

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Tetraaquabis(3,5-dinitrobenzoato- κO^1)-magnesium tetrahydrate

Graham Smith

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 11 March 2013; accepted 11 March 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.036; wR factor = 0.095; data-to-parameter ratio = 13.5.

In the structure of the title compound, $[Mg(C_7H_3N_2O_6)_2-(H_2O)_4]\cdot 4H_2O$, the slightly distorted octahedral MgO_6 coordination polyhedron comprises two *trans*-related carboxylate O-atom donors from mononodentate 3,5-dinitrobenzoate ligands, and four water molecules. The coordinating water molecules and the four water molecules of solvation give both intra- and inter-unit $O-H\cdots O$ hydrogen-bonding interactions with carboxylate, water and nitro O-atom acceptors, forming a three-dimensional structure.

Related literature

For the structures of some magnesium complexes with nitrosubstituted benzoic acids, see: Morgant *et al.* (2006); Srinivasan *et al.* (2007, 2011); Arlin *et al.* (2011).

Experimental

Crystal data

[Mg(C₇H₃N₂O₆)₂(H₂O)₄]·4H₂O $\gamma = 92.181 \text{ (4)}^{\circ}$ $M_r = 590.67$ $V = 1212.62 \text{ (10)} \text{ Å}^3$ Triclinic, $P\overline{1}$ Z = 2 a = 7.1748 (3) Å Mo $K\alpha$ radiation b = 11.7299 (6) Å $\mu = 0.18 \text{ mm}^{-1}$ c = 15.0103 (7) Å T = 200 K $\alpha = 103.224 \text{ (4)}^{\circ}$ 0.32 × 0.22 × 0.10 mm $\beta = 98.569 \text{ (4)}^{\circ}$

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $T_{\min} = 0.970, T_{\max} = 0.980$ 15059 measured reflections 4764 independent reflections 3969 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 352 parameters $wR(F^2) = 0.095$ H-atom parameters constrained S = 0.94 $\Delta \rho_{\rm max} = 0.29 {\rm e \ \AA}^{-3}$ 4764 reflections $\Delta \rho_{\rm min} = -0.20 {\rm e \ \AA}^{-3}$

Table 1 Selected bond lengths (Å).

Mg1-O1W	2.0929 (14)	Mg1-O4W	2.0804 (13)
Mg1-O2W	2.0732 (13)	Mg1-O11A	2.0304 (13)
Mg1-O3W	2.1024 (14)	Mg1-O11B	2.0237 (13)

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1 <i>W</i> —H11 <i>W</i> ···O8 <i>W</i>	0.91	1.79	2.700 (2)	179
$O1W-H12W\cdots O6W^{i}$	0.88	1.93	2.7934 (19)	170
$O2W-H21W\cdots O12A$	0.76	2.11	2.8001 (18)	152
$O2W-H22W\cdots O6W$	0.87	1.87	2.7375 (18)	178
O3 <i>W</i> −H31 <i>W</i> ···O7 <i>W</i>	0.80	2.02	2.8213 (19)	170
O3 <i>W</i> −H32 <i>W</i> ···O5 <i>W</i> ⁱⁱ	0.90	1.89	2.7722 (18)	170
$O4W-H41W\cdots O12B$	0.80	2.00	2.7310 (18)	151
$O4W-H42W\cdots O5W^{iii}$	0.83	1.97	2.7986 (18)	174
$O5W-H51W\cdots O7W^{iii}$	0.86	2.11	2.9449 (19)	164
$O5W-H52W\cdots O1W$	0.86	2.17	2.9702 (19)	155
$O6W-H61W\cdots O12A^{i}$	0.86	2.00	2.8404 (19)	163
O6W−H62W···O3W ^{iv}	0.86	2.14	2.9522 (19)	159
$O7W-H71W\cdots O12B^{v}$	0.89	1.87	2.708 (2)	158
$O7W-H72W\cdots O32B^{vi}$	0.86	2.50	3.236 (2)	145
$O8W-H81W\cdots O12A^{i}$	0.90	1.99	2.7737 (19)	145

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y, -z+1; (vi) x, y, z+1.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 2012); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The author acknowledges financial support from the Australian Research Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5305).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318–1327.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Morgant, G., Bouhmaida, N., Balde, L., Ghemani, N. E. & d'Angelo, J. (2006). *Polyhedron*, **25**, 2229–2235.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Srinivasan, B. R., Sawant, J. V., Näther, C. & Bensch, W. (2007). *J. Chem. Sci.* (*Bangalore, India*), **119**, 243–252.

Srinivasan, B. R., Shetgaonker, S. Y. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 130–136.

Acta Cryst. (2013). E69, m215 [doi:10.1107/S160053681300682X]

Tetraaquabis (3,5-dinitrobenzoato- κO^1) magnesium tetrahydrate

Graham Smith

Comment

Magnesium complexes involving monoanionic nitro-substituted benzoate ligands (L) show both the common $[Mg(H_2O)_6]^{2+} 2(L)$ form, e.g. a dihydrate: L = 4-nitrobenzoate (Srinivasan et~al., 2007; Arlin et~al., 2011), as well as examples in which the ligand is coordinated, e.g. $[MgL(H_2O)_5]$ (L). HL. H_2O (a complex acid adduct: L = 4-nitro-3-hydroxybenzoate) (Morgant et~al., 2006) and $[MgL_2(H_2O)_4]$: (L = 2-nitrobenzoate) (Srinivasan et~al., 2011; Arlin et~al., 2011). All known examples are monomeric and have essentially octahedral metal stereochemistry.

The title complex, [Mg(C₇H₃N₂O₆)₂(H₂O)₄]. 4H₂O was obtained from the reaction of 3,5-dinitrobenzoic acid acid with MgCO₃ in aqueous ethanol and the structure is reported here. In this structure (Fig. 1), the slightly distorted octahedral MgO₆ coordination polyhedron comprises two *trans*-related carboxyl O-atom donors from mononodentate 3,5-dinitrobenzoate ligands, and four water molecules [bond range Mg—O, 2.0237 (13)–2.1024 (14) Å (Table 1)]. The coordinated water molecules and the four water molecules of solvation give both intra- and inter-unit O—H···O hydrogen-bonding interactions with carboxyl, water and nitro O-atom acceptors (Table 2), giving a three-dimensional structure (Fig. 2).

In the present complex, the two 3,5-dinitrobenzoate ligands are conformationally similar, with the carboxyl groups lying essentially in the plane of the benzene ring [torsion angles C2—C1—C11—O11 = 178.01 (14)° (A) and 178.90 (14)° (B)]. The C5 nitro groups are variously rotated out of the benzene plane [torsion angles C2—C3—N3—O32 = 154.31 (17)° (A) and 159.03 (15)° (B): C4—C5—N5—O52 = 167.74 (15)° (A) and 163.06 (15)° (B)].

