

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination DECEMBER 2023

Max. Marks: 100

Class: TE ELECTRONICS & TELECOMMUNICATION

Course Code: EC303

Name of the Course: Digital Signal Processing

Duration: 180 Min

Semester: V

Branch: EXTC

Instruction:

(1) All questions are compulsory.

(2) Use of scientific calculator is allowed.

(3) Draw neat diagram.

(4) Assume suitable data if necessary with justification.

		Max. Marks	CO
Q.1	Attempt the following Short Answer Questions.	Marks	AND A SECTION
(1)	For the DFT of each real sequence compute the missing values	2	CO2
	$(1.1) P[k] = \{0,, -12-10j, -10,, 1+j \}$		
	$(1.2) Q[k] = \{10, 2+2j,, 1+j, 0, 1-j, -2.4+4.8j,\}$		
(2)	Let h[n] be the unit impulse response of a Low Pass Filter with a cutoff frequency	2	CO4
	w_c , what type of filter has a unit sample response $g[n] = (-1)^n h[n]$?		
(3)	Let $x[n] = (-0.4)^{n-1} u[n-1] + (-0.5)^n u[n]$ Find X(z)	2	CO3
(4)	Show that if $Z = 0.25$ is ZERO of the filter then $Z = 4$ is also a ZERO	2	CO4
	of the Linear Phase filter.		
(5)	Derive the relationship between Analog Filter Frequency and Digital Filter	2	CO5
	Frequency when BLT Method is used for filter design?		
(6)	Let $x[n]$ be a four-point sequence with $X[k] = \{1, 2, 3, 4\}$. Find the DFT of $p[n]$	2	CO2
	using $X[k]$ where $p[n] = x[n-2]$.		
(7)	An Audio signal x(t) band-limited to 4 KHz is sampled with a sampling frequency	2	CO1
	of 8 KHz for a duration of 10 seconds of time. The DFT of samples of x[n] is		
	then computed.		
	To what Analog frequency does the index k=0 correspond?		
(8)	Given $H(z) = 0.1 + 0.2 z^{-1} + 0.3 z^{-3}$	2	CO4
	Find the response of the filter to the input $x[n] = (0.5)^n \sin(0.25\pi n) u[n]$.		

(9)	A continuous Time Signal x(t) = 1.8 sin (120 π t) + 20 sin (80 π t) is sampled with Fs =	2	CO1
	1000 times per seconds for a period of 60 seconds.		
	How many samples will be obtained in 60 seconds of time. Justify your Answer.		
(10)	What is the effect of zero padding of signal in frequency domain?	2	CO2
Q.2	Assume that a Real Multiplication takes 1 microsecond & a Real Addition takes 1	10	CO2
(A)	microsecond.		
	How much time it will take to find circular convolution of M=21 point h[n] and L		
	= 480 point $x[n]$ using FFT-IFFT.		
Q.2	Given $H(z) = \frac{z}{(z-0.3)(z-2)(z-0.6)}$	10	CO3
(B)	Find h(n) for the following ROC conditions:		
	a) $ z > 2$ b) $ z < 0.3$ c) $0.6 > z > 0.3$ d) $2 > z > 0.6$		
	e) State in which of the above system is stable and justify.		
Q.3	Design 4 th order Digital Butterworth HPF with pass band cutoff frequency of 0.5π	10	CO5
(A)	radians. [6 Marks]		3.30
	Draw Realization Diagram [4 Marks]		
	OR		
	A Digital Butterworth Low Pass Filter is required to meet the following		
	specifications:		
	Pass band ripple ≤ 1.5 dB		
	Stop band attenuation ≥ 42 dB		
	Pass band edge = 4.2 KHz		
	Stop band edge = 5.8 KHz	82	
	Sampling rate = 24 KHz		
	Find the filter order and cutoff frequency of the filter if		
	(a) Impulse Invariant Method is used		
	(b) BLT technique is used.		
Q.3	Design a second order Linear Phase Low Pass FIR filter with one of the ZERO at	10	CO2
(B)	z = -0.5. [4 Marks]	3.5	- 10 m - 17
	Find the response of the filter to the input $x[n] = \{1, 2, 3, 4, 5, 6, 7\}$ using Overlap		
	Add Method. [6 Marks]		
Q.4	A filter is required to be designed with the following specifications,	10	CO5
(A)			
	$H_d(e^{jw}) = \begin{bmatrix} 2 e^{-j3w} & -0.45\pi \le w \le 0.45\pi \\ 0 & Otherwise \end{bmatrix}$		
	Using the Hamming window. [8 Marks]		
	Hamming window function is given by,		

