Project Report: Milestone 1 - Data Collection, Preprocessing, and Exploratory Data Analysis

1. Project Objective

This project aims to develop a **chatbot** for analyzing and interacting with **U.S. power plant data** and environmental trends. The goal is to compare **U.S. power plant data** with **U.S. pollution levels** and **temperature changes.** Users will be able to query the chatbot for insights and dynamically explore trends within the U.S.

2. Type of Project

• Conversational Agent (Chatbot): Allows users to query the power plant database and related datasets using natural language.

3. Data Used

Primary Dataset: U.S. Power Plant Database

- Source: Global Power-Plants (Kaggle)
- **Description**: Contains information on power plants in the United States, including location, capacity, fuel type, and operational status.
- **Dimensions**: 8644 records, 18 variables (Power Plant Database)
- Key Variables and Descriptions:
 - o country: The country where the power plant is located (all entries are 'USA').
 - o country long: Full name of the country (United States of America).
 - o name: Name of the power plant.
 - o capacity_mw: The maximum electrical output capacity of the power plant in megawatts.
 - o latitude, longitude: Geographic coordinates of the power plant location.
 - o primary_fuel: The main fuel source used by the power plant (e.g., solar, gas, coal, wind, etc.).
 - o commissioning_year: The year the power plant began operations.
 - o owner: The entity that owns the power plant.
 - o year of capacity data: The year when capacity data was last updated.
 - o generation_gwh_2013-2017: Annual electricity generation (in GWh) from 2013 to 2017
 - o cluster: Cluster ID assigned for power plant grouping.

Additional Datasets

- U.S. Pollution Dataset (Collected from AirPure API based on coordinates)
 - Source: AirPure API
 - o **Description**: Contains air quality index (AQI) data for various locations in the U.S.
 - o **Dimensions**: 1506 records, 14 variables (Air Quality Dataset)
 - o Key Variables and Descriptions:
 - DateObserved: The date when the air quality measurement was recorded.
 - HourObserved: The hour at which the measurement was taken.
 - LocalTimeZone: The local time zone of the reporting station.
 - ReportingArea: The city or region where the measurement was recorded.
 - StateCode: The U.S. state abbreviation.
 - Latitude, Longitude: Geographic coordinates where the air quality measurement was taken.
 - ParameterName: The pollutant measured (e.g., Ozone, PM2.5, PM10).
 - AQI: Air Quality Index value indicating the overall air quality level.
 - CategoryNumber: Numeric classification of AQI category.
 - CategoryName: Descriptive category of AQI (e.g., Good, Moderate, Unhealthy).
 - year, month: Extracted fields indicating the year and month of observation.
 - cluster: Cluster ID assigned for AQI station grouping.
- U.S Temperature dataset (Collected from NOAA using Open-meteo API)
 - o **Source:** Open-meteo API
 - Description: This dataset contains temperature data for various locations, recorded quarterly.
 - o **Dimensions:** 1800 rows and 7 columns
 - Key Attributes:
 - cluster: Cluster ID assigned to power plants.
 - latitude: latitude of cluster.
 - longitude: longitude of cluster.
 - commissioning year: The year the power plant began.
 - quarter: quarters for 2 years before and after commissioning year.
 - time: The time when the temperature was captured.
 - temperature_2m_mean: Average temperature of the particular quarter at given latitude and longitude.

4. Tech Stack

- **Programming Languages**: Python
- Libraries:
 - o Data Manipulation: Pandas, NumPy, Scipy
 - o **Data Visualization:** Matplotlib, Seaborn, Plotly

5. Exploratory Data Analysis (EDA)

- Clustering Methodology for AQI Data Collection: To optimize AQI requests, DBSCAN clustering was applied to group power plants based on geographic proximity using haversine distance. Key steps:
 - Data Cleaning: Removed missing or invalid values for latitude, longitude, and commissioning year.
 - o Filtering Criteria: Considered only plants commissioned in the last 13 years.
 - Geospatial Clustering: Applied DBSCAN with a 100 km proximity threshold to form clusters.
 - Cluster Representation: Selected a representative location per cluster for AQI data retrieval.
- **Descriptive Statistics**: Mean, median, standard deviation.

