Devoir surveillé n°9 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Étude d'une famille d'endomorphismes.

Dans tout ce problème, n désigne un entier non nul, a et b sont deux nombres réels. La notation $\mathbb{R}_n[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients dans \mathbb{R} et ayant un degré inférieur ou égal à n.

Pour tout $P \in \mathbb{R}_n[X]$, on pose :

$$\varphi_n(P) = (X - a)(X - b)P' - n\left(X - \frac{a+b}{2}\right)P$$

Partie A : Étude de φ_1

Dans toute cette partie, on suppose que n = 1. On pose donc :

$$\forall P \in \mathbb{R}_1[X], \varphi_1(P) = (X - a)(X - b)P' - \left(X - \frac{a + b}{2}\right)P$$

- 1. Démontrer que φ_1 est un endomorphisme de $\mathbb{R}_1[X]$.
- 2. Soit $\mathcal{B}_1 = (1, X)$ la base canonique de $\mathbb{R}_1[X]$. Déterminer $M_1 = \operatorname{Mat}_{\mathcal{B}_1}(\varphi_1)$.
- 3. Déterminer une condition nécessaire et suffisante sur a et b pour que φ_1 soit bijective.
- 4. On suppose, dans cette question seulement, que $a \neq b$.
 - (a) Démontrer que la famille $\mathcal{B} = (X a, X b)$ est une base de $\mathbb{R}_1[X]$.
 - (b) Calculer $\varphi_1(X-a)$ et $\varphi_1(X-b)$ puis déduire $M=\operatorname{Mat}_{\mathcal{B}}(\varphi_1)$.
 - (c) Déterminer la matrice de passage de la base \mathcal{B}_1 à la base \mathcal{B} , notée $P_{\mathcal{B}_1,\mathcal{B}}$.
 - (d) Justifier que la matrice $P_{\mathcal{B}_1,\mathcal{B}}$ est inversible et donner son inverse.
 - (e) Donner, sans démonstration, une égalité reliant les matrices M, M_1 et $P_{\mathcal{B}_1,\mathcal{B}}$.
 - (f) Soit $p \in \mathbb{N}$. Calculer M^p puis en déduire, grâce à la question 4.(e), une expression de M_1^p (on donnera l'expression de chacun des coefficients de cette matrice).

5. On s'intéresse dans cette question à l'ensemble

$$\Gamma = \{\alpha I_2 + \beta M_1 + \gamma M_1^2 + \delta M_1^3, (\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4\}.$$

- (a) Démontrer que Γ est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- (b) Prouver que les matrices ${M_1}^2$ et ${M_1}^3$ sont des combinaisons linéaires de M_1 et I_2 .
- (c) Déterminer une base de Γ et préciser sa dimension.
- 6. On suppose dans cette question que a=4 et b=2. En utilisant les résultats de la question 5.(b), déterminer l'application ${\varphi_1}^2$. En déduire la nature de ${\varphi_1}$ et préciser ses éléments caractéristiques (on donnera une base de chacun des deux espaces vectoriels concernés).

Partie B : Quelques généralités sur φ_n

- 7. Démontrer que φ_n est un endomorphisme de $\mathbb{R}_n[X]$.
- 8. On se propose dans cette question de déterminer $\operatorname{Ker}(\varphi_n)$. On pose $\alpha = \max(a, b)$ et on considère l'intervalle $I =]\alpha, +\infty[$.
 - (a) Démontrer que la fonction $f: x \mapsto \frac{2x (a+b)}{x^2 (a+b)x + ab}$ est continue sur I.
 - (b) Déterminer une primitive F de la fonction f sur I.
 - (c) Résoudre sur l'intervalle I l'équation différentielle (E):

$$y' - \frac{nx - n\frac{a+b}{2}}{(x-a)(x-b)}y = 0$$

- (d) On suppose que n est pair et on écrit n=2p avec $p \in \mathbb{N}^*$. Déduire de la question 8.(c) une base de l'espace vectoriel $\operatorname{Ker}(\varphi_{2p})$.
- (e) On suppose maintenant que n est impair et on écrit n = 2p + 1 avec $p \in \mathbb{N}$. Déduire de la question 8.(c) une base de l'espace vectoriel $\operatorname{Ker}(\varphi_{2p+1})$ (On pourra discuter suivant les valeurs de a et b).

