Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/003433

International filing date: 28 January 2005 (28.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US Number: 60/540.612

Filing date: 30 January 2004 (30.01.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

NHODERNANDED STANNES (DEVANDER) (M

TO ALL TO WIGH THISE, PRESENTS, SHAME COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

February 24, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

> APPLICATION NUMBER: 60/540.612 FILING DATE: January 30, 2004

RELATED PCT APPLICATION NUMBER: PCT/US05/03433

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office

PTO/SB/16 (8-00) Approved for use through10/31/2002. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c). INVENTOR(S) Residence Given Name (first and middle (if anyl) Family Name or Sumame (City and either State or Foreign Country) Brandstadter Stephan M. Indianapolis, IN West Lafavette, IN Andrew Jackson Leman West Lafavette, IN Gregory Additional inventors are being named on the ____ separately numbered sheets attached hereto TITLE OF THE INVENTION (280 characters max) Fluorine Functional Groups, Fluorine Compositions, Processes for Manufacturing Fluorine Compositions, and Material Treatments Direct all correspondence to: CORRESPONDENCE ADDRESS Customer Number 021567 Place Customer Number Bar Code Label here OR Type Customer Number here Firm or Individual Name Address 'Address City State Country Telephone Fav ENCLOSED APPLICATION PARTS (check all that apply X Specification Number of Pages CD(s), Number X Drawing(s) Number of Sheets Other (specify) Application Data Sheet, See 37 CFR 1.76 METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (check one) Applicant claims small entity status. See 37 CFR 1.27. FILING FEE AMOUNT (\$) X A check or money order is enclosed to cover the filing fees The Commissioner is hereby authorized to charge filing 160.00 fees or credit any overpayment to Deposit Account Number: 23-0925 Payment by credit card. Form PTO-2038 is attached. The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government. IXI No. Ø3vernment agency and the Government contract number are: Respectfully submitted, 01/30/04 Date SIGNATURE . REGISTRATION NO. 46,791 (if appropriate) TYPED or PRINTED NAME Robert C. Hyta Docket Number: PC3-046

TELEPHONE 509-624-4276 USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PLIO to process) provisional application. Contributality is governed by 36 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon including calls are also as Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce. Washington, D.C. 2023. I.O. NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO 50x Provisional Application. Assistant Commissioner for Patents, Washington, D.C. 2023. This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a

SECOND SHEET OF INVENTORS

Vimal Sharma West Lafayette, IN E. Bradley Edwards Lafayette, IN

PTO/SB/17 (12/99)
Approved for use through 09/30/2000. OMB 0651-0032
Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCI Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number			
FEE TRANSMITTAL	Complete if Known		
I LE IIIANOMII IAL	Application Number	Filed Herewith	
for FY 2000	Filing Date	Filed Herewith	
Patent fees are subject to annual revision.	First Named Inventor	Stephan M. Brandstadter	
Small Entity payments <u>must</u> be supported by a small entity statement, otherwise large entity fees must be paid. See Forms PTO/SB/09-12.	Examiner Name	Unknown	
See 37 C.F.R. §§ 1.27 and 1.28.	Group / Art Unit	Unknown	
TOTAL AMOUNT OF PAYMENT (\$) 160.00	Attorney Docket No.	PC3-046	

TOTAL AMOUNT OF PAYMENT (\$) 160.00	Attorney Docket No. PC3-046			
METHOD OF PAYMENT (check one)	FEE CALCULATION (continued)			
The Commissioner is hereby authorized to charge indicated fees and credit any overpayments to: Decosit	3. ADDITIONAL FEES Lerge Entity Small Entity Fee	Fee Paid		
Account 23-0925	Code (\$) Code (\$) 105 130 205 65 Surcharge - late filing fee or oath	0.00		
Deposit	127 50 227 25 Surcharge - late provisional filing fee or	0.00		
Account Name Wells, St. John, P.S.	cover sheet.	0.00		
Charge Any Additional Fee Required	147 2.520 147 2.520 For filing a request for reexamination	0.00		
United St CPA 9g 1.10 att 1.17	112 920° 112 920° Requesting publication of SIR prior to Examiner ection	0.00		
2. Payment Enclosed: Check	113 1,840° 113 1,840° Requesting publication of SIR after Examiner action	0.00		
FEE CALCULATION	115 110 215 55 Extension for reply within first month	0.00		
	116 380 216 190 Extension for reply within second month	0.00		
1. BASIC FILING FEE Large Entity Small Entity	117 870 217 435 Extension for reply within third month	0.00		
Fee Fee Fee Fee Fee Description	118 1,360 218 680 Extension for reply within fourth month	0.00		
Code (\$) Code (\$) Fee Paid 101 690 201 345 Utility filing fee	128 1,850 228 925 Extension for reply within fifth month	0.00		
106 310 206 155 Design filing fee	119 300 219 150 Notice of Appeal	0.00		
107 480 207 240 Plant filing fee	120 300 220 150 Filing e brief in support of en appeal	0.00		
108 690 208 345 Reissue filing fee	121 260 221 130 Request for oral hearing	0.00		
114 150 214 75 Provisional filing fee 160.00	138 1,510 138 1,510 Petition to institute a public use proceeding	0.00		
01/070741 (4) (0) 160 00	140 110 240 55 Petition to revive - unavoidable	-		
SUBTOTAL (1) (\$) 160.00	141 1,210 241 605 Petition to revive - unintentional	0.00		
2. EXTRA CLAIM FEES	142 1,210 242 605 Utility issue fee (or reissue) 143 430 243 215 Design issue fee	0.00		
Extra Claims below Fee Paid	143 430 243 215 Design issue fee 144 580 244 290 Plant issue fee	0.00		
Independent 311	122 130 122 130 Petitions to the Commissioner	0.00		
Cleims =	123 50 123 50 Petitions related to provisional epplications	0.00		
"or number previously paid, if greater; For Reissues, see below	126 240 126 240 Submission of Information Disclosure Strat	0.00		
Large Entity Small Entity	EQ. 40 EQ. 40	0.00		
Fee Fee Fee Fee Description Code (\$) Code (\$)	property (times number of properties)	0.00		
103 18 203 9 Claims in excess of 20	146 690 246 345 Filing a submission after final rejection (37 CFR § 1.129(a))	0.00		
102 78 202 39 Independent claims in excess of 3 104 260 204 130 Multiple dependent claim, if not paid	149 690 249 345 For each additional invention to be			
109 78 209 39 "Reissue independent claims over original patent	examined (37 CFR § 1.129(b))	0.00		
110 18 210 9 " Reissue claims in excess of 20	Other fee (specify)	0.00		
0.00				
SUBTOTAL (2) (\$) 0.00 Reduced by Basic Filing Fee Paid SUBTOTAL (3) (\$) 0.00				
SUBMITTED BY Complete (if applicable)				
Name (Print/Type) Robert C. Hyga/ Registration No. (Antoney/Agent) 46,791 Telephone 509-624-4276				
Signature A: Water				

Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

Burdon Hour Statement: This form is estimated to tate 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to compile this form should be sent to the Chile Information Officer, Patient and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO: Asstant Commissioner for Patients, Washington, DC 20231.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

PROVISIONAL PATENT APPLICATION

FLUORINE FUNCTIONAL GROUPS, FLUORINE COMPOSITIONS, PROCESSES FOR MANUFACTURING FLUORINE COMPOSITIONS, AND MATERIAL TREATMENTS

> INVENTORS: Stephan M. Brandstadter Andrew Jackson Gregory Leman Vimal Sharma E. Bradley Edwards

ATTORNEY'S DOCKET NO. PC3-046

Fluorine Functional Groups, Fluorine Compositions, Processes for Manufacturing Fluorine Compositions, and Material Treatments

[0001] TECHNICAL FIELD

[0002] The present invention relates to the field of fluorine functional groups, fluorine compositions, processes for manufacturing fluorine compositions, and material treatments.

[0003] BACKGROUND OF THE INVENTION

[0004] Compositions such as surfactants, polymers, and urethanes have incorporated fluorinated functional groups. In certain instances these groups are incorporated to affect the performance of the composition when the composition is used as a treatment for materials and when the composition is used to enhance the performance of materials. For example, surfactants incorporating fluorinated functional groups can be used as fire extinguishants either alone or in formulations such as aqueous film forming foams (AFFF). Traditional fluorosurfactants such as perfluoro-octyl sulfonate (PFOS) have linear perfluorinated polar portions.

[0005] Polymers and or urethanes incorporating fluorinated functional groups have been used to treat materials. Exemplary fluorinated treatments include compositions such as Scotchguard.

Docket No. PC3-046

[0006] SUMMARY OF THE INVENTION

[0007] The present invention provides fluorine functional groups, fluorine compositions, processes for manufacturing fluorine compositions, and material treatments

[0008] An embodiment of the present invention provides fluorinated compositions that include R_f groups. The R_f groups can have at least two terminal -CF₃ groups. In exemplary embodiments, at least half of the fluorine content of the R_f group is provided by terminal -CF₃ groups. An exemplary general structure for the R_f group includes $(CF_3)_n(CF)_{(3-n)}(CF_2)_m$, with n between 1 and 3 and m between 0 and 6.

[0009] R_I groups can be incorporated into compositions such as polymers, urethanes, acrylate polymers, acrylate monomers, glycols, phosphate esters, metal complexes, and fluorosurfactants.

[0010] R_f containing compositions can be used as disbursing agents, or to treat substrate materials such as textile fabric, textile yarns, leather, paper, plastic, sheeting, wood, ceramic clays, as well as articles of apparel, wallpaper, paper bags, cardboard boxes, porous earthenware, construction materials such as brick, stone, wood, concrete, ceramics, tile, glass, stucco, gypsum, drywall, particle board and chipboard, and substrates such as carpet, drapery, upholstery, automotive and awning fabrics, and rainwear.

3

[0011] BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Embodiments of the invention are described below with reference to the following accompanying drawings.

[0013] Fig. 1 is a general view of some compositions to which R_i groups of the present invention may be incorporated.

[0014] Fig. 2 is a reaction scheme of an embodiment of the present invention.

[0015] Fig. 3 is a reaction scheme of an embodiment of the present invention.

[0016] Fig. 4 is a reaction scheme of an embodiment of the present invention.

[0017] Fig. 5 is a reaction scheme of an embodiment of the present invention.

[0018] Fig. 6 is a reaction scheme of an embodiment of the present invention.

[0019] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0020] This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws "to promote the progress of science and useful arts" (Article 1, Section 8).

[0021] An embodiment of the present invention provides fluorinated compositions. These compositions include fluorinated functional groups. These fluorinated functional groups can be referred to as R_1 . An aspect of the present invention provides R_1 groups having at least two terminal -CF3 groups. In an exemplary embodiment, at least half of the fluorine content of the R_1 groups is provided by terminal -CF3 groups. An exemplary general structure for the R_1 group includes $(CF_3)_n(CF)_{(3-n)}(CF_2)_m$, with n being between 1 and 3 and m being between 0 and 6. Exemplary R_1 groups can include functional groups such as halogens (e.g. iodine), mercaptan, thiocyanate, sulfonyl chloride, hydroxyl, acid, and acid halides. The R_1 groups may also include multiple alkylene groups having a ratio of the alkylene groups to the -CF3 groups of one to one or in other aspects of the present invention two to one. Exemplary alkylene groups include methylene groups (-CH2-) and/or difluoroalkylene groups (-CF2-).

[0022] Referring to Fig. 1, R₁ groups can be incorporated into compositions such as polymers, urethanes, acrylics including acrylate monomers and

polymers, glycols, phosphate esters, metal complexes, poly anhydrides,

[0023] R_f containing compositions can be used as disbursing agents, or to treat substrate materials such as textile fabric, textile yarns, leather, paper, plastic, sheeting, wood, ceramic clays, as well as articles of apparel, wallpaper, paper bags, cardboard boxes, porous earthenware, construction materials such as brick, stone, wood, concrete, ceramics, tile, glass, stucco, gypsum, drywall, particle board and chipboard, and substrates such as carpet, drapery, upholstery, automotive and awning fabrics, and rainwear.

