MLRF Lecture 02

J. Chazalon, LRE/EPITA, 2025

Agenda for lecture 2

- 1. Introduction
- 2. Local feature detectors
- 3. Local feature descriptors

Introduction

Lecture 02 part 01

Previously, in MLRF...

Summary of last lecture

Global image descriptors

- Color histogram
- Limited descriptive power
- Which distance function?

Clustering

- K-Means
- Hierarchical Agglomerative Clustering

Character descriptors

Light and powerful

Texture descriptors

Limited use

Debriefing of practice session 1

PS1 content

- 1. Jupyter tricks
- 2. NumPy reminders
- 3. Intro to image manipulations
- 4. Color histograms

Discussion

- Who completed part 1? 2? 3? 4? 5?
- Any remarks, comments, questions?
- Things to keep, change, remove?

Practice session 1: Take home messages (1/2)

How annoying was it to manually adjust color thresholds to select the duck?

How could have we <u>automated</u> it?

Practice session 1: Take home messages (2/2)

Color histogram

- Very lightweight
- Good filtering stage
- But limited descriptive power

Next practice session(s)

Next practice session

Twin it!, again, with a slightly more elaborated approach:

- 1. Pre-select bubbles based on their colors ⇒ Color histograms
- 2. For the pre-selected bubbles, check their content is similar
 - ⇒ Detect stable points and extract the patches around them

Next practice session

Twin it!, again, with a slightly more elaborated approach:

- 1. Pre-select bubbles based on their colors ⇒ Color histograms
- 2. For the pre-selected bubbles, check their content is similar
 - ⇒ Detect stable points and extract the patches around them
 - ⇒ Compare (match) those patches

Image descriptors

Issues with methods based on pixel comparison

What is important? What do they consider? Raw pixels!

⇒ We want to be able to make use of **domain knowledge**!

Like sensitivity to shape, or dominant color information.

They are terribly **slow** and works **only for small images**.

⇒ We want to **summarize an image** to a much smaller vector.

They are **sensible to rotation, scaling**, and many other perturbations.

⇒ We want to adjust sensitivity/invariance to perturbations.

Do we tolerate translation? Rotation? Intensity shift?

How can we compare different pairs of images? Metric issues.

⇒ We want to be able to achieve more than 1 vs all comparisons.

Image descriptors: Overview

Different sizes and contents ⇒ Different kind of descriptors

Image descriptors: Overview

Different sizes and contents ⇒ **Different kind of descriptors**

Different problems ⇒ **Different choices**

- Computation / memory constraints
- Which perturbations to we have to tolerate?
 rotation, translation...
- What is the expected output? classification, detection, ranking, segmentation...

Many, many approaches ⇒ Impossible to list them all

- Examples of several categories
- Focus on very useful or instructive ones