Proximity and Data Pre-processing

Huiping Cao

Outline

■ Types of data

■ Data quality

■ Measurement of proximity

■ Data pre-process

Similarity and Dissimilarity

Dissimilarity

•00000000000

- Dissimilarity (distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Proximity refers to either a similarity or dissimilarity

Dissimilarity

0000000000

■ Simple attributes, multiple attributes

■ E.g., Dense data: Euclidean distance

■ E.g., Sparse data: Jaccard and Cosine similarity

lacksquare p and q are the attribute values for two data objects.

Attribute type	Dissimilarity	Similarity	
Nominal	$d = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped	$s = 1 - \frac{ p-q }{n-1}$	
	to integers 0 to <i>n</i> -1, where		
	n is the number of values)		
Interval or Ratio	d = p - q	$s=-d$, $s=rac{1}{d+1}$ or $s=1-rac{d-min_d}{max_d-min_d}$	

where $min_{-}d$ and $max_{-}d$ are the minimum and maximum distances between every two values.

Dissimilarity

0000000000

Similarity and Dissimilarity – multiple attributes

■ Euclidean, Minkowski, DTW, etc.

■ SMC, Jaccard, Cosine, Hamming, etc.

Dissimilarity

00000000000

Euclidean Distance

Dissimilarity

$$dist = \sqrt{\sum_{i=1}^{n} (q_i - q_i')^2}$$

- n is the number of dimensions (attributes)
- \blacksquare q_i and q_i' : the *i*th attributes (components) of data objects q_i' and q'.
- Standardization is necessary, if scales differ.

Euclidean Distance – Example

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Manhattan Distance

Dissimilarity

0000000000000

Considered by Hermann Minkowski in 19th century Germany.

$$dist = (\sum_{i=1}^{n} |q_i - q_i'|)$$

- Taxi cab metric/distance, rectilinear distance, Minkowski's L₁ norm/distance, city block distance, or Manhattan length.
- Parameters
 - n is the number of dimensions (attributes)
 - \mathbf{q}_i and \mathbf{q}_i' are, respectively, the *i*th attributes (components) of data objects q and q'.
- Applications
 - In chess, the distance between squares on the chessboard for rooks is measured in Manhattan distance.
 - The length of the shortest path a taxi could take between two intersections equal to the intersections' distance in taxicab geometry.
 - Integrated circuits where wires only run parallel to the X or Y axis.

Dissimilarity

0000000000000

■ The Minkowski distance is a metric on Euclidean space which can be considered as a generalization of both the Euclidean distance and the Manhattan distance.

$$dist = (\sum_{i=1}^{n} |q_i - q_i'|^p)^{\frac{1}{p}}$$

- Parameters
 - p is a parameter
 - n is the number of dimensions (attributes)
 - q_i and q'_i are, respectively, the *i*th attributes (components) of data objects q and q'.

- p = 1. Manhattan distance.
- p = 2. Euclidean distance.
- $p \to \infty$. Supremum, Chebyshev (L_{max} norm, L_{∞} norm) distance.

$$\lim_{p o \infty} (\sum_{i=1}^n |q_i - q_i'|^p)^{rac{1}{p}} = max_{i=1}^n |q_i - q_i'|$$

Kings and queens use Chebyshev distance in Chess.

 \blacksquare L_{min} norm

Dissimilarity

$$\lim_{p \to -\infty} (\sum_{i=1}^{n} |q_i - q_i'|^p)^{\frac{1}{p}} = \min_{i=1}^{n} |q_i - q_i'|$$

Note: Do not confuse p with n, i.e., all these distances are defined for all numbers of dimensions. 4□ > 4□ > 4□ > 4□ > 4□ > 900

Minkowski Distance– Example

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
р4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
р4	5.099	3.162	2	0

L∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Issues to Consider in Calculating Distance

Attributes have different scales

Attributes are correlated

- Objects are composed of different types of attributes (Qualitative vs. quantitative)
- Attributes have different weights

Dissimilarity

000000000000

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - Positivity:

$$d(p,q) \ge 0$$
 for all p and q ; $d(p,q) = 0$ only if $p = q$.

