$$E_{sat} = \frac{2v_{sat}}{\mu_{eff}}$$

B.1.5 Effective V_{ds}

$$V_{dseff} = V_{dsat} - \frac{1}{2} \left(V_{dsat} - V_{ds} - \delta + \sqrt{(V_{dsat} - V_{ds} - \delta)^2 + 4\delta V_{dsat}} \right)$$

B.1.6 Drain Current Expression

$$I_{ds} = \frac{I_{dso(Vdseff)}}{1 + \frac{R_{ds}I_{dso(Vdseff)}}{V_{dseff}}} \left(1 + \frac{V_{ds} - V_{dseff}}{V_{A}}\right) \left(1 + \frac{V_{ds} - V_{dseff}}{V_{ASCBE}}\right)$$

$$I_{dso} = \frac{W_{eff}\mu_{eff}C_{ox}V_{gsteff}\left(1 - A_{bulk}\frac{V_{dseff}}{2(V_{gsteff} + 2v_t)}\right)V_{dseff}}{L_{eff}\left[1 + V_{dseff} / (E_{sat}L_{eff})\right]}$$

$$V_A = V_{Asat} + (1 + \frac{P_{vag}V_{gsteff}}{E_{sat}L_{eff}})(\frac{1}{V_{ACLM}} + \frac{1}{V_{ADIBLC}})^{-1}$$

$$V_{ACLM} = \frac{A_{bulk}E_{sat}L_{eff} + V_{gsteff}}{P_{CLM}A_{bulk}E_{sat}litl}(V_{ds} - V_{dseff})$$