中国气象科学研究院

庐山云雾观测数据集建设项目

能见度仪

数据使用说明文档

中国气象科学研究院

成都信息工程大学

2021年12月

目录

1	概述	1
2	文件头信息说明	1
3	存储格式说明	2
	3.1 nc 格式存储说明	2
	3.1.1 维度信息	3
	3.1.2 变量和属性信息	4
	3.1.3 nc 存储示例	5
	3.2 csv 格式存储说明	6
	3. 2. 1 文件头描述信息	7
	3. 2. 2 要素代码	7
	3.2.3 csv 存储示例	7
4	数据读取说明	8
	4.1 nc 格式文件读取	9
	4.1.1 组(groups)的定位与读取	9
	4.1.2 文件头信息读取	.10
	4.1.3 观测要素信息读取	.10
	4.2 csv 格式文件读取	. 11
	4.1.1 文件头信息读取	.11
	4.1.2 观测要素信息读取	.12
	4.3 Station_level 和质量控制码说明	. 12
	4.3.1 Station_level 说明	.12
	4.3.2 质量控制码说明	.13

1 概述

能见度仪数据集包括 netCDF4 格式数据和 csv 文本数据两种,数据文件内容包括文件头和数据实体两部分,数据实体包括观测数据和相应的质量控制信息。先存储文件头,即描述信息和要素代码,再存储数据实体,即观测数据和质量控制信息。一个数据文件存放着设备当天的观测数据。

2 文件头信息说明

能见度仪的文件头包括描述信息和要素代码两部分,具体信息见表 1。

表1 能见度仪文件头信息

序号	要素代码	代码全称	要素名称	单位	备注
1	Station_name	Station name	站名	_	描述信息
2	Country	Country	国家	_	描述信息
3	Province	Province	省份	-	描述信息
4	City	City	地市	-	描述信息
5	County	County	区县	-	描述信息
6	Station_ID	Station identity	区站号	-	描述信息
7	LAT	Latitude	纬度	。 (度)	描述信息
8	LON	Longitude	经度	。 (度)	描述信息
9	ALT	Altitude	测站海拔高 度	m (米)	描述信息
10	Station_type	Station type	测站类型	_	描述信息
11	Station_level	Station level	测站级别	_	描述信息
12	Admi_code_CHN	Administrative area	行政区代码	_	描述信息
13	Mete_data_code	Meteorological data code	资料代码	-	描述信息

14	Manufacturer_model	Manufacturer and model	厂家代码	_	描述信息
15	Software_version	Software version	软件版本	-	描述信息
16	VIS_sens_HGT	Visibility sensor height	能见度仪距 地面高度	m (米)	描述信息
17	Data_level	Data level	数据级别	-	描述信息
18	Timezone	Timezone	时区	-	描述信息
19	Time_resolution	Time resolution	时间分辨率	s (秒)	描述信息
20	Obse_begi_DT	Observing beginning datetime	观测数据起 始时间	yyyy-mm-dd hh:mm:ss	描述信息
21	Obse_end_DT	Observing ending datetime	观测数据终 止时间	yyyy-mm-dd hh:mm:ss	描述信息
22	Data_crea_DT	Data creating datetime	数据创建时 间	yyyy-mm-dd hh:mm:ss	描述信息
23	Dataset_version	Dataset version	数据集版本	_	描述信息
24	Datetime Datetime		资料时间	yyyy-mm-dd hh:mm:ss	要素代码
25	VIS_hori_1MIN	Average horizontal visibility in 1 minute	1 分钟平均水 平能见度	m (米)	要素代码
26	VIS_hori_10MIN	Average horizontal visibility in 10 minute	10 分钟平均水平能见度	m (米)	要素代码
27 Q_VIS_hori_1MIN		Quality control code of average horizontal visibility in 1 minute	1 分钟平均水 平能见度质 控码	-	要素代码
28 Q_VIS_hori_10MIN		Quality control code of average horizontal visibility in 10 minute	10 分钟平均 水平能见度 质控码	-	要素代码

