CREATE A CUSTOMER SEGMENTATION REPORT FOR ARVATO FINANCIAL SERVICES

Udacity - MACHINE LEARNING ENGINEER NANODEGREE CAPSTONE PROJECT

Radu L. Enuca

Bucharest, Romania https://github.com/raduenuca https://www.linkedin.com/in/raduenuca

August 14, 2019

ABSTRACT

In this project, we analyze demographic data for customers of a mail-order sales company ¹ in Germany, comparing it against demographics information for the general population. EDA ² is performed to understand and clean the data. Unsupervised learning techniques are used to perform customer segmentation, identifying the parts of the population that best describe the core customer base of the company. Then, we'll apply what we've learned on a third dataset with demographic information for targets of a marketing campaign for the company, and use a model to predict which individuals are most likely to convert into becoming customers for the company.

Keywords Exploratory Data Analysis · Unsupervised Learning · Supervised Learning

1 Definition

1.1 Project Overview

In this project, a mail-order sales company in Germany is interested in identifying segments of the general population to target with their marketing, to grow their customer base. Demographics information is available for both the general population as well as for prior customers of the company. We use this information to build a model of the customer base of the company. The target dataset contains demographic information for targets of a mailout marketing campaign. The objective is to identify which individuals are most likely to respond to the campaign and become customers of the mail-order company.

The data has been provided by Bertelsmann Arvato Analytics and consists of four data files:

- *Udacity_AZDIAS_052018.csv*: Demographics data for the general population of Germany; 891 211 persons (rows) x 366 features (columns).
- *Udacity_CUSTOMERS_052018.csv*: Demographics data for customers of a mail-order company; 191 652 persons (rows) x 369 features (columns).
- *Udacity_MAILOUT_052018_TRAIN.csv*: Demographics data for individuals who were targets of a marketing campaign; 42 982 persons (rows) x 367 (columns).
- *Udacity_MAILOUT_052018_TEST.csv*: Demographics data for individuals who were targets of a marketing campaign; 42 833 persons (rows) x 366 (columns).

¹The data is the property of Bertelsmann Arvato Analytics and represents a real-life data science task.

²Exploratory Data Analysis

The "CUSTOMERS" file contains three extra columns ('CUSTOMER_GROUP', 'ONLINE_PURCHASE', and 'PRODUCT_GROUP'), which provide broad information about the customers depicted in the file. Each row of the demographics files represents a single person, but also includes information outside of individuals, including information about their household, building, and neighborhood.

1.2 Problem Statement

The goal is to identify segments of the population that form the core customer base for the company. These segments can then be used to direct marketing campaigns towards audiences that have the highest expected rate of returns.

The information from the first two files is used to figure out how customers ("CUSTOMERS") are similar to or differ from the general population at large ("AZDIAS"), then use this analysis to make predictions on the other two files ("MAILOUT"), predicting which recipients are most likely to become a customer for the mail-order company.

The original "MAILOUT" file included one additional column, "RESPONSE," which indicated whether or not each recipient became a customer of the company. For the "TRAIN" subset, this column is present, but in the "TEST" subset it has been removed; it is against that withheld column that we will asses the final predictions. The higher the score obtained, the better the model is at predicting customers.

1.3 Metrics

We are dealing with an imbalanced classification problem, and we consider using metrics beyond accuracy such as recall, precision, and AUROC.

The evaluation metric chosen for this project is AUC for the ROC curve (see figure 1), relative to the detection of customers from the mail campaign. A ROC, or receiver operating characteristic, is a graphic used to plot the true positive rate (TPR, the proportion of actual customers that are labeled as so) against the false positive rate (FPR, the proportion of non-customers labeled as customers).

The line plotted on these axes depicts the performance of an algorithm as we sweep across the entire output value range. We start by accepting no individuals as customers (thus giving a 0.0 TPR and FPR) then gradually increase the threshold for accepting customers until all individuals are accepted (thus giving a 1.0 TPR and FPR). The AUC, or area under the curve, summarizes the performance of the model. If a model does not discriminate between classes at all, its curve should be approximately a diagonal line from (0,0) to (1,1), earning a score of 0.5. A model that identifies most of the customers first, before starting to make errors, has its curve start with a steep upward slope towards the upper-left corner before making a shallow slope towards the upper-right. The maximum score possible is 1.0 if all customers are perfectly captured by the model first.

Figure 1: Example of how AUROC looks graphically

2 Analysis

2.1 Data Exploration

The demographic data for the general population of Germany contains 366 features, and to display it here, we have to transpose it. Below are the first 5 samples from the first 10 features (for all the features, please see table 4 in the ANNEX section):

	Row_1	Row_2	Row_3	Row_4	Row_5
AGER_TYP	-1	-1	-1	2	-1
AKT_DAT_KL	NaN	9.00	9.00	1.00	1.00
ALTER_HH	NaN	0.00	17.00	13.00	20.00
ALTER_KIND1	NaN	NaN	NaN	NaN	NaN
ALTER_KIND2	NaN	NaN	NaN	NaN	NaN
ALTER_KIND3	NaN	NaN	NaN	NaN	NaN
ALTER_KIND4	NaN	NaN	NaN	NaN	NaN

Table 1: Small subsample from the general population dataset

The feature names are not very explanatory, but fortunately for us along with the datasets, we have two other files:

- DIAS Information Levels Attributes 2017.xlsx: Describes each feature.
- *DIAS Attributes Values 2017.xlsx*: Describes the type of each feature along with possible values along with values that represent missing or unknown information.

As we can see the dataset contains a lot of missing values (represented by NaN in table 1 and 4) and some of the values, like (-1, 0 or 9) also indicate missing or unknown information.

Based on the *DIAS Attributes - Values 2017.xlsx* we've built a new dataset *AZDIAS_Feature_Summary.csv* that contains a summary of properties for each demographics data column, as follows (for the full list please see table 5 in the ANNEX section):

	attribute	type	missing_or_unknown	information_level				
0	AGER_TYP	categorical	[-1,0]	person				
1	ALTERSKATEGORIE_GROB	ordinal	[-1,0,9]	person				
2	ALTER_HH	interval	[0]	household				
3	ANREDE_KZ	categorical	[-1,0]	person				
4	ANZ_HAUSHALTE_AKTIV	numeric		building				
5	ANZ_HH_TITEL	numeric		building				
6	ANZ_PERSONEN	numeric		household				
7	ANZ_TITEL	numeric		household				
8	BALLRAUM	ordinal	[-1]	postcode				
9	CAMEO_DEUG_2015	categorical	[-1,X]	microcell_rr4				
	Table 2: Feature summary subsample							

We use this file to help us make cleaning decisions for the project.

Missing Values The third column (*missing_or_unknown* of the feature attributes summary, documents the codes from the data dictionary that indicate missing or unknown data. Before converting data that matches a 'missing' or 'unknown' value code into a NaN value, we first have a look how much data takes on a 'missing' or 'unknown' code, and how much data is naturally missing, as a point of interest.

Select and Re-Encode Features Checking for missing data isn't the only way in which we can prepare a dataset for analysis. Since the unsupervised learning techniques we use only work on data that is encoded numerically, we need to

make a few encoding changes or additional assumptions to be able to make progress. While almost all of the values in the dataset are encoded using numbers, not all of them represent numeric values.

- For numeric and interval data, these features can be kept without changes.
- Most of the variables in the dataset are ordinal. While ordinal values may technically be non-linear in spacing, we make the simplifying assumption that the ordinal variables can be treated as being an interval in nature (that is, kept without any changes).
- Special handling may be necessary for the remaining two variable types: categorical, and 'mixed.'

Categorical Features For categorical features, we encode the levels as dummy variables. Depending on the number of categories, we can perform one of the following:

- For binary (two-level) categorical features that take numeric values, we can keep them without needing to do anything.
- If there are binary variables that take on non-numeric values, we need to re-encode the values as numbers or create a dummy variable.
- For multi-level categorical features (three or more values), we can choose to encode the values using multiple dummy variables (e.g., via *OneHotEncoder*)

Mixed-Type Features There are a handful of features that are marked as "mixed" in the feature summary that require special treatment before we can include then in the analysis. There are two in particular that deserve attention:

- PRAEGENDE_JUGENDJAHRE combines information on three dimensions: generation by decade, movement (mainstream vs. avantgarde), and nation (east vs. west). While there aren't enough levels to disentangle east from west, we create two new variables to capture the other two dimensions: an interval-type variable for the decade, and a binary variable for movement.
- CAMEO_INTL_2015 combines information on two axes: wealth and life stage. We break up the two-digit codes by their 'tens'-place and 'ones'-place digits into two new ordinal variables (which, for this project, is equivalent to just treating them as their raw numeric values).

Ordinal and Interval Features Nothing special here, we need to decide what to do with the missing values

Numerical Features Nothing special here, we need to decide what to do with the missing values and perhaps perform some scaling.

2.2 Exploratory Visualization

Figure 2a, obtained using the *missingno* package shows the missing values of the provided data and figure 2b same information but after we replaced the unknown or missing value codes with NaN.

Figure 2: Missing values per column before and after replacing unknown value codes

In figure 3a we have the distribution of missing value counts where we can see that that there are a few columns that are outliers in terms of the proportion of values that are missing. We also perform a similar assessment for the rows of the dataset to asses how much data is missing in each row (see figure 3b). As with the columns, we see some groups of points that have a very different number of missing values.

Figure 3: Distribution of missing value counts per column and row

2.3 Algorithms and Techniques

There are 2 parts of this project:

Unsupervised modeling The main bulk of our analysis is in this part of the project. Here, we use unsupervised learning techniques to describe the relationship between the demographics of the company's existing customers and the general population of Germany. By the end of this part, we should be able to describe parts of the general population that are more likely to be part of the mail-order company's primary customer base, and which parts of the general population are less so.

