

2 – Reti locali wireless (WLAN)

Reti Mobili Distribuite

Prof. Antonio Capone

Regolamentazione della banda

Allocazione di banda

- Lo spettro è una risorsa scarsa,
 - Necessità di regolamentazione
 - Priorità ad applicazioni "delicate" (militari, mediche ecc..)
 - Molte bande sono licenziate (tassa sull'utilizzo)
- L'uso dello spettro di frequenze radio è regolato da:
 - Federal Communications Commission (FCC) in Nord America
 - European Telecommunications Standard Institute (ETSI) in Europa

Bande non licenziate

Bande Industrial Scientific and Medical (ISM)

- □ Bande non licenziate allocate attorno ai 900 MHz e ai 2.4 GHz (80 MHz di banda a 2.40÷2.48 GHz) per le comunicazioni di utenti individuali
 - La banda a 2.4 GHz è disponibile "worldwide"
 - FCC alloca sia la banda a 900 MHz che quella a 2.4 GHz
 - ETSI alloca solo la banda a 2.4 GHz (la banda a 900 MHz in Europa è usata per il GSM)
- □ Basso costo
- Alta interferenza

Regole d'utilizzo della banda ISM

- □ Uso della tecnica di *Spread Spectrum* (non più)
- ☐ Limiti sulla massima potenza trasmessa in banda
 - Nord America: 1* W sia a 900 MHz che a 2.4 GHz
 - Europa (ERC/DEC/(01)07): 100* mW a 2.4 GHz
- Limiti sulle emissioni fuori banda

^{*} limite sull'EIRP

Bande attorno ai 5GHz

- ☐ In Europa *ERC/DEC/(99)/23*:
 - banda a 5.2 (5.15-5.35) GHz per il sistema *HiperLan*
 - banda a 5.4 (5.47-5.725) GHz per HiperLan II
- □ In Nord America
 - Banda UNII (Unlicensed National Information Infrastructure) 300 MHz tra 5.2 e 5.8 GHz con regole abbastanza libere
- Limiti solo sull'uso della potenza

Vantaggi/Svantaggi bande a 5 GHz

- □ Pochi sistemi utilizzano la banda a 5 GHz
 - Minore interferenza
 - Maggiore disponibilità
 - Maggiore velocità nominale di trasmissione
- Frequenza portante più elevata
 - Maggiore attenuazione in spazio libero del segnale
 - Maggiore potenza in trasmissione
 - Ostacoli più opachi
 - A pari potenza trasmessa il raggio d'azione è inferiore rispetto ai sistemi a 2.4 GHz
 - Necessità di installare più AP (fattore 1.5)

Banda UNII

- □ 300 MHz divisi in tre sottobande da 100 MHz ciascuna
 - "Low" 5.15-5.25 GHz, Potenza max 50* mW
 - "Middle" 5.25 5.35 GHz , Potenza max 250* mW
 - "High" 5.725 5.825 GHz, Potenza max 1* W
- Utilizzo delle tre sottobande:
 - Low/Middle: sistemi indoor
 - High: sistemi outdoor

^{*} limite sull'FIRP

I 5 GHz in Europa – *Decision ECC/DEC/(04)08*

- □ L' 802.11a base è "fuori legge" in Europa
- □ E' invece consentito l'utilizzo della variante 802.11h con funzionalità di:
 - Transmission Power Control (TPC)
 - Dynamic Frequency Selection (DFS)
- □ In dettaglio:
 - 5.15 5.35 GHz: uso indoor con Potenza massima 200* mW
 - 5.47 5.725 GHz: uso indoor/outdoor on Potenza massima 1* W

^{*} limite sull'EIRP

Normativa italiana - Decreto Gasparri del 28/05/03

- Si applica a reti locali wireless sia in banda2.4GHz ahe in banda 5 GHz
- □ Limiti di potenza stabiliti da Decisione Europea (DE)
- ☐ Su suolo pubblico o in locali ad accesso pubblico (aeroporti, stazioni, grandi magazzini, ecc..):
 - Obbligo di registrazione al Ministero
 - Obbligo di autenticazione degli utenti
 - Obbligo di accounting
 - Obbligo di conservazione dei log
- Su suolo privato:
 - Nessuna restrizione (tranne quelle sulla potenza)

Panoramica Sistemi Wireless

L'evoluzione

L'evoluzione delle WLAN

Motivazione e storia Organizzazione della standardizzazione Programmi di certificazione *WiFi*TM

Lo standard 802.11 - Storia

- □ La maggior parte delle reti locali cablate (LAN) si basano sulla tecnologia Ethernet (standardizzata da IEEE in 802.3)
- L'accesso al canale è broadcast su un mezzo a bus

□IDEA: replicare in uno scenario wireless gli stessi principi

La standardizzazione

- ☐ Gli standard WLAN sono governati da IEEE sotto la guida del 802 LAN/MAN standards committee
- □ Il gruppo che si occupa delle WLAN è 802.11

http://grouper.ieee.org/groups/802/11/

ISO OSI 7layer model Application
Presentation
Session
Transport
Network
Data Link
Physical

Physical

IEEE 802
standards
Logical Link Control
Medium Access (MAC)

Organizzazione del gruppo 802.11

Lo standard 802.11-Milestones

- □ Seconda metà anni '80
 - Tecnologie propritarie per l'interconnessione LAN senza fili (prevalentemente in Nord America).
 - Operano in banda 900 MHz
- 1991: IEEE inizia la fase di standardizzazione
 - Spinta dei costruttori (Aironet)
- 1997: ratifica standard 802.11
 - 802.3 LAN emulation
 - Sono specificati 3 livelli fisici a 1 o 2 Mb/s
 - □ FHSS Frequency Hopping Spread Spectrum
 - DSSS Direct Sequence Spread Spectrum
 - □ Infrarosso

Lo standard 802.11 - *Milestones*

- □ 1999: ratifica di due nuovi livelli fisici
 - 802.11a da 6 a 54 Mb/s nella banda a 5GHz
 - 802.11b da 5.5 e 11Mb/s nella banda a 2.4GHz
- **2003**:
 - Ratifica 802.11g (OFDM a 2.4GHz)
 - Ratifica 802.11F (Inter Access Point Protocol)
 - Ratifica 802.11h (gestione risorse radio, channel selection e power control)
- **2004**:
 - Ratifica 802.11i (Sicurezza di rete)
- **2005**:
 - Ratifica 802.11e (QoS)
- □ 2009:
 - Ratifica 802.11n (High Rate)

