PART 1

1. Now, give it a try by converting the binary number 01010110 to decimal following the same steps as above. Explain how you got your answer and show your work.

Power of 2		128	64	32	16	8	4	2	1
Bit		0	1	0	1	0	1	1	0
Cumulative Amount	(64+16+4+2) 86	0	64	0	16	0	4	2	0

Decimal number is 86. I got my answer by adding together the decimal value associated with each 1 in the bit position and adding nothing when the bit is 0.

2. Now give it a try by converting decimal number 155 to binary by filling in the box below.

Power of 2		128	64	32	16	8	4	2	1
Bit		1	0	0	1	1	0	1	1
Cumulative Amount	155-128- 16-8-2-1= 0	128	0	0	16	8	0	2	1

3. Convert the following IP Address to binary: 192.172.34.11

192

Power of 2		128	64	32	16	8	4	2	1
Bit		1	1	0	0	0	0	0	0
Cumulative Amount	192-128 -64=0	128	64	0	0	0	0	0	0

172

Power of 2		128	64	32	16	8	4	2	1
Bit		1	0	1	0	1	1	0	0
Cumulative	172-128-32- 8-4 = 0								
Amount		128	0	32	0	8	4	0	0

34

Power of 2		128	64	32	16	8	4	2	1
Bit		0	0	1	0	0	0	0	0
Cumulative Amount	32-32=0	0	0	32	0	0	0	0	0

11

Power of 2		128	64	32	16	8	4	2	1
Bit		0	0	0	0	1	0	1	1
Cumulative Amount	11-8-2-1=0	0	0	0	0	8	0	2	1

4. Convert the following binary to decimal quad-dotted notation: 11100000.00011000.0000001.00001111

11100000

Power of 2		128	64	32	16	8	4	2	1
Bit		1	1	1	0	0	0	0	0
Cumulative Amount	128+64+32 = 224	128	64	32	0	0	0	0	0

00011000

Power of 2		128	64	32	16	8	4	2	1
Bit		0	0	0	1	1	0	0	0
Cumulative Amount	16+8 = 24	0	0	0	16	8	0	0	0

00000001

Power of 2		128	64	32	16	8	4	2	1
Bit		0	0	0	0	0	0	0	1
Cumulative Amount	1	0	0	0	0	0	0	0	1

00001111

Power of 2		128	64	32	16	8	4	2	1
Bit		0	0	0	0	1	1	1	1
Cumulative Amount	8+4+2+1= 15	0	0	0	0	8	4	2	1

PART 2

- 1. What class does the following IP Address belong to 192.1.1.0?
- Class C because it falls within 192.0.0.0 223.255.255.255
- 2. What class does the following IP Address belong to 10.255.255.0?
- Class A because it falls within 1.0.0.0 126.255.255.255
- 3. What class does the following IP Address belong to 222.224.224.254?
- Class C because it falls within 192.0.0.0 223.255.255.255

4. What class does the following IP Address belong to 4.4.4.4?

• Class A because it's within 1.0.0.0 - 126.255.255.255

5. What class does the following IP Address belong to 2.2.2.1?

• Class A because its within 1.0.0.0 - 126.255.255.255

1. What is the maximum number of hosts in a /22?

Using the formula 32 - (subnet mask bits), I get 32-22=10. Then, using the formula $2^x - 2$, where x is the number of host bits, I get $2^10 - 2 = 1,022$. So the maximum number of hosts available in a /22 network is **1.022**.

2. What is the maximum number of hosts in a /16?

Using the formula 32 - (subnet mask bits), I get 32-16=16. Then, using the formula $2^x - 2$, where x is the number of host bits, I get $2^16 - 2 = 65,534$. So the maximum number of hosts available in a 2^2 network is 2^3 .

3. What is the maximum number of hosts in a /8?

Using the formula 32 - (subnet mask bits), I get 32-8=24. Then, using the formula $2^x - 2$, where x is the number of host bits, I get $2^2 - 2 = 16,777,214$. So the maximum number of hosts available in a 22 network is **16,777,214**.

4. What is the maximum number of hosts in a /10?

Using the formula 32 - (subnet mask bits), I get 32-10=22. Then, using the formula $2^x - 2$, where x is the number of host bits, I get $2^2 - 2 = 4,194,302$. So the maximum number of hosts available in a /22 network is **4,194,302**.

