# SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 4

Mattias Villani

Avdelningen för Statistik och Maskininlärning Institutionen för datavetenskap Linköpings universitet





# ÖVERSIKT

- ► Täthetsfunktion
- ► Likformig fördelning
- ► Exponentialfördelningen
- ► Gammafördelningen
- Normalfördelningen
- Betafördelningen
- t-fördelningen



### KONTINUERLIGA SLUMPVARIABLER

- ▶ Kontinuerliga slumpvariabler kan anta alla reela värden på ett inteval (a, b), speciellt  $(-\infty, \infty)$ .
- ▶ X kontinuerlig  $\Rightarrow P(x) = 0$  för alla x. Pmf inte användbar.
- ▶ Fördelningsfunktionen funkar dock:  $F(x) = P\{X \le x\}$ .
- ▶ Eftersom P(x) = 0 för alla x så gäller  $P\{X \le x\} = P\{X < x\}$ .
- ▶ Om X kontinuerlig slumpvariabel: F(x) kontinuerlig. Inga hopp. Icke-avtagande.

$$\lim_{x \to \infty} F(x) = 1 \quad \lim_{x \to -\infty} F(x) = 0.$$



#### **TÄTHETSFUNKTION**

Definition. Täthetsfunktionen f(x) för en kontinuerlig slumpvariabel X är derivatan av CDF:n

$$f(x) = F'(x)$$
.

- ► Fördelningen är kontinuerlig om den har en täthetsfunktion.
- ► Täthetsfunktion heter probability density function, pdf på engelska.
- ightharpoonup cdf:n F(x) är antiderivatan av pdf:n.
- ► Sannolikheter för intervall ges av ytor under pdf:n

$$P\left\{a < X < b\right\} = \int_a^b f(x) dx$$





#### **TÄTHETSFUNKTION**

ightharpoonup f(x) = F'(x) så

$$\int_{-\infty}^{b} f(x)dx = F(b) - F(-\infty) = F(b) - 0 = F(b).$$

► Täthetsfunktioner integrerar till ett:

$$\int_{-\infty}^{\infty} f(x)dx = F(\infty) - F(-\infty) = 1 - 0 = 1.$$

- ▶ Täthetsfunktionens värden, t ex f(2), är inte en sannolikhet. f(2) > 1 helt ok. Men  $f(x) \ge 0$  måste gälla.
- ▶ För litet  $\epsilon$ : Pr  $\left(a \frac{\epsilon}{2} \le X \le a + \frac{\epsilon}{2}\right) \approx \epsilon \cdot f(a)$ .
- ▶ Exempe1: triangelfördelningen över support [0, a]. Normaliseringskonstant. Fördelningsfunktion.  $P\{X > a/2\}$ . Se också Example 4.1 i Baron.
- ► Se Table 4.1 i Baron för en jämförelse av diskreta och kontinuerliga fördelningar.

#### VÄNTEVÄRDE OCH VARIANS

► Repetition: för diskreta slumpvariabler:

$$\mathbb{E} X = \sum_{\mathbf{x}} \mathbf{x} \cdot P(\mathbf{x}) \quad \textit{Var}(X) = \mathbb{E} \left( X - \mu \right)^2 = \sum_{\mathbf{x}} \left( \mathbf{x} - \mu \right)^2 P(\mathbf{x})$$

► För kontinuerliga slumpvariabler:

$$\mathbb{E}X = \int x \cdot f(x) dx \qquad Var(X) = \mathbb{E}(X - \mu)^2 = \int (x - \mu)^2 f(x) dx$$

Exempel: triangelfördelning.

