lemma. For a geometric interpretation of supporting hyperplane see Figure 14.1. This result is a consequence of the Hahn-Banach theorem; see Gallier [72]. We give the proof in the case where E is a real Euclidean space. Some minor modifications have to be made when dealing with complex vector spaces and are left as an exercise.

Figure 14.1: The orange tangent plane is a supporting hyperplane to the unit ball in \mathbb{R}^3 since this ball is entirely contained in "one side" of the tangent plane.

Since the unit ball $B = \{z \in E \mid ||z|| \le 1\}$ is closed and convex, the Minkowski lemma says for every x such that ||x|| = 1, there is an affine map g of the form

$$g(z) = \langle z, w \rangle - \langle x, w \rangle$$

with ||w|| = 1, such that g(x) = 0 and $g(z) \le 0$ for all z such that $||z|| \le 1$. Then it is clear that

$$\sup_{\|z\|=1} \langle z, w \rangle = \langle x, w \rangle,$$

and so

$$||w||^D = \langle x, w \rangle.$$

It follows that

$$||x||^{DD} \ge \langle w/||w||^{D}, x\rangle = \frac{\langle x, w\rangle}{||w||^{D}} = 1 = ||x||$$

for all x such that ||x|| = 1. By homogeneity, this is true for all $y \in E$, which completes the proof in the real case. When E is a complex vector space, we have to view the unit ball B as a closed convex set in \mathbb{R}^{2n} and we use the fact that there is real affine map of the form

$$g(z) = \Re \langle z, w \rangle - \Re \langle x, w \rangle$$

such that g(x) = 0 and $g(z) \le 0$ for all z with ||z|| = 1, so that $||w||^D = \Re\langle x, w \rangle$.

More details on dual norms and unitarily invariant norms can be found in Horn and Johnson [95] (Chapters 5 and 7).