Topologia *

Mateusz Zugaj, Michal Zmyslowski

Listopad 2017

Definicja 1 (Topologie na prostej). W zbiorze liczb rzeczywistych \mathbb{R} zdefiniujmy rodziny podzbiorów \mathcal{T}_i :

- 1. $T_1 = \mathcal{P}(\mathbb{R})$ topologia dyskretna
- 2. $\mathcal{T}_2 = \{U \subset \mathbb{R} \colon \forall_{s \in U} \exists_{t > s} [s, t) \subset U\}$ topologia prawej strzałki
- 3. $\mathcal{T}_3 = \{U \subset \mathbb{R} : \forall_{s \in U} \exists_{t < s} (t, s] \subset U\}$ topologia lewej strzałki
- 4. $T_4 = \{U \subset \mathbb{R} \colon \forall_{s \in U} \exists_{r < s < t} (r, t) \subset U\}$ topologia euklidesowa
- 5. $\mathcal{T}_5 = \{\emptyset\} \cup \{\mathbb{R}\} \cup \{(-\infty, x) \colon x \in \mathbb{R}\}$ topologia lewych przedziałów
- 6. $\mathcal{T}_6=\{\emptyset\}\cup\{\mathbb{R}\}\cup\{(x,+\infty)\colon x\in\mathbb{R}\}$ topologia prawych przedziałów
- 7. $\mathcal{T}_7=\{\emptyset\}\cup\{\mathbb{R}\}\cup\{U\subset\mathbb{R}\colon\mathbb{R}\setminus U$ jest zbiorem skończonym} topologia Zariskiego
- 8. $\mathcal{T}_8 = \{\emptyset\} \cup \{\mathbb{R}\}$ topologia antydyskretna

Zadanie 1. Niech \mathcal{T}_i będą rodzinami podzbiorów prostej rzeczywistej opisanymi w Definicji 1.

- a) Sprawdź, że rodziny T_i są topologiami.
- b) Porównaj topologie \mathcal{T}_i , rysując diagram inkluzji tych Topologii i zbadaj ich przecięcia.
- c) Zbadaj, które topologie \mathcal{T}_i mają własność Hausdorffa.
- d) O których parach przestrzeni $(\mathbb{R}, \mathcal{T}_i)$, $(\mathbb{R}, \mathcal{T}_j)$ potrafisz powiedzieć, że są lub nie są homeomorficzne? Narysuj i wypełnij tabelkę.

Rozwiązanie b) Ewidentnie $\mathcal{T}_2 \subset \mathcal{T}_1$ i $\mathcal{T}_3 \subset \mathcal{T}_1$. Następnie $[0,1) \in \mathcal{T}_2$, ale $[0,1) \not\in \mathcal{T}_3$. Podobnie $(0,1] \in \mathcal{T}_3$, ale $(0,1) \not\in \mathcal{T}_2$. Mamy, że $(0,1) \in \mathcal{T}_4$, jak również $(0,1) \in \mathcal{T}_3$ i $(0,1) \in \mathcal{T}_2$. Jednak $[0,1) \not\in \mathcal{T}_4$ i $(0,1] \not\in \mathcal{T}_4$. Czyli $\mathcal{T}_4 \subset \mathcal{T}_2$ i $\mathcal{T}_4 \subset \mathcal{T}_3$. Teraz $(-\infty,1) \in \mathcal{T}_5$, jak również $(-\infty,1) \in \mathcal{T}_4$. Podobnie $(1,\infty) \in \mathcal{T}_6$ i $(1,\infty) \in \mathcal{T}_4$. Jednak $(0,1) \not\in \mathcal{T}_5$ i $(0,1) \not\in \mathcal{T}_6$. Tak więc, $\mathcal{T}_5 \subset \mathcal{T}_4$ i $\mathcal{T}_6 \subset \mathcal{T}_4$. Mamy $(-\infty,1) \not\in \mathcal{T}_7$ i $(1,\infty) \not\in \mathcal{T}_7$. Teraz $\mathbb{R} \setminus \{1\} \in \mathcal{T}_7$, ale $\mathbb{R} \setminus \{1\} \not\in \mathcal{T}_5$ i $\mathbb{R} \setminus \{1\} \not\in \mathcal{T}_6$. Jednak $\mathbb{R} \setminus \{1\} \in \mathcal{T}_4$. Ostatecznie $\mathcal{T}_8 \subset \mathcal{T}_5$, $\mathcal{T}_8 \subset \mathcal{T}_6$, $\mathcal{T}_8 \subset \mathcal{T}_7$. c) Weźmy dowolne $x,y \in \mathbb{R}$ takie, że x < y. Teraz \mathcal{T}_1 ma własność Hausdorffa, bo $\{x\}, \{y\} \in \mathcal{T}_1$. Następnie dobierzmy $s,t,r \in \mathbb{R}$, że $x \in (s,t)$ i $y \in (t,r)$. Teraz

