

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : C07F 17/00		A1	(11) Internationale Veröffentlichungsnummer: WO 97/03080
			(43) Internationales Veröffentlichungsdatum: 30. Januar 1997 (30.01.97)
(21) Internationales Aktenzeichen: PCT/EP96/02868		(81) Bestimmungsstaaten: CN, JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) Internationales Anmeldedatum: 1. Juli 1996 (01.07.96)		Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>	
(30) Prioritätsdaten: 195 25 178.4 11. Juli 1995 (11.07.95) DE			
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).			
(72) Erfinder; und			
(75) Erfinder/Anmelder (<i>nur für US</i>): FISCHER, David [DE/DE]; Raiffeisenstrasse 12, D-67161 Gönheim (DE). LANGHAUSER, Franz [DE/DE]; Salinenstrasse 103, D-67098 Bad Dürkheim (DE). KERTH, Jürgen [DE/DE]; Wattenheimer Strasse 15, D-67316 Carlsberg (DE). SCHWEIER, Günther [DE/DE]; Friedrich-Pietzsch-Strasse 14, D-67159 Friedelsheim (DE). BRINTZINGER, Hans-Herbert [CH/CH]; Unterdorfstrasse 17, CH-8274 Taegerswil (CH). SCHMIDT, Katrin [DE/DE]; Buecklestrasse 76/18, D-78467 Konstanz (DE).			
(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).			
(54) Title: PROCESS FOR CONVERTING THE ACHIRAL MESO FORM OF AN ANSA-METALLOCENE COMPLEX INTO THE CHIRAL RACEMIC FORM			
(54) Bezeichnung: VERFAHREN ZUR UMWANDLUNG DER ACHIRALEN MESO-FORM EINES ANSA-METALLOCENKOMPLEXES IN DIE CHIRALE RAC.-FORM			
(57) Abstract			
The invention concerns a process for converting the achiral meso form of an ansa-metallocene complex into the chiral racemic form, the conversion being carried out photochemically in the presence of a chiral auxiliary reagent.			
(57) Zusammenfassung			
Verfahren zur Umwandlung der achiralen meso-Form eines ansa-Metallocenkomplexes in die chirale rac.-Form, wobei die Umwandlung photochemisch in Anwesenheit eines chiralen Hilfsreagens erfolgt.			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumänien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauritanien	VN	Vietnam
GA	Gabon	MW	Malawi		

Verfahren zur Umwandlung der achiralen meso-Form eines ansa-Metallocenkomplexes in die chirale rac.-Form

5 Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Umwandlung der achiralen meso-Form eines ansa-Metallocenkomplexes in die chirale rac.-Form.

10

Chirale ansa-Metallocenkomplexe von Metallen der IV. Nebengruppe des Periodensystems der Elemente haben in den letzten Jahren großes Interesse als leistungsfähige Katalysatoren für die stereospezifische Olefinpolymerisation gefunden, wie in der

15

EP-A 444 474, der EP-A 519 237 und in der EP-A 576 970 beschrieben. Mit ihrer Hilfe gelingt die Herstellung chemisch einheitlicher Polyolefine hoher Isotaktizität. Allerdings fallen bei der Synthese solcher Metallocenkomplexe gewöhnlich beträchtliche Mengen der achiralen meso-Verbindung an, wodurch die Ausbeute an 20 chiralen Metallocenkomplexen deutlich verringert wird. Da diese meso-Formen im allgemeinen die nichtstereospezifische 1-Oleinpolymerisation katalysieren, müssen sie abgetrennt werden, bevor das Racemat des Metallocenkomplexes als Polymerisationskatalysator verwendet werden kann (EP-A 485 823).

25

In der Vergangenheit hat es mehrere Versuche gegeben, das rac./meso-Diastereomerenverhältnis bei der ansa-Metallocensynthese zu verbessern, oder zumindest die Abtrennung der meso-Verbindung einzusparen. Durch die Einführung eines α-ständigen Alkylsubstituenten in den Cyclopentadienytring konnte das rac./meso-Verhältnis deutlich über 1.0 erhöht werden, wie in Brintzinger et al., Journal of Organometallic Chemistry, 369 (1989), S. 359-370, beschrieben. Nachteilig hierbei ist, daß die Gestaltungsfreiheit der Liganden deutlich eingeschränkt wird. Hinzu kommt, daß trotz 30 der verbesserten Ausbeute an racemischen Diastereomer immer noch beträchtliche Anteile (33 - 15 %) des meso-Komplexes gebildet werden.

35

Besser Ausbeuten des racemischen Diastereomeren konnten durch Umsetzung von $Zr(NMe_2)_4$ mit 1,2-Bisindenylethan erzielt werden, wie in Jordan et al., Organometallics, 14 (1995), S. 5 - 7, beschrieben. Nachteilig ist die große Empfindlichkeit und der hohe Preis des eingesetzten Tetrakis(dimethylamido)zirkon. Daneben sind diastereoselektive Synthesen chiraler ansa-Metallocene nur für 40 sehr wenige, spezielle Ligandsysteme bekannt, die beispielsweise in Brintzinger et al., Organometallics 11, S. 3600-3607

2

(1992); S. Buchwald et al., Organometallics 13 (10), S. 3892 – 3840 (1994) und in der US-A 5,302,733 beschrieben sind.

In einigen Fällen konnte die Ausbeute an Racemat durch photochemische Umwandlung der unerwünschten meso-Form in die rac.-Form erhöht werden, wie in S. Collins et al., Journal of Organometallic Chemistry 342, S. 21 – 29 (1988) beschrieben. Allerdings wird auch hierbei die rac.-Form nur im thermodynamischen Gleichgewicht mit dem meso-Diastereomer erhalten. Eine quantitative Isomerisierung zur rac.-Form gelingt auf diesem Wege nicht.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur quantitativen Umwandlung der unerwünschten meso-Form eines ansa-Metallocenkomplexes in die gewünschte rac.-Form zur Verfügung zu stellen, wobei diese Umwandlung verfahrenstechnisch einfach und kostengünstig sein sollte.

Demgemäß wurde ein Verfahren zur Umwandlung der achiralen meso-Form eines ansa-Metallocenkomplexes in die chirale rac.-Form gefunden, wobei die Umwandlung photochemisch in Anwesenheit eines chiralen Hilfsreagens erfolgt.

Die Begriffe "meso"- und "rac.-Form" in Verbindung mit ansa-Metallocenkomplexen sind bekannt und beispielsweise in Brintzinger et al., Journal of Organometallic Chemistry, 369 (1989), S. 359 – 370 beschrieben.

