Dynamic Maximal Independent Sets

Presentation 1

Thilo L. Fischer May 19, 2020

Outline

Introduction

Intuitive Approach

Simple Dynamic Algorithm

Improved Dynamic Algorithm

Implicit MIS Algorithm

Introduction

Introduction

$$G = (V, E)$$

$$n := |V|$$

$$m := |E|$$

$$\Delta := max\{deg(v)\}$$

Independent Set (IS):

$$\mathcal{M} \subset V$$
: $\forall u, v \in \mathcal{M}$: $\{u, v\} \notin E$

 \mathcal{M} is maximal if (MIS):

$$\nexists$$
 IS $\mathcal{M}':\mathcal{M}\subsetneq\mathcal{M}'$

3

Example MIS

• Orange: in the MIS

• Blue: not in MIS

Intuitive Approach

Intuitive Approach A_T

- Iterate over all vertices
- Check if vertex can be in MIS
- Complexity: $\mathcal{O}(m)$

Intuitive Approach A_T

- Iterate over all vertices
- Check if vertex can be in MIS
- Complexity: $\mathcal{O}(m)$
- Recompute after every update

Types of updates

- Node removal
- Node insertion
- Edge removal
- Edge insertion
- ullet 1 node might leave ${\cal M}$
- ullet up to Δ might enter ${\mathcal M}$

Simple Dynamic Algorithm

Simple Dynamic Algorithm $\mathcal{A}_{\mathcal{S}}$

- ullet Every node has counter of neighbors in ${\mathcal M}$
- If counter = 0: node can be added

Simple Dynamic Algorithm $\mathcal{A}_{\mathcal{S}}$

- ullet Every node has counter of neighbors in ${\mathcal M}$
- If counter = 0: node can be added
- ullet Every node joining/leaving ${\mathcal M}$ has to inform ${\mathcal O}(\Delta)$ neighbors
- ullet amortized time per update: $\mathcal{O}(\Delta)$

Simple Dynamic Algorithm A_S

- ullet Every node has counter of neighbors in ${\mathcal M}$
- If counter = 0: node can be added
- ullet Every node joining/leaving ${\mathcal M}$ has to inform ${\mathcal O}(\Delta)$ neighbors
- ullet amortized time per update: $\mathcal{O}(\Delta)$
- Why? $\mathcal{O}(\Delta)$ insertions costing $\mathcal{O}(\Delta)$ each!

Simple Dynamic Algorithm A_S

- ullet Every node has counter of neighbors in ${\mathcal M}$
- If counter = 0: node can be added
- ullet Every node joining/leaving ${\mathcal M}$ has to inform ${\mathcal O}(\Delta)$ neighbors
- ullet amortized time per update: $\mathcal{O}(\Delta)$
- Why? $\mathcal{O}(\Delta)$ insertions costing $\mathcal{O}(\Delta)$ each!
 - ightarrow Assign cost of next insertion to removal

 \bullet Complexity of $\mathcal{A}_{\mathcal{S}}$ is determined by high degree nodes

- ullet Complexity of \mathcal{A}_S is determined by high degree nodes
- Idea: differentiate between heavy and light vertices
- v is **light** if: $deg(v) < \Delta_C$

- ullet Complexity of $\mathcal{A}_{\mathcal{S}}$ is determined by high degree nodes
- Idea: differentiate between heavy and light vertices
- v is **light** if: $deg(v) < \Delta_C$
- 1. A_S for light vertices
- 2. A_T for heavy vertices
 - respect the IS on the light nodes!

•
$$\Delta_C := m^{2/3}$$

- $\Delta_C := m^{2/3}$
 - ightarrow New phase if $m \geq 2m_c \vee m \leq m_c/2$

- $\Delta_C := m^{2/3}$ \rightarrow New phase if $m \ge 2m_c \lor m \le m_c/2$
- A_S takes $\mathcal{O}(m^{2/3})$
- A_T takes $\mathcal{O}(m_H) = \mathcal{O}((\frac{m}{\Delta_C})^2) = \mathcal{O}(m^{2/3})$

- $\Delta_C := m^{2/3}$ \rightarrow New phase if $m \ge 2m_c \lor m \le m_c/2$
- A_S takes $\mathcal{O}(m^{2/3})$
- \mathcal{A}_T takes $\mathcal{O}(m_H) = \mathcal{O}((\frac{m}{\Delta_C})^2) = \mathcal{O}(m^{2/3})$
- overall amortized complexity: $\mathcal{O}(min\{\Delta, m^{2/3}\})$ \rightarrow all nodes could be light

Implicit MIS Algorithm

Relaxed Model

- The previous algorithms:
 - kept explicit copy of MIS
 - analyzed for amortized complexity

Relaxed Model

- The previous algorithms:
 - kept explicit copy of MIS
 - analyzed for amortized complexity
- Relax requirement to keep explicit copy of MIS

Implicit MIS A_I

- Only maintain an IS not an MIS
- Only process removals of nodes

Implicit MIS A_I

- Only maintain an IS not an MIS
- Only process removals of nodes
- ullet Check if $v\in\mathcal{M}$ when asked
- Worst case complexity $\mathcal{O}(\min\{\Delta, \sqrt{m}\})$

Realisation of A_I

- Again **light** and **heavy** nodes
- $\Delta_C := \sqrt{m}$

Realisation of A_I

- Again **light** and **heavy** nodes
- $\Delta_C := \sqrt{m}$
- Maintain count for heavy nodes only
- Compute status for light nodes when queried

Conclusion

 Code and slides at: github.com/thilofischer/dynamic_mis