc 1080
accctgtgc cccggcccttc ctccctctac cgcaccatcc aagatttggg catcggcaca 1140
ttcccgagact tggccgtgtt gctggaaacg gcccgcattc tgaccgcact ggacatcttc 1200
gtggaccggc gtgtgtctgc gctgcctgtg tcaacgaaa ctggacagt agtgggcctc 1260
tacttcgtctgtatgtgtat ccacctggct gccaacaaa catacaacca cctggacatcg 1320
aatgtggag aagccctgag gcagcggaca ctgtgtctgg aaggcgtctt ttctgtcc 1380
ccccacgaga ctttggggga agtcattgtac cggattgtcc gggAACAGGT gcacccctg 1440
gtgctcgtgg atgagaccca gcacccctgtt ggcgtgttgc cccctcttcga catttc 1500
gctctggc tcaagccctgc tggaaattgtat gcccctggg cctgagaacc ttggaaacctt 1560
tgctctcagg ccacctggca cacctggaaag ccagtgttgc gggcgttgc ctcagtc 1620
acttcccttc agccccactt gctggcttgc ctccctgttca ggtaggctcc gcccggggcc 1680
cctggcctca gcatcagccc ctcagtc cttggcacc agatctcaga ctggggcacc 1740
ctgaagatgg gagtgccca gcttatagct gagcagcattt gtggaaatcta ccagcatcaa 1800
gactcactgt gggaccactg ctttggccca ttctcagtc aaatgttgc gggcctcata 1860
agaggggtgg acagggcctg gagtagaggc cagatcgtt acgtgccttc aggacccctg 1920
gggagttaga gctggcccttc ctcagttcag ttcccccctg ctgagaatgt ccctggaaagg 1980
aagccagtttataaaaccttg tttggatgga atttggagag tc 2022

19/20

<210> 32

<211> 514

<212> PRT

<213> Sus scrofa

<400> 32

Met	Glu	Leu	Ala	Glu	Leu	Glu	Gln	Ala	Leu	Arg	Arg	Val	Pro	Gly	Ser
1					5				10					15	

Arg	Gly	Gly	Trp	Glu	Leu	Glu	Gln	Leu	Arg	Pro	Glu	Gly	Arg	Gly	Pro
					20			25				30			

Thr	Thr	Ala	Asp	Thr	Pro	Ser	Trp	Ser	Ser	Leu	Gly	Gly	Pro	Lys	His
					35			40			45				

Gln	Glu	Met	Ser	Phe	Leu	Glu	Gln	Gly	Glu	Ser	Arg	Ser	Trp	Pro	Ser
					50			55			60				

Arg	Ala	Val	Thr	Thr	Ser	Ser	Glu	Arg	Ser	His	Gly	Asp	Gln	Gly	Asn
					65			70		75			80		

Lys	Ala	Ser	Arg	Trp	Thr	Arg	Gln	Glu	Asp	Val	Glu	Glu	Gly	Pro
					85			90			95			

Pro	Gly	Pro	Arg	Glu	Gly	Pro	Gln	Ser	Arg	Pro	Val	Ala	Glu	Ser	Thr
					100			105			110				

Gly	Gln	Glu	Ala	Thr	Phe	Pro	Lys	Ala	Thr	Pro	Leu	Ala	Gln	Ala	Ala
					115			120			125				

Pro	Leu	Ala	Glu	Val	Asp	Asn	Pro	Pro	Thr	Glu	Arg	Asp	Ile	Leu	Pro
					130			135			140				

Ser	Asp	Cys	Ala	Ala	Ser	Ala	Ser	Asp	Ser	Asn	Thr	Asp	His	Leu	Asp
					145			150		155			160		

Leu	Gly	Ile	Glu	Phe	Ser	Ala	Ser	Ala	Ala	Ser	Gly	Asp	Glu	Leu	Gly
					165			170			175				

Leu	Val	Glu	Glu	Lys	Pro	Ala	Pro	Cys	Pro	Ser	Pro	Glu	Val	Leu	Leu
					180			185			190				

