

FCC RADIO TEST REPORT

FCC ID: 2AAA9-RA340

Report Reference No...... 19EFAS05085 31

Date of issue : 2019-05-24

Zone A, 1F, No. 6, XinGang Road YuanGang Street, XinAn

Address...... District, ChangAn Town, DongGuan City, GuangDong,

China

Applicant's name: Relay2, Inc.

Address...... Suite 209, 1525 McCarthy Blvd., Milpitas, CA 95035

Manufacturer : Senao Networks, Inc.

Test specification:

Test item description....: Service-Ready Access Point

Trade Mark: Relay2

Model/Type reference RA345, RA340

Ratings...... DC12V 3.0A

Responsible Engineer:

Lake Hu

Maoxino Wang

Report No.: 19EFAS05085 31

TABLE OF CONTENTS

	TABLE OF CONTENTO				
1.	Summary of test results	5			
2.	General test information	6			
2.1.	Description of EUT6				
2.2.	Accessories of EUT				
2.3.	Assistant equipment used for test	7			
2.4.	Block diagram of EUT configuration for test8				
2.5.	Test environment conditions	8			
2.6.	Test environment conditions	9			
2.7.	Measurement uncertainty	9			
3.	POWER SPECTRAL DENSITY TEST	.11			
3.1.	Test equipment	.11			
3.2.	Block diagram of test setup	.11			
3.3.	Applied procedures / limit	.11			
3.4.	Test Procedure	.12			
3.5.	Test Result	.13			
4.	26 dB & 99% Emission Bandwidth	.23			
4.1.	Test equipment	.23			
4.2.	Block diagram of test setup	.23			
4.3.	Applied procedures / limit	.23			
4.4.	Test Procedure	.23			
4.5.	Test Result	.24			
5.	MAXIMUM CONDUCTED OUTPUT POWER	.44			
5.1.	Test Result	.45			
6.	Band Edges Measurement	.46			
6.1.	Test Result	.48			
7.	RADIATED EMISSION MEASUREMENT	.52			
7.1.	Test equipment	.52			
7.2.	Block diagram of test setup	.52			
7.3.	Limit	.55			
7.4.	Test Procedure	.56			
7.5.	Test result(Below 30MHz)	.58			
8.	FREQUENCY STABILITY	.64			
9.	Power Line Conducted Emission	.66			
9.1 Test ed	quipment	.66			
9.2 Block diagram of test setup					
9.3 Power Line Conducted Emission Limits(Class B)					
9.5 Test Result					

Report No.: 19EFAS05085 31 3 of 69

10.	Antenna Requirements70
10.1.	Limit70
10.2.	EUT ANTENNA70

TEST REPORT DECLARE

Applicant		Relay2, Inc.
Address	:	Suite 209, 1525 McCarthy Blvd., Milpitas, CA 95035
Equipment under Test		Service-Ready Access Point
Model No		RA345
Trade Mark		Relay2
Manufacturer		Senao Networks, Inc.
Address	:	No. 500, Fusing 3rd Rd., Hwa-Ya Technology Park, Kuei-Shan Dist., Taoyuan City 33383, Taiwan

Test Standard Used: FCC Part 15E 15.407

Test procedure used: ANSI C63.10-2013 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

We Declare:

Report No.: 19EFAS05085 31

The equipment described above is tested by DongGuan ShuoXin Electronic Technology Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and DongGuan ShuoXin Electronic Technology Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

Report No:	19EFAS05085 31		
Date of Test:	2019-04-28	Date of Report:	2019-05-24

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of DongGuan ShuoXin Electronic Technology Co., Ltd.

1. SUMMARY OF TEST RESULTS

The EUT have been tested according to the applicable standards as referenced below.					
FCC Part15 (15.407) , Subpart E					
Description of Test Item	Standard	Results			
AC Power Line Conducted Emissions	FCC §15.207/ RSS-Gen	PASS			
Spurious Radiated Emissions	FCC §15.209(a), 15.407(b)	PASS			
26 dB and 99% Emission Bandwidth	FCC §15.407(a)	PASS			
Maximum Conducted Output Power	FCC §407(a)(1)	PASS			
Band Edges	FCC §2.1051, §15.407(b)	PASS			
Power Spectral Density	FCC §15.407(a)(1)	PASS			
Spurious Emissions at Antenna Terminals	FCC §2.1051, §15.407(b)	PASS			
Frequency Stability	FCC §15.407(a)(6)	PASS			
Antenna Requirement	FCC §15.203	PASS			

2. GENERAL TEST INFORMATION

2.1. DESCRIPTION OF EUT

EUT* Name	:	Service-Ready Access Point
Model Number	:	RA345
EUT function description	:	Service-Ready Access Point with WiFi function.
Power supply	:	DC12V 3.0A
Adaptor		N/A
Operation frequency		WiFi: 802.11a/802.11n(HT20) /ac(VHT20): 5745MHz ~ 5825MHz 802.11n(HT40)/ac(VHT40): 5755MHz ~ 5795MHz 802.11ac(VHT80): 5775MHz,
Modulation	:	OFDM with OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM for 802.11a/n/ac;
Data Rate	:	802.11 a: 6, 54Mbps; 802.11n(HT20):MCS0-MCS7; 802.11n(HT40): MCS0-MCS7; 802.11ac(HT20/HT40/HT80):Up to 1.3Gbps
Antenna Type	:	PIFA Antenna
Antenna Gina	:	Please see 2.7.
Date of Receipt	:	2019/05/24
Sample Type	:	N/A

