

Tipo de Prova	Ano letivo	Data			
Exame de época normal	2017/2018	xx-xx-2018			
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx				
Unidade Curricular	Duração				
Sistemas Digitais e Arquitetura de Computadores 1H:30M					

Observações:

- Preencha todo o cabeçalho da folha(s) de teste: nome completo do estudante, número do estudante, data da realização da prova de avaliação, nome da unidade curricular e nome do curso de licenciatura.
- Os estudantes deverão colocar em cima da mesa onde irão realizar a prova de avaliação o seu cartão de estudante ou outro cartão que os identifique.
- Os estudantes deverão colocar em cima da mesa para a realização da prova de avaliação, salvo indicação em contrário pelo docente, apenas os seguintes materiais, caneta, lápis, borracha. Todo o restante material deverá ser colocado debaixo da mesa.
- Os estudantes não deverão sair da sala de exame sem terem assinado a folha de presenças no caso de um exame final ou de passar o cartão de estudante na máquina de registo de presenças no caso de um momento de avaliação que não exame final.
- Os estudantes só podem sair da sala ao fim de 30 minutos depois do início da prova.
- Caso um estudante queira desistir deverá escrever na folha de exame "Desisto" e colocar por baixo a sua assinatura.
- Apresente a resolução desta prova apenas na(s) folha(s) fornecida(s) para esse fim.
- Justifique convenientemente todas as respostas.
- Qualquer estudante que necessite de mais folhas de teste ou mais folhas de rascunho deverá solicitar as mesmas ao docente.
- Quando um estudante solicitar uma nova folha de teste não deverá esquecer-se de no cabeçalho atualizar o número de folhas de teste. Cada folha de teste é constituída por quatro páginas, assim o número de folhas é 1/1. Caso o estudante solicite nova folha de teste o número de folhas a indicar na primeira folha será 1/2 e na segunda folha 2/2. Para não haver engano na contagem este parâmetro do cabeçalho deve apenas ser preenchido aquando da conclusão da prova de avaliação.
- Não é permitido o uso de qualquer dispositivo eletrónico, tais como por exemplo, máquina de calcular, salvo indicação em contrário, dada pelo docente responsável da unidade curricular.
- Não é permitido o uso de qualquer documentação além da indicada/fornecida pelo docente.
- Na altura da entrega da prova pelo estudante, este deve entregar tudo o que lhe foi entregue pelo docente, folha de teste, folha de rascunho, enunciado, folhas de apoio, etc.

ESTGF-PR05-Mod013V1 Página 1 de12

Tipo de Prova	Ano letivo	Data			
Exame de época normal	2017/2018	xx-xx-2018			
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado		Hora xx:xx			
Unidade Curricular Sistemas Digitais e Arquitetura de Computadores Duração 1H:30M					

Grupo I

(Resposta correta = 100%; Resposta errada = - 25%; Resposta em branco = 0%)

1.

Umas das funções lógicas do código de Hamming que permite detetar a existência de um erro na informação é:

- a) $C_1 = b_1 \oplus b_2 \oplus b_5 \oplus b_7$
- b) $C_1 = b_2 \oplus b_2 \oplus b_5 \oplus b_7$
- c) $C_1 = b_2 \oplus b_4 \oplus b_5 \oplus b_7$
- d) Nenhuma das anteriores

Cotação: 2 valores

2.

Num latch SR, o estado de Reset ocorre quando, as entradas:

- a) S assume o valor lógico 1 e R assume o valor lógico 0
- b) S assume o valor lógico 0 e R assume o valor lógico 0
- c) S assume o valor lógico 0 e R assumem o valor lógico 1
- d) Nenhuma das anteriores

Cotação: 2 valores

3.

A unidade de controlo do CPU:

- a) Apenas busca instruções na memória
- b) Busca instruções na memória e controla o fluxo de dados entre a ALU e a memória
- c) Apenas controla o fluxo de dados entre a ALU e a memória
- d) Nenhuma das anteriores

Cotação: 2 valores

4.

