Approximate data deletion and replication with the Bayesian influence function

Ryan Giordano (rgiordano@berkeley.edu, UC Berkeley), Tamara Broderick (MIT) April 2024

Theory and Foundations of Statistics in the Era of Big Data

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know
$$\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$$
.

Some typical model checking tasks:

How well are polls fit under cross-validation (CV)? [Vehtari and Ojanen, 2012]
 Re-fit with data points removed one at a time

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know
$$\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$$

Some typical model checking tasks:

- How well are polls fit under cross-validation (CV)? [Vehtari and Ojanen, 2012]
 Re-fit with data points removed one at a time
- Is there high variability under re-sampling? [Huggins and Miller, 2023]
 Re-fit with bootstrap samples of data

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know
$$\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$$

Some typical model checking tasks:

- How well are polls fit under cross-validation (CV)? [Vehtari and Ojanen, 2012]
 Re-fit with data points removed one at a time
- Is there high variability under re-sampling? [Huggins and Miller, 2023]
 Re-fit with bootstrap samples of data
- Are a small proportion (1%) of polls highly influential? [Broderick et al., 2020]
 Re-fit with sets of all 1% of datapoints removed

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \mbox{Democratic }\%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$.

Some typical model checking tasks:

- How well are polls fit under cross-validation (CV)? [Vehtari and Ojanen, 2012]
 Re-fit with data points removed one at a time
- Is there high variability under re-sampling? [Huggins and Miller, 2023]
 Re-fit with bootstrap samples of data
- Are a small proportion (1%) of polls highly influential? [Broderick et al., 2020]
 Re-fit with sets of all 1% of datapoints removed

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Results

We propose: Use posterior draws based on the full data, to form a linear approximation to $\it data\ reweightings.$

Results

We propose: Use posterior draws based on the full data, to form a linear approximation to *data reweightings*.

,

Results

We propose: Use posterior draws based on the full data, to form a linear approximation to data reweightings.

Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: Seconds (But note the approximation has some error)

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of $\ensuremath{\mathsf{MCMC}}$

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- · Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- High-dimensional problems
 - · The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N \to \infty$

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- · High-dimensional problems
 - The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N o \infty$
- · A trick question, and some implications of different weightings.

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n | \theta)$$
 $\log p(X | \theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Augment the problem with data weights w_1,\ldots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta) \qquad \qquad \log p(X|\theta, w) = \sum_{n=1}^N w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n - 1) + \frac{\mathcal{E}(w)}{}$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n-1) + \textcolor{red}{\mathcal{E}(w)}$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n-1) + \mathcal{E}(w)$$

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\text{Bootstrap variance} = \operatorname*{Var}_{p(w)} \left(\operatorname*{\mathbb{E}}_{p(\theta|x,w)} \left[f(\theta) \right] \right) \underset{n=1}{\thickapprox} \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

How can we use the approximation?

Assume the slope is computable and error is small.

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n-1) + \underbrace{\mathcal{E}(w)}$$

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\text{Bootstrap variance} = \operatorname*{Var}_{p(w)} \left(\operatorname*{\mathbb{E}}_{p(\theta|x,w)} \left[f(\theta) \right] \right) \underset{n=1}{\thickapprox} \frac{1}{N^2} \, \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|X)}{\mathbb{E}} \left[f(\theta) \right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Expressions for the slope and error

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar mean posterior–mean zero. For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \qquad \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know }\bar{w})} (w_n - 1)^2$$

Expressions for the slope and error

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar mean posterior–mean zero. For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{\substack{p(\theta|X)}} \left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \qquad \mathcal{E}(w_n) = \frac{1}{2} \underbrace{\mathbb{E}_{\substack{p(\theta|X,\bar{w}_n)}} \left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know \bar{w})}} (w_n - 1)^2$$

 $=O_p(N^{-1})$ under posterior concentration $=O_p(N^{-2})$ under posterior concentration

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

$$\underset{p(\theta|X,w_n)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|X)}{\mathbb{E}} \left[f(\theta) \right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar mean posterior–mean zero. For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know }\bar{w})} (w_n-1)^2$$

$$= O_p(N^{-1}) \text{ under posterior concentration}$$

$$= O_p(N^{-2}) \text{ under posterior concentration}$$

Theorem [Giordano and Broderick, 2023] (paraphrase):

If the posterior $p(\theta|X)$ "concentrates" (e.g. as in the Bernstein–von Mises theorem), a then

$$w_n \mapsto N\left(\underset{p(\theta|X,w_n)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)]\right)$$

becomes linear as $N \to \infty$, with slope $\lim_{N \to \infty} \psi_n$.

^aExisting results are sufficient for a *particular weight* [Kass et al., 1990]. Giordano and Broderick [2023] proves that the result holds when averaged over all weights, as needed for variance estimation.

Example: A negative binomial model

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

Example: A negative binomial model

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{.}$$

Example: A negative binomial model

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{.}$$

Negative Binomial model leaving out single datapoints with N = 800

What about when parts of the posterior don't concentrate?

Example: Poisson model with random effects (REs) λ and fixed effect γ .

If the observations per random effect remains bounded as $N \to \infty$, then

Parameter λ grows in dimension with N. Parameter γ is a scalar.

Marginally, $p(\lambda|X)$ does not concentrate. Marginally, $p(\gamma|X)$ concentrates.

What about when parts of the posterior don't concentrate?

Example: Poisson model with random effects (REs) λ and fixed effect γ .

If the observations per random effect remains bounded as $N \to \infty$, then

Parameter λ grows in dimension with N. Parameter γ is a scalar.

