ETE – III Natural Language Processing

Project – Sentiment Analysis Using Bi LSTM

Problem Definition & Dataset Selection

Chosen NLP Task and Its Significance

The task addressed is **Sentiment Analysis**—a key Natural Language Processing (NLP) problem where the goal is to classify the sentiment (positive or negative) of user-generated content. This task has real-world applications in customer feedback analysis, product reviews, social media monitoring, and more.

Dataset Selection

- **Source**: The dataset used is the training 1400000000d dataset, containing preprocessed tweets labeled as positive (4) or negative (0).
- Size: 1.6 million tweets.
- **Relevance**: This dataset is ideal for binary sentiment classification tasks and is a standard benchmark for sentiment analysis models.

Exploratory Data Analysis (EDA)

- **Columns Used**: text (tweet content) and polarity (0 or 1).
- Class Distribution: The polarity was converted from multiclass (0 = negative, 4 = positive) to binary (0 = negative, 1 = positive).
- **Insights**: Distribution appeared fairly balanced, allowing a good foundation for binary classification.

Data preprocessing

```
[7] # Data Preprocessing
    tokenizer = Tokenizer(num_words=5000)
    tokenizer.fit_on_texts(df['text'])
    X = tokenizer.texts_to_sequences(df['text'])
    X = pad_sequences(X, maxlen=100)
    y = df['polarity'].values
```

2. Model Selection & Implementation

Model Chosen

An **LSTM** (**Long Short-Term Memory**) neural network was selected due to its superior performance in capturing long-range dependencies in text.

Preprocessing Steps

- Tokenization: Tweets were tokenized using TensorFlow's Tokenizer.
- **Padding**: Input sequences were padded to ensure uniform input length using pad_sequences.
- **Label Encoding**: Polarity values were transformed into binary class labels (0 or 1).

```
model = Sequential()
model.add(Embedding(input_dim=10000, output_dim=32, input_length=100))
model.add(LSTM(64, return_sequences=False))
model.add(Dense(1, activation='sigmoid'))
```

Embedding Layer: Maps input tokens to dense vectors.

LSTM Layer: 64 units for sequential learning.

Dense Output Layer: Sigmoid for binary classification.

Training Configuration

• Optimizer: Adam

• Loss Function: Binary crossentropy

• Batch Size: 128

• **Epochs**: 5

• Validation Split: 20%

Evaluation metrics: Its compared with RNN and LSTM model

→	6554/6554	: :		3ms/step 3ms/step	
		precision	recall	f1-score	support
	0	0.86	0.94	0.90	160130
	1	0.74	0.52	0.61	49585
	accuracy			0.84	209715
	macro avg	0.80	0.73	0.76	209715
	weighted avg	0.84	0.84	0.83	209715
	LSTM Performance:				
		precision	recall	f1-score	support
	0	0.89	0.94	0.91	160130
	1	0.75	0.64	0.69	49585
	accuracy			0.86	209715
	macro avg	0.82	0.79	0.80	209715
	weighted avg	0.86	0.86	0.86	209715

In order to increase the complexity I used Bi LSTM and for RNN I added dropout layer and much more hyperparameter tuning and the accuracy was increased

Analysis

- **Performance**: The LSTM model generalizes well on unseen data.
- **Dataset Influence**: Large and clean dataset enabled effective model training.
- **Baseline Comparison**: Performance outperformed a simple RNN architecture.

Deployment and demonstration

For deployment I have used streamlit and the Bi lstm model is downloaded including the tokenizer pkl file which will be used for prediction of a tweet whether it will be positive or negative. This UI also consists of visualisation and comparison with the model graph

