PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-288085

(43) Date of publication of application: 04.11.1997

(51)Int.CI.

GO1N 27/416 GO1N 27/419

(21)Application number: 09-025573

(71)Applicant: NGK INSULATORS LTD

(22)Date of filing:

07.02.1997 (72)Invent

(72)Inventor: KATO NOBUHIDE

NAKAGAKI KUNIHIKO

(30)Priority

Priority number: 08 36422

Priority date: 23.02.1996

Priority country: JP

(54) OXIDE SENSOR

(57)Abstract

PROBLEM TO BE SOLVED: To provide a small-sized and inexpensive oxide sensor capable of measuring oxide contained in gas to be measured with extremely high accuracy.

SOLUTION: A measuring electrode 72 is arranged at a distance (d) becoming -3t≤d≤3t (wherein d is the distance of the measuring electrode 72 from the downstream direction end part of an inside pump electrode 64 in the positive direction from a first chamber 60 to a second chamber 76 and t is the height of the first chamber) with respect to the downstream direction end part of the inside pump electrode 64 in the first chamber 60 (the end part on the side of a second diffusion rate determining part 58). The oxygen partial pressure in the first chamber 60 is measured by using the measuring electrode 72 and a main pump cell 68 is subjected to feedback control on the basis of the measured value V1 to control the oxygen partial pressure in the first chamber 60 and, thereafter, gas to be measured is introduced into the second chamber 62, oxide in the gas to be measured is decomposed by a detection electrode 82 or a catalyst, and the oxygen partial pressure generated at this time is measured to calculate the concn. of oxide.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開番号

特開平9-288085

(43)公開日 平成9年(1997)11月4日

鏡別配号 庁内整理番号	FΙ			Ħ	情表示	所
		7/46	331			
			3271	H		
			3 2 7 1	N		
			3 2 7	E		
	3 7 6					
	春空蘭求	未請求	請求項の数22	OL	(全 17	頁)
特置平9-25573	(71)出職人	0000040	164			
(21) 出願書号 特顯平9 - 25573						
平成9年(1997)2月7日		爱知课名	名古皇市瑞穂区	須田町 2	2 書56号	
(22) 出農日 平成 9 年 (1997) 2 月 7 日	(72) 発明者					
绘画平8 -36422		爱知果	名古屋市瑞穂区	須田町 2	2 書56号	B
		本傳子	朱式会社内			
(32) 優先相 平 8 (1996) 2 月23日 (33) 優先権主張国 日本 (JP)	(72)発明者					
		爱知课	是知県名古屋市瑞龍区須田町2番56号 日			
		本码子	株式会社内			
	(74) 伊祖人	弁選士	~ ***	/AL 1 4	2)	
	特額平9-25573 平成9年(1997)2月7日 特額平8-36422 平8(1996)2月23日	等金蘭求 特惠平9-25573 (71)出職人 平成9年(1997)2月7日 (72)発明者 特惠平8-36422 平8(1996)2月23日 日本(JP) (72)発明者	等空前求 未請求 特惠平9-25573 (71)出職人 0000040 日本再 受知果 (72)発明者 加藤 (72)発明者 加藤 (72)発明者 加藤 (72)発明者 加藤 (72)発明者 中枢 (72)発明者 (72)発明者 (72)発明者 (72)発明者 (73)	(71)出版人 000004064 日本保子株式会社 日本保子株式会社 日本保子株式会社 日本(1997) 2月7日 (72)発明者 加藤 伸秀 受知県名古屋市瑞穂区: (72)発明者 加藤 伸秀 受知県名古屋市瑞穂区: 本得子株式会社内 中超 邦彦 受知県名古屋市瑞穂区: 本得子株式会社内	(71)出版人 000004064 日本码子株式会社 中成9年(1997)2月7日 (72)発明者 加藤 伸寿 受知県名古屋市瑞穂区須田町 2 年後(1996)2月23日 日本(JP) (72)発明者 加藤 神寿 受知県名古屋市瑞穂区須田町 2 年後(1996)2月23日 (72)発明者 加藤 神寿 受知県名古屋市瑞穂区須田町 2 年後(1996)2月23日 中垣 邦彦 受知県名古屋市瑞穂区須田町 2 年後(1996)2月23日 中垣 邦彦	G01N 27/46 331 327H 327N 327E 376 参査請求 未請求 請求項の数22 OL (全17 特徴平9-25573 (71)出版人 000004064 日本得子株式会社 受知県名古屋市瑞穂区須田町2番56号 特徴平8-36422 平8(1996)2月23日 日本(JP) (72)発明者 中郷 神秀 受知県名古屋市瑞穂区須田町2番56号 本得子株式会社内 (72)発明者 中郷 邦彦 受知県名古屋市瑞穂区須田町2番56号

(54) 【発明の名称】 酸化物センサ

(57)【要約】

[課題]被測定ガスに含まれる酸化物を極めて高精度に 測定することができ、しかも、小型で安価な酸化物セン サを提供する。

【解決手段】第1室60における内側ポンプ電極64の 下流方向端部(第2の拡散律速部58側の端部)に対し て、測定電極72を-3t≦d≦3tとなる距離d

(d:第1室60から第2室76に至る正方向に対する下流方向端部からの測定電極72の距離、t:第1室60の高さ)に配設する。測定電極72を用いて第1室60内の酸素分圧を測定し、その測定値V1に基づいて主ポンプセル68をフィードバック制御することで、第1室60内の酸素分圧を制御した後、第2室62に被測定ガスを導入し、検出電極82あるいは触媒により被測定ガスに含まれる酸化物を分解し、それによって発生する酸素分圧を測定して酸化物の浸度を求める。

【特許請求の範囲】

【請求項1】外部空間に接する固体電解質と該固体電解質の内外に形成された内側ボンプ電極及び外側ボンブ電極とを有し、かつ、前記外部空間から導入された被測定ガスに含まれる酸素を、前記電極間に印加される制御電圧に基づいてボンビング処理する主ボンブ手段と、

固体電解質と該固体電解質に形成された内側検出電極と前記固体電解質の前記内側検出電極とは反対側に形成された外側検出電極とを有し、かつ、前記主ボンプ手段にてボンビング処理された後の被測定ガズに含まれる酸素 10 を、前記内側検出電極と前記外側検出電極間に印加される測定用電圧に基づいてボンビング処理する測定用ボンプ手段と

前記測定用ポンプ手段によりポンピング処理される前記 酸素の量に応じて生じるポンプ電流を検出する電流検出 手段と、

固体電解質と前記主ポンプ手段における前記内側ポンプ電極と対向するように前記固体電解質に形成された内側 測定電極と前記固体電解質の前記内側測定電極とは反対 側に形成された外側測定電極とを有し、かつ、前記主ポ 20 ンプ手段のポンピング処理による酸素分圧と基準酸素分 圧との差に応じて生じる酸素溴淡電池起電力を測定する 濃度測定手段と、

前記濃度測定手段にて検出される前記酸素濃淡電池起電力が所定の値になるように前記制御電圧のレベルを調整 する中ポンプ制御手段とを具備し、

前記主ボンブ手段におけるボンビング処理空間の下流方向を正方向とし、該ボンビング処理空間の高さをt、前記主ボンブ手段における前配内側ボンブ電極の下流側端部と前記浪度測定手段における前記内側測定電極の中心 30部との投影距離をdとしたとき、-3t≤dを満足する位置に前記内側測定電極が配設され、

前記電流検出手段にて検出された前記ポンプ電流に基づいて前記被測定ガス中の酸化物を測定することを特徴とする酸化物センサ。

【請求項2】請求項1記載の酸化物センサにおいて、前記測定用ポンプ手段は、前記内側検出電極及び外側検出電極間に酸化物を分解するのに十分な電圧を印加し、あるいは該測定用ポンプ手段に配設された酸化物分解触媒のいずれか、あるいは両方の作用によって生成した酸40素を、前記内側検出電極及び外側検出電極間に印加される測定用制御電圧に基づいてポンピング処理することを特徴とする酸化物センサ。

【請求項3】外部空間に接する固体電解質と該固体電解 質の内外に形成された内側ポンプ電極及び外側ポンプ電 極とを有し、かつ、前記外部空間から導入された被測定 ガスに含まれる酸素を、前記電極間に印加される制御電 圧に基づいてポンピング処理する主ポンプ手段と、

固体電解質と該固体電解質に形成された内側検出電極と 前記酸化物 前記固体電解質の前記内側検出電極とは反対側に形成さ 50 物センサ。

れた外側検出電極とを有し、かつ、前記主ボンブ手段に でボンビング処理された後の被測定ガスに含まれる酸素 の量と前記外側検出電極側のガスに含まれる酸素の量と の差に応じた起電力を発生する濃度検出手段と、

前記譲度検出手段により発生する前記起電力を検出する 電圧検出手段と、

固体電解質と前記主ポンプ手段における前記内側ポンプ 電極と対向するように前記固体電解質に形成された内側 測定電極と前記固体電解質の前記内側測定電極とは反対 側に形成された外側測定電極とを有し、かつ、前記主ポ ンプ手段のポンピング処理による酸素分圧と基準酸素分 圧との差に応じて生じる酸素濃淡電池起電力を測定する 濃度測定手段と、

前記譲度測定手段にて検出される前記酸素濃淡電池起電力が所定の値になるように前記制御電圧のレベルを調整する主ボンブ制御手段とを具備し、

前記主ボンブ手段におけるボンビング処理空間の下流方向を正方向とし、該ボンビング処理空間の高さを t 、前記主ボンブ手段における前記内側ボンブ電極の下流側端部と前記浪度測定手段における前記内側測定電極の中心部との投影距離を d としたとき、 - 3 t ≤ d を満足する位置に前記内側測定電極が配設され、

