Corrigé de la feuille d'exercices 20

Exercice 1. 1. Soit $(x, y, z) \in \mathbb{R}^3$. Soit $a, b, c, d \in \mathbb{R}$

$$(x, y, z) = au + bv + cw + dt$$

$$\iff \begin{cases} a+b+c+2d = x \\ b+2c+2d = y \\ 2a+2b+2c+2d = z \end{cases}$$

$$\iff \begin{cases} a+b+c+2d = x \\ b+2c+2d = y \\ -2d = z-2x \end{cases}$$

$$\iff \begin{cases} a = x-y-z+c \\ b = -2x+y+z-2c \\ d = x-\frac{1}{2}z \end{cases}$$

Ainsi, pour tout $(x, y, z) \in \mathbb{R}^3$, il existe $a, b, c, d \in \mathbb{R}$ tel que (x, y, z, t) = au + bv + cw + dt. Donc (u, v, w, t) est bien une famille génératrice de \mathbb{R}^3 .

2. Soit $a, b, c, d \in \mathbb{R}$.

$$au + bv + cw + dt = (0,0,0)$$

$$\iff \begin{cases} a+b+c+2d = 0 \\ b+2c+2d = 0 \\ 2a+2b+2c+2d = 0 \end{cases}$$

$$\iff \begin{cases} a-c = 0 \\ b+2c = 0 \\ d = 0 \end{cases}$$

$$\iff \begin{cases} a = c \\ b = -2c \\ d = 0 \end{cases}$$

Donc en prenant c = 1, a = 1, b = -2 et d = 0, on a : u - 2v + w = 0 donc w = -u + 2v.

Ainsi, $\mathbb{R}^3 = \text{Vect}(u, v, w, t) = \text{Vect}(u, v, t)$.

Donc : (u, v, t) est génératrice de \mathbb{R}^3 .

Méthode 1:

En reprenant les équivalences précédentes avec c = 0, on a :

$$au + bv + dt = (0, 0, 0)$$
 \iff
$$\begin{cases} a = 0 \\ b = 0 \\ d = 0 \end{cases}$$

Ainsi, (u, v, t) est une une famille libre de \mathbb{R}^3 .

Ainsi, (u, v, t) est une base de \mathbb{R}^3 .

Méthode 2:

(u, v, t) est une famille génératrice de \mathbb{R}^3 composée de 3 vecteurs. De plus, dim $(\mathbb{R}^3) = 3$. Ainsi, (u, v, t) est une base de \mathbb{R}^3 .

Exercice 2. On remarque tout d'abord que e_1 et e_2 sont deux vecteurs de \mathbb{R}^4 non colinéaires. Ainsi, (e_1, e_2) est une famille libre de \mathbb{R}^4 .

De plus, on sait que ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)) constitue la base canonique de \mathbb{R}^4 .

Ainsi, d'après le théorème de la base incomplète, on peut compléter cette famille libre en base à l'aide de vecteurs de la base canonique.

Etudions si la famille (e_1, e_2, f_3, f_4) est libre où $f_3 = (1, 0, 0, 0)$ et $f_4 = (0, 0, 1, 0)$.

Soit $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$.

$$\lambda_{1}e_{1} + \lambda_{2}e_{2} + \lambda_{3}f_{3} + \lambda_{4}f_{4} = (0, 0, 0, 0)$$

$$\iff \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \\ \lambda_{1} + \lambda_{2} = 0 \\ \lambda_{1} - \lambda_{2} + \lambda_{4} = 0 \\ \lambda_{1} - \lambda_{2} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \\ -\lambda_{3} = 0 \\ -2\lambda_{2} - \lambda_{3} + \lambda_{4} = 0 \\ -2\lambda_{2} - \lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} + \lambda_{2} = 0 \\ \lambda_{3} = 0 \\ -2\lambda_{2} + \lambda_{4} = 0 \\ \lambda_{2} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} = 0 \\ \lambda_{3} = 0 \\ \lambda_{4} = 0 \\ \lambda_{2} = 0 \end{cases}$$

Ainsi, (e_1, e_2, f_3, f_4) est une famille libre de quatre vecteurs de \mathbb{R}^4 . Ainsi, cette famille constitue une base de \mathbb{R}_4 .

Exercice 3. 1.

$$E_1 = \{(x, y, z) \in \mathbb{R}^3, -x + 3y + z = 0\}$$

$$= \{(x, y, x - 3y), x, y \in \mathbb{R}\}$$

$$= \{x(1, 0, 1) + y(0, 1, -3), x, y \in \mathbb{R}\}$$

$$= \text{Vect } (e_1, e_2)$$

où $e_1 = (1, 0, 1), e_2 = (0, 1, -3).$

Ainsi, (e_1, e_2) est une famille génératrice de E_1 .

De plus, e_1 et e_2 ne sont pas colinéaires donc (e_1, e_2) est une famille libre.

Ainsi (e_1, e_2) est une base de E_1 donc dim $(E_1) = 2$.

2.

$$E_2 = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0 \text{ et } x - 3y = 0\}$$

$$= \{(x, y, z) \in \mathbb{R}^3, z = -4y \text{ et } x = 3y\}$$

$$= \{(3y, y, -4y), y \in \mathbb{R}\}$$

$$= \{y(3, 1, -4), y \in \mathbb{R}\}$$

$$= \text{Vect } (e_1)$$

où $e_1 = (3, 1, -4)$.

Ainsi, (e_1) est une famille génératrice de E_2 .

De plus, $e_1 \neq 0$ donc (e_1) est une famille libre.

Ainsi (e_1) est une base de E_2 donc dim $(E_2) = 1$.

3.

$$E_{3} = \{ P \in \mathbb{R}_{2}[X], \ P(0) = 0 \}$$

$$= \{ aX^{2} + bX + c, a, b, c \in \mathbb{R}, c = 0 \}$$

$$= \{ aX^{2} + bX, a, b \in \mathbb{R} \}$$

$$= \text{Vect}(X^{2}, X)$$

Ainsi, (X, X^2) est une famille génératrice de E_3 .

De plus, X et X^2 ne sont pas colinéaires. Donc la famille (X, X^2) est libre.

