

With Pandas, NumPy, and Matplotlib

Second Edition

Fabio Nelli

Python Data Analytics

With Pandas, NumPy, and Matplotlib

Second Edition

Fabio Nelli

Python Data Analytics

Fabio Nelli Rome, Italy

ISBN-13 (pbk): 978-1-4842-3912-4

https://doi.org/10.1007/978-1-4842-3913-1

Library of Congress Control Number: 2018957991

Copyright © 2018 by Fabio Nelli

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

ISBN-13 (electronic): 978-1-4842-3913-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Todd Green Development Editor: James Markham Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a **Delaware** corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book's product page, located at www.apress.com/9781484239124. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Table of Contents

About the AuthorAbout the Technical Reviewer	
Ohantau da An Introduction to Data Analysis	
Chapter 1: An Introduction to Data Analysis	
Data Analysis	
Knowledge Domains of the Data Analyst	
Computer Science	
Mathematics and Statistics	
Machine Learning and Artificial Intelligence	
Professional Fields of Application	
Understanding the Nature of the Data	5
When the Data Become Information	6
When the Information Becomes Knowledge	6
Types of Data	6
The Data Analysis Process	6
Problem Definition	8
Data Extraction	9
Data Preparation	10
Data Exploration/Visualization	10
Predictive Modeling	12
Model Validation	13
Deployment	13
Quantitative and Qualitative Data Analysis	14
Open Data	15
Python and Data Analysis	17
Conclusions	

TABLE OF CONTENTS

Chapter 2: Introduction to the Python World	19
Python—The Programming Language	19
Python—The Interpreter	21
Python 2 and Python 3	23
Installing Python	23
Python Distributions	24
Using Python	26
Writing Python Code	28
IPython	35
PyPI—The Python Package Index	39
The IDEs for Python	40
SciPy	46
NumPy	47
Pandas	47
matplotlib	48
Conclusions	48
Chapter 3: The NumPy Library	49
NumPy: A Little History	49
The NumPy Installation	50
Ndarray: The Heart of the Library	50
Create an Array	52
Types of Data	53
The dtype Option	54
Intrinsic Creation of an Array	55
Basic Operations	57
Arithmetic Operators	57
The Matrix Product	59
Increment and Decrement Operators	60
Universal Functions (ufunc)	61
Aggregate Functions	62

Indexing, Slicing, and Iterating	62
Indexing	63
Slicing	65
Iterating an Array	67
Conditions and Boolean Arrays	69
Shape Manipulation	70
Array Manipulation	71
Joining Arrays	71
Splitting Arrays	72
General Concepts	74
Copies or Views of Objects	75
Vectorization	76
Broadcasting	76
Structured Arrays	79
Reading and Writing Array Data on Files	82
Loading and Saving Data in Binary Files	82
Reading Files with Tabular Data	83
Conclusions	84
Chapter 4: The pandas Library—An Introduction	87
pandas: The Python Data Analysis Library	87
Installation of pandas	88
Installation from Anaconda	88
Installation from PyPI	89
Installation on Linux	90
Installation from Source	90
A Module Repository for Windows	90
Testing Your pandas Installation	91
Getting Started with pandas	92
Introduction to pandas Data Structures	92
The Series	Q3

TABLE OF CONTENTS

	The DataFrame	. 102
	The Index Objects	. 112
	Other Functionalities on Indexes	. 114
	Reindexing	. 114
	Dropping	. 117
	Arithmetic and Data Alignment	. 118
	Operations Between Data Structures	. 120
	Flexible Arithmetic Methods	. 120
	Operations Between DataFrame and Series	. 121
	Function Application and Mapping	. 122
	Functions by Element	. 123
	Functions by Row or Column	. 123
	Statistics Functions	. 125
	Sorting and Ranking	. 126
	Correlation and Covariance	. 129
	"Not a Number" Data	131
	Assigning a NaN Value	. 131
	Filtering Out NaN Values	. 132
	Filling in NaN Occurrences	. 133
	Hierarchical Indexing and Leveling	. 134
	Reordering and Sorting Levels	. 137
	Summary Statistic by Level	. 138
	Conclusions	. 139
0	Chapter 5: pandas: Reading and Writing Data	141
	I/O API Tools	
	CSV and Textual Files	
	Reading Data in CSV or Text Files	
	Using RegExp to Parse TXT Files	
	Reading TXT Files Into Parts	
	Writing Data in CSV	. 1 7 0

About the Technical Reviewer

Raul Samayoa is a senior software developer and machine learning specialist with many years of experience in the financial industry. An MSc graduate from the Georgia Institute of Technology, he's never met a neural network or dataset he did not like. He's fond of evangelizing the use of DevOps tools for data science and software development.

