Formelsammlung Physik BMT 14a

Lukas Dörig, Michelle Meyer, Yan Poblete

$${{\rm May} \ 7, \ 2018} \\ {{\rm v}1.0}$$

Intro: Geometrie

Trigonometrie

Generell

Variable	Beschreibung
H	Hypothenuse
GK	Gegenkathete
AK	Ankathete

Sinus

$$\sin \alpha = \frac{GK}{H} \quad \# \quad H = \frac{GK}{\sin \alpha} \quad \# \quad GK = \sin \alpha \times H$$
 (1)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \tag{2}$$

Cosinus

$$\cos \alpha = \frac{AK}{H} \quad \# \quad H = \frac{AK}{\cos \alpha} \quad \# \quad AK = \cos \alpha \times H$$
 (3)

$$a^{2} = b^{2} + c^{2} - 2bc \times \cos \alpha \quad \# \quad b^{2} = a^{2} + c^{2} - 2ac \times \cos \beta$$
 (4)

$$c^2 = a^2 + b^2 - 2ab \times \cos\gamma \tag{5}$$

Tangens

$$\tan \alpha = \frac{GK}{AK} \quad \# \quad AK = \frac{GK}{\tan \alpha} \quad \# \quad GK = \tan \alpha \times AK$$
 (6)

Wechsel- und Stufenwinkel

Wenn h || k. α und α ' sind Stufenwinkel, γ und γ ' sind Wechselwinkel.

1 Kräftegelichgewicht, statisches Gleichgewicht

1.1 Koordinaten

Polarform $(Betrag[F]|Winkel[\alpha])$

Karthesische Form $(F_x|F_y)$

Polar zu Karthesisch

$$F_x = F \times \cos \alpha \quad \# \quad F_y = F \times \sin \alpha$$
 (7)

Karthesisch zu Polar

$$F = \sqrt{F_x^2 + F_y^2} \quad \# \quad \alpha = \arctan \frac{F_y}{F_x} + Sektor \tag{8}$$

Für den Sektor muss jeweils addiert werden:

Sektor	X Positiv?	Y Positiv?	Wert
1.	Ja	Ja	0°
2.	Nein	Ja	90°
3.	Nein	Nein	180°
4.	Ja	Nein	270°

Vektoren zusammenrechnen (Karthesisch)

$$\begin{array}{c|cccc} F_1 & F_1x & F_1y \\ F_2 & F_2x & F_2y \\ F_3 & F_3x & F_3y \\ \hline F_{res} & F_{res}x & F_{res}y \\ \end{array}$$

1.2 Kräfte

I | Alle Kräfte heben sich auf

II | Alle Drehmomente heben sich auf

Im Allgemeinen

$$F = m \times a \quad \# \quad [N] = [kg] \times \left[\frac{m}{s^2}\right] = \left[\frac{kg \times m}{s^2}\right] \tag{9}$$

 ${\bf Schwerkraft}$

$$g = g_{Erde} = 9.81 \frac{m}{s^2} \quad \# \quad F_G = m \times g$$
 (10)

 ${\bf Hangabtriebskraft}$

$$F_H = F_G \times \sin \alpha \tag{11}$$

 ${\bf Normalkraft}$

$$F_N = F_G \times \cos \alpha \tag{12}$$

 ${\bf Reibungkraft}$

$$\mu = [Zahl, 0 - 1] \quad \# \quad F_R = \mu \times F_N \tag{13}$$

Federkraft

$$F_D = k \times x \quad \# \quad F_D = D \times \Delta s \quad \# \quad [N] = \left[\frac{N}{cm}\right] \times [cm]$$
 (14)

Fadenspannung

$$T = F_G + F$$
 (Bei hängender Masse) (15)

$$F = T - F_R$$
 (Bei Masse auf Schiefer Ebene) (16)

1.3 Drehmoment

Generell

Variable	Beschreibung	Einheit	
M	Drehmoment	[Nm]	
F_{\perp}	Kraft, die senkrecht auf die Drehachse wirkt	[N]	
	$M = F_{\perp} imes l$		(17)

