ONDAS

Método e recomendacións

Ecuación e características das ondas

- 1. Unha onda transmítese ao longo dunha corda. O punto situado en x = 0 oscila segundo a ecuación $y = 0.1 \cos(10 \pi t)$ e outro punto situado en x = 0.03 m oscila segundo a ecuación $y = 0.1 \cos(10 \pi t \pi / 4)$. Calcula:
 - a) A amplitude, a lonxitude de onda, o número de onda k, o período, a frecuencia e pulsación ω da onda.
 - b) A velocidade de propagación da onda e indica en que sentido se propaga.
 - c) O tempo que ha de transcorrer para que a onda percorra unha distancia igual a 2 λ .
 - d) Escribe a ecuación de onda.
 - e) A velocidade de oscilación dun punto da corda e a súa aceleración en función do tempo.
 - f) A elongación, velocidade e aceleración dun punto situado en x = 0.03 m no instante t = 0.05 s.
 - g) Os valores máximos da velocidade e aceleración das partículas da corda.
 - h) Os valores do tempo para os que y(x, t) é máxima na posición x = 0.03 m.
 - i) Os valores do tempo para os que un punto situado en x = 0.03 m ten velocidade máxima.
 - j) A distancia entre dous puntos cuxa diferencia de fase nun instante dado é 2 $\pi/3$.
 - k) A diferenza de fase entre dous puntos separados 15 cm.
 - A diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de tempo transcorrido é de 0,05 s.
 - m) Para un tempo fixo t, que puntos da onda están en fase co punto que se atopa en x = 0.03 m?
 - n) Para unha posición fixa x, para que tempos o estado de vibración dese punto está en fase coa vibración para t = 0.05 s?

Problema modelo basado en P.A.U. Xuño 06

```
Rta.: a) A = 0,100 m; \lambda = 0,240 m; k = 26,2 rad/m; f = 5,00 Hz; \omega = 31,4 rad/s. b) v_p = 1,20 m/s; c) t_2 = 0,400 s; d) y = 0,100 \cdot \cos(31,4 \cdot t - 26,2 \cdot x) [m]; e) v = -3,14 \cdot \sin(31,4 \cdot t - 26,2 \cdot x) [m/s]; a = -98,7 \cdot \cos(31,4 \cdot t - 26,2 \cdot x) [m/s²]; f) y_3 = 0,0707 m; v_3 = 2,22 m/s; a_3 = -69,8 m/s²; g) v_m = 3,14 m/s; a_m = 98,7 m/s²; h) t_{my} = 0,0750 + 0,100 n (s); i) t_{mv} = 0,0250 + 0,100 n (s); j) \Delta x = 0,0800 + 0,240 \cdot n [m]; k) \Delta \varphi_x = 3,93 rad; l) \Delta \varphi_t = 1,57 rad; m) x_3 = 0,0300 + 0,240 n [m]; n) t_3 = 0,0500 + 0,200 n [s], n = 0,1,2...
```

Datos	Cifras significativas: 3
Ecuación de oscilación na orixe $x = 0$	$y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t)$ [m]
Ecuación de oscilación en $x = 0.03$ m	$y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t - \pi / 4.00)$ [m]
Incógnitas	•
Amplitude	A
Lonxitude de onda	λ
Número de onda	k
Período	T
Frecuencia	f
Pulsación	ω
Velocidade de propagación	$ u_{ m p}$
Tempo para que a onda percorra unha distancia igual a 2 λ	t_2
Ecuación de onda	y(x, t)
Velocidade da partícula nun punto en función do tempo	ν
Aceleración da partícula nun punto en función do tempo	a
Elongación en $x = 0.03$ m en $t = 0.05$ s.	y_3
Velocidade en $x = 0.03$ m en $t = 0.05$ s.	$ u_3$
Aceleración en $x = 0.03$ m en $t = 0.05$ s.	a_3
Velocidade máxima das partículas	$ u_{ m m}$
Aceleración máxima das partículas	$a_{ m m}$
Os valores do tempo para os que y é máxima en x = 0,03 m	$t_{ m my}$
Os valores do tempo para os que v é máxima en x = 0,03 m	$t_{\mathrm{m}_{V}}$
A distancia entre dous puntos cuxa diferencia de fase nun instante dado é 2 $\pi/3$.	Δx

Incógnitas

A diferenza de fase entre dous puntos separados 15 cm.	$\Delta \varphi_{\mathrm{x}}$
A diferenza de fase entre dous estados de vibración da mesma	Λ
partícula cando o intervalo de tempo transcorrido é de 0,05 s	$\Delta arphi_{ m t}$
Puntos da onda que están en fase co punto $en x = 0.03 \text{ m}$	χ_3
En que tempos o estado de vibración dese punto está en fase coa	t_3
vibración para $t = 0.05$ s	
Outros símbolos	
Posición do punto (distancia ao foco)	\boldsymbol{x}
Amplitude	A
Frecuencia	f

Ecuacións

Ecuación dunha onda harmónica unidimensional $y = A \cdot \cos (\omega \cdot t \pm k \cdot x)$ Número de onda $k = 2 \pi / \lambda$ Relación entre a frecuencia angular e a frecuencia $\omega = 2 \pi \cdot f$ Relación entre o período e a frecuencia f = 1 / T

Relación entre a lonxitude de onda e a velocidade de propagación $v_p = \lambda \cdot f$

