Control Systems

G V V Sharma*

	Contents			7	Compensators		3
1	Signal Flow Graph		2		7.1	Phase Lead	3
	1.1	Mason's Gain Formula	2		7.2	Lag Lead	3
	1.2	Matrix Formula	2			_	
	1.3	Example	2		7.3	Example	3
2	Bode Plot		2	8	Gain 1	Gain Margin	
	2.1	Introduction	2	U			3
	2.2	Example	2		8.1	Introduction	3
	2.3	Phase	2		8.2	Example	3
3	Second	order System	2		8.3	Example	3
	3.1	Damping	2				
	3.2	Example	2	9	Dhoco	Margin	3
	3.3	Settling Time	2	9	rnase	Margin	3
4	Dan4h l	Harrita Caitorian	2		9.1	Intoduction	3
4	4.1	Hurwitz Criterion Routh Array	2 2		9.2	Example	3
	4.2	Marginal Stability	2			1	
	4.3	Stability	2	40	0 111		2
	4.4	Example	2	10	Oscilla	ator	3
	4.5	Example	2		10.1	Introduction	3
5	State-Si	pace Model	2		10.2	Example	3
	5.1	Controllability and Observ-					
		ability	2	11	Root 1	Locus	3
	5.2	Second Order System	2				
	5.3	Example	2		11.1	Introduction	3
	5.4	Example	2				
	5.5	Example	2				
	5.6	Example	2	Ab	stract—T	his manual is an introduction to con	trol
	5.7	Example	2	syster	ns based	on GATE problems.Links to sample Pyth	
6	Nyquist	Plot	2	coaes	are avail	able in the text.	
	6.1	Introduction	2	Do	ownload	python codes using	
	6.2	Example	2				

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

svn co https://github.com/gadepall/school/trunk/control/codes

1 Signal Flow Graph

- 1.1 Mason's Gain Formula
- 1.2 Matrix Formula
- 1.3 Example

2 Bode Plot

- 2.1 Introduction
- 2.2 Example
- 2.3 Phase

3 Second order System

- 3.1 Damping
- 3.2 Example
- 3.3 Settling Time

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 4.5 Example

5 STATE-SPACE MODEL

- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 5.6 Example
- 5.7 Example

6 Nyquist Plot

- 6.1 Introduction
- 6.2 Example

Q.The polar plot for the transfer function $G(s) = \frac{10(s+1)}{10+s}$ for

- $0 \le \omega < \infty$ will be in the
- (A) first quadrant
- (B) second quadrant
- (C) third quadrant
- (D) fourth quadrant

. The Polar plot is a plot, which can be drawn between the magnitude and the phase angle of $G(j\omega)H(j\omega)$ by varying ω from 0 to ∞ . The polar graph sheet is shown in the following figure.

Fig. 6.0: Polar Plot

Substituting $s = j\omega$ in the given transfer function gives

$$G(j\omega) = \frac{10(1+j\omega)}{(10+j\omega)}$$

Here, taking $1 + j\omega = \sqrt{1 + \omega^2} e^{j \tan^{-1}(\omega)}$, and $10 + i\omega = \sqrt{10^2 + \omega^2} e^{j \tan^{-1}(\frac{\omega}{10})},$

$$\begin{array}{lll} G(j\omega) & = & 10 \, \sqrt{\frac{1+\omega^2}{100+\omega^2}} e^{j(\tan^{-1}(\omega)-\tan^{-1}(\frac{\omega}{10}))} & . & \text{As} \\ 0 & \leq \omega < \infty, & \end{array}$$

 $0 \le \tan^{-1}(\omega), \tan^{-1}(\frac{\omega}{10}) < \frac{\pi}{2};$

And as $tan^{-1}(x)$ is a monotonically increasing

$$\left[\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2} > 0 \right]$$

 $\left[\begin{array}{l} \frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2} > 0 \right]$ $\tan^{-1}(\omega) \ge \tan^{-1}(\frac{\omega}{10}), \text{ with equality as } \omega \to \infty$ So, $|G(j\omega)| > 0$ and $0 \le \angle G(j\omega) < \frac{\pi}{2}$

Therefore, the polar plot of G(s) lies in the first quadrant.

The plot of G(s) is: widthheightcenter

Fig. 6.0: Plot

7 Compensators

- 7.1 Phase Lead
- 7.2 Lag Lead
- 7.3 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 8.3 Example
- 9 Phase Margin
- 9.1 Intoduction
- 9.2 Example
- 10 Oscillator
- 10.1 Introduction
- 10.2 Example

11 Root Locus

11.1 Introduction