CS 302.1 - Automata Theory

Lecture 02

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

A quick recap

Can a given problem be computed by a particular computational model?

A computational model solves a problem P if,

- (i) For all inputs belonging to the YES instance of P, the device outputs **YES**
- (ii) For all inputs belonging to the NO instance of P, the device outputs NO.

If (i) and (ii) hold, we say that the problem **P** is computable by this computational model.

Deterministic Finite Automata (DFA)

Run:

$$\boldsymbol{Q0} \xrightarrow{0} Q1 \xrightarrow{1} Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q1 \xrightarrow{0} Q2 \xrightarrow{0} Q2 \xrightarrow{0} \boldsymbol{Q2} \xrightarrow{0} \boldsymbol{Q2}$$

 $L(M) = \{\omega | \omega \text{ results in an accepting run}\}$

One-way infinite tape

ACCEPT = {0111000, 10100, 0100, 00, 10000....} REJECT = {11101, 0, 1, 11, 001,......}

For any language L, we say M recognizes L if

 $\forall \omega \in L, M(\omega)$ accepts

For the example above, M recognizes L= $\{\omega | \omega \text{ ends in "00"}\}$

State transition diagram of the Finite State Machine

ACCEPT = {0111000, 10100, 0100, 00, 10000....} REJECT = {11101, 0, 1, 11, 001,......}

For any language L, we say the problem M solves or M decides L if

 $\forall \omega \in L, M(\omega) \text{ accepts}$ $\forall \omega \notin L, M(\omega) \text{ rejects}$

For the example above, M decides L= { $\omega | \omega$ ends in "00"}

State transition diagram of the Finite State Machine

For any language L, we say M recognizes L if

 $\forall \omega \in L, M(\omega)$ accepts

For any language L, we say M decides L if $\forall \omega \in L, M(\omega)$ accepts $\forall \omega \notin L, M(\omega)$ rejects

For a DFA, the notions of **deciding a language** and **recognizing a language** are equivalent, but this may not be true for other, more powerful computational models

Characteristics of DFA: (i) Single start state (ii) Unique transitions (iii) Zero or more final states

Formally, a finite automaton M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is a finite set called the *alphabet*.
- $\delta: Q \times \Sigma \mapsto Q$ is the **transition function** (unique).
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ are the **final/accepting states**.

$$Q = \{Q0, Q1, Q2\}$$

$$\Sigma = \{0,1\}$$

$$(Q0,0) \mapsto Q1; (Q0,1) \mapsto Q0,...,(Q2,1) \mapsto Q0$$

$$q_0 = Q0$$

$$F = Q2$$

	0	1
Q0	Q1	Q0
Q1	Q0	Q1

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is divisible by 3}\}$

Any input string would leave three remainders: 0, 1 or 2.

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is divisible by 3}\}$

Any input string would leave three remainders: 0, 1 or 2.

```
Intuition: Let \omega be any substring of the input string divisible by 3, i.e. \omega=0 (mod\ 3) \omega\ 0=2\times value\ (\omega)=0\ (mod\ 3) \omega\ 1=2\times value\ (\omega)+1=1 (mod\ 3) \omega\ 10=2\times value\ (\omega 1)=2 (mod\ 3) \omega\ 11=2\times value\ (\omega 1)+1=0 (mod\ 3) .... And so on
```

- The DFA will have three states, each corresponding to the remainder of $value(\omega)/3$.
- The final state = $0 \pmod{3}$ the string ω is accepted if after reading it, the DFA ends in this state.

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is divisible by 3}\}$

Any input string would either leave remainders 0, 1 or 2.

Intuition: Let ω be any substring of the input string divisible by 3, i.e. $\omega = 0 \pmod{3}$

$$\omega \ 0 = 2 \times value \ (\omega) = 0 \ (\text{mod } 3)$$

$$\omega \ 1 = 2 \times value \ (\omega) + 1 = 1 \ (\text{mod } 3)$$

$$\omega \ 10 = 2 \times value \ (\omega 1) = 2 \ (\text{mod } 3)$$

$$\omega \ 11 = 2 \times value \ (\omega 1) + 1 = 0 \ (\text{mod } 3)$$

.... And so on

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is divisible by 3}\}$

	0	1
Q0	Q0	Q1
Q1	Q2	Q0
Q2	Q1	Q2

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is NOT divisible by 3}\}$

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is NOT divisible by 3}\}$

Intuition - Construct a **Toggled DFA:** Toggle the final states and the non-final states!

