# Basics of information theory and information complexity

a tutorial

Mark Braverman
Princeton University

June 1, 2013

### Part I: Information theory



 Information theory, in its modern format was introduced in the 1940s to study the problem of transmitting data over physical channels.



communication channel















### Quantifying "information"

- Information is measured in bits.
- The basic notion is Shannon's entropy.
- The entropy of a random variable is the (typical) number of bits needed to remove the uncertainty of the variable.
- For a discrete variable:

$$H(X) := \sum \Pr[X = x] \log 1/\Pr[X = x]$$

#### Shannon's entropy

- Important examples and properties:
  - If X = x is a constant, then H(X) = 0.
  - If X is uniform on a finite set S of possible values, then  $H(X) = \log S$ .
  - If X is supported on at most n values, then  $H(X) \leq \log n$ .
  - If Y is a random variable determined by X, then  $H(Y) \leq H(X)$ .

#### Conditional entropy

For two (potentially correlated) variables
 X, Y, the conditional entropy of X given Y is
 the amount of uncertainty left in X given Y:

$$H(X|Y) := E_{y \sim Y} H[X|Y = y].$$

- One can show H(XY) = H(Y) + H(X|Y).
- This important fact is knows as the chain rule.
- If  $X \perp Y$ , then H(XY) = H(X) + H(Y|X) = H(X) + H(Y).

#### Example

- $X = B_1, B_2, B_3$
- $Y = (B_1 \oplus B_2), (B_2 \oplus B_4), (B_3 \oplus B_4), B_5$
- Where  $B_1$ ,  $B_2$ ,  $B_3$ ,  $B_4$ ,  $B_5 \in_U \{0,1\}$ .
- Then
  - -H(X) = 3; H(Y) = 4; H(XY) = 5;
  - -H(X|Y) = 1 = H(XY) H(Y);
  - -H(Y|X) = 2 = H(XY) H(X).

#### Mutual information

- $X = B_1, B_2, B_3$
- $Y = (B_1 \oplus B_2), (B_2 \oplus B_4), (B_3 \oplus B_4), B_5$



#### Mutual information

The mutual information is defined as

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

- "By how much does knowing X reduce the entropy of Y?"
- Always non-negative  $I(X;Y) \ge 0$ .
- Conditional mutual information:

$$I(X;Y|Z) \coloneqq H(X|Z) - H(X|YZ)$$

Chain rule for mutual information:

$$I(XY;Z) = I(X;Z) + I(Y;Z|X)$$

Simple intuitive interpretation.

#### Example – a biased coin

- A coin with  $\varepsilon$ -Heads or Tails bias is tossed several times.
- Let  $B \in \{H, T\}$  be the bias, and suppose that *a-priori* both options are equally likely: H(B) = 1.
- How many tosses needed to find B?
- Let  $T_1, ..., T_k$  be a sequence of tosses.
- Start with k = 2.

#### What do we learn about B?

• 
$$I(B; T_1T_2) = I(B; T_1) + I(B; T_2|T_1) =$$
  
 $I(B; T_1) + I(B T_1; T_2) - I(T_1; T_2)$   
 $\leq I(B; T_1) + I(B T_1; T_2) =$   
 $I(B; T_1) + I(B; T_2) + I(T_1; T_2|B)$   
 $= I(B; T_1) + I(B; T_2) = 2 \cdot I(B; T_1).$ 

• Similarly,

$$I(B; T_1 ... T_k) \le k \cdot I(B; T_1).$$

- To determine B with constant accuracy, need  $0 < c < I(B; T_1 ... T_k) \le k \cdot I(B; T_1)$ .
- $k = \Omega(1/I(B; T_1)).$

#### Kullback-Leibler (KL)-Divergence

- A distance metric between distributions on the same space.
- Plays a key role in information theory.

$$D(P \parallel Q) \coloneqq \sum_{x} P[x] \log \frac{P[x]}{Q[x]}.$$

- $D(P \parallel Q) \ge 0$ , with equality when P = Q.
- Caution:  $D(P \parallel Q) \neq D(Q \parallel P)!$

#### Properties of KL-divergence

Connection to mutual information:

$$I(X;Y) = E_{y \sim Y} D(X_{Y=y} || X).$$

- If  $X \perp Y$ , then  $X_{Y=v} = X$ , and both sides are 0.
- Pinsker's inequality:

$$|P - Q|_1 = O(\sqrt{D(P \parallel Q)}).$$

Tight!

