DBIS-Nachklausur Sommersemester 2012 Prof. Dr. Georg Lausen Dauer: 90 Minuten Punkte: 90 Dies ist ein Gedankenaufschrieb. Keine Garantie für die Korrektheit aller Aufgaben. 1. Aufgabe: SQL-Anfragen 4+5+6 = 15 Punkte Gegeben sei folgende Tabelle: Verbindung(Von, Nach, Dauer, Distanz) a) Geben Sie für jede Verbindung die durchschnittliche Geschwindigkeit aus, welche dem Quotienten von (Distanz/Dauer) entspricht. b) Geben Sie alle Verbindungen an, deren Dauer der maximalen Dauer von allen Verbindungen entspricht.

c) Geben Sie für jede Stadt V die Verbindung mit maximaler Dauer an.

a) Gegeben sei folgende Tabelle:

LCode	Organisation
A	EU
A	NATO
RU	Random 3rd Organisation
RU	Random 4th Organisation
D	EU
D	NATO
F	EU
F	NATO
F	Random 3rd Organisation

Was ist das Ergebnis der folgenden Anfrage?

```
SELECT DISTINCT M1. LCode
FROM Mitglied M1, Mitglied M2
WHERE M2. LCode = 'A' AND M1. Organisation = M2. Organsisation
GROUP BY M1.LCode
HAVING COUNT(M1. Organisation)
           = (SELECT\ COUNT(M3.\ Organisation))
              FROM Mitglied M3
              WHERE M3. LCode = 'A');
```

b) Gegeben: Ausdruck in relationaler Algebra. Korrigieren Sie ihn, so dass er äquivalent zu obigem SQL-Statement ist.

$$\sigma[LCode =' A']$$
Mitglied $\div \pi[Organisation]$ Mitglied

c) Gegeben: Ausdruck im Relationenkalkül. Korrigieren Sie ihn, so dass er äquivalent zu obigem SQL-Statement ist.

$$\{X: LCode \mid \forall Y \ Mitglied(X,Y) \rightarrow Mitglied('A',Y)\}$$

3. Aufgabe: Funktionale Abhängigkeiten

4 + 4 = 8 Punkte

Gegeben sei $V = \{A, B, C, D\}$ und folgende funktionale Abhängigkeit: $F = \{A \rightarrow B, B \rightarrow C\}$

a) Geben Sie alle nicht-trivialen Abhängigkeiten an die in F^+ enthalten sind.

b) Geben Sie alle nicht-trivialen Abhängigkeiten an die in F+ nicht enthalten sind.

4. Aufgabe: Funktionale Abhängigkeiten

Gegeben ist die folgende Menge der funktionalen Abhängigkeiten:

$$F = \{A \rightarrow B, B \rightarrow C, BC \rightarrow A\}$$

a) Berechnen Sie F^{min} , für die Linksreduktion müssen Sie nur $BC \to A$ betrachten, für die Rechtsreduktion nur $A \to B$.

b) Geben Sie alle Schlüssel an und begründen Sie warum diese Schlüssel sind.

5. Aufgabe 2 + 6 = 8 Punkte

Gegeben sind folgende Relationsschemata: R(A,), S(C,D) mit folgenden Instanzen R=r, S=s mit Größe N bzw. M. Die Tupel aus R und S sind gleich groß. Eine Seite kann k Tupel fassen, k ist immer gerade. Es wird berechnet: $R\bowtie_{B=C}S$.

- a) Berechnen Sie bezüglich der Verbundgröße die maximale untere Schranke.
- b) Berechnen Sie bezüglich der Verbundgröße die minimale obere Schranke.

6. Aufgabe: SQL

a) CREATE TABLE R(

A NUMBER NOT NULL, B NUMBER NOT NULL, C NUMBER NOT NULL, PRIMARY KEY (A));

Fügen Sie eine Assertion-Klausel hinzu sodass folgende Abhängigkeit erfüllt ist: $B \rightarrow C$.

b) CREATE TABLE S(

A NUMBER NOT NULL, D NUMBER NOT NULL, C NUMBER NOT NULL, PRIMARY KEY (A), FOREIGN KEY (D) REFERENCES R(A));

Ersetzen Sie den Foreign Key durch eine Check-Klausel sodass die Abhängigkeit bewahrt wird.

7. Aufgabe: Serialisierbarkeit von Transaktionen

2 + 7 = 9 Punkte

Gegeben sind folgende Transaktionen T1, T2, T3.

T1: RA WC T2: RB WA T3: RC WB

- a) Sind alle möglichen Schedules von T1, T2, T3 serialisierbar?
- b) Gegeben ist folgender Schedule.

S = R1A R2B W2C R3C W3A W1B

Fügen sie Lock- L_i X und Unlock-Schritte U_i X für i \in {1,2,3} und X \in {A,B,C} ein, so dass der Schedule S mit dem 2PL-Verfahren realisierbar ist.

8. Aufgabe: ER-Diagramm

Gegeben sind folgende drei Relationsschemata: Zeichen Sie das zugehörige ER-
Diagramm mit allen Beziehungskardinalitäten. Attribute müssen nicht angegeben
werden

a) Lieferant(LNr, Name, ...) Bauteil(BNr, Name, ...) PBL(LNr, BNr, PNr) Produkt(PNr, ...)

b) Lieferant(LNr, Name, ...) Bauteil(BNr, Name, ..., PNr, LNr), Produkt(PNr, Name, ...)

c) PBL(PNr, BNr, LNr, ...)

9. Aufgabe

Gegeben sind die Relationen T(A,B), S(B,C), R(C,D), Q(D,E), über die ein Verbund erstellt werden soll.

a) Geben Sie einen Left-Deep-Tree für den Verbund an. Vermeiden Sie kartesische Produkte.

b) Geben Sie einen Bushy-Tree für den Verbund an. Vermeiden Sie kartesische Produkte.