第一次作业-武汉链家数据简要分析

刘振强 2023年10月19日

目录

1	主要	发现	1					
2	介绍	2						
3 数据分析								
	3.1	描述性统计	2					
	3.2	哪个地区的平均房价最高	3					
	3.3	房间数量和总价格之间关系	5					
	3.4	装修情况是否影响房价	6					
	3.5	靠近地铁的房子是否比远离地铁的房子更贵	7					
	3.6	房间数量与楼层数量是否存在趋势关系	8					
	3.7	房屋朝向分布	9					
	3.8	那个房企挂牌的二手房数量最多	9					

1 主要发现

发现 1: 武昌区、江汉区、洪山区平均房价最高,黄陂、蔡甸、新洲平均房价最低。

发现 2: 房间数量和总价格具有较强的正向关联性。

发现 3: 精装的有助于二手房出售(相对简装),毛坯价格与精装价格差异较小,说明很多客户青睐二手毛坯房,可以按照自己喜欢风格装修。

发现 4: 靠近地铁的房子价格显著高于远离地铁的房子价格,可能有其他因素影响(例如学区、商场及其他配套资源),还需要进一步分析。靠近地铁的二手房占比接近 52%,侧面说明武汉市的地铁覆盖率比较高。

发现 5: 1-4 个房间数量与楼层数量关系不明显,5-7 个房间基本分布在中矮楼层。

发现 6: 81.8% 的房子朝向向南 (主要因为采光及风俗习惯的原因)。

2 数据介绍 2

发现 7: 二手房出售中,开发商为保利的数量最多,达到 183,约占 6%,原因在于保利在南湖片区体量较大;开发商为万科、金地、联投等数量紧随其后。

发现总结:中心城区房价普遍偏高;武汉市城市发展较快,地铁覆盖率较高;保利、万科等在武汉的楼盘较多。

2 数据介绍

本报告链家数据获取方式如下:报告人在 2023 年 9 月 12 日获取了链家武汉二手房网站数据。•链家二手房网站默认显示 100 页,每页 30 套房产,因此本数据包括 3000 套房产信息; •数据包括了页面可见部分的文本信息,具体字段及说明见作业说明。说明:数据仅用于教学;由于不清楚链家数据的展示规则,因此数据可能并不是武汉二手房市场的随机抽样,结论很可能有很大的偏差,甚至可能是错误的。

3 数据分析

3.1 描述性统计

```
library(psych)
data_lj <- read.csv("/Users/lzq/Course/1st-assignment-main-2/data/2023-09-12_cleaned.csv")</pre>
```

Warning in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,
: embedded nul(s) found in input

```
# summary(data_lj )
```

describe(data_lj) # 另外一种展示方式

##		vars	n	mean	sd	median	trimmed	mad	min
##	property_name*	1	3000	662.66	394.85	657.00	661.33	535.22	1.00
##	property_region*	2	3000	45.34	24.09	48.00	45.67	29.65	1.00
##	price_ttl	3	3000	155.86	95.55	137.00	142.48	66.72	10.60
##	price_sqm	4	3000	15148.49	6323.18	14404.00	14579.25	5465.60	1771.00
##	bedrooms	5	3000	2.70	0.73	3.00	2.68	0.00	1.00
##	livingrooms	6	3000	1.71	0.47	2.00	1.77	0.00	0.00
##	building_area	7	3000	100.87	30.38	95.54	99.59	23.27	22.77
##	directions1*	8	3000	4.72	1.03	5.00	4.90	0.00	1.00
##	directions2*	9	3000	2.82	2.09	1.00	2.70	0.00	1.00
##	decoration*	10	3000	3.32	0.93	4.00	3.48	0.00	1.00

