AI 양성 과정 - Model Selection -

Junhee Seok, Ph.D.
Associate Professor
School of Electrical Engineering
Korea University, Seoul, Korea

Cross-Validation

The Goal of Statistical Learning

• Estimating true f(X) from random samples.

The Goal of Statistical Learning

• Training errors and test errors are different.

- We know nothing about the test set when we estimate f(X).
- How to estimate the test errors without looking at the test set?

Cross-Validation

• Simulating training-test sets within the real training set.

Leave-One-Out Cross Validation (LOOCV)

• Consider one sample (x_j, y_j) as a test set, and the rest (x_i, y_i) $i \neq j$ as a training set. Repeat it for all samples.

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

k-Fold Cross Validation

- Randomly divide the whole training data into *k* bins. Consider one bin is a test set and the rest bins are a training set. Repeat it for all *k* bins.
 - − LOOCV is *n*-fold CV.

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i.$$

Examples

• Classification

- Orange: true test error; Blue: training error; Black: CV error.
- CV error reflects the pattern of the true test errors well
 - Useful for model assessment.

LOO vs. k-Fold Cross Validation

LOOCV

- Almost unbiased estimation for the true test errors because it uses *n*−1 samples for training: <u>less bias</u>.
- The *n* fitted models are similar to each other and highly stick to the training data: <u>high variance</u>.
- Computationally intensive: *n* model fittings.
- k-Fold CV (extremely k=2)
 - Underestimated the true test errors because it uses n/2 samples: <u>high bias</u>.
 - The k fitted models can be different and less stick to the original training set: <u>low variance.</u>
 - Computationally less intensive: *k* model fitting.

Practices

- Cross-validation
 - sklearn.model_selection.LeaveOneOut
 - sklearn.model_selection.Kfold
 - sklearn.model_selection.cross_val_score
- Practice
 - Read 'data07_iris.cvs' and plot train, cv, and test errors using KNN method by changing K from 1 to 40

Feature Selection

Best Subset Selection

- Selecting *k* best predictors among *p* predictors.
 - "Best" often means the lowest MSE.
- Algorithm

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .
- We will see later about AIC, BIC and adjusted R^2 .

Stepwise Selection

- Forward stepwise selection: starting from a null model, and adding the best variables one-by-one.
 - In total, 1+p(p+1)/2 models are fitted.

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Example

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

Stepwise Selection

- **Backward stepwise selection**: starting from a full model, and removing the worst variables one-by-one.
 - In total, 1+p(p+1)/2 models are fitted.

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .
- Forward stepwise selection if p > n.
- Backward stepwise selection if n > p.

Model Selection Criteria

- More predictors always decrease the training error.
- Adjusting the training error by accounting the number of predictors.

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right), \qquad \text{AIC} = \frac{1}{n\hat{\sigma}^2} \left(\text{RSS} + 2d\hat{\sigma}^2 \right),$$
$$\text{BIC} = \frac{1}{n} \left(\text{RSS} + \log(n) d\hat{\sigma}^2 \right). \qquad \text{Adjusted } R^2 = 1 - \frac{\text{RSS}/(n-d-1)}{\text{TSS}/(n-1)}.$$

Model Selection Criteria

- The adjustment methods <u>simply</u> assess the test errors <u>based on many assumptions</u>.
- Benefiting from <u>high computation power</u>, **cross-validation** assess the test error with less assumptions.

Regularization

Subset Selection vs. Shrinkage Methods

• In a linear regression model,

$$Y \approx \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

- Subset selection makes some selected β's zero.
- Shrinkage reducing all β 's towards zeros.
- Ridge regression
- Lasso

Ridge Regression

• A usual least squares fitting finds β 's that minimize

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

• Ridge regression finds β 's that minimizes

Shrinkage penalty

- λ is a <u>tuning parameter</u> that determines the amount of shrinkage.
 - Determined separately, often from cross-validation.

Ridge Regression

Example

 Recommended to be <u>standardized</u> because shrinkage is affected by the sizes of predictors

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2}},$$

Ridge Regression

- Bias-variance tradeoff
 - Ridge regression regulates the variability of coefficients.

Less flexible: decreasing variance and increasing bias.

Test MSE

- Computationally easy
 - It has an analytic solution: $\widehat{\beta} = (\mathbf{X}^T \mathbf{X} + \lambda^2 \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$.
 - It can be solved by one common matrix inversion for any λ .

Lasso

• Lasso finds β 's that minimizes

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

- Lasso <u>selects variables</u> because it makes β 's zero (ridge regression doesn't).
- Example

Ridge Regression vs. Lasso

- They are all the same family of convex optimization problem.
- Ridge regression

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \le s,$$

Lasso

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

Subset selection

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} I(\beta_j \neq 0) \leq s.$$

Ridge Regression vs. Lasso

- Lasso selects variables while ridge regression doesn't.
 - The RSS contour often hits the corner of the Lasso regularization area.

Elastic Net

• Ridge

$$\beta^* = \operatorname{argmin}\left(RSS + \lambda \sum \beta_i^2\right)$$

• Lasso

$$\beta^* = \operatorname{argmin}\left(RSS + \lambda \sum |\beta_i|\right)$$

• Elastic Net

$$\beta^* = \operatorname{argmin}\left(RSS + \lambda_1 \sum |\beta_i| + \lambda_2 \sum \beta_i^2\right)$$

Practices

- Cross-validation of linear model
 - sklearn.linear_model.Ridge
 - sklearn.linear_model.Lasso
- Practice 1
 - By applying 5-fold cross-validation for lasso and elastic net, find the best model. What is you test score?
- Practice
 - Read 'data02_college.csv', calculate the acceptance rate from the data, and predict the acceptance rate using elastic net.
 - What is your score on the test set?

Appendix

References

- Probability and Stochastic Processes: A Friendly Introduction to Electrical and Computer Engineers (3rd edition), Yates and Goodman, Wiley
- Probability, Statistics, and Random Processes for Electrical Engineering (3rd edition), Leon-Garcia, Pearson International Edition.
- An Introduction to Statistical Learning with Applications in R, James, Witten, Hastie,
 Tibshirani, Springer
- Pattern Recognition and Machine Learning, Bishop, Springer

About the Lecturer

Junhee Seok, PhD

- Assistant Professor, Electrical Engineering, Korea University
- Director of Mirae Asset AI Fintech Research Center
- Education
 - BS, Electrical Engineering, KAIST, 2001
 - PhD, Electrical Engineering, Stanford University, 2011
- Professional Experiences
 - Postdoctoral Fellow, Statistics, Stanford University
 - Assistant Professor, HBMI, Northwestern University
- Research Area
 - · Big data analytics, Machine Learning, AI
 - Biomedicine, Finance, Climate, IoT, Materials, and etc.

