Final Review

MEMORIZATION:

• Polyatomic lons:

NO ₃ - Nitrate	NO ₂ - Nitrite
SO ₄ ²⁻ Sulfate	SO ₃ ²⁻ Sulfite
PO ₄ ³⁻ Phosphate	PO ₃ ³⁻ Phosphite
CO ₃ ² Carbonate	HCO ₃ - Hydrogen Carbonate
CN ⁻ Cyanide	NH₄ ⁺ Ammonium
OH ⁻ Hydroxide	CIO ⁻ Hypochlorite
CH ₃ CO ₂ - Acetate	

• Solubility Rules:

- 1. Salts containing 1A elements (Li⁺, Na⁺, K⁺, Cs⁺, Rb⁺) are soluble.
- 2. Ammonium ion is soluble (NH₄⁺)
- 3. Nitrate ion is soluble (NO₃⁺)
- 4. Chlorine, Bromine, Iodine (Cl⁻, Br⁻, l⁻) are soluble. EXCEPTIONS (Ag⁺, Pb²⁺, and Hg_2^{2+})
- 5. Silver salts are insoluble. EXCEPTIONS (AgNO $_3$, and Ag(C $_2$ H $_3$ O $_2$))
- 6. Sulfate salts are soluble (SO_4^{2-}) EXCEPTIONS ($BaSO_4$, $PbSO_4$, and $SrSO_4$)

Prefixes:

Number	Prefix
1	Mono
2	Di
3	Tri
4	Tetra
5	Penta
6	Hexa
7	Hepta
8	Octa
9	Nona
10	Deca

• Conversions:

Celsius to Kelvin: °C + 273	Celsius to Fahrenheit: °C (9/5) + 32		
1 mol = 6.022 X 10 ²³ atoms	1000(mg) = 1(g), 1000(g) = 1(kg), 1000(kg) = 1 metric ton		
10(mm) = 1(cm), 100(cm) = 1(m), 1000(mm) = 1 (m), 1000(m) = 1(km)	12(in) = 1(ft), 36(in) = 1(yd), 3(ft) = 1(yd), 5280(ft) = 1(mile)		
16(oz) = 1(lb), 2000(lb) = 1(t)			

• Gas Laws:

Gas Law Formula					
Gas Law	Formula		Description		
Boyle's Law	$P_1V_1 = P_2V_2$		At constant <i>T</i> , as pressure increases, volume decreases.		
Charles' Law	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$		At constant P, as volume increases, temperature increases.		
Gay-Lussac's Law	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$		At constant V, as pressure increases, temperature increases.		
Combined Law	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$		Obtained by combining Boyle's Law, Charles' Law and Gay-		
	T_1 T_2		Lussac's Law.		
Ideal Gas Law	PV = nRT				
V = volume in dm ³		P = pressure in kPa		R = ideal gas constant	
T = temperature in	K	n = number of moles			

• Conversions:

1 atm = 760 torr = 760 mmHg	1 atm = 1.01325 X 10 ⁵ Pa = 101.325 kPa	
Avogadro's Constant: 22.4 L per 1 mol of gas	R = .08205	

• Wavelength:

- Formulas and Conversions

Speed of light: c = 2.998 X 108 m/s	Planck's Constant: h = 6.626 X 10 ⁻³⁴ J * s	
(Speed) $c = v^*\lambda$	v = c/λ (v=wavelength(in meters))(c=speed)(v=frequency)	
ΔE = hv (Frequency * Planck's constant)	1m = 10 ⁻⁹ nm (subtract exponents)	

• Periodic Trends:

Atomic Radii (periodic table)

• Electron Configuration:

- n size and energy of the orbital (shell)
- I shape of the orbital (subshell) (s = 0, p = 1, d = 2, f = 3)
- m₁ orientation of the orbital (orbitals)
- m_s spin states (2 electrons + $\frac{1}{2}$ - $\frac{1}{2}$)

_

Hybridization:

- Overlap of valence electrons between two atoms
- -
- -
- _

• Electron Jumping:

- Absorbing energy Jumps up levels
- Emitting energy Goes down levels

• Redox Reactions:

- OIL RIG = Oxidation is loss Reduction is gain
- Oxidations = loss of electrons from a species
- Reduction = Gain of electrons within a species
- Oxidation Number Rules (O = -2, H = +1, I and II = +1 and +2)
- $E_{cell} = E_{cathode} E_{anode}$

Naming Acids:

- Rules for Naming Acids that Do Not Contain Oxygen in the Anion: Since all these acids have the same cation, H+, we don't need to name the cation.
- The acid name comes from the root name of the anion name.
- The prefix hydro- and the suffix -ic are then added to the root name of the anion. All acids beginning with the prefix, hydro" are otherwise known as binary acids.
- EX: HCI, which contains the anion chloride, is called hydrochloric acid.
- EX: HCN, which contains the anion cyanide, is called hydrocyanic acid.

