Hochschule Karlsruhe University of Applied Sciences Fakultät für Elektro- und Informationstechnik

Studiengang Elektro- und Informationstechnik (Bachelor)

Bericht Digitaltechnik

Versuch 6: It all adds up now!

von Jan Hoegen*

erstellt am 25. Mai 2022

Betreuer: Prof. Dr.-Ing. Jan Bauer

*Matrikelnumer: 82358. E-Mail: jan.hoegen@web.de

Inhaltsverzeichnis

1	Einl	eitung und Zielsetzung	3
2	2 Hardwareentwurf		4
	2.1	Funktionsbeschreibung	4
	2.2	Entwurf auf dem Breadboard	4
3	VHI	OL-Umsetzung	5
	3.1	Hardwarebeschreibung	5
		3.1.1 halbaddierer	5
		3.1.2 Volladdierer	5
		3.1.3 Addiernetz	5
	3.2	Siumulationsergebnis	5
	3.3	Syntheseergebnis	5
4	Auf	ufbau der Schaltung	
5	Ana	llyseergebnis der Hardware	7
6	Schlussfolgerungen und Fazit		8
7	Anh	ang	9

1 Einleitung und Zielsetzung

Digitale Addition Xilinx Vivaldo Vergleich zu Versuch 2. Deutlich weniger steckaufwand, keien 6 IC mehr nötig und dennoch doppelt so viele bitstellen.

4 bit addiernetz in vhdl beschrieben, real mit fpga testen.

2 Hardwareentwurf

2.1 Funktionsbeschreibung

abbildung addierernetz kein carry in carry out ist MSB

Mit 4 bit DIP Schalter Zahlen einstellen btn0: dip wert für b speichern btn1: dip wert für a speichern

ausgangszustand mit leds darstellen 4 bits der summe s auf dem breadboard carry out über LED1 auf dem Board

2.2 Entwurf auf dem Breadboard

top level system abbildung adder 4 bit muss entwickelt werden latch 4 bit speichert den summanden. bereits vorgegeben

pin zuweisung

3 VHDL-Umsetzung

3.1 Hardwarebeschreibung

top level system Entwurf aus der laboranleitung

3.1.1 halbaddierer

schaltbild halbaddierer vhdl entitiy halbaddierer

3.1.2 Volladdierer

Schaltbild Volladdierer vhdl entiity Volladdierer

3.1.3 Addiernetz

referenz abbildung 4 bit addiernetz vhdl entity addiernetz

3.2 Siumulationsergebnis

testmuster halbaddierer, testmuster volladdierer bewertung

3.3 Syntheseergebnis

constrains file

4 Aufbau der Schaltung

foto der schaltung auf dem breadboard

5 Analyseergebnis der Hardware

video testen der schlatung mit testmuster aus 4bit adder

6 Schlussfolgerungen und Fazit

7 Anhang

vhdl entity latch 4 bit