IS-ZC444: ARTIFICIAL INTELLIGENCE

Lecture-11: Constraint Satisfaction, Logical Agents

Dr. Kamlesh Tiwari Assistant Professor

Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031, Rajasthan, INDIA

Nov 07, 2020 FLIPPED

(WILP @ BITS-Pilani Jul-Nov 2020)

Preferential Constraints

- Many real world CSPs include preference constraints
- Indicating some solution are preferred over other
- Consider university class scheduling problem
 - Apart from absolute constraints such as no professor could simultaneously teach two classes
 - There are some preferential constraints such as Prof. A prefer teaching in morning whereas Prof. B prefer teaching on evening.
 - A solution that schedules Prof. A in evening and Prof. B in morning is still ok
 - But, we do not prefer it
- Such problems are sometimes called constraint optimization problem (COP)

Inference in CSP

- In CSP, an algorithm can either
 - Search or
 - Do inference: constraint propagation (that reduces number of legal values for another variable)

Enforcing **local consistency** in each part of the graph can cause inconsistency elimination throughout the graph.

- Node consistency: if all the values in variable's domain satisfy the variable's unary constraints ¹. It is always possible to eliminate all unary constraints by applying Node consistency
- Arc consistency: X_i is arc consistent with X_i if for every value in current domain D_i there is some value in D_i satisfying binary constraint on (X_i, X_i) . Note ²

¹If SA do not like green color then use {red,blue} instead of {red,green,blue}

²Generalization is possible: using more than two variables in a constraint

AC-3 Algorithm

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_i) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to gueue
  return true
function REVISE(csp, X_i, X_i) returns true iff we revise the domain of X_i
  revised \leftarrow false
```

```
revised \leftarrow false

for each x in D_i do

if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i

revised \leftarrow true

return revised
```

Takes $O(cd^3)$ time in worst case

Inference in CSP: Path consistency

Arc consistency can help if some domain becomes empty, or size of every domain reduces to 1

- **Path consistency:** two variable set $\{X_i, X_j\}$ is path consistent wrt X_m if for every $\{X_i = a, X_j = b\}$ consistent with constraints on $\{X_i, X_j\}$ there is an assignment to X_m that satisfies constraints on $\{X_i, X_m\}$ and $\{X_m, X_i\}$
- K-consistency: for any set of k 1 variables and for any constraint assignment to those variables, a consistent value can always be assigned to any kth variable.
 A CSP is strongly k-consistent is it is k-consistent, k-1-consistent, k-2-consistent, 1-consistent 3
- Global Constraints: like *alldiff*. If all m variable involved in alldiff have only n possible values where m > n then there is no solution.

³Finding such considition is hard

Example: Sudoku

	-1	2	3	4	5	6	7	8	9
А			3		2		6		
В	9			3		-5	19		1
С			1	8		6	4	- 1	
D			8	1		2	9	1.5	
E	7								8
F			.6	7		8	2		
G			2	6		9	5		3575
н	8		10.0	2		3			9
		7031	5	:9.4	1.	8 9	3		Tr.

Example: Sudoku

	-1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		-5	19		1
С			1	8		6	4	- 3	
D		49.5	8	1		2	9		
E	7								8
=			.6	7		8	2		
3	П		2	6		9	5		
+	8		10.0	2		3	191		9
		701	5	: 9 = 1	1	1	3		ir.

(a)

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Ε	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7	6	9
- 1	6	9	5	4	1	7	3	8	2

Example: Sudoku

Backtracking Search for CSP

- When inference only do not work, use search
- CSP with n variable and d domain size can have branching factor nd at top level. Then (n-1)d in next level and so on.
- Tree with !n.dⁿ leaves get generated (however valid assignments are only dⁿ)
- It is why we have ignored commutativity ⁴
- So consider single variable at a node.
- Now we need to backtrack, if no legal value is left for assignment

Backtracking Search

