

Natural Language Processing

Yue Zhang Westlake University

Chapter 7

Generative Sequence Labeling

Contents

- 7.1 Sequence Labelling
- 7.2 Hidden Markov Models
 - 7.2.1 Training Hidden Markov Models
 - 7.2.2 Decoding
- 7.3 Finding Marginal Probabilities
 - 7.3.1 The Forward- Backward Algorithm
- 7.4 EM for Unsupervised HMM Training
 - 7.4.1 EM for First-Order HMM

Contents

- 7.1 Sequence Labelling
- 7.2 Hidden Markov Models
 - 7.2.1 Training Hidden Markov Models
 - 7.2.2 Decoding
- 7.3 Finding Marginal Probabilities
 - 7.3.1 The Forward- Backward Algorithm
- 7.4 EM for Unsupervised HMM Training
 - 7.4.1 EM for First-Order HMM

Structure Prediction

(b) An example dependency tree.

Task	Input	Output
Morphological Analysis	(English) walking	walk + ing
	(Arabic) wktAbnA	w + ktAb + nA
	(German) Wochenarbeitszeit	Wochen + arbeits + zeit
Tokenisation	Mr. Smith visited	Mr. Smith visited
	Wendy's new house.	Wendy 's new house.
Word segmentation	其中国外企业	其中 国外 企业
	中国外企业务	中国 外企 业务
	はきものを脱ぐ	はきものを 脱ぐ
	きものを着る	きものを 着る
POS Tagging	I can open this can	PRP MD VB DT NN

Output inter-dependency

Sequence Labelling

- Part-of-Speech tagging as example
- Input is a sentence $s = W_{1:n} = w_1 w_2 \dots w_n$
- Output is a sequence of POS tags $T_{1:n} = t_1 t_2 \dots t_n$

Sentence	POS tagging sequence
Jame went to the shop yesterday.	NNP VBD TO NN NN .
What would you like to eat?	WP MD PRP VB TO VB .
Tim is talking with Mary .	NNP VBZ VBG IN NNP .
I really appreciate it .	PRP RB VBP PRP .
John is a famous athlete.	NNP VBZ DT JJ NN .

NNP: Proper Noun VBD: Verb, past tense TO: to NN: Noun

Sequence Labelling

- Part-of-Speech tagging as example
- Input is a sentence $s = W_{1:n} = w_1 w_2 \dots w_n$
- Output is a sequence of POS tags $T_{1:n} = t_1 t_2 ... t_n$

James went to the shop yesterday.

NNP VBD TO DT NN NN

James|NNP went|VBD to|TO the|DT park|NN yesterday|NN .|.

NNP: Proper Noun VBD: Verb, past tense TO: to NN: Noun

Local Model

- Treat the assignment of each POS tag as a separate classification task.
- Features : five-word window $[w_{i-2}, w_{i-1}, w_i, w_{i+1}, w_{i+2}] \Longrightarrow t_i$ e.g. James went to the shop $\Longrightarrow TO$
- Model: Naive Bayes and discriminative classifiers (e.g., SVM, perceptron, log-linear models)

Local Model

- Treat the assignment of each POS tag as a separate classification task.
- Features : five-word window $[w_{i-2}, w_{i-1}, w_i, w_{i+1}, w_{i+2}] \Longrightarrow t_i$ e.g. James went to the shop $\Longrightarrow TO$
- Model: Naive Bayes and discriminative classifiers (e.g., SVM, perceptron, log-linear models)
- Disadvantage: ignore dependencies between different output POS tags!
 DT JJ NN

determiner \rightarrow noun (NN) or adjective (JJ), not verb (VB) adverb (AD) \rightarrow verb (VB), not possessive pronoun (PRP\$)

Contents

- 7.1 Sequence Labelling
- 7.2 Hidden Markov Models
 - 7.2.1 Training Hidden Markov Models
 - 7.2.2 Decoding
- 7.3 Finding Marginal Probabilities
 - 7.3.1 The Forward- Backward Algorithm
- 7.4 EM for Unsupervised HMM Training
 - 7.4.1 EM for First-Order HMM

Model Target

Model target:

$$P(T_{1:n}|W_{1:n})$$

 $w_i \in V, t_i \in L, i \in [1, ..., n]$

• Parameterization?