UNII-4		UNII-4		UNII-4	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

2.2. ACCESSORIES OF EUT

Report No.: 19EFAS05085 31

Description of Accessories	Shielded Type	Ferrite Core	Length
1	1	1	/

2.3. ASSISTANT EQUIPMENT USED FOR TEST

Description of Assistant equipment	Manufacturer	Model number or Type	EMC Compliance	SN
Adapter	1	Y48DE-120-3500	FCC/CE	1

2.4. BLOCK DIAGRAM OF EUT CONFIGURATION FOR TEST

EUT

2.5. TEST ENVIRONMENT CONDITIONS

Report No.: 19EFAS05085 31

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Link Mode
Mode 2	802.11a / n 20/ac20 CH149/ CH157/ CH165
Mode 3	802.11 n40/ac40 CH151/ CH159

For Radiated Emission				
Final Test Mode	Description			
Mode 1	Link Mode			
Mode 2	802.11a / n 20 CH149/ CH157/ CH165			
Mode 3	802.11 n40 CH151/ CH159			
Mode 4	802.11ac80 CH155			

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported
- (3) The EUT was used fully-charged battery and programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

2.6. TEST ENVIRONMENT CONDITIONS

Report No.: 19EFAS05085 31

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25℃
Humidity range:	40-75%
Pressure range:	86-106kPa

2.7. MEASUREMENT UNCERTAINTY

Test Item	Uncertainty
Uncertainty for Conduction emission test (9kHz-150kHz)	3.7 dB
Uncertainty for Conduction emission test (150kHz-30MHz)	3.3 dB
Uncertainty for Radiation Emission test (30MHz-200MHz)	4.6 dB (Polarize: V)
Officertainty for Radiation Emission test (3000112-20001112)	4.6 dB (Polarize: H)
Uncertainty for Radiation Emission test (200MHz-1GHz)	6.0 dB (Polarize: V)
Officertainty for Radiation Emission test (2000) 12-19112)	5.0 dB (Polarize: H)
Uppertainty for Padiation Emission toot (1047 6047)	5.1 dB (Polarize: V)
Uncertainty for Radiation Emission test (1GHz-6GHz)	5.1 dB (Polarize: H)
Uppertainty for Dadiction Emission toot (6CHz 19CHz)	5.4 dB (Polarize: V)
Uncertainty for Radiation Emission test (6GHz-18GHz)	5.4 dB (Polarize: H)
Uppertainty for Dadiation Emission toot (1904, 1004,	5.06 dB (Polarize: V)
Uncertainty for Radiation Emission test (18GHz-40GHz)	5.06 dB (Polarize: H)
Uncertainty for radio frequency	±0.048kHz
Uncertainty for conducted RF Power	±0.32dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.8. ANTENNA DESCRIPTION

Report No.: 19EFAS05085 31

Antenna	Brand	Model Name	Antenna Type	Gain (dBi)	NOTE
A/B/C/D	N/A	N/A	PIFA antenna	2.4G:3.74	Wifi Antenna
A/B/C/D	N/A	N/A	PIFA antenna	5G:5.7	Wifi Antenna

The Control software(tool_WIFI.exe) can control antenna A B,C,D, For 2.4GHz mode, antenna A /B are transmitting, antenna C / D are Receiving. For 5 GHz mode, antenna A /B are transmitting, antenna C / D are Receiving.

For MIMO mode: Directional gain=GANT +10log(N)dBi =6.75dbi in 2.4GHz Directional gain=GANT +10log(N)dbi =8.71dbi in 5GHz 802.11a/b/g/n/ac 2.4GHz & 5GHz has MIMO mode.

ATT

3. POWER SPECTRAL DENSITY TEST

3.1. TEST EQUIPMENT

Report No.: 19EFAS05085 31

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2019/05/25	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2018/12/17	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2018/12/17	1 Year
4	Spectrum analyzer	R&S	FSV40	101470	2019/06/26	1 Year

3.2. BLOCK DIAGRAM OF TEST SETUP

ISpectrum Attanuator	EUT and Assistant System
--------------------------	-----------------------------

3.3. APPLIED PROCEDURES / LIMIT

According to FCC §15.407(a)(3)

For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

Report No.: 19EFAS05085 31

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi..

3.4. TEST PROCEDURE

(For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

3.5. TEST RESULT

Report No.: 19EFAS05085 31

Frequency	Power Density ANT A (dBm/MHz)	Power Density ANT B (dBm/MHz)	Total power density (dBm/MHz)	Limit (dBm/MHz)	Result			
		TX 802.11a	a Mode					
CH 149	-4.19	-4.76	-1.46	14.29	PASS			
CH 157	-6.11	-6.76	-3.41	14.29	PASS			
CH 165	-6.78	-6.54	-3.65	14.29	PASS			
		TX 802.11n2	20 Mode					
CH 149	-3.92	-3.98	-0.94	14.29	PASS			
CH 157	-5.34	-5.78	-2.54	14.29	PASS			
CH 165	-6.39	-6.99	-3.67	14.29	PASS			
	TX 802.11n40 Mode							
CH151	-8.60	-8.97	-5.77	14.29	PASS			
CH159	-8.87	-8.96	-5.90	14.29	PASS			

Frequency	Power Density ANT A (dBm/MHz)	Power Density ANT B (dBm/MHz)	Total power density (dBm/MHz)	Limit (dBm/MHz)	Result		
		TX 802.11 ac(V	HT20) Mode				
CH 149	-3.63	-3.87	-0.74	14.29	PASS		
CH 157	-6.06	-6.64	-3.33	14.29	PASS		
CH 165	-6.61	-6.95	-3.77	14.29	PASS		
		TX 802.11 ac(V	HT40) Mode				
CH 151	-7.67	-7.85	-4.75	14.29	PASS		
CH 159	-8.63	-8.73	-5.67	14.29	PASS		
TX 802.11 ac(VHT80) Mode							
CH155	-10.93	-10.99	-7.95	14.29	PASS		

