Name: Ilham Ahmad Fahriji

NIM: 10231042

Prodi: Sistem Informasi

Dokumentasi Hasil Praktikum Jaringan Komputer

1. Diagram/Topologi Jaringan

Gambar 1: Topologi jaringan yang menunjukkan koneksi antar perangkat

2. Tabel Konfigurasi

Koneksi	Subnet	Alokasi IP	
Link A-B	192.168.12.0/30	Router A: 192.168.12.1 Router B: 192.168.12.2	
Link B-C	192.168.23.0/30	Router B: 192.168.23.1 Router C: 192.168.23.2	
Subnet Lokal A	10.0.1.0/24	Interface Router A: 10.0.1.1	
Subnet Lokal B	10.0.2.0/24	Interface Router B: 10.0.2.1	
Subnet Lokal C	10.0.3.0/24	Interface Router C: 10.0.3.1	

3. Screenshot Konfigurasi

3.1 Output Konfigurasi Interface Router

Gambar 2: IP route PC 1 yang terhubung

Gambar 3: IP route PC 2 yang terhubung

Gambar 4: IP route PC 3 yang terhubung

3.2 Konfigurasi RIP dan OSPF

Routing Information Protocol (RIP)

RIP adalah protokol routing dinamis berbasis algoritma distance vector yang menggunakan hop count sebagai metrik untuk menentukan jalur terbaik. RIP memiliki karakteristik:

- Menggunakan algoritma Bellman-Ford
- Batas maksimum 15 hop (16 dianggap unreachable)
- Update routing tabel setiap 30 detik
- Cocok untuk jaringan kecil hingga menengah

Konfigurasi RIP pada Router:

```
Router> enable
Router# configure terminal
Router(config)# router rip
Router(config-router)# version 2
Router(config-router)# network 192.168.12.0
Router(config-router)# network 10.0.1.0
Router(config-router)# no auto-summary
Router(config-router)# exit
```

Open Shortest Path First (OSPF)

OSPF adalah protokol routing dinamis berbasis algoritma link-state yang menggunakan konsep area dan cost sebagai metrik untuk menentukan jalur terbaik. OSPF memiliki karakteristik:

- Menggunakan algoritma Dijkstra (SPF)
- Membentuk hubungan tetangga (adjacency) sebelum bertukar informasi
- Lebih efisien dalam bandwidth dibanding RIP
- Support untuk jaringan besar dengan konsep hierarki area
- Konvergensi lebih cepat daripada RIP

Konfigurasi OSPF pada Router:

```
Router> enable
Router# configure terminal
Router(config)# router ospf 1
Router(config-router)# network 192.168.12.0 0.0.0.3 area 0
Router(config-router)# network 10.0.1.0 0.0.0.255 area 0
Router(config-router)# exit
```

Perbandingan RIP dan OSPF

Aspek	RIP	OSPF
Algoritma	Distance Vector	Link State
Metrik	Hop Count	Cost (bandwidth)
Konvergensi	Lambat	Cepat
Skalabilitas	Rendah	Tinggi
Penggunaan CPU/Memory	Rendah	Tinggi
Batas Hop	15	Tidak terbatas
Dukungan VLSM	RIPv2 saja	Ya
Kompleksitas Konfigurasi	Rendah	Tinggi

Dalam praktikum ini, RIP diimplementasikan untuk menghubungkan semua jaringan karena topologi yang digunakan relatif sederhana dan jumlah router masih dalam batas kemampuan RIP. Implementasi RIP memungkinkan semua subnet (10.0.1.0/24, 10.0.2.0/24, dan 10.0.3.0/24) dapat saling terhubung meskipun tidak terhubung langsung.

Gambar 5: Konfigurasi RIP pada Router A

Gambar 6: Konfigurasi RIP pada Router B

Gambar 7: Konfigurasi RIP pada Router C

6. Tautan Hasil Simulasi

• GitHub Profile