HIDDEN MARKOV MODELS

FORMAL DEFINITION OF A FSA

- ➤ A finite automaton has
 - ➤ a finite set of N states

 \triangleright a finite input alphabet of symbols w,o,m,a,n

- ➤ a start state
- > a transition matrix or function

	W	0	m	a	n
q0	q1	-	q3	-	-
q1	-	q2	-	-	-
q2	_	-	q3	-	-
q3	-	-	-	q4	-
q4	-	_	-	-	q5
q5	-	_	-	-	-

FORMAL DEFINITION OF A HMM

- ➤ A Hidden Markov Model has
 - \triangleright a finite set of N states q0,q1,q2...q5
 - ➤ a finite list of observations [i, want, to, race]
 - \triangleright a start state q_0 and end state q_F with no observations.
 - ➤ a transition *probability* matrix (A)
 - $ightharpoonup a_{ij}$ is the probability of transitioning from state i to j

Α	NN	ТО	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
ТО	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

FORMAL DEFINITION OF A HMM

- ➤ A Hidden Markov Model has
 - ➤ a finite set of N states

q0,q1,q2...q5

➤ a finite list of observations

[i, want, to, race]

- \triangleright a start state q_0 and end state q_F with no observations.
- ➤ a transition *probability* matrix (A)
 - $ightharpoonup a_{ij}$ is the probability of transitioning from state i to j
- a matrix of observation likelihoods(B)

В	ı	want	to	race
NN	0	0.00005	0	0.00057
ТО	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

TRELLIS

i <5> want torace NN TO TO TO TO BOS VB VB VB VB PRP PRP PRP PRP

TRELLIS

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

TRELLIS

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

Α	NN	ТО	VB	PRP	В		want	to	race
BOS	0.041	0.0043	0.019	0.067	NN	0	0.00005	0	0.00057
NN	0.087	0.016	0.004	0.0045	TO	0	0	0.99	0
TO	0.00047	0	0.83	0	VB	0	0.0093	0	0.00012
VB	0.047	0.035	0.0038	0.007	PRP	0.37	0	0	0
PRP	0.0012	0.00079	0.23	0.00014					
<5	>	í	i		want	tc)	race	?
$0.02479a_{41}b_{1}(want)$ NN									

Α	NN	TO	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

	В		want	to	race
. [NN	0	0.00005	0	0.00057
- [TO	0	0	0.99	0
- [VB	0	0.0093	0	0.00012
-	PRP	0.37	0	0	0

<s> i want to race

Α	NN	TO	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

В		want	to	race
 NN	0	0.00005	0	0.00057
 TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

Α	NN	TO	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

function Viterbi(observations, state-graph) -> best path

You'll want to store a 2D list for the best probability at each node of the trellis:

viterbi [# of states + 2] [length of observations list]

(Example: 4 states, 4 observations should make a 2D list of 6x4)

You'll also want a 2D list to represent which node of the previous column the best probability came from. This is called a "back pointer".

backpointer [#of states + 2][length of observations list]

viterbi	ı	want	to	race	backpointer	ı	want	to	race
BOS					BOS				
NN					NN				
ТО					ТО				
VB					VB				
PRP					PRP				
EOS					EOS				

Α	NN	TO	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

```
//initialize our first column of the trellis

for state_index from 1 to # of states:

viterbi[ state_index ][ 1 ] = transition_probabilities[ 0 ][ state_index ]

* emission_probabilities[ state_index ][ observation[ 1 ] ]

backpointer[ state_index ][ 1 ] = 0
```

viterbi	ı	want	to	race	backpointer	want	to	race
BOS					BOS			
NN					NN			
ТО					ТО			
VB					VB			
PRP					PRP			
EOS					EOS			

Α	NN	TO	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

```
//initialize our first column of the trellis

for state_index from 1 to # of states:

viterbi[ state_index ][ 1 ] = transition_probabilities[ 0 ][ state_index ]

* emission_probabilities[ state_index ][ observation[ 1 ] ]

backpointer[ state_index ][ 1 ] = 0
```

viterbi	1	want	to	race	backpointer	1	want	to	race
BOS					BOS				
NN	.041*0				NN	0			
ТО	0.0043*0				ТО	0			
VB	0.019*0				VB	0			
PRP	0.067*.37				PRP	0			
EOS					EOS	0			

Α	NN	TO	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

//initialize our first column of the trellis

for **state_index** from 1 to # of states:

viterbi[state_index][1] = transition_probabilities[0][state_index]

* emission_probabilities[state_index][observation[1]]

backpointer[state_index][1] = 0

viterbi	- 1	want	to	race	backpointer	-1	want	to	race
BOS					BOS				
NN	0				NN	0			
TO	0				ТО	0			
VB	0				VB	0			
PRP	0.02479				PRP	0			
EOS					EOS	0			

Α	NN	TO	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

```
//loop through the rest of the trellis
 for observation from 2 to # of observations:
    for curr_state from 1 to # of states:
      viterbi[ curr_state ][ observation ]
            = max of viterbi[prev_state][prev_observation]
                 * transition_probabilities[prev_state][curr_state]
                 * emission_probabilities[curr_state][ observation ]
                 over all prev_states
viterbi
                                                                               to
                  want
                             to
                                                backpointer
                                                                    want
                                                                                      race
                                     race
BOS
                                                  BOS
 NN
                                                  NN
                                                             0
            ()
 TO
                                                  TO
            ()
 VB
                                                  VB
                                                             0
            0
 PRP
                                                  PRP
                                                             0
         0.02479
EOS
                                                 EOS
                                                             ()
```

