Models and Decisions

Massimo Marinacci

AXA-Bocconi Chair in Risk Department of Decision Sciences and IGIER Università Bocconi

IMSI, University of Chicago July 2021

Road map

Decision problems

- toolbox
- the Savage and Anscombe-Aumann setups
- classical subjective expected utility
- Model uncertainty: ambiguity / robustness models
- Issues
 - ambiguity / robustness makes optimal actions more prudent?
 - ambiguity / robustness favors diversification?
 - ambiguity / robustness affects valuation?
 - model ambiguity resolves in the long run through learning?
 - sources of uncertainty: a Pandora's box?
- Model misspecification

Probability of facts and of theories

- Decisions' consequences depend on external factors (contingencies)
- Probability of contingencies
- Probabilistic theories on contingencies (e.g., generative mechanisms, DGP)
- Thinking over such theories
- Two layers of uncertainty

Decision problems: the toolbox, I

A decision problem consists of

- a space A of actions
- a space C of material (e.g., monetary) consequences
- \blacksquare a space S of environment states
- lacksquare a consequence function ho:A imes S o C that details the consequence

$$c=
ho\left(extbf{a},s
ight)$$

of action a when state s obtains

Decision problems: the toolbox, I

- States are jointly exhaustive and mutually exclusive
- We thus abstract from state misspecification issues (e.g., unforeseen contingencies)

Example (i): natural hazards

Public officials have to decide whether or not to evacuate an area because of a possible earthquake

- A two actions a_0 (no evacuation) and a_1 (evacuation)
- C monetary consequences (damages to infrastructures and human casualties; Mercalli-type scale)
- *S* possible peak ground accelerations (Richter-type scale)
- $\mathbf{z} = \rho\left(\mathbf{a}, \mathbf{s}\right)$ the monetary consequence of action \mathbf{a} when state \mathbf{s} obtains

Example (ii): monetary policy example

- ECB or the FED have to decide some target level of inflation to control the economy unemployment and inflation
- Unemployment u and inflation π outcomes are connected to shocks $\varepsilon = (\varepsilon_u, \varepsilon_\pi)$ and the policy a according to

$$u = \theta_0 + \theta_{1\pi}\pi + \theta_{1a}a + \varepsilon_u$$

 $\pi = a + \varepsilon_{\pi}$

- $m{\theta}=(heta_0, heta_{1\pi}, heta_{1a})$ are three structural coefficients
 - (i) $\theta_{1\pi}$ and θ_{1a} are slope responses of unemployment to actual and planned inflation (e.g., Lucas-Sargent $\theta_{1a}=-\theta_{1\pi}$; Samuelson-Solow $\theta_{1a}=0$)
 - (ii) θ_0 is the rate of unemployment that would (systematically) prevail without policy interventions

Example (ii): monetary policy

Here:

- A the target levels of inflation
- C the pairs $c = (u, \pi)$
- S has random and structural components

$$s = (\varepsilon, \theta)$$

The reduced form is

$$u = heta_0 + (heta_{1\pi} + heta_{1\mathsf{a}}) \, \mathsf{a} + heta_{1\pi} \varepsilon + arepsilon_u \ \pi = \mathsf{a} + arepsilon_\pi$$

and so ρ has the form

$$\rho\left(\mathbf{a},\mathbf{w},\boldsymbol{\varepsilon},\boldsymbol{\theta}\right) = \left[\begin{array}{c}\theta_0\\0\end{array}\right] + \mathbf{a}\left[\begin{array}{c}\theta_{1\pi} + \theta_{1\mathbf{a}}\\1\end{array}\right] + \left[\begin{array}{cc}1&\theta_{1\pi}\\0&1\end{array}\right] \left[\begin{array}{c}\varepsilon_u\\\varepsilon_\pi\end{array}\right]$$

Example (ii): monetary policy

- Random components: shocks (i.e., minor omitted explanatory variables which we are "unable and unwilling to specify") or measurement errors
- Cf. the works of Hurwicz, Koopmans and Marschak in the 1940s and 1950s

- A policy maker has to decide some target greenhouse gas emissions level to control damages associated with global temperatures increases
- Different sources of uncertainty are relevant

• Scientific uncertainty: how do emissions E translate in increases of temperatures T? Assume

$$T = \theta_T E + \varepsilon_T$$

where θ_T is a structural CCR (carbon-climate response) parameter and ε_T is a random component

Socioeconomic uncertainty: how do increases of temperatures T translate in economic damages D? Assume a DICE quadratic

$$D = \theta_{1D} T + \theta_{2D} T^2 + \varepsilon_D$$

where θ_{1D} and θ_{2D} are structural parameters and ε_D is a random component

■ We abstract from issues about the objective functions

Here:

- A emission policies
- C the economic damages (in GDP terms)
- S has random and structural components

$$s=(arepsilon, heta)$$

where

$$\varepsilon = (\varepsilon_T, \varepsilon_D)$$

are the random components affecting the climate and economic systems, and

$$\theta = (\theta_T, \theta_{1D}, \theta_{2D})$$

are their structural coefficients

- Action a is an emission policy, with cost c(a)
- $d(a, \varepsilon, \theta)$ economic damage function
- $\rho\left(a,\varepsilon,\theta\right)=-d\left(a,\varepsilon,\theta\right)-c\left(a\right)$ is the overall consequence of policy a
- From

$$\left\{ \begin{array}{l} T = \theta_T a + \varepsilon_T \\ \\ D = \theta_{1D} T + \theta_{2D} T^2 + \varepsilon_D \end{array} \right.$$

it follows that

$$d(\mathbf{a}, \varepsilon, \theta) = -(\theta_{1D}\theta_T + 2\theta_{2D}\varepsilon_T) \mathbf{a} - \theta_{2D}\theta_T^2 \mathbf{a}^2 - \theta_{1D}\varepsilon_T - \theta_{2D}\varepsilon_T^2 - \varepsilon_D$$

