Project overview

1 Structure of the Project

2 The Construction Problems

Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first, using only a ruler and compass.

Angle trisection is the construction, using only a ruler and compass, of an angle that is one third of a given arbitrary angle.

2.1 Definitions

First we need to define what construction using a ruler and compass means. We will use \mathbb{C} as plane of drawing and $\mathcal{M} \subset \mathbb{C}$ as the set of constructed points.

Definition 2.1. $\mathcal{G}(\mathcal{M})$ is the set of all real straight lines \mathcal{G} , with $|\mathcal{G} \cap \mathcal{M}| \geq 2$. $\mathcal{C}(\mathcal{M})$ is the set of all circles in \mathbb{C} , with center in \mathcal{M} and radius of \mathcal{C} is the distence of two points in \mathcal{M} .

Definition 2.2. We define operation that can be used to constructed new Points.

- 1. (ZL1) is the cut of two lines in $\mathcal{G}(\mathcal{M})$.
- 2. (ZL2) is the cut of a line in $\mathcal{G}(\mathcal{M})$ and a circle in $\mathcal{C}(\mathcal{M})$.
- 3. (ZL3) is the cut of two circles in $\mathcal{C}(\mathcal{M})$.

 $ZL(\mathcal{M})$ is the set \mathcal{M} combeined with of all points that can be constructed using the operations (ZL1), (ZL2) and (ZL3).

Definition 2.3. We define inductively the the chain

$$\mathcal{M}_0 \subseteq \mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \dots$$

with $\mathcal{M}_0 = \mathcal{M}$ and $\mathcal{M}_{n+1} = ZL(\mathcal{M}_n)$.

And call $\mathcal{M}_{\infty} = \bigcup_{n \in \mathbb{N}} \mathcal{M}_n$ the set of all constructable points.

2.2 Problem simplification

Let $\mathcal{M} = \{a, b\}$. Let r := ||a - b|| be the distance between a and b. Then a Qube with edge r has volume r^3 . There is a cube with volume $2r^3$ if and only if $\sqrt[3]{2} \in \mathcal{M}_{\infty}$.

Problem 2.4. Let $\mathcal{M} = \{0,1\}$ Is $\sqrt[3]{2} \in \mathcal{M}_{\infty}$?

Let $\mathcal{M} = \{a, b, c\}$ with a, b, c not on a line. Let $\alpha := \angle abc$. Then α can be trisected if and only if $\exp(\mathbf{i}\alpha/3) \in \mathcal{M}_{\infty}$.

Problem 2.5. Let $\mathcal{M} = \{0, 1, \exp(\mathbf{i}\alpha)\}\ \text{Is } \exp(\mathbf{i}\alpha/3) \in \mathcal{M}_{\infty}$?

Lean 1 November 22, 2023

3 Properties of the the set of constructable points

Definition 3.1. The degree of x over K is

$$[x:K] := degree(\mu_{x,K})$$

with $\mu_{x,K}$ the minimal polynomial of x over K.

The degree of L/K is the dimension of L as a K-vector space and is denoted by

Theorem 3.2. Let L/K be a simple field extension with L = K(x). Then

$$[L:K] = [x:K].$$

Proof. TODO \Box

Definition 3.3. Let $(M) \subseteq \mathbb{C}$ with $0, 1 \in \mathcal{M}$

$$K_0 := \mathbb{Q}(\mathcal{M} \cup \overline{\mathcal{M}})$$

with $\overline{\mathcal{M}} := \{ \overline{z} = x - \mathbf{i}y \mid z = x + \mathbf{i}y \in \mathcal{M} \}.$

Theorem 3.4. Let $\mathcal{M} \subseteq \mathbb{C}$ with $0, 1 \in \mathcal{M}$ and $K_0 := \mathbb{Q}(\mathcal{M} \cup \overline{\mathcal{M}})$. Then for $z \in \mathcal{M}_{\infty}$ is equvalent:

- 1. $z \in \mathcal{M}_{\infty}$
- 2. There is an intermediate field L of \mathbb{C}/K_0 with $z \in L$, such that L TODO
- 3. There is an $n \in \mathbb{N}$ and a chain

$$K_0 = L_0 \subset L_1 \subset \cdots \subset L_n \subset \mathbb{C}$$

of subfields of \mathbb{C} such that $z \in L_n$ and $[L_i : L_{i-1}] = 2$ for $1 \le i \le n$

In this case $[K_0(z):K_0]=2^m$ for some $0 \le m \le n$.

Proof. TODO

4 Doubling the cube with a compass and straightedge

The Problem of doubling the cube is equivalent to the question if $\sqrt[3]{2} \in \mathcal{M}_{\infty}$. Since $\mathcal{M} = \{0, 1\}$, we know that $K_0 = \mathbb{Q}$. Therfore we need examine if $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 2^m$.

Lemma 4.1. $\sqrt[3]{2}$ is not a rational number.

Lemma 4.2. $\zeta_3\sqrt[3]{2}$ and $\zeta_3^2\sqrt[3]{2}$ are not real numbers.

Theorem 4.3. $P := X^3 - 2$ is irreducible over \mathbb{Q} .

Lean 2 November 22, 2023

Proof. Since \mathbb{Q} is a subfield of $\mathbb{C}[X]$, we know that

$$X^3 - 2 = (X - \sqrt[3]{2})(X - \zeta_3\sqrt[3]{2})(X - \zeta_3^2\sqrt[3]{2})$$

Suppose P is Rational, then

$$X^{3} - 2 = (X - a)(X^{2} + bX + c)$$
, with $a, b, c \in \mathbb{Q}$

In particular it has a zero in \mathbb{Q} , so there is a rational number a such that $a^3 = 2$. But we have shown in 4.2 that $\zeta_3\sqrt[3]{2}$ and $\zeta_3^2\sqrt[3]{2}$ are not real numbern and in 4.1 $\sqrt[3]{2}$ is not rational. So P is irreducible over \mathbb{Q} .

Theorem 4.4. The cube can't be doubled using a compass and straightedge.

Proof. We know that $K_0 = \mathbb{Q}$ and the problem is equivalent to $\sqrt[3]{2} \in \mathcal{M}_{\infty}$. 3.4 tells us that it is sufficient to show that $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] \neq 2^m$ for some $0 \leq m$. Since $\sqrt[3]{2}$ is not a rational number, we know that $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] \geq 2$. TODO

We know that $P := X^3 - 2$ is irreducible over \mathbb{Q} 4.3 and $P(\sqrt[3]{2}) = 0$, therefore $P = \mu_{\sqrt[3]{2},\mathbb{Q}}$. So with 3.2 we know $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$ and $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] \neq 2^m$ for some $0 \leq m$.

5 Angle trisection

Let $\mathcal{M} = \{0, 1, \exp(\mathbf{i}\alpha)\}$ with $\alpha \in (0, 2\pi)$. Therfore we know that

$$K_0 = \mathbb{Q}(\mathcal{M} \cup \overline{\mathcal{M}}) = \mathbb{Q}(\exp(\mathbf{i}\alpha))$$

We need to examine if $\exp(\mathbf{i}\alpha/3) \in \mathcal{M}_{\infty}$. Since 3.4 that for an postive answer it is nessary that $[\mathbb{Q}(\exp(\mathbf{i}\alpha/3)):\mathbb{Q}] = 2^m$ for some $0 \le m$.

Since $\exp(\mathbf{i}\alpha/3)$ is zero of $X^3 - \exp(\mathbf{i}\alpha)$, we know that $[\mathbb{Q}(\exp(\mathbf{i}\alpha/3)) : \mathbb{Q}] \leq 3$. Therfore it is equivalent

- 1. $\exp(\mathbf{i}\alpha/3) \notin \mathcal{M}_{\infty}$
- 2. degree($\mu_{\exp(i\alpha/3),\mathbb{O}}$) = 3
- 3. $X^3 \exp(i\alpha/3)$ is irreducible over \mathbb{Q}

Lemma 5.1. If $r \in \mathcal{M}_n$, then $\sqrt{r} \in \mathcal{M}_{\infty}$.

Lemma 5.2 (Rational root theorem).

Theorem 5.3. The angle $\pi/3 = 60^{\circ}$ can't be trisected using a compass and straightedge.

Proof. We know

$$\exp(\mathbf{i}x) = \cos(x) + \mathbf{i}\sin(x) \quad \forall x \in \mathbb{R}$$

For $\alpha = \pi/3$ we get

$$\cos(\alpha) = \frac{1}{2}$$
 and $\sin(\alpha) = \frac{\sqrt{3}}{2}$

Since we know that $\sqrt{r} \in \mathcal{M}_{\infty}$ for $r \in \mathcal{M}_n$ 5.1 we see that $\exp(\mathbf{i}\alpha) \in \mathcal{M}_{\infty}$ for $\mathcal{M} = \{0, 1\}$. So we will work with $K_0 = \mathbb{Q}$.

TODO

We now $\cos(\alpha/3)$ is zero of

$$f := 8X^3 - 6X - 1 \in \mathbb{Q}[X]$$

Suppose f is reducible over \mathbb{Q} , then f has a rational zero a. According to the rational root theorem, ?? TODO we know that every zero is in

$$\{\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}\}$$

Man can check that none of these numbers is a zero of f. TODO So f is irreducible over \mathbb{Q} and $\cos(\alpha/3) \notin \mathcal{M}_{\infty}$. Therefore

$$\exp(\mathbf{i}\alpha/3) \notin \mathcal{M}_{\infty}$$

So the angle $\pi/3 = 60^{\circ}$ can't be trisected using a compass and straightedge.

Lean November 22, 2023