UNIVERSITÉ de LORRAINE **TELECOM Nancy**

TELECOM Nancy

Durée du sujet : 2h

Mathématiques Appliquées pour l'Informatique 1ère année formation par apprentissage

Date: 19 décembre 2017

Corrigé

Horaire: 14h à 16h

Exercice 1 (Théorie des langages : automates et langages réguliers)

1. Nous exprimons le système associé à l'automate :

```
(1) L_0 = aL_1 + bL_2
```

(2)
$$L_1 = aL_2 + bL_2$$

(2)
$$L_1 = aL_2 + bL_1$$

(3) $L_2 = aL_0 + bL_3 + \varepsilon$ (car L_r est terminal)
(4) $L_3 = aL_2 + bL_3$

Comme l'état 0 est le seul état initial de l'automate A_1 , le langage $L(A_1)$, reconnu par A_1 est le langage

On applique le lemme de Arden aux équations (2) et (4), avec des solutions uniques car $\varepsilon \notin \{b\}$.

(1)
$$L_0 = aL_1 + bL_2$$

(2)
$$L_1 = b^* a L_2$$

$$\begin{cases} (2) \ L_1 = b^* a L_2 \\ (3) \ L_2 = a L_0 + b L_3 + \varepsilon \\ (4) \ L_3 = b^* a L_2 \end{cases}$$

(4)
$$L_3 = b^* a L_2$$

On substitue dans (1) et (3), la valeur de L_1 et L_3 prise dans (2) et (4).

$$(1) L_0 = ab^*aL_2 + bL_2 = (ab^*a + b)L_2$$

(2)
$$L_1 = b^* a L_2$$

$$\begin{cases} (1) \ L_0 = ab \ aL_2 + bL_2 = 0 \\ (2) \ L_1 = b^* aL_2 \\ (3) \ L_2 = aL_0 + bb^* aL_2 + \varepsilon \\ (4) \ L_3 = b^* aL_2 \end{cases}$$

(4)
$$L_3 = b^* a L_3$$

On substitue la valeur de L_0 prise dans (1), dans l'équation (3).

$$(1) L_0 = (ab^*a + b)L_2$$

(2)
$$L_1 = b^* a L_2$$

(3)
$$L_2 = a(ab^*a + b)L_2 + bb^*aL_2 + \varepsilon = (aab^*a + ab + bb^*a)L_2 + \varepsilon$$

(4)
$$L_2 = b^* a L_2$$

On applique enfin le lemme d'Arden à l'équation (3) (cas $\varepsilon \notin (aab^*a + ab + bb^*a)$).

(1)
$$L_0 = (ab^*a + b)L_2$$

(2)
$$L_1 = b^* a L_2$$

(2)
$$L_1 = b^* a L_2$$

(3) $L_2 = (aab^* a + ab + bb^* a)^* \varepsilon$

$$(4) L_3 = b^* a L_2$$

On substitue la valeur de L_2 prise dans (3), dans l'équation (1).

(1)
$$L_0 = (ab^*a + b)(aab^*a + ab + bb^*a)^*$$

- (2) $L_1 = b^* a L_2$ (3) $L_2 = (aab^* a + ab + bb^* a)^*$ (4) $L_3 = b^* a L_2$

 $(ab^*a + b)(aab^*a + ab + bb^*a)^*$ est une expression rationnelle dénotant le langage $L(\mathcal{A}_1)$.

2. Les éléments permettant d'affirmer que A_2 est indéterministe sont les suivants :

- A_2 a deux états initiaux 0 et 1.
- une transition sur ϵ : $(3, \epsilon, 2)$
- les transition suivantes :
 - -(2, b, 2) et (2, b, 3)
 - (3, a, 3) et (3, a, 0)

Déterminisation.

L'état initial de l'automate déterministe obtenu est l'état constitué de l'ensemble des états atteignables à partir des états initiaux de l'automate indéterministe sans consommer de lettres de l'alphabet $\{a, b\}$ (c'est-à-dire les états initiaux de A_2 et ceux qui peuvent être atteints à partir de A_2 par des ε transitions). Ici l'état initial est $\{0, 1\}$.

