1 Parties bornées de \mathbb{R}

Définition: Soit A une partie non vide de \mathbb{R} .

1. On dit que A est majorée si

$$\exists M \in \mathbb{R}, \forall x \in A; x \leq M.$$

Le réel M est appelé majorant de A. Si $\exists M' \in \mathbb{R}/M \leq M'$, alors M' est aussi un majorant de A, en effet, $x \leq M$ et $M \leq M'$ alors $x \leq M'$.

On en déduit que le majorant de A n'est pas unique.

L'ensemble des majorants de A est noté $Maj(A) = [M, +\infty[$.

2. On dit que A est minorée si

$$\exists m \in \mathbb{R}, \forall x \in A; x \geq m.$$

Le réel m est appelé minorant de A. Si $\exists m' \in \mathbb{R}/m \geq m'$, alors m' est aussi un minorant de A, en effet, $x \geq m$ et $m \geq m'$ alors $x \geq m'$.

On en déduit que le minorant de A n'est pas unique.

L'ensemble des minorants de A est noté $Min(A) =]-\infty, m]$.

3. On dit que A est bornée si elle est majorée et minorée.

c'est à dire

$$\exists M \in \mathbb{R}, \exists m \in \mathbb{R}, \forall x \in A; m \leq x \leq M.$$

ou bien

$$\exists a > 0, \forall x \in A; |x| \leq a.$$

Exemple:

1. $A = [0,2], \forall x \in A, 0 \le x \le 2$ donc A bornée car elle est majorée par 2 et minorée par 0.

2 est un majorant de A et $Maj(A)=[2,+\infty[$. 0 est un minorant de A et $Min(A)=]-\infty,0]$.

2. $A =]0,2[, \forall x \in A, 0 < x < 2 \text{ donc } A \text{ bornée car}$ elle est majorée par 2 et minorée par 0.

2 est un majorant de A et $Maj(A)=[2,+\infty[$. 0 est un minorant de A et $Min(A)=]-\infty,0]$.

3. $A =]-\infty, 3], \forall x \in A, x \leq 3$ donc A n'est pas bornée car elle n'est pas minorée mais elle est majorée par 3.

1.1 Maximum et minimum

Définition:

1. Une partie A non vide de $\mathbb R$ admet un maximum α s'il existe un majorant de A appartenant à A.

c'est à dire
$$\left\{ \begin{array}{c} \alpha \text{ un majorant de } A \\ \alpha \in A \end{array} \right. \text{ et on note } \max A =$$

2. Une partie A non vide de \mathbb{R} admet un minimum β s'il existe un minorant de A appartenant à A.

c'est à dire
$$\left\{ \begin{array}{c} \beta \text{ un minorant de } A \\ \beta \in A \end{array} \right. \text{ et on note min } A = \beta.$$

Remarque: $\max A$ et $\min A$ s'ils existent, ils sont unique.

2 Borne supérieure et borne inférieure

Soit A une partie non vide et bornée de \mathbb{R} .

1. On appelle borne supérieure de A le plus petit des majorants de A, on la note par $\sup A$.

c'est à dire
$$\left\{ \begin{array}{l} \forall x \in A, x \leq \sup A \\ \forall x \in A, x \leq M \end{array} \right. \text{ alors } \sup A \leq M.$$

2. On appelle borne inférieure de A le plus grand des minorants de A, on la note par inf A.

$$\text{c'est à dire } \left\{ \begin{array}{l} \forall x \in A, x \geq \inf A \\ \forall x \in A, x \geq m \end{array} \right. \text{ alors inf } A \geq m.$$

Exemple:

1. $A = [-1, 1], \forall x \in A, -1 \le x \le 1$ donc A bornée car elle est majorée par 1 et minorée par -1.

1 est un majorant de A et $Maj(A) = [1, +\infty[$ alors $\sup A = 1$. -1 est un minorant de A et $Min(A) = [-\infty, -1]$ alors $\inf A = -1$.

2. $A = [0,1[, \forall x \in A, 0 \le x < 1 \text{ donc } A \text{ bornée car elle est majorée par 1 et minorée par 0.}]$

1 est un majorant de A et $Maj(A) = [1, +\infty[$ alors $\sup A = 1$. 0 est un minorant de A et $Min(A) = [-\infty, 0]$ alors $\inf A = 0$.