Solución:

a) Calcúlase a amplitude e a frecuencia angular comparando a ecuación dunha onda harmónica unidimensional coa ecuación de vibración na orixe:

Ecuación xeral dunha onda harmónica: $y = A \cdot \cos (\omega \cdot t \pm k \cdot x)$ Ecuación da onda harmónica na orixe (x = 0): $y = 0,100 \cdot \cos (10,0 \cdot \pi \cdot t)$ [m] Amplitude: A = 0,100 m Frecuencia angular: $\omega = 10,0 \cdot \pi$ [rad/s] = 31,4 rad/s

Calcúlase o número de onda comparando a ecuación da onda harmónica unidimensional, na que se substituíron a amplitude e a frecuencia angular, coa ecuación de vibración en o punto x = 0,0300 m:

Ecuación da onda harmónica:

$$y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t \pm k \cdot x) [m]$$

Ecuación da onda harmónica no punto x = 0,0300 m: $y = 0,100 \cdot \cos (10,0 \cdot \pi \cdot t - \pi / 4,00) \text{ [m]}$

$$k \cdot x = \pi / 4,00 \implies k = \frac{\pi}{4,00 \cdot x} = \frac{3,14 \text{ [rad]}}{4,00 \cdot 0,030 \text{ 0[m]}} = 26,2 \text{ rad/m}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = 2 \pi / \lambda \Rightarrow \lambda = \frac{2 \pi}{k} = \frac{2 \cdot 3.14 \text{ [rad]}}{26.2 \text{ [rad/m]}} = 0.240 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2 \pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{10.0 \cdot \pi}{2\pi} = 5,00 \text{ s}^{-1}$$

Calcúlase o período a partir da frecuencia:

$$f = 1 / T \implies T = \frac{1}{f} = \frac{1}{5,00 \text{ s}^{-1}} = 0,200 \text{ s}$$

b) Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.240 \text{ [m]} \cdot 5.00 \text{ [s}^{-1}] = 1.20 \text{ m/s}$$

Como a onda no punto x = 0.0300 m está atrasada en π / 4,00 rad porque na ecuación aparece o signo «-», a onda desprázase no sentido positivo do eixo X.

c) Calcúlase o tempo que tarda en percorrer unha distancia igual a $\Delta x = 2 \cdot \lambda = 2 \cdot 0,240$ [m] = 0,480 m a partir da velocidade de propagación constante da onda

$$v_{\rm p} = \frac{\Delta x}{\Delta t} \implies t_{\rm 3} = \frac{\Delta x}{v_{\rm p}} = \frac{0.480 \,[{\rm m}\,]}{1.20 \,[{\rm m/s}\,]} = 0.400 \,{\rm s}$$

Análise: Pódese definir o período como o tempo que tarda unha onda en percorrer unha distancia igual á lonxitude de onda. Por tanto o tempo necesario para que a onda percorra unha distancia igual a $2 \cdot \lambda$, será o dobre do período: $t_2 = 2 \cdot T = 2 \cdot 0,200 \text{ [s]} = 0,400 \text{ s.}$

d) A ecuación de movemento obtense substituíndo os valores de k e ω :

$$y = A \cdot \cos(\omega \cdot t - k \cdot x) = 0,100 \cdot \cos(10,0 \cdot \pi \cdot t - \pi / 0,120 \cdot x) = 0,100 \cdot \cos(31,4 \cdot t - 26,2 \cdot x)$$
 [m]

Análise: Pódese comprobar que esta ecuación dá as ecuacións para x = 0, $y = 0.100 \cdot \cos(31.4 \cdot t)$ e para x = 0.03 m, $y = 0.100 \cdot \cos(31.4 \cdot t - 0.786) = 0.100 \cdot \cos(31.4 \cdot t - \pi / 4)$

e) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo :

$$v = \frac{dy}{dt} = \frac{d[0,100 \cdot \cos(31,4 \cdot t - 26,2 \cdot x)]}{dt} = -0,100 \cdot 31,4 \cdot \sin(31,4 \cdot t - 26,2 \cdot x) \text{ [m/s]}$$

$$v = -3,14 \cdot \sin(31,4 \cdot t - 26,2 \cdot x) \text{ [m/s]}$$

A aceleración obtense derivando a ecuación da velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d} \left[-3.14 \cdot \mathrm{sen} \left(31.4 \cdot t - 26.2 \cdot x \right) \right]}{\mathrm{d} t} = -3.14 \cdot 31.4 \cdot \mathrm{cos} \left(31.4 \cdot t - 26.2 \cdot x \right) \left[\mathrm{m/s}^2 \right]$$

$$a = -98.7 \cdot \mathrm{cos} \left(31.4 \cdot t - 26.2 \cdot x \right) \left[\mathrm{m/s}^2 \right]$$

f) Substitúense nas ecuacións os valores da posición x = 0.03 m e o tempo t = 0.05 s.

$$y_3 = 0.100 \cdot \cos(31.4 \cdot 0.0500 - 26.2 \cdot 0.0300) = 0.0707 \text{ m}$$