Construction de la table intermédiaire :

	a	b
0	{2}	{1}
1	{2}	$\{2, 3\}$
2	_	$\{2, 3\}$
3	$\{0, 2, 3\}$	$\{2, 3\}$

Déroulement de l'algorithme : détermination de δ la fonction de transitions de l'automate déterministe. On exécute l'algorithme en partant de l'état initial de l'automate déterministe, c'est-à-dire {0, 1} et en utilisant la table intermédiaire. Chaque nouvel état généré est mis en entrée (dans la colonne δ de la table).

δ	a	b
$\{0, 1\}$	{2 }	$\{1, 2, 3\}$
{2}	_	$\{2, \ 3\}$
$\{1, 2, 3\}$	$\{0, 2, 3\}$	$\{2, 3\}$
$\{2, 3\}$	$\{0, 2, 3\}$	$\{2, 3\}$
$\{0, 2, 3\}$	$\{0, 2, 3\}$	$\{1, 2, 3\}$

L'automate déterministe obtenu est A_{d2} tel que

$$\mathcal{A}_{d2} = (\{a, b\}, \{\{0, 1\}, \{2\}, \{1, 2, 3\}, \{2, 3\}\}, \delta, \{\{2\}, \{1, 2, 3\}, \{2, 3\}\})$$

où δ est la fonction de transition définie dans la table ci-dessus.

3. Minimisation. Déterminons les états accessibles à partir de l'état initial 0, en utilisant l'algorithme vu en TD, on obtient dans l'ordre : 0, 7, 5, 4, 3, 2, 6, donc 1 est un état inaccessible. On exécute l'algorithme :

Donc $0 \sim 4$, $2 \sim 6$ et $3 \sim 7$.

Les quatre classes obtenues sont les quatre états de l'automate obtenu, A_m , qui est formellement défini comme suit:

$$\mathcal{A}_m = (\{a, b, c\}, \{\{0, 4\}, \{2, 6\}, \{3, 7\}, \{5\}\}, \{0, 4\}, \delta_m, \{\{2, 6\}\}))$$

où δ_m est la table de transition suivante :

δ_m	$\{0, 4\}$	$\{2, 6\}$	${3, 7}$	$\{5\}$
a	$\{3, 7\}$	$\{2, 6\}$	${3, 7}$	{5}
b	{5}	$\{2, 6\}$	$\{2, 6\}$	{5}
c	$\{0, 4\}$	$\{2, 6\}$	${3, 7}$	{5}

Exercice 2 (Théorie des langages : grammaires et langages algébriques, langages réguliers)

Soit la grammaire $G = (\{X, Y\}, \{a, b, c\}, \rightarrow, X)$ où la relation \rightarrow est définie par les règles suivantes :

2

$$\begin{array}{ccc} X & \rightarrow & cXb \mid Y \\ Y & \rightarrow & aY \mid a \mid \varepsilon \end{array}$$

L(G) est le langage des mots engendrés par G.

1.
$$L(G) = \{c^n a^m b^n, (n, m) \in \mathbb{N}^2\}.$$

2. L'arbre syntaxique suivant prouve que le mot u = ccaabb appartient à L(G).

3. Le mot a a par exemple les deux arbres syntaxiques suivants :

La grammaire G est donc ambiguë.

Exercice 3 (Analyse syntaxique descendante)

1. Soit la grammaire $G_1 = (\{A, B, C, D, E, F\}, \{a, b, c\}, \rightarrow, A)$ dont les règles sont :

$$\left\{ \begin{array}{l} A \rightarrow \ aBcDa \\ B \rightarrow \ CE \mid a \\ C \rightarrow \ bC \mid \varepsilon \end{array} \right. \quad \left\{ \begin{array}{l} D \rightarrow \ bD \mid F \\ E \rightarrow \ aE \mid \varepsilon \\ F \rightarrow \ cFb \mid \varepsilon \end{array} \right.$$

(a) $P_{\varepsilon} = \{B,\ C,\ D,\ E,\ F\}$ à cause des règles $C \to \varepsilon,\ E \to \varepsilon,\ F \to \varepsilon$ et $D \to F$ et $B \to CE$.

