1 PYTÖRCH PYTÖRCH PYTÖRCH PYTÖRCH PYTÖRCH F H PYTÖRCH PYTÖRCH PYTÖRCH PYTÖRCH PYTÖRCH F

decisions and challenges of writing an imperative deep learning framework

Adam Paszke, Sam Gross, Soumith Chintala & the team

Facebook Al Research

Overview of the talk

Implementation

Advantages & Disadvantages

Deep Learning Frameworks

Deep Learning Frameworks In addition to Computation Graph Toolkits

Deep Learning

Frameworks

- Provide gradient computation
 - Gradient of one variable w.r.t. any variable in graph

Computation

Graphs

Deep Learning Frameworks In addition to Computation Graph Toolkits

Deep Learning Frameworks In addition to Computation Graph Toolkits

Deep Learning

Frameworks

- Provide gradient computation
 - Gradient of one variable w.r.t. any variable in graph
- Provide integration with high performance DL libraries like CuDNN

Computation

Graphs

Declarative Toolkits

Caffe

Declarative Toolkits

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

```
import tensorflow as tf
     import numpy as np
    trX = np.linspace(-1, 1, 101)
    trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
    X = tf.placeholder("float")
     Y = tf.placeholder("float")
 9
    def model(X, w):
11
         return tf.multiply(X, w)
12
    w = tf.Variable(0.0, name="weights")
    y_{model} = model(X, w)
15
    cost = tf.square(Y - y_model)
17
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
19
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
21
22
        for i in range(100):
             for (x, y) in zip(trX, trY):
24
                 sess.run(train_op, feed_dict={X: x, Y: y})
25
        print(sess.run(w))
```

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

A separate turing-complete Virtual Machine

Computation

Graphs

Deep Learning

Frameworks

```
import tensorflow as tf
    import numpy as np
    trX = np.linspace(-1, 1, 101)
    trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    def model(X, w):
        return tf.multiply(X, w)
    w = tf.Variable(0.0, name="weights")
    y_{model} = model(X, w)
15
    cost = tf.square(Y - y_model)
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(100):
24
            for (x, y) in zip(trX, trY):
                 sess.run(train_op, feed_dict={X: x, Y: y})
25
27
        print(sess.run(w))
```

Declarative Toolkits

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

Can handle loops, conditionals (if, scan, while, etc.)

```
from __future__ import division, print_function
import tensorflow as tf

def fn(previous_output, current_input):
    return previous_output + current_input

elems = tf.Variable([1.0, 2.0, 2.0, 2.0])
elems = tf.identity(elems)
initializer = tf.constant(0.0)
out = tf.scan(fn, elems, initializer=initializer)

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(sess.run(out))
```


Imperative Frameworks JIT Compilation

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

Has it's own execution engine

Computation

Graphs

Deep Learning

Frameworks

```
import tensorflow as tf
    import numpy as np
    trX = np.linspace(-1, 1, 101)
    trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    def model(X, w):
        return tf.multiply(X, w)
    w = tf.Variable(0.0, name="weights")
    y_{model} = model(X, w)
15
    cost = tf.square(Y - y_model)
17
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
18
19
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(100):
24
            for (x, y) in zip(trX, trY):
                 sess.run(train_op, feed_dict={X: x, Y: y})
25
27
        print(sess.run(w))
```

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session
 - Has it's own compiler
 - fuse operations
 - reuse memory
 - do optimizations

```
import tensorflow as tf
    import numpy as np
    trX = np.linspace(-1, 1, 101)
    trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    def model(X, w):
        return tf.multiply(X, w)
    w = tf.Variable(0.0, name="weights")
    y_{model} = model(X, w)
15
    cost = tf.square(Y - y_model)
17
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
18
19
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(100):
24
            for (x, y) in zip(trX, trY):
                 sess.run(train_op, feed_dict={X: x, Y: y})
25
27
        print(sess.run(w))
```

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

```
Graph can be serialized easily<sup>19</sup>
```

