ELEKTRONIKA

Viera Stopjaková (<u>viera.stopjakova@stuba.sk</u>) Ústav elektroniky a fotoniky FEI STU

Polovodičové pamäte

Obsah

- Rozdelenie pamätí
- Štruktúra RAM
 - Bunka SRAM princíp, operácie a implementácia
 - Bunka DRAM princíp a operácie
- ROM
 - EPROM, EEPROM a Flash
- CAM

Rozdelenie pamätí

RAM pamäte

- Pamäť s priamym prístupom
 - o polopvodi ová digitálna pamä
 - 1-bitové bunky zapojené v matici (riadky x stĺpce)

RAM pamäte

Statické RAM (SRAM)

- o 6-tranzistorová bunka uchováva 1 bit informácie
- Rýchlosť, nízka spotreba, relatívne drahá
- Používaná ako cache v CPU

Dynamické RAM (DRAM)

- 1-tranzistorová bunka uchováva 1 bit informácie
- Vysoká miera integrácie
- Lacné pre veľký objem dát
- Najčastejšie používaná (operačná) pamäť
- Vyššia spotreba kvôli obnove dát (refresh)

Štruktúra RAM

Statická RAM bunka - princíp

- Využíva bistabilný obvod
- 3 operácie: Kľudový stav, Zápis, Čítanie

 V_{out}

Latch (bistabilný PO)

 $V_{out} = V_{in}$

Statická RAM bunka - princíp

- Prístupové tranzistory M1 a M2
- o Bit line (BL) používaná na realizáciu zápis/čítanie informácie
- Word Line (WL) aktivuje proces zápisu/čítania (sprístupňuje bunku)

Statická RAM bunka v CMOS

- 6-tranzistorová bunka
 - Prístupové tranzistory M1 a M2 (ovládané WL)

○ *M3* –*M4*: INV1

○ *M5 –M6*: INV2

Zápis a čítanie informácie cez *Bit line*

Kľudový stav

- INV1 a INV2 sa navzájom udržujú v stabilnom stave
- WL signál nie je aktívny → prístupové tranzistory odpoja invertory od B

Zápis

- Na B a B sa najskôr nastaví zapisovaný bit informácie
- Aktivuje sa WL → Prístupové tranzistory pripoja INV1 a INV2

Čítanie

- Čítanie je vykonávané analógovo s následným prevodom na dig. informáciu (rýchlejšie): B a B̄ sa obe nabijú na polovicu V_{DD}
- o Po aktivovaní WL sa sleduje napätie na B a B
- Budiaci zosilňovač zosilní zmenu napätí a vytvorí digitálny výstup

Čítanie

Budiaci zosilňovač zosilní zmenu napätí a vytvorí digitálny výstup

Statická RAM: 4 x 4-bitové slovo

Dynamické RAM - princíp

- Dynamická RAM (DRAM)
 - 1 MOS tranzistor a 1 kondenzátor (najčastejšie)
 - Nabitý / vybitý kondenzátor → "1" a "0"
 - o Bit line (B) používaná na zápis/čítanie informácie
 - Word Line (WL) aktivuje proces zápisu/čítania

4 operácie: Zápis, Čítanie, Kľudový stav, Obnova (refresh)

Dynamické RAM - operácie

Kľudový stav a Obnova

- Logická informácia uložená vo forme elektrického náboja
- Kondenzátor sa pomaly vybíja kvôli nedokonalostiam
- Pravidelná obnova informácie v bunke (najčastejšie po 64 ms)

Dynamické RAM - operácie

Zápis

- B sa nastaví na požadovanú logickú hodnotu
- Po aktivovaní WL sa kondenzátor nabije / vybije
- WL je deaktivovaná
- Pri zápise sa obnovuje celý riadok matice (celé slovo)

$$i(t) = \frac{dq(t)}{dt}$$

Dynamické RAM - operácie

Čítanie

- Opäť analógový prístup a prevod do digitálnej podoby
- o B sa nastaví na V_{DD}/2 a aktivuje sa WL
- Budiaci zosilňovač sleduje napätie na B
 (Ak poklesne, je prečítaná 0. Ak stúpne, je prečítaná 1)
- Čítanie je deštruktívne pôvodný náboj z C sa stráca

Dynamické RAM - 4 x 4-bitové slovo

Dynamické RAM - realizácia

ROM pamäte

- pole 1-T buniek
- dáta zapísané natrvalo
- zvyčajne 2^N slov
 (počet bitov v slove v závislosti od aplikácie)

Použitie:

- instrukcie mikroprocesorov
- časti operačného systému
- fixné programy (firmware)
- nastavenia pre video hry

NMOS ROM pamät'

DATA

ROM so štyrmi 4-bitovými slovami

$$W_0 = 0010; W_1 = 1000$$

$$W_2 = 0110; W_3 = 0110$$

EPROM – Electrically Programmable **ROM**

- Programovateľný prvok
 - FAMOS tranzistor (Floating Gate Avalanche-Injection MOS) Plávajúce hradlo
- Programovanie
 - Vpp ~ 10,5 V na hradle
 - Plávajúce hradlo je nabité záporne, čo zvyšuje prahové napätie tranzistora
 - → tranzistor sa natrvalo zatvorí pre všetky napätia (10 rokov pri max. 125 °C)

Mazanie

- UV svetlom (20 minút → sklenené puzdro)
- limitovaný počet programovaní

EEPROM – Electrically Erasable Programmable ROM

- Modifikovaný FAMOS
- <u>Tenký oxid</u> (10 20 nm) medzi plávajúcim hradlom a kolektorom umožňuje 'tunelovanie' elektrónov do alebo z plávajúceho hradla
- hradlový oxid sa nabíja, čím sa tranzistor zatvára/otvára

Programovanie

- V_{GS} > 12 V
- Tunelovanie elektrónov do plávajúceho hradla
- Zvýši sa prahové napätie V_{TH}

Mazanie

- V_{GS} < -12 V
- Tunelovanie do kanála alebo kolektora
- Viac ako 100 programovacích cyklov

FLASH pamäť

- o pamäťový tranzistor s plávajúcim hradlom
- o prepisovateľná pamäť, nepotrebuje zdroj napájania
- o oveľa rýchlejšia (umožňuje zápis/vymazanie viacerých častí počas jednej operácie)
- o prístupová doba 100 ns
- o adresovanie a čítanie po bitoch
- o zapisovanie a mazanie po blokoch
- dáta <u>nie je možné</u> jednoducho prepísať (príslušný blok najskôr celý vymazaný)

FLASH pamäť

- V_{PP} na hradle kladné (> V_{DS})
- emitor a substrát sú uzemnené
- elektróny <u>nabíjajú plávajúce hradlo</u>
- výsledkom je zvýšenie prahového napätia

- na hradle záporné napätie
- na emitore kladné vysoké napätie
- vzniká silné elektrické pole na emitorovej časti hradlového oxidu
- elektróny sú vytlačené z plávajúceho hradla <u>neutrálne</u> (log 0)

CAM (Content-Adressable Memory)

- porovnáva prichádzajúce dátové slovo s dátami uloženými v bunkách
 - v prípade zhody vygeneruje signál

CAM bunka

- klasická RAM bunka rozšírená o:
 - N₁, N₂ (XOR) neekvivalencia
 - N₃ je distribuovaný pull-down NOR
 - kolektory tranzistorov N₃ pre bunky ležiace
 v tom istom riadku pamäte sú spoločné

Na hradle N₃ je log1 iba keď sa hodnoty BLa hodnoty uchované v bunke **nerovnajú**

Ďakujem za pozornosť.