GigaDevice Semiconductor Inc.

GD32E230xx ARM® Cortex®-M23 32-bit MCU

Datasheet

Revision 2.0

(Mar. 2023)

Table of Contents

Tá	able c	of Contents	1
Li	ist of	Figures	4
Li	ist of	Tables	5
1	Ge	neral descriptionn	7
2		vice overview	
	2.1	Device information	
	2.2	Block diagram	
		•	
	2.3	Pinouts and pin assignment	
	2.4	Memory map	15
	2.5	Clock tree	17
	2.6	Pin definitions	18
	2.6.	1 GD32E230Cx LQFP48 pin definitions	18
	2.6.	2 GD32E230Kx LQFP32 pin definitions	21
	2.6.	3 GD32E230Kx QFN32 pin definitions	23
	2.6.	4 GD32E230Gx QFN28 pin definitions	26
	2.6.	5 GD32E230Fx TSSOP20 pin definitions	28
	2.6.	6 GD32E230Fx LGA20 pin definitions	29
	2.6.	7 GD32E230xx pin alternate functions	32
3	Fui	nctional description	35
	3.1	ARM® Cortex®-M23 core	35
	3.2	Embedded memory	35
	3.3	Clock, reset and supply management	35
	3.4	Boot modes	
	3.5	Power saving modes	
	3.6	Analog to digital converter (ADC)	
	3.7	DMA	
	3.8	General-purpose inputs/outputs (GPIOs)	
	3.9	Timers and PWM generation	
	3.10	Real time clock (RTC)	39
	3.11	Inter-integrated circuit (I2C)	40
	3.12	Serial peripheral interface (SPI)	40

	3.13	Universal synchronous asynchronous receiver transmitter (USART)	. 41
	3.14	Inter-IC sound (I2S)	. 41
	3.15	Comparators (CMP)	. 41
	3.16	Debug mode	. 41
	3.17	Package and operation temperature	. 42
4	Ele	ectrical characteristics	. 43
	4.1	Absolute maximum ratings	. 43
	4.2	Operating conditions characteristics	. 44
	4.3	Power consumption	. 45
	4.4	EMC characteristics	. 50
	4.5	Power supply supervisor characteristics	. 52
	4.6	Electrical sensitivity	. 52
	4.7	External clock characteristics	. 53
	4.8	Internal clock characteristics	. 55
	4.9	PLL characteristics	. 57
	4.10	Memory characteristics	. 57
	4.11	NRST pin characteristics	. 57
	4.12	GPIO characteristics	. 58
	4.13	ADC characteristics	. 59
	4.14	Temperature sensor characteristics	. 61
	4.15	Comparators characteristics	. 61
	4.16	TIMER characteristics	. 62
	4.17	I2C characteristics	. 63
	4.18	SPI characteristics	. 64
	4.19	I2S characteristics	. 66
	4.20	USART characteristics	. 68
	4.21	WDGT characteristics	. 68
	4.22	Parameter conditions	. 68
5	Pa	ckage information	. 69
	5.1	LQFP48 package outline dimensions	. 69
	5.2	LQFP32 package outline dimensions	. 71
	5.3	QFN32 package outline dimensions	. 73

			OBOLLLOOM Balachico
,	5.4	QFN28 package outline dimensions	75
,	5.5	TSSOP20 package outline dimensions	77
	5.6	LGA20 package outline dimensions	79
	5.7	Thermal characteristics	81
6	Or	dering information	83
7	Re	evision history	84

List of Figures

Figure 2-1. GD32E230xx block diagram	11
Figure 2-2. GD32E230Cx LQFP48 pinouts	12
Figure 2-3. GD32E230Kx LQFP32 pinouts	12
Figure 2-4. GD32E230Kx QFN32 pinouts	13
Figure 2-5. GD32E230Gx QFN28 pinouts	13
Figure 2-6. GD32E230Fx TSSOP20 pinouts	14
Figure 2-7. GD32E230Fx LGA20 pinouts	14
Figure 2-8. GD32E230xx clock tree	17
Figure 4-1. Recommended power supply decoupling capacitors ⁽¹⁾	44
Figure 4-2. Typical supply current consumption in Run mode	49
Figure 4-3. Typical supply current consumption in Sleep mode	49
Figure 4-4. Recommended external NRST pin circuit	58
Figure 4-5. I/O port AC characteristics definition	59
Figure 4-6. CMP hysteresis	62
Figure 4-7. I2C bus timing diagram	63
Figure 4-8. SPI timing diagram - master mode	64
Figure 4-9. SPI timing diagram - slave mode	65
Figure 4-10. I2S timing diagram - master mode	67
Figure 4-11. I2S timing diagram - slave mode	67
Figure 5-1. LQFP48 package outline	69
Figure 5-2. LQFP48 recommended footprint	70
Figure 5-3. LQFP32 package outline	71
Figure 5-4. LQFP32 recommended footprint	72
Figure 5-5. QFN32 package outline	73
Figure 5-6. QFN32 recommended footprint	74
Figure 5-7. QFN28 package outline	75
Figure 5-8. QFN28 recommended footprint	
Figure 5-9. TSSOP20 package outline	77
Figure 5-10. TSSOP20 recommended footprint	78
Figure 5-11. LGA20 package outline	79
Figure 5-12. LGA20 recommended footprint	80

List of Tables

Table 2-1. GD32E230xx devices features and peripheral list	8
Table 2-2. GD32E230xx devices features and peripheral list (continued)	9
Table 2-3. GD32E230xx devices features and peripheral list (continued)	. 10
Table 2-4. GD32E230xx memory map	. 15
Table 2-5. GD32E230Cx LQFP48 pin definitions	. 18
Table 2-6. GD32E230Kx LQFP32 pin definitions	. 21
Table 2-7. GD32E230Kx QFN32 pin definitions	. 23
Table 2-8. GD32E230Gx QFN28 pin definitions	. 26
Table 2-9. GD32E230Fx TSSOP20 pin definitions	. 28
Table 2-10. GD32E230Fx LGA20 pin definitions	. 29
Table 2-11. Port A alternate functions summary	. 32
Table 2-12. Port B alternate functions summary	. 33
Table 2-13. Port F alternate functions summary	. 33
Table 4-1. Absolute maximum ratings ⁽¹⁾⁽⁴⁾	. 43
Table 4-2. DC operating conditions	. 44
Table 4-3. Clock frequency ⁽¹⁾	. 44
Table 4-4. Operating conditions at Power up/ Power down ⁽¹⁾	. 44
Table 4-5. Start-up timings of Operating conditions ⁽¹⁾	. 44
Table 4-6. Power saving mode wakeup timings characteristics ⁽¹⁾⁽²⁾	. 45
Table 4-7. Power consumption characteristics ⁽²⁾⁽³⁾⁽⁴⁾⁽⁵⁾	. 45
Table 4-8. Peripheral current consumption characteristics ⁽¹⁾	. 50
Table 4-9. EMS characteristics ⁽¹⁾	. 51
Table 4-10. EMI characteristics ⁽¹⁾	. 51
Table 4-11. Power supply supervisor characteristics ⁽¹⁾	. 52
Table 4-12. ESD characteristics ⁽¹⁾	
Table 4-13. Static latch-up characteristics ⁽¹⁾	. 53
Table 4-14. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics.	. 53
Table 4-15. High speed external user clock characteristics (HXTAL in bypass mode)	. 54
Table 4-16. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics	. 54
Table 4-17. Low speed external user clock characteristics (LXTAL in bypass mode)	. 55
Table 4-18. High speed internal clock (IRC8M) characteristics	. 55
Table 4-19. Low speed internal clock (IRC40K) characteristics	. 56
Table 4-20. High speed internal clock (IRC28M) characteristics	. 56
Table 4-21. PLL characteristics	. 57
Table 4-22. Flash memory characteristics	. 57
Table 4-23. NRST pin characteristics	. 57
Table 4-24. I/O port DC characteristics ⁽¹⁾⁽³⁾	. 58
Table 4-25. I/O port AC characteristics ⁽¹⁾⁽²⁾	. 59
Table 4-26. ADC characteristics	. 59
Table 4-27 ADC Ram max for face = 28 MHz ⁽¹⁾	60

Table 4-28. ADC dynamic accuracy at f _{ADC} = 14 MHz ⁽¹⁾	
Table 4-29. ADC static accuracy at f _{ADC} = 14 MHz ⁽¹⁾	61
Table 4-30. Temperature sensor characteristics	61
Table 4-31. CMP characteristics ⁽¹⁾	61
Table 4-32. TIMER characteristics ⁽¹⁾	. 62
Table 4-33. I2C characteristics ⁽¹⁾⁽²⁾	. 63
Table 4-34. Standard SPI characteristics ⁽¹⁾	. 64
Table 4-35. I2S characteristics ⁽¹⁾	. 66
Table 4-36. USART characteristics ⁽¹⁾	. 68
Table 4-37. FWDGT min/max timeout period at 40 kHz (IRC40K) ⁽¹⁾	68
Table 4-38. WWDGT min-max timeout value at 72 MHz (f _{PCLK1}) ⁽¹⁾	. 68
Table 5-1. LQFP48 package dimensions	
Table 5-2. LQFP32 package dimensions	71
Table 5-3. QFN32 package dimensions	73
Table 5-4. QFN28 package dimensions	75
Table 5-5. TSSOP20 package dimensions	77
Table 5-6. LGA20 package dimensions	79
Table 5-7. Package thermal characteristics ⁽¹⁾	81
Table 6-1. Part ordering code for GD32E230xx devices	83
Table 7-1. Revision history	84

1 General description

The GD32E230xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider.

The GD32E230xx device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S.

The device operates from a 1.8 to 3.6 V power supply and available in -40 to +85 °C temperature range for grade 6 devices, and -40°C to +105°C temperature range for grade 7 devices. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32E230xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

2 Device overview

2.1 Device information

Table 2-1. GD32E230xx devices features and peripheral list

Part Number						GD32	E230xx				
P	art Number	K4U6	K6U6	K8U6	K4T6	K6T6	K8T6	C4T6	C6T6	C8T6	C8T7
FLASH (KB)		16	32	64	16	32	64	16	32	64	64
SRAM (KB)		4	6	8	4	6	8	4	6	8	8
	General	4	4	5	4	4	5	4	4	5	5
	timer(16-	(2,13,15,16)	(2,13,15,16)	(2,13-16)	(2,13,15,16)	(2,13,15,16)	(2,13-16)	(2,13,15,16)	(2,13,15,16)	(2,13-16)	(2,13-16)
	bit)	(2,13,13,16)	(2,13,13,16)	(2,13-10)	(2,13,15,16)	(2,13,15,16)	(2,13-10)	(2,13,15,16)	(2,13,15,16)	(2,13-10)	(2,13-10)
	Advanced	1	1	1	1	1	1	1	1	1	1
	timer(16-	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Timers	bit)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Ti H	SysTick	1	1	1	1	1	1	1	1	1	1
	Basic	1	1	1	1	1	1	1	1	1	1
	timer(16-	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	bit)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	Watchdog	2	2	2	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1	1	1	1
	USART	1	2	2	1	2	2	1	2	2	2
/ity	USAKI	(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)	(0-1)
cţi	I2C	1	1	2	1	1	2	1	1	2	2
Connectivity	120	(0)	(0)	(0-1)	(0)	(0)	(0-1)	(0)	(0)	(0-1)	(0-1)
ပိ	SPI/I2S	1/1	1/1	2/1	1/1	1/1	2/1	1/1	1/1	2/1	2/1
	3F1/123	(0)/(0)	(0)/(0)	(0-1)/(0)	(0)/(0)	(0)/(0)	(0-1)/(0)	(0)/(0)	(0)/(0)	(0-1)/(0)	(0-1)/(0)
	GPIO	27	27	27	25	25	25	39	39	39	39
	CMP	1	1	1	1	1	1	1	1	1	1
	EXTI	16	16	16	16	16	16	16	16	16	16
	Units	1	1	1	1	1	1	1	1	1	1
	Channels	10	10	10	10	10	10	10	10	10	10
ADC	(External)	10	10	10	10	10	10	10	10	10	10
	Channels	2	2	2	2	2	2	2	2	2	2
	(Internal)										
	Package		QFN32			LQFP32			LQ	FP48	

Table 2-2. GD32E230xx devices features and peripheral list (continued)

Part Number FLASH (KB)		GD32E230xx								
		F4V6	F6V6	F8V6	F4P6	F6P6	F8P6	G4U6	G6U6	G8U6
		16	32	64	16	32	64	16	32	64
5	SRAM (KB)	4	6	8	4	6	8	4	6	8
	General	4	4	4	4	4	4	4	4	5
	timer(16-bit)	(2,13,15,16)	(2,13,15,16)	(2,13,15,16)	(2,13,15,16)	(2,13,15,16)	(2,13,15,16)	(2,13,15,16)	(2,13,15,16)	(2,13-16)
	Advanced	1	1	1	1	1	1	1	1	1
6	timer(16-bit)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Timers	SysTick	1	1	1	1	1	1	1	1	1
Ę	Basic	1	1	1	1	1	1	1	1	1
	timer(16-bit)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
	Watchdog	2	2	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1	1	1
	USART	1	2	2	1	2	2	1	2	2
/ity		(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)
Connectivity	I2C	1	1	2	1	1	2	1	1	2
nne	120	(0)	(0)	(0-1)	(0)	(0)	(0-1)	(0)	(0)	(0-1)
ပိ	SPI/I2S	1/1	1/1	2/1	1/1	1/1	2/1	1/1	1/1	2/1
	01 1/120	(0)/(0)	(0)/(0)	(0-1)/(0)	(0)/(0)	(0)/(0)	(0-1)/(0)	(0)/(0)	(0)/(0)	(0-1)/(0)
	GPIO	15	15	15	15	15	15	23	23	23
	CMP	1	1	1	1	1	1	1	1	1
	EXTI	16	16	16	16	16	16	16	16	16
	Units	1	1	1	1	1	1	1	1	1
ADC	Channels (External)	9	9	9	9	9	9	10	10	10
,	Channels (Internal)	2	2	2	2	2	2	2	2	2
	Package		LGA20		Т	SSOP20)		QFN28	

Table 2-3. GD32E230xx devices features and peripheral list (continued)

