The CKY Parser

Computational Linguistics

Alexander Koller

21 November 2023

Context-free grammars

T = {John, ate, sandwich, a}

N = {S, NP, VP, V, N, Det}; start symbol: S

Production rules:

 $S \rightarrow NP VP$

 $NP \rightarrow Det N$

 $VP \rightarrow V NP$

 $V \rightarrow ate$

 $NP \rightarrow John$

 $Det \rightarrow a$

 $N \rightarrow sandwich$

Shift-Reduce Parsing

```
T = {John, ate, sandwich, a}
```

 $N = \{S, NP, VP, V, N, Det\}; start symbol: S$

Production rules:

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $V \rightarrow ate$

 $Det \rightarrow a$

 $NP \rightarrow Det N$

 $NP \rightarrow John$

 $N \rightarrow sandwich$

Outline

- 1. Asymptotic runtime of algorithms.
- 2. Runtime of shift-reduce: exponential.
- 3. The CKY recognizer.
- 4. The CKY parser.

Runtime of algorithms

- It is not enough to find an algorithm that is correct. We also need it to be *efficient*.
- Runtime of an algorithm is measured:
 - as a function of input size n
 - ▶ for the worst case (= inputs of that size on which the algorithm runs longest)
 - asymptotically (= ignore constant factors)

A simple example

- Problem: test whether list of numbers is sorted.
 - given list L of ints of length n:
 - ▶ are there indices $1 \le i < j \le n$ s.t. $L_i > L_j$?
- Let's look at two algorithms for this problem.

Runtime comparison

```
def quadratic_issorted(L):
    for i in range(len(L)):
        for j in range(i+1, len(L)):
            if L[i] > L[j]:
                return False
    return True
```

```
def linear_issorted(L):
    for i in range(len(L)-1):
        if L[i] > L[i+1]:
            return False
    return True
```

Runtime

len(L)	quadratic	linear
100	0.5 ms	0.02 ms
1000	40 ms	0.1 ms
10000	4.5 sec	1.2 ms
100.000	464 sec	13 ms
1.000.000		179 ms

 \approx n² · 45 ns \approx

 \approx n · 120 ns

Analysis

- Important parameters:
 - ightharpoonup input size n = len(L), i.e. length of list
 - worst case = L is sorted; every loop iterated n times
 - don't really care about time per iteration, linear is always faster if n grows large enough
- We can get a good sense of the algorithm's runtime by saying it grows *linearly* or *quadratically* with n.
 - abstraction over implementation details and hardware
 - asymptotic comparison of runtime classes

Linear vs. quadratic

Higher-degree polynomials outgrow lower-degree polynomials for large n - regardless of a constant factor.

O Notation

• Let f, g be functions. Then we define:

$$f = O(g)$$
 iff
exist c, n_0 s.t. $f(n) \le c \cdot g(n)$ f.a. $n \ge n_0$

- Read "f is O of g"; "=" denotes membership in a runtime class, not equality.
- Usually take the smallest g such that f = O(g).

Illustration

$$\begin{split} f &= O(g) \ \ iff \\ & exist \ c, \ n_0 \ s.t. \ f(n) \leq c \cdot g(n) \ f.a. \ n \geq n_0 \end{split}$$

Back to the example

```
f = O(g) iff 
exist c, n_0 s.t. f(n) \le c \cdot g(n) f.a. n \ge n_0
```

```
def quadratic_issorted(L):
    for i in range(len(L)):
        for j in range(i+1, len(L)):
            if L[i] > L[j]:
                return False
    return True
```

Runtime $f(n) \approx n^2 \cdot 45 \text{ ns} = O(n^2)$ "quadratic algorithm"

```
def linear_issorted(L):
    for i in range(len(L)-1):
        if L[i] > L[i+1]:
        return False
    return True
```

Runtime $f(n) \approx n \cdot 120 \text{ ns} = O(n)$ "linear algorithm"

Analyzing Shift-Reduce

$$S \rightarrow B S$$
 $B \rightarrow b$ $S \rightarrow c$
 $T \rightarrow C T$ $C \rightarrow b$ $T \rightarrow c$

Analyzing Shift-Reduce

$$S \rightarrow B S$$
 $B \rightarrow b$ $S \rightarrow c$
 $T \rightarrow C T$ $C \rightarrow b$ $T \rightarrow c$

Analyzing Shift-Reduce

- If string has length n and grammar has k nonterminals, then there are O(kⁿ) ways of assigning strings of nonterminals to words.
- Deterministic implementation of shift-reduce will explore all of them in the worst case, especially when the string is *not* in the language.

