2.98. Камень, привязанный к веревке длиной l = 50 см. равномерно вращается в вертикальной плоскости. При какой частоте вращения n веревка разорвется, если известно, что она разрывается при десятикратной силе тяжести, действующей на камень?

Решение:

По второму закону Ньютона
$$T-mg=$$
 $=ma_n$ — (1), где $a_n=\frac{v^2}{l}$ — (2). Линейная скорость $v=\omega\cdot l$; $\omega=2\pi n$, тогда $v=2\pi nl$, откуда $n=\frac{v}{2\pi l}$ — (3). Из (1) $v=\sqrt{a_n l}$; $m\vec{g}$ Из (2) $a_n=\frac{T-mg}{m}=\frac{9mg}{m}=9g$, тогда $v=3\sqrt{lg}$ — (4). Подставив (4) в (3), получим $m=\frac{3\sqrt{lg}}{2\pi l}=\frac{3}{2\pi}\sqrt{\frac{g}{l}}$; $n=2,12$ об/с.

2.99. Камень, привязанный к веревке, равномерно вращается в вертикальной плоскости. Найти массу т камня, если известно, что разность между максимальной и минимальной силами натяжения веревки $\Delta T = 10 \text{ H}.$

Решение:

По второму закону Ньютона для верхней и нижней точек соответственно
$$\begin{cases} mg + T_{min} = ma_n & -(1), \\ mg - T_{max} = -ma_n & -(2). \end{cases}$$
 Сложив (1) и (2), получим $2mg - \Delta T = 0$; $2mg = \Delta T$, отсюда $m = \frac{\Delta T}{2g}$; $m \approx 0.5$ кг.

2.100. Гирька, привязанная к нити длиной l = 30 см, описывает в горизонтальной плоскости окружность радиусом R = 15 см. C какой частотой n вращается гирька?

В горизонтальной плоскости на гирьку действует сила: $F = T \sin \alpha$, где $\sin \alpha = \frac{R}{l}$. Тогда по второму закону Ньютона $T \sin \alpha = ma_n$ ($a_\tau = 0$, т.к. движение равномерное) или $TR/l = ma_n$. По оси $y: T\cos \alpha - mg = 0$, $T = \frac{mg}{\cos \alpha}$,

 $\cos \alpha = \sqrt{1 - R^2/l^2}$. Тогда $mgR/l\cos \alpha = ma_n$ или $a_n = \frac{gR}{l\cos \alpha} = \frac{gR}{l\sqrt{1 - R^2/l^2}} = \frac{gR}{\sqrt{l^2 - R^2}}$, но $a_n = \omega^2 R$; $\omega = 2\pi n$, следовательно, $a_n = 4\pi^2 n^2 R$, откуда $n = (1/2\pi) \times \sqrt{a_n/R}$ или $n = 1/2\pi \sqrt{g/\sqrt{l^2 - R^2}}$; n = 59 об/мин.

2.101. Гирька массой m = 50 г, привязанная к нити длиной l = 25 см, описывает в горизонтальной плоскости окружность. Частота вращения гирьки n = 2 об/с. Найти силу натяжения нити T.

Решение:

В горизонтальной плоскости на гирьку действует сила $F = T \sin \alpha$. Тогда по второму закону Ньютона $T \sin \alpha =$ $= ma_n$, где $\sin \alpha = \frac{R}{l}$. Учитывая, что $a_n = \omega^2 R = (2\pi n)^2 R$, запишем: $m(2\pi n)^2 R = T\frac{R}{l}$, откуда $T = ml(2\pi n)^2$; T = 1.96 H.

2.102. Диск вращается вокруг вертикальной оси с частотой n = 30 об/мин. На расстоянии r = 20 см от оси вращения на диске лежит тело. Каким должен быть коэффициент трения k между телом и диском, чтобы тело не скатилось с диска?

Решение:

Решаем задачу в неинерциальной системе отсчета, в системе диска, тогда при вращении диска на тело вдоль нормальной оси действует центробежная сила \vec{F} и сила трения $F_{\rm tp}$. Тело не будет соскальзывать с диска, если $F_{\rm tp} \geq F$, т.е.

$$kmg \ge m \frac{v^2}{r}$$
 или $k \ge \frac{v^2}{rg}$. Т.к. $v = \omega \times \frac{\vec{F}}{r}$ $\times r = 2\pi nr$, то $k \ge \frac{4\pi^2 n^2 r}{g}$; $k \ge 0,2$.