		GE	032E230	xx
P	art Number	F4P7	F6P7	F8P7
F	LASH (KB)	16	32	64
5	SRAM (KB)	4	6	8
	General	4	4	4
	timer(16-bit)	(2,13,15,16)	(2,13,15,16)	(2,13,15,16)
	Advanced	1	1	1
"	timer(16-bit)	(0)	(0)	(0)
Timers	SysTick	1	1	1
ΙĒ	Basic	1	1	1
	timer(16-bit)	(5)	(5)	(5)
	Watchdog	2	2	2
	RTC	1	1	1
	HEADT	1	2	2
/ity	USART	(0)	(0-1)	(0-1)
Connectivity	I2C	1	1	2
nne		(0)	(0)	(0-1)
ပိ	SPI/I2S	1/1	1/1	2/1
		(0)/(0)	(0)/(0)	(0-1)/(0)
	GPIO	15	15	15
	CMP	1	1	1
	EXTI	16	16	16
	Units	1	1	1
ပ	Channels	9	9	9
ADC	(External)			
	Channels (Internal)	2	2	2
	Package	Т	SSOP2)

2.2 Block diagram

Figure 2-1. GD32E230xx block diagram

2.3 Pinouts and pin assignment

Figure 2-2. GD32E230Cx LQFP48 pinouts

Figure 2-3. GD32E230Kx LQFP32 pinouts

Figure 2-4. GD32E230Kx QFN32 pinouts

Figure 2-5. GD32E230Gx QFN28 pinouts

Figure 2-6. GD32E230Fx TSSOP20 pinouts

Figure 2-7. GD32E230Fx LGA20 pinouts

2.4 Memory map

Table 2-4. GD32E230xx memory map

Pre-defined Bus		ADDRESS	5		
Regions		ADDRESS	Peripherals		
		0xE000 0000 - 0xE00F FFFF	Cortex M23 internal peripherals		
External Device		0xA000 0000 - 0xDFFF FFFF	Reserved		
External RAM		0x60000000 - 0x9FFFFFF	Reserved		
	ALID4	0x5004 0000 - 0x5FFF FFFF	Reserved		
	AHB1	0x5000 0000 - 0x5003 FFFF	Reserved		
		0x4800 1800 - 0x4FFF FFFF	Reserved		
		0x4800 1400 - 0x4800 17FF	GPIOF		
		0x4800 1000 - 0x4800 13FF	Reserved		
	AHB2	0x4800 0C00 - 0x4800 0FFF	Reserved		
		0x4800 0800 - 0x4800 0BFF	GPIOC		
		0x4800 0400 - 0x4800 07FF	GPIOB		
		0x4800 0000 - 0x4800 03FF	GPIOA		
		0x4002 4400 - 0x47FF FFFF	Reserved		
		0x4002 4000 - 0x4002 43FF	Reserved		
		0x4002 3400 - 0x4002 3FFF	Reserved		
	AHB1	0x4002 3000 - 0x4002 33FF	CRC		
		0x4002 2400 - 0x4002 2FFF	Reserved		
		0x4002 2000 - 0x4002 23FF	FMC		
		0x4002 1400 - 0x4002 1FFF	Reserved		
		0x4002 1000 - 0x4002 13FF	RCU		
Peripherals		0x4002 0400 - 0x4002 0FFF	Reserved		
		0x4002 0000 - 0x4002 03FF	DMA		
		0x4001 8000 - 0x4001 FFFF	Reserved		
		0x4001 5C00 - 0x4001 7FFF	Reserved		
		0x4001 5800 - 0x4001 5BFF	DBG		
		0x4001 4C00 - 0x4001 57FF	Reserved		
		0x4001 4800 - 0x4001 4BFF	TIMER16		
		0x4001 4400 - 0x4001 47FF	TIMER15		
		0x4001 4000 - 0x4001 43FF	TIMER14		
	APB2	0x4001 3C00 - 0x4001 3FFF	Reserved		
		0x4001 3800 - 0x4001 3BFF	USART0		
		0x4001 3400 - 0x4001 37FF	Reserved		
		0x4001 3000 - 0x4001 33FF	SPI0/I2S0		
		0x4001 2C00 - 0x4001 2FFF	TIMER0		
		0x4001 2800 - 0x4001 2BFF	Reserved		
		0x4001 2400 - 0x4001 27FF	ADC		
		0x4001 0800 - 0x4001 23FF	Reserved		

Pre-defined Regions	Bus	ADDRESS	Peripherals
		0x4001 0400 - 0x4001 07FF	EXTI
		0x4001 0000 - 0x4001 03FF	SYSCFG + CMP
		0x4000 CC00 - 0x4000 FFFF	Reserved
		0x4000 C800 - 0x4000 CBFF	Reserved
		0x4000 C400 - 0x4000 C7FF	Reserved
		0x4000 C000 - 0x4000 C3FF	Reserved
		0x4000 8000 - 0x4000 BFFF	Reserved
		0x4000 7C00 - 0x4000 7FFF	Reserved
		0x4000 7800 - 0x4000 7BFF	Reserved
		0x4000 7400 - 0x4000 77FF	Reserved
		0x4000 7000 - 0x4000 73FF	PMU
		0x4000 6400 - 0x4000 6FFF	Reserved
		0x4000 6000 - 0x4000 63FF	Reserved
		0x4000 5C00 - 0x4000 5FFF	Reserved
		0x4000 5800 - 0x4000 5BFF	I2C1
		0x4000 5400 - 0x4000 57FF	I2C0
	4.004	0x4000 4800 - 0x4000 53FF	Reserved
	APB1	0x4000 4400 - 0x4000 47FF	USART1
		0x4000 4000 - 0x4000 43FF	Reserved
		0x4000 3C00 - 0x4000 3FFF	Reserved
		0x4000 3800 - 0x4000 3BFF	SPI1
		0x4000 3400 - 0x4000 37FF	Reserved
		0x4000 3000 - 0x4000 33FF	FWDGT
		0x4000 2C00 - 0x4000 2FFF	WWDGT
		0x4000 2800 - 0x4000 2BFF	RTC
		0x4000 2400 - 0x4000 27FF	Reserved
		0x4000 2000 - 0x4000 23FF	TIMER13
		0x4000 1400 - 0x4000 1FFF	Reserved
		0x4000 1000 - 0x4000 13FF	TIMER5
		0x4000 0800 - 0x4000 0FFF	Reserved
		0x4000 0400 - 0x4000 07FF	TIMER2
		0x4000 0000 - 0x4000 03FF	Reserved
SDAM		0x2000 2000 - 0x3FFF FFFF	Reserved
SRAM		0x2000 0000 - 0x2000 1FFF	SRAM
		0x1FFF F810 - 0x1FFF FFFF	Reserved
		0x1FFF F800 - 0x1FFF F80F	Option bytes
Code		0x1FFF EC00 - 0x1FFF F7FF	System memory
Code		0x0801 0000 - 0x1FFF EBFF	Reserved
		0x0800 0000 - 0x0800 FFFF	Main Flash memory
		0x0001 0000 - 0x07FF FFFF	Reserved

Pre-defined Regions	Bus	ADDRESS	Peripherals
		0x00000000 - 0x0000FFFF	Aliased to Flash or
		0.00000000 - 0.00001111	system memory

2.5 Clock tree

Figure 2-8. GD32E230xx clock tree

Note:

If the APB prescaler is 1, the timer clock frequencies are set to AHB frequency divide by 1. Otherwise, they are set to the AHB frequency divide by half of APB prescaler.

Legend:

HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillator IRC40K: Internal 40K RC oscillator IRC28M: Internal 28M RC oscillator

2.6 Pin definitions

2.6.1 GD32E230Cx LQFP48 pin definitions

Table 2-5. GD32E230Cx LQFP48 pin definitions

Table 2-5. G			•	
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
V _{DD}	1	Р		Default: V _{DD}
PC13- TAMPER- RTC	2	I/O		Default: PC13 Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1
PC14- OSC32IN	3	I/O		Default: PC14 Additional: OSC32IN
PC15- OSC32OUT	4	I/O		Default: PC15 Additional: OSC32OUT
PF0/OSCIN	5	I/O	5VT	Default: PF0 Alternate: I2C0_SDA Additional: OSCIN
PF1/OSCOU T	6	I/O	5VT	Default: PF1 Alternate: I2C0_SCL Additional: OSCOUT
NRST	7	I/O		Default: NRST
VSSA	8	Р		Default: VSSA
VDDA	9	Р		Default: VDDA
PA0-WKUP	10	I/O		Default: PA0 Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , CMP_OUT, I2C1_SCL ⁽⁵⁾ Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0
PA1	11	I/O		Default: PA1 Alternate: USART0_RTS/USART0_DE ⁽³⁾ , USART1_RTS/USART1_DE ⁽⁴⁾ , I2C1_SDA ⁽⁵⁾ , EVENTOUT, TIMER14_CH0_ON ⁽⁵⁾ Additional: ADC_IN1, CMP_IP
PA2	12	I/O		Default: PA2 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , TIMER14_CH0 ⁽⁵⁾ Additional: ADC_IN2, CMP_IM7
PA3	13	I/O		Default: PA3 Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER14_CH1 ⁽⁵⁾ Additional: ADC_IN3
PA4	14	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_CK ⁽³⁾ , USART1_CK ⁽⁴⁾ , TIMER13_CH0, SPI1_NSS ⁽⁵⁾ Additional: ADC_IN4, CMP_IM4

		Din	1/0	
Pin Name	Pins	Pin	1/0	Functions description
		Type ⁽¹⁾	Level ⁽²⁾	D (1/ DAS
				Default: PA5
PA5	15	I/O		Alternate: SPI0_SCK, I2S0_CK
				Additional: ADC_IN5, CMP_IM5
				Default: PA6
D	40			Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
PA6	16	I/O		TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,
				CMP_OUT
				Additional: ADC_IN6
				Default: PA7
D 4.7	47	1/0		Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,
PA7	17	I/O		TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, EVENTOUT
				Additional: ADC_IN7
				Default: PB0
				Alternate: TIMER2_CH2, TIMER0_CH1_ON,
PB0	18	I/O		USART1_RX ⁽⁴⁾ , EVENTOUT
				Additional: ADC_IN8
				Default: PB1
				Alternate: TIMER2_CH3, TIMER13_CH0,
PB1	19	I/O		TIMER0_CH2_ON, SPI1_SCK ⁽⁵⁾
				Additional: ADC_IN9
				Default: PB2
PB2	20	I/O	5VT	Alternate: TIMER2_ETI
				Default: PB10
PB10	21	I/O	5VT	Alternate: I2C0_SCL ⁽³⁾ ,I2C1_SCL ⁽⁵⁾ , SPI1_IO2 ⁽⁵⁾ ,
				SPI1_SCK ⁽⁵⁾
				Default: PB11
PB11	22	I/O	5VT	Alternate: I2C0_SDA(3),I2C1_SDA(5), EVENTOUT,
				SPI1_IO3 ⁽⁵⁾
VSS	23	Р		Default: VSS
VDD	24	Р		Default: VDD
				Default: PB12
PB12	25	I/O	5VT	Alternate: SPI0_NSS ⁽³⁾ , SPI1_NSS ⁽⁵⁾ , TIMER0_BRKIN,
				I2C1_SMBA ⁽⁵⁾ , EVENTOUT
				Default: PB13
PB13	26	I/O	5VT	Alternate: SPI0_SCK ⁽³⁾ , SPI1_SCK ⁽⁵⁾ , TIMER0_CH0_ON,
1 513	20	1/0	3 7 1	I2C1_TXFRAME ⁽⁵⁾ , I2C1_SCL ⁽⁵⁾
				Default: PB14
PB14	27	I/O	5VT	Alternate: SPI0_MISO ⁽³⁾ , SPI1_MISO ⁽⁵⁾ ,
1 514	21	1/0	371	TIMER0_CH1_ON, TIMER14_CH0 ⁽⁵⁾ , I2C1_SDA ⁽⁵⁾
				Default: PB15
				Alternate: SPI0_MOSI ⁽³⁾ , SPI1_MOSI ⁽⁵⁾ ,
DD45	20	1/0	E\	TIMER0_CH2_ON, TIMER14_CH0_ON ⁽⁵⁾ ,
PB15	28	I/O	5VT	TIMER14_CH1 ⁽⁵⁾
				Additional: RTC_REFIN, WKUP6

		Pin	I/O	ODSZEZSOW Datasnect
Pin Name	Pins	Type ⁽¹⁾	Level ⁽²⁾	Functions description
		Type	Leven	Default: PA8
PA8	29	I/O	5VT	Alternate: USART0_CK, TIMER0_CH0, CK_OUT,
FAO	29	1/0	371	USART1_TX ⁽⁴⁾ , EVENTOUT
				Default: PA9
PA9	30	I/O	5VT	Alternate: USART0_TX, TIMER0_CH1,
				TIMER14_BRKIN ⁽⁵⁾ , I2C0_SCL, CK_OUT
				Default: PA10
PA10	31	I/O	5VT	Alternate: USART0_RX, TIMER0_CH2,
				TIMER16_BRKIN, I2C0_SDA
				Default: PA11
PA11	32	I/O	5VT	Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT,
				EVENTOUT, SPI1_IO2 ⁽⁵⁾ , I2C0_SMBA, I2C1_SCL ⁽⁵⁾
				Default: PA12
PA12	33	I/O	5VT	Alternate: USART0_RTS/USART0_DE, TIMER0_ETI,
				EVENTOUT, SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)
PA13	34	I/O	5VT	Default: PA13/SWDIO
				Alternate: SWDIO, IFRP_OUT, SPI1_MISO ⁽⁵⁾
PF6	35	I/O	5VT	Default: PF6
				Alternate: I2C0_SCL ⁽³⁾ , I2C1_SCL ⁽⁵⁾
PF7	36	I/O	5VT	Default: PF7 Alternate: I2C0_SDA ⁽³⁾ , I2C1_SDA ⁽⁵⁾
				Default: PA14/SWCLK
PA14	37	I/O	5VT	Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK,
17,111	01	.,,		SPI1_MOSI ⁽⁵⁾
				Default: PA15
PA15	38	I/O	5VT	Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ ,
				USART1_RX ⁽⁴⁾ , SPI1_NSS ⁽⁵⁾ , EVENTOUT
PB3	39	I/O	5VT	Default: PB3
PDS	39	1/0	371	Alternate: SPI0_SCK, I2S0_CK, EVENTOUT
				Default: PB4
PB4	40	I/O	5VT	Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
				EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN
				Default: PB5
PB5	41	I/O	5VT	Alternate: SPI0_MOSI, I2S0_SD, I2C0_SMBA,
				TIMER15_BRKIN, TIMER2_CH1
				Additional: WKUP5 Default: PB6
PB6	42	I/O	5VT	Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON
				Default: PB7
PB7	43	I/O	5VT	Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON
воото	44	I		Default: BOOT0
			_, _	Default: PB8
PB8	45	I/O	5VT	Alternate: I2C0_SCL, TIMER15_CH0
556	40	1/0	F. /	Default: PB9
PB9	46	I/O	5VT	Alternate: I2C0_SDA, IFRP_OUT, TIMER16_CH0,

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				EVENTOUT, I2S0_MCK, SPI1_NSS ⁽⁵⁾
VSS	47	Р		Default: VSS
VDD	48	Р		Default: VDD

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32E230C4 devices only.
- (4) Functions are available on GD32E230C8/6 devices.
- (5) Functions are available on GD32E230C8 devices only.

