# A parallel multistart algorithm for the closest string problem



Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.



This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

## Author's personal copy



Available online at www.sciencedirect.com



Computers & Operations Research 35 (2008) 3636-3643

computers & operations research

www.elsevier.com/locate/cor

# A parallel multistart algorithm for the closest string problem

Fernando C. Gomes<sup>a,\*</sup>, Cláudio N. Meneses<sup>b,1</sup>, Panos M. Pardalos<sup>b</sup>, Gerardo Valdisio R. Viana<sup>a, c</sup>

<sup>a</sup>Department of Computer Science, Federal University of Ceara, Brazil
<sup>b</sup>Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, Gainesville, FL 32611, USA
<sup>c</sup>Computer Science Department, State University of Ceara, Brazil

Available online 19 April 2007

#### **Abstract**

In this paper we describe and implement a parallel algorithm to find approximate solutions for the *Closest String Problem* (CSP). The CSP, also known as *Motif Finding* problem, has applications in Coding Theory and Computational Biology. The CSP is NP-hard which motivates us to think about heuristics to solve large instances. Several approximation algorithms have been designed for the CSP, but all of them have a poor performance guarantee. Recently some researchers have shown empirically that integer programming techniques can be successfully used to solve moderate-size instances (10–30 strings each of which is 300–800 characters long) of the CSP. However, real-world instances are larger than those tested. In this paper we show how a simple heuristic can be used to find near-optimal solutions to that problem. We implemented a parallel version of this heuristic and report computational experiments on large-scale instances. These results show the effectiveness of our approach.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Sequence analysis; Parallel algorithms; Closest String Problem

#### 1. Introduction

String selection problems are among the most important faced by researchers in computational biology. These problems are important in finding sequence conserved regions, genetic drug target identification, and genetic probes in molecular biology. Combinatorial optimization is one possible approach to solve String Selection Problems. Recently, some authors have demonstrated empirically that integer programming techniques are suitable to solve moderate-size instances of the Closest String Problem (CSP) [1,2], but real-world size instances are much larger and difficult.

This work has been partially supported by NSF, NIH and CRDF grants. A preliminary version of this paper appeared at the proceedings of the I International Symposium on Mathematical and Computational Biology, November 2004, Brazil.

<sup>\*</sup> Corresponding author.

E-mail addresses: carvalho@lia.ufc.br (F.C. Gomes), claudio@ufl.edu (C.N. Meneses), pardalos@ufl.edu (P.M. Pardalos), valdisio@lia.ufc.br (G.V.R. Viana).

<sup>&</sup>lt;sup>1</sup> Supported in part by the Brazilian Federal Agency for Higher Education (CAPES)—Grant no. 1797-99-9.

In this paper we are concerned with reporting speed up obtained by a parallel algorithm for string selection. More precisely, we present a parallel algorithm for the CSP and report computational results for large-scale instances. We aim at showing that parallelization can play an important role in solving String Selection Problems.

In Section 2, we define the CSP, and a parallel algorithm is presented and analyzed. In Section 3, computational issues about the parallel algorithm are presented. In Section 4, we present the experimentation setup, the results and the discussion. Conclusions are given in Section 5.

#### 2. Problem and algorithms

Let s and t be two strings with equal length (i.e., |s| = |t|). The number of mismatched positions between those two strings is the Hamming distance  $d_H(s, t)$  of them. For example, if s="ACT" and t="CCA", then  $d_H(s, t) = 2$ . We use  $s_j^i$  to denote the character in the jth position of string  $s^i$ . Through out the text the terms closest and farthest are used with respect to the maximum Hamming distance.

The CSP can be defined as:

*Instance*: Given a finite set  $\mathcal{G}_c = \{s^1, s^2, \dots, s^n\}$  of n strings of length m over an alphabet  $\mathcal{A}$ .

Objective: Find a string x of length m over  $\mathscr{A}$  minimizing  $d_c$  such that for every string  $s^i$  in  $\mathscr{S}_c$ ,  $d_H(x, s^i) \leq d_c$ .

