semana_1

Luis Ambrocio

Contents

Motivacion y prerequisitos	1
datos crudos y procesados	3
Los componentes de los datos ordenados	4
Leyendo XML Notas y otros recursos	5 7
Leyendo JSON otros recursos	7
Usando data.table Resumen y lectura adicional	10 15

Motivacion y prerequisitos

Sobre este curso

- Este curso cubre las ideas básicas para preparar los datos para su análisis.
 - Encontrar y extraer datos sin procesar
 - Principios de ordenación de datos y cómo hacer que los datos estén ordenados
 - Implementación práctica a través de una variedad de paquetes R

Cómo desea que se vean los datos

como los datos realmente se ven

@HWI-EAS121:4:100:1783:550#0/1

CGTTACGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACGGATCTCGTATGCGGTCTGCTGCGTGACAAGACAGGGG +HWI-EAS121:4:100:1783:550#0/1

aaaaa`b_aa`aa`YaX]aZ`aZM^Z]YRa]YSG[[ZREQLHESDHNDDHNMEEDDMPENITKFLFEEDDDHEJQMEDDD @HWI-EAS121:4:100:1783:1611#0/1

GGGTGGGCATTTCCACTCGCAGTATGGGTTGCCGCACGACAGGCAGCGGTCAGCCTGCGCTTTGGCCTGGCCTTCGGAAA +HWI-EAS121:4:100:1783:1611#0/1

a``^__`_``^a`a`^a_^__]a_]\]`a_____`_^^`]X]_]XTV_\]]NX_XVX]]_TTTTG[VTHPN]VFDZ @HWI-EAS121:4:100:1783:322#0/1

CGTTTATGTTTTTGAATATGTCTTATCTTAACGGTTATATTTTAGATGTTGGTCTTATTCTAACGGTCATATATTTTCTA +HWI-EAS121:4:100:1783:322#0/1

```[aa\b^^[]aabbb][`a\_abbb`a``bbbbbabaabaaaab\_VZa\_^\_\_bab\_X`[a\HV\_[\_]\_[^\_X\T\_VQQ @HWI-EAS121:4:100:1783:207#0/1

 $abba`Xa\^\\\\abba[a_0_a`aa`aa`a]^V]X_a^YS\R_\H_[]\ZTDUZZUSOPX]]POP\GS\WSHHD @HWI-EAS121:4:100:1783:455\#0/1$ 

GGGTAATTCAGGGACAATGTAATGGCTGCACAAAAAAAATACATCTTTCATGTTCCATTGCACCATTGACAAATACATATT +HWI-EAS121:4:100:1783:455#0/1



	ALLERGIES	MEDICATION HISTORY
ast Updated: 01 Dec	2011 @ 0851	Last Updated: 11 Apr 2011 # 1737
		Medication: AMLODIPINE BESYLATE 19MG TAB
llergy Name:	TRIMETHOPRIM	Instructions: TAKE ONE TABLET BY MOUTH TAKE ONE-HALF TABLET FOR :
ocation:	DAYT29	GRAPEFRUIT JUICE
ate Entered:	09 Mar 2011	Status: Active
eaction:		Refills Remaining: 3
llergy Type:	DRUG	Last Filled On: 20 Aug 2010
A Drug Class:	ANTI-INFECTIVES,OTHER	Initially Ordered On: 13 Aug 2010
bserved/Historical:	HISTORICAL	Quantity: 45
omments:	The reaction to this allergy was MILD (NO SQUELAE)	Days Supply: 90
		Pharmacy: DAYTON
llergy Name:	TRANADOL	Prescription Number: 2718953
ocation:	DAYT29	
ate Entered:	09 Mar 2011	Medication: IBUPROFEN 600MG TAB
eaction:	URINARY RETENTION	Instructions: TAKE ONE TABLET BY MOUTH FOUR TIMES A DAY WITH FOOD
llergy Type:	DRUG	Status: Active
A Drug Class:	NON-OPIOID ANALGESICS	Refills Remaining: 3
bserved/Historical:	HISTORICAL	Last Filled On: 20 Aug 2010
omments:	gradually worsening difficulty emptying bladder	Initially Ordered On: 01 Jul 2010
	-til-b	Austridian 360

la meta de este curso

Datos brutos -> Script de procesamiento -> datos ordenados-> análisis de datos -> comunicación de datos

# datos crudos y procesados

**Datos crudos** \* La fuente original de los datos \* A menudo es difícil de usar para análisis de datos. \* Análisis de datos *incluye* procesamiento \* Es posible que los datos sin procesar solo necesiten procesarse una

vez

http://en.wikipedia.org/wiki/Raw\_data

Datos procesados \* Datos que están listos para analizar \* El procesamiento puede incluir fusión, subconjunto, transformación, etc. \* Puede haber estándares para el procesamiento. \* Todos los pasos deben registrarse

http://en.wikipedia.org/wiki/Computer\_data\_processing

### Los componentes de los datos ordenados

Las cuatro cosas que debes tener

- 1. Los datos brutos.
- 2. Un conjunto de datos ordenado