Task Groups Attivi

- □ 802.11p: estensione alle comunicazioni inter veicolari (MAC/fisico)
- □ 802.11s: supporto per soluzioni di rete mesh (Routing)

802.11 History

■ WLAN Timeline

860	Kbps	1 and 2 Mbps				11 and 54 Mbps			3	Up to 600 Mbps
Proprietary					Standards-based					
900	MHz	2.4 GHz				5 GHz				
		▼ IEEE 802.11Begins Drafting			802.11	▼ 802.11i ▼ 802.11g ▼ 802.11e				▼ 802.11n
1988	1990	1992	1994	1996	1998	2000	2002	2004	2008	2010

Wireless Ethernet Compatibility Alliance (WECA)

- Membri: Cisco, Avaya, Intel, Symbol, Proxim, IBM, 3Com, IBM, Nokia, Compaq, Dell...
- Missione:
 - Garantire l'interoperabilità tra prodotti basati su tecnologia 802.11
 - Il marchio Wi-Fi™ (Wireless Fidelity) certifica l'hardware 802.11 http://www.wi-fi.org

- Con l'obiettivo di promuovere Wi-Fi™ come standard globale
- Supportare il roaming http://www.wifizone.org

Programmi di certificazione

- Certficazione interfacce radio:
 - 802.11a (2000)
 - 802.11b (2000)
 - 802.11g (2003)
- Certficazione architetture per la sicurezza:
 - WiFi Protected Access (WPA), 2003
 - WiFi Protected Access 2 (WPA2), 2004
- Certificazione architetture per la QoS:
 - WiFi MultiMedia (WMM), 2004

Lo standard 802.11 (1997)

Requisiti ed Architettura

Il livello fisico

Il livello MAC

Obiettivi dello standard 802.11

- Scenari target:
 - Connettività indoor (uffici, negozi, centri commerciali, ospedali, aziende)
 - Connettività outdoor (parcheggi, campus universitari)
- □ Servizi target:
 - Connectionless (1-2Mb/s)
 - Packetized

IEEE 802.11 Overview

- Requisiti
 - Un singolo MAC che supportasse diversi livelli fisici
 - Robusto all'interferenza (interna ed esterna)
 - Robusto al problema del terminale nascosto
- Definisce
 - MAC sublayer
 - MAC management protocols and services
 - Physical (PHY) layers
 - □ IR
 - ☐ FHSS
 - DSSS

Componenti

- Stazione (STA)
- ☐ *Access Point* (AP)
 - Funzionalità di bridging wired/wireless
- □ BSS Basic Service Set
 - Independent BSS (IBSS): architettura ad hoc
 - Infrastructure BSS: architettura infrastrutturata
- □ ESS Extended Service Set
 - Insieme di Infrastructure BSS.
 - Diversi access points collegati da:
- DS Distribution System (non esplicitamente definito dallo standard)
 - Wired
 - Wireless (WDS)

Basic Service Set (BSS)

- Insieme di stazioni controllate dalla stessa "Coordination Function" (funzione logica che gestisce l'accesso al canale condiviso)
- Simile al concetto di cella nel mondo radiomobile
- ☐ Esistono due tipi di BSS:
 - Infrastructure BSS
 - Independent BSS (IBSS)

Infrastructure BSS

Modalità di interconnessione centralizzata

Independent Basic Service Set (IBSS)

Modalità di interconnessione ad hoc

Extended Service Set (ESS)

Extended Service Set (ESS)

I Servizi di rete

☐ Si distinguono in:

- Servizi di stazione
 (Station Services)
 specifici all'interfaccia
 wireless
- Servizi di distribuzione (Distribution Services) specifici del sistema di distribuzione

Servizio	Tipo
Distribution	DS
Integration	DS
Association	DS
Reassociation	DS
Disassociation	DS
Authentication	ST
Deauthentication	ST
Privacy	ST
MSDU delivery	ST

Distribution System

- Procedura di associazione equivante ad "attaccare il cavetto dentro la presa ethernet"
- □ Una STA è associata ad un solo AP
- ☐ Un ESS è una rete di livello 2, e dunque una sottorete IP con il suo spazio di indirizzamento

Distribution System

- ☐ L'access point si comporta come un bridge (layer-2 switch)
- Mantiene le tabelle di associazioni che usa per il processo di bridging
- Ad esempio le trame ricevute dal DS che contengono come destinazione un indirizzo di una STA associata vengono inoltrate sull'interfaccia radio una volta trasformate in trame 802.11

Distribution System

Come fa un pacchetto IP ad andare dal router R alla stazione di destinazione?

Distribution System

□ Come succede quando una stazione si sposta?

Il livello MAC

Accesso al canale Recupero di errori Indirizzamento

Funzionalità e Servizi MAC

- Accesso al canale
- Recupero di errori
- □ Frammentazione e ricostruzione
- □ Risparmio energetico
- Indirizzamento e Framing

Accesso al mezzo fisico

- L'accesso al mezzo fisico è regolato tramite funzioni logiche di coordinamento (coordination functions)
- Sono definite due modalità di accesso
 - Distributed Coordination Function (DCF)
 - ☐ Ripresa da Ethernet
 - ☐ Si basa su accesso CSMA con *backoff*
 - Point Coodination Function (PCF)
 - □ Fornisce accesso "collision free"
 - ☐ Si basa su un paradigma "poll-response"

Recupero di errori

- □ Indispensabile in un mezzo "rumoroso"
- Definito solo per trasmissioni unicast (il broadcast è inaffidabile)
- ☐ Si basa sull'utilizzo di un riscontro positivo di ogni trasmissione (paradigma di tipo "stop 'n wait")
- Richiede l'uso di timer

C'è l'ACK in Ethernet? Perché?