• Data Preprocessing:

- o Handling Missing Values: Identifying and imputing missing data.
- o **Outlier Detection**: Using visualization and statistical methods like IQR.
- o Standardization: Ensuring consistent units and formats.

• Visualizations:

- o Distribution of power plant capacities.
- o Power plants by primary fuel type.
- Year-wise trends in commissioning power plants.
- o Geographic distribution of power plants.
- o Temperature by cluster location over time.
- o Temperature differences and impact after commissioning.

6. Key Insights from EDA

• Power Plant Insights:

- o The dataset contains **8,644** power plants across the U.S.
- Solar is the most common fuel type in terms of the number of plants, followed by gas and hydro.
- o Gas-based power plants contribute the most to total capacity (182,686 MW), followed by wind (80,358 MW), coal (53,892 MW), and hydro (50,147 MW).
- o The top 5 largest power plant clusters contain the majority of power plants, with the largest cluster having over 1,600 plants.
- Fuel type distribution across the largest clusters shows that gas, wind, and hydro dominate in terms of capacity.
- The top power plant owners vary significantly in the number of plants and total capacity:
 - **Cypress Creek Renewables** owns the highest number of plants (109) but has a lower total capacity (810 MW).
 - Pacific Gas & Electric Co. has the highest total capacity (3,700 MW) but owns fewer plants (81).

• Air Quality Insights:

AQI Category Distribution:

- The majority of recorded AQI values fall into the "Good" category (1,266 records).
- "Moderate" AQI levels account for 232 records, while only 6 and 2 records were categorized as "Unhealthy for Sensitive Groups" and "Unhealthy," respectively.
- This suggests that most monitored locations maintain relatively clean air quality.

o Pollutant-Specific AQI Trends:

- Ozone (O3) is the most frequently recorded pollutant (642 records), followed by PM2.5 (571 records) and PM10 (293 records).
- PM2.5 exhibits the highest AQI variability, with several extreme values exceeding 175, indicating occasional severe pollution spikes.
- PM10 has the lowest AQI levels on average, but certain regions still show high particulate matter concentrations.

Geospatial Trends:

- The highest AQI levels (poor air quality) are concentrated in urban and industrial areas, while rural regions tend to have significantly lower pollution.
- Montana (MT), Texas (TX), and Arkansas (AR) have the highest number of AQI records, suggesting greater monitoring efforts in these states.

AQI Trends Over Time and Clusters:

- Certain clusters show significant AQI deterioration, while others exhibit clear improvements.
- Clusters with the most AQI change show up to 69 points of variation, indicating areas of concern as well as zones with successful air quality interventions.

Impact of Power Plants on AQI:

- Gas power plants contribute the most capacity (3,892 MW) in AQIimproving clusters, suggesting that cleaner energy sources correlate with better air quality.
- Hydro, oil, and coal plants are dominant in AQI-worsening areas, reinforcing their association with emissions and air quality decline.
- Coal and oil plants show direct correlations with worsening AQI trends, while renewables (solar, wind) are more prevalent in cleaner-air regions.

• Temperature Insights:

- o There are very few outliers particularly 2 i.e., the temperature is very low at those locations.
- o There are no missing or duplicate values.
- o The mean temperature is around 12 degrees Fahrenheit.

- o There is a little bit high temperature in southern parts but over the years the temperature increases around 5 degrees in northern and central parts.
- This gives us the insight that there is impact of power plants on the temperature.
 The temperature increases over the period.

7. Project Timeline

Milestone	Task	Deadline
Milestone 1	Data Collection, Preprocessing, and EDA	Feb 23, 2025
Milestone 2	Feature Engineering & Data Modeling	Mar 21, 2025
Milestone 3	Tool Development & Final Presentation	Apr 23, 2025

8. GitHub Repository

- Repository Name: cap5771sp25-project
- Link: https://github.com/SainathChettupally/cap5771sp25-project.git
- Contributors: Nagabhairava, Roop Yaswanth

9. Next Steps

- Complete data preprocessing and visualize trends.
- Confirm additional datasets for integration.
- Start chatbot prototype development.