AFFDL-TR-79-3032 Volume II

ADA 086558

THE USAF STABILITY AND CONTROL DIGITAL DATCOM Volume II, Implementation of Datcom Methods

20000727235

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY — ST. LOUIS DIVISION ST. LOUIS, MISSOURI 63166

APRIL 1979

Reproduced From Best Available Copy

TECHNICAL REPORT AFFDL-TR-79-3032, VOLUME II Final Report for Period August 1977 — November 1978

Approved for public release; distribution unlimited.

FILE COPY

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

80

10

38

NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Bernard 7. Nielaus

V. O. HOEHNE
Acting Branch Chief
Control Dynamics Branch
Flight Control Division

FOR THE COMMANDER

MORRIS A. OSTGAARD

Acting Chief

Flight Control Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify <u>APWAL/PICC</u>, W-TAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/23 June 1980 - 860

UNCLASSIFIED

(19) 718-117-3456,-VOL-2)

SECURITY CLASSIFICATION	IN OF THIS PAGE (WHEN D	ace Entered)		
REPO	RT DOCUMENTATIO	ON PAGE	READ INSTRU BEFORE COMPLE	TING FORM
TO NUMBER	AD-	- 17080 538 G	THE PHIENTS CATALOG	NUMBER
AFFDL-TR-79-3032	, VOLUME IT	1 . 0 . 0	Mucal r	pli
4. TITLE (and Subtitle)		and the second s	TYPE OF REPORT & PI	ERIOD COVERED
THE USAF STABILI	TY AND CONTROL D	IGITAL DATCOM.	August 1977 No	
Volume II, Impl	ementation of Dat	tcom Methods	O PENSONNO UNU. REF	
1000	manager and the control of the control of the state of	12	RECONTRACT OR GRANT.	MUMBER(1)
John E. Williams	Steven R./V	ukelich	/ F33615-77-C-3073	172
9. PERFORMING ORGANI	ZATION HAME AND ADDR	ESS	10 PROGRAM ELEMENT P	ASK TASK
	s Astronautics C	ompany-St. Louis	AFFDL Project No.	8219
F.O. Box 516 St. Louis, Misso	urt 63166	1	Task 82190115	
<u> </u>			TZ REPORT DATE	7.
Air Force Flight	Dynamics Lab (F	GC) ("//"	Apr # 2079	(12) al
Wright-Patterson	Air Force Base,		TE NORBER OF ALGES	
Ohio 45433			155 '	
14 MONITORING AGENCY	HAME & ADDRESS(II ditt	erent from Controlling Office)	IS. SECURITY CLASS. (of I	his report)
(12)	1211	•	Unclassified	
	21		ISA DECLASSIFICATION C	OWNGRADING
16. DISTRIBUTION STATE	WENT CALIBRA BANKS			
17. DISTRIBUTION STATE	MEM ! (of the seatrect ente	ored in Block 20, if different fi	om Report)	
]	•			
			· ·	
, , , , , , , , , , , , , , , , , , , ,				
18. SUPPLEMENTARY NO	TES			• .
None				
None.			•	
	1			1
	en reverse eide if necesser	y and identify by block numbe	,	
USAF DATCOM Aerodynamic Stal	11110	,		
High Lift and Co		,		
Computer Program		•		
Fortran				
20 ABSTRACT (Continue	n reverse side if necessary	and identify by block number		
This report	: describes a dig	ital computer prog	ram that calculates	static
stability, high	lift and control	i, and dynamic der	ivative characterist	ics using
the methods con	cained in the USA	AF Stability and Co	ontrol Datcom (revis	red while
1976). Configu	cation geometry,	attitude, and Maci	h range capabilities	are con-
sistent with the)se accommodated	by the Datcom. The	he program contains	a ilim
option that com	outes control del	Valuma T 4s *he	iynamic increments i ser's manual and pro	or venicie
trim at subsoni	: mach numbers.	Volume 1 18 the up	ser a menual and bre	secuta .
			·	·
DD 1 JAN 73 1473 E	DITION OF 1 NOV 65 IS OR	SOLETE -	UNCLASSIFIED	

404231

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

program capabilities, input and output characteristics, and example problems. Volume II describes program implementation of Datcom methods. Volume III discusses a separate plot module for Digital Datcom.

The program is written in ANSI Fortran IV. The primary deviations from standard Fortran are Namelist input and certain statements required by the CDC compilers. Core requirements have been minimized by data packing and the use of overlays.

User oriented features of the program include minimized input requirements, input error analysis, and various options for application flexibility.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

This report, "The USAF Stability and Control Digital Datcom," describes the computer program that calculates static stability, high lift and control, and dynamic derivative characteristics using the methods contained in Sections 4 through 7 of the USAF Stability and Control Datcom (revised April 1976). The report consists of the following three volumes:

- o Volume I, Users Manual
- o Volume II, Implementation of Datcom Methods
- o Volume III, Plot Module

A complete listing of the program is provided as a microfiche supplement.

This work was performed by the McDonnell Douglas Astronautics Company, Box 516, St. Louis, MO 63166, under contract number F33615-77-C-3073 with the United States Air Force Systems Command, Wright-Patterson Air Force Base, OH. The subject contract was initiated under Air Force Flight Dynamics Laboratory Froject 8219, Task 82190115 on 15 August 1977 and was effectively concluded in November 1978. This report supersedes AFFDL TR-73-23 produced under contract F33615-72-C-1067, which automated Sections 4 and 5 of the USAF Stability and Control Datcom; AFFDL TR-74-68 produced under contract F33615-73-C-3058 which extended the program to include Datcom Sections 6 and 7 and a trim option; and AFFDL-TR-76-45 that incorporated Datcom revisions and user oriented options under contract F33615-75-C-3043. The recent activity generated a plot module, updated methods to incorporate the 1976 Datcom revisions, and provide additional user oriented features. These contracts, in total, reflect a systematic approach to Datcom automation which commenced in February 1972. Mr. J. E. Jenkins, AFFDL FGC, was the Air Force Project Engineer for the previous three contracts and Mr. B. F. Niehaus acted in this capacity for the current contract. The authors wish to thank Mr. Niehaus for his assistance, particularly in the areas of computer program formulation, implementation, and verification. A list of the Digital Datcom Principal Investigators and individuals who made significant contributions to the development of this program is provided on the following page.

Requests for copies of the computer program should be directed to the Air Force Flight Dynamics Laboratory (FGC). Copies of this report can be obtained from the National Technical Information Service (NTIS).

This report was submitted in April 1979.

PRINCIPLE INVESTIGATORS

J.	Ε.	Williams	(1975 - Present)
s.	c.	Murray	(1973 - 1975)
G.	J.	Mehlick	(1972 - 1973)

T. B. Sellers (1972 - 1972)

CONTRIBUTORS

E. W. Ellison (Datcom Methods Interpretation)

R. D. Finck

G. S. Washburn (Program Structure and Coding)

TABLE OF CONTENTS

Section	<u>Title</u> <u>Pag</u>	<u>e</u>
1.	Introduction	L
2.	Program Organization	5
3.	Equations for Geometric Parameters	7
4	Incorporation of Methods	7
5.	System Resource Requirements	7
6.	Program Conversion Modifications	9
7.	Program Deck Description	1
	References	5

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
1	Overlay Program Structure	36
2 .	Planform Nomenclature	. 38
3	Sweep Angle Nomenclature	40
4	Exposed Mean Aerodynamic Chord Nomenclature	42
5	Theoretical or Reference Mean Aerodynamic Chord Nomenclature	42
6	Special Wing Pitching Moment Geometry	43
7	Supersonic Nonstraight Wing Planform	44
8	$(\Lambda_{L} < \Lambda_{L})$ Supersonic Nonstraight Wing Planform	, 46
9	$(\Lambda_L > \Lambda_L)$ Equivalent Dihedral Angle Nomenclature	48
10	Vertical Tail Geometry	49
11	Supersonic and Hypersonic Body Geometry	51
12	General Synthesis Nomenclature	52
13	Downwash Nomenclature	54
14	Definition Sketch for Propeller Power Effect Calculations	57
15	Geometry for Determining Immersed Wing Parameters	58
16	Geometry for Determining Immersed Wing Parameters (Continued)	59
17	Geometry for Determining Immersed Wing Parameters (Concluded)	60
18	Definition Sketch for Jet Power Calculations	61
19	Ground Effect Wing and Tail Heights	. 64
20	Ground Effects Planform Parameter ΔX	. 65
21	Airfoil Section Module - Executive Routing	. 70
22	Airfoil Section Module - NACA Designation Routine	. 71
23	Airfoil Section Module - Section Aerodynamics Routine	, 72
24.	Airfoil Section Module - Section Maximum Lift Koutine	. 73
25	Asymmetric Body Geometry Inputs	. 94
26	Potential and Vortex Lift Components	94
27a	Correlation of a	95
27ь	Body Thickness Parameters	95
28	Potential Lift Center of Pressure	96

LIST OF TABLES

Table	<u>Title</u>	Page
1	Summary of Digital Datcom Methods	2
2	Subsonic Data By Overlay	31
3	Transonic Data By Overlay	32
4	Supersonic-Hypersonic Data By Overlay	33
5	Airfoil Section Module Routine Description	68
6	Programmed Transonic Second Level Methods Summary	84
. 7	Digital Datcom Overlay Description	112
8	Frogram Common Decks	134
9	Digital Datcom Routine Description	135
10	Control Data Blocks	151

SECTION 1

INTRODUCTION

Digital Datcom calculates static stability, high-lift and control device, and dynamic-derivative characteristics using the methods contained in Sections 4 through 7 of Datcom. The computer program also offers a trim option that computes control deflections and aerodynamic data for vehicle trim.

Even though the development of Digital Datcom was pursued with the sole objective of translating the Datcom methods into an efficient, user-oriented computer program, differences between Datcom and Digital Datcom do exist. Such is the primary subject of this volume, Implementation of Datcom Methods, which contains the program formulation for those methods in variance with Datcom methods. Program implementation information regarding system resources necessary to make the program operational are presented in Sections 5 and 6.

Section 6 also lists each of the routines and references their appearance in the program listings provided as a microfiche supplement to this volume.

Users should refer to Datcom for the validity and limitations of methods involved. However, potential users are fore-warned that Datcom drag methods are not recommended for performance. Where more than one Datcom method exists, the summary in Table 1 indicates which method or methods are employed in Digital Datcom. Tables 2, 3, and 4 define the basic output data in each Mach regime and shows the overlay in which each is computed.

The computer program is written in Fortran IV for the CDC Cyber 175. Through the use of overlay and data packing techniques, core requirement is 67,000 octal words for execution with the NOS operating system using the FTN compiler. Central processor time for a case executed on the NOS system depends on the type of configuration, number of flight conditions, and program option selected. Usual requirements are on the order of one to two seconds per Mach number.

Direct all program inquires to AFFDL FGC, Wright-Patterson Air Force Base, Ohio 45433. Phone (513) 255-4315.

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS	*User input or calculated by the airfoil section module	Experimental data input required	*Transonic fairing performed	*Graphical Method Used	Method 2 high aspect ratio, Method 3 low
SUBROUTINE		CALCAO	WTL I FT TRSØN I	LIFTCF WINGCL SUPLNG SUPLNG	CLMXB1 CLMXB1
OVERLAY		15,16	15,16 24 27 27	15,16 35 27 27	15,16
METHOD NUMBER	MON	NDM NDM NDM	ееее	ннн,н	2,3 1 NP NP
MACH REGIME	SUBSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	4.1.2	4.1.3.1	4.1.3.2	4.1.3.3	4.1.3.4
CONFIGURATION	Airfoils	Wings	Wings	Wings	Wings
AERODYNAMIC PARAMETER	Airfoil Section Aerodyna- mics	,°	ت	لی	C, MAX

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED *Subject of Section 4 of this volume

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS		*	*Straight-tapered low aspect ratio *Compute aerodynamic center	*	*
SUBROUTINE	СМАГРН	CMALPH TRANCM SUPLNG SUPLNG	СМАГРН	CDRAG TRSØN I SUPDRG SUPDRG	CDRAG WINGCL SUPDRG SUPDRG
OVERLAY	31,33	31,33 25 27 27 27	31,33	3,5 24 18 18	3,5 35 18 18
METHOD NUMBER	1 NDM NDM NDM		NDW NDW NDW		
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUFERSONIC HYPERSONIC	SUBSONIC TRAMSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	4.1.4.1	4.1.4.2	4.1.4.3	4.1.5.1	4.1.5.2
CONFIGURATION	Wings	Wings	Wings	SB:: 18	Wings
AERODYNAMIC PARAMETER	ు [©]	ن ق	یE	°G	o _o

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED *Subject of Section 4 of this volume

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER CC		2000					
	CONFIGURATION	SECTION	REGIME	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
<u>~</u>	Bodies	4.2.1.1	SUBSONIC		90 4	BØDYRT	
			SUPERSONIC HYPERSONIC		 2 2 2 2 3	SUPRID HYPRID	raired between subsonic and supersonic
<u> </u>	Bodies	4.2.1.2	SUBSONIC TRANSONIC	N.Y.	9 0	BØDYRT	
			HYPERSONIC	. m	26	SOF BRU HYP8ØD	
<u> </u>	Body Asymmetric	4.2.1.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM	4	ВФОФРТ	
<u> </u>	Bodies	4.2.2.1	SUBSONIC TRANSONIC SUPERSONIC	0 rt en r	6 19	BBDYRT BBDYR1 SUPBBD	Faired Between Subsonic and Supersonic
<u> </u>	Bodies	4.2.2.2	SUBSONIC TRANSONIC SUPERSONIC	NDM	6 19	BØDYRT SUPBØD	
			HIPERSUNIC	-4	9	H	