- Symmetry: d(p,q) = d(q,p) for all p and q.
- Triangle Inequality: $d(p,r) \le d(p,q) + d(q,r)$ for all points p, q, and r.
- A distance that satisfies these properties is a metric.

Elastic distances

- Dynamic Time Warping (DTW)
- Edit distance based measure

- Longest Common SubSequence (LCSS)
- Edit Distance on Real Sequence (EDR)

Elastic distances - DTW

Dissimilarity

- In time series analysis, Dynamic Time Warping (DTW) is an algorithm for measuring similarity between two temporal sequences which may vary in time or speed.
- DTW is a technique to find an optimal alignment¹ between time series if one time series can be "warped" non-linearly by stretching or shrinking it.
- Applications: similarities in walking patterns, video, audio, etc.
- Calculates an optimal match between two given sequences (e.g., time series) with certain restrictions

¹M. Müller, Information Retrieval for Music and Motion, Springer, 2007, ISBN: 978-3-540-74047-6, http://www.springer.com/978-3-540-74047-6 () > () > ()

Elastic distances - DTW - Problem definition

- Given a reference sequence $s[1, \dots, n]$ and a query sequence $t[1, \dots, m]$ and local distance measure dist(s[i], t[j])
- Goal: find an alignment between s and t having minimal overall cost
- An (n,m)-warping path (or simply referred to as warping path if n and m are clear from the context) is a sequence $p=(p_1,\cdots,p_L)$ with $p_i=(n_i,m_i)\in [1:n]\times [1:m]$ for i $(1\leq i\leq L)$ satisfying the following three conditions
 - Boundary condition: p_1 =(1,1) and p_L =(n,m)
 - Monotonicity condition: $n_1 \le n_2 \le \cdots \le n_L$ and $m_1 \le m_2 \le \cdots \le m_L$
 - Step size condition: $p_{i+1} p_i$ is in $\{(1,0),(0,1),(1,1)\}$ for i $(1 \le i \le L-1)$

Dissimilarity

Dissimilarity

Elastic distances - DTW - Distance

■ Total cost of a warping path $p=(p_1, \dots, p_L)$ between s and t is

$$cost_p(s,t) = \sum_{i=1}^{L} dist(p_i) = \sum_{i=1}^{L} dist(s[n_i], t[m_i])$$

where $p_i = (n_i, m_i)$.

- Let p^* be an optimal warping path between s and t
- The DTW distance DTW(s,t) between s and t is defined as the total cost of p^* .

$$DTW(s,t) = cost_{p^*}(s,t)$$

= $min \{cost_p(s,t)|p \text{ is an (n,m)-warping path}\}$

Check algorithm.

DTW calculation using Python

Reference

Dissimilarity

```
import numpy as np
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
x = np.array([1, 2, 3, 3, 7])
y = np.array([1, 2, 2, 2, 2, 2, 2, 4])
distance, path = fastdtw(x, y, dist=euclidean)
print(distance)
print(path)
# 5.0
\# [(0, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 5), (3, 6), (4, 7)]
```

Another good library:

https://pyts.readthedocs.io/en/stable/generated/pyts.metrics.dtw.html

Common Properties of a Similarity

- Similarities also have some well known properties.
 - Maximum similarity: s(p, q) = 1 only if p = q
 - **Symmetry**: s(p,q) = s(q,p) for all p and q

• s(p,q) is the similarity between points (data objects) p and q.