```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
  return BACKTRACK(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow Select-Unassigned-Variable(csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
     if value is consistent with assignment then
         add \{var = value\} to assignment
         inferences \leftarrow Inference(csp, var, value)
        if inferences \neq failure then
           add inferences to assignment
           result \leftarrow BACKTRACK(assignment, csp)
           if result \neq failure then
             return result
     remove \{var = value\} and inferences from assignment
 return failure
```

Backtracking Search

- Which variable to choose next? minimum remaining value ⁵ or "fail first"
- Degree heuristic, choose one which is involved in many constraints
- Which value to choose? least constrained value
- Forward checking: interleaving search and inference would help.
 Whenever a variable X is assigned, forward checking establishes arc consistency for it.
- Intelligent Backtracking: Some time it is needed to backtrack upward more than a single step to resolve the inconsistency. Conflicting set is used to find most suitable node.

⁵chose whose domain have fewer entries

Local Search for CSP

Complete state space formulation can also be used for search

Local Search for CSP

Complete state space formulation can also be used for search

function MIN-CONFLICTS(csp, max_steps) **returns** a solution or failure **inputs**: csp, a constraint satisfaction problem max_steps , the number of steps allowed before giving up

 $current \leftarrow$ an initial complete assignment for esp

for i = 1 to max_steps do

if current is a solution for csp then return current

 $var \leftarrow$ a randomly chosen conflicted variable from csp.VARIABLES

 $value \leftarrow$ the value v for var that minimizes CONFLICTS(var, v, current, csp) set var = value in current

return failure

Local Search for CSP

- Min-conflict: can solve Million Queen problem in 50 steps on an average
- Tabu-search: keeps a small list of recently visited states and forbidding algorithm to return to these states.
- Constraint weighting: starting from weight 1 for each variable; in each step, algorithm choses variable/value such that sum of weights is minimized. Weights of violated variables are incremented.
- Big advantage that the local search can be implemented in online environment.⁶

Exploit Problem Structure

Sometime structure of the problem could help to find solution

 Independent Subproblems: see that Tasmania is not connected to mainland in Australia map.

Compare
$$O(d^c n/c)$$
 with $O(d^n)$ it is linear

where each sub problem has c variables

• Tree structured CSP is solvable in linear time $O(nd^2)$ with topological sort

- ► Cut set conditioning: Assign few, to get tree from remaining vars $O(d^c(n-c)d^2)$
- Another approach is tree decomposition

Tree Decomposition for CSP

Divide the problem in sub-problems

- Every variable in original problem appears at least one of the subproblems
- If two variables are connected by a constraint in original problem, then they must appear together in at least one of the subproblem
- If a variable appears in two subproblems in the tree, it must appear in every subproblem along the path connecting those subproblems

Logical Agents

- Humans, it seems, know things
- And what they know, helps them to think/reason
- Knowledge base is set of sentences⁷

⁷Sentences are derived from knowledge representation language. An underived sentence is **axiom**

Logical Agents

- Humans, it seems, know things
- And what they know, helps them to think/reason
- Knowledge base is set of sentences⁷
- Knowledge-based agents

⁷Sentences are derived from knowledge representation language. An underived sentence is **axiom**

Logical Agents

- Humans, it seems, know things
- And what they know, helps them to think/reason
- Knowledge base is set of sentences⁷
- Knowledge-based agents

- Agent program does three operation
 - TELL the knowledge base what it have perceived
 - ASK what to do
 - TELL which action is chosen and the agent execute that action

⁷Sentences are derived from knowledge representation language. An underived sentence is **axiom**

A Generic Knowledge Based Agent

Algorithm 1: KB-Agent(percept)

Input: *KB* is knowledge base *t* a counter indicating time

- 1 TELL(KB, Make-Percept-Sentence(percept,t))
- 2 $action \leftarrow ASK(KB, Make-Action-Query(t))$
- 3 TELL(KB, Make-Action-Sentence(action,t))
- 4 $t \leftarrow t + 1$
- 5 return action

A Generic Knowledge Based Agent

Algorithm 2: KB-Agent(percept)

Input: *KB* is knowledge base *t* a counter indicating time

- 1 TELL(KB, Make-Percept-Sentence(percept,t))
- 2 action ← ASK(KB, Make-Action-Query(t))
- 3 TELL(KB, Make-Action-Sentence(action,t))
- 4 $t \leftarrow t + 1$
- 5 return action

Knowledge base could be built through

- Declarative procedure that tell everything
- Procedural approach that writes a program code

- Performance gold +100, death
 -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- Sensor breeze, glitter, smell, bump, scream

- Performance gold +100, death
 -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- Sensor breeze, glitter, smell, bump, scream

Observable? No

- Performance gold +100, death
 -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- Sensor breeze, glitter, smell, bump, scream

Observable?	No
Deterministic?	Yes

- Performance gold +100, death