##	property_t_height	11 3000	24.22	12.45	27.00	23.84	11.86	2.00
##	property_height*	12 2940	1.89	0.84	2.00	0 1.87	1.48	1.00
##	property_style*	13 3000	4.04	1.48	5.00	0 4.30	0.00	1.00
##	followers	14 3000	6.61	15.22	3.00	3.53	2.97	0.00
##	near_subway*	15 1559	4.99	0.17	5.00	5.00	0.00	1.00
##	if_2y*	16 1264	1.00	0.00	1.00	1.00	0.00	1.00
##	has_key*	17 2542	7.98	0.34	8.00	00.8	0.00	1.00
##	vr*	18 2094	1.03	0.43	1.00	1.00	0.00	1.00
##		max	range	skew k	urtosis	se		
##	<pre>property_name*</pre>	1345.00	1344.00	0.02	-1.27	7.21		
##	property_region*	87.00	86.00	-0.12	-1.23	0.44		
##	price_ttl	1380.00	1369.40	2.75	16.12	1.74		
##	price_sqm	44656.00	42885.00	1.08	2.03	115.44		
##	bedrooms	7.00	6.00	0.14	1.64	0.01		
##	livingrooms	4.00	4.00	-0.99	-0.18	0.01		
##	building_area	588.66	565.89	2.08	23.64	0.55		
##	directions1*	8.00	7.00	-1.35	5.44	0.02		
##	directions2*	9.00	8.00	0.38	-1.52	0.04		
##	decoration*	4.00	3.00	-1.12	0.08	0.02		
##	${\tt property_t_height}$	62.00	60.00	0.05	-0.80	0.23		
##	property_height*	3.00	2.00	0.20	-1.57	0.02		
##	property_style*	5.00	4.00	-1.36	0.20	0.03		
##	followers	262.00	262.00	6.90	68.17	0.28		
##	near_subway*	5.00	4.00	-20.66	443.97	0.00		
##	if_2y*	1.00	0.00	NaN	NaN	0.00		
##	has_key*	9.00	8.00	-18.09	344.47	0.01		
##	vr*	11.00	10.00	18.23	352.74	0.01		

分析结果: 1. 通过 summary() 函数可以看到最小值、1/4 分位值、众数、均值、3/4 分位值等。2. 通过 describe() 函数查看均值、众数、修剪均值、平均绝对偏差(MAD, Mean Absolute Deviation)、偏度、峰度等数据,例如房屋总价数据,均值为 155.86 万元,最小为 10.6 万元,最大为 1380 万元,众数为 137 万元,按照一定的比例或数量(可定义),将数据集中的极端值去除,剔除后均值为 142.48 万元;峰度(kurtosis)大于 3,表示数据分布的峰度较高(尖峰),即数据集中的值较集中。

3.2 哪个地区的平均房价最高

library(dplyr)

```
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
##
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
data lj <- read.csv("/Users/lzq/Course/1st-assignment-main-2/data/2023-09-12 cleaned.csv")
## Warning in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,
## : embedded nul(s) found in input
# avg_price_by_region <- data_lj %>% group_by(property_region) %>% summarise(avg_price = mean(pric
data_lj <- data_lj %>%
 mutate(property_region = case_when(
   property_region %in% c("常青花园", "将军路", "吴家山", "东西湖其他")~ "东西湖区",
   property_region %in% c(" 王家湾", " 钟家村", " 四新", " 七里庙") ~ " 汉阳区",
   property_region %in% c(" 楚河汉街", " 东湖东亭", " 积玉桥", " 南湖沃尔玛", " 沙湖", " 首义", "
   property_region %in% c(" 青山") ~ " 青山区",
   property_region %in% c(" 宝丰崇仁", " 古田", " 汉正街", " 集贤", " 长丰常码头", " 宗关") ~ " 硚口
   property_region %in% c(" 藏龙岛", " 光谷南", " 金融港", " 庙山", " 纸坊", " 江夏其他") ~ " 江夏区
   property_region %in% c("CBD 西北湖", "常青路", "前进江汉", "唐家墩", "武广万松园", "新华路万宝
   property_region %in% c(" 百步亭", " 大智路", " 堤角", " 二七", " 国际百纳", " 后湖", " 黄埔永清",
   property_region %in% c(" 汉口北", " 盘龙城", " 武湖", " 黄陂其他") ~ " 黄陂区",
   property_region %in% c(" 白沙洲", " 关山大道", " 关西长职", " 光谷东", " 光谷广场", " 虎泉杨家湾",
   property_region %in% c(" 蔡甸城区", " 蔡甸其它", " 中法生态城", " 后官湖") ~ " 蔡甸区",
   property_region %in% c("阳逻") ~ "新洲区",
   property_region %in% c(" 沌口") ~ " 经开区",
   property_region %in% c(" 汉南其他") ~ " 汉南区",
   TRUE ~ "Other"
   ))
avg_price_by_region <- data_lj %>%
  group_by(property_region) %>%
  summarise(avg_price = mean(price_ttl)) %>%
  arrange(desc(avg_price))
# 按区域分类汇总
print(avg_price_by_region)
```

```
## # A tibble: 14 x 2
##
     property_region avg_price
##
     <chr>
                       <dbl>
  1 武昌区
                       218.
##
  2 江汉区
##
                       173.
## 3 洪山区
                       170.
  4 江岸区
                       168.
##
## 5 汉阳区
                       145.
## 6 Other
                       141.
## 7 硚口区
                       139.
## 8 青山区
                       134.
## 9 江夏区
                       134.
## 10 东西湖区
                       122.
## 11 经开区
                       100.
## 12 黄陂区
                        91.2
## 13 蔡甸区
                        70.1
## 14 新洲区
                        52.4
```