Computation

Graphs

Deep Learning

Frameworks

```
import tensorflow as tf
    import numpy as np
    trX = np.linspace(-1, 1, 101)
    trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    def model(X, w):
        return tf.multiply(X, w)
    w = tf.Variable(0.0, name="weights")
    y_model = model(X, w)
15
    cost = tf.square(Y - y_model)
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(100):
24
            for (x, y) in zip(trX, trY):
                 sess.run(train_op, feed_dict={X: x, Y: y})
25
27
        print(sess.run(w))
```

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

Own Virtual Machine

Computation

Graphs

Deep Learning

Frameworks

```
import tensorflow as tf
    import numpy as np
    trX = np.linspace(-1, 1, 101)
    trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    def model(X, w):
        return tf.multiply(X, w)
    w = tf.Variable(0.0, name="weights")
    y_{model} = model(X, w)
15
    cost = tf.square(Y - y_model)
17
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
19
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(100):
24
            for (x, y) in zip(trX, trY):
                 sess.run(train_op, feed_dict={X: x, Y: y})
25
27
        print(sess.run(w))
```

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

Own Virtual Machine

- separate debugging tools

```
import tensorflow as tf
    import numpy as np
    trX = np.linspace(-1, 1, 101)
    trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    def model(X, w):
         return tf.multiply(X, w)
    w = tf.Variable(0.0, name="weights")
    y_{model} = model(X, w)
15
    cost = tf.square(Y - y_model)
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
18
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
21
        for i in range(100):
             for (x, y) in zip(trX, trY):
24
                 sess.run(train_op, feed_dict={X: x, Y: y})
25
        print(sess.run(w))
```

- Declare a computation
 - with placeholder variables
- Compile it
- Run it in a Session

Own Virtual Machine

- separate debugging tools
- non-linear thinking for user

Computation

Graphs

Deep Learning

Frameworks

```
import tensorflow as tf
    import numpy as np
    trX = np.linspace(-1, 1, 101)
    trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    def model(X, w):
         return tf.multiply(X, w)
    w = tf.Variable(0.0, name="weights")
    y_{model} = model(X, w)
15
    cost = tf.square(Y - y_model)
    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
18
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(100):
             for (x, y) in zip(trX, trY):
24
                 sess.run(train_op, feed_dict={X: x, Y: y})
25
        print(sess.run(w))
```

Imperative Toolkits

Imperative Toolkits

- Run a computation
- computation is run

HIPS Autograd

Dynet

- Run a computation
- computation is run!

```
import torch
      from torch.autograd import Variable
     trX = torch.linspace(-1, 1, 101)
     trY = 2 * trX + torch.randn(*trX.size()) * 0.33
     w = Variable(trX.new([0.0]), requires_grad=True)
      for i in range(100):
       for (x, y) in zip(trX, trY):
         X = Variable(x)
         Y = Variable(y)
 13
 14
          y_{model} = X * w_expand_as(X)
          cost = (Y - Y_model) ** 2
          cost.backward(torch.ones(*cost.size()))
 18
          w.data = w.data + 0.01 * w.grad.data
 19
_ 20
        print(w)
    rrameworks
```

- Run a computation
- computation is run!

```
import torch
      from torch.autograd import Variable
     trX = torch.linspace(-1, 1, 101)
     trY = 2 * trX + torch.randn(*trX.size()) * 0.33
     w = Variable(trX.new([0.0]), requires_grad=True)
      for i in range(100):
       for (x, y) in zip(trX, trY):
         X = Variable(x)
         Y = Variable(y)
 13
 14
          y_{model} = X * w_expand_as(X)
          cost = (Y - Y_model) ** 2
          cost.backward(torch.ones(*cost.size()))
 18
          w.data = w.data + 0.01 * w.grad.data
 19
_ 20
        print(w)
    rrameworks
```