	$w[n] = \begin{bmatrix} 0.54 - 0.46 & \cos\left(\frac{2\pi n}{N-1}\right) & 0 \le n \le N-1 \\ 0 & otherwise \end{bmatrix}$ Draw Linear Phase Realization Diagram. [2 Marks] OR Design sixth order Linear Phase Band Pass FIR filter with pass band frequencies $w_1 = 0.45 \pi \text{ and } w_2 = 0.65 \pi \text{ using Frequency Sampling Method [8 Marks]}$ Draw Linear Phase realization diagram. [2 Marks]		
Q4	Given	10	CO4
(B)		10	CO4
	$x [n]$ $\frac{7}{8}$ $-\frac{3}{32}$ $\frac{z^{-1}}{z^{-1}}$ $-\frac{1}{2}$ $\frac{z^{-1}}{3}$		
	(1) Find H(z). [6 Marks]		4:
	(2) Calculate Magnitude Response at $w = 0$ and $w = \pi$ [2 Marks]		
	(3) Comment on Stability and Causality of the system. [2 Marks]		
	OR		
	Given $H(z) = \frac{2z^2}{z^2 + 0.1z - 0.06}$ (a) Find the impulse response of the filter. Identify the filter type (IIR Filter Or FIR Filter)? [4 Marks] (b) Draw POLE and ZERO Diagram. Is the filter Stable? Justify your answer. [3 Marks] (c) Find Difference Equation. State whether the System is Recursive or Non recursive. Justify. [3 Marks]		

Q.5	What will be the reconstructed analog signal? Consider the signal,	10	COI
(A)	$x(t) = 120 \cos (50 \pi t) u(t) + 130 \sin (300 \pi t) u(t) - 140 \cos (100 \pi t) u(t)$		
	1. If the signal is sampled with $Fs = 200 \text{ Hz}$,		
	What will be the DT signal obtained after sampling?		
	Plot first five samples of DT Signal thus obtained. [4 marks]		
	2. Classify the sampled signal: Even/Odd Signal, Periodic/Non		
	Periodic, Causal/Anti-casual/Both Sided Signal, [4 Marks]		
	3. Each sample is scaled in the range [0 to 255] & digitized using ADC with eight-		
	bit resolution. If the binary samples thus obtained are transmitted serially, what will		
	be the data bit rate? [2 Marks]		
Q.5	It is required to design an audio signal processing system that will decompose input	10	CO6
(B)	digital audio signal into four frequency bands without overlapping.		
	The output of each filter is compressed with 50% compression factor and the		
	compressed files are stored separately.		
	Specify the type of filters to be used with cutoff frequencies of each filter.		
	Draw the Framework/block diagram of the DSP system. Justify the need of each		
	process.		
	Assume that Sample Audio Signal of user is already captured for 3 seconds of time.		
	OR		
	For the system below, sketch $X_1(w)$, $X_2(w)$, $Y_0(w)$ and $Y_1(w)$		
	$H_0(z) \longrightarrow y_0[n]$		
	x[n] x1[n]		
	12 12		
	$H_1(z) \longrightarrow y_1[n]$		
	Magnitude Spectrum of x[n] is given below.		
	X(w)		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$H_0(z)$ is LPF and $H_1(z)$ is HPF.		
	$H_0(z)$ is LPF and $H_1(z)$ is HPF.		