Similarity Between Binary Vectors

- Compute similarities using the following quantities
 - lacksquare $M_{01}=$ the number of attributes where p was 0 and q was 1
 - lacksquare $M_{10}=$ the number of attributes where p was 1 and q was 0
 - M_{00} = the number of attributes where p was 0 and q was 0
 - M_{11} = the number of attributes where p was 1 and q was 1
- Similarity coefficient
- In the range of [0,1]

Distance

- Simple Matching Coefficient (SMC)
- Jaccard Coefficient
- Cosine Similarity
- Hamming distance
- Correlation
- Mutual information (MI)

References

Simple Matching Coefficient (SMC)

$$\mathsf{SMC} = \frac{\mathsf{number\ of\ matches}}{\mathsf{number\ of\ attributes}} = \frac{M_{11} + M_{00}}{M_{01} + M_{10} + M_{11} + M_{00}}$$

Example:

- p = 1 0 0 0 0 0 0 0 0 0
- $M_{01} = 2$, $M_{10} = 1$, $M_{00} = 7$, $M_{11} = 0$
- $SMC = \frac{7+0}{10} = 0.7$

Jaccard Coefficient

$$\mathsf{J} = \frac{\# \text{ of } 11 \text{ matches}}{\mathsf{total} \ \# \text{ of attributes -} \ \# \text{ of } 00 \text{ matches}} = \frac{\textit{M}_{11}}{\textit{M}_{01} + \textit{M}_{10} + \textit{M}_{11}}$$

- Handle asymmetric binary attributes
- Example:

$$p = 1 0 0 0 0 0 0 0 0$$

$$q = 0 0 0 0 0 0 1 0 0 1$$

$$M_{01} = 2$$
, $M_{10} = 1$, $M_{00} = 7$, $M_{11} = 0$

$$J = \frac{0}{2+1+0} = 0$$

Cosine Similarity

Dissimilarity

■ If d_1 and d_2 are two document vectors, then

$$cos(d_1, d_2) = \frac{d_1 \cdot d_2}{||d_1||||d_2||}$$

- indicates vector dot product
- | | | d | | is the length of vector d
- $d_1 = 3205000200$
- $d_2 = 1000001102$
- $d_1 \cdot d_2 = 3 + 2 = 5$
- $||d_1|| = \sqrt{42} = 6.481$
- $||d_2|| = \sqrt{7} = 2.646$
- $\cos(d1, d2) = \frac{5}{6.481 \times 2.646} = 0.2916$

Hamming distance

- Measure distance among vectors of equal length with nominal values.
- The number of positions at which the corresponding symbols are different.
- Example
 - "toned" and "roses" is 3.
 - 1011101 and 1001001 is 2.
 - 2173896 and 2233796 is 3.
- Named after Richard Hamming. It is used in telecommunication to count the number of flipped bits in a fixed-length binary word as an estimate of error, and therefore is sometimes called the signal distance.
- Not suitable for comparing strings of different lengths, or strings where not just substitutions but also insertions or deletions have to be expected

Correlation

Dissimilarity

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$corr(p,q) = \frac{covariance(p,q)}{std(p)*std(q)} = \frac{s_{pq}}{s_p*s_q}$$

$$covariance(p,q) = s_{pq} = \frac{1}{n-1} \sum_{i=1}^{n} (p_i - \bar{p})(q_i - \bar{q})$$

$$std(p) = s_p = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (p_i - \bar{p})^2}$$

$$std(q) = s_q = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (q_i - \bar{q})^2}$$

$$\bar{p} = \frac{1}{n} \sum_{i=1}^{n} p_i, \bar{q} = \frac{1}{n} \sum_{i=1}^{n} q_i$$

Correlation - Example 1

$$x = (-3, 6, 0, 3, -6)$$

 $y = (1, -2, 0, -1, 2)$

Compute the Pearson's correlation corr(x, y) = -1, x = -3y

Correlation - Example 2

$$x = (-3, -2, -1, 0, 1, 2, 3)$$

 $y = (9, 4, 1, 0, 1, 4, 9)$

- Compute the Pearson's correlation corr(x, y) = 0, $y = x^2$
- No linear relationship, but nonlinear relationships can still exist.
- Pearson's correlation only measures linear correlation.