 -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- Sensor breeze, glitter, smell, bump, scream

Observable?	No
Deterministic?	Yes
Episodic?	No

- Performance gold +100, death
 -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- Sensor breeze, glitter, smell, bump, scream

Observable?	No
Deterministic?	Yes
Episodic?	No
Static?	Yes

- Performance gold +100, death
 -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- Sensor breeze, glitter, smell, bump, scream

Observable?	No
Deterministic?	Yes
Episodic?	No
Static?	Yes
Discrete?	Yes

- Performance gold +100, death
 -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- **Sensor** breeze, glitter, smell, bump, scream

Observable?	No
Deterministic?	Yes
Episodic?	No
Static?	Yes
Discrete?	Yes
Single Agent?	Yes

Wumpus World

1,4	2,4	3,4	4,4	1,4	2,4	3,4	4,4
,3	2,3	3,3	4,3	1,3	2,3	3,3	4,3
,2	2,2	3,2	4,2	1,2 OK	2,2 P?	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1	1,1 V OK	2,1 A B OK	3,1 P?	4,1
,4	2,4	3,4	4,4	1,4	2,4 P?	3,4	4,4
1,3 w!	2,3	3,3	4,3	1,3 W!	2,3 A S G B	3,3 _{P?}	4,3
1,2 S OK	2,2	3,2	4,2	1,2 s v ok	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1	1,1 V OK	2,1 B V OK	3,1 P!	4,1

 Knowledge base contains sentences that are written according to some syntax that specified whether they are well formed or not.

- Knowledge base contains sentences that are written according to some syntax that specified whether they are well formed or not.
- Sementics defines truth of each sentence. x + y = 4 is
 - true if x = 1 and y = 3 but
 - not true when x = 2 and y = 3

- Knowledge base contains sentences that are written according to some syntax that specified whether they are well formed or not.
- Sementics defines truth of each sentence. x + y = 4 is
 - true if x = 1 and y = 3 but
 - not true when x = 2 and y = 3
- Here x + y = 4 is a model that is satisfied by some sentence α
- We use $M(\alpha)$ to represent a set of all models of α

- Knowledge base contains sentences that are written according to some syntax that specified whether they are well formed or not.
- Sementics defines truth of each sentence. x + y = 4 is
 - true if x = 1 and y = 3 but
 - not true when x = 2 and y = 3
- Here x + y = 4 is a model that is satisfied by some sentence α
- We use $M(\alpha)$ to represent a set of all models of α
- Logical entailment between sentences means that a sentence logically follows from another one $\alpha \vDash \beta$ it means $M(\alpha) \subseteq M(\beta)$

- Knowledge base contains sentences that are written according to some syntax that specified whether they are well formed or not.
- Sementics defines truth of each sentence. x + y = 4 is
 - true if x = 1 and y = 3 but
 - not true when x = 2 and y = 3
- Here x + y = 4 is a model that is satisfied by some sentence α
- We use $M(\alpha)$ to represent a set of all models of α
- Logical entailment between sentences means that a sentence logically follows from another one $\alpha \models \beta$ it means $M(\alpha) \subseteq M(\beta)$
- Relationship between representation and real world

Propositional Logic

- Propositions or declarative sentences can be true or false
 - Sum of 5 and 4 is 9
 - Could you give me your pen
 - Every even natural number grater then two can be written as sum of two primes
 - Best of luck

Propositional Logic

- Propositions or declarative sentences can be true or false
 - Sum of 5 and 4 is 9
 - Could you give me your pen
 - Every even natural number grater then two can be written as sum of two primes
 - Best of luck
- Sometime it is better to assign symbols to a atomic sentences
 p: "I won a lottery last week"
 a: "I have purchased a lottery ticket last week"

Propositional Logic

- Propositions or declarative sentences can be true or false
 - Sum of 5 and 4 is 9
 - Could you give me your pen
 - Every even natural number grater then two can be written as sum of two primes
 - Best of luck
- Sometime it is better to assign symbols to a atomic sentences
 p: "I won a lottery last week"
 - q: "I have purchased a lottery ticket last week"
- Complex sentences could be formed by using
 - \neg : negative
 - \lor : disjunction, at least one is true
 - ∴ conjunction, both should be true
 - \rightarrow : implication

Truth Table and Natural Deduction

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	P o Q	$P \Leftrightarrow Q$
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Truth Table and Natural Deduction

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	P o Q	$P \Leftrightarrow Q$
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Τ	F	F	Т	Т

Natural Deduction

Suppose we have formulas ϕ_1 , ϕ_2 , ..., ϕ_n and we have applied some proof rules to get another formula ψ then we denote

$$\phi_1, \phi_2, ..., \phi_n \vdash \psi$$

This equation is called sequent; and is valid if a proof can be found

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1$$

$$\frac{\phi \wedge \psi}{\psi} \wedge e_2$$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1$$

$$\frac{\phi \wedge \psi}{\psi} \wedge e_2$$

Show
$$p \land q, r \vdash q \land r$$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge \mathsf{i}$$

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1$$

$$\frac{\phi \wedge \psi}{\psi} \wedge e_2$$

Show
$$p \land q, r \vdash q \land r$$

- $p \wedge q$

 - $q \wedge r$

- premise premise
- *∧e*₂ 1 $\wedge i$ 3,2

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge \mathsf{i}$$

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1$$

$$\frac{\phi \wedge \psi}{\psi} \wedge e_2$$

Show
$$p \land q, r \vdash q \land r$$