前記電圧検出手段にて検出された前記起電力に基づいて 被測定ガス中の酸化物を測定することを特徴とする酸化 物センサ。

[請求項4]請求項3記載の酸化物センサにおいて、

前記線度検出手段は、該線度検出手段に配設された酸化物分解触媒の作用によって生成された酸素と前記外側検出電極側のガスに含まれる酸素との分圧差に応じた酸素 濃淡電池起電力を発生することを特徴とする酸化物センサ

【請求項5】請求項1~4のいずれか1項に記載の酸化物センサにおいて、

前記遠度測定手段における前記内側測定電極は、-3 t 全 d ≤ 3 t を満足する位置に配設されていることを特徴 とする酸化物センサ。

【請求項6】請求項1~5のいずれか1項に記載の酸化 物センサにおいて、

前記違度測定手段における前記内側測定電極は、前記下 流方向に沿った輻wがw≦5 t であることを特徴とする 酸化物センサ。

【請求項7】請求項1~6のいずれか1項に記載の酸化物センサにおいて、

前記主ポンプ手段における前記内側ポンプ電極は、酸化物に対する触媒活性の低い不活性材料からなることを特徴とする酸化物センサ。

【請求項8】請求項1~7のいずれか1項に記載の酸化物センサにおいて、

前記酸化物は、窒素酸化物であることを特徴とする酸化物センサ

【請求項9】請求項1~8のいずれか1項に記載の酸化物センサにおいて、

前記内側検出電極の近傍に形成された補助ポンプ電極を 有し、かつ、前記主ポンプ手段にてポンピング処理され た後の被測定ガスに含まれる酸素を、前記補助ポンプ電 極と前記外側検出電極間に印加される電圧に基づいて前 記ポンピング処理する補助ポンプ手段を有することを特 徴とする酸化物センサ。

【請求項10】請求項1~9のいずれか1項に記載の酸化物センサにおいて、

前記外側測定電極は、基準ガスが導入される空間に露呈 する位置に配設されていることを特徴とする酸化物セン サ。

【請求項11】請求項1~10のいずれか1項に記載の 酸化物センサにおいて、

前記外側測定電極は、前記外側検出電極と共通に構成さ れていることを特徴とする酸化物センサ。

【請求項12】請求項1~11のいずれか1項に記載の 酸化物センサにおいて、

前記主ポンプ手段は、固体電解費からなる基体にて囲ま 20 れ、かつ前記被測定ガスが導入される第1室の内外に形成された前記内側ポンプ電極及び前記外側ポンプ電極 と、

これら両電極にて挟まれた前記基体を有することを特徴 とする酸化物センサ。

【請求項13】請求項1、2、5~12のいずれか1項 に記載の酸化物センサにおいて、

前記測定用ポンプ手段は、固体電解質からなる基体にて 囲まれ、かつ前記主ポンプ手段にてポンピング処理され た後の被測定ガスが導入される第2室内に形成された検 30 出電極と、

固体電解質からなる基体にて囲まれ、かつ基準ガスが導 入される基準ガス導入室に形成された基準電極と、

前記検出電極と前記基準電極にて挟まれた前記基体を有 することを特徴とする酸化物センサ。

【請求項14】請求項3~12のいずれか1項に記載の 酸化物センサにおいて、

前記濃度検出手段は、固体電解質からなる基体にて囲まれ、かつ前記主ポンプ手段にてポンピング処理された後の被測定ガスが導入される第2室内に形成された検出電 40 いて、 前記書

固体電解質からなる基体にて囲まれ、かつ基準ガスが導入される基準ガス導入室に形成された前記基準電極と、 前記検出電極と前記基準電極にて挟まれた前記基体を有することを特徴とする酸化物センサ。

【請求項15】請求項1~14のいずれか1項に記載の 酸化物センサにおいて、

前記濃度測定手段は、固体電解質からなる基体にて囲まれ、かつ前記外部空間からの被測定ガスが導入される前記第1室内に形成された測定電極と、

固体電解質からなる基体にて囲まれ、かつ基準ガスが導入される基準ガス導入室に形成された前記基準電極と、 前記測定電極と前記基準電極にて挟まれた前記基体を有することを特徴とする酸化物センサ。

【請求項16】請求項12~15のいずれか1項に記載の酸化物センサにおいて、

前記外部空間における前記被測定ガスの前記第1室への 導入経路に、前記被測定ガスに対して所定の拡散抵抗を 付与する第1の拡散律速部が設けられ、

10 前記主ポンプ手段にてポンピング処理された後の前記被 測定ガスの前記第2室への導入経路に、前記被測定ガス に対して所定の拡散抵抗を付与する第2の拡散律速部が 設けられていることを特徴とする酸化物センサ。

【請求項17】請求項12~16のいずれか1項に記載の酸化物センサにおいて、

前記内側ポンプ電極及び前記測定電極は、前記第1室内の同一の前記基体平面上に配設されていることを特徴とする酸化物センサ。

【請求項18】請求項12~17のいずれか1項に記載の酸化物センサにおいて、

前記被測定ガスに所定の拡散抵抗を付与する拡散律速部を有し、

それぞれが異なる種類の酸化物を測定する複数の前記第 2室を備えることを特徴とする酸化物センサ。

【請求項19】請求項18記載の酸化物センサにおいて、

前記複数の第2室は、前記第1室に対して直列に配設されることを特徴とする酸化物センサ。

【請求項20】請求項18記載の酸化物センサにおいて

・、 前記複数の第2室は、前記第1室に対して並列に配設されることを特徴とする酸化物センサ。

【請求項21】請求項12~20のいずれか1項に記載の酸化物センサにおいて、

前記第2室における前記被測定ガスの前記検出電極への 進入経路に、前記被測定ガスに対して所定の拡散抵抗を 付与する第3の拡散律速部が設けられていることを特徴 とする酸化物センサ。

【請求項22】請求項2又は4記載の酸化物センサにおいて

前記酸化物分解触媒はRhサーメットであることを特徴 とする酸化物センサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、車両の排出ガスや大気中に含まれるNO、NO』、SO』、CO」、H, O等の酸化物を測定する酸化物センサに関し、好ましくは、NO、NO』を測定する酸化物センサに関する。

50 [0002]

【従来の技術】例えば、ガソリン車やディーゼルエンジ ン車等の車両から排出される排出ガス中には、一酸化窒 素(NO)、二酸化窒素(NO。)等の窒素酸化物(N Ox)や、一酸化炭素 (CO)、二酸化炭素 (C O』)、水(H』O)、炭化水素(HC)、水素 (H_{\star}) 、酸素 (O_{\star}) 等が含まれている。この場合、 NOはNOx全体の約80%を占め、また、NOとNO , とでNOx全体の約95%を占めている。

【0003】このような排出ガス中に含まれるHC、C O、NOxを浄化する三元触媒は、理論空燃比(A/F 10 = 1 4. 6) 近傍で最大の浄化効率を示し、A/Fを1 6以上に制御した場合には、NOxの発生量は減るが、 触媒の浄化効率が低下し、結果的に、NOxの排出量が 増える傾向がある。

【0004】ところで、昨今、化石燃料の有効利用、地 球温暖化防止のためのCO。の排出量の抑制等の市場要 求が増大しており、これに対応するために燃費を向上さ せる必要性が高まりつつある。このような要求に対し て、例えば、リーン・バーン・エンジンの研究や、NO x净化触媒の研究等が行われつつあり、その中でもNO 20 xセンサのニーズが高まっている。

【0005】従来、このようなNOxを検出するものと して、NOx分析計がある。このNOx分析計は、化学 発光分析法を用いてNOx固有の特性を測定するもので あるが、装置自体がきわめて大がかりであり、高価とな る不都合がある。また、NOxを検出するための光学系 部品を用いているため、頻繁なメンテナンスが必要であ る。さらに、このNOx分析計は、NOxをサンプリン グして測定するものであり、検出素子自体を流体内に直 接挿入することができず、従って、自動車の排出ガス等 30 のように、状況が頻繁に変動する過渡現象の解析には不 向きなものである。

【0006】そこで、これらの不具合を解消するものと して、酸素イオン伝導性固体電解質からなる基体を用い て排出ガス中の所望のガス成分を測定するようにしたセ ンサが提案されている。

[0007]図11は、国際公開W095/30146 号に開示されたガス分析装置の構成を示す。この装置 は、細孔2を介してNOを含む被測定ガスが導入される 第1室4と、細孔6を介して前記第1室4から被測定ガ 40 極めて高精度に測定することができ、しかも、小型で安 スが導入される第2室8とを備えている。前記第1室4 および前記第2室8を構成する壁面は、酸素イオンを透 過させることのできるジルコニア (ZrO:)隔壁10 a、10bによって構成されている。第1室4および第 2室8の一方のZr〇、隔壁10gには、それぞれの室 内の酸素分圧を検出するための一対の測定電極12 &、 12b、14a、14bが配設されている。また、他方 のZrO.隔壁10bには、各室内のO. を室外に汲み 出すためのポンプ電極16a、16bおよび18a、1 8bが配設されている。

【0008】このように構成されたガス分析装置では、 細孔2を介して第1室4に導入された被測定ガスに含ま れる酸素分圧が測定電極12a.12b間に生じる電位 差として電圧計20により検出され、前記電位差を所定 の値とすべく、ポンプ電極16a、16b間に電源22 により100~200mVの電圧が印加され、これによ って、第1室4内の〇。が当該装置外に汲み出される。 なお、この汲み出された酸素量は、電流計24によって 測定することができる。

【0009】一方、O、の殆どが除去された被測定ガス は、細孔6を介して第2室8に導入される。第2室8で は、測定電極148、14b間に生じる電位差を電圧計 26で検出することにより、当該室内の酸素分圧が測定 される。また、第2室8に導入された被測定ガス中に含 まれるNOは、ポンプ電極18a、18b間に電源28 によって印加された電圧により、

 $NO \rightarrow (1/2) N_1 + (1/2) O_1$

として分解され、そのとき発生するO。が前記ポンプ電 極18a、18bによって室外に汲み出される。そのと き発生する電流値を電流計30によって検出することに より、被測定ガス中に含まれるNOの濃度が測定され る.

