Lycée Buffon MPSI DM 10 Année 2020-2021

Devoir à rendre le 01/03/2021

Problème 1:

Soit (E) l'équation différentielle : $(1-x)^2 y' = (2-x) y$. On note $I =]-\infty, 1[$.

- 1. Calculer une primitive A de la fonction a définie sur I par : $a(x) = \frac{2-x}{(1-x)^2}$.
- 2. Intégrer (E) sur I. On notera f la fonction définie sur I par $f(x) = \frac{1}{1-x}e^{\frac{1}{1-x}}$.
- 3. Prouver par récurrence que, pour tout entier naturel n, il existe un polynôme P_n tel que : $\forall x \in I$, $f^{(n)}(x) = P_n\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}$.

La démonstration permet d'exprimer $P_{n+1}(X)$ en fonction de $P_n(X)$, $P'_n(X)$ et X. Expliciter cette relation.

- 4. Préciser P_0, P_1, P_2 et P_3 .
- 5. En dérivant n fois les deux membres de l'équation (E), prouver que pour tout entier positif $n:P_{n+1}\left(X\right)=\left[\left(2n+1\right)X+X^{2}\right]P_{n}\left(X\right)-n^{2}X^{2}P_{n-1}\left(X\right).$

Le but de cette partie est d'établir quelques propriétés des nombres $a_n = f^{(n)}(0)$.

- 6. Pour tout entier positif n, exprimer a_{n+1} en fonction de n, a_n et a_{n-1} .
- 7. Préciser : a_0, a_1, a_2, a_3 et a_4 .
- 8. On désigne par (u_p) la suite définie pour tout entier naturel p par : $u_p = \sum_{i=0}^{p} \frac{1}{i!}$. En appliquant une formule de Taylor à la fonction exponentielle, prouver que la suite (u_p) converge vers e.

Soit p et n des entiers naturels quelconques, on pose $:S_p(n) = \sum_{i=0}^p \frac{(n+i)!}{(i!)^2}$.

- 9. (a) Exprimer $S_p(0)$ et $S_p(1)$ à l'aide de u_p et u_{p-1} pour $p \ge 1$.
 - (b) Prouver que les suites $p \mapsto S_p(0)$ et $p \mapsto S_p(1)$ convergent et préciser leur limite en fonction de e.
- 10. Prouver que quels que soient les entiers p et n supérieurs ou égaux à 1 :

$$S_p(n+1) - (2n+2) S_p(n) + n^2 S_p(n-1) = S_{p-1}(n) - S_p(n)$$

11. En déduire que pour tout entier naturel n, la suite $p \mapsto S_p(n)$ converge.

12. Prouver que : $a_n = \lim_{p \to +\infty} \sum_{i=0}^p \frac{(n+i)!}{(i!)^2} = \lim_{p \to +\infty} n! \sum_{i=0}^p \binom{n+i}{n} \cdot \frac{1}{i!}$

Problème 2:

On note $p: x \mapsto e^x$, $q: x \mapsto e^{2x}$ et $r: x \mapsto e^{x^2}$.

On note $\mathcal{B}=(p,q,r)$ et \mathcal{E} le sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ engendré par la famille \mathcal{B} .

1. Prouver que \mathcal{B} est une base de \mathcal{E}

On note ψ l'application qui, à $f \in \mathcal{E}$, associe le triplet de réels (f(0), f'(0), f(1)).

- 2. Prouvez que ψ est un isomorphisme du \mathbb{R} -espace vectoriel \mathcal{E} sur \mathbb{R}^3 .
- 3. Déterminer ψ^{-1} .

On note φ l'application de $\mathcal E$ dans lui-même qui, à $f\in\mathcal E$, associe $\varphi(f)=Ap+Bq+Cr$ où

$$\begin{cases} A = \frac{2}{e-1}f(0) + f'(0) + \frac{2}{e(e-1)}f(1) \\ B = -\frac{1}{e-1}f(0) - \frac{1}{e(e-1)}f(1) \\ C = \frac{e-2}{e-1}f(0) - f'(0) - \frac{1}{e(e-1)}f(1) \end{cases}$$

- 4. On note $\mathcal{P} = \{ f \in \mathcal{E} : \varphi(f) = f \}$ l'ensemble des vecteurs de \mathcal{E} invariants par f.
 - (a) Montrez que $\mathcal{P} = \{ f \in \mathcal{E} : f(1) = 0 \}.$
 - (b) Déterminer une équation de \mathcal{P} dans la base \mathcal{B} , i.e. trouver $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $\forall (A, B, C) \in \mathbb{R}^3$, $Ap + Bq + Cr \in \mathcal{P} \iff \alpha A + \beta B + \gamma C = 0$.
 - (c) Exhibez une base (e_1, e_2) de \mathcal{P} .
- 5. On note $\mathcal{D}=\{f\in\mathcal{E}:\varphi(f)=-f\}$ l'ensemble des vecteurs de \mathcal{E} transformés en leur opposé par f.
 - (a) Déterminez des équations de \mathcal{D} dans la base \mathcal{B} .
 - (b) Exhibez une base (e_3) de \mathcal{D}
 - (c) Donnez une caractérisation des éléments de \mathcal{D} .
- 6. Montrez que $\mathcal{E} = \mathcal{P} \oplus \mathcal{D}$.

1

7. Prouver que $\mathcal{C} = (e_1, e_2, e_3)$ est une base de \mathcal{E} .

On note ${\mathcal F}$ l'ensemble des polynômes à coefficients réels de terme constant est nul.

8. Montrez que $\mathcal F$ est un $\mathbb R$ -espace vectoriel et en donner une base.

Soit $(P_k)_{1 \leq k \leq q}$ une famille d'éléments de \mathcal{F} vérifiant la condition suivante :

$$\forall k \in [1, q], \quad \lim_{x \to +\infty} P_{k+1}(x) - P_k(x) = +\infty$$

Pour tout $k \in [1, q]$, on pose $f_k : x \mapsto \exp(P_k(x))$.

9. Montrez que la famille $(f_k)_{1 \le k \le q}$ est libre.