

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

Студент Козырнов Александр Дмитриевич

Группа ИУ7 – 32**Б**

Вариант 6

Преподаватель Силантьева А. В.

Оглавление

ОПИСАНИЕ УСЛОВИЯ ЗАДАЧИ	3
ОПИСАНИЕ ТЕХНИЧЕСКОГО ЗАДАНИЯ	3
ОПИСАНИЕ СТРУКТУРЫ ДАННЫХ	<u>5</u>
ОПИСАНИЕ АЛГОРИТМА	6
<u> НАБОР ТЕСТОВ</u>	<u>7</u>
ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ	8
вывол	q

Описание условия задачи

Смоделировать операцию деления действительного числа в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 35 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 35 десятичных цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 35 значащих цифр, а K1 - до 5 цифр.

Описание технического задания

Входные данные:

Действительное число: строка, содержащая вещественное число в виде [+\-]m.n[Ee][+\-]K. Если не указать знак перед числом и/или экспонентой— по умолчанию будется считаться за '+'. Суммарная длина <m+n> - 35 цифры; длина порядка — 5 цифр.

Целое число: строка, содержащая целое число в виде $[+\-m]$. Если не указать знак перед числом — по умолчанию будется считаться за '+'. Длина числа m - 35 цифр.

Выходные данные:

Длинное число в виде [+-]0.m1e[+-]К1. Длинна мантиссы <m1> - 35 цифр; длина порядка <K1> —5 цифр.

Действие программы:

Деление действительного числа на целое.

Обращение к программе:

Запускается через терминал в командной строчке с помощью ./app.exe. Для помощи напишите любой другой аргумент после, например ./app.exe -h. Далее вводятся числа

Аварийные ситуации:

1. Некорректный ввод: превышение длины при вводе действительного числа (больше 35 цифры).

Код ошибки – 3.

2. Некорректный ввод: превышение длины при вводе целого числа (больше 35 цифры).

Код ошибки – 3.

3. Некорректный ввод: строка с действительным числом не подходит под указанный вид ввода

Код ошибки – 5.

4. Некорректный ввод: строка с целым числом не подходит под указанный вид ввода

Код ошибки – 5.

 Некорректный ввод/переполнение в вычислениях: превышение длинны порядка (больше 5 символов).
 Код ошибки – 4.

Во всех нештатных ситуациях программа локализует ошибку с уточнением. Однако если произойдет неизвестная ошибка в какой-то части программа, будет написано: "Случилась непредвиденная ошибка в <этой части программы>" -, где <> показывают, где случилась ошибка

Описание структуры данных

После ввода числа, оно хранится в массиве digit_t длиной 35 для действительного и целого. Далее действительное число обрабатывается и записывается в структуру real_t.

Структура real_t:

```
struct real_t
{
    bool is_neg_mantis;
```

```
mantis_t mantissa;
int exponent;
size_t size;
};
```

Поля структуры:

```
Is_neg_mantis — является ли число отрицательным или нет mantissa — мантисса числа exponent — значение порядка size — размер значащих цифр мантиссы.
```

Целое число обрабатывается и записывается в структуру int_t.

Структура int_t:

```
struct int_t
{
    bool is_neg;
    mantis_t mantissa;
    size_t size;
};
```

Поля структуры:

```
Is_neg- является ли число отрицательным или нет mantissa — мантисса числа size – размер значащих цифр мантиссы.
```

Структура mantis_t:

```
struct mantis_t
{
    digit_t digits[MANTIS_SIZE];
} mantis_t;
```

Поля структуры:

Digits – Цифры мантиссы

MANTIS_SIZE — заданная в программе константа, равная 35.

Структура digit_t

```
struct digit_t
{
   char field: 4;
} digit_t;
```

Поля структуры:

Field — численное значение цифры. Является символом, ограничивающим значения цифры от 0 до 9.

Описание алгоритма

- 1. Программа считывает две строки, одна содержит действительное число, другая целое. Целое не должно быть равно нулю.
- 2. Если действительное равно нулю, то результат ноль, иначе делим.
- 3. При делении создается структура типа real_t, в которой будет находится результат.
- 4. Если при делении не хватило размера мантиссы, то будет произведено округление последней цифры мантиссы.
- 5. Вывод результата на экран.

Набор тестов

No	Название теста	Число №1	Число №2	Вывод
1	Деление единицы в обычном виде	1	1	0.1e1
2	Деление единица на единицу в эксп. форме	0.1e1	1	0.1e1
3	Деление большего на меньшее	5	2	0.25e1
4	Деление меньшего на большее	2	5	0.4e0
5	Деление с уменьшением	1024	50	0.2048e2

	порядка			
6	Деление со сменой знака (действ. < 0)	-121	11	-0.11e2
7	Деление со сменой знака (целое < 0)	121	-11	-0.11e2
8	Деление со сменой знака (оба числа < 0)	-121	-11	0.11e2
9	Граничные значения (действительное число) по порядку	0.1e99999	1	0.1e99999
10	Граничные значения (целое число и действ.) по порядку	1e99998	999999 (35 девяток)	0.1000000000000 00000000000000000 00001e99964
11	Деление нуля на число, не равное нулю	0	1	0.1e1
12	Превышение длины порядка	0.1e-99999	2	Экспонента слишком большая
13	Превышение длины мантиссы при вводе (действительного числа)	0.999999 (36 девяток)	1	Введено слишком длинное действительное число
14	Превышение длины мантиссы (целого числа)	1	999999 (36 девятка)	Введено слишком длинное целое число
15	Некорректный ввод	abc	123	Действительное число введено неверно
16	Некорректный ввод	123	abc	Целое число введено неверно
17	Некорректный ввод	23a	1	Действительное число введено неверно
18	Некорректный ввод	1	23a	целое число введено неверно

19	Некорректный ввод	100+E1	1	Действительное число введено неверно
20	Некорректный ввод	1	1.0	Целое число введено неверно!
21	Некорректный ввод		23	Действительное число введено неверно
22	Некорректный ввод	23		Целое число введено неверно
23	Некорректный ввод	-123	+123.45E+6.	Целое число введено неверно
24	Некорректный ввод	E123	1	Действительное число введено неверно
25	Деление на ноль	123	0	Деление невозможно

Ответы на контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

Диапазон чисел зависит от разрядности процессора и выбранного типа переменной. Максимальное значение 64-разрядного беззаконного целого числа равно 18 446 744 073 709 551 615 (unsigned long long int).

2. Какова возможная точность представления чисел, чем она определяется?

Точность представления вещественных чисел определяется количеством памяти, выделяемой для хранения мантиссы числа. Для мантиссы числа типа double выделяется 52 бита, с помощью этого мантисса числа может иметь значение до 4 503 599 627 370 496.

3. Какие стандартные операции возможны над числами?

Операции сложения, вычитания, умножения, деление, взятие остатка, сравнения.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Мы можем написать структуру, где можно записать мантиссу, знак числа и порядка. Также может использовать массив символов.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Можно использовать самостоятельно разработанные функции. Те, которые поразрядно умножают/складывают/делят/возводят в степерь/сравнивают числа.

Вывод

Такой тип данных является важной структурой данных только потому, что чисто теоретически его можно сделать любой длины. С такими числами можно проводить физические рассчеты с точностью, например, до 1e-50, хранить большие числа (например, общее количество средств на всех счетах, лежащих в банке, в рублях), представить размер от Земли до Луны в сантиметрах и поделить их, чтобы найти километры.