# **BMC Research Notes**

# Benzene poisoning, clinical and blood abnormalities in two Brazilian female gas station attendants: a case repot --Manuscript Draft--

| Manuscript Number: | RESN-D-16-01181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Full Title:        | Benzene poisoning, clinical and blood abnormalities in two Brazilian female gas station attendants: a case repot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Article Type:      | Case Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Abstract:          | Background:Brazilian gas station workers are chronically exposed to BTX (benzene, toluene, xylene) during their working time. Report below two cases of female gas station workers with benzene poisoning symptoms and miscarriage history. Case presentation: In both cases were identified complex chromosomal rearrangements (CCR) with fluorescence in situ hybridization, application of whole chromosome paints to chromosomes 1, 2 and 4. The lower natural killer cell (NK) cells have also been observed in cases correspondents, especially the rare type of NK (NKbright) in their peripheral blood cells. Conclusions: It is known that acquired chromosomal aberrations are positively correlated with cancer and reproductive risk. In concordance, lower NK cytotoxicity increases the risk for cancer, as well. Thus, this is the first study providing hints on a possible causative relation of lower NK cytotoxicity and increase rates of chromosomal rearrangements including CCRs. |

Click here to view linked References

## 

# Benzene poisoning, clinical and blood abnormalities in two Brazilian female gas station attendants: a case repot

Fábio Santiago <sup>1,2,3</sup> fabiosantiago.uerj@gmail.com Simone Lima<sup>1</sup> simonemattioda@gmail.com Tayná Pinheiro<sup>1</sup> tayna.meduerj@gmail.com Rafaele Tavares Silvestre<sup>1,2,3</sup> rafaelesilvestre@gmail.com Ubirani Barros Otero <sup>4</sup> uotero@inca.gov.br Marianne Medeiros Tabalipa<sup>4</sup> mtabalipa@yahoo.com Nadezda Kosyakova <sup>5</sup> NADEZDA.KOSYAKOVA@med.uni-jena.de Maria Helena Ornellas<sup>1,2</sup> mariahelenaornellas@gmail.com Thomas Liehr <sup>5</sup> Thomas.Liehr@med.uni-jena.de Gilda Alves 1,2,3 galvesbrown@gmail.com

- 1- Laboratório de Marcadores Circulantes, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
- 2- Pós-graduação em Ciências Médicas (PGCM), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
- 3- Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
- 4- Unidade Técnica de Exposição Ocupacional, Ambiental e Câncer, Coordenação de Prevenção
- e Vigilância, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
- 5- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany

Corresponding author: Maria Helena Ornellas. Address: Avenida Professor Manuel de Abreu 444, Vila Isabel, Rio de Janeiro, Brasil. Zip code 20551-030. Faculdade de Ciências Médicas, Departamento de Patologia Geral, 4° andar. Phone: (55) 21.2868-8047.

Email: mariahelenaorngellas@gmail.com

#### **Abstract:**

**Background:**Brazilian gas station workers are chronically exposed to BTX (benzene, toluene, xylene) during their working time. Describe below two cases of female gas station workers with benzene poisoning symptoms and miscarriage history.

Case presentation: In both cases were identified complex chromosomal rearrangements (CCR) with fluorescence in situ hybridization, application of whole chromosome paints to chromosomes 1, 2 and 4. The lower natural killer cell (NK) cells have also been observed in cases correspondents, especially the rare type of NK (NKbright) in their peripheral blood cells.

**Conclusions:** It is known that acquired chromosomal aberrations are positively correlated with cancer and reproductive risk. In concordance, lower NK cytotoxicity increases the risk for cancer, as well. Thus, this is the first study providing hints on a possible causative relation of lower NK cytotoxicity and increase rates of chromosomal rearrangements including CCRs.

Keywords: Benzene, toluene, xylene, cytogenetic, painting chromosome, natural killer.

# 1. Background

Brazilian gas station workers are chronic exposed to BTX (benzene, toluene and xylene), mainly benzene, during the working time [1]. Chronic exposure to benzene may lead to progressive degeneration of bone marrow, aplastic anemia and/or leukemia. Genetic damages caused by benzene include sister chromatid exchanges, DNA cross linking agents, DNA adduct formations, and impairment of DNA repair mechanisms [2].

