# CEE432/CEE532/MAE541 Developing Software for Engineering Applications

Lecture 16: More on Truss Analysis and Variational Technique

## Space Truss Analysis

## Comparison with Planar Truss

- Differences
  - 3 nodal coordinates
  - 3 degrees-of-freedom per node
- Similarities
  - All other behavior characteristics are the same

## Space Truss Element

$$\mathbf{k}_{2\times2}^{'}\mathbf{d}_{2\times1}^{'}=\mathbf{f}_{2\times1}^{'}$$

$$\mathbf{d}_{2\times 1}' = \mathbf{T}_{2\times 6}\mathbf{d}_{6\times 1} \quad \Longrightarrow$$

$$\mathbf{f}_{6\times 1} = \mathbf{T}_{6\times 2}^T \mathbf{f}_{2\times 1}'$$

**Element Equations in Global Coordinate System** 

$$\mathbf{k}_{6\times 6}\mathbf{d}_{6\times 1}=\mathbf{f}_{6\times 1}$$

where

$$\mathbf{k}_{6\times6} = \mathbf{T}_{6\times2}^{\mathbf{T}} \mathbf{k}_{2\times2}' \mathbf{T}_{2\times6}$$



E = 29000 ksi

 $A = 2.5 \text{ in}^2$ 

#### **FE Model**



|                 | 1.5852 | 0 | -1.9022 | -1.5852 | 0 | 1.9022  | $D_4$                         | $\left(f_1^1\right)$        |   |
|-----------------|--------|---|---------|---------|---|---------|-------------------------------|-----------------------------|---|
| 10 <sup>5</sup> |        | 0 | 0       | 0       | 0 | 0       | $D_5$                         | $\left f_2^1\right $        |   |
|                 |        |   | 2.2826  | 1.9022  | 0 | -2.2826 | $\int D_6 \left( \ \ \right)$ | $\int f_3^1 \left( \right.$ |   |
|                 |        |   |         | 1.5852  | 0 | -1.9022 | $D_1$                         | $-\int f_4^1$               | • |
|                 |        |   |         |         | 0 | 0       | $D_2$                         | $\left f_5^1\right $        |   |
|                 | _ Sym  |   |         |         |   | 2.2826  | $\lfloor D_3 \rfloor$         | $\left[f_6^1\right]$        |   |

| 10 <sup>5</sup> | 2.8767 | -2.3013 | 0 | -2.8767 | 2.3013  | 0 | $\bigcap \left[ D_{7} \right]$                            | $\left(f_1^2\right)$        |
|-----------------|--------|---------|---|---------|---------|---|-----------------------------------------------------------|-----------------------------|
|                 |        | 1.8411  | 0 | 2.3013  | -1.8411 | 0 | $  D_8  $                                                 | $ f_2^2 $                   |
|                 |        |         | 0 | 0       | 0       | 0 | $\left  \int D_9 \right $                                 | $\int f_3^2 \left[ \right]$ |
|                 |        |         |   | 2.8767  | -2.3013 | 0 | $  D_1  ^{-s}$                                            | $\int f_4^2 \int$           |
|                 |        |         |   |         | 1.8411  | 0 | $ D_2 $                                                   | $ f_5^2 $                   |
|                 | _ Sym  |         |   |         |         | 0 | $\left\lfloor \left\lfloor D_{3} \right floor  ight ceil$ | $\left[f_6^2\right]$        |

|                 | 2.1361 | 0 | 2.1361 | -2.1361 | 0 | -2.1361 | $\left[D_{10} ight]$   | $\left(f_1^3\right)$ |
|-----------------|--------|---|--------|---------|---|---------|------------------------|----------------------|
| 10 <sup>5</sup> |        | 0 | 0      | 0       | 0 | 0       | $D_{11}$               | $\left f_2^3\right $ |
|                 |        |   | 2.1361 | -2.1361 | 0 | -2.1361 | $\int D_{12} \Big[$    | $\int f_3^3$         |
|                 |        |   |        | 2.1361  | 0 | 2.1361  | $D_1$                  | $\int f_4^3$         |
|                 |        |   |        |         | 0 | 0       | $D_2$                  | $\left f_5^3\right $ |
|                 | _ Sym  |   |        |         |   | 2.1361  | $\left[ D_{3} \right]$ | $\left[f_6^3\right]$ |

