Coduri și Criptografie (2015–2016)

Prof.dr. F. L. Ţiplea Facultatea de Informatică Universitatea "Al.I.Cuza", Iași

Data: 22.01.2016

Examen

1.	(Concepte de securitate)	
	(a) Ce este o funcție one-way?	5p
	(b) Ce este o funcție rezistentă la coliziuni?	5p
	(c) Ce legătura este între funcții one-way și funcții rezistente la coliziuni? Justificați răspunsul.	15p
	(d) In ce constă paradoxul zilei de naștere și care este importanța lui în construcția de funcții candidat la clasa de funcții rezistente la coliziuni? Justificați răspunsul.	10p
2.	Considerăm următorul criptosistem cu chei publice ce criptează un singur bit la un pas de aplicare a lui:	
	• $\mathcal{G}(1^{\lambda})$: (n, p, q) , unde p şi q sunt numere prime ce satisfac $p, q \equiv 3 \mod 4$, iar $n = pq$. n va fi cheia publică, iar (p, q) va fi cheia privată;	
	• $\mathcal{E}(m,n)$: se criptează un bit $m \in \{-1,1\}$ astfel: se generează random $r \in \mathbb{Z}_n^*$ şi se calculează criptotextul $c = r^2 m \mod n$;	
	• $\mathcal{D}(c,p,q)$: dacă c este reziduu pătratic modulo $n,$ atunci $m=1;$ altfel, $m=-1.$	
	Arătați că schema este corectă (utilizați proprietățile reziduurilor pătratice).	5p
	Arătați apoi că schema este IND-CPA sigură, presupunând că este dificil a distinge între un reziduu pătratic și un non-reziduu pătratic fără a cunoaște factorizarea lui n .	10p

Informații ajutătoare pentru subiectul 2

Definition 1 Let n > 1 be an integer and $a \in \mathbb{Z}$ co-prime to n. a is called a quadratic residue modulo n if $a \equiv x^2 \mod n$ for some integer x. Otherwise, a is called a quadratic non-residue modulo n.

Facts Let p and q be odd primes and n = pq. Then:

- 1. The product of two quadratic residues or two quadratic non-residues (mod p) is a quadratic residue (mod p).
- 2. The product of a quadratic residue with a quadratic non-residue (mod p) is a quadratic non-residue (mod p).
- 3. a is a quadratic residue modulo n if and only if a is a quadratic residue both modulo p and modulo q.

Definition 2 Let p > 2 be a prime. The Legendre symbol of $a \in \mathbb{Z}$, denoted $\left(\frac{a}{p}\right)$, is

$$\left(\frac{a}{p}\right) = \begin{cases} 0, & \textit{if } p \mid a \\ 1, & \textit{if } p \not\mid a \textit{ and } a \textit{ is a quadratic residue modulo } p \\ -1, & \textit{if } p \not\mid a \textit{ and } a \textit{ is a quadratic non-residue modulo } p \end{cases}$$

Definition 3 Let n > 0 be an odd integer. The Jacobi symbol of $a \in \mathbb{Z}$, denoted $\left(\frac{a}{n}\right)$, is

$$\left(\frac{a}{n}\right) = \begin{cases} 1, & \text{if } n=1\\ \left(\frac{a}{p_1}\right)^{e_1} \cdots \left(\frac{a}{p_k}\right)^{e_k}, & \text{otherwise} \end{cases}$$

where $n = p_1^{e_1} \cdots p_k^{e_k}$ is the prime factorization of n.

Basic rules for computing the Legendre/Jacobi symbol:

- 1. if $a \equiv b \mod n$ then $\left(\frac{a}{n}\right) = \left(\frac{b}{n}\right)$
- $2. \left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b}{n}\right)$
- 3. $\left(\frac{1}{n}\right) = 1$

4.
$$\left(\frac{-1}{n}\right) = \begin{cases} 1, & \text{if } n \equiv 1 \mod 4 \\ -1, & \text{if } n \equiv 3 \mod 4 \end{cases}$$

5.
$$\left(\frac{2}{n}\right) = \begin{cases} 1, & \text{if } n \equiv \pm 1 \mod 8 \\ -1, & \text{if } n \equiv \pm 3 \mod 8 \end{cases}$$

6.
$$\left(\frac{m}{n}\right) = \begin{cases} -\left(\frac{n}{m}\right), & \text{if } n \equiv m \equiv 3 \mod 4\\ \left(\frac{n}{m}\right), & \text{if } n \equiv 1 \mod 4 \text{ or } m \equiv 1 \mod 4 \end{cases}$$

for any distinct odd integers n, m > 0 and $a, b \in \mathbb{Z}$.