26/08/2025 - Maternaticas discretus (Vde@)

1. Repaso clase anterior

a. Proposiciones

La lagica proposicional vs. Realidad

La lagica proposicional no se preorupa por la explicación de las cosas

(por que) se preorupa por: Los valores de verdad de las

proposiciones

b. Operadores logicos.

- Permiten combiner varias proposiciones simples para formas proposiciones compuestas.

- Actuan sobre el valor de la verdad de una proposición logica.

Conector	Símbolo	Nombre	Explicación
Negación	$\neg p$	No	Cambia el valor de verdad de la proposición.
Conjunción	$p \wedge q$	Y (AND)	Es verdadera solo si ambas proposiciones son verdaderas
Disyunción inclusiva	$p \lor q$	O (OR)	Es verdadera si al menos una de las proposiciones es verdadera.
Disyunción exclusiva	$p \oplus q$	O exclusiva (XOR)	Es verdadera solo si una de las dos proposiciones es verdadera, pero no ambas.
Implicación	$p \rightarrow q$	Si entonces (Implica)	Si p es verdadero, entonces q también lo es.
Bicondicional	$p \leftrightarrow q$	Si y solo si (doble implicación)	Ambas proposiciones tienen el mismo valor de verdad.

Tablas de verdad para los operadores logicos antas?

					An	d
N	lega	ación		p	q	$p \wedge q$
	p	$\neg p$		F	F	F
	F	V		F	V	F
	V	F	-201)	V	F	F
			La Wallace	V	V	V
		/	isalo leccion			
Or	exc	lusiv	10	Co	ndic	ional

Or exclusivo			
p	q	$p \oplus q$	
F	F	F	
F	V	V	
V	F	V	
V	V	F	

Co	Condicional			
p	q	$p \rightarrow q$		
F	F	V		
F	V	V		
V	F	F		
V	V	V		

Or inclusivo			
p	q	$p \lor q$	
F	F	F	
F	V	V	
V	F	V	
V	V	V	

Equivalencia		
p F	q F	$p \leftrightarrow q$
F	V	F
V	F	F
V	V	V

c. Caso de uso (Aplicación): Traducción al lenguaje natural

Pasos para traducir lenguaje natural a expresiones logicas

- 1. Lear of comprender el enunciado
- 2. Identificar proposiciones simples positivas
- 3. Asociar variables logicas a las proposiciones identificadas.
- 4. Detectar conectores
- 5. Construir la expresson lagica asociada al enunciado.

Sobre el enunciado declara	tivo: Sean P y Q dos enunciados declarativos cualquiera (simples o compuestos)
Tipo	Enunciados
	• Py Q
	• P , pero Q
	• Paún Q
	• P también Q
Conjuntivo	P todavía Q
	P, aunque Q
y (1)	P sin embargo Q
0	P además Q
	P no obstante Q
ind.	Po Q > V P, a menos que Q Al menos una entre Py Q.
اعارانا	• P, a menos que Q
Discounting (V	Al menos una entre P y Q.
• ()	
> Exc	Nota: Interprétese a menos que como si una proposición no es verdadera, la otra
(9	es, o será, verdadera, en este caso: si Q fuera falsa, le correspondería a P ser cierta

Sobre el enunciado declarativo o	ondicional: En este caso P representa al antecedente y Q el consecuente.
	Si P entonces Q
	• Si <i>P</i> , <i>Q</i>
	 Q si P
	 P sólo si Q
	 Para P, es necesario Q
Candicianales (Hinatáticas)	 Es suficiente P para Q
Condicionales (Hipotéticos)	Q en caso de que P
Si entonces	Q siempre que P
	• Como P, Q
→	Q cuando P
	P implica que Q
	• Cuando P, Q
	• P si, y solo si, Q
Bicondicionales	 P es suficiente y necesario para Q
Si = "	P es equivalente a Q
←>	Py Q son equivalentes

- Proposiciones simples (positivas):

- · Raller Coaster: Puedes subir a la montara rusa
- · Height: Miles menos de 1.2 metros
- · Age: Tienes mas de 16 años