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED *Subject of Section 4 of this volume

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

							والمراجعة
AERODYNAMIC PARAMETER	COMFIGURATION	DATCOM SECTION	MACH REGIME	METHCD NUMBER	OVERLAY	SUBROUT!NE	REMARKS
J ° O	^p ody Asymmetric	4.2.2.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	MON MON MON MON	4	варарт	*
မိ	Bodies	4.2.3.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	2	6 19 26	BØDYRT BØDYRT SUPBØD HYPBØD	
o O	Bodies	4.2.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC		6 6 19 26	BØDYRT BØDYRT SUPBØD HYPBØD	Excludes Elliptical Cross Sections Excludes Spherically-Blunted Ogive Method
o, °o	Body Asymmetric	t .	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	W W W W W W W W W W W W W W W W W W W	4	ваодрт	*
o	Wing-Body Asymmetric	4,3.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	WOW WON			

NDM-NO : TCOM METHOD NP-NOT PROGRAMMED *Subject of Section 4 of this volume

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS	Method 1 Low AR, Method 2 Hi AR Uses Supersonic Method 1	Linear Slope If No Exper. Data Uses Subsonic Method 1 Uses Subsonic Method 1			Uses Supersonic Method
SUBROUTINE	WBL IFT WBTRAN SUPWB SUPWB	WBLIFT WBCLB WBLIFT WBLIFT	WBLIFT		WBCM TRANCM SUPWB SUPWB
OVERLAY	7 25 20 20	35	7 20	ı	25 20 20
METHOD NUMBER	1,2 1 1 1	- NO	NDM NDM	WON WON WON	prof prof prof
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSCVIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	4.3.1.2	4.3.1.3	4.3.1.4	4.3.2.1	4.3.2.2
CONFIGURATION	Wing-Body	Wing-Body	Wing-Body	Wing-Body	Wing-Body
AERODYNAMIC PARAMETER	°ىي	ر	Сымах	ی ^و °	ن ^و

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

·	تا ا	,				
REMARKS	* See Section 4 for formula- tion of (X _{ac} /c) _{WB}		Uses Supersonic Method	Uses Supersonic Method		
SUBROUTINE	WBCM		WBDRAG WBCDL SUPWB SUPWB	WBDRAG WBCDL SUPWB SUPWB	DWASH, DYPRLS TRAWBT SDWASH,DPRESR	
OVERLAY	. 7		7,24 20 20	7,24 20 20 20	35 21	
METHOD NUMBER	WDW WDW WDW	WON WON WON		يسم يعمل لعمل ليميز	1 2 NDM	
MACH REGINE	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	
DATCOM SECTION	4.3.2.3	4.3.2.4	4.3.3.1	4.3.3.2	4.4.1	
CONFIGURATION	Wing-Body	Wing-Body Asymmetric	Wing-Body	Wing-Body	Wing Flow Fields	
AERODYNAMIC PARAMETER	ےE	J ° W	တိ	o _o	9: 3a, q/q <u>.</u>	
•				. •		

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED *Subject of Section 4 of this volume

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

AERODYNAMIC PARAMETER	CONFIGURATION	DATCOM SECTION	MACH REGIME	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
δε/δα Canards	Wing Flow Fields	4.4.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDW 3 MDW	21	DWASH SDWASH	
ر م	Wing-Body- Tail	4,5.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1,2 1 1,2 NOM	10 35 28	WBTAIL TRAWBT SUPWBT	Method 1 for b _w >> bH Linearized about C _L = 0 Method 2 for Canard Config
ತ	Wing-Body- Tail	4.5.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 28 28 28 28	WBTAIL CLWBT SUPWBT SUPWBT	Excludes Shock Expansion Method Uses Supersonic Method
C MAX	Wing-Body- Tail	4.5.1.3	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	8 8 8 8		. , , , , , , , , , , , , , , , , , , ,	
ی≅°	Wing-Body- Tail	4.5.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	1,2	10 28 28 28	WBTAIL TRAWBT SUPWBT	Method 2 for Canard Config Linearized about C _L = 0 Method 2 for Canard Config Uses Supersonic Methods

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED *Subject of Section 4 of this volume

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

	,			ı	
REMARKS					
			See Datcom		' -
SUBROUTINE	PRPWEF,JETPWE	PRPWEF,JETPWE	GRDEFF		GRDEFF
OVERLAY	13,30	13,30	Ξ		11
METHOD NUMBER	1 NOM NOM NDM	NDM NDM NDM	1,2 NDM NDM NDM	WQN WQN NDW	1 NDM NDM NDM
	ပပ	U U	رين	,,ບູບ	ပ
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
	4.6.3 SUBSONIC TRANSONIC SUPERSONI HYPERSONI	4.6.4 SUBSONIC TRANSONIC SUPERSONI HYPERSONI	4.7.1 SUBSONIC TRANSONIC SUPERSONI HYPERSONI	4.7.2 SUBSONIC TRANSONIC SUPERSONI HYPERSONI	4.7.3 SUBSONIC TRANSONIC SUPERSONI HYPERSONI
CONFIGURATION SECTION REGIME	.6.3	4.9	.7.1	7.2	.7.3

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

	AERODYNAMIC PARAMETER	CONFIGURATION	DATCOM SECTION	MACH REGIME	METHOD NUMBER	OVERLAY	SUBROUTINE	REMARKS
	(^{ac} d)sround	LIA	4.7.4	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	2 NDM NDM NDM	11	GRDEFF	
	°0	Low Aspect Ratio Wings, Wing-Bodies	4.8.1.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NOM	4	LØARWB	
	ی×	Low Aspect Ratio Wings, Wing-Bodies	4.8.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM	14	LØARWB	
,	A _O	Low Aspect Ratio Wings, Wing-Bodies	4.8.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM NDM NDM	14	LØARWB	
	√	Low Aspect Ratio Wings, Wing-Bodies	4.8.2.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDW NDW NDW	41	LØARWB	
•								

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS			Uses Supersonic Method		* Uses Supersonic Method
SUBROUTINE		LØARWB	SUBLAT SUPLAT SUPLAT		SUBLAT WINGCL SUPLAT SUPLAT
OVERLAY		14	17 23 23		17 35 23 23
METHOD NUMBER	MON MON MON MON	1 NDW NDW NOW	1 1 1	W W W W W W W W W W W W W W W W W W W	
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM. SECTION	4.8.3.1	4.8.3.2	5.1.1.1	5.1.1.2	5.1.2.1
CONFIGURATION	Low Aspect Ratio Wings, Wing-Bodies	Low Aspect Ratio Wings, Wing-Bodies	Wings	Wings	Wings
AERODYNAMIC PARAMETER	ی ^{و°}	ڻ ^E	ۍ څ	ర అ చ	g J

NDM-NO DATCOM METHOD NP-NOT PROGRAMMED *Subject of Section 4 of this .olume

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS	See Datcom for details	Uses Supersonic Method		Uses Supersonic Method	See Datcom for Details
SUBROUTINE		SUBLAT SUPLAT SUPLAT		SUBLAT SUBLAT SUPLAT SUPLAT	
OVERLAY	,	17 23 23		17 17 23 23	
METHOD NUMBER	WGN WGN	NDM 1	MON MON MON		NDM NDM NP NDM
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	5.1.2.2	5.1.3.1	5.1.3.2	5.2.1.1	5.2.1.2
CONFIGURATION	Wings	Wings	Wings	Wing-Bodies	Wing-Bodies
AERODYNAMIC PARANETER	ర త ప	رو ^ه	ర అ హ్	ر ر ک	ت ق ن

NP-NOT PROGRAMMED

NDM-NO DATCOM METHOD

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS	*Use Linear CL if No Exper Data USES SUPERSONIC METHOD		Uses Supersonic Method	See Datcom for Details	Method 2 for Twin Vertical Panels (on wing only)	
SUBROUTINE	SUBLAT WBCLB SUPLAT SUPLAT U		SUBLAT SUBLAT SUPLAT SUPLAT		SUBLAT M	
OVERLAY	17 35 23 23		17 17 23 23	en e	17	
METHOD NUMBER		WON WON		MON MON MON MON	1,2 NDM 1	
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	
DATCOM SECTION	5.2.2.1	5.2.2.2	5.2.3.1	5.2.3.2	5.3.1.1	
CONF I GURATION	Wing-Bodies	Wing-Bodies	Wing-Bodies	Wing-Bodies	Tail-Bodies	
AERODYNAMIC PARAMETER	a B	ర అ న	ں ھ	စ မ ပ	ۍ ع	

NDM-NO DATCOM METHOD .NP-NOT PROGRAMMED *Subject of Section 4 of this volume

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

SUBROUTINE		SUBLAT SUPLAT SUPLAT		SUBLAT SUPLAT	See Datcom for Details
OVERLAY		17 23 23	· .	17 23 23	·
METHOD NUMBER	WQN WQN MQN WQN	NDM 1	WON WON WON	NDM 1	WON WON WON
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	5.3.1.2	5.3.2.1	5.3.2.2	5.3.3.1	5.3.3.2
CONFIGURATION	Tail-Bodies	Tail-Bodies	Tail-Bodies	Tail-Bodies	Tail-Bodies
AERODYNAMIC PARAMETER	ν Θ	້ອ	^გ გ	ي ۾	¤ ຍ " ບ

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

[,			
					,	:
	REMARKS				•	•
	REM					1
			·	•		
	<u> </u>	·				
	JTINE			_		
	SUBROUTINE	SUBLAT	LØARWB	LØARWB	LØARWB	LØARWB
-	OVERLAY			,		
		17	14	. 14	14	14
VETUOD	NUMBER	1 NDM NDM NDM	NDM NDM NDM	NDM NDM NDM	NDM NDM NDM	NDM NDM NDM
MACU	REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NIC ONIC SONIC SONIC	NIC ONIC SONIC SONIC	VIC ONIC SONIC	VIC ONIC SONIC
Š	E RE(SUBSONIC TRANSONIC SUPERSONI HYPERSONI	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
TCOM	SECTION	4.1	5.1.1	5.1.2	5.2.1	5.5.2.2
Va.	SE	2.4	വ	က်	<u>ي.</u>	
	RATIO	odies	pect Wing, Sodies	oect Wing, 3odies	ect Wing, 3odies	ect Wing, Sodies
	CONFIGURATION	Tail-Bodies	Low Aspect Ratio Wing, Wing-Bodies	Low Aspect Ratio Wing, Wing-Bodies	Low Aspect Ratio Wing, Wing-Bodies	Low Aspect Ratio Wing, Wing-Bodies
AMIC	TER			-	<u>-</u>	
AFRODYNAMIC	PARAMETER	(H ^{3g}) 句(s o	8 3	82°	ea.
Z		<u> </u>	~~	<u> </u>	, , , ,	7, 8,

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

٠								
	AERODYNAMIC PARAMETER	CONFIGURATION	DATCOM SECTION	MACH REGIME	METHOD NUMBER	OVERL AY	SUBROUTINE	REMARKS
	,7.a 80	Low Aspect Ratio Wings,	5.5.3.1	SUBSONIC	N DM	14	LØARWB	·
	,	W1ng-bodies		HYPERSONIC	E W			
	<u>کہ</u> 8	Low Aspect Ratio Wings, Wing-Bodies	5.5.3.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	N N N N N N N N N N N N N N N N N N N	14	LØARWB	
	^ک ئی	Wing-Body-	5.6.1.1	SUBSONIC		. 11	SUBLAT	
		la I s		I KANSUNIC SUPERSONIC HYPERSONIC	NDM NDM	23	SUPLAT	
	ر _۲ ه م	Wing-Body- Tails	5.6.1.2	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	N N N N N N N N N N N N N N N N N N N		•	See Datcom for details
	ى ئ	Wing-Body- Tails	5.6.2.1	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDW NDW	17	SUBLAT	
							,	

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS			See Datcom for details	Jet Flaps in "JETFP" overlay 55	Jet Flaps in "JETFP" overlay 55
SUBROUTINE		SUBLAT		LIFTFP	LIFTEP
OVERLAY		17		36	36
METHOD NUMBER	W W W W W W W W W W W W W W W W W W W	NDW 1 NOW	WQ N WQ N N N N N N N N N N N N N N N N	NDW NDW NDW	1 NOM NOM NDM
E E	VIC ONIC SONIC	NIC ONIC SONIC SONIC	NIC ONIC SONIC SONIC	NIC ONIC SONIC SONIC	VIC ONIC SONIC SONIC
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
	5.6.2.2 SUBSON TRANSC SUPERS SUPERS	5.6.3.1 SUBSOI TRANSI SUPER: HYPER	5.6.3.2 SUBSOI TRANSI SUPER HYPER	6.1.1.1	6.1.1.2
ERODYNAMIC DAFCOM MAN PARAMETER CONFIGURATION SECTION REG	6.2.2	6.3	6.3.2		1.1.2

