

SEQUENCE LISTING

<110> Sahni, Girish
 Kumar, Rajesh
 Roy, Chaiti
 Rajagopal, Kammara
 Nihalani, Deepak
 Sundaram, Vasudha
 Yadav, Mahavir

<120> NOVEL CLOT-SPECIFIC STREPTOKINASE PROTEINS POSSESSING ALTERED PLASMINOGEN ACTIVATION CHARACTERISTICS AND A PROCESS FOR THE PREPARATION OF SAID PROTEINS

<130> 07064/009001

<140> US 09/471,349 <141> 1999-12-23

<150> IN 3825/DEL/98

<151> 1998-12-24

<160> 24

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1245

<212> DNA

<213> Streptococcus equisimilis

<220>

<221> CDS

<222> (1)...(1242)

<400> 1

att gct gga cct gag tgg ctg cta gac cgt cca tct gtc aac aac agc 48

Ile Ala Gly Pro Glu Trp Leu Leu Asp Arg Pro Ser Val Asn Asn Ser

1 10 15

caa tta gtt gtt agc gtt gct ggt act gtt gag ggg acg aat caa gac 96 Gln Leu Val Val Ser Val Ala Gly Thr Val Glu Gly Thr Asn Gln Asp

att agt ctt aaa ttt ttt gaa atc gat cta aca tca cga cct gct cat

144

11e Ser Leu Lys Phe Phe Glu Ile Asp Leu Thr Ser Arg Pro Ala His

gga gga aag aca gag caa ggc tta agt cca aaa tca aaa cca ttt gct 192 Gly Gly Lys Thr Glu Gln Gly Leu Ser Pro Lys Ser Lys Pro Phe Ala

act gat agt ggc gcg atg tca cat aaa ctt gag aaa gct gac tta cta

Thr Asp Ser Gly Ala Met Ser His Lys Leu Glu Lys Ala Asp Leu Leu

65 70 75 80

aag gct att caa gaa caa ttg atc gct aac gtc cac agt aac gac gac 288 Lys Ala Ile Gln Glu Gln Leu Ile Ala Asn Val His Ser Asn Asp Asp 90 95

 \bigwedge

					gat Asp											336
aac Asn	ggc Gly	aag Lys 115	gtc Val	tac Tyr	ttt Phe	gct Ala	gac Asp 120	aaa Lys	gat Asp	ggt Gly	tcg Ser	gta Val 125	acc Thr	ttg Leu	ccg Pro	384
					gaa Glu											432
					cca Pro 150											480
					ttt Phe											528
					act Thr											576
					gaa Glu											624
					tat Tyr											672
act Thr 225	cat His	gac Asp	aat Asn	gac Asp	att Ile 230	ttc Phe	cgt Arg	acg Thr	att Ile	tta Leu 235	cca Pro	atg Met	gat Asp	caa Gln	gag Glu 240	720
					aaa Lys											768
					gaa Glu											816
aaa Lys	tat Tyr	tac Tyr 275	gtc Val	ctt Leu	aaa Lys	aaa Lys	ggg Gly 280	gaa Glu	aag Lys	ccg Pro	tat Tyr	gat Asp 285	ccc Pro	ttt Phe	gat Asp	864
					ctg Leu											912
aac Asn 305	gaa Glu	ttg Leu	cta Leu	aaa Lys	agt Ser 310	gag Glu	cag Gln	ctc Leu	tta Leu	aca Thr 315	gct Ala	agc Ser	gaa Glu	cgt Arg	aac Asn 320	960
tta Leu	gac Asp	ttc Phe	aga Arg	gat Asp 325	tta Leu	tac Tyr	gat Asp	cct Pro	cgt Arg 330	gat Asp	aag Lys	gct Ala	aaa Lys	cta Leu 335	ctc Leu	1008

