Formulae Sheet

$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \sqrt{n(\sum y^2) - (\sum y)^2}}}$	$r^2 = \frac{\sum (\hat{y} - \bar{y})^2}{\sum (y - \bar{y})^2}$
$r = \frac{\sum Z_x Z_y}{n-1}$	Adjusted $R^2 = 1 - \frac{(n-1)}{[n-(k+1)]} (1-R^2)$
$Z_{\mathcal{X}} = \frac{\mathbf{x} - \overline{\mathbf{x}}}{s_{\mathcal{X}}}$	(X'X)b = X'y
$Z_{y} = \frac{y - \overline{y}}{s_{y}}$	
$S_{\mathcal{X}} = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$	$X'y = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_{1i} y_i \\ \vdots \\ \sum_{i=1}^{n} x_{ki} y_i \end{bmatrix}$
$s_{x} = \sqrt{\frac{1}{n(n-1)} \{ n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2} \}}$	$b = (X'X)^{-1}X'y$
$S_{\mathcal{Y}} = \sqrt{\frac{\sum (y - \overline{y})^2}{n - 1}}$	If $n \le 25$: Test statistic is $x =$ the number of times the less frequent sign occurs. If $n > 25$: Test statistic is $Z = \frac{(x + 0.5) - \frac{n}{2}}{\frac{\sqrt{n}}{2}}$ 1. If $n \le 25$, critical x values are found in Table A-7. 2. If $n > 25$, critical z values are found in Table A-2.
$s_y = \sqrt{\frac{1}{n(n-1)}} \{ n \sum_{i=1}^n y_i^2 - (\sum_{i=1}^n y_i)^2 \}$	If $n \le 30$: Test statistic is $x =$ the number of times the less frequent sign occurs. If $n > 30$, the test statistic is $Z = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$ 1. If $n \le 30$, the critical T value is found in Table A-8. 2. If $n > 30$, the critical z values are found in Table A-2.
$t_{cal} = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$	$z = \frac{R - \mu_R}{\sigma_R}$ Where $\mu_R = \frac{n_1(n_1 + n_2 + 1)}{2} and \sigma_R = \sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}$ Critical values can be found in Table A-2
$\mathbf{b_1} = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$	$H = \frac{12}{N(N+1)} \left(\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \dots + \frac{R_k^2}{n_k} \right) - 3(N+1)$ The test is <i>right-tailed</i> and critical values can be found from the chi-square distribution in Table A-4.

Formulae Sheet

$b_1 = r \frac{s_y}{s_x}$	$r_{S} = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^{2}) - (\sum x)^{2}} \sqrt{n(\sum y^{2}) - (\sum y)^{2}}}$
	' '
	$r_{\rm S} = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$
	 If n ≤30, critical values are found in Table A-9. If n > 30, critical values of r_s are found using the formula:
	$r_s = \frac{\pm z}{\sqrt{n-1}}$ (critical values for $n > 30$)
$b_0 = \bar{y} - b_1 \bar{x}$	For Large Samples or $\alpha \neq 0.05$: If $n_1 > 20$ or $n_2 > 20$ or a
	0.05, the test statistic, critical values, and decision criteria are as follows:
	Where
	$Z = \frac{G - \mu_G}{\sigma_G}$
	$\mu_G = \frac{\frac{\sigma_G}{2n_1n_2}}{\frac{2n_1n_2}{n_1 + n_2}} + 1$
	$\sigma_G = \sqrt{\frac{(2n_1n_2)(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}}$
	Critical values of z: Use Table A-2.
$b_0 = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$	For Small Samples and $\alpha = 0.05$: If $n_1 \le 20$ and $n_2 \le 20$ and
	the significance level is α = 0.05, the test statistic, critical values, and decision criteria are as follows:
	Test statistic: number of runs <i>G</i>
	Critical values of G: Use Table A-10.
$\hat{y} = b_0 + b_1 x$ $\hat{y} - E < y < \hat{y} + E$	
$\hat{y} - E < y < \hat{y} + E$	
$E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \overline{x})^2}{n(\sum x^2) - (\sum x)^2}}$	
$S_e = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}}$	
$S_e = \sqrt{\frac{\sum y^2 - b_0 \sum y - b_1 \sum xy}{n-2}}$	
$\sum (y - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum (y - \hat{y})^2$	