THINGS TO REMEMBER ALGEBRA

I. M. CRAIG

ABSTRACT. These are definitions, facts, theorems, or likewise that I feel are particularly important or difficult to remember.

1. Category Theory

Categories.

Definition. A category C consists of:

- a class $obj(\mathcal{C})$ of **objects**;
- to each pair of objects A, B, a class hom(A, B) of **morphisms**, denoted $f: A \to B$;
- to each triple of objects A, B, C, a function

$$\circ : \text{hom}(B, C) \times \text{hom}(A, B) \to \text{hom}(A, C)$$

defined by $(g, f) \mapsto g \circ f$ called the **composite** of f and g;

all subject to the associativity and identity axioms:

- for all morphisms $f: A \to B$, $g: B \to C$, $h: C \to D$, we have $h \circ (g \circ f) = (h \circ g) \circ f$;
- for all objects B in $obj(\mathcal{C})$ there is a morphism $\mathbb{1}_B \colon B \to B$ such that for any $f \colon A \to B$ and $g \colon B \to C$ we have $\mathbb{1}_B \circ f = f$ and $g \circ \mathbb{1}_B = g$.

Definition. A morphism $f: A \to B$ is an **equivalence** if there is a morphism $g: B \to A$ such that $g \circ f = \mathbb{1}_A$ and $f \circ g = \mathbb{1}_B$. The objects A and B are **equivalent**.

Definition. An object A in a category C is **universally attracting** (resp. universally repelling) if for every object $B \in \text{obj}(C)$ there is a unique morphism $B \to A$ (resp. $A \to B$).

- ► Exercise. State which type of morphisms are equivalences in each of the categories below.
- ▶ Exercise. Show universally attracting (resp. repelling) elements are unique up to equivalence.
- ▶ Exercise. Find the universally attracting and repelling objects in each of the categories below.

Examples of Categories.

- The category Set whose objects are sets and whose morphisms are functions.
- The category Grp, Rng, or Mod_R whose objects are groups, rings, or R-modules and whose morphisms are group homomorphisms, ring homomorphisms, or R-linear maps.
- The category Top of topological spaces with continuous functions.
- The category hTop of topological spaces with continuous functions up to homotopy (note that the morphisms here are not functions, but equivalence classes of functions).

Products and Coproducts.

Definition. Let C be a category with $\{A_i\}_{i\in I}$ a family of objects. A **product** for the family is an object P together with a family of morphisms $\{\pi_i \colon P \to A_i\}_{i\in I}$ such that whenever Q has a family of morphisms $\{\varpi_i \colon Q \to A_i\}_{i\in I}$ there is a unique morphism $\varphi \colon Q \to P$ such that $\pi_i \circ \varpi_i = \pi_i$ for each $i \in I$.

Examples of (Co)Products.

- Let \mathcal{C} be the category whose objects are the bounded subsets of the \mathbb{R} and whose morphisms are inclusions $A \hookrightarrow B$ for bounded subsets A and B of \mathbb{R} with $A \subseteq B$. The intersection of countably many objects in \mathcal{C} forms a product in \mathcal{C} ; there are no coproducts in \mathcal{C} .
- Let \mathcal{D} be the category whose objects are positive integers and whose morphisms $p \to q$ exist iff p divides q. The greatest common divisor of countably many objects in \mathcal{D} forms a product in \mathcal{D} ; the least common multiple of countably many objects in \mathcal{D} forms a coproduct.
- Let \mathcal{E} be the category whose objects are finite groups. It is easy to see that the product of finitely many objects in \mathcal{E} exists in \mathcal{E} , however, the coproducts are not necessarily contained in \mathcal{E} . If we restrict \mathcal{E} to finite abelian groups, the coproduct exists, and is equal to the product.
- ▶ Exercise. Show the (co)products in the above examples are indeed (co)products. If (co)products do not exist in the given category, then provide a counterexample.
- ▶ Exercise. Write out the definition for coproducts by switching all arrows in the definition for products. Draw a diagram similar to the one above.
- ▶ Exercise. Show that (co)products are unique up to equivalence.

Functors.

Definition. A covariant functor T between categories \mathcal{C} and \mathcal{D} is a pair of functions assigning each object $A \in \text{obj}(\mathcal{C})$ an object $T(A) \in \text{obj}(\mathcal{D})$ and each morphism $f \colon A \to B$ in \mathcal{C} a morphism $T(f) \colon T(A) \to T(B)$ in \mathcal{D} such that

- $T(\mathbb{1}_A) = \mathbb{1}_{T(A)}$ for all objects A in C;
- $T(g \circ f) = T(g) \circ T(f)$ for all morphisms f, g in \mathcal{C} with $g \circ f$ defined.

By reversing all arrows, we obtain the definition for **contravariant functors**.

Definition. A functor $T: \mathcal{C} \to \mathcal{D}$ induces a function on the morphisms of \mathcal{C} and \mathcal{D} , denoted $F_{XY}: \operatorname{Hom}(X,Y) \to \operatorname{Hom}(F(X),F(Y))$.

If this map is injective, we say F is **faithful**. If it is surjective, we say F is **full**. A functor which is full and faithful is **fully faithful**.

Definition. A concrete category is a category with a faithful functor to the Set category.