- Use the same techniques as for chapter 2:
 - 1. Use the Bayes rule:

$$P(T_{1:n}|W_{1:n}) = \frac{P(W_{1:n}|T_{1:n})P(T_{1:n})}{P(W_{1:n})}$$

$$\propto P(W_{1:n}|T_{1:n})P(T_{1:n})$$

$$= P(W_{1:n}, T_{1:n})$$

- Use the same techniques as for chapter 2:
 - 2. Applying the probability chain rule for $P(T_{1:n})$:

$$P(T_{1:n}) = P(t_1)P(t_2|t_1)P(t_3|t_1t_2) \dots P(t_{n-1}|t_1 \dots t_{n-2})P(t_n|t_1 \dots t_{n-1})$$
(chain rule)

- Use the same techniques as for chapter 2:
 - 2. Applying the probability chain rule for $P(T_{1:n})$:

$$P(T_{1:n}) = P(t_1)P(t_2|t_1)P(t_3|t_1t_2) \dots P(t_{n-1}|t_1 \dots t_{n-2})P(t_n|t_1 \dots t_{n-1})$$
(chain rule)

- 3. Make independence assumptions for $P(T_{1:n})$
 - First-order Markov assumption:

$$P(T_{1:n}) \approx P(t_1)P(t_2|t_1) \dots P(t_n|t_{n-1})$$

• Second-order Markov assumptions:

$$P(T_{1:n}) \approx P(t_1)P(t_2|t_1)P(t_3|t_1t_2) \dots P(t_{n-1}|t_{n-3}t_{n-2})P(t_n|t_{n-2}t_{n-1})$$

- Use the same techniques for $P(W_{1:n}|T_{1:n})$:
 - 1. Use the Bayes rule:

$$P(T_{1:n}|W_{1:n}) = \frac{P(W_{1:n}|T_{1:n})P(T_{1:n})}{P(W_{1:n})}$$

$$\propto P(W_{1:n}|T_{1:n})P(T_{1:n})$$

- Use the same techniques for $P(W_{1:n}|T_{1:n})$:
 - 2. Applying the probability chain rule for $P(W_{1:n}|T_{1:n})$:

$$P(W_{1:n}|T_{1:n}) = P(w_1|T_{1:n})P(w_2|w_1, T_{1:n})P(w_3|w_{1:2}, T_{1:n}) \dots P(w_n|w_{1:n-1}, T_{1:n})$$

- Use the same techniques for $P(W_{1:n}|T_{1:n})$:
 - 2. Applying the probability chain rule for $P(W_{1:n}|T_{1:n})$:

$$P(W_{1:n}|T_{1:n}) = P(w_1|T_{1:n})P(w_2|w_1, T_{1:n})P(w_3|w_{1:2}, T_{1:n}) \dots P(w_n|w_{1:n-1}, T_{1:n})$$

3. Make independence assumptions for $P(W_{1:n}|T_{1:n})$

$$P(W_{1:n}|T_{1:n}) = P(w_1|t_1)P(w_2|t_2) \dots P(w_n|t_n)$$

Generate Stories

$$P(T_{1:n}|W_{1:n}) \propto P(W_{1:n}|T_{1:n})P(T_{1:n})$$

Generate tags

First-order

$$P(T_{1:n}) \approx P(t_1)P(t_2|t_1) \dots P(t_n|t_{n-1})$$

Second-order

$$P(T_{1:n}) \approx P(t_1)P(t_2|t_1)P(t_3|t_1t_2) \dots P(t_{n-1}|t_{n-3}t_{n-2})P(t_n|t_{n-2}t_{n-1})$$

Generate words

$$P(W_{1:n}|T_{1:n}) \approx P(w_1|t_1)P(w_2|t_2) \dots P(w_n|t_n)$$
 (independence assumption)

