Direcciones IPv6

CDD2

Direcciones IPv6 (1)

- Espacio de direcciones significativamente mayor que IPv4 (128 bits de longitud (6,65 * 10 ^ 23 direcciones por cada m² de la tierra)
- Facilidad de administración en la intranet
- Organización eficiente en la Internet
- Eliminación de NAT
- Una interfaz de red puede tener un número arbitrario de direcciones, de diferentes alcances
- Autoconfiguración: en el arranque, el equipo genera automáticamente una dirección de alcance link
- Se posibilitan nuevas aplicaciones (p.ej. Internet of Things)

Direcciones IPv6 (2)

- Representada en notación hexadecimal grupos de 16 bits separados por ":"
- Uso de prefijo igual que en IPv4, se dividen en una parte de red y una de host (indicada con /)
 - o 2001:1234:0000:0000:0000:0001:0000:ab54/64
 - o Red: 2001:1234:0000:0000 --- Host:0000:0001:0000:ab54
- Son válidos los valores "todos ceros" y "todos unos", en la parte de red o de host
- Debido a su longitud, se representan "compactadas", eliminando los ceros según ciertas reglas

Reglas de representación de direcciones IPv6

- Dirección Completa: 2001:0db8:85a3:0000:0000:8a2e:0370:7334
- Supresión de ceros: 2001:db8:85a3:0:0:8a2e:370:7334
 - o se suprimen ceros al comienzo de cada bloque (no al final)
 - cada bloque debe tener al menos un dígito hexadecimal
- Compresión de ceros: 2001:db8:85a3::8a2e:370:7334
 - grupos de ceros contiguos se reemplazan por "::"
 - solo es posible comprimir grupos completos y no partes
 - solo se puede utilizar una única vez en una dirección
 - Debe aplicarse al mayor grupos de ceros contiguos (se reemplaza por "::")
 - Si hay dos grupos iguales, debe aplicarse al que está más a la izquierda
- Representación de dígitos hexadecimales mayores que 9 en minúsculas
- Representación de direcciones mixtas: solo los últimos 32 bits (v4) en notación decimal con puntos, cuando esto se pueda deducir del prefijo. Ejemplo:IPv6 del tipo IPv4-mapeada ::ffff:c000:280 => ::ffff:192.0.2.128
- Representación de ports: [2001:db8::1]:80

Tipo de Direcciones IPv6

Unicast

- El alcance está dado por sus primeros bits
- Identifican una única interfaz de conexión a la red
- Un datagram enviado a una dirección unicast es entregado a esta interfaz

Multicast

- El alcance está dado por los bits de scope
- Identifican múltiples interfaces de conexión a la red
- Un datagram enviado a una dirección multicast es entregado a todas las interfaces asociadas a esta dirección

Anycast

- Identifican múltiples interfaces de conexión a la red
- Un datagram enviado a una dirección anycast es entregado a una sola de las interfaces asociadas a la dirección
- NO se definen direcciones broadcast

Tipos de direcciones unicast

- Direcciones de alcance global (Global)
 - Identificadores únicos de alcance global
 - Asignados explícitamente a una interfaz
 - Se requiere solicitarlas a un RIR
 - Utilizadas para comunicar equipos en la Internet
- Direcciones de alcance en el link (Link local)
 - Válidas sólo en la red física (p.ej. Ethernet)
 - Generadas automáticamente
 - Utilizadas para procesos de autoconfiguración
 - Útiles para interfaces punto a punto
- Direcciones de alcance en el site (Unique Local Address ULA-)
 - Similares a las direcciones privadas IPv4
 - Usadas para comunicar equipos dentro del site
 - No permitidas en la Internet Pueden ser únicas para cada site

Representación de Direcciones globales unicast

- Reconocidas en toda la Internet
- Identificadas por prefijo 2000::/3
- Espacio dividido en bloques para:
 - Asignación a proveedores
 - Propósitos especiales

Representación de Unique Local Address (ULA)