[0024] R_t groups can be incorporated into compositions via R_t intermediates. Exemplary R_t intermediates include a functional portion that allows for incorporation into exemplary compositions such as fluorosurfactants, metal complexes, phosphate esters, glycols, acrylics, urethanes, polymers, poly-anhydrides, and telomer-based compositions.

[0025] Exemplary R_f groups, R_f intermediates and compositions are described with reference to Figures 1-7. Referring to Fig. 1, a schematic view of exemplary compositions employing the R_f groups of the present invention is shown. These compositions include but are not limited to surfactants, poly-anhydrides, acrylics, urethanes, metal complexes, polyenes, and/or phosphate esters. In exemplary implementations these compositions can demonstrate desirable surface energies. Exemplary

Docket No. PC3-046

compositions having the R_1 groups of the present invention can affect the surface tension of solutions in which they are incorporated and/or the water resistance of materials to which they are applied.

[0026] Exemplary $R_{\rm f}$ intermediates include but are not limited to the following:

$$F_{3}C$$

[0027] The R_f intermediate CF_3 (4-iodo-2-(trifluoromethyl)-

(....,,,,

1,1,1,2-tetrafluorobutane) may be obtained for example at Matrix Scientific, P.O. Box 25067. Columbia. SC 92994-5067.

[0028] The R_f intermediate

(1,1,1-trifluoro-2-

trifluoromethyl-2,4-pentadiene) can be prepared in an exemplary aspect according to J. Org. Chem., Vol. 35, No. 6, 1970, pp. 2096-2099 herein incorporated by reference. 1,1,1-trifluoro-2-trifluoromethyl-2,4-pentadiene can also be prepared according to the following example.

[0029] <u>Exemplary preparation of 1,1,1-trifluoro-2-trifluoromethyl-2,4-</u> pentadiene.

[0030] Pentane (300cc) is placed in a 500cc three neck flask. The pentane is chilled below -30°C. To the pentane is added hexafluoroacetone (59g, 0.36mol), propylene (16.2g, 0.38mol.), and anhydrous aluminum trichloride (0.77g, 0.006mol). This solution is stirred and the temperature is allowed to warm to room temperature over 3 hour period.

[0031] A 15% aqueous HCl solution (20 mls) is added to the mixture and the mixture is washed 3 times with H_2O . The aqueous layer is decanted off

and the organic layer is dried with MgSO₄. Remaining pentane and propylene are flashed vaporized off at 60°C to give 54.4 grams (70% by Gas Chromatograpy) of isomeric 1,1-bis(trifluoromethyl)-3-penten-1-ol.

[0032] The crude 1,1-bis(trifluoromethyl)-3-penten-1-ol (54 grams) is placed in a 250ml 3-neck flask. To this is added 125ml of conc. H₂SO₄. The stirred solution is heated slowly to 95°C (the lights are boiled off between 34 and 55°C). The product 1,1,1-trifluoro-2-trifluoromethyl-2,4-pentadiene (15.6g, 45.5% yield) is taken off between 70 and 74°C. A process scheme for the preparation of 1,1,1-trifluoro-2-trifluoromethyl-2,4-pentadiene is shown below as exemplary reaction sequence(1).

$$F_3C$$
 F_3C
 F_3C

[0033] The R_f intermediate

(4,5,5,5-tetrafluoro-4-

(trifluoromethyl)pent-1-ene) can be prepared in an exemplary aspect according to Synthesis and characterization of a new class of perfluorinated alkanes: tetrakis(perfluoroalkyl) alkane. G. Gambaretto et al., Journal of Fluorine Chemistry, 5892 (2003) pgs 1-7 and United States Patent 3,843,735 to Knell et al both of which are herein incorporated by reference. 4,5,5,5-

tetrafluoro-4-(trifluoromethyl)pent-1-ene can also be prepared according to the following example.

[0034] Exemplary preparation of

4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene.

[0035] 1,1,1,2,3,3,3-heptafluoro-2-iodopropane (1651g, 5.6mol) AIBN (9.2g, 0.06mol), and 293g of 30% aqueous $Na_2S_2O_5$ are placed into a 2L pressure reactor. The reactor is sealed and heated to 80°C under autogeneous pressure. Allyl acetate (587g, 5.9mol) is slowly added to this mixture and the mixture is stirred for an additional 4 hours.

[0036] After stirring the organic layer is removed, washed twice with H₂O and dried with MgSO₄ to give 2212g of 4,5,5,5-tetrafluoro-4-(trifluoromethyl)-2-iodopentyl acetate (94%).

[0037] Diethylene glycol (2944g) and zinc powder (1330g) are placed into a 5L 5-neck flask equipped with a simple distillation apparatus. This mixture is stirred and heated to 120°C and the 4,5,5,5-tetrafluoro-4-(trifluoromethyl)-2-iodopentyl acetate (4149g) is slowly added. As the 4,5,5,5-tetrafluoro-4-(trifluoromethyl)-2-iodopentyl acetate is added, 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene (2075g, 97.8% assay by gc) is flashed-off and collected in a 1L ice trap. The content of the ice trap is distilled to give 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene >99.5% (b.p. 54°C). A

4,5,5,5-tetrafluoro-4-(trifluoromethyl)
-2-iodopentyl acetate

process scheme for the preparation of 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene is shown below as exemplary reaction sequence (2) and (3).

4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene

[0038] Gas Chromatography, Gas Chromatography/Mass Spectrometry and H¹ NMR is utilized to determine 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene as shown below.

Gas Chromatography of Compound	Dbwax®	Area %	Silicaplot®	
•	(min)		(min)	
F7I	2.7, 3.6	0.8, 99.2		
allylOAc	13.1	99.9		
Iodoacetate	24.5	95+	N/A	
perfluoroisopropyl-1- propene	3.1	97.8+	23.4	99+

12

Gas Chromatography / Mass Spec of			
4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene			
Compound	SilicaPlot (min)	m/z	
F7I	12.5 - 13.6	295-300	
perfluoroisopropyl- 1-propene	14.9	210	

[0039] NMR H¹ Chemical Shifts (ppm) of 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene.

$$F_3C$$
 F_3C
 F_3C

[0040] The R_f intermediate

(2,3,4,5,5,5-hexafluoro-2,4-bis(trifluoromethyl) Pentyl allyl ether) can be

prepared in an exemplary aspect according to the following exemplary method.

