NSWI090: Počítačové sítě I (verze 4.0)

Lekce 4: Základy datových komunikací

Jiří Peterka

co je potřeba znát?

- kde vzniká schopnost přenášet data?
 - čím je dána, na čem závisí?
 - šířka pásma, modulace
 - jak ji zvyšovat, kde jsou její limity?
 - Nyquistův teorém, Shannonovo kritérium
 - jak se vyjadřuje a v čem se měří?
 - modulační a přenosová rychlost
- jaké vlastnosti mají reálná přenosová média?
 - jaký je přenosový potenciál různých přenosových médií?
 - kroucená dvoulinka
 - koaxiální kabely
 - optické kabely
- jak fungují optické přenosy?
 - čistě optické přenosy

- jaké jsou techniky přenosu dat, používané na fyzické vrstvě?
 - modulovaný a nemodulovaný přenos
 - modulace a kódování
 - arytmický, asynchronní a synchronní přenos
 - analogový a digitální přenos
 - digitalizace analogových signálů
 - techniky multiplexu
 - FDM, TDM, STDM
 - OFDM, CDMA
 - izochronní přenos, bitstream,
- jak fungují bezdrátové přenosy?
 - spread spectrum,
 - frequency hopping,
 - **–**

reálné vlastnosti přenosových cest

- přenosové cesty nejsou ideální ale mají "reálné obvodové vlastnosti"
 - tím je omezena i jejich schopnost přenášet různé signály
 - v důsledku toho je omezena i jejich schopnost přenášet data!!!
 - proto mají pouze určitý (omezený) přenosový potenciál
- přenosové cesty (kabely), které přenáší (elektrický) signál:
 - ho vždy nějak negativně ovlivňují:
 - útlum (attenuation)
 - zeslabují přenášený signál
 - zkreslení (distortion)
 - deformují přenášený signál
 - přeslech (crosstalk)
 - "prolínání" signálů z přenosů po jiných vedeních (kabelech)
 - rušení (interference)
 - obecné "prolínání" dalších rušivých signálů
 - vždy nějak vyzařují do svého okolí
 - dva souběžně vedené vodiče se vždy chovají jako anténa

důsledek:

- každá přenosová cesta přenáší některé signály lépe, jiné hůře
 - záleží zejména na frekvenci přenášeného signálu a na povaze jeho změn
- některé signály jsou již tak "pokaženy", že nemá smysl je danou přenosovou cestou přenášet
 - pro jiné to ještě smysl má

vliv útlumu a zkreslení

- míra dopadu je v obou případech úměrná délce přenosové cesty
 - čím delší je "drát", tím větší je útlum a zkreslení

analogový vs. digitální přenos

- reálné přenosové cesty vždy přenáší nějakou analogovou veličinu
 - metalické (kovové): přenáší elektrický signál
 - lze měřit velikost napětí, velikost proudu, sledovat průběh v čase (změny)
 - optické: přenáší světlo
 - lze měřit intenzitu světla, sledovat průběh v čase
 - bezdrátové (rádiové): přenáší elektromagnetické vlnění
 - lze měřit kmitočet (frekvenci), intenzitu, fázi,
- zda jde o analogový nebo digitální přenos, rozhoduje interpretace !!!
- analogový přenos:
 - zajímá nás přímá hodnota analogové veličiny
 - např. že el. signál má úroveň napětí 3,4V
 - "užitečnou informací" je 3,4
 - ale přijato je 3,3

- digitální přenos:
 - zajímá nás, zda hodnota analogové veličiny spadá do určitého intervalu
 - například:
 - zda je úroveň napětí mezi 3V a 5V
 - "vysoká úroveň" (High)
 - nebo zda je mezi 0 a 1V

analogový vs. digitální přenos

analogový přenos není ideální

- v tom smyslu, že by zachoval přenášenou informaci bez jakékoli změny
 - vždy ji nějak změní
 - viz pokles napětí vlivem útlumu
- otázkou je pouze "míra pokažení" přenášeného signálu
 - tuto míru lze snižovat, ale nikdy ne zcela odstranit
 - navíc je to hodně drahé
 - čím více se snažíme zlepšit, tím je to dražší
 - další problém: řetězení
 - v celém přenosovém řetězci se "míra pokažení" sčítá až násobí!