For 5G mode, Limit =17-8.71+6=14.29

-60 dBm -70 dBm-

CF 5.785 GHz Marker

Type Ref Trc

X-value 5.7890531 GHz

32000 pts

Function

Y-value -6.06 dBm

Span 40.0 MHz

Function Result

4.26 dB & 99% Emission Bandwidth

4.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2019/05/25	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2018/12/17	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2018/12/17	1 Year
4	Spectrum analyzer	R&S	FSV40	101470	2019/06/28	1 Year

4.2. BLOCK DIAGRAM OF TEST SETUP

4.3. APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

4.4. TEST PROCEDURE

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as

the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

4.5. TEST RESULT

Report No.: 19EFAS05085 31

Antenna A

	Frequency	6dB Occupied Bandwidth (MHz)			99% Occupied Bandwidth (MHz)		
CH. No.	(MHz)	802.11a	802.11n (HT20)	802.11ac (VHT20)	802.11a	802.11n (HT20)	802.11ac (VHT20)
149	5745.00	16.34	17.59	17.59	16.49	17.70	17.67
157	5785.00	16.35	17.60	17.58	16.52	17.68	17.71
165	5825.00	16.34	17.60	17.59	16.46	17.69	17.70

CH. No.	Frequency	6B Occupied Ba	andwidth (MHz)	99% Occupied	Bandwidth (MHz)
	(MHz)	802.11n(HT40)	802.11ac(VHT40)	802.11n(HT40)	802.11ac(VHT40)
151	5755.00	36.45	36.41	36.19	36.52
159	5795.00	36.20	36.45	36.24	36.16

CH. No.	Frequency	6dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	(MHz)	802.11ac(VHT80)	802.11ac(VHT80)
155	5775	76.37	76.3

Antenna B

Report No.: 19EFAS05085 31

	Frequency	6dB Occupied Bandwidth (MHz)			99% Occupied Bandwidth (MHz)		
CH. No.	(MHz)	802.11a	802.11n (HT20)	802.11ac (VHT20)	802.11a	802.11n (HT20)	802.11ac (VHT20)
149	5745.00	16.06	17.22	17.41	16.33	17.41	17.54
157	5785.00	16.07	17.23	17.40	16.36	17.39	17.58
165	5825.00	16.06	17.23	17.41	16.3	17.48	17.57

CH. No.	Frequency	6B Occupied Bandwidth (MHz)		99% Occupied	Bandwidth (MHz)
	(MHz)	802.11n(HT40)	802.11ac(VHT40)	802.11n(HT40)	802.11ac(VHT40)
151	5755.00	36.17	36.04	35.97	36.36
159	5795.00	35.92	36.08	36.02	36.08

CH. No.	Frequency	6dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	(MHz)	802.11ac(VHT80)	802.11ac(VHT80)
155	5775	76.26	76.28

ANT A(B) Represent the value of antenna A and B,The worst data is A Antenna a ,only shown Antenna A Plot.

Report No.: 19EFAS05085 31 26 of 69

S. MAXIMUM CONDU	JCTED OUTPUT POWER				
Test Requirement:	FCC Part15 E Section 15.407				
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01				
Limit:	For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW. For the band 5.745-5.850 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 30dBm				
Test setup:	Power Meter E.U.T Non-Conducted Table				
	Ground Reference Plane				
Test procedure:	Measurement using an RF average power meter (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied				
	a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle.				
	 b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. 				
	 c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. 				
	(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).				
	(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.				
	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				

5.1. TEST RESULT

Frequency	Power ANT A (dBm)	Power ANT B (dBm)	Total power (dBm)	Limit (dBm)	Result		
		TX 802.11a	a Mode				
CH 149	11.44	11.29	14.38	27.29	PASS		
CH 157	11.91	11.76	14.85	27.29	PASS		
CH 165	11.20	11.55	14.39	27.29	PASS		
	TX 802.11n20 Mode						
CH 149	11.13	11.09	14.12	27.29	PASS		
CH 157	11.47	11.24	14.37	27.29	PASS		
CH 165	10.61	10.36	13.50	27.29	PASS		
	TX 802.11n40 Mode						
CH151	10.88	10.66	13.78	27.29	PASS		
CH159	10.64	10.45	13.56	27.29	PASS		

Frequency	Power ANT A (dBm)	Power ANT B (dBm)	Total power (dBm)	Limit (dBm)	Result		
		TX 802.11 ac(V	HT20) Mode				
CH 149	10.97	10.11	13.57	27.29	PASS		
CH 157	10.65	10.61	13.64	27.29	PASS		
CH 165	10.87	10.63	13.76	27.29	PASS		
		TX 802.11 ac(V	HT40) Mode				
CH 151	10.64	10.35	13.51	27.29	PASS		
CH 159	10.21	10.21	13.22	27.29	PASS		
	TX 802.11 ac(VHT80) Mode						
CH155	10.64	10.46	13.56	27.29	PASS		

For 5G mode, Limit =30-8.71+6=27.29

Report No.: 19EFAS05085 31 46 of 69

Band Edges Mea Test Requirement:	FCC Part15 E Se	ection 15.407 a	and 5.205		
Test Method:	ANSI C63.10:201	13			
Test site:	Measurement Dis	stance: 3m			
Receiver setup:					
rtocorror cotap.	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		AV	1MHz	3MHz	Average Value
Limit:	Frequen	cv I	_imit (dBuV	/m @3m)	Remark
	30MHz-88		40.0		Quasi-peak Value
	88MHz-216		43.		Quasi-peak Value
	216MHz-96	0MHz	46.0)	Quasi-peak Value
	960MHz-1	GHz	54.0		Quasi-peak Value
	Above 10	GHz	54.0		Average Value
			74.0)	Peak Value
Test Procedure:	outside of the 5.15-5.35 GHz band shall not exceed an EIRP of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emission outside of the 5.15-5.35 GHz band shall not exceed an EIRP of dBm/MHz. Devices operating in the 5.25-5.35 GHz band generate emissions in the 5.15-5.25 GHz band must me applicable technical requirements for operation in the 5.15-5.25 band (including indoor use) or alternatively meet an out-of emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band (3) For transmitters operating in the 5.47-5.725 GHz band: all emis outside of the 5.47-5.725 GHz band shall not exceed an EIRP of dBm/MHz.			eed an EIRP of -27 35 GHz band that and must meet all in the 5.15-5.25 GHz eet an out-of-band 5.25 GHz band. band: all emissions eed an EIRP of -27	
restriocedure.	ground at a 3 determine the b. The EUT was antenna, white tower. c. The antenna the ground to Both horizont make the me d. For each sus case and the meters and the degrees to fire. The test-recesspecified Bar f. If the emission the limit specified by the EUT where the street of th	 a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a 			
Test setup:	data sheet.	Above 1GHz			

Remark:

According to KDB 789033 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

6.1. TEST RESULT

Report No.: 19EFAS05085 31

Peak '

alue:						
Test mode:	802.11a	Test c	hannel:	Lowest		
Peak value:						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725	40.13	8.79	48.92	74	-25.08	Horizontal
5741.35	82.03	8.57	90.6	N/A	N/A	Horizontal
5725	40.47	8.79	49.26	74	-24.74	Vertical
5741.35	83.96	8.57	92.53	N/A	N/A	Vertical
Average						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725	30.03	8.79	38.82	54	-15.18	Horizontal
5741.35	71.88	8.57	80.45	N/A	N/A	Horizontal
5725	29.79	8.79	38.58	54	-15.42	Vertical
5741.35	74.52	8.57	83.09	N/A	N/A	Vertical
Test mode: Peak value:	802.11a	Test c	hannel:	Highest		
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5826.2	78.16	8.79	86.95	N/A	N/A	Horizontal
5850	37.88	8.82	46.7	74	-27.3	Horizontal
5826.2	84.76	8.79	93.55	N/A	N/A	Vertical
5850	39.25	8.82	48.07	74	-25.93	Vertical
Average						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5826.2	69.33	8.79	78.12	N/A	N/A	Horizontal
5850	27.86	8.82	36.68	54	-17.32	Horizontal
5826.2	75.64	8.79	84.43	N/A	N/A	Vertical
5850	28.11	8.82	36.93	54	-17.07	Vertical

Test mode:	802.11n(HT20)	Test c	hannel:	Lowest		
Peak value:						
Frequency	Read Level	Factor	Level	Limit Line	Over Limit	
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
5725	38.25	8.79	47.04	74	-26.96	Horizontal
5742.19	76.32	8.57	84.89	N/A	N/A	Horizontal
5725	39.44	8.79	48.23	74	-25.77	Vertical
5742.19	84.03	8.57	92.6	N/A	N/A	Vertical
Average						
Frequency	Read Level	Factor	Level	Limit Line	Over Limit	Dolovinskion
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
5725	27.91	8.79	36.7	54	-17.3	Horizontal
5742.19	67.63	8.57	76.2	N/A	N/A	Horizontal
5725	29.22	8.79	38.01	54	-15.99	Vertical
5742.19	75.34	8.57	83.91	N/A	N/A	Vertical
Test mode:	802.11n(HT20)	Test c	hannel:	Highest		
Peak value:					<u> </u>	
Frequency	Read Level	Factor	Level	Limit Line	Over Limit	Dolovinstion
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
5826.2	77.05	8.79	85.84	N/A	N/A	Horizontal
5850	37.76	8.82	46.58	74	-27.42	Horizontal
5826.2	85.29	8.79	94.08	N/A	N/A	Vertical
5850	40.36	8.82	49.18	74	-24.82	Vertical
Average			T		T	T
Frequency	Read Level	Factor	Level	Limit Line	Over Limit	
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
5826.2	68.44	8.79	77.23	N/A	N/A	Horizontal
5850	27.93	8.82	36.75	54	-17.25	Horizontal
5826.2	73.61	8.79	82.4	N/A	N/A	Vertical
				54		

Test mode:	802.11n(HT40)	Test c	hannel:	Lowest		
Peak value:						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725	38.14	8.52	46.66	74	-27.34	Horizontal
5745	74.25	8.57	82.82	N/A	N/A	Horizontal
5725	37.34	8.52	45.86	74	-28.14	Vertical
5745	84.16	8.57	92.73	N/A	N/A	Vertical
Average						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725	30.02	8.52	38.54	54	-15.46	Horizontal
5745	68.33	8.57	76.9	N/A	N/A	Horizontal
5725	28.01	8.52	36.53	54	-17.47	Vertical
5745	74.59	8.57	83.16	N/A	N/A	Vertical
Test mode: Peak value:	802.11n(HT40)	Test c	hannel:	Highest		
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5784.88	78.29	8.68	86.97	N/A	N/A	Horizontal
5850	38.18	8.82	47	74	-27	Horizontal
5784.88	84.36	8.68	93.04	N/A	N/A	Vertical
5850	42.41	8.82	51.23	74	-22.77	Vertical
Average						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5784.88	70.41	8.68	79.09	N/A	N/A	Horizontal
5850	28.32	8.82	37.14	54	-16.86	Horizontal
5784.88	74.16	8.68	82.84	N/A	N/A	Vertical
5850	27.22	8.82	36.04	54	-17.96	Vertical

