

2009 级计算机学院《数值分析》期末试卷 A 卷 (信二学习部整理)

功	E级	学号		姓名		龙绩	
注意	① 答题方② 可以使③ 请将填	用计算器。	的答案直接填	在试卷上,计算	算题答在答题 组	纸上。	
—,	填空题						(20×2′)
1.	设 x=0.231	是精确值 x*=	=0.229 的近位	以值,则 x 有	ĵ	位有效	数字。
2.	设 $A = \begin{bmatrix} 3 & 2 \\ -2 & 1 \end{bmatrix}, X = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $ A _{\infty} = $, $ X _{\infty} = $,						
	$\ AX\ _{\infty} \leq$		(注意:不计	算 AX ∞f	的值)。		
3.	非线性方程	! f(x)=0 的迭	代函数 x=φ(x	x)在有解区间]满足	,则使	用该迭代函
	数的迭代解	法一定是局	部收敛的。				
4.	若 f(x)=x ⁷	$-x^3+1,$	则 f[2 ⁰ ,2 ¹ ,	22,23,24,25,26	,27]=		,
	$f[2^0,2^1,2^2,2^3,$	$2^4, 2^5, 2^6, 2^7, 2^8$]=	o			
5.	区间[a,b]上	的三次样条	插值函数 <i>S</i> (x)在[<i>a,b</i>]上具	有直到	阶的连续	导数。
6.	当插值节点	为等距分布	时,若所求	节点靠近首节	5点,应该选	用等距节点	下牛顿差商
	公式的(填写前插公式、后插公式或中心差分公式),若						
	所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的						
	(填写前插公式、后插公式或中心差分公式);如果要估计结果的舍入误差,应该选						
	用插值公式	中的	2.3.	450±0	o		
7.	拉格朗日插值公式中 $f(x_i)$ 的系数 $a_i(x)$ 的特点是: $\sum_{i=0}^n a_i(x) = $						
	系数 a _i (x)满	起		,计	算时不会放力	大 $f(x_i)$ 的误差	â o
8.	要使 $\sqrt{20}$ 的近似值的相对误差小于 0.1% , 至少要取位有效数字。						
9.	对任意初始	的量 X ⁽⁰⁾ 及在	£意向量 g,	线性方程组的	的迭代公式 x	$e^{(k+1)} = Bx^{(k)} + g($	(k=0,1,···)收
	敛于方程组	L的精确解 <i>x</i> *	的充分必要	条件是			_0
10.	由下列数据	所确定的插	值多项式的	欠数最高是_		0	
	x	0	0.5	1	1.5	2	2.5
ı		•	•		-	-	*

- 11. 牛顿下山法的下山条件为。
- 12. 线性方程组的松弛迭代法是通过逐渐减少残差 r_i (i=0,1,···,n)来实现的,其中的残差 r_i = , (i=0,1,···,n)。
- 13. 在非线性方程 f(x)=0 使用各种切线法迭代求解时,若在迭代区间存在唯一解,且 f(x) 的二阶导数不变号,则初始点 x_0 的选取依据为_____。
- 14. 使用迭代计算的步骤为建立迭代函数、 、迭代计算。
- 二**、判断题**(在题目后的()中填上"√"或"×"。) (10×1′)
- 1、若A 是n 阶非奇异矩阵,则线性方程组AX=b 一定可以使用高斯消元法求解。()
- 2、解非线性方程 f(x)=0 的牛顿迭代法在单根 x* 附近是平方收敛的。 ()
- 3、 若 A 为 n 阶方阵, 且其元素满足不等式

$$|a_{ii}| \ge \sum_{\substack{j=1 \ j \ne i}}^{n} |a_{ij}| \quad (i = 1, 2, ..., n)$$

则解线性方程组AX=b的高斯——塞德尔迭代法一定收敛。 ()

- 4、样条插值一种分段插值。 ()
- 5、如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。 ()
- 6、从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断误差 及舍入误差。 ()
- 7、解线性方程组的的平方根直接解法适用于任何线性方程组AX=b。 ()
- 8、迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一步 迭代计算的舍入误差。 ()
- 9、数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则是截断误差=舍入误差。 ()
- 10、插值计算中避免外插是为了减少舍入误差。 ()

三**、计算题** (5×8' +10')

1、用列主元高斯消元法解线性方程组。(计算时小数点后保留5位)。

$$\begin{cases} x_1 - x_2 + x_3 = -4 \\ 5x_1 - 4x_2 + 3x_3 = -12 \\ 2x_1 + x_2 + x_3 = 11 \end{cases}$$

2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式 $P_4(x)$, 并写出其截断误差的表达式(设 f(x)在插值区间上具有直到五阶连续导数)。

χ_i	0	1	2
$f(x_i)$	1	-1	3
$f'(x_i)$		1	5

3、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯——赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代法的迭代**公式**,并简单说明收敛的理由。

$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ x_1 - x_3 + 5x_4 = 6 \\ x_2 + 4x_3 - x_4 = 8 \\ -x_1 + 3x_2 - x_3 = 3 \end{cases}$$

4、设 y=sinx, 当取 $x_0=1.74$, $x_1=1.76$, $x_2=1.78$ 建立拉格朗日插值公式计算 x=1.75 的函数值时,函数值 y_0, y_1, y_2 应取几位小数?