- Summary
 - First-order Model:

$$P(T_{1:n}|W_{1:n}) \propto P(W_{1:n}, T_{1:n}) = P(T_{1:n})P(W_{1:n}|T_{1:n})$$

$$\approx \prod_{i=1}^{n} P(t_i|t_{i-1}) \cdot \prod_{i=1}^{n} P(w_i|t_i)$$

$$= \prod_{i=1}^{n} P(t_i|t_{i-1}) \cdot P(w_i|t_i)$$

Second-order Model:

$$P(T_{1:n}|W_{1:n}) \propto P(W_{1:n}, T_{1:n}) = P(T_{1:n})P(W_{1:n}|T_{1:n})$$

$$\approx \prod_{i=1}^{n} P(t_i|t_{i-2} t_{i-1}) \cdot \prod_{i=1}^{n} P(w_i|t_i).$$

$$= \prod_{i=1}^{n} P(t_i|t_{i-2} t_{i-1}) \cdot P(w_i|t_i).$$

• A generative model. Use first-order HMM as an example.

• First generate **tags** such as "NNP (proper noun) VBZ (verb third-person singular) NN(noun)"

Then filling the words such as "Jim reads thrillers".

First-order Model:

Emission probability:

$$P(w_i|t_i)$$

Transition probability:

$$P(t_i|t_{i-1}\dots t_{i-k})$$

• Second-order Model:

Contents

- 7.1 Sequence Labelling
- 7.2 Hidden Markov Models
 - 7.2.1 Training Hidden Markov Models
 - 7.2.2 Decoding
- 7.3 Finding Marginal Probabilities
 - 7.3.1 The Forward- Backward Algorithm
- 7.4 EM for Unsupervised HMM Training
 - 7.4.1 EM for First-Order HMM

Model parameterization

$$P(T_{1:n}|W_{1:n}) \approx \prod_{i=1}^{n} P(t_i|t_{i-1}) \cdot \prod_{i=1}^{n} P(w_i|t_i) \quad \text{(first order)}$$

$$P(T_{1:n}|W_{1:n}) \approx \prod_{i=1}^{n} P(t_i|t_{i-2}|t_{i-1}) \cdot \prod_{i=1}^{n} P(w_i|t_i) \quad \text{(second order)}$$

- Parameters: $P(w_i|t_i)$, $P(t_2|t_1)$ or $P(t_3|t_1,t_2)$
- Training (by using MLE)
 - emission probabilities can be estimated as:

$$P(w_{i}|t_{i}) = \frac{\#(w_{i}t_{i})}{\sum_{w}\#(t_{i}w)},$$

• transition probability can be estimated as:

$$P(t_2|t_1) = \frac{\#(t_1t_2)}{\sum_t \#(t_1t)} \text{ or } P(t_3|t_1t_2) = \frac{\#(t_1t_2t_3)}{\sum_t \#(t_1t_2t)}$$

Contents

- 7.1 Sequence Labelling
- 7.2 Hidden Markov Models
 - 7.2.1 Training Hidden Markov Models
 - 7.2.2 Decoding
- 7.3 Finding Marginal Probabilities
 - 7.3.1 The Forward- Backward Algorithm
- 7.4 EM for Unsupervised HMM Training
 - 7.4.1 EM for First-Order HMM

- Classification --- enumerate tags.
- Structured prediction --- Decoding
 - **Enumerating** all tag sequences has exponential computational complexity, which is intractable.
 - **Dynamic programming** is possible for the decoding task.
 - Find the **optimal sub problem using first-order HMM**:

$$P(W_{1:n}, T_{1:n}) = \prod_{i=1}^{n} P(t_i | t_{i-1}) P(w_i | t_i)$$

$$P(W_{1:n}, T_{1:n}) = \prod_{i=1}^{n} P(t_i | t_{i-1}) P(w_i | t_i)$$

$$P(W_{1:n}, T_{1:n}) = P(W_{1:n-1}, T_{1:n-1}) \cdot (P(t_n | t_{n-1}) P(w_n | t_n))$$

$$P(W_{1:n-1}, T_{1:n-1}) = P(W_{1:n-2}, T_{1:n-2}) \cdot (P(t_{n-1} | t_{n-2}) P(w_{n-1} | t_{n-1}))$$

...

$$P(W_{1:i}, T_{1:i}) = P(W_{1:i-1}, T_{1:i-1}) \cdot (P(t_i|t_{i-1})P(w_i|t_i))$$

• • •

$$P(W_{1:1}, T_{1:1}) = P(t_1|t_0)P(w_1|t_1)$$

Denote

 $\hat{T}_{1:i}$ as the highest-scored tag sequence among $T_{1:i}$.