Exponential runtime

- Worst case runtime of shift-reduce:
 O(kn) computation steps.
- Exponential functions grow faster than every polynomial: if k > 1, then there is no m such that $k^n = O(n^m)$.

Polynomial vs. exponential

- We often distinguish between *polynomial* and *exponential* runtime.
 - Rule of thumb: exponential = too slow for practical use.
- Is there a polynomial algorithm for the word problem?

Chomsky Normal Form

- A cfg is *in Chomsky normal form (CNF)* if each of its production rules has one of these two forms:
 - \rightarrow A \rightarrow B C: right-hand side is exactly two nonterminals
 - $A \rightarrow c$: right-hand side is exactly one terminal
- For every cfg G, there is a weakly equivalent cfg G' which is in CNF.
 - that is, L(G) = L(G')

The CKY Algorithm

- Simplest and most-used chart parser for cfgs in CNF.
- Developed independently in the 1960s by John Cocke, Daniel Younger, and Tadao Kasami.
 - sometimes also called CYK algorithm
- Bottom-up algorithm for discovering statements of the form " $A \Rightarrow^* w_i \dots w_{k-1}$?"

CKY: Basic idea

What can " $A \Rightarrow^* w_i \dots w_{k-1}$ " look like in a CNF grammar?

The CKY Recognizer

CKY recognizer: pseudocode

```
Data structure: Ch(i,k) eventually contains \{A \mid A \Rightarrow^* w_i ... w_{k-1}\}
(initially all empty).
for each i from 1 to n:
  for each production rule A \rightarrow w_i:
     add A to Ch(i, i+1)
for each width b from 2 to n:
  for each start position i from 1 to n-b+1:
     for each left width k from 1 to b-1:
       for each B \in Ch(i, i+k) and C \in Ch(i+k,i+b):
         for each production rule A \rightarrow B C:
            add A to Ch(i,i+b)
```

claim that $w \in L(G)$ iff $S \in Ch(1,n+1)$

Complexity

- *Time* complexity of CKY recognizer is O(n³), although number of parse trees can grow exponentially.
- *Space* complexity of CKY recognizer is O(n²) (one cell for each substring).
- Efficiency depends crucially on CNF. Naive generalization of CKY to rules $A \rightarrow B_1 \dots B_r$ raises time complexity to $O(n^{r+1})$.

Correctness

- Soundness: CKY *only* derives true statements.
 - ▶ If CKY puts A into Ch(i,k), then there is rule $A \rightarrow BC$ and some j with $B \in Ch(i,j)$ and $C \in Ch(j,k)$.
 - ▶ Induction hypothesis: for shorter spans, have $B \Rightarrow^* w_i \dots w_{j-1}$. Thus $A \Rightarrow B C \Rightarrow^* w_i \dots w_{j-1} C \Rightarrow^* w_i \dots w_{k-1}$
- Completeness: CKY derives *all* true statements.
 - ► Each derivation $A \Rightarrow^* w_i \dots w_{k-1}$ starts with a first step; say $A \Rightarrow B C \Rightarrow^* w_i \dots w_{j-1} C \Rightarrow^* w_i \dots w_{k-1}$
 - Important: ensure that all nonterminals for shorter spans are known before filling Ch(i,k).

Recognizer to Parser

- Parser: need to construct parse trees from chart.
- Do this by memorizing how each $A \in Ch(i,k)$ can be constructed from smaller parts.
 - ▶ built from $B \in Ch(i,j)$ and $C \in Ch(j,k)$ using $A \rightarrow B$ C: store (B,C,j) in *backpointer* for A in Ch(i,k).
 - analogous to backpointers in HMMs
- Once chart has been filled, enumerate trees recursively by following backpointers, starting at $S \in Ch(1,n+1)$.

Backpointers

 $S \rightarrow S S$ $S \rightarrow a$

a

Conclusion

- Context-free grammars: most popular grammar formalism in NLP.
 - there are also other, more expressive grammar formalisms
- CKY: most popular parser for cfgs.
 - very simple polynomial algorithm, works well in practice
 - there are also other, more complicated algorithms
- Next time: put parsing and statistics together.