

Topic Assessment Form

-	• .		-	
Pre	Ninnt	- 1		•
	ject		IJ,	•

TMP-23-123

1. Topic (12 words max)

Detecting email-based phishing websites using machine learning

2. Research group the project belongs to

Machine Learning and Soft Computing (MLSC)

3. Research area the project belongs to

Machine Learning (ML)

4. If a continuation of a previous project:

Project ID	
Year	

5. Team member details

Student Name	Student ID	Specialization
Leader: J.M.Lindamulage	IT20222840	CS
Member 2: Mandira Pabasari L.	IT19966236	CS
Member 3: Yapa S.P.J.	IT20050108	CS
Member 4: Perera I.S.S.	IT20222468	CS

Topic Assessment Form

6. Brief description of the research problem including references (200 – 500 words max) – references not included in word count

Phishing has become one of the most common cyberattacks today. Attackers launch phishing attacks now in a variety of ways, like spoof calls, messages, social networking, and emails, with the intention of obtaining sensitive information from victims [1]. The most common way victims fall for phishing is by clicking on a fraudulent link in an email that was sent by an attacker. This is called email phishing [2]. This link will take victims to websites that appear legitimate but are actually run by the attackers. Attackers construct illegal email accounts using real company details and send the email to victims, impersonating a real person, while making the victim click on the link to the fraud website using social engineering [3]. If a person clicks on the link and visits the site and tries to login or perform any action, then the attackers can get passwords, login credentials, credit card information, and other sensitive information [2]. With the COVID-19 outbreak, phishing activities have also increased [4]. Even though there are many tools and research studies available, phishing is so widespread that no single solution can reduce all the vulnerabilities. Many people fall victim to this, even though these tools are available, due to a lack of knowledge and the inability to purchase such tools.

References

- [1] Dr. Moulana Mohammed, K. Koteswara Prasanth, S. Venkata Sai Subhash, "PHISHING DETECTION USING MACHINE LEARNING ALGORITHMS," in *IEEE*, India, 2022.
- [2] "An overview of machine learning algorithms fo detecting phshing atacks on electronic messaging services.," in *MIPRO*, Croatia, 2022.
- [3] "Phishing Detection using Random Forest, SVM and Neural Network with Backpropagation," in *IEEE*, India, 2020
- [4] SAID SALLOUM 1, TAREK GABER 1,2, SUNIL VADERA 1, AND KHALED SHAALAN 3, "A Systematic Literature Review on Phishing Email Detection Using Natural Language," *IEEE*, vol. 10, pp. 65704-65727, June 14, 2022,.

Topic Assessment Form

7. Brief description of the nature of the solution including a conceptual diagram (250 words max)

The solution is to develop a tool that can detect phishing sites and phishing emails. There are a few approaches that are going to be used to identify a phishing site. A content-based approach is based on website content, and it is used to identify the website. In the noncontent approach to URLs, host information is used to identify the website. In a visual-based approach, visual elements are used to identify the website. Text analysis can be used in emails that are sent by attackers with urgent requests but contain grammar and spelling errors. Email headers can be analyzed to check if the sender's address is genuine. At last, the network behavior, which can be described as traffic patterns and connections, can be used to determine if the IP address from which the connection was made is phishing or not. Using all the above methods, the final tool will be able to detect phishing websites based on email content, website URL, visual similarity features, and network behavior. The final product will be a mobile application and a web extension that are capable of detecting a phishing site based on email content, website URL, visual similarity features, and network behavior.

(System diagram is in the next page)

IT4010 – Research Project - 2023 Topic Assessment Form

Topic Assessment Form

8. Brief description of specialized domain expertise, knowledge, and data requirements (300 words max)

Knowledge about how an email-based phishing attack is performed and how attackers
gain information is required. After understanding the basic concept of phishing emails,
knowledge about image processing and machine learning expertise are required.
Furthermore, web scraping, HTML and CSS coding, and Python knowledge are required.
Mobile app development using Android or Flutter is required to create the mobile app.
Knowledge of how to develop a web extension is required. The data sets for training the
model are also required. The data sets from PhishTank, AlexaTop, MillerSmiles, and other
datasets from Kaggle need to be downloaded and preprocessed.

