# Компьютерное моделирование Моделирование динамических систем. Динамические модели популяций. Черновик

Кафедра ИВТ и ПМ

2018

#### План

#### Прошлые темы

#### Динамические модели популяций

Модель Мальтуса

Логистическая модель

Учёт наименьшей критический численности

Balance equations

Модель Лотки — Вольтерры

#### Outline

#### Прошлые темы

#### Динамические модели популяций

Модель Мальтуса

Логистическая модель

Учёт наименьшей критический численности

Balance equations

Модель Лотки — Вольтерры

# Прошлые темы

- Что такое динамическая система?
- ▶ Примеры?
- Динамическая система противопоставляется ... ?

# Прошлые темы

- Что такое динамическая система?
- ▶ Примеры?
- Динамическая система противопоставляется ... ?
- Примеры статических систем?

#### Outline

#### Прошлые темы

#### Динамические модели популяций

Модель Мальтуса

Логистическая модель

Учёт наименьшей критический численности

Balance equations

Модель Лотки — Вольтерры

**Популяция** (в биологии) - это совокупность особей одного вида, существующих в одно и занимающих определенную территорию.

В классической экологии рассматриваются взаимодействия нескольких типов:

- взаимодействие организма и окружающей среды;
- взаимодействие особей внутри популяции;
- взаимодействие между особями разных видов (между популяциями).

#### Зачем это нужно?

- описание роста количества микроорганизмов
- предсказание численности популяций промысловых животных
- предсказание численности популяций диких животных
- ▶ предсказание численности населения <sup>1</sup>



<sup>&</sup>lt;sup>1</sup>см. модель World3

# Первая модель популяции

1202 г. Леонардо Пизанский

какое количество пар кроликов будет через год, кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов?

# Первая модель популяции 1202 г. Леонардо Пизанский

какое количество пар кроликов будет через год, кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов?

Ряд описывающий количество пар кроликов: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

#### Outline

#### Прошлые темы

#### Динамические модели популяций Модель Мальтуса

Логистическая модель Учёт наименьшей критический численности Balance equations Модель Лотки — Вольтерры

- ▶ Число $^2$  особей в популяции P(t)
- ▶ При этом P(0) = 0
- На размер популяции влияет только два процесса
  - ightharpoonup рождение особей B(t)
  - ightharpoonup смерть особей D(t)
- ▶ Тогда изменение популяции:

$$\dot{P}(t) = B(t) - D(t)$$

 $<sup>^2</sup>$ вместо числа особей может использоваться плотность популяции и другие связанные с количеством особей величины  $\square \mapsto * \varnothing \mapsto * \stackrel{?}{=} \mapsto *$ 

Число родившихся особей можно задать как:

$$B(t) = r_b P(t)$$

Число умерших особей можно задать как:

$$D(t) = r_d P(t)$$

 $r_b$  - темп воспроизводства в расчете на одну особь;  $r_d$  - темп вымирания.

$$\dot{P}(t) = r_b P(t) - r_d P(t)$$

обозначим  $r = r_b - r_d$ ,

 $\dot{P} = rP(t)$ 

Решение  $ДУ^3$ :

тогда

<sup>&</sup>lt;sup>3</sup>похожий закон роста описывает изменение вклада (сложные проценты) см. другие примеры: en.wikipedia.org/wiki/Exponential\_growth → ¬¬¬

$$\dot{P}(t) = r_b P(t) - r_d P(t)$$

обозначим  $r=r_b-r_d$ ,

$$\dot{P} = rP(t)$$

Решение ДУ $^{3}$ :

тогда

$$P(t) = P_0 e^{rt}$$

wikimedia: анимация роста бактерий согласно экспоненциальному закону

<sup>&</sup>lt;sup>3</sup>похожий закон роста описывает изменение вклада (сложные проценты) см. другие примеры: en.wikipedia.org/wiki/Exponential\_growth → ¬ ¬ ○

#### Технологическая сингулярность?



- r > 0 экспоненциальный рост
- r < 0 экспоненциальное сокращение
- ▶ r = 0 численность постоянна





Линейный рост воспроизводства и экспоненциальный рост популяции.



Недостатки модели Мальтуса?