分析结果:武昌区、江汉区、洪山区平均房价最高,黄陂、蔡甸、新洲平均房价最低。

3.3 房间数量和总价格之间关系

`geom_smooth()` using formula = 'y ~ x'

```
library(dplyr)
library(ggplot2)

##

## Attaching package: 'ggplot2'

## The following objects are masked from 'package:psych':

##

## %+%, alpha

ggplot(data_lj, aes(x = bedrooms, y = price_ttl)) +

geom_point() +

geom_smooth(method = "lm") +

labs(x = "Bedroom Count", y = "Total Price")
```


结果:房间数量和总价格具有较强的正向关联性。

3.4 装修情况是否影响房价

```
library(dplyr)
library(ggplot2)

avg_price <- data_lj %>% group_by(decoration) %>% summarise(avg_price = mean(price_ttl))
print(avg_price)
```

```
# 生成柱状图
#ggplot( avg_price, aes(x = decoration, y = avg_price)) + geom_bar(stat = "identity", fill = "st
```

分析结果:精装的有助于二手房出售(相对简装),毛坯价格与精装价格差异较小,说明很多客户青睐二手毛坯房,可以按照自己喜欢风格装修。

3.5 靠近地铁的房子是否比远离地铁的房子更贵

```
library(dplyr)
data_lj %>%
  mutate(near_subway = ifelse(is.na(near_subway), "No", "Yes")) %>%
  group_by(near_subway) %>%
  summarise(avg_price = mean(price_ttl))
## # A tibble: 2 x 2
##
     near_subway avg_price
     <chr>
                   <dbl>
##
## 1 No
                      141.
## 2 Yes
                      170.
data_lj %>%
  mutate(near_subway = ifelse(is.na(near_subway), "No", "Yes")) %>%
  group_by(near_subway) %>%
  summarise(count = n()) %>%
  mutate(percentage = count / sum(count) * 100)
## # A tibble: 2 x 3
##
     near_subway count percentage
##
     <chr>
                 <int>
                             <db1>
## 1 No
                  1441
                             48.0
## 2 Yes
                             52.0
                  1559
```

分析结果: 1. 靠近地铁的房子价格显著高于远离地铁的房子价格,可能有其他因素影响(例如学区、商场及其他配套资源),还需要进一步分析。2. 靠近地铁的二手房占比接近 52%,侧面说明武汉市的地铁覆盖率比较高。

