Examen partiel

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés

Le 19 mars 2013

Documentation permise : 1 feuille de notes recto verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (10h30 – 12h20).

1. (21 points) Questions à courts développements

Répondez aux questions suivantes :

- (a) Soit le circuit montré à la Figure 1. Proposez deux ajouts afin de réduire la tension de décalage à la sortie de ce circuit. Redessinez le circuit modifié.
- (b) Soit le circuit montré à la Figure 2. En supposant A_1 idéal, donnez les valeurs de l'impédance d'entrée Z_{in} et de l'impédance de sortie Z_{out} de ce circuit.
- (c) Toujours pour le circuit de la Figure 2, développez une expression pour le gain en boucle fermée (A_{BF}) en supposant que A_1 possède un gain en boucle ouverte fini noté A_{BO} . Ensuite, calculez l'erreur ϵ sur A_{BF} basse fréquence si A_{BO} =100 dB, R_1 =10 k Ω et R_2 =50 k Ω . Utilisez ϵ = $(A_{BF}$ réel $-A_{BF}$ idéal + 100.
- (d) Dessinez le schéma d'un circuit dont l'impédance d'entrée est $Z_{in} = -K / s^3$, où K > 0.
- (e) La Figure 3 montre la réponse générique d'un filtre passe bas. Un filtre actif réalise une fonction Butterworth d'ordre 7 avec une fréquence de coupure de 10 kHz et une atténuation maximum dans la bande passante de 3 dB. Calculez l'atténuation fournie par ce filtre à ω_s = 30 kHz.
- (f) Pour le même filtre actif qu'en (e), donnez les zéros de la fonction de transfert et situez les pôles dans le plan complexe.

Figure 1.

Figure 2.

Figure 3.

2. (39 points) Analyse de circuits

Soit le circuit suivant :

Figure 4.

- (a) En supposant que A_1 , A_2 , et A_3 sont des amplis-op idéaux, développez une expression pour V_{out} en fonction de V_{inA} , V_{inB} , V_{inC} et les résistances R_1 et R_2 .
- (b) Le circuit de la Figure 4 est représenté dans la Figure 5 par une « boîte noire » comportant trois entrées V_{inA} , V_{inB} , V_{inC} et une sortie V_{out} . Démontrez que le courant I_{out} dans la résistance de charge R_L est donné par l'expression :

$$I_{out} = \frac{A_d V_S}{R}$$
 où $A_d = 1 + \frac{R_1}{R_2}$

Figure 5.

- (c) Le circuit se la Figure 5 est une source de courant contrôlée par une tension, puisque l'équation en b) nous indique que le courant I_{out} qui passe dans la charge est indépendant de la résistance de charge R_L. Calculez la résistance de sortie R_{out} de cette source de courant en procédant comme suit :
 - Éliminer toutes les sources de tension indépendantes (i.e. rendre V_S =0 en reliant V_{inB} à la masse).
 - Enlever la résistance de charge R_L et la remplacer par une source de tension V_x .
 - Déterminer $R_{out} = V_x / I_x$, où I_x est le courant débité par la source V_x .
- (d) Quelle aurait été la résistance de sortie R_{out} de cette source de courant si au lieu d'un suiveur formé par A_3 dans le circuit de la Figure 4 on avait connecté directement l'entrée V_{inC} au nœud REF?

3. (40 points) *Analyse et conception d'un filtre* Soit le circuit suivant :

a) En supposant que A₁ soit un ampli-op idéal, démontrez que le gain de tension H(s) de l'amplificateur de la Figure 6 s'écrit sous la forme :

$$H(s) \equiv \frac{V_{out}(s)}{V_{in}(s)} = \frac{\left(\frac{s}{\omega_2}\right)}{\left[1 + \left(\frac{s}{\omega_2}\right)\right]} \times \frac{\left[1 + \left(\frac{s}{\omega_3}\right)\right]}{\left[1 + \left(\frac{s}{\omega_1}\right)\right]}$$

où
$$\omega_1 = 1/C_1R_1$$
, $\omega_2 = 1/C_2R_3$ et $\omega_3 = 1/C_1(R_1+R_2)$.

- b) En supposant que les composants du circuit sont choisis de façon à ce que $\omega_2 << \omega_3 << \omega_1$, déterminez les valeurs de $H(j\omega)$ aux fréquences suivantes :
 - i) $\omega = 0$
 - ii) $\omega \gg \omega_1$
- c) On choisi $C_1 = C_2 = 0.1 \mu F$. Calculez R_1 , R_2 , R_3 pour avoir les caractéristiques suivantes :
 - Une fréquence de coupure à -3 dB d'environ 10 kHz.
 - Une impédance d'entrée dont le module $|Z_{in}(j\omega)| = 1$ M Ω aux fréquences $\omega >> \omega_1$.
 - Un gain de tension dont le module $|H(j\omega)| = 100 \text{ V/V}$ aux fréquences $\omega >> \omega_1$.
- d) Le circuit de la Figure 6 doit être réalisé en mille exemplaires avec des amplis-op ayant les caractéristiques suivantes :
 - Produit gain bande passante : $f_T = 20 \text{ MHz}$
 - Slew rate : $SR = 10 \text{ V/}\mu\text{s}$
 - Tension de décalage : $V_{OS} = 2 \text{ mV (typique)}, 5 \text{ mV (maximum)}$
 - Courant de polarisation : $I_B = 100 \text{ nA (typique)}, 500 \text{ nA (maximum)}$
 - Courant de décalage : $I_{OS} = 20 \text{ nA (typique)}, 80 \text{ nA (maximum)}$

Effectuez une analyse de pire cas pour déterminer la tension de décalage maximum (en valeur absolue) qu'on pourrait retrouver à la sortie de certains circuits lors des tests. Expliquez votre démarche.

Bonne chance!

Benoit Gosselin

Aide mémoire

Résumé pour la conception de filtres :

Fonctions d'ordre 1

Fonctions d'ordre 2

