Organization	Team	Team ID#
1. [5] Compute $\sqrt{20}$	$022^2 - 12^6$.	
CD, and EF all ap		permuted. Let p_1 be the probability that AB the probability that ABC and DEF both appear
the y axis (the ve		ch side of \mathcal{P} is either parallel to the x axis onts). Given that the interior of \mathcal{P} includes the sible perimeter of \mathcal{P} .
	MMT November 2022, November 12, 2022 — Team	Team ID#
4. [6] Let <i>ABCD</i> b that <i>ABX</i> , <i>BCY</i>	e a square of side length 2. Let points X , and CDZ are equilateral triangles. Let	$X,Y,$ and Z be constructed inside $ABCD$ such point W be outside $ABCD$ such that triangle X be $a+\sqrt{b}$, where a and b are integers. Find
5. [6] Suppose x and	d y are positive real numbers such that	
	$x + \frac{1}{y} = y + \frac{2}{x} =$	= 3.
Compute the max	ximum possible value of xy .	
can you color the		be the center of the hexagon. How many ways at there doesn't exist any equilateral triangle
	MMT November 2022, November 12, 2022 —	
Organization	Team	Team ID#
		cluding leading zeroes) have at least as many er of digits in the binary representation of the
left, or right to a		essboard. In one step, he can move up, down as and ends up where he started, visiting each be. How many paths could he have taken?

9. [7] Let ABCD be a trapezoid such that $AB \parallel CD$, $\angle BAC = 25^{\circ}$, $\angle ABC = 125^{\circ}$, and AB + AD = CD.

Compute $\angle ADC$.

HMMT	November	2022.	November	12.	2022 -	GUTS	ROUND

Organizat	ion Team _	Team ID#			
10.	[8] A real number x is chosen uniformly at	random from the interval [0, 1000]. Find the probability that			
		$\left[\frac{\left\lfloor \frac{x}{2.5} \right\rfloor}{2.5} \right] = \left\lfloor \frac{x}{6.25} \right\rfloor.$			
11.	[8] Isosceles trapezoid $ABCD$ with bases $ABCD = 34$, and $\angle CPD = 90^{\circ}$. Compute the	AB and CD has a point P on AB with $AP = 11$, $BP = 27$, height of isosceles trapezoid $ABCD$.			
12.	after that, Candice encounters a new speed miles per hour, is always a positive integer.	at 5:00 PM. Starting at exactly 5:01 PM, and every minute d limit sign and slows down by 1 mph. Candice's speed, in c. Candice drives for 2/3 of a mile in total. She drives for a ser house driving slower than when she left. What time is it			
	HMMT November 2022, N	mber 12, 2022 — GUTS ROUND			
Organizat	ion Team _	Team ID#			
13.		that only take steps of unit length up and right. Compute the x -axis, and the line $x = 6$ over all such paths. to $(6,3)$ corresponds to an area of 0 .)			
14.	[9] Real numbers x and y satisfy the following	ing equations:			
		$\log_{10}(10^{y-1}+1)-1$ $\log_{10}(10^x+1)-1.$			
	Compute 10^{x-y} .				
15.	imum value taken on by the polynomial $a(x)$	b, c from the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. If k is the min- $(x-b)(x-c)$ over all real numbers x , and l is the minimum $(x+c)$ over all real numbers x , compute the maximum possible			
• • • • • • • • •					
	HMMT November 2022, N	mber 12, 2022 — GUTS ROUND			
Organizat	ion Team _	Team ID#			
16.	[10] Given an angle θ , consider the polynomial	nial			
	$P(x) = \sin(\theta)$	$\theta)x^2 + (\cos(\theta) + \tan(\theta))x + 1.$			
	Given that P only has one real root, find al	Il possible values of $\sin(\theta)$.			
17.	[10] How many ways are there to color every integer either red or blue such that n and $n+7$ are the same color for all integers n , and there does not exist an integer k such that k , $k+1$, and $2k$ are all the same color?				
18.	[10] A regular tetrahedron has a square sh	nadow of area 16 when projected onto a flat surface (light is			

shone perpendicular onto the plane). Compute the sidelength of the regular tetrahedron. (For example, the shadow of a sphere with radius 1 onto a flat surface is a disk of radius 1.)