2.6.2 GD32E230Kx LQFP32 pin definitions

Table 2-6. GD32E230Kx LQFP32 pin definitions

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
VDD	1	Р		Default: VDD
				Default: PF0
PF0/OSCIN	2	I/O	5VT	Alternate: I2C0_SDA
				Additional: OSCIN
PF1/OSCOU				Default: PF1
T	3	I/O	5VT	Alternate: I2C0_SCL
'				Additional: OSCOUT
NRST	4	I/O		Default: NRST
VDDA	5	Р		Default: VDDA
				Default: PA0
DAG WIKUD	0	1/0		Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT,
PA0-WKUP	6	I/O		I2C1_SCL ⁽⁵⁾
				Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0
		I/O		Default: PA1
				Alternate: USART0_RTS/USART0_DE ⁽³⁾ ,
PA1	7			USART1_RTS/USART1_DE ⁽⁴⁾ , I2C1_SDA ⁽⁵⁾ ,
				EVENTOUT, TIMER14_CH0_ON(5)
				Additional: ADC_IN1, CMP_IP
				Default: PA2
PA2	8	I/O		Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ ,
FAZ	O	1/0		TIMER14_CH0 ⁽⁵⁾
				Additional: ADC_IN2, CMP_IM7
				Default: PA3
PA3	9	I/O		Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ ,
1 73	Э	1/0		TIMER14_CH1 ⁽⁵⁾
				Additional: ADC_IN3
PA4	10	I/O		Default: PA4
1 / (4	10	1,0		Alternate: SPI0_NSS, I2S0_WS, USART0_CK ⁽³⁾ ,

				GD32E230XX DataSHEEt
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				USART1_CK ⁽⁴⁾ , TIMER13_CH0, SPI1_NSS ⁽⁵⁾
				Additional: ADC_IN4, CMP_IM4
				Default: PA5
PA5	11	I/O		Alternate: SPI0_SCK, I2S0_CK
				Additional: ADC_IN5, CMP_IM5
				Default: PA6
				Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
PA6	12	I/O		TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,
				CMP_OUT
				Additional: ADC_IN6
				Default: PA7
				Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,
PA7	13	I/O		TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,
				EVENTOUT
				Additional: ADC_IN7
				Default: PB0
PB0	14	I/O		Alternate: TIMER2_CH2, TIMER0_CH1_ON,
				USART1_RX ⁽⁴⁾ , EVENTOUT
				Additional: ADC_IN8
				Default: PB1
PB1	15	I/O		Alternate: TIMER2_CH3, TIMER13_CH0,
				TIMERO_CH2_ON, SPI1_SCK ⁽⁵⁾
1/00	4.0	_		Additional: ADC_IN9
VSS	16	P		Default: VSS
VDD	17	Р		Default: VDD
				Default: PA8
PA8	18	I/O	5VT	Alternate: USARTO_CK, TIMERO_CH0, CK_OUT,
				USART1_TX ⁽⁴⁾ , EVENTOUT
540	40		=\ (T	Default: PA9
PA9	19	I/O	5VT	Alternate: USARTO_TX, TIMERO_CH1,
				TIMER14_BRKIN ⁽⁵⁾ , I2C0_SCL, CK_OUT
				Default: PA10
PA10	20	I/O	5VT	Alternate: USARTO_RX, TIMERO_CH2,
				TIMER16_BRKIN, I2C0_SDA
				Default: PA11
PA11	21	I/O	5VT	Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT,
				EVENTOUT, SPI1_IO2 ⁽⁵⁾ , I2C0_SMBA, I2C1_SCL ⁽⁵⁾
				Default: PA12
PA12	22	I/O	5VT	Alternate: USARTO_RTS/USARTO_DE, TIMERO_ETI,
				EVENTOUT, SPI1_IO3 ⁽⁵⁾ , I2C0_TXFRAME, I2C1_SDA ⁽⁵⁾
PA13	23	I/O	5VT	Default: PA13/SWDIO
				Alternate: SWDIO, IFRP_OUT, SPI1_MISO ⁽⁵⁾
			-\ -\	Default: PA14/SWCLK
PA14	24	I/O	5VT	Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK,
			_	SPI1_MOSI ⁽⁵⁾
PA15	25	I/O	5VT	Default: PA15

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ ,
				USART1_RX ⁽⁴⁾ , SPI1_NSS ⁽⁵⁾ , EVENTOUT
DDO	00	1/0	5\ /T	Default: PB3
PB3	26	I/O	5VT	Alternate: SPI0_SCK, I2S0_CK, EVENTOUT
				Default: PB4
PB4	27	I/O	5VT	Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
				EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN
				Default: PB5
DDE	28	I/O	5VT	Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA,
PB5	28	1/0	501	TIMER15_BRKIN, TIMER2_CH1
				Additional: WKUP5
DDC	20	1/0	5VT	Default: PB6
PB6	29	I/O		Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON
DDZ	20	1/0	EV.T	Default: PB7
PB/	PB7 30 I	I/O	5VT	Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON
воото	31	1		Default: BOOT0
VSS	32	Р		Default: VSS

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32E230K4 devices only.
- (4) Functions are available on GD32E230K8/6 devices.
- (5) Functions are available on GD32E230K8 devices only.

2.6.3 GD32E230Kx QFN32 pin definitions

Table 2-7. GD32E230Kx QFN32 pin definitions

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
VDD	1	Р		Default: VDD
				Default: PF0
PF0/OSCIN	2	I/O	5VT	Alternate: I2C0_SDA
				Additional: OSCIN
PF1/OSCOU				Default: PF1
	3	I/O	-	Alternate: I2C0_SCL
Т				Additional: OSCOUT
NRST	4	I/O		Default: NRST
VDDA	5	Р		Default: VDDA
				Default: PA0
DAG WIZLID	0	1/0		Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , CMP_OUT,
PA0-WKUP	6	I/O		I2C1_SCL ⁽⁵⁾
				Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0
DA4	7	1/0		Default: PA1
PA1	7	I/O		Alternate: USART0_RTS/USART0_DE(3),

				ODSZEZSOW Datasnect
Pin Name	Pins	Pin	I/O	Functions description
- III Raine	1 1110	Type ⁽¹⁾	Level ⁽²⁾	anonono docompación
				USART1_RTS/USART1_DE(4), I2C1_SDA(5),
				EVENTOUT, TIMER14_CH0_ON ⁽⁵⁾
				Additional: ADC_IN1, CMP_IP
				Default: PA2
PA2	8	I/O		Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ ,
FAZ	0	1/0		TIMER14_CH0 ⁽⁵⁾
				Additional: ADC_IN2, CMP_IM7
				Default: PA3
PA3	9	I/O		Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ ,
FAS	9	1/0		TIMER14_CH1 ⁽⁵⁾
				Additional: ADC_IN3
				Default: PA4
PA4	10	I/O		Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3),
1 /4	10	1/0		USART1_CK ⁽⁴⁾ , TIMER13_CH0, SPI1_NSS ⁽⁵⁾
				Additional: ADC_IN4, CMP_IM4
				Default: PA5
PA5	11	I/O		Alternate: SPI0_SCK, I2S0_CK
				Additional: ADC_IN5, CMP_IM5
				Default: PA6
				Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
PA6	12	I/O		TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,
				CMP_OUT
				Additional: ADC_IN6
				Default: PA7
				Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,
PA7	13	I/O		TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,
				EVENTOUT
				Additional: ADC_IN7
				Default: PB0
PB0	14	I/O		Alternate: TIMER2_CH2, TIMER0_CH1_ON,
. 50		., 0		USART1_RX ⁽⁴⁾ , EVENTOUT
				Additional: ADC_IN8
				Default: PB1
PB1	15	I/O		Alternate: TIMER2_CH3, TIMER13_CH0,
				TIMER0_CH2_ON, SPI1_SCK ⁽⁵⁾
				Additional: ADC_IN9
PB2	16	I/O	5VT	Default: PB2
		., 0	• • • • • • • • • • • • • • • • • • • •	Alternate: TIMER2_ETI
VDD	17	Р		Default: VDD
				Default: PA8
PA8	18	I/O	5VT	Alternate: USART0_CK, TIMER0_CH0, CK_OUT,
				USART1_TX ⁽⁴⁾ , EVENTOUT
				Default: PA9
PA9	19	I/O	5VT	Alternate: USART0_TX, TIMER0_CH1,
				TIMER14_BRKIN ⁽⁵⁾ , I2C0_SCL, CK_OUT
PA10	20	I/O	5VT	Default: PA10

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: USART0_RX, TIMER0_CH2,
				TIMER16_BRKIN, I2C0_SDA
				Default: PA11
PA11	21	I/O	5VT	Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT, EVENTOUT, SPI1_IO2 ⁽⁵⁾ , I2C0_SMBA, I2C1_SCL ⁽⁵⁾
				Default: PA12
PA12	22	I/O	5VT	Alternate: USART0_RTS/USART0_DE, TIMER0_ETI,
				EVENTOUT, SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)
PA13	23	I/O	5VT	Default: PA13/SWDIO
PAIS	23	1/0	371	Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)
				Default: PA14/SWCLK
PA14	24	I/O	5VT	Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK,
				SPI1_MOSI ⁽⁵⁾
		I/O	5VT	Default: PA15
PA15	25			Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ ,
				USART1_RX ⁽⁴⁾ , SPI1_NSS ⁽⁵⁾ , EVENTOUT
PB3	26	I/O	5VT	Default: PB3
				Alternate: SPI0_SCK, I2S0_CK, EVENTOUT
		I/O	5VT	Default: PB4
PB4	27			Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
				EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN
				Default: PB5
PB5	28	I/O	5VT	Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA,
				TIMER15_BRKIN, TIMER2_CH1
				Additional: WKUP5
PB6	29	I/O	5VT	Default: PB6
				Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON
PB7	30	I/O	5VT	Default: PB7
DOOTO	24	1		Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON
ВООТ0	31	I		Default: BOOT0
PB8	32	I/O	5VT	Default: PB8
. = -				Alternate: I2C0_SCL, TIMER15_CH0

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32E230K4 devices only.
- (4) Functions are available on GD32E230K8/6 devices.
- (5) Functions are available on GD32E230K8 devices only.

2.6.4 GD32E230Gx QFN28 pin definitions

Table 2-8. GD32E230Gx QFN28 pin definitions

Table 2-0. G		Pin	1/0	
Pin Name	Pins	Type ⁽¹⁾	Level ⁽²⁾	Functions description
воото	1	Туре	Level	Default: BOOT0
ВООТО	'	'		Default: PF0
PF0/OSCIN	2	I/O	5VT	Alternate: I2C0 SDA
FF0/OSCIN	2	1/0	371	Additional: OSCIN
				Default: PF1
PF1/OSCOU	3	I/O	5VT	Alternate: I2C0_SCL
Т	3	1/0	3 7 1	Additional: OSCOUT
NRST	4	I/O		Default: NRST
VDDA	5	P		Default: VDDA
VDDA	3	Г		Default: PA0
				Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , CMP_OUT,
PA0-WKUP	6	I/O		I2C1_SCL ⁽⁵⁾
				Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0
				Default: PA1
				Alternate: USART0_RTS/USART0_DE ⁽³⁾ ,
PA1	7	I/O		USART1_RTS/USART1_DE ⁽⁴⁾ , I2C1_SDA ⁽⁵⁾ ,
1 71	,	1/0		EVENTOUT, TIMER14_CH0_ON(5)
				Additional: ADC_IN1, CMP_IP
				Default: PA2
		I/O		Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ ,
PA2	8			TIMER14 CH0 ⁽⁵⁾
				Additional: ADC_IN2, CMP_IM7
				Default: PA3
				Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ ,
PA3	9	I/O		TIMER14_CH1 ⁽⁵⁾
				Additional: ADC_IN3
				Default: PA4
				Alternate: SPI0_NSS, I2S0_WS, USART0_CK ⁽³⁾ ,
PA4	10	I/O		USART1_CK ⁽⁴⁾ , TIMER13_CH0, SPI1_NSS ⁽⁵⁾
				Additional: ADC_IN4, CMP_IM4
				Default: PA5
PA5	11	I/O		Alternate: SPI0_SCK, I2S0_CK
				Additional: ADC_IN5, CMP_IM5
				Default: PA6
				Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
PA6	12	I/O		TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,
				CMP_OUT
				Additional: ADC_IN6
				Default: PA7
DA7	10	1/0		Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,
PA7	13	I/O		TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,
				EVENTOUT

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
		7.		Additional: ADC_IN7
РВ0	14	I/O		Default: PB0 Alternate: TIMER2_CH2, TIMER0_CH1_ON, USART1_RX ⁽⁴⁾ , EVENTOUT Additional: ADC_IN8
PB1	15	I/O		Default: PB1 Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, SPI1_SCK ⁽⁵⁾ Additional: ADC_IN9
VSS	16	Р		Default: VSS
VDD	17	Р		Default: VDD
PA8	18	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX ⁽⁴⁾ , EVENTOUT
PA9 ⁽⁶⁾	19	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN ⁽⁵⁾ , I2C0_SCL, CK_OUT
PA10 ⁽⁶⁾	20	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2, TIMER16_BRKIN, I2C0_SDA
PA13	21	I/O	5VT	Default: PA13/SWDIO Alternate: SWDIO, IFRP_OUT, SPI1_MISO ⁽⁵⁾
PA14	22	I/O	5VT	Default: PA14/SWCLK Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK, SPI1_MOSI ⁽⁵⁾
PA15	23	I/O	5VT	Default: PA15 Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , SPI1_NSS ⁽⁵⁾ , EVENTOUT
PB3	24	I/O	5VT	Default: PB3 Alternate: SPI0_SCK, I2S0_CK, EVENTOUT
PB4	25	I/O	5VT	Default: PB4 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN
PB5	26	I/O	5VT	Default: PB5 Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1 Additional: WKUP5
PB6	27	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON
PB7	28	I/O	5VT	Default: PB7 Alternate:I2C0_SDA,USART0_RX,TIMER16_CH0_ON

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32E230G4 devices only.

