Intelligence Artificielle

Recherche Aveugle (*Uninformed Search*)

Stephane Marchand-Maillet

Contenu

Algorithmes de recherche:

- Largeur
- Profondeur
- Profondeur Limitée
- Approfondissement itératif (IDS)
- Bidirectionnelle
- Coût uniforme

> principes, complexité

Introduction

 On applique le principe de recherche de solution sans utiliser de connaissance a priori (aveugle – uninformed search)

 Essentiellement, cela revient à prendre la fonction de voisinage (les successeurs d'un état donné) ou la liste (catégorie B) sans ordre particulier

 L'alternative est la recherche heuristique (informed search) – prochain chapitre

Formalisation

Le graphe d'états donne une formalisation pour la résolution de problèmes. Un problème s'énonce formellement par:

- L'espace des états S
- Une fonction de transition Γ (avec ou sans cout)

- Un état initial s_I
 Un état final s_G

 \rightarrow Une solution est un chemin de s_i à s_g dans G

Algorithme general de recherche

```
liste \leftarrow vide ; liste.push(s_i)
repeat
     s_{\text{courant}} \leftarrow \text{liste.pop()}
     if (s_{courant} == s_G)
                                                                               Recherche
          break
     list.push(\Gamma(s_{\text{courant}})) \leftarrow expansion de s_{\text{courant}}
until liste.len() == 0
if (s_{courant} == s_G)
     backtrack solution
                                                                               Explicitation
                                                                               de la solution
else
     pas de solution
```

Tout est dans la stratégie de gestion de la liste et l'expansion des noeuds (états)

Algorithme general de recherche

- Categorie A: Noeuds deja visités
 - sortis de la liste
- <u>Catégorie B</u>: Noeuds pas encore visités avec voisins visités (en A)
 - Noeuds dans la liste
- <u>Catégorie C</u>: noeuds pas encore visités (ni en B)
 - Noeuds jamais passés dans la liste

Un état fera le trajet C-B-A

Recherche en Largeur

- La liste est une file FIFO (type file d'attente)
- On progresse en explorant toutes les stratégies à la fois

> Expansion du nœud le moins profond de la liste

Facteurs de complexité:

- Nombre maximum (moyen) de successeurs d'un etat: b = facteur de branchement
- Profondeur de la solution dans l'arbre : d

Recherche en Largeur

- Complet: garantit de trouver la solution
- Optimal: trouve la solution la plus simple (en nombre d'actions)

Nombre de nœuds de l'arbre produits:

$$N=b^0+b^1+b^2+...+b^d=(b^{(d+1)}-1)/(b-1)=O(b^d)$$

- → Complexité:
- Temps: O(*b*^{*d*})
- Espace: $O(b^d)$

Graphe d'états

Voir aussi: https://visualgo.net/en/dfsbfs

Transitions sélectionnées dans le graphe d'états

Remarque sur la complétude

- En cas de cycle dans le graphe, l'algorithme d'exploration court le risque de re-visiter des états déjà visités et donc ne pas se terminer
- L'exploration peut elle-même contenir un mécanisme pour éviter les re-visites (organisation de la catégorie « B »)
- Sinon on s'assurera de maintenir une liste globale (exple: hash-table) des nœuds visités (marquage de la catégorie « A »)

Recherche en Profondeur

- La liste est une file LIFO (type Pile)
- On explore chaque stratégie jusqu'au bout

> Expansion du nœud le plus profond de la liste

Facteurs de complexité:

- Nombre maximum (moyen) de successeurs d'un état: b = facteur de branchement
- Profondeur de la solution dans l'arbre: d
- Profondeur maximum d'une feuille: m

Recherche en Profondeur

- Complet si l'arbre est fini
- Non optimal (en général)

Complexité:

- Temps: $b^0 + b^1 + ... + b^m = O(b^m)$ (*m* peut être >> *d*)
- Espace: O(b.m)
 Lineaire!

m est le facteur clé

Recherche en Profondeur (DFS)

Voir aussi: https://visualgo.net/en/dfsbfs

Comme *m* est un facteur de complexité, on borne *m* par *M* (donné)

- Complet si d<=M
- Pas de garantie d'optimalité

Complexité:

