Hierarchical Reflection

Luís Cruz-Filipe^{1,2} and Freek Wiedijk¹

Logic and Computation Seminar January 16, 2004

¹University of Nijmegen, The Netherlands
 ²Centro de Lógica e Computação, Portugal

From 1.9.2004 the University of Nijmegen will be called Radboud University of Nijmegen

Hierarchical Reflection

- 1. Motivation
- 2. (Partial) Reflection
- 3. Normalization Function
- 4. Uninterpreted Function Symbols
- 5. Hierarchical Reflection
- 6. Tighter Integration
- 7. Conclusions

Equational Reasoning via (Partial) Reflection

Syntactic expressions: $E := \mathbb{Z} \mid \mathbb{V} \mid E + E \mid E \cdot E \mid E/E$

Normalization function: $\mathcal{N}: E \rightarrow E$

Interpretation relation: $][\rho \subseteq E \times A]$

- 1. well defined: $e \parallel \rho a \wedge e \parallel \rho b \Rightarrow a =_A b$
- 2. \mathcal{N} is correct: $e \parallel_{\rho} a \Rightarrow \mathcal{N}(e) \parallel_{\rho} a$

Equational Reasoning via Partial Reflection (tactic)

1.
$$e \| [\rho a \land e] [\rho b \Rightarrow a =_A b]$$

2.
$$e \parallel_{\rho} a \Rightarrow \mathcal{N}(e) \parallel_{\rho} a$$

1'.
$$e \parallel \rho a \land e = 0/e' \Rightarrow a =_A 0$$

Normalization Function

$$F ::= P/P$$

$$P ::= M + P \mid \mathbb{Z}$$

$$M ::= \mathbb{V} \cdot M \mid \mathbb{Z}$$

M are "lists of variables" (\cdot is "cons", integers are "nil")

P are "lists of monomials" (+ is "cons", integers are "nil")

Normal forms are formal "quotients of sorted lists" without duplication:

$$\mathcal{N}\left(\frac{1}{x-y} + \frac{1}{x+y}\right) = \frac{x \cdot 2 + 0}{x \cdot x \cdot 1 + y \cdot y \cdot (-1) + 0}$$

Normalization Function (definition)

Recursively defined functions

Normalization Function (examples)

$$e \cdot_{MM} f := \begin{cases} (e_2 \cdot_{MM} f) \cdot_{MV} e_1 & \text{if } e = e_1 \cdot e_2 \\ f \cdot_{MZ} i & \text{if } e = i \in \mathbb{Z} \end{cases}$$

$$e +_{PM} f := \begin{cases} j +_{MM} i & \text{if } e = j \in \mathbb{Z}, \ f = i \in \mathbb{Z} \\ f + i & \text{if } e = i \in \mathbb{Z} \\ e_1 + (e_2 +_{PM} i) & \text{if } e = e_1 + e_2, \ f = i \in \mathbb{Z} \\ e_2 +_{PM} (e_1 +_{MM} f) & \text{if } e = e_1 + e_2, \ e_1 =_{M} f \\ e_1 + (e_2 +_{PM} f) & \text{if } e = e_1 + e_2, \ e_1 <_{lex} f \\ f + e & \text{if } e = e_1 + e_2, \ e_1 >_{lex} f \end{cases}$$

$$\mathcal{N}(e/f) := N(e) /_{FF} N(f)$$

$$\mathcal{N}(v) := \frac{v \cdot 1 + 0}{1}$$

Uninterpreted Function Symbols

Goal: f(a+b) = f(b+a)

$$f(a+b) \leadsto x, \ f(b+a) \leadsto y, \ \mathcal{N}(x-y) = \frac{x \cdot 1 + y \cdot (-1) + 0}{1}$$

Solution: extend E with $\mathbb{V}_1:E\to E$

$$E ::= \mathbb{Z} | \mathbb{V}_0 | \mathbb{V}_1(E) | E + E | E \cdot E | E/E$$

Normal forms:

$$F ::= P/P$$

$$P ::= M + P \mid \mathbb{Z}$$

$$M ::= \mathbb{V}_0 \cdot M \mid \mathbb{V}_1(F) \cdot M \mid \mathbb{Z}$$

ordered...

Uninterpreted Function Symbols (order)

Ordering on E (assumes $<_{\mathbb{V}_0}$ on \mathbb{V}_0 and $<_{\mathbb{V}_1}$ on \mathbb{V}_1):

$$x <_E i <_E e + f <_E e \cdot f <_E e/f <_E v(e)$$

Expressions with the same operator are sorted lexicographically.

Example (with $x <_{\mathbb{V}_0} y$ and $u <_{\mathbb{V}_1} v$):

$$x <_E y <_E 34 <_E x/4 <_E u(x+3) <_E u(2 \cdot y) <_E v(x+3)$$

Same normalization function with added rule

$$\mathcal{N}(v(e)) := \frac{v(\mathcal{N}(e)) \cdot 1 + 0}{1}$$

Uninterpreted Function Symbols (valuations)

Two valuations $\rho_0: \mathbb{V}_0 \to A$ and $\rho_1: \mathbb{V}_1 \to (A \to A)$

Once again, one can prove

$$e \parallel_{\rho_0,\rho_1} a \wedge e \parallel_{\rho_0,\rho_1} b \Rightarrow a =_A b$$
$$e \parallel_{\rho_0,\rho_1} a \Rightarrow \mathcal{N}(e) \parallel_{\rho_0,\rho_1} a$$

Goal: f(a+b) = f(b+a)

$$f \rightsquigarrow v, \ a \rightsquigarrow x, \ b \rightsquigarrow y$$

$$\mathcal{N}(v(x+y)) = \mathcal{N}(v(y+x)) = \frac{v\left(\frac{x\cdot 1 + y\cdot 1 + 0}{1}\right)\cdot 1 + 0}{1}$$

Binary functions, partial functions similarly treated.

