Fakrul Islam Tushar

+1-9842444464 tushar.ece@duke.edu Portfolio: fitushar.github.io github.com/fitushar linkedin.com/in/fitushar

PhD candidate at Duke University specializing in medical imaging AI, synthetic data generation, and in silico trials. Seeking full-time opportunities in medical AI or applied machine learning.

EDUCATION

Duke University NC, USA

PhD, Electrical and Computer Engineering

Aug. 2021 to Present

University of Girona

Girona, Spain

MSc, Erasmus Mundus Joint Master in MedicAl Imaging and Applications, CGPA: 7.9/10. Sept. 2017 to 2019

American International University Bangladesh (AIUB)

Dhaka, Bangladesh

BSc, Electrical and Electronics Engineering, CGPA: 3.82/4.

Jan. 2013 to Feb. 2017

EXPERIENCE

Duke University Medical Center

NC, USA

Research Associate

Oct. 2019 to Feb. 2021

PROJECTS

Duke University

Completed Research Projects

2021 to 2025

- Weakly Supervised Body CT Classification: Built 3D CNNs for multi-organ disease classification using report-derived labels, enabling large-scale annotation-free learning. [GitHub] [Tushar et al., Radiology: Artificial Intelligence (2021); BMC Med Inform Decis Mak (2022)]
- Virtual Lung Screening Trial (VLST): Designed an *in-silico* lung cancer screening trial simulating imaging, scanners, and AI readers; validated against NLST real-world outcomes. [Project-page] [Tushar et al., *Medical Image Analysis* (2025); RSNA (2024); VITM (2024); SPIE (2024)]
- AI in Lung Health Benchmarking: Curated the Duke Lung Cancer Screening (DLCS) dataset; proposed SWS++ for task-relevant pretraining; benchmarked across Clinical datasets. [GitHub] [Tushar et al., arxiv (2024); Wang & Tushar et al. Radiology: Artificial Intelligence (2025)]
- **SYN-LUNGS**: Developed a 3D anatomy-informed lung nodule dataset to advance detection, segmentation, classification, & synthesis. [Tushar et al., *arxiv* (2025); *MICCAI submitted*]
- **ReFINE-Lung**: Developed a pseudo-labeling AI framework combining ensemble models, calibration, and unsupervised alignment to curate large clinical CT datasets. [Writing in progress]

Duke University

Ongoing Projects 2025 to Future

- VLST-2: Creating a 1,000-patient in-silico screening cohort matched to real-world clinical distributions.
- MASLI: Designing a synthetic image generation AI framework with control over nodule features.
- **FOUND-Lung**: A foundational model trained across clinical, simulated, and synthetic domains for down-stream lung imaging tasks.

AWARDS

- Best Poster Presentation Award, at 1st International Summit of Virtual Imaging Trials in Medicine 2024.
- Conference Travel Grant (\$700), at SPIE Medical Imaging Conference 2024.
- Best Poster Award, All Pratt Poster Competition 2022, Pratt School of Engineering, Duke University.
- 3rd Position Best Poster Award (\$500), Poster Presentation Competition 2022, ECE, Duke University.
- Erasmus Mundus Joint Master Scholarship (€42,000), Covering full tuition fees and monthly stipend.
- Master Thesis Grant (\$5,000), from Duke University Medical Center.
- Academic Honour "Cum Laude", for Academic Excellence at AIUB's 17th Convocation.
- Dean's Award, for undergraduate final year project (2nd place out of 180 projects for academic year 2016).
- Merit Scholarship (\$4,500), from AIUB to complete the undergraduate degree.

