Supporting Information:

Rotational dynamics of proteins from spin relaxation times and molecular dynamics simulations

O. H. Samuli Ollila,*,†,‡ Harri A. Heikkinen,† and Hideo Iwaï†

 $\dagger Institute\ of\ Biotechnology,\ University\ of\ Helsinki$ $\ddagger Institute\ of\ Organic\ Chemistry\ and\ Biochemistry,\ Czech\ Academy\ of\ Sciences,\ Prague\ 6,$ $Czech\ Republic$

E-mail: samuli.ollila@helsinki.fi

S1 Supplementary Figures

Figure S1: Mean square angle deviations of inertia tensor axes calculated from PaTonB-96 simulation with tip4p water model at 310K. The data shown with linear (left) and logarithmic scale (right).

Figure S2: Mean square angle deviations of inertia tensor axes calculated from *Pa*TonB-96 simulation with tip4p water model at 298K. The data shown with linear (left) and logarithmic scale (right).

S2 Supplementary table

Table S1: Scaling factors used to correct the overall rotational diffusion coefficients for different proteins simulated with different water models. ^a Calcium recoverin was 12 residues shorter in simulations than in experiments. ^b Ratio of isotropic rotational diffusion coefficients from simulations and experiments from Ref. 1. ^c Ratio of simulated and experimental self-diffusion constant of water calculated from Ref. 2.

	tip3p	tip4p	OPC4	SPC/E
HpTonB-92	2.9	1.0	-	-
PaTonB-96	-	1.2	-	-
$CBM-64^{3}$	-	-	1.3	-
$65 \mathrm{K} \mathrm{C}\text{-}\mathrm{RRM}^4$	-	1.0	-	-
Calcium recoverin a5	3.2	-	-	-
$\mathrm{GB}3^b$	-	1.1	-	1.3
Ubiquitin b	2.7	1.1	-	1.1
Binase^b	-	-	-	1.2
$Lysosome^b$	2.7	-	-	1.3
Water self-diffusion c	2.4	1.1	1	1.3

References

- (1) Wong, V.; Case, D. A. Evaluating Rotational Diffusion from Protein MD Simulations. *J. Phys. Chem. B* **2008**, *112*, 6013–6024.
- (2) Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. **2014**, 5, 3863–3871.
- (3) Heikkinen, H. A.; Iwai, H. In Preparation.
- (4) Norppa, A. J.; Kauppala, T. M.; Heikkinen, H. A.; Verma, B.; Iwai, H.; Frilander, M. J. Mutations in the U11/U12-65K protein associated with isolated growth hormone deficiency

lead to structural destabilization and impaired binding of U12 snRNA. 2017; 10.1261/rna.062844.117.

(5) Timr, S.; Kadlec, J.; Srb, P.; Ollila, O. H. S.; Jungwirth, P. Calcium Sensing by Recoverin: Effect of Protein Conformation on Ion Affinity. In Preparation.