Scheda riassuntiva di Teoria dei campi e di Galois

Definizioni e prerequisiti

Si dice **campo** un anello commutativo non banale K che è contemporaneamente anche un corpo. Si dice **omomorfismo di campo** tra due campi K ed L un omomorfismo di anelli. Dal momento che un omomorfismo φ è tale per cui $\operatorname{Ker} \varphi$ è un ideale di K con $1 \notin \operatorname{Ker} \varphi$, deve per forza valere $\operatorname{Ker} \varphi = \{0\}$, e quindi ogni omomorfismo di campi è un'immersione.

Dato l'omomorfismo $\zeta:\mathbb{Z}\to K$ completamente determinato dalla relazione $1\stackrel{\zeta}{\longrightarrow} 1_K$, si definisce **caratteristica di** K, detta char K, il generatore non negativo di Ker ζ . In particolare char K è 0 o un numero primo. Se char K è zero, ζ è un'immersione, e quindi K è un campo infinito, e in particolare vi si immerge anche \mathbb{Q} .

Tuttavia non è detto che char K=p implichi che K è finito. In particolare $\mathbb{Z}_p(x)$, il campo delle funzioni razionali a coefficienti in \mathbb{Z}_p , è un campo infinito a caratteristica p. Se char K=p, per il Primo teorema di isomorfismo per anelli, $\mathbb{Z}/p\mathbb{Z}$ si immerge su K tramite la proiezione di ζ ; pertanto K contiene una copia isomorfa di $\mathbb{Z}/p\mathbb{Z}$. Per campi di caratteristica p, vale il Teorema del binomio ingenuo, ossia:

$$(a+b)^p = a^p + b^p,$$

estendibile anche a più addendi. In particolare, per un campo K di caratteristica p, la $\mathcal{F}:K\to K$ tale per cui $a\xrightarrow{\mathcal{F}}a^p$ è un omomorfismo di campi, ed in particolare è un'immersione di K in K. Se K è un campo finito, \mathcal{F} è dunque un isomorfismo.

Per ogni p primo e $n \in \mathbb{N}^+$ esiste un campo finito di ordine p^n . In particolare, tutti i campi finiti di ordine p^n sono isomorfi tra loro, possono essere visti come spazi vettoriali di dimensione n sull'immersione di $\mathbb{Z}/p\mathbb{Z}$ che contengono, e come campi di spezzamento di $x^{p^n}-x$ su tale immersione. Poiché tali campi sono isomorfi, si indicano con \mathbb{F}_p e \mathbb{F}_{p^n} le strutture algebriche di tali campi. In particolare con $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^m}$ si intende che esiste un'immersione di un campo con p^n elementi in uno con p^m elementi, e analogamente si farà con altre

relazioni (come l'estensione di campi) tenendo bene in mente di star considerando tutti i campi di tale ordine.

Vale la relazione $\mathbb{F}_{p^n}\subseteq \mathbb{F}_{q^m}$ se e solo se p=q e $n\mid m$. Conseguentemente, l'estensione minimale per inclusione comune a $\mathbb{F}_{p^{n_1}}, \ldots, \mathbb{F}_{p^{n_i}}$ è \mathbb{F}_{p^m} dove $m:=\mathrm{mcm}(n_1,\ldots,n_i)$. Pertanto se $p\in \mathbb{F}_{p^n}[x]$ si decompone in fattori irriducibili di grado n_1,\ldots,n_i , il suo campo di spezzamento è \mathbb{F}_{p^m} . Inoltre, $x^{p^n}-x$ è in \mathbb{F}_p il prodotto di tutti gli irriducibili di grado divisore di n.

Per il Teorema di Lagrange sui campi, ogni polinomio di K[x] ammette al più tante radici quante il suo grado. Come conseguenza pratica di questo teorema, ogni sottogruppo moltiplicativo finito di K è ciclico. Pertanto $\mathbb{F}_p^*=\langle\alpha\rangle$ per $\alpha\in\mathbb{F}_{p^n}$, e quindi $\mathbb{F}_{p^n}=\mathbb{F}_p(\alpha)$, ossia \mathbb{F}_{p^n} è sempre un'estensione semplice su \mathbb{F}_p . Si dice **campo di spezzamento** di una famiglia $\mathcal F$ di polinomi di K[x] un sovracampo minimale per inclusione di K che fa sì che ogni polinomio di $\mathcal F$ si decomponga in fattori lineari. I campi di spezzamento di $\mathcal F$ sono sempre K-isomorfi tra loro. Per il criterio della derivata, $p\in K[x]$ ammette radici multiple se e solo se $\mathrm{MCD}(p,p')$ non è invertibile, dove p' è la derivata formale di p.

