

Equações

I. Equações fundamentais

150. Sejam f(x) e g(x) duas funções trigonométricas da variável real x e sejam D_1 e D_2 os seus respectivos domínios. Resolver a equação trigonométrica f(x) = g(x) significa determinar o conjunto S, denominado **conjunto solução** ou **conjunto verdade**, dos números r para os quais f(r) = g(r) é uma sentença verdadeira. Observemos que uma condição necessária para que certo r seja uma solução da equação dada é que $r \in D_1$ e $r \in D_2$.

151. Quase todas as equações trigonométricas reduzem-se a uma das três equações seguintes:

- 1ª) sen $\alpha = \text{sen } \beta$
- 2^{a}) $\cos \alpha = \cos \beta$
- 3^a) tg $\alpha = \text{tg } \beta$

denominadas, por esse motivo, **equações fundamentais**. Assim, antes de tudo, é necessário saber resolver as equações fundamentais para poder resolver qualquer outra equação trigonométrica.

II. Resolução da equação sen $\alpha = \operatorname{sen} \beta$

152. Se sen $\alpha = \text{sen } \beta = \text{OP}_1$, então as imagens de α e β no ciclo estão sobre a reta r que é perpendicular ao eixo dos senos no ponto P1, isto é, estão em P ou P'.

 1^{a}) α e β têm a mesma imagem, isto é,

são côngruos

ou

 2^{a}) α e β têm imagens simétricas em relação ao eixo dos senos, isto é, são **suple**mentares.

153. Em resumo, temos:

$$sen \alpha = sen \beta \Rightarrow \begin{cases} \alpha = \beta + 2k\pi \\ ou \\ \alpha = \pi - \beta + 2k\pi \end{cases}$$

EXERCÍCIOS

290. Resolva as seguintes equações, para $x \in \mathbb{R}$:

a)
$$\operatorname{sen} x = \operatorname{sen} \frac{\pi}{5}$$
 e) $\operatorname{sen} x = \frac{-\sqrt{2}}{2}$

e) sen
$$x = \frac{-\sqrt{2}}{2}$$

b) cossec
$$x = cossec \frac{2\pi}{3}$$
 f) $sen x = \frac{\sqrt{3}}{2}$

f) sen
$$x = \frac{\sqrt{3}}{2}$$

c)
$$sen x = 0$$

g)
$$sen x = 1$$

d)
$$sen x = \frac{1}{2}$$
 h) $sen x = -1$

h) sen
$$x = -1$$

Solução
a) sen x = sen
$$\frac{\pi}{5}$$
 \Rightarrow
$$\begin{cases} x = \frac{\pi}{5} + 2k\pi \\ ou \\ x = \pi - \frac{\pi}{5} + 2k\pi = \frac{4\pi}{5} + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{5} + 2k\pi \quad \text{ou} \quad x = \frac{4\pi}{5} + 2k\pi \right\}$$

b) cossec
$$x = \operatorname{cossec} \frac{2\pi}{3} \Rightarrow \frac{1}{\operatorname{sen} x} = \frac{1}{\operatorname{sen} \frac{2\pi}{3}} \Rightarrow$$

$$\Rightarrow \text{ sen } x = \text{ sen } \frac{2\pi}{3} \Rightarrow \begin{cases} x = \frac{2\pi}{3} + 2k\pi \\ \text{ou} \\ x = \pi - \frac{2\pi}{3} + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{2\pi}{3} + 2k\pi \quad \text{ou} \quad x = \frac{\pi}{3} + 2k\pi \right\}$$

c) sen
$$x=0=$$
 sen 0 \Rightarrow
$$\begin{cases} x=0+2k\pi \\ ou \\ x=\pi-0+2k\pi \end{cases}$$

$$S = \{x \in \mathbb{R} \mid x = k\pi\}$$

d)
$$\operatorname{sen} x = \frac{1}{2} = \operatorname{sen} \frac{\pi}{6} \Rightarrow \begin{cases} x = \frac{\pi}{6} + 2k\pi \\ \text{ou} \\ x = \pi - \frac{\pi}{6} + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{6} + 2k\pi \quad \text{ou} \quad x = \frac{5\pi}{6} + 2k\pi \right\}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{5\pi}{4} + 2k\pi \text{ ou } x = -\frac{\pi}{4} + 2k\pi \right\}$$

