Responda todas las preguntas en los espacios previstos. 1. a) Un compuesto orgánico A contiene en 62.0 % carbono, 24.1 % nitrógeno, el resto es hidrógeno. (i) determinar el porcentaje en masa de hidrógeno y la fórmula empírica del compuesto A
(ii) Define el término masa molecular relativa
(iii) La masa molecular de a es 116. Determinar la fórmula molecular de A.
b) La molécula A contiene un grupo NH ₂ en cada extremo de una cadena de hidrocarburos. (i) Dibuja una fórmula estructural para representar una molécula de A . Incluyen los pares de electrones er su estructura.
(ii) Utiliza la teoría TRPEV para predecir el ángulo de enlace C-C-N en A e identifica la forma de la distribución de los pares de electrones (forma geométrica) alrededor de los átomos de carbono.
(c) Determinar el tipo más fuerte de enlace intermolecular y explica cómo surge.
2. El metilamina puede obtenerse por la reacción siguiente:

 $CH_{3}OH\left(g\right) + NH_{2}\left(g\right) {\rightarrow} CH_{3} \; NH\left(g\right) + H_{2}O(g)$

a) Defina el término energía media de enlace	
 b) Utiliza la información de tabla 10 (cuaderno de datos) para calcular el cambio de entalpía para est reacción. 	ta
······································	
(c) En el proceso de fabricación se mezclan 2000 kg de cada reactivo. (i) Identificar el reactivo limitante, mostrando los cálculos	
(ii) Calcular la masa máxima, en kg, del metilamina que puede obtenerse al mezclar los reactivos.	
······································	
 Los elementos sodio, aluminio, silicio, fósforo y azufre están en mismo período de la tabla. (a) Describir enlace metálico del aluminio y explicar por qué el aluminio tiene una punto de fusión más alt de sodio. 	to
······································	
(b) Cómo están distribuidos los electrones en las siguientes especies: Si	
P ³⁻	
(c) Identifica los protones, neutrones y electrones en la especie ³³ S ²⁻ .	
(d) Explica, tomando como referencia las fuerzas intermoleculares, por qué el azufre tiene un punto d fusión superior al fosforo.	le

PRUEBA 2 SECCIÓN B NOVIEMBRE 2006

 4. (a) A partir de la información sobre los halógenos que aparece en el folleto de datos (cuaderno). (i) Explica por qué el radio iónico de cloro es menor que la de azufre. (ii) Explicar que se entiende por la electronegatividad y por qué la electronegatividad del cloro es mayor que la de bromo.
 (b) Para cada una de las siguientes reacciones en solución acuosa, indica alguna observación que se produce en la reacción y deduce su ecuación. (i) la reacción entre el cloro y el yoduro de sodio (ii) la reacción entre los iones de plata y los iones de cloruro.
(c) Deducir si son o no cada una de las reacciones en (b) reacción redox e indica el por qué.
 (d) Dibujar un diagrama del aparato que podría utilizarse para la electrolisis del bromuro de potasio fundido. Etiquetar el diagrama para mostrar la polaridad de cada electrodo y de los productos formados. (ii) Describir las dos formas diferentes en que se lleva a cabo electricidad en el aparato. (iii) Escribir una ecuación para mostrar la formación del producto en cada electrodo.
 5. (a) el butano, C₄H₁₀ y el but-2-eno C₄H₈, son ambos gases incoloros a 70 ° C. (i) Escribir una ecuación para la combustión completa de but-2-eno
(ii) Describir una prueba química y su resultado, para distinguir but-2-eno de butano del butano

(iii)) (Ca	alc	cu	la	r	el	١	0	lu	ım	e	n	q	u	е	0	.()2	20	0	r	n	ol	C	de)	b	ut	ta	n	0	(OC	:u	ıp	a	rí	a	а	() '	0	С	У	, -	1.	1()	×	1	0	5 I	2	3 .													
٠.							٠.	٠.	٠.						٠.	٠.	٠.	٠.					٠.	٠.	٠.				٠.				٠.	٠.				٠.	٠.	٠.	٠.	٠.	٠.						٠.		٠.	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.	 		٠.	٠.	٠.		••
٠.					•								•			•		•																					•							•	•								•				٠.	٠.	٠.			٠.	٠.		• •	• •
																		•																																									٠.	٠.		 		٠.	٠.	٠.	٠.	• •
٠.							٠.	٠.	٠.						٠.	٠.	٠.				٠.		٠.	٠.	٠.				٠.				٠.	٠.	٠.					٠.	٠.	٠.	٠.	٠.					٠.		٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		٠.	٠.	٠.		
												•						•											•									-	•																				٠.	٠.		 	٠.	٠.	٠.	٠.	• •	

6. La información sobre algunas reacciones utilizadas en la industria se muestra en la siguiente tabla:

Reaction	Equation	ΔH [⊕] /kJ
A	$\mathrm{H_2(g)} + \mathrm{Cl_2(g)} \rightarrow \mathrm{2HCl(g)}$	-184
В	$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$	+210
C	$CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g)$	-42
D	$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$	+180
E	$nC_2H_4(g) \rightarrow (-CH_2-CH_2-)_n(s)$	-92

1	้ล`) Indica.	de	forma	razonada.	entre	las	reacciones	anterior	es
١	u	, irraica,	uС	IOIIIIa	razoriada,	CHILIC	uu	reaccionics	antonor	-0

- (i) Las dos en que un aumento en la temperatura hace que el equilibrio se desplaza a la derecha.
- (ii) Las dos en que un aumento en la presión desplaza el equilibrio hacia la izquierda.
- (iii) En una de ella se produce un mayor descenso en el valor de ΔS^0

1	:\	⊏		مالم مالم	. ^		- 1		ambiente.
ı	IV I	-n	una	ne ena	1 //(¬~ 🗠	s neganyo	aiem	neranira	ambienie

	• •																																

•	,	uc la													ia	l	ıti	liz	a	n	ur	1 (са	ta	lliz	za	d	or	. Е	Ξx	pl	ic	а	el	e	fe	ct	0	d	е	ur	ı c	at	tal	iz	ac	ıob	٢
		 •	 	 		 				 		 																																				
			 		 	 	 	 ٠.	 	 ٠.	٠.	 	 ٠.	٠.	 		٠.	٠.													٠.																	

(c) Se titula una solución acuosa de ácido nítrico tomando 25,0 cm de dicha solución. El valor del pH del líquido en el matraz se midió a medida que se añadía hidróxido de sodio 0.100 M. Los resultados se muestran en el gráfico siguiente.

solucion	es ácidas X Y v 7	se mi	stran en la tabla siguiente:
Solucion	ics acidas, A, T y Z	, SC IIIC	man en la tabla siguiente.
olution	Acid	pН	
X	HCl(aq)	2	
Y	HCl(aq)	4	
Z	CH ₃ COOH(aq)	4	
	olution X Y	olution Acid X HC1(aq) Y HC1(aq)	X HCl(aq) 2 Y HCl(aq) 4