Quando ocorre uma interrupção, é iniciada uma rotina de tratamento de interrupções. Essa rotina de tratamento de interrupções:

- a) Processa a rotina de interrupções
- b) Processa a rotina de interrupções ou então invoca um programa para a processar
- c) Invoca um programa para processar a rotina de interrupções
- d) Nenhuma das anteriores

Cotação: 2 valores

ESTGF-PR05-Mod013V1 Página 2 de12

Tipo de Prova	Ano letivo	Data			
Exame de época normal	2017/2018	xx-xx-2018			
Curso Licenciatura em Engenharia Informática / Licenciatura em Segurança Informática em Redes de Computadores Hora xx:xx					
Unidade Curricular	Duração				
Sistemas Digitais e Arquitetura de Computadores 1H:30M					

5.

Os barramentos que utilizam temporização assíncrona:

- a) Tiram partido das velocidades dos dispositivos
- b) Obtemos menor flexibilidade que nos barramentos que utilizam temporização síncrona
- c) Todos os eventos ocorrem no início de um ciclo de relógio
- d) Nenhuma das anteriores

Cotação: 2 valores

6.

Numa memória com um método de acesso sequencial:

- a) Cada bloco ou registo tem um endereço único baseado na sua localização física
- b) Cada posição de memória endereçável possui um mecanismo de endereçamento único
- c) Os dados são organizados em unidades chamadas registos e não têm um endereço único
- d) Nenhuma das anteriores

Cotação: 2 valores

7.

Na técnica que nos permite armazenar números inteiros negativos, denominada Sinal magnitude:

- a) O bit mais à esquerda representa o bit de sinal
- b) O bit mais à direita representa o bit de sinal
- c) Os dois bits mais à esquerda representam o bit de sinal
- d) Nenhuma das anteriores

Cotação: 2 valores

8.

Na multiplicação de números binários, quando se calculam os produtos parciais e posteriormente esses produtos são somados para obter o produto final, estamos a utilizar a técnica de:

- a) Algoritmo de Booth
- b) Adicionar repetidas vezes
- c) Deslocar e somar
- d) Nenhuma das anteriores

Cotação: 2 valores

ESTGF-PR05-Mod013V1 Página 3 de12

Tipo de Prova	Ano letivo	Data				
Exame de época normal	2017/2018	xx-xx-2018				
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx					
Unidade Curricular Duração						
Sistemas Digitais e Arguitetura de Computadores 1H:30M						

Grupo II

9.
Projete com portas lógicas um circuito combinatório para converter o código BCD Excesso 3 em código BCD
AIKEN.
Cotação: 2 valores

10.

Elabore um programa que coloque dois bytes em hexadecimal, A9H e 7BH, nos registos B e C, e calcule a respetiva soma. Se a soma for maior que 8 bits, ou seja, se produzir carry, então coloque o número 00H no porto PORT2, cujo endereço é 02H, e na posição de memória 1080H. Caso contrário, guarde a soma apenas na posição de memória 1080H.

Cotação: 2 valores

Instruções do microprocessador da INTEL 8085

Nomenclatura:

	Legenda Company of the Company of th
pr	Par de registos: HL, BC, DE, SP, PC
reg	Registo: A, B, C, D, E, H, L
м	Posição de memória
addr	Endereço de 16 bits de uma posição de memória
x	O bit do registo de flags é afetado

ESTGF-PR05-Mod013V1 Página 4 de12

Tipo de Prova Exame de época normal	Ano letivo 2017/2018	Data xx-xx-2018			
Curso Licenciatura em Engenharia Informática / Licen	Hora				
Segurança Informática em Redes de Computadores xx:xx					
Unidade Curricular	Duração				
Sistemas Digitais e Arquitetura de Computadore	1H:30M				

byte	Constante, ou expressão lógica/aritmética que representa um dado de 8 bits
double	Constante, ou expressão lógica/aritmética que representa um dado de 16 bits
	Conteúdo do que se encontra dentro de parênteses retos
[[1]	Conteúdo do conteúdo do que se encontra dentro de parênteses retos
CS	Flag de carry
label	Endereço de uma posição de memória
port	Endereço de um dispositivo I/O