Als ansa-Metallocenkomplexe, die bei dem erfindungsgemäßen Verfahren eingesetzt werden können, eignen sich besonders solche, der allgemeinen Formel I

35

40

45

3

in der die Substituenten und Indices folgende Bedeutung haben:

M

Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal,

5

X

Fluor, Chlor, Brom, Iod, Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder -OR¹⁰,

10

wobei R¹⁰

C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest bedeutet,

20

R¹ bis R⁸

Wasserstoff, C₁- bis C₁₀-Alkyl, 5 - bis 7-gliedriges Cycloalkyl, das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 6 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R¹¹)₃ mit

R¹¹

C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

25

R⁹

30

35

40

45

= BR¹², = AlR¹², -Ge-, -Sn-, -O-, -S-, = SO, = SO₂, = NR¹², = CO, = PR¹² oder = P(O)R¹² ist, wo bei R¹², R¹³ und R¹⁴ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine

4

C_8-C_{40} -Arylalkenylgruppe oder eine C_7-C_{40} -Alkyl-arylgruppe bedeuten oder R^{12} und R^{13} oder R^{12} und R^{14} jeweils mit den sie verbindenden Atomen einen Ring bilden, und

5

M^1 Silicium, Germanium oder Zinn ist.

Besonders geeignet sind ansa-Metallocenkomplexe der allgemeinen Formel I, in der

10

M für Titan, Zirkonium oder Hafnium steht,

X Chlor oder C_1 - bis C_6 -Alkyl bedeutet,

15 R^1 bis R^8

Wasserstoff, C_1 - bis C_6 -Alkyl, C_1 - bis C_{12} -Aryl oder wobei zwei benachbarte Reste gemeinsam für 4 bis 15, insbesondere 8 bis 12 C-Atome aufweisende cyclische Gruppen stehen

20 und M^1

Silicium bedeutet.

Bevorzugt sind ansa-Metallocenkomplexe der allgemeinen Formel I, die in 2-Position an den Cyclopentadienyl-Ringen substituiert sind, d.h., daß R^4 und R^7 in der allgemeinen Formel I von Wasserstoff verschieden sind und insbesondere für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl oder Phenyl stehen.

Weiterhin sind solche ansa-Metallocenkomplexe bevorzugt, die silylverbrückt sind, d. h. daß M^1 für Silicium steht.

30

Beispiele für besonders geeignete ansa-Metallocenkomplexe sind u.a.:

Dimethylsilandiylbis(2-methyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid

40 Dimethylsilandiylbis(2-methyl-4-butyl-1-cyclopenta-dienyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-^tpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid

45 Dimethylsilandiylbis(2-methyl-4-^tbutyl-1-cyclopenta-

dienyl)zirkoniumdichlorid

- Dimethylsilandiylbis(2-methyl-4-trimethylsilyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
5 Dimethylsilandiylbis(2-ethyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid
10 Dimethylsilandiylbis(2-ethyl-4-butyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-^tpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid
15 Dimethylsilandiylbis(2-ethyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-trimethylsilyl-1-cyclopenta-dienyl)zirkoniumdichlorid
20 Dimethylsilandiylbis(2-ethyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-propyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid
25 Dimethylsilandiylbis(2-propyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-propyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-propyl-4-butyl-1-cyclopenta-dienyl)zirkoniumdichlorid
30 Dimethylsilandiylbis(2-propyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-propyl-4-^tpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-propyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
35 Dimethylsilandiylbis(2-propyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-propyl-4-trimethylsilyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-propyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
40 Dimethylsilandiylbis(2-butyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-butyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid
45 Dimethylsilandiylbis(2-butyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid

6

- Dimethylsilandiylbis(2-butyl-4-butyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-butyl-4-ⁱpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid
5 Dimethylsilandiylbis(2-butyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-butyl-4-trimethylsilyl-1-cyclopenta-dienyl)zirkoniumdichlorid
10 Dimethylsilandiylbis(2-butyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid
15 Dimethylsilandiylbis(2-ⁱpropyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-butyl-1-cyclopenta-dienyl)zirkoniumdichlorid
20 Dimethylsilandiylbis(2-ⁱpropyl-4-ⁱpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-trimethylsilyl-1-cyclopenta-dienyl)zirkoniumdichlorid
25 Dimethylsilandiylbis(2-ⁱpropyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid
30 Dimethylsilandiylbis(2-^tbutyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-ⁱpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
35 Dimethylsilandiylbis(2-^tbutyl-4-trimethylsilyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid
40 Dimethylsilandiylbis(2-^tbutyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-ⁱpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid
45 Dimethylsilandiylbis(2-^tbutyl-4-trimethylsilyl-1-cyclopenta-dienyl)zirkoniumdichlorid

- Dimethylsilandiylbis(2-^tbutyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid
5 Dimethylsilandiylbis(2-trimethylsilyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-4-butyl-1-cyclopenta-dienyl)zirkoniumdichlorid
10 Dimethylsilandiylbis(2-trimethylsilyl-4-^tpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-4-butyl-1-cyclopenta-dienyl)zirkoniumdichlorid
15 Dimethylsilandiylbis(2-trimethylsilyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-4-trimethylsilyl-1-cyclo-pentadienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
20 Dimethylsilandiylbis(2-phenyl-4-methyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-phenyl-4-ethyl-1-cyclopenta-dienyl)zirkoniumdichlorid
25 Dimethylsilandiylbis(2-phenyl-4-propyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-phenyl-4-butyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-phenyl-4-^tpropyl-1-cyclopenta-dienyl)zirkoniumdichlorid
30 Dimethylsilandiylbis(2-phenyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-phenyl-4-^tbutyl-1-cyclopenta-dienyl)zirkoniumdichlorid
35 Dimethylsilandiylbis(2-phenyl-4-trimethylsilyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-phenyl-4-phenyl-1-cyclopenta-dienyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-1-indenyl)zirkoniumdichlorid
40 Dimethylsilandiylbis(2-ethyl-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-propyl-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-butyl-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tpropyl-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-1-indenyl)zirkoniumdichlorid
45 Dimethylsilandiylbis(2-trimethylsilyl-1-indenyl)zirkonium-dichlorid
Dimethylsilandiylbis(2-phenyl-1-indenyl)zirkoniumdichlorid

