- (a) Consider a clause C_i with n variables. The probability that the clause is not satisfied is $\frac{1}{2^m}$ and so the probability that it is satisfied is 1 less this quantity. The worst case is when C_i has just one variable, i.e. n=1, in which case the probability of the clause being satisfied is $\frac{1}{2}$. Since there are k clauses, the expected number of clauses being satisfied is at least $\frac{k}{2}$. Consider the two clauses x_1 and $\overline{x_1}$. Clearly only one of these can be satisfied.
- (b) For variables that occur in single variable clauses, let the probability of setting the variable so as to satisfy the clause be $p \ge \frac{1}{2}$. For all other variables, let the probabilities be $\frac{1}{2}$ as before. Now for a clause C_i with n variables, $n \ge 2$, the probability of satisfying it is at worst $(1 \frac{1}{2^n}) \ge (1 p^2)$ since $p \ge \frac{1}{2}$. Now to solve for p, we want to satisfy all clauses, so solve $p = 1 p^2$ to get $p \approx 0.62$. And hence the expected number of satisfied clauses is 0.62n.
- (c) Let the total number of clauses be k. For each pair of single variable conflicting clauses, i.e. x_i and $\overline{x_i}$, remove one of them from the set of clauses. Assume we have removed m clauses. Then the maximum number of clauses we could satisfy is k-m. Now apply the algorithm described in the previous part of the problem to the k-2m clauses that had no conflict to begin with. The expected number of clauses we satisfy this way is 0.62*(k-2m). In addition to this we can also satisfy m of the 2m conflicting clauses and so we satisfy $0.62*(k-2m)+m \geq 0.62*(k-m)$ clauses which is our desired target. Note that this algorithm is polynomial in the number of variables and clauses since we look at each clause once.

 $^{^{1}}$ ex633.413.669