#### Модель Мальтуса



Рост популяции Saccharomyces cerevisiae (Пекарские дрожжи)

jmahaffy.sdsu.edu/courses/f06/math636/lectures/competition/competition.html

Модель Мальтуса



An attempt to unify some population growth models from first principles, Fabiano L. Ribeiro,

Rev. Bras. Ensino Fís. vol.39 no.1 São Paulo 2017 Epub Nov 21, 2016

#### Outline

#### Прошлые темы

#### Динамические модели популяций

Модель Мальтуса

#### Логистическая модель

Учёт наименьшей критический численности Balance equations Модель Лотки — Вольтерры

Логистическая модель

- Необходимо ограничить предельный размер популяции
- ▶ Введём дополнительный параметр С емкость среды.

Предельная нагрузка биологического вида на среду обитания (ёмкость среды) — максимальный размер популяции вида, который среда может безусловно стабильно поддерживать <sup>4</sup>

 С - системный фактор (пища, убежища, хищничество, конкуренция с другими видами)

<sup>&</sup>lt;sup>4</sup>В 2001 году в докладе ООН сообщалось, что две трети оценок ёмкости среды для человечества попадают в диапазон от 4 до 16 млрд (с неопределенным стандартным отклонением) с медианным значением в 10 млрд

Логистическая модель

коэффициент регулирующий прирост (убыль) популяции

$$r = v \left( 1 - \frac{P}{C} \right)$$

▶ модель (уравнение популяционной динамики Ферхюльста (Verhulst equation)<sup>5</sup>:

$$\dot{P} = v \left( 1 - \frac{P}{C} \right) P \tag{1}$$

• слагаемое (если раскрыть скобки)  $-\frac{v}{C}P^2$  описывает внутривидовую конкуренцию

<sup>&</sup>lt;sup>5</sup>логистическое уравнение

Логистическая модель









Логистическая модель

Решение ДУ, описывающего модель - логистическая функция

$$P(t) = \frac{C}{1 + \frac{C - P_0}{P_0} e^{-vt}}$$

Параметры модели:

$$C=50, v=1$$

Синяя кривая (логистическая кривая)  $P_0 = 10$ 

Красная кривая 
$$P_0 = 90$$



# Динамические модели популяций Теория r/K-отбора

перепишем уравнение 1:

$$\dot{P} = rP - \delta P^2$$

- r -стратегия: организмы (так называемые «оппортунистические»), стремятся к максимально возможной скорости роста численности (параметр r). Потомство таких видов с большой долей вероятности не доживает до зрелого возраста.
- ► K-стратегии: организмы («равновесные»), наоборот, находятся в состоянии равновесия со своими ресурсами и воспроизводят относительно мало, однако стремятся вложить в потомство как можно больше.

## Динамические модели популяций Теория r/K-отбора

- ► Теория r/K-отбора хорошо описывает рост организмов без возрастной структуры
- к ним относятся бактерии, дрожжи, микроводоросли и др.

# Динамические модели популяций Логистическая модель

- ▶  $P_0 < C$  популяция растёт,  $P \to C$
- ▶  $P_0 > C$  популяция сокращается,  $P \to C$
- ▶  $P_0 = 0$  популяция не растёт P(t) = 0.
- ▶ Система имеет две фиксированных точки: С к которой популяция стремится, 0 - от которой стремится популяция.
- Использование модели затруднено из-за того, что параметр часто не известен или является объектом исследования.

- Предыдущие модели хорошо описывают бесполое размножение
- На прирост популяции при половом размножении отличается:
- ightharpoonup При малых P частота контактов b(P) пропорциональна  $P^2$
- ▶ При больших P частота контактов b(P) пропорциональна числу самок  $\alpha \frac{\beta P^2}{\beta + \gamma P}$

$$\dot{P} = \alpha \frac{\beta P^2}{\beta + \tau P} - \gamma P$$

#### Outline

#### Прошлые темы

#### Динамические модели популяций

Модель Мальтуса Логистическая модель

Учёт наименьшей критический численности

Balance equations Модель Лотки — Вольтерры

Рассмотрим подробнее множитель, отвечающее за прирост популяции

$$\alpha \frac{\beta}{\beta + \tau P}$$

- ightharpoonup au среднее время вынашивания плода
- обозначим
  - ▶ Т среднее время между оплодотворениями
  - $t_{\rm cp}$  среднее время в течении которого может состоятся оплодотворение
- ightharpoonup тогда  $t_{\sf cp} = T au$
- $\blacktriangleright$  Вероятность встречи ведущей к оплодотворению зависит от:  $t_{\mathsf{cp}/T}$
- тогда коэффициент определяющий прирост популяции