8

- Dimethylsilandiylbis(2-methyl-4,5,6,7-tetrahydro-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4,5,6,7-tetrahydro-1-indenyl)zirkoniumdichlorid
5 Dimethylsilandiylbis(2-propyl-4,5,6,7-tetrahydro-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-butyl-4,5,6,7-tetrahydro-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tpropyl-4,5,6,7-tetra-
10 hydro-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4,5,6,7-tetra-
hydro-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-4,5,6,7-tetra-
hydro-1-indenyl)zirkoniumdichlorid
15 Dimethylsilandiylbis(2-phenyl-4,5,6,7-tetra-
hydro-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4,7-dimethyl-1-indenyl)zirkonium-
dichlorid
Dimethylsilandiylbis(2-ethyl-4,7-dimethyl-1-indenyl)zirkonium-
20 dichlorid
Dimethylsilandiylbis(2-propyl-4,7-dimethyl-1-indenyl)zirkonium-
dichlorid
Dimethylsilandiylbis(2-butyl-4,7-dimethyl-1-indenyl)zirkonium-
dichlorid
25 Dimethylsilandiylbis(2-^tpropyl-4,7-dimethyl-1-indenyl)zirkonium-
dichlorid
Dimethylsilandiylbis(2-^tbutyl-4,7-dimethyl-1-indenyl)zirkonium-
dichlorid
Dimethylsilandiylbis(2-trimethyl-
30 silyl-4,7-dimethyl-1-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-phenyl-4,7-dimethyl-1-indenyl)zirkonium-
dichlorid
Dimethylsilandiylbis(2-methyl-4,6-di-^tpropyl-1-indenyl)zirkonium-
dichlorid
35 Dimethylsilandiylbis(2-ethyl-4,6-di-^tpropyl-1-indenyl)zirkonium-
dichlorid
Dimethylsilandiylbis(2-propyl-4,6-di-^tpropyl-1-indenyl)zirkonium-
dichlorid
Dimethylsilandiylbis(2-butyl-4,6-di-^tpropyl-1-indenyl)zirkonium-
40 dichlorid
Dimethylsilandiylbis(2-^tpropyl-4,6-di-^tpropyl-1-indenyl)zirkonium-
dichlorid
Dimethylsilandiylbis(2-^tbutyl-4,6-di-^tpropyl-1-indenyl)zirkonium-
dichlorid
45 Dimethylsilandiylbis(2-trimethyl-
silyl-4,6-di-^tpropyl-1-indenyl)zirkoniumdichlorid

- Dimethylsilandiylbis(2-phenyl-4,6-di-^tpropyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-methyl-1-benzindenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-ethyl-1-benzindenyl)zirkoniumdichlorid
- 5 Dimethylsilandiylbis(2-propyl-1-benzindenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-butyl-1-benzindenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-^tpropyl-1-benzindenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-^tbutyl-1-benzindenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-1-benzindenyl)zirkonium-10 dichlorid
- Dimethylsilandiylbis(2-phenyl-1-benzindenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-methyl-4-phenyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl)zirkonium-15 dichlorid
- Dimethylsilandiylbis(2-propyl-4-phenyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-butyl-4-phenyl-1-indenyl)zirkonium-dichlorid
- 20 Dimethylsilandiylbis(2-^tpropyl-4-phenyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-phenyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-trimethyl-
- 25 silyl-4-phenyl-1-indenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4-phenyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-methyl-4-naphthyl-1-indenyl)zirkonium-dichlorid
- 30 Dimethylsilandiylbis(2-ethyl-4-naphthyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-propyl-4-naphthyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-butyl-4-naphthyl-1-indenyl)zirkonium-35 dichlorid
- Dimethylsilandiylbis(2-^tpropyl-4-naphthyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-naphthyl-1-indenyl)zirkonium-dichlorid
- 40 Dimethylsilandiylbis(2-trimethylsilyl-4-naphthyl-1-indenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4-naphthyl-1-indenyl)zirkonium-dichlorid
- Dimethylsilandiylbis(2-methyl-4-methyl-1-cyclopentadienyl)tita-45 niumdichlorid
- Dimethylsilandiylbis(2-methyl-4-ethyl-1-cyclopentadienyl)titaniumdichlorid

10

- Dimethylsilandylbis(2-methyl-4-propyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-methyl-4-butyl-1-cyclopentadienyl)titaniumdichlorid
- 5 Dimethylsilandylbis(2-methyl-4^t-propyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-methyl-4^t-butyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-methyl-4^t-butyl-1-cyclopentadienyl)titaniumdichlorid
- 10 10 niumdichlorid
- Dimethylsilandylbis(2-methyl-4-trimethylsilyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-methyl-4-phenyl-1-cyclopentadienyl)titaniumdichlorid
- 15 Dimethylsilandylbis(2-ethyl-4-methyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-ethyl-4-ethyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-ethyl-4-propyl-1-cyclopentadienyl)titaniumdichlorid
- 20 20 niumdichlorid
- Dimethylsilandylbis(2-ethyl-4-butyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-ethyl-4^t-propyl-1-cyclopentadienyl)titaniumdichlorid
- 25 Dimethylsilandylbis(2-ethyl-4^t-butyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-ethyl-4^t-butyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-ethyl-4-trimethylsilyl-1-cyclopenta-
- 30 dienyl)titaniumdichlorid
- Dimethylsilandylbis(2-ethyl-4-phenyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-propyl-4-methyl-1-cyclopentadienyl)titaniumdichlorid
- 35 Dimethylsilandylbis(2-propyl-4-ethyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-propyl-4-propyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-propyl-4-butyl-1-cyclopentadienyl)titaniumdichlorid
- 40 40 niumdichlorid
- Dimethylsilandylbis(2-propyl-4^t-propyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandylbis(2-propyl-4^t-butyl-1-cyclopentadienyl)titaniumdichlorid
- 45 Dimethylsilandylbis(2-propyl-4^t-butyl-1-cyclopentadienyl)titaniumdichlorid

11

- Dimethylsilandiylbis(2-propyl-4-trimethylsilyl-1-cyclopenta-
dienyl)titaniumdichlorid
Dimethylsilandiylbis(2-propyl-4-phenyl-1-cyclopentadienyl)tita-
niumdichlorid
5 Dimethylsilandiylbis(2-butyl-4-methyl-1-cyclopentadienyl)tita-
niumdichlorid
Dimethylsilandiylbis(2-butyl-4-ethyl-1-cyclopentadienyl)titanium-
dichlorid
Dimethylsilandiylbis(2-butyl-4-propyl-1-cyclopentadienyl)tita-
10 niumdichlorid
Dimethylsilandiylbis(2-butyl-4-butyl-1-cyclopentadienyl)titanium-
dichlorid
Dimethylsilandiylbis(2-butyl-4-ⁱpropyl-1-cyclopentadienyl)tita-
niumdichlorid
15 Dimethylsilandiylbis(2-butyl-4-^tbutyl-1-cyclopentadienyl)titanium-
dichlorid
Dimethylsilandiylbis(2-butyl-4-^bbutyl-1-cyclopentadienyl)titanium-
dichlorid
Dimethylsilandiylbis(2-butyl-4-trimethylsilyl-1-cyclopenta-
20 dienyl)titaniumdichlorid
Dimethylsilandiylbis(2-butyl-4-phenyl-1-cyclopentadienyl)tita-
niumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-methyl-1-cyclopentadienyl)tita-
niumdichlorid
25 Dimethylsilandiylbis(2-ⁱpropyl-4-ethyl-1-cyclopentadienyl)tita-
niumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-propyl-1-cyclopentadienyl)tita-
niumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-butyl-1-cyclopentadienyl)tita-
30 niumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-ⁱpropyl-1-cyclopentadienyl)tita-
niumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-^tbutyl-1-cyclopentadienyl)tita-
35 niumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-trimethylsilyl-1-cyclopenta-
dienyl)titaniumdichlorid
Dimethylsilandiylbis(2-ⁱpropyl-4-phenyl-1-cyclopentadienyl)tita-
40 niumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-methyl-1-cyclopentadienyl)tita-
niumdichlorid
Dimethylsilandiylbis(2-^tbutyl-4-ethyl-1-cyclopentadienyl)titanium-
dichlorid
45 Dimethylsilandiylbis(2-^tbutyl-4-propyl-1-cyclopentadienyl)tita-
niumdichlorid