**Example 1.** Let  $\mathcal{G}_c = \{\text{``ACGT''}, \text{``TTAC''}, \text{``CCGC''}\}$ . String "TCGC'' is an optimal solution to this instance and it has  $d_c$  equal to 2.

The CSP is NP-hard and has applications in computational biology [3]. There exist approximation algorithms for the CSP (see e.g., [3–5]). In [1] it has been shown empirically the practical use of integer programming techniques to solve moderate-size instances of the CSP. By moderate-size instances we mean instances with 10–30 strings each of which is 300–800 characters long.

In [3], for example, an algorithm with performance guarantee of  $\frac{4}{3}(1+\epsilon)$ , for any small constant  $\epsilon > 0$ , is presented and analyzed, with a similar result appearing also in [6]. A PTAS for the CSP was presented in [5]. These algorithms make use of integer linear programming and so to solve large-size instances of the CSP using them may take a long time.

In this paper we take a different direction and design a parallel heuristic that is a combination of an approximation algorithm and local search strategies. In this way, we first generate feasible solutions that are guaranteed to have a performance factor from the optimum value, and then we apply local search strategies to improve the solutions. We do the local search using several processors in a parallel machine, and thus we get a parallel implementation.

The heuristic is described in Algorithm 1. This algorithm is a slightly different version of the one presented in [1]. The different point is on step 3 (local search procedure). Step 3 of the algorithm in [1] runs for exactly N (parameter) iterations, whereas step 3 in Algorithm 1 may restart itself as long as it finds a solution better than the incumbent (current best solution).

The heuristic consists of taking a string in  $\mathcal{G}_c$  and modifying it until a locally optimal solution is found. Recall that selecting any string in  $\mathcal{G}_c$  as a solution gives a 2-approximation algorithm (see [4]). Thus, all solutions generated by our heuristic have a performance guarantee of 2. We decided to use that simple 2-approximation algorithm as part of our heuristic, instead of the best approximation algorithm for the CSP, because the former runs always fast.

In the first step, the algorithm searches for a string  $s \in \mathcal{S}_c$  that is the closest to all other strings in  $\mathcal{S}_c$ . In the second step, the distance  $d_c$  between s and the remaining strings is computed. In the last step of Algorithm 1, a local search procedure is applied as described below.

Let  $s^b$  be a string in  $\mathcal{S}_c$  such that  $d_H(s^b, s)$  is maximum. If  $s_i \neq s_i^b$ , with  $i \in \{1, ..., m\}$ , then replace  $s_i$  by  $s_i^b$  if the replacement makes the solution better. If the replacement occurs, update the Hamming distances from s to all strings in  $\mathcal{S}_c$ . After having scanned all m positions, select  $s^b \in \mathcal{S}_c$  where  $s^b$  is the farthest string from the resulting s, and repeat the process.

