Y36SAP-4

Logické obvody kombinační a sekvenční používané v číslicovém počítači Sčítačka, půlsčítačka, registr, čítač

Některé obrázky převzaty z doporučené literatury:

Gajski, D. D.: Principles of Digital Design. Prentice-Hall International, Inc. 1997

Často používané funkce

- Majorita:
 - nabývá hodnotu 1, když většina proměnných je rovna 1
- Majorita ze 3 ... M₃ (tzn. 2 nebo 3 proměnné)

$$M_3(a,b,c) = a.b.\bar{c} + a.\bar{b}.c + \bar{a}.b.c + a.b.c$$

Úpravami, algebraicky nebo v mapě dostaneme:

$$M_3(a,b,c) = a.b + a.c + b.c$$

XOR

$$a \oplus b = a\overline{b} + \overline{a}b$$

$$a\overline{b} + 0 + \overline{a}b + 0 = a\overline{b} + a\overline{a} + a\overline{b} + \overline{b}b =$$

$$a(\overline{a} + \overline{b}) + b(\overline{a} + \overline{b}) = a.\overline{ab} + b.\overline{ab}$$

Dekodéry

Dekodér: binární kód → 1 ze 4

4 pravdivostní tabulky:

X ₁	X ₀	y _o	y ₁	y ₂	y ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Booleovské výrazy:

$$y_0 = \overline{x}_1 \cdot \overline{x}_0$$

$$y_1 = \overline{x}_1 \cdot x_0$$

$$y_2 = x_1 \cdot \overline{x}_0$$

$$y_3 = x_1 \cdot x_0$$

Dekodéry ... obecně, jak navrhnout

Desítkové číslo	Kód BCD DCBA	Kód 2z5 typ 74210 <i>edcba</i>	Kód 2z5 typ 84210 <i>edcba</i>
0	0000	11000	10100
1	0001	00011	00011
2	0010	00101	00101
3	0011	00110	00110
4	0100	01001	01001
5	0101	01010	01010
6	0110	01100	01100
7	0111	10001	11000
8	1000	10010	10001
9	1001	10100	10010

Multiplexor - princip

Multiplexor

			MPX
"adr	esa"		40
A1	A0	Y	$A1 \xrightarrow{A0} dekodér$
0	0	D0	
0	1	D1	$D0 \rightarrow$
1	0	D2	$D1 \Rightarrow mpx \Rightarrow Y$
1	1	D3	$D2 \rightarrow D3 \rightarrow D3$

$$Y = A_1.A_0.D_0 + A_1.A_0.D_1 + A_1.A_0.D_2 + A_1.A_0.D_3$$

Multiplexor

Multiplexor:

poznámka: v CMOS je 2 vstupový MUX realizován pomocí přenosových hradel, tzn. jen 6 transistorů

Demultiplexor

Demultiplexor:

Pravdivostní tabulka:

a ₁	a_0	X	y _o	y ₁	y ₂	y ₃
0	0	0	0	0	0	0
0	0	1	1	0	0	0
	4	0	0	70	0	0
0	1	1	0	1	0	0
4	^	0	0	0	70	0
1	0	1	0	0	1	0
4	4	0	0	0	0	70
1	1	1	0	0	0	1

Realizace:

Y36SAP-Logické obvody typické

Sčítačka

а	b	р	q	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s = \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp}$$

$$s = \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp}$$

$$q = \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp}$$

Poloviční sčítačka – half-adder

Úplná binární sčítačka:

$$s = p(\bar{a}\bar{b} + ab) + \bar{p}(\bar{a}b + a\bar{b}) = p(\bar{a} \oplus b) + \bar{p}(a \oplus b) = p \oplus a \oplus b$$
$$q = ap + bp + ab = M_3(a, b, p)$$

Poloviční sčítačka (HA):

$$s = a \oplus b$$
$$q = a.b$$

a k) q	S
0 0) (0
0 1	I C) 1
1 () C) 1
1 1	1	0

Sčítačka pomocí půlsčítaček

$$q = ab + p.(a \oplus b) = ab + p(a\overline{b} + \overline{a}b) = ab + ap + bp$$

Paralelní sčítačka

$$S = A + B$$

 $A = ...a_2a_1a_0$
 $B = ...b_2b_1b_0$

Registry

 n- klopných obvodů řízené společným hodinovým signálem – zde příklad
 4 bitového registru

Y36SAP-Logické obvody typické

Registr s asynchronním nastavením a nulováním

Poznámka: asynchronní nastavení na 1 nebo nulování má přednost před vstupy I3 – I0

Y36SAP-Logické obvody typické

Registr s řízením zápisu – "paralelní load"

Posuvný registr

PRESENT STATE		NEXT S	STATE	
Shift	Q_3	Q_2	Q ₁	Q_0
0		No ch	ange	
1	I_L	Q_3	Q_2	Q_1

18

Posuvný registr s řízením zápisu a směrem posuvu

Posuvný registr - zjednodušený

24.3.2009

Čítače

- Speciální typ registru, který v sobě zahrnuje funkci inkrementu (dekrementu) – může čítat nahoru nebo (i) dolů
- Jsou tzv. úplné a neúplné čítače:
 - úplné čítače M(modulo) 2ⁿ čítají do 4, 8, 16,
 32, , neúplné např. do 10, 60, 80, 97,...
- Obvykle čítají v binárním kódu
- Ale jsou čítače i v jiných kódech (např. v 1 z n nebo v Grayově kódu – aby se měnila jen jedna vnitřní proměnná)
- Jsou čítače synchronní i asynchronní