Ainsi, (X, X^2) est une base de E_3 donc dim $(E_3) = 2$.

4.

$$E_4 = \left\{ a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, a, b, c \in \mathbb{R}^3 \right\}$$

$$= \operatorname{Vect} (M_1, M_2, M_3)$$

où
$$M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $M_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Ainsi, (M_1,M_2,M_3) est une famille génératrice de E_4 . Soit $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}.$ On a :

$$\lambda_1 M_1 + \lambda_2 M_2 + \lambda_3 M_3 = 0$$

$$\iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \\ \lambda_1 + \lambda_2 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Ainsi, la famille (M_1, M_2, M_3) est libre.

Donc (M_1, M_2, M_3) est une base de E_4 donc dim $(E_4) = 3$.

5. Notons $f_1: x \mapsto x$ et $f_2: x \mapsto e^x$. On a donc :

$$E_5 = \{af_1 + bf_2 \mid a, b \in \mathbb{R}\}\$$

= Vect (f_1, f_2)

Ainsi, (f_1, f_2) est une famille génératrice de E_5 .

De plus, f_1 et f_2 ne sont pas colinéaires donc (f_1,f_2) est une famille libre de E_5 .

Ainsi, (f_1, f_2) est une base de E_5 donc dim $(E_5) = 2$.

Exercice 4. 1.

$$E_1 = \{(x, y, z) \in \mathbb{R}^3, x - 2y + 3z = 0\}$$

$$= \{(2y - 3z, y, z), y, z \in \mathbb{R}\}$$

$$= \{y(2, 1, 0) + z(-3, 0, 1), \mid y, z \in \mathbb{R}\}$$

$$= \text{Vect } (e_1, e_2)$$

où $e_1 = (2, 1, 0)$ et $e_2 = (-3, 0, 1)$.

Ainsi, (e_1, e_2) est une famille génératrice de E_1 . De plus, e_1 et e_2 sont non colinéaires donc (e_1, e_2) est une famille libre.

Ainsi, (e_1, e_2) est une base de E_1 donc dim $(E_1) = 2$.

2.

$$E_{2} = \{(x, y, z) \in \mathbb{R}^{3}, x = 2y = 3z\}$$

$$= \{(2y, y, \frac{2}{3}y), y \in \mathbb{R}\}$$

$$= \left\{y\left(2, 1, \frac{2}{3}\right), y \in \mathbb{R}\right\}$$

$$= \text{Vect } (e_{1})$$

où $e_1 = \left(2, 1, \frac{2}{3}\right)$. Ainsi, (e_1) est une famille génératrice de E_2 .

De plus, $e_1 \neq 0$ donc (e_1) est libre.

Ainsi, (e_1) est une base de E_2 donc dim $(E_2) = 1$.

3. Soient $x, y, z, t \in \mathbb{R}$, on a:

$$\begin{cases} x+y=0\\ y+z=0\\ z+t=0\\ x+t=0 \end{cases} \iff \begin{cases} x+y=0\\ y+z=0\\ z+t=0\\ -y+t=0 \end{cases}$$

$$\iff \begin{cases} x+y=0\\ y+z=0\\ z+t=0\\ z+t=0\\ z+t=0 \end{cases}$$

$$\iff \begin{cases} x+y=0\\ y+z=0\\ z+t=0\\ z+t=0 \end{cases}$$

$$\iff \begin{cases} x-y=0\\ y+z=0\\ z+t=0\\ z+t=0 \end{cases}$$

Ainsi, on a:

$$E_{3} = \{(x, y, z, t) \in \mathbb{R}^{4}, x + y = 0, y + z = 0, z + t = 0, t + x = 0\}$$

$$= \{(x, y, z, t) \in \mathbb{R}^{4}, x = -t, y = t, z = -t\}$$

$$= \{(-t, t, -t, t), t \in \mathbb{R}\}$$

$$= \{t(-1, 1, -1, 1), t \in \mathbb{R}\}$$

$$= \text{Vect}(e_{1})$$

où $e_1 = (-1, 1, -1, 1)$.

Ainsi, (e_1) est une famille génératrice de E_3 .

De plus, $e_1 \neq 0$ donc (e_1) est libre.

Ainsi, (e_1) est une base de E_3 donc dim $(E_3) = 1$.

4. Méthode 1:

Soit $P \in \mathbb{R}_4[X]$

$$E_4 = \{ P \in \mathbb{R}_4[X], \ P(1) = 0 \}$$

$$= \{ aX^4 + bX^3 + cX^2 + dX + e, \ a, b, c, d, e \in \mathbb{R}, \ a + b + c + d + e = 0 \}$$

$$= \{ aX^4 + bX^3 + cX^2 + dX - a - b - c - d, a, b, c, d \in \mathbb{R} \}$$

$$= \{ a(X^4 - 1) + b(X^3 - 1) + c(X^2 - 1) + d(X - 1), a, b, c, d \in \mathbb{R} \}$$

$$= \text{Vect} (X^4 - 1, X^3 - 1, X^2 - 1, X - 1)$$

Ainsi, $(X^4 - 1, X^3 - 1, X^2 - 1, X - 1)$ est une famille génératrice de E_4 .

De plus, $(X^4 - 1, X^3 - 1, X^2 - 1, X - 1)$ est une famille de polynômes non nuls de degrés échelonnés.

Donc $(X^{4} - 1, X^{3} - 1, X^{2} - 1, X - 1)$ est une famille libre.

Ainsi, $(X^4 - 1, X^3 - 1, X^2 - 1, X - 1)$ est une base de E_4 donc dim $(E_4) = 4$.