2.103. Самолет, летящий со скоростью v = 900 км/ч, делает «мертвую петлю». Каким должен быть радиус «мертвой петли» R, чтобы наибольшая сила F, прижимающая летчика к сидению, была равна: а) пятикратной силе тяжести, действующей на летчика; б) десятикратной силе тяжести, действующей на летчика?

Решение:

Искомая сила
$$F = ma_n = \frac{mv^2}{R}$$
. a) $5mg = \frac{mv^2}{R}$, отсюда $R = \frac{v^2}{5g}$; $R \approx 1600$ м. б) $10mg = \frac{mv^2}{R}$, отсюда $R = \frac{v^2}{10g}$; $R \approx 711$ м.

2.104. Мотоциклист едет по горизонтальной дороге со скоростью v = 72 км/ч, делая поворот радиусом R = 100 м. На какой угол α при этом он должен наклониться, чтобы не упасть при повороте?

Силы, действующие на мотоциклиста: сила тяжести $\overrightarrow{F}_{\text{T}} = m\overrightarrow{g}$, сила реакции опоры \overrightarrow{N} и сила, которая может обеспечить движение мотоциклиста по окружности, — сила трения $\overrightarrow{F}_{\text{TP}}$. Согласно законам статики, для того, чтобы мотоциклист не потерял

равновесия, необходимо, чтобы равнодействующая сил \overrightarrow{N} и $\overrightarrow{F}_{\text{тр}}$ была направлена по прямой, проходящей через центр тяжести. Тогда $tg\alpha=\frac{N}{F_{\text{тр}}}=\frac{1}{k}$. Запишем основной закон механики в проекциях на оси х и у: $ma_n=F_{\text{тр}}$ — (1), 0=N-mg — (2), $F_{\text{тр}}=kN=kmg$ — (3). Решая совместно уравнения (1) — (3), учитывая, что $a_n=\frac{v^2}{R}$, получим $\frac{v^2}{R}=kg$ — (4). Выразив k из (4), найдем $tg\alpha=\frac{gR}{v^2}$, откуда $\alpha=22^\circ$.

2.105. К потолку трамвайного вагона подвешен на нити шар. Вагон идет со скоростью v = 9 км/ч по закруглению радиусом R = 36,4 м. На какой угол α отклонится при этом нить с шаром?

Решение:

Запишем основной закон механики в проекциях на оси x и y: $T \sin \alpha = m \frac{v^2}{R}$ — (1), $T \cos \alpha - mg = 0$ — (2). Из (2)

$$T=rac{mg}{\cos lpha}$$
, тогда $mgtglpha=mrac{v^2}{R}$, откуда $tglpha=rac{v^2}{gR}$; $tglpha=0.018$; $lphapprox 1^o$.

2.106. Длина стержней центробежного регулятора l = 12,5 см. С какой частотой n должен вращаться центробежный регулятор, чтобы грузы отклонялись от вертикали на угол, равный: а) $\alpha = 60^{\circ}$; б) $\alpha = 30^{\circ}$?

Решение:

Запишем второй закон Ньютона в проекциях на оси x и y: $T \sin \alpha = ma_n$ — (1); $mg - T \cos \alpha =$ = 0 — (2). Из (2) $T = \frac{mg}{\cos \alpha}$, тогда (1) запишем в виде $mg \cdot tg\alpha = ma_n$, откуда $a_n = gtg\alpha$ — (3). С другой стороны, нормальное ускорение $a_n = \omega^2 R$, где $R = l \sin \alpha$, т. е. $a_n = \omega^2 l \sin \alpha = 4\pi^2 n^2 \cdot l \sin \alpha$ — (4).

Решая совместно (3) и (4), получим $n = \sqrt{\frac{a_n}{4\pi^2 l \sin \alpha}}$;

$$n = \frac{1}{2\pi} \sqrt{\frac{gtg\alpha}{l\sin\alpha}}; n = \frac{1}{2\pi} \sqrt{\frac{g}{l\cos\alpha}}.$$

a) n = 2 ob/c;

6)
$$n = 1.5$$
 ob/c.

