大学物理试卷

班级: 姓名: 学号: 成绩:

一选择题 (共**30**分)

1. (本题 3分)(0519)

对于沿曲线运动的物体,以下几种说法中哪一种是正确的:

- (A) 切向加速度必不为零.
- (B) 法向加速度必不为零(拐点处除外).
- (C) 由于速度沿切线方向, 法向分速度必为零, 因此法向加速度必为零.
- (D) 若物体作匀速率运动,其总加速度必为零.
- (E) 若物体的加速度 \bar{a} 为恒矢量,它一定作匀变速率运动. Γ

2. (本题 3分)(0026)

一飞机相对空气的速度大小为 192 km/h, 风速为 56 km/h, 方向从西向 东. 地面雷达站测得飞机速度大小为 200km/h, 方向是

- (A) 南偏西 16.3°.
- (B) 北偏东 16.3°.
- (C) 向正南或向正北,
- (D) 西偏北 16.3°.

(E) 东偏南 16.3°.

Γ 1

٦

3. (本题 3分)(0048)

水平地面上放一物体 A,它与地面间的滑动摩擦 系数为 μ . 现加一恒力 \bar{F} 如图所示. 欲使物体 A 有最大 加速度,则恒力 \bar{F} 与水平方向夹角 θ 应满足

- (A) $\sin \theta = \mu$. (B) $\cos \theta = \mu$.
- (C) $tg\theta = \mu$.
- (D) $\operatorname{ctg} \theta = \mu$.

4. (本题 3分)(0094)

如图所示, 假设物体沿着竖直面上圆弧形轨道下 滑,轨道是光滑的,在从 $A \subseteq C$ 的下滑过程中,下 面哪个说法是正确的?

- (A) 它的加速度大小不变,方向永远指向圆心.
- (B) 它的速率均匀增加.
- (C) 它的合外力大小变化,方向永远指向圆心.
- (D) 它的合外力大小不变.
- (E) 轨道支持力的大小不断增加.

Γ 7

5. (本题 3分)(0771)

如图所示,一光滑细杆上端由光滑绞链固定,杆可绕 *O* 点自由转动.有一小环套在杆的上端处.开始使杆在一个锥面上运动起来,而后小环由静止开始沿杆下滑.在小环下滑过程中,小环、杆和地球系统的机械能以及小环加杆对轴 *OO'* 的角动量这两个量中

- (A) 机械能、角动量都守恒.
- (B) 机械能守恒,角动量不守恒.
- (C) 机械能不守恒,角动量守恒.
- (D) 机械能、角动量都不守恒.

6. (本题 3分)(0700)

速度为 v_0 的小球与以速度 $v(v = v_0)$ 方向相同,并且 $v < v_0$)滑行中的车发生完全弹性碰撞,车的质量远大于小球的质量,则碰撞后小球的速度为

- (A) $v_0 2v$.
- (B) $2 (v_0 v)$.
- (C) $2v v_0$.
- (D) 2 $(v v_0)$.

7

7. (本题 3分)(0879)

由图中所示势能曲线分析物体的运动情况如下,请指 出哪个说法正确:

- (A) 在曲线 $M_1 \subseteq M_2$ 段物体受力 f(x) > 0.
- (B) 曲线上的一点 M_1 是非稳定平衡点.
- (C) 开始在 x_A 与 x_B 之间的、总能量为 E_1 的物体的运动范围是 x_A 与 x_B 之间.
- (D) 总能量为 E_1 的物体的运动范围是 0→∞之间.

8. (本题 3分)(5030)

关于力矩有以下几种说法:

- (1) 对某个定轴而言,内力矩不会改变刚体的角动量.
- (2) 作用力和反作用力对同一轴的力矩之和必为零.
- (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的 角加速度一定相等.

在上述说法中,

- (A) 只有(2) 是正确的.
- (B)(1)、(2)是正确的.
- (C)(2)、(3)是正确的.
- (D)(1)、(2)、(3)都是正确的.

9. (本题 3分)(4351)

宇宙飞船相对于地面以速度 v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过 Δt (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)

(A) $c \cdot \Delta t$

(B) $v \cdot \Delta t$

(C) $\frac{c \cdot \Delta t}{\sqrt{1 - (\upsilon/c)^2}}$

(D) $c \cdot \Delta t \cdot \sqrt{1 - (\upsilon/c)^2}$

10. (本题 3分)(4984)

在惯性系 S 中,一粒子具有动量 $(p_x,\ p_y,\ p_z)=(5,\ 3,\ \sqrt{2}\,)$ MeV/c,及总能 量 E = 10 MeV (c 表示真空中光速),则在 S 中测得粒子的速度 v 最接近于

(A)
$$\frac{3}{8}c$$
. (B) $\frac{2}{5}c$. (C) $\frac{3}{5}c$. (D) $\frac{4}{5}c$.