Interframe spacing

- Lo standard definisce una serie di intervalli temporali che regolano l'accesso al canale
- ☐ Il meccanismo base di accesso si basa sul carrier sensing

Interframe spacing

- □ Short Inter Frame Spacing (SIFS):
 - le trasmissioni ad alta priorità possono iniziare dopo la scadenza di un SIFS dalla trasmissione precedente
- □ PCF Inter Frame Spacing (PIFS):
 - Tempo medio di canale libero prima di poter accedere al canale in modalità PCF
- □ DCF Inter Frame Spacing (DIFS):
 - Tempo medio di canale libero prima di poter accedere al canale in modalità DCF
- □ Extended Inter Frame Spacing (EIFS):
 - Usato nel caso di trasmissioni collise

L'accesso DCF

- Consente la coordinazione nell'accesso tra stazioni diverse senza bisogno di un'entità centrale
- Può essere usato sia in un IBSS che in un infrastructure BSS
- ☐ Si basa sul paradigma Carrier Sense Multiple Access con Collision Avoidance (CSMA/CA)
 - Prima di iniziare una trasmissione una stazione "ascolta" il canale:
 - □ Canale libero: la stazione trasmette
 - Canale occupato: la stazione attende ed entra in backoff

L'accesso DCF

- □ Se il mezzo è libero per più di DIFS trasmetti
- □ Se il mezzo è occupato aspetta, entra nella procedura di backoff

Collision Avoidance tramite Backoff

- □ Se il mezzo è occupato ogni stazione, prima di trasmettere, aspetta un numero di slot pari a DIFS + un numero casuale estratto tra 1 e CW (Congestion Window)
- Se durante il backoff il canale diventa occupato il conteggio si interrompe e viene ripreso quando torna libero
- Se più pacchetti consecutivi devono essere trasmessi si usa il backoff anche se il canale è libero

Il meccanismo di Backoff – il paramero CW

- □ Il numero di slot di backoff è scelto casulamente nell'intervallo [0, CW]
- □ Il valore di CW è determinato secondo le seguenti regole:
 - In seguito ad una trasmissione corrotta si pone CW = 2 (CW+1) -1 (fino a CWmax=1023 slot)
 - In seguito ad una trasmissione corretta si pone CW=CWmin=31

Il recupero degli errori in DCF

- ☐ E' la stazione trasmittente a recuperare gli errori tramite ritrasmissione
- L'individuazione degli errori avviene tramite un meccanismo basato sul "positive acknowledgement"
 - Ogni trama unicast deve essere riscontrata
 - Se non viene riscontrata è dichiarata persa e viene ritrasmessa
 - Esiste un limite massimo sul numero di ritrsmissioni per trama
- ☐ Contatori di ritrasmissione (*Retry Counters*)
 - Short Retry counter (per trame corte)
 - Long Retry counter (per trame lunghe)

Esempio sequenza di trasmissione

□ SIFS < DIFS, gli ACK hanno priorità d'accesso rispetto al traffico dati

L' Hidden Terminal

- □ La stazione A è nascosta alla stazione C
- Problema di collisione ad un ricevitore in comune

Soluzione all'Hidden Terminal

- Lo standard aggiunge una procedura di carrier sensing logico a quello fisico
- Utilizzo di trame di controllo in cui viene codificato il Network Allocation Vector (NAV)
- □ Il NAV riporta la durata della comunicazione in atto
- Le stazioni che ricevono le trame di una comunicazione in atto non accedono al canale per il tempo codificato nel NAV delle trame corrispondenti

Il Carrier Sense Virtuale

- Ingredienti
 - Trame di controllo (Request To Send, Clear To Send)
 - NAV

Esempio trasmissione con con Carrier Sense virtuale

Vantaggi della procedura d'accesso con NAV

- □ La stazione C riceve il CTS di B e non accede al canale per tutta la durata della trasmissione A-B
- Risoluzione del problema del terminale nascosto

Svantaggi della procedura d'accesso con NAV (1)

- Insorgere del problema del "terminale esposto"
- □ Riduzione del riuso
- Soluzioni
 - Scheduling "intelligente" delle connessioni
 - Pianificazione in frequenza

Svantaggi della procedura d'accesso con NAV (2)

- Riduzione della capacità del sistema (Overhead introdotto dallo scambio dei pacchetti di controllo)
- L'efficienza del NAV dipende da:
 - Caratteristiche del canale
 - Dimensione delle trame in trasmissione
- □ Lo standard definisce una soglia (RTSThreshold) sulla dimensione (D) delle trame in trasmissione
 - Se D < RTSThreshold il NAV non è usato (si preferisce ritrasmettere)
 - Se D > RTSThreshold il NAV è usato (si preferisce proteggere la trasmissione)

Point Coordination Function (opzionale)

Meccanismo di accesso "contention free"

Supporto di traffico real-time

PCF - Generalità (1)

- L'accesso al mezzo è gestito da un "point coordinator" implementato nell'AP
- □ PCF funziona solo in un'architettura di rete centralizzata (infrastructure BSS)
- Le stazioni associate possono trasmettere dati solo dopo esplicita segnalazione del "point coordinator"
- □ Simile ai sistemi d'accesso "token based"

PCF - Generalità (2)

□ La vita della rete è divisa in periodi governati dalla DCF (contention based) e periodi governati dalla PCF (contention free) che si alternano

La temporizzazione della supertrama è fornita da trame di beacon trasmesse dall'AP

Dinamica dell'accesso PCF

- All'inizio di un Contention Free Period (CFP) l'AP invia una trama di beacon con l'indicazione della durata massima del CFP (CFPMaxDuration)
- Tutte le stazioni che ricevono la trama di beacon settano il NAV per CFPMaxDuration (DCF inibita)
- In un CFP le trasmissioni seguono un paradigma POLL/RESPONSE (con piggybacking)

Durata del CFP

- Nel caso in cui la fase contention si protragga, l'inizio del CFP viene ritardato e la sua durata ridotta del ritardo
- L'AP può interrompere il CFP (CF-End Frame)

Commenti

- PCF scarsamente diffusa per motivi di complessità della gestione
 - Nessuna limitazione sulla durata delle trasmissioni
 - Ritardi nella trasmissione dei beacon
- Di fatto non esiste nessuno strumento a livello MAC per la gestione della QoS
- □ Necessità di evoluzioni dello standard (802.11e)

Sintassi del MAC 802.11

Formato delle trame Indirizzamento

Warning

- L'approccio dello standard è quello di definire un unico MAC che supporti diversi livelli fisici
- □ Con l'obiettivo di replicare funzionalità e servizi dell'ethernet
- □ Il MAC 802.11 è complesso dal punto di vista sintattico
 - Elevato numero di trame
 - Complessità nell'interpretazione

