目录

题	目	车联网环境下能耗优先的任务调度算法研究	1
摘	要		1
Ab	stract		2
第	1章 绰	音论	4
	1. 1.	研究背景及意义	4
		1. 1. 1. 研究背景	4
		1. 1. 2. 研究意义	4
	1. 2.	文献综述	5
		1. 2. 1. 边缘计算	5
		1. 2. 2. 计算卸载	5
	1. 3.	研究的主要内容	6
	1. 4.	论文组织结构	6
第	2章 相	月关理论基础	7
	2. 1.	车联网的物理设备	7
	2. 2 มี	通信技术	9
	:	2. 2. 1 车辆间通信	9
	2.3	E联网中的任务卸载1	0
第	3 章 基	基于基因算法的车辆任务卸载算法1	.3
	3. 1.	引言1	.3
	3. 2.	系统模型1	6
	•	3.2.1 系统场景 1	6
	•	3.2.2 车辆计算能力模型1	.7
	•	3.2.3 车辆能耗模型 1	8
	3. 3.	问题建模2	20
	•	3.3.1 任务可分情况 2	20
	•	3.3.2 任务不可分情况 2	23
	3. 4.	基于基因算法的问题求解2	24
	3.5	仿直实验 2	6

3.5.1 实验环境	26
3.5.2 仿真参数设计	26
3.5.3 评价标准	27
3.5.4 实验结果	28
3. 6. 本章小结	32
第4章 基于贪心法调整的离散侏儒猫鼬算法的任务卸载算法	33
4. 1. 侏儒猫鼬算法	33
4.1.1 阿尔法小组	34
4.1.2 保姆小组	35
4.1.3 侦察兵小组	35
4.1.4 算法的流程	36
4.2 相关的知识	38
4.2.1 优化问题的描述形式	38
4.2.2 各变量之间的相关性	40
4.2.3 实验一及其结果	40
4.2.4 实验二及其结果	41
4.3 基于贪心法调整的离散侏儒猫鼬算法	42
4.3.1 基于贪心法的调整策略	42
4.3.2 重定义运算规则	44
4.3.3 双目减法运算符(O)	44
4.3.4 双目乘法运算法(°O)	45
4.3.5 单目运算符 $^{\odot X_1}$	46
4. 4 仿真实验	49
4. 4. 1 实验环境及评价标准	49
4.4.2 评价标准	49
4.4.3 算法参数设置	52
4. 5 实验结果与分析	52
4 / J\4±	52

云南大学(专业)硕士学术论文

第5章 结	论与展望	55
5. 1.	本文工作总结	55
5. 2.	未来研究方向	55