HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF PURE AND DOPED BiVO₄ NANOPARTICLES

Submitted by

A.F.M. Monowar Hossain 201111045

Mohammad Abdullah Al Mamun 201111046

Supervised by

Md. Miftaur Rahman

Department of Materials and Metallurgical Engineering Bangladesh University of Engineering and Technology

Backgrounds & Motivation

Water Splitting

To generate H2 as fuel

Photo – electrochemical Cells

To reduce CO2 to carbon based molecules

Photosynthesis

- To degrade pollutants responsible for water pollution
- ➤ Antibacterial activity in water

Need of a Photo – Active Material

Monoclinic BiVO4 is one of the most promising visible-light-driven photocatalysts.

Reasons behind choosing the BiVO4 are-The narrow Plentiful bandgap 2.4 eV. abundance, so can be synthesized with low cost, and a variety of good stability. methods. Better solar-tohydrogen conversion efficiency

Targets and Challenges of this Research

- ❖ Effect of the addition of K2SO4 as morphology controlling agent on formation of monoclinic − tetragonal heterostructured BiVO4.
- ❖ Effect of Nd doping at Bi ³⁺ sites on structural formation, optical bandgap and particle morphology.
- ❖ Effect of Mn doping at V ⁵⁺ sites on structural formation, optical bandgap and particle morphology

Naturally found as the mineral pucherite with an orthorhombic crystal structure.

Laboratory synthesis crystallizes either in a scheelite or a zircon-type structure.

- Scheelite type structure
 - Monoclinic (space group *I2/b* with $a = 5.1935 \, A^{\circ}$, $b = 5.0898 \, A^{\circ}$, $c = 11.6972 \, A^{\circ}$, $\beta = 90.387^{\circ}$)
 - Tetragonal (space group $I4_I$ /a with $a = b = 5.1470 \,\text{A}^\circ$, $c = 11.7216 \,\text{A}^\circ$)
- Zircon type structure
 - Tetragonal (space group $I4_I$ /a with $a = b = 7.303 \text{ A}^\circ$, $c = 6.584 \text{ A}^\circ$)

• Difference between scheelite type tetragonal and zircon type tetragonal structure: Lattice parameter

• Difference between scheelite type tetragonal and scheelite type monoclinic structure: **Distortion**

- Each V ion is coordinated by four O atoms in a tetrahedral site and each Bi ion is coordinated by eight O atoms from eight different VO4 tetrahedral units
- Each O atom in this structure is coordinated to two Bi centers and one V center, holding the Bi and V centers together forming a three dimensional structure.
- The only difference between the tetragonal and monoclinic scheelite structure is that the local environments of V and Bi ions are more significantly distorted in the monoclinic structure, which removes the four-fold symmetry necessary for a tetragonal system.

2 Fold Symmetry of BiVO₄

Bi has 4 identical (Bi - O) bond

V has 2 identical (V - O) bond

Tetragonal: All identical bonds are equal. No distortion.

Monoclinic: Identical bonds are not equal. Distortion occurs in the structure.

It becomes easier for electron to transfer from Bismuth than oxygen to V.

Electron Transfer in BiVO₄

Reduced bandgap in m – BVO

Fig: Schematic diagram explaining the bandgap reduction in m - BVO

Transformation of BiVO₄ Phases with T

Transformation of BiVO₄ Phases with T

• Previous studies say that **low temperature synthesis** always tends to form tetragonal zircon type BVO [3]

• If temperature is raised more, <u>irreversible transformation</u> of phases from zircon type tetragonal to monoclinic scheelite BVO will take place at 670-770 K.

• However, if temperature is kept increasing, reversible transformation of monoclinic scheelite BVO to tetragonal scheelite BVO will take place.

Reasons for Hydrothermal Synthesis

Pressure in hydrothermal is above 200 kbar at 200 degree C.

Due to this high pressure, T required for m - BVO is reduced & m - BVO can be found in low temperature synthesis.

