5.1 ANSWERS TO EXERCISES

5.1 Exercise 1

- 1. i) -818 kJmol⁻¹ ii) -1436 kJmol⁻¹ iii) -113 kJmol⁻¹
 - iv) -101 kJmol⁻¹ v) -94 kJmol⁻¹
- 2. +56 kJmol⁻¹

5.1 Exercise 2

- 1. -362 kJmol⁻¹
- 2. -775 kJmol⁻¹
- 3. a) -386.5 kJmol⁻¹
 - b) lattice energy of CaCl is $-245.5 \text{ kJmol}^{-1}$ this is less exothermic than the lattice energy of CaCl₂ the reaction: $2\text{CaCl}(s) \rightarrow \text{Ca}(s) + \text{CaCl}_2(s)$ is exothermic and so should be spontaneous

5.1 Exercise 3

- 1. +11 kJmol⁻¹
- 2. Ba(OH)₂: -45 kJmol⁻¹, Ca(OH)₂: +80 kJmol⁻¹, Mg(OH)₂: +155 kJmol⁻¹ the more exothermic a reaction, the more likely it is to be spontaneous so Ba(OH)₂ is the most soluble, followed by Ca(OH)₂ and then Mg(OH)₂
- 3. +77 kJmol⁻¹
 this is more endothermic than the enthalpy of solution of NaCl so dissolving AgCl is less spontaneous than dissolving NaCl

5.1 Exercise 4

1. $H = +135 \text{ kJmol}^{-1}$ $S = +334 \text{ JK}^{-1} \text{mol}^{-1}$

Reaction feasible above 404 K (131 °C)

2. $S = -99.4 \text{ JK}^{-1} \text{mol}^{-1}$

Reaction feasible below 462 K (189 $^{\rm o}C);$ the lower the temperature, the higher the yield

3. $S = +305.3 \text{ JK}^{-1} \text{mol}^{-1}$

Reaction feasible above 102 K

so feasible at all temperatures for which water is liquid