12

- Dimethylsilyl bis(2-^tbutyl-4-butyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-^tbutyl-4-ⁱpropyl-1-cyclopentadienyl)titaniumdichlorid
- 5 Dimethylsilyl bis(2-^tbutyl-4-ⁱbutyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-^tbutyl-4-^tbutyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-^tbutyl-4-trimethylsilyl-1-cyclopenta-
- 10 dienyl)titaniumdichlorid
- Dimethylsilyl bis(2-^tbutyl-4-phenyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-trimethylsilyl-4-methyl-1-cyclopenta-
- dienyl)titaniumdichlorid
- 15 Dimethylsilyl bis(2-trimethylsilyl-4-ethyl-1-cyclopenta-
- dienyl)titaniumdichlorid
- Dimethylsilyl bis(2-trimethylsilyl-4-ⁱpropyl-1-cyclopenta-
- dienyl)titaniumdichlorid
- Dimethylsilyl bis(2-trimethylsilyl-4-^tbutyl-1-cyclopenta-
- 20 dienyl)titaniumdichlorid
- Dimethylsilyl bis(2-trimethylsilyl-4-ⁱpropyl-1-cyclopenta-
- dienyl)titaniumdichlorid
- Dimethylsilyl bis(2-trimethylsilyl-4-ⁱbutyl-1-cyclopenta-
- dienyl)titaniumdichlorid
- 25 Dimethylsilyl bis(2-trimethylsilyl-4-^tbutyl-1-cyclopenta-
- dienyl)titaniumdichlorid
- Dimethylsilyl bis(2-trimethylsilyl-4-trimethylsilyl-1-cyclo-
- pentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-trimethylsilyl-4-phenyl-1-cyclopenta-
- 30 dienyl)titaniumdichlorid
- Dimethylsilyl bis(2-phenyl-4-methyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-phenyl-4-ethyl-1-cyclopentadienyl)titaniumdichlorid
- 35 Dimethylsilyl bis(2-phenyl-4-ⁱpropyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-phenyl-4-butyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-phenyl-4-ⁱpropyl-1-cyclopentadienyl)tita-
- 40 niumdichlorid
- Dimethylsilyl bis(2-phenyl-4-ⁱbutyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilyl bis(2-phenyl-4-^tbutyl-1-cyclopentadienyl)titaniumdichlorid
- 45 Dimethylsilyl bis(2-phenyl-4-trimethylsilyl-1-cyclopenta-
- dienyl)titaniumdichlorid

13

- Dimethylsilandiylbis(2-phenyl-4-phenyl-1-cyclopentadienyl)titaniumdichlorid
- Dimethylsilandiylbis(2-methyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-ethyl-1-indenyl)titaniumdichlorid
- 5 Dimethylsilandiylbis(2-propyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-butyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-^tpropyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-^tbutyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-1-indenyl)titaniumdichlorid
- 10 Dimethylsilandiylbis(2-phenyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-methyl-4,5,6,7-tetrahydro-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4,5,6,7-tetrahydro-1-indenyl)titaniumdichlorid
- 15 Dimethylsilandiylbis(2-propyl-4,5,6,7-tetrahydro-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-butyl-4,5,6,7-tetrahydro-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-^tpropyl-4,5,6,7-tetrahydro-1-indenyl)titaniumdichlorid
- 20 Dimethylsilandiylbis(2-^tbutyl-4,5,6,7-tetrahydro-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4,5,6,7-tetrahydro-1-indenyl)titaniumdichlorid
- 25 Dimethylsilandiylbis(2-phenyl-4,5,6,7-tetrahydro-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-methyl-4,7-dimethyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4,7-dimethyl-1-indenyl)titaniumdichlorid
- 30 Dimethylsilandiylbis(2-propyl-4,7-dimethyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-butyl-4,7-dimethyl-1-indenyl)titaniumdichlorid
- 35 Dimethylsilandiylbis(2-^tpropyl-4,7-dimethyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-^tbutyl-4,7-dimethyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4,7-dimethyl-1-indenyl)titaniumdichlorid
- 40 Dimethylsilandiylbis(2-phenyl-4,7-dimethyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-methyl-4,6-di-^tpropyl-1-indenyl)titaniumdichlorid
- 45 Dimethylsilandiylbis(2-ethyl-4,6-di-^tpropyl-1-indenyl)titaniumdichlorid

14

- Dimethylsilandiylibis(2-propyl-4,6-di-¹propyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-butyl-4,6-di-¹propyl-1-indenyl)titaniumdichlorid
- 5 Dimethylsilandiylibis(2-¹propyl-4,6-di-¹propyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-^tbutyl-4,6-di-¹propyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-trimethylsilyl-4,6-di-¹propyl-1-indenyl)titaniumdichlorid
- 10 Dimethylsilandiylibis(2-phenyl-4,6-di-¹propyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-methyl-1-benzindenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-ethyl-1-benzindenyl)titaniumdichlorid
- 15 Dimethylsilandiylibis(2-propyl-1-benzindenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-butyl-1-benzindenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-¹propyl-1-benzindenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-^tbutyl-1-benzindenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-trimethylsilyl-1-benzindenyl)titaniumdichlorid
- 20 Dimethylsilandiylibis(2-phenyl-1-benzindenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-methyl-4-phenyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-ethyl-4-phenyl-1-indenyl)titaniumdichlorid
- 25 Dimethylsilandiylibis(2-propyl-4-phenyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-butyl-4-phenyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-¹propyl-4-phenyl-1-indenyl)titaniumdichlorid
- 30 Dimethylsilandiylibis(2-^tbutyl-4-phenyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-trimethylsilyl-4-phenyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-phenyl-4-phenyl-1-indenyl)titaniumdichlorid
- 35 Dimethylsilandiylibis(2-methyl-4-naphthyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-ethyl-4-naphthyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-propyl-4-naphthyl-1-indenyl)titaniumdichlorid
- 40 Dimethylsilandiylibis(2-butyl-4-naphthyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylibis(2-¹propyl-4-naphthyl-1-indenyl)titaniumdichlorid
- 45 Dimethylsilandiylibis(2-^tbutyl-4-naphthyl-1-indenyl)titaniumdichlorid