5、已知单调连续函数 v=f(x)的如下数据:

x_i	-0.11	0.00	1.50	1.80
$f(x_i)$	-1.23	-0.10	1.17	1.58

若用插值法计算,x 约为多少时 f(x)=1。(计算时小数点后保留 5 位)。

6、应用牛顿法于方程 $f(x)=1-\frac{a}{x^2}=0$, 导出求 \sqrt{a} 的迭代公式, 并用此公式求 $\sqrt{115}$ 的值。(计算时小数点后保留 4 位)。

课程编号: 12000044 北京理工大学 2009-2010 学年第二学期

2009级计算机学院《数值分析》期末试卷 A 卷

功	E级	学号		姓名		龙绩	
注意	 ① 答题方 ② 可以使 ③ 请将填充 	用计算器。	的答案直接填	在试卷上,计算	算题答在答题组	氏上。	
四、	填空题(2	0×2′)					
15.	设 x=0.231	是精确值 x*=	=0.229 的近位	以值,则 x 有	î <u>2</u>	位有效数	字。
16.	$\mathcal{A} = \begin{bmatrix} 3 \\ - \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}, X$	$= \begin{bmatrix} 2 \\ -3 \end{bmatrix}^{, \parallel}$	$A \parallel_{\infty} = \underline{}$	5, .	X∥ _∞ =	3,
	$\ AX\ _{\infty} \leq$	_ <u>15</u> 。					
17.	非线性方程	f(x)=0 的迭	代函数 <i>x=φ</i> (<i>x</i>	()在有解区间]满足_ <u> <i>φ'</i>(x) </u>	<u><1</u> ,则	使用该迭代
	函数的迭代	解法一定是	局部收敛的。				
18.	若 f(x)=x ⁷	$-x^3 + 1$	则 f[2 ⁰ ,2 ¹	$,2^{2},2^{3},2^{4},2^{5},2^{6}$	$[5,2^7] = 1$,
]=				
19.	区间[a,b]上	的三次样条	插值函数 <i>S</i> (<i>x</i>)在[<i>a,b</i>]上具	有直到2_	_阶的连续导	数。
20.	. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商						
	公式的 前插公式 , 若所求节点靠近尾节点, 应该选用等距节点下牛顿差商公						
	式的	后插公式	,如果要	要估计结果的	舍入误差,	应该选用插	值公式中的
	拉格朗日插	i值公式	0				
			5		n		
21.	拉格朗日插	i值公式中f(x	x _i)的系数 a _i (x	的特点是:	$\sum_{i=0}^{n} a_i(x) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1	; 所以当
	系数 <i>a_i(x)</i> 满	j足	$a_i(x) > 1$,计算时	才不会放大 <i>f</i> ((x_i) 的误差。
22.	要使 $\sqrt{20}$ 的	勺近似值的相]对误差小于	0.1%,至少	要取4	位有效数	字。
23.	对任意初始	向量 X ⁽⁰⁾ 及信	£意向量 g,	线性方程组的	的迭代公式 x	$e^{(k+1)} = Bx^{(k)} + g($	(k=0,1,···)收
	敛于方程组	.的精确解 <i>x</i> *	的充分必要	条件是	ρ(B)<1		
24.	由下列数据	所确定的插	值多项式的	欠数最高是_	5	0	
	x	0	0.5	1	1.5	2	2.5
Į.		l .	I.	I			l .

学习部

y=f(x)	-2	-1.75	-1	0.25	2	4.25	
25. 牛顿下山	法的下山条件	 <u> f(xn+1</u>) < f(xn)		0		
26. 线性方程	组的松弛迭代	代法是通过逐	渐减少残差。	$r_i (i=0,1,\cdots,n)$	来实现的,	其中的残差	
$r_i = \underline{(b_i-a)}$	a_1 X 1- a_1 2 X 2 a_1	$_{n}x_{n})/a_{ii}$, (i	$=0,1,\cdots,n)$.		
27. 在非线性	27. 在非线性方程 $f(x)=0$ 使用各种切线法迭代求解时,若在迭代区间存在唯一解,且 $f(x)$						
的二阶导数不变号,则初始点 x_0 的选取依据为 $f(x_0)f'(x_0)>0$ 。							
28. 使用迭代	计算的步骤为	可建立迭代函	数、选取	初值	、迭代	计算。	
五、判断题	(10×1′)						
10、 若 A	是 n 阶非奇异	矩阵,则线	性方程组 AX	= b 一定可以	人使用高斯消	肖元法求解。	
(×)							
11、解非	线性方程。	f(x)=0 的牛	顿迭代法在	E 单根 x* M	付近 是 平方	了收敛的。	
(√)							
12、 若 <i>A</i>	为 n 阶方阵,	且其元素满	足不等式				
$ a_{ii} \geq \sum_{\substack{j \ i}}$	$\sum_{\substack{j=1\\ \neq i}}^{n} \left a_{ij} \right (i =$	= 1,2,, <i>n</i>)					
	方程组 <i>AX=b</i>		塞德尔迭代法	去一定收敛。		(×)	
13、 样	条 插	值	一种	分	设 插	值。	
(√)							
14、 如果	插值结点相	司,在满足机	相同插值条件	牛下所有的护	插值多项式	是等价的。	
(√)							
15、 从实	际问题的精确				误差、观测	引误差、截断	
误	差	及	舍 /	、	差差	<u>.</u> .	
(√)							
16、解线	性方程组的	的平方根	直接解法适	用于任何:	线性方程组	$\exists AX = b$.	
(×)							
17、 迭代	解法的舍入误	差估计要从	第一步迭代计	上算的舍入误	差开始估计	·,直到最后一	
步	き 代	计 算	的	舍 入	误	差。	
(×)	N. I. Balan I. J. D. N. C.		E ENTENDED ST	_	H.N.H. N. 7. 7. 7.	= / L / N	
	计算中的总误						
是	战 断	误差	=	舍 入	误	差。	

