	Opens	Clicks	Mean
Α	4000	140	0.035
В	3000	150	0.05

Χ	Option	Opens	Clicks		Mean
0	Α	2500		50	0.02
U	В	1000		100	0.10
Χ	Option	Opens	Clicks		Mean
1	Α	1500		90	0.060
1	В	2000		50	0.025

Decision Node:

Strategy	Mean (μ)	Incremental Clicks
Action*	0.05	60
Action* X	0.08	210

Value Selection:

The expected reward (μ) when using variable X_i to select the best action is the weighted sum of expected rewards of the best actions for each of its possible values

For continuous variables, a binary split is created to produce two segments of the data: > or <= value

For categorical variables, a one-vs-all strategy is used to create the two segments: = or != value

Contextual Bandits Decision Tree:

Thompson Sampling:

Each option is modeled by a Beta Distribution with:

b = #opens a = #clicks

Original idea came from: Feraud, R., Allesarido, R., Urvoy, T. & Clerot, F. Random Forest for the Contextual Bandit Problem