tac aac Tyr Asn															1056
aaa gta Lys Val															1104
atg ggc Met Gly 370	Lys														1152
gat aaa Asp Lys 385															1200
cgt tat Arg Tyr															1242
taa															1245
<210> 2 <211> 4 <212> P <213> S	RT	toco	ccus	equi	isimi	ilis									
<400> 2	_										_				
Ile Ala 1	Gly	Pro	Glu 5	Trp	Leu	Leu	Asp	Arg 10	Pro	Ser	Val	Asn	Asn 15	Ser	
Gln Leu	Val	Val 20	Ser	Val	Ala	Gly	Thr 25	Val	Glu	Gly	Thr	Asn 30	Gln	Asp	
Ile Ser	Leu 35		Phe	Phe	Glu	Ile 40		Leu	Thr	Ser	Arg 45		Ala	His	
Gly Gly 50		Thr	Glu	Gln	Gly 55		Ser	Pro	Lys	Ser 60		Pro	Phe	Ala	
Thr Asp	Ser	Gly	Ala	Met 70		His	Lys	Leu	Glu 75		Ala	Asp	Leu	Leu 80	
Lys Ala	Ile	Gln	Glu 85		Leu	Ile	Ala	Asn 90		His	Ser	Asn	Asp 95	-	
Tyr Phe	Glu	Val 100		Asp	Phe	Ala	Ser 105		Ala	Thr	Ile	Thr 110		Arg	
Asn Gly	Lys 115		Tyr	Phe	Ala	Asp 120		Asp	Gly	Ser	Val 125	_	Leu	Pro	
Thr Gln 130	Pro	Val	Gln	Glu	Phe 135		Leu	Ser	Gly	His 140		Arg	Val	Arg	
Pro Tyr		Glu	Lys			Gln	Asn	Gln			Ser	Val	Asp		
145 Glu Tyr	Thr	Val		150 Phe	Thr	Pro	Leu		155 Pro	Asp	Asp	Asp		160 Arg	
Pro Gly	Leu	_	165 Asp	Thr	Lys	Leu		170 Lys	Thr	Leu	Ala		175 Gly	Asp	
Thr Ile		180 Ser	Gln	Glu	Leu		185 Ala	Gln	Ala	Gln		190 Ile	Leu	Asn	
Lys Asn		Pro	Gly	Tyr		200 Ile	Tyr	Glu	Arg		205 Ser	Ser	Ile	Val	
210 Thr His		Asn	Asp	Ile	215 Phe	Arg	Thr	Ile		220 Pro	Met	Asp	Gln		
225 Phe Thr	Tur	Ara	Val	230 Lvs	Agn	Ara	Glu	Gln	235 Ala	Tvr	Ara	Ile	Agn	240 Lvs	
	_	_	245	_		_		250		_	_		255	_	
Lys Ser	Gly	Leu 260	Asn	Glu	Glu	IIe	Asn 265	Asn	Tnr	Asp	rea	270	ser	GIU	