The idea behind the local search is to make the current solution s look like the string  $s^b$ . The number of iterations of the local search is controlled by the parameter N. The details of this algorithm are presented in Algorithm 2. We use an auxiliary n-size array, d', to recompute rapidly the distances between the current solution s and the string  $s^b$ .

```
Algorithm 1. Heuristic for the CSP.
       Input: instance \mathcal{G}_c, N
       Output: string s, distance d_c
      s \leftarrow \text{string in } \mathcal{S}_c \text{ closest to the other } s^i \in \mathcal{S}_c
      d_c \leftarrow \max_{i \in \{1, \dots, n\}} d_{\mathbf{H}}(s^i, s)
      improve_solution(\mathcal{G}_c, s, d_c, N)
   The parallel algorithm is described in Algorithm 3.
Algorithm 2. Step 3 of Algorithm 1.
Input: instance \mathcal{S}_c, current solution s, distance d_c, and parameter N
Output: resulting solution s and distance d_c
for k \leftarrow 1 to n do
     d_k \leftarrow d_{\mathrm{H}}(s^k, s)
     d'_k \leftarrow d_k
end
OldMax \leftarrow d_c
NoImprov \leftarrow 0
While NoImprov \leq N do
     b \leftarrow i such that d_{\rm H}(s^i, s) = d_c /* break ties randomly */
     for j \leftarrow 1 to m such that s_i^b \neq s_j do
          max \leftarrow -1
          for k \leftarrow 1 to n such that k \neq b do
               if (s_j = s_j^k) and (s_j^b \neq s_j^k) then d_k \leftarrow d_k + 1
else if (s_j \neq s_j^k) and (s_j^b = s_j^k) then d_k \leftarrow d_k - 1
               if (max < d_k) then max \leftarrow d_k
          end
          if d_c \geqslant max /* this is not worse */ then
               d_c \leftarrow max; s_j \leftarrow s_i^b
               for k \leftarrow 1 to n do d'_k \leftarrow d_k
               for k \leftarrow 1 to n do d_k \leftarrow d'_k
          end
     end
     if OldMax \neq d_c then
          OldMax \leftarrow d_c
          NoImprove \leftarrow 0
     else
          NoImprov \leftarrow NoImprov + 1
     end
end
```

#### 3. Implementation issues

In the implementation of the parallel algorithm we use a *multiple independent-thread strategy* which is depicted in Fig. 1 and consists of: (a) *p* processors are available; (b) iterations are evenly distributed over the *p* processors; (c) each processor keeps a copy of data and algorithms; (d) one processor acts as the master handling seeds, data and iteration counter; (e) each processor performs *N* iterations (*N* will be explained in Section 4.2).

F.C. Gomes et al. / Computers & Operations Research 35 (2008) 3636-3643



Fig. 1. Parallel independent implementation strategy.

#### 4. Computational experiments

We now present the computational experiments carried out with the algorithm described in the previous section. Initially, we describe the set of instances used in the tests. Then, in Section 4.2 the results obtained by the parallel algorithm are shown.

```
Algorithm 3. Parallel algorithm for the CSP.
```

```
Input: instance \mathcal{S}_c, N (number of iterations),
       NTasks (number of parallel tasks)
Output: solution Smin, distance Dmin
/* MASTER PROCESS */
Start NTasks parallel processes
Send data (\mathcal{S}_c, N) to the Slave Process
Dmin \leftarrow +\infty (upper bound on an optimal solution value)
for i = 1 to NTasks do
   /* wait for results from the slave processes */
   receive results D_i, S_i
   show partial solution D_i
   if Dmin > D_i then
       Dmin \leftarrow D_i
       Smin \leftarrow S_i
   end
end
/* SLAVE PROCESS */
Receive data from the Master Process
Call Heuristic for the CSP (Algorithm 1)
Receive results s, d
Send results s, d to the Master Process
```

#### 4.1. Instances and test environment

We use actual and simulated biological data. For the simulated data the instances were randomly generated in the following way. Given parameters n (number of strings), m (string length), and an alphabet  $\mathscr{A}$ , randomly choose (using a uniform distribution) a character from  $\mathscr{A}$  for each position in the resulting string.

We also test simulated instances using the alphabet  $\mathcal{A} = \{A, C, G, T\}$  with strings having the GC content (the % of G's and C's) equals to 72%, which is the content for the Actinobacteria Streptomyces coelicolor.

In the simulated data we test three classes of instances. The first class consists of strings with an alphabet of size two; the second one involves strings that use an alphabet of size four and the third class contains strings that adopt an alphabet of size 20. Instances with alphabets of size two find applications in Coding Theory, whereas instances using alphabets with sizes four and 20 appear in applications involving DNA and amino acid sequences, respectively.

The algorithm used for random-number generation is an implementation of the multiplicative linear congruential generator [7], with parameters 16 807 (multiplier) and  $2^{31} - 1$  (prime number).

