

FUJIFILM Sonosite Manufacturing, LLC iViz

SAR Evaluation Report # SONO0375
Evaluated to the following SAR specification:

FCC 2.1093:2015

FCC 15.247:2015

WiFi and Bluetooth Radio

NVLAP Lab Code: 200630-0

CERTIFICATE OF TEST

Last Date of Test: August 14, 2015 FUJIFILM Sonosite Manufacturing, LLC Model: iViz

Applicable Standard

Test Description	Specification	Test Method	Pass/Fail
SAR Evaluation	FCC 15.247:2015 FCC 2.1093:2015	FCC KDB 865664 D01 v01r03 FCC KDB 865664 D02 v01r01 FCC KDB 616217 D04 v01r01 FCC KDB 248227 D01 V02r01 FCC KDB 447498 D01 v05r02	Pass
		IEEE Std 1528:2013	

Highest SAR Values:

Frequency Bands (GHz)	Body (W/kg) 1g	Limit (W/kg) 1g	Exposure Environment
2.4	1.21		
5.2	0.12		
5.3	0.14	1.6	General Population
5.6	0.30		
5.8	0.07		

Deviations From Test Standards

None

Approved By:

Don Facteau, IS Manager

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. SONO0375 3/130

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://www.nwemc.com/accreditations/ http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. SONO0375 4/130

FACILITIES

California	Minnesota
Labs OC01-13	Labs MN01-08, MN10
41 Tesla	9349 W Broadway Ave.
Irvine, CA 92618	Brooklyn Park, MN 55445
(949) 861-8918	(612)-638-5136

New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 9801
(425)984-6600

(949) 861-8918 (612)-638-5136		(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600				
NVLAP									
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0				
Industry Canada									
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1				
		BS	МІ						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R				
		VC	CI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110				
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA									
US0158	US0175	N/A	US0017	US0191	US0157				

Report No. SONO0375 5/130

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	FUJIFILM Sonosite Manufacturing, LLC
Address:	21919 30th Drive SE
City, State, Zip:	Bothell, WA 98021
Test Requested By:	Niko Pagoulatos
Model:	iViz
First Date of Test:	August 12, 2015
Last Date of Test:	August 14, 2015
Receipt Date of Samples:	August 12, 2015
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The iViz is a portable, battery operated, medical ultrasound tablet device containing a WLAN/Bluetooth modular radio.

The WLAN radio is an 802.11a/b/g/n SISO operating in the 2.4, 5.2, 5.3, 5.6 and 5.8 GHz bands. The 2.4 and 5 GHz bands use 20 MHz channel bandwidths only. The Bluetooth radio operates in Low Energy (LE) mode only.

The monopole antenna is shared by the WLAN and Bluetooth radios. The antenna is integral to the tablet and has a peak gain of 1.8 dBi in the 2.4 GHz band and 4.9 dBi in the 5 GHz bands.

The diagram below shows where the radio module and antennas are located in the tablet.

Back of Base Unit, Cover Off

Back of Base Unit, Cover On

Report No. SONO0375 6/130

PRODUCT DESCRIPTION

Testing Requirements

Testing Locations

After a review of the usage scenarios, the following positions were tested for the WLAN radio: right edge, left edge, top edge, bottom edge, and back side.

The diagonal screen size is greater than 20cm (7.9) inches therefore KDB 941225 is not applicable; instead, KDB 616217 is applicable.

There is no usage model for operation near the head. There are no authorized accessories to wear the device on the body. When used in "tablet mode", only the tablet configurations anticipated by KDB 616217 are applicable. Testing was done with a 0 cm spacing to the phantom without any protective case installed.

The WLAN antenna is closest to the back side of the display near the bottom edge. The back side of the display can be used next to the torso. Since the other sides are all closer than 20 cm to the antenna, the remaining edges as well as the back side were tested.

KDB 447498 D01 General RF Exposure Guidance v05r02 is the FCC's starting point for RF exposure policy. Section 4.3.1, Item #1 provides the SAR test exclusion thresholds for test separation distances ≤ 50mm:

"[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion."

The highest output power of the Bluetooth LE radio is equal to 5.1 mW (see DTS grant for FCC ID: PPD-QCA6234). Using the formula above, the exclusion threshold is 1.6 compared to a limit of 3.0; therefore it is excluded from stand-alone SAR testing.

Maximum Conducted Output	Duty	Test	Transmit	Exclusion	
Power	Cycle	Separation	Frequency	Threshold	Spec
(mW)		(mm)	(GHz)		

Testing Objective:

To demonstrate compliance with the SAR requirements of FCC 2.1093

Scope

The stand-alone SAR evaluation documented in this report is for the 802.11abgn portion of the EUT.

Report No. SONO0375 7/130

CONFIGURATIONS

Configuration SONO0375-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Ultrasound/Tablet	FUJIFILM Sonosite Manufacturing	iViz	Q401Q1

Report No. SONO0375 8/130

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	8/12/2015	SAR Evaluation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	8/14/2015	SAR Evaluation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. SONO0375 9/130

TISSUE – EQUIVALENT LIQUID DESCRIPTION

Characterization of tissue-equivalent liquid dielectric properties

Per IEEE 1528: 2003, Section 5.2.2, the permittivity and conductivity of the tissue material should be measured at least within 24 hours of any full-compliance test. The measured values must be within +/- 5% of the target values. The temperature variation in the liquid during SAR measurements must be within +/- 2 degrees C of that recorded when the dielectric properties were measured.

The dielectric parameters of the tissue-equivalent liquids were measured within 24 hours of the start of testing using the SPEAG DAKS:200 dielectric assessment kit. The dielectric measurements were made across the frequency range of the liquid. The attached data sheets show that the dielectric parameters of the liquid were within the required 5% tolerances.

Target values of dielectric parameters

Per KDB 865664 D01 v01r01, Appendix A.1:

"The head tissue dielectric parameters recommended by IEEE Std 1528-2003 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in 1528."

Target Frequency	Не	ad	Во	ody
(MHz)	٤r	σ (S/m)	€r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Report No. SONO0375 10/130

TISSUE – EQUIVALENT LIQUID DESCRIPTION

Composition of Ingredients for Liquid Tissue Phantoms

Northwest EMC uses tissue-equivalent liquids prepared by SPEAG and confirmed by them to be within +/- 5% from the target values. Their recipes are based upon the following formulations as found in IEEE 1528: 2003, Annex C:

"The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation."

Ingredients	Frequency (MHz)									
(% by weight)	4	50	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99 $^+$ % Pure Sodium Chloride Sugar: 98 $^+$ % Pure Sucrose Water: De-ionized, 16 M Ω^+ resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 $^+$ % Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Above 3.0 GHz, the SPEAG formulations for the body are based upon IEC 62209-2:2010, Table E.1:

Frequency (MHz)	4 000	5 000	5 200	5 800	6 000
Recipe source number	4	4	1	1	4
Ingredients (% by weight)					
Deionised water	56	56	65,53	65,53	56
Tween					
Oxidised mineral oil	44	44			44
Diethylenglycol monohexylether			17,24	17,24	
Triton X-100			17,24	17,24	
Diacetin					
DGBE					
NaCl					
Additives and salt					

Report No. SONO0375 11/130

TISSUE – EQUIVALENT LIQUID

Date:	08/13/2015	Temperature:	24.5°C
Tissue:	Body, MSL501, 5800MHz	Liquid Temperature:	22.6°C
Tested By:	Luke Richardson	Relative Humidity:	41%
Job Site:	EV08	Bar. Pressure:	1015 mb

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

RESULTS

	Actual	Actual Values		Target Values		Deviation (%)	
Frequency (MHz)	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity	
5800	46.56	6.096	48.2	6.0	3.4	-1.6	