# SIMULTANFÖRDELNING FÖR KONTINUERLIGA VARIABLER

► Simultan fördelningsfunktion

$$F_{(X,Y)}(x,y) = \mathbf{P}\left\{X \le x \cap Y \le y\right\}$$

► Simultan täthetsfunktion

$$f_{(X,Y)}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{(X,Y)}(x,y)$$

- ▶ Ofta skriver vi bara f(x, y) istället för  $f_{(X,Y)}(x, y)$ .
- Kovarians

$$Cov(X, Y) = \mathbb{E}(X - \mu_X)(Y - \mu_Y)$$
$$= \int \int (X - \mu_X)(Y - \mu_Y) f(x, y) dxdy$$

#### LIKFORMIG FÖRDELNING

► Täthetsfunktion för likformig fördelad slumpvariabel över [a, b]

$$f(x) = \frac{1}{b-a}$$
 för  $a \le x \le b$ , och  $f(x) = 0$  annars.

Man skriver of  $X \sim U(a, b)$  för att säga: 'Slumpvariabel X följer en likformig fördelning på intervallet (a, b). Likformig = Uniform på engelska.



#### LIKFORMIG FÖRDELNING

▶ Väntevärde:

$$\mathbb{E}X = \int x \cdot f(x) dx = \frac{1}{b-a} \int x dx = \frac{1}{b-a} \left[ \frac{1}{2} x^2 \right]_a^b$$
$$= \frac{1}{2(b-a)} \left( b^2 - a^2 \right) = \frac{(b-a)(b+a)}{2(b-a)} = \frac{a+b}{2}$$

▶ Varians:  $Var(X) = \mathbb{E}X^2 - \mu^2$ 

$$\mathbb{E}X^{2} = \int x^{2} \cdot f(x) dx = \frac{1}{b-a} \int x^{2} dx = \frac{a^{2} + b^{2} + ab}{3}$$

$$Var(X) = \mathbb{E}X^2 - \mu^2 = \frac{a^2 + b^2 + ab}{3} - \left(\frac{a+b}{2}\right)^2 = \frac{(b-a)^2}{12}$$

▶ Alt. härledning, se Baron s. 81. Alla likformiga variabler kan genereras från standardmedlemmen:  $Y \sim U(0,1)$  genom följande resultat:

$$X = a + (b - a)Y$$
 där  $Y \sim U(0, 1) \Longrightarrow X \sim U(a, \underline{b})$ .

### EXPONENTIALFÖRDELNINGEN

▶ Täthetsfunktion för exponentialfördelad slumpvariabel över  $(0, \infty)$ 

$$f(x) = \lambda e^{-\lambda x}$$
, för  $x > 0$ .

- ▶ Vi skriver:  $X \sim \text{Exp}(\lambda)$ .
- Väntevärde

$$\mathbb{E}X = \frac{1}{\lambda}$$

Varians

$$Var(X) = \frac{1}{\lambda^2}$$





#### EXPONENTIALFÖRDELNINGEN

- ► Tiden mellan Poissonhändelser är exponentialfördelad.
- ▶ Låt  $t \sim Po(\lambda t)$  räkna antalet händelser i tidsintervallet [0, t).

$$P\left\{ \text{n\"{a}sta h\"{a}ndelse innan }t
ight\} =1-P\left\{ \text{n\"{a}sta h\"{a}ndelse efter }t
ight\} \ =1-P\left\{ \text{inga h\"{a}ndelser i intervallet }\left[0,t
ight)
ight\} \ =1-rac{e^{-\lambda t}(\lambda t)^{0}}{0!}=1-e^{-\lambda t}$$

vilket är cdf:en för en  $Exp(\lambda)$  variabel.

Exponentialfördelade variabler är minneslösa:

$$P\{T > t + x | T > t\} = P\{T > x\}$$



## GAMMAFÖRDELNINGEN

- ▶ Antag att tiden för att ladda ner en fil är  $Exp(\lambda)$  fördelad. Tiden för att ladda ner  $\alpha$  filer följer en Gamma $(\alpha, \lambda)$  fördelning om nedladdningstiderna är oberoende.
- ▶ Alltså: Om  $X_1, X_2, ..., X_{\alpha}$  är  $\alpha$  stycken **oberoende** Exp $(\lambda)$  variabler:

$$Y = X_1 + X_2 + ... + X_{\alpha} \sim \text{Gamma}(\alpha, \lambda)$$

- $\triangleright$   $\alpha$  kallas för en **shape**parameter.  $\lambda$  är en **frekvens**parameter.
- ▶ Exponential är ett specialfall av Gamma:  $Gamma(1, \lambda) = Exp(\lambda)$ .
- Väntevärde

$$\mathbb{E}X = \frac{\alpha}{\lambda}$$

Varians

$$Var(X) = \frac{\alpha}{\lambda^2}$$



# GAMMAFÖRDELNINGEN





TDAB01



## Normalfördelningen

▶ Täthetsfunktion för  $X \sim N(\mu, \sigma^2)$ 

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
 för  $-\infty < x < \infty$ 

Väntevärde och varians

$$\mathbb{E}X = \mu$$
,  $Var(X) = \sigma^2$ 

▶ CDF finns inte i sluten form. Om  $Z \sim N(0,1)$  så är CDFn

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$$



## Normalfördelningen







#### Normalfördelningen

▶ Standardmedlem:  $Z \sim N(0, 1)$ .

$$X = \mu + \sigma Z \text{ där } Z \sim N(0, 1) \Longrightarrow X \sim N(\mu, \sigma^2).$$

Standardisering

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

▶  $P{Z < 1.35} = \Phi(1.35) = 0.9115$  och  $P{Z > 1.35} = 1 - \Phi(1.35) = 0.0885$ 

Standardisering är praktiskt. Låt  $X \sim N(\mu = 900, \sigma = 200)$ 

$$P\{600 < X < 1200\} = P\left\{\frac{600 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{1200 - \mu}{\sigma}\right\}$$
$$= P\{-1.5 < Z < 1.5\}$$
$$= \Phi(1.5) - \Phi(-1.5) = 0.9332 - 0.0668 = 0.8664$$

## BETAFÖRDELNINGEN

- ▶ Passar kontinuerliga variabler i intervallet [0, 1], t ex andelar.
- ▶ Täthet för  $X \sim Beta(\alpha, \beta)$

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \quad \text{for } 0 \le x \le 1$$

Betafunktionen

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Väntevärde och varians

$$\mathbb{E}X = \frac{\alpha}{\alpha + \beta} \qquad Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$





#### t-fördelningen

- ▶ Normalfördelningen har **tunna svansar**. Mycket osannolikt att observera extrema observationer.
- t-fördelningen är en generalisering av normalfördelningen med en parameter ν (frihetsgrader) som modellerar hur tunga svansarna är.
- ▶ En *t*-fördelad variabel  $X \sim t_{\nu}(\mu, \sigma^2)$  har täthetsfunktionen

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu\sigma^2}} \left(1 + \frac{1}{\nu}\left(\frac{x-\mu}{\sigma}\right)\right)^{-\frac{\nu+1}{2}}$$

Väntevärde och varians

$$\mathbb{E}X = \mu \quad \text{om } \nu > 1$$

$$Var(X) = \sigma^2 \frac{\nu}{\nu - 2}$$
 om  $\nu > 2$ 

 $ightharpoonup t_{\nu}(0,1)$  är standardmedlemmen.



#### t-fördelningen

- ▶ Cauchy-fördelningen är speciallfallet med  $\nu = 1$ .
- ▶ Normalfördelningen fås när  $\nu \to \infty$ .





- ▶ Viktig koppling mellan *t*—fördelning och normalfördelning:
  - $\blacktriangleright$   $X_1,...,X_n|\mu,\sigma^2\stackrel{iid}{\sim} N(\mu,\sigma^2).$   $\sigma^2$  känd.  $Z=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$
  - ►  $X_1, ..., X_n | \mu, \sigma^2 \stackrel{iid}{\sim} N(\mu, \sigma^2)$ .  $\sigma^2$  okänd, skattas med  $s^2$ .  $T = \frac{\bar{X} \mu}{s / \sqrt{n}} \sim t_{n-1}(0, 1)$ .