f)
$$\operatorname{sen} x = \frac{\sqrt{3}}{2} = \operatorname{sen} \frac{\pi}{3} \Rightarrow \begin{cases} x = \frac{\pi}{3} + 2k\pi \\ \text{ou} \\ x = \pi - \frac{\pi}{3} + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{3} + 2k\pi \text{ ou } x = \frac{2\pi}{3} + 2k\pi \right\}$$

g) sen
$$x = 1 = \text{sen } \frac{\pi}{2}$$
, então:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{2} + 2k\pi \right\}$$

h) sen
$$x = -1 = sen \frac{3\pi}{2}$$
, então:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{3\pi}{2} + 2k\pi \right\}$$

291. Resolva as equações abaixo, no domínio \mathbb{R} :

a)
$$sen^2 x = \frac{1}{4}$$

a)
$$sen^2 x = \frac{1}{4}$$
 c) $2 sen^2 x - 3 sen x + 1 = 0$

b)
$$sen^2 x - sen x = 0$$
 d) $2 cos^2 x = 1 - sen x$

d)
$$2 \cos^2 y = 1 - \sin y$$

a) sen
$$x = \pm \frac{1}{2}$$
 e, então:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{6} + 2k\pi \text{ ou } x = \frac{5\pi}{6} + 2k\pi \text{ ou} \right.$$
$$x = \frac{7\pi}{6} + 2k\pi \text{ ou } x = -\frac{\pi}{6} + 2k\pi \right\}$$

b)
$$\operatorname{sen} x (\operatorname{sen} x - 1) = 0 \implies \operatorname{sen} x = 0$$
 ou $\operatorname{sen} x = 1$, $\operatorname{ent} \tilde{\operatorname{ao}}$:

$$S = \left\{ x \in \mathbb{R} \mid x = k\pi \text{ ou } x = \frac{\pi}{2} + 2k\pi \right\}$$

c)
$$\operatorname{sen} x = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} \Rightarrow \operatorname{sen} x = 1 \text{ ou } \operatorname{sen} x = \frac{1}{2}, \operatorname{ent\~ao}$$
:
$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{2} + 2k\pi \text{ ou } x = \frac{\pi}{6} + 2k\pi \text{ ou } x = \frac{5\pi}{6} + 2k\pi \right\}$$

d)
$$2 \cdot (1 - \text{sen}^2 x) = 1 - \text{sen } x \Rightarrow 2 \text{ sen}^2 x - \text{sen } x - 1 = 0$$

resolvendo: $\text{sen } x = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4} = 1$ ou $-\frac{1}{2}$
recaímos em equações fundamentais

$$\begin{split} &\text{sen } x=1 \ \Rightarrow \ x=\frac{\pi}{2}+2k\pi \\ &\text{sen } x=-\frac{1}{2} \ \Rightarrow \ x=-\frac{\pi}{6}+2k\pi \ \text{ou} \ x=\frac{7\pi}{6}+2k\pi \\ &S=\left\{x\in\mathbb{R}\ |\ x=\frac{\pi}{2}+2k\pi \ \text{ou} \ x=-\frac{\pi}{6}+2k\pi \ \text{ou} \ x=\frac{7\pi}{6}+2k\pi \right\} \end{split}$$

292. Resolva as equações abaixo:

a)
$$\operatorname{sen} x = \operatorname{sen} \frac{\pi}{7}$$

e)
$$sen x + cos 2x = 1$$

b) sen x =
$$-\frac{\sqrt{3}}{2}$$

f) cossec
$$x = 2$$

g)
$$2 \cdot \text{sen}^2 x = 1$$

h) $2 \cdot \text{sen}^2 x + \text{sen } x - 1 = 0$

c)
$$sen^2 x = 1$$

i)
$$3 \cdot \lg x = 2 \cdot \cos x$$

d)
$$2 \cdot \text{sen } x - \text{cossec } x = 1$$
 j) $\cos^2 x = 1 - \text{sen } x$

i)
$$\cos^2 x = 1 - \sin x$$

293. Determine os valores de x que satisfazem a equação:

$$4 \text{ sen}^4 x - 11 \text{ sen}^2 x + 6 = 0$$

294. Resolva as seguintes equações:

a) sen
$$2x = \frac{1}{2}$$

a)
$$\operatorname{sen} 2x = \frac{1}{2}$$
 c) $\operatorname{sen} \left(x - \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$