(B)
$$\frac{2}{5}c$$

(C)
$$\frac{3}{5}c$$

(D)
$$\frac{4}{5}c$$
.

二填空题(共30分)

11. (本题 4分)(0008)

一质点沿直线运动.其运动学方程为 $x = 6 t - t^2$ (SI),则在 $t \to 0$ 至 4s 的

时间间隔内,质点的位移大小为 _______,在t由0到4s的时间间隔内质

点走过的路程为

12. (本题 3分)(5824)

一个水平圆盘,以恒定角速度 ω 绕过其中心的竖直固定轴旋转. 在盘上距 盘心 R 处,放置一质量为 m 的小物体,它与圆盘的摩擦系数为 μ ,若小物体刚 刚能够随着圆盘一起转而无相对运动,则以圆盘为参考系,对物体m的牛顿定

律的表示式为

13. (本题 3分)(0715)

有一质量为M(含炮弹)的炮车,在一倾角为 θ 的光滑斜面上下滑,当它滑到某处速率为 v_0 时, 从炮内射出一质量为 m 的炮弹沿水平方向. 欲使 炮车在发射炮弹后的瞬时停止下滑,则炮弹射出时

对地的速率 v=_____.

14. (本题 4分)(0728)

质点 P 的质量为 2 kg, 位置矢量为 \bar{r} , 速度 为 \bar{v} ,它受到力 \bar{F} 的作用. 这三个矢量均在Oxy面内,某时刻它们的方向如图所示,且 r=3.0 m, ν =4.0 m/s, F=2 N, 则此刻该质点对原点 O 的角

上的力对原点的力矩 $\vec{M} =$ _____

15. (本题 3分)(0870)

质点在几个力作用下沿曲线 x = t (SI), $y = t^2$ (SI)运动, 其中一力为

 $\vec{F} = 5t\vec{i}$ (SI),则该力在 t = 1 s 到 t = 2 s 时间内作功为

16. (本题 3分)(0635)

如图所示,一斜面倾角为 θ ,用与斜面成 α 角的恒力 \bar{F} 将一质量为m的物体沿斜面拉升了高度h,物体与斜面间的摩擦系数为

17. (本题 3分)(0373)

质量为 m 的物体,初速极小,在外力作用下从原点起沿 x 轴正向运动. 所受外力方向沿 x 轴正向,大小为 F = kx. 物体从原点运动到坐标为 x_0 的点的过程

中所受外力冲量的大小为_____.

18. (本题 3分)(0889)

一根均匀细杆,质量为m,长度为l.此杆对通过其端点且与杆成 θ 角的轴

的转动惯量为_____.

19. (本题 4分)(0823)

在一般情况下,对于由n个质量分别为 m_i (i=1,2...n)的质点组成的质点系,

若每个质点的位置矢量分别为 \bar{r}_i ,则它的质心的位置矢量为 \bar{r}_c =_____; 而对于一质量连续分布的物体,若位置矢量为 \bar{r} 处的密度为 ρ ,物体所占的空间

体积用 V 表示,则其质心的位置矢量为 $\bar{r}_c =$ ______.

三 计算题 (共40分)

20. (本题 5分)(0425)

如图所示陨石在距地面高 h 处时速度为 v_0 . 忽略空气阻力,求陨石落地的速度. 令地球质量为 M, 半径为 R, 万有引力常量为 G.

21. (本题10分)(0560)

一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和 2m的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为 $\frac{1}{2}mr^2$.将由两个定滑轮以及质量

为m和 2m的重物组成的系统从静止释放,求两滑轮之间绳内的张力.

22. (本题10分)(0835)

长为l的匀质细杆,可绕过杆的一端O点的水平光滑固定轴转动,开始时静止于竖直位置. 紧挨O点悬一单摆,轻质摆线的长度也是l,摆球质量为m. 若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止. 求:

- (1) 细杆的质量.
- (2) 细杆摆起的最大角度 θ .

23. (本题 5分)(1805)

两个火箭相向运动,它们相对于静止观察者的速率都是 3c/4 (c 为真空中的光速). 试求火箭甲相对火箭乙的速率.

24. (本题 5分)(4364)

- 一艘宇宙飞船的船身固有长度为 L_0 =90 m,相对于地面以v = 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.
 - (1) 观测站测得飞船的船身通过观测站的时间间隔是多少?
 - (2) 宇航员测得船身通过观测站的时间间隔是多少?

25. (本题 5分)(5230)

要使电子的速度从 $v_1 = 1.2 \times 10^8$ m/s 增加到 $v_2 = 2.4 \times 10^8$ m/s 必须对它作多少功? (电子静止质量 $m_e = 9.11 \times 10^{-31}$ kg)