

Table of Contents

- ► IP Terminology
- ► The Hierarchical IP Addressing Scheme
- ▶ IPv4 Address Types
- Network Address Translation (NAT)
- ► Internet Protocol Version 6 (IPv6)

1

IP Terminology

IP Terminology

- Octet Same as byte, made up of 8 bits
- Network Address This is the designation used in routing to send packets to a remote network—for example, 10.0.0.0, 172.16.0.0, and 192.168.10.0.
- **Host Address** A logical address used to define a single host
- Broadcast Address Used by applications and hosts to send information to all hosts on a network. For example
 255.255.255, which designates all networks and all hosts

2

The Hierarchical IP Addressing Scheme

The Hierarchical IP Addressing Scheme

- IP address consists of 32 bits or 4 bytes or 4 octets
- Represented as:
 - o 54.164.151.235 or
 - o 00110110.10100100.10010111.11101011 or
 - o 66.A4.97.EB
- 32-bit IP address is structured (or hierarchical) address to make routing possible
- If IP address was flat (or non hierarchical) routing would be impossible

- The network address (or network number) uniquely identifies each network
- Every machine on the same network shares that network address as part of its IP address
- For example:

IP Address: 154.101. 51.235 Host address

Network address: Every device in this network starts with these numbers

Network addresses are divided into 5 classes:

CLARUSWAY®

The Hierarchical IP Addressing Scheme

Octet 2 Octet 3 Octet 1 Octet 4 Class A Network ID Host ID Host ID Class B Network ID 1 0 Class C 1 0 Network ID Host ID 1 Class D 1 Multicast Address 1 0 Class E 1 1 1 Reserved

CLARUSWAY®

Class A Addresses

network host host

- Class A Network address is 1-byte long, first bit is always 0
- Maximum 2^7 = 128 Class A networks can be created
- Maximum 2²⁴ = 16,777,214 hosts (excluding 2 reserved addresses)
- First bit is always 0 then
 00000000 = 0
 - **0**1111111 = 127
- The addresses 00000000 and 01111111 are reserved for default route and troubleshooting respectively
- So Class A network addresses start with 1-126

CLARUSWAY®

The Hierarchical IP Addressing Scheme

Class A Addresses

Address	Function
Network address of all 0s (0.X.X.X)	Means "this network or segment."
Network address of all 1s (127.X.X.X)	Means "all networks."
127.0.0.1	Reserved for loopback tests. Designates the local host and allows that host to send a test packet to itself without generating network traffic.
Host address of all 0s (X.0.0.0)	Means "network address" or any host on the specified network.
Host address of all 1s (X.255.255.255)	Means "all hosts" on the specified network
Entire IP address set to all 0s (0.0.0.0)	Any host on any network
Entire IP address set to all 1s (255.255.255.255)	Broadcast to all hosts on the current network

CLARUSWAY®

10

Class B Addresses

network network host host

- Class B Network Address is 2-byte long, first 2 bits are always 10
- Maximum 2¹⁴ = 16,384 Class B networks can be created
- Maximum 2¹⁶ = 65,534 hosts (excluding 2 reserved addresses)
- First 2 bits are always 10 then

10000000 = 128 10111111 = 191

Class B Network Addresses start with 128-191

۹

The Hierarchical IP Addressing Scheme

Class C Addresses

network network host

- Class C Network Address is 3-byte long, first 3 bits are always 110
- Maximum 2²¹ = 2,097,152 Class C networks can be created
- Maximum 2⁸ = 254 hosts (excluding 2 reserved addresses)
- First 3 bits are always 110 then

11000000 = 192

11011111 = 223

Class C Network Addresses start with 192-223

Class D Addresses

- Not assigned to devices on a network
- Used for special-purpose, multicast applications (such as videoand audio-streaming applications)
- Need to be registered with IANA to be used globally
- First 4 bits are always 1110 then

```
11100000 = 224
11101111 = 239
```

• Class D Network Addresses start with 224-239

П

The Hierarchical IP Addressing Scheme

Class E Addresses

- No defined use
- Reserved for usage and testing by IANA and the Internet Research Task Force (IRTF)
- Need to be registered with IANA to be used globally
- First 4 bits are always 1111 then

```
11110000 = 240
11111111 = 255
```

Class E Network Addresses start with 240-255

IP Address Classes:

Address Class	1st Octet Range	1st Octet Bits	Network & Host Parts	# of Possible Networks # of Hosts per Network
A	1-127	00000000 - <mark>0</mark> 1111111	N.H.H.H	128 nets (2 ⁷) 16,777,214 hosts per net (2 ²⁴)-2
В	128-191	10000000 - 10111111	N.N.H.H	16,384 nets (2 ¹⁴) 65,534 hosts per net (2 ¹⁶)-2
С	192-223	11000000 - 11011111	N.N.N.H	2,097,150 nets (2 ²¹) 254 hosts per net (2 ⁸)-2

11

The Hierarchical IP Addressing Scheme

Private IP Addresses (RFC 1918)

Every host on every network should have a routable IP address. But if every host on every network in the world was required to have an unique IP address, we would have run out of IP addresses!

Private IP Addresses (RFC 1918)

- The IANA reserved the following IP address blocks for use as private IP addresses:
 - o Class A: 10.0.0.0 to 10.255.255.255
 - o Class B: 172.16.0.0 to 172.31.255.255
 - o Class C: 192.168.0.0 to 192.168.255.255

Introduction to NAT

- NAT is a process in which one or more local IP addresses are translated into one or more global IP address and vice versa to provide Internet access to the local hosts
- NAT allows multiple devices to access the Internet through a single public address

CLARUSWAY®
WAY TO REINVENT YOURSELF

Introduction to NAT

- Advantages:
 - Hides internal structure of the network from the outsider and thus increases network security
 - Eliminates address renumbering when a network evolves
 - Allows unlimited private IP address range
- Disadvantages:
 - Changes the IP addresses, thus troubleshooting becomes more complex
 - Translation results in switching path delays
 - o Certain applications will not function while NAT is enabled
 - Complicates tunneling protocols such as IPsec

CLARUSWAY®

4

Introduction to NAT

Types of NAT:

- Static NAT (SNAT):
 - One-to-one mapping (A single private IP with a single global IP)
 - Each device needs a public IP address
 - Generally used for web hosting

Introduction to NAT

Types of NAT:

- Dynamic NAT (DNAT):
 - Public IP is picked from a pool of IP addresses
 - If no IP is left, data packet is dropped by the NAT
 - Very costly as many global IP addresses have to be bought to make a pool

Introduction to NAT

Types of NAT:

- Overloading or Port Address Translation (PAT):
 - Most popular type of NAT
 - Port numbers are used to distinguish the traffic
 - Cost-effective as lots of users can be connected by using only one public IP address

APIPA

- In a network, Dynamic Host Configuration Protocol (DHCP) server assigns IP addresses to all the hosts connected to the network
- If DHCP server isn't available, Windows provides Automatic Private IP Addressing (APIPA) service to configure the IP addresses for the hosts
- 169.254.0.1 169.254.255.254 reserved for **APIPA**

2

IPv4 Address Types

J

IPv4 Address Types

Layer 2 Broadcasts

- Layer 2 broadcast traffic stays within a local area network (LAN) boundary; known as the broadcast domain
- A MAC address of FF:FF:FF:FF:FF is used for broadcast

IPv4 Address Types

Layer 3 Broadcasts

- Layer 3 broadcast traffic is sent to all devices in a network
- A network address of X.255.255.255 is used for broadcast
- Address Resolution Protocol (ARP) uses broadcasting to map MAC addresses to IP addresses
- **Dynamic Host Configuration Protocol (DHCP)** uses broadcasting to dynamically assign IP addresses to hosts

IPv4 Address Types

Unicast Address

- Identifies a unique node on a network
- Packets addressed to a unicast address are delivered to the node identified by the address
- Unicast address has the MAC address of the destination device

CLARUSWAY®

4

IPv4 Address Types

Multicast Address

- Represent a group of devices in a LAN
- Multicast frames have a value of 1 in the least-significant bit of the first octet of the destination address
- Multicast addresses range from 224.0.0.0 to 239.255.255.255
 (Class D)

4

Internet Protocol Version 6 (IPv6)

Internet Protocol Version 6 (IPv6)

Why do we need IPv6?

	ΙP	v4	A	dd	re	SS	Sp	ac	e (Сс	ns	ur	np	tic	n
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
				20		22	23	24		26	27	28	29	30	
32		34		36		38	39	40		42		44			
48	49	50	51	52	53	54		56		58	59	60	61	62	
64		66		68		70		72		74	75	76		78	79
80		82		84	85	86	87	88	89	90				94	
96		98	99	100	101	102	103	104	105	106	107	108	109	110	111
	113	114			117	118		120	121	122	123	124	125	126	127
128	129	130	131	132		134	135	136		138	139	140		142	143
144	145	146	147	148	149	150	151	152	153	154	155	156		158	159
			163	164	165	166	167	168	169	170	171	172	173	174	
	177	178	179	180		182		184	185	186		188		190	191
192		194		196	197	198	199	200	201		203	204	205	206	
208				212	213				217			220	221	222	223
224	225	226	227	228	229	230		232	233	234	235	236	237	238	
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
	Availab	le	Alloc	Allocated						As of	Nove	mber	30, 20		

• IPv4 — 4,294,467,295 IP addresses

Class A --> 16,777,216

Class B → 65,535

Class C — 256

Large companies (Apple, IBM, Microsoft, etc.) allocated one or more

Class A addresses

Many IP addresses are wasted!

