Zestaw zadań domowych nr 1, AM I.1 Data zwrotu: 10.11.2023

Zadanie 1. Oblicz granice ciągów

(a)
$$\sqrt[n]{\left|\frac{n^2}{2^{2n+1}} - \frac{1}{n\pi^{n+1}}\right|}$$
,

(b)
$$\frac{1}{\sqrt{n}} \left(1 + \frac{2}{1+\sqrt{2}} + \frac{3}{1+\sqrt{2}+\sqrt{3}} + \dots + \frac{n}{1+\sqrt{2}+\sqrt{3}+\dots+\sqrt{n}} \right)$$
,

(c)
$$\left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2}\right)^n$$
, gdzie $a, b > 0$.

Zadanie 2. Ciąg liczb rzeczywistych (x_n) jest zbieżny do liczby g. Udowodnij, że

$$\bigcap_{\alpha>0} \bigcup_{\beta>0} \bigcap_{n>\beta} (x_n - \alpha, x_n + \alpha) = \{g\}.$$

Zadanie 3. Ciągi (a_n) i (b_n) są zbieżne. Udowodnij, że

$$\lim_{n \to \infty} \frac{1}{n} (a_1 b_n + a_2 b_{n-1} + \ldots + a_n b_1) = g \cdot h,$$

gdzie $g = \lim_{n \to \infty} a_n$, $h = \lim_{n \to \infty} b_n$.

Zadanie 4. Ciągi liczb całkowitych (q_n) , (r_n) , (s_n) , (t_n) zdefiniowane są równością

$$(1 + \sqrt{2} + \sqrt{3})^n = q_n + r_n\sqrt{2} + s_n\sqrt{3} + t_n\sqrt{6}.$$

Znajdź granice $\lim_{n\to\infty}\frac{r_n}{q_n}$, $\lim_{n\to\infty}\frac{s_n}{q_n}$ i $\lim_{n\to\infty}\frac{t_n}{q_n}$.

Zadanie 5. O ciągu (a_n) wiemy, że a_0 , $a_1 > 0$ oraz $a_{n+1} = \sqrt{a_n} + \sqrt{a_{n-1}}$ dla $n \ge 1$. Udowodnij, że ciąg (a_n) jest zbieżny i znajdź jego granicę.