import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from google.colab import files
upload=files.upload()
df = pd.read_csv('abalone.csv')

Choose Files | abalone.csv

• **abalone.csv**(text/csv) - 191962 bytes, last modified: 11/5/2022 - 100% done Saving abalone.csv to abalone.csv

df.describe()

□→ Whole Shucked Viscera Length Diameter Height weight weight weight **count** 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 4177.000000 41 0.523992 mean 0.407881 0.139516 0.828742 0.359367 0.180594 std 0.099240 0.490389 0.109614 0.120093 0.041827 0.221963 min 0.075000 0.055000 0.000000 0.002000 0.001000 0.000500 25% 0.450000 0.350000 0.115000 0.441500 0.186000 0.093500 50% 0.545000 0.140000 0.799500 0.336000 0.171000 0.425000 75% 0.502000 0.615000 0.480000 0.165000 1.153000 0.253000

Automatic saving failed. This file was updated remotely or in another tab. Show diff

	Sex	Length	Diameter	Height	Whole Shucked		Viscera	Shell	
					weight	weight	weight	weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	Μ	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

df.tail()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	Μ	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10

Univariate analysis

sns.boxplot(df.Length)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fde01392090>

Automatic saving failed. This file was updated remotely or in another tab.

Show

Bivariate analysis

sns.barplot(x=df.Height,y=df.Diameter)

<matplotlib.axes. subplots.AxesSubplot at 0x7fddfe4e7c10>

numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re

plt.figure(figsize = (20,7))
sns.heatmap(df[numerical_features].corr(),annot = True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fddfe288b50>

0.9

0.7

0.6

0.5

Multivariate Analysis

sns.pairplot(df)

Automatic saving failed. This file was updated remotely or in another tab. Show diff

Automatic saving failed. This file was updated remotely or in another tab. <u>Show</u>

Perform descriptive model on the dataset

```
df['Height'].describe()
     count
              4177.000000
     mean
                  0.139516
                  0.041827
     std
                  0.000000
     min
     25%
                  0.115000
     50%
                  0.140000
     75%
                  0.165000
                  1.130000
     max
     Name: Height, dtype: float64
df['Height'].mean()
     0.13951639932966242
df.max()
     Sex
                             Μ
     Length
                         0.815
                          4:63
     Diameter
                        2.8255
     Height
                         1.488
     Whole weight
                          0.76
     Shucked weight
     Viscera weight
                         1.005
     Shell weight
 Automatic saving failed. This file was updated remotely or in another tab.
                                                                   Show
    Sex'].value_counts()
          1528
          1342
     Ι
          1307
     Name: Sex, dtype: int64
df[df.Height == 0]
```

```
Sex Length Diameter Height Whole Shucked Viscera Shell weight Weight Weight Rings

df['Shucked weight'].kurtosis()

0.5951236783694207

df['Diameter'].median()

0.425

df['Shucked weight'].skew()
```

Missing values

0.7190979217612694

```
df.isna().any()
```

Sex	False
Length	False
Diameter	False
Height	False
Whole weight	False
Shucked weight	False
Viscera weight	False
Shell weight	False
Rings	False
dtype: bool	

```
Automatic saving failed. This file was updated remotely or in another tab. Show diff

percentage_missing_values = (missing_values/len(df))*100 ['Missing_values']
```

	Missing values	% Missing	1
Sex	0	0.0	
Lenath	Λ	ΛΛ	

Find the outliers

Automatic saving failed. This file was updated remotely or in another tab. Show diff

```
var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


Check for categorical columns and perform encoding

```
numerical_features = df.select_dtypes(include _ [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re

numerical_features
categorical_features

Index([], dtype='object')

Automatic saving failed. This file was updated remotely or in another tab. Show

abalone_numeric.head()

	Length	Diameter	Height	Whole	Shucked	Viscera	Shell				
				weight	weight	weight	weight	age	Sex_F	Sex_I	Sex
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	0	0	
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	0	0	
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	1	0	
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	0	0	