Grupo de transferência de dados

laster 7	0	Statu	s do re	gisto	de fla	gs	O como a constituidado
Instrução	Operandos CS AC Z S P	Р	Operação realizada				
LDAX	pr						[A] ← [[pr]] Load A using implied addressing by BC (pr=B) or DE (pr=D)
STAX	pr						[[pr]] ← [A] Store A using implied addressing by BC (pr=B) or DE (pr=D)
MOV	r,M						$[r] \leftarrow [[HL]]$ Load any register using implied addressing by HL
MOV	M,r						$ [[HL]] \leftarrow [r] $
LDA	addr						[A] ← [addr] Load A using direct addressing
STA	addr						[addr] ← [A] Store A using direct addressing
LHLD	addr						[L] ← [addr] and [H] ← [addr+1] Load H and L registers using direct addressing

ESTGF-PR05-Mod013V1 Página 5 de12

Tipo de Prova	Ano letivo	Data			
Exame de época normal	2017/2018	xx-xx-2018			
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx				
Unidade Curricular Sistemas Digitais e Arquitetura de Computadores Duração 1H:30M					

SHLD	addr	[addr] ← [L] and [addr+1] ← [H] Store H and L registers using direct addressing
MOV	r,r	$[r] \leftarrow [r]$ Move any register to any register
XCHG		$[D] \leftarrow \rightarrow [H]$ and $[E] \leftarrow \rightarrow [L]$ Exchange DE with HL
SPHL		[HL] ← [SP] Move HL to SP
LXI	pr,double	[pr] \leftarrow double Load 16 bits immediate data into BC (pr=B), DE (pr=D), HL (pr=H), SP (pr=SP)
MVI	M,byte	[[HL]] ← byte Load 8 bit immediate data into memory location with implied addressing by HL
MVI	r,byte	[r] ← byte Load 8 bit immediate data into any register

Grupo aritmético, lógico e de rotação

1	0	Status do registo de flags			de fla	gs	O constant lands
Instrução	Operandos	CS	AC	Z	S	Р	Operação realizada
ADD	М	x	x	x	x	x	[A] ← [A] + [[HL]] Add register A with implied addressing by HL and store the result in register A
ADC	М	x	х	x	x	x	[A] ← [A] + [[HL]] + [CS] Add register A with carry with implied addressing by HL and store the result in register A
SUB	М	x	x	x	х	x	[A] ← [A] – [[HL]] Subtract register A with implied addressing by HL and store the result in register A
SBB	М	x	х	x	x	x	[A] ← [A] - [[HL]] - [CS] Subtract register A with carry with implied addressing by HL and store the result in register A
ANA	М	0	1	x	x	x	[A] ← [A] AND [[HL]] AND between register A with implied addressing by HL and store the result in register A
XRA	М	0	0	x	x	x	[A] \leftarrow [A] XOR [[HL]] Exclusive-OR between register A with implied addressing by HL and store the result in register A
ORA	М	0	0	x	x	x	$\label{eq:addressing} [A] \leftarrow [A] \ \ \text{OR} \ [\text{[HL]}]$ OR between register A with implied addressing by HL and store the result in register A

ESTGF-PR05-Mod013V1 Página 6 de12

Tipo de Prova	Ano letivo	Data
Exame de época normal	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licenc Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	1H:30M	