Frequency (MHz)	Relative Permittivity	Conductivity
5000	47.48	5.158
5025	47.22	5.133
5050	47.39	5.211
5100	47.37	5.258
5125	47.4	5.258
5175	47.12	5.323
5200	47.01	5.377
5250	46.99	5.526
5275	46.79	5.521
5325	46.84	5.639
5350	46.96	5.685
5400	47	5.662
5425	46.91	5.737
5475	46.9	5.774
5500	46.79	5.788
5550	46.73	5.794
5575	46.56	5.833
5625	46.5	5.904
5650	46.21	5.944
5700	46.45	6.109
5725	46.4	6.146
5775	46.06	6.164
5800	46.56	6.096
5850	46.14	6.071
5875	46.1	6.078
5925	46.05	6.196
5950	45.87	6.248
5975	45.76	6.339

Report No. SONO0375 12/130

TISSUE – EQUIVALENT LIQUID

Date:	08/13/2015	Temperature:	24.3°C
Tissue:	Body, MSL2450, 2450MHz	Liquid Temperature:	22.5°C
Tested By:	Carl Engholm	Relative Humidity:	41%
Job Site:	EV08	Bar. Pressure:	1013 mb

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

RESULTS

	Actual Values		Target Values		Deviation (%)	
Frequency (MHz)	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity
2450	52.59	1.954	52.7	1.95	0.21	-0.21

Fraguenay	Dolotivo	
Frequency (MHz)	Relative Permittivity	Conductivity
		1 751
2300	53.22	1.751
2300	53.22	1.751
2300	53.22	1.751
2325	53.12	1.785
2325	53.12	1.785
2350	53.03	1.82
2350	53.03	1.82
2375	52.93	1.855
2375	52.93	1.855
2400	52.75	1.883
2400	52.75	1.883
2400	52.75	1.883
2425	52.68	1.923
2425	52.68	1.923
2450	52.59	1.954
2475	52.48	1.992
2475	52.48	1.992
2500	52.41	2.026
2500	52.41	2.026
2500	52.41	2.026
2525	52.38	2.061
2525	52.38	2.061
2550	52.27	2.089
2550	52.27	2.089
2575	52.13	2.125

Report No. SONO0375 13/130

SAR SYSTEM VERIFICATION DESCRIPTION

REQUIREMENT

Per IEEE 1528, Section 8.2.1, "System checks are performed prior to compliance tests and the results must always be within ± 10% of the target value corresponding to the test frequency, liquid, and the source used. The target values are 1 g or 10 g averaged SAR values measured on systems having current system validation and calibration status, and using the system check setup as shown in Figure 14. These target values should be determined using a standard source."

TEST DESCRIPTION

Within 24 hours of a measurement, then every 72 hours thereafter, Northwest EMC used the system validation kit (calibrated reference dipole) to test whether the system was operating within its specifications. The validation was performed in the indicated bands by making SAR measurements of the reference dipole with the phantom filled with the tissue-equivalent liquid. First, a signal generator and power amplifier were used to produce a 100mW level as measured with a power meter at the antenna terminals of the dipole (X). Then, the reference dipole was positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. A low loss and low relative permittivity spacer was used to establish the correct distance between the center axis of the reference dipole and the liquid.

For the reference dipoles, the spacing distance s is given by:

s = 15mm, +/- 0.2mm for 300MHz \leq f \geq 1000 MHz:

s = 10mm, +/- 0.2mm for $1000MHz \le f \ge 6000MHz$

The measured 1 g and 10 g spatial average SAR values were normalized to a 1W dipole input power for comparison to the calibration data. The results are summarized in the attached table. The deviation is less than 10% in all cases, indicating that the system performance check was within tolerance.

Report No. SONO0375 14/130

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

RESULTS

Date	Liquid part Power into	Conducted Power into the Dipole	Correction Factor	Measured		Normalized to 1W		Target (Normalized to 1W) Get from Dipole Calibration Certificate		% Difference	
	frequency	(dBm)	1 dotoi	1g	10g	1g	10g	1g	10g	1g	10g
8/12/2015	MSL 501 (5200 MHz)	18.93	12.79	6.31	1.75	80.70	22.38	77.00	21.40	4.81	4.58
8/12/2015	MSL 501 (5500 MHz)	18.39	14.49	5.30	1.48	76.80	21.45	82.40	22.90	-6.80	-6.33
8/13/2015	MSL 2450 (2450 MHz)	19.78	10.52	4.90	2.30	51.55	24.20	50.60	23.70	1.88	2.11
8/12/2015	MSL 501 (5800 MHz)	17.07	19.63	3.57	1.02	70.08	20.02	77.60	21.40	-9.69	-6.45

Report No. SONO0375 15/130

Tested By:	Luke Richardson	Room Temperature (°C):	24.2°C
Date:	8/12/2015	Liquid Temperature (°C):	21.4°C
Configuration:	Body	Humidity (%RH):	48.2%
		Bar. Pressure (mb):	1014.4 mb

MSL501 5200 8-12-15

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: ADM

Communication System: UID 10000, CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5200 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5200 MHz; $\sigma = 5.377$ S/m; $\epsilon_r = 47.01$; $\rho = 1000$ kg/m³, Medium parameters used:

 σ = 0 S/m, ε_r = 1; ρ = 1000 kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

System Check/System Check - Low Channel/Zoom Scan (7x9x7) (8x8x9)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 55.61 V/m; Power Drift = -1.04 dB

Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 6.31 W/kg; SAR(10 g) = 1.75 W/kg Maximum value of SAR (measured) = 13.8 W/kg

System Check/System Check - Low Channel/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 14.5 W/kg

System Check/System Check - Low Channel/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm,

dz=5mm

Maximum value of Total (measured) = 22.02 V/m Maximum value of SAR (measured) = 2.61 W/kg

Approved By

Report No. SONO0375 16/130

MSL501 5200 8-12-15

Report No. SONO0375 17/130

Tested By:	Luke Richardson	Room Temperature (°C):	24.2°C
Date:	8/12/2015	Liquid Temperature (°C):	21.4°C
Configuration:	Body	Humidity (%RH):	48.2%
		Bar. Pressure (mb):	1014.4 mb

MSL501 5500 8-12-15

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: ADM

Communication System: UID 10000, CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5500 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5500 MHz; σ = 5.788 S/m; ϵ_r = 46.788; ρ = 1000 kg/m³, Medium parameters

used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

System Check/System Check - Mid Channel/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 11.7 W/kg

System Check/System Check - Mid Channel/Zoom Scan (7x9x7) (9x9x9)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 48.43 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 21.4 W/kg

SAR(1 g) = 5.3 W/kg; SAR(10 g) = 1.48 W/kg

Maximum value of SAR (measured) = 11.3 W/kg

System Check/System Check - Mid Channel/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm,

dz=5mm

Maximum value of Total (measured) = 20.15 V/m

Maximum value of SAR (measured) = 2.35 W/kg

Approved By

Report No. SONO0375 18/130

MSL501 5500 8-12-15

Report No. SONO0375 19/130

Tested By:	Luke Richardson	Room Temperature (°C):	23.8°C
Date:	8/12/2015	Liquid Temperature (°C):	21.5°C
Configuration:	Body	Humidity (%RH):	46.8%
		Bar. Pressure (mb):	1013.9 mb

MSL501 5800 8-12-15

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: UID 10000, CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5800 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5800 MHz; σ = 6.096 S/m; ϵ_r = 46.564; ρ = 1000 kg/m³, Medium parameters

used: $\sigma = 0 \text{ S/m}$, $\epsilon_r = 1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

System Check/System Check - High Channel/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 7.81 W/kg

System Check/System Check - High Channel/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm,

dz=5mm

Maximum value of Total (measured) = 13.83 V/m

System Check/System Check - High Channel/Zoom Scan (7x9x7) (8x8x9)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 31.51 V/m; Power Drift = 0.57 dB