We first apply PCA (Principal Component Analysis) [Bui+13b] to reduce the dimensionality of the dataset [Shl05]. We decide on a number of components that explain at least 90% of the variance in data.

After PCA, we create KMeans[Bui+13a] models with clusters from 2 to 15. Clustering is a method of unsupervised learning, where each data point or cluster is grouped into a subset or a cluster, which contains similar kind of data points. We decide on the best number of clusters to take based on the Elbow[PDN04] method.

Supervised modeling To predict the probability of a person to reply to the mailing campaign, we create an XGBoost-Classifier model which we use to predict this probability.

Before training the model, we decide on a resampling technique for the data, and after we start by searching the best hyperparameters for models using all available features by using a Bayesian search.

Once we have a list of optimized hyperparameters, we use them for training a model on the resampled data. After training the model is used to predict on the TEST dataset.

2.4 Benchmark

Model evaluation is the process of objectively measuring how well machine learning models perform the specific tasks they were designed to do.

We use the AUC scores to benchmark the performance of the models. A model with the highest AUC is considered as the best performer. We train a LogisticRegression model with default parameters and use it to predict the probabilities for the train and test datasets. The obtained AUC score is our base score used for comparison.

3 Methodology

3.1 Data Preprocessing

Using the analysis and data exploration above, we've built the following preprocessing pipeline (the same cleaning process will also be applied on the training and testing datasets):

Figure 4: Preprocessing Pipeline

The preprocessing pipeline has the following components:

Parse pipeline composed of two steps:

- Parse Missing or Unknown custom pipeline that uses the feature summary constructed dataset (column missing_or _unknown) to recode values as NaNs.
- *Drop columns with T% NaNs* Custom pipeline that drops all features that have more than T% (75% in our case) missing values

Column Transform Pipeline uses the *ColumnTransform* pipeline from sci-kit learn to combine the following pipelines:

- Categorical Pipeline applies the following steps to all categorical features:
 - Categorical Transformer Custom pipeline transformer (see the paragraph: "Categorical Transformer: below for more details).
 - OneHotEncoder Encode categorical integer features as a one-hot numeric array.
- Oridnal Pipeline applies the following steps to all ordinal features:
 - SimpleImputer Imputation transformer for completing missing values by using the most frequent value along each column.
- Numerical Pipeline applies the following steps to all numeric features:
 - SimpleImputer Imputation transformer for completing missing values by using the mean along each column.
 - StandardScaler Standardize features by removing the mean and scaling to unit variance

Categorical Transformer Is a custom pipeline transformer that processes the categorical and mixed-type features by applying the following steps:

- Fill in the missing values using the most frequent value along each column
- Re-engineer the *PRAEGENDE_JUGENDJAHRE* mixed-type feature into two additional categorical features *DECADE* and *MOVEMENT* and then drop the original column
- Re-engineer the CAMEO_INTL_2015 mixed-type feature into two additional categorical features WEALTH
 and LIFE_STAGE and then drop the original column

In figure 5, we can see the distribution of feature types before and after dropping features with more than 75% missing values.

Figure 5: Feature per type

We also perform an analysis for rows with a lot of missing values. As we can see in Figure 3b, there are some rows with more than 85% missing values per row.

To know what to do with the outlier rows, we look the distribution of data values in columns that are not missing data (or are missing very little data) are similar or different between the two groups.

As we can see in Figure 13 in Section 6, the data with many missing values looks very different from the data with few or no missing values. We decide not to remove these rows.

3.2 Implementation

3.2.1 Perform Dimensionality Reduction

On our preprocessed data, we are now ready to apply dimensionality reduction techniques.

We use sklearn's PCA class to apply principal component analysis on the data, thus finding the vectors of maximal variance in the data.

We start by fitting a PCA on 685 dimensions (our initial dataset has 366 dimensions but increases to 685 after one-hot encoding the categorical features). You can find the results for the PCA in figure 6 below.

We check out the ratio of variance explained by each principal component as well as the cumulative variance explained.

Based on the results from the PCA fitted previously, we decide to keep the first 150 reduced dimensions, that explain 90% cumulative variance in data.

Now that we have our transformed principal components, we check out the weight of each variable on the first few components to see if we can interpret them some fashion.

Each principal component is a unit vector that points in the direction of highest variance (after accounting for the variance captured by earlier principal components). The further a weight is from zero, the more the principal component is in the direction of the corresponding feature. If two features have large weights of the same sign (both positive or both negative), then increases in one tend to expect to be associated with increases in the other. To contrast, features with different signs can be expected to show a negative correlation: increases in one variable should result in a decrease in the other.

To investigate the features, we map each weight to their corresponding feature name, then sort the features according to weight. The most interesting features for each principal component, are those at the beginning and end of the sorted list.

Figure 6: Principal Component Analysis

We present here the investigation of feature associations from the first three principal components:

Top 5 weights for PC1 D19_GESAMT_ONLINI D19_VERSAND_ONLINI ONLINE_AFFINITAET D19_BANKEN_ONLINI D19_GESAMT_ANZ_12	NE_QUOTE	12 0.4737 0.1393 First component is	s all about online affinity and s in the last 12 months				
Top 5 weights for PC2 ALTER_HH SEMIO_REL SEMIO_PFLICHT	0.2112	Second component describes the number and age of inhabitants, affinity to religion, being traditional minded and					
FINANZ_SPARER ORTSGR_KLS9	0.2055 0.1711	money saver financial topology					
Top 5 weights for PC3	0.2026						
ORTSGR_KLS9	0.3036	Philade and a second second					
EWDICHTE SEMIO EDI	0.2092		mber and density per square kilometer of				
SEMIO_ERL FINANZ_HAUSBAUER	0.1452 0.1156	•	being sensual minded, as well as having				
SEMIO LUST	0.1150	the house as the main financial focus					

Next, we see how the data clusters in the principal components space. We apply k-means clustering to the dataset and use the average within-cluster distance to decide the number of clusters to keep. We use sklearn's KMeans class to perform k-means clustering on the PCA-transformed data.

We fit a KMeans model on the 150 reduced dimensions, and we investigate the change within-cluster distance across for a range of clusters between 2 and 16.

Based on Figure 7, we can see that a good number of clusters is 8. We refit the k-means model with the selected number of clusters and obtain cluster predictions for the general population demographics data.

Figure 7: Average within-cluster distances

We compare the proportion of data in each cluster for the customer data to the proportion of data in each cluster for the general population:

Figure 8: Proportion of data points in each cluster for the general population and the customer data.

We inspect what kind of people are part of a cluster that is over-represented in the customer data compared to the general population (cluster 7)

Popular with the company - Cluster 7 By using PCA's inverse transform we obtain the following values

• SEMIO_VERT (1) # affinity indicating in what way the person is dreamily (highest affinity)

Figure 9: Cluster 7 - People popular with the company

- SEMIO_SOZ (2) # affinity indicating in what way the person is social-minded (very high affinity)
- SEMIO_KULT (3) # affinity indicating in what way the person is cultural minded (high affinity)
- SEMIO_FAM (6) # affinity indicating in what way the person is familiar minded (very low affinity)
- ANREDE_KZ_1 (0) # gender: female

We inspect what kind of people are part of a cluster with low representation in the customer data compared to the general population (cluster 4)

Figure 10: Cluster 4 - People unpopular with the company

Unpopular with the company - Cluster 4 By using PCA's inverse transform we obtain the following values

• D19_GESAMT_ONLINE_QUOTE_12 (0) # amount of online transactions within all transactions in the complete file: no Online-transactions within the last 12 months

- D19_VERSAND_ONLINE_QUOTE_12 (0) # amount of online transactions within all transactions in the segment mail-order: no Online-transactions within the last 12 months
- ONLINE_AFFINITAET (2) # online affinity: (average affinity)
- D19_BANKEN_ONLINE_QUOTE_12 (0) # amount of online transactions within all transactions in the segment bank: no Online-transactions within the last 12 months
- D19_GESAMT_ANZ_12 (1) # transaction activity TOTAL POOL in the last 12 months: very low activity

3.2.2 Supervised Learning Model

To implement the supervised model, we start by preprocessing the training dataset using the same pipeline as above.

We use the unsupervised model fitted in the previous step to predict the cluster in which the observations are present.

We start by analysing the training dataset and especially the distribution between the two typs of responses: 0-non customer and 1-customer:

Figure 11: Distribution of customer responses shows that we are dealing with an imbalanced dataset

There are several techniques to deal with an imbalanced dataset:

- Use the right evaluation metrics Evaluation metrics that can be applied in this case:
 - Precision/Specificity: how many selected instances are relevant
 - Recall/Sensitivity: how many relevant instances are selected
 - F1 score: harmonic mean of precision and recall

- MCC: correlation coefficient between the observed and predicted binary classifications
- AUC: the relation between true-positive rate and false positive rate (This is what we use in this project)
- **Re-sample the training set** Apart from using different evaluation criteria, one can also work on getting a different dataset. Two approaches to making a balanced dataset out of an imbalanced one are under-sampling and over-sampling.
 - Under-sampling balances the dataset by reducing the size of the abundant class. This method is used
 when the quantity of data is sufficient. By keeping all samples in the rare class and randomly selecting
 an equal number of samples in the abundant class, a balanced new dataset can be retrieved for further
 modeling.
 - Oversampling is used when the quantity of data is insufficient. It tries to balance dataset by increasing the size of rare samples. Rather than getting rid of abundant samples, new rare samples are generated by using, e.g., repetition, bootstrapping, or SMOTE (Synthetic Minority Over-Sampling Technique) [Cha+02].

We split the dataset in train and test datasets by specifying that the two datasets are to be stratified using the target and keep the same weight for the classes. The proportion of data after splitting is 80% for training and 20% for validation.

We create a benchmark model using LogisticRegression with the default parameters, and then we fine-tune an XGBoostClasifier model using Bayesian optimization [Koe18].

