Недостатком алгоритмов (2.29) и (2.30) является то, что надо знать априорные вероятности гипотез p_k , $k = \overline{1:m}$.

2.2.3. Критерий максимального отношения правдоподобия.

Приемник регистрирует сигнал $S_k(t)$, если

$$\Lambda_{ko}\left(\overrightarrow{\mathbf{y}}_{n}\right) = \max_{k} \tag{2.31}$$

Индекс «0» - нулевая гипотеза H₀ о действии только шума.

Если априорные вероятности гипотез H_k равны, т.е. $P(H_k) = \frac{1}{m}$, $k = \overline{1:m} \Rightarrow$ критерий максимального отношения правдоподобия совпадает с критериям идеального наблюдения.

2.2.4. Оптимальные алгоритмы приема при полностью известных сигналах (когерентный прием) на фоне аддитивного ГБШ.

Рассмотрим модель приходящего сигнала: $y_i = S_{ki} + \eta_i$, $i = \overline{I:n}$, - дискретное время, сигналы S_{ki} — известны η_i - шум. Неизвестны реализация помехи η_i и индекс k переданного сигнала, который должна определить решающая схема.

Запишем отношение правдоподобия:
$$A_{kl}\left(\overrightarrow{\mathbf{y}_n}\right) = \frac{w\left(\overrightarrow{\mathbf{y}_n}/H_k\right)}{w\left(\overrightarrow{\mathbf{y}_n}/H_l\right)}$$
, где $w\left(\overrightarrow{\mathbf{y}_n}/H_k\right)$ -

многомерная гауссовская $\Phi \Pi B$ выборки $\overrightarrow{\mathbf{y}}_n$ при условии действия гипотезы H_k

Т.к. шум η_i - белый \Rightarrow выборка $\overrightarrow{\mathbf{y}_{\mathrm{n}}}$ независимая, тогда $w\left(\overrightarrow{\mathbf{y}_{\scriptscriptstyle n}}/H_{\scriptscriptstyle k}\right)$

факторизуется:
$$w(\overrightarrow{\mathbf{y}_n}/H_k) = \prod_{i=1}^n w(y_i/H_k) = \frac{1}{\left(\sqrt{2\pi}\sigma_\eta\right)^n} exp\left(-\sum_{i=1}^n \frac{\left(y_i - S_{ki}\right)^2}{2\sigma_\eta^2}\right)$$
. В

этом случае отношение правдоподобия приводится к виду:

$$\Lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right) = exp\left(-\sum_{i=1}^{n} \frac{\left(y_{i} - S_{ki}\right)^{2}}{2\sigma_{\eta}^{2}} + \sum_{i=1}^{n} \frac{\left(y_{i} - S_{li}\right)^{2}}{2\sigma_{\eta}^{2}}\right).$$

Далее возьмем от левой и правой части данного выражения функцию натурального логарифма: