

School of Computer Science and Engineering Continuous Assessment Test II – September – 2018

B.Tech Computer Science and Engineering- III Semester

CSE2001 -Computer Architecture and Organization

Answer all the questions

 $(5 \times 10 = 50 \text{Marks})$

- A computer employs RAM chips of 512 x 8 and ROM chips of 128 x 8. The computer system needs 1024 *16 of RAM, 256 x 16 of ROM, and two interface units with 256 registers each.
 - Compute the number of chips required to realize the required memory
 - b. Compute total number of decoders are needed for the above system?
 - c. Design a memory-address map for the above system
 - d. Show the chip layout for the above design
- Suppose an 8-bit data word stored in memory is 10111001. Using the Hamming algorithm, determine
 how many check bits & what check bits would be stored in memory along with the data word.
 Illustrate how check bits helps to detect and correct single bit error with an example.
- (a) Explain the single precision format for floating point numbers and give the ranges for precision and significant. Represent the number 36.5625₁₀ in IEEE single precision format.
 - (b) Perform binary floating point addition on the numbers 0.5₁₀ and -0.4375₁₀ and represent the result in 32 bit single precision format.
- 4. Assuming a computer memory system with following specifications:
 - Address size = 32b
 - Word size = 32b \ 1
 - Block size = word size
 - Cache size = 16KB
 - Give the address format for Direct Mapping, 4-way Set Associative Mapping and Fully Associative Mapping.
 - b. Analyse the size of Tag Versus Associativity.
 - c. Total no. of comparators required for each mapping.
 - d. Impact of multi word cache block on cache hit and miss ratio.
 - e. Identify the optimal mapping function with respect to Tag size
 - Investigate key characteristics of computer memory systems for improving the overall system performance.
 - b. List out the motivations for virtual memory. Frame a system to illustrate virtual to physical address translation mechanism with an example.

2et

1111

5.

SPARCYL VIT QUESTION PAPERS ON TELEGIRAM TO JOIN

101