# **GPIO Core Documentation**

By Gauthamaan M K

### **GPIO** core:

The GPIO core is programmable interface between the processor and the external general input/output pins in an embedded system. The GPIO core allows the processor to retrieve data from the external GPIO pins and send data through the external pins. Each single bit of a data is mapped to an individual GPIO pin making possible to simultaneously control the 32 pins as inputs and outputs based on the instructions received from the processor.



Sub modules present GPIO core:

- IO Interface
- Auxiliary Interface
- APB interface
- GPIO registers

### **IO** Interface:

The IO interface acts as an intermediate layer between the GPIO core and the external GPIO pins. The GPIO pins are connected to the IO interface through a tri-state buffer that sends and receives the data. When the pin does not send or receive the data, the pin stays in high impedance, disconnected from the circuit.



| Signals     | Туре         | Function                     |
|-------------|--------------|------------------------------|
| out_pad_o   | Input        | 32-bit data that is sent to  |
|             |              | GPIO pin                     |
| oen_padoe_o | Input        | 32-bit data that decides     |
|             |              | which pin sends and          |
|             |              | receives the data            |
| io_pad_i    | Output       | 32-bit data that is received |
|             |              | from GPIO pin                |
| lo_pad      | Input/Output | Bi-directional physical wire |
|             |              | to connect the core and      |
|             |              | GPIO pins                    |

## **Working Principle:**

- oen\_padoe\_o is used to determine the direction of transmission of data.
- When oen\_padoe\_o[i] = 1, io\_pad[i] acts as an output and sends data from out\_pad\_o[i] to the GPIO pin.
- When oen\_padoe\_o[i] = 0, io\_pad[i] acts as input and data is received by in\_pad\_i[i] from the GPIO pin.

# **Auxiliary interface:**

The auxiliary interface syncs the external inputs to the system clock of the GPIO core. The external data is synchronized and the interface acts as a buffer for other modules to access the external data.



| Signals | Туре   | Function                   |
|---------|--------|----------------------------|
| sys_clk | Input  | System clock for the GPIO  |
|         |        | core                       |
| sys_rst | Input  | System reset for the GPIO  |
|         |        | core                       |
| aux_in  | Input  | External 32-bit data from  |
|         |        | outside modules            |
| aux_i   | Output | Forwarded 32-bit data from |
|         |        | external modules to APB    |
|         |        | slave interface            |

# **Working Principle:**

- The module works with synchronous active low reset. When the sys\_rst = 0, the system values are set to zero.
- When sys\_rst = 1, the module begins to store and forward the data to the APB slave interface.
- During the positive edge of the sys\_clk, the aux\_in data is forwarded to aux\_i which is used by the APB slave interface.

# **APB Slave Interface:**

APB slave interface is the interpreter and between the system bus (AMBA protocol) and the GPIO core. It receives instructions from the master which is the central processing unit and performs read or write data to GPIO internal registers.



| Signals     | Туре    | Function                                            |
|-------------|---------|-----------------------------------------------------|
| pclk        | Input   | Clock signal from the master                        |
|             |         | system                                              |
| prst        | Input   | Reset signal from the master                        |
|             |         | system                                              |
| psel        | Input   | Signal for selection of GPIO                        |
|             |         | peripheral for transfer of                          |
|             |         | read or write                                       |
| penable     | Input   | Second stage signal to                              |
|             |         | completely enable transfer                          |
|             |         | of data                                             |
| pwrite      | Input   | Signal for read or write                            |
|             |         | operation                                           |
| pwdata      | Input   | 32-bit data to be written in                        |
|             |         | GPIO register from master                           |
|             |         | system                                              |
| paddr       | Input   | 32-bit address for the GPIO                         |
|             |         | register from the master                            |
| gpio_dat_o  | Input   | 32-bit data read from the                           |
|             |         | GPIO register                                       |
| gpio_inta_o | Input   | Interrupt signal from the                           |
|             |         | GPIO register                                       |
| sys_clk     | Output  | Clock signal for the GPIO                           |
|             | _       | core                                                |
| sys_rst     | Output  | Reset signal for the GPIO                           |
|             |         | core                                                |
| pready      | Output  | Signal for completion of                            |
| data        | 0       | transfer                                            |
| prdata      | Output  | 32-bit data from GPIO                               |
|             |         | registers to the master                             |
| :           | Outrout | system                                              |
| irq         | Output  | Interrupt signal forwarded to the internal core for |
|             |         | handling                                            |
| gnio addr   | Output  | 32-bit address of the GPIO                          |
| gpio_addr   | Output  | register to perform given                           |
|             |         | instruction                                         |
| gpio dat i  | Output  | 32-bit data forwarded to                            |
| δριο_αατ_ι  | Julput  | GPIO register                                       |
| gpio_we     | Output  | Enable signal for successful                        |
| Spio_wc     | Julput  | write operation                                     |
|             |         | write operation                                     |

