Vision-Based Suture Tensile Force Estimation in Robotic Surgery [1]

Rešerše článku - Martin Juříček

Faculty of Mechanical Engineering, Brno University of Technology Institute of Automation and Computer Science Technicka 2896/2, Brno 616 69, Czech Republic 200543@vutbr.cz

Abstrakt: Rešerše publikovaného článku se především zaměřuje na význam aplikace neuronové sítě pro řešení experimentální aplikace roboticky asistované chirurgické operace s minimálním invazivním přístupem procesu chirurgického šití.

Klíčová slova: chirurgické šití, experimentální robotická aplikace, umělá neuronová síť

1 Úvod

Jedním z nejklíčovějších sektorů lidské společnosti je zdravotnictví, kdy využití robotů v tomto odvětví, se stává neodmyslitelnou součástí, tak jako např. ve výrobních sektorech strojírenského nebo elektrotechnického průmyslu. Fakt, že i v lékařství je možno na různé precizní operace, či repetitivní a namáhavé úkoly využít roboty, umocnilo vypuknutí pandemie onemocnění COVID-19. V této době vítá zdravotní personál pomoc po celém světe ať už například v podobě automatizace testování vzorků, robotizace obsluhy přistrojů na jednotce intenzivní péče nebo použití autonomního robota pro desinfekci vnitřních prostor. Přispět může i pomoc v podobě robotizace operativních úkonů jako je například sešívání operovaného člověka, což má za následek snížení nutného počtu personálu při operaci, ale i také zvýšení kvality stehů a eliminace lidského faktoru napříklav v podobě třesoucích se rukou.

2 Problematika

Poté co je člověk odoperován, ať už přístupem velké otevřené operace nebo s minimálním invazním přístupem, je také vhodné člověka v otevřené části opět zašít. Špatně sešíté stehy se mohou pooperačně uvnitř pacienta zlomit, kdy může pacient trpět krvácením z anastomózy¹ nebo také mohou způsobit například zánět pobřišnice způsobené střevní anastomózou.

Tak jak při konvečním sešíváním operujícím chirurgem, tak i operujícím robotem, je nutné k dobře sešitému stehu odhadnout sílu, což se jeví jako hlavní problém roboticky asistované chirurgické operaci s minimálním invazivním přístupem, jelikož při nadměrné trakci(utahování) se můžou švy přetrhnout a tím se může znehodnotit veškeré usíli, a bude třeba vynaložit další čas na opravu.

3 Experimentální kolaborativní robotická aplikace pro sešívání

Experimentální robotická aplikace se zkládá z nejnovější generace kolaborativního robota UR5e od firmy Universal robots, kdy koncový efektor je definován chirurgickým nástrojem DaVinci Xi ProGrasp Forceps od firmy Intuitive. Robot je řízen z Geomagic Touch od firmy 3D SYSTEMS, přičemž je doprovázena dvěma kamerami a siloměrem, které jsou následně použity k řešení nedílné součásti, a to umělé neuronové síti.

3.1 Význam umělé neuronové sítě pro řešení

Integrální část celé experimentální kolaborativní robotické aplikace pro řešení sešití otevřené rány je implikována do návrhu umělé neuronové síťě, která zpracovává data jak ze 2 obrazových vstupů, tak vstpu polohy koncového nástroje, kdy síť predikuje interakční síly během procesu šití. Tato integrální část je rozdělena do dvou fází. V první fázi je modelování prostorových prvků pomocí odlehčené konvoluční neuronové sítě Inception-resnetV2, přičemž úkolem je tedy určit vlastnosti z obrazu. V další fází je sériově zapojená síť modelování časových prvků. Tato síť má struktůru Long Short Term Memory(LSTM) sítě s kombinací fully connected (FC) neuronovou síti.

 $^{^1{\}rm Anastomóza}$ je vzájemné propojení dvou cév či nervů v těle.

