CONTRIBUTEURS

ACT-2011 Gestion des risques financiers II

aut. Nicholas Langevin

aut. Gabriel Crépeault-Cauchon

aut., cre. Alec James van Rassel

src. Claire Bilodeau

src. Thomas Landry

src. Coaching Actuaries, Exam IFM Study Notes.

Première partie

Gestion des risques financiers II (ACT-2011)

1 Introduction aux produits dérivés

Produits dérivés

Titre financier dont sa valeur est déterminée par le prix de quelque chose d'autre, soit l'**actif sous-jacent** du produit dérivé.

Tout comme un couteau n'est pas dangereux de soi, les produits dérivés ne le sont pas non plus. On peut heurter quelqu'un avec un couteau tout comme on peut couper des patates. Le risque dépend de leur utilisation.

Les produits dérivés apparaissent souvent en raison d'une augmentation du risque du sous-jacent; ils sont en fait des **outils de gestion du risque**.

Origine

Après 1971, le président Nixon a voulu défaire le standard de l'or (qui a causé de l'hyperinflation dans plusieurs pays) pour plutôt laisser le libremarché fixer la valeur des devises de chaque pays.

Causes de la transformation des marchés :

- > Déréglementation;
- > Automatisation des traitements avec l'informatique;
- > Mondialisation.

Exemples de produits dérivés

- > Contrat à terme standardisé (« futures contract »);
- > Contrat à terme de gré à gré (« forward contract »);
 - *Gré* : acceptation, ou consentement;
- > Option d'achat (« call »);
- > Option de vente (« put »);
- > Les « *swaps* ».

Exemples de sous-jacent aux produits dérivés

> Indice boursier;

> Climat;

> Taux d'intérêt;

> Prix d'une marchandise.

> Taux de change;

Utilité

> Gestion des risques (hedging);

Par exemple, un avion peut se procurer une option d'achat pour contrer le risque d'une augmentation du prix du pétrole;

On dit qu'elle « *hedge* », ou protège sa position, contre le prix du pétrole.

> Spéculation;

Par exemple, un investisseur croit que le prix d'une action va augmenter et se procure une option d'achat.

- > **Réduction** des **frais** de **transaction** : Faire le même profit qu'en transigeant des actions sans réellement les transiger;
- > **Arbitrage** réglementaire : Éliminer le risque de posséder un actif en retenant ses privilèges.

Par exemple, un investisseur élimine le risque d'une action avec une option de vente tout en conservant ses droits de vote.

Parties prenantes

Utilisateur final participant au contrat du produit dérivé;

> « end-user ».

Teneur de marché "crée" le marché en tant qu'intermédiaire;

- > Il cherche à faire un profit, une "cote", sur la transaction;
- > « Market-makers ».

Observateur économique observateurs du marché qui analysent et réglementent les activités des teneurs de marché et utilisateurs.

Ingénierie financière

Création de produits dérivés à partir de d'autres produits.

Implications

- > Les teneurs de marchés peuvent **couvrir** leurs positions (« *hedging position* »);
- > Les teneurs de marchés peuvent **personnaliser** les produits dérivés;
- > L'arbitrage réglementaire est difficile à empêcher puisqu'il existe souvent plusieurs façons pour recréer un produit dérivé.
 - Pour comprendre le concept, 1 + 3 = 4 tout comme 2 + 2;
 - Si le numéro 3 est illégal, on peut arriver à 4 d'une autre façon.

Marchés financiers

Transaction gré à gré

Transaction sans intermédiaire ou à l'extérieur de la bourse sur un marché hors cote.

Raisons pour ce type de transaction

- > Ce sont souvent de grosses transactions permettant d'économiser sur les frais de transaction;
- > On peut combiner (sur une même transaction) plusieurs microtransactions et plusieurs types d'actifs.

Étapes d'une transaction

- 1. L'acheteur et le vendeur se trouvent;
- 2. On définit les obligations de chaque partie, on dit que la transaction est « cleared »;
 - > C'est-à-dire, l'actif à livrer, la date d'échéance, le prix, etc.;
 - > Les transactions sur les marchés financiers sont *cleared* avec un intermédiaire nommé la **chambre de compensation** (*« clearing house »*);
 - > Elle met en relation les acheteurs et vendeurs ($1^{\hat{e}re}$ étape), et tient compte des obligations et paiements.
- 3. La transaction a lieu et les obligations sont remplies par chaque partie, on dit que la transaction est « *settled* » ;
- 4. Les registres de propriétés sont mis à jour.

E Chambre de compensation « clearing house »

- > La chambre de compensation règle beaucoup de transactions sur les marchés organisés;
- > Elle est une entité standardisée et réglementée;
- > **Novation** est défini comme un processus de substitution;
- > Dans le cas de produits dérivés, la chambre de compensation, *par novation*, devient le vendeur de tous les acheteurs et l'acheteur de tous les vendeurs;
- > Donc, la chambre de compensation est un intermédiaire pour les acheteurs et vendeurs.

Mesures de taille et d'activité d'un marché

Volume total des transactions : Nombre total de titres transigés pendant une période de temps donnée;

Valeur marchande : Valeur de tout ce qui pourrait être transigé;

- > nombre d'actions × prix par action (\$);
- > en anglais, le « market value »;
- > Dans le cas des produits dérivés, ce n'est pas intéressant

Valeur notionnelle: Valeur du sous-jacent au produit dérivé;

Position ouverte : Nombre de contrats pour lesquels un des parties a une obligation.

> « Open interest ».

Les compagnies recueillent du capital en émettant des actions et obligations selon leurs objectifs.

Obligations Une obligation se compare à un emprunt bancaire et est traitée comme de la dette;

- > Souvent, elles sont émises pour des besoins de liquidité à court terme ou,
- > Pour le démarrage d'une entreprise.

Actions Une action correspond à une partie de la compagnie.

- > Souvent, une compagnie va faire une offre publique lorsqu'elle cherche, ou nécessite de l'argent pour soit s'élargir, développer de nouveaux produits, etc.;
- > L'avantage en comparaison à une obligation est qu'il n'y a pas de promesse de rembourser les fonds;
- > En revanche, la compagnie est forcée d'échanger une partie de son contrôle.

Il s'ensuit que le **marché des actions** est plus actif (a un volume total de **transactions** plus important) que le **marché des obligations**; les obligations se transigent moins souvent que les actions. Cependant, la taille des deux marchés (valeur marchande) est similaire.

Rôle des marchés financiers : Partage du risque et diversification des risques. Si un risque est non diversifiable.

E Écart acheteur-vendeur « Bid-Ask Spread »

Écart entre le prix de vente (ask) et d'achat (bid).

Ceci correspond à la **marge de profit** que le teneur de marché conserve. En l'absence d'arbitrage, on aura Ask - Bid > 0.

Prix

Ask: Prix le plus *élevé* auquel un investisseur est prêt à payer pour le sous-jacent;

- > Lorsque le teneur de marché vend une action à un investisseur, il *ask* le prix plus élevé;
- > « ask price » se traduit au **cours vendeur** représentant l'idée de regarder les prix auxquels se transigent l'actif.

Bid : Prix le plus *faible* auquel un investisseur est prêt à vendre le sous-jacent.

- > Lorsque le teneur de marché achète une action d'un investisseur, il *bid* le prix plus faible;
- > « bid price » se traduit au cours acheteur.

Terminologie des marchés

Ordre au cours du marché : On achète et vend selon les meilleurs prix bidask actuels;

> « Market order ».

Ordre à cours limité : Ordre pour une quantité précise dans une tranche spécifiée de prix;

- > « Limit order »;
- > On achète le sous-jacent si Ask < k ou on vend le sous-jacent si Bid > k sinon aucune transaction a lieu.

Ordre de vente stop : Ordre au cours du marché déclenché par l'atteinte d'un certain prix;

- > « Stop-loss order »;
- > On veut limiter sa perte si un sous-jacent perd énormément de valeur et le vendre si *Bid* < *k*.

Longue On se considère en position longue **par rapport au sous-jacent** si notre stratégie nous permet de bénéficier d'une hausse du sous-jacent;

> La position peut également être déterminé selon le produit dérivé; on se considère en position longue si l'on possède quelque-chose.

Courte On se considère en position longue par rapport au sous-jacent si notre stratégie nous permet de bénéficier d'une baisse du sous-jacent.

> La position peut également être déterminé selon le produit dérivé; on se considère en position longue si l'on emprunte quelque-chose.

Vente à découvert

Vente à découvert « (short-sell) »

La vente d'un actif qu'on ne possède pas. On peut y penser comme l'inverse d'un achat.

Étapes d'une vente à découvert

Au début :

Après une certaine période de temps:

- 1. Emprunt d'un titre;
- 3. Achat du titre;

2. Vente du titre;

4. Remboursement du titre.

Exemple de vente à découvert

- > Mon ami James possède 5 actions d'Apple ayant chacune une valeur de 5\$;
- > Je lui emprunte ses 5 actions et lui promets d'y retourner;
- > Immédiatement, je revends ses actions sur le marché des actions;
 - Je ne suis pas inquiété, je suis certain que le prix va baisser;
 - Ce faisant, je suis certain que je serai capable de racheter ses actions plus tard à un prix plus faible.
- > Après une certaine période de temps, j'achète 5 actions au nouveau prix et j'v retourne.

Raisons pour une vente à découvert

- > **Spéculation**: Un investisseur tire profit d'une baisse de prix;
- > Financement : Une vente à découvert est une façon d'emprunter de l'argent;
- > Couverture (hedging) : Un investisseur peut éliminer le risque d'une position longue sur une action avec une vente à découvert.

Type de risques

Risque de défaut (de crédit) Risque de ne pas être payé;

- > Ce risque peut être réduit avec un dépôt initial en garantie ou une marge de sécurité;
- > « credit risk ».

Risque de rareté Risque qu'il soit difficile de trouver un acheteur et un vendeur pour le sous-jacent.

- > C'est le risque lié à un actif peu liquide;
- > En raison du faible nombre de transactions, il peut être difficile d'établir des clauses et conditions avec peu de transactions sur lesquelles se baser;
- > Il s'ensuit qu'il y a beaucoup de négociations et de variations dans les prix.

Frais

L'investisseur est le *short-seller* et le **prêteur** le *détenteur des actions empruntées* par l'investisseur.

- « *short-sale proceeds* » Les recettes de la vente sont conservées comme collatéraux au cas où que l'investisseur ne retourne pas les actions ;
- > Soit le prêteur, ou un parti tiers, va conserver les revenus de la vente à découvert jusqu'au retour des actions;
- > À ce moment, elles seront retournées à l'investisseur.
- « *a haircut* » Marge de sécurité pour couvrir le risque que le prix des actions augmente trop pour que l'investisseur ait la capacité financière des retourner, le prêteur exige un « dépôt » additionnel;
- > Comme les recettes de la vente, cette marge de sécurité sera retournée au prêteur.
- « *Interest* » Il est naturel que le prêteur exige un retour sur la vente à découvert également;
- > Dans le marché des actions, l'intérêt accumulé sur le collatéral est le « short rebate » ;
- > Dans le marché des obligations, c'est le **taux de mise en pension** (« *repo rebate* »);
- > Ces taux sont habituellement *plus faibles que* ceux du *marché* et sont fondés sur l'offre et la demande.
- « *Dividends* » Il est possible que des dividendes soient payables lors du prêt;

- > Puisque le détenteur de l'action sera celui à qui l'investisseur a vendu les actions, l'investisseur et le prêteur ne vont pas les recevoir;
- > Du point de vue du prêteur, les dividendes sont des paiements en espèce qu'il aurait reçus s'il n'avait pas prêté l'action;
- > Ce faisant, l'investisseur va payer ces dividendes au prêteur s'il y en a;
- > Pour le prêteur ils sont imposables alors que pour l'investisseur ils sont déductibles d'impôts;
- > Ce paiement se nomme le **taux de location** (« *lease rate* ») de l'actif.

2 Introduction aux Forwards et aux options

Terminologie

Prime: Flux financiers à t = 0;

- > Dans le cas d'options, la prime est le coût C(K);
- > Si positif, il s'agit d'un coût;
- > Si négatif, il s'agît d'une compensation.

Valeur à l'échéance *T* : L'argent que l'on reçoit à l'échéance;

- > « payoff »;
- \rightarrow C'est à dire, les flux de trésorier au temps t=T;
- > Dans le cas de l'achat d'un actif, on reçoit son prix S_T ; s'il est nul, on ne reçoit rien.

Profit = (valeur à l'échéance) - (valeur accumulée du coût initial)

- = VA(flux monétaires)^a
- > Le profit soustrait les flux financiers initiaux accumulés de la valeur à l'échéance;
- > Par exemple, acheter une voiture et la revendre 10 ans plus tard : profit =(prix de revente à dans 10 ans)-

(valeur accumulée du coût d'achat initial à 0 au courant des 10 dernières années)

> Dans le cas d'options, on soustrait la valeur accumulée de la prime.

r taux (force) d'intérêt sans risque (effectif annuel);

T date d'échéance.

a. Valeur Accumulée au taux sans risque.

Contrats à terme de gré à gré

Contrat à terme (de gré à gré) « forward contract »

Contrat selon lequel:

- > deux partis s'engagent d'échanger—un à acheter et l'autre à vendre;
- > une *certaine* **quantité** d'un *certain* **bien**—l'actif sous-jacent *S* ;
- \rightarrow à un *certain* **prix**—prix à terme $F_{0,T}$;
- > à un *certain* **endroit** à une *certaine* **date**—date d'échéance, *T*;

L'engagement est au départ à t=0 mais aucune transaction y a lieu. Ce faisant, le profit sera égal à la valeur à l'échéance puisqu'il n'a pas de flux financiers à 0 à accumuler. L'achat **ferme** en revanche, implique l'*achat* et la livraison de l'actif au départ à t=0. Donc :

Transaction	Valeur à l'échéance	Profit
Achat ferme	S_T	$S_T - S_0 e^{rT}$
Contrat à terme (achat)	$S_T - F_{0,T}$	$S_T - F_{0,T}$

Notation de prix

 S_t : **Valeur** de l'actif **s**ous-jacent à t;

 S_0 : Prix au comptant;

- > « (spot price) »;
- ightarrow C'est le paiement pour la livraison immédiate à t=0;
- > En d'autres mots, le prix de l'actif sous-jacent aujourd'hui payable dans le cas d'un achat ferme.

 $F_{0,T}$: Prix à terme payable à T;

 $F_{0,T} = S_0 e^{r(T-0)}$

 $F_{0,0}$: est nul.

La notation $F_{0,T}$ vient de « *future* » ou « *forward* ».

Exemple de bateau

- > Je veux acheter un (*quantité*) bateau (*bien*), mais il est inconvénient pour moi de le recevoir maintenant;
- > En lieu, puisque je veux l'acheter maintenant, je signe une entente (*engagement*) pour l'acheter;

- > La seule différence entre l'acheter aujourd'hui (au prix au comptant S_0) et l'acheter lorsque la neige fond (au prix à terme $F_{0,T}$) est l'accumulation d'intérêt;
- > Puisqu'on suppose tout les deux d'êtres fiables et sans risque, le prix est accumulé au taux sans risque (r) et le prix payable rendu à l'été (T) sera $F_{0,T} = S_0 e^{r(T-0)}$;

Si le taux sans risque est un **taux plutôt** qu'une *force* d'intérêt, on obtient $F_{0,T} = S_0(1+r_f)^T$.

Options

Exercice (levée)

Décision d'exercer l'option d'achat ou de vente.

Notation

K : Prix d'exercice (*strike price*);

Types d'exercices

Européen : Au moment d'**e**xpiration de l'option *T* ;

<u>A</u>méricain : N'importe quand (<u>a</u>ny moment) d'ici T;

Bermudien: À quelques périodes (bounded periods) d'ici T;

En réalité, la majorité des options sont américaines.

La position

longue Équivaut à un dépôt; **courte** Équivaut à un emprunt.

Le profit sera donc toujours nul.

Option d'achat

Contrat qui:

- > permet (optionnel) à son détenteur d'acheter;
- > une certaine quantité d'un certain bien—l'actif sous-jacent;
- → à un certain prix—prix d'exercice K;
- > à un *certain* **endroit** à, ou d'ici, une *certaine* **date**—date d'échéance, *T*;

Notation

- C_0 **Prix** pour acheter l'option d'achat;
- C(K) Notation pour représenter l'option d'achat (« Call ») avec un prix d'exercice de K.

En réalité, on dénote le prix, alias prime, avec C(K) mais selon la notation de Claire elle aime le faire avec C_0 .

Option de vente

Contrat qui *permet* à son *détenteur* de **vendre** au lieu d'acheter.

Notation

 P_0 **Prix** pour acheter l'option de vente;

P(K) Notation pour représenter l'option de vente (« Put ») avec un prix d'exercice de *K*.

En réalité, on dénote le prix, alias prime, avec P(K) mais selon la notation de Claire elle aime le faire avec P_0 .

Note L'acheteur d'une option de vente a une position **longue** par rapport à l'option mais une position courte par rapport au sous-jacent.

Profit (perte) extrême

(F)			
Position	Minimum	Maximum	
Contrat à terme (longue)	$-F_{0,T}$	+∞	
Contrat à terme (courte)	$-\infty$	$+F_{0,T}$	
Option d'achat (longue)	$-C_0 e^{rT}$	+∞	
Option d'achat (courte)	$-\infty$	$+C_0e^{rT}$	
Option de vente (longue)	$-P_0 e^{rT}$	$K - P_0 e^{rT}$	
Option de vente (courte)	$-(K-P_0e^{rT})$	$+P_0e^{rT}$	

Types de positions :

Position capitalisée Une position est dite "capitalisée" si elle est payée en entier au début (à t = 0);

> Par exemple, l'achat ferme d'un action aujourd'hui.

Position non capitalisée Une position est dite "non capitalisée" si le paiement en est différé.

> Par exemple, un contrat à terme de gré à gré dont le paiement est différé à l'échéance.

En bref, la différence fondamentale entre l'achat ferme et l'achat différé est le moment du règlement de l'achat.

Règlement en espèce et livraison

En théorie, avec un contrat à terme de gré à gré, l'acheteur reçoit l'actif sous-jacent à la date de livraison et le vendeur reçoit, à ce même moment, l'argent (le prix à terme) en échange.

En pratique, il arrive que le sous-jacent ne soit jamais transigé. En lieu, le règlement se fait en espèce au parti ayant fait un profit dans la transaction.

Ceci revient à ce que l'acheteur paye $F_{0,T}$ au vendeur en échange de S_T ; puis, il va immédiatement revendre l'actif au cours du marché. Les profits sont alors de $S_T - F_{0,T}$ pour l'acheteur et de $F_{0,T} - S_T$ pour le vendeur.

Il n'y a aucun impact sur les profits et le vendeur peut ne jamais avoir possédé l'actif sous-jacent. Les contrats « forward » permettent donc aux investisseurs de spéculer ou d'atténuer des risques pris dans d'autres transactions, positions et investissements tout en évitant des frais de transactions.

Résumé

Autre	Contrat	Position	Rôle	Stratégie	Valeur à T (payoff)	Profit
Cor	ntrat à terme	Longue	obligation d'acheter	garantie / fixer le prix d'achat du sous-jacent	$S_T - F_{0,T}$	
		Courte	obligation de vendre	garantie / fixer le prix de vente du sous-jacent	$-(S_T-F_{0,T})$	
	d'achat (call)	Longue	droit d'acheter	achat d'assurance contre un prix sous-jacent élevé	$\max\{0,S_T-K\}$	$\max\{0,S_T-K\}-C_0\mathrm{e}^{rT}$
Option		Courte	obligation de vendre	vente d'assurance contre un prix sous-jacent élevé	$-\max\{0,S_T-K\}$	$-\max\{0,S_T-K\}+C_0\mathrm{e}^{rT}$
	de vente (put)	Longue	droit de vendre	achat d'assurance contre un prix sous-jacent faible	$\max\{0, K - S_T\}$	$\max\{0, K - S_T\} - P_0 e^{rT}$
		Courte	obligation d'acheter	vente d'assurance contre un prix sous-jacent faible	$-\max\{0,K-S_T\}$	$-\max\{0,K-S_T\}+P_0\mathrm{e}^{rT}$

Degré de parité	« Moneyness »	Option d'achat	Option de vente
au cours	« At-the-money »	$S_0 = K$	$S_0 = K$
dans le cours	« In-the-money »	$S_0 > K$	$S_0 < K$
hors du cours	« Out-of-the-money »	$S_0 < K$	$S_0 > K$

3 Stratégie de couverture

Préliminaires

Hypothèses

Pour tout le chapitre, nous posons les hypothèses suivantes :

- 1. Taux d'intérêt *i* constant;
- 3. Aucun risque de défaut;
- 2. Aucuns frais de transaction;
- 4. Aucun versement intermédiaire.

Propriétés des maximums et minimums

$$\begin{aligned} \max(a,b) + c &= \max(a+c,b+c) \\ \min(a,b) + c &= \min(a+c,b+c) \\ \min(a,b) &= -\max(-a,-b) \\ \max(a,b) \times c &= \max(a \times c,b \times c), \ c > 0 \\ \max(a,b) + \min(a,b) &= a+b \end{aligned}$$

Une option est dite d'être non-couverte si nous avons aucune position dans l'actif sous-jacent. En revanche, une option est couverte si l'on a une position correspondant à l'obligation de l'option.

Une option d'achat couverte est la vente de l'option d'achat -C(K) et l'achat du sous-jacent $+S_0$.

Une option de vente couverte est la vente de l'option de vente -P(K) et de la vente à découvert du sous-jacent.

Plancher « floor »

On achète une option de vente pour garantir un prix minimum de vente et couvrir une position longue dans l'actif sous-jacent. On dit donc avoir une **option de vente de protection** qui sert de *plancher* minimale.

$${\rm Floor} = +S_T + P(K)$$
 Valeur à l'échéance = $\max(0,K-S_T) + S_T = \max(S_T,K)$

Plafond « cap »

On achète une option d'achat pour garantir un prix maximal d'achat et couvrir une position courte dans l'actif sous-jacent. Ce faisant, on *plafonne* le prix d'achat.

$${\sf Cap} = -S_T + C(K)$$
 Valeur à l'échéance = $\max(0, S_T - K) - S_T = -\min(S_T, K)$

Écarts et tunnels

Écart haussier « Bull Spread »

Crée en:

- > Achetant une option d'achat $C(K_1)$ et vendant une autre option achat $C(K_2)$ à un prix d'exercice plus élevé $K_2 > K_1$;
- > Achetant une option de vente $P(K_1)$ et vendant une autre option de vente $P(K_2)$ à un prix d'exercice plus élevé $K_2 > K_1$.

Contexte

- > Typiquement utilisé lorsqu'un investisseur croit que, entre deux prix d'exercice, le prix va augmenter, *mais*
 - Qu'il ne veut pas une perte trop importante si le prix de l'actif baisse;
 - Ni qu'il veut payer pour plus de profit qu'il s'attend à recevoir.
- > « *Bull Spread* » provient de l'idée d'être « *bull-ish* » et prévoir une augmentation du prix de l'action à un intervalle;

On peut également visualiser un taureau avec ses cornes pointues vers le haut prêt à attaquer.

Écart baissier « Bear Spread »

L'inverse d'un écart haussier, il est crée en :

- > Vendant une option d'achat $C(K_1)$ et achetant une autre option achat $C(K_2)$ à un prix d'exercice plus élevé $K_2 > K_1$;
- > Vendant une option de vente $P(K_1)$ et achetant une autre option de vente $P(K_2)$ à un prix d'exercice plus élevé $K_2 > K_1$.

Contexte

- > Typiquement utilisé lorsqu'un investisseur croit que, entre deux prix d'exercice, le prix va baisser, *mais* qu'il
 - Qu'il ne veut pas une perte trop importante si le prix de l'actif baisse;
 - Ni qu'il veut payer pour plus de profit qu'il s'attend à recevoir.
- » « Bear Spread » provient de l'idée d'investir avec précaution pour « bear-er » une et baisse du prix de l'action à un intervalle;

On peut également visualiser un ours qui va « strike down » avec ses pattes d'ours en attaque.