Se p è irriducibile in K[x], (p) è un ideale massimale, e K[x]/(p) è un campo che ne contiene una radice, ossia [x]. In particolare K si immerge in K[x]/(p), e quindi tale campo può essere identificato come un'estensione di K che aggiunge una radice di p. Se K è finito, detta α la radice aggiunta all'estensione, L:=K[x]/ $(p)\cong K(\alpha)$ contiene tutte le radici di p (ed è dunque il suo campo di spezzamento). Infatti detto $[L:\mathbb{F}_p]=n$, [x] annulla $x^{p^n}-x$ per il Teorema di Lagrange sui gruppi, e quindi p deve dividere $x^{p^n}-x$; in tal modo p deve spezzarsi in fattori lineari, e quindi ogni radice deve già appartenere ad L. In particolare, ogni estensione finita e semplice di un campo finito è normale, e quindi di Galois.

Si dice che L è un'estensione di K, e si indica con L/K, se L è

un sovracampo di K, ossia se $K \subseteq L$. Si indica con $[L:K] = \dim_K L$ la dimensione di L come K-spazio vettoriale. Si dice che L è un'estensione finita di K se [L:K] è finito, e infinita altrimenti. Un'estensione finita di un campo finito è ancora un campo finito. Un'estensione è finita se e solo se è finitamente generata da elementi algebrici. Una K-immersione è un omomorfismo di campi iniettivo da un'estensione di K in un altro campo che agisce come l'identità su K. Un K-isomorfismo è una K-immersione che è isomorfismo.

Dato α , si definisce $K(\alpha)$ il più piccolo sovracampo di K che contiene α . Si definisce l'omomorfismo di valutazione $\varphi_{\alpha,K}:K[x]\to K[\alpha]$, detto φ_α se K è noto, l'omomorfismo completamente determinato dalla relazione $p\stackrel{\varphi_\alpha}{\longrightarrow}p(\alpha)$. Si verifica che φ_α è surgettivo. Se φ_α è iniettivo, si dice che α è trascendentale su K e $K[x]\cong K[\alpha]$, da cui $[K[\alpha]:K]=[K[x]:K]=\infty$. Se invece φ_α non è iniettivo, si dice che α è algebrico su K. Si definisce μ_α , detto il polinomio minimo di α su K, il generatore monico di $\ker\varphi_\alpha$. Si definisce $\deg_K\alpha:=\deg\mu_\alpha$. Se α è algebrico su K, $K[x]/(\mu_\alpha)\cong K[\alpha]$, e quindi $K[\alpha]$ è un campo. Dacché $K[\alpha]\subseteq K(\alpha)$, vale allora $K[\alpha]=K(\alpha)$. Inoltre, poiché $\dim_K K[x]/(\mu_\alpha)=\deg_K\alpha$, vale anche che $[K(\alpha):K]=\deg_K\alpha$. Infine, si verifica che α è algebrico se e solo se $[K(\alpha):K]$ è finito.

Si dice che L è un'estensione semplice di K se $\exists \alpha \in L$ tale per cui $L = K(\alpha)$. In tal caso si dice che α è un elemento **primitivo** di K. Si dice che L è un'estensione algebrica di K se ogni suo elemento è algebrico su K. Ogni estensione finita è algebrica. Non tutte le estensioni algebriche sono finite (e.g. $\overline{\mathbb{Q}}$ su \mathbb{Q}).

Ad opera di Gabriel Antonio Videtta, https://poisson.phc.dm.unipi.it/~videtta/. Reperibile su https://notes.hearot.it, nella sezione Secondo $anno \rightarrow Algebra \ 1 \rightarrow 3$. $Teoria \ delle$ $estensioni \ di \ campo \ e \ di \ Galois \rightarrow Scheda \ riassuntiva \ di \ Teoria \ dei \ campi \ e \ di \ Galois.$