- Rules for Naing Acids that DO CONTAIN Oxygen in the anion:
- Since all these acids have the same cation, H+, we don't need to name the cation.
- The acid name comes from the root name of the oxyanion name or the central element of the oxyanion.
- Suffixes are used based on the ending of the original name of the oxyanion. If the name of the polyatomic anion ended with -ate, change it to -ic for the acid and if it ended with -ite, change it to -ous in the acid.
- EX: HNO3, which contains the polyatomic ion nitrate, is called nitric acid.
- EX: HNO2, which contains the polyatomic ion nitrite, is called nitrous acid.

Molecular Geometry:

- AB₂ Linear 180°
- AB₃ Trigonal Planar 120°
- AB₄ Tetrahedral 109.5°
- AB₅ Trigonal Bipyramidal 90°, 120°, 180°
- AB₆ Octahedral 90°
- AB₂U Bent 120°
- AB₃U Trigonal Pyramidal 90°, 120°
- AB₄U See Saw 180°, 120°, 90°
- AB₄U Square Planar 90°, 180°
- AB₅U Square Pyramidal 90°, 180°
- AB₂U₂ Bent 120°
- AB₃U₂ Tee Shape 90°, 180°
- AB₂U₃ Linear 180°

• Electron Geometry:

- 2 180° Linear
- 3 120° Trigonal Planar
- 4 109.5° Tetrahedral
- 5 120°, 90°, 180° Trigonal Bipyramidal
- 6 180°, 90° Octahedral

• Bonding:

- Single bond 1 σ (Sigma) bond.
- Double bond 1 σ (Sigma) and 1 π (Pi) bond.
- Triple bond 1 σ (Sigma) and 2 π (Pi) bonds.

• <u>Intermolecular Forces:</u>

- Hydrogen Bonds: H-F, H-O, H-N (Very Strong Increased Boiling Point etc;)
- Dipole-Dipole: When there are polar bonds but not hydrogen bonding (Not as strong)

- London Dispersions: Between Nonpolar molecules (Same elements bonded to each other) (Weak)
- Ionic Bonding: Stronger ^. Metal + Nonmetal
- Metallic Bonding: Strongest

Electronegativity:

The ability of an atom in a molecule to attract shared electrons to itself. 100% non polar if bonded to itself.

Polarity:

- When there are no lone pairs on the center atom, then the molecule is nonpolar
- If it is linear or square planar, then it is non-polar.
- If it has different terminal atoms, then it is polar.
- Most polar Distance between them on periodic table with electronegativity in mind

• Cubic Unit Cells:

- Primitive 1 atom/cell
- Body Centered 2 atom/cell
- Face Centered 3 atom/cell

• Types of Solids:

- Crystalline: Repetitive Patterns, Higher Density, Specific Meltings, More Strong points EX: Quartz, Sugar, Salt, Diamond,
- Amorphous: Disordered Patterns, Lower Density, Varying Melting Points (Has glass transition point instead), More Flexible EX: Rubber, Glass, Polymers,

• Energy:

- Conversions and Formulas

$q = mc\Delta T$ (q = energy in J), (m = mass in g), (c=specific heat in J/gXC) (T = change	1000 calorie = 1 kilocalorie = 1kcal, 1kcal = 1 Calorie, 1 cal = 4.184J (Also	
in temp)	specific heat of water)	

$$1km = 1000m, 1kg = 1000g$$

1kJ = 1000J, 1kcal = 4.184kJ

Solve for the specific heat of the metal.

$$c_{\text{metal}} = \frac{q_{\text{metal}}}{m_{\text{metal}} \times \Delta T_{\text{metal}}} = \frac{-q_{\text{water}}}{m_{\text{metal}} \times \Delta T_{\text{metal}}} = \frac{-c_{\text{water}} \times m_{\text{water}} \times \Delta T_{\text{water}}}{m_{\text{metal}} \times \Delta T_{\text{metal}}}$$

-

When 1.610 \times 10³ J of heat energy is added to 45.6 g of hexane, C_6H_{14} , the temperature increases by 15.6 °C. Calculate the molar heat capacity of C_6H_{14} .