CLARUSWAY®

Internet Protocol Version 6 (IPv6)

• IPv6 is 128-bit long:

340,282,366,920,938,463,463,374,607,431,768,211,456

Enough IP addresses for the entire galaxy!

- IPv6 is 128-bit long:
 - 340 undecillion
 - 282 decillion
 - 366 nonillion
 - 920 octillion
 - 938 septillion
 - 463 sextillion
 - 463 quintillion
 - 374 quadrillion
 - 607 trillion
 - 431 billion
 - 768 million
 - 211 thousand
 - 456

3

Internet Protocol Version 6 (IPv6)

 \rightarrow

- More Efficient Routing
- More Efficient Packet Processing
- Directed Data Flows No broadcasts!
- Simplified Network Configuration
- Support For New Services No need for NAT!
- Security

• IP Address representation:

Octet

IPv4 — 51.151.64 242

IPv6 — 2041:1234:140F:1122:AB91:564F:875B:131B

On browsers:

Hexadectet or hextet

IPv4: http://51.151.64.242/index.html

IPv6:

http://[2041:1234:140F:1122:AB91:564F:875B:131B]/index.html

CLARUSWAY®

Internet Protocol Version 6 (IPv6)

• Shortening IPv6 Addresses:

Original : 2041:0000:140F:0000:0000:0000:875B:131B

Short : 2041:0000:140F::875B:131B

Original : 2001:0000:0000:0012:0000:0000:1234:56ab

Wrong! : 2001::0012::1234:56AB

You can remove zeros only once!

Shortening IPv6 Addresses:

Original : 2041:0000:140F:0000:0000:0000:875B:131B

Short : 2041:0:140F::875B:131B

Original : 2001:0001:0002:0003:0004:0005:0006:0007

Short : 2001:1:2:3:4:5:6:7

Rules:

o An entire string of zeros can be removed, you can only do this once

o 4 zeros can be removed, leaving only a single zero

Leading zeros can be removed

CLARUSWAY[©]

Internet Protocol Version 6 (IPv6)

IPv6 Address Types:

- Unicast Address
 - Link Local Address: Only valid in local networks. Starts with FE80::/10
 - Global Unicast Address: Worldwide unique address. Starts with 2000 to 3FFF
- Multicast address Same as IPv4. Starts with FF00::/8
- Anycast Address Similar to broadcast but instead of sending to all nodes, sends to the closest nodes to sender.

CLARUSWAY®

IPv6 Special Addresses:

Address	Meaning
0:0:0:0:0:0:0:0	Equals ::. The equivalent of IPv4's 0.0.0.0 and is typically the source address of a host before the host receives an IP address when you're using DHCP-driven stateful configuration
0:0:0:0:0:0:0:1	Equals ::1. The equivalent of 127.0.0.1 in IPv4.
2000::/3	The global unicast address range allocated for Internet access.
FC00::/7	The unique local unicast range.
FE80::/10	The link-local unicast range.
FF00::/8	The multicast range.
3FFF:FFFF::/32	Reserved for examples and documentation.
2001:0DB8::/32	Also reserved for examples and documentation.
2002::/16	Used with 6to4 tunneling, which is an IPv4-to-IPv6 transition system.
CLARUSWAY®	39

Internet Protocol Version 6 (IPv6)

 \rightarrow

Stateless Autoconfiguration (EUI-64):

48-bit MAC address

	00	00	42	20	19	45		
	00000000	00001100	01000010	00101000	01111001 01000101			
		ufacturer ID rse 7-th bit			Move de at th	evice ID e end		
00000010	00001100	01000010	11111111	11111110	00101000	01111001	01000101	
02	0C	42	FF	FE	28	79	45	

64-bit EUI-64 address

Advantages of EUI-64:

- Doesn't require support of a DHCP server
- Allows hot plugging of network devices
- Suitable for applications requiring secure connection without additional intermediaries in the form of a proxy or a DHCP server
- Cost effective
- Suitable for wireless networks

CLARUSWAY®

4

Internet Protocol Version 6 (IPv6)

Migrating to IPv6:

- Dual Stacking
 - Most common and easiest migration
 - Allows devices to communicate either IPv4 or IPv6
 - Lets you upgrade your devices to IPv6 one at a time

42

