Ficha de Revisão para o 2º Teste

- 1. Uma amostra de 29 alturas de plantas de membros de uma determinada espécie forneceu uma variância amostral de 14.62 cm² e uma amostra de 25 alturas de plantas de membros de uma outra espécie forneceu uma variância amostral de 8.45 cm². Admitindo que as populações de alturas têm distribuição Normal teste, ao nível de significância 5%, se a variância da segunda amostra é significativamente inferior à da primeira.
- 2. Em cada dia, de segunda a sexta, um padeiro produz três grandes bolos de chocolate, e os que não são vendidos no mesmo dia são dados a um banco alimentar. Use os dados apresentados no quadro seguinte para testar, ao nível de significância de 0.05, se podem ser considerados como valores duma variável aleatória binomial.

```
Nº de bolos
0
1
2
3

Nº de dias
1
16
55
228
```

Resolução: X -v.a. designa o nº de bolos vendidos no dia.

```
\begin{array}{c} X{\sim}Bin~(n,p)\\ n{=}3~p{=}?\\ \mu{=}n{^*}p\\ \mu{^*}{=}x(barra){=}(0{^*}1{+}1{^*}16{+}2{^*}55{+}3{^*}228)/300{=}2,7\\ p{^*}{=}2,7/3{=}0,90\\ P(x{=}0|n{=}3;~p{=}0,9){=}\\ P(x{=}1|n{=}3;~p{=}0,9){=}\\ P(x{=}2|n{=}3;~p{=}0,9){=}??????1{-} \end{array}
```

3. Num estudo sobre o número de golfinhos presos diariamente em redes de pesca ao largo dos Açores, nos 257 dias de 1998 em que o estado do tempo permitiu a saída de barcos, obtiveram-se os dados que se seguem:

No de golfinhos	0	1	2	3	4	5	6	≥7
No de dias	37	45	84	52	23	11	2	2

Averigúe se podemos considerar que a amostra é proveniente de uma população com distribuição de Poisson, ao nível de significância 5%.

4. Foi feita uma pesquisa de mercado a várias empresas de negócios de diversas dimensões. Para cada grupo de empresas, foram enviados 200 questionários. As empresas foram classificadas de acordo com o volume de negócios como: pequena empresa, média empresa, grande empresa. Os resultados foram resumidos no quadro:

	Dimensão da empresa		
	pequena	média	grande
Responderam ao			
questionário	125	82	40
Não responderam			
ao questionário	75	118	160

- Interessa-nos saber se as proporções das respostas ao questionário recebidas variam com a dimensão da empresa. Considere $\alpha = 0.01$
- 5. Perante a suspeita que o hábito de fumar da mãe pode influenciar o peso do recém nascido foram recolhidos os dados referentes a 2053 mães e respectivos bebés. Os resultados encontram-se na tabela seguinte:

	Peso do bebé		
Mãe Fumadora?	Menor que P ₁₀	Entre P ₁₀ e P ₉₀	Maior que P ₉₀
Sim	117	529	19
Não	124	1147	117

Que pode concluir sobre estes dados para $\alpha = 0.05$?

6. Foi efectuado um ensaio clínico que pretendia estudar a influência do consumo de água e chá verde nos níveis de colesterol no sangue. Foram seleccionados aleatoriamente 12 indivíduos aos quais se mediu o nível de colesterol no início da experiência. Seguidamente os indivíduos tomaram um litro de água por dia e ao fim de um mês voltou-se a medir o colesterol. Finalmente durante mais um mês os mesmos indivíduos tomaram um litro de chá verde por dia e no final mediu-se novamente o colesterol.

Paciente	Colesterol HDL Após Água	Colesterol HDL Após Chá Verde
1	61,2	62,8
2	46,9	54,5
3	47,7	45,4
4	37,3	38,4
5	44,7	44,4
6	43,3	37,1
7	32,5	29,5
8	63,9	65,3
9	47,7	45,7
10	81,9	82,3
11	53,4	54,4
12	82,8	87,2