 $v_3 = -3.14 \cdot \sin(31.4 \cdot 0.0500 - 26.2 \cdot 0.0300) = 2.22 \text{ m/s}$
 $a_3 = -98.7 \cdot \cos(31.4 \cdot 0.0500 - 26.2 \cdot 0.0300) = -69.8 \text{ m/s}^2$

g) A velocidade é máxima cando o seno da fase vale -1:

$$v_{\rm m} = -3.14 \cdot (-1) = 3.14 \text{ m/s}$$

A aceleración é máxima cando o coseno da fase vale -1:

$$a_{\rm m} = -98.7 \cdot (-1) = 98.7 \text{ m/s}^2$$

h) Para obter os valores do tempo para os que y é máxima en x = 0,03 m, imponse a condición de que o coseno da fase nese punto valla 1, o que corresponde a unha fase de 0 rad:

$$\cos(31.4 \cdot t_{\text{my}} - 26.2 \cdot 0.03) = 1$$

$$31.4 \cdot t_{\text{my}} - 26.2 \cdot 0.03 = 0$$

$$t_{\text{my}} = \frac{26.2 \cdot 0.030}{31.4} = 0.025 \text{ ((s))}$$

Esta situación volve repetirse transcorridos un número n de semiperíodos, se só nos atemos a que o valor da elongación sexa máxima.

$$t_{\text{my}} = 0.0250 + 0.100 \ n \text{ (s)}; \ n = 0, 1, 2...$$

Se entendemos que máximo se refire tamén ao signo, entón repítese cada n períodos:

$$t_{\rm mv} = 0.0250 + 0.200 \ n$$
 (s); $n = 0, 1, 2...$

i) De forma análoga, a velocidade será máxima cando o seno da fase nese punto valla 1, o que corresponde a unha fase de π / 2 rad:

$$sen(31,4 \cdot t_{m} - 26,2 \cdot 0,0300) = 1$$

$$31,4 \cdot t_{m} - 26,2 \cdot 0,0300 = \pi / 2$$

$$t_{m} = \frac{26,2 \cdot 0,030 \cdot \theta \cdot 3,14/2}{31,4} = 0,075 \cdot 0(s)$$

Esta situación volve repetirse transcorridos un número n de semiperíodos, se só nos atemos a que o valor da velocidade sexa máxima.

$$t_{mv} = 0.0750 + 0.100 \ n$$
 (s); $n = 0, 1, 2...$

Se entendemos que máximo se refire tamén ao signo, entón repítese cada *n* períodos:

$$t_{mv} = 0.0750 + 0.200 \ n$$
 (s); $n = 0, 1, 2...$

j) A distancia entre dous puntos cuxa diferencia de fase nun instante dado é 2 π /3 obtense restando as expresións das fases de ambos os puntos e igualando o resultado a 2 π /3.

$$(31.4 \cdot t - 26.2 \cdot x_2) - (31.4 \cdot t - 26.2 \cdot x_1) = 2 \pi/3$$

$$26.2 \cdot (x_1 - x_2) = 2 \pi/3$$

$$\Delta x = x_1 - x_2 = \frac{2 \cdot 3.14/3}{26.2} = 0.080 \text{ 0(m)}$$

Se a diferenza de fase fose de 2π rad, a distancia entre os puntos sería unha lonxitude de onda λ . A unha diferenza de fase de $2 \pi/3$ rad correspóndelle unha distancia de $\lambda/3 = 0,240 \text{ [m]}/3 = 0,0800 \text{ m}$

Todos os puntos que disten un múltiplo n de lonxitudes de onda do máis próximo, tamén terán unha diferenza de fase de $2 \pi/3$ co punto de referencia.

$$\Delta x = 0.0800 + 0.240 \cdot n \text{ [m]}$$

k) A diferenza de fase entre dous puntos que disten 15 cm obtense restando as expresións das fases de ambos os puntos

$$\Delta \varphi_{x} = (31.4 \cdot t - 26.2 \cdot x_{2}) - (31.4 \cdot t - 26.2 \cdot x_{1})$$

 $\Delta \varphi_{x} = 26.2 \cdot (x_{1} - x_{2}) = 26.2 \cdot 0.150 = 3.93 \text{ rad}$

l) A diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de tempo transcorrido é de 0,05 s obtense restando as expresións das fases de ambos os puntos

$$\Delta \varphi_{t} = (31.4 \cdot t_{2} - 26.2 \cdot x) - (31.4 \cdot t_{1} - 26.2 \cdot x)$$

 $\Delta \varphi_{t} = 31.4 \cdot (t_{2} - t_{1}) = 31.4 \cdot 0.0500 = 1.57 \text{ rad}$

m) Todos os puntos que disten un múltiplo n de lonxitudes de onda λ do punto en x = 0,03 m estarán en fase con el:

$$x_3 = 0.0300 + 0.240 \ n \ [m], \ n = 0, 1, 2...$$

m) En todos os tempos que disten un múltiplo n de períodos T do tempo en t = 0,05 s, o estado de vibración estará en fase con ese instante:

$$t_3 = 0.0500 + 0.200 n$$
 [s], $n = 0, 1, 2...$

Pode obter as respostas na pestana «Ondas» da folla de cálculo <u>Fisica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

	Ecuación		y = A	cos	$(\omega t \pm k x + \varphi_o)$
	Amplitude	<i>A</i> =	0,1	m	
	Frecuencia angular	ω =	10 π	rad/s	
	Distancia entre puntos	$\Delta x =$	0,03	m	
	no instante	<i>t</i> =		s	
	Diferenza de fase	Δφ =	π / 4	rad	
D	.1. / 1 1 / 1				