- Expression logica asociada al enunciado

(Anteredente) (Consequente)

Height 17Age > 7Roller Coaster

Lo mismo pero mas intuitivo:

"Si mides menos de 1-2 metros y no tienes mas de 16 años, entonces no puedes subir a la montaña Rusa"

- Proposiciones simples (positivas):

- · I: Puedes acceder a internet desde el campus
- CS: Estadias ciencias de la computación
- · F: Eres estudiante de primer año

_ t:	x presion	logica aso	ciada al enunciado
	(Anteredente)	(Consequente) CSV7F
Bon	us D.A	(Tarea): Jua	n Sebastian Badillo
2. Recip	(0(0) (ontrarecipisco	y contrario
_ R	elaciones	de causa	efecto. ((ondicional à implicación)
		<i>P</i>	EFECKS EFECKS
7	romesa		(p) ocurre, le garantiza que el efecto (Q)
tjem	: c/ ç	Si There Jent	runces el patro esta mojado efecto
	Propos	icton: P-	→ ○
	Lheve (P)	El patro ester mojodo (B)	d'Es cierta la promesa "P->a"?
(1) Causa y eccto	V	∨	Se cumple
(2) Causa sin efects	V	×	IX) No se cample (Mentira)
3 Efecto Sm Causa	TX F	V	Se cumple (E) efecto quede teren otras causas: - Esta lavando - Tuberia Rota
(4) Ni couse Ni efects	 	×	Se cumple

Retornemos el ejemplo:

« Si (There), el patio esta majado)

Q

P = Q (Proposición original)

Proposiciones simples { P: Lheve Q: El patio esta mojado

1 8 x 2 c 2 c 2 co 2 1 2 / 2 / 2 / 2 / 2 / 2

Casa	Forma Logica	Lenguage natural	al case original?
	$P \rightarrow Q$	Si lheve, el patio esta mojado	Original
Reciproco	$Q \rightarrow \varphi$	Si el patio esta mojudo, entoces Nueve	Es equivalente? No
Inverso	(¬P → ¬Q	Si no lheve, e) patro no esta	Es equivalente? No
WATTONEC	¬Q →> ¬P	Si el patro no esta majados entonces no llueve.	Es equivalente? S:

P -> Q = 7Q -> 7P

Taren: Se tiene la signiente proposicion «Si gano la loteria, sere Fehz»

Se pide: 1. Determine las proposiciones simples y la expressión logica asociada 2. Obtanga el recipioso, el contrarecipioso y el contrario.

- Orden

2.3	1	5
G	+	5
11		

Operators	Associativity		
() Highest precedence	Left - Right		
**	Right - Left		
+x , -x, ~x	Left - Right		
*,/,//,%	Left - Right		
+,-	Left - Right		
<<,>>>	Left - Right		
&	Left - Right		
۸	Left - Right		
1	Left - Right		
Is, is not, in, not in,	Left - Right		
<, <=, >, >=, <u>=</u> =, !=			
Not x	Left - Right		
And	Left - Right		
Or	Left - Right		
If else	Left - Right		
Lambda	Left - Right		
=, +=, -=, *=, /= Lowest	Right - Left		
Precedence	100		

La **reglas de prioridad** definen e<u>l orden en el que se deben aplicar los conectivos</u> lógicos al evaluar enunciados lógicos compuestos.

Prioridad	Operador
1	(∷)
2	٦
3	٨
4	V
5	→ / ↔

Asociatividad: Se da en los casos en que la expresión lógica tiene mas de un operador de la misma prioridad.

- Cuando se tienen varios operadores con la misma prioridad, la evaluación se hace de izquierda a derecha.
- Cuando hay paréntesis anidados se evalúan primero los mas internos. Si los paréntesis no están anidados la evaluación de estos se hace de izquierda a derecha.

