Randomized Algorithms

Randomized QuickSort & k-Smallest Selection

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Rajeev Motwani and Prabhakar Raghavan: Randomized Algorithms. Cambridge University Press. 1995.

Outline

Randomized QuickSort

 \bigcirc Randomized k-Smallest Selection

Outline

Randomized QuickSort

2 Randomized k-Smallest Selection

Algorithm RandQS

Input: A set of (distinct) numbers *S*

Output: The elements of *S* sorted in increasing order.

- **①** Choose an element $y \in S$ uniformly at random;
- ② By comparing each element of S with y, compute
 - $S_1 := \{x \in S : x < y\};$
 - $S_2 := \{x \in S : x > y\};$
- **3** Recursively sort S_1 (i.e., run RandQS(S_1)) and S_2 (i.e., run RandQS(S_2)), and output the sorted version of S_1 , followed by y, and then the sorted version of S_2 .

- Comparisons are performed in Step 2.
- Let $S_{(i)}$ denote the element of rank i (i.e., the ith smallest in S).
- Define X_{ij}:
 - $X_{ij} = 1$ if $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
 - $X_{ij} = 0$ otherwise.

- Comparisons are performed in Step 2.
- Let $S_{(i)}$ denote the element of rank i (i.e., the ith smallest in S).
- Define X_{ij}:
 - $X_{ij} = 1$ if $S_{(i)}$ and $S_{(i)}$ are compared in an execution.
 - $X_{ij} = 0$ otherwise.
- Thus, the total number of comparisons is $\sum_{i=1}^{n} \sum_{j>i} X_{ij}$,

- Comparisons are performed in Step 2.
- Let $S_{(i)}$ denote the element of rank i (i.e., the ith smallest in S).
- Define X_{ij}:
 - $X_{ij} = 1$ if $S_{(i)}$ and $S_{(i)}$ are compared in an execution.
 - $X_{ii} = 0$ otherwise.
- Thus, the total number of comparisons is $\sum_{i=1}^{n} \sum_{j>i} X_{ij}$, and its expected value is

$$\mathbb{E}\left[\sum_{i=1}^n\sum_{j>i}X_{ij}\right]$$

- Comparisons are performed in Step 2.
- Let $S_{(i)}$ denote the element of rank i (i.e., the ith smallest in S).
- Define X_{ij}:
 - $X_{ij} = 1$ if $S_{(i)}$ and $S_{(i)}$ are compared in an execution.
 - $X_{ii} = 0$ otherwise.
- Thus, the total number of comparisons is $\sum_{i=1}^{n} \sum_{j>i} X_{ij}$, and its expected value is

$$\mathbb{E}\left[\sum_{i=1}^n \sum_{j>i} X_{ij}\right] = \sum_{i=1}^n \sum_{j>i} \mathbb{E}[X_{ij}].$$

• Let p_{ij} denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.

- Let p_{ij} denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- Since X_{ij} is a Bernoulli random variable, we have

$$\mathbf{E}[X_{ij}] =$$

- Let p_{ij} denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- Since X_{ij} is a Bernoulli random variable, we have

$$\mathbf{E}[X_{ij}] = p_{ij} \times 1 + (1 - p_{ij}) \times 0$$

- Let p_{ij} denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- Since X_{ij} is a Bernoulli random variable, we have

$$\mathbf{E}[X_{ij}] = \rho_{ij} \times 1 + (1 - \rho_{ij}) \times 0 = \rho_{ij}.$$

- Let p_{ij} denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- Since X_{ii} is a Bernoulli random variable, we have

$$\mathbf{E}[X_{ij}] = \rho_{ij} \times 1 + (1 - \rho_{ij}) \times 0 = \rho_{ij}.$$

• Note: $S_{(i)}$ and $S_{(j)}$ are compared in an execution only when one of them is an ancestor of the other in the binary tree T.

$$\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$

$$\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}$$

$$\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}$$

• Note that $H_n = \sum_{k=1}^n 1/k$

$$\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k} = O(n \log n).$$

• Note that $H_n = \sum_{k=1}^n 1/k \approx \Theta(\ln n)$.