All tests were executed on a parallel machine with 28 nodes Intel Xeon DP, dual processed cluster, each node having 1 Gbyte RAM, and the data network being Gigabit Ethernet. The heuristic algorithm was implemented in the C++ language and PVM (Parallel Virtual Machine) [8] was used to implement the parallel version of the algorithm. The CPLEX 7.0 [9] was used for solving the integer programming models that compute the optimal solution values to instances of the CSP (see [1]).

The master process was implemented in FORTRAN and the slaves in C++. To the best of our knowledge, this is the first time that an application of PVM using two different programming languages was developed.

Since the integer programs for the large instances tested in this paper are relatively large, the time limit to the CPLEX solver was set to 1 h. We emphasize that we are mostly interested in analyzing the quality of the solutions delivered by the parallel algorithm and *not* in comparing CPU times spent by the exact and the parallel algorithms.

### 4.2. Discussion

Seventeen actual instances were tested: six use alphabet of size four (McClure instances [10]) and 11 use alphabet with 20 characters (GenBank [11]). The McClure instances are protein sequences frequently used to test string-comparison algorithms. The sequences within these instances are fairly diverse. In the instances obtained from GenBank, seven out of 11 instances have sequences fairly similar.

The simulated data consists of 135 instances, with 45 instances for each alphabet.

For each of the actual instances considered, the size of the strings (m) is equal to the length of the smallest string in the set (this was necessary since the instances have strings of different lengths). We removed the last characters for strings with length greater than the minimum.

Tables 1 and 2 show the results for actual biological data. In these tables, the first three columns give the instance name, the number of strings and their lengths. Columns Val. and Time show the solution value and CPU time (in seconds) to compute it. The column Ratio is explained below.

Tables 3–6 show the results over simulated data. Each row in these tables correspond to three instances. The columns are interpreted as follows. The first two columns give the number of strings (n) and the lengths of the strings (m) in an instance. Columns Min, Avg. and Max represent the minimum, the average and the maximum solution values, while Time column describes the average time over three instances of same size. All times are expressed in seconds. The column labeled Ratio expresses the relative ratio between the parallel algorithm solution value and the optimal solution

Results for actual instances over the alphabet with four characters

| Instance         | nstance |      |      | orithm | Ratio | Parallel algorithm |      |
|------------------|---------|------|------|--------|-------|--------------------|------|
| Name             | n       | m    | Val. | Time   | Val.  | Val.               | Time |
| 16SrRNAFasta     | 8       | 457  | 3    | 0.01   | 1.0   | 3                  | 0.1  |
| 16SrRNAFasta2    | 8       | 457  | 3    | 0.01   | 1.0   | 3                  | 0.1  |
| 1021Fasta        | 10      | 1051 | 58   | 0.02   | 1.0   | 58                 | 0.1  |
| 1051Fasta        | 3       | 1537 | 4    | 0.01   | 1.0   | 4                  | 0.1  |
| 2521Fasta        | 4       | 2563 | 867  | 0.19   | 1.0   | 867                | 0.1  |
| 2641Fasta        | 6       | 2678 | 964  | 0.59   | 1.060 | 1022               | 0.1  |
| HistoneH3-aFasta | 21      | 122  | 6    | 0.01   | 1.0   | 6                  | 0.1  |
| HistoneH3Fasta   | 21      | 539  | 204  | 0.80   | 1.001 | 206                | 2.0  |
| HistonebFasta    | 21      | 324  | 151  | 0.18   | 1.013 | 153                | 1.0  |
| Zhing1997Fasta   | 10      | 212  | 36   | 0.01   | 1.0   | 36                 | 0.1  |
| ZhingS2-1780-5   | 5       | 1775 | 488  | 0.13   | 1.020 | 498                | 0.1  |