Para escribir o símbolo π , teclee :pi:

Pode escribir = 10^* PI() en vez de 10π ou =PI()/4 en vez de π / 4 Para ver os resultados, faga clic nas celas de cor laranxa e elixa as opcións como se mostra:

1 ISICU	1.0.7 1.0. 0 1.7 1.0.	•	OTTO DELIVER	5 111 0				
b)	Velocidade de propagació	n v =	1,20 m/s					
Faceı	ndo clic nas celas de cor laranx			itude de	onda»,	podemos	obter ou	utros resulta-
	lixindo							
a)	Frecuencia	_ ~	5,00 Hz					
a)	Número de onda k	k =	26,2 rad/n	1				
E tan			21 4 1/-					
a) Para	Frecuencia angular o apartado c (o tempo para pe:		31,4 rad/s	nial a 2 .	1) a fol	lla non lle	vai dar	a colución
	escribir unha fórmula sinxela						var uar	a solucion.
			CÁ L C U L					
	Etiqueta:	Tem	po 2 λ					
	Fórmula:		0,40)				
	mula pode ser		=2*0,24/1,2				_	
	ndo os valores obtidos.		2*43/41.05	./				
	escribir tamén er clic na cela que contén «0,2:	10% á dar	=2*AVALOF	K (
	a verase:	40% a uci	=2*AVALOF	R(H19				
_	escribindo		=2*AVALOF	`	VALOR	(
_	clic na cela que contén «1,20»	á dereita						
4	., 1 1 .1 1 1	., 1	=2*AVALOF	. ,		,		., 1.
As ed	cuacións da velocidade e acele: o:	racion od	tenense tacena	o clic en	«Elong	acion» ba	ixo «Eci	uacion» e eii-
e)	Velocidade	v = -3	3,14 sen(31,4 t -	- 26,2 x)	(m/s)			
E fac	endo clic na mesma cela, elixa							
e)	Aceleración	a = -9	98,7 cos(31,4 t -	26,2 x)	(m/s^2)			
	obter os valores da elongación							
	iar algúns dos datos, poñendo scribir o valor do tempo xunto						s que cai	mbiar Δx por
х, е с	Ecuación	o a ι, ε υυ		$(\omega t \pm k)$		asc»		
		A =	0.4	$(\omega \iota \pm \kappa)$	<i>λ</i> + ψ ₀)			
	•							
	Frecuencia angular							
			0,24 m					
	Posición do punto	X =	0,03 m					
	no instante	t =	0,05 s					
Eaga	Diferenza de fase 🛭 ndo clic na cela de cor laranxa		rad					
racei	Valor			n x = 0,0)3 m 200	: 0.05 s		
f)	Elongaciór		0,100 m	11 x - 0,0	ν =	0,0707 m		
,	nesma cela,	1	0,100 111		у –	0,0707 111	:	
f), g)		$v_m =$	3,14 m/s		v =	-2,22 m	ı/s	
_	e tamén os valores máximos. F			mesma		_,	, -	
f), g)			$98,7 \text{ m/s}^2$		<i>a</i> =	-69,8 m	$1/S^2$	
_	mos os valores do tempo para	os que <i>y</i> (x, t) é máxima	na posic	ión x =	0,03 m, bo	orrando	o valor do
temp	o nos datos							
	no instante	t =	S			-		
	endo clic na cela de cor laranx		•				`	
h)		_	longación máxi	ma, t = 0),0250 +	0,100 n (s	3)	
	ndo clic na mesma cela, podem		alagidada má	mo t	0.750	0.100 (2)	
i) Para	ver a distancia entre dous pun	_	<mark>elocidade máxi</mark> diferencia de fa	111				naherá aug ca
	ver a distancia entre dous pun : nos datos:	ios cuxa	unerencia de la	ise mun l	nstante	uau0 e Z	11/J, SU II	iancia due es
	Diferenza de fase 🛭	$\Delta \varphi = 2 \pi /$	′3 rad					
		,						

Aparecerá na última liña dos resultados:

j) Distancia entre puntos $\Delta x = 0.0800 \text{ m se}$ $\Delta \varphi = 2.09 \text{ rad}$

Para o apartado seguinte, cambiamos nos datos x por Δx , escribimos a distancia, eliximos a unidade e borramos o valor da «Diferenza de fase»

Distancia entre puntos	$\Delta x =$	15	cm
no instante	<i>t</i> =		S
Diferenza de fase	$\Delta \phi =$		rad

A última liña de RESULTADOS mostrará:

k) Diferenza de fase $\Delta \varphi = 3,93 \text{ rad se} \quad \Delta x = 15 \text{ cm}$

Podemos facer clic na cela de cor laranxa, para que a diferencia de fase apareza en función de π .

k) Diferenza de fase $\Delta \varphi = 5 \pi/4 \text{ rad se} \quad \Delta x = 15 \text{ cm} \quad \pi$

Para ver a diferenza de fase cando o intervalo de tempo transcorrido é de 0,05 s, esta folla non lle dá o resultado.

Para ver que puntos da onda están en fase co punto que se atopa en x = 0.03 m, volvemos cambiar nos datos Δx por x, escribimos a posición e eliximos a unidade.

