Physik

Notizen für Prüfung vom 1. März 2016

Patrick Günthard

29. Februar 2016

Inhaltsverzeichnis

	Horizontaler Wurf			
	1.1	Formeln		
		1.1.1	x-Richtung	2
		1.1.2	y-Richtung	2
			Weitere Berechnungen	
		1.1.4	Parabel	2
2 Dynan				3
	2.1 Formeln		3	
		2.1.1	Basisformeln	3

1 Horizontaler Wurf

Alle Formeln gelten nur für Berechnungen im Vakuum, daher gilt für v (wenn ohne einfluss von a) $v_n = v_0$ und $a_n = a_0$

1.1 Formeln

1.1.1 x-Richtung

$$s_x = v_0 t (= v_n t)$$
$$v_x = v_0$$

$$a_x = 0$$

1.1.2 y-Richtung

Standardberechnungen:

$$s_y = -\frac{gt^2}{2} - h_0^{-1}$$

 $v_y = gt^{-2} a_y = g$

Berechnungen Parabel:

$$s_y=-rac{g}{2}(rac{s_x}{v_0})^2+h_0$$
 (Bei dieser Formel wird t aufgelöst) ($t=(rac{s_x}{v_0})^2$)

1.1.3 Weitere Berechnungen

Wurfweite:
$$s_w=v_0\sqrt{\frac{2h_0}{g}}$$

Wurfhöhe: $s_h=\frac{gs_w^2}{2v_0^2}$

Wurfdauer:
$$t_w = \sqrt{\frac{2h_0}{g}}$$

1.1.4 Parabel

Bei der Parabel wurden folgende Parameter verwendet:

$$v_0 = 2\frac{m}{s}$$

$$h_0 = h_{y0} = 2m$$

$$g = 9.81$$

 $^{^{1}}_{2}h_{0}=s_{y0}$

 $^{^2}g \approx 9.81$ auf der Erde, Messung von Potsdam (BRD). An anderen Orten wurde $g = \approx 9.79$ gemessen. Für unsere Berechnungen ist der erstgenannte Messwert relevant da er geographisch am nächsten liegt.

Dynamik

In der Dynamik wird mit $Kr\"{a}ften$ (F^3 gerechnet. Es gibt verschiedene Kr\"{a}fte welche (auf der Erde) **immer**

- Die Normalkraft: $\vec{F_N}$
- Die Gewichtskraft: $\vec{F_G} = m * \vec{g}$

Wenn ein Körper stillsteht, heben sich beide Kräfte auf: $\vec{F_N} = -\vec{F_G}$

2.1 **Formeln**

2.1.1 Basisformeln

 $\vec{F} = m * \vec{a}^{\;4}$ wird. Ein Beispiel wie N berechnet wird:

 $F=m*\vec{a}^4$ wird. Ein Beisp F ist dabei *Kraft* welche in *Newton* 5 (N) gemessen $1N=1kg*\frac{m}{s^2}$

 $^{^3\}mathrm{Die}$ Abkürzung F kommt von force, dem englischen Wort für Kraft

⁵Benannt nach *Isaac Newton* (1643 - 1727), Englischer Physiker