FC00::/8 Reservado para uso futuro

FD00::/8 ULA

Link Local Address Representation

Generadas automáticamente

Ejemplo direcciones IPv6

```
root@SERVIDOR-VENTAS:/tmp/pycore.52050/SERVIDOR-VENTAS.conf# ifconfig eth0
eth0
          Link encap:Ethernet HWaddr 00:00:00:aa:00:1f
          inet6 addr: fd00:ca5f:22a0:1:1::3/64 Scope:Global
          inet6 addr: 2001:1200:1:20f1:1::3/64 Scope:Global
          inet6 addr: fe80::200:ff:feaa:1f/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric:1
          RX packets:28 errors:0 dropped:0 overruns:0 frame:0
          TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
         RX bytes:2496 (2.4 KB) TX bytes:844 (844.0 B)
root@SERVIDOR-VENTAS:/tmp/pycore.52050/SERVIDOR-VENTAS.conf# ip -6 addr show
23: lo: <LOOPBACK, UP, LOWER UP> mtu 16436
    inet6 ::1/128 scope host
       valid lft forever preferred lft forever
109: eth0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qlen 1000
    inet6 fd00:ca5f:22a0:1:1::3/64 scope global
       valid lft forever preferred lft forever
    inet6 2001:1200:1:20f1:1::3/64 scope global
       valid lft forever preferred lft forever
    inet6 fe80::200:ff:feaa:1f/64 scope link
       valid lft forever preferred lft forever
root@SERVIDOR-VENTAS:/tmp/pycore.52050/SERVIDOR-VENTAS.conf#
```

dirección UI A fd00:ca5f:22a0:1:1::3/64

> dirección global 2001:1200:1:20f1:1::3/64

dirección link fe80..200.ff.feaa.1f/64

Cálculo de subredes: sipcalc

-[ipv6 : 2001:1200:1:23f0::/60] - 0

```
[Split network]
Network
                       - 2001:1200:0001:23f0:0000:0000:0000:0000 -
                        2001:1200:0001:23f0:ffff:ffff:ffff:ffff
Network
                       - 2001:1200:0001:23f1:0000:0000:0000:0000 -
                        2001:1200:0001:23f1:ffff:ffff:ffff:ffff
Network
                       - 2001:1200:0001:23f2:0000:0000:0000:0000 -
                        2001:1200:0001:23f2:ffff:ffff:ffff:ffff
Network
                       - 2001:1200:0001:23f3:0000:0000:0000:0000 -
root@SERVIDOR-VENTAS:/tmp/pycore.52050/SERVIDOR-VENTAS.conf# sipcalc -u -S64 2001:1200:1:23f0::/60
-[ipv6 : 2001:1200:1:23f0::/60] - 0
[Split network - verbose]
-[ipv6 : 2001:1200:1:23f0::/60] - 0
[IPV6 INFO]
Expanded Address
                    - 2001:1200:0001:23f0:0000:0000:0000:0000
Compressed address
                       - 2001:1200:1:23f0::
Subnet prefix (masked) - 2001:1200:1:23f0:0:0:0:0/64
Address ID (masked)
                       - 0:0:0:0:0:0:0:0/64
Prefix address
                       - ffff:ffff:ffff:ffff:0:0:0:0
Prefix length
                       - 64
Address type

    Aggregatable Global Unicast Addresses

Network range
                       - 2001:1200:0001:23f0:0000:0000:0000:0000 -
                         2001:1200:0001:23f0:ffff:ffff:ffff:ffff
```

root@SERVIDOR-VENTAS:/tmp/pycore.52050/SERVIDOR-VENTAS.conf# sipcalc -S64 2001:1200:1:23f0::/60

Direcciones multicast IPv6

FORMATO DE LA DIRECCIÓN MULTICAST

SCOPE

- 1 interface-local
- 2 link-local
- 5 site-local
- E global

FLAGS

- R: (RFC 3956)
 - 0: indica que la dirección multicast no contiene una dirección de RP
 - 1: indica que la dirección multicast contiene la dirección del RP (debe tener T=1, P=1)
- P: (RFC 3306)
 - o 0: la dirección multicast no esta basada en un prefijo unicast
 - 1: la dirección multicast incluye el prefijo de la red donde se encuentra el emisor. (debe tener T=1)
- T: Indica dirección temporaria (1) o permanente (0)

