$C(^{36}Mg,^{35}Mg\gamma),(^{37}Al,^{35}Mg\gamma)$ 2017Mo26

 36 Mg->1n+ 35 Mg from J^{π} =0+ 36 Mg ground state.

 $^{37}\text{Al->1p1n+}^{35}\text{Mg from }J^{\pi}=(5/2^{+})^{37}\text{Al ground state.}$

2017Mo26: A secondary beam composed of 36 Mg and 37 Al was produced via the projectile fragmentation of a 345-MeV/nucleon 48 Ca primary beam impinging on a 9 Be target and selected by the BigRIPS separator at RIKEN. E(36 Mg)=235 MeV/nucleon and E(37 Al)=246 MeV/nucleon in front of the 2.54 g/cm² carbon secondary target. The reactions leading to 35 Mg from 36 Mg and 37 Al are likely 1n-knockout and 1p1n-removal reactions, respectively. The reaction residues were selected and identified by the Zero Degree spectrometer using the Bρ-ΔE-ToF method. The γ rays in coincidence with 35 Mg residues were detected using the DALI2 array of 186 NaI(Tl) crystals at 20° –150°. Measured E γ (>200 keV), I γ , (35 Mg) γ -coin, the inclusive one-neutron knockout cross section and exclusive γ -ray emission cross sections, and parallel momentum distributions of 35 Mg in coincidence with γ rays. Deduced levels, L-transfers, J, and π . Compared with shell-model calculations using the SDPF-M interaction in the sd shell with ν 1f $_{7/2}$ and ν 2p $_{3/2}$ orbits, and the SDPF-M interaction in a model space up to ν 2p $_{1/2}$, and antisymmetrized molecular dynamics (AMD) model calculations using the Gogny D1S force.

35Mg Levels

E(level) [†]	$J^{\pi \ddagger}$	L^{\ddagger}	Comments
0			J^{π} : 3/2 ⁻ from shell-model calculations with the SDPF-M and SDPF-M+2p _{1/2} interactions; 3/2 ⁺ from AMD with the Gogny D1S force (2017Mo26).
0+x			E(level): <200 keV; the detection threshold in 2017Mo26. 1/2 ⁻ at 141 keV from shell-model calculations with the SDPF-M+2p _{1/2} interaction.
0+y?	(5/2-,7/2-)		E(level): <200 keV; the detection threshold. 2017Mo26 suggested a low-lying L=3 level from the observed 42(1)% L=3 component in the inclusive parallel momentum distribution.
206+x 8			J^{π} : γ -ray intensity is too low to be assigned to the $1/2^-$ level at 141 keV from shell-model calculations with the SDPF-M+2p _{1/2} interaction (2017Mo26).
443+x 7	$(3/2^+,5/2^+)$	(2)	* **-
616+x 8 670+x 8	$(1/2^-,3/2^-)$	(1)	

[†] From E γ data. 2017Mo26 suggested that all the four observed γ rays were emitted independently and fed either the ground state or a low-lying excited state below 200 keV.

$\gamma(^{35}\text{Mg})$

2017Mo26 stated that no clear $\gamma\gamma$ coincidence was observed.

E_{γ}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	Comments
206 8	2 1	206+x		0+x	
443 7	8 1	443+x	$(3/2^+,5/2^+)$	0+x	2017Mo26 assigned this γ to the 3/2 ⁺ at 788 keV -> 3/2 ⁻ g.s. transition based on shell–model calculations with the SDPF–M+2p _{1/2} interaction (2017Mo26).
616 8	7 1	616+x	(1/2 ⁻ ,3/2 ⁻)	0+x	* =/=
670 8	3 1	670+x		0+x	E_{γ} : From 2011Ga15, as this γ is not resolved from the 616 γ in 2017Mo26, but its presence is indicated in the fit of the spectrum. 2017Mo26 stated that the origin of the 670 γ remained vague.

[†] γ -ray emission σ (mb).

 $^{^{\}ddagger}$ 2017Mo26 deduced L by comparing the measured and eikonal-calculated parallel momentum distributions of 35 Mg residues. J^{π} options are deduced accordingly.

$C(^{36}Mg,^{35}Mg\gamma),(^{37}Al,^{35}Mg\gamma)$ 2017Mo26

Level Scheme

Intensities: γ -ray emission σ (mb)

Legend

 $^{35}_{12}{\rm Mg}_{23}$