- 3. Un libro de códigos que describe cada variable y sus valores en el ordenado conjunto de datos.
- 4. Una receta explícita y exacta que usaste para ir de  $1 \rightarrow 2,3$ .

#### Los datos brutos

- El extraño archivo binario que escupe su máquina de medición
- El archivo de Excel sin formato con 10 hojas de trabajo que le envió la empresa con la que contrató
- Los datos JSON complicados que obtuviste al raspar la API de Twitter
- Los números ingresados a mano que recolectó mirando a través de un microscopio

Sabes que los datos sin procesar están en el formato correcto si

- 1. No ejecuté ningún software en los datos.
- 2. No manipuló ninguno de los números de los datos.
- 3. No eliminó ningún dato del conjunto de datos.
- 4. No resumió los datos de ninguna manera

#### los datos ordenados

- 1. Cada variable que mida debe estar en una columna.
- 2. Cada observación diferente de esa variable debe estar en una fila diferente
- 3. Debe haber una tabla para cada "tipo" de variable.
- 4. Si tiene varias tablas, deben incluir una columna en la tabla que permita vincularlas

#### Algunos otros consejos importantes

- Incluya una fila en la parte superior de cada archivo con nombres de variables.
- Hacer que los nombres de las variables sean legibles por humanos AgeAtDiagnosis en lugar de AgeDx
- En general, los datos deben guardarse en un archivo por tabla.

#### El libro de códigos

- 1. Información sobre las variables (¡incluidas las unidades!) En el conjunto de datos no contenidas en los datos ordenados
- 2. Información sobre las elecciones resumidas que hizo
- 3. Información sobre el diseño del estudio experimental que utilizó

### $Algunos\ otros\ consejos\ importantes$

- Un formato común para este documento es un archivo de texto / Word.
- Debe haber una sección llamada "Diseño del estudio" que tenga una descripción detallada de cómo recopiló los datos.
- Debe haber una sección llamada "Libro de códigos" que describa cada variable y sus unidades.

#### La lista de instrucciones

- Idealmente un script de computadora (en R:-), pero supongo que Python también está bien ...)
- La entrada para el script son los datos sin procesar
- La salida son los datos procesados y ordenados.
- No hay parámetros para el script.

En algunos casos, no será posible escribir todos los pasos. En ese caso, debe proporcionar instrucciones como:

- 1. Paso 1: tome el archivo sin procesar, ejecute la versión 3.1.2 del software de resumen con los parámetros  $a=1,\,b=2,\,c=3$
- 2. Paso 2: ejecute el software por separado para cada muestra
- 3. Paso 3: tome la columna tres de outputfile.out para cada muestra y esa es la fila correspondiente en el conjunto de datos de salida

https://github.com/jtleek/datasharing

### Leyendo XML

- Lenguaje de marcado extensible
- Se utiliza con frecuencia para almacenar datos estructurados.
- Particularmente utilizado en aplicaciones de Internet.
- La extracción de XML es la base de la mayoría de los web scraping.
- Componentes
  - Marcado: etiquetas que dan estructura al texto
  - Contenido: el texto real del documento
- etiquetas, elementos y atributos
- Las etiquetas corresponden a las etiquetas generales
  - Etiquetas de inicio <sección>
  - Etiquetas finales </section>
  - Etiquetas vacías <line-break />
- Los elementos son ejemplos específicos de etiquetas.
  - <Saludo> Hola, mundo </Saludo>
- Los atributos son componentes de la etiqueta
  - <img src =" jeff.jpg "alt =" instructor "/>
     <step number =" 3 "> Conecta A con B. </step>

Ejemplo de un archivo XML