5. What is the maximum number of hosts in a /19?

Determine:

- Number of hosts
- The network address
- The broadcast address
- The host minimum address (AKA the first host address in the subnet)
- The host maximum address (AKA the last host address in the subnet) for each of the following addresses. Show your work for full points.

1. 192.168.10.44/29

Cumulative 32+8+4=

44

0

0

32

		128	64	32	16	8	4	2	1
Bit		1	1	0	0	0	0	0	0
Cumulative	128+64= 192	128	64	0	0	0	0	0	0
		128	64	32	16	8	4	2	1
Bit		1	0	1	0	1	0	0	0
Cumulative	128+32+8= 168	128	64	0	0	8	0	0	0
		128	64	32	16	8	4	2	1
Bit		0	0	0	0	1	0	1	0
Cumulative	8+2= 10	0	0	0	0	8	0	2	0
		128	64	32	16	8	4	2	1
Bit		0	0	1	0	1	1	0	0

0

8

0

		128	64	32	16	8	4	2	1
Bit		0	0	1	0	1	0	0	0
Cumulative	32+8= 40	0	0	32	0	8	0	0	0

		128	64	32	16	8	4	2	1
Bit		0	0	1	0	1	1	1	0
Cumulative	32+8+4+2= 46	0	0	32	0	8	4	2	0

44	10	168	192	IP Address(dec)
00101100	00001010	10101000	11000000	IP Address(binary)
11111000	111111111	11111111	11111111	Subnet Mask(bin)
00101000	00001010	10101000	11000000	Network Addr(bin)
ИННИИИИИ	NNNNNNN	NNNNNNNN	NNNNNNN	Network Addr(symbol)
40	10	168	192	Network Addr(dec)
00101 <mark>00</mark> 1	00001010	10101000	11000000	Host Min Addr(bin)
41	10	168	192	Host Min Addr(dec)
00101110	00001010	10101000	11000000	Host Max Addr(bin)
46	10	168	192	Host Max Addr(dec)
00101111	00001010	10101000	11000000	Broadcast Addr (bin)
47	10	168	192	Broadcast Addr (dec)

Using the general formula of 32 – subnet mask bits yields the number of host bits. In the problem (32-29=3), there are 3 host bits. Now using the formula $2^{x}-2 = number\ of\ hosts$ where x is the number of host bits. In this example $2^{x} = 8 - 2 = 6\ hosts$. Verifying that value by subtracting the host minimum address from the broadcast address better yield the same results. In this example 192.168.10.47 - 192.168.10.41 yields 6.

192.168.10.44/29:

Number of hosts = 6

The network address = 192.168.10.40

The broadcast address = 192.168.10.47

The host minimum address = 192.168.10.41

The host maximum address = 192.168.10.46

2.10.10.5.20/18

		128	64	32	16	8	4	2	1
Bit		0	0	0	0	1	0	1	0
Cumulative	8+2= 10	0	0	0	0	8	0	2	0

		128	64	32	16	8	4	2	1
Bit		0	0	0	0	0	1	0	1
Cumulative	4+1= 5	0	0	0	0	0	4	0	1

		128	64	32	16	8	4	2	1
Bit		0	0	0	1	0	1	0	0
Cumulative	16+4= 20	0	0	0	16	0	4	0	0

		128	64	32	16	8	4	2	1
Bit		0	0	1	1	1	1	1	1
Cumulative	32+16+8+4 +2+1 = 63	0	0	32	16	8	4	2	1

		128	64	32	16	8	4	2	1
Bit		1	1	1	1	1	1	1	0
Cumulative	128+64+32 +8+4+2= 254	128	64	32	16	8	4	2	0

IP Address(dec)	10	10	5	20
IP Address(binary)	00001010	00001010	00000101	00010100
Subnet Mask(bin)	11111111	11111111	11000000	00000000
Network Addr(bin)	00001010	00001010	0000000	00000000
Network Addr(symbol)	NNNNNNN	ИИИИИИИИ	NNHHHHH	ННННННН
Network Addr(dec)	10	10	0	0
Host Min Addr(bin)	00001010	00001010	0000000	0000001
Host Min Addr(dec)	10	10	0	1
Host Max Addr(bin)	00001010	00001010	00111111	11111110
Host Max Addr(dec)	10	10	63	254
Broadcast Addr (bin)	00001010	00001010	00111111	11111111
Broadcast Addr (dec)	10	10	63	255

10.10.5.20/18:

