Systems of Linear Inequalities in Two Variables

Jonathan R. Bacolod

Sauyo High School

What is a System of Linear Inequalities?

A system of linear inequalities in two variables consists of at least two linear inequalities in the same variables.

$$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$$

$$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$$
$$\begin{cases} y \le 3x - 1 \\ y \ge x - 1 \end{cases}$$

$$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$$
$$\begin{cases} y \le 3x - 1 \\ y \ge x - 1 \end{cases}$$
$$\begin{cases} 2x < \frac{2}{3}y + 1 \\ 3x + y < 2 \end{cases}$$

$$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$$

$$\begin{cases} y \le 3x - 1 \\ y \ge x - 1 \end{cases}$$

$$\begin{cases} 2x < \frac{2}{3}y + 1 \\ 3x + y \le 2 \end{cases}$$

$$\begin{cases} \frac{1}{2}x \ge 3y \\ y > 6x \end{cases}$$

Examples

Non-Examples

$$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$$

$$\begin{cases} y \le 3x - 1 \\ y \ge x - 1 \end{cases}$$

$$\begin{cases} 2x < \frac{2}{3}y + 1 \\ 3x + y \le 2 \end{cases}$$

$$\begin{cases} \frac{1}{2}x \ge 3y \\ y > 6x \end{cases}$$

Examples
$\int 2x + y < 10$
$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$
$\int y \leq 3x - 1$
$y \ge x - 1$
$\begin{cases} 2x & < \frac{2}{3}y + 1 \\ 3x + y \le 2 \end{cases}$
$3x + y \leq 2$
$\begin{cases} \frac{1}{2}x & \geq 3y \\ y > 6x \end{cases}$
$\int_{-\infty}^{\infty} y > 6x$

Non-Examples

x + y > 6

Examples
$\int 2x + y < 10$
$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$
$\begin{cases} y \le 3x - 1 \\ y \ge x - 1 \end{cases}$
$y \ge x - 1$
$\begin{cases} 2x < \frac{2}{3}y + 1 \\ 3x + y \le 2 \end{cases}$
$3x + y \leq 2$
$\begin{cases} \frac{1}{2}x & \geq 3y \\ \frac{1}{2}x & \leq 3y \end{cases}$
1

Non-Examples

$$\begin{cases} x & \leq 1 \\ x + y > 2 \end{cases}$$

x + y > 6

Examples

Non-Examples

$$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$$

$$\begin{cases} y \le 3x - 1 \\ y \ge x - 1 \end{cases}$$

$$\begin{cases} 2x < \frac{2}{3}y + 1 \\ 3x + y \le 2 \end{cases}$$

$$\begin{cases} \frac{1}{2}x \ge 3y \\ y > 6x \end{cases}$$

$$x + y > 6$$

$$\begin{cases} x & \leq 1 \\ x + y > 2 \end{cases}$$

$$\begin{cases} x + 2y \leq 3 \\ x + 3y = 2 \end{cases}$$

Examples	Non-Examples
$\int 2x + y < 10$	x + y > 6
$\int x + y > 6$	$\int x \leq 1$
$\begin{cases} 2x + y < 10 \\ x + y > 6 \end{cases}$ $\begin{cases} y \le 3x - 1 \\ y \ge x - 1 \end{cases}$	$\begin{cases} x & \leq 1 \\ x + y > 2 \end{cases}$ $\begin{cases} x + 2y \leq 3 \\ x + 3y = 2 \end{cases}$
$\begin{cases} y \ge x - 1 \\ 2y = 1 \end{cases}$	$\begin{cases} x + 2y \leq 3 \\ 2 \end{cases}$
$\begin{cases} 2x & < \frac{2}{3}y + 1 \\ 3x + y \le 2 \end{cases}$	$\begin{cases} x + 3y = 2 \\ x + y > 1 \end{cases}$
	$\begin{cases} x + y & \geq 1 \\ x + y - z < 4 \end{cases}$
$\begin{cases} \frac{1}{2}x & \geq 3y \\ y > 6x \end{cases}$,

$$\begin{cases} y > x - 1 \\ x + y \le 6 \end{cases}$$

$$\begin{cases} y > x - 1 \\ x + y \le 6 \end{cases}$$
 Yes

$$\begin{cases} y > x - 1 \\ x + y \le 6 \end{cases}$$
 Yes
$$\begin{cases} y > 3x - 1 \\ y = x - 1 \end{cases}$$

