

Nachrichtenübertragung

Prof. Dr.-Ing. **Sikora**

Elvira Fleig, Rolf Jongebloed

Rechenübung Signale & Systeme (WiSe 2023/2024)

Korrelation (3. Termin)

Hinweise

- Die Aufgabenblätter zur l zum Download bereit.
- Aufgaben, die mit [HA] ŀ Hausaufgabe bearbeitet v. Eigenschaft der Rorrelation: Vuv(~) = Vvu(-~) rechnet bzw. besprochen.

b. zu zeigen ult) * v(t) = v(t) * u(t)

1 Eigenschaften von Korrelation und Fal

1.1 Beweise die folgenden Zusammenhänge.

a)
$$r_{uv}(\tau) = r_{vu}(-\tau)$$

a)
$$r_{uv}(\gamma) = \int_{-\infty}^{\infty} u(t)v(t+\gamma)dt$$

b) [HA]:
$$u(t) * v(t) = v(t) * u(t)$$

ult) * v(t) = (u(t) · v(t-t) dt ac = -axobere Grenze: T= co > X=t-T=t-co=-

untere Grenze t. -00 -> x = t - (-00) = 00 - [u(t-x) v(t-(t-x)) dx

u(t-T) v(T) dT = v(t) * u(t)

2 Korrelation

2.1 Bestimme die Kreuzkorrelationsfunktion $r_{uv}(\tau)$ für folgende Signalpaare.

a)

Tav(Y)= Jue)V(+Y)dt b) [HK]:

Linka Grens: t+2== = +t==-v reunte Grens: Et Y = 3T + t= 3T-2

3. Fall \$T-4>0 13T-427 Tuves) = 121-8 A.BJE = 48.(T)

Tw (2) 20

(2)

UE Signale & Systeme | WiSe 2023/2024 | Termin 1 Seite 2 von 2

2.2 Berechne die Autokorrelationsfunktion (AKF) $r_{uu}(\tau)$ für das nachfolgend skizzierte Signal. Gib weiterhin den Wert der normierten AKF $\rho_{uu}(\tau)$ an den Punkten -2T, 0, T an.

$$T_{U}(t)=\int_{0}^{\infty}M(t)u(t+t)dt$$

 $U(t)=A\Pi_{T}(t+T/2)-A\Pi_{T}(t-T/2)$

line Grenz: t+r=-T => t=-T-v

mittlenbrens: ttt=0 =>t=-2

Teente Grens: £{4:7=7=1+= T-2

run(2)= [-1-2(A)Adt

Foll 3.
$$-2<0 \land -7<-2$$

=> $7>2>0$
 $7un(2) = \int_{-7}^{-2} A^2 d\xi + \int_{-2}^{2} -A^2 d\xi + \int_{-2}^{7-2} A^2 d\xi$
= $A^2 \left(-2+7-2+7-2 \right)$
= $A^2 \left(27-32 \right)$

2.4.b.

J= u(+) v(++ t)dt

links:
$$t+2=0 \Rightarrow t=-2$$

Rechts: $t+2=21=0 t=2T-2$

4. Fall

3. Fall

$$= -\frac{AB}{2T} \cdot \left(\frac{1}{2} t^{2} - 2Tt \right) \Big|_{-2}^{2T}$$

$$Tuv(\mathcal{C}) = \int_{0}^{27-2c} AB \cdot \left(-\frac{t}{27} + A\right) dt$$

$$= -\frac{AB}{27} \cdot \int_{0}^{27-2c} (t-27) dt$$

$$= -\frac{AB}{27} \cdot \left[\frac{4}{2} t^{2} - 27t \right]_{0}^{27-2c}$$

$$= -\frac{AB}{27} \cdot \left[\frac{4}{2} t^{2} - 27t \right]_{0}^{27-2c}$$

