2023-2 Mechatronics Integration Project

Basic Research on Steel Type Distinction Technology Based on Spark Video

MCE 21801017 EunChan Kim

Advisor: Prof. Young Keun Kim

Problem Definition

Problems with inspection equipment

- Expensive inspection equipment (More than 100 million \(\foat\))
 - but **not carbon content** in steel

A technology to Distinguish Steel based on Carbon Content is necessary

Steel bar Rolling Process

- Mixing steel in continuous process causes mass recalls
- Severe Economic Losses

How Can We Distinct Based on Carbon Content?

Spark Test

What is Spark Test?

- A technique to **distinguish steel types** through the different **spark shapes** generated by various metal materials
- Skilled experts are capable of distinguishing these visually

Development of a **steel classification** algorithm based on **spark characteristics** through image processing

Incidents of mixed steel types can be prevented

Spark Characteristics according to Carbon Content

0.1% Carbon

(약 0.5% C) **Burst shape depending on carbon content**

여러 줄 파열 3단

꽃핌 꽃가루

3줄 파열

(약 0.1% C)

3줄 파열 2단 꽃핌

(약 0,2% C)

2줄 파열

(약 0.05% C)

(약 0.15% C)

가시 모양

(0.05% C 미만)

(약 0.15% C)

여러 줄 파열

(약 0.4% C)

4줄 파열

(약 0.1% C)

여러 줄 파열 2단 꽃핌

깃털 모양

(림드강)

(약 0,3% C)

0.1% Carbon

0.35% Carbon

0.55% Carbon

As the carbon content **increases**

- The number of **exploding branches** increases
- The **length of the spark** shortens
- Brighter light is emitted

Paper 1

Spark testing to measure carbon content in carbon steels based on fractal box counting

Paper 2

Development of Automated Spark Testing Technique by Image Processing to Measure Carbon Content in Steel Materials

- Does not reflect spark characteristics according to carbon content
- Not applicable in real-time
- The **gap in carbon content** is more than 0.1%

verifying real-time applicability
by proceeding with video instead of images

2. Research Flow

Preprocessing to use only Exploding Sparks

Statistical Feature Extraction for Spark Characteristics based on Carbon Content

Classification using machine learning based on the extracted Statistical Features

Method 1 Spark Area Detection

Advantage

- A relatively **lightweight algorithm**
- Capable of detecting **explosion spark** areas

Disadvantage

- **Stem sparks** other than explosion sparks are also detected
- The accuracy decreases

Advantage

- Only the point of **explosion** can be detected

Disadvantage

- Significant impact of parameters
- Data loss occurs

* Above image is enhanced visibility through color inversion

Method 1: Spark Area Detection

Method 2: Streamline Elimination

0.1% Carbon

0.35% Carbon

As the **carbon content increases**, the number of explosion spark **branches increases**(Rapidly Changing Points)

Filtering only data of exploding points using **High Frequency** areas

Streamline Elimination

Optimal learning determined at **30 features** based on MES loss

(Sequential Forward Selection)

Selecting **30 Features** that Well Represent the **Characteristics of Steel**

	SVM[%]	KNN[%]	Random Forest[%]	
Accuracy	52.38	45.24	57.14	
Precision	63.59	51.67	59.42	
Recall	53.38	45.23	57.14	

Classification Results Table

Reason for Low Accuracy

 Due to the lack of the Test set, the accuracy is lower

 With more classes in the Test set, accuracy improves

Difference in Performance Between Models

- SVM excels with high-dimensional data due to its complex decision boundaries
- Random Forest is adept at learning complex patterns due to its random feature selection

4. Result

Distinguishing classes **above 0.1% was possible**, but **accuracy dropped** below that due to **data shortage**

Since features were extracted and learned **from the video**, it is expected to be applicable in **real-time** videos as well

Feature Selected

0.1% Carbon

0.35% Carbon

0.55% Carbon

The number of **Exploding Branches increases**

Top features, reflecting **Data Distribution**, include **standard deviation**, **kurtosis**, and **skewness**

Increased carbon leads to more spark branches, equivalent to greater pixel dispersion Using this dispersion for steel type differentiation improves classification performance

5. How to Improve the performance

Spark Set	C10	C20	C25	C35	C40	C53	C55
Train	1,543	914	1,804	2,764	994	3,964	3,388
Test	120	180	114	341	293	620	289

Training and Test Data Sets Used

The more data sets, the better the learning performance tends to be.

Increasing spark data can improve performance.

