#### Recitation #10

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science



#### recall: least squares

#### Least squares

The least squares problems can be written as

$$\min_{x \in \mathbb{R}^n} ||Ax - y||^2$$

where  $A \in \mathbb{R}^{d \times n}$ . Using minimization of convex functions we find that

$$x$$
 is solution  $\leftrightarrow A^T A x = A^T y$ 

But... A does not have an inverse!

#### Moore-Penrose pseudo-inverse

Let  $A \in \mathbb{R}^{d \times n}$  decompose as  $A = U \Sigma V^T$ , then  $A^{\dagger} = V \Sigma' U^T \in \mathbb{R}^{d \times n}$  is the Moore-Penrose pseudo-inverse of A where

$$\Sigma'_{ii} = \begin{cases} rac{1}{\Sigma_{ii}} & \text{if } \Sigma_{ii} 
eq 0 \\ 0 & \text{otherwise} \end{cases}, \Sigma'_{ij} = 0 \text{ when } i 
eq j$$

#### recall: least squares

#### Unregularized least squares

Theorem: The set of solutions of the minimization problem  $\min_{x \in \mathbb{R}^d} ||Ax - y||^2$  is  $A^{\dagger}y + ker(A)$ 

#### Ridge regularization

Theorem: for any  $\lambda>0$  the solution of the minimization problem  $\min_{x\in\mathbb{R}^d}\|Ax-y\|^2+\lambda\|x\|^2$  is

$$x_{\mathsf{ridge}} = (A^T A + \lambda Id)^{-1} A^T y$$

#### Lasso regularization

Theorem: for any  $\lambda>0$  the solution of the minimization problem  $\min_{x\in\mathbb{R}^d}\|Ax-y\|^2+\lambda|x|$  is

$$x_{\text{lasso}} = \operatorname{argmin}_{x \in \mathbb{R}^d} ||Ax - y||^2 + \lambda |x|$$

#### practice: ridge regression

#### Exercise 1

Show that the solution  $x_{textridge}$  is given by the formula in the previous slide

$$x_{\mathsf{ridge}} = (A^T A + \lambda \mathsf{Id})^{-1} A^T y$$

# practice: lasso regression

#### Exercise 2

Let  $x_0 \in \mathbb{R}$  and  $f_{x_0} : \mathbb{R} \to \mathbb{R}$  be defined as

$$f_{x_0}(x) = \frac{1}{2}x^2 - x_0x + \lambda|x|$$

Show that for  $\lambda \geq 0$ , the function  $f_{x_0}$  admits a unique minimizer goven by  $x^* = \eta(x_0; \lambda)$  where  $\eta$  is the *soft-thresholding function*:

$$\eta(x_0; \lambda) = \begin{cases} x_0 - \lambda & \text{if } x_0 \ge \lambda \\ 0 & \text{if } -\lambda \le x_0 \le \lambda x_0 + \lambda \\ \text{if } x_0 \le -\lambda & \end{cases}$$

# practice: lasso regression

#### Exercise 3

Let  $A \in \mathbb{R}^{n \times d}$  be a matrix such that its columns are orthonormal. Show that the Lasso solution  $x_{\mathsf{lasso}} = \mathsf{argmin}_{x \in \mathbb{R}^d} \|Ax - y\|^2 + \lambda |x|$  satisfies

$$x_{j_{\mathsf{lasso}}} = \eta(x_{j_{\mathsf{LS}}}; \lambda), \text{ for } \mathsf{all} j \in \{1, ..., d\}$$

where  $x_{LS} = A^T y$ 

# practice: pseudo-inverse

#### Exercise 4

Show that the Moore-Penrose pseudo-inverse  $A^\dagger \in \mathbb{R}^{d \times n}$  is the only matrix such that

- $AA^{\dagger}A = A$
- $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- **3**  $AA^{\dagger} \in \mathbb{R}^{d \times n}$  are symmetric matrices

We will prove this in two steps:

- 4.1: Show that the Moore-Penrose pseudo-inverse fulfils properties 1, 2 and 3.
- 4.2: Now show that it is unique.

# Exercise 4.1

# Exercise 4.1

#### Exercise 4.2