# Técnicas, Entornos y Aplicaciones de Inteligencia Artificial

#### **Práctica 4. ALGORITMOS GENÉTICOS**

#### Objetivo:

utilizar Opt4J para diseñar, resolver y evaluar un problema de optimización mediante AG

**Opt4J está disponible en:** 

Poliformat, en M:\ETSINF\tia\alumnos\Practica-4 AG - Opt4J

y en

http://opt4j.sourceforge.net/





#### Opt4J. Entorno libre



A Modular Framework for Meta-heuristic Optimization

Disponible en: <a href="http://opt4j.sourceforge.net/">http://opt4j.sourceforge.net/</a>

Formulación sencilla de problemas utilizando librerías implementadas en Java

Existe un boletín completo que explica su instalación y uso

#### **Algoritmos Genéticos**

Diseño algoritmo genético

- Diseño del individuo. Codificación y decodificación.
- Función de evaluación (fitness)
- Generación población inicial.
- Selección. Cruce (individuos inválidos). Mutación. Reemplazo.

#### Evaluación algoritmo genético

- Criterios de evaluación: Fitness versus Soluciones generadas, Tiempo cómputo.
- Tamaños del problema
- Parámetros de evaluación: Población, Selección, Cruce, Mutación, etc.









# Práctica 4: Opt4J en ejecución

http://opt4j.sourceforge.net/download.html

M:\ETSINF\tia\alumnos\Practica-4 AG - Opt4J



.../bin/opt4j.bat





#### Parametrización del AG



#### **Resultados:**





## Práctica 4: Integración Opt4j en ECLIPSE

- Opt4J permite la importación y resolución de problemas previamente modelados en Java.
- Por simplicidad, utilizaremos el **entorno Eclipse**.
- Configuración de ECLIPSE en Boletín.
- Modelado del problema en Java (creator, decoder, evaluator)





## Práctica 4: diseñando el problema en Opt4J

# Básicamente, hay que implementar tres clases



public class NombreClaseCreator implements Creator<GENOTIPO>

public class NombreClaseDecoder implements Decoder<GENOTIPO, FENOTIPO>

public class NombreClaseEvaluator implements Evaluator<FENOTIPO>

...más la clase Module que las referencia:

public class ClaseModule extends ProblemModule

# Ver ejemplos en el Boletín!!





# Práctica 4: resolviendo el problema en Opt4J





#### Evaluación:

 Realizar el ejercicio propuesto (se necesitará para el día de la evaluación, en el que se planteará una breve ampliación)

#### Calendario:

| Sem   | <u>LABORATORIO</u> | Evaluación         |
|-------|--------------------|--------------------|
| 26-XI | Opt4J              |                    |
| 3-XII | Opt4J              |                    |
|       |                    | P4: Aplicac. Opt4J |

Aplicación y evaluación de Algoritmos Genéticos (15%) P4



#### Problema a resolver:

- Distribuir 10 cuadrillas de trabajadores entre los turnos de trabajo T1-T3 de un día concreto.
- Cada cuadrilla tiene un coste de asignación a cada turno.
- Deben haber la menos 3 cuadrillas por turno

|        | Cuad. 1 | Cuad. 2 | Cuad. 3 | Cuad. 4 | Cuad. 5 | Cuad. 6 | Cuad. 7 | Cuad. 8 | Cuad.9 | Cuad.10 |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|
| Coste  | 1000    | 1100    | 1500    | 2500    | 3200    | 2500    | 2100    | 2100    | 1450   | 2200    |
| Turno1 |         |         |         |         |         |         |         |         |        |         |
| Coste  | 1400    | 2100    | 1900    | 2400    | 2050    | 2000    | 1850    | 3050    | 1600   | 1500    |
| Turno2 |         |         |         |         |         |         |         |         |        |         |
| Coste  | 2100    | 3100    | 2050    | 2100    | 2100    | 1400    | 1900    | 2050    | 2150   | 1900    |
| Turno3 |         |         |         |         |         |         |         |         |        |         |

**Ejemplo:** 

| • | Cuad.1 | Cuad. 2 | Cuad. 3 | Cuad. 4 | Cuad. 5 | Cuad. 6 | Cuad. 7 | Cuad. 8 | Cuad. 9 | Cuad.<br>10 |
|---|--------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|
|   | T1     | Т3      | T2      | T3      | T1      | T2      | T3      | T1      | T2      | T3          |
|   | 1000   | 3100    | 1900    | 2100    | 3200    | 2000    | 1900    | 2100    | 1600    | 1900        |

**Coste: 20.800** (Mejor solución obtenida ha sido de coste 16.000€.)



#### Adicionalmente,

Considerar la productividad de cada cuadrilla en cada turno (m² reasfaltados/hora)

|          | Cuad. 1 | Cuad. 2 | Cuad. 3 | Cuad. 4 | Cuad. 5 | Cuad. 6 | Cuad. 7 | Cuad.8 | Cuad.9 | Cuad.10 |
|----------|---------|---------|---------|---------|---------|---------|---------|--------|--------|---------|
| Product. | 50      | 42      | 42      | 40      | 50      | 50      | 40      | 52     | 50     | 44      |
| Turno1   |         |         |         |         |         |         |         |        |        |         |
| Product. | 52      | 50      | 53      | 40      | 30      | 50      | 40      | 50     | 45     | 50      |
| Turno2   |         |         |         |         |         |         |         |        |        |         |
| Product. | 45      | 30      | 35      | 25      | 50      | 30      | 30      | 42     | 35     | 45      |
| Turno3   |         |         |         |         |         |         |         |        |        |         |

**Objetivos contrapuestos: Productividad ⇔ Coste** 

Por ejemplo, <coste, productividad>: <16000,401>, <18500,465>, <19350,472>, etc.

En poliformat se ha dejado un archivo Datos.java con los valores de las dos matrices anteriores.