NF-NOT PRC3RAMMED

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS		Jet Flaps in "JETFP" overlay 55	Jet Flaps in "JETFP" overlay 55		
SUBROUTINE	LIFTEP	FLAPCM	FLAPCM	FLAPCM	HINGE SSHING
OVERLAY	. 36	37, 55.	37, 55	37	36
METHOD NUMBER 0	N DM N DM N DM	2	1 N N N N N N N N N N N N N N N N N N N	- WON WON WON WON	NDM 1 NDM
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	6.1.1.3	6.1.2.1	6.1.2.2	6.1.2.3	6.1.3.1
CONFIGURATION	Section characteris- tics with con- trol devices				
AERODYNAYIC PARMETER	C. max	۷c	ر و	c (near c)	ي د د

NP-NOT PROGRAMMED

NDM-NO DATCOM METHOD

19

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

			· · · · · · · · · · · · · · · · · · ·	overlay 55	overlay 55
REMARKS		,			"JETFP" ove
RE			•	Jet Flaps in "JETFP"	Flaps in "
				Jet F	Jet F
SUBROUTINE	HINGE SSHING		•	LIFTFP LIFTFP SSSYM	SSSYM
OVERLAY	36			36, 55 36 41	41, 55
METHOD NUMBER	1 HDM 1 NDM	MON WON WON	MON MON MON MON	NO MO	NOW MON
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	5.1.3.2	6.1.3.3	6.1.3.4	6.1.4.1	6.1.4.2
CONFIGURATION	Section characteris- tics with con- trol_devices	Section characteris- tics with con- trol devices	Section characteris- tics with con- trol devices	Flapped Planform	Flapped Planform
AERODYNAMIC PARAMETER		ر _ا) ه	(c _h , 3 f	. "	ے د

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

	55	55	55		
	overlay	overlay	overlay		•
	l	oveı	over		
REMARKS	Jet Flaps in "JETFP"	Jet Flaps in "JETFP"	Jet Flaps in "JETFP"		
REM	"		J." .		,
	ps in	ps ii	ps 1		
	r Fla	Fla	. Fla	•	
	Jet	Je .	Jet		
TINE	_			•	
SUBROUTINE	LIFTFP	FLAPCM FLAPCM SSSYM	FLAPCM FLAPCM FLAPCM FLAPCM	HINGE SSHING	HINGE SSHING
	7	## ## ## ## ## ## ## ## ## ## ## ## ##		HI SS	H SS
OVERLAY	. 22	55 37 41	55 37 37 37	36	36
	36,	37.	37		
METHOD NUMBER	N N N N N N N N N N N N N N N N N N N	2 1 1 NDM		NDW 1	N N N N N N N N N N N N N N N N N N N
프뿔	IC NIC ONIC ONIC	IC NIC ONIC ONIC	IC NIC ONIC	NIC ONIC	21C 2NIC 2NIC
MACH REGIME	JBSONIC VANSONIC JPERSONIC PPERSONIC	IBSONIC LANSONIC IPERSONIC	IBSONIC JANSONIC PERSONIC PERSONIC	BSONIC ANSONIC PERSONIC PERSONIC	6SONIC ANSONIC PERSONIC PERSONIC
	3 SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
		1.5.1	1.5.2	1.6.1	1.6.2
DATCOM	6.1.4.3 SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	6.1.5.1 SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC			
DATCOM	6.1.4.3	6.1.5.1	6.1.5.2	6.1.6.1	6.1.6.2
DATCOM	6.1.4.3	6.1.5.1	6.1.5.2	6.1.6.1	6.1.6.2
CONFIGURATION SECTION		1.5.1	1.5.2	1.6.1	1.6.2
CONFIGURATION SECTION	Flapped 6.1.4.3 Planform	6.1.5.1	6.1.5.2	6.1.6.1	6.1.6.2
DATCOM	6.1.4.3	6.1.5.1	6.1.5.2	6.1.6.1	6.1.6.2

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

	REMARKS					
-	SUBROUTINE	DRAGFP	LATFLP TRNYRL SPRYAW	LATFLP	LATFLP TRNYRL SPRYAW	
	OVERLAY	38	52 40 53	52	52 40 53	·
MCTUOD	NUMBER	1 NDM NP NDM	u m m &	N N N N N N N N N N N N N N N N N N N	r MO	WON WON WON
MACI	REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCON	SECT ION	6.1.7	6.2.1.1	6.2.1.2	6.2.2.1	6.2.3
	CONFIGURATION	Flapped	Flapped Planform	Flapped Pianform	Flapped Planform	Fiapped Planform
ACCOUNTABLE	PARAMETER	ဌာ	ວ ^ະ	H _S	ی ت	ر ر

NDM-NO DATCOM METHOD NI

PROGRAMMED
<u></u>
Σ
Σ
7
\Rightarrow
<u> </u>
Q
\circ
æ
$\overline{}$
-
_
0
Z
-
\sim
호
~

0.5	REMARKS				Below Mach 0.9 (See Datcom)	Uses subsonic method
SUMMARY OF DIGITAL DATCOM METHODS	SUBROUTINE	HYPFLP	TRANJT		CTABS CTABS	SUBPAW SUBPAW SUPPAW
DIGITAL	OVERLAY	42	47		36 36	4 4 4 4 3 3 4 4 3 3 4 4 3 4 4 4 3 4
JMMARY OF	METHOD NUMBER	MON NOM 1	N N N N N N N N N N N N N N N N N N N	X X X X X	N N N N N N N N N N N N N N N N N N N	1 1 1 NOM
Table 1 SL	MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
	DATCOM SECTION	6.3.1	6.3.2	6.3.3	6.3.4	7.1.1.1
	CONFIGURATION	Tail-Bodies	All		Tabbed Planform	Kings
	AERODYNAMIC PAKAMETER	Hypersonic Control Effective- ness	Transverse- Jet Control Effective- ness	Inertial Controls	Aerodyna- mically Boosted Tabs	ۍ ح

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

		,		,	
REMARKS					
SUBROUTINE	SUBPAW SUBPAW SUPCMQ	SUBRYW	SUBRYW	SUBRYW	
OVERLAY	433 433	45 45	45	45	
METHOD NUMBER	NDW NDW	NDM NDM	NDM 1 1 NDM	NDM NDM	WDW WDW NDW
MACH	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
7					
DATCOM SECTION	7.1.1.2	7.1.2.1	7.1.2.2	7.1.2.3	7.1.3.1
CONFIGURATION SECTION	Wings 7.1.1.2	Wings 7.1.2.1	Wings 7.1.2.2	Wings 7.1.2.3	7.1.3.1

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS			Triangular wings only	Straight tapered wings only	Uses subsonic method
SUBROUTINE	SUBRYW	SUBRYW	SUBPAW SUBPAW SUPCLD	SUBPAW SUBPAW SUPCMD	SUBPAW SUBPAW SUPPAW SUPPAW
OVERLAY	45	45	4 4 4 3 3	443 5443	4 4 4 4 8 8 8 8
METHOD	1 NDM NDM NDM	N N N N N N N N N N N N N N N N N N N	NOM 1	NDM	
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	7.1.3.2	7.1.3.3	7.1.4.1	7.1.4.2	7.2.1.1
CONF 1 GURAT 1 ON	Wings	Wings	Wings	Wings	Bodies
AERODYNAMIC PARAMETER	ນ້	ي د	٠°	ۍ ق	b _J

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

SO	REMARKS	Uses subsonic method	Uses subsonic method Uses subsonic method		Uses subscnic method	Uses subsonic method
DATCOM METHODS	SUBROUTINE	DYNBØD DYNBØD DYNBØD DYNBØD	DYNBØD DYNBØD DYNBØD DYNBØD	DYNBØD DYNBØD DYNBØD DYNBØO	DNPAWE DNAPWB DNPAWB	DNPAWB DNPAWB DNPAWB
F DIGITAL	OVERLAY	46 46 46	46 46 46	46 46 46	46 46 46	46 46 46
SUMMARY OF	METHOD NUMBER	1111	e		1 1 1 NDM	1 1 NDM
lable 1 S	MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
	DATCOM SECTION	7.2.1.2	7.2.2.1	7.2.2.2	7.3.1.1	7.3.1.2
	CONFIGURATION	Bodies	Bodies	Bodies	Wing-Bodies	Wing-Bodies
	AERODYNAMIC PARAMETER	ٽ ⁵	ر. ه	ے د د	J 6	ూ

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

-											_
ca.	REMARKS	Uses wing method (7.1.2.1)	Uses wing method (7.1.2.1)	Uses wing method (7.1.2.2)	Uses wing method (7.1.2.2)	Uses wing method (7.1.2.3)	Uses wing method (7.1.2.3)			Uses wing method (7.1,3.2)	
מאוכטא אבוחסט	SUBROUTINE	SUBRYW	MAXAGO	SUBRYW	SUPRYW	SUBRYW	SUPRYW			SUBRYW	
מומווער	OVERLAY	45	Ç	45	45	45	45				
SUFFICIAL UF	METHOD	NDW NDW		N DM	NDW		NDW 1	N N N N N N N N N N N N N N N N N N N	WQN	- WON W	
- 1	MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC		SUBSONIC	SUPERSONIC HYPERSONIC	SUBSONIC	SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC	HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	
	DATCOM SECTION	7.3.2.1	,	7.3.2.2		7.3.2.3		7.3.3.1		7.3.3.2	
	CONFIGURATION	Wing-Bodies		Wing-Bodies		Wing-Bodies		Wing-Bodies		Wing-Bodies	
	AERODYNAMIC PARAMETER	ح ک	,	້ຳ	.	္ဌင	3	^ئ ر ک		ບຶ	

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS	Uses wing method (7.1.3.3)	Uses subsonic method	Uses subsonic method	All use subsonic methods. Method 2 for canard config.	All use subsonic methods. Method 2 for canard config.
SUBROUTINE	SUBRYW	DN PAWB DN PAWB DN PAWB	DNPAWB DNPAWB DNPAWB	DNPWBT DNPWBT DNPWBT	DNPWBT DNPWBT DNPWBT
OVERLAY	45	46 46 46	46 46 46	46 46 46	46 46 46
METHOD NUMBER	NDM NDM NDM	n DM	1 1 NDM	1, 2 1, 2 1, 2 NDM	1, 2 1, 2 1, 2 NDM
MACH REGIME	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC
DATCOM SECTION	7.3.3.3	7.3.4.1	7.3.4.2	7.4.1.1	7.4.1.2
CONFIGURATION	Wing-Bodies	Wing-Bodies	Wing-Bodies	Wing-Body- Tails	Wing-Body- Tails
AERODYNAMIC PAR.METER	ڻ ^د	ٽ ^ر ي	ر <mark>∉</mark> ع	ر و	ڻ [⊑]

NDM-NO DATCOM METHOD

NP-NOT PROGRAMMED

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

			'			
3KS				,		
REMARKS		•				
	· .		•			
			•			
ш		,	<u> </u>			
SUBROUT INE	18T	181	T81		181	RAMME
SUBR	SUBWBT	SUBWBT	SUBWBT		SUBWBT	r PROG
OVERLAY	46	46	46	.'	46	NP-NOT PROGRAMMED
	4	स	4		4 ,	
METHOD NUMBER	2 N DM N DM	N DW N DW N DW	NDM NDM NDM	NDW NDW NDW	NDM NDM NDM	ETHOD
포발	IC VIC ONIC	VIC ONIC	ONIC CONIC	ONIC ONIC	IC AIC ONIC	₩ WO
MACH REGINE	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	NDM-NO DATCOM METHOD
Σ Š						N-MON
DATCOM SECTION	7.4.2.1	7.4.2.2	7.4.2.3	7.4.3.1	7.4.3.2	,
IGURA	Body-	Body-	Body-	Wing-Body- Tails	Body-	
CONFIGURATION	Wing-Body- Tails	Wing-Body- Tails	Wing-Body- Tails	Wing- Tails	Wing-Body- Tails	,
NAMIC ETER						
AERODYNAMIC PARAMETER	محي	a a	o e	, ,	<u>د</u> ح	
4	· · · · · · · · · · · · · · · · · · ·	- 	<u> </u>		<u> </u>	

29

Table 1 SUMMARY OF DIGITAL DATCOM METHODS

REMARKS		All use subsonic methods. Pethod 2 for canard config.	All use subsonic methods. Method 2 for canard config.			
SUBROUTINE	SUBWBT	DNPWBT DNPWBT DNPWBT	DNPWBT DNPWBT DNPWBT			
OVERLAY	46	46 46 7	46 46 6			
METHOD NUMBEK	1 NDM NDM NDM	1, 2 1, 2 1, 2 NDM	1, 2 1, 2 1, 2 NDM	MON NON NON NON NON NON NON NON NON NON	,	
MACH	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC	SUBSONIC TRANSONIC SUPERSONIC HYPERSONIC		!
DATCOM SECTION	7.4.3.3	7.4.4.1	7.4.4.2	7.5		
CONFIGURATION	Wing-Body- Tails	Wing-Body- Tails	Wing-Body- Tails	Control surface angular velocity derivatives		
AERODYNAMIC PARAMETER	ن د	ئ ^ە .	ఆక	Control surface angu velocity derivatives		,