[0010]

【発明が解決しようとする課題】ところで、前記のよう に構成されたガス分析装置では、被測定ガス中に含まれ るO』の濃度が高い場合、そのO』を除去するために、 電圧計20により検出された電位差に基づきポンプ電極 16a、16b間に高い電圧が印加されることになり、 これによって第1室4内のO。が必要以上に引かれてし まう。この結果、第1室4内のNOと他のガスとの平衡 状態が崩れ、NOがポンプ電極16b上で分解されてし まう事態が生じる。このような事態が生じると、第2室 8に導入された被測定ガスからNOの濃度を正確に測定 することができなくなってしまう。なお、〇』の濃度が 低い場合には、ポンプ電極16a、16b間の印加電圧 も低いため、NOの分解は起こり難いものと考えられ

[0011] 本発明は、前記の不都合を克服するために なされたものであって、被測定ガスに含まれる酸化物を 価な酸化物センサを提供することを目的とする。

[0012]

【課題を解決するための手段】請求項1記載の本発明に 係る酸化物センサは、外部空間に接する固体電解質と該 固体電解質の内外に形成された内側ボンブ電極及び外側 ポンプ電極とを有し、かつ、前記外部空間から導入され た被測定ガスに含まれる酸素を、前記電極間に印加され る制御電圧に基づいてポンピング処理する主ポンプ手段 と、固体電解費と該固体電解費に形成された内側検出電 50 極と前記固体電解質の前記内側検出電極とは反対側に形 成された外側検出電極とを有し、かつ、前記主ポンプ手 段にてポンピング処理された後の被測定ガスに含まれる 酸素を、前記内側検出電極と前記外側検出電極間に印加 される測定用電圧に基づいてポンピング処理する測定用 ポンプ手段と、前記測定用ポンプ手段によりポンピング 処理される前記酸素の量に応じて生じるポンプ電流を検 出する電流検出手段と、固体電解質と前記主ポンプ手段 における前記内側ポンプ電極と対向するように前記固体 電解質に形成された内側測定電極と前記固体電解質の前 記内側測定電極とは反対側に形成された外側測定電極と を有し、かつ、前記主ポンプ手段のポンピング処理によ る酸素分圧と基準酸素分圧との差に応じて生じる酸素濃 淡電池起電力を測定する濃度測定手段と、前記濃度測定 手段にて検出される前記酸素濃淡電池起電力が所定の値 になるように前記制御電圧のレベルを調整する主ポンプ 制御手段とを具備し、前記主ポンプ手段におけるポンピ ング処理空間の下流方向を正方向とし、該ポンピング処 理空間の高さをt、前記主ポンプ手段における前記内側 ポンプ電極の下流側端部と前記濃度測定手段における前 記内側測定電極の中心部との投影距離をdとしたとき、 -3 t ≤ d を溝足する位置に前記内側測定電極を配設 し、前記電流検出手段にて検出された前記ポンプ電流に 基づいて前記被測定ガス中の酸化物を測定するように構

成する。
【0013】 これにより、まず、外部空間から導入された被測定ガスのうち、酸素が主ポンプ手段によってポンピング処理され、該酸素は所定濃度に調整される。前記主ポンプ手段にで酸素の濃度が調整された被測定ガスは、次の測定用ポンプ手段に導かれる。測定用ポンプ手段は、内側検出電極と外側検出電極間に印加される測定用電圧に基づいて、前記被測定ガスのうち、酸素をポンピング処理する。前記測定用ポンプ手段によりポンピング処理される酸素の量に応じて該測定用ポンプ手段に生じるポンプ電流が電流検出手段により検出されることで、酸素量に応じた酸化物が測定される。

【0014】つまり、前記測定用ポンプ手段において、前記内側検出電極及び外側検出電極間に前記酸化物を分解するのに十分なポンプ電圧を印加するか、あるいは該測定用ポンプ手段に前記酸化物を分解する酸化物分解触媒を配数するようにすれば(請求項2記載の発明)、前記制御電圧及び/又は前記酸化物分解触媒の作用により分解された酸化物から生成された酸素がポンピング処理され、それによって生じるポンプ電流が電流検出手段により検出されることで、酸素量に応じた酸化物が測定される。

【0015】 このとき、前記譲度測定手段において、前 記主ポンプ手段でのポンピング処理時における前記被測 定ガスに含まれる酸素の量と前記外側測定電極側のガス に含まれる酸素の量との差に応じた起電力が発生する。 そして、主ボンプ制御手段を通じ、前記起電力に基づい 50 の中心部との投影距離をdとしたとき、-3t≤dを満

て、前記主ポンプ手段における内側ポンプ電極と外側ポンプ電極間に印加される制御電圧のレベルが調整される。

[0016] 主ポンプ手段は、外部空間から導入された 被測定ガスのうち、酸素を制御電圧のレベルに応じた量 ほどポンピング処理する。前記レベル調整された制御電 圧の主ポンプ手段への供給によって、前記被測定ガスに おける酸素の濃度は、所定レベルにフィードバック制御 されることとなる。

【0017】この場合、前記主ポンプ手段におけるポンピング処理空間の下流方向を正方向とし、該ポンピング処理空間の高さをも、前記主ポンプ手段における前記内側ポンプ電極の下流側端部と前記浪度測定手段における前記内側測定電極の中心部との投影距離をもとしたとき、-3 t ≤ d、より好ましくは-3 t ≤ d ≤ 3 t (請求項5記載の発明)を満足する位置に前記内側測定電極を配数することにより、主ポンプ手段にてポンピング処理された後の酸素分圧を高精度に測定することができ、生ポンプ制御手段による主ポンプ手段の制御電圧調整の精度の向上、信頼性の向上を図ることができる。その結果、前記主ポンプ手段における内側ポンプ電極上での酸化物の分解が好適に抑制された状態で、酸素のポンピング処理が行われることになる。

【0018】次に、請求項3記載の本発明に係る酸化物 センサは、外部空間に接する固体電解質と該固体電解質 の内外に形成された内側ポンプ電極及び外側ポンプ電極 とを有し、かつ、前記外部空間から導入された被測定が スに含まれる酸素を、前記電極間に印加される制御電圧 に基づいてポンピング処理する主ポンプ手段と、固体電 解費と該固体電解費に形成された内側検出電極と前記固 体電解質の前記内側検出電極とは反対側に形成された外 側検出電極とを有し、かつ、前記主ポンプ手段にてポン ピング処理された後の被測定ガスに含まれる酸素の量と 前記外側検出電極側のガスに含まれる酸素の量との差に 応じた起電力を発生する濃度検出手段と、前記濃度検出 手段により発生する前記起電力を検出する電圧検出手段 と、固体電解質と前記主ポンプ手段における前記内側ボ ンプ電極と対向するように前記固体電解質に形成された 内側測定電極と前記固体電解費の前記内側測定電極とは 反対側に形成された外側測定電極とを有し、かつ、前記 主ポンプ手段のポンピング処理による酸素分圧と基準酸 素分圧との差に応じて生じる酸素濃淡電池起電力を測定 する濃度測定手段と、前記濃度測定手段にて検出される 前記酸素濃淡電池起電力が所定の値になるように前記制 御電圧のレベルを調整する主ポンプ制御手段とを具備 し、前記主ポンプ手段におけるポンピング処理空間の下 流方向を正方向とし、該ポンピング処理空間の高さを t、前記主ポンプ手段における前記内側ポンプ電極の下 流側端部と前記濃度測定手段における前記内側測定電極 足する位置に前記内側測定電極を配設し、前記電圧検出 手段にて検出された前記起電力に基づいて被測定ガス中 の酸化物を測定するように構成する。

[0019] これにより、外部空間から導入された被測定ガスのうち、酸素が主ポンプ手段によってポンピング処理され、該酸素は所定濃度に調整される。前記主ポンプ手段にて酸素の濃度が調整された被測定ガスは、次の濃度検出手段に導かれ、該濃度検出手段において、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素の量と外側検出電極側のガスに含まれる10酸素の量との差に応じた酸素濃淡電池起電力が発生し、該起電力が電圧検出手段により検出されることで、酸素量に応じた酸化物が測定される。

[0020] つまり、前記浪度検出手段において、該譲度検出手段に前記酸化物を分解する酸化物分解触媒を配設するようにすれば(請求項4記載の発明)、該酸化物分解触媒の作用によって分解された酸化物から生成された酸素の量と外側検出電極側のガスに含まれる酸素の量との差に応じた酸素濃淡電池起電力が内側検出電極及び外側検出電極間に発生し、該起電力が電圧検出手段により検出されることで、酸素量に応じた酸化物が測定される。