Peak SAR (extrapolated) = 15.1 W/kg

SAR(1 g) = 3.57 W/kg; SAR(10 g) = 1.02 W/kg

Maximum value of SAR (measured) = 7.76 W/kg

Maximum value of SAR (measured) = 1.17 W/kg

Approved By

Report No. SONO0375 20/130

MSL501 5800 8-12-15

Report No. SONO0375 21/130

Tested By:	Carl Engholm	Room Temperature (°C):	24.8°C
Date:	8/13/2015	Liquid Temperature (°C):	22.5°C
Configuration:	Body	Humidity (%RH):	49%
		Bar. Pressure (mb):	1013 mb

MSL2450 System Check, 8-13-15

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: ADL

Communication System: UID 10000, CW; Communication System Band: D2450 (2450.0 MHz); Frequency:

2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; σ = 1.954 S/m; ϵ_r = 52.586; ρ = 1000 kg/m³, Medium parameters

used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

System Check/System Check/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.25 W/kg

System Check/System Check/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 53.70 V/m

System Check/System Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.00 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 9.69 W/kg

SAR(1 g) = 4.9 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 4.93 W/kg

Maximum value of SAR (measured) = 5.64 W/kg

Approved By

Calloyholm

Report No. SONO0375

MSL2450 System Check, 8-13-15

Report No. SONO0375 23/130

OUTPUT POWER DESCRIPTION

2.4 AND 5 GHz Bands

Per FCC KDB 248227, the conducted output power was measured at the lowest, a middle, and highest channel in each band. Measurements were made while the EUT transmitted at the lowest, middle and the highest data rates for each channel.

The test software used the following settings for output power and SAR measurements.

2.4 GHz Band

	_	_	
- 4	•	<i>,</i> ,	1/

1L	2S/2L	5.5S/5.5L	11S/11L
19	19	19	19

OFDM

6/9/12/18/24	36	48	54
17	17	16	15

HT20

MCS0/8	MCS1/2/3/9/10/11	MCS4	MCS5	MCS6	MCS7
16	16	16	16	15	13.5

5 GHz Bands

OFDM

6/9/12/18/24	36	48	54
14	14	12	11.5

HT20

MCS0/8	MCS1/2/3/9/10/11	MCS4	MCS5	MCS6	MCS7
13.5	13.5	13.5	13.5	10.5	9

Per FCC KDB 248227, among the channels required for normal testing, SAR was measured on the highest output channel. When the SAR measured on the highest output channel was >0.8 W/kg, SAR evaluation for the other required test channels was necessary.

Output power measurements are on the following pages.

Report No. SONO0375 24/130

OUTPUT POWER

EUT:	iViz	Work Order:	SONO0375
Serial Number:	Q401Q1	Date:	7/22/2015
Customer:	FUJIFILM Sonosite Manufacturing, LLC	Temperature:	23.5°C
Attendees:	None	Relative Humidity:	42%
Customer Project:	None	Bar. Pressure:	1005 mb
Tested By:	Luke Richardson	Job Site:	EV08
Power:	Battery	Configuration:	SONO0375

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

COMMENTS

Conducted output power

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Pass

Channel	Frequency	Data Rate	Modulation	Target	Conducted F	Power (Average)
Channel	(MHz)	(Mbps)	iviodulation	Power	dBm	W
		1	BPSK	19	14.4	0.028
		11	CCK	19	15.1	0.033
		6	BPSK	17	13.2	0.021
1	2412	36	16-QAM	17	12.6	0.018
		54	64-QAM	15	10.4	0.011
		7.2 (MCS0)	BPSK	16	11.9	0.016
		72.2 (MCS07)	64-QAM	13.5	9.0	0.008
		1	BPSK	19	15.6	0.036
		11	CCK	19	16.3	0.043
		6	BPSK	17	14.2	0.026
6	2437	36	16-QAM	17	13.6	0.023
		54	64-QAM	15	11.7	0.015
		7.2 (MCS0)	BPSK	16	13.0	0.020
		72.2 (MCS07)	64-QAM	13.5	10.0	0.010
		1	BPSK	19	16.5	0.045
		11	CCK	19	17.2	0.053
		6	BPSK	17	15.0	0.032
11	11 2462	36	16-QAM	17	14.4	0.028
		54	64-QAM	15	12.5	0.018
		7.2 (MCS0)	BPSK	16	14.2	0.026
		72.2 (MCS07)	64-QAM	13.5	11.1	0.013

Report No. SONO0375 25/130

OUTPUT POWER

Channel	Frequency	Data Rate	Modulation	Target	Conducted	Power (Average)
Chamilei	(MHz)	(Mbps)	iviodulation	Power	dBm	W
		6	BPSK	14	4.4	0.003
36	5180	7.2 (MCS0)	BPSK	13.5	6.7	0.005
		72.2 (MCS07)	64-QAM	9	1.8	0.002
		6	BPSK	14	4.5	0.003
40	5200	7.2 (MCS0)	BPSK	13.5	6.6	0.005
		72.2 (MCS07)	64-QAM	9	1.5	0.001
		6	BPSK	14	4.7	0.003
44	5220	7.2 (MCS0)	BPSK	13.5	7.1	0.005
		72.2 (MCS07)	64-QAM	9	2.0	0.002
		6	BPSK	14	5.0	0.003
48	5240	7.2 (MCS0)	BPSK	13.5	6.2	0.004
		72.2 (MCS07)	64-QAM	9	1.7	0.001
		6	BPSK	14	4.7	0.003
52	5260	7.2 (MCS0)	BPSK	13.5	6.0	0.004
		72.2 (MCS07)	64-QAM	9	1.5	0.001
		6	BPSK	14	6.9	0.005
56	5280	7.2 (MCS0)	BPSK	13.5	6.3	0.004
		72.2 (MCS07)	64-QAM	9	1.9	0.002
		6	BPSK	14	6.6	0.005
60	5300	7.2 (MCS0)	BPSK	13.5	6.0	0.004
		72.2 (MCS07)	64-QAM	9	1.7	0.001
		6	BPSK	14	7.5	0.006
64	5320	7.2 (MCS0)	BPSK	13.5	5.9	0.004
		72.2 (MCS07)	64-QAM	9	1.6	0.001
		6	BPSK	14	9.8	0.010
100	5500	7.2 (MCS0)	BPSK	13.5	9.0	0.008
		72.2 (MCS07)	64-QAM	9	4.6	0.003
		6	BPSK	14	9.1	0.008
104	5520	7.2 (MCS0)	BPSK	13.5	8.7	0.007
		72.2 (MCS07)	64-QAM	9	4.2	0.003
		6	BPSK	14	8.2	0.007
108	5540	7.2 (MCS0)	BPSK	13.5	8.2	0.007
		72.2 (MCS07)	64-QAM	9	3.9	0.002
		6	BPSK	14	7.6	0.006
112	5560	7.2 (MCS0)	BPSK	13.5	7.9	0.006
		72.2 (MCS07)	64-QAM	9	3.4	0.002

