Model anizotropowej refleksji Warda

Gregory Ward opublikował odpowiedni model anizotropowej refleksji w swojej pracy "Pomiar i modelowanie refleksji anizotropowej", Grafika komputerowa (SIGGRAPH '92 Proceedings), s. 265-272, lipiec 1992. Model ten opisuje odbicie w kategoriach BRDF (funkcja rozkładu dwukierunkowego współczynnika odbicia), która jest funkcją czterowymiarową. Jego model BRDF składa się z dwóch terminów: rozproszenia refleksyjnego $\frac{\rho_d}{\pi}$ i bardziej skomplikowanego odbicia lustrzanego.

Spójrzmy na $\frac{\rho_d}{\pi}$: π jest po prostu stałą (około 3,14159) i ρ_d określa współczynnik odbicia rozproszonego. Zasadniczo niezbędny jest współczynnik odbicia dla każdej długości fali; jednak zazwyczaj określony jest jeden współczynnik odbicia dla każdego z trzech składników koloru (czerwonego, zielonego i niebieskiego). Jeśli uwzględnimy stałą π , $\frac{\rho_d}{\pi}$ po prostu reprezentuje kolor rozproszonego materiału $k_{diffuse}$.

Rys. 1. Oprócz większości wektorów używanych przez model odbicia Phonga, potrzebujemy znormalizowanego wektora połowy H, który jest kierunkiem dokładnie pomiędzy kierunkiem do widza V i kierunkiem do źródła światła L.

Przybliżenie Warda wykorzystujące znormalizowany wektor normalnej powierzchni \mathbf{N} , znormalizowany kierunek do widza \mathbf{V} , znormalizowany kierunek do źródła światła \mathbf{L} i znormalizowany wektor w połowie \mathbf{H} , który wynosi ($\mathbf{V} + \mathbf{L}$) / $|\mathbf{V} + \mathbf{L}|$

$$\rho_s \frac{1}{\sqrt{(\mathbf{L} \cdot \mathbf{N})(\mathbf{V} \cdot \mathbf{N})}} \cdot \frac{1}{4\pi\alpha_x \alpha_y} \exp \left(-2 \frac{\left((\mathbf{H} \cdot \mathbf{T})/\alpha_x\right)^2 + \left((\mathbf{H} \cdot \mathbf{B})/\alpha_y\right)^2}{1 + \mathbf{H} \cdot \mathbf{N}}\right)$$

Tutaj, ρ_s jest odbiciem lustrzanym, które opisuje kolor i intensywność blasków; α_x i α_y są materialnymi stałymi opisującymi kształt i rozmiar podświetleń. Ponieważ wszystkie te zmienne są stałymi materialnymi, możemy je łączyć w jedną stałą $k_{specular}$. Tak więc otrzymujemy nieco krótszą wersję

$$k_{ ext{specular}} rac{1}{\sqrt{(\mathbf{L}\cdot\mathbf{N})(\mathbf{V}\cdot\mathbf{N})}} \exp\Biggl(-2rac{\left((\mathbf{H}\cdot\mathbf{T})/lpha_x
ight)^2+\left((\mathbf{H}\cdot\mathbf{B})/lpha_y
ight)^2}{1+\mathbf{H}\cdot\mathbf{N}}\Biggr)$$

T to kierunek pędzla na powierzchni, a **B** jest ortogonalny do **T**, ale także na powierzchni. Jedność zapewnia nam styczny wektor na powierzchni jako atrybut wierzchołka, który będziemy używać jako wektor **T**. Obliczenie iloczynu krzyżowego **N** i **T** generuje wektor **B**, który jest ortogonalny dla **N** i **T**, tak jak powinien być.

Źródła: https://en.wikibooks.org/wiki/GLSL Programming/Unity/Brushed Metal,

http://wazniak.mimuw.edu.pl/index.php?title=GKIW Modu%C5%82 8 - Modelowanie o%C5%9Bwietlenia