Pro	Arg	Leu	Gly	Trp	Asp	Asp	Glu	Leu	Gln	Lys	Pro	Gly	Ala	Gln	Val
					195			200			205				

Tyr	Met	His	Phe	Met	Gln	Glu	His	Thr	Cys	Tyr	Asp	Ala	Met	Ala	Thr
					210			215			220				

Ser	Ser	Lys	Leu	Val	Ile	Phe	Asp	Thr	Met	Leu	Glu	Ile	Lys	Lys	Ala
					225			230		235			240		

Phe	Phe	Ala	Leu	Val	Ala	Asn	Gly	Val	Arg	Ala	Ala	Pro	Leu	Trp	Asp
					245			250			255				

Ser	Lys	Lys	Gln	Ser	Phe	Val	Gly	Met	Leu	Thr	Ile	Thr	Asp	Phe	Ile
					260			265			270			275	

Leu	Val	Leu	His	Arg	Tyr	Tyr	Arg	Ser	Pro	Leu	Val	Gln	Ile	Tyr	Glu
					275			280			285				

20/20

Ile Glu Glu His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly
290 295 300

Cys Phe Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu
305 310 315 320

Ala Val Tyr Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu
325 330 335

Asp Pro Val Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu
340 345 350

Leu Lys Phe Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe
355 360 365

Leu Tyr Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu
370 375 380

Ala Val Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe
385 390 395 400

Val Asp Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln
405 410 415

Val Val Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln
420 425 430

Gln Thr Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln
435 440 445

Arg Thr Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr
450 455 460

Leu Gly Glu Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu
465 470 475 480

Val Leu Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser
485 490 495

Asp Ile Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu
500 505 510

Gly Ala

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 March 2001 (22.03.2001)

PCT

(10) International Publication Number
WO 01/20003 A3

(51) International Patent Classification⁷: C12N 15/54,
15/11, 9/12, C12Q 1/68, A01K 67/027, G01N 33/68

(21) International Application Number: PCT/EP00/09896

(22) International Filing Date:
11 September 2000 (11.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
99402236.6 10 September 1999 (10.09.1999) EP
00401388.4 18 May 2000 (18.05.2000) EP

(71) Applicant (for all designated States except US):
INSTITUT NATIONAL DE LA RECHERCHE
AGRONOMIQUE (INRA) [FR/FR]; 147, rue de l'Université, F-75007 Paris (FR).

(71) Applicants and

(72) Inventors: ANDERSSON, Leif [SE/SE]; Bergagatan 30,
S-752 39 Uppsala (SE). LOOFT, Christian [DE/DE];
Mittelweg 3 c, 24802 Bokelholm (DE). KALM, Ernst
[DE/DE]; Schmalholz 1, 24239 Achterwehr (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MILAN, Denis
[FR/FR]; 3 bis, chemin du Tricou, F-31670 Labege (FR).

RORIC, Annie [FR/FR]; 33, rue des Capitouls, F-31650
Saint-Orens-De-Gameville (FR). ROGEL-GAILLARD,
Claire [FR/FR]; 156, rue Léon Maurice Nordmann,
F-75013 Paris (FR). IANNUCCELLI, Nathalie [FR/FR];
7, boulevard des Alouettes, F-31320 Castanet-Tolosan
(FR). GELLIN, Joël [FR/FR]; 8, allée des Amazones,
F-31320 Auzeville (FR). LE ROY, Pascale [FR/FR]; 32,
avenue Saint Marc, F-91300 Massy (FR). CHARDON,
Patrick [FR/FR]; 17, rue de Petite Fontaine, F-91430
Vauhallan (FR).

(74) Agents: VIALLE-PRESLES, Marie-José et al.; Cabinet
Ores, 6, avenue de Messine, F-75008 Paris (FR).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— With international search report.