■ More on this topic from Michael Barnett and William Brock

Decision problems: the toolbox, II

- The quartet (A, S, C, ρ) is a decision form under uncertainty
- The decision maker (DM) has a preference ≿ over actions
 - we write $a \gtrsim b$ if the DM (weakly) prefers action a to action b
- The quintet $(A, S, C, \rho, \succsim)$ is a decision problem under uncertainty
- DMs aim to select actions $\hat{a} \in A$ such that $\hat{a} \succsim a$ for all $a \in A$
- Static setting, we abstract from temporal/dynamic issues

Consequentialism and the Savage setup

- What matters about actions is not their label / name but the consequences that they determine when the different states obtain
- Consequentialism: two actions that are realization equivalent

 i.e., that generate the same consequence in every state are indifferent
- We abstract from ethical issues

Consequentialism and the Savage setup

Formally,

$$\rho\left(\mathsf{a},\mathsf{s}\right) = \rho\left(\mathsf{b},\mathsf{s}\right) \quad \forall \mathsf{s} \in \mathsf{S} \Longrightarrow \mathsf{a} \sim \mathsf{b}$$

or, equivalently,

$$\rho_{a} = \rho_{b} \Longrightarrow a \sim b$$

■ Here $\rho_a:S\to C$ is the section of ρ at a given by $\rho_a(s)=\rho(a,s)$

The Savage setup

- The section ρ_a is a Savage act
- $lue{}$ We can define a preference \succsim over Savage acts by:

$$\rho_{a} \succsim \rho_{b} \Longleftrightarrow a \succsim b$$

■ For convenience, we keep using the same symbol ≿

The Savage setup

- Savage's acts are typically denoted by $f: S \rightarrow C$
- lacksquare The collection of all acts is denoted by ${\mathcal F}$
- The quartet $(\mathcal{F}, S, C, \succsim)$ is a Savage decision problem under uncertainty
- Through acts f_c constant to $c \in C$, i.e.

$$f_c(s) = c \quad \forall s \in S$$

the preference \succsim induces a preference over consequences:

$$c \succsim c' \iff f_c \succsim f_{c'}$$

 Savage's setup is theoretically convenient but, in applications, acts may have a contrived interpretation

Random consequences

- In some applications, we are not able to specify an exhaustive state space
- A possibility is to assume that actions deliver consequences that are stochastic and not deterministic
- The consequence of action a is then a (finitely supported) probability distribution

$$\rho\left(\mathbf{a}\right)\in\Delta_{0}\left(\mathcal{C}\right)$$

on consequences, called *lottery*

We denote by p and q typical lotteries; for each lottery p, the quantity

$$p(c) \in [0,1]$$

is the probability that consequence c obtains

Random consequences

■ We identify a consequence $c \in C$ with the trivial (Dirac) lottery δ_c that assigns probability 1 to c, i.e.,

$$\delta_c\left(c'
ight) = \left\{egin{array}{ll} 1 & ext{if } c' = c \ 0 & ext{else} \end{array}
ight.$$

• Up to this identification, we can regard C as a subset of Δ_0 (C)

Random consequentialism and the Anscombe-Aumann setup

- Consider action with random consequences, i.e., lotteries
- Random consequentialism: two actions sharing the same random consequence in every state are indifferent
- Formally,

$$ho\left(\mathsf{a},\mathsf{s}
ight) =
ho\left(\mathsf{b},\mathsf{s}
ight) \quad \forall \mathsf{s}\in \mathsf{S}\Longrightarrow \mathsf{a}\sim \mathsf{b}$$

or, equivalently,

$$ho_{\mathsf{a}} =
ho_{\mathsf{b}} \Longrightarrow \mathsf{a} \sim \mathsf{b}$$

- Random consequentialism subsumes (outcome)
 consequentialism: recall the identifications of consequences
 and trivial lotteries
- The section ρ_{a} is a an Anscombe-Aumann (AA) act

The Anscombe-Aumann setup

- AA acts are defined by $f: S \rightarrow \Delta_0(C)$
- lacksquare The collection of all acts is denoted by ${\mathcal F}$
- The quartet $(\mathcal{F}, S, C, \succsim)$ is an AA decision problem under uncertainty
- As in the Savage's setup, through constant acts the preference ≿ induces a preference over lotteries
- Through trivial lotteries, in turn this preference over lotteries induces a preference over non-random consequences:

$$c \succsim c' \iff \delta_c \succsim \delta_{c'}$$

The Anscombe-Aumann setup

- The AA consequence space has a vector structure often in place of Δ_0 (C) one considers a convex subset of a vector space
- By mixing AA acts

$$\alpha f + (1 - \alpha) g$$

with

$$(\alpha f + (1 - \alpha) g)(s) = \alpha f(s) + (1 - \alpha) g(s) \quad \forall s \in S$$

the space ${\mathcal F}$ inherits this vector structure, a very convenient feature of the AA setup, widely used in the theoretical literature

