CHEM 1A03: Intro. Chemistry I

Energy & Electrochemistry

Ch.20: Electrochemistry

Redox Reactions: Examples

(a) Spontaneous:

Cu + 2 Ag⁺→ Cu²⁺ + 2 Ag (recall Ch 5 demo, the Cu wire covered with Ag needles)

(b) Non-spontaneous:Cu + Zn²⁺ → no reaction

(recall step in Lab 2: Cu²⁺ + Zn → Zn²⁺ + Cu was spontaneous)

How can we harness the energy transfer in process (a)?

p. 864 (823, 9th ed.)

Electrochemical Cells: Cu/Ag+

(oxidation)

- Two connected half-cells.
- The 2 half-reactions are separated, yet connected electrically (salt bridge, external wire).
- Solid metals = electrodes (anode, cathode).
- Movement of e⁻ from anode to cathode generates voltage.
- Movement of cations and anions through salt bridge maintains electroneutrality in solution.

(reduction)

Chemistry

p. 864-866 (823-825, 9th ed.)

Electrochemical Cells

 Oxidation (anode): surface of electrode erodes as Mⁿ⁺ are produced; n e⁻ then travel to cathode

$$M \rightarrow M^{n+} + n e^{-}$$

 Reduction (cathode): cathode gains mass as Mn+ ions gain n e- and form M(s)

$$M^{n+} + n e^{-} \rightarrow M$$

p. 865 (822, 9th ed.)

Electrochemical Cells

Oxidation: occurs at anode (Cu) Cu(s) \rightarrow Cu²⁺(aq) + 2 e⁻

Reduction: occurs at cathode (Ag) $2 \text{ Ag}^+(\text{aq}) + 2 \text{ e}^- \rightarrow 2 \text{ Ag(s)}$

"An ox and a red cat", or vowels (O, A) / consonants (C, R)

Overall cell reaction: $Cu(s) + 2 Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2 Ag(s)$

- Galvanic (voltaic) cell: results from spontaneous chemical reactions (our example above)
- Electrolytic cell: uses electricity to accomplish nonspontaneous chemical change

Cell Diagrams

• Symbolic notation of cell: Concentration is specified (1M = standard)

Oxidation half-cell Reduction half-cell

Cu(s) $|Cu^{2+}(aq, x M)| |Ag^{+}(aq, y M)| |Ag(s)$ Anode (on the left)

Phase change Salt bridge (single line) (double line)

- Sometimes an electrode is inert (does not chemically participate, but is needed for electron transfer to occur).
- For example: Pressure is specified (1bar = standard) ~ 1 atm Pt = inert electrode (cathode)

 Zn(s) $| Zn^{2+}(aq, 1 M) | H^{+}(aq, 1 M) | H_{2}(g, 1 atm) | Pt(s)$

p. 867 (826, 9th ed.)

iClicker Question #1

What is the correct cell diagram for the following reaction at standard conditions?

$$Mg(s) + Sn^{2+}(aq) \rightarrow Mg^{2+}(aq) + Sn(s)$$

- (A) $Mg(s) \parallel Mg^{2+}(aq) \parallel Sn^{2+}(aq) \parallel Sn(s)$
- (B) $Sn(s) \mid Sn^{2+}(aq, 1M) \mid Mg^{2+}(aq, 1M) \mid Mg(s)$
- (C) $Mg^{2+}(aq, 1M) \mid Mg(s) \mid Sn(s) \mid Sn^{2+}(aq, 1M)$
- (D) $Sn^{2+}(aq, 1M) \mid Sn(s) \mid Mg(s) \mid Mg^{2+}(aq, 1M)$
- (E) $Mg(s) \mid Mg^{2+}(aq, 1M) \mid Sn^{2+}(aq, 1M) \mid Sn(s)$

Standard Electrode Potentials

- Absolute half-cell potentials cannot be measured
- All potentials are measured relative to the standard hydrogen electrode (SHE); assigned a potential of 0 V.

$$2 \text{ H}^+(a=1) + 2 \text{ e}^- \stackrel{\text{On Pt}}{\rightleftharpoons} \text{H}_2(g, 1 \text{ bar})$$
 E ° = exactly 0 volt (V)

Simplify: a = 1 becomes $[H^+] = 1$ M; 1 bar = 1 atm

Half-cell diagram:

$$Pt(s) \mid H_2(g, 1 \text{ atm}) \mid H^+(aq, 1 \text{ M})$$

- Standard electrode potentials (E°) report tendency for reduction to occur (E°_{red})
- Standard conditions: conc. = 1 M, pressures = 1 atm.