Méthode 2:

Soit $P \in \mathbb{R}_4[X]$

$$\begin{split} E_4 &= \{P \in \mathbb{R}_4[X], \ P(1) = 0\} \\ &= \{P \in \mathbb{R}_4[X], \ (X-1)|P\} \\ &= \{P \in \mathbb{R}_4[X], \ \exists Q \in \mathbb{R}_3[X], P = (X-1)Q\} \ \text{car} \ P \in \mathbb{R}_4[X] \\ &= \{P \in \mathbb{R}_4[X], \ \exists (a,b,c,d) \in \mathbb{R}^4, \ P = (X-1)(aX^3 + bX^2 + cX + d)\} \\ &= \{P \in \mathbb{R}_4[X], \ \exists (a,b,c,d) \in \mathbb{R}^4, \ P = aX^3(X-1) + bX^2(X-1) + cX(X-1) + d(X-1)\} \\ &= \{aX^3(X-1) + bX^2(X-1) + cX(X-1) + d(X-1), \ a,b,c,d \in \mathbb{R}\} \\ &= \text{Vect} \ (X^3(X-1), X^2(X-1), X(X-1), X-1) \end{split}$$

Ainsi, $(X^3(X-1), X^2(X-1), X(X-1), X-1)$ est une famille génératrice de E_4 .

De plus, $(X^3(X-1), X^2(X-1), X(X-1), X-1)$ est une famille de polynômes non nuls de degrés échelonnés.

Donc $(X^3(X-1), X^2(X-1), X(X-1), X-1)$ est une famille libre.

Ainsi, $(X^3(X-1), X^2(X-1), X(X-1), X-1)$ est une base de E_4 donc dim $(E_4) = 4$.

Exercice 5. Soit $x, y, z \in \mathbb{C}$.

$$\begin{cases} x+y+z=0\\ x+iy-z=0 \end{cases}$$

$$\iff \begin{cases} x+y+z=0\\ (-1+i)y-2z=0 \end{cases}$$

$$\iff \begin{cases} x=-\frac{(1+i)}{2}y\\ z=\frac{(-1+i)}{2}y \end{cases}$$

Ainsi,

$$F = \{(x, y, z) \in \mathbb{C}^3, x + y + z = 0 \text{ et } x + iy - z = 0\}$$

$$= \{(x, y, z) \in \mathbb{C}^3, x = -\frac{(1+i)}{2}y \text{ et } z = \frac{(-1+i)}{2}y\}$$

$$= \left\{\left(-\frac{(1+i)}{2}y, y, \frac{(-1+i)}{2}y\right), y \in \mathbb{C}\right\}$$

$$= \left\{y\left(-\frac{(1+i)}{2}, 1, \frac{(-1+i)}{2}\right), y \in \mathbb{C}\right\}$$

$$= \text{Vect } (e_1)$$

où
$$e_1 = \left(-\frac{(1+i)}{2}, 1, \frac{(-1+i)}{2}\right).$$

Ainsi, (e_1) est une famille génératrice de F.

De plus, $e_1 \neq 0$ donc (e_1) est une famille génératrice de F. Donc (e_1) est une famille libre de F. Ainsi, (e_1) est une base de F donc dim (F) = 1.

Exercice 6. • Dimension de $\mathcal{D}_n(\mathbb{K})$:

$$\mathcal{D}_{n}(\mathbb{K}) = \left\{ (m_{i,j}) \in \mathcal{M}_{n}(\mathbb{K}) | \forall (i,j) \in [\![1,n]\!]^{2}, i \neq j \Longrightarrow m_{i,j} = 0 \right\}$$

$$= \left\{ \begin{pmatrix} m_{1,1} & 0 & \cdots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & m_{n,n} \end{pmatrix} | \forall i \in [\![1,n]\!], \ m_{i,i} \in \mathbb{K} \right\}$$

$$= \left\{ \sum_{i=1}^{n} m_{i,i} E_{i,i} | \forall i \in [\![1,n]\!], \ m_{i,i} \in \mathbb{K} \right\}$$

Posons $\mathcal{F} = (E_{i,i})_{1 \leq i \leq n}$.

Ainsi, $\mathcal{D}_n(\mathbb{K}) = \overline{\operatorname{Vect}(\mathcal{F})}$.

Donc \mathcal{F} est une famille génératrice de $\mathcal{D}_n(\mathbb{K})$.

De plus, cette famille est libre en tant que sous-famille d'une famille libre (sous famille de la base canonique de $\mathcal{M}_n(\mathbb{K})$.

Ainsi, la famille \mathcal{F} est libre.

 \mathcal{F} est donc une base de $\mathcal{D}_n(\mathbb{K})$.

Il nous reste à compter le nombre d'éléments de cette famille :

$$\dim (\mathcal{D}_n(\mathbb{K})) = n$$

• Dimension de $\mathcal{T}_n^+(\mathbb{K})$:

$$\begin{split} \mathcal{T}_n^+(\mathbb{K}) &= \left\{ (m_{i,j}) \in \mathcal{M}_n(\mathbb{K}) | \forall (i,j) \in \llbracket 1,n \rrbracket^2, i > j \Longrightarrow \ m_{i,j} = 0 \right\} \\ &= \left\{ \begin{pmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,n} \\ 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & m_{n,n} \end{pmatrix} | \forall (i,j) \in \llbracket 1,n \rrbracket^2 \text{ tel que } i \leq j, \ m_{i,j} \in \mathbb{K} \right\} \\ &= \left\{ \sum_{1 \leq i \leq j \leq n} m_{i,j} E_{i,j} | \forall (i,j) \in \llbracket 1,n \rrbracket^2 \text{ tel que } i \leq j, \ m_{i,j} \in \mathbb{K} \right\} \end{split}$$

Posons $\mathcal{F} = (E_{i,j})_{1 \leq i \leq j \leq n}$. Ainsi, $\mathcal{T}_n^+(\mathbb{K}) = \operatorname{Vect}(\mathcal{F})$.

Donc \mathcal{F} est une famille génératrice de $\mathcal{T}_n^+(\mathbb{K})$.

Pour prouver le caractère libre de cette famille, on peut utiliser le même argument que pour la famille de $\mathcal{D}_n(\mathbb{K})$. On peut aussi le prouver à la main :

Soit $(\mu_{i,j})_{1 \leq i \leq j \leq n}$ une famille d'éléments de \mathbb{K} .

$$\sum_{1 \leq i \leq j \leq n} \mu_{i,j} E_{i,j} = 0$$

$$\iff \begin{pmatrix} \mu_{1,1} & \mu_{1,2} & \cdots & \mu_{1,n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \mu_{n,n} \end{pmatrix} = 0$$

$$\iff \forall (i,j) \in [1,n]^2 \text{ tel que } i < j, \ \mu_{i,j} = 0$$

Ainsi, la famille \mathcal{F} est libre.

