Packages required for Regularized regression

```
Code ▼
```

Hide

```
set.seed(123)  # seef for reproducibility
library(glmnet)  # for ridge regression
library(dplyr)  # for data cleaning
library(psych)  # for function tr() to compute trace of a matrix
library(caret)
```

Import Dataset from package 'MASS'

Hide

```
data("Boston", package = "MASS")
head(Boston)
```

	crim	zn	indus	chas	nox	rm	age	dis	rad
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	0.00632	18	2.31	0	0.538	6.575	65.2	4.0900	1
2	0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2
3	0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2
4	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3
5	0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3
6	0.02985	0	2.18	0	0.458	6.430	58.7	6.0622	3

Preparing the data and We randomly split the data into training set (80% for building a predictive model) and test set (20% for evaluating the model).

```
set.seed(123)
training.samples <- Boston$medv %>%
  createDataPartition(p = 0.8, list = FALSE)
train.data <- Boston[training.samples, ]
test.data <- Boston[-training.samples, ]</pre>
```

We need to create two objects X for holding predictor variables

```
Hide
```

```
X = model.matrix(medv ~ ., train.data)[, -1]
```

y for storing the outcome variable

Hide

```
y = train.data$medv
```

Computing Ridge regression model

```
par(mfrow = c(1, 2))
fit_ridge = glmnet(X, y, alpha = 0)
plot(fit_ridge)
mtext("Ridge")
```

```
plot(fit_ridge, xvar = "lambda", label = TRUE)
mtext("Ridge")
```



```
cv_ridge = cv.glmnet(X, y, alpha = 0)
plot(cv_ridge)
mtext("Ridge")
```


cv_ridge\$lambda.min

[1] 0.6803611

```
# Fit the final model on the training data
model_ridge <- train(
  medv ~., data = train.data, method = "glmnet",
  trControl = trainControl("cv", number = 10),
  tuneGrid = expand.grid(alpha = 0, lambda = cv_ridge$lambda.min)
)
# Model coefficients
coef(model_ridge$finalModel, model_ridge$bestTune$lambda)</pre>
```

```
14 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) 29.199522433
crim
             -0.076456377
zn
              0.026794700
indus
             -0.062277495
chas
              2.525893584
nox
            -11.388819192
              3.723870172
rm
              0.002204446
age
dis
             -1.058455239
rad
              0.165876918
tax
             -0.005354632
ptratio
             -0.862205203
black
             0.009610093
1stat
             -0.498825572
```

```
# Make predictions on the test data
x.test <- model.matrix(medv ~., test.data)[,-1]
predictions <- model_ridge %>% predict(x.test) %>% as.vector()
# Model performance metrics
data.frame(
   RMSE = RMSE(predictions, test.data$medv),
   Rsquare = R2(predictions, test.data$medv)
)
```

RMSE <dbl></dbl>	Rsquare <dbl></dbl>
4.646655	0.7655889
1 row	

Computing Lasso regression model

Hide

```
set.seed(123)
par(mfrow = c(1, 2))
fit_lasso = glmnet(X, y, alpha = 1)
plot(fit_lasso)
mtext("LASSO")
```

```
plot(fit_lasso, xvar = "lambda", label = TRUE)
mtext("LASSO")
```


cv_lasso = cv.glmnet(X, y, alpha = 1)
plot(cv_lasso)
mtext("LASSO")

Hide

```
cv_lasso$lambda.min
```

```
[1] 0.006963707
```

```
# Fit the final model on the training data
model_lasso <- train(
  medv ~., data = train.data, method = "glmnet",
  trControl = trainControl("cv", number = 10),
  tuneGrid = expand.grid(alpha = 1, lambda = cv_lasso$lambda.min)
  )
# Model coefficients
coef(model_lasso$finalModel, model_lasso$bestTune$lambda)</pre>
```

```
14 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) 37.199465655
crim
             -0.091088918
zn
             0.038010919
indus
            -0.014083319
chas
             2.291379000
nox
           -16.745915299
              3.520653532
rm
             0.008671758
age
             -1.370592996
dis
             0.316149936
rad
tax
            -0.011743014
ptratio
            -0.955953859
black
             0.009790457
lstat
             -0.560615758
```

Hide

```
x.test <- model.matrix(medv ~., test.data)[,-1]
predictions <- model_lasso %>% predict(x.test) %>% as.vector()
# Model performance metrics
data.frame(
   RMSE = RMSE(predictions, test.data$medv),
   Rsquare = R2(predictions, test.data$medv)
)
```

	RMSE <dbl></dbl>	Rsquare <dbl></dbl>
	4.587305	0.761773
1 row		

Computing Elastic net regression model

```
set.seed(123)
model_elastic <- train(
  medv ~., data = train.data, method = "glmnet",
  trControl = trainControl("cv", number = 10),
  tuneLength = 10
)
# Best tuning parameter
model_elastic$bestTune</pre>
```

	alpha <dbl></dbl>	lambda <dbl></dbl>
4	0.1	0.03875385
1 row		

```
coef(model_elastic$finalModel, model_elastic$bestTune$lambda)
```

```
14 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) 36.727488405
crim
           -0.090703096
zn
             0.037446370
indus
            -0.020415545
chas
             2.320231739
           -16.457742172
nox
             3.533267286
rm
age
             0.008434395
            -1.358834790
dis
rad
             0.305260173
            -0.011175268
tax
            -0.950290918
ptratio
black
             0.009799131
lstat
            -0.557178910
```

Hide

```
par(mfrow = c(1, 2))
fit_elastic = glmnet(X, y, alpha = 0.1)
plot(fit_elastic)
mtext("Elastic net")
```

```
plot(fit_elastic, xvar = "lambda", label = TRUE)
mtext("Elastic net")
```


cv_elastic = cv.glmnet(X, y, alpha = 0.1)
plot(cv_elastic)
mtext("Elastic net")

Hide

```
x.test <- model.matrix(medv ~., test.data)[,-1]
predictions <- model_elastic %>% predict(x.test)

# Model performance metrics
data.frame(
    RMSE = RMSE(predictions, test.data$medv),
    Rsquare = R2(predictions, test.data$medv)
)
```

	RMSE <dbl></dbl>	Rsquare <dbl></dbl>
	4.587382	0.7621341
1 row		

Comparing model performance

```
models <- list(ridge = model_ridge, lasso = model_lasso, elastic = model_elastic)
resamples(models) %>% summary( metric = "RMSE")
```

```
Call:
summary.resamples(object = ., metric = "RMSE")
Models: ridge, lasso, elastic
Number of resamples: 10
RMSE
            Min. 1st Qu.
                           Median
                                       Mean 3rd Qu.
                                                         Max. NA's
        3.306977 3.929839 4.599626 4.847751 5.624674 7.203218
ridge
                                                                 0
        3.618948 4.271887 4.612680 4.793215 5.078720 7.499981
                                                                 0
elastic 3.630082 4.148174 4.692444 4.816828 5.404555 6.163305
                                                                 0
```