

TRAVAUX DIRIGÉS N°3 DE SIGNAUX PHYSIQUES

Exercice 1: Interprétation énergétique du facteur de qualité

Un circuit électrique est composé d'un interrupteur, d'une résistance R, d'un condensateur de capacité C et d'une bobine d'inductance L. Le condensateur est initialement chargé $q(t=0)=Q_0$.

- 1. Établir l'équation différentielle satisfaite par la charge q du condensateur quand l'interrupteur est fermé. On se place dans la suite dans le cas d'un amortissement faible, soit $Q \gg 1$.
- 2. Exprimer q(t), la charge portée par le condensateur, sachant que l'on ferme l'interrupteur à t=0 et qu'à cet instant la charge vaut q_0 .
- 3. Évaluer la pseudo-période T ainsi que l'ordre de grandeur de la durée τ du régime transitoire.
- 4. Évaluer $\varepsilon(t)$ l'énergie contenue dans le circuit à l'instant t. Que dire a priori du signe de $d\varepsilon/dt$?
- 5. On définit

$$\alpha = \frac{\varepsilon(t) - \varepsilon(t+T)}{\varepsilon(t)}$$

 $\alpha = \frac{\varepsilon(t) - \varepsilon(t+T)}{\varepsilon(t)}$ la variation relative d'énergie contenue dans le circuit pendant une pseudopériode T. Montrer que $\alpha \approx 2\pi/Q$

6. Comment peut-on alors interpréter le sens physique du facteur de qualité *Q*?

Exercice 2 : Analyse, sur des relevés expérimentaux, l'évolution de la forme des régimes transitoires en fonction des paramètres caractéristiques.

À l'aide des différentes figures :

- 1. Les valeurs de R, L et C influencent-elles le régime permanent atteint ? Si oui, de quelle(s) façon(s) ?
- 2. Les valeurs de R, L et C influencent-elles le régime transitoire ? Si oui, de quelle(s) façon(s) ?

Noter notamment leurs influences sur la nature du régime transitoire et sur sa durée.

Effet de l'inductance ; $R\!=\!2.10^3~\Omega$, $C\!=\!10nF$

Exercice 3: Viscosimètre oscillant

Une bille de rayon r et de masse m est suspendue à un ressort de raideur k et de longueur à vide ℓ_0 . Déplacée dans un liquide de coefficient de viscosité η , la bille est soumise à une force de frottement \vec{f} donnée par la formule de Stokes $\vec{f} = -6\pi\eta r\vec{v}$, où \vec{v} est la vitesse de la sphère dans le liquide.

On ne néglige pas la poussée d'Archimède et on rappelle qu'elle est donnée par $\overrightarrow{\Pi_A} = -\rho_\ell V \vec{g}$, où ρ_ℓ est la masse volumique du liquide, V le volume de l'objet immergé et \vec{g} le champ de pesanteur.

On repère la position de la masse par la cote z dont l'origine est prise à la position d'équilibre de la masse. L'axe (0z) est choisi vertical descendant.

- 1. Établir l'expression de la longueur du ressort $\ell_{\acute{e}q}$ à l'équilibre en fonction de m, ρ_ℓ, r, k, g et ℓ_0 . Commenter.
- 2. Exprimer la force de rappel élastique en fonction de $k,\ell_{\acute{e}q},z,\ell_0$ et du vecteur unitaire.
- 3. Établir l'équation du mouvement de la sphère plongée dans le liquide vérifiée par z.
- 4. Déterminer l'expression de la pseudopériode T des oscillations.
- 5. Dans l'air, où les frottements fluides sont négligeables, la période des oscillations est T_0 . Exprimer T_0 en fonction des données du problème.
- 6. Déterminer le coefficient de viscosité η du liquide en fonction de m, r, ρ_{ℓ} , T et T_0 . En déduire un protocole pour mesurer η .