Lineare Algebra 2 Hausaufgabenblatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 20, 2023)

Problem 1. Berechnen Sie die JNF und die jeweiligen Basisvektoren für die Matrix

$$A = \begin{pmatrix} -4 & 22 & 7 \\ -1 & 5 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Proof. Das charakteristische Polynom von A ist $-(x-1)^3$, also der einzige Eigenwert ist 1. Wir schreiben

$$A - 1I_3 = \begin{pmatrix} -5 & 22 & 7 \\ -1 & 4 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

und

$$(A - 1I_3)^2 = \begin{pmatrix} 3 & -15 & -6 \\ 1 & -5 & -2 \\ -1 & 5 & 2 \end{pmatrix}.$$

Dies zeigt, dass $(\lambda - 1)^2$ kein Minimalpolynom ist. Da das Minimalpolynom das charakteristische Polynom teilen muss, ist das Minimalpolynom $(\lambda - 1)^3$.

Problem 2. Wir befinden uns im \mathbb{R}^n . Sei $U \subset \mathbb{R}^n$ ein Unterraum und wähle eine Basis $\{b_1, \ldots, b_M\}$ von U. Wir definieren die Matrix

$$A = (b_1, \dots, b_m) \in \mathbb{R}^{n \times m}$$
.

(a) Zeigen Sie: Die Matrix

$$P = A(A^T A)^{-1} A^t.$$

ist wohldefiniert und ein Projektor auf U.

(Projektor auf U bedeutet, P ist idempotent und im(P) = U).

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Es sei die 2-Norm gegeben durch $||x||_2 := \sqrt{x^T x}$. Wir definieren die (euklidische) Projektion P_U auf den Unterraum U als diejenige Abbildung, für die gilt $x^* = P_U(y)$ genau dann, wenn x^* das Problem

$$\min_{x \in U} \|x - y\|_2^2 \tag{1}$$

löst.

(b) Zeigen Sie: x^* ist eine Lösung von (1) genau dann, wenn

$$(x^* - y)^T x^* = 0$$

und äquivalent

$$||x^* - y||_2^2 = ||y||_2^2 - ||x^*||_2^2.$$

(c) Die Lösung x^* von (1) ist eindeutig und gegeben durch

$$x^* = A(A^T A)^{-1} A^T y.$$

Sie können für die Eindeutigkeit natürlich auch (d) zu Rate ziehen.

(d) Angenommen die Menge $\{b_1,\ldots,b_m\}$ bildet eine Orthonomalbasis von U Zeigen Sie, dass in dem Fall für die Projektion gilt

$$x^* = Py = \sum_{i=1}^m b_i b_i^T y.$$