

Copyright © 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinberg-tardos

# 7. NETWORK FLOWS I

▶ Ford-Fulkerson pathological example

Last updated on Sep 8, 2013 6:40 AM

## Ford-Fulkerson pathological example

Intuition. Let r satisfy  $r^2 = 1 - r$ .

- Initial capacities are  $\{1, r\}$ .
- After some augmentation, residual capacities are  $\{1, r, r^2\}$ .
- After some more, residual capacities are  $\{1, r, r^2, r^3\}$ .
- After some more, residual capacities are  $\{1, r, r^2, r^3, r^4\}$ . r-r

$$r = \frac{\sqrt{5} - 1}{2} \implies r^2 = 1 - r$$

## Ford-Fulkerson pathological example

#### network G



## Ford-Fulkerson pathological example

augmenting path 1:  $s \rightarrow v \rightarrow w \rightarrow t$  (bottleneck capacity = 1)



$$r^2 = 1 - r$$

4

## Ford-Fulkerson pathological example

#### augmenting path 2: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r)



## Ford-Fulkerson pathological example

### augmenting path 3: $s \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r)



# Ford-Fulkerson pathological example

## augmenting path 4: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = $r^2$ )



## Ford-Fulkerson pathological example

#### augmenting path 5: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = $r^2$ )



$$r^2 = 1 - r$$

## Ford-Fulkerson pathological example

#### augmenting path 6: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = $r^3$ )



## Ford-Fulkerson pathological example

### augmenting path 7: $s \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = $r^3$ )



# Ford-Fulkerson pathological example

#### augmenting path 8: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = $r^4$ )



# Ford-Fulkerson pathological example

## augmenting path 9: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = $r^4$ )



$$r^2 = 1 - r$$

## Ford-Fulkerson pathological example

```
after augmenting path 1: \{1 - r^0, 1, r - r^1\} (flow = 1) after augmenting path 5: \{1 - r^2, 1, r - r^3\} (flow = 1 + 2r + 2r^2) after augmenting path 9: \{1 - r^4, 1, r - r^5\} (flow = 1 + 2r + 2r^2 + 2r^3 + 2r^4)
```



Ford-Fulkerson pathological example

Theorem. The Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not equal to the value of the maximum flow.

Pf.

• Using the given sequence of augmenting paths, after  $(1 + 4k)^{th}$  such path, the value of the flow

$$= 1 + 2 \sum_{i=1}^{2k} r^{i}$$

$$\leq 1 + 2 \sum_{i=1}^{\infty} r^{i}$$

$$= 3 + 2r$$

$$< 5$$

• Value of maximum flow = 200 + 1. •