$$D(B_{1/2+\varepsilon} \parallel B_{1/2}) = \Theta(\varepsilon^2).$$

#### Back to the coin example

• 
$$I(B; T_1) = E_{b \sim B} D(T_{1,B=b} \parallel T_1) =$$

$$D\left(B_{\frac{1}{2} \pm \varepsilon} \parallel B_{\frac{1}{2}}\right) = \Theta(\varepsilon^2).$$

• 
$$k = \Omega\left(\frac{1}{I(B;T_1)}\right) = \Omega\left(\frac{1}{\varepsilon^2}\right).$$

- "Follow the information learned from the coin tosses"
- Can be done using combinatorics, but the information-theoretic language is more natural for expressing what's going on.

#### Back to communication

- The reason Information Theory is so important for communication is because information-theoretic quantities readily operationalize.
- Can attach operational meaning to Shannon's entropy:  $H(X) \approx$  "the cost of transmitting X".
- Let C(X) be the (expected) cost of transmitting a sample of X.

$$H(X) = C(X)$$
?

- Not quite.
- Let trit  $T \in_U \{1,2,3\}$ .
- $C(T) = \frac{5}{3} \approx 1.67.$
- $H(T) = \log 3 \approx 1.58$ .
- It is always the case that  $C(X) \ge H(X)$ .

| 1 | 0  |
|---|----|
| 2 | 10 |
| 3 | 11 |

# But H(X) and C(X) are close

- Huffman's coding:  $C(X) \leq H(X) + 1$ .
- This is a compression result: "an uninformative message turned into a short one".
- Therefore:  $H(X) \le C(X) \le H(X) + 1$ .

#### Shannon's noiseless coding

- The cost of communicating many copies of X scales as H(X).
- Shannon's source coding theorem:
  - Let  $C(X^n)$  be the cost of transmitting n independent copies of X. Then the amortized transmission cost

$$\lim_{n\to\infty} C(X^n)/n = H(X).$$

• This equation gives H(X) operational meaning.

# H(X) operationalized

 $X_1,\ldots,X_n,\ldots$ 



H(X) per copy to transmit X's

communication channel



### H(X) is nicer than C(X)

- H(X) is additive for independent variables.
- Let  $T_1, T_2 \in_U \{1,2,3\}$  be independent trits.
- $H(T_1T_2) = \log 9 = 2 \log 3$ .
- $C(T_1T_2) = \frac{29}{9} < C(T_1) + C(T_2) = 2 \times \frac{5}{3} = \frac{30}{9}$ .
- Works well with concepts such as channel capacity.

# "Proof" of Shannon's noiseless coding

• 
$$n \cdot H(X) = H(X^n) \le C(X^n) \le H(X^n) + 1$$
.

Additivity of Compression entropy (Huffman)

• Therefore  $\lim_{n\to\infty} C(X^n)/n = H(X)$ .

#### Operationalizing other quantities

- Conditional entropy H(X|Y):
- (cf. Slepian-Wolf Theorem).

 $X_1, \ldots, X_n, \ldots$ 



H(X|Y) per copy to transmit X's

communication channel

 $Y_1, ..., Y_n, ...$ 



#### Operationalizing other quantities

• Mutual information I(X; Y):

 $X_1, \ldots, X_n, \ldots$ 



I(X; Y) per copy to sample Y's

communication channel





#### Information theory and entropy

- Allows us to formalize intuitive notions.
- Operationalized in the context of one-way transmission and related problems.
- Has nice properties (additivity, chain rule...)
- Next, we discuss extensions to more interesting communication scenarios.

Focus on the two party randomized setting.

#### **Shared randomness R**



A & B implement a functionality F(X, Y).



e.g. 
$$F(X,Y) = "X = Y?"$$





Goal: implement a functionality F(X, Y). A protocol  $\pi(X, Y)$  computing F(X, Y):



Communication cost = #of bits exchanged.

- Numerous applications/potential applications (some will be discussed later today).
- Considerably more difficult to obtain lower bounds than transmission (still much easier than other models of computation!).

