Step-1

Consider that AB = 0, the columns of B are in the null space of A, and the vectors in \mathbb{R}^n .

The objective is to prove that $\operatorname{rank}(B) + \operatorname{rank}(A) \leq n$.

Step-2

We know that the dimension of column space of the matrix is the rank of that particular matrix.

Given the columns of B are in the null space of A.

i.e.
$$\dim(C(B)) \le \dim(N(A)) \widehat{a} \in \widehat{a} \in [1, 1)$$

Therefore, $\dim(N(A))$ is rank of the matrix B.

i.e.
$$\operatorname{rank}(B) \leq \dim(N(A))$$
 $\hat{a} \in \hat{a} \in [\hat{a} \in (2)]$

Step-3

Again, we know that,

dimension of C(A)+ dimension of N(A)= number of columns.

 $\dim C(A) + \dim N(A) = n$ (: n is number of columns) $\widehat{a} \in \widehat{a} \in [\widehat{a} \in]$

From the equations (1), (2) and (3),

$$\dim C(A) + \dim N(A) = n$$

$$\operatorname{rank}(A) + \dim N(A) = n$$

$$\operatorname{rank}(A) + \operatorname{rank}(B) \le n$$

Therefore, it is proved that $\frac{\operatorname{rank}(B) + \operatorname{rank}(A) \leq n}{n}$.