E Écart sur ratio d'options « Ratio Spread »

Crée en:

- \rightarrow achetant *m* options à un prix d'exercice K_1 et
- > puis **vendant** *n* options à un prix d'exercice *K*₂ différent où
- $\rightarrow m \neq n \text{ et } K_1 \neq K_2.$

Boite « Box Spread »

- > La stratégie consiste à acheter un écart haussier ainsi qu'un écart baissier où l'un utilise des options d'achat et l'autre des options de vente (ayant les mêmes caractéristiques);
- > Il est utilisé pour emprunter ou prêter de l'argent avec une valeur à l'échéance connue en avance, peu importe la direction prise par la valeur de l'actif sous-jacent;
- > Il est donc équivalent à une obligation zéro-coupons.

Par exemple, on achète (position longue) un écart haussier d'options d'achat et un écart baisser d'options de vente :

option	$0 \leq S_T < K_1$	$K_1 \leq S_T < K_2$	$K_2 \leq S_T$
$+C(K_1)$	0	$S_T - K_1$	$S_T - K_1$
$-C(K_2)$	0	0	$-(S_T - K_2)$
$-P(K_1)$	$-(K_1 - S_T)$	0	0
$+P(K_2)$	$K_2 - S_T$	$K_2 - S_T$	0
net	$K_2 - K_1$	$K_2 - K_1$	$K_2 - K_1$

Tunnel « Collar » et action couverte par un tunnel « Collared stock »

Le tunnel (« Collar ») est crée en

- \rightarrow Achetant une option de vente $P(K_1)$ et
- > vendant une option d'achat $C(K_2)$ où
- > $K_1 < K_2$.

Lorsqu'on achète l'actif (position longue) en plus, nous obtenons une action couverte par un tunnel (« *Collared stock* »).

La largeur du tunnel est $K_2 - K_1$.

$$\begin{aligned} \text{tunnel} &= P(K_1) - C(K_2) \\ \text{action couverte par un tunnel} &= P(K_1) - C(K_2) + \textcolor{red}{S_T} \end{aligned}$$

Si l'on achète deux options ayant la même prime, on obtient un tunnel à prime zéro. Par exemple, on vend une option d'achat C(120) = 5 et achète une option de vente -P(120) = -5 ayant donc un coût initial nul.

Spéculation sur la volatilité

Stellage « straddle »

Créé en achetant une option de vente et une option d'achat avec un prix d'exercice *K*.

Contexte

- > Souvent bâti avec un prix d'exercice au cours du marché (in-themoney);
- > L'idée est de faire un profit si le prix de l'actif sous-jacent baisse ou descend;
- > Son avantage est donc qu'il peut être profitable avec une baisse ou hausse du prix de l'actif sous-jacent;
- > Cependant, puisqu'il faut acheter deux options au cours du marché, le coût est plutôt élevé.

Straddle = Put(K, T) + Call(K, T).

Il s'ensuit que la valeur à l'échéance est :

$$|S_T - K| \equiv \begin{cases} (K - S_T) + 0 = K - S_T, & S_T \le K \\ 0 + (S_T - K) = S_T - K, & S_T > K \end{cases}$$

Stellage élargi « strangle »

Créé en

- \rightarrow achetant une option de vente avec un prix d'exercice K_1 et
- > achetant une option d'achat avec un prix d'exercice K_2 où
- > $K_1 < K_2$.

Contexte

- > Pour réduire le coût des primes, les options sont à des prix d'exercice hors du cours du marché (out-of-the-money);
- > Cela réduit la perte maximale, mais augmente la variation nécessaire pour faire un profit.

Strangle =
$$Put(K_1, T) + Call(K_2, T)$$
.

Il s'ensuit que la valeur à l'échéance est :

$$\begin{cases} (K_1 - S_T) + 0 = K_1 - S_T, & S_T \le K_1 \\ 0 + 0 = 0, & K_1 < S_T \le K_2 \\ 0 + (S_T - K_2) = S_T - K_2, & S_T > K_2 \end{cases}$$

Écart papillon « Butterfly Spread (BFS) »

Créé en

- \rightarrow achetant stellage élargi avec prix d'exercices K_1 et K_3 ;
- > vendant un stellage avec un prix d'exercice K_2 ;
- \rightarrow où $K_1 < K_2 < K_3$;
- > L'écart papillon est symétrique avec $K_2 K_1 = K_3 K_2$.

$$BFS = Put(K_1, T) + Call(K_3, T) - Put(K_2, T) - Call(K_2, T).$$
 Notes

- > Il existe plusieurs façons de recréer un écart papillon;
- > Par exemple, un écart haussier aux prix d'exercice K_1 et K_2 combiné avec un écart baissier aux prix d'exercice K_2 et K_3 .

$$BFS = Call(K_1, T) - 2Call(K_2, T) + Call(K_3, T).$$

E Écart papillon asymétrique

- > La distinction avec un écart papillon symétrique est qu'on achète/vend en différentes proportions des options d'achat;
- \rightarrow A-BFS = $mCall(K_1, T) (m + n)Call(K_2, T) + nCall(K_3, T);$
- > L'écart est asymétrique avec $m(K_2 K_1) = n(K_3 K_2)$.

Puisque la différence en prix n'est pas symétrique, on fait une "interpolation" de sorte.

Pour calcule le nombre d'options à acheter/vendre aux différents prix :

- 1. On calcule la différence en prix total $K_3 K_1$;
- 2. On calcule séparément les différences de prix :

$$K_2 - K_1$$

$$K_3 - K_2$$

Intuition La somme de ces deux différences résulte en l'écart total.

$$(K_2 - K_1) + (K_3 - K_2) = (K_3 - K_1)$$

- 3. On:
 - > vends $K_3 K_1$ options au prix d'exercice K_2 ;
 - > achète $K_2 K_1$ options au prix K_3 ;
 - \rightarrow achète $K_3 K_2$ options au prix K_1 .
- 4. Avec des options d'achat, on obtient :

$$+(K_3-K_2)C(K_1)-(K_3-K_1)C(K_2)+(K_2-K_1)C(K_3)$$

Intuition On peut donc pondérer par la différence totale et obtenir une "interpolation" :

$$+\frac{(K_3-K_2)}{(K_3-K_1)}C(K_1)-C(K_2)+\frac{(K_2-K_1)}{(K_3-K_1)}C(K_3)$$

C'est d'ici que provient la notation avec λ :

$$\lambda = \frac{K_3 - K_2}{K_3 - K_1}$$

Pour chaque option avec un prix d'exercice de K_2 vendue, on achète λK_1 et $(1-\lambda)K_3$.

5 Contrats à terme

4 façons d'acheter une action

Il y a plusieurs façons d'acheter une action et le prix va dépendre du **moment de paiement** et du **moment de la livraison**.

Contrat	Moment de paiement	Moment de la livraison	Paiement
Outright purchase	0	0	S_0
Forward contract	T	T	$F_{0,T}$
Prepaid forward contract	0	T	$F_{0,T}^{P}$
Fully leveraged purchase	T	0	$S_0 e^{rT}$

Achat pleinement par emprunt « *fully leveraged purchase* » On emprunte de l'argent pour obtenir l'actif immédiatement (à t=0) en différant le paiement (remboursement) au temps T;

Contrat à terme de gré à gré prépayé « *prepaid forward contract* » On paye immédiatement (à t = 0) au prix $F_{0,T}^P$, mais on reçoit quand même l'actif plus tard.

Ce faisant, on s'attend à ce que $F_{0,T} = F_{0,T}^P e^{rT}$.

Notation de prix

 $F_{0,T}^{P}$: est le **prix à terme** d'un contrat à terme de gré à gré **prépayé**;

$$F_{0,T} = F_{0,T}^P \mathbf{e}^{rT}.$$

La loi du prix unique

Stipule que deux portefeuilles avec les mêmes profits doivent avoir le même prix.

Nous tarifions des contrats à terme de gré à gré *prépayé*s et utilisons ces prix pour dériver les prix des contrats à terme de gré à gré.

Tarification d'un contrat à terme de gré à gré prépayé

Sans dividendes, le prix du contrat à terme de gré à gré prépayé est le prix de l'actif sous-jacent aujourd'hui— S_0 .

Si une action a des dividendes, elles seront payables au propriétaire de l'action. Puisque l'acheteur du contrat (position longue) va seulement posséder le contrat au temps T, il ne recevra pas de **dividendes**. Cela va donc faire **baisser la valeur de l'action** et le prix à terme du contrat devra le tenir en compte. Également, on présume que le **droit de vote n'a aucune valeur** pour calculer le prix à terme.

Dans le cas de **dividendes discrets**, il suffit de soustraire la valeur actualisée des dividendes : $F_{0,T}^P = S_0 - PV(div)$. Ces dividendes sont supposés d'être réinvestis dans des obligations zéro coupon.

Un modèle de **dividendes payés continûment** suppose un taux de dividendes continûment composé δ . Une part de l'action au temps initial devient $e^{\delta T}$ parts au temps T. Cependant, nous souhaitons avoir seulement une part au temps T et donc achetons $e^{-\delta T}$ parts au début. Le prix du contrat est donc $F_{0,T}^P = S_0 e^{-\delta T}$. Dans le cas de dividendes **proportionnels**, on suppose qu'ils sont réinvestis dans

Dans le cas de dividendes **proportionnels**, on suppose qu'ils sont réinvestis dans le sous-jacent.

En bref :

Dividendes	Prix à terme prépayé	Prix à terme
Sans dividendes	S_0	S_0e^{rT}
Dividendes payés continument	$S_0e^{-\delta T}$	$S_0e^{(r-\delta)T}$
Dividendes discrets	$S_0 - PV(div.)$	$S_0e^{rT} - FV(div.)$

Drime à terme « forward premium »

Défini comme le ratio du prix à terme au prix courant de l'actif sous-jacent :

Prime à terme =
$$\frac{F_{0,T}}{S_0}$$

La prime à terme annualisée (« annualized forward premium ») est $\frac{1}{T} \ln \left(\frac{F_{0,T}}{S_0} \right)$.

Est-ce de l'arbitrage?

Flux monétaires	Oui	Non
Au temps 0, est-ce que le flux monétaire net est \geq 0?	X	
Est-ce que tous les flux monétaires nets futurs sont ≥ 0 ?	X	
Est-ce qu'au moins un des flux monétaires nets futurs est > 0 ?	X	

Si la réponse à toutes les questions est oui, alors il y a une opportunité d'arbitrage. Pour identifier les flux monétaires, on utilise l'approche à deux étapes :

1. Écrire, sous forme d'inégalité, ce qui est observé;

Déplacer tout ce qui est sur le côté inférieur (<) au côté supérieur ou égal (≥);
 Nous avons les signes appropriés pour les transactions.

Desition Synthétique

Une position synthétique réplique la valeur à l'échéance d'une autre position.

Achat d'action synthétique

On peut synthétiquement répliquer l'achat d'une action en prêtant de l'argent et achetant un contrat à terme de gré à gré.

Transaction	t = 0	t = T
Prêt de $S_0 e^{-\delta T}$	$-S_0 e^{-\delta T}$	$+S_0 e^{(r-\delta)T} = F_{0,T}$
Achat d'un contrat à		
terme de gré à gré	0	$S_T - F_{0,T}$
Net	$-S_0 e^{-\delta T}$	S_T

Obligation zéro-coupon synthétique

On peut créer une obligation zéro-coupon synthétique en achetant une action et vendant un contrat à terme de gré à gré.

Transaction	t = 0	t = T
Achat de $e^{-\delta T}$ actions	$-S_0 e^{-\delta T}$	$+S_T$
Vente d'un contrat à		
terme de gré à gré	0	$F_{0,T}-S_T$
Net	0	$F_{0,T} = S_0 e^{(r-\delta)T}$

Le rendement de cette stratégie s'appelle le **taux de mise en pension implicite** (« *implied repo rate* »). Cela signifie le taux implicite dans cette stratégie pour répliquer un rendement équivalent à une obligation zéro-coupon.

Ontrat à terme synthétique « synthetic forward »

Un contrat à terme synthétique réplique la valeur à l'échéance d'un contrat à terme sans réellement en signer un.

Avec un vrai contrat à terme :

> le coût initial est nul et

> la valeur à l'échéance est l'écart entre le prix à terme et la valeur du sousjacent $(S_T - F_{0,T})$.

Avec un contrat à terme **synthétique** :

- > on prévoit l'échange du bien contre un prix quelconque *K* et
- \rightarrow la valeur à l'échéance est leur écart ($S_T K$).
- > Il s'ensuit que le coût initial ne peut être nul et
- > c'est pourquoi on **emprunte de l'argent**, ou de façon équivalente, **vend une obligation zéro-coupons**.

En bref, on achète l'actif et emprunte de l'argent :

Transaction	Flux au temps 0	Flux au temps T
Acheter un actif	$-S_0$	$+S_t$
Emprunter de l'argent	$+S_0$	$-S_0 e^{rT} = -F_{0,T}$
Net des flux monétaires	0	$S_t - F_{0,T}$

Le montant du prêt n'a pas besoin d'être S_0 puisque le contrat est synthétique. Ce faisant, si le montant emprunté d'un contrat est de S_0 on qu'il est au cours du marché.

② Comptant terme « *Cash-and-carry* »

Dans un comptant terme, alias l'achat au comptant - vente à terme, achète une action avec un emprunt et vend un contrat à terme de gré à gré.

La stratégie s'apparente à une obligation zéro coupon financé par une obligation zéro coupon. Il s'ensuit que, sans arbitrage, le profit sera nul.

Transaction	t = 0	t = T
Achat de $e^{-\delta T}$ actions	$-S_0 e^{-\delta T}$	$+S_T$
Vente d'un contrat à		
terme de gré à gré	0	$F_{0,T}-S_T$
Emprunt de $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0 e^{(r-\delta)T}$
Net	0	$F_{0,T} - S_0 e^{(r-\delta)T}$

Sans arbitrage, la dernière ligne s'annule.

L'inverse arrive lorsque le marché offre un contrat à terme de gré à gré sousévalué.

Contrats de change

Notation de devises

DD Devise domestique (ou de départ);

DÉ Devise étrangère;

i_D taux d'intérêt dans la DD;

 $i_{\acute{\mathbf{f}}}$ taux d'intérêt dans la DÉ;

 $F_{0.T}^{P}$: est le prix d'un contrat de change à terme prépayé en DD;

$$F_{0,T}^P = x_0 (1 + i_{\rm E})^{-T} DD$$

 $F_{0,T}$: est le prix d'un contrat de change à terme en DD;

$$F_{0,T} = x_0 (1 + i_{\rm E})^{-T} (1 + i_{\rm D})^T {\rm DD}$$

 x_t taux de change au temps t en DD/DÉ

> Par exemple,
$$x_0 = \frac{2\$}{1€} = \left(2\frac{\$}{€}\right) \equiv \frac{2\text{DD}}{1\text{DÉ}}$$

La logique des formules des contrats à terme de gré à gré est :

$$F_{0,T}^P(1\mathsf{D}\acute{\mathsf{E}}) = \left(1\mathsf{D}\acute{\mathsf{E}}\cdot\mathsf{e}^{-i_{\mathsf{D}\acute{\mathsf{E}}}T}\right)\cdot\left(x_0\frac{\mathsf{D}\mathsf{D}}{\mathsf{D}\acute{\mathsf{E}}}\right) = x_0\cdot\mathsf{e}^{-i_{\mathsf{D}\acute{\mathsf{E}}}T}\mathsf{D}\mathsf{D}$$

Un actif peut avoir un prix défini dans n'importe quelle devise; on dit qu'il est « *denominated* » dans cette devise.

Contrat de change synthétique

- 1. Emprunt de $x_0(1+i_{\rm E})^{-T}$ DD au taux i_D ;
- 2. Convertir les DD en DÉ;
- 3. Dépôt de $(1+i)^{-T}$ DÉ (au taux i) de 0 à T.

La valeur à l'échéance sera $x_t - x_0 \left(\frac{1+i_D}{1+i_{\rm ff}}\right)^T$.

Contrat à terme standardisé

Les contrats à terme standardisés sont transigés à la bourse. Ces transactions peuvent avoir lieu soit sur le plancher ou électroniquement.

Contrat à terme standardisé « future contract »

Différences des contrats à terme standardisés aux contrats à terme de gré à gré :

1. Personnalisable;

- > Les contrats « *forwards* » peuvent être **faits de gré à gré** sur n'importe quel actif avec n'importe quelle clause et/ou condition;
- L'acheteur et le vendeur peuvent choisir n'importe quel prix, montant, date d'échéance ou actif sous-jacent;
- > Les contrats « *futures* » sont **surveillés et contrôlés** par des instances officielles au même titre que la bourse;
 - On dit donc qu'ils sont standardisés.
- 2. Valorisation au prix du marché « Marked-to-Market »;
 - Pour un « forward », toutes les échanges d'argent se produisent à l'échéance (le contrat est réglé à l'échéance);
 - > Pour un « *future* », les pertes et profits sont réglés tous les jours (processus de valorisation au prix du marché) en espèces.

3. Risque de défaut;

- > Pour un « *forward* », le contrat est pleinement exposé au risque de défaut;
- > Pour un « *future* », avec le règlement quotidien des pertes et profits, le risque de défaut est minimisé.
- 4. **Liquidité** : fait référence à l'aise d'acheter ou de vendre un actif ou, de façon équivalente, de sortir ou entrer de leur position;
 - > Pour un « *forward* », il est impossible de sortir d'un contrat et donc ils ne sont pas liquides;
 - > Pour un « *future* », puisqu'ils sont transigés sur les marchés boursiers, ils sont liquides.

5. Limite de prix;

- > Pour un « *forward* », il n'y a aucune limite de prix sur l'actif sous-jacent et il peut varier sans limites;
- > Pour un « *future* », il y a des limites incluses dans le contrat sur la variation du prix du sous-jacent;

> Par exemple, s'il y a une baisse de 13% au S & P 500, il y a un « *circuit breaker* » qui arrête temporairement l'échange.

Puisque le règlement des contrats à terme standardisé est quotidien alors que le règlement des contrats à terme de gré à gré s'effectue à l'échéance, le prix à terme est différent.

Marges initiales et de maintien « initial and maintenance margins »

Compte Afin de contrer le risque de défaut, l'acheteur et le vendeur doivent déposer de l'argent dans un compte (« a *margin account* ») accumulant de l'intérêt;

Marge initiale Le dépôt initial est nommé la marge initiale (« *inital margin* »);

Marge de maintien Les pertes et profits sont soustraits du compte et donc un niveau minimal est requis—la marge de maintien (« *maintenance margin* »);

Appel de marge Si le montant dans le compte descend en dessous de la marge de maintien, nous recevons un appel de marge (« *margin call* ») qu'il faut y ajouter des fonds pour ramener la balance à la **marge initiale**.

Exemple

On suppose l'achat d'une action se transigeant au prix de 950\$ aujourd'hui (S_0) ayant 250 parts sous-jacentes. La force d'intérêt (δ) est de 6%, la marge initiale égale à 80% de la valeur notionnelle et la marge de maintien 10% de la marge initiale.

Ce faisant, la **balance de la marge** dans une semaine sera :

Note Le S & P 500 a 250 parts sous-jacentes.

9 Parité et autres liens entre les options

Équation de parité des options vente-achat

$$C_{\text{Eur}}(K,T) - P_{\text{Eur}}(K,T) = F_{0,T}^{P}(S) - Ke^{-rT}$$

En anglais c'est le « *Put-Call Parity Equation* ». Cette équation vaut pour les options européennes seulement puisque les américaines peuvent être exercées à n'importe quel moment.

Positions synthétiques

Avec l'équation de parité, on peut créer des options, actions ou obligations zérocoupon synthétiques.

Option d'achat

$$-C(S,K) = \underbrace{-P(S,K)}_{\text{achat d'une option}} \underbrace{-F_{0,T}^{P}(S)}_{\text{achat d'une part}} \underbrace{+Ke^{-rT}}_{\text{emprunt de }Ke^{-rT}}_{\text{de vente équivalente}} \underbrace{-F_{0,T}^{P}(S)}_{\text{achat d'une part}} \underbrace{+Ke^{-rT}}_{\text{emprunt de }Ke^{-rT}}$$

Option de vente

$$-P(S,K) = \underbrace{-C(S,K)}_{\text{achat d'une option vente d'une part}} \underbrace{+F_{0,T}^P(S)}_{\text{vente d'une part}} \underbrace{-Ke^{-rT}}_{\text{pret de }Ke^{-rT}}$$

$$\underbrace{-Ke^{-rT}}_{\text{d'achat équivalente}} \underbrace{+F_{0,T}^P(S)}_{\text{de l'action}} \underbrace{-Ke^{-rT}}_{\text{au taux sans risque}}$$

Action

$$-S_0 = \underbrace{+ \mathrm{e}^{\delta T} P(S.K)}_{\text{vente de } e^{\delta T}} \underbrace{- \mathrm{e}^{\delta T} C(S,K)}_{\text{achat de } e^{\delta T}} \underbrace{- K \mathrm{e}^{-(r-\delta)T}}_{\text{pret de } Ke^{-(r-\delta)T}}$$
options de vente options d'achat au taux sans risque

Bon du Trésor (« *Treasury Bill (T-Bill)* »)

$$-Ke^{-rT} = \underbrace{+C(S;K)}_{\text{vente d'une}} \underbrace{-P(S;K)}_{\text{achat d'une}} \underbrace{-S_0e^{-\delta T}}_{\text{achat de }e^{-\delta T}}$$
option d'achat option de vente parts de l'action

Parité des options

Parité des options sur devises

 $C(x_0, K, T)$ Option d'achat qui permet d'acheter une unité de DÉ pour K unités de DD à l'échéance T:

 $P(x_0, K, T)$ Option de vente qui permet d'acheter une unité de DÉ pour K unités de DD à l'échéance T.

Alors, on peut réécrire l'équation de parité :

$$C(x_0, K, T) - P(x_0, K, T) = x_0(1 + i_{\text{ff}})^{-T} - K(1 + i_D)^{-T}$$

Parité des options sur obligation

 B_0 Prix aujourd'hui (t = 0) d'une obligation avec coupons;

 $F_{0,T}^{P}(B)$ Prix d'un contrat à terme standardisé prépayé sur une obligation avec coupons.

$$F_{0,T}^P(B) = B_t - PV(\text{coupons})$$

Alors, on peut réécrire l'équation de parité :

$$C(B_0, K, T) - P(B_0, K, T) = F_{0,T}^P(B) - F_{0,T}^P(K)$$

Parité généralisée et option d'échange

On peut généraliser toute option comme étant l'option d'échanger des actifs—l'actif sous-jacent et l'actif d'exercice—que l'on nomme des **options d'échange**.

Les options d'achat et de vente sont donc des options d'échange avec de l'argent comme actif d'exercice. On généralise d'abord la notation au-delà du concept d'achat et de vente pour un certain prix :

Notation

C(S, K): Permet au détenteur de l'option d'achat de recevoir S en échange de K;

P(S,K): Permet au détenteur de l'option de vente de recevoir K en échange de S.

On peut penser à cette notation comme C(Receive, Give up) et P(Receive, Give up). Dans les deux cas, la valeur à l'échéance est $\max(0; \text{Receive} - \text{Give up})$.

Notation Claire

 S_t : Prix à t de l'actif sous-jacent—le titre A;

 Q_t : Prix à t du prix d'exercice—le titre B;

 $C_{\mathbf{euro}}(S_t, Q_t, T - t)$: Permet, à T, d'achat le titre A au prix du titre B; $P_{\mathbf{euro}}(S_t, Q_t, T - t)$: Permet, à T, de vendre le titre A au prix du titre B.

Équation de parité des options d'échange

$$C_{\text{euro}}(S_t, Q_t, T - t) - P_{\text{euro}}(S_t, Q_t, T - t) = F_{t,T}^P(S) - F_{t,T}^P(Q)$$

Options sur devise

$$C^{DD}(x_0, K, T) = K \cdot P^{DD}\left(\frac{1}{x_0}; \frac{1}{K}; T\right) = x_0 K \cdot P^{D\acute{E}}\left(\frac{1}{x_0}; \frac{1}{K}; T\right)$$

Note Si le prix d'exercice est dans la même devise que le prix de l'option.

Comparaison de différentes options

Considérations différents types d'options

La première considération est que la valeur à l'échéance d'une option ne sera jamais négative puisqu'un investisseur « rationnel » n'exercerait simplement pas l'option. L'émetteur de l'option va donc toujours demander une **prime positive** pour accepter ce risque de perte.