Denote

 $T_{1:i}(t_i = t)$ as a tag sequence $T_{1:i}$ where $t_i = t$

 $\hat{T}_{1:i}(t_i = t)$ as the highest-scored tag sequence among $T_{1:i}$ where $t_i = t$

• Suppose that in $\hat{T}_{1:i}$, $\hat{t}_i = t$, and $\hat{t}_{i-1} = t'$.

 $\hat{T}_{1:i-1}(t_{i-1}=t')$ must be the highest-scored among all $T_{1:i-1}(t_{i-1}=t')$ (proof by contradiction)

• Solving the optimal sub-sequence problem:

$$\widehat{T}_{1:i}(t_i = t) = argmax_{t' \in L} P(W_{1:i-1}, \widehat{T}_{1:i-1}(t_{i-1} = t')) (P(t|t')P(w_i|t))$$

- Incrementally find $\hat{T}_{1:i}(t_i = t)$ for i = 1, 2, ..., n
- Maintain two tables
 - tb --- n columns, |L| rows, storing $\hat{T}_{1:i}(t_i = t)$
 - bp --- n columns, |L| rows, storing

$$\max_{t' \in L} P(W_{1:i-1}, \hat{T}_{1:i-1}(t_{i-1} = t')) (P(t|t')P(w_i|t))$$

• An example (adding in the beginning) Find the path with the highest probability.

• Transition probabilities P(NN|B) = 0.9 P(VB|NN) = 0.8

• • •

Omit emission probabilities

An example (adding in the beginning)
 Find the path with the highest probability.

$$\hat{T}_{1:1}(t_i = NN) = 0.9$$

$$\hat{T}_{1:1}(t_i = VB) = 0.1$$

An example (adding in the beginning)

Find the path with the highest probability.

$$\hat{T}_{1:2}(t_2 = NN) = 0.9*0.2 = 0.18$$
 (NN NN > VB NN)

$$\hat{T}_{1:2}(t_2 = VB) = 0.9 \times 0.8 = 0.72$$
 (NN VB > VB VB)

An example (adding in the beginning)
 Find the path with the highest probability.

An example (adding in the beginning)

Find the path with the highest probability.

• An example (adding in the beginning)

Find the path with the highest probability.

• An example (adding in the beginning)

Find the path with the highest probability.

books

books

• Time:

$$O(|L|^n) \to O(n|L|)$$

• Space (two *L***n* tables):

tb: the probability table

bp: the "back pointer"

- Algorithms
 - -- building table (Viterbi)
 - -- finding tag sequence (back tracking)

Hidden Markov Model

Decoding

```
Input: s = W_{1:n}, first-order HMM model with P(t|t') for t, t' \in L,
and P(w|t) for w \in V, t \in L;
Variables: tb, bp;
Initialisation:
    tb[\langle B \rangle][0] \leftarrow 1;
    tb[t][i] \leftarrow 0, bp[t][i] \leftarrow \text{Null for } t \in L, i \in [1, \dots, n];
for t \in L do
     tb[t][1] \leftarrow tb[\langle B \rangle][0] \times P(t|\langle B \rangle) \times P(w_i|t)
for i \in [2, \ldots, n] do
     for t \in L do
          for t' \in L do
               if tb[t][i] < tb[t'][i-1] \times P(t|t') \times P(w_i|t) then
                b[t][i] \leftarrow tb[t'][i-1] \times P(t|t') \times P(w_i|t);
                  bp[t][i] \leftarrow t';
y_n \leftarrow \arg\max_t tb[t][n];
for i \in [n, \ldots, 2] do
   y_{i-1} \leftarrow bp[y_i][i];
Output: y_1, \ldots, y_n;
```

Contents

- 7.1 Sequence Labelling
- 7.2 Hidden Markov Models
 - 7.2.1 Training Hidden Markov Models
 - 7.2.2 Decoding
- 7.3 Finding Marginal Probabilities
 - 7.3.1 The Forward- Backward Algorithm
- 7.4 EM for Unsupervised HMM Training
 - 7.4.1 EM for First-Order HMM