Experimental

The title compound was synthesized by the addition of excess MgCO₃ to 15 ml of a hot aqueous ethanolic solution (10:1) of 3,5-dinitrobenzoic acid (0.1 g). After completion of the reaction, the excess MgCO₃ was removed by filtration and the solution was allowed to evaporate to partial dryness at room temperature, giving colourless plates of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms on all water molecules were located by difference methods and both positional and isotropic displacement parameters were initially refined but these were then allowed to ride, with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$. Other Hatoms were included in the refinement at calculated positions [C—H = 0.93 Å] with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ also using a riding-model approximation.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 2012); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1Molecular configuration and atom naming scheme for the title complex, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2A perspective view of the title complex showing hydrogen-bonding interactions as dashed lines and with non-associative H-atoms omitted. For symmetry code (i), see Table 2.

Tetraaquabis(3,5-dinitrobenzoato-κO¹)magnesium tetrahydrate

 $Crystal\ data$ [Mg(C₇H₃N₂O₆)₂(H₂O)₄]·4H₂O
 Hall symbol: -P 1

 $M_r = 590.67$ a = 7.1748 (3) Å

 Triclinic, P1 b = 11.7299 (6) Å

c = 15.0103 (7) Å
$\alpha = 103.224 (4)^{\circ}$
$\beta = 98.569 (4)^{\circ}$
$\gamma = 92.181 (4)^{\circ}$
$V = 1212.62 (10) \text{ Å}^3$
Z=2
F(000) = 612
$D_{\rm x} = 1.618 \; {\rm Mg \; m^{-3}}$

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer

Radiation source: Enhance(Mo) X-ray source

Graphite monochromator

Detector resolution: 16.077 pixels mm⁻¹

 ω scans

Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{min} = 0.970$, $T_{max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.095$ S = 0.944764 reflections 352 parameters

0 restraints
Primary atom site location: structure-invariant

direct methods

Mo $K\alpha$ radiation, $\lambda=0.71073$ Å Cell parameters from 4480 reflections $\theta=3.3-28.8^{\circ}$ $\mu=0.18~\rm mm^{-1}$ $T=200~\rm K$ Plate, colourless $0.32\times0.22\times0.10~\rm mm$

15059 measured reflections 4764 independent reflections 3969 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 26.0^{\circ}, \theta_{\text{min}} = 3.3^{\circ}$ $h = -8 \rightarrow 8$ $k = -14 \rightarrow 14$ $l = -18 \rightarrow 18$

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0457P)^2 + 0.5437P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$

 $\Delta \rho_{\rm max} = 0.29 {\rm e \ \AA^{-3}}$

 $\Delta \rho_{\min} = -0.20 \text{ e Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Mg1	0.72688 (8)	0.24686 (5)	0.49442 (4)	0.0206(2)
O1W	0.45776 (18)	0.27809 (11)	0.43347 (9)	0.0315 (4)
O2W	0.80173 (18)	0.42361 (10)	0.55275 (8)	0.0287 (4)
O3W	0.99516 (17)	0.20820 (11)	0.55261 (9)	0.0289 (4)
O4W	0.65142 (18)	0.06937 (10)	0.43663 (8)	0.0283 (4)
O11A	0.62746 (18)	0.23370 (10)	0.61171 (8)	0.0255 (4)
O11B	0.83217 (18)	0.26394 (10)	0.37996 (8)	0.0278 (4)
O12A	0.5701(2)	0.41362 (10)	0.68573 (9)	0.0318 (4)
O12B	0.8071 (2)	0.08551 (11)	0.28425 (9)	0.0325 (4)
O31A	0.31477 (19)	0.44416 (11)	0.97944 (9)	0.0340 (4)

O31B	0.8787 (2)	0.06471 (11)	-0.04095 (9)	0.0351 (4)
O32A	0.4359 (3)	0.33267 (14)	1.06560 (10)	0.0526 (6)
O32B	1.0519 (2)	0.20264 (14)	-0.06886 (10)	0.0476 (5)
O51A	0.5101(2)	-0.07040 (12)	0.88966 (10)	0.0432 (5)
O51B	1.0734 (2)	0.59134 (12)	0.13968 (10)	0.0420 (5)
O52A	0.6406 (2)	-0.08279 (12)	0.76731 (10)	0.0429 (5)
O52B	0.9300(2)	0.60972 (12)	0.25868 (10)	0.0447 (5)
N3A	0.3977 (2)	0.35844 (14)	0.99081 (10)	0.0303 (5)
N3B	0.9615 (2)	0.16217 (13)	-0.01841 (10)	0.0273 (5)
N5A	0.5629 (2)	-0.02866 (13)	0.82933 (11)	0.0300 (5)
N5B	0.9901 (2)	0.55022 (13)	0.19201 (11)	0.0288 (5)
C1A	0.5416 (2)	0.25645 (14)	0.75959 (11)	0.0191 (5)
C1B	0.8897 (2)	0.25074 (15)	0.22763 (11)	0.0221 (5)
C2A	0.4858 (2)	0.32878 (14)	0.83639 (11)	0.0215 (5)
C2B	0.9050(2)	0.18121 (15)	0.14109 (11)	0.0229 (5)
C3A	0.4564 (2)	0.28082 (15)	0.90967 (11)	0.0235 (5)
СЗВ	0.9496 (2)	0.23575 (15)	0.07369 (11)	0.0227 (5)
C4A	0.4796 (2)	0.16471 (15)	0.91068 (12)	0.0255 (5)
C4B	0.9805 (2)	0.35601 (15)	0.08781 (12)	0.0245 (5)
C5A	0.5332 (2)	0.09582 (14)	0.83218 (12)	0.0226 (5)
C5B	0.9603 (2)	0.42181 (15)	0.17419 (12)	0.0228 (5)
C6A	0.5640 (2)	0.13877 (14)	0.75691 (11)	0.0211 (5)
C6B	0.9152 (2)	0.37241 (15)	0.24432 (11)	0.0227 (5)
C11A	0.5832 (2)	0.30567 (14)	0.67950 (11)	0.0211 (5)
C11B	0.8402 (2)	0.19519 (15)	0.30354 (12)	0.0234 (5)
O5W	0.21801 (18)	0.07011 (11)	0.44221 (9)	0.0295 (4)
O6W	0.75569 (18)	0.58555 (11)	0.44724 (9)	0.0298 (4)
O7W	1.0086 (2)	0.11013 (12)	0.70823 (9)	0.0233 (1)
O8W	0.4051 (3)	0.34282 (12)	0.27062 (10)	0.0526 (6)
H2A	0.46860	0.40750	0.83860	0.0260*
H2B	0.88570	0.09990	0.12880	0.0270*
H4A	0.46040	0.13470	0.96110	0.0310*
H4B	1.01310	0.39060	0.04180	0.0290*
H6A	0.59920	0.08960	0.70520	0.0250*
H6B	0.90230	0.41970	0.30160	0.0270*
H11W	0.43930	0.30080	0.37910	0.0270
H12W	0.37960	0.31880	0.46530	0.0470*
H21W	0.73890	0.44440	0.58890	0.0470
H22W	0.79040	0.47460	0.51890	0.0430*
H31W	1.01100	0.18470	0.59930	0.0430*
H32W	1.05640	0.16380	0.51110	0.0430*
H41W	0.69830	0.04970	0.39120	0.0430*
H42W	0.68820	0.02370	0.46960	0.0420*
H51W	0.16520	0.02280	0.39150	0.0420*
H52W	0.30810	0.11320	0.43140	0.0440*
H61W	0.66770	0.57420	0.39940	0.0450* 0.0450*
H62W	0.84670	0.63140	0.44130	
H71W	1.07840	0.05610	0.72630	0.0620*
H72W	1.00000	0.16100	0.75820	0.0620*