```
\begin{array}{cccc} 1 & p \wedge q & \text{premise} \\ 2 & r & \text{premise} \\ 3 & q & \wedge e_2 \ 1 \\ 4 & q \wedge r & \wedge i \ 3,2 \end{array}
```

• Show $(p \land q) \land r, s \land t \vdash q \land s$

Rules for Double Negation

Introduction
$$\phi \longrightarrow \neg \neg i$$

Elimination
$$\frac{\neg \neg \phi}{\phi} \neg \neg e$$

Rules for Double Negation

Introduction
$$\frac{\phi}{\neg \neg \phi} \neg \neg i$$

Elimination
$$\frac{\neg \neg \phi}{\phi} \neg \neg e$$

$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

Rules for Double Negation

Introduction
$$\frac{\phi}{\neg \neg \phi} \neg \neg i$$

Elimination
$$\frac{\neg \neg \phi}{\phi} \neg \neg e$$

Elimination
$$\frac{\phi \quad \phi \rightarrow \psi}{\psi} \rightarrow e$$

Elimination
$$\frac{\phi \quad \phi \rightarrow \psi}{\psi} \rightarrow e$$

Can
$$p, p \rightarrow q, p \rightarrow (q \rightarrow r)$$
 infer r

Elimination
$$\frac{\phi \quad \phi \rightarrow \psi}{\psi} \rightarrow e$$

$$\begin{array}{cccc} \operatorname{Can} p, p \to q, p \to (q \to r) & \operatorname{infer} r \\ & 1 & p \to (q \to r) & \operatorname{premise} \\ & 2 & p \to q & \operatorname{premise} \\ & 3 & p & \operatorname{premise} \\ & 4 & q \to r & \to e \, 1,3 \\ & 5 & q & \to e \, 2,3 \\ & 6 & r & \to e \, 4,5 \end{array}$$

Elimination
$$\frac{\phi \quad \phi \rightarrow \psi}{\psi} \rightarrow e$$

$$\begin{array}{cccc} \operatorname{Can} p, p \to q, p \to (q \to r) \text{ infer } r \\ & 1 & p \to (q \to r) & \text{premise} \\ & 2 & p \to q & \text{premise} \\ & 3 & p & \text{premise} \\ & 4 & q \to r & \to e \ 1,3 \\ & 5 & q & \to e \ 2,3 \\ & 6 & r & \to e \ 4,5 \end{array}$$

Modus Tollens

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi} MT$$

Elimination
$$\frac{\phi \quad \phi \rightarrow \psi}{\psi} \rightarrow e$$

$$\begin{array}{cccc} \operatorname{Can} p, p \to q, p \to (q \to r) \text{ infer } r \\ & 1 & p \to (q \to r) & \text{premise} \\ & 2 & p \to q & \text{premise} \\ & 3 & p & \text{premise} \\ & 4 & q \to r & \to e \ 1,3 \\ & 5 & q & \to e \ 2,3 \\ & 6 & r & \to e \ 4,5 \end{array}$$

Modus Tollens

$$\frac{\phi o \psi \qquad \neg \psi}{\neg \phi} \ \mathit{MT}$$

Show: $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$

Show
$$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

$$\frac{\begin{vmatrix} \phi \\ \vdots \\ \psi \end{vmatrix}}{\phi \to \psi} \to i$$

Show
$$(q \to r) \to ((\neg q \to \neg p) \to (p \to r))$$

1. $q \to r$ Assumption

9. $(\neg q \to \neg r) \to (p \to r)$

10. $(q \to r) \to ((\neg q \to \neg p) \to (p \to r))$ \to i 1-9

$$\frac{\begin{bmatrix} \phi \\ \vdots \\ \psi \end{bmatrix}}{\phi \to \psi} \to \mathbf{i}$$

Show
$$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

1. $q \rightarrow r$ Assumption
2. $\neg q \rightarrow \neg p$ Assumption

8. $p \rightarrow r$
9. $(\neg q \rightarrow \neg r) \rightarrow (p \rightarrow r)$ $\rightarrow i \ 2-8$

10. $(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$ $\rightarrow i \ 1-9$

$$\frac{\begin{bmatrix} \phi \\ \vdots \\ \psi \end{bmatrix}}{\phi \to \psi} \to \mathbf{i}$$

Show
$$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

1. $q \rightarrow r$ Assumption
2. $\neg q \rightarrow \neg p$ Assumption
3. p

1. r
8. $p \rightarrow r$
9. $(\neg q \rightarrow \neg r) \rightarrow (p \rightarrow r)$ \rightarrow i 2-8

10. $(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$ \rightarrow i 1-9

Show
$$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

1.	q o r	Assumption
2.	eg q o eg p	Assumption
3. 4. 5.	<i>p</i> ¬¬ <i>p</i> . ¬¬ <i>q</i> ¬¬ <i>i</i> 3. <i>MT</i> 2.4	Assumption
6.	q ¬¬e5	
7.	r	→ e 1-6
8.	ho ightarrow r	→ i 3-7
9.	$(\neg q \rightarrow \neg r) \rightarrow (p \rightarrow r)$	→ i 2-8
10.	$(q ightarrow r) ightarrow ((\neg q ightarrow \neg p) ightarrow (p ightarrow r))$	→ i 1-9

Examples

Show following

Examples

Show following

Examples

Show following

Recap: Propositional Logic

Propositions or **declarative sentences** can be true or false. Complex sentences could be formed by using \neg , \land , \lor \rightarrow

Recap: Propositional Logic

Propositions or **declarative sentences** can be true or false. Complex sentences could be formed by using \neg , \land , \lor \to

Natural Deduction applies proof rules on sentences ϕ_1 , ϕ_2 , ..., ϕ_n to get new ψ ; we denote it as ϕ_1 , ϕ_2 , ..., $\phi_n \vdash \psi$

Recap: Propositional Logic

Propositions or **declarative sentences** can be true or false. Complex sentences could be formed by using \neg , \land , \lor \rightarrow

Natural Deduction applies proof rules on sentences ϕ_1 , ϕ_2 , ..., ϕ_n to get new ψ ; we denote it as $\phi_1, \phi_2, ..., \phi_n \vdash \psi$

Box nesting is important

Backus-Naur Form (BNF)

There is a rule (syntax) to form sentences