3.3 Refinement

We use several resampling techniques:

- No resampling
- SMOTE Synthetic Minority Over-sampling Technique
- ADASYN Adaptive Synthetic (ADASYN) sampling approach for imbalanced datasets
- ClusterCentroids Method that under samples the majority class by replacing a cluster of majority samples by the cluster centroid of a KMeans algorithm.
- TomekLinks Under-sampling by removing Tomek's links.
- SMOTETomek Over-sampling using SMOTE and cleaning using Tomek links.

We also define a search hyperspace that we use to do a Bayesian parameter search. We define a search space for the following hyper-parameters for XGBoost:

- 'n estimators': hp.quniform('n estimators', 100, 1000, 1),
- 'eta': hp.quniform('eta', 0.025, 0.5, 0.025),
- 'max depth': hp.choice('max depth', np.arange(1, 14, dtype=int)),
- 'min child weight': hp.quniform('min child weight', 1, 6, 1),
- 'subsample': hp.quniform('subsample', 0.5, 1, 0.05),
- 'gamma': hp.quniform('gamma', 0.5, 1, 0.05),
- 'colsample bytree': hp.quniform('colsample bytree', 0.5, 1, 0.05),
- 'eval_metric': 'auc',
- 'objective': 'binary:logistic',
- 'nthread': 4.
- 'booster': 'gbtree',
- 'tree method': 'gpu hist',
- 'silent': 1.
- 'seed': random_state

4 Results

4.1 Model Evaluation and Validation

We obtain the following results (in bold the best results for each case):

Resampling/Algorithm	Logistic Regression	Voting Classifier	Tuned XGBoostClassifier			
No resampling	0.5	0.5	N/A			
SMOTE	0.6564	0.9357	N/A			
ADASYN	0.6584	0.9365	N/A			
ClusterCentroids	0.6955	0.8785	N/A			
TomekLinks	0.5	0.5	N/A			
SMOTETomek	0.6564	0.9357	0.9467			
Table 3: Predictions for the validation set						

The VotingClassifier uses the following classifiers with default parameters:

- SVC C-Support Vector Classification
- MLPClassifier Multi-layer Perceptron classifier.
- KNeighborsClassifier Classifier implementing the k-nearest neighbors vote.
- RandomForestClassifier A random forest classifier

The tuned XGBoostClassifier has the following parameters after the Bayesian search:

colsample_bytree	0.75
eta	0.25
gamma	0.5
max_depth	8
min_child_weight	1.0
n_estimators	673.0
subsample	0.8

4.2 Justification

The final tuned XGBoostClassifier performs better not only on the validation set but also on the test set held for the Kaggle competition. Although the difference between the final model and the VotingClassifier with default parameters is small on the validation dataset, the VotingClassifier gets a result under 0.5 (or worse than random guessing) on the Kaggle competition.

5 Conclusion

5.1 Reflection

For a direct marketing campaign, it is essential to correctly identify the customers who will respond to a particular campaign.

In this project, we analyzed demographic data for customers of a mail-order sales company in Germany, comparing it against demographics information for the general population. Exploratory Data Analysis was performed to understand and clean the data. Unsupervised learning techniques were used to perform customer segmentation, identifying the parts of the population that best describe the core customer base of the company. Then, we applied what we've learned on a third dataset with demographic information for targets of a marketing campaign for the company, and use a model to predict which individuals are most likely to convert into becoming customers for the company (all of this is reflected in Figure 12).

This project was an excellent opportunity to apply and learn new techniques primarily related to imbalanced data problems. Also going beyond simple grid search for hyper-parameter tuning was both a new tool to learn and also a time saver.

Figure 12: Entire project pipeline

5.2 Improvement

Reflecting on the steps taken in this project, we can identify some areas where improvements can be made:

- Data preprocessing Engineer more categorical features: We believe that better results can be obtained if more categorical features are treated like mixed-type features and re-engineered.
- Data preprocessing Missing Data:
 - Analyze if there is data missing at random or there are patterns.
 - Try to find correlations between missing values and use PCA to remove some of them
 - Use a supervised model to predict the values for NaN instead of just filling with the median or mode.
- Dimensionality Reduction Use FAMD (Factor Analysis of Mixed Data) instead of applying PCA on both numerical and Categorical features

References

Buitinck, Lars et al. sklearn.cluster.KMeans. 2013. URL: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html.

- sklearn.decomposition.PCA. 2013. URL: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.

Chawla, Nitesh V. et al. "SMOTE: Synthetic Minority Over-sampling Technique". In: *Journal of Artificial Intelligence Research* 16 (June 2002). https://arxiv.org/pdf/1106.1813.pdf, pp. 321–357.

Koehrsen, Will. Automated Machine Learning Hyperparameter Tuning in Python. July 2018. URL: https://towardsdatascience.com/automated-machine-learning-hyperparameter-tuning-in-python-dfda59b72f8a.

Pham, D T, S S Dimov, and C D Nguyen. "Selection of K in K-means clustering". In: *Columbia Engineering - Eletrical Engineering* (May 2004). https://www.ee.columbia.edu/ dpwe/papers/PhamDN05-kmeans.pdf, pp. 1–17.

Shlens, Jonathon. "A Tutorial on Principal Component Analysis". In: *Carnegie Mello University - School of Computer Science* (Dec. 2005). https://www.cs.cmu.edu/ elaw/papers/pca.pdf, pp. 1–13.

6 ANNEX

6.1 First 5 rows from the AZDIAS dataset

	Row_1	Row_2	Row_3	Row_4	Row_5			
AGER_TYP	-1	-1	-1	2	-1			
AKT_DAT_KL	NaN	9.00	9.00	1.00	1.00			
ALTER_HH	NaN	0.00	17.00	13.00	20.00			
ALTER_KIND1	NaN	NaN	NaN	NaN	NaN			
ALTER_KIND2	NaN	NaN	NaN	NaN	NaN			
ALTER_KIND3	NaN	NaN	NaN	NaN	NaN			
ALTER_KIND4	NaN	NaN	NaN	NaN	NaN			
ALTERSKATEGORIE_FEIN	NaN	21.00	17.00	13.00	14.00			
ANZ_HAUSHALTE_AKTIV	NaN	11.00	10.00	1.00	3.00			
ANZ_HH_TITEL	NaN	0.00	0.00	0.00	0.00			
ANZ_KINDER	NaN	0.00	0.00	0.00	0.00			
ANZ_PERSONEN	NaN	2.00	1.00	0.00	4.00			
ANZ_STATISTISCHE_HAUSHALTE	NaN	12.00	7.00	2.00	3.00			
ANZ_TITEL	NaN	0.00	0.00	0.00	0.00			
ARBEIT	NaN	3.00	3.00	2.00	4.00			
BALLRAUM	NaN	6.00	2.00	4.00	2.00			
CAMEO_DEU_2015	NaN	8A	4C	2A	6B			
CAMEO_DEUG_2015	NaN	8	4	2	6			
CAMEO_INTL_2015	NaN	51	24	12	43			
CJT_GESAMTTYP	2.00	5.00	3.00	2.00	5.00			
CJT_KATALOGNUTZER	5.00	1.00	2.00	3.00	3.00			
CJT_TYP_1	1.00	5.00	4.00	2.00	3.00			
CJT_TYP_2	1.00	5.00	4.00	2.00	3.00			
CJT_TYP_3	5.00	2.00	1.00	4.00	3.00			
CJT_TYP_4	5.00	3.00	3.00	4.00	4.00			
CJT_TYP_5	5.00	1.00	2.00	5.00	3.00			
CJT_TYP_6	5.00	1.00	2.00	3.00	3.00			
D19_BANKEN_ANZ_12	0	0	0	0	3			
D19_BANKEN_ANZ_24	0	0	0	0	5			
D19_BANKEN_DATUM	10	10	10	10	5			
D19_BANKEN_DIREKT	0	0	0	0	1			
D19_BANKEN_GROSS	0	0	0	0	2			
D19_BANKEN_LOKAL	0	0	0	0	0			
D19_BANKEN_OFFLINE_DATUM	10	10	10	10	10			
D19_BANKEN_ONLINE_DATUM	10	10	10	10	5			
Continued on next page								