【0021】 このとき、前記譲度測定手段において、前記主ポンプ手段でのポンピング処理時における前記該測定ガスに含まれる酸素の量と前記外側測定電極側のガスに含まれる酸素の量との差に応じた起電力が発生する。そして、主ポンプ制御手段を通じ、前記起電力に基づいて、前記主ポンプ手段における内側ポンプ電極と外側ポンプ電極間に印加される制御電圧のレベルが調整される。

【0022】主ボンブ手段は、外部空間から導入された 被測定ガスのうち、酸素を制御電圧のレベルに応じた量 ほどボンピング処理する。前記レベル調整された制御電 圧の主ボンブ手段への供給によって、前記被測定ガスに おける酸素の濃度は、所定レベルにフィードバック制御 されることとなる。

【0023】 この場合、前記主ポンプ手段におけるポンピング処理空間の下流方向を正方向とし、酸ポンピング処理空間の高さをも、前記主ポンプ手段における前記内側ポンプ電極の下流側端部と前記遠度測定手段における 40前記内側測定電極の中心部との投影距離を d としたとき、-3 t ≤ d、より好ましくは-3 t ≤ d ≤ 3 t (請求項5記載の発明)を満足する位置に前記内側測定電極を記設することにより、主ポンプ手段にてポンピング処理された後の酸素分圧を高精度に測定することができ、主ポンプ制御手段による主ポンプ手段の制御電圧調整の精度の向上、信頼性の向上を図ることができる。その結果、前記主ポンプ手段における内側ポンプ電極上での酸化物の分解が好適に抑制された状態で、酸素のポンピング処理が行われることになる。 50

【0024】そして、前記構成において、前記濃度測定手段における前記内側測定電極の前記下流方向に沿った幅wをw≤5tとすることにより(請求項6記載の発明)、当該内側測定電極上での酸化物の分解を抑制することができ、好適である。

10

[0025]また、前記構成において、前記主ポンプ手段における前記内側ポンプ電極を酸化物に対する触媒活性の低い不活性材料にて構成することが好ましい(請求項7記載の発明)。この場合、前記内側ポンプ電極上での酸化物の分解作用が一層好適に抑制され、特に、NO又はNO。を含む窒素酸化物を高精度に測定することができる(請求項8記載の発明)。

【0026】また、前記構成において、前記内側検出電極の近傍に形成された補助ポンプ電極を有し、かつ、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素を、前記補助ポンプ電極と前記外側検出電極間に印加される電圧に基づいて前記ポンピング処理する補助ポンプ手段を設けるようにしてもよい(請求項9記載の発明)。

[0027] とれにより、まず、主ポンブ手段にて所定のガス成分が所定濃度に粗調整された被測定ガスは、更に補助ポンブ手段によって所定のガス成分の濃度が微調整される。

[0028] 一般に、外部空間における被測定ガス中の 所定ガス成分の濃度が大きく(例えば0から20%)変 化すると、主ポンプ手段に導かれる被測定ガスの所定ガ ス成分の濃度分布が大きく変化し、測定用ポンプ手段あ るいは濃度検出手段に導かれる所定ガス成分量も変化す

30 【0029】 このとき、主ポンプ手段にてポンピング処理された後の被測定ガスにおける酸素濃度は、補助ポンプ手段でのポンピング処理にて微調整されることになるが、主ポンプ手段でのポンピング処理によって、前記補助ポンプ手段に導かれる被測定ガス中の酸素の濃度変化は、外部空間からの被測定ガス(主ポンプ手段に導かれる被測定ガス)における酸素の濃度変化よりも大幅に縮小されるため、測定用ポンプ手段における内側検出電極近傍あるいは濃度検出手段における外側検出電極近傍での所定ガス成分の濃度を精度よく一定に制御することができる。

【0030】従って、測定用ポンプ手段あるいは濃度検出手段に導かれる所定ガス成分の濃度は、前記被測定ガス(主ポンプ手段に導かれる被測定ガス)における酸素の濃度変化の影響を受け難くなり、その結果、電流検出手段にて検出されるポンプ電流値あるいは電圧検出手段にて検出される起電力は、前記被測定ガスにおける所定ガス成分の濃度変化に影響されず、被測定ガス中に存在する目的成分量に正確に対応した値となる。

【0031】そして、請求項1~9のいずれか1項に記 載の発明において、外側測定電極を基準ガスが導入され る空間に露呈する位置に配設することで(請求項10記 載の発明)、被測定ガスに含まれる酸素と基準ガスに含 まれる酸素との比較を行うことができ、より正確な酸化 物の検出を行うことができる。

【0032】特に、前記外側測定電極を、前記外側検出 電極と共通に構成することが好ましい(請求項11記載 の発明)。この場合、濃度測定手段における外側測定電 極と測定用ポンプ手段あるいは濃度検出手段における外 側検出電極との共通電極が基準ガスの導入空間に露呈す ることになり、濃度測定手段、測定用ポンプ手段、濃度 10 検出手段の各検出処理における基準電極として定義する ことができ、これに準じて、浪度測定手段における内側 測定電極並びに測定用ポンプ手段及び濃度検出手段にお ける内側検出電極をそれぞれ測定電極並びに検出電極と 定義することができる。

【0033】なお、前記主ポンプ手段は、固体電解費か らなる基体にて囲まれ、かつ、前記被測定ガスが導入さ れる第1室の内外に形成された前記内側ボンブ電極及び 外側ポンプ電極と、これら両電極にて挟まれた前記基体 にて構成することができる(請求項12記載の発明)。 【0034】また、前記測定用ポンプ手段は、固体電解 質からなる基体にて囲まれ、かつ、前記主ポンプ手段に てポンピング処理された後の被測定ガスが導入される第 2室内に形成された検出電極と、固体電解質からなる基 体にて囲まれ、かつ、基準ガスが導入される基準ガス導 入室に形成された基準電極と、前記検出電極と前記基準 電極にて挟まれた前記基体にて構成することができる (請求項13記載の発明)。

【0035】また、前記譲度検出手段は、固体電解質か らなる基体にて囲まれ、かつ、前記主ポンプ手段にてポー30 ンピング処理された後の被測定ガスが導入される第2室 内に形成された検出電極と、固体電解質からなる基体に て囲まれ、かつ、基準ガスが導入される基準ガス導入室 **に形成された基準電極と、前記検出電極と前記基準電極** にて挟まれた前記基体にて構成することができる(請求 項14記載の発明)。

【0036】また、前記濃度測定手段は、固体電解質か らなる基体にて囲まれ、かつ、前記外部空間からの被測 定ガスが導入される前記第1室内に形成された測定電極 と、固体電解質からなる基体にて囲まれ、かつ、基準ガ 40 スが導入される基準ガス導入室に形成された前記基準電 極と、前記測定電極と前記基準電極にて挟まれた前記基 体にて構成することができる(請求項15記載の発

【0037】更に、前記構成において、前記外部空間に おける前記被測定ガスの前記第1室への導入経路に、前 記被測定ガスに対して所定の拡散抵抗を付与する第1の 拡散律速部を設け、前記主ポンプ手段にてポンピング処 理された後の前記被測定ガスの前記第2室への導入経路 に、前記被測定ガスに対して所定の拡散抵抗を付与する 50 ーサ層52c上に第1の固体電解質層52d、第2のス

第2の拡散律速部を設けるようにしてもよい(請求項1 6記載の発明)。この場合、前記第1拡散律速部又は前 記第2拡散律速部は、被測定ガスに対して所定の拡散抵 抗を付与することのできる通路により構成することがで

12

【0038】また、前記第2室における前記被測定ガス の前記検出電極への進入経路に、前記被測定ガスに対し て所定の拡散抵抗を付与する第3の拡散律速部を設ける ようにしてもよい(請求項21記載の発明)。

【0039】なお、前記固体電解質としては、2 r O: 等のセラミックスを用いた酸素イオン伝導性固体電解質 が好適であり、また、第1拡散律連部又は第2拡散律速 部は、第1室及び第2室内の被測定ガスの状態を設定さ れた所望の状態とすべく、前記被測定ガスに対して所定 の拡散抵抗を付与する多孔質材料を用いると好適であ る.

【0040】第1室、第2室内に配設される電極あるい は触媒を構成する酸化物分解触媒は、Rhサーメットを 用いると好適である(請求項22記載の発明)。

【0041】なお、前記第1室に配設される内側ポンプ 電極及び前記測定電極は、前記第1室内の対向する基体 上、あるいは、同一の前記基体平面上に配設することが できる(請求項17記載の発明)。

【0042】また、前記第1室に連設される第2室は、 前記第1室に対して直列又は並列な状態で複数配設する ことができる(請求項19又は20記載の発明)。そし て、各第2室において、電極間に印加される電圧あるい は電極間に発生する酸素濃淡電池起電力を測定対象とす る酸化物に応じて個々に設定することにより、種類の異 なる複数の酸化物の測定を1つのセンサで行うことがで きる.

