Najpopularniejsze systemy liczbowe

Paweł Luszuk 21 grudnia 2014

Spis treści

1	Wprowadzenie	3		
2	System dziesiętny			
	2.1 Definicja	3		
	2.2 Ogólny zapis			
3	System binarny	4		
	3.1 Ogólny zapis	4		
	3.2 Porównanie z systemem dziesiętnym	4		
	3.3 Operacje arytmetyczne w systemie binarnym			
4	System szesnastkowy	6		
	4.1 Definicja	6		
	4.2 Porównanie z pozostałymi systemami			
5	Bibliografia	7		

1 Wprowadzenie

Ludzie, którzy na co dzień używają tylko systemu dziesiętnego do zapisu liczb czasem nie potrafią zrozumieć, jaka jest różnica pomiędzy systemem liczbowym a wartością liczby. System liczenia to sposób, w jaki zapisuje się liczby, a także algorytmy, dzięki którym z zapisu można odczytać wartość liczby. Poza tym system liczenia to także reguły, za pomocą, których można na liczbach zapisanych w konkretny sposób wykonywać działania.

2 System dziesiętny

2.1 Definicja

Najpowszechniej używanym sposobem przedstawiania liczb naturalnych jest system dziesiętny, gdzie na przykład zapis

178

przedstawia liczbę składającą się z jednej setki siedmiu dziesiątek i ośmiu jedności. Możemy to zapisać w postaci

$$178 = 1 \cdot 100 + 7 \cdot 10 + 8 \cdot 1$$

albo inaczej

$$178 = 1 \cdot 10^2 + 7 \cdot 10^1 + 8 \cdot 10^0$$

Tak więc w systemie dziesiętnym kolejne cyfry oznaczają współczynniki przy kolejnych potęgach liczby dziesięć, zaczynając od największej a kończąc na najmniejszej potędze. Mówimy, że liczba dziesięć jest podstawą lub bazą systemu dziesiętnego.

2.2 Ogólny zapis

W systemie dziesiętnym używamy dziesięciu cyfr:

a zapis

$$d_r d_{r-1} \dots d_1 d_0$$

oznacza liczbę

$$d_r \cdot 10^r + d_{r-1} \cdot 10^{r-1} + \dots + d_1 \cdot 10^1 + d_0 \cdot 10^0$$

3 System binarny

3.1 Ogólny zapis

W informatyce bardzo ważnym systemem liczbowym jest system binarny (dwójkowy), gdzie podstawą jest liczba 2 i gdzie mamy tylko dwie cyfry,1 i 0. Zapis

$$d_r d_{r-1} ... d_1 d_0$$

oznacza liczbę

$$\sum_{i=0}^{r} d_i \cdot 2^i = d_r \cdot 2^r + d_{r-1} \cdot 2^{r-1} + \dots + d_1 \cdot 2^1 + d_0 \cdot 2^0$$

3.2 Porównanie z systemem dziesiętnym

W poniższej tabeli przedstawiono siedemnaście kolejnych liczb w postaci dwójkowej i dziesiętnej

Dwójkowy	Dziesiętny
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15
10000	16

3.3 Operacje arytmetyczne w systemie binarnym

$$Dodawanie \left\{ \begin{array}{c} 10101 + 111 = 11100 \\ 11 + 1 = 100 \end{array} \right.$$

$$Odejmowanie \left\{ \begin{array}{c} 10101-111=1110 \\ 11-1=10 \end{array} \right.$$

$$Mno{\bf \dot{z}}enie \left\{ \begin{array}{c} 10101 \cdot 111 = 10010011 \\ 11 \cdot 1 = 11 \end{array} \right.$$

$$Dzielenie \left\{ egin{array}{ll} 10101:111=111 \\ 11:1=11 \end{array}
ight.$$

4 System szesnastkowy

4.1 Definicja

W informatyce używa się też systemu szesnastkowego, gdzie podstawą jest liczba 16.do systemu szesnastkowego potrzebujemy szesnastu cyfr.Zwykle używa się następujących "cyfr":

$$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F$$

4.2 Porównanie z pozostałymi systemami

W poniższej tabeli zestawiono cyfry systemu szesnastkowego z odpowiadającymi im liczbami w systemie dwójkowym i dziesiętnym.

Szesnastkowy	Dwójkowy	Dziesiętny
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

Rysunek 1: Komputer kontemplujący nad sensem istnienia w grafice wektorowej

5 Bibliografia

Literatura

- [1] A.Szpietowski, *Matematyka dyskretna*, Wydawnictwo Uniwersytetu Gdańskiego,Gdańsk 2010.
- [2] Wikipedia www.wikipedia.pl