Standard Reduction Potentials (E°_{red})

Table 20.1: Selected Standard Electrode (Reduction) Potentials at 25°C

$$E^{\circ}_{red}$$
, V

$$F_2(g) + 2e^- \rightarrow 2F^-$$

$$Cu^{2+}(aq) + 2e- \rightarrow Cu(s)$$

$$2 H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g)$$

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$$

$$-0.763$$

$$Li^+(aq) + e^- \rightarrow Li(s)$$

$$-3.040$$

Species most easily reduced (on left side, at most positive potential)

Species most easily oxidized (on right side, at <u>least</u> positive potential)

p. 872 (830, 9th ed.)

iClicker Question #2

From the following list of standard potentials, identify the best reducing agent.

$$E_{\text{red}}^{\circ}$$
, V
Fe³⁺(aq) + e⁻ \rightarrow Fe²⁺(aq) +0.771
Cu²⁺(aq) + 2 e⁻ \rightarrow Cu(s) +0.340
Sn²⁺(aq) + 2 e⁻ \rightarrow Sn(s) -0.137

- A) Fe³⁺
- B) Sn(s)
- C) Sn²⁺
- D) Cu(s)
- E) Cu²⁺

Standard Cell Potentials (E°_{cell})

• E°_{cell} = voltage of a cell formed from 2 standard electrodes

Can be expressed as: E °(cathode(right)) – E °(anode(left))

- ALTERNATIVELY -

• For a given half-cell we can say $E^{\circ}_{ox} = -E^{\circ}_{red}$ (reverse the sign on the potential for the oxidation half-cell)

e.g.,
$$Zn^{2+}/Zn E^{\circ}_{red} = -0.763$$
, therefore $E^{\circ}_{ox} = +0.763$

• Then $E^{\circ}_{cell} = E^{\circ}_{red} + E^{\circ}_{ox}$

p. 870-871 (828-829, 9th ed.)

Department of
11 Chemistry

Standard Cell Potentials (E°_{cell})

- Note: a standard potential is an intensive property it does not depend on the amount of substance reacting
- We do not multiply E°_{red} or E°_{ox} by a factor even if we multiply a half-reaction by a factor when balancing.

 Magnitude of cell potential indicates driving force for cell e.g., under standard conditions:

oxidation of metallic Zn by Cu^{2+} (E°_{cell} = 1.100V) has a greater tendency to go to completion than does oxidation of metallic Cu by Ag^{+} ions (E°_{cell} = 0.4600V)

iClicker Question #3

Write the cell reaction for the "most spontaneous" cell.

$$E^{\circ}_{red}$$

 $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$ +0.771 V
 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ +0.340 V
 $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ -0.137 V

What is the cell potential (V) for this cell?

(E) 0.634

(A) 0.908
(B) 0.455
(C) 1.679
$$E_{\text{cell}}^{\circ} = E_{\text{red}}^{\circ} + E_{\text{ox}}^{\circ} = +0.771 + (+0.137) \text{ V} = 0.908 \text{ V}$$

(D) 1.012 Note: E_{red}° is not multiplied by 2!

Spontaneity: E_{cell}° and ΔG°

Electromotive force or cell potential (E_{cell})
 joule = volt x coulomb (or volt = energy/unit charge)
 w_{elec} = zFE_{cell}, where work = -ΔG (see box p. 795)
 z = # e⁻ transferred; F = 96485 C/mol e⁻ (Faraday constant)

$$\Delta G = -zFE_{cell}$$

$$\Delta G^o = -zFE^o_{cell}$$

Eq. 20.15

Eq. 20.16

Non-standard conditions

Standard conditions: Reactants, products in standard states

Positive E_{cell} or E_{cell}° = spontaneous

Negative ΔG or ΔG° = spontaneous

14 Chemistry

Spontaneity: E°_{cell} and K

$$\Delta G^o = -zFE^o_{cell}$$
 Eq. 20.15 and

$$\Delta G^{o} = -RT \ln K$$
 Eq. 19.13; combine:

Eq. 20.16

K > 1 means products are favoured

K > 1 means In K > 0 , therefore E_{cell}° > 0

Linking Relationships: E, G, K

Take-home Questions:

 Calculate ∆G° for the spontaneous cell produced from the following:

$$E^{\circ}_{red}$$
, V
Al³⁺(aq) + 3e⁻ \rightarrow Al(s) -1.676
Mg²⁺(aq) + 2e⁻ \rightarrow Mg(s) -2.356

2. Calculate *K* for the above cell, at 25°C.

Solutions

1.

