1. Cel

Na cel projektu zostało przyjęte wykonanie aplikacji, wykorzystując język programowania C++, której zadaniem jest symulowanie ruchu robota sześcioosiowego oraz wizualizację ruchu punktu TCP. Robot ma strukturę kinematyczną {CR, BR1, BR2, BL, CL, AL}.

Dodatkowymi celami do zrealizowania były: możliwość wprowadzenia przez użytkownika wartości parametrów geometrycznych części regionalnej i lokalnej robota, ustawienie wektora podejścia członów części lokalnej robota oraz wyboru współrzędnych punktów startowego i końcowego ruchu. Wizualizacja miała również zostać podzielona na równooddalone punkty, dzięki którym użytkownik ma możliwość obserwacji kolejnych etapów symulacji przemieszczenia.

2. Wymagania

Do poprawnego działania aplikacji jest wymagany zainstalowany system min. Windows 7 64-bit.

3. Obsługa aplikacji

Chcąc włączyć aplikację należy otworzyć folder "*x64*", folder "*Debug*" na koniec uruchomić aplikację "*Robot_Kinematics*". Po uruchomieniu aplikacji pojawi się następujące okno:

W lewym górnym rogu, w części o nazwie "Parameters", znajdują się pola, w które użytkownik może wpisać wartości parametrów geometrycznych części regionalnej (L1, L2, L3, d, e) i lokalnej (L4, L5, L6) robota oraz wektora podejścia członów lokalnej części robota (θ, Ψ). Poniżej znajdują się pola,

którymi manipuluje się, wpisując w nie "-1" lub "1" (δ1, δ2, δ3). Służą one do określenia sposobu realizacji przemieszczenia członów robota po zadanej trajektorii.

Poniżej znajduje się część o nazwie "Trajectory", znajdują się w niej pola, w które użytkownik może wpisać wartości współrzędnych punktu startowego oraz końcowego punktu TCP. W tej części jest również pole o nazwie "Steps", służy ono do wybrania ilości kroków symulacji ruchu robota.

W celu uruchomienia symulacji należy wcisnąć zielony przycisk "Generate", po jego naciśnięciu zostaną wykreślone na wykresach rzuty mechanizmu robota oraz punktu TCP.

Wykresy pokazują ułożenie robota w płaszczyznach YZ, XZ oraz XY.Chcąc przejść do kolejnego lub poprzedniego kroku symulacji należy wpisać do pola "Current" pożądaną wartość i kliknąć przycisk "Generate". Licznik można zmieniać używając przycisków "Prev" oraz "Next".

Po przejściu z zakładki "Main" do zakładki "Machine Coordinates" użytkownikowi ukazuje się poniższe okno. Wyświetla się w nim wykres wartości współrzędnych maszynowych (φ1, φ2, φ3, φ4, φ5) w zależności od kroku symulacji

W celu zamknięcia programu należy nacisnąć przycisk "X", znajdujący się w górnym rogu okna z programem.

4. Obsługa błędów

Podczas pracy z programem, po naciśnięciu przycisku "Generate", może wyświetlić się okno z komunikatem o nieprawidłowości danych. Należy wówczas nacisnąć przycisk "Ok" na komunikacie, wpisać nowe, poprawne dane i jeszcze raz uruchomić symulację.

Przykładowe błędy:

• wymuszenie przejścia do kroku symulacji, który nie istnieje:

• wymuszenie przemieszczenie robota poza zakres roboczy

