

DIABETIC RETINOPATHY DETECTION

Kaiwalya Belsare and Gauri Rasane

1. Motivation

- Diabetic retinopathy (DR) is a visible microvascular complication in the human retina caused due to diabetes.
- DR if undetected in early stages might lead to an advanced vision-threatening stage.
- Diagnosis of DR is based on assessment of colour fundus images by trained retina specialist.

- But: diagnosis results are based on experience of the professional, also inperson expert examination of pandemic diabetic population is unfeasible.
- → Goal: automatic DR detection based on deep convolutional neural network for binary classification, referable DR (RDR) and non referable DR (NRDR).

2. Proposed method

2.1 Input data pipeline

Use of publicly available dataset, IDRID which consists of retinal fundus images split into training set and test set.

- Every image is associated with it's respective severity grade (0-4) of DR.
- Ground truth labels from original dataset are reformulated as non referable DR (grade 0, 1) and referable DR (grade 2, 3, 4).
- Data pre-processing involves operations i.e. image crop & resize (256x256x3), building datasets (train, test, validate) with image-label pairs.

 Data imbalance is handled by oversampling the minority class through data augmentation techniques such as rotation, horizontal flip and zoom.

2.2 Model architecture

- Model consists of cascade of 2D CNN layers followed by batch normalization layer and max pooling layer.
- Activation function for convolutional layers and last dense layer are ReLU and softmax respectively.

 Dropout layers and 12 kernel regularizer are introduced in order to tackle overfitting.

2.3 Training

- Hyperparameters namely optimizer, training epochs and neurons in dense layer are optimized with the help of tensorboard.
- DNN model is trained for 200 epochs with SGD as optimizer with a learning rate of 0.001.
- Loss function used is sparse categorical cross entropy loss.

3. Evaluation

Metrics

- The trained DNN model evaluated over the test dataset results with an accuracy of **72.75%**.
- Confusion matrix

4. Deep Visualization

4.1 Grad-CAM

 Grad-CAM uses the gradient of the classification score with respect to the last convolutional layer in a network in order to understand which parts of the image are most important for classification.

4.2 Guided Backpropagation

 Guided Backpropagation eliminates elements that act negatively towards the decision, by zeroing-out the gradients associated with a negative value of the filter.

5. Conclusion

- It is feasible to employ deep learning approaches for the early diagnosis of DR.
- Patients at highest risk of progressive DR can benefit from timely initiation of treatment before irreversible vision loss occurs.