- Run a computation
- •computation is run!
- •no separate execution engine

```
import torch
      from torch.autograd import Variable
     trX = torch.linspace(-1, 1, 101)
     trY = 2 * trX + torch.randn(*trX.size()) * 0.33
     w = Variable(trX.new([0.0]), requires_grad=True)
      for i in range(100):
        for (x, y) in zip(trX, trY):
 10
         X = Variable(x)
          Y = Variable(y)
          y_{model} = X * w_expand_as(X)
          cost = (Y - Y_model) ** 2
          cost.backward(torch.ones(*cost.size()))
 18
          w.data = w.data + 0.01 * w.grad.data
 19
_ 20
        print(w)
    rrameworks
```

- Run a computation
- •computation is run!
- •no separate execution engine
- debugging is easy

```
import torch
      from torch.autograd import Variable
     trX = torch.linspace(-1, 1, 101)
     trY = 2 * trX + torch.randn(*trX.size()) * 0.33
     w = Variable(trX.new([0.0]), requires_grad=True)
      for i in range(100):
        for (x, y) in zip(trX, trY):
 10
         X = Variable(x)
          Y = Variable(y)
          y_{model} = X * w_expand_as(X)
          cost = (Y - Y_model) ** 2
          cost.backward(torch.ones(*cost.size()))
 18
          w.data = w.data + 0.01 * w.grad.data
 19
_ 20
        print(w)
     rrameworks
                      Compliation
```

- Run a computation
- computation is run!
- •no separate execution engine
- debugging is easy

Oldest debugging method of all time

```
import torch
      from torch.autograd import Variable
     trX = torch.linspace(-1, 1, 101)
     trY = 2 * trX + torch.randn(*trX.size()) * 0.33
     w = Variable(trX.new([0.0]), requires_grad=True)
      for i in range(100):
        for (x, y) in zip(trX, trY):
 10
         X = Variable(x)
          Y = Variable(y)
          y_{model} = X * w_expand_as(X)
          cost = (Y - Y_model) ** 2
          cost.backward(torch.ones(*cost.size()))
 18
          w.data = w.data + 0.01 * w.grad.data
 19
_ 20
        print(w)
     rrameworks
                      Compliation
```

- Run a computation
- •computation is run!
- •no separate execution engine
- debugging is easy

Oldest debugging method of all time

```
print(x)
y = foo(x)
print(y)

Computation
Graphs

Deep Learning
Frameworks
```

```
import torch
      from torch.autograd import Variable
     trX = torch.linspace(-1, 1, 101)
     trY = 2 * trX + torch.randn(*trX.size()) * 0.33
     w = Variable(trX.new([0.0]), requires_grad=True)
      for i in range(100):
        for (x, y) in zip(trX, trY):
 10
         X = Variable(x)
          Y = Variable(y)
          y_{model} = X * w_expand_as(X)
          cost = (Y - Y_model) ** 2
          cost.backward(torch.ones(*cost.size()))
 18
          w.data = w.data + 0.01 * w.grad.data
 19
_ 20
        print(w)
     rrameworks
                      Compliation
```

- Run a computation
- •computation is run!
- •no separate execution engine
- debugging is easy

Oldest debugging method of all time

```
print("hello")
  y = foo(x)
print("hello2")
```

Computation

Graphs

Deep Learning

Frameworks

```
trX = torch.linspace(-1, 1, 101)
     trY = 2 * trX + torch.randn(*trX.size()) * 0.33
     w = Variable(trX.new([0.0]), requires_grad=True)
      for i in range(100):
        for (x, y) in zip(trX, trY):
 10
         X = Variable(x)
          Y = Variable(y)
          y_{model} = X * w_expand_as(X)
          cost = (Y - Y_model) ** 2
          cost.backward(torch.ones(*cost.size()))
          w.data = w.data + 0.01 * w.grad.data
 18
 19
_ 20
        print(w)
     rrameworks
                      Compliation
```

from torch.autograd import Variable

import torch

Computation Graph T₂ Imperative Toolkits

- Run a computation
- •computation is run!
- •no separate execution engine
- debugging is easy

Oldest debugging method of all time

```
print("hello")
  y = foo(x)
print("hello2")
```

