# 한국항공우주연구원

- 무인이동체 원천기술개발사업단 -



# 1. 개요



개요

## 공통원천기술 연구단 실증

새로운 무인이동체 시스템의 유효성을 입증하고, 운용시험을 통해 성능을 검증하며, 개발방법론 및 적용기술의 적절성 실증

# 공통원천기술 개발 🔘 👩



탐지 및 인식 통신 자율지능

선·체리하는 이렇게 간 경보교환

시판의 개입 없이 상황은 인지·편단·처리하는

인간-이동체 동력원 및 이동 인터페이스

이쁘하며 작업하는 기술

시스템 통합 프로세스.HW.SW 기술 통합운용 기술실증기 개발

육-해-공자율협력형

다수 - 다른 무인이동체 간 통한운용이 가능한 품빛품

육-공 분리 함체형

옥상에서 운용되는 모든과 공중에서 운용되는 모든은 분리 함께 가능한 플랫폼

해양복합형

USV와 AUV를 복합하여 수상-수중에서 해양임무를 수행하는 복합체계 품렛품

통합운용 기술실증기에 공통원천기술 적용



개요

## 공통원천기술 연구단 실증

공통원천기술을 통합<del>운용</del> 기술실증기에 바로 탑재하기에는 리스크 존재

 
 탐지 및 인식
 통신

 동력원 및 이동
 시스템 통합

 자율지능
 인간-이동체 인터페이스







개요

## 공통원천기술 연구단 실증

무인이동체 원천기술개발 사업단에서 개발한 지상 무인이동체를 이용하여 사전 실증 수행



# 2. 실증 수행 장소





## 실증 수행 장소



### 충북대학교 스마트카 연구센터(C-Track)

» 자율주행 테스트 베드 C-Track







# 3. 사전 실증 플랫폼



# 사전 실증 플랫폼



### 지상 무인이동체

#### UVARC UGV





# 사전 실증 플랫폼



### 지상 무인이동체

#### UVARC UGV



# 4. 인터페이스 정립





### 공통원천기술 연구단 ↔ 사업단 지상 무인이동체 하드웨어/소프트웨어 인터페이스 정립

>> 메시지 규격서

UMAIC 에서지 규칙서 2024. 약. 24. 무런데용해용인기술제품시민단 하드웨어 인터페이스

약성하용제합권기술개발사업인 성능 바드표에 전체해적소 규칙적 2006.07.64 우리하동제한연소화제작약단 >>> 소프트웨어 인터페이스

무선하는 해당하기를 제하시되면 않습 소프트웨어 전환해보니는 구시시 2004, IF, 24. 무선하는 해당한 기술에 함하되었다.

- ⊗ 데이터 Input / Output 정의 및 데이터 구성 요소 정의, 탑재를 위한 하드웨어 인터페이스 정의





### 공통원천기술 연구단 ↔ 사업단 지상 무인이동체 데이터 구성 요소 정리

### >> 메시지 규격서

UAARC 에서의 급격시 2004 약 24. 무단의 등에본단기소객업사이단

#### PX4 uORB

| uORB name          | VehicleAttit | ude                                                                   |
|--------------------|--------------|-----------------------------------------------------------------------|
| Description        | Vehicle Atti | itude Quaternion                                                      |
| Parameter          | Format       | Description                                                           |
| timestamp          | uint64       | time since system start (microseconds)                                |
| timestamp_sample   | uint64       | the timestamp of the raw data (microseconds)                          |
| q                  | float32[4]   | Quaternion rotation from the FHD body frame to the<br>NED earth frame |
| delta_q_rest       | float32[4]   | Amount by which quaternion has changed during<br>last reset           |
| quat_reset_counter | uint8        | Quaternion reset counter                                              |

#### **ROS2 Humble**

|               |        | UVARC-ROS2            |                |
|---------------|--------|-----------------------|----------------|
|               | nav_   | msgs/msg/Odometry,msg |                |
| package       | type   | component             | name           |
| std_msgs      | msg    | Header                | header         |
|               | string |                       | child_frame_id |
| geometry_msgs | msg    | PoseWithCovariance    | pose           |
| geometry_msgs | msg    | TwistWithCovariance   | twist          |