NDM-NO DATCOM METHOD

WP-NOT PROGRAMMED

تو ت ت \$ \$ DYNAMIC STABILITY DERIVATIVES ئ TABLE 2 OVERLAYS DEFINING EACH OF THE BASIC OUTPUT SUBSONIC PARAMETERS کم CZp. 5 C_mà CL_à ت س تّ \$ $^{\Delta_{\mathbf{C}}}$ Ş 7 4 ا کرم STATIC ŞTABILITY DERIV ပ္မ = ≠ $|^{\Delta c_{VB}}|$. ζ ~ Δ_{CM_a} C_ma 7,11 # _ 2 = 2 = 7,11 c_ta ~ = [∆]cA 13,30 7,11 S **®** 13,30 ړو 7,11 STATIC STABILITY ک ∆_Cm 13,30 1,1 ∂e/Jx ی ä 2 = œ Δ_{C_D Δ_{C_L} 13,30 13,30} 1,11 ۍ **∞** ₹ 11.7 9/q_∞ c_o 2 = HORIZONTAL TAIL-HT VERTICAL TAIL-VT OR ASY. SYM. POWER INCREMENTS B+W+V OR B+W+V+F LOW AR WING-BODY CONFIGURATION **DOWNWASH DATA** VENTRAL FIN.F 8+V OR 8+V+F B+W+H+V 0R 8+W+H+V+F BODY · B WING - W 8 + W 0R B+W+H B+H

TABLE 3 OVERLAYS DEFINING EACH OF THE BASIC TRANSONIC OUTPUT PARAMETERS

		STATI	STATIC STABILITY	1117		STAI	STATIC STALILITY DERIV	LEI	0.691				DYNA	DYNAMIC STABILITY DERIVATIVES	ABILIT	Y DER	IVATI	/ES		
CHARLEGRAFION	Co	٦,	m _O	S _R	CA.	CLa	Cma CYB		g _u	ch3	CLq	C _m q	cla	°ma ⊓	Z _o	ر در	c _n ,	C _n	1/3	'
8 V008	74			n	77	₩	×	2	72	12	97	46	94	97					94	
MING M	2 2	71	•	n	77	*	25			7	£.	2	.	£.						
HORIZONTAL ĮAIL-IIT	%	ก		מ	77	24	. %			23	9	. 9	94	94]
VERTICAL TAIL VT OR VENTRAL FIN F	12	35	35	35	35	35	35				9	9	97	9				,		·
D-18	21 12	35		71	77	52	28	11	11	35	9	9#	9	9+				,		
H••	2 2	35		น	ก	52	25	17	17	35	9\$	46	46	46						
8-V OR 8-V+F	1.2	77		13	13	35	35				46	. 94	9*	46						
0.V.I	12	77		ก	13	35	35				9	9+	9•	9#						
B-W+V OR B+W+T: 5	12	73	,	13	13	35	35				94	46	ęę	9						
8-W-H-V OR 8-W-H-V-F	เา	ะา	,	13	73	35	35				46	97	9	9	·			,		
POWER INCREMENTS	o _o o	ام	oc, m	δc _K	δc _A	کولو ا	يخ ا	cra	ُر سُع	المحالة			,							
DOWINASH DATA	*/e35	35	δε/δ α 35				·			·					·					
				ŀ																

LZ - SECOND LEVEL METHODS, OVERLAY 35

TABLE 4 OVERLAYS DEFINING EACH OF THE BASIC SUPERSONIC—HYPERSONIC OUTPUT PARAMETERS

		STATIC	CSTABILITY	Ě		STA	ric STA	BILITY	STATIC STABILITY DERIV				DYNA	DYNAMIC STABILITY BERIVATIVES	ABILIT	Y DEHI	VATIV	ES		
CONFIGURATION	Ç	ئ	Cm	- 2	۲	S _C	د سم	ر ک	C _n	cp3	CLa	Cma	$c_{L_{\dot{a}}}$	c _m ;	$cI_{ m b}$	ςγ _ρ	c _n p	r C	\mathcal{F}_{2}	1
SORY	2	5	2	62	<u>.</u>	19	62	62	61	13	34	34	34	AE					46	
HYPERSONIC	92	32	26	32	26	26	92	92	92	92	?	•	?	2		1			?	
WING W	12	æ		u	u	27	n	23	23	23	43	43	2	2	45	5	\$,
HORIZONTAL TAIL-HT	22	æ		æ	æ	22	22	23	23	23	46	46	46	46	45	4 5	45			
VERTICAL TAIL VT OR VENTRAL FIN.F	2	8	8	8	2	92	22	23	23	23	46	46	46	46						
3.	02	. 2		20	22	20	22	23	23	23	94	46	46	46	4.5	. .	.		,	
I.	2	. 2		2	.2	2	8	22	. 22	23	46	46	46	46	45	45	\$.			
8-V OR 8-V-F	2	22	·	8	20	22	20	23	23	23	46	46	16	46						
#***	æ	2		28	82	2	28	£	23	23	94	46	-94	46					,	
B-W-V OR B-W-V+F	2	22		20	2	8	8	23	23	23	46	46	46	46						
B+W+H+V OR B+W+H+V+F	22	22		82	28	22	2	22	22	æ	. 94	94	46	4						
POWER INCREMENTS	اکدہ	کور	۵۵ م	^c _N	^ζ ¢	ⁿ c _{La}	ر ش	ر کر	200	Λ ς β				···				,		
DOWNWASH DATA	و 2 =	£ 21	ð./ðæ 21																	

SECTION 2

PROGRAM ORGANIZATION

The Digital Datcom program consists of a MAIN program, EXECUTIVE subroutines, METHOD subroutines and UTILITY subroutines. The organization and interfaces between these program components are shown in Figure 1. The MAIN program performs executive functions that control and direct all computations; the EXECUTIVE subroutines perform noncomputational tasks, which include input data manipulation and selection of output formats; UTILITY subroutines perform standard mathematical computations; and METHOD subroutines implement the Datcom stability methods.

FIGURE 1 OVERLAY PROGRAM STRUCTURE

SECTION 3

EQUATIONS FOR GEOMETRIC PARAMETERS

One of the main features of the Digital Datcom program is that a minimum of input data are required. Minimal inputs require the program to calculate basic geometric parameters required by the Datcom methods. Equations for pertinent geometric parameters are defined in this section.

3.1 PLANFORM PARAMETERS

The nomenclature used in the equations for calculating theoretical and exposed planform areas, taper ratios and aspect ratios are shown in Figure 2. Equations for these parameters are presented below for a double delta or cranked planform. Straight-tapered planform parameters are obtained by setting $b_0^*/2 = 0.0$, $C_b = C_t$, $A_0^* = 1.0$ in the following equations:

$$b_{b}/2 = b/2 - b_{o}^{*}/2$$

$$b_{b}^{*}/2 = b^{*}/2 - b_{o}^{*}/2$$

$$r_{b}^{*} = (b_{b}^{*}/2)/(b_{b}/2)$$

$$\lambda_{I} = c_{b}/c_{r}$$

$$c_{r}^{*} = c_{r}[\lambda_{I} + (1 - \lambda_{I}) r_{b}^{*}]$$

$$\lambda_{I}^{*} = c_{b}/c_{r}^{*}$$

$$\lambda_{o}^{*} = c_{r}/c_{b}$$

$$\lambda_{o}^{*} = \lambda_{I}^{*} \lambda_{o}^{*}$$

$$\lambda_{w} = c_{f}/c_{r}$$

$$s_{I}^{*} = (c_{r}^{*} + c_{b}) b_{b}^{*}/2$$

$$s_{I}^{*} = (c_{r} + c_{b}) b_{b}/2$$

$$s_{o}^{*} = (c_{b} + c_{c}) b_{o}^{*}/2$$

$$s_{W}^{*} = s_{I}^{*} + s_{o}^{*}$$

$$S_{W} = (C_{r} + C_{b}) b_{b}/2 + S_{o}^{*}$$

$$A_{I}^{*} = 4(b_{b}^{*}/2)^{2}/S_{I}^{*}$$

$$A_{o}^{*} = 4(b_{o}^{*}/2)^{2}/S_{o}^{*}$$

$$A_{W}^{*} = 4(b^{*}/2)^{2}/S_{W}^{*}$$

$$A_{W} = 4(b/2)^{2}/S_{W}$$

Datcom methods use correlations that are based on wing sweep angles measured at various chordlines. The nomenclature used to calculate sweep angles is presented in Figure 3. Sweep angle equations are presented below for a double delta or cranked wing. To obtain straight taper wing sweep angles set C_0 and $\Lambda_0 = 0$ in the following equations:

$$C_{I} = 4(1 - \lambda *_{I})/[A *_{I}(1 + \lambda *_{I})]$$

$$C_{O} = 4(1 - \lambda *_{O})/[A *_{O}(1 + \lambda *_{O})]$$

$$\Lambda n_{I} = \tan^{-1}[C_{I}(m-n) + \tan\Lambda m_{I}]$$

$$\Lambda n_{O} = \tan^{-1}[C_{O}(m-n) + \tan\Lambda m_{O}]$$

$$*_{(\Lambda_{I})} = \cos^{-1}[(S_{I}^{*} \cos \Lambda n_{I} + S_{O}^{*} \cos \Lambda n_{O})/S^{*}]$$

The nomenclature used to calculate the exposed mean aerodynamic chord (MAC) for a double delta or cranked wing is shown in Figure 4. The parameters necessary to define the lateral and longitudinal location of the exposed MAC are included. Equations to calculate and locate the MAC are presented below. To obtain values for a straight-tapered wing set $C^*_0 = 0$, $Y^*_0 = 0$, $S^*_0 = 0$ in the equations below:

$$\overline{C}_{1}^{A} = 2C_{r}^{A}(1 + \lambda_{1}^{A} + \lambda_{1}^{A2})/3(1 + \lambda_{1}^{A})$$

$$\overline{C}_{0}^{A} = 2C_{b}(1 + \lambda_{0}^{A} + \lambda_{0}^{A2})/3(1 + \lambda_{0}^{A})$$

and the state of the second section in

- REQUIRED INPUTS
 ALL PLANFORMS
- REQUIRED INPUTS
 DOUBLE DELTA
 AND
 CRANKED PLANFORMS
 - m = PERCENTAGE CHORD AT WHICH SWEEP ANGLE IS DEFINED
 - n = ANY CHORD LOCATION EXPRESSED IN PERCENTAGE CHORD

FIGURE 3 SWEEP ANGLE NOMENCLATURE

$$\vec{C}_{W}^{*} = (S_{I}^{*} \vec{C}_{I}^{*} + S_{o}^{*} \vec{C}_{o}^{*})/s^{*}$$

$$\vec{Y}_{I}^{*} = (b_{b}^{*}/2)(1 + 2\lambda_{I}^{*})/3(1 + \lambda_{I}^{*})$$

$$\vec{Y}_{o}^{*} = (b_{o}^{*}/2)(1 + 2\lambda_{o}^{*})/3(1 + \lambda_{o}^{*}) + b_{b}^{*}/2$$

$$\vec{Y}^{*} = (S_{I}^{*} \vec{Y}_{I}^{*} + S_{o}^{*} \vec{Y}_{o}^{*})/s^{*}$$

$$\vec{X}_{r}^{*} = [S_{I}^{*} \vec{Y}_{I}^{*} + S_{o}^{*} \vec{Y}_{o}^{*}]/s^{*}$$

$$\vec{X}_{r}^{*} = \vec{C}_{o}^{*}/2 + X_{r}^{*}$$

$$\vec{X}_{r}^{*} = \vec{C}_{o}^{*}/4 + X_{r}^{*}$$

The theoretical or reference mean aerodynamic chord is calculated with nomenclature of Figure 5 as follows:

$$\overline{C}_{I} = 2C_{r}(1 + \lambda_{I} + \lambda_{I}^{2})/3(1 + \lambda_{I})$$

$$\overline{C}_{r} = (S_{I} \overline{C}_{I} + S_{o} \overline{C}_{o})/S_{r}$$

$$\overline{X}_{r} = \overline{C}_{r}/4 + X_{r}$$

Special geometric parameters are required to calculate wing pitching moments. The nomenclature used to define these parameters is presented in Figure 6. Equations for these parameters are presented below:

$$c^* = (b_b^*/2 \tan \lambda o_1 + b_o^*/2 \tan \lambda o_0)/C^*_r$$

$$A_I = 4(b_b/2)^2/S_I$$

$$\Delta Y' = b_b^*/4$$

$$(b_o^*/2)' = b_b^*/4 + b_o^*/2$$

FIGURE 4 EXPOSED MEAN AERODYNAMIC CHORD NOMENCLATURE

FIGURE 5 THEORETICAL OR REFERENCE MEAN AERODYNAMIC CHORD NOMENCLATURE

FIGURE 6 SPECIAL WING PITCHING MOMENT GEOMETRY

FIGURE 7 SUPERSONIC NON-STRAIGHT WING PLANFORM ($\Lambda_{\text{LE}_0} < \Lambda_{\text{LE}_1}$)

$$C_{b}' = C_{t} + (b_{o}^{*}/2)' \left[\frac{C_{b} - C_{t}}{b_{o}^{*}/2} \right]$$

$$(S_{o}^{*})' = (C_{b}' + C_{t}) (b_{o}^{*}/2)'$$

$$(A_{o})' = 4[(b_{o}^{*}/2)^{2}]'/(S_{o}^{*})'$$

$$(\lambda_{o}^{*})' = C_{t}/C_{b}'$$

Supersonic nonstraight wing analyses require the wing to be synthesized from basic wing, glove, and trailing edge extension components as shown on Figure 7. When the leading edge outboard sweep angle is greater than the leading edge inboard sweep angle, an additional geometric parameter, S_2 , is required and is shown in Figure 8. Equations for calculating geometric parameters for the various wing components as required by the stability methods are presented below:

All Planforms $(C_{r}^{*})_{bw} = C_{b} + \left[\frac{b^{*}}{2} - \frac{b_{o}^{*}}{2}\right] [Tan \ \Lambda_{LE_{o}} - Tan \ \Lambda_{TE_{o}}]$ basic wing component $A_{bw}^{*} = \frac{\left[(C_{r}^{*})_{bw} + C_{t}\right] \ b^{*}}{2}$ $\lambda^{*}_{bw} = \frac{C_{t}}{(C_{r}^{*})_{bw}}$ $(C_{r}^{*})_{g} = (Tan \ \Lambda_{LE_{I}}) \ (\frac{b^{*}}{2} - \frac{b_{o}^{*}}{2})$ glove component $S_{g}^{*} = (C_{r}^{*})_{g} \ (\frac{b^{*}}{2} - \frac{b_{o}^{*}}{2})$ $A_{g}^{*} = \frac{4\left[\frac{b^{*}}{2} - \frac{b_{o}^{*}}{2}\right]^{2}}{S_{g}^{*}}$ $\lambda_{o} = 0$

FIGURE 8 SUPERSONIC NON-STRAIGHT WING PLANFORM ($\Lambda_{\text{LE}_0} > \Lambda_{\text{LE}_1}$)

trailing edge extension
$$b_e^* = 2 \left(\frac{b^*}{2} - \frac{b_0^*}{2} \right)$$
 span
$$S^*_2 = \left[\frac{b^*}{2} - \frac{b_0^*}{2} \right] \text{ (tan } LE_0$$

$$S_1 = S_{bw}$$

Geometric parameters required for horizontal and vertical tail analyses are identical to those for wings. Tail parameters can be calculated by substituting tail geometry for wing geometry in the wing equations. Vertical tail lateral stability calculations require additional geometry parameters as shown in Figures 9a and 9b. Equations are listed below:

Straight Tapered Vertical Tail

$$C_{v} = C_{r} - (C_{r} - C_{t})(Z_{H})/(b_{v}/2)$$

$$X = X_{H} + (\overline{X}_{R}) - X_{v} - Z_{H} (Tan \Lambda_{LE_{I}})$$

$$\frac{Non-Straight Vertical Tail}{If Z_{H} > \frac{b_{v}}{2} - \frac{b_{o}^{*}}{2}}$$

$$X = X_{H} + (\overline{X}_{R}) - X_{v} - (\frac{b_{v}}{2} - \frac{b_{o}^{*}}{2}) (TAN \Lambda_{LE_{I}}) - (Z_{H} + \frac{b_{o}^{*}}{2} - \frac{b_{v}^{*}}{2}) TAN \Lambda_{LE_{O}}$$

$$C_{v} = C_{t} + (C_{b} - C_{t})(\frac{b_{v}}{2} - Z_{H})/(\frac{b_{o}^{*}}{2})$$

$$If ZH \leq \frac{b_{v}}{2} - \frac{b_{o}^{*}}{2}$$

$$X = X_{H} + \overline{X}_{R} - X_{v} - Z_{H} (TAN \Lambda_{LE_{O}})$$

$$C_{v} = C_{r} - (C_{r} - C_{b})(Z_{E})/(\frac{b_{v}}{2} - \frac{b_{o}^{*}}{2})$$

For a horizontal lifting surface, an equivalent dihedral is defined as follows:

$$\Gamma_{\text{eq}} = \frac{\Gamma_{\text{i}} \left(\frac{b_{\text{i}}^{\text{h}}}{2}\right) + \Gamma_{\text{o}} \left(\frac{b_{\text{o}}^{\text{h}}}{2}\right)_{\Gamma_{\text{o}}}}{\frac{b^{\text{h}}}{2}}$$

FIGURE 9(a) STRAIGHT TAPERED VERTICAL TAIL GEOMETRY

FIGURE 9 (b) NON-STRAIGHT TAPERED VERTICAL TAIL GEOMETRY

FIGURE 10 EQUIVALENT DIHEDRAL ANGLE NOMENCLATURE

3.2 BODY PARAMETERS

Longitudinal stability analyses for bodies in the supersonic and hypersonic speed regimes require the body to be synthesized in nose, afterbody, and tail segment components as defined in Figure 11. Geometry parameters for the various body segments analyses are defined below:

$$\begin{array}{l} {}^{\ell}_{B} = {}^{\ell}_{N} + {}^{\ell}_{A} \\ {}^{\ell}_{BT} = {}^{\ell}_{B} - {}^{\ell}_{B} \\ \\ {}^{d}_{Cyl} = \frac{d_{1} + d_{N}}{2} \\ \\ S_{p} = 2 \int_{0}^{\ell} {}^{B}_{B} r_{x} & (dx) & \text{Body planform area} \\ \\ S_{b} = \frac{\pi d_{2}^{2}}{4} & \text{Body base area} \\ \\ X_{c} = \frac{2}{2} \int_{0}^{\ell} {}^{B}_{B} r_{x} \times (dx) & \text{Distance from nose of body to centroid of planform area} \\ \\ V_{B} = \int_{0}^{\ell} {}^{b}_{S} S_{x} & (dx) & \text{Volume of body} \\ \\ If d_{2} > d_{1}, \text{ calculate flare angle } \theta_{f} = TAN^{-1} \underbrace{\left[\begin{array}{c} .5(d_{2} - d_{1}) \\ \ell BT \end{array} \right]}_{LBT} \\ \\ If d_{2} < d_{1}, \text{ calculate boattail angle } \theta_{B} = TAN^{-1} \underbrace{\left[\begin{array}{c} .5(d_{1} - d_{2}) \\ \ell BT \end{array} \right]}_{LBT} \\ \end{array}$$

3.3 GENERAL SYNTHESIS PARAMETERS

Synthesizing and interference nomenclature for longitudinal and lateral stability calculations are defined in Figure 12. The geometric parameters are presented in equation format below:

$$\Delta X_{w} = (b/2 - b^{*}/2) \text{ TAN } \Lambda_{O_{I}} \text{ COS } (\alpha_{I})_{w}$$

$$\Delta X_{cg} = X_{cg} - (X_{w} + \Delta X_{w})$$

$$(X_{ac})_{w} = (X_{ac}/C_{r}^{*})_{w} C_{r}^{*}; \text{ where } (X_{ac}/C_{r}^{*}) \text{ is calculated in wing pitching}$$

$$\text{moment subroutine}$$

POSSIBLE SUPERSONIC AND HYPERSONIC BODY CONFIGURATIONS

NOTES:

NOSE AND TAIL SEGMENTS MAY BE CONICAL (AS SHOWN) OR OGIVAL.

DIAMETERS $\mathbf{d}_{N},\mathbf{d}_{1},$ and \mathbf{d}_{2} are computed from linear interpolation of inputs \mathbf{x}_{i} vs \mathbf{r}

FIGURE 11 SUPERSONIC AND HYPERSONIC BODY GEOMETRY

FIGURE 12 GENERAL SYNTHESIS NOMENCLATURE

$$(\Delta X_{ac})_{w} = \Delta X_{cg} - (X_{ac})_{w} \cos (\alpha_{i})_{w}$$

$$\Delta X_{H} = (b/2 - b*/2)_{H} \tan \lambda_{o_{I_{H}}} \cos (\alpha_{i})_{H}$$

$$(\Delta X_{cg})_{H} = X_{cg} - (X_{H} + \Delta X_{H})$$

$$Z_{H}^{*} = Z_{H} - \Delta X_{H} \tan (\alpha_{i})_{H}$$

$$(X_{ac})_{H} = (X_{ac}/C_{r}^{*})_{H} C_{r}^{*}$$

$$(Z_{ac})_{H} = Z_{H}^{*} - (X_{ac})_{H} \sin (\alpha_{i})_{H} - Z_{cg}$$

$$\Delta (X_{ac})_{H} = (\Delta X_{cg})_{H} - (X_{ac})_{H} \cos (\alpha_{i})_{H}$$

$$(X_{C/4})_{H} = X_{H} - (X_{r})_{H} \cos (\alpha_{i})_{H}$$

$$Z_{w}^{*} = -Z_{w} + (C_{r}/4) \sin \alpha_{i}$$

$$t_{f} = X_{w} + \Delta X_{w} + (\frac{b^{*}}{2}) \tan \lambda_{LE_{o}} + (\frac{b^{*}}{2}) \tan \lambda_{LE_{I}} + \frac{C_{t}}{2}$$

$$t_{p} = X_{v} - X_{cg} + (X_{r})_{w} + (C_{r}/4)_{v}$$

$$Z_{p} = Z_{cg} + (Y_{R})_{v}$$

3.4 DOWNWASH PARAMETERS

Downwash geometric nomenclature is defined in Figure 13. The equations presented below are used primarily in the subsonic speed regime:

$$Z_{H}^{'} = Z_{H} - \overline{X}_{r_{H}} SIN \quad (\alpha^{1})_{H} - Zw + C_{r_{W}} SIN \quad (\alpha^{1})_{W}$$

$$Z_{H}^{'} = X_{H}^{'} + \overline{X}_{r_{H}} COS \quad (\alpha^{1})_{H}^{'} - (X_{W}^{'} + C_{r_{W}}^{'} COS \quad (\alpha^{1})_{W}^{'})$$

$$\Delta L_{H}^{'} = Z_{H}^{'} TAN \quad (\alpha^{1})_{W}^{'}$$

$$L_{T}^{'} = L_{H}^{'} - \Delta L_{H}^{'}$$

$$\Delta h_{H_{1}}^{'} = Z_{H}^{'}/COS \quad (\alpha^{1})_{W}^{'}$$

FIGURE 13 DOWNWASH NOMENCLATURE

FIGURE 13 DOWNWASH NOMENCLATURE (CONCLUDED)

$$\begin{split} & \Delta h_2 = L_T \sin (\alpha^1)_w \\ & h_H = \Delta h_{H_1} + \Delta h_{H_2} \\ & \dot{z}_2 = L_T \cos (\alpha^1)_w \\ & \Upsilon = \text{ARCTAN } (h_H/\dot{z}_2) \\ & \dot{z}_3 = (C_r)_w - (X_r)_w \\ & \text{If } b_{\text{eff}}/2 \le (b/2 - b_0^*/2)_w \\ & C_{\text{teff}} = C_{\text{T}_w} - \frac{C_r - C_b}{b/2 - b_0^*/2} \quad (b_{\text{eff}}/2) \\ & E_{\text{eff}} = (b_{\text{eff}}/2) \text{ TAN } \Lambda o_I + C_{\text{teff}} / 4 \\ & \dot{z}_{\text{eff}} = \dot{z}_2 - (E_{\text{eff}} - C_r_w) \\ & \text{If } b_{\text{eff}}/2 > (b/2 - b_0^*/2) \\ & C_{\text{teff}} = C_{\text{b}_w} - \frac{C_b - C_t}{b_0^*/2} \quad [b_{\text{eff}}/2 - (b/2 - b_0^*/2)] \\ & E_{\text{eff}} = (b/2 - b_0^*/1)_w \text{ TAN } \Lambda o_I + [b_{\text{eff}}/2 - (b/2 - b_0^*/2)_w] \text{ TAN } \Lambda o_0 + C_t / 4 \\ & \dot{z}_{\text{eff}} = \dot{z}_2 - (E_{\text{eff}} - C_r_w) \end{split}$$

3.5 POWER EFFECTS PARAMETERS

Geometric parameters required to calculate propeller and jet power effects are defined in Figures 14 through 18. Power effects are only calculated for longitudinal stability results in the subsonic speed regime.

$$\begin{split} \overline{X}_{P} &= X_{W} + \overline{X}_{T_{W}} \cos \alpha_{i_{W}} - X_{P}' \\ \overline{Z}_{W} &= Z_{W} - \overline{X}_{T_{W}} \sin \alpha_{i_{W}} \\ \alpha_{P}' &= \alpha_{SCH} + \alpha_{i_{t}} + \epsilon_{u} - \epsilon_{P} \\ Z_{S} &= Z_{T} + \overline{X}_{P} \tan \alpha_{P}' \\ Z_{h_{t}} &= Z_{h} - Z_{T} + \left[(X_{h} + \overline{X}_{T_{h}} \cos \alpha_{i_{h}} - X_{P}') \tan \alpha_{i_{T}} \right] \\ \ell_{h} &= \left[X_{h} + \overline{X}_{T_{h}} \cos \alpha_{i_{h}} \right] - \left[X_{W} + \overline{X}_{T_{W}} \cos \alpha_{i_{h}} \right] \\ Z_{h_{EFF}} &= Z_{S} - Z_{h} + I_{h} \tan (\alpha_{P}' - \epsilon_{POWER}') \end{split}$$

