---{ Proporcionalidades }---

Teorema da Bissetriz

Prof. Eduardo Ono

Sumário

- 1. Objetivos
- 1. Teoremas da Bissetriz
 - 2.1. Teorema da Bissetriz Interna

1. Objetivos

- Conceituar o Teorema da Bissetriz;
- Enunciar e demonstrar o Teorema da Bissetriz;
- Aplicar os conceitos na resolução de problemas.

2. Teoremas da Bissetriz

Se duas retas são transversais de um feixe de retas paralelas, então a razão entre dois segmentos quaisquer de uma delas é igual à razão entre os respectivos segmentos correspondentes da outra.

2.1. Teorema da Bissetriz Interna

Uma **bissetriz interna** de um triângulo divide o lado oposto em segmentos (aditivos) proporcionais aos lados adjacentes.

O enunciado acima deve ser entendido como segue.

Dado um triângulo ABC de lados a, b e c, \overline{AB} uma bissetria interna, $\overline{BD}=m$, $\overline{DC}=n$, devemos ter:

$$\frac{m}{c} = \frac{n}{b}$$

Demonstração.

Hipótese: AD é bissentriz interna do $\triangle ABC$.

Tese:
$$\frac{m}{c} = \frac{n}{b}$$

Fonte: lezzi

Conduzimos por C uma paralela à bissetriz \overline{AD} , determinando um ponto E na reta \overleftrightarrow{AB} , de modo que \overline{CE} // \overline{AD} .

Os ângulos $B\hat{A}D$ e $A\hat{E}C$ são correspondentes e os ângulos $D\hat{A}C$ e $A\hat{C}E$ são alternos internos. Por hipótese, os ângulos $B\hat{A}D$ e $D\hat{A}C$ são congruentes. Decorre que os ângulos $A\hat{E}C$ e $E\hat{C}A$ são congruentes, caracterizando o triângulo ACE, de base \overline{CE} , como isósceles. Temos, então:

$$\overline{AC} \equiv \overline{AE}$$
.

Aplicando o teorema de Tales, vem:

$$\frac{\overline{BD}}{\overline{BA}} = \frac{\overline{DC}}{\overline{AE}} \implies \frac{\overline{BD}}{\overline{BA}} = \frac{\overline{DC}}{\overline{AC}}$$

Portanto,

$$\frac{m}{c} = \frac{n}{b}$$