```
● ● ● ✓ www.w3schools.com/xml/ ×
 ← ⇒ C 🐧 🗋 www.w3schools.com/xml/simple.xml
 This XML file does not appear to have any style information associated with it. The document tree is shown below.
 <!-- Edited by XMLSpy® -->
 ▼<bre><bre>dreakfast_menu>
 ▼<food>
<name>Belgian Waffles</name>
 <price>$5.95</price>
 ▼<description>
 Two of our famous Belgian Waffles with plenty of real maple syrup </description>
 <calories>650</calories>
 </food>
 <name>Strawberry Belgian Waffles</name>
 <price>$7.95</price>
 *Value of the stransfer of the stra
 <calories>900</calories>
 ▼<food>
 <name>Berry-Berry Belgian Waffles</name>
<price>$8.95</price>

 Light Belgian waffles covered with an assortment of fresh berries and whipped cream
 </description>
<calories>900</calories>
</food>
 ▼<food>
 <name>French Toast</name>
<price>$4.50</price>
 ▼<description>
 Thick slices made from our homemade sourdough bread
 ▼<food>
 <name>Homestyle Breakfast</name>
 <price>$6.95</price>
 ▼<description>
 Two eggs, bacon or sausage, toast, and our ever-popular hash browns
 </description>
<calories>950</calories>
Leyendo el archivo en R
library(XML)
if(!file.exists("D:/luism/Descargas/simple.xml")){
fileUrl <- "http://www.w3schools.com/xml/simple.xml"</pre>
download.file(fileUrl, destfile = "D:/luism/Descargas/simple.xml")}
doc <- xmlTreeParse("D:/luism/Descargas/simple.xml", useInternalNodes = TRUE)</pre>
rootNode <- xmlRoot(doc)</pre>
xmlName(rootNode)
[1] "breakfast_menu"
names(rootNode)
##
 food
 food
 food
 food
 food
"food" "food" "food" "food"
Acceda directamente a partes del documento XML
rootNode[[1]]
<food>
##
 <name>Belgian Waffles</name>
 <price>$5.95</price>
##
 <description>Two of our famous Belgian Waffles with plenty of real maple syrup</description>
 <calories>650</calories>
</food>
rootNode[[1]][[1]]
<name>Belgian Waffles</name>
```

Extrae partes del archivo mediante programación

```
xmlSApply(rootNode,xmlValue)
```

```
##
##
"Belgian Waffles$5.95Two of our famous Belgian Waffles with plenty of :
##
"Strawberry Belgian Waffles$7.95Light Belgian waffles covered with strawberries a:
##
"Berry-Berry Belgian Waffles$8.95Light Belgian waffles covered with an assortment of fresh berries a:
##
"French Toast$4.50Thick slices made from our homemade
##
"Homestyle Breakfast$6.95Two eggs, bacon or sausage, toast, and our ever-pop
```

#### XPath

- /node Nodo de nivel superior
- //nodo Nodo en cualquier nivel
- node/@attr-name/ Nodo con un nombre de atributo
- node/@attr-name = 'bob'/ Nodo con nombre de atributo attr-name = 'bob'

 $Information\ from:\ http://www.stat.berkeley.edu/\sim statcur/Workshop 2/Presentations/XML.pdf$ 