[0041] Exemplary Preparation of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluoromethyl)

[0042] 2.3.4.5.5.5-hexafluoro-2.4-bis(trifluoromethyl) pentanol (551g. 1.66 moles) (exemplary procedures for the preparation of which are disclosed in US 3,467,247, herein incorporated by reference), allyl bromide (221,2g, 1,83 moles) and tetrabutylammonium hydrogen sulfate (5%) are placed into a 1L three-neck flask. This mixture is chilled to 10°C and 50% KOH (400g) is added over a 2 hour period. This solution is allowed to stir at 10°C for 72 hours. After the 72 hours an additional 100ml of 33% KOH is added and the mixture is allowed to stir for an additional 12 hours. The reaction is monitored by gas chromatography and after the reaction of 2.3.4.5.5.5hexafluoro-2,4-bis(trifluoromethyl) pentanol the mixture is washed 1 x H₂O, 2 x 10% HCl and 1 x H₂O. The organic layer is dried with MgSO₄ to give 516 g of material containing 20.04 and 28.21% (by gas chromatography and gas chromatography/mass spectrometry) 2,3,4,5,5,5-hexafluoro-2,4bis(trifluoromethyl) pentyl allyl ether. A process scheme for the preparation of 2.3.4.5.5.5-hexafluoro-2.4-bis(trifluoromethyl) pentyl allyl ether is shown below as exemplary reaction sequence (4).

$$F_3C$$
 F_3C
 F_3C

[0043] Iodide R_f intermediates can be converted to thiocyanate R_f intermediates (R_fSCN) by reacting the iodide intermediate with potassium thiocyanate as shown below as exemplary reaction sequence (5) and described as follows:

[0044]
$$R_tI + KSCN \rightarrow R_tSCN + KI (5)$$

[0045] The reaction is carried out in absolute ethanol using acetic acid as a catalyst. A 30% molar excess of KSCN as compared to R_II is used. The ethanol, acetic acid, R_II, and KSCN are charged to a reaction vessel, heated to reflux and held there until the reaction is complete. The reaction progress is monitored by analyzing the reaction mixture for R_II by gas chromatography. Upon reaction completion, the KI is filtered off the reaction mixture, the ethanol is evaporated away and the R_II is washed twice with hot (70 °C) water.

[0046] A mercaptan R_t intermediate may also be produced by reacting the iodine R_t intermediate with thiourea to make the isothiuronium salt and treating the isothiuronium salt with sodium hydroxide to give the mercaptan

 $R_{\rm I}$ intermediate plus sodium iodide, as described in U.S. patent 3,544,663 herein incorporated by reference.

[0047] An embodiment of the present invention provides fluorosurfactants that include the $R_{\rm f}$ groups described above. Exemplary surfactants include those compounds having a polar portion attached to a non-polar portion. The polar portion can be referred to as the tail of the surfactant and the non-polar portion can be referred to as the head of the surfactant. Fluorosurfactants ($R_{\rm f}$ - $R_{\rm s}$) include those surfactants having tail or polar portions containing fluorine. The fluorosurfactant tail or polar portion can be referred to as an $R_{\rm f}$ portion and the fluorosurfactant head or non-polar portion can be referred to as an $R_{\rm s}$ portion.

[0048] Aspects of the present invention provide fluorosurfactant production methods as well as fluorosurfactant intermediates and methods of manufacturing fluorosurfactant intermediates. An exemplary fluorosurfactant production method includes providing a fluorosurfactant intermediate having at least two -CF₃ groups. Exemplary fluorosurfactant intermediates include fluorocarbons having a beta end and an alpha end with the alpha end being designated for later attachment to the R₃ portion of the fluorosurfactant. Exemplary methods for preparing surfactants can be found in German Offen. 1,924,264 and U.S. Patent 3,721,706 both of which are hereby incorporated by reference. Exemplary methods for preparing fluorosurfactants that include the R₁ groups of the present invention are described below.

16

[0049] The thiocyanate R_t intermediate can be wet chlorinated to give the sulfonylchloride of the fluorosurfactant intermediate as shown below in exemplary reaction sequence (6).

$$2R_1SCN + 8H_2O + 9CI_2 \rightarrow 2R_1SO_2CI + 2CO_2 + N_2 + 16HCI$$
 (6)

[0050] The RiSCN, water and acetic acid as a solvent are charged to a reaction vessel. Chlorine is added to the reaction vessel in 30 minute increments while the reaction vessel temperature is maintained at 20 °C to 30 °C. At the end of each 30 minutes of chlorine addition, 0.314 grams of water is added to the reaction vessel. For each gram of chlorine that is added, 4.5 moles per mole of RiSCN is added. When this amount has been added, the reaction mixture is sampled and analyzed for RiSCN by gas chromatography. When the reaction is complete, the reaction mixture is diluted to 65% RtSO2CI with chloroform, heated to 40 °C and washed with twice its volume of 40 °C water. After the wash, the mixture is dried by azeotroping the water out using a Dean Stark trap. Karl Fischer titration is used to determine water amount. Water content can be less than 0.1%. The sulfonylchloride intermediate can then be esterified with a dimethylaminopropylamine (H₂N(CH₂)₃N(CH₃)₂, DMAPA) to sulfonamidoamine as shown as exemplary reaction sequence (7) and described below.

$$R_1SO_2CI + H_2N(CH_2)_3N(CH_3)_2 \rightarrow R_1SO_2NH(CH_2)_3N(CH_3)_2 + HCI$$
 (7)