$$r = \alpha \frac{t_{\sf cp}}{T} = \alpha \frac{t_{\sf cp}}{t_{\sf cp} + \tau}$$

$$r = \alpha \frac{t_{\sf cp}}{T} = \frac{t_{\sf cp}}{t_{\sf cp} + \tau}$$

- с увеличением плотности популяции среднее время между оплодотворениями Т уменьшается
- ▶ значит уменьшается и  $t_{cp}$
- $ightharpoonup t_{cp} = \beta/P$
- ▶ тогда

$$r = \alpha \frac{\beta/P}{\beta/P + \tau} = \alpha \frac{\beta}{\beta + \tau P}$$

Учёт наименьшей критический численности

$$\dot{P} = \alpha \frac{\beta P^2}{\beta + \tau P} - \gamma P$$

Особые точки уравнения?

Учёт наименьшей критический численности

$$\dot{P} = \alpha \frac{\beta P^2}{\beta + \tau P} - \gamma P$$

Особые точки уравнения?

$$P = 0$$

$$P = \dots = L$$

При  $P_0 > L$  популяция растёт, при  $P_0 < L$  погибает.



При падении численности популяции ниже критической величины из-за неблагоприятных условий, или в результате хищнического промысла, восстановление популяции становится невозможным

## Динамические модели популяций

#### Учёт наименьшей критический численности

- Величина нижней критической плотности L различна для разных видов:
- это одна пара особей на тысячу квадратных километров в случае ондатр
- сотни тысяч особей для американского странствующего голубя.
- американский странствующий голубь вымер в начале XX века
- Для голубых китов критическая граница общей численности оказалась равной десяткам – сотням. Вид находится под угрозой вымирания.



#### Outline

#### Прошлые темы

#### Динамические модели популяций

Модель Мальтуса

Логистическая модель

Учёт наименьшей критический численности

Balance equations

Модель Лотки — Вольтерры

## Balance equations

Пример с популяцией (слайд 7 и далее) показывает, что при описании динамических моделей используются уравнения вида

изменение величины = прирост – убыль

или для непрерывной системы

$$\dot{s} = f(s) = \text{creation rate} - \text{destruction rate}$$

## Balance equations

Аналогично для дискретного случая:

$$s(t+\Delta t)-s(t)=$$
 (creation rate  $-$  destruction rate) $\Delta t$ 

При  $\Delta t o 0$  дискретный случай переходит в непрерывный, т.к.

$$\lim_{\Delta t o 0} rac{s(t+\Delta t)-s(t)}{\Delta t} = \dot{s}$$

#### Динамические модели популяций

#### Модель эксплуатируемых популяций

Рассмотрим логистическую модель:

$$\dot{P} = v \left( 1 - \frac{P}{C} \right) P$$

Чтобы учесть фактор уменьшения скорости роста популяции, например промышленный лов рыбы, достаточно добавить в правую часть слагаемое со знаком "минус":

ightharpoonup абсолютная скорость ловли F (добыча за еденицу времени) - вылавливаемое количество рыбы постоянно

$$\dot{P} = v \left( 1 - \frac{P}{C} \right) P - F$$

• относительная скорость ловли fP, вылавливаемое количество рыбы зависит от её численности; f - доля вылавливаемой рыбы от всей популяции за ед. времени

$$\dot{P} = v \left( 1 - \frac{P}{C} \right) P - fP$$

#### Outline

#### Прошлые темы

#### Динамические модели популяций

Модель Мальтуса

Логистическая модель

Учёт наименьшей критический численности

Balance equations

Модель Лотки — Вольтерры

- ▶ а популяция антилоп; с популяция гепардов
- животные не иммигрируют и не эмигрируют
- Численность антилоп растёт экспоненциально (бесконечное количество еды)
- ▶ Шанс антилопы быть пойманной гепардом пропорционален вероятности их встречи
- Гепарды вымирают с голода экспоненциально
- Воспроизводство гепардов пропорционально их шансам поймать на охоте антилопу

- ▶ а популяция антилоп; с популяция гепардов
- животные не иммигрируют и не эмигрируют
- Численность антилоп растёт экспоненциально (бесконечное количество еды)
- ▶ Шанс антилопы быть пойманной гепардом пропорционален вероятности их встречи
- Гепарды вымирают с голода экспоненциально
- Воспроизводство гепардов пропорционально их шансам поймать на охоте антилопу

Как будут выглядеть дифференциальные уравнения описывающие такую модель?