Lys	Tyr	Tyr 275	Val	Leu	Lys	Lys	Gly 280	Glu	Lys	Pro	Tyr	Asp 285	Pro	Phe	Asp	
Arg	Ser 290	His	Leu	ГÀв	Leu	Phe 295	Thr	Ile	Lys	Tyr	Val 300	Asp	Val	Asp	Thr	
Asn	Glu	Leu	Leu	Lys	Ser	Glu	Gln	Leu	Leu	Thr	Ala	Ser	Glu	Arg	Asn	
305				-2-	310					315				9	320	
	Asp	Phe	Arg	Asp 325	Leu	Tyr	Asp	Pro	Arg 330	Asp	Lys	Ala	Lys	Leu 335		
Tyr	Asn	Asn	Leu 340		Ala	Phe	Gly	Ile 345		Asp	Tyr	Thr	Leu 350		Gly	
Lys	Val	Glu 355		Asn	His	Asp	Asp 360		Asn	Arg	Ile	Ile 365		Val	Tyr	
Met	Gly 370		Arg	Pro	Glu	Gly 375		Asn	Ala	Ser	Tyr 380		Leu	Ala	Tyr	
Asp 385	Lys	Asp	Arg	Tyr	Thr 390	Glu	Glu	Glu	Arg	Glu 395	Val	Tyr	Ser	Tyr	Leu 400	
	Tyr	Thr	Gly	Thr 405	Pro	Ile	Pro	Asp	Asn 410		Asn	Asp	Lys			
<212	l> 77 2> Di		sapi€	ens												
<220)>															
<221	L> CI	s														
<222	2> (3	L)	. (777	7)												
<400																
					gtt											48
Gln	Ala	Gln	Gln	Met	Val	Gln	Pro	Gln	Ser	Pro	Val	Ala	Val	Ser	Gln	
1				5					10					15		
200	224	~~~	~~+	+~+	+ =+	~~~	22+	~~~	222	a aa	+ =+	~~~	2+2	22+		96
					tat Tyr											90
Ser	гур	PIO	20	Cys	TAT	Asp	Wall	25	гля	птв	TÄT	GIII	30	ABII	GIII	
			20					25					30			
сас	taa	σασ	caa	acc	tac	cta	aat	aat	ata	tta	att	tat	act	tat	tat	144
					Tyr											144
GIII	пр	35	nrg	1111	TYL	Deu	40	non	Val	nea	Val	45	T 111	Cyb	TYL	
		33					40					43				
gga	gga	agc	cga	aat	ttt	aac	tac	gaa	agt	aaa	cct	gaa	act	gaa	gag	192
					Phe											
	50		5	2		55	- 4			-1-	60					
act	tgc	ttt	gac	aag	tac	act	ggg	aac	act	tac	cga	gtg	ggt	gac	act	240
					Tyr											
65	_				70					75	-				80	
					gac											288
Tyr	Glu	Arg	Pro		Asp	Ser	Met	Ile		Asp	Сув	Thr	Cys		Gly	
				85					90					95		
					a.t		L .L		a.t				L			226
					ata											336
Ala	GTÄ	arg		arg	Ile	ser	CAR		116	WIG	ABN	Arg		uta	GIU	
			100					105					110			
~~~	~~+	<b>^</b> 2~	+00	+20	227	2++	~~+	~~~	200	+~~	200	200	000	cat	~~~	384
					aag Lys											304
GIY	GTÅ	115	PET	+ 1 +	-y 5	**	120	woħ	- 11L	+-ħ	y	125	TTU		- Lu	
		J					120					123				

						gtg Val						432
						gag Glu						480
						acg Thr						528
						ctg Leu 185						576
	_		_	_	_	aac Asn	_	_	_			624
						aag Lys						672
						ggc Gly						720
						tcg Ser						768
_	gtt Val	-										777

<210> 4

<211> 259

<212> PRT

<213> Homo sapiens

<400> 4 Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Val Ser Gln 10 Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln Ile Asn Gln 25 Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys Thr Cys Tyr 40 Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro Glu Ala Glu Glu 55 Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg Val Gly Asp Thr 65 70 75 80 Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys Thr Cys Ile Gly 85 90 Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn Arg Cys His Glu 105 Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg Arg Pro His Glu 120 125 115 Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly Asn Gly Lys Gly 130 135 140