- $(s,t)\in\mathcal{T}_4$ i $(t,r)\in\mathcal{T}_4$. Więc \mathcal{T}_2 , \mathcal{T}_3 i \mathcal{T}_4 mają własność Hausdorffa. Przestrzenie \mathcal{T}_i dla i=5,6,7,8 nie mają własności Hausdorffa.
- d) Od razu można powiedzieć, że każda \mathcal{T}_i dla i=1,2,3,4 nie jest homeomorficzna z żadną z \mathcal{T}_j dla j=5,6,7,8, bo wcześniejsze mają własność Hausdorffa, a późniejsze nie. Również \mathcal{T}_1 nie jest homeomorficzna z \mathcal{T}_8 , bo moc pierwszej jest większa od drugiej, co wiadomo ze Wstępu do Matematyki.

Zadanie 2 (Bukiet prostych). Niech J będzie dowolnym zbiorem. W zbiorze $\mathbb{R} \times J$ rozpatrzmy relację równoważności

$$(t,i) \sim (s,j)$$
 wtedy i tylko wtedy gdy $t=s=0$ lub $(t,i)=(s,j)$

a zbiór klas abstrakcji oznaczmy $\mathbb{R} \wedge J^+$. Zauważmy, że $\mathbb{R} \wedge J^+ = \mathbb{R} \times J/0 \times J$ tzn. powstaje z iloczynu $\mathbb{R} \times J$ przez utożsamienie do punktu podzbioru $0 \times J$. W zbiorze $\mathbb{R} \wedge J^+$ rozpatrzymy dwie topologie:

- 1. Topologię T_k wyznaczoną przez metrykę węzła $d_k((t,i),(s,j)) = \begin{cases} |t-s| \ jeśli \ i=j \\ |t| + |s| \ jeśli \ i\neq j \end{cases}$
- 2. Topologię słabą \mathcal{T}_w tzn. taką, że zbiór $U \subset \mathbb{R} \wedge J^+$ jest otwarty wtedy i tylko wtedy gdy dla każdego $i \in J$ zbiór $U \cap \mathbb{R} \times \{i\}$ jest otwarty w topologii euklidesowej prostej.

Zauważ, że

- 1. $\mathcal{T}_k \subset \mathcal{T}_w$
- 2. Jeśli $|J| \geqslant \aleph_0$, to topologia słaba nie spełnia pierwszego aksjomatu przeliczalności
- 3. Jeśli $|J| \ge \aleph_0$, to topologia słaba jest niemetryzowalna.

Rozwiązanie

- 1. Niech $U \in \mathcal{T}_k$. Zauważmy, że kule B((x,i),r) w metryce d_k występują w dwóch postaciach
 - (a) B((x,i),r) dla $r \leq |x|$ jest odcinkiem otwartym na i-tej prostej, tj.

$$B((x,i),r) \cap (\mathbb{R} \times i) = \underbrace{(x-r,x+r)}_{\text{przedzial otwarty!}} \times \{i\}$$

(b) Dla r>|x| jest to suma dwóch zbiorów, odcinka otwartego zdefiniowanego tak samo jak wyżej ["patyczka"]

$$B((x,i),r)\cap (\mathbb{R}\times i)=\underbrace{(x-r,x+r)}_{\text{przedział otwarty!}}\times \{i\}$$

oraz zbioru ["lizaka"]

$$(-(r-|x|), r-|x|) \times (J \setminus \{i\})$$

Z definicji przestrzeni wyznaczanej przez metrykę każdy zbiór otwarty jest sumą kul w tej metryce, tj. $U = \bigcup_{u \in U} B_u$, gdzie $B_u = B(u, r)$ są zawarte w U.

Chcemy pokazać, że $U \in \mathcal{T}_w$, czyli że dla każdego i zbiór $U \cap (\mathbb{R} \times \{i\})$ jest otwarty w topologii euklidesowej. Skoro $U = \bigcup B_u$ to wystarczy, że B_u będzie otwarte w \mathcal{T}_w - wtedy U jako suma zbiorów otwartych w \mathcal{T}_w będzie otwarta.

Ale każda kula jest otwarta w \mathcal{T}_w . Dla dowolnej zachodzi

$$B((x,j),r) \cap (\mathbb{R} \times \{i\}) = \begin{cases} (x-r,x+r) & r < |x| \lor j = i \\ (-(r-|x|),r-|x|) & r \geqslant |x| \land j \neq i \end{cases}$$

W każdym przypadku, iloczyn jest przedziałem otwartym w topologii euklidesowej. Zatem $B((x,j),r) \in \mathcal{T}_w$, więc $U \in \mathcal{T}_w$ zgodnie z tym co wcześniej ustaliliśmy.