- (4) Functions are available on GD32E230G8/6 devices.
- (5) Functions are available on GD32E230G8 devices only.
- (6) Pin pair PA11/PA12 can be remapped instead of pin pair PA9/PA10 using SYSCFG_CFG0 register. *Table 2-11. Port A alternate functions summary* shows PA11/PA12 remap.

2.6.5 GD32E230Fx TSSOP20 pin definitions

Table 2-9. GD32E230Fx TSSOP20 pin definitions

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Default: PF0
PF0/OSCIN	2	I/O	5VT	Alternate: I2C0_SDA
				Additional: OSCIN
DE1/OSCOLI				Default: PF1
PF1/OSCOU	3	I/O	5VT	Alternate: I2C0_SCL
Т				Additional: OSCOUT
NRST	4	I/O		Default: NRST
VDDA	5	Р		Default: VDDA
				Default: PA0
DAG MIZUD	0	1/0		Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT,
PA0-WKUP	6	I/O		I2C1_SCL ⁽⁵⁾
				Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0
				Default: PA1
				Alternate: USART0_RTS/USART0_DE(3),
PA1	7	I/O		USART1_RTS/USART1_DE(4), I2C1_SDA(5),
				EVENTOUT
				Additional: ADC_IN1, CMP_IP
				Default: PA2
PA2	8	I/O		Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾
				Additional: ADC_IN2, CMP_IM7
				Default: PA3
PA3	9	9 I/O		Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾
				Additional: ADC_IN3
				Default: PA4
PA4	10	I/O		Alternate: SPI0_NSS, I2S0_WS, USART0_CK ⁽³⁾ ,
17.4	10	.,,		USART1_CK ⁽⁴⁾ , TIMER13_CH0, SPI1_NSS ⁽⁵⁾
				Additional: ADC_IN4, CMP_IM4
				Default: PA5
PA5	11	I/O		Alternate: SPI0_SCK, I2S0_CK
				Additional: ADC_IN5, CMP_IM5
				Default: PA6
				Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
PA6	12	12 I/O		TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,
				CMP_OUT
				Additional: ADC_IN6
PA7	13	I/O		Default: PA7

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,
				TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,
				EVENTOUT
				Additional: ADC_IN7
				Default: PB1
PB1	14	I/O		Alternate: TIMER2_CH3, TIMER13_CH0,
1 1 1	14	1/0		TIMER0_CH2_ON, SPI1_SCK ⁽⁵⁾
				Additional: ADC_IN9
VSS	15	Р		Default: VSS
VDD	16	Р		Default: VDD
				Default: PA9
PA9 ⁽⁶⁾	PA9 ⁽⁶⁾ 17		5VT	Alternate: USART0_TX, TIMER0_CH1, I2C0_SCL,
				CK_OUT
				Default: PA10
PA10 ⁽⁶⁾	18	I/O	5VT	Alternate: USART0_RX, TIMER0_CH2,
				TIMER16_BRKIN, I2C0_SDA
DA42	10	1/0	C)/T	Default: PA13/SWDIO
PA13	19	I/O	5VT	Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)
				Default: PA14/SWCLK
PA14	20	I/O	5VT	Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK,
				SPI1_MOSI ⁽⁵⁾
BOOT0	1	I		Default: BOOT0

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32E230F4 devices only.
- (4) Functions are available on GD32E230F8/6 devices.
- (5) Functions are available on GD32E230F8 devices only.
- (6) Pin pair PA11/PA12 can be remapped instead of pin pair PA9/PA10 using SYSCFG_CFG0 register. <u>Table 2-11. Port A alternate functions summary</u> shows PA11/PA12 remap.

2.6.6 GD32E230Fx LGA20 pin definitions

Table 2-10. GD32E230Fx LGA20 pin definitions

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Default: PF0
PF0/OSCIN	19	I/O	5VT	Alternate: I2C0_SDA
				Additional: OSCIN
PF1/OSCOU				Default: PF1
FF 1/03C00	20	I/O	5VT	Alternate: I2C0_SCL
I				Additional: OSCOUT
NRST	1	I/O		Default: NRST

ion
CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , CMP_OUT,
), CMP_IM6, RTC_TAMP1, WKUP0
RTS/USART0_DE ⁽³⁾ ,
RT1_DE ⁽⁴⁾ , I2C1_SDA ⁽⁵⁾ ,
1, CMP_IP
TX ⁽³⁾ , USART1_TX ⁽⁴⁾
2, CMP_IM7
RX ⁽³⁾ , USART1_RX ⁽⁴⁾
3
S, I2S0_WS, USART0_CK ⁽³⁾ ,
ER13_CH0, SPI1_NSS ⁽⁵⁾
4, CMP_IM4
K, I2S0_CK
5, CMP_IM5
O, I2S0_MCK, TIMER2_CH0,
MER15_CH0, EVENTOUT,
3
SI, I2S0_SD, TIMER2_CH1,
IER0_CH0_ON, TIMER16_CH0,
7
CH3, TIMER13_CH0,
SPI1_SCK ⁽⁵⁾
9
TX, TIMER0_CH1, I2C0_SCL,
RX, TIMER0_CH2,
2C0_SDA

GD32E230xx Datasheet

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PA13	16	I/O	5VT	Default: PA13/SWDIO
1713 10 1/0 30		371	Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)	
				Default: PA14/SWCLK
PA14	17	7 I/O 5VT		Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK,
				SPI1_MOSI ⁽⁵⁾
воото	18	ı		Default: BOOT0

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32E230F4 devices only.
- (4) Functions are available on GD32E230F8/6 devices.
- (5) Functions are available on GD32E230F8 devices only.
- (6) Pin pair PA11/PA12 can be remapped instead of pin pair PA9/PA10 using SYSCFG_CFG0 register. *Table 2-11. Port A alternate functions summary* shows PA11/PA12 remap.

2.6.7 GD32E230xx pin alternate functions

Table 2-11. Port A alternate functions summary

		alternate funct						
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
		USART0_CTS(1)			1201 0011			
PA0		/USART1_CTS ⁽²⁾			I2C1_SCL(CMP_
)			3)			OUT
		USART0_RTS(1)						
D 4 4	EVENTOUT	/USART0_DE(1)/			I2C1_SDA(TIMER14		
PA1	EVENTOUT	USART1_RTS(2)			3)	_CH0_O N ⁽³⁾		
		/USART1_DE ⁽²⁾				IN ⁽³⁾		
D 4 0	TIMER14_C	USART0_TX ⁽¹⁾ /						
PA2	H0 ⁽³⁾	USART1_TX ⁽²⁾						
540	TIMER14_C	USART0_RX ⁽¹⁾ /						
PA3	H1 ⁽³⁾	USART1_RX ⁽²⁾						
PA4	SPI0_NSS/I	USART0_CK(1)/			TIMER13_		SPI1_N	
PA4	2S0_WS	USART1_CK ⁽²⁾			CH0		SS ⁽³⁾	
PA5	SPI0_SCK/I							
FAS	2S0_CK							
PA6	SPI0_MISO/	TIMEDA CHO	TIMER0_BR			TIMER15	EVENT	CMP_
PAG	I2S0_MCK	TIMER2_CH0	KIN			_CH0	OUT	OUT
PA7	SPI0_MOSI/	TIMER2_CH1	TIMER0_CH		TIMER13_	TIMER16	EVENT	
FAI	I2S0_SD	TIMERZ_CITI	0_ON		CH0	_CH0	OUT	
PA8	CK_OUT	USART0_CK	TIMER0_CH	EVENT	USART1_T			
FAO	CK_001	USAKTU_CK	0	OUT	X ⁽²⁾			
PA9	TIMER14_B	USART0_TX	TIMER0_CH		I2C0_SCL	CK_OUT		
FAS	RKIN ⁽³⁾	USAKTU_TX	1		1200_30L	CK_001		
PA10	TIMER16_B	USART0_RX	TIMER0_CH		I2C0_SDA			
FAIU	RKIN	USAKTU_KX	2		12C0_3DA			
PA11	EVENTOUT	LICADTO CTC	TIMER0_CH		I2C0_SMB	I2C1_SC	SPI1_I	CMP_
PATI	EVENTOUT	USART0_CTS	3		Α	L ⁽³⁾	O2 ⁽³⁾	OUT
PA12	EVENTOUT	USART0_RTS/U	TIMER0_ETI		I2C0_TXF	I2C1_SD	SPI1_I	
FAIZ	EVENTOOT	SART0_DE	TIMERO_ETT		RAME	A ⁽³⁾	O3 ⁽³⁾	
PA13	SWDIO	IFRP_OUT					SPI1_M	
FAIS	30000	IFKF_001					ISO ⁽³⁾	
PA14	SWCLK	USART0_TX ⁽¹⁾ /					SPI1_M	
1 7 1 4	OVVOLIN	USART1_TX ⁽²⁾					OSI ⁽³⁾	
PA15	SPI0_NSS/I	USART0_RX ⁽¹⁾ /		EVENT			SPI1_N	
1 713	2S0_WS	USART1_RX ⁽²⁾		OUT			SS ⁽³⁾	

Table 2-12. Port B alternate functions summary

Table	Table 2-12. Port B alternate functions summary										
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7			
PB0	EVENTOUT	TIMER2_CH2	TIMER0_CH 1_ON		USART1 _RX ⁽²⁾						
PB1	TIMER13_CH 0	TIMER2_CH3	TIMER0_CH 2_ON				SPI1_S CK ⁽³⁾				
PB2		TIMER2_ETI									
PB3	SPI0_SCK/I2 S0_CK	EVENTOUT									
PB4	SPI0_MISO /I2S0_MCK	TIMER2_CH0	EVENTOUT		I2C0_TX FRAME		TIMER1 6_BRKI N				
PB5	SPI0_MOSI /I2S0_SD	TIMER2_CH1	TIMER15_B RKIN	I2C0_SMBA							
PB6	USART0_TX	I2C0_SCL	TIMER15_C H0_ON								
PB7	USART0_RX	I2C0_SDA	TIMER16_C H0_ON								
PB8		I2C0_SCL	TIMER15_C H0								
PB9	IFRP_OUT	I2C0_SDA	TIMER16_C H0	EVENTOUT		I2S0_M CK		SPI1_N SS ⁽³⁾			
PB10		I2C0_SCL ⁽¹⁾ /I 2C1_SCL ⁽³⁾					SPI1_I O2 ⁽³⁾	SPI1_S CK ⁽³⁾			
PB11	EVENTOUT	I2C0_SDA ⁽¹⁾ /I 2C1_SDA ⁽³⁾					SPI1_I O3 ⁽³⁾				
PB12	SPI0_NSS ⁽¹⁾ /SPI1_NSS ⁽³⁾	EVENTOUT	TIMER0_BR KIN		I2C1_SM BA ⁽³⁾						
PB13	SPI0_SCK ⁽¹⁾ /SPI1_SCK ⁽³⁾	I2C1_TXFRA ME ⁽³⁾	TIMER0_CH 0_ON			I2C1_S CL ⁽³⁾					
PB14	SPI0_MISO ⁽¹⁾ /SPI1_MISO ⁽³⁾		TIMER0_CH 1_ON			I2C1_S DA ⁽³⁾					
PB15	SPI0_MOSI ⁽¹⁾ /SPI1_MOSI ⁽³⁾		TIMER0_CH 2_ON	TIMER14_CH 0_ON ⁽³⁾							

Table 2-13. Port F alternate functions summary

Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6			
Name										
PF0		I2C0_SDA								
PF1		I2C0_SCL								
DEC	I2C0_SCL ⁽¹									
PF6)/I2C1_SCL									

GD32E230xx Datasheet

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
	(3)						
	I2C0_SDA(
PF7	1)/I2C1_SD						
	A ⁽³⁾						

Notes:

- (1) Functions are available on GD32E230x4 devices only.
- (2) Functions are available on GD32E230x8/6 devices.
- (3) Functions are available on GD32E230x8 devices only.

3 Functional description

3.1 ARM® Cortex®-M23 core

The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.

32-bit ARM® Cortex®-M23 processor core

- Up to 72 MHz operation frequency
- Single-cycle multiplication and hardware divider
- Ultra-low power, energy-efficient operation
- Excellent code density
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M23:

- Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Single-cycle
 IO port
- Nested Vectored Interrupt Controller (NVIC)
- Breakpoint Unit(BPU)
- Data Watchpoint and Trace (DWT)
- Serial Wire Debug Port

3.2 Embedded memory

- Up to 64 Kbytes of Flash memory
- Up to 8 Kbytes of SRAM with hardware parity checking

64 Kbytes of inner Flash and 8 Kbytes of inner SRAM at most is available for storing programs and data, and Flash is accessed (read) at CPU clock speed with 0~2 wait states. <u>Table 2-4.</u> <u>GD32E230xx memory map</u> shows the memory map of the GD32E230xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3 Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator

- Internal 28 MHz RC oscillator
- Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- Integrated system clock PLL
- 1.8 to 3.6 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 72 MHz/72 MHz/72 MHz. See *Figure 2-8. GD32E230xx clock tree* for details on the clock tree.

The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.71 V and down to 1.67 V. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- V_{DD} range: 1.8 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} range: 1.8 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAK} range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main Flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15 or PA2 and PA3).

3.5 Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance

between the CPU operating time, speed and power consumption.

■ Sleep mode

In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

■ Deep-sleep mode

In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC tamper and timestamp, CMP output, LVD output and USART wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.

■ Standby mode

In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

3.6 Analog to digital converter (ADC)

- 12-bit SAR ADC's conversion rate is up to 2 MSPS
- 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
- Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
- Input voltage range: V_{SSA} to V_{DDA}
- Temperature sensor

One 12-bit 2 MSPS multi-channel ADC is integrated in the device. It has a total of 12 multiplexed channels: up to 10 external channels, 1 channel for internal temperature sensor (V_{SENSE}) and 1 channel for internal reference voltage (V_{REFINT}). The input voltage range is between V_{SSA} and V_{DDA} . An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timer (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

3.7 DMA

- 5 channels DMA controller
- Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs and I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

3.8 General-purpose inputs/outputs (GPIOs)

- Up to 39 fast GPIOs, all mappable on 16 external interrupt lines
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 39 general purpose I/O pins (GPIO) in GD32E230xx, named PA0 ~ PA15 and PB0 ~ PB15, PC13 ~ PC15, PF0 ~ PF1, PF6 ~ PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (pushpull open-drain or analog), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

3.9 Timers and PWM generation

- One 16-bit advanced timer (TIMER0), up to five 16-bit general timers (TIMER2, TIMER13
 TIMER16), and one 16-bit basic timer (TIMER5)
- Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
- 16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels.

