CLAIMS

- 1.	A control apparatus for a single of multiple plug-dropping tool,
comprising:	
•	at least one signal transmitter for sending at least one signal over the
air;	
	at least one signal receiver for receiving said signal from said trans-
mitter and to	provide an output;
	at least one control system/comprising a primary control element;
	at least one signal processor to use said output from said receiver to
selectively re	emotely operate said control element to allow release of a plug from
the apparatus	s by said system.
	/ / /

- 2. The apparatus of claim 1, further comprising:
- at least one final control element, said final control element selective ly preventing and allowing a plug to drop from the apparatus, whereupon actuation of said primary control element selectively permits actuation of said final control element to drop a plug.
- 1 3. The apparatus of claim 2, wherein said control system further comprises:
 - a selectively releasable potential energy storage mechanism;
- a force transfer mechanism connected to said potential energy mechanism and said final/control element.

1	4.	The apparatus of claim 3, wherein:
2	-	set and release of said potential energy storage mechanism is con-
3	trolled by m	ovement of said force transfer mechanism.
	-	
1	5.	The apparatus of claim 4, wherein:
2		said force transfer mechanism further comprises a piston and cylinder
3	combination	; /
4		said piston forming a first and second variable-volume cavity within
5	said cylinder	·;
6		a fluid circuit connecting said first and second variable-volume
7	cavities;	
8		said primary control element further comprises a valve mounted in
9	said fluid cir	rcuit.
1	6.	The apparatus of claim 5, wherein:
2		said first and second cavities have volumes that vary inversely with
3	movement o	f said piston;
4		said potential energy storage mechanism operably connected to said
5	piston and c	ylinder combination;
6		said valve selectively fluid locking said piston with respect to said
7	cylinder for	securing said potential energy mechanism in a set position wherein a
8	force is store	ed;
9		said/valve, when selectively opened, fluid unlocking said piston for
10	movement w	ith respect to said cylinder;
		1

11	whereupon said fluid unlocking of said piston allows said potential
12	energy mechanism to apply said stored force to said piston cylinder combination,
13	which in turn actuates said final control element to drop a plug.
1	7. The apparatus of claim 6, further comprising:
2	a rack operably connected to said piston and cylinder combination;
3	said final control element further comprises:
4	a pin;
5	a gear mounted to said pin, said gear selectively positionable in
6	meshing contact with said rack;
7	an operator mounted to said pin;
8	said potential energy mechanism further comprises:
9	a spring fixedly mounted on one end and connected to said piston and
10	cylinder combination;
11	said spring settable to store a force by virtue of operation of said
12	operator which, through said gear, rotates said rack in a first direction when said
13	fluid circuit permits flow in at least one direction;
14	said set being retained by selective operation of said valve to stop
15	flow in said circuit;
16	whereupon selective opening of said valve allows said rack to drive
17	said gear in a second direction opposite said first direction for release of the plug
18	by rotation of said pin.

1	8. The apparatus of claim 7, further comprising:	
2	a check valve in parallel with said valve in said circuit to permit one	e–
3	way flow in said circuit to allow said rack to rotate in said first direction for setting	ng
4	a stored force in said spring;	
5	said valve operable to facilitate flow in said circuit in a rever	se
6	direction for transmitting said stored force to said pin via said rack and gear.	
1	9. The apparatus of claim 8, wherein:	
2	said cylinder has one open end;	
3	one of said variable-volume cavities disposed adjacent said open en	d;
4	a floating piston disposed between said piston and said cylind	er
5	adjacent said open end and movable relative to movements of said piston for	or
6	dynamically sealing off said variable-volume cavity most adjacent to said ope	en
7	end.	
1	10. The apparatus of claim 1, further comprising:	
2	a plurality of signal receivers disposed around the periphery of the	he
3	apparatus for allowing said signal transmitter to effect dropping the plug while the	he
4	apparatus is rotating and/or reciprocating.	
1	11. The apparatus of claim 9, further comprising:	
2	a plurality of signal receivers disposed around the periphery of the	he
3	apparatus for allowing said signal transmitter to effect dropping the plug while the	he
4	apparatus is rotating and/or reciprocating.	

