# PicoTamachibi

A Tamagotchi like toy based on Raspberry PI Pico

### Initial idea:



### **PICOTAMACHIBI**

Picotamachibi

**12 June 2023** 

10 minute read

By & Kevin McAleer Share this article on X @

Homepage

GitHub

### **VIDEOS**

Watch the associated videos here:





### WHAT IS PICOTAMACHIBI?

Picotamachibi is the name for a fun MicroPython based virtual pet.

Difficulty: Intermediate

Type: project

Categories:









#### Kevin McAleer

I build robots, bring them to life with code, and have a whole load of fun along the way

### **BILL OF MATERIALS**

ltem Pico Wire





#### 3d print case

#### Fusion 360

· 3d printed case in two

Top with cutouts for screen and buttons

 Veroboard for the tact switches and ssd1306 screen

· Bottom holds the pico and has a cutout for the usb connector





## Building the project:

#### 7iele

- 1. Ein Tamagotchi mit RPI Pico, Display und Knöpfen bauen
- 2. Arbeiten mit Code-Objekten
- 3. Strukturiertes Vorgehen beim Erschließen von Softwareprojekten
- 4. Ein bestehendes Projekt erweitern

#### Details:

- Zusammenbau der Hardware:
  - RPI auf Breadboard einsetzen
  - Buttons einsetzer
  - Komponenten Verbinder
- · RPI Pico zum laufen bringen
  - Micropython installieren (UF2-File)
  - o Thony DIE auf eurem PC installieren
  - Tamachibi-Projekt übertragen
  - Debugging bis es läuft
- Den Code erschließen und Verstehen
  - Fertigt ein UML-Modell des Codes an
- Den Code und das Projekt erweitern (Beispiele):
  - Hardware-erweiterungen (mehr Buttons?, Sound?, LEDs?)
  - Scrolling Toolbar [< A B (C) D E >][< B C (D) E A >]
  - Game als Tamagotchi Funktion [Happy +1]
  - o Ein richtiges Spiel implementieren
  - Das Tamagotchi steuern
  - Save States (Tamagotch vergisst alles beim Neustart)
  - o Tamagotchi "Entwicklungen"
  - o Turbo-Mode
  - Inverted (Dark-Mode)
  - Skin (umschaltbares design)
  - Lowrers Mode
  - Multiplayer / Network /Communication

#### Bonus:

- · Wer möchte darf sein Tamagotchi mit einer Hülle versehen und behalten
- . Es gibt ein MASTER-TAMAGOTCH das alles kann

#### Begrenzungen:

- Arbeit in ~2er Gruppen
- · Jede Gruppe baut ein Tamgotchi
- · Dokumentiert eure Codeerweiterungen und stellt sie der großen gruppe vor

#### Zeitvorgaben:

Fertigstellung bis Freitag, 02.02.2024 EOD (15:00)



· Task sheet (german)





#### Lessons learned

- There are problems with the suggested wiring
- More explanation on how to flash the RPI with the correct firmware is needed
- Information on how to configure Interpreter and COM port is needed in Thonny
- A guide on how to view files and transfer the source code to the RPI is missing
- The code is buggy and inefficient



- .uf2 file (latest)
- <u>Thonny</u>





## Filling in the gaps:

#### Fixing the schematic



- Input Pins for buttons can be connected to HIGH (3.3V) or LOW (GND) (reference)
- The source code has to match how the buttons are wired (PULL\_UP vs. PULL DOWN)
- The Tamachibi code expects the pins to be connected to HIGH (3.3V)
- TIP: Connect 3.3V and GND to the "rails" (red & blue) on one side of the breadboard and connect the buttons and peripherals to them

### Flashing the firmware (.uf2)



- Hold the button on the RPI Pico
- Connect the USB cable to the RPI and the Computer
  - The RPI appears as device in your file manager
- Copy the .uf2 to the RPI
  - The RPI disconnects automatically (pling sound)
- Disconnect the USB cable
- Reconnect the USB cable

#### Selecting Interpreter & COM port



- Select **Options** from the **Tools** menu
  - Select the Interpreter tab
- Select Micro Python (RP2040) as Interpreter
- Select the COM port of your device
  - The number varies e.g. COM14
  - You have to repeat the port selection each time you connect a new RPI

### The source code:



- There are also .py files for button testing and other peripherals
- Use the test scripts to simply verify if the respective peripheral is working as expected

Icon Class

**Properties** 

Code deep-dive

• height - how tall the image is

· name - the name of the image

### Copying the files



- Activate **Files** in the **View** menu
- **Copy** the project to the RPI
  - All .PY and .pbm files
  - UI in the file selection is *fiddly*
  - Space on the RPI is limited you can not simply copy the whole repository