It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.

The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER2 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.

The basic timer, known as TIMER5 can also be used as a simple 16-bit time base.

The GD32E230xx have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.

The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.10 Real time clock (RTC)

- Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.
- Calendar with subsecond, second, minute, hour, week day, date, year and month automatically correction
- Alarm function with wake up from deep-sleep and standby mode capability
- On-the-fly correction for synchronization with master clock. Digital calibration with 0.954 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler.

3.11 Inter-integrated circuit (I2C)

- Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode
- Supports SAM_V mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.12 Serial peripheral interface (SPI)

- Up to two SPI interfaces with a frequency of up to 18 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking
- Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI1)
- Data frame size can be 4 to 16 bits (only in SPI1)
- Quad-SPI configuration available in master mode (only in SPI1)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Specially, SPI1 has separate transmit and receive 32-bit FIFO with DMA capability and its data frame size can be 4 to 16 bits. Quad-SPI master mode is also supported in SPI1.

3.13 Universal synchronous asynchronous receiver transmitter (USART)

- Up to two USARTs with operating frequency up to 4.5 MBits/s
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- ISO 7816-3 compliant smart card interface

The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

3.14 Inter-IC sound (I2S)

- One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPIO
- Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32E230xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

3.15 Comparators (CMP)

- One fast rail-to-rail low-power comparators with software configurable
- Programmable reference voltage (internal or external I/O)

One Comparator (CMP) is implemented within the devices. It can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.

3.16 Debug mode

Serial wire debug port

Debug capabilities can be accessed by a debug tool via Serial Wire (SW - Debug Port).

3.17 Package and operation temperature

- LQFP48 (GD32E230CxTx), LQFP32 (GD32E230KxTx), QFN32 (GD32E230KxUx), QFN28 (GD32E230GxUx), TSSOP20 (GD32E230FxPx) and LGA20 (GD32E230FxVx).
- Operation temperature range: -40°C to +85°C (industrial level) for grade 6 devices, and -40°C to +105°C (industrial level) for grade 7 devices.

4 Electrical characteristics

4.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 4-1. Absolute maximum ratings(1)(4)

Symbol	Parameter	Min	Max	Unit
V _{DD}	External voltage range ⁽²⁾	V _{SS} - 0.3	V _{SS} + 3.6	V
V _{DDA}	External analog supply voltage	Vssa - 0.3	V _{SSA} + 3.6	V
Vin	Input voltage on 5V tolerant pin ⁽³⁾	V _{SS} - 0.3	V _{DD} + 3.6	V
VIN	Input voltage on other I/O	V _{SS} - 0.3	3.6	V
$ \Delta V_{DDx} $	Variations between different VDD power pins	_	50	mV
Vssx -Vss	Variations between different ground pins	_	50	mV
I _{IO}	Maximum current for GPIO pins	_	±25	mA
т.	Operating temperature range for grade 6 device	-40	+85	°C
TA	Operating temperature range for grade 7 device	-40	+105	
	Power dissipation at T _A = 85°C of LQFP48 ⁽⁵⁾	_	574	
	Power dissipation at T _A = 85°C of LQFP32 ⁽⁵⁾	_	724	
	Power dissipation at T _A = 85°C of QFN32 ⁽⁵⁾	_	939	
Б	Power dissipation at T _A = 85°C of QFN28 ⁽⁵⁾	_	845	\A/
P _D	Power dissipation at T _A = 85°C of TSSOP20 ⁽⁵⁾	_	595	mW
	Power dissipation at T _A = 85°C of LGA20 ⁽⁵⁾	_	416	
	Power dissipation at T _A = 105°C of LQFP48 ⁽⁵⁾	_	287	
	Power dissipation at T _A = 105°C of TSSOP20 ⁽⁵⁾	_	297	
Tstg	Storage temperature range	-65	+150	°C
TJ	Maximum junction temperature	_	125	°C

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ All main power and ground pins should be connected to an external power source within the allowable range.

⁽³⁾ V_{IN} maximum value cannot exceed 5.5 V.

⁽⁴⁾ It is recommended that V_{DD} and V_{DDA} are powered by the same source. The maximum difference between V_{DD} and V_{DDA} does not exceed 300 mV during power-up and operation.

⁽⁵⁾ For grade 6 devices, the parameter of $T_A = 85$ °C, For grade 7 device, the parameter of $T_A = 105$ °C.

4.2 Operating conditions characteristics

Table 4-2. DC operating conditions

Symbol Parameter Condition		Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DD}	Supply voltage	_	1.8	3.3	3.6	V
\/·	Analog supply voltage ADC not used		1.8	3.3	3.6	\/
V _{DDA}	Analog supply voltage ADC used	_	2.4	3.3	3.6	V

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-1. Recommended power supply decoupling capacitors⁽¹⁾

(1) All decoupling capacitors need to be as close as possible to the pins on the PCB board.

Table 4-3. Clock frequency(1)

Symbol Parameter		Conditions	Min	Max	Unit
f _{HCLK1}	AHB1 clock frequency	_	0	72	MHz
f _{HCLK2}	AHB2 clock frequency	_	0	72	MHz
f _{APB1}	APB1 clock frequency	_	0	72	MHz
f _{APB2}	APB2 clock frequency	_	0	72	MHz

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-4. Operating conditions at Power up/ Power down⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t	V _{DD} rise time rate		0	8	\/
t∨DD	V _{DD} fall time rate	_	20	8	μs /V

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-5. Start-up timings of Operating conditions(1)

Symbol	Parameter	Conditions	Тур	Unit
A Chart we time	Start-up time	Clock source from HXTAL	432	
Tstart-up	Start-up time	Clock source from IRC8M	76	μs

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ After power-up, the start-up time is the time between the rising edge of NRST high and the first I/O instruction

conversion in SystemInit function.

(3) PLL is off.

Table 4-6. Power saving mode wakeup timings characteristics(1)(2)

Symbol	Parameter		Unit
t _{Sleep}	Wakeup from Sleep mode	3.5	
	Wakeup from Deep-sleep mode (LDO On)	17.1	
I Deep-sleep	Wakeup from Deep-sleep mode (LDO in low power mode)	17.1	μs
t _{Standby}	Wakeup from Standby mode	77.5	

⁽¹⁾ Based on characterization, not tested in production.

4.3 Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 4-7. Power consumption characteristics (2)(3)(4)(5)

Symbol	Symbol Parameter Conditions		Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals enabled	_	8.5	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 72 MHz, All peripherals disabled	_	5.4	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals enabled		6.2		mA
Inn+Inna	Supply current	$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 48 MHz, All peripherals disabled	_	4.2		mA
IDDTIDDA	(Run mode)	V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals enabled	_	5.1	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 36 MHz, All peripherals disabled		3.6		mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 24 MHz, All peripherals enabled	_	4.0		mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 24 MHz, All peripherals disabled	_	2.9	_	mA

The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: $V_{DD} = V_{DDA} = 3.3 \text{ V}$, IRC8M = System clock = 8 MHz.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
- Cyminer		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz,		- 76	111021	
		System clock = 16 MHz, All peripherals		3.2		mA
		enabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz,				
		System clock = 16 MHz, All peripherals	_	2.5	_	mA
		disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 8 \text{ MHz,}$				
		System clock = 8 MHz, All peripherals	_	2.4	_	mA
		enabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz,				
		System clock = 8 MHz, All peripherals		2.1		mA
		disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 4 \text{ MHz,}$				
		System clock = 4 MHz, All peripherals	_	0.8	_	mA
		enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 4 \text{ MHz,}$				
		System clock = 4 MHz, All peripherals	_	0.6	_	mA
		disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 2 \text{ MHz,}$				
		System clock = 2 MHz, All peripherals		0.6		mA
		enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 2 \text{ MHz,}$				
		System clock = 2 MHz, All peripherals	_	0.5	_	mA
		disabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 72 MHz, All	_	7.4	_	mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 8 \text{ MHz, CPU}$				
		clock off, System clock = 72 MHz, All	_	3.7	_	mA
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 8 \text{ MHz, CPU}$				
		clock off, System clock = 48 MHz, All		5.5		mA
	Supply current	peripherals enabled				
	(Sleep mode)	V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		0.4		А
		clock off, System clock = 48 MHz, All	_	3.1	_	mA
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{CPU}$		4.5		- A
		clock off, System clock = 36 MHz, All	_	4.5	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		27		m ^
		clock off, System clock = 36 MHz, All		2.7		mA
1	1	peripherals disabled		<u> </u>		

		OD32L	230XX Dalasii			1100
Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 24 MHz, All	_	3.6	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 24 MHz, All	_	2.4	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 16 MHz, All		3.0		mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 16 MHz, All	_	2.1	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 8 MHz, All	_	2.3	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 8 MHz, All		1.9		mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 4 MHz, CPU				
		clock off, System clock = 4 MHz, All	_	0.7	_	mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 4 \text{ MHz, CPU}$				
		clock off, System clock = 4 MHz, All	_	0.5	_	mA
		peripherals disabled		0.0		
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 2 MHz, CPU				
		clock off, System clock = 2 MHz, All		0.5		mA
		peripherals enabled		0.0		, (
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 2 \text{ MHz}, \text{CPU}$				
		clock off, System clock = 2 MHz, All	_	0.4		mA
		peripherals disabled		0.1		''''
	Supply ourront	V _{DD} = V _{DDA} = 3.3 V, LDO in normal power	_	25.5	58	μΑ
	Supply current	and normal driver mode, IRC40K off, RTC off		20.0		μΛ
	(Deep-sleep	$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{LDO in normal power}$				
	mode)	and low driver mode, IRC40K off, RTC off	_	12.3	58	μΑ
		·				
		$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL off, IRC40K on,}$	_	3.8	5.5	μΑ
		RTC on				
Cupply ourrant		V _{DD} = V _{DDA} = 3.3 V, LXTAL off, IRC40K on,	_	3.6	5.5	μΑ
	Supply current	RTC off				
	(Standby mode)	V _{DD} = V _{DDA} = 3.3 V, LXTAL off, IRC40K off,	_	3.1	5.5	μΑ
		RTC off, VDDA Monitor on				
		V _{DD} = V _{DDA} = 3.3 V, LXTAL off, IRC40K off,	_	1.6	5.5	μΑ
li ve-		RTC off, VDDA Monitor off		1 40		
ILXTAL+RTC	[$V_{DD} = V_{DDA} = 3.6 \text{ V}$, LXTAL on with external		1.43	_	μΑ

GD32E230xx Datasheet

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		crystal, RTC on, Higher driving				
		V _{DD} = V _{DDA} = 3.3 V, LXTAL on with external		1.26		
		crystal, RTC on, Higher driving		1.36	_	μΑ
		$V_{DD} = V_{DDA} = 2.5 \text{ V}$, LXTAL on with external		1.23		
		crystal, RTC on, Higher driving		1.23		μΑ
		$V_{DD} = V_{DDA} = 1.8 \text{ V}$, LXTAL on with external		1.15		
		crystal, RTC on, Higher driving		1.13		μΑ
		$V_{DD} = V_{DDA} = 3.6 \text{ V}$, LXTAL on with external		1.13		μΑ
		crystal, RTC on, Medium High driving		1.13		μΑ
		$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LXTAL on with external		1.06		μΑ
		crystal, RTC on, Medium High driving		1.00		μΛ
		$V_{DD} = V_{DDA} = 2.5 \text{ V}$, LXTAL on with external		0.95		μΑ
		crystal, RTC on, Medium High driving		0.00		μΛ
		$V_{DD} = V_{DDA} = 1.8 \text{ V}$, LXTAL on with external	_	0.86	_	μΑ
	LXTAL+RTC	crystal, RTC on, Medium High driving		0.00		μπ
	current	$V_{DD} = V_{DDA} = 3.6 \text{ V}$, LXTAL on with external	_	0.84	_	μΑ
	Current	crystal, RTC on, Medium Low driving		0.01		μπ
		$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LXTAL on with external	_	0.76	_	μΑ
		crystal, RTC on, Medium Low driving		00		μ, ,
		$V_{DD} = V_{DDA} = 2.5 \text{ V}$, LXTAL on with external	_	0.64	_	μΑ
		crystal, RTC on, Medium Low driving		0.01		μ,
		$V_{DD} = V_{DDA} = 1.8 \text{ V}$, LXTAL on with external	_	0.56	_	μΑ
		crystal, RTC on, Medium Low driving		0.00		μ, ,
		$V_{DD} = V_{DDA} = 3.6 \text{ V}$, LXTAL on with external	_	0.74	_	μΑ
		crystal, RTC on, Low driving				μπ
		$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL on with external}$	_	0.67	_	μΑ
		crystal, RTC on, Low driving		0.07		μ, ,
		$V_{DD} = V_{DDA} = 2.5 \text{ V}$, LXTAL on with external	_	0.56	_	μΑ
		crystal, RTC on, Low driving		5.55		μ, ,
		$V_{DD} = V_{DDA} = 1.8 \text{ V}$, LXTAL on with external	_	0.47	_	μΑ
		crystal, RTC on, Low driving				, ,

- (1) Based on characterization, not tested in production.
- (2) When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL.
- (3) When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL.
- (4) When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.
- (5) All GPIOs are configured as analog mode except standby mode.

Figure 4-2. Typical supply current consumption in Run mode

Figure 4-3. Typical supply current consumption in Sleep mode

Table 4-8. Peripheral current consumption characteristics(1)

	Peripherials ⁽⁴⁾	Typical consumption	Unit
	PMU	1.44	
	I2C1	1.38	
	I2C0	1.38	
	USART1	1.34	
APB1	SPI1	1.37	
	WWDGT	1.32	
	TIMER13	1.36	
	TIMER5	0.17	
	TIMER2	0.23	
	DBGMCU	1.3	
	TIMER16	1.42	
	TIMER15	1.42	mA
	TIMER14	1.49	
APB2	USART0	1.63	
	SPI0	1.38	
	TIMER0	1.68	
	ADC ⁽²⁾	0.95	
	CFG & CMP ⁽³⁾	1.27	
	GPIOF	1.31	
	GPIOC	1.31	
ALID	GPIOB	1.34	
AHB	GPIOA	1.34	
	CRC	0.16	
	DMA	0.15	

⁽¹⁾ Based on characterization, not tested in production.

4.4 EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in <u>Table 4-9. EMS characteristics</u>, based on the EMS levels and classes compliant with IEC 61000 series standard.

⁽²⁾ f_{ADCCLK} = IRC28M, ADCON bit is set to 1.