#### Steps 3 and 4: System Equations after BC

$$\begin{bmatrix} 6.5979 & -2.3013 & 2.3386 \\ -2.3013 & 1.8411 & 0 \\ 2.3386 & 0 & 4.4187 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -10^4 \\ 0 \end{bmatrix}$$

#### **Step 5: Nodal Displacements**

$$D_1 = -3.3703(10^{-2}) in$$
  
 $D_2 = -9.6445(10^{-2}) in$   
 $D_3 = 1.7838(10^{-3}) in$ 

#### Element 1

$$f' = 386778[0.64]$$

$$-0.768$$

$$f' = 386778 \begin{bmatrix} 0.64 & 0 & -0.768 & -0.64 & 0 & 0.768 \end{bmatrix} \begin{cases} 0 \\ 0 \\ -0.0337 \\ -0.09644 \\ 0.00178 \end{bmatrix} = 8875 lb(C)$$
**Element 2**

$$f' = 471775[ 0.781 -0.625 0 -0.781 0.625$$

$$-0.625$$

$$\begin{bmatrix}
0 \\
0 \\
-0.0337 \\
-0.09644 \\
0.00178
\end{bmatrix} = -16008 lb (T)$$

$$f' = 427210 \begin{bmatrix} 0.707 & 0 & -0.707 & -0.707 & 0 & 0.707 \end{bmatrix} \begin{cases} 0 \\ 0 \\ -0.0337 \\ -0.09644 \\ 0.00178 \end{cases} = 9642 lb(C)$$

## Theorem of Minimum Potential Energy

• The Theorem of Minimum Potential Energy states that for a <u>conservative</u> system, amongst all <u>admissible configurations</u> those that satisfy the equations of <u>equilibrium</u> make the potential energy stationary with respect to small variations of displacement. If the stationary condition is a <u>minimum</u>, the equilibrium state is <u>stable</u>.

$$\Pi = \Pi(D_1, D_2, \dots, D_n) = \Pi(\mathbf{D})$$

$$\frac{\partial \Pi}{\partial \mathbf{D}} = 0 \quad i = 1, \quad 2, \dots \quad n$$



#### **Total Potential Energy**

 $\Pi$  = strain energy + work potential

$$\Pi = \int_{V} U_{0} dV - \int_{V} \mathbf{f}^{T} \mathbf{F} dV - \int_{S} \mathbf{f}^{T} \Phi dS - \mathbf{D}^{T} \mathbf{P}$$

#### **Strain Energy Density**

$$U_0 = \frac{1}{2} \{ \boldsymbol{\varepsilon} \}^T \mathbf{E} \{ \boldsymbol{\varepsilon} \} - \{ \boldsymbol{\varepsilon} \}^T \mathbf{E} \{ \boldsymbol{\varepsilon}_0 \} + \{ \boldsymbol{\varepsilon} \}^T \{ \boldsymbol{\sigma}_0 \}$$

#### **Stress-strain Relationship**

$$\{\boldsymbol{\sigma}\} = \mathbf{E}\{\boldsymbol{\varepsilon}\} - \mathbf{E}\{\boldsymbol{\varepsilon}_0\} + \{\boldsymbol{\sigma}_0\}$$

#### **Strain-displacement Relationship**

$$\varepsilon_{x} = \frac{\partial u}{\partial x} \qquad \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y}$$

#### **Problem Statement**

Consider a bar of constant cross-section, length and modulus of elasticity subjected to a constant axial force at the right tip and fixed at the left end. Compute the tip displacement and the state of stress in the bar.



