Stream Ciphers

Gianluca Dini Dept. of Ingegneria dell'Informazione University of Pisa

Email: gianluca.dini@unipi.it
Last version: 2021-03-02

1

Stream Ciphers

ONE-TIME PAD

March 21

Stream Ciphers

2

-

Why ⊕ is a good encryption function?

• Theorem.

DIMOSIRAZIONE SU NOTE

- Let X be a random variable on {0, 1}ⁿ, and K an independent uniform variable on {0,1}ⁿ.
- Then, $Y = X \oplus K$ is uniform on $\{0,1\}^n$.
- **Proof**. (for n = 1)

 USATA leads SAESS /

March 21

Stream Ciphers

Pros and Cons of OTP - Pros

- · Unconditionally secure
 - A cryptosystem is unconditionally or informationtheoretically secure if it cannot be broken even with infinite computational resources
- Very fast enc/dec
- · Only one key maps m into c

March 21

Stream Ciphers

8

8

2 GESSAGON X, O X2, USO US STESSA ON ALE R GL = X, A R J JZ = XD X Z

O ENDE BY HA PATTE MOSCA

MAN

RACIDAND SITESTO CIFRED OCTONDO WIDDATION

Pros and Cons of OTP - Cons

Key len == msg len

TO LENGE LOW SIND

- Keys must be used once: avoid two-time pad!
 - Let C1 = M1 xor K and C2 = M2 xor K => C1 xor C2 = M1 xor M2 => Redundancies of M1, M2 can be exploited (e.g., English and ASCII)
- A Known-PlainText attack breaks OTP
 - Given (m, c) => k = m xor c
- OTP is malleable
 - Modifications to cipher-text are undetected and have predictable impact on plain-text

March 21

Stream Ciphers

9

10

Malleability

- · Malleability
 - A crypto scheme is said to be malleable if the attacker is capable of transforming the ciphertext into another ciphertext which leads to a known transformation of the plaintext
 - The attacker does not decrypt the ciphertext but (s)he is able to manipulate the plaintext in a predictable manner

March 21

Stream Ciphers

11

On OTP malleability

- Attack against integrity
 - Alice sends Bob: $c = p \oplus k$
 - The adversary
 - · intercepts c and
 - transmits Bob c' = $c \oplus r$, with r called perturbation
 - Bob
 - · receives c' and
 - Computes $p' = c' \oplus k = c \oplus r \oplus k = p \oplus k \oplus r \oplus k$ so obtaining $p' = p \oplus r$
 - The perturbation goes undetected
 - The perturbation has a predictable impact on the plaintext

March 21 Stream Ciphers 12

12

Stream Ciphers

STREAM CIPHERS

March 21

Stream Ciphers

13

Making OTP practical (3/3)

- Is OTP-modified (stream cipher) still perfect?
 - NO! #keys < #msg => Shannon's theorem violated
 - · We need a new definition of security!

Security will depend on the specific PRG

PRG must look random in the specific PRG PRG must look random, i.e., indistinguishable from a RG for a limited adversary

> It must be computationally unfeasible to distinguish PRNG output from a TRG output

JOH - A new definition of security is necessary:

computational security

16

16

Computational security

UN 16000 DUENSO PEN

- DINE COLE CLAVIERSAMO Definition
 - A cryptosystem is computationally secure if the best known algorithm for breaking it requires at least t operations
 - Cons
 - · What is the best known attack?
 - The best we can do it to design cryptosystem for which it is assumed that they are computationally secure

March 21

Stream Ciphers

Computational security

- Cons
 - A. What is the best known attack?
 - B. Even if a lower bound on the complexity of one attack is known, we don't know whether any other, more powerful attacks, are possible
- The best we can do it to design cryptosystem for which it is assumed that they are computationally secure

March 21

Stream Ciphers

18

18

Why we need predictability

- If PRG is predictable, a stream cipher is not secure! → No. PRDCIBLE
 - Assume an adversary is able to determine a prefix of x then
 - Then, (s)he can compute a prefix of the key stream
 - If G is predictable, (s)he can compute the rest of the key stream and thus decrypt y

March 21

Stream Ciphers

19

Stream ciphers

STATE OF THE ART AND CASE STUDIES

March 21

Stream Ciphers

20

802.11b: WEP

A better construction

- Each frame has its own key
- · Keys are pseudo-random

Key for frame #3

Key for frame #2

March 21 Stream Ciphers

24

RC4

- RC4 (1987)
 - Used in HTTPS and WEP
 - Variable seed; output: 1 byte
- Weaknesses
 - Bias
 - Pr[2nd byte = 0] = 2/256 (twice as random)
 - Other bytes are biased too (e.g., 1st,3rd)
 - It is recommended that the first 256 byes are ignored
 - $Pr[00] = 1/256^2 + 1/256^3$
 - Bias starts after several gigabytes but it is still a distinguisher
 - Related keys
- It is recommended not to use RC4 but modern CSPRNG