- a) Pressupondo que os níveis de colesterol seguem uma distribuição Normal verifique se o nível de colesterol após o consumo de água é significativamente inferior ao nível após o consumo de chá ($\alpha = 0.05$).
- b) Verifique se o nível de colesterol após o consumo de água é significativamente inferior ao nível após o consumo de chá (α = 0,05) desconhecendo a distribuição amostral dos níveis de colesterol.
- 7. A anemia é uma doença que afecta muitas pessoas e que pode ter diversas origens. Pretendendo-se avaliar possíveis diferenças entre diferentes tratamentos de estados anémicos, planeou-se uma experiência com 120 indivíduos anémicos, divididos aleatoriamente em três grupos de 40, aos quais se atribuiu cada um dos tratamentos. O primeiro tratamento era constituído apenas por uma dieta rica em ferro. O segundo tratamento combinava um suplemento de ferro com a dieta do

primeiro tratamento e o último acrescentava um complexo vitamínico. No sentido de avaliar possíveis diferenças entre os tratamentos, efectuou-se uma ANOVA com base nos valores de hemoglobina dos 120 indivíduos após um período de 3 meses de tratamento. Os resultados da ANOVA encontram-se na tabela seguinte. Complete a tabela nos espaços apropriados.

ANOVA

Hemoglobina

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1,522				,483
Within Groups	121,403				
Total	122,925				

- a) Indique quais os pressupostos para a resolução do problema.
- b) Formule as hipóteses associadas ao teste.
- c) Quais as conclusões que pode retirar para $\alpha = 0.05$.
- 8. Um treinador pretende saber qual o número óptimo de dias semanais de treino para os seus atletas. Para tal mediu a performance de três grupos de atletas separados consoante o número de dias de treino: um, dois e três dias. Os resultados da ANOVA encontram-se nas tabelas seguintes. Complete a tabela ANOVA nos espaços apropriados.

Performance	N	Média	Desvio padrão
Grupo 1	20	63,5798	13,50858
Grupo 2	20	73,5677	10,60901
Grupo 3	20	79,2792	4,40754
Total	60	72,1422	12,00312

ANOVA

Performance

	Sum of Squares	df	Mean Square	F
Between Groups	2525,691			
Within Groups				
Total	8500,415			

- a) Indique quais os pressupostos para a resolução do problema.
- b) Formule as hipóteses associadas ao teste.
- c) Verifique se existem diferenças entre as performances dos 3 grupos $(\alpha=0.05)$.
- d) Qual o grupo que apresenta melhor performance para um nível de significância global de 5%?
- 9. Considere que contém informação relativa a uma factura telefónica associada a um telefone da rede fixa da PT de um cliente que não possui nenhum telemóvel.

Sabendo que de acordo com o plano tarifário deste cliente, por um lado, as chamadas de curta distância têm as tarifas mais baixas e que as chamadas para redes móveis têm as tarifas mais altas, e por outro, à noite as tarifas são mais reduzidas do que durante o dia (3 tipos de tarifários), e três tipos de chamada (interurbanas, inter-regionais e móveis), obteve-se a seguinte tabela ANOVA para os dois factores considerados:

Dependent Variable: Valor da chamada sem IVA em Euros

	Soma dos		Média dos	
Fonte	Quadrados	gl	quadrados	F
Tarifa	1,267			
Tipo de chamada			3,490	
tarifa * tipo chamada				
Resíduos	50,527			
Total	101,076	424		

- a) Complete a tabela ANOVA.
- b) Formule as hipóteses associadas ao teste.
- c) Quais as conclusões que pode retirar para $\alpha = 0.05$.
- 10. Três balanças (digitais) foram utilizadas para pesar 10 laranjas (uma a uma). Os valores medidos (em gramas) foram os seguintes:

Balança A: 145; 153; 167; 145

Balança B: 141; 144; 159 Balança C: 157; 145; 168

Verifique se existem diferenças entre os valores dos pesos obtidos pelas 3 balanças. Considere $\alpha = 0.01$.

11. Um biólogo está a acompanhar 4 unidades de aquacultura (A, B, C e D) onde são criados robalos para alimentação. Ao longo três meses foram recolhidos alguns dados que se encontram registados na tabela seguinte:

Viveiro	Peso médio		
	dos robalos		
	(em gramas)		
A	235		
В	240		
С	256		
D	275		
A	254		
В	265		
С	245		
D	267		
A	231		
В	252		
С	268		
D	283		

Verifique se existem diferenças na distribuição do peso dos robalos nas unidades de aquacultura. Considere $\alpha = 0,10$.