Definition. Fix an object A in a category C. Define $F_A : \mathcal{C} \to \operatorname{Set}$ by

$$F_A(C) = \text{hom}(A, C), \quad F_A(f) \colon \text{hom}(A, B) \to \text{hom}(A, C)$$

where $F_A(g) = f \circ g$ for all $f: B \to C$. This is called the **covariant hom functor**.

Natural Transformations.

Definition. Given covariant functors F and G between categories C and D, a **natural transformation** α from F to G is a family of morphisms $\{\alpha_C \colon F(C) \to G(C)\}_{C \in \text{obj}(C)}$ in the category D making

$$F(C) \xrightarrow{\alpha_C} G(C)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(D) \xrightarrow{\alpha_D} G(D)$$

commute for each $f \in \text{hom}(C, D)$. If each α_C is an equivalence, we say α is a **natural equivalence**.

Free Objects.

Definition. In a concrete category \mathcal{C} , an object $X \in \text{obj}(\mathcal{C})$ is **free** if there is a subset $B \subset X$ such that any function from B to an object $Y \in \text{obj}(\mathcal{C})$ extends uniquely to a morphism $X \to Y$.

The set B is called a **basis** for X in C. This extension property is called the **universal property** (succinctly, an object is free if it has a subset satisfying the universal property).

Examples of Free Objects.

- In the category of groups, the free objects are called free groups; we will construct them below.
- Restricting to abelian groups, the free objects are (up to isomorphism) direct products of Z's.
- The last example can be generalized to the category of *R*-modules, in which the free objects are (up to isomorphism) direct products of *R*'s.

2. Groups

Normal Subgroups.

Conjugation.

Definition. Let G be a group with $a, b, x \in G$. The **conjugate** of a by x is the element $^xa = xax^{-1}$. We say that a and b are conjugate if $^xa = b$ for some $x \in G$.

Definition. The relation $a \sim b$ if a is conjugate to b forms an equivalence relation. We call the equivalence class containing a the **conjugacy class** of a, denoted \overline{a} .

Definition. The **automorphism group** of a group G, denoted Aut(G), is the set of all automorphisms of G. The set of all automorphisms which arise as conjugation by a fixed element form the **inner automorphism group** of G and is denoted Inn(G).

- ▶ **Exercise**. Prove the map \cdot : $G \times G \to G$ given by $g \cdot x = {}^xg$ defines a group action of G on itself.
- ▶ **Exercise**. Prove the map $\alpha_x(a) = {}^xa$ is an automorphism.
- \blacktriangleright Exercise. Prove Inn(G) is a normal subgroup of Aut(G).

Characteristic Subgroups.

Definition. The **center** of a group G, denoted Z(G), is the set of all elements which commute with every element of G, i.e. $Z(G) = \{z \in G \mid zg = gz, \forall g \in G\}$.

Definition. Given a subset S of a group G, the subgroup generated by S is the smallest subgroup containing S, equivalently, the intersection of all subgroups containing S. The **normal subgroup generated by** S is the smallest normal subgroup containing S.

Definition. The **commutator subgroup** of a group G, denoted G' or [G, G], is the subgroup generated by all **simple commutators** in the group, i.e. the elements $[a, b] = aba^{-1}b^{-1}$ such that $a, b \in G$. A product of simple commutators is simply called a **commutator**.

Definition. A subgroup H < G is **characteristic** if $\alpha(H) = H$ for every automorphism α of G.

Definition. The quotient group G/G' is called the **abelianization** of G.

- ▶ *Exercise*. Prove $[a, b]^{-1} = [b, a]$ and $^x[a, b] = [^xa, ^x, b]$.
- **Exercise.** Prove if $f: G \to H$ is a homomorphism, then f([a,b]) = [f(a), f(b)].
- ▶ Exercise. Prove every characteristic subgroup is normal.
- \blacktriangleright Exercise. Prove G' and Z(G) are characteristic, and therefore normal.
- ▶ **Exercise**. Prove G/N is abelian if and only if $G' \subseteq N$.

Normalizer and Core.

Definition. The **normalizer** of a subgroup H < G is a subgroup $N_G(H) = \{g \in G \mid gHg^{-1} = H\}.$

Definition. The **core** of a subgroup H < G is the set $\bigcap_{x \in G} x H x^{-1}$.

- ▶ **Exercise**. Prove every subgroup H is normal in $N_G(H)$.
- ▶ Exercise. Prove H is normal if and only if $N_G(H) = G$.
- \blacktriangleright Exercise. Prove the core of H is the largest normal subgroup in G contained in H.

Simple Groups.

Definition. A group is **simple** if it has no proper, nontrivial normal subgroups.

Theorem. (Abel's Theorem) The alternating group A_n is simple for all $n \neq 4$.

Group Actions.

Definition. A group action of a group G on a set X is a function $G \times X \to X$ denoted $(g, x) \mapsto g \cdot x$ such that for all $x \in X$ and $g_1, g_2 \in G$ we have

$$1 \cdot x = x$$
, and $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$.

We then say that G acts on X.

Definition. A group action of a group G on a set X is a homomorphism $\alpha \colon G \to \operatorname{Sym}(X)$.

