第一章 概率论

1.1 李正元复习全书

- 1. 每箱产品有 10 件, 其中次品数从 0 到 2 是等可能的, 开箱检验时, 从中任取一件, 如果检验为次品,则认为该箱产品不合格而拒收. 由于检验误差, 一件正品被误判为次品的概率为 2%, 一件次品被误判为正品的概率为 10%. 试求:
- (I) 随机检验一箱产品, 它能通过验收的概率 p;
- (II) 检验 10 箱产品通过率不低于 90% 的概率 q.

Solution. (1) 设 $B = \{ \text{任取一件为正品} \}, A = \{ \text{一箱产品能通过验收} \} 则由全概率公式 有$

$$P(A) = P(A \mid B)P(B) + P(A \mid \bar{B})P(\bar{B})$$

而其中

$$P(A \mid B) = 1 - 0.02 = 0.98, P(A \mid \bar{B}) = 1 - 0.1 = 0.9$$

代入全概率公式有 p = P(A) = 1 + 0.88P(B), 为求 P(B), 记 C_i 为每箱中包含 i 件次品, 且 C_0, C_1, C_2 为完备事件组, 再由全概率公式可以求出

$$P(B) = \sum_{i=0}^{2} P(C_i)P(B \mid C_i) = 0.9$$

故 P(A) = 0.892

$$(2)q = P\{X/10 \ge 0.9\} = P\{X \ge 9\} = P\{X = 9\} + P\{X = 10\} \approx 0.705$$

- 2. 一条自动生产线生产 n 件产品不出故障的概率为 $\frac{\lambda^n}{n!} e^{-\lambda}, n = 0, 1, 2, \cdots$. 假设产品的优质品率为 p(0 . 如果各件产品是否为优质品相互独立.
- (I) 计算生产线在两次故障间共生产 k 件 ($k = 0, 1, 2, \cdots$) 优质品的概率;

1.1 李正元复习全书 2

(II) 若已知在某两次故障间该生产线生产了 k 件优质品, 求它共生产 m 件产品的概率.

Solution. (1) 不妨令

 $B_k = \{$ 两次故障公生产了 k 件优质品 $\}, A_n = \{$ 两次故障间总共生产了 n 件产品 $\},$ 显然 A_0, A_1, \ldots 构成了一个完备事件组, 故利用全概率公式有

$$P(B_k) = \sum_{n=0}^{\infty} P(A_n)P(B_k \mid A_n)$$

$$\frac{\text{前 k-1 次不可能产生 k 件优质品}}{\text{k!}} \sum_{n=k}^{\infty} P(A_n)P(B_k \mid A_n)$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda p} \sum_{n=k}^{\infty} \frac{(\lambda p)^{n-k}}{(n-k)!} e^{-\lambda p}$$

$$\frac{\text{Possion 分布}}{k!} \frac{(\lambda p)^k}{k!} e^{-\lambda p}$$

(2) 当 m < k 的时候, $P(A_m | B_k) = 0$, 当 $m \ge k$,

$$P(A_m \mid B_k) = \frac{P(A_m)P(B_k \mid A_m)}{P(B_k)}$$
$$= \frac{(\lambda q)^{m-k}}{(m-k)!} e^{-\lambda q}, m \in (k, k+1, \ldots)$$

总结

关于全概率公式与贝叶斯公式的总结

这种问题的关键在于寻找一个合适的完备事件组,当问题涉及"原因推结果/结果推原因"大概率要用贝叶斯公式(条件概率是贝叶斯的特殊情况)

3. 甲、乙二人轮流投篮, 游戏规则规定为甲先开始, 且甲每轮只投一次, 而乙每轮连续投两次, 先投中者为胜. 设甲、乙每次投篮的命中率分别是 p 与 0.5, 则 $p = ___$ 时, 甲、乙 胜负概率相同.

Solution. 这道题和笔记中的交替射击模型一致, 记 $A = \{ \text{甲获胜} \}, B = \{ \text{乙获胜} \}, 则 由题意有$

$$P(A) = p + (1-p)(1-0.5)(1-0.5)P(A) \implies P(A) = \frac{p}{1-0.25(1-p)}$$

再由题意可知, 要使得甲乙获胜概率一致, 则 $P(A) = P(B) = 0.5 \implies p = \frac{3}{7}$

1.2 880

4. (非离散非连续的概率) 设随机变量 X 的绝对值不大于 1, 且 $P\{X = 0\} = \frac{1}{4}$, 已知当 $X \neq 0$ 的时候,X 在其他取值范围内满足均匀分布, 求 X 的分布函数 $F_X(x)$.