### **State Diagram:**



### **Working Principle:**

- The APB slave interface is a Finite State Model (FSM) with 3 states: Idle, Setup and Enable
- When psel = 1 and penable = 0, the system enters into setup state phase and indicates a data transfer is going to occur.
- During the setup phase unless the penable = 1, the system remains in the setup phase waiting for the enable signal to commence the transfer.
- When psel = 1 and penable = 1, the system enters into enable state, initiating the continuous transfer of data until psel or penable revert to 0.
- During enable state, if penable = 0, the system goes back to setup state for next transfer. If both psel = 0 and penable = 0, the system resets to idle state waiting for new transfer request.

# **GPIO** registers:

The GPIO registers are memory mapped registers that stores necessary information regarding the operations performed and the data during the transfer between the GPIO peripherals and the master system.



| Signal      | Туре   | Function                       |
|-------------|--------|--------------------------------|
| sys_clk     | Input  | System clock for GPIO core     |
| sys_rst     | Input  | System reset for GPIO core     |
| gpio_we     | Input  | Signal for write enable        |
| gpio_addr   | Input  | 32-bit address from APB        |
|             |        | slave interface                |
| gpio_dat_i  | Input  | 32-bit data from the APB       |
|             |        | slave interface                |
| aux_i       | Input  | 32-bit data from the           |
|             |        | auxiliary interface            |
| in_pad_i    | Input  | 32-bit data from the GPIO      |
|             |        | peripherals                    |
| gpio_eclk   | Input  | Signal for eternal clock       |
|             |        | usage                          |
| gpio_inta_o | Output | 32-bit interrupt signal for 32 |
|             |        | GPIO peripherals               |
| gpio_dat_o  | Output | 32-bit data to the APB slave   |
| out_pad_o   | Output | 32-bit data sent to the GPIO   |
|             |        | peripherals                    |
| oen_padoe_o | Output | Output enable signal for       |
|             |        | each GPIO peripheral           |

There are 10 unique GPIO registers in the GPIO core:

| Register   | Address | Purpose                      |
|------------|---------|------------------------------|
| GPIO_IN    | 0x0     | Stores the 32-bit data from  |
|            |         | the GPIO peripheral (input)  |
| GPIO_OUT   | 0x4     | Sends the 32-bit data to the |
|            |         | GPIO peripheral (output)     |
| GPIO_OE    | 0x8     | Determines if the data is    |
|            |         | sent to or received from     |
|            |         | GPIO peripheral              |
| GPIO_INTE  | 0xC     | Enables interrupt generation |
|            |         | for each GPIO peripheral     |
| GPIO_PTRIG | 0x10    | Indicates the interrupt      |
|            |         | generation at positive clock |
|            |         | edge                         |
| GPIO_AUX   | 0x14    | Stores 32-bit data from the  |
|            |         | auxiliary interface          |
| GPIO_CNTRL | 0x18    | Enables global interrupt     |
| GPIO_INTS  | 0x1C    | Status for interrupts for    |
|            |         | each GPIO peripheral         |
| GPIO_ECLK  | 0x20    | Enables the use of external  |
|            |         | clock                        |
| GPIO_NEC   | 0x24    | Indicates the interrupt      |
|            |         | generation at negative clock |
|            |         | edge                         |

# RTL view of GPIO core:

The RTL view is generated from the Quartus Prime. The APB slave receives the inputs and the IO interface sends the outputs to the external GPIO pins. The signals (irq, prdata, pready) goes back to the processor or the master system. The signals oen\_padoe\_o and out\_pad\_o are used to direct the data and direction of transfer.



# **Output Waveforms:**

The testbench for the GPIO core involves reset for initialization of the system. During the next cycle reset is high (active low reset), and data (0Xabcd1234) is written to GPIO\_OUT following the protocols (psel = 1 and penable = 1). GPIO\_OE is set to enable the 4 pins for LSB to drive the outputs to the GPIO peripherals.