Definition. A group action $\alpha \colon G \to \operatorname{Sym}(X)$ is **faithful** if it is injective.

Definition. The **orbit** of an element $x \in X$ is the subset $Gx = \{g \cdot x \mid g \in G\} \subset X$.

Definition. The stabilizer (isotropy subgroup) of $x \in X$ is a subgroup $G_x = \{g \mid g \cdot x = x\} < G$.

Definition. If $G_x = G$ then the orbit Gx is a **fixed point**; conversely if $G_x = \{1\}$ then Gx is a **principal orbit**. The set of all fixed points is denoted X^G . If this set is trivial, the action is **fixed-point-free**. If all orbits are principal, the action is **free**.

- ▶ Exercise. Prove the above definitions of a group action are equivalent.
- ▶ Exercise. Show orbits partition X (i.e. $x \sim y$ iff $g \cdot x = y$ for some $g \in G$ is an equivalence).
- ▶ Exercise. Show the stabilizer of a group is generally not normal.
- ▶ Exercise. Prove stabilizers of elements in the same orbit are conjugate (i.e. $G_{g\cdot x} = {}^gG_x$).
- ▶ Exercise. Prove free implies fixed-point-free, but the converse dose not generally hold.

Theorem. (Orbit Stabilizer Theorem) Given a group action of a group G on a set X, the cardinality of each orbit is the index of the corresponding stabilizer, i.e. $|Gx| = [G:G_x]$ for all $x \in X$.

Corollary. (Class Equation) For any group action of a finite group G on a finite set X, we have

$$|X| = |X^G| + \sum [G:G_x],$$

where the sum is taken over a choice of elements representing each distinct, nontrivial orbit.

Examples of Group Actions. The most important actions in Sylow Theory are of a group G acting on some substructure of itself. In the following examples, let G be a group and H a subgroup.

- (1) The action of G on itself by translation is defined by $g \cdot x = gx$. The action is faithful. The orbits are all principle, and the stabilizers are all trivial. The action is free, and therefore fixed-point-free. The class equation says nothing illuminating.
- (2) The action of G on itself by conjugation is defined by $g \cdot x = gxg^{-1}$. The orbits are $Gx = \overline{x}$, and the stabilizers are $G_x = Z(x)$. The fixed points form the center Z(G). By the OST

$$|\overline{x}| = |G:Z(x)| \implies |\overline{x}| \text{ divides } |G|.$$

The class equation gives

$$|G| = |Z| + |G:Z_1| + |G:Z_2| + \dots$$

where Z_1, Z_2, \ldots are the centralizers of each of the nontrivial conjugacy classes of G.

(3) The action of G on Sub(G) by conjugation is defined by $g \cdot H = gHg^{-1}$. The orbits are $GH = \overline{H}$, and the stabilizers are $G_H = N_G(H)$. The fixed points are normal subgroups. By the Orbit Stabilizer Theorem

$$|\overline{H}| = |G: N_G(H)| \implies |\overline{H}| \text{ divides } |G|.$$

(4) The action of K < G on the cosets G/H by translation is defined by $k \cdot gH = (kg)H$. Determine necessary and sufficient conditions for gH to be a fixed-point under this action. What does this imply when K = G? If K = G, the kernel of this action is given by

$$\{g \in G | g(xH) = xH \text{ for all } x \in G\} = \bigcap_{x \in G} xHx^{-1} =: \operatorname{core}(H).$$

The core is the largest normal subgroup of G contained in H.

Theorem. Let G be a group of order n, and let H be a subgroup of index ℓ . If ℓ is the smallest prime divisor of n, then $H \triangleleft G$. If n does not divide ℓ !, then $\{1\} \neq core(H) \triangleleft G$.

Sylow Theory.

Definition. A group G of order p^m for some prime p and some integer $m \ge 1$ is called a **p**-group. A p-group which is a subgroup of a finite group G is called a **p**-subgroup; in particular, if the subgroup has order the largest power of p that divides |G|, it is a **Sylow p**-subgroup. If p is a prime divisor of $|G| < \infty$, we denote the set of Sylow p-subgroups of G by $\operatorname{Syl}_p(G)$. In addition, we denote $n_p(G) = |\operatorname{Syl}_p(G)|$.

Theorem. (Sylow Theorems) For a finite group G and a prime p,

- (I) G has at least one Sylow p-subgroup P (i.e. $n_p \ge 1$);
- (II) any two Sylow p-subgroups are conjugate (i.e. $Syl_p(G) = \overline{P}$);
- (III) n_p divides |G| and $n_p \equiv_p 1$ (i.e. $n_p \mid \ell$ where $|G| = p^m \ell$ with $p \nmid \ell$).

Lemma. If a finite p-group P acts on a finite set X, then $|X| \equiv_p |X^P|$.

Corollary. (Burnside's Theorem) Finite p-groups have nontrivial center.

Theorem. (Cauchy's Theorem) If a prime p divides the order of a group, then the group contains an element of that order.

▶ Exercise. Use Burnside's Theorem and the Correspondence Theorem to show (by induction) that any p-group of order p^k contains subgroups of order p^m for all $0 \le m \le k$.

Application of Sylow Theorems.