```
Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe Asp His Ala Ala
                    150
Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys Pro Tyr Gln Gly
                165
                                     170
Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly Ser Gly Arg Ile
                                185
            180
                                                     190
Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp Thr Arg Thr Ser
                            200
        195
Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn Arg Gly Asn Leu
                        215
    210
                                             220
Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu Trp Lys Cys Glu
                    230
                                         235
Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser Gly Pro Phe Thr
                245
                                    250
Asp Val Arg
<210> 5
<211> 1377
<212> DNA
<213> Streptococcus equisimilis
<400> 5
qcacccqtqq ccagqaccca acqctqcccq agatctcqat cccqcqaaat taatacqact
                                                                        60
cactataggg agaccacaac ggtttccctc tagaaataat tttgtttaac tttaagaagg
                                                                       120
agatatacca tgattgctgg acctgagtgg ctgctagacc gtccatctgt caacaacagc
                                                                       180
caattggttg ttagcgttgc tggtactgtt gaggggacga atcaagacat tagtcttaaa
                                                                       240
ttttttgaaa tcgatctaac atcacgacct gctcatggag gaaagacaga gcaaggctta
                                                                       300
agtocaaaat caaaaccatt tgctactgat agtggcgcga tgtcacataa acttgagaaa
                                                                       360
                                                                       420
gctgacttac taaaggctat tcaagaacaa ttgatcgcta acgtccacag taacgacgac
tactttgagg tcattgattt tgcaagcgat gcaaccatta ctgatcgaaa cggcaaggtc
                                                                       480
tactttgctg acaaagatgg ttcggtaacc ttgccgaccc aacctgtcca agaatttttg
                                                                       540
ctaagcggac atgtgcgcgt tagaccatat aaagaaaaac caatacaaaa ccaagcgaaa
                                                                       600
totgitgatg tggaatatac tgtacagttt actocottaa accotgatga cgatitoaga
                                                                       660
ccaggtetea aagataetaa getattgaaa acaetageta teggtgacae cateacatet
                                                                       720
caagaattac tagctcaagc acaaagcatt ttaaacaaaa accacccagg ctatacgatt
                                                                       780
tatgaacgtg actcctcaat cgtcactcat gacaatgaca ttttccgtac gattttacca
                                                                       840
                                                                       900
atggatcaag agtttactta ccgtgttaaa aatcgggaac aagcttatag gatcaataaa
                                                                       960
aaatctggtc tgaatgaaga aataaacaac actgacctga tctctgagaa atattacgtc
cttaaaaaag gggaaaagcc gtatgatccc tttgatcgca gtcacttgaa actgttcacc
                                                                      1020
atcaaatacg ttgatgtcga taccaacgaa ttgctaaaaa gtgagcagct cttaacagct
                                                                      1080
agegaaegta aettagaett cagagattta taegateete gtgataagge taaaetaete
                                                                      1140
tacaacaatc tcgatgcttt tggtattatg gactatacct taactggaaa agtagaggat
                                                                      1200
aatcacgatg acaccaaccg tatcataacc gtttatatgg gcaagcgacc cgaaggagag
                                                                      1260
aatgctagct atcatttagc ctatgataaa gatcgttata ccgaagaaga acgagaagtt
                                                                      1320