[0043]

【発明の実施の形態】以下、本発明に係る酸化物センサ を例えば車両の排気ガスや大気中に含まれるNO、NO 』、SO』、CO』、H。O等の酸化物を測定する酸化 物センサに適用したいくつかの実施の形態例を図1~図 10を参照しながら説明する。

【0044】まず、第1の実施の形態に係る酸化物セン サ50Aは、図1及び図2に示すように、全体として、 長尺な板状体形状に構成されており、Zェ〇』等の酸素 イオン伝導性固体電解質を用いたセラミックスよりなる 例えば6枚の固体電解質層52a~52fが積層されて 構成され、下から1層目及び2層目が第1及び第2の基 板層52a及び52bとされ、下から3層目及び5層目 が第1及び第2のスペーサ層52c及び52eとされ、 下から4層目及び6層目が第1及び第2の固体電解質層 52d及び521とされている。

【0045】具体的には、第2の基板層52b上に第1 のスペーサ階52cが積着され、更に、との第1のスペ ペーサ層52e及び第2の固体電解質層52fが顧次積 層されている。

【0046】第2の基板層52bと第1の固体電解質層 52dとの間には、酸化物測定の基準となる基準ガス、 例えば大気が導入される空間(基準ガス導入空間54) が、第1の固体電解質層52dの下面、第2の基板層5 2 bの上面及び第1のスペーサ層52 cの側面によって 区画、形成されている。

【0047】また、第1及び第2の固体電解質層52d 及び52f間に第2のスペーサ層52eが挟設されると 10 共に、第1及び第2の拡散律速部56及び58が挟設さ れている。

[0048]そして、第2の固体電解質層521の下 面、第1及び第2の拡散律速部56及び58の側面並び に第1の固体電解質層52dの上面によって、被測定ガ ス中の酸素分圧を調整するための第1室60が区面、形 成され、第2の固体電解質層521の下面、第2の拡散 律速部58の側面、第2のスペーサ層52eの側面並び に第1の固体電解質層52dの上面によって、被測定ガ ス中の酸素分圧を微調整し、更に被測定ガス中の酸化 物、例えば窒素酸化物(NOx)を測定するための第2 室62が区画、形成される。

[0049]外部空間と前記第1室60は、第1の拡散 律速部56を介して連通され、第1室60と第2室62 は、前記第2の拡散律速部58を介して連通されてい る.

【0050】ことで、前記第1及び第2の拡散律速部5 6及び58は、第1室60及び第2室62にそれぞれ導 入される被測定ガスに対して所定の拡散抵抗を付与する ものであり、例えば、被測定ガスを導入することができ る多孔質材料又は所定の断面積を有した小孔からなる通 路として形成することができる。

【0051】特に、第2の拡散律速部58内には、乙ェ O. 等からなる多孔質体が充填、配置されて、前記第2 の拡散律速部58の拡散抵抗が前記第1の拡散律速部5 6における拡散抵抗よりも大きくされている。

【0052】そして、前記第2の拡散律速部58を通じ て、第1室60内の雰囲気が所定の拡散抵抗の下に第2 室62内に導入される。従って、この酸化物センサ50 Aにおいては、外部空間に存する被測定ガスが酸化物セ 40 ンサ50A内に導入される方向が、第1の拡散律速部5 6→第1室60→第2の拡散律速部58→第2室62の 方向であり、この方向は、被測定ガスの下流方向と定義 することができる。

【0053】また、前記第2の固体電解質層52fの下 面のうち、前記第1室60を形づくる下面全面に、平面 ほぼ矩形状の多孔質サーメット電極からなる内側ポンプ 電極64が形成され、前記第2の固体電解質層521の 上面のうち、前記内側ポンプ電極64に対応する部分 に、外側ポンプ電極66が形成されており、これら内側 50 第1の実施の形態に係る酸化物センサ50Aにおいて

ポンプ電極64、外側ポンプ電極64並びにこれら両電 極64及び66間に挟まれた第2の固体電解質層52f にて電気化学的なポンプセル、即ち、主ポンプセル6.8 が構成されている。

14

【0054】そして、前記主ポンプセル68における内 側ポンプ電極64と外側ポンプ電極66間に、外部の可 変電源70を通じて所望の制御電圧(ボンブ電圧) Vp 1を印加して、外側ボンプ電極66と内側ボンブ電極6 4間に正方向あるいは負方向にポンプ電流 [p]を流す ことにより、前記第1室60内における雰囲気中の眩素 を外部空間に汲み出し、あるいは外部空間の酸素を第 1 室60内に汲み入れることができるようになっている。 【0055】また、前記第1の固体電解質層52dの上 面のうち、前記第1室60を形づくる上面であって、か つ第2の拡散律速部62に近接する部分に、平面ほぼ矩 形状の多孔質サーメット電極からなる測定電極72が形 成され、前記第1の固体電解質層52dの下面のうち、 基準ガス導入空間54に露呈する部分に基準電極74が 形成されており、これら測定電極72、基準電極74及 び第1の固体電解質層52 dによって、電気化学的なセ ンサセル、即ち、制御用酸素分圧検出セル76が構成さ

【0056】この制御用酸素分圧検出セル76は、第1 室60内の雰囲気と基準ガス導入空間54内の基準ガス (大気) との間の酸素濃度差に基づいて、測定電極72 と基準電極74との間に発生する起電力を電圧計78に て測定することにより、前記第1室60内の雰囲気の酸 素分圧が検出できるようになっている。

【0057】即ち、基準電極74及び測定電極72間に 生じる電圧V1は、基準ガス導入空間54に導入される 基準ガスの酸素分圧と、第1室60内の被測定ガスの酸 素分圧との差に基づいて生じる酸素濃淡電池起電力であ り、ネルンストの式として知られる

 $V1 = RT/4F \cdot ln (P1 (O₂)/P0$ (0,)

R: 気体定数

丁:絕対温度 F:ファラデー数

P1 (O₂):第1室60内の酸素分圧

PO(O1):基準ガスの酸素分圧

の関係を有している。そこで、前記ネルンストの式に基 づく電圧V1を電圧計78によって測定することで、第 1室60内の酸素分圧を検出することができる。

[0058] 前記検出された酸素分圧値は可変電源70 のポンプ電圧をフィードバック制御系80を通じて制御 するために使用され、具体的には、第1室60内の雰囲 気の酸素分圧が、次の第2室62において酸素分圧の制 御を行い得るのに十分な低い所定の値となるように、主 ポンプセル68のポンプ動作が制御される。特に、この は、図3に示すように、前記測定電極72の下流方向に 沿った幅wが所定の長さに規定されている。具体的に は、前記測定電極72の幅は、測定対象である酸化物の 第1室60内での分解を抑制する目的と、スクリーン印 副技術を用いて当該酸化物センサ50Aを作成する場合 の印刷可能サイズを考慮した長さに規定され、図3に示 すように、前記第1室60の高さをtとしたとき、w≦ 5 tの範囲に制限されている。

【0059】更に、この第1の実施の形態に係る酸化物 センサ50Aにおいては、当該制御用酸素分圧検出セル 10 76にて測定される酸素分圧の精度を確保するため、前 記主ポンプセル68における内側ポンプ電極64に対す る測定電極72の配置関係を以下のように規定してい る.

【0060】即ち、前記測定電極72は、図3に示すよ うに、前記内側ポンプ電極64の下流方向端部(第2の 拡散律速部58側の端部)から当該測定電極72の中心 までの投影距離 d が少なくとも-3 t≦d (t:第1室 60の高さ)となる位置に配設され、好適には−31≦ d ≤ 3 t となるように配設される。

【0061】なお、前記内側ボンブ電極64及び外側ボ ンプ電優86は、第1室80内に導入された被測定ガス 中のNOx、例えば、NO。に対する触媒活性が低い不 活性材料により構成される。具体的には、前記内側ボン プ電極64及び外側ポンプ電極66は、多孔質サーメッ ト電極にて構成することができ、この場合、Pt等の金 属とZr〇、等のセラミックスとから様成されることに なるが、特に、被測定ガスに接触する第1室60内に配 置される内側ポンプ電極64及び測定電極72は、測定 ガス中のNOx成分に対する還元能力を弱めた、あるい 30 は還元能力のない材料を用いる必要があり、例えばLa , C u O。等のペロブスカイト構造を有する化合物、あ るいはAu等の触媒活性の低い金属とセラミックスのサ ーメット、あるいはAu等の触媒活性の低い金属とPt 族金属とセラミックスのサーメットで構成されることが 好ましい。更に、電極材料にAuとPt族金属の合金を 用いる場合は、Au添加量を金属成分全体の0、03~ 35 v o 1%にすることが好ましい。

[0062]また、この第1の実施の形態に係る酸化物 センサ50Aにおいては、図2に示すように、前記第1 の固体電解質層52dの上面のうち、前記第2室62を 形づくる上面であって、かつ第2の拡散律速部58から 離間した部分に、平面はば矩形状の多孔質サーメット電 極からなる検出電極82が形成され、該検出電極82、 前記基準電極74及び第1の固体電解質層52dによっ て、電気化学的なポンプセル、即ち、測定用ポンプセル 84が構成される。

【0063】前記検出電極82は、酸化物分解触媒、例 えばRhサーメット、あるいは触媒活性の低い材料、あ ろいは触媒活性の低い材料の近傍に酸化物分解触媒を配 50 って、その中に含まれる酸素分圧が所定値に制御され

置する等の構成を適宜選択できる。この第1の実施の形 態においては、検出電価82は、被測定ガス成分たるN 〇xを還元し得る金属であるRhとセラミックスとして のジルコニアからなる多孔質サーメットにて構成され、 これによって、第2室62内の雰囲気中に存在するNO xを還元するNOx還元触媒として機能するほか、前記 基準電極74との間に、直流電源86を通じて一定電圧 Vp2が印加されることによって、第2室62内の雰囲 気中の酸素を基準ガス導入空間54に汲み出せるように なっている。この測定用ポンプセル84のポンプ動作に よって流れるポンプ電流1p2は、電流計88によって 検出されるようになっている。