b)
$$\operatorname{sen} 3x = \frac{\sqrt{2}}{2}$$
 d) $\operatorname{sen} 2x = \operatorname{sen} x$

a)
$$\sec 2x = \frac{1}{2} = \sec \frac{\pi}{6} \Rightarrow \begin{cases} 2x = \frac{\pi}{6} + 2k\pi \\ ou \\ 2x = \pi - \frac{\pi}{6} + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{12} + k\pi \quad \text{ou} \quad x = \frac{5\pi}{12} + k\pi \right\}$$

b) sen
$$3x = \frac{\sqrt{2}}{2} = \text{sen } \frac{\pi}{4} \Rightarrow \begin{cases} 3x = \frac{\pi}{4} + 2k\pi \\ \text{ou} \\ 3x = \pi - \frac{\pi}{4} + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{12} + \frac{2k\pi}{3} \text{ ou } x = \frac{\pi}{4} + \frac{2k\pi}{3} \right\}$$

c)
$$sen\left(x - \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} = sen\frac{\pi}{3} \Rightarrow \begin{cases} x - \frac{\pi}{3} = \frac{\pi}{3} + 2k\pi \\ ou \\ x - \frac{\pi}{3} = \pi - \frac{\pi}{3} + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{2\pi}{3} + 2k\pi \text{ ou } x = \pi + 2k\pi \right\}$$

d) sen
$$2x = \text{sen } x \Rightarrow \begin{cases} 2x = x + 2k\pi \\ \text{ou} \\ 2x = \pi - x + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = 2k\pi \text{ ou } x = \frac{\pi}{3} + \frac{2k\pi}{3} \right\}$$

295. Determine $x \in \mathbb{R}$ tal que:

a)
$$sen 5x = sen 3x$$
 b) $sen 3x = sen 2x$

296. Resolva, em \mathbb{R} , a equação:

$$2 \operatorname{sen} x | \operatorname{sen} x | + 3 \operatorname{sen} x = 2$$

297. Resolva o sistema
$$\begin{cases} sen (x + y) = 0 \\ x - y = \pi \end{cases}$$

III. Resolução da equação $\cos \alpha = \cos \beta$

154. Se $\cos \alpha = \cos \beta = OP_2$, então as imagens de α e β no ciclo estão sobre a reta r que é perpendicular ao eixo dos cossenos no ponto P_2 , isto é, estão em P ou P'.

Há, portanto, duas possibilidades:

 $1^{\text{a}}) \ \alpha$ e β têm a mesma imagem, isto é, são côngruos

ou

 2^a) α e β têm imagens simétricas em relação ao eixo dos cossenos, isto é, são **replementares**.

155. Em resumo, temos:

$$\cos \alpha = \cos \beta \implies \begin{cases} \alpha = \beta + 2k\pi \\ ou \\ \alpha = -\beta + 2k\pi \end{cases} \Rightarrow \alpha = \pm \beta + 2k\pi$$

EXERCÍCIOS

298. Resolva, em \mathbb{R} , as seguintes equações:

a)
$$\cos x = \cos \frac{\pi}{5}$$
 e) $\cos x = -1$

b)
$$\sec x = \sec \frac{2\pi}{3}$$
 f) $\cos x = \frac{1}{2}$

c)
$$\cos x = 0$$
 g) $\cos x = \frac{\sqrt{2}}{2}$

d)
$$\cos x = 1$$
 h) $\cos x = -\frac{\sqrt{3}}{2}$

a)
$$\cos x = \cos \frac{\pi}{5} \Rightarrow x = \pm \frac{\pi}{5} + 2k\pi$$

$$S = \left\{ x \in \mathbb{R} \mid x = \pm \frac{\pi}{5} + 2k\pi \right\}$$

b)
$$\sec x = \sec \frac{2\pi}{3} \Rightarrow \frac{1}{\cos x} = \frac{1}{\cos \frac{2\pi}{3}} \Rightarrow \cos x = \cos \frac{2\pi}{3}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \pm \frac{2\pi}{3} + 2k\pi \right\}$$

c)
$$\cos x = 0 = \cos \frac{\pi}{2}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{2} + k\pi \right\}$$