tacaqctacc tgcgttatac agggacacct atacctgata accctaacga caaataa
                                                                      1377
<210> 6
<211> 1327
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetically generated primer
                                                                        60
taatacqact cactataqqq aqaccacaac qqtttccctc tagaaataat tttqtttaac
tttaagaagg agatatacca tgatagctgg tcctgaatgg ctactagatc gtccttctgt
                                                                       120
                                                                       180
aaataacagc caattggttg ttagcgttgc tggtactgtt gaggggacga atcaagacat
tagtottaaa ttttttgaaa togatotaac atcacgacot gotcatggag gaaagacaga
                                                                       240
gcaaggetta agtecaaaat caaaaccatt tgetactgat agtggegega tgteacataa
                                                                       300
                                                                       360
acttgagaaa gctgacttac taaaggctat tcaagaacaa ttgatcgcta acgtccacag
```

```
420
taacqacqac tactttgagg tcattgattt tgcaagcgat gcaaccatta ctgatcgaaa
cggcaaggtc tactttgctg acaaagatgg ttcggtaacc ttgccgaccc aacctgtcca
                                                                           480
agaatttttg ctaagcggac atgtgcgcgt tagaccatat aaagaaaaac caatacaaaa
                                                                          540
ccaagcgaaa tctgttgatg tggaatatac tgtacagttt actcccttaa accctgatga
                                                                          600
cqatttcaga ccaggtctca aagatactaa gctattgaaa acactagcta tcggtgacac
                                                                          660
                                                                          720
catcacatct caagaattac tagctcaagc acaaagcatt ttaaacaaaa accacccagg
                                                                          780
ctatacgatt tatgaacgtg actcctcaat cgtcactcat gacaatgaca ttttccgtac
gattttacca atggatcaag agtttactta ccgtgttaaa aatcgggaac aagcttatag
                                                                          840
gatcaataaa aaatctggtc tgaatgaaga aataaacaac actgacctga tctctgagaa
                                                                          900
atattacgtc cttaaaaaag gggaaaagcc gtatgatccc tttgatcgca gtcacttgaa actgttcacc atcaaatacg ttgatgtcga taccaacgaa ttgctaaaaa gtgagcagct
                                                                          960
                                                                         1020
cttaacaget agegaacgta acttagactt cagagattta tacgateete gtgataagge
                                                                         1080
taaactactc tacaacaatc tcgatgcttt tggtattatg gactatacct taactggaaa
                                                                         1140
agtagaggat aatcacgatg acaccaaccg tatcataacc gtttatatgg gcaagcgacc
                                                                         1200
cqaaqqaqaq aatqctaqct atcatttagc ctatgataaa gatcgttata ccgaaqaaga
                                                                         1260
acqaqaagtt tacaqctacc tgcgttatac agggacacct atacctgata accctaacga
                                                                         1320
                                                                         1327
caaataa
<210> 7
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetically generated primer
<221> CDS
<222> (2)...(52)
<400> 7
                                                                           49
g aat gct agc tac cat tta gct ggt ggc cag gcg caa cag att gta
  Asn Ala Ser Tyr His Leu Ala Gly Gly Gly Gln Ala Gln Gln Ile Val
                                                                           52
CCC
Pro
<210> 8
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetically generated protein
<400> 8
Asn Ala Ser Tyr His Leu Ala Gly Gly Gly Gln Ala Gln Gln Ile Val
  1
Pro
<210> 9
<211> 1541
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetically generated primer
```

