

- (1)0点的振动表达式;
- (2)平面简谐波表达式;
- (3)x=1.5m 处质点的振动表达式。

(1)
$$W = \frac{\lambda^2}{T} = \frac{2\lambda U}{\lambda} = 20\pi (m d_1) \quad \phi_0 = \frac{\lambda^2}{3}$$

 $y = A (M) (Wt + \phi_0) = 0.1 \cos(26\pi t - \frac{\lambda^2}{3})$

$$y = A COS(Wt + 90) = 0.1 COS(2000t - \frac{3}{3})$$

(2) $y = A COS(W(t - \frac{7}{4}) + \frac{9}{40}) = 0.1 COS(2000t - 2000x - \frac{3}{3})$

19-12 一平面简谐波在介质中传播,波速
$$u=10^3 \text{m} \cdot \text{s}^{-1}$$
,振幅 $A=1.0\times 10^{-4} \text{m}$,频率 $\nu=10^3 \text{Hz}$,介质密度 $\rho=800 \text{kg} \cdot \text{m}^{-3}$ 。求:

(1)波的强度;

(2)60s 内通过垂直于波传播方向上面积为 $S=4\times10^{-4}$ m² 平面的能量

(1)
$$I = W U = \frac{1}{2} \int A^2 W^2 U = \frac{1}{2} \times 800 \times (10^{-4})^2 \times 4h^2 \times (10^3)^2 \times 10^3 = 10h^2 \times 10^3 (kg/3^3)$$

□ 同一介质中 A 和 B 两点有两个相干波源 S₁和 S₂,其振幅相等,频率均为 100Hz,相位差为 π。

 $lacksymbol{0}$ $lacksymbol{1}$ 同一介质中的两个相干波源 S_1 和 S_2 的振幅皆为 A=0. $33\,\mathrm{m}$,如图所示。当 S_1 点为波峰时, S_2

一警报器发出频率为 1 000Hz 的声波,以速率 10m

- $\cdot s^{-1}$ 离开观测者向悬崖运动。已知声速 $u = 340 \text{m} \cdot \text{s}^{-1}$,问观测 者接收到的下列频率是多少?
- (1)直接从警报器发出的声波;
 - (2)从悬崖反射的声波。
- N) 观察看收到的 皮肤 $\lambda=\lambda_0+\nu/f=\frac{\mu+\nu}{f}=0.35\,\text{m}$ $f'=\frac{340}{\lambda}=97/HZ$. (2) 观客有 yzM的 胶块变矩 $\lambda'=\lambda_0-\nu/f=\frac{\mu+\nu}{f}=0.35\,\text{m}$ $f'=\frac{\mu}{\lambda}=\frac{340}{233}=1030\,Hz$

[6]→222 一个观测者在铁路边, 一列火车从远处开来, 他接收到的火车汽笛声的频率为 650Hz。当火车 从身旁驰过而远离他时,他测出的汽笛声频率为 540Hz。已知空气中声速为 340m・s⁻¹,求火车行驶的速 f,= uto fo, f= u fo = u+v = f; = 650 = 65) v= 119 U=31,4 m/s.