Α	NN	TO	VB	PRP	
BOS	0.041	0.0043	0.019	0.067	
NN	0.087	0.016	0.004	0.0045	
TO	0.00047	0	0.83	0	
VB	0.047	0.035	0.0038	0.007	
PRP	0.0012	0.00079	0.23	0.00014	

В	- 1	want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

```
//loop through the rest of the trellis
 for observation from 2 to # of observations:
    for curr_state from 1 to # of states:
       viterbi[ curr_state ][ observation ]
            = max of viterbi[prev_state][prev_observation]
                  * transition_probabilities[prev_state][curr_state]
                  * emission_probabilities[curr_state][ observation ]
                  over all prev_states
viterbi
                                                                                  to
                   want
                                                  backpointer
                                                                       want
                               to
                                                                                          race
                                       race
 BOS
                                                    BOS
                          max of
 NN
                          NN \rightarrow 0*0.087*0.00005 = 0
 TO
            ()
                          TO -> 0*0.016*0.00005 = 0
                          VB \rightarrow 0*0.004*0.00005 = 0
  VB
            0
                          PRP -> 0.025*0.0045*0.0005 = 5.5E-8
 PRP
          0.02479
 EOS
                                                    EOS
```

Α	NN	TO	VB	PRP	
BOS	0.041	0.0043	0.019	0.067	
NN	0.087	0.016	0.004	0.0045	
TO	0.00047	0	0.83	0	
VB	0.047	0.035	0.0038	0.007	
PRP	0.0012	0.00079	0.23	0.00014	

В	- 1	want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

```
//loop through the rest of the trellis
 for observation from 2 to # of observations:
    for curr_state from 1 to # of states:
       viterbi[ curr_state ][ observation ]
            = max of viterbi[prev_state][prev_observation]
                  * transition_probabilities[prev_state][curr_state]
                  * emission_probabilities[curr_state][ observation ]
                  over all prev_states
viterbi
                                                                                  to
                   want
                                                  backpointer
                                                                       want
                               to
                                                                                          race
                                       race
 BOS
                                                    BOS
                   5.5E-08 max of
 NN
                           NN \rightarrow 0*0.087*0.00005 = 0
 TO
            ()
                           TO -> 0*0.016*0.00005 = 0
                           VB \rightarrow 0*0.004*0.00005 = 0
  VB
            0
                           PRP -> 0.025*0.0045*0.0005 = 5.5E-8
 PRP
          0.02479
 EOS
                                                    EOS
```

Α	NN	NN TO		PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

VB

PRP

EOS

0

0.02479

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

```
//loop through the rest of the trellis
 for observation from 2 to # of observations:
    for curr_state from 1 to # of states:
       backpointer[ curr_state ][ observation ]
            = argmax of viterbi[prev_state][prev_observation]
                  * transition_probabilities[prev_state][curr_state]
viterbi
                                                                                  to
                   want
                               to
                                                  backpointer
                                                                      want
                                       race
                                                                                          race
BOS
                                                    BOS
                                 argmax of
 NN
                   5.5E-08
                                 NN -> 0*0.087*0.00005 = 0
 TO
            ()
                                 TO -> 0*0.016*0.00005 = 0
                                 VB \rightarrow 0*0.004*0.00005 = 0
```

PRP -> 0.025*0.0045*0.0005 = 5.5E-8

EOS

0

Α	NN	NN TO		PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

```
//loop through the rest of the trellis
 for observation from 2 to # of observations:
    for curr_state from 1 to # of states:
       backpointer[ curr_state ][ observation ]
            = argmax of viterbi[prev_state][prev_observation]
                  * transition_probabilities[prev_state][curr_state]
viterbi
                                                                                to
                   want
                              to
                                                 backpointer
                                                                     want
                                      race
                                                                                        race
BOS
                                                   BOS
                                argmax of
 NN
                                                                      PRP
                   5.5E-08
                                NN -> 0*0.087*0.00005 = 0
 TO
            ()
                                TO -> 0*0.016*0.00005 = 0
                                VB \rightarrow 0*0.004*0.00005 = 0
 VB
            0
                                PRP -> 0.025*0.0045*0.0005 = 5.5E-8
 PRP
         0.02479
EOS
                                                   EOS
                                                              0
```

Α	NN	TO	VB	PRP
BOS	0.041	0.0043	0.019	0.067
NN	0.087	0.016	0.004	0.0045
TO	0.00047	0	0.83	0
VB	0.047	0.035	0.0038	0.007
PRP	0.0012	0.00079	0.23	0.00014

В		want	to	race
NN	0	0.00005	0	0.00057
TO	0	0	0.99	0
VB	0	0.0093	0	0.00012
PRP	0.37	0	0	0

viterbi	- 1	want	to	race		backpoint er	-1	want	to	race	
NN	0	1.4E-09	0	very smaller	0	NN	-	PRP	-	TO	_
ТО	0	0		0	0	ТО	-	-	VB	-	-
VB	0	5.3E-05	0	very small	0	VB	_	PRP	-	ТО	-
PRP	0.02479	9 0	0	0	0	PRP	BOS	-	-	-	-
EOS	0	0	0	0	best prob	EOS	_	_	-	-	VB