Modeling Electrostatics

- In biological macromolecules, the electrostatic potential is usually calculated based on the Poisson-Boltzmann equation
 - The Poisson equation describes the potential field due to a given charge distribution. Atoms in the biomolecule are assumed to have a fixed charge.
 - The Poisson-Boltzmann equation assumes that (infinitely small) ions surround a biomolecule in accordance with the Boltzmann distribution
- The PB equation is a partial differential equation that is solved numerically
- The equation is often linearized to be more numerically stable
- Chun Liu in Applied Math has worked on versions
 - that are time-dependent
 - account for the finite size of ions

Thymidylate Synthase Catalyzes

to

_OH

deoxyuridine monophosphate (dUMP)

N5,N10-methylene tetrahydrofolate

<u>deoxythymidine monophosphate</u> (dTMP)

$$H_2N$$
 H_1
 H_2N
 H_3N
 H_4
 H_5
 H_5
 H_5
 H_5
 H_5
 H_6
 H_7
 H

dihydrofolate