Solution. 由题意有 $P\{|X| \le 1\} = 1, P\{X = 0\} = \frac{1}{4} \implies P\{X \ne 0\} = \frac{3}{4}$,又因为区间长度为 2,有

$$F_X(x) = \begin{cases} 0, & x < -1 \\ \frac{3}{8}(x+1), & -1 <= x < 0 \\ \frac{3x+5}{8}, & 0 \le x < 1 \\ 1, & 0 \ge 1 \end{cases}$$

- 5. 设有四个编号分别为 1,2,3,4 的盒子和三只球,现将每个球随机地放入四个盒子,记 X 为至少有一只球的盒子的最小号码.
 - (1) 求 X 的分布律;
 - (2) 若当 X = k 的时候, 随机变量在 [0, k] 上服从均匀分布, 求 $P\{Y \le 2\}$;

Solution.

(1) 由题有 $P\{X=1\}=\frac{C_3^13^2+C_3^23+C_3^3}{4^3}=\frac{37}{64}$ 解释: 总共有 4^3 种方案, 若 1 是最小的有球的 盒子, 则其中可以有 1,2,3 三种可能, $C_3^13^2$ 表示选择一个球加入 1 号盒子, 其余两个球可以从剩余 3 个盒子中随机选择两个放入. 同理可以求出 X=2,3,4, 故有

$$X \sim \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ \frac{37}{64} & \frac{19}{64} & \frac{7}{64} & \frac{1}{61} \end{array}\right)$$

(2) 由全概率公式 $P\{Y \le 2\} = \sum_{i=1}^{4} P\{Y \le 2 \mid X = k\} = \frac{367}{384}$

1.2 880

1. 有一根长为 L 的木棒,将其任意折成三段,记事件 $A=\{$ 中间一段为三段中的最长者 $\}$,则 P(A)=

 \square

1.2 880 4

2. 设甲乙两人独立对同一目标进行一次设计, 其命中率分别为 0.5 和 0.4, 已知目标被命中, 则它是乙射中的概率为 _____

 \square

3. 已知 10 部手机中有 7 个合格品和 3 个次品,每次任取一个作测试,测试后不放回,直到将 3 个次品都找到为止,则需要测试 7 次的概率为 _____

 \square

(方法一) 首先考虑第 n 次试验,A 发生奇数次的情况有两种.(1) 前 n-1 次成功率偶数次, 第 n 次成功;(2) 前 n-1 次成功了奇数次,第 n 次失败了. 则不发令 $A_k = \{k\}$, $P(A_k) = p; B_k = \{k\}$ 次实验中成功奇数次 $\{k\}$,记 $P(B_k) = p_k$,则有

$$B_n = B_{n-1}\bar{A}_n + \overline{B_{n-1}}A_n$$

显然 $B_{n-1}\bar{A}_n$ 与 $\overline{B_{n-1}}A_n$ 互斥, 则有

$$p_n = P(B_{n-1}\bar{A}_n + \overline{B_{n-1}}A_n) = P(B_{n-1}\bar{A}_n) + P(\overline{B_{n-1}}A_n)$$

又由于伯努利试验的独立性,有

$$\pm \vec{x} = P(B_{n-1})P(\bar{A}) + P(\overline{B_{n-1}})P(A_n)$$

$$= (1-p)p_{n-1} + p(1-p_{n-1})$$

$$= p + (1-2p)p_{n-1}$$

有递推关系式,可以得到

$$p_n - \frac{1}{2} = (1 - 2p)[p_{n-1} - \frac{1}{2}] = \frac{\text{\$lt} M}{2} - \frac{(1 - 2p)^n}{2}$$

(方法二) 利用奇偶 设 $X \sim B(n,p)$, 则 $P(X=k) = C_n^k p^k (1-p)^(n-k)$, $k=0,1,2,\ldots$ 若 n 为偶数则

$$P(X = odd) = P(X = 1) + P(X = 3) + \dots + P(X = n - 1)$$

$$= C_n^1 (1 - p)^{n-1} + C_n^3 p^3 (1 - p)^{n-3} + \dots + C_n^{n-1} p^{n-1} (1 - p)$$

$$P(X = even) = P(X = 0) + P(X = 2) + \dots + P(X = n)$$

$$= C_n^0 p^0 (1 - p)^n + \dots + C_n^n p^n (1 - p)^0$$

1.2 880 5

且 P(X = odd) + P(X = even) = 1, 有注意到

$$P(X = odd) = P(X = 1) + P(X = 3) + \dots + P(X = n - 1)$$

$$= -C_n^1 (p - 1)^{n-1} - C_n^3 p^3 (p - 1)^{n-3} - \dots - C_n^{n-1} p^{n-1} (p - 1)$$

$$P(X = even) = P(X = 0) + P(X = 2) + \dots + P(X = n)$$

$$= C_n^0 p^0 (p - 1)^n + \dots + C_n^n p^n (p - 1)^0$$

则

$$P(X = even) - P(X = odd) = C_n^0 p^0 (p-1)^n + C_n^1 p^1 (p-1)^{n-1} + \dots + C_n^n p^n (p-1)^0$$

$$= \overline{\text{Total}} (2p-1)^n$$

则
$$2P(X = odd) = 1 - (2p - 1)^n \implies P(X = odd) = \frac{1 - (2p - 1)^n}{2}$$
 同理当 n 为奇数的时候,上述也成立,故 $P(X = 奇数) = \frac{1 - (2p - 1)^n}{2}$

