Comparação de Arquiteturas Utilizando Superescalar Simulator

Guilherme de Andrade Moura

Ricardo Xavier Sena

Objetivo

 Projetar uma arquitetura e utilizar de um benchmark para fazer testes e provar que houve melhorias (speed up) em comparação com outra.

Simulador

 Utilizamos o SESC (SuperESCalar Simulator) por ser mais descritivo em relação aos componentes que modificaremos na arquitetura.

Maior ponto negativo: Pouca documentação.

Benchmark

Utilizamos o Crafty.

Exige menos esforço comparado o Ocean.

 Consiste em resolver 5 layouts de xadrez diferentes aonde pesquisa os movimentos possíveis em uma árvore.

Arquitetura Proposta

Quantidade de Núcleos:	32		
Organização de Memória:	Uma memória principal e uma cache		
Abordagem de Interconexão:	Bus Entre L1 e L2		
Memória L1:	1024 (WT)		
Memória L2:	1024 (WB)		
Mecanismo de Predição:	Hibrido		

Quantidade de Núcleos:	128	
Organização de Memória:	Uma memória principal e uma cache	
Abordagem de Interconexão:	Bus Entre L1 e L2	
Memória L1:	2048 (WT)	
Memória L2:	1024 (WT)	
Mecanismo de Predição:	Hibrido	
Datalhas da avenitatura proposta pela		

⁴ Detalhes da arquitetura proposta pela dupla

• Primeiro Teste: aumentamos quantidade de processos por nó.

32 processos para 128

O tempo aumentou porém os ciclos permaneceram o mesmo.

Segundo Teste: aumentamos o tamanho da linha de cache.

32 linhas para 128 assim como no primeiro teste.

 O tempo de execução diminui para 22.89ms (antes 24.99ms) e ciclos foram reduzidos para 29881955

 Terceiro e quarto Teste: alteramos frequência do processador e clock.

• Sem alterações consideráveis.

 Quinto Teste: resolvemos trabalhar com a associatividade das memórias L1 e L2.

 Alteramos política de escrita da L2 de write-back para writethrough.

Ganho de 0.2ms

Aumentamos associatividade da L2; 8-way para 16-way.

 O tempo de execução aumentou em 1 segundo e tivemos redução de ciclos. Com isso voltamos atrás.

Aumentamos associatividade da L1; 8-way para 16-way.

 O tempo de execução não apresentou variações porém tivemos redução de ciclos

29881955 -> 29871626

 Últimos Testes: Trabalhamos com alterações nos tamanhos das páginas.

Alteramos o tamanho das páginas de 4096 para 8192;
Sem melhorias.

Alteramos o tamanho da mémoria L1 de 1024 para 2048;

 Obtivemos Speed-Up de 0.3ms; O número de ciclos caiu para 29865772

Aumentamos novamente e tivemos atrasos.

Resultados

• Conseguimos uma melhoria da velocidade de 9.89% e reduzir

os ciclos em 12888200.

Tempo e Número de Ciclos		
Arquitetura	Tempo (mS ecs)	Ciclos
Arquitetura Original	24.99	42753972
Primeiro Teste	22.89	29881955
SegundoTeste	22.66	29871626
Último Teste	22.52	29865772

Trabalhos futuros

- Projetar arquiteturas diferentes
- Realizar novos testes com outros benchmarks e trabalhar com outros aspectos da arquitetura(politica de cache, threads)

Dúvidas