

Datasheet

Rail-to-rail inputs and outputs, 36 V, 6 MHz op amps

Maturity status link

TSB511, TSB512, TSB514

Related products				
TSB711				
TSB712	For higher precision			
TSB714				

Features

- Rail-to-rail input and output
- Low offset voltage: 1.5 mV maximum
- Wide supply voltage range: 2.7 V to 36 V
- · Gain bandwidth product: 6 MHz
- Slew rate of 3 V/µs
- Low noise: 12 nV/√Hz
- Integrated EMI filter
- 2 kV HBM ESD tolerance
- Extended temperature range: 40 °C to + 125 °C
- · Automotive-grade available

Applications

- High-side and low-side current sensing
- · Hall effect sensors
- · Test and measurement equipment
- Motor control
- · Industrial process control
- · Stain gauge

Description

The TSB511, TSB512, TSB514 is a series of 6 MHz bandwidth amplifiers featuring rail-to-rail input and output, which are guaranteed to operate from 2.7 to 36 V single supply as well as from \pm 1.35 V to \pm 18 V dual supplies.

These amplifiers have the advantage of offering a large span of supply voltage and a wide bandwidth.

The combination of wide bandwidth, slew rate, low noise, rail-to-rail capability makes the TSB511, TSB512, TSB514 useful in a wide variety of applications such as: filters, power supply and motor control, actuator driving and resistive transducers.

1 Pin connection

Figure 1. TSB511 pin connections (top view)

Table 1. TSB511 pin description

Pin	Pin name	Description
1	OUT1	Output
2	VCC -	Negative supply voltage
3	IN+	Positive input voltage
4	IN-	Negative input voltage
5	VCC +	Positive supply voltage

Figure 2. TSB512 pin connections (top view)

Table 2. TSB512 pin description

Pin	Pin name	Description
1	OUT1	Output
2	IN1-	Negative input voltage
3	IN1+	Positive input voltage
4	VCC-	Negative supply voltage
5	IN2+	Positive input voltage
6	IN2-	Negative input voltage
7	OUT2	Output
8	VCC+	Positive supply voltage

DS13885 - Rev 1 page 2/26

Figure 3. TSB514 pin connections (top view)

SO14 - TSSOP14

Table 3. TSB514 pin description

Pin	Pin name	Description
1	OUT1	Output
2	IN1-	Negative input voltage
3	IN1+	Positive input voltage
4	VCC+	Positive supply voltage
5	IN2+	Positive input voltage
6	IN2-	Negative input voltage
7	OUT2	Output
8	OUT3	Output
9	IN3-	Negative input voltage
10	IN3+	Positive input voltage
11	VCC-	Negative supply voltage
12	IN4+	Positive input voltage
13	IN4-	Negative input voltage
14	OUT4	Output

DS13885 - Rev 1 page 3/26

2 Maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage (1)	+ 40 or ± 20	V
V _{ID}	Differential input voltage (2)	± 2	V
V _{IN}	Input voltage (3)	(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2	V
I _{IN}	Input current (3)	± 10	mA
Tstg	Storage temperature	- 65 to 150	°C
Tj	Junction temperature	150	°C
	Thermal resistance junction to ambient (4) (5)		
	SOT23-5	250	
Rth-ja	MiniSO8	190	°C/W
Kui-ja	SO8	125	C/VV
	SO14	105	
	TSSOP14	100	
ESD	Human Body Model (HBM) (6)	2	kV
EOD	Charged Device Model (CDM) (7)	1	K.V

- 1. All voltage values, except differential voltage, are with respect to network ground terminal.
- 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
- 3. Input voltage may be extended to the condition that the input current is limited to +/-10 mA. Input current must be limited by a resistor in series with the inputs when the input voltage is beyond the rails or the differential input voltage is above +/-2 V.
- 4. Rth are typical values.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. According to JEDEC standard JESD22-A114F.
- 7. According to ANSI/ESD STM5.3.1.