Raul enjoys the energy of his hometown of Toronto, Canada, where he runs marathons, volunteers as a technology instructor with the University of Toronto coders, and likes to work with data in Python and R.

An Introduction to Data Analysis

In this chapter, you begin to take the first steps in the world of data analysis, learning in detail about all the concepts and processes that make up this discipline. The concepts discussed in this chapter are helpful background for the following chapters, where these concepts and procedures will be applied in the form of Python code, through the use of several libraries that will be discussed in just as many chapters.

Data Analysis

In a world increasingly centralized around information technology, huge amounts of data are produced and stored each day. Often these data come from automatic detection systems, sensors, and scientific instrumentation, or you produce them daily and unconsciously every time you make a withdrawal from the bank or make a purchase, when you record various blogs, or even when you post on social networks.

But what are the data? The data actually are not information, at least in terms of their form. In the formless stream of bytes, at first glance it is difficult to understand their essence if not strictly the number, word, or time that they report. Information is actually the result of processing, which, taking into account a certain dataset, extracts some conclusions that can be used in various ways. This process of extracting information from raw data is called *data analysis*.

The purpose of data analysis is to extract information that is not easily deducible but that, when understood, leads to the possibility of carrying out studies on the mechanisms of the systems that have produced them, thus allowing you to forecast possible responses of these systems and their evolution in time.

CHAPTER 1 AN INTRODUCTION TO DATA ANALYSIS

Starting from a simple methodical approach on data protection, data analysis has become a real discipline, leading to the development of real methodologies generating *models*. The model is in fact the translation into a mathematical form of a system placed under study. Once there is a mathematical or logical form that can describe system responses under different levels of precision, you can then make predictions about its development or response to certain inputs. Thus the aim of data analysis is not the model, but the quality of its *predictive power*.

The predictive power of a model depends not only on the quality of the modeling techniques but also on the ability to choose a good dataset upon which to build the entire data analysis process. So the *search for data*, their *extraction*, and their subsequent *preparation*, while representing preliminary activities of an analysis, also belong to data analysis itself, because of their importance in the success of the results.

So far we have spoken of data, their handling, and their processing through calculation procedures. In parallel to all stages of processing of data analysis, various methods of *data visualization* have been developed. In fact, to understand the data, both individually and in terms of the role they play in the entire dataset, there is no better system than to develop the techniques of graphic representation capable of transforming information, sometimes implicitly hidden, in figures, which help you more easily understand their meaning. Over the years lots of display modes have been developed for different modes of data display: the *charts*.

At the end of the data analysis process, you will have a model and a set of graphical displays and then you will be able to predict the responses of the system under study; after that, you will move to the test phase. The model will be tested using another set of data for which you know the system response. These data are, however, not used to define the predictive model. Depending on the ability of the model to replicate real observed responses, you will have an error calculation and knowledge of the validity of the model and its operating limits.

These results can be compared with any other models to understand if the newly created one is more efficient than the existing ones. Once you have assessed that, you can move to the last phase of data analysis—*deployment*. This consists of implementing the results produced by the analysis, namely, implementing the decisions to be taken based on the predictions generated by the model and the associated risks.

Data analysis is well suited to many professional activities. So, knowledge of it and how it can be put into practice is relevant. It allows you to test hypotheses and to understand more deeply the systems analyzed.

Knowledge Domains of the Data Analyst

Data analysis is basically a discipline suitable to the study of problems that may occur in several fields of applications. Moreover, data analysis includes many tools and methodologies that require good knowledge of computing, mathematical, and statistical concepts.

A good data analyst must be able to move and act in many different disciplinary areas. Many of these disciplines are the basis of the methods of data analysis, and proficiency in them is almost necessary. Knowledge of other disciplines is necessary depending on the area of application and study of the particular data analysis project you are about to undertake, and, more generally, sufficient experience in these areas can help you better understand the issues and the type of data needed.

