

CNN 3

23.02.21 / 8기 유채원

YONSEI DATA SCIENCE LAB | DSL

O. INTRO

CNN1	Computer Vision이란? CNN은 왜 등장했을까? CNN 기본 개념 Convolutional Layer / Padding, Stride / Batch Normalization, …
CNN2	지금까지는 어떤 CNN 모델들이 있었지? CNN 모델의 발전과정 CNN Architecture / Comparing Model Complexity
CNN3	그래서 성능 좋은 (CNN) 모델을 만들려면 어떻게 해야 되는데? CNN을 이용하는 이유 / 전이학습(Transfer Learning)

CONTENTS

01. Overfitting in NN

- 데이터 자체와 관련
- 학습과 관련

04. Transfer Learning

- Transfer Learning
- Size Similarity Matrix

02. Speed of Convergence

- Weight Initialization
- Learning Rate
- Batch Normalization

03. Why CNN?

- CNN과 MLP의 차이
- 1D CNN
- Deconvolution

CONTENTS

성능 좋은 모델을 만들기 위해서는?

01. Overfitting in NN

- 데이터 자체와 관련
- 학습과 관련

04. Transfer Learning

- Transfer Learning
- Size Similarity Matrix

02. Speed of Convergence

- Weight Initialization
- Learning Rate
- Batch Normalization

03. Why CNN?

- CNN과 MLP의 차이
- 1D CNN
- Deconvolution

YONSEI DATA SCIENCE LAB | DSL

0. CNN 복습

A CNN sequence to classify handwritten digits

A. Feature Extractor

Feature Extractor는 아래 과정의 반복

YONSEI DATA SCIENCE LAB | DSL

0. CNN 복습

A-1. Convolutional Layer

Input: 32 * 32 * 3

3 * 3 Filter 64개 적용

Output: 32 * 32 * 64 (Stride=1, Padding

$$\frac{\lambda}{dim_{out}} = \frac{N - F + 2P}{S} + 1$$

A-2. Batch Normalization

미니배치의 평균과 분산을 이용하여 정규화한 후

 $scale(\gamma)$ 및 $shift(\beta)$ 를 한 후 activation function에 적용

BN is done neuron-by-neuron

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

YONSEI DATA SCIENCE LAB | DSL

0. CNN 복습

A-3. Activation Functions

- Per-element on activation map (CNN)
- 원래 NN 필수 요소
- For non-linearity

Activation Functions

ReLU

YONSEI DATA SCIENCE LAB | DSL

0. CNN 복습

A-4. Dropout

학습할 때마다 매번 랜덤하게 뽑은 node를 제외하고 학습 Train 이후 test(inference)할 때에는 모든 node 사용

YONSEI DATA SCIENCE LAB | DSL

A-4. Dropout

Ex) dropout 적용 예시

 $softmax(W_3 \cdot \tanh(W_2 \cdot \max(D, \tanh(W_1 \cdot input_vector))))$

CNN에서는?

Where $D=(d)_{ij}$ and $d_{ij}\sim B(1,p=0.5)$

* Mask(D,M) : 행렬 D와 M의 element-wise 곱

Figure 3: Standard Dropout after a 1D convolution layer

Standard Dropout: activation을 드롭아웃

Figure 5: SpatialDropout after a 1D convolution layer

Spatial Dropout : 채널 자체를 드롭아웃

A-5. Pooling

- 따로 학습할 필요 X
- 채널 별로 독립적으로 진행(input의 채널 수는 변화시키지 않는다.)
- 입력 데이터의 변화에 영향을 적게 받음
- 보통 filter size와 stride 크기를 동일하게 함(겹치지 않게)
- -> 차원을 감소시켜 계산 효율을 높인다!

Global Average Pooling

Max Pooling

1	0	0	4		
5	2	4	8	5	8
2	1	2	6	2	6
0	1	2	2		

Average Pooling

	0		4					
5	2	4	8				2	
2	1	2	6		1			
0	1	2	2					

Classifier

Classifier는 Feature Extractor 과정의 반복이 끝나면

1. Overfitting in NN

데이터 자체와 관련

A. Cross Validation

K-fold Validation , Stratified Cross Validation

B. Data Augmentation

Data 수 자체를 늘린다!

YONSEI DATA SCIENCE LAB | DSL

1. Overfitting in NN

학습과 관련

C. Early-stopping

과적합되기 전에 멈춘다!

Loss가 일정 횟수(patience변수) 안에 개선이 되지 않으면 조기 종료를 해준다.

D. Ensemble

Bagging, Boosting

Ref) [0202] Decision Tree & Ensemble 세션 자료

1. Overfitting in NN

학습과 관련

E. Regularization

Ridge(L2) & Lasso(L1)

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

L2 Regularization

$$\mathbf{Cost} = \underbrace{\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2}_{\mathbf{Loss \ function}}$$
Regularization
Term

F. Dropout

아까 했으니 PASS…

A~F 외에도 하이퍼파라미터(Ir, 노드 수, layer 수…)를 조절해주는 방법이 있다!

Strategies to handle Speed of Convergence

(얼마나 빠르게 global optimization에 수렴하는가?)

- A. Momentum term
- **B.** Activation Function
- C. Weight Initialization
- D. Learning Rate
- E. Batch Normalization (BN)

Strategies to handle Speed of Convergence

(얼마나 빠르게 global optimization에 수렴하는가?)

- A. Momentum term
- **B.** Activation Function
- C. Weight Initialization
- D. Learning Rate
- E. Batch Normalization (BN)

Activation Function & Activation Values

▶ 활성화 함수를 거쳐서 나온 값들

Sigmoid & Tanh Function

ReLU & LeakyReLU Function

Gradient Vanishing의 문제…

Activation Value 분포

Activation Value의 분포가 극단으로 치우쳐있거나 한쪽으로 몰려있다면?

또 Gradient Vanishing의 문제…

Y값들이 한 값으로 수렴하는 문제

Activation Value 분포

다음과 같은 분포가 나오기를 원한다.

Activation Value에 영향을 주는 요소:

Input(X), weight, activation function

Input initialization은 CNN1에서 배웠으니

이번에는 weight initialization을 진행해보자!

Weight Initialization (weight을 어떻게 설정해야 좋은 Activation Value 분포가 나올까?)

Poor Initialization Problem

- A. Weight들을 다 0으로 만들어보자. (zero-init)
- -> entire neurons do the same task

neuron =
$$\sigma_1^{(1)}$$
(weight $_1^{(1)}$ * input + bias $_1^{(1)}$)
neuron = $\sigma_2^{(1)}$ (weight $_2^{(1)}$ * input + bias $_2^{(1)}$)
neuron = $\sigma_3^{(1)}$ (weight $_3^{(1)}$ * input + bias $_3^{(1)}$)

Weight Initialization (weight을 어떻게 설정해야 좋은 Activation Value 분포가 나올까?)

Poor Initialization Problem

B. Too small or large weights

Weight Initialization (weight을 어떻게 설정해야 좋은 Activation Value 분포가 나올까?)

Poor Initialization Problem

C. Weights with too small or large variance (example with tanh)

 $W \sim G(0,0.01^2)$

 $W \sim G(0,0.05^2)$

Weight Initialization

다음이 성립하도록 weight들을 초기화시켜야겠다.

