EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

Creating An Account In Twilio Service

Date	06 November 2022
Team ID	PNT2022TMID37860
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library

import keras from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

```
train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2, rotation_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)
```

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/Train_set', target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/Test_set', target_size=(128,128),batch_size=32, class_mode='binary')

Import model building libraries

#To define Linear initialisation import Sequential

from keras.models import Sequential

#To add layers import Dense from

keras.layers import Dense

#To create Convolution kernel import Convolution2D

from keras.layers import Convolution2D

#import Maxpooling layer

from keras.layers import MaxPooling2D

#import flatten layer

from keras.layers import Flatten import warnings warnings.filterwarnings('ignore')

Initializing the model model=Sequential()

Add CNN Layer

```
model.add(Convolution2D(32, (3,3),input_shape=(128,128,3),activation='relu')) #add maxpooling layer model.add(MaxPooling2D(pool_size=(2,2))) #add flatten layer model.add(Flatten())
```

Add Dense Layer

```
#add hidden layer
model.add(Dense(150,activation='relu'))
#add output layer
model.add(Dense(1,activation='sigmoid')
) Configure the learning process
model.compile(loss='binary crossentropy',optimizer="adam",metrics=["accuracy"])
```

Train the model

```
val loss: 0.2290 - val accuracy: 0.9339
Epoch 3/10
val loss: 0.0524 - val accuracy: 0.9835
Epoch 4/10
val loss: 0.1570 - val accuracy: 0.9421
Epoch 5/10
val_loss: 0.0767 - val_accuracy: 0.9752
Epoch 6/10
val loss: 0.0749 - val accuracy: 0.9752
Epoch 7/10
val loss: 0.1264 - val accuracy: 0.9421
Epoch 8/10
val_loss: 0.0652 - val_accuracy: 0.9835
Epoch 9/10
val loss: 0.0567 - val accuracy: 0.9835
Epoch 10/10
val loss: 0.0448 - val accuracy: 0.9917
0.3267 -
0.2991 - 0.2418
0.1984 -
0.1643 -
0.1538 -
0.1732 - 0.1514
0.1445 -
<keras.callbacks.History at 0x7f51fdf33610>
```

Save The Model

model.save("forest1.h5")

Predictions

#import load model from keras.model from keras.models import load_model #import image class from keras from tensorflow.keras.preprocessing import image #import numpy import numpy as np #import cv2 import cv2 #load the saved model model = load_model("forest1.h5") img=image.load_img(r'/content/drive/MyDrive/Dataset/test_set/forest/ 0.48007200_1530881924_final_forest.jpg') x=image.img_to_array(img) res = cv2.resize(x, dsize=(128, 128), interpolation=cv2.INTER_CUBIC) #expand the image shape x=np.expand dims(res,axis=0) pred= model.predict(x) dtype=float32) OpenCV For Video Processing pip install twilio Looking in indexes: https://pypi.org/simple, https://us- python.pkg.dev/colabwheels/public/simple/ Collecting twilio Downloading twilio-7.15.1-py2.py3-none-any.whl (1.4 MB) ent already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from twilio) (2022.5)Collecting PyJWT<3.0.0,>=2.0.0 Downloading PyJWT-2.6.0-py3-none-any.whl (20 kB)

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)

Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from twilio) (2.23.0) Requirement already satisfied: chardet<4,>=3.0.2 in

(2.10)

Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2022.9.24)

Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (1.24.3)

Installing collected packages: PyJWT, twilio

Successfully installed PyJWT-2.6.0 twilio-7.15.1

pip install playsound

Looking in indexes: https://pypi.org/simple, https://us- python.pkg.dev/colab-wheels/public/simple/

Collecting playsound

Downloading playsound-1.3.0.tar.gz (7.7 kB) Building wheels for collected packages: playsound

Building wheel for playsound (setup.py) ... e=playsound-1.3.0-py3- none-any.whl size=7035

sha256=e7e96c774a98522e182b59b7b292f0f932097658d8bfce86c922c363f862b0e 2

Stored in directory:

/root/.cache/pip/wheels/ba/f8/bb/ea57c0146b664dca3a0ada4199b0ecb5f9dfcb7b7e22b65ba2

Successfully built playsound

Installing collected packages: playsound

Successfully installed playsound-1.3.0

#import opency library

import cv2 #import

numpy import numpy

as np

#import image function from keras

from keras.preprocessing import image

#import load_model from keras from

keras.models import load_model

#import client from twilio API from

twilio.rest import Client #import

playsound package from playsound

import playsound

WARNING:playsound:playsound is relying on another python subprocess. Please use `pip install pygobject` if you want playsound to run more efficiently.

#load the saved model

model=load_model("forest1.h5") #define video video=cv2.VideoCapture(0) #define the features name=['forest','with fire']

Creating An Account In Twilio Service

```
account_sid='ACde2b15dad8f6e39c32b35eaa64921cf2'
auth_token='1928bb642021bc74a3ff9470d5deec4'
client=Client(account_sid,auth_token) message=client.messages
```

```
.create(
body='forest fire is detected,stay alert',
#use twilio free number
from_='+16075363954', #to number
to='+919962828967')
print(message.sid)
```

SMcd33e58fa6f60aa349ecba81dce9b4