- ▶ а популяция антилоп; с популяция гепардов
- животные не иммигрируют и не эмигрируют
- Численность антилоп растёт экспоненциально (бесконечное количество еды)
- ▶ Шанс антилопы быть пойманной гепардом пропорционален вероятности их встречи
- Гепарды вымирают с голода экспоненциально
- Воспроизводство гепардов пропорционально их шансам поймать на охоте антилопу

Как будут выглядеть дифференциальные уравнения описывающие такую модель?

$$\frac{da}{dt} = k_a a(t) - k_{c,a} c(t) a(t)$$

$$\frac{dc}{dt} = -k_c c(t) + k_{a,c} c(t) a(t)$$





Хищные и травоядные клещи



Typhiodromus occidentalis (светлый клещ) атакует Большой клещ, не Eotetranychus sexmaculaus, это Красный плодовый клещ

Хищные и травоядные клещи: экспериментальные данные



Huffaker's mite experiment, 1958

Лабораторный эксперимент (среде обитания смоделирована) с травоядным клещём Eotetranychus sexmaculaus и нападающего на него хищным Typhiodromus occidentalis.

Канадская рысь и Американский беляк





Канадская рысь и Американский беляк



Figure 48-1 Oscillation observed in Canada of populations of lynx and hare (data from E. P. Odum, Fundamentals of Ecology, Philadelphia: W. B. Saunders, 1953).

#### Другие модели

#### Конкуренция видов

Используем логистическую модель:

$$\dot{P} = v \left( 1 - \frac{P}{C} \right) P$$

Рассмотрим популяции двух видов животных:  $P_1$  и  $P_2$ ; Каждая популяция имеет своё ёмкость среды:  $C_1$  и  $C_2$  соответственно.

Выражение в скобках, определяющее прирост, должно учитывать потребление ресурса двумя видами:  $\frac{P_1 + \alpha_{12}P_2}{C}$  и  $\frac{P_2 + \alpha_{21}P_1}{C}$ 

где  $\alpha_{12}$  - коэффициент учитывающий влияние популяции вида 2 на вид 1 и  $\alpha_{21}$  соответственно наоборот

# Другие модели Конкуренция видов

#### Система ДУ описывающая конкуренцию двух видов

$$\dot{P}_1 = v \left( 1 - \frac{P_1 + \alpha_1 2 P_2}{C_1} \right) P_1$$

$$\dot{P}_2 = v \left( 1 - \frac{P_2 + \alpha_2 1 P_1}{C_2} \right) P_2$$

## Моделирование популяций

#### Вопросы

- Как учесть некоторый постоянный фактор уменьшающий прирост популяции? например в логистической модели
- Как учесть некоторый фактор уменьшающий прирост популяции, постоянно действующий в течении определённого интервала времени? например в логистической модели
- Какая система ДУ описывает популяции трёх видов Х, Y, Z, где Y охотится (потребляет) на X, Z охотится (потребляет) Y?
- Как решается система однородных дифференциальных уравнений первого порядка?
- ▶ Учитывает ли модель Лотки-Вольтерры возрастной фактор?
- Учитывает ли модель Лотки-Вольтерры распределение хищников и жертв в пространстве?
- Учитывает ли модель Лотки-Вольтерры внутривидовую конкуренцию?

## Другие виды отношений между видами

В каких ещё отношениях могут состоять биологические виды?

## Другие виды отношений между видами

В каких ещё отношениях могут состоять биологические виды?



#### Ссылки

- ▶ «Жесткие» и «мягкие» математические модели, Арнольд В.
- scipy Modeling a Zombie Apocalypse

Использованы материалы курса Simulation and modeling of natural processes coursera.org/learn/modeling-simulation-natural-processes/

#### Ссылки

#### Материалы курса

github.com/ivtipm/computer-simulation