Number of hosts = 16,382

The network address = 10.10.0.0

The broadcast address = 10.10.63.255

The host minimum address = 10.10.0.1

The host maximum address = 10.10.63.254

3. 146.187.130.81/23

		128	64	32	16	8	4	2	1
Bit		1	0	0	1	0	0	1	0
Cumulative	128+16+2= 146	128	0	0	16	0	0	2	0

		128	64	32	16	8	4	2	1
Bit		1	0	1	1	1	0	1	1
Cumulative	128+32+16 +8+2+1= 187	128	0	32	16	8	0	2	1

		128	64	32	16	8	4	2	1
Bit		1	0	0	0	0	0	1	0
Cumulative	128+2 = 130	128	0	0	0	0	0	2	0

		128	64	32	16	8	4	2	1
Bit		0	1	0	1	0	0	0	1
Cumulative	64+16+1 = 81	0	64	0	16	0	0	0	1

		128	64	32	16	8	4	2	1
Bit		1	0	0	0	0	0	1	1
Cumulative	128+2+1 = 131	128	0	0	0	0	0	2	1

		128	64	32	16	8	4	2	1
Bit		1	1	1	1	1	1	1	0
Cumulative	128+64+32 +8+4+2= 254	128	64	32	16	8	4	2	0

81	130	187	146	IP Address(dec)
01010001	10000010	10111011	10010010	IP Address(binary)
00000000	11111110	11111111	11111111	Subnet Mask(bin)
00000000	10000010	00001010	00001010	Network Addr(bin)
ННННННН	NNNNNHH	NNNNNNNN	NNNNNNN	Network Addr(symbol)
0	130	187	146	Network Addr(dec)
0000001	10000010	10111011	10010010	Host Min Addr(bin)
1	130	187	146	Host Min Addr(dec)
11111110	10000011	10111011	10010010	Host Max Addr(bin)
254	131	187	146	Host Max Addr(dec)
11111111	10000011	10111011	10010010	Broadcast Addr (bin)
255	131	187	146	Broadcast Addr (dec)

146.187.130.81/23:

Number of hosts = 510

The network address = 146.187.130.0

The broadcast address = 146.187.131.255

The host minimum address = 146.187.130.1

The host maximum address = 146.187.131.254

4. 145.16.25.18/21

		128	64	32	16	8	4	2	1
Bit		1	0	0	1	0	0	0	1
Cumulative	128+16+1= 145	128	0	0	16	0	0	0	1
						1	(I	i	
		128	64	32	16	8	4	2	1
Bit		0	0	0	1	0	0	0	0
Cumulative	16	0	0	0	16	0	0	0	0
		128	64	32	16	8	4	2	1
Bit		0	0	0	1	1	0	0	1
Cumulative	16+8+1 = 25	0	0	0	16	8	0	0	1
		128	64	32	16	8	4	2	1
Bit		0	0	0	1	0	0	1	0
Cumulative	16+2 = 18	0	0	0	16	0	0	2	0
		128	64	32	16	8	4	2	1
Bit		1	0	0	0	0	0	1	1
Cumulative	128+2+1 = 131	128	0	0	0	0	0	2	1
		128	64	32	16	8	4	2	1
Bit		0	0	0	1	1	0	0	0
Cumulative	16+8 = 24	0	0	0	16	8	0	0	0

		128	64	32	16	8	4	2	1
Bit		0	0	0	1	1	1	1	1
Cumulative	16+8+4+2+ 1 = 31	0	0	0	16	8	4	2	1

IP Address(dec)	145	16	25	18
IP Address(binary)	10010001	00010000	00011001	00010010
Subnet Mask(bin)	11111111	11111111	11111000	00000000
Network Addr(bin)	10010001	00010000	00011 <mark>000</mark>	00000000
Network Addr(symbol)	NNNNNNN	NNNNNNNN	NNNNNHH	ННННННН
Network Addr(dec)	145	16	24	0
Host Min Addr(bin)	10010001	00010000	00011000	0000001
Host Min Addr(dec)	145	16	24	1
Host Max Addr(bin)	10010001	00010000	00011111	11111110
Host Max Addr(dec)	145	16	31	254
Broadcast Addr (bin)	10010001	00010000	00011111	11111111
Broadcast Addr (dec)	145	16	31	255

145.16.25.18/21:

Number of hosts = 2,046

The network address = 145.16.24.0

The broadcast address = 145.16.31.255

The host minimum address = 145.16.24.1

The host maximum address = 145.16.31.254

COMPLEX SUBNETS:

1. Jason Smith is opening a small coffee shop and he hopes to attract college students in the area to his shop. He knows one of the ways to get students into his coffee shop is to give them access to Wi-Fi. His IP has assigned him is 192.168.5.0 /24; however, he would like to keep his four department's networks separate from the student network. Jason would like to have a total of five different networks for his business. What steps would you take to create five different networks for Jason Smith, and what would the network IDs be?