Reglas de precedencia y asociatividad

Prioridad	Símbolo	Asociatividad	Ejemplo con paréntesis
1 (más alta) 🗸		No aplica (unitario)	$\neg p \land q \mapsto ((\neg p) \land q)$
2 🗸	۸	Izquierda ($I \rightarrow D$)	$p \wedge q \wedge r \mapsto ((p \wedge q) \wedge r)$
3	V.	Izquierda ($I \rightarrow D$)	$p \lor q \lor r \mapsto \big((p \lor q) \lor r \big)$
4	Φ	Izquierda ($I \rightarrow D$)	$p \oplus q \oplus r \mapsto \big((p \oplus q) \oplus r\big)$
5	→	Derecha $(I \leftarrow D)$	$p \rightarrow q \rightarrow r \mapsto (p \rightarrow (q \rightarrow r))$
6 (más baja)	↔	Derecha $(I \leftarrow D)$	$p \leftrightarrow q \leftrightarrow r \mapsto (p \leftrightarrow (q \leftrightarrow r))$

Notas claves:

- · La negación siempre aplica a una proposición o expresión.
- Los operadores con igual precedencia se agrupan según su asociatividad (izquierda o derecha).
- El uso de paréntesis permite evitar la ambigüedad en expresiones que usen varios operadores.
- Cuando la expresión tiene paréntesis anidados, la evaluación de expresiones con paréntesis se hace de adentro hacia afuera.

Ejempbs:

Negación	Conjunción	Disyunción inclusiva
p ¬p F V V F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Disyunción exclusiva	Condicional	Bicondicional
$\begin{array}{c ccccc} p & q & p \oplus q \\ F & F & F & F \\ F & V & V \\ V & F & V \\ V & V & F \end{array}$	$\begin{array}{c cccc} p & q & p \rightarrow q \\ F & F & V \\ F & V & V \\ \hline V & F & F \\ V & V & V \\ \end{array}$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ \hline F & F & V \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$

Negación	Conjunción	Disyunción inclusiva
p ¬p F V V F	$\begin{array}{c cccc} p & q & p \wedge q \\ \hline F & F & F \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$	p q p v q F F F F F V V V F V V V V
Disyunción exclusiva	Condicional	Bicondicional
$\begin{array}{c cccc} p & q & p \oplus q \\ \hline F & F & F \\ F & V & V \\ \hline V & F & V \\ V & V & F \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ \hline F & F & V \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$

Q=F

P →	\Diamond	\oplus	R
∨ →	F	()	V
V -		_	_
_	V		

Negación	Conjunción	Disyunción inclusiva
<i>p</i> ¬ <i>p F V V F</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} p & q & p \lor q \\ \hline F & F & F \\ \hline F & V & V \\ \hline V & F & V \\ \hline V & V & V \\ \end{array}$
Disyunción exclusiva	Condicional	Bicondicional
$\begin{array}{c cccc} p & q & p \oplus q \\ \hline F & F & F \\ \hline F & V & V \\ V & F & V \\ V & V & F \\ \end{array}$	$\begin{array}{c cccc} p & q & p \rightarrow q \\ \hline F & F & F & V \\ \hline F & V & V \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ F & F & V \\ F & V & F \\ V & F & F \\ V & V & V \\ \end{array}$

Q = F

$$P \leftrightarrow \neg (P \rightarrow Q)$$

$$V \Longleftrightarrow \neg (V \rightarrow F)$$

$$V \Longleftrightarrow V$$

$$V \Longleftrightarrow V$$

Negación	Conjunción	Disyunción inclusiva
<i>p</i> ¬ <i>p</i> → <i>F V V F</i>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Disyunción exclusiva	Condicional	Bicondicional
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} p & q & p \rightarrow q \\ \hline F & F & V \\ \hline F & V & V \\ \hline V & F & F \\ V & V & V \\ \end{array}$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ \hline F & F & V \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$

5. Evalue la expresión 4 pero hagalo para:

$$a. P = F, Q = F$$

$$P \longleftrightarrow T (P \to Q)$$

$$F \leftrightarrow F$$

a. P = F, Q = F $P \leftrightarrow \neg (P \rightarrow Q)$ $F \leftrightarrow F$ V $F \leftrightarrow F$ V V $F \leftrightarrow F$ V V $V \leftrightarrow P$ $V \leftrightarrow P$

Tables de verded

Facilitan evaluar expressores logicus
para todas los valores de verdad que
torren las variables logicus.