```
Sentence 
ightarrow AtomicSentence \mid ComplexSentence
AtomicSentence 
ightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence 
ightarrow (Sentence) \mid [Sentence]
\mid \neg Sentence
\mid Sentence \land Sentence
\mid Sentence \lor Sentence
\mid Sentence \Leftrightarrow Sentence
\mid Sentence \Leftrightarrow Sentence
```

OPERATOR PRECEDENCE : $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2 \qquad \frac{\phi \vee i_2}{\phi}$$

$$\frac{\phi}{\phi \lor \psi} \lor i_1 \qquad \frac{\psi}{\phi \lor \psi} \lor i_2 \qquad \frac{\phi \lor \psi}{\phi \lor \psi}$$

Show $p \lor q \vdash q \lor p$

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2 \qquad \frac{\phi \vee \psi \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad x}{x} \vee V$$

Show
$$p \lor q \vdash q \lor p$$

1. $p \lor q$

Premise

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2 \qquad \frac{\phi \vee \psi \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad x}{x} \vee \epsilon$$

Show	$p \vee$	$q \vdash$	$q \setminus$	/ p
------	----------	------------	---------------	------------

ise
İ

2. p Assumption

 $q \lor p \qquad \qquad \lor i_2$

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2 \qquad \frac{\phi \vee \psi \quad \vdots \quad x}{x} \vee \epsilon$$

Show $p \lor q \vdash q \lor p$	
1. $p \lor q$	Premise
2. p	Assumption
3. <i>q</i> ∨ <i>p</i>	\vee i_2
4. q	Assumption
5. <i>q</i> ∨ <i>p</i>	$\vee i_1$

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2 \qquad \frac{\phi \vee \psi \quad \vdots \quad }{x}$$

Show $p \lor q \vdash q \lor p$					
1,	ho ee q	Premise			
2.	ρ	Assumption			
3.	qee p	∨ <i>i</i> ₂			
4.	q	Assumption			
5.	qee p	∨ <i>i</i> ₁			
6.	$q \lor p$	∨ <i>e</i> 1, 3, 5			

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2 \qquad \frac{\phi \vee \psi \quad \vdots \quad \psi \quad \vdots \quad \vdots \quad x}{x} \quad \frac{\vdots}{x}$$

Show $p \lor q \vdash q \lor p$					
1.	ho ee q	Premise			
2.	p	Assumption			
3.	$q \lor p$	∨ <i>i</i> ₂			
4.	q	Assumption			
5.	$q \lor p$	<i>∨i</i> ₁			
6.	$q \lor p$	∨ <i>e</i> 1, 3, 5			

Rules for Negation

$$\frac{\perp}{\phi}$$
 $\perp \epsilon$

$$\frac{\phi \quad \neg \phi}{} \neg e$$

$$-\frac{\perp}{\phi}$$
 \perp e $\frac{\phi}{\downarrow}$ $\neg e$ $\frac{\phi}{\vdots}$ $\frac{\perp}{\neg \phi}$ $-$

Show
$$\neg p \lor q \vdash p \rightarrow q$$

$$\frac{\perp}{\phi}$$
 $\perp e$ $\frac{\phi}{\perp}$ $\neg e$ $\frac{\psi}{\vdots}$ $\frac{\perp}{\neg \phi}$ \neg

Show ¬	$p \lor q \vdash p$	ightarrow q
1.	$\neg p \lor q$	
2.	$\neg p$	Premise
3.	р	Assumption
4.		<i>¬e</i> 3,2
5.	q	⊥ <i>e</i> 4
6.	$p \rightarrow q$	<i>→ i</i> 3,5

• Show $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

$$-\frac{\perp}{\phi}$$
 \perp e $-\frac{\phi}{\perp}$ \neg e $-\frac{\phi}{\Box}$ \neg

Show	$\neg p \lor$	$q \vdash$	$p \rightarrow$	q
------	---------------	------------	-----------------	---

1.	$\neg p \lor q$	
2.	$\neg p$	Premise
3.	р	Assumption
4.	上	<i>¬e</i> 3,2
5.	q	⊥ <i>e</i> 4
6.	$p \rightarrow q$	→ <i>i</i> 3.5

q	Premise
р	Assumption
q	Copy 2
p o q	<i>→ i</i> 3,4

• Show $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

$$-\frac{\perp}{\phi}$$
 \perp e $-\frac{\phi}{\perp}$ \neg e $-\frac{\phi}{\Box}$ \neg

$\neg p \lor q$	
$\neg p$	Premise
р	Assumption
	<i>¬e</i> 3,2
q	⊥ <i>e</i> 4
$p \rightarrow q$	→ <i>i</i> 3,5
	¬p p p p q

q	Premise					
р	Assumption					
q	Copy 2					
$p \rightarrow q$	<i>→ i</i> 3,4					
∨ <i>e</i> 1,2-6						

 $p \rightarrow q$

$$-\frac{\perp}{\phi}$$
 \perp e $-\frac{\phi}{\perp}$ $\neg e$ $-\frac{\phi}{\neg \phi}$ $\neg e$

Show
$$\neg p \lor q \vdash p \rightarrow q$$

1.	$\neg p \lor q$	
2.	$\neg p$	Premise
3.	р	Assumption
4.		<i>¬e</i> 3,2
5.	q	<i>⊥e</i> 4
6.	$p \rightarrow q$	<i>→ i</i> 3,5

q	Premise					
р	Assumption					
q	Copy 2					
$p \rightarrow q$	\rightarrow i 3,4					
∨ <i>e</i> 1,2-6						

• Show $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

 $p \rightarrow q$

$$(\alpha \wedge \beta) \qquad = (\beta \wedge \alpha)$$

Commutativity of \land

$$\begin{array}{ccc} (\alpha \wedge \beta) & = & (\beta \wedge \alpha) \\ (\alpha \vee \beta) & = & (\beta \vee \alpha) \end{array}$$

Commutativity of \land Commutativity of \lor

$$\begin{array}{lll} (\alpha \wedge \beta) & = & (\beta \wedge \alpha) \\ (\alpha \vee \beta) & = & (\beta \vee \alpha) \\ (\alpha \wedge \beta) \wedge \gamma & = & \alpha \wedge (\beta \wedge \gamma) \end{array}$$

 $\begin{array}{c} \text{Commutativity of } \land \\ \text{Commutativity of } \lor \\ \text{Associativity of } \land \end{array}$

