Mathematical Formulae and Identities

Rutuj Gavankar rsgavank.edu

August 1, 2018

Contents

1	Preliminary Algebra	2
	1.1 Coordinate Geometry	2
	1.2 Binomial Expansion	2
2	Trigonometry	3
	2.1 Common Values & the Unit Circle	3
	2.2 Pythagorean Identities	3
	2.3 Double Angle Formulae	3
	2.4 Sum and Difference Formulae	3
	2.5 Sum to Product Formulae	4
	2.6 Product to Sum Formulae	4
	2.7 Inverse Trigonometric Functions	4
	2.8 Complex Numbers	4
	2.9 Hyperbolic Identities	4
	2.10 Inverse Hyperbolic Functions	5
3	Vector Algebra	5
	3.1 Scalar Product	5
	3.2 Vector Product	5
	3.3 Equations of lines, planes and spheres	6
4	Limits	6
5	Differential Calculus	6
J	5.1 Derivative Rules and Properties	6
	5.2 Common Derivatives	7
6	Integral Calculus	7
•	6.1 Fundamental Theorem of Calculus	7
	6.2 Common Antiderivatives	7

1 Preliminary Algebra

1.1 Coordinate Geometry

Equation of a line:

$$y = mx + c$$

Equation of a circle:

$$(x-h)^2 + (y-k)^2 = r^2$$

Equation of a parabola:

$$y - k = a(x - h)^2$$
 $x - h = a(y - k)^2$

Equation of an ellipse:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Equation of a hyperbola:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

1.2 Binomial Expansion

$${}^{n}C_{k} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Also,

$${}^{n}C_{0} = {}^{n}C_{n} = 1$$
$${}^{n}C_{1} = {}^{n}C_{n-1} = n$$
$${}^{n}C_{k} = {}^{n}C_{n-k}$$

For a binomial expression raised to the power n:

$$(x+y)^n = \sum_{k=0}^{k=n} {}^n C_k x^{n-k} y^k$$

2 Trigonometry

2.1 Common Values & the Unit Circle

θ°	0°	30°	45°	60°	90°
θ^c	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N/D

Table 1: Commonly used trigonometric values. Refer the Unit Circle

2.2 Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$

$$\csc^2 x - \cot^2 x = 1$$

$$\sec^2 x - \tan^2 x = 1$$

2.3 Double Angle Formulae

$$\sin(2x) = 2\sin x \cos x \qquad \tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

$$\cos(2x) = 2\cos^2 x - 1$$

$$= \cos^2 x - \sin^2 x$$

$$= 1 - 2\sin^2 x$$

2.4 Sum and Difference Formulae

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \qquad \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\arcsin x \pm \arcsin y = \arcsin(x\sqrt{1 - y^2} \pm y\sqrt{1 - x^2})$$

$$\arccos x \pm \arccos y = \arccos(xy \mp \sqrt{(1 - x^2)(1 - y^2)})$$

$$\arctan x \pm \arctan y = \arctan(\frac{x \pm y}{1 \mp xy})$$

2.5 Sum to Product Formulae

2.6 Product to Sum Formulae

2.7 Inverse Trigonometric Functions

$$\sin^{-1}(-x) = -\sin^{-1} x \qquad \cos^{-1}(-x) = \pi - \cos^{-1} x, \qquad |x| \le 1
\tan^{-1}(-x) = -\tan^{-1} x \qquad \cot^{-1}(-x) = \pi - \cot^{-1} x, \qquad x \in \mathbf{R}
\csc^{-1} x = \sin^{-1} \left(\frac{1}{x}\right) \qquad \sec^{-1} x = \cos^{-1} \left(\frac{1}{x}\right), \qquad |x| \ge 1
\cot^{-1} x = \tan^{-1} \left(\frac{1}{x}\right), \qquad x < 0
\cot^{-1} x + \cos^{-1} x = \frac{\pi}{2}, \qquad |x| \le 1
\csc^{-1} x + \sec^{-1} x = \frac{\pi}{2}, \qquad |x| \le 1$$

2.8 Complex Numbers

Euler's Formula:

$$re^{i\theta} = r(\cos\theta + i\sin\theta)$$

De Moivre's Formula:

$$(\cos \theta + i \sin \theta)^n = \cos (n\theta) + i \sin (n\theta)$$

Exponential Definition of Trigonometric Functions:

$$\cos(ix) = \frac{(e^x + e^{-x})}{2} \qquad \sin(ix) = i\frac{(e^x - e^{-x})}{2} \qquad \tan(ix) = i\frac{(e^x - e^{-x})}{(e^x + e^{-x})}$$

