Отчет по лабораторной работе № 22 по курсу "Фундаментальная информатика"

- 1. Тема: Издательская система ТЕХ
- 1. **Цель работы:** сверстать в ТЕХ заданные согласно варианту страницы книг по математике и информатике. За основу взят учебник по матанализу Кудрявцева Л. Д. и Фихтенгольца Г. М. ручной типографской вёрстки.
- 2. Задание: страница 485
- 3. Оборудование (студента):

Процессор *AMD A9-9420 RADEON R5*, *5 COMPUTE CORES 2C+3G 3.00 GHz* с ОП 8 Гб, НМД 512 Гб. Монитор 1920x1080

4. Программное обеспечение (студента):

Операционная система семейства: *linux*, наименование: *ubuntu*, версия 20.04 focal интерпретатор команд: *bash* версия 5.0.17 Редактор текстов *emacs* версия 3.24.14

6.Идея, метод, алгоритм

Ознакомившись с системой ТЕХ и используя различные Интернет ресурсы с мануалами по использованию, сверстать точную копию страницу из учебника на странице 485

7/Сценарий выполнения работы

Основная проблема заключается в написании математический формул, в которых используется множества. Для этого я нашла несколько Интернет ресурсов с документацией по LATEXT. В основном я использовала символ \varepsilon () и \delta

Необходимо отметить, что не все особенности вёрстки исходного текста были реализованы. Опишем их:

1) Шрифт меньше в моей копии и он не столь жирный, как в оригинале.

2) Стиль шрифта в блоке доказательства отличается от оригинала, потому что не известно название этого стиля

Оригинал Копия

ского множества Z в плоскость комплексной переменной w. Например, функция w=|z| отображает плоскость на полупримую, а функция $w=z^2$ — всю плоскость на всю плоскость, как говорят, двукратным образом— в данном случае это означает, что при отображении $w=z^2$ каждая точка образа кроме нуля имеет прообраз, состоящий из двух точек.

Для комплекснозначных функций можно ввести многие из поинтий, введенных ранее для действительнозначных функций (предел, непрерывность, дифференцируемость, интеграл и др.). В ближайших параграфах придется встретиться лишь с понятием ограниченности и непрерывности комплекснозначных функций.

Комплекснозначная функция f(z), $z \in Z \subseteq C$ называется ограниченной на множестве Z, если на этом множестве ограничена функция |f(z)|.

Таким образом, понятие ограниченности комплекснозначной функции f сводится к понятию ограниченности действительнозначной функции f.

Определение 6. Пусть комплекснозначная функция f определена на множестве $\mathbf{Z} = \mathbf{C}$ и пусть $z_0 \in \mathbf{C}$. Функция f называется непрерывной в точке z_0 , если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для всех точек $z \in \mathbf{Z}$, удовлеторяющих условию $|z-z_0| < \delta$, выполняется неравенство $|f(z)-f(z_0)| < \varepsilon$.

Мы видим, что по форме это определение полностью совпадает с определением непрерывности для действительных функций (см. п. 5.5).

Комплекснозначная функция, непрерывная в каждой точке некоторого множества, называется непрерывной на этом множестве $(x_0) = |f(x_0)| < |f(x) - f(x_0)|$ следует, что если функция f(x), определенная на множестве Z = C, непрерывна в какой-то точке z_0 этого множества: $z_0 \in Z$, то и действительноаначиля функция |f(x)| непрерывна в этой точке.

На комплексновначные функции переносится теорема о том, что если две функции f и g, определенные на некотором множестве Z=C, пепрерывны в точке $z_0\in Z$, то п функции f+g, fg, а если $g(z_0)\neq 0$, то и f/g, непрерывны в этой точке.

485

мер, функция w=|z| отображает плоскость на полупрямую, а функция $w=z^2$ - всю плоскость на всю плоскость,как говорят, двукратным образом - в данном случае это означает, что при отображении $w=z^2$ каждая точка образа кроме нуля имеет прообраз, состоящий из двух точек.

Для комплекснозначных функций можно ввести многие из поня-

ского множества Z в плоскость комплексной переменной w. Напри-

Для комплекснозначных функций можно ввести многие из понятий, введенных ранее для действительнозначных функций (предел, непрерывность, дифференцируемость, инитеграл и др.).В ближайпих параграфах придется встретиться лишь с понятием ограниченности и непрерывности комлекснозначных функций.

Комплекснозначная функция $f(z), z \in \mathbf{Z} \subset \mathbf{C}$ называется *ограниченной на множестве* \mathbf{Z} , если на этом множестве ограничена функция |f(z)|.

Таким образом, понятие ограниченности комплекснозначной функции f сводится к понятию ограниченности действительнозначной функции |f|.

Определение 6. Пусть комплекснозначная функция f определена на множесстве $Z\subset C$ и пусть $z_0\in C$. Функция |f| называется непрерывной в точке $z_0,\ \varepsilon>0$ существует $\delta>0$ такое, что для всех точек $z\in Z$, удовлетворяющих условию $|z-z_0|<\delta$, выполияется неравество $|f(z)-f(z_0)|<\varepsilon$. Мы видим, что по форме это определение полностью совпадает

Мы видим, что по форме это определение полностью совпадает с определением непрерывности для действительнозначных функций (см. п. 5.5).

