Messaging and Driving: An Empirical Analysis of Dynamic Message Signs in Virginia

Alexander Cardazzi

West Virginia University

2021

Motivation

Traffic crashes and congestion represent two major transportation issues.

- \approx 1.4% of all deaths in the US are traffic fatalities (40,000 deaths x VSL = 2% of US GDP)
- Drivers in Washington DC lost an average of 124 hours (5 days) per commuter due to congestion (INRIX, 2019). ≈\$3,700 in wages for median income.
- Economists have studied these issues for some time (Vickrey, 1969).
- The US Senate just passed a \$1T infrastructure bill.

What can **DOTs** do about these issues?

What Can DOTs Do?

DOTs cannot change traffic laws or infrastructure.

DOTs try to alleviate crash risk and maintain speeds with Highway Signage

- Lessons from billboard advertisements: use simple, relevant, non-transitioning messages (Belyusar et al., 2016; Mollu et al., 2018; Harasimczuk et al., 2018; Reinolsmann et al., 2018).
- Non-traditional messages are most "effective" (Shealy et al., 2020).
- Some safety slogan messaging increases crashes (Hall and Madsen, 2021).

Research Questions

- What is the impact of general safety campaign slogans on crashes and speed?
- ② Does the structure and/or content of the messages matter?

Types of Dynamic Message Signs

Stationary DMS \checkmark

Portable DMS ✓

Blankout DMS X

Travel Time DMS X

Types of Messages - Safety Messages

DON'T TWEET
FROM THE
DRIVER'S SEAT

(a) Example 2

IGNORE THE PHONE
THE ROAD
IS CALLING

(b) Example 2

Types of Messages - Number of Pages

(a) Single Page Message

(b) Two Page Message

Example from a DMS on I-95N at mile marker 100

Crash rates are ≈20% higher for the two page-version of this message

Difference in average travel time pprox 30 seconds

Setting - Virginia

Data come from Virginia Department of Transportation (VDOT)

Data Sources

Data from VDOT:

- Linear Referencing Location System
- Minute-level DMS logs
 - Timestamp
 - Sign identifier
 - Message text (including on/off status)
 - Location (lat/long)
- Universe of crashes (Police & 511)
 - Report time*
 - Location (mile marker, lat/long)

Data from INRIX:

Hourly speed estimates by segment

Unit of Analysis: hourly speed and crashes for 391 DMS locations

• Distance between DMS locations in km ($\mu = 14.2, \sigma = 36$) - comparable to Hall and Madsen (2021) ($\mu = 13.7, \sigma = 29$).

Distribution of Crashes by Minute (DMV)

Distribution of Crashes by Minute (511)

Empirical Strategy

Problem: Messages, and therefore their characteristics, are not randomly assigned.

Empirical Strategy

Problem: Messages, and therefore their characteristics, are not randomly assigned.

Solution 1: Use pre-planned safety campaigns as exogenous variation.

Solution 2: Consider DMS information at the *beginning* of an hour.

Data Summary

	Mean	St. Dev.	Min	Max
Number of DMS	1.019	0.135	1	2
Stationary DMS	0.815	0.422	0	2
Portable DMS	0.204	0.408	0	2
Safety Campaign Day	0.164	0.370	0	1
Speed at Location	99.342	16.200	2	129
Number of DMS On	0.423	0.510	0	2
Saftey Message Displayed	0.026	0.160	0	2
Crash Message Displayed	0.030	0.172	0	2
Pages	0.633	0.825	0	6
Characters	16.796	22.329	0	156

N = 5,614,199

Data Summary

Model 1 - Safety Campaigns

$$\begin{split} Y_{s+k,t} &= \alpha \mathsf{DMS} \; \mathsf{On}_{s,t} + \beta_0 \mathsf{Campaign}_t \\ &+ \beta_1 (\mathsf{Campaign}_t \times \mathsf{Off}\text{-Peak}_t) \\ &+ \beta_2 (\mathsf{Campaign}_t \times \mathsf{DMS} \; \mathsf{On}_{s,t}) \\ &+ \beta_3 (\mathsf{Off}\text{-Peak}_t \times \mathsf{DMS} \; \mathsf{On}_{s,t}) \\ &+ \delta (\mathsf{Campaign}_t \times \mathsf{Off}\text{-Peak}_t \times \mathsf{DMS} \; \mathsf{On}_{s,t}) \\ &+ \mu_{s,m(t),d(t),h(t)} + \tau_{y(t)} + \eta_{holiday} + \epsilon_{s+k,t} \end{split}$$

Effect of Safety Campaigns on Incidents Over Space

Model 2 - Safety Messages

$$\begin{aligned} Y_{s+k,t} &= \alpha \mathsf{DMS} \; \mathsf{On}_{s,t} \\ &+ \delta (\mathsf{DMS} \; \mathsf{On} \times \mathsf{Safety} \; \mathsf{Msg})_{s,t} \\ &+ \beta_1 (\mathsf{DMS} \; \mathsf{On} \times \mathsf{Crash} \; \mathsf{Msg})_{s,t} \\ &+ \beta_2 (\mathsf{DMS} \; \mathsf{On} \times \mathsf{Hazard} \; \mathsf{Msg})_{s,t} \\ &+ \mu_{s,m(t),d(t),h(t)} + \tau_{v(t)} + \eta_{holiday} + \epsilon_{s+k,t} \end{aligned}$$

Effect of Safety Messaging on Incidents Over Space

Model 3 - Message Characteristics

$$\begin{split} Y_{s+k,t} &= \alpha \mathsf{DMS} \; \mathsf{On}_{s,t} \\ &+ \delta \big(\mathsf{DMS} \; \mathsf{On}_{s,t} \times \mathsf{Multi-Page}_{s,t} \big) + \beta \mathsf{Char}_{s,t} \\ &+ \mu_{s,m(t),d(t),h(t)} + \tau_{y(t)} + \eta_{holiday} + \epsilon_{s+k,t} \end{split}$$