March 21

Stream Ciphers

25

Linear Feedback Shift Register

• p_i = feedback coefficient (If p_i == 1, the feedback is active; otherwise it is not)

$$s_m \equiv p_{m-1} s_{m-1} + \dots + p_1 s_1 + p_0 s_0 \bmod 2$$

$$s_{m+1} \equiv p_{m-1}s_m + \dots + p_1s_2 + p_0s_1 \bmod 2$$

$$s_{i+m} \equiv \sum_{j=0}^{m-1} p_j \cdot s_{i+j} \mod 2, s_i, p_j \in \{0,1\}, i = 0, 1, 2, \cdots$$

March 2

ream Ciphers

26

26

LFSR is periodical

- LFSR
 - Degree: 3
- Sequence of states

	•				
clk	FF_2	FF_1	$FF_0 = s_i$		
0	1	0	0	← The initial state (seed)	bro fifice.
1	0	1	0		E Studen W
2	1	0	1		e 2000mg dr.
3	1	1	0		
4	1	1	1		
5	0	1	1		-/
6	0	0	1	`	•
7	1	0	0	The sequence of states is period.	ical
8	0	1	0		

March 21

Stream Ciphers

LFSR - Properties

- Properties
 - Seed = initial state of the register
 - · All 0's state must be avoided
 - Degree = number of storage units = אשעלים או דעף השלי
 - Degree = 8
 - Periodic
- · Maximum-length LSFR
 - Theorem
 - The maximum sequence length generated by an LFSR of degree m is 2^m – 1
 - Maximum-length LSFR can be easily found

March 21

Stream Cipher

28

28

LFSR – example #1

- LFSR with maximum output sequence
 - Degree m = 4
 - Coefficients: $p_3 = 0$, $p_2 = 0$, $p_1 = 1$, $p_0 = 0$
 - Period = $2^m 1 = 15$

March 21

Stream Ciphers

29

LFSR – example #2

- LFSR with non-maximum output sequence
 - Degree m = 4
 - Coefficients: $p_3 = 1$, $p_2 = 1$, $p_1 = 1$, $p_0 = 1$
 - Period = 5

March 21

tream Cipher

30

LFSRs are not good for crypto

- Pros:
 - LFSRs have good statistical properties
- Cons
 - Periodical
 - Linear

March 21

Stream Ciphers

LFSRs are not good for crypto

- Known-Plaintext attack against LFSR
 - 1. Given 2m pairs (pt, ct), the adversary determines a prefix of the sequence s_i
 - 2. Then, the adversary determines *feedback coefficients* by solving a system of m linear equations in m unknowns
 - 3. Finally, the adversary can "build" the LFSR and produce the entire sequence

March 21

Stream Cipher

32

32

LSFRs are not good for crypto

- Have LSFRs to be thrown away?
 - Use a non-linear combination of several LFSRs to build strong cryptosystems
 - E.g., use AND
 - E.g.: Trivium (2003)

March 21

Stream Ciphers

State of the art

- Software-oriented
 - RC4 and SEAL
 - · Very well-investigated; secure
- Hardware-oriented
 - LFSR-based
 - · Many have been broken
 - GSM A5/1 and A5/2
 - A5/1 used to be secret but was reverse-engineered
 - A5/2 has serious flaws
 - · Neither of them is recommended nowadays
 - A5/3 (KASUMI) is used but it is a block cipher

March 21

Stream Ciphers

34

34

State of the art

- eSTREAM Project
 - ECRYPT NoE
 - · Call for stream ciphers; 34 candidates
 - Profile 1. Stream ciphers for software applications with high throughput requirements
 - HC-128, Rabbit, Salsa20/12, SOSEMANUK
 - Profile 2. Stream ciphers for hardware applications with restricted resources
 - · Grain v1, MICKEY v2, Trivium

March 21

Stream Ciphers

eSTREAM performance

- RC4 126 Mb/s (*)
- Salsa 20/12 643 Mb/s
- Sosemanuk 727 Mb/s
- (*) AMD Opteron 2.2. GHz (Linux)

March 21

Stream Ciphers

36

36

Stream Ciphers

CONTENT SCRAMBLING SYSTEM (CSS)

March 21

Stream Ciphers

Content Scrambling System

- Easy to break in 2¹⁷ steps (<< 2⁴⁰)
- Known-plaintext attack
 - A prefix|₁₋₂₀ of the (cleartext) movie is known => a prefix of the keystream|₁₋₂₀ can be computed
 - E.g., 20 initial bytes in mpeg
- For details
 - https://www.cs.cmu.edu/~dst/DeCSS/Kesden/

March 21 Stream Ciphers

39

Content Scrambling System

- · Attack algorithm
 - For all possible initial setting of LFSR-17 (2¹⁷)
 - 1. Run LFSR-17 to get 20 bytes of output
 - 2. Subtract LFSR-17 $|_{1-20}$ from keystream $|_{1-20}$ and obtain a candidate output of LFSR-25 $|_{1-20}$
 - 3. Check whether LFSR-25 $|_{1-20}$ is consistent with LSFR-25
 - a. If it is consistent then we have found correct initial setting of both and the algorithm is finished!
 - b. Otherwise, go to 1 and test the next LFSR-17 initial setting
 - Using key, generate entire CSS output
 - Complexity
 - At most, the attack need to try all the possible initial setting of LFSR-17 (2¹⁷)

4 WORST CASE

March 21

Stream Ciphers

40