2.107. Шоссе имеет вираж с уклоном $\alpha = 10^{\circ}$ при радиусе закругления дороги R = 100 м. На какую скорость ν рассчитан вираж?

Решение:

Данную задачу решаем без учета силы трения. Запишем второй закон Ньютона в проекциях на оси x и y: $N \sin \alpha = ma_n$; $mg - N \times \cos \alpha = 0$. Нормальное ускорение $a_n = \frac{v^2}{R}$; $mg = N \cos \alpha$; $N = \frac{mg}{\cos \alpha}$; $mg \frac{\sin \alpha}{\cos \alpha} = m\frac{v^2}{R}$;

$$g \cdot lg\alpha = \frac{v^2}{R}$$
; $v^2 = gRlg\alpha$, отсюда $v = \sqrt{gRlg\alpha}$; $v = 13.5$ м/с= =47,3 км/ч.

2.108. Груз массой m=1 кг, подвешенный на нити, отклоняют на угол $\alpha=30^\circ$ и отпускают. Найти силу натяжения нити T в момент прохождения грузом положения равновесия.

Решение:

В момент прохождения грузом положения равновесия согласно второму закону Ньютона в проекции на ось у

$$ma_n = T - mg$$
 или $m\frac{v^2}{l} = T - mg$, откуда

$$T = mg + \frac{mv^2}{l}$$
, где l — длина нити. Кро-

ме того,
$$mgh = \frac{mv^2}{2}$$
, откуда $v = \sqrt{2gh}$. Но

 $h = l - l\cos\alpha = l(1 - \cos\alpha)$. Тогда $v = \sqrt{2gl(1 - \cos\alpha)}$, а $\frac{mv^2}{l} = \frac{m}{l} 2gh = \frac{m}{l} 2gl(1 - \cos\alpha) = 2mg(1 - \cos\alpha)$ и сила натяжения $T = mg(1 + 2(1 - \cos\alpha)) = 12,4$ Н.

2.109. Мальчик массой $m=45\,\mathrm{kr}$ вращается на «гигантских шагах» с частотой $n=16\,\mathrm{o}6/\mathrm{m}$ ин. Длина канатов $l=5\,\mathrm{m}$. Какой угол α с вертикалью составляют канаты «гигантских шагов»? Каковы сила натяжения канатов T и скорость ν вращения мальчика?

Решение:

Запишем второй закон Ньютона в проекциях на оси x: $T\cos\alpha - mg = 0$ — (1) и y: $T\sin\alpha = ma_n$ — (2). Нормальное ускорение $a_n = \omega^2 R$, где $\omega = 2\pi n$, следовательно, $a_n = 4\pi^2 n^2 R$. Из рисунка видно, что $R = l\sin\alpha$ — (3),

тогда $a_n = 4\pi^2 n^2 l \sin \alpha$. Подставим выражение для a_n в (2): $T \sin \alpha = m \cdot 4\pi^2 n^2 l \sin \alpha$ или $T = 4\pi^2 n^2 l m$, T = 632 H. $T \cos \alpha = mg$ из (1), откуда $\cos \alpha = \frac{mg}{T}$, $\cos \alpha = 0.7$, $\alpha \approx 45^{\circ}30'$. Скорость найдем из выражения $v = \omega R = 2\pi n l \sin \alpha$, с учетом $\omega = 2\pi n$ и (3): $v \approx 6$ м/с.

2.110. Груз массой m=1 кг, подвещенный на невесомом стержне длиной l=0.5 м, совершает колебания в вертикальной плоскости. При каком угле отклонения α стержня от вертикали кинетическая энергия груза в его нижнем положении $W_{\rm k}=2.45$ Дж? Во сколько раз при таком угле отклонения сила натяжения стержня T_1 в нижнем положении больше силы натяжения стержня T_2 в верхнем положении?

 $T_2 = m \cdot \left(\frac{2W_{\kappa}}{ml} + g\cos\alpha\right) = m \cdot \frac{2W_{\kappa} + m \log\cos\alpha}{ml}$.