Il formato generale delle trame: il *Frame Control Field*

Protocol Version: indica il tipo di MAC implementato (attualmente 1 solo MAC definito)

Type e Subtype

- La combinazione di questi due campi identifica il tipo di trama
 - Dati (type=10)
 - Controllo (type=01)
 - Management (type=00)

management

Subtype bit	Tipo di trama
0000	Association request
1000	Beacon
1011	Authentiction

controllo

Subtype bit	Tipo di trama
1011	RTS
1100	CTS
1101	ACK

dati

Subtype bit	Tipo di trama
0000	DATA
0001	DATA+CF ack
0010	Data+CF poll

L'indirizzamento

- Destination Address (DA): indirizzo della destinazione finale
- □ Source Address (SA): sorgente della trama in trasmissione
- ☐ Receiver Address (RA): indirizzo dell'interfaccia che deve processare la trama in trasmissione
- Transmitter Address (TA): indirizzo dell'interfaccia che trasmette la trama sul DS wireless (usato solo in caso di WDS)
- □ Basic Service Set ID (BSSID): indirizzo che identifica un BSS
 - Infrastructure BSS: indirizzo MAC dell'nterfaccia wireless dell'AP
 - IBSS: numero pseudocasuale

Gestione degli indirizzi

Tipo di TX	ToDS	FromDS	Address 1	Address 2	Address 3	Address 4
IBSS	0	0	DA	SA	BSSID	Non usato
TO AP Infra.	1	0	BSSID	SA	DA	Non usato
FROM AP Infra.	0	1	DA	BSSID	SA	Non usato
WDS	1	1	RA	TA	DA	SA

□ DA: *Destination Address*

☐ SA: Source Address

□ TA: Transmitter Address

□ RA: *Receiver Address*

Gestione indirizzi

Network Management

Scanning

Autenticazione

Associazione

Power Management

Sincronizzazione

Procedure di Management

- Scanning: individua BSS disponibili
- □ Autenticazione: autentica la stazione all'interno del BSS scelto
- □ Associazione: crea l'associazione STA/BSS
- Power Management: gestisce il risparmio di potenza
- □ Sincronizzazione: procedure per il corretto funzionamento del livello fisico

Scanning

- L'obiettivo è di individuare un BSS a cui collegarsi
- □ Non esiste nelle reti cablate (basta trovare un jack di rete)
- L'operazione di scanning è effettuata dalla stazione
- Sono definite due modalità (generalmente configurabili)
 - Modalità passiva
 - Modalità attiva

Passive Scanning

- La stazione ascolta in sequenza tutti i canali disponibili
- e memorizza tutte le trame di beacon che riceve

Active Scanning

- Per ogni canale disponibile, la stazione utilizza delle trame di *Probe Request* per sollecitare l'invio di una trama di *beacon*
- □ Le trame di *Probe Request* possono essere sia unicast che broadcast

Scanning Report

- Alla fine della fase di scanning la stazione si costruisce un data base con una entry per ogni BSS individuato
- Per ciascuna entry sono registrati
 - BSSID, SSID, BSSType
 - Frequenza dei beacon
 - Info di sincronizzazione
 - Info sul livello fisico
 - Frequenza trame DTIM (gestione potenza)

Come scegliere il BSS?

- La scelta è fuori standard
- Dipende generalmente dall'implementazione
- La maggior parte dei dispositivi sul mercato consente una scelta manuale

Associazione

- Di fatto equivale a connettere il cavo di rete alla presa di rete
- A valle della procedura di associazione
 - L'AP registra la stazione nel data base di associazione
 - la STA può usare i servizi del Distribution System
- Lo standard proibisce associazioni multiple

Associazione (2)

- Procedura iniziata dalla STA
- ☐ Scambio di trame di *management unicast*
- L'AP assegna alla STA un Association ID (AID) che la identifica univocamente

Power Saving

- □ Infrastructure BSS:
 - Funzionalità di buffering nell'AP
 - Le stazioni alternano periodi di sleep e di activity
 - L'AP segnala alle stazioni di attivarsi tramite informazione contenuta nelle trame di beacon
- □ *Independent* BSS:
 - Non efficiente come nel caso infrastrutturato
 - Necessità di algoritmi distribuiti
 - Generalmente non usato

Sincronizzazione

- ☐ *Infrastructure* BSS:
 - La sincronizzazione è gestita dall'AP
 - Inserisce il valore del proprio clock locale all'interno delle trame di beacon e di Probe Response
- □ Independent BSS:
 - Le STA si sincronizzano sul clock del primo che trasmette la trama di beacon

Autenticazione

- □ Nell'ambiente wireless il mezzo trasmissivo è condiviso
- Potenzialmente ogni stazione dotata di un apparato rice/trasmittente standard compliant può accedere alla rete
- □ Necessità di verificare l'identità delle stazioni accedenti
- □ Necessità di controllare l'accesso

Autenticazione

- □ Due tipi di approcci all'autenticazione
 - Open System Authentication (obbligatoria): vincoli blandi sull'accesso
 - Shared Key Authentication (opzionale): autenticazione basata sullo scambio di una chiave condivisa

Open System Authentication (obbligatoria)

□ L'AP autentica qualunque STA che ne faccia
richiocta

richiesta

Management Frame:

From AP1

Authentication Algorithm: 0

(Open System)

Sequence Number: 2

Status Code

- Soluzione poco sicura
- Possibilità di applicare MAC Address Filtering

Shared Key Authentication (Opzionale)

- Due componenti:
 - Meccanismo di challenge/response

Algoritmo di crittografia a chiave privata (basato su NCD)

- (1)From STA,
 Authentication: 1 (SKA)
 Sequence Number: 1
- (2)Authentication: 2
 Sequence Number: 2
 Status Code: 0