Table 2
Results for McClure instances over the alphabet of 20 characters

| Instance |    |     | Exact algo | orithm | Ratio | Parallel algorithm |      |  |
|----------|----|-----|------------|--------|-------|--------------------|------|--|
| Name     | n  | m   | Val.       | Time   | Val.  | Val.               | Time |  |
| mc582.10 | 10 | 141 | 97         | 0.09   | 1.041 | 101                | 0.1  |  |
| mc582.12 | 12 | 141 | 97         | 0.09   | 1.031 | 100                | 0.1  |  |
| mc582.6  | 6  | 141 | 95         | 0.04   | 1.063 | 101                | 0.1  |  |
| mc586.6  | 6  | 100 | 72         | 0.03   | 1.069 | 77                 | 0.1  |  |
| mc586.10 | 10 | 98  | 75         | 0.06   | 1.040 | 78                 | 0.1  |  |
| mc586.12 | 12 | 98  | 76         | 0.08   | 1.039 | 79                 | 0.1  |  |

Table 3 Results for simulated data with an alphabet of four characters and GC content of 72%

| Instand        | ce   | Exact alg | gorithm |      |        | Ratio | Parallel algorithm |        |      |      |  |
|----------------|------|-----------|---------|------|--------|-------|--------------------|--------|------|------|--|
| $\overline{n}$ | m    | Min       | Avg.    | Max  | Time   | Avg.  | Min                | Avg.   | Max  | Time |  |
| 10             | 1000 | 579       | 580.7   | 583  | 0.6    | 1.013 | 585                | 588.5  | 591  | 2.7  |  |
| 10             | 2000 | 1117      | 1126.0  | 1132 | 3.1    | 1.011 | 1127               | 1138.6 | 1145 | 5.3  |  |
| 10             | 3000 | 1615      | 1622.7  | 1628 | 1.7    | 1.010 | 1628               | 1638.4 | 1642 | 8.5  |  |
| 10             | 4000 | 2081      | 2087.7  | 2096 | 6.6    | 1.010 | 2097               | 2107.6 | 2120 | 11.7 |  |
| 10             | 5000 | 2496      | 2500.7  | 2508 | 7.8    | 1.009 | 2512               | 2522.5 | 2529 | 17.6 |  |
| 20             | 1000 | 633       | 633.0   | 633  | 364.5  | 1.028 | 648                | 650.6  | 655  | 4.4  |  |
| 20             | 2000 | 1218      | 1222.7  | 1227 | 1258.3 | 1.027 | 1245               | 1255.2 | 1266 | 9.0  |  |
| 20             | 3000 | 1763      | 1765.7  | 1768 | 1202.2 | 1.023 | 1797               | 1805.8 | 1815 | 19.3 |  |
| 20             | 4000 | 2260      | 2261.7  | 2263 | 1203.8 | 1.021 | 2302               | 2309.8 | 2326 | 25.8 |  |
| 20             | 5000 | 2713      | 2723.3  | 2731 | 2480.6 | 1.021 | 2761               | 2780.2 | 2761 | 33.1 |  |
| 30             | 1000 | 655       | 655.3   | 656  | 2560.4 | 1.032 | 671                | 676.2  | 687  | 6.3  |  |
| 30             | 2000 | 1262      | 1265.0  | 1267 | 3600.0 | 1.028 | 1293               | 1300.6 | 1308 | 16.3 |  |
| 30             | 3000 | 1828      | 1830.7  | 1833 | 3600.0 | 1.027 | 1874               | 1880.3 | 1894 | 30.3 |  |
| 30             | 4000 | 2342      | 1347.3  | 2354 | 3600.0 | 1.025 | 2397               | 2405.9 | 2412 | 46.3 |  |
| 30             | 5000 | 2816      | 2819.3  | 2821 | 3600.0 | 1.024 | 2877               | 2886.0 | 2894 | 61.8 |  |