0.8600

0.8600

H81W H82W	0.42210 0.40670	0.414 0.286		0.26020 0.22020	0.0790* 0.0790*	
Atomic di	splacement parame	eters (Ų)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg1	0.0281 (3)	0.0207(3)	0.0153 (3)	0.0025 (2)	0.0077(2)	0.0060(2)
O1W	0.0356 (7)	0.0391 (8)	0.0244 (7)	0.0139 (6)	0.0088 (5)	0.0129 (6)
O2W	0.0430 (8)	0.0220(6)	0.0251 (7)	0.0031 (5)	0.0129 (6)	0.0089 (5)
O3W	0.0328 (7)	0.0321 (7)	0.0250 (7)	0.0092 (5)	0.0088 (5)	0.0097 (6)
O4W	0.0399 (7)	0.0237 (6)	0.0228 (6)	0.0013 (5)	0.0099 (5)	0.0059 (5)
D11A	0.0404 (7)	0.0216 (6)	0.0179 (6)	0.0038 (5)	0.0136 (5)	0.0056 (5)
D11B	0.0415 (7)	0.0256 (6)	0.0190(6)	0.0001 (5)	0.0136 (5)	0.0055 (5)
D12A	0.0574 (9)	0.0193 (6)	0.0236 (7)	0.0065 (6)	0.0152 (6)	0.0088 (5)
D12B	0.0526 (8)	0.0236 (7)	0.0247 (7)	0.0023 (6)	0.0136 (6)	0.0078 (5)
O31A	0.0372 (7)	0.0306(7)	0.0344 (8)	0.0046 (6)	0.0177 (6)	0.0003 (6)
D31B	0.0460(8)	0.0303(7)	0.0251 (7)	0.0022 (6)	0.0021 (6)	0.0010 (6)
D32A	0.0864 (12)	0.0571 (10)	0.0185 (7)	0.0109 (9)	0.0189 (7)	0.0099 (7)
D32B	0.0645 (10)	0.0541 (10)	0.0262 (8)	-0.0070(8)	0.0260(7)	0.0035 (7)
D51A	0.0639 (10)	0.0333 (8)	0.0357 (8)	-0.0119(7)	0.0008(7)	0.0221 (7)
051B	0.0491 (9)	0.0371 (8)	0.0434 (9)	-0.0119 (7)	0.0087 (7)	0.0187 (7)
)52A	0.0676 (10)	0.0223 (7)	0.0389 (8)	0.0090(7)	0.0113 (7)	0.0047 (6)
D52B	0.0724 (11)	0.0252 (7)	0.0356 (8)	0.0060(7)	0.0147 (7)	0.0014 (6)
N3A	0.0367 (9)	0.0340 (9)	0.0208 (8)	-0.0016(7)	0.0129 (7)	0.0034 (7)
N3B	0.0321 (8)	0.0322 (9)	0.0179 (7)	0.0062 (7)	0.0059 (6)	0.0048 (7)
N5A	0.0414 (9)	0.0209 (8)	0.0271 (8)	-0.0037(7)	-0.0023(7)	0.0104 (7)
N5B	0.0337 (8)	0.0254 (8)	0.0264 (8)	-0.0017(6)	-0.0012(7)	0.0090(7)
C1A	0.0215 (8)	0.0205 (8)	0.0159 (8)	0.0001 (6)	0.0035 (6)	0.0054 (7)
C1B	0.0234 (8)	0.0258 (9)	0.0193 (8)	0.0033 (7)	0.0076 (7)	0.0067 (7)
C2A	0.0260 (9)	0.0204 (8)	0.0188 (8)	0.0029 (7)	0.0053 (7)	0.0051 (7)
C2B	0.0267 (9)	0.0227 (9)	0.0203 (9)	0.0021 (7)	0.0073 (7)	0.0048 (7)
C3A	0.0269 (9)	0.0278 (9)	0.0160 (8)	0.0013 (7)	0.0077 (7)	0.0033 (7)
C3B	0.0242 (9)	0.0284 (9)	0.0160(8)	0.0041 (7)	0.0064 (7)	0.0042 (7)
C4A	0.0298 (9)	0.0313 (10)	0.0178 (8)	-0.0032 (7)	0.0047 (7)	0.0114 (7)
C4B	0.0254 (9)	0.0307 (9)	0.0204 (9)	0.0003 (7)	0.0069(7)	0.0102 (8)
C5A	0.0278 (9)	0.0187 (8)	0.0214 (9)	-0.0011 (7)	0.0017 (7)	0.0067 (7)
C5B	0.0237 (8)	0.0226 (9)	0.0225 (9)	0.0005 (7)	0.0031 (7)	0.0071 (7)
C6A	0.0242 (8)	0.0216 (8)	0.0173 (8)	0.0006(7)	0.0051 (7)	0.0034 (7)
C6B	0.0247 (9)	0.0265 (9)	0.0167 (8)	0.0024 (7)	0.0055 (7)	0.0034 (7)
C11A	0.0265 (9)	0.0220 (9)	0.0160(8)	0.0018 (7)	0.0054 (7)	0.0057 (7)
C11B	0.0266 (9)	0.0254 (9)	0.0198 (9)	0.0039 (7)	0.0072 (7)	0.0061 (7)
D5W	0.0327 (7)	0.0281 (7)	0.0284 (7)	-0.0004(5)	0.0101 (5)	0.0053 (6)
06W	0.0316 (7)	0.0293 (7)	0.0319 (7)	0.0014 (5)	0.0073 (6)	0.0130 (6)
D7W	0.0530 (9)	0.0423 (8)	0.0308 (8)	0.0173 (7)	0.0087 (7)	0.0097 (7)
W8C	0.1022 (14)	0.0273 (8)	0.0264 (8)	0.0089(8)	0.0032 (8)	0.0064 (6)

Acta Cryst. (2013). E69, m215 sup-5

O6W—H62W

O7W—H72W

2.0929 (14)

2.0732 (13)