$$(\alpha \wedge \beta) = (\beta \wedge \alpha)$$

$$(\alpha \vee \beta) = (\beta \vee \alpha)$$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha \vee \beta) \vee \gamma = \alpha \vee (\beta \vee \gamma)$$

Commutativity of ∧
Commutativity of ∨
Associativity of ∧
Associativity of ∨

$$(\alpha \wedge \beta) = (\beta \wedge \alpha)$$

$$(\alpha \vee \beta) = (\beta \vee \alpha)$$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha \vee \beta) \vee \gamma = \alpha \vee (\beta \vee \gamma)$$

$$\neg \neg \alpha = \alpha$$

Commutativity of \land Commutativity of \lor Associativity of \lor Double negation elimination

$$(\alpha \land \beta) = (\beta \land \alpha)$$

$$(\alpha \lor \beta) = (\beta \lor \alpha)$$

$$(\alpha \land \beta) \land \gamma = \alpha \land (\beta \land \gamma)$$

$$(\alpha \lor \beta) \lor \gamma = \alpha \lor (\beta \lor \gamma)$$

$$\neg \neg \alpha = \alpha$$

$$\alpha \to \beta = \neg \beta \to \neg \alpha$$

Commutativity of \\
Commutativity of \\
Associativity of \\
Associativity of \\
Double negation elimination
Contraposition

$$(\alpha \wedge \beta) = (\beta \wedge \alpha)$$

$$(\alpha \vee \beta) = (\beta \vee \alpha)$$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha \vee \beta) \vee \gamma = \alpha \vee (\beta \vee \gamma)$$

$$\neg \neg \alpha = \alpha$$

$$\alpha \rightarrow \beta = \neg \beta \rightarrow \neg \alpha$$

$$\alpha \rightarrow \beta = \neg \alpha \vee \beta$$

Commutativity of \\
Commutativity of \\
Associativity of \\
Associativity of \\
Double negation elimination
Contraposition
Implication Elimination

$$(\alpha \wedge \beta) = (\beta \wedge \alpha)$$

$$(\alpha \vee \beta) = (\beta \vee \alpha)$$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha \vee \beta) \vee \gamma = \alpha \vee (\beta \vee \gamma)$$

$$\neg \neg \alpha = \alpha$$

$$\alpha \rightarrow \beta = \neg \beta \rightarrow \neg \alpha$$

$$\alpha \rightarrow \beta = \neg \alpha \vee \beta$$

$$\alpha \leftrightarrow \beta = (\alpha \rightarrow \beta) \wedge (\beta \rightarrow \alpha)$$

Commutativity of \\
Commutativity of \\
Associativity of \\
Associativity of \\
Double negation elimination
Contraposition
Implication Elimination
Biconditional Elimination

$$(\alpha \wedge \beta) = (\beta \wedge \alpha)$$

$$(\alpha \vee \beta) = (\beta \vee \alpha)$$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha \vee \beta) \vee \gamma = \alpha \vee (\beta \vee \gamma)$$

$$\neg \neg \alpha = \alpha$$

$$\alpha \rightarrow \beta = \neg \beta \rightarrow \neg \alpha$$

$$\alpha \rightarrow \beta = \neg \alpha \vee \beta$$

$$\alpha \leftrightarrow \beta = (\alpha \rightarrow \beta) \wedge (\beta \rightarrow \alpha)$$

$$\neg (\alpha \wedge \beta) = \neg \alpha \vee \neg \beta$$

Commutativity of \\
Commutativity of \\
Associativity of \\
Associativity of \\
Double negation elimination
Contraposition
Implication Elimination
Biconditional Elimination
De Morgen

$$(\alpha \wedge \beta) = (\beta \wedge \alpha)$$

$$(\alpha \vee \beta) = (\beta \vee \alpha)$$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha \vee \beta) \vee \gamma = \alpha \vee (\beta \vee \gamma)$$

$$\neg \neg \alpha = \alpha \qquad Dougletonic Doug$$

Commutativity of \\
Commutativity of \\
Associativity of \\
Associativity of \\
Associativity of \\
Double negation elimination
Contraposition
Implication Elimination
Biconditional Elimination
De Morgen
De Morgen

$$\begin{array}{llll} (\alpha \wedge \beta) & = & (\beta \wedge \alpha) & \text{Commutativity of } \wedge \\ (\alpha \vee \beta) & = & (\beta \vee \alpha) & \text{Commutativity of } \vee \\ (\alpha \wedge \beta) \wedge \gamma & = & \alpha \wedge (\beta \wedge \gamma) & \text{Associativity of } \wedge \\ (\alpha \vee \beta) \vee \gamma & = & \alpha \vee (\beta \vee \gamma) & \text{Associativity of } \vee \\ \neg \neg \alpha & = & \alpha & \text{Double negation elimination} \\ \alpha \rightarrow \beta & = & \neg \beta \rightarrow \neg \alpha & \text{Contraposition} \\ \alpha \rightarrow \beta & = & \neg \alpha \vee \beta & \text{Implication Elimination} \\ \alpha \leftrightarrow \beta & = & (\alpha \rightarrow \beta) \wedge (\beta \rightarrow \alpha) & \text{Biconditional Elimination} \\ \neg (\alpha \wedge \beta) & = & \neg \alpha \vee \neg \beta & \text{De Morgen} \\ \neg (\alpha \vee \beta) & = & \neg \alpha \wedge \neg \beta & \text{De Morgen} \\ \alpha \wedge (\beta \vee \gamma) & = & (\alpha \wedge \beta) \vee (\alpha \wedge \gamma) & \text{Distribution of } \wedge \text{ on } \vee \end{array}$$

