

Application II: Support Substructure Similarity Search

- ☐ Find graphs in a graph DB containing substructures similar to a given query graph
- Ex. Data: A chemical compound DB
 - A query graph q:

(c)

- How to do similarity search efficiently?
 - No indexing? Sequential scan + computing subgraph similarity – too costly!
 - Build graph indices to support approximate search?
 - Need an explosive number of subgraphs to cover all the similar subgraphs!
- ☐ An elegant solution (Yan, Yu, & Han, SIGMOD'05):
 - Keep the graph index structure, but select features in the query space

Feature-Based Similarity Search

- Decompose a query graph into a set of features
- Feature-based similarity measure
 - Each graph is represented as a feature vector $X = \{x_1, x_2, ..., x_n\}$
 - Similarity is defined by the distance of their corresponding vectors
- If graph G contains the major part of a query graph q,
 G should share a number of common features with q
 - Given a relaxation ratio, one can calculate the maximal number of features that can be missed!

Assume: Query graph has 5 features

Relaxation threshold: Can miss at most 2 features

Then: G₁, G₂, G₃ are pruned

Graphs in database

	G_1	G_2	G_3	G_4	G_5
f_1	0	1	0	1	1
f ₂	0	1	0	0	1
f_3	1	0	1	1	1
f ₄	1	0	0	0	1
f_5	0	0	1	1	0