$$\begin{cases} y > x - 1 \\ x + y \le 6 \end{cases}$$
 Yes
$$\begin{cases} y > 3x - 1 \\ y = x - 1 \end{cases}$$
 No

$$\begin{cases} y > x - 1 \\ x + y \le 6 \end{cases}$$
 Yes
$$\begin{cases} y > 3x - 1 \\ y = x - 1 \end{cases}$$
 No
$$\begin{cases} 2x \ge y + 1 \\ 3x < 2y \end{cases}$$

$$\begin{cases} y > x - 1 \\ x + y \le 6 \end{cases}$$
 Yes
$$\begin{cases} y > 3x - 1 \\ y = x - 1 \end{cases}$$
 No
$$\begin{cases} 2x \ge y + 1 \\ 3x < 2y \end{cases}$$
 Yes

$$\begin{cases} y > x - 1 \\ x + y \le 6 \end{cases}$$
 Yes
$$\begin{cases} y > 3x - 1 \\ y = x - 1 \end{cases}$$
 No
$$\begin{cases} 2x \ge y + 1 \\ 3x < 2y \end{cases}$$
 Yes
$$\begin{cases} x > 3y \\ y \le 2 \end{cases}$$

$$\begin{cases} y > x - 1 \\ x + y \le 6 \end{cases}$$
 Yes
$$\begin{cases} y > 3x - 1 \\ y = x - 1 \end{cases}$$
 No
$$\begin{cases} 2x \ge y + 1 \\ 3x < 2y \end{cases}$$
 Yes
$$\begin{cases} x > 3y \\ y \le 2 \end{cases}$$
 No

What is the Graph of a System of Linear Inequalities?

The graph of a system of linear inequalities is the graph of all solutions of the system.

What is a Solution of a System of Linear Inequalities?

The solution of a linear inequality is the ordered pair that is a solution to all inequalities in the system.

How to Check Whether an Ordered Pair is a Solution to a System of Linear Inequalities?

How to Check Whether an Ordered Pair is a Solution to a System of Linear Inequalities?

- 1. Replace x and y with the given values in both inequalities.
- 2. Simplify. Check if the ordered pair satisfies both inequalities.

Is the ordered pair (2, 1) a solution to the system $\begin{cases} x-y \leq 1 \\ x+y < 4 \end{cases}$?

Step 1: Replace x and y with the given values in both inequalities.

Given: x = 2,

Given:
$$x = 2$$
, $y = 1$

Given:
$$x = 2$$
, $y = 1$
 $x - y \le 1$

Given:
$$x = 2$$
, $y = 1$
 $x - y \le 1$
 $2 - 1 < 1$

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = 2$$
, $y = 1$

$$x - y \leq 1$$

$$2 - 1 \le 1$$

Substitution Property

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = 2$$
, $y = 1$

$$x - y \leq 1$$

$$2 - 1 \le 1$$

Substitution Property

Given:
$$x = 2$$
, $y = 1$

$$x - y \le 1$$

$$2-1 \le 1$$
 Substitution Property

$$1 \le 1$$
 Simplification

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = 2$$
, $y = 1$

$$x - y \leq 1$$

$$2-1 \le 1$$
 Substitution Property

$$1 \le 1$$
 Simplification

 \therefore the ordered pair (2,1) satisfies the inequality $x-y \le 1$.

Step 1: Replace x and y with the given values in both inequalities.

Given: x = 2,

Given:
$$x = 2$$
, $y = 1$

Given:
$$x = 2$$
, $y = 1$
 $x + y < 4$

Given:
$$x = 2$$
, $y = 1$

$$x + y < 4$$

$$2 + 1 < 4$$

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = 2$$
, $y = 1$

$$x + y < 4$$

$$2 + 1 < 4$$

Substitution Property

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = 2$$
, $y = 1$

$$x + y < 4$$

$$2 + 1 < 4$$

Substitution Property

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = 2$$
, $y = 1$

$$x + y < 4$$

$$2+1<4$$
 Substitution Property

: the ordered pair (2, 1) satisfies the inequality x + y < 4.

: since the ordered pair (2, 1) satisfies both the inequalities $x-y \le 1$ and x+y < 4, it is a solution to the system $\begin{cases} x-y \le 1 \\ x+y < 4 \end{cases}$

Is the ordered pair (-1, 1) a solution to the system $\begin{cases} x & \geq -y \\ 2x + y > 1 \end{cases}$?

Step 1: Replace x and y with the given values in both inequalities.