 \mathcal{F} est donc une base de $\mathcal{T}_n^+(\mathbb{K})$.

Il nous reste à compter le nombre d'éléments de cette famille :

$$\dim (T_n^+(\mathbb{K})) = \sum_{1 \le i \le j \le n} 1$$

$$= \sum_{i=1}^n \sum_{j=i}^n 1$$

$$= \sum_{i=1}^n (n-i+1)$$

$$= \sum_{k=1}^n k$$

$$= \frac{n(n+1)}{2}$$

• Dimension de $S_n(\mathbb{K})$:

$$S_{n}(\mathbb{K}) = \left\{ (m_{i,j}) \in \mathcal{M}_{n}(\mathbb{K}) | \forall (i,j) \in [\![1,n]\!]^{2}, \ m_{i,j} = m_{j,i} \right\}$$

$$= \left\{ \begin{pmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,n} \\ m_{1,2} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & m_{n-1,n} \\ m_{1,n} & \cdots & m_{n-1,n} & m_{n,n} \end{pmatrix} | \forall (i,j) \in [\![1,n]\!]^{2} \text{ tel que } i \leq j, \ m_{i,j} \in \mathbb{K} \right\}$$

$$= \left\{ \sum_{i=1}^{n} m_{i,i} E_{i,i} + \sum_{1 \leq i < j \leq n} m_{i,j} (E_{i,j} + E_{j,i}) | \forall (i,j) \in [\![1,n]\!]^{2} \text{ tel que } i \leq j, \ m_{i,j} \in \mathbb{K} \right\}$$

Posons $\mathcal{F} = (E_{i,i})_{i \in \llbracket 1,n \rrbracket}$ et $\mathcal{G} = (E_{i,j} + E_{j,i})_{1 \leq i < j \leq n}$. Ainsi, $S_n(\mathbb{K}) = \text{Vect}(\mathcal{F} \cup \mathcal{G})$.

Donc $\mathcal{L} = \mathcal{F} \cup \mathcal{G}$ est une famille génératrice de $\mathcal{S}_n(\mathbb{K})$. Soit $(\lambda_1, ..., \lambda_n)$ et $(\mu_{i,j})_{1 \leq i < j \leq n}$ deux familles d'éléments de \mathbb{K} .

$$\sum_{i=1}^{n} \lambda_{i} E_{i,i} + \sum_{1 \leq i < j \leq n} \mu_{i,j} (E_{i,j} + E_{j,i}) = 0$$

$$\iff \begin{pmatrix} \lambda_{1} & \mu_{1,2} & \cdots & \mu_{1,n} \\ \mu_{1,2} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mu_{n-1,n} \\ \mu_{1,n} & \cdots & \mu_{n,n-1} & \lambda_{n,n} \end{pmatrix} = 0$$

$$\iff \forall i \in [1, n], \lambda_{i} = 0 \text{ et } \forall (i, j) \in [1, n]^{2} \text{ tel que } i < j, \ \mu_{i,j} = 0$$

Ainsi, la famille \mathcal{L} est libre.

 \mathcal{L} est donc une base de $S_n(\mathbb{K})$.

Il nous reste à compter le nombre d'éléments de cette famille :

$$\dim(S_n(\mathbb{K})) = \sum_{i=1}^n 1 + \sum_{1 \le i < j \le n} 1$$

$$= n + \sum_{i=1}^{n-1} \sum_{j=i+1}^n 1$$

$$= n + \sum_{i=1}^{n-1} (n-i)$$

$$= n + \sum_{k=1}^{n-1} k$$

$$= n + \frac{n(n-1)}{2}$$

$$= \frac{n(n+1)}{2}$$

• Dimension de $A_n(\mathbb{K})$:

Méthode 1 :

On sait que $A_n(\mathbb{K}) \oplus S_n(\mathbb{K}) = \mathcal{M}_n(\mathbb{K})$. Ainsi, $\dim (A_n(\mathbb{K})) + \dim (S_n(\mathbb{K})) = \dim (\mathcal{M}_n(\mathbb{K})) = n^2$. Ainsi, $\dim (A_n(\mathbb{K})) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.

Méthode 2 :

$$\mathcal{A}_{n}(\mathbb{K}) = \left\{ (m_{i,j}) \in \mathcal{M}_{n}(\mathbb{K}) | \forall (i,j) \in [\![1,n]\!]^{2}, \ m_{i,j} = -m_{j,i} \right\}$$

$$= \left\{ \begin{pmatrix} 0 & m_{1,2} & \cdots & m_{1,n} \\ -m_{1,2} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & m_{n-1,n} \\ -m_{1,n} & \cdots & -m_{n-1,n} & 0 \end{pmatrix} | \forall (i,j) \in [\![1,n]\!]^{2} \text{ tel que } i < j, \ m_{i,j} \in \mathbb{K} \right\}$$

$$= \left\{ \sum_{1 \leq i < j \leq n} m_{i,j} (E_{i,j} - E_{j,i}) | \forall (i,j) \in [\![1,n]\!]^{2} \text{ tel que } i < j, \ m_{i,j} \in \mathbb{K} \right\}$$

Posons $\mathcal{G} = (E_{i,j} - E_{j,i})_{1 \leq i < j \leq n}$. Ainsi, $A_n(\mathbb{K}) = \text{Vect}(\mathcal{G})$.

 \mathcal{G} est une famille génératrice de $\mathcal{A}_n(\mathbb{K})$.

Soit $(\mu_{i,j})_{1 \leq i < j \leq n}$ une famille d'éléments de \mathbb{K} .

$$\sum_{1 \leq i < j \leq n} \mu_{i,j} (E_{i,j} - E_{j,i}) = 0$$

$$\iff \begin{pmatrix} 0 & \mu_{1,2} & \cdots & \mu_{1,n} \\ -\mu_{1,2} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & m_{n-1,n} \\ -\mu_{1,n} & \cdots & -\mu_{n-1,n} & 0 \end{pmatrix} = 0$$

$$\iff \forall (i,j) \in [1,n]^2 \text{ tel que } i < j, \ \mu_{i,j} = 0$$

Ainsi, la famille \mathcal{G} est libre.

