

Research Computing on AWS Made Easy

July 12th 2021, CyberColombia - Summer School 2021

Nina Vogl, AWS PS HPC Specialist SA

Agenda

- A few "Cloud Principals"
- How this DOES benefit HPC and Research Computing?
- We CAN EASILY arrange our "Bag of Lego Blocks"!
- Let me show you!!
- Do it yourself: Read the Spanish Blog!!!

A few "Cloud Principals"

- Infrastructure as Code
- Ephemeral Clusters
- Re-usable Setups
- Only pay for what you use, when you use it
- VAST Capacity of Resources
- Large Variety of Architectures

How this benefits HPC and Research Computing

First, lets state some goals:

- Have your very own Supercomputer at your disposal when you need it!
- Only pay when your cluster is actually running.
- Have your HPC Applications ready installed and data easily accessible

Amazon CloudWatch

Why use AWS for HPC?

- A virtually unlimited number of architecture options
 - Instance Types, OS, Traditional Cluster, Auto Scaling Clusters, Serverless, GPUs
- Extensive deployment options "Infrastructure as Code"
 - Console, Configuration Control, Automated, SDK, Bash/CLI, AWS CloudFormation
- Lots of useful services
 - Amazon DynamoDB, Amazon CloudWatch, Amazon Glacier, and much more!

No Queue Wait Times Always Get Access to the Resources You Need

Cloud Components that enable HPC on AWS

We'll arrange our "Bag of Lego Blocks" Easily Tools That Help Us Do So

- AWS Cloud9
- AWS Parallel Cluster
- The Configuration File
- EBS Snapshot ID
- Nice DCV to Visualize the Results

AWS Cloud9 – A Linux Terminal in Your Cloud

A Terminal in YOUR Cloud

AWS Parallel Cluster Installation

\$ pip3 install aws-parallelcluster --upgrade --user

```
↑ bouffler — -bash — 80×24

Last login: Thu May 30 12:57:28 on ttys000
(base) ~ [1] $
```


A Human Readable Configuration File Helps Design your Cluster

```
[aws]
aws_region_name = us-east-1
[aliases]
ssh = ssh {CFN USER}@{MASTER IP} {ARGS}
[alobal]
cluster_template = default
update_check = true
sanity check = true
[cluster default]
key_name = KeyPairHPCluster
base os = alinux2
scheduler = slurm
s3 read resource = arn:aws:s3:::myhpcblogs3bucket/*
post_install = s3://myhpcblogs3bucket/postInstall.sh
post_install_args = 'R curl wget'
master_instance_type = g3.4xlarge
vpc settings = default
queue settings = compute
ebs_settings = custom
dcv settings = dcv
```

```
Typc default1
vpc_id = vpc-xxx
master subnet id = subnet-xxx
[ebs custom]
shared_dir = MyApps
ebs_snapshot_id = snap-xxx
volume type = ap2
[queue compute]
enable_efa = true
disable_hyperthreading = true
placement group = DYNAMIC
compute resource settings = default
[compute_resource default]
instance_type = c5n.18xlarge
max count = 10
initial count = 1
min count = 0
[dcv dcv]
enable = master
port = 8443
access from = 0.0.0.0/0
```


AWS Parallel Cluster Installation

```
$ pcluster configure
$ pcluster create myhpcluster
$ pcluster ssh myhpcluster -i ~/KeyPairHPCluster.pem
```

```
n bouffler — -bash — 80×24
Last login: Thu May 30 12:57:28 on ttys000
(base) ~ [1] $
```