Effect of Multi-Page Messaging Over Space

Results - Speed

Note:	* p < 0.	1, ** p < 0.05	, *** p < 0.01
R^2	0.791	0.793	0.791
Num. Obs.	5,583,114	5,583,114	5,583,114
DMS $On_{s,t} \times Multi-Page_{s,t}$			-1.352*** (0.228)
-,- 5 53,2		(0.123)	
DMS $On_{s,t} \times Safety Msg_{s,t}$, ,	0.525***	
. 5:	(0.140)		
Campaign _t \times Off-Peak _t \times DMS On _s	-0.009	,	,
	(0.127)	(0.144)	(0.291)
DMS On	-1.075***	-0.665***	-1.121***
	Eq (1)	Eq (2)	Eq (3)

 \bullet Crashes per kilometer per month for segments with DMS ≈ 1.4

- ullet Crashes per kilometer per month for segments with DMS pprox 1.4
- Eliminating multi-page messages: 1.4 ⇒ 1.3 crashes

- ullet Crashes per kilometer per month for segments with DMS pprox 1.4
- Eliminating multi-page messages: $1.4 \implies 1.3$ crashes
 - DMS are turned on 40% of the time.
 - Multi-page messaging is used 50% of those times.
 - Effect $x P(Turned on) x P(Multi-Page) \implies 9\%$ Increase

- ullet Crashes per kilometer per month for segments with DMS pprox 1.4
- Eliminating multi-page messages: $1.4 \implies 1.3$ crashes
 - DMS are turned on 40% of the time.
 - Multi-page messaging is used 50% of those times.
 - Effect x P(Turned on) x P(Multi-Page) \implies 9% Increase
- Multi-page messaging generates about 1,875 crashes per year

- ullet Crashes per kilometer per month for segments with DMS pprox 1.4
- Eliminating multi-page messages: 1.4 ⇒ 1.3 crashes
 - DMS are turned on 40% of the time.
 - Multi-page messaging is used 50% of those times.
 - Effect x P(Turned on) x P(Multi-Page) \implies 9% Increase
- Multi-page messaging generates about 1,875 crashes per year
 1.5% of all highway crashes

- ullet Crashes per kilometer per month for segments with DMS pprox 1.4
- Eliminating multi-page messages: $1.4 \implies 1.3$ crashes
 - DMS are turned on 40% of the time.
 - Multi-page messaging is used 50% of those times.
 - Effect x P(Turned on) x P(Multi-Page) \implies 9% Increase
- Multi-page messaging generates about 1,875 crashes per year
 1.5% of all highway crashes
- \bullet 0.6% of all crashes result in a fatality \implies 1 fatality per month

- Commuters in VA spent 28.7 minutes per trip (US Census Bureau)
- Average hourly income was about \$27.28

- Commuters in VA spent 28.7 minutes per trip (US Census Bureau)
- Average hourly income was about \$27.28
 - \implies Average commute time is worth \$13.05

- Commuters in VA spent 28.7 minutes per trip (US Census Bureau)
- Average hourly income was about \$27.28
 - ⇒ Average commute time is worth \$13.05
- Results indicate 2-4% slowdown ⇒ \$0.40 per trip

- Commuters in VA spent 28.7 minutes per trip (US Census Bureau)
- Average hourly income was about \$27.28
 - ⇒ Average commute time is worth \$13.05
- Results indicate 2-4% slowdown ⇒ \$0.40 per trip
 - \implies \$200 per driver

- Commuters in VA spent 28.7 minutes per trip (US Census Bureau)
- Average hourly income was about \$27.28
 - ⇒ Average commute time is worth \$13.05
- ullet Results indicate 2-4% slowdown \Longrightarrow \$0.40 per trip
 - ⇒ \$200 per driver
- \$200 \times 3.45M (2019 VA Employment) = \$700M

- Commuters in VA spent 28.7 minutes per trip (US Census Bureau)
- Average hourly income was about \$27.28
 - ⇒ Average commute time is worth \$13.05
- Results indicate 2-4% slowdown ⇒ \$0.40 per trip
 - ⇒ \$200 per driver
- $$200 \times 3.45M (2019 \text{ VA Employment}) = $700M$
 - \implies 0.12% of VA 2019 GDP

- Commuters in VA spent 28.7 minutes per trip (US Census Bureau)
- Average hourly income was about \$27.28
 - ⇒ Average commute time is worth \$13.05
- Results indicate 2-4% slowdown \implies \$0.40 per trip
 - \implies \$200 per driver
- \$200 x 3.45M (2019 VA Employment) = \$700M \Rightarrow 0.12% of VA's 2019 GDP
- Bento et al. (2020): WTP > Beckerian Value of Time

Discussion

- DOTs face a tradeoff between keeping drivers informed vs focused
- Updating information in a high stakes setting is (perhaps obviously) costly, in contrast to what DOTs might believe.
 - Decreased safety
 - Decreased speeds
- DOTs should be selective in the timing and formatting of messages to minimize negative externalities
- More research needs to be done on the impacts of DMS use especially considering the results of Hall and Madsen (2021) and this study.

Future Work

- Tokenization of Message Text
 - Are certain words "worse"? If so, are they intense words, like in Hall and Madsen (2021)?
- Investigating Route Changes
 - How effective are DMS at helping drivers find alternate routes when traffic levels are high?

Contact Information

Questions or Comments?

alex.cardazzi@gmail.com
https://alexcardazzi.github.io/