

Department of Information Science and Engineering

Course Plan

Semester: III

Course Title:Data Structures	Course Code: 19IS305
L-T-P-SS (Hours/Week): 4-0-0-0	No. of Credits: 04
Total Lecture Hours: 52	Duration of SEE: 03 Hours
CIE Marks: 50	SEE Marks: 50

Prerequisites

Students are expected to have to have a preliminary knowledge of C programming.

Course Overview

A good algorithm usually comes together with a set of good data structures that allow the algorithm to manipulate the data efficiently. In this course, we consider the common data structures that are used in various computational problems. You will learn how these data structures are implemented using programming languages and will practice implementing them in our programming lab. This will help you to understand what is going on inside a particular built-in implementation of a data structure and what to expect from it.

Scope of the Course:

- Basics of data structures including their fundamental building blocks: arrays and linked lists
- How to use Dynamic arrays.
- How to use priority queues to efficiently schedule jobs, in the context of a computer operating system or real life
- Basic structure of binary search trees AVL trees and Splay trees
- Applications of data structures

Department of Information Science and Engineering

Course Learning Objectives (CLO)

After studying this subject, the student should be able to

- To understand and analyze various data organization.
- To identify and implement the appropriate data structure and modify it if required for modeling a given problem and perform various operations on it.
- To classify and examine linear and non linear data structures
- To demonstrate and practice iterative and recursive solutions for elementary problems.
- To formulate algorithms and programs that use data structures such as arrays, linked lists, stacks, queues, trees, graphs.

s Institution affiliated to Visvesvaraya Technological University, Belagavi Nitte — 574 110, Karnataka, India

(ISO 9001:2015 Certified)
Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

Course Content

Subject Code: **19IS305** L-T-P-SS: **0-4-0-0**

Hours/Week: 4 CIE: 50
Teaching Hours: 52 Hrs SEE: 50
Exam Hours: 3 Credits: 4

UNIT – I	
Chapter 1: Introduction And Overview	1 Hrs
Definitions, Concepts of data structures, types, Overview of data structures.	
Chapter 2: Pointers	4 Hrs
Definition and Concepts, Accessing variables through pointers, Pointers and	
functions, Arrays and pointers, Array of pointers, Pointer arithmetic.	
Chapter 3: Linear Data Structures - Stacks	5 Hrs
Introduction and Definition, Representation of stack: Array and structure	
representation, Operations on stacks, Applications of stack: Conversion of	
Expressions, Evaluation of expressions, Recursion: Implementation, Simulating	
Recursion, examples on Recursion.	
UNIT – II	
Chapter 4: Linear Data Structures - Queues	4 Hrs
Introduction and Definition Representation of Queue: Array and Structure	
representation of queue, various queue Structures: ordinary queue, circular	
queue, priority queue.	
Chapter 5: Linear Data Structures - Singly Linked lists	6 Hrs
Memory allocation functions. Definition and concepts singly Linked List:	
Representation of link list in memory, Operations on singly Linked List,	
Circular Linked List.	
UNIT – III	
Chapter 6: Linear Data Structures - Doubly Linked lists	6 Hrs
Doubly Linked List: Representation and Operations, Circular doubly Link list:	
Representation and Operations. Linked List representation of stack, Linked List	
representation of queue.	
Chapter 7: Nonlinear Data Structures: Tree data structures 1	6 Hrs
Basic Terminologies, Binary Trees: Properties, Representation of Binary Tree:	
Linear representation, Linked representation, Operations on Binary Tree:	
Insertion, Simple Deletion, Traversals. Binary Search Tree, Operations on Binary	
Search Tree: Insertion, Traversals.	
UNIT – IV	
Chapter 8: Nonlinear Data Structures - Tree data structures 2	10Hrs
Expression Tree: Evaluating expression tree, Constructing expression tree from	

Nitte – 574 110, Karnataka, India

(ISO 9001:2015 Certified)
Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

postfix expression, traversals, Threaded binary Tree: types, B-Trees, B+ Trees,	
AVL Trees: Definition, Constructing a general AVL tree.	
UNIT – V	
Chapter 9: Nonlinear Data Structures - Graph data structures	5 Hrs
Graph terminologies: Walks, Paths, Circuits, Connected graphs, Disconnected	
graphs and Components, Euler graphs. Directed graphs, Undirected graphs,	
Hamiltonian paths and Circuits	
Chapter 10: Representation of graphs	5 Hrs
Set Representation, Linked representation, Matrix representation. Operations on	
Graphs: Insertion and Deletion of edges and vertices (linked representation),	
DFS, BFS,	