"Pre-Install" Your Application by using an EBS Snapshot Do this ONCE

A Human Readable Configuration File Helps Design your Cluster

```
[aws]
aws_region_name = us-east-1
[aliases]
ssh = ssh {CFN USER}@{MASTER IP} {ARGS}
[alobal]
cluster_template = default
update_check = true
sanity check = true
[cluster default]
key_name = KeyPairHPCluster
base os = alinux2
scheduler = slurm
s3 read resource = arn:aws:s3:::myhpcblogs3bucket/*
post_install = s3://myhpcblogs3bucket/postInstall.sh
post_install_args = 'R curl wget'
master_instance_type = g3.4xlarge
vpc settings = default
queue settings = compute
ebs_settings = custom
dcv settings = dcv
```

```
[vpc default]
vpc_id = vpc-xxx
master subnet id = subnet-xxx
[ebs custom]
shared dir = MvApps
ebs_snapshot_id = snap-xxx
volume type = qp2
[queue compute]
enable_efa = true
disable_hyperthreading = true
placement group = DYNAMIC
compute_resource_settings = default
[compute_resource default]
instance_type = c5n.18xlarge
max count = 10
initial count = 1
min_count = 0
[dcv dcv]
enable = master
port = 8443
access from = 0.0.0.0/0
```


"Back in the HPC World" Use A Scheduler of your choice to Submit Your HPC Job

\$ pcluster ssh myhpcluster -i ~/KeyPairHPCluster.pem

```
#!/bin/bash
#SBATCH --job-name=PALABOS
#SBATCH --output=PALABOS_%j.out
#SBATCH --nodes=10 # Number of nodes
#SBATCH --ntasks=360 # Number of MPI ranks
#SBATCH --ntasks-per-node=36 # Number of MPI ranks per node
#SBATCH --cpus-per-task=1 # Number of OpenMP threads for each MPI process/rank
date;hostname;pwd
#export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
cd /Palabos/palabos-v2.2.1/examples/showCases/boussinesqThermal3d
mpirun -np 360 ./rayleighBenard3D 1000
date
```

\$ sbatch submit.sh

Visualize Your Results Directly on the Cluster

- NICE DCV
- In Your "Terminal in the Cloud", The Cloud9 Environment, Type:

\$ pcluster dcv connect -k ~/environment/KeyPairHPCluster.pem myhpcluster

Let Me Show You

- Cloud9 A Terminal/Shell "in your cloud"
- AWS Parallel Cluster Install
- AWS Parallel Cluster Configuration
- Starting a new cluster
- Leverage a Snapshot with Palabos
- Using DCV on the master node for visualization of the results
- Demonstrate Scaling the Compute Nodes With "mpi_hello_world"
 - Default ScaleDownIdle Time is 10 Minutes

DIY - Do It Yourself

- PreRequisits
 - AWS Account
 - Potentially Request Limit Increase
 - Limited Linux CLI Knowledge
 - AWS Folks You Can Reach out to
- "Costing"
 - Need More Time for Details AS there are LOTS of Choices and Things to Consider
 - Remember: You only pay for what you use
 - Sample Prices JUST to Give an Idea See Next Slide
 - Documentation To Help You:
 - AWS Parallel Cluster Documentation https://docs.aws.amazon.com/parallelcluster/index.html
 - Spanish Blog https://aws.amazon.com/es/blogs/aws-spanish/como-poner-una-supercomputadora-en-manos-de-todo-cientifico/

Just To Give An Idea – Sample Prices To Run Palabos BoussinesqThermal3d

- One Head Node + 10 Compute Nodes (360 Cores) for Approximately 1.5 Hrs:
 - \$58.32 + \$1.14 = \$59.46 OR \$58.32 + \$0.0104 = \$58.3304
 - Plus Storage: EBS: ~ 8-10 Cents per GB Per MONTH: ~\$30 OR \$1 Per Day
 - Plus "Incidentals":
 - EBS Snapshot: \$0.05 Per GB Per Month: \$26.50 Per Months OR \$0.88 Per Day
 © 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved

How this benefits HPC and Research Computing

First, lets state some goals:

- Have your very own Supercomputer at your disposal when you need it!
- Only pay when your cluster is actually running.
- Have your HPC Applications ready installed and data easily accessible

Thank you! voglnina@amazon.com

