☐ xhruby28 / Digital-electronics-1

∂05-counter

Content

• 1. Preparation tasks

- Figure with connection of buttons on Nexys A7 board
- Table with connection of buttons on Nexys A7 board
- Calculated values

• 2. Bidirectional counter

- VHDL code of process p_cnt_up_down
- VHDL reset and stimulus processes from testbench file tb_cnt_up_down.vhd
- Simulation screenshot

• 3. Top level

- VHDL code from source file top.vhd for the 4-bit bidirectional counter
- Image of top layer with 4-bit 4-bit bidirectional counter and a 16-bit counter

1. Preparation tasks

Figure with connection of buttons on Nexys A7 board UP

Table with connection of buttons on Nexys A7 board UP

Button	Connection
BTNL	P17
BTNR	M17

Button	Connection
BTNU	M18
BTND	P18
BTNC	N17

Calculated values **UP**

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1A80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"F_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17d_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2FA_F080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"

2. Bidirectional counter

VHDL code of process p_cnt_up_down UP

VHDL reset and stimulus processes from testbench file tb_cnt_up_down.vhd UP

```
-- Reset generation process
______
p_reset_gen : process
begin
   s reset <= '0';
   wait for 12 ns;
   -- Reset activated
   s_reset <= '1';</pre>
   wait for 73 ns;
   s_reset <= '0';</pre>
   wait;
end process p_reset_gen;
______
-- Data generation process
______
p_stimulus : process
begin
   report "Stimulus process started" severity note;
   -- Enable counting
   s_en <= '1';
   -- Change counter direction
   s_cnt_up <= '1';
   wait for 380 ns;
   s_cnt_up <= '0';
   wait for 300 ns;
   -- Disable counting
   s_en <= '0';
   report "Stimulus process finished" severity note;
   wait;
end process p_stimulus;
```

Simulation screenshot UP

3. Top level

VHDL code from source file top.vhd for the 4-bit bidirectional counter UP

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity top is
   Port
   (
                                                         -- Main clock
       CLK100MHZ : in STD_LOGIC;
       BTNC
                 : in STD LOGIC;
                                                         -- Synchronous res
                 : in STD_LOGIC_VECTOR (1 - 1 downto 0); -- Counter directi
       SW
                 : out STD_LOGIC_VECTOR (4 - 1 downto 0); -- Counter value LE
       LED
       CA
                 : out STD_LOGIC;
                                                         -- Cathod A
                 : out STD LOGIC;
                                                         -- Cathod B
       CB
       CC
                 : out STD_LOGIC;
                                                         -- Cathod C
                                                         -- Cathod D
       CD
                 : out STD_LOGIC;
                 : out STD LOGIC;
                                                         -- Cathod E
       CE
                 : out STD_LOGIC;
                                                         -- Cathod F
       CF
       CG
                 : out STD_LOGIC;
                                                         -- Cathod G
                 : out STD_LOGIC_VECTOR (8 - 1 downto 0)); -- Common anode si
end top;
-- Architecture body for top level
______
architecture Behavioral of top is
   -- Internal clock enable
   signal s en : std logic;
   -- Internal counter
   signal s_cnt : std_logic_vector(4 - 1 downto 0);
begin
```

```
-- Instance (copy) of clock_enable entity
    clk_en0 : entity work.clock_enable
        generic map(
             g_MAX => 25000000
        )
        port map(
             clk => CLK100MHZ,
             reset => BTNC,
             ce_o => s_en
        );
    -- Instance (copy) of cnt_up_down entity
    bin_cnt0 : entity work.cnt_up_down
        generic map(
             g_CNT_WIDTH \Rightarrow 4
        port map(
             clk
                     => CLK100MHZ,
             reset => BTNC,
             en_i
                     => s_en,
             cnt_up_i \Rightarrow SW(0),
             cnt_o => s_cnt
        );
        -- Display input value on LEDs
         LED(3 downto 0) <= s_cnt;</pre>
    -- Instance (copy) of hex_7seg entity
    hex2seg : entity work.hex 7seg
        port map(
             hex_i
                    => s_cnt,
             seg_o(6) \Rightarrow CA,
             seg_o(5) \Rightarrow CB
             seg_o(4) \Rightarrow CC
             seg_o(3) \Rightarrow CD,
             seg_o(2) \Rightarrow CE,
             seg_o(1) \Rightarrow CF,
             seg_o(0) \Rightarrow CG
        );
    -- Connect one common anode to 3.3V
    AN <= b"1111_1110";
end architecture Behavioral;
```

Image of top layer with 4-bit 4-bit bidirectional counter and a 16-bit counter UP