Report No.: 19EFAS05085 31 51 of 69

Test mode:	802.11ac(VHT80)	Test c	hannel:	Middle		
Peak value:						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.000	37.29	8.52	45.81	74	-28.19	Horizontal
5778.180	78.33	8.68	87.01	N/A	N/A	Horizontal
5850.000	36.14	8.82	44.96	74	-29.04	Horizontal
5725.000	37.28	8.52	45.8	74	-28.2	Vertical
5778.180	82.01	8.68	90.69	N/A	N/A	Vertical
5850.000	40.32	8.82	49.14	74	-24.86	Vertical
Average						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.000	29.44	8.52	37.96	54	-16.04	Horizontal
5778.180	69.63	8.68	78.31	N/A	N/A	Horizontal
5850.000	28.06	8.82	36.88	54	-17.12	Horizontal
5725.000	28.49	8.52	37.01	54	-16.99	Vertical
5778.180	71.32	8.68	80	N/A	N/A	Vertical
5850.000	29.33	8.82	38.15	54	-15.85	Vertical

ATT

7. RADIATED EMISSION MEASUREMENT

7.1. Test equipment

Report No.: 19EFAS05085 31

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	Calibrated Date
1	EMI Test Receiver	R&S	ESCI	101307	12/17/2019	12/18/2018
2	Spectrum analyzer	Agilent	E4407B	US40240708	07/04/2019	07/05/2018
3	Trilog Broadband Antenna	Schwarzbeck	VULB9168	VULB9168 -192	03/04/2019	03/05/2019
4	Double Ridged Horn Antenna	SCHWARZBEC K	BBHA 9120D1065	100276	12/17/2019	12/18/2018
5	Double Ridged Horn Antenna	SCHWARZBEC K	BBHA 9120D1065	100546	12/17/2019	12/18/2018
6	Dipole antenna	Schwarzbeck	UHAP	1101	12/17/2019	12/18/2018
7	Dipole antenna	Schwarzbeck	VHAP	1118	12/17/2019	12/18/2018
8	Pre-Amplifier	CY	EMC011830	980136	12/17/2019	12/18/2018
9	Pre-amplifier	HP	8447F	3113A05680	12/17/2019	12/18/2018
10	RF Cable	R&S	R01	10403	12/17/2019	12/18/2018
11	RF Cable	R&S	R02	10512	12/17/2019	12/18/2018
12	RF Cable	R&S	R01	10454	12/17/2019	12/18/2018
13	RF Cable	R&S	R02	10343	12/17/2019	12/18/2018
14	Spectrum analyze	R&S	FSV40	101470	26/06/2019	06/27/2018
15	MeasurementSoft ware	Farad	EZ-EMC (Ver.ATT-03 A)	N/A	N/A	N/A
16	Loop antenna	TESEQ	HLA6120	20129	12/17/2019	12/18/2018

7.2. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for 30MHz-1GHz

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

9.3.1 FCC 15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

9.3.2. FCC 15.209 Limit.

FREQUENCY	DISTANCE	FIELD STRENG	STHS LIMIT
MHz	Meters	μV/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(KHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(KHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/n 54.0 dB(μV)/m	

Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula: Limit_{3m}(dBuV/m)= Limit_{30m}(dBuV/m) + 40Log(30m/3m)

9.3.3. Limit for this EUT

Report No.: 19EFAS05085 31

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 30dB below the fundamental emissions, or comply with 15.209 limits.

7.4. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Setup EUT and assistant system according clause 2.4 and 7.2
- (3) Test antenna was located 3m(except 18GHz-40GHz was 1m) from the EUT on an adjustable mast, and the antenna used as below

table.

Test frequency range	Test antenna used
9KHz-30MHz	Active Loop antenna
30MHz-1GHz	Trilog Broadband Antenna
1GHz-18GHz	Double Ridged Horn Antenna(1GHz-18GHz)
18GHz-40GHz	Horn Antenna(18GHz-40GHz)

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

- (4) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9KHz to 25GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's fixed 1m above ground.)
- (b) Change work frequency or channel of device if practicable.
- (c) Change modulation type of device if practicable.
- (d) new battery is used during testing
- (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

Report No.: 19EFAS05085 31

Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 18GHz to 25GHz, so below final test was performed with frequency range from 9KHz to 18GHz.

- (5) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.
- (6) The emissions from 9KHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz, for emissions from 9KHz-90KHz,110KHz-490KHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (7) The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

(8) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure(according ANSI C63.10:2013 clause 4.2.3.2.3 procedure for average measure). Peak detector is used for Peak and AV measurement both.