Convert 45.6 g of hexane to moles. The molar mass of C₆H₁₄ is 86.177 g/mol.

$$45.6 \ \ g \times \frac{1 \ \ mol}{86.177 \ \ g} = 0.529 \ \ mol$$

Now calculate the molar heat capacity CP.

$$C_{\rm p} = \frac{q_P}{n\Delta T} = \frac{1.610 \times 10^3 \text{ J}}{\left[0.529 \text{ mol}\right] \left[15.6 \text{ }^{\circ}\text{ C}\right]} = 195 \text{ J} / \left[\text{mol} \cdot \text{ }^{\circ}\text{ C}\right]$$

• Types of Energy:

- Kinetic: Energy of Motion (EX: Thermal, Mechanical, Electrical)
- Potential: Energy Stored (EX: Gravitational, Electrostatic, Chemical and Nuclear)

Energy Transfer:

- Exothermic: Gives off heat, Energy Released, (EX: Heat from condensation abosrbed by skin)
- Endothermic: Takes in heat, (EX: when you sweat, water on your skin evaporates)

• Enthalpy:

Conversions and Formulas

$H = q_p (H = enthalpy) (energy with constant pressure_p)$	H = U + PV (PV = work done) (U =	
$\Delta H = \Delta(U + PV)$	$\Delta H = (H_f - H_i)$	

- Enthalpy is a function of Temperature and Pressure
- Taken at Standard Conditions: 1atm/760 torr, 298.15K/25C

- Phase Changes and Energy:
 - Low to High = Exo
 - High to Low = Endo

CONCEPTS:

- Nomenclature
- <u>Ionic: Metal + Nonmetal</u>
- 1. Name the cation (Positively Charged Ion) (Cathode)
- 2. Then name the anion (Negatively Charged Ion) (Anode)
- 3. Add -ide to the end of the anion
- 4. Balance it when you have various charges on metals
- 5. EX: CaCl₂ Calcium Chloride
- 6. EX: Fe(OH)₂ Iron (II) Hydroxide. Because OH is 1- and you have 2. For an overall 2-. Iron has to be a positive charge of 2+ so that its balanced.
- Covalent: Nonmetal + Nonmetal
- 1. Use prefixes EXCEPTION: No "mono" on the first atom if there is only one of them
- 2. Add -ide to the end of the second atom
- 3. EX: CO₂ Carbon Dioxide
- 4. EX: SF₆ Sulfur Hexafluoride
- Molarity: Mols Liters
- Concentration: Mole ratios in equations
- Total Ionic Equations: Write all the ions in solution (Solubility Rules)

- Net Ionic Equations: Write ONLY the ions that change (Solubility Rules)
- EX:

An Example

The reaction between aqueous sodium chloride & silver nitrate.

Chemical Equation:

$$NaCl_{(aq)} + AgNO_{3(aq)} \rightarrow NaNO_{3(aq)} + AgCl_{(s)}$$

Total Ionic Equation:

$$Na^{+}_{(aq)} + Cl^{-}_{(aq)} + Ag^{+}_{(aq)} + NO_{3(aq)} \rightarrow Na^{+}_{(aq)} + NO_{3(aq)} + AgCl_{(s)}$$

Net ionic Equation:

$$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$$

- <u>Isotopes:</u>
- Percent Abundance = $\frac{\# \ of \ atoms \ of \ the \ isotope}{\# \ of \ atoms \ of \ total \ isotopes}$ X 100 (Set 1 = x and Set 2 = x 1, solve for x)
- Atomic Mass = (Mass of Isotope 1)*(Percent Abundance Isotope 1 /100) + (Mass of Isotope) * (Percnt Abundance Isotope 2 / 100) + ...
- Percent Yield = $\frac{Actual}{Theoretical}$ X 100

• Strongs Acids:

- HCI hydrochloric acid
- HNO3 nitric acid
- H2SO4 sulfuric acid (HSO4- is a weak acid)
- HBr hydrobromic acid
- HI hydroiodic acid
- HCIO4 perchloric acid
- HCIO3 chloric acid

Voltaics Cells:

- Primary Battery: Not reusable, Cannot be recharged, EX: Alkaline Battery
- Secondary Battery: Reusable, Reaction can be reversed. EX: Lead-acid car battery
- Salt Bridge (NaNO3)
 ions do not react (neutralize charge)
- Anions migrate to anode

- Cations migrate to cathode
- Anode—oxidation—(negative)
 Both begin with vowel
- Cathode—reduction—(positive)
 Both begin with a consonant
- Electrons flow from the anode to the cathode

• Photoelectric Effect:

- Ground State: The lowest energy level (n = 1)
- Excited State: A subsequently higher energy level. n = 2 is the "first excited state" and so on.
- Absorption: An electron moving from a lower energy level to a higher energy level
- Emission: An electron moving from a higher to a lower energy level accompanied by the release of a photon.