minimize $f_0(x_1,x_2)$ Subject to $f_0(x_1+x_2) = \frac{1}{2} \left(\frac{1}{2},0\right)$. (3.1)

 $X_1+3X_2\gg 1 \implies (1,0). (0.\frac{1}{3}).$ $X_1\gg 0. X_2\gg 0$

(a) $\int_{0}^{\infty} (x_{1}, x_{2}) = \left[\underbrace{x_{1} + x_{2}}_{x_{1}} = C \right]$

$$-x'+C=x$$

$$-x'-x^{5}=C$$

(b) $f_{\delta}(x_1, x_2) = -(x_1 + x_2) = C$

minize C.

(c) $f_0(x_1, x_2) = x_1$

$$(d) \cdot \sqrt{d(x_1, x_2)} = \max_{x \in X} (x_1, x_2) = C$$

$$X_1 = X_2$$
 and $X_1 + 3X_2 = 1$
 $\Rightarrow X_1^* = \frac{1}{3} \cdot X_2^* = \frac{1}{3}$

$$\frac{\nabla f_0(x_1,x_2)=(1,3)}{\Rightarrow x_1=\frac{1}{5} \cdot x_2=\frac{1}{6} \cdot \epsilon \text{ feasible}.$$

(Q3. (a). minimize C^TX subject to Ax=b. (b) minimize c^Tx Subject to $a^Tx \in b$. n E null (A) (c). Minimize $C^T \times$ subject to $L \leq x \leq u$. (t.n Enull (A) (a). Mull space of A is $\S v: Av=0 \S$. if Xo is a solution to Ax= b. then all solutions will be given as Is +n where no nulspace (A) CX = CXs + CTn find minfcxs+ c7n: n ∈ null space (A)). (1). if ∃ No € unl (A). S.t. cTno € O. WLOG. let c'no>o. n=tno. then c'n=t:c'n. c'n > - \in when t > - \in . . . uh bounded below. (2). In f nul(A). cTn=0. C is orthogonal to hall space. C is in the row space of A ∈ > c = A^Tλ for some λ. then $c^T x = \lambda^T A x = \lambda^T b$. 2°. feasible space is p. => 0. cb. min cTx. aTx = b. pal to a $c = \lambda a + \hat{c}$. $\lambda \in \mathbb{R}$, $\hat{a}\hat{c} = \hat{c}^{\dagger} a = 0$. $\min \ c^{T}X = \lambda a^{T}X + C X.$ 1°. if $\lambda > 0$. Want: $a^Tx \rightarrow -\infty$ while $c^Tx = 0$. x = -ta then $a^Tx = -t \|a\|_2^2 \le b$ when $t \to \infty$ $c^{7}x = \lambda a^{7}x + 0 = -t\lambda a^{7}a = -t\lambda ||a||_{2}^{2} \rightarrow -\infty$:. unbounded below 2° , if $\lambda \leq 0$. (1), C=J. Cla. then cTx= hatx > hb. xt= {x: aTx=b}. 2). Cfo. want: CTX -> - 00. nhile x & feasible space. $x = -t\hat{c} + \frac{\alpha}{\|a\|^2} \cdot b$. atx = 0 + 11a112 b = b = x & feasible space.

Then
$$c^{T}x = (\lambda \alpha + \hat{c})^{T}x$$

$$= \lambda \alpha x + \hat{c}^{T}x$$

$$= \lambda b + (-t) \|\hat{c}\|^{2} + \alpha \cdot \hat{c}^{T} \cdot b$$

$$= \lambda b - t \|\hat{c}\|^{2} \rightarrow -\infty. \text{ when } t \Rightarrow \infty.$$

:. uhbounded below.

min: C,x, + C2x2+... + Cnxn.

for every := 1, 2, ..., n:

 $p^* = \sum_{i=1}^{N} \cdot (\max(c_i, o), l_i + \min(c_i, o), l_i) = l_c^{\dagger} + u_c^{\dagger}$

where $C_{i}^{\dagger} = \max(C_{i}, 0)$ $C_{i}^{\dagger} = \min(C_{i}, 0)$

Q4. BV 4.9. Consider LP: min c^Tx subject to $Ax \le b$.

A is square and nonsingular. A^{-1} Change of raviable. y = Ax. $x = A^{-1}y$ min $[c^TA^{-1}y]$ where $y \le b$. (similar to CQSc)

given vector

if $(c^TA^{-1})_i > 0$ then $y_i \to -\infty$ then $c^TA^{-1}y \to -\infty$ unbounded below. if $c^TA^{-1} \le 0$ then $y_i^* = b_i$ then $(c^TA^{-1}y)^* = c^TA^{-1}b$.

