Lecture #11 Overview

- Vector representation of signal waveforms
- Two-dimensional signal waveforms

Geometric Representation of Signals

- We shall develop a geometric representation of signal waveforms as points in a signal space.
- Such representation provides a compact characterization of signal sets for transmitting information over a channel and simplifies the analysis of their performance.
- * We use vector representation which allows us to represent waveform communication channels by vector channels.

Geometric Representation of Signals

- \clubsuit Suppose we have a set of M signal waveforms $s_m(t), 1 \le m \le M$ where we wish to use these waveforms to transmit over a communications channel (recall QAM, QPSK).
- \clubsuit We find a set of $N \leq M$ orthonormal basis waveforms for our signal space from which we can construct all of our M signal waveforms.
- \ref{alpha} Orthonormal in this case implies that the set of basis signals are orthogonal (inner product $\int s_i(t)s_j(t)dt=0$) and each has unit energy.

Orthonormal Basis

Recall that $\widetilde{i},\widetilde{j},\widetilde{k}$ formed a set of orthonormal basis vectors for 3-dimensional vector space, \mathbb{R}^3 , as any possible vector in 3-D can be formed from a *linear combination* of them: $\widetilde{v}=v_i\widetilde{i}+v_j\widetilde{j}+v_k\widetilde{k}$

 \clubsuit Having found a set of waveforms, we can express the M signals $\{s_m(t)\}$ as exact *linear combinations* of the $\{\psi_j(t)\}$

$$s_m(t) = \sum_{j=1}^{N} s_{mj} \psi_j(t)$$
 $m = 1, 2, ..., M$

where

$$s_{mj} = \int_{-\infty}^{\infty} s_m(t) \psi_j(t) dt$$

and

$$\mathcal{E}_m = \int_{-\infty}^{\infty} s_m^2(t)dt = \sum_{i=1}^{N} s_{mi}^2$$

Vector Representation

 \clubsuit We can therefore represent each signal waveform by its vector of coefficients s_{mj} , knowing what the basis functions are to which they correspond.

$$s_{\boldsymbol{m}} = [s_{m1}, s_{m2}, \dots, s_{mN}]$$

- \clubsuit We can similarly think of this as a point in N-dimensional space
- In this context the energy of the signal waveform is equivalent to the square of the length of the representative vector

$$\mathcal{E}_m = |s_m|^2 = s_{m1}^2 + s_{m2}^2 + \dots + s_{mN}^2$$

 \clubsuit That is, the *energy* is the square of the *Euclidean distance* of the point s_m from the origin.

Vector Representation (cont.)

The inner product of any two signals is equal to the dot product of their vector representations

$$s_m \cdot s_n = \int_{-\infty}^{\infty} s_m(t) s_n(t) dt$$

- \clubsuit Thus any N-dimensional signal can be represented geometrically as a point in the signal space spanned by the N orthonormal functions $\{\psi_j(t)\}$
- \clubsuit From the example we can represent the waveforms $s_1(t), \ldots, s_4(t)$ as

$$s_1 = [\sqrt{2}, 0, 0], s_2 = [0, \sqrt{2}, 0], s_3 = [0, -\sqrt{2}, 1], s_4 = [\sqrt{2}, 0, 1]$$

Pulse Amplitude Modulation (PAM)

• In *PAM* the *information* is conveyed by the *amplitude* of the transmitted (signal) pulse

Baseband PAM

- Binary PAM is the simplest digital modulation method
- \clubsuit A "1" bit may be represented by a pulse of amplitude A
- \clubsuit A "0" bit may be represented by a pulse of amplitude -A
- This is called binary antipodal signalling

Baseband PAM (cont.)

- \clubsuit The pulses are transmitted at a bit-rate of $R_b = 1/T_b$ bits/s where T_b is the bit interval (width of each pulse).
- \clubsuit We tend to show the pulse as *rectangular* (\Rightarrow infinite bandwidth) but in practical systems they are more *rounded* (\Rightarrow finite bandwidth)
- \clubsuit We can generalize PAM to M-ary pulse transmission $(M \ge 2)$
- \clubsuit In this case the binary information is subdivided into k-bit blocks where $M=2^k$. Each k-bit block is referred to as a *symbol*.
- \clubsuit Each of the M k-bit symbols is represented by one of M pulse amplitude values.

Baseband PAM (cont.)

 \clubsuit e.g., for M=4, k=2 bits per block, as we need 4 different amplitudes. The figure shows a rectangular pulse shape with amplitudes $\{3A, A, -A, -3A\}$ representing the bit blocks $\{01, 00, 10, 11\}$ respectively.

Two Dimensional Signals

- Recall that PAM signal waveforms are *one-dimensional*.
- \clubsuit That is, we could represent them as points on the real line, \mathbb{R} .

PAM points on the real line

- We can represent signals of more than one dimension
- . We begin by looking at two-dimensional signal waveforms

Orthogonal Two Dimensional Signals

12

Two Dimensional Signals (cont.)