Computation

Graphs

Deep Learning

Frameworks

```
from torch.autograd import Variable
    trX = torch.linspace(-1, 1, 101)
    trY = 2 * trX + torch.randn(*trX.size()) * 0.33
 6
    w = Variable(trX.new([0.0]), requires_grad=True)
    for i in range(100):
       for (x, y) in zip(trX, trY):
        X = Variable(x)
         Y = Variable(y)
         print(Y)
14
15
         y_{model} = X * w_{expand_as}(X)
         cost = (Y - Y_model) ** 2
16
         cost.backward(torch.ones(*cost.size()))
18
        w.data = w.data + 0.01 * w.grad.data
19
20
21
       print(w)
                   Compilation
 Frameworks
```

import torch

- Run a computation
- •computation is run!
- •no separate execution engine
- debugging is easy
- Linear program flow
 - Linear thinking for user

```
import torch
    from torch.autograd import Variable
    trX = torch.linspace(-1, 1, 101)
    trY = 2 * trX + torch.randn(*trX.size()) * 0.33
    w = Variable(trX.new([0.0]), requires_grad=True)
    for i in range(100):
       for (x, y) in zip(trX, trY):
        X = Variable(x)
        Y = Variable(y)
         print(Y)
        y_{model} = X * w_{expand_as}(X)
         cost = (Y - Y_model) ** 2
         cost.backward(torch.ones(*cost.size()))
        w.data = w.data + 0.01 * w.grad.data
19
20
21
      print(w)
   Imperative
                         JIT
                     Compilation
  Frameworks
```

- Run a computation
- •computation is run!
- •no separate execution engine

Cannot compile program

- Linear program flow
 - Linear thinking for user

Computation

Graphs

Deep Learning

Frameworks

```
import torch
    from torch.autograd import Variable
    trX = torch.linspace(-1, 1, 101)
    trY = 2 * trX + torch.randn(*trX.size()) * 0.33
    w = Variable(trX.new([0.0]), requires_grad=True)
    for i in range(100):
       for (x, y) in zip(trX, trY):
        X = Variable(x)
        Y = Variable(y)
         print(Y)
        y_{model} = X * w_{expand_as}(X)
         cost = (Y - Y_model) ** 2
         cost.backward(torch.ones(*cost.size()))
        w.data = w.data + 0.01 * w.grad.data
20
21
      print(w)
   Imperative
                         JIT
                     Compilation
  Frameworks
```

- Run a computation
- •computation is run!
- •no separate execution engine

Cannot compile program

- •LineCannot optimize
 - Linear thinking for user

```
import torch
    from torch.autograd import Variable
    trX = torch.linspace(-1, 1, 101)
    trY = 2 * trX + torch.randn(*trX.size()) * 0.33
    w = Variable(trX.new([0.0]), requires_grad=True)
    for i in range(100):
       for (x, y) in zip(trX, trY):
        X = Variable(x)
        Y = Variable(y)
         print(Y)
        y_{model} = X * w_{expand_as}(X)
         cost = (Y - Y_model) ** 2
         cost.backward(torch.ones(*cost.size()))
        w.data = w.data + 0.01 * w.grad.data
20
21
      print(w)
   Imperative
                         JIT
                     Compilation
  Frameworks
```

- Run a computation
- •computation is run!
- •no separate execution engine

Computation

Graphs

Deep Learning

Frameworks

- Cannot compile program
- •LineCannot optimize
- Cannot do static analysis

```
import torch
    from torch.autograd import Variable
    trX = torch.linspace(-1, 1, 101)
    trY = 2 * trX + torch.randn(*trX.size()) * 0.33
    w = Variable(trX.new([0.0]), requires_grad=True)
    for i in range(100):
       for (x, y) in zip(trX, trY):
        X = Variable(x)
        Y = Variable(y)
         print(Y)
        y_{model} = X * w_{expand_as}(X)
         cost = (Y - Y_model) ** 2
         cost.backward(torch.ones(*cost.size()))
        w.data = w.data + 0.01 * w.grad.data
20
21
      print(w)
   Imperative
                         JIT
                     Compilation
  Frameworks
```