	Row_1	Row_2	Row_3	Row_4	Row_5
D19_BANKEN_ONLINE_QUOTE_12	NaN	NaN	0.00	0.00	10.00
D19_BANKEN_REST	0	0	0	0	6
D19_BEKLEIDUNG_GEH	0	0	0	0	6
D19_BEKLEIDUNG_REST	0	0	0	0	1
D19_BILDUNG	0	0	6	0	6
D19_BIO_OEKO	0	0	0	0	0
D19_BUCH_CD	0	0	0	6	6
D19_DIGIT_SERV	0	0	0	0	0
D19_DROGERIEARTIKEL	0	0	0	0	1
D19_ENERGIE	0	0	0	0	5
D19_FREIZEIT	0	0	0	0	0
D19_GARTEN	0	0	0	0	0
D19_GESAMT_ANZ_12	0	0	0	0	6
D19_GESAMT_ANZ_24	0	0	0	0	6
D19_GESAMT_DATUM	10	10	10	10	1
D19_GESAMT_OFFLINE_DATUM	10	10	10	10	6
D19_GESAMT_ONLINE_DATUM	10	10	10	10	1
D19_GESAMT_ONLINE_QUOTE_12	NaN	NaN	0.00	0.00	10.00
D19_HANDWERK	0	0	0	0	0
D19_HAUS_DEKO	0	0	0	0	5
D19_KINDERARTIKEL	0 NaN	0 NaN	0 9.00	0 9.00	0 1.00
D19_KONSUMTYP D19_KONSUMTYP_MAX	9	9	9.00 8	9.00 8	1.00
D19_KONSUMTTF_MAX D19_KOSMETIK	0	0	6	0	0
D19_LEBENSMITTEL	0	0	0	0	0
D19_LOTTO	NaN	NaN	0.00	0.00	0.00
D19_NAHRUNGSERGAENZUNG	0	0	0.00	0.00	0.00
D19 RATGEBER	0	0	0	0	0
D19_REISEN	0	0	0	6	0
D19_SAMMELARTIKEL	0	0	Ö	6	0
D19_SCHUHE	0	0	0	0	1
D19 SONSTIGE	0	0	6	6	4
D19_SOZIALES	NaN	NaN	0.00	0.00	0.00
D19 TECHNIK	0	0	6	6	5
D19_TELKO_ANZ_12	0	0	0	0	0
D19_TELKO_ANZ_24	0	0	0	0	1
D19_TELKO_DATUM	10	10	10	10	6
D19_TELKO_MOBILE	0	0	0	0	6
D19_TELKO_OFFLINE_DATUM	10	10	10	10	8
D19_TELKO_ONLINE_DATUM	10	10	10	10	10
D19_TELKO_ONLINE_QUOTE_12	NaN	NaN	0.00	0.00	0.00
D19_TELKO_REST	0	0	0	0	5
D19_TIERARTIKEL	0	0	0	0	0
D19_VERSAND_ANZ_12	0	0	0	0	6
D19_VERSAND_ANZ_24	0	0	0	0	6
D19_VERSAND_DATUM	10	10	10	10	1
D19_VERSAND_OFFLINE_DATUM	10	10	10	10	9
D19_VERSAND_ONLINE_DATUM	10	10	10	10	1
D19_VERSAND_ONLINE_QUOTE_12	NaN	NaN	0.00	0.00	10.00
D19_VERSAND_REST	0	0	0	0	2
D19_VERSI_ANZ_12	0	0	0	0	1
D19_VERSI_ANZ_24	0	0	0	0	3
D19_VERSI_DATUM	10	10	10	10	2
D19_VERSI_OFFLINE_DATUM	10	10	10	10	7
D19_VERSI_ONLINE_DATUM	10	10	10	10	10

	Row_1	Row_2	Row_3	Row_4	Row_5
D19_VERSI_ONLINE_QUOTE_12	NaN	NaN	0.00	0.00	0.00
D19_VERSICHERUNGEN	0	0	0	0	3
D19_VOLLSORTIMENT	0	0	7	0	0
D19_WEIN_FEINKOST	0	0	0	0	0
DSL_FLAG	NaN	1.00	1.00	1.00	1.00
EINGEZOGENAM_HH_JAHR	NaN	2004	2000	1998	2004
EWDICHTE	NaN	3.00	4.00	2.00	5.00
EXTSEL992	NaN	NaN	14.00	31.00	NaN
FINANZ_ANLEGER	5	5	2	2	1
FINANZ_HAUSBAUER	3	5	2 5	2	2
FINANZ_MINIMALIST	3	1	1	4	4
FINANZ_SPARER	4	5	4	2	3
FINANZ_UNAUFFAELLIGER	5	4	3	1	3
FINANZ_VORSORGER	3	2	1	5	4
FINANZTYP	4	1	1	6	5
FIRMENDICHTE	NaN	2.00	4.00	4.00	5.00
GEBAEUDETYP	NaN	8.00	1.00	1.00	1.00
GEBAEUDETYP_RASTER	NaN	3.00	4.00	4.00	5.00
GEBURTSJAHR	0	1996	1979		1963
GEMEINDETYP	NaN	22.00	22.00	40.00	21.00
GFK_URLAUBERTYP	10.00	10.00	10.00	1.00	5.00
GREEN_AVANTGARDE	0	0	1	0	0
HEALTH_TYP	-1	3	3	2	3
HH_DELTA_FLAG	NaN	0.00	0.00	NaN	0.00
HH_EINKOMMEN_SCORE	2.00	6.00	4.00	1.00	5.00
INNENSTADT	NaN	8.00	4.00	6.00	1.00
KBA05_ALTER1	NaN	3.00	2.00	2.00	0.00
KBA05_ALTER2	NaN	4.00	3.00	5.00	4.00
KBA05_ALTER3	NaN	1.00	3.00	3.00	4.00
KBA05_ALTER4	NaN	4.00	3.00	0.00	3.00
KBA05_ANHANG	NaN	0.00	0.00	1.00	0.00
KBA05_ANTG1	NaN	0.00	1.00	4.00	1.00
KBA05_ANTG2	NaN	0.00	3.00	1.00	4.00
KBA05_ANTG3	NaN	0.00	1.00	0.00	1.00
KBA05_ANTG4	NaN	2.00	0.00	0.00	0.00
KBA05_AUTOQUOT	NaN		3.00	4.00	3.00
KBA05_BAUMAX	NaN	5.00	0.00	1.00	0.00
KBA05_CCM1	NaN	1.00	5.00	2.00	4.00
KBA05_CCM2	NaN	5.00	2.00	3.00	1.00
KBA05_CCM3	NaN	1.00	3.00	5.00	4.00
KBA05_CCM4	NaN	4.00	0.00	1.00	2.00
KBA05_DIESEL	NaN	2.00	0.00	3.00	1.00
KBA05_FRAU	NaN	4.00	3.00	4.00	5.00
KBA05_GBZ	NaN	1.00	3.00	4.00	3.00
KBA05_GBZ KBA05_HERST1	NaN	5.00	2.00	4.00	2.00
KBA05_HERST2	NaN	5.00	2.00	3.00	2.00
KBA05_HERST3		2.00	3.00	3.00	4.00
KBA05_HERST4	NaN NaN	2.00	2.00	2.00	1.00
KBA05_HERST5		0.00	5.00		
KBA05 HERSTTEMP	NaN NaN	4.00	4.00	3.00	4.00
	NaN NaN			3.00	3.00 3.00
KBA05_KRSAQUOT	NaN NaN	1.00	3.00	4.00	
KBA05_KRSHERST1	NaN	5.00	3.00	4.00	3.00
KBA05_KRSHERST2	NaN	4.00	2.00	2.00	3.00
KBA05_KRSHERST3	NaN	2.00	3.00	3.00	3.00
KBA05_KRSKLEIN	NaN	1.00	3.00	1.00	2.00

	Row_1	Row_2	Row_3	Row_4	Row_5
KBA05 KRSOBER	NaN	2.00	2.00	2.00	2.00
KBA05_KRSVAN	NaN	1.00	2.00	2.00	3.00
KBA05_KRSZUL	NaN	2.00	3.00	3.00	2.00
KBA05_KW1	NaN	1.00	3.00	3.00	3.00
KBA05_KW2	NaN	3.00	2.00	4.00	2.00
KBA05_KW3	NaN	4.00	2.00	1.00	3.00
KBA05_MAXAH	NaN	2.00	3.00	3.00	2.00
KBA05_MAXBJ	NaN	1.00	4.00	4.00	2.00
KBA05_MAXHERST	NaN	2.00	5.00	3.00	3.00
KBA05_MAXSEG	NaN	4.00	1.00	2.00	1.00
KBA05_MAXVORB	NaN	3.00	1.00	2.00	1.00
KBA05_MOD1	NaN	3.00	0.00	2.00	3.00
KBA05_MOD2	NaN	2.00	2.00	4.00	1.00
KBA05_MOD3	NaN	2.00	5.00	4.00	1.00
KBA05_MOD4	NaN	0.00	1.00	2.00	4.00
KBA05_MOD8	NaN	0.00	1.00	1.00	2.00
KBA05_MODTEMP	NaN	1.00	4.00	3.00	3.00
KBA05_MOTOR	NaN	3.00	1.00	3.00	4.00
KBA05_MOTRAD	NaN	0.00	1.00	3.00	1.00
KBA05_SEG1	NaN	0.00	2.00	1.00	3.00
KBA05_SEG10	NaN	4.00	1.00	1.00	3.00
KBA05_SEG2	NaN	1.00	5.00	2.00	4.00
KBA05_SEG3	NaN	2.00	3.00	5.00	1.00
KBA05_SEG4	NaN	2.00	3.00	3.00	3.00
KBA05_SEG5	NaN	2.00	1.00	2.00	2.00
KBA05_SEG6	NaN	1.00	0.00	0.00	0.00
KBA05_SEG7	NaN	3.00	0.00	0.00	1.00
KBA05_SEG8	NaN	3.00	0.00	0.00	0.00
KBA05_SEG9	NaN	0.00	1.00	1.00	2.00
KBA05_VORB0	NaN	1.00	4.00	2.00	5.00
KBA05_VORB1	NaN	1.00	2.00	5.00	1.00
KBA05_VORB2	NaN	5.00	3.00	1.00	5.00
KBA05_ZUL1	NaN	5.00	2.00	3.00	3.00
KBA05_ZUL2	NaN	1.00	3.00	3.00	4.00
KBA05_ZUL3	NaN	0.00	4.00	3.00	2.00
KBA05_ZUL4	NaN	2.00	4.00	3.00	2.00
KBA13 ALTERHALTER 30	NaN	3.00	3.00	2.00	3.00
KBA13_ALTERHALTER_45	NaN	2.00	2.00	3.00	3.00
KBA13_ALTERHALTER_60	NaN	3.00	3.00	5.00	3.00
KBA13_ALTERHALTER_61	NaN	4.00	3.00	2.00	3.00
KBA13_ANTG1	NaN	2.00	2.00	2.00	1.00
KBA13 ANTG2	NaN	4.00	3.00	3.00	4.00
KBA13_ANTG3	NaN	2.00	1.00	1.00	2.00
KBA13_ANTG4	NaN	1.00	0.00	0.00	1.00
KBA13_ANZAHL_PKW	NaN	963.00	712.00	596.00	435.00
KBA13_AUDI	NaN	4.00	3.00	5.00	4.00
KBA13_AUTOQUOTE	NaN	2.00	3.00	3.00	3.00
KBA13 BAUMAX	NaN	2.00	1.00	1.00	2.00
KBA13_BJ_1999	NaN	3.00	2.00	2.00	3.00
KBA13_BJ_2000	NaN	3.00	2.00	2.00	3.00
KBA13_BJ_2004	NaN	3.00	4.00	3.00	3.00
KBA13_BJ_2006	NaN	3.00	5.00	3.00	2.00
KBA13_BJ_2008	NaN	3.00	3.00	4.00	0.00
KBA13_BJ_2009	NaN	2.00	1.00	3.00	5.00
KBA13_BMW	NaN	3.00	4.00	4.00	2.00
				inuad on m	