 \mathcal{G} est donc une base de $A_n(\mathbb{K})$.

Il nous reste à compter le nombre d'éléments de cette famille :

$$\dim (A_n(\mathbb{K})) = \sum_{1 \le i < j \le n} 1$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1$$

$$= \sum_{i=1}^{n-1} (n-i)$$

$$= \sum_{k=1}^{n-1} k$$

$$= \frac{n(n-1)}{2}$$

Exercice 7. 1. • A divise le polynôme nul. Ainsi, le polynôme nul appartient à F donc F est non vide.

• Soient $(P,Q) \in F^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

Alors il existe $P_1, Q_1 \in \mathbb{R}[X]$ tels que $P = AP_1$ et $Q = AQ_1$.

Ainsi $\lambda P + \mu Q = \lambda A P_1 + \mu A Q_1 = A(\lambda P_1 + \mu Q_2)$ donc $A|\lambda P + \mu Q$ d'où $\lambda P + \mu Q \in F$.

Ainsi, F est un sous-espace vectoriel de $\mathbb{R}_n[X]$.

- 2. Si A = 0, $F = \{0\}$ et $\mathbb{R}_n[X]$ est un supplémentaire de F.
 - Si $A = \lambda$ avec $\lambda \in \mathbb{K}^*$. Alors, tout polynôme de $\mathbb{R}_n[X]$ est divisible par A donc $F = \mathbb{R}_n[X]$. Ainsi, $\{0\}$ est un supplémentaire de F.
 - Si A est non constante. On pose $p = \deg(A)$ et $H = \mathbb{R}_{p-1}[X]$. Montrons que H est un supplémentaire de F.
 - Soit $P \in H \cap F$.

Montrons par l'absurde que P = 0.

Supposons $P \neq 0$.

Comme $P \in F$, A|P donc il existe $Q \in \mathbb{R}[X]$ tel que P = AQ. De plus, $P \neq 0$ donc $Q \neq 0$. Ainsi, $\deg(Q) \in \mathbb{N}$.

Ainsi, $\deg(P) = \deg(AQ) = \deg(A) + \deg(Q) \ge \deg(A) \ge p$.

De plus, $P \in H$ donc $P \in \mathbb{R}_{p-1}[X]$ d'où $\deg(P) \leq p-1$.

Absurde.

Ainsi, P = 0.

Donc la somme F + H est directe.

• Montrons que $\mathbb{R}_n[X] = F + H$.

On a $F + H \subset \mathbb{R}_n[X]$.

Réciproquement, soit $P \in \mathbb{R}_n[X]$, en effectuant la division euclidienne de P par $A \neq 0$, il existe $Q \in \mathbb{R}[X]$ tel que P = AQ + R avec $\deg(R) \leq \deg(A) - 1$.

Ainsi, $AQ \in F$ et $R \in H$ donc $P \in F + H$.

Ainsi, $\mathbb{R}_n[X] = F + H$.

H est donc un supplémentaire de F.

Une base de H est $(1, ..., X^{p-1})$ (base canonique).

3. Supposons A non constant.

H est de dimension p et $F \oplus H = \mathbb{R}_n[X]$ donc dim $(F) = n + 1 - \dim(H) = n + 1 - p$.

De plus, pour tout $i \in [0, n-p]$, $A|AX^i$. Donc pour tout $i \in [0, n-p]$, $AX^i \in F$.

La famille (A, AX, \dots, AX^{n-p}) est donc une famille de F.

De plus, (A, AX, \dots, AX^{n-p}) est une famille de polynômes non nuls de degrés échelonnés donc cette famille est libre.

De plus, $(A, AX, ..., AX^{n-p})$ est composée de n-p+1 vecteurs et dim (F)=n-p+1. Ainsi, cette famille est une base de F.

 $G = \{ P \in \mathbb{R}_n[X], P(a) = 0 \} = \{ P \in \mathbb{R}_n[X], (X - a) | P \}.$

En prenant A = X - a, on obtient que $((X - a), \dots, (X - a)X^{n-1})$ est une base de G.

Exercice 8. 1. On remarque tout d'abord que nous avons quatre vecteurs de \mathbb{R}^3 avec dim $(\mathbb{R}^3) = 3$. Ainsi, cette famille est nécessairement liée.

Soit $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$. On a :

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = (0, 0, 0)$$

$$\iff \begin{cases} \lambda_1 - \lambda_2 + \lambda_4 = 0 \\ -\lambda_1 + \lambda_2 + \lambda_3 = 0 \\ \lambda_1 - \lambda_2 + \lambda_3 + 2\lambda_4 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 - \lambda_2 + \lambda_4 = 0 \\ \lambda_3 + \lambda_4 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = \lambda_2 - \lambda_4 \\ \lambda_3 = -\lambda_4 \end{cases}$$

Donc en prenant $\lambda_2 = 1$, $\lambda_4 = 0$ et $\lambda_1 = 1$ et $\lambda_3 = 0$, on a : $x_1 + x_2 = 0$. Ainsi, $x_2 = -x_1$.

En prenant $\lambda_2 = 0$, $\lambda_4 = 1$ et $\lambda_1 = -1$, $\lambda_3 = -1$, on a : $-x_1 - x_3 + x_4 = 0$. Ainsi, $x_4 = x_1 + x_3$.

Donc Vect $(x_1, x_2, x_3, x_4) = \text{Vect } (x_1, x_3).$

Ainsi, (x_1, x_3) est génératrice de Vect (x_1, x_2, x_3, x_4) .

De plus, x_1 et x_3 ne sont pas colinéaires. Donc (x_1, x_3) est libre.

Donc (x_1, x_3) est une base de Vect (x_1, x_2, x_3, x_4) .

Ainsi, $\operatorname{rg}(x_1, x_2, x_3, x_4) = 2$.