- (Distributional) communication complexity with input distribution  $\mu$  and error  $\varepsilon$ :  $CC(F, \mu, \varepsilon)$ . Error  $\leq \varepsilon$  w.r.t.  $\mu$ .
- (Randomized/worst-case) communication complexity:  $CC(F, \varepsilon)$ . Error  $\leq \varepsilon$  on all inputs.
- Yao's minimax:

$$CC(F,\varepsilon) = \max_{\mu} CC(F,\mu,\varepsilon).$$

#### Examples

- $X, Y \in \{0,1\}^n$ .
- Equality  $EQ(X,Y) := 1_{X=Y}$ .
- $CC(EQ, \varepsilon) \approx \log \frac{1}{\varepsilon}$ .
- $CC(EQ, 0) \approx n$ .

#### Equality

- F is "X = Y?".
- • $\mu$  is a distribution where w.p.  $\frac{1}{2}X = Y$  and w.p.  $\frac{1}{2}(X,Y)$  are random.



• Shows that  $CC(EQ, \mu, 2^{-129}) \le 129$ .

#### Examples

- $X, Y \in \{0,1\}^n$ .
- Inner product  $IP(X,Y) := \sum_i X_i \cdot Y_i \pmod{2}$ .
- CC(IP,0) = n o(n).

In fact, using information complexity:

•  $CC(IP, \varepsilon) = n - o_{\varepsilon}(n)$ .

#### Information complexity

• Information complexity  $IC(F, \varepsilon)$ :: communication complexity  $CC(F, \varepsilon)$  as

• Shannon's entropy H(X)::
transmission cost C(X)

#### Information complexity

- The *smallest* amount of *information* Alice and Bob need to exchange to solve *F*.
- How is information measured?
- Communication cost of a protocol?
  - Number of bits exchanged.
- Information cost of a protocol?
  - Amount of information revealed.

# Basic definition 1: The information cost of a protocol

• Prior distribution:  $(X, Y) \sim \mu$ .



 $IC(\pi,\mu) = I(\Pi;Y|X) + I(\Pi;X|Y)$ 

what Alice learns about Y + what Bob learns about X

#### Example

- F is "X = Y?".
- • $\mu$  is a distribution where w.p.  $\frac{1}{2}X = Y$  and w.p.  $\frac{1}{2}(X,Y)$  are random.



 $IC(\pi,\mu) = I(\Pi;Y|X) + I(\Pi;X|Y) \approx 1 + 64.5 = 65.5 \text{ bits}$ 

what Alice learns about Y + what Bob learns about X

# Prior $\mu$ matters a lot for information cost!

• If 
$$\mu = 1_{(x,y)}$$
 a singleton,  $IC(\pi,\mu) = 0$ .

#### Example

- F is "X = Y?".
- • $\mu$  is a distribution where (X, Y) are just uniformly random.



 $IC(\pi,\mu) = I(\Pi;Y|X) + I(\Pi;X|Y) \approx 0 + 128 = 128 \text{ bits}$ 

what Alice learns about Y + what Bob learns about X

# Basic definition 2: Information complexity

Communication complexity:

$$CC(F, \mu, \varepsilon) \coloneqq \min_{\substack{\pi \ computes \\ F \ with \ error \le \varepsilon}} |\pi|.$$
• Analogously: Needed!

$$IC(F, \mu, \varepsilon) := \inf_{\substack{\pi \text{ computes} \\ F \text{ with error } \leq \varepsilon}} IC(\pi, \mu).$$

## Prior-free information complexity

- Using minimax can get rid of the prior.
- For communication, we had:

$$CC(F,\varepsilon) = \max_{\mu} CC(F,\mu,\varepsilon).$$

For information

$$IC(F,\varepsilon) \coloneqq \inf_{\substack{\pi \text{ computes} \\ F \text{ with error } \leq \varepsilon}} \max_{\mu} IC(\pi,\mu).$$

# Ex: The information complexity of Equality

- What is IC(EQ, 0)?
- Consider the following protocol.



## Analysis (sketch)

- If X≠Y, the protocol will terminate in O(1) rounds on average, and thus reveal O(1) information.
- If X=Y... the players only learn the fact that X=Y (≤1 bit of information).
- Thus the protocol has O(1) information complexity for any prior  $\mu$ .

