Organizácia predmetu

Adaptívne riadenie (LS, ak. r. 2023/2024)

Ciel predmetu:

Študenti po absolvovaní predmetu získajú vedomosti o najvýznamnejších metódach a algoritmoch používaných v oblasti adaptívneho riadenia procesov. Absolventi predmetu získajú vedomosti týkajúce sa odvodenia a analýzy vlastností vybraných algoritmov priameho adaptívneho riadenia a nepriameho adaptívneho riadenia. Získajú poznatky o základných princípoch vybraných heuristických adaptívnych regulátorov, komerčných adaptívnych regulátorov, a princípoch využitia adaptácie pri fuzzy riadiacich systémoch.

Zodpovedný za predmet: Ing. Marián Tárník, PhD.

Predmet patrí medzi povinné predmety a študent po absolvovaní získa 7 kreditov. Týždenný rozsah predmetu: prednášky: 2 h, cvičenia: 2 h

Predmet zabezpečujú:

```
Ing. Marián Tárník, PhD. (prednášky, cvičenia)
Ing. Róbert Málik (cvičenia)
```

Podmienky absolvovania predmetu:

- 1. Aktívna účasť na vyučovacom procese.
- 2. Predpokladom pre vykonanie skúšky je zisk 33,6 a viac bodov počas semestra. Počas semestra je možné získať 60 bodov.
- 3. Účasť na záverečnej skúške je nevyhnutná, je možné získať 40 bodov.

Priebežné hodnotenie počas semestra:

- Priebežná práca na cvičeniach: 15 bodov
- Písomka v čase 7. prednášky: 20 bodov
- Vypracovanie zadania (referát): 15 bodov
- Krátke písomky na cvičeniach: 10 bodov

Učebný materiál:

Základný učebný materiál bude priebežne dostupný na dokumentovom serveri v AIS v priečinku predmetu I-ADRIA.

```
( DS / Fakulta elektrotechniky a informa... / Predmety / LS 2023/2024 / I-ADRIA Adaptívne riadenie )
```

Zároveň je učebný materiál verejne dostupný prostredníctvom repozitára na GitHub: https://github.com/PracovnyBod/ADRIA

Aktualizáciu tohto dokumentu (najmä harmonogramu na nasledujúcej strane) je najvýhodnejšie sledovať na: https://github.com/PracovnyBod/ADRIA/blob/master/doc/AR00_txt_organizacia/AR00_txt_organizacia.pdf

Harmonogram

Týždeň	Prednáška	Cvičenie	
1.	Úvod, účel predmetu, história a súčasnosť, adaptívna stabilizácia. [AR01, AR02]	Cvičenie prvé. [AR02]	[1b]
2.	Samonastavujúci sa regulátor. [ARo3]	Cvičenie druhé: rekurzívna metóda najmenších štvorcov (reproduk vzorového príkladu). [ARo3]	[1b]
3.	Riadenie (adaptívne riadenie) s referenčným modelom, $MRAC^1$ $gradientný$. $[ARo_4]$	Cvičenie tretie: samonastavujúci sa regulátor. [ARo3]	[1b]
4.	MRAC gradientný (pokračovanie a info k cv.), klasické Adaptívne riadenie s referenčným modelom s využitím Lyapunovovej teórie stability, MRAC stavový. [ARo4, ARo5]	Krátka písomka: (07. marec 2024) [AR01, AR02, AR03 AR99] a k tomu všeobecná teória systémov a riadenia na úrovni bakalárskeho štúdia.	[10b]
5.	$MRAC\ stavov\acute{y}$ (pokračovanie a info k cv.) [ARo5]	Cvičenie štvrté: $MRAC$ $gradientný$ $[ARo_4]$	[3b]
6.	Zovšeobecnenie riadenia s referenčným modelom, MRC² problém.	Cvičenie piate: $MRAC$ $stavový$ [AR05]	[5b]
7.	Písomka: (28. marec 2024, v čase prednášky) [20b] [AR01, AR03, AR04] a vybrané otázky k stavovému riadeniu, znalost rovnice opisujúcej dynamiku stavovej adaptačnej odchýlky	Cvičenie šieste: príklad k téme MRC problém [ARo6] • Prípadné dokončenie úloh z predchádzajúcich cv. (MRAC gradientný, MRAC stavový)	[1b]

