What you should be doing

- Read Chapter 2 & 3a Notes
- Assignment 4 due November 6. Finish it today
- Assignment 5 Extra Credit . Due Nov. 15

Exploratory Empirical Analyses

- Objective is to reduce the complexity (dimensionality) within a large data set
- What is a value commonly observed?
- How much variability is there among all the values?
- What are extreme cases that have been observed?

Exploring Data: What is the Objective?

- Summarizing some of the typical characteristics of the data
- How often are critical thresholds for specific applications reached?
 - Road temperature below freezing point
 - Hot, dry, windy conditions potentially leading to wildfires
- Approach to be used will depend on what is considered important to know to address the objective

Great Salt Lake Level

Empirical Cumulative Distribution Function Lake Level

3 Basic Statistical Characteristics

- Central value: mean, median, mode, trimmed mean
- Spread: range, standard deviation, variance, mean absolute deviation, interquartile range
- Shape: skewness

Boxplots

Transforming Data

- Examining data from alternative perspectives
 - Anomalies from long term mean
 - Anomalies from arbitrary period ("normal")
 - Anomalies from seasonally evolving long term means
 - Standardized anomalies (non-dimensional)
 - Low/high pass filters

Time Series

Transforming Data

Anomalies: departure from long-term mean

Transforming data

Removing climatological seasonal cycle

Transforming data

- Removing climatological seasonal cycle
- Computing standardized (nondimensional) anomalies

CDF of Monthly Standardized Anomalies

Transforming Data

 Low pass filter: keep slow variations, remove fast ones

Basic Statistical Methods for Fluid Flow

- horizontal speed V and direction (θ)
- θ is the direction from which the wind blows: north wind is 0; east wind is 90; south wind is 180; west wind is 270
- horizontal Cartesian components,
 - zonal u (east-west with u positive when fluid motion is from west to east)
 - meridional v (north-south with v positive when fluid motion is from south to north)

•
$$\vec{V} = u\hat{i} + v\hat{j}$$
 and $\vec{V} = |\vec{V}| \hat{t}$

$$-V = |\vec{V}| = \sqrt{u^2 + v^2}$$

$$-\theta = 180 + tan^{-1} u / v$$

Basic Statistical Methods for Fluid Flow

- Horizontaal fluid motion can be described as:
 - speed $|\vec{V}|$ and direction (θ)
 - Cartesian components, zonal u (east-west with u positive when fluid motion is from west to east) and meridional v (north-south with v positive when fluid motion is from south to north

Histograms and cumulative frequency distributions of wind speed and direction

Histograms and cumulative frequency distributions of zonal and meridional wind components

Wind Rose: Counting Speed in Wind Direction Bins

Wind Rose WBB 2018-06-01 00:00:00 - 2018-06-30 23:59:00

Hourly mean wind speed (red line) and resultant wind speed (green line)

What you should be doing

- Read Chapter 2 & 3a Notes
- Assignment 4 due November 6. Finish it today
- Assignment 5 Extra Credit . Due Nov. 15