И

первое уравнение на второе: $\frac{T_1}{T_2} = \frac{2W_{\kappa} + m \lg \cos \alpha}{2W + m \lg \cos \alpha}$, $T_1 / T_2 = 1.3$.

2.111. Груз массой m, подвешенный на невесомом стержне, отклоняют на угол $\alpha = 90^{\circ}$ и отпускают. Найти силу натяжения момент прохождения стержня грузом положения равновесия.

По второму закону Ньютона в момент прохождения положения равновесия:

прохождения положения равновесия:
$$T - mg = ma_n$$
 — (1), но $a_n = \frac{v^2}{l}$. Выразим из (1) T , подставив выражение для a_n :

$$T = mg + \frac{mv^2}{l}$$
. В результате преобразова-

ния потенциальной энергии в кинетическую $mgl = \frac{mv^2}{2}$, откуда $v^2 = 2gl$, тогда $T = mg + \frac{m2gl}{l} = 3mg$.

2.112. Груз массой m = 150 кг подвешен на стальной проволоке, выдерживающей силу натяжения T = 2,94 кH. На какой наибольший угол α можно отклонить проволоку с грузом, чтобы она не разорвалась при прохождении грузом положения равновесия?

Решение:

Воспользуемся формулой, полученной

в задаче 1.108: $T = mg(1 + 2(1 - \cos \alpha))$.

В задаче 1.108:
$$T = mg(1 + 2(1 - \cos \alpha))$$
. Выразим из нее $\cos \alpha$: $T = mg + 2mg - 2mg \cos \alpha$, $\cos \alpha = \frac{3mg - T}{2mg}$. Подставив исходные данные, получим:

Подставив исходные данные, получим: $\cos \alpha = 0.5$, следовательно, $\alpha = 60^{\circ}$.

2.113. Камень массой m = 0.5 кг привязан к веревке длиной l = 50 см, равномерно вращается в вертикальной плоскости. Сила натяжения веревки в нижней точке окружности $T = 44 \, \text{H}$. Ha какую высоту поднимется камень, если h момент, когда скорость направлена вертикально вверх?

Для камня в нижнем толожении запишем второй закон Ньютона: $T - mg = ma_n$, где

$$a_n = \frac{v^2}{l}$$
, $T - mg = m\frac{v^2}{l}$, $v = \sqrt{\frac{l(T - mg)}{m}}$

 \vec{r} второи закон пыстепи. $a_n = \frac{v^2}{l}, \quad T - mg = m\frac{v^2}{l}, \quad v = \sqrt{\frac{l(T - mg)}{m}}.$ Примем за нулевой уровень потенциальной энергии положение камня в момент обрыва \vec{r} энергии положение камня в момент обрыва веревки. В этот момент камень обладает

кинетической энергией $\frac{mv^2}{2}$, которая по мере подъема камня переходит в потенциальную. На высоте hкинетическая энергия перейдет в потенциальную, т.е. $\frac{mv^2}{2} = mgh$, откуда $h = \frac{v^2}{2\sigma} = \frac{l(T - mg)}{2m\sigma}$; h = 2 м.

2.114. Вода течет по трубе диаметром $d = 0.2 \,\mathrm{M}$, расположенной в горизонтальной плоскости и имеющей закругление радиусом R = 20.0 м. Найти боковое давление воды P, вызванное центробежной силой. Через поперечное сечение трубы за единицу времени протекает масса воды $m_{r} = 300$ т/ч.

Решение:

Боковое давление воды $P = \frac{F_{u6}}{IJ}$ — (1), где F_{u6} — центробежная сила, l — длина той части трубы, на которую производится давление, по модулю $F_{u\delta} = \frac{mv^2}{R}$ — (2), где $m = \rho lS$ — (3) — масса воды в объеме Sl(S - площадьпоперечного сечения трубы, ρ — плотность воды). Скорость течения воды $v = \frac{m_r}{\rho S}$ — (4). Подставляя (2) — (4) в (1), получим $P = \frac{m_t^2}{R \, col S}$; $P = 56.0 \, \Pi a$.

