New stochastic sketching methods for Big Data Ridge Regression

Cheikh Saliou Touré

Student at ENS Cachan

Tutor: Robert Gower

Inria Paris (Sierra department)

July, 2017

Abstract

//

Contents

1	Randomized Newton Method	2
	1.1 Algorithm	
	1.2 Convergence rate (draft)	2
	1.2.1 General case	2
	1.2.2 Uniform case	3
2	Hadamard Sketches	4
	2.1 Algorithm	4
	2.2 Convergence rate (draft)	4
3	Count-min Sketches	5
	3.1 Algorithm	5
	3.2 Convergence rate	5
4	Conclusion	6

Randomized Newton Method 1.

Algorithm 1.1

1.2 **Convergence rate (draft)**

1.2.1 General case

$$Z = AI_C^T (I_C A I_C^T)^{-1} I_C A$$

$$\rho = 1 - \lambda_{min} (A^{-\frac{1}{2}} E[Z] A^{-\frac{1}{2}}).$$

$$A^{-\frac{1}{2}} E[Z] A^{-\frac{1}{2}} = \sum_{i} p_{i} A^{\frac{1}{2}} I_{C_{i}}^{T} (I_{C_{i}} A I_{C_{i}}^{T})^{-1} I_{C_{i}} A^{\frac{1}{2}}$$

for any $i \in \{1, ..., n\}$, $A^{\frac{1}{2}}I_{C_i}^T(I_{C_i}AI_{C_i}^T)^{-1}I_{C_i}A^{\frac{1}{2}}$ is a projection matrix and then its eigenvalues are a nonempty subset of $\{0, 1\}$.

Since λ_{max} is convex, we obtain that :

$$0 \leqslant \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \leqslant \lambda_{max}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \leqslant \sum_{i} p_{i}\lambda_{max}(A^{\frac{1}{2}}I_{C_{i}}^{T}(I_{C_{i}}AI_{C_{i}}^{T})^{-1}I_{C_{i}}A^{\frac{1}{2}}) \leqslant 1.$$

$$\mathbf{C} = (I_{C_1}^T, \dots, I_{C_r}^T).$$

$$A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}} = (A^{\frac{1}{2}}\mathbf{C}D)(D\mathbf{C}^TA^{\frac{1}{2}}) \text{ where } D = \text{ diag}(\sqrt{p_1}(I_{C_1}AI_{C_1}^T)^{-\frac{1}{2}},\dots,\sqrt{p_r}(I_{C_r}AI_{C_r}^T)^{-\frac{1}{2}})$$

Proposition 1.2.1
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \binom{n-1}{s-1}\frac{\lambda_{min}(A)}{\lambda_{max}(A)}\min_{i}p_{i}$$

Proof:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})\geqslant \lambda_{min}(\mathbf{C}^TA\mathbf{C})\lambda_{min}(D^2)\\ \lambda_{min}(D^2)=\min_i\frac{p_i}{\lambda_{max}(I_{C_i}AI_{C_i}^T)}\geqslant \min_i\frac{p_i}{\lambda_{max}(I_{C_i}^TI_{C_i})\lambda_{max}(A)}\geqslant \min_i\frac{p_i}{\lambda_{max}(A)}, \text{ since for any } i\in\{1,\dots,n\}, \text{ for any } x \text{ in } \mathbb{R}^n\left\langle I_{C_i}^TI_{C_i}x\,|\,x\right\rangle=\|I_{C_i}x\|^2\leqslant \|x\|^2 \text{ and then } \lambda_{max}(I_{C_i}^TI_{C_i})\leqslant 1.$$

Therefore,
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \min_{i} p_{i} \frac{\lambda_{min}(\mathbf{C}^{T}A\mathbf{C})}{\lambda_{max}(A)} = \min_{i} p_{i} \frac{\lambda_{min}(A)\lambda_{min}(\mathbf{C}\mathbf{C}^{T})}{\lambda_{max}(A)}.$$

$$\mathbf{C}\mathbf{C}^T = \sum_i I_{C_i}^T I_{C_i} = \binom{n-1}{s-1} I_n$$
 and then we obtain that :

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant {\binom{n-1}{s-1}} \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \min_{i} p_{i}$$

Uniform case 1.2.2

For any i, $p_i = \frac{1}{\binom{n}{s}}$ is the uniform probability of choosing s rows uniformly on $\{1, \ldots, n\}$, knowing that *s* is the sketchsize.

Proposition 1.2.2
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)}$$

Hadamard Sketches

Algorithm 2.1

Convergence rate (draft) 2.2

$$Z = AS^{T}(SAS^{T})^{-1}SA$$

$$\rho = 1 - \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})$$

$$S_{i} = I_{C_{i}}H.$$

Proposition 2.2.1
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)}$$

Proof:

$$\begin{split} \tilde{A} &= \tfrac{1}{n} H A H^T = \tfrac{H}{\sqrt{n}} A \tfrac{H^T}{\sqrt{n}}. \\ A^{-\frac{1}{2}} E[Z] A^{-\frac{1}{2}} &= E[A^{\frac{1}{2}} S^T (SAS^T)^{-1} SA^{\frac{1}{2}}] = \sum_i p_i A^{\frac{1}{2}} H^T I_{C_i}^T (I_{C_i} H A H^T I_{C_i}^T)^{-1} I_{C_i} H A^{\frac{1}{2}} \\ &= A^{\frac{1}{2}} H^T \frac{1}{n} E[I_C^T (I_C \tilde{A} I_C^T)^{-1} I_C] H A^{\frac{1}{2}} = H^{-1} \tilde{A}^{\frac{1}{2}} E[I_C^T (I_C \tilde{A} I_C^T)^{-1} I_C] \tilde{A}^{\frac{1}{2}} (\frac{H^T}{n})^{-1} = H^{-1} \tilde{A}^{\frac{1}{2}} E[I_C^T (I_C \tilde{A} I_C^T)^{-1} I_C] \tilde{A}^{\frac{1}{2}} H. \\ \text{Hence}: \end{split}$$

$$\rho = 1 - \lambda_{min} (A^{-\frac{1}{2}} E[Z] A^{-\frac{1}{2}}) = 1 - \lambda_{min} (\tilde{A}^{\frac{1}{2}} E[I_C^T (I_C \tilde{A} I_C^T)^{-1} I_C] \tilde{A}^{\frac{1}{2}})$$

We recognize the convergence rate in the Randomized Newton Method and then, denoting by $\rho_{Newton}(M)$ the convergence rate of the Newton method associated with the definite positive matrix M, we obtain that :

$$\rho = 1 - \lambda_{min}(\tilde{A}^{\frac{1}{2}}E[I_C^T(I_C\tilde{A}I_C^T)^{-1}I_C]\tilde{A}^{\frac{1}{2}}) = 1 - (1 - \rho_{Newton}(\tilde{A})) = \rho_{Newton}(\tilde{A}) = \rho_{Newton}(A)$$
, since A and \tilde{A} have the same eigenvalues.

3. Count-min Sketches

Algorithm 3.1

3.2 **Convergence rate**

 ${\cal S}$ is constructed as follows :

For every $i \in \{1, \ldots, n\}$, l is chosen uniformly on $\{1, \ldots, n\}$ and ϵ uniformly on $\{-1, 1\}$, then S is updated in his l^{th} row as: $S(l,:) := S(l,:) + \epsilon \, e_i^T$, where e_i^T is the i^{th} coloumn of the identity matrix.

4. Conclusion

References

[1] ROBERT GOWER AND PETER RICHTARIK, <u>Randomized iterative methods for linear systems</u>, SIAM, (2015).