# Operationalizing IC: Information equals amortized communication

- Recall [Shannon]:  $\lim_{n\to\infty} C(X^n)/n = H(X)$ .
- Turns out:  $\lim_{n\to\infty} CC(F^n, \mu^n, \varepsilon)/n = IC(F, \mu, \varepsilon),$  for  $\varepsilon > 0$ . [Error  $\varepsilon$  allowed on each copy]
- For  $\varepsilon = 0$ :  $\lim_{n \to \infty} CC(\overline{F}^n, \mu^n, 0^+)/n = IC(F, \mu, 0)$ .
- $[\lim_{n\to\infty} CC(F^n, \mu^n, 0)/n$  an interesting open problem.]

## Information = amortized communication

- $\lim_{n\to\infty} CC(F^n, \mu^n, \varepsilon)/n = IC(F, \mu, \varepsilon).$
- Two directions: "≤" and "≥".



### The "≤" direction

- $\lim_{n\to\infty} CC(F^n, \mu^n, \varepsilon)/n \le IC(F, \mu, \varepsilon).$
- Start with a protocol  $\pi$  solving F, whose  $IC(\pi,\mu)$  is close to  $IC(F,\mu,\varepsilon)$ .
- Show how to *compress* many copies of  $\pi$  into a protocol whose communication cost is close to its information cost.
- More on compression later.

### The "≥" direction

- $\lim_{n\to\infty} \overline{CC(F^n, \mu^n, \varepsilon)/n} \ge \overline{IC(F, \mu, \varepsilon)}$ .
- Use the fact that  $\frac{CC(F^n,\mu^n,\varepsilon)}{n} \ge \frac{IC(F^n,\mu^n,\varepsilon)}{n}$ .
- Additivity of information complexity:

$$\frac{IC(F^n,\mu^n,\varepsilon)}{n} = IC(F,\mu,\varepsilon).$$

# Proof: Additivity of information complexity

- Let  $T_1(X_1, Y_1)$  and  $T_2(X_2, Y_2)$  be two two-party tasks.
- E.g. "Solve F(X,Y) with error  $\leq \varepsilon$  w.r.t.  $\mu$ "
- Then

$$IC(T_1 \times T_2, \mu_1 \times \mu_2) = IC(T_1, \mu_1) + IC(T_2, \mu_2)$$

- "≤" is easy.
- "≥" is the interesting direction.

$$IC(T_1, \mu_1) + IC(T_2, \mu_2) \le IC(T_1 \times T_2, \mu_1 \times \mu_2)$$

- Start from a protocol  $\pi$  for  $T_1 \times T_2$  with prior  $\mu_1 \times \mu_2$ , whose information cost is I.
- Show how to construct two protocols  $\pi_1$  for  $T_1$  with prior  $\mu_1$  and  $\pi_2$  for  $T_2$  with prior  $\mu_2$ , with information costs  $I_1$  and  $I_2$ , respectively, such that  $I_1 + I_2 = I$ .

$$\pi((X_1, X_2), (Y_1, Y_2))$$

$$\pi_1(X_1,Y_1)$$

- Publicly sample  $X_2 \sim \mu_2$
- Bob privately samples  $Y_2 \sim \mu_2|_{X_2}$
- Run  $\pi((X_1, X_2), (Y_1, Y_2))$

$$\pi_2(X_2,Y_2)$$

- Publicly sample  $Y_1 \sim \mu_1$
- Alice privately samples  $X_1 \sim \mu_1|_{Y_1}$
- Run  $\pi((X_1, X_2), (Y_1, Y_2))$

## Analysis - $\pi_1$

$$\pi_1(X_1,Y_1)$$

- Publicly sample  $X_2 \sim \mu_2$
- Bob privately samples  $Y_2 \sim \mu_2|_{X_2}$
- Run  $\pi((X_1, X_2), (Y_1, Y_2))$
- Alice learns about  $Y_1$ :

$$I(\Pi; Y_1|X_1X_2)$$

• Bob learns about  $X_1$ :

$$I(\Pi; X_1 | Y_1 Y_2 X_2).$$

•  $I_1 = I(\Pi; Y_1 | X_1 X_2) + I(\Pi; X_1 | Y_1 Y_2 X_2).$ 

## Analysis - $\pi_2$

$$\pi_2(X_2,Y_2)$$

- Publicly sample  $Y_1 \sim \mu_1$
- Alice privately samples  $X_1 \sim \mu_1|_{Y_1}$
- Run  $\pi((X_1, X_2), (Y_1, Y_2))$
- Alice learns about  $Y_2$ :

