Statistics 5210 Sample Survey and Causal Inference Chapter 1: Introduction Part 2: Causal Inference

Zhengyuan Zhu ¹

Iowa State University

January 22, 2025

¹Based on notes by Emily Berg and Jae-Kwang Kim

Causal Inference

 We are interested in investigating the effect of treatment over control on the outcome Y of interest.

Subject	Treatment (T)	Outcome (Y)	
Clinical trial	New drug	Health outcome	
Labor economics	Job training	Employment status	
Politics	Canvassing	Vote turnout	

- In this course, we assume that T is binary: T=1 for treatment and T=0 for control.
- ullet Two potential outcomes for $Y\colon Y(0)$ for T=0 and Y(1) for T=1
- ullet Terminology for T: action, manipulation, treatment, intervention

Presumption

- Although a unit was (at a particular point in time) exposed to a particular action, the same unit could have been exposed to an alternative action (at the same point in time).
- ② Interpreting causation as a deterministic relation means that if A causes B, then A must always be followed by B. In this sense, war does not cause deaths, nor does smoking cause cancer or emphysema. As a result, many turn to a notion of probabilistic causation. Informally, A ("The person is a smoker") probabilistically causes B ("The person has now or will have cancer at some time in the future"), if the information that A occurred increases the likelihood of Bs occurrence. That is, P(B | A) ≥ P(B).

Randomized Experiment vs Observational Study

- Randomized experiment (e.g. clinical trial): the event for $T_i = 1$ is completely determined by a pure random mechanism.
- Observational study: Each unit i is assigned to $T_i = 0$ or $T_i = 1$ by other factors (such as physician's discretion or participants' choice).

Superpopulation framework

Potential outcome random variables (Y(0), Y(1))

Obtain
$$\mathcal{F} = \{(Y_i(1), Y_i(0)); i = 1, \dots, N\}$$

Observe
$$T_i$$
 and $Y_i = T_i Y_i(1) + (1 - T_i) Y_i(0)$
for $i = 1, ..., N$

Defining Causal Effects

- For each unit i, we observe (X_i, T_i, Y_i) where $Y_i = Y_i(T_i)$.
- We observe only one potential outcome for each unit. So, it is a missing data problem.
- In some literature, the unobserved potential outcome is called the counterfactual outcome. If $T_i = 1$, then we observe $Y_i(1)$ only and $Y_i(0)$ is the counterfactual outcome for unit i.
- Intuitively: if we could observe the counterfactual outcomes, then the difference $Y_i(1) Y_i(0)$ is attributable to the treatments.
- Causal effect for unit i: $\tau_i = Y_i(1) Y_i(0)$.

Fundamental Problem of Causal Inference (Holland, 1986):

- Fundamental problem: It is impossible to estimate τ_i from the data, as we can only observe one potential outcome per participant.
- Two solutions to the fundamental problem of causal inference
 - Scientific solution: We could use scientific theory to measure both potential outcomes. (eg: testing new diet on genetically identical twins).
 - 2 Statistical solution: We randomly assign treatment to individuals.

Average Treatment Effect

- Unit-level causal effects are difficult to estimate.
- (Finite-) Population Average Treatment effect

$$\bar{\tau}_N = \frac{1}{N} \sum_{i=1}^N \tau_i = \frac{1}{N} \sum_{i=1}^N \{Y_i(1) - Y_i(0)\}$$

• (Superpopulation) Average Treatment Effect:

$$ATE = E(Y(1) - Y(0)) := \tau$$

Other causal parameters

Average treament effect for the treated:

$$ATT = E(Y(1) - Y(0) | T = 1)$$

Conditional average treatment effect (CATE):

$$\tau(\mathbf{x}) = E\left(Y(1) - Y(0) \mid \mathbf{X} = \mathbf{x}\right)$$

Applications to precision medicine and micro-targeting.

Formal causal problem

Data: IID observed data

$$(X_i, T_i, Y_i), \quad i = 1, \ldots, N$$

where $Y_i = Y_i(1)$ if $T_i = 1$ and $Y_i = Y_i(0)$ if $T_i = 0$.

- The causal parameter is a function of potential outcomes. However, we do not observe the potential outcomes directly.
- Goal: We wish to estimate the causal parameters (such as ATE) from the observed data.
- Problem: Under what assumptions can we do this?