Hidden Markov Model

Three basic problems summary:

- 1. *Scoring* given a model and input/output pair, find the probability
- Training
 Given labeled sentences, estimate the parameters of model
- 3. Decoding

Given a model and input, find the tag sequence

Finding Marginal Probabilities

- Goal find $P(t_i = t | W_{1:n}), i \in [1, ..., n]$
- The modeling target form $P(T_{1:n}, W_{1:n})$
- Marginalization

$$\begin{split} & P(t_i = t | W_{1:n}) = \\ & \sum_{t_1 \in L} \sum_{t_2 \in L} \sum_{t_{i-1} \in L} \sum_{t_{i+1} \in L} \dots \sum_{t_n \in L} P(T_{1:n}(t_i = t) | W_{1:n}) \\ & \propto \sum_{t_1 \in L} \sum_{t_2 \in L} \sum_{t_{i-1} \in L} \sum_{t_{i+1} \in L} \dots \sum_{t_n \in L} P(W_{1:n}, T_{1:n}(t_i = t)) \end{split}$$

- -- exponential sum, intractable
- Dynamic program again

Finding Marginal Probabilities

$$P(t_{i} = t | W_{1:n}) = \frac{P(t_{i} = t, W_{1:n})}{P(W_{1:n})}$$
 (Bayes rule conditioned on $W_{1:i}$)
$$= \frac{P(t_{i} = t, W_{1:i}, W_{i+1:n})}{P(W_{1:n})}$$

$$= \frac{P(W_{1:i}, t_{i} = t)P(W_{i+1:n} | t_{i} = t, W_{1:i})}{P(W_{1:n})}$$

$$= \frac{P(W_{1:i}, t_{i} = t)P(W_{i+1:n} | t_{i} = t)}{P(W_{1:n})}$$

$$(W_{i+1:n} \text{ is conditionally independent of } W_{1:i} \text{ given } t_{i})$$

$$\propto P(W_{1:i}, t_{i} = t)P(W_{i+1:n} | t_{i} = t)$$

$$(P(W_{1:n}) \text{ is constant for all } t).$$

Finding Marginal Probabilities

$$P(t_{i} = t | W_{1:n}) = \frac{P(t_{i} = t, W_{1:n})}{P(W_{1:n})}$$
 (Bayes rule conditioned on $W_{1:i}$)
$$= \frac{P(t_{i} = t, W_{1:i}, W_{i+1:n})}{P(W_{1:n})}$$

$$= \frac{P(W_{1:i}, t_{i} = t)P(W_{i+1:n} | t_{i} = t, W_{1:i})}{P(W_{1:n})}$$

$$= \frac{P(W_{1:i}, t_{i} = t)P(W_{i+1:n} | t_{i} = t)}{P(W_{1:n})}$$

$$(W_{i+1:n} \text{ is conditionally independent of } W_{1:i} \text{ given } t_{i})$$

$$\propto P(W_{1:i}, t_{i} = t)P(W_{i+1:n} | t_{i} = t)$$

$$(P(W_{1:n}) \text{ is constant for all } t).$$

Forward algorithm Backward algorithm

The forward algorithm

•
$$\alpha(t,i) = P(W_{1:i}, t_i = t)$$

$$= \sum_{t_1 \in L} \dots \sum_{t_{i-1} \in L} P(W_{1:i}, T_{1:i}(t_i = t))$$

$$= \sum_{t_1 \in L} \dots \sum_{t_{i-1} \in L} P(W_{1:(i-1)}, T_{1:(i-1)}) \cdot P(w_i | t_i = t) \cdot P(t_i = t | t_{i-1})$$

$$= \sum_{t_{i-1} \in L} \left(\sum_{t_1 \in L} \dots \sum_{t_{i-1} \in L} P(W_{1:(i-1)}, T_{1:(i-1)}(t_{i-1})) \right)$$

$$\cdot P(w_i | t_i = t) \cdot P(t_i = t | t_{i-1})$$

$$= \sum_{t' \in L} \alpha(t', i - 1) \cdot P(w_i | t_i = t) \cdot P(t_i = t | t')$$

• A dynamic program is feasible by incrementally building a table $\alpha[t][i]$ with n columns and |L| rows.