Topic Assessment Form

9. Objectives and Novelty

Main Objective

To develop a mobile app that runs in the background and a web browser extension that is capable of classifying phishing websites from legitimate websites powered by machine learning and deep learning models to provide the user with warnings regarding any potential risk of being navigated into a phishing website while preserving the privacy of the user, and if the user gets a phishing email, warn the user before the user clicks on any links or is misled by false information.

Member Name	Sub Objective	Tasks	Novelty
			-
J.M.Lindamulage	To develop a phishing website	Observe how features such as text	A novel deep learning-
	detection model using	content, background colors, images,	based solution to classify
	Convolution Neural Networks	etc. can be used as useful features to	phishing websites based on
	(CNN) or Graph Neural	differentiate phishing sites and	the visual similarity
	Networks (GNN)-based approach	identify datasets that contain those	features of the website
	using visual similarity features	features, such as PhishTank. If	using CNN or GNN.
	between legit and phishing	datasets are not sufficient, collect	
	websites.	data by web scraping from domain	Optimize the developed
		names included in datasets such as	deep learning model for
	To optimize inference time and	the AlexaTop dataset.	mobile apps so that the
	model size of the developed deep		model can be deployed in a
	learning model using	Conduct experiments with different	constrained environment.
	optimization techniques such as	CNN architectures, such as	
	model pruning and weight	EfficientNet and MobileNet, and	Native Android mobile app
	clustering for edge computing,	observe the relationships between	that runs in the background,
	and integrate the optimized model	features to be able to model this	monitoring for any
		problem as a Graph Neural	potential phishing website
		Network. Develop the models,	capable of running in the

	: A. 1 '1 1'1		1
	into an Android mobile application.	compare their performances, and select the best-performing model amongst them.	device itself, thus protecting the user's privacy.
		Try to optimize the size and latency caused by the selected model by applying model optimization techniques such as model pruning and weight clustering and integrating the model into the mobile application.	
Mandira Pabasari L.	To develop a tool to identify phishing websites using network traffic features	Collecting the network traffic features associated with a website, such as the source IP address, destination IP address, protocol used, and other relevant information. Pre-processing the collected data to prepare it for analysis. This may involve cleaning the data, removing any missing or irrelevant information, and transforming the data into a suitable format for the machine learning algorithms.	Achieve real-time analysis and decision making. This model could be designed to perform analysis and make decisions in real-time, which would allow it to provide users with more timely protection against malicious websites.

		Applying machine learning algorithms, such as Logistic Regression (LR), Support Vector Machine (SVM), k-Nearest Neighbor (KNN), or Principal Component Analysis (PCA), to the pre-processed data. Using the trained machine learning model to classify the website as malicious or benign based on the network traffic features. The output of this step would be a decision, indicating whether the website is malicious or not. This decision would be used to provide real-time protection to the user against malicious websites.	
Yapa S.P.J.	To develop a tool to identify a phishing mail based on the content and the header of the mail using Machine learning. To develop deep learning model which can analyze sentiments of the email content to indemnify potential phishing emails.	Explore literature to find out what are the features and patterns which can be considered to classify the sentiment of the sentences. Explore what type of machine learning and deep learning techniques which has been used to recognize sentiments which indicates the email is a phishing email.	Combine natural language processing models with sentiment analysis to develop an ML model that can analyze the sentiments of an email and classify if the email is a phishing email or not.

		Conduct experiments with different	Davidon browger pluging
		Conduct experiments with different features with recognized deep learning models which can classify sentiments. Datasets that use for this are collected from PhishTank and MillerSmiles. Select the best models and develop pipeline to extract text from emails which user reads an email and analyze the content. Develop browser plugin and integrate the developed AI pipeline.	Develop browser plugins that can run in the background, analyze the content of emails, and provide warnings to the user about any potential phishing emails.
Perera I.S.S.	To develop a tool to identify phishing websites using URL and text content using machine learning.	Implement a Python program to extract features from the URL.(feature extraction). using a data set from the Kaggle web site (a phishing dataset for machine learning). Study about address bar features, HTML and Java Script features, and domain features.	Check the phishing, malicious URLs using machine learning techniques and block the URLs using local host file.

Study classical machine learning	
techniques like Random Forest, K	
nearest neighbors, Decision Tree,	
Linear SVC classifier, One class SVM	
classifier and wrapper-based features	
selection, which contains the metadata	
of URLs, and use the information to	
determine if a website is legitimate or	
not.	