3 存储格式说明

3.1 nc 格式存储说明

基于 netCDF4. 0 标准对文件头信息和数据实体按照树形目

录分组存储,树形目录结构如图 1 所示。具体地,依据 netCDF4.0 特性,对文件头要素信息和观测要素信息进行分组(groups), 共分为两个大组,分别是 $file_information$ (文件头信息)和 $observational_information$ (观测要素信息);其中 $file_information$ (文件头信息)又包含 station(站点信息)、instrument(设备信息)以及 data(数据信息)三个组。

图 1 能见度仪数据的 nc 格式存储的树形目录结构

3.1.1 维度信息

能见度仪数据进行nc存储时的维度信息见表2。

序号	维名称	描述	值	备注
1	D-+-+:	时间	UNLIMITED(观测记录随时	/
	Datetime	町 町 	间的增加而增加)	/

表 2 能见度仪 nc 存储的维度信息

3.1.2 变量和属性信息

能见度仪数据进行 nc 存储时的变量和属性信息见表 3。

表 3 能见度仪 nc 存储的变量和属性信息

序号	变量名	维度	数据类型	组信息
1	Station_name	1×1	string	/file_information/station
2	Country	1×1	string	/file_information/station
3	Province	1×1	string	/file_information/station
4	City	1×1	string	/file_information/station
5	County	1×1	string	/file_information/station
6	Station_ID	1×1	string	/file_information/station
7	LAT	1×1	float	/file_information/station
8	LON	1×1	float	/file_information/station
9	ALT	1×1	ushort	/file_information/station
10	Station_type	1×1	ubyte	/file_information/station
11	Station_level	1×1	string	/file_information/station
12	Admi_code_CHN	1×1	string	/file_information/station
13	Mete_data_code	1×1	string	/file_information/instrument/
14	Manufacturer_model	1×1	string	/file_information/instrument/
15	Software_version	1×1	string	/file_information/instrument/
16	VIS_sens_HGT	1×1	float	/file_information/instrument/
17	Data_level	1×1	string	/file_information/data/
18	Timezone	1×1	string	/file_information/data/
19	Time_resolution	1×1	ubyte	/file_information/data/
20	Obse_begi_DT	1×1	string	/file_information/data/
21	Obse_end_DT	1×1	string	/file_information/data/
22	Data_crea_DT	1×1	string	/file_information/data/
23	Dataset_version	1×1	string	/file_information/data/
24	Datetime	$ Datetime \times 1$	string	/observational_information/
25	VIS_hori_1MIN	$ Datetime \times 1$	float	/observational_information/
26	VIS_hori_10MIN	$ Datetime \times 1$	float	/observational_information/

27	Q_VIS_hori_1MIN	Datetime ×1	ubyte	/observational_information/
28	Q_VIS_hori_10MIN	Datetime × 1	ubyte	/observational_information/

nc 存储时所用数据类型的信息见表 4。

表 4 nc 存储数据类型说明

数据类型	存储长度(单位: bit)	存储数据范围	精度
byte	8	[-128, 127]	_
ubyte	8	[0, 255]	-
short	16	[-32768, 32767]	_
ushort	16	[0, 65535]	-
int	32	[-2147483648, 2147483647]	_
uint	32	[0, 4294967295]	_
int64	64	[-9223372036854775808, 9223372036854775808]	_
uint64	64	[0, 18446744073709551615]	_
float	32	[-3. 40E+38, 3. 40E+38]	7位
double	64	[-1.79E+308, 1.79E+308]	16 位
string	_	_	_

3.1.3 nc 存储示例

图 2 是在 HDFView 3.1.0 软件中打开能见度仪数据的 nc 存储格式文件后所显示的信息,根据分组信息以树状目录结构对 nc 存储格式文件中的数据内容进行展示。

图 2 能见度仪数据文件的 nc 格式存储示例

3.2 csv 格式存储说明

先存放文件头描述信息和要素代码,再按照时间顺序依照要素代码的既定顺序对数据实体进行逐行存储,各数据项间用","间隔。同时,文件头描述信息、观测要素与数据实体间用换行符进行区分,第1行为文件头信息,第2行为观测要素信息,第3

