第5章 决策树

刘家锋

哈尔滨工业大学

第5章 决策树

- 1 5.1 基本流程
- 2 5.2 决策树学习
- 3 5.3 剪枝
- 4 5.4 连续属性

5.1 基本流程

决策树

• 决策树的结构

- o 决策树是一种常用的机器学习方法
- o 中间节点:对应某个属性,分支对应该属性的某个取值
- o 叶节点:对应一个预测结果

000

决策树预测

- o 从根节点开始,测试节点的属性
- o 根据测试样例的属性值,决定下行分支
- o 在叶节点得到预测值

决策树学习

- o 通过对训练集数据的分析,确定节点的划分属性,确定节点的分支,构造决策树
- o 修剪决策树,提高预测的泛化能力

决策树与规则

• 从决策树到规则

- o 一颗决策树对应一个规则集
- o 每条从根节点到叶节点的分支路径对应一条规则

 $(纹理 = 清晰) \land (根蒂 = 蜷缩) \longrightarrow 好瓜$

5.2 决策树学习

基本算法

Algorithm 1 决策树学习算法

```
Input: 数据集D = \{(\mathbf{x}_i, y_i)\}_{i=1}^m,属性集A = \{a_1, \dots, a_d\}
Output: 以node为根节点的一棵决策树
 1: function TreeGenerate(D, A)
      生成节点node:
      if 满足递归停止条件 then 标记节点: return
 3:
      end if
4:
      从A中选择最优划分属性a_*
5:
      for a_*的每一个取值a_*^v do
6:
7:
         为node生成一个分支,D_v表示D中a_*取值a_*^v的样本子集
8:
         if D_v = \Phi then
9:
            分支标记叶节点为D中样本最多类
10:
         else
11:
            以TREEGENERATE(D_v, A \setminus \{a_*\})为分支节点
12:
         end if
13:
      end for
14: end function
```

分治递归

• 决策树的学习过程

- o 决策树学习"分而治之"的策略,是一个从根节点到叶节点的迭代过程
- o 每一次递归,根据选择的属性值将样本集划分为若干个子集,每个子集对应节点 的不同分支
- o 每个子集递归调用建树的过程

• 递归终止条件

- 1 输入样本集合D中的样本都属于同一个类别C,标记节点为叶节点,类别为C
- 2 输入属性集A为空,或者集合D中所有样本的所有属性相同,标记节点为D中样本所属最多的类别
- 3 当前节点包含的样本集合为空,标记节点为D中样本最多的类别

• 划分属性的选择

- o 决策树学习的关键是如何选择"最优"的划分属性
- o 决策树根节点对应的样本集合包含所有类别的样本,而每一个叶节点只包含某一个类别的样本
- o 决策树的构建可以看作是一个使得样本集合越来越"纯净"的过程
- o 如果能够定义一个度量集合"纯度"的指标,在每个节点上应该选择使得"纯度"增加最快的属性来划分样本集合

Information Entropy

信息熵

- o 信息熵是度量样本集合纯度最常用的一个指标
- o 样本集合D中第k类样本所占比例为 p_k ,D的信息熵定义为:

$$\mathsf{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

其中, \mathcal{Y} 为类别的集合, $|\mathcal{Y}|$ 为类别的数量

- o Ent(D)的值越小,表示纯度越高,当所有样本属于一个类别时,取得最小值Ent(D) = 0; (约定p = 0, $p \log_2 p = 0$)
- o $\operatorname{Ent}(D)$ 的最大值为 $\log_2 |\mathcal{Y}|$

ID3算法

信息増益

- o 离散属性a有V个可能的取值: $\{a^1, \dots, a^V\}$
- o D^v 表示D中属性 $a=a^v$ 的样本集合,以属性a对数据集D进行划分的信息增益为:

$$\mathsf{Gain}(D,a) = \mathsf{Ent}(D) - \sum_{v=1}^V \frac{|D^v|}{|D|} \mathsf{Ent}(D^v)$$