Table 5. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.7 to 36	V
V _{ICM}	Common mode voltage on input pins	(V_{CC-}) to (V_{CC+}) + 0.1	V
Т	Operating free-air temperature range	-40 to 125	°C

DS13885 - Rev 1 page 4/26

3 Electrical characteristics

Table 6. Electrical characteristics at V_{CC^+} = 5 V, V_{CC^-} = 0 V, V_{ICM} = V_{OUT} = $V_{CC}/2$, T = 25 °C and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC perform	ance						
		$V_{CC-} \le V_{ICM} \le V_{CC+}$					
V_{IO}	Input offset voltage	T = 25 °C			±1.5	mV	
		Tmin < T < Tmax			±2		
$ \Delta \ V_{IO}/\Delta T $	Input offset voltage drift	Tmin < T < Tmax		2		μV/°(
		$V_{ICM} = V_{CC}/2$					
I_{IB}	Input bias current (1)	T = 25 °C	-100		0		
		Tmin < T < Tmax	-200		0	nA	
I _{IO}	Input offset current (2)	$V_{ICM} = V_{CC}/2$		10			
		$(V_{CC-}) + 0.5 V \le V_{OUT} \le (V_{CC+}) - 0.5$	5 V, R _L ≥ 10	0 kΩ			
A_{VD}	Open loop gain	T = 25 °C	105	120		dB	
		Tmin < T < Tmax	100				
		$V_{CC-} \le V_{ICM} \le V_{CC+}$					
CMR	Common mode rejection ratio: 20 log ($\Delta V_{icm}/\Delta V_{io}$)	T = 25 °C	75	105		dB	
		Tmin < T < Tmax	70				
.,	High level output voltage	No load, Tmin < T < Tmax			90		
V _{OH}	(drop voltage from V _{CC+})	I _{source} = 2 mA, Tmin < T < Tmax			200		
	Low-level output voltage	No load, Tmin < T < Tmax			90	mV	
V_{OL}		I _{sink} = 2 mA, Tmin < T < Tmax			200		
		V _{OUT} = V _{CC}					
	I _{sink}	T = 25 °C	20	50			
		Tmin < T < Tmax	15			mA	
I _{OUT}		V _{OUT} = 0 V					
	I _{source}	T = 25 °C	20	50			
		Tmin < T < Tmax	15				
	Overally suggest (see also as all)	No load, T = 25 °C		1.4		0	
I _{CC}	Supply current (per channel)	Tmin < T < Tmax			2.3	mA.	
AC perform	ance						
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$	4.5	6		MHz	
SR	Slew rate	3 V step, R_L = 10 kΩ, C_L = 100 pF, A_V = 1 V/V, 10% to 90%		2.7		V/µs	
		V _{IN} = 1 V _{rms} , A _V = +1, f = 1 kHz, BV	/ = 22 kHz				
THD+N	Total harmonic distortion +	R _L = 10 kΩ		0.0003		%	
	noise	R _L = 1 kΩ		0.0004			
Фт	Phase margin	R_L = 10 kΩ, C_L = 100 pF, Unity gain		34		0	

DS13885 - Rev 1 ______ page 5/26

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
C _{Load}	Capacitive load drive			100		pF
en	Input voltage noise density	f = 10 kHz		12		nV/√Hz
en p-p	Input noise voltage	0.1 Hz ≤ f ≤ 10 Hz		0.8		μVpp

^{1.} Current is positive when it is sinked into the op amp.

Table 7. Electrical characteristics at V_{CC+} = 36 V, V_{CC-} = 0 V, V_{ICM} = V_{OUT} = $V_{CC}/2$, T = 25 °C and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perform	ance					
		$V_{CC-} \le V_{ICM} \le V_{CC+}$				
V_{IO}	Input offset voltage	T = 25 °C			±1.5	mV
		Tmin < T < Tmax			±2	
Δ V _{IO} /ΔΤ	Input offset voltage drift	Tmin < T < Tmax		2		μV/°C
		$V_{ICM} = V_{CC}/2$				
I_{IB}	Input bias current (1)	T = 25 °C -100 0				
		Tmin < T < Tmax	-200		0	nA
I _{IO}	Input offset current (2)	$V_{ICM} = V_{CC}/2$		10		
		$(V_{CC-}) + 0.5 V \le V_{OUT} \le (V_{CC+}) - 0.5$	5 V, R _L ≥ 10	kΩ		
A_{VD}	Open loop gain	T = 25 °C	110 125			dB
		Tmin < T < Tmax	105			
CMR		$V_{CC-} \le V_{ICM} \le V_{CC+}$	ı	ı		
	Common mode rejection ratio: 20 log (ΔV _{icm} /ΔV _{io})	T = 25 °C	90	120		dB
		Tmin < T < Tmax	85			
	Power supply rejection ratio: 20 log (ΔV _{cc} /ΔV _{io})	5 V < (V _{CC+}) - (V _{CC-}) < 36 V,	100			dB
SVR		V _{ICM} = V _{CC} /2, Tmin < T < Tmax		125		
		No load, Tmin < T < Tmax			120	
V_{OH}	High level output voltage	I _{source} = 2 mA, Tmin < T < Tmax			200	
	(drop voltage from V _{CC+})	I _{source} = 15 mA, Tmin < T < Tmax			1000	
		No load, Tmin < T < Tmax			120	mV
V_{OL}	Low-level output voltage	I _{sink} = 2 mA, Tmin < T < Tmax			200	
		I _{sink} = 15 mA, Tmin < T < Tmax			1000	-
		V _{OUT} = V _{CC}				
	I _{sink}	T = 25 °C	25	50		
		Tmin < T < Tmax	20			
l _{OUT}		V _{OUT} = 0 V		I	1	mA
	I _{source}	T = 25 °C	25	50		-
		Tmin < T < Tmax	20			-
		No load, T = 25 °C		1.8		
I _{CC}	Supply current (per channel)	Tmin < T < Tmax			3	mA

