$$Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

E. Rutherford, H. Geiger, H. Bateman, 1910

$$Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

E. Rutherford, H. Geiger, H. Bateman, 1910

Alpha particles emitted by a film of polonium at intervals of one-eighths of a minute

successive intervals: N = 2608

alpha particles: 10097

$$Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

E. Rutherford, H. Geiger, H. Bateman, 1910

Alpha particles emitted by a film of polonium at intervals of one-eighths of a minute

successive intervals: N = 2608

alpha particles: 10097

 $\lambda = 10097/2608 = 3.87 \cdots$

$$Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

E. Rutherford, H. Geiger, H. Bateman, 1910

Alpha particles emitted by a film of polonium at intervals of one-eighths of a minute

successive intervals: N = 2608

alpha particles: 10097

 $\lambda = 10097/2608 = 3.87 \cdots$

alpha particles, k	observed frequency	$N \times Po(k; \lambda)$
0	57	54
1	203	210
2	383	407
3	525	525
4	532	508
5	408	394
6	273	254
7	139	140
8	45	68
9	27	29
10	10	11
11	4	4
12	0	1
13	1	1
14	1	1
15 and more	0	0