OUTPUT POWER

Channel	Frequency	Data Rate	Modulation	Target Power	Conducted Power (Average)		
Channel	(MHz)	(Mbps)	iviodulation		dBm	W	
		6	BPSK	14	7.1	0.005	
116	5580	7.2 (MCS0)	BPSK	13.5	7.8	0.006	
		72.2 (MCS07)	64-QAM	9	3.3	0.002	
		6	BPSK	14	6.1	0.004	
132	5660	7.2 (MCS0)	BPSK	13.5	7.2	0.005	
		72.2 (MCS07)	64-QAM	9	2.1	0.002	
		6	BPSK	14	6.0	0.004	
136	5680	7.2 (MCS0)	BPSK	13.5	7.1	0.005	
		72.2 (MCS07)	64-QAM	9	2.6	0.002	
		6	BPSK	14	5.9	0.004	
140	5700	7.2 (MCS0)	BPSK	13.5	7.1	0.005	
		72.2 (MCS07)	64-QAM	9	2.6	0.002	
	5745	6	BPSK	14	5.8	0.004	
149		7.2 (MCS0)	BPSK	13.5	6.7	0.005	
		72.2 (MCS07)	64-QAM	9	2.5	0.002	
		6	BPSK	14	5.7	0.004	
153	5765	7.2 (MCS0)	BPSK	13.5	6.7	0.005	
		72.2 (MCS07)	64-QAM	9	2.4	0.002	
		6	BPSK	14	5.6	0.004	
157	5785	7.2 (MCS0)	BPSK	13.5	6.6	0.005	
		72.2 (MCS07)	64-QAM	9	2.4	0.002	
161	5805	6	BPSK	14	5.6	0.004	
		7.2 (MCS0)	BPSK	13.5	6.6	0.005	
		72.2 (MCS07)	64-QAM	9	2.7	0.002	
		6	BPSK	14	6.0	0.004	
165	5825	7.2 (MCS0)	BPSK	13.5	6.8	0.005	
		72.2 (MCS07)	64-QAM	9	2.3	0.002	

Report No. SONO0375 27/130

TEST RESULTS

Test Locations

After a review of the usage scenarios, the following positions were tested for the WLAN radio: right edge, left edge, top edge, bottom edge, and back side.

The diagonal screen size is greater than 20cm (7.9) inches therefore KDB 941225 is not applicable; instead, KDB 616217 is applicable.

There is no usage model for operation near the head. There are no authorized accessories to wear the device on the body. When used in "tablet mode", only the tablet configurations anticipated by KDB 616217 are applicable. Testing was done with a 0 cm spacing to the phantom without any protective case installed.

The WLAN antenna is closest to the back side of the display near the bottom edge. The back side of the display can be used next to the torso. Since the other sides are all closer than 20 cm to the antenna, the remaining edges as well as the back side were tested.

The highest output power of the Bluetooth LE radio is equal to 5.1 mW. . Using the formula from KDB 447498 D01 v05r02, Section 4.3.1, Item #1, the exclusion threshold is 1.6; therefore it is excluded from stand-alone SAR testing.

Operating Mode

All testing was performed with the EUT configured in a worst – case configuration and operating mode to produce the highest SAR levels. The EUT used client provided test software that permitted the selection of transmit channel, modulation type, and data rate. The radio module operated continuously at nearly 100% duty cycle at the maximum rated power.

Summary

Per FCC KDB 447498, SAR must be measured on the channel with the highest conducted output power. When the SAR measured on the highest output channel is >0.8 W/kg, SAR evaluation for the other required test channels is necessary.

Report No. SONO0375 28/130

EUT:	iViz	Work Order:	SONO0375
Customer:	FUJIFILM Sonosite Manufacturing, LLC	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Configuration	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Data Rate (Mbps)	Channel Bandwidth (MHz)	Antenna Port	Side	Power Drift During Test (dB)	Measured 1g SAR Level (W/kg)	Test#
Body	2.4	2462	11	11 Mbit	20	Α	Back	-0.29	1.21	1
Body	2.4	2462	11	11 Mbit	20	Α	Right	Note 1	Note 2	2
Body	2.4	2462	11	11 Mbit	20	Α	Left	Note 1	Note 2	3
Body	2.4	2462	11	11 Mbit	20	Α	Bottom	0.01	0.161	4
Body	2.4	2462	11	11 Mbit	20	Α	Top	Note 1	Note 2	5

Note 1: Power drift measurement was not performed because the area scan results were less than 0.1 W/kg

Note 2: Zoom scans not performed because the area scan results were less than 0.1 W/kg

Report No. SONO0375 29/130

Tested By:	Carl Engholm	Room Temperature (°C):	24.5
Date:	8/13/2015	Liquid Temperature (°C):	22.4
Serial Number:	Q401Q1	Humidity (%RH):	52
Configuration:	SONO0375-1	Bar. Pressure (mb):	1012
Comments:	None		

Test 1

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2462

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.973 \text{ S/m}$; $\epsilon_r = 52.536$; $\rho = 1000 \text{ kg/m}^3$, Medium

parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.24 V/m; Power Drift = -0.29 dB

Peak SAR (extrapolated) = 3.04 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.496 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.64 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.71 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of Total (measured) = 19.32 V/m

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.66 W/kg Maximum value of SAR (measured) = 0.736 W/kg

Calley frolm
Approved By

Report No. SONO0375 31/130

Tested By:	Carl Engholm	Room Temperature (°C):	25
Date:	8/13/2015	Liquid Temperature (°C):	22.4
Serial Number:	Q401Q1	Humidity (%RH):	43
Configuration:	SONO0375-1	Bar. Pressure (mb):	1012
Comments:	None		

Test 2

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2462

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.973$ S/m; $\epsilon_r = 52.536$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.00895 W/kg

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.00859 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00895 W/kg

All myholm
Approved By

Report No. SONO0375

Report No. SONO0375 33/130

Tested By:	Carl Engholm	Room Temperature (°C):	25
Date:	8/13/2015	Liquid Temperature (°C):	22.4
Serial Number:	Q401Q1	Humidity (%RH):	43
Configuration:	SONO0375-1	Bar. Pressure (mb):	1012
Comments:	None		

Test 3

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2462

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.973 \text{ S/m}$; $\epsilon_r = 52.536$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.00839 W/kg

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.00806 W/kg

Calley frolm
Approved By

Report No. SONO0375 35/130

Tested By:	Carl Engholm	Room Temperature (°C):	25
Date:	8/13/2015	Liquid Temperature (°C):	22.4
Serial Number:	Q401Q1	Humidity (%RH):	43
Configuration:	SONO0375-1	Bar. Pressure (mb):	1012
Comments:	None		

Test 4

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2462

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.973 \text{ S/m}$; $\epsilon_r = 52.536$; $\rho = 1000 \text{ kg/m}^3$, Medium

parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.67 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.327 W/kg

SAR(1 g) = 0.161 W/kg; SAR(10 g) = 0.074 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.217 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.204 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of Total (measured) = 7.383 V/m

Body/Body/Reference scan (21x61x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.130 W/kg Maximum value of SAR (measured) = 0.108 W/kg

Approved By

Calloyholm

SAR TEST DATA – 2.4 GHz

Report No. SONO0375 37/130

Tested By:	Carl Engholm	Room Temperature (°C):	23.7
Date:	8/13/2015	Liquid Temperature (°C):	22.2
Serial Number:	Q401Q1	Humidity (%RH):	41
Configuration:	SONO0375-1	Bar. Pressure (mb):	1012
Comments:	None		

Test 5

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2462

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2462 MHz; σ = 1.973 S/m; ϵ_r = 52.536; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (21x61x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Body/Body/Area scan (6x6x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00323 W/kg

Callengholm
Approved By

Report No. SONO0375

Report No. SONO0375 39/130

EUT:	iViz	Work Order:	SONO0375
Customer:	FUJIFILM Sonosite Manufacturing, LLC	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Configuration	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Data Rate (Mbps)	Channel Bandwidth (MHz)	Antenna Port	Side	Power Drift During Test (dB)	Measured 1g SAR Level (W/kg)	Test#
Body	5.2	5220	44	MCS0	20	Α	Back	-0.95	0.119	101
Body	5.2	5220	44	MCS0	20	Α	Right	Note 1	Note 2	102
Body	5.2	5220	44	MCS0	20	Α	Left	Note 1	Note 2	103
Body	5.2	5220	44	MCS0	20	A	Bottom	Note 1	Note 2	104
Body	5.2	5220	44	MCS0	20	A	Тор	Note 1	Note 2	105

