Física computacional II

Mauricio Suárez Durán Unidad 1, Clase 3

Departamento de Física y Geología Universidad de Pamplona I Semestre, 2020

• Quedamos en:

IQR Q3 $Q1 - 1.5 \times IQR$ $Q3 + 1.5 \times IQR$ Median 1σ 2σ 3σ -3σ 0σ -2σ -1σ 4σ -2.698σ -0.6745σ 0.6745σ 2.698σ 24.65% 50% 24.65% -3σ $-i\sigma$ 1σ 2σ 3σ -2σ 0σ 4σ 15.73% 68.27% 15.73% -3σ -2σ -1σ 0σ 1σ 2σ 3σ 4σ

https://en.wikipedia.org/wiki/Probability_density_function

de datos

de datos

Momentos de la distribución:

- Media
- Varianza
 - Desviación estándar
 - Error estándar
- Skewness: grado de asimetría
- Kurtosis: grado de "picudez"

- Objetivo para hoy:
 - Estimar los momentos para la distribución de la linea base de un detector Cherenkov de agua (WCD, por sus siglas en inglés).

- Taller:
 - Escribir un código que:
 - Abra un archivo de datos adquiridos por un WCD
 - Extraer del archivo la linea base del detector y construir el la distribución/histograma de este valor.
 - Estimar los respectivos momentos de la distribución.

- Taller:
 - Escribir un código que:
 - Abra un archivo de da
 - Extraer del archivo la construir el la distril valor.
 - Estimar los respectivos distribución.

