REINFORCE with Baseline

Shusen Wang

Value Functions

Discounted return:

$$U_{t} = R_{t} + \gamma \cdot R_{t+1} + \gamma^{2} \cdot R_{t+2} + \gamma^{3} \cdot R_{t+3} + \cdots$$

Action-value function:

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t \mid s_t, \mathbf{a_t}].$$

State-value function:

$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A}) \mid s_t].$$

- Use policy network, $\pi(a|s; \theta)$, for controlling the agent.
- State-value function:

$$V_{\pi}(s) = \mathbb{E}_{A \sim \pi}[Q_{\pi}(s, A)]$$
$$= \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a).$$

$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{\mathbf{A} \sim \pi} \left[\frac{\partial \ln \pi(\mathbf{A} \mid s; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s, \mathbf{A}) - V_{\pi}(s_t) \right) \right].$$

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$= \mathbf{g}(\mathbf{A_t})$$

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$= \mathbf{g}(\mathbf{A_t})$$

- Randomly sample $a_t \sim \pi(\cdot | s_t; \theta)$.
- Then $g(a_t)$ is an unbiased estimation of the policy gradient.

Policy gradient with baseline:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$= \mathbf{g}(\mathbf{A_t})$$

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t)).$$

$$\mathbf{g}(\mathbf{a}_t) = \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a}_t) - V_{\pi}(s_t)).$$

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t;\theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t) \right)$$

$$\mathbf{g}(\mathbf{a}_t) = \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, \mathbf{a}_t) - V_{\pi}(s_t)\right).$$

- Recall that $Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t \mid s_t, \mathbf{a_t}].$
- Monte Carlo approximation to $Q_{\pi}(s_t, a_t) \approx u_t$ (REINFORCE):
 - Observing the trajectory: s_t , a_t , r_t , s_{t+1} , a_{t+1} , r_{t+1} , \cdots , s_T , a_T , r_T .
 - Compute return: $u_t = \sum_{i=t}^T \gamma^{i-t} \cdot r_i$.
 - u_t is unbiased Monte Carlo estimate of $Q_{\pi}(s_t, a_t)$.

Stochastic policy gradient with baseline:

$$\mathbf{g}(a_t) = \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, a_t) + V_{\pi}(s_t)\right)$$

• Approximate $V(s; \mathbf{\theta})$ by the value network, $v(s; \mathbf{w})$.

Approximate policy gradient with baseline:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} \approx \mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot (u_t - v(s_t;\mathbf{w})).$$

- Three approximations:
 - 1. Approximate expectation using one sample, a_t . (Monte Carlo.)
 - 2. Approximate $Q_{\pi}(s_t, a_t)$ by u_t . (Another Monte Carlo.)
 - 3. Approximate $V_{\pi}(s)$ by the value network, $v(s; \mathbf{w})$.

Summary of Approximations

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t)).$$

Summary of Approximations

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$\mathbf{g}(a_t) = \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, a_t) + V_{\pi}(s_t)\right).$$

$$\mathbf{g}(\mathbf{a_t}) \approx \frac{\partial \ln \pi(\mathbf{a_t}|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot \left(u_t - v(s_t; \mathbf{w})\right)$$

Policy and Value Networks

Policy Network

Approximate policy function, $\pi(a|s)$, by policy network, $\pi(a|s;\theta)$.

Value Network

Approximate state-value, $V_{\pi}(s)$, by value network, $v(s; \mathbf{w})$.

Parameter Sharing

REINFORCE with Baseline

Updating the policy network

Approximate policy gradient with baseline:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} \approx \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot (u_t - v(s_t; \mathbf{w})).$$

Update policy network by policy gradient ascent:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (u_t - v(s_t; \mathbf{w})).$$

Updating the value network

• Recall $v(s_t; \mathbf{w})$ is an approximation to $V_{\pi}(s_t) = \mathbb{E}[U_t \mid s_t]$.

Updating the value network

- Recall $v(s_t; \mathbf{w})$ is an approximation to $V(s_t; \mathbf{\theta}) = \mathbb{E}[U_t \mid s_t]$.
- Encourage $v(s_t; \mathbf{w})$ to approach u_t by decreasing:

$$\delta_t = u_t - v(s_t; \mathbf{w}).$$

Updating the value network

- Recall $v(s_t; \mathbf{w})$ is an approximation to $V(s_t; \mathbf{\theta}) = \mathbb{E}[U_t \mid s_t]$.
- Encourage $v(s_t; \mathbf{w})$ to approach u_t by decreasing:

$$\delta_t = u_t - v(s_t; \mathbf{w}).$$

• Gradient: $\frac{\partial \delta_t^2/2}{\partial \mathbf{w}} = -\delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}} .$

Gradient descent:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot (-\delta_t) \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}.$$

Play a game to the end and observe the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \dots, S_n, a_n, r_n$$
.

• Compute $u_t = \sum_{i=t}^T \gamma^{i-t} \cdot r_i$ and $\delta_t = u_t - v(s_t; \mathbf{w})$.

Play a game to the end and observe the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_n, a_n, r_n$$
.

- Compute $u_t = \sum_{i=t}^T \gamma^{i-t} \cdot r_i$ and $\delta_t = u_t v(s_t; \mathbf{w})$.
- Update the policy network by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \left\{ \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \right\}.$$

Update the value network by:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

Play a game to the end and observe the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_n, a_n, r_n$$
.

- $s_1,a_1,r_1,s_2,a_2,r_2,\cdots,s_n,a_n,r_n\ .$ Compute $u_t=\sum_{i=t}^T \gamma^{i-t}\cdot r_i$ and $\delta_t=u_t-v(s_t;\mathbf{w})$.
- Update the policy network by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a}_t \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

Update the value network by:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

Play a game to the end and observe the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \dots, S_n, a_n, r_n$$
.

- Compute $u_t = \sum_{i=t}^T \gamma^{i-t} \cdot r_i$ and $\delta_t = u_t v(s_t; \mathbf{w})$. Update the policy network by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

Update the value network by:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

Repeat this procedure for all t from 1 to n.

Thank you!