```
xpathSApply(rootNode,"//name",xmlValue)
```

```
[1] "$5.95" "$7.95" "$8.95" "$4.50" "$6.95"
```

#### Notas y otros recursos

- Official XML tutorials short, long
- An outstanding guide to the XML package
- http://en.wikipedia.org/wiki/XML

### Leyendo JSON

- Notación de objetos de Javascript (Javascript Object Notation)
- Almacenamiento de datos ligero
- Formato común para datos de interfaces de programación de aplicaciones (API)
- Estructura similar a XML pero diferente sintaxis / formato
- Datos almacenados como
  - Números (double)
  - Strings (entre comillas dobles)
  - Booleano ( verdadero o falso)
  - Matriz (ordenada, separada por comas encerrada entre corchetes [])
  - Objeto (desordenado, colección de claves separada por comas: pares de valores entre llaves ⟨}⟩

```
● ○ ○ ↑ https://api.github.com/us ×
 ☆ 🔁 🤼 😑
 → C 🕯 https://api.github.com/users/jtleek/repos
 "id": 12441219,
"name": "ballgown",
"full_name": "jtleek/ballgown",
name": "ballgown",
 "full_name": "jtleek/ballgown",
 "owner": {
 "login": "jtleek",
 "id": 1571674,
 "avatar_url": "https://gravatar.com/avatar/4bdl3719da0ba2c5bd2a446e14f78187?
d=https%3A%2F%2Fidenticons.github.com%2F09a717ab76843b6e2ff11739bc821632.png&r=x",
 "gravatar_id": "4bdl3719da0ba2c5bd2a446e14f78187",
 "url": "https://api.github.com/users/jtleek",
 "html_url": "https://api.github.com/users/jtleek/followers",
 "followers url": "https://api.github.com/users/jtleek/following(/other_user)",
 "gists_url": "https://api.github.com/users/jtleek/gists(/gist_id)",
 "starred_url": "https://api.github.com/users/jtleek/subscriptions",
 "organizations_url": "https://api.github.com/users/jtleek/subscriptions",
 "organizations_url": "https://api.github.com/users/jtleek/repos",
 "repos_url": "https://api.github.com/users/jtleek/repos",
 "repos_url": "https://api.github.com/users/jtleek/repos",
 "events_url": "https://api.github.com/users/jtleek/received_events',
 "received_events_url": "https://api.github.com/users/jtleek/received_events',
 "type": "Jser",
 "ste_admin": false
},
 "priyate": false
 },
"private": false,
"html_url": "https://github.com/jtleek/ballgown",
"description": "code for manipulating ballgown output in R",
"fork": true,
"url": "https://api.github.com/repos/jtleek/ballgown",
 levendo datos:
library(jsonlite)
jsonData <- fromJSON("https://api.github.com/users/jtleek/repos")</pre>
names(jsonData)
 [1] "id"
##
 "node_id"
 "name"
 "owner"
 [4] "full name"
 "private"
##
 [7] "html_url"
##
 "description"
 "fork"
##
 [10] "url"
 "forks_url"
 "keys_url"
 [13] "collaborators_url"
 "teams url"
 "hooks_url"
 "assignees_url"
##
 [16] "issue_events_url"
 "events_url"
##
 [19] "branches_url"
 "tags_url"
 "blobs_url"
##
 [22] "git_tags_url"
 "git_refs_url"
 "trees_url"
 [25] "statuses_url"
 "languages_url"
 "stargazers_url"
##
 "contributors_url"
##
 [28]
 "subscribers_url"
 "subscription_url"
##
 [31] "commits_url"
 "git_commits_url"
 "comments_url"
 [34] "issue comment url"
 "contents url"
 "compare url"
 [37] "merges_url"
##
 "archive_url"
 "downloads_url"
 [40] "issues url"
 "pulls url"
 "milestones url"
##
 [43] "notifications_url"
 "labels_url"
 "releases_url"
##
##
 [46]
 "deployments_url"
 "created at"
 "updated at"
 "git_url"
 "ssh_url"
 [49]
 "pushed at"
##
##
 [52]
 "clone_url"
 "svn url"
 "homepage"
 [55]
 "size"
##
 "stargazers_count"
 "watchers_count"
 [58] "language"
 "has_issues"
 "has_projects"
##
 [61] "has_downloads"
 "has_wiki"
 "has_pages"
##
 [64]
 "forks_count"
 "mirror_url"
 "archived"
 [67]
 "disabled"
 "license"
##
 "open_issues_count"
 [70] "forks"
 "open_issues"
 "watchers"
##
[73] "default_branch"
```