Table 4 Results for simulated data with an alphabet of four characters

| Instance       |      | Exact alg | orithm |      |        | Ratio | Parallel algorithm |        |      |      |
|----------------|------|-----------|--------|------|--------|-------|--------------------|--------|------|------|
| $\overline{n}$ | m    | Min       | Avg.   | Max  | Time   | Avg.  | Min                | Avg.   | Max  | Time |
| 10             | 1000 | 578       | 581.3  | 584  | 0.9    | 1.016 | 588                | 590.7  | 593  | 1.2  |
| 10             | 2000 | 1159      | 1163.0 | 1165 | 2.8    | 1.013 | 1175               | 1178.3 | 1180 | 4.8  |
| 10             | 3000 | 1731      | 1737.7 | 1741 | 18.3   | 1.013 | 1753               | 1760.0 | 1768 | 6.9  |
| 10             | 4000 | 2313      | 2317.7 | 2323 | 3.3    | 1.011 | 2337               | 2342.7 | 2348 | 14.7 |
| 10             | 5000 | 2899      | 2901.7 | 2906 | 25.1   | 1.010 | 2928               | 2931.0 | 2934 | 18.9 |
| 20             | 1000 | 630       | 632.0  | 635  | 1382.1 | 1.030 | 649                | 651.0  | 655  | 3.3  |
| 20             | 2000 | 1258      | 1261.7 | 1265 | 3601.8 | 1.027 | 1293               | 1295.3 | 1299 | 10.6 |
| 20             | 3000 | 1886      | 1889.7 | 1895 | 48.6   | 1.025 | 1933               | 1937.7 | 1944 | 21.2 |
| 20             | 4000 | 2520      | 2523.3 | 2528 | 1205.6 | 1.026 | 2585               | 2588.3 | 2594 | 29.9 |
| 20             | 5000 | 3152      | 3154.0 | 3155 | 3600.0 | 1.025 | 3232               | 3233.3 | 3235 | 45.0 |
| 30             | 1000 | 654       | 655.3  | 656  | 3600.0 | 1.031 | 673                | 675.3  | 678  | 7.1  |
| 30             | 2000 | 1306      | 1307.3 | 1310 | 3600.0 | 1.030 | 1344               | 1347.0 | 1353 | 17.9 |
| 30             | 3000 | 1954      | 1956.0 | 1960 | 3600.0 | 1.029 | 2010               | 2013.7 | 2020 | 32.3 |
| 30             | 4000 | 2610      | 2612.0 | 2613 | 3600.0 | 1.031 | 2692               | 2692.3 | 2693 | 49.7 |
| 30             | 5000 | 3265      | 3267.0 | 3269 | 3600.0 | 1.030 | 3358               | 3364.0 | 3369 | 72.8 |

Table 5
Results for simulated data with an alphabet of two characters

| Instance       |      | Exact alg | orithm |      |        | Ratio | Parallel algorithm |        |      |      |  |
|----------------|------|-----------|--------|------|--------|-------|--------------------|--------|------|------|--|
| $\overline{n}$ | m    | Min       | Avg.   | Max  | Time   | Avg.  | Min                | Avg.   | Max  | Time |  |
| 10             | 1000 | 371       | 376.0  | 379  | 1200.1 | 1.009 | 375                | 379.3  | 382  | 0.1  |  |
| 10             | 2000 | 752       | 755.0  | 757  | 2400.1 | 1.009 | 761                | 761.7  | 783  | 1.0  |  |
| 10             | 3000 | 1129      | 1130.0 | 1131 | 2400.4 | 1.006 | 1134               | 1136.7 | 1145 | 2.1  |  |
| 10             | 4000 | 1496      | 1507.3 | 1517 | 1205.3 | 1.008 | 1504               | 1519.3 | 1532 | 3.2  |  |
| 10             | 5000 | 1889      | 1891.3 | 1893 | 1204.9 | 1.005 | 1895               | 1900.3 | 1906 | 5.3  |  |
| 20             | 1000 | 412       | 412.3  | 413  | 1215.2 | 1.028 | 421                | 424.0  | 427  | 1.0  |  |
| 20             | 2000 | 817       | 824.0  | 831  | 1249.6 | 1.093 | 874                | 882.3  | 898  | 2.0  |  |
| 20             | 3000 | 1232      | 1235.3 | 1240 | 2438.1 | 1.029 | 1255               | 1270.7 | 1291 | 3.4  |  |
| 20             | 4000 | 1643      | 1647.7 | 1653 | 253.2  | 1.041 | 1697               | 1716.0 | 1742 | 4.0  |  |
| 20             | 5000 | 2058      | 2061.7 | 2067 | 2406.4 | 1.025 | 2101               | 2112.3 | 2114 | 5.2  |  |
| 30             | 1000 | 431       | 433.3  | 436  | 3600.0 | 1.035 | 443                | 448.3  | 455  | 1.0  |  |
| 30             | 2000 | 857       | 862.7  | 869  | 3600.0 | 1.043 | 885                | 900.0  | 921  | 3.0  |  |
| 30             | 3000 | 1292      | 1295.0 | 1300 | 3600.0 | 1.032 | 1328               | 1337.0 | 1359 | 4.2  |  |
| 30             | 4000 | 1711      | 1713.0 | 1714 | 3600.0 | 1.048 | 1764               | 1794.7 | 1825 | 6.1  |  |
| 30             | 5000 | 2140      | 2141.7 | 2143 | 3600.0 | 1.044 | 2231               | 2237.0 | 2248 | 8.0  |  |