16

【0064】この第1の実施の形態に係る酸化物センサ 50Aにおいては、第1及び第2の基板層52a及び5 2 b にて上下から挟まれた形態において、外部からの給 電によって発熱するヒータ90が埋設されている。この ヒータ90は、酸素イオンの伝導性を高めるために設け られるもので、数ヒータ90の上下面には、第1及び第 2の基板層 5 2 a 及び 5 2 b との電気的絶縁を得るため 20 に、アルミナ等のセラミックス層92が形成されてい **み**。

[0065]前記ヒータ90は、図2に示すように、第 1 室6 0 から第2 室6 2 の全体にわたって配設されてお り、これによって、第1室60及び第2室62がそれぞ れ所定の温度に加熱され、併せて主ポンプセル68、制 御用酸素分圧検出セル76及び測定用ポンプセル84も 所定の温度に加熱、保持されるようになっている。

【0066】第1の実施の形態に係る酸化物センサ50 Aは、基本的には以上のように構成されるものであり、 次にその作用効果について説明する。

【0067】酸化物の測定に先立ち、当該第1の実施の 形態に係る酸化物センサ50Aを第1室60内に被測定 ガスが導入できる状態に設定する。次いで、ヒータ90 に通電し、例えば酸化物センサ50Aにおける第1室6 0の第1及び第2の固体電解質層52d及び52fを4 00℃~900℃に加熱すると共に、第2室62の第1 及び第2の固体電解質層52d及び52fを700℃~ 900℃に加熱する。酸化物センサ50Aをこのような 温度状態に加熱することにより、第1 及び第2の固体電 解質層52d及び52fが所望の状態に活性化されるこ とになる.

【0068】次に、前述のように設定した酸化物センサ 50Aに対して被測定ガスを導入することにより、前記 被測定ガス中に含まれるNOx等の酸化物の測定を開始 する.

【0069】第1の拡散律速部56を介して所定の拡散 抵抗のもとに第1室60内に導入された被測定ガスは、 可変電源70によって外側ポンプ電極84及び内側ポン プ電極86間に印加された所定のポンプ電圧Vp1によ る。即ち、第1室60内の酸素分圧は、電圧計78によ って検出される基準電極74及び測定電極72間の電圧 V 1 に基づいて測定することができる。この電圧V1 は、前述したネルンストの式で規定される酸素濃淡電池 起電力であり、この電圧V1が180mV~350mV となるようにフィードバック制御系80を通じて可変電 源70のポンプ電圧Vp1を制御することで、第1室6 0内の酸素分圧が所定値に制御される。

【0070】第1室60において所定の酸素分圧に制御 された被測定ガスは、第1の拡散律速部56よりも拡散 10 抵抗が大きく設定された第2の拡散律速部58を介して 第2室62に導入される。

[0071]第2室62では、基準電極74と検出電極 80との間に当該第2室82内の酸素を充分に汲み出す ことのできる所定のポンプ電圧Vp2が電源84によっ て印加されており、このポンプ電圧Vp2によって、被 測定ガスに含まれるNO、NO、等のNOxがRhサー メットからなる酸化物分解触媒としての検出電極82に よって分解されるか、あるいは、検出電極82とは別に 存在する触媒で分解され、それによって発生した酸素が 20 第1の固体電解質層52dを介して基準ガス導入空間5 4側に汲み出される。このとき、酸素イオンの移動によ って生じた電流値1p2は、電流計88によって測定さ れ、この電流値1p2から被測定ガス中に含まれる所定 の酸化物、例えば、NO、NO。等のNOxの濃度が測 定されることになる。

[0072]特に、前記第1の実施の形態に係る酸化物 センサ50Aにおいては、第1室60における内側ボン プ電極64と測定電極72との配置関係を図3に示す所 定の範囲(-3 t≤d≤3 t)に設定するようにしてい 30 るため、酸素分圧を高精度に制御しながら被測定ガスを 第2室62に供給することが可能となり、これにより、 測定用ポンプセル84を通じて酸化物を高精度に測定す ろことができる.

[0073]図3は、内側ポンプ電極64に対する測定 電極72の配置と、第2室62に導入される被測定ガス の酸素分圧との関係を模式的に表したものである。

[0074]例えば、中央部分が内側ポンプ電極84の 下流方向端部(第2室62側の端部)に一致させて配置 される測定電極72a(d=0)を用いて酸素分圧を測 40 定し、この酸素分圧に基づいて内側ポンプ電極64及び 外側ポンプ電極66間に印加されるポンプ電圧Vp1を 制御すると、前記第1室60に導入される被測定ガスの 導入前の酸素分圧が高い場合には、特性 a l に示すよう に、内側ポンプ電極64の働きによって酸素分圧が速や かに低下した後、所望の目標酸素分圧で第2室82に供 給される。また、前記と同様の条件(d = 0)で被測定 ガスの導入前の酸素分圧を低くした場合には、特性a2 に示すように、内側ポンプ電極64の働きは弱く、酸素

素分圧で第2室62に供給される。

【0075】次に、中央部分が内側ポンプ電極64の下 流方向端部から第1の拡散律速部56側に d = -1.0 mm(t=0, 2mm) だけずらせて配置される測定電 極72bを用いて酸素分圧を測定し、この酸素分圧に基 づいて内側ポンプ電極64及び外側ポンプ電極66間に 印加されるポンプ電圧Vplを制御すると、前記第1室 60に導入される被測定ガスの導入前の酸素分圧が高い 場合には、特性 a 3 に示すように、内側ポンプ電極6 4 の働きによって酸素分圧が速やかに低下するが、前記酸 素分圧の測定点が内側ポンプ電極64の途中の部分にあ るため、前記測定電極72bが配置された位置での酸素 分圧(点A3の酸素分圧)が目標酸素分圧となるように 制御されることになる。この場合、酸素分圧は、測定電 極72bが配置された部分から下流方向における内側ボ ンプ電極64の残余の部分によってさらに低下するた め、目標酸素分圧よりも低い酸素分圧の状態で第2室6 2に供給されることになる。

[0076]なお、前記と同様の条件(d=-1.0m m) で被測定ガスの導入前の酸素分圧を低くした場合に おいても、酸素分圧が点A3で目標酸素分圧となるよう に制御されるため、前記特性 a 3 ほど酸素分圧が低下し ないものの、所望の酸素分圧より低い値となって第2室 62に供給されることになる。

[0077]一方、中央部分が内側ポンプ電極64の下 流方向端部から第2の拡散律速部58側に0、6mm (t=0.2mm)よりも大きくずらせて配置される測 定電極72cを用いて酸素分圧を測定し、この酸素分圧 に基づいて内側ポンプ電極64及び外側ポンプ電極86 間に印加されるポンプ電圧Vplを制御すると、内側ポ ンプ電極64および測定電極72cを含むフィードバッ クルーブにおける応答の遅れにより、発振やゲイン不足 が生じ、第2室62に供給される酸素分圧が結果的に目 標値からはずれるという現象が生じる。

[0078]図4は、第1室60の測定電極72におけ る酸素濃淡電池起電力である電圧Vlを300mVと し、被測定ガスに含まれる〇、の濃度を変化させた場合 の第2室62での酸素濃淡電池起電力を、前記測定電極 72の位置をd = 5 t ~ − 5 t の範囲に設定して測定し た結果を示す。

[0079] この場合、測定電極72の配置位置が内側 ポンプ電極64の下流方向端部よりも第2室62の方向 に離れるにつれて、被測定ガスのO』の濃度が高い場合 に、第2室62内の酸素濃度が増加している(第2室8 2の酸素濃淡電池起電力は低下する)。また、測定電極 72の配置位置が内側ポンプ電極64の下流方向端部よ りも第1の拡散律速部56に向かって内側に入るにつれ て、被測定ガスの〇』の濃度が高い場合に、第2室62 内の酸素濃度が低下している(第2室62の酸素濃淡電 分圧がゆっくりと低下した後、この場合も所望の目標酸 50 池起電力は増加する)。従って、測定電極72が内側ボ ンプ電極64の下流方向端部から第1の拡散律速部56 側に多く変位、例えばd=-3tよりも多く変位していると、第1室60内の酸素分圧が下がり過ぎるため、前記内側ボンプ電極64上で測定対象である酸化物の分解反応が生じてしまうことになる。

(0080) 図5は、高濃度のO。を含む被測定ガスに対する第1室60でのフィードバック制御系80のゲインと、低濃度のO。を含む被測定ガスに対する第1室60でのフィードバック制御系80の発振発生ゲインとを測定した結果を示す。この場合、高濃度のO。を含む被測定ガスでは、特性b1よりも下の領域でゲイン不足が生じ、応答の遅れが発生する。また、低濃度のO。を含む被測定ガスでは、特性b2よりも上の領域で発振が生じ、安定に酸素分圧を設定することができない。従って、これらのことを考慮すると、図5の斜線で示す範囲にゲインを設定することにより、被測定ガスの酸素濃度に依存せず一定のゲインでフィードバック制御を行うことができる。このような制御を可能とする測定電極72の位置は、内側ポンプ電極64の端部に対してd≤3tとなる距離であることが導かれる。20

【0081】以上の結果から、内側ボンブ電極64の下流方向端部(第2の拡散律速部58側の端部)に対する測定電極72の距離 dを−3t≤d≤3tとすることにより、被測定ガスを最適な酸素分圧として、被測定ガス中の目的成分を分解することなく第2室62に供給することができる。

[0082]次に、図6~図8を参照しながら第2の実施の形態に係る酸化物センサ50Bについて説明する。なお、図2と対応するものについては同符号を付してその重複説明を省略する。

