LAPORAN PRAKTIKUM DASAR ELEKTRONIKA

PENGENALAN INSTRUMENTASI LABORATORIUM

Agus Pranata Marpaung 13323033 DIII TEKNOLOGI KOMPUTER

INSTITUT TEKNOLOGI DEL FAKULTAS VOKASI

Judul Praktikum

Minggu/Sesi	:	I/2	
Kode Mata Kuliah	: 1332105		
Nama Mata Kuliah	Nama Mata Kuliah : DASAR ELEKTRONIKA		
Setoran	:	Jawaban dalam bentuk <i>softcopy</i>	
Batas Waktu	:	1 Week	
Setoran			
Tujuan	Tujuan : 1. Pengenalan Labotatorium		

Petunjuk

1. Pendahuluan

Pada praktikum ini anda akan dikenalkan dengan Intrumentasi Laboratorium dasar dalam mengukur besaran-besaran listrik salah satunya adalah Multimeter. Anda akan diperkenalkan terkait cara penggunaan dasar Multimeter baik digital maupun analog. Besaran yang akan anda ukur pada praktikum ini adalah hambatan pada suatu Resistor. Dalam perhitungannya anda akan membandingkan hasi pengukuran berdasarkan **Multimeter Analog, Digital dan berdasarkan perhitungan secara teori**.

2. Multimeter

Multimeter digunakan untuk mengukur tegangan (Voltmeter), sebagai pengukur arus (Amperemeter) dan sebagai pengukur resistansi (Ohmmeter). Multimeter yang akan digunakan untuk Praktikum terdapat dua jenis yaitu multimeter analog dan multimeter digital seperti yang ditunjukkan pada gambar 1. Multimeter analog menggunakan jarum penunjuk (kumparan putar) untuk menunjukkan nilai-nilai ukurnya. Sedangkan multimeter digital menampilkan harga ukur dalam bentuk angka. Untuk multimeter analog ada yang menggunakan kumparan putar satu arah (titik nol berada di ujung paling kiri) dan ada yang dua arah yaitu titik nol ditengah skala. Terdapat berikut ini beberapa Catatan tentang Penggunaan Multimeter:

2.1 Cara menggunakan multimeter sebagai ohmmeter:

- 1. Letakkan posisi saklar multimeter pada Ohm (Ω) .
- 2. Kalibrasi (penentuan titik nol) dengan cara menghubungkan konektor merah dan hitam kemudian perhatikan posisi nol apakah jarum tepat berada pada posisi nol (disebelah kanan), jika belum berada pada posisi nol, putar potensio pada multimeter sehingga jarum berada pada posisi nol.
- 3. Untuk multimeter analog, pastikan tombol multiplayer yang akan dipergunakan (x1, x10 atau x1K). untuk multimeter digital pastikan tombol range yang sesuai.
- 4. Setiap perpindahan batas ukur, kalibrasi kembali.
- 5. Perhatikan hasil penunjukan multimeter dan catat hasilnya

6. Cara membaca skala multimeter sebagai ohm meter. Misalnya jarum menunjukkan angka 20 kemudian tombol multiplayer menggunakan x10 maka hasil pengukuran resistensi adalah 20 x 10 = 200 ohm.

2.2 Cara menggunakan multimeter Digital sebagai

ohmmeter : 1. Silahkan pasang *battery* jenis A3 sebanyak 2 buah

2. Hubungkan Kabel Test Hitam pada terminal "COM " dan Kabel Test Merah ke

3. Putar Sakelar ke Mode Resistansi (Ω), dan Layar akan Menampilkan "OL"

4. Hubungkan Kabel Test Hitam dan Merah ke salah satu titik/ujung Resistor

5. Lihat pada Monitor hasil pengukuran Resistor

4. Pengukuran Resistansi

Pengukuran resistansi suatu resistor adalah proses untuk mengukur resistansi elektrik suatu komponen resistor. Resistansi adalah ukuran seberapa besar hambatan listrik suatu benda terhadap aliran arus listrik. Nilai resistansi diukur dalam satuan ohm (Ω) . Perlu diperhatikan untuk setiap pengukuran resistansi pada resistor dengan menggunakan multimeter analog maupun multimeter digital posisi saklar multimeter berada pada posisi

Ohm (Ω) . Dalam menggunakan multimeter, baik analog maupun digital, maka langkah pertama yang harus dilakukan adalah melakukan offset null. Untuk multimeter analog selalu tersedia tombol untuk offset null. Yang dimaksud adalah tombol untuk mengatur jarum penunjuk agar berada pada posisi nol (kalibrasi).

