องค์ประกอบคอมพิวเตอร์และภาษาแอสเซมบลี: กรณีศึกษา Raspberry Pi

บทที่ 2 ข้อมูลและคณิตศาสตร์คอมพิวเตอร์

รศ.ดร.สุรินทร์ กิตติธรกุล

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

สารบัญ

- บทที่ 1 บทนำ
- บทที่ 2 ข้อมูลและคณิตศาสตร์ในคอมพิวเตอร์
- บทที่ 3 ฮาร์ดแวร์และซอฟต์แวร์ของคอมพิวเตอร์
- บทที่ 4 ภาษาแอสเซมบลีของ ARM เวอร์ชัน 32 บิท
- บทที่ 5 ลำดับชั้นของหน่วยความจำ
- บทที่ 6 อุปกรณ์/วงจรอินพุตและเอาท์พุต
- บทที่ 7 อุปกรณ์เก็บรักษาข้อมูลและระบบไฟล์
- บทที่ 8 การคำนวณแบบขนาน (Parallel Computing) ด้วยบอร์ด Pi

สารบัญ

- บทที่ 2 ข้อมูลและคณิตศาสตร์ในคอมพิวเตอร์
 - 2.1 ข้อมูลพื้นฐานชนิดต่างในภาษา C/C++
 - 2.2 เลขจำนวนเต็มฐานสอง
 - 2.3 คณิตศาสตร์เลขจำนวนเต็มฐานสอง
 - 2.4 เลขทศนิยมฐานสองชนิดจุดคงที่ (Binary Fixed Point)
 - 2.5 เลขทศนิยมฐานสองชนิดจุดลอยตัว (Binary Floating Point)
 - 2.6 เลขทศนิยมฐานสองชนิดจุดลอยตัวมาตรฐาน IEEE754
 - 2.7 ตัวอักษร

บทที่ 2 ข้อมูลและคณิตศาสตร์ในคอมพิวเตอร์

ชนิด	ความยาว(บิต)	ค่าต่ำสุด $_{10}$	ค่าสูงสุด $_{10}$
unsigned char	8	0	2 ⁸ -1=255
char	8	-2 ⁷ =-128	$+2^{7}-1=+127$
unsigned short	16	0	2 ¹⁶ -1=
			65,535
short	16	-2 ¹⁵ =	+2 ¹⁵ -1=
		-32,768	+32,767
unsigned int	32	0	2 ³² -1=
			4,294,967,295
int	32	-2 ³¹ =	+2 ³¹ -1=
		-2,147,483,648	+2,147,483,647
unsigned long long	64	0	+2 ⁶⁴ -1
long long	64	-2 ⁶³	+2 ⁶³ -1
float	32	$\pm 2^{-127} =$	$\pm 2 \times 2^{127} =$
		$\pm 1.18 \times 10^{-38}$	$\pm 3.40 \times 10^{38}$
double	64	$\pm 2^{-1023} =$	$\pm 2 \times 2^{1023} =$
		$\pm 2.23 \times 10^{-308}$	$\pm 1.80 \times 10^{308}$

2.1 ข้อมูลพื้นฐานชนิดต่างๆ ในภาษา C/C++

2.1 ข้อมูลพื้นฐานชนิดต่างๆ ในภาษา C/C++

```
Address
                                                                                 Variable Name
                                                                       Data
                                                        (Byte #)
                                                         0x5A
                                                                      01000010
                                                         0x59
                                                                      00101000
ตัวอย่างที่ 2.1.1 การประกาศตัวแปรและตั้งค่าเริ่มต้นด้วยภาษา C/C++
                                                         0x58
                                                                      00000000
                                                         0x57
                                                                                      a
                                                                      00000000
                                                          0x56
                                                                      00000000
                                                         0x55
                                                                      00000000
0x54
                                                                      00000000
unsigned short y = 42; /* y = 0x002A */
                                                         0x53
                                                                                      Z
                                                                      00101010
                                                         0x52
                                                                      00000000
unsigned int z = 42; /* z = 0 \times 0000002A */
                                                         0x51
                                                                      00101010
float a = 42.0; /* a = 0x42280000 */
                                                         0x50
                                                                      00101010
                                                                                      X
                                                          0x4f
                                                                      Memory
```