Text Books:

- **1. Fundamentals of Data Structures In C;** 2nd Edition; Ellis Horowitz, Anderson-Freed, Sahni; Universities Press, 2008.
- **2. Data Structure using C**; Aaron M. Tenenbaum, Yedidyah Langsam & Moshe J. Augenstein; Pearson Education/PHI, 2006.
- **3. Data Structures With C**; Seymour Lipschutz ; Tata Mcgraw Hill Education Private Limited 2010.
- **4. Data Structures Using C And C++**; 2nd Edition; Langsam Yedidyah, Augenstein Moshe J., Tenenbaum Aaron M; Prentice-Hall 2009.

Reference Books:

- 1. Classic Data Structures; D.Samanta.
- **2. Data Structures and Program Design in C**; R. Kruse etal, , Pearson Education Asia, Delhi-2002.
- **3. Computer Science A Structured Programming Approach Using C;** Second Edition; Behrouz A. Forouzan and Richard F. Gilberg; Thomson, 2003.

E-RESOURCES:

- 1. https://onlinecourses.nptel.ac.in/noc16 cs06/
- 2. www.tutorialspoint.com/cprogramming/c_pointer

Evaluation Scheme

CIE Scheme:

Assessment	Marks Distribution
Mid Semester Exam 1	20
Mid Semester Exam 2	20
Task 1: Design Assignment	03
Task 2: Quiz or surprise test	03
Task 3:Project	04
Total	50

Semester End Examination (SEE) is a written examination of three hours duration of 100 marks.

is Institution affiliated to Visvesvaraya Technological University, Belagavi)

(ISO 9001:2015 Certified)
Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

Subject Utilization for Mid Semester Exams (MSE) and Semester End Examination(SEE)

Unit	Chapte	r	Teaching	No	of Question	ns in
	_		Hours	MSE 1	MSE 2	SEE
1	1	Introduction	01	01		01
		and Overview				
	2	Pointers	04			
	3	Stacks	05	01		01
2	4	Queues	04	01		01
	5	Singly Linked	06	01		01
		Lists				
3	6	Doubly Linked	06		01	01
		Lists				
	7	Trees 1	06		01	01
4	8	Trees 2	10		02	02
5	9	Graphs	05			01
		Graph	05			01
		representations				

Note

- Each question carries 20 marks and may consist of sub-questions.
- Mixing of sub-questions from different chapters within a unit (only for Unit I, Unit II, Unit III and Unit IV) is allowed in Mid Semester Exam I, II and SEE.
- Answer any 5 full questions of 20 marks each by selecting one question from each unit in SEE.

Course outcomes

After going through this course the students will be able to:

Sl. No	Course Outcomes	Bloom's Taxonomy Level (BTL)
C305.1	Understand the concepts of data structure, data type and array data structure, pointers, stacks.	L3
C305.2	Apply the concept of queues and singly linked list data structure to solve problems.	L3
C305.3	Apply the concept of circular and doubly linked list data structure	L3
C305.4	Apply the concept of Trees to solve problems	L3

us Institution affiliated to Visvesvaraya Technological University, Belagavi)

(ISO 9001:2015 Certified) Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

C305.5	Apply the concept of threaded binary tress, study	1.3	
C303.3	hashing techniques and Graphs.	L3	

Mapping of POs & COs:

Table: Mapping of COs to PIs, POs and BTL								
Course Program Performance Bloom's Taxonomy								
Outcomes	Outcomes (POs)	Indicators (PI)	Level (BTL)					
(COs)	Addressed							
CO1	1,2,3	1.3,1.4,2.1.2,2.4.3,3.2.1	L3					
CO2	1,2,3	1.3,1.4,2.1.2,2.4.3,3.2.1	L3					
CO3	1,2,3	1.3,1.4,2.1.2,2.4.3,3.2.1	L3					
CO4	1,2,3	1.3,1.4,2.1.2,2.4.3,3.2.1	L3					
CO5	1,2,3	1.3,1.4,2.1.2,2.4.3,3.2.1	L3					

Mapping of PO s & Cos:

P	P	P	P	P	P	P	P	P	P	P	P	P	PS	PS
Os	O	O	O	O	O	O	O	O	O	O	O	О	0	О
C														
Os	1	2	3	4	5	6	7	8	9	1	1	1	1	2
										0	1	2		
C305.	1	2											2	2
1														
C305.	1	2											2	2
2														
C305.	1	2											2	2
3														
C305.	1	2											2	2
4														
C305.	1	2											2	2
5														

(1 = Low 30%-49%, 2 = Medium 50%-69%, 3 = High > 70%)

ous Institution affiliated to Visvesvaraya Technological University, Belagavi

Nitte - 574 110, Karnataka, India

(ISO 9001:2015 Certified)
Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

Evaluation Scheme:

Bloom's Taxonomy Levels (BTL) Planned in MSE and SEE:

Sl.	Bloom's Taxonomy	MSE 1	MSE 2	MSE 3	SEE
No.	Levels (BTL)				
1	Remember	10%	10%	10%	10%
2	Understand	15%	15%	15%	15%
3	Apply	30%	30%	30%	30%
4	Analyze	25%	25%	25%	25%
5	Evaluate	20%	20%	20%	20%
6	Create	00%	00%	00%	00%

is Institution affiliated to Visvesvaraya Technological University, Belagavi) Nitte — 574 110, Karnataka, India

(ISO 9001:2015 Certified) Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

UNIT – I Chapter Wise Plan

Unit 1		10 Hours
Chapter 1:	Introduction And Overview	01 Hours
1.	Definition Types & Needs of Data Structures, Linear &	01 Hour
	Non linear Data Structures.	

Topic Learning Objectives (TLO):

Sl.	Topic Learning Objective	CO	BTL
No.		Mapped	
1	Use the concept of structures in programming.	CO 1	3
2	Explain the need for structures.	CO 1	3
3	Understand the types of data structure	CO 1	3

Review Questions:

Sl.	Question	Mark	CO	BTL
No.		S	Mapped	
1	What is data structure?	04	CO 1	3
2	List out the areas in which data structures are applied extensively?	06	CO 1	3
3	Classify linear data structure and non linear data structure?	06	CO 1	3
4	Give two examples of linear data structures.	04	CO3	3
5	What are three examples of nonlinear data structures?	06	CO3	3
6	What is the difference between the logical representation of a	05	CO2	3
	data structure and the physical representation?			

Lesson Schedule:

Unit 1	10 Hours
Chapter 2: Pointers	02 Hours
Definition and pointer Concepts	01 Hour
2. Accessing variables through pointers	01 Hour
3. Arrays of pointers	
4. Pointer Arithmetic	

Department of Information Science and Engineering

Topic Learning Objectives (TLO):

Sl.	Topic Learning Objective	CO	BTL
No.		Mapped	
1	Understand the concept of pointer arrays.	CO 1	3
2	Perform pointer arithmetic operations .	CO 1	3
3	Explain how to access structure members using . and ->operators.	CO 1	3

Review Questions:

Sl.	Question	Mark	CO	BTL
No.		S	Mapped	
1	Write a program to find the sum of elements of array elements	06	CO 1	3
	using pointers.			
2	Can we have Array of Pointers? Justify your answer with an	06	CO 1	3
	example.			
3	What is the output of the following program:	08	CO 1	3
	Main()			
	{			
	Int i=3,*j,**k;			
	j=&I			
	k=&j			
	<pre>printf(" address of i=%u,&i);</pre>			
	<pre>printf(" address of i=%u,j);</pre>			
	<pre>printf(" address of i=%u,*k);</pre>			
	<pre>printf(" address of j=%u,&j);</pre>			
	<pre>printf(" address of j=%u,k);</pre>			
	<pre>printf(" value of j=%u,j);</pre>			
	<pre>printf(" value of i=%d,*(&i));</pre>			
	}			

is Institution affiliated to Visvesvaraya Technological University, Belagavi

(ISO 9001:2015 Certified) Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

Lesson Schedule:

Unit 1		10 Hours
Chapter 3: St	tack & Recursion	07 Hours
		05 Hours
1.	Stack definitions & concepts, Representing Stacks	
2.	Operations on stacks, Applications of stack	
3.	Recursion: Implementation, Simulating Recursion	02 Hours
4.	Examples on Recursion	

