Lab #3 - Ray tracing (part 1)

Informática Gráfica

Adolfo Muñoz - Julio Marco Pablo Luesia - J. Daniel Subías — Óscar Pueyo

Before we begin...

- Requirements for this lab:
 - Points, directions, matrices and their operations

Before we begin...

- Requirements for this lab:
 - Points, directions, matrices and their operations
- Careful with the submissions
 - Lab 3 (ray tracing) does not need to be submitted
 - Recommended deadline: October 18th

Before we begin...

- Requirements for this lab:
 - Points, directions, matrices and their operations
- Careful with the submissions
 - Lab 3 (ray tracing) does not need to be submitted
 - Recommended deadline: October 18th
 - Lab 4 (path tracing) will be submitted at the end of the course
 - All of the code you write today will be used for Lab 4
 - Recommended deadline: November 13th (moodle: January 11th, this is only a recommendation)
- Remember: Final work is 80% of the final grade

Which color do we fill each pixel with? Graphics and Imaging Lab

$$R = 0.25 G = 0.5 B = 0.45$$

But how?

Which color do we fill each pixel with? Graphics and Imaging Lab

Let's simplify

Let's simplify

Let's simplify

Ray intersection problem

- This session we focus on ray intersections
- Inputs: ray (origin + direction), geometry (spheres or planes)

Ray intersection problem

- This session we focus on ray intersections
- Inputs: ray (origin + direction), geometry (spheres or planes)

- Output: does the ray intersect? if yes, where?
 - Additional information: travel distance, surface normal, etc.

Your intersection function should have at least two inputs:

How to define a ray:

- The line --- is defined by
 - $p + d \cdot t$
 - t ∈ ℝ

- How to define a geometric primitive:
 - Implicit equation

- How to define a geometric primitive:
 - Implicit equation f(x, y, z)

• The surface of the geometry is defined by all points (x, y, z) such that f(x, y, z) = 0

- How to define a geometric primitive:
 - Implicit equation f(x, y, z)

• The surface of the geometry is defined by all points (x, y, z) such that f(x, y, z) = 0

• Sphere:

Defined by center (c_x, c_v, c_z) and radius (r)

$$f(x, y, z) = (x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 - r^2$$

- How to define a geometric primitive:
 - Implicit equation f(x, y, z)

•
$$f(x, y, z) = (x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 - r^2$$

• Points in the ray: $p + d \cdot t$

- How to define a geometric primitive:
 - Implicit equation f(x, y, z)

•
$$f(x, y, z) = (x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 - r^2$$

Points in the ray: p + d ⋅ t

• Intersection at:

$$\circ f(p+d\cdot t)=0$$

- Solve for t
- Can have 0, 1 or 2 solutions

- How to define a geometric primitive:
 - Implicit equation f(x, y, z)

•
$$f(x, y, z) = (x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 - r^2$$

• Points in the ray: p + d · t

• Solving p + d · t gives the distance to the sphere

• Solving p + d · t gives the distance to the sphere

• Solving p + d · t gives the distance to the sphere

Solving p + d · t gives the distance to the sphere

- Distance: t1
- Intersection point: p + d · t1
- Surface normal at t1, etc.

Questions

DO ASK questions, either now or after the lab

But be reasonable, please:)

<u>pluesia@unizar.es</u> | <u>dsubias@unizar.es</u> | <u>o.pueyo@unizar.es</u>

What to expect from this session

In the programming language of your choice, implement:

- Primitives: spheres and planes
- Ray: point + direction + other stuff you may want
- One intersect function per type of primitive
 - Inputs: Ray, one primitive
 - Output: Does the ray intersect? If yes, where? + additional info
- Recommended deadline: October 18th.
 - Next lab: define a camera and generate an image
 - Extensions (do not count towards deadline):
 - Other primitives: cones, cylinders, ellipsoids, disks or triangles
 - Acceleration structures: bounding volumes, multi-threading, etc.
 - Constructive solid geometry: google it or ask us:)