#### **Solution**

Assumed solution 
$$u(x) = a_0 + a_1 x$$

EBC 
$$u(x=0)=0$$

#### **Assumed**

#### **Displacement**

$$u(x) = a_0 + a_1 x$$

$$u(x = 0) = 0$$

$$u(x=0) = 0 = a_0$$

$$u(x) = a_1 x$$

#### Strain-Disp.

$$\varepsilon_{x} = \frac{du}{dx} = a_{1}$$

#### **Stress-Strain**

$$\sigma_{x} = E\varepsilon_{x}$$

#### **Total Potential Energy**

$$\Pi(a_1) = \int_{V}^{L} U_0 \, dV - PD$$

$$\Pi(a_1) = \int_{0}^{L} \frac{1}{2} (a_1) (E) (a_1) A dx - P(a_1 L)$$

$$\Pi(a_1) = \frac{1}{2} a_1^2 E A L - P a_1 L$$

#### **Minimization**

$$\frac{d\Pi}{da_1} = 0 = a_1 EAL - PL \Rightarrow a_1 = \frac{P}{AE}$$

#### **Final Solution**

$$u(x) = \frac{Px}{AE}$$

$$\varepsilon_{x} = \frac{du}{dx} = \frac{P}{AE}$$

$$\sigma = E\varepsilon_{x} = \frac{P}{A}$$







$$\sigma(x)$$



#### **Assumed displacement**

$$u(s) = \phi_1(s)d_1' + \phi_2(s)d_2' = \frac{L-s}{L}d_1' + \frac{s}{L}d_2'$$

#### Strain-Disp.

$$\varepsilon = \frac{du}{ds} = \frac{d}{ds} \begin{bmatrix} \phi_1 & \phi_2 \end{bmatrix} \begin{Bmatrix} d_1 \\ d_2 \end{Bmatrix} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{Bmatrix} d_1 \\ d_2 \end{Bmatrix} = \mathbf{B}_{1 \times 2} \mathbf{d}_{2 \times 1}$$

#### **Stress-Strain**

$$\sigma_{x} = E\varepsilon_{x}$$

#### **Total Potential Energy**

$$U = \int_{V} U_{0} dV = \int_{0}^{L} \frac{1}{2} \varepsilon_{x} \sigma_{x} A ds = \int_{0}^{L} \frac{1}{2} \left[ \mathbf{B}_{1 \times 2} \mathbf{d}_{2 \times 1}^{T} \right]^{T} E \left[ \mathbf{B}_{1 \times 2} \mathbf{d}_{2 \times 1}^{T} \right] A ds$$

$$U = \left[ \mathbf{d}^{T} \right]_{1 \times 2}^{T} \left[ \int_{0}^{L} \mathbf{B}_{2 \times 1}^{T} (EA)_{1 \times 1} \mathbf{B}_{1 \times 2} ds \right] \left[ \mathbf{d}^{T} \right]_{2 \times 1}^{T} = \left[ \mathbf{d}^{T} \right]_{1 \times 2}^{T} \left[ \mathbf{k}^{T} \right]_{2 \times 2} \left[ \mathbf{d}^{T} \right]_{2 \times 1}^{T}$$

$$\left[ \mathbf{k}^{T} \right]_{2 \times 2}^{T} = \int_{0}^{L} \mathbf{B}_{2 \times 1}^{T} (EA)_{1 \times 1} \mathbf{B}_{1 \times 2} ds = \frac{AE}{L} \left[ \frac{1}{-1} \right]_{1 \times 2}^{T} \right]$$

#### **Minimization**

$$W = -\left[\mathbf{d}'\right]_{2\times 1}^{T} \left[\mathbf{f}'\right]_{2\times 1}$$

$$\Pi(\mathbf{d}') = U + W = \frac{1}{2} \left[\mathbf{d}'\right]_{1\times 2}^{T} \left[\mathbf{k}'\right]_{2\times 2} \left[\mathbf{d}'\right]_{2\times 1}^{T} - \left[\mathbf{d}'\right]_{2\times 1}^{T} \left[\mathbf{f}'\right]_{2\times 1}$$

$$\frac{\partial \Pi}{\partial \mathbf{d}'} = 0 \Rightarrow \frac{AE}{L} \left[\frac{1}{-1} \frac{|-1|}{1}\right] \left\{\frac{d_{1}'}{d_{2}'}\right\} = \left\{\frac{f_{1}'}{f_{2}'}\right\}$$

$$or, \left[\mathbf{k}'\right]_{2\times 2} \left[\mathbf{d}'\right]_{2\times 1} = \left[\mathbf{f}'\right]_{2\times 1}$$