2.2.1 เลขจำนวนเต็มฐานสอง ชนิดไม่มีเครื่องหมาย

นิยามที่ 2.2.1 กำหนดให้ $X_{2,u}$ เป็นเลขจำนวน เต็ม ฐาน สอง ชนิด ไม่มี เครื่องหมาย (Unsigned Integer) ความยาว n บิต สามารถเขียนอยู่ในรูป

$$X_{2,u} = x_{n-1}x_{n-2}x_{n-3}..x_1x_0 (2.1)$$

เมื่อ x_i คือ บิต ข้อมูล มีค่า "1" (ON) หรือ "0" (OFF) ใน ตำแหน่ง ที่ i และ ตำแหน่ง ขวา มือ สุด คือ ตำแหน่ง หรือ บิต ที่ i=0

2.2.1 เลขจำนวนเต็มฐานสอง ชนิดไม่มีเครื่องหมาย

จากนิยามที่ 2.2.1 ค่าจำนวนเต็มฐานสิบ $X_{10,u}$ ของเลข $X_{2,u}$ สามารถคำนวณได้จากสมการ

$$X_{10,u} = (x_{n-1} \times 2^{n-1}) + (x_{n-2} \times 2^{n-2}) + \dots + (x_1 \times 2^1) + (x_0 \times 2^0)$$
 (2.2)

ดังนั้น ค่าฐานสิบ $X_{10,u}$ อยู่ในช่วง 0 ถึง $+2^n-1$

ตัวอย่างที่ 2.2.1 เลขจำนวนเต็มฐานสองชนิดไม่มีเครื่องหมาย n=4 บิต $X_{2,u}=1011_2=B_{16}$ ค่าฐานสิบของ $X_{2,u}$ ตามสมการที่ (2.2) คือ

$$X_{10,u} = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$
(2.3)

$$=2^3+0+2^1+2^0\tag{2.4}$$

$$= 8 + 0 + 2 + 1 \tag{2.5}$$

$$=11_{10}$$
 (2.6)

2.2.1 เลขจำนวนเต็มฐานสอง ชนิดไม่มีเครื่องหมาย

ดังนั้น $X_{2,u}$ ของ 123 $_{10}$ = 0111 1011 $_2$

บิทที่	เลขฐานสิบ	ผลหาร	เศษ	์ บิทที่ i	2^i	ผลลัพธ์- 2^i	ตัวตั้ง $_{10}$	x_i
<u>-</u>	123		-	_			123	
0	123/2	61	1	7	$2^7 = 128$	123-128	123	0
1	61/2	30	1	6	$2^6 = 64$	123-64	59	1
2	30/2	15	0	5	$2^5 = 32$	59-32	27	1
3	15/2	7	1	4	$2^4 = 16$	27-16	11	1
4	7/2	3	1	3	$2^3 = 8$	11-8	3	1
5	3/2	1	1	2	$2^2 = 4$	3-4	3	0
6	1/2	0	1	1	$2^1=2$	3-2	1	1
7	0/2	0	0	0	20=1	1-1	0	1

นิยามที่ 2.2.2 กำหนดให้ เลขจำนวนเต็มฐานสองชนิดมีเครื่องหมาย (Signed Integer) แบบ 2-Complement $X_{2,s}$ ความยาว n บิทเขียนอยู่ในรูป

$$X_{2,s} = x_{n-1}x_{n-2}x_{n-3}..x_1x_0 (2.15)$$

เมื่อ x_{n-1} ทำหน้าที่เป็นบิทเครื่องหมาย (Sign bit) มีค่า 1 เมื่อเป็นเลขลบ และ 0 เมื่อเป็นเลขบวก และ x_i คือ บิทข้อมูลมีค่า 1 หรือ 0 ในตำแหน่งที่ i และตำแหน่งขวามือสุดคือตำแหน่งที่ i=0

