Outils pour la recherche : le calcul quantique

Energie et Surface

Denis HAGEBAUM-REIGNIER & Stéphane HUMBEL

Department de Chimie Aix-Marseille

October 3, 2024

plan

1. Présentation UE + AMETICE

2. Coordonnée et énergie

3. Matrices et Valeur/Vecteurs propres

Présentation UE

Outils pour la recherche :

2x 2h SH decouverte d'outils

2x 2h DHR Projet appliqué

- AMETICE en cours
- www.HuLiS.free.fr/Licences
- https://biomodel.uah.es/en/DIY/JSME/draw.en.htm
- https://molview.org/
- NIST https://webbook.nist.gov/chemistry/

www.hulis.free.fr

ChemCompute.org

ChemCom	oute GAME	ESS / Psi4 TINKER	NAMD Jupyter	Datasets (beta)	Simulations	Hel	р		
	HOME	/ DASHBOARD							
Expanse (48 hrs) CRIL hours used: 1146 500000000000 / 5000 jupyterhub							expanse expanseGPU bridges2 bridges2GPU jupyterhub	running: 33 queuer running: 3 queued running: 0 queued running: 3 queued running: 0 queued running: 30	0 0
Request m Log ou	nore CPU-hor t Change pa	assword Update Prof	file Verify Email		s Shared with Me		jupyterhub-gpu Search:	running: 0	
Prev	1 2 3	19 20 Ne	ext	include Jobs	Shared with Me		Search.		
Public	Job	Run Time (hr:min)	Status	Re	sult U	Jser	Program	Date	
	871929	00:01	COMPL	ETE Err	or h	umbe	el GAMESS	Sep 3, 2024 6:44 PM	
	acetone OPTIMIZE + HESSIAN 3-21G B3LYP Cs neutral singlet (from job 871909) bridges2 8 core								
	871924	00:02	COMPL	ETE	h	umbe	el GAMESS	Sep 3, 2024 6:43 PM	5 / 10

ChemCompute.org

Coordonnée et énergie

A 0K la molécule est dans l'état vibrationnel (v = 0).

Zero Point Correction $ZPC = \frac{1}{2} \times \sum_{i=0}^{2} \hbar \omega_0(i)$

Généralités

- Géométrie x. (d'équilibre x_e)

- Hessien $\frac{d^2 E_p}{dx^2}$

Approximation harmonique

- $f(x) = ax^2 + f(x_e)$
- Gradient = tangente f'(x) = 2ax
- Courbure = f''(x) = 2a

Coordonnées et énergie, à 2 dimensions

Aux points stationnaires :

- Gradient= $\vec{0}$
 - Min: toutes les dérivées secondes > 0
 - TS : 1 seule dérivée seconde < 0 (les autres > 0)
- Energie Interne $U_0 = E_p(x) + ZPC$

- Energie $E_p(x_1, x_2)$
- Gradient $\begin{pmatrix} \frac{dE_p}{dx_1} \\ \frac{dE_p}{dx_2} \end{pmatrix}$

• Hessien
$$\begin{pmatrix} \frac{d^2 E_p}{dx_1^2} & \frac{d^2 E_p}{dx_1 dx_2} \\ \frac{d^2 E_p}{dx_2 dx_1} & \frac{d^2 E_p}{dx_2^2} \end{pmatrix}$$

Matrices et valeurs propres

La matrice hessienne traduit des relations entre coordonnées de la base B et l'énergie, quand on dérive 2 fois l'énergie. Matrice

$$\begin{array}{cccc}
\mathcal{M} & (x_1) & (x_2) & \dots \\
x_1 & D_{11}^2 & D_{12}^2 & \\
x_2 & D_{21}^2 & D_{22}^2 & \\
& & & & \\
\end{array}$$

La diagonalisation propose une nouvelle base composée des vecteurs propres, ayant une valeur propre

$$(q_1) \quad (q_2) \quad ...$$
 $q_1 \quad k_1 \quad 0 \quad 0 \quad k_2 \quad 0$

- Molecule
- base d'objets : B Ce peuvent être des structures de Lewis, des orbitales, des coordonnées d'atomes B = {x₁, x₂, ...x_i...}
- l'énergie dépend des coordonnées :
 E(x₁, x₂, ...

- Valeurs propres k_1, k_2
- Vecteurs propres $B' = \{q_1, q_2, ...\}$ $q_j = \sum_{i}^{coord} c_{ij} x_i$ combinaison des $\{x_i\}$ qui diag \mathcal{M}

Simulation de spectre IR : Benzaldehyde

La diagonalisation de la matrice hessienne conduits aux vibrations : q; et

$$u_i = \frac{\omega_0(i)}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k_i}{\mu}}$$

L'allure des spectres est OK (comparaison avec NIST)

Les spectres sont décalés vers le bleu (ν_i trop grands)

L'attribution est facile car q_i montre les déplacements d'atomes

