Exploring Optimization Strategies for *Mastermind*

Gioia Dominedò • Amy Lee • Kendrick Lo • Reinier Maat

AM207 Final Project (2016)

MASTERMIND

Hidden code:

Example guess:

Response:

 $1 \times \bullet 2 \times \bigcirc$

MASTERMIND

- Popular Strategies
 - Exclude all possibilities logically (Knuth's Algorithm)
 - Random Search
- Problems with popular strategies
 - Exhaustive search

Credit: Steve Berry

permutation

permutation

permutation

mutation

mutation

mutation

crossover

inversion

CONCLUSIONS

- Exhaustive strategies:
 Colors \(\) = Runtime \(\) \(\)
- Stochastic strategies:
 - Lower runtimes
 - Similar # of guesses

 Stochastic techniques make playing scaled-up Mastermind in finite time feasible

Thanks for watching!