The forward algorithm

Again using the example

$$\alpha[B][0] = 1$$

$$\alpha[NN][1] = 0.9$$

$$\alpha[VB][1] = 0.1$$

$$\alpha[NN][2] = \alpha[NN][1] * 0.2 + \alpha[VB][1] * 0.6=0.24$$

$$\alpha[VB][2] = \alpha[NN][1] * 0.8 + \alpha[VB][1] * 0.4=0.76$$

$$\alpha[NN][3] = \alpha[NN][2] * 0.2 + \alpha[VB][2] * 0.6=0.504$$

$$\alpha[VB][3] = \alpha[NN][2] * 0.8 + \alpha[VB][2] * 0.4=0.496$$

People

0.2

like

0.2

books

The forward algorithm

: beginning of sentence token

An incremental calculation in the forward direction by using table α

The backward algorithm

•
$$\beta(t,i) = P(W_{i+1:n}|t_i = t)$$

$$= \sum_{t_{i+1} \in L} \dots \sum_{t_n \in L} P(W_{i+1:n}, T_{i+1:n}|t_i = t)$$

$$= \sum_{t_{i+1} \in L} \dots \sum_{t_n \in L} P(t_{i+1}|t_i = t) P(w_{i+1}|t_{i+1}) \cdot P(w_{i+2:n}, T_{i+2:n}|t_{i+1})$$

$$= \sum_{t_{i+1} \in L} \left(\sum_{t_{i+2} \in L} \dots \sum_{t_n \in L} P(W_{i+2:n}, T_{i+2:n}|t_{i+1}) \right)$$

$$\cdot P(t_{i+1}|t_i = t) \cdot P(w_{i+1}|t_{i+1})$$

$$= \sum_{t' \in L} \beta(t', i+1) \cdot P(t_{i+1} = t' | t_i = t) \cdot P(w_{i+1}|t')$$

• A dynamic program is feasible by incrementally building a table $\beta[t][i]$ with n columns and |L| rows.

The backward algorithm

An incremental calculation in the backward direction by using table β

The forward-backward algorithm

$$P(t_i = t | W_{1:n}) \propto P(W_{1:i}, t_i = t) P(W_{i+1:n} | t_i = t)$$

```
Inputs: s = W_{1:n}, first-order HMM model with P(t|t') for t, t' \in L, and P(w|t) where
 w \in V, t \in L;
Variables: tb, \alpha, \beta;
\alpha \leftarrow \text{FORWARD}(W_{1:n}, model);
\beta \leftarrow \text{Backward}(W_{1:n}, model);
for i \in [1, ..., n] do
     total \leftarrow 0:
     for t \in L do
           total \leftarrow total + \alpha[t][i] \times \beta[t][i]
     for t \in L do
          tb[t][i] \leftarrow \frac{\alpha[t][i] \times \beta[t][i]}{total};
Output: tb;
```

Contents

- 7.1 Sequence Labelling
- 7.2 Hidden Markov Models
 - 7.2.1 Training Hidden Markov Models
 - 7.2.2 Decoding
- 7.3 Finding Marginal Probabilities
 - 7.3.1 The Forward Algorithm
 - 7.3.2 The Backward Algorithm
 - 7.3.3 The Forward- Backward Algorithm
 - 7.3.4 Forward- Backward Algorithm for Second-Order HMM
- 7.4 EM for Unsupervised HMM Training
 - 7.4.1 EM for First-Order HMM

Baum-Welch algorithm

• Baum-Welch algorithm: The particular EM algorithm for HMM parameter estimation

- Considering $\log P(W_{1:n}|\Theta) = \log \sum_{T_{1:n}} P(W_{1:n}, T_{1:n}|\Theta)$
- Define $E_{P(T_{1:n}|W_{1:n},\Theta')} \log P(W_{1:n}, T_{1:n}|\Theta)$ (Q-function)
- Run standard EM algorithm.

Contents

- 7.1 Sequence Labelling
- 7.2 Hidden Markov Models
 - 7.2.1 Training Hidden Markov Models
 - 7.2.2 Decoding
- 7.3 Finding Marginal Probabilities
 - 7.3.1 The Forward Algorithm
 - 7.3.2 The Backward Algorithm
 - 7.3.3 The Forward- Backward Algorithm
 - 7.3.4 Forward- Backward Algorithm for Second-Order HMM
- 7.4 EM for Unsupervised HMM Training
 - 7.4.1 EM for First-Order HMM

Recall EM

• EM considers all possible values of hidden variables.