Two major advantages:

- ➤ Increased T causes less crystalline BVO, low T synthesis is preferred
- ➤ Hydrothermal synthesis environment is well protected by Teflon lined Stainless Steel autoclave

Preparative Parameters of Synthesized Samples of BiVO₄

Sample No	Sample	Precursor	Molar Amount	Weight	Temperature	
BVO S1	BiVO ₄	Bi(NO ₃) ₃ .5H ₂ O V ₂ O ₅	0.2 mmol 0.2 mmol	97 mg 36.38 mg	200 °C	
		H_2O		10 mL		
		Bi(NO ₃) ₃ .5H ₂ O	0.2 mmol	97 mg		
BVO S2	$BiVO_4$	V_2O_5	0.2 mmol	36.38 mg	200 °C	
		K_2SO_4	5.7 mmol	1 gm		
		H_2O		10 mL		
		Bi(NO ₃) ₃ .5H ₂ O	0.18 mmol	87.3 mg		
BVO S3	Bi _{0.9} Nd _{0.1} VO ₄	Nd_2O_5	0.01 mmol	3.68 mg	200 °C	
		V_2O_5	0.2 mmol	36.38 mg		
		K_2SO_4	5.7 mmol	1 gm		
		H_2O		10 mL		
		Bi(NO ₃) ₃ .5H ₂ O	0.2 mmol	97 mg		
		V_2O_5	0.18 mmol	32.742 mg	200 °C	
BVO S4	BiV _{0.9} Mn _{0.1} O ₄	$Mn(NO_3)_2.4H_2O$	0.01 mmol	25.101 mg		
		K_2SO_4	5.7 mmol	1 gm		
		H ₂ O		10 mL		

Precursor

❖ Bi (NO₃)₃: Provides Bi ₃+. Soluble in room temperature

❖ V2O5: Provides VO3 ion. The more VO3 ion, the more **BiVO**₄

❖ Addition of K₂SO₄:

- Formation of **pure m BiVO₄** with a slight % tetragonal zircon type BiVO₄ phase
- **➤ No impurity (Bi₂O₃) phase**

Doping Materials – Nd

- □ Nd has larger atomic radius (245 pm) than Bi (230 pm)
- ☐ Doping of 10% Nd replacing Bi at dodecahedral site
- ☐ Due to larger atomic radius, Nd has been chosen to investigate if any distortion takes place

 \square Nd = [Xe] 6s2 4f4. Nd 3+ has no lone pair like Bi 3+

Doping Materials – Mn

 \square Mn has multi valence state (3+, 4+ & 5+) & strong interaction with Oxygen

☐ Tetrahedral site has smaller volume than dodecahedral

☐ 10% Mn doping has been chosen to investigate if any distortion takes place

Synthesis Process

Characterization

Phase Study

+

Rietveld Refinement

Microstructures Analysis (SEM)

> UV – Vis Analysis

BiVO4 without $K_2SO_4 = BVO S1$

BiVO4 with $K_2SO_4 = BVO S_2$

Bi0.9Nd0.1VO4 = BVO S3

BiMn0.1V0.9O4 = BVO S4

Phase Study

Fig: XRD Patterns of (a) BVO S1 & BVO S2 (b) BVO S2, BVO S3 and BVO S4

Phase Study

How to identify the peaks?

With the help of previous studies published in journals???

What if some peaks remain unidentified and unmatched!!

Rietveld Refinement Analysis

Bragg reflections of pure phases obtained from Crystallographic Open Database

Rietveld Refinement Analysis

How Rietveld
Refinement
draws an elephant
by own

Machine
Learning
like iOS Prisma
app or Google's
"deep – learning"

Rietveld Refinement Analysis

The main principle is to calculate intensity at point i of the diagram:

$$y_{ic} = y_{ib} + \sum_{\Phi} S_{\Phi} \sum_{k} G_{\Phi} (2\theta_i - 2\theta_k) I_k$$

$$I_k = m_k L_k |F_k|^2 P_k A_k$$
Reflections

Intensity of Bragg

$$I_k = m_k L_k |F_k|^2 P_k A_k$$

this residual function

Goal is to minimize this residual function
$$\Rightarrow \sum_{i} w_{i} \left(y_{i}^{obs} - y_{i}^{calc} \right)^{2}$$

where $w_i = 1/v_i^{obs}$ y_i^{obs} : observed intensity at the ith step y_i^{calc} : calculated intensity at the ith step

Refinement was performed with pure m - BVO

And unmatched reflections are compared with pure tetragonal zircon type BVO

Reflections unmatched with pure m - BVO: 2 theta = 20.5, 24.5, 31, 50, 56.5

Except reflection at 2 theta = 20.5,
All other unmatched reflections match
with tetragonal zircon type BVO