Posición do punto x = 0.03 m

Facendo clic na cela de cor laranxa baixo «Velocidade de propagación» e elixindo m)

Posicións de puntos en fase, x = 0.0300 + 0.240 n (m)

Para ver en que tempos o estado de vibración de ese punto está en fase coa vibración para t = 0.05 s, borramos os datos de x, e escribimos o tempo.

no instante t = 0.05 s

Facemos clic na cela de cor laranxa baixo «Velocidade de propagación» elixindo

n) Tempos de puntos en fase, t = 0.0500 + 0.200 n (s)

- 2. Unha onda harmónica transversal de frecuencia 2 Hz, lonxitude de onda 20 cm e amplitude 4 cm, propágase por unha corda no sentido positivo do eixe X. No intre t = 0, a elongación no punto x = 0 é y = 2,83 cm.
 - a) Expresa matematicamente a onda e represéntaa graficamente en (t = 0; 0 < x < 40 cm).
 - b) Calcula a velocidade de propagación da onda e determina, en función do tempo, a velocidade de oscilación transversal da partícula situada en x = 5 cm.

(A.B.A.U. Xul. 21)

Rta.: a) $y = 0.0400 \text{ sen}(4 \pi t - 10 \pi x + \pi / 4) \text{ [m]}$; b) $v_p = 0.400 \text{ m/s}$; $v = 0.503 \text{ cos}(4 \pi t - \pi / 4) \text{ [m/s]}$

Datos	Cifras significativas: 3
Frecuencia	f = 2,00 Hz = 2,00 s ⁻¹
Lonxitude de onda	$\lambda = 20,0 \text{ cm} = 0,200 \text{ m}$
Amplitude	A = 0.0400 m = 0.0400 m
Elongación en $x = 0$ para $t = 0$	y = 2,83 cm = 0,0283 m
Incógnitas	
Ecuación da onda (frecuencia angular e número de onda)	ω , k
Velocidade de propagación	$ u_{ m p}$
Velocidade da partícula en $x = 5$ cm en función do tempo	ν
Outros símbolos	
Posición do punto (distancia ao foco)	x
Período	T
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x + \varphi_0)$
Número de onda	$k = 2 \pi / \lambda$
Frecuencia angular	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$

Solución:

a) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x + \varphi_0)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 2.00 \text{ [s}^{-1}] = 4.00 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}] = 12.6 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{0,200 \text{ [m]}} = 10 \pi \text{ rad/m} = 31,4 \text{ rad/m}$$

Calcúlase a fase inicial a partir da elongación en x = 0 para t = 0.

$$y(x, t) = 0.0400 \cdot \text{sen}(12.6 \cdot t - 31.4 \cdot x + \varphi_0) \text{ [m]}$$

 $0.0283 \text{ [m]} = 0.0400 \cdot \text{sen}(12.6 \cdot 0 - 31.4 \cdot 0 + \varphi_0) \text{ [m]} = 0.0400 \cdot \text{sen}(\varphi_0)$
 $\text{sen}(\varphi_0) = 0.0283 / 0.0400 = 0.721$
 $\varphi_0 = \text{arcsen } 0.721 = 0.786 \text{ rad} = \pi / 4 \text{ rad}$

A ecuación de onda queda:

$$y(x, t) = 0.0400 \cdot \text{sen}(12.6 \cdot t - 31.4 \cdot x + 0.786) \text{ [m]} = 0.0400 \cdot \text{sen}(4 \pi \cdot t - 10 \pi \cdot x + \pi / 4) \text{ [m]}$$

A representación gráfica é a da figura:

b) Calcúlase a velocidade de propagación a partir da lonxitude de onda e a frecuencia:

$$v_p = \lambda \cdot f = 0,200 \text{ [m]} \cdot 2,00 \text{ [s}^{-1}] = 0,400 \text{ m/s}$$

A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}\left[0.040 \ 0 \, \mathrm{sen}\left(12.6 \cdot t - 31.4 \cdot x + 0.786\right)\right]}{\mathrm{d}t} = 0.040 \ 012.6 \, \mathrm{cos}\left(12.6 \cdot t - 31.4 \cdot x + 0.786\right) \, [\,\mathrm{m/s}\,]$$

$$v = 0.503 \cdot \mathrm{cos}(12.6 \cdot t - 31.4 \cdot x + 0.786) \, [\,\mathrm{m/s}\,]$$

Para x = 5 cm (=0,05 m), a expresión queda:

$$v = 0.503 \cdot \cos(12.6 \cdot t - 31.4 \cdot 0.0500 + 0.786) = 0.503 \cdot \cos(12.6 \cdot t - 0.786) = 0.503 \cdot \cos(4 \pi \cdot t - \pi / 4) \text{ [m/s]}$$

Pode obter as respostas na pestana «Ondas» da folla de cálculo Fisica (gal). Instrucións.

 os ter as respositas ma postar				- 1010th (8th).	
Ecuación		y = A	sen	$(\omega t \pm k x + \varphi_o)$	
Amplitude	<i>A</i> =	4	cm		
Frecuencia	f =	2	Hz		
Lonxitude de onda	λ =	0,2	m		
Posición do punto	<i>x</i> =	5	cm		
no instante	<i>t</i> =	0	S		
Elongación inicial	$y_o =$	2,83	cm		
Diferenza de fase	$\Delta \phi =$		rad		

Para ver os resultados, faga clic nas celas de cor laranxa e elixa as opcións como se mostra:

			Cifras	significativas:	3	
a)	Ecuación	xeral			π	
	Elongación	y = 0.0400 sen(4)	$4 \pi t - 10 \pi x +$	$\pi/4$) (m)		

Máis abaixo verá:

Velocidade de propagación v = 0,400 m/s

Para a representación gráfica elixa «Tempo (s)» na cela de cor laranxa e teclee os datos do tempo e as posicións inicial e final.

