Hypothesis Testing ANOVA

Abhirup Sen

14/05/2021

#One way anova

##step 1 : Set up the nul hypothesis and the alternative hypothesis ##H0 = mu0=mu1=mu2 (there is no difference in avg mpg for different gear) ##H1 = Not all means are equal

mtcars

##		mpg	-	-	-	drat		-			gear	carb
##	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
##	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
##	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
##	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
##	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
##	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
##	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
##	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
##	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
##	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
##	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
##	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
##	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
##	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
##	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
##	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
##	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
##	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
##	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
##	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
##	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
##	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
##	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
##	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
##	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
##	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
##	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
##	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
##	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
##	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
##	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
##	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

##Step 2: Calculate the Test Statistics using anova function

mtcars.aov <- aov(mtcars\$mpg ~ factor(mtcars\$gear)) # factor makes it a charactre variable and there by
summary(mtcars.aov)</pre>

```
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(mtcars$gear) 2 483.2 241.62 10.9 0.000295 ***
## Residuals 29 642.8 22.17
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

##Step 3: Calculate F Critical Value ##for 0.05 significance level, critical value = alpha = 0.05

##Step 4 : Compare test statistics with F critical value and conclude test ##p < alpha - > Reject Hypothesis

 $\#\# {\rm Conclusion}:$ Gear and mpg has strong relation.

Two way anova.

##See the variance between the groups and within the groups

```
par(mfrow=c(1,3))
boxplot(mtcars$mpg~mtcars$gear, subset =(mtcars$am == 0),xlab = "gear",ylab="mpg",main="Automatic" )
boxplot(mtcars$mpg~mtcars$gear, subset =(mtcars$am == 1),xlab = "gear",ylab="mpg",main="Manual" )
boxplot(mtcars$mpg~factor(mtcars$gear)*factor(mtcars$am),xlab = "gear",ylab="mpg")
```


##step 1 : set up NULL hypothesis and Alternative Hypothesis ##H0 = mu0 = mu1 = mu2 (there is no difference in avg mpg for different gear) ##H1 = Not all means are equal

##Step 2 : Test Two way anova using anova function

```
mtcars.anova2 <- aov(mtcars$mpg~factor(mtcars$gear)*factor(mtcars$am))
summary(mtcars.anova2)</pre>
```

```
##
                       Df Sum Sq Mean Sq F value
                                                    Pr(>F)
## factor(mtcars$gear)
                        2
                           483.2
                                  241.62
                                          11.869 0.000185 ***
## factor(mtcars$am)
                            72.8
                                   72.80
                                            3.576 0.069001 .
## Residuals
                           570.0
                                   20.36
                       28
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

##Step 3 : Calculate F Crticical value ## for 0.05 significance level, critical Value = alpha = 0.05

Step 4: Compare test statistics with F Critical Value and conclude test

p< alpha for gear but not for transmission type

So mpg has strong relation with gear but not with transmission type #Conclusion : gear and mpg mean has different value which mean they have string relationship '

```
\#Two Way ANOVA - POST HOC TEST
```

once the null hypothesis is rejected, the question is what treatment differ. Do post hoc analysis using Tukey Honest Significant Different plot

TukeyHSD(mtcars.anova2)

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = mtcars$mpg ~ factor(mtcars$gear) * factor(mtcars$am))
##
## $'factor(mtcars$gear)'
            diff
##
                        lwr
                                  upr
## 4-3 8.426667 4.1028616 12.750472 0.0001301
## 5-3 5.273333 -0.4917401 11.038407 0.0779791
## 5-4 -3.153333 -9.0958350 2.789168 0.3999532
##
## $'factor(mtcars$am)'
##
           diff
                      lwr
                              upr
                                      p adj
## 1-0 1.805128 -1.521483 5.13174 0.2757926
```

Result indicates that the relation between gear and mpg is significant but relation between mpg and transmission type is not significant

```
par(mfrow=c(1,2))
plot(TukeyHSD(mtcars.anova2))
```

95% family-wise confidence leve 95% family-wise confidence leve

Differences in mean levels of factor(mtcars\$ Differences in mean levels of factor(mtcars\$

Result indicates that gear 4 and gear 3 has highest difference of mean for mpg.