Remarque: 1. $\sup A$ et $\inf A$ s'ils existent, ils sont unique.

2. Ne pas confondre $\sup A$ avec $\max A$ et $\inf A$ avec $\min A$.

En effet, Si A une partie non vide et bornée de \mathbb{R} ,

Si $\sup A \in A$ alors $\max A = \sup A$.

Si inf $A \in A$ alors min $A = \inf A$.

Si $\sup A \notin A$ alors $\max A$ n'existe pas.

Si inf $A \notin A$ alors min A n'existe pas.

Si A n'admet pas une borne supérieure (resp. une borne inférieure), on écrit $\sup A = +\infty$ (resp. inf $A = -\infty$).

Exemple:

1. A=[0,1[, d'aprés l'exemple précédent on a trouvé $\sup A=1\notin A$ alors $\max A$ n'existe pas. $\inf A=0\in A$ alors $\min A=0$.

2.
$$A = \{x \in \mathbb{Q}; x^2 \le 2\}$$

 $\forall x\in A, x\in \mathbb{Q} \text{ et } x^2\leq 2 \Leftrightarrow |x|\leq \sqrt{2} \Leftrightarrow -\sqrt{2}\leq x\leq \sqrt{2} \text{ donc } A \text{ est born\'ee}$

 $Maj\left(A
ight)=\left[\sqrt{2},+\infty
ight[\Rightarrow \sup A=\sqrt{2}\notin A\ (\ \operatorname{car}\sqrt{2}\notin\mathbb{Q}\)\ \operatorname{alors\ max}\,A\ \operatorname{n'existe\ pas}.$

 $Min\left(A\right)=\left]-\infty,-\sqrt{2}\right]\Rightarrow\inf A=-\sqrt{2}\notin A$ (car $-\sqrt{2}\notin\mathbb{Q}$) alors $\min A$ n'existe pas.

2.1 Caractérisation de la borne supérieure et la borne inférieure

Soit A une partie non vide de \mathbb{R} .

1. Si A est majorée, alors

$$\sup A = M \Leftrightarrow \left\{ \begin{array}{l} \forall x \in A; x \leq M.....M \text{ majorant} \\ \forall \varepsilon > \mathbf{0}, \exists x_\varepsilon \in A; M - \varepsilon < x_\varepsilon.... \text{le plus petit} \\ \text{des majorants} \end{array} \right.$$

2. Si A est minorée, alors

$$\inf A = m \Leftrightarrow \left\{ \begin{array}{l} \forall x \in A; x \geq m.....m \text{ minorant} \\ \forall \varepsilon > 0, \exists x_\varepsilon \in A; x_\varepsilon < m + \varepsilon.... \text{le plus grand} \\ \text{des minorants} \end{array} \right.$$

Exemple:

1. $A = \left\{ \left(3 - \frac{1}{n} \right) \in \mathbb{R}; n \in \mathbb{N}^* \right\}$, Montrer que $\sup A = 3$ et $\inf A = 2$ et déterminer $\max A$ et $\min A$.

les éléments de l'ensemble A sont de la forme $3-\frac{1}{n}$ tels que $n\geq 1$. Montrons d'abord que A est bornée.

Soit
$$x \in A$$
 alors $x = 3 - \frac{1}{n}, n \ge 1$.

On a
$$n \geq 1 \Rightarrow 0 < \frac{1}{n} \leq 1 \Rightarrow -1 \leq -\frac{1}{n} < 0 \Rightarrow 2 \leq 1 - \frac{1}{n} < 3$$
, donc $\forall x \in A, 2 \leq x < 3, A$ est bornée.

$$Maj(A) = [3, +\infty[, Min(A) =]-\infty, 2].$$

Montrons que le sup A = 3.

$$\sup A = \mathbf{3} \Leftrightarrow \left\{ \begin{array}{l} \forall x \in A; x \leq \mathbf{3} \text{ elle est v\'erifi\'ee car } x < \mathbf{3} \\ \forall \varepsilon > \mathbf{0}, \exists x_\varepsilon \in A; \mathbf{3} - \varepsilon < x_\varepsilon \end{array} \right.$$

