Verteilte Modellierung und virtuelle Integration von überlappenden Komponenten

Ein aspektorientierter Ansatz am Beispiel von Funktionsarchitekturen für eingebettete Systeme im Automobil.

Ekkart Kleinod

Forschungskolloquium SWT TU-Berlin

19. Mai 2011

Ziel

Ausgangslage

Problem

Lösung

Stand der Dissertation

Ziel

Ausgangslage

Problem

Lösung

Stand der Dissertation

Ziel

Diese Dissertation beschäftigt sich mit verteilter Modellierung und virtueller Integration von überlappenden Komponenten im Bereich des Automobilbaus. Ziel ist, eine Methode zu schaffen, mit der überlappende Komponenten modelliert werden können. Dazu werden Beschreibungsmittel und Methoden definiert.

Ziel

Prinzipdarstellung

Zie

Ausgangslage

Problem

Lösung

Stand der Dissertation

Ausgangslage

VEIA-Referenzprozess der Systemmodellierung, Fokus logische Architektur

Zie

Ausgangslage

Problem

Lösung

Stand der Dissertation

Nichtfunktionale Änderungen, querliegende Funktionen

Modellierung = Änderung

Änderungen bewahren

Modellieren und mischen

Zie

Ausgangslage

Problem

Lösung

Stand der Dissertation

Beispiel: Einfaches E/E-System - Überlappungen

Beispiel: Einfaches E/E-System - Angestrebte Modellierung

Beispiel CBS: Trennung der Modellierung

data source

<u>.....</u>

cbs sensor

Beispiel CBS: Erste Identität

wear computation

master

cbs storage data

Neue Metamodellartefakte

- abstrakte Komponenten
- Aspektrelationen bestehend aus Aspektlinks (identity, inner, copy, replace)
- Kardinalität für Komponenten und Ports

Beispiel CBS: Neue Modellierungsmöglichkeiten

Beispiel CBS: Nach der Mischung

Anwendungsfälle

- Überlappungen
- Verfeinerungen
- Mustermodellierung

Anwendungsfall Verfeinerung

Anwendungsfall Mustermodellierung

Zie

Ausgangslage

Problem

Lösung

Stand der Dissertation

Stand der Dissertation

Geplante Bestandteile

- Modellierungsmittel (Metamodell) für überlappende Komponenten
- Methodisches Vorgehen in der Praxis
- Beispiele zur Anwendung
- Algorithmus zur Mischung der Modelle
- prototypische Implementierung Mischalgorithmus

Stand der Dissertation

Prototyp aXBench

Stand der Dissertation

Aktuell

- Lösung beschrieben
- Metamodell
- Text komplett aufgeschrieben, derzeit in zweiter Überarbeitung
- aXLang (Sprache) erweitert
- Implementierung identity fast fertig, Rest noch nicht
- Offen für Hinweise auf ähnliche Arbeiten

VEIA-Referenzprozess der Systemmodellierung

Metamodelle

Modellierungsmöglichkeiten

Beispiel CBS

VEIA-Referenzprozess der Systemmodellierung

VEIA-Referenzprozess der Systemmodellierung

Metamodelle

Modellierungsmöglichkeiten

Beispiel CBS

Metamodelle

Ursprüngliches (vereinfachtes) Metamodell

Metamodelle

Geändertes Metamodell

VEIA-Referenzprozess der Systemmodellierung

Metamodelle

Modellierungsmöglichkeiten

Beispiel CBS

Modellierungsmöglichkeiten

Instanziierungsmöglichkeiten

Modellierungsmöglichkeiten

Gemeinsame Kardinalität

Modellierungsmöglichkeiten

Reihenfolge der Instanziierung

VEIA-Referenzprozess der Systemmodellierung

Metamodelle

Modellierungsmöglichkeiten

Beispiel CBS

Organisationseinheiten

CBS, Motormanagement, Anzeigen

Anwendungsfall Vollständige Mustermodellierung

Anwendungsfall Redundante Verbindung

CBS-Musterarchitektur

Hauptuntersuchung und Motoröl

Hauptuntersuchung und Motoröl (Systemarchitektur)