Donc les options américaines et européennes vont toujours avoir une **valeur d'au moins 0\$** :

$$C(S, K, T) \ge 0 \qquad P(S, K, T) \ge 0$$

Une option européenne peut uniquement être exercée à l'échéance alors qu'une option américaine peut être exercée à n'importe quel moment d'ici l'échéance. Il s'ensuit qu'une option américaine vaut au moins autant qu'une option européenne :

$$C_{\text{amer}}(S, K, T) \ge C_{\text{euro}}(S, K, T)$$
 $P_{\text{amer}}(S, K, T) \ge P_{\text{euro}}(S, K, T)$

Bornes inférieures

Option européenne Avec l'équation de parité des options vente-achat et que le coût ne peut pas être négatif, on obtient :

$$C_{\text{euro}}(S, K, T) = F_{0,T}^{P}(S) - Ke^{-rT} + P_{\text{euro}}(S, K, T)$$

$$\geq \max \left(F_{0,T}^{P}(S) - Ke^{-rT}; 0 \right)$$

$$P_{\text{euro}}(S, K, T) = F_{0,T}^{P}(S) - Ke^{-rT} + C_{\text{euro}}(S, K, T)$$

$$\geq \max \left(Ke^{-rT} - F_{0,T}^{P}(S); 0 \right)$$

Option américaine Une option américaine aura une valeur d'au moins l'option européenne. Également, puisqu'une option américaine peut être exercée à tout moment, sa valeur doit être au moins la valeur d'un exercice immédiat.

En bref

Bornes inférieures options

$$C_{\mathrm{amer}}(S,K,T) \ge C_{\mathrm{euro}}(S,K,T) \ge \max\left(F_{0,T}^P(S) - K\mathrm{e}^{-rT};0\right)$$

$$P_{\mathrm{amer}}(S,K,T) \ge P_{\mathrm{euro}}(S,K,T) \ge \max\left(K\mathrm{e}^{-rT} - F_{0,T}^P(S);0\right)$$
et
$$C_{\mathrm{amer}}(S,K,T) \ge S - K$$

$$P_{\mathrm{amer}}(S,K,T) \ge K - S$$

Bornes supérieures

Option américaine

Option d'achat À son exercice, l'option permet d'obtenir l'actif sous-jacent. Si cette option coûtait plus que le prix du sous-jacent, on a simplement à l'acheter au lieu d'une option.

Ce faisant, la borne supérieure d'une option d'achat américaine est le prix au comptant (« *spot price* ») :

$$S \ge C_{\text{amer}}(S, K, T) \ge C_{\text{euro}}(S, K, T) \ge \max \left(F_{0,T}^{P}(S) - Ke^{-rT}; 0\right)$$

Option de vente La valeur à l'échéance maximale d'une option de vente est le prix d'exercice K; lorsque la valeur de l'action est nulle on a $\max(K-0;0)=K$. Si le prix était supérieur à K, le vendeur n'aurait qu'à vendre son action directement sur le marché.

Ce faisant, la borne supérieure d'une option de vente américaine est le prix d'exercice :

$$K \ge P_{\text{amer}}(S, K, T) \ge P_{\text{euro}}(S, K, T) \ge \max \left(Ke^{-rT} - F_{0,T}^{P}(S); 0\right)$$

Option européenne

Option d'achat La valeur à l'échéance sera au plus $\max(S_T - 0; 0) = S_T$. Le prix aujourd'hui pour avoir S_T à T correspond à un contrat à terme de gré à gré prépayé $F_{0,T}^P(S)$.

Ce faisant, la borne supérieure d'une option d'achat américaine est ce contrat à terme de gré à gré prépayé :

$$F_{0,T}^{p}(S) \ge C_{\text{euro}}(S, K, T) \ge \max \left(F_{0,T}^{p}(S) - Ke^{-rT}; 0 \right)$$

Option de vente La distinction avec la valeur maximale d'une option européenne est qu'elle est seulement reçue à T.

Ce faisant, la borne supérieure d'une option de vente européenne est le prix d'exercice actualisé à 0 :

$$Ke^{-rT} \ge P_{\text{euro}}(S, K, T) \ge \max\left(Ke^{-rT} - F_{0,T}^P(S); 0\right)$$

Exercice hâtif des options américaines

Notions d'intérêt et d'escompte

La valeur actualisée de l'intérêt accumulé sur le prix d'exercice K est PV (intérêt sur le prix d'exercice) = $K(1 - e^{-rT})$.

La valeur actualisée des dividendes correspond à l'écart entre le prix de l'action aujourd'hui S_0 et le prix à terme prépayé $F_{0,T}^P$; $PV_{0,T}(\mathrm{divs}) = S_0 - F_{0,T}^P(S)$.

Dans le cas continu, $PV(\text{dividendes}) = S_0(1 - e^{-\delta T})$ et le cas discret $PV(\text{dividendes}) = \sum_{i=1}^{n} \text{div}_i e^{-rt_i}$.

Options d'achat américaines

L'avantage d'exercer l'option d'achat immédiatement est la **réception des dividendes**.

Cependant, l'avantage de repousser l'exercice est l'intérêt accumulé sur le prix d'exercice K et la protection, ou *assurance*, contre le risque d'une baisse du prix de l'action. Une protection contre ce risque de baisse correspond donc à une option de vente.

Il est donc important de retenir :

- 1. Il est rationnel d'effectuer un exercice hâtif si PV(dividendes) > PV(intérêt sur K) PV(assurance); PV(assurance) sera donc égal au coût de l'option de vente équivalente.
- Il n'est jamais rationnel d'effectuer un exercice hâtif sur une option d'achat américaine sans dividendes;
 - Il s'ensuit qu'une **option d'achat américaine** sur une action **sans dividendes** a le **même prix** qu'une **option d'achat européenne** équivalente.
- 3. Il est *possiblement* rationnel d'effectuer un exercice hâtif si PV(dividendes) > PV(intérêt sur K).

Options de vente américaines

L'avantage d'exercer l'option d'achat immédiatement est la réception de prix d'exercice *K* et **l'intérêt qu'on peut accumuler avec**.

Cependant, l'avantage de repousser l'exercice est de **continuer à recevoir des dividendes**. Également, la protection contre le risque de **ne** *pas* **vendre** l'action à un **prix plus élevé**. Une protection contre ce risque d'une hausse de prix correspond donc à une **option d'achat**.

Il est donc important de retenir :

- 1. Il est rationnel d'effectuer un exercice hâtif si PV(intérêt sur K) > PV(dividendes) + PV(assurance); PV(assurance) sera donc égal au coût de l'option d'achat équivalente.
- 2. Il est *possiblement* rationnel d'effectuer un exercice hâtif si PV(intérêt sur K) > PV(dividendes);
- 3. Il s'ensuit qu'il est *possiblement* rationnel d'effectuer un exercice hâtif sur une option d'achat américaine sans dividendes.

Effet du prix d'exercice

Trois arguments sur comment différents prix d'exercices font varier les prix d'options. Ces arguments, ou *propositions* expliquent le lien :

- > La première proposition relie le prix d'option au prix d'exercice;
- > La deuxième proposition relie la différence des prix d'options à la différence des prix d'exercices;
- La troisième proposition relie le taux de variation du prix de l'option selon le prix d'exercice.

Proposition 1: Lien entre les prix d'options et d'exercice

Option d'achat Une
$$\uparrow K$$
 mène à \downarrow valeur à l'échéance ainsi que $\downarrow C(K)$; $C(K_1) \geq C(K_2) \geq C(K_3)$

Option de vente Une
$$\uparrow K$$
 mène à \uparrow valeur à l'échéance ainsi que $\uparrow P(K)$; $P(K_1) \leq P(K_2) \leq P(K_3)$

Proposition 2 : Lien entre la différence des prix d'options et d'exercice

- > Une option d'achat profite d'une hausse de prix;
- > Si le prix d'exercice baisse de, par exemple, 10\$, alors la valeur à l'échéance maximale possible augmente de 10\$;
- > Ce faisant le plus que je serai prêt à payer pour potentiellement avoir 10\$ de plus *est* 10\$ de plus.

Option d'achat

$$C_{\text{amer}}(K_1) - C_{\text{amer}}(K_2) \le K_2 - K_1$$

 $C_{\text{euro}}(K_1) - C_{\text{euro}}(K_2) \le (K_2 - K_1)e^{-rT}$

Option de vente

$$P_{\text{amer}}(K_2) - P_{\text{amer}}(K_1) \le K_2 - K_1$$

 $P_{\text{euro}}(K_2) - P_{\text{euro}}(K_1) \le (K_2 - K_1)e^{-rT}$

Si la différence en prix d'option était supérieure à la différence en prix d'exercice il y a arbitrage; on peut n'avoir aucun risque de perte. Pour comprendre ceci, voir le graphique d'un écart-baissier et imaginer la ligne pointillée rouge uniquement au-dessus de l'axe des x.

Proposition 3 : Lien entre le taux de variation des prix d'option et d'exercice

> Le prix d'une option d'achat décroît plus lentement lorsque le prix d'exercice augmente;

> Le prix d'une option de vente croît plus rapidement lorsque le prix d'exercice augmente.

Option d'achat

$$\frac{C(K_1) - C(K_2)}{K_2 - K_1} \ge \frac{C(K_2) - C(K_3)}{K_3 - K_2}$$

Option de vente
$$\frac{P(K_2) - P(K_1)}{K_2 - K_1} \le \frac{P(K_3) - P(K_2)}{K_3 - K_2}$$

Introduction au modèle binomial d'évaluation des Portefeuille réplicatif « Replicating Portfolio » options

Modèle binomial d'évaluation des options le prix de l'actif sous-jacent au début d'une période devient un de deux prix possibles à la fin de la période.

> en anglais c'est le « Binomial Option Pricing Model ».

Notation de prix

```
u facteur de hausse « "up" factor »;
d facteur de baisse « "down" factor »;
S_u prix de l'action s'il y a une hausse;
       S_u = S_0 u
S_d prix de l'action s'il y a une baisse;
       S_d = S_0 d
h durée de chaque période;
\Delta nombre de parts d'actions à acheter;
B montant à prêter au taux sans risque;
V_u valeur à la node supérieure « value at upper node »;
V_d valeur à la node inférieur « value at lower node »;
V_0 valeur du portefeuille au temps 0 alias le prix.
```

Créer un portefeuille réplicatif

- 1. Acheter $\Delta = e^{-\delta h} \left(\frac{V_u V_d}{S_0(u d)} \right)$ parts de l'action;
- 2. Prêter $B = e^{-rh} \left[V_d \left(\frac{u}{u-d} \right) V_u \left(\frac{d}{u-d} \right) \right]$ au taux sans risque;

La valeur initiale du portefeuille réplicatif est donc $V_0 = \Delta S_0 + B$.

Selon les signes on observe :

	+	_
Δ	achète des parts de l'action	vend des parts de l'action
В	prête de l'argent	emprunte de l'argent

Également, pour répliquer les options, les combinaisons sont :

	Option d'achat	Option de vente
Δ	+	1
В	_	+

Évaluation neutre au risque

- > Présume que E[rendement] = r_f ;
- > La technique pondère les possibilités de valeur à l'échéance des options avec des probabilités neutre au risque puis les actualise au taux sans risque;
- > En raison de la simplicité des calculs, les options sont souvent tarifiées avec l'évaluation neutre au risque;
- > Le prix est en fait identique à celui obtenu avec l'approche du portefeuille réplicatif.

Notation

 p^* la probabilité neutre au risque d'une hausse de l'actif.

$$p^* = \frac{e^{(r-\sigma)n} - d}{u - d}$$

Le prix est donc :

$$V_0 = e^{-rh} [p^* V_u + (1 - p^*) V_d]$$

On déduit que $0 < p^* < 1$ ce qui mène à l'équation suivante :

$$d < e^{(r-\delta)h} < u$$

Sinon, il y a arbitrage.

Construction d'un arbre binomial

Méthode générale Arbitrairement sélectionner des valeurs de u et d pour l'arbre binomial crée;

Arbre binomial standard Sélectionner des valeurs de *u* et *d* selon des prix à terme résultant en un arbre binomial standard.

Arbre binomial standard

L'intuition est de multiplier le prix à terme de l'action par un facteur variant selon la volatilité.

Notation

 σ la volatilité annuelle du rendement de l'action composée continûment; L'écart type de la volatilité sur une période de durée h est donc $\sigma\sqrt{h}$.

Le prix à terme est donc multiplié par $e^{\sigma\sqrt{h}}$ pour le prix avec une hausse $S_u = F_{t,t+h}e^{\sigma\sqrt{h}}$ et $e^{-\sigma\sqrt{h}}$ pour le prix $S_d = F_{t,t+h}e^{-\sigma\sqrt{h}}$ avec une baisse.

On isole:

$$u = e^{(r-\delta)h + \sigma\sqrt{h}}$$
 $d = e^{(r-\delta)h - \sigma\sqrt{h}}$

Également, pour ce cas spécial, p^* se simplifie à $p^*=rac{1}{1+\mathrm{e}^{\sigma\sqrt{h}}}$

Arbres binomiaux à plusieurs périodes

Notation

n nombre de périodes;

h durée de chacune des périodes;

$$h = \frac{T}{n}$$

La généralisation des méthodes précédente pour les arbres binomiaux à plusieurs périodes se résume à multiplier les facteurs u et d. Par example :

Lorsque les facteurs u et d sont fixes, l'arbre se recombine et $S_0 \cdot u \cdot d = S_0 \cdot d \cdot u$.

Évaluation neutre au risque

Il y a 2 approches:

Nœud par nœud On calcule la valeur de l'option à chaque nœud récursivement avec l'évaluation neutre au risque jusqu'à arriver au prix;

Approche directe Pour les options européennes dont l'exercice hâtif n'est pas possible.

Approche directe

- 1. Calculer la valeur à l'échéance;
- 2. La pondérer par la probabilité neutre au risque de l'atteindre;
- 3. L'actualiser au taux sans risque.
- > La probabilité d'atteindre un nœud terminal est calculée avec une distribution binomiale;
- \rightarrow Pour *n* périodes, *k* est le nombre de hausses *u* pour atteindre le nœud;
- > La probabilité est :

Pr(atteindre un nœud ayant
$$k$$
 hausses) = $\binom{n}{k} (p^*)^k (1 - p^*)^{n-k}$ pour $k = 0, 1, ..., n$.

Pour un nœud u

$$V_u = e^{-rh} [p^* V_{uu} + (1 - p^*) V_{ud}]$$

Portefeuille réplicatif

 Δ et *B* ne restent pas constants et donc il faut prendre l'approche nœud par nœud. Ce faisant, il est *beaucoup* plus compliqué et long de trouver le prix avec cette approche.

Pour un nœud
$$u$$

$$\Delta_{u} = e^{-\delta h} \left(\frac{V_{uu} - V_{ud}}{S_{u}(u - d)} \right)$$

$$B_{u} = e^{-rh} \left[V_{ud} \left(\frac{u}{u - d} \right) - V_{uu} \left(\frac{d}{u - d} \right) \right]$$

$$V_{u} = \Delta_{u} S_{u} + B_{u}$$

Tarification d'options américaines

La distinction avec les options américaines est la possibilité d'un exercice hâtif.

Valeur espérée actualisée (VEA) valeur (« payoff ») pour un maintien de l'option;

> « Pull-back value » car on se retire (« pull-back ») d'exercer l'option immédiatement.

Valeur si levée (VSL) valeur (« payoff ») pour un exercice hâtif.

> « Immediate exercice value ».

Pour un nœud u

$$VSL = \begin{cases} \max(0, S_u - K), & \text{option d'achat} \\ \max(0, K - S_u), & \text{option de vente} \end{cases}$$

$$VEA = e^{-rh} \left[p^* V_{uu} + (1 - p^*) V_{ud} \right]$$

$$V_u = \max(VEA, VSL)$$

Processus de tarification

- 1. À partir du nœud le plus à droite de l'arbre décider à chaque nœud de l'arbre si l'exercice hâtif est optimal;
 - → Si *VSL* > *VEA* alors il y a un exercice hâtif sinon on maintient l'option au moins une période de plus;
 - > Donc valeur au nœud = max (valeur pour un valeur
- 2. Répéter jusqu'au nœud initial.

Tarification d'options sur un contrat à terme standardisé

Pas sur l'examen partiel hiver 2020.

Notation

 T_F temps d'expiration du contrat à terme standardisé;

T temps d'expiration d'une option;

$$T \leq T_F$$

 F_{t,T_F} Prix à terme au temps t pour un contrat à terme standardisé expirant au temps T_F .

$$F_{t,T_F} = S_t e^{(r-\delta)(T_F - t)}$$

 u_F et d_F Facteurs de hausse et de baisse pour un arbre de contrats à terme standardisés;

$$u_F = u e^{-(r-\delta)h} = e^{\sigma\sqrt{h}}$$

$$d_F = de^{-(r-\delta)h} = e^{-\sigma\sqrt{h}}$$

L'équation pour un arbre de contrats à terme standardisés suffit de remplacer les paramètres :

$$p^* = \frac{e^{(r-\delta)h} - d}{u - d} \qquad \Rightarrow \qquad p^* = \frac{e^{(r-r)h} - d_F}{u_F - d_F} = \frac{1 - d_F}{u_F - d_F}$$

$$u = e^{(r-\delta)h + \sigma\sqrt{h}} \qquad \Rightarrow \qquad u = e^{(r-r)h + \sigma\sqrt{h}} = e^{\sigma\sqrt{h}}$$

$$d = e^{(r-\delta)h - \sigma\sqrt{h}} \qquad \Rightarrow \qquad d = e^{(r-r)h - \sigma\sqrt{h}} = e^{-\sigma\sqrt{h}}$$

$$\Delta = e^{-\delta h} \left(\frac{V_u - V_d}{S(u - d)}\right) \qquad \Rightarrow \qquad \Delta = \frac{V_u - V_d}{F(u_F - d_F)}$$

$$B = e^{-rh} \left[V_d \frac{u}{u - d} - V_u \frac{d}{u - d}\right] \qquad \Rightarrow \qquad B = e^{-rh} [p^* V_u + (1 - p^*) V_d]$$

$$V_u = \Delta (Fu_F - F) + Be^{rh} \qquad V_d = \Delta (Fd_F - F) + Be^{rh}$$

Tarification d'options sur devises

Notation

 r_{DD} taux (force) d'intérêt sans risque sur le marché domestique;

 $r_{\mbox{\scriptsize D\'E}}\,$ taux (force) d'intérêt sans risque sur le marché étranger.

L'équation pour un arbre standard suffit de remplacer les paramètres :

$$p^* = \frac{\mathrm{e}^{(r-\delta)h} - d}{u - d} \qquad \Rightarrow \qquad p^* = \frac{\mathrm{e}^{(r_{\mathrm{DD}} - r_{\mathrm{D\acute{E}}})h} - d}{u - d}$$

$$u = \mathrm{e}^{(r-\delta)h + \sigma\sqrt{h}} \qquad \Rightarrow \qquad u = \mathrm{e}^{(r_{\mathrm{DD}} - r_{\mathrm{D\acute{E}}})h + \sigma\sqrt{h}}$$

$$d = \mathrm{e}^{(r-\delta)h - \sigma\sqrt{h}} \qquad \Rightarrow \qquad d = \mathrm{e}^{(r_{\mathrm{DD}} - r_{\mathrm{D\acute{E}}})h - \sigma\sqrt{h}}$$

Rendements composés continûment

> La fonction **logarithmique** calcule des rendements composés continûment à partir des prix.

$$r_{t,t+h} = \log\left(\frac{S_{t+h}}{S_t}\right)$$

> La fonction **exponentielle** calcul des prix à partir des rendements composés continûment.

$$S_{t+h} = S_t e^{r_{t,t+h}}$$

> Les rendements composés continûment sont additifs.

$$r_{t,t+nh} = \sum_{i=1}^{n} r_{t+(i-1)h,t+ih}$$

Volatilité

Notation

R variable aléatoire de la force du rendement (sous base annuelle);

Hypothèse Les rendements composés continûment sur des périodes disjointes, mais de même longueur *h*, sont i.i.d.;

 $r_{t,t+h}$ le rendement composé continûment entre t et t+h.

$$r_{t,t+h} = \ln\left(\frac{S_{t+h}}{S_t}\right)$$

On suppose n rendements, sur une période de h années, composés continûment $r_{t,t+h}, r_{t+h,t+2h}, \dots, r_{t+(n-1)h,t+nh}$.

On peut estimer la volatilité historique avec :

$$s_h = \sqrt{\frac{\sum\limits_{i=1}^{n}(r_{t+(i-1)h,t+ih} - \bar{r})^2}{n-1}},$$
 où $\bar{r} = \frac{\sum\limits_{i=1}^{n}r_{t+(i-1)h,t+ih}}{n}$

Donc s_h estime σ_h et \bar{r}_h estime μ_h où

$$\sigma_h = \sqrt{\operatorname{Var}\left(\ln\left(\frac{S_{t+h}}{S_t}\right)\right)} = \sqrt{\operatorname{Var}(R_{t,t+h})}$$

$$\mu_h = \mathrm{E}[R_{t,t+h}]$$

Pour changer d'une base annuelle (le défaut de h) à une base quelconque, on divise par h puisqu'il faut additionner $\frac{1}{h}$ rendements.

Par exemple, sous base mensuelle $h=\frac{1}{12}$ on a $\sigma=s_{1/12}\sqrt{12}$ ou sous base hebdomadaire $h=\frac{1}{52}$ on a $\sigma=s_{1/52}\sqrt{52}$.

Modèle binomial d'évaluation des options : sujets Compréhension de l'évaluation neutre au risque sélectionnés

Compréhension de l'exercice hâtif

Avec un exercice hâtif, le détenteur d'une option d'achat :

- 1. Reçoit l'action et donc les dividendes futurs.
 - \rightarrow Donc, on souhaite que δ augmente.
- 2. Paie le prix d'exercice avant expiration et donc subit des coûts d'intérêt.
 - > Donc, on ne souhaite pas que *r* augmente.
- 3. Perd l'assurance implicite à l'option.
 - \rightarrow Donc, on ne souhaite pas que σ augmente.

Le plus la volatilité σ est élevée, le plus élevé (faible) le prix de l'action auquel on va exercer l'option d'achat (de vente):

Si la valeur de l'assurance est nulle ($\sigma = 0$) et que $T \to \infty$, on lève l'option d'achat si $\delta S_T > rK$; c'est-à-dire, si la valeur des dividendes est supérieure à l'intérêt accumulé sur le prix d'exercice.

Pour une option de vente, c'est l'inverse.

Notation

r force d'intérêt sans risque;

 δ force de dividendes;

α force d'intérêt (rendement) sur le sous-jacent;

p la vraie probabilité d'une hausse de l'actif sous-jacent;

$$p = \frac{e^{(\alpha - \delta)h} - d}{u - d}$$

- on ne peut pas actualiser la valeur espérée de l'option avec α ni avec r;
- L'option est risquée ce qui élimine *r*;
- Le niveau de risque de l'option diffère de celui du sous-jacent.

 γ Force d'intérêt auquel on actualise la valeur espérée de l'option.

Le prix est donc $V_0 = e^{-\gamma h} (pV_u + (1-p)V_d)$.

Pour un portefeuille réplicatif, $e^{\gamma h} = \left(\frac{\Delta S}{\Delta S + B}\right) e^{\alpha h} + \left(\frac{B}{\Delta S + B}\right) e^{rh}$

Types de comportement envers le risque

Aversion au risque Souhaite maximiser le rendement espéré E[R] tout en minimisant le risque σ_R^2 .

Indifférence au risque Souhaite maximiser le rendement espéré E[R] et est *indiffé*rent au risque σ_R^2 .

> On dit que l'investisseur est *neutre* au risque.

Exemple Soit 2 investissements : 1 000\$ assuré ou 2 000\$ avec une probabilité de 50% et 0\$ avec une probabilité de 50%.

Un investisseur avec une aversion au risque préfère la première option, car elle est moins risquée.

Un investisseur avec une indifférence au risque est indifférent à la première ou la deuxième option, car le rendement espéré des deux options est égal.

Donc une évaluation neutre au risque suppose que les investisseurs sont indifférents au risque même s'ils ne le sont pas en réalité.