```
jsonData$name
 [1] "2018"
 "ads2020"
##
 [3] "advdatasci"
 "advdatasci-project"
 [5] "advdatasci-swirl"
 "advdatasci15"
 [7] "advdatasci16"
##
 "advdatasci_swirl"
[9] "ballgown"
 "big_course"
[11] "bookdown-start"
 "books"
[13] "capitalIn21stCenturyinR"
 "careerplanning"
[15] "coc"
 "courses"
[17] "COVID-19"
 "crsra"
[19] "cshlcg-labs"
 "data"
[21] "dataanalysis"
 "datascientist"
[23] "datasharing"
 "datawomenontwitter"
[25] "day1"
 "derfinder"
[27] "derfinder-1"
 "DSM"
[29] "EDA-Project"
 "escalatr"
Objetos anidados en JSON
names(jsonData$owner)
[1] "login"
 "id"
 "node_id"
 [4] "avatar_url"
 "url"
 "gravatar_id"
 [7] "html_url"
##
 "followers_url"
 "following_url"
[10] "gists_url"
 "starred_url"
 "subscriptions_url"
[13] "organizations_url"
 "repos_url"
 "events_url"
[16] "received_events_url" "type"
 "site_admin"
jsonData$owner$login
[1] "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek"
 [9] "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek"
[17] "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek"
[25] "jtleek" "jtleek" "jtleek" "jtleek" "jtleek" "jtleek"
escribir data frames en JSON
myjson <- toJSON(head(iris), pretty=TRUE)</pre>
cat(myjson)
[
##
##
 "Sepal.Length": 5.1,
 "Sepal.Width": 3.5,
##
##
 "Petal.Length": 1.4,
##
 "Petal.Width": 0.2,
##
 "Species": "setosa"
##
 },
##
##
 "Sepal.Length": 4.9,
##
 "Sepal.Width": 3,
##
 "Petal.Length": 1.4,
##
 "Petal.Width": 0.2,
##
 "Species": "setosa"
##
 },
##
 {
```

```
##
 "Sepal.Length": 4.7,
##
 "Sepal.Width": 3.2,
 "Petal.Length": 1.3,
##
##
 "Petal.Width": 0.2,
##
 "Species": "setosa"
##
 },
##
 {
 "Sepal.Length": 4.6,
##
##
 "Sepal.Width": 3.1,
##
 "Petal.Length": 1.5,
##
 "Petal.Width": 0.2,
 "Species": "setosa"
##
##
 },
##
##
 "Sepal.Length": 5,
##
 "Sepal.Width": 3.6,
##
 "Petal.Length": 1.4,
##
 "Petal.Width": 0.2,
##
 "Species": "setosa"
 },
##
##
##
 "Sepal.Length": 5.4,
##
 "Sepal.Width": 3.9,
##
 "Petal.Length": 1.7,
##
 "Petal.Width": 0.4,
##
 "Species": "setosa"
##
 }
]
de JSON a dataframe
iris2 <- fromJSON(myjson)</pre>
head(iris2)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
1
 3.5
 5.1
 1.4
 0.2 setosa
2
 0.2 setosa
 4.9
 3.0
 1.4
3
 4.7
 3.2
 1.3
 0.2 setosa
```

#### otros recursos

## 4

## 5

## 6

• http://www.json.org/

4.6

5.0

5.4

3.1

3.6

3.9

• A good tutorial on jsonlite - http://www.r-bloggers.com/new-package-jsonlite-a-smarter-json-encoderdecoder/

0.2 setosa

0.2 setosa

0.4 setosa

1.5

1.4

1.7

- jsonlite vignette
- http://en.wikipedia.org/wiki/JSON

### Usando data.table

- Hereda de dataframe
  - Todas las funciones que aceptan data.frame funcionan en data.table
- Escrito en C por lo que es mucho más rápido

• Mucho, mucho más rápido al crear subconjuntos, agrupar y actualizar

