UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA MECÂNICA

José Pedro de Santana Neto

FERRAMENTA COMPUTACIONAL PARA ANÁLISE DA ACÚSTICA INTERNA DE DUTOS COM DIFERENTES CONDIÇÕES DE CONTORNO

Florianópolis

2016

José Pedro de Santana Neto

FERRAMENTA COMPUTACIONAL PARA ANÁLISE DA ACÚSTICA INTERNA DE DUTOS COM DIFERENTES CONDIÇÕES DE CONTORNO

Dissertação submetido ao Programa de Pós-Graduação para a obtenção do Grau de Mestre em Engenharia Mecânica. Orientador: Andrey Ricardo da Silva, Ph.D.

Florian'opolis

2016

José Pedro de Santana Neto

FERRAMENTA COMPUTACIONAL PARA ANÁLISE DA ACÚSTICA INTERNA DE DUTOS COM DIFERENTES CONDIÇÕES DE CONTORNO

Este Dissertação foi julgado aprovado para a obtenção do Título de "Mestre em Engenharia Mecânica", e aprovado em sua forma final pelo Programa de Pós-Graduação.

	Florianópolis, 15 de Junho 2016.
	Armando Albertazzi Gonçalves Júnior, Dr. Eng. Coordenador
Banca E	examinadora:
	Primeiro membro Universidade
	Oliversidade
•	Andrey Ricardo da Silva, Ph.D.
	Orientador
	Segundo membro
	Universidade

Este trabalho é dedicado aos meus colegas de classe e aos meus queridos pais.

AGRADECIMENTOS

Agradeço bla bla bla.

Texto da Epígrafe. Citação relativa ao tema do trabalho. É opcional. A epígrafe pode também aparecer na abertura de cada seção ou capítulo.

(Autor da epígrafe, ano)

RESUMO

O texto do resumo deve ser digitado, em um único bloco, sem espaço de parágrafo. O resumo deve ser significativo, composto de uma sequência de frases concisas, afirmativas e não de uma enumeração de tópicos. Não deve conter citações. Deve usar o verbo na voz passiva. Abaixo do resumo, deve-se informar as palavras-chave (palavras ou expressões significativas retiradas do texto) ou, termos retirados de thesaurus da área.

Palavra-chave 1. Palavra-chave 2. Palavra-chave 3.

ABSTRACT

Resumo traduzido para outros idiomas, neste caso, inglês. Segue o formato do resumo feito na língua vernácula. As palavras-chave traduzidas, versão em língua estrangeira, são colocadas abaixo do texto precedidas pela expressão "Keywords", separadas por ponto.

Keywords: Keyword 1. Keyword 2. Keyword 3.

LISTA DE FIGURAS

Figura 1	Exemplos de várias termiações de dutos circulres	28
Figura 2	Elaborado pelo autor	41

LISTA DE TABELAS

LISTA DE ABREVIAÇÕES

LISTA DE SÍMBOLOS

SUMÁRIO

1 INTRODUÇÃO	25
1.1 CONTEXTO	25
1.2 PROBLEMA	
1.3 OBJETIVOS	
2 REVISÃO BIBLIOGRÁFICA 2	29
3 MÉTODO DE LATTICE BOLTZMANN 3	31
4 PALABOS 3	3
5 MODELOS NUMÉRICOS 3	
6 VALIDAÇÕES 3	37
7 RESULTADOS 3	39
8 CONCLUSÕES 4	
REFERÊNCIAS 4	13

1 INTRODUÇÃO

1.1 CONTEXTO

Sistemas de exaustão hoje em dia possuem uma forte colaboração na composição de sons e ruídos. Escapamentos, sistemas de ventilação, buzinas e motores aeronáuticos são exemplos desses sistemas que estão altamente presentes no dia-dia. Cada vez mais a sociedade vem desenvolvendo consciência crítica dos danos que os ruídos desses tipos de sistemas podem acarretar a saúde da população. Tal fato é tão preponderante que, como é apresentado por Munjal (1987), desde os anos da década de 1920 há registros de esforços para entender e caracterizar esses tipos sistemas afim de colaborar com a manutenção e desenvolvimento de ambientes saudáveis no contexto acústico.

Há vários elementos estruturais que podem compor sistemas de exaustão, mas os dutos circulares se caracterizam como fundamentais e bastante presentes. Sua forma cilíndrica permite que vários fenômenos físicos possam ocorrer e interagir entre si, principalmente os fenômenos acústicos e de fluxo de massa (escoamentos). De acordo com Munjal (1987), o corpo de estudos e conhecimentos da acústica interna de dutos está bem estabelecido, mas verifica-se na literatura vários questionamentos sobre o funcionamento do mesmo na presença de escoamentos (fenômenos aeroacústicos). Em vista disso, determinar a caracterização da acústica interna de dutos é de extrema importância visto as várias tecnologias relacionadas a sistemas de exaustão sem um amparo técnico bem estabelecido da literatura no ponto de vista da aeroacústica.

Em geral, pode-se utilizar dois parâmetros para caracterizar o fenômeno da acústica interna de dutos:

• a magnitude do coeficiente de reflexão ||R||, razão entre as componentes refletida e incidente da onda no duto, a qual é dada por

 $R_r = \frac{Z_r - Z_0}{Z_r + Z_0},\tag{1.1}$

sendo Z_r a impedância de radiação e Z_0 a impedância característica do meio;

• coeficiente de correção da terminação normalizado pelo raio do duto l/a em que a é o raio do duto. Tal parâmetro representa o comprimento acústico efetivo do duto. Em outras palavras, o

fator l é a quantidade adicional medida a partir da abertura do duto a qual deve propagar a onda incidente antes de ser refletida para o interior do duto com fase invertida. Tal coeficiente de correção da terminação l é dado por

$$l = \frac{1}{k} \arctan\left(\frac{Z_r}{Z_0 i}\right) \tag{1.2}$$

sendo k o número de onda.