⁽³⁾ CMP enabled by setting CMPEN bit in CMP_CS, CMP mode is set to High Speed.

⁽⁴⁾ If there is no other description, then $V_{DD} = V_{DDA} = 3.3 \text{ V}$, HXTAL = 8 MHz, system clock = $f_{HCLK} = 72 \text{ MHz}$, $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, $f_{ADCCLK} = f_{APB2}/2$.

Table 4-9. EMS characteristics(1)

Symbol	Parameter	Conditions	Level/Class
	Voltage applied to all device pins to	V_{DD} = 3.3 V, T_A = 25 °C,	
VESD	induce a functional disturbance	LQFP48, f _{HCLK} = 72 MHz	ЗА
	induce a functional disturbance	conforms to IEC 61000-4-2	
	Fast transient voltage burst applied to	$V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C},$	
V _{FTB}	induce a functional disturbance through	LQFP48, f _{HCLK} = 72 MHz	4A
	100 pF on VDD and VSS pins	conforms to IEC 61000-4-4	

⁽¹⁾ Based on characterization, not tested in production.

EMI (Electromagnetic Interference) emission test result is given in the <u>Table 4-10. EMI</u> <u>characteristics</u>(1), The electromagnetic field emitted by the device are monitored while an application, executing EEMBC code, is running. The test is compliant with SAE J1752-3:2017 standard which specifies the test board and the pin loading.

Table 4-10. EMI characteristics(1)

Symbol	Parameter	Conditions	Tested frequency band	Max vs. [fhxtal/fhclk] 8/72 MHz	Unit
		$V_{DD} = 3.6 \text{ V}, T_A = +25 ^{\circ}\text{C},$	0.15 MHz to 30 MHz	-1.51	
Semi	Peak level	LQFP48, f _{HCLK} = 72 MHz,	30 MHz to 130 MHz	3.02	dΒμV
JEWI P CUR ICVOI		conforms to SAE J1752- 3:2017	130 MHz to 1 GHz	7.47	,

⁽¹⁾ Based on characterization, not tested in production.

4.5 Power supply supervisor characteristics

Table 4-11. Power supply supervisor characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LVDT[2:0] = 000, rising edge		2.11	-	V
		LVDT[2:0] = 000, falling edge	_	2.01	_	٧
		LVDT[2:0] = 001, rising edge	_	2.25	_	V
		LVDT[2:0] = 001, falling edge	_	2.16	_	V
	Low Voltage Detector Threshold	LVDT[2:0] = 010, rising edge	_	2.39	_	V
		LVDT[2:0] = 010, falling edge	_	2.29	_	V
		LVDT[2:0] = 011, rising edge	_	2.52	_	V
V (1)		LVDT[2:0] = 011, falling edge	_	2.43	_	V
$V_{LVD}^{(1)}$		LVDT[2:0] = 100, rising edge	_	2.66	_	V
		LVDT[2:0] = 100, falling edge	_	2.57	_	V
		LVDT[2:0] = 101, rising edge	_	2.80	_	V
		LVDT[2:0] = 101, falling edge	_	2.71	_	V
		LVDT[2:0] = 110, rising edge	_	2.95	_	V
		LVDT[2:0] = 110, falling edge	_	2.84	_	V
		LVDT[2:0] = 111, rising edge	_	3.08	_	V
		LVDT[2:0] = 111, falling edge	_	2.98	_	V
V _{LVDhyst} ⁽²⁾	LVD hysteresis	_	_	100	_	mV
V _{POR} ⁽¹⁾	Power on reset threshold		_	1.71	_	V
V _{PDR} ⁽¹⁾	Power down reset	_	<u> </u>	1.67	_	V
V _{PDRhyst} ⁽²⁾	threshold PDR hysteresis			40		mV
t _{RSTTEMPO} (2)	Reset temporization		_	2		ms

⁽¹⁾ Based on characterization, not tested in production.

4.6 Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up

⁽²⁾ Guaranteed by design, not tested in production.

(LU) test is based on the two measurement methods.

Table 4-12. ESD characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ESD(HBM)}	Electrostatic discharge	$T_A = 25 ^{\circ}C;$		_	6000	V
	voltage (human body model)	JS-001-2017	_			V
Vesd(cdm)	Electrostatic discharge	T _A = 25 °C;			2000	\/
	voltage (charge device model)	JS-002-2014	_			V

⁽¹⁾ Based on characterization, not tested in production.

Table 4-13. Static latch-up characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
LU I-test V _{supply} over voltage	T 25 °C; ICCD70	_	_	±200	mA	
	V _{supply} over voltage	T _A = 25 °C; JESD78	_	_	5.4	V

⁽¹⁾ Based on characterization, not tested in production.

4.7 External clock characteristics

Table 4-14. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL} ⁽¹⁾	Crystal or ceramic frequency	$V_{DD} = 3.3 \text{ V}$	4	8	32	MHz
R _F ⁽²⁾	Feedback resistor	V _{DD} = 3.3 V	_	400	_	kΩ
	Recommended matching					
C _{HXTAL} ^{(2) (3)}	capacitance on OSCIN and	_	_	20	30	pF
	OSCOUT					
Ducy _(HXTAL) ⁽²⁾	Crystal or ceramic duty cycle		30	50	70	%
g _m (2)	Oscillator transconductance	Startup	_	25	_	mA/V
In- an (1)	Crystal or ceramic operating	V _{DD} = 3.3 V		1.2		m Λ
I _{DD(HXTAL)} (1)	current	יטט v – טט v		1.2		mA
t _{SUHXTAL} (1)	Crystal or ceramic startup time	$V_{DD} = 3.3 \text{ V}$	_	1.8		ms

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ $C_{HXTAL1} = C_{HXTAL2} = 2*(C_{LOAD} - C_S)$, For C_{HXTAL1} and C_{HXTAL2} , it is recommended matching capacitance on OSCIN and OSCOUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

Table 4-15. High speed external user clock characteristics (HXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL_ext} (1)	External clock source or oscillator	V _{DD} = 3.3 V	1	8	50	MHz
IHXTAL_ext\''	frequency	V _{DD} = 3.3 V		0	50	IVII IZ
V _{HXTALH} ⁽²⁾	OSCIN input pin high level voltage	V _{DD} = 3.3 V	$0.7~V_{DD}$	_	V_{DD}	V
V _{HXTALL} ⁽²⁾	OSCIN input pin low level voltage	V _{DD} = 3.3 V V _{SS} -	_	$0.3~V_{DD}$	v	
t _{H/L(HXTAL)} (2)	OSCIN high or low time	_	5	_	_	no
t _{R/F(HXTAL)} (2)	OSCIN rise or fall time	_	_	_	10	ns
C _{IN} ⁽²⁾	OSCIN input capacitance	itance —		5	1	pF
Ducy _(HXTAL) (2)	Duty cycle	_	30	50	70	%

⁽¹⁾ Based on characterization, not tested in production.

Table 4-16. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL} ⁽¹⁾	Crystal or ceramic frequency	$V_{DD} = 3.3 \text{ V}$	_	32.768	_	kHz
C _{LXTAL} ⁽²⁾⁽³⁾	Recommended matching capacitance on OSC32IN and OSC32OUT	l	_	10	_	pF
Ducy _(LXTAL) ⁽²⁾	Crystal or ceramic duty cycle		30	_	70	%
		Lower driving capability	_	4	_	
(2)	Oscillator transconductance	Medium low driving capability	_	6	_	• • • •
gm ⁽²⁾		Medium high driving capability	_	12	_	μA/V
		Higher driving capability	_	18	_	
		Lower driving capability	_	0.5	_	
(1)	Crystal or ceramic operating	Medium low driving capability	_	0.6	_	
I _{DDLXTAL} ⁽¹⁾	current	Medium high driving capability	_	1.0	_	μΑ
		Higher driving capability	_	1.2	_	
tsulxtal ⁽¹⁾⁽⁴⁾	Crystal or ceramic startup time	V _{DD} = 3.3 V	_	1.8	_	s

 $[\]hbox{(1)} \quad \hbox{Based on characterization, not tested in production.}$

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ $C_{LXTAL1} = C_{LXTAL2} = 2*(C_{LOAD} - C_S)$, For C_{LXTAL1} and C_{LXTAL2} , it is recommended matching capacitance on OSC32IN and OSC32OUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

⁽⁴⁾ tsulxtal is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.

Table 4-17. Low speed external user clock characteristics (LXTAL in bypass mode)

	-	\ 71				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f (1)	External clock source or V _{DD} = 3.3 V			32.768	1000	kHz
f _{LXTAL_ext} (1)	oscillator frequency	V _{DD} – 3.3 V		32.766	1000	KΠZ
V _{LXTALH} ⁽²⁾	OSC32IN input pin high level		0.7 V _{DD}		Vnn	
	voltage	V _{DD} = 3.3 V	U.7 VDD	_	VDD	V
. (2)	OSC32IN input pin low level		Vss		0.2.1/	V
V _{LXTALL} ⁽²⁾	voltage		VSS		0.3 V _{DD}	
t _{H/L(LXTAL)} (2)	OSC32IN high or low time	_	450	_	_	
t _{R/F(LXTAL)} (2)	OSC32IN rise or fall time	_	_	_	50	ns
C _{IN} (2)	OSC32IN input capacitance	_	_	5	_	pF
Ducy _(LXTAL) (2)	Duty cycle		30	50	70	%

⁽¹⁾ Based on characterization, not tested in production.

4.8 Internal clock characteristics

Table 4-18. High speed internal clock (IRC8M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC8M}	High Speed Internal Oscillator (IRC8M) frequency	$V_{DD} = V_{DDA} = 3.3 \text{ V}$		8	_	MHz
		$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C} \text{ for}$ grade 6 devices	_	-0.525 to 0.275 ⁽¹⁾	_	
ACC _{IRC8M} ⁽¹⁾	IRC8M oscillator Frequency accuracy, Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim +105 \text{ °C for}$ grade 7 device	_	-0.525 to 0.275 ⁽¹⁾	_	%
		$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = 25 ^{\circ}\text{C}$	-1.0	_	+1.0	
	IRC8M oscillator Frequency accuracy, User trimming step	ı	l	0.5	_	%
D _{IRC8M} ⁽²⁾	IRC8M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
IDDIRC8M ⁽¹⁾	IRC8M oscillator operating current	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC8M} = 8 \text{ MHz}$	_	55	_	μА
tsuircam ⁽¹⁾	IRC8M oscillator startup time	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC8M} = 8 \text{ MHz}$	_	1.5	_	μs

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

Table 4-19. Low speed internal clock (IRC40K) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC40K} ⁽¹⁾	Low Speed Internal oscillator	$V_{DD} = V_{DDA} = 3.3 \text{ V}$		40		kHz
	(IRC40K) frequency	VDD - VDDA - 3.3 V		40		KIIZ
IDDIRC40K ⁽²⁾	IRC40K oscillator operating	V _{DD} = V _{DDA} = 3.3 V		0.41		
IDDIRC40K	current	VDD - VDDA - 3.3 V		0.41	_	μΑ
tsuirc40K ⁽²⁾	IRC40K oscillator startup	$V_{DD} = V_{DDA} = 3.3 \text{ V}$		33		110
	time	VUU - VUUA - 3.3 V				μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-20. High speed internal clock (IRC28M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
firc28M	High Speed Internal Oscillator (IRC28M) frequency	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	28	_	MHz
	IRC28M oscillator	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C} \text{ for}$ grade 6 devices	_	-0.975 to 0.782 ⁽¹⁾	_	
ACCIRC28M ⁽¹⁾	Frequency accuracy, Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim +105 \text{ °C} \text{ for}$ grade 7 device		-1.59 to 0.782 ⁽¹⁾	_	%
		$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = 25 \text{ °C}$	-2.0	_	+2.0	
	IRC28M oscillator Frequency accuracy, User trimming step	_	_	0.5	_	%
D _{IRC28M} ⁽²⁾	IRC28M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
I _{DDAIRC28M} ⁽¹⁾	IRC28M oscillator operating current	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC28M} = 28 \text{ MHz}$	_	121	_	μА
tsuirc ₂₈ M ⁽¹⁾	IRC28M oscillator startup time	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC28M} = 28 \text{ MHz}$		1.5	_	μs

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

4.9 PLL characteristics

Table 4-21. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN} ⁽¹⁾	PLL input clock frequency		1	ı	25	MHz
f _{PLLOUT} ⁽²⁾	PLL output clock frequency	_	16		72	MHz
f _{VCO} (2)	PLL VCO output clock				72	MHz
IVCO. /	frequency				12	IVI⊓Z
t _{LOCK} (2)	PLL lock time		١	ı	300	μs
I _{DDA} ⁽¹⁾	Current consumption on	VCO freq = 72 MHz		260		
IDDA' /	V_{DDA}	VCO lieq - 72 Will2		200		μΑ
	Cycle to cycle Jitter			50		
Jitter _{PLL} ⁽³⁾	(rms)	System clock		50		nc
Jillerpll	Cycle to cycle Jitter	Gysterii Glock		500		ps
	(peak to peak)			500		

⁽¹⁾ Based on characterization, not tested in production.

4.10 Memory characteristics

Table 4-22. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Number of guaranteed					
PE _{CYC} ⁽¹⁾	program /erase cycles	_	100	_	_	kcycles
	before failure (Endurance)					
t _{RET} ⁽¹⁾	Data retention time	_	10	_		years
t _{PROG} (2)	Word programming time		37	-	42	μs
t _{ERASE} (2)	Page erase time	T _A range ⁽³⁾	3.2		4	ms
t _{MERASE} (2)	Mass erase time		8		10	ms

⁽¹⁾ Based on characterization, not tested in production.

4.11 NRST pin characteristics

Table 4-23. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} (1)	NRST Input low level voltage	401/41/	-0.5	_	0.35 V _{DD}	.,
V _{IH(NRST)} (1)	NRST Input high level voltage	$1.8 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA} \leq$	0.65 V _{DD}		V _{DD} + 0.5	V
V _{hyst} ⁽¹⁾	Schmidt trigger Voltage hysteresis	3.6 V		400		mV
R _{pu} ⁽²⁾	Pull-up equivalent resistor	_	_	40		kΩ

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ Value given with main PLL running.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ For grade 6 devices, TA range= -40°C \sim +85°C. For grade 7 device, TA range= -40°C \sim +105°C.

(2) Guaranteed by design, not tested in production.

Figure 4-4. Recommended external NRST pin circuit

(1) Unless the voltage on NRST pin go below VIL(NRST) level, the device would not generate a reliable reset.

