

Rechnernetze Kapitel 0: Organisation

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2019/2020

Learning Campus

- Ankündigungen, Lehrmaterial ausschließlich im Learning Campus
- Keine Community
- Bitte anmelden
 - https://learning-campus.th-rosenheim.de/course/view.php?id=1094
 - Kein Einschreibeschlüssel notwendig!

Organisatorisches

- 2 SWS Vorlesung
 - Dienstag, 09:45 11:15, R 0.03
- 2 SWS Übung
 - 3 Gruppen, parallel zu Betriebssysteme
 - Termine
 - Gruppe 1: Dienstag, 11:45 13:15 Uhr, Raum B0.14
 - Gruppe 2: Dienstag, 13:45 15:15 Uhr, Raum B0.14
 - Gruppe 3: Dienstag, 15:30 17:00 Uhr, Raum B0.14
 - Bitte anmelden!
 - Im Learning Campus bis 7. Oktober um 13:00 Uhr
- Heute: Keine Übung (erst ab 8. Oktober)
- Studiensemester
 - Informatik (SPO 2018): 3. Semester, Pflicht
 - Informatik (SPO 2012): 4. Semester, Pflicht
 - Wirtschaftsinformatik: FWPM
- Vor- und Nachbereitung notwendig!

Leistungsnachweis

Schriftliche Prüfung am Semesterende

- Dauer: 90 Minuten
- Hilfsmittel: Taschenrechner, 1 DIN A4 Blatt mit Vorder- und Rückseite, handbeschrieben oder gedruckt.
- Details, siehe <u>Leistungsnachweisankündigung</u>

Anmeldung

Im OSC, meist bis Ende Oktober / Anfang November

Wiederholung

Möglich im Sommersemester 2020

Ablauf der Vorlesung

Begleitmaterialien

- Folien mind. 1 Tag vorher in Learning Campus
- Ggfs. Zusatzliteratur: Bücher und eBooks(!) in Bibliothek
- o Internet: Google, Bing, Wikipedia, ...
- Die Folien sind kein vollständiges Skript
 - Eigene Notizen sinnvoll!
 - Selbstständige Vor- und Nachbereitung notwendig

Inhalte

- Technische Hintergründe und Konzepte
- Anwendungen in der Praxis, kleine Live Demos, aktueller Bezug
- Kleine Übungsaufgaben zum Nachdenken

Interaktion erwünscht!

- Bei Unklarheiten bitte immer gleich nachfragen!
- Kleinere Übungsaufgaben, Quiz, etc.

Ablauf der Übung

- Essentiell für Verständnis des Stoffes (und für Klausur)!
- Anmeldung per Learning Campus
 - o Bis 7. Oktober, 13:00 Uhr
- "Komponenten"
 - Betreuung, Unterstützung beim Lösen des Übungsblattes durch Dozent
 - Zwischendrin: Kurze Erklärung der "Knackpunkte".
 - Diskussion mit anderen Studierenden
- Musterlösung wird ca. 2 Wochen nach Übung veröffentlicht
 - Teilweise nur Lösungsskizze
- Systematisches Vorgehen
 - Durchlesen des Übungsblattes, Vorbereiten zuhause.
 - Nicht "drauflosarbeiten"!

Lernziele

- Grundlegendes Verständnis von Rechnernetzen
 - von der Übertragung einzelner Bits
 - bis zur Anwendung
- Schwerpunkt: Internet und TCP
 - Wie "funktioniert" das Internet aus technischer Sicht?
 - Welche Protokolle gibt es? Welche Aufgaben haben diese?
- Selbstständiges Durchführen einfacher Konfigurationen
 - Beispiel: Konfigurieren von IP Adressen in verschiedenen Betriebssystemen
- Analyse von Netzwerkverkehr
 - Wireshark
- Systematisches Vorgehen bei Fehlersuche im Falle von Netzwerkproblemen

Inhalt

- Einführung
 - Grundlagen Datenübertragung, Schichtenmodell
- Physical Layer
 - Modulation, Multiplexing, nachrichtentechnische Grundlagen
- Link Layer
 - Rahmenbildung, Ethernet, MAC, Switches
- Network Layer
 - Forwarding, Routing, IPv4, IPv6, ARP, DHCP, ICMP
- Transport Layer
 - Ports, UDP, TCP, NAT
- Application Layer
 - HTTP, DNS, Sockets

Literatur

Besonders empfohlen

- A. Tanenbaum und D. Wetherall: Computernetzwerke, Pearson Studium, 5. Auflage, 2012
- J. Kurose und K. Ross: Computernetzwerke, Der Top-Down Ansatz, Pearson Studium, 6. Auflage 2014

Weitere Literatur

- A. Badach und E. Hoffmann: Technik der IP-Netze, Hanser Verlag, 4. Auflage, 2019
 - Kostenloses E-Book in der Bibliothek!
- W. Riggert: Rechnernetze, Hanser Verlage, 5. Auflage, 2014
 - Kostenloses E-Book in der Bibliothek!

Freie Quellen im Internet

Wikipedia, Google, etc.

Danksagung

- Vorlesungsfolien basieren teilweise auf Unterlagen von
 - J. Kurose und K. Ross: Computer Networking A-Top-Down Approach
 - A. Tanenbaum und D. Wetherall: Computer Networks