Refinement was performed with pure m - BVO

And unmatched reflections are compared with pure tetragonal zircon type BVO

A slight difference was noticed at 2 theta = 31

BVO S2 = Pure monoclinic BVO

Refinement was performed with pure m - BVO

And unmatched reflections are compared with pure tetragonal zircon type BVO

Reflections unmatched with pure m - BVO: 2 theta = 24.5, 33, 48

% tetragonal phase increased than BVO S2
And
No impure phases

Refinement was performed with pure m - BVO

And unmatched reflections are compared with pure tetragonal zircon type BVO

Difference is for improper centrifugation During synthesis

BVO S4 = Almost pure m - BVO

Presence of Bi₂O₃ in BVO S1

XRD Pattern of pure Bi₂O₃ (monoclinic)

Non – uniform Size distribution

Pellet shapes BVO

Uniform Size distribution

UV – Vis Analysis

The fall of the curves within $\underline{400-500}$ nm indicates that all three synthesized particles will be active in visible range.

UV – Vis Analysis

Bandgap is calculated using Kubelka – Munk function (1)

[hvF(R)] ²vs photon energy (hv) plots

BVO S2 = 2.49 eV

BVO S3 = 2.5 eV

BVO S4 = 2.44 eV

Results & Discussions

Table: Bond lengths obtained after refinement

	Dodecahedral (A ^o)				Tetrahedral (A ^o)		
Sample	Bi – O1	Bi - O2	Bi – O1	Bi - O2	V – O1	V - O2	O1 - O2
ID							
Pure	2.372	2.628	2.516	2.354	1.770	1.691	3.118
m - BVO							
BVO S1	2.353	2.515	2.370	2.626	1.766	1.690	2.747
BVO S2	2.372	2.630	2.517	2.355	1.770	1.689	2.954
BVO S3	2.372	2.627	2.518	2.355	1.771	1.689	3.118
BVO S4	2.375	2.639	2.519	2.364	1.774	1.694	3.743

Results & Discussions

- ❖ Bond lengths of BVO S2 & BVO S3 match with the pure m − BVO
- ❖ Doping with 10% Nd does not create any distortion rather suppresses
- ❖ Doping at dodecahedral site is not effective due to its larger volume at its center than tetrahedral
- ❖ With the increase of %Nd doping, % tetragonal phase will increase and result a monoclinic − tetragonal zircon type heterostructured BVO
- ❖ Doping with 10% Mn, stretches O1 − O2 and the reason is strong Mn − O interaction
- ❖ Due to stretched O1 − O2, energy state of Bi3+ becomes lower than Oxygen p orbital & desired distortion happened

Results & Discussions

Without Mn doping

With Mn doping

Suggestions for Future Research

- ❖ Photocatalytic experiment is recommended for Mn doped BVO
- ❖Synthesis & characterization of monoclinic − tetragonal zircon type BVO with increased % Nd doping (> 10%)
- ❖Synthesis & characterization of Mn doped BVO with different % doping of Mn

References

- [1] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238 (5358): 37-8.
- [2] A. Kudo, K. Ueda, H. Kato and I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters, 1998, 53, 229.
- [3] Y. Zhou et al. An inorganic hydrothermal route to photocatalytically active bismuth vanadate. Applied Catalysis A: General 375 (2010) 140-148
- [4] S. Obregon, A. Caballero, G. Colon. Hydrothermal synthesis of BiVO 4: structural and morphological influence on the photocatalytic activity. Applied Catalysis B: Environmental 117-118 (2012) 59-66.
- [5] Kubelka, P. and Munk, F. (1931) Ein Beitrag Zur Optik Der Farbanstriche. Zeitschrift für Technische Physik, 12, 593-60
- [6] A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim and S.-H. Wei, Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals. Chem. Mater., 2009, 21, 547.
- [7] Crystallographic Open Database, http://www.crystallography.net/cod/search.html [Last Accessed 13 Feb, 2017]
- [8] Sara Usai, Sergio Obregón, Ana Isabel Becerro, and Gerardo Colón Monoclinic—Tetragonal Heterostructured BiVO4 by Yttrium Doping with Improved Photocatalytic Activity The Journal of Physical Chemistry C · November 2013 117, 24479–24484

Thank You

Any Questions?