Curve Fitting

Least Square Approximations

Applications of numerical techniques in science and engineering often involve curve fitting of experimental data. When data are derived from an experiment, there is <u>some error</u> in the measurement.

It is often the case that an experiment produces a set of data points

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}.$$

- One goal of numerical methods is to determine a formula y=f(x) that relates these variables.
- There are many type of function that can be used.
- Often there is <u>underlying mathematical</u> <u>model</u>, <u>based on the physical situation</u>, which will determine the form of the function.

Example:

Some students are assigned to find the effect of temperature on the resistance of a metal wire. They have recorded the temperature and resistance values in a table and have plotted their findings.

Temperature	Resistance
T C ⁰	R Ohms
20.5	765
32.7	826
51.0	873
73.2	942
95.7	1032

The graph suggests a linear relationship. If so, then

$$\mathbf{R} = \mathbf{a} + \mathbf{b} \mathbf{T}$$

Where a and b are parameters.

With Connected lines (Piecewise Linear Spline)

With Regression Line

Simple Linear Regression Model

A linear model that relates two variables, x and y. It can be written as:

$$y = \beta_0 + \beta_1 x + e$$

• y and x may be referred in one of the following ways:

X	y
Independent Variable	Dependent Variable
Explanatory Variable	Explained Variable
Control Variable	Response Variable
Predictor Variable	Predicted Variable
Regressor	Regressand

$$y = \beta_0 + \beta_1 x + e$$

- e is referred to as the error term or disturbance. (Represents factors other than x that affect y. It is treated as unobservable.)
- β_0 is the *intercept*. (Gives the value of y when x = 0 and u = 0.)
- β₁ is the slope.
 (Relates a change in y to a change in x)

Definition (Fitted Value):

The value of y when $x=x_i$ using estimates of the regression coefficients

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Definition (Residual):

The difference between the actual and fitted values of y_i

$$\hat{e}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

Given a sample of data $\{(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we want to find to estimates of the intercept and slope such that minimize the total amount of residuals. *Negative and positive residuals will cancel each other out, so look at the square of the residuals.*

$$Sum = \sum_{i=1}^{n} \hat{e}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

The least square criterion requires that *Sum* be a minimum.

The first order conditions are:

$$\frac{\partial Sum}{\partial \beta_0} = \sum_{i=1}^n 2(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(-1) = 0$$

$$\frac{\partial Sum}{\partial \beta_1} = \sum_{i=1}^n 2(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(-x_i) = 0$$

Normal Equations

Dividing each of these equations by -2 and expanding the summation, we get the so called normal equations

$$\hat{\beta}_1 \sum_{i=1}^n x_i + \hat{\beta}_0 n = \sum_{i=1}^n y_i$$

$$\hat{\beta}_1 \sum_{i=1}^n x_i^2 + \hat{\beta}_0 \sum_{i=1}^n x_i = \sum_{i=1}^n x_i y_i$$

Solving these equations simultaneously gives the estimations of intercept and slope.

From the first normal equation we obtain

$$\overline{y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

(Estimator of β_0)

From the second normal equation we obtain

$$\hat{\beta}_1 = \frac{n\sum_{i=1}^n x_i y_i - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n\sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$

(Estimator of β_1)

Example:

Temperature	Resistance
$T C^0$	R Ohms
20.5	765
32.7	826
51.0	873
73.2	942
95.7	1032

i	$\mathbf{X_i}$	$\mathbf{y_i}$	X_i^2	$\mathbf{x_i} \mathbf{y_i}$
1	20.5	765	420.25	15682.5
2	32.7	826	1069.29	27010.2
3	51.0	873	2601.00	44523.0
4	73.2	942	5358.24	68954.4
5	95.7	1032	9158.49	98762.4
Total	273.1	4438	18607.3	254933

Normal equations

$$\hat{\beta}_{1} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{0} n = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} + \hat{\beta}_{0} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i} y_{i}$$

$$273.1\hat{\beta}_1 + 5\hat{\beta}_0 = 4438$$
$$18607.3\hat{\beta}_1 + 273.1\hat{\beta}_0 = 254933$$

From these we find $\hat{\beta}_1 = 3.395$, $\hat{\beta}_0 = 702.2$, and hence we write estimated linear equation as

$$\hat{y} = 702.2 + 3.395x$$

(Estimated Regression Line)

MATLAB "polyfit" Command

MATLAB gets a least-squares polynomial with its "polyfit" command, the same one that fits an interpolating polynomial to the data defined in vectors x and. y.