2. Udowodnimy, że topologia słaba nie ma punktowej bazy przeliczalnej w 0. Załóżmy, że istnieje taka baza = $\{U_1, U_2, U_3, \cdots\}$. Niech $J_0 \subseteq J$ będzie zbiorem przeliczalnym w J i $J_0 = \{j_1, j_2, \cdots\}$. Skonstruujemy taki zbiór otwarty U, że $0 \in V$ ale $\forall k \in \mathbb{N}$ $U_k \not\subseteq V$. Mianowicie bierzemy zbiory

$$V_k \subsetneq U_k \cap (\mathbb{R} \times \{j_k\})$$

I teraz $V = \bigcup V_k \cup ((J \setminus J_0) \times \mathbb{R})$. Widzimy, że gdyby $U_k \subseteq V$, to musiałoby być $U_k \cap (\mathbb{R} \times \{j_k\}) \subseteq V \cap (\mathbb{R} \times \{j_k\}) = V_k$, co jest sprzeczne z definicji V_k . Zatem założenie o istnieniu bazy przeliczalnej w zerze jest fałszywe.

3. Gdyby przestrzeń była metryzowalna, to zbiór kul o promieniach wymiernych o środku w 0 byłaby bazą punktową przeliczalną w zerze, co przy tych założeniach jest niemożliwe na mocy poprzedniego podpunktu.

Zadanie 3. Niech d_i dla i = 1, 2 będą dwoma metrykami w zbiorze X. Następujące warunki są równoważne:

- 1. Topologia wyznaczona przez d_2 jest drobniejsza niż wyznaczona przez d_1 , tzn. $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$.
- 2. Dla każdej kuli $\mathcal{B}_{d_1}(x,r_1)$ istnieje liczba $r_2 > 0$ taka, że $\mathcal{B}_{d_2}(x,r_2) \subset \mathcal{B}_{d_1}(x,r_1)$. 3. Jeśli ciąg jest zbieżny w metryce d_2 to jest zbieżny w metryce d_1 do tej samej granicy.

Rozwiązanie

 $1 \implies 2$

Załóżmy, że $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$. Niech $\mathcal{B}_{d_1}(x,r_1) \in \mathcal{T}(d_1)$. Z założenia $\mathcal{B}_{d_1}(x,r_1) \in \mathcal{T}(d_2)$. Z definicji topologii $\mathcal{T}(d_2)$ istnieje $r_2 > 0$ takie, że $\mathcal{B}_{d_2}(x,r_2) \subset \mathcal{B}_{d_1}(x,r_1)$.

 $2 \implies 1$

Załóżmy, że dla każdej kuli $\mathcal{B}_{d_1}(x,r_1)$ istnieje liczba $r_2>0$ taka, że

 $\mathcal{B}_{d_2}(x,r_2)\subset\mathcal{B}_{d_1}(x,r_1).$ Weźmy dowolny $y_s\in\mathcal{B}_{d_1}(x,r_1).$ Z definicji topologii $\mathcal{T}(d_1)$ istnieje r>0 takie, że $\mathcal{B}_{d_1}(y_s,r)\subset\mathcal{B}_{d_1}(x,r_1).$ Z założenia istnieje $r_s>0$ takie, że $\mathcal{B}_{d_2}(y_s,r_s)\subset\mathcal{B}_{d_1}(y_s,r).$ Z tego wynika, że $\bigcup_s\mathcal{B}_{d_2}(y_s,r_s)=\mathcal{B}_{d_1}(x,r_1)\in\mathcal{T}(d_1).$ Z definicji topologii $\bigcup_s\mathcal{B}_{d_2}(y_s,r_s)\in\mathcal{T}(d_2).$ Tak, więc $\mathcal{T}(d_1)\subset\mathcal{T}(d_2).$ $1\Longrightarrow3$

Załóżmy, że $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$. Niech ciąg $\{x_n\}_{n=1}^{\infty}$ będzie zbieżny do x w metryce d_2 . Załóżmy, że $\{x_n\}_{n=1}^{\infty}$ nie jest zbieżny do x w metryce d_1 . Z tego wynika, że istnieje $\epsilon > 0$, taki, że dla każdego n_{ϵ} istnieje $n > n_{\epsilon}$, że $x_n \notin \mathcal{B}_{d_1}(x,\epsilon)$. Z założenia $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$ wynika jednak, że istnieje liczba r > 0 taka, że $\mathcal{B}_{d_2}(x,r) \subset \mathcal{B}_{d_1}(x,\epsilon)$. Jako, że $\{x_n\}_{n=1}^{\infty}$ jest zbieżny do x w metryce d_2 , to z definicji zbieżności prawie wszystkie wyrazy $\{x_n\}_{n=1}^{\infty}$ znajdują się w $\mathcal{B}_{d_2}(x,r)$, co jest sprzeczne z faktem, że $x_n \notin \mathcal{B}_{d_1}(x,\epsilon)$. Z tego wynika, że $\{x_n\}_{n=1}^{\infty}$ jest zbieżny do x w metryce d_1 .