7.5. Test result(Below 30MHz)

Report No.: 19EFAS05085 31

EUT:	Service-Ready Access Point	Model No.:	RA345
Temperature:	24℃	Relative Humidity:	55%
Distance:	3m	Test Power:	120V 60Hz
Polarization:		Test Result:	Pass
Test Mode:	Keeping TX mode	Test By:	Smile

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

TEST RESULTS (Between 30M - 1000 MHz)

Report No.: 19EFAS05085 31

EUT:	Service-Ready Access Point	Model No.:	RA345
Temperature:	24	Relative Humidity:	55%
Distance:	3m	Test Power:	AC120V/60Hz
Polarization:	Vertical	Test Result:	Pass
Standard:	(RE)FCC PART 15	Test By:	Smile
Test Mode:	Keeping TX mode		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1		38.8878	33.42	-4.33	29.09	40.00	-10.91	QP
2		75.7114	30.53	-10.43	20.10	40.00	-19.90	QP
3	* 1	66.0680	43.92	-8.97	34.95	43.50	-8.55	QP
4	2	10.0482	33.65	-3.75	29.90	43.50	-13.60	QP
5	3	40.7817	32.86	-5.35	27.51	46.00	-18.49	QP
6	8	04.6028	23.99	7.60	31.59	46.00	-14.41	QP

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (3) Margin = Result Limit

EUT: Service-Ready Access Point Model No.: **RA345** Temperature: **Relative Humidity:** 55% AC120V/60Hz Distance: 3m **Test Power:** Horizontal **Test Result:** Pass **Polarization:** (RE)FCC PART 15 Smile Standard: Test By: Keeping TX mode **Test Mode:**

80.0 dBuV/m Limit: Margin: 40 0.0 30.000 300 400 600 700 1000.000 40 50 60 70 80 (MHz) 500

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1	;	37.1550	24.92	-3.06	21.86	40.00	-18.14	QP
2	16	66.0680	31.11	-7.49	23.62	43.50	-19.88	QP
3	22	23.7333	37.01	-6.52	30.49	46.00	-15.51	QP
4	33	39.5887	39.27	-7.59	31.68	46.00	-14.32	QP
5	* 46	65.5994	33.00	0.15	33.15	46.00	-12.85	QP
6	7	76.8777	24.34	7.41	31.75	46.00	-14.25	QP

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (3) Margin = Result Limit

TEST RESULTS (Above 1000 MHz)

EUT:	Service-Ready Access Point	Model No.:	RA345
Temperature:	24 ℃	Relative Humidity:	55%
Distance:	3m	Test Power:	120V 60Hz
Polarization:	H/V	Test Result:	Pass
Test Mode:	TX-802.11a/n20/n40/ac20/ac40/ac/80	Test By:	Smile

Above 1GHz:

Above IGHZ.								
Mode	Polar (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV/m)	Margin (dB)	Detector (PK/AV)
	Н	11490	32.41	16.82	49.23	74.00	-24.77	PEAK
802.11a-5745 MHz	Н	17235	30.06	22.93	52.99	74.00	-21.01	PEAK
002.11a-3743 WILIZ	V	11570	31.07	16.82	47.89	74.00	-26.11	PEAK
	V	17235	29.26	22.93	52.19	74.00	-21.81	PEAK
	Н	11570	31.81	16.71	48.52	74.00	-25.48	PEAK
802.11a-5785 MHz	Н	17355	27.69	24.37	52.06	74.00	-21.94	PEAK
002.11a-3703 WI12	V	11570	30.15	16.71	46.86	74.00	-27.14	PEAK
	V	17355	28.66	24.37	53.03	74.00	-20.97	PEAK
	Н	11650	33.71	16.61	50.32	74.00	-23.68	PEAK
802.11a-5825 MHz	Н	17475	27.48	25.01	52.49	74.00	-21.51	PEAK
002.11a-3023 WILIZ	V	11650	32.49	16.61	49.10	74.00	-24.90	PEAK
	V	17475	28.19	25.01	53.20	74.00	-20.80	PEAK

Mode	Polar (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV/m)	Margin (dB)	Detector (PK/AV)
	Н	11490	30.89	16.82	47.71	74.00	-26.29	PEAK
802.11n	Н	17235	29.61	22.93	52.54	74.00	-21.46	PEAK
HT20-5745MHz	V	11570	32.07	16.71	48.78	74.00	-25.22	PEAK
	V	17235	28.23	22.93	51.16	74.00	-22.84	PEAK
	Н	11570	30.11	16.71	46.82	74.00	-27.18	PEAK
802.11n	Н	17355	27.96	24.37	52.33	74.00	-21.67	PEAK
HT20-5785MHz	V	11570	32.94	16.71	49.65	74.00	-24.35	PEAK
	V	17355	29.26	24.37	53.63	74.00	-20.37	PEAK
	Н	11650	32.30	16.61	48.91	74.00	-25.09	PEAK
802.11n	Н	17475	27.20	25.01	52.21	74.00	-21.79	PEAK
HT20-5825MHz	V	11650	34.81	16.61	51.42	74.00	-22.58	PEAK
	V	17475	27.51	25.01	52.52	74.00	-21.48	PEAK