Note 1: Power drift measurement was not performed because the area scan results were less than 0.1 W/kg

Note 2: Zoom scans not performed because the area scan results were less than 0.1 W/kg

Report No. SONO0375 41/130

Tested By:	Luke Richardson	Room Temperature (°C):	24.5
Date:	8/12/2015	Liquid Temperature (°C):	22.6
Serial Number:	Q401Q1	Humidity (%RH):	40.5
Configuration:	SONO0375-1	Bar. Pressure (mb):	1015.1
Comments:	None		

Test 101

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5280 MHz; $\sigma = 5.538 \text{ S/m}$; $\epsilon_r = 46.818$; $\rho = 1000 \text{ kg/m}^3$, Medium

parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (10x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.031 V/m; Power Drift = -0.95 dB

Peak SAR (extrapolated) = 0.278 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.062 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.201 W/kg

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.213 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of Total (measured) = 3.330 V/m

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.189 W/kg Maximum value of SAR (measured) = 0.0614 W/kg

Calley frolm
Approved By

Report No. SONO0375 43/130

Tested By:	Carl Engholm	Room Temperature (°C):	22.9°C
Date:	8/12/2015	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	40%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 102

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5220 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5220 MHz; $\sigma = 5.41 \text{ S/m}$; $\epsilon_r = 47.011$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (3x8x1): Measurement grid: dx=30mm, dy=30mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00867 W/kg

Calley folm
Approved By

Report No. SONO0375 45/130

Tested By:	Carl Engholm	Room Temperature (°C):	22.9°C
Date:	8/12/2015	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	40%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 103

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5220 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5220 MHz; $\sigma = 5.41 \text{ S/m}$; $\varepsilon_r = 47.011$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (3x8x1): Measurement grid: dx=30mm, dy=30mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00546 W/kg

Calley frolm
Approved By

Report No. SONO0375 47/130

Tested By:	Carl Engholm	Room Temperature (°C):	22.9°C
Date:	8/12/2015	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	40%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 104

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5220 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5220 MHz; $\sigma = 5.41 \text{ S/m}$; $\epsilon_r = 47.011$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (3x8x1): Measurement grid: dx=30mm, dy=30mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0120 W/kg

Calley frolm
Approved By

Tested By:	Carl Engholm	Room Temperature (°C):	22.9°C
Date:	8/12/2015	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	40%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 105

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5220 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5220 MHz; $\sigma = 5.41 \text{ S/m}$; $\epsilon_r = 47.011$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (3x8x1): Measurement grid: dx=30mm, dy=30mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00742 W/kg

Calley frolm
Approved By

EUT:	iViz	Work Order:	SONO0375
Customer:	FUJIFILM Sonosite Manufacturing, LLC	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Configuration	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Data Rate (Mbps)	Channel Bandwidth (MHz)	Antenna Port	Side	Power Drift During Test (dB)	Measured 1g SAR Level (W/kg)	Test #
Body	5.3	5280	56	MCS7	20	Α	Back	-0.31	0.061	106
Body	5.3	5280	56	MCS7	20	Α	Right	Note 1	Note 2	107
Body	5.3	5280	56	MCS7	20	Α	Left	Note 1	Note 2	108
Body	5.3	5280	56	MCS7	20	Α	Bottom	Note 1	Note 2	109
Body	5.3	5280	56	MCS7	20	Α	Тор	Note 1	Note 2	110
Body	5.3	5320	64	6 Mbit	20	Α	Back	1.13	0.137	121

Note 1: Power drift measurement was not performed because the area scan results were less than 0.1 W/kg

Note 2: Zoom scans not performed because the area scan results were less than 0.1 W/kg

Report No. SONO0375 52/130

Tested By:	Carl Engholm	Room Temperature (°C):	22.6°C
Date:	8/12/2015	Liquid Temperature (°C):	21.3°C
Serial Number:	Q401Q1	Humidity (%RH):	49.9%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1015.2 mb
Comments:	Body		

Test 106

DUT: iViz; Type: Ultrasound; Serial: Unknown

Communication System: UID 0, CW (0); Communication System Band: ITD5500 (5000.0 - 5900.0 MHz);

Frequency: 5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5280 MHz; σ = 5.538 S/m; ε_r = 46.818; ρ = 1000 kg/m³, Medium

parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (12x11x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.179 V/m; Power Drift = -0.31 dB

Peak SAR (extrapolated) = 0.143 W/kg

SAR(1 g) = 0.061 W/kg; SAR(10 g) = 0.052 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0792 W/kg

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0689 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of Total (measured) = 4.371 V/m

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0664 W/kg Maximum value of SAR (measured) = 0.106 W/kg

Report No. SONO0375 53/130

Report No. SONO0375 54/130

Tested By:	Carl Engholm	Room Temperature (°C):	22.8°C
Date:	8/12/2015 6:38:45 PM	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	47%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1015.2 mb
Comments:	Body		

Test 107

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5280 MHz; σ = 5.538 S/m; ϵ_r = 46.818; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0162 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0411 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0208 W/kg

Approved By

Report No. SONO0375

Tested By:	Carl Engholm	Room Temperature (°C):	22.8°C
Date:	8/12/2015	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	47%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 108

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5280 MHz; σ = 5.538 S/m; ϵ_r = 46.818; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0371 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0421 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0245 W/kg

Report No. SONO0375 57/130

Report No. SONO0375 58/130

Tested By:	Carl Engholm	Room Temperature (°C):	22.8°C
Date:	8/12/2015 6:56:14 PM	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	47%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 109

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5280 MHz; σ = 5.538 S/m; ε_r = 46.818; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0134 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00971 W/kg

Calleyfrolm
Approved By

Report No. SONO0375

Tested By:	Carl Engholm	Room Temperature (°C):	22.8°C
Date:	8/12/2015	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	47%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 110

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5280 MHz; σ = 5.538 S/m; ϵ_r = 46.818; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (3x8x1): Measurement grid: dx=30mm, dy=30mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00722 W/kg

Report No. SONO0375 61/130

Report No. SONO0375 62/130

Tested By:	Luke Richardson	Room Temperature (°C):	23.7°C
Date:	8/14/2015 2:33:14 PM	Liquid Temperature (°C):	21.3°C
Serial Number:	Q401Q1	Humidity (%RH):	42.4%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1019 mb
Comments:	Body		

Test 121

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5320 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5320 MHz; $\sigma = 5.65 \text{ S/m}$; $\epsilon_r = 46.992$; $\rho = 1000 \text{ kg/m}^3$, Medium

parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.348 V/m; Power Drift = 1.13 dB

Peak SAR (extrapolated) = 0.369 W/kg

SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.063 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.252 W/kg

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.196 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of Total (measured) = 3.065 V/m

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.288 W/kg Maximum value of SAR (measured) = 0.0531 W/kg

Approved By

Calloyholm

EUT:	iViz	Work Order:	SONO0375
Customer:	FUJIFILM Sonosite Manufacturing, LLC	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Configuration	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Data Rate (Mbps)	Channel Bandwidth (MHz)	Antenna Port	Side	Power Drift During Test (dB)	Measured 1g SAR Level (W/kg)	Test #
Body	5.6	5500	100	6 Mbit	20	Α	Back	-0.38	0.297	111a
Body	5.6	5500	100	6 Mbit	20	Α	Right	Note 1	Note 2	112
Body	5.6	5500	100	6 Mbit	20	Α	Left	Note 1	Note 2	113
Body	5.6	5500	100	6 Mbit	20	Α	Bottom	Note 1	Note 2	114
Body	5.6	5500	100	6 Mbit	20	Α	Top	Note 1	Note 2	115

