- w .*	Functional Derivative Basics
_	Let f(Ir) ER be a function of Ir ER", and a functional
	E[f(ir)] ∈ R, whose value depends on f(ir).
	Let SE be the change in E due to the change f(r) > f(r) + Sf(r).
	Then, the functional derivative SE/Sf(r) is defined through
	the relation, ∞
	$\delta E = \int_{-\infty}^{\infty} dir \frac{\delta E}{\delta f(ir)} \delta f(ir) \tag{1}$
	show examples 1 \$ 2 (PP.4-5)
Minte	Complex function
	Let $\psi(\mathbf{r}) = \psi_1(\mathbf{r}) + i\psi_2(\mathbf{r})$ and $\psi^*(\mathbf{r}) = \psi_1(\mathbf{r}) - i\psi_2(\mathbf{r})$. Instead
0	of regarding 4, (ir) & 42 (ir) as independent functions to be
	determined, we will regard 4 (ir) & 4 (ir) as independent
	functions.
	Rayleigh-Ritz variational principle
	Determine 4 (Ir) to minimize the energy
	Determine $\psi(r)$ to minimize the energy $E[\psi(r)] = \int dr \psi^*(r) \left[-\frac{\hbar^2}{2m} \nabla^2 + \mathcal{V}(r) \right] \psi(r) \qquad (2)$ $\int dr \psi^*(r) \psi(r)$
	At the minimum, the energy is stationary w.r.t. the change
	in 4(1r) (or 4*(1r)). Let 4*(1r) > 4*(1r) + 54*(1r).
	$E[\psi^*(n) + S\psi^*(n)] = \int d\mathbf{r} (\psi^*(n) + S\psi^*(n)) R(\mathbf{r}) \psi(\mathbf{r})$
	$\int d\mathbf{r} \left(\psi^*(\mathbf{r}) + \mathcal{S} \psi^*(\mathbf{r}) \right) \psi(\mathbf{r})$
	$= (\langle \Psi h \Psi \rangle + \langle \delta \Psi h \Psi \rangle) \frac{1}{\langle \Psi + \delta \Psi \Psi \rangle}$
	(4+8414)
	1 1 1 1 (SEVILY) - (SEVILY) - (SEVILY)

<414>+(8414> =

<444>1+3414>

<414>

(414)

(H)

$$E[f(r)] = \int dr f(r)^{2}$$

$$= \int dir \left[f(ir) + Sf(ir) \right]^2 - f(ir)$$

$$\frac{SE}{Sfar} = 2far$$

(5)

$$E[p(ir)] = \frac{1}{2} \int dir \int dir' \frac{p(ir) p(ir')}{|ir-ir'|}$$

$$=\frac{1}{2}\int d\mathbf{r} \int d\mathbf{r} \left[\frac{[\rho(\mathbf{r}) + S\rho(\mathbf{r})][\rho(\mathbf{r}) + S\rho(\mathbf{r}')] - \rho(\mathbf{r})\rho(\mathbf{r}')}{[\mathbf{r} - \mathbf{r}']} \right]$$

$$= \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{[\rho(\mathbf{r}) + S\rho(\mathbf{r}')][\rho(\mathbf{r}') + S\rho(\mathbf{r}')] - \rho(\mathbf{r}')\rho(\mathbf{r}')}{|\mathbf{r}| + |\mathbf{r}'|}$$

$$= \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{[\rho(\mathbf{r}) + S\rho(\mathbf{r}')][\rho(\mathbf{r}') + S\rho(\mathbf{r}')] - \rho(\mathbf{r}')\rho(\mathbf{r}')}{|\mathbf{r}| + |\mathbf{r}'|}$$

$$= \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{[\rho(\mathbf{r}) + S\rho(\mathbf{r}')][\rho(\mathbf{r}') + S\rho(\mathbf{r}')][\rho(\mathbf{r}') + S\rho(\mathbf{r}')]}{|\mathbf{r}| + |\mathbf{r}'|}$$

$$= \int dir \int dir' \frac{\rho(ir')}{|ir-ir'|} S \rho(ir)$$

$$\frac{SE[P(ir)]}{SP(ir)} = \int \frac{dir}{|ir-ir|} \frac{P(ir')}{|ir-ir'|}$$