$(\alpha \wedge \beta)$	=	$(\beta \wedge \alpha)$	Commutativity of \wedge
$(\alpha \vee \beta)$	=	$(\beta \vee \alpha)$	Commutativity of \lor
$(\alpha \wedge \beta) \wedge \gamma$	=	$\alpha \wedge (\beta \wedge \gamma)$	Associativity of ∧
$(\alpha \vee \beta) \vee \gamma$	=	$\alpha \vee (\beta \vee \gamma)$	Associativity of ∨
$\neg \neg \alpha$	=	α	Double negation elimination
$\alpha \to \beta$	=	$\neg \beta \rightarrow \neg \alpha$	Contraposition
$\alpha \to \beta$	=	$\neg \alpha \lor \beta$	Implication Elimination
$\alpha \leftrightarrow \beta$	=	$(\alpha \to \beta) \land (\beta \to \alpha)$	Biconditional Elimination
$\neg(\alpha \wedge \beta)$	=	$\neg \alpha \lor \neg \beta$	De Morgen
$\neg(\alpha \lor \beta)$	=	$\neg \alpha \land \neg \beta$	De Morgen
$\alpha \wedge (\beta \vee \gamma)$	=	$(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$	Distribution of \land on \lor
$\alpha \vee (\beta \wedge \gamma)$	=	$(\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	Distribution of \lor on \land

Soundness: doing right

Completeness: full coverage

- Soundness: doing right
- Completeness: full coverage

There are 10 defective bulbs in a box of 25.

- Mr. A gives me 10 bulbs none of them is defective
- Mr. B gives me 20 bulbs; 5 of them is defective

- Soundness: doing right
- Completeness: full coverage

There are 10 defective bulbs in a box of 25.

- Mr. A gives me 10 bulbs none of them is defective
- Mr. B gives me 20 bulbs; 5 of them is defective

A is sound

B is complete

- Soundness: doing right
- Completeness: full coverage

There are 10 defective bulbs in a box of 25.

- Mr. A gives me 10 bulbs none of them is defective
- Mr. B gives me 20 bulbs; 5 of them is defective

A is sound

B is complete

Evaluate a legal system "guilty until proven innocent" and "innocent until proven guilty"

- Soundness: doing right
- Completeness: full coverage

There are 10 defective bulbs in a box of 25.

- Mr. A gives me 10 bulbs none of them is defective
- Mr. B gives me 20 bulbs; 5 of them is defective

A is sound

B is complete

Evaluate a legal system "guilty until proven innocent" and "innocent until proven guilty"

What we want? both.

CNF, IMPL_FREE and NNF

Conjunctive normal form⁸, implication free⁹ and negative normal form¹⁰

Find CNF(NNF(IMPL_FREE(A)))

Where
$$A = \neg p \land q \rightarrow p \land (r \rightarrow q)$$

⁸everything is conjunctions of disjunction

 $^{^{9}}$ no \rightarrow

¹⁰no double negation

CNF, IMPL_FREE and NNF

Conjunctive normal form⁸, implication free⁹ and negative normal form¹⁰

Find CNF(NNF(IMPL_FREE(A)))

Where
$$A = \neg p \land q \rightarrow p \land (r \rightarrow q)$$

$$\begin{array}{c} \neg(\neg p \wedge q) \vee (p \wedge (\neg r \vee q)) \\ (p \vee \neg q) \vee (p \wedge (\neg r \vee q)) \\ (p \vee \neg q \vee p) \vee (p \wedge \neg q \wedge \neg r \vee q) \end{array}$$

⁸everything is conjunctions of disjunction

 $^{^{9}}$ no \rightarrow

¹⁰no double negation
Artificial Intelligence (IS-ZC444)

Horn Clause

Formula that can be generated by *H*

$$P ::= \bot | \top | p | q | r | ...$$

$$A ::= P | P \wedge A$$

$$C ::= A \rightarrow P$$

$$H ::= C | C \wedge H$$
(1

Horn Clause

Formula that can be generated by *H*

$$P ::= \bot | \top | p | q | r | ...$$

$$A ::= P | P \wedge A$$

$$C ::= A \rightarrow P$$

$$H ::= C | C \wedge H$$

$$(1)$$

Satisfiability

- . It marks ⊤ if it occurs in that list.
- If there is a conjunct P₁ ∧ P₂ ∧ · · · ∧ P_{ki} → P' of φ such that all P_j with 1 ≤ j ≤ k_i are marked, mark P' as well and go to 2. Otherwise (= there is no conjunct P₁ ∧ P₂ ∧ · · · ∧ P_{ki} → P' such that all P_j are marked) go to 3.
- 3. If \perp is marked, print out 'The Horn formula ϕ is unsatisfiable.' and stop. Otherwise, go to 4.
- 4. Print out 'The Horn formula ϕ is satisfiable.' and stop.

Horn Clause

Formula that can be generated by H

$$P ::= \bot | \top | p | q | r | ...$$

$$A ::= P | P \wedge A$$

$$C ::= A \rightarrow P$$

$$H ::= C | C \wedge H$$
(1)

Satisfiability

- It marks ⊤ if it occurs in that list.
- If there is a conjunct P₁ ∧ P₂ ∧ · · · ∧ P_{ki} → P' of φ such that all P_j with 1 ≤ j ≤ k_i are marked, mark P' as well and go to 2. Otherwise (= there is no conjunct P₁ ∧ P₂ ∧ · · · ∧ P_{ki} → P' such that all P_j are marked) go to 3.
- 3. If \bot is marked, print out 'The Horn formula ϕ is unsatisfiable.' and stop. Otherwise, go to 4.
- 4. Print out 'The Horn formula ϕ is satisfiable.' and stop.