L'arbre binomial et la lognormalité

Modèle de marche aléatoire

Notation

- Y_i Variable aléatoire du i^e résultat;
- \rightarrow Si on lançait une pièce de monnaie, on aurait que Y=-1 si la pièce tombe sur pile et Y=1 si elle tombe sur face;
- > Également, $Pr(Y = 1) = Pr(Y = -1) = \frac{1}{2}$;
- > $E[Y_n^2] = 1$ et $E[Y_n] = 0$;
- Z_n Total cumulatif après n lancers.
- $\Rightarrow Z_n = \sum_{i=1}^n Y_i;$
- > La magnitude $|Z_n|$ augmente avec n;
- $\to E[Z_n^2] = n \text{ et } E[Z_n] = 0.$

Interprétation :

- > Dans un marché efficient, le prix devrait refléter toute l'information disponible.
- > Ainsi, par définition la nouvelle information est une surprise.
- > Le modèle de marche aléatoire pose que cette nouvelle information devrait résulter équiprobablement en une hausse ou une baisse du prix;
- > Après un certain temps, le prix d'une action dépend de l'effet cumulé de toutes les surprises.

Problèmes avec la modélisation du prix de l'action

Plusieurs problèmes nous empêchent d'utiliser une marche aléatoire :

- 1. Le prix de l'action **peut devenir négatif** s'il y a suffisamment de mouvements vers le bas.
 - > Ceci est impossible à cause de la responsabilité limitée des actionnaires (concept de GRF 1).
- 2. La magnitude d'un mouvement $(|Y_i|)$ est fixé à 1 mais devrait dépendre de :
 - i) la **longueur** de la période *h* (alias, la *fréquence* des mouvements), et
 - ii) le **prix actuel** S_t de l'action sous-jacent.
 - > Il n'est pas réaliste d'avoir le prix d'une action monter ou baisser de 60\$ en une journée.

3. Le rendement sur l'action devrait, en moyenne, être positif.

Le modèle binomial est une variante du modèle de marche aléatoire qui résout ces problèmes; il suppose que les rendements composés continûment sont une **marche aléatoire avec dérive**.

Modèle binomial

Selon le modèle binomial, $S_{t+h} \in S_t \mathrm{e}^{(r-\delta)h \pm \sigma \sqrt{h}}$

Le rendement $r_{t,t+h} = \ln\left(\frac{S_{t+h}}{S_t}\right) \in (r-\delta)h \pm \sigma\sqrt{h}$ a donc 2 composantes :

- 1. Une partie *certaine* $(r \delta)h$,
 - > Cette partie constitue la dérive.
- 2. Une partie *incertaine* $\pm \sigma \sqrt{h}$

On peut récrire le modèle binomiale comme :

$$r_{t+(i-1)h,t+ih} = (r-\delta)h + Y_i\sigma\sqrt{h}, \quad i=1,2,\ldots,n$$

$$r_{0,nh} \equiv r_{0,T} = (r - \delta)T + Z_n \sigma \sqrt{h}$$

Cette formulation du modèle règle donc les problèmes :

Problèmes

- 1. Le prix de l'action ne peut pas être négatif.
- 2. La magnitude de la variation du prix dépend de la longueur de la période de temps h.
 - > Des **mouvements** du prix de l'action **plus fréquents** diminuent h et par conséquence la partie certaine du rendement $(r \delta)h$.
- 3. Le nouveau prix dépend du (est *proportionnel* au) prix initial.
- 4. On peut garantir un **prix positif**.
 - > Ceci, car il y a une composante certaine et que l'on choisit la probabilité d'une augmentation du prix.

Lognormalité

L'arbre binomial est une approximation de la distribution lognormale.

- > La somme de variables aléatoires binomiales est approximativement normalement distribuée;
- > Lorsque l'on traverse un arbre binomial, on somme implicitement les composantes du rendement;

- \rightarrow Alors, lorsque le nombre de périodes $n \rightarrow \infty$, $r_{t,t+h} \approx \mathcal{N}((r-\delta)h, \sigma^2 h)$;
- \rightarrow Il s'ensuit que le prix $S_{t+T} = S_{t+nh} \approx LN$ lorsque $n \rightarrow \infty$.

On trouve alors que la probabilité d'atteindre le $(i+1)^e$ nœud (à partir du haut) est :

$$\Pr(S_T = S_0 u^{n-i} d^i) = \binom{n}{i} (p^*)^{n-i} (1 - p^*)^i, \quad i = 0, 1, \dots, n$$

Note Voir le chapitre 18 : La loi lognormale pour plus de détails sur l'application de la loi lognormale pour le prix d'actions.

Arbres binomiaux alternatifs

 \mathbf{w}

Il y existe d'autres façons de construire un arbre binomial qui mènent à des mouvements de u et d différents :

Méthode	Mouvement (u et d)	Notes
Arbre à terme	$\mathrm{e}^{(r-\delta)h\pm\sigma\sqrt{h}}$	$u > e^{(r-\delta)h} > d$
Arbre de Cox-Ross-Rubenstein	$\mathrm{e}^{\pm\sigma\sqrt{h}}$	ud = 1
Arbre lognormal	$e^{(r-\delta-\frac{1}{2}\sigma^2)h\pm\sigma\sqrt{h}}$	$p^* pprox rac{1}{2}$

Note Il est possible qu'avec un arbre de Cox-Ross-Rubenstein $e^{(r-\delta)h} > u$ si h est gros et σ petit.

- > Malgré que toutes les différentes méthodes mènent à des prix différents lorsque n est fini, elles tendent vers le même prix lorsque $n \to \infty$;
- > De plus, malgré que les mouvements u et d sont différents, le ratio des facteurs $\frac{u}{d}$ est le même :

$$\frac{u}{d} = e^{2\sigma\sqrt{h}}$$

> Alors, peu importe la méthode utilisée pour construire l'arbre, la distance proportionnelle entre *u* et *d* mesure la volatilité.

Est-ce un modèle réaliste?

Un modèle basé sur la distribution lognormale implique quelques hypothèses douteuses sur les prix qui, en pratique, ne sont pas vérifiées.

Hypothèses douteuses d'une distribution normale

- a) Volatilité σ constante.
 - > En réalité, la volatilité change dans le temps.
- b) Pas de grandes variations spontanées.
 - > En réalité, il y a parfois des chocs soudains des prix de titres boursiers.
- c) Indépendance entre les rendements composés continûment.
 - > En réalité, les rendements sont positivement corrélés à court et moyen terme mais négativement corrélés à long terme.

Le modèle n'est donc pas parfait, mais sert plutôt de bon point de départ.

12 La formule de Black-Scholes

Formule de Black-Scholes généralisée

Hypothèses de la formule de Black-Scholes

Sur la distribution de l'action sous-jacente

- a) Les rendements (composés continûment) sur l'action ont une distribution normale et sont indépendants à travers le temps.
- b) La volatilité σ des rendements (composés continûment) est connue et constante.
- c) Les dividendes δ futurs sont connus.

Sur l'environnement économique

- a) Le taux (force *r*) sans risque est connu et constant.
- b) Il n'y a pas d'impôt ni de frais de transactions.
- c) Il n'y a pas de frais de vente à découvert.
- d) Les investisseurs peuvent emprunter au taux sans risque.

Lorsque le nombre de périodes n d'un arbre binomial augmente, le prix de l'option tend vers la valeur donnée par la formule de Black-Scholes.

Formule de Black-Scholes généralisée

Équations généralisées :

$$d_1 = \left(\frac{\ln \frac{F^P(S)}{F^P(K)} + \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}}\right) \qquad d_2 = \left(\frac{\ln \frac{F^P(S)}{F^P(K)} - \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}}\right) \equiv d_1 - \sigma\sqrt{t}$$

Prix d'options **européennes** selon la formule de Black-Scholes :

$$C(S_0, K, \sigma, r, T, \delta) = F_{0,T}^P(S)N(d_1) - F_{0,T}^P(K)N(d_2)$$

$$P(S_0, K, \sigma, r, T, \delta) = F_{0,T}^P(K)N(-d_2) - F_{0,T}^P(S)N(-d_1)$$

Notes

$$\sigma = \sqrt{\frac{\operatorname{Var}(\ln F_{t,T}^{P}(S))}{t}} \equiv \sqrt{\frac{\operatorname{Var}(\ln F_{t,T}(S))}{t}} \equiv \sqrt{\frac{\operatorname{Var}(\ln S_{t})}{t}}, \, \forall 0 < t \leq T$$

 $\ln S_t$ **Volatilité de l'action** ou, de façon équivalente, volatilité du rendement sur l'action composé continûment.

Options sur d'autres sous-jacents

Avec la formule généralisée, on peut appliquer la formule de Black-Scholes à d'autres sous-jacents.

Dans un tel cas, il y a quelques considérations à prendre pour une option sur :

Actions avec dividendes discrets proportionnels On trouve le nombre n de fois que le dividende sera versé entre 0 et l'échéance de T de l'option.

$$F_{0,T}^P(S) = S_0(1 - txdiv)^n$$

Contrat à terme standardisé Il peut arriver que la date d'échéance—T—de l'option ne soit pas la même que la date d'échéance—T'—du contrat à terme standardisé sur un actif quelconque Q.

Dans un tel cas, il faut que $T' \ge T$ et qu'on actualise le prix à terme $F_{0,T'}(Q)$ à partir de T (et non T').

$$F_{0,T}^{P}(F) = F_{0,T'}(Q)e^{-rT}$$
 $F_{0,T}^{P}(K) = Ke^{-rT}$

Devises Les prix à terme prépayés doivent être dans la même devise que l'option.

$$C(S_0 = x_0, K, \sigma, r = r_{DD}, T, \delta = r_{DE}) = x_0 e^{-r_{DE}T} N(d_1) - K e^{r_{DD}T} N(d_2)$$

Diagrammes du profit avant échéance

Nous avons précédemment tracé des diagrammes de profit de valeur à l'échéance pour les options à l'expiration. Nous allons maintenant étendre ceci pour tracer les diagrammes avant expiration.

- > L'idée est la même qu'auparavant mais on remplace la valeur à l'échéance par la valeur de revente de l'option
- > Pour tracer les diagrammes, on fait varier les prix en maintenant fixe les dates. Nous illustrons ceci avec 2 stratégies :

Achat et revente d'une option d'achat

Crée en :

- \rightarrow Achetant l'option d'achat au temps t_1 ;
- > Vendant l'option d'achat au temps t_2 avant l'échéance ($t_2 < T$).

Valeur à t_2

- = Prix de revente
- $= C(S_{t_2}, K, \sigma, r, T, \delta)$

Profit à t_2

- = Prix de revente Prix d'achat à t_1 accumulé à t_2
- $= C(S_{t_2}, K, \sigma, r, T, \delta) C(S_{t_1}, K, \sigma, r, T, \delta)e^{r(t_2-t_1)}$

Écart horizontal

Crée en :

- > Vendant une option venant à échéance à t_1 ;
- \rightarrow Achetant une option identique sauf pour la date d'échéance de t_2 .

Coût initial Pour des options d'achat on obtient :

$$= C(S, K, \sigma, r, T_2, \delta) - C(S, K, \sigma, r, T_1, \delta)$$

Notes

- > Permet de spéculer sur la volatilité de l'action;
- > Typiquement utilisé lorsqu'un investisseur croit que, entre deux prix d'exercice, le prix va rester fixe;
- > L'écart est d'ailleurs bâtit afin d'avoir un thêta positif et implique la dissolution du portefeuille avant ou à la première des deux échéances;
- > en anglais « calendar spread ».

Volatilité implicite

Volatilité implicite La valeur σ tel que la formule de Black-Scholes reproduit le prix de l'option observé sur le marché.

- > La volatilité tel quel n'est pas observable et son estimation est problématique;
- > La volatilité *historique* (vue au chapitre 10) n'est pas adéquate car elle ne prévoit pas le futur;
- > On peut en lieu isoler la volatilité *implicite* $\hat{\sigma}$ avec le prix observé de l'action et la formule de Black-Scholes.
 - Elle représente donc l'appréciation de la volatilité faite par le marché;
- > Malgré que la volatilité est supposée constante dans la formule, en réalité elle varie selon le prix d'exercice *K* et la date d'échéance *T*;
- > On peut l'utiliser pour évaluer une option qui n'existe pas encore;
- > Également, on peut valider ou invalider le modèle de Black-Scholes;
- > Finalement, on peut comparer des options par leur volatilité implicite au lieu de leurs prix.

Les Grecs de l'option

Les grecs servent à mesurer l'exposition au risque en considérant un paramètre de la formule de Black-Scholes à la fois.

> Par défaut, on calcule les grecs en supposant l'achat (et non la vente) d'une option.

Grec	Définition	Mesure le changement de la valeur (V)
Δ	$\frac{\partial V}{\partial S_0}$	de l'option par une augmentation (de 1\$) du prix de l'action.
Γ	$\frac{\partial \Delta}{\partial S_0} \equiv \frac{\partial^2 V}{\partial S_0^2}$	du Delta par une augmentation (de 1\$) du prix de l'action.
$\theta/365$	$\frac{\partial V}{\partial t}$	de l'option par une baisse (d'un jour) de la date d'échéance.
Vega	$\frac{\partial V}{\partial \sigma}$	de l'option par une augmentation (de 1%) de la volatilité.
ρ/100	$\frac{\partial V}{\partial r}$	de l'option par une augmentation (de 1%) du taux sans risque.
ψ/100	$\frac{\partial V}{\partial \delta}$	de l'option par une augmentation (de 1%) de la force de dividende.

Termes financiers

point de pourcentage 1%. point de base 0.01%.

Grecs

\triangle Delta $\Delta = \frac{\partial V}{\partial S_0}$

Mesure la variation du prix de l'option correspondante à une augmentation du prix de l'action.

Expressions du Delta pour les options Domaine $\Delta_C = \mathrm{e}^{-\delta T} N(d_1) \qquad \qquad 0 \leq \Delta_C \leq 1 \\ \Delta_P = -\mathrm{e}^{-\delta T} N(-d_1) \qquad \qquad -1 \leq \Delta_P \leq 0$

Lien entre le delta pour une options de vente et d'achat :

$$\Delta_C - \Delta_P = e^{-\delta T}$$

Notes

- > Le Delta Δ_C (Δ_P) peut être interprété comme le nombre d'actions à acheter (vendre) pour répliquer une option d'achat (de vente);
- > Une option d'achat devient de plus en plus profitable lorsque le prix de l'action sous-jacente augmente.

Alors, Δ_C se rapproche de 0 lorsque l'option est hors du cours ($S_T < K$) et de 1 lorsqu'elle est dans le cours ($S_T > K$).

Cependant, le Δ_C ne sera jamais négatif, car l'option d'achat a un seuil minimal de 0 pour sa valeur à l'échéance.

De même, Δ_P ne sera jamais positif;

- \rightarrow Dans les deux cas, le Δ augmente avec le prix de l'action;
- > Mathématiquement, le domaine est restreint puisque $0 \le N(x) \le 1, \forall x$ et $0 \le e^{-\delta T} \le 1$.

$$\blacksquare$$
 Gamma $\Gamma = \frac{\partial \Delta}{\partial S_0} \equiv \frac{\partial^2 V}{\partial S_0^2}$

Mesure la variation du Delta de l'option correspondante à une augmentation du prix de l'action.

Expressions du Gamma pour les options

Domaine

$$\Gamma_C = \Gamma_P = rac{\mathrm{e}^{-\delta T} N'(d_1)}{S_0 \sigma \sqrt{T}}$$

$$\Gamma_P = \Gamma_C > 0$$

Notes

- > Le Γ mesure le *taux* de variation du Δ . Puisque le Δ augmente toujours, le Γ est toujours positif;
- > Le Γ est maximisé au cours du marché, car c'est où le Δ connaît le plus de variation.

\blacksquare Theta $\theta = \frac{\partial V}{\partial t}$

Mesure la variation du prix de l'option correspondante à l'écoulement du temps.

Note Selon si on dérive par rapport au point de départ t ou à l'échéance T on a que $\theta = \frac{\partial V}{\partial t} = -\frac{\partial V}{\partial T}$

Lien entre le delta pour une options de vente et d'achat :

$$\theta_C - \theta_P = \delta S e^{-\delta(T-t)} - r K e^{-r(T-t)}$$

Expressions du Theta pour les options

$$\theta_{C} = \left(S_{0} \delta e^{-\delta(T-t)} N(d_{1}) - K r e^{-r(T-t)} N(d_{2}) \right) - \frac{K e^{-r(T-t)} N'(d_{2}) \sigma}{2\sqrt{T-t}}$$

$$\theta_{P} = \left(K r e^{-r(T-t)} N(-d_{2}) - S_{0} \delta e^{-\delta(T-t)} N(-d_{1}) \right) - \frac{K e^{-r(T-t)} N'(d_{2}) \sigma}{2\sqrt{T-t}}$$

Notes

- > Pour obtenir la variation en valeur par jour—la notation de Claire—il suffit de diviser par 365 : $\frac{\theta}{365}$;
- La valeur d'une option décroît avec le temps.
 θ estime de combien, ceteris paribus, la valeur décroît par jour;
- Ce faisant, θ est habituellement négatif.
 Il est possible qu'il soit négatif pour une option profondément dans le cours du marché ayant un taux de dividende très élevé;
- > Theta pour temps.

lacksquare Vega alias Lambda $\Lambda = rac{\partial V}{\partial \sigma}$

Mesure la variation du prix de l'option correspondante à une augmentation de la volatilité de l'action.

Expression du Vega pour les options

Domaine

$$\Lambda_C = \Lambda_P = S_0 e^{-\delta T} N'(d_1) \sqrt{T}$$
 $\Lambda_P = \Lambda_C > 0$

Notes

- > Pour obtenir la variation en pourcentage—la notation de Claire—il suffit de diviser par 100 : $\frac{\Lambda}{100}$;
- > Une augmentation de la volatilité mène toujours à une augmentation des prix d'options.

Il s'ensuit que le Vega sera toujours positif et augmente avec la volatilité;

> Vega pour volatilité.

 \square Rho $\rho = \frac{\partial V}{\partial r}$

Mesure la variation du prix de l'option correspondante à une augmentation du taux sans risque.

Expression du Rho pour les options

Domaine

$$\rho_C = TKe^{-rT}N(d_2)$$

$$\rho_C > 0$$

$$\rho_P = -TKe^{-rT}N(-d_2)$$

$$\rho_P < 0$$

Notes

- > Pour obtenir la variation en pourcentage—la notation de Claire—il suffit de diviser par $100 : \frac{\rho}{100}$;
- > Une augmentation du taux sans risque *r* fait baisser la valeur actualisée du prix d'exercice Ke^{-rT} . Selon la formule de Black-Scholes, baisser Ke^{-rT} fait **augmenter** la valeur d'une option d'achat mais baisser celle d'une option de vente. Donc, $\rho_C > 0$ et $\rho_P < 0$;
- > Rho pour taux sans risque.

 \blacksquare Psi $\psi = \frac{\partial V}{\partial \delta}$

Mesure la variation du prix de l'option correspondante à une augmentation du taux de dividendes.

Expression du Psi pour les options

$$\psi_{\mathsf{C}} = -TS\mathrm{e}^{-\delta T}N(d_1)$$

$$\psi_C < 0$$

$$\psi_P = TSe^{-\delta T}N(-d_1)$$

$$\psi_P > 0$$

Notes

- > Pour obtenir la variation en pourcentage—la notation de Claire—il suffit de diviser par $100:\frac{\psi}{100}$;
- \rightarrow Une augmentation du taux de dividendes δ fait baisser la valeur actualisée du prix de l'action $Se^{-\delta T}$.

Selon la formule de Black-Scholes, baisser $Se^{-\delta T}$ fait **baisser** la valeur d'une option d'achat mais **augmenter** celle d'une option de vente. Donc, $\psi_C < 0$ et $\psi_P > 0$.

Portefeuille

Le grec d'un portefeuille composé de N options sur une même action, avec n_i options de chaque type, est simplement la somme des grecques :

$$Grec_{ptf.} = \sum_{i=1}^{N} n_i Grec_i$$

Élasticité

\triangle Élasticité $\Omega = \frac{\Delta S_0}{V}$

Mesure le pourcentage de variation du prix de l'option correspondante au pourcentage d'augmentation du prix de l'action.

Élasticité

$$\Omega_{\text{option}} = \frac{\text{\% variation du prix de l'option}}{\text{\% variation du prix de l'action}} = \frac{(V_t - V_0)/V_0}{(S_t - S_0)/S_0}$$
$$= \Delta \cdot \frac{S_0}{V_0} = \frac{\Delta S_0}{V}$$

Bornes

$$\Omega_C \ge 1$$

$$\Omega_P \leq 0$$

Notes

- > Pour obtenir la variation par augmentation de 1% du prix de l'action—la notation de Claire—il suffit de diviser par $100 : \frac{\Omega}{100}$;
- \rightarrow Le \triangle peut être vu comme le risque *absolu* d'une action :

 $\Delta = \frac{\text{variation du prix de l'option}}{\text{variation du prix de l'action}}$

L'élasticité évalue plutôt le risque relatif au montant.

Volatilité

Puisqu'un actif sans risque n'a aucune volatilité, la volatilité de l'option (σ_{option}) va seulement dépendre de celle de l'action (σ_{action}).

On ne fait que pondérer par la valeur absolue de l'élasticité de l'option (Ω_{option}) :

$$\sigma_{
m option} = |\Omega_{
m option}| \, \sigma_{
m action}$$

> La valeur absolue assure une volatilité positive.

Rendement sur l'option γ

Pour un portefeuille réplicatif on a que $V = \Delta S + B$. Avec ceci on trouve :

- % investit dans l'action sous-jacente % action = $\frac{\Delta S}{V} = \Omega$.
- % investit dans l'actif sans risque % actif = $\frac{B}{V} = 1 \Omega$.
- γ Rendement espéré instantané sur l'option.
- > On pondère les rendements sur l'action et l'actif :

$$\gamma = (\% \arctan)\alpha + (\% \arctan)r$$
$$= \Omega\alpha + (1 - \Omega)r$$

> Ceci est l'équivalent continu de $e^{\gamma h} = \frac{\delta S}{\delta S + B} e^{\alpha h} + \frac{B}{\delta S + B} e^{rh}$.

≡ Prime de risque

Une **prime de risque** est l'excès du rendement espéré d'un actif au taux sans risque.

Prime de risque sur l'action $\alpha - r$

Prime de risque sur l'option $\gamma - r$

- > Avec la définition du rendement γ espéré instantané sur l'option on trouve : $\gamma r \equiv \Omega(\alpha r)$;
- > Dans le modèle d'évaluation des actifs financiers, $\alpha r = \beta_{\rm action}(\mu_m r)$ alias $\beta_{\rm option} = \beta_{\rm action}\Omega_{\rm option}$;
- \Rightarrow Si $\alpha > r$ alors $\gamma_C \ge \alpha$ et $\gamma_P \le r$.

Ratio de Sharpe ø

Le **ratio de Sharpe** d'un actif est le ratio de sa prime de risque à sa volatilité.

Ratio de Sharpe de l'action
$$\alpha - r$$

$$\emptyset_{\text{action}} = \frac{\alpha - r}{\sigma_{\text{action}}}$$

Ratio de Sharpe de l'option

Puisque Ω est positif pour les options d'achat et négatif pour les options de vente :

Portefeuille

L'élasticité d'un portefeuille composé de N options avec n_i de chaque type est la moyenne pondérée de l'élasticité de chaque type d'option.

Donc, avec ω_i % du portefeuille investi dans l'option i, on a :

$$\Omega_{ ext{ptf.}} = \sum_{i=1}^N \omega_i \Omega_i$$
, où $\omega_i = n_i imes rac{V_i}{V_{ ext{ptf.}}}$

On peut également le calculer avec les paramètres du portefeuille $\Omega_{ ext{ptf.}} = rac{\Delta_{ ext{ptf.}} S}{V_{ ext{ptf.}}}$

Approximation

- > On peut approximer la variation du prix de l'option avec les grecques;
- > Le Delta *varie avec le prix* :
 - Le Delta sous-estime l'augmentation du prix de l'option d'achat quand le prix de l'action augmente et surestime la diminution;
 - Alors, le Delta est seulement valide comme approximation du prix pour des très petites variations
- > En considérant le Gamma, l'approximation devient valide pour des plus grandes variations;
- > Cependant, la meilleure approximation se fait en incluant Theta pour considérer *l'effet du temps*.

Approximation Delta-Gamma-Theta

$$C(S_t + \varepsilon) \approx C(S_t) + \Delta_t \varepsilon + \frac{1}{2} \Gamma_t \varepsilon^2 + \theta_t h$$

Notes

- \rightarrow ε est la variation du prix.
- $\rightarrow h$ et θ doivent être dans la même unité de temps.
- $\rightarrow \theta$ diminue l'approximation, car il est habituellement négatif.