	•	.
1	12.	The apparatus of claim 1 wherein:
2	si.	at least one signal transmitter which sends a plurality of different
3	signals;	
4	-	a plurality of assemblies of said signal receivers, processors and
5	primary con	trol elements, each disposed on different parts of a multi-plug-drop-
6	ping tool;	
7		each of said receivers responsive to a discrete different signal from
8	said transmi	itter for selective orderly dropping of a plurality of plugs into a well-
9	bore.	
1	13.	The apparatus of claim 9, wherein:
2		at least one signal transmitter which sends a plurality of different
3	signals;	
4		a plurality of assemblies of said signal receivers, processors and
5	primary con	trol elements, each disposed on different parts of a multi-plug-drop-
6	ping tool;	
7		each of said receivers responsive to a discrete different signal from
8	said transmi	itter for selective or lerly dropping of a plurality of plugs into a well-
9	bore.	
1	14.	The apparatus of claim 1, wherein:
2		said transmitter sends an infrared signal;
3		said transmitter, receiver and/or signal processor are built to be
4	intrinsically	safe.

1	15. The apparatus of claim 9, wherein:	
. 2	said transmitter sends an infrared signal;	
3	said transmitter, receiver and/or signal processor are built to b	
4	intrinsically safe.	
1	16. A plug-dropping apparatus for downhole use, comprising:	
2	at least one housing;	
3	at least one plug selectively supportable within said housing;	
4	at least one plug stop assembly selectively operable to hold an	
5	release said plug;	
6	at least one signal transmitter;	
7	at least one signal receiver on said housing for receiving over the air	
8	at least one signal from said transmitter;	
9	at least one control system, said control system receiving an output	
10	from said signal receiver and in response thereto actuating said plug stop to releas	
11	said plug.	
1	17. The apparatus of claim 16, further comprising:	
2	a plurality of said receivers distributed about said housing in a gener-	
3	ally downward orientation;	
4	whereupon said signal transmitter, operated from a safe location	
5	below said receivers, can direct said signal to at least one of said receivers as sai	
6	housing rotates and/or reciprocates.	

1	18.	The apparatus of claim 17, further comprising:
2	~	a plurality of housings, each selectively retaining a plug and each
3	equipped wi	th at least one signal receiver and control system;
4	•	said receivers on each of said housings responsive to different signals
5	from said tra	ensmitter to accomplish orderly release of said plugs from the lower-
6	most housing	g to the uppermost.
1	19.	The apparatus of claim /16, wherein said control system further
2	comprises:	
3		a biasing element;
4		at least one linkage operably connecting said biasing element to said
5	plug stop as	sembly;
6		at least one lock mechanism mounted to said linkage for allowing
7	selective mo	vement thereof;
8		said lock mechanism operable to lock in a force into said biasing
9	element and	to selectively release said force so it can be transferred through said
10	linkage to sa	nid plug stop assembly for release of said plug.
1	20.	The apparatus of claim 19, wherein:
2		said lock mechanism comprises a variable length link in said linkage.
1	21.	The apparatus of claim 20, wherein said variable length link com-
2	prises:	
3		a piston and cylinder combination;
4		said piston selectively lockable by fluid force;

	- /
5	a fluid circuit in communication with said cylinder on opposed side
6	of said piston;
7	said control system further comprises:
8	a valve in said fluid circuit, said valve selectively operable to creat
9	a locking fluid force preventing piston movement and to release said locking force
10	responsive to a signal from said transmitter.
1	22. The apparatus of claim 21, wherein:
2	said linkage comprises a rack;
3	said plug stop assembly comprises a pin;
4	said pin so disposed in said housing to selectively retain said plug an
5	release it upon rotation;
6	a pinion gear operably connected to said pin and said rack;
7	said biasing means primed to store a force and said pin positioned to
8	retain said plug by initial rotation of said pin in a first direction with said valv
9	open, said stored force released by actuation of said transmitter to open said valve
10	which in turn transmits said stored force through said linkage to turn said pin i
11	a second direction opposite said first direction for release of said plug.
1	23. The apparatus/of claim 22, wherein:
2	said transmitter sends an infrared signal;
3	said transmitter, receiver, and/or control system comprise intrinsicall
4	safe electrical components;
5	said valve/comprises a solenoid in said fluid circuit.