Mode	Polar (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV/m)	Margin (dB)	Detect (PK/
	Н	11510	32.49	16.78	49.27	74.00	-24.73	PI
802.11n	Н	17265	28.15	23.29	51.44	74.00	-22.56	Pl
HT40-5755MHz	V	11510	33.40	16.78	50.18	74.00	-23.82	Р
	V	17265	28.66	23.29	51.95	74.00	-22.05	Р
	Н	11590	30.41	16.69	47.10	74.00	-26.90	Р
802.11n	Н	17385	27.09	24.73	51.82	74.00	-22.18	Р
HT40-5795MHz	V	11590	32.20	16.69	48.89	74.00	-25.11	Р
	V	17385	27.61	24.73	52.34	74.00	-21.66	Р
	Н	11490	32.40	16.82	49.22	74.00	-24.78	Р
802.11ac	Н	17235	30.01	22.93	52.94	74.00	-21.06	Р
HT20-5745MHz	V	11490	31.82	16.82	48.64	74.00	-25.36	Р
	V	17235	28.79	22.93	51.72	74.00	-22.28	Р
Mode	Polar (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV/m)	Margin (dB)	Dete (PK/
 -	Н	11570	33.38	16.71	50.09	74.00	-23.91	Р
802.11ac	Н	17355	27.51	24.37	51.88	74.00	-22.12	Р
HT20-5785MHz	V	11570	31.00	16.71	47.71	74.00	-26.29	Р
	V	17355	27.44	24.37	51.81	74.00	-22.19	Р
	Н	11650	32.19	16.61	48.80	74.00	-25.20	Р
802.11ac		17175	26.22	25.01	51.23	74.00	-22.77	Р
802.11ac	Н	17475						Р
802.11ac HT20-5825MHz	H V	11650	32.00	16.61	48.61	74.00	-25.39	
				16.61 25.01	48.61 53.31	74.00 74.00	-25.39 -20.69	
	V	11650	32.00					Р
HT20-5825MHz 802.11ac	V	11650 17475	32.00 28.30	25.01	53.31	74.00	-20.69	P
HT20-5825MHz	V V	11650 17475 11510	32.00 28.30 31.56	25.01 16.78	53.31	74.00 74.00	-20.69 -25.66	P P
HT20-5825MHz 802.11ac	V V	11650 17475 11510 17265	32.00 28.30 31.56 26.78	25.01 16.78 23.29	53.31 48.34 50.07	74.00 74.00 74.00	-20.69 -25.66 -23.93	P P P
HT20-5825MHz 802.11ac	V V H H	11650 17475 11510 17265 11510	32.00 28.30 31.56 26.78 31.74	25.01 16.78 23.29 16.78	53.31 48.34 50.07 48.52	74.00 74.00 74.00 74.00	-20.69 -25.66 -23.93 -25.48	P P P
802.11ac HT40-5755MHz	V V H H V V	11650 17475 11510 17265 11510 17265	32.00 28.30 31.56 26.78 31.74 27.64	25.01 16.78 23.29 16.78 23.29	53.31 48.34 50.07 48.52 50.93	74.00 74.00 74.00 74.00 74.00	-20.69 -25.66 -23.93 -25.48 -23.07	P P P
802.11ac HT40-5755MHz	V V H H V V	11650 17475 11510 17265 11510 17265	32.00 28.30 31.56 26.78 31.74 27.64	25.01 16.78 23.29 16.78 23.29	53.31 48.34 50.07 48.52 50.93	74.00 74.00 74.00 74.00 74.00	-20.69 -25.66 -23.93 -25.48 -23.07	P P P P

Report No.: 19EFAS05085 31 63 of 69

Mode	Polar (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV/m)	Margin (dB)	Detector (PK/AV)
	Н	11550	31.57	16.73	48.30	74.00	-25.70	PEAK
802.11ac	Н	17325	26.70	24.01	50.71	74.00	-23.29	PEAK
HT80-5775MHz	V	11550	29.67	16.73	46.40	74.00	-27.60	PEAK
	٧	17325	24.97	24.01	48.98	74.00	-25.02	PEAK

The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level very low which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

Hence there no other emissions have been reported.

8. FREQUENCY STABILITY

Test Requirement: FCC Part15 C Section 15.407(g) ANSI C63.10:2013, FCC Part 2.1055 Limit: Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified Test Procedure: The EUT was setup to ANSI C63.4, 2014; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements. Test setup: Temperature Chamber Spectrum analyzer FUT Variable Power Supply Note: Measurement setup for testing on Antenna connector Test Instruments: Refer to section 5.10 for details Test mode: Test results: Pass						
Limit: Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified Test Procedure: The EUT was setup to ANSI C63.4, 2014; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements. Test setup: Temperature Chamber Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector Test Instruments: Refer to section 5.10 for details Test mode: Refer to section 5.3 for details	Test Requirement:	FCC Part15 C Section 15.407(g)				
stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified Test Procedure: The EUT was setup to ANSI C63.4, 2014; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements. Test setup: Temperature Chamber Spectrum analyzer Variable Power Supply Note: Measurement setup for testing on Antenna connector Test Instruments: Refer to section 5.10 for details Test mode: Refer to section 5.3 for details	Test Method:	ANSI C63.10:2013, FCC Part 2.1055				
compliance to FCC Part 15.407(g) requirements. Test setup: Temperature Chamber Spectrum analyzer Lut Variable Power Supply Note: Measurement setup for testing on Antenna connector Test Instruments: Refer to section 5.10 for details Test mode: Refer to section 5.3 for details	Limit:	stability such that an emission is maintained within the band of operation				
Spectrum analyzer Variable Power Supply Note: Measurement setup for testing on Antenna connector Test Instruments: Refer to section 5.10 for details Test mode: Refer to section 5.3 for details	Test Procedure:					
Test mode: Refer to section 5.3 for details	Test setup:	Spectrum analyzer EUT Att. Variable Power Supply				
Treating to desire the detailer	Test Instruments:	Refer to section 5.10 for details				
Test results: Pass	Test mode:	Refer to section 5.3 for details				
	Test results:	Pass				