 Yet, the interpretation of mixing (often via randomization) can be contrived

Probability models

- Because of their ex-ante structural information, DMs know that states are generated by a probability model m that belongs to a given subset M of $\Delta\left(S\right)$
- \blacksquare Each m describes a possible DGP, so it represents (model) risk
- DMs thus posit a model space M in addition to the state space S, a central tenet of classical statistics a la Neyman-Pearson-Wald
- When the model space is based on experts' advice, its nonsingleton nature may reflect different advice

Models: a toy example

Consider an urn with 90 Red, or Green, or Yellow balls

- DMs bet on the color of a ball drawn from the urn
- State space is $S = \{R, G, Y\}$
- Without any further information, $M = \Delta(\{R, G, Y\})$
- If DMs are told that 30 balls are red, then

$$M = \left\{ m \in \Delta \left(\left\{ R, G, Y \right\} \right) : m \left(R \right) = \frac{1}{3} \right\}$$

Models and experts: probability of heart attack

Two DMs: John and Lisa are 70 years old

- smoke
- no blood pressure problem
- total cholesterol level 310 mg/dL
- HDL-C (good cholesterol) 45 mg/dL
- systolic blood pressure 130

What's the probability of a heart attack in the next 10 years?

Models and experts: probability of heart attack

Based on their data and medical models, experts say

Experts	John's <i>m</i>	Lisa's <i>m</i>
Mayo Clinic	25%	11%
National Cholesterol Education Program	27%	21%
American Heart Association	25%	11%
Medical College of Wisconsin	53%	27%
University of Maryland Heart Center	50%	27%

Table from Gilboa and M. (2013)

Uncertainty: a taxonomy

In this setup, we can decompose uncertainty in three distinct layers:

- *Model risk*: uncertainty within a model *m*
- Model ambiguity: uncertainty across models in M
- Model misspecification: uncertainty about models (the correct model does not belong to the posited set M)

Models: a consistency condition

- Cerreia-Vioglio et al. (2013) take the "structural" information M as a primitive and thus enrich the standard framework
- DMs know that the correct model m that generates observations belongs to the posited collection M
- In terms of preferences: betting behavior must be *consistent* with datum *M*, i.e.,

$$m\left(F\right)\geq m\left(E\right)\quad\forall m\in M\Longrightarrow$$
 "bet on F " \succsim "bet on E "

- The sextet $(A, S, C, M, \rho, \succsim)$ forms a classical decision problem under uncertainty
- Here we abstract from model misspecification issues (to be dealt with later)

Risk: FU

- Suppose that the DMs know the correct model m, so M is a singleton
- A preference that satisfies Savage's axioms and the consistency condition is represented by the expected utility criterion

$$V(a) = \sum_{s} u(\rho(a, s)) m(s)$$

That is, actions a and b are ranked as follows:

$$a \succsim b \iff V(a) \ge V(b)$$

u is a von Neumann-Morgenstern utility function:

$$c \succsim c' \iff u(c) \ge u(c')$$

It captures risk attitudes

Model ambiguity: classical SEU

A preference \succeq that satisfies Savage's axioms and the consistency condition is represented by the *classical subjective expected utility* (SEU) criterion

$$V(a) = \sum_{m} \left(\sum_{s} u(\rho(a, s)) m(s) \right) \mu(m)$$

That is, actions a and b are ranked as follows:

$$a \gtrsim b \iff V(a) \ge V(b)$$

Here

- *u* is again a von Neumann-Morgenstern utility function
- μ is a *subjective prior probability* that quantifies the uncertainty about models; its support is included in M
- If *M* is based on the advice of different experts, the prior may reflect the *different confidence* that DMs have in each of them

Model ambiguity: classical SEU

- The "classical" adjective reminds of the classical statistics tenet on which this criterion relies
- If we set

$$R(a, m) = \sum_{s} u(\rho(a, s)) m(s)$$

we can write the classical SEU criterion as

$$V(a) = \sum_{m} R(a, m) \mu(m)$$

■ In words, this criterion considers the expected utility $R\left(a,m\right)$ of each possible model m, and averages them out according to the prior μ

Model ambiguity: classical SEU

■ Each prior μ induces a *predictive probability* $\bar{\mu} \in \Delta(S)$ through reduction

$$\bar{\mu}\left(E\right) = \sum_{m} m\left(E\right) \mu\left(m\right)$$

In turn, the predictive probability enables to rewrite the classical SEU criterion as

$$V\left(\mathbf{a}
ight)=\mathbf{R}\left(\mathbf{a},ar{\mu}
ight)=\sum_{\mathbf{s}}u\left(\rho\left(\mathbf{a},\mathbf{s}
ight)
ight)ar{\mu}\left(\mathbf{s}
ight)$$

■ This reduced form of *V* is the original Savage subjective EU representation

Classical SEU: some special cases

- If the support of μ is a singleton $\{m\}$, DMs subjectively (and so possibly wrongly) believe that m is the correct model. The criterion thus reduces to a Savage EU criterion R(a, m)
- If M is a singleton $\{m\}$, DMs know that m is the correct model (a rational expectations tenet)
 - (i) There is only model risk (quantified by m)
 - (ii) The criterion again reduces to the EU representation R(a, m), but now interpreted as a von Neumann-Morgenstern criterion

Classical SEU: some special cases

- Singleton *M* have been pervasive in economics
- Since the 70s, economics has emphasized the study of agents' reactions to the "opponents" actions (from the Lucas critique in macroeconomics to the study of incentives in game theoretic settings)
- Rational expectations literature had to depart from the "particle" view of agents of the Keynesian macroeconomics of the 50s and 60s