A gráfica será como a seguinte:

Para ver os resultados de apartado b) cambie «xeral» por «en x = 5 cm» e «Elongación» por «Velocidade»

Ecuación en x = 5 cm
Velocidade
$$v = 0,503 \cos(4 \pi t - \pi/2) \text{ (m/s)}$$

Dioptrio plano

- 1. Un raio de luz de frecuencia 5·10¹⁴ Hz incide cun ángulo de incidencia de 30° sobre unha lámina de vidro de caras plano-paralelas de espesor 10 cm. Sabendo que o índice de refracción do vidro é 1,50 e o do aire 1,00:
 - a) Enuncia as leis da refracción e debuxa a marcha dos raios no aire e no interior da lámina de vidro.
 - b) Calcula a lonxitude de onda da luz no aire e no vidro, e a lonxitude percorrida polo raio no interior da lámina.
 - c) Acha o ángulo que forma o raio de luz coa normal cando emerxe de novo ao aire.

Dato: $c = 3,00 \cdot 10^8 \text{ m/s}$ (P.A.U. Set. 14)

Rta.: b) λ (aire) = 600 nm; λ (vidro) = 400 nm; L = 10,6 cm; c) θ_{r2} = 30°

Datos

Frecuencia do raio de luz Ángulo de incidencia Espesor da lámina de vidro Índice de refracción do vidro Índice de refracción do aire Velocidade da luz no baleiro

Incógnitas

Lonxitude de onda de luz no aire e no vidro Lonxitude percorrida polo raio de luz no interior da lámina Ángulo de desviación do raio ao saír da lámina

Ecuacións

Índice de refracción dun medio $_{\rm i}$ no que a luz se despraza á velocidade $v_{\rm i}$

Relación entre a velocidade v, a lonxitude de onda λ e a frecuencia f Lei de Snell da refracción

Cifras significativas: 3

 $f = 5.00 \cdot 10^{14} \text{ Hz}$ $\theta_{i1} = 30.0^{\circ}$ e = 10.0 cm = 0.100 m $n_{v} = 1.50$ $n_{a} = 1.00$ $c = 3.00 \cdot 10^{8} \text{ m/s}$

 $\lambda_{\rm a},\,\lambda_{\rm v} \ L \ heta_{\rm r2}$

$$n_{i} = \frac{c}{v_{i}}$$

$$v = \lambda \cdot f$$

$$n_{i} \cdot \text{sen } \theta_{i} = n_{r} \cdot \text{sen } \theta_{r}$$

Solución:

- a) As leis de Snell da refracción son:
- 1.ª O raio incidente, o raio refractado e a normal están no mesmo plano.
- 2.ª A relación matemática entre os índices de refracción n_i e n_r dos medios incidente e refractado e os ángulos de incidencia e refracción θ_i e θ_r , é:

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

Represéntase a traxectoria da luz. O raio incidente no punto A cun ángulo de incidencia $\theta_{i1} = 30^{\circ}$ pasa do aire ao vidro dando un raio refractado que forma o primeiro ángulo de refracción θ_{r1} e o segundo ángulo de incidencia θ_{i2} entre o vidro e o aire. Finalmente sae da lámina de vidro polo punto B co segundo ángulo de refracción θ_{r2} .

b) A velocidade da luz no aire é:

$$v_a = \frac{c}{n_a} = \frac{3,00 \cdot 10^8 \text{ m/s}}{1,00} = 3,00 \cdot 10^8 \text{ m/s}$$

Por tanto, a lonxitude de onda da luz no aire é:

$$\lambda_a = \frac{v_a}{f} = \frac{3,00 \cdot 10^8 \text{ m/s}}{5,00 \cdot 10^{14} \text{ s}^{-1}} = 6,00 \cdot 10^{-7} \text{ m} = 600 \text{ nm}$$

A velocidade da luz no vidro é:

$$v_{v} = \frac{c}{n_{v}} = \frac{3,00 \cdot 10^{8} \text{ m/s}}{1,50} = 2,00 \cdot 10^{8} \text{ m/s}$$

Por tanto, a lonxitude de onda da luz no vidro é:

$$\lambda_{\rm v} = \frac{v_{\rm v}}{f} = \frac{2,00 \cdot 10^8 \text{ m/s}}{5.00 \cdot 10^{14} \text{ s}^{-1}} = 4,00 \cdot 10^{-7} \text{ m} = 400 \text{ nm}$$

Como o espesor da lámina é de 10 cm, a lonxitude percorrida polo raio é a hipotenusa L do triángulo ABC. O primeiro ángulo de refracción θ_{r1} pódese calcular aplicando a lei de Snell

$$1,00 \cdot \text{sen } 30^{\circ} = 1,50 \cdot \text{sen } \theta_{r1}$$

 $\text{sen } \theta_{r1} = \frac{1,00 \cdot \text{sen } 30^{\circ}}{1,50} = 0,333$
 $\theta_{r1} = \text{arcsen } 0,333 = 19,5^{\circ}$