Create a chart similar to above to illustrate the networks. The four departments are accounting, human resources, marketing, and management. The student network will simply be students.

Network IP	192	168	5	0	Dec of sub
Network Binary	11000000	10101000	00000101	00000000	
Subnet Mask	11111111	11111111	11111111	xxx00000	
Case 000	11000000	10101000	00000101	00000000	0
Case 001	11000000	10101000	00000101	00100000	32
Case 010	11000000	10101000	00000101	01000000	64
Case 011	11000000	10101000	00000101	01100000	96
Case 100	11000000	10101000	00000101	10000000	128
Case 101	11000000	10101000	00000101	10100000	160
Case 110	11000000	10101000	00000101	11000000	192
Case 111	11000000	10101000	00000101	11100000	224

Subnet Mask of /27: 11111111.11111111.11111111.11100000 = 255.255.255.224

N #		Network Address		Subnet Mask	Broadcast Address
1	/27	192.168.5.0	192.168.5.1-192.168.5.30	255.255.255.224	192.168.5.31
2	/27	192.168.5.32	192.168.5.33-192.168.5.62	255.255.255.224	192.168.5.63
3	/27	192.168.5.64	192.168.5.65-192.168.5.94	255.255.255.224	192.168.5.95
4	/27	192.168.5.96	192.168.5.97-192.168.5.126	255.255.255.224	192.168.5.127
5	/27	192.168.6.128	192.168.5.129-192.168.5.158	255.255.255.224	192.168.5.159

- 2. Which network would allow Jason to host the most students?
- Network #1 would allow the most students. This is an arbitrary pick since each network supports 30 hosts.
- 3. Which network would allow Jason to host the fewest students?
- Network #2 would allow the most students. This is an arbitrary pick since each network supports 30 hosts.
- 4. How many subnets did you have to create to meet Jason's network needs?
- 8 subnets
- 5. Create the network using GNS2. Create at least two machines for each department's subnet and at least three machines for the student's subnet. Each department will have its own switch and the switches will call connect together with a vyOS router. Similar to this image. Obviously, your IP addresses will be different.

SECTION 3:

1. What is the difference between TCP and UDP?

• There are a lot of differences between TCP and UDP, but a few main ones. TCP is a connection oriented protocol and requires a 3-way handshake before data transfer can occur, whereas UDP is connectionless and will just send the data. TCP reads data as streams of bytes, and the message is transmitted to segment boundaries but UDP messages contain packets that were sent one by one. TCP rearranges data packets into a specific order but UDP has no fixed order since each packet is independent. TCP is a lot slower than UDP since error recovery is not attempted.

2. What is ARP and what is ARP used for?

Address Resolution Protocol (ARP) is a communication protocol. It is used for mapping a
dynamic IP address to a permanent physical machine address on a LAN. Essentially, it is
used to translate 32 bit IP address to a 48 bit MAC address, and vice versa. It's necessary
because the underlying ethernet hardware communicates using ethernet addresses, not IP
addresses.

3. What is DHCP and what is used for?

Dynamic Host Configuration Protocol (DHCP) is a network management protocol. A
 DHCP server dynamically assigns an IP address and other network configuration
 parameters to each device on a network so they can communicate with other IP networks.

 Without DHCP, a network administrator would have to manually assign IPs to each
 computer connecting to a network.

4. What is APIPA and what is it used for?

• Automatic Private IP Addressing (APIPA) is a feature of Windows-based operating systems that enables a computer to automatically assign itself an IP address when there is no DHCP server available to perform that function. It works by (when there's no DHCP) searching in the IP range 169.254.1.0 to 169.254.255 for a usable address.

5. What is IP address 127.0.0.1 typically used for?

• 127.0.0.1 is the loopback IP address, also known as the local host. The localhost isn't connected to an outside network nor does it ever travel to a router, it's typically used to test the communication or transportation medium on a local network card and/or for testing network applications