[0051] The reaction is carried out in chloroform solution at reflux. It is preferred that the solvent and reactants in this step be as dry as possible, at least less than 0.1% by weight water. The DMAPA is dissolved in 1.5 times its volume in chloroform in the reaction flask which is immersed in a cooling bath. A DMAPA molar equivalent of 65% R₁SO₂CI in chloroform solution is added to the reaction flask while maintaining the temperature of the reaction flask at less than 50 °C. When the addition is complete the temperature is raised to reflux and held at reflux for 5 hours. The reaction flask is then cooled to 60 °C and washed 3 times with equal volumes of 60 °C water. The chloroform is stripped under vacuum and the neat product is washed twice with 90 °C water. The reaction mix is sampled and analyzed for free DMAPA using a wet chemistry method that is specific for primary amines. The sulfonamidoamine can then be betainized with an acetate such as sodium monochloroacetate vield the amphoteric to fluorosurfactant R_fSO₂NH(CH₂)₃N⁺(CH₃)₂ as shown as exemplary reaction sequence (8) and described below.

$$R_1SO_2NH(CH_2)_3N(CH_3)_2 + CICH_2COONa \rightarrow R_1SO_2NH(CH_2)_3N^+(CH_3)_2$$
 (8)

[0052] The sulfonamide is dissolved in enough absolute ethanol to give a 40% solution. An equimolar amount of sodium monochloracetate is added. The mixture is refluxed for 8 hours. It is sampled and titrated for OH. If OH is greater than 1.5 x 10⁻³ eq., the solution is refluxed for an additional hour and reanalyzed. This sequence is repeated until OH is less than

 1.5×10^{-3} eq. If there is no decline in OH in two succeeding samplings, additional sodium monochloracetate is added, the amount being calculated as the amount needed to lower the OH to a value below 1.5×10^{-3} eq. The by-product NaCl is filtered off and water is then added according to the following calculation.

[0053] In an exemplary aspect of the present invention, the mercaptan $R_{\rm I}$ intermediate may be attached to an $R_{\rm S}$ portion such as group 2-acrylamido-2-methyl-1 propane sulfonic acid available from Lubrizol as AMPS 2403 as generally described in U.S. patent 4,000,188 herein incorporated by reference.

[0054] An exemplary method for manufacturing an aminoxide of the fluorosurfactant can include the processes as generally described in U.S. patent 4,983,769 herein incorporated by reference. Accordingly, the sulfoamidoamine is combined with ethanol and water and 70% hydrogen peroxide and heated to at least 35°C for 24 hours. Activated carbon is then added and the mixture refluxed for about 2 hours. The reaction mixture is filtered and the filtrate evaporated to dryness to provide the aminoxide of the fluorosurfactant.

[0055] Exemplary fluorosurfactants that may be produced in accordance with the methods described herein include the following:

[0056] Exemplary R_{s} portions of the fluorosurfactants include the following:

with n being from one to 4.

[0057] Exemplary fluorosurfactants include but are not limited to the following.

[0058] NMR: ¹H (D6-DMSO, 300 MHz) δ 1.6 (m, 2H), 2.1 (bs, 6H), 2.2 (m, 2H), 2.6 (m, 2H), 2.8 (m, 2H), 3.2 (m, 2H), 7.4 (bs, 1H); ¹³C (D6-DMSO, 75 MHz) δ 22.9, 23.2, 27.5, 43.0, 45.0, 89-93 (ds), 114-126 (qd); and ¹⁹F (CFCl₃, D6-DMSO, 282 MHz) δ -76.6 (bs, 6F), -183.6 (m, 1F)

[0059] IR: (KBr, cm-1) 3200 br w, 3100 m, 2900 m, 2800 m, 1469 s, 1315 s, 1221 s, 1160 s, 1142 m, 1083 m, 1045 m, 977, 818, 765, 713, 559 m.

[0060] and

[0061]

[0062] NMR: 1 H (D6-DMSO, 300 MHz) δ 1.8 (m, 2H), 2.6 (m, 2H), 3.0 (m, 2H), 3.1 (bs, 6H), 3.6 (m, 2H), 3.9 (m, 4H), 7.9 (bs, 1H); 13 C (D6-DMSO, 75 MHz) δ 22.6, 22.9, 23.1, 43.1, 50.0, 60.8, 64.4, 88-93 (ds), 114.5-126.5 (qd); and 19 F (CFCl₃, D6-DMSO, 282 MHz) δ -76.4 (d, 6.95 Hz, 6F), -183.4 (m, 1F)

[0063] The fluorosurfactants of the present invention may be used as relatively pure solutions or as mixtures with other components. An exemplary fluorosurfactant use includes use in fire-fighting foams such as aqueous film forming foams (AFFF).

[0064] An embodiment of the present invention provides metal complexes incorporating the $R_{\rm f}$ groups of the present invention. The $R_{\rm f}$ groups of the present invention can be incorporated as acid halides or carboxylic acids

(together being referred to as Rf acid) with the acid halide including, but not limited to, acid fluorides. An exemplary method for preparing the acid Rf intermediate includes reacting the iodine Rf intermediate disclosed above with fuming sulfuric acid to produce an acid fluoride Rf intermediate. Referring to Fig. 2, a reaction sequence 10 for the conversion of acid fluoride R_f intermediate 12 into a metal (chrome) complex 20 is shown. An acid fluoride Rf intermediate 12 can be reacted with an amino acid such as glycine 14 to produce an amine ester 16. Amine ester 16 may then be reacted with chromic chloride 18 in an alcohol such as methanol or isopropanol to produce an exemplary R_f chrome complex 20. Exemplary acid R_f intermediates include ethylene carboxylic acid R_f intermediates and/or mixtures of ethylene carboxylic acid R_f intermediates and carboxylic acid R_f intermediates. Exemplary preparations can be performed in accordance with U.S. Patents 3.351.643, 3.574.518, 3.907.576, 6.525.127, and 6,294,107, herein incorporated by reference. Rf chrome complexes 20 can then be used to treat substrates such as paper, leather, textiles, varns. fabrics, glass, ceramic products, and/or metals. In some cases treating substrates with the complexes of the present invention render the substrates less permeable to water and/or oil.

