Extended Kalman Filters

Nonlinear Dynamic Systems

 Most realistic robotic problems involve nonlinear functions

$$x_t = g(u_t, x_{t-1})$$

$$z_t = h(x_t)$$

Linearity Assumption Revisited

Non-linear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

EKF Linearization: First Order Taylor Series Expansion

• Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

• Correction:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

EKF Algorithm

1. Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

2. Prediction:

3.
$$\overline{\mu}_t = g(u_t, \mu_{t-1})$$
 $\overline{\mu}_t = A_t \mu_{t-1} + B_t u_t$

$$\mathbf{4.} \qquad \overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t \qquad \qquad \mathbf{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

5. Correction:

$$K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1} \qquad \longleftarrow \qquad K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

7.
$$\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$$
 $\qquad \qquad \qquad \qquad \mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t)$

8.
$$\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$$
 $\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$

9. Return
$$\mu_t$$
, Σ_t

$$H_t = \frac{\partial h(\overline{\mu}_t)}{\partial x_t} \qquad G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}}$$

Localization

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities."

[Cox '91]

Given

- Map of the environment
- Sequence of sensor measurements

Wanted

Estimate of the robot's position

Problem classes

- Position tracking
- Global localization
- Kidnapped robot problem (recovery)

Landmark-based Localization

EKF_localization (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Prediction:

2.
$$G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} = \begin{pmatrix} \frac{\partial x'}{\partial \mu_{t-1,x}} & \frac{\partial x'}{\partial \mu_{t-1,y}} & \frac{\partial x'}{\partial \mu_{t-1,\theta}} \\ \frac{\partial y'}{\partial \mu_{t-1,x}} & \frac{\partial y'}{\partial \mu_{t-1,y}} & \frac{\partial y'}{\partial \mu_{t-1,\theta}} \\ \frac{\partial \theta'}{\partial \mu_{t-1,x}} & \frac{\partial \theta'}{\partial \mu_{t-1,y}} & \frac{\partial \theta'}{\partial \mu_{t-1,\theta}} \end{pmatrix}$$
 Jacobian of g w.r.t location

$$\mathbf{4.} \quad V_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial u_{t}} = \begin{pmatrix} \frac{\partial x'}{\partial v_{t}} & \frac{\partial x'}{\partial \omega_{t}} \\ \frac{\partial y'}{\partial v_{t}} & \frac{\partial y'}{\partial \omega_{t}} \\ \frac{\partial \theta'}{\partial v_{t}} & \frac{\partial \theta'}{\partial \omega_{t}} \end{pmatrix}$$

Jacobian of g w.r.t control

5.
$$M_{t} = \begin{pmatrix} (\alpha_{1} | v_{t} | + \alpha_{2} | \omega_{t} |)^{2} & 0 \\ 0 & (\alpha_{3} | v_{t} | + \alpha_{4} | \omega_{t} |)^{2} \end{pmatrix}$$
 Motion noise

6.
$$\overline{\mu}_{t} = g(u_{t}, \mu_{t-1})$$
7. $\overline{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{T} + V_{t} M_{t} V_{t}^{T}$

Predicted mean Predicted covariance

EKF_localization (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Correction:

2.
$$\hat{z}_t = \begin{pmatrix} \sqrt{(m_x - \overline{\mu}_{t,x})^2 + (m_y - \overline{\mu}_{t,y})^2} \\ \tan 2(m_y - \overline{\mu}_{t,y}, m_x - \overline{\mu}_{t,x}) - \overline{\mu}_{t,\theta} \end{pmatrix}$$
 Predicted measurement mean

4.
$$H_t = \frac{\partial h(\overline{\mu}_t, m)}{\partial x_t} = \begin{pmatrix} \frac{\partial r_t}{\partial \overline{\mu}_{t,x}} & \frac{\partial r_t}{\partial \overline{\mu}_{t,y}} & \frac{\partial r_t}{\partial \overline{\mu}_{t,\theta}} \\ \frac{\partial \varphi_t}{\partial \overline{\mu}_{t,x}} & \frac{\partial \varphi_t}{\partial \overline{\mu}_{t,y}} & \frac{\partial \varphi_t}{\partial \overline{\mu}_{t,\theta}} \end{pmatrix}$$
 Jacobian of h w.r.t location

$$\mathbf{5.} \quad Q_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_r^2 \end{pmatrix}$$