Challenge

(3)Authentication: 2
Sequence Number: 3

Challenge

(4)Authentication: 2
Sequence Number: 4
Status code

Cifratura con WEP

- Algoritmo di cifratura di tipo keystream basato su RC4
- □ Keystream a 64 bit

Debolezze di WEP

- Riusa la stessa WEP Key per diversi pacchetti cambiando solo l'IV
 - Un AP molto "trafficato" con pacchetti di 1500 byte a 11 Mb/s esaurisce lo spazio degli IV dopo 5 ore
 - Un hacker riesce ad ottenere in 5 ore due spezzoni di messaggi codificati con la stessa chiave e lo stesso IV
 - Possibilità di attacchi statistici passivi ed attivi
- Vulnerabile dal punto di vista dell'integrità (CRC debole)
 - Un attaccante può facilmente cambiare dei bit nel pacchetto criptato e cambiare i bit corrispondenti nel CRC
 - Il pacchetto risultante è valido per il ricevente ma non ha alcun senso

Problemi di Sicurezza

- Problemi di autenticazione
 - Solo le stazioni devono autenticarsi, non gli AP
 - L'approccio è vulnerabile ad attacchi di tipo man-in-the-middle (un AP fittizio può intercettare il traffico di autenticazione)
- Problematiche di privacy
 - E' stato dimostrato che il WEP può essere violato in tempi ragionevoli (Airsnort, WepCrack, ecc..)
- □ Necessità di:
 - Paradigmi di autenticazioni robusti 802.11i
 - Algoritmi di crittografia avanzati

Il Working Group 802.11i

- □ Ha concluso i lavori nel Giugno 2004
- Caratteristiche dello standard:
 - Autenticazione demandata ai livelli superiori (non più a livello di link)
 - Introduzione di protocolli/infrastrutture per l'autenticazione
 - Miglioramento delle procedure di privacy ed integrità
- □ Wireless Protected Access (WPA1 e WPA2)

IEEE 802.11i

- Autenticazione
 - Protocollo 802.1X
- Privacy
 - Temporary Key Integrity Protocol (TKIP)
 - □ Basato su tecnologia RC4
 - □ Integrity check robusta con Message Integrity Check (MIC)
 - Cambio di chiave per ogni pacchetto
 - Counter Mode/CBC MAC Protocol (CCMP)
 - Basato su tecnologia AES
 - □ Più robusto e performante di TKIP

Autenticazione 802.1X

- □ Basata sull'Extensible Authentication Protocol (EAP)
- □ Entità del processo di autenticazione
 - Supplicant
 - Authenticator
 - Authentication Server

Extensible Authentication Protocol (EAP)

- ☐ E' possibile l'autenticazione "two-ways"
- Contiene funzionalità per lo scambio delle chiavi

Procedura di scambio delle chiavi

AP

Step 1: Use RADIUS to push PMK from AS to AP

Step 2: Use PMK and 4-Way Handshake to derive, bind, and verify PTK

PMK: Pairwise Master Key

PTK: Pairwise Transient Key

Step 3: Use Group Key Handshake to send GTK from AP to STA

I programmi di certificazione WPA

	WPA	WPA2
Enterprise Mode (Business and Government)	Authentication: IEEE 802.1X/EAP	Authentication: IEEE 802.1X/EAP
	Encryption: TKIP/MIC	Encryption: AES-CCMP
Personal Mode (SOHO/personal)	Authentication: PSK	Authentication: PSK
	Encryption: TKIP/MIC	Encryption: AES-CCMP

- La certificazione WPA supporta diversi tipi di protocolli EAP
 - LightWeigth EAP (LEAP): proprietario CISCO, basato su password
 - EAP Transport Layer Security (EAP-TLS): basato su certificati
 - EAP Tunneled TLS (EAP-TTLS)
 - Protected EAP (PEAP)

Soluzioni ibride basate su Password + certficati

Il livello fisico

Frequency Hopping Spread Spectrum (FHSS)

Direct Sequence Spread Spectrum (DSSS)

Progetto del livello fisico

- Mezzo radio condiviso
- Deve operare in una banda non licenziata
- Interferenza altamente variabile

□ Necessità di progettare un livello fisico robusto all'interferenza

Struttura protocollare

- Physical Layer Convergence Procedure (PLCP): livello che adatta le trame MAC per la trasmissione sul mezzo
- ☐ Physical Medium Dependent (PMD): livello che gestisce la trasmissione dei bit (modulazione)

Le Interfacce radio standardizzate

- Approccio con livelli fisici multipli (motivazioni storico/politiche)
- Vengono definite tre modalità di trasmissione dell'informazione:
 - Infrarosso (IR, ormai obsoleta)
 - Frequency Hopping Spread Spectrum 1-2Mb/s (FHSS, usata in scenari particolari)
 - Direct Sequence Spread Spectrum 1-2 Mb/s (DSSS, Wifi)

DSSS vs FHSS

☐ Sia DSS che FHSS si ripropongono di limitare l'impatto dell'interferenza sulle prestazioni del sistema di trasmissione

□ DSSS

- Spalma l'energia del segnale su una banda in frequenza più larga rispetto a quella del segnale stesso
- □ FHSS suddivide la banda in sottocanali disgiunti da 1MHz ciascuno
 - Ogni trasmissione "salta" da un sottocanale ad un altro secondo una sequenza prestabilita
 - Le diverse sequenze di salto assegnate ad ogni stazione sono ortogonali tra di loro

□ Viene usato un approccio a divisione di codice per allargare lo spettro del segnale (sequenza di *Barker*)

Vantaggi DSSS

□ Robusto a picchi di interferenza

- Non è usato per multiplare più trasmissioni
- □ Tutte le trasmissioni usano la stessa sequenza di *Barker*

Canalizzazione (1)

- Lo standard definisce 14 canali di 5 MHz ciascuno a partire dalla frequenza 2.412 GHz
- Non tutti i canali sono disponibili nelle varie nazioni

Nazione	Canali disponibili	
USA	1-11 (2.412-2.462GHz)	
Europa	1-11 (2.412-2.472GHz)	
Spagna	10-11 (2.457-2.462 GHz)	
Francia	10-13 (2.457-2.472 GHz)	
Giappone	14 (2.484 GHz)	

Canalizzazione (2)

- La maggior parte dell'energia del segnale è confinata in una porzione di banda di 22MHz
 - Non è possibile usare canali adiacenti