2.115. Вода течет по каналу шириной b = 0.5 м, расположенному в горизонтальной плоскости и имеющему закругление радиусом R = 10 м. Скорость течения воды v = 5 м/с. Найти боковое давление воды P, вызванное центробежной силой.

Решение:

Рассмотрим участок боковой поверхности канала, площадь которого: $S = b \cdot l$. Давление:

$$P=rac{F_{
m u6}}{S}$$
 , где $F_{
m u6}$ по модулю $F=mrac{v}{R}$. $m=$

$$= \rho V = \rho \cdot l \cdot b^2$$
 — масса воды в

данном объеме.
$$F = \frac{\rho l b^2 v^2}{R}$$
;

$$P = \frac{\rho l b^2 v^2}{R b l} = \frac{\rho b v^2}{R}$$
; $P = 1,25 \text{ kHa.}$

2.116. Найти работу A, которую надо совершить, чтобы сжать пружину на l=20 см, если известно, что сила F пропорциональна сжатию l и жесткость пружины k=2,94 кН/м.

Решение:

Работа, совершаемая при сжатии пружины, определяется формулой $A = -\int_0^l Fdl$ — (1), где l — сжатие. По условию сила пропорциональна сжатию, т.е. F = -kl — (2). Подставляя (2) в (1), получим $A = \int_0^l kldl = \frac{kl^2}{2}$; A = 58.8 Дж.

2.117. Найти наибольший прогиб h рессоры от груза массой m, положенного на ее середину, если статический прогиб рессоры от того же груза $h_0 = 2$ см. Каким будет наибольший прогиб, если тот же груз падает на середину рессоры с высоты H = 1 м без начальной скорости?

При статическом прогибе $mg=kh_0$; отсюда $k=mg/h_0$. При падении этого груза с высоты H имеем $mg(H+h)=\frac{kh^2}{2}=\frac{mgh^2}{2h_0}$, или $h^2-2h_0h-2h_0H=0$. Решая это уравнение, находим $h=h_0\pm\sqrt{h_0^2+2h_0H}$. Если H=0, то $h=2h_0=4$ см; если H=1 м, то h=221 см.

2.118. Акробат прыгает в сетку с высоты $H=8\,\mathrm{m}$. На какой предельной высоте h над полом надо натянуть сетку, чтобы акробат не ударился о пол при прыжке? Известно, что сетка прогибается на $h_0=0.5\,\mathrm{m}$, если акробат прыгает в нее с высоты $H_0=1\,\mathrm{m}$.

Решение:

По закону сохранения энергии потенциальная энергия должна полностью перейти в энергию упругого взаимодействия $mg(H+h)=k\frac{h^2}{2}$; $mg(H_0+h_0)=k\frac{h_0^2}{2}$; Разделив первое уравнение на второе, получим: $\frac{H+h}{H_0+h_0}=\frac{h^2}{h_0^2}\;;\;\frac{H}{H_0+h_0}+\frac{h}{H_0+h_0}=\frac{h^2}{h_0^2}\;;\;\frac{h^2(H_0+h_0)-hh_0^2}{h_0^2(H_0+h_0)}=$ $=\frac{H}{H_0+h_0}\;;\;\;(H_0+h_0)h^2-h_0^2\cdot h-Hh_0^2=0\;,\;\;\text{решим}\quad\text{данное}$

квадратное уравнение: $D = h_0^4 + 4Hh_0^2(H_0 + h_0)$;

$$h = \frac{h_0^2 \pm \sqrt{h_0^4 + 4Hh_0^2(H_0 + h_0)}}{2(H_0 + h_0)}; \quad h_1 = 1,23 \text{ M} \quad ; h_2 = -1,07 \text{ M} \quad --$$

противоречит условию задачи.

2.119. Груз положили на чашку весов. Сколько делений покажет стрелка весов при первоначальном отбросе, если после успокоения качаний она показывает 5 делений?

По закону сохранения энергии $W_{n1} = W_{n2}$. Потенциальная энергия гравитационного и упругого взаимодействия $W_{n1} = mgH$;

$$W_{n2} = \frac{kx^2}{2}$$
, следовательно, $mgH = \frac{kx^2}{2}$ —

Подставив (2) в (1), получим
$$mgH = \frac{mg}{x} \cdot \frac{x^2}{2}$$
; $H = \frac{x}{2}$; $x = 2H$, отсюда $x = 2 \cdot 5 = 10$ делений.