Table 6
Results for simulated data with an alphabet of 20 characters

| Instance |      | Exact alg | orithm |      |        | Ratio | Parallel algorithm |        |      |       |
|----------|------|-----------|--------|------|--------|-------|--------------------|--------|------|-------|
| n        | m    | Min       | Avg.   | Max  | Time   | Avg.  | Min                | Avg.   | Max  | Time  |
| 10       | 1000 | 781       | 783.0  | 785  | 1.2    | 1.043 | 815                | 817.0  | 820  | 3.1   |
| 10       | 2000 | 1560      | 1564.3 | 1569 | 4.6    | 1.034 | 1610               | 1617.7 | 1622 | 10.4  |
| 10       | 3000 | 2344      | 2345.3 | 2347 | 5.2    | 1.028 | 2409               | 2411.7 | 2416 | 19.2  |
| 10       | 4000 | 3124      | 3129.0 | 3133 | 7.0    | 1.024 | 3192               | 3204.7 | 3216 | 30.7  |
| 10       | 5000 | 3910      | 3912.0 | 3913 | 15.1   | 1.022 | 3999               | 3999.7 | 4001 | 41.3  |
| 20       | 1000 | 837       | 838.0  | 839  | 95.1   | 1.065 | 889                | 892.3  | 896  | 6.3   |
| 20       | 2000 | 1675      | 1677.3 | 1680 | 1206.9 | 1.059 | 1771               | 1775.7 | 1779 | 20.2  |
| 20       | 3000 | 2510      | 2511.7 | 2513 | 1222.5 | 1.056 | 2651               | 2653.3 | 2658 | 39.1  |
| 20       | 4000 | 3355      | 3357.0 | 3359 | 1220.6 | 1.053 | 3531               | 3533.3 | 3535 | 69.3  |
| 20       | 5000 | 4190      | 4192.0 | 4194 | 1222.2 | 1.049 | 4395               | 4399.0 | 4405 | 112.1 |
| 30       | 1000 | 860       | 861.7  | 863  | 2401.5 | 1.064 | 916                | 916.7  | 917  | 6.9   |
| 30       | 2000 | 1722      | 1723.0 | 1724 | 1210.7 | 1.060 | 1825               | 1827.0 | 1830 | 22.4  |
| 30       | 3000 | 2581      | 2582.0 | 2583 | 2411.0 | 1.059 | 2734               | 2734.7 | 2735 | 48.8  |
| 30       | 4000 | 3447      | 3448.0 | 3449 | 1226.9 | 1.058 | 3646               | 3648.3 | 3650 | 67.0  |
| 30       | 5000 | 4305      | 4306.0 | 4307 | 2488.9 | 1.057 | 4550               | 4553.3 | 4556 | 103.7 |

value, and is calculated as h/i, where h is the average solution value obtained by the parallel algorithm and i is the average optimal solution value over three instances of same size.

