$$F(x, y, z) = \sum (1, 2, 6, 7)$$

A 3 variable function can be implemented with a 4:1 mux with 2 select lines

Mux is more efficient way of implementing combinational circuits as compared to decoders.

1

Mux. expansion

Mux. expansion

DeMultiplexer

S ₁	S ₀	y _o	y ₁	y ₂	y ₃
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

Demultiplexer is very much like a decoder

S ₁	S ₀	y ₀	y ₁	y ₂	y ₃
0	0	I ₀ 0 0 0	0	0	0
0	1	0	I ₁	0	0
1	0	0	0	l ₂	0
1	1	0	0	0	I_3

E	В	Α	Y ₀	Y ₁	Y ₂	Y ₃
0	X	X	0	0 0 1 0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Comparator

$$A = A_3 A_2 A_1 A_0$$

$$x_i = A_i.B_i + \overline{A_i}.\overline{B_i}$$
 for $i = 0,1,2,3$

$$B = B_3 B_2 B_1 B_0$$

where $x_i = 1$ only if the pair of bits in position i are equal (i.e., if both are 1 or both are: 0).

$$(A = B) = x_3 x_2 x_1 x_0$$
 all x_i variable must be equal to 1

$$(A > B) = A_3 \overline{B_3} + x_3 A_2 \overline{B_2} + x_3 x_2 A_1 \overline{B_1} + x_3 x_2 x_1 A_0 \overline{B_0}$$

$$(A < B) = \overline{A_3}B_3 + x_3\overline{A_2}B_2 + x_3x_2\overline{A_1}B_1 + x_3x_2x_1\overline{A_0}B_0$$

Adder

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in};$$

$$C_{out} = \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.\overline{b.c_{in}} + a.b.\overline{c_{in}} + a.b.c_{in}$$

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in}$$

$$S = C_{in} \oplus (a \oplus b)$$

$$C_{out} = \overline{a.b.C_{in}} + a.\overline{b.C_{in}} + a.b.\overline{C_{in}} + a.b.\overline{C_{in}} + a.b.C_{in}$$

$$C_{out} = C_{in}(a.\overline{b} + \overline{a}.b) + a.b = C_{in}.(a \oplus b) + a.b$$

a	b	C{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4-bit Adder

$A_3A_2A_1A_0$	$B_3B_2B_1B_0$	$S_3S_2S_1S_0$	C _{out}
0000	0000	0000	1
0000	0001	0001	0
0001	0000	0001	0
•			
;	i	;	

Subtraction

A - B = A + 2's complement of B

$$A - B = A + \overline{B} + 1$$

A - B = A + 1's complement of B+1

$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

One needs add a circuit for predicting errors resulting from overflow

Adder/Subtractor

$$B_0 \oplus 0 = B_0.\overline{0} + \overline{B_0}.0 = B_0$$

$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

M = 0 for Adder

M=1 for Subtractor