Often, regarding major problems of data analysis, it is necessary to have an interdisciplinary team of experts who can contribute in the best possible way in their respective fields of competence. Regarding smaller problems, a good analyst must be able to recognize problems that arise during data analysis, inquire to determine which disciplines and skills are necessary to solve these problems, study these disciplines, and maybe even ask the most knowledgeable people in the sector. In short, the analyst must be able to know how to search not only for data, but also for information on how to treat that data.

Computer Science

Knowledge of computer science is a basic requirement for any data analyst. In fact, only when you have good knowledge of and experience in computer science can you efficiently manage the necessary tools for data analysis. In fact, every step concerning data analysis involves using calculation software (such as IDL, MATLAB, etc.) and programming languages (such as C ++, Java, and Python).

The large amount of data available today, thanks to information technology, requires specific skills in order to be managed as efficiently as possible. Indeed, data research and extraction require knowledge of these various formats. The data are structured and stored in files or database tables with particular formats. XML, JSON, or simply XLS or CSV files, are now the common formats for storing and collecting data, and many applications allow you to read and manage the data stored on them. When it comes to extracting data contained in a database, things are not so immediate, but you need to know the SQL query language or use software specially developed for the extraction of data from a given database.

CHAPTER 1 AN INTRODUCTION TO DATA ANALYSIS

Moreover, for some specific types of data research, the data are not available in an explicit format, but are present in text files (documents and log files) or web pages, and shown as charts, measures, number of visitors, or HTML tables. This requires specific technical expertise for the parsing and the eventual extraction of these data (called *web scraping*).

So, knowledge of information technology is necessary to know how to use the various tools made available by contemporary computer science, such as applications and programming languages. These tools, in turn, are needed to perform data analysis and data visualization.

The purpose of this book is to provide all the necessary knowledge, as far as possible, regarding the development of methodologies for data analysis. The book uses the Python programming language and specialized libraries that provide a decisive contribution to the performance of all the steps constituting data analysis, from data research to data mining, to publishing the results of the predictive model.

Mathematics and Statistics

As you will see throughout the book, data analysis requires a lot of complex math during the treatment and processing of data. You need to be competent in all of this, at least to understand what you are doing. Some familiarity with the main statistical concepts is also necessary because all the methods that are applied in the analysis and interpretation of data are based on these concepts. Just as you can say that computer science gives you the tools for data analysis, so you can say that the statistics provide the concepts that form the basis of data analysis.

This discipline provides many tools to the analyst, and a good knowledge of how to best use them requires years of experience. Among the most commonly used statistical techniques in data analysis are

- Bayesian methods
- Regression
- Clustering

Having to deal with these cases, you'll discover how mathematics and statistics are closely related. Thanks to the special Python libraries covered in this book, you will be able to manage and handle them.

Machine Learning and Artificial Intelligence

One of the most advanced tools that falls in the data analysis camp is machine learning. In fact, despite the data visualization and techniques such as clustering and regression, which should help you find information about the dataset, during this phase of research, you may often prefer to use special procedures that are highly specialized in searching patterns within the dataset.

Machine learning is a discipline that uses a whole series of procedures and algorithms that analyze the data in order to recognize patterns, clusters, or trends and then extracts useful information for data analysis in an automated way.

This discipline is increasingly becoming a fundamental tool of data analysis, and thus knowledge of it, at least in general, is of fundamental importance to the data analyst.

Professional Fields of Application

Another very important point is the domain of competence of the data (its source—biology, physics, finance, materials testing, statistics on population, etc.). In fact, although analysts have had specialized preparation in the field of statistics, they must also be able to document the source of the data, with the aim of perceiving and better understanding the mechanisms that generated the data. In fact, the data are not simple strings or numbers; they are the expression, or rather the measure, of any parameter observed. Thus, better understanding where the data came from can improve their interpretation. Often, however, this is too costly for data analysts, even ones with the best intentions, and so it is good practice to find consultants or key figures to whom you can pose the right questions.

Understanding the Nature of the Data

The object of study of data analysis is basically the data. The data then will be the key player in all processes of data analysis. The data constitute the raw material to be processed, and thanks to their processing and analysis, it is possible to extract a variety of information in order to increase the level of knowledge of the system under study, that is, one from which the data came.

When the Data Become Information

Data are the events recorded in the world. Anything that can be measured or categorized can be converted into data. Once collected, these data can be studied and analyzed, both to understand the nature of the events and very often also to make predictions or at least to make informed decisions.

