

19 BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

_® DE 198 37 438 A 1

198 37 438.0 18. 8. 1998

(4) Offenlegungstag: 24. 2.2000

(21) Aktenzeichen:

2 Anmeldetag:

(3) Int. Cl.⁷: C 12 N 5/22 C 12 N 15/63

Anmelder:

Gesellschaft für Biotechnologische Forschung mbH (GBF), 38124 Braunschweig, DE

(4) Vertreter:

Patentanwälte Dr. Boeters, Bauer, Dr. Forstmeyer, 81541 München

② Erfinder:

Czichos, Stefan, 38124 Braunschweig, DE; Lauber, Joerg, Dr., 38124 Braunschweig, DE; Mayer, Hubert, Dr., 38124 Braunschweig, DE; Gross, Gerhard, Dr., 38124 Braunschweig, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Rekombinante Humanzelle f
ür Knochen- und Knorpelzellbildung

Die Erfindung betrifft eine rekombinate Humanzelle für die Knochen- und Knorpelzellbildung von undifferenziertem Mesenchym, wobei die Humanzelle die Fähigkeit besitzt. Tbr-1, Brachyury oder ein anderes Mitglied der T-box-Familie zu exprimieren.

Beschreibung

International gibt es trotz intensiver Suche erst einen Transkriptionsfaktor, der auf genetischem Niveau die Bildung knochenformender Osteoblasten auslösen kann. Die Eigenschaften letzteren Faktors wurden kürzlich unter mehreren Namen beschrieben: Osf2, Aml3 oder Cbfa1, wobei es sich immer um den gleichen Faktor handelt. Ein Transkriptionsfaktor für knorpelbildende Chondrozyten existiert zur

Brachyury (T) ist ein Transkriptionsfaktor, der zu der sog T-box-Familie gehört. Seine Eigenschaften und die der Tbox-Familie wurde kürzlich in mehreren Überblicksartikeln beschrieben (Papaioannou & Silver, 1998; Smith, 1997). Brachyury und andere Mitglieder dieser Familie (Tbx1 bis 15 Tbx6) sind in der frühen Embryonalentwicklung aktiv (Horrmann et al., 1990; Kispert et al., 1994; De Angelis et al., 1995; Chapman et al., 1996).

Brachyury ist als Transkriptionsfaktor näher charakterisiert, und kürzlich wurde auch die 3D-Proteinstruktur seiner 20 DNA-bindenden Domäne, der T-box, aufgeklärt (Kispert et al., 1995; Müller & Herrmann, 1997). Brachyury selbst ist für das Entstehen und die Proliferation undifferenzierter Vorläuferzellen, des Mesoderms, verantwortlich. Andere Mitglieder der T-box-Familie beeinflussen die embryonale 25 Neuralrohr- (1bx6) (Chapman & Papaioannou, 1998) bzw. Herzentwicklung (Tox5) (Li et al., 1997; Spranger et al., 1997). Wieder andere Mitglieder dieser Familie greifen voraussichtlich in die embryonale Musterbildung der Gliedma-Ben-Entwicklung (Simon et al., 1997) und des Gehirns (Tbr- 30 1) (Bulfone et al., 1995) ein.

Von diesem Faktor (Brachyury) ist seit mehreren Jahren bekannt, daß er in der frühen Embryonalentwicklung eine Rolle spielt und in die Ausbildung des sog. "3. Keimblattes", dem Mesoderm, involviert ist. Die komplette Inaktivierung dieses Faktors Brachyury in der Maus (griechisch: kurzer Schwanz; heterozygote Mäuse besitzen einen kurzen Schwanz; ein anderer Name dieses Faktors ist "T", da der Genlocus auch "T-locus" genannt wird) ist in der frühen Embryonalentwicklung lethal und daher für weitere Einflüsse, 40 z. B. bei Knochen- und Knorpelbildung, nicht ohne weiteres analysierbar.

Aufgabe der Erfindung ist es nun, einen Transkriptionsfaktor mit knorpel- und knochenzellbildenden Eigenschaften bzw. eine Humanzelle zur Expression des Faktors vorzu- 45 sehen.

Diese Aufgabe wird nun durch eine rekombinante Humanzelle für die Knochen- und Knorpelzellbildung von undifferenziertem Mesenchym gelöst, wobei die Humanzelle die Fähigkeit besitzt, Tbr-1, Brachyury oder ein anderes 50 dann wahrscheinlich andere Collagene exprimiert werden. Mitglied der T-box-Familie zu exprimieren.