Ejemplo de direcciones multicast (1)

Solicited Node Address (SNA)

- Son utilizadas para realizar el Neighbor Discovery
- Se debe agregar una SNA por cada una de las direcciones
- Mejora la performance de ARP utilizado en IPv4
- Se genera con el prefijo ff02::1:ff00:0/104 y se completa con los últimos 24 bits de la dirección IPv6

Otras direcciones multicast conocidas

- FF02::1 -> todos los nodos de la red local
- FF02::2 -> todos los routers de la red local
- FF05::2 -> todos los routers de la red site

Ejemplo de direcciones multicast (2)

Dirección MAC eth0: 00:00:00:aa:00:1f

```
root@SERVIDOR-VENTAS:/tmp/pycore.52050/SERVIDOR-VENTAS.conf# ip -6 addr show dev eth0
109: eth0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qlen 1000
   inet6 fd00:ca5f:22a0:1:1::3/64 scope global
      valid lft forever preferred lft forever
   inet6 2001:1200:1:20f1:1::3/64 scope global
      valid lft forever preferred lft forever
                                                                Dirección LINK (basada en EUI-64)
   inet6 fe80::200:ff:feaa:1f/64 scope link
      valid lft forever preferred lft forever
root@SERVIDOR-VENTAS:/tmp/pycore.52050/SERVIDOR-VENTAS.conf# ip -6 maddr show eth0
       eth0
109:
                                                     Solicited Node (scope link) para 2001:1200:1:20f1:1::3
       inet6 ff02::1:ff00:3 UFT5 Z
       inet6 ff02::1:ffaa:1f
                                                     Solicited Node (scope link) para fe80::200:ffaa:1f
       inet6 ff02::1
root@SERVIDOR-VENTAS:/tmp/pycore.52050/SERVIDOR-VENTAS.conf#
                                                                 ALL NODES (scope link)
```

Solicited Node Address

- Dirección multicast de alcance link
- Una por cada dirección unicast (cualquier alcance)
 - ff02::1:ff00/104
- ff02:0:0:0:0:1:ff - : - Últimos 24 bits de la dirección IPv6

Comparación ARP v4 e ICMP Neighbor v6

IPv4: 1.1.1.3

MAC: 00:00:00:aa:00:02 IPv6 link: fe80::200:ff:feaa:2

SNA: ff02::1:ffaa:2

IPv6 global: 2001:0::3

SNA: ff02::1:ff00:3

ARP IPv4: uso de mensaje Broadcast

No.	Time	Source	Destination	Protocol Length Info		
	1 0.000000	00:00:00_aa:00:00	Broadcast	ARP	42 Who has 1.1.1.3? Tell 1.1.1.1	
	2 0.000083	00:00:00_aa:00:02	00:00:00_aa:00:00	ARP	42 1.1.1.3 is at 00:00:00:aa:00:02	

ICMP Neighbor v6: uso de Solicited Node Address

No.	Time	Source	Destination	Protocol L	Protocol Length Info	
	1 0.000000	2001::1	ff02::1:ff00:3	ICMPv6	86 Neighbor Solicitation for 2001::3 from 00:00:00:aa:00:00	
	2 0.000126	2001::3	2001::1	ICMPv6	86 Neighbor Advertisement 2001::3 (sol, ovr) is at 00:00:00:aa:00:02	

Direcciones anycast IPv6

- Sintácticamente iguales a las direcciones unicast
- Asignadas a más de una interfaz
- Son de utilidad cuando un servicio es ofrecido por más de un nodo
- Requieren soporte del sistema de ruteo.
- Por el momento, solo utilizadas como direcciones de destino y asignadas a routers
- Uso restringido de direcciones anycast globales (no escalable)
- Ejemplo, "dirección anycast del router de la subred"

FORMATO DE LA DIRECCIÓN ANYCAST DEL ROUTER DE SUBRED