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is NOT divisible by 3}\}$

Intuition - Construct a **Toggled DFA:** Toggle the final states and the non-final states!

In fact if any DFA accepts L, the toggled DFA accepts \overline{L} , the complement of L

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is NOT divisible by 3}\}$

Intuition - Construct a **Toggled DFA:** Toggle the final states and the non-final states!

In fact if any DFA accepts L, the toggled DFA accepts \overline{L} , the complement of L

Examples: $\Sigma = \{0, 1\}$, L(M)= $\{\omega | \omega \text{ is NOT divisible by 3}\}$

Intuition - Construct a **Toggled DFA:** Toggle the final states and the non-final states!

In fact if any DFA accepts L, the toggled DFA accepts \overline{L} , the complement of L

Characteristics of DFA: (i) Single start state (ii) Unique transitions (iii) Zero or more final states

Characteristics of DFA: (i) Single start state (ii) Unique transitions (iii) Zero or more final states

Characteristics of NFA: (i) Single start state (ii) Zero or more final states

(iii) Multiple transitions are possible on the same input for a state

(iv) Some transitions might be missing

(v) ϵ - transitions

Run 1:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0$$
 (**REJECT**)

Run 2:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q1 \xrightarrow{1} Q2 \xrightarrow{0} Q3$$
 (ACCEPT)

Multiple runs per input is possible

Run 1:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0$$
 (**REJECT**)

Run 2:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q1 \xrightarrow{1} Q2 \xrightarrow{0} Q3$$
 (ACCEPT)

Run 3:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q0 \xrightarrow{1} Q1 \xrightarrow{0} CRASH$$

Run 4:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q1 \xrightarrow{1} Q2 \xrightarrow{\epsilon} Q3 \xrightarrow{0} CRASH$$

CRASH is a Rejecting Run

Run 1:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0$$
 (REJECT)

Run 2:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q1 \xrightarrow{1} Q2 \xrightarrow{0} Q3$$
 (ACCEPT)

Run 3:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q0 \xrightarrow{1} Q1 \xrightarrow{0} CRASH$$
 (**REJECT**)

Run 4:
$$Q0 \xrightarrow{1} Q0 \xrightarrow{0} Q0 \xrightarrow{1} Q1 \xrightarrow{1} Q2 \xrightarrow{\epsilon} Q3 \xrightarrow{0} \text{CRASH (REJECT)}$$

The NFA "accepts" an input string, if it at least one run ends up in the final state. (Accepting Run)

The NFA "rejects" an input string, if there are **no runs** that end up in a final state. (Rejecting Run)

	0	1	ϵ
Q0	Q0	Q0, Q1	
Q1		Q2	
Q2	Q3		Q3
Q3			

Formally, a finite automaton M is a 5-tuple (Q, Σ , δ , q_0 , F) where

- Q is a finite set called the states.
- Σ is a finite set called the *alphabet*.
- $\delta: Q \times \Sigma \mapsto P(Q)$ is the **transition function**. P(Q) is the power set of Q
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *final/accepting states*.

	0	1	ϵ
Q0	Q0	Q0, Q1	
Q1		Q2	
Q2	Q3		Q3
Q3			

- Are NFAs more powerful than DFAs?
- Intuitively, non-determinism seems to be adding more "power".

- Are NFAs more powerful than DFAs?
- Intuitively, non-determinism seems to be adding more "power".
- Let L_1 be the language accepted by NFAs and L_2 be the language accepted by DFAs
- Is $L_2 \subseteq L_1$?

- Are NFAs more powerful than DFAs?
- Intuitively, non-determinism seems to be adding more "power".
- Let L_1 be the language accepted by NFAs and L_2 be the language accepted by DFAs
- Is $L_2 \subseteq L_1$? Clearly true, because a DFA is just a special case of an NFA.