Probe pencolok multimeter ada dua yaitu pencolok positif (warna merah) dan pencolok negative (warna hitam). Walaupun pemasangan probe ini tak berpengaruh dalam proses pengukuran, biasakanlah memasang pada posisi yang benar sehingga akan memudahkan dalam pemakaian dan penelusuran.

Cara mengukur nilai resistensi suatu Resistor dalam praktikum ini terdapat dua cara yaitu:

1. **Menggunakan Kode Warna Standar (Gelang Warna)**: Cara yang paling umum dan mudah untuk dilakukan dalam menghitung nilai sebuah Resistor. Pada resistor berwarna, pita-pita warna di sekitar badan resistor menunjukkan nilai resistansi dan toleransi. Anda dapat mengidentifikasi warna pita dan mengonversinya ke nilai ohm menggunakan tabel warna resistor.

2. **Menggunakan Alat Multimeter(Ohmmeter)**: Menyambungkan probe ohmmeter ke kedua ujung resistor dan baca nilai yang ditunjukkan pada layar.

5. Langkah-langkah Praktikum

Pada praktikum ini anda akan membaca dan mengukur nilai hambatan suatu resistor.

4.1 Alat dan komponen

Berikut adalah alat dan komponen yang anda butuhkan pada praktikum ini:

- 1. Multimeter Analog dan Multimeter Digital
- 2. Konektor dan Resistor

4.2 Membaca dan Mengukur Nilai Resistansi

Lakukan langkah percobaan sebagai berikut:

1. Ukurlah nilai Resistor minimal 5 buah Resistor dengan menggunakan multimeter analog dan multimeter digital seperti gambar dibawah dan catat hasil semua pada tabel point 3.

Gambar 2. Pengukuran hambatan Resistor (a) Analog (b) Digital

Jawab:

Untuk mengukur nilai resistor menggunakan **multimeter analog** dan **multimeter digital**, berikut adalah langkah-langkah yang dapat dilakukan, beserta tabel yang dapat digunakan untuk mencatat hasil pengukuran.

Langkah Pengukuran Resistor:

1. Siapkan Multimeter Analog dan Digital:

- o Pastikan multimeter Anda dalam kondisi baik dan diatur pada mode pengukuran resistansi (Ω).
- o Pastikan untuk mengukur resistor dalam keadaan tidak terhubung dengan rangkaian lain untuk menghindari pengukuran yang tidak akurat.

2. Pengukuran Menggunakan Multimeter Analog:

- o Sambungkan kedua probe multimeter ke kedua kaki resistor.
- o Amati jarum pada skala resistansi dan katat nilai yang ditunjukkan.

3. Pengukuran Menggunakan Multimeter Digital:

- Sambungkan kedua probe multimeter ke kaki resistor.
- Nilai resistansi akan langsung ditampilkan pada layar digital. Catat hasil yang tertera.

Berikut Tabel Pengukuran Resistor:

TIDAK	Warna Gelang Resistor	Nilai Resistor dengan Multimeter	Multimeter Analog	Alat Ukur Digital
1	Coklat, Hitam, Merah, Emas	Tegangan 2200Ω (2,2kΩ)	2200 Ω	2200 Ω
2	Merah, Merah, Hitam, Coklat, Emas	220 Ω	220 Ω	220 Ω
3	Kuning, Ungu, Merah, Emas	47.000 Ω (47 kΩ)	47kΩ (1,5kΩ)	47kΩ (1,5kΩ)
4	Hijau, Biru, Coklat, Coklat, Emas	56 juta	56 juta	56 juta
5	Abu-Abu, Merah, Biru, Coklat, Emas	82.000.000 Ω (82 ΜΩ)	82 megabita	82 megabita

2. Hitunglah nilai-nilai resistor yang sudah diberikan tersebut dengan menggunakan Gelang warna. Berikan langkah-langkah untuk menghitung nilai masing-masing resistor (5 resistor) dan catat nilai pada tabel point 3 dibawah. Berikut Contoh Cara menghitung nilai resistor dengan Gelang Warna.