Note 1: Power drift measurement was not performed because the area scan results were less than 0.1 W/kg

Note 2: Zoom scans not performed because the area scan results were less than 0.1 W/kg

Report No. SONO0375 65/130

Tested By:	Luke Richardson	Room Temperature (°C):	23.4°C
Date:	8/12/2015 3:13:43 PM	Liquid Temperature (°C):	21.3°C
Serial Number:	Q401Q1	Humidity (%RH):	50.2%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1014.4 mb
Comments:	Body		

Test 111a

DUT: iViz; Type: Ultrasound; Serial: Unknown

Communication System: UID 0, CW (0); Communication System Band: ITD5500 (5000.0 - 5900.0 MHz);

Frequency: 5500 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5500 MHz; σ = 5.788 S/m; ϵ_r = 46.788; ρ = 1000 kg/m³, Medium parameters

used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.913 V/m; Power Drift = -0.38 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.297 W/kg; SAR(10 g) = 0.111 W/kg

Maximum value of SAR (measured) = 0.565 W/kg

Body/Body/Reference scan (41x41x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0.164 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of Total (measured) = 2.882 V/m

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.540 W/kg Maximum value of SAR (measured) = 0.0481 W/kg

(Allayholm Approved By

Report No. SONO0375 66/130

Tested By:	Carl Engholm	Room Temperature (°C):	23.8°C
Date:	8/12/2015	Liquid Temperature (°C):	21.3°C
Serial Number:	Q401Q1	Humidity (%RH):	40.4%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013.9 mb
Comments:	Body		

Test 112

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: ITD5500 (5000.0 - 5900.0 MHz);

Frequency: 5500 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5500 MHz; σ = 5.788 S/m; ϵ_r = 46.788; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (31x41x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm Maximum value of SAR (interpolated) = 0.0471 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0433 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0305 W/kg

Report No. SONO0375 68/130

Report No. SONO0375 69/130

Tested By:	Carl Engholm	Room Temperature (°C):	23.8°C
Date:	8/12/2015 3:56:13 PM	Liquid Temperature (°C):	21.3°C
Serial Number:	Q401Q1	Humidity (%RH):	40.5%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013.9 mb
Comments:	Body		

Test 113

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: ITD5500 (5000.0 - 5900.0 MHz);

Frequency: 5500 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5500 MHz; σ = 5.788 S/m; ε_r = 46.788; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (41x41x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0.0479 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0401 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0401 W/kg

Approved By

Calloyholm

Report No. SONO0375 71/130

Tested By:	Carl Engholm	Room Temperature (°C):	24°C
Date:	8/12/2015	Liquid Temperature (°C):	21.5°C
Serial Number:	Q401Q1	Humidity (%RH):	41%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 114

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: ITD5500 (5000.0 - 5900.0 MHz);

Frequency: 5500 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5500 MHz; $\sigma = 5.788$ S/m; $\varepsilon_r = 46.788$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0.0437 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0438 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0427 W/kg

Report No. SONO0375 72/130

Report No. SONO0375 73/130

Tested By:	Carl Engholm	Room Temperature (°C):	22.8°C
Date:	8/12/2015	Liquid Temperature (°C):	21°C
Serial Number:	Q401Q1	Humidity (%RH):	41%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 115

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: ITD5500 (5000.0 - 5900.0 MHz);

Frequency: 5500 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5500 MHz; σ = 5.788 S/m; ε_r = 46.788; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (3x8x1): Measurement grid: dx=30mm, dy=30mm

Maximum value of SAR (measured) = 0.0133 W/kg

Callengholm
Approved By

Report No. SONO0375 75/130

EUT:	iViz	Work Order:	SONO0375
Customer:	FUJIFILM Sonosite Manufacturing, LLC	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Configuration	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Data Rate (Mbps)	Channel Bandwidth (MHz)	Antenna Port	Side	Power Drift During Test (dB)	Measured 1g SAR Level (W/kg)	Test #
Body	5.8	5825	165	MCS0	20	Α	Back	-0.40	0.070	116
Body	5.8	5825	165	MCS0	20	Α	Right	Note 1	Note 2	117
Body	5.8	5825	165	MCS0	20	Α	Left	Note 1	Note 2	118
Body	5.8	5825	165	MCS0	20	Α	Bottom	Note 1	Note 2	119
Body	5.8	5825	165	MCS0	20	Α	Тор	Note 1	Note 2	120

Note 1: Power drift measurement was not performed because the area scan results were less than 0.1 W/kg

Note 2: Zoom scans not performed because the area scan results were less than 0.1 W/kg

Report No. SONO0375 76/130

Tested By:	Carl Engholm	Room Temperature (°C):	23.3°C
Date:	8/12/2015 7:59:50 PM	Liquid Temperature (°C):	20.7°C
Serial Number:	Q401Q1	Humidity (%RH):	48%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 116

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5825 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5825 MHz; σ = 6.106 S/m; ϵ_r = 46.428; ρ = 1000 kg/m³, Medium parameters

used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (9x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.379 V/m; Power Drift = -0.40 dB

Peak SAR (extrapolated) = 0.449 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.014 W/kg Maximum value of SAR (measured) = 0.173 W/kg

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0.0356 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of Total (measured) = 2.024 V/m

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.273 W/kg Maximum value of SAR (measured) = 0.0250 W/kg

Calley frolm

Report No. SONO0375 77/130

Tested By:	Carl Engholm	Room Temperature (°C):	23.3°C
Date:	8/12/2015	Liquid Temperature (°C):	20.7°C
Serial Number:	Q401Q1	Humidity (%RH):	48%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 117

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5825 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5825 MHz; σ = 6.106 S/m; ε_r = 46.428; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0.00717 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.00133 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0118 W/kg

Report No. SONO0375 79/130

Report No. SONO0375 80/130

Tested By:	Carl Engholm	23.3°C	
Date:	8/12/2015	Liquid Temperature (°C):	20.7°C
Serial Number:	Q401Q1	Humidity (%RH):	48%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 118

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5825 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5825 MHz; σ = 6.106 S/m; ε_r = 46.428; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (3x8x1): Measurement grid: dx=30mm, dy=30mm

Maximum value of SAR (measured) = 0.0127 W/kg

Callengholm
Approved By

0.01

Tested By:	Carl Engholm	Room Temperature (°C):	23.3°C
Date:	8/12/2015 7:24:35 PM	Liquid Temperature (°C):	20.7°C
Serial Number:	Q401Q1	Humidity (%RH):	48%
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013 mb
Comments:	Body		

Test 119

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5825 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5825 MHz; σ = 6.106 S/m; ε_r = 46.428; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0.0170 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0113 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0138 W/kg

Approved By

Calloyholm

Report No. SONO0375 84/130

Tested By:	Carl Engholm	Room Temperature (°C):	23.3
Date:	8/12/2015 7:31:46 PM	Liquid Temperature (°C):	20.7
Serial Number:	Q401Q1	Humidity (%RH):	48
Configuration:	SONO0375-1	Bar. Pressure (mb):	1013
Comments:	Body		

Test 120

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5825 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5825 MHz; $\sigma = 6.106 \text{ S/m}$; $\varepsilon_r = 46.428$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (21x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Reference scan (3x8x1): Measurement grid: dx=30mm, dy=30mm

Maximum value of SAR (measured) = 0.00770 W/kg

Report No. SONO0375 85/130

Report No. SONO0375 86/130

EUT:	iViz	Work Order:	SONO0375
Customer:	FUJIFILM Sonosite Manufacturing, LLC	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
	FCC KDB 865664 D01 v01r03
	FCC KDB 865664 D02 v01r01
FCC 15.247:2015	FCC KDB 248227 D01 V02r01
FCC 2.1093:2015	FCC KDB 447498 D01 v05r02
	FCC KDB 616217 D04 v01r01
	IEEE Std 1528:2013