Příklad – čítač M4 v binárním kódu

Navrhněte čítač M4 – vstup E (enable counting), synchronní, v binárním kódu

Moore,

graf a tabulka přechodů a výstupů

Q/E	0	1	Υ
0	0	1	00
1	1	2	01
2	2	3	10
3	3	0	11

Příklad – čítač M4 v binárním kódu

E q₁q₀	0	1
00	00	01
01	01	10
10	10	11
11	11	00

-				q1 q0
0	1	1	0	١٩٥
1	0	0	1	

$$D_{q_0} = q_0 \overline{E} + \overline{q_0} E = q_0 \oplus E$$

Výstupy:
$$Y_0 = q_0, Y_1 = q_1$$

$$D_{q_1} = \overline{q_0}q_1 + q_1\overline{E} + q_0\overline{q_1}E$$

Výstup je vidět až po přechodu do následného stavu Q_t Tedy z až po aktivní hraně CLK

Čítač M16

Q_i	C_i	C_{i+1}	D_i
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Mealy, graf a tabulka přechodů a výstupů

Q/E	0	1	0	1
0	0	1	00	01
1	1	2	01	10
2	2	3	10	11
3	3	0	11	00

zakódování

Q/E	0	1	0	1
00	00	01	00	01
01	01	10	01	10
10	10	11	10	11
11	11	00	11	00

$$Y_0 = \overline{a}E + a\overline{E} = a \oplus E = D_a$$

 0
 0
 1
 1

 0
 1
 0
 1

E

$$Y_1 = D_b = \overline{ab} + b\overline{E} + a\overline{b}E$$

b a

Výstup musí být vidět dříve, tzn. současně s následným stavem Q_t a ne s výchozím stavem Q_{t-1} , tedy je odvozen ze vstupů a ne z výstupů

rozdíl Mealy x Moore

¥36SAP-Logické obvody typické

24.

rozdíl Mealy x Moore u čítače

Čítače neúplné

Příklad1: navrhněte čítač M5 v binárním kódu.

Příklad2: navrhněte vratný čítač M4 v Grayově kódu, pro vstup D=0 čítá nahoru, pro D=1 dolů.

Otázka: Jak bude vypadat čítač typu Mealy?

Hazardy

- Co je hazard
- Důvody vzniku hazardů
- Nalezení
- Kdy vadí a kdy ne

Poznámka: zde se budeme zabývat jen statickým hazardem. Existuje ještě dynamický hazard a hazardy v sekvenčních obvodech asynchronních.

Co je a jak vzniká hazard

- Krátká neočekávaná změna výstupního signálu – glitch
- Signál se ze vstupu na výstup šíří různými, ale konvergujícími cestami, z důvodů zpoždění na hradlech i vodičích cestami s různým zpožděním
- Statický hazard výstup má být trvale v 0 nebo 1 (má mít stejnou úroveň), místo toho se objeví krátká změna do opačné úrovně
- 0-1-0 statický hazard v 0
- 1-0-1statický hazard v 1

Statický hazard v 1 - příklad

Ze vstupu y na výstup F vedou dvě cesty, které se nejdříve rozpojí a pak zase spojí

Hledání hazardu v časovém diagramu

Hledám podmínky pro proměnnou y (dvě cesty), tzn.

Pro x = z = 1 hradla AND $x\overline{y} + yz = 1$, ale uvidíme:

Kdy hazardy vadí?

- Co je hazard-free design?
- Hazardy v návrhu kombinačních obvodů nejsou kritické, protože se výstupy po "nějaké" (krátké) době vždycky ustálí ve správných hodnotách
- Naopak v sekvenčních obvodech mohou přivést klopný obvod do nesprávného stavu, a tím celý obvod i do nevratného "špatného" vnitřního stavu
- Řešení synchronní návrh a správný výpočet maximální hodinové frekvence

Typy výstupů, připojení ke sběrnici

- Standardní výstup ... totem-pole
 - –Výstupy nelze spojovat !!!
- Otevřený kolektor ... open collector (OC)
 - –Montážní součin wired-AND gate (TTL)
- Třístavový výstup ... tri-state output
 - Připojení ke sběrnici, 3 stavy: H, L, Z –
 vysoká impedance

TTL struktura -standardní

Otevřený kolektor

Chybí pull-up transistor a odpor

b) Graphic symbol

OC ... open collector

Třístavový výstup

CMOS – complementary metal-oxidsemiconductor logic

Pravdivostní tabulka:

Х	T ₁	T ₂	F
L	on	off	L
Н	off	on	Н

Х	у	T ₁	T ₂	T ₃	T ₄	F
L	L	on	on	off	off	Н
L	Н	on	off	off	on	Н
Н	L	off	on	on	off	Н
Н	Н	off	off	on	on	L

X	у	T ₁	T ₂	T ₃	T ₄	F
L	L	on	on	off	off	Н
L	Н	on	off	off	on	L
Н	L	off	on	on	off	L
Н	Н	off	off	on	on	L