Unpaired sample t-test

An Independent Samples t-test compares the means for two groups.

Here we will use a sample dataset, we have 1 categorical (factor) variable which is Sole_Material_Type. And we have 1 quantitative variable which is Wear_Amount.

Load data

.import excel "student_t_test\data\t-test2.xls", sheet("Independent-sample t-test") firstrow

//Browse the imported dataset .Browse

Data Editor (Edit) - [Untitled] File Edit View Data Tools 📂 🖫 🐞 🖺 🖺 🗹 🔒 🝸 🕫 Wear_Amount[1] 13.2 Wear Amount Sole Mater~e 1 13.2 A 2 8.2 A 3 10.9 A 14.3 4 A 5 10.7 A 6.6 6 A 7 9.5 A 10.8 8 A 9 8.8 A 10 13.3 A 11 14 В 12 8.8 В 11.2 13 В 14 2 14 B

Let's summarize data

. summarize We	ear_Amount if Sol	le_Materia	l_Type=="A"			
Variable	Obs	Mean	Std. Dev.	Min	Max	
Wear_Amount	10	10.63	2.451326	6.6	14.3	
. summarize We	ear_Amount if Sol	le_Materia	l_Type=="B"			
Variable	Obs	Mean	Std. Dev.	Min	Max	
Wear_Amount	10	11.04	2.518465	6.4	14.2	

As seen above, the mean of wear amount for type A sole is 10.63 and that for type B is 11.04.

Question

Is there a statistically significant difference between A and B on their Wear_Amount?

Hypothesis

H0: There's no difference in Wear_Amount between A and B

Ha: There's a statistically significant difference in Wear Amount between A and B

The level of significance

alpha = 0.05

Assumptions

Determine if data meets requirements to perform an independent samples t-test.

Assumption #1: Your dependent variable should be measured on a continuous scale.

Assumption #2: Your independent variable should consist of two categorical, independent groups.

Assumption #3: You should have independence of observations.

Assumption #4: There should be no significant outliers.

Assumption #5: Your dependent variable should be approximately normally distributed for each group of the independent variables.

Assumption #6: There needs to be homogeneity of variances.

CHECK FOR OUTLIERS

. graph hbox Wear_Amount, over(Sole_Material_Type)

As seen from the above boxplot we don't have outliers from either of the groups A and B.

NORMALITY TEST

Normality Law test using Skewness Kurtosis test for normality

H0: The data follows a normal distribution.

Ha: The data does not follow a normal distribution.

```
sktest Wear_Amount if Sole_Material_Type=="A"
                   Skewness/Kurtosis tests for Normality
  Variable
                    Obs Pr(Skewness)
                                                                   Prob>chi2
Wear Amount
                             0.9784
                                           0.6027
                                                         0.27
                                                                      0.8730
sktest Wear_Amount if Sole_Material_Type=="B"
                   Skewness/Kurtosis tests for Normality
                    Obs Pr(Skewness)
                                                                   Prob>chi2
Wear_Amount
                             0.5688
                                           0.8643
                                                         0.34
                                                                      0.8418
```

Normality Law test using Shapiro-Wilk W test for normal data

H0: The data follows a normal distribution.

Ha: The data does not follow a normal distribution.

. swilk Wear_A	Amount if Sole	_Material_T	ype=="A"			
	Shapiro-	Wilk W test	for normal	data		
Variable	Obs	W	V	Z	Prob>z	
Wear_Amount	10	0.96240	0.579	-0.888	0.81286	
. swilk Wear_A	Amount if Sole	_Material_T	уре=="В"			
	Shapiro-	Wilk W test	for normal	data		
Variable	Obs	W	V	Z	Prob>z	
Wear_Amount	10	0.94815	0.799	-0.376	0.64665	

Normality Law test using Shapiro-Francia W' test for normal data

H0: The data follows a normal distribution.

Ha: The data does not follow a normal distribution.

	Shapiro-	Francia W' t	est for no	rmal data	
Variable	Obs	W '	ν,	z	Prob>z
Wear_Amount	10	0.97022	0.498	-1.211	0.88698
sfrancia Wear_	Amount if	Sole_Materia	l_Type=="B	3"	
	Shapiro-	Francia W' t	est for no	rmal data	
	Obs	W '	V.	Z	Prob>z
Variable	020				

As you see in all the above 3 tests (off course you don't need all the 3), they all are NOT significant and so we have no evidence to reject the H0, that states that the data follow a normal distribution. We can plot a histogram to visualize;

. histogram Wear_Amount if Sole_Material_Type=="A", normal
(bin=3, start=6.6, width=2.5666667)

Homogeneity of variances

We will use the command 'robvar' to obtain our test of equality of variance

```
robvar Wear_Amount , by( Sole_Material_Type )
Sole Materi
                   Summary of Wear_Amount
   al_Type
                   Mean
                          Std. Dev.
                                          Freq.
                   10.63
                          2.4513262
                                             10
                   11.04
                          2.5184651
                                             10
                  10.835 2.4279675
                                             20
     Total
W0 = 0.01894809
                  df(1, 18)   Pr > F = 0.89204353
W50 = 0.01126581
                  df(1, 18)
                                Pr > F = 0.91664483
W10 = 0.00981664
                  df(1, 18)
                                Pr > F = 0.92217066
```

LEVENE and BROWN-FORSYTHE tests are obtained using the command robvar. These are good choices especially when assumption of normality is in question..

- ❖ W 0 = Levene test.
- ❖ W_50 = Forsythe-Browne modification of Levene test (mean is replaced by median).
- ❖ W 10 = Fosythe-Browne modification of Levene test (mean is replaced by 10% trim).

As seen from the above results, Levene's test for homogeneity of variance is not significant which indicates that the groups have approximately equal variances.

Unpaired Sample T-test

With all data requirements for unpaired Sample T-test satisfied, let us not run the test.

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	<pre>Interval]</pre>
А	10	10.63	.7751774	2.451326	8.876427	12.38357
В	10	11.04	.7964086	2.518465	9.238399	12.8416
ombined	20	10.835	.54291	2.427968	9.698676	11.97132
diff		41	1.111381		-2.744924	1.924924
diff = 1	mean(A) -	mean (B)			t:	-0.3689

Interpretation

An unpaired sample t-test was used to analyze the wear amount of shoe sole type to test if there was a significant difference. The wear amount of type B was higher (11.04 \pm 2.52 units) compared to type A wear amount (10.63 \pm 2.45 units), but this difference was NOT statistically significant (t(9)=-0.37, p= 0.0.716) of 0.41 units, so we fail to reject the null hypothesis.