### 공통원천기술 연구단 ↔ 사업단 지상 무인이동체 하드웨어 인터페이스 정리

#### 하드웨어 인터페이스









### 공통원천기술 연구단 ↔ 사업단 지상 무인이동체 소프트웨어 인터페이스 정리

#### >> 소프트웨어 인터페이스





4.2.2. 인터페이스 구성

센서 연구단 2세부 결과들인 3차원 탐지 소프트웨어 인터페이스는 'UVARC-메시지 규격 서'에 정의된 규칙을 따른다.

| 번호 | 명칭       | 기호  | 입술력 구분 | 동작 주기      | 비고    |
|----|----------|-----|--------|------------|-------|
| 1  | SRGS2 X1 | XI. | 술덕     | 30Hz (max) | T,B,C |
| 2  | SRGS2 V2 | 5/2 | 9108   | -          | TRC   |

(1) SRGS2 X1(X1)

| UVARC-ROS2                         | Topic name             |
|------------------------------------|------------------------|
| sensor_msgs/msg/PointCloud2,msg    | SRGS2/pcl_raw          |
| sensor_msgs/msg/image,msg          | SPGS2/Img_raw          |
|                                    | SPGS2/depth            |
| std_msgs/msg/Float32MultiArray.msg | SPGS2/intensity        |
|                                    | SRGS2/probability      |
|                                    | SRGS2/nr_object        |
|                                    | (nr_object: near-range |
|                                    | object)                |
| geometry_msgs/msg/PoseArray.msg    | SRGS2/lr_object        |
|                                    | (Ir_object: long-range |
|                                    | object)                |

# 5. 시스템 통합

무인이동체 원천기술개발사업

## 시스템 통합



공통원천기술 연구단 ↔ 사업단 지상 무인이동체 시스템 통합 준비

» 탐지 및 인식(항법) 연구단 시스템 통합 수행





⊗ 시스템 통합 후, 통신 지연 이슈 발생 → 이슈 파악 후, 시스템 통합 재수행 예정

통합운용 기술실증기 탑재를 위해 다양한 변수 확인 및 검증 필요



## 시스템 통합



### 공통원천기술 연구단 ↔ 사업단 지상 무인이동체 시스템 통합 준비

≫ 통신 연구단 C-Band modem 테스트





 $^{\odot}$  테스트 후, 통신 지연 이슈 발생  $\rightarrow$  통신 대역 3mb  $\rightarrow$  10mb 변경

통합운용 기술실증기 탑재를 위해 다양한 변수 확인 및 검증 필요

# 6. 실증







### 탐지 및 인식(항법, 센서) 연구단 ↔ 사업단 지상 무인이동체 실증

### » 10월말 or 11월 초 실증 진행 예정

|          | 실            | 증 시험                             | 계획       |          |
|----------|--------------|----------------------------------|----------|----------|
| 주행 번호    | NRG2-02      | 시험명                              | 항법 2세부 : | 동작 실증 시합 |
| 시험 예정일   |              |                                  |          |          |
| 시험 목적    | - 동작 환경      | 에서의 용복합형                         | T법 성능 확인 |          |
| 시험 내용    |              | ·동 주형<br>시작 지점으로 4<br>없에 도출 여부 1 |          |          |
| 주행 시간(분) | -            |                                  |          |          |
|          | 호기           | 1호기                              | 음량       | 80kg     |
| 형상       | 추가장착         | -                                | 무계중심     |          |
|          | Payload      | NRG2                             |          |          |
| 지상장비 구성  | QGroundCont. | rol                              |          |          |
| 시험 선결 조건 |              |                                  |          |          |
| 시험측정장비   |              |                                  |          |          |
| DEP HER  | PX4 ver 1.14 | .0                               |          |          |

실증시험 계획서 예시



실증 시나리오 예시

### 실증 시나리오 수립 후 실증 진행 예정







### 동력원 연구단 ↔ 사업단 지상 무인이동체 실증

》 10월 실증 진행 예정



실증 시나리오

### 시스템 구성 후 실증 진행 예정

지금까지 경청해 주셔서

# 감사합니다