 $x_{\varepsilon}\in A, x_{\varepsilon}=3-\frac{1}{n_{\varepsilon}}$, pour chercher x_{ε} on cherche n_{ε} . Soit $\varepsilon>0$, cherchons $n_{\varepsilon}\geq 1$ tel que $3-\varepsilon<3-\frac{1}{n_{\varepsilon}}\Rightarrow -\varepsilon<-\frac{1}{n_{\varepsilon}}\Rightarrow n_{\varepsilon}>\frac{1}{\varepsilon}$, alors II suffit de prendre $n_{\varepsilon}=\left[\frac{1}{\varepsilon}\right]+1$ (ou bien n_{ε} existe d'aprés Archimed

1ère formule). On remarque que $\sup A = 3 \notin A$ sinon $3 = 3 - \frac{1}{n} \Leftrightarrow -\frac{1}{n} = 0$ absurde d'où $\max A$ n'existe pas.

Montrons que inf A = 2.

2 est un minorant de A et 2 \in A pour n=1 donc $\min A=2=\inf A.$

2.
$$A = \left\{ \frac{n+1}{n-1}; n \ge 2 \right\}$$
.

Montrer que $\sup A = 3$ et $\inf A = 1$ et déterminer $\max A$ et $\min A$.

les éléments de l'ensemble A sont de la forme $\frac{n+1}{n-1}$ tels que $n \geq 2$. Montrons d'abord que A est bornée.

Soit
$$x \in A$$
 alors $x = \frac{n+1}{n-1} = 1 + \frac{2}{n-1}, n \ge 2$.

On a
$$n \geq 2 \Rightarrow n-1 \geq 1 \Rightarrow 0 < \frac{1}{n-1} \leq 1 \Rightarrow 0 < \frac{2}{n-1} \leq 2 \Rightarrow 1 < 1 + \frac{2}{n-1} \leq 3$$
, donc $\forall x \in A, 1 < x \leq 3$, A est bornée.

$$Maj(A) = [3, +\infty[, Min(A) =]-\infty, 1].$$

Montrons que sup A = 3.

3 est un majorant de A et 3 \in A pour n=2 donc $\max A=3=\sup A.$

Montrons que inf A = 1.

$$\inf A = \mathbf{1} \Leftrightarrow \left\{ \begin{array}{l} \forall x \in A; x \geq \mathbf{1} \text{ elle est v\'erifi\'ee car } x > \mathbf{1} \\ \forall \varepsilon > \mathbf{0}, \exists n_\varepsilon \geq \mathbf{2}; \mathbf{1} + \frac{2}{n_\varepsilon - \mathbf{1}} < \mathbf{1} + \varepsilon \end{array} \right.$$

cherchons $n_{\varepsilon} \geq 2$ tel que $1 + \frac{2}{n_{\varepsilon} - 1} < 1 + \varepsilon \Rightarrow \frac{2}{n_{\varepsilon} - 1} < \varepsilon \Rightarrow n_{\varepsilon} > \frac{2}{\varepsilon} + 1$, alors II suffit de prendre $n_{\varepsilon} = \left[\frac{2}{\varepsilon} + 1\right] + 1$ (ou bien n_{ε} existe d'aprés Archimed 1ère formule). On remarque que inf $A = 1 \notin A$ sinon $1 = 1 + \frac{2}{n-1} \Leftrightarrow -\frac{2}{n-1} = 0$ absurde d'où min A n'existe pas.

2.2 Propriétés de la borne supérieure et la borne inférieure

Soient A et B deux parties non vide de \mathbb{R} .

1. Si $A\subset B$ et B est bornée alors A est bornée et on a $\inf B\leq \inf A\leq \sup A\leq \sup B$

2. Si A et B sont bornées alors

$$\sup (A \cup B) = \max (\sup A, \sup B)$$

 $\inf (A \cup B) = \min (\inf A, \inf B)$
 $\sup (A \cap B) \leq \min (\sup A, \sup B)$
 $\inf (A \cap B) \geq \max (\inf A, \inf B)$

 $\sup (-A) = -\inf A \text{ avec } -A = \{-x; x \in A\}$

"Preuve:

1. Puisque B est bornée alors $\sup B$ et $\inf B$ existent et $\forall x \in B, \inf B \leq x \leq \sup B$ et puisque $A \subset B$ alors $\forall x \in A \Rightarrow x \in B,$ donc $\inf B \leq x \leq \sup B$ alors A est bornée (car $x \in A$)

Pour tout $x \in A$, $\inf B \leq x \leq \sup B$ donc $\sup B$ est un majorant de A mais par définition $\sup A$ est le plus petit des majorants de A alors $\sup A \leq \sup B$. $\inf B$ est un minorant de A mais par définition $\inf A$ est le plus grand des minorants de A alors $\inf A \geq \inf B$ d'où $\inf B \leq \inf A \leq \sup A \leq \sup B$.