### Level UP:

- KiCad
  - A design tool for PCBs
  - & schematics
- JLCPCB
  - Fab ordering
  - Pricing
- About V1.2
  - Ups
  - V1 fix













#### Features

- +90% Performance boost (runs on V1 & V2)
- More standard compliant code
- Bugfixes and improvements

- Displays energy levels
- More complex character behavior
- Desktop emulator

## Applied mods:

#### Hardware

- Board development and iterations
- Joystick
- SD card reader
- Buzzer (passive)
- LEDs (red & green)
- Power input pins
- Upgrade to RPI Pico W (on some units)

#### Software

- Menu ribbon
- Dynamic button controller
- Save state on SD card

#### ToDo

- Charging circuit and lipo
- Breakout pins
- More coding
- Multiplayer
- **.**..







Picture



## Final builds:

Pictures











## Takeaways & future:



- Github
  - Our improved code
  - The C++ version
  - V1 & V2 KiCad files
  - V1 & V2 gerber files
  - Documentation (this)
  - Basically everything!
- Bill of materials
- Calculation
- The box

| ltem                              | Qty | Cost € (all) | Cost € (1 build) | Comment                                                                                                                        |
|-----------------------------------|-----|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| SSD1306 128 x 64 I2C OLED Display | 5   | 22.00        | 4.40             | Link (Amazon)                                                                                                                  |
| Buttons                           | 100 | 5.00         | 0.16             | Link (Amazon)                                                                                                                  |
| PCBs                              | 25  | 37.00        | 1.48             | From JLCPCB, includes shipping and taxes. The PCBs only V1 11.64€ / V2 16.43€                                                  |
| Pin header (40 pins wide)         | 30  | 7            | 0.40             | <u>Link (Amazon)</u> Technically only 10 pins per unit are needed, the calculation assumes a nice build with all pins soldered |
| RPI Pico                          | 1   | 8            | 8                | <u>Link (Amazon)</u> Prices vary greatly. You can get them cheaper. Beware of scammers and fakes ☺                             |
| SD card reader                    | 1   | 9            | 9                | <u>Link (Amazon)</u> 3.3V is important. Those from Adafruit are great but hard to get and expansive                            |
| Joysticks                         | 5   | 8            | 1.60             | Link (Amazon)                                                                                                                  |
| Passive Buzzer                    | 20  | 7            | 0.35             | Link (Amazon) 12mm x 8.5mm, PASSIVE                                                                                            |
| LEDs, resistors, transistors      | x   | X            | 2                | Links (Amazon) <u>transistors</u> , <u>resistors</u> , <u>LEDs</u> calculated generously                                       |



## Thank you:

### Contributors

- Kevin McAleer (initial idea)
- BBWHH IT22 group and friends, especially:
  - Nils (Mastermind, C++ version, KiCad)
  - Daiman (KiCad & Prototyping)
  - Julian (coding)
  - Justin (coding & VsCode integration)
  - TheFlow & Luca (cases)
  - Alex (project planning, documentation, coding, soldering, cash cow & whip)
- Hardware manufacturers and driver producers (SDcard & Display)
- JLCPCB & KiCad
- The Internet

Q&A

## Backstage:

#### Additional thoughts:

- What about a better and possibly colored display?
  - Cool
  - Generally possible
  - Pricing
  - Performance in Micro Python poor, better in C++
  - Requires more GPIO pins
  - Difficult trade-off
- Can it run DOOM?
  - There is a project (RP2040 Doom)
    - Github
    - Blog post
  - We did not try it
    - Probably not on the exact Tamachibi hardware
    - Would be a separate project
- Can it emulate a Gameboy?
  - Same as with Doom
  - Github
- Can it run Crysis?
  - Probably not :)

#### What is in the box?

(or should be)

- Parts (basic Tamachibi)
  - Displays
  - Buttons
  - Pin headers M&F (& angled)
- RPI Picos
- PCBs
  - V1.0 (green)
  - V1.1 (blue)
  - V2.0 (white)
  - V2.1 (purple)
- Documentation
  - Presentation (this)
  - Worksheet (pdf)
- Additional parts (v2)
  - NPN-transistors
  - 100r resistors
  - LEDs
  - Passive buzzer
  - Joysticks
  - SD card reader
- Online content
  - Github (this project)















#### Bonus content:



 Presoldered V1 PCBs (not perfect but working with a twist)

#### Not in the box:

- Micro USB cable
- Bread board
- Dupond / jumper cableM->M & M->F
- Everything related to soldering

# Gallery:



















### Aftershow:

### Headline

- Topic
- Other topic (on some units)



Arbeitsblatt









Spread some love



Bla bla bla