Definition. If N and Q are groups, a group G satisfying

$$1 \to N \hookrightarrow G \to Q \to 1.$$

line is called an extension of Q by N.

▶ Exercise. Two extensions G and G' of Q by N are equivalent if there is a homomorphism $f: G \to G'$ such that the diagram below commutes. Show such an f is an isomorphism.

▶ Exercise. Relate simple groups with the extension question: when does an extension G of Q by N exist? (hint: consider a group which is not simple first)

6

- ▶ Exercise. Prove the following 6 propositions (proofs are provided if necessary):
- (1) A finite abelian group G is simple if and only if it has prime order.

 Proof. Suppose first that G has prime order. Then the only subgroups are the trivial group and G, so G is simple. For the sufficiency, suppose |G| = pn for some integer $n \ge 1$. By Cauchy's Theorem, there is an element of order p. The subgroup generated by this element is nontrivial, proper, and normal (from G abelian). Therefore, G is not simple.
- (2) If G is nonabelian of prime-power order, then G is not simple.

 Proof. By Burnside's Theorem, the center is nontrivial. The center is also proper (since G is nonabelian) and normal. Thus, G is not simple.
- (3) If G is nonabelian and |G| = pq for primes p and q, then G is not simple. <u>Proof.</u> Without loss of generality, assume that p < q. Then by Sylow Theorem (III) we have $n_q|p$, meaning either n_q is 1 or p. However, $n_q \equiv 1 \pmod{q}$, so only $n_q = 1$ is possible.
- (4) If G is nonabelian and $|G| = p^2q$ for primes p and q, then G is not simple. Proof. Suppose first that q < p. Then by Sylow (III) we have $n_p|q$ and $n_p \equiv 1 \pmod{p}$. The only possibility is $n_p = 1$, as desired. Conversely, suppose that p < q. By Sylow (III) we have $n_q|p^2$. If $n_q = 1$, we are done. If $n_q = p$, then by Sylow (III) $q \equiv 1 \pmod{p}$. So q divides p-1, contradicting the assumption p < q. If $n_q = p^2$, then there are p^2 -many subgroups of prime order q. Away from the identity, these subgroups are disjoint because the intersection of any pair of subgroups (itself a subgroup) has order which divides the order of either subgroup (which is prime). Furthermore, the nontrivial elements of these subgroups have order q because q is prime. Thus there are $p^2(q-1)$ many elements of order q in G, leaving only room for one Sylow p-subgroup, i.e. $n_p = 1$.
- (5) If G is nonabelian and |G| = pqr for primes p, q, and r, then G is not simple. Proof. Without loss of generality, suppose p < q < r. We utilize the "counting elements" technique. Consider n_r , which is any of 1, p, q, or pq. Since $n_r \equiv 1 \pmod{r}$, either $n_r = 1$ or $n_r = pq$. If $n_r = 1$, we are done, so assume $n_r = pq$. As in (4.) above, there must be pq(r-1) many elements of order r in the group. Consider next n_q , which is any of 1, p, r, or pr. Since $n_q \equiv 1 \pmod{q}$, the case $n_q = p$ is omitted. If $n_q = 1$, we are done. So n_q is either pr or r. Assume first that $n_q = pr$. Then there are pr(q-1) many elements of order q. In total, the group contains

$$pq(r-1) + pr(q-1) = pqr + (pqr - pr - pq) = pqr + p(qr - r - q)$$

many elements of order q or r, which exceeds the order of the group. So assume $n_q = r$. Then there are r(q-1) many elements of order q. Note that this is not sufficiently many to surpass the number of elements in the group, so consider n_p , which is any of 1, q, r, or qr. If $n_p = 1$, we are done. In any of the remaining cases, $n_p \geqslant q$, so there are at least q(p-1) many elements of order p in the group. In total, there are

$$pq(r-1) + r(q-1) + q(p-1) = pqr - pq + qr - r + pq - q$$

= $pqr + qr - r - q$

many elements of order p, q, or r, which again exceeds the order of the group. We conclude that one of n_p , n_q , or n_r must have been 1, implying that G is not simple.

(6) If |G| = n has nontrivial, prime divisor p and $n \nmid n_p!$, then G is not simple. <u>Proof.</u> Let $X = \operatorname{Syl}_p(G)$, and consider the kernel of the group action $\alpha \colon G \to \operatorname{Sym}(X)$ given by conjugation of X by G. We are done if $\ker(\alpha)$ is nontrivial and proper since the kernel is always normal. It cannot be trivial by the first isomorphism theorem. On the other hand, if it is all of G, then any $P \in X$ satisfies $gPg^{-1} = P$ for all $g \in G$. In particular, P ensures G is not simple.

- ▶ Exercise. Classify all simple, finite, abelian groups (answer: cyclic of prime order).
- ▶ Exercise. Classify all simple, finite, nonabelian groups of order below 60.
- ▶ Exercise. Prove for a prime p, any group of order p^2 is abelian.
- ▶ **Exercise.** If $|G| = p^n q$, with p > q primes, G contains a unique normal subgroup of index q.
- ▶ Exercise. Prove every group of order 12, 28, 56, and 200 must contain a normal Sylow subgroup, and is consequently not simple.

Free Groups.