[Continued on next page]

(54) Title: VARIANTS OF THE GAMMA CHAIN OF AMPK, DNA SEQUENCES ENCODING THE SAME, AND USES THEREOF

WO 01/20003 A3

(57) Abstract: The invention concerns variants of the gamma chain of vertebrate AMP-activated kinase (AMPK), as well as nucleic acid sequences encoding said variants and use thereof for the diagnosis or treatment of dysfunction of energy metabolism.

— *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.* For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(88) Date of publication of the international search report:
17 May 2001

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/09896

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/54 C12N15/11 C12N9/12 C12Q1/68 A01K67/027
G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C12Q A01K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

STRAND, EMBL

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HILLIER ET AL.: "WashU-NCI human EST project" EMBL DATABASE ACC NO: AA178898, 1 January 1997 (1997-01-01), XP002130593 cited in the application abstract	1-5, 11-17
X	ROBIC ET AL.: "A radiation hybrid map of the RN region in pigs demonstrates conserved gene order compared with the human and mouse genomes" MAMMALIAN GENOME, vol. 10, no. 6, June 1999 (1999-06), pages 565-568, XP000876695 cited in the application page 565	29-33
A	page 567; figure 1; table 1	1-28, 32-37
		-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
7 March 2001	19/03/2001
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer van Klompenburg, W

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 00/09896

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97 25341 A (ST VINCENTS INST MED RES ;DARTMOUTH COLLEGE (US); KEMP BRUCE E (AU) 17 July 1997 (1997-07-17) page 18, line 21 - line 34 page 25, line 1 -page 28, line 5 claims 16-21	13-15
A	---	1-12, 16-37
X	WO 98 58052 A (INCYTE PHARMA INC ;CORLEY NEIL C (US); BANDMAN OLGA (US); GOLI SUR) 23 December 1998 (1998-12-23) SEQ ID NOS 7 & 14 page 18, line 21 -page 19, line 8 page 38, line 6 -page 44, line 29 claims 1-24; figure 7	13-15
A	---	1-12, 16-37
X	WATERSTON: "Homo sapiens chromosome unknown clone NH0459I19" EMBL DATABASE ACC NO: AC009974, 9 September 1999 (1999-09-09), XP002130594 abstract	11-16
X	HILLIER ET AL.: "The WashU-Merck EST Project" EMBL DATABASE ACC NO: W94830, 17 July 1996 (1996-07-17), XP002130595 abstract	11-16
A	MILAN ET AL.: "Accurate mapping of the "acid meat" RN gene on genetic and physical maps of pig chromosome 15" MAMMALIAN GENOME, vol. 7, no. 1, January 1996 (1996-01), pages 47-51, XP000876743 cited in the application page 50, column 2 -page 51, column 1; figure 1	1-35
	---	-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/09896

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	<p>CHEUNG ET AL.: "Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding" <i>BIOCHEMICAL JOURNAL</i>, vol. 346, no. 3, 15 March 2000 (2000-03-15), pages 659-669, XP002162237 figures 2,3,5; tables 1,2 -& DATABASE EMBL 'Online' EBI; ACC. NO.: AJ249977, 7 January 2000 (2000-01-07)</p> <p>CARLING : "Homo sapiens mRNA for AMP-activated protein kinase gamma 3 subunit (AMPK gamma 3 gene)" XP002162239 abstract ---</p> <p>MILAN ET AL.: "A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle" <i>SCIENCE</i>, vol. 288, 19 May 2000 (2000-05-19), pages 1248-1251, XP002162238 figures 1,2; tables 1-3</p>	1-4, 11-17, 20,37
P,X		1-33

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT, EP 00/09896

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9725341	A 17-07-1997	AU 714905 B AU 1693697 A CA 2241786 A EP 0873354 A JP 2000503202 T US 6124125 A		13-01-2000 01-08-1997 17-07-1997 28-10-1998 21-03-2000 26-09-2000
WO 9858052	A 23-12-1998	US 5885803 A AU 8154798 A EP 1007692 A		23-03-1999 04-01-1999 14-06-2000