Stable Unit Treatment Value Assumption (SUTVA)

- Assumption 2.1 (no interference) Potential outcomes for an individual are not affected by treatments received or potential outcomes of other individuals.
- Assumption 2.2 (consistency) There are no other versions of the treatment. The outcome Y_i observed for the individual i, who received treatment A_i , is the same as his potential outcome for that treatment regardless of the conditions under which he received that treatment.
- Rubin (1980) called the Assumptions 2.1 and 2.2 above together the Stable Unit Treatment Value Assumption (SUTVA).
- Mathematical expression of SUTVA:

$$Y_i = Y_i(1)T_i + Y_i(0)(1 - T_i), \quad i = 1, ..., N$$
 (1)

Zhu (ISU) Chapter 1 11 / 30

Identification formula

• Under (1), we have

$$E(Y \mid T = t) = E(Y(t) \mid T = t)$$
 (2)

for t = 0, 1.

 The LHS is the conditional expectation in terms of the observation, while the RHS is the conditional expectation in terms of the potential outcome.

Justification

Randomized studies

- Randomization ensures treatment assignment is independent of all other factors, including individual characteristics
- Thus, we have

$$\{Y(1), Y(0)\} \perp T$$
 (3)

• Main Result: Under (1) and (3), we have

$$E(Y \mid T = t) = E(Y(t)) \tag{4}$$

for t = 0, 1.

Implication of (4)

We can use

$$\hat{\tau} = \frac{1}{N_1} \sum_{i=1}^{N} T_i Y_i - \frac{1}{N_0} \sum_{i=1}^{N} (1 - T_i) Y_i$$
 (5)

to estimate $\tau = E\{Y(1)\} - E\{Y(0)\}$, where $N_1 = \sum_{i=1}^{n} T_i$ and $N_0 = \sum_{i=1}^{N} (1 - T_i)$.

- That is, $\hat{\tau}$ is unbiased for $\tau = E\{Y(1) Y(0)\}.$
- The estimator in (5) is called the difference-in-means estimator (DIME).

Justification

Remark

• By algebra, we can obtain $\hat{\tau}$ in (5) as the joint minimizer of the following quantity:

$$Q(\alpha, \tau) = \sum_{i=1}^{N} (Y_i - \alpha - \tau T_i)^2$$

• That is, we can compute DIME as the slope in the ordinary regression of Y_i on T_i .

Justification

Statistical interpretation

Assume that the superpopulation model is

$$Y_i(t) = \mu_t + e_i(t)$$

for t = 0, 1, where $e_i(t) \sim (0, \sigma_t^2)$. We allow $e_i(1)$ and $e_i(0)$ to be correlated.

• Instead of observing $Y_i(1)$ and $Y_i(0)$, we observe

$$Y_i = T_i Y_i(1) + (1 - T_i) Y_i(0)$$

• In this case, we can express

$$Y_i = \mu_0 + \tau T_i + e_i$$

where $e_i = T_i e_i(1) + (1 - T_i) e_i(0)$.

• Under (3), we can obtain $e_i \sim (0, \sigma^2)$ for some σ^2 .

Justification

Justification

A toy example (N = 4)

• Let's look at an artificial data (of size N = 4).

ID	$Y_i(1)$	$Y_i(0)$	$\tau_i = Y_i(1) - Y_i(0)$
1	4	1	3
2	6	3	3
3	7	5	2
4	8	6	2

Population average treatment effect

$$\bar{\tau}_N = \frac{1}{4} (3 + 3 + 2 + 2) = 2.5$$

• The value of $Y_i(t)$ is observed only for $T_i = t$. We never observed $Y_i(1)$ and $Y_i(0)$ jointly.

- Suppose that we assign $N_1 = 2$ units to treatment group $(T_i = 1)$ and assign $N_0 = 2$ units to control group.
- 6 possible group assignment

case	$T=1$ group ${\sf ID}$	T=0 group ID	DIME
1	1, 2	3,4	-0.5
2	1, 3	2,4	1.0
3	1, 4	2,3	2.0
4	2, 3	1,4	3.0
5	2, 4	1,3	4.0
6	3, 4	1,2	5.5

• For example, for case 3, we obtain

$$\hat{\tau} = \frac{1}{2} \left\{ Y_1(1) + Y_4(1) \right\} - \frac{1}{2} \left\{ Y_2(0) + Y_3(0) \right\} = 6.0 - 4.0 = 2.0$$

Completely randomized experiment

• Completely randomized experiment (CRE): Assign the same selection probability to all possible assignments

case	Trtment group	DIME	selection
	ID	$(\hat{ au})$	probability
1	1, 2	-0.5	1/6
2	1, 3	1.0	1/6
3	1, 4	2.0	1/6
4	2, 3	3.0	1/6
5	2, 4	4.0	1/6
6	3, 4	5.5	1/6

• In this case, the DIME has a discrete probability distribution.