Given: x = -1,

Given:
$$x = -1$$
, $y = 1$

Given:
$$x = -1, y = 1$$

 $x \ge -y$

Given:
$$x = -1$$
, $y = 1$
 $x \ge -y$
 $-1 \ge -(1)$

Given:
$$x = -1$$
, $y = 1$
 $x \ge -y$
 $-1 \ge -(1)$ Substitution Property

Given:
$$x = -1$$
, $y = 1$
 $x \ge -y$
 $-1 \ge -(1)$ Substitution Property
 $-1 > -1$

Given:
$$x = -1$$
, $y = 1$
 $x \ge -y$
 $-1 \ge -(1)$ Substitution Property
 $-1 \ge -1$ Simplification

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = -1$$
, $y = 1$
 $x \ge -y$
 $-1 \ge -(1)$ Substitution Property
 $-1 \ge -1$ Simplification

 \therefore the ordered pair (-1,1) satisfies the inequality $x \ge -y$.

Step 1: Replace x and y with the given values in both inequalities.

Given: x = -1,

Given:
$$x = -1$$
, $y = 1$

Given:
$$x = -1$$
, $y = 1$
 $2x + y > 1$

Given:
$$x = -1$$
, $y = 1$
 $2x + y > 1$
 $2(-1) + 1 > 1$

Given:
$$x = -1$$
, $y = 1$
 $2x + y > 1$
 $2(-1) + 1 > 1$ Substitution Property

Given:
$$x = -1$$
, $y = 1$
 $2x + y > 1$
 $2(-1) + 1 > 1$ Substitution Property
 $-1 > 1$

Given:
$$x = -1$$
, $y = 1$
 $2x + y > 1$
 $2(-1) + 1 > 1$ Substitution Property
 $-1 > 1$ Simplification

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = -1$$
, $y = 1$
 $2x + y > 1$
 $2(-1) + 1 > 1$ Substitution Property
 $-1 > 1$ Simplification

∴ the ordered pair (-1, 1) does not satisfy the inequality 2x + y > 1.

: since the ordered pair (-1, 1) does not satisfy the inequality 2x + y > 1, it is not a solution to the system $\begin{cases} x & \geq -y \\ 2x + y > 1 \end{cases}$.

Is the ordered pair (2,-1) a solution to the system $\begin{cases} x-2y \leq 4 \\ x+2y \geq 0 \end{cases}$?

Step 1: Replace x and y with the given values in both inequalities.

Given: x = 2,

Given:
$$x = 2$$
, $y = -1$

Given:
$$x = 2$$
, $y = -1$
 $x - 2y < 4$

Given:
$$x = 2$$
, $y = -1$

$$x - 2y \le 4$$

$$2-2(-1) \le 4$$

Given:
$$x = 2$$
, $y = -1$

$$x - 2y < 4$$

$$2-2(-1) \le 4$$
 Substitution Property

Given:
$$x = 2$$
, $y = -1$
 $x - 2y \le 4$
 $2 - 2(-1) \le 4$ Substitution Property
 $4 < 4$

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = 2$$
, $y = -1$
 $x - 2y \le 4$
 $2 - 2(-1) \le 4$ Substitution Property
 $4 \le 4$ Simplification

 \therefore the ordered pair (2,-1) satisfies the inequality $x-2y \le 4$.

Step 1: Replace x and y with the given values in both inequalities.

Given: x = 2,

Given:
$$x = 2$$
, $y = -1$

Given:
$$x = 2$$
, $y = -1$

$$x + 2y \ge 0$$

Given:
$$x = 2$$
, $y = -1$
 $x + 2y \ge 0$
 $2 + 2(-1) \ge 0$

Given:
$$x = 2$$
, $y = -1$

$$x + 2y \ge 0$$

$$2+2(-1) \ge 0$$
 Substitution Property

Given:
$$x = 2$$
, $y = -1$
 $x + 2y \ge 0$
 $2 + 2(-1) \ge 0$ Substitution Property
 $0 > 0$

Step 2: Simplify. Check if the ordered pair satisfies both inequalities.

Given:
$$x = 2$$
, $y = -1$
 $x + 2y \ge 0$
 $2 + 2(-1) \ge 0$ Substitution Property
 $0 \ge 0$ Simplification

 \therefore the ordered pair (2,-1) satisfies the inequality $x+2y \ge 0$.

```
: since the ordered pair (2,-1) satisfies both the inequalities x-2y \le 4 and x+2y \ge 0, it is a solution to the system \begin{cases} x-2y \le 4 \\ x+2y \ge 0 \end{cases}.
```

Thank you for watching.