[0065] An embodiment of the present invention also provides for incorporation of the R_f groups into phosphate esters which, in exemplary embodiments, can be used to treat substrates and/or be used as a disbursing agents during the preparation of polymers. Referring to Fig. 3, a

reaction sequence 30 is shown for the preparation of phosphate esters 34 from a hydroxyl Rf intermediate 32. Hydroxyl Rf intermediate 32 can be obtained by reacting iodine R_f intermediates with a strong base such as KOH. Hydroxyl R_f intermediate 32 can be reacted with P₂O₅ or POCl₃ in the presence of a metal (M) to yield an exemplary phosphate ester or pyrophosphate 34. U.S. Patents 2,559,749 and 2,597,702, herein incorporated by reference, generally describes the conversion of hyrdoxyl compounds to phosphate esters using P₂O₅ or POCl₃ to give partial esters. These reactions can also be carried out in the presence of pyridine as an HCI acceptor. Monoalkyl phosphates can also be prepared by treating phosphorus pentoxide P2O5 with excess moles of hydroxyl R1 intermediate 32 followed by hydrolysis of the resulting pyrophosphate. The product can then be isolated as such or precipitated as the ammonium salt by the addition of ammonia to the reaction mixtures. Alternatively, a solution of salts of the mixed mono- and di-esters can be prepared by neutralizing a mixture of the acids with aqueous ammonia and amine or alkaline metal hydroxide.

[0066] Dialkyl phosphates can be prepared as well by a reaction of excess moles of hydroxyl $R_{\rm f}$ intermediate with phosphorus pentoxide (not shown). Instead of hydrolysis, however the intermediate pyrophosphate can be heated at low pressure. Alternatively, $R_{\rm f}$ phosphate esters can be prepared and separated by treating hydroxyl $R_{\rm f}$ intermediate with phosphorus pentoxide, neutralizing the resulting mixed acid phosphate with aqueous

S:1PC310461P04.doc 24

ammonia and amine such as tetraalkyl ammonium base or alkali metal hydroxide to give a solution that can include amine or metal salts of the esters (not shown). Salts of esters can be dissolved in toluene and purged with ammonia to precipitate a mixture of the salts of the corresponding esters. The toluene and unreacted hydroxyl R_f intermediate and by-products such as the corresponding trialkyl phosphate can be removed by filtration, producing compositions having the general formula R_fAOPORp, as described in U.S. Patent 4,145,382 herein incorporated by reference. As used in this general formula, the R_f is the R_f group of the present invention, A is a methylene group or other similar spacer group from the phosphate ester and can be present in amounts as high as 3 and as little as none, and Rp is a corresponding salt to the phosphate including hydrogen alkali metal ammonium or substituted ammonium such as ethanol amine.

[0067] These phosphate compositions can be used as disbursing agents in the preparation of polymers or they can be diluted and used to treat substrate materials in aqueous bathes, for example, by ordinary means such as padding, dipping, impregnating, spraying, etc. These compositions can be incorporated into or used to treat such materials as textile fabric, textile yarns, leather, paper, plastic, sheeting, wood, ceramic clays, as well as manufactured articles prepared therefrom such as articles of apparel, wallpaper, paper bags, cardboard boxes, porous earthenware, etc. U.S. Patent 3,112,241 describes methods for treating materials using these phosphate esters and is herein incorporated by reference.

[0068] Referring again to Fig. 3, phosphate esters may also be prepared. According to reaction sequence 40 utilizing R_f epoxide intermediate 42 and/or R_f diol intermediate 44 as generally described in U.S. Patent 3,919,361 and herein incorporated by reference. Intermediates 42 and 44 can be reacted with phosphoric acid to obtain an R_f phosphoric acid ester 46. Phosphoric acid 46 can be dissolved in a solution and applied to a substrate such as paper to increase resistance to environmental materials such as oil and water. Ester 46 can also exist as a salt such as alkyl amines including ethanol amines as described in U.S. Patent 4,145,382 herein incorporated by reference. Ester 46 can be used to treat substrates such as wood pulp products including paper products such as packaging products including food packaging products.

[0069] An embodiment of the present invention includes the R_I group of the present invention incorporated into glycols which can be subsequently incorporated into polymers such as urethanes including polyurethane elastomers, films and coatings. Glycols having the R_I groups of the present invention can be converted to phosphoric acids or phosphate esters of those glycols as well. Referring to Fig. 4, a reaction sequence 50 for the incorporation of the R_I groups of the present invention into glycols is shown. Methods for producing these compositions are described in U.S. Patent 4,898,981, U.S. Patent 4,491,261, U.S. Patent 5,091,550 and U.S. Patent 5,132,445, all of which are herein incorporated by reference. For example and by way of example only, a mercaptan R_I intermediate 52 can be reacted

with a sulfide diol 54 or 2.6 diox-aspiro (3.3) heptane 56 to produce diols 58 and 60, respectively. Diols 58 and 60 can then be used directly or indirectly to make a condensation product 62 such as polyesters, polyureas, polycarbonates, and polyurethanes. This glycol functionality can also be incorporated into block polymers using the glycols having the R_I group of the present invention. U.S. Patent 5,491,261 discloses several other glycols that can benefit from the R_I group of the present invention and is herein incorporated by reference.

[0070] Exemplary diols having R_I groups of the present invention can be converted to phosphoric acid functionality or phosphate esters (not shown). U.S. Patent 5,091,550, 5,132,445, 4,898,981, and 5,491,261 all disclose methods of preparing diols and converting glycols to phosphate esters and are herein incorporated by reference. In an exemplary implementation, the glycols can be converted to phosphoric acid or phosphate esters by reacting the glycols in the presence of phosphoric acid. These compositions can be incorporated into compounds which can act as oil and grease proofing for paper as well as soil release agents for textile fibers.

[0071] Referring to Fig. 5, multiple reactions sequences 70 are shown for the preparation of an acrylic monomer 80 having the R_I group of the present invention. U.S. Patents 3,491,169, 3,282,905, 3,497,575, 3,544,663, 6,566,470, 4,147,851, 4,366,299 and 5,439,998 all relate to the use and preparation of acrylic emulsion polymers that can benefit from the R_I group

of the present invention and are herein incorporated by reference. Thiol $R_{\rm f}$ intermediates 72, iodine $R_{\rm f}$ intermediate 74, hydroxyl $R_{\rm f}$ intermediates 76, and/or acetate $R_{\rm f}$ intermediates 78 can be converted to acrytate monomer 80 according to the schemes and references described herein.