- Temps: $b^0 + b^1 + ... + b^M = O(b^M)$
- Espace: O(*b*.*M*)

Exercice: Completer l'exploration avec M=4

Recherche en profondeur Limitée:

- Fournit une solution approximée
 - Solution si $d \le M$
 - Indécidable si d>M

→On itère sur *M*: approfondissement itératif: (*IDS: Iterative Depth Search*)

Note: Il semblerait que cette solution ne soit pas trouvée, mais en fait elle serait trouvée à l'étape M=3 (cf slide suivant)

 S_G est atteint \rightarrow l'algorithme s'arrête

- Complet: car on explore éventuellement toutes les solutions
- Optimal: car on trouve la solution la plus simple (profondeur d) avant les autres

Complexité:

- Temps: $(d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d = O(b^d)$
- Espace: O(*b*.*d*)

- Les recherches répétées sont celles des niveaux inférieurs (0, 1,..., d-1), que l'on répète de moins en moins ((d+1) fois, d fois, (d-1) fois,...etc)
- La croissance exponentielle

$$a_0b^0 + a_1b^1 + a_2b^2 + ... + a_db^d$$

rend la somme niveaux inferieurs aussi chère que le niveau lui-même:

$$b^{0}+b^{1}+...+b^{j}=O(b^{j+1})$$

Exemple: b=10

Profondeur d'abord:

$$n_{\text{DFS}} = b^0 + b^1 + ... + b^d$$

IDS:

$$n_{\text{IDS}} = (d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d$$

D	5	8	10	15
n_{DFS}	11'111	11'111'111	1x10 ¹¹	1x10 ¹⁶
n_{IDS}	23'456	23'456'789	2x10 ¹¹	2x10 ¹⁶

Recherche Bidirectionnelle

On exploite le fait que

$$b^{d/2} << b^d$$

On développe des chemins par la recherche en largeur à partir de s_l et s_G

À leur intersection, on joint le chemin qui mène de s_i à s_G

Condition: existence de $\Gamma^{\text{-}1}$

On doit connaître explicitement Γ^{-1} pour développer le chemin à partir de s_G

Recherche Bidirectionnelle

Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a branch from the start node meets a branch from the goal node.

Adapted rom AlMA: Section 3.4 – page 91

Recherche Bidirectionnelle

- Complet: car les recherches se rejoignent si une solution existe
- Optimal: car on trouve la solution la plus simple à la jointure des chemins

Complexité (recherche en Largeur pour d/2):

- Temps: $O(b^{d/2})$
- Espace: $O(b^{d/2})$

Recherche en coût uniforme

Similaire à la recherche en Largueur g(v): coût du chemin de la racine au nœud v

g(v) représente la somme des coûts de transition entre les états c(s,s') le long du chemin

- → Expansion du nœud le moins coûteux de la liste
- → La liste est un Tas-min des coûts

Analogue au plus court chemin de Dijkstra

Recherche en coût uniforme

- Complet: garantit de trouver la solution
- Optimal: trouve la solution la moins coûteuse

Complexité:

- Temps: $O(b^d)$
- Espace: $O(b^d)$

Recherche en Coût Uniforme

Exercice: Attribuez des coûts et développez l'algorithme

Recherche en Coût Uniforme

Voir aussi: https://visualgo.net/en/sssp

Résumé

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time Space Optimal?	$egin{array}{c} \operatorname{Yes}^a & & & & & & & & & & & & & & & & & & &$	$egin{array}{l} \operatorname{Yes}^{a,b} \ O(b^{1+\lfloor C^*/\epsilon floor}) \ O(b^{1+\lfloor C^*/\epsilon floor}) \ ext{Yes} \end{array}$	No $O(b^m)$ $O(bm)$ No	No $O(b^\ell)$ $O(b\ell)$ No	$egin{array}{l} \operatorname{Yes}^a \ O(b^d) \ O(bd) \ \operatorname{Yes}^c \end{array}$	$\operatorname{Yes}^{a,d}$ $O(b^{d/2})$ $O(b^{d/2})$ $\operatorname{Yes}^{c,d}$

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b optimal if step costs are all identical; b if both directions use breadth-first search.

AIMA: Section 3.4 – page 91