LMA0001 – Lógica Matemática Aula 03 Sintaxe da Lógica Proposicional

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Símbolos atômicos

Após termos visto como traduzir sentenças em linguagem natural para proposições, veremos como descrever e manipular de forma matemática as proposições.

Começamos assumindo um conjunto infinito e contável de símbolos atômicos \mathcal{P} .

$$p, q, r, s, t, \ldots \in \mathcal{P}$$

Símbolos atômicos representam proposições atômicas, e serão representados por letras minúsculas.

A única comparação possível entre símbolos atômicos é o teste de igualdade: p = p, e $p \neq q$, r, s . . .

Fórmulas bem-formadas

Com base em \mathcal{P} e dos conectivos lógicos, definimos **por indução** o conjunto \mathcal{L} de **fórmulas proposicionais bem-formadas**:

 \mathcal{L} é o *menor* conjunto tal que

- **2** se $A \in \mathcal{L}$ então $\neg A \in \mathcal{L}$ (negação)
- **3** se $A, B \in \mathcal{L}$ então
 - $A \wedge B \in \mathcal{L}$ (conjunção)
 - $A \vee B \in \mathcal{L}$ (disjunção)
 - $A \rightarrow B \in \mathcal{L}$ (implicação)

Usaremos letras maiúsculas A, B, C, D . . . para representar fórmulas.

As fórmulas proposicionais podem ser representadas **textualmente** ou como uma **árvore**.

As fórmulas proposicionais podem ser representadas **textualmente** ou como uma **árvore**.

A convenção textual apresenta ambiguidade. Ex: $\neg p \rightarrow q$ representa qual formação?

As fórmulas proposicionais podem ser representadas **textualmente** ou como uma **árvore**.

A convenção textual apresenta ambiguidade. Ex: $\neg p \to q$ representa qual formação?

As fórmulas proposicionais podem ser representadas **textualmente** ou como uma **árvore**.

A convenção textual apresenta ambiguidade. Ex: $\neg p \to q$ representa qual formação?

Resolução da ambiguidade = parênteses: $\neg(p \to q)$ vs $(\neg p) \to q$

Convenções que reduzem a quantidade de parênteses:

1. Conjunção e disjunção associam à esquerda. Ex:

$$A \wedge B \wedge C = ((A \wedge B) \wedge C)$$

$$A \vee B \vee C = ((A \vee B) \vee C)$$

Convenções que reduzem a quantidade de parênteses:

1. Conjunção e disjunção associam à esquerda. Ex:

$$A \wedge B \wedge C = ((A \wedge B) \wedge C)$$
$$A \vee B \vee C = ((A \vee B) \vee C)$$

2. Implicações associam à direita. Ex:

$$A \to B \to C = (A \to (B \to C))$$

Convenções que reduzem a quantidade de parênteses:

1. Conjunção e disjunção associam à esquerda. Ex:

$$A \wedge B \wedge C = ((A \wedge B) \wedge C)$$
$$A \vee B \vee C = ((A \vee B) \vee C)$$

2. Implicações associam à direita. Ex:

$$A \to B \to C = (A \to (B \to C))$$

3. Prioridade: \neg , \wedge , \vee , \rightarrow , nesta ordem. Ex:

$$\neg p \land q = (\neg p) \land q$$
$$p \lor q \land r = p \lor (q \land r)$$
$$p \lor (\neg q) \rightarrow r = (p \lor (\neg q)) \rightarrow r$$

Exercícios

Desenhe a árvore associada a cada uma das seguintes fórmulas:

- **2** $\neg (p \lor \neg q \land s)$

- **6** $p \land q \lor \neg r \land s$

Simplifique removendo parênteses desnecessários:

- $((A) \wedge (\neg(q) \vee B \wedge x))$

Subfórmulas

O **conjunto de subfórmulas** de A, escrita $\mathbf{Subf}(A)$, contém todas as fórmulas utilizadas para construir A, incluindo ela mesma. Ex:

$$\begin{aligned} \textbf{Subf}(p) &= \{p\} \\ \textbf{Subf}(p \land q) &= \{p, q, p \land q\} \\ \textbf{Subf}(\neg p \rightarrow q) &= \{p, q, \neg p, \neg p \rightarrow q\} \\ \textbf{Subf}(p \land q \lor r) &= \{p, q, r, p \land q, p \land q \lor r\} \end{aligned}$$

Subfórmulas

O **conjunto de subfórmulas** de A, escrita $\mathbf{Subf}(A)$, contém todas as fórmulas utilizadas para construir A, incluindo ela mesma. Ex:

$$\begin{aligned} &\textbf{Subf}(p) = \{p\} \\ &\textbf{Subf}(p \land q) = \{p, q, p \land q\} \\ &\textbf{Subf}(\neg p \rightarrow q) = \{p, q, \neg p, \neg p \rightarrow q\} \\ &\textbf{Subf}(p \land q \lor r) = \{p, q, r, p \land q, p \land q \lor r\} \end{aligned}$$

Subf(A) é definido por casos:

Caso
$$A = p$$
, para $p \in \mathcal{P}$ Subf $(A) = \{p\}$
Caso $A = \neg B$ Subf $(A) = \{A\} \cup \text{Subf}(B)$

$$\textbf{Caso } A = B \wedge C \qquad \qquad \textbf{Subf}(A) = \{A\} \cup \textbf{Subf}(B) \cup \textbf{Subf}(C)$$

$$\textbf{Caso} \ A = B \lor C \qquad \qquad \textbf{Subf}(A) = \{A\} \cup \textbf{Subf}(B) \cup \textbf{Subf}(C)$$

Caso
$$A = B \rightarrow C$$
 Subf $(B) \cup$ **Subf** (C)

Exercícios

Determine o conjunto de subfórmulas das seguintes proposições:

- $\neg p \rightarrow q$
- $p \lor q$
- $p \land \neg q \land r \land \neg s$
- $p \land \neg(p \rightarrow \neg q) \lor \neg q$