4.12 **GPIO** characteristics

Table 4-24. I/O port DC characteristics(1)(3)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Standard IO Low level input	1.8 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V	_	_	0.3 V _{DD}	٧
VII	voltage					
VIL voltage 1.8 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V — — 0.3 V VIH 5V-tolerant IO Low level input voltage 1.8 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V — — 0.3 V VIH Standard IO High level input voltage 1.8 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V 0.7 V _{DD} — — 5 V-tolerant IO High level input voltage 1.8 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V 0.7 V _{DD} — — Vol Low level output voltage for an IO Pin (I _{IO} = +8 mA) V _{DD} = 1.8 V — — 0.1 Vol Low level output voltage for an IO Pin (I _{IO} = +20 mA) V _{DD} = 3.3 V — — 0.4 Vol High level output voltage for an IO Pin (I _{IO} = +8 mA) V _{DD} = 3.3 V 3.10 — — Vol High level output voltage V _{DD} = 3.6 V 3.40 — — Vol High level output voltage V _{DD} = 3.6 V 3.40 — —	0.3 V _{DD}	V				
	input voltage					_
	Standard IO High level	18V <vpp 36v<="" <="" =="" td="" vpp4=""><td>0.7 Vpp</td><td></td><td></td><td>V</td></vpp>	0.7 Vpp			V
Vui	input voltage	1.0 V = VDD VDDA = 0.0 V	0.7 100			•
VIH	5 V-tolerant IO High level	1 8 V < Von = Von < 3 6 V	0.7 Vpp			V
	input voltage	1.0 V = VDD - VDDA = 0.0 V	0.7 VDD			V
	Low lovel output voltage	V _{DD} = 1.8 V	_	_	0.20	
		$V_{DD} = 2.5 \text{ V}$	_	_	0.20	V
VOL		$V_{DD} = 3.3 \text{ V}$	_	_	0.10	V
	(110 – +0 IIIA)	V _{DD} = 3.6 V	_	_	- 0.10	
	Low lovel output voltage	V _{DD} = 1.8 V	_	_	_	
Voi		$V_{DD} = 2.5 \text{ V}$	_	_	0.50	V
VOL		$V_{DD} = 3.3 \text{ V}$	—	_	0.40	V
	(110 - 120 111/1)	$V_{DD} = 3.6 \text{ V}$	_	_	0.40	
	High lovel output voltage	$V_{DD} = 1.8 \text{ V}$	1.50	_	_	
Vou		$V_{DD} = 2.5 \text{ V}$	2.30	_	_	V
V OH		$V_{DD} = 3.3 \text{ V}$	3.10	_	_	V
	(110 - 10 1114)	V _{DD} = 3.6 V	3.40	_	_	
Vou	High level output voltage	V _{DD} = 1.8 V	_	_	_	<
VOH	for an IO Pin	$V_{DD} = 2.5 \text{ V}$	1.90	_	_	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	(I _{IO} = +20 mA)	V _{DD} = 3.3 V	2.80	_	_	
		V _{DD} = 3.6 V	3.10	_	_	
R _{PU} ⁽²⁾	Internal pull-up resistor	_	_	40	_	kΩ
R _{PD} ⁽²⁾	Internal pull-down resistor			40	_	kΩ

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF).

Table 4-25. I/O port AC characteristics(1)(2)

GPIOx_OSPD[1:0] bit value ⁽³⁾	Parameter	Conditions	Max	Unit
CDIOX OSDDO COSDDVIANI VO	Maximum	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	4	
GPIOx_OSPD0->OSPDy[1:0] = X0	frequency ⁽⁴⁾	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	3	MHz
(IO_Speed = 2 MHz)	requeriey	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	2	
GPIOx_OSPD0->OSPDy[1:0] = 01	Maximum	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	24	
(IO Speed = 10 MHz)	frequency ⁽⁴⁾	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	16	MHz
(10_Speed = 10 Wi12)	irequericy. 7	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	14	
GPIOx OSPD0->OSPDy[1:0] = 11	Maximum	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	72	
(IO_Speed = 50 MHz)	frequency ⁽⁴⁾	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	72	MHz
(10_Speed = 30 Wil 12)	inequency.	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	72	

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all test results given for T_A = 25 °C.
- (3) The I/O speed is configured using the GPIOx_OSPD0->OSPDy [1:0] bits. Refer to the GD32E230 user manual which is selected to set the GPIO port output speed.
- (4) The maximum frequency is defined in Figure 4-5, and maximum frequency cannot exceed 72 MHz.

Figure 4-5. I/O port AC characteristics definition

4.13 ADC characteristics

Table 4-26. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage	_	2.4	3.3	3.6	V
V _{IN} ⁽¹⁾	ADC input voltage range	_	0	_	V _{DDA}	V

GD32E230xx Datasheet

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{ADC} ⁽¹⁾	ADC clock	_	0.1	_	28	MHz
		12-bit	0.007	_	2	
fs ⁽¹⁾	Compling rate	10-bit	0.008	_	2.3	MSP
IS\'''	Sampling rate	8-bit	0.01	_	2.8	s
		6-bit	0.011	_	3.5	
V _{AIN} 1)	Analog input voltage	10 external; 2 internal	0	_	V _{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See Equation 1	_	_	219.86	kΩ
R _{ADC} ⁽²⁾	Input sampling switch resistance	_	_	_	0.5	kΩ
C _{ADC} ⁽²⁾	Input sampling capacitance	No pin/pad capacitance included	_	_	4	pF
t _{CAL} ⁽²⁾	Calibration time	f _{ADC} = 28 MHz	_	4.68	_	μs
t _s (2)	Sampling time	f _{ADC} = 28 MHz	0.05	_	8.55	μs
	Total conversion	12-bit	_	14	_	
t _{CONV} (2)	Total conversion	10-bit	_	12	_	1/
(CONV-)	time(including sampling	8-bit	_	10	_	f _{ADC}
	time)	6-bit	_	8	_	
tsu ⁽²⁾	Startup time	_		_	1	μs

⁽¹⁾ Based on characterization, not tested in production.

Equation 1: Rain max formula
$$R_{AIN} < \frac{T_s}{f_{ADC}*C_{ADC}*ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 4-27. ADC R_{AIN} max for $f_{ADC} = 28$ MHz⁽¹⁾

T _s (cycles)	t _s (µs)	R _{AINmax} (kΩ)
1.5	0.05	0.88
7.5	0.27	6.40
13.5	0.48	11.92
28.5	1.02	25.72
41.5	1.48	37.68
55.5	1.98	50.56
71.5	2.55	65.29
239.5	8.55	219.86

⁽¹⁾ Based on characterization, not tested in production.

Table 4-28. ADC dynamic accuracy at f_{ADC} = 14 MHz⁽¹⁾

Table 1 Zer / Se dynamic decardey at 1ABC = 1 1 mile						
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} = 14 MHz	_	10.2		bits
SNDR	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REFP} = 3.3 \text{ V}$	_	63.16		
SNR	Signal-to-noise ratio	Input Frequency = 20	_	64.20		dB
THD	Total harmonic distortion	kHz	_	-71.17	_	

⁽²⁾ Guaranteed by design, not tested in production.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
		Temperature = 25°C				

⁽¹⁾ Based on characterization, not tested in production.

Table 4-29. ADC static accuracy at f_{ADC} = 14 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Тур	Max	Unit
Offset	Offset error	f 14 MLI=	±1	_	
DNL	Differential linearity error	f _{ADC} = 14 MHz	±1.5	_	LSB
INL	Integral linearity error	$V_{DDA} = V_{REFP} = 3.3 \text{ V}$	±3	_	

⁽¹⁾ Based on characterization, not tested in production.

4.14 Temperature sensor characteristics

Table 4-30. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	VSENSE linearity with temperature	_	±1.5	_	°C
Avg_Slope ⁽¹⁾	Average slope	_	4.3	_	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	_	1.45	_	V
t _{S_temp} (2)	ADC sampling time when reading the temperature	_	17.1	_	μs

⁽²⁾ Based on characterization, not tested in production.

4.15 Comparators characteristics

Table 4-31. CMP characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Operating voltage	_	1.8	3.3	3.6	V	
Vin	Input voltage range	_	0	_	V_{DDA}	V	
V_{BG}	Scaler input voltage	_	_	1.2	_	V	
Vsc	Scaler offset voltage	_	_	_	_	mV	
	Draw a wation dalay for 200	Ultra low power mode	_	0.98	_	μs	
	Propagation delay for 200	Low power mode	_	0.25	_	μs	
	mV step with 100 mV overdrive	Medium power mode	_	0.12	_	μs	
4-		High speed power mode	_	33	_	ns	
t₀	Propagation delay for full range step with 100 mV	Ultra low power mode	_	_	_	μs	
		Low power mode	_	_	_	μs	
		Medium power mode	_	_	_	μs	
	overanve	High speed power mode	_	_	_	ns	
		Ultra low power mode	_	2.2	_		
1	Current concumption	Low power mode	_	3.2	_		
I _{DD}	Current consumption	Medium power mode	_	8.1	_	μA	
		High speed power mode	_	46.9	_		
Voffset	Offset error	_		±4	_	mV	

⁽³⁾ Shortest sampling time can be determined in the application by multiple iterations.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		No Hysteresis	_	0	_	
M	Llyotoropia Voltago	Low Hysteresis	_	11	_	mV
V _{hyst}	Hysteresis Voltage	Medium Hysteresis	_	22	_	IIIV
		High Hysteresis	_	43	_	

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-6. CMP hysteresis

4.16 TIMER characteristics

Table 4-32. TIMER characteristics(1)

Symbol	Parameter	Conditions	Min	Max	Unit
+	Timer resolution time		1		ttimerxclk
t _{res}	Timer resolution time	ftimerxclk = 72 MHz	13.9	_	ns
f _{EXT}	Timer external clock	_	0	ftimerxclk/2	MHz
IEXT	frequency	ftimerxclk = 72 MHz	0	36	MHz
RES Timer resolution		_	_	16	bit
	16-bit counter clock period	_	1	65536	tTIMERXCLK
tcounter	when internal clock is selected	f _{TIMERxCLK} = 72 MHz	0.0139	910	μs
t	Maximum passible sount		_	65536 × 65536	tTIMERXCLK
tmax_count	Maximum possible count	f _{TIMERxCLK} = 72 MHz	_	59.6	s

⁽¹⁾ Guaranteed by design, not tested in production.

4.17 I2C characteristics

Table 4-33. I2C characteristics(1)(2)

Symbol	Parameter	Conditi	Stand mo		Fast	Fast mode		mode us	Unit
		0113	Min	Max	Min	Max	Min	Max	
tscl(H)	SCL clock high time		4.0	_	0.6		0.2		μs
t _{SCL(L)}	SCL clock low time	_	4.7	_	1.3		0.5		μs
tsu(SDA)	SDA setup time	_	250	_	100	_	50	_	ns
th(SDA)	SDA data hold time	_	0(3)	3450	0	900	0	450	ns
tr(SDA/SCL)	SDA and SCL rise time		ı	1000		300		120	ns
tF(SDA/SCL)	SDA and SCL fall time			300		300		120	ns
th(STA)	Start condition hold time		4.0	_	0.6		0.26		μs
tsu(sta)	Repeated Start condition setup time		4.7		0.6	l	0.26	ı	μs
tsu(sto)	Stop condition setup time	_	4.0	_	0.6	_	0.26	_	μs
tBUFF	Stop to Start condition time (bus free)	_	4.7	_	1.3	_	0.5		μs

- (1) Guaranteed by design, not tested in production.
- (2) To ensure the standard mode I2C frequency, f_{PCLK1} must be at least 2 MHz, To ensure the fast mode I2C frequency, f_{PCLK1} must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f_{PCLK1} must be at least a multiple of 10 MHz.
- (3) The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL.

Figure 4-7. I2C bus timing diagram

4.18 SPI characteristics

Table 4-34. Standard SPI characteristics(1)

Symbol Parameter		Conditions	Min	Тур	Max	Unit
f _{SCK}	SCK clock frequency	_	_	_	18	MHz
t _{SCK(H)}	SCK clock high time	Master mode, $f_{PCLKx} = 72 \text{ MHz}$, $presc = 4$	25	27	29	ns
tsck (L)	SCK clock low time	Master mode, f _{PCLKx} = 72 MHz, presc = 4	25	27	29	ns
		SPI master mode				
t _{V(MO)}	Data output valid time	_	_	_	2	ns
t _{SU(MI)}	Data input setup time	_	5	_	_	ns
t _{H(MI)}	Data input hold time	_	5	_	_	ns
		SPI slave mode				
t _{SU(NSS)}	NSS enable setup time	_	0	_	_	ns
t _{H(NSS)}	NSS enable hold time	_	1	_	_	ns
t _{A(SO)}	Data output access time	_	_	7	_	ns
t _{DIS(SO)}	Data output disable time	_		8	_	ns
t _{V(SO)} Data output valid time		_		10	_	ns
t _{SU(SI)} Data input setup time		_	_	10	_	ns
t _{H(SI)}	Data input hold time	_	0	_	_	ns

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-8. SPI timing diagram - master mode

Figure 4-9. SPI timing diagram - slave mode

4.19 I2S characteristics

Table 4-35. I2S characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode (data: 16 bits,		3.12		
f _{CK}	Clock frequency	Audio frequency = 96 kHz)		3.12	_	MHz
		Slave mode	_	10	_	
tн	Clock high time		_	160	_	ns
tL	Clock low time	_	_	160	_	ns
t _{V(WS)}	WS valid time	Master mode	_	3	_	ns
t _{H(WS)}	WS hold time	Master mode	_	3	_	ns
tsu(ws)	WS setup time	Slave mode	0	_	_	ns
t _{H(WS)}	WS hold time	Slave mode	3	_	_	ns
Duar	I2S slave input clock duty	Slave mode		50		%
Ducy _(sck)	cycle	Slave mode	_		_	/0
t _{SU(SD_MR)}	Data input setup time	Master mode	0	_	_	ns
tsu(sd_sr)	Data input setup time	Slave mode	0	_	_	ns
th(SD_MR)	Data input hold time	Master receiver	2	_	_	ns
th(SD_SR)	Data input hold time	Slave receiver	2	_	_	ns
	Data autout valid time	Slave transmitter		12		
tv(sd_st)	Data output valid time	(after enable edge)	_	12	_	ns
	Data autout hald time	Slave transmitter		10		
th(SD_ST)	Data output hold time	(after enable edge)		10		ns
4	Data autout valid time	Master transmitter		10		20
tv(sd_mt)	Data output valid time	(after enable edge)		10		ns
t	Data output hold time	Master transmitter		_		
th(SD_MT)	Data output hold time	(after enable edge)		7		ns

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-10. I2S timing diagram - master mode

Figure 4-11. I2S timing diagram - slave mode

4.20 USART characteristics

Table 4-36. USART characteristics(1)

Symbol Parameter		Conditions	Min	Тур	Max	Unit
f _{SCK}	SCK clock frequency	_	_	_	36	MHz
t _{SCK(H)}	SCK clock high time	_	13.5	_	_	ns
t _{SCK(L)}	SCK clock low time	_	13.5	_	_	ns

⁽¹⁾ Guaranteed by design, not tested in production.