FIGURE 14. DEFINITION SKETCH FOR PROPELLER POWER EFFECT CALCULATIONS

$$C_{t_{i}} = C_{r} - \left[\frac{C_{r} - C_{b}}{b/2 - b_{0}^{*}/2}\right] \left[\frac{b_{i}}{2}\right]$$

$$\frac{b_{i}^{*}}{2} = \frac{b_{i}}{2} - \left[\frac{b}{2} - \frac{b^{*}}{2}\right]$$

$$S_{i}^{*} = \left[C_{r}^{*} + C_{t_{i}}\right] \frac{b_{i}^{*}}{2}$$

$$A_{i}^{*} = \frac{\frac{4}{5} \left[\frac{b_{i}^{*}}{2}\right]^{2}}{S_{i}^{*}}$$

$$\lambda_{i} = \frac{C_{t_{i}}}{C_{r}^{*}}$$

$$\frac{2}{C_{t_{i}^{*}}} = \frac{2 C_{r}^{*} \left(1 + \lambda_{t_{i}^{*}}^{*} + \lambda_{t_{i}^{*}}^{*}\right)}{3 \left(1 + \lambda_{t_{i}^{*}}^{*}\right)}$$

$$\overline{Y}_{I_{i}}^{*} = \frac{\begin{bmatrix} b_{i}^{*} \\ \overline{2} \end{bmatrix}}{3(1 + 2\lambda_{I_{i}}^{*})}$$

$$X_{I_{i}}^{*} = \overline{Y}_{I_{i}}^{*} \quad TAN \land 0_{I}$$

$$\overline{X}_{I_{i}}^{*} = X_{I_{i}}^{*} + \overline{C}_{I_{i}}^{*}$$

FIGURE 15 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS

CASE 2
$$\frac{b_i}{2} \ge \left(\frac{b}{2} - \frac{b_0^*}{2}\right)$$

SINGLE ENGINE

$$\frac{b_i}{2}$$

$$\frac{b_i}{2}$$

$$\begin{split} &\frac{b_{0_{i}}^{*}}{2} = \frac{b_{0}^{*}}{2} - \left[\frac{b}{2} - \frac{b_{i}}{2}\right] & \overline{C}_{i}^{*} = \frac{s_{1}^{*} \overline{C}_{i}^{*} + s_{0_{i}}^{*} \overline{C}_{0_{i}}^{*}}{s_{0}^{*}} \\ &C_{t_{i}} = C_{b} - \left[\frac{C_{b} - C_{t}}{\frac{b_{0}^{*}}{2}}\right] \left[\frac{b_{0_{i}^{*}}}{2}\right] & \overline{\gamma}_{0_{i}^{*}} = \frac{\left[\frac{b_{0}^{*}}{2}\right]_{i} \left[1 + 2\lambda_{0_{i}^{*}}^{*}\right]}{3\left(1 + \lambda_{0_{i}^{*}}^{*}\right) + \frac{b^{*}b}{2}} \\ &S_{0_{i}^{*}}^{*} = \left[C_{b} + C_{t_{i}}\right] \left[\frac{b_{0_{i}^{*}}}{2}\right] & \overline{\gamma}_{i}^{*} = \frac{s_{1}^{*} \overline{\gamma}_{1}^{*} + s_{0_{i}^{*}} \overline{\gamma}_{0_{i}^{*}}^{*}}{s_{i}^{*}} \\ &\overline{\gamma}_{i}^{*} = \frac{c_{t_{i}}}{C_{b}} & \overline{\gamma}_{i}^{*} = \frac{s_{1}^{*} \overline{\gamma}_{1}^{*} + tAN \wedge_{0_{1}} + s_{0_{i}^{*}}^{*} \left(\frac{b_{0}^{*}}{2} - tAN \wedge_{0_{1}} + \left(\overline{\gamma}_{0_{1}^{*}} - \frac{b_{0}^{*}}{2}\right)\right) TAN \wedge_{0_{0}}}{s_{i}^{*}} \\ &\overline{\zeta}_{i}^{*} = \frac{\overline{C}_{i}^{*}}{4} + X_{i}^{*} & \overline{\zeta}_{i}^{*} \\ & \overline{\zeta}_{i}^{*} = \frac{\overline{C}_{i}^{*}}{4} + X_{i}^{*} & \overline{\zeta}_{i}^{*} & \overline{\zeta}_$$

FIGURE 16 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS (CONTRACTOR)

FIGURE 17 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS (CONCLUDED)

$$X_e = \frac{X^H + (\underline{X}^{L}) (\cos \alpha^{L}) - X^{E}}{(\cos \alpha^{L})}$$

$$Z'_{J} = (X_{H} + (\overline{X}_{r_{h}}) \cos \alpha_{r_{h}} - X_{e}) \sin \alpha_{r_{t}} + (Z_{r_{t}} - Z_{T}) \cos \alpha_{r_{t}}$$

$$X'_j = 4.6 R_j$$

$$X'_h = X'_J + X'_e$$

FIGURE 18 DEFINITION SKETCH FOR JET POWER CALCULATIONS

3.6 GROUND EFFECTS PARAMETERS

Ground effects are only calculated for longitudinal stability results in the subsonic speed regime. Lifting surface heights that are required by the Datcom ground effect analyses are defined in Figure 19 and are presented in equation format as follows:

Equations for Calculating hp./5b/2

IF $\Gamma_i = 0$ AND (b 2) $\Gamma_a \stackrel{\leq}{=} 0.25$ (b/2)
IF F = 0 AND (b. 7) F = 0.25 (b.2)
IF $\Gamma_i \neq 0$ AND (b 7) $\Gamma_b \stackrel{\leq}{=} 0.25$ (b.72)
$IF\Gamma_{i} \neq 0$ AND (b 2) $\Gamma_{0} > 0.25$ (b/2)

$$\begin{split} &h_{0.75b/2} = h_{0.75C_f} + \Delta X \; \text{TAN} \; (\alpha_i)_W \\ &h_{0.75b/2} = h_{0.75C_f} = \; \text{TAN} \; \Gamma_0 \left[(b/2)_{\Gamma_0} - 0.25 \; (b/2) \right] + \Delta X \; \text{TAN} \; (\alpha_i)_W \\ &h_{0.75b/2} = h_{0.75C_f} + 0.75 \; (b/2) \; \text{TAN} \; \Gamma_i + \Delta X \; \text{TAN} \; (\alpha_i)_W \\ &h_{0.75b/2} = h_{0.75C_f} + \left[(b/2) - (b/2)_{\Gamma_0} \right] \; \text{TAN} \; \Gamma_i + \\ & \left[(b/2)\Gamma_0 - 0.25(b/2) \right] \; \text{TAN} \; \Gamma_0 + \Delta X \; \text{TAN} \; (\alpha_i)_W \end{split}$$

Equations for Calculating h

$$h = 1/2(h_{0.7}SC_1 + h_{0.7}Sb/2)$$
IF $\Gamma_i = 0$ AND $(b/2)_{\Gamma_0} \le 0.25 (b/2)$
IF $\Gamma_i = 0$ AND $(b/2)_{\Gamma_0} > 0.25 (b/2)$
IF $\Gamma_i \ne 0$ AND $(b/2)_{\Gamma_0} \le 0.25 (b/2)$
IF $\Gamma_i \ne 0$ AND $(b/2)_{\Gamma_0} > 0.25 (b/2)$

$$\begin{split} h_{0.75C_f} &= H_G + Z_W - 0.75 \ C_f \ TAN \ (\alpha_i)_W \\ h &= h_{0.75C_f} + 0.50 \ TAN \ (\alpha_i)_W \\ h &= h_{0.75C_f} + 0.50 \ TAN \ \Gamma_0 \left\{ (b/2)_{\Gamma_0} - 0.25 \ (b/2) \right\} + \Delta X \ TAN \ (\alpha_i)_W \right] \\ h &= h_{0.75C_f} + 0.50 \ 0.75 \ (b/2) \ TAN \ \Gamma_i + \Delta X \ TAN \ (\alpha_i)_W \right] \\ h &= h_{0.75C_f} + 0.50 \ (b/2) - (b/2)_{\Gamma_0} \ TAN \ \Gamma_i + \\ 0.50 \ \left| (b/2)_{\Gamma_0} - 0.25 \ (b/2) \right| \ TAN \ \Gamma_0 + 0.50 \ \Delta X \ TAN \ (\alpha_i)_W \end{split}$$

Equations for Calculating H

$$\left(\begin{array}{c} h_{\overline{C}_{1/4}}\right)_W = H_G + Z_W \left((\overline{x_1})_W TAN(\alpha_1)_W \right) \\ \text{IF $\Gamma_i = 0$ and $(\overline{y_1})_W : \left|b/2 - (b/2)_{\overline{V_0}}\right|$} \qquad H = \left(\begin{array}{c} H_{\overline{C}_{1/4}}\right)_W \\ \text{IF $\Gamma_i = 0$ and $(\overline{y_1})_W : \left|b/2 - (b/2)_{\overline{V_0}}\right|$} \\ \text{IF $\Gamma_i \neq 0$ and $(\overline{y_1})_W : \left|b/2 - (b/2)_{\overline{V_0}}\right|$} \qquad H = \left(\begin{array}{c} h_{\overline{C}_{1/4}}\right)_W + \left((\overline{y_1})_W + (b/2)_{\overline{V_0}} - b/2\right) TAN \Gamma_0 \\ \text{IF $\Gamma_i \neq 0$ and $(\overline{y_1})_W : \left|b/2 - (b/2)_{\overline{V_0}}\right|$} \\ \text{IF $\Gamma_i \neq 0$ and $(\overline{y_1})_W : \left|b/2 - (b/2)_{\overline{V_0}}\right|$} \qquad H = \left(\begin{array}{c} h_{\overline{C}_{1/4}}\right)_W + (\overline{y_1})_W TAN \Gamma_i \\ \text{IF $\Gamma_i \neq 0$ and $(\overline{y_1})_W : \left|b/2 - (b/2)_{\overline{V_0}}\right|$} \end{array} \right)$$

Equations for Calculating HH

Ground effect methods require calculation of a planform parameter, Δx , in addition to the previously defined ground heights. This parameter is shown in Figure 20.

h_{0.75 C,} = HEIGHT OF 3/4 CHORD OF WING ROOT CHORD ABOVE GROUND

= $H_G + Z_W = 0.75 C_t TAN (\alpha_i)_W$

 $h_{C_{p}/4}$ = HEIGHT OF 1/4 CHORD OF WING ROOT CHORD ABOVE GROUND

= h0.75 C, + G,50 C, TAN (a) W

h_{0.75 b.'2} = HEIGHT OF WING ABOVE GROUND AT 1/4 CHORD OF WING 75% SEMI-SPAN CHORD

h = AVERAGE HEIGHT ABOVE GROUND OF THE 1/4 CHCRD POINT OF WING CHORD AT 75% SEMI-SPAN AND THE 3/4 CHORD POINT OF THE WING ROOT CHORD.

 $= 0.50 (h_{0.75} b/2 + h_{0.75} C_{*})$

H = HEIGHT OF 1/4 CHORD POINT OF WING MEAN AERODYNAMIC CHORD ABOVE THE GROUND

HH = HEIGHT OF 1/4 CHORD POINT OF HORIZONTAL TAIL MEAN AERODYNAMIC CHORD ABOVE THE GROUND

FIGURE 19 GROUND EFFECT WING AND TAIL HEIGHTS

Straight Tapered Wing

 $\Delta X = 0.75 C_1 - 0.75 (b.2) TAN A[*]25$

Cranked or Double Delta Wing

IF $b_{0/2}^* = 0.25 (b/2)$

 $\Delta X = 0.75 C_T - 0.75(b/2) TAN \Lambda_{25_T}$

IF $b_{0/2}^{*} > 0.25 (b/2)$

 $\Delta X = 0.75 C_{y} - TAN \Lambda_{25_{0}} \left[b_{0/2}^{*} - 0.25(b/2) \right] - TAN \Lambda_{25_{1}} \left[(b/2) - b_{0/2}^{*} \right]$

Straight Tapered Wing-

Cranked or Double Delta Wing

FIGURE 20 GROUND EFFECTS PLANFORM PARAMETER AX

SECTION 4

INCORPORATION OF METHODS

This section summarizes those methods which were incorporated into Digital Datcom but were not defined in the Datcom Handbook or involve method interpretation. Though some of the methods included are not, in, general, standard Datcom methods, they permit greater flexibility in using the program, and provide output for some parameters which can be closely approximated or are difficult to obtain experimentally. All of the methods presented in this section are referenced to Table 1 of Section 1 and the Datcom. Methods, or procedures, not outlined in this section follow the Datcom method and users should consult the Datcom for method limitations and formulation.

4.1 AIRFOIL SECTION AERODYNAMICS

This section describes a procedure that can be used to obtain the geometric and aerodynamic section characteristics of virtually any user defined airfoil section. Its incorporation into Digital Datcom frees the user from the labor of calculating those section parameters that were required inputs, yet allow him the flexibility to alter those parameters for which he has data.

The Airfoil Section Module will accept the following user inputs:

- o The airfoil section designation
- o Section upper and lower cartesian coordinates
- o Section mean line and thickness distribution

By these three methods, many airfoil sections can be described and the section characteristics calculated.

Since the Airfoil Section Module (ASN) uses the Mach and Reynolds number inputs, they must be defined in namelist FLTCON using MACH and RNNUB. However, the ASM uses the unit Reynolds number and by implication treats a section one foot (or meter) in length.