[0072] Exemplary preparation of 4,5,5,5-Tetrafluoro-4-(trifluormethyl)pentyl acrylate

[0073] The acrylate 4,5,5,5-Tetrafluoro-4-(trifluormethyl)pentyl acrylate is prepared from the R_f intermediate 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene in two steps shown below as reaction sequence (8) and (9) respectively.

[0074] A 1M solution of 4,4,5,5-tetramethyl-1,3,2-dioxaborolane in tetrahydrofuran (66.1g, 0.075 moles), chlorotris(triphenylphosphine)rhodium

(0.37g), and Tetrahydrofuran (158.8g) is placed in a 500mL three-neck round bottom flask (RBF). 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene (18.243, 0.087 moles) is added to reaction mixture at room temperature over a 15 minute period. Reaction is carried out for 72 hours and is monitored by gas chromatography until which time the 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene is substantially consumed (See Table 1 below for monitoring of reaction).

Table 1: Formation of Borate Ester Reaction Monitoring by Gas Chromatography; All Samples Analyzed on DB WAX Column.				
Sample Number	3.07 minute Area %	9.3 minute Area %	16.8 minute Area %	
1	57	29	14	
2	22	11	66	
3	0	5.4	94.5	

Note: 3.07 minute peak = 4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-ene, 9.3 minute peak = 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 1.3,8 minute peak = 2-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolan

[0075] A 3M aqueous solution of Sodium Hydroxide (7.8g) is added to the reaction mixture via the addition funnel over a 15 minute period after which the reaction mixture is chilled to 0°C using an ice bath. Hydrogen peroxide (23.6g, 35% aqueous solution) is added dropwise over a 15 minute period to the reaction mixture. The reaction mixture is then washed in H₂O three times. The organic mixture is transferred into a 100mL 3-neck RBF and distilled to produce an 85% pure (by gas chromatography) 4,5,5,5-Tetrafluoro-4-(trifluoromethyl)pentan-1-ol having a DB Wax elution time of 19.7 minutes.

[0076] The 4,5,5,5-Tetrafluoro-4-(trifluoromethyl)pentan-1-ol (2.59g, 0.011moles) and triethylamine (1.3g, 0.013 moles) are added to a 15mL three-neck RBF. The RBF contents are chilled to 0°C using ice water bath and acryloyl chloride (1.38g, 0.015 moles) is added dropwise using an addition funnel to the RBF over a 15 minute period. After a 1 hour hold period, 10 mL H₂O is added and two phases were observed. Water is decanted off the reaction mixture and organic phase is dried over MgSO₄. Organic phase is analyzed by GC wherein a peak was observed at 16.1 minutes on DB Wax Column. GC/MS confirm that the new peak has a mass of 283.

[0077] For example and by way of example only, the R_f group of the present invention can be incorporated into a monomer as described in U.S. Patent 6,566,470 represented as R_f -W-X-C(=0)-C(R^1)=CH₂ with the R_f group as described above, W can be an alkylene with 1 to 15 carbons, hydroxyalkylene with 3 to 15 carbons, -(C_nH_{2n})(OC_mH_{2m})_{q^2}, -SO₂NR²-(C_nH_{2n})- or -CONR²-(C_nH_{2n})-, with n is 1 to 12, m is 2 to 4, q is 1 to 10 and R^1 is an alkyl group with 1 to 4 carbon atoms, X can be O, S and/or N(R^2), where R^2 is as R^1 as defined above. This monomer can be incorporated with other monomers and then incorporated into the

construction of paper materials or used to treat paper materials. These polymeric solutions can be diluted to a percentage aqueous or non-aqueous solution and then applied to substrates to be treated such as paper plates.

[0078] Monomers having the R_I group of the present invention can also be incorporated into copolymers with comonomers such as the dialkyl amino alkyl acrylate or methacrylate or acrylamide or methacrylamide monomer and its amine salt quaternary ammonium or amine oxide form as described in U.S. Patent 4,147,851, herein incorporated by reference. The general formula for these R_I acrylates can be R_IqO₂CC(R)=CH₂ wherein R is H or CH₃, q is an alkylene of 1 to 15 carbon atoms, hydroxyalkylene of 3 to 15 carbon atoms, or $C_nH_{2n}(OC_qH_{2q})_{m^-}$, $-SO_2NR^1(C_nH_{2n})$ -, or $-CONR^1(C_nH_{2n})$ -, n is 1 to 15, q is 2 to 4 and m is 1 to 15. Comonomers forming a copolymer with acrylates having the R_I group described above include those having amine functionality. These copolymers can be diluted in a solution and applied or incorporated directly into or on substrates to be treated such as paper.

[0079] R_I groups of the present invention can also be incorporated into acrylate polymers or other acrylate monomers consistent with those described in U.S. Patent 4,366,299, herein incorporated by reference. These compositions can be incorporated into paper products or applied thereon.

[0080] Acrylics having R_I groups of the present invention can be applied to finished carpet or incorporated into the finished carpet fiber before it is woven into carpet. Acrylics having R_I groups of the present invention can be applied to carpet by a normal textile finishing process known as padding, in which the carpet is passed through a bath containing latex, water and other minor additives such as non-rewetting surfaces. The carpet can then be passed through nip rollers to control the rate of the add-on before being dried in a tenter frame. The acrylics of the present invention may also be incorporated into the fiber by reacting the fiber with isocyanates having the R_I group of the present invention.

