The Wave Equation

This short write-up contains a derivation of the wave equation. We consider a violin string pinned down at the ends and then plucked. Here is a short segment of the string (the notation doesn't match exactly what I'm going to use, but it's a place to start).

Here, x is not a variable but just a label for a position on the string. We start to solve this problem by an approximation, saying that the tension T (the force in the direction shown by the arrows), has the same magnitude at both ends of the short interval shown as Δx in the figure.

What differs between the two ends of the interval and provides a net force is the difference in the angle θ at the two positions x and $x + \Delta x$. That force is

$$T\sin\theta_{x+\Delta x} - T\sin\theta_x$$

which, by Newton's Law, is equal to ma. For this small segment of the string

$$T\sin\theta_{x+\Delta x} - T\sin\theta_x = dm \ a$$

where dm is the mass of this small segment. You might be tempted to write \ddot{x} (d^2x/dt^2) for a here, but as we said, in this problem x is just a label for a position on the string.

The value which changes is the displacement, which we will call ψ . Furthermore, if you think about it, it is clear that the displacement ψ is a function of both time and the horizontal coordinate x, so we need the partial derivative

$$T\sin\theta_{x+\Delta x} - T\sin\theta_x = dm \frac{\partial^2\psi}{\partial t^2}$$

Now, dm is the mass of this small segment, which is equal to the mass per unit length times dx.

$$T\sin\theta_{x+\Delta x} - T\sin\theta_x = \mu \, dx \, \frac{\partial^2 \psi}{\partial t^2}$$

On the left hand side we are going to apply the small angle approximation. Recall that

$$\sin \theta \approx \theta$$

(where the next term in the series for $\sin \theta$ is $-\theta^3/3!$). Since $\cos \theta \approx 1$ then

$$\theta \approx \sin \theta \approx \tan \theta$$

If you look back at the figure you will see that according to the labels there

$$\frac{\Delta u}{\Delta x} = \tan \theta$$

Now, u is what we are calling ψ and this is really a partial derivative

$$\frac{\partial \psi}{\partial x} = \tan \theta \approx \sin \theta$$

$$T(\frac{\partial \psi}{\partial x}\Big|_{x+dx} - \frac{\partial \psi}{\partial x}\Big|_{x}) = \mu \ dx \ \frac{\partial^2 \psi}{\partial t^2}$$

Now, divide both sides by T and by dx and let $dx \to 0$ and we get

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{\mu}{T} \frac{\partial^2 \psi}{\partial t^2}$$

This is the wave equation, but we will re-write it as

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \; \frac{\partial^2 \psi}{\partial t^2}$$

$$v = \sqrt{T/\mu}$$

It will turn out that v is the velocity of the wave.

We just guess the solution

$$\psi(x,t) = A\cos kx + \omega t$$

where k is called the wave number.

$$\frac{\partial^2}{\partial x^2} \ \psi(x,t) = -k^2 \ \psi(x,t)$$

$$\frac{\partial^2}{\partial t^2} \ \psi(x,t) = -\omega^2 \ \psi(x,t)$$

So

$$-k^{2} = -\frac{\omega^{2}}{v^{2}}$$

$$k = \pm \frac{\omega}{v}$$

$$\pm kv = \omega$$

$$\psi(x,t) = A\cos kx - \omega t$$

At time zero, this function has a maximum at x = 0. Wait a time dt, then the maximum is when $k dx - \omega dt = 0$.

$$\frac{dx}{dt} = \frac{\omega}{k}$$

Substituting $\omega = \pm kv$

$$\frac{dx}{dt} = \pm v$$

and

$$\psi(x,t) = A\cos kx \pm kvt = A\cos k(x \pm vt)$$

Clearly, the crest of the wave is moving at the velocity v.

$$\psi(x,t) = A\cos k(x - vt)$$

describes a wave moving to the right, and the opposite choice of sign means a wave moving to the left.

Note that any function f(x-vt) satisfies the wave equation, even

$$Ae^{-k^2(x-vt)^2}$$

If $kx = 2\pi$ the wave repeats and by definition

$$k\lambda = 2\pi$$

$$k = \frac{2\pi}{\lambda}$$

$$v = \frac{\omega}{k} = \frac{\omega \lambda}{2\pi}$$
 since $\omega = 2\pi f$
$$v = f \lambda$$

The wavelength times the frequency is equal to the velocity.