2. Soit $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$, on a :

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = (0, 0, 0, 0)$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 - \lambda_2 - 2\lambda_4 = 0 \\ \lambda_2 + \lambda_3 + \lambda_4 = 0 \end{cases}$$

$$\lambda_1 + \lambda_3 - \lambda_4 = 0$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 = 0 \\ -2\lambda_2 - 2\lambda_3 - 2\lambda_4 = 0 \\ \lambda_2 + \lambda_3 + \lambda_4 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 = 0 \\ \lambda_2 + \lambda_3 + \lambda_4 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 = 0 \\ \lambda_2 + \lambda_3 + \lambda_4 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_3 - \lambda_4 = 0 \\ \lambda_2 + \lambda_3 + \lambda_4 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = -\lambda_3 + \lambda_4 \\ \lambda_2 = -\lambda_3 - \lambda_4 \end{cases}$$

En prenant $\lambda_3 = 1$, $\lambda_4 = 0$ et $\lambda_1 = -1$, $\lambda_2 = -1$, on a : $-x_1 - x_2 + x_3 = 0$. Ainsi, $x_3 = x_1 + x_2$.

En prenant $\lambda_3 = 0$, $\lambda_4 = 1$ et $\lambda_1 = 1$, $\lambda_2 = -1$, on a : $x_1 - x_2 + x_4 = 0$. Ainsi, $x_4 = x_2 - x_1$.

Donc Vect $(x_1, x_2, x_3, x_4) = \text{Vect } (x_1, x_2).$

Ainsi, (x_1, x_2) est une famille génératrice de Vect (x_1, x_2, x_3, x_4) .

De plus, x_1 et x_2 ne sont pas colinéaires. Donc (x_1, x_2) est libre.

Donc (x_1, x_2) est une base de Vect (x_1, x_2, x_3, x_4) .

Ainsi, $\operatorname{rg}(x_1, x_2, x_3, x_4) = 2$.

3. Soit $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$, on a :

$$\lambda_{1}x_{1} + \lambda_{2}x_{2} + \lambda_{3}x_{3} + \lambda_{4}x_{4} = (0, 0, 0, 0)$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + 7\lambda_{2} + 5\lambda_{3} = 0 \\ 4\lambda_{2} + 2\lambda_{3} = 0 \\ 2\lambda_{1} + 2\lambda_{2} + 4\lambda_{3} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \lambda_{1} + 7\lambda_{2} + 5\lambda_{3} = 0 \\ 4\lambda_{2} + 2\lambda_{3} = 0 \\ -12\lambda_{2} - 6\lambda_{3} = 0 \\ 22\lambda_{2} - 8\lambda_{3} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + 7\lambda_{2} + 5\lambda_{3} = 0 \\ 22\lambda_{2} + \lambda_{3} = 0 \\ 11\lambda_{2} - 4\lambda_{3} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{1} = 0 \\ \lambda_{3} = 0 \\ \lambda_{2} = 0 \end{cases}$$

Ainsi, (x_1, x_2, x_3) est une famille libre donc $\operatorname{rg}(x_1, x_2, x_3) = 3$.

Exercice 9. 1. Soit $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$, on a :

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = (0, 0, 0, 0)$$

$$\iff \begin{cases} \lambda_2 + \lambda_3 + \lambda_4 = 0 \\ \lambda_1 - \lambda_2 - \lambda_3 + \lambda_4 = 0 \\ \lambda_1 + \lambda_2 - \lambda_3 + \lambda_4 = 0 \end{cases}$$

$$\lambda_1 - \lambda_2 + \lambda_3 + \lambda_4 = 0$$

$$\Leftrightarrow \begin{cases} \lambda_1 - \lambda_2 - \lambda_3 + \lambda_4 = 0 \\ \lambda_2 + \lambda_3 + \lambda_4 = 0 \end{cases}$$

$$2\lambda_2 = 0$$

$$2\lambda_3 = 0$$

$$\lambda_3 = 0$$

$$\lambda_4 = 0$$

Ainsi, (x_1, x_2, x_3, x_4) est une famille libre donc $\operatorname{rg}(x_1, x_2, x_3, x_4) = 4$.

2. Soit $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$, on a :

$$\lambda_{1}x_{1} + \lambda_{2}x_{2} + \lambda_{3}x_{3} + \lambda_{4}x_{4} = (0, 0, 0, 0)$$

$$\iff \begin{cases} \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ \lambda_{1} - \lambda_{2} - \lambda_{3} + \lambda_{4} = 0 \\ \lambda_{2} - \lambda_{3} + \lambda_{4} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ 2\lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} + \lambda_{4} = 0 \\ \lambda_{2} + \lambda_{4} = 0 \\ \lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} + \lambda_{4} = 0 \\ \lambda_{2} + \lambda_{4} = 0 \\ \lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} = -2\lambda_{4} \\ \lambda_{2} = -\lambda_{4} \\ \lambda_{3} = 0 \end{cases}$$

En prenant $\lambda_4 = 1$ et $\lambda_1 = -2$, $\lambda_2 = -1$, $\lambda_3 = 0$, on a : $-2x_1 - x_2 + x_4 = 0$. Ainsi, $x_4 = 2x_1 + x_2$. Donc Vect $(x_1, x_2, x_3, x_4) = \text{Vect}(x_1, x_2, x_3)$.

Ainsi, (x_1, x_2, x_3) est une famille génératrice de Vect (x_1, x_2, x_3, x_4) .

De plus, en reprenant les équivalences précédentes avec $\lambda_4 = 0$, on obtient :

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0 \iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Donc (x_1, x_2, x_3) est libre.

Donc (x_1, x_2, x_3) est une base de Vect (x_1, x_2, x_3, x_4) .

Ainsi, $\operatorname{rg}(x_1, x_2, x_3, x_4) = 3$.

1. La famille $(3, X^2 + 1, X^5 - 3X^2 + 2)$ est une famille de polynômes non nuls de degrés échelonnés. Ainsi, cette famille est libre. Ainsi, rg $(3, X^2+1, X^5-3X^2+2)=3$. 2. Montrons que la famille $(X^k(X-1)^{n-k})_{k\in \llbracket 0,n\rrbracket}$ est libre.

Soit
$$\lambda_0, ..., \lambda_n \in \mathbb{K}$$
 tels sur $\sum_{k=0}^n \lambda_k X^k (X-1)^{n-k} = 0$.

En évaluant en 1, on obtient $\sum_{k=0}^{n} \lambda_k 0^{n-k} = 0$ d'où $\lambda_n = 0$.