[0081] The R_I groups of the present invention can also be incorporated into materials used to treat calcitic and/or siliceous particulate materials. The R_I groups of the present invention can be incorporated as a monomer into a copolymer where the copolymer can either be part of a formulation to treat these materials or used by itself to treat these materials as described in U.S. Patent 6,383,569 herein incorporate by reference. The monomer can have the general formula R_I-Q-A-C(O)-C(R)=CH₂ wherein R_I is described above, R is H or CH₃, A is O, S, or N(R'), wherein R' is H or an alkyl of from 1 to 4 carbon atoms, Q is alkylene of 1 to about 15 carbon atoms, hydroxyalkylene of 3 to about 15 carbon atoms, --(C_nH_{2n})(OC_q H_{2q})_m--SO₂-NR'(C_nH_{2n})--, or --CONR'(C_nH_{2n})--, wherein R' is H or an alkyl of 1 to 4 carbon atoms, n is 1 to 15, q is 2 to 4, and m is 1 to 15.

[0082] Once these compositions and mixtures contain the R_f group of the present invention, they can be used to treat hard surfaces including construction materials such as brick, stone, wood, concrete, ceramics, tile, glass, stucco, gypsum, drywall, particle board and chipboard. As stated above, they can be used alone or as in combination with penetration assistance such as non-ionic surfactants. These compositions can be applied to the surface of calcitic and/or siliceous architectural construction material by any known method, for example, by soaking, impregnation, emersion, brushing, rolling, or spraying. Compositions including the Rf groups of the present invention can be applied to the surface to be protected Suitable spraying equipment is commercially available. by spraving. Spraying with a compressed air sprayer is the preferred method of application to the particular material. U.S. Patents 6,197,382 and 5,674,961also describes methods for applying and using polymer solutions and are herein incorporated by reference.

[0083] In an exemplary process of producing solutions having components with R₁ groups according to the present invention, an R₁ group may be attached to a methyl-epoxide group and the epoxide condensed with a monocarboxylic alkenoic acid to prepare an unsaturated ester (not shown). Exemplary methods for producing these kinds of unsaturated esters are described in U.S. Patent 5,798,415 herein incorporated by reference. Additional esters may be prepared according to U.S. Patent 4,478,975 herein incorporated by reference. Components of these solutions can also

include dimethyl amino ethyl methacrylate and these components can be applied in organic and inorganic solvents, as described in U.S. Patent 6,120,892 herein incorporated by reference. R_f group polymers and copolymers can also be combined with monomers to produce copolymers or in solutions with amido and sulfur monomers represented by U.S. Patent 5.629.372 herein incorporated by reference.

[0084] Amine R_I intermediates can also be reacted with tetrachlorophthalic anhydride using U.S. Patent 4,043,923 as an exemplary reaction scheme, U.S. Patent 4,043,923 is herein incorporated by reference (not shown). The reaction product can be mixed with a carpet cleaning solution to provide soil repellency.

[0085] The R_1 group of the present invention may also be incorporated into urethanes. Referring to Fig. 6 a reaction sequence 90 is shown for the preparation of urethanes including the R_1 group of the present invention. A hydroxyl R_1 intermediate 92 can be combined with hexamethylene diisocyanate polymers (DESMODUR N-100) 94 following the general reaction sequence described in U.S. Patent 5,827,919 herein incorporated by reference to produce urethane 96. Another method for preparing the urethanes of the present invention includes reacting a mercaptan R_1 intermediate with epichlorohydrin to produce a "twin tailed" which can be reacted with diisocyanate and/or a urethane prepolymer as described in U.S. patent 4,113,748 herein incorporated by reference (not shown). The

urethanes having the R_I group can then be incorporated as an additive to compositions such as latex paint. U.S. Patent 5,827,919 described methods for utilizing these urethanes and is herein incorporated by reference. Urethanes and polyurethanes can be used to treat substrates such as carpet, drapery, upholstery, automotive and awning fabrics, and rainwear.

[0086] The R_1 group can also be complexed as an acid with amine and quaternary ammonium polymers as described in U.S. Patent 6,486,245 herein incorporated by reference (not shown).

[0087] In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect.

Docket No. PC3-046

[0088] Aspects of the Invention.

[0089] 1. R_f groups having at least two terminal -CF₃ groups with at least half of the fluorine content of the R_f group being provided by the -CF₃ groups.

[0090] 2. The R_I groups of 1 incorporated into polymers, urethanes, acrylate polymers, acrylate monomers, glycols, phosphate esters, metal complexes, and/or fluorosurfactant compositions.

[0091] 3. The compositions of 2 used as disbursing agents; treatments for substrate materials such as textile fabric, textile yarns, leather, paper, plastic, sheeting, wood, ceramic clays, as well as articles of apparel, wallpaper, paper bags, cardboard boxes, porous earthenware, construction materials such as brick, stone, wood, concrete, ceramics, tile, glass, stucco, gypsum, drywall, particle board and chipboard, and substrates such as carpet, drapery, upholstery, automotive and awning fabrics, and rainwear.

36

100921 ABSTRACT OF THE DISCLOSURE

terminal -CF₃ groups with at least half of the fluorine content of the R_I group provided by the -CF₃ groups. An exemplary general structure for the R_I group includes (CF₃)_n(CF)_(3-n)(CF₂)_m, with n between 1 and 3 and m between 0 and 6. These R_I groups can be incorporated compositions such as polymers, urethanes, acrylate polymers, acrylate monomers, glycols, phosphate esters, metal complexes, and fluorosurfactants. These compositions can be used as disbursing agents, to treat substrate materials such as textile fabric, textile yarns, leather, paper, plastic, sheeting, wood, ceramic clays, as well as articles of apparel, wallpaper, paper bags, cardboard boxes, porous earthenware, construction materials such as brick, stone, wood, concrete, ceramics, tile, glass, stucco, gypsum, drywall, particle board and chipboard, and substrates such as carpet, drapery, upholstery, automotive and awning fabrics, and rainwear.

R_f-----Metal Complexes

Figure 2

Figure 3

Glycols R_f--CH₂CH₂SH 50 58 ~ R₁H₂CH₂CSH₂C ,СН₂ОН R₁H₂CH₂CSH₂CH₂CSH₂C ,СН₂ОН R₁H₂CH₂CSH₂C CH₂OH R₁H₂CH₂CSH₂CH₂CSH₂C сн₂он **-** 60

Figure 4

Figure 5

R_f-----Urethanes

Figure 6