Factorization

 In applications, states often have random and structural components

$$s=(arepsilon, heta)$$

■ The shock has the form

$$\varepsilon = \sigma w$$

where w is a "white noise" with zero mean and unit variance

- \blacksquare The parameter $\sigma \in \Sigma$ specifies the standard deviation of the shock
- $lue{}$ DMs know the shock distribution, up to the standard deviations σ

■ The positive scalar

$$m(\theta, \varepsilon)$$

gives the joint probability of parameters and shocks under model m

We consider models factored as:

$$m = \delta_{\theta} \times q_{\sigma}$$

i.e.,

$$m(arepsilon, heta') = \left\{egin{array}{ll} q_{\sigma}\left(arepsilon
ight) & ext{if } heta' = heta \ 0 & ext{else} \end{array}
ight.$$

- Each model corresponds to
 - a distribution q_{σ} of the random component ε
 - a parameter θ (e.g., a model climate system/economy)

- In the factorization $m = q \times \delta_{\theta}$, two kinds of model uncertainties emerge:
- Theoretical model ambiguity about the economic and physical theories that underpin the models: different θ correspond to different theories
- Stochastic model ambiguity about the statistical performance of such theories, due to shocks and to measurement errors: different q_{σ} correspond to different performances

- We write the consequence function as $\rho_{\theta}\left(\mathbf{a},\varepsilon\right)$ to emphasize the structural component θ over the random one ε
- We index factored models as

$$m_{ heta,\sigma}=q_{\sigma} imes\delta_{ heta}$$

- An hypothesis on states is summarized by a pair $(\theta, \sigma) \in \mathcal{H} \subseteq \Theta \times \Sigma$
- The set of models that the DM posits is

$$M = \{m_{\theta,\sigma} : (\theta,\sigma) \in \mathcal{H}\}$$

- Model risk is within each q_{σ}
- \blacksquare Model ambiguity is over the structural coefficient θ and the standard deviation σ
- To address it, the DM has a prior probability μ (θ , σ) that quantifies DM's degree of belief that θ is the true parameter

Classical SEU under factorization

We have

$$R(a,p) = \sum_{\theta,\varepsilon} u(\rho_{\theta}(a,\varepsilon)) p(\theta,\varepsilon)$$

for each $p \in \Delta$

■ In particular, for a factored model indexed by a pair $(\theta, \sigma) \in \Theta \times \Sigma$ we have

$$\begin{split} R\left(\mathbf{a},\theta,\sigma\right) &= \sum_{\theta',\varepsilon} u\left(\rho_{\theta'}(\mathbf{a},\varepsilon)\right) m_{\theta,\sigma}(\theta',\varepsilon) \\ &= \sum_{\theta',\varepsilon} u\left(\rho_{\theta'}(\mathbf{a},\varepsilon)\right) \left(q_{\sigma} \times \delta_{\theta}\right) \left(\theta',\varepsilon\right) \\ &= \sum_{\varepsilon} u\left(\rho_{\theta}(\mathbf{a},\varepsilon)\right) q_{\sigma}(\varepsilon) \end{split}$$

Classical SEU under factorization

The classical SEU criterion becomes

$$V(a) = \sum_{\theta,\sigma} \left(\sum_{\varepsilon} u(\rho_{\theta}(a,\varepsilon)) q_{\sigma}(\varepsilon) \right) \mu(\theta,\sigma)$$

or, equivalently,

$$V(a) = \sum_{\theta,\sigma} R(a,\theta,\sigma) \mu(\theta,\sigma)$$

Factorized classical SEU: monetary policy example

■ Back to the monetary example

$$u = \theta_0 + \theta_{1\pi}\pi + \theta_{1a}a + \varepsilon_u$$

 $\pi = a + \varepsilon_\pi$

■ The shock $\varepsilon = (\varepsilon_u, \varepsilon_\pi)$ has the form

$$arepsilon_u = \sigma_u w$$
 and $arepsilon_\pi = \sigma_\pi w'$

where w and w' are uncorrelated "white noises" with zero mean and unit variance

■ Distribution q_{σ} of shock ε is known up to the vector

$$\sigma = (\sigma_u, \sigma_\pi)$$

of standard deviations

Factorized classical SEU: monetary policy example

- Model economy θ is unknown
- So, belief μ is on (θ, σ)
- The monetary policy problem is then

$$\max_{\mathbf{a} \in A} V(\mathbf{a}) = \max_{\mathbf{a} \in A} \sum_{\theta, \sigma} \left(\sum_{\varepsilon} u\left(\rho_{\theta}(\mathbf{a}, \varepsilon) \right) q_{\sigma}(\varepsilon) \right) \mu\left(\theta, \sigma\right)$$

Road map

- Decision problems
 - toolbox
 - the Savage and Anscombe-Aumann setups
 - classical subjective expected utility
- Model uncertainty: ambiguity / robustness models
- Issues
 - ambiguity / robustness makes optimal actions more prudent?
 - ambiguity / robustness favors diversification?
 - ambiguity / robustness affects valuation?
 - model ambiguity resolves in the long run through learning?
 - sources of uncertainty: a Pandora's box?
- Model misspecification