Marginally, $p(\lambda|X)$ does not concentrate. Marginally, $p(\gamma|X)$ concentrates.

Does
$$w_n \mapsto \underset{p(\lambda|X,w_n)}{\mathbb{E}} [f(\lambda)] - \underset{p(\lambda|X)}{\mathbb{E}} [f(\lambda)]$$
 become linear as N grows? (Note $p(\lambda|X)$ does not concentrate.)

Not in general. Since $p(\lambda|X)$ doesn't concentrate, both the slope ψ_n and error $\mathcal{E}(w_n)$ are O(1) in general. \Rightarrow The map $w_n \mapsto \underset{p(\lambda|X,w_n)}{\mathbb{E}} [f(\lambda)]$ is nonlinear in general.

What about when parts of the posterior don't concentrate?

Example: Poisson model with random effects (REs) λ and fixed effect γ .

If the observations per random effect remains bounded as $N \to \infty$, then

Parameter λ grows in dimension with N. Parameter γ is a scalar.

Marginally, $p(\lambda|X)$ does not concentrate. Marginally, $p(\gamma|X)$ concentrates.

Does
$$w_n \mapsto \underset{p(\lambda|X,w_n)}{\mathbb{E}} [f(\lambda)] - \underset{p(\lambda|X)}{\mathbb{E}} [f(\lambda)]$$
 become linear as N grows? (Note $p(\lambda|X)$ does not concentrate.)

Not in general. Since $p(\lambda|X)$ doesn't concentrate, both the slope ψ_n and error $\mathcal{E}(w_n)$ are O(1) in general. \Rightarrow The map $w_n \mapsto \underset{p(\lambda|X,w_n)}{\mathbb{E}} [f(\lambda)]$ is nonlinear in general.

Does
$$w_n\mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [f(\gamma)] - \underset{p(\gamma|X)}{\mathbb{E}} [f(\gamma)]$$
 become linear as N grows? (Note $p(\gamma|X)$ does concentrate.)

What about when parts of the posterior don't concentrate?

Example: Poisson model with random effects (REs) λ and fixed effect γ .

If the observations per random effect remains bounded as $N \to \infty$, then

Parameter λ grows in dimension with N. Parameter γ is a scalar.

Marginally, $p(\lambda|X)$ does not concentrate. Marginally, $p(\gamma|X)$ concentrates.

Does
$$w_n \mapsto \underset{p(\lambda|X,w_n)}{\mathbb{E}} [f(\lambda)] - \underset{p(\lambda|X)}{\mathbb{E}} [f(\lambda)]$$
 become linear as N grows? (Note $p(\lambda|X)$ does not concentrate.)

Not in general. Since $p(\lambda|X)$ doesn't concentrate, both the slope ψ_n and error $\mathcal{E}(w_n)$ are O(1) in general. \Rightarrow The map $w_n \mapsto \underset{p(\lambda|X,w_n)}{\mathbb{E}} [f(\lambda)]$ is nonlinear in general.

Does
$$w_n \mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [f(\gamma)] - \underset{p(\gamma|X)}{\mathbb{E}} [f(\gamma)]$$
 become linear as N grows? (Note $p(\gamma|X)$ does concentrate.)

Theorem 5 of Giordano and Broderick [2023] (paraphrase): In general, **no!** Specifically, both the slope ψ_n and the error $\mathcal{E}(w_n)$ are $O_p(N^{-1})$, **even if** $p(\gamma|X)$ **concentrates marginally,** when $p(\lambda|X,\gamma)$ does not concentrate.

Experiments

Example: Poisson model with random effects (REs) λ and fixed effect $\gamma.$

A contradiction?

Negative binomial observations.

Asymptotically linear in \boldsymbol{w} .

Poisson observations with random effects.

Asymptotically non-linear in \boldsymbol{w} .

A contradiction?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in w.

Asymptotically non-linear in \boldsymbol{w} .

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in w.

Asymptotically non-linear in w.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \ \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

The two weightings are not equivalent in general.

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses
$$\log p(x_n|\gamma)$$
:
$$\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$$

Uses
$$\log p(x_n|\gamma,\lambda)$$
:
$$\psi_n = \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$$

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$

Computable from

$$\gamma, \lambda \sim p(\gamma, \lambda | X).$$

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

Observations and consequences

- We use often use models $p(\gamma, \lambda | X)$, and can't compute $p(\gamma | X)$ analytically.
- $\bullet\,$ There may be multiple ways to define "exchangable unit" in a given problem.
 - ... But without nesting, $\log p(x_n|\gamma,\lambda)$ may be the natural model-free exchangeable unit.
- Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - \dots Especially given the linear approximation's huge computational advantage.

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466)

- T. Broderick, R. Giordano, and R. Meager. An automatic finite-sample robustness metric: When can dropping a little data make a big difference? arXiv preprint arXiv:2011.14999, 2020.
- A. Gelman and M. Heidemanns. The Economist: Forecasting the US elections., 2020. URL https://projects.economist.com/us-2020-forecast/president. Data and model accessed Oct., 2020.
- R. Giordano and T. Broderick. The Bayesian infinitesimal jackknife for variance. arXiv preprint arXiv:2305.06466, 2023.
- $J. \ Huggins \ and \ J. \ Miller. \ Reproducible \ model \ selection \ using \ bagged \ posteriors. \ \textit{Bayesian Analysis}, \ 18(1):79-104, \ 2023.$
- R. Kass, L. Tierney, and J. Kadane. The validity of posterior expansions based on Laplace's method. Bayesian and Likelihood Methods in Statistics and Econometrics, 1990.
- A. Vehtari and J. Ojanen. A survey of bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142–228, 2012.