TP Certificat

On considère deux interlocuteurs A et B.

Chacun possède un couple clef publique/ clef privée : (KA, KA') et (KB, KB') respectivement. Ils communiquent au moyen de protocoles cryptographiques standards utilisant AES, RSA, et SHA256.

A envoie un message m à B

1. Expliquez le message m_c chiffré.

m= message plaintext , m_c le message chiffré , H(m) le haché , Sign le signé du haché

$$m_c = C_{kA}(m) *RSA$$

2. Quels sont les messages envoyés à B

$$m_c = C_{kA}(m) *RSA$$

Sign= SHA256(m)* $C_{kA'}$

3. Comment **B** peut-il s'assurer de ce que ce message vient de **A** ? (Bien vouloir détailler).

E= empreinte

Il compare l'égalité des

empreintes:

$$(Sign)*D_{kA} = h$$

 $D_{kB'}(m_c)*RSA = m$
 $SHA256(m)=h'$

- 4. A souhaiterais à nouveau envoyer un message à B et apprend que la clé publique de B a été piratée mais que ce problème a été résolu par l'Ingénieur sécurité.
 Comment pourrait-il procéder pour s'assurer de ce que le message soit bien envoyé à B? (Donnez-en une description détaillée)
- 1- Vérifier le certificat de B : la validité
 - **a-** SHA256: hacher les informations contenues dans le certificat. = h
 - b- Déchiffrer la signature du certificat avec la clé publique de l'autorité certifiante (Récupération du haché) = h'
 - c- Comparer h & h'
 - d- Si h=h' certificat valide et donc la clé publique du B est valide
 A peut envoyer le message
 Sinon = il ne peut pas envoyer le message