Espacio de estados - solución homógena y estabilidad

Kjartan Halvorsen

2021-05-27

Modelo compartimental

$$V_1 rac{dc_1}{dt} = Q(c_2 - c_1) - Q_o c_1 + Q_i c_i, \qquad c_1 \ge 0$$
 $V_2 rac{dc_2}{dt} = Q(c_1 - c_2), \qquad c_2 \ge 0,$

$$\dot{x} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B \\ & \end{bmatrix} u$$

$$y = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Modelo compartimental

$$egin{align} V_1 rac{dc_1}{dt} &= Q(c_2 - c_1) - Q_o c_1 + Q_i c_i, & c_1 \geq 0 \ V_2 rac{dc_2}{dt} &= Q(c_1 - c_2), & c_2 \geq 0, \ \end{array}$$

$$\dot{x} = \underbrace{\begin{bmatrix} -\frac{Q+Q_o}{V_1} & \frac{Q}{V_1} \\ \frac{Q}{V_2} & -\frac{Q}{V_2} \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{\begin{bmatrix} \frac{1}{V_1} \\ 0 \end{bmatrix}}_{B} u$$

$$y = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{C} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Solución homógena de sistemas en espacio de estados

$$\dot{x} = Ax$$

Solución homógena de sistemas en espacio de estados

$$\dot{x} = Ax$$

Exponencial de una matriz

Hay una función $\mathbb{R} \to \mathbb{R}^{n \times n}$

$$\Phi(t) = e^{At} = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

que tiene la propiedad

$$\dot{\Phi} = A\Phi, \quad \Phi(0) = I.$$

La solución homógena del sistema en espacio de estados es

$$x(t) = \Phi(t)x(0)$$

Solución homógena de sistemas en espacio de estados

$$\dot{x} = Ax$$

Exponencial de una matriz

Hay una función $\mathbb{R} \to \mathbb{R}^{n \times n}$

$$\Phi(t) = e^{At} = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

que tiene la propiedad

$$\dot{\Phi} = A\Phi, \quad \Phi(0) = I.$$

La solución homógena del sistema en espacio de estados es

$$x(t) = \Phi(t)x(0)$$

Eigenvalores y eigenvectores

Si el valor inicial x(0) = v es un eigenvector de la matriz A

$$Av = \lambda v$$

$$x(t) = \Phi(t)v = e^{At}v$$

$$= (I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots)v$$

$$= Iv + tAv + \frac{t^2}{2!}A^2v + \frac{t^3}{3!}A^3v + \cdots$$

$$= v + t\lambda v + \frac{(t\lambda)^2}{2!}v + \frac{(t\lambda)^3}{3!}v + \cdots$$

$$= e^{\lambda t}v$$

Estabilidad

La estabilidad es una propiedad clave del sistema. No depende de la señal de entrada.

La solución homógena se puede escribir

$$x(t) = e^{\lambda_1 t} \alpha_1 v_1 + e^{\lambda_2 t} \alpha_2 v_2 + \dots + e^{\lambda_n t} \alpha_n v_n.$$

Estabilidad

La estabilidad es una propiedad clave del sistema. No depende de la señal de entrada.

La solución homógena se puede escribir

$$x(t) = e^{\lambda_1 t} \alpha_1 v_1 + e^{\lambda_2 t} \alpha_2 v_2 + \dots + e^{\lambda_n t} \alpha_n v_n.$$

Estabilidad requiere que cada una de las funciones exponenciales va hacia cero

Estabilidad

La estabilidad es una propiedad clave del sistema. No depende de la señal de entrada.

La solución homógena se puede escribir

$$x(t) = e^{\lambda_1 t} \alpha_1 v_1 + e^{\lambda_2 t} \alpha_2 v_2 + \dots + e^{\lambda_n t} \alpha_n v_n.$$

Estabilidad requiere que cada una de las funciones exponenciales va hacia cero

Todos los eigenvalores de la matriz A tienen que tener parte real negativa.

$$\operatorname{Re}\{\lambda_i\}<0, \ \forall i=1,2,3\ldots,n$$

Los eigenvalores de A son los polos del sistema.