- Are NFAs more powerful than DFAs?
- Intuitively, non-determinism seems to be adding more "power".
- Let L_1 be the language accepted by NFAs and L_2 be the language accepted by DFAs
- Is $L_2 \subseteq L_1$? Clearly true, because a DFA is just a special case of an NFA.
- Surprisingly, what we will show next is that $L_1 \subseteq L_2$!
- That is, given an NFA, we can convert it to a DFA that accepts the same language.
- Such a DFA is called a "Remembering DFA".

Thus, DFAs and NFAs are completely equivalent and $L_1=L_2!$

Intuitive idea for the construction of a Remembering DFA from an NFA:

- Let R be the Remembering DFA corresponding to an NFA N.
- R on an input enters a state that is labelled by all possible states that N can enter on that input.
- Note that this "trims away" the non-determinism of the NFA N without "losing" the language it accepts.
- Also note that if N has k states, then R has at most 2^k states. Why?

Intuitive idea for the construction of a Remembering DFA from an NFA:

- Let R be the Remembering DFA corresponding to an NFA N.
- R on an input enters a state that is labelled by all possible states that N can enter on that input.
- Note that this "trims away" the non-determinism of the NFA N without "losing" the language it accepts.
- Also note that if N has k states, then R has at most 2^k states. Why?
- Any label in the Remembering DFA is a subset of $\{Q_0, Q_1, Q_2, \dots, Q_{k-1}\}$, where Q_i = State of the NFA.
- There are at most 2^k labels for the DFA.

• R on an input enters a state that is labelled by all possible states that N can enter on that input.

	0	1	ϵ
Q0	Q0	Q0, Q1	
Q1		Q2	
Q2	Q3		Q3
Q3			

• R on an input enters a state that is labelled by all possible states that N can enter on that input.

	0	1	ϵ
Q0	Q0	Q0, Q1	
Q1		Q2	
Q2	Q3		Q3
Q3			

Remembering DFA $\it R$

• R on an input enters a state that is labelled by all possible states that N can enter on that input.

	0	1	ϵ
Q0	Q0	Q0, Q1	
Q1		Q2	
Q2	Q3		Q3
Q3			

Remembering DFA R

Any state of R that contains in its label, an accepting state of R is an accepting state of R.

• R on an input enters a state that is labelled by all possible states that N can enter on that input.

	0	1	ϵ
Q0	Q0	Q0, Q1	
Q1		Q2	
Q2	Q3		Q3
Q3			

Remembering DFA $\it R$

Any state of R that contains in its label, an accepting state of N is an accepting state of R.

• M_2 on an input enters a state that is labelled by all possible states that M_1 can enter on that input.

	0	1	ϵ
Q0	Q0	Q0, Q1	
Q1		Q2	
Q2	Q3		Q3
Q3			

Remembering DFA R

Any state of R that contains in its label, an accepting state of R is an accepting state of R.

• M_2 on an input enters a state that is labelled by all possible states that M_1 can enter on that input.

	0	1	ϵ
Q0	Q0	Q0, Q1	
Q1		Q2	
Q2	Q3		Q3
Q3			

Remembering DFA R

Any state of R that contains in its label, an accepting state of R is an accepting state of R.

• M_2 on an input enters a state that is labelled by all possible states that M_1 can enter on that input.

	0	1	ϵ
Α	А, В	A	
В	С		D
С			
D	С	С	

Remembering DFA R

• M_2 on an input enters a state that is labelled by all possible states that M_1 can enter on that input.

	0	1	ϵ
Α	A, B	Α	
В	С		D
С			
D	С	С	

Remembering DFA R

• M_2 on an input enters a state that is labelled by all possible states that M_1 can enter on that input.

	0	1	ϵ
Α	A, B	Α	
В	С		D
С			
D	С	С	

Remembering DFA R

A language is called a **Regular Language** if there exists some finite automata recognizing it.

If M be a finite automaton (DFA/NFA) and,

 $L(M) = \{\omega | \omega \text{ is accepted by } M\}$

L(M) is regular.

Set of all regular Languages

A language is called a **Regular Language** if there exists some finite automata recognizing it.