Statisch

$$F_{1\perp} \times l_1 = F_{2\perp} \times l_2 \tag{18}$$

In Bewegung

$$M_{Res} = M_{Uhrzeigersinn} - M_{Gegenuhrzeigersinn}$$
 (19)

1.4 Flaschenzug und Hebelgesetz

1.5 Hooksches Gesetz

Parallel

$$F = F_1 + F_2$$

$$k \times x = k_1 \times x + k_2 \times x$$

$$k = k_1 + k_2$$

Seriell

$$F = F_1 = F_2[???]$$

$$k = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2}}$$

2 Kinematik, Dynamik (Kraft)

2.1 Kinematik

Grund formeln

Variable	Formeln	
\overline{v}	$\frac{s}{t}$	$\frac{v_0+v}{2}$
S	$\overline{v} \times t$	$\frac{v_0+v}{2} \times t$
a	$\frac{v-v_0}{t}$	
S	$s_0 + v_0 \times t + \frac{1}{2}a \times t^2$	
v^2	$v_0^2 + 2as$	
v	$v_0 + at$	

Varianten

Variable	Formeln	
[???]		

2.2 Drehung

Variablendefinitionen

Variable	Beschreibung	Einheit	Weitere Einheiten
f	Drehfrequenz	Hz	$\left[\frac{1}{s}\right]$
${ m T}$	Umlaufzeit	[s]	
\mathbf{n}	Anzahl Umdrehungen	[Zahl]	
b	Bogenlänge	[m]	
heta	Drehwinkel	[Radiant]	
ω	Winkelgeschwindigkeit	$\left[\frac{1}{s}\right]$	$\left[\frac{Radiant}{s}\right]$
a_z	Zentripetalbeschleunigung	$\left[\frac{m}{s^2}\right]$	
F_z	Zentripetalkraf (=Zentrifugalkraft)	[N]	

Formeln

Variable	Formeln		
f	$\frac{1}{T}$	$\frac{n}{\Delta t}$	
θ	$\frac{b}{r}$	$\frac{2\pi \times \alpha}{360^{\circ}}$	$\omega \times t$
α	$\frac{360^{\circ} \times \theta}{2\pi}$		
ω	$\frac{\theta}{t}$	$\frac{v}{r}$	$2\pi \times f$
V	$\frac{b}{t}$	$\omega \times r$	
b	$v \times t$	$\omega \times rt$	$\theta \times r$
a_z	$\frac{v^2}{r}$	$\frac{(\omega \times r)^2}{r}$	$\omega^2 \times r$
F_z	$a_z \times m$		

Weitere Umformungen

[???]

2.3 Keplresche Gesetze

$$F_G = \frac{G \times m_1 \times m_2}{r^2}$$

2.4 Bremsweg

$$s_b = \frac{V_0^2}{2g\mu}$$

3 Arbeit, Energie, Leistung

3.1 Energieerhaltungssatz

Variablendefinitionen

Variable	Beschreibung	Einheit	Weitere Einheiten
W	Arbeit	[J]	[Nm]
\mathbf{E}	Energie (gespeicherte Arbeit)	[J]	[Nm]
Р	Leistung	[W]	$\left[\frac{J}{s}\right] = \left[\frac{Nm}{s}\right]$

Satz

$$\begin{array}{lll} E_{tot1} & -E_{Verlust} & +E_{Zu} & = E_{tot2} \\ E_{kin1} + E_{pot1} + E_{D1} & -E_{R} & +E_{Zu} & = E_{kin2} + E_{pot2} + E_{D2} \end{array}$$

Kinetische Energie

$$E_{kin} = \frac{1}{2}mv^2$$

Potentielle Energie

$$E_{pot} = mgh$$

Federenergie Deformationsenergie

D: Federkonstante $[\frac{N}{cm}]$

$$E_D = \frac{1}{2}Ds^2$$

Reibungsenergie

Horizontale:

$$E_R = F_R \times s = \mu \times mg \times s$$

Schiefe Ebene:

$$E_R = F_R \times s = \mu \times mg \times \cos \alpha \times s$$