Future Observations and Simulations for Dark Matter

Erik Tollerud

@eteq
Space Telescope Science Institute
Giacconi Fellow

Future Observations and Simulations for Dark Matter on -galaxy scales

Erik Tollerud

©eteq
Space Telescope Science Institute
Giacconi Fellow

Where do we have data now?

Large-scale structure: very solid

Where do we have data now?

Large-scale structure: very solid

- Large-scale structure: very solid
- Cluster-to-L* galaxies: pretty good, at least for the big picture

- Large-scale structure: very solid
- Cluster-to-L* galaxies: pretty good, at least for the big picture

- Large-scale structure: very solid
- Cluster-to-L
 big picture
- So that leaves the faint things: smaller scales (& higher redshift)

DM dominates for faint-enough dwarfs

Small Scale: Problems and Solutions abound

Is it sufficient to judge "success" on whether they address enough specific comparisons to DM theory/models?

Or is a generalized (probably particle-y) framework needed?

DM Probes at Galaxy Scales: Simulations

Necessary for any attempt to use galaxies as DM probes

Astrophysical Probes DM DM

CDM-only: understand things pretty well

• WDM

WDM

• SIDM

- WDM
- SIDM
- Probably lots of stuff we haven't thought up yet?

- WDM
- SIDM
- Probably lots of stuff we haven't thought up yet?
 - So how do we make a metric for that?

The Future will need Baryons...

Summary

- The future is rich in possibilities for probes of DM (especially at the dwarf galaxy scale)
 - Is it sufficiently to rate them purely on answers to the specific current questions?
- Simulations of matched scales are critical for comparison with simulations
 - The future can give more DM options for comparison, but must provide an answer to the Baryon question