Exemple:

$$A = \left\{ \frac{1}{n} + (-1)^n, n \ge 1 \right\}$$
, déterminer $\operatorname{sup} A$ et $\inf A$.

On a
$$(-1)^n=\left\{ egin{array}{l} 1, \ \mathrm{si} \ n \ \mathrm{est} \ \mathrm{pair} \\ -1, \ \mathrm{si} \ n \ \mathrm{est} \ \mathrm{impair} \end{array} \right.,$$
 on pose alors
$$B=\left\{ \frac{1}{2n}+1, n\geq 1 \right\} \mathrm{et} \ C=\left\{ \frac{1}{2n+1}-1, n\geq 1 \right\}.$$

On remarque que $A = B \cup C$. Cherchons sup B, sup C, inf B, inf C

$$\forall x \in B, x = \frac{1}{2n} + 1$$

On a $n \ge 1 \Rightarrow 0 < \frac{1}{2n} \le \frac{1}{2} \Rightarrow 1 < 1 + \frac{1}{2n} \le \frac{3}{2} \Rightarrow B$ est bornée.

Montrons que $\sup B = \frac{3}{2}$ et $\inf B = 1$.

 $\frac{3}{2}$ est un majorant de B et $\frac{3}{2} \in B$ pour n=1 alors $\max B = \frac{3}{2} = \sup B.$

Montrons que inf B = 1

$$\inf B = \mathbf{1} \Leftrightarrow \left\{ \begin{array}{l} \forall x \in B; x \geq \mathbf{1} \text{ elle est v\'erifi\'ee car } x > \mathbf{1} \\ \forall \varepsilon > \mathbf{0}, \exists n_\varepsilon \geq \mathbf{1}; \mathbf{1} + \frac{\mathbf{1}}{2n_\varepsilon} < \mathbf{1} + \varepsilon \end{array} \right.$$

cherchons $n_{\varepsilon} \geq 1$ tel que $1 + \frac{1}{2n_{\varepsilon}} < 1 + \varepsilon \Rightarrow \frac{1}{2n_{\varepsilon}} < \varepsilon \Rightarrow n_{\varepsilon} > \frac{1}{2\varepsilon}$, alors II suffit de prendre $n_{\varepsilon} = \left[\frac{1}{2\varepsilon}\right] + 1$.

D'autre part, $\forall x \in C, x = \frac{1}{2n+1} - 1$.

On a
$$n\geq 1\Rightarrow 0<\frac{1}{2n+1}\leq \frac{1}{3}\Rightarrow -1<\frac{1}{2n+1}-1\leq \frac{-2}{3}\Rightarrow C$$
 est bornée.

Montrons que sup $C = \frac{-2}{3}$ et inf B = -1.

$$\frac{-2}{3}$$
 est un majorant de C et $\frac{-2}{3}\in C$ pour $n=1$ alors $\max C=\frac{-2}{3}=\sup C.$

Montrons que inf C = -1

$$\inf B = -1 \Leftrightarrow \left\{ \begin{array}{l} \forall x \in C; x \geq 1 \text{ elle est v\'erifi\'ee car } x > 1 \\ \forall \varepsilon > 0, \exists n_\varepsilon \geq 1; \frac{1}{2n_\varepsilon + 1} - 1 < -1 + \varepsilon \end{array} \right.$$

cherchons
$$n_{\varepsilon} \geq 1$$
 tel que $\frac{1}{2n_{\varepsilon}+1} - 1 < -1 + \varepsilon \Rightarrow \frac{1}{2n_{\varepsilon}+1} < +\varepsilon \Rightarrow n_{\varepsilon} > \frac{1}{2\varepsilon} - \frac{1}{2}$, alors II suffit de prendre $n_{\varepsilon} = \left\lceil \left| \frac{1}{2\varepsilon} - \frac{1}{2} \right| \right\rceil + 1$.