СМР	М	x	x	x	x	x	[A] – [[HL]] Compare register A with implied addressing by HL If register A < [[HL]] than the carry flag is set (1) If register A = [[HL]] than the zero flag is set (1) If register A > [[HL]] than the carry and zero flags are reset (0)
INR	М	x	x	x	x	x	[[HL]] ← [[HL]] + 1 Increment memory
DCR	М	x	х	x	x	x	[[HL]] ← [[HL]] -1 Decrement memory
ADI	byte	x	x	x	x	x	[A] ← [A] + byte Add register A with 8 bit immediate data and store the result in register A
ACI	byte	x	x	x	x	x	[A] ← [A] + byte + [CS] Add register A with 8 bit immediate data with carry and store the result in register A
SUI	byte	x	x	x	x	x	[A] ← [A] – byte Subtract register A with 8 bit immediate data and store the result in register A
SBI	byte	x	x	x	x	x	[A] ← [A] - byte - [CS] Subtract register A with 8 bit immediate data with carry and store the result in register A
ANI	byte	0	1	x	x	x	[A] ← [A] AND byte AND between register A with 8 bit immediate data and store the result in register A
XRI	byte	0	0	x	x	x	[A] ← [A] XOR byte Exclusive-OR between register A with 8 bit immediate data and store the result in register A
ORI	byte	0	0	x	x	x	[A] ← [A] OR byte OR between register A with 8 bit immediate data and store the result in register A
СРІ	byte	x	x	x	x	x	[A] – byte Compare register A with 8 bit immediate data If register A < byte than the carry flag is set (1) If register A = byte than the zero flag is set (1) If register A > byte than the carry and zero flags are reset (0)
ADD	r	x	x	x	x	x	[A] ← [A] + [r] Add register A with any register and store the result in register A
ADC	r	x	x	x	x	x	$[A] \leftarrow [A] + [r] + [CS]$ Add register A with any register with carry and store the result in register A
SUB	r	x	x	x	x	x	$[A] \leftarrow [A] - [r]$ Subtract register A with any register and store the result in register A
SBB	r	x	x	x	x	x	[A] \leftarrow [A] – [r] – [CS] Subtract register A with any register with carry and store the result in register A
ANA	r	0	1	x	x	x	[A] \leftarrow [A] AND [r] AND between register A with any register and store the result in register A

ESTGF-PR05-Mod013V1 Página 7 de12

Tipo de Prova	Ano letivo	Data
Exame de época normal	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular Sistemas Digitais e Arguitetura de Computadore	Duração 1H:30M	

XRA	r	0	0	x	x	x	[A] ← [A] XOR [r] Exclusive-OR between register A with any register and store the result in register A
ORA	r	0	0	x	x	x	[A] \leftarrow [A] OR [r] OR between register A with any register and store the result in register A
СМР	r	x	x	x	x	x	[A] – [r] Compare register A with any register If register A < r than the carry flag is set (1) If register A = r than the zero flag is set (1) If register A > r than the carry and zero flags are reset (0)
INR	r		х	x	x	x	$[r] \leftarrow [r] + 1$ Increment any register
DCR	r		x	x	x	x	$[r] \leftarrow [r] - 1$ Decrement any register
СМА							[A] ← [Ā] Complement register A
DAA		x	x	x	x	x	The contents of the accumulator are changed from a binary value to two 4-bit binary coded decimal (BCD) digits. This is the only instruction that uses the auxiliary flag (AC) to perform the binary to BCD conversion, and the conversion procedure is described below. If the value of the low-order 4-bits in the accumulator is greater than 9 or if AC flag is set (1), the instruction adds 6 to the low-order four bits. If the value of the high-order 4-bits in the accumulator is greater than 9 or if the Carry flag (CS) is set (1), the instruction adds 6 to the high-order four bits.
RLC		x					Each binary bit of the register accumulator is rotated left by one position. Bit D7 is placed in the position of D0 as well as in the Carry flag. The carry flag (CS) is modified according to bit D7. Carry Register acumulator MSB LSB x D7 D6 D5 D4 D3 D2 D1 D0
RRC		x					Each binary bit of the register acumulator is rotated right by one position. Bit D0 is placed in the position of D7 as well as in the Carry flag. The carry flag (CS) is modified according to bit D0. Register acumulator MSB LSB x D7 D6 D5 D4 D3 D2 D1 D0
RAL		X					Each binary bit of the register acumulator is rotated left by one position trought the carry flag. Bit D ₇ is placed in the carry flag, and the carry flag is placed in the least significant position D ₀ . The carry flag (CS) is modified according to bit D7. Register acumulator MSB LSB D7 D6 D5 D4 D3 D2 D1 D0

ESTGF-PR05-Mod013V1 Página 8 de12

Tipo de Prova	Ano letivo	Data
Exame de época normal	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
l Sistemas Digitais e Arquitetura de Computadore	1H:30M	

