$\begin{array}{c} \text{Math 20--1} - \text{Operations on Radicals} \\ \text{\tiny Practice Test} \end{array}$

(Simplifying · Combining · Conjugates & Rationalizing · Applications)

Instructions. Show work in the space beside each question. Calculators permitted unless instructed otherwise. For **Numerical Response**, print your answer in the boxes from left to right (no commas or units).

Multiple Choice (1–10)

- 1) $(\sqrt{7})^5$ is equivalent to
 - A. $5\sqrt{7}$
 - B. $7\sqrt{7}$
 - C. $49\sqrt{7}$
 - D. $343\sqrt{7}$
- 2) $\sqrt{\frac{x}{4}}$ is equivalent to
 - A. $\frac{\sqrt{x}}{2}$
 - B. $\frac{\sqrt{x}}{4}$
 - C. $\sqrt{\frac{x}{2}}$
 - D. $2\sqrt{x}$
- 3) $3\sqrt{27} \sqrt{12} + \sqrt{3}$ simplifies to
 - A. $6\sqrt{3}$
 - B. $7\sqrt{3}$
 - C. $8\sqrt{3}$
 - D. $9\sqrt{3}$
- 4) $(\sqrt{18} \sqrt{8})^2$ equals
 - A. 2
 - B. $2\sqrt{2}$
 - C. 4
 - D. $4\sqrt{2}$
- 5) $\frac{3}{\sqrt{5}-\sqrt{2}}$ in simplest form is

- A. $\frac{3(\sqrt{5}-\sqrt{2})}{3}$
- B. $\frac{3(\sqrt{5}-\sqrt{2})}{7}$
- C. $\sqrt{5} \sqrt{2}$
- D. $\sqrt{5} + \sqrt{2}$
- 6) A square is inscribed in a circle of area 100π cm². The exact perimeter of the square is
 - A. $20\sqrt{2}$ cm
 - B. $40\sqrt{2}$ cm
 - C. 80 cm
 - D. 100 cm
- 7) $(2\sqrt{x})(3\sqrt{2x})$ simplifies to
 - A. $12\sqrt{x}$
 - B. $6\sqrt{2x}$
 - C. $6x\sqrt{2}$
 - D. $6x\sqrt{2x}$
- 8) $(7-3\sqrt{5})(7+3\sqrt{5})$ equals
 - A. 4
 - B. $14\sqrt{5}$
 - C. 49 + 45
 - D. $49 6\sqrt{5}$
- 9) $\frac{1}{\sqrt{a} + \sqrt{b}}$ (for a, b > 0) is equivalent to
 - A. $\frac{\sqrt{a} + \sqrt{b}}{a + b}$
 - B. $\frac{\sqrt{a} \sqrt{b}}{(a+b)}$
 - C. $\frac{\sqrt{a} \sqrt{b}}{a b}$
 - D. $\frac{\sqrt{b} \sqrt{a}}{a + b}$
- 10) $\sqrt{50} + 3\sqrt{8} 2\sqrt{18}$ simplifies to
 - A. $3\sqrt{2}$
 - B. $4\sqrt{2}$
 - C. $5\sqrt{2}$
 - D. $6\sqrt{2}$

Numerical Response (11–15)

Record your answer in the boxes.

- 11) The expression $\sqrt{6}(\sqrt{10}-\sqrt{15})+\sqrt{15}(\sqrt{6}-\sqrt{10})$ can be written in simplest form $a\sqrt{b}-c\sqrt{d}$ with positive integers a,b,c,d. The value of a+b+c+d is
- 12) Expand and simplify:

$$\sqrt{2}(5\sqrt{3} - 2\sqrt{6}) + \sqrt{3}(\sqrt{8} - 3\sqrt{6}) = p\sqrt{2} + q\sqrt{3} + r\sqrt{6}.$$

Record the value of p + q + r.

- 13) $(2\sqrt{3} + \sqrt{2})^2 = a + b\sqrt{6}$. Record the value of a + b.
- 14) $\frac{6}{\sqrt{7}-\sqrt{5}} = m\sqrt{7} + n\sqrt{5}$. Record m+n.
- 15) $(3\sqrt{2} + \sqrt{50})(2\sqrt{2} \sqrt{18}) = k$. Record k.

Written Response — 5 marks

A shaded region is made of a rectangle and an attached right triangle. The rectangle has height $\sqrt{24}$ and width $(4\sqrt{3} + \sqrt{6})$. The triangle shares the same height $\sqrt{24}$ and has hypotenuse $\sqrt{96}$ and horizontal leg x.

- 1. Determine x in simplest radical form. (1 mark)
- 2. Determine, in simplest radical form, the *total area* of the shaded region. (3 marks)
- 3. Simplify the exact value of $\sqrt{24} + \sqrt{96} + x$. (1 mark)

Answer Key

- 1) C 6) B
- 2) A 7) C
- 3) C 8) A
- 4) A 9) C
- 5) D 10) C

Numerical Response

• 11)
$$\boxed{2}$$
 $\boxed{8}$ (since $2\sqrt{15} - 5\sqrt{6} \Rightarrow a = 2, b = 15, c = 5, d = 6 \text{ and } 2 + 15 + 5 + 6 = 28$)

• 12)
$$\boxed{-6}$$
 $(-9\sqrt{2} - 4\sqrt{3} + 7\sqrt{6} \Rightarrow p + q + r = -6)$

• 13)
$$\boxed{18}$$
 $((2\sqrt{3})^2 + (\sqrt{2})^2 + 2 \cdot 2\sqrt{3} \cdot \sqrt{2} = 14 + 4\sqrt{6})$

• 14)
$$\boxed{6}$$
 $(\frac{6(\sqrt{7}+\sqrt{5})}{7-5}=3(\sqrt{7}+\sqrt{5}))$

• 15)
$$\boxed{-16}$$
 $(8\sqrt{2})(-\sqrt{2}) = -16$

Written Response (values)

• 1)
$$x = \sqrt{96 - 24} = \sqrt{72} = 6\sqrt{2}$$
.

• 2) Rectangle area =
$$\sqrt{24}(4\sqrt{3} + \sqrt{6}) = 4\sqrt{72} + \sqrt{144} = 24\sqrt{2} + 12$$
.
Triangle area = $\frac{1}{2}(\sqrt{24})(\sqrt{72}) = \frac{1}{2}\sqrt{1728} = 12\sqrt{3}$.
Total = $\boxed{12 + 24\sqrt{2} + 12\sqrt{3}}$.

• 3)
$$\sqrt{24} + \sqrt{96} + x = 2\sqrt{6} + 4\sqrt{6} + 6\sqrt{2} = 6\sqrt{6} + 6\sqrt{2} = 6(\sqrt{6} + \sqrt{2})$$