Reduction:
$$2 \text{ Al}^{3+}(aq) + 6 \text{ e}^{-} \rightarrow 2 \text{ Al}(s)$$
 $E^{\circ}_{\text{red}} = -1.676 \text{ V}$
Oxidation: $3 \text{ Mg(s)} \rightarrow 3 \text{ Mg}^{2+}(aq) + 6 \text{ e}^{-}$ $E^{\circ}_{\text{ox}} = +2.356 \text{ V}$
Overall: $2 \text{ Al}^{3+}(aq) + 3 \text{ Mg(s)} \rightarrow 2 \text{ Al}(s) + 3 \text{ Mg}^{2+}(aq)$ $E^{\circ}_{\text{cell}} = 0.680 \text{ V}$ and $z = 6$

$$\Delta G^{\circ} = -(6 \text{ mol e}^{-})(96485 \text{ C/mol e}^{-})(0.680 \text{ V}) = -393, 659 \text{ VC}$$
 or -393.7 kJ

2.
$$\Delta G^{\circ} = -RT \ln K$$
 or $\ln K = -\Delta G^{\circ}/RT$
 $\ln K = 393.7 \text{ kJ} / (8.314 \times 10^{-3}) \text{ J/K mol})(298 \text{ K})$

In
$$K = 158.9$$
 and $K = e^{272.0} = 1.03 \times 10^{69}$

Non-standard Cell Potentials (E_{cell})

- Concentrations ≠ 1 M and/or pressures ≠ 1 atm
- Nernst equation:

$$E_{cell} = E^{\circ}_{cell} - \frac{RT}{zF} \ln Q$$

R = gas constant (J/K mol)

T = temperature (K)

z = # of e- transferred

F = Faraday constant (96485 C/mol)

Q = reaction quotient

Often written as: Eq. 20.18

at 25°C

$$E_{cell} = E^{o}_{cell} - \frac{0.0592}{z} \log Q$$

p. 880-885 (837-842, 9th ed.)

Writing Q or K for thermodynamics

$$Sn^{2+}(aq) + Cl_2(g) \rightarrow Sn^{4+}(aq) + 2Cl^{-}(aq)$$

$$K = a_{Sn4+}a_{Cl-} = [Sn^{4+}][Cl^{-}]^{2}$$
 $a_{Sn2+}a_{Cl2} = [Sn^{2+}]P_{Cl2}$

All concentrations and pressures are taken with respect to reference concentrations (1 M) or pressures (1 bar, ≈ 1 atm)

We can write a *K* expression with concentrations and pressures together because of activity (a).

iClicker #4: Using the Nernst Equation

For the reaction

$$2 \text{ Fe}^{3+}(\text{aq, 0.50 M}) + \text{Cu(s)} \rightarrow 2 \text{ Fe}^{2+}(\text{aq, 0.50M}) + \text{Cu}^{2+}(\text{aq, 0.50 M})$$

Write the Q expression.

Question: Will an increase in [Fe³⁺] cause E_{cell} to increase or decrease? $E_{cell} = E^{\circ}_{cell} - \frac{RI}{zE} \ln Q$

- (A) increase
- (B) decrease

$$Q = \frac{[Fe^{2+}]^2[Cu^{2+}]}{[Fe^{3+}]^2}$$

Increase in [Fe³⁺] causes Q to decrease

In Q therefore decreases

 E_{cell} therefore increases

Concentration Cells

- Identical electrodes with different ion concentrations
- Anode and cathode are the same ∴ E^o_{cell} = 0
- Voltage still possible because of ion concentrations

p. 883-885 This applies to (aq) metal ions, too: Lab 4 (839-840, 9th ed.)

The Chloralkali Process: Electrolytic Cell

- Industrial synthesis of Cl₂, H₂ & NaOH derived from the electrolysis of salt solution (brine) → Water sanitation & alternative fuel
- Electrolysis is a non-spontaneous redox reaction that requires external energy (voltage) to drive the chemical transformation

$$2CI^{-}(aq) + 2H_{2}O(I) \rightarrow CI_{2}(g) + H_{2}(g) + 2OH^{-}(aq)$$

Half-cell Reactions

Oxidation (Anode)

$$^{-1}$$
 2Cl⁻ (aq) \rightarrow Cl₂ (g) + 2e⁻

Reduction (Cathode)

$$^{+1}_{2H_{2}O}(I) + 2e^{-} \rightarrow ^{0}_{H_{2}}(g) + 2OH^{-}(aq)$$

Chloralkali Process: 3 Products from 1!

■ Semi-permeable membrane helps maintain electroneutrality, but prevents mixing of products generated → Cl₂ disproportionation

• Cl₂ (g) → Valuable commodity as it is widely used as a disinfectant during water treatment or transformed into "bleach" → NaClO

$$2\text{NaOH (aq)} + \text{Cl}_2(g) \longrightarrow \text{NaCl (aq)} + \text{NaClO (aq)} + \text{H}_2\text{O (1)}$$

 Concern regarding chlorination of drinking water include residual odour/taste & generation of toxic by-products trihalomethanes

Chloroform: Suspected Carcinogen

http://www.waterandhealth.org/drinkingwater/wp.html

Chlorination & Human Health

Source: US Centers for Disease Control and Prevention, Summary of Notifiable Diseases, 1997.

Li-ion Batteries

 Account for 63% of portable batteries worldwide since being commercialized by Sony in 1990

Tarascon, J.-M., Armand, M., Nature, 414, 2001, 359