On a alors :
$$\sum_{k=0}^{n-1} \lambda_k X^k (X-1)^{n-k} = 0 \text{ d'où } (X-1) \sum_{k=0}^{n-1} \lambda_k X^k (X-1)^{n-1-k} = 0.$$
 Or, un produit de polynômes est nul si et seulement si un des polynômes est nul.

Or,
$$X-1$$
 n'est pas le polynôme nul. Ainsi, on obtient :
$$\sum_{k=0}^{n-1} \lambda_k X^k (X-1)^{n-1-k} = 0.$$

En évaluant de nouveau en 1, on obtient $\sum_{k=0}^{n-1} \lambda_k 0^{n-1-k} = 0$ d'où $\lambda_{n-1} = 0$.

Par récurrence descendante, on obtient donc $\lambda_n = \lambda_{n-1} = \dots = \lambda_0 = 0$.

Ainsi, la famille $(X^k(X-1)^{n-k})_{k \in [0,n]}$ est libre donc $\operatorname{rg}((X^k(X-1)^{n-k})_{k[[0,n]]}) = n+1$.

Remarque : on a une famille de n+1 polynômes de $\mathbb{R}_n[X]$ qui est libre. Or, $\dim (\mathbb{R}_n[X]) = n+1$.

Ainsi, $(X^k(X-1)^{n-k})_{k\in[0,n]}$ est donc une base de $\mathbb{R}_n[X]$.

3. Soit $i \in [0, n]$, on a : $\forall k \in [0, n]$, $L_i(a_k) = \delta_{i,k}$ où $\delta_{i,k} = \begin{cases} 0 & \text{si } i \neq k \\ 1 & \text{si } i = k \end{cases}$

Montrons que la famille (L_0, \ldots, L_n) est libre.

Soit
$$\lambda_0, ..., \lambda_n \in \mathbb{K}$$
 tels sur $\sum_{i=0}^n \lambda_i L_i = 0$.

Soit
$$k \in [0, n]$$
, en évaluant la relation en a_k , on obtient : $0 = \sum_{i=0}^n \lambda_i L_i(a_k) = \sum_{i=0}^n \lambda_i \delta_{i,k} = \lambda_k$.

Ainsi : $\forall k \in [0, n], \lambda_k = 0.$

Donc la famille (L_0, \ldots, L_n) est libre.

Ainsi, $rg(L_0, ..., L_n) = n + 1$.

Remarque : on a une famille de n+1 polynômes de $\mathbb{R}_n[X]$ qui est libre. Or, dim $(\mathbb{R}_n[X]) = n+1$. Ainsi, $(L_i)_{i \in [0,n]}$ est donc une base de $\mathbb{R}_n[X]$.

Exercice 11. $\mathcal{F} \subset \mathcal{F} \cup \mathcal{F}'$ donc $\operatorname{Vect}(\mathcal{F}) \subset \operatorname{Vect}(\mathcal{F} \cup \mathcal{F}')$. Ainsi, dim $(\operatorname{Vect}(\mathcal{F})) \leq \operatorname{dim}(\operatorname{Vect}(\mathcal{F} \cup \mathcal{F}'))$. D'où $\operatorname{rg}(\mathcal{F}) \leq \operatorname{rg}(\mathcal{F} \cup \mathcal{F}')$.

De même, $\mathcal{F}' \subset \mathcal{F} \cup \mathcal{F}'$ donc $\operatorname{Vect}(\mathcal{F}') \subset \operatorname{Vect}(\mathcal{F} \cup \mathcal{F}')$. Ainsi, dim $(\operatorname{Vect}(\mathcal{F}')) \leq \dim (\operatorname{Vect}(\mathcal{F} \cup \mathcal{F}'))$. D'où $\operatorname{rg}(\mathcal{F}') \leq \operatorname{rg}(\mathcal{F} \cup \mathcal{F}')$. Ainsi :

$$\max(\operatorname{rg}(\mathcal{F}),\operatorname{rg}(\mathcal{F}')) \leq \operatorname{rg}(\mathcal{F} \cup \mathcal{F}').$$

De plus, $\operatorname{Vect}(\mathcal{F} \cup \mathcal{F}') = \operatorname{Vect}(\mathcal{F}) + \operatorname{Vect}(\mathcal{F}')$. Ainsi,

$$\begin{split} \operatorname{rg}\left(\mathcal{F}\cup\mathcal{F}'\right) &= \operatorname{dim}\left(\operatorname{Vect}\left(\mathcal{F}\cup\mathcal{F}'\right)\right) \\ &= \operatorname{dim}\left(\operatorname{Vect}\left(\mathcal{F}\right) + \operatorname{Vect}\left(\mathcal{F}'\right)\right) \\ &= \operatorname{dim}\left(\operatorname{Vect}\left(\mathcal{F}\right)\right) + \operatorname{dim}\left(\operatorname{Vect}\left(\mathcal{F}'\right)\right) - \operatorname{dim}\left(\operatorname{Vect}\left(\mathcal{F}\right)\cap\operatorname{Vect}\left(\mathcal{F}'\right)\right) \\ &\leq \operatorname{dim}\left(\operatorname{Vect}\left(\mathcal{F}\right)\right) + \operatorname{dim}\left(\operatorname{Vect}\left(\mathcal{F}'\right)\right) \\ &\leq \operatorname{rg}\left(\mathcal{F}\right) + \operatorname{rg}\left(\mathcal{F}'\right). \end{split}$$

On a donc prouvé que :

$$\max(\operatorname{rg}\left(\mathcal{F}\right),\operatorname{rg}\left(\mathcal{F}'\right))\leq\operatorname{rg}\left(\mathcal{F}\cup\mathcal{F}'\right)\leq\operatorname{rg}\left(\mathcal{F}\right)+\operatorname{rg}\left(\mathcal{F}'\right)$$

Exercice 12. Posons $G = \text{Vect}(X^2)$.

 $(1, X + 1, X^2, X^3 - X^2)$ est une famille de polynômes de $\mathbb{R}_3[X]$.

De plus, $(1, X + 1, X^2, X^3 - X^2)$ est une famille de polynômes non nuls de degrés échelonnés. Ainsi, il s'agit d'une famille libre.