DS13885 - Rev 1 page 6/26

^{2.} I_{io} is defined as $|I_{ibp} - I_{ibn}|$.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
AC perform	ance						
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$	4.5	6		MHz	
SR	Slew rate	9 V step, R_L = 10 k Ω , C_L = 100 pF, A_V = 1 V/V, 10% to 90%	2.2	3		V/µs	
		$V_{IN} = 1 V_{rms}, A_V = +1, f = 1 \text{ kHz, BW}$	V = 22 kHz				
THD+N	THD+N Total harmonic distortion + noise	$R_L = 10 \text{ k}\Omega$		0.0003		%	
		R _L = 1 kΩ		0.0003			
Фт	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$		45		0	
ΨΙΙΙ		Unity gain	45				
C _{Load}	Capacitive load drive			100		pF	
e _n	Input voltage noise density	f = 10 kHz		12		nV/√Hz	
e _n p-p	Input noise voltage	0.1 Hz ≤ f ≤ 10 Hz		0.5		μVpp	
	$V_{OUT} = 5 \text{ Vpp, } A_V = +11, R_L = 10 \text{ k}\Omega$						
CR	Cross talk	f = 1 kHz		125		dB	
		f = 10 kHz		100			

^{1.} Current is positive when it is sinked into the op amp.

DS13885 - Rev 1 page 7/26

^{2.} I_{io} is defined as $|I_{ibp} - I_{ibn}|$.

4 Typical performance characteristics

Figure 5. Input offset voltage vs. supply voltage 200 180 Vicm=Vcc/2 160 140 Input Offset Voltage (µV) 120 100 T=-40°C 60 40 20 T=25°C -20 -40 T=125°C -80 -100 10 35 Supply Voltage (V)

Figure 6. Input offset voltage vs. common mode voltage at V_{CC} = 5 V

DS13885 - Rev 1 page 8/26

Figure 9. Input bias current vs. common mode voltage at $V_{CC} = 5 \text{ V}$ The state of the sta

Figure 10. Input bias current vs. common mode voltage at $V_{CC} = 36 \text{ V}$

DS13885 - Rev 1 page 9/26

Figure 15. Channel separation vs. frequency at V_{CC} = 36 V Channel separation refered to input (dB) -80 -90 -100 -110 -120 Vcc=36V Vicm=Vcc/2 -130 Vin=5Vpp Gain=11 -140 T=25°C -150 L 100 1k 10k 100k Frequency (Hz)

Figure 16. Positive slew rate at V_{CC} = 36 V 0.6 0.4 Vin+ T=125°C 0.2 Voltage (V) 0.0 T=25°C -0.2 T=-40°C Vcc=+/-18V -0.4 $RI=10k\Omega$ Vout CI=100pF -0.6 └-0.0 0.2 0.4 0.6 0.8 1.0 Time (µs)

DS13885 - Rev 1 page 10/26

Figure 20. Phase margin vs. output current at V_{CC} = 5 V

45

40

Vcc=5V
Vicm=Vcc/2
R=10kΩ
T=25°C
lout is positive when current is sourced
20
20
DC output current (mA)

Figure 22. Phase margin vs. capacitive load 50 Vicm=Vcc/2 RI=10kΩ 40 T=25°C Phase Margin (°) Vcc=5V 10 0 200 400 600 800 1000 Capacitive load (pF)