Mg1—O1W

Mg1—O2W

Mg1—O3W	2.1024 (14)	O7W—H71W	0.8900
Mg1—O4W	2.0804 (13)	O8W—H81W	0.9000
Mg1—O11A	2.0304 (13)	O8W—H82W	0.8900
Mg1—O11B	2.0237 (13)	N3A—C3A	1.471 (2)
O11A—C11A	1.254(2)	N3B—C3B	1.469 (2)
O11B—C11B	1.253 (2)	N5A—C5A	1.476 (2)
O12A—C11A	1.256 (2)	N5B—C5B	1.470(2)
O12B—C11B	1.258 (2)	C1A—C2A	1.387 (2)
O31A—N3A	1.220 (2)	C1A—C6A	1.388 (2)
O31B—N3B	1.219 (2)	C1A—C11A	1.510(2)
O32A—N3A	1.223 (2)	C1B—C6B	1.391 (3)
O32B—N3B	1.228 (2)	C1B—C11B	1.514(2)
O51A—N5A	1.222 (2)	C1B—C2B	1.389 (2)
O51B—N5B	1.224 (2)	C2A—C3A	1.384 (2)
O52A—N5A	1.221 (2)	C2B—C3B	1.383 (2)
O52B—N5B	1.227 (2)	C3A—C4A	1.382 (3)
O1W—H11W	0.9100	C3B—C4B	1.382 (3)
O1W—H12W	0.8800	C4A—C5A	1.383 (2)
O2W—H21W	0.7600	C4B—C5B	1.380 (2)
O2W—H22W	0.8700	C5A—C6A	1.380 (2)
O3W—H32W	0.9000	C5B—C6B	1.384 (2)
O3W—H31W	0.8000	C2A—H2A	0.9300
O4W—H41W	0.8000	C2B—H2B	0.9300
O4W—H42W	0.8300	C4A—H4A	0.9300
O5W—H51W	0.8600	C4B—H4B	0.9300
O5W—H52W	0.8600	C6A—H6A	0.9300
O6W—H61W	0.8600	C6B—H6B	0.9300
Oow Horw	0.0000	COD TIOD	0.5500
Mg1···H52W	3.2400	O12B···H2B	2.5200
Mg1···H62W ⁱ	3.2400	O12B···H41W	2.0000
O1W···O2W	3.0289 (18)	O12B···H71W ^{vi}	1.8700
O1W···O4W	2.8669 (18)	O31A···H4B ^x	2.5900
O1W···O5W	2.9702 (19)	O31A···H2A	2.4900
O1W···O8W	2.700 (2)	O31B···H2B	2.4800
O1W···O11A	2.9371 (18)	O31B···H2B ^{xi}	2.8400
O1W···O11B	2.9163 (18)	O32A···H81W ^{vii}	2.8800
O1W···O6W ⁱⁱ	2.7934 (19)	O32A···H4A	2.5200
O2W···O12A	2.8001 (18)	O32A···H82W ^{vii}	2.5400
O2W···O1W	3.0289 (18)	O32B···H4B	2.4900
O2W···O3W	2.9285 (18)	O32B···H72W ^{viii}	2.5000
O2W···O6W	2.7375 (18)	O51A···H82W ^{iv}	2.8300
O2W···O11A	2.8859 (17)	O51A···H4A ^{xiv}	2.5100
O2W···O11B	2.8740 (17)	O51A···H2B ^{iv}	2.8100
O2W···C11A	3.150 (2)	O51A···H4A	2.4600
O2W···O6Wi	3.1813 (19)	O51B···H4B	2.4600
O3W···O11A	2.9108 (18)	O51B···H4B ^{xii}	2.7600
O3WO6Wi	2.9522 (19)	O52A···H82Wiv	2.4500
O3W···O2W	2.9285 (18)	O52A···H6A	2.4200
O3WO4W	2.9804 (18)	O52B···H62W	2.8500
OJ II OT II	2.7007 (10)	032D 1102 W	2.0300

Acta Cryst. (2013). E**69**, m215

O3W···O5W ⁱⁱⁱ	2.7722 (18)	O52B···H6B	2.4700
O3WO7W	2.8213 (19)	O52B···H31W ⁱ	2.8000
O3W···O52Bi	3.093 (2)	O52B···H72W ⁱ	2.7900
O3WO11B	2.9054 (18)	N3A···O31A ^{ix}	2.951(2)
O4W…O12B	2.7310 (18)	N3A···O32B ^x	2.923 (2)
O4WO5W	3.1235 (19)	N3B···O31B ^{xi}	3.194(2)
O4W…C11B	3.163 (2)	N5A···O12Biv	2.897(2)
O4W···O1W	2.8669 (18)	N5A···O31B ^{vii}	2.765 (2)
O4W···O3W	2.9804 (18)	N5B···O31A ⁱⁱ	3.134(2)
$O4W···O5W^{iv}$	2.7986 (18)	C1A···O51B ⁱ	3.201(2)
O4WO11A	2.9144 (17)	C2A···O52B ⁱⁱ	3.290(2)
O4WO11B	2.9336 (17)	C2A···O51Bi	3.208(2)
O5W···O1W	2.9702 (19)	C2B···O51A ^{iv}	3.130(2)
O5W···O4W	3.1235 (19)	C3A···O32B ^x	3.095(2)
$O5W\cdots O7W^{iv}$	2.9449 (19)	C4A···O32B ^x	3.167(2)
$O5W\cdots O4W^{iv}$	2.7986 (18)	C4A···O51Axiv	3.416(2)
$O5W\cdots O3W^{v}$	2.7722 (18)	C4A···O31B ^{vii}	3.183 (2)
O6W···O12A ⁱⁱ	2.8404 (19)	C4B···O32A ^{xiii}	3.349 (3)
$O6W \cdots O2W^{i}$	3.1813 (19)	C4B···O31A ^{xiii}	3.348 (2)
$O6W\cdots O3W^{i}$	2.9522 (19)	C5A···O12Biv	3.189 (2)
O6W···O2W	2.7375 (18)	C5A···O31B ^{vii}	2.981 (2)
O6W···C11A ⁱⁱ	3.336 (2)	C6A···O7W	3.389 (2)
O6W···O1W ⁱⁱ	2.7934 (19)	C11A···O6W ⁱⁱ	3.336 (2)
$O7W \cdots O52B^{i}$	3.212 (2)	C11A···O51Bi	3.343 (2)
O7W···C6A	3.389 (2)	C6A···H41Wiv	3.0900
$O7W \cdots O5W^{iv}$	2.9449 (19)	C11A···H61W ⁱⁱ	2.6400
O7W···O3W	2.8213 (19)	C11A···H21W	2.6600
O7W···O12B ^{vi}	2.708 (2)	C11B···H41W	2.6400
O7W···O32B ^{vii}	3.236 (2)	C11B···H71W ^{vi}	2.9700
O8W···O12A ⁱⁱ	2.7737 (19)	H2A···O31A	2.4900
O8W···O52Aiv	2.968 (2)	H2A···O12A	2.5200
O8W···O32Aviii	3.094(2)	H2B···O51A ^{iv}	2.8100
O8W···O1W	2.700 (2)	H2B···O12B	2.5200
O11A…O1W	2.9371 (18)	H2B···O31B	2.4800
O11AO3W	2.9108 (18)	H2B···O31B ^{xi}	2.8400
O11A…O4W	2.9144 (17)	H4A···O51Axiv	2.5100
O11A···O2W	2.8859 (17)	H4A···O32A	2.5200
O11BO3W	2.9054 (18)	H4A···O51A	2.4600
O11BO2W	2.8740 (17)	H4B···O31Axiii	2.5900
O11BO4W	2.9336 (17)	H4B···O51B ^{xii}	2.7600
O11BO1W	2.9163 (18)	H4B···O32B	2.4900
O12A···O6W ⁱⁱ	2.8404 (19)	H4B···O51B	2.4600
O12A···O2W	2.8001 (18)	H6A···O52A	2.4200
O12A···O8W ⁱⁱ	2.7737 (19)	H6A···H51W ^{iv}	2.5900
O12B···N5Aiv	2.897 (2)	H6A···O11A	2.4500
O12B···O51A ^{iv}	3.164 (2)	H6A···O4W ^{iv}	2.8300
O12B···C5A ^{iv}	3.189 (2)	H6B···O52B	2.4700
O12B···O7W ^{vi}	2.708 (2)	H6B···O11B	2.4600
O12B···O52Aiv	3.187 (2)	H11WO8W	1.7900
	()		