On calcule les premiers et les suivants grâce aux algorithmes vu en cours, ils sont définis dans le tableau suivant :

	A	B	C	D	E	F
Premier	{a}	$\{a, b\}$	{ <i>b</i> }	$\{b, c\}$	<i>{a}</i>	$\{c\}$
Suivant	{\$}	{c}	$\{a, c\}$	{a}	{ <i>c</i> }	$\{a, b\}$

Les symboles directeurs des règles se calculent directement en utilisant la définition, ils sont donnés comme suit :

$$SD(A \rightarrow aBcDa) = \{a\}$$

3

$$\left. \begin{array}{l} SD(C \to \ \varepsilon) = \{a,\ c\} \\ SD(C \to \ bC) = \{b\} \end{array} \right\} \text{ L'intersection des deux ensembles est vide.}$$

$$\begin{array}{l} SD(D \to F) = \{a, \ b, \ c\} \\ SD(D \to bD) = \{b\} \end{array} \right\} \mbox{L'intersection des deux ensembles est } \mbox{\bf non vide car les deux contiennent} \\ b.$$

$$\left. \begin{array}{l} SD(E \to \ \varepsilon) = \{c\} \\ SD(E \to \ aE) = \{a\} \end{array} \right\} \text{ L'intersection des deux ensembles est vide.}$$

$$\begin{array}{l} SD(F \to \ \varepsilon) = \{a,\ b\} \\ SD(F \to \ cFb) = \{c\} \end{array} \right\} \ \text{L'intersection des deux ensembles est vide}.$$

En conclusion il existe deux règles de la forme $A \to \alpha$ et $A \to \beta$ où $\alpha \neq \beta$ pour lesquelles on a $SD(A \to \alpha) \cap SD(A \to \beta) \neq \emptyset$, la grammaire G_1 n'est donc pas LL(1).

(b) Calcul des symboles directeurs des règles :

$$SD(S \rightarrow V = EI) = \{a, b\}$$

$$SD(I \to; S) = \{;\}\$$
 $SD(I \to \varepsilon) = \{\$\}$ L'intersection des deux ensembles est vide.

$$SD(E \to TF) = \{ (,a, b, f, g, 0, 1) \}$$

$$\left.\begin{array}{l} SD(F\to +TF)=\{+\}\\ SD(F\to -TF)=\{-\}\\ SD(F\to \varepsilon)=\{\$,\ ;,\)\} \end{array}\right\} \text{ Les intersections des ensembles pris deux à deux sont vides.}$$

$$SD(T \to G) = \{f, g\}$$

$$SD(T \to V) = \{a, b\}$$

$$SD(T \to N) = \{0, 1\}$$

$$SD(T \to (E)) = \{(\}$$
Les intersections des ensembles pris deux à deux sont vides.

$$SD(T \rightarrow (V)) = \{0, 1\}$$

 $SD(T \rightarrow (E)) = \{(\}$

$$\left. \begin{array}{l} SD(G \to f(E;E)) = \{f\} \\ SD(G \to g(E)) = \{g\} \end{array} \right\}$$
 L'intersection des deux ensembles est vide.

$$\left. \begin{array}{l} SD(V \to a) = \{a\} \\ SD(V \to b) = \{b\} \end{array} \right\}$$
 L'intersection des deux ensembles est vide.

$$\left. \begin{array}{l} SD(N \to 0) = \{0\} \\ SD(N \to 1) = \{1\} \end{array} \right\}$$
 L'intersection des deux ensembles est vide.

Pour deux règles que l'conques de la forme $A\to \alpha$ et $A\to \beta$ où $\alpha\neq\beta$ on a $SD(A\to \alpha)$ \cap $SD(A\to \alpha)$ β) = \emptyset , la grammaire G_2 est donc LL(1).

Table de la grammaire G_2 :

	0	1	a	b	f	g
S			$S \to V = EI$	$S \to V = EI$		
I						
E	$E \to TF$	$E \to TF$	$E \to TF$	$E \to TF$	$E \to TF$	$E \to TF$
F						
T	$T \to N$	$T \to N$	$T \to V$	$T \to V$	$T \to G$	$T \to G$
G					$G \to f(E; E)$	$G \to g(E)$
V			$V \to a$	$V \rightarrow b$		
N	$N \to 0$	$N \to 1$				

	()	;	=	\$	+	_
S							
I			$I \rightarrow ; S$		$I \to \varepsilon$		
E	$E \to TF$						
F		$F \to \varepsilon$	$F \to \varepsilon$		$F \to \varepsilon$	$F \rightarrow +TF$	$F \rightarrow -TF$
T	$T \to (E)$						
G							
V							
N							

Exécution de l'analyseur pour le mot $\alpha_1 = a = g(0)$.

