Assignment -2

Data Visualization and Pre-processing

Assignment Date	27 September 2022
Student Name	A. Muthamizhan
Student Roll Number	912419104018
Maximum Marks	2 Marks

Task 1:

1. Download the dataset: <u>Dataset</u>

- Assignment-2

1. Download the dataset: Dataset

Task 2:

2.Loading the Churn Modelling dataset

Solution:

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

import warnings
warnings.filterwarnings("ignore")

▼ 2.Loading the Churn_Modelling dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings("ignore")
```

from google.colab import drive drive.mount('/content/drive')

```
[ ] from google.colab import drive drive.mount('<u>/content/drive</u>')
```

Mounted at /content/drive

data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Churn Modelling.csv")

data.info()

```
[ ] data = pd.read_csv("/content/drive/MyDrive/Churn_Modelling.csv")
[ ] data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10000 entries, 0 to 9999
     Data columns (total 14 columns):
                      Non-Null Count Dtype
      # Column
      0 RowNumber
                            10000 non-null int64
          CustomerId
                            10000 non-null int64
10000 non-null object
          Surname
          CreditScore
Geography
Gender
                             10000 non-null int64
                            10000 non-null object
10000 non-null object
                             10000 non-null int64
```

data.head()

dat	a.head()													
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exite
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	

data.head()

```
[ ] data.tail()
        RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
         9996 15606229 Obijiaku 771 France Male 39 5 0.00
                                                                     2 1 0 96270.64
    9995
                                   516 France Male 35
                                                        10 57369.61
                                                                                                    101699.77
    9996
           9997 15569892 Johnstone
          9998 15584532 Liu 709 France Female 36 7 0.00
    9997
                                                                                                  42085.58
           9999 15682355 Sabbatini
    9998
                                 772 Germany Male 42 3 75075.31
        10000 15628319 Walker 792 France Female 28 4 130142.79
```

data.shape

[] data.shape
(10000, 14)

Task 3:

3. Visualization of Dataset

Univariate Analysis

• Distribution Plot

Solution:

sns.displot(data['Age'], color ='skyblue')

3. Visualization of Dataset

→ Univariate Analysis

Distriution Plot

300 200

```
[] sns.displot(data['Age'], color ='skyblue')

<seaborn.axisgrid.FacetGrid at 0x7fe54134b650>

800 - 700 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 600 - 6
```

sns.distplot(data["Age"],hist=False,color='skyblue')

sns.distplot(data["Age"],hist=False,color='skyblue')

C * (matplotlib.axes._subplots.AxesSubplot at 0x7fe53dfc9b50>)

0.04

0.03

0.02

0.01

0.00

20

40

60

80

100

Histograms

data['Geography'].value_counts()

```
[ ] data['Geography'].value_counts()
```

```
France 5014
Germany 2509
Spain 2477
Name: Geography, dtype: int64
```

plt.hist(x=data.Geography, bins=6, color='blue')
plt.title("Geographic Distribution of Population with CreditCard")
plt.xlabel("Geography")
plt.ylabel("Population")
plt.show()

```
[ ] plt.hist(x=data.Geography, bins=6, color='blue')
   plt.title("Geographic Distribution of Population with CreditCard")
   plt.xlabel("Geography")
   plt.ylabel("Population")
   plt.show()
```


sns.histplot(x=data.Age,hue=data['Tenure'], bins =10,)

[] sns.histplot(x=data.Age,hue=data['Tenure'], bins =10,)

Bar Plot

data['Gender'].value_counts()

```
Bar Plot

[ ] data['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64
```

pd.crosstab(data['Gender'], data['Geography']).plot(kind='bar')

• Box Plot

sns.boxplot(data["Age"],color='blue')

Bivariate Analysis

sns.barplot(data['Geography'], data["Age"])

- Bivariate Analysis

sns.barplot(data["NumOfProducts"],data["Age"])

data['HasCrCard'].value_counts()

```
[ ] data['HasCrCard'].value_counts()

