

SuperJANET5, an overview

Roland Trice
SuperJANET 5 Project
r.trice@ukerna.ac.uk

Introduction

- What we said we wanted
- What we've procured
 - Infrastructure
 - Routers
- What are we going to do now?
 - Deployment
 - Migration

Past and Present Challenges

SuperJANET4

- Network capacity increased by two orders of magnitude
- Strengthened design and management to meet increase in user base
- Still a "one size fits all" network

SuperJANET5

- End-to-end network delivery and reliability to the end user
- Meeting the needs of an increasingly diverse user base that has a very broad spectrum of requirements
- Development vs production stability

- Q2/3 2003
- Identified a number of areas for study
 - Architecture and Services at Multiple Network Layers
 - Network Infrastructure
 - Network Equipment
 - Reliability
- Wider consultation
 - Requirements analysis paper produced & issued
 - Community workshops
 - International comparisons

Consultation Carried Out

- Requirements analysis paper
- Requirements analysis launch event
- RNO workshop
- Research sector workshop
- Reliability questionnaire
- Articles in:
 - UKERNA News; ALT Newsletter; JISC Inform
- Discussions with key stakeholder groups:
 - UCISA; e-Science; FERL; Regional Networks

Issues raised

- Network reliability
- Latent bandwidth demand
- Protection of interests of the teaching & learning and research communities
- Participation of Regional Networks in delivery to institutions
- Network monitoring services to applications

Translate Simply to....

- RELIABILITY
- SCALABILITY
- SEPARABILITY
- FLEXIBILITY
- VISIBILITY

END-TO-END

An architecture that responds to the requirements

Flexible transmission platform

Multiple Services

IP Production Network

- Ubiquitous network
- High availability and reliability
- Simple engineering for reliability

Special Purpose Bandwidth

- User requirements not compatible today with the IP production service
- Point-to-point circuits
- Reliable, Possibly to IP production standards

Testbeds

'Breakable' networks

- Reliability
 - Stability
 - Strict change control
 - Don't fiddle
 - Don't introduce bugs
- Development & Flexibility
 - Change
 - New software (free bugs)
 - Takes a very long time if you want to minimise disruption

"You're never alone with Schizophrenia"

- Very high levels of reliability and the development of advanced services are mutually exclusive over a one-size-fits-all IP service
- Multiple service streams are essential

Flexible Transmission Platform Design characteristics

- Transmission channels configured and managed at our control
- Allows multiple service offerings from a single coherent network infrastructure
- Scalable to higher bandwidth at a predictable and manageable cost

Routers "The Next Generation"

- Carrier class reliability
- "Five Nines" availability (99.999%)
 - Less than 5.5 minutes of down time a year
- Building block for a better overall service
 - Does NOT mean that JANET becomes 99.999% available
 - Other problems will almost certainly ensure this

How to achieve "Five Nines"

- Modular h/w and s/w architecture
 - Reduced chance of adding bugs
 - Non-intrusive upgrades
 - Automatic failure detection and rapid recovery
- Eliminate single points of failure in the router
- Partitioned system offering multiple "virtual" routers per platform
 - May enable multiple IP service streams in a single chassis

Infrastructure

- Negotiated Procedure under public procurement regulations
 - We know what we want but not how to get it
- Pre-qualification
 - Q4 2004
 - Six suppliers short-listed
- Negotiate form of ITT with all six
 - Q1 and 2 of 2005

Infrastructure

- Produce and launch ITT
 - June 2005
 - Only to short-listed suppliers
- Award Contract December 2005
- MCI (now Verizon) the preferred supplier

Routers

- RFI process
 - Informal talks with suppliers in Q3/4 2003
 - RFI document issues in early 2004
- Evaluating features of carrier class routers
- NOT a procurement
- Hands-on testing of
 - Chiaro Enstara, Cisco CRS-1, Juniper T-640, Procket PRO 8000

Routers

- Open procurement launched in Sept 2005
- Contract signed with Lucent Technology
 - This morning
- Juniper T-640 routers
 - Carrier Class
 - >1000 in service world wide
 - 40 Gbit/s demonstrated by Juniper and Verizon
 - Available as a product now
 - Very good deal, Driving down the cost of ownership

Juniper T-640

What does this mean in practice?

- Fibre infrastructure dedicated to SuperJANET5
 - Single pair of fibres
 - Unprotected
- Dedicated transmission infrastructure
 - Operated by Verizon initially
 - UKERNA may manage wavelength provision later in the project
- WDM technology
 - Deployed in the core and out to the Region

Core Network Design

- Core Network consists of three basic components:
- Core Terminal sites Six blue locations
- Flexible OADM sites (Optical Add Drop) – Eight white locations
- Optical Amplification sites –
 Eleven locations, not shown

MCI Glasgow C-PoP MCI Edinburgh Flexible Switching MCI Carlisle MCI Newcastle Flexible Switching Flexible Switching point Northern Core MCI Preston MCI Middlesborough Elexible Switching Flexible Switching MCI Leeds MCI Warrington C-PoP C-PoP MCI Leicester MCI Birmingham Flexible Switching Flexible Switching point Southern Core MCI Reading MCI London UK5 C-PoP C-PoP MCI Basingstoke Flexible Switching point MCI Bristol C-PoP

Let's examine this span further....

