Clase teórica de la semana del 4-4

Mario Garelik

Sección 13.5 - Componentes tangencial y normal de la aceleración.

- Ejercitación sugerida (pp. 738-739): 1 al 14 // 17 al 28.
- Breve introducción al marco TNB (marco de Frenet).
- Definición del vector binormal B. Comprobación que B es unitario.
- Orientación de mano derecha para el sistema de referencia TNB.
- Deducción de las componentes a_T y a_N .
- Observar que el vector **a** está *siempre* en el plano **TN**, que es ortogonal a **B**. Interpretar qué dicen a_T y a_N .
 - Pequeña incongruencia entre la interpretación de Thomas acerca de lo que mide a_N y lo que se deduce a partir de la definición de κ .
 - Convención de reconciliación.
- \bullet El plano determinado por los vectores \mathbf{T} y \mathbf{N} se llama *Plano osculador*.
- El plano determinado por los vectores B y N se llama *Plano normal*.
- El plano determinado por los vectores T y B se llama Plano de rectificación.
- Fórmula para hallar el componente normal a_N de la aceleración, una vez conseguido a_T .
- Definición de τ (torsión de una curva suave): $\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N}$.

Sección 14.1 - Funciones de varias variables.

- Ejercitación propuesta (pp. 753 755): 1 68.
- Definiciones iniciales de función de valores reales y variable vectorial o campo escalar: dominio, variables independientes y dependientes.
- Si bien trabajamos en simultáneo con R^2 y R^3 , la visualización de la gráfica (superficie) sólo será posible para $f:R^2\to R$.
- Dominios y rangos: sin mucho para decir que sea distinto a lo conocido.
 - Ambos se deducen de la estructura de la ley funcional.
 - En el caso del dominio, puede venir explicitado o no.

- Si está implícito se toma como tal al mayor conjunto posible para el cual la expresión funcional toma sentido.
- Ahora en el dominio se mide con *norma* y ya no con valor absoluto como en el caso de las funciones vectoriales.
- Topología básica de R^2 (extendible a R^3 , con bolitas en vez de discos):
 - Las distancias ahora (en R^2 o R^3) se miden con el operador $||\cdot||$ (norma o magnitud) y ya no con $|\cdot|$ (valor absoluto).
 - Disco abierto. Diferencia entre círculo y disco.
 - Punto interior, exterior y frontera.
 - Conjunto interior y frontera.
 - Región abierta y cerrada.
 - Región acotada.
- Ejemplito 2 para visualizar.
- En \mathbb{R}^2 : Curvas de nivel y curvas de contorno: diferencias.
- En \mathbb{R}^3 : Superficies de nivel.

Sección 14.2 - Límites y continuidad en dimensiones superiores.

- Ejercitación propuesta (pp. 761 764): 1 al 59.
 - Error en el ejercicio 54 p.763: donde dice: Si $(x_0, y_0) = 3$, debe decir: Si $f(x_0, y_0) = 3$.
- Intro general.
- La definición $\epsilon \delta$ de límite: analogías con Cálculo 1 y la medición con normas en el dominio (discos o bolas).
- Propiedades de los límites.
- No trabajaremos con la verificación de la definición en práctica.
- Técnicas para el cálculo de límites:
 - Sustitución directa del punto de acumulación en la expresión de la función (sin indeterminación). Ver ejemplo 1.
 - Utilización de alguna técnica básica: racionalización de numeradores/denominadores, factorización de polinomios, alguna relación trigonométrica, etc. Ver ejemplo 2.
 - El Teorema de compresión: ejercicio 55 p. 763 (corregir error en el libro).
- Ver ejemplos 1 y 2. El ejemplo 3 no, ya que busca un δ , a partir de un ϵ dado (no nos enfocamos en la verificación de la definición).
- No existencia de límite: para ver la no existencia de un límite en un punto, se puede usar:
 - La no independencia de la trayectoria como causa. Ver ejemplos 4 y 5.

- Coordenadas polares: ver material de repaso en Material de estudio en la página:
 - * La propiedad que analiza el texto en el ejercicio 60 p. 763 expresa:

$$\lim_{(x,y)\to(0,0)} f(x,y) = L \Rightarrow \lim_{r\to 0} f(r\cos\theta, r\sin\theta) = L \qquad (*)$$

- * Uso del ejemplo 3 como caso de visualización del uso de la propiedad.
- * Sólo aplicable si el punto de acumulación es (0,0).
- * No sirve de mucho, porque ya se conoce que el límite existe y su valor, esto es, brinda una condición necesaria para la existencia de límite, pero no suficiente.
- * Mostrar que el recíproco es falso.
- * La propiedad sólo es útil, en consecuencia, por su contrarrecíproco, para probar la no existencia de un limite.
- Uso del contrarrecíproco de la propiedad (*) para probar la no existencia de un límite:
 - * Mirar en detalle el ejercicio resuelto 60 (p. 764) cuando toma en polares el camino y=0, el límite le da cero. Pero cuando toma el camino $y=x^2$ (en polares $r\sin\theta=r^2\cos^2\theta$), el límite le da 1.
- Definición de continuidad.
- Función discontinua en un punto: la inexistencia de límite en él. Ver ejemplo 6.
- Álgebra de continuas. La continuidad de la composición.
- Terminología: continuidad, x-continuidad, y-continuidad.
- Las nociones de límite y continuidad se extienden a funciones de más de dos variables, sólo que ya no es posible la visualización ni la interpretación en términos de bolas.
- Valores extremos de funciones continuas en regiones cerradas y acotadas: el Teorema de Weierstrass visto en Cálculo 1, vale también para funciones definidas en R^2 y R^3 .