Since 2010, 115 gas station attendants have been monitored in Rio de Janeiro city, Brazil applying fluorescence *in situ* hybridization (FISH), using whole chromosome painting (wcp) probes for chromosomes 1, 2 and 4. Immunophenotyping by flow cytometric, hemogram, biochemistry based analysis and clinical questionnaire were also conducted. Among the study group, we identified two female gas station attendants with acquired complex chromosomal rearrangements (CCRs) and down regulation of the natural killer (NK) cells.

# 2. Case presentation

#### 2.1. Case 1

A 25-year-old woman, working 8 hours per day, 6 days a week, for the last 4 years as a gas station attendant had one gestation with miscarriage in the first half of pregnancy. Headache, dizziness irritability, asthenia and normal menstrual cycle were reported. A physical examination showed changes in the thyroid gland, nodules in the right lobe, and a nonspecific pulmonary auscultation. The attendant also reported being a former smoker and not having a family history of cancer. FISH analysis revealed in 1/100 metaphases a CCR involving 8 chromosomal breakpoints described as: 46,XX,der(1)t(1;4),der(4)t(1;4;?),ace(1),ace(1), (Figure 1). Hemogram showed mild neutopenia (1,470 cells/mm3) and biochemistry tests revealed no changes compared to normal values as described in Table I. On the other hand, the immunophenotypic analysis confirmed neutropenia (33.00%), with a lower NK cell count (2.28%), with all NK CD56+/CD16- (Table 2 and Figure 1).

#### 2.2. Case 2

A 40-year-old woman, who was not a smoker or drug addict, working 48 hours a week for the last 9 years as a gas station attendant had a pathological history of one miscarriage in the first

half of pregnancy. Anxiety, dizziness, cramps, asthenia and normal menstrual cycle were reported. No physical examination alteration and no family history of cancer were observed. For case 2, Figure 1 shows one CCR, which was found in 1/100 metaphases, described as der(4)ins(2;4), which was due to a 3 breakpoint event. Complete hemogram and biochemistry tests showed no abnormalities in comparison with normal values, as described in Table I. Like case 1, the immunophenotypic analysis of case 2 resulted in a lower NK cell count (1.51%), with all NK CD56+/CD16- (Table 2 and Figure 1)

#### 3. Conclusions

We characterized cytogenetic, hematological, and immunophenotypic status in two female gas station attendants, who working in gas station with a proved harmful environmental concentration of BTX. The following abnormalities were found: CCRs, a decrease in NK cells with abnormal CD16 expression, and early pregnancy loss.

It is well known that gas station workers are exposed to potentially harmful chemicals including BTX. However, benzene is considered the main carcinogenic agent (group 1 according to IARC) and studies associate this compound with acquired cytogenetic alterations [3, 4, 5]. Among various forms of benzene-induced genetic alterations, aneuploidy and chromosomal breakage are the most studied [2]. Chromosomal aberrations in peripheral blood lymphocytes of chronically benzene-exposed patients were previously documented [2, 4, 5]. Zhang et al. [2011] reported dose-dependent chromosomal aneuploidies (mono- and trisomies) in the peripheral blood lymphocytes of workers exposed to benzene. In our study, we analyzed only three pairs of chromosomes, which make up 22.8% of the human genome, and chromosomal aberrations (CAs) of high complexities could be detected in 1 out of 100 metaphases per patient (i.e. 1%). The rate of CCRs in normal controls lies between 0 and 0.5%, determined in 1000 metaphases, each [5]. In the present study, only 100 metaphases could be analyzed per case. Thus, the finding of one metaphase with a CCR among 100 cells is at least noteworthy.

Even though CCR detection in peripheral blood is not directly correlated with enhanced cancer risk, it should be kept in mind that such CAs may indicate increased radio- and/or chemosensitivity. As tumors may be induced by environmental factors in combination with a special genetic susceptibility, the two cases reported may be at risk of acquiring malignancies [5].

