

Спецкурс: системы и средства параллельного программирования.

Отчёт № 1. Анализ влияния кэша на операцию матричного умножения.

Работу выполнил **Ухин С.А.**

Постановка задачи и формат данных.

Задача: Реализовать последовательный алгоритм матричного умножения и оценить влияние кэша на время выполнения программы.

Формат командной строки: <имя файла матрицы A> <имя файла матрицы B > <имя файла матрицы C> <режим, порядок индексов>.

Режимы: 0 - ijk, 1 - ikj, 2 - kij, 3 - jik, 4 - jki, 5 - kji.

Формат файла-матрицы: Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
Число типа char	T – f (float) или d (double)	Тип элементов
Число типа size_t	N – натуральное число	Число строк матрицы
Число типа size_t	М – натуральное число	Число столбцов матрицы
Массив чисел типа Т	<i>N</i> × <i>M</i> элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Описание алгоритма.

Математическая постановка: Алгоритм матричного умножения ($A \times B = C$) можно представить в следующем виде: $c_{ij} = \sum_{k} \left(a_{ik} \cdot b_{kj} \right)$ для каждого элемента матрицы C.

Оценка влияния кэша на время выполнения программы осуществляется за счёт перестановки индексов суммирования.

Анализ времени выполнения: Для оценки времени выполнения программы использовалась функция: clock(). Для повышения надёжности экспериментов опыты проводились несколько раз (10).

Верификация: Для проверки корректности работы программы использовались тестовые данные.

Основные функции:

- Разбор командной строки. В рамках функции осуществляется анализ и разбор командной строки.
- **Чтение файлов матриц.** В рамках функции осуществляется анализ совместимости входных матриц и их чтение.
- Перемножение матриц. В рамках функции осуществляется перемножение матриц в соответствие с выбранным порядком индексов суммирования.

Результаты выполнения.

Результаты:

Проводилось перемножение двух матриц размерами 500х500 и 500х500 . Зависимость времени выполнения от порядка индексов суммирования представлена на графике (время в секундах).

Основные выводы.

Исследования показывают, что изменения порядка индексов суммирование оказывает влияние на время выполнения программы. Наименьшее время выполнения при следующем порядке индексов - ikj. При таком порядке доступ к элементам обеих входных матриц осуществляется последовательно. Наихудшее время при порядке jki. При таком подходе доступ к памяти осуществляется максимально непоследовательно.