When the Information Becomes Knowledge

You can speak of knowledge when the information is converted into a set of rules that helps you better understand certain mechanisms and therefore make predictions on the evolution of some events.

Types of Data

Data can be divided into two distinct categories:

- Categorical (nominal and ordinal)
- Numerical (discrete and continuous)

Categorical data are values or observations that can be divided into groups or categories. There are two types of categorical values: *nominal* and *ordinal*. A nominal variable has no intrinsic order that is identified in its category. An ordinal variable instead has a predetermined order.

Numerical data are values or observations that come from measurements. There are two types of numerical values: *discrete* and *continuous* numbers. Discrete values can be counted and are distinct and separated from each other. Continuous values, on the other hand, are values produced by measurements or observations that assume any value within a defined range.

The Data Analysis Process

Data analysis can be described as a process consisting of several steps in which the raw data are transformed and processed in order to produce data visualizations and make predictions thanks to a mathematical model based on the collected data. Then, data

F	I
Financial data, 552	IDEs, see Interactive development
Flexible arithmetic methods, 120–121	environments (IDEs)
Fonts, LaTeX, 539	Image analysis
	concept of, 521
G	convolutions, 523
	definition, 507
Gradient theory, 523	edge detection, 522, 525
Graphics Processing Unit (GPU), 353	blackandwhite.jpg
Grouping, 11	image, 526–529, 531
Group iteration	black and white system, 525
chain of transformations, 222, 224	filters function, 528
functions on groups	gradients.jpg image, 532
mark() function, 224–225	gray gradients, 525
quantiles() function, 224	Laplacian and Sobel filters, 531
GroupBy object, 222	results, 528
	source code, 530
Н	face detection, 532
Handwriting recognition	gradient theory, 523
digits dataset, 475–478	OpenCV (see Open Source Computer
handwritten digits, matplotlib	Vision (OpenCV))
library, 478	operations, 508
learning and predicting, 478, 480, 482	representation of, 522
OCR software, 473	Indexing functionalities
scikit-learn, 474–475	arithmetic and data
svc estimator, 480	alignment, 118, 120
TensorFlow, 480	dropping, 117-118
validation set, six digits, 479	reindexing, 114, 116
Health data, 550	Integration, 47
Hierarchical indexing	Interactive development environments
arrays, 136–137	(IDEs)
DataFrame, 135	Eclipse (pyDev), 41-42
reordering and sorting levels, 137–138	Komodo, 45
stack() function, 136	Liclipse, 43–46
statistic levels, 138	NinjaIDE, 44–45
structure, 134	Spyder, 41
two-dimensional structure, 134	Sublime, 42–43

INDEX

IPython Notebooks, 449
Jinja2 library, 451–453
pandas dataframe, 453
render() function, 453
require.config() method, 450
web chart creation, 450
Jinja2 library, 451–453
Jython, 22
17
K
K-nearest neighbors classification
decision boundaries, 325-326
2D scatterplot, sepals, 324
predict() function, 323
random.permutation(), 323
training and testing set, 322
L
LaTeX
accents, 540-547
fonts, 539
fractions, binomials, and stacked
numbers, 538-539
with IPython Notebook
in Markdown Cell, 537
in Python 2 Cell, 538
with matplotlib, 537
radicals, 539
subscripts and superscripts, 538
symbols
arrow symbols, 540, 545-546
big symbols, 542
binary operation and relation
symbols, 542-543
Delimiters, 540–541
Hebrew, 541