Por tanto a hipotenusa *L* vale:

$$L = \frac{e}{\cos \theta_{\rm rl}} = \frac{10.0 \text{ [cm]}}{\cos 19.5^{\circ}} = 10.6 \text{ cm}$$

c) Como a lámina de vidro é de caras paralelas, o segundo ángulo de incidencia a_{i2} é igual ao primeiro ángulo de refracción:

$$\theta_{i2} = \theta_{r1} = 19.5^{\circ}$$

Para calcular o ángulo co que sae da lámina, vólvese a aplicar a lei de Snell entre o vidro (que agora é o medio incidente) e o aire (que é o medio refractado):

1,50 · sen 19,5° = 1,00 · sen
$$\theta_{r2}$$

sen $\theta_{r2} = \frac{1,50 \cdot \text{sen } 19,5°}{1,00} = 0,500$
 θ_{r2} = arcsen 0,500 = 30,0°

Análise: Este resultado é correcto porque o raio sae paralelo ao raio incidente orixinal.

Pode obter as respostas na pestana «Dioptrio» da folla de cálculo Fisica (gal). Instrucións.

Índice de re	efracción			
Medios	n	Ángulo de	Aire-Vidro	
Aire	1	incidencia	30 °	•
Vidro	1,5	Espesor	10	em
Aire	1			
		Frecuencia	5·10 ¹⁴	Hz
0 1, 1		_		

Os resultados son:

Aire
-
10,6 cm
Aire
0·10 ⁻⁷ m

- Aire
- 2. Un raio de luz pasa da auga (índice de refracción n = 4/3) ao aire (n = 1). Calcula:
 - a) O ángulo de incidencia se os raios reflectido e refractado son perpendiculares entre si.
 - b) O ángulo límite.
 - c) Hai ángulo límite se a luz incide do aire á auga?

(P.A.U. Xuño 13)

Rta.: a) $\theta_i = 36.9^\circ$; b) $\lambda = 48.6^\circ$

Datos

Índice de refracción do aire Índice de refracción da auga Ángulo entre o raio refractado e o reflectido

Incógnitas

Ángulo de incidencia Ángulo límite

Ecuacións

Lei de Snell da refracción

Cifras significativas: 3

$$n = 1,00$$

 $n_{\rm a} = 4 / 3 = 1,33$
 $\Delta \theta_{\rm rr} = 90,0^{\circ}$

 $heta_{
m i} \ \lambda$

aire

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

90°

auga

Solución:

a) Aplicando a lei de Snell da refracción:

$$1,33 \cdot \text{sen } \theta_{i} = 1,00 \cdot \text{sen } \theta_{r}$$

Á vista do debuxo debe cumprirse que

$$\theta_{\rm r} + 90^{\circ} + \theta_{\rm rx} = 180^{\circ}$$

Como o ángulo de reflexión $\theta_{\rm rx}$ é igual ao ángulo de incidencia $\theta_{\rm i}$, a ecuación anterior convértese en:

$$\theta_{
m i}$$
 $\theta_{
m rx}$

$$\theta_i + \theta_r = 90^\circ$$

É dicir, que o ángulo de incidencia θ_i e o de refracción θ_r son complementarios.

O seno dun ángulo é igual ao coseno do seu complementario. Entón a primeira ecuación queda:

1,33 · sen
$$\theta_i$$
 = sen θ_r = cos θ_i

$$\tan \%itheta_i = \frac{1}{1,33} = 0,75$$

$$\theta_i = \arctan 0,75 = 36,9^\circ$$

b) Ángulo límite λ é o ángulo de incidencia que produce un ángulo de refracción de 90°

$$1,33 \cdot \text{sen } \lambda = 1,00 \cdot \text{sen } 90,0^{\circ}$$

 $\text{sen } \lambda = 1,00 / 1,33 = 0,75$
 $\lambda = \text{arcsen } 0,75 = 48,6^{\circ}$

c) Non. Cando a luz pasa do aire á auga, o ángulo de refracción é menor que o de incidencia. Para conseguir un ángulo de refracción de 90° o ángulo de incidencia tería que ser maior que 90° e non estaría no aire. Tamén pode deducirse da lei de Snell.

$$1,00 \cdot \text{sen } \lambda_1 = 1,33 \cdot \text{sen } 90^\circ$$

 $\text{sen } \lambda_1 = 1,33 / 1,00 > 1$

É imposible. O seno dun ángulo non pode ser maior que uno.

- 3. Sobre un prisma equilátero de ángulo 60° (ver figura), incide un raio luminoso monocromático que forma un ángulo de 50° coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo á base AC:
 - a) Calcula o índice de refracción do prisma.
 - b) Determina o ángulo de desviación do raio ao saír do prisma, debuxando a traxectoria que segue o raio.
 - c) Explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou non, dentro e fóra do prisma.

Dato: n(aire) = 1 (P.A.U. Set. 11)

Rta.: a) $n_p = 1.5$; b) $\theta_{r2} = 50^{\circ}$

Datos

Ángulos do triángulo equilátero Ángulo de incidencia Índice de refracción do aire

Incógnitas

Índice de refracción do prisma Ángulo de desviación do raio ao saír do prisma

Ecuacións

Lei de Snell da refracción

Cifras significativas: 2

 $\theta = 60^{\circ}$ $\theta_{i} = 50^{\circ}$ $n_{a} = 1.0$

 $n_{
m p} hinspace heta_{
m r2}$

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

Solución:

a) Na lei de Snell da refracción

$$n_i \cdot \text{sen } \theta_i = n_r \cdot \text{sen } \theta_r$$

 $n_{\rm i}$ e $n_{\rm r}$ representan os índices de refracción dos medios incidente e refractado

 θ_i e θ_r representan os ángulos de incidencia e refracción que forma cada raio coa normal á superficie de separación entre os dous medios.