4.21 WDGT characteristics

Table 4-37. FWDGT min/max timeout period at 40 kHz (IRC40K)(1)

Prescaler divider	PR[2:0] bits	Min timeout RLD[11:0]= 0x000	Max timeout RLD[11:0]= 0xFFF	Unit
1/4	000	0.025	409.525	
1/8	001	0.025	819.025	
1/16	010	0.025	1638.025	
1/32	011	0.025	3276.025	ms
1/64	100	0.025	6552.025	
1/128	101	0.025	13104.025	
1/256	110 or 111	0.025	26208.025	

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-38. WWDGT min-max timeout value at 72 MHz (f_{PCLK1})⁽¹⁾

(1.5=)							
	Prescaler divider	PSC[1:0]	Min timeout value CNT[6:0] = 0x40	Unit	Max timeout value CNT[6:0] = 0x7F	Unit	
	1/1	00	56		3.64		
	1/2	01	113		7.28	ma	
	1/4	10	227	μs	14.56	ms	
	1/8	11	455		29.12		

⁽¹⁾ Guaranteed by design, not tested in production.

4.22 Parameter conditions

Unless otherwise specified, all values given for $V_{DD} = V_{DDA} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$.

5 Package information

5.1 LQFP48 package outline dimensions

A3
A1
A2
A
A1
A1
A2
A
A1

DETAIL: F

SECTION B-B

Figure 5-1. LQFP48 package outline

Table 5-1. LQFP48 package dimensions

	. To pastage annotherence					
Symbol	Min	Тур	Max			
А	_	_	1.60			
A1	0.05	_	0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18	_	0.26			
b1	0.17	0.20	0.23			
С	0.13	_	0.17			
c1	0.12	0.13	0.14			
D	8.80	9.00	9.20			
D1	6.90	7.00	7.10			
E	8.80	9.00	9.20			
E1	6.90	7.00	7.10			
е	_	0.50	_			
eB	8.10	_	8.25			
L	0.45	_	0.75			
L1	_	1.00	_			
θ	0°	_	7°			

(Original dimensions are in millimeters)

Figure 5-2. LQFP48 recommended footprint

(Original dimensions are in millimeters)

5.2 LQFP32 package outline dimensions

Figure 5-3. LQFP32 package outline

Table 5-2. LQFP32 package dimensions

Symbol	Min	Тур	Max
A	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.33	_	0.41
b1	0.32	0.35	0.38
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	_	0.80	_
eB	8.10	_	8.25
L	0.45	_	0.75
L1		1.00	
θ	0°	_	7°

Figure 5-4. LQFP32 recommended footprint

5.3 QFN32 package outline dimensions

Figure 5-5. QFN32 package outline

Table 5-3. QFN32 package dimensions

Symbol	Min	Тур	Max
Α	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.18	0.25	0.30
С	0.18	0.20	0.25
D	4.90	5.00	5.10
D2	3.40	3.50	3.60
E	4.90	5.00	5.10
E2	3.40	3.50	3.60
е	_	0.50	_
h	0.30	0.35	0.40
L	0.35	0.40	0.45
Ne	_	3.50	_

Figure 5-6. QFN32 recommended footprint

5.4 QFN28 package outline dimensions

Figure 5-7. QFN28 package outline

Table 5-4. QFN28 package dimensions

Symbol	Min	Тур	Max
Α	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.15	0.20	0.25
b1	_	0.14	_
С	0.18	0.20	0.25
D	3.90	4.00	4.10
D2	2.70	2.80	2.90
E	3.90	4.00	4.10
E2	2.70	2.80	2.90
е	_	0.40	_
h	0.30	0.35	0.40
L	0.30	0.35	0.40
Nd	_	2.40	_
Ne	_	2.40	_

Figure 5-8. QFN28 recommended footprint

5.5 TSSOP20 package outline dimensions

Figure 5-9. TSSOP20 package outline

Table 5-5. TSSOP20 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.20
A1	0.05	_	0.15
A2	0.80	1.00	1.05
A3	0.39	0.44	0.49
b	0.20	_	0.28
b1	0.19	0.22	0.25
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	6.40	6.50	6.60
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
е	_	0.65	_
L	0.45	0.60	0.75
L1	_	1.00	_
θ	0°	_	8°

Figure 5-10. TSSOP20 recommended footprint

5.6 LGA20 package outline dimensions

Figure 5-11. LGA20 package outline

Table 5-6. LGA20 package dimensions

Symbol	Min	Тур	Max
Α	0.51	0.56	0.61
A1	_	0.015	0.022
A2	0.35	0.40	0.45
b	0.20	0.25	0.30
С	0.13	0.16	0.19
D	2.90	3.00	3.10
D1	1.95	2.00	2.05
E	2.90	3.00	3.10
E1	1.95	2.00	2.05
е	_	0.50	_
K1	_	0.375	_
K2	_	0.375	_
L1	0.50	0.55	0.60
L2	0.30	0.35	0.40
L3	_	0.20	_
L4	0.30	0.35	0.40
L5	_	0.125	_
L6	_	0.234	_
L7	_	0.05	_
R1	_	0.125	_
aaa	_	0.10	_
ccc	_	0.08	_

Figure 5-12. LGA20 recommended footprint

5.7 Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter "0". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

 θ_{JA} : Thermal resistance, junction-to-ambient.

 θ_{JB} : Thermal resistance, junction-to-board.

 θ_{JC} : Thermal resistance, junction-to-case.

ΨJB: Thermal characterization parameter, junction-to-board.

ΨJT: Thermal characterization parameter, junction-to-top center.

$$\theta_{\mathsf{JA}} = (\mathsf{T}_{\mathsf{J}} - \mathsf{T}_{\mathsf{A}})/\mathsf{P}_{\mathsf{D}} \tag{5-1}$$

$$\theta_{JB} = (T_J - T_B)/P_D \tag{5-2}$$

$$\theta_{JC} = (T_J - T_C)/P_D \tag{5-3}$$

Where, T_J = Junction temperature.

T_A = Ambient temperature

T_B = Board temperature

T_C = Case temperature which is monitoring on package surface

 P_D = Total power dissipation

 θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θ_{JA} can be considerate as better overall thermal performance. θ_{JA} is generally used to estimate junction temperature.

 θ_{JB} is used to measure the heat flow resistance between the chip surface and the PCB board.

 Θ_{JC} represents the thermal resistance between the chip surface and the package top case. Θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Table 5-7. Package thermal characteristics⁽¹⁾

Symbol	Condition	Package	Value	Unit
θда	Natural convection, 2S2P PCB	LQFP48	69.64	°C/W
		LQFP32	55.26	
		QFN32	42.58	
		QFN28	47.32	
		TSSOP20	67.24	
		LGA20	96.08	
θЈВ	Cold plate, 2S2P PCB	LQFP48	43.16	°C/W

GD32E230xx Datasheet

Symbol	Condition	Package	Value	Unit
		LQFP32	26.24	
		QFN32	12.22	
		QFN28	12.97	
		TSSOP20	37.72	
		LGA20	58.46	
		LQFP48	25.36	
		LQFP32	25.23	
	Cold plate 2020 DOD	QFN32	16.76	°C/W
θ _{JC}	Cold plate, 2S2P PCB	QFN28	20.26	-C/VV
		TSSOP20	25.06	
		LGA20	31.54	
	Natural convection, 2S2P PCB	LQFP48	47.75	
		LQFP32	32.03	
		QFN32	12.81	
$\Psi_{ m JB}$		QFN28	13.07	°C/W
		TSSOP20	49.07	
		LGA20	58.61	
		LQFP48	2.45	
	Natural convection, 2S2P PCB	LQFP32	2.06	
		QFN32	0.69	°C/W
$\Psi_{ m JT}$		QFN28	0.75	C/VV
		TSSOP20	2.37	
		LGA20	1.83	

^{(1).} Thermal characteristics are based on simulation, and meet JEDEC specification.

6 Ordering information

Table 6-1. Part ordering code for GD32E230xx devices

Ordering code	Ordering code Flash (KB) Package Package type		Temperature	
		11.13	3.31	operating range
GD32E230C8T6	64	LQFP48	Green	Industrial
			_	-40 °C to +85 °C
GD32E230C8T7	64	LQFP48	Green	Industrial
				-40 °C to +105 °C
GD32E230C6T6	32	LQFP48	Green	Industrial
				-40 °C to +85 °C
GD32E230C4T6	16	LQFP48	Green	Industrial -40 °C to +85 °C
GD32E230K8T6	64	LQFP32	Green	Industrial -40 °C to +85 °C
				Industrial
GD32E230K6T6	32	LQFP32	Green	-40 °C to +85 °C
				Industrial
GD32E230K4T6	16	LQFP32	Green	-40 °C to +85 °C
				Industrial
GD32E230K8U6	64	QFN32	Green	-40 °C to +85 °C
				Industrial
GD32E230K6U6	32	QFN32	Green	-40 °C to +85 °C
				Industrial
GD32E230K4U6	16	QFN32	Green	-40 °C to +85 °C
				Industrial
GD32E230G8U6TR	64	QFN28	Green	-40 °C to +85 °C
				Industrial
GD32E230G6U6TR	32	QFN28	Green	-40 °C to +85 °C
			_	Industrial
GD32E230G4U6TR	16	QFN28	Green	-40 °C to +85 °C
000000000000000000000000000000000000000				Industrial
GD32E230F8V6TR	64	LGA20	Green	-40 °C to +85 °C
000000000000000000000000000000000000000	20	10100		Industrial
GD32E230F6V6TR	32	LGA20	Green	-40 °C to +85 °C
00000000000 A) (0TD	40	1.0400		Industrial
GD32E230F4V6TR	16	LGA20	Green	-40 °C to +85 °C
ODOGEOGGEODGED	0.4	T000D00	0	Industrial
GD32E230F8P6TR	64	TSSOP20	Green	-40 °C to +85 °C
CD22F220F0D7TD	C4	TCCODO	Crash	Industrial
GD32E230F8P7TR	64	TSSOP20	Green	-40 °C to +105 °C
GD32E230F6P6TR	32	TSSOP20	Green	Industrial
GD32E230F0F0TK	32	1330F20	Gleen	-40 °C to +85 °C
GD32E230F6P7TR	32	TSSOP20	Green	Industrial
ODSZLZSUFUF / TK	JZ	1000F20	Gleen	-40 °C to +105 °C
GD32E230F4P6TR	16	TSSOP20	Green	Industrial
5552E2501 71 011(10	1000120	Giccii	-40 °C to +85 °C
GD32E230F4P7TR	16	TSSOP20	Green	Industrial
550222001 11 7 110		1000120	0.0011	-40 °C to +105 °C

7 Revision history

Table 7-1. Revision history

Revision No.	Description	Date
1.0	Initial Release	Oct.10, 2018
1.1	Add information about the QFN20 package	Dec.7, 2018
1.2	Delete QFN20 package, add information about the LGA20 package and electrical characteristics with few changes.	Dec.28, 2018
	1. Modify PA13 and PA14 pin definitions in chapter2.6.	
	2. Modify PA9 and PB2 alternate functions in chapter2.6.2.	
	3. Add USART1(PA2 and PA3) to reprogram the flash memory	
	in chapter3.4.	
1.3	Modify description of debug mode.	Oct.8, 2019
	5. Modify block diagram.	
	6. Modify the value of POR and PDR in chapter3.3.	
	7. Update electrical characteristics, package information,	
	ordering information and logo.	
	1. Modify GD32E230K6T6 SRAM capacity form 4K to 6K.	
1.4	Add thermal characteristics.	June.29, 2020
	Update electrical characteristics.	
	1. Update the data in <i>Table 4-26. ADC characteristics, Table</i>	
	4-27. ADC RAIN max for fADC = 28 MHz(1), Table 4-36.	
	USART characteristics(1), Table 4-37. FWDGT min/max	
	timeout period at 40 kHz (IRC40K)(1).	
	2. Update Figure 4-8. SPI timing diagram - master mode,	
	Figure 4-9. SPI timing diagram - slave mode , Figure 4-10.	
4 5	I2S timing diagram - master mode , Figure 4-11. I2S timing	Dec 15, 2021
1.5	<u>diagram - slave mode.</u>	Dec.15, 2021
	3. Update the test standards of $V_{\text{ESD (HBM)}}$ and $V_{\text{ESD (CDM)}}$	
	parameter in <u>Table 4-12. ESD characteristics(1).</u>	
	4. Update the Ne parameter in <i>Table 5-3. QFN32 package</i>	
	<u>dimensions.</u>	
	5. Adds e parameter in <i>Table 5-6. LGA20 package</i>	
	<u>dimensions.</u>	
	1. Modify USART pin function description from USARTx_RTS	
	to USARTx_RTS/USARTx_DE in Pin definitions .	
	Fixed the description of Flash memory and SRAM waiting	
1.6	state in <u>Embedded memory</u> .	Jul.1, 2022
	3. Delete the description about V _{REF+} and V _{REF-} pins in <u>Figure</u>	
	4-1. Recommended power supply decoupling	
	capacitors(1).	

GD32E230xx Datasheet

Revision No.	Description	Date
	4. Add EMI parameters in <u>Table 4-10. EMI characteristics(1).</u>	
	5. Modify I2C parameters t _{su(SDA)} \t _{r(SDA)} \t _{r(SDA)} \cdots in <u>Table 4-33.</u>	
	I2C characteristics(1)(2)(3)	
	6. Add note of Figure 4-4. Recommended external NRST pin	
	<u>circuit</u> .	
1.7	Add GD32E230xxT7 related descriptions.	Aug. 23, 2022
1.8	Add GD32E230FxP7 related descriptions.	Dec. 5, 2022
1.9	Unify the pin names of the full text.	Doc 10 2022
1.9	2.Update <i>Figure 4-7. I2C bus timing diagram</i> .	Dec. 19, 2022
2.0	Update <u>ordering information</u>	Mar. 7, 2023

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2023 GigaDevice - All rights reserved