Learning Objectives

<u>Select</u> the proper inferential test when comparing two groups

 <u>Describe</u> conditions under which we would select a paired-samples t-test

- Conduct a paired t-test
 - With effect size!

Which test to use?

What do we want?

Is our mean different from a specific population mean (μ)?

Are these two sample means different from each other?

Paired-Samples t-test

• a.k.a., repeated-measures t, dependent t

Requirements:

- Compare exactly 2 groups
- DV is interval/ratio (for parametric tests)
- DV is approximately normal
 - Or, N > 30 (making distribution of \bar{X} approx. normal)
- Absence of outliers

However, *t*-tests are relatively *robust*, meaning violations of these assumptions are often not problematic

Example: Paired t-test

- Stroop Color-Word task
 - -N = 10
 - DV = ms until correct response

Green = rtSame

Blue = rtDifferent

Equivalent Paired t-test formulae

$$t_{\rm obt} = \frac{\overline{D}_{\rm obt}}{s_{\overline{D}}}$$

$$t_{\rm obt} = \frac{\overline{D}_{\rm obt} - \mu_D}{s_{\overline{D}}}$$

$$t_{\rm obt} = \frac{\overline{D}_{\rm obt}}{S_D/\sqrt{N}}$$

$$t_{\text{obt}} = \frac{D_{\text{obt}}}{\sqrt{\frac{SS_D}{N(N-1)}}}$$

Equivalent Paired t-test formulae

$$t_{
m obt} = rac{\overline{D}_{
m obt}}{s_{\overline{D}}}$$

where, $s_{\overline{D}} = \frac{s_D}{\sqrt{N}}$

$$t_{\text{obt}} = \frac{\overline{D}_{\text{obt}} - \mu_D}{s_{\overline{D}}}$$

Where, $\mu_D = 0$

$$t_{\text{obt}} = \frac{\overline{D}_{\text{obt}}}{s_D / \sqrt{N}}$$
where, $s_D = \sqrt{\frac{SS_D}{N-1}}$

This *N* is related to converting s_D to $s_{\overline{D}}$

This N is related to converting SS_D to S_D

rtDiff	rtSame	
659	782	
1183	577	
1032	780	
871	950	
711	488	
854	658	
915	327	
765	822	
982	456	
1092	539	

$$t_{\text{obt}} = \frac{\overline{D}_{\text{obt}}}{\sqrt{\frac{SS_D}{N(N-1)}}}$$

$$\overline{D}_{\text{obt}} = \frac{\Sigma D}{N} = \frac{2685}{10} = 268.5$$

$$SS_D = \Sigma D^2 - \frac{(\Sigma D)^2}{N}$$

$$N = 10$$
 $\Sigma D = 2,685$
 $\Sigma D^2 = 1,471,733$
 $\overline{D}_{obt} = 268.5$
 $SS_D = ...$

$$t_{\text{obt}} = \frac{\overline{D}_{\text{obt}}}{\sqrt{\frac{SS_D}{N(N-1)}}}$$

$$SS_D = \Sigma D^2 - \frac{(\Sigma D)^2}{N} = \dots$$

$$= 1,471,733 - \frac{2,685^2}{10} = 750,810.5$$

$$N = 10$$

$$\Sigma D = 2,685$$

$$\Sigma D^{2} = 1,471,733$$

$$\overline{D}_{obt} = 268.5$$
 $SS_{D} = 750,810.5$

 $t_{\text{obt}} = \dots$

$$t_{\text{obt}} = \frac{\overline{D}_{\text{obt}}}{\sqrt{\frac{SS_D}{N(N-1)}}}$$

$$t_{\rm obt} = \frac{268.5}{\sqrt{\frac{750,810.5}{90}}}$$

$$N = 10$$
 $\Sigma D = 2,685$
 $\Sigma D^2 = 1,471,733$
 $\overline{D}_{obt} = 268.5$
 $SS_D = 750,810.5$
 $t_{obt} = ...$

$$t_{\text{obt}} = \frac{\overline{D}_{\text{obt}}}{\sqrt{\frac{SS_D}{N(N-1)}}}$$

$$t_{\text{obt}} = \frac{268.5}{91.3364}$$

$$N = 10$$

$$\Sigma D = 2,685$$

$$\Sigma D^{2} = 1,471,733$$

$$\overline{D}_{obt} = 268.5$$

$$SS_{D} = 750,810.5$$

$$t_{obt} = 2.940$$

$$t_{\text{obt}} = \frac{\overline{D}_{\text{obt}}}{\sqrt{\frac{SS_D}{N(N-1)}}}$$

$$t_{\rm obt} = 2.940$$

$$N = 10$$

 $\Sigma D = 2,685$
 $\Sigma D^2 = 1,471,733$
 $\overline{D}_{obt} = 268.5$
 $SS_D = 750,810.5$

$$t_{\rm obt} = 2.940$$

$$t_{crit} = ...$$

$$\propto_{2-tail} = .05$$
 $df = N - 1$

$$t_{\text{obt}} = 2.940$$

 $t_{\text{crit}} = \pm 2.262$

$$t_{\rm obt} > t_{\rm crit}$$

Decision: Reject H_0

APA reporting with *p*-value calculated in Jamovi:

"People responded slower to mismatching- vs. matching-Stroop trials, t(9) = 2.940, p = .017."

Cohen's d_z

$$N = 10$$

 $\Sigma D = 2685$

$$\Sigma D^2 = 1471733$$

$$\overline{D}_{\rm obt}$$
 = 268.5

$$SS_D = 750,810.5$$

$$s_D = 288.83$$

$$t_{\rm obt} = 2.940$$

$$t_{\text{crit}} = \pm 2.262$$

 $\propto_{2-\text{tail}} = .05$
 $df = 9$

Cohen's
$$d_z = \frac{D_{\text{obt}}}{s_D}$$

$$S_D = \sqrt{\frac{SS_D}{N-1}} = \sqrt{\frac{750,810.5}{9}} = 288.83$$

$$d_z = \frac{D_{\text{obt}}}{s_D} = \frac{268.5}{288.83} = .930$$

How large is this effect?

Comparing paired t-test vs. sign test

rtDiff	rtSame	D	Sign
659	782	-123	-
1183	577	606	+
1032	780	252	+
871	950	-79	-
711	488	223	+
854	658	196	+
915	327	588	+
765	822	-57	-
982	456	526	+
1092	539	553	+

$$t = 2.940, p = .017$$

$$P(\ge 7) = .172*$$

When N=10

*This is for 1-tail test. For non-directional test, multiply by 2 to account for $P(\leq 3)$; which is the other tail of binomial dist.

 $P_{2\text{-tail}}$ for our result or even more extreme (positive or negative) is p = .344