February 2006

Ciena CoreStream Regional

Ciena CoreStream Regional

- 10G Wavelengths are provisioned using two transponders only
- No Regeneration needed
 - Each wavelength has to be regenerated separately
 - Optical amplification still needed every 80 KM or so

- 10G Wavelengths are provisioned using two transponders only
- IP Production Traffic: 1 X 10G between Terminal locations

- 10G Wavelengths are provisioned using two transponders only (no Regen)
- IP Production Traffic: 1 X 10G between Terminal locations
- Diverse 1 x 10G mesh for London Principal External Interconnects (PEI)

- 10G Wavelengths are provisioned using two transponders only (no Regen)
- IP Production Traffic: 1 X 10G between Terminal locations
- Diverse 1 x 10G mesh for London **Principal External Interconnects** (PEI)
- Development traffic identical to IP network with 1 x 10G between Terminal locations, except.....

- 10G Wavelengths are provisioned using two transponders only (no Regen)
- IP Production Traffic: 1 X 10G between Terminal locations
- Diverse 1 x 10G mesh for London **Principal External Interconnects** (PEI)
- Development traffic identical to IP network with 1 x 10G between Terminal locations, except.....
- different configuration of 2x10G to London PEI

Ciena OADM Operation

February 2006

Ciena OADM Operation

Ciena CN4200 Platform

Regional Network Design

- Linear chain configurations
- Networks are either carried over fibre, or connected into Core Network at OADM sites

Regional Network Carried over CoreStream OADM System

Regional Network Design

Regional Network Carried over collector arc

Reliability

- Reduce single points of failure
 - Duplication of critical equipment
 - Diverse fibre routing in the core
 - Dual connection of Regional Networks
 - SDH technology
 - Rapid failure detection and recovery
 - Detect latent problems

Reliability

- Reduce complexity
 - Simplify IP design
 - Reduce number of backbone routers
- Carrier class equipment
 - Ciena optical technology
 - Juniper T-series routers
- High availability

Scalability

- Ability to expand capacity
 - Where it's needed
 - When it's needed
- 40 Gbit/s trial in early 2007
- Predictable cost
 - Marginal cost for transmission channels
 - Significant discount for router equipment
 - Not clawed back in maintenance charges

Separability

- Hard multiplexing of bandwidth channels
- Production services completely protected
 - Banding of channels could even allow GMPLS experiments over the core

Flexibility

- Deliver bandwidth quickly
 - In weeks rather than months
 - P⁶ is still necessary
- With a variety of interfaces and bandwidths
 - 10 and 2.5 Gbit/s SDH
 - 10 and 1 GE (LAN-PHY and WAN-PHY)
- Temporary arrangements may be practical

Visibility

- Requirement to monitor network in more detail
- Operational monitoring
- Research projects
- Optical taps

What are we going to do now?

- Core links RFS by 30th April 2006
 - Includes UKERNA acceptance testing
 - Telehouse & TeleCity part of the core
- UKERNA Acceptance testing
 - Agilent network testers
 - Loops in the right places
 - Links are ready to go when routers delivered

- Test router to ULCC in March
 - Use to build initial configurations
 - Familiarisation for the NOSC
 - Enhances training courses March/April
- Core routers RFS by 31st May
 - Pre-staging by Lucent to eliminate DOA hardware
 - Pre-configured, plug-and-go

SJ5 delivery Timetable

- All RN links RFS by 31st June
 - Expect some before this date
 - Acceptance using Agilents or Core Routers
 - Connection of SJ4 to SJ5 at Docklands mid June
- Migration of RNs will begin ASAP
 - Non regional services have to migrate as well

Arrangements for migrating

Cease resilient links between Docklands and SJ4 core

- Will be done in early June
- Connect SJ4 to SJ5 at Docklands
 - Will be done in mid June

Arrangements for migrating

- Migrate sites connected to Cosham, Bristol, Glasgow and Edinburgh C-PoPs 1st
 - Reduce ongoing router maintenance costs
 - Free up 10 Gbit/s equipment for re-deployment
- Cross connect links to bypass old core routers while maintaining SJ4 resilience
- Will then move RNs from remaining C-PoPs

Arrangements for migrating

- Avoid migrating during clearing
 - An ambition, NOT a promise
 - EastNET will probably have to ⊗
- EastNET must connect by end of September
 - Existing ntl contract terminates on the 30th

How's it going?

- Very well thank you.....
- University of Kent, Canterbury
 - Longest SJ5 dig
 - From the A2 into the campus
 - Through the mating ground of.....

- Verizon talking to DEFRA and the world expert
 - Who happens to work at UKC

Gone for, and GOT!

- RELIABILITY
- SCALABILITY
- SEPARABILITY
- FLEXIBILITY
- VISIBILITY

END-TO-END

Questions?