This module brings together the outstanding features of two separate studies. Kinsey and Bowers (AFFDL-TR-71-87) have written a program that calculates the airfoil coordinates of select NACA designations, then uses the Weber technique to calculate the section serodynamic characteristics. Nieldling of McDonnell Aircraft has written a similar program using the Weber method, then incorporates additional methods to refine the theoretical

TABLE 5 AIRFOIL SECTION MODULE ROUTINE DESCRIPTION

PROGRAM/SUBROUTINE

M50032 (OVERLAY 50.0)

INIZ

SECI

SECO

CSLOPE

XYCORD

DELY

AIRFOL (OVERLAY (50,1))

DECODE

COORD4

COORD4M

COORDS

COCRD5M

COORDI

COORDS

CORDSP

SLEQ

THEORY (OVERLAY (50,2))

IDEAL

SLOPE

ASMINT

MAXCL (OVERLAY (50,3))

PURPOSE

MODULE EXECUTIVE PROGRAM

INITIALIZE IOM

READ USER INPUTS

TRANSFER MODULE OUTPUTS

CALCULATE VARIABLE SLOPE FOR SUPERSONIC AIRFOILS

CALCULATE AIRFOIL SECTION FROM USER INPUTS

CALCULATE DATCOM PARAMETER AY

MAIN PROGRAM FOR NACA DESIGNATION INPUTS

READ USER INPUT NACA DESIGNATION, DECODE

CALCULATE 4-DIGIT NACA AIRFOIL

CALCULATE 4-DIGIT (MODIFIED) NACA AIRFOIL

CALCULATE 5-DIGIT NACA AIRFOIL

CALCULATE 5-DIGIT (MODIFIED) NACA AIRFOIL

CALCULATE 1-SERIES NACA AIRFOIL

CALCULATE 6-SERIES NACA AIRFOIL

CALCULATE SUPERSONIC AIRFOIL COORDINATES

SIMULTANEOUS LINEAR EQUATION SOLVER

MAIN PROGRAM FOR AIRFUIL AERODYNAMICS

CALCULATE SECTION IDEAL AERODYNAMICS

CALCULATE VARIABLE CLMAX FOR SECTION

CALCULATE LIFT AND MOMENT SLOPES

NON-LINEAR INTERPOLATION ROUTING

predictions. A cross of the two procedures (coordinates of NACA airfoils and viscous correction from Kinsey and Bowers, and the aerodynamic methods of Nieldling) yields a program that generates fairly accurate results.

The module is incorporated into Digital Datcom as Overlay 50, and includes three secondary overlay programs. The routines use the IOM arrays for data storage so that core size will be kept to a minimum. Table 5 describes each of the 22 module routines and the logic flow of the module is presented in Figurees 21 through 24.

4.1.1 Weber's Method

The calculation of the pressure distribution over the surface of an airfoil in an incompressible inviscid flow is accomplished by use of the method of singularities. Conformal transformations are used as an intermediate step in deriving the methods for determining the distributions of singularities from which the velocity distributions are calculated. The routine inputs are the airfoil coordinates distributed in any fashion, the angle of attack, and the Mach number. The airfoil shape is defined by curve fitting the input coordinates to obtain the airfoil geometry at thirty-two required points, i.e.:

$$x = 0.5 (\cos \theta_v + 1)$$

$$\theta_v = v\pi/32 \text{ for } 0 \le v \le 32$$

The chord line is obtained by joining the leading and trailing edges of the airfoil, where the leading edge is defined as the forward most point so that all points on the airfoil surface have a positive x coordinate.

The airfoil is placed in a uniform stream V_0 at an angle of attack relative to the chord line. The velocity V_0 is resolved into components parallel and normal to the chord line.

$$V_{xo} = V_{o} \cos \alpha$$

 $V_{zo} = V_{o} \sin \alpha$

Combining the results for the parallel and normal flows, the velocity distribution equation for a symmetrical airfoil at angle of attack is

$$V(x,z) = \frac{V_0}{\sqrt{1 + (dz/dx)^2}} \left\{ \cos \alpha \left[1 + \frac{1}{\pi} \int_0^1 \frac{dz}{dx'} \frac{dx'}{x - x'} \right] + \sin \alpha \sqrt{\frac{1 - x}{x}} \left[1 + \frac{1}{\pi} \int_0^1 \left(\frac{dz}{dx'} - \frac{2z(x')}{1 - (1 - 2x')^2} \right) \frac{dx'}{x - x'} \right] \right\}$$

FIGURE 21 AIRFOIL SECTION MODULE - EXECUTIVE ROUTING

FIGURE 22 AIRFOIL SECTION MODULE - NACA DESIGNATION ROUTINE

FIGURE 23 AIRFOIL SECTION MODULE - SECTION AERODYNAMICS ROUTINE

FIGURE 24 AIRFOIL SECTION MODULE - SECTION MAXIMUM LIFT ROUTINE

In the Weber Method certain combinations of the above terms have been redefined as follows:

$$S^{(1)}(x) = \frac{1}{\pi} \int_{0}^{1} \frac{dz}{dx'} \frac{dx'}{x - x'}$$

(Function for Source Distribution in Parallel Flow)

$$S^{(2)}(x) = \frac{dz}{dx}$$

(Slope of Thickness Distribution)

$$S^{(3)}(x) = \frac{1}{\pi} \int_0^1 \left(\frac{dz}{dx'} - \frac{2z(x')}{1 - (1 - 2x')^2} \right) \frac{dx'}{x - x'}$$
 (Function for Vortex Distribution in Normal Flow, to Account for α)

These functions are approximated by sums and products of the airfoil ordinates and certain coefficients which are independent of the section shape by

$$S^{(1)}(x) = \sum_{\nu=1}^{N-1} s_{\nu\nu}^{(1)} z_{\nu}$$
 $S^{(2)}(x) = \sum_{\nu=1}^{N-1} s_{\nu\nu}^{(2)} z_{\nu}$

$$s^{(3)}(x) = \sum_{\nu=1}^{N-1} s_{\nu\nu}^{(3)} z_{\nu} + s_{N\nu}^{(3)} \sqrt{\frac{\rho}{2C}}$$

The effects of camber on the resulting velocity distribution are obtained by assuming the camber to be small compared with the chord. This results in the camber effect being accounted for in the parallel flow $V_{\infty} = V_0 \cos \alpha$ only.

The Vortex Distribution, $\gamma(X)$, on the chord line which produces a given velocity normal to the chord line and which is zero at the trailing edge is

$$\frac{\gamma(x_{\nu})}{2V_{x0}} = \sum_{\nu=1}^{N-1} s_{\nu\nu} {}^{(4)}z_{s_{\nu}} = S^{(4)}(x_{\nu}) {}^{(Vortex Distribution due to}$$

The total velocity $V_{\mathbf{X}}(\mathbf{x},o)$ on the chord line for an airfoil with camber and incidence is

$$V_{x}(x,0) = V_{o} \cos \alpha \left[1 + S^{(1)}(x) + S^{(4)}(x) \right]$$

$$\pm V_0 \sin \alpha \sqrt{\frac{1-x}{x}} \left[1+S^{(3)}(x)\right]$$

with the + sign being for the upper surface and the - sign for the lower surface.

The resulting velocity distribution at the airfoil surface is computed using

$$s^{(5)}(x) = \frac{dz}{dx}(x)$$
 (Slope of Camber Line)

where
$$\frac{V(x)}{V_0} = \frac{\cos \alpha \left[1 + 3^{(1)}(x) \pm S^{(4)}(x)\right] \pm \sin \alpha \sqrt{\frac{1 - x}{x}} \left[1 + S^{(3)}(x)\right]}{\sqrt{1 + \left[S^{(2)}(x) \pm S^{(5)}(x)\right]^2}}$$

which is the complete expression for an arbitrary airfoil at angle of attack in an ideal flow. The $S^{(4)}(X)$ and $S^{(5)}(X)$ terms are computed by approximation. The pressure coefficient is obtained by

$$C_{p} = 1 - \frac{\left|\cos\alpha\left[1 + S^{(1)}(x) \pm S^{(4)}(x)\right] \pm \sin\alpha\sqrt{\frac{1 - x}{X}} \left[1 + S^{(3)}(x)\right]\right|^{2}}{1 + \left[S^{(2)}(x) \pm S^{(5)}(x)\right]^{2}}$$

The term $1 + S^{(1)}(x) + S^{(4)}(x)$ accounts for the vorticles being put into a flow with velocity $V_0 (1 + S^{(1)}(x) + S^{(4)}(x))$ instead of V_0 . The term $(1 + S^{(3)}(x))$ accounts for the differences in the vortex distribution between the thick and thin wing. The term $1/[1+[S^{(2)}(x)+S^{(5)}(x)]^2]$ is the correction between velocities on the chord line and on the surface.

4.1.2 Compressibility Correction and Integration

The effects of compressibility are accounted for in Weber's Method by the application of compressibility factors to the velocity distribution contributions due to thickness and camber, respectively.

$$\beta = \sqrt{(1 - M_0^2)}$$

$$\beta = \sqrt{(1 - M_0^2)(1 - M_0 C_{p_i})}$$

$$C_{p_i} = 1 - \frac{(1 + S^{(1)})^2}{1 + (S^{(2)})^2}$$
locity distribution in compressible flow is then give

The velocity distribution in compressible flow is then given by

$$\left(\frac{v}{v_o}\right)^2 = \frac{\left[\cos\alpha\left[1 + \frac{s^{(1)}}{B} \pm \frac{s^{(4)}}{B}\right] \pm \frac{\sin\alpha\left[1 + \frac{s^{(3)}}{B}\right]\sqrt{\frac{1-x}{x}}\right]^2}{1 + \left[\frac{s^{(2)}}{B} \pm \frac{s^{(5)}}{B}\right]^2}$$

The compressible pressure coefficient from the compressible form of Bernoulli's equation is

$$c_{p} = \frac{1}{\alpha_{s,t} - v_{o}^{2}} \left\{ \left[1 + \alpha_{s,t} + v_{o}^{2} \left[1 - \left(\frac{v_{o}}{v_{o}} \right)^{2} \right] \right]^{3.5} - 1 \right\}$$

The airfoil lift, axial torce and pitching moment are computed from the compressible and incompressible solutions in the following manner

Set
$$I_X = C$$
 (9) = C (9)
$$C_I = \int_0^{\pi} I_X dx$$
or $C_I = \int_0^{\pi} I_X \frac{dx}{dx} dx$ where $x = y\pi$, $y = 0$

Therefore trapezoidal rule

CL (M) =
$$\frac{\pi}{N} \left\{ \frac{1}{2} \left[x + \frac{\sin \theta}{2} \right] + \frac{1}{2} \left[x + \frac{\sin \theta}{2} \right] \right\} = \frac{\pi}{\cos \alpha_N} \sum_{\nu=1}^{N-1} \left[\frac{1}{2} \left[x + \frac{\sin \theta}{2} \right]_{\nu} \right]$$

Similarly

$$CA_{(1)} = \frac{\pi}{N} \sum_{\nu=1}^{N-1} \left[C_{p_{ij}}(1) + (S^{(2)}(x) + S^{(5)}(x)) - C_{p_{j}}(1) + (S^{(2)}(x) - C_{p_{j}}(1)) \right]$$

......
$$s^{(5)}(x)$$
 $\frac{\sin \theta}{2}\Big|_{\nu}$ + 1/2 $c_{p_{ij}}(M) \sqrt{2\rho}$

and

CM (21) =
$$\frac{\pi}{N} \sum_{\nu=1}^{N-1} \left[I_{x (x-.25)} \frac{\sin \theta}{2} \right]_{\nu}$$

4.1.3 Ideal Parameters

The ideal parameters are obtained from thin airtoil theory, which in effect means results are obtained for the meanline characteristics in an incompressible inviscid flow. The ideal angle of attack i is obtained from

$$\alpha_{i} = \int_{0}^{1} z_{x} \frac{1-2x}{\pi \left[x(1-x)\right]} dx$$

However, at the leading and trailing edges the equation is undefined and increments in the vicinity of the leading and trailing edges must be determined, in addition to the integration over the interior portion of the chord.

$$\Delta \alpha$$
 = .3739 λ_{α} + .04745 $\frac{dz}{dx}$
 $\times = 0.10$ $\times = .0381$ $\times = 0.031$

$$\Delta \alpha_1$$
 = -.3739 z_s + .04745 $\frac{dz}{dx}$ | x = .9619 to x = 1.0

resulting in

$$\Delta \alpha_{i} = 57.3 \left[\Delta \alpha_{i} + \Delta \alpha_{i} + \Delta \alpha_{i} + \Delta \alpha_{i} \\ x=.0381 + x=.9619 to \right]$$

The angle of attack for zero lift is obtained in a similar manner

$$\alpha_{\text{OL}} = -\int z_{\text{S}} \left[\frac{1}{(1-x)\sqrt{x[1-x]}} \right] dx$$

with

$$\alpha_{OL} = -.7834 \ z_{s} + .09518 \ \frac{dz}{dx}$$
 $x=.9619 \ to$
 $x=1.0$

The total value is given by

$$\alpha_{\text{OL}} = 57.3$$

$$\begin{bmatrix} \alpha_{\text{OL}} + \alpha_{\text{OL}} \\ x=.9619 \text{ to} & x=0 \text{ to} \\ x=1.0 & x=.9619 \end{bmatrix}$$

The ideal lift coefficient is now simply

$$c_{l_1} = \frac{2 \pi}{57.3} \left[\alpha_1 + \alpha_{OL} \right]$$

The pitching moment about the quarter chord is

$$C_{m_{C/*}} = \frac{2\pi}{N} \sum_{\nu} z_{s} \cos \theta_{\nu} + \frac{\pi}{57.3} \frac{\alpha}{2} OL$$

