Hardware on the Raspberry Pi

The good:

- Cheap, low power
- That big GPIO connector!
- RPi.GPIO Python module

The bad:(

- Chaotic pin numbering
- No analog,
- Poor PWM support
- 3 volts, not 5

The Raspberry Pi's GPIO connector

Solderless breadboard

Connect power and ground

Connect an LED

This LED will stay on (if the RPi is).codechix

Connect the LED to pin 18 on the GPIO

Blink an LED on pin 18

```
import RPi.GPIO as GPIO
import time
GPIO.setmode (GPIO.BCM)
pin = 18
GPIO.setup(pin, GPIO.OUT)
while True:
    GPIO.output(pin, 0)
    time.sleep(.5)
    GPIO.output(pin, 1)
    time.sleep(.5)
```

(This is *led.py* in the source.)

BCM vs BOARD numbering

BCM: functional notation

BOARD: actual pin numbers on the RPi.

BOARD sounds appealing, but doesn't save you from needing GPIO numbers.

The HC-SR04 Sonar Rangefinder

Emits a pulse of sound; times how long the sound takes to return.

About \$5 on Amazon.

codechix

Using the HC-SR04 Sonar Rangefinder

Write to the **Trigger**;

read **Echo** to learn when the sound pulse returns.

One problem:

The HC-SR04 operates on 5 volts.

The Raspberry Pi's GPIO pins can only handle 3 volts or less.

We'll use a *voltage divider* (2 resistors) to turn 5V into 3V.

How to connect the rangefinder

Be careful of which resistor goes where!

When ready, test it by running

sudo python HC_SR04.py

Running the PiDoorbell app

Local mode

```
$ sudo python pidoorbell-recognizer-gpio.py -i -local
Distance: 102.0 inches
102.022406334
Distance: 150.8 inches
150.823360135
Distance: 151.5 inches
151.532743398
Distance: 150.9 inches
150.938192221
Distance: 11.9 inches
11.884047763
    DETECTED AN OBJECT AT -- 11.884047763 -- INCHES **
Distance: 11.8 inches
11.7531177204
```

Cameras

USB Webcam

Shows up as /dev/video0

To take a still image: fswebcam

To take a video: ffmpeg or avconv

Packages you'll need:

\$ sudo apt-get install fswebcam libv4l v4l-utils ffmpeg

Raspberry Pi Camera

Shows up as /dev/fb0

To take a still image: raspistill

To take a video: raspivid

Or use the picamera package:

\$ sudo apt-get install python-picamera

