Capstone project

Table of contents

- Introduction: Business Problem
- Data
- <u>Methodology</u>
- Analysis
- Results and Discussion
- Conclusion

Introduction: Businesss Problem

In this project, we suppose our client is working in New York and get two offres of jobs in Toronto and Paris. He want to choose the city that have more similar to New York to work. We will measure the similarity among New York, Toronto and Paris based on the clusters. First, for each city, we divide the set of neighborhoods into clusters, then assign each cluster with the name by using the top of venues. Seconde, we consider the clusters of each city to see which city Paris or Toronto is more similar to New York.

Data

We need data include:

- the list of neighborhoods New York city from https://cocl.us/new_york_dataset)
- the list of neighborhoods Toronto city from
 https://en.wikipedia.org/wiki/List of postal codes of Canada: M
 (https://en.wikipedia.org/wiki/List of postal codes of Canada: M)
- the list of neighborhoods Paris city that is given

For each city, we use the Google maps API to search the latitude and longitude of each neighborhoods.

Top of venues for each neighborhood is collected by using Foursquare API.

Methodology

In this project, we use the k-means cluster algorithm in scikit learning library to cluster the set of neighborhoods for each city. To do that, we collect the popular venues of every neighborhoods with the radius 500m and limit 30. From we give the top of venues of every neighborhoods and we use hot-coding to code the venues, then cluster neighborhoods based on the information of the top venues. Then we will assign the name of each cluster for the 1st common venues.

Analysis

Cluster neighborhood in Toronto

```
import pandas as pd #import the pandas library
# read the table of neighborhoods Toronto from url file
url="https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M"
data=pd.read_html(url)
df=data[0]
df=pd.DataFrame({'Postcode':df.loc[1:,0],'Borough':df.loc[1:,1],'Neighldf.head()
```

```
Out[1]:
                Postcode
                                     Borough Neighbourhood
             1
                     M<sub>1</sub>A
                                 Not assigned
                                                  Not assigned
             2
                     M2A
                                 Not assigned
                                                  Not assigned
             3
                     МЗА
                                   North York
                                                    Parkwoods
             4
                     M4A
                                   North York
                                                 Victoria Village
             5
                     M5A Downtown Toronto
                                                   Harbourfront
```

```
In [2]: # drop data with values be 'not assigned'
df.drop(df[df['Borough']=='Not assigned'].index,inplace=True)
for i in range(df.shape[0]):
    if df.iloc[i,2]=="Not assigned":
        df.iloc[i,2]=df.iloc[i,1]
df.head()
```

```
Out[2]:
               Postcode
                                  Borough
                                             Neighbourhood
                    МЗА
                                 North York
                                                  Parkwoods
            3
            4
                    M4A
                                 North York
                                               Victoria Village
            5
                    M5A Downtown Toronto
                                                 Harbourfront
            6
                    M5A Downtown Toronto
                                                 Regent Park
            7
                    M6A
                                 North York Lawrence Heights
```

```
In [3]: # reset the index column
    df.reset_index(inplace=True)
    del df['index']
    df.head()
```

```
Out[3]:
               Postcode
                                  Borough
                                              Neighbourhood
                    МЗА
                                 North York
                                                  Parkwoods
            0
            1
                    M4A
                                 North York
                                               Victoria Village
            2
                    M5A Downtown Toronto
                                                 Harbourfront
            3
                    M5A Downtown Toronto
                                                 Regent Park
            4
                    M6A
                                 North York Lawrence Heights
```

```
In [4]: # group neighborhoods by borough
    df=df.groupby(['Postcode','Borough'],sort=False).agg(','.join)
    df.reset_index(inplace=True)
    df.head()
```

```
Out[4]:
                Postcode
                                     Borough
                                                                 Neighbourhood
                     МЗА
                                   North York
                                                                      Parkwoods
             0
             1
                     M4A
                                   North York
                                                                   Victoria Village
             2
                     M5A Downtown Toronto
                                                        Harbourfront, Regent Park
             3
                     M<sub>6</sub>A
                                   North York Lawrence Heights, Lawrence Manor
                     M7A
                                 Queen's Park
                                                                    Queen's Park
             4
```

```
In [5]: # collect the latitude and longitude from file
    df_coor=pd.read_csv('Geospatial_Coordinates.csv')
    df_coor.rename(index=str, columns={"Postal Code": "Postcode"},inplace=!
    df_coor.head()
```

```
Out[5]: Postcode Latitude Longitude

0 M1B 43.806686 -79.194353

1 M1C 43.784535 -79.160497

2 M1E 43.763573 -79.188711

3 M1G 43.770992 -79.216917

4 M1H 43.773136 -79.239476
```

In [6]: Data=pd.merge(df, df_coor, on='Postcode')
Data.head()

Out[6]:	Out	[6]	:
---------	-----	-----	---

	Postcode Borough		Neighbourhood	Latitude	Longitude	
0	МЗА	North York	Parkwoods	43.753259	-79.329656	
1	M4A	North York	Victoria Village	43.725882	-79.315572	
2	M5A	Downtown Toronto	Harbourfront,Regent Park	43.654260	-79.360636	
3	M6A	North York	Lawrence Heights,Lawrence Manor	43.718518	-79.464763	
4	M7A	Queen's Park	Queen's Park	43.662301	-79.389494	

In [7]: # Toronto data are ready after adding the latitude and longitude of ev
toronto_data = Data[Data['Borough'] == 'Downtown Toronto'].reset_index
toronto_data.head()

	Postcode	Borough	Neighbourhood	Latitude	Longitude
0	M5A	Downtown Toronto	Harbourfront,Regent Park	43.654260	-79.360636
1	M5B	Downtown Toronto	Ryerson, Garden District	43.657162	-79.378937
2	M5C	Downtown Toronto	St. James Town	43.651494	-79.375418
3	M5E	Downtown Toronto	Berczy Park	43.644771	-79.373306
4	M5G	Downtown Toronto	Central Bay Street	43.657952	-79.387383