การแปลงเลขฐานสองเป็นฐานสิบ

การแปลงเลขจำนวน เต็มฐานสองชนิดมี เครื่องหมายแบบ 2's Complement จากนิยามที่ 2.2.2 ให้ เป็นค่าฐานสิบสามารถทำได้โดย

$$X_{10,s} = (-x_{n-1} \times 2^{n-1}) + (x_{n-2} \times 2^{n-2}) + \dots + (x_1 \times 2^1) + (x_0 \times 2^0)$$
 (2.20)

ดังนั้น ค่าฐานสิบ $X_{10,s}$ อยู่ในช่วง -2^{n-1} ถึง $+2^{n-1}-1$

ตัวอย่างที่ 2.2.7 เลขจำนวนเต็มฐานสองชนิดมีเครื่องหมายแบบ 2's Complement n=4 บิต $X_{2,s}=1011_2=B_{16}$ มีค่าฐานสิบเท่ากับเท่าไหร่

ค่าฐานสิบของ $X_{2,s}$ ตามสมการที่ (2.20) คือ

$$X_{10,s} = (-1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$

$$= -2^{3} + 0 + 2^{1} + 2^{0}$$

$$= -8 + 0 + 2 + 1$$

$$= -5_{10}$$
(2.21)
(2.22)
(2.23)

เลขจำนวนเต็มฐานสองชนิดมีเครื่องหมาย 2's Complement ขนาด n=4 บิตจะมีค่าฐานสิบอยู่ใน ช่วง -8 ถึง +7

Computer Organization & Assembly Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

2.2 เลขจำนวนเต็มฐานสอง n=4 บิต

การขยายบิต เครื่องหมาย (Sign Extension)

			เลขฐานสอง	$X_{10,s}$ คาฐานสบ	$X_{10,u}$ คาฐานสบ
			n=5 บิท	มีเครื่องหมาย	ไม่มีเครื่องหมาย
				สมการ (2.16)	สมการ (2.2)
เลขฐานสอง	$X_{10,s}$ ค่าฐานสิบ	$X_{10,u}$ ค่าฐานสิบ	1 0000	-16	16
n=4 บิท	มีเครื่องหมาย	ไม่มีเครื่องหมาย	•••		
	สมการ (2.16)	สมการ (2.2)	1 0111	-9	23
1000	-8	8	1 1000	-8	24
1001	-7	9	1 1001	-7	25
1010	-6	10	1 1010	-6	26
1011	-5	11	1 1011	-5	27
1100	-4	12	1 1100	-4	28
1101	-3	13	1 1101	-3	29
1110	-2	14	1 1110	-2	30
1111	-1	15	1 1111	-1	31
0000	0	0	0 0000	0	0
0001	1	1	0 0001	1	1
0010	2	2	0 0010	2	2
0011	3	3	0 0011	3	3 4
0100	4	4	0 0100	4	4
0101	5	5	0 0101	5	5
0110	6	6	0 0110	6	
0111	7	7	0 0111	7	6 7
			0 1111	15	15

การขยายบิต เครื่องหมาย (Sign Extension)