Acta Cryst. (2013). E**69**, m215

O12B···O4W	2.7310 (18)	H11W···H82W	2.3300
O31A···N3A ^{ix}	2.951 (2)	H11W…H81W	2.4500
O31AO32B ^x	3.218 (2)	H12W···H52W	2.3700
O31A···C4B ^x	3.348 (2)	H12W···H62W ⁱⁱ	2.3100
O31A···O31A ^{ix}	2.8352 (19)	H12W···O6W ⁱⁱ	1.9300
O31A···N5B ⁱⁱ	3.134 (2)	H12W···H61W ⁱⁱ	2.2100
O31A···O51B ⁱⁱ	3.036 (2)	H21W···O12A	2.1100
$O31B\cdots O31B^{xi}$	2.6950 (19)	H21W···C11A	2.6600
O31B···C5A ^{viii}	2.981 (2)	H22W···H61W	2.4300
O31B···O51Aviii	2.949 (2)	H22W···H62W	2.4400
O31B···N5A ^{viii}	2.765 (2)	H22W···O6W	1.8700
O31B···O52A ^{viii}	3.198 (2)	H31W···O52Bi	2.8000
O31B···N3B ^{xi}	3.194 (2)	H31W···H72W	2.4800
O31B···C4A ^{viii}	3.183 (2)	H31WO7W	2.0200
O32A···C4B ^x	3.349 (3)	H31W···H62W ⁱ	2.5900
O32A···O8W ^{vii}	3.094 (2)	H32W···H52W ⁱⁱⁱ	2.3300
O32B···O51B ^{xii}	2.972 (2)	H32W···H51W ⁱⁱⁱ	2.3900
O32B···N3A ^{xiii}	2.923 (2)	H32W···H62W ⁱ	2.3900
O32B···O7W ^{viii}	3.236 (2)	H32W···O5W ⁱⁱⁱ	1.8900
O32B···O31A ^{xiii}	3.218 (2)	H41W···O12B	2.0000
O32B···C4Axiii	3.167 (2)	H41W···C11B	2.6400
O32B···C3Axiii	3.095 (2)	H41W···C6A ^{iv}	3.0900
O51AO12Biv	3.164 (2)	H42W···H52W ^{iv}	2.4200
O51A···C2Biv	3.130 (2)	H42W···O5Wiv	1.9700
O51A···C4Axiv	3.416 (2)	H42W···H51Wiv	2.3800
O51A···O31B ^{vii}	2.949 (2)	H51W···H42Wiv	2.3800
O51B···O31A ⁱⁱ	3.036 (2)	H51W···O7Wiv	2.1100
O51B···O32B ^{xii}	2.972 (2)	H51W···H71Wiv	2.2900
O51B···C11Ai	3.343 (2)	H51W···H6Aiv	2.5900
O51B···C2Ai	3.208 (2)	H51W···H32W ^v	2.3900
O51B···C1Ai	3.201 (2)	H52W···H12W	2.3700
O52A···O8Wiv	2.968 (2)	H52W···Mg1	3.2400
O52AO12Biv	3.187 (2)	H52W···O1W	2.1700
O52A···O31B ^{vii}	3.198 (2)	H52W···H32W ^v	2.3300
O52B···C2A ⁱⁱ	3.290 (2)	H52W···H42Wiv	2.4200
O52B···O3Wi	3.093 (2)	H52W···O4W	2.5300
O52B···O7Wi	3.212 (2)	H61W···O12A ⁱⁱ	2.0000
O1W···H52W	2.1700	H61W···C11A ⁱⁱ	2.6400
O2W···H62Wi	2.6200	H61W···H12W ⁱⁱ	2.2100
O3W···H62Wi	2.1400	H61W···H22W	2.4300
O4W···H6A ^{iv}	2.8300	H62W···H31W ⁱ	2.5900
O4W···H52W	2.5300	H62W···H22W	2.4400
O5W···H42Wiv	1.9700	H62W···O52B	2.8500
O5W···H32W ^v	1.8900	H62W···Mg1 ⁱ	3.2400
O6W···H12Wii	1.9300	H62W···O2W ⁱ	2.6200
O6W···H22W	1.8700	H62W···O3Wi	2.1400
O7W···H31W	2.0200	H62W···H12W ⁱⁱ	2.3100
O7W···H51Wiv	2.1100	H62W···H32W ⁱ	2.3900
O8W···H11W	1.7900	H71W···O12B ^{vi}	1.8700
00., IIII.,	2.,,,,,,,,	11,111 0122	1.0700

O11A…H21W	2.6800	H71W···C11B ^{vi}	2.9700
O11A…H31W	2.8600	H71W···H51W ^{iv}	2.2900
O11A…H6A	2.4500	H72W···H31W	2.4800
O11B···H41W	2.7100	H72W···O52B ⁱ	2.7900
O11B···H22W	2.9000	H72W···O32B ^{vii}	2.5000
O11B···H32W	2.8500	H81W···O32A ^{viii}	2.8800
O11B···H6B	2.4600	H81W…H11W	2.4500
O11B···H11W	2.8700	H81W···O12A ⁱⁱ	1.9900
O12A···H21W	2.1100	H82W···O32Aviii	2.5400
O12A···H61W ⁱⁱ	2.0000	H82W···H11W	2.3300
O12A···H2A	2.5200	H82W···O51Aiv	2.8300
O12A···H81W ⁱⁱ	1.9900	H82W···O52Aiv	2.4500
O1W—Mg1—O2W	93.28 (6)	O51B—N5B—O52B	123.98 (16)
O1W—Mg1—O3W	177.64 (6)	C6A—C1A—C11A	119.51 (14)
O1W—Mg1—O4W	86.78 (6)	C2A—C1A—C6A	120.12 (15)
O1W—Mg1—O11A	90.83 (6)	C2A—C1A—C11A	120.35 (15)
O1W—Mg1—O11B	90.20 (6)	C2B—C1B—C11B	120.41 (16)
O2W—Mg1—O3W	89.06 (6)	C6B—C1B—C11B	119.53 (14)
O2W—Mg1—O4W	179.66 (6)	C2B—C1B—C6B	120.04 (15)
O2W—Mg1—O11A	89.38 (5)	C1A—C2A—C3A	118.30 (15)
O2W—Mg1—O11B	89.09 (5)	C1B—C2B—C3B	118.44 (16)
O3W—Mg1—O4W	90.88 (6)	N3A—C3A—C4A	118.58 (15)
O3W—Mg1—O11A	89.53 (6)	N3A—C3A—C2A	117.81 (15)
O3W—Mg1—O11B	89.50 (6)	C2A—C3A—C4A	123.62 (15)
O4W—Mg1—O11A	90.29 (5)	N3B—C3B—C2B	118.31 (15)
O4W—Mg1—O11B	91.24 (5)	N3B—C3B—C4B	118.16 (15)
O11A—Mg1—O11B	178.20 (6)	C2B—C3B—C4B	123.52 (15)
Mg1—011A—C11A	134.86 (11)	C3A—C4A—C5A	115.94 (16)
Mg1—011B—C11B	133.81 (12)	C3B—C4B—C5B	116.09 (16)
H11W—O1W—H12W	103.00	C4A—C5A—C6A	122.98 (16)
Mg1—O1W—H11W	121.00	N5A—C5A—C4A	118.66 (15)
Mg1—O1W—H12W	122.00	N5A—C5A—C6A	118.35 (15)
Mg1—O2W—H22W	121.00	N5B—C5B—C6B	118.97 (15)
H21W—O2W—H22W	104.00	C4B—C5B—C6B	123.07 (17)
Mg1—O2W—H21W	108.00	N5B—C5B—C4B	117.96 (15)
Mg1—O3W—H31W	122.00	C1A—C6A—C5A	119.03 (15)
Mg1—O3W—H32W	113.00	C1B—C6B—C5B	118.81 (15)
H31W—O3W—H32W	108.00	O11A—C11A—O12A	125.65 (15)
Mg1—O4W—H41W	109.00	O11A—C11A—C1A	116.26 (15)
Mg1—O4W—H42W	116.00	012A—C11A—C1A	118.09 (14)
H41W—O4W—H42W	105.00	O12B—C11B—C1B	117.76 (15)
H51W—O5W—H52W	110.00	O11B—C11B—O12B	125.84 (16)
	110.00	O11B—C11B—C1B	
H61W—O6W—H62W H71W—O7W—H72W	105.00	C3A—C2A—H2A	116.38 (15) 121.00
H81W—O8W—H82W O32A—N3A—C3A	112.00	C1A—C2A—H2A	121.00
O31A—N3A—O32A	117.58 (16)	C3B—C2B—H2B	121.00
	124.23 (16)	C1B—C2B—H2B	121.00
O31A—N3A—C3A	118.19 (14)	C3A—C4A—H4A	122.00

