Trabalho prático 2 Tecnologia da Informática 2023/2024 *Ardugotchi*

O objetivo deste trabalho é o de implementar um *Tamagotchi*. Um *Tamagotchi* é uma mascote virtual (*circa* 1996) que necessita de cuidados e atenção, podendo morrer se não for devidamente cuidada. O *Tamagotchi* a implementar deverá ter três botões (comer, dormir e brincar) e três LEDs (1 LED para cada necessidade: fome, sono e brincar). Um LDR será usado para analisar a luz ambiente, ajudando a determinar se é hora de pôr a mascote a dormir.

TRABALHO A REALIZAR EM GRUPOS DE 2 ALUNOS/AS, RESPEITANDO A LISTA PUBLICADA PELOS DOCENTES DAS TURMAS PL. REGRAS PARA CASOS EXCECIONAIS DOCUMENTADAS ABAIXO.

Lógica de operação

Normalmente, os Tamagotchis costumam utilizar intervalos de base horária, mas no nosso caso isso não é viável – por esse motivo iremos trabalhar com uma base de minutos. O nosso Tamagotchi irá comportar-se de acordo com um conjunto de regras, a saber:

- Quando o Arduino é ligado, o Tamagotchi deve considerar-se acabado de "nascer", começando-se a contar o tempo.
- A cada 4 minutos (mais ou menos 60s, sendo esta margem aleatória), a mascote precisa de comer, o que deverá sinalizar acendendo o LED verde. Para satisfazer esta necessidade, o utilizador deverá carregar no botão correspondente.
- A cada 3 minutos (mais ou menos 60s, sendo esta margem aleatória), o Tamagotchi
 precisa de atenção, o que deverá sinalizar acendendo o LED amarelo. Para satisfazer
 esta necessidade, o utilizador deverá carregar no botão correspondente.
- Ao fim de 10 minutos acordado (mais ou menos 60s, sendo esta margem aleatória), ou se a média das últimas medições da luz ambiente for acima de 2/3 da gama do ADC, (o que acontecer primeiro) o Tamagotchi deverá pedir para o porem a dormir, acendendo o LED vermelho. Uma vez premido o botão de dormir, o Tamagotchi irá dormir durante 5 minutos, não devendo gerar quaisquer eventos durante esse período e recomeçando a rotina normal após acordar (em ambos os casos dormir e acordar deverá imprimir uma mensagem informativa sobre o acontecimento).
- O estado de saúde da mascote será determinado por um contador de penalizações. As penalizações serão adicionadas conforme o tempo que o utilizador demorar a satisfazer as exigências do Tamagotchi, sendo estas de 5 pontos por cada minuto completo – contudo, se o utilizador reagir durante os primeiros 15s após a notificação, deverá haver uma bonificação (subtração) de 5 pontos neste contador (se este for igual a zero continuará a zero).
- A cada minuto decorrido o valor do contador de penalizações deverá ser impresso.

O Tamagotchi irá morrer se o total de penalizações ultrapassar os 25 pontos, parando a execução do programa - deverá ser impressa uma mensagem a informar quando tal suceder. Para a medição da média dos valores da intensidade luminosa, deverão guardar uma amostra num vetor, a cada minuto, fazendo a média de 6 amostras.

Regras de ligação (conforme mostra a figura)

Conexões do circuito

3 LED:

- Pino 11: Comer
- Pino 12: Brincar
- Pino 13: Dormir

3 Botões de pressão:

- Pino 2: Comer
- Pino 3: Brincar
- Pino 4: Dormir

LDR ligado no pino A0, em circuito de divisor de tensão com resistência de 10KOhm ligada aos +5V.

Notas e recomendações

Tenham atenção à possibilidade de *overflow* de qualquer contador de tempo – cuidado com a manipulação de constantes numéricas (ver slides da aula teórica da semana de 21/11)! Não utilizar *delays()*, sob qualquer pretexto.

Critérios de avaliação

O uso de *debouncing* é obrigatório. O recurso a funções será valorizado, assim como a legibilidade e qualidade geral do código que for submetido. Submissões elaboradas sem recurso a estruturas de controlo apropriadas (como é o exemplo dos ciclos) serão penalizadas. O recurso a instruções ou conteúdos não lecionados na cadeira dará lugar a penalização.

A fraude académica (contemplando situações como o plágio ou falsa autoria, entre outras) será tratada de acordo com o Regulamento Disciplinar dos Estudantes da UC.

Este trabalho será sujeito a defesa sem consulta sem acesso ao código fonte, na última aula PL do semestre, pelo que não deverão faltar.

Regras de submissão

O trabalho deverá ser realizado em grupos de 2 alunos, de acordo com as listas criadas nas aulas PL. **Nos casos excecionais dos alunos sem grupo atribuído**, dispensa-se a implementação da funcionalidade do LDR.

As submissões **serão feitas individualmente**, no Inforestudante, com a identificação dos nomes e números de estudante do grupo a que pertencem (ou indicação do/a próprio/a quando se tratar de aluno/a sem grupo).

Data limite para submissão dos trabalhos: 10 de dezembro, pelas 23:59.

A submissão deverá ser constituída por um ficheiro comprimido ZIP, contendo:

- O código elaborado para o projeto, na sua totalidade (ficheiros em formato .ino).
- Um pequeno relatório (3 páginas, máximo) documentando como foram implementadas as funcionalidades e quaisquer observações/lacunas pertinentes.
- Um pequeno vídeo do circuito montado, em operação durante uma ronda completa de jogo (tenham atenção aos limites de upload). Para que o vídeo não produza um ficheiro de dimensões exageradas, sugerem-se as seguintes alternativas:
 - acelerar o vídeo;
 - o reduzir a resolução e qualidade (dentro de limites adequados à visualização);
 - ajustar as variáveis de temporização no programa usando uma mesma escala para efeitos da gravação (por exemplo, dividindo todos os intervalos de referência por 3 no caso do intervalo para dormir passaríamos de 10 para 3.3 minutos +- 60s (acordando ao fim de 5/3 minutos, ou seja 1.6 minutos), de 3 para 1 minuto (+- 60s) no intervalo de brincar e de 4 para 1.3 no intervalo para comer (+- 60s).

Solicita-se ainda que indiquem no relatório quais as opções que adotaram.

Alunos remotos sem kit Arduino deverão efetuar uma submissão normal (com exceção do vídeo), usando o Tinkercad para implementar o projeto. Nestes casos aplica-se o seguinte:

- Deverão usar a função "Enviar para->Convidar pessoas" para obter um link sem data de expiração para o projeto, de modo que os docentes possam conferir o que foi feito (NÃO COLOCAR O PROJETO COM VISIBILIDADE PÚBLICA!!!!).
- O link do Tinkercad acima referido deverá ser incluído no relatório a submeter.
- Adicionalmente, o código desenvolvido deverá ser submetido utilizando para o efeito um ficheiro de texto no formato .txt (em substituição do ficheiro .ino).