- o 第1项Ent(D)是划分前数据集的信息熵
- 。第2项是使用属性a划分之后的总信息熵, $|D^v|/|D|$ 是每个分支的权重,样本越多权重越大, $Ent(D^v)$ 为其中一个子集的信息熵
- o ID3算法依据信息增益选择最优的划分属性:

$$a_* = \arg\max_{a \in A} \mathsf{Gain}(D, a)$$

包含17个样例的西瓜数据集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

计算信息熵

计算数据集的信息熵: $|\mathcal{Y}| = 2$,正例占比 $p_1 = 8/17$,反例占比 $p_2 = 9/17$

$$\mathsf{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

以属性"色泽"划分为3个子集:

$$D^{1}$$
(青绿) = {1,4,6,10,13,17}, $p_{1} = 3/6, p_{2} = 3/6$
 D^{2} (乌黑) = {2,4,7,8,9,15}, $p_{1} = 4/6, p_{2} = 2/6$
 D^{3} (浅白) = {5,11,12,14,16}, $p_{1} = 1/5, p_{2} = 4/5$

计算子集的信息熵:

$$\operatorname{Ent}(D^1) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.000$$

$$\operatorname{Ent}(D^2) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(D^3) = -\left(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}\right) = 0.722$$

计算信息增益

计算属性"色泽"的信息增益:

$$\begin{split} \mathsf{Gain}(D, 色泽) &= \mathsf{Ent}(D) - \sum_{v=1}^3 \frac{|D^v|}{|D|} \mathsf{Ent}(D^v) \\ &= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right) \\ &= 0.109 \end{split}$$

同样方法, 计算其它属性的信息增益:

$${
m Gain}(D,$$
 根蒂 $)=0.143$ ${
m Gain}(D,$ 敲声 $)=0.141$ ${
m Gain}(D,$ 纹理 $)=0.381$ ${
m Gain}(D,$ 脐部 $)=0.289$ ${
m Gain}(D,$ 触感 $)=0.006$

选择属性

属性"纹理"的信息增益最大,选择作为划分属性

 D^3 全部为反例,满足终止条件,标注为"坏瓜", D^1, D^2 递归构造决策树子集 D^1 分别计算剩余属性的信息增益:

$$Gain(D, 色泽) = 0.043$$
 $Gain(D, 根蒂) = 0.458$ $Gain(D, 融膨) = 0.331$ $Gain(D, Ѭ部) = 0.458$ $Gain(D, ෩膨) = 0.458$

根蒂、脐部、触感的信息增益均取得最大增益,可以任选一个作为划分属性

... ...

构建决策树

每个节点继续递归构造决策树, 直到节点的样例集合满足终止条件为止

C4.5算法

• 增益率

- o 信息增益倾向于选择取值比较多的属性,例如例5.1中如果计算"编号"的信息增益,可以分成17个子集,每个子集1样例,信息熵为0,增益最大
- o 定义增益率:

$$\mathsf{Gain_ratio}(D,a) = \frac{\mathsf{Gain}(D,a)}{\mathsf{IV}(a)}$$

其中

$$IV(a) = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \log_2 \frac{|D^v|}{|D|}$$

属性a取值越多,IV(a)通常越大,例5.1中:

$$IV(触感) = 0.874$$
, $IV(色泽) = 1.580$, $IV(编号) = 4.088$

o C4.5算法在信息增益高于平均值的属性中,选择增益率最大的作为最优属性

CART算法

• 基尼指数

○ 基尼值是数据集*D*纯度的另外一种度量:

$$\mathsf{Gini}(D) = \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'} = 1 - \sum_{k=1}^{|\mathcal{Y}|} p_k^2$$

- o 基尼值反映了从数据集*D*中随机抽取两个样例,其类别不一致的概率,值越小纯度越高,值越大纯度越低
- o CART算法选择基尼指数最小的属性作为划分属性:

$$\mathsf{Gini_index}(D,a) = \sum_{v=1}^V \frac{|D^v|}{|D|} \mathsf{Gini}(D^v)$$

5.2 决策树学习 00000000000 5.3 剪枝 oooooooooo

| 连续属性 | | 00000000

5.3 剪枝

• 决策树是容易过拟合的模型

- o 一般来说,决策树可以完美地预测训练数据,但对测试数据可能效果会很差
- o 决策树的分支过多,从根节点到叶节点的路径过长都是过拟合的表现

• 剪枝处理

- o 剪枝是控制决策树过拟合的主要手段
- o 预剪枝:决策树生成过程中,估计当前节点的划分是否能够带来泛化性能的提升,决定是否停止划分节点
- o 后剪枝: 先生成完整的决策树, 然后自底向上考察将非叶节点替换为叶节点, 能 否带来泛化性能的提升

例5.2 剪枝

西瓜数据随机划分出一部分作为验证集,用于评估决策树的泛化性能:

训练集	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
验证集	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