1	24.	The apparatus of claim 23, further comprising:
2	£	a plurality of said receivers distributed about said housing in a gener-
3	ally downwa	ard orientation;
4	•	whereupon said signal transmitter, operated from a safe location
5	below said re	eceivers, can direct said signato at least one of said receivers as said
6	housing rota	tes or translates.
1	25.	The apparatus of claim 24, further comprising:
2		a plurality of housings, each selectively retaining a plug and each
3	equipped with	th at least one signal receiver and control system;
4		said receivers on each of said housings responsive to different signals
5	from said tra	ensmitter to accomplish orderly release of said plugs from the lower-
6	most housing	g to the uppermost.
1	26.	A method of releasing balls or plugs for liner cementing, comprising
2	the steps of:	
3		erecting an apparatus to drop balls or plugs on a casing or liner string;
4		transmitting a signal over the air from a safe location to the remotely
5	mounted app	paratus;
6		receiving said over-the-air signal at the apparatus;
7		using the signal received to trigger release of at least one ball or plug.
1	27.	The method ϕ f claim 26, further comprising the steps of:
2		providing a plurality of receivers on one apparatus;
3		rotating and/or reciprocating the apparatus as at least one of said
4	receivers get	s the signal to trigger said release.

1	28.	The method of claim 27, further comprising the steps of:
2	ä	stacking a plurality of said apparatuses in series;
3		transmitting a plurality of signals;
4	2	making a receiver in each apparatus responsive to a different signal
5	for orderly re	elease of the balls or plugs.
1	29.	The method of claim 28, further comprising the steps of:
2		storing a force in a biasing device in said apparatus;
3		connecting the biasing device to a linkage;
4		connecting the linkage to a plug support assembly;
5		releasing said stored force;
6		using said released force to operate said plug support assembly
7	through said	
1	30.	The method of claim 29, wherein:
2		priming said biasing device by moving said plug support assembly;
3		selectively fluid locking said linkage lock;
4		trapping a stored force in said biasing device with said locking;
5		using said transmitted signal to operate a valve for a subsequent
6	unlocking;	
7		releasing the ball or plug by said subsequent unlocking.
1	31.	The apparatus of claim 12, wherein:
2		said transmitter sends a plurality of frequencies spaced in time;
3		at least one of said frequencies serving a dual purpose of being first
4	a part of a re	eceived signal sent to said processor to allow said processor to issue

	5	an output signal to operate said primary control element, and second to act as a cue	
	6	to said processor that an incoming multiple frequency signal has begun or l	
	7	concluded.	
	1	32.	The apparatus of claim 12, wherein:
	2		said transmitter sends a plurality of frequencies;
	3		said processor discriminates for said frequencies and generates ar
	4	output signa	to said primary control element based on the order of frequencies
	5	received.	
	1	33.	The apparatus of claim 31, wherein:
	2		at least a first and second frequency serve a dual purpose and are par
	3	of a sequenc	e of signals that triggers an output from said processor;
	4		said first frequency is first in time and cues said processor that a
	5	multifrequen	cy signal is arriving, said second frequency is last in time and cues
	6	said processo	or that a multifrequency signal is fully transmitted, thus triggering said
	7	processor to	issue an output signal for actuation of said primary control element.
	1	34.	The apparatus of claim 33, wherein:
	2		said receiver further comprises a self-contained power supply;
	3		interlock means on said power supply to prevent actuation of said
	4	primary cont	rol element inless a preset value of power exists for a preset time.
(\	
_	1	35.	A control system useful in outdoor environments for operating

controlled element, comprising:

3		at least one transmitter for sending at least one signal over the air;
4	a	at least one signal receiver for receiving a signal from said transmitter
5	to provide an	n output;
6	3	at least one signal processor to receive the output of said receiver and
7	to generate a	command signal to the controlled element;
8		said transmitter sends a plurality of frequencies;
9		said processor discriminates for said frequencies and generates an
10	output signa	to said primary control element based on the order of frequencies
11	received.	
1	36.	The apparatus of claim 35, wherein:
2		said transmitter sends a plurality of frequencies spaced in time;
3		at least one of said frequencies serving a dual purpose of being first
4	part of a rec	eived signal sent to said processor to allow said processor to issue an
5	output signa	to operate a primary controlled element, and second to act as a cue
6	to said proce	essor that an incoming multiple frequency signal is about to come or
7/	has conclude	ed.
•	•	45 T
1	3 37.	The apparatus of claim 26, wherein:
2		at least a first and second frequency serve a dual purpose and are part
3	of a sequence	e of signals that triggers an output from said processor;
4		said first frequency is first in time and cues said processor that a
5	multifrequen	cy signal is arriving, said second frequency is last in time and cues
6	said processo	or that a multifrequency signal is fully transmitted, thus triggering said
7	nrocessor to	issue an output signal for actuation of the primary controlled element.

3

The apparatus of claim 37, wherein:

said receiver further comprises a self-contained power supply;

interlock means on said power supply to prevent actuation of the
primary controlled element unless a preset value of power exists for a preset time.

baker\patents\262rmote.app ss

And 12