云盒子硬件设计方案初稿

一、云盒子硬件设计概述:

1、 概述:

云盒子的主要功能实现了相关传感器数据的采集,简单的数据处理,再通过 3G/WIFI 路由传送给服务器,硬件设计主要包括以下三个部分的设计:

- a) 电源管理模块
- b) 数据采集传输模块
- c) 震动传感器

2、结构图:

a) 云盒子的结构图:

二、电源管理模块的硬件设计:

- a) 电源管理单元要实现对各路电源的开关控制,电压保护,充电,并实现自身控制的低功耗;具体可分为
 - i. 低功耗 MCU 最小系统
 - ii. 电源转换 DC 电路
 - iii. 充电电路模块
 - iv. 锂电池
 - v. 用于电源切断的电子开关
- b) 低功耗 MCU 最小系统 采用 MSP430 低功耗,低成本系列;型号待定
- c) 电源转换 DC 电路设计 所需的电源类型:
 - i. MCU 最小系统: 3.3V:
 - ii. 3G 网关: 6-35V:

- iii. 模拟电路所需的电源:未定
- d) 充电电路
 - i. 选用市面上比较成熟的移动电源充电电路模块;
- e) 锂电池
 - i. 选用 18650 型锂电池,容量 3000mAH 左右;
- f) 电子开关
 - i. 选用功耗较低的 MOS 管,需要考虑驱动功率,型号未定;
- g) 该模块选型的具体类目

NO	内容	性能要求	备注
1	低功耗 MCU	MSP430 低成本	未定型
2	DC 芯片	耐压高,功耗低,外围电路简单	MP4560
3	充电电路	较成熟的模块	移动电源充电模块
4	锂电池	体积小,容量大,可充电	18650
5	电子开关	功耗低,功率适当	未定型

h) 补充

- i. 充电回路是否需要?理由:可将电源直接接到车载电瓶上,根据传感器数据判断是否处于工作状态,用电源控制单元实现功能的转换,实现低功耗,保护车载电瓶;
- ii. 同采集主板的通讯电路和电源线束的问题;
- i) 备注

三、数据采集主板的硬件设计:

- a) 概述
 - i. 作为云盒子的核心部分,完成云盒子的主体功能;
 - ii. 主体电路包括 STM32F103 最小系统,围绕 STM32 的数据接口电路(串口, SPI, CAN, ADC),模拟采集调理电路(压力传感器以 4—20mA 输入,液位传感器 主体为滑动变阻器),数字式温度传感器以 GPIO 作为接口 18B20;
 - iii. 备注
- b) 数字接口和外设
 - i. 3G/WIF 模块通过串口和 STM32 通讯,需要转换 TTL 电平:
 - ii. GPS 模块通过串口和 STM32 通讯;直连 MCU 串口外设;
 - iii. FLASH 存储器,选用 W25Q64, 8M 字节容量,SPI 接口;
 - v. 外扩串口和 CAN 总线,添加适当指示灯或按键供调试;
- c) 数据采集接口说明
 - i. 震动传感器:通过串口和 STM32 连接, 需转换 TTL 电平;
 - ii. 数字式温度传感器(18B20): GPIO模拟串行通讯,单线或者总线制需测试;
 - iii. 压力数据采集:压力模拟信号 4-20mA,具体电路需讨论设计;
 - iv. 柴油液位传感器:实体为一个滑动变阻器,参考 ZIGBEE 版本温度 PT1000 电路:

d) 选型说明

NO	内容	内容	备注
1	MCU 主控制器	STM32F103RC	已选型

2	3G/WIFI	力必拓联通 3G	已选型
3	GPS	NEO-6	已选型
4	Flash	W25Q64	已选型
5	TTL 电平转换		未定
6	CAN 芯片		未定
7	运放		未定
8	其他器件		未定

e) 补充

i. 同电源管理单元的通讯的接口设计未定

f) 备注

四、震动传感器的硬件设计:

- a) 概述
 - i. 震动传感器主要是对发动机转速的监测,通过串口发送给采集主板;主体参考 ZIGBEE 版本的设计,做适当的调整;
- b) 硬件设计
 - i. 主控 MCU:用 STM32 替换 MSP430;
 - ii. 加速度传感器 LIS3DH, SPI 接口, 电路参考 ZIGBEE 版本;
 - iii. 添加 TTL 电平转换芯片;
- c) 选型

NO	名称	内容	备注
1	主控 MCU	STM32F103C8	已选型
2	加速度传感器	LIS3DH	已选型
3	TTL 电平转换芯片		未定

- d) 补充
- e) 备注

五、未明确和待定的事宜:

- a) 充电电路的存在性;
- b) 所需的电源路数,需根据模拟采集部分和最小系统要求;
- c) 18B20 总线控制的测试;
- d) 压力信号 4-20mA 采集电路的设计讨论;
- e) 应变片信号放大可行性测试;
- f) 液位电路参考 PT1000 电路的改进,增加输入阻抗提高精度;
- g) 线束接口定义;
- h) 补充预留
- i) 未定型表格:

No	名称	内容
1	低功耗 MCU	电源
2	充电电路	电源
3	电子开关	电源
5	运放	采集主板
6	CAN 芯片	采集主板

7	TTL 电平转换	采集主板/震动传感器
8	其他器件	电源/采集主板/震动传感器

六、补充

七、备注