Activité 1.1 - Représenter des molécules organiques

Objectifs:

- Rappeler les règles de formation des molécules et la valence d'un atome
- Rappeler les différentes représentations des molécules organiques

Contexte: Les atomes de carbones peuvent se lier entre eux pour former des **chaînes carbonées**, de formes et de tailles variées. Ces chaînes carbonées, une fois liée à des atomes d'hydrogène, d'oxygène ou d'azote, forment des **molécules organiques**. Il existe ainsi des millions de molécules organiques différentes.

→ Comment peut-on représenter ces molécules?

1 - La valence

Document 1 – Éléments composant un corps humain

Le corps humain est composé majoritairement de 4 éléments chimiques :

- l'oxygène O (65 % en masse),
- l'hydrogène H (10%)

• le carbone C (18%),

• et l'azote N (3%).

Numéro atomique : il correspond au nombre de protons d'un atome et est noté $Z: {}^{A}_{Z}X$ (

 \rightarrow Exemple : $^{12}_{6}$ C) Par neutralité de l'atome, c'est aussi son nombre d'électrons.

Document 2 - Liaison moléculaire

À partir du numéro atomique d'un atome, on peut déterminer sa structure électronique en couche (1, 2 ou 3) et sous-couche (s ou p), puis sa **valence** (mono, bi, tri ou tétravalent).

Pour former des molécules, les atomes partagent les électrons de leur couche externe pour former des liaison covalentes. Chaque liaison covalente apporte 1 électron à l'atome. La valence est le nombre de liaisons formées par l'atome.

La couche 1 contient au maximum 2 électrons et les couches 2 et 3 contiennent jusqu'à 8 électrons.

Les atomes cherchent à remplir leur couche externe : c'est la règle du **duet** (couche 1) ou de **l'octet** (couche 2 ou 3).

Pour connaître la valence d'un atome, il suffit donc de compter combien d'électrons il lui manque pour remplir sa couche externe.

- \rightarrow Exemple : $_6$ C : 1^2 2^4 , il lui manque 4 électrons pour compléter sa couche externe et respecter la règle de **l'octet**. Il fera donc 4 liaisons, il est **tétravalent**.
- 1 Indiquer la configuration électronique de l'oxygène ₈C, combien d'électrons il lui manque pour respecter la règle du duet ou de l'octet, le nombre de liaisons ainsi formées et sa valence.

.....

Chapitre 1 – Representation des molecules organiques	ninale ST2
${\bf 2}$ — Même question pour l'azote $_7{\rm N}$ et l'hydrogène $_1{\rm H}$.	
Document 3 – Liaisons multiples	
Pour compléter leur couche externe et respecter la règle de l'octet, deux atomes peuve lier en formant 2 ou 3 liaisons covalentes.	nt se
On dit qu'il y a une ou une	
3 – Indiquer si les liaisons sont simples, triples ou doubles sur les molécules suivantes	:
$N \equiv N \qquad O = C = O \qquad H - C \equiv N$	
2 – Représentation des molécules A – La formule brute	
Document 4 – Formule brute	
Document 4 – Formule brute	
Elle indique le nombre de chaque atomes présents dans la molécule.	
Elle permet de calculer facilement les masses molaires et de vérifier si deux moléculeisomères. Par contre elle ne permet pas de déterminer la géométrie d'une molécule.	les sont
Deux molécules sont isomères si elles ont la même formule brute, mais un agencemen atomes différents.	t des
→ $Exemple$: Le butane C_4H_{10} , l'éthanol C_2H_6O ou l'acide carbonique CH_2O_3	
L'oxybenzone est une molécule utilisée pour protéger des UVA et B issu du soleil. Sa formul	

La taurine est un acide aminé produit naturellement dans le corps humain.

Sa représentation avec un modèle moléculaire est présentée ci-contre.

5 - Donner la formule brute de la taurine.

B - La formule développée

Document 5 - Formule développée

Elle représente tous les éléments chimiques et toutes les liaisons dans le même plan.

 \rightarrow Exemples:

Pour les molécules linéaire, on peut passer de la formule brute à la formule développée **en comptant** les liaisons formées par chaque éléments composant la molécule.

6 - Compléter le tableau suivant :

Formule brute	Méthane CH ₄	Propane C ₃ H ₈	Eau oxygénée H ₂ O ₂	Méthanol CH ₄ O
Nombre d'éléments	Carbone : 1 Hydrogène : 4	C: H:8	H: O:	C: H:4 O:
Nombre de liaisons	C: 4 liaisons H: 1 liaison		H: liaison O: liaisons	C: liaisons H: liaison O: liaisons
Formule développée	H H – C – H H			

C – La formule semi-développée

Document 6 – Formule semi-développée

Comme la formule développée, elle représente tous les éléments chimiques, mais elle ne détaille pas les liaisons des éléments **hydrogènes**.

 \rightarrow Exemples:

$$HO-CH_2-CH_3$$
 $Cl-CH_2-SiH_3$ HO

éthanol chlorométhylsilane paracétamol

Pour passer de la formule développée à la formule semi-développée, il suffit de

- → surligner tous les hydrogènes et leur liaison;
- → recopier tous ce qui n'est pas surligné;
- → indiquer les hydrogènes et leur nombres à côté de l'élément auxquels ils sont liés.
 - 7 Compléter le tableau suivant :

Écriture développée	H H H-C-C-H H H	H > N - N < H	$H \subset C \subset H$	$\begin{array}{c} H \\ H - C - C \stackrel{\frown}{\underset{H}{<}} O - H \end{array}$
Écriture semi-développée	H_3C — CH_3			

D - La formule topologique

Document 7 - Formule topologique

Elle représente les liaisons carbone-carbone C—C par des segments formant des angles. Chacune des extrémités d'un segment représente un carbone, sauf si un autre élément chimique y est attaché. Les éléments carbones et les hydrogènes qui sont attachés aux carbones ne sont pas représentés. Tous les autres éléments chimiques sont représentés normalement.

→ Exemples :

$$_{\mathrm{HO}}$$
 $_{\mathrm{Cl}}$ $_{\mathrm{SiH_{3}}}$ $_{\mathrm{HO}}$

éthanol chlorométhylsilane paracétamol