- $P(h|o_i, \Theta^t), h \in H$ is the assignment distribution of H.
- $Q(\Theta, \Theta^t)$ is called the Q-function.

Expectation step

Parameterize the expectation function $Q(\Theta, \Theta')$

$$\begin{split} Q(\theta, \theta') &= \sum_{T_{1:n}} P\left(T_{1:n} | W_{1:n}, \theta'\right) \log P(W_{1:n}, T_{1:n} | \theta), \\ &= \sum_{T_{1:n}} P\left(T_{1:n} | W_{1:n}, \theta'\right) \log \left(\prod_{i=1}^{n} P\left(t_{i} | t_{i-1}\right) P(w_{i} | t_{i})\right) \\ &= \sum_{T_{1:n}} P\left(T_{1:n} | W_{1:n}, \theta'\right) \sum_{i=1}^{n} \left(\log P(w_{i} | t_{i}) + \log P(t_{i} | t_{i-1})\right) \\ &= \sum_{i=1}^{n} \left(\sum_{t} \sum_{t} \log P(w | t) \sum_{T_{1:n}} P\left(T_{1:n} | W_{1:n}, \theta'\right) \delta(t_{i}, t) \delta(w_{i}, w)\right) \\ &+ \sum_{i=1}^{n} \left(\sum_{t'} \sum_{t} \log P(t | t') \sum_{T_{1:n}} P\left(T_{1:n} | W_{1:n}, \theta'\right) \delta(t_{i-1}, t') \delta(t_{i}, t)\right) \end{split}$$

Expectation step

Let
$$\gamma_i(t) = \sum_{T_{1:n}} P\left(T_{1:n} | W_{1:n}, \Theta'\right) \delta(t_i, t)$$
 and $\xi_i(t', t) = \sum_{T_{1:n}} P\left(T_{1:n} | W_{1:n}, \Theta'\right) \delta(t_{i-1}, t') \delta(t_i, t)$, both can be computed efficiently.

$$Q(\Theta, \Theta') = \sum_{i=1}^{n} \left(\sum_{w \in V} \sum_{t \in L} \log P(w|t) \delta(w_i, w) \gamma_i(t)\right) + \sum_{i=1}^{n} \left(\sum_{t' \in L} \sum_{t \in L} \log P(t|t') \xi_i(t', t)\right)$$

$$\gamma_i(t) = \frac{\alpha(t_i = t)\beta(t_i = t)}{\sum_{t' \in L} \alpha(t_i = t')\beta(t_i = t')},$$

$$\xi_i(t',t) = \frac{\alpha(t_{i-1} = t')P(t|t', \theta')P(w_i|t, \theta')\beta(t_i = t)}{\sum_{u \in L} \alpha(t_i = u)\beta(t_i = u)}$$

Expectation step

Therefore,

$$Q(\Theta, \Theta') = \sum_{i=1}^{n} \sum_{w} \sum_{t} \log P(w|t) \delta(w_{i}, w) \gamma_{i}(t)$$

$$+ \sum_{i=1}^{n} \sum_{t'} \sum_{t} \log P(t|t') \xi_{i}(t', t)$$

$$= \sum_{w} \sum_{t} \log P(w|t) \sum_{i=1}^{n} \delta(w_{i}, w) \gamma_{i}(t)$$

$$+ \sum_{t'} \sum_{t} \log P(t|t') \sum_{i=1}^{n} \xi_{i}(t', t)$$

Maximization step

Use Lagrange multipliers to find the constraint optimum.

