Course in Semantics · Ling 531 / 731 McKenzie · University of Kansas

1 Abbreviation of complex types

unabbreviated	abbreviated	domain name
$\langle e, t \rangle$		D _{et}
$\langle e, e \rangle$	ee	
$\langle e, \langle e, t \rangle \rangle$	$\langle e, et \rangle$	
$\langle\langle e, t \rangle, t \rangle$		D _{et,t}
	$\langle et, e \rangle$	D _{et,e}
$\langle d, \langle e, t \rangle \rangle$		D _{d,et}
$\left\{ \langle \langle e, t \rangle, \langle e, t \rangle \rangle \right\}$	$\langle et, et \rangle$	
$\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$		

2 Abbreviation of Lambda-expressions

fully written	subscript type	no type
$\lambda x \in D_e$. $dog(x)$	$\lambda x_{\rm e}. \log(x)$	λx. dog(x)
$\lambda y \in D_e$. walk(y)		
		λz. orange(z)
	$\lambda x_e \lambda y_e$. take(x)(y)	λxλy. take(x)(y)
$\lambda x \in D_e. \lambda z \in D_e. \ see(x)(z)$		
$\lambda a \in D_e. \lambda b \in D_e. \text{ hire(a)(b)}$		
$\lambda f \in D_{\langle e, t \rangle}.\lambda y \in D_e. \ f(y)$	$\lambda f_{et} \lambda y_e$. $f(y)$	
$\lambda f \in D_{\langle e, t \rangle}.\lambda g \in D_{\langle e, t \rangle}. \exists x [f(x)]$ = 1 & g(x) = 1]		

3 Removal of = 1

(Abbreviate types and lambdas, while you're at it)

[the]	$\lambda f \in D_{\langle e, t \rangle}. \ \iota x \in C[\ f(x) = 1\]$	λf_{et} . $\iota x[f(x)]$
[red car]	$\lambda x \in D_e$. red(x) = 1 & car(x) = 1	λx_e . red(x) & car(x)
	$\lambda x \in D_e$. happy(x) = 1 & dog(x) = 1	
[every]	$\lambda f \in D_{\langle e, t \rangle}.\lambda g \in D_{\langle e, t \rangle}. \ \forall x [\ f(x) = 1 \rightarrow g(x) = 1\]$	
[no]	$\lambda f \in D_{\langle e, t \rangle}.\lambda g \in D_{\langle e, t \rangle}. \ \neg \exists z [\ f(z) = 1 \& g(z) = 1]$	
[[some]]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	