

Quentin Baghi, on behalf of the LISA Data Challenge Working Group

Adding LISA to Your Astronomy Toolbox - AAS Meeting - January 6th, 2019 - Seattle, Washington

OUTLINE

- 1. Presentation of the LISA data challenge
- 2. Tutorials:
 - 1. compact galactic binaries waveform generation
 - 2. massive black hole binaries

- The LISA Data Challenge has been resurrected last July. The aims of this initiative are:
 - Project-oriented: demonstrate proof-of-concepts for LISA data analysis and capability to deliver science requirements, develop software standards and pipelines. Working group run by Stas Babak, Michele Vallisneri & John Baker.
 - Research-oriented: foster development of data analysis methods and new algorithms
 - Community-oriented: get new actors involved in the challenge of the LISA data analysis and provide tools

- The LISA Data Challenge is open to all, you can subscribe here https://lisa-ldc.lal.in2p3.fr/
- A new set of simulated LISA data has been released, dubbed "Radler"
- Its goals are:
 - To establish basic components of LISA data infrastructure
 - To provide 4 accessible single-source type sub-challenges to re-start from the basic problems
- <u>Challenge:</u> estimate source parameters and/or characterize their posterior distribution
- Format: hdf5 files containing TDI data in time domain in format {t, X, Y, Z}

Overview of the sub-challenges:

- ▶ LDC1-1. A single GW signal from a merging massive-black-hole binary.
- Represented with a frequencydomain inspiral-mergerringdown phenomenological model (IMRPhenomD)
- Includes black hole spins
- Provided with and without instrumental noise

Overview of the sub-challenges:

LDC1-2. A single GW signal from an extreme-mass-ratio inspiral.

- Produced with Analytic Kludge waveforms Cf. Barack and Cutler 2004
- Will be updated in future challenges

Overview of the sub-challenges:

LDC1-3. Superimposed GW signals from several verification Galactic

white-dwarf binaries.

Cf. T. Kupfer et al. 2018

- Produced with fast response code
- A good challenge to begin with

Overview of the sub-challenges:

LDC1-4. A GW signal from a population of galactic white-dwarf binaries

- Produced with fast response code
- 26 million signals

FUTURE CHALLENGES

In the future challenges, some "refinement" will be introduced, including:

- Source modeling:
 - Improvement of waveform models (e.g. MBHB precession)
 - Extension to astrophysical waveform catalogues
- Instrument modeling:
 - use numerical orbits
 - more realistic noise
- Source mixing ("mild enchilada"):
 - Galaxy + MBHB + EMRI
 - Galaxy + Stochastic + SOBHBs

2. TUTORIALS

TUTORIALS

- Use the link provided on the github "Read me" file https://github.com/qbaghi/lisatutos
 to access the Google Colab notebook.
- 2. Save the notebook on your own Google Drive (File / Save a copy in Drive)
- 3. Run the notebook in the cloud. The first four cells do all the work of installing the LDC software stack and downloading challenge files.

<u>Note:</u> you can have access to the source code and the full LDC data sets by going to the LDC website https://lisa-ldc.lal.in2p3.fr/ and create an account.