$$I(\Pi; Y_2 | X_1 X_2 Y_1)$$

• Bob learns about  $X_2$ :

$$I(\Pi; X_2 | Y_1 Y_2).$$

•  $I_2 = I(\Pi; Y_2 | X_1 X_2 Y_1) + I(\Pi; X_2 | Y_1 Y_2).$ 

## Adding $I_1$ and $I_2$

$$\begin{split} I_1 + I_2 \\ &= I(\Pi; Y_1 | X_1 X_2) + I(\Pi; X_1 | Y_1 Y_2 X_2) \\ &+ I(\Pi; Y_2 | X_1 X_2 Y_1) + I(\Pi; X_2 | Y_1 Y_2) \\ &= I(\Pi; Y_1 | X_1 X_2) + I(\Pi; Y_2 | X_1 X_2 Y_1) + \\ I(\Pi; X_2 | Y_1 Y_2) + I(\Pi; X_1 | Y_1 Y_2 X_2) = \\ I(\Pi; Y_1 Y_2 | X_1 X_2) + I(\Pi; X_2 X_1 | Y_1 Y_2) = I. \end{split}$$

## Summary

- Information complexity is additive.
- Operationalized via "Information = amortized communication".
- $\lim_{n\to\infty} CC(F^n, \mu^n, \varepsilon)/n = IC(F, \mu, \varepsilon).$
- Seems to be the "right" analogue of entropy for interactive computation.

## Entropy vs. Information Complexity

|                 | Entropy                      | IC                                                     |
|-----------------|------------------------------|--------------------------------------------------------|
| Additive?       | Yes                          | Yes                                                    |
| Operationalized | $\lim_{n\to\infty}C(X^n)/n$  | $\lim_{n\to\infty}\frac{CC(F^n,\mu^n,\varepsilon)}{n}$ |
| Compression?    | Huffman: $C(X) \le H(X) + 1$ | ???!                                                   |

## Can interactive communication be compressed?

- Is it true that  $CC(F, \mu, \varepsilon) \leq IC(F, \mu, \varepsilon) + O(1)$ ?
- Less ambitiously:

$$CC(F, \mu, O(\varepsilon)) = O(IC(F, \mu, \varepsilon))$$
?

- (Almost) equivalently: Given a protocol  $\pi$  with  $IC(\pi,\mu)=I$ , can Alice and Bob simulate  $\pi$  using O(I) communication?
- Not known in general...

### Direct sum theorems

- Let F be any functionality.
- Let C(F) be the cost of implementing F.
- Let F<sup>n</sup> be the functionality of implementing n independent copies of F.
- The direct sum problem:

"Does 
$$C(F^n) \approx n \cdot C(F)$$
?"

• In most cases it is obvious that  $C(F^n) \leq n \cdot C(F)$ .

# Direct sum – randomized communication complexity

Is it true that

$$CC(F^n, \mu^n, \varepsilon) = \Omega(n \cdot CC(F, \mu, \varepsilon))$$
?

• Is it true that  $CC(F^n, \varepsilon) = \Omega(n \cdot CC(F, \varepsilon))$ ?

# Direct product – randomized communication complexity

• Direct sum

$$CC(F^n, \mu^n, \varepsilon) = \Omega(n \cdot CC(F, \mu, \varepsilon))$$
?

Direct product

$$CC(F^n, \mu^n, (1 - \varepsilon)^n) = \Omega(n \cdot CC(F, \mu, \varepsilon))$$
?

# Direct sum for randomized CC and interactive compression

#### Direct sum:

•  $CC(F^n, \mu^n, \varepsilon) = \Omega(n \cdot CC(F, \mu, \varepsilon))$ ?

In the limit:

•  $n \cdot IC(F, \mu, \varepsilon) = \Omega(n \cdot CC(F, \mu, \varepsilon))$ ?

Interactive compression:

•  $CC(F, \mu, \varepsilon) = O(IC(F, \mu, \varepsilon))$ ?

Same question!

## The big picture

additivity (=direct sum) for information  $IC(F^n, \mu^n, \varepsilon)/n$  $IC(F, \mu, \varepsilon)$ information = interactive amortized compression? communication direct sum for communication?  $CC(F^n, \mu^n, \varepsilon)/n$  $CC(F, \mu, \varepsilon)$ 

## Current results for compression

A protocol  $\pi$  that has C bits of communication, conveys I bits of information over prior  $\mu$ , and works in r rounds can be simulated:

- Using  $\tilde{O}(I+r)$  bits of communication.
- Using  $\tilde{O}(\sqrt{I \cdot C})$  bits of communication.
- Using  $2^{O(I)}$  bits of communication.
- If  $\mu = \mu_X \times \mu_Y$ , then using O(I polylog C) bits of communication.