- Run a computation
- •computation is run!
- •no separate execution engine
- Cannot compile program
- •LineCannot optimize
 - Cannot do static analysis (more on this later)

```
import torch
    from torch.autograd import Variable
    trX = torch.linspace(-1, 1, 101)
    trY = 2 * trX + torch.randn(*trX.size()) * 0.33
    w = Variable(trX.new([0.0]), requires_grad=True)
    for i in range(100):
       for (x, y) in zip(trX, trY):
        X = Variable(x)
        Y = Variable(y)
         print(Y)
        y_{model} = X * w_{expand_as}(X)
         cost = (Y - Y_model) ** 2
         cost.backward(torch.ones(*cost.size()))
        w.data = w.data + 0.01 * w.grad.data
20
21
      print(w)
   Imperative
                         JIT
                     Compilation
  Frameworks
```

Imperative Frameworks

Imperative Frameworks: PyTorch Graph is built on the fly

from torch.autograd import Variable


```
from torch.autograd import Variable

x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))
```


Graph is built on the fly

h2h = torch.mm(W h, prev h.t())

```
from torch.autograd import Variable

x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
```


from torch.autograd import Variable

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next h = i2h + h2h
```


JIT

Compilation

Computation
Graphs

Deep Learning
Frameworks

Imperative Frameworks

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
```


Deep Learning

Frameworks

Frameworks

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
```

Computation

Graphs

Deep Learning

Frameworks

Frameworks

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
next_h.backward(torch.ones(1, 20))
```

Computation

Graphs

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
```

Computation

Graphs

Hence, graph construction has to be FAST

Deep Learning

Frameworks

Frameworks


```
from torch.autograd import Variable
```

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
```

Computation

Graphs

Initially written in Python

Deep Learning

Frameworks

Frameworks


```
from torch.autograd import Variable
```

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
```

Computation

Graphs

Overhead too high

Deep Learning

Frameworks

Frameworks


```
from torch.autograd import Variable
```

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
```

Computation

Graphs

Moved to CPython

Deep Learning

Frameworks

Frameworks

Deep Learning

Frameworks

```
from torch.autograd import Variable
x = Variable(torch.randn(1, 10))
prev h = Variable(torch.randn(1, 20))
W h = Variable(torch.randn(20, 20))
W x = Variable(torch.randn(20, 10))
i2h = torch.mm(W x, x.t())
h2h = torch.mm(W h, prev h.t())
next h = i2h + h2h
next h = next h.tanh()
next h.backward(torch.ones(1, 20))
          Moved to CPython
      used Flame graphs to find
        and optimize hotspots
```

Computation

Graphs

from torch.autograd import Variable

SNAKEVIZ

x = Variable(
prev_h = Vari
W_h = Variabl
W_x = Variabl

i2h = torch.m
h2h = torch.m
next_h = i2h
next h = next

SnakeViz

Installation

Starting SnakeViz

Generating Profiles

Interpreting Results

Controls

Notes

Contact

FUNCTION INFO

Placing your cursor over an arc will highlight that arc and any other visible instances of the same function call. It will also display a list of information to the left of the sunburst.

TXZ

Name:

filter

Cumulative Time:

0.000294 s (31.78 %)

File:

fnmatch.py

Line:

48

Directory:

/Users/jiffyclub/miniconda3/en vs/snakevizdev/lib/python3.4/

← PREVIOUS

TXT

O GITHUB

next_h.backwaru, corton ones The displayed information includes: Moved to CPython

used Flame graphs to find

and optimize hotspots

Computation Graphs Deep Learning Frameworks Imperative Frameworks JIT Compilation

next_n

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
```

Computation

Graphs

Overall speed as fast as declarative frameworks

Deep Learning

Frameworks

Frameworks

Performance stats from Nov 2016

Task	Torch		PyTorch	
ResNet-101	544ms	10GB (5,4GB)	516ms	4,9GB
ResNet-101 2GPU	580ms	10GB (5,6GB)	640ms	4,9GB
Penn Treebank 2-layer LSTM	57ms	865MB	62ms	370MB

Performance stats from Nov 2016

Task	Torch		PyTorch	
ResNet-101	544ms	10GB (5,4GB)	516ms	4,9GB
ResNet-101 2GPU	580ms	10GB (5,6GB)	640ms	4,9GB
Penn Treebank 2-layer LSTM	57ms	865MB	62ms	370MB

Graph Construction Speed

- PyTorch: nanoseconds to microseconds
- TensorFlow: milliseconds to several seconds
- Theano: seconds to minutes (hours?)
- •MXNet: i dont know -> ask your instructor:)

Additional valuable features in PyTorch

Low memory usage even without a static optimizer

Performance stats from Nov 2016

Task	Torch		PyTorch	
ResNet-101	544ms	10GB (5,4GB)	516ms	4,9GB
ResNet-101 2GPU	580ms	10GB (5,6GB)	640ms	4,9GB
Penn Treebank 2-layer LSTM	57ms	865MB	62ms	370MB

Additional valuable features in PyTorch

- ·Low memory usage even without a static optimizer
- •Intermediate buffers are always freed
- Developers given constructs to allocate temporary buffers

```
-save_for_backward
```

-requires_grad

Additional valuable features in PyTorch

- ·Low memory usage even without a static optimizer
- •Intermediate buffers are always freed
- Developers given constructs to allocate temporary buffers
 - -save_for_backward
 - -requires_grad
- •in-place operations

JIT Compilation

JIT Compilation

- Possible in Imperative Frameworks
- The key idea is deferred or lazy evaluation
 - -y = x + 2
- -z = y * y
- # nothing is executed yet, but the graph is being constructed
- print(z) # now the entire graph is executed: z = (x+2) * (x+2)
- · We can do just in time compilation on the graph before execution

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
next_h.backward(torch.ones(1, 20))
```

Computation

Graphs

Deep Learning

Frameworks


```
from torch.autograd import Variable
                                            W_h
x = Variable(torch.randn(1, 10))
prev h = Variable(torch.randn(1, 20))
W h = Variable(torch.randn(20, 20))
                                               MM
W x = Variable(torch.randn(20, 10))
i2h = torch.mm(W x, x.t())
                                         i2h
                                                      Add
h2h = torch.mm(W h, prev h.t())
next h = i2h + h2h
next h = nexGraph built but not actually executed
```


Graphs

```
from torch.autograd import Variable
                                               W_{h}
                                                              W_x
                                                                      X
x = Variable(torch.randn(1, 10))
prev h = Variable(torch.randn(1, 20))
                                                                 MM
W h = Variable(torch.randn(20, 20))
                                                  MM
W x = Variable(torch.randn(20, 10))
i2h = torch.mm(W x, x.t())
                                            i2h
                                                                       h2h
                                                         Add
h2h = torch.mm(W h, prev h.t())
next h = i2h + h2h
next h = next h.tanh()
                                                         Tanh
print(next h)
              Data accessed. Execute graph.
                                                       next_h
               Computation
                           Deep Learning
                                         Imperative
                                                       JIT
```

Frameworks

Compilation

Frameworks

- •A little bit of time between building and executing graph
 - Use it to compile the graph just-in-time

Graphs

JIT Compilation

• Fuse and optimize operations

JIT Compilation

Cache subgraphs

Deep Learning

Frameworks

Imperative

Frameworks

JIT

Compilation

Computation

Graphs

Compilation benefits

Kernel fusion

Out-of-order execution

Automatic work placement

JIT Compilation

- Possible in Dynamic Frameworks
- The key idea is deferred or lazy evaluation
 - -y = x + 2
- -z = y * y
- # nothing is executed yet, but the graph is being constructed
- print(z) # now the entire graph is executed: z = (x+2) * (x+2)
- · We can do just in time compilation on the graph before execution
- · We can cache repeating patterns in subsets of the graph
 - to avoid recompilation
- Compiler is very different from Ahead-of-time compiler
- fast compilation
- compile traces rather than full graph

Review

Implementation

Advantages & Disadvantages

PYTÖRCH

With from

http://pytorch.org

Released Jan 18th

40,000+ downloads

250+ community repos

4200+ user posts

330k+ forum views