行及之后为数据实体,逐行存储结构如图3所示。

图 3 能见度仪数据的 csv 文本格式的逐行存储结构

3.2.1 文件头描述信息

Lushan cloud and fog experiment station, China, Jiangxi, Jiujiang, Lushan scenic area, LSYWZ, 29. 57, 115. 97, 1080, 1, 015, 360400, VIS (Visibility), Vaisala PWD22, Huayun visibility detection sub-station monitoring program 1. 01, 2. 5, LX, UTC+8, 16, 2020-01-01 00:00:02, 2020-01-01 23:59:53, 2021-12-09 21:10:50, 1. 0

3.2.2 要素代码

Datetime, VIS_hori_1MIN, VIS_hori_10MIN, Q_VIS_hori_1MIN, Q_VIS_hori_10MIN

3.2.3 csv 存储示例

图 4 是在 Windows 操作系统自带的记事本软件(Notepad) 中打开能见度仪数据的 csv 存储格式文件后所显示的信息,根据 文件头描述信息、要素代码和数据实体逐行数据内容进行展示。

图 4 能见度仪数据文件的 csv 格式存储示例

4 数据读取说明

以 Python 语言为例对能见度仪数据集的 nc 格式数据和 csv 文本数据的读取使用进行说明,其中的示例代码可按从前往后的顺序运行,运行环境及配置信息如下:

- ●语言环境: Python 3.8.12
- ●运行环境: Windows 10 专业版 21H2
- ●IDE 环境: Visual Studio Code
- ●Python 工具包: pandas、numpy、netcdf4

其中 CSV 读取的 filereader 包是专门为本数据集编写,在导入该工具包时,应将此包复制到项目根目录中。

4.1 nc 格式文件读取

能见度仪数据集的 nc 存储,是基于 netCDF4.0 按照文件头信息(file_information)和观测要素信息(observational_information)进行分组(groups)并以树状目录结构进行数据的存储,其中,文件头信息(file_information)又分为了站点信息(station)、设备信息(instrument)和数据信息(data)三个组。因此,在进行数据的读取使用时,也依据分组信息对文件头描述信息、观测要素信息和数据实体进行读取。

4.1.1 组 (groups) 的定位与读取

示例代码:

```
import netCDF4 as nc

# 打开文件名为"nc_demo.nc"的 nc 格式存储数据文件
nc_obj = nc.Dataset(r'./nc_demo.nc')

# 查看当前状态的 groups 信息
print(nc_obj.groups.keys())

# 定位到 file_information 组
file_group = nc_obj.groups['file_information']

# 分别定位到 station 组、instrument 组以及 data 组
station_group = file_group.groups['station']
instrument_group = file_group.groups['instrument']
data_group = file_group.groups['data']

# 定位到 observational_information 组
obs_group = nc_obj.groups['observational_information']

# 查看 file_information 组下的分组
print(file_group.groups.keys())
```

示例代码运行结果:

dict_keys(['file_information', 'observational_information'])

4.1.2 文件头信息读取

示例代码:

```
# 查看变量名
```

print(station_group.variables.keys())
print(instrument_group.variables.keys())

print(data_group.variables.keys())

示例代码运行结果:

```
dict_keys(['Station_name', 'Country', 'Province', 'City', 'County', 'Station_ID', 'LAT', 'LON', 'ALT', 'Station_type', 'Station_level', 'Admi_code_CHN'])
```

dict_keys(['Mete_data_code', 'Manufacturer_model', 'Software_version', 'VIS_sens_HGT'])

dict_keys(['Data_level', 'Timezone', 'Time_resolution', 'Obse_begi_DT', 'Obse_end_DT', 'Data_crea_DT', 'Dataset_version'])

示例代码:

```
# 查看 Station_name 信息
station_name_var = station_group.variables['Station_name']
print(station_name_var[:])
print(station_name_var.long_name)
print(station_name_var.units)
```

示例代码运行结果:

```
Lushan cloud and fog experiment station Station name
```

_

4.1.3 观测要素信息读取

示例代码:

```
# 查看变量名
```

 $print (obs_group.variables.keys ()) \\$

查看 VIS_hori_1MIN 信息

datatime_var = obs_group.variables['VIS_hori_1MIN']

```
print(datatime_var[:])
print(datatime_var.long_name)
print(datatime_var.units)
```