## Their direct sum counterparts

- $CC(F^n, \mu^n, \varepsilon) = \widetilde{\Omega}(n^{1/2} \cdot CC(F, \mu, \varepsilon)).$
- $CC(F^n, \varepsilon) = \widetilde{\Omega}(n^{1/2} \cdot CC(F, \varepsilon)).$

For product distributions  $\mu = \mu_X \times \mu_Y$ ,

•  $CC(F^n, \mu^n, \varepsilon) = \widetilde{\Omega}(n \cdot CC(F, \mu, \varepsilon)).$ 

When the number of rounds is bounded by  $r \ll n$ , a direct sum theorem holds.

## Direct product

The best one can hope for is a statement of the type:

$$CC(F^n, \mu^n, 1 - 2^{-O(n)}) = \Omega(n \cdot IC(F, \mu, 1/3)).$$

Can prove:

$$CC(F^n, \mu^n, 1 - 2^{-O(n)}) = \widetilde{\Omega}(n^{1/2} \cdot CC(F, \mu, 1/3)).$$

# Proof 2: Compressing a one-round protocol

- Say Alice speaks:  $IC(\pi, \mu) = I(M; X|Y)$ .
- Recall KL-divergence:

$$I(M; X|Y) = E_Y D(M_{XY} \parallel M_Y) = E_Y D(M_X \parallel M_Y)$$

- Bottom line:
  - Alice has  $M_X$ ; Bob has  $M_Y$ ;
  - Goal: sample from  $M_X$  using ~  $D(M_X \parallel M_Y)$  communication.

### The dart board

- Interpret the public randomness as random points in U × [0,1], where U is the universe of all possible messages.
- First message under the histogram of M is distributed ~ M.



### **Proof Idea**

• Sample using  $O(\log 1/\varepsilon + D(M_X \parallel M_Y))$  communication with statistical error  $\varepsilon$ .







### **Proof Idea**

• Sample using  $O(\log 1/\varepsilon + D(M_X \parallel M_Y))$  communication with statistical error  $\varepsilon$ .



### **Proof Idea**

• Sample using  $O(\log 1/\varepsilon + D(\overline{M}_X \parallel M_Y))$  communication with statistical error  $\varepsilon$ .



## **Analysis**

- If  $M_X(u_4) \approx 2^k M_Y(u_4)$ , then the protocol will reach round k of doubling.
- There will be  $\approx 2^k$  candidates.
- About  $k + \log 1/\varepsilon$  hashes to narrow to one.
- The contribution of  $u_4$  to cost:

$$-M_X(u_4) (\log M_{X_1}u_4)/M_{Y_1}u_4) + \log 1/\varepsilon$$
.

$$D(M_X \parallel M_Y) \coloneqq \sum_{u} M_X(u) \log \frac{M_X(u)}{M_Y(u)}.$$

Done!

## External information cost



 $IC_{ext}(\pi, \mu) = I(\Pi; XY)$ what Charlie learns about (X,Y)

## Example

- •F is "X=Y?".
- μ is a distribution where w.p. ½ X=Y and w.p. ½
  (X,Y) are random.



 $\overline{IC_{ext}}(\pi,\mu) = \overline{I}(\Pi;XY) = 129 \, bits$  what Charlie learns about (X,Y)

### External information cost

It is always the case that

$$IC_{ext}(\pi,\mu) \geq IC(\pi,\mu).$$

• If  $\mu = \mu_X \times \mu_Y$  is a product distribution, then

$$IC_{ext}(\pi,\mu) = IC(\pi,\mu).$$

## External information complexity

• 
$$IC_{ext}(F, \mu, \varepsilon) := \inf_{\substack{\pi \text{ computes} \\ F \text{ with error } \leq \varepsilon}} IC_{ext}(\pi, \mu).$$

Can it be operationalized?