Topic Assessment Form

10.	Supervisor	checklist	(supervisors	should	fill	sections	10	and	11	(
-----	------------	-----------	--------------	--------	------	----------	----	-----	----	---

a)	Is this	rese	arch	problem	valid?
	Yes	V	No		

b)	Is the	propo	sed	research	group	correct'
	Yes	/	No			

c)	Is the j	propo	osed	research	area	correct?
	Yes	~	No			

d)	Do the	prop	posed	sub-	objectives	match	the	students'	specialization?
	Yes	-	No						

e)	Is the	requi	red do	omaiı	n expertise,	, knowledge,	and th	ne data	available	either	through
	the sup	ervi	sor or	exte	rnal superv	visor?					
	Yes	/	No								

f)	Is the	scop	e of th	ne solution	practical?
	Yes	~	No		

g)	Do all	sub-	object	tives	have	sufficient	novelty?
	Yes		No				

11. Supervisor details

	Title	First Name	Last Name	Signature
Supervisor	Ms.	Jenny	Krishara	Jenny 09/02/2023
Co-Supervisor	Ms.	Madhuka Nadeeshani	Koralalage	109/02/2023 09/02/202
External Supervisor	1			

Topic Assessment Form

Summary Sheet

The topic evaluation panel will use the summary sheet to evaluate the suitability of the project

1. Brief description of research problem including references (200 – 300 words max)

Phishing has become one of the most common cyberattacks today. Attackers launch phishing attacks now in a variety of ways, like spoof calls, messages, social networking, and emails, with the intention of obtaining sensitive information from victims [1]. The most common way victims fall for phishing is by clicking on a fraudulent link in an email that was sent by an attacker. This is called email phishing [2]. This link will take victims to websites that appear legitimate but are actually run by the attackers. Attackers construct illegal email accounts using real company details and send the email to victims, impersonating a real person, while making the victim click on the link to the fraud website using social engineering [3]. If a person clicks on the link and visits the site and tries to login or perform any action, then the attackers can get passwords, login credentials, credit card information, and other sensitive information [2]. With the COVID-19 outbreak, phishing activities have also increased [4]. Even though there are many tools and research studies available, phishing is so widespread that no single solution can reduce all the vulnerabilities. Many people fall victim to this, even though these tools are available, due to a lack of knowledge and the inability to purchase such tools.

References

- [1] Dr. Moulana Mohammed, K. Koteswara Prasanth, S. Venkata Sai Subhash, "PHISHING DETECTION USING MACHINE LEARNING ALGORITHMS," in *IEEE*, India, 2022.
- [2] "An overview of machine learning algorithms fo detecting phshing atacks on electronic messaging services.," in MIPRO, Croatia, 2022.
- [3] "Phishing Detection using Random Forest, SVM and Neural Network with Backpropagation," in *IEEE*, India, 2020.
- [4] SAID SALLOUM 1, TAREK GABER 1,2, SUNIL VADERA 1, AND KHALED SHAALAN 3, "A Systematic Literature Review on Phishing Email Detection Using Natural Language," *IEEE*, vol. 10, pp. 65704-65727, June 14, 2022,.

Topic Assessment Form

2. Brief description of the nature of the solution (150 words max)

The solution is to develop a tool that can detect phishing sites and phishing emails. There are a few approaches that are going to be used to identify a phishing site. A content-based approach is based on website content, and it is used to identify the website. In the non-content approach to URLs, host information is used to identify the website. In a visual-based approach, visual elements are used to identify the website. Text analysis can be used in emails that are sent by attackers with urgent requests but contain grammar and spelling errors. Email headers can be analyzed to check if the sender's address is genuine. At last, the network behavior, which can be described as traffic patterns and connections, can be used to determine if the IP address from which the connection was made is phishing or not. Using all the above methods, the final tool will be able to detect phishing websites based on email content, website URL, visual similarity features, and network behavior. The final product will be a mobile application and a web extension that are capable of detecting a phishing site based on email content, website URL, visual similarity features, and network behavior.

Topic Assessment Form

3. Objectives and novelty

Main Objective

To develop a mobile app that runs in the background and a web browser extension that is capable of classifying phishing websites from legitimate websites powered by machine learning and deep learning models to provide the user with warnings regarding any potential risk of being navigated into a phishing website while preserving the privacy of the user, and if the user gets a phishing email, warn the user before the user clicks on any links or is misled by false information.

