

开题答辩

基于TOI的心率血压测量方法研究

汇报人: 李伯乾 学号: 1910920606 指导老师: 唐春晓

目录

Contents

01 研究背景及意义

02 实验方案

03 预期目标

04 个人计划及参考文献

01 研究背景及意义

BACKGROUND AND SIGNIFICANCE

研究背景

现实背景

随着经济发展,整个社会的生活节奏都在加快。工作压力大,饮食习惯差,久坐缺乏锻炼,人类患心血管疾病的风险正在逐步加大。目前,心血管病成为城乡居民总死亡原因的首位,早治疗才能尽快遏制病情。这就需要一种成本较低,操作简单,测量准确,可连续测量且不对身体造成创伤或不适的监测系统。

选题背景内容概括

目前传统血压、心率监测的方法主要分为两大类,一类是接触式的,一类是非接触式的。接触式设备都有一个共同的缺点,需要接触或侵入皮肤。长时间佩戴会对人体造成不适应感,对于婴幼儿或者烧伤患者难以适用。非接触测量方法同样多种多样,最常见的有雷达、核磁共振等手段,但是这些方法存在一个共同弊端,都会对人的身体健康造成一定的伤害,而且无法实现长期不间断测量。

02 实验方案

THE EXPERIMENTAL SCHEME

算法介绍

本课题所使用的TOI算法,只需要一部智能手机用于拍摄设被测量者面部视频,以及一台用于数据处理的计算机即可实现心率、血压的动态检测。无需接触人体而且对人体健康无任何伤害,具有安全、非接触、低成本等优点。能在一定程度上取代传统心率、血压测量方法。对于分析亚健康患者的病程、预防严重疾病具有重要意义。

预期目标

流程

算法实现基本步骤

数据采集 使用相机拍摄面部 视频,并使用电子 血压计测量被拍摄

者真实心率血压。

图像处理

将拍摄的视频做降 噪处理,设计滤波 器提取出仅包含血 红蛋白信号的视频

Step.02

Step.03

信号处理

通过Z积分、傅里叶变换等方法提取血红蛋白视频中的功率谱信号,并计算出心率、血压数据。

建立模型

使用机器学习算法, 选择出预测效果最 好的面部区域。

Step.04

Step.05

误差分析

分析对预测结果产 生影响的因素,如 环境光、肤色等。

03 预期目标

THE EXPECTED OBKECTIVES

实验方案

预期目标

通过TOI算法实现心率、血压动态测量

通过TOI算法,能够计算出被测量者在一段时间按内的动态心率、血压变化数据,并生成相应的波形图。

В

运用机器学习算法提提高测量准确性

用于受到环境光、视频噪声、肤色等因算的干扰,直接使用TOI算法计算得 到的数据可能存在较大误差。

对面部不同区域使用TOI算法进行心率、血压计算,并使用机器学习算法,结合使用电子血压计测得的真实数据,筛选出计算结果较为较为准确的的面部区域,使用此区域计算结果的平均值代表心率血压的最终计算结果。

O4 个人计划及参考文献 PERSONAL PLANS AND REFENCES

实验方案

任务进度安排

- •认真学习TOI和透 皮光学成像技术的 国内外资料
- •根据资料确定TOI 和机器学习相关算 法
- •利用Matlab对已有 视频进行程序调试
- •进行实验,并收 集实验数据

•撰写设计论文

- •润色论文
- •制作答辩ppt
- •准备答辩

参考文献

- [1] 赵海燕。匹诺曹,需要羞耻[J]。年轻人: A版, 2017(9): 1。
- [2] Jiangang Liu, Hong Luo, Paul Pu Zheng, et al. Transdermal optical imaging revealed different spatiotemporal patterns of facial cardiovascular activities [J]. Scientific Reports, 2018, 8:10588.
- [3] Lorenz Frey, Carlo Menon, Mohamed Elgendi. Blood pressure measurement using only a smartphone [J]. npj Digital Medicine, 2022, 5: 86.
- [4] Hong Luo, Deye Yang, Andrew Barszczyk, et al. Smartphone-Based Blood Pressure Measurement Using Transdermal Optical Imaging Technology [J]. Circ Cardiovasc Imaging, 2019, 12: e008857.

割割 割 割 割 息 请 各 位 导 师 批 评 指 正

电子与信息工程学院

汇报人:李伯乾 指导老师:唐春晓 时间:2022.11.18