DS13885 - Rev 1 page 11/26

DS13885 - Rev 1 page 12/26

DS13885 - Rev 1 page 13/26

5 Ordering information

Table 8. Order codes

Order code	Package	Packaging	Marking
TSB511ILT	SOT23-5		K232
TSB511IYLT (1)	30123-3		K233
TSB512IDT	SO8		TSB512I
TSB512IYDT (1)	506		TSB512IY
TSB512IST	MiniSO8	Tana 9 Daal	K232
TSB512IYST (1)	WIIIISOO	Tape & Reel	K233
TSB514IDT	0044		TSB514I
TSB514IYDT (1)	SO14		TSB514IY
TSB514IPT	T000D44		B514I
TSB514IYPT (1)	TSSOP14		B514IY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

DS13885 - Rev 1 page 14/26

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS13885 - Rev 1 page 15/26

SOT23-5

6.1 SOT23-5 package information

Figure 37. SOT23-5 package outline

Table 9. SOT23-5 mechanical data

Symbol		Milimeters			Inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.45			0.057
A1	0.00		0.15	0.000		0.006
A2	0.90	1.15	1.30	0.035	0.045	0.051
b	0.30		0.50	0.012		0.020
С	0.08		0.22	0.003		0.009
D		2.90			0.114	
E		2.80			0.110	
E1		1.60			0.063	
е		0.95			0.037	
e1		1.90			0.075	
L	0.30	0.45	0.60	0.012	0.018	0.024
θ	0	4	8	0	4	8

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

DS13885 - Rev 1 page 16/26

Figure 38. SOT23-5 recommended footprint

DS13885 - Rev 1 page 17/26

6.2 MiniSO8 package information

D D A1 A2 A SEATING PLANE

C GAUGE PLANE

C GAUGE PLANE

PIN 1 IDENTIFICATION

1 4

Figure 39. MiniSO8 package outline

Table 10. MiniSO8 mechanical data

Dim.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.03	0.033	0.037
b	0.22		0.4	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.8	3	3.2	0.11	0.118	0.126
Е	4.65	4.9	5.15	0.183	0.193	0.203
E1	2.8	3	3.1	0.11	0.118	0.122
е		0.65			0.026	
L	0.4	0.6	0.8	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.01	
k	0°		8°	0°		8°
ccc			0.1			0.004

DS13885 - Rev 1 page 18/26

6.3 SO8 package information

Figure 40. SO8 package outline

Table 11. SO8 mechanical data

Dim	m	m		Inches		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.1		0.25	0.004		0.01
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.01
D	4.8	4.9	5	0.189	0.193	0.197
Е	5.8	6	6.2	0.228	0.236	0.244
E1	3.8	3.9	4	0.15	0.154	0.157
е		1.27			0.05	
h	0.25		0.5	0.01		0.02
L	0.4		1.27	0.016		0.05
L1		1.04			0.04	
k	0		8 °	1 °		8 °
CCC			0.1			0.004

DS13885 - Rev 1 page 19/26

6.4 SO14 package information

Figure 41. SO14 package outline

Table 12. SO14 mechanical data

	Dimensions ⁽¹⁾						
Cumbal	Millimeters			Inches			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.05		0.068	
A1	0.10		0.25	0.004		0.009	
A2	1.10		1.65	0.04		0.06	
В	0.33		0.51	0.01		0.02	
С	0.19		0.25	0.007		0.009	
D (2)	8.55		8.75	0.33		0.34	
Е	3.80		4.0	0.15		0.15	
е		1.27			0.05		
Н	5.80		6.20	0.22		0.24	
L	0.40		1.27	0.015		0.05	
k	0°		8°	0°		8°	
ddd			0.10			0.004	

^{1.} Drawing dimensions include "Single" and "Matrix" versions.

DS13885 - Rev 1 page 20/26

^{2.} Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side.

6.5 TSSOP14 package information

Figure 42. TSSOP14 package outline

Table 13. TSSOP14 mechanical data

	Dimensions						
Symbol	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
k	0°		8°	0°		8°	
aaa			0.10			0.004	

DS13885 - Rev 1 page 21/26

Revision history

Table 14. Document revision history

Date	Revision	Changes
26-Jan-2022	1	Initial release.

