CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Midterm2

- We will strategically use it for final review
- So, results to be announced next week

Plan ahead

• 11.14 Tu: Sets - REC on Sets; no homework review in REC

• 11 16

Review Midterm 2

No homework to be announced

• 11.21 Tu

Midterm 2

- REC on Functions

• 11.23

Function

Homework to be announced

• 11.28 Tu

Function

- Regular lecture in REC

• 11.30

Function

Ungraded homework to be announced

• 12.05 Tu

Final Review

- Reviewing with Midterm 2

• 12.07

Final Review

No homework to be announced

• 12.12 Tue Final

Agenda

- Review on one-to-one and onto functions
- Inverse functions

Summary of last class: one-to-one and onto functions

How to show a function $f: A \rightarrow B$ is injective:

Contrapositive approach:

Suppose $x, y \in A$ and f(x) = f(y).

:

Therefore x = y.

How to show a function $f: A \rightarrow B$ is surjective:

Suppose $b \in B$.

[Prove there exists $a \in A$ for which f(a) = b.]

SBU 2021 Final

Problem 9. [5 points]

Write and fill the table with \checkmark or \checkmark . If a function is one-to-one or onto, then use \checkmark . On the other hand, if a function is not one-to-one or not onto, then use \checkmark .

Function	Domains	One-to-one function?	Onto function?
f(x) = 3x	$f: \mathbb{Z} \to \mathbb{Z}$		
f(x) = 3x	$f: \mathbb{R} \to \mathbb{R}$		
$f(x) = 3x^2$	$f:\mathbb{Z} o \mathbb{Z}$		
$f(x) = 3x^2$	$f: \mathbb{R} \to \mathbb{R}$		

True or false?

the function
$$f: \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$$
 defined by $f(x) = \left(\frac{x+1}{x-1}\right)^3$ is bijective.

Solution

We first prove f is injective We want to prove tx, y & R-113, for)=f(y) -> x=y Suppose x, y+12-113 and fino=fig) We have $\left(\frac{\chi+1}{\chi-1}\right)^3 = \left(\frac{3+1}{3-1}\right)^3$ Thus $\frac{\chi+1}{\chi-1} = \frac{\gamma+1}{\gamma-1}$ Thus 1 + 2 = 1+ 7-1. Thus 2 = 2 Thus = (4-1) = 2 (x-1) Thus x = 4 We have proved \x, ytk-(1) for=fly) -> x=y We then prove f is surjective We want to pose ty erall, 3xer-113. forcey Suppose yER-11) We choose $\pi = \frac{2}{\sqrt{y-1}} + 1$ (ve har forg = Y We have proved by ER-{1) 3x (R-{1) fix)= y

Consider the function $\theta : \{0,1\} \times \mathbb{N} \to \mathbb{Z}$ defined as $\theta(a,b) = (-1)^a b$. Is θ injective? Is it surjective? Explain.

Solution

First we show that θ is injective. Suppose $\theta(a,b) = \theta(c,d)$. Then $(-1)^a b = (-1)^c d$. As b and d are both in \mathbb{N} , they are both positive. Then because $(-1)^a b = (-1)^c d$, it follows that $(-1)^a$ and $(-1)^c$ have the same sign. Since each of $(-1)^a$ and $(-1)^c$ equals ± 1 , we have $(-1)^a = (-1)^c$, so then $(-1)^a b = (-1)^c d$ implies b = d. But also $(-1)^a = (-1)^c$ means a and c have the same parity, and because $a, c \in \{0, 1\}$, it follows a = c. Thus (a, b) = (c, d), so θ is injective.

Next note that θ **is not surjective** because $\theta(a,b) = (-1)^a b$ is either positive or negative, but never zero. Therefore there exist no element $(a,b) \in \{0,1\} \times \mathbb{N}$ for which $\theta(a,b) = 0 \in \mathbb{Z}$.

SBU 2022 Midterm

Problem 4. [5 points]

Let A and B be finite sets where |A| = |B|. Is it possible to define a function $f : A \to B$ that is one-to-one but not onto? Is it possible to define a function $g : A \to B$ that is onto but not one-to-one?

Inverse functions

Inverse functions

Definition

- Suppose $F: X \to Y$ is a one-to-one correspondence. Then, the inverse function $F^{-1}: Y \to X$ is defined as follows: Given any element y in Y, $F^{-1}(y) =$ that unique element x in X such that F(x) = y.
- \bullet $F^{-1}(y) = x \Leftrightarrow y = F(x)$.

Does encryption have an inverse function?

Does Java compilation have an inverse function?

Example

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Find its inverse function.

Proof

For any y in R, by definition of f^{-1}

- $f^{-1} =$ unique number x such that f(x) = yConsider f(x) = y $\implies 4x - 1 = y$ (: Defn. of f) $\implies x = \frac{y+1}{4}$ (: Simplify)
- Hence, $f^{-1}(y) = \frac{y+1}{4}$ is the inverse function.

• Check If the function $f: Z \to Z$ defined by f(n) = 6-n is one-to-one correspondence. If yes, compute its inverse.

• Check if the function $f: R \to R$ defined as $f(x) = x^3 + 1$ is a one-t-one correspondence. If yes, find its inverse.

The function f: R - {2} → R - {5} defined by f(x) = (5x+1)/(x-2) is bijective. Find its inverse.

Solution

- Let y be an element of R $\{5\}$. We have y = f(x) if and only if x = 11/(y-5)+2.
- Thus $f^{-1}(y) = 11/(y-5)+2$

 The function g:Z×Z→Z×Z defined by the formula g(m,n)= (m+n, m+2n) is a one-to-one correspondence. Find its inverse.

Solution

- Let (u,v) be an arbitrary element if Z x Z. Then f(m,n) = (u,v) if and only if m = 2u-v and n = v-u.
- Thus, $f^{-1}(u,v) = (2u-v, v-u)$.