# Intel Micro-Wind Turbine Seedling Project

Progress Update 14 November 2017

Imperial College



### "Clone" MWT for UCB

- Completed at end of July
- Tested in wind tunnel w/c 31 July
- Shipped to Berkeley 15<sup>th</sup> August
- Similar to our earlier design but with fully 3D-printed rotor and modified blade angles (following additional modelling)









## Performance Comparison

Alternative rotor fabrication methods investigated to avoid high-resolution RP used in original device:

- Laser-cut nickel shim blades glued to 3D printed hub and rim parts
- Fully 3D printed rotors (Objet printer; Vero-white material)
- Some performance lost in going from high-res RP (aerofoil) to Ni shim (rectangular), but this recovered by improved rotor design (blade angles)
- Similar performance from Ni shim and fully 3D printed rotors

High-res RP



Nickel shim / 3D printed







Blade cross-sections:



#### I-V Characteristics of Clone MWT



I-V curves at different flow speeds are much more consistent (in terms of effective source resistance) than for earlier device – we are not sure why...

Suggests a simple MPPT algorithm such as implemented by BQ25505 may be adequate

Slopes correspond to an effective source resistance of ~150  $\Omega$ ; this is >> generator source resistance of 21  $\Omega$  because it includes turbine response to loading

See data supplied with clone for more detail



#### **MWT Power Module**

Work at Imperial in August and September was focused on development of a power conditioning module



#### Functionality aimed for:

- Active rectification
- Maximum power point tracking
- Overspeed protection (parasitic load)
- Ultra-low power sleep mode when turbine stopped





#### **Active Rectifier**

 Opted for full-wave voltage doubler - simpler than full-wave rectifier, with higher output voltage



- Scope traces are for 500 Hz, 500 mVrms source with Rs = 20  $\Omega$
- Spikes on Chs 2-4 & Math are artefacts of gate control method





Rload =  $470 \Omega$ 



#### **Active Rectifier Performance**

 Rectifier characterised for a range of input voltages/frequencies and output loads



- Data shown is for 500 Hz, 500 mVrms source with Rs = 20  $\Omega$
- When Rload < 1 k $\Omega$ , which is where we are expecting to be working:

Pout\_active >2× Pout\_passive

• Performance gain depends on source amplitude and frequency

## Power Module Debugging & Testing

(Berkeley trip Oct/Nov, working with Bala)

- Addition of UART communications to Power Module MCU code to enable serial readout of key parameters (generator frequency, rectifier Vout & lout)
- Power Module functionality tested and code de-bugged



## **Energy Harvesting Demo**

 Plots show logged values of generator frequency, rectifier Vout & lout, and power into BQ25505





## **Battery Current Measurement**

 Current into/from secondary battery monitored when BQ EVM providing power for Power Module (i.e. no ext supply)



- Scope trace shown is for 750 Hz, 750 mVrms source with Rs = 20  $\Omega$
- Average current into battery is ~110  $\mu$ A, corresponding to 330  $\mu$ W at 3 V
- System not optimised



## Summary & Next Steps

- "Clone" MWT completed, characterised and delivered to UCB
- MWT power module developed, including active rectifier, acquisition of key data (generator freq, rectifier Vout & lout), maximum power point tracking, overspeed protection, and sleep mode
- Power Module de-bugging and testing carried out during 4-week visit to UCB
- Work started on comparative study of HAWT and VAWT devices (at early stage and not reported here)
- In the next period we will continue with testing and optimisation of the Power Module, and integration with the UCB wireless mote. We will also continue with the comparative study



#### Plans for Year 2

- Explore alternative bearing solutions that will allow a reduction in starting speed
- Develop optimised energy storage solutions, building on study of wind speed characteristics started in Year 1
- Complete design and fabrication and test of first generation system; design to be informed by paper study and results obtained from prototype platform in Year 1
- Complete design of second generation system