II. Baladeur aléatoire.

Dans tout le problème, n sera un entier naturel supérieur ou égal à 2. Un baladeur contient n pistes (numérotées de 1 à n) et fonctionne en mode aléatoire selon le protocole suivant :

- La première piste lue est choisie de façon aléatoire et uniforme parmi les n pistes.
- A la fin de la lecture d'une piste, la suivante est choisie de façon aléatoire et uniforme parmi les n pistes.

(Il est donc possible que la même piste soit lue plusieurs fois de suite...)

Ce problème étudie différents aspects de cette lecture aléatoire.

On fixe un entier naturel k supérieur ou égal à 1 et on s'intéresse aux k premières lectures effectuées. On suppose qu'un espace probabilisé fini (Ω, P) modélise cette expérience.

Les différentes parties de ce problème sont dans une grande mesure indépendantes les unes des autres.

Partie 1 – Nombre de lectures d'une piste.

Pour tout $1 \le i \le n$, on note X_i le nombre de fois où la piste numéro i est lue au cours des k premières lectures.

- 1) Déterminer la loi de X_i et donner son espérance ainsi que sa variance.
- 2) Les variables aléatoires X_1, X_2, \ldots, X_n sont-elles indépendantes?
- **3) a)** Que vaut $X_1 + X_2 + \cdots + X_n$?
 - **b)** En déduire que la covariance de X_i et X_j pour $i \neq j$ vaut $-\frac{k}{n^2}$.
- 4) a) Déterminer la loi conjointe de X_i et X_j pour $i \neq j$.
 - b) Retrouver alors le résultat de la question 3)b).
- 5) Commenter le signe de la covariance de X_i et X_j pour $i \neq j$.
- **6)** Soient a_1, a_2, \ldots, a_n n entiers naturels.
 - a) On suppose que $a_1 + \cdots + a_n \neq k$. Que vaut la probabilité

$$P(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n) = P(\bigcap_{i=1}^n [X_i = a_i])$$
?

b) On suppose à présent que $a_1 + \cdots + a_n = k$. Montrer que :

$$P(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n) = \frac{k!}{a_1! a_2! \dots a_n!} \left(\frac{1}{n}\right)^k$$

Partie 2 - Nombre de pistes lues.

On note Z le nombre de pistes distinctes ayant été lues au cours des k premières lectures. Si $1 \le \ell \le k$, on note C_{ℓ} le numéro de la ℓ^{e} piste jouée.

Si $1 \le i \le n$, on note B_i la variable alétoire valant 1 si la i^e piste a été jouée, 0 sinon.

- 7) Décrire avec soin l'ensemble des valeurs que prend Z en fonction de n et k.
- 8) Déterminer P(Z=1).
- 9) Exprimer Z en fonction des variables aléatoires B_1, \ldots, B_n .
- **10)** Soit $i \in [1, n]$.
 - a) Exprimer l'événement $[B_i = 0]$ en fonction d'événements construits sur les variables aléatoires C_1, \ldots, C_k .
 - **b)** En déduire la valeur de $P(B_i = 0)$.
 - c) En déduire la loi de B_i , son expérience et sa variance.
- 11) Déduire des questions précédentes que $E(Z) = n\left(1 \left(1 \frac{1}{n}\right)^k\right)$.
- 12) Soit $i, j \in [1, n]$ vérifiant $i \neq j$.
 - a) De même que dans la question 10), déterminer la valeur de

$$P(B_i = 0, B_i = 0).$$

- b) Déduire de cela et de la question 10)b) la valeur de $P(B_iB_i=0)$.
- c) En déduire $Cov(B_i, B_j)$.
- 13) Déduire des questions précédentes que la variance de Z est

$$V(Z) = n \left(1 - \frac{1}{n}\right)^k + n(n-1)\left(1 - \frac{2}{n}\right)^k - n^2\left(1 - \frac{1}{n}\right)^{2k}.$$

- 14) Dans cette dernière partie, on suppose que $k = n \ge 2$ et l'on note $Z_n = Z$.
 - a) Montrer que

$$V(Z_n) \leqslant n \left(1 - \frac{1}{n}\right)^n.$$

b) Montrer que, pour tout $\varepsilon > 0$,

$$P\left(\left|\frac{Z_n}{n} - \left(1 - \frac{1}{n}\right)^n\right| \geqslant \varepsilon\right) \leqslant \frac{1}{n\varepsilon^2} \left(1 - \frac{1}{n}\right)^n.$$

c) En déduire que, pour tout $\varepsilon > 0$,

$$P\left(\left|\frac{Z_n}{n} - \frac{1}{e}\right| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0.$$

Interpréter ce résultat.