15

- Dimethylsilandiylbis(2-trimethylsilyl-4-naphthyl-1-indenyl)titaniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4-naphthyl-1-indenyl)titaniumdichlorid
- 5 Dimethylsilandiylbis(2-methyl-4-methyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-methyl-4-ethyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-methyl-4-propyl-1-cyclopentadienyl)hafniumdichlorid
- 10 Dimethylsilandiylbis(2-methyl-4-butyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-methyl-4-^tpropyl-1-cyclopentadienyl)hafniumdichlorid
- 15 Dimethylsilandiylbis(2-methyl-4-^tbutyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-methyl-4-^tbutyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-methyl-4-trimethylsilyl-1-cyclopentadienyl)hafniumdichlorid
- 20 Dimethylsilandiylbis(2-methyl-4-phenyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4-methyl-1-cyclopentadienyl)hafniumdichlorid
- 25 Dimethylsilandiylbis(2-ethyl-4-ethyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4-propyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4-butyl-1-cyclopentadienyl)hafniumdichlorid
- 30 Dimethylsilandiylbis(2-ethyl-4-^tpropyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4-^tbutyl-1-cyclopentadienyl)hafniumdichlorid
- 35 Dimethylsilandiylbis(2-ethyl-4-^tbutyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4-trimethylsilyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4-phenyl-1-cyclopentadienyl)hafniumdichlorid
- 40 Dimethylsilandiylbis(2-propyl-4-methyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-propyl-4-ethyl-1-cyclopentadienyl)hafniumdichlorid
- 45 Dimethylsilandiylbis(2-propyl-4-propyl-1-cyclopentadienyl)hafniumdichlorid

16

- Dimethylsilandiylbis(2-propyl-4-butyl-1-cyclopentadienyl)hafnium-dichlorid
- Dimethylsilandiylbis(2-propyl-4-^tpropyl-1-cyclopenta-dienyl)hafniumdichlorid
- 5 Dimethylsilandiylbis(2-propyl-4-ⁱbutyl-1-cyclopentadienyl)hafnium-dichlorid
- Dimethylsilandiylbis(2-propyl-4-^tbutyl-1-cyclopentadienyl)hafnium-dichlorid
- Dimethylsilandiylbis(2-propyl-4-trimethylsilyl-1-cyclopenta-
10 dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-propyl-4-phenyl-1-cyclopenta-
dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-butyl-4-methyl-1-cyclopentadienyl)hafnium-dichlorid
- 15 Dimethylsilandiylbis(2-butyl-4-ethyl-1-cyclopentadienyl)hafnium-
dichlorid
- Dimethylsilandiylbis(2-butyl-4-propyl-1-cyclopentadienyl)hafnium-
dichlorid
- Dimethylsilandiylbis(2-butyl-4-butyl-1-cyclopentadienyl)hafnium-
20 dichlorid
- Dimethylsilandiylbis(2-butyl-4-ⁱpropyl-1-cyclopentadienyl)hafnium-
dichlorid
- Dimethylsilandiylbis(2-butyl-4-^tbutyl-1-cyclopentadienyl)hafnium-
dichlorid
- 25 Dimethylsilandiylbis(2-butyl-4-^tbutyl-1-cyclopentadienyl)hafnium-
dichlorid
- Dimethylsilandiylbis(2-butyl-4-trimethylsilyl-1-cyclopenta-
dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-butyl-4-phenyl-1-cyclopentadienyl)hafnium-
30 dichlorid
- Dimethylsilandiylbis(2-ⁱpropyl-4-methyl-1-cyclopenta-
dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ⁱpropyl-4-ethyl-1-cyclopentadienyl)hafnium-
dichlorid
- 35 Dimethylsilandiylbis(2-ⁱpropyl-4-propyl-1-cyclopenta-
dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ⁱpropyl-4-butyl-1-cyclopentadienyl)hafnium-
dichlorid
- Dimethylsilandiylbis(2-ⁱpropyl-4-ⁱpropyl-1-cyclopenta-
40 dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ⁱpropyl-4-ⁱbutyl-1-cyclopenta-
dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ⁱpropyl-4-^tbutyl-1-cyclopenta-
dienyl)hafniumdichlorid
- 45 Dimethylsilandiylbis(2-ⁱpropyl-4-trimethylsilyl-1-cyclopenta-
dienyl)hafniumdichlorid

17

- Dimethylsilandiylbis(2-^tpropyl-4-phenyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-methyl-1-cyclopentadienyl)hafnium-dichlorid
- 5 Dimethylsilandiylbis(2-^tbutyl-4-ethyl-1-cyclopentadienyl)hafnium-dichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-propyl-1-cyclopentadienyl)hafnium-dichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-butyl-1-cyclopentadienyl)hafnium-10 dichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-^tpropyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-^tbutyl-1-cyclopentadienyl)hafnium-dichlorid
- 15 Dimethylsilandiylbis(2-^tbutyl-4-^tbutyl-1-cyclopentadienyl)hafnium-dichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-trimethylsilyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-^tbutyl-4-phenyl-1-cyclopentadienyl)hafnium-20 dichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4-methyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4-ethyl-1-cyclopenta-dienyl)hafniumdichlorid
- 25 Dimethylsilandiylbis(2-trimethylsilyl-4-propyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4-butyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4-^tpropyl-1-cyclopenta-30 dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4-^tbutyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4-^tbutyl-1-cyclopenta-dienyl)hafniumdichlorid
- 35 Dimethylsilandiylbis(2-trimethylsilyl-4-trimethylsilyl-1-cyclo-pentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4-phenyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4-methyl-1-cyclopenta-40 dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4-ethyl-1-cyclopentadienyl)hafnium-dichlorid
- Dimethylsilandiylbis(2-phenyl-4-propyl-1-cyclopenta-dienyl)hafniumdichlorid
- 45 Dimethylsilandiylbis(2-phenyl-4-butyl-1-cyclopentadienyl)hafnium-dichlorid

18

- Dimethylsilandiylbis(2-phenyl-4-^tpropyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4-^tbutyl-1-cyclopentadienyl)hafniumdichlorid
- 5 Dimethylsilandiylbis(2-phenyl-4-^tbutyl-1-cyclopentadienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4-trimethylsilyl-1-cyclopenta-dienyl)hafniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4-phenyl-1-cyclopenta-dienyl)hafniumdichlorid
- 10 Dimethylsilandiylbis(2-methyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-propyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-butyl-1-indenyl)hafniumdichlorid
- 15 Dimethylsilandiylbis(2-^tpropyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-^tbutyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-phenyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-methyl-4,5,6,7-tetra-
- 20 hydro-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4,5,6,7-tetra-hydro-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-propyl-4,5,6,7-tetra-hydro-1-indenyl)hafniumdichlorid
- 25 Dimethylsilandiylbis(2-butyl-4,5,6,7-tetra-hydro-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-^tpropyl-4,5,6,7-tetra-hydro-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-^tbutyl-4,5,6,7-tetra-
- 30 hydro-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-trimethylsilyl-4,5,6,7-tetra-hydro-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-phenyl-4,5,6,7-tetra-hydro-1-indenyl)hafniumdichlorid
- 35 Dimethylsilandiylbis(2-methyl-4,7-dimethyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-ethyl-4,7-dimethyl-1-indenyl)hafniumdichlorid
- Dimethylsilandiylbis(2-propyl-4,7-dimethyl-1-indenyl)hafnium-
- 40 dichlorid
- Dimethylsilandiylbis(2-butyl-4,7-dimethyl-1-indenyl)hafnium-dichlorid
- Dimethylsilandiylbis(2-^tpropyl-4,7-dimethyl-1-indenyl)hafnium-
- 45 dichlorid
- Dimethylsilandiylbis(2-^tbutyl-4,7-dimethyl-1-indenyl)hafnium-dichlorid

