In the following we will describe the spectrum of the semigroup given by (4.1) in terms of ϕ and h . At first we have to fix some notation. Let K , ϕ , h be as in (4.1).

(4.2)
$$K_{t} := \phi_{t}(K)$$
 (t < ∞) , $K_{\infty} := \bigcap_{t < \infty} K_{t}$.

Some properties of the sets K_{t} are listed in the following lemma. The proof is not very difficult and is left as an exercise.

<u>Lemma</u> 4.2. Every K_t ($0 \le t \le \infty$) is a non-empty closed subset of K which is invariant under the semiflow ϕ . Moreover, the following assertions are true:

- (a) For s > t we have $K_s \subseteq K_t$. In case that $K_s = K_t$ then $K_+ = K_\infty$.
- (b) $\phi_t(K_\infty) = K_\infty$ for all $t \ge 0$.
- (c) If one partial mapping ϕ_{t} , t>0, is injective (surjective), then all mappings ϕ_{S} are injective (surjective).

We call a <u>semiflow ϕ injective (surjective)</u> if one and hence all of the partial mappings ϕ_{t} are injective (surjective). Studying the spectrum of the semigroup given by (4.1) we divide the complex plane into three sets:

(4.3)
$$\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda < \underline{c}(h,\phi)\}$$

 $\{\lambda \in \mathbb{C} : \underline{c}(h,\phi) \leq \operatorname{Re} \lambda \leq \overline{c}(h,\phi)\}$
 $\{\lambda \in \mathbb{C} : \overline{c}(h,\phi) < \operatorname{Re} \lambda\}$.

The quantities $\underline{c}(h,\phi)$ and $\overline{c}(h,\phi)$ are defined as follows:

$$\begin{array}{lll} (4.4) & \bar{c}(h,\phi) := \lim_{t \to \infty} \bar{c}_t(h,\phi) = \inf_{t \geq 0} \bar{c}_t(h,\phi) & \text{where} \\ & \bar{c}_t(h,\phi) := \sup_{x \in K} \left\{ 1/t \cdot \int_0^t h(\phi(s,x)) \, \, ds \right\} & (t > 0) \end{array}. \\ & \underline{c}(h,\phi) := \lim_{t \to \infty} \underline{c}_t(h,\phi) = \sup_{t \geq 0} \underline{c}_t(h,\phi) & \text{where} \\ & \underline{c}_t(h,\phi) := \inf_{x \in K} \left\{ 1/t \cdot \int_0^t h(\phi(s,x)) \, \, ds \right\} & (t > 0) \end{array}.$$

It is easy to see that $\bar{c}_t(h,\phi)=1/t\cdot\log\|T(t)\|$, hence in the definition of $\bar{c}(h,\phi)$, both the limit and the infimum exist and coincide with the growth bound (see A-I,(1.1)). Furthermore, $\underline{c}_+(h,\phi)=-\bar{c}_+(-h,\phi)$. Therefore, $\underline{c}(h,\phi)$ is well defined too.

First we will describe the part of $\sigma(A)$ which is contained in the left half-plane determined by $\underline{c}(h,\phi)$. It turns out that either the whole half-plane is contained in $\sigma(A)$ or it has empty intersection with $\sigma(A)$. This depends only on properties of ϕ . Essentially there