 $3 \implies 1$

Załóżmy, że jeśli ciąg jest zbieżny w metryce d_2 to jest zbieżny w metryce d_1 . Zawieranie się topologii jest równoważne zawieraniu się rodziny zbiorów domkniętych, tzn. $\mathcal{F}_{\mathcal{T}(d_1)} \subset \mathcal{F}_{\mathcal{T}(d_2)} \iff \mathcal{T}(d_1) \subset \mathcal{T}(d_2)$. Udowodnimy ten fakt w "prawą" stronę. Niech $A \in \mathcal{F}_{\mathcal{T}(d_1)}$. Jako, że A jest zbiorem domkniętym to $X \setminus A$ jest zbiorem otwartym, więc $X \setminus A \in \mathcal{T}(d_1)$. Z założenia wynika, że $A \in \mathcal{F}_{\mathcal{T}(d_2)}$, więc również $X \setminus A \in \mathcal{T}(d_2)$. Niech $M \in \mathcal{F}_{\mathcal{T}(d_1)}$. Z definicji domknięcia dostajemy, że $M \subset cl_{\mathcal{T}(d_2)}(M)$. Jeżeli $x \in cl_{\mathcal{T}(d_2)}(M)$, to istnieje $\{x_n\}_{n=1}^{\infty} \subset M$, taki, że $d_2(x_n,x) \to 0$. Z założenia dostajemy, że $d_1(x_n,x) \to 0$. Z tego wynika, że $x \in cl_{\mathcal{T}(d_1)}(M)$. M jest domknięty w $\mathcal{T}(d_1)$, czyli $M = cl_{\mathcal{T}(d_1)}(M)$. A z tego mamy, że $x \in M$, co daje $cl_{\mathcal{T}(d_2)}(M) \subset M$. Wtedy $cl_{\mathcal{T}(d_2)}(M) = M$, a z tego wynika, że $M \in \mathcal{F}_{\mathcal{T}(d_2)}$, czyli $\mathcal{F}_{\mathcal{T}(d_1)} \subset \mathcal{F}_{\mathcal{T}(d_2)}$. Tak więc, na mocy faktu, który wcześniej udowodniliśmy $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$.

Definicja 2. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Przez C(X) oznaczamy zbiór funkcji ciągłych $f: (X, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}_e)$, a przez $C_b(X)$ jego podzbiór składający się z funkcji ograniczonych. Dla dowolnej funkcji $f \in C_b(X)$ definiujemy $\|f\|_{sup} := \sup\{|f(x)| : x \in X\}$ oraz $\|f\|_{L^1} := \int_0^1 |f(t)| dt$.

Zadanie 4. Porównać topologię wyznaczoną przez normę $||f||_{sup}$ z topologią wyznaczoną przez normę $||f||_{L^1}$.

Rozwiazanie Niech

$$f_n(x) := \begin{cases} 1 - nx , & x \in [0, \frac{1}{n}] \\ 0 , & x \in (\frac{1}{n}, 1) \end{cases}$$

Wtedy $f_n \in C_b([0,1])$ i $||f_n(x)||_{L^1} = \frac{1}{2n} \to 0$, ale $||f_n(x)||_{sup} = 1 \neq 0$. Rozważmy $g_n \in C_b([0,1])$ taką, że $||g_n(x)||_{sup} \to 0$. Wtedy na mocy 9.31 $||g_n(x)||_{L^1} \leq \sup(|g_n(x)|)(1-0) \to 0$. Niech $d_{sup}(f,g) = ||f-g||_{sup}$ i $d_{L^1}(f,g) = ||f-g||_{L^1}$. Rozpatrzmy $(C_b(X), d_{sup})$ i $(C_b(X), d_{L^1})$. Jeżeli f_n jest zbieżny do f w przestrzeni $(C_b(X), d_{sup})$, tzn. $d_{sup}(f_n,f) \to 0$, to z wcześniejszych obserwacji $d_{L^1}(f_n,f) \to 0$, czyli jest zbieżny, również do f, w $(C_b(X),d_{L^1})$. Z poprzedniego zadania wiemy już, że wtedy $\mathcal{T}(d_{L^1}) \subset \mathcal{T}(d_{sup})$.