13 Tenue de marché et couverture en delta neutre

Opérations pour compte propre

Opérations effectuées par une institution financière pour son propre compte afin de suivre une stratégie d'investissement.

- > En anglais « proprietary trading »;
- > On distingue les opérations pour compte propre de la tenue de marché :
 - Les clients et opérateurs pour compte propre profitent des mouvements des marchés;
 - Les teneurs de marché profitent des frais de transactions;
 - Ils offrent l'immédiateté et se tiennent prêt à acheter et à vendre des produits dérivés selon les ordres des clients ou investisseurs.

≡ Couverture en delta neutre

Une position couverte en delta neutre a un $\Delta=0$ et permet aux teneurs de marché de se protéger contre le risque d'une chute du prix de l'action.

Contexte

- > Les teneurs de marchés ne souhaitent pas profiter du marché mais plutôt des transactions;
- > La couverture en delta neutre est une donc façon de minimiser le risque de leurs positions;
- > Cette couverture est couramment utilisée en pratique.

Pour avoir une couverture en delta neutre, les teneurs de marché calculent le Δ de l'option puis prennent la position inverse dans le sous-jacent pour compenser.

- > Le delta d'une action est de 1 car $\Delta_{action} = \frac{\partial S}{\partial S} = 1$.
- > La couverture comporte des coûts et requiert du capital;
- > De plus, l'idée importante à retenir est qu'une position couverte **devrait** avoir un rendement égal au taux sans risque.

Exemple Un teneur de marché vend 100 options d'achat à un $\Delta_C = 0.55$ et souhaite avoir une couverture en delta neutre. Alors, il achète $100 \times \Delta_C = 55$ actions. L'investissement net est de $+100 \times C(K) - 55 \times S_0$. S'il souhaite avoir un flux monétaire initial de zéro, il va emprunter (ou prêter si c'est positif) ce montant au taux sans risque.

Profit sur 2 jours d'un portefeuille couvert en delta neutre

Composantes du portefeuille

- 1. Achat ou vente d'options.
- 2. Achat ou vente d'actions.
- 3. Emprunt ou prêt d'argent.

Composantes du profit

- 1. Profit sur les options.
- 2. Profit sur les actions.
- 3. Profit sur l'obligation.
- > Par exemple, le profit sur les options le lendemain serait $100 \times (C_0 e^{r(\frac{1}{365})} C_{1/365})$;
- > Si le teneur de marché veut recouvrir sa position le lendemain, il achète (ou vend) $100 \times (C_{1/365} C_0)$.

Selon la structure de Black-Scholes, le teneur de marché demeure rentable après un période de temps h pour $S\pm S\sigma\sqrt{h}$.

Pour un teneur de marché qui vend une option et couvre sa position en delta neutre, il a :

- 1. Une position courte sur l'option;
- 2. Une position longue sur Δ_t actions;
- 3. Une position sur une obligation zéro-coupon sans risque.

Son profit de t à t+h est la somme des variations des composantes $[+V_t e^{rh} - V_{t+h}] + [-\Delta_t S_t e^{rh} + \Delta_t S_{t+h}]$.

Note sur les autres grecs Si un teneur de marché souhaite couvrir avec de multiples grecs, il suffit de poser les grecs du portefeuille égaux à 0. Cependant, puisque tous les grecques autre que le Δ d'une action sont 0, on nécessite une deuxième option. Par exemple pour l'achat de 100 options d'achat de type 1, on achète y options d'achat de type 2 et x actions pour obtenir un portefeuille couvert en delta et

gamma neutre:

$$\begin{split} \Delta_{\text{ptf.}} &= -100\Delta_{C^{I}} + (x)\Delta_{\text{action}} + (y)\Delta_{C^{II}} \\ &= -100\Delta_{C^{I}} + (x)(1) + (y)\Delta_{C^{II}} \\ \Gamma_{\text{ptf.}} &= -100\Gamma_{C^{I}} + (x)(0) + (y)\Gamma_{C^{II}} \end{split}$$

Note sur θ Thêta mesure la *variation du prix* à l'écoulement *du temps* et n'a pas lié au risque de l'action. Il en résulte que le delta et le gamma d'un dépôt sans risque sont nuls, mais pas le thêta. Pour un dépôt de 1\$, la valeur accumulée t années plus tard est e^{rt} . Le thêta de ce dépôt est $\theta_{\rm sans \ risque} = \frac{\partial r e^{rt}}{\partial t} = r e^{rt}$.

Autofinançant

Portefeuille dont la couverture, même si elle existe un rééquilibrage, entraîne uniquement des flux monétaires intermédiaires nuls est dit autofinançant.

Analyse de Black-Scholes

Équation de Black-Scholes :

$$rS_t \frac{\partial C_t}{\partial S_t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 C_t}{\partial S_t^2} + \frac{\partial C_t}{\partial t} = rC_t$$

- > Valide pour les options d'achat et de vente;
- \rightarrow L'équation suppose aucun dividendes et que les paramètres r et σ sont constants;
- > Elle est valide pour les options d'achat et de vente américaines à tout instant où il n'est pas optimal d'exercer l'option avant l'échéance;
- > En théorie, le rééquilibrage devrait se faire en continu;
- > En pratique, les frais de transactions sont trop élevés et c'est plutôt lorsque le delta change;
- > Augmenter la fréquence du rééquilibrage (pour ramener le delta à zéro) :
 - Réduit la variabilité du rendement;
 - Permet de tirer avantage de la diversification temporelle;
 - N'affecte pas la moyenne du rendement sur une période donnée.

 $R_{h,i}$ Le rendement de la période i avec une durée h entre les ajustements, en supposant que la position d'une option d'achat achetée est delta-neutre au départ;

$$R_{h,i} = \frac{1}{2}S^2\sigma^2\Gamma(x_i^2 - 1)h$$

 x_i Nombre d'écarts-types dont le prix de l'action se déplace dans la période.

$$\operatorname{Var}(R_{h,i}) = \frac{1}{2} (S^2 \sigma^2 \Gamma h)^2$$

14 Options exotiques : I

Options asiatiques

Options asiatiques

La valeur à l'échéance dépend du prix moyen du sous-jacent sur une certaine période de temps.

- > On les surnomme aussi des options sur moyenne;
- > Contrairement aux options classiques, les options asiatiques dépendent de la trajectoire que le prix a suivi.

Options sur la moyenne

Il y a huit versions de base des options sur moyenne :

- > Option d'achat ou de vente;
- > Moyenne arithmétique A(S) ou géométrique G(S) où $G(S) \le A(S)$

$$A(S) = \frac{1}{N} \sum_{t=1}^{N} S_t$$
 $G(S) = \left(\prod_{t=1}^{N} S_t\right)^{1/n}$

> Moyenne du sous-jacent ou du prix d'exercice.

Pour des options ordinaires :

valeur à l'échéance d'une option d'achat = $max[0, S_T - K]$

valeur à l'échéance d'une option de vente = $max[0, K - S_T]$

■ Option asiatique sur le prix moyen

On remplace S_t par le prix moyen \bar{S} pour la valeur à l'échéance des options :

valeur à l'échéance

d'une option d'achat = $\max[0, \bar{S} - K]$

valeur à l'échéance

d'une option de vente = $\max[0, K - \bar{S}]$

■ Option asiatique sur le prix d'exercice moyen

On remplace K par le prix moyen \bar{S} pour la valeur à l'échéance des options : valeur à l'échéance

d'une option d'achat = $\max[0, S_T - \bar{S}]$

valeur à l'échéance

d'une option de vente = $\max[0, \bar{S} - S_T]$

Note : Deux erreurs fréquentes sont d'inclure le prix initiale dans la moyenne et ne pas calculer V_{ud} et V_{du} lorsqu'on utilise la moyenne géométrique.

Points importants

- 1. La valeur d'une option asiatique sur le prix moyen est inférieure ou égale à la valeur d'une option européenne équivalente.
 - > Le plus faible la volatilité d'une action, le moins il est probable qu'elle ait une valeur à l'échéance positive;
 - \rightarrow Le prix moyen d'une action \bar{S} est moins volatile que le prix final de l'action S_t ;
 - > Il s'ensuit que l'option asiatique a une valeur à l'échéance plus faible.
- 2. La valeur d'une option asiatique sur le prix moyen baisse lorsque la fréquence d'échantillonnage N augmente.
 - \rightarrow De façon semblable, augmenter N diminue la moyenne et donc la valeur à l'échéance de l'option asiatique.
- 3. La valeur d'une option asiatique sur le prix d'exercice moyen augmente lorsque la fréquence d'échantillonnage *N* augmente.
 - > Puisque l'on soustrait le prix moyen de l'action \bar{S} , il s'ensuit que l'écart avec le prix à l'échéance S_t augmente.

Options à barrière

Options à barrière

Une option qui peut désactiver ou activer si le prix de l'actif sous-jacent atteint une barrière précise alors que l'option est en vigueur.

> Les options à barrière dépendent de la trajectoire que le prix a suivi.

Types d'options à barrière

Il y a trois types d'options à barrière :

■ Options à barrière activante

S'active si la barrière est atteinte.

Si la barrière est :

Dessous le prix initial de l'action, c'est une option dite « *down-and-in* » : le prix doit baisser pour atteindre la barrière;

Dessus le prix initial de l'action, c'est une option dite « *up-and-in* » : le prix doit augmenter pour atteindre la barrière.

- > En anglais, « *Knock-in option* » car l'option est « *knocked-in* si la barrière est atteinte »;
- > Si l'option est activée alors la valeur à l'échéance est identique à une option européenne ordinaire sinon elle est nulle.

■ Options à barrière désactivante

Se désactive si la barrière est atteinte.

Si la barrière est :

Dessous le prix initial de l'action, c'est une option dite « *down-and-out* »; **Dessus** le prix initial de l'action, c'est une option dite « *up-and-out* ».

> En anglais, « *Knock-out option* » car l'option est « *knocked-out* si la barrière est atteinte »;

> Si l'option est désactivée alors la valeur à l'échéance est nulle sinon il est identique à une option européenne ordinaire.

■ Options à barrière avec remise

Paye un montant fixe si la barrière est atteinte.

Si la barrière est :

Dessous le prix initial de l'action, on l'appelle un « down rebate »;

Dessus le prix initial de l'action, on l'appelle un « *up rebate* ».

- > En anglais, « *Rebate option* »;
- > Si le paiement se fait uniquement à l'échéance, c'est une remise différée (« deferred rebate »).

Parité

Pour des options à barrière désactivante et activante, autrement équivalentes, on a : option à barrière option à barrière

```
+ désactivante = option régulière
activante
           ⇒ option à barrière < option régulière
```

> Donc l'option régulière ne dépend pas de la barrière ce qui peut être utile pour certaines questions.

Cas particuliers

Dans le cas où $S_0 \le \text{barrière} \le K$, l'option d'achat « *up-and-in* » est équivalente à l'option d'achat ordinaire.

- > Dans les deux cas, le prix doit monter passé la barrière pour obtenir une valeur à l'échéance positive;
- > Par l'équation de parité, on déduit que l'option d'achat « *up-and-out* » a une valeur nulle.

Le même cas se produit où $K \leq \text{barrière} \leq S_0$ pour une option de vente « downand-in ».

Options sur option

Options sur option

Option qui permet à son détenteur d'acheter ou de vendre une autre option au prix d'exercice précisé.

- > On les surnomme aussi des options composées;
- > En anglais, « compound option »;
- > Ils ont deux prix d'exercice et deux dates d'échéance (pour l'option composée et l'option sous-jacente).

Types d'options sur options

Pour calculer la valeur à l'échéance dans les deux cas, on compare le prix d'exercice x à la valeur de l'option sous-jacente à l'échéance dans $T-t_1$ temps. On peut donc voir s'il est profitable d'acheter l'option sous-jacente maintenant à t_1 .

■ Option d'achat composée

Permet au détenteur d'acheter une autre option au prix d'exercice. L'option peut être soit un « call on call » ou un « call on put ».

On achète une option d'achat composée au temps 0 à un prix d'exercice de x expirant à t_1 .

L'option sous-jacente a un prix d'exercice de *K* et expire à *T*.

La valeur à l'échéance de l'option sous-jacente à t_1 est dénotée

$$V[S_{t_1}, K, \underbrace{T-t_1}_{ ext{temps restant}}]$$
 .

La valeur à l'échéance de l'option d'achat composée à t_1 est $\max(0, V[S_{t_1}, K, T - t_1] - x)$ S_T pour des options classiques

Option de vente composée

Permet au détenteur de vendre une autre option au prix d'exercice. L'option peut être soit un « put on call » ou un « put on put ».

On achète une option de vente composée au temps 0 à un prix d'exercice de x expirant à t_1 .

L'option sous-jacente a un prix d'exercice de *K* et expire à *T*.

La valeur à l'échéance de l'option de vente composée à t₁ est $\max(0, x - V[S_{t_1}, K, T - t_1])$

Parité

On généralise l'équation de parité des options vente-achat :

CallonStock – PutonStock = $F^P(S) - Ke^{-rT}$

 \Rightarrow CallonCall - PutonCall = $C_{\text{eur}} - xe^{-rt_1}$

CallonPut – PutonPut = $P_{\text{eur}} - xe^{-rt_1}$

Options avec écart

Contrairement au options classiques qui ont un seul prix pour déterminer le <u>moment d'exercice</u> et <u>la valeur à l'échéance</u>, les options avec écart ont un prix pour chacune des fonctions créant alors un *écart*.

Notation

 K_1 Prix d'exercice utilisé pour calculer la valeur à l'échéance;

*K*₂ Prix *déclencheur* utilisé pour décider s'il y a exercice ou pas.

> En anglais, « *gap option* ».

■ Option d'achat avec écart

Valeur à l'échéance =
$$\begin{cases} 0, & S_T \le K_2 \\ S_T - K_1, & S_T > K_2 \end{cases}$$

Option d'achat avec écart $K_2 > K_1$ Valeur à T (payoff) $K_2 - K_1$ écart K_1 K_2 K_3

■ Option de vente avec écart

Valeur à l'échéance =
$$\begin{cases} K_1 - S_T, & S_T < K_2 \\ 0, & S_T \ge K_2 \end{cases}$$

Parité

$$GapCall - GapPut = S_0e^{-\delta T} - K_1e^{-rT}$$

- > Il est possible d'avoir une valeur à l'échéance *négative* si le prix déclencheur K_2 est inférieur au prix d'exercice K_1 pour une option d'achat (ou si $K_1 < K_2$ pour une option de vente);
- > Cependant, même si la valeur à l'échéance est négative, l'exercice est obligatoire lorsque le prix déclencheur est atteint;
- > Cela dit, il est en revanche possible d'avoir une **prime négative**.

Formule de Black-Scholes

On substitue le K dans l'équation principale pour le prix d'exercice K_1 et le K dans l'équation de d_1 pour le prix déclencheur K_2 .

GapCall =
$$S_0 e^{-\delta T} N(d_1) - K_1 e^{-rT} N(d_2)$$

GapPut = $K_1 e^{-rT} N(-d_2) - S_0 e^{-\delta T} N(-d_1)$
où $d_1 = \frac{\ln(\frac{S_0}{K_2}) + (r - \delta + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$ et $d_2 = d_1 - \sigma\sqrt{T}$.

Pour se rappeler quel *K* remplacer :

- > Le prix d'exercice K_1 détermine le montant de la valeur à l'échéance et est donc associé avec Ke^{-rT} dans l'équation principale;
- > Le prix déclencheur K_2 détermine si l'exercice a lieu et est donc associé avec le calcul d'une probabilité $N(d_2)$.

Relation avec les options classiques

GapCall
$$\pm K_2 e^{-rT} N(d_2) = C_{\text{eur}}(K_2) + (K_2 - K_1) e^{-rT} N(d_2)$$

GapPut $\pm K_2 e^{-rT} N(-d_2) = P_{\text{eur}}(K_2) + (K_1 - K_2) e^{-rT} N(-d_2)$

Options d'échange

Options d'échange

Permet au détenteur d'échanger un actif pour un autre.

> En anglais, « *exchange option* ».

Formule de Black-Scholes

Formule en format simple et selon la notation de Claire où l'on achète k du titre Q par unité du titre S

$$C(A, B) = F^{P}(A)N(d_{1}) - F^{P}(A)N(d_{2})$$

$$= S_{0}e^{-\delta_{S}T}N(d_{1}) - kQ_{0}e^{-\delta_{Q}T}N(d_{2})$$

$$P(A, B) = F^{P}(B)N(-d_{2}) - F^{P}(A)N(-d_{1})$$

$$= kQ_{0}e^{-\delta_{Q}T}N(d_{1}) - S_{0}e^{-\delta_{S}T}N(d_{2})$$

où
$$d_1=rac{\ln\left(rac{F^P(A)}{F^P(B)}
ight)+rac{1}{2}\sigma^2T}{\sigma\sqrt{T}}$$
, $d_2=d_1-\sigma\sqrt{T}$ et $\sigma=\sqrt{\sigma_A^2+\sigma_B^2-2
ho\sigma_A\sigma_B}$.

La loi lognormale

Notation

N(d) Représente $Pr(Z \le d)$.

La distribution normale

- \rightarrow Si $X \sim \mathcal{N}(\mu, \sigma^2)$ alors $Z = \frac{X \mu}{\sigma} \sim \mathcal{N}(0, 1)$;
- > La loi normale est symétrique donc N(-d) = 1 N(d) $\forall d \in \mathbb{R}$ et $\Pr(-d \le Z \le d) = 2N(d) - 1$, $\forall d \in \mathbb{R}_+$;
- $\Rightarrow aX_1 + bX_2 \sim \mathcal{N}(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2 + 2ab\rho\sigma_1\sigma_2)$;
- \rightarrow La FGM est $M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$.

La distribution lognormale

Lorsque $Y = e^X$ alors $Y \sim LN(\mu, \sigma^2)$.

> Les deux premiers moments sont obtenus de la FGM de la distribution normale et ne sont pas les paramètres :

$$E[Y] = e^{\mu + \frac{1}{2}\sigma^2}$$

$$Var(Y) = (E[Y])^{2} (e^{\sigma^{2}} - 1)$$

$$ightarrow F_Y(y) = N\left(\frac{\ln(y) - \mu}{\sigma}\right), \ \forall y \in \mathbb{R}_+$$

La distribution lognormale a 2 propriétés intéressantes :

- 1. Elle est asymétrique à droite et donc *non-négative* puisque $e^X \ge 0$: $E[Y] = E[e^X] > e^{E[X]} = e^{E[\ln(Y)]}$
 - > Alors supposer que le prix d'une action suit une distribution lognormale suppose qu'il ne peut pas être négatif (une hypothèse réaliste).
- 2. Le produit (et non la somme) de deux variables aléatoires lognormales est une variable aléatoire.
 - $\rightarrow X_1 + X_2 \sim \mathcal{N}$
 - $\rightarrow e^{X_1} \times e^{X_2} \sim LN$

Un modèle lognormale des prix de l'action

Introduction

Notation

R(0,t) Rendement composé continûment entre 0 et t sur un titre donné;

- > Par définition, $R(0,T) = \ln\left(\frac{S_t}{S_0}\right)$;
- \rightarrow On suppose que $R_{0,t}$ suit une loi normale et donc il s'ensuit que S_t suit une loi lognormale.
- \rightarrow Avec les propriétés des exposants, on trouve que $S_{t_2} = S_{t_1} e^{R(t_1,t_2)} =$ $S_{t_0}e^{R(t_0,t_1)+R(t_1,t_2)}$:
- > Avec la propriété de la loi normale, on trouve que $R(0,T) = \sum_{i=1}^{n} R((i-1)h,ih)$ où les rendements sont (i.i.d.) pour i = 1, 2, ..., n;
- \rightarrow Avec $R((i-1)h,ih) \sim \mathcal{N}(\mu_h,\sigma_h^2)$ pour $i=1,2,\ldots,n,$ $R(0,T) \sim \mathcal{N}(n\mu_h,n\sigma_h^2)$. C'est-à-dire que la moyenne et la variance des rendements sont proportionnels au temps;
- > Sous base annuelle, $\mu = \frac{\mu_h}{h}$ et $\sigma = \frac{\sigma_h}{\sqrt{h}}$ donc $R(0,T) \sim \mathcal{N}(\mu_h T, \sigma_h^2 T)$

De façon générale, on suppose que le temps t est mesuré en années, que la moyenne α et la volatilité (variance) σ^2 sont sous base annuelle puis que le taux de dividendes sur l'action δ est sous base annuelle aussi.

Modèle

On cherche $E[S_t] = S_0 e^{(\alpha - \delta)t}$

Distribution

On pose que le gain en capital composé continûment de 0 à $t \ln \left(\frac{S_t}{S_0}\right)$ est normalement distribué:

$$\ln\left(\frac{S_t}{S_0}\right) \sim \mathcal{N}\left(\left(\alpha - \delta - \frac{1}{2}\sigma^2\right)t, \sigma^2 t\right)$$

On écrit donc :
$$S_t = S_0 e^{(\alpha - \delta - \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}Z}$$

■ Moyenne variance et covariance

Avec cette distribution, on obtient:

$$E[S_t] = S_0 e^{(\alpha - \delta)t}$$

$$\Rightarrow \ln E\left[\frac{S_t}{S_0}\right] = (\alpha - \delta)t$$

- \rightarrow Il est désirable que l'espérance ne dépend pas de la volatilité σ ;
- > En fait, on soustrait $\frac{1}{2}\sigma^2$ dans le paramètre μ afin qu'il s'annule dans le calcul de l'espérance de la loi lognormale;
- \rightarrow La quantité $\alpha \delta$ est le taux d'appréciation de l'action composé continûment.

$$Var(S_t) = (E[S_t])^2 \left(e^{\sigma^2 t} - 1 \right)$$

$$Cov(S_t, S_t) = E\left[\frac{S_t}{S_t} \right] \cdot Var(S_t) = e^{(\alpha - \delta)(T - t)} Var(S_t)$$

Trouver le p-ème percentile de S_t

- 1. Trouver le percentile correspondant z_{α} de la loi normale standard Z.
- 2. Insérer le percentile correspondant de Z dans l'équation pour S_t .

La médiane :

- > La médiane $E[S_t]e^{-\frac{1}{2}\sigma^2t}$ est inférieure à la moyenne;
- > Alors, une action distribuée selon la loi lognormale aura des rendements inférieurs à la moyenne plus que la moité du temps;
- > Il s'ensuit qu'augmenter σ ne va pas impacter la moyenne mais va faire *baisser la médiane*.

Déplacement d'un écart type :

En posant $Z_i=\pm 1$, on trouve qu'un déplacement d'un écart type de $S_{(i-1)h}$ est $S_{ih}=S_{(i-1)h}\mathrm{e}^{(\alpha-\delta-\frac{1}{2}\sigma^2)h\pm\sigma\sqrt{h}}$

Calculs de probabilités lognormales

On pose:

$$\hat{d}_1 = \left(\frac{\ln \frac{S_0}{K} + (\alpha - \delta + \frac{1}{2}\sigma^2)t}{\sigma\sqrt{t}}\right) \qquad \hat{d}_2 = \left(\frac{\ln \frac{S_0}{K} + (\alpha - \delta - \frac{1}{2}\sigma^2)t}{\sigma\sqrt{t}}\right)$$

Trouver une probabilité pour S_t

$$\Pr(S_t \le K) = N(-\hat{d}_2)$$
 $\Pr(S_t > K) = N(\hat{d}_2)$
 $\Pr^*(S_t \le K) = N(-d_2)$ $\Pr^*(S_t > K) = N(d_2)$

Trouver un intervalle de prévision de S_t de niveau $1-\alpha$

- 1. Trouver le percentile correspondant de la loi normale standard Z $z_{\alpha/2} = N^{-1} \left(1 \frac{\alpha}{2}\right) \, .$
- 2. Insérer le percentile correspondant dans l'équation pour $S_t \in S_0 \mathrm{e}^{(\alpha \delta \frac{1}{2}\sigma^2)t \pm z_{\alpha/2}\sigma\sqrt{t}} \, .$

Espérance conditionnelle du prix de l'action

$$\begin{aligned} \mathbf{E}[S_t|S_t \leq K] &= \frac{\mathbf{E}\left[S_t \times \mathbf{1}_{\{S_t \leq K\}}\right]}{\Pr(S_t \leq K)} = S_0 \mathbf{e}^{(\alpha - \delta)t} \frac{N(-\hat{d}_1)}{N(-\hat{d}_2)} \\ \mathbf{E}[S_t|S_t > K] &= \frac{\mathbf{E}\left[S_t \times \mathbf{1}_{\{S_t > K\}}\right]}{\Pr(S_t > K)} = S_0 \mathbf{e}^{(\alpha - \delta)t} \frac{N(\hat{d}_1)}{N(\hat{d}_2)} \end{aligned}$$

$$E^*[S_t|S_t \le K] = S_0 e^{(r-\delta)t} \frac{N(-d_1)}{N(-d_2)} \quad E^*[S_t|S_t > K] = S_0 e^{(r-\delta)t} \frac{N(d_1)}{N(d_2)}$$

Formule de Black-Scholes pour le prix d'options européennes

Avec ces espérances, on trouve maintenant :

$$C(K) = e^{-rT}E^*[valeur à l'échéance de l'option d'achat]$$

$$= S_0 e^{-\delta T} N(d_1) - K e^{-rT} N(d_2)$$

$$P(K) = e^{-rT} E^* [valour \(\lambda \)]' (chéanga da)$$

$$P(K) = e^{-rT}E^*[\text{valeur à l'échéance de l'option de vente}]$$

= $Ke^{-rT}N(-d_2) - S_0e^{-\delta T}N(-d_1)$

Énoncés équivalents

- > Le modèle de Black-Scholes s'applique.
- > Le prix de l'action suit un modèle lognormale.
- $\rightarrow \ln\left(\frac{S_t}{S_0}\right) \sim \mathcal{N}\left(m = \left(\alpha \delta \frac{1}{2}\sigma^2\right)t, v^2 = \sigma^2 t\right).$
- > $S_t = S_0 e^{(\alpha \delta \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}Z}$.