(方法三) 设
$$X \sim B(n,p)$$
,则 $P(X=k) = C_n^k p^k (1-p)^{n-k}, k=0,1,2,\ldots$ 令 $Y=\frac{1}{2}[1+(-1)^X]$,当 X 为奇数时, $Y=0$;当 X 为偶数时, $Y=1$ 于是原问题转换为求 $P(X$ 为奇数) = $P(Y=0)$ 注意到 $E[Y]=0 \cdot P(Y=0)+1 \cdot P(Y=1)=P(Y=1)=1-P(Y=0)$,故只需要求 $E[Y]$

$$EY = E(\frac{1}{2}[1 + (-1)^X]) = \frac{1}{2} + E(-1)^X$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{k=0}^{n} (-1)^k C_n^k p^k (1-p)^{n-k}$$

$$\stackrel{\text{\'EH} = \text{\'I}}{\text{\'I}} \stackrel{\text{\'I}}{\text{\'I}} \stackrel{\text{\'I}}{\text{\'I}} = \frac{1}{2} + \frac{1}{2} (1-2p)^n$$

故
$$P(Y=0) = 1 - P(Y=1) = \frac{1 - (1 - 2p)^n}{2}$$

- 5. 设甲盒中有 4 个红球和 2 个白球, 乙盒中有 2 个红球和 4 个白球, 掷一枚均匀的硬币, 若正面出现, 则从甲盒中任取一球, 若反面出现, 则从乙盒中任取一球, 设每次取出的球 观看颜色后放回原盒中.
 - (I) 若前两次都取得红球, 求第三次也取得红球的概率;
 - (II) 若前两次都取得红球, 求红球都来自甲盒的概率.

1.3 李艳芳 900 6

Solution. 设 $A_i = \{ \text{第 i } 次取得红球 \} (i = 1, 2, 3), B_i = \{ \text{第 j } 次投掷银币出现正面 \} (j = 1, 2, 3)$

(1) 显然 A_i 与 B_i 之间是相互独立的, 所求概率为

$$P(A_3 \mid A_1 A_2) = \frac{P(A_1 A_2 A_3)}{P(A_1 A_2)} = P(A_3) = P(A_1)$$

$$P(A_1) \xrightarrow{\underline{\text{\pmM$}}} P(A \mid B_1) P(B_1) + P(A \mid \bar{B_1}) P(\bar{B_1})$$

$$= \frac{1}{2} \frac{4}{6} + \frac{1}{2} \frac{2}{6} = \frac{1}{2}$$

(2) 由于两次试验都是独立重复的所以 A_1B_1 与 A_2B_2 是相互独立的

$$\mathbb{M} P(A_1B_1) = P(A_2B_2) = P(B_1)P(A_1 \mid P(B_1)) = \frac{1}{3}$$

则所求概率为

$$P(B_1B_2 \mid A_1A_2) = \frac{B_1B_2A_1A_2}{P(A_1A_2)} = \frac{\frac{1}{3}^2}{\frac{1}{2}^2} = \frac{4}{9}$$

6. (考的可能性比较低)设一批产品中有 15% 的次品,进行独立重复抽样检验,若抽取 20 个样品,则抽出的 20 个样品中,可能性最大的次品数是多少?并求其概率.

Solution. 设 20 次抽取其中出现次品的次数为 X, 其显然满足 $X \sim B(20, 0.15)$, 不妨假设当 X = k 的时候物品的可能性最大, 则有 $P(X = k) \ge P(X = k - 1)$, $P(X = k) \ge P(X = k + 1)$ 即

$$\frac{C_{20}^k 0.15^k 0.85^{(20-k)}}{C_{20}^{(k-1)} 0.15^{k-1} 0.85^{(21-k)}} \ge 1$$

与

$$\frac{C_{20}^k 0.15^k 0.85^{(20-k)}}{C_{20}^{(k+1)} 0.15^{k+1} 0.85^{(19-k)}} \ge 1$$

得到如下结果

$$\begin{cases} 300 - 15k + 15 \ge 85k \\ 85k + 85 \ge 300 - 15k \end{cases}$$

即 $2.15 \le k \le 3.15$ 故 k = 3, 其概率为 $P(X = 3) = C_{20}^3 0.15^3 0.85^{17}$

1.3 李艳芳 900

1.4 张宇题源大全