in Power Bl

Aplicado a Problemas Reais

udemy

Business Intelligence

O que é BI?

Objetivo Principal Facilitar a interpretação dos dados, identificar novas oportunidades de negócio e ajudar a empresa a montar uma estratégia de longo prazo.

Das informações que são a base da gestão de negócios, tais como informações de vendas, estoque, produção, financeiro, informações de clientes, etc.

Processo que auxilia a transformação dos dados brutos em informações compreensíveis e significativas para posterior análise do negócio.

Aplicações de Bl

Cenários para Aplicação de Bl

01

Empresa possui ERP com acesso ao banco de dados

Conseguimos fazer análise completa da empresa:

- Vendas
- Financeiro
- Estoque
- Produção
- Clientes
- etc

02

Empresa de Software com acesso às informações dos clientes

Conseguimos fazer estudo da base através de análise dos dados do software:

- Perfil dos clientes
- Propensão para churn
- Recomendação de Upsell e Cross-sell
- etc

03

Empresa utiliza sistemas e aplicativos de terceiros na nuvem

Conseguimos fazer integração apenas com ferramentas que disponibilizam API.

Processo de Bl

Vamos analisar o Banco de Dados Transacional (OLTP) da Adventure Works

Data Warehouse

Utilizado para armazenar informações relativas às atividades de uma organização de forma consolidada, com as informações unificadas e padronizadas em um Sua função é tornar as informações acessíveis para o seu entendimento, gerenciamento e uso. Sua missão é mostrar apenas o que é importante, e mostrar com mesmo local. velocidade ERP Planilhas CRM Dados externos

Banco de Dados Dimensional

Agora vamos analisar o Banco de Dados Dimensional (DW) da Adventure Works para Vendas na Internet

DimProduct

StandardCost

ReorderPoint

ListPrice

SizeRange

ProductLine

DealerPrice

ModelName

LargePhoto

EnglishDescription

FrenchDescription

ChineseDescription

ArabicDescription

HebrewDescription

GermanDescription

TurkishDescription

StartDate

EndDate

Status

ThaiDescription

Weight

Class

Style

Size

Color

FinishedGoodsFlag

SafetyStockLevel

Processo de Bl

Modelagem de Dados

Modelagem Multidimensional

Construções de modelagem OLAP (cubos, dimensões, medidas).

Surgiu com o SQL Server 2000

02

Modelagem Tabular

Construções de modelagem relacionais (modelo, tabelas, colunas).

Surgiu com o SQL Server 2012

03

Modelagem Powerpivot

Originalmente um suplemento, mas agora está totalmente integrado no Excel.

Semelhante à tabular, porém para ser utilizado com dados não tão grandes no Excel ou no Power Bl

Modelagem Multidimensional - Cubo

Exemplo de Cubo

Cada bloco representa o Valor das Vendas de um determinado produto para um determinado cliente, em um determinado período de tempo

Dimensão Cliente

Tabela com dados únicos dos clientes, como Nome, Documento, Nascimento, Endereço, Telefone, etc

Dimensão Produto

Tabela com dados únicos dos produtos, como Nome, Categoria, Preço Unitário, etc.

Dimensão Tempo

Tabela de calendário para ser possível filtrar por diferentes dimensões que representam o tempo, como Ano, Mês, Dia, Semana do Ano, Trimestre, etc

Modelagem Tabular

- Surgiu em 2012 junto com o SQL Server 2012
- Aparência semelhante às tabelas de Excel
- É um modelo relacional, portanto não é obrigatório a conexão a um DW com esquema estrela
- Mais simples de ser desenvolvido
- Mais rápido computacionalmente
- Utiliza linguagem DAX, mais fácil que a linguagem MDX (modelo dimensional)
- Ideal para bases não muito grandes e cálculos não muito complexos

Plataformas Enterprise de Bl

Microsoft BI Stack

Integration Services Modelagem de dados Reporting Services Relatórios

Analysis Services

- 1 Modelagem Multidimensional
- 2 Modelagem Tabular
- 3 Modelagem Powerpivot

Microsoft Self-Service Bl

Suplementos do Excel

Power Query

Permite a obtenção e manipulação de informações a partir de diferentes fontes de dados

Camada de ETL

Powerpivot

Permite a criação de modelos de dados diretamente no Excel para a transformação dos dados em informações significativas

> Camada de DW e Modelagem de Dados

Power View

Permite a criação de relatórios e dashboards que garantem uma experiência interativa ao usuário

Camada de Relatórios

Leonardo Karpinski

Processo de Self-Service Bl

Enterprise x Self-Service Bl

Modelagem Relatórios ETL de dados Integration Analysis Reporting Enterprise Services Services Services Power Power Power Self-Service View Query Pivot

Microsoft Power BI

Suplementos do Excel em um único aplicativo

Por que o Power BI?