#### **Step 6: Secondary unknowns**

$$\varepsilon = \frac{du}{ds} = \frac{d}{ds} \left( \phi_1 d_1' + \phi_2 d_2' \right) = \frac{d_2' - d_1'}{L}$$

$$\sigma = E\varepsilon$$

$$N = \sigma A$$

## Thermal Loading

#### **Theory**

$$\varepsilon_{0} = \alpha \Delta T$$

$$\left(\mathbf{f}_{t}^{'}\right)_{2\times 1} = EA\varepsilon_{0} \begin{cases} -1\\1 \end{cases}$$

$$\mathbf{f}_{t} = \mathbf{T}^{T}\mathbf{f}_{t}^{'}$$

$$\sigma = E(\varepsilon - \varepsilon_{0})$$

$$or, \sigma = E\left[\frac{d_{2}^{'} - d_{1}^{'}}{L} - \alpha(\Delta T)\right]$$

#### **Implementation**

- 1. Compute thermal load vector for each element with change in temperature. Add to **F**.
- 2. For each element with temperature change, subtract the initial strain.



$$A = 0.01 \text{ m}^2$$

$$E = 200 \text{ GPa}$$

$$\alpha$$
= 1.2(10<sup>-5</sup>) m/m- $^{0}$ C

$$\Delta T_1 = 50^{0}C$$

Units: N, m

#### **Solution without Element 3**

$$4(10^8)\begin{bmatrix} 0.72 & 0 \\ 0 & 1.28 \end{bmatrix} \begin{Bmatrix} D_3 \\ D_4 \end{Bmatrix} = \begin{Bmatrix} F_3 \\ F_4 \end{Bmatrix}$$

#### **Thermal Load Vector**

$$\left(\mathbf{f}_{t}^{'}\right)_{2\times 1} = EA\varepsilon_{0} \begin{Bmatrix} -1\\1 \end{Bmatrix}$$

$$(\mathbf{f}_{t})_{2\times 1} = (2\times 10^{11})(0.01)(1.2\times 10^{-5})(50) \begin{Bmatrix} -1\\1 \end{Bmatrix}$$

$$\left(\mathbf{f}_{t}^{'}\right)_{2\times1} = \begin{Bmatrix} -1200000\\1200000 \end{Bmatrix} N$$

$$\Rightarrow \mathbf{f}_{t} = \mathbf{T}^{T} \mathbf{f}_{t}^{'} = \begin{cases} lf_{1}^{'} \\ mf_{1}^{'} \\ lf_{2}^{'} \\ mf_{2}^{'} \end{cases} = \begin{cases} -720000 \\ -960000 \\ 720000 \\ 960000 \end{cases}$$

#### **Nodal Displacements**

$$10^{8} \begin{bmatrix} 2.88 & 0 \\ 0 & 5.12 \end{bmatrix} \begin{Bmatrix} D_{3} \\ D_{4} \end{Bmatrix} = \begin{Bmatrix} 720000 \\ 960000 \end{Bmatrix}$$
$$\begin{Bmatrix} D_{3} \\ D_{4} \end{Bmatrix} = 10^{-4} \begin{Bmatrix} 25 \\ 18.75 \end{Bmatrix} m$$

$$\mathbf{d}_{2\times 1}' = \mathbf{T}_{2\times 4}\mathbf{d}_{4\times 1}$$

$$\mathbf{d}_{2\times 1}' = \begin{bmatrix} 0.6 & 0.8 & 0 & 0 \\ 0 & 0 & 0.6 & 0.8 \end{bmatrix} \begin{cases} 0 \\ 25(10^{-4}) \\ 18.75(10^{-4}) \end{cases} = \begin{cases} 0 \\ 30(10^{-4}) \end{cases} m$$

$$\varepsilon = \frac{d_2' - d_1'}{L} = \frac{30 \times 10^{-4}}{5} = 6 \times 10^{-4}$$

$$\sigma = E\left(\varepsilon - \varepsilon_0\right) = 2\left(10^{11}\right)\left(6 \times 10^{-4} - 6 \times 10^{-4}\right) = 0$$

$$\mathbf{d}_{2\times 1}^{'} = \mathbf{T}_{2\times 4}\mathbf{d}_{4\times 1}$$

$$\mathbf{d}_{2\times 1}' = \begin{bmatrix} 0.6 & -0.8 & 0 & 0 \\ 0 & 0 & 0.6 & -0.8 \end{bmatrix} \begin{cases} 25(10^{-4}) \\ 18.75(10^{-4}) \\ 0 \\ 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} m$$

$$\varepsilon = \frac{d_2' - d_1'}{L} = 0$$

$$\sigma = E(\varepsilon - \varepsilon_0) = 0$$