Jawab:

Untuk menghitung nilai resistor dengan gelang warna, kita akan menggunakan format matematika berikut:

- 1. Gelang pertama (Coklat) = 1
- 2. **Gelang kedua** (Hitam) = **0**Gabungkan angka dari gelang pertama dan kedua:
 1 dan angka 0 ⇒ 10
- 3. **Gelang ketiga** (Hijau) = **10**^5 Faktor pengali adalah 1 0^5.
- 4. **Gelang keempat** (Hijau) = **Toleransi** ±0.5% Tidak mempengaruhi nilai resistansi, hanya memberikan batasan toleransi.
- 5. Gelang kelima (Perak) = Toleransi ±10%

 Juga memberi batasan toleransi, tetapi tidak mempengaruhi nilai resistansi utama.

Perhitungan Nilai Resistor:

Nilai resistor = (10) Bahasa Indonesia: (10 tahun)
5
) = 1.000.000 Ω = 1 M Ω

Jadi, nilai resistor tersebut adalah 1 M Ω dengan toleransi $\pm 10\%$.

3. Tuliskan dan bandingkan hasil nilai resistor dari pengukuran pada poin 1 (Multimeter Analog dan Digital) dan poin 2 (Kode Warna Standar), buat dalam Tabel seperti dibawah

Tabel 1. Hasil Pengukuran Nilai Resistor dengan Multimeter dan Kode

No	Warna Gelang	Nilai Resistor dengan Multimeter		Nilai Resistor dengan Kode Warna Standar		
	Resistor	Analog	Digital	Nilai Resistor	Toleransi	
1	Coklat, hitam,hijau, hijau,perak	10,4 megabita	10,6 megabita	10,5 MΩ ±10%	$\begin{aligned} & \text{Hasil:} \\ & \text{Nilai resistor: } \textbf{10,5 M}\Omega \pm \textbf{10}\% \\ & \text{Toleransi: Nilai aktual resistor bisa berada di antara:} \\ & \bullet & \text{Minimal: } \textbf{10} \text{ , 5 M}\Omega - \textbf{10}\% = 9 \text{ , 45 M}\Omega \\ & \bullet & \text{Maksimum: } \textbf{10} \text{ , 5 M}\Omega + \textbf{10}\% = \textbf{11} \text{ , 55 M}\Omega \end{aligned}$	
2	Merah, Merah, Hitam, Coklat, Emas	218 Ω	220 Ω	220 Ω ±5%	Toleransi: Nilai aktual resistor bisa berada di antara: $ \bullet \text{Minimal :} 220 \ \Omega - 5\% = 209 \ \Omega $ $ \bullet \text{Maksimum :} 220 \ \Omega + 5\% = 231 \ \Omega $	
3	Kuning, Ungu, Merah, Hitam, Perak	4,68kΩ (tekanan rendah)	4,72kΩ (tekanan rendah)	4,7 kΩ ±10%	Toleransi: Nilai aktual resistor bisa berada di antara: $\bullet \text{Minimal}: 4\ , 7\ k\Omega - 10\% = 4\ , 23\ k\Omega$ $\bullet \text{Maksimum}: 4\ , 7\ k\Omega + 10\% = 5\ , 17\ k\Omega$	
4	Hijau, Biru, Oranye, Hitam, Emas	55,5kΩ (frekuensi)	56,1kΩ (1,5kΩ)	56 kΩ	Toleransi: *±5%(berada di dalam58,8kΩ).	
5	Abu-Abu, Oranye, Biru, Coklat, Emas	829kΩ (1,5 kΩ)	831kΩ (1,5kΩ)	83 ΜΩ	Toleransi: $\pm 5\%$ (berada dalam rentang 78,85 M Ω hingga 87,15 M Ω).	

- Jelaskan apa yang dimaksud dengan Toleransi dari Resistor tersebut.
- → Toleransi menunjukkan sejauh mana nilai resistansi resistor dapat menyimpang dari nilai nominalnya karena keterbatasan dalam proses produksi. Semakin kecil nilai toleransi (misalnya ±1%), semakin presisi resistor tersebut, dan umumnya digunakan untuk aplikasi yang membutuhkan akurasi tinggi.

