Image processing in Scilab/Matlab

Programming requirements

- •Assignments, the midterm test and the final exam all include Matlab/Scilab programming questions.
- •The questions will ask you to achieve a certain image processing by writing a program/function.
- •If no additional instruction is given, you are NOT allowed to use image processing functions in the image processing toolboxes (e.g. SIVP and IPCV) apart from some certain ones (imshow, imread, imwrite).
- Practice programming after class as much as possible!

Matlab

- Numerical computing environment.
- Based on C++ but much simpler syntax.
- •Comprehensive toolboxes for specialized areas (SIVP toolbox).
- •Allows matrix manipulations, plotting functions and data, implementation of algorithms, creating of user interfaces and interfacing with programs writing in other languages.
- High efficiency for matrix processing and computing.
- Good graphic presentation and data visualization.

Scilab

- •Scilab is an open-source numerical computational package and high level numerically oriented programming language.
- •Its syntax is similar to Matlab, including a source code translator for assisting the conversion of code from Matlab to Scilab.
- Scilab has Image Processing and Computer Vision Toolbox (IPCV)
- •Scilab is available in the classroom.
- Download Scilab at http://www.scilab.org/

Toolboxes available at https://atoms.scilab.org/

IPCV Toolboxes at http://atoms.scilab.org/toolboxes/IPCV/4.1.2

Matlab Interface

Matlab editor

Scilab Toolbox Installation

Install toolboxes via ATOMS (AuTomatic mOdules Management for Scilab)

• ATOMS GUI- under Application menu.

or

o ATOMS function atomsInstall("name_of_the_module") For example: -->atomsInstall("IPCV");

Once a toolbox is installed, the module will be loaded automatically on the next start-up.

More information at: https://wiki.scilab.org/Modules

Installation using a Downloaded Toolbox

```
--> atomsInstall("IPCV"):
Scanning repository http://atoms.scilab.org/6.1 ... Done
at line
        237 of function atomsDownload (E:\scilab-6.1.0\modules\atoms\macros\atoms internals\atomsDownload.sci line 252)
         314 of function atomsInstall (E:\scilab-6.1.0\modules\atoms\macros\atomsInstall.sci line 330)
at line
getmd5: The file E:\scilab-6.1.0\contrib\IPCV\IPCV-4.1.2-win64-61-bin.zip does not exist.
     Step2:
    Put IPCV-4.1.2-win64-61-bin.zip in the folder above
     Step3:
    Re-run atomsInstall("IPCV");
```

Scilab Toolbox Installation

Once a toolbox is installed, the module will be loaded automatically on the next start of Scilab.

Scilab Help

Image in Matlab/Scilab

- Image is regarded as a matrix defined by:
 - The number of rows.
 - The number of columns.
 - ➤ The data type
- Grayscale image
 - ≥2D matrix
 - ➤ Data type: uint8 or uint16
 - ➤ Value range: [0,255] or [0 65535]

- Binary image-a logical array of 0s and 1s.
 - ≥2D matrix
 - ➤ Data type : logical
 - ➤ Value range: 0 or 1
- Colour image
 - ≥3D matrix
 - ➤ Data type: uint8 or uint16
 - ➤ Value range: [0,255] or [0 65535]

Image O/I and display

imread

```
Im=imread('filename.tif/bmp/jpg/tiff/gif');
```

imwrite

- o imwrite(Im, 'filename.jpg','quality',q)
- q is an integer between 0-100.

imshow

```
imshow(Im);
figure, imshow(Im);
subplot(2,3,1); imshow(Im); title('after masking');
```