完整决策树

不剪枝,使用训练集构造的完整决策树

验证集	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

● 节点1

o 不划分,标注为"好瓜",验证集正确率: $\frac{3}{7} = 42.9\%$

验证集	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

• 节点1

- o 不划分,标注为"好瓜",验证集正确率: $\frac{3}{7} = 42.9\%$
- o 划分3个分支,验证集正确率: $\frac{5}{7} = 71.4\%$
- o 正确率提高,不剪枝,划分

预剪枝

• 节点2

o 划分前: $\frac{5}{7} = 71.4\%$

o 划分后: $\frac{4}{7} = 57.1\%$

o 正确率下降,剪枝,不划分

• 节点3

o 划分前: $\frac{5}{7} = 71.4\%$

o 划分后: $\frac{5}{7} = 71.4\%$

o 正确率不变,剪枝,不划分

预剪枝之后的决策树

使用训练集构造的完整决策树,验证集上的正确率: 42.9%

考察节点6, 剪枝前后正确率: 42.9% → 57.1%, 剪枝

考察节点5,剪枝前后正确率: 57.1% → 57.1%,不剪枝

考察节点2, 剪枝前后正确率: 57.1% → 71.4%, 剪枝

节点3和1的剪枝都不会提高正确率,应被保留;节点4本身就是叶节点,不需要剪枝; 节点5的子节点都是"好瓜",也可以精简;

剪枝处理

• 时间开销

- o 预剪枝: 降低训练时间开销, 降低测试时间开销
- o 后剪枝:增加训练时间开销,降低测试时间开销

• 过/欠拟合风险

- o 预剪枝:降低过拟合风险,增加欠拟合风险
- o 后剪枝: 降低过拟合风险, 欠拟合风险基本不变

• 泛化性能

o 后剪枝通常优于预剪枝

5.4 连续属性

连续值属性

• 连续值的处理

- o 基本思路: 连续属性离散化
- o 二分法: 设定划分点t将样本集D划分为两个子集,连续属性 $a \ge t$ 的样本作为 D_t^+ ,a < t的样本作为 D_t^-
- o 属性a在D中有n个取值,由小到大排列为 $\{a^1, \cdots, a^n\}$
- o $t \in [a^i, a^{i+1})$ 的任意取值,划分效果相同,包含n-1个候选划分点的集合:

$$T_a = \left\{ \left. \frac{a^i + a^{i+1}}{2} \right| 1 \le i \le n - 1 \right\}$$

连续值属性

- 连续值属性的信息增益
 - o 属性a以t为划分点的信息增益:

$$\mathsf{Gain}(D,a,t) = \mathsf{Ent}(D) - \sum_{\lambda \in \{-,+\}} \frac{|D_t^{\lambda}|}{|D|} \mathsf{Ent}(D_t^{\lambda})$$

o 选择最优的划分点t来划分,属性a的信息增益:

$$\begin{split} \mathsf{Gain}(D,a) &= \max_{t \in T_a} \mathsf{Gain}(D,a,t) \\ &= \max_{t \in T_a} \left\{ \mathsf{Ent}(D) - \sum_{\lambda \in \{-,+\}} \frac{|D_t^{\lambda}|}{|D|} \mathsf{Ent}(D_t^{\lambda}) \right\} \end{split}$$