La modulazione

- □ Sono definiti due tipi di modulazione
 - Differential Phase Shift Keying (DPSK):
 - □ garantisce un data rate di 1 Mb/s,
 - un bit di informazione definisce un simbolo (fase)
 - Differential Quadrature Phase Shift Keying (DQPSK):
 - garantisce un data rate di 2 Mb/s,
 - due bit di informazione definiscono 4 simboli
- Per aumetare il data rate
 - Cambiare modulazione (HR/DSSS)
 - Cambiare livello fisico (802.11a/g)
 - Modificare dispositivi rice/trasmittenti (MIMO, 802.11n)

- Aggiunge ulteriore protezione contro l'interferenza e correzione d'errore
 - Scrambling
 - Cyclic Redundancy Check

La struttura del PLCP varia nelle evoluzioni dello standard

DSSS – Caratteristiche Generali

Parametro	Valore
Durata	20us
Slot	
Durata	10us
SIFS	
Dimensione	Da 31 a 1023
CW	slot
Preambolo	144us
PLCP	
Header	48us
PLCP	
Trama	Da 4 a 8191
MAC	byte

Le evoluzioni del livello fisico

802.11b HR/DSSS (standard dal 1999)

802.11a (standard dal 1999)

802.11g (standard dal 2003)

802.11n (work in progress)

Le evoluzioni del fisico

802.11b - HR/DSSS

- Modifica al PMD:
 - introduzione di nuovi sistemi di modulazione per garantire bit rate più elevato (fino a 11Mb/s)
- Modifica al PLCP:
 - La struttura di header e preambolo PLCP cambia
- Compatibile con la versione precedente dello standard

Modifica al PMD – Modulazione CCK

- Modulazione QPSK (Quadrature Phase Shift Keying) con spreading
- □ Rate di trasmissione = 1.375 *Msimboli/s*
- ☐ Due *data rate* definiti:
 - 5.5 Mbit/s, 4 bit per simbolo
 - 11 Mb/s, 8 bit per simbolo

Modifiche al PLCP

802.11b - Prestazioni

Source: http://www.uninett.no/wlan/throughput.html

802.11a - La soluzione OFDM

Motivazioni:

- Necessità di banda, la porzione a
 2.4GHz è sovraffollata
- Necessità di data rate più elevati, gli 11 Mb/s sono ormai pochi

Soluzioni

- Utilizzo della banda U-NII (Unlicensed National Information Infrastructure) attorno ai 5 GHz
- Utilizzo di modulazione OFDM

Vantaggi e svantaggi

- Vantaggi
 - Data rate più alti (fino a 54 Mb/s)
 - Minore interferenza in banda (banda più libera)
- Svantaggi
 - Minore copertura
 - Maggiore consumo di potenza
 - Regolamentazione in Europa
 - Maggiore costo (scheda 802.11a costa 2 volte una scheda 802.11b)
 - Minore diffusione

OFDM - Concetti base

- Converte un unico flusso a data rate elevato in flussi multipli a data rate inferiore
- I flussi multiplati sono trasmessi su portanti in frequenza ortogonali
- Consente tecniche efficienti per ricostruire i simboli modulati su ciascuna portante senza interferenza reciproca (FFT/IFFT)

OFDM - Concetti base (2)

- Sistema di trasmissione a multiportante
- □ Il flusso di informazione è suddiviso in blocchi di N simboli trasmessi in parallelo sulle portanti
- Interferenza nulla tra due simboli dello stesso blocco

Spettro

Spettro di un simbolo in trasmissione

- Spettro di un bloco di simboli in trasmissione
- □ Rispetto all FDM
 canonico è consentita la
 sovrapposizione dei
 diversi canali in
 frequenza

Terminologia OFDM

- Sottoportanti
 - Unità minima in cui viene diviso lo spettro
- □ Simbolo OFDM
 - Simbolo in trasmissione che viene suddiviso sulle N sottoportanti

Interferenza Inter Simbolica

Necessità di intervalli di guardia tra simboli OFDM (realizzati con prefissi ciclici)

Tempo di guardia

- ☐ Il prefisso ciclico consente di
 - Manterenre l'ortogonalità tra le sottoportanti
 - Evitare ISI
- □ Il valore del tempo di guardia dipende da:
 - Il delay spread massimo (4 volte)

OFDM in 802.11a

- □ Lo spettro è organizzato in canali di 20MHz
- ☐ Ciascun canale è suddiviso in 52 sottoportanti spaziate di 0.3125MHz

48 sottoportanti dati, 4 sottoportanti di controllo

Parametri di 802.11a

- Durata del simbolo OFDM 4μs
- Durata dell'intervallo di guardia 0.8μs
- Durata del simbolo utile 3.2μs

Utilizza tecniche di interleaving, scrambling e codifica per proteggere l'informazione in trasmissione

Trasmettitore 802.11a

Ricevitore 802.11a

Received

Multiple Data Rates/Modes

Mode	Data Rate (Mbps)	Coding rate	Modulation	No. of coded bits/ OFDM Symbol	No. of data bits/ OFDM symbol
1	6	1/2	BPSK	48	24
2	9	3/4	BPSK	48	36
3	12	1/2	QPSK	96	48
4	18	3/4	QPSK	96	72
5	24	1/2	16 QAM	192	96
6	36	3/4	16 QAM	192	144
7	48	² / ₃	64 QAM	288	192
8	54	3/4	64 QAM	288	216

PLCP 802.11a

□ Struttura completamente diversa rispetto al PLCP 802.11 e 802.11b

Caratteristiche 802.11a

Parametro	Valore
Durata	9us
Slot	
Durata	16us
SIFS	
Dimensione	Da 15 a 1023 slot
CW	
Preambolo	16us
PLCP	
Header	4us
PLCP	
Trama	Da 4 a 4095 byte
MAC	

802.11g, Standard dal 2003

- Motivazioni:
 - Incremento del data rate di 802.11b all'interno della stessa porzione di spettro
 - Compatibilità con i dispositivi 802.11b
- □ Background:
 - Due soluzioni tecnologiche concorrenti:
 - ☐ PBCC, sostenuta da *Texas Instruments*
 - DSSS-OFDM, sostenuta da Intersil
- Soluzione
 - Un livello fisico (Extended Rate Physical OFDM) "mandatory" ripreso da 802.11a
 - Due soluzioni (PBCC, DSSS-OFDM) opzionali