>> x=[20.5 32.7 51.0 73.2 95.7]

 $\mathbf{x} = 20.5000 \ 32.7000 \ 51.0000 \ 73.2000 \ 95.7000$

>> y=[765 826 873 942 1032]

y = 765 826 873 942 1032

>> equation=polyfit(x,y,1)

equation =

3.3949 702.1721

 $\hat{y} = 702.2 + 3.395x$

MINITAB "regress" Command

MTB > regress c2 1 c1

Regression Analysis: y versus x

The regression equation is

$$y = 702 + 3.39 x$$

 $\hat{y} = 702.2 + 3.395x$

Predictor	Coef	SE Coef	T	P
Constant	702,17	10,29	68,23	0,000
x	3,3949	0,1687	20,13	0,000

$$S = 10,2477$$
 R-Sq = 99,3% R-Sq(adj) = 99,0%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	42534	42534	405,03	0,000
Residual Error	3	315	105		
Total	4	42849			

	I	Least	Sq	uare	Pol	l <mark>ynomia</mark> l	S
--	---	-------	----	------	-----	-------------------------	---

Polynomial regression model (kth degree)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + e$$

Because polynomials can be readily manipulated, fitting such functions to data that do not plot linearly is common.

Obviously, if n=k+1, (n: number of observation, k: degrees of polynomial) the polynomial passes exactly through each point and the methods discussed earlier, so we will always have n>k+1.

At the minimum, all of the partial derivatives vanish. Writing the partial derivative equations and rearranging them gives k+1 normal equation to be solved simultaneously.

$$Sum = \sum_{i=1}^{n} \hat{e}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - ... \hat{\beta}_k x_i^k)^2$$

Normal Equations for Polynomials:

$$\hat{\beta}_0 n + \hat{\beta}_1 \sum_{i=1}^n x_i + \hat{\beta}_2 \sum_{i=1}^n x_i^2 + \dots + \hat{\beta}_k \sum_{i=1}^n x_i^k = \sum_{i=1}^n y_i$$

$$\hat{\beta}_0 \sum_{i=1}^n x_i + \hat{\beta}_1 \sum_{i=1}^n x_i^2 + \hat{\beta}_2 \sum_{i=1}^n x_i^3 + \dots + \hat{\beta}_k \sum_{i=1}^n x_i^{k+1} = \sum_{i=1}^n x_i y_i$$

$$\hat{\beta}_0 \sum_{i=1}^n x_i^2 + \hat{\beta}_1 \sum_{i=1}^n x_i^3 + \hat{\beta}_2 \sum_{i=1}^n x_i^4 + \dots + \hat{\beta}_k \sum_{i=1}^n x_i^{k+2} = \sum_{i=1}^n x_i^2 y_i$$

•

$$\hat{\beta}_0 \sum_{i=1}^n x_i^k + \hat{\beta}_1 \sum_{i=1}^n x_i^{k+1} + \hat{\beta}_2 \sum_{i=1}^n x_i^{k+2} + \dots + \hat{\beta}_k \sum_{i=1}^n x_i^{2k} = \sum_{i=1}^n x_i^k y_i$$

Putting these equations in matrix form shows an interesting pattern in the coefficient matrix.

$$\begin{bmatrix} n & \sum x_{i} & \sum x_{i}^{2} & \dots & \sum x_{i}^{k} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \dots & \sum x_{i}^{k+1} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \dots & \sum x_{i}^{k+2} \end{bmatrix} \begin{bmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \hat{\beta}_{2} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum x_{i}y_{i} \\ \sum x_{i}^{2}y_{i} \end{bmatrix}$$

$$\begin{bmatrix} \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{2} & \dots & \sum x_{i}^{k+2} \\ \sum x_{i}^{2} & \sum x_{i}^{2} & \sum x_{i}^{2} & \dots & \sum x_{i}^{2} \end{bmatrix} \begin{bmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \hat{\beta}_{2} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum x_{i}^{2}y_{i} \\ \sum x_{i}^{2}y_{i} \end{bmatrix}$$

The above coefficient matrix is called normal matrix for the least square problem.

