FORECASTING OF DENGUE HEMORRHAGIC FEVER CASES USING MACHINE LEARNING

OBJECTIVE, STUDY AREA AND DATA COLLECTION

OBJECTIVE

ดาดการณ์จำนวนผู้ป่วยโรดไซ้เลือดออกในแต่ละเดือน โดยตัวแปรดือ ปริมาณน้ำฝนสะสม (มม.), ดวามชื้นสัมพัทธ์ (%), อุณหภูมิ (สูงสุด, ต่ำสุด และ เฉลี่ย: องศาเซลเซียส)

STUDY AREA

โรงพยาบาลส่งเสริมสุขภาพตำบลบ้านสวน ตำบลบ้านสวน อำเภอเมือง จังหวัดชลบุรี

DATA COLLECTION

- 1. รายงานจำนวนผู้ป่วยโรคไซ้เลือดออกรายเดือน โรงพยาบาลส่งเสริมสุขภาพตำบลบ้านสวน ปี 2558 2565
- 2. ปริมาณน้ำฝนสะสม (มม.) , ความชื้นสัมพัทธ์เฉลี่ย (เปอร์เซ็น) , อุณหภูมิสูงสุด / ต่ำสุด / เฉลี่ย (องศาเซลเซส) รายเดือน ปี 2558-2565

DATA PREPARATION

1. Define Data for Input and Target Variable

Input variables

- RAIN_ACCUM (mm), HUMIDIY (%), MAX_TEMP (°C), MIN_TEMP (°C), AVG_TEMP (°C)

1. Define Data for Input and Target Variable

Target variable

- PATIENT

มีเดือนที่มีจำนวนผู้ป่วย เท่ากับ o คน อยู่กึง 50 % ของข้อมูลทั้งหมด

2. Train / Test Split

Train: Jan15 - Dec21Test: Jan22 - Dec22

3. Adjust Data on <u>Train Set</u>: Target Variables (PATIENT)

- บวกด่าเฉลี่ยของแต่เดือนให้แก่เดือนที่มีจำนวนผู้ป่วยเท่ากับ o
- ตัดด่า Outlier ด้วยการกำหนดด่า Upper Fence: Q3+1.5(IQR) = 71

4. Create Lag Variables and Another Variables

- สร้าง Lag Variables 2 เดือน ให้กับ Input Variables
 เช่น RAIN_ACCUM (mm) -> RAIN_ACCUM (mm)_1, RAIN_ACCUM (mm)_2
 หมายถึงปริมาณน้ำฝนสะสมใน 1 และ 2 เดือนก่อนหน้าเดือนปัจจุบัน ตามลำดับ
- สร้าง Lag Variables 2 จาก Target Variables เพื่อนำมาใช้เป็น Input Variables -> PATIENT_1,
 PATIENT_2
- สร้างตัวแปร Input Variables ที่ระบุเดือนและกุดูกาล

Final Input Variables

Month and Seasonal

PATIENT

RAIN ACCUMULATION

HUMIDITY

MAX TEMPERATURE

MIN TEMPERATURE

AVG TEMPERATURE

- -> month , seasonal
- -> PATIENT_1, PATIENT_2,
- -> RAIN_ACCUM (mm)_1 , RAIN_ACCUM (mm)_2
- -> HUMIDIY (%)_1 , HUMIDIY (%)_2
- -> MAX_TEMP (°C)_1 , MAX_TEMP (°C)_2
- -> MIN_TEMP (°C)_1 , MIN_TEMP (°C)_2
- -> AVG_TEMP (°C)_1 , AVG_TEMP (°C)_2

5. Data Transformation on <u>Target Variables (Patient)</u>

Log Transformation

Max Mean

4 3 Min STD

1 **)** 0.98

Standardize Transform

Max 2 **Mean** 0

Min -1 N

Normalize Transform

Max 1 **Mean** 0

Min STD

0 0.34

METHODLOGY

Ensemble Learning: Boosting

The Process of Boosting

 ${\it https://www.analyticsvidhya.com/blog/2023/01/ensemble-learning-methods-bagging-boosting-and-stacking/}$

METHODLOGY (CONT.)

XGBoost

Level wise tree growth

- Level wise tree growth.
- Still considered fast and efficient.
- More Interpretability.

LightGBM

Leaf wise tree growth

- Leaf wise tree growth.
- Faster and reduced number of memory usage.
- Suite to large dataset.