Definition. Let F be a group and X a subset of F. We say F is a **free group on** X if every function $\varphi \colon X \to G$ to a group G extends uniquely to a homomorphism $\Phi \colon F \to G$.

$$\begin{array}{c}
F \\
\uparrow \\
X \xrightarrow{\varphi} G
\end{array}$$

Definition. A group F is **free** if it is free on some subset X, called a **basis** for F.

Theorem. Free groups exist.

<u>Proof.</u> Let X be a set. Define $X^{-1} = \{x^{-1} \mid x \in X\}$, where the exponent is (for now) only symbolic. The elements of $X \sqcup X^{-1}$ are *letters*. A *word* ω on X is a finite string of letters

$$\omega = x_1^{\varepsilon_1} x_2^{\varepsilon_2} \dots x_n^{\varepsilon_n},$$

where $x_i \in X$ and $\varepsilon_i = \pm 1$. The value $n \ge 0$ is called the **length of the word**. The **empty word** is the word with length 0. Let $\Omega(X)$ be the set of all words on X. We **multiply** words by juxtaposition, and **invert** by running backwards with inverse letters (i.e. exponent changes polarity). A **subword** us a connected substring. We say a word is **reduced** if it has no subwords xx^{-1} or $x^{-1}x$ for some $x \in X$. Define an **elementary operation** on a word ω by inserting/deleting a subword of the form xx^{-1} or $x^{-1}x$ anywhere in ω . Two words are **related** if they differ by finitely many elementary operations. This defines an equivalence relation \sim on $\Omega(X)$. We define the set

$$F(X) = \Omega(X) / \sim$$

and a multiplication of equivalence classes by $[\omega][\eta] = [\omega \eta]$. To see that this operation is well-defined, consider the following Lemma.

Lemma. Every word ω is equivalent to a unique reduced word $\overline{\omega}$, and $\overline{\omega}\overline{\eta} = \overline{\omega} \overline{\eta}$.

Theorem. The set F(X) defined above is free on X.

- ▶ Exercise. Prove this theorem by (1) showing F(X) is a group, and (2) any function $fX \to G$ extends (linearly) to homomorphism $F(X) \to G$.
- ▶ **Exercise**. Show that F(X) is free and nonabelian if $|X| \ge 2$.

Theorem. Every group G is isomorphic to the quotient of a free group.

▶ Exercise. Prove this by considering a generating set X for G along with its inclusion into G.

Group Representations.

Definition. A group is **finitely-generated** if there exists a finite set of generators.

Definition. A group is **finitely presented** if there exists a finite generating set X such that $F(X)/N \cong G$, where N is normally generated by finitely many elements in F(X). The elements of the generating set of X are called **generators**, and those of N are called **relations**.

Definition. Suppose G is finitely presented with generators x_1, \ldots, x_p relations r_1, \ldots, r_q . We write $G = \langle x_1, \ldots, x_p \mid r_1, \ldots, r_q \rangle$

meaning $G \cong (x_1, \ldots, x_p)/\langle r_1, \ldots, r_q \rangle$, and call this a (finite) **presentation** of G.

There are oftentimes many ways of presenting a group, which can lead to confusion. In addition, we might want to claim that a given representation is a recognizable group. The following theorems help simplify these issues (the latter is not super useful in practice).

Theorem. (van Dyck's Theorem) If $G = \langle x_1, x_2, \dots | r_1, r_2, \dots \rangle$ and H is a group with generators y_1, y_2, \dots such that $r_i(y_1, y_2, \dots) = 1 \in H$, there exists an epimorphism $G \to H$ with $f(x_i) = y_i$.

Theorem. (Tietze's Theorem) If G has two different finite presentations $\langle x_1, \ldots, x_p | r_1, \ldots, r_q \rangle$ and $\langle y_1, \ldots, y_m | s_1, \ldots, s_n \rangle$, then one can pass from one to the other by **elementary Tietze** operations: add/remove generator; add/remove relation which are consequence of remaining ones.

▶ Exercise. Show that $G = \langle x, y | x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1} \rangle$ is isomorphic to Q_8 (Hint: Use van Dyck's Theorem, and prove the group has order 8 by arguing each element can be written a^nb^m for restricted values of m, n).

Miscellany.

Lemma. (Product Recognition) If $H, K \triangleleft G$ with $H \cap K = \{1\}$ and HK = G, then $G \cong H \times K$.

Proposition. If S, T < G, then ST < G if and only if ST = TS setwise. Moreover, if S and T are normal, then ST is normal, as well.

Proposition. If S, T < G and ST < G, then $|ST| = |S||T|/|S \cap T|$.

3. Rings

Definition. If I, J < R, the sets I + J and IJ are defined by

$$I + J = \{a + b \mid a \in I, b \in J\}$$

$$IJ = \{a_1b_1 + \dots + a_nb_n \mid a_i \in A, b_i \in B, n \in \mathbb{N}\}.$$

Proposition. If I, J < R, then the sets $I \cap J$, I + J, and IJ are also ideals in R. Moreover,

- (a) I + J is the smallest ideal containing both I and J;
- (b) $IJ \subset I \cap J$, and if R = I + J is commutative with identity, $IJ = I \cap J$.

