Representation Group

Alexandre Charland

February 11, 2025

Chapter 1

Specht modules

Definition 1 (YoungTableau). Un YoungTableau est une fonction des cellules d'un YoungDiagram de taille n et retourne un naturel de 0 à n-1
Theorem 2 (injYu). Un YoungTableau est injectif sur les entrés qui sont dans le YoungDiagran
Proof. Par définition d'un YoungTableau
Theorem 3 (bijYu). Un YoungTableau est une bijection entre les case de son YoungDiagrar et les naturels de 0 à n -1
<i>Proof.</i> Comme il est injectif et le domaine et codomaine sont fini et ont la même cardinalité. La fonction doit être bijective
Definition 4 (Pu). Pu est un sous groupe de S_n , défini de la façon suivante: Un élément de Pu permute les entré du YoungDiagram si ils sont sur la même rangé.
Proof. Il y a trois choses à vérifier. Le sous-groupe est fermé sous la composition de fonction Preuve: Soit $\alpha, \beta \in P_{\mu}$, mq $\alpha \circ \beta(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j}) \to \mathbf{i}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ Comme Y_{μ} est une bijection, $\exists k \in \mu$ tq $Y_{\mu}(\mathbf{k}) = \beta(Y_{\mu}(\mathbf{j}))$ Comme $\beta \in P_{\mu}$ on a que $\mathbf{k}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ De plus on a que $\alpha(Y_{\mu}(\mathbf{k})) = \alpha \circ \beta(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j})$ On peut déduire que $\mathbf{i}.\mathbf{y} = \mathbf{k}.\mathbf{y} = \mathbf{j}.\mathbf{y}$
L'élement neutre est élément de P_μ La preuve découle de l'injectivité de Y_μ
L'inverse est élément de P_{μ} Soit $\alpha \in P_{\mu}$, mq $\alpha^{-1} \in P_{\mu}$ Comme alpha est une bijection, on a que $\alpha^{-1}(Y_{\mu}(i)) = Y_{\mu}(j) \Leftrightarrow Y_{\mu}(i) = \alpha(Y_{\mu}(j))$
Definition 5 (Qu). Pu est un sous groupe de S_n , défini de la façon suivante: Un élément de Pu permute les entré du YoungDiagram si ils sont sur la même colonne.
Proof. La même preuve que Pu
Lemma 6 (sectPuQu). Pour un même YoungTableau, l'intersection de P_{μ} et Q_{μ} est 1
Proof. TODO