As is well known, meiosis is a complex process controlled by different checkpoints, but males and females respond differently to meiotic disturbances [6]. During oogenesis, meiosis is generally pursued leading to the formation of aneuploid gametes or with single gene mutations.

Thus, in gametes, acquired genetic changes can be passed on to the next generation. Several epidemiological studies support the idea that genotoxic and nongenotoxic events following benzene exposure may be initiators of childhood leukemia in utero [7]. Another study on AML has shown that disease is usually initiated in utero because the leukemic translocations and other genetic changes are present in blood spots collected at birth [7, 8]. Also interesting is the fact that the majority of the CCR cases are reported in females ascertained through repeated spontaneous abortions or the birth of a malformed child [8].

Besides the detected CCRs pointing towards enhanced chemosensitivity, these two female workers had hematological and immunological abnormalities characterized by mild leukopenia (case 1) and NK abnormalities. There are some studies concerning benzene with hematological and immunological abnormalities in humans [9-13]. The effects of immunotoxicity induced by benzene are depression and alteration of both the immune system mediated by cells and the humoral system [11]. Lan et al. [2004] observed that leucocytes, B and CD4+-T cell counts, were significantly decreased in workers exposed to benzene compared to the controls. In another study, the number of T lymphocytes, lymphocytes T CD4 and T CD8, and NK cells was reduced in the percentages and absolute numbers, and an increase in the monocyte count in workers during the period of exposure was found [12]. Thus, it was suggested that the depressive effect of benzene on the T and NK cells may be a factor of the probable carcinogenic activity of benzene through the immune system.

Natural killer (NK) cells are immune effector cells that recognize both virally infected and malignant target cells. Surprisingly, the results of the immunophenotypic analysis revealed NK CD56 positive (normal fluorescence) and CD16 negative in both cases, suggesting the presence of the rare subtype NK bright in the peripheral blood, which has low cytotoxic action [12]. It is possible that the action of BTX on the immune system had blocked the transition of immature CD56 bright cells into CD56 dim cells and had caused the CAs on chromosome 1 that were described in case 1. Curiously, CD16 gene is located at 1q23 and the CAs could have affected the normal expression of CD16. In agreement with this finding, an 11 year follow up study showed that low NK cytotoxicity of peripheral blood lymphocytes correlates with an increased risk for cancer [13].

The identifications of chromosomal abnormalities and NK downregulation in the blood may be a new indicator for effective follow up of workers exposed to BTX, preventing diseases mainly important for females and their offspring.

#### 4. List of abbreviations

AML: acute myeloid leukemia

BTX: benzene, toluene and xylene

**CAs:** chromosomal aberrations

**CCR:** complex chromosomal rearrangements

**FISH:** fluorescence in situ hybridization

**NK:** natural killer

#### 5. Declarations

#### **Authors' contributions**

GA, UBO and MHO designed the study and applied for Research Ethics Board approval. MMT, TP, RTS and FS recruited the workers. The cytogenetic and immunophenotypic data were analyzed by NK, SL and FS. FS prepared the manuscript draft with important intellectual input from TL and MH. All authors approved the final manuscript and had complete access to the study data.

#### Acknowledgements

We thank the subjects who volunteered in the study.

# **Competing interests**

The authors declare that they have no competing interests.

#### Availability of data and materials

All the data supporting our findings is contained within the manuscript.

# **Consent for publication**

All subjects were informed about the nature of the study, the potential benefits, and the risks.

#### **Ethics approval**

This study was approved by the local ethics committees (Instituto Nacional de Câncer – INCA (121/09) and Universidade do Estado do Rio de Janeiro – UERJ (758.647), Brazil.

#### **Grant support**

Programa de Oncobiologia, Rio de Janeiro, Brazil, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro Brazil.

