Spécialité physique-chimie

EXERCICE B - MESURE DE LA MASSE DE JUPITER ET DU SOLEIL (5 pts, 53 minutes)

Mots-clés : Lois de Newton, gravitation, mouvement des planètes et des satellites

Exploitation des résultats expérimentaux

1. À partir des résultats expérimentaux (figure 1), préciser la relation qui existe entre T^2 et a^3 pour les quatre satellites de Jupiter. Donner le nom de la loi correspondante (établie en 1618).

La courbe représentative de T^2 en fonction de a^3 a l'allure d'une droite passant par l'origine, que l'on peut modéliser par une fonction linéaire $T^2 = k.a^3$. T^2 est proportionnelle à a^2 .

Il s'agit de la 3^e loi de Kepler, que l'on écrit sous la forme $\frac{T^2}{a^3} = k$.

Modélisation du mouvement d'un satellite de Jupiter

- 2. Sur un schéma, reprendre les éléments donnés sur la figure 2 et représenter sans souci d'échelle :
- Le vecteur vitesse $\overrightarrow{V_{\rm S}}$ du satellite ;
- La force de gravitation $\overrightarrow{F_{J/S}}$ exercée par Jupiter sur le satellite.

3. Donner l'expression de la force de gravitation $\overline{F_{J/S}}$ exercée par Jupiter sur le satellite en fonction de M_J , m, G, r et $\overset{\rightharpoonup}{n}$.

$$\overrightarrow{F_{J/S}} = G.\frac{m.M_J}{r^2}.\overrightarrow{n}$$

4. Appliquer la deuxième loi de Newton et en déduire l'expression de la vitesse V_S du satellite en fonction de G, M_I et r.

$$\overrightarrow{F_{J/S}} = m.\vec{a}$$

$$G.\frac{m.M_J}{r^2}.\vec{n} = m.\vec{a}$$

$$\vec{a} = G.\frac{M_J}{r^2}.\vec{n}$$

D'autre part, par définition du mouvement circulaire $\vec{a} = \frac{dv}{dt} \cdot \vec{t} + \frac{v^2}{r} \cdot \vec{n}$.

Par analogie entre ces deux expressions du vecteur accélération, on obtient $\frac{v^2}{r} = G \cdot \frac{M_J}{r^2}$.

$$v^2 = G.\frac{M_J}{r}$$
$$v = \sqrt{G.\frac{M_J}{r}}$$

5. En déduire que, dans le cadre de l'approximation du mouvement circulaire, le quotient T^2

$$\frac{T^2}{a^3}$$
 est égal à $\frac{4\pi^2}{G.M_J}$.

Le satellite parcourt son orbite de périmètre $2\pi r$ pendant une durée égale à sa période T de révolution : $v = \frac{2\pi r}{\tau}$.

$$v^2 = \frac{4\pi^2 . r^2}{T^2}$$
 et on a établi en 4) que $v^2 = G . \frac{M_J}{r}$

Donc il vient
$$\frac{4\pi^2.r^2}{T^2} = G.\frac{M_J}{r}$$

$$\frac{4\pi^2.r^3}{T^2} = G.M_J$$

$$\frac{r^3}{T^2} = \frac{G.M_J}{4\pi^2}$$

$$\frac{T^2}{r^3} = \frac{4\pi^2}{G.M_A}$$

Dans le cas d'une orbite circulaire le demi-grand axe a est égal au rayon du cercle r.

$$\frac{T^2}{a^3} = \frac{4\pi^2}{G.M_A}$$

6. À l'aide des résultats expérimentaux, calculer la valeur de la masse M_J de Jupiter. Commenter un éventuel écart à la valeur tabulée : 1,898 6 × 10^{27} kg.

Aide éventuelle : 1 j^2 .km⁻³ = 7,46 s².m⁻³

D'après la figure 1, $\frac{T^2}{a^3} = k$ où k est le coefficient directeur de la droite ; et $\frac{T^2}{a^3} = \frac{4\pi^2}{G.M_I}$.

Donc
$$k = \frac{4\pi^2}{G.M_J}$$
 ou $M_J = \frac{4\pi^2}{G.k}$

On calcule le coefficient directeur de la droite avec le point de coordonnées ($a^3 = 0.50 \times 10^{19} \text{ km}^3$; $T^2 = 210 \text{ j}^2$).

$$k = \frac{210 \text{ j}^2}{0.50 \times 10^{19} \text{ km}^3} = 4.2 \times 10^{-17} \text{ j}^2.\text{km}^{-3} = 4.2 \times 10^{-17} \times 7.46 \text{ s}^2.\text{m}^{-3} = 3.1 \times 10^{-16} \text{ s}^2.\text{m}^{-3}$$

$$M_J = \frac{4\pi^2}{6,67 \times 10^{-11} \times 3,1 \times 10^{-16}} = 1,9 \times 10^{27} \text{ kg}$$

Ce résultat est cohérent avec la valeur tabulée.

7. Déterminer la masse du Soleil.

D'après la 3^e loi de Kepler,

Pour tous les objets en orbite autour du Soleil

$$\frac{T^2}{a^3} = k$$
 et d'après Newton, on a $k = \frac{4\pi^2}{G.M_S}$

$$\frac{T^2}{a^3} = \frac{4\pi^2}{G.M_S}$$
 donc $M_S = \frac{4\pi^2.a^3}{G.T^2}$

Pour la Terre, T = 365,25 j et $r = a = 150 \times 10^6$ km = $1,50 \times 10^{11}$ m.

$$M_{\rm S} = \frac{4\pi^2 \times (1,50 \times 10^{11})^3}{6,67 \times 10^{-11} \times (365,25 \times 24 \times 3600)^2} = 2,01 \times 10^{30} \text{ kg}$$

4*π²*(1.5E11)³
6.67E-11*(365.25*24*3600)²
2.005855972E30