	Row_1	Row_2	Row_3	Row_4	Row_5
KBA13_CCM_0_1400	NaN	2.00	1.00	3.00	3.00
KBA13_CCM_1000	NaN	0.00	1.00	4.00	5.00
KBA13_CCM_1200	NaN	0.00	2.00	2.00	1.00
KBA13_CCM_1400	NaN	4.00	2.00	3.00	2.00
KBA13_CCM_1401_2500	NaN	3.00	3.00	2.00	1.00
KBA13_CCM_1500	NaN	1.00	4.00	3.00	4.00
KBA13_CCM_1600	NaN	2.00	3.00	3.00	1.00
KBA13_CCM_1800	NaN	2.00	4.00	2.00	3.00
KBA13_CCM_2000	NaN	5.00	3.00	3.00	3.00
KBA13_CCM_2500	NaN	3.00	3.00	4.00	3.00
KBA13_CCM_2501	NaN	3.00	4.00	4.00	5.00
KBA13_CCM_3000	NaN	0.00	3.00	3.00	5.00
KBA13_CCM_3001	NaN	5.00	5.00	5.00	5.00
KBA13_FAB_ASIEN	NaN	2.00	4.00	3.00	3.00
KBA13_FAB_SONSTIGE	NaN	3.00	3.00	2.00	2.00
KBA13_FIAT	NaN	4.00	3.00	3.00	3.00
KBA13_FORD	NaN	2.00	4.00	3.00	4.00
KBA13_GBZ	NaN	4.00	4.00	4.00	3.00
KBA13_HALTER_20	NaN	3.00	3.00	2.00	3.00
KBA13_HALTER_25	NaN	3.00	3.00	2.00	3.00
KBA13_HALTER_30	NaN	3.00	2.00	2.00	3.00
KBA13_HALTER_35	NaN	3.00	2.00	3.00	3.00
KBA13 HALTER 40	NaN	3.00	2.00	3.00	3.00
KBA13_HALTER_45	NaN	2.00	3.00	3.00	3.00
KBA13_HALTER_50	NaN	2.00	3.00	5.00	4.00
KBA13_HALTER_55	NaN	3.00	3.00	5.00	4.00
KBA13_HALTER_60	NaN	3.00	3.00	4.00	2.00
KBA13_HALTER_65	NaN	3.00	4.00	3.00	3.00
KBA13_HALTER_66	NaN	4.00	3.00	2.00	3.00
KBA13_HERST_ASIEN	NaN	1.00	3.00	3.00	3.00
KBA13_HERST_AUDI_VW	NaN	4.00	2.00	4.00	4.00
KBA13_HERST_BMW_BENZ	NaN	4.00	4.00	3.00	3.00
KBA13_HERST_EUROPA	NaN	4.00	3.00	2.00	4.00
KBA13_HERST_FORD_OPEL	NaN	2.00	3.00	2.00	3.00
KBA13_HERST_SONST	NaN	3.00	3.00	2.00	2.00
KBA13_HHZ	NaN	5.00	4.00	3.00	3.00
KBA13_KMH_0_140	NaN	3.00	1.00	5.00	5.00
KBA13_KMH_110	NaN	1.00	1.00	1.00	1.00
KBA13_KMH_140	NaN	3.00	1.00	5.00	5.00
KBA13_KMH_140_210	NaN	3.00	2.00	1.00	1.00
KBA13_KMH_180	NaN	2.00	2.00	2.00	1.00
KBA13_KMH_210	NaN	4.00	4.00	2.00	3.00
KBA13_KMH_211	NaN	3.00	4.00	5.00	5.00
KBA13_KMH_250	NaN	3.00	4.00	5.00	5.00
KBA13_KMH_251	NaN	1.00	1.00	1.00	1.00
KBA13_KRSAQUOT	NaN	2.00	3.00	3.00	3.00
KBA13_KRSHERST_AUDI_VW	NaN	4.00	3.00	4.00	4.00
KBA13_KRSHERST_BMW_BENZ	NaN	3.00	3.00	4.00	3.00
KBA13_KRSHERST_FORD_OPEL	NaN	3.00	2.00	2.00	2.00
KBA13_KRSSEG_KLEIN	NaN	2.00	2.00	2.00	2.00
KBA13_KRSSEG_OBER	NaN	2.00	3.00	2.00	2.00
KBA13_KRSSEG_VAN	NaN	2.00	2.00	2.00	1.00
KBA13_KRSZUL_NEU	NaN	1.00	1.00	2.00	3.00
KBA13_KW_0_60	NaN	3.00	1.00	3.00	3.00
KBA13_KW_110	NaN	4.00	3.00	1.00	3.00
			<u> </u>	inuad an r	

	Row_1	Row_2	Row_3	Row_4	Row_5
KBA13_KW_120	NaN	4.00	4.00	3.00	1.00
KBA13_KW_121	NaN	3.00	4.00	5.00	5.00
KBA13_KW_30	NaN	1.00	1.00	1.00	1.00
KBA13_KW_40	NaN	2.00	1.00	4.00	5.00
KBA13_KW_50	NaN	4.00	2.00	3.00	3.00
KBA13_KW_60	NaN	0.00	1.00	2.00	0.00
KBA13_KW_61_120	NaN	3.00	5.00	2.00	2.00
KBA13_KW_70	NaN	1.00	4.00	3.00	2.00
KBA13_KW_80	NaN	2.00	4.00	2.00	1.00
KBA13_KW_90	NaN	3.00	2.00	3.00	3.00
KBA13 MAZDA	NaN	2.00	3.00	2.00	3.00
KBA13_MERCEDES	NaN	4.00	4.00	3.00	3.00
KBA13_MOTOR	NaN	3.00	3.00	3.00	4.00
KBA13_NISSAN	NaN	2.00	3.00	5.00	4.00
KBA13_OPEL	NaN	3.00	2.00	2.00	3.00
KBA13_PEUGEOT	NaN	4.00	3.00	3.00	3.00
KBA13_RENAULT	NaN	3.00	3.00	2.00	4.00
KBA13_SEG_GELAENDEWAGEN	NaN	2.00	5.00	3.00	3.00
KBA13_SEG_GROSSRAUMVANS	NaN	3.00	3.00	4.00	3.00
KBA13_SEG_KLEINST	NaN	2.00	3.00	3.00	3.00
KBA13_SEG_KLEINWAGEN	NaN	2.00	3.00	3.00	3.00
KBA13_SEG_KOMPAKTKLASSE	NaN	5.00	1.00	4.00	3.00
KBA13_SEG_MINIVANS	NaN	4.00	3.00	4.00	2.00
KBA13_SEG_MINIWAGEN	NaN	2.00	3.00	3.00	3.00
KBA13_SEG_MITTELKLASSE	NaN	3.00	2.00	4.00	2.00
KBA13_SEG_OBEREMITTELKLASSE	NaN	3.00	4.00	3.00	4.00
KBA13_SEG_OBERKLASSE	NaN	3.00	3.00	1.00	4.00
KBA13_SEG_SONSTIGE	NaN	2.00	2.00	2.00	5.00
KBA13_SEG_SPORTWAGEN	NaN	3.00	4.00	3.00	4.00
KBA13_SEG_UTILITIES	NaN	3.00	5.00	2.00	2.00
KBA13_SEG_VAN	NaN	4.00	3.00	4.00	2.00
KBA13_SEG_WOHNMOBILE	NaN	2.00	2.00	2.00	5.00
KBA13_SITZE_4	NaN	3.00	4.00	3.00	3.00
KBA13_SITZE_5	NaN NaN	3.00	2.00	3.00	3.00
KBA13_SITZE_6		4.00	3.00	3.00	3.00
KBA13_TOYOTA	NaN NaN	2.00 3.00	3.00 3.00	3.00 4.00	3.00 4.00
KBA13_VORB_0 KBA13_VORB_1	NaN	3.00	4.00	3.00	2.00
KBA13_VORB_1 KBA13_VORB_1_2	NaN				2.00
KBA13_VORB_1_2 KBA13_VORB_2	NaN	3.00 3.00	4.00 2.00	2.00 3.00	3.00
KBA13_VORB_2 KBA13_VORB_3	NaN	3.00	2.00	2.00	4.00
KBA13_VW	NaN	4.00	2.00	4.00	3.00
KK_KUNDENTYP	NaN	NaN	NaN	NaN	1.00
KKK	NaN	2.00	2.00	0.00	3.00
KOMBIALTER	9	1	2	4	3
KONSUMNAEHE	NaN	1.00	5.00	4.00	4.00
KONSUMZELLE	NaN	1.00	0.00	0.00	0.00
LP_FAMILIE_FEIN	2.00	5.00	1.00	0.00	10.00
LP_FAMILIE_GROB	2.00	3.00	1.00	0.00	5.00
LP_LEBENSPHASE_FEIN	15.00	21.00	3.00	0.00	32.00
LP_LEBENSPHASE_GROB	4.00	6.00	1.00	0.00	10.00
LP_STATUS_FEIN	1.00	2.00	3.00	9.00	3.00
LP_STATUS_GROB	1.00	1.00	2.00	4.00	2.00
MIN_GEBAEUDEJAHR	NaN	1992	1992	1997	1992
MOBI_RASTER	NaN	1.00	2.00	4.00	1.00