1 7055
0 2945
Name: HasCrCard, dtype: int64
```

data['HasCrCard'].value_counts().head(20).plot.bar()

• Line Chart

sns.lineplot(data['Age'], data['CreditScore'])

[] sns.lineplot(data['Age'], data['CreditScore'])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe53d61e7d0>

800
700 -

Multi-Variate Analysis

500

Line Chart

• Scatter Plot

data['IsActiveMember'].value_counts()

▼ Multi-Variate Analysis

Scatter Plot

[] data['IsActiveMember'].value_counts()

1 5151
0 4849
Name: IsActiveMember, dtype: int64

sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

• Point Plot

sns.pointplot(x=data['NumOfProducts'],y=data['Tenure'],color='skyblue')

[] sns.pointplot(x=data['NumOfProducts'],y=data['Tenure'],color='skyblue')

HeatMap

data.head()

850 Spain Female 43 2 125510.82

data_cor = data.iloc[:,3:].corr()
data_cor

[] data_cor = data.iloc[:,3:].corr()
 data_cor

4 5 15737888 Mitchell

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
Estimated Salary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

plt.figure(figsize = (16,8)) sns.heatmap(data cor,linecolor='white',linewidth=0.5, annot=True)

• Pair Plot

data.head()sns.pairplot(data=data[["Age","Tenure","Balance","NumOfProducts"]],ki nd="kde",)

Task 4:

4. Descriptive Statistic Analysis

- 1. Mean
- 2. Medium
- 3. Mode
- 4. Standard Deviation
- 5. Variance

Solution:

data.describe().T

- ▼ 4.Descriptive Statistic Analysis
 - 1 Mean
 - 2. Medium
 - 3. Mode
 - 4. Standard Deviation
 - 5. Variance

data['Age'].mean()

```
[ ] data['Age'].mean()
38.9218
```

data['Age'].median()

```
[ ] data['Age'].median()
37.0
```

data['Age'].mode()

data['EstimatedSalary'].mean()

```
[ ] data['EstimatedSalary'].mean()
100090.239881
```

data['EstimatedSalary'].median(),)

```
[] data['EstimatedSalary'].mode())

[] data['EstimatedSalary'].mode())

[] data['EstimatedSalary'].mode()

[] data['Balance'].mean()

[] data['Balance'].mean()

76485.889288

data['CreditScore'].std()

[] data['Fenure'].var()

[] data['Tenure'].var()

[] data['Tenure'].var()

[] data['Tenure'].var()
```

Task 5:

5. Handling Missing Values

Solution:

data.isna().any()

▼ 5.Handling Missing Values

```
RowNumber False
CustomerId False
Surname False
CreditScore False
Geography False
Gender False
Age False
Tenure False
Balance False
NumOfProducts False
HasCrCard False
IsActiveNember False
EstimatedSalary False
Exited False
dtype: bool
```

data.isnull().sum()

Task 6:

6. Finding Outliers and Replacing Them

Solution:

```
outliers = data.quantile(q=(0.25,0.75)) outliers
```

▼ 6. Finding Outliers and Replacing Them

```
[] outliers = data.quantile(q=(0.25,0.75))

[] outliers

| RowNumber | CustomerId | CreditScore | Age | Tenure | Balance | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exited | IsactiveMember | EstimatedSalary | Exited | IsactiveMember | Isact
```

```
iqr = outliers.loc[0.75]-outliers.loc[0.25] iqr[2:]
```

upper[2:]

```
[ ] upper = outliers.loc[0.75] + 1.5 * iqr
```

[] upper[2:]

```
        CreditScore
        919.00000

        Age
        62.00000

        Tenure
        13.00000

        Balance
        319110.60000

        NumOfProducts
        3.50000

        HasCrCard
        2.50000

        IsActiveMember
        2.50000

        EstimatedSalary
        296967.45375

        Exited
        0.00000

        dtype: float64
```

lower = outliers.loc[0.25] - 1.5 * iqr lower[2:]

```
[ ] lower = outliers.loc[0.25] - 1.5 * iqr
```

[] lower[2:]

CreditScore	383.00000
Age	14.00000
Tenure	-3.00000
Balance	-191466.36000
NumOfProducts	-0.50000
HasCrCard	-1.50000
IsActiveMember	-1.50000
EstimatedSalary	-96577.09625
Exited	0.00000
dtype: float64	

sns.boxplot(data['Age'], color= 'Coral',)

[] sns.boxplot(data['Age'], color= 'Coral',)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53b08d1d0>

upper['Age']

[] upper['Age']

62.0

data['Age'].mode()

[] data['Age'].mode()

0 37 dtype: int64

sns.boxplot(data['Tenure'], color= 'cyan',)

sns.boxplot(data['EstimatedSalary'], color= 'cyan',)

sns.boxplot(data['CreditScore'], color= 'cyan',)

data['CreditScore'].mode()

```
[ ] data['CreditScore'].mode()
0 850
dtype: int64
```

lower['CreditScore']

