

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BSM102 Mathematics -IB UPID: 001035

Time Allotted : 3 Hours Full Marks :70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following: $[1 \times 10 = 10]$

- Elementary operations on a matrix do not alter its rank.
 (a) true (b) false
- The value of $\Gamma\left(\frac{5}{2}\right)$ is _____.
- Whether Rolle's theorem is applicable in [-1, 1] to the function $f(x) = x^2 + 1$?
- (IV) Find the period of the function f(x) = Sinx.
- (V) I f(x, y) is a homogeneous function of degree 5 then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \underline{\hspace{1cm}}$
- (VI) Find the condition that the square matrix A will be idempotent.
- The series $\sum \frac{1}{n^p}$ is convergent if p is ______.
- (VIII) Find the directional derivative of f(x, y, z) in the direction of positive x-axis.
- (IX) If A is a symmetric as well as a skew symmetric matrix, then A must be a _____ matrix.
- The improper integral $\int_{1}^{\infty} \frac{x \, dx}{(1+x)^3}$ converges.

Whether the statement is TRUE or FALSE?

- (XI) The function f(x) = Sinx obeys Rolle's theorem in $[0, \pi]$ (a) true (b) false
- (XII) Find the period of the function $f(x) = 2|\cos 2x|$.

Group-B (Short Answer Type Question)

Answer any three of the following $[5 \times 3 = 15]$

2.
$$\lim_{\text{Evaluate}} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right).$$
 [5]

- 3. Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ where $\vec{F} = \operatorname{grad}(x^3 + y^3 + z^3 3xyz)$. [5]
- 4. Use Mean Value Theorem to prove that $\frac{x}{1+x} < \log(1+x) < x$ if x>0. [5]
- 5. Show that the following series is absolutely convergent: $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}.$ [5]
- 6. If $O(v^2 x^2, v^2 y^2, v^2 z^2) = 0$, where v is a function of x,y,z, then show that $\frac{1}{x} \frac{\partial v}{\partial x} + \frac{1}{y} \frac{\partial v}{\partial y} + \frac{1}{z} \frac{\partial v}{\partial z} = \frac{1}{v}.$ [5]

Group-C (Long Answer Type Question)

Answer any three of the following [$15 \times 3 = 45$]

7. (a) Show that the following integral is convergent. Hence find its value. [5]

$$\int_{0}^{x} \frac{dx}{(1+x)\sqrt{x}}$$

- (b) $\frac{\pi}{2} \sin^4 x \cos^5 x dx = \frac{8}{315}$. [5]
- (c) The arc of the parabola $y = x^2$ from (1.1) to (2.4) is rotated about the y axis. Find the area of the resulting surface. [5]
- 8. (a) State Rolle's Theorem and show that it is not applicable to $f(x) = \tan x$ in $[0,\pi]$, although $f(0) = f(\pi)$. [5]
 - (b) Verify Lagrange's mean Value Theorem for f(x) = x(x-1)(x-2) in [0,1/2]. [5]
 - (c) Verify Cauchy's mean Value Theorem for $f(x) = \sin x$ and $g(x) = \cos x$ in $[-\pi/2,0]$. [5]
- 9. (a) Find the value of x for which the function $f'(x) = x^4 8x^3 + 22x^2 24x + 5$ has maximum and minimum. Find the maximum and minimum values.
 - (b) Show that $\cos x \sin^3 x$ is maximum at $x = \frac{\pi}{3}$.
- 10. (a) Show that the following series is conditionally convergent: $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ [7]
- (b) Expand sinx in a power series in x. [8]
- 11. (a) Show that the largest rectangle inscribed in a circle is a square. [8]
 - (b) For a given volume of a right circular cone, show that the curved surface is minimum when the semi-vertical angle is $\sin^{-1}(1/\sqrt{3})$.

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay 就