	Row_1	Row_2	Row_3	Row_4	Row_5
MOBI_REGIO	NaN	1.00	3.00	4.00	3.00
NATIONALITAET_KZ	0	1	1	1	1
ONLINE_AFFINITAET	1.00	3.00	2.00	1.00	5.00
ORTSGR_KLS9	NaN	5.00	5.00	3.00	6.00
OST_WEST_KZ	NaN	W	W	W	W
PLZ8_ANTG1	NaN	2.00	3.00	2.00	2.00
PLZ8_ANTG2	NaN	3.00	3.00	2.00	4.00
PLZ8_ANTG3	NaN	2.00	1.00	2.00	2.00
PLZ8_ANTG4	NaN	1.00	0.00	0.00	1.00
PLZ8_BAUMAX	NaN	1.00	1.00	1.00	2.00
PLZ8_GBZ	NaN	4.00	4.00	4.00	3.00
PLZ8_HHZ	NaN	5.00	4.00	3.00	3.00
PRAEGENDE_JUGENDJAHRE	0	14	15	8	8
REGIOTYP	NaN	3.00	2.00	0.00	5.00
RELAT_AB	NaN	4.00	2.00	3.00	5.00
RETOURTYP_BK_S	5.00	1.00	3.00	2.00	5.00
RT_KEIN_ANREIZ	1.00	5.00	5.00	3.00	3.00
RT_SCHNAEPPCHEN	4.00	3.00	4.00	2.00	5.00
RT_UEBERGROESSE	1.00	5.00	5.00	3.00	5.00
SEMIO_DOM	6	7	7	4	2
SEMIO_ERL	3	2	6	7	4
SEMIO_FAM	6	4	1	1	4
SEMIO_KAEM	6	4	7	5	2
SEMIO_KRIT	7	4	7	4	3
SEMIO_KULT	3	3	3	4	6
SEMIO_LUST	5	2	4	4	4
SEMIO_MAT	5	3	3	1	2
SEMIO_PFLICHT	5	7	3	4	4
SEMIO_RAT	4	6	4	3	2
SEMIO_REL	7	4	3	2	4
SEMIO_SOZ	2	5	4	5	6
SEMIO_TRADV	3	6	3	4	2
SEMIO_VERT	1	1	4	4	7
SHOPPER_TYP	-1	3	2	1	2
SOHO_KZ	NaN	1.00	0.00	0.00	0.00
STRUKTURTYP	NaN	2.00	3.00	1.00	3.00
TITEL_KZ	NaN	0.00	0.00	0.00	0.00
UMFELD_ALT	NaN	3.00	2.00	4.00	4.00
UMFELD_JUNG	NaN	3.00	5.00	5.00	3.00
UNGLEICHENN_FLAG	NaN	1.00	0.00	0.00	0.00
VERDICHTUNGSRAUM	NaN	0.00	1.00	0.00	1.00
VERS_TYP	-1	2	1	1	2
VHA	NaN	0.00	0.00	1.00	0.00
VHN	NaN	4.00	2.00	0.00	2.00
VK_DHT4A	NaN	8.00	9.00	7.00	3.00
VK_DISTANZ	NaN	11.00	9.00	10.00	5.00
VK_ZG11	NaN	10.00	6.00	11.00	4.00
W_KEIT_KIND_HH	NaN	3.00	3.00	NaN	2.00
WOHNDAUER_2008	NaN	9.00	9.00	9.00	9.00
WOHNLAGE	NaN	4.00	2.00	7.00	3.00
ZABEOTYP	3	5	5	3	4
ANREDE_KZ	1	2	2	2	1
ALTERSKATEGORIE_GROB	2	1	3	4	3

Table 4: First 5 rows from the general population dataset

6.2 First 5 rows from the Feature Summary file

	attribute	type	missing_or_unknown	information_level
0	AGER_TYP	categorical	[-1,0]	person
1	ALTERSKATEGORIE_GROB	ordinal	[-1,0,9]	person
2	ALTER_HH	interval	[0]	household
3	ANREDE_KZ	categorical	[-1,0]	person
4	ANZ_HAUSHALTE_AKTIV	numeric		building
5	ANZ_HH_TITEL	numeric		building
6	ANZ_PERSONEN	numeric		household
7	ANZ_TITEL	numeric		household
8	BALLRAUM	ordinal	[-1]	postcode
9	CAMEO_DEUG_2015	categorical	[-1,X]	microcell_rr4
10	CAMEO_DEU_2015	categorical	[XX]	microcell_rr4
11	CAMEO_INTL_2015	mixed	[-1,XX]	microcell_rr4
12	CJT_GESAMTTYP	categorical	[0]	person
13	D19_BANKEN_ANZ_12	ordinal	[0]	household
14	D19_BANKEN_ANZ_24	ordinal	[0]	household
15	D19_BANKEN_DATUM	ordinal	[10]	household
16	D19_BANKEN_DIREKT	categorical	[0]	grid_125_125
17	D19_BANKEN_GROSS	categorical	[0]	grid_125_125
18	D19_BANKEN_LOKAL	categorical	[0]	grid_125_125
19	D19_BANKEN_OFFLINE_DATUM	ordinal	[10]	household
20	D19_BANKEN_ONLINE_DATUM	ordinal	[10]	household
21	D19_BANKEN_ONLINE_QUOTE_12	ordinal	[]	household
22	D19_BANKEN_REST	categorical	[0]	grid_125_125
23	D19_BEKLEIDUNG_GEH	categorical	[0]	grid_125_125
24	D19_BEKLEIDUNG_REST	categorical	[0]	grid_125_125
25	D19_BILDUNG	categorical	[0]	grid_125_125
26	D19_BIO_OEKO	categorical	[0]	grid_125_125
27	D19_BUCH_CD	categorical	[0]	grid_125_125
28	D19_DIGIT_SERV	categorical	[0]	grid_125_125
29	D19_DROGERIEARTIKEL	categorical	[0]	grid_125_125
30	D19_ENERGIE	categorical	[0]	grid_125_125
31	D19_FREIZEIT	categorical	[0]	grid_125_125
32	D19_GARTEN	categorical	[0]	grid_125_125
33	D19_GESAMT_ANZ_12	ordinal	[0]	household
34	D19_GESAMT_ANZ_24	ordinal	[0]	household
35	D19_GESAMT_DATUM	ordinal	[10]	household
36	D19_GESAMT_OFFLINE_DATUM	ordinal	[10]	household
37	D19_GESAMT_ONLINE_DATUM	ordinal	[10]	household
38	D19_GESAMT_ONLINE_QUOTE_12	ordinal	[]	household
39	D19_HANDWERK	categorical	[0]	grid_125_125
40	D19_HAUS_DEKO	categorical	[0]	grid_125_125
41	D19_KINDERARTIKEL	categorical	[0]	grid_125_125
42	D19_KONSUMTYP	categorical		household
43	KK_KUNDENTYP	categorical	[-1]	household
44	D19_KOSMETIK	categorical	[0]	grid_125_125
45	D19_LEBENSMITTEL	categorical	[0]	grid_125_125
46	D19_LOTTO	categorical	[0]	grid_125_125
47	D19_NAHRUNGSERGAENZUNG	categorical	[0]	grid_125_125
48	D19_RATGEBER	categorical	[0]	grid_125_125
49	D19_REISEN	categorical	[0]	grid_125_125
	D19_SAMMELARTIKEL	categorical	[0]	grid_125_125
50		_		
51	D19_SCHUHE	categorical	[0]	grid_125_125

	attribute	type	missing_or_unknown	information_level
53	D19_TECHNIK	categorical	[0]	grid_125_125
54	D19_TELKO_ANZ_12	ordinal	[0]	household
55	D19_TELKO_ANZ_24	ordinal	[0]	household
56	D19_TELKO_DATUM	ordinal	[10]	household
57	D19_TELKO_MOBILE	categorical	[0]	grid_125_125
58	D19_TELKO_OFFLINE_DATUM	ordinal	[10]	household
59	D19_TELKO_ONLINE_DATUM	ordinal	[10]	household
60	D19_TELKO_REST	categorical	[0]	grid_125_125
61	D19_TIERARTIKEL	categorical	[0]	grid_125_125
62	D19_VERSAND_ANZ_12	ordinal	[0]	household
63	D19_VERSAND_ANZ_24	ordinal	[0]	household
64	D19_VERSAND_DATUM	ordinal	[10]	household
65	D19_VERSAND_OFFLINE_DATUM	ordinal	[10]	household
66	D19_VERSAND_ONLINE_DATUM	ordinal	[10]	household
67	D19_VERSAND_ONLINE_QUOTE_12	ordinal	[]	household
68	D19_VERSAND_REST	categorical	[0]	grid_125_125
69	D19_VERSICHERUNGEN	categorical	[0]	grid_125_125
70	D19_VERSI_ANZ_12	ordinal	[0]	household
71	D19_VERSI_ANZ_24	ordinal	[0]	household
72	D19_VERSI_ANZ_24 D19_VOLLSORTIMENT	categorical	[0]	grid_125_125
73	D19_WEIN_FEINKOST	categorical	[0]	grid_125_125 grid_125_125
74	EWDICHTE	ordinal	[-1]	postcode
75	FINANZTYP	categorical	[-1] [-1]	•
76	FINANZ_ANLEGER	ordinal	[-1] [-1]	person
70 77	FINANZ_HAUSBAUER	ordinal	[-1] [-1]	person
78		ordinal		person
78 79	FINANZ_MINIMALIST	ordinal	[-1]	person
80	FINANZ_SPARER FINANZ_UNAUFFAELLIGER	ordinal	[-1] [-1]	person
81	FINANZ_UNAUFFAELLIGER FINANZ_VORSORGER	ordinal	[-1] [-1]	person
82	GEBAEUDETYP			person building
83		categorical ordinal	[-1,0]	building
84	GEBAEUDETYP_RASTER GEBURTSJAHR		[]	rr1_id
		numeric	[0]	person
85	GFK_URLAUBERTYP	categorical		person
86	GREEN_AVANTGARDE	categorical	[]	person
87	HEALTH_TYP	ordinal	[-1,0]	person
88	HH_EINKOMMEN_SCORE	ordinal	[-1,0]	household
89	INNENSTADT	ordinal	[-1]	postcode
90	KBA05_ALTER1	ordinal	[-1,9]	rr3_id
91	KBA05_ALTER2	ordinal	[-1,9]	rr3_id
92	KBA05_ALTER3	ordinal	[-1,9]	rr3_id
93	KBA05_ALTER4	ordinal	[-1,9]	rr3_id
94	KBA05_ANHANG	ordinal	[-1,9]	rr3_id
95	KBA05_ANTG1	ordinal	[-1]	rr3_id
96	KBA05_ANTG2	ordinal	[-1]	rr3_id
97	KBA05_ANTG3	ordinal	[-1]	rr3_id
98	KBA05_ANTG4	ordinal	[-1]	rr3_id
99	KBA05_AUTOQUOT	ordinal	[-1,9]	rr3_id
100	KBA05_BAUMAX	mixed	[-1,0]	rr3_id
101	KBA05_CCM1	ordinal	[-1,9]	rr3_id
102	KBA05_CCM2	ordinal	[-1,9]	rr3_id
103	KBA05_CCM3	ordinal	[-1,9]	rr3_id
104	KBA05_CCM4	ordinal	[-1,9]	rr3_id
105	KBA05_DIESEL	ordinal	[-1,9]	rr3_id
106	KBA05_FRAU	ordinal	[-1,9]	rr3_id
107	KBA05_GBZ	ordinal	[-1,0]	rr3_id
			Con	tinued on next page

