

Esercizio 1. Sia (G, \bullet) un gruppo.

ossociotisa

- 1.1. Verificate l'unicità dell'elemento neutro e (esercizio già fatto in classe, rifatelo senza guardare gli appunti!).
- **1.2** Verificate l'unicità dell'inverso di un elemento $g \in G$. Questo unico elemento si denota g^{-1} .
- **1.3** Verificate che $(g \bullet h)^{-1} = h^{-1} \bullet g^{-1}$.

1.1) Supponiams che ente un olter elemento neutro

\(\tilde{z}\), ollore rossi vero che:
$$5 \cdot \tilde{z} = \tilde{z} = \tilde{s} = \tilde{$$

2.1)
$$\begin{cases} 3 \cdot 3(b) = 3(3(b)) = PER^{1} \\ 3(a) = b \end{cases}$$

2.2) $\begin{cases} 3 \cdot 3(a) = 3(3(a)) = PER^{1} \\ 3(b) = a \end{cases}$

Vi ricordo che $f^{-1}: B \to A$ è definita come segue: preso $b \in B$ sappiamo che esiste $a \in A$ tale che f(a) = b (perché f è suriettiva); inoltre a è unico dato che f è iniettiva; riassumendo esiste unico a tale che f(a) = b e si pone $f^{-1}(b) = a$.

Esercizio 3. Sia A un insieme e $G = \{f : A \to A \mid f \text{ bigezione}\}$. Sia \circ la composizione fra applicazioni. Verificare in dettaglio che (G, \circ) è un gruppo (visto rapidamente a lezione).

Se e'un gruppo vole la proprieta ossociotive rigretto a o, e'e'un elemento neutro e ogni elemento y avra un inverso f 1) o gode delle propriété ossociotive 2) elements neutro = 10x 3) sogni f he il mo imeno f 1 doto che f è liettira DIMOSTRO: 1) fogoh) = (fog)oh { (g (h(a))) = fog (ha)) {(g(h(a))) = }(g(h(a))) 2) 10x é le four one le moppe ogni elemento in re-terro quindi foiox = f

3) Doto Le mi porla oli Jumi omi himmoche

I! a |
$$f(a) = b$$
, chiomions inversa $f^{-1}(b) = a$
 $f \circ f^{-1}(b) = f(f(b)) = f(a) = b$

Inversa:

 $f \circ f(b) = f(f(b)) = f(a) = b$

Inversa:

 $f \circ f(b) = f(f(b)) = f(a) = b$

Inversa:

 $f \circ f(b) = f(f(b)) = f(a) = b$

Inversa:

 $f \circ f(b) = f(a) = f(a) = b$

Inversa:

 $f \circ f(b) = f(a) = f(a) = b$

Inversa:

 $f \circ f(b) = f(a) = f(a) = b$

Inversa:

 $f \circ f(a) = f(a) = f(a) = f(a) = f(a) = f(a) = f(a)$

Esercizio 4. Sia ora $A = \{1, 2, ..., n\}$.

Il gruppo G definito nell'esercizio precedente possiede allora una notazione specifica, che è S_n , ed un nome specifico che è il gruppo simmetrico di n oggetti.

Scrivere tutti gli elementi del gruppo S_3 (sono 6). Verificare che S_3 non è un gruppo commutativo. Suggerimento: per scrivere, ad esempio, l'elemento di S_3 che manda 1 in 3, 2 in 2 e 3 in 1 potete scrivere

 $\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right)$

Esercizio 5. Abbiamo visto la definizione rigorosa di \mathbb{Q} . Verificare che le operazioni definite in classe sono ben poste e che rendono \mathbb{Q} un campo.