ICCS310: Assignment 5

Possawat Sanorkam possawat2017@hotmail.com March 14, 2021

1: Reject TM

$$\mathsf{REJECT}_\mathsf{TM} = \{ \langle M, x \rangle | \text{ M is a TM that rejects input} \}$$

Show directly (i.e., without resorting to reduction) that $\mathsf{REJECT}_\mathsf{TM}$ is undecidable.

Proof:

We want to show that $\mathsf{REJECT}_\mathsf{TM}$ is undecidable by showing the contradiction.

Assume for the sake of contradiction that the TM $W(\langle M, w \rangle)$ decides REJECT_{TM}.

$$W(\langle M, w \rangle) = \begin{cases} \text{reject} & \text{if } M \text{ accepts } w \\ \text{accept} & \text{if } M \text{ rejects } w \\ \text{reject} & \text{if } M \text{ loops on } w \end{cases}$$

Also, define TM $Y(\langle X \rangle)$ where X is a TM. On input $\langle X \rangle$,

- 1. Run W on $\langle X, \langle X \rangle \rangle$.
- 2. If W accepts, we accept. If W rejects, we rejects.

So we have,

$$Y(\langle X \rangle) = \begin{cases} \text{reject} & \text{if } X \text{ accepts } \langle X \rangle \\ \text{accept} & \text{if } X \text{ rejects } \langle X \rangle \\ \text{reject} & \text{if } X \text{ loops on } \langle X \rangle \end{cases}$$

Then,

$$Y(\langle Y \rangle) = \begin{cases} \text{reject} & \text{if } Y \text{ accepts } Y \\ \text{accept} & \text{if } Y \text{ rejects } Y \\ \text{reject} & \text{if } Y \text{ loops on } Y \end{cases}$$

We have that whatever Y try to decides on $\langle Y \rangle$ turns out to be that there is no certain answer. Since Y cannot decides, then W also cannot decides. Hence, it contradicts to our assumption that W decides REJECT_{TM}. Therefore, REJECT_{TM} is undecidable. \square

2: Accept vs. Reject

$$ACCEPT_{TM} = \{ \langle M, x \rangle | M \text{ is a TM that accepts input x} \}$$

(i) Prove that $ACCEPT_{TM} \leq REJECT_{TM}$

Proof:

Suppose that TM M_{REJECT} decides $\mathsf{REJECT}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ using M_{REJECT} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M by reversing the accept and reject states.
- 2. Run M_{REJECT} with $\langle M', w \rangle$.
- 3. If M_{REJECT} rejects, we accept. If M_{REJECT} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w. Hence, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{REJECT} . Therefore, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{REJECT}_{\mathsf{TM}}$. \square

(ii)) Prove that $REJECT_{TM} \leq ACCEPT_{TM}$

Proof:

Suppose that TM M_{REJECT} decides $\mathsf{REJECT}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{REJECT}_{\mathsf{TM}}$ using M_{ACCEPT} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M by reversing the accept and reject states.
- 2. Run M_{ACCEPT} with $\langle M', w \rangle$.
- 3. If M_{ACCEPT} accepts, we accept. If M_{ACCEPT} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w. Hence, M_{REJECT} can correctly decide $\mathsf{REJECT}_{\mathsf{TM}}$ provided that there is a TM M_{ACCEPT} . Therefore, $\mathsf{REJECT}_{\mathsf{TM}} \leq \mathsf{ACCEPT}_{\mathsf{TM}}$. \square

3: Reverse on TM

$$T = \{\langle M \rangle | M \text{ is a TM that accepts } \mathbf{rev}(w) \text{ whenever it accepts} \}$$

where $\mathbf{rev}(w)$ is the reverse of the string w. Show that T is undecidable.

Proof:

4: Undecidability

(i) Show that

 $\mathsf{TOTAL} = \{ \langle M \rangle | \text{ M is a Turing machine that halts on every input} \}$

is undecidable

Proof:

(ii) Show that

$$\mathsf{FINITE} = \{ \langle M \rangle | \text{ M is a Turing machine and } L(M) \text{ is a finite set} \}$$

is undecidable

Proof:

(iii) Show that

$$\mathsf{REGULAR} = \{ \langle M \rangle | \text{ M is a Turing machine and } L(M) \text{ is regular} \}$$

where $\mathbf{rev}(w)$ is the reverse of the string w. Show that T is undecidable.

Proof:

5: Total Is No Harder Than Finite

Prove that

 $\mathsf{TOTAL} \leq_T \mathsf{FINITE}$

is undecidable

Proof:

6: Finite Is No Harder Than Total

Prove that

 $\mathsf{FINITE} \leq_T \mathsf{TOTAL}$

is undecidable

Proof:

7: Extra: Undecidability of Nontrivial Properties

Proof: It is non trivial. How to decide on it though?