2nd degree-Polynomial Regression Model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 e$$

$$Sum = \sum_{i=1}^{n} \hat{e}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i} - \hat{\beta}_{2}x_{i}^{2})^{2}$$

Example: Find the least squares parabola for the following data

X	y
-3	3
0	1
2	1
4	3

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \\ \sum x_i^2 y_i \end{bmatrix}$$

n	X	y	x ²	\mathbf{x}^3	x ⁴	xy	$\mathbf{x}^2\mathbf{y}$
1	-3	3	9	-27	81	-9	27
2	0	1	0	0	0	0	0
3	2	1	4	8	16	2	4
4	4	3	16	64	256	12	48
Sum	3	8	29	45	353	5	79

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \\ \sum x_i^2 y_i \end{bmatrix}$$

$$\begin{bmatrix} 4 & 3 & 29 \\ 3 & 29 & 45 \\ 29 & 45 & 353 \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 8 \\ 5 \\ 79 \end{bmatrix}$$

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 29 \\ 3 & 29 & 45 \\ 29 & 45 & 353 \end{bmatrix}^{-1} \begin{bmatrix} 8 \\ 5 \\ 79 \end{bmatrix}$$

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 0.626297 & 0.0187614 & -0.0538438 \\ 0.018761 & 0.0435479 & -0.0070927 \\ -0.053844 & -0.0070927 & 0.0081605 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \\ 79 \end{bmatrix}$$

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 0.850519 \\ -0.192495 \\ 0.178462 \end{bmatrix}$$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + e$$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + e$$
$$\hat{y} = 0.851 - 0.192x + 0.178x^2$$

MATLAB SOLUTION

Example: Find the least squares parabola for the following data using MATLAB M file

X	y
-3	3
0	1
2	1
4	3

$$>> X = [-3 \ 0 \ 2 \ 4]$$

$$X =$$

$$Y =$$

$$>>$$
 lspoly(X,Y,2)

$$y = 0.851-0.192 x + 0.178 x^2$$

SOLUTION IN MINITAB

```
y x x<sup>2</sup>
3 -3 9
1 0 0
1 2 4
3 4 16

MTB > regress y 2 x x<sup>2</sup>
```

Regression Analysis: y versus x; x2

```
The regression equation is y = 0,851 - 0,192 x + 0,178 x<sup>2</sup> same result
```

$\hat{y} = 0.851 - 0.192x + 0.178x^2$

Predictor Predictor	Coef	SE Coef	Т	P
Constant	0 , 8505	0,1935	4,40	0,142
X	-0 , 19250	0,05103	-3 , 77	0,165
x2	0,17846	0,02209	8,08	0,078

```
S = 0,244525 R-Sq = 98,5% R-Sq(adj) = 95,5%
```

Analysis of Variance

Source	DF	SS	MS	F
P				
Regression	2	3 , 9402	1,9701	32,95
<mark>0,122</mark>				
Residual Error	1	0 , 0598	0 , 0598	
Total	3	4,0000		

Source	DF	Seq SS
X	1	0,0374
x2	1	3,9028

MATLAB M FILE (Least Square Polynomial)

```
function C = lspoly(X, Y, M)
%Input - X is the 1xn abscissa vector
          - Y is the 1xn ordinate vector
%
          - M is the degree of the least-squares polynomial
% Output - C is the coefficient list for the polynomial
n = length(X);
B=zeros(1:M+1);
F = zeros(n, M+1);
%Fill the columns of F with the powers of X
for k=1:M+1
 F(:,k)=X'.^{(k-1)};
end
%Solve the linear system from (25)
A=F'*F:
B=F'*Y';
C=A \setminus B;
C = flipud(C);
>> X=[-3 \ 0 \ 2 \ 4]
\mathbf{X} = -3 \qquad \mathbf{0}
                       4
>> Y=[3 1 1 3]
Y = 3
                        3
              1
                   1
>> lspoly(X,Y,2)
ans =
   0.1785
  -0.1925
   0.8505
            \hat{y} = 0.851 - 0.192x + 0.178x^2
```