19

- Dimethylsilandiylbis(2-trimethyl-
silyl-4,7-dimethyl-1-indenyl)hafniumdichlorid
Dimethylsilandiylbis(2-phenyl-4,7-dimethyl-1-indenyl)hafnium-
dichlorid
5 Dimethylsilandiylbis(2-methyl-4,6-di-^tpropyl-1-indenyl)hafnium-
dichlorid
Dimethylsilandiylbis(2-ethyl-4,6-di-^tpropyl-1-indenyl)hafnium-
dichlorid
Dimethylsilandiylbis(2-propyl-4,6-di-^tpropyl-1-indenyl)hafnium-
10 dichlorid
Dimethylsilandiylbis(2-butyl-4,6-di-^tpropyl-1-indenyl)hafnium-
dichlorid
Dimethylsilandiylbis(2-^tpropyl-4,6-di-^tpropyl-1-indenyl)hafnium-
dichlorid
15 Dimethylsilandiylbis(2-^tbutyl-4,6-di-^tpropyl-1-indenyl)hafnium-
dichlorid
Dimethylsilandiylbis(2-trimethyl-
silyl-4,6-di-^tpropyl-1-indenyl)hafniumdichlorid
Dimethylsilandiylbis(2-phenyl-4,6-di-^tpropyl-1-indenyl)hafnium-
20 dichlorid
Dimethylsilandiylbis(2-methyl-1-benzindenyl)hafniumdichlorid
Dimethylsilandiylbis(2-ethyl-1-benzindenyl)hafniumdichlorid
Dimethylsilandiylbis(2-propyl-1-benzindenyl)hafniumdichlorid
Dimethylsilandiylbis(2-butyl-1-benzindenyl)hafniumdichlorid
25 Dimethylsilandiylbis(2-^tpropyl-1-benzindenyl)hafniumdichlorid
Dimethylsilandiylbis(2-^tbutyl-1-benzindenyl)hafniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-1-benzindenyl)hafnium-
dichlorid
Dimethylsilandiylbis(2-phenyl-1-benzindenyl)hafniumdichlorid
30 Dimethylsilandiylbis(2-methyl-4-phenyl-1-indenyl)hafniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl)hafniumdichlorid
Dimethylsilandiylbis(2-propyl-4-phenyl-1-indenyl)hafniumdichlorid
Dimethylsilandiylbis(2-butyl-4-phenyl-1-indenyl)hafniumdichlorid
Dimethylsilandiylbis(2-^tpropyl-4-phenyl-1-indenyl)hafniumdichlorid
35 Dimethylsilandiylbis(2-^tbutyl-4-phenyl-1-indenyl)hafniumdichlorid
Dimethylsilandiylbis(2-trimethylsilyl-4-phenyl-1-indenyl)hafnium-
dichlorid
Dimethylsilandiylbis(2-phenyl-4-phenyl-1-indenyl)hafniumdichlorid
Dimethylsilandiylbis(2-methyl-4-naphthyl-1-indenyl)hafnium-
40 dichlorid
Dimethylsilandiylbis(2-ethyl-4-naphthyl-1-indenyl)hafnium-
dichlorid
Dimethylsilandiylbis(2-propyl-4-naphthyl-1-indenyl)hafnium-
dichlorid
45 Dimethylsilandiylbis(2-butyl-4-naphthyl-1-indenyl)hafnium-
dichlorid

20

Dimethylsilandiylbis(2-^tpropyl-4-naphthyl-1-indenyl)hafnium-dichlorid

Dimethylsilandiylbis(2-^tbutyl-4-naphthyl-1-indenyl)hafnium-dichlorid

5 Dimethylsilandiylbis(2-trimethyl-silyl-4-naphthyl-1-indenyl)hafniumdichlorid

Dimethylsilandiylbis(2-phenyl-4-naphthyl-1-indenyl)hafnium-dichlorid

10 sowie die analogen diphenylsilylenverbrückten Komplexe.

Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten cyclischen Kohlenwasserstoffanionen mit

15 Halogeniden von Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal bevorzugt ist. Beispiele für entsprechende Herstellungsverfahren sind u.a. in Brintzinger et al., Journal of Organometallic Chemistry, 369 (1989), S. 359 - 370 beschrieben.

20 Die nach diesen üblichen Methoden hergestellten ansa-Metallocenkomplexe werden meist in einem Verhältnis von ca. 1 : 1 von rac.- zu meso-Form erhalten.

Bei dem erfunderungsgemäßen Verfahren der photochemischen Umwandlung kann man so vorgehen, daß man das Gemisch aus rac.- und meso-Form elektromagnetisch mit einer Wellenlänge von kleiner als 25 1000 nm, bevorzugt 50 bis 500 nm, beispielsweise mit einer UV-Lampe bestrahlt. Es hat sich als geeignet erwiesen, wenn die Bestrahlung bei Temperaturen von -80 bis +100°C über einen Zeitraum von 0,01 bis 72 Stunden durchgeführt wird.

Erfindungsgemäß erfolgt die photochemische Umwandlung in Anwesenheit eines chiralen Hilfsreagens. Besonders geeignet sind chirale Hilfsreagenzien, die bifunktionell sind, insbesondere
35 Dialkoholate.

Von den Dialkoholaten sind diejenigen besonders geeignet, die sich ableiten von Dialkoholen der allgemeinen Formel II

40

45

21

10

in der die Substituenten folgende Bedeutung haben:

R¹⁵ bis R¹⁸ Wasserstoff, C₁- bis C₁₀-Alkyl oder C₆- bis C₁₅-Aryl,

15

R¹⁹ und R²⁰ Wasserstoff, C₁- bis C₁₀-Alkyl, C₃- bis C₁₀-Cycloalkyl oder C₆- bis C₁₅-Aryl, oder wobei R¹⁹ und R²⁰ zusammen einen C₃- bis C₁₀-Cycloalkylring bilden

20

oder von

25

30

oder von

35

40

oder besonders bevorzugt von Binaphtholen, insbesondere von 1,1'-Bi-2-naphthol

45

5

10 Die chiralen Dialkohole sind an sich bekannt und kommerziell erhältlich. Aus diesen Dialkoholen wird dann durch einfache Umsetzung mit einer geeigneten Base wie n-Butyllithium das Dialkoholat hergestellt, welches dann als chirales Hilfsreagens eingesetzt wird. Selbstverständlich sind auch andere chirale Verbindungen 15 wie Dimercaptane oder Diamine als chirale Hilfsreagenzien hier geeignet. Diese Verbindungen sowie Verfahren zu ihrer Herstellung sind ebenfalls an sich bekannt.

Mischungen verschiedener chiraler Hilfsreagenzien können ebenfalls 20 eingesetzt werden.

Das molare Verhältnis von chiralem Hilfsreagens zu dem ansa-Metallocenkomplex beträgt vorzugsweise 0,1 : 1 bis 10 : 1, insbesondere 0,5 : 1 bis 1,5 : 1.

25

Als besonders geeignet hat es sich erwiesen, wenn man in Anwesenheit eines Lösungsmittels arbeitet. Organische Lösungsmittel wie Tetrahydrofuran, CH_2Cl_2 , CHCl_3 und insbesondere aromatische Kohlenwasserstoffe wie Benzol, deuteriertes Benzol und Toluol werden 30 bevorzugt eingesetzt. Es können auch Lösungsmittelgemische eingesetzt werden.

Als besonders geeignet hat sich folgendes Verfahren erwiesen: Eine Mischung aus rac.- und meso-Form eines ansa-Metallocenkomplexes oder nur die meso-Form eines ansa-Metallocenkomplexes, das chirale Hilfsreagens und das Lösungsmittel werden in ein Bestrahlungsgefäß einer UV-Bestrahlungsapparatur eingefüllt, vorzugsweise unter Inertgasatmosphäre. Das chirale Hilfsreagens reagiert nun während der Bestrahlung ausschließlich mit der rac.-Form des 40 ansa-Metallocenkomplexes zu einem photoinaktiven Folgeprodukt, während die meso-Form zur rac.-Form isomerisiert. Das photoinaktive Folgeprodukt kann nun nach an sich bekannten Methoden, wie in Brintzinger et al., Journal of Organometallic Chemistry, 232 (1982), S. 233 - 247 beschrieben, durch Umsetzung mit beispielweise 45 Methyllithium und anschließender Rückspaltung mit gasförmiger HCl in das rac.-Dichlorid des ansa-Metallocenkomplexes überführt werden. Alternativ kann das Alkoholat auch, wie in der

23

JP-A 05287017 beschrieben, durch Umsetzung mit einem Metallalkyl alkyliert und in situ mit einem Kationenbildner zum polymerisationsaktiven Metalloceniumkation aktiviert werden. Bei der bevorzugten Verwendung von ansa-Metallocenkomplexen als Katalysatoren 5 zur Herstellung von Polyolefinen kann man auch das photoinaktive Folgeprodukt (z. B. Metallocenbinaphtholat) direkt mit üblichen Cokatalysatoren, wie Alumoxanen, als aktive Katalysatorkomponente einsetzen, wie in Waymouth et al., J. Am. Chem. Soc., 112 (1990), S. 4911 - 4914 beschrieben.

10

Das erfindungsgemäße Verfahren liefert eine quantitative Umwandlung der achiralen meso-Form eines ansa-Metallocenkomplexes in die chirale rac.-Form, wobei das Verfahren verfahrenstechnisch einfach und kostengünstig ist. Die chirale rac.-Form eines ansa- 15 Metallocenkomplexes findet vor allem als Katalysator für die stereospezifische Polymerisation von Olefinen Verwendung.

Beispiele

20 Die photochemische Umwandlung erfolgte durch Bestrahlung mit einer Hg-Dampflampe vom Typ Phillips HPK 125W.

Beispiel 1:

25 Herstellung von rac.-Dimethylsilandiylbis(2-methyl-4-tert.butyl-1-cyclopentadienyl)zirkon-1,1'-bi-2-naphtholat durch Umwandlung eines rac./meso-Gemisches

24 mg (0,05 mmol) eines rac./meso-Gemisches (Molverhältnis 1 : 1) 30 von Dimethylsilandiylbis(2-methyl-4-tert.butyl-1-cyclopentadienyl)zirkondichlorid, 21 mg (0,07 mmol) 1,1'-Bi-2-naphtholatdilithium und 0,4 ml C₆D₆ wurden in ein NMR-Röhrchen gefüllt, eingefroren und unter Hochvakuum abgeschmolzen. Anschließend wurde das Röhrchen an der Hg-Dampflampe befestigt und über einen Zeitraum 35 von 24 Stunden bei einer Temperatur von 40°C bestrahlt. Die quantitative Umwandlung zu rac.-Dimethylsilandiylbis-(2-methyl-4-tert.butyl-1-cyclopentadienyl)zirkon-1,1'-bi-2-naphtholat ließ sich NMR-spektroskopisch nachweisen.

40 ¹H-NMR, Signallagen relativ zu TMS (Tetramethylsilan) in C₆D₆:

0.58 ppm (s, 6H); 0.76 ppm (s, 18H); 2.11 ppm (s, 2H); 5.59 ppm (d, 2H); 5.96 ppm (d, 2H); 6.8 - 7.3 und 7.7 - 7.82 ppm (d, 12H).

Beispiel 2:

Herstellung von rac.-Dimethylsilandiylibis(2-methyl-4-phenyl-1-cyclopentadienyl)zirkon-1,1'-bi-2-naphtholat durch Umwandlung der meso-Form

528 mg (1mmol) meso-Dimethylsilandiylibis(2-methyl-4-phenyl-1-cyclopentadienyl)zirkondichlorid und 328 mg (1,2mmol) 1,1'-Bi-2-naphtholatdilithium wurden in ein Bestrahlungsgefäß der 10 Hg-Dampflampe eingefüllt und in 50 ml abs. Toluol suspendiert. Die Suspension wurde durch Durchleiten eines schwachen Argonstroms durchmischt und 5 Stunden bei 30°C bestrahlt. Hierbei wurde eine rein-gelbe Lösung erhalten, in der gebildetes LiCl suspendiert war. Das LiCl wurde durch Filtration (unter Schutzgas) über 15 Kieselgur abgetrennt und vom Filtrat wurde das Lösungsmittel abgezogen. Nach Waschen mit Pentan und Trocknen im Vakuum blieben 690 mg rac.-Dimethylsilandiylibis(2-methyl-4-phenyl-1-cyclopentadienyl)zirkon-1,1'-bi-2-naphtholat zurück [Ausbeute 93 %; $^1\text{H-NMR}$ [C_6D_6]: 0.66 ppm (s, 6H), 2,07 ppm (s, 6H), 5.92/5.93 ppm (d, 2H), 20 6.22/6.23 ppm (d, 2H), 6.45 - 7.8 ppm (m, 22H)].

Vergleichsbeispiel V1:

Umsetzung von rac./meso-Dimethylsilandiylibis(2-methyl-4-phenyl-1-cyclopentadienyl)zirkondichlorid mit 1,1'-Bi-2-naphtholat-dilithium ohne Bestrahlung.

26 mg (0,05 mmol) Dimethylsilandiylibis(2-methyl-4-phenyl-1-cyclopentadienyl)zirkondichlorid (Molverhältnis rac./meso: 1 : 1) und 30 21 mg (0,07 mmol) 1,1'-Bi-2-naphtholatdilithium wurden in ein NMR-Röhrchen eingewogen und in 0,4 ml C_6D_6 gelöst. Nach Einfrieren der Lösung wurde das Röhrchen unter Hochvakuum abgeschmolzen und nach dem Auftauen gut durchgeschüttelt.