3.6 房间数量与楼层数量是否存在趋势关系

```
library(ggplot2)
# 创建散点图
data_lj <- read.csv("/Users/lzq/Course/1st-assignment-main-2/data/2023-09-12_cleaned.csv")</pre>
## Warning in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,
## : embedded nul(s) found in input
ggplot(data_lj, aes(x = bedrooms, y = property_t_height)) +
  geom_point() +
  labs(x = "Bedrooms", y = "Property Height") +
  theme_minimal() +
  geom_smooth(method = "lm", se = FALSE)
## `geom_smooth()` using formula = 'y ~ x'
  60
Property Height
  20
   0
                                                                      6
                                         Bedrooms
                                                                                       分析
```

结果: 1-4 个房间数量与楼层数量关系不明显, 5-7 个房间基本分布在中矮楼层

3.7 房屋朝向分布

```
data_lj <- read.csv("/Users/lzq/Course/1st-assignment-main-2/data/2023-09-12_cleaned.csv")</pre>
## Warning in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,
## : embedded nul(s) found in input
prop_directions1 <- prop.table(table(data_lj$directions1))</pre>
print(prop_directions1)
##
            东
                       东北
                                   东南
                                                 北.
##
## 0.032666667 0.003333333 0.093666667 0.022666667 0.818000000 0.006333333
          西北
## 0.004333333 0.019000000
# 计算频数
#freq <- table(data$directions1)
#print(freq)
```

分析结果: 81.8% 的房子朝向向南 (主要因为采光及风俗习惯的原因)

3.8 那个房企挂牌的二手房数量最多

```
library(dplyr)
data_lj <- read.csv("/Users/lzq/Course/1st-assignment-main-2/data/2023-09-12_cleaned.csv")

## Warning in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,

## : embedded nul(s) found in input

xiaoqu_grouped <- data_lj %>%
    group_by(property_name) %>%
    summarise(count = n())

# 筛选出 'name'包含" 万科" 和" 保利" 等字样的数据

vanke_count <- xiaoqu_grouped[grepl(" 万科", xiaoqu_grouped$property_name), ]$count %>% sum()
poly_count <- xiaoqu_grouped[grepl(" 条利", xiaoqu_grouped$property_name), ]$count %>% sum()
jindi_count <- xiaoqu_grouped[grepl(" 鱼地", xiaoqu_grouped$property_name), ]$count %>% sum()
hengda_count <- xiaoqu_grouped[grepl(" 复地", xiaoqu_grouped$property_name), ]$count %>% sum()
fudi_count <- xiaoqu_grouped[grepl(" 复地", xiaoqu_grouped$property_name), ]$count %>% sum()
```

```
liantou_count <- xiaoqu_grouped[grep1(" 联投", xiaoqu_grouped$property_name), ]$count %>% sum()
biguiyuan_count <- xiaoqu_grouped[grep1(" 碧桂园", xiaoqu_grouped$property_name), ]$count %>% sum(
rongchuang_count <- xiaoqu_grouped[grep1(" 融创", xiaoqu_grouped$property_name), ]$count %>% sum()
# 在使用%like% 操作符进行字符串匹配时,使用"%pattern%"来匹配任意包含模式字符串的文本;
# biguiyuan_count <- xiaoqu_grouped[xiaoqu_grouped$property_name %like% " 碧桂园", ]$count %>% su
# SQL 中的 LIKE 操作符进行模式匹配
# 输出结果
print(paste(" 保利数量: ", poly_count))
## [1] "保利数量: 183"
print(paste(" 万科数量: ", vanke_count))
## [1] "万科数量: 81"
print(paste(" 金地数量: ", jindi_count))
## [1] "金地数量: 76"
print(paste(" 联投数量: ", liantou_count))
## [1] "联投数量: 49"
print(paste(" 恒大数量: ", hengda_count))
## [1] "恒大数量: 45"
print(paste(" 复地数量: ", fudi_count))
## [1] "复地数量: 15"
print(paste(" 碧桂园数量: ", biguiyuan_count))
## [1] "碧桂园数量: 25"
print(paste(" 融创数量: ", rongchuang_count))
## [1] "融创数量: 16"
```

分析结果:二手房出售中,开发商为保利的数量最多,达到 183,约占 6%,原因在于保利在南湖片区体量较大;开发商为万科、金地、联投等数量紧随其后。