Т	N=10,000	Speedup	
1	0.000119	1	
2	0.000073	1.630137	
5	0.000068	1.75	
10	0.000088	1.3522727	
20	0.000151	0.7880795	
40	0.00031	0.383871	
80	0.009082	0.0131028	
100	0.01082	0.0109982	

Т	N=1,000,000	Speedup	
1	0.018567	1	
2	0.007306	2.5413359	
5	0.002979	6.2326284	
10	0.002069	8.9739004	
20	0.001711	10.851549	
40	0.002302	8.0655951	
80	0.60652	0.0306123	
100	0.072306	0.2567837	

System Info Crunchy6

Summary

When calculating speedup for the first 10,000 prime numbers, there is little speedup when using more than 10 threads. This is likely because the problem size is too small to justify the creation and dispersal of so many threads. Because the algorithm is already quite quick, creating and dispatching so many threads in fact slows the program. For the first 1 million primes, the creating 80 and 100 threads has a similar effect. However, for 40 and less threads, there is significant speedup because the numbers that are not prime are crossed out faster.