Dependent and Independent Variables

```
x = df.iloc[:, 0:1].values
y = df.iloc[:, 1]
     0
             0.365
             0.265
     1
     2
             0.420
     3
             0.365
             0.255
     4
     4172
             0.450
             0.440
     4173
             0.475
     4174
     4175
             0.485
     4176
             0.555
     Name: Diameter, Length: 4150, dtype: float64
#Scaling the Independent Variables
print ("\n ORIGINAL VALUES: \n\n", x,y)
      ORIGINAL VALUES:
      [[0.455]
[0.35]
      [0.53]
      [0.6]
      [0.625]
      [0.71]]0
                        0.365
             0.265
     2
             0.420
     3 0.365
 Automatic saving failed. This file was updated remotely or in another tab.
                                                                  Show
     4174
             0:479
     4173
             0:489
     4176
             0.555
     Name: Diameter, Length: 4150, dtype: float64
             import preprocessing
min_max_scaler = preprocessing.MinMaxScaler(feature_range =(0, 1))
ก็ยผ_my≦kmgarMax_scaler.fit_transform(x,y)
print ("\n VALUES AFTER MIN MAX SCALING: \n\n", new_y)
      VALUES AFTER MIN MAX SCALING:
```

```
[[0.51351351]
      [0.37162162]
      [0.61486486]
      [0.70945946]
      [0.74324324]
      [0.85810811]]
#Split the data into Training and Testing
X = df.drop('age', axis = 1)
y = df['age']
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import SelectKBest
standardScale = StandardScaler()
standardScale.fit_transform(X)
selectkBest = SelectKBest()
X_new = selectkBest.fit_transform(X, y)
X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size = 0.25)
X_train
     array([[0.505, 0.39 , 0.12 , ..., 1. , 0. , 0.
                                                            ],
            [0.69,
            [0.27, 0.55, 0.18, ..., 0.
                                              , 0.
                                                            ],
                    0.195, 0.07, ..., 0.
                                              , 0.
            [0.67 , 0.51 ,
                          0.155, ..., 1.
                                              , 0.
            [0.325,
                                                            ],
            [0.41 , 0.24 , 0.075, ..., 0.
                                              , 1.
                                                     , 0.
                                                            ],
                    0.325, 0.1 , ..., 0.
                                              , 1.
                                                            ]])
y_train
     3447
              8
     1975
             11
           7
     2149
 Automatic saving failed. This file was updated remotely or in another tab.
                                                                  Show
 diff
     3489
             18
     3703
             11
     3430
              6
     1075
     Name: age, Length: 3112, dtype: int64
```

Build the model

Linear Regression

```
from sklearn.linear_model import LinearRegression
model=lm.LinearRegression()
results=model.fit(X train,y train)
accuracy = model.score(X_train, y_train)
print('Accuracy of the model:', accuracy)
     Accuracy of the model: 0.528142126401383
#Training the model
lm = LinearRegression()
lm.fit(X_train, y_train)
y_train_pred = lm.predict(X_train)
y_train_pred
     array([ 9.28125, 13.90625, 7.125 , ..., 11.1875 , 6.65625, 8.0625 ])
X_{train}
     array([[0.505, 0.39 , 0.12 , ..., 1.
                                              , 0. , 0.
                                                             ],
            [0.69 , 0.55 , 0.18 , ..., 0.
                                              , 0.
                                                     , 1.
                                                             ],
            [0.27, 0.195, 0.07, ..., 0.
                                              , 0.
            [0.67, 0.51, 0.155, ..., 1.
                                                             ],
            [0.325, 0.24, 0.075, ..., 0.
[0.41, 0.325, 0.1, ..., 0.
                                              , 1.
                                                             ]])
y_train
     3447
             8
     1975
             11
              7
     2149
              7
     2678
 Automatic saving failed. This file was updated remotely or in another tab.
                                                                  Show
     3703
             18
     3430
              6
     1075
     Name: age, Length: 3112, dtype: int64
     sklearn.metrics import mean_absolute_error, mean_squared_error
frommean_squared_error(y_train, y_train_pred)
print('Mean Squared error of training set :%2f'%s)
     Mean Squared error of training set :4.933080
```

Testing the model

```
y train pred = lm.predict(X train)
y_test_pred = lm.predict(X_test)
y_test_pred
     array([16.25 , 11. , 9.25 , ..., 12.1875 , 10.53125, 5.1875 ])
X_test
                                          , 0. , 0.
     array([[0.595, 0.495, 0.185, ..., 1.
           [0.605, 0.485, 0.16, ..., 1.
                                          , 0. , 0.
                                                        ],
           [0.52, 0.39, 0.12, ..., 0.
           [0.635, 0.515, 0.165, ..., 0.
                                          , 0.
           [0.565, 0.45 , 0.175, ..., 1.
                                          , 0.
           [0.2 , 0.145, 0.025, ..., 0.
                                          , 1.
                                                        11)
                                                 , 0.
y_test
     67
            13
     161
            13
     3448
            7
     4019
            10
     378
            15
     984
            10
     3862
            10
     1948
            10
     1132
     3190
     Name: age, Length: 1038, dtype: int64
```

Automatic saving failed. This file was updated remotely or in another tab.

Show diff

Mean Squared error of testing set :4.058311

Measure the performance using metrices

```
sklearn.metrics import r2_score
$romr2_score(y_train, y_train_pred)
print('R2 Score of training set:%.2f'%s)
    R2 Score of training set:0.53
from sklearn.metrics import r2_score
```

p = r2_score(y_test, y_test_pred)
print('R2 Score of testing set:%.2f'%p)

R2 Score of testing set:0.56

Colab paid products - Cancel contracts here

✓ 0s completed at 21:22