Ambiguity / Robustness: the problem

- Model risk and ambiguity need to be treated differently
- The standard expected utility model does not
- Since the 1990s, a strand of economic literature has been studying ambiguity / Knightian uncertainty / robustness / deep uncertainty
- Normative focus (no behavioral biases or "mistakes")
- We consider two approaches
 - non-Bayesian (Gilboa and Schmeidler 1989)
 - Bayesian (Klibanoff, M. and Mukerji 2005)
- Both approaches broaden the scope of traditional EU analysis

Ambiguity / Robustness: the problem

- Intuition: betting on coins is greatly affected by whether or not coins are well tested
- Models correspond to possible biases of the coin
- By symmetry (uniform reduction), heads and tails are judged to be equally likely when betting on an untested coin, never flipped before
- The same probabilistic judgement holds for a well tested coin, flipped a number of times with an approximately equal proportion of heads to tails
- The evidence behind such judgements, and so the confidence in them, is dramatically different: ceteris paribus, DMs may well prefer to bet on tested (model risk) rather than on untested coins (model risk & ambiguity)

Ambiguity / Robustness: relevance

- A more robust rational behavior toward uncertainty emerges
- A more accurate / realistic account of how uncertainty affects valuation (e.g., uncertainty premia in market prices)
- Better understanding of exchange mechanics
 - a dark side of uncertainty: no-trade or small-trade results because of cumulative effects of model risk and ambiguity; see the financial crisis
- Better calibration and quantitative exercises
 - applications in Finance, Macroeconomics, and Environmental Economics
- Better modelling of decision / policy making
 - applications in Risk Management; e.g., the otherwise elusive precautionary principle may fit within this framework

Ambiguity / Robustness: relevance

- Caveat: model risk and ambiguity can work in the same direction (magnification effects), as well as in different directions
- Magnification effects: large "uncertainty prices" with reasonable degrees of risk aversion
- Combination of sophisticated formal reasoning and empirical relevance

Ambiguity / Robustness: a Bayesian approach

- A first distinction: DMs do not have attitudes toward uncertainty per se, but rather toward model risk and model ambiguity
- Such attitudes may differ: typically DMs are more averse to model ambiguity than to model risk
- Experimental evidence from Aydogan et al. (2018)

Bayesian approach: a tacit assumption

- Suppose consequences are monetary
- lacksquare Recall that $\mathrm{R}\left(\mathsf{a},\mathsf{m}
 ight) =\sum_{\mathsf{s}}\mathsf{u}\left(
 ho\left(\mathsf{a},\mathsf{s}
 ight)
 ight) \mathsf{m}\left(\mathsf{s}
 ight)$
- Classical subjective EU representation can be written as

$$V(a) = \sum_{m} R(a, m) \mu(m)$$

$$= \sum_{m} (u \circ u^{-1}) (R(a, m)) \mu(m)$$

$$= \sum_{m} u(c(a, m)) \mu(m)$$

where c(a, m) is the certainty equivalent

$$c(a, m) = u^{-1}(R(a, m))$$

of action a under model m

Bayesian approach: a tacit assumption

■ The profile

$$\{c(a, m) : m \in \operatorname{supp} \mu\}$$

is the scope of the model ambiguity that is relevant for the decision

In particular, DMs use the decision criterion

$$V(a) = \sum_{m} u(c(a, m)) \mu(m)$$

to address model ambiguity, while

$$R(a, m) = \sum_{s} u(\rho(a, s)) m(s)$$

is how DMs address the model risk that each m features

Identical attitudes toward model risk and ambiguity, both described by the same function u

Bayesian approach: representation

- The smooth ambiguity model generalizes the representation by distinguishing such attitudes
- Actions are ranked according to the smooth ambiguity criterion

$$V(a) = \sum_{m} (v \circ u^{-1}) (R(a, m)) \mu(m)$$
$$= \sum_{m} v(c(a, m)) \mu(m)$$

■ The function $v: C \to \mathbb{R}$ represents attitudes toward model ambiguity

Bayesian approach: representation

- A negative attitude toward model ambiguity is modelled by a concave v, interpreted as aversion to (mean preserving) spreads in certainty equivalents c(a, m)
- Ambiguity aversion amounts to a higher degree of aversion toward model ambiguity than toward model risk, i.e., a v more concave than u

Bayesian approach: representation

Setting $\phi = v \circ u^{-1}$, the smooth ambiguity criterion can be written as

$$V(a) = \sum_{m} \phi(R(a, m)) \mu(m)$$

- This formulation holds for any kind of consequence (not just monetary)
- lacktriangle Ambiguity aversion corresponds to the concavity of ϕ , a "portable" feature
- If $\phi(x) = -e^{-\lambda x}$, it is a Bayesian version of the multiplier preferences (Hansen and Sargent 2001, 2008)
- Sources of uncertainty now matter no longer "uncertainty is reduced to risk"

Bayesian approach: extreme attitudes and maxmin

■ Under extreme ambiguity aversion (e.g., as $\lambda \uparrow \infty$ when $\phi(x) = -e^{-\lambda x}$), the smooth ambiguity criterion in the limit reduces to the maxmin criterion

$$V(a) = \min_{m \in \text{supp } \mu} \sum_{s} u(\rho(a, s)) m(s)$$

- lacktriangle Pessimistic criterion: DMs maxminimize over all possible probability models in the support of μ
- lacktriangle The prior μ just selects which models in M are relevant
- It is, essentially, the maxmin criterion of Wald (1950)
- Gilboa and Schmeidler (1989) seminal maxmin decision model can take a Waldean interpretation