KEY PUBLICATIONS

- Tushar et al., "Virtual Lung Screening Trial (VLST): An In Silico Study Inspired by the National Lung Screening Trial for Lung Cancer Detection." *Medical Image Analysis* (2025). doi:10.1016/j.media.2025 .103636; *Project-page:* fitushar.github.io/VLST.github.io/.
- Tushar et al., "SYN-LUNGS: Towards Simulating Lung Nodules with Anatomy-Informed Digital Twins for AI Training." arXiv (2025). https://arxiv.org/abs/2502.21187; Submitted MICCAI 2025.
- Wang, Tushar et al., "The Duke Lung Cancer Screening (DLCS) Dataset: A Reference Dataset of Annotated Low-dose Screening Thoracic CT." Radiology: Artificial Intelligence (2025). doi.org/10.1148/ryai.240248; Dataset: zenodo.org/records/13799069.
- Tushar et al., "AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets." arXiv (2024). arxiv.org/abs/2405.04605; Code: github.com/fitushar/AI-in-Lung-Health-Benchmarking-Detection-and-Diagnostic-Models-Across-Multiple-CT-Scan-Datasets.
- Tushar et al., "Beyond Detection: Bridging the Gap Between Virtual Imaging Trials and Clinical Impact." in *Proc. Virtual Imaging Trials in Medicine 2024*, p. 202 (2024). *Poster:* doi.org/10.13140/RG.2.2.26638.78402; *Code:* github.com/fitushar/VLST-Beyond-Detection.
- Tushar et al. "Virtual imaging trials improved the transparency and reliability of AI systems in COVID-19 imaging" arXiv (2023). arxiv.org/abs/2308.09730. Under-review; *Project-page:* fitushar.github.io/Revi COVID.github.io/; *Code:* gitlab.oit.duke.edu/cvit-public/cvit_revicovid19.
- D'Anniballe, & Tushar et al. "Multi-Label Annotation of Text Reports from CT Using Deep Learning." *BMC Med Inform Decis Mak* (2022). doi.org/10.1186/s12911-022-01843-4; *Code:* github.com/fitushar/multi-label-annotation-text-reports-body-CT.
- Tushar et al., "Classification of Multiple Diseases on Body CT Scans Using Weakly Supervised Deep Learning." *Radiology: Artificial Intelligence* (2021). doi.org/10.1148/ryai.210026; *Code:* github.com/fitushar/multi-label-weakly-supervised-classification-of-body-ct.

ADDITIONAL PUBLICATIONS AND PRESENTATIONS

- Wang, Tushar et al., "Concordance-Based Predictive Uncertainty (CPU)-Index: Proof-of-Concept with Application Towards Improved Specificity of Lung Cancers on Low Dose Screening CT." Artificial Intelligence in Medicine (2025). doi.org/10.1016/j.artmed.2024.103055
- Dahal, Ghojoghnejad, Vancoillie, Ghosh, Bhandari, Kim, Ho, ushar et al. **XCAT 3.0:** A Comprehensive Library of Personalized Digital Twins Derived from CT Scans. *Medical Image Analysis* (2025). doi.org/10.1016/j.media.2025.103636.
- Tushar et al., "Virtual NLST: Towards Replicating National Lung Screening Trial." Medical Imaging 2024: Physics of Medical Imaging, SPIE (2024). doi.org/10.1117/12.2613010
- Tushar et al., "Virtual Human Twins in Lung Health: A Comprehensive In Silico Screening Approach." *RSNA Annual Meeting*, Scientific Poster #T5A-SPPH-2, Chicago, IL (2024). *Presentation*: github.com/fitushar /VLST.github.io/blob/master/static/pdfs/RSNA-2024-VLST.pdf
- Wang, Tushar et al., "Radiomic-Demographic Data Fusion and Diagnostic Uncertainty Quantification Lead to Improved Specificity of Lung Cancers on Low Dose Screening CT." 66th Annual Meeting & Exhibition, AAPM (2024).
- Garcia-Alcsoer, Michael E., Tushar, Fakrul Islam, et al. "Multidisease Classification of CT Reports Using Traditional Natural Language Processing and a Lightweight Foundation Model." *Medical Imaging* 2025: *Imaging Informatics*, SPIE (2025). doi.org/10.1117/12.3047690
- Tushar et al., "Virtual vs. Reality: External Validation of COVID-19 Classifiers Using XCAT Phantoms for Chest CT." Medical Imaging 2022: CAD, SPIE (2022). https://doi.org/10.1117/12.2613010
- Tushar et al., "Quality or Quantity: Toward a Unified Approach for Multi-Organ Segmentation in Body CT." Medical Imaging 2022: Physics of Medical Imaging. SPIE (2022). doi.org/10.1117/12.2613101
- Tushar et al., "Co-Occurring Diseases Heavily Influence Performance of Weakly Supervised Models for Chest CT." Medical Imaging 2022: Computer-Aided Diagnosis, SPIE (2022). doi.org/10.1117/12.2612700
- Hasan, M. K., Dahal, L., Tushar et al. "DSNet: Automatic Dermoscopic Skin Lesion Segmentation." Computers in Biology and Medicine (2020). doi.org/10.1016/j.compbiomed.2020.103738