See the neighborhoods of Toronto by using map

```
In [9]: #import library to get latitude and longitude
        from geopy.geocoders import Nominatim
        import folium # map rendering library
        address = 'Toronto, CN'
        geolocator = Nominatim(user agent="ny explorer")
        location = geolocator.geocode(address)
        latitude = location.latitude
        longitude = location.longitude
        print('The geograpical coordinate of Manhattan are {}, {}.'.format(lat
        map toronto = folium.Map(location=[latitude, longitude], zoom start=11
        # add markers to map
        for lat, lng, label in zip(toronto_data['Latitude'], toronto_data['Long
            label = folium.Popup(label, parse_html=True)
            folium.CircleMarker(
                [lat, lng],
                radius=5,
                popup=label,
                color='blue',
                fill=True,
                fill color='#3186cc',
                fill opacity=0.7,
                parse html=False).add to(map toronto)
        map_toronto
```

The geograpical coordinate of Manhattan are 43.6425637, -79.38708718 32047.

Out[9]:

Input the information for using foursquare API

```
In [10]: | CLIENT_ID = 'YQYJICCBDPMQ5B3AV2QIBLIGHV2WP0AVBKDP2BGNTH41R1YB' # your
                       CLIENT SECRET = 'IRPMEG1XPDMEUZFUJPH514KV32K3F1NFFKG13Y2OJ4FKQ5XR' # y
                        VERSION = '20180605' # Foursquare API version
                       LIMIT=30
                        print('Your credentails:')
                        print('CLIENT ID: ' + CLIENT ID)
                       print('CLIENT_SECRET:' + CLIENT_SECRET)
                       Your credentails:
                       CLIENT ID: YQYJICCBDPMQ5B3AV2QIBLIGHV2WP0AVBKDP2BGNTH41R1YB
                       CLIENT SECRET: IRPMEG1XPDMEUZFUJPH514KV32K3F1NFFKG13Y2OJ4FKQ5XR
In [12]: import requests # import library to read file json
                        def getNearbyVenues(names, latitudes, longitudes, radius=500):
                                  venues list=[]
                                  for name, lat, lng in zip(names, latitudes, longitudes):
                                            print(name)
                                            # create the API request URL
                                            url = 'https://api.foursquare.com/v2/venues/explore?&client id
                                                      CLIENT ID,
                                                      CLIENT_SECRET,
                                                      VERSION,
                                                      lat,
                                                      lng,
                                                      radius,
                                                      LIMIT)
                                            # make the GET request
                                            results = requests.get(url).json()["response"]['groups'][0]['i
                                            # return only relevant information for each nearby venue
                                            venues list.append([(
                                                      name,
                                                      lat,
                                                      lng,
                                                      v['venue']['name'],
                                                      v['venue']['location']['lat'],
                                                      v['venue']['location']['lng'],
                                                      v['venue']['categories'][0]['name']) for v in results])
                                  nearby venues = pd.DataFrame([item for venue list in venues list list i
                                  nearby venues.columns = ['Neighborhood',
                                                                      'Neighborhood Latitude',
                                                                       'Neighborhood Longitude',
                                                                       'Venue',
                                                                       'Venue Latitude',
```

Harbourfront, Regent Park Ryerson, Garden District St. James Town Berczy Park Central Bay Street Christie Adelaide, King, Richmond Harbourfront East, Toronto Islands, Union Station Design Exchange, Toronto Dominion Centre Commerce Court, Victoria Hotel Harbord, University of Toronto Chinatown, Grange Park, Kensington Market CN Tower, Bathurst Quay, Island airport, Harbourfront West, King and Spa dina, Railway Lands, South Niagara Rosedale Stn A PO Boxes 25 The Esplanade Cabbagetown, St. James Town First Canadian Place, Underground city Church and Wellesley (488, 7)

Out[12]:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venu Categoi
0	Harbourfront,Regent Park	43.65426	-79.360636	Roselle Desserts	43.653447	-79.362017	Bake
1	Harbourfront,Regent Park	43.65426	-79.360636	Tandem Coffee	43.653559	-79.361809	Coff∈ Shc
2	Harbourfront,Regent Park	43.65426	-79.360636	Toronto Cooper Koo Family Cherry St YMCA Centre	43.653191	-79.357947	Gym Fitnes Centi
3	Harbourfront,Regent Park	43.65426	-79.360636	Body Blitz Spa East	43.654735	-79.359874	Sŗ
4	Harbourfront,Regent Park	43.65426	-79.360636	Morning Glory Cafe	43.653947	-79.361149	Breakfa: Spo

In [13]: toronto_venues.groupby('Neighborhood').count()
 print('There are {} uniques categories.'.format(len(toronto_venues['Venues]));

There are 147 uniques categories.

```
In [14]: # one hot encoding
    toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], pro
# add neighborhood column back to dataframe
    toronto_onehot['Neighborhood'] = toronto_venues['Neighborhood']

# move neighborhood column to the first column
    fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columnto_onehot = toronto_onehot[fixed_columns])

toronto_grouped = toronto_onehot.groupby('Neighborhood').mean().reset_toronto_grouped.head()
```

Out[14]:

	Neighborhood	Yoga Studio	Airport	Airport Food Court	Airport Gate	Airport Lounge	Airport Service	Airport Terminal
0	Adelaide,King,Richmond	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1	Berczy Park	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	CN Tower,Bathurst Quay,Island airport,Harbourf	0.0	0.058824	0.058824	0.058824	0.117647	0.176471	0.117647
3	Cabbagetown,St. James Town	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4	Central Bay Street	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