Topic Learning Objectives (TLO):

Sl.	Topic Learning Objective	CO	BTL
No.		Mapped	
1	Understand & Implement Stack	CO 1	3
2	Analyze different representations for stack	CO 1	2
3	Evaluate expressions using stack	CO 1	2
4	Converting infix expression to postfix	CO 1	3

Review Questions:

Sl.	Question	Mark	CO	BTL
No.		S	Mapped	
1	Explain the procedure to convert a valid infix expression to	4	CO 1	3
	postfix expression with algorithm. Trace the algorithm for the			
	following infix expression			
	(A + B) + ((C - D) * E + (F - G))			
2	Write a C program for the following operations on a stack of integers (use array).	6	CO 1	3
	a) Push			
	b) Pop			
	c) Display			
3	Write a C program to covert and print a given valid	4	CO 1	3
	parenthesized infix arithmetic expression to postfix expression.			
4	Write a program to implement Stack using Array.	6	CO 1	3

Nitte – 574 110, Karnataka, India

(ISO 9001:2015 Certified) Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

Lesson Schedule:

Unit 2	10 Hours
Chapter 4: Queue	05 Hours
Introduction and Definition	03 Hours
2. Representation of Queue: Array and Structure representation of	
3. Various queue Structures: ordinary queue, circular queue, priority	
queue.	02 Hours

Topic Learning Objectives (TLO):

Sl.	Topic Learning Objective		BTL
No.		Mapped	
1	Understand and Define queue & its types.	CO 2	2
2	Differentiate & Implement basic queue operations(insert, delete) with	CO 2	3
	respect to different types of queues.		
3	Applications of queue.	CO 2	3

Review Questions:

Sl.	Question	Mark	CO	BTL
No.		S	Mapped	
1	Choose an appropriate representation for linear queue in C and	04	CO 2	3
	implement the following routines in C for a queue of integers:			
	i) Insert ii) Delete			
2	Implement the routines insert ()and delete() in C for circular	06	CO 2	3
	queue.			
3	Show how to sort a set of numbers using a priority queue and	06	CO 2	3
	operations insert and delete.			

Lesson Schedule:

Unit 2		10 Hours
Chapt	ter 5: Linear Data Structures - Singly Linked lists	05 Hours
1.	Memory allocation functions.	02 Hours
2.	Definition and concepts singly Linked List	
3.	Representation & Operations on singly Linked List, Circular	03 Hours
	linked list.	

Department of Information Science and Engineering

Topic Learning Objectives (TLO):

Sl.	Topic Learning Objective	CO	BTL
No.		Mapped	
1	Understand advantages and disadvantages of Array over Linked list	CO 2	2
2	Understand different Memory Allocation Functions	CO 2	2
3	Define and Represent the principles of Singly Linked List.	CO 2	3
4	Implement various operations on Singly Linked List.	CO 2	3

Review Questions:

Sl.	Question	Mark	CO	BTL
No.		S	Mapped	
1	Implement the routines insert and delete for a singly linked list	06	CO 2	3
2	Implement queue using linked list	06	CO 2	3
_				_
3	What are the advantages and disadvantages of representing a	06	CO 2	3
	group of items as an array versus a linear linked list?			
4	Design a program that reads the name, age and salary of 10	08	CO 2	3
	persons and maintain them in a linked list sorted by name.			
5	What is dynamic memory allocation? Explain with an example	06	CO 2	3
6	Explain the difference between malloc and calloc functions used	08	CO 2	3
	to allocate memory dynamically with suitable examples.			

Model Question Paper for MSE-I

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belgaum) III SEM BE (ISE) Mid Semester Examinations-I 17IS305 - Data Structures

Time: 1 Hour Marks: 20

Note: Answer any one full question from each Unit

Unit-I

1. a) What is the output of the following program?
#include <stdio.h>
Void main()
{int a[5]={10,20,30,40,50,}
Printf (%p%p\n",&a[0],a,a+0);

(2)

s Institution affiliated to Visvesvaraya Technological University, Belagavi

(ISO 9001:2015 Certified)
Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

}

- b) Write a program using pointers to structure to display the details of n books with fields (author, name, price, edition). (8)
- 2. a) What is the need for converting and infix expression to postfix or prefix expression? (2)
 - b) Write an algorithm to convert an infix expression to postfix expression. Trace that algorithm and obtain the postfix expression for the following: ((A+ (B*C)) ^E-F/D).

