Examen de transmissió de dades I (Juny de 2004) (Duració: 3 hores i 30 minuts)

Problema 1

 \mathcal{O} ,75 a. Un quantificador uniforme de quatre nivells s'ha dissenyat per tal de minimitzar la distorsió (error quadràtic mitjà) produïda en quantificar les mostres $\{x_n\}$ d'un procés aleatori x(t), amb una funció de densitat de probabilitat uniforme en l'interval $[-\alpha/2, \alpha/2]$, és a dir,

Demostreu que el seu interval de quantificació és $\Delta=\alpha/4$.

 $\mathcal{O}, 75$ b. Aquest mateix quantificador s'utilitza per quantificar les mostres $\{y_n\}$ d'un procés aleatori y(t), amb una funció de densitat de probabilitat Laplaciana de paràmetre $\sigma = \alpha/4$, és a dir,

$$\int_{\mathbf{y}} (\mathbf{y}) = p_y(y) = \frac{2\sqrt{2}}{\alpha} \exp\left(-\frac{4\sqrt{2}}{\alpha}|y|\right).$$

Dissenyeu un codi binari instantani òptim per codificar les mostres a la sortida del quantificador i calculeu la seva eficiència de codificació.

- \mathcal{O}_{l} 75 c. Si s'utilitzés un codificador aritmètic, quina seria la paraula codi corresponent a la seqüència de mostres $\{y_{n}\}=\{3\alpha/8,-\alpha/8,-7\alpha/8,\alpha/8\}$?
- 0,75 d. Descodifiqueu la paraula codi 001011001001011011 suposant que ha estat generada per un codificador de Ziv-Lempel amb un diccionari de vuit entrades. Torneu-la a codificar utilitzant la variant Miller-Wegman.
- 0,5 (e.) Si ens diuen que la funció d'autocorrelació de les mostres del procés estacionari $y(\mathbf{r})$ és

$$R_{YY}(n) = \left\{ egin{array}{ll} 1 & n=0 \ 1/2 & n=\pm 1 \ 0 & ext{altrament,} \end{array}
ight.$$

determineu els coeficients de predicció del predictor MMSE de segon ordre i l'error quadràtic mitjà mínim corresponent. Quin seria el guany de processament $G_P = \sigma_y^2/\sigma_D^2$ d'un sistema DPCM que utilitzés el predictor anterior. (NOTA: $\int_0^\infty y^n \ e^{-ay} dy = n!/a^{n+1}$, $n=0,1,2,\ldots$)

(3.5 punts)