Aufgabenblatt 5

http://image.informatik.htw-aalen.de/~thierauf/

1. Minimieren Sie den abgebildeten DFA M. Geben Sie die Äquivalenzklassen von $R_{L(M)}$ an.

- **2.** Zeigen Sie für folgende Sprachen, dass die jeweilige Relation R_L unendlich viele Äquivalenzklassen hat.
 - a) $\{0^n 1^m 0^n \mid n, m \ge 0\},\$
 - b) $\{a^{2^n} \mid n \ge 0\},\$
 - c) $\{w1^n \mid w \in \{0,1\}^* \text{ hat Länge } n\},\$
 - d) die balancierten Klammerwörter über $\Sigma = \{(,)\},$
 - e) $\{w \in \{0,1\}^* \mid w = x0y \text{ und } |x| = |y|\},\$
 - f) $\{ ww \mid w \in \{0,1\}^* \}.$
- **3.** In der Vorlesung haben wir gesehen, wie man die Äquivalenz von DFAs algorithmisch testet. Geben Sie (verbale Beschreibungen von) Algorithmen an, die folgende Problemstellungen für reguläre Sprachen A und B entscheiden. Die Eingabe erfolgt dabei durch DFAs M_A und M_B für A und B.
 - a) $A = \Sigma^*$,

c) $A \subseteq B$,

e) A ist unendlich

b) $A = \emptyset$,

- d) $A^* \subseteq B^*$.
- **4.** Sei M ein DFA für L = L(M) und \overline{M} der Komplement-DFA, der aus M entsteht indem Endzustände und Nicht-Endzustände vertauscht werden. Es gilt also $L(\overline{M}) = \overline{L}$. Zeigen Sie: wenn M minimal für L ist, dann ist auch \overline{M} minimal für \overline{L} .