機器學習實務與應用

Homework #9 Due 2019 May 6 9:00AM

Exercise 1:

MNIST 是一常見的手寫數字的資料集,圖片為灰階,大小為 28×28 ,(如下圖),training data 共有 60,000 筆, testing data 共有 10,000 筆。

請建立一 CNN 的架構,架構請依照下列建立。(程式碼內 convolution、maxpooling、fully connected 有範例怎麼建立,請將另一層根據範例建置。(參考 mnist.py)

type	Kernel size(or	Output channel	stride	Padding		
	pooling size)					
Conv2D	3x3	16	1x1	The same		
relu						
MaxPooling	2x2		2x2	The same		
Conv2D	3x3	36	1x2	The same		
Relu						
MaxPooling	2x2		2x2	The same		
Dropout	25%					
Flatten						
Dense(fully	Output size=128					
connected)						
Dropout	25%					
Dense(fully	Output size=10					
connected)						

請試答:

- (1) 利用程式內的 model.summary(),將建立的架構圖顯示出來,並截圖觀察是 否和表內的一致。
- (2) 計算參數量的總個數(含 kernel 和 bias),將計算過程列出來,並與 model.summary()的結果比對是否吻合。
- (3) 觀察 training 後的結果圖, training &validation data 的 accuracy 和 loss,將結果截圖下來。
- (4) 將其中一層 convolution 與一層 fully connected 刪除,觀察參數量、accuracy、loss 的變化。

Exercise 2:

Cifar-10 由 60000 張 32*32 的 RGB 彩色圖片,共 10 個分類。training data 共 50000 筆,testing data 共 10000 筆。

請建立一 CNN 的架構,架構請依照下列建立。

(參考 cifar10.py)

type	Kernel size(or	Output channel	stride	Padding		
	pooling size)					
Conv2D	3x3	32	1x1	The same		
relu						
MaxPooling	2x2		2x2	The same		
Dropout	25%					
Conv2D	3x3	64	1x2	The same		
Relu						
MaxPooling	2x2		2x2	The same		
Dropout	25%					
Flatten						
Dense(fully	Output size=1024					
connected)						
Dropout	25%					
Dense(fully	Output size=1024					
connective)						
Dropout	25%					
Dense(fully	Output size=10					
connected)						

請試答:

(1) 計算參數量的總個數(含 kernel 和 bias),將計算過程列出來,並與 model.summary()的結果比對是否吻合。

- (2) 觀察 training 後的結果圖,training &validation data 的 accuracy 和 loss,將結果截圖下來。
- (3) 自行調整架構(增加/減少 convolution、max pooling、relu、Dropout 的個數、以及內部參數)、以及訓練時的 epoch 次數,試著將最後 testing 的結果上升至 75%,並將架構與 training 結果截圖下來。