Die rekombinante Humanzelle kann gekennzeichnet sein durch Tbx1, Tbx2, Tbx3, Tbx4, Tbx5 oder Tbx6 als Mitglied der T-box-Familie.

kennzeichnet sein, daß sie rekombinant aus einer Zelle aus der folgenden Gruppe gewonnen worden ist:

humane primäre Stromazelle des Knochenmarks,

humane primäre mesenchymale Stammzelle,

humaner primärer artikulärer Chondrozyt,

humaner primärer Chondrozyt aus den Epiphysen von Knochen und primärer humaner Osteoblast.

Ferner kann die rekombinante Humanzelle dadurch gekennzeichnet sein, daß die Humanzelle durch Biopsie gewonnen worden, expandiert und in an sich bekannter Weise 65 rekombinant zur Expression von Tbr-1, Brachyury oder einem anderen Mitglied der T-box-Familie verändert worden

In kritischen Versuchen konnten wir zeigen, daß in einer mesenchymalen Vorläuferzelle (C3H10T½) rekombinantexprimiertes Brachyury die Bildung knochen- und knorpelformender Zellen, den Osteoblasten und Chondrozyten, auslösen kann. Dieser Versuch ist deswegen kritisch, da die normalen parentalen C3H10T1/2-Zellen stabile Gewebezellen darstellen, die nur auf recht unterschiedliche exogene Signale hin die Möglichkeit der Bildung in vier verschiedenen Bindegewebsformen besitzen: den muskelbildenden Myo-10 blasten, den knochenbildenden Osteoblasten, den knorpelbildenden Chondrozyten und den fettbildenden Adipozyten.

Bilder 1 und 2 dokumentieren, daß Brachyury nun in der Lage ist, die Bildung von Osteoblasten und Chondrozyten in diesen C3H10T1/2-Zellen auszulösen:

Bild 1

Histologisch nachweisbare Osteoblasten wurden mit Hilfe der enzymatischen Aktivität von alkalischer Phosphatase, einem Marker-Gen dieser Zellen, nachgewiesen. In der in vitro-Kultur setzt die Reifung der Osteoblasten kurz nach Erreichen der Konfluenz ab Tag 4 ein (das Erreichen der Konfluenz entspricht Tag 0). Eine Woche später sind auch dinstinkte, durch Alcian Blue gefärbte Chondrozyten nach-

Wesentlich für die Bildung von Chondrozyten und Osteoblasten ist auch der Nachweis der Expression bestimmter Markergene beider Zellformen. Dieser Nachweis wurde hier durch ein Verfahren geführt, das man RT-PCR nennt (Reverse Transkription-Polymerase-Kettenreaktion (PCR). Bei diesem Verfahren wird zuerst aus der gesamten mRNA durch reverse Transkription cDNA hergestellt, danach wird mit Hilfe der PCR und bestimmter Primer die cDNA für bestimmte Markergene der Osteoblasten- oder Chondrozytenbildung amplifiziert und dann durch Gelelektrophorese nachgewiesen.

Bild 2

Erfindungsgemäß konnte gezeigt werden, daß hochspezifische Markergene für Osteoblastenbildung, wie z. B. das Osteocalcin-Gen und das Gen des PTH/PTHrP-Rezeptors, in Brachyury-überexprimierenden Zellen hochreguliert werden. Auch das Collagen (I) zeigt den typisch biphasischen Verlauf der Osteoblastendifferenzierung. Die Chondrozytenbildung wird durch die frühe hohe Expressionsrate von Collagen II bestätigt, außerdem ist auch die Reifung der Chondrozyten wahrscheinlich, da die Bildung von Collagen (II)-mRNA ab Tag 7 der Kultur herunterreguliert wird und

Referenzen

Bulfone, A., Smiga, S.M., Shimamura, K., Peterson, A., Pu-Ferner kann die rekombinante Humanzelle dadurch ge- 55 elles, L., and Rubenstein, J.L.R. (1995). T-brain-1: A homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15: 63-78.

> Chapman, D.L., Garvey, N., Hancock, S., Alexiou, M., Agulnik, S.I., Gibson-Brown, J.J., Cebra-Thomas, J., Bollag, R.J., Silver, L.M., and Papaioannou, V.E. (1996). Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn. 206: 379-390.