d)
$$\cos x = 1 = \cos 0$$

 $S = \{x \in \mathbb{R} \mid x = 2k\pi\}$

e)
$$\cos x = -1 = \cos \pi$$

 $S = \{x \in \mathbb{R} \mid x = \pi + 2k\pi\}$

f)
$$\cos x = \frac{1}{2} = \cos \frac{\pi}{3}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \pm \frac{\pi}{3} + 2k\pi \right\}$$

g)
$$\cos x = \frac{\sqrt{2}}{2} = \cos \frac{\pi}{4}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \pm \frac{\pi}{4} + 2k\pi \right\}$$

h)
$$\cos x = -\frac{\sqrt{3}}{2} = \cos \frac{5\pi}{6}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \pm \frac{5\pi}{6} + 2k\pi \right\}$$

299. Resolva as equações abaixo, no conjunto \mathbb{R} .

a)
$$4 \cdot \cos^2 x = 3$$

a)
$$4 \cdot \cos^2 x = 3$$
 c) $\sin^2 x = 1 + \cos x$

b)
$$\cos^2 x + \cos x = 0$$

b)
$$\cos^2 x + \cos x = 0$$
 d) $\cos 2x + 3 \cdot \cos x + 2 = 0$

Solução

a)
$$\cos^2 x = \frac{3}{4} \Rightarrow \cos x = \frac{\sqrt{3}}{2}$$
 ou $\cos x = -\frac{\sqrt{3}}{2}$, então
$$S = \left\{ x \in \mathbb{R} \mid x = \pm \frac{\pi}{6} + 2k\pi \text{ ou } x = \pm \frac{5\pi}{6} + 2k\pi \right\}$$

b)
$$\cos x \cdot (\cos x + 1) = 0 \implies \cos x = 0$$
 ou $\cos x = -1$, então
$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{2} + k\pi \text{ ou } x = \pi + 2k\pi \right\}$$

c)
$$1 - \cos^2 x = 1 + \cos x \Rightarrow \cos^2 x + \cos x = 0$$

e recaímos no anterior.

d)
$$(2 \cdot \cos^2 x - 1) + 3 \cdot \cos x + 2 = 0 \implies 2 \cdot \cos^2 x + 3 \cdot \cos x + 1 = 0$$

$$\cos x = \frac{-3 \pm \sqrt{9 - 8}}{4} = \frac{-3 \pm 1}{4} \implies \cos x = -1 \text{ ou } \cos x = -\frac{1}{2}$$
então $S = \left\{ x \in \mathbb{R} \mid x = \pi + 2k\pi \text{ ou } x = \pm \frac{2\pi}{3} + 2k\pi \right\}$

300. Resolva, em \mathbb{R} , as seguintes equações:

a)
$$\cos x = -\frac{1}{2}$$

a)
$$\cos x = -\frac{1}{2}$$
 f) $4 \cos x + 3 \sec x = 8$

b)
$$\cos x = -\frac{\sqrt{2}}{2}$$

b)
$$\cos x = -\frac{\sqrt{2}}{2}$$
 g) 2 - 2 $\cos x = \sin x \cdot tg x$

c)
$$\cos x = \frac{\sqrt{3}}{2}$$

c)
$$\cos x = \frac{\sqrt{3}}{2}$$
 h) $2 \sin^2 x + 6 \cos x = 5 + \cos 2x$

d)
$$\sec x = 2$$

d)
$$\sec x = 2$$
 i) $1 + 3 tg^2 x = 5 \sec x$

e)
$$2\cos^2 x = \cos x$$

e)
$$2 \cos^2 x = \cos x$$
 j) $\left(4 - \frac{3}{\sin^2 x}\right) \left(4 - \frac{1}{\cos^2 x}\right) = 0$