Acta Cryst. (2013). E**69**, m215

032B—N3B—C3B 118.34 (15) C3B—C4B—H4B 122.00 031B—N3B—032B 123.62 (15) C5B—C4B—H4B 122.00 051A—N5A—C5A 117.79 (15) C5A—C6A—H6A 120.00 052A—N5A—C5A 117.70 (15) C1A—C6A—H6A 120.00 052A—N5A—C5B 117.88 (15) C5B—C6B—H6B 121.00 052B—N5B—C5B 117.88 (15) C5B—C6B—H6B 121.00 051B—N5B—C5B 118.14 (15) C5B—C6B—H6B 121.00 01W—Mg1—O11A—C11A 76.77 (16) C11A—C1A—C6A—C5A 177.32 (14) 02W—Mg1—O11A—C11A 165.50 (16) C6A—C1A—C11A—O11A 3.6 (2) 03W—Mg1—O11B—C11A 165.55 (16) C2A—C1A—C14A—C3A 1.7 (2) 04W—Mg1—O11B—C11B 84.11 (16) C11A—C1A—C2A—C3A -1.1 (2) 01W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) 03W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) 04W—Mg1—O11A—C11A 17.122 (11) C6B—C1B—C2B—C3B 1.7 (2) 04W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C11B—O11B -2.7 (2)				
031B—N3B—O32B 123.62 (15) C5B—C4B—H4B 122.00 051A—N5A—C5A 117.93 (15) C5A—C6A—H6A 120.00 052A—N5A—C5A 117.70 (15) C1A—C6A—H6A 120.00 051A—N5A—O52A 124.36 (16) C1B—C6B—H6B 121.00 052B—N5B—C5B 117.88 (15) C5B—C6B—H6B 121.00 01W—Mg1—O11A—C11A -76.77 (16) C11A—C1A—C6A—C5A 177.32 (14) 02W—Mg1—O11A—C11A 16.50 (16) C6A—C1A—C11A—O11A 3.6 (2) 03W—Mg1—O11A—C11A 165.57 (16) C2A—C1A—C11A—O12A 1.7 (2) 04W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) 02W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A -177.50 (14) 02W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) 04W—Mg1—O11B—C11B 91.73.8 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 1.9 (9) Mg1—O11B—C11B—C12B -12.6 (3) C2B—C1B—C11B—O11B -2.6 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—		118.03 (14)		122.00
O51A—N5A—C5A 117.93 (15) C5A—C6A—H6A 120.00 O52A—N5A—C5A 117.70 (15) C1A—C6A—H6A 120.00 O51A—N5A—O52A 124.36 (16) C1B—C6B—H6B 121.00 O52B—N5B—C5B 117.88 (15) C5B—C6B—H6B 121.00 O51B—N5B—C5B 118.14 (15) C5B—C6B—H6B 121.00 O1W—Mg1—O11A—C11A 76.77 (16) C11A—C1A—C6A—C5A 177.32 (14) O2W—Mg1—O11A—C11A 16.50 (16) C6A—C1A—C11A—O12A 1.7 (2) O4W—Mg1—O11A—C11A 16.55 (16) C2A—C1A—C6A—C5A -1.1 (2) O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -1.17.50 (14) O2W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 1.3 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B 16.5 81 (11) C11B—C1B—C6B—C5B		` /		
O52A—N5A—C5A 117.70 (15) C1A—C6A—H6A 120.00 O51A—N5A—O52A 124.36 (16) C1B—C6B—H6B 121.00 O52B—N5B—C5B 117.88 (15) C5B—C6B—H6B 121.00 O51B—N5B—C5B 118.14 (15) C5B—C6B—H6B 121.00 O1W—Mg1—O11A—C11A 76.77 (16) C11A—C1A—C6A—C5A 177.32 (14) O2W—Mg1—O11A—C11A 105.57 (16) C2A—C1A—C11A—O12A 1.7 (2) O4W—Mg1—O11B—C11B -163.55 (16) C2A—C1A—C6A—C5A -1.1 (2) O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) O2W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A -177.50 (14) O2W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C2B—C3B -1.6 (2) O4W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C2B—C3B 179.69 (14) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11B—C11B -12.6 (3) C2B—C1B—C1B—O11B -2.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C1B -2.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—		* *		
O51A—N5A—O52A 124.36 (16) C1B—C6B—H6B 121.00 O52B—N5B—C5B 117.88 (15) C5B—C6B—H6B 121.00 O51B—N5B—C5B 118.14 (15) 121.00 O1W—Mg1—O11A—C11A -76.77 (16) C11A—C1A—C6A—C5A 177.32 (14) O2W—Mg1—O11A—C11A 16.50 (16) C6A—C1A—C11A—O11A 3.6 (2) O3W—Mg1—O11A—C11A 105.57 (16) C2A—C1A—C11A—O12A 1.7 (2) O4W—Mg1—O11B—C11B -163.55 (16) C2A—C1A—C6A—C5A -1.1 (2) O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) O2W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 2.58 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B 125.6 (3) C2B—C1B—C11B—O12B 175.83 (15) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B <td></td> <td>* *</td> <td></td> <td></td>		* *		
O52B—N5B—C5B 117.88 (15) C5B—C6B—H6B 121.00 O51B—N5B—C5B 118.14 (15) O1W—Mg1—O11A—C11A -76.77 (16) C11A—C1A—C6A—C5A 177.32 (14) O2W—Mg1—O11A—C11A 16.50 (16) C6A—C1A—C11A—O11A 3.6 (2) O3W—Mg1—O11A—C11A 105.57 (16) C2A—C1A—C1A—O2A 1.7 (2) O4W—Mg1—O11B—C11B -163.55 (16) C2A—C1A—C6A—C5A -1.1 (2) O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 91.33 C11B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -15.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C1B—O12B	O52A—N5A—C5A	117.70 (15)		120.00
O51B—N5B—C5B 118.14 (15) O1W—Mg1—O11A—C11A -76.77 (16) C11A—C1A—C6A—C5A 177.32 (14) O2W—Mg1—O11A—C11A 16.50 (16) C6A—C1A—C11A—O11A 3.6 (2) O3W—Mg1—O11A—C11A 105.57 (16) C2A—C1A—C11A—O12A 1.7 (2) O4W—Mg1—O11B—C11B -163.55 (16) C2A—C1A—C6A—C5A -1.1 (2) O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) O2W—Mg1—O11B—C11B 93.55 (16) C6A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 93.55 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 1.79.69 (14) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B 165.81 (11) C11B—C11B—O12B 175.83 (15) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C2B—C1B—C11B—O11B	O51A—N5A—O52A	124.36 (16)	C1B—C6B—H6B	121.00
O1W—Mg1—O11A—C11A	O52B—N5B—C5B	117.88 (15)	C5B—C6B—H6B	121.00
O2W—Mg1—O11A—C11A 16.50 (16) C6A—C1A—C11A—O11A 3.6 (2) O3W—Mg1—O11A—C11A 105.57 (16) C2A—C1A—C11A—O12A 1.7 (2) O4W—Mg1—O11A—C11A -163.55 (16) C2A—C1A—C6A—C5A -1.1 (2) O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) O2W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C1B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—O12B -15.63 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O11B 175.83 (15) O32A—N3A—C3A—C2A 25.5 (2) C2B—C1B—C11B—O11B 178.06 (14) O31A—N3A—C3A—C2A </td <td>O51B—N5B—C5B</td> <td>118.14 (15)</td> <td></td> <td></td>	O51B—N5B—C5B	118.14 (15)		
O2W—Mg1—O11A—C11A 16.50 (16) C6A—C1A—C11A—O11A 3.6 (2) O3W—Mg1—O11A—C11A 105.57 (16) C2A—C1A—C11A—O12A 1.7 (2) O4W—Mg1—O11A—C11A -163.55 (16) C2A—C1A—C6A—C5A -1.1 (2) O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) O2W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C1B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—O12B -15.63 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O11B 175.83 (15) O32A—N3A—C3A—C2A 25.5 (2) C2B—C1B—C11B—O11B 178.06 (14) O31A—N3A—C3A—C2A </td <td></td> <td></td> <td></td> <td></td>				