Unit-II

- 3. a) Consider that a singly linked list contains the following elements: (6) book number: integer, Author Name: string of max 25 char, cost: float

 Write a program in C to represent a singly linked list with the above elements, using separate functions insert an element at the front, delete an element at the end, display the list.
 - b) Perform the following operations in a circular linked queue of size 5. Insert the elements 10, 20, 30, delete, delete, insert 40, 50, 60, 70, 80 . Properly show the positions of front and rear pointers. (4)
 - 4. a) What do you understand by term dynamic memory allocation? Explain any two functions that support dynamic allocation. (4)
 - b) Write a C program to implement circular queue using functions to

(6)

(8)

i) insert at rear ii) delete at front (Pass parameters to functions).

iii) Display

Lesson Schedule:

Unit 3		12 Hours
Chapt	er 6:Linear Data Structures – Doubly Linked lists &	12 Hours
Trees		
1.	Doubly Linked List: Representation and Operations	03 Hours
2.	Linked List representation of stack, Linked List representation of	
	queue.	04 Hours
3.	Basic terminologies of trees and traversals	05 Hours

Topic Learning Objectives (TLO):

Sl.	Topic Learning Objective	CO	BTL
No.		Mapped	
1	Define and understand the principles of Doubly Linked List	CO 3	2
2	Create and Perform various operations on Doubly Linked List	CO 3	3
3	Implement Stack and Queue using Linked List	CO 3	3
4	Create binary search tree	CO 3	3

is Institution affiliated to Visvesvaraya Technological University, Belagavi)

(ISO 9001:2015 Certified)
Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

Review Questions:

Sl.	Question	Mark	CO	BTL
No.		S	Mapped	
1	Write a C/C++ program to search a node with value x and delete	06	CO 3	3
	the node if it is found from a doubly linked list.			
2	List out the advantage and disadvantage of doubly linked list over	06	CO 3	3
	singly linked list			
3	How tree traversal is done?	08	CO 3	3

Lesson Schedule:

Unit 4	10 Hours
Chapter 7: Nonlinear Data Structures: Tree data structures 2	10 Hours
 Expression tree Tree traversals B – Trees B+ trees AVL Trees 	02 Hours 02 Hours 02 Hours 02 Hours 02 Hours

Topic Learning Objectives (TLO):

Sl.	Topic Learning Objective	CO	BTL
No.		Mapped	
1	Understanding expression tree concept	CO 4	2
2	Understand and Implement basic B Trees	CO 4	3
3	Create AVL Trees	CO 4	3

Review Questions:

Sl.	Question	Mark	CO	BTL
No.		S	Mapped	
1	Construct a B tree and B+ tree from:	06	CO 4	3
	20,34,67,11,55,69,204,190,123,8			
2	Write a function to construct expression tree using postfix expressions	06	CO 4	3
3 C	Construct an AVL tree, from: 20,34,67,11,55,69,204,190,123,8	06	CO 4	3
4	Write a short note on threaded binary trees.	08	CO 4	3

Department of Information Science and Engineering

Model Question Paper for MSE-II

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belgaum) III SEM BE (ISE) Mid Semester Examinations-2 17IS305-Data Structures

Time: 1 Hour Marks: 20

Note: Answer any One full question from each Unit

Unit-I

1.	a) Write a function to count the number of nodes present in a doubly linked list.b) Write a function to search an element in a DLL with appropriate validation mess	(3) sages.
	c) Write a function to delete a node from the rear end in a DLL with an example.	(4) (3)
2.	a) Write an algorithm to create a binary tree and perform pre order and post order to on itb) Write a function to create BST.	raversals (5) (5)
3.	Unit-II a)Write a function to construct expression tree using postfix expressions	(4)

- b)construct an AVL tree, B tree and B+ tree from: 20,34,67,11,55,69,204,190,123,8.
- 4. a) List the advantages and disadvantages of doubly linked lists over singly linked lists. **(4)** b)Write a short note on threaded binary trees. **(6)**

Lesson Schedule:

Unit 5	10 Hours
Chapter 8:Non linear Data Structures Graph	10 Hours
1. Graph Terminologies	05 Hours
2. Euler Graph	
3. Circuits	
4. Insertion and deletion of edges	05 Hours
5. DFS	03 110015
6. BFS	

s Institution affiliated to Visvesvaraya Technological University, Belagavi

(ISO 9001:2015 Certified) Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

Topic Learning Objectives (TLO):

Sl.	Topic Learning Objective	CO	BTL
No.		Mapped	
1	Understand basic terminologies in Graphs: Walks, Paths, and Circuits.	CO 5	1
2	Distinguish Connected and Disconnected Graphs.	CO 5	2
3	Understand various Graph Components.	CO 5	1
4	Describe Hamiltonian Paths and Circuits.	CO 5	3

Review Questions:

Sl.	Question	Mark	CO	BTL
No.		s	Mapped	
1	Define following terms with proper examples: path, circuit, walk	06	CO 5	1
	and loop.			
2	Draw an undirected graph with five edges and four vertices'. The	06	CO 5	3
	vertices should be called v1, v2, v3 and v4and there must be a			
	path of length three from v1 to v4. Find out if there is a			
	Hamiltonian circuit in the graph?			
3	With an example explain what is connected and disconnected	08	CO 5	2
	graph.			

Model Question Paper for SEE

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belgaum) III SEM BE (ISE) Semester End Examinations Section: A,B&C 17IS305- Data Structures

Time: 3 Hrs Marks: 100 Note: Answer Five full questions choosing one full question from each unit.

	Unit-I	
1.		
	a. Write a recursive function to find the GCD of 2 numbers.	4
	b. Write a program to sort the elements in an array using ponters.	4
	c. Show how to use	
	i. Pointer to structure	
	ii. Array of pointers	
	iii. Dynamic memory allocation	12
2.		

a. Write an algorithm to implement a stack of size 20 using an array. The elements in the

Department of Information Science and Engineering

	stack are integers. The operations to be supported are PUSH, POP and DIST Take into account the exception of stack overflow and stack underflow. b. Write a C function to convert a valid arithmetic infix expression to its equipostfix expression and hence convert the following infix expression to p ((A+B)*C-(D/E))\$(F\$G).	10 ivalent
2	Unit-II	
3.	 a. Write the algorithms for following in a circular queue. i. cqinsert() ii. cqdelete() iii. cqdisplay() b. Discuss the drawback of ordinary queue. How can you overcome it? Write program to create and find the sum of all numbers in an ordinary queue. 	10 a C++ 10
4.	 a. What is a Linked list? Write a C++ program to insert a new node consider possible cases. b. Write a C++ program to delete a node at the front and back considering all pocases. Unit-III 	10
 5. 6. 	a. What are the advantages and disadvantages of doubly linked list? Write a C fu to add a new node in doubly linked list considering all possible cases.b. What are the advantages of circular linked list over linear list? Write a C rou concatenate two circular lists.	10
7.	 a. Write functions to create a binary tree given i. The preorder and inorder traversals of that tree. ii. The preorder and postorder traversals of that tree. b. Write routines to traverse a binary tree in preorder and postorder? c. Write a program to insert new nodes to a binary search tree and delete a node binary search tree. Unit-IV	8 4 e from 8
8.	 a. Write a short note on the following AVL tree B-trees Write a function to create a left-threaded binary tree. Write algorithm to evaluate expression tree? Construct B+ tree from the following: 10, 20, 30, 40, 50, 60, 70, 80, 90. 	8 6 6
	b. Write a function to create in-threaded binary tree.c. Construct an AVL tree out of following: 34, 66, 78, 90, 12, 34, 54, 65, 76.	6 4

example.

10.

N.M.A.M. INSTITUTE OF TECHNOLOGY

s Institution affiliated to Visvesvaraya Technological University, Belagavi Nitte — 574 110, Karnataka, India

10

10

(ISO 9001:2015 Certified) Accredited with 'A' Grade by NAAC

Department of Information Science and Engineering

	Unit-V	
9.		
	a. Write a note on the following	
	i. Walks	
	ii. Paths	
	iii. Circuits	
	iv. Connected graphs	
	v. Disconnected graphs	10
	b. Explain the linked representation of a node? Give routine for adding a node	to the
	linked representation of a graph?	10

a. What is the difference between a tree and a graph data structure? Explain?

b. How do we find Hamiltonian circuit in graphs? Explain what is Euler graphs with