HMMT November 2022, November 12, 2022 — GUTS ROUND

018011112010		Team	ream 1D#
19.	of the permutation		integers to be the minimum number of copies ach other so that the subsequence $1, 2, \ldots, n$ he annoyingness of $1, 3, 4, 2$ is 2 .
	A random permutation.	ation of $1, 2, \ldots, 2022$ is selected. Comput	te the expected value of the annoyingness of
20.			$AC = 10$. Let M be the midpoint of BC and BC again at T . Compute the area of $\triangle TBC$.
21.	21. [11] Let $P(x)$ be a quadratic polynomial with real coefficients. Suppose that $P(1) = 20$, $P(-1)$ and $P(P(0)) = 400$. Compute the largest possible value of $P(10)$.		
• • • • • • • • • • • • • • • • • • • •			
	НМ	IMT November 2022, November 12, 2022 — 0	GUTS ROUND
Organizat	ion	Team	Team ID#
22.	[12] Find the number than b^2 when divide		$b \le 57$ such that a^2 has a smaller remainder
23.		a triangle with $AB = 2021$, $AC = 2022$, are CP over all points P in the plane.	and $BC = 2023$. Compute the minimum value
24.		sting of letters A, C, G, and U is <i>untranslata</i> mple, ACUGG is untranslatable.	ble if and only if it has no AUG as a consecutive
			of the proof of the state of t
	нм	IMT November 2022, November 12, 2022 — G	GUTS ROUND
		<u>_</u>	Team ID#

- 25. [13] In convex quadrilateral ABCD with AB = 11 and CD = 13, there is a point P for which $\triangle ADF$ and $\triangle BCP$ are congruent equilateral triangles. Compute the side length of these triangles.
- 26. [13] A number is chosen uniformly at random from the set of all positive integers with at least two digits, none of which are repeated. Find the probability that the number is even.
- 27. [13] How many ways are there to cut a 1 by 1 square into 8 congruent polygonal pieces such that all of the interior angles for each piece are either 45 or 90 degrees? Two ways are considered distinct if they require cutting the square in different locations. In particular, rotations and reflections are considered distinct.

HMMT November 2022, November 12, 2022 — GUTS ROUND

Organizat	ion	Team	Team ID#	
28.	AB such that $\angle CBQ$	$= \angle BCR = 90^{\circ}$. There exist two p ABC are similar (with vertices	on $AC = 15$. Pick points Q and R on AC and oints $P_1 \neq P_2$ in the plane of ABC such that in order). Compute the sum of the distances	
29.	[15] Consider the set S	\mathcal{G} of all complex numbers z with non-	anegative real and imaginary part such that	
		$ z^2 + 2 \le z .$		
	Across all $z \in S$, compand the real axis.	oute the minimum possible value of	$\tan \theta$, where θ is the angle formed between z	
30.	. [15] Let ABC be a triangle with $AB=8$, $AC=12$, and $BC=5$. Let M be the second intersection of the internal angle bisector of $\angle BAC$ with the circumcircle of ABC . Let ω be the circle centered at A tangent to AB and AC . The tangents to ω from B and C , other than AB and AC respectively, intersection at a point D . Compute AD .			
	HMMT	November 2022, November 12, 2022 —	GUTS ROUND	
Organizat	ion	Team	Team ID#	
31.	[17] Given positive int	egers $a_1, a_2, \ldots, a_{2023}$ such that		
		$a_k = \sum_{i=1}^{2023} a_k - a_i $	$a_i $	
	for all $1 \le k \le 2023$, fi	nd the minimum possible value of a_1	$a_1 + a_2 + \dots + a_{2023}$.	
32.	[17] Suppose point P is inside triangle ABC . Let AP, BP , and CP intersect sides BC, CA , and AB at points D, E , and F , respectively. Suppose $\angle APB = \angle BPC = \angle CPA$, $PD = \frac{1}{4}$, $PE = \frac{1}{5}$, and $PF = \frac{1}{7}$. Compute $AP + BP + CP$.			
33.	candidate A or B with	equal probability. If X Dalmathians pressed as $\frac{a}{b}$ for positive integers a, b	where they each vote independently on either voted for the winning candidate, the expected b with $gcd(a, b) = 1$. Find the unique positive	
	нммт	November 2022, November 12, 2022 —	GUTS ROUND	
Organizat	ion	Team	Team ID#	
34.		string of length 1000 is chosen. nic substring. Estimate L .	Let L be the expected length of its longest	
	An estimate of E will :	receive $\lfloor 20 \min(\frac{E}{L}, \frac{L}{E})^{10} \rfloor$ points.		
35.	the probability that a_1	$< a_2 < \cdots < a_{10}$. Estimate P .	nd uniformly at random from $[0, i^2]$. Let P be	
0.0		earn $\lfloor 20 \min(\frac{E}{P}, \frac{P}{E}) \rfloor$ points.		
36.		ions on this year's contest that ask edian of these answers. Estimate M .	for a single real-valued answer (excluding this .	

An estimate of E will earn $\lfloor 20 \min(\frac{E}{M}, \frac{M}{E})^4 \rfloor$ points.