3.2 Vstupní data

Umělá neuronová síť byla trénována na datech pořízené ze 2 kamer Chameleon3 od firmy FLIR Systems, přičemž tyto kamery pořizovaly snímky v různých definovaných úhlech. Snímky byly následně rozřazeny na trénovací a testovací data. V tomto duchu byly i rozřazeny definované trénovací a testovací síly, které byly měřeny siloměrem DBSM-3 LOADCELL od firmy BONGSHIN LOADCELL. Data byla měřena a získávána ze dvou umělých kůží o různých modulech pružnosti, a proto pro umělou neuronovou síť bylo takto vytvořeno 288 kombinací trénovacích dat a 120 kombinací testovacích dat. Experimentální čas pro jednu datovou sadu byl definován v rozmezí 5 až 10 s, přičemž datová sada obsahuje datové jednotky, které kombinují obrázky, definovanou tahovou sílu a polohu chirurgického nástroje v daný čas. V součtu testovací a trénovací data mají cirka 200 tisíc datových jednotek.

3.3 Umělá neuronová síť

Předtím než je vložen vstup k učení umělé neuronové sítě, je třeba provést předzpracování dat z trénovací sady, poté následuje první fáze modelování prostorových prvků, přičemž tato fáze je reprezentována odlehčenou Inception-resnetV2 sítí, která se skládá z bloku Stem(poloviční velikosti filtru k povůdné Inception-resnetV2), dále bloky 3x Inception-Resnet-A, 5x Inception-Resnet-B, a 3x Inception-Resnet-C, average pooling, zakončeno plně propojenou vrstvou. Výstup z této poslední vrstvy je odhadovaná tahová síla, přičemž tento výstup je porovnáván s definovanou tahovou sílou, která je již synchronizována se snímky. Využitím plně propojené vrstvy oproti sofmax vrstvě původní verze Inception-resnetV2 má za následek extraxci žádaných prostorových prvků ze snímků. Úprava této sítě a vede k snížením doby výpočtu a tedy poskytnutí zpětné vazby síly v reálném čase. Tato fáze je trénována separátně před použitím v druhé fází modelování časových prvků.

Výstup z average pooling vrstvy obrazový vektor spolu s polohou koncového nástroje je zřetězen do vektoru funkcí, ty jsou následně z plně propojených vrstev o velikosti 1056, 512, 128 neurálních jednotek. Výstupem jsou hodnoty, které jsou transformovány na sekvenci v zásobníku dle počtu možností, tyto data však jsou zpracována v síti, která se skládá LSTM vrstvami(32, 16 neurálních jednotek) a opět plně propojenými vrstvami o velikosti 16, 8, 1 neurálních jednotek a výstupem je žádaný odhad tahové síly k šití.

4 Závěr

Trénování tohoto návrhu umělé neuronové sítě z uvedeného zdroje bylo na nejvýkonější grafické kartě TITAN V od společnosti Nvidia. Díky tomuto masivnímu výkonu je doba výpočtu k předpovědi interakční síly v rozmezí 12-13 ms, což plně splňuje požadavky pro řešení v reálném čase. Výsledkem této práce je návrh umělé neuronové sítě, která dokáže predikovat potřebnou utahovací sílu z obrazového vstupu a polohy koncového nástroje, přičemž síť lépe predikuje sílu z materiálů o menším modulu pružnosti.

Zpracování obrazu nabývá v posledním desetiletí popularity, a to je zapříčeněno díky masivnímu výzkumu v oblasti umělých neuronových sítí, s čím souvisí i rožšiřující se pole působnosti. Své opodstatnění nabývá i na poli chirurgických zákrocích jako je například sešívání otevřené rány. Díky natrénované umělé neuronové síti, která zpracovává obraz a pozici koncového nástroje robota, lze odhadovat s téměř bezprecedentní přesností sílu potřebnou k dobře utáhnutému stehu. Práce naskýtá zajimavý pohled na možnosti využití kamer a umělé neuronové sítě jako důmyslný senzor a má potencionál ke zlepšení a otestování například na zvířecí kůži.

Odkazy

[1] JUNG, Won-Jo; KWAK, Kyung-Soo; LIM, Soo-Chul. Vision-Based Suture Tensile Force Estimation in Robotic Surgery. Sensors [online]. 2017, 21(1), 180–187 [cit. 2021-04-04]. ISSN 1424-8220. Dostupné z doi: 10.3390/s21010110.