```
<400> 9
tttgtttaac tttaagaagg agatatacca tgatagctgg tcctgaatgg ctactagatc
                                                                        60
gtccttctgt aaataacagc caattggttg ttagcgttgc tggtactgtt gaggggacga
                                                                       120
atcaagacat tagtettaaa ttttttgaaa tegatetaae atcaegacet geteatggag
                                                                       180
gaaagacaga gcaaggctta agtccaaaat caaaaccatt tgctactgat agtggcgcga
                                                                       240
tqtcacataa acttqaqaaa qctqacttac taaaqqctat tcaaqaacaa ttqatcqcta
                                                                       300
                                                                       360
acgtccacag taacgacgac tactttgagg tcattgattt tgcaagcgat gcaaccatta
                                                                       420
ctgatcgaaa cggcaaggtc tactttgctg acaaagatgg ttcggtaacc ttgccgaccc
                                                                       480
aacctgtcca agaatttttg ctaagcggac atgtgcgcgt tagaccatat aaagaaaaac
caatacaaaa ccaagcgaaa tctgttgatg tggaatatac tgtacagttt actcccttaa
                                                                       540
                                                                       600
accetgatga egattteaga eeaggtetea aagataetaa getattgaaa acaetageta
toggtgacac catcacatot caagaattac tagotcaago acaaagcatt ttaaacaaaa
                                                                       660
accacccagg ctatacgatt tatgaacgtg actcctcaat cgtcactcat gacaatgaca
                                                                       720
ttttccgtac gattttacca atggatcaag agtttactta ccgtgttaaa aatcgggaac
                                                                       780
aagettatag gatcaataaa aaatetggte tgaatgaaga aataaacaac aetgaeetga
                                                                       840
tctctgagaa atattacgtc cttaaaaaag gggaaaagcc gtatgatccc tttgatcgca
                                                                       900
gtcacttgaa actgttcacc atcaaatacg ttgatgtcga taccaacgaa ttgctaaaaa
                                                                       960
                                                                      1020
gtgagcaget ettaacaget agegaacgta acttagaett cagagattta tacgateete
                                                                      1080
gtgataaggc taaactactc tacaacaatc tcgatgcttt tggtattatg gactatacct
taactggaaa agtagaggat aatcacgatg acaccaaccg tatcataacc gtttatatgg
                                                                      1140
gcaagcgacc cgaaggagag aatgctagct accatttagc tggtggtggc caggcgcaac
                                                                      1200
agattgtacc catagctgag aagtgttttg atcatgctgc tgggacttcc tatgtggtcg
                                                                      1260
                                                                      1320
gagaaacgtg ggagaagccc taccaaggct ggatgatggt agattgtact tgcctgggag
                                                                      1380
aaggcagcgg acgcatcact tgcacttcta gaaatagatg caacgatcag gacacaagga
                                                                      1440
catcctatag aattggagac acctggagca agaaggataa tcgaggaaac ctgctccagt
                                                                      1500
gcatctgcac aggcaacggc cgaggagagt ggaagtgtga gaggcacacc tctgtgcaga
ccacatcgag cggatctggc cccttcaccg atgttcgtta g
                                                                      1541
<210> 10
<211> 1661
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetically generated primer
<400> 10
                                                                        60
gcaaccccgc cagcctagcc gggtcctcaa cgacaggagc acgatcatgc gcacccgtgg
ccaggaccca acgctgcccg agatctcgat cccgcgaaat taatacgact cactataggg
                                                                       120
agaccacaac ggtttccctc tagaaataat tttgtttaac tttaagaagg agatatacca
                                                                       180
                                                                       240
tgattgetgg acctgagtgg ctgctagacc gtccatctgt caacaacagc caattggttg
ttagcgttgc tggtactgtt gaggggacga atcaagacat tagtcttaaa ttttttgaaa
                                                                       300
togatotaac atcacgacot gotoatggag gaaagacaga gcaaggotta agtocaaaat
                                                                       360
                                                                       420
caaaaccatt tgctactgat agtggcgcga tgtcacataa acttgagaaa gctgacttac
taaaggotat toaagaacaa tigatogota acgtocacag taacgacgac tactttgagg
                                                                       480
tcattgattt tgcaagcgat gcaaccatta ctgatcgaaa cggcaaggtc tactttgctg
                                                                       540
                                                                       600
acaaagatgq ttcggtaacc ttgccgaccc aacctgtcca agaatttttg ctaagcggac
                                                                       660
atgtgcgcgt tagaccatat aaagaaaaac caatacaaaa ccaagcgaaa tctgttgatg
                                                                       720
tggaatatac tgtacagttt actcccttaa accctgatga cgatttcaga ccaggtctca
aagatactaa gotattgaaa acactagota toggtgacac catcacatot caagaattac
                                                                       780
                                                                       840
tagctcaagc acaaagcatt ttaaacaaaa accacccagg ctatacgatt tatgaacgtg
actoctoaat ogtoactoat gacaatgaca ttttccgtac gattttacca atggatcaag
                                                                       900
                                                                       960
agtttactta ccgtgttaaa aatcgggaac aagcttatag gatcaataaa aaatctggtc
                                                                      1020
tgaatgaaga aataaacaac actgacctga tctctgagaa atattacgtc cttaaaaaag
gggaaaagcc gtatgatccc tttgatcgca gtcacttgaa actgttcacc atcaaatacg
                                                                      1080
ttgatgtoga taccaacgaa ttgctaaaaa gtgagcagct cttaacagct agcgaacgta
                                                                      1140
acttagactt cagagattta tacgatecte gtgataagge taaactacte tacaacaate
                                                                      1200
                                                                      1260
tegatgettt tggtattatg gactatacet taactggaaa agtagaggat aatcacgatg
                                                                      1320
acaccaaccg tatcataacc gtttatatgg gcaagcgacc cgaaggagag aatgctagct
                                                                      1380
atcatttagc cggtggtggt caggcgcagc aaatggttca gccccagtcc ccggtggctg
tcagtcaaag caagcccggt tgttatgaca atggaaaaca ctatcagata aatcaacagt
                                                                      1440
```

gggagcggac ctacctaggt aatgtgttgg tttgtacttg ttatggagga agccgaggtt

1500