digitální přenos může být ideální

- dokáže zachovat přenášenou informaci bez jakékoli změny
 - přenášený signál ale nesmí "vybočit" z příslušné úrovně
- řetězení není problém
 - signál se vždy zregeneruje (zesílí)

celkově:

- digitální přenos je efektivnější než analogový
 - digitálně lze dosahovat vyšších přenosových kapacit než analogově
 - s nižší "spotřebou surovin"
- příklad: tzv. digitální dividenda
 - dříve pro analogové TV programy:
 - 1 frekvenční kanál = 1 TV program
 - digitální TV vysílání (DVB-T):
 - 1 frekvenční kanál = 4-6 TV programů

modulovaný a nemodulovaný přenos

důsledek (toho, že přenosové cesty nejsou nikdy ideální):

- některé signály jsou přenášeny lépe, některé hůře
 - zejména pokud jde o míru jejich zkreslení
- obecně: nejvíce vadí "ostré změny" (zlomy, hrany)

modulovaný přenos

- snaha přenášet takový signál, který danou přenosovou cestou projde nejlépe
 - což je signál, který má nejvíce pozvolné změny!
 - v praxi: tzv. harmonický signál
 - signál sinusového průběhu

$$y = A \cdot \sin(\omega t + \phi)$$

- výhoda:
 - takovýto signál lze přenášet na větší vzdálenosti i vyššími rychlostmi
- problém:
 - samotný harmonický signál v sobě ještě nenese žádnou užitečnou informaci

nemodulovaný přenos

- přenáší se i takový signál, který
 přenosovou cestou prochází hůře
 - což je signál, který může mít i ostré hrany
 - v praxi: ostré hrany (nebo úrovně signálu) přímo reprezentují přenášená data

- výhoda:
 - je to jednodušší na realizaci
- nevýhoda:
 - kvůli zkreslení lze využít jen na krátké vzdálenosti

nemodulovaný přenos

- též: přenos v základním pásmu, baseband přenos
- "užitečnou hodnotu" může vyjadřovat:
 - úroveň napětí (U)
 - unipolární varianta
 - vysoká (High) a nízká (Low) úroveň

bipolární varianta:

kladná a záporná úroveň

úroveň proudu (I)

zde stačí 1 změna signálu na 1 bit

- varianta "s návratem k nule"
 - "po každém bitu" se úroveň signálu vrací k 0
 - RZ, Return to Zero

změna úrovně

nebo obráceně

(dle konvence)

zde jsou nutné až 2 změny signálu na 1 bit

potřeba synchronizace

U [V]

- · přenos jednotlivého bitu trvá určitou dobu
 - tzv. bitový interval
- co je důležité:
 - aby příjemce dokázal vždy správně rozpoznat začátek a konec bitového intervalu
 - a díky tomu mohl správně vyhodnotit hodnotu přenášeného bitu

- při ztrátě synchronizace příjemce přijímá jiné bity, než jaké by měl správně přijímat
 - protože se "strefuje" do nesprávných bitových intervalů

řešení:

