MACHINE INTELLIGENCE UNIT-5

Regularization

feedback/corrections: vibha@pesu.pes.edu

VIBHA MASTI

1. Bias-Variance Trade-off

- Sample: 25 points out of 100 for the function $f(x) = \sin x$
- · Train simple model

· Train complex model

$$y = f(x) = \sum_{i=1}^{25} w_i x^i + w_0$$

- Train k different simple & complex models on different samples of training data
- Each model gets its own sample

simple models do not differ from each other much

however, they are underfitting Chigh bias) - very far

- · Simple model has high bias
- · Complex model has low bias

1.2 Variance

variance
$$(\hat{f}(x)) = E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

E[(f(x)-E[f(x)])] is the variance of every possible model wrt the average model

- · simple model has low variance
- complex model has high variance

1.3 Train-Test Error Coverfitting · As model complexity increases, train error decreases but test error increases High bias error High variance Blue: train err Sweet spot--perfect tradeoff Red: test err -ideal model complexity/ model complexity Data D= {x;,y;} split into train(n) and test(m) For any point (xi, yi), yi = f(xi) + Ei enoise Cacsume white) $\varepsilon \sim N(0, \sigma^2)$ · f is unknown, only f known after training such that $yi = \hat{f}(xi) \forall (x_i, y_i) \in D_{train}$

2.	Regul	lari	<u> 201</u>	im														
•	In	tro	duc	e	ext	ra		iſ	Yo	7r	NÜ	かい	M	i	in	+	he	
	In-	del	to	P	461	/e m	†	0	Ve	rf	itt	in	g					
•	M	in	2	256		(p) 4	L	Ω_{-}	ĹC)	=	U _ _	C (0)		
		; 9		tro	ain						7	iv	ıcr	eas	es	W	ith lexi	•
			•		•	1 0				10						wb	lexi	11
•	FOY.	u	<u>.</u>	-	પ	L		46	y u	Ja	r 17	20°	77 (σ'n				
2.1	p-n	m	n of	Δ	Ve	टिंग	<u> </u>	N	<u> </u>									
								0						0.		-		
	w	ρΞ	- (1	WI	+	IN	121	+	. •	•	+	\v	1 1) r			
2.2	. LI	Re	egul	aria	eat	im)											
								_	_	• •	- 01					1 :	1_	
	IF NSP	2//	naei	real		Me Tiz	at	(v	r 1	esy:	re: - i	(771	M U	1112	e y	a I	. —	
	Las	02.	LI	recs	mi	10			')	- •								
	LR	10.0	200															
		WV.	loue															
		Ŷ	= W	α, -	r U	UZX	2	٠ ٢	• •	+	W	N	χ,	<u> </u>	t k)		
	Los												•				ኒ 心	\
													U					1
		los	S =	err	.a. (رولاً	Ŷ))	<u>e</u>		င	N	人		vibha			_

- · If n nodes present, total possible no of thinned networks = an
- · Probability p is a hyperparameter
- · Combining all models: use full NN and scale output of each node by the fraction of times it was on during training

4. Dataset Augmentation

- · Another technique to reduce overfitting without having to fetch more training data
- · Transform training data so that the labels do not change (eg: shifting, scaling, rotating an image)