 \clubsuit Recall that two signals are orthogonal over the interval (0,T) if their *inner product*

$$\int_0^T s_1(t)s_2(t)dt = 0$$

- Can verify orthogonality for the previous (vertical) pairs of signals by observation
- $\ \, \text{$\stackrel{+}{\sim}$}$ Note that all of these signals have identical energy, e.g. energy for signal $s_2^{'}(t)$

$$\mathcal{E} = \int_0^T [s_2'(t)]^2 dt = \int_{T/2}^T [\sqrt{2}A]^2 dt = 2A^2[t]_{T/2}^T = A^2T$$

Two Dimensional Signals (cont.)

- We could use either signal pair to transmit binary information
- One signal (in each pair) would represent a binary "1" and the other a binary "0"
- \clubsuit We can represent these signal waveforms as signal vectors in two-dimensional space, \mathbb{R}^2
- \clubsuit For example, choose the unit energy square wave functions as the basis functions $\psi_1(t)$ and $\psi_2(t)$

$$\psi_1(t) = \begin{cases} \sqrt{2/T}, & 0 \le t \le T/2 \\ 0, & \text{otherwise} \end{cases}$$

$$\psi_2(t) = \begin{cases} \sqrt{2/T}, & T/2 \le t \le T \\ 0, & \text{otherwise} \end{cases}$$

Two Dimensional Signal Waveforms (cont.)

 \clubsuit The waveforms $s_1(t)$ and $s_2(t)$ can be written as *linear* combinations of the basis functions

$$s_1(t) = s_{11}\psi_1(t) + s_{12}\psi_2(t)$$

$$s_1 = (s_{11}, s_{12}) = (A\sqrt{T/2}, A\sqrt{T/2})$$

ho Similarly, $s_2(t) \equiv s_2 = (A\sqrt{T/2}, -A\sqrt{T/2})$

Two Dimensional Signal Waveforms (cont.)

- We can see that the previous two vectors are orthogonal in 2-D space
- Recall that their *lengths* give the *energy*

$$\mathcal{E}_1 = ||s_1||^2 = s_{11}^2 + s_{12}^2 = A^2 T$$

- The euclidean distance between the two signals is

$$d_{12} = \sqrt{\|s_1 - s_2\|^2} = \sqrt{\|(s_{11} - s_{21}, s_{12} - s_{22})\|^2} = \sqrt{\|(0, A\sqrt{2T})\|^2}$$
$$= A\sqrt{2T} = \sqrt{A^2 2T} = \sqrt{2\mathcal{E}}$$

Two Dimensional Signal Waveforms (cont.)

- \clubsuit Can similarly show that the other two waveforms are orthogonal and can be represented using the same basis functions $\psi_1(t)$ and $\psi_2(t)$
- ♣ Their *representative vectors* turn out to be a 45° *rotation* of the previous two vectors.

Representation of > 2 bits in 2-D

- Simply add more vector points
- \clubsuit The total number of points that we have, M, tells us how many bits k we can represent with each symbol, $M=2^k$, e.g., M=8, k=3

Representation of > 2 bits in 2-D (cont.)

- Note that the previous set of signals (vector representation) had identical energies
- Can also choose signal waveforms/points with unequal energies
- The constellation on the right gives an advantage in noisy environments (Can you tell why?)

2-D Bandpass Signals

Simply multiply by a carrier

$$u_m(t) = s_m(t) \cos 2\pi f_c t$$
 $m = 1, 2, ..., M$ $0 \le t \le T$

- \clubsuit For M=4, k=2 and signal points with equal energies, we can have four biorthogonal waveforms
 - These signal points/vectors are equivalent to *phasors*, where
- each is shifted by $\pi/2$ from each adjacent point/waveform
- For a rectangular pulse

$$u_m(t) = \sqrt{\frac{2\mathcal{E}_s}{T}}\cos\left(2\pi f_c t + \frac{2\pi m}{M}\right)$$

Carrier with Square Pulse

2-D Bandpass Signals

- This type of signalling is also referred to as phase-shift keying (PSK)
- Can also be written as

$$u_m(t)=g_T(t)A_{mc}\cos 2\pi f_c t - g_T(t)A_{ms}\sin 2\pi f_c t$$
 where $g_T(t)$ is a square wave with amplitude $\sqrt{2\mathcal{E}_s/T}$ and width T , so that we are using a pair of quadrature carriers

- A Note that binary phase modulation is identical to binary PAM
- A value of interest is the *minimum Euclidean distance* which plays an important role in determining *bit error rate* performance in the presence of AWGN.

Quadrature Amplitude Modulation (QAM)

- For MPSK, signals were constrained to have equal energies.
- The representative signal points therefore lay on a circle in 2-D space
- In quadrature amplitude modulation (QAM) we allow different energies.
- QAM can be considered as a combination of digital amplitude modulation and digital phase modulation

QAM

- Each bandpass waveform is represented according to a distinct amplitude/phase combination

$$u_{mn}(t) = A_m g_T(t) \cos(2\pi f_c t + \theta_n)$$

00101011