Plot curves

plot

o plot(0:255, hr, 'r', 0:255, hg, 'g' 0:255, hb, 'b');

https://www.mathworks.com/help/matlab/ref/plot.html?s_tid=gn_loc_drop

Plot curves

plot

Table 2.3: Attributes for plot

Symbol	Color	Symbol	LINE STYLE	Symbol	Marker
k r b g c	Black Red Blue Green Cyan Magenta	- : none	Solid Dashed Dotted Dash-dot No line	+ o * ×	Plus sign Circle Asterisk Point Cross Square
у	Yellow			d	Diamond

https://www.mathworks.com/help/matlab/ref/plot.html?s_tid=gn_loc_drop

Matrix generating functions

```
zeros (M, N)
```

generates an MxN matrix of 0s of class double

```
ones (M, N)
```

generates an MxN matrix of 1s of class double

```
true (M, N)
```

generates an MxN matrix of 1s of class logical

```
false (M, N)
```

generates an MxN matrix of 0s of class logical

```
rand (M, N)
```

generates an MxN matrix whose entries are uniformly distributed random numbers in the interval [0,1]

Vectorization

- •Matlab/Scilab matrices are stored in an internal data structure which can be managed at the interpreter level.
- Most basic arithmetic operations are performed by a compiled, optimized, source code.
- •Most matrix algorithms do not require to use loops. a Matlab/Scilab script which performs the same operations with loops is typically from 10 to 100 times slower.
- •For higher efficiency, matrix algorithm should be used as often as possible.

Arithmetic operation functions

•	Oper.	Name	Comments	
•				
•	+	Array and matrix Addition	a +b, A + B, or a + A	
•	-	Array and matrix subtract	a −b, A − B, or a − A	
•	.*	Array multiplication	C=A.*B; C(I,J)=A(I,J)*B(I,J)	
•	*	Matrix multiplication	A*B, std. matrix multiplicat.	
•	./	Array right division	C=A./B; C(I,J)=A(I,J)/B(I,J)	
•	.\	Array left division	$C=A.\B; C(I,J)=B(I,j)/A(I,J)$	
•	/	Matrix right division	A/B; A*inv(B)	
•	\	Matrix left division	A\B; inv(A)*B	
•	.^	Array power	$C(I,J)=A(I,J)^B(I,J)$	
•	٨	Matrix power		
•	,	Vector & matrix transpose	Α.'	
•	í	Vector & matrix complex		
•		Conjugate transpose	A'	
•	+	Unary plus	+A is same as 0+A.	
•	-	Unary minus	-A is same as 0-A or -1*A	

 Here A and B are matrices or arrays and a and b are scalars. All operands can be real or complex.

* VS *

- .* -dot product
- >. * is element-wise multiplication.
- $\succ C(i, j) = A(i, j) \times B(i, j)$
- > A and B should have the same size. (A:M×N, then B: M×N)
- * -is matrix multiplication.

$$C(i,j) = \sum_{k=1}^{N} A(i,k) \times B(k,j)$$

➤ the column number of A should be the same as the row number of B, if A*B. (A:M×N, B:N×K and C:M×K)

When one of matrices is a scalar, * and .* give the same result.

Matrix with ':'

Syntax	Access
A	the whole matrix
A(:,:)	the whole matrix
A(i:j,k)	the elements at rows from i to j, at column k
A(i,j:k)	the elements at row i, at columns from j to k
A(i,:)	the row i of matrix
A(:,j)	the column j of matrix
A(end, end)	the elements at the last row, at last column. * Matlab uses 'end' and Scilab uses '\$'.

Flow control operator: If...else/elseif

The if statement allows to perform a statement if a condition is satisfied.

```
i = 5;
if i == 1
    disp (" Hello !");
elseif i == 2
    disp (" Goodbye !");
elseif i == 3
    disp (" Tchao !");
else
    disp ("Au Revoir !");
end
```

Flow control operator: for

The for statement allows to perform loops, i.e. allows to perform a given action several times.

```
for i = 1:2:6
    disp (i);
end
```

Flow control operator: while

The while statement allows to perform a loop while a boolean expression is true.

```
s = 0;
i = 1;
while i <= 10
    s = s + i;
    i = i + 1;
end</pre>
```

Defining a function

Matlab uses 'function' and 'end' to define a new function. (Scilab uses 'function' and 'endfunction'.)

The script which stores the function should share the name with the function.

If several functions are stored in a script, only the one with the same name as the script is public. The rest are private.