```
[ ] lower['CreditScore']
383.0
```

sns.boxplot(data['CreditScore'], color= 'blue',)

```
[ ] data["CreditScore"] = np.where(data["CreditScore"]
[ ] sns.boxplot(data['CreditScore'], color= 'blue',)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53ae93ad0>
```

Task 7:

7. Checking for categorical columns and perform encoding

Solution:

data.info()

▼ 7. Checking for categorical columns and perform encoding

```
[ ] data.info()
      <class 'pandas.core.frame.DataFrame'
RangeIndex: 10000 entries, 0 to 9999</pre>
      Data columns (total 14 columns)
                                   Non-Null Count Dtype
       # Column
       0 RowNumber
                                    10000 non-null
            CustomerId
                                    10000 non-null
             Surname
CreditScore
                                    10000 non-null
                                                          object
int64
                                    10000 non-null
             Geography
Gender
                                    10000 non-null
10000 non-null
             Age
Tenure
                                    10000 non-null
10000 non-null
                                                          int64
            Balance 10000 non-null 10000 non-null 10000 non-null
                                                          int64
       10 HasCrCard
11 IsActiveMember
       11 IsActiveMember 10000 non-null
12 EstimatedSalary 10000 non-null
                                                          int64
      13 Exited 10000 non-null in dtypes: float64(2), int64(9), object(3)
                                    10000 non-null int64
      memory usage: 1.1+ MB
```

data.dtypes.value_counts()

```
[ ] data.dtypes.value_counts()
  int64     9
  object     3
  float64     2
  dtype: int64
```

Label Encoding

```
from sklearn.preprocessing import LabelEncode label = LabelEncoder()
```

data['Gender'] = label.fit_transform(data['Gender'])
data['Geography'] = label.fit_transform(data['Geography'])
data.head(8)

]		ding Ca		riables in	nto numerical	variables									
			preprocessin Encoder()	g import L	_abelEncoder										
]					rm(data[' <mark>Gend</mark> e sform(data['Ge										
]	data.h	iead(8)													
	Ro	wNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exite
	0	1	15634602	Hargrave	619	0	0	42	2	0.00	1	1	1	101348.88	
	1	2	15647311	Hill	608	2	0	41	1	83807.86	1	0	1	112542.58	
	2	3	15619304	Onio	502	0	0	42	8	159660.80	3	1	0	113931.57	
	3	4	15701354	Boni	699	0	0	39	1	0.00	2	0	0	93826.63	
	4	5	15737888	Mitchell	850	2	0	43	2	125510.82	1	1	1	79084.10	
	5	6	15574012	Chu	645	2	1	44	8	113755.78	2	1	0	149756.71	
	6	7	15592531	Bartlett	822	0	1	50	7	0.00	2	1	1	10062.80	
							_								
	7	8	15656148	Obinna	850	1	0	29	4	115046.74	4	1	0	119346.88	

Task 8:

8. Split the data into dependent and independent variables

Solution:

```
data_new = data.drop(['CustomerId', 'Surname', 'RowNumber'], axis = 1)
data_new.info()

data_new.shape

x = data_new.iloc[:,0:10]
y = data_new.iloc[:,10
print(x.shape)
print(y.shape)
print(x.columns)

x.head(8)
```

```
[ ] x = data_new.iloc[:,0:10]
   y = data_new.iloc[:,10]
   print(x.shape)
   print(y.shape)
  print(x.columns)
   (10000, 10)
   [ ] x.head(8)
     CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
     619 0 0 42 2 0.00
                                                1 1 101348.88
   1
             2 0 41 1 83807.86
                                                                  112542.58
         502 0 0 42 8 159660.80
   2
                                                                  113931.57
   3
             0 0 39 1
                                            2
                                                            0
                                                                  93826.63
                                  0.00
     850 2 0 43 2 125510.82
                                                          1 79084.10
                2 1 44 8 113755.78
   5
                                                                  149756.71
                0 1 50 7 0.00
                                                                  10062.80
                1 0 29
          850
                           4 115046.74
                                                                  119346.88
```

Task 9:

9. Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

▼ 9. Split the data into training and testing

```
[] from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(y_test.shape)
print(y_test.shape)

(8000, 10)
(8000, 10)
(2000, 10)
(2000, 10)
```

Task 10:

10. Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)

x_train = pd.DataFrame(x_train)
x_train.head()
```

▼ 10. Scale the independent variables