

Indian Institute of Technology Madras

Department of Aerospace Engineering

AS5570

Principles of Guidance of Autonomous Vehicles

Extension to 'All Aspect Approach to A Stationary Target'

Submitted by:

AE21B001 Abel Viji George AE21B002 Abhigyan Roy AE21B056 Shreeya Padte

1 Motivation

In the 2pPPN guidance, the orientation phase can be attained with different trajectories. We computed the cost requirement as $\int a_p^2 dt$. The minimum lateral acceleration requirement gives the best trajectory. Also, we have analyzed the phase after the orientation phase for N > 2 values and concluded an optimum N for that phase.

2 Procedure

- The pursuer has to reach the target with finite bounded lateral acceleration.
- The pursuer takes the orientation phase to reach the N=2 line in the $\alpha_P-\theta$ plane. Then, it follows the N=2 line to reach the target.
- The initial conditions in our case are $(\alpha_{P_0}, \theta_0) = (\pi/4, 0)$. The desired approach angle is -150°. The orientation gain is found by -

$$N = \frac{\alpha_P - \alpha_{P_0}}{\theta - \theta_0} \tag{1}$$

We have considered the gains from (-2, 1) during this phase.

• The lateral acceleration is found as -

$$a_p = \frac{NV_p V_\theta}{R} \tag{2}$$

Here $a_{p_{(ori)}}$ is when $N=N_{ori}$ and $a_{p_{(end-phase)}}$ is when N=2.

Figure 1: $\alpha_P - \theta$ plane

3 Interpretation

The initial conditions in our case are - $(\alpha_{P_0}, \theta_0) = (\pi/4, 0)$. The desired approach angle is -150°. The final phase gain or N_f is 2 for the plots shown.

3.1 Gain = -2

Figure 2: Comparison of plots

3.2 Gain = -1

Figure 3: Comparison of plots

3.3 Gain = 0

Figure 4: Comparison of plots

3.4 Gain = 1

Figure 5: Comparison of plots

3.5 Cost and Time to reach

We can observe from the plots that time to reach decreases with increase in N_{ori} . The cost variation and trajectories for different N_{ori} is also shown.

Figure 6: Cost v/s N_{ori}

Figure 7: Time to reach v/s N_{ori}

Figure 8: Trajectories

4 Optimising Cost

Figure 9: Cost Comparison

As we can see cost has an overall minima compared to the rest at $N_f=2$, and then increases after. Hence, optimum N_f is 2.5 and optimum N_{ori} for it is -0.35 for $\alpha_{P_{d_f}}=-150^\circ$

Figure 10: Time to Reach

Figure 11: Trajectory Comparison

4.1 Variation of Cost with change in Desired Approach Angle

Figure 12: Comparison for different $\alpha_{P_{d_s}}$

We can clearly see a shift in the optima value with change in $\alpha_{P_{d_f}}$

5 Conclusion

- The minima of the cost function was observed at $N_{ori} = -0.35$ for different N_f . Hence, it is the optimum orientation phase for our given conditions.
- As the N_{ori} increases from 0, the cost increases, and the time to reach the target decreases. Hence, it is a tradeoff between lateral acceleration requirement and time to reach here.
- Based on the Cost vs N plot, we can conclude that **optimum** N_f is **2.5**. We could use a finer array of N values around optimum N_f to check for a better optimal final phase N.
- The range of angles which can be attained using PPN is $[-45^{\circ}, 0^{\circ})$, but we want to optimise a_P over both phases. So, we ran the simulations for different final approach angles like $[-60^{\circ}, -90^{\circ}, -120^{\circ}, -175^{\circ}]$. As we increase the angle from -45° to -180° , the optimal orientation gain decreases. Also, the optimum

gain for the final phase decreases (3->2.5->2). But for all approach angles, the time to reach decreases as N_{ori} increases.

• There is some anomalous behavior for $N_f = 2$, for a certain $\alpha_{P_{d_f}}$ it does not follow a similar trend compared to the other higher N values. We can associate this behaviour to it being the minimum bound for finite missile latax.