EXTRACTION

Team 6

KEY CHALLENGES

- The complexity of action recognition and the number of classes
- Lack of relevant literature on video classification model extraction
- Scale of datasets being used

Additional Challenges in Black Box Extraction

- No access to any dataset
- Lack of pre-trained Video GANS

Black Box Model Extraction

BLACK BOX APPROACH

Generate Synthetic Samples Train

Distill Student Model

- Due to the absence of class-conditioned Video GANs, we re-purpose a pre-trained BigGAN (ImageNet) to generate fake samples.
- Learn embeddings for each class index predicted by the teacher.
- Freeze generator, teacher model and finetune to minimise loss between teacher predicted class index and sampled class index.
- Finetune for a few steps until predicted class confidence > 90%

SYNTHETIC DATA - EXAMPLE

- The image corresponds to samples generated for class index 1 or "air drumming"
- Although the images are not visually appealing, they fool the teacher classifier with high confidence.
- Thus the generated samples belong to the training distribution of the teacher network.

SYNTHETIC DATA - EXAMPLE

class index 0: abseiling

STUDENT MODEL

Frame

S

Dataset	Teacher	Student
Kinetics 600	MoviNet	ResNet-50
Kinetics 400	Swin-T	VIT-T

KNOWLEDGE DISTILLATION

KNOWLEDGE DISTILLATION

Black Box Accuracies

	VideoSwin Transformer	Movinet
Distill	7.8%	12.43%

Grey Box Model Extraction

GREY BOX APPROACH

Moments In Time Dataset (only videos)

Kinetics 5% training data

Student Model

KNOWLEDGE DISTILLATION

Auxillary Dataset KD

Irrelevant dataset: Moments in Time

- Number of classes: 305
- Minimal overlap with Kinetics 400
 / Kinetics 600 Dataset

FINE TUNING ON 5% TRAINING DATA

Lottery Ticket Hypothesis, Why?

Every network contains a sparse network which can potentially outperform the dense network

- Sparsity is a regularization to avoid over-fitting.
- Induces inductive bias specific to fine-tuned task, hence improved performance.

Iterative Magnitude Pruning

- Initialize network
- Train for a few epochs
- Prune least magnitude weights
- Re-initialize and perform steps 2-3 till required sparsity.

FINE TUNING ON 5% TRAINING DATA

Grey Box Accuracies

	VideoSwin Transformer	Movinet
Knowledge Distillation	8.3%	13.8%
Fine-Tune 5% Kinetics (Dense)	12.6%	22.3%
Fine-Tune 5% Kinetics (Winning Ticket)	17.3%	33.5%

Thanks

Team 6