Frequency stability versus Temp. Power Supply: DC 12V								
	Operating	0 minute	2 minute	5 minute	10 minute			
Temp.	Operating Frequency	Measured	Measured	Measured	Measured			
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)			
	5745	5745.0184	5745.1569	5745.1368	5745.0698			
-30	5785	5784.9686	5784.9815	5784.9179	5784.9725			
00	5825	5824.9859	5824.9908	5825.0076	5824.8862			
	5745	5744.9224	5744.9969	5744.9698	5745.0908			
-20	5785	5785.1039	5785.0015	5785.0168	5784.9574			
20	5825	5824.9406	5825.0615	5824.9710	5824.9163			
	5745	5745.0793	5745.0545	5744.9769	5745.0763			
-10	5785	5785.1050	5784.8663	5785.1607	5784.9101			
	5825	5824.8807	5824.8695	5825.0397	5824.9511			
	5745	5744.8689	5745.0679	5745.0246	5744.9186			
0	5785	5784.9509	5785.0546	5784.8337	5784.9335			
	5825	5825.0672	5824.9837	5825.0114	5824.9055			
	0020	0020.00.2						
	5745	5745.0174	5745.0164	5745.2015	5745.1106			
10	5785	5785.0984	5785.0063	5784.8768	5785.0976			
	5825	5824.9969	5825.0258	5824.9637	5825.0564			
	5745	5744.9396	5744.8485	5745.0864	5745.0018			
20	5785	5784.9403	5784.9546	5784.9651	5784.9547			
	5825	5824.8814	5824.9521	5824.9948	5825.1214			
	5745	5745.0339	5744.9383	5745.0147	5744.9828			
30	5785	5785.1452	5784.9095	5784.9389	5784.9502			
	5825	5825.0934	5824.9870	5824.8597	5824.8385			
	5745	5744.9923	5744.8612	5744.9934	5745.0924			
40	5785	5784.9668	5785.0959	5784.8730	5785.1487			
	5825	5825.0114	5825.1105	5825.0154	5824.9086			
	5745	5745.0314	5744.9894	5745.0170	5744.9261			
50	5785	5784.9172	5784.8347	5785.0450	5785.0347			
	5825	5824.9020	5824.8684	5825.1006	5825.0624			

Frequency stability versus Voltage							
Temperature: 25°C							
Power	Operating	0 minute	nute 2 minute 5 r		10 minute		
Supply	Frequency	Measured	Measured Measured		Measured		
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
	5745	5745.0592	5744.8542	5745.0133	5745.0039		
11	5785	5784.8816	5785.0742	5784.9118	5785.1317		
	5825	5825.0136	5824.9883	5824.9287	5825.1481		
	5745	5744.8291	5744.8759	5745.0209	5744.9682		
12	5785	5784.8823	5785.0205	5784.9916	5785.1383		
	5825	5824.9364	5824.7946	5824.9357	5824.9107		
	5745	5744.8189	5745.0002	5744.9994	5744.8712		
13	5785	5784.8274	5784.9362	5784.9457	5784.9738		
	5825	5824.9889	5824.9283	5824.9821	5825.0694		
	5825	5824.9889	5824.9283	5824.9821	5825.0694		

9. POWER LINE CONDUCTED EMISSION

9.1 Test equipment

Report No.: 19EFAS05085 31

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Pulse Limiter	MTS-systemtechnik	MTS-IMP-136	261115-010-0024	12/17/2019
2	EMI Test Receiver	R&S	ESCI	101308	12/17/2019
3	LISN	AFJ	LS16	16011103219	12/17/2019
4	LISN	Schwarzbeck	NSLK 8127	8127-432	12/17/2019
5	Measurement Software	Farad	EZ-EMC (Ver.ATT-03A)	N/A	N/A
6	MeasurementSoftware	Farad	EZ-EMC (Ver.ATT-03A)	N/A	N/A

9.2 Block diagram of test setup

9.3 Power Line Conducted Emission Limits(Class B)

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)	
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*	
500kHz ~ 5MHz	56	46	
5MHz ~ 30MHz	60	50	

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

Report No.: 19EFAS05085 31 67 of 69

9.4 TEST PROCEDURE

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 KHz.

9.5 Test Result

PASS. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits.

Note2: "----" means peak detection; "----" mans average detection

EUT:	Table PC	Model No.:	RA345		
Temperature:	23℃	Relative Humidity:	52%		
Probe:	N	Test Power:	AC 120V/60Hz		
Test Time:	2019-05-20	Test Result:	Pass		
Standard:	(CE)FCC PART 15 class B_QP				
Test Mode:	TX				
Note:					

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBu∀	dBu∀	dB	Detector
1	0.1580	37.12	11.75	48.87	65.56	-16.69	QP
2	0.1660	23.18	11.61	34.79	55.15	-20.36	AVG
3	0.3980	12.64	10.13	22.77	47.89	-25.12	AVG
4	0.4220	25.24	10.11	35.35	57.41	-22.06	QP
5 *	2.1580	19.86	10.00	29.86	46.00	-16.14	AVG
6	2.4380	27.45	10.01	37.46	56.00	-18.54	QP

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = (LISN, ISN, PLC or Current Probe) Factor + Cable Loss +Attenuator
- (3) Margin = Result Limit

EUT:	Table PC	Model No.:	RA345
Temperature:	23℃	Relative Humidity:	52%

Probe:	L1	Test Power:	AC 120V/60Hz				
Test Time:	2019-05-20	Test Result:	Pass				
Standard:	(CE)FCC PART 15 c	(CE)FCC PART 15 class B_QP					
Test Mode:	TX						
Note:							

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector
1	0.1539	37.31	11.84	49.15	65.78	-16.63	QP
2	0.1740	23.71	11.48	35.19	54.76	-19.57	AVG
3	0.1940	34.81	11.21	46.02	63.86	-17.84	QP
4	0.1940	19.40	11.21	30.61	53.86	-23.25	AVG
5 *	2.4100	21.53	10.01	31.54	46.00	-14.46	AVG
6	2.4500	28.69	10.01	38.70	56.00	-17.30	QP

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = (LISN, ISN, PLC or Current Probe) Factor + Cable Loss +Attenuator
- (3) Margin = Result Limit

10. ANTENNA REQUIREMENTS

10.1. Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2. EUT ANTENNA

Report No.: 19EFAS05085 31

The EUT antenna is permanent attached antenna. It comply with the standard requirement.