What is claimed is:

1. A method of controlling a transducer head velocity during a ramp load/unload comprising the steps of:

measuring the voltages across a Voice Coil Motor ("VCM") and a sense resistor positioned in series with the VCM;

calculating the back emf voltage using the measured VCM and sense resistor voltages; and

adjusting the velocity of the transducer head using the calculated back emf voltage.

- 10 2. The method of claim 1 wherein the VCM and sense resistor voltage measurements are calibrated at power-up.
 - 3. The method of claim 1 wherein the back emf voltage is calculated using a PWM technique.
- 4. The method of claim 1 wherein the back emf voltage is calculated using an IR cancellation technique.
 - 5. The method of claim 1 wherein the back emf voltage is calculated using either a PWM technique or an IR cancellation technique.
 - 6. The method of claim 1 wherein a microprocessor calculates the back emf voltage.
- 7. The method of claim 6 wherein the microprocessor calculates the back emf voltage using a PWM technique.
 - 8. The method of claim 6 wherein the microprocessor calculates the back emf voltage using an IR cancellation technique.

- 9. The method of claim 6 wherein the microprocessor calculates the back emf voltage using either a PWM technique or an IR cancellation technique.
- 10. The method of claim 6 wherein the microprocessor sends a signal to
 a control circuit to adjust the velocity of the transducer heads.
 - 11. The method of claim 10 wherein the signal is sent real-time to the control circuit.
 - 12. The method of claim 1 further comprising the step of measuring a reference voltage through separate reference voltage paths.
- 13. The method of claim 12 further comprising the step of applying a current to the VCM to start/stop the movement of the transducer head.
 - 14. The method of claim 12 further comprising the step of:
 using the value for the voltages across the VCM and the sense
 resistor to calculate a calibration constant.
- 15 15. The method of claim 14 wherein calculating the calibration constant further comprises the steps of:

comparing_the voltage measured on a first reference voltage path with the voltage measured across the VCM; and

comparing the voltage measured on a second reference voltage path 20 with the voltage measured across the sense resistor.

16. Amethod of controlling a transducer head velocity during a ramp load/unload comprising the steps of:

setting a target velocity;

measuring the voltages across a voice coil motor ("VCM") and a sense resistor in series with it;

calculating a back EMF voltage using the measured voltages across the VCM and the sense resistor;

25

17. The method of claim 16 wherein calculating the velocity error further comprises the steps of:

calculating the velocity of the transducer head using the measured back emf voltage; and

comparing the velocity of the transducer head and the target velocity.

5

- 18. The method of claim 16 further comprising the step of: employing the Proportional-Integral control technique.
- 19. The method of claim 18 wherein the velocity of the transducer head is calculated in discrete-time.

977 15

- The method of claim 16 further comprising the step of: sending a signal to a driver circuit that controls the velocity of the transducer heads.
- 21. The method of claim 20 wherein the step of sending a signal to a driver circuit further comprises:

calculating a control variable using the velocity error; and sending the value of the control variable to a driver circuit.

- 20 22. The method of claim 21 wherein the velocity error is calculated in discrete-time.
 - 23. The method of claim 22 further comprising:
 setting the velocity error variable for a previous sampling period
 equal to the voltage error variable for the current sampling period.

5

15

- 24. The method of claim 23 further comprising:
 setting the control variable for a previous sampling period equal to
 the control variable for a current sampling period.
- 25. The method of claim 16 further comprising the step of: disabling the VCM at the completion of the load/unload.
- 26. The method of claim 25 further comprising the step of: stopping the control of the transducer head at the completion of the ramp load/unload.
- 27. A method of measuring a transducer head velocity during a ramp10 load/unload comprising the steps of:

measuring the voltages across a voice coil motor ("VCM") and a sense resistor in series with the VCM;

calculating the back EMF voltage using the measured voltages across the VCM and the sense resistor; and calculating the velocity error using the back EMF voltage.

- 28. The method of claim 26 wherein the velocity of the transducer head is calculated in discrete-time.
- 29. The method of claim 27 further comprising:
 using a velocity from a previous sampling period to determine a
 velocity for the current sampling period.
- 30. The method of claim 27 further comprising the step of:
 measuring a reference voltage through separate reference voltage
 paths.
- 31. The method of claim 30 further comprising the step of:
 using the value for the voltages across the VCM and the sense resistor to calculate a calibration constant.

5

15

32. The method of claim 31 wherein calculating the calibration constant further comprises the steps of:

comparing the voltage measured on a first reference voltage path with the voltage measured across the VCM; and

comparing the voltage measured on a second reference voltage path with the voltage measured across the sense resistor.

33. A disk drive comprising:

an actuator assembly having a voice coil motor that has an internal resistance;

a driver circuit for connecting and driving the actuator assembly;

a sense resistor in series with the voice coil motor whereby back emf voltage is determined by measuring the voltages across the VCM and sense resistor.

34. The disk drive of claim 33 further comprising:

a microprocessor for connecting to and sending an input signal to the driver circuit.

35. The disk drive of claim 33 wherein:

the microprocessor calculates the velocity of the voice coil motor and sends a signal based on the velocity to the driver circuit.

20 36. The disk drive of claim 33 further comprising:

a first operational amplifier for magnifying the voltage across the VCM resistance; and

a second operational amplifier for magnifying the voltage across the sense resistor.

25 37. The disk drive of claim 33 further comprising:

a multiplexer for multiplexing the outputs of the operational amplifiers.

- 39. The disk drive of claim 38 wherein the analog-to-digital converter uses 12-bits.
 - 40. The disk drive of claim 38 wherein the analog-to-digital converter has a full-scale voltage of 5 Volts.
 - 41. The disk drive of claim 38 wherein the analog-to-digital converter has a resolution on the order of 1 mV/count.
- 10 42. The disk drive of claim 33 wherein the back emf voltage may be calculated using either a PWM technique or an IR cancellation technique.