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Configuration	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Data Rate (Mbps)	Channel Bandwidth (MHz)	Antenna Port	Side	Power Drift During Test (dB)	Measured 1g SAR Level (W/kg)	Test#
Body	2.4	2462	11	11 Mbit	20	Α	Back	-0.25	1.16	1a

Report No. SONO0375 87/130

Tested By:	Carl Engholm	Room Temperature (°C):	24.7
Date:	8/13/2015	Liquid Temperature (°C):	22.4
Serial Number:	Q401Q1	Humidity (%RH):	47
Configuration:	SONO0375-1	Bar. Pressure (mb):	1012
Comments:	Repeatability		

Test 1a

DUT: iViz; Type: Ultrasound; Serial: Q401Q1

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2462

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.973 \text{ S/m}$; $\epsilon_r = 52.536$; $\rho = 1000 \text{ kg/m}^3$, Medium

parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.99 V/m; Power Drift = -0.25 dB

Peak SAR (extrapolated) = 2.93 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.481 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.52 W/kg

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.57 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of Total (measured) = 18.81 V/m

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.314 W/kg Maximum value of SAR (measured) = 0.698 W/kg

Calley frolm
Approved By

Report No. SONO0375 89/130

SYSTEM AND TEST SITE DESCRIPTION

SAR MEASUREMENT SYSTEM

Schmid & Partner Engineering AG, DASY52

Northwest EMC selected the leader in SAR evaluation systems to provide the measurement tools for this evaluation. SPEAG's DASY52 is the fastest and most accurate scanner on the market. It is fully compatible with all world-wide standards for transmitters operating at the ear or within 20cm of the body. It provides full compatibility with IEC 62209-1, IEC 62209-2, IEEE 1528 as well as national adaptations such as FCC OET-65c and Korean Std. MIC #2000-93

The DASY52 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm
 extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion,
 offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with
 standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital
 communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC
 signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom, oval flat phantom, device holder, tissue simulating liquids, and validation dipole kits.

Report No. SONO0375 91/130

SYSTEM AND TEST SITE DESCRIPTION

TEST SITE

Northwest EMC, Lab EV08

The SAR measurement system is located in a semi-anechoic chamber. This provides an ambient free environment that also eliminates reflections.

The chamber is 12 ft wide by 16 ft long x 8 ft high. A dedicated HVAC unit provides +/- 1 degree C temperature control.

Report No. SONO0375 92/130

TEST EQUIPMENT

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier	Mini Circuits	ZVE-3W-83+	TTA	NCR ¹	0 mo
Antenna - Dipole	SPEAG	D2450V2	ADL	11/4/2014	12 mo
Antenna - Dipole	SPEAG	D5GHzV2	ADM	11/12/2014	12 mo
DAE	SPEAG	SD 000 D04 EJ	SAH	11/3/2014	12 mo
Device Holder	SPEAG	N/A	SAW	NCR	0 mo
Fixture/Kit - Calibration/Verification	SPEAG	DAKS:200	IPR	3/6/2014	36 mo
Generator - Signal	Agilent	V2920A	TIH	NCR ¹	0 mo
Light Beam Unit	SPEAG	SE UKS 030 AA	SAD	NCR	0 mo
Meter - Power	Agilent	N1913A	SQR	10/30/2014	12 mo
Power Sensor	Agilent	E9300H	SQO	10/30/2014	12 mo
SAR - Tissue Test Solution	SPEAG	MSL 2450	SAM	At start of t	esting
SAR - Tissue Test Solution	SPEAG	MSL 501	SAV	At start of t	esting
SAR Probe	SPEAG	EX3DV4	SAG	11/10/2014	12 mo
SAR Test System	Staeubli	DAYS5	SAK	11/1/2013	36 mo
SAR Test System	SPEAG	QD OVA 001 BB	SAC	NCR	0 mo
SAR Test System	Staeubli	TX60LSPEAG	SAA	NCR	0 mo
SAR Test System	Staeubli	N/A	SAJ	NCR	0 mo
SAR Test System	Staeubli	CS8C	SAI	NCR	0 mo
	Omega Engineering,				
Thermometer	Inc.	HH311	DUI	1/26/2015	36 mo

Note 1: The output of the signal generator / amplifier is verified with the calibrated power meter listed above.

Report No. SONO0375 93/130

MEASUREMENT UNCERTAINTY

MEASUREMENT UNCERTAINTY BUDGETS PER IEEE 1528:2003

Uncertainty Component	Tolerance (+/- %)	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	u _i (1g) (+/-%)	u _i (10g) (+/-%)	Vi
Measurement System								
Probe calibration (k=1)	5.5	normal	1	1	1	5.5	5.5	8
Axial isotropy	4.7	rectangular	1.732	0.707	0.707	1.9	1.9	8
Hemispherical isotropy	9.6	rectangular	1.732	0.707	0.707	3.9	3.9	8
Boundary effect	1.0	rectangular	1.732	1	1	0.6	0.6	8
Linearity	4.7	rectangular	1.732	1	1	2.7	2.7	8
System detection limits	1.0	rectangular	1.732	1	1	0.6	0.6	8
Readout electronics	0.3	normal	1	1	1	0.3	0.3	8
Response time	0.8	rectangular	1.732	1	1	0.5	0.5	8
Integration time	2.6	rectangular	1.732	1	1	1.5	1.5	8
RF ambient conditions - noise	1.7	rectangular	1.732	1	1	1.0	1.0	8
RF Ambient Reflections	0.0	rectangular	1.732	1	1	0.0	0.0	8
Probe positioner mechanical tolerance	0.4	rectangular	1.732	1	1	0.2	0.2	8
Probe positioner with respect to phantom shell	2.9	rectangular	1.732	1	1	1.7	1.7	8
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	1.0	rectangular	1.732	1	1	0.6	0.6	8
Test Sample Related								
Device Positioning	2.9	normal	1	1	1	2.9	2.9	145
Device Holder	3.6	normal	1	1	1	3.6	3.6	5
Power Drift	5.0	rectangular	1.732	1	1	2.9	2.9	8
Phantom and tissue parameters								
Phantom Uncertainty - shell thickness tolerances	4.0	rectangular	1.732	1	1	2.3	2.3	8
Liquid conductivity - deviation from target values	5.0	rectangular	1.732	0.64	0.43	1.8	1.2	∞
Liquid conductivity - measurement uncertainty	6.5	normal	1	0.64	0.43	4.2	2.8	80
Liquid permittivity - deviation from target values	5.0	rectangular	1.732	0.6	0.49	1.7	1.4	8
Liquid permittivity - measurement uncertainty	3.2	normal	1	0.6	0.49	1.9	1.6	8
Combined Standard Uncertainty			RSS			11.2	10.6	387

