Function	Base Function	Transformation(s)
$f(x) = \frac{-1}{x-4} + 6$		6
h(x) = - 2x - 6 + 1		
$j(x) = \frac{1}{2}\sqrt{-x-3} + 5$		
$m(x) = -3(2)^{4x} - 3$		

Function	Base Function	Transformation(s)
$f(x) = \frac{-1}{x-4} + 6$	f(x) = 1 X RECIPROCAL	① RITXA ② horizontal shift 4 right ③ vertical shift up 6
h(x) = - 2x - 6 + 1 $ h(x) = - 2(x - 3) + 1$	f(x)= 1x1 ABSOLUTE VALUE	ORITXA 2) noriz compression bato ½ 3) horiz shift 3 right 4) vertical shift up 1
$j(x) = \frac{1}{2}\sqrt{-x-3} + 5$ $j(x) = \frac{1}{2}\sqrt{-(x+3)} + 5$	$f(x) = \sqrt{x}$ SQUARE RODT	1) Vertical compression base \$\frac{1}{2} \text{RITYA} \\ 3) horiz shift 3 left \\ 4) vert. shift up 5
$m(x) = -3(2)^{4x} - 3$	f(x) = 2 EXPONENTIAL (BASE 2)	1) RITXA 2) Vertical Stretch bato 3 3) horizontal compression boto 4 4) vertical shift down 3

Function	Domain	Range
f(x) = -2 x-3 + 7		
$g(x) = \frac{1}{x-2} + 4$		
$j(x) = \sqrt{-(x+4)} + 3$		
$p(\vartheta) = -2\cos\left(\frac{1}{2}\vartheta + 30^{\circ}\right) - 1$		
$m(x) = -3(2)^{4x} - 3$		

Function	Domain	Range
f(x) = -2 x - 3 + 7	EXER 3 (3,7)	{YER Y ≤ 73
$g(x) = \frac{1}{x-2} + 4$	{X∈R X ≠ 2}	FYER Y = 4]
$j(x) = \sqrt{-(x+4)} + 3$	{XER X ≤ -4}	{Y∈R Y>3}
$p(\vartheta) = -2\cos\left(\frac{1}{2}\vartheta + 30^{\circ}\right) - 1$	[XER]	{YER -3 ≤ Y ≤ 1}
$m(x) = -3(2)^{4x} - 3$	{XER3	{YER Y < -3}

a) State the transformations that have been applied to the base function f(x)

$$g(x) = 2f\left(-\frac{1}{3}x + 2\right) - 5$$

b) Rewrite the function g(x) if the base function is $f(x) = \sqrt{x}$.

a) State the transformations that have been applied to the base function f(x)

$$g(x) = 2f\left(-\frac{1}{3}x + 2\right) - 5$$
 Factor first because there is both k & d!

$$g(x) = 2f\left[\frac{1}{3}(x-6)\right] - 5$$

- 1 Vertical stretch bafo 2
- 2) RITYA
- 3 horizontal stretch bafo 3
 4 horizontal translation 6 right
 5 vertical translation 5 down
- b) Rewrite the function g(x) if the base function is $f(x) = \sqrt{x}$.

$$g(x) = 2\sqrt{-\frac{1}{3}(x-6)} - 5$$

Graph using Transformations

$$p(x) = -\frac{1}{2(x-3)} + 4$$

STATION 4

Graph using Transformations

$$p(x) = -\frac{1}{2(x-3)} + 4$$

$$Q = -1$$

$$K = 2$$

$$Q = +3$$

$$C = +4$$

Mapping rule:
$$(x,y) \rightarrow (\pm x+d,ay+c)$$

$$(x,y) \rightarrow (\pm x+3,-y+4)$$

parent function is $f(x) = \frac{1}{x}$

main points:

$$(1,1) \rightarrow (\frac{1}{2}(1)+3,-(1)+4) \rightarrow (3.5,3)$$

 $(-1,-1) \rightarrow (\frac{1}{2}(-1)+3,-(-1)+4) \rightarrow (3.5,5)$

$$X = 0 \rightarrow x = \frac{1}{2}(0) + 3 \rightarrow DX = 3$$

 $Y = 0 \rightarrow y = -(0) + 4 \rightarrow y = 4$

STATION 5

Given f(x) = k(3 - x), determine the value of k if $f^{-1}(6) = 1$.

STATION 5

Given f(x) = k(3 - x), determine the value of k if $f^{-1}(6) = 1$.

