Exercice 1.

Partie 1

1. Voici l'arbre pondéré modélisant la situation :

- 2. On a $P(D \cap A) = P(D) \times P_D(A) = 0.1 \times 0.6 = 0.06$ donc la probabilité que le candidat soit sélectionné sur un dossier et soit admis à l'école est égale à 0.06.
- 3. D et \overline{D} forment une partition de l'univers. D'après la formule des probabilité totales :

$$P(A) = P(D \cap A) + P(\overline{D} \cap A)$$

$$= 0.06 + P(\overline{D}) \times P_{\overline{D}}(A)$$

$$= 0.06 + 0.9 \times 0.2$$

$$= 0.24$$

La probabilité de l'événement A est bien égale à 0,24.

4. On cherche $P_A(\overline{D})$.

$$P_{A}(\overline{D}) = \frac{P(A \cap \overline{D})}{P(A)}$$
$$= \frac{0.18}{0.24}$$
$$= 0.75$$

Sachant qu'un candidat est admis à l'école, la probabilité que son dossier ne soit pas sélectionné est égale à 0,75.

Partie 2

- 1. (a) L'expérience est la répétition de sept épreuves identiques et indépendantes où seuls deux cas sont possibles :
 - Soit le candidat est admis avec la probabilité p = 0.24.
 - Soit il ne l'est pas avec la probabilité q = 1 p = 0.76.

X désignant le nombre de candidats admis à l'école parmi les sept, X désigne la loi binomiale de paramètres n=7 et p=0,24.

- (b) On a $P(X = 1) = \binom{7}{1} \times 0.24 \times 0.76^6 \approx 0.324$ donc la probabilité que, sur les sept candidats, un seul soit admis est environ égale à 0.324.
- (c) On a $P(X \ge 5) = 1 P(X \le 4)$. La calculatrice $P(X \le 4) \approx 0.989$ donc $P(X \ge 5) \approx 0.011$: la probabilité qu'au moins cinq des sept candidats soient admis à cette école est environ égale à 0.011.
- (d) On peut utiliser directement la calculatrice : $P(X \le 3) \approx 0.938$ donc la probabilité qu'au plus trois des sept candidats soient admis à cette école est environ égale à 0,938.
- 2. (a) Dans cette configuration, X suit la loi binomiale de paramètres n et p=0,24. $P(X=0) = \binom{n}{0} \times 0,24^0 \times 0,76^n = 0,76^n.$
 - (b) La probabilité d'avoir au moins un candidat reçu est $1 P(X = 0) = 1 0.76^n$. Il faut donc déterminer le plus petit entier naturel n tel que $1 0.76^n \ge 0.99$. On a $1 0.76^{16} < 0.99$ et $1 0.76^{17} > 0.99$: on retient n = 17. Il faut donc au minimum 17 candidats.

Exercice 2.

- 1. On a donc $u_1 = 1000 \times \left(1 \frac{10}{100}\right) + 250 = 1000 \times 0.9 + 250 = 900 + 250 = 1150$.
- 2. Enlever 10% d'une quantité c'est multiplier par $1 \frac{10}{100} = 1 0.10 = 0.90$. Le nombre d'abonnés de l'année précédente est donc multiplié par 0.9; on ajoute ensuite chaque année 250 nouveaux abonnés, donc pour tout naturel n:

$$u_{n+1} = 0.9u_n + 250.$$

- 3. u(10) donne le nombre d'abonnés au bout de 10 ans; une calculatrice donne environ 1977.
- 4. (a) Soit $P_n: u_n \leq 2250$.

Initialisation : on a $u_0 = 1000 \le 2500$: donc P_0 est vraie.

Hérédité : soit $n \in \mathbb{N}$. Supposons P_n vraie ($u_n \leq 2500$).

Montrons que P_{n+1} vraie ($u_{n+1} \leq 2500$).

Par hypothèse de récurrence : $u_n \le 2500$ et en multipliant chaque membre de

cette inégalité par 0.9 > 0 respectant l'ordre, on a donc $0.9u_n \le 0.9 \times 2500$ ou $0.9u_n \le 2250$, puis en ajoutant 250 à chaque membre :

 $0.9u_n + 250 \le 2250 + 250$, soit $u_{n+1} \le 2500$ ce qui montre que P_{n+1} vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n = 0, elle est donc vraie pour tout entier naturel n.

 $\forall n \in \mathbb{N}, u_n \leq 2500.$

(b) Soit $n \in \mathbb{N}$, on a :

$$u_{n+1} - u_n = 0.9u_n + 250 - u_n$$
$$= -0.1u_n + 250$$

Or d'après la question précédente : $u_n \le 2500$, puis en multipliant par -0.1 < 0 il vient $-250 \le -0.1 u_n$ et en ajoutant à chaque membre $250 : 0 \le -0.1 u_n + 250$. On a donc pour $n \in \mathbb{N}$, $u_{n+1} - u_n \ge 0$ soit $u_{n+1} \ge u_n$: la suite (u_n) est bien croissante.

5. (a) Soit $n \in \mathbb{N}$,

$$v_{n+1} = u_{n+1} - 2500$$

$$= 0.9u_n + 250 - 2500$$

$$= 0.9u_n - 2250$$

$$= 0.9(u_n - 2500)$$

$$= 0.9v_n$$

Pour tout entier naturel n, $v_{n+1} = 0.9v_n$ ce qui prouve que la suite (v_n) est la suite géométrique de raison 0.9 et de terme initial $v_0 = u_0 - 2500 = 1000 - 2500$ soi $v_0 = -1500$.

- (b) $\forall n \in \mathbb{N}, \ v_n = v_0 \times q^n \text{ donc } v_n = -1500 \times 0.9^n.$ Or $v_n = u_n - 2500 \iff u_n = v_n + 2500 = 2500 - 1500 \times 0.9^n.$
- (c) La calculatrice donne $\lim_{n\to+\infty}u_n=2500$. La suite étant croissante, on peut donc dire, qu'à long terme, le nombre d'abonnés n'excèdera pas les 2500.

6. Voici un programme possible:

$$n = 0$$

 $u = 1000$
while $u < 2200$:
 $u = 0.9*u + 250$
 $n = n+1$
return n

Le programme s'arrêtera la 16e année.

Exercice 3.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + 3n^2 - n. \end{cases}$$

1. Pour tout réel x,

$$A(x) = x(x-1)^{2} + 3x^{2} - x$$

$$= x(x^{2} - 2x + 1) + 3x^{2} - x$$

$$= x^{3} + x^{2}$$

$$= x^{2}(x+1)$$

2. Soit P_n : $u_n = n(n-1)^2$.

Initialisation : on a $u_0 = 0$ et $0(0-1)^2 = 0$ donc P_0 est vraie.

Hérédité : soit $n \in \mathbb{N}$. Supposons P_n vraie $(u_n = n(n-1)^2)$.

Montrons que P_{n+1} vraie $(u_{n+1} = n^2(n+1))$.

On a $u_{n+1} = u_n + 3n^-n$ et par hypothèse de récurrence $u_n = n(n-1)^2$ donc :

$$u_{n+1} = n(n-1)^2 + n(n-1)^2$$

= $A(n)$
= $n^2(n+1)$

Ce qui montre que P_{n+1} vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n=0, elle est donc vraie pour tout entier naturel n.