Contrôle de cours ECUE ARITH (1 heure)

Nom:	Prénom:	Classe:
Le barème est sur 20.		Note:
Cours 1 : divisi	bilité et division euclidienne (5	points)
Soit $(a, b, c) \in \mathbb{Z}^3$.		
1. Donner la définit	ion mathématique de « a est un multiple de b »	
2. Donner tous les ϵ	entiers relatifs a tels que $a 6$.	
3. Énoncer le théore	ème de la division euclidienne de $a \in \mathbb{Z}$ par -18 .	
4. Les affirmations s (a) « $a b$ et $b c$ =	suivantes sont-elles vraies ou fausses ? Si oui, justifie $\Rightarrow \ a c \ >$	r par une preuve, si non, donner un contre-exemple.
(b) $\langle a bc \implies a$	$ b ext{ ou } a c ext{ } ext{ } ext{ }$	
(c) $\ll \exists ! n \in \llbracket 0, 6 \rrbracket$	tel que $7 a-n$ »	
(d) $\langle a b \text{ et } b a =$	$\Rightarrow a = b $ »	

Cours 2 : congruence (6,5 points)

1. Soient $n \in \mathbb{N}^*$ et $(a, b) \in \mathbb{Z}^2$. Donner la définition mathématique de $a \equiv b[n]$.

- 2. Ci-dessous, dans les expressions de la forme $a \equiv \dots [n]$, compléter les pointillés par un entier $r \in [0, n-1]$:

- a) $87 \equiv \dots [5]$ b) $24 \equiv \dots [7]$ c) $-15 \equiv \dots [6]$ d) $-13 \equiv \dots [11]$
- 3. Soient $n \in \mathbb{N}^*$ et $(a, b, c, d) \in \mathbb{Z}^4$ tels que $a \equiv b[n]$ et $c \equiv d[n]$. Compléter les pointillés suivants par une expression avec b et/ou d:

a)
$$-2a + 3c \equiv \dots [n]$$
, b) $a \times c \equiv \dots [n]$, c) $a^{13} \equiv \dots [n]$

Application : prenons n = 6. Compléter le tableau suivant par un entier $r \in [0, 5]$:

a	-2	1	28
b	3	4	14
a [6]			
b [6]			
$a^3 - 2b[6]$			

4. Petit théorème de Fermat

a)	Enoncer	proprement	le	théorème	ainsi	que	son	corollaire.
----	---------	------------	----	----------	-------	-----	-----	-------------

٠	 ٠.	•	 	•	 ٠.	 		٠	 •	 •	٠.	 •	 ٠	 •	٠	 •	•	 ٠	 •	•		٠	•	 •	 	•	 ٠	٠.	٠	٠.	•	 	•	 ٠	٠.	٠	 •	 •	 •	 	٠	•	 •	 •	٠.	•	٠.	•	 	 ٠.	
	 		 		 	 																	•		 						•	 								 							٠.			 ٠.	
	 ٠.		 		 	 																			 						•	 								 							٠.			 	
	 ٠.		 		 	 																			 							 								 							٠.			 	
	 		 		 	 																			 							 								 							٠.			 	

(b) **Application**:

i. En termes de congruence, que signifie 11 \mid	4^{13}
--	----------

ii. A-t-on 11 | 4¹³ ? Justifiez votre réponse en utilisant le petit théorème de Fermat.

Cours 3 : autour de Bézout (6,5 points)

	cer rigoureusement le théorème de Bézout d'une part pour deux entiers ayant un pgcd quelconque et d'autre part des entiers premiers entre eux.
••••	
2. Soit ($(a,b,c,d,\alpha) \in (\mathbb{Z}^*)^5$ tel que $ac+bd=\alpha$. Dire si les affirmations suivantes sont vraies (V) ou fausses (F):
a) « S	Si $\alpha = 1$ alors a et b sont premiers entre eux »
b) « S	Si $\alpha = 1$ alors a et d sont premiers entre eux »
c) « S	Si $\alpha=2$ alors $c\wedge d=2$ »
3. Énon	cer ET démontrer le lemme de Gauss.
• • • • •	
Cours 4	: nombres premiers et pgcd (2 points)
1. Soit p	$p \in \mathbb{N}^*$. Rappeler ce que signifie que « p est un nombre premier ».
2. Décoi	mposer $a = 300$ en produits de facteurs premiers.
3. Soit <i>t</i>	$a=2^3\times 3^2\times 5\times 7$. Donner $a\wedge b$.