Quadrante Mágico Gartner

Microsoft Power Bl

- Atualizações mensais
- Grande comunidade na internet
- Inúmeras possibilidades de conexão com dados, de diversas fontes
- Integração com outras soluções da Microsoft (Azure, Azure Machine Learning, Sharepoint, SSAS, HDInsight, etc)
- Facilidade para realizar ETL e modelagem de dados.
- Poder das expressões DAX para realizar cálculos avançados.
- Interatividade dos relatórios, podendo filtrar dados com extrema facilidade
- Possibilidade de embedar relatórios em aplicativos
- Gráficos e visuais avançados, inclusive podendo-se utilizar a linguagem R
- Possibilidade de compartilhar os dashboards para qualquer pessoa
- Possui aplicativo para celular
- E, por último, mas não menos importante, o preço imbatível: \$9,90 por usuário

Versão Desktop x Online

	Versão Desktop	Versão Online
Construção de modelos e funções DAX	✓	
Conexão com fontes de dados on-premise	✓	
Conexão com fontes de dados online	✓	
Construção de relatórios	✓	
Construção de dashboards		
Compartilhamento, colaboração e publicação na web		
Q&A e insights		
Valor	Grátis	Possui versão grátis e Pro à \$9,90

ETL com Query Editor

Modelagem de Dados

e colunas calculadas com funções DAX

> Relacionamento entre tabelas

Tipos de Visualização

etc

Publicação Online

Funções DAX

DAXDATA ANALYSIS EXPRESSIONS

Coleção de funções, operadores e constantes que podem ser usados em uma fórmula ou expressão, para calcular e retornar um ou mais valores.

Funções semelhantes às do Excel.

Permitem manipular o contexto de dados para criar cálculos dinâmicos

Funções de inteligência de tempo
Usando intervalos de hora e data em combin

Usando intervalos de hora e data em combinação com agregações ou cálculos, é possível criar comparações significativas em períodos de tempo comparáveis.

Funções de data e hora
Semelhantes às funções de dat

Semelhantes às funções de data e hora do Microsoft Excel. No entanto, as funções DAX se baseiam nos tipos de dados datetime usados pelo Microsoft SQL Server.

Funções lógicas

Agem sobre uma exp

Agem sobre uma expressão para retornar informações sobre os valores da expressão.

Funções Lógicas

01

Função AND

Verifica se os dois argumentos são TRUE, e retorna TRUE se os dois forem TRUF.

= AND(10 > 9, 6 < 3)

Retorna FALSE

02

Função IF

Verifica se uma condição fornecida como o primeiro argumento foi atendida. Retorna um valor se a condição é TRUE; retorna outro valor se a condição é FALSE.

= IF(AND(10 > 9, 6 < 3),"Verdadeiro", "Falso"

Retorna "Falso"

03

Função IFERROR

Avalia uma expressão e retorna um valor especificado caso a expressão retorne um erro; caso contrário, retorna o valor da própria expressão.

= IFERROR(25/0, 9999)

Retorna 9999, pois 25/0 é NaN

Funções de Data e Hora

01

Função DATE

Retorna a data especificada no formato datetime.

= DATE(2016, 1, 25)

Retorna o dia 25/jan/2016

02

Função TODAY

Retorna a data atual.

= TODAY()

Retorna a data atual

03

Função YEAR

Retorna o ano de uma data como um inteiro de quatro dígitos no intervalo 1900 a 9999.

= YEAR(dCalendario[Data])

Retorna o ano referente à data da coluna enviada

Funções de Filtro

01

Função CALCULATE

Avalia uma expressão em um contexto que é modificado pelos filtros especificados.

02

Função ALL

Retorna todas as linhas de uma tabela ou todos os valores de uma coluna, ignorando qualquer filtro que possa ter sido aplicado.

03

Função FILTER

Retorna uma tabela que representa um subconjunto de outra tabela ou expressão.

```
= CALCULATE(
   SUM (fVendas[Vendas]),
   ALL (dProdutos)
```

```
= CALCULATE (
   SUM (fVendas[Vendas]),
   FILTER (
     dProdutos,
```

dProdutos[Produto] = "Bicicleta"

Calcula o total em Vendas ignorando qualquer filtro na tabela dProdutos

Calcula o total em Vendas do produto Bicicleta

Funções de Inteligência de Tempo

01

Função DATEADD

Retorna uma tabela que contém uma coluna de datas, adiantadas ou atrasadas no tempo conforme o número especificado de intervalos.

02

Função DATESYTD

Retorna uma tabela que contém uma coluna de datas desde o início do ano, no contexto atual.

03

Função TOTALMTD

Avalia o valor da expressão no período desde o início do mês, no contexto atual.

= TOTALMTD(SUM (fVendas[Vendas]), dCalendario[Data] Calcula o total em Vendas do ano anterior

Calcula o total em Vendas acumulado no ano

Calcula o total em Vendas acumulado no mês

Coluna Calculada x Medida

Coluna Calculada

- Row context
- Valor calculado para cada linha da tabela
- Utilizado quando se deseja expor os valores em um eixo do gráfico ou quando se deseja fazer classificar os dados com base nos valores calculados

Medida

- Filter context
- Calculada somente para as células que são usadas na tabela dinâmica ou gráfico dinâmico
- Mais eficientes computacionalmente
- Utilizada sempre que tivermos valores para expor em um gráfico

Coluna Calculada x Medida

Produto	Venda	Lucro	Margem							
Α	100	10	0,10	Agregando por Produto						
Α	80	20	0,25	<u> </u>	SUM SUM SUM /					
А	120	36	0,30		Produto	Venda	Lucro	Margern		
				▎ └	A	320	66	0,65		
					→					
					Margem Correta =					
					Margem Correta = SUM (Lucro) / SUM (Venda)					

in Power Bl

Aplicado a Problemas Reais

udemy