If M be a finite automaton (DFA/NFA) and,

$$L(M) = \{\omega | \omega \text{ is accepted by } M\}$$

L(M) is regular.

- Any language has associated with it, a set of operations that can be performed on it.
- These operations help us to understand the properties of that language, e.g. closure properties
- For regular languages, this will help us prove that certain languages are non-regular and hence we cannot hope to design a finite automaton for them

Set of all regular Languages

Regular Operations:

Let L_1 and L_2 be languages. The following are the *regular operations*:

- Union: $L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\}$
- Concatenation: L_1 . $L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- Star: $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$

Set of all regular Languages

Regular Operations:

Let L_1 and L_2 be languages. The following are the *regular operations*:

- Union: $L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\}$
- Concatenation: L_1 . $L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- Star: $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$

Star operation: It is an unary operation (unlike the other two) and involves putting together any number of strings in L_1 together to obtain a new string.

Note: Any number of strings includes "0" as a possibility and so the empty string ϵ is a member of L_1^* .

If
$$\Sigma = \{a\}$$
, $\Sigma^* = \{\epsilon, a, aa, aaa, \dots \}$; If $\Sigma = \{\Phi\}$, $\Sigma^* = \{\epsilon\}$

Regular Operations:

Let L_1 and L_2 be languages. The following are the *regular operations*:

- **Union:** $L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\}$
- Concatenation: L_1 . $L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- Star: $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$

Set of all regular Languages

Star operation: It is an unary operation (unlike the other two) and involves putting together any number of strings in L_1 together to obtain a new string.

Note: Any number of strings includes "0" as a possibility and so the empty string ϵ is a member of L_1^* .

If
$$\Sigma = \{0,1\}$$
, we have that $\Sigma^* = \{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots \}$

Regular Operations: Let L_1 and L_2 be languages.

- Union: $L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\}$
- Concatenation: L_1 . $L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- Star: $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$

Example: Let the alphabet $\Sigma = \{a, b, \dots, z\}$. If $L_1 = \{social, economic\}$ and $L_2 = \{justice, reform\}$, then

• $L_1 \cup L_2 = \{social, economic, justice, reform\}$

Regular Operations: Let L_1 and L_2 be languages.

- Union: $L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\}$
- Concatenation: L_1 . $L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- Star: $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$

Example: Let the alphabet $\Sigma = \{a, b, \dots, z\}$. If $L_1 = \{social, economic\}$ and $L_2 = \{justice, reform\}$, then

- $L_1 \cup L_2 = \{social, economic, justice, reform\}$
- $L_1.L_2 = \{socialjustice, socialreform, economic justice, economic reform\}$

Regular Operations: Let L_1 and L_2 be languages.

- Union: $L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\}$
- Concatenation: L_1 . $L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- Star: $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$

Example: Let the alphabet $\Sigma = \{a, b, \dots, z\}$. If $L_1 = \{social, economic\}$ and $L_2 = \{justice, reform\}$, then

- $L_1 \cup L_2 = \{social, economic, justice, reform\}$
- $L_1.L_2 = \{socialjustice, socialreform, economic justice, economic reform\}$
- $L_1^* = \{\epsilon, social, economic, socialsocial, socialeconomic, economicsocial, economiceconomic, socialsocialsocial, socialsocialeconomic, socialeconomic, so$
- $L_2^* = \{\epsilon, justice, reform, justicejustice, justicereform, reformjustice, reformreform, justicejusticejustice,\}$

We want to check whether the set of regular languages are **closed** under some operations.

What does this mean?

- We pick up points within the set of all regular languages (say L_1 and L_2)
- Perform *set operations* such as Union, concatenation, Star, intersection, reversal, complement etc on them.
- Observe whether the resulting language still belongs to the set of all regular languages.
- If so, we say, regular languages are **closed** under that operation.

Set of all regular Languages

We want to check whether the set of regular languages are **closed** under some operations.

What does this mean?

- We pick up points within the set of all regular languages (say L_1 and L_2)
- Perform *set operations* such as Union, concatenation, Star, intersection, reversal, complement etc on them.
- Observe whether the resulting language still belongs to the set of all regular languages.
- If so, we say, regular languages are **closed** under that operation.