Hierarchical Reflection

Similar procedures for other structures?

making use of the partiality of the interpretation

Hierarchical Reflection (interpretation relations)

But...

If $\rho(x) = a$, then a + a is represented by x + x, but

$$\mathcal{N}(x+x) = \frac{x \cdot 2 + 0}{1} \, ||_{\rho}^{G} \, a + a$$

does not hold.

We need to interpret e/1 and $e \cdot i$ when we can interpret e

Hierarchical Reflection (interpretation relations)

	$][_{ ho}^{G}$	$][_{ ho}^{R}$	$\mathbb{I}_{ ho}^F$
$v \in \mathbb{V}$	yes	yes	yes
$i\in\mathbb{Z}$	if $i = 0$	yes	yes
e+f	yes	yes	yes
$e \cdot f$	if $f\in\mathbb{Z}$	yes	yes
e/f	if $f = 1$	if $f = 1$	if $f \neq 0$

In the last three cases the additional requirement that e (and eventually f) be interpreted is implicit.

Hierarchical Reflection (correctness)

To prove

$$e \parallel_{\rho}^G a \Rightarrow \mathcal{N}(e) \parallel_{\rho}^G a$$

one needs to use the knowledge that the auxiliary functions will only be applied to the "right" arguments.

For example, correctness of \cdot_{MM} w.r.t. $]\![^F_{\rho}$ states that

$$e \parallel_{\rho}^{F} a \wedge f \parallel_{\rho}^{F} b \Rightarrow e \cdot_{MM} f \parallel_{\rho}^{F} a \cdot b$$

but $a \cdot b$ has no meaning in a group!

Hierarchical Reflection (correctness)

However,

$$e \parallel_{\rho}^{F} a \wedge f \parallel_{\rho}^{F} b \Rightarrow e \cdot_{MM} f \parallel_{\rho}^{F} a \cdot b$$

is equivalent to

$$[e \cdot f]_{\rho}^{F} a \cdot b \Rightarrow [e \cdot_{MM} f]_{\rho}^{F} a \cdot b$$

and the same property w.r.t. $]\![^G_{
ho}$ can be written down as

$$e \cdot f \parallel_{\rho}^{G} c \lor f \cdot e \parallel_{\rho}^{G} c \Rightarrow e \cdot_{MM} f \parallel_{\rho}^{G} c$$

(the disjunction is needed because \cdot_{MM} can swap the order of its arguments)

Hierarchical Reflection (optimization for rings and groups)

To avoid divisions by 1, one can forget about the type F altogether and define \mathcal{N}_R directly using \cdot_{MM} and the like; the base case now looks like

$$\mathcal{N}(v) := v \cdot 1 + 0$$

Also, in groups and rings normal forms *are* unique, so the last subtraction can also be avoided.

Tighter Integration?

The first requires all functions $+_{MM}$, \cdot_{MM} , etc. to be proved correct w.r.t. $]\![^G_\rho$, $]\![^R_\rho$ and $]\![^F_\rho$.

Most of these proofs are (almost) the same, yet they cannot be reused!

Tighter Integration?

Instead of defining $]\![^G_{\rho},\]\![^R_{\rho} \text{ and }]\![^F_{\rho} \text{ by e.g.}]$

define $][_{\rho}^{-}: \Pi_{A:Setoid}E \rightarrow A \text{ s.t.}]$

$$A \text{ is group } \wedge e \parallel_{\rho}^{A} x \wedge f \parallel_{\rho}^{A} y \Rightarrow e+f \parallel_{\rho}^{A} x+y$$

$$A \text{ is ring } \wedge e \parallel_{\rho}^{A} x \wedge f \parallel_{\rho}^{A} y \Rightarrow e\cdot f \parallel_{\rho}^{A} x\cdot y$$

$$A \text{ is field } \wedge e \parallel_{\rho}^{A} x \wedge f \parallel_{\rho}^{A} y \wedge y \# 0 \Rightarrow e/f \parallel_{\rho}^{A} x/y$$

using subtyping of algebraic structures.

Tighter Integration (the bad news)

Does not work!

Proving

$$e \parallel_{\rho}^{A} a \wedge e \parallel_{\rho}^{A} b \Rightarrow a =_{A} b$$

requires a strong induction principle — the K-axiom:

$$\langle x, y[x] \rangle = \langle x', y'[x'] \rangle \Rightarrow x = x' \land y = y'$$

The K-axiom, although consistent with, is not provable within Coq.

Conclusions

- Powerful tactics for equational reasoning
- ullet Can now deal with functions e.g. absolute value on ${\mathbb R}$
- Reuse of code for fields, rings and groups
- ullet Improvement possible using K-axiom