Chapter 13. Fresnel Diffraction

- 13.1 Fresnel-Kirchhoff Diffraction Integral
- 13.2 Criterion for Fresnel Diffraction
- 13.3 The Obliquity Factor
- 13.4 Fresnel Diffraction from Circular Aperture
- 13.6 The Fresnel Zone Plate

Introduction

- > Two types of diffractions:
 - Fraunhofer diffraction, or far-field diffraction: Infinite observation distance
 - Fresnel diffraction or near-field diffraction: Finite observation distance
- Fraunhofer diffraction: Both the source and observation screen are effectively <u>far</u> enough from the diffraction aperture so that wavefronts arriving at the aperture and observation screen may be considered as *planar* wave
- ➤ Fresnel diffraction: Both the source and observation screen are *close* enough from the diffraction aperture, so that *wavefront curvature* must be taken into account

Diffraction pattern due to an opaque circular disc

Fresnel-Kirchhoff Diffraction Integral

➤ Fresnel diffraction: Both the source and observation screen are *close* enough from the diffraction aperture, so that *wavefront curvature* must be taken into account

observing screen

- > Huygens-Fresnel Principle:
 - 1. Each Huygens wavelet illuminates the observing screen
 - 2. The resultant amplitude at the observing screen is a superposition of all the wavelets at the aperture

Fresnel-Kirchhoff Diffraction Integral

The electric field at point O in the aperture:

$$E_O = \frac{E_S}{r'} e^{i[kr' - \omega t]}$$

The resultant field at point P due to an elemental area dA:

mental area dA:
$$dE_P = \frac{dE_O}{r} e^{i[kr - \omega t]}$$

> Fresnel-Kirchhoff diffraction formula:

$$E_{p} = \frac{-ikE_{s}}{2\pi}e^{-i\omega t}\iint_{aperture} F(\theta) \frac{e^{ik(r+r')}}{rr'}dA$$

Obliquity Factor: $F(\theta) = \frac{1 + \cos \theta}{2}$

Criterion for Fresnel Diffraction

Source S and test field at P

Incident wave curvature (a):

 $ilde{}$ Condition for significant curvature (i.e, near field) is: $|\Delta>\lambda|$

$$\Delta = r' - \sqrt{r'^2 - h^2} \quad \Longrightarrow \quad \Delta \cong \frac{h^2}{2p} > \lambda \tag{13-9}$$

Diffracted wave curvature (b):

 \succ Condition for significant curvature (i.e, near field) is: $|\Delta>\lambda|$

$$\Delta = r' - \sqrt{r'^2 - h^2} \qquad \Longrightarrow \qquad \Delta \cong \frac{h^2}{2q} > \lambda \qquad (13-10)$$

Near field condition:

$$\boxed{\frac{1}{2} \left(\frac{1}{p} + \frac{1}{q} \right) h^2 > \lambda}$$

A: Area of the aperture

d: either p or q

Fresnel Diffraction from Circular Aperture

How to find the field at the observation point P?

Fresnel zones (or Half-period Zone) are concentric rings spaced in such a way that each zone is $\lambda/2$ farther from the field point P than the preceding zone.

$$r_1 = r_0 + \lambda/2$$
; $r_2 = r_1 + \lambda/2$; $r_3 = r_2 + \lambda/2 \cdots$

- 1. Draw circles with radii, $r_0 + \lambda/2$, $r_0 + \lambda$, $r_0 + 3\lambda/2$ $r_0 + 2\lambda$, $r_0 + 5\lambda/2$, $r_0 + 3\lambda$, etc.
- 2. Each zone has nearly same area
- 3. Wavelets from any one zone are in phase at P
- 4. Each successive zone's contribution is exactly out of phase with that of the preceding zone
- 5. Field at P due to 1^{st} zone is a_1 , 2^{nd} zone is a_2 , etc.
- 6. The resultant wave amplitudes at P from *n* halfperiod zones can be expressed as:

$$A_n = a_1 + a_2 e^{i\pi} + a_3 e^{i2\pi} + a_4 e^{i3\pi} + \dots + a_n e^{in\pi} = a_1 - a_2 + a_3 - a_4 + \dots + a_n$$

Fresnel Diffraction from Circular Aperture

- Each succeeding amplitude is slightly smaller than the preceding one $(a_2 < a_1)$:
 - A gradual increase due to slightly increasing zone areas, a gradual decrease due to inverse-square law, and a gradual decrease due to obliquity factor.
- The resultant wave amplitudes at P: $A_n = a_1 a_2 + a_3 a_4 + \cdots + a_n$
- For N zone: if *n* is odd, $A_n = \frac{a_1}{2} + \frac{a_n}{2}$; if *n* is even, $A_n = \frac{a_1}{2} \frac{a_n}{2}$

Fresnel Diffraction from Circular Aperture

The resultant wave amplitudes at P: $A_n = a_1 - a_2 + a_3 - a_4 + \cdots + a_n$ • For N zone: if n is odd, $A_n = \frac{a_1}{2} + \frac{a_n}{2}$; if n is even, $A_n = \frac{a_1}{2} - \frac{a_n}{2}$

If *N* is small $(a_1 = a_N)$:

For odd N, the resultant amplitude $A = a_1$, that of the 1st zone alone; For even N, the resultant amplitude A is near zero

If *N* is large $(a_N = 0)$: For either odd or even N, the resultant amplitude is $A_n = \frac{a_1}{2}$, half that of the I^{st} zone alone.

- 1. For example, if removing the opaque shield, then all zones of an unobstructed wavefront contribute $\left[a_n \approx 0\right]$ $A_n = \frac{a_1}{2}$
- The unobstructed irradiance at P is only ¼ that due to the 1st-zone aperture alone

Fresnel Diffraction from Circular Aperture

Observations from the experiment:

- 1. A circular aperture coincides with the 1st Fresnel zone: The amplitude at P, $A_p = a_1$
- 2. The circular aperture only admits 2 Fresnel zone, $A_p = 0$ (dark spot at the center P)
- 3. Remove the opaque shield, $A = a_1/2$. The unobstructed irradiance (A²) at P is only ¹/₄ that due to the 1st-zero alone
- 4. When light shines on a round obstacle (just coving 1st zone), a bright spot, a Poisson spot or an Arago spot appears at the center

Fresnel Diffraction from Circular Aperture

Light in the Shadows

Poisson, Fresnel, or Arago's Bright Spot is a bright spot that appears at the centre of a circular object's shadow due to Fresnel diffraction. It was deduced by **Poisson** from **Fresnel**'s theory, and experimentally tested by **Arago**.

Problem 13.3 (331)

A distant source of sodium light (589.3 nm) illustrates a circular hole. As the hole increases in diameter, the irradiance at an axial point 1.5 m from the hole passes alternately through maxima and minima. What are the diameters of the holes that produce (a) the first two maxima and (b) the first two minima?

Problems 13.5: The zone plate radii given by Eq. (13-20) were derived for the case of plane waves incident on the aperture. If instead the incident waves are spherical, from an axial point source at distance p from the aperture, show that the necessary modification yields $R_n = \sqrt{nL\lambda}$

Where q is the distance from aperture to the axial point of detection and L is defined by $\frac{1}{L} = \frac{1}{L} + \frac{1}{L}$