## Operational meaning of $IC_{ext}$ ?

 Conjecture: Zero-error communication scales like external information:

$$\lim_{n\to\infty}\frac{CC(F^n,\mu^n,0)}{n}=IC_{ext}(F,\mu,0)?$$

Recall:

$$\lim_{n\to\infty}\frac{CC(F^n,\mu^n,0^+)}{n}=IC(F,\mu,0).$$

## Example – transmission with a strong prior

- $X, Y \in \{0,1\}$
- $\mu$  is such that  $X \in_{\mathcal{U}} \{0,1\}$ , and X = Y with a very high probability (say  $1 1/\sqrt{n}$ ).
- F(X,Y) = X is just the "transmit X" function.
- Clearly,  $\pi$  should just have Alice send X to Bob.
- $IC(F, \mu, 0) = IC(\pi, \mu) = H\left(\frac{1}{\sqrt{n}}\right) = o(1).$
- $IC_{ext}(F, \mu, 0) = IC_{ext}(\pi, \mu) = 1.$

## Example – transmission with a strong prior

• 
$$IC(F, \mu, 0) = IC(\pi, \mu) = H\left(\frac{1}{\sqrt{n}}\right) = o(1).$$

- $IC_{ext}(F, \mu, 0) = IC_{ext}(\pi, \mu) = 1.$
- $CC(F^n, \mu^n, 0^+) = o(n)$ .
- $CC(F^n, \mu^n, 0) = \Omega(n)$ .

Other examples, e.g. the two-bit AND function fit into this picture.

#### Additional directions

Information Interactive coding complexity Information theory in TCS

#### Interactive coding theory

- So far focused the discussion on *noiseless* coding.
- What if the channel has noise?
- [What kind of noise?]
- In the non-interactive case, each channel has a capacity C.

### Channel capacity

 The amortized number of channel uses needed to send X over a noisy channel of capacity C is

$$\frac{H(X)}{C}$$

Decouples the task from the channel!

### Example: Binary Symmetric Channel

- Each bit gets independently flipped with probability  $\varepsilon < 1/2$ .
- One way capacity  $1 H(\varepsilon)$ .



#### Interactive channel capacity

- Not clear one can decouple channel from task in such a clean way.
- Capacity much harder to calculate/reason about.
- Example: Binary symmetric channel.
- One way capacity  $1 H(\varepsilon)$ .
- Interactive (for simple pointer jumping,  $1 \varepsilon$  [Kol-Raz'13]):

$$1-\Theta\left(\sqrt{H(\varepsilon)}\right)$$
.

# Information theory in communication complexity and beyond

- A natural extension would be to multi-party communication complexity.
- Some success in the number-in-hand case.
- What about the number-on-forehead?
- Explicit bounds for  $\geq \log n$  players would imply explicit  $ACC^0$  circuit lower bounds.

### Naïve multi-party information cost







 $\overline{IC(\pi,\mu)} = \overline{I(\Pi;X|YZ)} + \overline{I(\Pi;Y|XZ)} + \overline{I(\Pi;Z|XY)}$ 

### Naïve multi-party information cost

$$IC(\pi,\mu) = I(\Pi;X|YZ) + I(\Pi;Y|XZ) + I(\Pi;Z|XY)$$

- Doesn't seem to work.
- Secure multi-party computation [Ben-Or, Goldwasser, Wigderson], means that anything can be computed at near-zero information cost.
- Although, these construction require the players to share private channels/randomness.

### Communication and beyond...

- The rest of today:
  - Data structures;
  - Streaming;
  - Distributed computing;
  - Privacy.
- Exact communication complexity bounds.
- Extended formulations lower bounds.
- Parallel repetition?

• ...



### Thank You!

### Open problem: Computability of IC

- Given the truth table of F(X,Y),  $\mu$  and  $\varepsilon$ , compute  $IC(F,\mu,\varepsilon)$ .
- Via  $IC(F, \mu, \varepsilon) = \lim_{n \to \infty} CC(F^n, \mu^n, \varepsilon)/n$  can compute a sequence of upper bounds.
- But the rate of convergence as a function of n is unknown.

### Open problem: Computability of IC

- Can compute the r-round  $IC_r(F, \mu, \varepsilon)$  information complexity of F.
- But the rate of convergence as a function of r is unknown.
- Conjecture:

$$IC_r(F,\mu,\varepsilon) - IC(F,\mu,\varepsilon) = O_{F,\mu,\varepsilon}\left(\frac{1}{r^2}\right).$$

This is the relationship for the two-bit AND.