$$\pi(\Theta, \Lambda) = \sum_{w} \sum_{t} \log P(w|t) \sum_{i=1}^{n} \delta(w_{i}, w) \gamma_{i}(t)$$

$$+ \sum_{t'} \sum_{t} \log P(t|t') \sum_{i=1}^{n} \xi_{i}(t', t)$$

$$+ \sum_{t} (\lambda_{t}^{1} (1 - \sum_{w} P(w|t)) + \sum_{t'} \lambda_{t'}^{2} (1 - \sum_{t} P(t|t'))) \qquad \sum_{t} P(w|t) = 1,$$

$$\sum_{t} P(t|t') = 1$$

• The partial derivative of $\pi(\Theta, \Lambda)$ with respect to P(w|t)

$$\frac{\partial \pi(\Theta, \Lambda)}{\partial P(w|t)} = \frac{\sum_{i=1}^{n} \delta(w_i, w) \gamma_i(t)}{P(w|t)} - \lambda_t^1$$

- Let $\frac{\partial \pi(\Theta, \Lambda)}{\partial P(w|t)} = 0$, $P(w|t) = \frac{\sum_{i=1}^{n} \delta(w_i, w) \gamma_i(t)}{\lambda_t^1} = \frac{\sum_{i=1}^{n} \delta(w_i, w) \gamma_i(t)}{\sum_{i=1}^{n} \gamma_i(t)}$
- Similarly,

$$P(t|t') = \frac{\sum_{i=1}^{n} \xi_{i}(t',t)}{\sum_{u} \sum_{i=1}^{n} \xi_{i}(t',u)} = \frac{\sum_{i=1}^{n} \xi_{i}(t',t)}{\sum_{i=1}^{n} \sum_{u} \xi_{i}(t',u)} = \frac{\sum_{i=1}^{n} \xi_{i}(t',t)}{\sum_{i=1}^{n} \gamma_{i}(t')}$$

Maximization step

With N observations

$$P(w|t) = \frac{\sum_{k=1}^{N} \sum_{i=1}^{n_k} \delta(w_i^k, w) \gamma_i^k(t)}{\sum_{k=1}^{N} \sum_{i=1}^{n_k} \gamma_i^k(t)}$$

$$P(t|t') = \frac{\sum_{k=1}^{N} \sum_{i=1}^{n_k} \xi_i^k(t', t)}{\sum_{k=1}^{N} \sum_{i=1}^{n_k} \gamma_i^k(t')}$$

Baum-Welch algorithm

```
Inputs: s = W_{1:n};
Initialisations: randomly initialise a first-order HMM model with
P(t|t') for t, t' \in L, and P(w|t) where w \in V, t \in L;
Variables: \alpha, \beta, \gamma, \xi;
while not Converge (W_{1:n}, P(t|t'), P(w|t)) do
    \alpha \leftarrow \text{FORWARD}(W_{1:n}, model);
    \beta \leftarrow \text{Backward}(W_{1:n}, model);
    for i \in [1, \ldots, n] do
         total \leftarrow 0;
                                                                                    Calculate \gamma_i(t)
         for t \in L do
                                                                                    and \xi_i(t',t)
             total \leftarrow total + \alpha[t][i] \times \beta[t][i];
        for t \in L do
```

Baum-Welch algorithm

```
for t \in L do
         total_t \leftarrow 0;
         for w \in V do
              count[w] \leftarrow 0;
         for i \in [1, \ldots, n] do
             total_t \leftarrow total_t + \gamma[t][i];
             count[w_i] \leftarrow count[w_i] + \gamma[t][i];
         for w \in V do
                                                                                                   Calculate
              P(w|t) \leftarrow \frac{count[w]}{total_t};
                                                                                                  P(w|t) and
    for t' \in L do
                                                                                                  P(t|t')
         total_{t'} \leftarrow 0;
         for t \in L do
            count[t] \leftarrow 0;
         for i \in [1, \ldots, n] do
             total_{t'} \leftarrow total_{t'} + \gamma[t'][i];
              for t \in L do
                  count[t] \leftarrow count[t] + \xi[t][t'][i];
         for t \in L do
              P(t|t') \leftarrow \frac{count[t]}{total_{t'}};
Output: the first-order HMM model \{P(w|t), P(t|t')\}\ for w \in V
and t, t' \in L;
```

Summary

- Hidden Markov models (HMM), first order HMMs, second order HMMs
- Viterbi decoding algorithms both for first order HMMs and second order HMMs
- Forward algorithms, backward algorithms, forwardbackward algorithms both for first order HMMs and second order HMMs
- EM algorithms for HMMs