Introduction to Machine Learning

Gaussian Processes Covariance functions for GPs

Learning goals

- Covariance functions encode key assumptions about the GP
- Common covariance functions like squared exponential and Matérn

VALID COVARIANCE FUNCTIONS

• Recall marginalization property of GPs: for any

$$\mathbf{X} = \left\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\right\} \subset \mathcal{X},$$

$$\mathbf{f} = f(\mathbf{X}) \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$$
 with $\mathbf{m} = m(\mathbf{X}), \mathbf{K} = k(\mathbf{X}, \mathbf{X})$

- Cov. function (or kernel) determines cov / kernel / Gram matrix:
 K = k(X, X)
- For K to be a valid cov matrix it needs to be positive semi-definite (PSD) for any choice of inputs X
- Implication: only PSD functions (i.e., those that induce PSD K) are valid cov functions
- Also look at SVM chapter for background info on kernels, many further details in e.g.

 Duvenaud 2014

STATIONARY COVARIANCE FUNCTIONS

Recall concept of spatial correlation

$$\mathbf{x}, \tilde{\mathbf{x}}$$
 close in $\mathcal{X} \Rightarrow f(\mathbf{x}), f(\tilde{\mathbf{x}})$ close / more correlated in \mathcal{Y}

- Measure "closeness" via $\mathbf{d} = \mathbf{x} \tilde{\mathbf{x}}$
- $k(\cdot, \cdot)$ called **stationary** \Leftrightarrow function of **d**

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = k(\mathbf{d})$$

• Intuition: stationary $k(\cdot, \cdot)$ implies functions that do not depend on where the points lie in input space but only their difference

EXAMPLE: STATIONARY COVARIANCE

- Let $f \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$ with $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{1}{2} \|\mathbf{d}\|^2)$
- ullet Consider two points ${f x}^{(1)}=3$ and ${f x}^{(2)}=2.5$
- To get corr. between $f(\mathbf{x}^{(1)})$ and $f(\mathbf{x}^{(2)})$ look at $\mathbf{d}(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})$

EXAMPLE: STATIONARY COVARIANCE

- Suppose we observe $y^{(1)} = -0.8$
- $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}$ are close in \mathcal{X} space
- Under the above GP assumption, $y^{(2)}$ should be close to $y^{(1)}$

EXAMPLE: STATIONARY COVARIANCE

- Consider now $\mathbf{x}^{(3)} = 5$
- This is now further from $\mathbf{x}^{(1)}$
- \Rightarrow expect lower correlation between $y^{(3)}$, $y^{(1)}$

PROPERTIES OF COVARIANCE FUNCTIONS I

- Stationary: $k = k(\mathbf{d})$ with $\mathbf{d} = \mathbf{x} \tilde{\mathbf{x}}$ \Rightarrow invariant to translations in \mathcal{X} : $k(\mathbf{x}, \mathbf{x} + \mathbf{d}) = k(\mathbf{0}, \mathbf{d})$ (so we sometimes abuse notation and write $k(\mathbf{d})$)
- Consider $\mathbf{x}, \tilde{\mathbf{x}} \in \mathbb{R}$ and plot contours of $k(\mathbf{x}, \tilde{\mathbf{x}})$:

• Contour set of $\mathbf{x} \to k(\mathbf{x}, \tilde{\mathbf{x}}_1)$ must be same as for $\mathbf{x} \to k(\mathbf{x}, \tilde{\mathbf{x}}_2)$ translated by $\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2$

PROPERTIES OF COVARIANCE FUNCTIONS II

- Isotropic: k = k(r) with $r = \|\mathbf{x} \tilde{\mathbf{x}}\|$ ⇒ invariant to rotations, implies stationarity (again slight notational abuse)
- Consider $\mathbf{x}, \tilde{\mathbf{x}} \in \mathbb{R}^2$

- Isotropic = circular/concentric contours, anisotropic = elliptic
- Dot product: $k = k(\mathbf{x}^T \tilde{\mathbf{x}})$

CONSTANT KERNEL

- $k(\mathbf{x}, \tilde{\mathbf{x}}) = \theta_0 > 0$
- Constant function priors
- Global correlation irresp. of concrete inputs $\mathbf{x}, \tilde{\mathbf{x}}$
- Practically pretty useless

LINEAR KERNEL

- $\bullet \ k(\mathbf{x}, \tilde{\mathbf{x}}) = \theta_0 + \mathbf{x}^T \tilde{\mathbf{x}}$
- Linear function priors
- Measures directional similarity: higher if vectors point in similar dirs
- In general, non-stationary \Rightarrow depends on locations of $\mathbf{x}, \tilde{\mathbf{x}}$
- See Bayesian linear model part

POLYNOMIAL KERNEL

- \bullet $k(\mathbf{x}, \tilde{\mathbf{x}}) = (\theta_0 + \mathbf{x}^T \tilde{\mathbf{x}})^p, \quad p \in \mathbb{N}$
- Polynomial function priors
- Allows for non-linearity through higher-order monomials & interaction terms