PILE	$Entr\'ee$	Sortie
\$S	a = g(0)\$	$S \to V = EI$
\$IE = V	a = g(0)\$	$V \rightarrow a$
\$IE = a	a = g(0)\$	
\$IE =	= g(0)\$	
\$IE	g(0)\$	$E \to TF$
\$IFT	g(0)\$	$T \to G$
\$IFG	g(0)\$	$G \to g(E)$
FFE(g)	g(0)\$	
FE	(0)\$	
FFE	0)\$	$E \to TF$
FF	0)\$	$T \to N$
FF	0)\$	$N \to 0$
FF	0)\$	
FF)\$	$F \to \varepsilon$
\$IF))\$	
\$IF	\$	$F \to \varepsilon$
\$I	\$	$I \to \varepsilon$
\$	\$	succes

Conclusion : le mot $\alpha_1 = a = g(0)$ appartient à $L(G_2)$.

La dérivation à gauche du mot α_1 est la suivante : $S \rightarrowtail V = EI \rightarrowtail a = EI \rightarrowtail a = TFI \rightarrowtail a = GFI \rightarrowtail a = g(E)FI \rightarrowtail a = g(TF)FI \rightarrowtail a = g(NF)FI \rightarrowtail a = g(0F)FI \rightarrowtail a = g(0F)FI \rightarrowtail a = g(0F)FI \mapsto a =$

Arbre syntaxique :

Exécution de l'analyseur pour le mot $\alpha_2 = a = (f(1; a); b = 0)$.

PILE	$Entr\'ee$	Sortie
\$S	a = (f(1;a); b = 0)\$	$S \to V = EI$
\$IE = V	a = (f(1; a); b = 0)\$	$V \to a$
\$IE = a	a = (f(1; a); b = 0)\$	
\$IE =	= (f(1;a); b = 0)\$	
\$IE	(f(1;a);b=0)\$	$E \to TF$
\$IFT	(f(1;a);b=0)\$	$T \to (E)$
\$IF) E ((f(1;a);b=0)\$	
\$IF)E	f(1;a); b = 0)\$	$E \to TF$
\$IF)FT	f(1;a); b = 0)\$	$T \to G$
\$IF)FG	f(1;a); b = 0)\$	$G \to f(E; E)$
\$IF)F)E;E(f)	f(1;a); b = 0)\$	
\$IF)F)E;E((1;a);b=0)\$	
\$IF)F)E;E	1;a);b=0)\$	$E \to TF$
\$IF)F)E;FT	1;a);b=0)\$	$T \to N$
\$IF)F)E;FN	1;a);b=0)\$	$N \to 1$
\$IF)F)E;F1	1;a);b=0)\$	
\$IF)F)E;F	;a);b=0)\$	$F \to \varepsilon$
\$IF)F)E;	;a);b=0)\$	
\$IF)F)E	a); b = 0)\$	$E \to TF$
\$IF)F)FT	a); b = 0)\$	$T \to V$
\$IF)F)FV	a); b = 0)\$	$V \to a$
\$IF)F)Fa	a); b = 0)\$	
\$IF)F)F); b = 0)\$	$F \to \varepsilon$
\$IF)F)); b = 0)\$	
\$IF)F	;b=0)\$	$F \to \varepsilon$
\$IF)	;b=0)	erreur

Conclusion : le mot $\alpha_2 = a = (f(1; a); b = 0)$ n'appartient pas à $L(G_2)$.

Le début de la dérivation à gauche du mot α_2 est la suivante :

```
\begin{array}{l} S \rightarrowtail V = EI \ \rightarrowtail \ a = EI \ \rightarrowtail \ a = TFI \ \rightarrowtail \ a = (E)FI \ \rightarrowtail \ a = (TF)FI \ \rightarrowtail \ a = (GF)FI \ \rightarrowtail \ a = (f(E;E)F)FI \ \rightarrowtail \ a = (f(TF;E)F)FI \ \rightarrowtail \ a = (f(NF;E)F)FI \ \rightarrowtail \ a = (f(1F;E)F)FI \ \rightarrowtail \ a = (f(1;E)F)FI \ \rightarrowtail \ a = (f(1;E)F)FI \ \rightarrowtail \ a = (f(1;AF)F)FI \ \rightarrowtail \ a = (f(1;AF)F)FI
```

Arbre syntaxique incomplet :