OPTION 1

$$f(x) = K(3-x)$$

$$Y = K(3-x) + \text{Switch } x \text{ & } y$$

$$X = K(3-y) + \text{ iso late for } y$$

$$\frac{X}{K} = 3-y$$

$$Y = 3-\frac{x}{K}$$

sub in (6,1):

OPTION 2

Since
$$f'(6) = 1$$

 $f(1) = 6 + because$
 (x,y) becomes
 (y,x)

$$f(x) = K(3-x)$$

 $6 = K(3-1)$
 $6 = K(2)$
 $\frac{6}{2} = K$
 $3 = K$

Determine the inverse of the function

$$f(x) = 3x^2 - 18x - 10, \quad x \le 3$$

McKinnell MCR 3U **Unit 4 Review**

STATION 6

Determine the inverse of the function

$$f(x) = 3x^2 - 18x - 10, \quad x \le 3$$

$$y = (3 \times^2 - 18 \times) - 10$$

$$y = 3(x^2 - 6x) - 10$$

$$y = 3(x^2 - 6x + 9 - 9) - 10$$

$$y=3(x^2-6x+9)-27-10$$

$$y=3(x-3)^2-37$$

2) switch x and y and then isolate for y:

$$X = 3(1-3)^2 - 37$$

$$X+37=3(1-3)^2$$

$$X+37=3(Y-3)^2$$

lower
$$\frac{X+37}{3} = (y-3)^2$$
 branch

$$\frac{1}{3} = \sqrt{-3}$$

$$-\sqrt{\frac{x+37}{3}}+3=\gamma$$

$$-\sqrt{\frac{x+37}{3}}+3=f^{-1}(x)$$

or, if you ever need to A describe the transformations, it would be a good idea to tweak it so it is easy to see what K and of are:

$$f^{-1}(x) = -\sqrt{\frac{1}{3}x + \frac{37}{3}} + 3$$

$$\int_{-1}^{-1} (x) = -\sqrt{\frac{1}{3}} (x + \frac{37}{3} \div \frac{1}{3}) + 3$$

$$f(x) = -\sqrt{\frac{1}{3}(x+37)} + 3$$

Graph
$$f(\theta) = -2\sin(3\theta + 60^\circ) + 4$$

STATION 7

over the base domain of: 0' \ X \ 360'

Graph
$$f(\theta) = -2\sin(3\theta + 60^\circ) + 4$$

Factor First: $f(x) = -2\sin[3(x + 20^\circ) + 4]$

$$f(x) = -2 \sin[3(x+20)] + 4$$

Mapping Rule:
$$(X,y) \rightarrow (\pm X+d, \alpha Y+c)$$

 $(X,y) \rightarrow (\pm X-20^{\circ}, -2y+4)$

Main points:

$$(0,0)$$
 $\rightarrow D$ $(\frac{1}{3}(0)-2D', -2(0)+4) \rightarrow (-2D', 4)$

$$(90', 1) \rightarrow (\frac{1}{3}(90') - 20', -2(1) + 4) \rightarrow (10', 2)$$

$$(180^{\circ},0) \rightarrow (\frac{1}{3}(180^{\circ})-20^{\circ},-2(0)+4) \rightarrow (40^{\circ},4)$$

$$(270^{\circ}, -1) \rightarrow (\frac{1}{3}(270^{\circ}) - 20^{\circ}, -2(-1) + 4) \rightarrow (70^{\circ}, 6)$$

$$(360^{\circ}, 0) \rightarrow (\frac{1}{3}(360^{\circ}) - 20, -2(0) + 4) \rightarrow (100^{\circ}, 4)$$

The graph shown has been obtained by applying a horizontal dilation, a vertical shift, and one or more reflection(s) to the graph of $f(x) = \left(\frac{1}{3}\right)^x$. Determine an equation to represent the graph.

The graph shown has been obtained by applying a horizontal dilation, a vertical shift, and one or more reflection(s) to the graph of $f(x) = \left(\frac{1}{2}\right)^x$. Determine an equation to

represent the graph.

parent: exponential, base &

$$f(x) = \left(\frac{1}{3}\right)^{x}$$

 $f(x) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}^{X}$ you can assume d = 0 be cause the question doesn't slay a horizontal shift $g(x) = -\begin{pmatrix} 1 \\ 3 \end{pmatrix} + C$ R asymptote

I figured out by looking at the orientation of the graph compared to the parent.

Pick a point and solve for k:

$$-2 = -\left(\frac{1}{3}\right)^{-2k} + 1$$

$$-2 - 1 = -\left(\frac{1}{3}\right)^{-2k}$$

$$-3 = -\left(\frac{1}{3}\right)^{-2k}$$

$$3 = \left(\frac{1}{3}\right)^{-2k}$$

$$\left(\frac{1}{3}\right)^{-2} = \left(\frac{1}{3}\right)^{-2k}$$

$$-1 = -2K$$

 $-\frac{1}{2} = K$

$$g(x) = -\left(\frac{1}{3}\right)^{\frac{1}{2}x} + 1$$

$$f(x) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$2 + y$$

$$y = 1$$

$$-2 + (-2 - 2)$$

$$-5 + (-3 - 2)$$

The graph shown has undergone a transformation in the form g(x) = af(x-d)+c. Determine the **equation** of the transformed function.

McKinnell

MCR 3U

Unit 4 Review

The graph shown has undergone a transformation in the form g(x) = af

transformation in the form g(x) = af(x-d) + c. because there is no Determine the **equation** of the transformed mention of k function.

Reflections: yes

$$g(x) = -\frac{a}{(x-d)} + c$$

sick a so in to
$$6 = \frac{-a}{(1-2)} + 3$$

$$6-3 = \frac{a}{-1}$$

$$3 = -a$$

ned from
$$\frac{3}{6}$$
 $\frac{7}{7}$ $\frac{7}{6}$ $\frac{7}{7}$ $\frac{7}{$

$$g(x) = \frac{-3}{(x-2)} + 3$$