PERIODIC KERNEL

- E.g., radial periodic kernel: $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(\frac{-2\sin^2(\pi \|\mathbf{x} \tilde{\mathbf{x}}\|/m)}{\ell^2}\right)$
- m: period, ℓ : length-scale
- $f(\mathbf{x})$ should be periodically similar to points with a distance which is a multiple of m; for distances in between, this is modulated by ℓ
- Alternative: Product of 1D periodic kernels, with m_j period in dimension j: $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(\sum_j \frac{-2\sin^2(\pi|x_j \tilde{x}_j|/m_j)}{\ell^2}\right)$

MATÉRN KERNEL

•
$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \frac{1}{2^{\nu}\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|}{\ell} \right)^{\nu} \mathcal{K}_{\nu} \left(\sqrt{2\nu} \frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|}{\ell} \right)$$

- ν : smoothness param, Γ : gamma function, ℓ : length scale, K_{ν} : modified Bessel function
- Stationary & isotropic
- ullet Allows for controlled degree of smoothness via choice of u
- ullet ν also determines differentiability
- Use for: non-linear functions with desired degree of smoothness

EXPONENTIAL KERNEL

- Aka Ornstein-Uhlenbeck kernel
- $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\frac{\|\mathbf{x} \tilde{\mathbf{x}}\|}{\ell}\right)$
- Special case of Matérn kernel with $\nu=0.5$
- Non-smooth: continuous but not differentiable, can model functions with abrupt variations
- Cov decays exponentially with distance (modulated by ℓ)

SQUARED EXPONENTIAL KERNEL

- Aka Gaussian kernel, RBF kernel
- $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\frac{\|\mathbf{x} \tilde{\mathbf{x}}\|^2}{2\ell^2}\right)$
- Special case of Matérn kernel with $\nu=\infty$
- Very smooth: continuous, ∞ differentiable (not always realistic)
- Cov decays quickly ⇒ quadratic in distance

EXAMPLE: BROWNIAN MOTION

- k(x, x) = ∏_j min(x_j, x̄_j)
 Physics application: random fluctuations of particles
- With non-1D inputs aka Brownian sheet
- Correlation in each dimension is 1D-like Brownian motion

CHARACTERISTIC LS: ISOTROPIC CASE

- Every (isotropic) kernel can be written as k(r) where
- $\bullet r = ||\mathbf{x} \tilde{\mathbf{x}}||$
- E.g. $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\frac{\|\mathbf{x} \tilde{\mathbf{x}}\|^2}{2\ell^2}\right)$ or $k(r) = \exp\left(-\frac{1}{2}(\frac{r}{\ell})^2\right)$
- Controls how quickly function values become uncorrelated
- High (low) ℓ: smooth (wiggly) functions

• In SVM kernels we sometimes called this bandwith

CHARACTERISTIC LS: STATIONARY CASE

- For stationary kernels $k(\mathbf{d})$
- ullet We modulate every distance component d_j by an individual ℓ_j
- We can turn the isotropic examples from above into stationary ones – with individual length scales
- Write $||\boldsymbol{d}||^2 = \sum d_i^2$ and put an $1/\ell_i$ before each d_i
- E.g. for squared exp:

$$k(\boldsymbol{d}) = \exp\left(-\frac{1}{2}\sum_{j=1}^{p} \frac{d_j^2}{\ell_j^2}\right)$$

ullet Also note: this is a product of 1D kernels, one for each input dim. The correlation in each dim is described by the 1D kernel and its distance component is modulated by ℓ_j

BENEFITS OF DIM-WISE LENGTH-SCALES

- ℓ_1, \ldots, ℓ_p : characteristic length-scales
- Intuition for ℓ_i : how far to move along *i*-th axis for fun. values to become uncorrelated?
- Implements **automatic relevance determination** (ARD): inverse of ℓ_i determines importance of *i*-th feature
- Very large $\ell_i \Rightarrow$ cov effectively independent of *i*-th feature
- For features on different scales: rescale automatically by estimating ℓ_1, \ldots, ℓ_p

CHARACTERISTIC LS: WEIGHTED EUCLID DIST

- Can even generalize the above principle
- Move to weighted (squared) Euclidean distance
- E.g. for squared exp again:

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \tilde{\mathbf{x}})^T \mathbf{M}(\mathbf{x} - \tilde{\mathbf{x}})\right)$$

- This covers the case before
- Possible choices for M:

$$\mathbf{M}_1 = \ell^{-2} \mathbf{I}_p$$
 $\mathbf{M}_2 = \operatorname{diag}(\ell)^{-2}$ $\mathbf{M}_3 = \Gamma \Gamma^T + \operatorname{diag}(\ell)^{-2}$

where
$$\ell \in \mathbb{R}^p_+$$
, $\Gamma \in \mathbb{R}^{p \times k}$

EXAMPLES: CHARACTERISTIC LS

• Left: $M = I \Rightarrow$ same variation in all directions

• Middle: $\mathbf{M} = \operatorname{diag}(\ell)^{-2} \Rightarrow \operatorname{less} \text{ variation in } x_2 \operatorname{direction} (\ell_2 > \ell_1)$

• Right: $\mathbf{M} = \Gamma \Gamma^T + \text{diag}(\ell)^{-2}$ with $\Gamma = (1, -1)^T$ and $\ell = (6, 6)^T$ $\Rightarrow \Gamma$ determines dir. of most rapid variation

