LISTA 2

Thales Freitas Macêdo DRE: 115 162 177

8 de outubro de 2022

1 Exercício 1

Figura 1: Gráficos do potencial elétrico e do campo elétrico para a configuração do exercício 1.

A figura 1 apresenta os gráficos para a configuração de uma caixa metálica quadrada, de lado $1.0\,\mathrm{M}$, mantida a um potencial de $1.0\,\mathrm{V}$, com uma região quadrada interna centralizada de lado $0.36\,\mathrm{m}$. Os gráficos apresentam o comportamento esperado pro potencial elétrico que segue a Equação de Laplace. O gráfico do campo elétrico apresenta um problema nas imediações das condições de contorno, onde a magnitude de E é muito pequena. Assim, nesses pontos, os valores encontrados deveriam ser desprezados.

2 Exercício 2

As dimensões usadas para o exercício foram uma caixa retangular de largura $2.0\,\mathrm{m}$ e altura $1.0\,\mathrm{m}$. A placa com potencial $1.0\,\mathrm{V}$ foi colocada na posição $x=0.50\,\mathrm{m}$ e a placa com potencial $-1.0\,\mathrm{V}$ na posição $x=1.50\,\mathrm{m}$, ambas com comprimento $0.56\,\mathrm{m}$.

2.1 (a)

Figura 2: Gráfico do potencial elétrico para a configuração do exercício 2.

2.2 (b)

Figura 3: Gráficos da magnitude e vetorial de E, com diferentes distâncias entre as placas.

2.3 (c)

Quando as placas estão mais separadas em comparação com os seus comprimentos, as bordas se comportam como fontes ou sumidouros de campo elétrico. Quando as placas estão a uma distância pequena em comparação com os seus comprimentos, o campo contorna as bordas das placas.

3 Exercício 3

Figura 4: Gráfico do potencial elétrico de uma seção xy do cubo do exercício 3.

Para o exercício 3, a carga puntiforme de $-1.0\,\mathrm{C}$ foi colocada na posição $x=0.07\,\mathrm{m},\ y=0.5\,\mathrm{m}$ e $z=0.5\,\mathrm{m}$, de um cubo de lados $1.0\,\mathrm{m}$. Podemos ver que as curvas equipotenciais formam curvas ovaladas, que se concentram mais próximas à face da carga puntiforme.

4 Exercício 4

Os arquivos dos vídeos serão enviados em anexo no e-mail. Para r=1, o vídeo 1 mostra o pulso sendo refletido pelo mesmo lado da corda, ao contrário do caso de pontas fixas.

Para r = 0.1, no vídeo 2, é possível ver que conforme o tempo passa o pulso começa a diferir do vídeo 1, mostrando que os erros associados ao método numérico se acumulam ao longo do tempo.

Para r=2, no vídeo 3, o pulso explode rapidamente, claramente divergindo do resultado esperado. Esse caso é inadequado para a resolução do problema devido à sua alta instabilidade.