

数字逻辑 07 组合线路设计

组合线路设计特殊情况与设计举例

杨永全

计算机科学与技术学院

<u>目录</u>

- 1. 课程目标
- 2. 课程内容
- 3. 课堂练习
- 4. 课堂讨论
- 5. 课堂总结
- 6. 作业

1.课程目标

1. 目标

- 1. 熟练掌握任意项的使用方法
- 2. 掌握常见组合线路设计方法
- 3. 掌握使用数据选择器设计线路的方法

2.课程内容

任意项,就是根据约束条件,没有取值、没有意义、永远不会发生的最小项。

这些最小项,因为不会发生,所以他的取值可以是 0, 也可以是 1。

在卡诺图化简时,我们知道,卡诺图中的 1 越多,能够画的圈越大,那么形式会越简单,所以,应该尽可能多的利用任意项,让设计的电路更加简单。

用与非门设计一个判别线路, 判断 8421 码所表示的十进制数之值是否大于等于 5。输入 A B C D 表示 8421 码, 输出 F=1 表示大于等于, 0 表示小于.

❶ 思考

四位二进制数能够表示 16 个十进制数, 而 8421 码则表示 0-9, 所以, 超过 9 的那些二进制编码是永远也无法取值的, 也没有任何意义, 那么就意味着, 有任意项可以利用。

用与非门设计一个判别线路, 判断 8421 码所表示的十进制数之值是否大于等于 5。 输入 A B C D 表示 8421 码, 输出 F=1 表示大于等于, 0 表示小于.

❶ 思考

那么,哪些最小项是任意项呢?就是永远也不会取到的那些最小项。

$$\sum (10, 11, 12, 13, 14, 15) \tag{1}$$

A	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	ф
1	0	1	1	ф
1	1	0	0	ф
1	1	0	1	ф
1	1	1	0	ф
1	1	1	1	ф

在化简时,如果不考虑任意项

$$F = \overline{A}BD + \overline{A}BC + A\overline{B}\overline{C}$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$				
$\overline{A}B$		5	7	6
AB	ф	ф	ф	ф
$A\overline{B}$	8	9	ф	ф

在化简时,如果考虑任意项

$$F = BD + BC + A$$

● 注意

任意项化简时、每个圈都至少要包含一个非任意项。

用与或非门设计一个操作码形成器,"*"、"+"、"-"产生操作码 01、10、11,无操作时 产生"00",不能同时按下两个以上按键。输入三个键用 ABC表示,输出 F_1F_2

● 思考

一共几个输入,几个输出? 任意项都是什么情况?

用与或非门设计一个操作码形成器,"*"、"+"、"-"产生操作码 01、10、11,无操作时 产生"00",不能同时按下两个以上按键。输入三个键用 ABC表示,输出 F_1F_2

❶ 思考

从问题可以知道,一共三个按键,代表三个输入。 又因为,不能同时按下两个按键,所以两个按键同时按下(ABC 有两个及以上同时为 1 时)的情况,就是任意项。

请大家写出真值表。

Α	В	С	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	ф	ф
1	0	0	0	1
1	0	1	ф	ф
1	1	0	ф	ф
1	1	1	ф	ф

$$F_1 = B + C$$
$$F_2 = A + C$$

要求逻辑电路只有原变形式,无反变量形式。

采用增加非门的方法

例: 用与非门实现下面函数

$$F = \sum (2, 3, 5, 6) = \overline{A}B + B\overline{C} + A\overline{B}C$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	В¯С
\overline{A}			3	12
A		5		6

画出逻辑电路图

采用公式变换的方法

$$F = \sum (2, 3, 5, 6)$$

$$= \overline{AB} + B\overline{C} + A\overline{B}C$$

$$= B\overline{AC} + AC(\overline{B} + \overline{C})$$

$$= B\overline{AC} + AC\overline{BC}$$

$$= B\overline{ABC} + AC\overline{ABC}$$

$$= \overline{B\overline{ABC}} + AC\overline{ABC}$$

$$= \overline{B\overline{ABC}} \cdot \overline{AC\overline{ABC}}$$

$$= \overline{B\overline{ABC}} \cdot \overline{AC\overline{ABC}}$$
(2)

采用公式变换的方法

1. 合并原变量相同, 其余为反变量的项

 $E_i = H_i \cdot \overline{T_{i1}} \cdot \overline{T_{i2}}$

2. 比较各个合并项, $F = E_1 + E_2 \dots$ 寻找合适的替代因子,使尾部因子种类最少。

替代因子E _i	原有尾因子	替代因子
$B\overline{AC}$	\overline{AC}	\overline{ABC}
$AC\overline{B}$	\overline{B}	\overline{AB} \overline{CB} \overline{ACB}

1. 组合线路设计方法中的特殊情况 3.多输出函数的线路设计

从整体上考虑多输出线路,怎样最简。

例: 试设计如下电路:

$$F_1 = \sum (1, 3, 4, 5, 7)$$

$$F_2 = \sum (3, 4, 7)$$

$$F_1 = \overline{\overline{C} \cdot \overline{A} \overline{\overline{B}}}$$

$$F_1 = \overline{BC} \cdot \overline{A\overline{B}\ \overline{C}}$$

1. 组合线路设计方法中的特殊情况 3.多输出函数的线路设计

从整体上考虑多输出线路,怎样最简。

例: 试设计如下电路:

$$F_1 = \sum (1, 3, 4, 5, 7)$$

$$F_2 = \sum (3, 4, 7)$$

$$F_1 = \overline{\overline{C} \cdot \overline{A} \overline{B} \ \overline{\overline{C}}}$$

$$F_1 = \overline{BC} \cdot \overline{A\overline{B}\ \overline{C}}$$

2. 应用 MSI 功能块的组合线路设计

多路选择器

拥有两个控制端,因此,需要挑选出两个变量作为控制端,其他的变量作为输入端。

$$F = \alpha_0 \overline{X_0} \overline{X_1} + \alpha_1 \overline{X_0} X_1 + \alpha_2 X_0 \overline{X_1} + \alpha_3 X_0 X_1$$

2. 应用 MSI 功能块的组合线路设计

用多路选择器实现

 $F = \sum (1, 2, 3, 4, 5, 6)$ 选择 A 和 B 作为地址输入,即控制信号。变换形式。 $F = \overline{ABC} + \overline{AB} + \overline{AB} + \overline{ABC}$

3.课堂练习

1. 问题

用多路选择器实现

$$F = \sum (1, 3, 5, 7)$$

4.课堂讨论

1. 问题

如何用数据选择器实现四变量的线路、五变量的线路?

5.课堂总结

1. 课堂总结

□ 笔记

现在可以总结自己的笔记,提炼大纲,回顾课程。

● 总结

还可以将课程的总结、心得记录在总结区。

6.作业

1. 题目

试用与非门设计一个线路,以判断余3码所表示的十进制数是否小于2或大于等于7(6分)

问答环节