301. Resolva as seguintes equações, em \mathbb{R} :

a)
$$\cos 2x = \frac{\sqrt{3}}{2}$$

a)
$$\cos 2x = \frac{\sqrt{3}}{2}$$
 c) $\cos \left(x + \frac{\pi}{6}\right) = 0$

b)
$$\cos 2x = \cos x$$

b)
$$\cos 2x = \cos x$$
 d) $\cos \left(x - \frac{\pi}{4}\right) = 1$

Solução

a)
$$\cos 2x = \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6} \Rightarrow 2x = \pm \frac{\pi}{6} + 2k\pi$$
, então:
$$S = \left\{ x \in \mathbb{R} \mid x = \pm \frac{\pi}{12} + k\pi \right\}$$

b)
$$\cos 2x = \cos x \Rightarrow \begin{cases} 2x = x + 2k\pi \\ \text{ou} & \text{ent\~ao:} \\ 2x = -x + 2k\pi \end{cases}$$

$$S = \left\{ x \in \mathbb{R} \mid x = 2k\pi \text{ ou } x = \frac{2k\pi}{3} \right\}$$

c)
$$\cos\left(x+\frac{\pi}{6}\right)=0=\cos\frac{\pi}{2} \Rightarrow x+\frac{\pi}{6}=\pm\frac{\pi}{2}+2k\pi$$
, então:
$$S=\left\{x\in\mathbb{R}\mid x=\frac{\pi}{3}+2k\pi \text{ ou } x=-\frac{2\pi}{3}+2k\pi\right\}$$

d)
$$\cos\left(x - \frac{\pi}{4}\right) = 1 = \cos 0 \implies x - \frac{\pi}{4} = 2k\pi$$
, então:
$$S = \left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + 2k\pi\right\}$$

302. Resolva as seguintes equações, em \mathbb{R} :

a)
$$\cos 3x - \cos x = 0$$
 b) $\cos 5x = \cos \left(x - \frac{\pi}{3}\right)$

303. Dada a equação (sen $x + \cos y$) (sec $x + \csc y$) = 4,

- a) resolva-a se: x = y b) resolva-a se: sen x = cos y

304. Resolva a equação $sen^2 x + sen^4 x + sen^6 x = 3$.

305. Resolva a equação

$$\operatorname{sen}\left(x + \frac{\pi}{4}\right) - \operatorname{sen}\left(x - \frac{\pi}{4}\right) = \sqrt{2}$$

306. Para que valores de t o sistema $\begin{cases} x + y = \pi \\ \text{sen } x + \text{sen } y = \log_{10} t^2 \end{cases}$ admite solução?

IV. Resolução da equação tg $\alpha = \text{tg } \beta$

156. Se tg $\alpha = \text{tg } \beta = \text{AT}$, então as imagens de α e β estão sobre a reta r determinada por O e T, isto é, estão em P ou P'.

Há, portanto, duas possibilidades:

 1^{a}) α e β têm a mesma imagem, isto é, são côngruos

ou

 2^{a}) α e β têm imagens simétricas em relação ao centro do ciclo, isto é, são explementares.

157. Em resumo, temos:

$$tg \alpha = tg \beta \Rightarrow \begin{cases} \alpha = \beta + 2k\pi \\ ou \\ \alpha = \pi + \beta + 2k\pi \end{cases} \Rightarrow \alpha = \beta + k\pi$$

EXERCÍCIOS

307. Resolva as equações seguintes:

a)
$$tg x = 1 = tg \frac{\pi}{4}$$
, então:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{4} + k\pi \right\}$$

b)
$$\cot g \ x = \sqrt{3} \implies tg \ x = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = tg \frac{\pi}{6}$$
, então:
$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{6} + k\pi \right\}$$

c)
$$\operatorname{tg} x = -\sqrt{3} = \operatorname{tg} \frac{2\pi}{3}$$
, então:
$$S = \left\{ x \in \mathbb{R} \mid x = \frac{2\pi}{3} + k\pi \right\}$$

d)
$$\operatorname{tg} x = 0 = \operatorname{tg} 0$$
, então:
$$S = \{x \in \mathbb{R} \mid x = k\pi\}$$

e)
$$tg\ 2x = \sqrt{3} = tg\ \frac{\pi}{3} \ \Rightarrow \ 2x = \frac{\pi}{3} + k\pi,$$
 então:
$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{6} + \frac{k\pi}{2} \right\}$$

f) tg
$$2x = \text{tg } x \implies 2x = x + k\pi$$
, então:
$$S = \{x \in \mathbb{R} \mid x = k\pi\}$$

g) tg
$$3x = 1 = tg \frac{\pi}{4} \Rightarrow 3x = \frac{\pi}{4} + k\pi$$
, então:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{12} + \frac{k\pi}{3} \right\}$$

h) tg
$$5x = \text{tg } 3x \implies 5x = 3x + k\pi \implies x = \frac{k\pi}{2}$$

Notemos que, se k for ímpar, então não existe tg 5x e tg 3x, portanto:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{k\pi}{2}, \text{ k par} \right\}$$