Bayesian approach: extreme attitudes and maxmin

• If supp $\mu = M$, the prior is actually irrelevant and we get back to a *stricto sensu* Wald maxmin criterion

$$V(a) = \min_{m} \sum_{s \in S} u(\rho(a, s)) m(s)$$

■ When *M* consists of all possible models, it reduces to the statewise maxmin criterion

$$V\left(a\right)=\min_{s}u\left(\rho\left(a,s\right)\right)$$

A very pessimistic (paranoid?) criterion: probabilities, of any sort, do not play any role (Arrow-Hurwicz decision under ignorance)

Precautionary principle

Bayesian approach: remarks

- Under maxmin behavior there might be no trade on assets (Dow and Werlang, 1992). More generally, a lower trade volume on assets may correspond to a higher ambiguity aversion (e.g., higher λ when $\phi(x) = -e^{-\lambda x}$)
- So, ambiguity reinforces the idea that uncertainty can be an impediment to trade
- The smooth ambiguity criterion admits a simple quadratic approximation that generalizes the classic mean-variance model (Maccheroni, M. and Ruffino, 2013)

Ambiguity / Robustness: a non Bayesian approach

- Need to relax the requirement that a single number quantifies beliefs: the multiple (prior) probabilities model
- DMs may not have enough information to quantify their beliefs through a single probability, but need a set of them
- Expected utility is computed with respect to each probability and DMs act according to the minimum among such expected utilities

Non Bayesian approach: representation

- Model ambiguity addressed through a set C of priors
- DMs use the *multiple priors* criterion

$$V(\mathbf{a}) = \min_{\mu \in C} \sum_{m} \left(\sum_{s} u(\rho(a, s)) m(s) \right) \mu(m)$$
$$= \min_{\mu \in C} \sum_{s} u(\rho(a, s)) \bar{\mu}(s)$$
(1)

- DMs consider the least among all the EU determined by each prior in C
- The predictive form (1) is the original version axiomatized by Gilboa and Schmeidler (1989)

Non Bayesian approach: comments

- This criterion is less extreme than it may appear at a first glance
- The set C incorporates
 - the attitude toward ambiguity, a taste component
 - its perception, an information component
- A smaller set C may reflect both better information i.e., a lower perception of ambiguity – and / or a less averse ambiguity attitude
- In sum, the size of C does not reflect just information, but taste as well

Non Bayesian approach: comments

- With singletons $C = \{\mu\}$ we return to the classical subjective EU criterion
- When C consists of all possible priors on *M*, we return to the Wald maxmin criterion

$$\min_{m} \sum_{s} u \left(\rho \left(a, s \right) \right) m \left(s \right)$$

■ No trade results (kinks)

Non Bayesian approach: comments

A more general α -maxmin criterion has been axiomatized by Ghirardato, Maccheroni and M. (2004):

$$\begin{split} V(\mathbf{a}) &= & \alpha \min_{\mu \in \mathcal{C}} \sum_{m} \left(\sum_{s} u\left(\rho\left(\mathbf{a}, s\right)\right) m\left(s\right) \right) \mu(m) \\ &+ \left(1 - \alpha\right) \max_{\mu \in \mathcal{C}} \sum_{m} \left(\sum_{s} u\left(\rho\left(\mathbf{a}, s\right)\right) m\left(s\right) \right) \mu(m) \end{split}$$

Non Bayesian approach: variational model

- In the multiple priors model, a prior μ is either "in" or "out" of the set C
- Maccheroni, M. and Rustichini (2006): general variational criterion

$$V\left(\mathbf{a}\right) = \inf_{\mu \in \Delta(M)} \left(\sum_{m} \left(\sum_{s} u\left(\rho\left(\mathbf{a}, s\right)\right) m\left(s\right) \right) \mu(m) + c\left(\mu\right) \right)$$

where $c\left(\mu\right)$ is a convex function that weights each prior μ

If c is the dichotomic function given by

$$\delta_{\mathsf{C}}\left(\mu\right) = \left\{ \begin{array}{ll} 0 & \text{if } \mu \in \mathsf{C} \\ +\infty & \text{else} \end{array} \right.$$

we get back to the multiple priors model with set of priors C

Non Bayesian approach: multiplier model

• If c is given by the relative entropy $R(\mu||\nu)$, where ν is a reference prior, we get the *multiplier* criterion

$$V\left(a\right) = \inf_{\mu \in \Delta(M)} \left(\sum_{m} \left(\sum_{s} u\left(\rho\left(a,s\right)\right) m\left(s\right) \right) \mu(m) + \alpha R\left(\mu||\nu\right) \right)$$

popularized by Hansen and Sargent in their studies on robustness in Macroeconomics

 Also the mean-variance criterion is variational, with c given by a Gini index

Road map

- Decision problems
 - toolbox
 - the Savage and Anscombe-Aumann setups
 - classical subjective expected utility
- Model uncertainty: ambiguity / robustness models
- Issues (skipped)
 - ambiguity / robustness makes optimal actions more prudent?
 - ambiguity / robustness favors diversification?
 - ambiguity / robustness affects valuation?
 - model ambiguity resolves in the long run through learning?
 - dynamics: recursive models
 - sources of uncertainty: a Pandora's box?
- Model misspecification

Sources of uncertainty

- We made a distinction between attitudes toward model risk and model ambiguity
- A more general issue: do attitudes toward different uncertainties differ?
- Source contingent outcomes: do DMs regard outcomes (even monetary) that depend on different sources as different economic objects?
- Ongoing research on this subtle topic