4 D > 4 D > 4 E > 4 E > E 99 C

Exercise (3%)

Using O(n) Median-of-Medians Algorithm

- Remark: The Median-of-Medians algorithm (reference here) by Blum et al. can compute a median of an array of n numbers in a list in O(n) time deterministically.
- Please prove that Algorithm MedianQS (next page) can sort an array of n numbers in $O(n \log n)$ time deterministically.

Algorithm MedianQS

Input: A set of (distinct) numbers *S*

Output: The elements of *S* sorted in increasing order.

- **Q** Compute the median y of S using the Median-of-Medians algorithm;
- ② By comparing each element of S with y, compute
 - $S_1 := \{x \in S : x < y\};$
 - $S_2 := \{x \in S : x > y\};$
- **3** Recursively sort S_1 (i.e., run MedianQS(S_1)) and S_2 (i.e., run MedianQS(S_2)), and output the sorted version of S_1 , followed by y, and then the sorted version of S_2 .

Outline

Randomized QuickSort

 \bigcirc Randomized k-Smallest Selection

Algorithm Rand-(k)-Select

Input: A set of *n* (distinct) numbers *S* **Output:** The *k*-th smallest element of *S*.

- Choose an element $y \in S$ uniformly at random;
- 2 By comparing each element of S with y, compute
 - $S_1 := \{x \in S : x < v\}$:
 - $S_2 := \{x \in S : x > y\}$:
- 3 If $|S_1| = k 1$ then return y
- Else
 - if $|S_1| > k$, then recursively run Rand-(k)-Select (S_1) .
 - else, recursively run Rand- $(k |S_1| 1)$ -Select (S_2) .

• Let $X := \max\{|S_1|, |S_2|\}/n$.

• Let $X := \max\{|S_1|, |S_2|\}/n$.

pivot position in the sorted array

• Let $X := \max\{|S_1|, |S_2|\}/n$.

pivot position in the sorted array

• What's **E**[*X*]?

• Let $X := \max\{|S_1|, |S_2|\}/n$.

pivot position in the sorted array

- What's **E**[*X*]?
- Prove that $\mathbb{E}[X] \leq \frac{3}{4}$ (Exercise (1%)).

Note: The recursion only runs in exactly one of S_1 and S_2 .

Note: The recursion only runs in exactly one of S_1 and S_2 .

- Let Y_i be the size of the subset of S that the recursion proceeds with.
 - $\mathbf{E}[Y_i] =$

Note: The recursion only runs in exactly one of S_1 and S_2 .

$$\bullet \ \mathbf{E}[Y_i] = \mathbf{E}\left[n\prod_{j=1}^i X_j\right] =$$

Note: The recursion only runs in exactly one of S_1 and S_2 .

•
$$\mathbf{E}[Y_i] = \mathbf{E}\left[n\prod_{j=1}^i X_j\right] = n\prod_{j=1}^i \mathbf{E}[X_j]$$

Note: The recursion only runs in exactly one of S_1 and S_2 .

•
$$\mathbf{E}[Y_i] = \mathbf{E}\left[n\prod_{j=1}^i X_j\right] = n\prod_{j=1}^i \mathbf{E}[X_j] \le n\left(\frac{3}{4}\right)^i$$
.

• Since the "partitioning" step takes $c_1(|S|) + c_2$ for some constants $c_1, c_2 \in \mathbb{R}$, the expected running time of the algorithm is at most

$$\begin{aligned} \mathbf{E}[\mathsf{Rand-}(k)\text{-Select}(S)] &\leq & \sum_{i=0}^n \left(c_1 n \left(\frac{3}{4}\right)^i + c_2\right) \\ &\leq & c_1 n \left(\sum_{i=0}^n \left(\frac{3}{4}\right)^i\right) + c_2 n \\ &\leq & 4c_1 n + c_2 n \\ &= & O(n). \end{aligned}$$

Discussions