The parallel algorithm uses 20 processors. Communication overhead did not affect the overall performance of the algorithm. The stopping condition for the parallel algorithm was the maximum number of iterations between two improvements and this parameter was set to 2000 iterations. This is the parameter *N* mentioned in Section 2.

The performances of the exact and parallel algorithms are striking for instances derived from actual biological data. For simulated data we can see a clear distinction between the behavior of the algorithms. The exact algorithm performs very well on instances with small value of n, whereas the parallel algorithm seems to have a uniform performance over all instances tested.

The results produced by the parallel algorithm are quite impressive. On average it yields solution values within 2.0%, 2.3%, 2.9% and 4.9% of the optimum values for simulated instances with alphabets of sizes four (GC content 72%), four, two and 20, respectively. For actual data the results are even better. On the other hand, the exact algorithm

fails to deliver optimal solutions to several instances in the time limit of 1 h. For these instances we report the values of the best feasible solutions found within 1 h of CPU time. Another attractive aspect of our algorithm is the CPU times to find high-quality solutions. All solutions were obtained in less than 2 min. An interesting finding is that our algorithm produced very quickly near optimal solutions to instances with an alphabet of two characters, whereas the exact algorithm struggled to find optimal solutions. Clearly, the parallel algorithm would be a decent way to speed the exact algorithm by providing upper bounds when searching for optimal solutions. Note that this is applicable to all instances tested in this paper.

### 5. Concluding remarks

In this paper we proposed a parallel algorithm for the CSP. The algorithm was implemented and the computational experiments showed that our approach was very effective in solving large-scale instances.

We have not noticed communication overhead when the number of processors exceeds 10. We believe that parallelization of existing algorithms shall be an important research avenue.

#### References

- [1] Meneses CN, Lu Z, Oliveira CAS, Pardalos PM. Optimal solutions for the closest string problem via integer programming. INFORMS Journal on Computing 2004;16(4):419–29.
- [2] Meneses CN, Oliveira CAS, Pardalos PM. Optimization techniques for string selection and comparison problems in genomics. IEEE Engineering in Medicine and Biology Magazine 2005;24(3):81–7.
- [3] Lanctot K, Li M, Ma B, Wang S, Zhang L. Distinguishing string selection problems. Information and Computation 2003;185(1):41–55.
- [4] Ben-Dor A, Lancia G, Perone J, Ravi R. Banishing bias from consensus sequences. In: Apostolico A, Hein J, editors. Proceedings of the 8th annual symposium on combinatorial pattern matching. Lecture notes in computer science, vol. 1264. Aarhus, Denmark: Springer; 1997. p. 247–61.
- [5] Li M, Ma B, Wang L. On the closest string and substring problems. Journal of the ACM 2002;49(2):157–71.
- [6] Gasieniec L, Jansson J, Lingas A. Efficient approximation algorithms for the hamming center problem. In: Proceedings of the 10th ACM-SIAM symposium on discrete algorithms. 1999. p. S905–6.
- [7] Park S, Miller K. Random number generators: good ones are hard to find. Communications of the ACM 1988;31:1192-201.
- [8] PVM user's guide and reference manual. OAK Ridge National Laboratory; Geist A, Beguelin A, Dangarra J, Jiang W, Machek R, Sunderan V. 1994.
- [9] ILOG Inc. CPLEX 7.0 User's Manual; 2003.
- [10] McClure M, Vasi T, Fitch W. Comparative analysis of multiple protein-sequence alignment methods. Molecular Biology and Evolution 1994:11:571-92
- [11] GenBank. (http://www.ncbi.nlm.nih.gov/genbank/index.html) [last accessed on January 30, 2007].