Научно-исследовательская практика

Лето 2020

Бинарный алгоритм нахождения НОД

Завертанов Владислав

1 Описание

Бинарный алгоритм нахождения НОД —метод нахождения наибольшего общего делителя двух целых чисел. Данный алгоритм быстрее обычного алгоритма Евклида, т.к. вместо медленных операций деления и умножения используются сдвиги. Возможно, алгоритм был известен еще в Китае 1-го века, но опубликован был лишь в 1967 году израильским физиком и программистом Джозефом Стайном.Он основан на использовании свойств НОД,а именно HOJ(2m, 2n) = 2 HOJ(m, n), HOJ(2m, 2n + 1) = HOJ(m, 2n + 1), HOJ(-m, n) = HOJ(m, n).

2 Алгоритм

Algorithm 1 Бинарный алгоритм Евклида

Ввод: a>0, b>0

Вывод: (a, b)

- 1: представить \mathbf{a} и \mathbf{b} в виде $a=2^ia_1,b=2^jb_1$, где a_1,b_1 нечетные
- 2: положить $a=a_1, b=b_1,$ и найти k=min(i,j)
- 3: пока а и b не равны, выполняй:
- 4: **if** a < b **then** поменять a и b местами
- 5: вычислить c = a b и представить в виде $c = 2^s c_1$, где c_1 -нечетное
- 6: положить $a = c_1$
- 7: **return** $2^k a$

3 Анализ

3.1 Описание

Алгоритм был реализован на Sage — системе компьютерной алгебры, покрывающей много областей математики, включая алгебру, комбинаторику, вычислительную математику и матанализ. Вся вычислительная нагрузка приходилась на облачный ресурс Collaborative Calculation and Data Science (Cocalc).

3.2 Сравнение результатов

Для проверки корректности реализации алгоритма была использована встроенная в Sage функция gcd(a, b). Были зафиксированы результаты работы и среднее время их исполнения.

Параметры		Собственная реализация		Sage	
a	b	Результат	Время, с	Результат	Время, с
321^{245}	76882	13307449678409	0.00	13307449678409	0.00
12304^{24322}	8246 ¹⁵⁶³³	10044358951726592	0.01	10044358951726592	0.01
1230424^{243222}	824823 ¹⁵⁶³³	1	0.07	1	0.06
123456789^{24322}	777777777777^{15633}	1	0.11	1	0.09