Exponential Definition of Hyperbolic Functions:

$$\cosh(x) = \frac{(e^x + e^{-x})}{2} \qquad \sinh(x) = \frac{(e^x - e^{-x})}{2} \qquad \tanh(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$$

Relationship between hyperbolic and trigonometric functions:

$$\cosh x = \cos ix$$
 $\cos x = \cosh ix$
 $i \sin x = \sinh ix$
 $i \sin x = \sinh ix$

2.9 Hyperbolic Identities

$$\cosh^2 x - \sinh^2 x = 1 \qquad \operatorname{sech}^2 x + \tanh^2 x = 1 \qquad \operatorname{csch}^2 x + \coth = 1$$

$$\sinh(2x) = 2\sinh x \cosh x \qquad \cosh(2x) = \cosh^2 x + \sinh^2 x \qquad \sinh x + \cosh x = e^x$$

4

2.10 Inverse Hyperbolic Functions

$$\cosh^{-1} x = \ln (\sqrt{1+x^2} + x)$$

$$\tanh^{-1} x = \ln \sqrt{\frac{1+x}{1-x}}$$

$$= \frac{1}{2} \ln \frac{1+x}{1-x}$$

3 Vector Algebra

Figure 2: Addition of two vectors using Parallelogram Law

3.1 Scalar Product

$$a \cdot b = |a||b|\cos\theta$$
$$= \langle a|b\rangle$$

If $a = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$ and $b = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$ then,

$$a \cdot b = (x_1 x_2)\hat{i} + (y_1 y_2)\hat{j} + (z_1 z_2)\hat{k}$$

If $a \cdot b = 0$ then, $a \perp b$

3.2 Vector Product

$$a \times b = |a||b|\sin\theta$$
$$= |b\rangle\langle a|$$

If $a = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$ and $b = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$ then,

$$a \times b = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

3.3 Equations of lines, planes and spheres

Equation of a line: In Fig.3, the vector \mathbf{r} can be written as $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$

Figure 3: The equation of a line. The vector b is in the direction AR and λ b is the vector from A to R.

4 Limits

5 Differential Calculus

5.1 Derivative Rules and Properties

$$\frac{\mathrm{d}}{\mathrm{d}x}$$

5.2 Common Derivatives

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} a^x &= (\ln a) a^x & \frac{\mathrm{d}}{\mathrm{d}x} \log_a x = \frac{1}{x \ln a} \\ \frac{\mathrm{d}}{\mathrm{d}x} \sin x &= \cos x & \frac{\mathrm{d}}{\mathrm{d}x} \cos x = -\sin x & \frac{\mathrm{d}}{\mathrm{d}x} \tan x = \sec^2 x \\ \frac{\mathrm{d}}{\mathrm{d}x} \csc x &= -\csc x \cot x & \frac{\mathrm{d}}{\mathrm{d}x} \sec x = \sec x \tan x & \frac{\mathrm{d}}{\mathrm{d}x} \cot x = -\csc^2 x \\ \frac{\mathrm{d}}{\mathrm{d}x} \sin^{-1} x &= \frac{1}{\sqrt{1-x^2}} & \frac{\mathrm{d}}{\mathrm{d}x} \cos^{-1} x = -\frac{1}{\sqrt{1-x^2}} & \frac{\mathrm{d}}{\mathrm{d}x} \tan^{-1} x = \frac{1}{1+x^2} \\ \frac{\mathrm{d}}{\mathrm{d}x} \sec^{-1} x &= \frac{1}{x\sqrt{x^2-1}} & \frac{\mathrm{d}}{\mathrm{d}x} \csc^{-1} x = -\frac{1}{x\sqrt{x^2-1}} & \frac{\mathrm{d}}{\mathrm{d}x} \cot^{-1} x = -\frac{1}{1+x^2} \end{split}$$

6 Integral Calculus

6.1 Fundamental Theorem of Calculus

Theorem 1 (First Fundamental Theorem of Calculus) If f is continuous on [a,b], then the function defined by

$$S(x) = \int_{a}^{x} f(t) dt$$

is continuous on [a,b] and differentiable on (a,b), and S'(x)=f(x).

Written in Leibniz notation,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, dt = f(x)$$

Theorem 2 (Second Fundamental Theorem of Calculus) If f is a continuous function on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

where F is the anti-derivative of f, i.e. F' = f.

6.2 Common Antiderivatives

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + c$$

$$\int \cos a dx = \frac{1}{a} \sin ax + c$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + c$$

Figure 1: Unit Circle