Estimation des paramètres (le rendement et la volatilité) de la loi lognormale

Soit n + 1 prix observés S_0, S_1, \dots, S_n à un intervalle régulier de longueur h.

Estimation des paramètres de la distribution lognormale

1. Calculer le rendement composé continûment, non annualisé, pour chacune des *i* périodes :

$$r_i = \ln\left(\frac{S_{ih}}{S_{(i-1)}}\right)$$
, $\forall i = 1, 2, \ldots, n$

2. Calculer la moyenne de l'échantillon des rendements.

$$ar{r} = rac{\sum\limits_{i=1}^{n} r_i}{n} \mathop{\equiv}\limits_{ ext{proprieté} top ext{des log.}} rac{\ln\left(rac{S_n}{S_0}
ight)}{n}$$

3. Estimer l'écart-type des rendements.

$$s_r = \sqrt{\frac{\sum\limits_{i=1}^{n} (r_i - \bar{r})^2}{n-1}}$$

4. Mettre l'estimation de la volatilité sous base annuelle. $\hat{\sigma} = \frac{s_r}{\sqrt{h}}$

$$\hat{\sigma} = \frac{s_r}{\sqrt{h}}$$

5. Mettre l'estimation du rendement espéré sous base annuelle.

$$E\left[\ln\left(\frac{S_{t+h}}{S_t}\right)\right] = \left(\hat{\alpha} - \delta - \frac{1}{2}\hat{\sigma}^2\right)h = \bar{r}$$
$$\therefore \hat{\alpha} = \frac{\bar{r}}{h} + \delta + \frac{1}{2}\hat{\sigma}^2$$

19 Évaluation par la méthode de Monte Carlo

Lorsque la valeur à l'échéance dépend de la trajectoire du prix, le modèle binomiale devient trop compliqué et nous utilisons plutôt la méthode de Monte Carlo; on simule des prix pour estimer le prix (alias la valeur espérée actualisée) de l'option. La méthode de Monte Carlo utilise la distribution neutre au risque et le taux sans risque.

Calcul du prix de l'option comme une valeur espérée actualisée

Notation

 ${f E}_0^*$ Espérance calculée à t=0 en utilisant la distribution neutre au risque; $V(S_T,T)$ Valeur à l'échéance d'une option dont la valeur du sous-jacent à T est S_T ;

 $V(S_0,0)$ Prix de l'option;

> On calcul le prix de l'option avec une évaluation neutre au risque et donc on pose que le rendement est égale au taux sans risque.

$$V(S_0,0) = e^{-rT} E_0^* [V(S_T,T)]$$

Évaluation avec des probabilités neutres au risque

Pour évaluer une option avec la méthode binomiale, on calcule la valeur à l'échéance à chacun des nœuds sur n périodes puis on pondère par la probabilité d'y arriver et actualise :

$$C = e^{-rT} \sum_{i=0}^{n} {n \choose i} (p^*)^{n-i} (1 - p^*)^i \max(0; S_0 u^{n-i} d^i - K)$$

$$P = e^{-rT} \sum_{i=0}^{n} {n \choose i} (p^*)^{n-i} (1 - p^*)^i \max(0; K - S_0 u^{n-i} d^i)$$

Évaluation des vraies probabilités

On remplace p^* par p cependant, au lieu d'appliquer e^{-rT} à tous, il faut utiliser un différent rendement pour chaque trajectoire.

Génération de nombres aléatoires

On simule des chiffres u provenant d'une distribution uniforme U(a,b). Lorsque la distribution est U(0,1), on peut interpréter les chiffres u comme des quantiles et obtenir des valeurs $F^{-1}(u)$ pour une distribution (Méthode de l'inverse).

Simulation de prix lognormaux

On rappel que $S_T = S_0 \exp\left\{(\alpha - \delta - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}Z\right\}$. Pour simuler des prix lognormaux S_T on insère des valeurs aléatoire de $Z \sim \mathcal{N}(0,1)$ dans la formule.

Simulation d'une séquence de prix d'action

Si la valeur à l'échéance d'une option dépend de celle du sous-jacent à différents moments dans le temps, il faut simuler des trajectoires pour trouver le prix.

Soit une option venant à échéance à T dont la valeur dépend de celle du sous-jacent à n moments (également espacés entre 0 et T).

$$S_h = S_0 \exp\left\{ (\alpha - \delta - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}Z_1 \right\}$$

$$S_{jh} = S_{(j-1)h} \exp\left\{ (\alpha - \delta - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}Z_j \right\}, \quad j = 2, 3, \dots, n$$

Donc,
$$S_{nh} = S_T = S_0 \exp \left\{ (\alpha - \delta - \frac{1}{2}\sigma^2)T + \sqrt{T}\sigma \frac{1}{\sqrt{n}} \sum_{j=1}^n Z_j \right\}$$
 où $\frac{1}{\sqrt{n}} \sum_{j=1}^n Z_j \sim \mathcal{N}(0,1)$.

Évaluation par la méthode de Monte Carlo

Notation

 $S_T(i)$ Prix du sous-jacent à T généré aléatoirement avec la distribution neutre au risque;

> On pose que le prix du sous-jacent suit une distribution neutre au risque en posant $\alpha = r$.

 $V(S_T(i),T)$ Valeur à l'échéance de l'option selon la simulation i, $V(S_T(i),T) = \max(0;S_T(i)-K).$

On trouve que selon la méthode de Monte Carlo, $V(S_0,0) = e^{-rT} \frac{1}{N} \sum_{i=1}^{N} V(S_T(i),T)$.

$$V(S_0,0) = e^{-rT} \frac{1}{N} \sum_{i=1}^{N} V(S_T(i), T).$$

Évaluation par la méthode de Monte Carlo d'une option d'achat européenne

L'estimation du prix de l'option est donc :

$$\overline{C} = e^{-rT} \frac{1}{N} \sum_{i=1}^{N} \max(0; S_T(i) - K)$$

 σ_C Écart-type de C basé sur une seule simulation;

ightharpoonup On peut l'estimer par $s_c = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}\left\{C(S_T(i)) - \overline{C}\right\}^2}$

 $\sigma_{\overline{C}}$ Écart-type de C basé sur N simulations, $\sigma_{\overline{C}} = \frac{1}{\sqrt{N}} \sigma_{C}$.

Option sur moyenne (« asian ») arithmétique

On estime le prix tel que illustré à la section 19.3 puis on trouve que l'estimé du

prix de l'option est
$$\overline{AC} = e^{-rT} \times \frac{1}{N} \sum_{i=1}^{N} \max \left(0; \frac{1}{n} \sum_{j=1}^{n} S_{jh}(i) - K\right).$$

Évaluation par la méthode efficace de Monte Carlo

La méthode décrite jusqu'ici est la méthode simple (alias, naïve) de Monte Carlo. Il existe des méthodes pour améliorer la précision, et donc réduire la variance de l'estimé.

Variable de contrôle

L'idée de la variable de contrôle est d'estimer l'erreur à chaque itération avec le prix d'une option reliée dont le prix peut être calculé par la formule. On peut ensuite appliquer cette erreur pour améliorer la précision du prix Monte Carlo.

Notation

A(i) et G(i) Prix de l'option avec moyenne arithmétique et géométrique calculé avec la i^e trajectoire simulée;

 \overline{A} et \overline{G} Estimé du prix de l'option;

A et G Vrai prix de l'option avec moyenne arithmétique et géométrique selon la formule connue;

> A est inconnu mais G l'est.

 A^* Estimé ajusté du prix de l'option utilisant la moyenne arithmétique.

Pour approximer le prix A^* :

- 1. On pose que A et G sont corrélés et les relient par le coefficient β .
 - > Le coefficient β est la pente d'une régression linéaire;
 - \rightarrow On trouve donc que $\hat{\beta} = \frac{\text{Cov}(\overline{A},\overline{G})}{\text{Var}(\overline{G})}$.
- 2. On utilise β pour ajouter à la moyenne \overline{A} la différence entre le vrai prix G et sa moyenne \overline{G} .

Donc,
$$A^* = \overline{A} + \beta(G - \overline{G})$$
.

De plus,
$$Var(A^*) = Var(A)(1 - \rho^2)$$
 où $\rho = Corr(\overline{A}, \overline{G})$

Autres méthodes

■ Variable antithétique

L'idée est que pour chaque simulation, il y a une simulation opposée qui est tout aussi probable.

Une série de nombre aléatoires suivant une loi normale est tout aussi probable que la même série avec des signes contraires.

- \rightarrow Si on prend U, on peut aussi prendre 1 U;
- \rightarrow Si on prend Z, on peut aussi prendre -Z.

Par exemple, on génère 50 valeurs de U puis 50 valeurs de 1-U pour faire 100 simulations.

Théoriquement, il y a un gain possible vu que les deux simulations sont négativement corrélées. En pratique, le gain est modeste.

≡ Échantillonnage stratifié

Au lieu de simuler des nombres $u \sim U(0,1)$, on simule des nombres u sur des <u>sous-intervalles</u> de [0,1].

Par exemple, pour faire 100 simulations on simule un nombre uniforme par centile. On simule un nombre uniforme $u \sim U(0,0.01)$, puis un nombre $u \sim U(0.01,0.02)$, etc jusqu'à $u \sim U(0.99,1)$.

- > On peut faire plus ou moins de sous-intervalles égaux et répéter la procédure;
- > L'idée est d'éviter la sous-représentation ou la sur-représentation de certaines portions.

≡ Échantillonnage préférentiel

C'est un raffinement de l'échantillonnage stratifié qui concentre la génération de nombres dans le sous-intervalle le plus critique. Donc, on ne génère plus la même quantité de nombres aléatoires pour tous les sous-intervalles.

■ Suites à discrépance faible

Elles sont obtenues de façon déterministe et visent à bien couvrir l'ensemble d'une distribution. Elles ont un intérêt particulier pour des problèmes de grande dimension.

23 Options exotiques : II

Options tout ou rien

Options tout ou rien

Paient un montant (1\$ par défaut) ou une action (1 unité par défaut) si une condition est remplie mais rien sinon.

Si la condition de paiement est :

 $S_T > K$ c'est une option **d'achat** tout ou rien.

 $S_T < K$ c'est une option **de vente** tout ou rien.

- > Le cours se limite aux options tout ou rien dont la condition de paiement ne dépend que de la valeur de l'action à l'échéance;
- > En réalité, on peut avoir des *options tout ou rien à barrière* dont le paiement dépend de <u>l'atteinte</u> ou non d'un certain prix pendant que l'option est en vigueur;
- > Alias, options binaires.

Types d'options tout ou rien

■ Options comptant ou rien

La valeur à l'échéance est de 1\$ si la condition est satisfaite.

$$CC(S_0, K, \sigma, r, T, \delta) = E^*[e^{-rT} \times 1 \times I_{\{S_t > K\}}] = e^{-rT} \Pr(S_T > K)$$

$$= e^{-rT} N(d_2)$$

$$CP(S_0, K, \sigma, r, T, \delta) = E^*[e^{-rT} \times 1 \times I_{\{S_t < K\}}] = e^{-rT} \Pr(S_T < K)$$

$$= e^{-rT} N(-d_2)$$

■ Options actif ou rien

La valeur à l'échéance est de S_T si la condition est satisfaite.

$$AC(S_{0}, K, \sigma, r, T, \delta) = E^{*}[e^{-rT} \times S_{T} \times \mathbf{I}_{\{S_{t} > K\}}] = e^{-rT}E^{*}[S_{T} \times \mathbf{I}_{\{S_{t} > K\}}]$$

$$= e^{-rT}S_{0}e^{(r-\delta)T}N(d_{1})$$

$$= S_{0}e^{-\delta T}N(d_{1})$$

$$AP(S_{0}, K, \sigma, r, T, \delta) = E^{*}[e^{-rT} \times S_{T} \times \mathbf{I}_{\{S_{t} < K\}}] = e^{-rT}E^{*}[S_{T} \times \mathbf{I}_{\{S_{t} < K\}}]$$

$$= e^{-rT}S_{0}e^{(r-\delta)T}N(-d_{1})$$

$$= S_{0}e^{-\delta T}N(-d_{1})$$

- > Une option d'achat classique correspond donc à acheter une option d'achat actif ou rien et vendre *K* options comptant ou rien;
- > Une option d'achat avec écart équivaut à acheter une option d'achat actif ou rien et vendre *K*₁ options d'achat comptant ou rien.

Option rétroviseur

Option rétroviseur

La valeur à l'échéance dépend du prix de l'action maximal ou minimal atteint lorsque l'option était en vigueur.

Il y a 4 version de l'option rétroviseur :

Type Valeur à l'échéand	
Standard Lookback Call	$S_T - \min(S)$
Standard Lookback Put	$\max(S) - S_T$
Extrema Lookback Call	$\max(\max(S) - K, 0)$
Extrema Lookback Put	$\max(K - \min(S), 0) - S_T$

Notes:

- > La valeur à l'échéance d'une option rétroviseur standard est non-négative puisque $\min(S) \leq S_T$ et $\max(S) \geq S_T$;
- > Une option rétroviseur standard n'a pas de "prix d'exercice", plutôt on le défini comme la valeur de l'action sous-jacente qui maximise la valeur à l'échéance

Pour une option d'achat, c'est le minimum min(S) et une option de vente le maximum max(S);

- > Puisque ces derniers sont inconnus jusqu'à l'échéance de l'option, on surnomme aussi une option rétroviseur standard une option rétroviseur avec un prix d'exercice flottant ;
- > De façon semblable, une option rétroviseur extrême se surnomme une option rétroviseur avec un prix d'exercice fixe.
- > En anglais, « lookback option »;
- > La tarification des options rétroviseurs avec la formule de Black-Scholes est compliquée, on peut plutôt utiliser soit les principes actuariels de base ou le modèle binomial selon le contexte.

Options qui ne sont pas dans le cadre du cours, mais qui font partie de l'examen IFM

■ Options « *forward start* »

Fourni au détenteur une option à un temps futur déterminé. À l'échéance de l'option « forward start », le détenteur reçoit une option dont le prix d'exercice dépend du prix de l'action à ce moment.

■ Options « *chooser* »

Permet au détenteur de choisir à un moment futur déterminé si l'option sera une option d'achat ou de vente européenne.

Deuxième partie

Gestion des risques financiers I (ACT-1006)

7 Mean-Variance Portfolio Theory

Risque et rendement d'un actif

Rendement effectif

Rendement réellement observé sur une période de temps. Mathématiquement, c'est le pourcentage d'augmentation de la valeur d'un titre proportionnellement au montant initialement investi.

Notation

 $R_{t,t+1}$ Rendement sur le titre entre t et t+1;

 P_t Prix du titre au temps t;

 D_{t+1} Dividende payable à t.

Le rendement effectif de t à t+1 est donc :

$$R_{t,t+1} = \frac{D_{t+1} + P_{t+1} - P_t}{P_t}$$

On peut séparer le rendement effectif en 2 composantes :

- « Dividend yield » $\frac{D_{t+1}}{P_t}$.
- « Capital gain rate » $\frac{P_{t+1}-P_t}{P_t}$.
- > En anglais, « realized return ».

■ Rendement effectif annuel

Pour calculer le taux de rendement effectif annuel lorsqu'il y a des dividendes, on multiplie le rendement par période de paiement pour l'obtenir sous base annuelle.

Par exemple, pour des dividendes semestriels : $1 + R_{\text{annuel}} = (1 + R_{t,t+6/12}) \times (1 + R_{t+6/12,t+1})$.

■ Rendement annuel moyen

Le rendement annuel moyen sur une période de temps est la moyenne des rendements annuels.

Notation

 \bar{R} Rendement annuel moyen.

$$\bar{R} = \frac{1}{T} \sum_{t=1}^{T} R_t$$

Rendement espéré

Lorsqu'il y a plusieurs rendements possible pour un investissement, on calcule la moyenne pondérée des possibilités de rendements :

$$E[R] = \sum_{i=1}^{n} p_i R_i$$

Mesures de la variabilité des rendements :

Variance Mesure la dispersion des rendements.

$$Var(R) = E[(R_i - E[R])^2]$$

- > La racine de la variance (l'écart type) est souvent appelé la volatilité;
- > On peut la considérer la variance soit comme la volatilité *des rendements* ou la volatilité *du titre*;
- \gt Si le rendement est sans risque, la variance sera nulle;
- > En théorie on connaît la moyenne, mais en réalité on doit l'estimer avec le rendement annuel moyen \bar{R} :

$$\widehat{\text{Var}(R)} = \frac{1}{T-1} \sum_{t=1}^{T} (R_t - \bar{R})^2$$

Erreur type Mesure l'erreur d'estimation du vrai rendement espéré par le rendement moyen.

- > L'erreur type correspond à l'écart type du rendement moyen : Risque et rendement d'un portefeuille SD(risque individuel) Erreur type = $\sqrt{\text{nombre d'observations}}$
- > On peut calculer un intervalle approximatif de confiance de 95% avec rendement moyen empirique $\pm 2 \cdot$ erreur type.

Notation

 R_v Rendement du portefeuille.

 w_i Pourcentage du portefeuille investi dans l'actif i.

$$w_i = \frac{\text{valeur de l'actif}i}{\text{valeur totale du ptf.}}$$

Le rendement du portefeuille est donc la moyenne pondérée des rendements sur chacun des actifs:

$$R_p = \sum_{i=1}^n w_i R_i$$

 \rightarrow Le rendement espéré du portefeuille $E[R_v]$ est simplement la moyenne pondérée des rendements espérés $E[R_i]$.

Covariance

Mesure le degré auquel la variabilité des deux titres bougent ensemble.

$$Cov(R_i, R_j) = E[(R_i - E[R_i])(R_j - E[R_j])]$$

$$\widehat{\text{Cov}}(R_i, R_j) = \frac{1}{T-1} \sum_{i=1}^{T} (R_{i,t} - \bar{R}_i) (R_{j,t} - \bar{R}_j)$$

> Le désavantage de la covariance est qu'elle varie selon l'échelle des variables mesurées ce qui complique son interprétation.

Corrélation

Mesure la puissance et de la direction de la relation linéaire entre les deux variables.

$$\rho_{i,j} = \frac{\operatorname{Cov}(R_i, R_j)}{\sigma_i \sigma_j}$$

Pour un portefeuille à 2 actifs, $\sigma_p^2=w_1^2\sigma_{R_1}^2+w_2^2\sigma_{R_2}^2+2w_1w_2\rho_{1,2}\sigma_{R_1,R_2}$ Dans le cas plus général :

$$Var(R_p) = Cov(R_p, R_p) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j Cov(R_i, R_j)$$

mesurées.

Diversification

▼ Types de risque

Risque systématique Risque inhérent au marché.

- > Alias, risque du marché ou « undiversifiable risk » en anglais;
- > Par exemple, les fluctuations due aux cycles économiques.

Risque non-systématique Risque inhérent à une compagnie, ou industrie, particulière.

- > Alias, risque indépendant ou « diversifiable risk » en anglais ;
- > Par exemple, la fluctuation de la valeur d'un titre découlant de nouvelles qui y sont spécifiques (p. ex., le prix de l'action d'Apple baisse de 3\$ après qu'ils annoncent une mise à pied d'employés).

Diversification Réduis le risque relié au portefeuille d'une compagnie en agrégeant les fluctuations non systématiques.

Raccourci Bernoulli

Soit la probabilité p de a et la probabilité 1-p de b.

Alors, la variance est $(b-a)^2p(1-p)$.

Soit:

- > un portefeuille de *n* actions;
- > le poids de chaque action $x_i = \frac{1}{n}$

La matrice de covariance du portefeuille est :

$$\begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} & \dots & \sigma_{1,n} \\ \sigma_{2,1} & \sigma_{2,2} & \dots & \sigma_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n,1} & \sigma_{n,2} & \dots & \sigma_{n,n} \end{bmatrix}$$

- > Il s'ensuit qu'elle a n^2 termes dont n de variance et $n^2 n$ de covariance dont la moitié $(\frac{n^2 n}{2})$ sont uniques;
- > On peut exprimer :

$$Var(R_p) = \frac{1}{n} \times \left(\text{variance moyenne} \atop \text{de chaque action} \right) + \left(1 - \frac{1}{n} \right) \times \left(\text{covariance moyenne} \atop \text{entre les actions} \right)$$

 \rightarrow Il s'ensuit que $Var(R_p) \xrightarrow[n \to \infty]{} covariance moyenne.$

Mean-Variance Portfolio Theory

Portefeuilles efficients

Analyse de portefeuille moyenne-variance

L'analyse de portefeuille moyenne-variance pose que les investisseurs peuvent évaluer les caractéristiques du risque-rendement d'un investissement avec les rendements espérés, les variances et les corrélations des actifs.

Hypothèses sous-jacentes à l'analyse de portefeuille moyenne-variance

- 1. Tous les investisseurs ont une aversion au risque.
- 2. Les rendements espérés, les variances et les covariances des actifs sont supposés connus.
- 3. Pour déterminer un portefeuille optimal, les investisseurs n'ont qu'à connaître les rendements espérés, les variances et les covariances des rendements.
- 4. Il n'y a aucun frais de transactions, ni de taxes.

Pour trouver des portefeuilles efficients, on utilise le diagramme de moyennevariance. Ce diagramme fait varier les proportions x_A et x_B investis dans deux actifs A et B:

Un portefeuille est:

efficient Si pour un niveau donné de volatilité, il offre le meilleur rendement espéré.

inefficient Si pour un niveau donné de volatilité, il est possible de trouver un meilleur rendement espéré.

Frontière efficiente

Courbe des portefeuilles maximisant le rendement espéré pour un niveau de volatilité donné.

Selon son niveau de risque, un investisseur choisit des proportions parmi ceux qui sont sur la frontière efficiente. Par exemple, un investisseur avec une tolérance au risque élevée pourrait choisir un portefeuille avec une plus grande volatilité pour avoir un rendement espéré plus élevé.

La corrélation entre actifs peut impacter la frontière, par exemple si l'on investi dans 2 actifs :

Le volatilité d'un portefeuille des actifs A et B lorsque

 $ho_{B,W}=1$ est maximisée;

> La volatilité équivaut à la moyenne pondérée de la volatilité des actifs.

 $\rho_{B,W}$ < 1 est moins que la moyenne pondérée;

 $\rho_{B,W} = -1$ un portefeuille sans risque peut être construit.

Investir un montant négatif dans une action équivaut à un « *short-sell* » (vente à découvert) et la frontière est rallongée :

Diversifier avec plus d'actions (qui ne sont pas parfaitement corrélées) permet une meilleur frontière efficiente :

Voir la dernière sous-section pour des détails sur quand qu'il est optimal d'ajouter un nouvel investissement.