Finalement,

$$\sup A = \sup (B \cup C) = \max (\sup B, \sup C) = \max \left(\frac{3}{2}, \frac{-2}{3}\right)$$

$$\inf A = \inf (B \cup C) = \min (\inf B, \inf C) = \min (1, -1) = -1$$

2.3 Intervalles

- 1. Intervalles ouverts: Soient $a, b \in \mathbb{R}, a < b$, $a < b = \{x \in \mathbb{R} | a < x < b\}$ est appelé intervalle ouvert.
- 2. Intervalles fermés: Soient $a, b \in \mathbb{R}, a < b$, $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$ est appelé intervalle fermé.
- 3. Intervalles semi ouverts: Soient $a, b \in \mathbb{R}, a < b$, $\left\{ \begin{array}{l} [a,b[=\{x \in \mathbb{R}/a \leq x < b\} \\]a,b]=\{x \in \mathbb{R}/a < x \leq b\} \end{array} \right.$ sont appelés intervalles semi ouverts.

Théorème: (critère d'intervalle)

A une partie bornée de $\mathbb{R}.$

A est un intervalle $\Leftrightarrow \forall x_1, x_2 \in A, x_1 \leq x_2 \Leftrightarrow [x_1, x_2] \subset A$.

Voisinage: Soit $x_0 \in \mathbb{R}, \varepsilon > 0$, on appelle voisinage de x_0 noté $V_{\varepsilon}(x_0)$ un intervalle contenant x_0 de la forme

$$V_{\varepsilon}(x_0) =]x_0 - \varepsilon, x_0 + \varepsilon[$$

$$\forall x \in V_{\varepsilon}(x_0)$$
; $x_0 - \varepsilon < x < x_0 + \varepsilon \Leftrightarrow -\varepsilon < x - x_0 < \varepsilon \Leftrightarrow |x - x_0| < \varepsilon$.

Droite réelle achevée

Définition: On appelle droite réelle achevée qu'on note par $\overline{\mathbb{R}}$, l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$ muni de la relation d'ordre total,obtenu en prolongeant l'ordre de \mathbb{R} par les conditions:

$$\forall x \in \mathbb{R}, -\infty < x \text{ et } x < +\infty.$$

L'ensemble $\overline{\mathbb{R}}$ est totalement ordonée par la relation définie par $\forall x \in \overline{\mathbb{R}}, -\infty \leq x$ et $x \leq +\infty$.

Les opérations sur $\mathbb R$ s'étendent à $\overline{\mathbb R}$ en posant:

$$x + (+\infty) = (+\infty) + x = +\infty, \forall x \in \mathbb{R}.$$

$$x + (-\infty) = (-\infty) + x = -\infty, \forall x \in \mathbb{R}.$$

$$x \cdot (+\infty) = (+\infty) \cdot x = \begin{cases} +\infty & \text{si } x > 0 \\ -\infty & \text{si } x < 0 \end{cases}.$$

$$x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} -\infty & \text{si } x > 0 \\ +\infty & \text{si } x < 0 \end{cases}.$$

$$(+\infty) + (+\infty) = +\infty.$$

$$(-\infty) + (-\infty) = -\infty.$$

$$(+\infty) \cdot (+\infty) = +\infty.$$

$$(-\infty) \cdot (-\infty) = +\infty.$$

$$(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = -\infty..$$

La somme $(+\infty)+(-\infty)$ et le produit $0. (+\infty), 0. (-\infty)$ ne sont pas définis.

Densité de $\mathbb Q$ dans $\mathbb R$:

Théorème: Etant donnée deux nombres réels a et b/a < b, il existe au moins un nombre rationnel r/a < r < b, on dit que \mathbb{Q} est dense dans \mathbb{R} et on note $\overline{\mathbb{Q}} = \mathbb{R}$.

C'est à dire entre deux réels, il existe un rationnel.

Exemple: Montrer que $A = \left\{r^3/r \in \mathbb{Q}\right\}$ est dense dans $\mathbb{R}.$

Soient $x,y \in \mathbb{R}/x < y$, en utilisant la densité de \mathbb{Q} dans \mathbb{R} , on a $\exists r \in \mathbb{Q}/\sqrt[3]{x} < r < \sqrt[3]{y}$, d'où $x < r^3 < y$ ce qui donne A est dense dans \mathbb{R} .