- 1. Activation value들의 평균이 0이 되도록
- 2. Layer들을 통과할 때마다 Activation Value들의 분산이 크게 변하지 않도록

↓ 결론

- Sigmoid, tanh는 Xavier Initialization 이용
 - ReLU는 Kaiming He Initialization 이용
- 최근의 대부분의 모델에서는 He Initialization 주로 선택

Weight Initialization

Solutions for Poor Initialization Problem

- A. Xavier Initalization
- B. Kaiming He Initalization

Xavier Initialization

Xavier Normal Initialization

$$W \sim N(0, Var(W))$$

② Var(W) = 1/n[I-1]

Xavier Uniform Initialization

$$W \sim U(-\sqrt{rac{6}{n_{in}+n_{out}}}, \;\; +\sqrt{rac{6}{n_{in}+n_{out}}})$$

Weight connected with A node

①
$$W(i) \sim G(0, 2/7)$$

②
$$W(i) \sim G(0,1/4)$$

Forward로 계산했을 때임. Backprop도 같이 고려한다면 Var(W) = 2 / (in+out)

Xavier Initialization

Xavier Initialization

근데 ReLU Function에는 잘 안 된다.

Change tanh -> ReLU

Activation Values converge to 0

그래서 나온 게 Kaiming He Initialization

Kaiming He Initialization

He Normal Initialization

$$W \sim N(0, Var(W))$$

$$Var(W) = \frac{2}{n_{in}}$$

너무 모이는 것을 방지해준다....

He Uniform Initialization

$$W \sim U(-\sqrt{rac{6}{n_{in}+n_{out}}}, ~+\sqrt{rac{6}{n_{in}+n_{out}}})$$

$$E[x^{2}] = \int_{-\infty}^{\infty} x^{2} P(x) dx$$

$$= \int_{-\infty}^{\infty} max(0, y)^{2} P(y) dy$$

$$= \int_{0}^{\infty} y^{2} P(y) dy$$

$$= 0.5 * \int_{-\infty}^{\infty} y^{2} P(y) dy$$

$$= 0.5 * Var(y)$$

Weight connected with A node

① $W(i) \sim G(0, 2/4)$

Kaiming He Initialization

Works well with ReLU Function!

Learning Rate

최적값에 가까워질수록 learning rate 줄이는 방법

DS.

2. Speed of Convergence

Learning Rate Scheduling

학습이 진행됨에 따라 epoch 또는 iteration 간에 학습률을 조정하는 사전 정의된 프레임워크

A. Step decay (초록색 선)

Reduce a% of learning rate after b epoch

hyperparameter

Learning Rate Scheduling

B. Cosine Annealing decay: local minimum, 안장점에서 빠르게 벗어나게 해준다.

$$\eta_t = \eta_{min}^i + rac{1}{2} \left(\eta_{max}^i - \eta_{min}^i
ight) \left(1 + \cos \left(rac{T_{cur}}{T_i} \pi
ight)
ight)$$

수렴 -> 탈출 -> 수렴 -> 탈출… 반복

Learning Rate Scheduling

Warmup

- 모든 scheduler에 적용 가능
- Prevent divergence

Batch Normalization

: Internal Covariate Shift 문제 해결 위해 고안

장점

- Weight initialization의 영향을 줄임
- High learning rate 가능하게
- Sigmoid, tanh 사용 가능하게
- Increase accuracy

단점

- Batch number should be large
- Dynamic network structure & RNN에 적합 X

2. Speed of Convergence

Batch Normalization

Batch Normalization Layer

2. Speed of Convergence

Batch Normalization

Without using any initialization, BN makes very nice activation value distribution

2. Speed of Convergence

Strategies to handle Speed of Convergence

(얼마나 빠르게 global optimization에 수렴하는가?)

- A. Momentum term
- **B.** Activation Function
- C. Weight Initialization
- D. Learning Rate
- E. Batch Normalization (BN)

CNN vs MLP

CNN is a special case of MLP

MLP = fully connected

모든 input feature들을 다 고려한다.