- udržování synchronizace
 - představa: příjemce i odesilatel mají své hodinky, podle kterých odměřují začátky a konce bitových intervalů
 - požadavek na synchronizaci je pak požadavkem na to, aby se tyto hodinky "moc nerozešly"

možnosti synchronizace

- pro tzv. (plně) synchronní přenos
 - s trvalým udržováním synchronizace, po celou dobu přenosu
- samostatné časování
 - kromě dat se přenáší také samostatný synchronizační signál ("tikání hodinek")
 - v praxi se moc nepoužívá
 - náročné na režii (100% navíc)
- časování je vloženo přímo do "datového signálu"
 - např. u kódování Manchester, kde je v každém bitovém intervalu vždy aspoň jedna změna
 - a ta představuje "tik" hodin
- časování se odvozuje ze samotných dat
 - změny signálu reprezentují jednotlivé "tiky"
 - nebezpečí:
 - delší posloupnost beze změny signálu může způsobit, že příjemce ztratí synchronizaci
 - řešení: technika <u>bit stuffing</u>
 - za určitým počtem bitů "beze změny" (ještě než příjemce ztratí synchronizaci) se vloží uměle vytvořená změna
 - např. za každých 7 po sobě jdoucích 0 se vloží jedna 1, kterou příjemce zase odstraní

blokové kódování

změny v přenášených datech (přenášeném signálu) prospívají přenosům!

- a to jak pro modulované, tak i pro nemodulované přenosy
- usnadňují udržování synchronizace
- snáze (a spolehlivěji) se detekují
 - díky tomu lze dosahovat vyšších rychlostí přenosu, nebo zlepšovat spolehlivost přenosu

otázka:

- jak zanést co nejvíce změn do přenášených dat, nad kterými nemáme vliv a která
 nemůžeme měnit?
 n-tice bitů: 0000, 0001, 0010,, 1110, 1111
 - nebo do skutečně přenášeného signálu?

možnosti:

- redundantní kódování
 - časování se přidává přímo do "datového signálu"
 - například: kódování Manchester
 - každý bitový interval obsahuje vždy nejméně jednu změnu
 - má to nejvyšší (100%) režii
- technika bit stuffing
 - vkládání bitu "pokud je potřeba"
 - režie je limitně = 0%

blokové kódování

- místo "vstupního" bloku n-bitů se odesílá "výstupní" blok o velikosti k-bitů
 - předpoklad: k > n (= určitá redundance)

k-tice bitů: 11001, 11010..., 1110, 1111

00000, 00001, .., 00011, 00100, ...,

- příklad: kódování 4b/5b (100 Mbit Ethernet)
 - místo bloku 4 bitů se odesílá 5 bitů
- příklad: kódování 8b/10b (Gbit Ethernet)
 - místo bloku 8 bitů se odesílá 10 bitů
- efekt: ne všechny k-tice jsou využity
 - vybírají se ty, které mají nejvíce změn !!

asynchronní a arytmický přenos

- existují ještě další způsoby, jak zajistit synchronizaci
- asynchronní přenos
 - a-synchronní = bez synchronizace
 - ve smyslu: nepotřebuje žádnou (další) synchronizaci
 - začátek a konec každého bitového intervalu je signalizován samostatně
 - je k tomu nutná 3-stavová logika
 - signál, který má (nejméně) 3 stavy

- jednotlivé bitové intervaly nemusí být stejně dlouhé
- v praxi se (příliš) nepoužívá
- pozor na terminologii:
 - když se dnes řekne "asynchronní"
 - míní se tím "arytmický" !!!

- arytmický přenos
 - data jsou přenášena po znacích
 - znak = skupina bitů pevné velikosti
 - např. 7 bitů (obvykle 5 až 8 bitů)
 - a-rytmický = bez rytmu
 - ve smyslu: postrádá rytmus (přenosu)
 - ve smyslu: prodlevy mezi znaky mohou být libovolně dlouhé
 - na začátku každého znaku je start bit
 - podle něj se příjemce zasynchonizuje
 - "seřídí si své hodinky"

- předpoklad: synchronizace "vydrží" po dobu přenosu celého znaku
 - a na začátku dalšího znaku dojde k nové synchronizaci

modulovaný přenos

připomenutí

- modulovaný přenos = snažíme se přenášet takový signál, který danou přenosovou cestou projde nejlépe
 - což je harmonický signál (signál sinusového průběhu):

• ale:

- samotný harmonický signál ještě nenese žádnou užitečnou informaci
 - představuje pouze tzv. nosnou (nosný signál, harmonickou nosnou)
- na tento signál je teprve třeba "naložit" informaci, určenou k přenesení
 - "naložit" formou změny některého z parametrů harmonického signálu = **modulace**
- digitální modulace: "nakládáme" digitální data

modemy a kodeky

- modulaci nosného signálu má na starosti zařízení zvané MODEM
 - MOdulátor/DEModulátor
 - zajišťuje i demodulaci: "sejmutí" užitečné informace z modulovaného signálu

- v praxi: modem slouží pro přenos digitálních dat po analogové přenosové cestě
 - například:
 - po analogové telefonní lince (telefonní modem, rychlosti až 56 kbit/s)
 - po tzv. místní smyčce (ADSL modem, VDSL modem, DSLAM, rychlosti v řádu Mbit/s)
 - po kabelové přípojce (kabelový modem, rychlosti v řádu Mbit/s)
 - **–**

opačná situace:

- máme digitální přenosovou cestu, potřebujeme po ní přenášet analogová data
 - potřebujeme zařízení zvané KODEK (KODér/DEKodér)
 - zajišťuje digitalizaci analogového signálu (kódování) a zpětný převod (dekódování)

modulační rychlost (baud rate)

- je rychlost, s jakou se mění modulace nosného signálu
 - modulační rychlost je počet změn signálu za sekundu
 - měří se v jednotkách zvaných BAUD [Bd]
 - podle francouzského inženýra Jean-Maurice-Émile Baudota (1845-1903)
 - sestrojil "tisknoucí rychlotelegraf"
 - vynalezl časový multiplex
 - možnost, aby více telegrafů komunikovalo po jedné lince
 - vynalezl telegrafní kód (1870)

J.M.E. Baudot

- změna signálu je přechodem mezi
 2 různými stavy signálu (též: symboly)
 - symbol = stav (modulovaného) signálu
- místo pojmu "modulační rychlost" se někdy používá také pojem "symbolová rychlost"
 - anglicky: baud rate
- modulační rychlost nevypovídá o tom, kolik dat se přenáší !!!
 - to záleží ještě na tom, kolik je stavů/symbolů
 - kolik bitů reprezentuje jedna změna stavu!!!

vícestavová modulace

- nosný signál nemusí přecházet (díky modulaci) jen mezi 2 různými stavy (symboly)
 - ale může nabývat většího počtu různých stavů → jde o vícestavovou modulaci
- stavy vs. bity:
 - pro znázornění k bitů potřebujeme
 2^k různých stavů
 - resp: pomocí n stavů lze znázornit log2(n) bitů
- příklady:
 - 2 stavová modulace
 - 2 různé stavy znázorní 1 bit
 - 4 stavová modulace
 - 4 různé stavy znázorní 2 bity
 - 8 stavová modulace
 - atd.
- ale také obráceně:
 - na 1 bit se spotřebují 2 změny stavu
 - kódování Manchester (Ethernet)

praktický problém:

- počet stavů/symbolů nelze libovolně zvyšovat
 - protože příjemce by je už nebyl schopen dostatečně spolehlivě rozlišit
- důsledek:
 - někde leží hranice, za kterou už nemá smysl zvyšovat počet stavů/symbolů
 - tato hranice je dána šířkou přenosového pásma

kombinovaná modulace

• připomenutí:

- existují 3 základní varianty modulace: amplitudová, frekvenční a fázová
 - každá z nich je jinak "efektivní" ve smyslu možnosti spolehlivé detekce změny stavu
 - nejefektivnější je modulace fázová
 - vyvolává "ostré" změny, které se nejsnáze detekují, umožňuje rozlišit nejvíce stavů

v praxi:

 pro zvýšení "výtěžnosti" (počtu rozlišitelných stavů) se základní varianty modulace kombinují

příklad:

- modulace QAM
 - kvadraturní amplitudová modulace
- má více variant
 - QAM 16
 - rozlišováno je 16 stavů
 - každá změna reprezentuje 4 bity
 - QAM 64
 - 64 stavů, 6 bitů na 1 změnu
 - QAM 256
 - 256 stavů, 8 bitů na 1 změnu

- podrobněji: modulace QAM 16
 - vzniká součtem 2 nosných signálů
 - posunutých o 90°, proto "kvadraturní"
 - jedna nosná: amplitudová modulace, 3 stavy
 - druhá nosná: fázová modulace, 12 stavů
 - výsledek: 36 kombinací (12x3)
 - z nich je skutečně využíváno jen 16
 - a to ty, které jsou "nejdále od sebe"

přenosová rychlost (bit rate)

říká, kolik bitů se přenese za sekundu

- měří se v bitech za sekundu (resp. v násobcích: kbit/s, Mbit/s, Gbit/s atd.)
- má nominální charakter
 - · vypovídá o tom, jak dlouho trvá přenos jednoho bitu
 - bez ohledu na to, zda jde o "užitečný" nebo režijní bit
 - efektivní (skutečně dosahovaná) přenosová rychlost může být i výrazně nižší
- přenosová rychlost nevypovídá nic o tom, kolikrát za sekundu se změnil přenášený (modulovaný) signál
 - tj. jaká je modulační rychlost

obecný vztah mezi modulační a přenosovou rychlostí:

$$v_{p \check{r}enosov\acute{a}} = v_{modula\check{c}n\acute{1}} * log_2(n)$$

přenosová rychlost [bit/s]	modulační rychlost [Bd]	počet rozlišovaných stavů	bitů/ změnu	standard
2400	600	16	4	V.22bis
9600	2400	16	4	V.32
14400	2400	64	6	V.32bis
28800	3200	512	9	V.34
56000	8000	128	7	V.90,V.92

– příklady:

- Ethernet:
 - přenosová rychlost = ½ modulační rychlosti
- RS-232, Centronics, ...
 - přenosová rychlost = modulační rychlost
- telefonní modemy
 - přenosová rychlost > modulační rychlost
 - viz tabulka

přenosový výkon

• připomenutí:

- přenosová rychlost je nominální veličina
 - nedělá rozdíl mezi užitečnými daty a režií (kterou také "započítává")
 - vypovídá spíše o tom, jak dlouho trvá přenos jednoho bitu (užitečného či režijního)
- jiná veličina:

jde o veličiny stejného rozměru (bit/s, resp. násobky)

- přenosový výkon (též: efektivní přenosová rychlost, skutečně dosahovaná rychlost, propustnost)
 - : throughput
 - započítává pouze užitečná data (nikoli režii)
 - vypovídá o tom, jaký objem (užitečných) dat se přenese za delší časový úsek
- obvykle:

např. 1 hodinu, 1 den

- přenosový výkon je (často i výrazně) nižší, než přenosová rychlost
 - kvůli tomu, že v něm není započítána žádná režie (zatímco v přenosové rychlosti ano)
 - jako např.: hlavičky a patičky bloků (segmentů, paketů, rámců, buněk,), prodlevy, ...
- ale:
 - za určitých okolností může být i vyšší
 - kvůli kompresi přenášených dat
 - např. u telefonních modemů

standard	max. nominální rychlost	reálná efektivní rychlost	
802.11b	11 Mbit/s	do 6 Mbit/s	
802.11g	54 Mbit/s	do 22 Mbit/s	
802.11a	54 Mbit/s	do 25 Mbit/s	

bezdrátové technologie 802.11 (Wi-Fi)

přenosový výkon a režie protokolů

• přenosový výkon závisí i na velikosti přenášených dat

– skrze režii protokolů

režie Ethernetu, IP a UDP: celkem 66 bytů na 1 blok užitečných dat (pokud nedojde k fragmentaci)

příklady:

- přenášíme 64 bytů užitečných dat
 - fakticky (nominální přenosovou rychlostí) se přenese 64+66 bytů
 - režie protokolů představuje 50,76%
 - je-li přenosová rychlost např. 1 Mbit/s, přenosový výkon bude méně než poloviční!!
- přenášíme 1024 bytů užitečných dat
 - fakticky se přenese 1024+66 bytů
 - režie protokolů představuje 6,05%

- v praxi se uplatňuje i další režie:
 - na agregaci
 - chování dalších uživatelů, kteří sdílí stejnou přenosovou kapacitu
 - na zajištění spolehlivosti přenosu
 - chybně přenesená data se přenáší znovu
 - na umělá omezení
 - např. FUP (Fair Use Policy)

zvyšování přenosové rychlosti

- co dělat, když potřebujeme zvýšit přenosovou rychlost?
 - a když víme, že platí: $v_{přenosová} = v_{modulačni} * log_2(n)$
- možnost: zvyšovat v_{modulační}
 - jde o "extenzivní přístup"
 - využívání více zdrojů
 - konkrétně tzv. šířky pásma
 - je to drahé (stojí to peníze)
 - ale: lze to dělat libovolně dlouho
 - ovšem s rostoucí spotřebou šířky pásma
 - tedy s vyššími náklady

- možnost: zvyšovat n (počet stavů)
 - jde o "intenzivní přístup"
 - "cestu zdokonalování"
 - zlepšování technologie
 - nejde to dělat donekonečna
 - při pevně dané modulační rychlosti
 - intuitivně:
 - při překročení určitého stupně modulace (počtu stavů přenášeného signálu) již
 příjemce nebude schopen tyto stavy správně rozlišit

otázka:

- jak dlouho lze zvyšovat počet (rozlišovaných) stavů?
- kde leží hranice dokonalosti technologií??
- na čem je tato hranice závislá?
 - závisí pouze na šířce pásma a na kvalitě linky, nezávisí na použité technologii !!!!

šířka přenosového pásma

• intuitivně:

- jde o rozsah frekvencí, které lze využít pro přenos signálu
 - anglicky: bandwidth

t_{min}

f[Hz]

- všech signálů: od "diskrétních" až po nosné signály harmonického průběhu
- rozhoduje o tom, jak "dobře" je signál přenesen
 - jak se změní jeho průběh (i amplituda)
- vliv šířky pásma na harmonický
 signál y = A . sin (ω.t + φ)
 - je (v principu) jednoduchý:
 - pokud frekvence signálu leží uvnitř (intervalu) šířky pásma, je přenesen

 pokud leží mimo (interval) šířky pásma, není přenesen vůbec

šířka pásma

- prakticky je situace o něco složitější:
 - míra pokažení (hlavně útlumu) se nemění skokem, ale podle tzv. vanové křivky

vliv na signál obecného průběhu

- vliv šířky pásma na přenos obecného signálu je složitější
 - ale: lze si pomoci rozkladem obecného signálu na harmonické složky
 - obdoba Taylorova rozvoje: obecný signál je součtem (nekonečné) řady harmonických složek

při přenosu

"ořezány"

složek, které byly přeneseny

to se ale projevuje na jeho tvaru

představa vlivu šířky pásma

- počet přenesených harmonických složek rozhoduje o věrnosti přijatého signálu
 - o míře jeho podobnosti původně odesílanému signálu

shrnutí

• intuitivně:

- čím větší je šířka pásma, tím více je přijatý signál "podobný" tomu, který byl odeslán
 - a tím lépe lze poznat, co má reprezentovat

při určité rychlosti změn by deformace přijatého signálu byly již tak velké, že by se nedalo poznat, co má signál reprezentovat

závěr:

- čím větší je šířka přenosového pásma, tím větší je "schopnost přenášet data"
 - tím větší může být modulační rychlost
 - tím větší může být přenosová rychlost
 - platí to obecně, pro přenosy v základním i přeloženém pásmu

šířka přenosového pásma má charakter "zdroje" (suroviny)