#### 6.References

- [1] Otero UB, Ornellas MH. Health risk related to the exposition to benzene and other chemicals present in gasoline. In: Alves G. (eds). The health and environmental threats related to gas stations. Lambert. 2015P.9-25.
- [2] Zhang L, Lan Q, Guo W, Hubbard AE, Li G, Rappaport SM, et al. Chromosome-wide aneuploidy study (CWAS) in workers exposed to an established leukemogen, benzene. Carcinogenesis. 2011;32:605-612.
- [3] Santiago F, Alves G, Otero UB, Tabalipa MM, Scherrer, LR, Kosyakova N, et al. et al. Monitoring of gas station attendants exposure to benzene, toluene, xylene (BTX) using three-color chromosome painting. Mol Cytogenet. 2014; 7:15.
- [4] Zhang L, Lan Q, Ji Z, Li G, Shen M, Vermeulen R, et al. Leukemia-related chromosomal loss detected in hematopoietic progenitor cells of benzene-exposed workers. Leukemia. 2012; 26:2494–2498.
- [5] Neubauer S, Dunst J, Gebhart E. The impact of complex chromosomal rearrangements on the detection of radiosensitivity in cancer patients. Radiother Oncol. 1997; 43:189-95.
- [6] Madan K. Balanced complex chromosome rearrangements: reproductive aspects. A review. Am J Med Genet. 2012;158:947-963.
- [7] McHale CM, Wiemels, JL, Zhang L, Ma X, Buffler PA, Feusner, J, et al. Prenatal origin of childhood acute myeloid leukemias harboring chromosomal rearrangements t(15;17) and inv(16). Blood.2013; 101:4640-4641.

- [8] Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3:639-649.
- [9] Brandao MM, Rêgo MAV, Pugliese L, Clarencio J, Bastos CM, Ferreira J, et al. Phenotype analysis of lymphocytes of workers with chronic benzene poisoning. Immunology Letters. 2005;101:65-70
- [10] Lan Q, Zhang L, Li G, Vermeulen R, Weinberg RS, Dosemeci M, et al. Hematotoxicity in workers exposed to low levels of benzene. Science. 2004; 306:1774-1776.
- [11] Luan FJ. A study on lymphocyte subpopulations and immunologic status of female workers exposed to benzene. Zhonghua Yu Fang Yi Xue Za Zhi. 1992; 26:77-9.
- [12] Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S, et al. Functions of natural killer cells. Nature immunology. 2008; 9:503-510.
- [13] Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow up study of a general population. Lancet. 2000;356:1795-1799.

# **Tables**

Table 1 - Biometrics data (clinical and demographic) of 2 female gas station attendants

| Biometrics data                    | Case 1 | Case 2 |
|------------------------------------|--------|--------|
| Smokers                            | No     | No     |
| Ex-smokers                         | Yes    | No     |
| Illicit drug consumption           | Yesa   | No     |
| Alcohol abuse                      | Yes    | No     |
| Family history of cancer           | No     | No     |
| Blood test                         |        |        |
| Erythrocytes (10 <sup>6</sup> /μL) | 4.0    | 4.2    |
| Hemoglobin (g/dL)                  | 12.0   | 12.5   |
| Hematocrit (%)                     | 36.1   | 38.0   |
| Mean corpuscular volume (fl)       | 88.7   | 88.6   |
| Leukocytes(/uL)                    | 4620   | 7410   |
| Neutrophils(%)                     | 32.1   | 57.4   |
| Typical lymphocytes (%)            | 56.7   | 34.5   |
| Basophils (%)                      | 0.6    | 0.4    |
| Eosinophils (%)                    | 3.7    | 1.5    |
| Monocytes (%)                      | 6.9    | 6.2    |
| Platelets $(10^3/\mu L)$           | 230    | 312    |
| Reticulocytes (%)                  | 1.21   |        |
| Gamma-GT (U/L)                     | 31.0   | 14.0   |
| Oxaloacetic transaminase (U/L)     | 0,23   | 17.0   |
| Pyruvic transaminase (U/L)         | 15.0   | 11.0   |
| Creatinine (mg/dL)                 | 0.6    | 0.7    |
| Total bilirubin (mg/dL)            | 0.23   | 0.38   |
| Lactate dehydrogenase (mg/dL)      | 252    | 320    |
| Rheumatoid fator (IU/mL)           | 9.6    | 9.5    |
| C reactive protein (mg/dL)         | 0.11   | 0.12   |