35 NMR-spektroskopisch ließ sich eine Reaktion der rac.-Diastereomeren mit dem Binaphtholat verfolgen, die nach 6h vollständig abgelaufen war: $^1\text{H-NMR}$ [C_6D_6]: 0.66 ppm (s, 6H), 2.07 ppm (s, 6H), 5.92/5.93 ppm (d, 2H), 6.22/6.23 ppm (d, 2H), 6.45 - 7.8 ppm (m, 22H). Dagegen waren die Signale des meso-Diastereomeren unverändert.

Patentansprüche

1. Verfahren zur Umwandlung der achiralen meso-Form eines ansa-Metallocenkomplexes in die chirale rac.-Form, dadurch gekennzeichnet, daß die Umwandlung photochemisch in Anwesenheit eines chiralen Hilfsreagens erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in Anwesenheit eines organischen Lösungsmittels arbeitet.
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß die photochemische Umwandlung mit elektromagnetischer Strahlung einer Wellenlänge von kleiner als 1000 nm erfolgt.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das chirale Hilfsreagens bifunktionell ist.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß als chirales Hilfsreagens ein Dialkoholat eingesetzt wird.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß als chirales Hilfsreagens das Racemat eines Binaphtholats eingesetzt wird.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß ansa-Metallocenkomplexe der Formel I

30

35

40

I

45

26

in der die Substituenten und Indices folgende Bedeutung haben:

- M Titan, Zirkonium, Hafnium, Vanadium, Niob oder
5 Tantal,
- X Fluor, Chlor, Brom, Iod, Wasserstoff, C₁- bis
C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder -OR¹⁰,
- 10** wobei R¹⁰ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl,
Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis
20 C-Atomen im Arylrest bedeutet,
- 15** R¹ bis R⁸ Wasserstoff, C₁- bis C₁₀-Alkyl, 5- bis 7-gliediges Cycloalkyl, das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R¹¹)₃ mit
- R¹¹ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,
- 25**

- 40** = BR¹², = AlR¹², -Ge-, -Sn-, -O-, -S-, = SO,
= SO₂, = NR¹², = CO, = PR¹² oder = P(O)R¹² ist,
wobei R¹², R¹³ und R¹⁴ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenyl-
- 45**

27

gruppe, eine C₇-C₄₀-Arylalkylgruppe, eine
C₈-C₄₀-Arylalkenylgruppe oder eine
C₇-C₄₀-Alkylarylgruppe bedeuten oder R¹² und
R¹³ oder R¹² und R¹⁴ jeweils mit den sie ver-
bindenden Atomen einen Ring bilden, und

5

M¹ Silicium, Germanium oder Zinn ist

eingesetzt werden.

10

8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeich-
net, daß die ansa-Metallocenkomplexe in 2-Position an den
Cyclopentadienyl-Ringen substituiert sind.

15

9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeich-
net, daß als ansa-Metallocenkomplexe silylverbrückte Komplexe
eingesetzt werden.

20

25

30

35

40

45

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 96/02868

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07F17/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 232, 1982, pages 233-247, XP002015340 WILD, F.R.W.P. ET AL.: "ansa-metallocene derivatives. iv. synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands" see the whole document ---	1-9 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search 8 October 1996	Date of mailing of the international search report 22.11.96
---	--

Name and mailing address of the ISA European Patent Office, P.O. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Rinkel, L
---	-------------------------------------

INTERNATIONAL SEARCH REPORT

International Application No PCT, EP 96/02868
--

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	THE JOURNAL OF ORGANIC CHEMISTRY, vol. 54, 1989, pages 4154-4158, XP002015341 COLLINS, S. ET AL.: "additions of chiral allyltitanocenes to aldehydes: diastereoselective synthesis of homoallylic alcohols with a recyclable chiral transition metal reagent" see the whole document ---	1-9
Y	JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 342, 1988, pages 21-29, XP002015342 COLLINS, S. ET AL.: "x-ray structures of ethylenebis(tetrahydroindenyl)-titanium and -zirconium dichlorides: a revision" cited in the application see the whole document ---	1-9
Y	MAKROMOL. CHEM., RAPID COMMUN., vol. 8, 1987, pages 305-310, XP000605211 TAKEMURA, S. ET AL.: "ISOTACTIC POLYMERIZATION OF PROPENE WITH (ETA-1,1'-ETHYLENEDI-4,5,6,7-TETRAHYDROIND ENYL)ZIRCONIUM DICHLORIDE COMBINED WITH METHYLALUMINOXANE" see the whole document ---	1-9
Y	JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 114, 1992, pages 9300-9304, XP002015343 LEVI-MINZI, N. ET AL.: "PHOTOCHEMISTRY IN BIOLOGICAL MATRICES: ACTIVATION OF RACEMIC MIXTURES AND INTERCONVERSION OF ENANTIOMERS" see the whole document -----	1-9

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT, EP 96/02868

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 C07F17/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C07F

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	<p>JOURNAL OF ORGANOMETALLIC CHEMISTRY, Bd. 232, 1982, Seiten 233-247, XP002015340 WILD, F.R.W.P. ET AL.: "ansa-metallocene derivatives. iv. synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands" siehe das ganze Dokument</p> <p>---</p> <p>-/-</p>	1-9

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *'A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *'E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *'L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifach er scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *'O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *'P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *'T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *'X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *'Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *'&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

8. Oktober 1996

22.11.96

Name und Postanschrift der Internationale Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Rinkel, L

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PC1, cP 96/02868

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	THE JOURNAL OF ORGANIC CHEMISTRY, Bd. 54, 1989, Seiten 4154-4158, XP002015341 COLLINS, S. ET AL.: "additions of chiral allyltitanocenes to aldehydes: diastereoselective synthesis of homoallylic alcohols with a recyclable chiral transition metal reagent" siehe das ganze Dokument ---	1-9
Y	JOURNAL OF ORGANOMETALLIC CHEMISTRY, Bd. 342, 1988, Seiten 21-29, XP002015342 COLLINS, S. ET AL.: "x-ray structures of ethylenebis(tetrahydroindenyl)-titanium and -zirconium dichlorides: a revision" in der Anmeldung erwähnt siehe das ganze Dokument ---	1-9
Y	MAKROMOL. CHEM., RAPID COMMUN., Bd. 8, 1987, Seiten 305-310, XP000605211 TAKEMURA, S. ET AL.: "ISOTACTIC POLYMERIZATION OF PROPENE WITH (ETA-1,1'-ETHYLENEDI-4,5,6,7-TETRAHYDROIND ENYL)ZIRCONIUM DICHLORIDE COMBINED WITH METHYLALUMINOXANE" siehe das ganze Dokument ---	1-9
Y	JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Bd. 114, 1992, Seiten 9300-9304, XP002015343 LEVI-MINZI, N. ET AL.: "PHOTOCHEMISTRY IN BIOLOGICAL MATRICES: ACTIVATION OF RACEMIC MIXTURES AND INTERCONVERSION OF ENANTIOMERS" siehe das ganze Dokument -----	1-9