- za šířku pásma se platí !!!
 - závislost mezi šířkou pásma a "schopností přenášet data" je v zásadě lineární!!!

ale:

- jaká je exaktní forma závislosti?
 - mezi šířkou pásma, modulační a přenosovou rychlostí
- je-li pevně dána šířka pásma, na čem závisí maximální dosažitelná přenosová rychlost?
 - viz v_{přenosová}=v_{modulační} * log2(n)
- lze libovolně dlouho zvyšovat n?
 - ne, nelze někde existuje hranice!!
 - na čem tato hranice závisí?
 - jak moc/málo závisí na dokonalosti našich technologií?

Shannonův teorém

- Claude Elwood Shannon (1916-2001):
 - zakladatel moderní teorie informace
- tzv. Shannonův teorém (Shannon-Hartley):
 - ona hranice je dána
 - šířkou přenosového pásma a "kvalitou" přenosové cesty
 - odstupem signálu od šumu
 - konkrétně:

 $\max(v_{prenosova}) = šírka pásma * log_2(1 + signál/šum)$

- důsledky:
 - závislost na šířce pásma je lineární !!!
 - naopak zcela chybí závislost na použité technologii !!!
 - nezáleží na použité modulaci ani na počtu rozlišovaných stavů přenášeného signálu (n)
- · závěr:
 - technologiemi lze "vylepšovat" využití nějaké přenosové kapacity, ale jen
 do hranice dané Shannonovým teorémem
 už nelze zvyšovat přenosovou rychlost
- praxe:
 - telefonní modemy: jsou prakticky "nadoraz"
 - optické přenosy: mají k hranici velmi daleko

lze ještě hodně zrychlovat

příklad: analogové telefonní modemy

pevná analogová telefonní linka

- využívá tzv. místní smyčku
 - jde o metalické vedení (kroucený pár), vedoucí od účastníka k telefonní ústředně
 - přesněji: využívá "hovorové pásmo" místní smyčky
- kvalitní smyčka má odstup signál:šum
 - 1000:1, neboli 30 dB
- na straně ústředny je realizováno umělé frekvenční omezení:
 - 300 až 3400 Hz!!!
 - tj. šířka pásma: 3,1 kHz

• v praxi:

- dokáží využít i okrajové části pásma ("boky" vanové křivky)
 - jakoby: uměle si "roztahují" původní šířku pásma 3,1 kHz
- existují i telefonní modemy s rychlostí 56 kbit/s:
 - ale: dokáží fungovat jen "proti" digitální telefonní ústředně
 - pro ně je umělé omezení šířky pásma na 3,1 kHz odstraněno úplně

dle Shannonova teorému:

maximální přenosová rychlost (na analogové tel. lince) vychází na cca 30 kbit/s

příklady: xDSL, PLC, optika

xDSL (Digital Subscriber Line)

- technologie, které využívají nadhovorové pásmo místní smyčky
 - je výrazně širší, proto mohou dosahovat výrazně vyšších přenosových rychlostí

příklady:

- ADSL:
 - využívá pásmo do 1,1 MHz
 - dosahuje až 8 Mbit/s(down)
- ADSL2+
 - využívá pásmo do 2,2 MHz
 - dosahuje až 25 Mbit/s
- VDSL, VDSL2+
 - využívá pásmo do 30 MHz
 - dosahuje až 52 Mbit/s

PLC (PowerLine Communications)

- technologie, která využívá schopnosti silových rozvodů (230 V) přenášet i vyšší frekvence
 - obvykle se využívá rozsah od 1,8 MHz do 30 MHz

- 160m až 10metrové vlny
- problém s rušením !!!
- někdy až do 50/100 MHz
- dosahované rychlosti: až 200 Mbit/s

optické přenosy

využívají světlo, v pásmu 10⁸ MHz

- obrovská šířka pásma !!!!!
 - obrovský přenosový potenciál podle
 Shannonova kritéria
- zatím jsme ve využití jen na začátku
 - je využit jen malý zlomek celého potenciálu optických přenosů