$$S_t = H_t \overline{\Sigma}_t H_t^T + Q_t$$

7. $K_t = \overline{\Sigma}_t H_t^T S_t^{-1}$

$$8. \quad \mu_t = \overline{\mu}_t + K_t(z_t - \hat{z}_t)$$

9. $\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$

Pred. measurement covariance

Kalman gain

Updated mean

Updated covariance

rediction

EKF Localization

$$\mu_t = \text{estimate of } (x_t, y_t, \theta_t)^T$$

$$u_t = (v_t, \omega_t)^T$$

```
1: Algorithm EKF_localization_known_correspondences(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, c_t, m):
                                                                                                                     state estimate from prior time
2: \theta = \mu_{t-1,\theta} state estimate from prior time

3: G_t = \begin{pmatrix} 1 & 0 & -\frac{v_t}{\omega_t} \cos\theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 1 & -\frac{v_t}{\omega_t} \sin\theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ 0 & 0 & 1 \end{pmatrix} Jacobian of g(u_t, x_{t-1}) wrt state

4: V_t = \begin{pmatrix} \frac{-\sin\theta + \sin(\theta + \omega_t \Delta t)}{\omega_t} & \frac{v_t(\sin\theta - \sin(\theta + \omega_t \Delta t))}{\omega_t} + \frac{v_t\cos(\theta + \omega_t \Delta t)\Delta t}{\omega_t} \\ 0 & \Delta t \end{pmatrix} Jacobian of g(u_t, x_{t-1}) wrt inputs

5: M_t = \begin{pmatrix} \alpha_1 v_t^2 + \alpha_2 \omega_t^2 & 0 \\ 0 & \alpha_3 v_t^2 + \alpha_4 \omega_t^2 \end{pmatrix} noise in control space

6: \bar{\mu}_t = \mu_{t-1} + \begin{pmatrix} \frac{v_t}{\omega_t} \cos\theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos\theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos\theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \end{pmatrix} \bar{\mu}_t = g(u_t, \mu_{t-1})

7: \bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + V_t \; M_t \; V_t^T \leftarrow uncertainty in states due to motion noise \int \sigma_t^2 \; 0 \; \phi uncertainty in states at time (t-1)
                                               \theta = \mu_{t-1,\theta}
          8: Q_t = \begin{pmatrix} \sigma_r^2 & 0 & 0 \\ 0 & \sigma_\phi^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} uncertainty in states at time (t-1) uncertainty due to measurement noise
```

EKF Localization

 s_t^i is signature of i^{th} landmark (we won't estimate this)

```
for all observed features z_t^i = (r_t^i \ \phi_t^i \ \vec{s_t})^T do
                        10: j = c_t^i i<sup>th</sup> feature at time t corresponds to j^{th} landmark in map
                        11: q = (m_{j,x} - \bar{\mu}_{t,x})^2 + (m_{j,y} - \bar{\mu}_{t,y})^2 range squared (based on estimate)
            correction
                      12: \hat{z}_{t}^{i} = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(m_{j,y} - \bar{\mu}_{t,y}, m_{j,x} - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta} \end{pmatrix} \text{ estimate of measurement (range and bearing)}
\begin{pmatrix} -\frac{m_{j,x} - \bar{\mu}_{t,x}}{\sqrt{q}} & -\frac{m_{j,y} - \bar{\mu}_{t,y}}{\sqrt{q}} & 0 \\ \frac{m_{j,y} - \bar{\mu}_{t,y}}{q} & -\frac{m_{j,x} - \bar{\mu}_{t,x}}{q} & -1 \\ 0 & 0 & 0 \end{pmatrix} \text{ Jacobian of } h(x_{t}, j, m)
uncertainty in \hat{z}_t
                                  S_t^i = H_t^i \ \bar{\Sigma}_t \ [H_t^i]_t^T + Q_t uncertainty due to measurement noise uncertainty in measurement due to uncertainty in robot state
    Kalman gain
                        16: \bar{\mu}_t = \bar{\mu}_t + K_t^i(z_t^i - \hat{z}_t^i) Kalman gain maps innovation in
                        17: \bar{\Sigma}_t = (I - K_t^i H_t^i) \bar{\Sigma}_t measurement space into state space
                               endfor
                                                                                Update state uncertainty
                        19: \mu_t = \bar{\mu}_t
                                                                                based on measurement
                        20: \Sigma_t = \bar{\Sigma}_t
                        21: p_{z_t} = \prod_i \det (2\pi S_t^i)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (z_t^i - \hat{z}_t^i)^T [S_t^i]^{-1} (z_t^i - \hat{z}_t^i) \right\}
                                  return \mu_t, \Sigma_t, p_{z_t}
```

EKF Prediction Step

EKF Observation Prediction Step

EKF Correction Step

Kalman gain maps innovation vector from measurement space to state space The more likely the measurement the larger the correction step

measurement space

state space

Estimation Sequence (1)

More accurate sequence

Estimation Sequence (2)

Less accurate sequence

Comparison to GroundTruth

EKF Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: $O(k^{2.376} + n^2)$

- Not optimal!
- Can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!

MATLAB IMPLEMENTATION

Modified measurement update

- Sometimes a well-implemented textbook EKF can struggle to estimate states well and it is necessary to apply the art and skill of design (aka hacks)
- One approach is to tune the filter by choosing noise covariance parameters that improve results
 - Often these are the process noise parameters since the plant model is often the source of greatest uncertainty
- Other methods are used to prevent the EKF from updating the state estimate too aggressively
- One method that has been necessary with the TurtleBot is to saturate the measurement residual

```
sat = 0.05;
residual = z - zhat;
residual = saturate(residual, -sat, sat);
update = K*residual;
mu = mu + update;
Sig = (eye(3) - K*H)*Sig;
```

- More rigorous approaches exist
 - E.g., Kevin M. Brink. "Partial-Update Schmidt-Kalman Filter", Journal of Guidance, Control, and Dynamics, Vol. 40, No. 9 (2017), pp. 2214-2228. https://doi.org/10.2514/1.G002808