Grupo de controlo e de salto

I	0	Statu	ıs do re	gisto	de fla	gs	Our San Park
Instrução	Operandos	CS	AC	Z	S	Р	Operação realizada
JMP	label						[PC] ← label Jump to instruction at address label
PCHL							[PC] ← [HL] Jump to instruction at address contained in HL
CALL	label						[[SP]] ← [PC] , [PC] ← label, [SP] ← [SP] − 2 Jump to subrotine starting at address label
СС	label						[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the carry flag (CS) equal to 1
CNC	label						[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the carry flag (CS) equal to 0
CZ	label						[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the zero flag (Z) equal to 1
CNZ	label						[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the zero flag (Z) equal to 0
СР	label						[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the sign flag (S) equal to 0

ESTGF-PR05-Mod013V1 Página 9 de12

Tipo de Prova	Ano letivo	Data
Exame de época normal	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licenc Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	1H:30M	

СМ	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the sign flag (S) equal to 1
СРЕ	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the parity flag (P) equal to 1
СРО	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the parity flag (P) equal to 0
RET				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine
RC				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the carry flag (CS) equal to 1
RNC				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the carry flag (CS) equal to 0
RZ				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the zero flag (Z) equal to 1
RNZ				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the zero flag (Z) equal to 0
RM				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the sign flag (S) equal to 0
RP				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the sign flag (S) equal to 1
RPE				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the parity flag (P) equal to 1
RPO				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the parity flag (P) equal to 0
JC	label			[PC] ← label Jump to instruction at address label if the carry flag (CS) equal to 1
JNC	label			[PC] ← label Jump to instruction at address label if the carry flag (CS) equal to 0
JZ	label			[PC] ← label Jump to instruction at address label if the zero flag (Z) equal to 1
JNZ	label			[PC] ← label Jump to instruction at address label if the zero flag (Z) equal to 0
JP	label			[PC] ← label Jump to instruction at address label if the sign flag (S) equal to 0

ESTGF-PR05-Mod013V1 Página 10 de12

Tipo de Prova	Ano letivo	Data
Exame de época normal	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licenc Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	1H:30M	

JM	label	[PC] ← label Jump to instruction at address label if the sign flag (S) equal to 1
JPE	label	[PC] ← label Jump to instruction at address label if the parity flag (P) equal to 1
JPO	label	[PC] ← label Jump to instruction at address label if the parity flag (P) equal to 0
RST	n	The RST instruction is equivalent to a 1-byte call instruction to one of eight memory locations depending upon the number. The instructions are generally used in conjunction with interrupts and inserted using external hardware. However these can be used as software instructions in a program to transfer program execution to one of the eight locations. The addresses are: Instruction Restart Address RST 0 0000H RST 1 0008H RST 2 0010H RST 3 0018H RST 4 0020H RST 5 0028H RST 6 0030H RST 7 0038H

Grupo de controlo do CPU, I/O e da Pilha

1	0	Status do registo de flags		gs	O constant lands		
Instrução	Operandos	CS	AC	Z	S	Р	Operação realizada
IN	port						[A] ← [port] Input to register acumulator (A) from I/O port
OUT	port						[port] ← [A] Ouput from register acumulator (A) to I/O port
PUSH	pr						[[SP]] \leftarrow [pr] , [SP] \leftarrow [SP] $-$ 2 Push register pair BC (pr=B), DE (pr =D), H (pr=HL), PSW (pr=PSW) contentes onto stack
POP	pr						$[pr] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Pop stack into register pair BC (pr=B), DE (pr =D), H (pr=HL), PSW (pr=PSW)
XTHL							[HL] ← [[SP]] Exchange HL with top of stack
EI							Enable interrupts following execution of next instruction
DI							Disable interrupts
SIM							Set interrupt mask

ESTGF-PR05-Mod013V1 Página 11 de12

Tipo de Prova	Ano letivo	Data
Exame de época normal	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	<u> </u>	1H:30M

RIM	Read interrupt mask
NOP	$[PC] \leftarrow [PC] + 1$ No operation but program counter (PC) is incremented
HLT	HALT Stop CPU operation

ESTGF-PR05-Mod013V1 Página 12 de12