```
ttaactgcga aagtaaacct gaagctgaag agacttgctt tgacaagtac actgggaaca
                                                                        1560
cttaccgagt gggtgacact tatgagcgtc ctaaagactc catgatctgg gactgtacct
                                                                        1620
gcatcggggc tgggcgaggg agaataagct gtaccatcta a
                                                                        1661
<210> 11
<211> 1782
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetically generated primer
<400> 11
tegetteacg ttegetegeg tateggtgat teattetget aaccagtaag geaaceeege
                                                                          60
cagoctagec gggtcctcaa cgacaggage acgateatge geaccegtgg ccaggaceca
                                                                         120
acgetgeecg agatetegat ecegegaaat taatacgaet eactataggg agaceacaac
                                                                         180
ggtttccctc tagaaataat tttgtttaac tttaagaagg agatatacca tggtgcaagc
                                                                         240
acaacagatt gtacccatag ctgagaagtg ttttgatcat gctgctggga cttcctatgt
                                                                         300
ggtcggagaa acgtgggaga aggcagcgga cgcatcactt gcacttctag aaatagatqc
                                                                         360
aacgatcagg acacaaggac atcctataga attggagaca cctggagcaa gaaggataat
                                                                         420
cgaggaaacc tgctccagtg catctgcaca ggcaacggcc gaggagagtg gaagtgtgag
aggcacacct ctgtgcagac cacatcgagc ggatctggcc ccttcaccga tgttcgtatt
                                                                         480
                                                                         540
gctggacctg agtggctgct agaccgtcca tctgtcaaca acagccaatt ggttgttagc
                                                                         600
gttgctggta ctgttgaggg gacgaatcaa gacattagtc ttaaattttt tgaaatcgat
                                                                         660
ctaacatcac gacctgctca tggaggaaag acagagcaag gcttaagtcc aaaatcaaaa
                                                                         720
ccatttgcta ctgatagtgg cgcgatgtca cataaacttg agaaagctga cttactaaag
                                                                         780
gctattcaag aacaattgat cgctaacgtc cacagtaacg acgactactt tgaggtcatt
                                                                         840
gattttgcaa gcgatgcaac cattactgat cgaaacggca aggtctactt tqctqacaaa
                                                                         900
gatggttcgg taaccttgcc gacccaacct gtccaagaat ttttgctaag cggacatgtg
                                                                         960
cgcgttagac catataaaga aaaaccaata caaaaccaag cgaaatctgt tgatgtggaa
                                                                        1020
tatactgtac agtttactcc cttaaaccct gatgacgatt tcagaccagg tctcaaagat
                                                                        1080
actaagctat tgaaaacact agctatcggt gacaccatca catctcaaga attactagct
                                                                        1140
caagcacaaa gcattttaaa caaaaaccac ccaggctata cgatttatga acgtgactcc
                                                                        1200
tcaatcgtca ctcatgacaa tgacattttc cgtacgattt taccaatgga tcaagagttt
                                                                        1260
acttaccgtg ttaaaaatcg ggaacaagct tataggatca ataaaaaatc tggtctgaat
                                                                        1320
gaagaaataa acaacactga cctgatctct gagaaatatt acgtccttaa aaaaqqqqaa
                                                                        1380
aagccgtatg atccctttga tcgcagtcac ttgaaactgt tcaccatcaa atacgttgat
                                                                        1440
gtcgatacca acgaattgct aaaaagtgag cagctcttaa cagctagcga acgtaactta
                                                                        1500
gacttcagag atttatacga tcctcgtgat aaggctaaac tactctacaa caatctcgat
                                                                        1560
gcttttggta ttatggacta taccttaact ggaaaagtag aggataatca cgatgacacc
                                                                        1620
aaccgtatca taaccgttta tatgggcaag cgacccgaag gagagaatgc tagctatcat
                                                                        1680
ttagcctatg ataaagatcg ttataccgaa gaagaacgag aagtttacag ctacctgcgt
                                                                        1740
tatacaggga cacctatacc tgataaccct aacgacaaat aa
                                                                        1782
<210> 12
<211> 2096
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetically generated primer
<400> 12
cgaagaccat tcatgttgtt gctcaggtcg cagacgtttt gcagcagcag tcgcttcacg
                                                                          60
ttcgctcgcg tatcggtgat tcattctgct aaccagtaag gcaaccccgc cagcctagcc
                                                                         120
gggtcctcaa cgacaggagc acgatcatgc gcacccgtgg ccaggaccca acgctgcccg
                                                                         180
agatotogat coogogaaat taatacgact cactataggg agaccacaac ggtttccctc
                                                                         240
tagaaataat tttgtttaac tttaagaagg agatatacca tggtgcaagc acaacagatt
                                                                         300
gtacccatag ctgagaagtg ttttgatcat gctgctggga cttcctatgt ggtcggagaa
                                                                         360
acgtgggaga aggcagcgga cgcatcactt gcacttctag aaatagatgc aacgatcagg
                                                                         420
                                                                         480
acacaaggac atcctataga attggagaca cctggagcaa gaaggataat cgaggaaacc
tgetecagtg catetgeaca ggcaacggee gaggagtg gaagtgtgag aggcacacet
                                                                         540
```

ctgtgcagac cacatcgagc ggatctggcc cc	ttcaccga	tgttcgtatt	gctggacctg	600
agtggctgct agaccgtcca tctgtcaaca ac				660
ctgttgaggg gacgaatcaa gacattagtc tt				720
				780
gacctgctca tggaggaaag acagagcaag gc				
ctgatagtgg cgcgatgtca cataaacttg ag				840
aacaattgat cgctaacgtc cacagtaacg ac	gactactt	tgaggtcatt	gattttgcaa	900
gcgatgcaac cattactgat cgaaacggca ag	gtctactt	tgctgacaaa	gatggttcgg	960
taaccttgcc gacccaacct gtccaagaat tt				1020
catataaaga aaaaccaata caaaaccaag cg				1080
agtttactcc cttaaaccct gatgacgatt tc				1140
				1200
tgaaaacact agctatcggt gacaccatca ca	itctcaaga	attactaget	caagcacaaa	
gcattttaaa caaaaaccac ccaggctata cg				1260
ctcatgacaa tgacattttc cgtacgattt ta				1320
ttaaaaatcg ggaacaagct tataggatca at	aaaaaatc	tggtctgaat	gaagaaataa	1380
acaacactga cctgatctct gagaaatatt ac	gtccttaa	aaaaqqqqaa	aagccgtatg	1440
atccctttga tcgcagtcac ttgaaactgt tc				1500
acgaattgct aaaaagtgag cagctcttaa ca	actacca	acotaactta	gacttcacac	1560
atttatacga tcctcgtgat aaggctaaac ta	estatadaa	castatacat	cottttagag	1620
ttatggacta taccttaact ggaaaagtag ag				1680
taaccgttta tatgggcaag cgacccgaag ga				1740
gtggccaggc gcaacagatt gtacccatag ct	:gagaagtg	ttttgatcat	gctgctggga	1800
cttcctatgt ggtcggagaa acgtgggaga ag	ccctacca	aggctggatg	atggtagatt	1860
gtacttgcct gggagaaggc agcggacgca to				1920
atcaggacac aaggacatcc tatagaattg ga				1980
gaaacctgct ccagtgcatc tgcacaggca ac				2040
				2096
acacctctgt gcagaccaca tcgagcggat ct	.ggccccct	Caccyatytt	cyclag	2090
<210> 13				
<211> 53				
<212> DNA				
<213> Artificial Sequence				
•				
<220>				
<223> Synthetically generated prime	r			
12237 Synchecically generated prime.	-			
400× 13				
<400> 13				
catgataget ggtcctgaat ggctactaga to	greerrer	gtaaataaca	gcc	53
<210> 14				
<211> 53				
<212> DNA				
<213> Artificial Sequence				
Table incommendation				
<220>				
<223> Synthetically generated prime	er			
<400> 14				
aattggctgt tatttacaga aggacgatct ag	tagccatt	caggaccagc	tat	53
	. •	-		
<210> 15				
<211> 25		1		
<212> DNA				
<213> Artificial Sequence				
.000				
<220>				
<223> Synthetically generated prime	er			
<400> 15				
cagccaattg gttgttagcg ttgct				25
<210> 16				
<211> 47				

<212> <213>	DNA Artificial Sequence	
<220> <223>	Synthetically generated primer	
<400> ccggaa	16 attcg cgcaacagat tgtacccata gctgagaagt gttttga	47
<210> <211> <212> <213>	43	
<220> <223>	Synthetically generated primer	
<400> ggcctt	17 :aaga gegetetaae gaacateggt gaaggggegt eta	43
<210> <211> <212> <213>	52	
<220> <223>	Synthetically generated primer	
<400> gaatgo	18 stage taccatttag etggtggtgg ceaggegeaa eagattgtae ee	52
<210> <211> <212> <213>	59	
<220> <223>	Synthetically generated primer	
<400> gtacgg	19 gatec gaatgetage tateatttag egggtggtgg teaggegeag eaaatggtt	59
<210> <211> <212> <213>	39	
<220> <223>	Synthetically generated primer	
<400> ggcctt	20 aaga gcgctctatt agatggtaca gcttattct	39
<210> <211> <212> <213>	44	
<220> <223>		

<400> 21 ccatggtgca agcacaacag attgtaccca tagctgagaa gtgt	44
<210> 22 <211> 40 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetically generated primer	
<400> 22 ctcaggtcca gcaatacgaa catcggtgaa ggggccagat	40
<210> 23 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetically generated primer	
<400> 23 ttcaccgatg ttcgtattgc tggacctgag tggctgctag ac	42
<210> 24 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetically generated primer	
<400> 24 tggttttgat tttggactta agccttg	27