Caratteristiche livello fisico 802.11g

Parametro	Valore
Durata	9us o 20us
Slot	
Durata	10us (+6us di estensione virtuale)
SIFS	
Dimensione	Da 15 a 1023 slot
CW	
Preambolo	16us
PLCP	
Header	4us
PLCP	
Trama	Da 4 a 4095 byte
MAC	

Relazioni di compatibilità

- 802.11g è in grado di riconoscere i preamboli di 802.11b (short, long) e 802.11a, carrier sensing possibile
- 802.11g "parla" 802.11b nello scambio di pacchetti RTS/CTS
 - Stesso data rate
 - Stessa modulazione
 - Stessa durata di slot
- □ Dispositivi 802.11b NON sono in grado di ricevere trasmissioni 802.11g

Prestazioni dei diversi Livelli fisici

Distanza	802.11b	802.11a	802.11g solo	802.11g/b RTS/CTS	802.11g/b Self CTS
3m	5.8	24.7	24.7	11.8	14.7
15m	5.8	19.8	24.7	11.8	14.7
30m	5.8	12.4	19.8	10.6	12.7
45m	5.8	4.9	12.4	8	9.1
60m	3.7	0	4.9	4.1	4.2
75m	1.6	0	1.6	1.6	1.6
90m	0.9	0	0.9	0.9	0.9

Throughput in Mb/s misurato al netto degli overhead dei livelli MAC e fisico

☐ Fonte: Broadcom

Quale standard scegliere?

- Parametri di confronto:
 - Data rate nominale
 - Range
 - Capacità (numero di canali disponibili)
 - Costo
 - Compatibilità

Tecnologia	Velocità di picco	Range	Compatibilità 802.11b	Capacità	Costo
802.11b	Media	Alto	Sì	Bassa	Basso
802.11a	Alta	Ridotto	No	Alta	Medio
802.11g	Alta	Alto	Sì	Media	Basso

L'802.11n – Sempre più veloce

- ☐ Standard da Settembre 2009
- Obiettivo: raggiungere data rate nominali più elevati
- Approccio della standardizzazione:
 - Modifica al livello fisico OFDM
 - Modifica al livello MAC

Come aumentare il data rate?

Data Rate =
$$\frac{20M \text{ time samples}}{\text{second}} \cdot \underbrace{\frac{48 \text{ freq tones}}{64 \text{ freq tones}}}_{\text{channel spacing}} \cdot \underbrace{\frac{6 \text{ coded bits}}{64 \text{ freq tones}}}_{\text{guard band overhead}} \cdot \underbrace{\frac{6 \text{ coded bits}}{64 \text{ freq tone}}}_{\text{constellation size}} \cdot \underbrace{\frac{3 \text{ info bits}}{4 \text{ coded bits}}}_{\text{coding rate}} \cdot \underbrace{\frac{64 \text{ freq tones}}{80 \text{ times samples}}}_{\text{guard interval overhead}}$$

= 54M info bits/second

- Modi per aumentare il data rate:
 - Multiplazione spaziale
 - Aumentare la banda del segnale
 - Aumentare la dimensione della costellazione di modulazione
 - Aumentare il rate del codice
 - Diminuire i tempi di guardia

Parametri di standardizzazione

802.11a/g	802.11n	Requirement	Throughput Scaling Factor
Channel BW = 20MHz Number of data subcarriers = 48	Channel BW = 20MHz Number of data subcarriers = 48	Mandatory	1x
	Channel BW = 40MHz Mandatory Number of data subcarriers = 108		2.25x
Number of Transmit Antennas = 1	Number of Transmit Antennas = 2	Mandatory	2x
	Number of Transmit Antennas > 2	Optional (e.g. 3 and 4)	3x or 4x
Maximum	64-QAM	Mandatory	1x
Constellation Size = 64QAM	>64QAM (i.e. 128 or 256 QAM)	256QAM optional	1.16x (128-QAM) 1.33x (256-QAM)
GI = 800ns	GI / Tsymbol = 800ns/3200ns	Mandatory	1x
Tsymbol = 3200ns	GI / Tsymbol = 400ns/3200ns	Mandatory	1.11x
Coding Rate	1/2, 2/3, 3/4	Mandatory	1x
	7/8	Mandatory	1.167x

802.11n - Il livello fisico

- □ Funziona nelle bande 2.4GHz, 5GHz e 4.9GHz (Giappone)
- Modifiche primarie:
 - MIMO OFDM: multiplazione a divisione di spazio dei flussi in trasmissione
 - 2 Antenne (obbligatorio)
 - □ 4 Antenne (opzionale)
 - Estensione della banda di canalizzazione:
 - □ 20MHz (obbligatorio)
 - □ 40MHz (opzionale)

802.11n - Il livello fisico

- Modifiche secondarie:
 - Riduzione dei tempi di guardia tra simboli OFDM (400ns obbligatorio nei 20MHz)
 - Supporto modulazione fino a 64QAM
 - Supporto codifica convoluzionale
 - Supporto codifiche ottimizzate per il MIMO
- Data rate nominale massimo:

!! 600Mb/s !!

802.11n - Il livello fisico

				Data Rate Mb/s			
MCS	Spatial Streams	Modulation Type	Coding Rate	20 MHz channel		40 MHz channel	
macx	Sacamo	. 770	rtuto	800ns GI	400ns GI	800ns GI	400ns GI
0	1	BPSK	1/2	6.50	7.20	13.50	15.00
1	1	QPSK	1/2	13.00	14.40	27.00	30.00
2	1	QPSK	3/4	19.50	21.70	40.50	45.00
3	1	16-QAM	1/2	26.00	28.90	54.00	60.00
4	1	16-QAM	3/4	39.00	43.30	81.00	90.00
5	1	64-QAM	2/3	52.00	57.80	108.00	120.00
6	1	64-QAM	3/4	58.50	65.00	121.50	135.00
7	1	64-QAM	5/6	65.00	72.20	135.00	150.00
8	2	BPSK	1/2	13.00	14.40	27.00	30.00
9	2	QPSK	1/2	26.00	28.90	54.00	60.00
10	2	QPSK	3/4	39.00	43.30	81.00	90.00
11	2	16-QAM	1/2	52.00	57.80	108.00	120.00
12	2	16-QAM	3/4	78.00	86.70	162.00	180.00
13	2	64-QAM	2/3	104.00	115.60	216.00	240.00
14	2	64-QAM	3/4	117.00	130.00	243.00	270.00
15	2	64-QAM	5/6	130.00	144.40	270.00	300.00
	3						
23	3	64-QAM	5/6	195.00	216.60	405.00	450.00
	4						
31	4	64-QAM	5/6	260.00	288.90	540.00	600.00

