Universitatea Babeş-Bolyai, Facultatea de Matematică și Informatică Analiză reală – Curs

Matematică, Matematică și Informatică, anul universitar: 2021/2022

Curs 12

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Lema 2 (Inegalitatea lui Hölder). $Dac \check{a} p, q \in (1, \infty)$ $astfel\ \hat{i}nc \hat{a}t\ \frac{1}{p} + \frac{1}{q} = 1,\ f \in L^p\ \S i\ g \in L^q,$ $atunci\ fg \in L^1\ \S i$

$$||fg||_1 \le ||f||_p ||g||_q.$$

Observația 1. Dacă $f \in L^{\infty}$, atunci $|f| \leq \|f\|_{\infty}$ μ -a.p.t.

Lema 3 (Inegalitatea lui Minkowski). $Dacă p \in [1,\infty]$ şi $f,g \in L^p, \ atunci$ $\|f+g\|_p \leq \|f\|_p + \|g\|_p.$

Observația 2. Din Lemele 2 și 3 se deduc inegalitățile clasice ale lui Hölder și Minkowski.

Teorema 1. $(L^p(X, \mathcal{A}, \mu), \|\cdot\|_p)$, unde $1 \leq p \leq \infty$, este un spațiu normat.

Observația 3. Presupunem că $0 < \mu(X) < \infty$.

(i) Dacă $1 \leq p \leq q < \infty$, atunci $L^q(X) \subseteq L^p(X)$ și pentru orice $f \in L^q(X)$,

$$(\mu(X))^{-1/p} ||f||_p \le (\mu(X))^{-1/q} ||f||_q.$$

(ii) $L^{\infty}(X)\subseteq L^p(X)$ pentru orice $p\in [1,\infty)$ și pentru orice $f\in L^{\infty}(X),$

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$