Correlation - Python Example

Dissimilarity

```
from scipy.stats import pearsonr
p = np.array([1,3,5])
q = np.array([2,3,5])
corr, _ = pearsonr(p, q)
print('Pearsons correlation: %.3f' % corr)
#Pearsons correlation: 0.982
```

- For measuring nonlinear correlation
- Come from information theory

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

where

- $H(X) = -\sum_{j=1}^{m} P(X = u_j) log_2 P(X = u_j)$, the entropy (average information) of X
- $H(Y) = -\sum_{k=1}^{n} P(Y = v_k) log_2 P(Y = v_k)$, the entropy (average information) of X
- $H(X,Y) = -\sum_{j=1}^n \sum_{k=1}^n P(X=u_j,Y=v_k) log_2 P(X=u_j,Y=v_k)$, the joint entropy of X and Y
- Minimum value is 0, representing that the value of one variable tells us nothing about the another.
- Maximum value (no fixed value), representing that one variable completely depend on another.

Mutual information - Example

$$x = (-3, -2, -1, 0, 1, 2, 3)$$

 $y = (9, 4, 1, 0, 1, 4, 9)$

• Compute the mutual information I(X, Y) = 1.9502

Dissimilarity

General Approach for Combining Similarities

- Situation: attributes are of different types, an overall similarity is needed
- For the *i*th attribute, compute a similarity $s_i \in [0,1]$
- Define δ_i for the *i*th attribute
 - $\delta_i = 0$ (i.e., do not count this attribute) if the *i*th attribute is an asymmetric attribute and both objects have a value of 0 or if one of the objects has a missing value for the *i*th attribute
 - $\delta_i = 1$ otherwise
- Compute the overall similarity

$$similarity(p,q) = \frac{\sum_{i=1}^{n} \delta_{i} s_{i}}{\sum_{i=1}^{n} \delta_{i}}$$

Using Weights to Combine Similarities

■ May not want to treat all attributes the same.

■ Use weights $w_i \in [0,1]$ and $\sum_{i=1}^n w_i = 1$.

$$similarity(p,q) = \frac{\sum_{i=1}^{n} w_i \delta_i s_i}{\sum_{i=1}^{n} \delta_i}$$

Sampling

■ It is often used for both the preliminary investigation of the data and the final data analysis.

- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Key Principle for Effective Sampling

 Using a sample will work almost as well as using the entire data sets, if the sample is representative

 A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling: there is an equal probability of selecting any particular item
- Variations
 - Sampling without replacement: As each item is selected, it is removed from the population
 - Sampling with replacement: Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling: Split the data into several partitions; then draw random samples from each partition

Sample Size

Curse of Dimensionality

■ Data analysis becomes significantly harder as the dimensionality of the data increases.

Data becomes increasingly sparse in the space that it occupies

Dimensionality Reduction

■ Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Others: supervised and non-linear techniques

Feature Subset Selection

- Another way to reduce dimensionality of data
- Redundant features
 - Duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - Contain no information that is useful for the data mining task at hand
 - Example: students' ID is often irrelevant to the task of predicting students' GPA

Feature Subset Selection–Techniques (S.S.)

- Brute-force approach:
 - Try all possible feature subsets as input to data mining algorithm
- Embedded approaches:
 - Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches
 - Features are selected before data mining algorithm is run
- Wrapper approaches:
 - Use the data mining algorithm as a black box to find best subset of attributes

Feature Creation (S.S.)

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies
 - Feature extraction: domain-specific
 - Mapping data to new space
 - Fourier transform
 - Wavelet transform
 - Feature construction: combining features. E.g., Density in cluster analysis.

Dissimilarity

 Chapter 2: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar.

Textbook website: https://www-users.cse.umn.edu/~kumar001/dmbook/ index.php

https://scikit-learn.org/stable/modules/classes. html#module-sklearn.metrics.pairwise