5 rows × 147 columns

```
In [15]: def return_most_common_venues(row, num_top_venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False
    return row_categories_sorted.index.values[0:num_top_venues]
```

```
In [16]: num top venues = 10
         import numpy as np
         indicators = ['st', 'nd', 'rd']
         # create columns according to number of top venues
         columns = ['Neighborhood']
         for ind in np.arange(num top venues):
                 columns.append('{}{} Most Common Venue'.format(ind+1, indicato)
             except:
                 columns.append('{}th Most Common Venue'.format(ind+1))
         # create a new dataframe
         neighborhoods venues sorted = pd.DataFrame(columns=columns)
         neighborhoods venues sorted['Neighborhood'] = toronto grouped['Neighborhood']
         for ind in np.arange(toronto_grouped.shape[0]):
             neighborhoods venues sorted.iloc[ind, 1:] = return_most_common_ven
         neighborhoods venues sorted.head()
Out[16]:
```

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue
0	Adelaide,King,Richmond	Steakhouse	Hotel	Café	Coffee Shop	Pizza Place	Asian Restaurant
1	Berczy Park	Café	Cocktail Bar	Coffee Shop	Beer Bar	Seafood Restaurant	Farmers Market
2	CN Tower,Bathurst Quay,Island airport,Harbourf	Airport Service	Airport Lounge	Airport Terminal	Plane	Coffee Shop	Boutique
3	Cabbagetown,St. James Town	Coffee Shop	Italian Restaurant	Restaurant	Café	Bakery	Japanese Restaurant
4	Central Bay Street	Coffee Shop	Spa	Italian Restaurant	Bubble Tea Shop	Sushi Restaurant	Bar

```
In [17]: # set number of clusters
    from sklearn.cluster import KMeans
    kclusters = 5

    toronto_grouped_clustering = toronto_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_group)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

```
Out[17]: array([0, 1, 2, 0, 0, 1, 3, 1, 0, 0], dtype=int32)
```

toronto_merged.head() # check the last columns!

In [18]:

add clustering labels
neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_
toronto_merged = toronto_data

merge toronto_grouped with toronto_data to add latitude/longitude fo.
toronto_merged = toronto_merged.join(neighborhoods_venues_sorted.set_in)

Out[18]:

	Postcode	Borough	Neighbourhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd M Comn Ve
0	M5A	Downtown Toronto	Harbourfront,Regent Park	43.654260	-79.360636	0	Coffee Shop	Bal
1	M5B	Downtown Toronto	Ryerson,Garden District	43.657162	-79.378937	1	Café	Cloth S
2	M5C	Downtown Toronto	St. James Town	43.651494	-79.375418	0	Coffee Shop	Gastro
3	M5E	Downtown Toronto	Berczy Park	43.644771	-79.373306	1	Café	Cocl
4	M5G	Downtown Toronto	Central Bay Street	43.657952	-79.387383	0	Coffee Shop	1

```
In [19]: # create map
         import matplotlib.cm as cm
         import matplotlib.colors as colors
         map_clusters = folium.Map(location=[latitude, longitude], zoom_start=1
         # set color scheme for the clusters
         x = np.arange(kclusters)
         ys = [i + x + (i*x)**2  for i  in range(kclusters)]
         colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
         rainbow = [colors.rgb2hex(i) for i in colors array]
         # add markers to the map
         markers colors = []
         for lat, lon, poi, cluster in zip(toronto merged['Latitude'], toronto i
             label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_!
             folium.CircleMarker(
                 [lat, lon],
                 radius=5,
                 popup=label,
                 color=rainbow[cluster-1],
                 fill=True,
                 fill color=rainbow[cluster-1],
                 fill_opacity=0.7).add_to(map_clusters)
         map clusters
```

Out[19]:

In [20]: toronto_merged.loc[toronto_merged['Cluster Labels'] == 0, toronto_merged

Out[20]:

	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue
0	Downtown Toronto	0	Coffee Shop	Bakery	Park	Gym / Fitness Center	Breakfast Spot	Mexican Restaurant
2	Downtown Toronto	0	Coffee Shop	Gastropub	Italian Restaurant	Restaurant	Hotel	Japanese Restaurant
4	Downtown Toronto	0	Coffee Shop	Spa	Italian Restaurant	Bubble Tea Shop	Sushi Restaurant	Bar
6	Downtown Toronto	0	Steakhouse	Hotel	Café	Coffee Shop	Pizza Place	Asian Restaurant
8	Downtown Toronto	0	Coffee Shop	Restaurant	Deli / Bodega	Café	Steakhouse	Hotel Bar
9	Downtown Toronto	0	Café	Coffee Shop	Restaurant	Gastropub	Deli / Bodega	Gym / Fitness Center
10	Downtown Toronto	0	Café	Bar	Bookstore	Bakery	Japanese Restaurant	Restaurant
15	Downtown Toronto	0	Coffee Shop	Italian Restaurant	Restaurant	Café	Bakery	Japanese Restaurant
16	Downtown Toronto	0	Café	Coffee Shop	Steakhouse	Restaurant	Deli / Bodega	Pizza Place

In [21]: toronto_merged.loc[toronto_merged['Cluster Labels'] == 1, toronto_merged

Out[21]:

	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue
1	Downtown Toronto	1	Café	Clothing Store	Steakhouse	Ramen Restaurant	Beer Bar	Japanese Restaurant
3	Downtown Toronto	1	Café	Cocktail Bar	Coffee Shop	Beer Bar	Seafood Restaurant	Farmers Market
7	Downtown Toronto	1	Café	Park	Hotel	Performing Arts Venue	Salad Place	Deli / Bodega
11	Downtown Toronto	1	Café	Vietnamese Restaurant	Vegetarian / Vegan Restaurant	Caribbean Restaurant	Mexican Restaurant	Bakery
14	Downtown Toronto	1	Café	Seafood Restaurant	Beer Bar	Farmers Market	Cocktail Bar	Hotel
17	Downtown Toronto	1	Gay Bar	Park	Juice Bar	Ramen Restaurant	Pub	Bookstore

```
toronto merged.loc[toronto_merged['Cluster Labels'] == 2, toronto_merged
In [22]:
Out[22]:
                                                 2nd
                                   1st Most
                                                      3rd Most
                                                                4th Most
                                                                         5th Most
                                                                                   6th Most
                                                                                            7th Mc
                                                Most
                           Cluster
                 Borough
                                                               Common
                                                                                   Common
                                                                                            Comm
                                   Common
                                                      Common
                                                                         Common
                           Labels
                                            Common
                                     Venue
                                                        Venue
                                                                  Venue
                                                                            Venue
                                                                                     Venue
                                                                                               Ven
                                               Venue
                Downtown
                                     Airport
                                               Airport
                                                        Airport
                                                                            Coffee
            12
                                2
                                                                   Plane
                                                                                   Boutique
                                                                                                 Ε
                   Toronto
                                    Service
                                              Lounge
                                                       Terminal
                                                                            Shop
            toronto merged.loc[toronto merged['Cluster Labels'] == 3, toronto merged
Out[23]:
                                                2nd
                                  1st Most
                                                     3rd Most
                                                                4th Most
                                                                         5th Most
                                                                                   6th Most
                                                                                             7th M
                          Cluster
                                               Most
                Borough
                                  Common
                                                     Common
                                                               Common
                                                                         Common
                                                                                   Common
                                                                                             Comn
                          Labels
                                           Common
                                    Venue
                                                       Venue
                                                                  Venue
                                                                            Venue
                                                                                     Venue
                                                                                                Vei
                                              Venue
                                   Grocery
               Downtown
                                                                  Italian
                                                                           Coffee
            5
                               3
                                                         Park
                                               Café
                                                                                   Nightclub
                                                                                            Restau
                  Toronto
                                     Store
                                                              Restaurant
                                                                            Shop
            toronto merged.loc[toronto merged['Cluster Labels'] == 4, toronto merge
In [24]:
Out[24]:
                                   1st Most
                                             2nd Most
                                                       3rd Most
                                                                 4th Most
                                                                          5th Most
                                                                                     6th Most
                                                                                               7th
                           Cluster
                                                                                              Com
                 Borough
                                   Common
                                                                 Common
                                                                          Common
                                                                                     Common
                                             Common
                                                       Common
                           Labels
                                     Venue
                                                Venue
                                                          Venue
                                                                   Venue
                                                                             Venue
                                                                                        Venue
                                                                                      Comfort
                Downtown
            13
                                4
                                       Park Playground
                                                            Trail
                                                                  Building
                                                                           Wine Bar
                                                                                         Food
                                                                                               Cre
                   Toronto
                                                                                    Restaurant
            toronto_cluster=pd.DataFrame({'label':range(5), 'name': ['coffee shop'
In [25]:
            toronto cluster
In [26]:
Out[26]:
               label
                            name
                  0
            0
                       coffee shop
            1
                  1
                             cafe
            2
                     Airport Service
            3
                      Grocery Store
                  3
                  4
                             Park
```

Cluster New York

```
In [27]: | !wget -q -0 'newyork data.json' https://cocl.us/new york dataset
         print('Data downloaded!')
         /bin/sh: wget: command not found
         Data downloaded!
In [28]:
         import requests
         url="https://cocl.us/new york dataset"
         data = requests.get(url).json()
In [29]:
         data
Out[29]: {'type': 'FeatureCollection',
           'totalFeatures': 306,
           'features': [{'type': 'Feature',
             'id': 'nyu_2451_34572.1',
             'geometry': { 'type': 'Point',
              'coordinates': [-73.84720052054902, 40.89470517661]},
             'geometry_name': 'geom',
             'properties': {'name': 'Wakefield',
              'stacked': 1,
              'annoline1': 'Wakefield',
              'annoline2': None,
              'annoline3': None,
              'annoangle': 0.0,
              'borough': 'Bronx',
              'bbox': [-73.84720052054902,
               40.89470517661,
               -73.84720052054902,
               40.89470517661]}},
            {'type': 'Feature',
```

```
neighborhoods data = data['features']
In [30]:
          neighborhoods data[0]
Out[30]: {'type': 'Feature',
           'id': 'nyu_2451_34572.1',
           'geometry': { 'type': 'Point',
            'coordinates': [-73.84720052054902, 40.89470517661]},
           'geometry name': 'geom',
           'properties': {'name': 'Wakefield',
            'stacked': 1,
            'annoline1': 'Wakefield',
            'annoline2': None,
            'annoline3': None,
            'annoangle': 0.0,
            'borough': 'Bronx',
            'bbox': [-73.84720052054902,
             40.89470517661,
             -73.84720052054902,
             40.89470517661]}}
In [31]: column names = ['Borough', 'Neighborhood', 'Latitude', 'Longitude']
          # instantiate the dataframe
          neighborhoods = pd.DataFrame(columns=column names)
In [32]: for data in neighborhoods data:
              borough = neighborhood name = data['properties']['borough']
              neighborhood name = data['properties']['name']
              neighborhood latlon = data['geometry']['coordinates']
              neighborhood lat = neighborhood latlon[1]
              neighborhood lon = neighborhood latlon[0]
              neighborhoods = neighborhoods.append({'Borough': borough,
                                                       'Neighborhood': neighborhood
                                                      'Latitude': neighborhood lat
                                                      'Longitude': neighborhood lo
In [33]:
         neighborhoods.head()
Out[33]:
            Borough Neighborhood
                                 Latitude Longitude
          0
               Bronx
                        Wakefield 40.894705 -73.847201
          1
               Bronx
                       Co-op City 40.874294 -73.829939
          2
               Bronx
                      Eastchester 40.887556 -73.827806
```

Fieldston 40.895437 -73.905643

Riverdale 40.890834 -73.912585

3

Bronx

Bronx

The dataframe has 5 boroughs and 306 neighborhoods.

```
In [35]: address = 'New York City, NY'

geolocator = Nominatim(user_agent="ny_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of New York City are {}, {}.'.format
```

The geograpical coordinate of New York City are 40.7127281, -74.0060 152.

```
In [36]:
         # create map of New York using latitude and longitude values
         map newyork = folium.Map(location=[latitude, longitude], zoom start=10
         # add markers to map
         for lat, lng, borough, neighborhood in zip(neighborhoods['Latitude'], :
             label = '{}, {}'.format(neighborhood, borough)
             label = folium.Popup(label, parse html=True)
             folium.CircleMarker(
                 [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill opacity=0.7,
                 parse_html=False).add_to(map_newyork)
         map newyork
```

Out[36]:

Wakefield Co-op City Eastchester Fieldston Riverdale Kingsbridge Marble Hill Woodlawn Norwood Williamsbridge Baychester Pelham Parkway City Island Bedford Park University Heights Morris Heights Fordham East Tremont West Farms

In [38]: print(newyork_venues.shape)
 newyork venues.head()

(6191, 7)

Out[38]:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Wakefield	40.894705	-73.847201	Lollipops Gelato	40.894123	-73.845892	Dessert Shop
1	Wakefield	40.894705	-73.847201	Rite Aid	40.896649	-73.844846	Pharmacy
2	Wakefield	40.894705	-73.847201	Carvel Ice Cream	40.890487	-73.848568	Ice Cream Shop
3	Wakefield	40.894705	-73.847201	Cooler Runnings Jamaican Restaurant Inc	40.898276	-73.850381	Caribbean Restaurant
4	Wakefield	40.894705	-73.847201	Dunkin'	40.890459	-73.849089	Donut Shop

```
In [39]: # one hot encoding
    newyork_onehot = pd.get_dummies(newyork_venues[['Venue Category']], pro
# add neighborhood column back to dataframe
    newyork_onehot['Neighborhood'] = newyork_venues['Neighborhood']

# move neighborhood column to the first column
    fixed_columns = [newyork_onehot.columns[-1]] + list(newyork_onehot.columnsyork_onehot = newyork_onehot[fixed_columns])
    newyork_onehot.head()
```

Out[39]:

	Yoga Studio	Accessories Store		Afghan Restaurant	African Restaurant	Airport Terminal	American Restaurant	Antique Shop	Arc
0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	

5 rows × 373 columns

```
In [40]: newyork_onehot.shape
```

Out[40]: (6191, 373)

In [41]:

newyork_grouped = newyork_onehot.groupby('Neighborhood').mean().reset_
newyork_grouped

Out[41]:

	Neighborhood	Yoga Studio	Accessories Store	Adult Boutique	Afghan Restaurant	African Restaurant	Airport Terminal	Ameri Restau
0	Allerton	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.000
1	Annadale	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.090
2	Arden Heights	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.000
3	Arlington	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.000
4	Arrochar	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.000
5	Arverne	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.000
6	Astoria	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.000
7	Astoria Heights	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.000
8	Auburndale	0.000000	0.000000	0.0	0.000000	0.000000	0.00	0.055
9	Rath Reach	UUUUUU	0 000000	n n	0 000000	0 000000	n nn	0 000

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th I Com V∈
0	Allerton	Pizza Place	Supermarket	Spa	Breakfast Spot	Fast Food Restaurant	Martial Arts Dojo	Sta
1	Annadale	Bakery	Diner	Sports Bar	Train Station	Sushi Restaurant	Restaurant	F F
2	Arden Heights	Deli / Bodega	Bus Stop	Pharmacy	Coffee Shop	Pizza Place	Home Service	F
3	Arlington	Intersection	Deli / Bodega	Boat or Ferry	Grocery Store	Bus Stop	Women's Store	Fina or L Se
4	Arrochar	Bus Stop	Bagel Shop	Deli / Bodega	Italian Restaurant	Middle Eastern Restaurant	Pizza Place	I T

```
In [43]: #set number of clusters
kclusters = 5

newyork_grouped_clustering = newyork_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(newyork_groupkmeans.labels_[0:10]
```

```
Out[43]: array([3, 3, 0, 0, 0, 3, 3, 3, 3], dtype=int32)
```

In [44]:

add clustering labels

neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_

newyork_merged = neighborhoods

merge toronto_grouped with toronto_data to add latitude/longitude fo newyork_merged = newyork_merged.join(neighborhoods_venues_sorted.set_in newyork_merged.head() # check the last columns!

Out[44]:

	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue
0	Bronx	Wakefield	40.894705	-73.847201	3.0	Food Truck	Pharmacy	Caribbean Restaurant
1	Bronx	Co-op City	40.874294	-73.829939	3.0	Bus Station	Park	Restaurant
2	Bronx	Eastchester	40.887556	-73.827806	1.0	Caribbean Restaurant	Deli / Bodega	Diner
3	Bronx	Fieldston	40.895437	-73.905643	3.0	Bus Station	River	Plaza
4	Bronx	Riverdale	40.890834	-73.912585	3.0	Bus Station	Park	Plaza

In [45]: newyork_merged.dtypes

Out[45]:

Borough object										
Neighborhood	object									
Latitude	float64									
Longitude	float64									
Cluster Labels float64										
1st Most Common Venue	object									
2nd Most Common Venue	object									
3rd Most Common Venue	object									
4th Most Common Venue	object									
5th Most Common Venue	object									
6th Most Common Venue	object									
7th Most Common Venue	object									
8th Most Common Venue	object									
9th Most Common Venue	object									
10th Most Common Venue	object									
dtype: object										

```
In [46]:
         newyork merged.loc[207,:]
Out[46]: Borough
                                     Staten Island
         Neighborhood
                                        Port Ivory
         Latitude
                                           40.6397
                                          -74.1746
         Longitude
         Cluster Labels
                                               NaN
         1st Most Common Venue
                                               NaN
         2nd Most Common Venue
                                               NaN
         3rd Most Common Venue
                                               NaN
         4th Most Common Venue
                                               NaN
         5th Most Common Venue
                                               NaN
         6th Most Common Venue
                                               NaN
         7th Most Common Venue
                                               NaN
         8th Most Common Venue
                                               NaN
         9th Most Common Venue
                                               NaN
         10th Most Common Venue
                                               NaN
         Name: 207, dtype: object
In [47]:
         for i in range(306):
              if pd.isna(newyork merged.loc[i, 'Cluster Labels']):
                  newyork merged.loc[i,'Cluster Labels']=0
         newyork_merged[['Cluster Labels']]=newyork_merged[['Cluster Labels']].
In [48]:
         newyork merged.dtypes
Out[48]: Borough
                                      object
         Neighborhood
                                      object
         Latitude
                                     float64
                                     float64
         Longitude
         Cluster Labels
                                       int64
         1st Most Common Venue
                                      object
         2nd Most Common Venue
                                      object
         3rd Most Common Venue
                                      object
         4th Most Common Venue
                                      object
         5th Most Common Venue
                                      object
         6th Most Common Venue
                                      object
         7th Most Common Venue
                                      object
         8th Most Common Venue
                                      object
         9th Most Common Venue
                                      object
         10th Most Common Venue
                                      object
         dtype: object
```

```
In [49]:
        # create map
         map clusters = folium.Map(location=[latitude, longitude], zoom start=1
         # set color scheme for the clusters
         x = np.arange(kclusters)
         ys = [i + x + (i*x)**2  for i  in range(kclusters)]
         colors array = cm.rainbow(np.linspace(0, 1, len(ys)))
         rainbow = [colors.rgb2hex(i) for i in colors array]
         # add markers to the map
         markers colors = []
         for lat, lon, poi, cluster in zip(newyork merged['Latitude'], newyork |
             label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_!
             folium.CircleMarker(
                 [lat, lon],
                 radius=5,
                 popup=label,
                 color=rainbow[cluster-1],
                 fill=True,
                 fill color=rainbow[cluster-1],
                 fill_opacity=0.7).add_to(map_clusters)
         map_clusters
```

Out[49]:

```
cluster=newyork merged.loc[newyork merged['Cluster Labels'] == 0, newyork
In [50]:
         name cluster=cluster['1st Most Common Venue'].value counts()
         name cluster=pd.DataFrame(name cluster)
         name cluster.reset index(inplace=True)
         name 0=name cluster.iloc[0,0]
         name 0
Out[50]: 'Bus Stop'
In [51]: cluster=newyork merged.loc[newyork merged['Cluster Labels'] == 1, newyork
         name cluster=cluster['1st Most Common Venue'].value counts()
         name cluster=pd.DataFrame(name cluster)
         name cluster.reset index(inplace=True)
         name 1=name cluster.iloc[0,0]
         name 1
Out[51]: 'Deli / Bodega'
        cluster=newyork merged.loc[newyork merged['Cluster Labels'] == 2, newyork
In [52]:
         name cluster=cluster['1st Most Common Venue'].value counts()
         name cluster=pd.DataFrame(name cluster)
         name cluster.reset index(inplace=True)
         name 2=name cluster.iloc[0,0]
         name 2
Out[52]: 'Supermarket'
In [53]:
         cluster=newyork merged.loc[newyork merged['Cluster Labels'] == 3, newyork
         name cluster=cluster['1st Most Common Venue'].value counts()
         name cluster=pd.DataFrame(name cluster)
         name cluster.reset index(inplace=True)
         name 3=name cluster.iloc[0,0]
         name 3
Out[53]: 'Pizza Place'
In [54]: | cluster=newyork merged.loc[newyork merged['Cluster Labels'] == 4, newyork
         name_cluster=cluster['1st Most Common Venue'].value counts()
         name cluster=pd.DataFrame(name cluster)
         name cluster.reset index(inplace=True)
         name 4=name cluster.iloc[0,0]
         name 4
Out[54]: 'Park'
         newyork_cluster=pd.DataFrame({'label':range(5), 'name': [name_0,name_1,name]
In [55]:
```

In [56]: newyork_cluster

```
        Out[56]:
        label
        name

        0
        0
        Bus Stop

        1
        1
        Deli / Bodega

        2
        2
        Supermarket

        3
        3
        Pizza Place

        4
        4
        Park
```

Neighborhood Neighborhood Louvre Bourse Temple Hôtel-de-Ville

4

Panthéon

```
In [59]: from geopy.distance import geodesic
ls_latitude=[]
ls_longitude=[]
for i in range(paris_data.shape[0]):
    print(i,end='')
    address = paris_data['Neighborhood'][i]+ ',Paris'

    geolocator = Nominatim(user_agent="ny_explorer")
    location = geolocator.geocode(address)
    Nei_latitude = location.latitude
    Nei_longitude = location.longitude
    ls_latitude.append(Nei_latitude)
    ls_longitude.append(Nei_longitude)
    paris_data['Latitude']=ls_latitude
    paris_data['Longitude']=ls_longitude
    paris_data.head()
```

012345678910111213141516171819

Out[59]:		Neighborhood	Latitude	Longitude	
	0	Louvre	48.861147	2.338028	
	1	Bourse	48.867687	2.343122	
	2	Temple	48.862683	2.358681	
	3	Hôtel-de-Ville	48.856426	2.352528	
	4	Panthéon	48.846191	2.346079	

```
address = 'Paris,FR'
In [94]:
         geolocator = Nominatim(user_agent="ny_explorer")
         location = geolocator.geocode(address)
         latitude = location.latitude
         longitude = location.longitude
         print('The geograpical coordinate of Paris are {}, {}.'.format(latitude)
         map paris = folium.Map(location=[latitude, longitude], zoom start=11)
         # add markers to map
         for lat, lng, label in zip(paris_data['Latitude'], paris_data['Longitude']
             label = folium.Popup(label, parse html=True)
             folium.CircleMarker(
                 [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                  fill color='#3186cc',
                 fill opacity=0.7,
                 parse_html=False).add_to(map_paris)
         map_paris
```

The geograpical coordinate of Paris are 48.8566101, 2.3514992.

Out[94]:

14/07/2019 19:58 project

```
In [62]: paris venues = getNearbyVenues(names=paris data['Neighborhood'],
                                             latitudes=paris_data['Latitude'],
                                             longitudes=paris_data['Longitude']
         print(toronto_venues.shape)
         toronto venues.head()
```

Bourse Temple Hôtel-de-Ville Panthéon Luxembourg Palais-Bourbon Élysée Opéra Entrepôt Popincourt Reuilly Gobelins Observatoire Vaugirard Passy Batignolles-Monceau Butte-Montmartre Buttes-Chaumont Ménilmontant (488, 7)

Louvre

Out[62]:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venu Categoi
0	Harbourfront,Regent Park	43.65426	-79.360636	Roselle Desserts	43.653447	-79.362017	Bake
1	Harbourfront,Regent Park	43.65426	-79.360636	Tandem Coffee	43.653559	-79.361809	Coff∈ Shc
2	Harbourfront,Regent Park	43.65426	-79.360636	Toronto Cooper Koo Family Cherry St YMCA Centre	43.653191	-79.357947	Gym Fitnes Centi
3	Harbourfront,Regent Park	43.65426	-79.360636	Body Blitz Spa East	43.654735	-79.359874	Sŗ
4	Harbourfront,Regent Park	43.65426	-79.360636	Morning Glory Cafe	43.653947	-79.361149	Breakfa: Spo

In [63]: paris_venues.groupby('Neighborhood').count()
 print('There are {} uniques categories.'.format(len(paris_venues['Venue')])

There are 152 uniques categories.

In [64]: #one hot encoding paris_onehot = pd.get_dummies(paris_venues[['Venue Category']], prefix: # add neighborhood column back to dataframe paris_onehot['Neighborhood'] = paris_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [paris_onehot.columns[-1]] + list(paris_onehot.columns paris_onehot = paris_onehot[fixed_columns] paris_grouped = paris_onehot.groupby('Neighborhood').mean().reset_inde: paris_grouped

Out[64]:

	Neighborhood	Afghan Restaurant	African Restaurant	Alsatian Restaurant	Art Gallery	Art Museum	Arts & Crafts Store	As Restaui
0	Batignolles- Monceau	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
1	Bourse	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
2	Butte- Montmartre	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
3	Buttes- Chaumont	0.000000	0.033333	0.000000	0.000000	0.000000	0.000000	0.000
4	Entrepôt	0.000000	0.066667	0.000000	0.000000	0.000000	0.000000	0.000
5	Gobelins	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.166
6	Hôtel-de-Ville	0.000000	0.000000	0.033333	0.066667	0.000000	0.000000	0.000
7	Louvre	0.000000	0.000000	0.000000	0.000000	0.033333	0.000000	0.000
8	Luxembourg	0.000000	0.000000	0.000000	0.033333	0.033333	0.000000	0.000
9	Ménilmontant	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
10	Observatoire	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
11	Opéra	0.000000	0.000000	0.000000	0.033333	0.000000	0.000000	0.000
12	Palais- Bourbon	0.000000	0.000000	0.000000	0.000000	0.033333	0.000000	0.000
13	Panthéon	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
14	Passy	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
15	Popincourt	0.033333	0.033333	0.000000	0.000000	0.033333	0.000000	0.000
16	Reuilly	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
17	Temple	0.000000	0.000000	0.000000	0.066667	0.000000	0.000000	0.000

 18
 Vaugirard
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000

20 rows × 153 columns

```
In [65]:
        num top venues = 10
         import numpy as np
         indicators = ['st', 'nd', 'rd']
         # create columns according to number of top venues
         columns = ['Neighborhood']
         for ind in np.arange(num_top_venues):
                 columns.append('{}{} Most Common Venue'.format(ind+1, indicato:
             except:
                 columns.append('{}th Most Common Venue'.format(ind+1))
         # create a new dataframe
         neighborhoods venues sorted = pd.DataFrame(columns=columns)
         neighborhoods venues sorted['Neighborhood'] = paris grouped['Neighborhood']
         for ind in np.arange(paris grouped.shape[0]):
             neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_ven
         neighborhoods_venues_sorted.head()
```

Out[65]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue
0	Batignolles- Monceau	French Restaurant	Pastry Shop	Italian Restaurant	Bar	Restaurant	Gym / Fitness Center
1	Bourse	Cocktail Bar	French Restaurant	Women's Store	Bistro	Italian Restaurant	Souvlaki Shop
2	Butte- Montmartre	French Restaurant	Bar	Vietnamese Restaurant	Restaurant	Gastropub	Mediterranean Restaurant
3	Buttes- Chaumont	French Restaurant	Bar	Beer Bar	Restaurant	Bistro	Italian Restaurant
4	Entrepôt	French Restaurant	Coffee Shop	Bistro	African Restaurant	Mediterranean Restaurant	Café

```
In [66]: from sklearn.cluster import KMeans
    kclusters = 5

paris_grouped_clustering = paris_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(paris_grouped)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

Out[66]: array([2, 1, 2, 2, 2, 4, 1, 1, 1, 2], dtype=int32)

In [67]: # add clustering labels neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_ paris_merged = paris_data # merge toronto_grouped with toronto_data to add latitude/longitude fo. paris_merged = paris_merged.join(neighborhoods_venues_sorted.set_index paris merged.head() # check the last columns!

Out[67]:

	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue
0	Louvre	48.861147	2.338028	1	Plaza	Exhibit	French Restaurant	Café
1	Bourse	48.867687	2.343122	1	Cocktail Bar	French Restaurant	Women's Store	Bistro
2	Temple	48.862683	2.358681	1	Sandwich Place	Burger Joint	Moroccan Restaurant	Hotel
3	Hôtel-de-Ville	48.856426	2.352528	1	Gay Bar	Art Gallery	French Restaurant	Ice Cream Shop
4	Panthéon	48.846191	2.346079	1	Italian Restaurant	Pub	French Restaurant	Plaza

```
In [68]:
        import matplotlib.cm as cm
         import matplotlib.colors as colors
         map_clusters = folium.Map(location=[latitude, longitude], zoom_start=1
         # set color scheme for the clusters
         x = np.arange(kclusters)
         ys = [i + x + (i*x)**2  for i  in range(kclusters)]
         colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
         rainbow = [colors.rgb2hex(i) for i in colors_array]
         # add markers to the map
         markers colors = []
         for lat, lon, poi, cluster in zip(paris_merged['Latitude'], paris_merge
             label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse !
             folium.CircleMarker(
                 [lat, lon],
                 radius=5,
                 popup=label,
                 color=rainbow[cluster-1],
                 fill=True,
                 fill_color=rainbow[cluster-1],
                 fill_opacity=0.7).add_to(map_clusters)
         map clusters
```

Out[68]:

Out[72]:

•		Neighborhood	1st Most Common Venue	Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Mo: Commo Venu
·	6	Palais- Bourbon	French Restaurant	Plaza	Hotel	Italian Restaurant	Pedestrian Plaza	Food Truck	Bake
	13	Observatoire	French Restaurant	Hotel	Café	Bistro	Sushi Restaurant	Bus Stop	Fast Foc Restaura

```
In [83]: cluster=paris_merged.loc[paris_merged['Cluster Labels'] == 1, paris_me:
    name_cluster=cluster['1st Most Common Venue'].value_counts()
    name_cluster=pd.DataFrame(name_cluster)
    name_cluster.reset_index(inplace=True)
    name_1=name_cluster.iloc[0,0]
    name_1
```

Out[83]: 'Italian Restaurant'

Out[89]: 'French Restaurant'

2nd Most

1ot Most

```
In [90]: cluster
```

_			- ^	~ ·	
()	111	+	ſ9	"	
v	u	_	」 ノ	v	

	Neighborhood	1st Most Common Venue	Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	Common Venue
7	Élysée	Hotel	French Restaurant	Bar	Cocktail Bar	Pedestrian Plaza	Italian Restaurant
9	Entrepôt	French Restaurant	Coffee Shop	Bistro	African Restaurant	Mediterranean Restaurant	Café
10	Popincourt	Wine Bar	Restaurant	French Restaurant	Bar	Afghan Restaurant	Gastropub
16	Batignolles- Monceau	French Restaurant	Pastry Shop	Italian Restaurant	Bar	Restaurant	Gym / Fitness Center
17	Butte- Montmartre	French Restaurant	Bar	Vietnamese Restaurant	Restaurant	Gastropub	Mediterranean Restaurant
18	Buttes- Chaumont	French Restaurant	Bar	Beer Bar	Restaurant	Bistro	Italian Restaurant
19	Ménilmontant	French Restaurant	Sushi Restaurant	Bistro	Bakery	Bar	Bookstore

2rd Moot

4th Most

5th Most

6th Most

```
In [92]: cluster=paris_merged.loc[paris_merged['Cluster Labels'] == 3, paris_me:
    name_cluster=cluster['1st Most Common Venue'].value_counts()
    name_cluster=pd.DataFrame(name_cluster)
    name_cluster.reset_index(inplace=True)
    name_3=name_cluster.iloc[0,0]
    name_3
```

Out[92]: 'Basketball Court'

In [93]: cluster

Out[93]:

	Neighborhood	1st Most Common Venue	Most Common Venue	3rd Most Common Venue		5th Most Common Venue		7th Most Common Venue
15	Passy	Basketball Court	Circus	Bike Rental / Bike Share	Lake	Pool	Women's Store	Electronics Store

```
In [86]: cluster=paris_merged.loc[paris_merged['Cluster Labels'] == 4, paris_me:
    name_cluster=cluster['1st Most Common Venue'].value_counts()
    name_cluster=pd.DataFrame(name_cluster)
    name_cluster.reset_index(inplace=True)
    name_4=name_cluster.iloc[0,0]
    name_4
```

Out[86]: 'Vietnamese Restaurant'

```
paris cluster=pd.DataFrame({'label':range(5), 'name': [name 0, name 1, name 1)
In [87]:
```

Result and discussion

```
In [88]:
            paris_cluster
Out[88]:
                label
                                      name
                    0
                           French Restaurant
             0
              1
                    1
                            Italian Restaurant
              2
                    2
                           French Restaurant
              3
                            Basketball Court
                       Vietnamese Restaurant
              4
In [79]:
            newyork_cluster
Out[79]:
                label
                              name
                    0
             0
                           Bus Stop
              1
                       Deli / Bodega
              2
                       Supermarket
              3
                    3
                         Pizza Place
                    4
                               Park
In [80]:
             toronto cluster
Out[80]:
                label
                               name
             0
                    0
                         coffee shop
              1
                    1
                                cafe
                       Airport Service
             2
              3
                        Grocery Store
              4
```

We can see there are four clusters of restaurants in Paris while only two clusters for restaurants in New York and Toronto. Further, both of NewYork and Toronto have the 'Park' cluster and one cluster for buying food: supermarket and grocery store, also one cluster for transport: airport service and bus stop, and two cluster for favourite food: Pizza place, Deli/Bodega and coffee,cafe. That means New York city is similar to Toronto. Our client should choose Toronto to work.

4

Park

Conclusion

This project is to cluster the neighborhoods of cities based on the popular venues. By using foursquare and google maps API, we determined the popular venues of each neighborhoods. Clustering is based on the information of the popular venues. The name of each cluster is assigned by the most common venues. Then we had the table of cluster with name for three cities: Paris, New York, Toronto. Then by comparing the groups of 5 clusters of every cities, we verify that which city is more similarity to New York.