O primeiro ángulo de refracción θ_{r1} , que forma o raio de luz refractado paralelo á base do prisma, vale 30°, xa que é o complementario ao de 60° do triángulo equilátero.

$$n_{\rm p} = n_{\rm r} = \frac{n_{\rm i} \cdot \sin \theta_{\rm i1}}{\sin \theta_{\rm r1}} = \frac{1,0 \cdot \sin 50^{\circ}}{\sin 30^{\circ}} = 1,5$$

b) Cando o raio sae do prisma, o ángulo de incidencia θ_{i2} do raio coa normal ao lado BC vale 30°. Volvendo aplicar a lei de Snell

c) A frecuencia f dunha onda electromagnética é unha característica da mesma e non varía co medio.

A lonxitude de onda λ está relacionada con ela por

$$c = \lambda \cdot f$$

A velocidade da luz nun medio transparente é sempre menor que no baleiro. O índice de refracción do medio é o cociente entre ambas as velocidades.

Física A.B.A.U. e P.A.U. ONDAS: PROBLEMAS TIPO 12

$$n = \frac{c}{v}$$

A velocidade da luz no aire é practicamente igual á do baleiro, mentres que no prisma é 1,5 veces menor. Como a frecuencia é a mesma, a lonxitude de onda (que é inversamente proporcional á frecuencia) no prisma é 1,5 veces menor que no aire.

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 07/10/24

Sumario

ONDAS

Ecuación e características das ondas
1. Unha onda transmítese ao longo dunha corda. O punto situado en x = 0 oscila segundo a ecuación
y = 0,1 $\cos(10 \pi t)$ e outro punto situado en x = 0,03 m oscila segundo a ecuación
$y = 0.1 \cos(10 \pi t)$ e outro punto situado en $x = 0.03$ in oscila segundo a ecuación $y = 0.1 \cos(10 \pi t - \pi / 4)$. Calcula:
a) A amplitude, a lonxitude de onda, o número de onda k, o período, a frecuencia e pulsación ω da
onda
b) A velocidade de propagación da onda e indica en que sentido se propaga
c) O tempo que ha de transcorrer para que a onda percorra unha distancia igual a 2 λ
d) Escribe a ecuación de onda
e) A velocidade de oscilación dun punto da corda e a súa aceleración en función do tempo
f) A elongación, velocidade e aceleración dun punto situado en $x = 0.03$ m no instante $t = 0.05$ s
g) Os valores máximos da velocidade e aceleración das partículas da corda
h) Os valores do tempo para os que y(x, t) é máxima na posición x = 0,03 m
i) Os valores do tempo para os que un punto situado en x = 0,03 m ten velocidade máxima
j) A distancia entre dous puntos cuxa diferencia de fase nun instante dado é 2 $\pi/3$
k) A diferenza de fase entre dous puntos separados 15 cm
l) A diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de
tempo transcorrido é de 0,05 s
m) Para un tempo fixo t, que puntos da onda están en fase co punto que se atopa en x = 0,03 m?
n) Para unha posición fixa x, para que tempos o estado de vibración dese punto está en fase coa vi-
bración para t = 0,05 s?
2. Unha onda harmónica transversal de frecuencia 2 Hz, lonxitude de onda 20 cm e amplitude 4 cm,
propágase por unha corda no sentido positivo do eixe X. No intre t = 0, a elongación no punto x = 0
é y = 2,83 cm6
a) Expresa matematicamente a onda e represéntaa graficamente en (t = 0; 0 < x < 40 cm)
b) Calcula a velocidade de propagación da onda e determina, en función do tempo, a velocidade de
oscilación transversal da partícula situada en x = 5 cm
Dioptrio plano
1. Un raio de luz de frecuencia 5·10 ¹⁴ Hz incide cun ángulo de incidencia de 30° sobre unha lámina de
vidro de caras plano-paralelas de espesor 10 cm. Sabendo que o índice de refracción do vidro é 1,50
e o do aire 1,00:8
a) Enuncia as leis da refracción e debuxa a marcha dos raios no aire e no interior da lámina de vi-
drodro
b) Calcula a lonxitude de onda da luz no aire e no vidro, e a lonxitude percorrida polo raio no inte-
rior da lámina
c) Acha o ángulo que forma o raio de luz coa normal cando emerxe de novo ao aire
2. Un raio de luz pasa da auga (índice de refracción n = 4/3) ao aire (n = 1). Calcula:
a) O ángulo de incidencia se os raios reflectido e refractado son perpendiculares entre si
b) O ángulo límiteb)
c) Hai ángulo límite se a luz incide do aire á auga?
3. Sobre un prisma equilátero de ángulo 60° (ver figura), incide un raio luminoso monocromático que
forma un ángulo de 50° coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo
á base AC:
a) Calcula o índice de refracción do prisma
b) Determina o ángulo de desviación do raio ao saír do prisma, debuxando a traxectoria que segue
o raio
c) Explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou
non, dentro e fóra do prisma