```
creacion de tablas
library(data.table)
DF = data.frame(x=rnorm(9),y=rep(c("a","b","c"),each=3),z=rnorm(9))
head(DF,3)
##
 х у
1 0.1281210 a -1.1594222
2 0.1017796 a 0.6211235
3 1.3595822 a -0.2538872
DT = data.table(x=rnorm(9),y=rep(c("a","b","c"),each=3),z=rnorm(9))
head(DT,3)
##
 х у
1: 2.318047 a -0.5138050
2: 1.817984 a 0.1147285
3: -1.233444 a -0.2324543
mirar todos los data.tables guardados en la memoria
tables()
##
 NAME NROW NCOL MB COLS KEY
1: DT
 3 \quad 0 \quad x,y,z
Total: OMB
extraer subconjuntos
DT[2,]
##
 х у
1: 1.817984 a 0.1147285
DT[DT$y=="a",]
##
 х у
1: 2.318047 a -0.5138050
2: 1.817984 a 0.1147285
3: -1.233444 a -0.2324543
DT[c(2,3),]
 х у
1: 1.817984 a 0.1147285
2: -1.233444 a -0.2324543
DT[,c(2,3)]
##
 У
1: a -0.51380496
2: a 0.11472847
3: a -0.23245430
4: b -0.81122782
5: b -0.36909562
6: b 0.74440117
7: c -0.30469462
8: c 1.66394825
9: c -0.02804972
```

Subconjunto de columnas en data.table

- La función de subconjunto se modifica para data.table
- El argumento que pasa después de la coma se llama "expresión"
- En R, una expresión es una colección de declaraciones encerradas entre corchetes

ejemplos de declaraciones

```
{
 x = 1
 y = 2
}
k = \{print(10); 5\}
[1] 10
print(k)
[1] 5
Calcular valores para variables con expresiones
DT[,list(mean(x),sum(z))]
##
 V1
 ٧2
1: 0.314394 0.2637508
DT[,table(y)]
y
a b c
3 3 3
agregando nuevas columnas
DT[,w:=z^2]
DT2 <- DT
DT[, y:= 2]
el cambio se hace desde la original a la copia
head(DT, n=3)
##
 х у
 z
1: 2.318047 2 -0.5138050 0.26399553
2: 1.817984 2 0.1147285 0.01316262
3: -1.233444 2 -0.2324543 0.05403500
head(DT2, n=3)
##
 z
 х у
1: 2.318047 2 -0.5138050 0.26399553
2: 1.817984 2 0.1147285 0.01316262
3: -1.233444 2 -0.2324543 0.05403500
multiples operaciones
DT[,m:= \{tmp \leftarrow (x+z); log2(tmp+5)\}]
```

operaciones similares a plyr

```
DT[,a:=x>0]
DT[,b:=mean(x+w),by=a]
Variables especiales
.N Un número entero, de longitud 1, que contiene el número de elementos de un nivel de factor
set.seed(123);
DT <- data.table(x=sample(letters[1:3], 1E5, TRUE))
DT[, .N, by=x]
##
 х
1: c 33294
2: b 33305
3: a 33401
DT <- data.table(x=rep(c("a","b","c"),each=100), y=rnorm(300))</pre>
setkey(DT, x)
DT['a']
##
##
 0.88631257
 1: a
##
 2.82858132
 2: a
##
 3: a
 2.03145429
##
 1.90675413
 4: a
##
 5: a
 0.21490826
##
 6: a -0.86273413
 7: a -2.20493863
##
##
 0.24105923
 8: a
##
 9: a
 1.83832419
##
 10: a 0.79205468
 11: a 0.65053469
##
 12: a -1.53912061
##
 13: a -0.60830053
 14: a 0.38195644
##
##
 15: a -1.07500044
##
 16: a 0.21994264
##
 17: a -0.78288781
##
 18: a -1.11003346
 19: a -1.65871456
##
 20: a -0.50147343
##
##
 21: a
 1.91636375
##
 22: a
 1.41236645
##
 23: a
 0.92260986
 1.01106201
##
 24: a
##
 25: a 0.57213026
##
 26: a -0.62843126
##
 27: a -0.36316140
 28: a -1.05858811
##
##
 29: a -0.42935803
##
 30: a 0.86941467
 31: a -0.54001647
##
##
 32: a -1.14647747
 33: a -0.17151840
```