Interim epilogue

- In decision problems with data, it is important to distinguish model risk, ambiguity and misspecification
- Traditional EU reduces model ambiguity to model risk, so it ignores the distinction
- Experimental and empirical evidence suggest that the distinction is relevant and may affect valuation
- We presented two approaches, one Bayesian and one not
- For different applications, different approaches may be most appropriate
- Model misspecification can be studied within this framework, as we will see next

Road map

- Decision problems
 - toolbox
 - Savage setup
 - classical subjective expected utility
- Model uncertainty: ambiguity / robustness models
- Issues
 - ambiguity / robustness makes optimal actions more prudent?
 - ambiguity / robustness favors diversification?
 - ambiguity / robustness affects valuation?
 - model ambiguity resolves in the long run through learning?
 - sources of uncertainty: a Pandora's box?
- Model misspecification

Decision making under model uncertainty

- Decisions' consequences depend on external factors (contingencies)
- Probability of contingencies
- Probabilistic theories on contingencies (e.g., generative mechanisms, DGP)
- Thinking over such theories
- Environments with uncertainty through the guise of models (e.g., policy making)
- Decision making under model uncertainty
- Based on Cerreia-Vioglio et al. (2021)

Setup

Recall that a Savage decision problem consists of

- lacksquare a space $\mathcal F$ of acts f:S o C
- \blacksquare a space C of material (e.g., monetary) consequences
- a space S of environment states
- The quartet $(\mathcal{F}, S, C, \succsim)$ is a Savage decision problem under uncertainty
- If C is a convex subset of a vector space (say, consisting of lotteries), this quartet takes the Anscombe-Aumann form
- We abstract from state misspecification issues (e.g., unforeseen contingencies)

Structured models

- lacksquare Δ is the set of probability measures on S
- Recall that DMs posit a set M of models $m \in \Delta$ on states, with a substantive motivation or scientific underpinnings
- Each m describes a possible DGP, so it represents model risk
- Here it becomes convenient to call structured the models in M to emphasize their substantive motivation

Structured models

- DMs thus posit a model space M in addition to the state space S
- When the model space is based on experts' advice, its nonsingleton nature may reflect different advice
- If needed, M is a convex and compact subset of Δ^{σ}

The uncertainty taxonomy

- The quintet $(\mathcal{F}, S, C, M, \succeq)$ forms a classical decision problem under uncertainty
- If DMs know that the correct model belongs to *M*, they confront *model ambiguity*
- If DMs know the correct model within *M*, they confront *risk*

The uncertainty taxonomy

Recall that, in this setup, we can decompose uncertainty in three distinct layers:

- *Model risk*: uncertainty within a model *m*
- Model ambiguity: uncertainty across models in M
- *Model misspecification*: uncertainty about models (the correct model does not belong to the posited set *M*)

Model misspecification: Relevance

- Do data reveal DGPs and so speak, by and large, for themselves?
- If so, model misspecification is a minor issue
- Is theoretical reasoning needed to interpret empirical phenomena?
- If so, model misspecification is a major issue

Model misspecification: Issues

- Need of a decision criterion that accounts for model misspecification concerns
- Currently, models with agents confronting model misspecification are unable to address agents' misspecification concerns (they even use expected utility preferences)

Model misspecification

- Suppose that DMs confront model misspecification
- At the time of decision, they are afraid that none of the posited structured models is correct

Model misspecification (Hansen and Sargent, 2020)

■ The DM contemplates also unstructured models $p \in \Delta$ in ranking actions according, for example, to a conservative decision criterion

$$V(f) = \min_{p \in \Delta} \left\{ \int u(f) dp + \lambda \min_{m \in M} R(p||m) \right\}$$

- $\lambda > 0$ is an index of misspecification fear
- The relative entropy $R(\cdot||\cdot)$ is an index of statistical distance between models (structured or not)
- So, $\min_{m \in M} R(p||m)$ is an Hausdorff "distance" between p and M
- We have $\min_{m\in M} R(p||m)>0$ iff $p\notin M$

A protective belt

- Unstructured models lack the substantive status of structured models, they are essentially statistical artifacts
- In this variational criterion, they act as a protective belt against model misspecification

Model ambiguity: back to Wald 1950

- lacktriangle The higher λ is, the lower the misspecification fear is
- If $\lambda = +\infty$, the criterion takes a maxmin form

$$V(f) = \min_{m \in M} \int u(f) dm$$

and we are back to model ambiguity

- Without misspecification fear, the DM would maxminimize over structured models
- No prior beliefs (cf. general maxmin analysis of Gilboa and Schmeidler, 1989)

Multiplier criterion

• If M is a singleton $\{m\}$, so no model ambiguity, we have the multiplier criterion

$$V(f) = \min_{p \in \Delta} \left\{ \int u(f) dp + \lambda R(p||m) \right\}$$

 Under the protective belt interpretation, it is the criterion of an expected utility DM who fears model misspecification (about the unique posited model)

General form

■ In general, a decision criterion under model misspecification is

$$V(f) = \min_{p \in \Delta} \left\{ \int u(f) dp + \min_{m \in M} c(p, m) \right\}$$

- Here $c: \Delta \times M \rightarrow [0, \infty]$ is a statistical distance (for the set M), with c(p, m) = 0 iff m = p
- E.g., the relative entropy $R(\cdot||\cdot)$ or, more generally, a Csiszar ϕ -divergence $D_{\phi}(\cdot||\cdot)$
- We have $\min_{m \in M} c(p||m) > 0$ iff $p \notin M$