[0083] この第2の実施の形態に係る酸化物センサ50Bは、図6に示すように、前記第1の実施の形態に係る酸化物センサ50A(図2参照)とほぼ同じ構成を有するが、測定用ポンプセル84に代えて、測定用酸素分圧検出セル100が設けられている点で異なる。

【0084】この測定用酸素分圧検出セル100は、第 1の固体電解質層52dの上面のうち、前記第2室62 を形づくる上面に形成された検出電極102と、前記第 1の固体電解質層52dの下面に形成された前記基準電 極74と、前記第1の固体電解質層52dによって構成 40 されている。

[0085] この場合、測定用酸素分圧検出セル100 における検出電極102と基準電極74との間に、検出電極102の周りの雰囲気と基準電極74の周りの雰囲気との間の酸素濃度差に応じた起電力(酸素濃淡電池起電力) V2が発生することとなる。

[0086] 従って、前記検出電極102及び基準電極 ばしa」 CuO。等のペロプスカイト構造を有する化台 74間に発生する起電力(電圧)V2を電圧計104に 物、あるいはAu等の触媒活性の低い金属とセラミック スのサーメット、あるいはAu等の触媒活性の低い金属 の酸素分圧、換言すれば、被測定ガス成分(NOx)の 50 とPt 族金属とセラミックスのサーメットで構成される

20

還元又は分解によって発生する酸素によって規定される酸素分圧が電圧値V2として検出される。

【0087】そして、この起電力V2の変化の度合いが、NO濃度を表すことになる。つまり、前記検出電極102と基準電極74と第1の固体電解質層52dとから構成される測定用酸素分圧検出セル100から出力される起電力V2が、被測定ガス中のNO濃度を表すことになる。

[0089]そのため、前記第2の実施の形態に係る酸 20 化物センサ50Bにおいては、被測定ガスを最適な酸素 分圧として、被測定ガス中の目的成分を分解することな く第2室62に供給することができ、測定用酸素分圧検 出セル100を通じて酸化物を高精度に測定することが できる。

[0090]次に、図7を参照しながら第3の実施の形態に係る酸化物センサ50Cについて説明する。なお、図2と対応するものについては同符号を付してその重複説明を省略する。

[0091] この第3の実施の形態に係る酸化物センサ 50 Cは、図7に示すように、前記第1の実施の形態に 係る酸化物センサ50 A とほぼ同様の様成を有するが、 検出電極82を被覆するように、第3の拡散律速部110を構成する多孔質A1.0, 層あるいは多孔質 Zr○ , 層が形成されている点と、補助ポンプセル112が設けられている点で異なる。

【0092】この補助ポンプセル112は、前記第2の固体電解質層52fの下面のうち、前記第2室62を形づくる下面全面に形成された平面ほぼ矩形状の多孔質サーメット電極からなる補助ポンプ電極114と、前記基準電極74と、第2の固体電解質層52f、第2のスペーサ層52e及び第1の固体電解質層52dにて構成されている。

[0093] 前記補助ポンプ電極114は、前記主ポンプセル68における内側ポンプ電極64と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた、あるいは通元能力のない材料を用いている。この場合、例えばしa, CuO。等のペロブスカイト構造を有する化合物、あるいはAu等の触媒活性の低い金属とセラミックスのサーメットで構成されるトア+ 接金属とセラミックスのサーメットで構成される

響がない低い酸素分圧値に制御することができる。

ことが好ましい。更に、電極材料にAuとPt族金属の 合金を用いる場合は、Au添加量を金属成分全体の0. 03~35 v o 1%にすることが好ましい。

【0094】そして、前記補助ポンプセル112におけ る補助ポンプ電極114と基準電極74間に、外部の電 源116を通じて所望の一定電圧Vp3を印加すること により、第2室62内の雰囲気中の酸素を基準ガス導入 空間54に汲み出せるようになっている。

[0095] これによって、第2室62内の雰囲気の酸 素分圧が、実質的に被測定ガス成分(NOx)が還元又 10 は分解され得ない状況下で、かつ目的成分量の測定に実 質的に影響がない低い酸素分圧値とされる。この場合、 第1室60における主ポンプセル68の働きにより、こ の第2室62内に導入される酸素の量の変化は、被測定 ガスの変化よりも大幅に縮小されるため、第2室62に おける酸素分圧は精度良く一定に制御される。

【0096】また、この第3の実施の形態に係る酸化物 センサ500においては、前記定電圧(直流)電源86 は、第3の拡散律速部110により制限されたNOxの 流入下において、測定用ポンプセル84で分解時に生成 20 した酸素のポンピングに対して限界電流を与える大きさ の電圧を印加できるようになっている。

[0097]従って、前記構成を有する第3の実施の形 態に係る酸化物センサ50℃においては、前記第2室6 2内において酸素分圧が制御された被測定ガスは、第3 の拡散律速部110を通じて所定の拡散抵抗の下に、検 出電極82に導かれることとなる。

【0098】ところで、前記主ポンプセル68を動作さ せて第1室60内の雰囲気の酸素分圧をNOx測定に実 質的に影響がない低い酸素分圧値に制御しようとしたと 30 き、換雪すれば、制御用酸素分圧検出セル76にて検出 される電圧V1が一定となるように、フィードバック制 御系80を通じて可変電源70のポンプ電圧Vp1を調 整したとき、被測定ガス中の酸素濃度が大きく、例えば 0~20%に変化すると、通常、第2室62内の雰囲気 及び検出電極82付近の雰囲気の各酸素分圧は、僅かに 変化するようになる。これは、被測定ガス中の酸素濃度 が高くなると、測定電極72上の第1室60の幅方向及 び厚み方向に酸素濃度分布が生じ、この酸素濃度分布が 被測定ガス中の酸素濃度により変化するためであると考 40 えられる。

【0099】しかし、この第3の実施の形態に係る酸化 物センサ50Cにおいては、第2室62に対して、その 内部の雰囲気の酸素分圧を常に一定に低い酸素分圧値と なるように、補助ポンプセル112を設けるようにして いるため、第1室60から第2室62に導入される雰囲 気の酸素分圧が被測定ガスの酸素濃度に応じて変化して **も、前記補助ポンプセル112のポンプ動作によって、** 第2室62内の雰囲気の酸素分圧を常に一定の低い値と することができ、その結果、NOxの測定に実質的に影 50 は分解され得ない状況下で、かつ目的成分量の測定に実

【0100】そして、検出電極82に導入された被測定 ガスのNOxは、該検出電極82の周りにおいて還元又 は分解されて、例えばNO→1/2N, +1/2O, の 反応が引き起こされる。このとき、測定用ポンプセル8 4を構成する検出電極82と基準電極74との間には、 酸素が第2室62から基準ガス導入空間54側に汲み出 される方向に、所定の電圧Vp2、例えば430mV (700℃)が印加される。

【0101】従って、測定用ポンプセル84に流れるポ ンプ電流 Ip2は、第2室62に導かれる雰囲気中の酸 素濃度、即ち、第2室62内の酸素濃度と検出電極82 にてNOxが還元又は分解されて発生した酸素濃度との 和に比例した値となる。

[0102] この場合、第2室62内の雰囲気中の酸素 濃度は、補助ポンプセル112にて一定に制御されてい ることから、前記測定用ポンプセル84に流れるポンプ 電流Ip2は、NOxの濃度に比例することになる。ま た、このNOxの濃度は、第3の拡散律速部110にて 制限されるNOxの拡散量に対応していることから、被 測定ガスの酸素濃度が大きく変化したとしても、測定用 ポンプセル84から電流計88を通じて正確にNOx後 度を測定することが可能となる。

【0103】例えば、補助ポンプセル112にて制御さ れた第2室62内の雰囲気の酸素分圧が0、02ppm で、被測定ガス中のNOx成分たるNO濃度が100p pmとすると、NOが還元又は分解されて発生する酸素 遽度50ppmと第2室62内の雰囲気中の酸素濃度 0、02ppmとの和 (=50、02ppm) に相当す るポンプ電流1p2が流れることとなる。従って、測定 用ポンプセル84におけるポンプ電流値Ip2は、NO がほとんど還元又は分解された量を表し、そのため、被 測定ガス中の酸素濃度に依存するようなこともない。

【0104】次に、図8を参照しながら第4の実施の形 戀に係る酸化物センサ50 Dについて説明する。なお、 図6及び図7と対応するものについては同符号を付して その重複説明を省略する。

[0105] この第4の実施の形態に係る酸化物センサ 50Dは、図8に示すように、前記第2の実施の形態に 係る酸化物センサ50B(図6参照)とほぼ同様の構成 を有するが、第3の実施の形態に係る酸化物センサ50 C (図7参照) と同じように、測定用酸素分圧検出セル 100における検出電極102を被覆するように、第3 の拡散律速部110を構成する多孔質A1。O,層ある いは多孔質ZrO,層が形成されている点と、補助ポン プセル112が設けられている点で異なる。

【0106】この場合、前記第3の実施の形態に係る酸 化物センサ50Cと同様に、第2室62内の雰囲気の酸 素分圧が、実質的に被測定ガス成分(NOx)が還元又 質的に影響がない低い酸素分圧値とされ、第1室60に おける主ポンプセル68の働きにより、この第2室62 内に導入される酸素の量の変化は、被測定ガスの変化よ りも大幅に縮小されるため、第2室62における酸素分 圧は精度良く一定に制御される。

. ()

[0107]従って、被測定ガスの酸素濃度が大きく変 化したとしても、測定用酸素分圧検出セル100から電 圧計104を通じて正確にNOx濃度を測定することが 可能となる。

【0108】ここで、図9の特性図を参照しながら前記 10 第4の実施の形態に係る酸化物センサ50 Dの検出原理 を説明する。

【0109】まず、外部空間のNO濃度が0ppmのと き、第1室60内の雰囲気中の酸素分圧が1.3×10 - ⁷ a t m、即ち、起電力V 1 = 約300 m V に保たれる ように、主ポンプセル68におけるポンプ電圧Vp1を 制御する。

【0110】次に、補助ポンプセル112に印加される 設定電圧Vp3を460mVに設定する。補助ポンプセ ル112の作用により、第2室62内の酸素分圧は、 6、1×10⁻¹¹ atmに制御され、その結果、前記測 定用酸素分圧検出セル100における検出電極102と 基準電極74との間の起電力V2は約460mVとな 3.