Combinaisons d'actifs risqués et avec aucun risque

On peut combiner un portefeuille risqué à un actif sans risque ayant un rendement espéré égale au taux sans risque et une volatilité nulle.

Soit un portefeuille composé à x% d'un portefeuille risqué et à (1-x)% d'un actif sans risque.

Notation

 σ_P volatilité du portefeuille risqué.

> La volatilité de l'actif sans risque est nulle.

 r_f taux sans risque (alias le rendement espéré) de l'actif sans risque.

 $\mathbf{E}[R_P]$ rendement espéré du portefeuille risqué.

 $\mathbf{E}[R_{xP}]$ rendement espéré d'un portefeuille composé à x% du portefeuille risqué.

 σ_{xP} volatilité du portefeuille composé à x% d'un actif risqué

On trouve que le rendement espéré du portefeuille est $E[R_{xP}] = r_f + x(E[R_P] - r_f)$ et que la volatilité est $\sigma_{xP} = x\sigma_P$.

■ Droite d'allocation du capital

La droite d'allocation du capital (AC) décrit les rendements espérés et volatilités possibles des différentes combinaisons d'un portefeuille risqué et d'un actif sans risque :

On trouve $x = \frac{\sigma_{xP}}{\sigma_P}$ avec l'équation pour la volatilité du portefeuille puis on le substitue dans l'équation du rendement pour trouver :

$$E[R_{xP}] = r_f + \sigma_{xP} \frac{E[R_P] - r_f}{\sigma_P}$$

- > En anglais, « capital allocation line (CAL) »;
- > La pente de la droite d'AC représente le rendement additionnel disponible par incrément d'une unité de risque et équivaut au *ratio de Sharpe*.

■ Achat d'actions sur marge

Emprunter au taux sans risque puis acheter des actions risqués.

- > En anglais, « buying stocks on margin »;
- > On peut aussi dire qu'on achète les actions avec un **effet de levier**.

≡ Portefeuille avec levier

Portefeuille qui consiste d'une position courte sur l'actif sans risque.

- > En anglais, « levered portfolio »;
- > Visuellement, ceci équivaut au pointillé de la droite d'AC;
- > Il s'ensuit qu'une vente à découvert implique un rendement *et* une volatilité plus élevée.

Exemple de vente à découvert

Par exemple, je souhaite investir dans un portefeuille de 30\$ avec 10\$.

Alors, x = 300% = 3 puisque la portion risquée du portefeuille équivaut à 300% de mon investissement initial.

Avec la droite de l'AC et la frontière efficiente, on peut trouver le **portefeuille ris- qué optimal** P :

- > On l'appel aussi le portefeuille efficient et le portefeuille tangent;
- > Ce point correspond au maximum de la pente et donc maximise le ratio de Sharpe.

Droite du marché des capitaux

Contexte

Si chaque investisseur a des attentes de rendement espéré, volatilité et corrélation différentes, alors chaque investisseur aura une droite d'AC et un portefeuille risqué optimal différent.

Cependant, afin de simplifier l'analyse moyenne-variance on pose habituellement que les investisseurs ont des espérances homogènes et donc qu'ils ont tous la même estimation de la volatilité, de la corrélation et du rendement espéré de titres financiers.

L'hypothèse que les attentes des investisseurs sont homogènes implique également une même droite d'AC et un même portefeuille optimal pour le marché.

Portefeuille du marché (PM)

Portefeuille optimal du marché (PM).

- > En théorie, il est composé de toutes les actions et tous les titres financiers risqués du marché;
- > En pratique, ceci est impossible et l'on utilise un indice tel que le S&P 500;
- > En anglais, « market portfolio ».

Droite du marché des capitaux Droite d'AC du marché. rendement droite du marché des capitaux portefeuille du marché du marché du marché bon du trésor volatilité > En anglais, « Capital Market line (CML) ».

Ajout d'un nouvel investissement

Il y a 3 considérations à prendre pour l'ajout d'un nouveau investissement à un portefeuille :

- 1. Le ratio de Sharpe du nouveau investissement.
- 2. Le ratio de Sharpe du portefeuille existant.
- 3. La corrélation entre les rendements du nouveau investissement et du portefeuille existant.

La règle générale est donc d'ajouter un investissement au portefeuille si

$$\frac{\mathrm{E}[R_{\mathrm{new}}] - r_f}{\sigma_{\mathrm{new}}} > \rho_{\mathrm{new}, p} \frac{\mathrm{E}[R_P] - r_f}{\sigma_P}$$

8 Asset Pricing Models

Modèle d'évaluation des actifs financiers

Notation

 r_i Coût du capital pour l'investissement i.

 $\mathbf{E}[R_i]$ Rendement espéré pour l'investissement i.

 β_i Beta de l'investissement i.

 $\mathbf{E}[R_M]$ Rendement espéré du marché.

- α Rendement qui n'est pas expliqué par le risque systémique (beta).
- \rightarrow Ceci correspond à la différence entre le vrai rendement de l'investissement i et le rendement prédit par le MÉDAF r_i ;
- \rightarrow En régression, c'est l'erreur irréductible ε .

≡ Coût du capital

Le rendement requis sur un actif (portefeuille, projet, etc.) pour qu'un individu investisse ses *actifs* dans une entreprise.

C'est à dire, le "coût" pour qu'une compagnie obtienne des capitaux propres.

> En anglais, « cost of capital ».

\blacksquare Beta β d'un actif

Mesure du risque systémique d'un actif calculé en mesurant la sensibilité du rendement d'un actif relative au rendement du marché.

- > En moyenne, le beta d'une action est d'environ 1.
- > Les industries plus sensibles aux chocs économiques ont tendance à avoir des betas plus élevés.
 - Par exemple, le secteur de luxe.
- > Les industries moins sensibles aux fluctuations du marché ont tendance à avoir des betas plus faibles.
 - Par exemple, le secteur pharmaceutique qui est stable et très réglementé.
- > Le Beta d'un portefeuille P est simplement la moyenne pondérée $\sum_{i=1}^n w_i \beta_i$.

Le beta de l'actif i est calculé par $\beta_i = \frac{\sigma_{i,M}}{\sigma_M^2} = \rho_{i,M} \frac{\sigma_i}{\sigma_M}$.

La règle générale est donc :

 $\beta > 1$ l'actif a un risque systémique plus important que le marché.

 $\beta = 1$ l'actif a le même risque systémique que le marché.

 β < 1 l'actif a un risque systémique moins important que le marché.

 $\beta = 0$ le rendement de l'actif n'est pas corrélé à celui du marché.

Avec une régression, on peut estimer le beta de l'actif en le considérant comme la pente et en considérant le rendement en excès du taux sans risque de l'actif α comme l'intercepte :

Le modèle d'évaluation des actifs financiers (MÉDAF)

Le MÉDAF nous permet de trouver le coût du capital r_i (alias, le rendement espéré $\mathrm{E}[R_i]$) d'un actif en posant que le niveau de risque systématique de base correspond au niveau de risque du portefeuille du marché.

L'équation du MÉDAF est $r_i = \mathrm{E}[R_i] = r_f + \beta_i (\mathrm{E}[R_M] - r_f)$

- > En anglais, « Capital Asset Pricing Model (CAPM) »;
- > En régression, ceci correspond à l'équation pour la prévision $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$;
- \rightarrow Alors, le vrai rendement de l'investissement i est $r_f + \beta_i (r_M r_f) + \alpha_i$.

Hypothèses du MÉDAF

- 1. Les investisseurs sont des preneurs de prix.
 - > C'est à dire qu'ils transiger les titres aux prix compétitifs du marché sans pouvoir les influencer (concept de macro.);
 - > Il n'y a pas de taxes ni de frais de transactions;
 - > Les investisseurs peuvent emprunter et prêter de l'argent au taux sans risque.
- 2. Les investisseurs détiennent uniquement des portefeuilles efficients.
 - > Ceci implique que les investisseurs sont rationnels, qu'ils ont une aversion au risque et qu'ils cherchent à maximiser leurs investissements.
 - > C'est à dire que pour un niveau de risque (volatilité) donné, il n'y a pas de portefeuilles avec un rendement supérieur.
- 3. Les investisseurs ont des attentes homogènes pour les volatilités, les corrélations et les rendements espérés de titres financiers.

■ Droite du marché des titres

Représentation graphique du MÉDAF.

> En anglais, « security market line (SML) ».

Distinction entre la droite du MC et la droite du MT

L'abscisse de la droite du marché des capitaux (MC) utilise la volatilité (alias le **risque total**).

> Seulement les portefeuilles efficients composés d'une combinaison de l'actif sans risque et du portefeuille du marché seront tracés.

L'abscisse de la droite du marché des titres (MT) utilise le beta (alias le risque systémique).

- > Le risque non systémique est sans importance au MÉDAF;
- > Alors, la relation sous-jacente à la droite du MT ne se limite pas aux portefeuilles efficients.

Prime de risque du marché

■ Prime de risque du marché

la prime de risque du marché correspond à l'écart entre le rendement espéré du marché et le taux sans risque : $E[R_M] - r_f$.

Elle peut être approximée de deux façons :

- 1. La prime de risque historique.
- 2. L'approche fondamentale.
- > En anglais, « Market Risk Premium ».

✓ Prime de risque historique

La prime de risque est calculé comme étant la moyenne historique de l'excédant du rendement du marché sur le taux sans risque.

Limitations:

- > L'erreur type des prévisions est large.
- > Le passé n'est pas nécessairement garant de l'avenir.

▼ Approche fondamentale

Notation

 Div_1 Dividende payable au temps 1.

- P_0 Prix courant de l'action.
- > Le ratio $\frac{Div_1}{P_0}$ est le **rendement de l'action** (« *dividend yield* »).
- g Taux de croissance fixe des dividendes.

On pose un taux de croissance fixe des dividendes g avec $P_0 = \frac{Div_1}{E[R_M] - g}$

$$P_0 = \frac{Div_1}{E[R_M] - g}$$

En réécrivant l'équation, on trouve que $E[R_M] = \frac{Div_1}{P_0} + g$

Limitation:

> L'approche est adéquate seulement pour l'ensemble de marchés et non pour des actions individuelles.

Coût des capitaux d'emprunt

Lorsque l'on cherche à estimer le coût de capitaux d'emprunt au lieu du coût de capitaux propres, il y a 2 méthodes :

- 1. Ajustement du rendement de la dette.
- 2. MÉDAF avec les betas de dette.

Notation

- r_d Coût des capitaux d'emprunt.
- > « Debt cost of capital ».
- β_d Beta de la dette.

Soit une obligation zéro-coupon avec :

- y Taux de rendement à l'échéance de l'obligation.
- > En anglais, « yield to maturity (YTM) of the bond ».
- p Probabilité de défaut de l'obligation.
- L Espérance du montant de perte, par dollar de dette, s'il y a défaut
- > On représente *L* par dollar de dette afin de l'inclure comme pourcentage dans l'équation de r_d plus bas.

■ Ajustement du rendement de la dette

Pour un investissement de 1\$ dans une obligation zéro-coupon

- \rightarrow sans risque de défaut, on obtient (1+y)\$ dans un an.
- > avec risque de défaut, on obtient :
 - (1 + y L)\$ dans un an avec probabilité p
 - (1+y)\$ dans un an avec probabilité (1-p)

Donc, on trouve avec une moyenne pondérée des rendements $r_d = y - pL$

MÉDAF avec les betas de dette

/prime de risque\ Avec le MÉDAF, on réécrit $r_d = r_f + \beta_d$ du marché

Rendement requis pour un projet pleinement financé par des actions

On peut généraliser le MÉDAF afin d'estimer le rendement nécessaire pour un projet en remplaçant le beta de l'investissement par le beta du projet.

- > Typiquement, on ne peut pas estimer le beta d'un projet directement puisque le projet n'est pas coté en bourse;
- > En lieu, on utilise le beta *d'entreprises semblables*;
 - C'est à dire, des entreprises dont le secteur d'opération ou le risque est semblable à celui du projet.

Si on compare le projet à une entreprise :

- > Sans effet de levier, on applique l'équation du MÉDAF directement.
- > Avec effet de levier, on doit calculer le **coût du capital sans effet de levier**.

≡ coût du capital et beta sans effet de levier

Notation

 r_U Coût du capital sans effet de levier.

 β_{II} Beta sans effet de levier.

E Valeur au marché de l'équité de l'entreprise.

D Valeur au marché de la dette de l'entreprise.

> S'il y a des capitaux propres, on calcule D - CP.

 r_E Coût des capitaux propres.

 r_D Coût des capitaux d'emprunt.

 w_E Proportion de l'entreprise financée par des capitaux propres.

$$\rightarrow w_E = \frac{E}{E+D}$$
.

 w_D Proportion de l'entreprise financée par de la dette.

$$> w_D = \frac{D}{E+D}$$

Donc, on trouve:

- \rightarrow le coût du capital sans effet de levier $r_U = w_E \cdot r_E + w_D \cdot r_D$, et
- > le beta sans effet de levier $\beta_U = w_E \cdot \beta_E + w_D \cdot \beta_D$;
- > En anglais, « unlevered cost of capital ».

MÉDAF d'un projet pour une comparaison à une entreprise avec effet de levier

Avec le MÉDAF, on réécrit $r_U = r_f + \beta_U$ (prime de risque) du marché

Note La valeur d'une entreprise correspond à sa dette nette = dette – investissements à CT et l'encaisse; c'est à dire, D - CP.

Rendement requis pour un projet avec effet de levier

Notation

 τ_{C} Taux d'imposition sur la dette.

Dans le cas où le projet doit être financé par des capitaux propre et de la dette, on trouve le coût moyen pondéré du capital (CMPC) $r_{\text{CMPC}} = w_E r_E + w_D r_D (1 - \tau_C)$.

- > Souvent, l'intérêt payable sur la dette est déductible d'impôts et donc on veut le coût de la dette après imposition;
- > En anglais, « weighted-average cost of capital (WACC) ».

Le CMPC se base sur le coût du capital d'emprunt après imposition alors que le coût du capital sans effet de levier se base sur le coût du capital d'emprunt avant imposition. En bref :

Coût du capital sans effet de levier	CMPC
Utilisé pour évaluer un projet financé	Utilisé pour évaluer un projet ayant le
sans emprunt ayant le même risque	même financement et le même risque
que l'entreprise	que l'entreprise

Modèles multi-factoriels

Contexte

Le MÉDAF pose que la volatilité des rendements du marché sont expliqué par *un seul facteur*—le rendement sur le portefeuille du marché. Le MÉDAF multi-factoriel prend plusieurs facteurs en considération pour estimer le rendement espéré. Ce modèle muti-factoriel est aussi connu comme la théorie de l'arbitrage de prix (*« arbitrage pricing theory (APT) »*).

Notation

N Nombre de facteurs.

 $\beta_i^{F_n}$ Beta de l'actif i au facteur n en tenant les autres facteurs constants.

On trouve que l'équation de l'APT est $E[R_i] = r_f + \sum_{n=1}^N \beta_i^{Fn} \left(E[R_{Fn}] - r_f \right)$

L'APT est semblable au CAPM mais comporte des hypothèses moins restrictives :

Hypothèses de l'APT

- 1. Un modèle multi-factoriel décrit les rendements d'un actif sans toutefois indiquer le nombre de facteurs.
- 2. Le risque non systémique peut être éliminé avec de la diversification et n'est pas tarifé.
- 3. Il n'y a pas d'arbitrage.

Fama-French-Carhart (FFC)

Notation

La spécification de facteurs FFC est la plus courante avec le marché, la capitalisation boursière, le ratio cours / valeur comptable et l'élan comme facteurs.

M Portefeuille du marché.

> Prend en considération le risque des capitaux propres.

GMP Portefeuille gros-moins-petit.

- > En anglais, « small-minus-big (SMB) »;
- > Prends en considération la diversité de la taille des entreprises selon la capitalisation boursière;

> On l'estime comme la différence entre le rendement d'entreprises avec une capitalisation boursière élevée et faible $E[R_{GMP}] = E[R_G] - E[R_P]$.

EMF Portefeuille élevé moins faible.

- > En anglais, « high-minus-low (HML) »;
- > Prends en considération la diversité des rendements sur des actions de valeur et des actions de croissance;
- > Les action de valeur sont définies comme des actions avec un ratio coursvaleur comptable élevé alors que des actions de croissance ont un ratio cours-valeurs comptable faible;
- → On l'estime comme la différence entre le rendement d'entreprises avec un ratio élevé et faible $E[R_{EMF}] = E[R_E] E[R_F]$.

AVE Portefeuille de l'année avant l'élan d'une entreprise.

- > En anglais, « prior 1-year momentum (PR1YR) »;
- > Prends en considération l'élan d'une compagnie;
- > On l'estime comme la différence entre le rendements des gagnants et des perdants de l'année passée $E[R_{AVE}] = E[R_{GAVE}] E[R_{PAVE}]$..

On trouve que
$$E[R_i] = r_f + \beta_i^M \left(E[R_M] - r_f \right) + \beta_i^{GMP} E[R_{GMP}]$$
$$+ \beta_i^{EMF} E[R_{EMF}] + \beta_i^{AVE} E[R_{AVE}] .$$

39 Market Efficiency and Behavioural Finance

Marché efficient

Marché dont les prix des titres financiers s'ajustent rapidement à toutes nouvelles informations; les prix reflètent toute l'information disponible. Si un marché:

est efficient le prix de l'action reflètent toute l'information disponible.

> Les stratégies passives sont optimales.

n'est pas efficient le prix de l'action peut ne pas être représentatif de sa vraie valeur.

- > Des stratégies actives peuvent être supérieures à une stratégie passive.
- > En anglais, « efficient market hypothesis (EMH) ».

Formes d'efficience de marché (EM)

En bref:

Forme d'EM	Données historiques	Informatique publique	Information privée
« Weak »	✓		
« Semi-strong »	✓	✓	
« Strong »	√	✓	√

■ Hypothèse d'EM « weak form »

Pose que les prix de titres financiers reflètent **toute l'information historique du marché**.

- > Cette théorie pose donc que le prix d'un titre prend déjà en compte ses rendements, ou tendances de rendements, antérieurs et donc que ses rendements *futurs* sont indépendants du passé.
- > Cette théorie implique que l'on ne peut pas obtenir des rendements supérieurs **de façon régulière** en analysant les rendements historiques.

■ Hypothèse d'EM « semi-strong form »

Pose que les prix de titres financiers reflètent **toute l'information disponible publiquement**, y compris les données historiques du marché.

- > Cette théorie pose que les prix de titres financiers s'ajustent au moment que de nouvelles informations sont rendues disponibles.
 - P. ex.: diffusion publique des gains, annonce d'une fusion, mise à pied, etc.
- > Cette théorie implique que l'on ne peut pas obtenir des rendements supérieurs de façon régulière en analysant des rapports annuels puisque l'information est déjà prises en considération dans le prix du titre.

■ Hypothèse d'EM « *strong form* »

Pose que les prix de titres financiers reflètent **toute l'information publique** *et* **privée**. Y compris l'information connue par des gestionnaires, mais pas le public.

> Cette théorie pose qu'il y a des investisseurs chanceux et malchanceux mais que **personne** (y compris les gestionnaires d'une compagnie) **peut obtenir des rendements supérieurs de façon régulière**.

Preuves empiriques supportant l'hypothèse d'EM

Hypothèse d'EM « weak »

Plusieurs études ont été effectuées sur l'effet du passé sur le prix d'actions :

- > En 1953, Kendall a effectué une étude en espérant de trouver des cycles réguliers dans les prix d'actions. En lieu, il a trouvé que les prix suivent un modèle de marche aléatoire.
- > En 2017, 3 chercheurs ont trouvé que les coefficients d'autocorrélation des prix d'actions étaient presque nuls n'impliquant aucun lien entre journées consécutives.
- > En 1988, 2 chercheurs ont investigué si le modèle est avec dérive :
 - Ils ont trouvé un « short-term momentum » dans les prix d'actions sur de courtes périodes de temps.
 - Ils ont trouvé que les prix d'actions ont tendance à s'inverser pour de longues périodes de temps.

En bref, le passé n'est pas garant du futur.

Hypothèse d'EM « semi-strong »

Selon la théorie, il ne devrait pas avoir de tendances dans le prix de l'action d'une entreprise **suite** à la sortie de nouvelles informations par rapport à celle-ci.

- > En théorie, il ne devrait pas avoir de tendances dans le prix de l'action *avant* la sortie non plus.
- > En pratique, il y a habituellement des différences dans le niveau d'information qui est publique ou des fuites d'informations avant l'annonce officielle.

Des chercheurs ont investigué le prix d'actions en réponse à des annonces de résultats, fusions, changements de conditions macroéconomiques, etc.

- > Pour ce faire, les chercheurs ont évalué le rendement anormal d'une action comme étant le α du MÉDAF.
 - C'est à dire, la différence entre le rendement observé et l'espérance du rendement d'une action.
- > 2 chercheurs ont effectué une étude sur des entreprises qui étaient l'objet d'une prise de contrôle.
 - Puisque l'entreprise qui effectue l'acquisition doit payer plus que le prix de l'action au marché boursier, une annonce d'une prise de contrôle mène à une augmentation importante du prix de l'action.
 - Ils ont trouvés que les rendements anormaux de l'action augmentent graduellement 3 mois avant l'annonce d'une prise de contrôle puis qu'au moment de l'annonce il y a un saut.
 - Par la suite, il n'y a aucune tendance.

Hypothèse d'EM « strong »

Pour tester le « *strong form* », il faut évaluer toute l'information d'une compagnie qui peut être obtenue par une analyse minutieuse.

- > Plusieurs études ont démontré que des analystes "experts" n'obtiennent pas des rendements supérieurs au marché.
- > En 2017, 3 chercheurs ont trouvés que de 1971 à 2013 seulement 40% des fonds avec une gestion active évalués ont obtenu des rendements supérieurs à l'indice Wilshire 5000.
- > En 1995, Malkiel a trouvé qu'à chaque année, les gestionnaires des fonds les plus performants ont une chance sur deux de battre leur rendement de l'année précédente.
- > Si les frais de gestion sont pris en compte, ces fonds deviennent encore moins intéressants.

Preuves empiriques allant à l'encontre de l'hypothèse d'EM : Anomalies du marché

Historiquement, l'hypothèse de marchés efficients était supposée adéquate. Cependant, des anomalies du marché ont fourni des preuves allant à l'encontre de l'EM. Si une anomalie existe, alors un investisseur peut en tirer profit.

Cela dit, plusieurs arguments peuvent être faits à l'encontre d'anomalies :

- > Les anomalies qui ont eu lieu dans le passé ne sont pas garanties de se perpétuer.
- > L'exploration de données peut mener à de faux positifs—il est inévitable qu'avec suffisamment de recherche, on peut trouver des tendances anormales.
- > La majorité du temps, un investisseur ne peut pas tirer profit d'anomalies à moins qu'il utilise un algorithme sur un ordinateur.

Effets de calendrier

Certaines anomalies semblent indiquer qu'un investisseur peut obtenir de meilleurs rendements à un certain moment de l'année, de la semaine ou du jour.

▼ Effet du mois de janvier

Les rendements en janvier on tendance à être supérieurs aux autres mois alors que ceux en décembre ont tendance à être plus faibles.

- > L'hypothèse courante est que les investisseurs vendent des parties de leurs portefeuilles en effectuant leurs impôts de fin d'année ce qui réduit les prix;
- > En janvier, les investisseurs achètent davantage d'actions en raison des prix faibles.

▼ Effet du lundi

Les rendements sont plus faible le lundi (et plus élevés le vendredi) que les autres jours de la semaine.

> L'hypothèse est que de mauvaises nouvelles sortent au cours de la fin de semaine et que les investisseurs sont pessimistes le lundi en retournant au travail.

▼ Effet du moment de la journée

Les rendements sont plus volatiles près de la fermeture et de l'ouverture des marchés. Également, le volume transigé est plus élevé.

Réactions excessives du marché

- > En théorie selon l'hypothèse de marchés « *semi-strong* », toute l'information publique est calculée dans le prix courant d'une action.
- > En pratique, il est arrivé que les investisseurs réagissent de façon exagérée à de nouvelles informations.

Énigme des nouvelles émissions

La réaction démesurée à une nouvelle émission fait augmenter le prix initial.

- > Les investisseurs sont emportés par l'espoir d'obtenir de gros rendements.
- > Cependant, dans l'espace de quelques années les rendements deviennent inférieurs à ceux de portefeuilles comparables.