Set of all regular Languages

For example, the natural numbers are closed under addition/multiplication and not under subtraction/division.

Q: Is the set of all regular languages **closed under union**?

Suppose L_1 and L_2 are regular languages. Is $L=L_1 \cup L_2$ also regular?

Set of all regular Languages

Q: Is the set of all regular languages **closed under union**?

Suppose L_1 and L_2 are regular languages. Is $L = L_1 \cup L_2$ also regular?

Proof: Since L_1 and L_2 are regular, there must be a DFA M_1 that accepts L_1 , i.e. $L(M_1) = L_1$ and a DFA M_2 that accepts L_2 , i.e. $L(M_2) = L_2$.

Using M_1 and M_2 , we will show how to construct an NFA M that accepts $L = L_1 \cup L_2$, i.e. $L(M) = L_1 \cup L_2$.

Suppose the DFA for M_1 is

And the DFA for M_2 is

Set of all regular Languages

Q: Is the set of all regular languages **closed under union**?

Suppose L_1 and L_2 are regular languages. Is $L = L_1 \cup L_2$ also regular?

Proof: Since L_1 and L_2 are regular, there must be a DFA M_1 that accepts L_1 , i.e. $L(M_1) = L_1$ and a DFA M_2 that accepts L_2 , i.e. $L(M_2) = L_2$.

Using M_1 and M_2 , we will show how to construct an NFA M that accepts $L = L_1 \cup L_2$, i.e. $L(M) = L_1 \cup L_2$.

NFA M accepting $L = L_1 \cup L_2$

Set of all regular Languages

Q: Is the set of all regular languages **closed under union**?

Suppose L_1 and L_2 are regular languages. Is $L=L_1 \cup L_2$ also regular?

Proof: In order to prove that $L(M) = L_1 \cup L_2$, we show two things:

(i)
$$L \subseteq L_1 \cup L_2$$

Let $\omega \in L$, i.e. ω is accepted by M. The final state for L can be reached either via M_1 or M_2 . Thus ω must be accepted by either of them to reach the final state of M.

Q: Is the set of all regular languages **closed under union**?

Suppose L_1 and L_2 are regular languages. Is $L = L_1 \cup L_2$ also regular?

Proof: In order to prove that $L(M) = L_1 \cup L_2$, we show two things:

(i)
$$L \subseteq L_1 \cup L_2$$

Let $\omega \in L$, i.e. ω is accepted by M. The final state for L can be reached either via M_1 or M_2 . Thus ω must be accepted by either of them to reach the final state of M.

(ii)
$$L_1 \cup L_2 \subseteq L$$

Let $\omega \in L_1 \cup L_2$. Then, $\omega \in L_1$ or $\omega \in L_2$.

Thus, ω must reach the final state of M_1 or M_2 . But since the start state of M_1 or M_2 can be reached from the start state of M by taking an ϵ -transition, $\omega \in L$.

Q: Is the set of all regular languages **closed under concatenation**? Suppose L_1 and L_2 are regular languages. Is $L = L_1$. L_2 also regular?

Proof: Since L_1 and L_2 are regular, there must be a DFA M_1 that accepts L_1 , i.e. $L(M_1) = L_1$ and a DFA M_2 that accepts L_2 , i.e. $L(M_2) = L_2$.

Using M_1 and M_2 , we will show how to construct an NFA M that accepts $L=L_1,L_2$.

Set of all regular Languages

 $L_1.L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$

NFA M accepting $L = L_1 L_2$

Q: Is the set of all regular languages **closed under star**? Suppose L_1 is a regular language. Is L_1^* also regular?

Proof: Since L_1 is regular, there must be a DFA M_1 that accepts L_1 , i.e. $L(M_1) = L_1$. Using M_1 , we will show how to construct an NFA M that accepts $L = L_1^*$.

 $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$

Set of all regular Languages

Q: Is the set of all regular languages **closed under star**? Suppose L_1 is a regular language. Is L_1^* also regular?

Proof: Since L_1 is regular, there must be a DFA M_1 that accepts L_1 , i.e. $L(M_1) = L_1$. Using M_1 , we will show how to construct an NFA M that accepts $L = L_1^*$.

