Queues

- Organizing data
- Queue interface and implementations
- Queue Class
- Examples and applications

Organization of Data

- Organize data by position
 - stacks
 - queues
- Organize data by its value
 - lists (arrays, vectors)
 - trees
 - priority queues

Queue as Data Structures

- To simulate the behavior of phenomena where insertions and deletions occur at opposite ends of the data structure
 - lines of people
 - any sort of line

FIFO -- first item in is the first out

Queue Operations

- initialize the queue
- is the queue empty?
- is the queue full?
- inserting an item
- deleting an item
- retrieving an item

Queue interface

- boolean isEmpty()
- void enqueue(E obj)
 - inserts object at the back of the queue
- E dequeue()
 - <u>deletes</u> and <u>returns</u> object at the front of the queue
- E peek()
 - <u>retrieves</u> object at the front of the queue

Queue Implementation

- Linear implementation
 - array-based
 - reference-based
 - pros and cons

- Circular implementation
 - array-based
 - reference-based
 - pros and cons

Queue using arrays

- Store the elements from front to rear
 - Do we store *front* always at index 0?
 - Do we store *rear* always at index length-1?
 - The *rightward drift* problem
- Using a circular array

Queues Applications

Simulation of lines

- grocery store
- banks
- emergency room
- printing jobs
- airports
- Internet routers

- Priority queues (PQs)
 - Heaps (later on)

Queue Class in Java

- Java provides an *interface* for queues
 - Look up the Queue<E> interface

Homework

Homework #6 (Stacks & Queues) due on 10/27

Quiz #7 (Stacks & Queues) on 10/28