▼ Énigme de la divulgation des profits

Les annonces de profits (ou pertes) mettent du temps à se refléter dans le prix de l'action.

> Un investisseur pourrait donc acheter l'action immédiatement après l'annonce d'un profit supérieur aux attentes et obtenir un meilleur rendement.

Effet d'un élan v.s. effet d'un revirement

La forme « *weak* » de l'hypothèse d'EM utilise la marche aléatoire. Cependant, plusieurs études ont trouvés des effets résultant de l'élan ou le revirement du prix de l'action.

- > L'effet d'un élan implique qu'une action dont le prix est en croissance continue d'accroître (et vice-versa pour une action dont le prix est en *dé*croissance).
- > L'effet d'un revirement implique un retour à la moyenne.

Autres anomalies

▼ Entreprises à double cotation

Deux actions découlant d'une même entreprise sont exposées aux mêmes risques. Intuitivement, ils devraient avoir des prix semblables. En pratique, ce n'est pas le cas.

▽ Effet du cycle politique

Pour un gouvernement donné, sa première et dernière année ont des rendements supérieurs aux années intermédiaires.

> Ceci est peut-être puisque le marché anticipe de nouvelles politiques.

▼ Effet du fractionnement d'actions

Lorsqu'une compagnie effectue un fractionnement d'actions, elle divise son action en multiples afin de diminuer le prix.

- > En théorie, on s'attend à aucun effet sur le rendement d'une action puisque ceci n'a aucun impact sur sa valeur marchande.
- > En pratique, les rendements sont supérieurs avant et après le fractionnement.

▽ Effet de petites entreprises

Des petites entreprises ont tendance à obtenir des rendements anormalement élevés.

> Ces petites entreprises sont moins évaluées par les analystes financiers.

▼ Effet du « Super Bowl »

Historiquement, le marché boursier a tendance à offrir des meilleurs rendements si le vainqueur est une équipe du NFC que le AFC.

> Cet effet est plus probablement le résultat de sur-exploration de données que réel.

▼ Effet de la taille d'une compagnie

Les entreprises à faible capitalisation boursière ont tendance à obtenir de meilleurs rendements que les entreprises à grande capitalisation.

▼ Effet du ratio cours-bénéfice

Les actions à faible ratio cours-bénéfice (ou cours-valeur comptable) ont de meilleurs rendement de façon régulière.

- > Le ratio cours-bénéfice divise le prix de l'action par le rendement par action.
- > Le ratio de cours-valeur comptable divise le prix de l'action par la valeur comptable par action.

Bulles et exubérance irrationnelle

Bien qu'elles ne sont pas des anomalies de marché, les bulles vont à l'encontre de l'EM.

Par exemple:

- > La bulle immobilière américaine de 1996 à 2007.
- > La bulle internet à la fin des années 90s où la valeur de l'indice NASDAQ a augmentée d'environ 580%.

Finance comportementale

La finance comportementale évalue l'effet du comportement humain sur les marchés financiers.

Diversification et biais de portefeuille

Plusieurs investisseurs individuels ne diversifient pas suffisamment leurs portefeuilles. Il y a deux explications possibles :

▼ Biais de familiarité

Les investisseurs vont avoir tendance à investir dans des entreprises avec lesquels ils sont familiers.

✓ Préoccupations relatives à la richesse

Les investisseurs se préoccupent principalement de la performance de leur portefeuille relatif aux portefeuilles de leurs paires. Ceci les mène à choisir des portefeuilles qui ne sont pas diversifiés dans l'espoir d'obtenir des rendements au moins égaux à celui de leurs paires.

Transactions excessives

En raison des frais de transactions, transiger des titres trop souvent diminue les rendements. L'hypothèse principale est que les investisseurs ont trop de confiance dans leurs connaissances et expertise financière.

Sophisme des coûts irrécupérables

Les investisseurs ont tendance à conserver des investissements dont la valeur a diminuée et à vendre des investissements dont la valeur a augmentée.

Émotions des investisseurs

Les investisseurs ont tendance d'être influencés par les médias où les événements qui capturent l'attention.

- > Il a été démontré que les investisseurs ont tendance à acheter des actions récemment dans les nouvelles.
- > Il a été démontré que les rendements d'actions ont tendance à être plus élevés les journées ensoleillées.
- > Certains investisseurs ont tendance à surévaluer leur expérience financière.

Comportement moutonnier

Les investisseurs agissent en groupe, pour plusieurs raisons :

- 1. L'investisseur croit que les autres ont plus d'information et suit les tendances du marché.
- 2. L'investisseur peut suivre le marché afin d'avoir un rendement au moins égal au marché.
- 3. Les gestionnaires de fonds souhaitent éviter d'endommager leurs réputations s'ils détiennent des actions trop différentes de celles de leurs paires.

40 Risque d'investissement et analyse de projets

Risque d'investissement

Mesures du risque d'investissement

■ Variance

Mesure de risque symétrique qui prend en compte les rendements audessus et en dessous de la moyenne.

Semi-variance

Écart-type moyen des rendements en dessous de la moyenne.

- > Utile si un investisseur se soucie seulement du risque à la baisse;
- $\sigma_{SV}^2 = \mathbb{E}\left[\min(0, R \mathbb{E}[R])^2\right]$;
- > Le « *downside standard deviation* » est la racine σ_{SV} de la semi-variance.

\triangle Value-at-Risk (VaR_{κ})

La VaR_{κ} est le $100\kappa^{\rm e}$ pourcentile.

- > Si *X* représente les **gains** (hypothèse de base pour IFM) alors une valeur négative représente une perte.
- > Si *X* représente les **pertes** (hypothèse de base en intro 2) alors **une valeur négative représente un gain**.

\square Tail Value-at-Risk ($TVaR_{\kappa}$)

Mesure de risque qui prend en considération les valeurs au dessus (en dessous) de la VaR_{κ} .

- > Alias, « expected shortfall (ES) » ou « conditional tail expectation (CTE) »;
- > Si X représente les pertes, on s'intéresse à l'extrémité supérieure de la distribution et $TVaR_{\kappa}(X) = \mathbb{E}\left[X|X > VaR_{\kappa}\right] = \frac{1}{1-\kappa} \int_{VaR_{\kappa}}^{\infty} x f_X(x) dx$;
- > Si X représente les gains, on s'intéresse à l'extrémité inférieure de la distribution et $TVaR_{\kappa}(X) = \mathbb{E}\left[X|X \leq VaR_{\kappa}\right] = \frac{1}{\kappa} \int_{-\infty}^{VaR_{\kappa}} x f_{X}(x) dx$.

Mesure de risque cohérente

Une mesure de risque ρ est dite "**cohérente**" si elle rencontre ces 4 caractéristiques :

■ Homogénéité

Soit une v.a. X et un scalaire a>0, la mesure de risque ρ est dite homogène si $\rho(aX)=a\rho(X)$.

Interprétation

Par exemple, on peut poser que a=1.75 est le taux de change entre le dollar canadien et le dollar américain.

Il est alors *cohérent* que calculer $\rho(1.75X)$ soit équivalent à calculer $1.75\rho(X)$.

■ Invariance à la translation

Soit une v.a. X et un scalaire $a \in \mathbb{R}$, la mesure de risque ρ satisfait la propriété d'invariance à la translation si $\rho(X+a) = \rho(X) + a$.

Interprétation

Par exemple, on peut poser que a=-500\$ est la franchise d'un contrat d'assurance auto; c'est-à-dire, un assuré va payer de sa poche le premier 500\$ d'un accident auto.

Il est alors *cohérent* que calculer $\rho(X-500)$ soit équivalent à calculer $\rho(X)-500$. Par exemple, si on utilise l'espérance comme mesure de risque ($\rho(X)=\mathrm{E}[X]$) alors il devrait nous être familier que $\mathrm{E}[X-500]=\mathrm{E}[X]-500$.

■ Monotonicité

Soit les v.a. X_1 et X_2 tel que $\Pr(X_1 \leq X_2) = 1$, la mesure de risque ρ satisfait la propriété de monotonicité si $\rho(X_1) \leq \rho(X_2)$ ou si pour un $\kappa \in (0,1)$ fixé, $F_{X_1}^{-1}(\kappa) \leq F_{X_2}^{-1}(\kappa)$.

Interprétation

Par exemple, si X_1 est un assuré plus dangereux que X_2 il est *cohérent* que la mesure de risque lui charge plus cher.

≡ Sous-additivité

Soit les v.a. X_1 et X_2 , la mesure de risque ρ satisfait la propriété de sous-additivité si $\rho(X_1 + X_2) \leq \rho(X_1) + \rho(X_2)$.

Interprétation

On peut raisonner qu'il est cohérent que ce soit moins cher pour une compagnie d'assurance d'assurer deux personnes que pour deux compagnies d'assurance d'assurer chacune une personne.

Analyse du risque d'un projet

On souhaite toujours maximiser la valeur actualisée nette (VAN) d'un projet avec

$$VAN = \sum_{t=1}^{n} \frac{CF_t}{(1+i_t)^t}$$

Pour ce faire, on doit estimer les flux monétaires futurs ainsi que le coût du capital. Cependant ces estimations ont une certaine incertitude et donc nous voyons 4 façons d'évaluer l'impact de cette incertitude et d'identifier les principaux facteurs sous-jacents à la VAN d'un projet.

Analyse de rentabilité (« break-even analysis »)

Lorsque la valeur actualisée nette (VAN) est nulle, un projet devient rentable. Une analyse de rentabilité calcule la valeur de chaque paramètre tel que la VAN du projet est nulle.

Notamment, on isole le « *internal rate of return (IRR)* » :

$$VAN = \sum_{t=1}^{n} \frac{CF_t}{(1 + IRR)^t} = 0$$

≡ « internal rate of return (IRR) »

Le coût du capital auquel la VAN est nulle. C'est à dire, le taux auquel la valeur actualisée des rentrées de fonds équivaut la valeur actualisée des sorties de fonds permettant d'équilibrer les comptes.

On peut aussi isoler la *seuil de rentabilité* pour le nombre d'unités à vendre, le prix par unité, le coût par unité de marchandise, etc.

Analyse de sensibilité (« sensitivity analysis »)

Une analyse de sensibilité évalue la sensibilité de la VAN à chacune des variables en les faisant varier une à la fois. Ceci permet d'identifier les variables les plus importantes selon leurs effets sur la VAN.

On débute par calculer la VAN d'un scénario de base. Puis, on calcule la VAN en variant une des variables par un pourcentage (ou montant) fixe au dessus et en dessus du scénario de base.

> Par exemple, faire varier le nombre d'unités vendues et le prix par unité puis évaluer l'étendu (différence entre le maximum et le minimum).

Analyse de scénarios (« scenario analysis »)

L'analyse de scénarios est semblable à l'analyse de sensibilité sauf que l'on fait varier plusieurs variables à la fois. Le plus la VAN varie selon les différents scénarios, plus le risque du projet est élevé.

Simulation Monte-Carlo

On estime la distribution de probabilité d'une quantité d'intérêt (e.g., la VAN). Les étapes générales sont :

- 1. Construire le modèle d'intérêt;
 - > C'est à dire, une fonction de plusieurs variables entrantes.
- 2. Simuler des nombres aléatoires d'une distribution **posée** pour chacune des variables;
- 3. Déterminer la valeur de la quantité d'intérêt avec les valeurs calculées précédemment;
- 4. Répéter les 2 étapes précédentes un grand nombre de fois (e.g. 10 000 itérations);
- 5. Calculer des mesures d'intérêt (moyenne, variance, etc.) puis tracer les valeurs simulées comme une distribution de probabilité.

Options réelles

L'idée des options dites « réelles » est de prendre les concepts d'options financières et les appliquer aux décisions d'investissement d'une entreprise.

> Donc on applique les techniques d'options financières pour décider si l'on devrait investir dans un nouveau projet, l'élargir, le réduire, etc.

Options réelles

Options de décisions d'investissement qui donnent aux gestionnaires le *droit* (pas l'obligation) de faire une décision dans le futur lorsque de nouvelles informations seront rendues disponibles.

> En anglais, « real options » qui sont des « capital budgeting options ».

Arbres de décision

L'arbre de décision est une approche graphique qui illustre les différentes décisions possibles et le résultat de chaque décision l'économie.

- > Dans un arbre binomial, les branches représentent une incertitude qui ne peut pas être contrôlée.
- > Dans un arbre de décisions, les branches représentent les différents choix qui s'offrent à un gestionnaire.

Exemple

Soit une compagnie aérienne qui pense acheter 20 avions commerciales au coût de 2M\$ chaque. L'ajout des avions permet des revenus additionnels de 50M\$.

Un arbre de décision est :

Si on pose qu'il y a une chance sur deux d'avoir une forte demande, on obtient :

- > Les carrés sont des nœuds de décisions et les cercles des nœuds d'information.
- > Les flux financiers sont indiqués au moment qu'ils sont réalisés.
- > E[valeur à l'échéance] = $0.5 \times (75 40) + 0.5 \times (25 40) = 10$.
- > On peut continuer d'ajouter des possibilités et de complexifier l'arbre.
 - Par exemple, acheter 5 avions puis, si la demande est élevée, acheter 15 autres avions à un prix plus élevé de 2.2M\$ par avion.
 - etc.

Option de calendrier

Ajouter plus de détails et pratiquer pour bien saisir comment calculer les affaires avec Black-Scholes. Section pas complétée.

Les options de calendrier donnent un délai à une entreprise avant d'avoir à prendre une décision. L'avantage est que la compagnie pourrait avoir davantage d'information dans le futur et réduire l'incertitude de la décision.

> On peut utiliser formule de Black Scholes.

Il y a 3 facteurs qui influe le calendrier de l'investissement :

- 1. La VAN de l'investissement.
 - > On investit seulement si VAN (invest. aujourd'hui) > VAN (avec une option réelle) **OU**valeur de prendre l'option d'attendre.
 - > Parfois prendre on considération l'option réelle cause une VAN négative à devenir positive.
- 2. La volatilité.
 - > La valeur d'une option d'achat augmente avec la volatilité.

- > Donc, attendre est la meilleur option s'il y a beaucoup d'incertitude vis-à-vis un investissement.
- 3. Les dividendes.
 - > L'équivalent des dividendes pour une option réelle sont les flux monétaires qui auxquels on renonce en attendant.
 - > Il est souvent mieux d'attendre Àà moins qu'il y ait un coût associé.

Sizing options

Ajouter plus de détails et pratiquer comment établir les équations.

■ Options de croissance

Lorsqu'une entreprise est optimiste pour le futur, une option de croissance lui donne l'option d'augmenter ses investissements.

> Par exemple, acheter 5 avions puis garder l'option d'en acheter 15 dans le futur si les choses vont bien.

■ Options d'abandon

Lorsqu'une entreprise est pessimiste pour le futur, une option d'abandon lui donne l'option d'abandonner un projet.

> Habituellement, elle est exercée si la VAN des flux monétaires reliés à l'abandon d'un projet sont plus élevée que ceux reliés au maintient du projet.

41 Structure du capital

Structure du capital

Regroupe la dette et les capitaux propres qu'une entreprise utilise pour financer ses activités.

Financement par actions

Financement par actions pour des compagnies privées

Sources de capital

Contexte

Typiquement, lorsqu'un entrepreneur débute il obtiendra du financement à partir de sa famille et ses amis. Puis, lorsque l'entreprise commence à croître, des sources de financement externes sont nécessaires.

✓ « Angel Investors »

Typiquement des individus riweches qui sont eux-mêmes des entrepreneurs et qui investissent dans des compagnies pour une portion des actions.

- > Puisqu'il est difficile d'évaluer une entreprise à son début, les investisseurs détiennent habituellement des « *convertible notes* » en lieu d'actions.
- > Ces notes sont une dette à court terme qui se transforment en actions (à un rabais) lorsque la compagnie sera financée par des capitaux propres.

✓ « Venture Capital Firms »

Lorsqu'une entreprise nécessite plus de capitaux que peuvent offrir des « angel investors », elle fait appel à un « venture capital firm ».

- > Ces « *venture capital firms* » forment des « *limited partnerships* » avec des entreprises en démarrage.
- > Ces entreprises requièrent habituellement beaucoup de contrôle en échange pour les fonds prêtés.
- > Souvent, les commanditaires sont activement impliqués dans la société et font partie du conseil d'administration.

✓ « Private Equity Firms »

Ces entreprises sont semblables aux « *venture capital firms* » sauf qu'ils investissent dans les capitaux propres de compagnies privées.

> Souvent, ces entreprises achètent des compagnies publiques afin de les privatiser dans un « *leveraged buyout (LBO)* ».

✓ « Institutional Investors »

Par exemple, des fonds de pension, des compagnies d'assurance, des fondations, etc.

> Ils ont des gros montants d'argent à investir.

∨ « *Corporate Investors* »

Des compagnies qui investissent dans d'autres compagnies privées.

> Soit pour des rendements additionnels ou pour suivre une stratégie.

Investissement « Venture capital »

- > Typiquement, lorsqu'une compagnie vend des participatifs pour la première fois, elle émet des **actions privilégiées** et non des **actions ordinaires**.
- > Les actions privilégiées se comportent de façon différent selon l'âge de la compagnie.
 - Des compagnies adultes (« mature ») offrent des dividendes préférentielles, une valeur en cas de liquidation ou des droits de vote avec les actions privilégiées.
 - Des **jeunes compagnies** offrent un droit de réclamation prioritaire aux actifs d'une compagnie dans le cas de liquidation avec les actions privilégiées.
- > Une collecte de fonds pour une compagnie s'appelle une série de financement.
 - En ordre, on appelle les séries : « Angel », « $seed\ round$ », . . . , « IPO ».
 - En anglais, « funding round ».

Évaluation avant et après une série de financement Évaluation :

préfinancement Valeur d'une entreprise avant une série de financement.

> En anglais, « pre-money valuation ».

après financement Valeur d'une entreprise après une série de financement.

> En anglais, « post-money valuation ».

Characteristic Liste des contributeurs

- > Correspond à l'évaluation préfinancement + montant investit.
- > De façon alternative, le nombre de parts *après* la série × le prix par action *avant* la série.
- > On peut trouver le **pourcentage de participation** d'un investisseur comme montant investit évaluation après financement.
- > De façon alternative, nombres d'actions détenues par l'investisseur nombre total d'actions.

Conditions de financement « *Venture Capital* » Les distinctions principales des actions privilégiées que détiennent habituellement les « venture capitalists » aux actions ordinaires se résument à :

Préférences de liquidité

Dans le cas de liquidation d'une entreprise, un montant minimal doit être payé aux détenteurs d'actions privilégiées avant que tout paiement soit effectué aux détenteurs d'actions ordinaires.

> La préférence est trouvé par : multiplicateur × investissement initial

Ancienneté

Ceux qui investissent plus tard peuvent demander une ancienneté plus élevée que les investisseurs des séries antérieures.

> S'ils sont donné une ancienneté égale, ils sont *pari passu* (latin pour "de rang égal").

✓ Droits de participation

Octroie les paiements payables aux détenteurs d'actions ordinaires comme si les actions auraient été converties en actions ordinaires.

Protection anti-dilution

Si une série de financement a lieu à un prix inférieur à une ronde précédente, la protection permet aux investisseurs de convertir leurs actions privilégiées en actions ordinaires à un prix inférieur.

> Ceci permet d'augmenter le pourcentage de participation.

∨ Participation au conseil d'administration

Un investisseur peut tenter d'arranger la désignation d'un (ou plusieurs) membres au conseil d'administration.

Sortie d'un investissement dans une compagnie privée Un investisseur à deux approches possibles :

Acquisition D'autres investisseurs achètent les parts de l'entreprise.

Émission publique Avec un appel publique à l'épargne (APE).

> En anglais, « inital public offering (IPO) ».

Financement par actions pour des compagnies publiques

Le première offre publique (financement par action pour une compagnie publique) est la première fois qu'une entreprise vend ses actions au publique. Il y a plusieurs avantages et désavantages.

Les avantages principaux :

- > Plus de liquidité.
 - Les investisseurs qui détiennent déjà des actions de la compagnie peuvent diversifier leurs portefeuilles en vendant des actions.
- > Meilleur accès à du financement.
 - Une entreprise a habituellement accès à des prêts plus importants après qu'elle devient publique.

Les désavantages principaux sont :

- > Détenteurs d'actions dispersés.
 - Les investisseurs ont moins de poids sur les actions de la compagnie.
- > La conformité longue et couteuse.
 - Les compagnies publiques sont sujettes à beaucoup de règlements.

Types d'offres

- > Un souscripteur (« *underwriter* ») est une entreprise de services d'investissement qui gère l'appel public à l'épargne.
- > Il y a 2 types (principales) d'offres :
 - 1. L'offre **primaire** offre des nouvelles actions.
 - 2. L'offre secondaire offre des actions des détenteurs actuels.

Il y a plusieurs mécanismes de vente :

Meilleurs efforts

Le souscripteur n'offre aucune garantie de vente des actions qui sont vendues au meilleur prix possible.

- > Souvent ces ententes ont une clause tout ou rien comme quoi que l'entente est annulée s'il reste des actions qui ne sont pas vendues.
- > Habituellement, ce mécanisme est utilisé pour des petites OP.

▼ Vente garantie

Le souscripteur garanti que toutes les actions seront vendues au cours vendeur.

- > Approche la plus courante.
- > Les souscripteur achète les actions avec un rabais puis tente de les revendre au cours vendeur.
- > Le souscripteur assume le risque qu'elles se vendent pour moins cher.
- > Pour cette raison, ils vont souvent sous-évaluer le prix d'une action pour une vente garantie.

Vente aux enchères

Les actions se vendent à un même prix aux investisseurs les plus offrants tel qu'ils sont tous vendues.

Mécanisme de l'OP

- > Un groupe de souscripteurs gère l'OP avec un souscripteur principal.
 - Les plus petits souscripteurs reçoivent (« *syndicates* ») des conseils du souscripteur principal.
- > Les entreprises doivent déposer une déclaration d'enregistrement à la commission réglementaire.
- > La déclaration a 2 composantes principales :
 - 1. Prospectus provisoire avec l'information nécessaire aux investisseurs potentiels.
 - 2. Prospectus définitif avec des détails sur l'OP (quantité d'actions disponibles, prix, etc.)
- > Une évaluation de la compagnie est effectuée par le souscripteur.

- Souvent, la valeur est établie selon la VAN des flux monétaires ou la valeur de compagnies semblables.
- Habituellement, l'entreprise a une conférence avec les clients les plus importants du souscripteurs pour vendre l'entreprise.
- Par la suite, le souscripteur ajuste le prix de l'action selon a demande perçue pour maximiser la probabilité de succès (« *book building* »).
- > L'entreprise paye au souscripteur l'écart de souscription (« *underwriting spread* »).
 - Ceci est un pourcentage du prix d'émission.
 - P. ex., 5% sur un prix de 10\$ engendre des frais de 0.5\$ par action permettant le souscripteur d'acheter l'action pour 9.50\$ puis de la vendre pour 10\$.
- > Le souscripteur gère son risque.
 - Un souscripteur peut se protéger contre pertes avec une option d'attribution excédentaire (« *over-allotmentt* ») ou de couverture (« *greenshoe* »).
 - Ces options permettent au souscripteur d'émettre un nombre limité d'options additionnelles au cours vendeur.

Énigmes d'OP Quatre aspects de l'OP sont un mystère aux économistes financiers :

En moyenne, le prix d'émission d'une OP est trop faible.

- > En partie, ceci est puisque les souscripteurs souhaitent minimiser leur risque.
- > Ceci cause les rendements d'une OP à être anormalement positifs.
- > La sous-évaluation est avantageuse pour les souscripteurs et les investisseurs qui achètent directement des souscripteurs, mais mauvaise pour l'entreprise et les investisseurs qui détiennent des actions avant l'émission.

□ Cycles

Les nouvelles émissions semblent cycliques.

> Le nombre d'OP n'est pas seulement influencé par le besoin de capitaux propres (alias, en temps de crise).

☐ Coût d'une OP

Les coûts de transaction d'une OP sont élevés.

- > Les frais ne semblent pas d'être variables selon la taille de l'émission.
- > Les souscripteurs avec légèrement moins de frais ont tendance à avoir une plus grande portion du marché que les souscripteurs avec beaucoup moins de frais.

□ Performance à long terme

En moyenne, la performance à long terme suite à une OP n'est pas bonne.

Financement par emprunt

Dette corporative

Autres

Propositions de Modigliani-Miller