For rings S < R with $A \subset R \setminus S$, recall that S[A] is the smallest ring containing the subset $S \cup A \subset R$. Similarly, S(A) denotes the smallest field containing this subset. As we are "adding" the elements A to S, we often refer to S(A) as the ring S adjoin the set A. One can show that R[u] is isomorphic to R[x], the polynomial ring over R; similarly, R(u) is isomorphic to R(x), the field of rational polynomials over R.

4. Fields

Definition. Let L be a field with $K \subseteq L$ a subfield. We call L a **field extension** of K, written L/K. For $u \in L \setminus K$, the field extension K(u)/K is called a **simple extension** of K.

Definition. Given a field extension L/K, we can consider L as a K-vector space; the dimension of this vector space is called the **degree** of the field extension and is denoted [L:K]. According to the cardinality of this number, we say the extension of L over K is (in)finite.

Properties:

- the degree of an extension L/K is 1 if and only if L=K;
- given fields $K \subset L \subset M$, we have [M:K] = [M:L][L:K].

Definition. Let L/K be a field extension. An element in $L \setminus K$ is **algebraic** over K if it is a zero of some nonzero polynomial in K[x]; otherwise, it is **transcendental**. A simple extension K(u) is an **algebraic extension** if u is algebraic over K; otherwise it is a **transcendental extension**.

Definition. A field F is algebraically closed if

Theorem. Let L/K be a field extension and $u \in L$. Then:

- if u is transcendental over K, then $K[u] \cong K[x]$ and $K(u) \cong K(x)$;
- if u is algebraic over K, then there exists a unique, monic, irreducible polynomial $m_u \in K[x]$ such that each $f \in K[x]$ with f(u) = 0 is a multiple of m_u and $K[u] \cong K(u)$.

Corollary. Transcendental extensions are infinite; finite extensions are algebraic.

Definition. Let M and L be fields containing a field K. Then LM = L(M) = M(L) is a field extension over K and L and M.

Theorem. Consider extensions ML/K, M/K, and L/K having degrees n, m, and ℓ .

$$\begin{array}{c|c}
ML \\
r \\
\downarrow & \\
L \\
\downarrow & \\
K
\end{array}$$

Then $n \leq m\ell$, or equivalently $s \leq \ell$, or equivalently $r \leq m$.

Definition. For a field extension M/K, the **Galois group** of N over K is the group $\operatorname{Gal}(M:K)$ of automorphisms that leave every element of K fixed. The **fixer** of an intermediate field L is the set $L' \subseteq G$ of automorphisms in $\operatorname{Gal}(M:K)$ which fix L pointwise. Conversely, the **fixed field** of the subgroup H < G is the subset $H' \subset M$ of elements fixed by each element in H.

Figure 1. The extreme cases of the correspondence, which are for the most part as desired.

Definition. The **closure** of an intermediate object is its double prime. An intermediate object is **closed** if it is equivalent to its closure. We say M is **normal** over K if Gal(M:K)' = K.

Properties:

- let L and M be intermediate fields of N/K with [M:L] = n, then $[L':M'] \leq n$;
- let $H \subset J$ be subgroups of G = Gal(N:K) with [H:J] = n, then $[J':H'] \leq n$;
- if L is closed, then also M is closed; moreover, [L':M'] = n;
- if H is closed, then also J is closed; moreover, [H':J']=n;
- all finite subgroups of G are closed;
- if M is normal over K, then M is normal over any intermediate field L with [L:K] finite.

Theorem. (Fundamental Theorem of Galois Theory) Let M be a normal, finite-dimensional extension of K, and let G = Gal(M:K). There is a one-to-one correspondence between the subgroups of G and the intermediate fields of M and K, implemented by the priming operation. Moreover, the relative degrees are preserved, and in particular, [M:K] = |G|.

Theorem. Given a finite group G of automorphisms of a field M, the field extension of M over the fixed field of G is normal, finite-dimensional, and has Galois group G.

Definition. For fields $K \subset M \subset L$, we say that L is **stable** relative to K and M if every automorphism of M/K sends L into (and consequently onto) itself.

Properties:

- stable intermediate fields correspond to normal subgroups;
- the closure of a normal subgroup is normal; the closure of a stable intermediate field is stable;
- if M is normal over K and L is stable relative to K and M, then L is normal over K;
- if M is normal over K and $f \in K[x]$ is irreducible with root $u \in M$, then f factors over M into distinct linear factors;
- if L is normal and algebraic over K, then L is stable (relative to any extension $M \supset L$);
- if L is a stable intermediate field of M/K, then G/L' is isomorphic to the group of all automorphisms of L/K that are extendible to M, where G = Gal(M:K).

Theorem. (Fundamental Theorem of Galois Theory, cont'd) In the correspondence, a field L is normal over K if and only if the corresponding subgroup is normal in G = Gal(M:K), and in this case, G/H is the Galois group of L/K.

Theorem. Let f be irreducible in K[x]. Then there exists a field containing K and a root of f. This field is unique up to isomorphism of K.

Definition. Let $f \in K[x]$. We say that M is a **splitting field** of f over K if f factors completely in M and $M = K(u_1, \ldots, u_n)$, where u's are the roots of f. We say M is a splitting field over K if there exists a polynomial f for which M is a splitting field of f over K.