DS13885 - Rev 1 page 22/26

Contents

1	Pin (connection	2
2	Max	imum ratings	4
3	Elec	trical characteristics	5
4	Турі	cal performance characteristics	8
5	Orde	ering information	14
6	Pacl	rage information	15
	6.1	SOT23-5 package information	16
	6.2	MiniSO8 package information	
	6.3	SO8 package information	
	6.4	SO14 package information	20
	6.5	TSSOP14 package information	
Rev	ision	history	22

List of tables

Table 1.	TSB511 pin description	2
Table 2.	TSB512 pin description	2
Table 3.	TSB514 pin description	3
Table 4.	Absolute maximum ratings	4
Table 5.	Operating conditions	4
Table 6.	Electrical characteristics at V_{CC+} = 5 V, V_{CC-} = 0 V, V_{ICM} = V_{OUT} = $V_{CC}/2$, T = 25 °C and R _L connected to $V_{CC}/2$	
	(unless otherwise specified)	5
Table 7.	Electrical characteristics at V_{CC+} = 36 V, V_{CC-} = 0 V, V_{ICM} = V_{OUT} = $V_{CC}/2$, T = 25 °C and R _L connected to $V_{CC}/2$	
	(unless otherwise specified)	6
Table 8.	Order codes	14
Table 9.	SOT23-5 mechanical data	16
Table 10.	MiniSO8 mechanical data	18
Table 11.	SO8 mechanical data	19
Table 12.	SO14 mechanical data	20
Table 13.	TSSOP14 mechanical data	21
Table 14.	Document revision history	22

DS13885 - Rev 1 page 24/26

List of figures

Figure 1.	TSB511 pin connections (top view)	
Figure 2.	TSB512 pin connections (top view)	
Figure 3.	TSB514 pin connections (top view)	
Figure 4.	Supply current vs. supply voltage	
Figure 5.	Input offset voltage vs. supply voltage	
Figure 6.	Input offset voltage vs. common mode voltage at V _{CC} = 5 V	
Figure 7.	Input offset voltage vs. common mode voltage at V _{CC} = 36 V	
Figure 8.	Input bias current vs. temperature at V _{ICM} = V _{CC} /2	
Figure 9.	Input bias current vs. common mode voltage at V _{CC} = 5 V	9
Figure 10.	Input bias current vs. common mode voltage at V _{CC} = 36 V	9
Figure 11.	Output current vs. output voltage at V _{CC} = 5 V	9
Figure 12.	Output current vs. output voltage at V _{CC} = 36 V	9
Figure 13.	Output voltage (V _{OH}) vs. supply voltage	9
Figure 14.	Output voltage (V _{OL}) vs. supply voltage	10
Figure 15.	Channel separation vs. frequency at V _{CC} = 36 V	10
Figure 16.	Positive slew rate at V _{CC} = 36 V	10
Figure 17.	Negative slew rate at V _{CC} = 36 V	10
Figure 18.	Bode diagram at V _{CC} = 5 V	
Figure 19.	Bode diagram at V _{CC} = 36 V	
Figure 20.	Phase margin vs. output current at V _{CC} = 5 V	
Figure 21.	Phase margin vs. output current at V _{CC} = 36 V	
Figure 22.	Phase margin vs. capacitive load	
Figure 23.	Overshoot vs. capacitive load at V _{CC} = 36 V	
Figure 24.	Small step response at V _{CC} = 5 V	
Figure 25.	Desaturation time at low rail at V _{CC} = 5 V	
Figure 26.	Desaturation time at high rail at V _{CC} = 5 V	
Figure 27.	Small step response at V_{CC} = 36 V_{CC} =	
Figure 28.	Amplifier behavior close to low rail at V _{CC} = 36 V	
Figure 29.	Amplifier behavior close to high rail at V _{CC} = 36 V	
Figure 30.	Noise vs. frequency at V_{CC} = 5 V	
Figure 31.	Noise vs. frequency at V_{CC} = 36 V	
Figure 32.	Noise vs. time at V_{CC} = 36 V	
Figure 33.	THD+N vs. frequency	
Figure 34.	THD+N vs. frequency	
Figure 35.	PSRR vs. frequency at V _{CC} = 10 V	
Figure 36.	CMRR vs. frequency at V _{CC} = 10 V	
Figure 37.	SOT23-5 package outline	
Figure 38.	SOT23-5 recommended footprint	
Figure 39.	MiniSO8 package outline	
Figure 40.	SO8 package outline	
Figure 41.	SO14 package outline	
Figure 42.	TSSOP14 package outline	21

DS13885 - Rev 1 page 25/26

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved

DS13885 - Rev 1 page 26/26

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: TSB511ILT TSB511IYLT