	attribute	type	missing_or_unknown	information_level
108	KBA05_HERST1	ordinal	[-1,9]	rr3_id
109	KBA05_HERST2	ordinal	[-1,9]	rr3_id
110	KBA05_HERST3	ordinal	[-1,9]	rr3_id
111	KBA05_HERST4	ordinal	[-1,9]	rr3_id
112	KBA05_HERST5	ordinal	[-1,9]	rr3_id
113	KBA05_HERSTTEMP	ordinal	[-1,9]	building
114	KBA05_KRSAQUOT	ordinal	[-1,9]	rr3_id
115	KBA05_KRSHERST1	ordinal	[-1,9]	rr3_id
116	KBA05_KRSHERST2	ordinal	[-1,9]	rr3_id
117	KBA05_KRSHERST3	ordinal	[-1,9]	rr3_id
118	KBA05_KRSKLEIN	ordinal	[-1,9]	rr3_id
119	KBA05_KRSOBER	ordinal	[-1,9]	rr3_id
120	KBA05_KRSVAN	ordinal	[-1,9]	rr3_id
121	KBA05_KRSZUL	ordinal	[-1,9]	rr3_id
122	KBA05_KW1	ordinal	[-1,9]	rr3_id
123	KBA05_KW2	ordinal	[-1,9]	rr3_id
124	KBA05_KW3	ordinal	[-1,9]	rr3_id
125	KBA05_MAXAH	ordinal	[-1,9]	rr3_id
126	KBA05_MAXBJ	ordinal	[-1,9]	rr3_id
127	KBA05_MAXHERST	ordinal	[-1,9]	rr3_id
128	KBA05_MAXSEG	ordinal	[-1,9]	rr3_id
129	KBA05_MAXVORB	ordinal	[-1,9]	rr3_id
130	KBA05_MOD1	ordinal	[-1,9]	rr3_id
131	KBA05_MOD2	ordinal	[-1,9]	rr3_id
132	KBA05_MOD3	ordinal	[-1,9]	rr3_id
133	KBA05_MOD4	ordinal	[-1,9]	rr3_id
134	KBA05_MOD8	ordinal	[-1,9]	rr3_id
135	KBA05_MODTEMP	categorical	[-1,9]	building
136	KBA05_MOTOR	ordinal	[-1,9]	rr3_id
137	KBA05_MOTRAD	ordinal	[-1,9]	rr3_id
138	KBA05_SEG1	ordinal	[-1,9]	rr3_id
139	KBA05_SEG10	ordinal	[-1,9]	rr3_id
140	KBA05_SEG2	ordinal	[-1,9]	rr3_id
141	KBA05_SEG3	ordinal	[-1,9]	rr3_id
142	KBA05_SEG4	ordinal	[-1,9]	rr3_id
143	KBA05_SEG5	ordinal	[-1,9]	rr3_id
144	KBA05_SEG6	categorical	[-1,9]	rr3_id
145	KBA05_SEG7	ordinal	[-1,9]	rr3_id
146	KBA05_SEG8	ordinal	[-1,9]	rr3_id
147	KBA05_SEG9	ordinal	[-1,9]	rr3_id
148	KBA05_VORB0	ordinal	[-1,9]	rr3_id
149	KBA05_VORB1	ordinal	[-1,9]	rr3_id
150	KBA05_VORB2	ordinal	[-1,9]	rr3_id
151	KBA05_ZUL1	ordinal	[-1,9]	rr3_id
152	KBA05_ZUL2	ordinal	[-1,9]	rr3_id
153	KBA05_ZUL3	ordinal	[-1,9]	rr3_id
154	KBA05_ZUL4	ordinal	[-1,9]	rr3_id
155	KBA13_ALTERHALTER_30	ordinal	[-1]	plz8
156	KBA13_ALTERHALTER_45	ordinal	[-1]	plz8
157	KBA13_ALTERHALTER_60	ordinal	[-1]	plz8
158	KBA13_ALTERHALTER_61	ordinal	[-1]	plz8
159	KBA13_ANZAHL_PKW	numeric		plz8
160	KBA13_AUDI	ordinal	[-1]	plz8
161	KBA13_AUTOQUOTE	ordinal	[-1]	plz8
162	KBA13_BJ_1999	ordinal	[-1]	plz8
			Con	tinued on next page

at	tribute	type	missing_or_unknown	information_leve
	BA13_BJ_2000	ordinal	[-1]	plz8
164 K	BA13_BJ_2004	ordinal	[-1]	plz8
165 K	BA13_BJ_2006	ordinal	[-1]	plz8
166 K	BA13_BJ_2008	ordinal	[-1]	plz8
167 K	BA13_BJ_2009	ordinal	[-1]	plz8
168 K	BA13_BMW	ordinal	[-1]	plz8
	BA13_CCM_1000	ordinal	[-1]	plz8
	BA13 CCM 1200	ordinal	[-1]	plz8
	BA13 CCM 1400	ordinal	[-1]	plz8
	BA13_CCM_0_1400	ordinal	[-1]	plz8
	BA13_CCM_1500	ordinal	[-1]	plz8
	BA13_CCM_1600	ordinal	[-1]	plz8
	BA13_CCM_1800	ordinal	[-1]	plz8
	BA13_CCM_2000	ordinal	[-1]	plz8
	BA13_CCM_2500	ordinal	[-1]	plz8
	BA13_CCM_2501	ordinal	[-1]	plz8
	BA13_CCM_3000	ordinal	[-1]	plz8
	BA13_CCM_3001	ordinal	[-1]	plz8
	BA13_FAB_ASIEN	ordinal	[-1]	plz8
	BA13_FAB_SONSTIGE	ordinal	[-1]	plz8
	BA13_FIAT	ordinal	[-1] [-1]	plz8
	BA13_FORD	ordinal	[-1] [-1]	plz8
	BA13_HALTER_20	ordinal		
			[-1]	plz8
	BA13_HALTER_25	ordinal	[-1]	plz8
	BA13_HALTER_30	ordinal	[-1]	plz8
	BA13_HALTER_35	ordinal	[-1]	plz8
	BA13_HALTER_40	ordinal	[-1]	plz8
	BA13_HALTER_45	ordinal	[-1]	plz8
	BA13_HALTER_50	ordinal	[-1]	plz8
	BA13_HALTER_55	ordinal	[-1]	plz8
	BA13_HALTER_60	ordinal	[-1]	plz8
	BA13_HALTER_65	ordinal	[-1]	plz8
	BA13_HALTER_66	ordinal	[-1]	plz8
	BA13_HERST_ASIEN	ordinal	[-1]	plz8
	BA13_HERST_AUDI_VW	ordinal	[-1]	plz8
	BA13_HERST_BMW_BENZ	ordinal	[-1]	plz8
199 K	BA13_HERST_EUROPA	ordinal	[-1]	plz8
200 K	BA13_HERST_FORD_OPEL	ordinal	[-1]	plz8
201 K	BA13_HERST_SONST	ordinal	[-1]	plz8
202 K	BA13_KMH_110	ordinal	[-1]	plz8
203 K	BA13_KMH_140	ordinal	[-1]	plz8
	BA13_KMH_180	ordinal	[-1]	plz8
205 K	BA13_KMH_0_140	ordinal	[-1]	plz8
	BA13_KMH_140_210	ordinal	[-1]	plz8
	BA13_KMH_211	ordinal	[-1]	plz8
	BA13_KMH_250	ordinal	[-1]	plz8
	BA13_KMH_251	ordinal	[-1]	plz8
	BA13_KRSAQUOT	ordinal	[-1]	plz8
	BA13_KRSHERST_AUDI_VW	ordinal	[-1]	plz8
	BA13 KRSHERST BMW BENZ	ordinal	[-1]	plz8
	BA13_KRSHERST_FORD_OPEL	ordinal		
			[-1]	plz8
	BA13_KRSSEG_KLEIN	ordinal	[-1]	plz8
	BA13_KRSSEG_OBER	ordinal	[-1]	plz8
	BA13_KRSSEG_VAN	ordinal	[-1]	plz8
217 K	BA13_KRSZUL_NEU	ordinal	[-1]	plz8

