Data Visualization

A picture is worth a thousand words!

A Second Exercise

What is Data Visualization? Please define it in your own words!

Let's Look at Some Data

I		II		III		IV	
$\boldsymbol{\mathcal{X}}$	y	x	y	\boldsymbol{x}	y	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Let's Look at Some Data

Mean of x –

Correlation

between x & y

Variance of x —

With Statistical Analysis

I		II		III		IV	
$\boldsymbol{\mathcal{X}}$	y	x	y	\boldsymbol{x}	y	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89
9	7.5	9	7.5	9	7.5	9	7.5
— 11	4.1	11	4.1	11	4.1	11	4.1
0.816		0.816		0.816		0.816	
y = 0.5x + 3		y = 0.5x + 3		y = 0.5x + 3		y = 0.5x + 3	

Mean of yVariance of y

Let's Look at the Data Visually Anscombe's Quartet

What is Data Visualization?

- *Visualize*: To *form* a mental vision, image, or picture of (something not visible or present to the sight, or of an abstraction), to *make visible to the mind or imagination*
- Visualization: Use of computer graphics to create visual images which aid in the understanding of complex, often massive representations of data
- Data Visualization: The process of discovering implicit but useful knowledge from large data sets using visualization techniques, providing an accessible way to see and understand trends, outliers, and patterns in data

What is Data Visualization? More Definitions

- "Transformation of the symbolic into the geometric" (McCormick et al. 1987)
- "... finding the artificial memory that best supports our natural means of perception" (Bertin 1967)
- "The use of computer-generated, interactive, visual representations of data to amplify cognition" (Card, Mackinlay, & Shneiderman 1999)

Two Types of Visualization

Exploration vs Explanation

Data Exploration Visualization

Figuring out what is true

Data Presentation Visualization

Convincing other people it is true

The Power of Data Visualization

200 Countries, 200 Years

Hans Rosling

©Wingspan Productions for BBC, 2010

William Playfair's Early Chart

Founder of Graphical Method

Visualization of Napoleon's Army

(Charles Joseph Minard 1812)

Minard's chart shows six types of information: geography, time, temperature, the course and direction of the army's movement, and the number of troops remaining.

Olympic medals

The New York Times, 2016

Who Will Win the President?

Chance of winning

2016@Independent

Housing Unit Percent Change

Mandatory

\$2.5 trillion

About 70 percent of budgetary spending is controlled by existing laws, including entitlements like Medicare, Medicaid and Social Security.

Discretionary

\$1.1 trillion

Only about 30 percent of the budget is controlled by the annual budget process. Last August, the White House and Congress agreed to a cap on this spending.

2012@The New York Times

Visualization Tools

Which software should you use to build data graphics?

Basic Productivity Applications

Common productivity tools that are *good enough* for *most* visualization tasks with *basic chart types* as well as some sophisticated displays

Categories

Basic Productivity Applications

These applications focus on usability through *a drag and drop interface*. They are designed for everyone from *novices* to *expert* visualization designers and analysts.

Visualization Software

Basic Productivity Applications

These applications focus on usability through *a drag and drop interface*. They are designed for everyone from *novices* to *expert* visualization designers and analysts.

Tableau is one of the leading data visualization software packages

- Various data sources and files, from basic files, databases, to live data sources
- User-friendly drag and drop interface for visualizing
- Strong data preprocessing capabilities
- The workbooks can be published to the web and shared securely across an organization

Basic Productivity Applications

Research describes business intelligence tools are the next wave of advanced visualization software. They provide the ability to show dynamic content, visual querying, multiple dimensional-linked visualizations, animated visualizations, personalization, and alerts based on changing data

Business Intelligence Tools

Visualization Software

Basic Productivity Applications

For *developers*, *analysts*, and *designers* who want to visualize data in their *own programming environment*, there are several contenders. Most programming languages have *data graphic packages*. *Python* and *R* have a sophisticated set of libraries or packages for data visualization. In addition, there are numerous *JavaScript* libraries for web-based data graphics.

Business Intelligence

Programming Packages

Visualization Software

Selecting Tools for Visualizing Data

When *evaluating* a new data visualization tool, consider the following:

Output: Can you publish
visualizations to the web, create
high quality print graphics, and
embed them in other
applications?

Interoperability: How easily can you connect to other data sources? Does the software allow you to import diverse file types?

Data Exploration: Do you need a tool to explore your data and present it visually? Features such as visual querying are not standard in every tool.

Sharing: Can others *view* and *edit* your visualization and analysis?

Simplicity: Do you want to create charts and graphs *quickly*?

Persistence: Do you think you'll need to *revise* the visualizations you created?

Display Types: What types of visualizations do you need to build? Maps, networks, and text-based visualizations are not available in every tool.

References

- Michael Sandberg (2013), <u>DataViz History: Charles Minard's Flow Map of Napoleon's Russian Campaign of 1812</u>.
- Costigan-Eaves, P., & Macdonald-Ross, M (1990), William Playfair (1759-1823). Statistical Science, 318-326.

Acknowledgements

Some of the materials are adapted from:

- Neha Vaidya, 2019
- Teemu Roos, 2018