

DARK ENERGY **SPECTROSCOPIC** INSTRUMENT

U.S. Department of Energy Office of Science

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Uendert Andrade (UMichigan)

Credit: Michael Rashkovetskyi

Distance Measurements

Relation between BAO parameters, e.g., $(\alpha_{\parallel}, \alpha_{\perp})$ and distances (D_M, D_H, D_V)

$$\frac{D_M(z)}{r_d} \equiv \frac{D_A(z) (1+z)}{r_d} = \alpha_\perp \frac{D_M^{\text{fid}}(z)}{r_d^{\text{fid}}}$$

—

comoving angular diameter distance $D_{M}(z)$

$$\frac{D_H(z)}{r_d} \equiv \frac{c}{H(z)r_d} = \alpha_{\parallel} \frac{D_H^{\text{fid}}(z)}{r_d^{\text{fid}}}$$

Hubble distance $D_H(z)$

$$\alpha_{\rm iso} = (\alpha_{\parallel} \alpha_{\perp}^2)^{1/3} , \quad \alpha_{AP} = \alpha_{\perp} / \alpha_{\parallel}$$

$$\frac{D_V(z)}{r_d} \equiv \frac{\left[zD_M^2(z)D_H(z)\right]^{1/3}}{r_d} = \alpha_{\rm iso} \frac{D_V^{\rm fid}(z)}{r_d^{\rm fid}}$$

spherically-averaged distance $D_V(z)$

Internal consistency of DESI results

U.S. Department of Energy Office of Science