Report No. SONO0375 94/130

MEASUREMENT UNCERTAINTY

MEASUREMENT UNCERTAINTY BUDGETS PER IEEE 1528:2003

	Tolerance	Probability				u _i (1g)	u _i (10g)	
Uncertainty Component	(+/- %)	Distribution	Divisor	c _i (1g)	c _i (10g)	(+/-%)	(+/-%)	Vi
Measurement System								
Probe calibration (k=1)	6.55	normal	1	1	1	6.6	6.6	∞
Axial isotropy	4.7	rectangular	1.732	0.707	0.707	1.9	1.9	∞
Hemispherical isotropy	9.6	rectangular	1.732	0.707	0.707	3.9	3.9	∞
Boundary effect	2.0	rectangular	1.732	1	1	1.2	1.2	∞
Linearity	4.7	rectangular	1.732	1	1	2.7	2.7	∞
System detection limits	1.0	rectangular	1.732	1	1	0.6	0.6	∞
Readout electronics	0.3	normal	1	1	1	0.3	0.3	∞
Response time	0.8	rectangular	1.732	1	1	0.5	0.5	8
Integration time	2.6	rectangular	1.732	1	1	1.5	1.5	∞
RF ambient conditions - noise	1.7	rectangular	1.732	1	1	1.0	1.0	8
RF Ambient Reflections	0.0	rectangular	1.732	1	1	0.0	0.0	∞
Probe positioner mechanical tolerance	0.8	rectangular	1.732	1	1	0.5	0.5	8
Probe positioner with respect to phantom shell	9.9	rectangular	1.732	1	1	5.7	5.7	∞
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	4.0	rectangular	1.732	1	1	2.3	2.3	∞
Test Sample Related								
Device Positioning	2.9	normal	1	1	1	2.9	2.9	145
Device Holder	3.6	normal	1	1	1	3.6	3.6	5
Power Drift	5.0	rectangular	1.732	1	1	2.9	2.9	∞
Phantom and tissue parameters								
Phantom Uncertainty - shell thickness tolerances	4.0	rectangular	1.732	1	1	2.3	2.3	8
Liquid conductivity - deviation from target values	5.0	rectangular	1.732	0.64	0.43	1.8	1.2	∞
Liquid conductivity - measurement uncertainty	6.5	normal	1	0.64	0.43	4.2	2.8	∞
Liquid permittivity - deviation from target values	5.0	rectangular	1.732	0.6	0.49	1.7	1.4	8
Liquid permittivity - measurement uncertainty	3.2	normal	1	0.6	0.49	1.9	1.6	∞

Report No. SONO0375 95/130

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Northwest EMC

Certificate No: D2450V2-855_Nov14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

D2450V2 - SN: 855 Object

QA CAL-05.v9 Calibration procedure(s)

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

November 04, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Approved by:

Function Jeton Kastrati Laboratory Technician

Katja Pokovic Technical Manager

Issued: November 4, 2014

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Name

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Report No. SONO0375

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The following parameters and calculations were appro-	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Report No. SONO0375 98/130

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.0~\Omega + 3.2~\mathrm{j}\Omega$
Return Loss	- 27.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω + 5.3 jΩ
Return Loss	- 25.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.156 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 10, 2009

Report No. SONO0375 99/130

DASY5 Validation Report for Head TSL

Date: 04.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 855

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.9 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

Report No. SONO0375

Impedance Measurement Plot for Head TSL

Report No. SONO0375 101/130

DASY5 Validation Report for Body TSL

Date: 04.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 855

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.95 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 17.2 W/kg

0 dB = 17.2 W/kg = 12.36 dBW/kg

Impedance Measurement Plot for Body TSL

Report No. SONO0375 103/130

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Northwest EMC

Certificate No: D5GHzV2-1066 Nov14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

D5GHzV2 - SN: 1066 Object

QA CAL-22.v2 Calibration procedure(s)

Calibration procedure for dipole validation kits between 3-6 GHz

November 12, 2014 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Function Calibrated by: Israe El-Naouq Laboratory Technician

Katja Pokovic Technical Manager Approved by:

Green Etwaning

Issued: November 12, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Report No. SONO0375

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Report No. SONO0375 105/130

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Report No. SONO0375 106/130

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.68 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.70 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.4 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	87.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 19.5 % (k=2)

Report No. SONO0375 107/130

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Report No. SONO0375 108/130

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.45 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.58 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Report No. SONO0375 109/130

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	5.83 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		*****

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	82.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	83.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Report No. SONO0375 110/130

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

The following parameter and earlies are	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.25 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

111/130 Report No. SONO0375

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.0 Ω - 6.7 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.2 Ω - 2.4 jΩ
Return Loss	- 32.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	51.2 Ω - 1.1 jΩ
Return Loss	- 35.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.0 Ω - 1.1 jΩ
Return Loss	- 24.8 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.8 Ω + 0.7 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.5 Ω - 4.4 jΩ
Return Loss	- 27.2 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	50.5 Ω - 1.3 jΩ
Return Loss	- 37.3 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.6 Ω - 0.3 jΩ
Return Loss	- 35.7 dB

Report No. SONO0375 112/130

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.3 Ω + 0.7 jΩ
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point		55.7 Ω + 1.9 jΩ
Return	Loss	- 24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG			
Manufactured on	November 27, 2006			

Report No. SONO0375 113/130

DASY5 Validation Report for Head TSL

Date: 11.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1066

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.59 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5300 MHz; $\sigma = 4.68$ S/m; $\varepsilon_r = 34.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma =$ 4.88 S/m; $\varepsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 4.98 \text{ S/m}$; $\varepsilon_r = 4.98 \text{ S/m}$; 1000 kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ S/m; $\epsilon_r = 34.0$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.07 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.75 V/m; Power Drift = 0.24 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 8.7 W/kg; SAR(10 g) = 2.47 W/kg

Maximum value of SAR (measured) = 20.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

Reference Value = 67.28 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 35.2 W/kg

SAR(1 g) = 8.84 W/kg; SAR(10 g) = 2.51 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Report No. SONO0375 114/130

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.91 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.12 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 34.3 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1066

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f=5200 MHz; $\sigma=5.45$ S/m; $\epsilon_r=47.1;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5300 MHz; $\sigma=5.58$ S/m; $\epsilon_r=46.9;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5500 MHz; $\sigma=5.83$ S/m; $\epsilon_r=46.5;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5600 MHz; $\sigma=5.98$ S/m; $\epsilon_r=46.4;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5800 MHz; $\sigma=6.25$ S/m; $\epsilon_r=46.0;$ $\rho=1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.03 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.5 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.74 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.36 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 35.4 W/kg

SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

Report No. SONO0375 117/130

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.32 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 37.3 W/kg

SAR(1 g) = 8.44 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 20.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.68 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 36.2 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg

Impedance Measurement Plot for Body TSL

Report No. SONO0375 119/130

Equipment ID: SAG

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Northwest EMC

Certificate No: EX3-3746 Nov14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3746

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 10, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-14)		In house check: Oct-15	

Name Function Signature
Calibrated by: Leif Klysner Laboratory Technician

Katja Pokovic Technical Manager

Issued: November 10, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 - SN:3746 November 10, 2014

Probe EX3DV4

SN:3746

Manufactured:

March 26, 2010

Calibrated:

November 10, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3746

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm (μV/(V/m) ²) ^A	0.49	0.46	0.50	± 10.1 %	
DCP (mV) ^B	98.2	100.7	97.9		

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	cw	X	0.0	0.0	1.0	0.00	157.3	±2.7 %
		Y	0.0	0.0	1.0		153.5	
		Z	0.0	0.0	1.0	i	157.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3746

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2450	39.2	1.80	6.83	6.83	6.83	0.28	1.15	± 12.0 %
2550	39.1	1.91	6.59	6.59	6.59	0.37	0.92	± 12.0 %
5200	36.0	4.66	4.92	4.92	4.92	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.74	4.74	4.74	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.47	4.47	4.47	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.37	4.37	4.37	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.35	4.35	4.35	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3746 November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3746

Calibration Parameter Determined in Body Tissue Simulating Media

			_		•			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2450	52.7	1.95	7.06	7.06	7.06	0.80	0.57	± 12.0 %
2550	52.6	2.09	6.82	6.82	6.82	0.76	0.59	± 12.0 %
5200	49.0	5.30	4.31	4.31	4.31	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.13	4.13	4.13	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.81	3.81	3.81	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.74	3.74	3.74	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.06	4.06	4.06	0.50	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

November 10, 2014 EX3DV4-SN:3746

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

November 10, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4- SN:3746 November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3746

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-135
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm