1 Reduced models of short term synaptic plasticity

Let c, p, and x represent the intracellular concentration of Ca^{2+} at the presynaptic terminal, the proportion of released vesicles per unit time, and the normalized readily releasable vesicles. Assume that the dynamics are given by

$$\partial_t c = \frac{c_b - c}{\tau_b} - k_r \alpha_r (1 - r)c + f(t) \tag{1}$$

$$\partial_t r = \alpha_r c (1 - r) - \beta_r r \tag{2}$$

$$\partial_t q = \frac{q_\infty - q}{\tau_q} - \delta q r \tag{3}$$

where c_b and τ_b represent the steady state and time constant for presynaptic calcium due to buffering in the absence of any other perturbation. The term f(c) represents the flux of Ca²⁺into the terminal via voltage-dependent channels. The term $k_c\alpha_r$ c (1-r) represents the decrease in the calcium concentration due to binding to the release machinery.

Table 1: Parameters and values

c_b	μM	steady state constant for presynaptic Ca^{2+} due to buffering
α_r	${\sf ms}^{-1}~\mu{\sf M}^{-1}$	Activation rate of the release machinery in the presence of Ca^{2+}
eta_r	${\sf ms}^{-1}$	Deactivation rate of the release machinery
k_r	μM	Impact of the Ca^{2+} activating the release machinery on the intracellular Ca^{2+}
		concentration in the terminal
q_{∞}		Steady state for que normalized quanta in the readily releasable pool
$ au_b$	ms	time constant for presynaptic Ca^{2+} due to buffering
$ au_q$	ms	Time constant for the recovery of the readily releasable pool
δ	${\sf ms}^{-1}$	Conversion rate

1.1 Ca²⁺ dynamics

It is worth noticing that the dynamics for c are linear when f(t)=0. To see this, equation (1) can be transformed to

$$\partial_t c = f(t) + \frac{c_{\infty} - c}{\tau_c}$$

where

$$\tau_c = \frac{\tau_b}{1 + k_r \alpha_r (1 - r) \tau_b}, \tag{4}$$

$$c_{\infty} = \frac{c_b}{1 + k_r \alpha_r (1 - r) \tau_b}.$$
 (5)

That is, if f(t) = 0, then the dynamics for c from an initial condition $c_o = c(t_o)$ behave like

$$c(t) = c_{\infty} - (c_{\infty} - c_0) \exp\left(\frac{t_o - t}{\tau_c}\right).$$

which means that in the absence of any ${\rm Ca}^{2+}$ influx, the concentration of ${\rm Ca}^{2+}$ in the presynaptic terminal goes to a steady state c_{∞} that becomes the steady state for buffering only for fast buffering (small τ_b), or if the rate of binding to the activation machinery is slow enough (small α_r).

Calcium influx. To better understand the Ca^{2+} dynamics, this time in the presence of calcium influx, assume f(t) is a Dirac comb given by

$$f(t) = h \sum_{k=1}^{n} \delta(t - t_k)$$
 (6)

where $t_0,...,t_n$ represent stimulus times (e.g. presynaptic action potential-driven fluxes). Also, suppose that there has been a long enough interval of time so that before the first pulse, presynaptic terminal Ca^{2+} concentration is at steady state; that is, that $c(t)=c_\infty$ for $t\leq t_0$. Also, suppose that, at the kth pulse time, the value of c(t) changes to $c_k=c(t_k)+h$, for $k\in\{0,...,n\}$. Then, at $t=t_0$, let $c_0=c_\infty+h$ be the new value of c after the jump. The dynamics for c before the next pulse are given by,

$$c(t) = c_{\infty} + h \exp\left(\frac{t_0 - t}{\tau_c}\right)$$

for $t \in (t_0, t_1)$. At $t = t_1$ the calcium concentration changes again, to $c_1 = c(t_1) + h$, which becomes a new initial condition. Then, for $t \in (t_1, t_2)$,

$$c(t) = c_{\infty} - (c_{\infty} - c_1) \exp\left(\frac{t_1 - t}{\tau_c}\right),$$

$$= c_{\infty} + h\left(\exp\left(\frac{t_1 - t}{\tau_c}\right) + \exp\left(\frac{t_0 - t}{\tau_c}\right)\right).$$

In general, for $t \in (t_{n-1}, t_n)$,

$$c(t) = c_{\infty} + h \sum_{k=0}^{n-1} \exp\left(\frac{t_k - t}{\tau_c}\right)$$

At t_n the value of c jumps to

$$c(t_n) = c_{\infty} + h \sum_{k=0}^{n} \exp\left(\frac{t_k - t_n}{\tau_c}\right)$$

If pulses are periodic, with $d=t_{k+1}-t_k$, for all $k\in\{1,...,n\}$ then $t_n-t_k=(n-k)d$. In this case, the calcium concentration becomes

$$c(t_n) = c_{\infty} + h \sum_{k=0}^{n} u^{(n-k)} = c_{\infty} + h \sum_{l=0}^{n} u^{l},$$

= $c_{\infty} + h \left(\frac{1 - u^{n+1}}{1 - u} \right),$

where

$$u = \exp\left(-\frac{d}{\tau_c}\right). \tag{7}$$

Explicitly,

$$c(t_n) = c_{\infty} + h \left[\frac{1 - \exp\left(-(n+1)\frac{d}{\tau_c}\right)}{1 - \exp\left(-\frac{d}{\tau_c}\right)} \right].$$
 (8)

The asymptotic behavior as $n \to \infty$ is then

$$c_* = c_{\infty} + h\left(\frac{1}{1 - \exp\left(-\frac{d}{\tau_c}\right)}\right). \tag{9}$$

which written explicitly in terms of the parameters for Ca²⁺ buffering and activation of the release machinery, becomes

$$c_* = c_{\infty} + h \left(\frac{1}{1 - \exp\left(-d\frac{1 + k_r \alpha_r (1 - r)\tau_b}{\tau_b}\right)} \right). \tag{10}$$

1.2 p dynamics and the subsystem c-p

The dynamics of the subsystem c, p are given by

$$\partial_t c = \frac{c_\infty - c}{\tau_c} + f(t) \tag{11}$$

$$\partial_t p = \alpha c (1 - p) - \beta p \tag{12}$$

The time constant and steady state for the p are

$$\tau_p(c) = \frac{1}{\alpha c + \beta} \tag{13}$$

$$p_{\infty}(c) = \frac{\alpha c + \beta}{\alpha c + \beta} = \frac{c}{c + \frac{\beta}{\alpha}}$$
 (14)

c increases as action potentials arrive, then $\tau_p(c)$ decreases and $p_\infty(c)$ increases. So p increases with c, but the dynamics for p become faster as that happens.

if $\tau_c >> \tau_p$, then the dynamics for p are fast enough to substitute p with $p_{\infty}(c)$. Explicitly, it would be required that

$$\tau_c > \frac{1}{\alpha \ c + \beta}.$$

2 Binary classification trains of pulses.

 $a_0,...,a_n$ pulse amplitudes. The change in amplitude during the kth interval is $s_k=\frac{a_k-a_{k-1}}{\delta_k}$, for $k\in\{1,...,n\}$. Similarly, the change in amplitude relative to the first pulse in a train is given by $r_k=\frac{a_k-a_0}{\sum_{i=1}^k\delta_i}$, for $k\in\{1,...,n\}$

The heavy side function defined by H(x)=1 if x>0, 0 if $x\leq 0$ can be used to determine whether there was an increase in the amplitudes between any two pulses. In particular,

One way to describe the history of changes during a train of postsynaptic responses is to record whether there was an increase or decrease in the amplitudes for each pair of responses using a binary code, and add all the results. To do so, let

$$b_{pp}(s_1, ..., s_n) = \sum_{k=1}^{n} \frac{H(s_k)}{2^k}$$
(15)

for the slopes of pulses taken by pairs. Similarly, for the slopes relative to the first pulse, let

$$b_{fp}(r_1, ..., r_n) = \sum_{k=1}^{n} \frac{H(r_k)}{2^k}$$
(16)

3 Short term synaptic plasticity from a whole cell approach

The model can be thought of in terms of 3 main components. First, a system capable of producing spiking dynamics, which can be 2- or 3-dimensional in case bursting or spike frequency adaptation are required. Second, a 2- or 3-dimensional system that describes the dynamics of presynaptic release, and third, at least one more equation that describes the dynamics of postsynaptic activation upon release.

$$\partial_t c = \frac{c_\infty - c}{\tau_c} + f(t) \tag{17}$$

$$\partial_t p = \alpha c (1-p) - \beta p \tag{18}$$

$$\partial_t x = x \left(\frac{x_\infty - x}{\tau_x} \right) - x p \tag{19}$$

where f(c) represents the flux of Ca^{2+} into the terminal.