2.120. Груз массой m = 1 кг падает на чашку весов с высоты H = 10 см. Каковы показания весов F в момент удара, если после успокоения качаний чашка весов опускается на h = 0.5 см?

Решение:

По закону сохранения энергии в момент удара

$$W_{n1} = W_{n2}$$
, rge $W_{n1} = mgH$, a $W_{n2} = \frac{kx_1^2}{2}$.

Отсюда
$$mgH = \frac{kx_1^2}{2}$$
; $x_1 = \sqrt{\frac{2mgH}{k}}$ — дефор-

мация пружины весов в момент удара. После успокоения качаний наступает равновесие

$$mg = F_2$$
, где $F_2 = kx_2$, по закону Гука, причем $x_2 = h$.

Тогда mg = kh; $k = \frac{mg}{h}$. Показания весов в момент удара

$$F=mg+F_1$$
, где $F_1=kx_1=k\sqrt{\frac{2mgH}{k}}$ — по закону Гука

Тогда
$$F = mg + k\sqrt{\frac{2mgH}{k}}$$
; $F = mg + \sqrt{2mgHk}$; $F = mg + \sqrt{2mgH\frac{mg}{h}}$; $F = mg + mg\sqrt{\frac{2H}{h}}$; $F = mg\left(1 + \sqrt{\frac{2H}{h}}\right)$, от-куда $F = 72.5\,\mathrm{H}$.

2.121. С какой скоростью v двигался вагон массой m=20 т, если при ударе о стенку каждый буфер сжался на l=10 см? Жесткость пружины каждого буфера k=1 МН/м.

Решение:

За счет кинетической энергии движущегося поезда была совершена работа по сжатию буферов. Воспользуемся формулой, полученной в задаче 2.116. Работа по сжатию первого буфера: $A_1=k\,\frac{l^2}{2}$, второго $A_2=k\,\frac{l^2}{2}$; $A=A_1+A_2$ или $A=2k\,\frac{l^2}{2}=kl^2$. Тогда $\frac{mv^2}{2}=kl^2$, $v=l\sqrt{\frac{2k}{m}}$; $v=1\,\text{м/c}$.

2.122. Мальчик, стреляя из рогатки, натянул резиновый шнур так, что его длина стала больше на $\Delta l = 10$ см. С какой скоростью ν полетел камень массой m = 20 г? Жесткость шнура k = 1 кH/м.

Решение:

В результате совершенной работы по растяжению шнура камень приобрел кинетическую энергию. С учетом формулы, полученной в задаче 2.116, имеем: $\frac{mv^2}{2} = k\frac{\Delta l^2}{2}$. Откуда $v = \Delta l \sqrt{\frac{k}{m}}$, v = 22.3 м/с.

2.123. К нижнему концу пружины, подвешенной вертикально, присоединена другая пружина, к концу которой прикреплен груз. Жесткости пружин равны k_1 и k_2 . Пренебрегая массой пружин по сравнению с массой груза, найти отношение W_{n1}/W_{n2} потенциальных энергий этих пружин.

Решение:
Потенциальная энергия взаимодействия для каждой отдельно взятой пружины $\vec{F}_{ympl} = k_1$ $\vec{F}_{ympl} = k_2$ k_2 k_2 k_2 k_2 k_2 k_3 k_4 k_2 k_3 k_4 k_4 k_5 k_6 $k_$

2.124. На двух параллельных пружинах одинаковой длины весит невесомый стержень длиной L=10 см. Жесткости пружин $k_1=2$ H/м и $k_2=3$ H/м. В каком месте стержня надо подвесить груз, чтобы стержень оставался горизонтальным?

