Serie 7

"Besprechung": Donnerstag, 7.5

- 7.1. Sei $G \subset \mathbb{R}^d$ Gebiet, $f \in C^1(G; \mathbb{R}^d)$. Sei $y \in C^1(\mathbb{R}; \mathbb{R}^d)$ eine Lösung der autonomen ODE y' = f(y) mit $\lim_{t \to \infty} y(t) = y_\infty \in G$. Zeigen Sie: y_∞ ist eine Ruhelage der ODE.
- 7.2. Betrachten Sie das System

$$x' = -x(x-a)(x-b) - y$$

$$y' = \sigma x - \gamma y$$

wobei $0 < a < b \text{ und } \sigma, \gamma > 0.$

- a) Bestimmen Sie die Ruhelagen des Systems. Skizzieren Sie das Phasenportrait, d.h. deuten Sie durch Pfeile das Richtungsfeld (das ist das Vektoreld $\mathbf{f}(\mathbf{y})$ der autonomen ODE $\mathbf{y}' = \mathbf{f}(\mathbf{y})$) an.
- b) Ist die Ruhelage (0,0) asymptotisch stabil?
- c) Geben Sie die Differentialgleichung an, die von der Ableitung der Lösung nach σ erfüllt wird.
- 7.3. Versuchen Sie, die Lösung des AWP

$$y'' + y + \varepsilon y^3 = 0$$
, $y(0) = 1$, $y'(0) = 0$

für kleine ε anzunähern. Bestimmen Sie hierzu Funktionen $t\mapsto y_0(t)$ und $t\mapsto y_1(t)$, so daß $y(t)=y_0(t)+\varepsilon y_1(t)+O(\varepsilon^2)$ ist.

7.4. Betrachten Sie das System

$$x' = y$$

$$y' = x^2 + x$$

Zeigen Sie, daß $h(x,y):=y^2-x^2-\frac{2}{3}x^3$ eine Erhaltungsgröße ist. Benutzen Sie diese Information, um das Phaseportrait zu skizzieren. Was können Sie über die Stabilität der beiden Ruhelagen sagen?

7.5. Eine (skalare) ODE der Form

$$p(t,y)y' + q(t,y) = 0 (1)$$

heißt exakt, falls es eine Funktion F gibt, so daß

$$\frac{\partial}{\partial y}F(t,y) = p(t,y), \qquad \frac{\partial}{\partial t}F(t,y) = q(t,y).$$

a) Zeigen Sie: Falls $p(t_0, y_0) \neq 0$, dann kann das AWP

$$p(t,y)y' + q(t,y) = 0,$$
 $y(t_0) = y_0$

für eine exakte ODE durch Lösen der impliziten Gleichung F(t, y(t)) = c für geeignetes c gelöst werden.

b) Lösen Sie das AWP

$$(4bty + 3t + 5)y' + 3t^2 + 8at + 2by^2 + 3y = 0, y(t_0) = y_0.$$

7.6. Wir sagen, daß für eine ODEs der Form (1) die Funktion μ ein integrierender Faktor ist, falls die (äquivalente) ODE

$$\mu(t,y)p(t,y)y' + \mu(t,y)q(t,y) = 0$$

exakt ist. Lösen Sie die ODE

$$ty' + 3t - 2y = 0$$

indem Sie einen integrierenden Faktor der Form $\mu(t,y) = \mu(t)$ suchen.

Bemerkung: auf der Vorlesungshomepage gibt es ein Extrablatt zum Üben (freiwillig!) mit einer Liste von exakten ODEs und ODEs, die mithilfe eines integrierenden Faktors gelöst werden können (samt Lösungen).

- 7.7. Betrachten Sie das skalare autonome System y'=f(y) (mit $f\in C^1$), welches die Ruhelage y_0 habe. Zeigen Sie:
 - a) Falls es $\delta > 0$ gibt, so daß f(y) < 0 für $y \in (y_0, y_0 + \delta)$ und f(y) > 0 für $y \in (y_0 \delta, y_0)$, dann ist $y \equiv y_0$ asymptotisch stabil.
 - **b)** Falls es $\delta > 0$ gibt, so daß f(y) > 0 für $y \in (y_0, y_0 + \delta)$ und f(y) < 0 für $y \in (y_0 \delta, y_0)$, dann ist $y \equiv y_0$ instabil.