Table 2 - Results of Immunophenotyping by flow cytometry

|        | MONOCLONAL             | Lympho | Monoc | Granulo | Eosino |
|--------|------------------------|--------|-------|---------|--------|
|        | Percent of total cells | 54.1   | 6.7   | 33.00   | 3.03   |
|        | CD 4                   | 28.56  |       |         |        |
|        | CD 8                   | 13.75  |       |         |        |
|        | CD4 + CD 8             | 42.31  |       |         |        |
|        | CD5                    | 44.20  |       |         |        |
|        | CD7                    | 50.00  |       |         |        |
|        | CD2                    | 46.60  |       |         |        |
|        | CD3                    | 41.87  |       |         |        |
| Case   | CD16                   | 0.00   | 0.00  | 36.5    | 0.00   |
| 1      | CD56                   | 2.28   | 0.00  | 0.00    | 0.00   |
|        | CD16 + CD 56 (NK)      | 2.28   | 0.00  | 0.00    | 0.00   |
|        | CD19                   | 5.77   |       |         |        |
|        | CD20                   | 6.10   |       |         |        |
|        | CD10                   | 0.07   |       | 28.94   |        |
|        | CD27                   | 0.00   | 0.00  | 0.00    | 3.52   |
|        | CD22                   | 5.88   | 0.00  | 0.00    | 0.00   |
|        | HLA-DR                 | 7.23   | 6.42  | 0.00    | 4.00   |
|        | CD11c                  | 3.08   | 7.06  | 32.4    | 3.52   |
|        | CD25                   | 0.00   | 0.00  | 0.00    | 5.70   |
|        | Percent of total cells | 31.23  | 5.4   | 63.6    | 0.16   |
|        | CD 4                   | 13.51  |       |         |        |
| Case 2 | CD 8                   | 9.08   |       |         |        |
|        | CD4+CD8                | 22.59  |       |         |        |
|        | CD5                    | 30.85  |       |         |        |
|        | CD7                    | 25.17  |       |         |        |
|        | CD2                    | 24.36  |       |         |        |
|        | CD3                    | 22.59  |       |         |        |
|        | CD16                   | 0.00   | 0.00  | 55.06   | 0.00   |
|        | CD56                   | 1.51   | 0.00  | 0.00    | 0.00   |
|        | CD16 + CD 56 (NK)      | 1.51   | 0.00  | 0.00    | 0.00   |
|        | CD19                   | 5.58   |       |         |        |
|        | CD20                   | 5.59   |       |         |        |

| CD10   | 0.13 |      | 46.09 |      |
|--------|------|------|-------|------|
| CD27   | 0.00 | 0.00 | 0.00  | 0.00 |
| CD22   | 4.88 | 0.00 | 0.00  | 0.00 |
| HLA-DR | 4.89 | 7.12 | 0.00  | 0.00 |
| CD 11c | 0.20 | 3.75 | 49.12 | 0.00 |
| CD25   | 0.00 | 0.00 | 0.00  | 0.00 |

## Figure:

Fig.1 CCRs found in case 1 and 2 and flow cytometric analyses of NK cell subsets. Case 1: A, CCR - der(1)t(1;4),der(4)t(1;4;?),ace(1),ace(1). B, flow cytometric analyses of NK cell of case 1. Show all NK cells (CD56 positive) are CD16 negative, thus all are sub-sets of NK <sup>bright</sup>. Case 2: C, CCR- ins(2;4). Chromosome 2 was folded and thus looks shorter due to preparation. D, flow cytometric analyses of NK cell of case 1. Show all NK cells (CD56 positive) are CD16 negative, thus all are sub-sets of NK <sup>bright</sup>. A and B, the probes were conjugated with TexasRed to label chromosome 1 (red), Diethylaminocoumarin (DEAC) for chromosome 2 (lightblue) and fluorescein isothiocyanate (FITC) for chromosome 4 (green). Other chromosomes were counterstained with DAPI (dark blue). C and D, BD FACSCanto II cytometer was used in both cases and the data analyses were performed using the Infinicyt® software.



Supplementary Material

Click here to access/download **Supplementary Material**CAREchecklist-Eng-20160131.docx