For binary numbers: use an extra bit position to represent the sign:

sign bit

MSB is used as the sign bit.

0: plus 1: minus

$$00000000_{2} = +0_{0}$$
 $10000000_{2} = -0_{10}$

has equal number of positive and pagative integers. n-bit signed -magnitude integer range: $-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$ two possible repress of 0.

Complement Number Systems

Negates a number by taking its
complement.

radix: r complement of an n-dignt

LV- D

Define complement of a digit: 1-1-d

=) r'-1-D obtained by complementing digits of D.

=) radix complement: complement individual digits and add 1. 2

Two Is complement Representation. MSB: serves as sign b.t. MSB = 1 => negathe number 8-bit example. l.g. 17 = 000!0001 -17,0 =? complement bits: 00010001 11101110 Add 1: ± 1 1 1 1 1 2 $\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2}$ weight of MSB is -2

Zero is considered positive because sign bit is 0.

one extra negative number - 2,

That does not have a positive counterpart.

 $-128_{10} = 10000000_{2}$

Il comprenent

1 0000000 -128.

One's complement:

MSB is the sign: 1: regative.

Just complement the bits!

weight of μ SB $-(2^{n-1}-1)$

Table 2-6 Decimal and 4-bit numbers.

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Excess 2 ^{m_1}
	1000			0000
-7	1001	1000	1111	0001
-6	1010	1001	1110	0010
- 5	1011	1010	1101	0011
-4	1100	1011	1100	0100
-3	1101	1100	1011	0101
-2	1110	1101	1010	0110
-1	1111	1110	1001	0111
0	0000	1111 or 0000	1000 or 0000	1000
1	0001	0001	0001	1001
2	0010	0010	0010	1010
3	0011	0011	0011	1011
4	0100	0100	0100	1100
5	0101	0101	0101	1101
6	0110	0110	0110	1110
7.	0111	0111	0111	1111

Pange
$$-2^{n-1}$$
 to $2^{n-1} - 1$
 $-2^3 - 8$ to $2^3 - 1 = +7$

Figure 2-3

A modular counting representation of 4-bit two's-complement numbers.

 $-17_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$ $111_{10} = ?$

Addition Rules in Two's complement Number System:

Two's complement numbers can be added by ordinary binary addition. Ignore carries beyond MSB.

Result will be always be the correct sum as long as the range of the number system is not exceeded.

overflow: if addition result exceeds range = overflow.

If you are adding two numbers with différent signs - never produce au over flow. -3. use four bit two is comp. representation: -9 - > out of range! 1001 -3: 1101 10104-6 -6: 1010

ic an=0 1101 cout = 1 7 OJer flow.

00112+3

1100

11015

adder ds signs are same overflow detection: Sum's sign is different from the adderds. if an into and East out of sign bit are different.

Example:

8 bits.

$$25 \div 2 = 12$$
 $12 \div 2 = 6$
 $6 \div 2 = 3$
 $3 \div 2 = 1$

$$-6_{10} = ?_{2}$$
 8-bits.

Signed mag. 10000110
Two 15 comp. 11111010
Ones! comp.

110 10110 = ? represented in two's warp. representation.

-128 + 64 + 16 + 4 + 2 = -42

 $-(2^{-1})$ /100 /60000 =? represente d in ones!

- 111 comp.