Решение:

Чтобы система находилась в равновесии, т.е. чтобы стержень был в горизонтальном положении, необходимо выполнение двух условий: $\overrightarrow{mg} + \overrightarrow{F}_{ynp1} + \overrightarrow{F}_{ynp2} = 0$ — (1)

 $\vec{F}_{\text{упр1}}$ $\vec{F}_{\text{упр2}}$ $\vec{F}_{\text{упр2}}$ и $\vec{M}_1 + \vec{M}_2 + \vec{M}_3 = 0$ — (2). В проекции на ось у уравнение (1) имеет вид: $mg - k_1 x - k_2 x = 0$ или $m\sigma = k_1 x + k_2 x = 0$ или $mg = k_1 x + k_2 x = (k_1 + k_2)x$ — (3). Моменты сил относительно точки $A: M_1 = 0; M_2 = mgl_1;$

 $M_3 = k_2 x L$. Тогда из уравнения (2) $mgl_1 - k_2 x L = 0$, из уравнения (3) $x = \frac{mg}{k_1 + k_2}$. Следовательно, $mgl_1 - \frac{k_2 mgL}{k_1 + k_2} = 0$, $l_1 = \frac{k_2 L}{k_1 + k_2}$. $L = l_1 + l_2$; $l_2 = L - l_1 = L \cdot \left(1 - \frac{k_2}{k_1 + k_2}\right)$; $l_1 = 6$ cm; $l_2 = 4 \text{ cm}.$

2.125. Резиновый мяч массой m = 0,1 кг летит горизонтально с некоторой скоростью и ударяется о неподвижную вертикальную стенку. За время $\Delta t = 0.01 \, \text{с}$ мяч сжимается на $\Delta l = 1.37 \, \text{см}$; такое же время Δt затрачивается на восстановление первоначальной формы мяча. Найти среднюю силу \overline{F} , действующую на стенку за время удара.

Решение:

Запишем второй закон Ньютона в виде: $F = m\Delta v / \Delta t$, но $\Delta v = \frac{\Delta l}{\Delta t}$, тогда $F = \frac{m\Delta l}{\Delta t^2}$; F = 13.7 H.

2.126. Гиря массой m = 0.5 кг, привязанная к резиновому шнуру длиной $l_{\rm o}$, описывает в горизонтальной плоскости окружность. Частота вращения гири n = 2 об/с. Угол отклонения шнура от вертикали $\alpha = 30^{\circ}$. Жесткость шнура k = 0.6 кН/м. Найти длину l_0 нерастянутого резинового шнура.

Сила натяжения шнура $T = \frac{mg}{\cos \alpha} = 5.7 \, \mathrm{H}$ вызывает растяжение шнура на Δl , причем $T = k\Delta l$; отсюда $\Delta l = \frac{T}{k} = 9.5 \, \mathrm{MM}$.

Из рисунка видно, что $\frac{l}{R} = \frac{T}{F}$ — (1). Но

$$F = T \sin \alpha = \frac{mv^2}{R} = 4\pi^2 n^2 mR$$
 — (2). Из (1) и (2) имеем $l = \frac{T}{4\pi^2 n^2 m} = 7,25$ см. Таким образом, длина нерастянутого резинового шнура $l_0 = l - \Delta l = 6,3$ см.

2.127. Гирю массой $m=0.5\,\mathrm{kr}$, привязанную к резиновому шнуру длиной $l_0=9.5\,\mathrm{cm}$, отклоняют на угол $\alpha=90^\circ$ и отпускают. Найти длину l резинового шнура в момент прохождения грузом положения равновесия. Жесткость шнура $k=1\,\mathrm{kH/m}$.

Решение:

Сила натяжения шнура T совершает работу по растяжению шнура на Δl . $T = k\Delta l$. Решая аналогичную задачу для нерастяжимого шнура (см. задачу 2.111), мы получили, что при прохождении положения равновесия T = 3mg. Тогда 3mg = 2mg

$$\begin{array}{c|c}
l_0 \\
m\vec{g} \\
\vec{T}
\end{array}$$

$$=k\Delta l$$
; $l-l_0=\frac{3mg}{k}$; $l=\frac{3mg}{k}+l_0$; $l\approx 11$ cm.

2.128. Мяч радиусом R = 10 см плавает в воде так, что его центр масс находится на H = 9 см выше поверхности воды. Какую работу надо совершить, чтобы погрузить мяч в воду до диаметральной плоскости?

