

Algorithmic Methods for Mathematical Models (AMMM)

Intensification and Diversification

Luis Velasco

(Ivelasco @ ac.upc.edu)
Campus Nord D6-107

Intensification

 Portions of the search space that seem promising should be explored more thoroughly to make sure that the best solutions in these areas are indeed found.

• From time to time, one would thus stop the normal searching process to perform an **intensification phase**.

- Intensification is based on some intermediate-term memory
 - number of consecutive iterations that various solution components have been present in good solutions.
- Intensification is not always necessary.
 - There are many situations where the search performed by the normal searching process is enough.

Diversification

- One of the main problems of all methods based on LS is that they tend to be too "local" (as their name implies).
 - they tend to spend most, if not all, of their time in a restricted portion of the search space.
- Diversification forces the search into previously unexplored areas of the search space.
- It is based on some form of long-term memory of the search
 - total number of iterations (since the beginning of the search) that various "solution components" have been present in the current solution or involved in the selected moves.
- Rarely used components can be forced to the current solution (or the best-known solution) and restarting the search from this point.
- Another option is to use frequency as cost such that the components with higher frequency are penalized.

Path Relinking (PR)

- Path relinking (PR) integrates intensification and diversification strategies in a search scheme.
- It generates new solutions by exploring trajectories that connect highquality solutions.

• It starts from one solution, called an **initiating solution**, and generating a path in the neighborhood space that leads toward another solution,

PR algorithm

```
Given solutions a and b (a: initiating and b: guiding solution)

f^* = \min \{f(a), f(b)\}

x^* = \operatorname{argmin} \{f(a), f(b)\}

x = a

while x \neq b do

u^* \leftarrow \operatorname{argmin} \{f(x+u), \forall u \in b \setminus x\}

x \leftarrow x \cup \{u^*\}

(x \leftarrow \operatorname{remove} \operatorname{element} v \in x \setminus b \operatorname{from} x, \operatorname{so} \operatorname{as} \operatorname{to} \operatorname{make} x \operatorname{feasible})

if f(x) < f^* \operatorname{then}

f^* \leftarrow f(x)

x^* \leftarrow x

end
```


Feasible Solutions
Luis Velasco

Feasible Solutions

u	1	_ 2_	3	4	5	6	7	8	9	10	7			PR	-	Fya	mple
cr	2	3	4	1	2	2	1	2	3	4	1					LXA	ilibic
init	3	1	3	3	3	1	1	5	1	5	_						
gui	3	1	3	3	1	3	3	1	1	5	a	1	2	2 3	4	5	Initiating
u	1	2	3	4	5	6	7	8	9	10	m	R3	\perp	R3		R1	Solution
a	3	1	3	3	3	1	1	5	1	5	U(a)	{2,6,7,9}	}	{1,3,4,5}		{8,10}	Cost=460
_ u_		•		U		•	•	U	•		km-cr	1		1		0	0031-400
											а	1	2	3	4	5	•
u_	1	2	3	4	5	6	7	8	9	10	m	R2	Ш	R3		R1	
a	3	1	3	3	3	1	3	5	1	5	U(a)	{2,6,9}		{1,3,4,5,7}		{8,10}	Cost=420
											km-cr	0		0		0	
											•						-
											а	1	2	3	4	5	
u	1	2	3	4	5	6	7	8	9	10	m	R3		R2		R1]
a	3	1	3	3	1	1	3	5	1	5		{2,5,6,9}	П	{1,3,4,7}		{8,10}	Cost=420
u	<u> </u>	•	<u> </u>		'	•	<u> </u>	<u> </u>	•		km-cr	0	П	0		0	
																•	•
											а	1	2	3	4	5	
		•	•		_	•	_	•	•	4.0	m	R2	Ĥ	R3	_	R1	1
u	1	2	3	4	5	6	7	8	9	10	U(a)	{2,5,9}	H			{8,10}	Cost=420
a	3	1	3	3	1	3	3	5	1	5	` ' '		${\sf H}$	{1,3,4,6,7}			
											km-cr	0	Ш	0		0	l
		^	^	4	_	^	_	•	^	40	а	1	_2		4	5	
u	1	2	3	4	5	6	7	8	9	10	m	R3	\perp	R3		R1	Guiding

Algorithmic Methods for Mathematical Models (AMMM)

3

3

3

3

3

Luis Velasco

U(a) {2,5,8,9}

0

km-cr

{1,3,4,6,7}

0

Cost=460

Solution

{10}

2

Elite Set (ES)

- S enters ES if either:
 - $f(\omega) < f(bestES)$ or
 - $f(\omega) < f(worstES)$ and $d(\omega,ES) \ge d(ES)$
- if ω enters ES one solution in ES must leave ES:
 - closest ω ' in ES to ω with $f(\omega) \ge f(\omega)$

$$d(\omega,ES)=\min \{|\omega \bigoplus \omega'|, \omega' \in ES\}$$

$$d(ES)=\min \{|\omega' \bigoplus \omega''|, \omega', \omega'' \in ES\}$$

Symmetric difference $A \oplus B = (A \cup B) \setminus (A \cap B)$

GRASP with PR

- Heuristic hybridization: Combine several techniques.
 - GRASP + PR -> Diversification + Intensification

Hybrid meta-heuristics

- Example: multi-greedy + PR
 - Three different constructive algorithms to provide diversification.
 - Path Relinking finds new solutions in the path connecting two solutions.

Hybrid meta-heuristics: Solving Time

Algorithmic Methods for Mathematical Models (AMMM)

Intensification and Diversification

Luis Velasco

(Ivelasco @ ac.upc.edu)
Campus Nord D6-107