			12015231423	V คารามสิม	V คารามสิม
เลขฐานสอง	$X_{10,s}$ ค่าฐานสิบ	$X_{10,u}$ ค่าฐานสิเ	เลขฐานสอง	$X_{10,s}$ ค่าฐานสิบ	$X_{10,u}$ ค่าฐานสิบ
n=5 บิท	มีเครื่องหมาย	ไม่มีเครื่องหมาย	n=8 บิท	มีเครื่องหมาย	ไม่มีเครื่องหมาย
	สมการ (2.16)	สมการ (2.2)		สมการ (2.16)	สมการ (2.2)
1 0000	-16	16	1000 0000	-128	128
1 0111	-9	23	1111 0111	-9	
1 1000	-8	24	1111 1000	-8	248
1 1001	-7	25	1111 1001	-7	249
1 1010	-6	26	1111 1010	-6	250
1 1011	-5	27	1111 1011	-5	251
1 1100	-4	28	1111 1100	-4	252
1 1101	-3	29	1111 1101	-3	253
1 1110	-2	30	1111 1110	-2	254
1 1111	-1	31	1111 1111	-1	255
0 0000	0	0	0000 0000	0	0
0 0001	1	1	0000 0001	1	1
0 0010	2	2	0000 0010	2	2
0 0011	3	3	0000 0011	3	3
0 0100	4	4	0000 0100	4	4
0 0101	5	5	0000 0101	5	5
0 0110	6	6	0000 0110	6	6
0 0111	7	7	0000 0111	7	7
			0000 1000	8	8
0 1111	15	15			
			0111 1111	127	127

		เลขฐานสิบ	เลขฐานสอง	เลขฐานสอง $X_{2,s}$
		$X_{10,s} < 0$	$[X_{10,s}]_{2,u}$	$\overline{[X_{10,s}]_{2,u}} + 1_2$
				สมการ (2.32)
		-8	8=10002	01112+12=10002
แบ่งเป็น 2 กรณี คือ กรณี $X_{10,s} < 0$		-7	7=01112	$1000_2 + 1_2 = 1001_2$
10,3		-6	6=0110 ₂	$1001_2 + 1_2 = 1010_2$
Ti II	()	-5	5=0101 ₂	$1010_2 + 1_2 = 1011_2$
$X_{2,s} = \overline{[X_{10,s}]_{2,u}} + 1_2$	(2.32)	-4	$4=0100_2$	$1011_2 + 1_2 = 1100_2$
		-3	3=0011 ₂	$1100_2 + 1_2 = 1101_2$
		-2	2=00102	$1101_2 + 1_2 = 1110_2$
		-1	1=00012	1110 ₂ +1 ₂ =1111 ₂
		เลขฐานสิบ		เลขฐานสอง $X_{2,s}$
และกรณี $X_{10.s} \geq 0$		$X_{10,s} \ge 0$		สมการ (2.33)
$10,s \geq 0$		0		0000_{2}
		1		0001_2
		2		0010_{2}
$X_{2,s} = [X_{10,s}]_2 = [X_{10,u}]_{2,u}$	(2.33)	3		0011_2
		4		0100_{2}
		5		0101_{2}
		6		0110_{2}
		7		01112

2.2 เลขจำนวนเต็มฐานสอง n=8 บิต

ตัวอย่างที่ 2.2.9 เลขจำนวนเต็มฐานสองชนิดมีเครื่องหมาย 2's Complement n=8 บิต

$$X_{2,s} = 11111011_2 = FB_{16}$$

เทียบเท่ากับการประกาศและตั้งค่าเริ่มต้นตัวแปรชนิด char

char X = -5; /* X = 0b11111011 = 0xFB */
ค่าฐานสิบของ
$$X_{2.s}$$
 ตามสมการที่ (2.20) คือ

$$X_{10,s} = (-1 \times 2^7) + (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$
(2.29)

$$= -2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 0 + 2^1 + 2^0 (2.30)$$

$$= -128 + 64 + 32 + 16 + 8 + 0 + 2 + 1 \tag{2.31}$$

$$= -5_{10} (2.32)$$

ตัวแปรชนิด char หรือเลขจำนวนเต็มขนาด n=8 บิต จะมีค่าฐานสิบอยู่ในช่วง -128 ถึง +127

