

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF CSE (IoT & Cyber Security including Blockchain)

Semester	V		
Course Title:	Machine Learning		
Course Code:	23IC5PCMLG	Total Contact Hours:	40 hours
L-T-P:	3-0-1	Total Credits:	4

Unit No.	Topics	Hours
1	Machine Learning Landscape: Introduction, Types of Machine Learning, Challenges of Machine Learning, Testing and Validating.	8
	Supervised Learning	
	Decision Tree Learning: Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree learning algorithm, Issues in Decision tree learning, CART Training algorithm	
2	Support Vector Machines: Linear SVM, Nonlinear SVM, SVM Regression, Under the Hood.	8
	Instance Based Learning: Introduction, k-Nearest Neighbor learning	
3	Probabilistic Learning Bayesian Learning: Bayes Theorem and Concept Learning, Maximum Likelihood, Minimum Description Length Principle, Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes Classifier, Bayesian Belief Network, EM Algorithm.	8
4	Ensemble Learning and Random Forests: Voting Classifiers, Bagging and Pasting, Random Patches and Random Subspaces, Random Forests, Boosting, Stacking	8
5	Unsupervised Learning Techniques	8
	Clustering – Kmeans, DBSCAN, Other Clustering Algorithms, Gaussian Mixtures – Anomaly Detection, Selecting Clustering, Bayesian Gaussian Mixture Models, Other algorithms for anomaly and novelty detection	
	Reinforcement Learning: Markov Decision Process, Introduction, Learning Task, Q Learning	

Preso	Prescribed Text Book						
Sl.	Book Title	Authors	Editio	Publisher	Year		
No.			n				
1.	Machine Learning	Tom M.	1st	McGraw Hill	2013		
		Mitchell		Education			
2	Hands-On Machine Learning with	Aurelien	2nd	O'Reilly	2020		
	Scikit-Learn, Keras & TensorFlow	Geron					

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF CSE (IoT & Cyber Security including Blockchain)

Refe	Reference Text Book							
Sl.	Book Title	Authors	Edition	Publisher	Year			
No.								
1.	Introduction to	Andreas C	First	Shroff	2019			
	Machine Learning	Muller &		Publishers				
	with Python	Sarah						
	-	Guido						
2.	Thoughtful Machine	Mathew	First	Shroff	2019			
	learning	Kirk		Publishers				

E-B	ook					
Sl. No	Book Title	Authors	Edition	Publisher	Yea r	URL
1.	The Elements of Statistica l Learning	Trevor Hastie, Robert Tibshirani, Jerome H. Friedman	Second	Springer	2009	https://web.stanford.edu/~hastie/Pa pers/ESLII.pdf
2.	Machine Learning in Action	Peter Harrington	First	Manning	2017	http://www2.ift.ulaval.ca/~chaib/I FT-4102- 7025/public_html/Fichiers/Machin e_Learning_in_Action.pdf

MOOC Course						
Sl.	Course nome	Course	Yea	LIDI		
No.	Course name	Offered By	r	URL		
1.	Machine Learning	Coursera		https://www.coursera.org/learn/machine-learning		
2.	Introduction to	NPTEL	201	https://swayam.gov.in/nd_noc20_cs29/preview		
	Machine learning		6			

Course Outcomes

At the end of the course the student will be able to

CO1	Apply different learning algorithms for various complex problems
CO2	Analyze the learning techniques for given dataset
CO3	Design a model using machine learning to solve a problem.
CO4	Conduct practical experiments to solve problems using appropriate machine learning techniques.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF CSE (IoT & Cyber Security including Blockchain)

CO-PO mapping

	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
C	3												3		
01	,												3		
C		2													
O2															
C															3
O3			3												3
C													2		2
O4				3									<u> </u>		<i>_</i>

Proposed Assessment Plan (for 50 marks of CIE)

Tool	Remarks	Marks
Internals	2	25
QUIZ	1	5
Lab Component	CIE + 1 Lab Test	25
Tota	50	

Lab Program	Program Details
1	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
2	Develop a program to construct Support Vector Machine considering a Sample Dataset
3	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions
4	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets
5	Write a program to construct a Bayesian network considering training data. Use this model to make predictions.
6	Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.
7	Implement Boosting ensemble method on a given dataset.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF CSE (IoT & Cyber Security including Blockchain)

8	Write a program to construct random forest for sample training data. Display model accuracy using various metrics
9	Implement tic tac toe using reinforcement learning
10	Consider a sample application. Deploy machine learning model as a web service and make them available for the users to predict a given instance.

SEE Exam Question paper format

Unit-1	Mandatory	One Question to be asked for 20 Marks
Unit-2	Mandatory	One Question to be asked for 20 Marks
Unit-3	Internal Choice	Two Questions to be asked for 20 Marks each
Unit-4	Internal Choice	Two Questions to be asked for 20 Marks each
Unit-5	Mandatory	One Question to be asked for 20 Marks