Com o uso desses dois parâmetros pode-se projetar dutos com um comportamento acústico adequado a diversas situações que exigem atenuação de ruídos em certas frequências, além de poder prever com mais acurácia já que grande parte dos estudos consideram a acústica interna de dutos sem escoamentos.

1.2 PROBLEMA

Com relação ao contexto abordado, a solução exata para o problema de um duto circular não flangeado na ausência de escoamento foi proposta por Levine e Schwinger (1948). A solução assume que a espessura das paredes do duto são desprezíveis e o fluido é inviscido. A partir destas simplificações, as expressões exatas para $\|R\|$ e l são obtidas utilizando-se a técnica de Wiener-Hopf.

Apesar da utilidade do modelo de Levine e Schwinger, em boa parte das aplicações práticas, dutos circulares transportam escoamentos médios. Para tais circunstâncias, Munt (1990) propôs um modelo analítico exato, também baseado na técnica de Wiener-Hopf, em que se considera a presença de um escoamento subsônico no interior do duto. Considera-se nesse modelo as premissas de que o escoamento é uniforme, invíscido e que a camada cisalhante do jato é infinitamente fina. Além disso, o modelo considera a condição de Kutta na borda do duto para lidar com a singularidade da velocidade de partícula nesta região.

E importante ressaltar que modelos exatos para os parâmetros de radiação de dutos se limitam às condições geométricas simples. No entanto, observa-se na prática terminações cujas geometrias divergem significativamente daquela associadas a um duto não flangeado. Exemplos comuns destas geometrias são aquelas encontradas em difusores, chaminés, sistemas de exaustão, nozzles e instrumentos musicais. A Figura 1 ilustra casos mais realistas de terminação de dutos comumente

encontrados na prática. Para estes casos, não existem modelos que considerem a influência do escoamento nas propriedades de radiação. Além disso, a análise numérica considerando os efeitos de escoamento não é trivial.

No entanto, com o advento de novas tecnologias computacionais, é possível realizar procedimentos numéricos extremamente complexos com certa agilidade e precisão. Softwares como ANSYS (2017) e COMSOL (2017) possuem a viabilidade de realizar cálculos de fluido dinâmica computacional de sistemas complexos como carros e aviões. Essa capacidade técnica é oriunda em maior parte pelas tecnologias de processamento paralelo multinúcleo de processadores e implementações de seus respectivos softwares gerenciadores como Open MPI Project (2017). Essa evolução tecnológica vem sendo essencial para o surgimento de novas ferramentas para a exploração e descoberta de fenômenos físicos, antes muitas vezes inviáveis de estudar por alto custo de bancadas experimentais ou alta complexidade na consolidação de um modelo matemático representativo.

1.3 OBJETIVOS

Considerando a problemática discutida acima, o objetivo principal desse trabalho é desenvolver uma ferramenta computacional para análise do comportamento acústico interno de dutos com diferentes condições de contorno na presença de escoamentos de baixo número de Mach (M < 0.2).

Tem-se como objetivos específicos:

- modelar e analisar o comportamento acústico de dutos não flangeados sem escoamento;
- modelar e analisar o comportamento acústico de dutos não flangeados com escoamento de saída;
- modelar e analisar o comportamento de dutos terminados por difusores do tipo corneta cilíndrica com diferentes raios e escoamento de saída;
- modelar e analisar o comportamento acústico interno de dutos com escoamento sugado e diferentes geometrias de terminação.

Figura 1: Exemplos de vários tipos de terminações: (a) flange circular; (b) flange circular com espessura do duto; (c) duto quadrado com flange de espessura quadrada; (d) flange normalizada; (e) flange esférica; (f) flange cilíndrica; (g) corneta; (h) disco não perfurado; (i) disco perfurado.

2 REVISÃO BIBLIOGRÁFICA

3 MÉTODO DE LATTICE BOLTZMANN

4 PALABOS

5 MODELOS NUMÉRICOS

6 VALIDAÇÕES

7 RESULTADOS

8 CONCLUSÕES

Neste tópico será abordado a duração de cada uma das etapas de trabalho como pode ser visto na Figura 2. Desta forma será possível uma melhor organização do mesmo.

Figura 2: Elaborado pelo autor.

REFERÊNCIAS

ANSYS, I. ANSYS Home page. 2017. Disponível em: https://www.ansys.com.

COMSOL, I. *COMSOL Home page*. 2017. Disponível em: https://br.comsol.com.

DALMONT, J.-P.; NEDERVEEN, C.; JOLY, N. Radiation impedance of tubes with different flanges: numerical and experimental investigations. *Journal of sound and vibration*, Elsevier, v. 244, n. 3, p. 505–534, 2001.

LEVINE, H.; SCHWINGER, J. On the radiation of sound from an unflanged circular pipe. *Physical review*, APS, v. 73, n. 4, p. 383, 1948.

MUNJAL, M. L. Acoustics of ducts and mufflers with application to exhaust and ventilation system design. [S.l.]: John Wiley & Sons, 1987.

MUNT, R. Acoustic transmission properties of a jet pipe with subsonic jet flow: I. the cold jet reflection coefficient. *Journal of Sound and Vibration*, Elsevier, v. 142, n. 3, p. 413–436, 1990.

PROJECT, O. M. Open MPI Project Home page. 2017. Disponível em: https://www.open-mpi.org/.