다음 뉴런도 모든 input들을 다 반영하고 있는 상태

3. Why CNN?

CNN의 특징

A. Local Connectivity

MLP

3. Why CNN?

CNN의 특징

B. Weight Sharing

Filter 한 개로 feature map 하나 생성 = 하나의 feature map에 대한 가중치는 동일

Total Weight 개수:

(5*5*3) * (32*32*30)

Total Weight 개수:

(5*5*3)*30

1D CNN

이미지 처리 외에도 CNN을 사용할 수 있다! (1)

필터가 움직이는 방향이 한 방향 -> 1D CNN Window size = kernal size

3. Why CNN?

Deconvolution

이미지 처리 외에도 CNN을 사용할 수 있다! (2)

→ Image Segmentation, Super resolution

Before and After Nearest Neighbor Deconvolution Analysis (a) Figure 1 (b)

3. Why CNN?

Deconvolution

Ex) stride = 2, no padding

Deconvolution에서 stride는 kernel stride를 의미하는 것이 아님.
Stride = 각각의 input pixel이 얼마나 떨어져있는지 (intermediate grid)

3. Why CNN?

Deconvolution

Ex) stride = 1, no padding

Stride = 1

Deconvolution

Ex) stride = 2, with padding

Deconvolution

Padding = 1 : 테두리를 없애준다

$$\frac{dim_{out}}{S} = \frac{N - F + 2P}{S} + 1$$

3. Why CNN?

Deconvolution

Application – Image Segmentation

어떻게 보면 새로운 이미지를 생성한 것 : Deconvolution 이용해야 함

FCN

(Fully Convolution Network)

- 1. Convolutionation
- 2. Deconvolution
- 3. Skip Architecture

FCN

Convolutionation

기존에는 다른 사이즈의 Input image를 넣으면 차원 문제가 발생

Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

FC layer 쓰면: # weights vary with input vector size Convolution layer: # weights <- kernel size로 결정

FCN

Skip-Connection

Feature map size가 달라 elementwise calculation이 안됐었는데…

전이학습

고해상도 컬러 이미지를 인식하기 위해서는? 최소 5개 이상의 convolution layer + 2개 이상의 fc layer 로 train을 진행하고 1개의 CPU 환경이라면 수백~수천시간이 소요됨

4. Transfer Learning

전이학습 종류

전이학습

Freeze: weight 값을 그대로 가져오기

Fine-tuning: 원래 learning rate를 줄여 weight를 미세 조정

- 1. 기존 classifier 부분 제거
- 2. Pre-traine된 feature extractor 부분 가져오
- 기
- 3. New Classifier
- 4. fine-tuning 진행

전이학습

Fine-tuning

Strategy 1

Train the entire model

: dataset이 클 때 가능

전이학습

Fine-tuning

Strategy 2

Train some layers

- feature extraction 시에 low-level

Features부터 추출

- Task가 비슷하다면 굳이 모든 layer를 다 train할 필요는 없음

전이학습

Fine-tuning

Strategy 3

Freeze convolutional base

- Dataset 작고 task가 유사하다면 유리

Size Similarity Matrix

6. Summary

Speed of Convergence

- Weight Initialization Xavier, He
- Learning rate cosine annealing with warmup
- Batch Normalization

Why CNN?

• 이미지 처리에 특화되어 있지만… 다른 분야(RNN, 시계열)에서도 충분히 사용 가능하다

Transfer Learning

Power tool when we want to train with a small amount of data

6. Summary

Reference

- 22-2 정규세션: 7기 전재현님 <CNN>
- 22-2 정규세션 : 7기 이승연님 <CNN Implementation>
- https://www.youtube.com/watch?v=ScWTYHQra5E&t=370s&ab_channel=SebastianRaschka L11.6 Xavier
 Glorot and Kaiming He Initialization
- http://makeyourownneuralnetwork.blogspot.com/2020/02/calculating-output-size-of-convolutions.html
 Deconvolution 관련
- https://gaussian37.github.io/dl-concept-batchnorm/ Batch normalization
- Efficient Object Localization Using Convolutional Networks, Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, Christoph Bregler New York University(2015)

DATA SCIENCE LAB

발표자 유채원 010 - 8736 - 1915 E-mail: elinayoo71@yonsei.ac.kr