【0111】この場合、第2室62内の酸素分圧が6. 1×10⁻¹¹ a t mであっても、第1室60内の酸素分 圧が1、 $3 imes10^{-7}$ atmであるため、可燃ガス成分は 第1室60内で酸化され、NOx感度に影響しない。 【0112】そして、外部空間のNO濃度が徐々に増加 すると、前記検出電極102も上述した測定用ポンプセ 30 分圧の状態で第2室62に供給されることになる。 ル84(図2参照)における検出電価80と同様に、N 〇x還元触媒として機能することから、前記検出電極 1 02では、NOの還元又は分解反応が引き起こされ、該 検出電優102の周りの雰囲気中の酸素濃度が上がり、 これによって、検出電極102と基準電極74間に発生 する起電力V2が徐々に低下することとなる。図9の特 性図では、NO濃度が例えば300ppm、500pp m、1000ppmというように増加するにつれて、電 圧計104にて検出される起電力V2は、300mV、 250mV、220mVというように徐々に低下してい 40

【0113】前記起電力V2の低下の度合いが、NO濃 度を表すことになる。つまり、前記検出電極102と基 準電極74と第1の固体電解質層52dとから構成され る測定用酸素分圧検出セル100から出力される起電力 V2が、被測定ガス中のNO濃度を表すことになる。

[0114]そして、この第4の実施の形態に係る酸化 物センサ50 Dにおいても、前記第1の実施の形態に係 る酸化物センサ50Aと同様に、制御用酸素分圧検出セ ル76における測定電極72の下流方向に沿った幅W

が、第1室60の高さをもとしたとき、w≤5tの範囲 に制限され、前記測定電極72は、前記内側ポンプ電極 64の下流方向端部(第2の拡散律速部58側の端部) から当該測定電極72の中心までの役影距離 d が少なく とも−3t≦dとなる位置に配設され、好適には−3t ≦d≦3 tとなるように配設されている。

24

【0115】ここで、一つの実験例を示す。この実験例 は、実施例と比較例を用意し、これら実施例及び比較例 において、第1室60の測定電極72における酸素濃淡 電池起電力である電圧V1を300mVとし、被測定ガ ス(NO禮度=300ppm)に含まれる〇』の濃度を 変化させた場合に、測定用酸素分圧検出セル100の検 出電極102及び基準電極74間に発生する酸素濃淡電 池起電力V2の変化をみたものである。実験結果を図 1 0に示す。

【0116】ここで、実施例は、前記第4の実施の形態 に係る酸化物センサ50Dにおいて、測定電極72の配 置関係をd=tとしたものであり、比較例は、前記第4 の実施の形態に係る酸化物センサ50Dにおいて、測定 電極72の配置関係をd=-8tにしたものである。

【0117】比較例においては、d=-8 t であって、 制御用酸素分圧検出セル76における酸素分圧の制定点 が、内側ボンプ電極64の途中の部分に位置することに なるため、被測定ガスに含まれる〇。の濃度が増加する と、前記測定電極72が配置された位置での酸素分圧が 目標酸素分圧となるように制御されることになる。この 場合、酸素分圧は、測定電極72が配置された部分から 下流方向における内側ポンプ電極64の残余の部分によ ってさらに低下するため、目標酸素分圧よりも低い酸素

【0118】そのため、比較例においては、図10の一 点鎖線bに示すように、被測定ガスに含まれる〇,の違 度が増加するに従って、制御用酸素分圧検出セル76の 検出電極102及び基準電極74間の酸素濃淡電池起電 力V2は指数関数的に増加することとなる。

【0119】一方、実施例においては、d=tであっ て、制御用酸素分圧検出セル76における酸素分圧の測 定点が内側ボンプ電極64の下流方向端部付近に位置す ることになるため、第1室60内の酸素分圧は、内側ボ ンプ電極64の下流方向端部付近に対応する位置におい て目標酸素分圧となるように制御されることになる。こ の場合、図10の実績aに示すように、前記主ポンプセ ル68にて目標酸素分圧に調整された被測定ガスは、ほ ば目標酸素分圧を維持した状態で第2室62に供給され ることになる。

【0120】このように、前記第4の実施の形態に係る 酸化物センサ50Dにおいても、被測定ガスを最適な酸 素分圧として、被測定ガス中の目的成分を分解すること なく第2室62に供給することができ、測定用酸素分圧 50 検出セル100を通じて酸化物を高精度に測定すること

ができる。

, fi 🛊

【0121】上述した第1~第4の実施の形態に係る酸 化物センサ50A~50Dでは、第1室60に対して第 2室62が1つだけ連結された場合について説明した が、前記第1室60に対して前記第2室62を複数連結 し、種類の異なる複数の酸化物を同時に測定するように 模成することもできる。

【0122】例えば、第2室62に対して、拡散律速部 を介して前記第2室62と同一構成からなる第3室を直 列に連結して設け、前記第2室62に例えば測定用ポン 10 プセルが設けられた場合に、その検出電極82に印加さ れるポンプ電圧Vp2と異なるポンプ電圧を前記第3室 の検出電極に印加することにより、第2室62とは種類 の異なる酸化物の測定を行うことができる。これは、第 2室62に前記測定用ポンプセルに代えて測定用酸素分 圧検出セルを設けた場合も同様である。

【0123】また、前記第2室62や第3室にて測定さ れる酸化物としては、例えば、NO、NO。、CO。、 H₂O、SO。等を掲げることができる。また、前記第 3室は、前記第2室62に対して並列に連結することも 20 【図11】従来技術に係るガス分析装置の断面構成図で できる.

【0124】なお、この発明に係る酸化物センサは、上 述の実施の形態に限らず、この発明の要旨を逸脱するこ となく、種々の構成を採り得ることはもちろんである。 [0125]

[発明の効果] 本発明の酸化物センサによれば、第1室 での被測定ガス中に含まれる酸素分圧を、当該第1室で 測定対象である酸化物を分解させることのない所定の値 に高精度、かつ、安定した状態で制御しながら第2室に 供給することができるため、前記第2室において前記酸 30 化物を極めて高精度に測定することができる。しかも、 小型、かつ、安価な構成で前記酸化物の測定を行うこと ができる。

【図面の簡単な説明】

【図1】第1の実施の形態に係る酸化物センサを示す平 面図である。

【図2】図1におけるA-A糠上の断面図である。

【図3】第1の実施の形態に係る酸化物センサにおい て、内側ポンプ電極に対する測定電極の配置と、第2室 に導入される被測定ガスの酸素分圧との関係を示す説明 40 図である。

【図4】第1の実施の形態に係る酸化物センサにおい て、測定電極の配置位置を変位させた場合における第1 室に導入前の酸素濃度と、第2室で測定した酸素濃淡電 池起電力との関係を示す特性図である。

【図5】第1の実施の形態に係る酸化物センサにおい て、測定電極の配置位置を変位させた場合における低酸 素分圧および高酸素分圧でのフィードバックゲインの関 係を示す特性図である。

26

【図6】第2の実施の形態に係る酸化物センサを示す断 面図である。

【図7】第3の実施の形態に係る酸化物センサを示す断 面図である。

【図8】第4の実施の形態に係る酸化物センサを示す断 面図である。

【図9】第4の実施の形態に係る酸化物センサにおい て、NO邊度の変化に対する測定用酸素分圧検出手段に て発生する起電力の変化を示す特性図である。

【図10】第4の実施の形態に係る酸化物センサにおい て、被測定ガス(NO濃度=300ppm)に含まれる O。の濃度を $0\sim1.8\%$ に変化させたときの測定用酸素 分圧検出セルにて発生する起電力の変化を示す特性図で あり、実練aは実施例の特性を示し、一点鎖線bは比較 例の特性を示す。

ある.

【符号の説明】

114…補助ポンプ電極

5 0 A~5 0 D…酸化物センサ	52a…第1の
基板層	
5 2 b…第2の基板層	52 c…第1の
スペーサ層	
52 d…第1の固体電解質層	5 2 e …第2の
スペーサ層	
52 f…第2の固体電解質層	5 4 …基準ガス
導入空間	
56…第1の拡散律速部	58…第2の拡
散律速部	
60…第1室	62…第2室
6 4 …内側ポンプ電極	6 6 …外側ポン
プ電極	
68…主ポンプセル	70…可変電源
72…測定電極	74…基準電極
76…制御用酸素分圧検出セル	8 0 … 検出電極
82…測定用ポンプセル	88…ヒータ
100…測定用酸素分圧検出セル	102…検出電
極	
110…第3の拡散律速部	112…補助ポ
ンプセル	

[図3]

[図10]

[図11]

[図8]

F1G.8