示例代码运行结果:

```
dict_keys(['Datetime', 'VIS_hori_1MIN', 'VIS_hori_10MIN', 'Q_VIS_hori_1MIN', 'Q_VIS_hori_10MIN'])

masked_array(data=[14673., 15313., 14657., ..., 6620., 6809., 6653.], mask=False, fill_value=1e+20, dtype=float32)
'Average horizontal visibility in 1 minute'
'm'
```

4.2 CSV 格式文件读取

4.1.1 文件头信息读取

示例代码:

```
from filereader import CSVReader

reader = CSVReader(r'./csv_demo.csv')
data = reader.read()
print(data['header'])
```

示例代码运行结果:

```
{'Station_name': 'Lushan cloud and fog experiment station',
   'Country': 'China',
   'Province': 'Jiangxi',
   'City': 'Jiujiang',
   'County': 'Lushan scenic area',
   'Station_ID': 'LSYWZ',
   'LAT': '29.57',
   'LON': '115.97',
   'ALT': '1080',
   'Station_type': '1',
   'Station_level': '015',
   'Admi_code_CHN': '360400',
   'Mete_data_code': 'VIS (Visibility)',
   'Manufacturer_model': 'Vaisala PWD22',
```

'Software_version': 'Huayun visibility detection sub-station monitoring program 1.01',

'VIS_sens_HGT': '2.5',
'Data_level': 'LX',
'Timezone': 'UTC+8',
'Time_resolution': '16',

'Obse_begi_DT': '2020-01-01 00:00:02',
'Obse_end_DT': '2020-01-01 23:59:53',
'Data_crea_DT': '2021-12-09 21:10:50',

'Dataset_version': '1.0'}

4.1.2 观测要素信息读取

示例代码:

print(data['obs']

示例代码运行结果:

	Datetime	VIS_hori_1MIN	VIS_hori_10MIN	Q_VIS_hori_1MIN	Q_VIS_hori_10MIN
0	2020-01-08 00:00:10	345.0	169.0	0	0
1	2020-01-08 00:00:25	467.0	171.0	0	0
2	2020-01-08 00:00:40	530.0	173.0	0	0
3	2020-01-08 00:00:55	424.0	175.0	0	0
4	2020-01-08 00:01:10	370.0	176.0	0	0
5756	2020-01-08 23:58:45	20000.0	20000.0	0	0
5757	2020-01-08 23:59:00	20000.0	20000.0	0	0
5758	2020-01-08 23:59:15	20000.0	20000.0	0	0
5759	2020-01-08 23:59:30	20000.0	20000.0	0	0
5760	2020-01-08 23:59:45	20000.0	20000.0	0	0

4.3 Station_level 和质量控制码说明

4.3.1 Station_level 说明

代码 015 表示地面观测站中的其他气象站类别。其中, 01 表示地面观测站(站网), 5 表示其他气象站(站台级别)。

4.3.2 质量控制码说明

数据质量控制码的取值及含义见表 5。

表 5 质量控制码的标识/代码表

描述	含义
数据正常	通过质量控制,未发现数据异常;或数据虽异常,但最终确认数据正确
数据可疑	通过质量控制,发现数据异常,且未明确数据正确还是错误
数据错误	通知质量控制,确认数据错误
数据为订正	原数据明显偏离真值,但在一定范围内可参照使用。在原始数据
值	基础上通过偏差订正等方式重新获取的更正数据
数据为修改	原数据因错误或缺测而完全不可用,通过与原数据完全无关的替
值	代方式重新获取的更正数据
预留	
预留	
无观测任务	按规定, 台站无相应要素数据观测任务
数据缺测	该项数据应观测,但因各种原因数据缺测
数据未做质量较制	该数据未进行质量控制
	数据正常 数据错误 数据错误 数据为值 数据为值 预 预 预 观测任 数据 数据 数据 数

注: 质控码 0、3、4 均当可信使用