The group G is isomorphic to the group $\mathrm{PSL}(3,2):\mathrm{C2}.$ Ordinary character table of $G\cong\mathrm{PSL}(3,2):\mathrm{C2}:$

	1a	2a	3a	4a	7a	2b	6a	8a	8b
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1	-1	-1	-1
χ_3	6	-2	0	2	-1	0	0	0	0
χ_4	6	2	0	0	-1	0	0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$
χ_5	6	2	0	0	-1	0	0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$
χ_6	7	-1	1	-1	0	1	1	-1	-1
χ_7	7	-1	1	-1	0	-1	-1	1	1
χ_8	8	0	-1	0	1	2	-1	0	0
χ_9	8	0	-1	0	1	-2	1	0	0

Trivial source character table of $G \cong PSL(3,2)$: C2 at p = 3:

Normalisers N_i			N_1						N_2			
p-subgroups of G up to conjugacy in G			P_1						P_2			
Representatives $n_j \in N_i$	1a	2b	7a	2a	8a	8 <i>b</i>	4a	1a	2c	2b	2a	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	9	3	2	1	1	1	1	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	-3	2	1	-1	-1	1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	-1	-2	0	0	2	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	-1	2	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	-1	2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	15	3	1	-1	-1	-1	-1	0	0	0	0	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 $	15	-3	1	-1	1	1	-1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	-1	0	-1	1	1	-1	1	-1	1	-1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-1	1	1	-1	-1	1	1	1	-1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	1	0	-1	-1	-1	-1	1	-1	-1	1	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(3, 6, 4)(5, 7, 8)]) \cong C3$

$$\begin{split} N_1 &= Group([(2,4)(3,5)(7,8),(1,2,3)(4,6,7)]) \cong \mathrm{PSL}(3,2) : \mathrm{C2} \\ N_2 &= Group([(3,6,4)(5,7,8),(1,2)(4,6)(5,8),(1,2)(3,5)(4,7)(6,8)]) \cong \mathrm{D12} \end{split}$$