Московский физико-технический институт (национальный исследовательский университет) Факультет общей и прикладной физики

Лабораторная работа №6.9.1 (Основы современной физики)

Закон Кюри-Вейса и обменное взаимодействие в ферромагнетиках

Работу выполнил: Дорогинин Демид, группа Б02-825

г. Долгопрудный 2021 год

Аннотация

В работе исследуется температурная зависимость магнитной восприимчивости ферромагнетика в парамагнитной области – выше точки Кюри. По полученной в работе температуре Кюри оценивается энергия обменного взаимодействия. Объектом исследования является металлический гадолиний.

Теория

Намагниченность вещества I связана с внешним магнитным полем H, под воздействием которого она возникает, соотношением

$$I = \varkappa H$$

где \varkappa называется магнитной восприимчивостью. Рассмотрим, чем определяется восприимчивость парамагнитного вещества, в котором магнитный момент атома обусловлен спином одного электрона. Магнитный момент электрона μ во внешнем поле будет направлен либо по, либо против поля, поэтому в магнитном поле возникнут энергии

$$E_{\pm} = \pm \mu B$$
,

причём в состоянии E_- магнитный момент параллелен полю. Отношения числа частиц на этих уровнях

$$\frac{N_{+}}{N_{-}} = \exp\left(-\frac{2\mu B}{k_{\rm B}T}\right) \approx 1 - \frac{2\mu B}{k_{\rm B}T},$$

здесь приближение оправдано, так как даже для $B=10^5~\Gamma c$ при $T=300~\rm K$ будет справедливо $2\mu B/k_{\rm B}T\approx 0.05$, а значит, мы можем считать $\mu B\ll k_{\rm B}T$. Соответственно, намагниченность определяется разностью чисел электроннов на двух уровнях

$$\Delta N = N_{-} - N_{+} \approx N \frac{\mu B}{k_{\rm B} T},$$

где $N=N_-+N_+$ – количество неспаренных электронов в единице объёма. Отсюда, учётывая $I=\mu\Delta N$ и $H\approx B$, получаем

$$\varkappa = \frac{I}{H} = N \frac{\mu^2}{k_{\rm B}T}.\tag{1}$$

Для атома с более чем одним электроном и суммарным спином S, эта формула обобщается как

$$\varkappa = \frac{Ng^2\mu_{\rm B}^2S(S+1)}{3k_{\rm B}T}$$

где g – фактор Ланде.

В ферромагнетиках для описание взаимодействия соседних электронов вводится эффективное (или обменное) поле $H_{\text{эфф}}$, величина которого пропорциональна намагниченности:

$$H_{\text{add}} = \lambda I$$
,

где λ – некоторая константа. С учётом этого поля формула (1) перепишется как

$$\varkappa = \frac{I}{H} = N \frac{g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}(T-\Theta)},$$

где

$$\Theta = N \frac{g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}} \lambda,$$

– параметр с размерностью температуры. В итоге получили соотношение

$$\varkappa \propto \frac{1}{T - \Theta} \tag{2}$$

называемое законом Кюри–Вейса. Температура Θ называется парамагнитной точкой Кюри, при стремлении температуры к ней восприимчивость неограниченно возрастает из-за того, что тепловое движение всё меньше препятствует магнитным моментам ориентироваться в одном направлении. Это не то же самое, что точка Кюри $T_{\rm C}$, которая определяется как температура фазового перехода из парамагнитного в ферромагнитное состояние. Как правило, $\Theta > T_{\rm C}$.

Теперь выясним связь обменного интеграла с Θ . Исходя из наличия эффективного поля $H_{\text{эфф}}$, получаем, что энергия, которую необходимо затратить на то, чтобы перевернуть один спин, может быть получена как

$$U_{\text{nep}} = 2\mu H_{\text{эфф}} = 2\mu \cdot \lambda I = 2\mu \frac{\lambda \mu}{V},\tag{3}$$

где V — объём, приходящийся на один атом. В то же время, эта энергия переворота в два раза больше обменной энергии системы, так как можно показать, что энергии систем с параллельными и антипаралалльными спинами отличаются знаком. Обменная энергия равна

$$U_{\text{обм}} = -2J\mathbf{S}_i\mathbf{S}_j,$$

где J – обменный интеграл, $\mathbf{S}_i\mathbf{S}_j$ скалярное произведение векторов спинов, поэтому в итоге

$$U_{\text{nep}} = 2(2JnS^2),$$

где S – среднее значение ${\bf S}$ вдоль направления намагниченности, n – число соседей. Таким образом, с учётом (3) и $\mu=gS\mu_{\rm B}$, получаем

$$\lambda = \frac{2nJV}{g^2\mu_{\rm R}^2}.$$

Учитывая, что V=1/N, где N – концентрация атомов, то, с учётом определения Θ получим окончательно

$$J = \frac{3k_{\rm B}\Theta}{2nS(S+1)} \tag{4}$$

Установка

На Рис. 1 показана установка для измерения восприимчивости магнетиков. Ферромагнитный образец 1 располагается внутри пустотелой катушки 2, которая является индуктивностью колебательного контура, входящего в состав LC-генератора. Генератор собран на полевом транзисторе и смонтирован в виде отдельного блока. Катушка самоиндукции помещена в термостат, представляющий собой массивный медный цилиндр 3, расположенный в пенопластовом корпусе 4. С помощью термостата производится охлаждение образца.