¹Model Reference Adaptive Control ²Model Reference Control

8.	MRC problém (zopakovanie), $MRAC \ vstupno-výstupný \ pre \ n^* = 1.$ [ARo6]	Cvičenie siedme: $MRAC$ $vstupno-výstupný$ pre $n^*=1$ (priamo nadväzuje na predchádzajúce cvičenie.) [1b]
		Plánuje sa: • Zadanie referátu – (pripravuje sa) • Odovdávanie referátu (AIS) do konca 12. týždňa (nedeľa 05.05.2024)
9.	$MRAC$ vstupno-výstupný pre $n^* = 1$ (pokračovanie), $MRAC$ vstupno-výstupný pre $n^* = 2$. [ARo6]	Priestor pre prácu na referáte. • Pre záujemcov tiež priestor pre prípadné dokončenie úloh z predchádzajúcich cv. (MRAC gradientný, MRAC stavový, MRAC vstupno-výstupný pre $n^*=1$)
10.	$MRAC$ vstupno-výstupný pre $n^* = 2$, otázky implementácie algoritmov riadiacich systémov. [ARo6]	Priestor pre prácu na referáte.
11.	Pripravuje sa Možnosť: Záverečné zhrnutie tém predmetu pre potreby prípravy na skúšku.	Pripravuje sa [2b]
12.	Časová rezerva (štvrtok 02.05.2024) Priestor pre náhradný termín písomky (ospravedlnené absencie)	Časová rezerva (štvrtok 02.05.2024)
13.	Neučí sa podľa štvrtkového rozvrhu	Neučí sa podľa štvrtkového rozvrhu

Literatúra

- [1] K. J. Åström and R. M. Murray. *Feedback Systems*. Princeton University Press, 2008.
- [2] K.J. Åström and B. Wittenmark. Adaptive Cotrol, 2nd edition. Addison-Wesley, 1995.
- [3] H. Butler. Model Reference Adaptive Control: From theory to practice. Prentice Hall International (UK) Ltd., 1992.
- [4] P. Ioannou and B. Fidan. *Adaptive Control Tutorial*. Society for Industrial and Applied Mathematics, USA., 2006.
- [5] P. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, Inc, 1996.
- [6] Lennart Ljung. System Identification (2nd Ed.): Theory for the User. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.
- [7] R. Monopoli. Model reference adaptive control with an augmented error signal. *IEEE Transactions on Automatic Control*, 19(5):474 484, oct 1974.
- [8] J. Murgaš and I. Hejda. Adaptívne riadenie technologických procesov. Slovenská technická univerzita v Bratislave, 1993.
- [9] K. S. Narendra and A. M. Annaswamy. Stable adaptive systems. Prentice Hall, Englewood Cliffs, NJ, 1989.
- [10] K. S. Narendra, Y.-H. Lin, and L. S. Valavani. Stable adaptive controller design, part ii: Proof of stability. *IEEE Transactions on Automatic Control*, 25(3):440 – 448, jun 1980.
- [11] K. S. Narendra and L. S. Valavani. Stable adaptive controller design—direct control. *IEEE Transactions on Automatic Control*, 23(4):570 583, aug 1978.
- [12] K. M. Passino and S. Yurkovich. Fuzzy Control. Addison Wesley Longman, Inc., 1998.
- [13] S. Sastry and M. Bodson. Adaptive Control: Stability, Convergence, and Robustness. Prentice-Hall., 1994.
- [14] G. Tao. Adaptive control design and analysis. John Wiley & Sons, Inc., 2003.
- [15] M. Tárník. Direct model reference adaptive control of small laboratory dc motor. $posterus.sk,\ 4(1),\ 2011.$