1st sym. Theorems about Number Thoery

Choi Pooreunhaneul

April 11, 2023

1 Divisibility Theory in the Integers

Theorem 1.1 Division Algorithm. There exists unique q and r satisfying

$$a = qb + r \qquad (0 \le r < b) \tag{1}$$

Theorem 1.2. Without some trivial properties, given statement hold:

(a) If
$$a|b$$
 and $a|c$, then $a|(bx+cy)$ (2)

$$(b) gcd(a,b) = ax + by (3)$$

Corollary.

(a) If
$$gcd(a,b) = d$$
, then $gcd(a/d,b/d) = 1$ (4)

(b) If
$$a|c$$
 and $b|c$, with $gcd(a,b) = 1$, then $ab|c$ (5)

Theorem 1.3 Euclid's lemma.

If
$$a|bc$$
, with $gcd(a,b) = 1$, then $a|c$. (6)

Lemma.

If
$$a = bq + r$$
, then $gcd(a, b) = gcd(q, r)$. (7)

Theorem 1.4.

$$gcd(a,b)lcm(a,b) = ab (8)$$

Theorem 1.5. The linear Diophantine eq. ax+by=c has a sol. iff d|c, where gcd(a,b)=d. If x_0, y_0 is one of sol, then

$$x = x_0 + (\frac{b}{d})t$$
 $y = y_0 - (\frac{a}{d})t$. (9)

2 Primes and Distribution

Theorem 2.1. If p_n is the *n*th prime number, then

$$p_n \le 2^{2^{n-1}}. (10)$$

Corollary. For $n \ge 1$, there are at least n+1 primes less than 2^{2^n} .

Theorem 2.2. There are an infinite number of primes of the form 4n+3.

Therem 2.3 Dirichlet. If a and b are relatively prime positive int, then the arithmetic progression

$$a, a+b, a+2b, \cdots$$
 (11)

contains infinitely many primes.

Theorem 2.4. If all the n>2 terms of the arithmetic progression

$$p, p+d, \dots, p+(n-1)d$$
 (12)

are prime numbers, then the common difference d is divisible by every prime q < n.

3 The Theory of Conguruences

Theorem 3.1.

If
$$ca \equiv cb \pmod{n}$$
, then $a \equiv b \pmod{n/d}$, where $d = gcd(c, n)$. (13)

Theorem 3.2.

Let $P(x) = \sum_{k=0}^{m} c_k x^k$ be a polynomial function of x with integral coefficients.

If
$$a \equiv b \pmod{n}$$
, then $P(a) \equiv P(b) \pmod{n}$. (14)

Theorem 3.3. For decimal expansion of the positive integer, given statement hold:

(a)
$$9|N \text{ iff } 9|S \text{ for } S = N(0)$$
 (15)

(b)
$$11|N \text{ iff } 11|T \text{ for } T = N(-1).$$
 (16)

Theorem 3.4. The linear conguruence $ax \equiv b \pmod{n}$ has a sol. iff d|b, where d=gcd(a,n), while it has d mutually incongruent sol. mod n.

Theorem 3.5 Chinese Remainder Theorem. Let n_1, \dots, n_r be positive int. s.t. $gcd(n_i, nj) = 1$ for $i \neq j$. Then the system of linear congruences has a simultaneous sol. which is unique mod. the int. $n_1 \cdots n_r$.

Theorem 3.6. The system of linear congruences

$$ax + by \equiv r \pmod{n}$$

$$cx + dy \equiv s \pmod{n}$$
(17)

has a unique sol. mod. n whenever gcd(ad-bc,n)=1.

4 Fermat's Theorem

Theorem 4.1 Fermat's Theorem. Let p be a prime and suppose that $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Corollary. If p is a prime, then $a^p \equiv a \pmod{p}$ for any int. a.

Lemma. If p and q are distinct primes with $a^p \equiv a \pmod{p}$ and $a^q \equiv a \pmod{q}$, then $a^{pq} \equiv a \pmod{pq}$.

Definition. If $n|a^n - a$ holds, then n is called a pseudoprime to the base a.

Theorem 4.2. If n is an odd pseudoprime, then $M_n = 2^n - 1$ is a larger one.

Theorem 4.3. Let n be a composite square-free int, say, $n = p_1 \cdots p_r$, where they are distinct prime. If $p_i - 1 | n - 1$, then n is an absolute pseudoprime.

Theorem 4.4 Wilson. If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Theorem 4.5. The quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd prime, has a sol. iff $p \equiv 1 \pmod{4}$.

5 Number-Theoretic Functions

Definition. Given a positive int. n, $\tau(n)$ denote the number of positive divisors of n and $\sigma(n)$ denote the sum of those divisors.

Theorem 5.1. The functions τ , σ are both multiplicative.

Theorem 5.2. If f is a multiplicative function and F is defined by

$$F(n) = \sum_{d|n} f(d) \tag{18}$$

then F is also multiplicative and converse also holds.

Definition. For a positive int. n, define μ by the rules

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } p^2 | n\\ (-1)^r & \text{if } n = p_1 \cdots p_r \end{cases}$$
 (19)

Theorem 5.3. For each positive int. n,

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } n > 1 \end{cases}$$
 (20)

Theorem 5.4 Möbius inversion formula. Let F, f be two number-theoretic functions related by formula

$$F(n) = \sum_{d|n} f(d). \tag{21}$$

Then

$$f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d}) F(d). \tag{22}$$

Theorem 5.5. If n is a positive int, then the exponent of the highest power of p that divides n! is

$$\sum_{k=1}^{\infty} \left[\frac{n}{p^k} \right] \tag{23}$$

where the series is finite.

Theorem 5.6. Let F, f be number-theoretic functions s.t.

$$F(n) = \sum_{d|n} f(d) \tag{24}$$

Then, for any positive int. N,

$$\sum_{n=1}^{N} F(n) = \sum_{k=1}^{N} f(k) \left[\frac{N}{k} \right]$$
 (25)

Corollary. Following holds:

$$\sum_{n=1}^{N} \tau(n) = \sum_{n=1}^{N} \left[\frac{N}{k} \right]$$
 (26)

$$\sum_{n=1}^{N} \sigma(n) = \sum_{n=1}^{N} n[\frac{N}{k}]$$
 (27)

6 Euler's Generalization of Fermat's Theorem

Definition. $\phi(n)$ denote the number of positive int. not exceeding n that are relatively prime to n. Also, it is multiplicative.

Theorem 6.1. If p is a prime and k > 0, then

$$\phi(p^k) = p^k - p^{k-1} = p^k (1 - \frac{1}{p}) \tag{28}$$

Theorem 6.2.

$$\phi(n) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_r}) \tag{29}$$

Lemma. Let n > 1 and gcd(a,n)=1. If $a_1, \dots, a_{\phi(n)}$ are the int. less than n and relatively prime to n, then

$$aa_1, \cdots, aa_{\phi(n)}$$
 (30)

are congruent mod n to $a_1, \dots, a_{\phi(n)}$ in some order.

Theorem 6.3 Euler. If $n \ge 1$ and gcd(a,n)=1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Theorem 6.4 Gauss. For each positive int,

$$n = \sum_{d|n} \phi(d) \tag{31}$$

the sum being extended over all positive divisors of n.

Theorem 6.5. For n > 1, the sum of the positive int. less than n and relatively prime to it is $\frac{1}{2}n\phi(n)$.

Theorem 6.6. For any positive int,

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d} \tag{32}$$

7 Primitive Roots and Indices

Definition. Let n > 1 and gcd(a,n)=1. The order of $a \mod n$ is the smallest positive int. k s.t. $a^k \equiv 1 \pmod{n}$. If it is $\phi(n)$, then a is a primitive root of n.

Theorem 7.1. Let the integer a have order $k \mod n$. Then $a^h \equiv 1 \pmod n$ iff k|h; in particular, $k|\phi(n)$.

Theorem 7.2. If the int. a has order k mod n, then $a^i \equiv a^j \pmod{n}$ iff $i \equiv j \pmod{k}$.

Corollary. If a has order k mod n, then the int. a, a^2, \dots, a^k are incongrunt mod n.

Theorem 7.3. If a has order $k \mod n$ and h > 0, then a^h has order $\frac{k}{\gcd(h,k)} \pmod{n}$.

Theorem 7.4. Let gcd(a,n)=1 and let $a_1, \dots, a_{\phi(n)}$ be the positive int. less than n and relatively prime to n. If a is a primitive root on n, then

$$a^1, \cdots, a^{\phi(n)} \tag{33}$$

are congruent mod n to $a_1, \dots, a_{\phi(n)}$ in some order.

Corollary. If n has a primitive root, then it has exactly $\phi(\phi(n))$ of them.

Theorem 7.5 Lagrange. If p is a prime and

$$f(x) = a_n x^n + \dots + a_1 x + a_0 \qquad a_n \not\equiv 0 \pmod{p}$$
(34)

is a poly. with int. coeff, then the congruence

$$f(x) \equiv 0 \pmod{p} \tag{35}$$

has at most n incongrunet sol. mod p.

Corollary. If p is a pirme and d|p-1, then the congruence

$$x^d - 1 \equiv 0 \pmod{p} \tag{36}$$

has exactly d sol.

Theorem 7.6. If p is a pirme and d|p-1, then there are exactly $\phi(d)$ incongruent integers having order $d \mod p$.

Corollary. If p is a prime, then there are exactly $\phi(p-1)$ incongruent primitive roots of p.

Theorem 7.7. For $k \geq 3$, the int. 2^k has no primitive roots.

Theorem 7.8. If gcd(m,n)=1, where m,n>2, then the int. mn has no primitive roots.

Lemma. If p is an odd prime, \exists primitive root r of p s.t. $r^{p-1} \not\equiv 1 \pmod{p^2}$.

Corollary. If p is an odd prime, then p^2 has a primitive root; in fact, for a primitive root r of p, either r, r + p or both is a primitive root of p^2 .

Lemma. Let p be an odd prime and let r be a primitive root of p with the property that $r^{p-1} \not\equiv 1 \pmod{p^2}$. Then for each int. $k \ge 2$,

$$r^{p^{k-2}(p-1)} \not\equiv 1 \; (mod \; p^k) \tag{37}$$

Theorem 7.9. If p is an odd prime number and $k \ge 1$, then there exists a primitive root for p^k .

Corollary. There are primitive roots for $2p^k$, where p is an odd prime and $k \ge 1$.

Definition. Let r be a primitive root of n. If gcd(a,n)=1, then the smallest positive integer k s.t. $a \equiv r^k \pmod{n}$ is called the index of a relative to r.

We denote the index of a relative to r by $\operatorname{ind}_r a$ or just $\operatorname{ind} a$.

Theorem 7.10. If n has a primitive root r and ind a denotes the index of a relative to r, then the following properties hold:

(a) ind
$$(ab) \equiv \text{ind } a + \text{ind } b \pmod{\phi(n)}$$
. (38)

(b) ind
$$a^k = k \text{ ind } a \pmod{\phi(n)}$$
. (39)

(c) ind
$$1 \equiv 0 \pmod{\phi(n)}$$
, ind $r \equiv 1 \pmod{\phi(n)}$. (40)

Theorem 7.11. Let n be an int. possessing a primitive root and let gcd(a, n)=1. Then the congruence $x^k \equiv a \pmod{n}$ has a sol. iff

$$a^{\phi(n)/d} \equiv 1 \pmod{n} \tag{41}$$

where $d = gcd(k, \phi(n))$; if it has a sol, there are exactly d sol. mod n.

Corollary. Let p be a prime and gcd(a,p)=1. Then the congruence $x^k \equiv a \pmod{p}$ has a sol. iff $a^{(p-1)/d} \equiv 1 \pmod{p}$, where d=gcd(k,p-1).

0 Hensel's Lemma

Let p be a prime. Then let

$$P(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$$
(42)

be a polynomial with integer coefficient. Assume that \exists int. a_1 s.t.

$$P(a_1) \equiv 0 \pmod{p} \quad and \quad P'(a_1) \not\equiv 0 \pmod{p}. \tag{43}$$

Then, for all natural number k, \exists int. a_k unique up to $mod p^k$ s.t.

$$a_k \equiv a_1 \pmod{p}$$
 and $P(a_k) \equiv 0 \pmod{p^k}$ (44)

This is done.