CMOS: conceptes bàsics

Rosa M. Badia Ramon Canal DM Tardor 2004

MOS: Metal Over Silicon

- Objectius:
 - Conèixer com es dissenyen diferents tipus d'estructures lògiques mitjançant l'utilització de tecnologia MOS
- El contingut del tema se centra en:
 - Comportament lògic del transistor MOS
 - Introducció a les estructures lògiques combinacionals
 - Conceptes bàsics sobre el transistor MOS

Comportament ideal: interruptor digital

Inversor CMOS: Complementary MOS

- Combinació serie nMOS:
 - Output = 0 si S1=1 i S2=1

- Combinació serie pMOS:
 - Output = 1 si S1=0 i S2=0

- Combinació paral·lela nMOS:
 - Output = 0 si S1=1 o S2=1

- Combinació paral·lela pMOS:
 - Output = 1 si S1=0 o S2=0

Complementary CMOS

- Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Porta NAND

Porta NOR

Portes complexes

- Portes complexes:
 - L'expressió de la funció ha de ser una expressió complementada
 - Operador "·":
 - Pull-down: Transistors nMOS en sèrie
 - Pull-up: Transistors pMOS en paral·lel
 - Operador "+":
 - Pull-down: Transistors nMOS en paral·lel
 - Pull-up: Transistors pMOS en sèrie

Tipus de transistors

- Transistors de tipus MOS: nMOS i pMOS
- Transistors nMOS: acumulació y buidament
- Transistors bipolars: NPN, PNP
- Operació (interruptor electrònic):
 - MOS: controlat per tensió (interruptor ideal)
 - Bipolar: controlat por corrent (interruptor + amplificador)

Visió ideal vs. visió real

Visió ideal vs. visió real

• Exemple: relació input/output d'un inversor CMOS

Transistors de tipus nMOS

- Intensitat Drenador Font (I_{ds}) si:
 - nMOS acumulació: $V_{pf} > V_{t} > 0$
 - nMOS buidament: 0> V_{pf} > V_t

 Afegir perque no passen be els zeros els transistors p, i perque passen be els uns

Transistors de tipus pMOS

Intensitat Drenador – Font (I_{ds}) si:

$$-V_{DD}-V_{t}>V_{pf}$$

Implementació tecnològica

Implementació tecnològica

NMOS

PMOS

NPN (bipolar)

Comparació entre diferents tecnologies

Característica	nMOS	pMOS	NPN
Resistencia d'entrada	Alta	Alta	Baixa
Resistencia de sortida	Baixa	Baixa	baixa
Movilitat	Alta	Baixa (1/2)	alta
Nivell integració	Alt	Alt	Mitjà
Consum estàtic	Baix	Baix	alt
Consum dinàmic	Mitjà	Mitjà	alt

- El funcionament del transistor nMOS es basa en la creació d'un canal entre drenador i la font
- El canal es construeix degut a un potencial positiu a la porta respecte del substrat, que atrau als electrons lliures al substrat, acumulant-los en el canal.
- Hi ha tres regions d'operació:
 - Zona de tall (Cut-off): En aquesta zona no hi ha creació de canal, $I_{ds} = 0$.
 - Zona lineal o no saturada: En aquesta zona hi ha creació de canal i el corrent elèctric I_{ds} es proporcional a la diferència de potencial entre el drenador i la font V_{ds} .
 - Zona saturada: El canal s'estreny fins a trencar-se. Hi ha corrent elèctric $I_{\rm ds}$, però el seu valor és gairebé constant i independent de $V_{\rm ds}$

Tensió Ilindar

Transistor en zona lineal

MOS transistor and its bias conditions DM, Tardor 2004

Transistor en zona de saturació

Zona lineal:

$$\beta = \frac{W}{L} \frac{\mathcal{E}_{ins} \mathcal{E}_{0} \mu}{D}$$

$$I_{ds} = \beta \left(V_{gs} - V_{t} \right) V_{ds} - \frac{V_{ds}^{2}}{2}$$

Zona saturació

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_{t} \right)^{2}$$

Transistors de tipus nMOS

Comportament dinàmic

DM, Tardor 2004

28

Transistors de tipus pMOS

Comportament dinàmic

DM, Tardor 2004

 $I_{be} = 5\mu A$

 $I_{be} = 4\mu A$

 $I_{be} = 3\mu A$

 $I_{be} = 2\mu A$

 $I_{be} = 1\mu A$

29

 V_{DD}

CMOS: conceptes bàsics

Rosa M. Badia Ramon Canal DM Tardor 2004

1.1. Dissenyar portes lògiques CMOS per a les següents funcions:

•
$$Z = \overline{A \cdot B \cdot C \cdot D}$$

•
$$Z = \overline{A + B + C + D}$$

•
$$Z = \overline{((A \cdot B \cdot C) + D)}$$

•
$$Z = \overline{(((A \cdot B) + C) \cdot D)}$$

•
$$Z = \overline{(A \cdot B) + (C \cdot (A + B))}$$

1.4. Repetir l'exercici 1 en lògica nMOS dimensionant correctament els transistors

