Лекция 2. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

- 1. Понятие функции многих переменных.
- 2. Определение предела функции многих переменных.
- 3. Повторные пределы.
- 4. Непрерывность функции многих переменных.

1. Понятие функции многих переменных.

Пусть $G \subset \mathbf{R}^n$ — произвольное множество точек n-мерного евклидова пространства.

Определение 1. Если правило f каждой точке $x = (x_1; x_2; ...; x_n) \in G$ ставит в соответствие некоторое вполне определенное действительное число $u = f(x) = f(x_1, x_2, ..., x_n)$, то говорят, что на множестве G задана числовая функция (или отображение) f от n переменных.

Множество G называется областью определения, D(f) = G, а множество $E = \{u \in \mathbf{R} | u = f(x), x \in G\}$ — множеством значений функции f.

Обозначается: $f: \mathbf{R}^n \to \mathbf{R}$; $u = f(x), \quad x = (x_1, x_2, ..., x_n)$; $u = f(x_1, x_2, ..., x_n)$.

В частном случае при n=2 функцию двух переменных можно рассматривать как функцию точек плоскости \mathbf{R}^2 . Частное значение функции z=f(x,y) при $x=x_0$ и $y=y_0$ обозначается $f(x_0,y_0),\ f(M_0),\ z\big|_{\substack{x=x_0\\y=y_0}}$ или $z\big|_{M_0}$.

Функция f двух переменных x и y может быть задана аналитическим, табличным, графическим и другими способами.

График функции двух переменных z = f(x, y) изображается в трехмерном пространстве при выбранной декартовой системе координат Oxyz как множество точек

$$\Gamma = \left\{ (x; y; z) \in \mathbb{R}^3 \middle| z = f(x, y) \right\},\,$$

которое есть некоторая поверхность в \mathbb{R}^3 . Проекцией этой по-

верхности на плоскость Oxy является область D(f).

Функцию трех и более переменных изобразить графически затруднительно.

Примеры.

1.
$$z = x^2 + y^2$$
.

Область определения этой функции $D(f) = \mathbb{R}^2$, множество значений $E(f) = [0; +\infty)$. Графиком данной функции в пространстве \mathbb{R}^3 является круговой параболоид (рис.1).

2.
$$z = \sqrt{4 - x^2 - 2y^2}$$
.

Областью определения D(f) этой функции является множество всех точек плоскости \mathbf{R}^2 , для которых определено выражение $\sqrt{4-x^2-2y^2}$, т.е. $4-x^2-2y^2\geq 0$. Множество таких точек лежит внутри и на эллипсе с полуосями a=2, $b=\sqrt{2}$ (на рис.2),

т.е.
$$D(f) = \left\{ M(x; y) \in \mathbb{R}^2 \middle| \frac{x^2}{4} + \frac{y^2}{2} \le 1 \right\}$$
). Множество значений $E(f) = [0:2]$. Графиком этой функция придежен рерукция честь это

E(f) = [0;2]. Графиком этой функции является верхняя часть эллипсоида.

3.
$$z = \sqrt{1 - x_1^2 - x_2^2 - \dots - x_n^2}$$
.

Рис.1.

Рис.2.

Функция определена, если $1-x_1^2-x_2^2-...-x_n^2 \geq 0$ или $x_1^2+x_2^2+...+x_n^2 \leq 1$.

Отсюда

$$D(f) = [M(x_1; x_2; ...; x_n) \in \mathbf{R}^n | x_1^2 + x_2^2 + ... + x_n^2 \le 1],$$

т.е. областью определения D(f) данной функции является множество точек замкнутого n-мерного шара радиусом r=1 с центром в начале координат, а E(f)=[0;1];

4.
$$z = \ln(5 - x^2 - y^2 - z^2)$$
.

Функция определена, если $5-x^2-y^2-z^2>0$ или $x^2-y^2-z^2<5$, откуда

$$D(f) = [M(x; y; z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 < 5],$$

т.е. областью определения D(f) данной функции является множество точек открытого трехмерного шара радиусом $\sqrt{5}$, а $E(f) = (-\infty; \ln 5]$.

Функции нескольких переменных могут быть заданы явно (уравнением, разрешенным относительно зависимой переменной: z = f(x,y), u = f(x,y,z), $u = f(x_1,x_2,...,x_n)$) либо неявно (уравнением, не разрешенным относительно зависимой переменной).

Пример. Функция z двух переменных x и y, определяемая уравнением $x^2 + y^2 - z + 16 = 0$ задана неявно. К явному заданию этой функции можно перейти, решив уравнение относительно z (если это возможно). Тогда $z = 16 + x^2 + y^2$.

Определение 2. Множество точек $x = (x_1, x_2, ..., x_n)$ пространства \mathbf{R}^n , удовлетворяющих уравнению $f(x_1, x_2, ..., x_n) = \mathbf{c}$, называется **множеством уровня** функции $u = f(x_1, x_2, ..., x_n)$, соответствующим данному значению \mathbf{c} .

Если n=2, то множество уровня называется *пинией уровня*, если n=3, то множество уровня называется *поверхностью уровня*, если n>3, то множество уровня называется *гиперповерхностью уровня*.

2. Определение предела функции многих переменных.

Пусть функция z = f(x), $x = (x_1, x_2, ..., x_n)$, определена в окре-

стности $U(\varepsilon, x_0)$.

Определение 2 (по Гейне). Число A называется *пределом* функции z=f(x) в точке $x_0=\left(x_1^0;x_2^0;...;x_n^0\right)$, если для любой сходящейся к x_0 последовательности точек $\left(x_m\right)_{m=1}^\infty$, $x_m=\left(x_1^m;x_2^m;...;x_n^m\right)$, $m=\overline{1,\infty}$, $x_m\in \overset{\circ}{U}(\varepsilon,x_0)$, соответствующая последовательность $\left(f\left(x_m\right)\right)_{m=1}^\infty$ значений функции сходится к A.

Символическая запись: $A = \lim_{x \to x_0} f(x) \Leftrightarrow$

$$\Leftrightarrow \forall (x_m)_{m=1}^{\infty}, x_m \in U(\varepsilon, x_0), \lim_{k \to \infty} x_k = x_0 \quad \lim_{k \to \infty} f(x_m) = f(x_0).$$

Для записи предела функции можно использовать обозначение:

$$A = \lim_{\substack{x_1 \to x_1^0 \\ x_2 \to x_2^0 \\ \dots \\ x_n \to x_n^0}} f(x_1, x_2, \dots, x_n).$$

Как и в случае функции одной переменной, данное определение по Гейне предела функции двух переменных на языке последовательностей эквивалентно определению предела функции по Коши.

Определение 3 (по Коши). Число A называется *пределом* функции z=f(x) в точке $x_0=\left(x_1^0;x_2^0;...;x_n^0\right)$, если для любого $\varepsilon>0$ существует $\delta(\varepsilon)>0$, такое, что для любой точки $x\in \overset{\circ}{U}(\varepsilon,x_0)$ выполняется неравенство $|f(x)-A|<\varepsilon$.

Символическая запись: $A = \lim_{x \to x_0} f(x) \Leftrightarrow$

$$\Leftrightarrow \forall \varepsilon > 0 \exists \overset{\circ}{U}(\varepsilon, x_0) : \forall M \in \overset{\circ}{U}(\varepsilon, x_0) \quad |f(x) - A| < \varepsilon.$$

Эквивалентность двух определений предела доказывается так же, как и для функции одной переменной.

Если функция двух переменных z=f(x;y) определена в окрестности $\overset{\circ}{U}(\varepsilon;(x_0,y_0))$ и число A является пределом при $(x,y) \! \to \! (x_0,y_0)$, то

$$A = \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x; y)$$

называется двойным пределом.

Отметим, что в некоторых приложениях удобно пользоваться определением по Коши, в других – по Гейне.

При определении предела функции z=f(x;y) в точке $M_0(x_0;y_0)$ полагается, что функция может быть не определена в точке M_0 . Поэтому значения функции f(M) отличаются от числа z_0 на достаточно малую величину, если точка M выбрана достаточно близко к точке M_0 . Из определения предела функции по Коши получаем $z_0 - \varepsilon < f(M) < z_0 + \varepsilon$. С **геометрической** точки зрения, приведенное неравенство означает, что точка графика функции z=f(M)=f(x,y) из окрестности $U(\delta,M_0)$ находится между двумя плоскостями $z=z_0-\varepsilon$ и $z=z_0+\varepsilon$. Другими словами, предел функции z=f(x;y) при $x\to x_0$, $y\to y_0$ определяется поведением функции вблизи точки $M_0(x_0;y_0)$ и не зависит от значения функции в этой точке.

Примеры.

1. Вычислить, используя определение предела по Гейне, $\lim_{\substack{x\to 0\\y\to 0}} \frac{x^3-y^3}{x-y}$

 $m{Pe\, w\, e\, h\, u\, e}$. Область определения данной функции $D(f) = \{\!\! (x;y) \in \pmb{R}^2 \big| \ x
eq y \big| \!\! \}$. Возьмем произвольную последовательность точек $(M_k)_{k=1}^\infty = ((x_k;y_k))_{k=1}^\infty$, таких, что $x_k
eq y_k$, $x_k
eg 0$, $y_k
eg 0$. Тогда

$$f(M_k) = \frac{x_k^3 - y_k^3}{x_k - y_k} = x_k^2 + x_k y_k + y_k^2.$$

Следовательно,

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 - y^3}{x - y} = \lim_{\substack{k \to \infty \\ (x_k \to 0) \\ (x_k \to 0)}} (x_k^2 + x_k y_k + x_k^2) = 0$$

2. Доказать, пользуясь определением предела по Коши, что $\lim_{\substack{x\to 0\\x\to 0}}\frac{x^3-y^3}{x-y}=0\;.$

 $Pe\ w\ e\ h\ u\ e$. Выберем произвольное число $\varepsilon>0$ и найдем $r(\varepsilon)$, такое, что для любой точки $M(x;y)\in \overset{\circ}{U}(\mathcal{S};(0;0))$ выполняется неравенство $|f(x,y)-0|<\varepsilon$. Так как для любой точки $M(x;y)\in D(f)$ справедливо соотношение

$$f(x,y) = \frac{x^3 - y^3}{x - y} = x^2 + xy + y^2$$
,

TO

$$|f(x,y)-0| = |x^2 + xy + y^2| \le x^2 + y^2 + |xy|$$

Оценим $|x \cdot y|$:

$$(|x|-|y|)^2 = x^2 - 2xy + y^2 \le x^2 + y^2 \ge 0 \implies |x \cdot y| \le \frac{1}{2}(x^2 + y^2).$$

Таким образом, $|f(x,y)-0| \le \frac{3}{2}(x^2+y^2) = \frac{3}{2}\rho^2(O,M) < \varepsilon$.

Отсюда

$$\rho(O,M) < \sqrt{\frac{2}{3}\varepsilon}$$
,

где $\rho(O;M)$ – расстояние от точки M(x;y) до точки O(0;0).

Следовательно, для любого $\varepsilon>0$ мы нашли число $\delta(\varepsilon)=\sqrt{\frac{2}{3}\,\varepsilon}$, такое, что для любой точки $M(x;y)\!\in\!U(\delta,M_0)$ бу-

дет выполняться неравенство
$$\left| \frac{x^3 - y^3}{x - y} - 0 \right| < \varepsilon \Leftrightarrow \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 - y^3}{x - y} = 0$$
.

Поскольку определение предела функций многих перемен-

ных аналогично определению предела функции одного переменного, то для случая функций многих переменных сохраняются все свойства пределов функций (кроме тех, где существенна упорядоченность точек числовой прямой, например, односторонние пределы).

3. Повторные пределы.

Для функции z = f(x, y) можно определить понятие предела по переменной x, полагая y постоянным, и можно определить предел по y, полагая x постоянным.

Пусть функция z=f(x,y) задана в прямоугольной окрестности $U(M_0,d_1,d_2)=\{\!(x,y)\!\in I\!\!R^2\big|\, \big|x-x_0\big|\!< d_1, \big|y-y_0\big|\!< d_2 \!\!\}$ точки $M_0(x_0,y_0)$ за исключением, быть может, самой точки $M_0(x_0,y_0)$. И пусть для каждого фиксированного y , удовлетворяющего условию $0<\big|y-y_0\big|< d_2$, при $x\to x_0$ для функции z=f(x,y) одной переменной x существует предел $\lim_{x\to x_0}f(x;y)=g(y)$. И пусть при $y\to y_0$ для функции g(y) сущельных обращь y=0 для функции y=00 для функции y=01 существует предел y=02 для функции y=03 существующь y=04 для функции y=03 существующь y=04 для функции y=04 существующь y=04

ствует предел $\lim_{y\to y_0}g(y)=b$. Тогда говорят, что существует **по-вторный предел** b для функции z=f(x,y) в точке $M_0(x_0,y_0)$. Обозначается: $\lim_{y\to y_0}\lim_{x\to x_0}f(x;y)=b$.

Аналогично определяется повторный предел $\lim_{x\to x_0} \lim_{y\to y_0} f(x;y)$.

Теорема 1. Пусть функция z = f(x,y) определена в некоторой прямоугольной окрестности $U(M_0,d_1,d_2)$ точки $M_0(x_0,y_0)$, и имеет в этой точке двойной предел $\lim_{\substack{x\to x_0\\y\to y_0}} f(x;y) = b$. И пусть для любого фиксированного x,

 $0<\left|x-x_{0}\right|< d_{1}$, существует предел $\lim_{\substack{y \to y_{0} \ x_{dpulk}}} f\left(x;y\right)=h(x)$ и для лю-

бого фиксированного y, $0 < \left| y - y_0 \right| < d_2$, существует предел

 $\lim_{\substack{x \to x_0 \ y_{\phi \mu \kappa}}} f(x;y) = g(y)$. Тогда повторные пределы $\lim_{\substack{y \to y_0 \ x \to x_0}} \lim_{\substack{x \to x_0 \ y_{\phi \mu \kappa}}} f(x;y)$ и

 $\lim_{x \to x_0} \lim_{y \to y_0} f(x; y)$ существуют и равны

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x; y) = \lim_{x \to x_0} \lim_{y \to y_0} f(x; y).$$

▶ Так как функция z = f(x, y) имеет в точке $M_0(x_0, y_0)$ предел b , то по определению имеем

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = z_0 \quad \Leftrightarrow \quad$$

$$\Leftrightarrow \forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) : \forall (x; y) \, 0 < |x - x_0| < \delta, \, 0 < |y - y_0| < \delta$$

$$\Rightarrow |f(x;y)-z_0| < \varepsilon$$

Отсюда $z_0 - \varepsilon < f(x;y) < z_0 + \varepsilon$. Это означает, что в прямоугольной окрестности $U(M_0,d_1,d_2)$ точки $M_0(x_0,y_0)$ значение функции отличается от b не более чем на ε . Но тогда пределы g(y) и h(x) отличаются от b не более чем на ε .

Следовательно, пределы этих функций в точках y_0 и x_0 существуют и равны. \blacktriangleleft

Для функции $u = f(x_1; x_2; ...; x_n)$ понятие повторного предела определяется аналогично.

4. Непрерывность функции многих переменных.

Понятие непрерывности функции нескольких переменных определяется с помощью предела.

Определение 4. Функция u = f(x), $x = (x_1, x_2, ..., x_n)$, называется *непрерывной* в точке $x_0 = (x_1^0; x_2^0; ...; x_n^0)$, если выполнены следующие три условия:

- 1) f(x) определена в точке x_0 и некоторой ее окрестности;
- 2) существует $\lim_{x \to x_0} f(x)$;
- 3) $\lim_{x \to x_0} f(x) = f(x_0)$.

Если в точке x_0 одно из указанных трех условий не выполняется, то она является точкой разрыва функции u = f(x).

Для функции z = f(x,y) двух независимых переменных точки разрыва могут быть изолированными или образовывать линию разрыва. Для функции u = f(x,y,z) трех независимых переменных точки разрыва могут быть изолированными, образовывать линию или поверхность разрыва.

Примеры. Найти точки разрыва функций:

1)
$$z = \frac{1}{(x-4)^2 + y^2}$$
; 2) $z = \frac{1}{x-y}$; 3) $u = \frac{2}{x^2 + y^2 + z^2 - 9}$.

Pewehue. 1. Данная функция определена на R^2 всюду, кроме точки M(4;0), которая и является точкой разрыва функции.

- 2. Данная функция определена для любых x, y, таких, что $x \neq y$. Следовательно, прямая x = y является линией разрыва функции.
 - 3. Функция $u = \frac{2}{x^2 + y^2 + z^2 9}$ определена для любых x, y, y

z, таких, что $x^2 + y^2 + z^2 \neq 9$. Сфера с центром в начале координат и радиусом 3 является поверхностью разрыва функции.

Основные теоремы о свойствах непрерывных в некоторой точке функций (например, теорема о непрерывности суммы непрерывных функций) доказываются для функций многих переменных так же, как и для функции одной переменной.

Теорема 2 (непрерывность сложной функции). Пусть функции $x_1 = \varphi_1(t), \ x_2 = \varphi_2(t), \ ..., \ x_n = \varphi_n(t), \ t = (t_1, t_2, ..., t_n),$ определены в некоторой окрестности точки $t_0 = (t_1^0; t_2^0; ...; t_n^0) \in \mathbf{R}^n$ и непрерывны в точке t_0 . Функция $u = f(x_1, x_2, ..., x_n)$ определена в окрестности точки $x_0 = (\varphi_1(t_0); \varphi_2(t_0); ...; \varphi_n(t_0)) \in \mathbf{R}^n$ и непрерывна в точке x_0 . Тогда в некоторой окрестности точки t_0 определена сложная функция $\Phi(t) = f(\varphi_1(t); \varphi_2(t); ...; \varphi_n(t))$, причем функция $\Phi(t)$ непрерывна в точке t_0 .

Без доказательства.

Вопросы для самоконтроля

- 1. Что называется функцией в пространстве \mathbf{R}^n . Что такое множество уровня?
- 2. Сформулируйте определения предела функции z = f(x, y) в точке по Гейне и по Коши. Что означает эквивалентность этих определений?
- 3. Дайте определение бесконечно малой функции в пространстве ${\it I\!\!R}^n$ при $M \to M_0$.
- 4. Сформулируйте определение повторного предела функции z = f(x, y). Дайте определение повторного предела для функции $u = f(x_1; x_2; ...; x_n)$.
- 5. Сформулируйте определение непрерывной функции $u=f\left(x_1,x_2,...,x_n\right)$ в точке $M_0\left(x_1^0;x_2^0;...;x_n^0\right)$. Какими свойствами обладают непрерывные функции?