> Chapman, D.L. and Papaioannou, V.E. (1998). Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391: 695-697.

De Angelis, M.H., Gründker, C., Herrmann, B.G., Kispert, A., and Kirchner, C. (1995). Promotion of gastrulation by

4

maternal growth factor in cultured rabbit blastocysts. Cell Tissue Res. 282: 147-154. Herrmann, B.G., Labeit, S., Poustka, A., King, T.R., and Lehrach, H. (1990). Cloning of the T gene required in mesoderm formation in the mouse, Nature 343: 617-622. Kispert, A., Herrmann, B.G., Leptin, M., and Reuter, R. (1994). Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 8: 2137-2150. Kispert, A., Koschorz, B., and Herrmann, B.G. (1995). The T protein encoded by Brachyury is a tissue-specific transcription factor, HMBO J. 14: 4763-4772. Li, O.Y., Newbury-Ecob, R.A., Terrett, J.A., Wilson, D.I., Curtis, A.R.J., Yi, C.H., Gebuhr, T., Bullen, P.J., Robson, 15 S.C., Strachan, T., Bonnet, D., Lyonnet, S., Young, I.D., Raeburn, J.A., Buckler, A.J., Law, D.J., and Brook, J.D. (1997). Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nature Genet. 15: 21-29. Müller, C.W. and Herrmann, B.G. (1997). Crystallographic structure of the T domain DNA complex of the Brachyury transcription factor, Nature 389: 884-888. Papaioannou, V.E. and Silver, L.M. (1998). The T-box gene family. BioEssays 20: 9-19. Simon, H.G., Kittappa, R., Khan, P.A., Tsilfidis, C., Liversage, R.A., and Oppenheimer, S. (1997). A novel family of T-box genes in urodele amphibian limb development and regeneration: Candidate genes involved in vertebrate forelimb/hindlimb patterning. Development 124: 1355-1366. Smith, J. (1997). Brachyury and the T-box genes. Curr. Opin. Genet. Dev. 7: 474-480. Spranger, S., Ulmer, H., Troger, J., Jansen, O., Graf, J., Meinck, H.M., and Spranger, M. (1997). Muscular involvement in the Holt-Oram syndrome. J. Med. Genet. 35 34: 978-981.

Patentansprüche

1. Rekombinante Humanzelle für die Knochen- und 40 Knorpelzellbildung von undifferenziertem Mesenchym, wobei die Humanzelle die Fähigkeit besitzt, Tbr-1, Brachyury oder ein anderes Mitglied der T-box-Familie zu exprimieren. 2. Rekombinante Humanzelle, gekennzeichnet durch 45 Tbx1, Tbx2, Tbx3, Tbx4, Tbx5 oder Tbx6 als Mitglied der T-box-Familie. 3. Rekombinante Humanzelle, dadurch gekennzeichnet, daß sie rekombinant aus einer Zelle aus der folgenden Gruppe gewonnen worden ist: humane primäre Stromazelle des Knochenmarks, humane primäre mesenchymale Stammzelle, humaner primärer artikulärer Chondrozyt. humaner primärer Chondrozyt aus den Epiphysen von Knochen und primärer humaner Osteoblast. 4. Rekombinante Humanzelle, dadurch gekennzeichnet, daß die Humanzelle durch Biopsie gewonnen worden, expandiert und in an sich bekannter Weise rekombinant zur Expression von Tbr-1, Brachyury oder einem anderen Mitglied der T-box-Familie verändert 60 worden ist.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷: Offenlegungstag: DE 198 37 438 A1 C 12 N 5/22 24. Februar 2000

Bild 1

Brachyury induzierte knochenbildende Osteoblasten in mesenchymalen Vorläuferzellen C3H10T½ (Alkalische Phosphatase Histologie)

(Erreichen der Konfluenz: Tag 0)

Brachyury induzierte knorpelbildende Chondrozyten in mesenchymalen Vorläuferzellen C3H10T½ (Alcian Blue - Histologie)

(Erreichen der Konfluenz: Tag 0)

Nummer: Int. Cl.⁷: Offenlegungstag: DE 198 37 438 A1 C 12 N 5/22 24. Februar 2000

Bild 2

902 068/361