Исследуемый ферромагнетик (в работе это гадолиний Gd) является проводником, а рабочая частота генератора высока, поэтому для того, чтобы не возникло токов Фуко, образец изготовлен из мелких гранул размером менее 0.1 мм. Он помещён в тефлоновую капсулу, которую с помощью штока 5 можно перемещать вдоль катушки самоиндукции.

Рис. 1: Схема экспериментальной установки.

Магнитная восприимчивость образца определяется по изменению самоиндукции при его введению в катушку: пусть L – индуктивность с образцом, а L_0 – без. Тогда

$$L = \mu L_0$$

где μ – магнитная проницаемость образца, то есть

$$\frac{L - L_0}{L_0} = \frac{\Delta L}{L_0} = \mu - 1.$$

Принимая в расчёт, что длина образца сильно больше его диаметра, можно пренебречь размагничивыющим фактором, тогда

$$\frac{L - L_0}{L_0} = \frac{\Delta L}{L_0} = \mu - 1 = 4\pi\varkappa.$$

С учётом того, что собственная частота контура обратно пропорциональна корню из индуктивности, получим

$$\frac{1}{\varkappa} \propto \frac{f^2}{f_0^2 - f^2} \tag{5}$$

Выполнение и обработка данных

Исследуем зависимость частот f и f_0 от температуры, постепенно нагревая образец. Измерения проводим в интервале от 10 °C до 50 °C с шагом в примерно 3 °C, результаты представлены в Таблице 1. В качестве погрешости выбираем последний знак отображае-

мого прибором числа, который стабилен.

$f^2/(f_0^2-f^2)$, $\kappa\Gamma$	Ц
180 -	,
160 -	_• /••
140 -	•
120 -	• *
100 -	7
80 -	, *
60 -	
40 -	
20 -	
0 -	
280	285 290 295 300 305 310 315 320 325
	ΤK

U, mB	T, °C	f , к Γ ц	f_0 , к Γ ц
-0.65	9.88	904.46	953.75
-0.53	12.80	905.24	954.01
-0.41	15.73	908.00	953.85
-0.29	18.66	917.42	953.91
-0.21	20.61	928.72	953.93
-0.13	22.56	938.00	954.03
-0.05	24.51	943.63	954.14
0.03	26.46	945.89	954.09
0.14	29.15	947.64	954.09
0.22	31.10	948.88	954.03
0.34	34.02	949.84	954.10
0.47	37.20	950.47	954.07
0.59	40.12	950.76	954.12
0.71	43.05	951.05	954.05
0.83	45.98	951.27	954.16
0.90	47.68	951.46	954.29

Рис. 2: Зависимость $\frac{f^2}{f_0^2 - f^2}$ от T.

Таблица 1: Результаты измерений.

Результаты измерения изорбразим на графике (Рис. 2) в координатах $\left(T, \frac{f^2}{f_0^2 - f^2}\right)$, линейный участок аппроксимируем прямой, угловой коэффициент наклона и начальная ординаты из метода наименьшних квадратов равны:

$$k = 5.9 \pm 0.3 \text{ K}^{-1}$$
.

$$b = -1710 \pm 80$$
.

Пользуясь соотношениями (3) и (5), получаем

$$\Theta = -\frac{b}{k} = 290 \pm 20 \text{ K}.$$

Пользуясь формулой (4), оценим величину обменного интеграла, считая, что для гадолиния $n=12,\,S=7/2$:

$$J = 2.3 \pm 0.2 \; \mathrm{K} = 0.198 \pm 0.014 \; \mathrm{мэВ}.$$

Обсуждение

В ходе работы была исследована температурная зависимость магнитной восприимчивости гадолиния и определена температура Кюри $\Theta=290\pm20$ K, что хорошо соответствует табличному значению 293.4 K из [1]. Тем не менее, по измеренным данным видно, что закон Кюри-Вейса не выполняется при температура, сильно отличающихся от Θ . По полученному значению Θ был оценен обменный интеграл $J=0.198\pm0.014$ мэВ.

Список литературы

[1] Игошин Ф.Ф., Самарский Ю.А., Ципенюк Ю.М. Лабораторный практикум по общей физики: Учеб. пособие для вузов. Т3. Квантовая физика.. М.: Физматкнига - 2005.