NFA accepting $L=L_1^*$

Steps:

• Make ϵ -transitions from the final states of L_1 to the initial state of L_1 .

$$L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$$

Set of all regular Languages

Q: Is the set of all regular languages **closed under star**? Suppose L_1 is a regular language. Is L_1^* also regular?

Proof: Since L_1 is regular, there must be a DFA M_1 that accepts L_1 , i.e. $L(M_1) = L_1$. Using M_1 , we will show how to construct an NFA M that accepts $L = L_1^*$.

 $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$

Steps:

- Make ϵ -transitions from the final states of L_1 to the initial state of L_1 .
- Make a new final state as the start state and make an ϵ -transition from this state to the previous start state of L_1 .

Set of all regular Languages

Q: Is the set of all regular languages **closed under complement**? If L is regular, then is \overline{L} also regular?

Proof: Given a DFA M, such that L(M) = L, construct the **toggled DFA** M' from M, by

- (i) changing all the non-final states of M to be the final states of M' and
- (ii) changing all the final states M to be the non-final states of M'.

$$L(M') = \overline{L}$$

Set of all regular Languages

Q: Is the set of all regular languages **closed under complement**? If L is regular, then is \overline{L} also regular?

Proof: Given a DFA M, such that L(M) = L, construct the **toggled DFA** M' from M, by

- (i) changing all the non-final states of M to be the final states of M' and
- (ii) changing all the final states M to be the non-final states of M'.

$$L(M') = \overline{L}$$

Set of all regular Languages

Q: If L is the language accepted by an NFA, does "toggling" its states result in an NFA that accepts \overline{L} ?

Q: Is the set of all regular languages **closed under complement**? If L is regular, then is \overline{L} also regular?

Proof: Given a DFA M, such that L(M) = L, construct the **toggled DFA** M' from M, by

- (i) changing all the non-final states of M to be the final states of M' and
- (ii) changing all the final states M to be the non-final states of M'.

$$L(M') = \overline{L}$$

Q: If L is the language accepted by an NFA, does "toggling" its states result in an NFA that accepts \overline{L} ?

Proof: Consider that for an input string $x \in L$, such that N accepts it. Suppose there is an rejecting run and an accepting run for input x. (See Table)

	NFA N	Toggled NFA N'
Run 1	Rejecting	
Run 2	Accepting	

Q: Is the set of all regular languages **closed under complement**? If L is regular, then is \overline{L} also regular?

Proof: Given a DFA M, such that L(M) = L, construct the **toggled DFA** M' from M, by

- (i) changing all the non-final states of M to be the final states of M' and
- (ii) changing all the final states M to be the non-final states of M'.

$$L(M') = \overline{L}$$

Q: If L is the language accepted by an NFA, does "toggling" its states result in an NFA that accepts \overline{L} ?

Proof: Consider that for an input string $x \in L$, such that N accepts it. Suppose there is an rejecting run and an accepting run for input x. (See Table)

For toggled NFA N' too, there are two runs for x. However, the rejecting run N is an accepting run for N'. Thus x is accepted by both N and N'.

	NFA N	Toggled NFA N'
Run 1	Rejecting	Accepting
Run 2	Accepting	Rejecting

Q: Is the set of all regular languages **closed under complement**? If L is regular, then is \overline{L} also regular?

Proof: Given a DFA M, such that L(M) = L, construct the **toggled DFA** M' from M, by

- (i) changing all the non-final states of M to be the final states of M' and
- (ii) changing all the final states M to be the non-final states of M'.

$$L(M') = \overline{L}$$

Q: If L is the language accepted by an NFA, does "toggling" its states result in an NFA that accepts \overline{L} ?

Proof: Consider that for an input string $x \in L$, such that N accepts it. Suppose there is an rejecting run and an accepting run for input x. (See Table)

For toggled NFA N' too, there are two runs for x. However, the rejecting run N is an accepting run for N'. Thus x is accepted by both N and N'.

Contradiction! So No, the toggled NFA does not accept \overline{L} .

	NFA N	Toggled NFA N'
Run 1	Rejecting	Accepting
Run 2	Accepting	Rejecting

Thank You!