lowercase Greek, 540	coef_ attribute, 329
miscellaneous symbols, 540	fit() function, 329
standard function names, 542	linear correlation, 330
uppercase Greek, 541	parameters, 328
Learning phase, 378	physiological factors and
Liclipse, 43–46	progression of diabetes, 332-333
Linear regression, 12	single physiological factor, 330
Line chart	schematization of, 352
annotate(), 274	supervised learning, 314
arrowprops kwarg, 274	SVM (see Support vector machines
Cartesian axes, 273	(SVMs))
color codes, 270-271	training and testing set, 315
data points, 267	unsupervised learning, 314-315
different series, 269	Mapping
gca() function, 273	adding values, 201–202
Greek characters, 272	inplace option, 204
LaTeX expression, 274	rename() function, 204
line and color styles, 270	renaming, axes, 202, 204
mathematical expressions, 275	replacing values, 199, 201
mathematical function, 268	Mathematical expressions with LaTeX,
pandas, 276	see LaTeX
plot() function, 268	MATLAB, 17
set_position() function, 273	matplotlib, 48
xticks() and yticks() functions, 271	matplotlib library
Linux distribution, 90	architecture
LOD cloud diagram, 16	artist layer, 236-238
Logistic regression, 12	backend layer, 236
	functions and tools, 235
N.A.	layers, 235
M	pylab and pyplot, 238–239
Machine learning (ML), 5	scripting layer (pyplot), 238
algorithm development process, 313	artist layer
deep learning, 351	graphical representation, 237
diabetes dataset, 327-328	hierarchical structure, 236
features/attributes, 314	primitive and composite, 237
Iris flower dataset, 316	graphical representation, 231, 233
learning problem, 314	LaTeX, 232
linear/least square regression	NumPy, 246

INDEX

Matrix product, 60	Jupyter Notebook, 415
Merging operation	access internal data, 417
DataFrame, 183–184	command line, 415
dataframe objects, 183	dataframe, 419-420
index, 187	extraction procedures, 418
join() function, 187-188	Ferrara, 416
JOIN operation, 182	JSON file, 416
left_index/right_index	json.load() function, 415
options, 187	parameters, 419
left join, right join and	prepare() function, 420
outer join, 186	RoseWind (see RoseWind)
left_on and right_on, 185, 187	wind speed, 441
merge() function, 183, 184	Microsoft excel files
Meteorological data, 409	dataframe, 162
Adriatic Sea and Po Valley, 410	data.xls, 160, 162
cities, 412	internal module xlrd, 160
Comacchio, 413	read_excel() function, 161
image of, 411	MongoDB, 178-179
mountainous areas, 410	Multi Layer Perceptron (MLP)
reference standards, 412	artificial networks, 360
TheTimeNow website, 413	evaluation of, 404
climate, 409	experimental data, 404
data source	hidden layers, 397
JSON file, 414	IPython session, 387
Weather Map site, 414	learning phase, 389
IPython Notebook	model definition, 387
chart representation, 425, 429, 431	test phase and accuracy
CSV files, 421	calculation, 395, 402
DataFrames, 422, 432	Musical data, 553
humidity function, 433-435	
linear regression, 431	NI.
matplotlib library, 423	N
Milan, 423	Natural Language Toolkit (NLTK)
read_csv() function, 421	bigrams and collocations, 498
result, 423	common_contexts() function, 493
shape() function, 422	concordance() function, 493
SVR method, 428-429	corpora, 488
temperature, 424, 426-427, 432	downloader tool, 489

fileids() function, 491	increment and decrement
HTML pages, text, 501	operators, 60–61
len() function, 491	matrix product, 59-60
library, 489	ufunc, 61
macbeth variable, 491	broadcasting
Python library, 488	compatibility, 77
request() function, 502	complex cases, 78–79
selecting words, 497	operator/function, 76
sentimental analysis, 502	BSD, 50
sents() function, 492	conditions and Boolean arrays, 69
similar() function, 494	copies/views of objects, 75
text, network, 500	data analysis, 49
word frequency, 494	indexing, 63
macbeth variable, 495	bidimensional array, 64
most_common() function, 494	monodimensional ndarray, 63
nltk.download() function, 495	negative index value, 63
nltk.FreqDist() function, 494	installation, 50
stopwords, 495	iterating an array, 67–69
string() function, 496	ndarray (see Ndarray)
word search, 493	Numarray, 49
Ndarray, 47	python language, 49
array() function, 51–53	reading and writing array data, 82
data, types, 53–54	shape manipulation, 70–71
dtype (data-type), 50, 54	slicing, 65–66
intrinsic creation, 55–57	structured arrays, 79
type() function, 51-52	vectorization, 76
NOSE MODULE, 91	
"Not a Number" data	0
filling, NaN occurrences, 133	
filtering out NaN	Object-oriented programming language, 20
values, 132-133	OCR, see Optical Character Recognition
NaN value, 131-132	(OCR) software
NumPy library	Open data, 15–16
array manipulation (see Array	Open data sources, 353
manipulation)	climatic data, 552
basic operations	demographics
aggregate functions, 62	IPython Notebook, 446
arithmetic operators, 57–59	matplotlib, 449