- Saha & Tushar et al., "Weakly supervised 3D classification of chest CT using aggregated multi-resolution deep segmentation features." *Medical Imaging 2020: Computer-Aided Diagnosis, SPIE* (2020).
- Tushar et al., "Brain tissue segmentation using neuronet with different pre-processing techniques." 8th ICIEV and 3rd icIVPR, IEEE (2019). doi:10.1109/ICIEV.2019.8858515

KEY OPEN-SOURCE CODES

- In-Silico Trial Resources: https://fitushar.github.io/VLST.github.io/
- AI in Lung Health Benchmarking: https://github.com/fitushar/AI-in-Lung-Health-Benchmarking-Detection-and-Diagnostic-Models-Across-Multiple-CT-Scan-Datasets
- Weak Supervision & Rule-Based Algorithms for Radiology text: https://github.com/fitushar/multi-label-weakly-supervised-classification-of-body-ct
- COVID-19 Classifier Diversity Study (ReviCOVID19): https://gitlab.oit.duke.edu/cvit-public/cvit_revicovid19
- Basic Medical Imaging Pre-Processing: https://github.com/fitushar/3D-Medical-Imaging-Preprocessing-All-you-need

KEY OPEN-SOURCE DATASETS & ANNOTATIONS

- The Duke Lung Cancer Screening (DLCS) Dataset: https://doi.org/10.5281/zenodo.13799069
- National Lungs Screening Trial 3D annotation: https://zenodo.org/records/15320923
- U-10: United-10 COVID-19 CT Dataset https://zenodo.org/records/14064172

SKILLS

- ML Libraries PyTorch, MONAI, TensorFlow.
- Containerization Tools Docker, Singularity.
- Programming Languages Python, MATLAB.
- Workflow Tools Git, Linux shell scripting.

TEACHING EXPERIENCE

- Teaching Assistant, Duke University (Spring 2025): Graduate-level course Introduction to Machine Learning (ECE 580). Responsibilities included developing assignments and solutions, and holding office hours to support student learning.
- Teaching Assistant, Duke University (Spring 2023): Graduate-level course Human-Centered Computing (ECE/COMPSCI 653). Responsibilities included conducting consulting hours to provide personalized student guidance and grading assignments and exams.
- Thesis Mentor, Duke University: Co-Supervised 4 Master's theses relating AI and medical imaging.
- Youth Leader, Instructor (2016): at Literacy Through Leadership (LTL), in collaboration with Teach For Bangladesh; contributed 78 hours over 13 weeks (6 hours/week) to improve English reading and writing skills of 40 underprivileged primary school students.

INVITED TALKS

• Unlocking the Power of AI & In-Silico Trials in Chest Radiology, Invited Speaker, CVIT Research Forum, Duke University, June 2024. *Talk: https://cvit.duke.edu/forum/june-21-2024-unlocking-the-power-of-ai-in-silico-trials-in-chest-radiology/*

CO-CURRICULAR ACTIVITIES

IEEE AIUB Student Branch

Chair, Chapters and AG Development

Feb. 2016 to Feb. 2017

IEEE Industry Application Society, Microwave Theory and Techniques Society

Dhaka, Bangladesh Feb. 2016 to Feb. 2017

AIUB SB Chapter, Vice-Chairperson

b. 2016 to Feb. 2017

IEEE Day Section Ambassador

Dhaka, Bangladesh *2015*, *2016*

Dhaka, Bangladesh

REFERENCES

IEEE

- Joseph Y. Lo, Professor and Vice Chair for Research of Radiology, Duke University; joseph.lo@duke.edu
- Ehsan Samei, Professor of Radiology, Physics, BME, and ECE, Duke University; esi.samei@duke.edu