2.2 เลขจำนวนเต็มฐานสอง n=16 บิต

ตัวอย่างที่ 2.2.10 เลขจำนวนเต็มฐานสองแบบ 2's Complement n=16 บิต

$$X_{2,s}$$
 = 1111 1111 1111 1011₂ = $FFFB_{16}$

เทียบเท่ากับการประกาศและตั้งค่า เริ่มต้นตัวแปรชนิด short

มีค่าฐานสิบเท่ากับเท่าใหร่

ค่าฐานสิบของ $X_{2,s}$ ตามสมการที่ (2.20) คือ

$$X_{10,s} = (-1 \times 2^{16}) + (1 \times 2^{15}) + \dots + (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$
 (2.33)

$$= -2^{16} + 2^{15} + \dots + 2^3 + 0 + 2^1 + 2^0 \tag{2.34}$$

$$= -32,768 + 16,384 + \ldots + 8 + 0 + 2 + 1 \tag{2.35}$$

$$=-5_{10}$$
 (2.36)

ตัวแปรชนิด short หรือเลขจำนวนเต็มฐานสองชนิดมีเครื่องหมาย 2's Complement ขนาด n=16 บิต จะ มีค่าฐานสิบอยู่ในช่วง -32,768 ถึง +32,767

2.2 เลขจำนวนเต็มฐานสอง n=32 บิต

ตัวอย่างที่ 2.2.11 เลขจำนวนเต็มฐานสองแบบ 2's Complement n=32 บิต

$$X_{2,s} = 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1011_2 = FFFFFFFB_{16}$$
 เทียบเท่ากับการประกาศและตั้งค่า เริ่มต้นตัวแปรชนิด int

int
$$X = -5$$
; /* $X = 0xFFFFFFFB$ */

$$X_{10,s} = (-1 \times 2^{31}) + (1 \times 2^{30}) + \dots + (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$
 (2.37)

$$= -2^{31} + 2^{30} + \ldots + 2^3 + 0 + 2^1 + 2^0 \tag{2.38}$$

$$= -2, 147, 483, 648 + 1, 073, 741, 824 + \ldots + 8 + 0 + 2 + 1$$
 (2.39)

$$=-5_{10}$$
 (2.40)

2.1 ข้อมูลพื้นฐานชนิดต่างๆ ในภาษา C/C++

long scores[3]={93, 81, 97}; // scores[0]=93; scores[1]=81; scores[2]=97;

Memory

Memory

ข้อมูลพื้นฐานชนิดต่างๆ ในภาษา C/C++

2.2.3 เลขจำนวนเต็มฐานสอง ชนิดมีเครื่องหมาย Sign-Magnitude

นิยามที่ 2.2.3 กำหนดให้ เลขจำนวนเต็มฐานสองชนิดมีเครื่องหมาย (Signed Integer) แบบ Sign-Magnitude $X_{2,sm}$ ความยาว n บิทเขียนอยู่ในรูป

$$X_{2.sm} = sx_{n-2}x_{n-3}..x_1x_0 (2.34)$$

เมื่อ s คือบิทเครื่องหมาย (Sign bit) และ x_i คือค่า "1" หรือ "0" ในตำแหน่งที่ i และตำแหน่งขวามือสุดคือ ตำแหน่งที่ i=0

การแปลงเลขจำนวนเต็มฐานสองแบบ Sign-Magnitude ให้เป็นค่าฐานสิบสามารถทำได้โดย

$$X_{10,sm} = (-1)^s \times (x_{n-2} \times 2^{n-2} + ... + x_1 \times 2^1 + x_0 \times 2^0)$$
(2.35)

Computer Organization & Assembly Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

2.2.3 เลขจำนวนเต็มฐานสอง ชนิดมีเครื่องหมาย Sign-Magnitude

	3.7	37	3.7
เลขฐานสอง	$X_{10,sm}$	$X_{10,s}$	$X_{10,u}$
n=4 บิท	ค่าฐานสิบ	ค่าฐานสิบ	ค่าฐานสิบ
	Sign-Mag.	2-Comp.	Unsigned
	สมการ (2.35)	สมการ (2.16)	สมการ (2.2)
1111	-7	-1	15
1110	-6	-2	14
1101	-5	-3	13
1100	-4	-4	12
1011	-3	-5	11
1010	-2	-6	10
1001	-1	-7	9
1000	-0	-8	8
0000	+0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7