 $(\sqrt{})$

10、插值计算中避免外插是为了减少舍入误差。

(X)

六、计算题(5×10′)

1、用列主元高斯消元法解线性方程组。

$$\begin{cases} x_1 - x_2 + x_3 = -4 \\ 5x_1 - 4x_2 + 3x_3 = -12 \\ 2x_1 + x_2 + x_3 = 11 \end{cases}$$

解答:

(1,5,2) 最大元5在第二行,交换第一与第二行:

$$\begin{cases}
5x_1 - 4x_2 + 3x_3 = -12 \\
x_1 - x_2 + x_3 = -4 \\
2x_1 + x_2 + x_3 = 11
\end{cases}$$

L₂₁=1/5=0.2,l₃₁=2/5=0.4 方程化为:

$$\begin{cases} 5x_1 - 4x_2 + 3x_3 = -12 \\ -0.2x_2 + 0.4x_3 = -1.6 \\ 2.6x_2 - 0.2x_3 = 15.8 \end{cases}$$

(-0.2,2.6) 最大元在第三行,交换第二与第三行:

$$\begin{cases} 5x_1 - 4x_2 + 3x_3 = -12 \\ 2.6x_2 - 0.2x_3 = 15.8 \\ -0.2x_2 + 0.4x_3 = -1.6 \end{cases}$$

L32=-0.2/2.6=-0.076923,方程化为:

$$\begin{cases} 5x_1 - 4x_2 + 3x_3 = -12 \\ 2.6x_2 - 0.2x_3 = 15.8 \\ 0.38462x_3 = -0.38466 \end{cases}$$

回代得:
$$\begin{cases} x_1 = 3.00005 \\ x_2 = 5.99999 \\ x_3 = -1.00010 \end{cases}$$

2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式 $P_4(x)$, 并写出其截断误差的表达式(设 f(x)在插值区间上具有直到五阶连续导数)。

x_i	0	1	2
$f(x_i)$	1	-1	3
$f'(x_i)$		1	5

解答:

做差商表

xi	F(xi)	F[xi,xi+1]	F[xi.xi+1.xi+2]	F[xi,xi+1,xi+2,xi+3]	F[xi,xi+1,xi+2,xi+3,xi+4]
0	1				
1	-1	-2	116		
1	-1	1	3		
2	3	4	3	0	
2	3	5	1	-2	-1

P4(x)=1-2x-3x(x-1)-x(x-1)(x-1)(x-2)

 $R4(x)=f(5)(\xi)/5!x(x-1)(x-1)(x-2)(x-2)$

3、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯——赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代法的迭代公式,并简单说明收敛的理由。

$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ x_1 - x_3 + 5x_4 = 6 \\ x_2 + 4x_3 - x_4 = 8 \\ -x_1 + 3x_2 - x_3 = 3 \end{cases}$$

解答:

交换第二和第四个方程, 使系数矩阵为严格对角占优:

$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ -x_1 + 3x_2 - x_3 = 3 \\ x_2 + 4x_3 - x_4 = 8 \\ x_1 - x_3 + 5x_4 = 6 \end{cases}$$

雅克比迭代公式:

$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ -x_1 + 3x_2 - x_3 = 3 \\ x_2 + 4x_3 - x_4 = 8 \\ x_1 - x_3 + 5x_4 = 6 \end{cases}$$

- 4、设 y=sinx,当取 $x_0=1.74$, $x_1=1.76$, $x_2=1.78$ 建立拉格朗日插值公式计算 x=1.75 的函数值时,函数值 y_0, y_1, y_2 应取几位小数?
- 5、已知单调连续函数 y=f(x)的如下数据:

x_i	-0.11	0.00	1.50	1.80
$f(x_i)$	-1.23	-0.10	1.17	1.58

若用插值法计算,x 约为多少时 f(x)=1。(计算时小数点后保留 5 位)。

6、应用牛顿法于方程 $f(x)=1-\frac{a}{x^2}=0$,导出求 \sqrt{a} 的迭代公式,并用此公式求 $\sqrt{115}$ 的值。(计算时小数点后保留 4 位)。