METHODLOGY (CONT.)

FEATURE SELECTION: Pearson Correlation Coefficient

r =	$\sum (x_i - \bar{x}) (y_i - \bar{y})$
	$\sqrt{\sum \left(x_i - ar{x} ight)^2 \sum \left(y_i - ar{y} ight)^2}$

Size of Correlation	Interpretation				
.90 to 1.00 (90 to -1.00)	Very high positive (negative) correlation				
.70 to .90 (70 to90)	High positive (negative) correlation				
.50 to .70 (50 to70)	Moderate positive (negative) correlation				
.30 to .50 (30 to50)	Low positive (negative) correlation				
.00 to .30 (.00 to30)	negligible correlation				

Feature Selected (| r | > 0.3)

 $RAIN_ACCUM\ (mm)_1\ ,\ HUMIDIY\ (\%)_1\ ,\ seasonal\ ,\ RAIN_ACCUM\ (mm)_2\ ,\ PATIENT_1\ ,\ MIN_TEMP\ (°C)_2\ ,\ month_$

METHODLOGY (CONT.)

Evaluation Metrics

Root Mean Square Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}$$

• Mean Square Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

MODELING PROCESS All Factor / **Factor from Feature Selection Train Set** Train: Mar15 - Dec19 Valid: Jan20 - Dec21 **Data Preparation Input Variables** Find Best Hyper Adjust target var. parameters for **GridSeachCV** Train / Test split XGBoost and **Create input var. Target Variables** LightGBM **Data Transformation Test Set Approach Evaluate model Prediction** Fit to Model **Get Best Params**

With 2 dataset by factor, 4 data transformation approach, 2 model

Output: 16 models

Do inverse transform before evaluate the model

RESULTS

120

ACTUAL AND PREDICTION: DENGUE HEMORRHAGIC FEVER CASES BETWEEN MAR15 - DEC19

Train Set

	xgb3_all	xgb4_all	xgb1_cor	xgb4_cor	xgb3_cor	xgb1_all	xgb2_all	xgb2_cor	lgbm1_all	lgbm1_cor	lgbm2_cor	lgbm2_all
RMSE	0.18	1.84	3.50	4.36	4.38	4.54	9.77	11.60	16.46	16.62	19.73	19.81
MSE	0.03	3.37	12.23	19.05	19.16	20.61	95.36	134.52	270.93	276.25	389.26	392.39
MAE	0.14	1.36	2.17	2.83	2.80	3.22	6.07	7.49	12.74	12.95	13.99	13.97

^{*} lgbm1_all = lgbm3_all = lgbm4_all and lgbm1_cor = lgbm3_cor = lgbm4_cor

RESULTS (CONT.)

120

ACTUAL AND PREDICTION: DENGUE HEMORRHAGIC FEVER CASES BETWEEN JAN20 - DEC21

Validate Set

^{*} lgbm1_all = lgbm3_all = lgbm4_all and lgbm1_cor = lgbm3_cor = lgbm4_cor

RESULTS (CONT.)

ACTUAL AND PREDICTION: DENGUE HEMORRHAGIC FEVER CASES BETWEEN JAN22 - DEC22

^{*} lgbm1_all = lgbm3_all = lgbm4_all and lgbm1_cor = lgbm3_cor = lgbm4_cor

DISCUSSION

1. จำนวนของข้อมูล และ ตัวแปรที่นำมาสร้าง Model

- จำนวนของข้อมูลที่น้อยเกินไป อาจทำให้ไม่เห็นรูปแบบของข้อมูล
- ตัวแปรอิสระที่นำมาใช้ มีความสัมพันธ์กับตัวแปรตามค่อนข้างน้อย ทำให้ผลการคาดการณ์ไม่แม่นยำ

2. การทดลองกับ Model อื่น ๆ

- Statistics Model เช่น ARIMA, VAR , Poisson Multivariate Regression
- Deep learning Model เช่น LSTM, GRU, LSTM with Attention

3. ขอบเขตของการทดลอง

การขยายขอบเขตการทดลอง อาจทำให้ได้ผลลัพธ์ที่ดีขึ้น เช่น เปลี่ยนจากการดาดการณ์จำนวนผู้ป่วย
 โรคไข้เลือดออกในโรงพยาบาลเดียว เป็นการคาดการณ์จำนวนผู้ป่วยโรคไข้เลือดในเขต/อำเภอหนึ่ง ๆ