• Probability mass function of $\hat{\tau}$:

$$P(\hat{\tau} = y) = \begin{cases} 1/6 & \text{if } y \in \{-0.5, 1.0, 2.0, 3.0, 4.0, 5.5\} \\ 0 & \text{otherwise.} \end{cases}$$

- Unbiased
- Variance

Remark

- No model assumption about y_i in the example: agnostic approach
- Design-based approach: the reference distribution is the sampling distribution generated by the repeated application of the given selection (or assignment) mechanism.
- Why randomization approach?
 - 1 It creates comparable treatment and control groups on average.
 - 2 It serves as a "reasoned basis" for statistical inference.

Comparison

Area	Survey Sampling	Causal Inference	
Target Population	Finite population	Potential outcome model	
Parameter	Descriptive parameter	Causal parameter	
of interest	(ex: Total, mean, etc)	(ex: ATE, ATT, etc)	
Gold standard	Probability sampling	Randomized experiment	
(model-free)			
Partial Failure of	Nonresponse	Non-compliance	
randomization			
No-randomization	Non-probability sample	Observational study	
(model-based)			

Fisher randomization test (FRT)

Interested in testing

$$H_0: Y_i(1) = Y_i(0), \quad \forall i = 1, ..., n$$
 (6)

- The above null hypothesis is called the sharp null hypothesis (or strong null hypothesis).
- Idea for FRT: Under H_0 , we can construct the sampling distribution of any test statistic

$$Q = Q(T, Y)$$

where $T = (T_1, ..., T_n)$ and $Y = (Y_1, ..., Y_n)$.

• Let $T^{(1)}, \ldots, T^{(M)}$ be all possible vectors of T under CRE. The sampling distribution of Q is known due to the design of the CRE.

Zhu (ISU) Chapter 1 28 / 30

• For example, if $n_1 = n_0 = 2$, then the sampling distribution (or randomization distribution) of Q = Q(T, Y) is summarized as follows.

case (k)	T	Υ	Q	Probability
1	$T^{(1)} = (1, 1, 0, 0)$	$Y^{(1)}$	$Q(T^{(1)}, Y^{(1)})$	1/6
2	$T^{(2)} = (1,0,1,0)$	$Y^{(2)}$	$Q(T^{(2)}, Y^{(2)})$	1/6
3	$T^{(3)} = (1,0,0,1)$	$Y^{(3)}$	$Q(T^{(3)}, Y^{(3)})$	1/6
4	$T^{(4)} = (0, 1, 1, 0)$	Y ⁽⁴⁾	$Q(T^{(4)}, Y^{(4)})$	1/6
5	$T^{(5)} = (0, 1, 0, 1)$	$Y^{(5)}$	$Q(T^{(5)}, Y^{(5)})$	1/6
6	$T^{(6)} = (0,0,1,1)$	$Y^{(6)}$	$Q(T^{(6)}, Y^{(6)})$	1/6

• For example, $Y^{(3)} = (Y_1(1), Y_2(0), Y_3(0), Y_4(1))$ for case 3. Under the strong null hypothesis, we have $Y^{(1)} = \ldots = Y^{(6)}$ and we can compute $Q^{(k)} = Q(T^{(k)}, Y^{(k)})$ from the realized sample.

• Since the sampling distribution of Q = Q(T, Y) can be constructed under H_0 , we can compute the p-value given by

$$p_{\text{FRT}} = \frac{1}{M} \sum_{k=1}^{M} \mathbb{I}\{Q(T^{(k)}, Y) \geq Q(T, Y)\}$$

- The above p-value measures the extremeness of the value of the realized test statistic with respect to its randomization distribution.
- This is the basic idea of Fisher's exact test. It is finite-sample exact in the sense that, under H_0 in (6),

$$P(p_{FRT} \leq u) \leq u, \forall u \in (0,1).$$

• Fisher's exact test is not computationally feasible if *n* is large.

REFERENCES

- Holland, P. (1986), 'Statistics and causal inference', *Journal of the American Statistical Association* **81**, 945–960.
- Rubin, D. B. (1980), 'Randomization analysis of experimental data: The fisher randomization test comment', *Journal of the American Statistical Association* **75**, 591–593.