"工程热力学"期末考试知识点分布图

11	2 2	N A	5 6	i I	学生完成相应章节学习后具有的能力	1.1	12	1.3	1.4	1.5	1.6	1.7	1 2	1.9	1 10	21	22	2.3	21	2.5	31	32	3 2	3 /	3.5	4
o1 X	2 3	7 4	3 0		能识别能源种类和属性	1 1.1	1.2	1.5	1.4	1.5	1.0	1.7	1.0	1.9	1.10	2.1	۷.۷	2.3	2.4	2.5	3.1	3.2	ა.ა	3.4	3.5	
	\dashv	+	-	500.1	能以为能源特英和属性 能分析判定当前我国的主要的能源结构	-		-	-			-	 							+	 				\longrightarrow	\vdash
o3 o1 X	+^	++	-		能分析说明工程热力学的主要内容	-	-	-	-		-	-	├		<u> </u>					+-	 				\longrightarrow	
		+		001.3	化分析说明工性器力子的主女内合 经应用执力系统概念公长执力当问题	-						-	-												\vdash	
o1 X	+	++	-	501.1	能应用热力系统概念分析热力学问题								 												\longrightarrow	
o1 X	+	+	-	501.2	能应用状态参数分析热力系的宏观性质		-						 						_		<u> </u>				\longrightarrow	
o1 X	+	+	-		能应用热力过程分析宏观性质的变化			-	-			-	├					<u> </u>	-						\longrightarrow	
o1 X				s01.4	能应用热力学基本概念分析循环过程	-							<u> </u>												\longrightarrow	
04	_	$+^{\times}$	-	s02.1	能应用热力学第一定律表达实际热功转换过程								<u> </u>												igwdapprox	
o1 X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+	_		能应用热力学第一定律分析热功转换过程的能量变化情况								 												\longrightarrow	
02	X L	+		s02.3	能应用热力学第一定律比较能量转换过程								 													
o1 X	_	+	-	s03.1	能分析实际气体以判定理想气体模型的适用性															-					\longrightarrow	<u> </u>
o1 X	\perp	+	-		能分析和计算理想气体内能、焓和熵的变化	-							 												\longrightarrow	
o1 X	_	+		s03.3	能应用水蒸气图、表分析热力过程焓和熵的变化	-							 							-					\longrightarrow	
o1 X	_	+		s04.1	能应用理想气体模型分析基本热力过程的热功转换情况															-					\longrightarrow	
o2	X			s04.2	能定性和定量综合分析理想气体热力过程,进一步加深过程特性和规律的																				,)	
	+	+	V		以以 第四Matlab进行水萃与其本过程的公长和计算	_																			\longrightarrow	
o5	+	+	^	504.3	能用Matlab进行水蒸气基本过程的分析和计算	-	-	_				-								-					\longrightarrow	
o1 X	+	+	$\vdash \vdash$		能应用热力学第二定律分析过程的方向性	├							-						-	-						<u> </u>
o1 X	- \	+	$\vdash \vdash$	SU5.2	能应用卡诺循环计算实际可逆循环的热效率	 														-					\vdash	<u> </u>
03	<u> </u>		-	SU5.3	能应用热力学第二定律识别和判断热力学过程的薄弱环节	-							 							-					\longmapsto	
04	<u>, </u>	$+^{\times}$	_	SU5.4	能正确表达热力过程的能源转换情况	-													_	-					\longrightarrow	
o2	<u> </u>	+		SU5.5	能对能源系统进行综合分析和比较,由此深入说明能源转换中的效率																				\longmapsto	<u> </u>
o2	Х			s06.1	能够量化比较理想气体状态模型与实际的差异,进而通过模型修正获得描述实际气体的更准确模型																					
o1 X				s06.2	能应用热力学基本关系式分析特性函数、热系数																					<u> </u>
o2		X		s06.3	能准确表达热力学过程状态函数的一般关系																					<u> </u>
o1 X					能应用稳定流动基本方程分析喷管中流体动力学基本现象																					
o1 X				s07.2	能应用稳定、可压缩流体在管内流动的力学和几何条件分析流动状态																					
о3	X			s07.3	能根据工质进出喷管时的状态判断工质的流动状态,进而进行基本的喷管 尺寸设计																					
o2	X			s07.4	能比较说明工质特性对绝热节流前后的温度变化影响																				$\overline{}$	
о5		\top	Х		能用Matlab分析节流过程的做功能力变化	1														i i					$\overline{}$	
o1 X					能分析活塞式压气机的理论功耗和余隙体积的影响																					
o2	X	\top			能综合分析多极压缩、级间冷却的最佳功耗								1													
04		X		s08.3	能在热力学图中正确表达叶轮式压气机的工作过程,进而分析计算压缩过 程的能量转换特征																					
о3	×		Т	s09.1	能应用热力学原理,通过对关键能源转化过程的识别和判断,将复杂的活塞式内燃机和燃气轮机工作过程表达为简化的理想循环过程																					
02	X	+	$\vdash \vdash$	s09 2	能比较分析不同理想气体动力循环过程的能量转换特点	\vdash														+					\longrightarrow	
02	X				能比较分析卡诺循环的技术局限和实际应用	\vdash														<u> </u>					\longrightarrow	
o1 X	/\	+			能应用热力学原理及图表分析蒸气动力学循环过程的能效																				\longrightarrow	
04	+	X	\vdash		能表达再热循环和回热循环的热力学实质	\vdash					\vdash							 		\vdash					\longrightarrow	
05	+	1	X	s10.3	能应用Matlab软件进行蒸气动力循环过程的热力计算	\vdash	\vdash	 	 		 	\vdash	 		-		_	 	 	+					$\overline{}$	
o1 X			^	s10.4 s11.1	能应用制冷过程的基本概念分析制冷过程的能量转化过程	-					 									 						
	$\frac{1}{x}$	++	$\vdash\vdash$		能对比分析压缩空气制冷循环的能源转化特点	\vdash					 									 						
02	$^{\wedge}$	+	$\vdash\vdash$	1911.	此今 10万 10万 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 能对比分析不同制态循环的能通转化结片 综合分析压缩表与制态循环与	1	\vdash				 	\vdash								+						
02	Х	$\perp \mid$		s11.3	能对比分析不同制冷循环的能源转化特点,综合分析压缩蒸气制冷循环与 热泵2000000000000000000000000000000000000																					
06	+	+	$\vdash \vdash \mid X$		能推演制冷剂性质与环保、安全的关系 ************************************	<u> </u>						_								<u> </u>					\longrightarrow	<u> </u>
01 X				s12.1	能应用理想气体混合物模型分析不同组成的气体混合物性质	<u> </u>					<u> </u>									<u> </u>					igwdapsilon	<u> </u>
o1 X		\perp		s12.2	能准确理解湿空气相关的概念进而分析湿空气的状态变化	<u> </u>														<u> </u>					igwdapsilon	<u> </u>
o2	Х				能比较分析不同过程的湿空气状态变化,并利用湿空气图综合分析不同工 程实践中的水分传递特性																					
o5			Х		能应用Matlab进行实际干燥过程的模拟																					
l TT																									, 7	1