

Vishay Semiconductors

Dual 1 Form A Solid State Relay

Features

- Dual Channel (LH1500)
- · Current Limit Protection
- Isolation Test Voltage 5300 V_{RMS}
- Typical R_{ON} 20 Ω
- Load Voltage 350 V
- Load Current 150 mA
- High Surge Capability
- Linear, AC/DC Operation
- Clean Bounce Free Switching
- Low Power Consumption

Agency Approvals

- UL File No. E52744 System Code H or J
- CSA Certification 093751
- BSI/BABT Cert. No. 7980
- DIN EN 60747-5-5 (VDE 0884):2003-01 Available with Option 1
- FIMKO Approval

Applications

General Telecom Switching

- On/off Hook Control
- Ring Delay
- Dial Pulse
- Ground Start
- Ground Fault Protection

Instrumentation

Industrial Controls

Description

The LH1520 dual 1 Form A relays are SPST normally open switches that can replace electromechanical relays in many applications. They are constructed using a GaAlAs LED for actuation control and an integrated monolithic die for the switch output. The die, fabricated in a high-voltage dielectrically isolated technology is comprised of a photodiode array, switch control circuitry, and MOSFET switches. In addition, the LH1520 SSRs employ current-limiting circuitry, enabling them to pass FCC 68.302 and other regulatory surge requirements when overvoltage protection is provided.

Order Information

Part	Remarks		
LH1520AAC	SMD-8, Tubes		
LH1520AACTR	SMD-8, Tape and Reel		
LH1520AB	DIP-8, Tubes		

Document Number 83818 www.vishay.com

Vishay Semiconductors

Absolute Maximum Ratings, $T_{amb} = 25$ °C

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Ratings for extended periods of time can adversely affect reliability.

SSR

Parameter	Test condition	Symbol	Value	Unit
LED continuous forward current		I _F	50	mA
LED reverse voltage	$I_R \le 10 \mu A$	V _R	8.0	V
DC or peak AC load voltage	$I_L \le 50 \mu A$	V _L	350	V
Continuous DC load current , one pole operating		IL	150	mA
Continuous DC load current , two poles operating		IL	110	mA
Peak load current (single shot), Form B	t = 100 ms	I _P	2)	
Ambient temperature range		T _{amb}	- 40 to + 85	°C
Storage temperature range		T _{stg}	- 40 to + 150	°C
Pin soldering temperature	t = 10 s max	T _{sld}	260	°C
Input/output isolation test voltage	$t = 1.0 \text{ s}, I_{ISO} = 10 \mu\text{A max}$	V _{ISO}	5300	V _{RMS}
Pole-to-pole isolation voltage (S1 to S2) ¹⁾ , (dry air, dust free, at sea level)			1600	V
Output power dissipation (continuous)		P _{diss}	600	mW

¹⁾ Breakdown occurs between the output pins external to the package.

Electrical Characteristics, T_{amb} = 25 °C

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
LED forward current, switch turn-on	I _L = 100 mA, t = 10 ms	I _{Fon}		1.0	2.0	mA
LED forward current, switch turn-off	V _L = ± 300 V	I _{Foff}	0.2	1.1		mA
LED forward voltage	I _F = 10 mA	V _F	1.15	1.26	1.45	V

Output

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
ON-resistance	$I_F = 5.0 \text{ mA}, I_L = 50 \text{ mA}$	R _{ON}	12	20	25	Ω
OFF-resistance	$I_F = 0 \text{ mA}, V_L = \pm 100 \text{ V}$	R _{OFF}	0.5	5000		GΩ
Current limit	$I_F = 5.0 \text{ mA}, t = 5.0 \text{ ms},$ $V_L = \pm 6.0 \text{ V}$	I _{LMT}	230	270	370	mA
	$V_{L} = \pm 6.0 \text{ V}$					
Off-state leakage current	$I_F = 0 \text{ mA}, V_L = \pm 100 \text{ V}$			0.02	200	nA
	$I_F = 0 \text{ mA}, V_L = \pm 350 \text{ V}$				1.0	μΑ

www.vishay.com Document Number 83818 Rev. 1.2, 05-Nov-03

²⁾ Refer to Current Limit Performance Application Note for a discussion on relay operation during transient currents.

Vishay Semiconductors

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Output capacitance	$I_F = 0 \text{ mA}, V_L = 1.0 \text{ V}$			55		pF
	I _F = 0 mA, V _L = 50 V			10		pF
Pole-to-pole capacitance (S1 to S2)	I _F = 5.0 mA			0.5		pF
Switch offset	I _F = 5.0 mA			0.15		V

Transfer

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Input/output capacitance	V _{ISO} = 1.0 V	C _{ISO}		1.1		pF
Turn-on time	$I_F = 5.0 \text{ mA}, I_L = 50 \text{ mA}$	t _{on}		1.4	2.0	ms
Turn-off time	$I_F = 5.0 \text{ mA}, I_L = 50 \text{ mA}$	t _{off}		0.7	2.0	ms

Typical Characteristics ($T_{amb} = 25$ °C unless otherwise specified)

Figure 1. Recommended Operating Conditions

Figure 3. LED Forward Current vs. LED Forward Voltage

Figure 2. LED Voltage vs. Temperature

Figure 4. LED Reverse Current vs. LED Reverse Voltage

Document Number 83818 www.vishay.com

Vishay Semiconductors

Figure 5. LED Current for Switch Turn-on vs. Temperature

Figure 8. Load Current vs. Load Voltage

Figure 6. LED Dropout Voltage vs. Temperature

Figure 9. ON-Resistance vs. Temperature

Figure 7. Current Limit vs. Temperature

Figure 10. Variation in ON-Resistance vs. LED Current

Vishay Semiconductors

Figure 11. Switch Capacitance vs. Applied Voltage

Figure 14. Output Isolation

Figure 12. Insertion Loss vs. Frequency

Figure 15. Switch Breakdown Voltage vs. Load Current

Figure 13. Leakage Current vs. Applied Voltage

Figure 16. Switch Breakdown Voltage vs. Temperature

Vishay Semiconductors

Figure 17. Switch Offset Voltage vs. Temperature

Figure 20. Turn-off Time vs. Temperature

Figure 18. Switch Offset Voltage vs. LED Current

Figure 21. Turn-on Time vs. LED Current

Figure 19. Turn-on Time vs. Temperature

Figure 22. Turn-off Time vs. LED Current

Vishay Semiconductors

Package Dimensions in Inches (mm)

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

www.vishay.com **Document Number 83818** Rev. 1.2, 05-Nov-03