```
34: a -0.56368340
##
 35: a -0.42994346
 36: a -1.23723779
 37: a 0.15901329
##
 38: a -1.16711067
##
 39: a -0.08111944
 40: a -0.51667953
 41: a 0.99540703
##
##
 42: a 0.79752142
##
 43: a 0.53895224
 44: a -1.40405605
 45: a 0.40144065
##
 46: a -0.52432237
##
 47: a -0.83952146
##
 48: a 0.47556591
##
 49: a -0.01194696
##
 50: a 0.10319780
 51: a -0.38575415
##
 52: a 1.11726438
##
 53: a -0.49961390
##
 54: a -0.44735091
 55: a -0.23784512
 56: a -0.86939374
##
 57: a 1.14887678
##
 58: a 0.53864996
 59: a -0.10680992
##
 60: a 0.60053649
 61: a -1.47499445
 62: a 0.98126964
 63: a -0.61118738
##
 64: a 0.08938648
##
 65: a -0.01327227
 66: a -0.97219341
##
 67: a -0.57946225
##
 68: a 0.14963144
##
 69: a 0.47640689
 70: a 0.44729682
##
 71: a -0.19180956
 72: a 0.51712710
##
 73: a 0.40338273
 74: a 1.78411385
##
 75: a 0.27775645
 76: a 0.77394978
##
 77: a -2.08081928
 78: a -0.35920889
 79: a -0.45932217
##
 80: a 0.20181947
##
 81: a 0.62401138
 82: a -0.25722981
 83: a 0.94414021
##
##
 84: a 0.25074808
##
 85: a -0.72784257
 86: a 0.36881323
87: a 0.44415068
```

```
##
 88: a -1.00535422
 89: a -0.33152471
##
 90: a -0.37039325
##
##
 91: a -0.79701529
##
 92: a 0.28148559
 93: a 0.33307250
##
 94: a 0.52690325
 95: a -0.78168949
##
##
 96: a -0.02793948
##
 97: a -1.74492339
 98: a 0.65284209
 99: a -0.93830821
##
100: a 0.62753159
##
 Х
uniones
DT1 <- data.table(x=c('a', 'a', 'b', 'dt1'), y=1:4)
DT2 <- data.table(x=c('a', 'b', 'dt2'), z=5:7)
setkey(DT1, x); setkey(DT2, x)
merge(DT1, DT2)
##
 x y z
1: a 1 5
2: a 2 5
3: b 3 6
una caracteristica es la lectura rapida
big_df <- data.frame(x=rnorm(1E6), y=rnorm(1E6))</pre>
file <- tempfile()</pre>
write.table(big_df, file=file, row.names=FALSE, col.names=TRUE, sep="\t", quote=FALSE)
system.time(fread(file))
##
 user system elapsed
##
 0.22
 0.03
 0.11
system.time(read.table(file, header=TRUE, sep="\t"))
##
 system elapsed
 user
##
 8.72
 0.34
 9.39
```

### Resumen y lectura adicional

- La última versión de desarrollo contiene nuevas funciones como melt ydcast para data.tables
- $\bullet \ \ https://r-forge.r-project.org/scm/viewvc.php/pkg/NEWS?view=markup\&root=datatable$
- Aquí hay una lista de diferencias entre data.table y data.frame
- Notas basadas en las notas de Raphael Gottardo
- https://github.com/raphg/Biostat-578/blob/master/Advanced\_data\_manipulation.Rpres, quien los obtuvo de Kevin Ushey.