	attribute	type	missing_or_unknown	information_level
218	KBA13_KW_30	ordinal	[-1]	plz8
219	KBA13_KW_40	ordinal	[-1]	plz8
220	KBA13_KW_50	ordinal	[-1]	plz8
221	KBA13_KW_60	ordinal	[-1]	plz8
222	KBA13_KW_0_60	ordinal	[-1]	plz8
223	KBA13_KW_70	ordinal	[-1]	plz8
224	KBA13_KW_61_120	ordinal	[-1]	plz8
225	KBA13_KW_80	ordinal	[-1]	plz8
226	KBA13_KW_90	ordinal	[-1]	plz8
227	KBA13_KW_110	ordinal	[-1]	plz8
228	KBA13_KW_120	ordinal	[-1]	plz8
229	KBA13_KW_121	ordinal	[-1]	plz8
230	KBA13_MAZDA	ordinal	[-1]	plz8
231	KBA13_MERCEDES	ordinal	[-1]	plz8
232	KBA13_MOTOR	ordinal	[-1]	plz8
233	KBA13_NISSAN	ordinal	[-1]	plz8
234	KBA13_OPEL	ordinal	[-1]	plz8
235	KBA13_PEUGEOT	ordinal	[-1]	plz8
236	KBA13_RENAULT	ordinal	[-1] [-1]	plz8
237	KBA13_SEG_GELAENDEWAGEN	ordinal	[-1] [-1]	plz8
238	KBA13_SEG_GROSSRAUMVANS	ordinal	[-1] [-1]	plz8
239	KBA13_SEG_KLEINST	ordinal	[-1] [-1]	plz8
240	KBA13 SEG KLEINWAGEN	ordinal		pizo plz8
240			[-1]	
	KBA13_SEG_KOMPAKTKLASSE	ordinal	[-1]	plz8
242	KBA13_SEG_MINIVANS	ordinal	[-1]	plz8
243	KBA13_SEG_MINIWAGEN	ordinal	[-1]	plz8
244	KBA13_SEG_MITTELKLASSE	ordinal	[-1]	plz8
245	KBA13_SEG_OBEREMITTELKLASSE	ordinal	[-1]	plz8
246	KBA13_SEG_OBERKLASSE	ordinal	[-1]	plz8
247	KBA13_SEG_SONSTIGE	ordinal	[-1]	plz8
248	KBA13_SEG_SPORTWAGEN	ordinal	[-1]	plz8
249	KBA13_SEG_UTILITIES	ordinal	[-1]	plz8
250	KBA13_SEG_VAN	ordinal	[-1]	plz8
251	KBA13_SEG_WOHNMOBILE	ordinal	[-1]	plz8
252	KBA13_SITZE_4	ordinal	[-1]	plz8
253	KBA13_SITZE_5	ordinal	[-1]	plz8
254	KBA13_SITZE_6	ordinal	[-1]	plz8
255	KBA13_TOYOTA	ordinal	[-1]	plz8
256	KBA13_VORB_0	ordinal	[-1]	plz8
257	KBA13_VORB_1	ordinal	[-1]	plz8
258	KBA13_VORB_1_2	ordinal	[-1]	plz8
259	KBA13_VORB_2	ordinal	[-1]	plz8
260	KBA13_VORB_3	ordinal	[-1]	plz8
261	KBA13_VW	ordinal	[-1]	plz8
262	KKK	ordinal	[-1,0]	rr1_id
263	KONSUMNAEHE	ordinal		building
264	LP_FAMILIE_FEIN	categorical	[0]	person
	LP_FAMILIE_GROB	categorical	[0]	person
	LP_LEBENSPHASE_FEIN	mixed	[0]	person
	LP LEBENSPHASE GROB	mixed	[0]	person
	LP_STATUS_FEIN	categorical	[0]	person
269	LP_STATUS_GROB	categorical	[0]	person
270	MIN_GEBAEUDEJAHR	numeric	[]	building
271	MOBI_REGIO	ordinal		rr1_id
272	NATIONALITAET_KZ	categorical	[-1,0]	
414	NATIONALITALI_KL	categorical	[-1,0]	person

	attribute	type	missing_or_unknow	n information_level
273	ONLINE_AFFINITAET	ordinal	[]	rr1_id
274	ORTSGR_KLS9	ordinal	[-1]	community
275	OST_WEST_KZ	categorical	[-1]	building
276	PLZ8_ANTG1	ordinal	[-1]	plz8
277	PLZ8_ANTG2	ordinal	[-1]	plz8
278	PLZ8_ANTG3	ordinal	[-1]	plz8
279	PLZ8_ANTG4	ordinal	[-1]	plz8
280	PLZ8_BAUMAX	mixed		plz8
281	PLZ8_GBZ	ordinal	[-1]	plz8
282	PLZ8_HHZ	ordinal	[-1]	plz8
283	PRAEGENDE_JUGENDJAHRE	mixed	[-1,0]	person
284	REGIOTYP	ordinal	[-1,0]	rr1_id
285	RELAT_AB	ordinal	[-1,9]	community
286	RETOURTYP_BK_S	ordinal	[0]	person
287	SEMIO_DOM	ordinal	[-1,9]	person
288	SEMIO ERL	ordinal	[-1,9]	person
289	SEMIO_FAM	ordinal	[-1,9]	person
290	SEMIO_KAEM	ordinal	[-1,9]	person
291	SEMIO_KRIT	ordinal	[-1,9]	person
292	SEMIO_KULT	ordinal	[-1,9]	person
293	SEMIO_LUST	ordinal	[-1,9]	person
294	SEMIO_MAT	ordinal	[-1,9]	person
295	SEMIO_PFLICHT	ordinal	[-1,9]	person
296	SEMIO_RAT	ordinal	[-1,9]	person
297	SEMIO_REL	ordinal	[-1,9]	person
298	SEMIO_SOZ	ordinal	[-1,9]	person
299	SEMIO_TRADV	ordinal	[-1,9]	person
300	SEMIO_VERT	ordinal	[-1,9]	person
301	SHOPPER_TYP	categorical	[-1]	person
302	TITEL_KZ	categorical	[-1,0]	person
303	VERS_TYP	categorical	[-1]	person
304	WOHNDAUER_2008	ordinal	[-1,0]	household
305	WOHNLAGE	mixed	[-1]	building
306	W_KEIT_KIND_HH	ordinal	[-1,0]	household
307	ZABEOTYP	categorical	[-1,9]	person
308	ARBEIT	ordinal	[-1,9]	community
309	AKDLIT AKT_DAT_KL	categorical	[]	unknown
310	ALTERSKATEGORIE_FEIN	categorical	[-1,0]	person
311	ALTER_KIND1	numeric	[]	unknown
312	ALTER_KIND2	numeric		unknown
313	ALTER_KIND3	numeric	[]	unknown
314	ALTER_KIND4	numeric	[]	unknown
315	ANZ_KINDER	numeric	[]	unknown
316	ANZ_STATISTISCHE_HAUSHALTE	numeric	[]	unknown
317	CJT_KATALOGNUTZER	categorical		unknown
318	CJT_TYP_1	categorical		unknown
319	CJT_TYP_2	categorical	[]	unknown
320	CJT_TYP_3	categorical		unknown
321	CJT_TYP_4	categorical		unknown
322	CJT_TYP_5	categorical		unknown
323	CJT_TYP_6	categorical		unknown
324	D19_KONSUMTYP_MAX	categorical		household
325	D19_SOZIALES	categorical	[0]	grid_125_125
326	D19_TELKO_ONLINE_QUOTE_12	ordinal	[10]	household
327	D19_VERSI_DATUM	ordinal	[10]	household
			C	ontinued on next page

27

	attribute	type	missing_or_unknown	information_level	
328	D19_VERSI_OFFLINE_DATUM	ordinal	[10]	household	
329	D19_VERSI_ONLINE_DATUM	ordinal	[10]	household	
330	D19_VERSI_ONLINE_QUOTE_12	ordinal		household	
331	DSL_FLAG	categorical		unknown	
332	EINGEZOGENAM_HH_JAHR	numeric		unknown	
333	EXTSEL992	numeric		unknown	
334	FIRMENDICHTE	categorical		unknown	
335	HH_DELTA_FLAG	categorical	[]	unknown	
336	KBA13_ANTG1	ordinal	[-1]	plz8	
337	KBA13_ANTG2	ordinal	[-1]	plz8	
338	KBA13_ANTG3	ordinal	[-1]	plz8	
339	KBA13_ANTG4	ordinal	[-1]	plz8	
340	KBA13_CCM_1401_2500	ordinal	[-1]	plz8	
341	KBA13_GBZ	ordinal	[-1,0]	unknown	
342	KBA13_HHZ	ordinal	[-1]	unknown	
343	KBA13_KMH_210	ordinal	[-1]	plz8	
344	KOMBIALTER	categorical	[9]	unknown	
345	KONSUMZELLE	categorical		unknown	
346	MOBI_RASTER	categorical		unknown	
347	RT_KEIN_ANREIZ	categorical	[]	unknown	
348	RT_SCHNAEPPCHEN	categorical		unknown	
349	RT_UEBERGROESSE	categorical		unknown	
350	SOHO_KZ	categorical		person	
351	STRUKTURTYP	categorical		household	
352	UMFELD_ALT	categorical		unknown	
353	UMFELD_JUNG	categorical		unknown	
354	UNGLEICHENN_FLAG	categorical		unknown	
355	VERDICHTUNGSRAUM	numeric		unknown	
356	VHA	categorical		unknown	
357	VHN	categorical		unknown	
358	VK_DHT4A	numeric		unknown	
359	VK_DISTANZ	numeric		unknown	
360	VK_ZG11	numeric		unknown	
361	KBA13_BAUMAX	mixed	[-1,0]	plz8	
362	GEMEINDETYP	categorical		unknown	
Table 5: Feature summary					

6.3 Rows missing data analysis

Figure 13: Distribution of data values in columns that are not missing data (or are missing very little data) for rows with less or more than 85% missing data