		T .	
Member Name	Sub Objective	Tasks	Novelty
J.M.Lindamulage	To develop a phishing website detection model using Convolution Neural Networks (CNN) or Graph Neural Networks (GNN)-based approach using	Observe how features such as text content, background colors, images, etc. can be used as useful features to differentiate phishing	
	visual similarity features between legit and phishing websites. To optimize inference time and model size of the developed deep learning model using	PhishTank. If datasets are not sufficient, collect data by web scraping from domain names included in datasets such as the	Optimize the developed deep learning model for mobile apps so that the model can be deployed in a constrained environment.
	optimization techniques such as model pruning and weight clustering for edge computing, and integrate the optimized model into an Android mobile application.	Conduct experiments with different CNN architectures, such as EfficientNet and MobileNet,	Native Android mobile app that runs in the background, monitoring for any potential phishing website capable of running in the device itself, thus protecting the user's privacy.
			D 44 . [20

	T	C 1 1 1 1 1 1	
		performances, and select the best- performing model amongst them.	
		Try to optimize the size and latency caused by the selected model by applying model optimization techniques such as model pruning and weight clustering and integrating the model into the mobile application.	
Mandira Pabasari L.	To develop a tool to identify phishing websites using network traffic features	Collecting the network traffic features associated with a website, such as the source IP address, destination IP address, protocol used, and other relevant information. Pre-processing the collected data to prepare it for analysis. This may involve cleaning the data, removing any missing or irrelevant information, and transforming the data into a suitable format for the machine learning algorithms.	Achieve real-time analysis and decision making. This model could be designed to perform analysis and make decisions in real-time, which would allow it to provide users with more timely protection against malicious websites.

		Applying machine learning algorithms, such as Logistic Regression (LR), Support Vector Machine (SVM), k-Nearest Neighbor (KNN), or Principal Component Analysis (PCA), to the pre-processed data.	
		Using the trained machine learning model to classify the website as malicious or benign based on the network traffic features. The output of this step would be a decision, indicating whether the website is malicious or not. This decision would be used to provide real-time protection to the user against malicious websites.	
Yapa S.P.J.	To develop a tool to identify a phishing mail based on the content and the header of the mail using Machine learning. To develop deep learning model which can analyze sentiments of the email content to indemnify potential phishing emails.	Explore literature to find out what are the features and patterns which can be considered to classify the sentiment of the sentences. Explore what type of machine learning and deep learning techniques which has been used to recognize sentiments which indicates the email is a phishing email.	processing models with sentiment analysis to develop an ML model that can analyze the sentiments of an email and classify if the email is a phishing email or not.

		Conduct experiments with different features with recognized deep learning models which can classify sentiments. Datasets that use for this are collected from PhishTank and MillerSmiles. Select the best models and develop pipeline to extract text from emails which user reads an email and analyze the content. Develop browser plugin and integrate the developed AI pipeline.	warnings to the user about any potential phishing emails.
Perera I.S.S.	To develop a tool to identify phishing websites using URL and text content using machine learning.	Implement a Python program to extract features from the URL. (feature extraction). using a data set from the Kaggle web site (a phishing dataset for machine learning). Study about address bar features, HTML and Java Script features, and domain features.	Check the phishing, malicious URLs using machine learning techniques and block the URLs using local host file.

Study classical machine learning techniques like Random Forest, K nearest neighbors, Decision Tree, Linear SVC classifier, One class
nearest neighbors, Decision Tree,
SVM classifier and wrapper-based
features selection, which contains
the metadata of URLs, and use the information to determine if a website
is legitimate or not.

Important:

IT4010 – Research Project - 2023 Topic Assessment Form

This part to be filled by the Topic Screening Panel members

Acceptable: Mark/Select as necessary	
Topic Assessment Accepted	
Topic Assessment Accepted with minor changes (should be	
followed up by the supervisor)*	
Topic Assessment to be Resubmitted with major changes*	
Topic Assessment Rejected. Topic must be changed	
* Detailed comments given below	
Comments	
The Review Panel Details	
The Review Panel Details Member's Name	Signature
	Signature

Page **19** of **20**

- 1. According to the comments given by the panel, do the necessary modifications and get the approval by the **Supervisor** or the **Same Panel**.
- 2. If the project topic is rejected, identify a new topic, and request the RP Team for a new topic assessment.
- 3. The form approved by the panel must be attached to the **Project Charter Form**.