03W—Mg1—011A—C11A 105.57 (16) C2A—C1A—C11A—012A 1.7 (2) 04W—Mg1—011A—C11A -163.55 (16) C2A—C1A—C6A—C5A -1.1 (2) 01W—Mg1—011B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) 02W—Mg1—011B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) 03W—Mg1—011B—C11B 9.55 (16) C2B—C1B—C6B—C5B -1.6 (2) 04W—Mg1—011B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—011A—C11A—012A 9.1 (3) C11B—C1B—C2B—C3B 1.7 (9) 17.969 (14) Mg1—011B—C11B—012B -12.6 (3) C2B—C1B—C11B—011B -2.7 (2) 17.969 (14) 18.0 Mg1—011B—C11B—012B -12.6 (3) C2B—C1B—C11B—012B -2.6 (2) 17.969 (14) 18.0 17.969 (14) 18.0 17.97 (13) 18.0 18.0 17.99 (13) 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0 19.0 18.0 19.0 19.0 18.0 18.0 19.0 <	O1W—Mg1—O11A—C11A	-76.77 (16)	C11A—C1A—C6A—C5A	177.32 (14)
O4W—Mg1—O11A—C11A -163.55 (16) C2A—C1A—C6A—C5A -1.1 (2) O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) O2W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C2B—C3B 179.69 (14) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—O12B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C4B <td>O2W—Mg1—O11A—C11A</td> <td>16.50 (16)</td> <td>C6A—C1A—C11A—O11A</td> <td>3.6 (2)</td>	O2W—Mg1—O11A—C11A	16.50 (16)	C6A—C1A—C11A—O11A	3.6 (2)
O1W—Mg1—O11B—C11B -84.11 (16) C11A—C1A—C2A—C3A -177.50 (14) O2W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11A—C11A—C1A -171.22 (11) C6B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B 165.81 (11) C11B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -1	O3W—Mg1—O11A—C11A	105.57 (16)	C2A—C1A—C11A—O12A	1.7 (2)
O2W—Mg1—O11B—C11B -177.38 (16) C6A—C1A—C2A—C3A 0.9 (2) O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11A—C11A—C1A -171.22 (11) C6B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A	O4W—Mg1—O11A—C11A	-163.55 (16)	C2A—C1A—C6A—C5A	-1.1(2)
O3W—Mg1—O11B—C11B 93.55 (16) C2B—C1B—C6B—C5B -1.6 (2) O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11A—C11A—C1A -171.22 (11) C6B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C4B 22.0 (2) C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A <td< td=""><td>O1W—Mg1—O11B—C11B</td><td>-84.11 (16)</td><td>C11A—C1A—C2A—C3A</td><td>-177.50 (14)</td></td<>	O1W—Mg1—O11B—C11B	-84.11 (16)	C11A—C1A—C2A—C3A	-177.50 (14)
O4W—Mg1—O11B—C11B 2.68 (16) C6B—C1B—C2B—C3B 1.3 (2) Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11A—C11A—C1A -171.22 (11) C6B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A 0.2 (2) O31B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B 174. (2) O52A—N5A—C5A—C4A 1	O2W—Mg1—O11B—C11B	-177.38 (16)	C6A—C1A—C2A—C3A	0.9(2)
Mg1—O11A—C11A—O12A 9.1 (3) C11B—C1B—C2B—C3B 179.69 (14) Mg1—O11A—C11A—C1A -171.22 (11) C6B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C6A -167.74 (15) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B	O3W—Mg1—O11B—C11B	93.55 (16)	C2B—C1B—C6B—C5B	-1.6(2)
Mg1—O11A—C11A—C1A -171.22 (11) C6B—C1B—C11B—O11B -2.7 (2) Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A 0.2 (2) O31B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B	O4W—Mg1—O11B—C11B	2.68 (16)	C6B—C1B—C2B—C3B	1.3 (2)
Mg1—O11B—C11B—O12B -12.6 (3) C2B—C1B—C11B—O12B -2.6 (2) Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O31B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B	Mg1—O11A—C11A—O12A	9.1 (3)	C11B—C1B—C2B—C3B	179.69 (14)
Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C6B <	Mg1—O11A—C11A—C1A	-171.22 (11)	C6B—C1B—C11B—O11B	-2.7(2)
Mg1—O11B—C11B—C1B 165.81 (11) C11B—C1B—C6B—C5B -179.97 (13) O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C6B <	Mg1—O11B—C11B—O12B	-12.6(3)	C2B—C1B—C11B—O12B	-2.6(2)
O31A—N3A—C3A—C4A -154.62 (15) C6B—C1B—C11B—O12B 175.83 (15) O32A—N3A—C3A—C4A 25.5 (2) C2B—C1B—C11B—O11B 178.90 (14) O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	Mg1—O11B—C11B—C1B	165.81 (11)	C11B—C1B—C6B—C5B	-179.97 (13)
O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O31A—N3A—C3A—C4A		C6B—C1B—C11B—O12B	
O31A—N3A—C3A—C2A 25.5 (2) C1A—C2A—C3A—N3A 179.86 (14) O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O32A—N3A—C3A—C4A	25.5 (2)	C2B—C1B—C11B—O11B	178.90 (14)
O32A—N3A—C3A—C2A -154.31 (17) C1A—C2A—C3A—C4A 0.0 (2) O31B—N3B—C3B—C2B 21.9 (2) C1B—C2B—C3B—N3B -178.65 (13) O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O31A—N3A—C3A—C2A		C1A—C2A—C3A—N3A	179.86 (14)
O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)		* *	C1A—C2A—C3A—C4A	` '
O32B—N3B—C3B—C2B -159.03 (15) C1B—C2B—C3B—C4B 0.2 (2) O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O31B—N3B—C3B—C2B	21.9 (2)	C1B—C2B—C3B—N3B	-178.65 (13)
O32B—N3B—C3B—C4B 22.0 (2) C2A—C3A—C4A—C5A -0.7 (2) O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O32B—N3B—C3B—C2B	-159.03 (15)		0.2 (2)
O31B—N3B—C3B—C4B -156.99 (15) N3A—C3A—C4A—C5A 179.43 (14) O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O32B—N3B—C3B—C4B	22.0 (2)	C2A—C3A—C4A—C5A	
O52A—N5A—C5A—C6A 11.0 (2) N3B—C3B—C4B—C5B 177.46 (13) O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O31B—N3B—C3B—C4B	-156.99 (15)	N3A—C3A—C4A—C5A	
O51A—N5A—C5A—C6A -169.81 (15) C2B—C3B—C4B—C5B -1.4 (2) O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)		* *		
O52A—N5A—C5A—C4A -167.74 (15) C3A—C4A—C5A—C6A 0.5 (2) O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O51A—N5A—C5A—C6A		C2B—C3B—C4B—C5B	* *
O51A—N5A—C5A—C4A 11.5 (2) C3A—C4A—C5A—N5A 179.18 (14) O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)		` '		` '
O52B—N5B—C5B—C6B -17.5 (2) C3B—C4B—C5B—N5B -179.44 (13) O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)	O51A—N5A—C5A—C4A	11.5 (2)	C3A—C4A—C5A—N5A	
O51B—N5B—C5B—C6B 162.42 (15) C3B—C4B—C5B—C6B 1.1 (2) O51B—N5B—C5B—C4B -17.0 (2) N5A—C5A—C6A—C1A -178.28 (14)		, ,		
O51B—N5B—C5B—C4B — 17.0 (2) N5A—C5A—C6A—C1A — 178.28 (14)		` '		` ′
032D-N3D-C3D-C4D 103.00(13) C4A-C3A-C0A-C1A 0.4(2)	O52B—N5B—C5B—C4B	163.06 (15)	C4A—C5A—C6A—C1A	0.4(2)
C6A—C1A—C11A—O12A		` '		* /
C2A—C1A—C11A—O11A —178.01 (14) C4B—C5B—C6B—C1B 0.3 (2)		` /		* *

