Task 1 Helpfulness prediction

Description:

This task is to predict whether a user's review of an item will be considered helpful.

Accuracy will be measured in terms of the total absolute error, i.e., you are penalized one according to the difference lnHelpful – predictionl, where 'nHelpful' is the number of helpful votes the review actually received, and 'prediction' is the prediction of this quantity.

Solution:

Fitting the 'nHelpful' variable directly may not make sense, since its scale depends on the total number of votes received. Instead, let's try to fit $\frac{nHelpful}{outOf}$ (which ranges between 0 and 1).

We design a model based on **Logistic Regression** for this task. When $\frac{\text{nHelpful}}{\text{outOf}}$ is greater than 0.75, we consider the review is 'helpful', and when $\frac{\text{nHelpful}}{\text{outOf}}$ is equal or lower than 0.75, we consider the review is 'not helpful'.

We choose the data from the first half of 'train.json.gz' whose outOf is greater than 0 as the training data and compute their $\frac{nHelpful}{outOf}$'s. Then we determine the training labels y_i to be:

$$y_i = \begin{cases} 1, & \text{if } \frac{\text{nHelpful}}{\text{outOf}} > 0.75\\ 0, & \text{if } \frac{\text{nHelpful}}{\text{outOf}} \le 0.75 \end{cases}$$

For the features of the model, we choose four features in the data, which are:

- 1. the number of words in review
- 2. review's rating in star
- 3. review's date from today in days
- 4. number of the item's categories in the review

So the feature vector will be:

 $X_i = [1, \text{# words in review}, \text{# ratings}, \text{# days from review'date to today}, \text{# categories}]$ A sigmoid function is defined as below:

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

Using the method in Logistic Regression, $X_i \cdot \theta$ should be maximized when y_i is positive and minimized when y_i is negative. Combining the regularizer, we define:

$$l_{\theta}(y|X) = \sum_{i} -\log\left(1 + e^{-X_{i} \cdot \theta}\right) + \sum_{v_{i}=0} -X_{i} \cdot \theta - \lambda ||\theta||_{2}^{2}$$

Then the derivative will be:

$$\frac{dl}{d\theta_k} = \sum_i X_{ik} (1 - \sigma(X_i \cdot \theta)) + \sum_{y_i = 0} -X_{ik} - \lambda 2\theta_k$$

Using the formula above by setting $\lambda = 1$, we solve using gradient ascent until θ finally converge.

From the (user, item) pairs contained in 'pairs_Helpful.txt', we obtain the feature vectors X from 'test_Helpful.json.gz', then using the equation below we obtain the $y_{prediction}$ data.

$$y_{prediction} = X \cdot \theta$$

 $y_{\text{prediction}}$ is the confidence we get to say if the review is 'helpful'. We first find the maximum and minimum confidence in the $y_{\text{prediction}}$ data. And call them y_{max} and y_{min} . Clearly $y_{\text{max}} > 0$ and $y_{\text{min}} < 0$.

Next, we predict the $\frac{\text{nHelpful}}{\text{outOf}}$ using the formula below:

$$\frac{\text{nHelpful}}{\text{outOf}} = \begin{cases} 0.75 + 0.25 * \frac{y_{prediction}}{y_{max}}, & \text{if } y_{prediction} > 0\\ 0.75 - 0.75 * \frac{y_{prediction}}{y_{min}}, & \text{if } y_{prediction} \le 0 \end{cases}$$

Finally, we can predict 'nHelpful' by multiplying the predicted $\frac{nHelpful}{outOf}$ with outOf. To be more precise, we round the 'nHelpful' to interger.

Result:

Since the statistic $X \cdot \theta$ is the confidence that the review is considered 'helpful', it's reasonable to predict $\frac{nHelpful}{outOf}$ from the confidence by putting some weights to it.

The result score in Kaggle is 0.16543.

Task 2 Ratings prediction

Description:

This task is to predict people's star ratings as accurately as possible, for those (user, item) pairs in 'pairs_Rating.txt'. Accuracy will be measured in terms of the (root) mean-squared error (RMSE).

Solution:

We choose a Latent factor model for this task. In general, we fit a predictor of the form

rating(u,i) =
$$\alpha + \beta_u + \beta_i$$

by fitting the mean and the two bias terms using a regularization parameter of $\lambda = 1$.

In this model, β_u is the bias that how much does this user tend to rate things above the mean, and β_i is the bias that does this item tend to receive higher ratings than others. It's easy to see that this is a linear model, and the optimization problem is:

$$\arg\min_{\alpha,\beta} \sum_{u,i} (\alpha + \beta_u + \beta_i - R_{u,i})^2 + \lambda \left[\sum_{u} \beta_u^2 + \sum_{i} \beta_i^2 \right]$$

This equation is jointly convex in β_u , β_i and can be solved by iteratively removing the mean and solving for β . We differentiate the equation and obtain the iterative procedure to be as below:

$$\alpha = \frac{\sum_{u,i \in \text{train}} (R_{u,i} - (\beta_u + \beta_i))}{N_{\text{train}}}$$

$$\beta_u = \frac{\sum_{i \in I_u} R_{u,i} - (\alpha + \beta_i)}{\lambda + |I_u|}$$

$$\beta_i = \frac{\sum_{u \in U_i} R_{u,i} - (\alpha + \beta_u)}{\lambda + |I_{i}|}$$

To find more precise $(\alpha, \beta_u, \beta_i)$, we use the whole 200,000 reviews as the training data. Using $\lambda = 1$, we do this iteration one at a time until the $(\alpha, \beta_u, \beta_i)$ finally converge.

Finally, we can predict the ratings using rating(u, i) = $\alpha + \beta_u + \beta_i$ and round the predicted ratings to one decimal place.

Result:

Though we're fitting a function that treats users and items independently, this model actually looks good and works well in the test data.

The result score in Kaggle is 1.13516.