

Figure 39.2: The graph of the function from Example 39.1. Note that f is not continuous at (0,0), despite the existence of $D_u f(0,0)$ for all $u \neq 0$.

For any
$$u \neq 0$$
, letting $u = \binom{h}{k}$, we have

$$\frac{f(0+tu)-f(0)}{t} = \frac{h^2k}{t^2h^4+k^2},$$

so that

$$D_u f(0,0) = \begin{cases} \frac{h^2}{k} & \text{if } k \neq 0\\ 0 & \text{if } k = 0. \end{cases}$$

Thus, $D_u f(0,0)$ exists for all $u \neq 0$.

On the other hand, if Df(0,0) existed, it would be a linear map Df(0,0): $\mathbb{R}^2 \to \mathbb{R}$ represented by a row matrix $(\alpha \beta)$, and we would have $D_u f(0,0) = Df(0,0)(u) = \alpha h + \beta k$, but the explicit formula for $D_u f(0,0)$ is not linear. As a matter of fact, the function f is not continuous at (0,0). For example, on the parabola $y=x^2$, $f(x,y)=\frac{1}{2}$, and when we approach the origin on this parabola, the limit is $\frac{1}{2}$, but f(0,0)=0.

To avoid the problems arising with directional derivatives we introduce a more uniform notion.

Given two normed spaces E and F, recall that a linear map $f: E \to F$ is *continuous* iff there is some constant $C \ge 0$ such that

$$||f(u)|| \le C ||u||$$
 for all $u \in E$.