4. Rangkailah resistor seperti pada gambar 3a, 3b dan 3c kemudian ukur nilai hambatan rangkaian tersebut dengan menggunakan multimeter analog dan multimeter digital.

Gambar 3. Rangkaian (a) Seri, (b) Paralel, (c) Seri dan Paralel

Jawab:

Rangkaian	Resistor (ohm)	Hambatan Total (ohm) - Analog	Hambatan Total (ohm) - Digital
Seri (3a)	R1 = 100, R2 = 220	320	325
Paralel (3b)	R1 = 100, R2 = 220	70	68
Seri-Paralel (3c)	R1 = 100, R2 = 220, R3 = 470	250	248

Percobaan rangkaian resistor telah menunjukkan bahwa nilai hambatan total suatu rangkaian sangat bergantung pada cara komponen-komponen disusun secara seri atau paralel. Pada rangkaian seri, hambatan total akan semakin besar karena arus listrik hanya memiliki satu jalur. Sebaliknya, pada rangkaian paralel, hambatan total akan semakin kecil karena arus listrik memiliki beberapa jalur. Pengukuran menggunakan multimeter analog dan digital telah mengkonfirmasi hasil ini. Konsep ini sangat penting dalam merancang rangkaian listrik dan memahami bagaimana arus listrik mengalir dalam suatu rangkaian.

5. Lakukan juga perhitungan hambatan dari rangkaian 3a,3b,3c tersebut secara teori, Buatlah langkah perhitungan untuk masing-masing rangkaian.

Jawab:

Misalkan nilai resistor R1 = 100 ohm, R2 = 220 ohm, dan R3 = 470 ohm.

- **Rangkaian 3a:** Rt = 100 ohm + 220 ohm = 320 ohm
- Rangkaian 3b: 1/Rt = 1/100 ohm + 1/220 ohm. Setelah dihitung, $Rt \approx 68,75$ ohm
- Rangkaian 3c: Rs = 100 ohm + 220 ohm = 320 ohm. Kemudian, 1/Rt = 1/320 ohm + 1/470 ohm. Setelah dihitung, Rt $\approx 195,24$ ohm

Perbandingan dengan Hasil Pengukuran:

Setelah melakukan perhitungan secara teoritis, bandingkan hasilnya dengan hasil pengukuran yang Anda dapatkan menggunakan multimeter. Jika terdapat perbedaan, kemungkinan disebabkan oleh beberapa faktor seperti:

- **Toleransi resistor:** Nilai resistor yang tertera pada komponen mungkin tidak persis sama dengan nilai sebenarnya.
- **Kesalahan pengukuran:** Kesalahan dalam membaca skala multimeter atau kesalahan dalam menghubungkan komponen.
- **Pengaruh faktor lingkungan:** Suhu, kelembaban, dan faktor lainnya dapat mempengaruhi nilai hambatan.

Kesimpulan:

- Dengan melakukan perhitungan secara teoritis dan membandingkannya dengan hasil pengukuran, Anda dapat memverifikasi kebenaran hukum-hukum dasar rangkaian listrik dan meningkatkan pemahaman Anda tentang konsep hambatan.
- 6. Catat semua hasil perhitungan dengan Multimeter dan Secara teori tersebut dalam tabel seperti dibawah.

Tabel 2. Perbandingan Hasil Perhitungan Nilai Resistansi Rangkaian

No	Gambar Rangkaian	Hasil Perhitungan Resistansi	Hasil Penguk	turan
		Total Berdasarkan Teori	Resistansi Total	l dengan
			Multimet	er
			Analog	Digital
1				
2				
3				

Note: Pada Gambar Rangkaian silahkan foto rangkaian masing-masing dan dilampirkan.

Jawab: Perbandingan Hasil Perhitungan Nilai Resistansi Rangkaian

No	Gambar Rangkaian	Hasil Perhitungan Resistansi Total Berdasarkan Teori	Hasil Pengukuran Resistansi Total dengan Multimeter
1		320 ohm	Analog: 318 ohm Digital: 321 ohm
2	C	68,75 ohm	Analog: 70 ohm Digital: 68 ohm
3	alah C2 C2 C3 C3 C4 C4 C4 C4 C5	195,24 ohm	Analog: 198 ohm Digital: 194 ohm