Nyquistův teorém

otázka:

- jak souvisí modulační rychlost se šířkou pásma?
- intuitivní odpověď:
 - je to podobné jako u přenosové rychlosti
 - čím užší je šířka pásma, tím větší je zkreslení přeneseného signálu
 - a tím hůře dokáže příjemce detekovat změny stavu signálu
 - ale jaká je konkrétní závislost?
- skutečnost:
 - vyplývá z výsledků Harryho Nyquista
 - Nyquistův teorém
 - formulován 1928, dokázal až Claude Shannon v roce 1949
 - zjednodušeně:

rate

- ₄ v_{Nyquist} = 2 * šířka pásma
- týká se ale jen "frekvenčně omezeného"
 Nyquist signálu (0 až f)

modulační (symbolová) rychlost:

- v_{Nyquist} je horní mezí pro v_{modulační}
 - nemá smysl zvyšovat modulační rychlost nad v_{Nyquist} = 2 * šířka pásma
 - jinak už nepůjde správně detekovat všechny změny
 - v praxi: v_{modulační} = 2*šířka pásma

rychlost vzorkování:

- jak často je třeba vzorkovat zdrojový signál?
 - je nutné to dělat nejméně 2x za periodu!
- v_{Nyquist} je spodní mezí pro v_{vzorkování}
 - pomaleji: o něco bychom přišli
 - rychleji: už nezískáme "nic navíc"
 - v praxi: v_{vzorkovací} = 2*šířka pásma

digitalizace analogového signálu

připomenutí:

- modem:
 - slouží k přenosu digitálních dat po analogové přenosové cestě
- kodek:

- MMMMM
- 10101100101010111101001001

- slouží k přenosu analogových dat po digitální přenosové cestě
- digitalizace:
 - je převod analogového signálu na digitální data
 - aneb: to, co dělá kodek
- obecný postup digitalizace:
 - 1. analogový signál se "vyvzorkuje"
 - sejmou se vzorky momentální hodnoty analogového signálu
 - 2. velikost každého (analogového) vzorku se vyjádří jako (digitální) číslo
 - přitom nutně dochází k určitému zaokrouhlení (kvantizační chyba/šum)
 - získaná (digitální) data se komprimují a event. dále upravují
- v praxi se musí vyřešit otázky jako:
 - jak často vzorkovat původní analogový signál
 - kolik bitů je potřeba na vyjádření hodnoty každého vzorku
 - jak co nejvíce zmenšit objem bitů, který takto vzniká

kodeků bývá na výběr více

příklady kodeků: PCM, FR, EFR

PCM (Pulse Coded Modulation)

- pochází z roku 1937, vytvořeno pro (digitální) pevnou telefonní síť
 - používá se dodnes
 - nejen v (pevné) telefonii, vč. ISDN
 - je velmi neefektivní
 - zcela bez komprimace
- vstupní signál má rozsah 4 kHz
 - analogový hovor je v rozsahu 300 až 3400 Hz
 - je "zaokrouhlen" na 0 4000 Hz
- dle Nyquista: nutné vzorkovat 8000x
 za sekundu
 - 2 x za periodu (2x 4000)
 - vzniká 8000 vzorků za 1 sekundu
- každý vzorek se vyjádří pomocí 8 bitů
 - jen 256 možných úrovní
 - relativně velká kvantizační chyba
- celkový datový tok: 8000x8 bitů/s
 - 64 kbit/s

v mobilních sítích

- se používají podstatně efektivnější kodeky
 - FR (Full Rate): 13 kbit/s na hovor
 - a 9,8 kbit/s na opravu chyb
 - EFR (Enhanced Full Rate): 12,2 kbit/s
 - a 10,6 kbit/s na opravu chyb
 - HR (Half Rrate): 6,5 kbit/s na hovor
 - moc se neosvědčil