Or, cette famille comprend 4 polynômes et dim $(\mathbb{R}_3[X]) = 4$.

Ainsi, $(1, X + 1, X^2, X^3 - X^2)$ est une base de $\mathbb{R}_3[X]$.

Ainsi, Vect $(1, X + 1, X^3 - X^2)$ et Vect (X^2) sont supplémentaires.

Exercice 13. • soit $(\lambda, \mu, \gamma) \in \mathbb{R}^3$, on a :

$$\lambda a + \mu b + \gamma c = (0, 0, 0, 0) \iff \begin{cases} \mu + 2\gamma = 0 \\ \lambda + 3\mu + \gamma = 0 \\ -\lambda - 3\gamma = 0 \\ 2\lambda + 2\mu + 4\gamma = 0 \end{cases}$$

$$\iff \begin{cases} \lambda + 3\mu + \gamma = 0 \\ \mu + 2\gamma = 0 \\ 3\mu - 2\gamma = 0 \\ -4\mu + 2\gamma = 0 \end{cases}$$

$$\iff \begin{cases} \lambda + 3\mu + \gamma = 0 \\ \mu + 2\gamma = 0 \\ \gamma = 0 \end{cases}$$

$$\iff \begin{cases} \lambda = 0 \\ \mu = 0 \\ \gamma = 0 \end{cases}$$

Ainsi, (a, b, c) est une famille libre.

De plus, (a, b, c) est une famille génératrice de F donc (a, b, c) est une base de F. Ainsi, dim (F) = 3.

- (d, e) est une famille génératrice de G. De plus, d et e ne sont pas colinéaires. Ainsi, (d, e) est une famille libre. Donc (d, e) est une base de G. Donc dim (G) = 2.
- F + G = Vect(a, b, c) + Vec(d, e) = Vect(a, b, c, d, e).

Soient $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \in \mathbb{R}$, on a:

$$\begin{array}{l} \lambda_{1}a+\lambda_{2}b+\lambda_{3}c+\lambda_{4}d+\lambda_{5}e=0 \\ \\ \lambda_{1}+3\lambda_{2}+\lambda_{3}+\lambda_{5}=0 \\ -\lambda_{1}-3\lambda_{3}+2\lambda_{4}=0 \\ 2\lambda_{1}+2\lambda_{2}+4\lambda_{3}+\lambda_{4}+3\lambda_{5}=0 \\ \\ \\ &\Leftrightarrow \\ \begin{cases} \lambda_{1}+3\lambda_{2}+\lambda_{3}+\lambda_{5}=0 \\ \lambda_{2}+2\lambda_{3}-\lambda_{5}=0 \\ -\lambda_{1}-3\lambda_{3}+2\lambda_{4}=0 \\ 2\lambda_{1}+2\lambda_{2}+4\lambda_{3}+\lambda_{4}+3\lambda_{5}=0 \\ \\ \lambda_{2}+2\lambda_{3}-\lambda_{5}=0 \\ \\ \lambda_{2}+2\lambda_{3}-\lambda_{5}=0 \\ \\ \lambda_{2}+2\lambda_{3}-\lambda_{5}=0 \\ \\ \lambda_{2}+2\lambda_{3}+\lambda_{4}+\lambda_{5}=0 \\ \\ \lambda_{2}+2\lambda_{3}+\lambda_{4}+\lambda_{5}=0 \\ \\ \lambda_{2}+2\lambda_{3}-\lambda_{5}=0 \\ \\ -8\lambda_{3}+2\lambda_{4}+4\lambda_{5}=0 \\ \\ 10\lambda_{3}+\lambda_{4}-3\lambda_{5}=0 \\ \\ \lambda_{2}+2\lambda_{3}-\lambda_{5}=0 \\ \\ -8\lambda_{3}+2\lambda_{4}+4\lambda_{5}=0 \\ \\ 10\lambda_{3}+\lambda_{4}+3\lambda_{5}=0 \\ \\ \lambda_{2}+2\lambda_{3}-\lambda_{5}=0 \\ \\ -4\lambda_{3}+\lambda_{4}+2\lambda_{5}=0 \\ \\ \frac{\lambda_{1}+3\lambda_{2}+\lambda_{3}+\lambda_{5}=0}{\lambda_{2}+2\lambda_{3}-\lambda_{5}=0} \\ \\ -4\lambda_{3}+\lambda_{4}+2\lambda_{5}=0 \\ \\ \frac{\lambda_{1}+3\lambda_{2}+\lambda_{3}+\lambda_{5}=0}{\lambda_{2}+2\lambda_{3}-\lambda_{5}=0} \\ \\ \frac{\lambda_{1}+3\lambda_{2}+\lambda_{3}+\lambda_{3}+\lambda_{5}=0}{\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}=0} \\ \\ \frac{\lambda_{1}+3\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}+\lambda_{5}=0}{\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}=0} \\ \\ \frac{\lambda_{1}+3\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{$$

En prenant
$$\lambda_5 = 1$$
 et $\lambda_1 = -\frac{31}{14}$, $\lambda_2 = \frac{2}{7}$, $\lambda_3 = \frac{5}{14}$, $\lambda_4 = -\frac{4}{7}$, on a : $-\frac{31}{14}a + \frac{2}{7}b + \frac{5}{14}c - \frac{4}{7}d + e = 0$. Ainsi, $e = \frac{31}{14}a - \frac{2}{7}b - \frac{5}{14}c + \frac{4}{7}d$. Donc $F + G = \text{Vect}\,(a,b,c,d)$.

Ainsi, (a, b, c, d) est une famille génératrice de F + G.

De plus, en reprenant les équivalences précédentes avec $\lambda_5 = 0$, on a :

$$\lambda_1 a + \lambda_2 b + \lambda_3 c + \lambda_4 d = 0 \iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \\ \lambda_4 = 0 \end{cases}$$

Ainsi, (a, b, c, d) est une famille libre.

Donc (a, b, c, d) est une base de F + G donc dim (F + G) = 4.

• D'après la formule de Grassman, on a :

$$\dim (F \cap G) = \dim (F) + \dim (G) - \dim (F + G).$$

Ainsi : dim $(F \cap G) = 3 + 2 - 4 = 1$.