```
(a) (p \land q \land w \to \bot) \land (t \to \bot) \land (r \to p) \land (\top \to r) \land (\top \to q) \land (u \to s) \land (\top \to u)
```


⁽b) $(p \land q \land w \to \bot) \land (t \to \bot) \land (r \to p) \land (\top \to r) \land (\top \to q) \land (r \land u \to w) \land (u \to s) \land (\top \to u)$ (c) $(p \land q \land s \to p) \land (q \land r \to p) \land (p \land s \to s)$

⁽d) $(p \land q \land s \rightarrow p) \land (q \land r \rightarrow p) \land (p \land s \rightarrow s)$

⁽e) $(p_5 \rightarrow p_{11}) \land (p_2 \land p_3 \land p_5 \rightarrow p_{13}) \land (\top \rightarrow p_5) \land (p_5 \land p_{11} \rightarrow \bot)$

⁽f) $(T \to q) \land (T \to s) \land (w \to \bot) \land (p \land q \land s \to \bot) \land (v \to s) \land (T \to r) \land (r \to p)$

Recall Wumpus World

- Performance gold +100, death
 -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- Sensor breeze, glitter, smell, bump, scream

Single Agent, Deterministic, Static, Discrete, !Observable & !Episodic

- $P_{x,y}$ if there is a pit in [x, y]
- $W_{x,y}$ if wumpus is in [x, y]

- $B_{x,y}$ if breeze is in [x, y]
- $S_{x,y}$ if stench is in [x, y]

We know $R_1: \neg P_{1,1}, R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}), R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}), R_4: \neg B_{1,1}, R_5: B_{2,1}$

Model Checking for Inference

• Seven symbols $P_{1,1}$, $B_{1,1}$, $P_{1,2}$, $P_{2,1}$, $B_{2,1}$, $P_{2,2}$, $P_{3,1}$ have $2^7 = 128$ models. In three of these knowledge base is true.

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	false	false	false	false $false$	false	false	true	true	true	true	false	false
false	false	false	false		false	true	true	true	felse	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	truc	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false : false
:	:	:	:	:	:	:	:	:	:	:	:	
true	true	true	true	true	true	true	false	true	true	false	true	

In all those three $\neg P_{1,2}$ is true, hence there is no pit in [1,2]. On the other hand $P_{2,2}$ is true on two and false in one so it is not confirmed whether there is pit in [2,2] or not.

Validity and Satisfiability

Validity: sentence is true in all models (tautologies)

$$\begin{matrix} A \lor \neg A \\ A \lor B \to A \lor B \end{matrix}$$

Satisfiability: sentence is true in some models

$$A \lor \neg B$$

 $A \to B$

Determine whether following sentence is valid or satisfiable

$$((A \land B) \rightarrow C) \leftrightarrow (A \rightarrow (B \rightarrow C))$$

Forward Chaining

Determines if a single proposition symbol q is entailed by the knowledge? (data driven reasoning)

- It begins from known facts and adds conclusions of the implication whose all the premises are known
- for $L_{1,1} \wedge breeze \rightarrow B_{1,1}$ if we know $L_{1,1}$ and breeze then $B_{1,1}$ is added in knowledge base ¹¹

Applies Modus Ponens

$$\frac{\phi \quad \phi \to \psi}{\psi}$$

Forward Chaining

Determines if a single proposition symbol q is entailed by the knowledge? (data driven reasoning)

- It begins from known facts and adds conclusions of the implication whose all the premises are known
- for $L_{1,1} \wedge breeze \rightarrow B_{1,1}$ if we know $L_{1,1}$ and breeze then $B_{1,1}$ is added in knowledge base ¹¹

Applies Modus Ponens

$$\frac{\phi \quad \phi \to \psi}{\psi}$$

 An and-or tree gets constructed

 $^{^{11}}L_{1,1}$: location is [1,1]

Backward Chaining

- Works backward from query
- If query Q is known to be true, then no work is needed.
- Otherwise, find those implications whose conclusion is Q
- If all the premises of one of those implications can be proven true (by backward chaining) then Q is true

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

- test(Q) is it true?
- test(P) is it true ?
- test(*L* ∧ *M*) ?
- ((test($A \land B$) or test($A \land P$)) and test($B \land L$) ? we know A and B so we have L this gives M
- Therefore P and hence Q

First Order Logic (Predicate Logic)

- We have constants, variables, predicates and functions
- Here P(x) could means $\forall x$ we have P(x) or $\exists x$ such that P(x)
- Variable *x* has a domain from where it gets values
- $\forall x, \exists y P(x, y)$ is not always same as $\exists y, \forall x P(x, y)$
- ullet When we say \exists a predicate then it is higher order logic

Examples

Not every customer have purchased milk and bread

First Order Logic (Predicate Logic)

- We have constants, variables, predicates and functions
- Here P(x) could means $\forall x$ we have P(x) or $\exists x$ such that P(x)
- Variable x has a domain from where it gets values
- $\forall x, \exists y P(x, y)$ is not always same as $\exists y, \forall x P(x, y)$
- ullet When we say \exists a predicate then it is higher order logic

Examples

Not every customer have purchased milk and bread

$$\exists c \; Cust(c) \land [\neg shop(milk, c) \lor \neg shop(bread, c)]$$

Only one customer have purchased guitar

First Order Logic (Predicate Logic)

- We have constants, variables, predicates and functions
- Here P(x) could means $\forall x$ we have P(x) or $\exists x$ such that P(x)
- Variable x has a domain from where it gets values
- $\forall x, \exists y P(x, y)$ is not always same as $\exists y, \forall x P(x, y)$
- ullet When we say \exists a predicate then it is higher order logic

Examples

Not every customer have purchased milk and bread

$$\exists c \; Cust(c) \land [\neg shop(milk, c) \lor \neg shop(bread, c)]$$

Only one customer have purchased guitar

$$\exists x \ [Cust(x) \land shop(G, x) \land \forall y [\neg(x = y) \land Cust(y) \Rightarrow \neg shop(G, y)]]$$

- 3 Only one customer have purchased guitar and pen
- 4 Highest purchase in forenoon is more than afternoon.

Inference in First Order Logic

- Universal Elimination ∀x Feels(x, king) could be Feels(Raju, king) substitution {x/Raju} is done using some ground term.
- Existential Elimination ∃x Feels(x, king) could be Feels(man, king) if man does not appear in knowledge base ¹²
- Existential Introduction If Feels(Raju, king) then we can say $\exists x \; Feels(x, king)$
- It is crime for Magadh to sell formula to a hostile country
- Country Bhind, an enemy of Magadh have purchased some formula from Dara
- Dara is from Magadh
- Question: Is Dara a criminal?

¹² man is a name of person who feels like king

Prolog

- A logic programming language ¹³
- Compile as ['a.pl'].
- If :- and , or ; not not
- write('hello'), nl

```
warm_blood(penguin).
warm_blood(human).
produce_milk(penguin).
produce_milk(human).
have_feather(penguin).
have_hair(human).
mammal(X):
warm_blood(X),
produce_milk(X),
```

have_hair(X).

- is_even(X):-Y is X//2, X =:= 2*Y.
- write('what is your name/'), read(X), write('Hi'),write(X).

?- mammal(penguin) no ?- mammal(X). X = human.

Many more things are possible

Thank You!

Thank you very much for your attention! Queries ?

(Reference¹⁴)

^{14 1)} Book - AIMA, ch-07, Russell and Norvig. 2) Book - Logic in CS, ch-01, Mitchel Huth and Mark Ryan. « 📑 »