

Koji Higasa

2021 年吉日

まえがき

この文書では私がよく使うくせに、自己の記憶媒体から時々抜ける数学・物理をまとめたものである。内容は理学部物理系の院試相当のレベルまでに限る。

目次

第Ⅰ部	数学定義の章	3
第1章	線形代数	4
1.1	正則行列	4
1.2	随伴行列	4
1.3	Hermite 行列・対称行列	4
1.4	Unitary 行列・直交行列	4
第Ⅱ部	数学公式の章	5
第2章	三角関数	6
2.1	3 倍角の公式	6
2.2	積和の公式	6
2.3	和積の公式	7
第3章	積分	8
3.1	6 分の 1 公式	8
3.2	12 分の 1 公式	8
第4章	線形代数	9
4.1	Schwartz の不等式・三角不等式	9
第5章	複素解析	10

第Ⅲ部	数学の簡便な結論を纏めた章	11
第6章 6.1	微分方程式 常微分方程式	12 12
第Ⅳ部	物理学の章	13
第7章	物理量	14
7.1	慣性モーメント	14
7.2	波長	14
7.3	波数	14
第8章	近似式	15

第Ⅰ部

数学定義の章

第1章

線形代数

線形代数に関する定義を掲載しています.

1.1 正則行列

n 次正方行列 A に対して $AX = XA = E_n$ を満たす n 次正方行列 (逆行列という) $X(A^{-1})$ が存在するとき, A は正則行列であるという.

1.2 随伴行列

(m, n) 型行列に対して、共軛転置 ${}^t\overline{A}$ を随伴行列という.

1.3 Hermite 行列·対称行列

 $A^* = A \Leftrightarrow n$ 次正方行列 A が Hermite 行列. また、対称行列とは実 Hermite 行列のこと.

1.4 Unitary 行列·直交行列

 $A^*A = E_n \Leftrightarrow n$ 次正方行列 A が Unitary 行列. また, 直交行列とは実 Unitary 行列のこと. 第Ⅱ部

数学公式の章

第2章

三角関数

三角関数に関する公式・式変形等を掲載しています.

2.1 3 倍角の公式

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$
(2.1)

2.1.1 導出の手続き

hoge

注意

hoge

2.2 積和の公式

$$\sin \alpha \cos \beta = \frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2}
\cos \alpha \sin \beta = \frac{\sin(\alpha+\beta) - \sin(\alpha-\beta)}{2}
\sin \alpha \sin \beta = -\frac{\cos(\alpha+\beta) - \cos(\alpha-\beta)}{2}
\cos \alpha \cos \beta = -\frac{\cos(\alpha+\beta) + \cos(\alpha-\beta)}{2}$$
(2.2)

2.2.1 導出の手続き

加法定理の加減から導出する.

注意

hoge

2.3 和積の公式

$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}
\sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}
\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}
\cos A - \cos B = -2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$$
(2.3)

2.3.1 導出の手続き

積和の公式から導出する.

注意

 $\alpha + \beta$ と置き換える.

第3章

積分

- 3.1 6分の1公式
- 3.2 12 分の 1 公式

第4章

線形代数

4.1 Schwartz の不等式・三角不等式

$$|(a, b)| \le ||a|| \cdot ||b||$$

 $||a + b|| \le ||a|| + ||b||$ (4.1)

第5章

複素解析

第Ⅲ部

数学の簡便な結論を纏めた章

第6章

微分方程式

6.1 常微分方程式

6.1.1 定数係数 2 階線形微分方程式

a, b を実定数とし、2 階斉次微分方程式 y''+ay'+by=0 を考える. 特性方程式 $\lambda^2+a\lambda+b=0$ の 2 根を λ_1 , λ_2 とする. このとき、一般解 y(x) は、 C_1 , C_2 を任意定数として、

$$y(x) = \begin{cases} C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} \\ \text{when } \lambda_1 \neq \lambda_2, (\lambda_1, \lambda_2 \in \mathbb{R}) \\ C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_1 t} \\ \text{when } \lambda_1 = \lambda_2 \\ e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t) \\ \text{when } \lambda_2 = \alpha + i\beta, \lambda_2 = \alpha - i\beta, (\alpha, \beta \in \mathbb{R}, \beta > 0) \end{cases}$$

$$(6.1)$$

で与えられる.

第Ⅳ部

物理学の章

第7章

物理量

- 7.1 慣性モーメント
- 7.2 波長
- 7.3 波数

第8章

近似式