Definition. The formal derivative of a polynomial $f = \sum a_i x^i$ is a polynomial $f' = \sum i a_i x^{i-1}$. Properties:

- each $f \in K[x]$ has a splitting field, which is unique up to isomorphism of the base field;
- if $f \in K[x]$ and $a \in K$, then $(x-a)^2$ divides f if and only if x-a divides f and f';

Definition. An irreducible polynomial f in K[x] is **separable** if, in some splitting field over K, it factors into distinct linear factors. An element u that is algebraic over K is said to be **separable** over K if its irreducible polynomial is separable over K. A field L that is algebraic over K is **separable** over K if every element is separable over K.

Properties:

- if f is irreducible in K[x], the following are equivalent:
 - in every splitting field if f over K, f factors into distinct linear factors;
 - f is separable;
 - $f' \neq 0$;
- if M is a finite extension of K, the following are equivalent:
 - M is normal over K;
 - M is separable over K and M is a splitting field over K;
 - M is a splitting field over K of a polynomial whose irreducible factors are separable;
- if L is a finite extension of K, the following are equivalent:
 - L is a splitting field over K;
 - whenever an irreducible polynomial over K has a root in L it factors completely in L;

Definition. Let $K \subset L \subset M$ with L/K finite. We say M is the **split closure** of L if it is the smallest splitting field over K containing L. If L is separable, we say M is the **normal closure**.

Theorem. Every finite extension has a split closure, which is unique up to isomorphism fixing L. If L is separable, M is normal over K.

Properties:

- for characteristic 0, normal is the same as splitting field;
- for characteristic p, normal is splitting field plus separability.

5. Modules

Basics.

Definition. An R-module M is a vector space whose scalars have been replaced by a ring R.

▶ Exercise. A module is simple if its only submodules are M and $\{0\}$. Classify the simple \mathbb{Z} -submodules.

Definition. An R-linear map or R-module homomorphism is a function $f: M \to N$ satisfying f(rm+n) = rf(m) + f(n) for every $m, n \in M$ and $r \in R$. The set of all R-linear maps from M to N is denoted $\operatorname{Hom}_R MN$; in the case M = N, we write $\operatorname{End}_R M$ for endomorphism.

Definition. The **quotient** R-module of an R-module M by a submodule N is the module of cosets of N in M under the operations

$$(a+N) + (b+N) = (a+b) + N$$
 and $r(a+N) = ra + N$,

for all $a, b \in M$ and $r \in R$.

- ▶ **Exercise**. Show that the kernel of an R-linear map $f: M \to N$ is an R-submodule of M, and if this submodule is trivial, then f is injective.
- ▶ *Exercise*. Find a positive integer k such that $Hom_{\mathbb{Z}}(\mathbb{Z}_m, \mathbb{Z}_n) \cong \mathbb{Z}_k$.
- \blacktriangleright Exercise. Show the analogous isomorphism theorems hold for quotients of R modules.

Definition. The **direct sum** of R-modules M and N is the module $M \oplus N = \{(m, n) | m \in M, n \in N\}$ with pointwise operations. We often write $M^n = M \oplus \cdots \oplus M$ for n-many copies of M.

Definition. An element m of an R-module M is **torsion** if there exists a nonzero $r \in R$ such that rm = 0. An R-module M is a **torsion module** if each of its elements are torsion.

Definition. An R-module M is **free** if there exists a subset B of M, called a **basis**, such that every element in M can be written uniquely as a finite linear combination of elements in B.

Definition. For a subset S of an R-module M, the submodule $\langle S \rangle$ generated by S is the smallest submodule of M containing S (equivalently, the intersection of all submodules containing S), or constructively

$$\langle S \rangle = \Big\{ \sum r_i s_i \mid r_i \in R, s_i \in S \Big\}.$$

If $S = \{s\}$, then $M = \langle s \rangle$ is a **cyclic R-module**. If S is a finite set, then M is **finitely generated**.

- ▶ Exercise. Prove an R-module M is free on $B \subset M$ if and only if M is isomorphic to $R^{|B|}$.
- ▶ Exercise. Prove an R-module M is free on $B \subset M$ if and only if any function from B to an R-module N extends uniquely to an R-linear map $M \to N$.
- ▶ **Exercise**. Prove an R-module M is cyclic if and only if $M \cong R/J$ for some $J \triangleleft R$.
- ▶ Exercise. Find an example and a counterexample of a free module and a torsion module.
- ▶ Exercise. Prove Schur's Lemma: Let M and N be simple R-modules and $f: M \to N$ be a nonzero R-linear map. Then f is an isomorphism. Moreover, if M = N and R is commutative, then f is multiplication by a scalar (i.e. there is some $r \in R$ such that f(x) = rx for all $x \in M$.

Modules over a PID.

Theorem. (Invariant Structure Theorem) If R is a PID and M is a finitely-generated R-module, then there is a unique nonnegative integer r and a unique sequence $J_i < R$ of nested, nonzero proper ideals such that

$$M \cong R/J_1 \oplus \cdots \oplus R/J_k \oplus R^r$$
.

The integer r is called the rank of M, and the ideals are called the invariant factors of M.