802.11n - il livello MAC

- □ Supporto della QoS: lo standard 802.11n ingloba il lavoro del TG 802.11e
- ☐ Funzionalità aggiuntive di aggregazione di trame MAC
- ☐ Estensione dell'entità di MAC Management per supportare funzionalità di radio resource management avanzate

Le evoluzioni dello strato d'accesso

802.11e

Limiti della PCF

- Nessun meccanismo per la differenziazione dei diversi flussi
 - Una sola coda presente a livello MAC
- Ritardi della temporizzazione di super trama
 - La trasmsissione del beacon che segnala l'inizio di un periodo CF può essere ritardata
- Nessun controllo sulle trasmissioni
 - Una stazione che ha ricevuto una trama di poll dal PC può trasmettere più trame o una trama di lunghezza arbitraria

La soluzione 802.11e

- Differenziazione dei flussi
 - Ogni dispositivo deve implementare 4 code per 4 tipologie di traffico
- □ Introduzione delle *Transmission Opportunities* (TXOP)
 - Ad ogni trasmissione viene assegnato un tempo massimo di completamento
- Possibilità di comunicazioni dirette tra stazioni anche in scenari infrastrutturati
- □ Utilizzo della tecnica di Block ACK (singolo riscontro per "treni" di trame)

802.11e - L'accesso al canale

- □ Gestito dalla Hybrid Coordination Function (HCF)
- Due modalità
 - A contesa (EDCA, Enhanced Distributed Channel Access)
 - Controllato (HCCA, HCF Controlled Channel Access)

EDCA – Accesso a Contesa

- □ Definisce 4 Categorie d'Accesso (AC) che individuano 4 tipologie di traffico
 - AC_VO: voce
 - AC_VI: video
 - AC_BE: best effort
 - AC_BK: background
- Ciscuna AC è caratterizzata da diversi parametri del meccanismo di backoff
 - AIFS[AC]: tempo di "ascolto del canale"
 - CWMin[AC]: durata minima della finestra di backoff
 - CWMax[AC]: durata massima della finestra
 - TXOPlimit[AC]: durata massima della trasmissione

Le classi di accesso

 Diverse entità di backoff all'interno della stessa stazione

Esempio di accesso EDCA

L'accesso controllato HCCA

- Funziona sostanzialmente come la PCF
- L'HC può decidere di interrogare una stazione inviando una trama di QoS CF-Poll o una trama dati
- L'HC può accedere al canale dopo un PIFS, senza backoff (con priorità)
- □ Differenze rispetto a PCF:
 - HC specifica un TXOPLimit per tutte le tipologie di traffico
 - Possibilità di funzionamento ibrido (contesa/polling)

Esempio di accesso ibrido

L'HC può decidere di interrogare una stazione anche durante la fase a contesa

Miglioramenti ulteriori

- □ Block ACK: idea di introdurre ACK cumulativi per blocchi di trame (si abbandona il paradigma "stop 'n wait")
 - Riduce l'overhead
 - Funziona solo con canali "buoni"
- Direct Link Protocol (DLP): protocollo per la comunicazione diretta tra STA in un'architettura infrastructure
 - Aumenta la capacità
 - Difficile realizzazione (sincronizzazione, power saving, ecc..)

Mesh Networking

IEEE 802.11s
Soluzioni commerciali

Mesh Networking e 802.11

- Obiettivi
 - Estendere le dimensioni degli hot spot 802.11 tramite un'infrastruttura di tipo mesh
 - Ampliare gli scenari applicativi della tecnologia WLAN
- Soluzioni
 - Infrastrutture decentralizzate
 - Reti magliate di *Infrastructure BSS* con gli AP connessi tramite un sistema di distribuzione wireless

Esempio di rete Mesh

Scenari Applicativi

- Accesso residenziale (concorrenza con WiMax)
- Uffici
- Reti pubbliche di accesso ad internet
- Reti pubbliche di sicurezza
- Reti militari

Il mercato delle reti Mesh

- Applicazioni residenziali
 - Indoor
 - Dimensioni ridotte
 - Coesistenza con altre reti
- Applicazioni Business
 - Indoor
 - Dimensioni ridotte
 - Complessità (e quindi costo) maggiore
- Campus/Reti cittadine/Accesso pubblico
 - Connettività su ampie aree geografiche
 - Scalabilità
 - Riconfigurabilità
- Applicazioni Militari

Standardizzazione

- □ Il TG 802.11s ha lo scopo di definire un Extended Service Set (ESS) per supportare servizi broadcast/multicast ed unicast in reti multihop.
- □ Draft 1.0 Novembre 2006
- □ Draft 2.0 Marzo 2008
- □ Draft 3.0 Marzo 2009

802.11s

- Routing robusto ed efficiente:
 - Mesh Topology Learning,
 - Routing and Forwarding
- ☐ Sicurezza:
 - Compatibilità con 802.11x
- Flessibilità del livello MAC
 - Mesh Measurement
 - Mesh Discovery and Association
 - Mesh Medium Access Coordination
 - Supporto alla QoS
- Trasparente ai livelli superiori
- Compatibile con dispositivi legacy

802.11s

- Routing: Hybrid Wireless Mesh Protocol (HWMP) – combinazionbe di AODV e protocollo tree-based
- Applicazioni:
 - OLPC (One Laptop Per Child)
 - Open802.11s

Una rete Mesh

Architettura di una rete Mesh

Architettura e Protocolli

- Modifiche al livello MAC e al livello di routing
- Nessuna modifica al livello fisico

Soluzioni "Off the Shelves"

- Molte aziende producono già dispositivi per l'implementazione di reti mesh:
 - Motorola (MeshNetworks[™]): MeshNetworks Enabled Appliances (MEA)
 - Tropos Networks (802.11-compliant)
 - Nortel (802.11-compliant)
- □ Tutte le soluzioni commerciali forniscono l'hardware e il software (proprietario) per l'implementazione delle reti *Mesh*