5 P36178

The

Grammar of Science

BY

KARL PEARSON, M.A., F.R.S.

PROFESSOR OF APPLIED MATHEMATICS AND MECHANICS
UNIVERSITY COLLEGE, LONDON

SECOND EDITION, REVISED AND ENLARGED.
WITH 33 FIGURES IN THE TEXT

"La critique est la vie de la science"

Cousin

4972/01

ADAM AND CHARLES BLACK

to each other, and of the formulæ or laws which express scientifically their sequences. It is in this manner that the mind becomes imbued with the scientific method and freed from individual bias in the formation of its judgments—one of the conditions, as we have seen, for ideally good citizenship. This first claim of scientific training, its education in method, is to my mind the most powerful claim it has to state support. I believe more will be achieved by placing instruction in pure science within the reach of all our citizens, than by any number of polytechnics devoting themselves to technical education, which does not rise above the level of manual instruction.

§ 5.—The Scope of Science

The reader may perhaps feel that I am laying stress upon method at the expense of material content. Now this is the peculiarity of scientific method, that when once it has become a habit of mind, that mind converts all facts whatsoever into science. The field of science is unlimited: its material is endless, every group of natural phenomena, every phase of social life, every stage of past or present development is material for science. The unity of all science consists alone in its method, not in its material. The man who classifies facts of any kind whatever, who sees their mutual relation and describes their sequences, is applying the scientific method and is a man of science, The facts may belong to the past history of mankind, to the social statistics of our great cities, to the atmosphere of the most distant stars, to the digestive organs of a worm, or to the life of a scarcely visible bacillus. It is not the facts themselves which form science, but the method in which they are dealt with. The material of science is coextensive with the whole physical universe, not only that universe as it now exists, but with its past history and the past history of all life therein. When every fact, every present or past phenomenon of that universe, every phase of present or past life therein, has been examined, classified, and co-ordinated with the rest, then the mission

of science will be completed. What is this but saying that the task of science can never end till man ceases to be, till history is no longer made, and development itself ceases?

It might be supposed that science has made such strides in the last two centuries, and notably in the last fifty years, that we might look forward to a day when its work would be practically accomplished. At the beginning of this century it was possible for an Alexander von Humboldt to take a survey of the entire domain of then extant science. Such a survey would be impossible for any scientist now, even if gifted with more than Humboldt's powers. Scarcely any specialist of to-day is really master of all the work which has been done in his own comparatively small field. Facts and their classification have been accumulating at such a rate, that nobody seems to have leisure to recognise the relations of sub-groups to the whole. It is as if individual workers in both Europe and America were bringing their stones to one great building and piling them on and cementing them together without regard to any general plan or to their individual neighbour's work; only where some one has placed a great corner-stone, is it regarded, and the building then rises on this firmer foundation more rapidly than at other points, till it reaches a height at which it is stopped for want of side support. Yet this great structure, the proportions of which are beyond the ken of any individual man, possesses a symmetry and unity of its own, notwithstanding its haphazard mode of construction. symmetry and unity lie in scientific method. The smallest group of facts, if properly classified and logically dealt with, will form a stone which has its proper place in the great building of knowledge, wholly independent of the individual workman who has shaped it. Even when two men work unwittingly at the same stone they will but modify and correct each other's angles. In the face of all this enormous progress of modern science, when in all civilised lands men are applying the scientific method to natural, historical, and mental facts, we have yet to admit that the goal of science is and must be infinitely distant.

For we must note that when from a sufficient if partial classification of facts a simple principle has been discovered which describes the relationship and sequences of any group, then this principle or law itself generally leads to the discovery of a still wider range of hitherto unregarded phenomena in the same or associated fields.¹ Every great advance of science opens our eyes to facts which we had failed before to observe, and makes new demands on our powers of interpretation. This extension of the material of science into regions where our great-grandfathers could see nothing at all, or where they would have declared human knowledge impossible, is one of the most remarkable features of modern progress. Where they interpreted the motion of the planets of our own system, we discuss the chemical constitution of stars, many of which did not exist for them, for their telescopes could not reach them. Where they discovered the circulation of the blood, we see the physical conflict of living poisons within the blood, whose battles would have been absurdities for them. Where they found void and probably demonstrated to their own satisfaction that there was void, we conceive great systems in rapid motion capable of carrying energy through brick walls as light passes through glass. Great as the advance of scientific knowledge has been, it has not been greater than the growth of the material to be dealt with. The goal of science is clear-it is nothing short of the complete interpretation of the universe. the goal is an ideal one—it marks the direction in which we move and strive, but never a stage we shall actually The universe grows ever larger as we learn to reach. understand more of our own corner of it.

§ 6.—Science and Metaphysics

Now I want to draw the reader's attention to two results which flow from the above considerations, namely:

¹ For example, while in the last two decades our theory of light and magnetism has advanced by leaps and bounds, we have at the same time discovered wide ranges of novel phenomena, of which we had previously no cognisance.