	Name	Type
Group Number	Surname	Λ
List Number	E-mail	$oldsymbol{\Delta}$
Student ID	Signature	1 1 1 1

ATTENTION: Each question has only one correct answer and is worth one point. Be sure to fill in completely the circle that corresponds to your answer on the answer sheet. Use a pencil (not a pen). Only the answers on your answer sheet will be taken into account.

- 1. For what value of d is the vector $\vec{A} = 2\hat{i} + 2\hat{j} + d\hat{k}$ perpendicular to the vector $\vec{B} = 4\hat{i} + 4\hat{j} 2\hat{k}$?
 - (a) 4 (b) 8 (c) -4 (d) -1 (e) 0
- 2. A particle is projected from y_0 =h at t=0 with $\vec{V_0}$ velocity making an angle θ with the horizontal as shown in the figure. Take the magnitude of the gravitational acceleration as g. What is its maximum height of the object with respect to origin?

(c)
$$\frac{V_0^2 sin(2)}{2a}$$

(b)
$$h$$
 (c) $\frac{V_0^2 \sin(2\theta)}{2g}$ (d) $h + \frac{V_0^2 \sin^2\theta}{2g}$ (e) $\frac{V_0^2 \sin^2\theta}{2g}$

(e)
$$\frac{V_0^2 \sin^2 \theta}{2a}$$

Questions 3-6

An object on a horizontal plane has an initial velocity $\vec{V_0} = 4.0\hat{i} + 1.0\hat{j}$ (m/s) at a point where its position vector is $\vec{r_0} = 10\hat{i} - 4.0\hat{j}$ (m) relative to an origin. The object moves with constant acceleration and after t=20 s, its velocity becomes $\vec{V} = 20\hat{i} - 5.0\hat{j}$ (m/s).

3. What is the magnitude of its acceleration in m/s^2 ?

(a)
$$-0.3$$
 (b) 1.0 (c) $\sqrt{1.16}$ (d) 0.8 (e) $\sqrt{73}/10$

4. What is its position vector at t = 2 s?

(a)
$$18\hat{i} - 2\hat{j}$$
 (b) $-18\hat{i} + 2\hat{j}$ (c) $19.6\hat{i} - 2.6\hat{j}$ (d) $9.6\hat{i} + 1.4\hat{j}$ (e) $19.6\hat{i}$

5. What is the velocity of the object at t = 2 s?

(a)
$$0.6\hat{i} + 1.6\hat{j}$$
 (b) $1.6\hat{i} - 0.6\hat{j}$ (c) $1.6\hat{i} + 0.6\hat{j}$ (d) $5.6\hat{i} + 2.6\hat{j}$ (e) $5.6\hat{i} + 0.4\hat{j}$

6. At what time, x coordinate of the object becomes zero?

(a) 2 s (b) 5 s (c)
$$\sqrt{5/2.2}$$
 s (d) never (e) ∞

Questions 7-10

In Fig, a 1.5 kg ball is connected by means of two massless strings, each of length L= 2.0 m, to a vertical, rotating rod. The strings are tied to the rod with separation d = 2.0 m and are taut. The tension in the upper string is 35 N.

Take $g = 10 \text{ m/s}^2$, sin 30 = 0.5, cos 30 = 0.9, tan 30 = 0.6.

- **7.** What is the tension in the lower string?
 - (b) 16.4 N (a) 5.0 N
 - (c) 13.6 N
- (d) 18.3 N (e) 5.8 N
- **8.** What is the magnitude of the net force on the ball?
 - (a) 36.0 N (b) 18.6 N (c) 26.6 N (d) 48.0 N (e) 54.6 N
- **9.** What is the speed of the ball?

(a)
$$\sqrt{14.2}$$
 m/s (b) $\sqrt{32.4}$ m/s (c) $\sqrt{24.3}$ m/s (d) $\sqrt{26.7}$ m/s (e) $\sqrt{40.0}$ m/s

- 10. What is the direction of the net force on the ball?
 - (a) downward (b) radially towards the rod (c) upward (d) none of these (e) radially away from the rod

Questions 11-14

Two blocks of masses $m_1 = 4$ kg and $m_2 = 6$ kg are standing one on the top of the other, as shown in the figure. The coefficients of static and kinetic friction between the blocks are $\mu_s = 0.3$ and $\mu_k = 0.2$ respectively. The surface between m_2 and the floor is frictionless. A horizontal force F is applied on the m_1 as shown in the figure. $(g = 10 \text{ m/s}^2)$

- 11. What is the maximum value for F so that m_1 and m_2 move together, without m_1 sliding on the surface of m_2 ?
 - (a) 50 N (b) 40 N (c) 15 N (d) 20 N (e) 25 N
- 12. If F = 16 N, what are the accelerations a_1 and a_2 for m_1 and m_2 , respectively?
 - (a) $a_1 = a_2 = 1.6 \text{ m/s}^2$ (b) $a_1 = a_2 = 1 \text{ m/s}^2$ (c) $a_1 = a_2 = 2 \text{ m/s}^2$ (d) $a_1 = a_2 = 0.16 \text{ m/s}^2$ (e) $a_1 = a_2 = 3.2 \text{ m/s}^2$
- 13. If F = 16 N, what is the magnitude of the static frictional force?
 - (a) 10 N (b) 16 N (c) 20 N (d) 30 N (e) 48/5 N
- **14.** If F = 24 N, what are the accelerations a_1 and a_2 ?
 - (a) $a_1 = 10 \text{ m/s}^2$; $a_2 = 4/3 \text{ m/s}^2$
 - (b) $a_1 = 4 \text{ m/s}^2$; $a_2 = 10/3 \text{ m/s}^2$

 - (c) $a_1 = 4 \text{ m/s}^2$; $a_2 = 4/3 \text{ m/s}^2$ (d) $a_1 = 2 \text{ m/s}^2$; $a_2 = 2/3 \text{ m/s}^2$ (e) $a_1 = 5 \text{ m/s}^2$; $a_2 = 5/3 \text{ m/s}^2$

Questions 15-17

A 280 kg crate hangs from the end of a rope of length L=15.0 m. You push the crate horizontally with a varying force F to move it a distance of d = 5.0 m to the side. The crate is at rest before and after its displacement.

Take $q = 10 \text{ m/s}^2$, $\sqrt{2} = 1.4$.

- 15. What is the magnitude of F when the crate is in this final position?

- (a) 1000 N (b) 1200 N (c) 7840 N (d) 800 N (e) 2640 N
- 16. During the crate's displacement, what is the work done by the gravitational force on the crate?
- (b) 2800 J
- (c) -1400 J
- (d) 0 J (e) -2800 J

- (a) 1400 J (b) -1400 J (c) -2800 J (d) 0 J (e) 2800 J

Questions 18-20

A net force $\vec{F} = (Ax - 6x^2)\hat{i}$ acts on a particle as the particle moves along the x-axis, with \vec{F} in newtons, x in meters, and A a constant.

- **18.** What is the SI unit of the constant A?

- (a) N/m^2 (b) $N \cdot m$ (c) N/m (d) N (e) $N \cdot m^2$
- **19.** What is the work done in moving the particle from the origin, x = 0 to x = 2 m?
 - (a) 3A 27 (b) 2A 16 (c) 4A + 27

- (d) 10A + 27
- **20.** At x=0, the particle's kinetic energy is 12 J; at x=2 m, it is 32 J. What is the value of the constant A?
- (a) -16 (b) 18 (c) -12 (d) 2