- 连续值属性的选择
 - o 每个节点按照Gain(D,a)来选择划分属性
 - o 与离散属性不同,划分属性为连续属性,该属性仍可作为后代节点的划分属性

例5.3 连续属性决策树

连续属性西瓜数据集

編号 密度 含糖量 好瓜 編号 密度 含糖量 好瓜 1 0.697 0.460 是 9 0.666 0.091 否 2 0.774 0.376 是 10 0.243 0.267 否 3 0.634 0.264 是 11 0.245 0.057 否 4 0.608 0.318 是 12 0.343 0.099 否 5 0.556 0.215 是 13 0.639 0.161 否 6 0.403 0.237 是 14 0.657 0.198 否 7 0.481 0.149 是 15 0.360 0.370 否 8 0.437 0.211 是 16 0.593 0.042 否 17 0.719 0.103 否								
2 0.774 0.376 是 10 0.243 0.267 否 3 0.634 0.264 是 11 0.245 0.057 否 4 0.608 0.318 是 12 0.343 0.099 否 5 0.556 0.215 是 13 0.639 0.161 否 6 0.403 0.237 是 14 0.657 0.198 否 7 0.481 0.149 是 15 0.360 0.370 否 8 0.437 0.211 是 16 0.593 0.042 否	编号	密度	含糖量		编号	密度	含糖量	
3 0.634 0.264 是 11 0.245 0.057 否 4 0.608 0.318 是 12 0.343 0.099 否 5 0.556 0.215 是 13 0.639 0.161 否 6 0.403 0.237 是 14 0.657 0.198 否 7 0.481 0.149 是 15 0.360 0.370 否 8 0.437 0.211 是 16 0.593 0.042 否	1	0.697	0.460	是	9	0.666	0.091	
4 0.608 0.318 是 12 0.343 0.099 否 5 0.556 0.215 是 13 0.639 0.161 否 6 0.403 0.237 是 14 0.657 0.198 否 7 0.481 0.149 是 15 0.360 0.370 否 8 0.437 0.211 是 16 0.593 0.042 否	2	0.774	0.376	是	10	0.243	0.267	否
5 0.556 0.215 是 13 0.639 0.161 否 6 0.403 0.237 是 14 0.657 0.198 否 7 0.481 0.149 是 15 0.360 0.370 否 8 0.437 0.211 是 16 0.593 0.042 否	3	0.634	0.264	是	11	0.245	0.057	否
6 0.403 0.237 是 14 0.657 0.198 否 7 0.481 0.149 是 15 0.360 0.370 否 8 0.437 0.211 是 16 0.593 0.042 否	4	0.608	0.318	是	12	0.343	0.099	否
7 0.481 0.149 是 15 0.360 0.370 否 8 0.437 0.211 是 16 0.593 0.042 否	5	0.556	0.215	是	13	0.639	0.161	否
8 0.437 0.211 是 16 0.593 0.042 否	6	0.403	0.237	是	14	0.657	0.198	否
	7	0.481	0.149	是	15	0.360	0.370	否
17 0.719 0.103 否	8	0.437	0.211	是	16	0.593	0.042	否
					17	0.719	0.103	否

连续属性决策树

```
import numpy as np
from sklearn.tree import DecisionTreeClassifier
X=np.array([[0.697,0.460],[0.774,0.376],[0.634,0.264],[0.608,0.318],[0.556,0.215],
           [0.403, 0.237], [0.481, 0.149], [0.437, 0.211], [0.666, 0.091], [0.243, 0.267],
           [0.245, 0.057], [0.343, 0.099], [0.639, 0.161], [0.657, 0.198], [0.360, 0.370],
           [0.593, 0.042], [0.719, 0.103]])
y = np.array(['yes','yes','yes','yes','yes','yes','yes','yes','no',
               'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no'])
tree = DecisionTreeClassifier(max_depth=5,random_state=0,criterion='entropy')
tree.fit(X, y)
print("Predict on training set:", tree.predict(X))
print("Accuracy on training set:", tree.score(X, y))
```

显示分类边界

```
import matplotlib.pyplot as plt
from plot_decision_boundary
       import plot_decision_boundary
y[y=='yes'] = 0; y[y=='no'] = 1
eps = 0.05
x_{\min}, x_{\max} = X[:,0].\min()-eps, X[:,0].\max()+eps
y_{min}, y_{max} = X[:,1].min()-eps, X[:,1].max()+eps
plot_decision_boundary(tree,axis=[x_min,\
                  x_max,y_min,y_max])
plt.scatter(X[:,0], X[:,1], c=y.reshape(-1,1),\
            s=50, cmap='rainbow')
plt.xlabel("Density"); plt.ylabel("Sugar")
plt.show()
```


显示决策树

```
from sklearn.tree import export_graphviz
import graphviz

export_graphviz(tree, out_file="tree.dot",\
    class_names=['no','yes'],\
    feature_names=np.array(['Density','Sugar']),\
    impurity=True, filled=True)

with open("tree.dot") as f:
    dot_graph = f.read()
graphviz.Source(dot_graph)
```


决策树与分类边界

多变量决策树

• 轴平行分类边界

- o 每个节点选择一个连续属性划分,得到的分类边界是一个平行于坐标轴的分类面
- o 决策树的分类边界是由若干轴平行分类面分段组成的
- o 真实分类边界比较复杂时,需要复杂的决策树用很多个分段才能很好地近似

多变量决策树

• 斜线分类边界

- o 每个节点采用多个属性的线性组合来划分,用一个线性分类器来判别不同分支
- o 可以用一个简单的决策树和对应的斜线分类面近似真实分类边界

多变量决策树

