Мощность множеств

Определение 1. Два множества A и B называются равномощными A~B (аналогичная запись: m(A) = m(B) или |A| = |B|), если \exists биекция $f: A \to B$.

Утверждение 1. Отношение равномощности – отношение эквивалентности.

Доказательство.

- 1. Рефлексивность: $A \sim A$, так как существует биекция $e_A : A \to A$.
- 2. Симметричность: $A \sim B \Rightarrow B \sim A$, так как \exists биекция $f: A \to B \Rightarrow \exists$ биекция $f^{-1}: B \to A$.
- 3. Транзитивность: $A \sim B$ и $B \sim C \Rightarrow A \sim C$, т.к. \exists биекция $f: A \to B$, \exists биекция $\varphi: B \to C \Rightarrow \varphi \circ f: A \to C$ биекция.

Множества бывают конечные (с конечным числом элементов) и бесконечные.

Конечные множества

Утверждение 2. Пусть множества A и B конечны. $A \sim B$, тогда и только тогда, когда A и B содержат одинаковое число элементов.

Доказательство:

Достаточность.

Пусть
$$A = \{a_1, ..., a_m\}, B = \{b_1, ..., b_n\}, f: A \to B.$$

И пусть $m \neq n$

- 1. m > n f не инъективна.
- 2. m < n f не сюръективна.

Противоречие, т.к. и в том, и в другом случаях $f: A \to B$ не является биекцией и, следовательно, не выполняется $A \sim B$.

Необходимость очевидна: $m = n \Rightarrow f$ – биекция. Ч.т.д.

Счетные множества

Определение 2. Счетным называется множество, равномощное множеству натуральных чисел $(A \sim \mathbb{N})$.

Все элементы счетного множества можно занумеровать в бесконечную числовую последовательность.

Примеры.

Ставим в соответствие 2z+1 неотрицательным z и 2/z/ — отрицательным.

- 2) $2^n \leftrightarrow n$
- 3) Q рациональные числа

$$\frac{p}{q}$$
 – несократимая дробь.

Один из способов пересчета рациональных чисел – «змейка»:

Свойства счетных множеств

- 1) Любое подмножество счётного множества счётно или конечно.
- 2) Пересечение счетных множеств счётно или конечно. Так как

$$A \cap B \subseteq A$$
.

3) Объединение конечного или счетного числа счетных множеств — $A_1 \cup A_2 \cup ...$ счетно. Доказательство («змейка»)

$$A_{1} = \{a_{11}, a_{12}, a_{13} ...\}$$

$$A_{2} = \{a_{21}, a_{22}, a_{23} ...\}$$

$$A_{3} = \{a_{31}, a_{32}, a_{33} ...\}$$

4) Прямое произведение **конечного! (иначе континуум)** числа счетных множеств счетно. Доказательство («змейка»). Для двух множеств $X \times Y$

	y_1	y_2	y_3	
x_1	$\langle x_1, y_1 \rangle$	$\Rightarrow x_1, y_2 >$	$\leq x_1, y_3 >$	•••
x_2	$ \langle x_2, y_1 \rangle^{L}$	$(-\infty, y_2)'$	(x_2, y_3)	•••
x_3	$\langle x_3 \rangle y_1 \rangle$	(x_3, y_2)	$< x_3, y_3 >$	
	•••	•••	•••	

И т.д. для трех множеств. И для любого конечного числа множеств. Если счетных множеств счетное число, то прямое произведение имеет мощность континуум.

5) Из любого бесконечного множества можно выделить конечное или счётное подмножество.

Выбираем первый элемент – нумеруем, второй – нумеруем и т.д.

Множества мощности континуум

Теорема Кантора. Множество точек отрезка [0,1] несчётно.

Доказательство:

Предположим, что счётно, т.е. множество точек отрезка $[0,1] \sim N$. Существует биекция. Занумеруем точки отрезка:

$$N \quad \alpha_i \in [0,1]$$

$$1 \leftrightarrow \alpha_1 = 0$$
, $\alpha_{11}\alpha_{12}\alpha_{13} \dots$

$$2 \leftrightarrow \alpha_2 = 0$$
, $\alpha_{21}\alpha_{22}\alpha_{23} \dots$

$$3 \leftrightarrow \alpha_3 = 0, \alpha_{31}\alpha_{32}\alpha_{33} \dots$$

...

Составим число $\beta=0,\beta_1,\beta_2,\beta_3,\dots$ $\beta\in[0,1]$

$$\beta_1 \neq \alpha_{11}$$

$$\beta_2 \neq \alpha_{22}$$

$$\beta_3 \neq \alpha_{33}$$

.....

Таким образом $\beta \neq \alpha_i$, следовательно, у β нет прообраза, т.е. нарушается сюръекция, а значит и биекция. Следовательно, множество точек отрезка [0,1] – несчетное множество.

Заметим, что выбираем

 $\beta_i \neq 0; \beta_i \neq 9$ из-за неоднозначности:

$$\frac{1}{2} = 0.50000...$$

$$\frac{1}{2} = 0,49999...$$

Определение 3. Множества, равномощные множеству точек отрезка [0,1], называются множествами мощности континуум или континуальной мощности.