Мяч плавает, если сила тяжести, действующая на него, уравновешивается силой Архимеда, т.е. $mg = F_A$, или $mg = \rho_0 V_0 g$ — (1), где V_0 — объем шарового сегмента высотой h, находящегося в воде при равновесии, ρ_0 — плотность воды, m — масса мяча.

Очевидно, что H + h = R, т.е. радиусу мяча. Если теперь погрузить мяч в воду на глубину х, то сила Архимеда превысит силу тяжести, действующую на результирующая сила, выталкивающая мяч из воды, будет $F_r = F_A' - mg$ — (2). Против этой силы F_r и должна быть совершена работа. Сила Архимеда $F'_{A} = \rho_{0}Vg$ — (3), где V — объем шарового сегмента высотой h+x. Из (1) — (3) имеем $F_{\rm r} = \rho_0 V g - \rho_0 V_0 g = \rho_0 g (V - V_0) = \rho_0 g V_{\rm r}$, где V_{x} — объем шарового слоя высотой x. Шаровой сегмент высотой l имеет объем шарового слоя $V_x = V - V_0 =$ $=\frac{\pi(x+h)^2}{3}[3R-(x+h)]-\frac{\pi h^2}{3}(3R-h)$. Тогда $F_x=\rho_0 gV_x=$ $=\frac{\pi\rho_0g}{2}\left[3R(x+h)^2-(x+h)^3-h^2(3R-h)\right]$ — (4). Работа, которую надо совершить при погружении мяча до диаметральной плоскости, будет $A = \int_{0}^{H} Fx dx$ — (5). Подставляя (4) в (5), интегрируя и учитывая, что H + h = R, получим, после подстановки данных задачи, A = 0.74 Дж.

2.129. Шар радиусом R=6 см удерживается внешней силой под водой так, что его верхняя точка касается поверхности воды. Какую работу A произведет выталкивающая сила, если отпус-

тить шар и предоставить ему свободно плавать? Плотность материала шара $\rho = 0.5 \cdot 10^3 \, \text{кг/м}^3$.

Решение:

Определим положение шара при свободном плавании, в этом случае сила тяжести $m\overline{g}$ уравновешивается силой Архимеда F_{Δ} . Следовательно, $mg = F_{\Delta}$;

$$m = V_{\text{ui}} \rho$$
; $\frac{3}{4} \pi R^3 \rho g = \rho_{\text{B}} V_0 g$, где

$$\rho_{\rm B} = 10^3 \, {\rm kr/m}^3$$
 — плотность воды, V_0 — объем погруженной части шара. Отсюда

$$\dot{V_0} = \frac{\rho}{\rho_{_{\rm B}}} \left(\frac{4}{3}\pi R^3\right)$$
 или $V_0 = \frac{1}{2} \left(\frac{4}{3}\pi R^3\right)$, сле-

довательно,
$$V_0 = \frac{1}{2}V_{\rm m}$$
, т.е. шар погружен

в воду до диаметральной плоскости. В первоначальном положении на шар действует сила $F = F_A - mg$. В предыдущей задаче была получена формула, выражающая зависимость выталкивающей силы от глубины погружения x, если при свободном плавании в воде находился шаровой сегмент высотой h. Учитывая, что в данном

случае
$$h = R$$
, имеем $F = \frac{\pi \rho_0 g}{3} [3R(x+R)^2 - (x+R)^3 - 2R^3].$

Если отпустить мяч и предоставить ему свободно плавать, то в этом случае работа выталкивающей силы:

$$A = \int_{0}^{R} F dx = \frac{\pi \rho_0 g}{3} \int_{0}^{R} \left[3R(x+R)^2 - (x+R)^3 - 2R^3 \right];$$

$$A = \frac{\pi \rho_0 g}{3} \left[3R \frac{(x+R)^3}{3} \bigg|_0^R - \frac{(x+R)^4}{4} \bigg|_0^R - 2R^3 x \bigg|_0^R \right];$$

$$A = \frac{\pi \rho_0 g}{3} \left[7R^4 - \frac{15}{4}R^4 - 2R^4 \right]; A = \frac{5\pi \rho_0 g}{3 \cdot 4}R^4; A = 0.17 \text{ Дж.}$$