OPERATING SYSTEM

BY:

DR. AHMED ELSAWY

Introduction

- Modern computers have an operating system:
 - to run other programs, such as application software.
- Examples of operating systems
 - Microsoft Windows,
 - Mac OS,
 - Unix, and
 - Linux.

Operating System (OS)

- an intermediary between users and computer hardware.
- an environment can execute programs conveniently and efficiently.
- software which manages hardware.
- controls the allocation of resources and services such as memory, processors, devices and information.

Operating System

could be defined as a program that manages the hardware and software resources of a computer and acts as an intermediary between the user and the computer hardware.

Operating System

Operating System

- the central core of a computer's operating system is a computer program called Kernel
 - It has complete control over everything that occurs in the system.
 - it is the first program loaded on startup.
 - loaded into a protected area of memory.

The Kernel Operations

- manages the remainder of the startup (like input/output).
- responsible for managing memory.
- managing and communicating with computing peripherals (like printers, speakers)
- connects the application software to the hardware of a computer.

- the early 1960s, computers did not have operating systems
 - execution of jobs on batch processing systems
- Through the 1960s, the development of operating systems.
 - IBM System/360 produced a family of mainframe computers with operating system OS/360

- In the 1970s, commercially-popular minicomputer
 - first microcomputers did not have the capacity operating systems.
 - minimalistic operating systems were developed.
 - early operating system was CP/M
 - MS-DOS, which became wildly popular as the operating system chosen for the IBM PC

- By the 1990s, the microcomputer had GUI facilities
 - robustness and flexibility of operating systems .
 - Microsoft's response to this change was the development of Windows NT.
 - Apple rebuilt their operating system on top of a Unix core as Mac OS X.

- Today, Modern OS's use a mouse for input with GUI
 - OS may depend on the hardware architecture.
 - only Linux and BSD running on almost any CPU.

OS based computer type

- Personal computers
 - IBM PC compatible Microsoft Windows and smaller Unix-variants (like Linux and BSD)
 - Apple Macintosh Mac OS X, Windows, Linux and BSD
- Mainframes A number of unique OS's, sometimes Linux and other Unix variants.
- Embedded systems a variety of dedicated OS's, and limited versions of Linux or other OS's

Operating System Functions

- Memory Management
- Processor Management
- Device Management
- File Management
- Security
- Control over system performance
- Job accounting
- Error detecting aids
- Coordination between other software and users

Memory Management

- management of Primary Memory or Main Memory.
 - is a large array of words or bytes where each word or byte has its own address.
 - fast storage that can be access directly by the CPU.
 - a program to be executed in it.

Memory Management

- activities of OS does for memory management.
 - Keeps tracks of primary memory
 - which process will get memory when and how much.
 - Allocates the memory when the process requests.
 - De-allocates the memory when the process has been terminated.

Processor Management

- OS decides which process gets the processor when and how much time (called process scheduling).
- activities of OS does for processor management:
 - Keeps tracks of processor and status of process.
 - Allocates the processor (CPU) to a process.
 - De-allocates processor when processor is no longer required.

Device Management

- OS manages device communication via their respective drivers.
 - Keeps tracks of all devices. Program responsible for this task is known as the I/O controller.
 - Decides which process gets the device when and for how much time.
 - Allocates the device in the efficient way.
 - De-allocates devices.

File Management

- A file system is normally organized into directories for easy navigation and usage.
 These directories may contain files and other directions.
 - Keeps track of information, location, uses, status etc. The collective facilities are often known as file system.
 - Decides who gets the resources.
 - Allocates the resources.
 - De-allocates the resources.

Security

- Defense of the system against internal and external attacks
- System must determine:
 - User identities (user IDs, security IDs) include name and associated number, one per user
 - User ID then associated with all files, processes of that user to determine access control
 - Group identifier (group ID) allows set of users to be defined and controls managed.
 - Privilege escalation allows user to change to effective ID with more rights

Error detection

- OS needs to be constantly aware of possible errors
 - May occur in the CPU and memory hardware, in I/O devices, in user program
 - For each type of error, OS should take the appropriate action to ensure correct and consistent computing
 - Debugging facilities can greatly enhance the user's and programmer's abilities to efficiently use the system

Another function for OS

Control over system performance

 Recording delays between request for a service and response from the system.

Job accounting

Keeping track of time and resources used by various jobs and users.

Coordination between other software and users

 Coordination and assignment of compilers, interpreters, assemblers and other software to the various users of the computer systems.

- provides an environment for the execution of programs.
- services to programs and to the users of those programs.
- make the programming task easier.
- services provided differ from one operating system to another

1- User interface

- command-line interface (CLI), (uses text commands)
- batch interface (commands are entered into files, and those files are executed).
- graphical user interface (GUI) (pointing device to direct I/O, choose from menus)

2- Program execution

- the major activities of an OS with respect to program management:
 - Loads a program into memory.
 - Executes the program.
 - Handles program's execution.
 - Provides a mechanism for process synchronization.
 - Provides a mechanism for process communication.
 - Provides a mechanism for deadlock handling.

3- I/O Operation

- I/O subsystem comprised of I/O devices and their corresponding driver software.
- the major activities of an OS with respect to I/O Operation.
 - I/O operation means read or write operation with any file or any specific I/O device.
 - Program may require any I/O device while running.
 - Operating system provides the access to the required
 I/O device when required.

4- File system manipulation

- A file represents a collection of related information.
- Computer can store files on the disk for long term storage purpose.
- Each of these media has its own properties like speed, capacity, data transfer rate and data access methods.
- A file system is normally organized into directories for easy navigation and usage.

4- File system manipulation

- the major activities of an OS with respect to file management.
 - Program needs to read a file or write a file.
 - The operating system gives the permission to the program for operation on file.
 - Permission varies from read-only, read-write, denied and so on.
 - Operating System provides an interface to the user to create/delete files.
 - Operating System provides an interface to the user to create/delete directories.
 - Operating System provides an interface to create the backup of file system.

5- Communication

- distributed systems which are a collection of processors operating system manages communications between processes.
- OS handles routing and connection strategies, and the problems of contention and security.
- the major activities of an OS with respect to communication.
 - Two processes often require data to be transferred between them.
 - The both processes can be on the one computer or on different computer but are connected through computer network.
 - Communication may be implemented by two methods either by Shared Memory or by Message Passing.

6- Resource Management

- In case of multi-user environment, resources such as main memory, CPU cycles and files storage are to be allocated to each user and managed by OS.
- Following are the major activities of an operating system with respect to resource management.
 - OS manages all kind of resources using schedulers.
 - CPU scheduling algorithms are used for better utilization of CPU.

7- Protection

- Protection refers to mechanism or a way to control the access of programs, processes, or users to the resources
- the major activities of an operating system with respect to protection.
 - OS ensures that all access to system resources is controlled.
 - OS ensures that external I/O devices are protected from invalid access attempts.
 - OS provides authentication feature for each user by means of a password.

8- Error detection

- Error can occur anytime and anywhere. Error may occur in CPU, in I/O devices or in the memory hardware.
- the major activities of an operating system with respect to error handling.
 - OS constantly remains aware of possible errors.
 - OS takes the appropriate action to ensure correct and consistent computing.

9- Accounting:

- keep track of which users use how much and what kinds of computer resources.
- simply for accumulating usage statistics.
- statistics may be a valuable tool for researchers who wish to reconfigure the system to improve computing services.