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+1, -y, -z+1; (v) x-1, y, z; (vi) -x+2, -y, -z+1; (vii) x, y, z-1; (ix) -x+1, -y+1, -z+2; (x) x-1, y, z+1; (xi) -x+2, -y, -z; (xii) -x+2, -y+1, -z; (xiii) x+1, y, z-1; (xiv) -x+1, -y, -z+2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H…A	D··· A	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H11 <i>W</i> ···O8 <i>W</i>	0.91	1.79	2.700(2)	179
O1 <i>W</i> —H12 <i>W</i> ···O6 <i>W</i> ⁱⁱ	0.88	1.93	2.7934 (19)	170
O2 <i>W</i> —H21 <i>W</i> ···O12 <i>A</i>	0.76	2.11	2.8001 (18)	152
O2 <i>W</i> —H22 <i>W</i> ···O6 <i>W</i>	0.87	1.87	2.7375 (18)	178

O3 <i>W</i> —H31 <i>W</i> ···O7 <i>W</i>	0.80	2.02	2.8213 (19)	170
O3 <i>W</i> —H32 <i>W</i> ···O5 <i>W</i> ^{tii}	0.90	1.89	2.7722 (18)	170
O4 <i>W</i> —H41 <i>W</i> ···O12 <i>B</i>	0.80	2.00	2.7310 (18)	151
O4 <i>W</i> —H42 <i>W</i> ···O5 <i>W</i> ^{iv}	0.83	1.97	2.7986 (18)	174
O5 <i>W</i> —H51 <i>W</i> ···O7 <i>W</i> ^{iv}	0.86	2.11	2.9449 (19)	164
O5 <i>W</i> —H52 <i>W</i> ···O1 <i>W</i>	0.86	2.17	2.9702 (19)	155
O5 <i>W</i> —H52 <i>W</i> ···O4 <i>W</i>	0.86	2.53	3.1235 (19)	127
O6 <i>W</i> —H61 <i>W</i> ···O12 <i>A</i> ⁱⁱ	0.86	2.00	2.8404 (19)	163
O6 <i>W</i> —H62 <i>W</i> ···O3 <i>W</i> ⁱ	0.86	2.14	2.9522 (19)	159
O7 <i>W</i> —H71 <i>W</i> ···O12 <i>B</i> ^{vi}	0.89	1.87	2.708 (2)	158
O7 <i>W</i> —H72 <i>W</i> ···O32 <i>B</i> ^{vii}	0.86	2.50	3.236 (2)	145
O8 <i>W</i> —H81 <i>W</i> ···O12 <i>A</i> ⁱⁱ	0.90	1.99	2.7737 (19)	145
O8 <i>W</i> —H82 <i>W</i> ···O32 <i>A</i> ^{viii}	0.89	2.54	3.094(2)	122
O8 <i>W</i> —H82 <i>W</i> ···O52 <i>A</i> ^{iv}	0.89	2.45	2.968 (2)	117
C4 <i>A</i> —H4 <i>A</i> ···O51 <i>A</i> ^{xiv}	0.93	2.51	3.416(2)	166
C4 <i>B</i> —H4 <i>B</i> ···O31 <i>A</i> ^{xiii}	0.93	2.59	3.348 (2)	139

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+1, -y, -z+1; (vi) -x+2, -y, -z+1; (vii) x, y, z+1; (viii) x, y, z-1; (xiii) x+1, y, z-1; (xiv) -x+1, -y, -z+2.