308. Resolva as equações abaixo:

a)
$$\operatorname{sen} x - \sqrt{3} \cdot \cos x = 0$$
 c) $\operatorname{tg} x + \operatorname{cotg} x = 2$

b)
$$sen^2 x = cos^2 x$$
 d) $sec^2 x = 1 + tg x$

Solução

a)
$$\operatorname{sen} x = \sqrt{3} \cdot \operatorname{cos} x \Rightarrow \frac{\operatorname{sen} x}{\operatorname{cos} x} = \sqrt{3} \Rightarrow \operatorname{tg} x = \sqrt{3}$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{3} + k\pi \right\}$$

b)
$$sen^2 x = cos^2 x \Rightarrow \frac{sen^2 x}{cos^2 x} = 1 \Rightarrow tg^2 x = 1,$$

 $ent\tilde{a}o: tg x = 1 \text{ ou } tg x = -1$
 $S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{4} + k\pi \text{ ou } x = \frac{3\pi}{4} + k\pi \right\}$

c)
$$tg x + \frac{1}{tg x} = 2 \implies tg^2 x - 2 \cdot tg x + 1 = 0$$

$$tg x = \frac{2 \pm \sqrt{4 - 4}}{2} = 1, \text{ ent} \tilde{ao}:$$

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{4} + k\pi \right\}$$

d)
$$\sec^2 x = 1 + tg x \Rightarrow 1 + tg^2 x = 1 + tg x \Rightarrow tg^2 x - tg x = 0 \Rightarrow tg x \cdot (tg x - 1) = 0,$$

então: $tg x = 0$ ou $tg x = 1$

$$S = \left\{ x \in \mathbb{R} \mid x = k\pi \text{ ou } x = \frac{\pi}{4} + k\pi \right\}$$

309. Resolva as equações abaixo:

a)
$$tg x = tg \frac{\pi}{5}$$

f)
$$tg 3x - tg 2x = 0$$

b)
$$cotg \ x = cotg \ \frac{5\pi}{6}$$
 g) $tg \ 2x = tg \left(x + \frac{\pi}{4}\right)$ c) $3 \cdot tg \ x = \sqrt{3}$ h) $tg \ 4x = 1$

g) tg
$$2x = tg\left(x + \frac{\pi}{4}\right)$$

c)
$$3 \cdot tg \ x = \sqrt{3}$$

h)
$$tg 4x = 1$$

d)
$$\cot x = 0$$

d)
$$\cot g x = 0$$
 i) $\cot g 2x = \cot g \left(x + \frac{\pi}{4} \right)$

e)
$$\cot x = -1$$

j)
$$tg^2 2x = 3$$

310. Resolva as equações abaixo:

a)
$$\sec^2 x = 2 \cdot \lg x$$

b)
$$\frac{1}{\sin^2 x} = 1 - \frac{\cos x}{\sin x}$$

c) sen
$$2x \cdot \cos\left(x + \frac{\pi}{4}\right) = \cos 2x \cdot \sin\left(x + \frac{\pi}{4}\right)$$

d)
$$(1 - tg x) (1 + sen 2x) = 1 + tg x$$

311. Resolva a equação $\cot x - \sin 2x = 0$.

312. Para quais valores de p a equação tg p x = cotg px tem x = $\frac{\pi}{2}$ para raiz.

313. Se a é a menor raiz positiva da equação (tg x - 1) (4 sen² x - 3) = 0, calcule o valor de sen⁴ a $-\cos^2$ a.

314. Determine as raízes da equação $x^2 - (2 \text{ tg a}) x - 1 = 0$.

V. Equações clássicas

Apresentaremos neste item algumas equações tradicionais em Trigonometria, sugerindo métodos para fazê-las recair nas equações fundamentais.

158.
$$a \cdot sen x + b \cdot cos x = c (a, b, c \in \mathbb{R}^*)$$

Método 1

Fazemos a mudança de variável sen x = u e cos x = v e resolvemos o sistema:

$$\begin{cases} au + bv = c \\ u^2 + v^2 = 1 \end{cases}$$

Tendo calculado u e v, determinamos os possíveis valores de x.