The Exponential Distribution

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Earthquake

Goal: Model time until next earthquake \tilde{t}

Assumption: Probability of earthquake in period of length ϵ is $\lambda \epsilon$, no matter what happened before

$$P(t \le \tilde{t} \le t + \epsilon | \tilde{t} > t) \approx \lambda \epsilon$$

Distribution of \tilde{t} ?

Earthquake

$$S(t) := 1 - F_{\tilde{\tau}}(t)$$

$$P(t < \tilde{t} \le t + \epsilon | \tilde{t} > t) = \frac{P(t < \tilde{t} \le t + \epsilon, \tilde{t} > t)}{P(\tilde{t} > t)}$$

$$= \frac{P(t < \tilde{t} \le t + \epsilon)}{P(\tilde{t} > t)}$$

$$= \frac{P(t < \tilde{t} \le t + \epsilon)}{P(\tilde{t} > t)}$$

$$= \frac{F_{\tilde{t}}(t + \epsilon) - F_{\tilde{t}}(t)}{1 - F_{\tilde{t}}(t)}$$

$$= \frac{S(t) - S(t + \epsilon)}{S(t)} \approx \lambda \epsilon$$

$$-\lambda = rac{1}{S(t)} \lim_{\epsilon o 0} rac{S(t+\epsilon) - S(t)}{\epsilon}$$

Earthquake

$$-\lambda = \frac{1}{S(t)} \lim_{\epsilon \to 0} \frac{S(t + \epsilon) - S(t)}{\epsilon}$$

$$= \frac{1}{S(t)} \frac{dS(t)}{dt}$$

$$= \frac{d \log S(t)}{dt}$$

$$-\lambda t + c = \log S(t)$$

$$c' \exp(-\lambda t) = S(t) = 1 - F_{\tilde{t}}(t)$$

$$F_{\tilde{t}}(t) = 1 - c' \exp(-\lambda t) = 1 - \exp(-\lambda t)$$

$$f_{\tilde{t}}(t) = \frac{dF_{\tilde{t}}(t)}{dt} = \lambda \exp(-\lambda t)$$

Exponential distribution

The pdf of an exponential random variable \tilde{t} with parameter λ is

$$f_{\tilde{t}}(t) = \begin{cases} \lambda e^{-\lambda t} & \text{if } t \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

$\lambda = 0.5$

$\lambda = 1$

$\lambda = 1.5$

Call center in bank

Goal: Model time between calls (6 am-7 am on weekdays)

Training set: Calls from January-June 1999

Test set: Calls from July-December 1999

KDE estimate

Exponential model

Conditional probabilities

If $\tilde{t} > t_0$ how does the distribution change?

We look at calls between 9 and 10 am on weekdays

Histogram $t_0 = 0$

$KDE t_0 = 0$

Histogram $t_0 = 25 \text{ s}$

KDE $t_0 = 25 \text{ s}$

Histogram $t_0 = 50 \text{ s}$

$\mathsf{KDE}\ t_0 = 50\ \mathsf{s}$

Histogram $t_0 = 75 \text{ s}$

KDE $t_0 = 75 \text{ s}$

Densities are similar

Conditional pdf given $ilde{t}>t_0$

$$egin{aligned} F_{ ilde{t} \mid ilde{t} > t_0}(t) &= \operatorname{P}\left(ilde{t} \leq t \mid ilde{t} > t_0
ight) \ &= rac{\operatorname{P}\left(t_0 < ilde{t} \leq t
ight)}{\operatorname{P}\left(ilde{t} > t_0
ight)} \ &= rac{F_{ ilde{t}}(t) - F_{ ilde{t}(t_0)}}{1 - F_{ ilde{t}}(t_0)} \ &= rac{e^{-\lambda t_0} - e^{-\lambda t}}{e^{-\lambda t_0}} \ &= 1 - e^{-\lambda(t - t_0)} \ f_{ ilde{t} \mid ilde{t} > t_0}\left(t
ight) = \lambda e^{-\lambda(t - t_0)} \end{aligned}$$

Exponential starting at t_0 ! Exponential distribution is memoryless

Graphical explanation

Graphical explanation

Graphical explanation

What have we learned?

Derivation of the exponential distribution

The exponential distribution is memoryless