Примеры с доказательствами равномощности множеств мощности континуум

1. Любой отрезок и любой интервал являются множествами мощности континуум.

При этом

$$[a;b]\sim[c;d]$$

$$(a;b)\sim(c;d)$$

Доказательство:

$$\frac{x-a}{b-a} = \frac{y-c}{d-c}$$

$$y = kx + f$$
 – биекция $tg \ \alpha = \frac{d-c}{b-a}$

2)

Покажем, что $[a;b] \sim (a;b) \sim [a;b) \sim (a;b]$

Утверждение 3. Пусть A — любое бесконечное множество.

В – счетное или конечное множество.

Тогда
$$(A \cup B)$$
∼ A .

Доказательство.

Пусть \tilde{A} — конечное или счетное подмножество множества A. Тогда

$$A \cup B \ = \ ((A \backslash \tilde{A}) \ \cup \ \tilde{A}) \cup B \ = \ (A \backslash \tilde{A}) \ \cup \ (\tilde{A} \ \cup \ B) \ \sim \ (A \backslash \tilde{A}) \ \cup \ \tilde{A} \ = \ A$$

Последнее равенство справедливо только в случае, когда \tilde{A} подмножество А. Ч.т.д.

Пусть A=(a;b), $B=\{a;b\}$. В этом случае из утверждения следует $[a;b]\sim(a;b)$.

3) ${\Bbb R}$ -множество действительных чисел имеет мощность континуум.

Или для интервала (0; 1) $y = \frac{1}{\pi} arctg \ x + \frac{1}{2}$

4) І - множество иррациональных чисел имеет мощность континуум.

$$\mathbb{I} \sim \mathbb{R}$$

$$\mathbb{R}=\mathbb{Q}\cup\mathbb{I}$$

Q - рациональное счетное множество.

I - иррациональное несчетное множество.

Действительно, если бы ${\mathbb I}$ было счетным, то ${\mathbb R}$ было бы тоже счётным, т.к. объединение счётных множеств счетно.

Таким образом получаем последовательность:

$$m(\mathbb{K}) < m(\mathbb{N}) < m(\mathbb{R}) < \dots$$

m — мощность.

Бесконечна ли эта последовательность (увеличения мощности)?

Теорема Кантора-Бернштейна

Пусть A и B — произвольные множества, и существуют подмножества A_1 и B_1 , такие что $A_1 \subseteq A$, $B_1 \subseteq B$. Тогда из $A_1 \sim B$ и $B_1 \sim A \Rightarrow A \sim B$. (Без док-ва).

Из теоремы следует, что возможны четыре случая:

- 1) Если $\exists A_1 \sim B$, $\exists B_1 \sim A$, тогда по теореме m(A) = m(B)
- 2) Если $\exists A_1 \sim B$, не $\exists B_1 \sim A$, тогда m(A) > m(B)
- 3) Если $\exists B_1 \sim A$ не $\exists A_1 \sim B \Rightarrow m(B) > m(A)$
- 4) Не $\exists A_1 \sim B$, не $\exists B_1 \sim A$, тогда множества A и B несравнимы?

Оказывается, что четвертый случай невозможен – все множества сравнимы по мощности (аксиоматика Цермело).

Теорема о мощности множества всех подмножеств.

Мощность P(A) — множества всех подмножеств множества A больше мощности самого множества A:

$$m(P(A)) > m(A)$$
. $A \neq \emptyset, A \neq \{a\}$

Доказательство.

Очевидно, что $m(P(A)) \ge m(A)$.

Докажем, что $m(P(A)) \neq m(A)$.

Пусть $\tilde{A}, X \in P(A), \quad \tilde{\alpha}, x \in A.$

Предположим, что m(P(A)) = m(A), т.е. можно установить биекцию между элементами множества P(A) и элементами множества $A: \tilde{A} \leftrightarrow \tilde{a}$.

Сконструируем множество X следующим образом:

Если $\tilde{a} \leftrightarrow \tilde{A}$ и $\tilde{a} \notin \tilde{A} \Rightarrow \tilde{a} \in X$.

Если $\tilde{a} \leftrightarrow \tilde{A}$ и $\tilde{a} \in \tilde{A} \Rightarrow \tilde{a} \notin X$.

Покажем, что у X нет прообраза в А. По построению X получим.

Если $x \leftrightarrow X$ и $x \notin X \Rightarrow x \in X$.

Если $x \leftrightarrow X$ и $x \in X \Rightarrow x \notin X$.

И в том, и в другом случае получаем противоречие: $x \in X$ и $x \notin X$ одновременно. Следовательно, у множества X нет прообраза в A. Нарушается сюръективность. Таким образом. нельзя установить биекцию между элементами множеств P(A) и A. Ч.т.д.

Из теоремы в частности следует: $m(P(\mathbb{N})) > m(\mathbb{N}), P(\mathbb{N}) \sim \mathbb{R}, \ m(P(\mathbb{R})) > m(\mathbb{R}).$