CS760: Machine Learning Exam Review

Jack Truskowski

3/31/2018

1 Topics

- 1. Decision Tree Learning
- 2. Instance-based Learning, K-Nearest Neighbor
- 3. ML Methodology
- 4. Linear and Logistic Regression
- 5. Bayesian Network Learning
- 6. Neural Networks
- 7. Deep Neural Networks
- 8. Learning Theory
- 9. Support Vector Machines

2 Decision Tree Learning

2.1 Goals

- DT representation
- Standard approach
- Occam's razor
- Entropy / IG
- Types of DT Splits
- Test sets / unbiases accuracy estimates
- Overfitting
- Pruning
- Tuning (validation) sets

- Regression trees
- \bullet m-of-splits
- Lookahead

2.2 Notes

- Splits on nominal features have one branch per value
- Splits on continuous features use a threshold
- Candidate Splits on continuous features
 - sorts the values
 - split thresholds in intervals between different classes

- The simplest tree with accurate classification will be the best on unseen data
- Occams razor: Simpler models are better
- IG Limitation: biased towards tests with many outcomes
- Avoiding overfitting:
 - 1. Early stopping: stop if further splitting not justified by statistical test (ID3)
 - 2. Post pruning: grow a large tree, prune back some nodes, more robust
- Pruning: grow a complete tree, remove the nodes that most improves tuning-set accuracy until further pruning is harmful
- Regression Trees: CART does least squares regression
- Lookahead
 - 1. myopia: an important feature seems to not be informative until use in conjunction with other features
 - 2. Replaces the InfoGain step with an EvaluateSplit step
 - 3. Choose the best info gain that would result from a 2-level subtree

2.3 Relevant Equations

$$H(Y) = -\sum_{y \in \mathsf{values}(Y)} P(y) \log_2 P(y)$$

Entropy:

$$H(Y \mid X) = \sum_{x \in \mathsf{values}(X)} P(X = x) \ H(Y \mid X = x)$$

where

$$H(Y | X = x) = -\sum_{y \in \text{values}(Y)} P(Y = y | X = x) \log_2 P(Y = y | X = x)$$

InfoGain
$$(D,S) = H_D(Y) - H_D(Y \mid S)$$

D indicates that we're calculating probabilities using the specific sample D

Information Gain:

$$= \sum_{L \in \text{leaves}} \sum_{i \in L} \left(y_i - \hat{y}_i \right)^2$$

Least Squares Regression in CART

3 Instance-Based Learning

3.1 Goals

- 1. k-NN classification
- 2. k-NN regression
- 3. edited nearest neighbor
- 4. k-d trees for nearest neighbor identification
- 5. locally weighted regression
- 6. inductive bias

3.2 Notes

1. Determining similarity/distance

- (a) Hamming distance: count number of features for which 2 instances differ (discrete only)
- (b) Euclidean distance: $d(x^{(i)}, x^{(j)}) = \sqrt{\sum_f (x_f^{(i)} x_f^{(j)})^2}$
- (c) Manhattan distance: $d(x^{(i)}, x^{(j)}) = \sum_f |x_f^{(i)} x_f^{(j)}|$
- (d) If a mix of continuous/discrete features, refer to equations
- 2. Normalization
 - Determine mean and stddev for feature x_i

$$\mu_i = \frac{1}{|D|} \sum_{d=1}^{|D|} x_i^{(d)}$$

$$\sigma_i = \sqrt{\frac{1}{|D|} \sum_{d=1}^{|D|} (x_i^{(d)} - \mu_i)^2}$$

• Standard each feature

$$\hat{x}_i^{(d)} = \frac{x_i^{(d)} - \mu_i}{\sigma_i}$$

$$\hat{y} \leftarrow \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$

- 3. k-NN Regression
- 4. Speeding up k-NN
 - Don't retain every training instance
 - Use smart data structure to look up nearest neighbors (ie k-d tree)
- 5. Edited instance-based learning

Incremental deletion, start will all train inst in memory. If other instances provide correct classification for $(x^{(i)}, y^{(i)})$, delete it **Incremental growth**, start with empty memory. If other instances don't correctly classify $(x^{(i)}, y^{(i)})$, add it to memory

- 6. k-d trees
 - (a) Similar to DT
 - (b) Each node stores one instance
 - (c) Each node splits on median value of feature with highest variance
 - (d) Implemented using priority queue storing nodes considered and their lower bound on distance to query instance
 - (e) k-d trees are sensitive to irrelevant features, locally weighted regression

Example:

- 7. Locally weighted regression prediction/learning task
 - find the weights w_i for each $x^{(q)}$ by minimizing

$$E(\mathbf{x}^{(q)}) = \sum_{i=1}^{k} (f(\mathbf{x}^{(i)}) - y^{(i)})^{2}$$

- this is done at prediction time, specifcally for $\mathbf{x}^{(q)}$
- · can do this using gradient descent (to be covered soon)
- 8. Stengths of instance-based learning
 - (a) simple to implement
 - (b) adapts well to online training
 - (c) robust to noisy training data with k ¿ 1
 - (d) good in practice
- 9. Limits of instance-based learning
 - (a) sensitive to range of feature values
 - (b) potentially sensitive to irrelevant and correlated features
 - (c) can be inefficient
 - (d) no explicit model
- 3.3 Equations

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sum_{f} \begin{cases} |x_f^{(i)} - x_f^{(j)}| & \text{if } f \text{ is continuous} \\ 1 - \delta(x_f^{(i)}, x_f^{(i)}) & \text{if } f \text{ is discrete} \end{cases}$$