Theorem. (Primary Structure Theorem) If R is a PID and M is a finitely-generated R-module, then there exist finitely many prime elements $p_i \in F[t]$ and nonzero integers n_i such that

$$M \cong R/\langle p_1^{n_1} \rangle \oplus \cdots \oplus R/\langle p_k^{n_k} \rangle.$$

The prime elements p^n are called the **elementary divisors** of M.

- ▶ Exercise. Prove the rank of a torsion module is 0.
- ▶ Exercise. Prove all finitely generated abelian groups can be characterized by setting $R = \mathbb{Z}$.

The Vector Transformation Module.

Definition. Let V be an F-vector space, and let $T: V \to V$ an endomorphism. We define V_T to be the F[t]-module whose additive structure is inherited from V, and whose ring is F[t], where scalar multiplication is given by $f(t) \cdot v = f(T)v$.

Properties:

- if V is finite dimensional, then V_T is torsion since $\operatorname{End}(V) \cong M_n(F)$ is n^2 dimensional, there are $a_i \in F$ such that $\sum_{i=1}^{n^2} a_i T^i = 0$;
- by the Invariant Structure Theorem, $V_T \cong F[t]/\langle f_1 \rangle \oplus \cdots \oplus F[t]/\langle f_k \rangle$;
- in this module, we reconstruct T as multiplication by the scalar f(t) = t, acting in each summand (i.e. $Tv = t \cdot v$) to understand T, we can understand this multiplication;
- for $f = \sum_{i=0}^{n+1} a_i t^i$, the module $F[t]/\langle f \rangle$ has basis $B = \{\overline{1}, \overline{t}, \overline{t}^2, \dots, \overline{t}^n\}$, so multiplication by \overline{t} can be represented by the **companion matrix**

$$C_f = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_n \end{pmatrix}.$$

• carrying the basis B to V_T by the isomorphism given above, it follows that there is a basis C for V such that $T_C = C_{f_1} \oplus \cdots \oplus C_{f_k}$, where \oplus denotes the block sum of matrices.

Definition. A matrix is said to be in **rational canonical form** if it can be written as $C_{f_1} \oplus \cdots \oplus C_{f_k}$ for monic polynomials f_1, \ldots, f_k with $f_1 | \ldots | f_k$.

Corollary. Every $T \in End_F(V)$ has a coordinate matrix in rational canonical form, uniquely determined by T and F, which we denote by R_T (or $R_{T/F}$ to denote over which field).

Corollary. If F is a field, any $A \in M_n(F)$ is similar over F to a unique matrix R_A (i.e. there is an invertible $P \in M_n(F)$ such that $PAP^{-1} = R_A$). It follows that two matrices are similar if and only if they have the same Rational Canonical Form.

Definition. Note that $\{f \in F[t] : f(T) = 0\}$ is an ideal of F[t], which is a PID. The unique, monic generator $m_T(t)$ is called the **minimal polynomial** of T.

Properties:

- $m_T(T) = 0$ (just a nice reminder);
- the minimal polynomial is the larges (last) invariant factor of T;
- the characteristic polynomial c_T is equal to the product of the invariant factors of T;
- (Cayley-Hamilton) m_T divides c_T and the roots of c_T are roots of m_T ;

Corollary. If $F \subseteq E$ are fields, then two matrices $A, B \in M_n(F)$ are similar over F if and only if they are similar over E.

- ▶ Exercise. Prove properties (1)-(4) of characteristic/minimal polynomials.
- ▶ Exercise. Use (1)-(4) to compute the characteristic and minimal polynomials of the endomorphism T on \mathbb{R}^3 given by the matrix with 1's in each corner and 0's elsewhere. Then find the invariant factors of T.
- ▶ **Exercise**. Find all possible RCFs for matrices over \mathbb{Q} and \mathbb{C} with characteristic polynomial $(t^4-1)(t^2+1)$.
- ► Exercise. Prove the preceding corollary.

Definition. Suppose the characteristic polynomial of an endomorphism T factors into linear terms: $c_T = (t - \lambda_1)^{n_1} \dots (t - \lambda_k)^{n_k}$. Each λ_i is an **eigenvalue** of T.

Definition. The multiplication of $(t - \lambda)^n$ by t can be written as an $n \times n$ matrix $J_{\lambda,n}$ called a **Jordan block**. Any matrix which is a block sum of Jordan blocks is in **Jordan Canonical Form**. Therefore, by the Structure Theorem (Primary Form):

Corollary. Every $T \in End_F(V)$ whose characteristic polynomial factors into linear terms is similar over F to a matrix J_T in Jordan canonical form (unique up to permutation of blocks). The total number of appearances of each eigenvalue λ is its multiplicity in c_T , and the size of the largest associated Jordan block is the multiplicity of λ as a root of m_T .

- ▶ Exercise. Find all Jordan canonical forms for rational and complex matrices T with characteristic polynomial $c_T = (t^4 1)(t^2 + 1)$.
- ▶ Exercise. Show that any square matrix over any subfield of \mathbb{C} is similar to its transpose.
- ▶ Exercise. Let F be any field. Show that $A \in M_n(F)$ is diagonalizable (i.e. similar to a diagonal matrix) if and only if m_A is a product of linear factors.

6. Symmetric Bilinear Forms