Box and all that

- Structured models may be incorrect, yet useful as Box (1979) famously remarked
- Formally, betting behavior must be *consistent* with datum *M*, i.e.,

$$m(F) \ge m(E) \quad \forall m \in M \Longrightarrow \text{"bet on } F" \succsim \text{"bet on } E"$$

 Under bet-consistency, a DM may fear model misspecification yet regards structured models as good enough to choose to bet on events that they unanimously rank as more likely

Mild model misspecification

- A mild form of fear of model misspecification
- **PROP** The decision criterion

$$V(f) = \min_{p \in \Delta} \left\{ \int u(f) dp + \lambda \min_{m \in M} R(p||m) \right\}$$

is bet-consistent

lacksquare The result continues to hold for any ϕ -divergence $D_\phi(p||m)$

Misspecification neutrality

■ A preference ≿ is misspecification neutral if

$$\int u(f) dm \ge \int u(g) dm \quad \forall m \in M \Longrightarrow f \succsim g$$

for all acts f and g

- In this case, for decision-theoretic purposes fear of misspecification plays no role
- We are back to aversion to model ambiguity

Misspecification neutrality

■ PROP A preference ≿ represented by the decision criterion

$$V(f) = \min_{p \in \Delta} \left\{ \int u(f) dp + \min_{m \in M} c(p, m) \right\}$$

is misspecification neutral iff it is represented by the maxmin criterion

$$V\left(f\right) = \min_{m \in M} \int u\left(f\right) dm$$

This confirms behaviorally that the maxmin criterion corresponds to aversion to model ambiguity, with no fear of misspecification.

A tale of two preferences

- This criterion can be axiomatized within a two-preference setup a la Gilboa et al. (2010), in an Anscombe-Aumann setting
- A dominance relation \succsim^* represents the DM "genuine" preference on acts, so it is typically incomplete
- A behavioral preference ≿ governs choice, so it is complete (burden of choice)

To be continued

- Bayesian analysis (unforeseen contingencies one level up)
- Dynamic analysis (more on this from Eran Hanany and Lars Peter Hansen)
- Applications

Slides' references

- I. Aydogan, L. Berger, V. Bosetti and N. Liu, Three layers of uncertainty and the role of model misspecification, mimeo, 2018
- G. E. P. Box, Science and statistics, J. American Statistical Association, 71, 791-799, 1976
- S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci and L. Montrucchio, Classical subjective expected utility, *PNAS*, 110, 6754-6759, 2013
- S. Cerreia-Vioglio, L. P. Hansen, F. Maccheroni and M.,
 Making decisions under model misspecification, mimeo, 2021
- J. Dow and S. R. C. Werlang, Uncertainty aversion, risk aversion, and the optimal choice of portfolio, *Econometrica*, 60, 197-204, 1992

Slides' references

- P. Ghirardato, F. Maccheroni and M. Marinacci,
 Differentiating ambiguity and ambiguity attitude, *J. Economic Theory*, 118, 133-173, 2004
- I. Gilboa, F. Maccheroni, M. Marinacci and D. Schmeidler,
 Objective and subjective rationality in a multiple prior model,
 Econometrica, 78, 755-770, 2010
- I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique prior, *J. Mathematical Economics*, 18, 141-153, 1989
- L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, *American Economic Review*, 91, 60-66, 2001
- L. P. Hansen and T. J. Sargent, *Robustness*, Princeton University Press, Princeton, 2008

Slides' references

- L. P. Hansen and T. J. Sargent, Structured ambiguity and model misspecification, 2020 (*J. Economic Theory*, forthcoming)
- P. Klibanoff, M. Marinacci and S. Mukerji, A smooth model of decision making under ambiguity, *Econometrica*, 73, 1849-1892, 2005
- F. Maccheroni, M. Marinacci and A. Rustichini, Ambiguity aversion, robustness, and the variational representation of preferences, *Econometrica*, 74, 1447-1498, 2006
- F. Maccheroni, M. Marinacci and D. Ruffino, Alpha as ambiguity: Robust mean-variance portfolio analysis, Econometrica, 81, 1075-1113, 2013.
- A. Wald, Statistical decision functions, Wiley, New York, 1950

Some readings

- Evergreen works from the founding fathers:
 - 1 F. Ramsey, Truth and Probability, 1926
 - 2 L. Savage, Foundations of statistics, 1954 (now a Dover book)
 - 3 B. de Finetti, *Teoria della probabilità*, 1970 (trans. 1974, Wiley)
- Classical presentations of the classical theory:
 - 1 P. Fishburn, Utility theory for decision making, 1970
 - 2 D. Kreps, Notes on the theory of choice, 1988
- Classical presentations of the "neo-classical" theory:
 - 1 I. Gilboa, Theory of decision under uncertainty, 2009
 - P. Wakker, Prospect theory, 2010

Some readings

- Recent surveys and overviews which the tutorial is based upon:
 - I. Gilboa and M. Marinacci, Ambiguity and the Bayesian paradigm, 2013 (in a Cambridge U. Press book)
 - 2 L. P. Hansen, Nobel lecture: Uncertainty outside and inside economic models, *J. Political Economy*, 2014
 - 3 L. P. Hansen and M. Marinacci, Ambiguity aversion and model misspecification: An economic perspective, *Stat. Science*, 2016
 - 4 M. Marinacci, Model uncertainty, J. Europ. Econ. Ass., 2015
 - 5 L. Berger et al., Rational policymaking during a pandemic, *PNAS*, 2021