Комплекснозначная функция, непрерывная в каждой точке некоторого множества, называется непрерывной на этом множестве. Из определения непрерывности функции и неравенства $|f(z)| - |f(z_0)| \le |f(z) - f(z_0)|$ следует, что если функция f(z), определенная на множестве $\mathbf{Z} \subset \mathbf{C}$, непрерывна в какой-то точке z_0 этого множества: $z_0 \in \mathbf{Z}$, то и действительнозначная функция |f(z)| непрерывна в этой точке.

На комплекснозначной функции переносится теорема о том, что иде функции f и g, определенные на некотором множестве $\mathbf{Z} \subset \mathbf{C}$, непрерывны в точке $z_0 \in \mathbf{Z}$, то и функции f+g, fg, а если $g(z_0) \neq 0$, то и f/g, непрерывны в этой точке.

485

8. Распечатка протокола

\documentclass[14pt,a4paper]{extreport} \usepackage[a4paper, total={6in, 9in}]{geometry} \usepackage[utf8]{inputenc} \usepackage{mathtools} \usepackage[russian]{babel}

\pagestyle{empty}\begin{document}

\noindentcкого множества Z в плоскость комплексной переменной \$w\$. Например, функция \$w\$=|\$z\$| отображает плоскость на полупрямую, а функция $$w$=$z^{2}$$ - всю плоскость на всю плоскость,как говорят, двукратным образом - в данном случае это означает, что при отображении $$w$=$z^2$ каждая точка образа кроме нуля имеет прообраз, состоящий из двух точек.$

Для комплекснозначных функций можно ввести многие из понятий, введенных ранее для действительнозначных функций (предел, непрерывность, дифференцируемость. иинтеграл и др.).В ближайших параграфах придется встретиться лишь с понятием ограниченности и непрерывности комлекснозначных функций.

Комплекснозначная функция f(z), z in \textbf Z \subset \textbf C называется \textit {oграниченной на множетсве} \textbf Z, если на этом множестве ограничена функция f(z).

Таким образом, понятие ограниченности комплекснозначной функции \$f\$ сводится к понятию ограниченности действительнозначной функции |\$f\$|.

\noindent\textbf{Oпределение 6.} \textit{Пусть комплекснозначная функция \$f\$ определена на множестве \textbf{Z \$\subset\$ C} и пусть z_0 \$ \in\$ \textbf{C}. Функция \$|\$f\$|\$ называется непрерывной в точке z_0 , если для любого \$ \varepsilon\$ > 0 существует \$\delta\$ > 0 такое, что для всех точек \$z\$ \$\in\$ \textbf{Z}, удовлетворяющих условию \$|z - z_0 |\$ < \$\delta\$, выполняется неравество \$|f(z)-f(z_0)|\$ < \$\varepsilon\$.}

Мы видим, что по форме это определение полностью совпадает с определением непрерывности для действительнозначных функций (см. п. 5.5).

Комплекснозначная функция, непрерывная в каждой точке некоторого множества, называется непрерывной на этом множестве. Из определения непрерывности функции и неравенства f(z) - $f(z_0)$ \\$\leq\$ \f(z) - $f(z_0)$ \\$\cdot \text{cne}\text{yet}, что если функция f(z), определенная на множестве \text{textbf}{Z} \subset \text{textbf}{C}, непрерывна в какой-то точке \\$z_0\\$ этого множества: \\$z_0\\$ \subset \text{nin} Z, то и действительнозначная функция \\$|f(z)|\\$\text{ непрерывна в этой точке}.

На комплекснозначной функции переносится теорема о том, что если две функции \$f\$ и \$g\$, определенные на
некотором множестве \textbf{ Z \$\subset\$ C }, непрерывны в точке z_0 \$\\in\$\textbf{ Z }, то и функции $f + g$ \$,
fg , а если $g(z 0)$ \neq 0, то и f/g , непрерывны в этой точке.
\hegin{center}

\end{document}

9. Дневник отладки должен содержать дату и время сеансов отладки и основные события (ошибки в сценарии и программе, нестандартные ситуации) и краткие комментарии к ним. В дневнике отладки приводятся сведения об использовании других ЭВМ, существенном участии преподавателя и других лиц в написании и отладке программы.

Nº	Лаб. или дом.	Дата	Время	Событие	Действие по исправлению	Примечание
1	дом	25.12		-	-	-

10. Замечания автора. Нет.

Выводы. В результате лабораторной работы были выполнены все поставленные цели. Latex позволяет стандартизировать вид научных трудов, книг и статей. Теперь, смотря в учебник по матанализу Кудрявцева Л.Д., я буду видеть инструменты вёрстки LATEX. Попытка повторить исходный текст оказалась сложной, не всё удалось реализовать.

Подпись студента