4.1.4 Crest Critical Mach Number

The crest critical Mach number is precisely defined as that free stream Mach number for which local sonic flow is first reached at the airfoil surface crest on the assumption of shock free flow. Its significance is founded on its relation to the drag rise Mach number. Various empirical studies have been aimed at finding the critical pressure ratio at the crest which corresponds to a drag rise in the test data. Nitzberg (NACA RMA9G2U) proposed a critical pressure ratio for drag rise of

$$P_{CREST}/P_{TOTAL} = 0.5283$$

which corresponds to a crest Mach number of M = 1.0. Sinnot (RAS TDM-6407) proposed the ratio

$$P_{CREST}/P_{TOTAL} = 0.515$$

which corresponds to a Mach number at the crest of M = 1.02 and which correlates better with drag-rise data. Sinnot's value is used in the Airfoil Section Module, thus the crest critical Mach number corresponds to a local flow at Mach 1.02 at the crest rather than sonic conditions. The relationship between the crest pressure and crest critical Mach number is

$$c_{P_{CREST}} = \frac{0.515(1 + 0.2 \text{ M}_{CC}^2)^{3.5} - 1}{0.7 \text{ F M}_{CC}^2}$$

where

$$F = \left[\beta_{CC} + 1/2 (1 - \beta_{CC}) c_{p_{CREST}} \right]^{-1}$$

M_{CC} = CREST CRITICAL MACH

C = INCOMPRESSIBLE VALUE

$$\beta_{\rm CC} = \sqrt{1-M_{\rm CC}^2}$$

Rewritten so that M_{CC} is a function of $C_{\text{p}_{CREST}}$, the relation is approximated by

$$M_{CC} = \left[1.023 - .9507 c_{PCREST} - .414 c_{PCREST}^2 - .1506 c_{PCREST}^3 - .0212 c_{PCREST}^4\right]^{-1}$$

The crest location for each angle of attack is determined by comparing the airfoil surface slope for each x location to tangent α . The final location is obtained by interpolating between the two given x locations whose airfoil slopes bracket the tangent α value. The Cpcrest value is obtained by interpolation of the Weber incompressible pressure distribution between the two x values surrounding Xcrest. The crest critical lift coefficient is obtained using the Karman-Tsien compressibility rule on the M = O integrated Weber lift coefficient.

$$c_{L_{CC}} = \frac{\beta_{CC} - \frac{\frac{M^{2}}{CC}}{1 + \beta_{CC}} \frac{|CL(M)|}{2}}$$

where, $CL(M) = C_L$ for M = 0.

No specific boundary layer correction is used. However, the Datcom recommends a 5% correction factor to bring the results in line with experimental data, and the viscous correction of section lift curve slope proposed by Kinsey and Bowers (Appendix B, Volume 1) has been incorporated.

4.2 TRANSONIC WING CL FAIRING, TRANSONIC WING X_{AC} FAIRING, and TRANSONIC WING CD, FAIRING

Datcom wing methods in the transonic Mach regime calculate aerodynamic parameters only at specific Mach numbers. Data at the requested Mach number is then determined by interpolation. This approach is used for the wing lift curve slope ($C_{L_{\perp}}$), wave drag ($C_{D_{\perp}}$), and aerodynamic center (X_{ac}). Nonlinear fairings for each of these parameters are discussed in the following paragraphs.

4.2.1 Transonic Fairings of Wing CL

Wing lift curve slope, $C_{L_{1}}$, is calculated in subroutine TRSØNI, overlay 24. The same methods are used for the horizontal tail in subroutine TRSØNJ, also in overlay 24.

Datcom section 4.1.3.2 defines the methods for calculation of ${\rm C_{L}}_{\alpha}$ at five discrete Mach numbers from 0.6 to 1.4. Values at Mach 0.6 and 1.4 use the subsonic and supersonic methods, respectively. The routine used to fair this curve is a modified version of subroutine ASMINT used in the Airfoil Section Nodule, overlay 50. To ensure a smooth continuous interpolation, a curve is constructed by fitting the points by a left-hand parabola joined to a series of cubic curves, and finally a right-hand parabola. This technique yields a function which has continuous derivatives everywhere. The slope of the curve at subsonic Mach numbers is obtained by differentiating the equation on Datcom page 4.1.3.2-49 with respect to Mach number. At Mach 1.4 the slope is found by calculating values at Mach 1.3, 1.4 and 1.5 and assuming a curve of the form:

$$c_L = A + B/\beta + C/\beta^2$$

Subsonic methods are used to Mach 0.75, or 0.1 less than the force break Mach number ($M_{\mbox{fb}}$), whichever is smaller, and transonic fairings are initiated at that point.

Subroutines TRANWG and TRANHT are used to calculate C_{L_α} at Mach 1.3, 1.4, and 1.5 and return C_{L_α} and its slope at Mach 1.4. Subroutines TRSØNI and TRSØNJ calculate C_{L_α} using the subsonic equation if the Mach number is less than 0.75 (or M_{fb} - 0.1), calculate the slope of the subsonic C_{L_α} curve at Mach 0.75, and call the new fairing routine if the Mach number if greater than 0.75.

4.2.2 Transonic Fairing of Wing CDu

The wing wave drag, C_{D_W} , is calculated in subroutines TRSØNI and TRSØNJ, overlay 24, for the wing and horizontal tail, respectively. The method is given in Datcom section 4.1.5.1.

Digital Datcom performs a linear interpolation of Datcom Figure 4.1.5.1-29 at fifteen discrete Mach numbers to determine the variation of $C_{D_{k}}$. Non-linear interpolations of this curve are performed as required at the user defined Mach numbers using the fairing routine developed for wing C_{L} . Two additional constraints were applied to perform this fairing.

- a. If the linear slope to the left or right of a given point, except the end points, is less than UNUSED, (10^{-60}) on CDC computers, the slope at that point is set to zero.
- b. Any computed value less than zero is set to zero. Within the fairing routine, the number of points in the curve is used to discriminate between a fairing of $^{\rm C}_{\rm D}$ and $^{\rm C}_{\rm L}$. 4.2.3 Transonic Fairings of Wing Aerodynamic Center

Aerodynamic center, \mathbf{X}_{ac} , is calculated in subroutines TRANCM and TRHTCM, overlay 25, for the wing and horizontal tail, respectively.

Datcom section 4.1.4.2 defines the method for calculation of X_{ac} at six discrete Mach numbers from 0.6 to 1.4. Values at 0.6 and 1.4 are determined using the subsonic and supersonic methods, respectively; the remaining four points are obtained from Datcom Figure 4.1.4.2-30 corresponding to $\overline{V} = -2$, -1, 0 and +1. If the thickness ratio is less than or equal to 7%, these data are interpolated for the aerodynamic center. If the thickness ratio is greater than 7%, the curve is defined using points which are a function of the force break Mach number, M_{fb} . An increment to the aerodynamic center is found from Datcom Figure 4.1.4.2-33 and applied at the fifth point (M_{fb} +0.07) and the resulting curve is then interpolated for the aerodynamic center. The following table summarizes the interpolation table:

Using Six Point t/c < 7%	Using Eight Points t/c > 7%
M ₁ 0.60	0.60
M_2 M for $\overline{V} = -2$	(0.60+M _{fb})/2
M_3 M for $\overline{V} = -1$	
M_4 M for $\overline{V} = 0$	
M_5 . M for $\overline{V} = +1$	
M ₆ 1.40	$M_{fb} + 0.14$
M ₇ -	M for $\overline{V} = +1$
^M 8 -	1.4

The interpolation routine used is similar to the routine used for $^{\rm C}_{\rm L}{}_{\alpha}$ and $^{\rm C}_{\rm D}{}_{\rm W}$ (Sections 4.2.1 and 4.2.2).

4.3 TRANSONIC WING CL , TRANSONIC WING CD , TRANSONIC WING-BODY-TAIL CD , TRANSONIC WING BODY C 2 , and TRANSONIC WING-BODY C

This section describes those methods used to compute the transonic configuration aerodynamics using Second Level Methods, and are summarized in Table 6. Additionally, the partial output is described.

4.3.1 Transonic Wing Lift Coefficient, C.

The wing lift curve versus angle of attack is programmed in subroutine WINGCL. The method described in Datcom section 4.1.3.3 is used as a guide to produce trends and is not construed to be an exact method of solution. Since the method is an approximate one, the following procedure was employed to produce the wing lift characteristics applicable to thin, low aspect ratio wings:

- 1. The required experimental data inputs by the user are α (zero lift angle of attack) and α_{\pm} (the angle of attack where the lift becomes nonlinear).
- 2. The lift variation is assumed to be linear up to α_{\star} , and nonlinear to $\alpha_{C_{L_{-\alpha \nu}}}$ (maximum lift angle of attack).

TABLE 6 PROGRAMMED TRANSONIC SECOND LEVEL METHODS SUMMARY

DATCOM SECTION	AERODYNAMIC PARAMETER	CONFIGURATION	SUBROUTINE PROGRAMMED	EXPERIMENTAL DATA INPUT REQUIRED	PARTIAL OUTPUT AVAILABLE
4.1.3.3	Cլ	WINGS	WINGCL	a ₀ , a,	a ₀ , a _*
4.1.5.2 ⁻	C _O L	WINGS	WINGCL	C _L OR a _o , a _•	c _{Di} /c _L ²
5.1.2.1	c _{₽β}	WINGS	WINGCL	CL OR ao, a.	CPB/CL
5.2.2.1	c₂ _β	WING-BODY	WBCLB	CL	c _{fβ} /c _L
4.5.3.2	c _D	WING-BODY-TAIL	CDWBY	с _{омв}	(NONE)
		·		c _{tH}	
	,		,	q/q	•
,				€	,
4.5.3.1	c _{Do}	WING-BODY-TAIL	WBTCD#	C _{DoV} OR C _{DoWBT} * ITYPE (TYPE OF GENERAL CONFIGUR- ATION)	Мп

^{*}CD $_{\rm OWBT}$ is available from the second level routine of datcom, section 4.5.3.1, subroutine wbtcd .

3. The nonlinear lift region is modeled by a mathematical relationship that satisfies the following conditions:

A modified polynomial of the form

$$y = A + B(X-X_0) + C(X-X_0)^N$$

is utilized to satisfy each of the boundary conditions and yield a curve somewhat parabolic in shape. This relationship has provided excellent results in modeling the nonlinear lift range. Derivation of the unknowns A, B, C and N is described in Section 4.3.7.

Two other user options are available from the routine; (a) the user may input only α_0 , or (b) the user inputs only α_* . Since both α_0 and α_* are required to estimate the lift variation by the preceding technique, the subroutine will provide an estimate for the missing parameter from a quadratic expression. Specifically, a quadratic polynomial can be faired through the nonlinear lift region if α_* is an unknown. Applying the generalized boundary conditions to a polynomial of order two, and solving for α_* will yield an estimate for this unknown. Conversely, if α_0 is not input, it can be determined in a similar manner.

The relationships used are as follows:

1.
$$\alpha_{\star}$$
 not input
$$\alpha_{\star} = \alpha_{C_{L_{max}}} + 2[\alpha_{o} - \alpha_{C_{L_{max}}} + \frac{C_{L_{max}}}{C_{L_{\alpha}}}]$$

2. ao not input

$$^{\alpha}$$
o = $^{\alpha}$ C_L_{max} - $\frac{^{C_{L}}_{max}}{^{C_{L}}}$ + $\frac{^{\alpha} * - {^{\alpha}}C_{L}_{max}}{^{2}}$

If neither α_0 nor α_* are user inputs, no solution is possible, but the program calculated values for C_L , C_L and C_L available as partial output.

4.3.2 Transonic Wing Drag due to Lift, C_{D_L} The programmed procedure for computing the ratio C_{D_L}/C_L^2 is exactly as described in Datcom section 4.1.5.2. The method does a three dimensional table lookup for Figure 4.1.5.2-55a (A tan (Λ_{LE}) = 0) and for Figure 4.1.5.2-55b (A tan(Λ_{LE}) = 3). Figure 4.1.5.2-55c shows a linear relationship of the dependent variable $(t/c)^{-1/3} C_{\rm D_1}/C_{\rm L}^2$ as a function of the transonic similarity parameter A tan ($\Lambda_{
m LE}$) for each value of the ratio (M 2 - $1)/(t/C)^{2/3}$; it was assumed that this linear relationship would hold for all other taper ratios other than 0.50. Therefore, linear extrapolations on all varibles would be performed if required.

This method was programmed in subroutine WINGCL with the calculation for wing C_L . Since C_L is required to calculate C_{D_L} , the calculation of wing $C_{\underline{L}}$ would enable the calculation of this parameter if $C_{\underline{L}}$ is not input as experimental data. The routine will not overwrite experimental data input, and thus the user oriented features are retained.

The ratio $C_{D_{\rm I}}/C_{\rm L}^{\,2}$ is available from the routine and will be output for user reference if $C_{D_{\overline{1}}}$ cannot be calculated.

4.3.3 Transonic Wing Roll Derivative, C & R

Like the wing $C_{D_{\overline{1}}}$ calculation described, the method of Datcom Section 5.1.2.1 requires wing lift to calculate from the relationship $c_{\ell_{\beta}}/c_L$, equation 5.1.2.1-c. Thus, this method is also programmed in subroutine WINGCL. The calculated value $f_{\mathcal{L}} \in C_{\ell_{\mathcal{Q}}}$ will not overwrite any experimental data input. The ratio $C_{\ell_{\beta}}/C_L$ is provided if the calculation for $C_{\ell_{\beta}}$ cannot be completed. No exceptions are taken for the Datcom method. The ratio $C_{\ell_{\beta}}/C_L$ at Mach numbers 0.6 and 1.4 are obtained by calling the subsonic and supersonic aerodynamic modules.

4.3.4 Transonic Wing-Body Roll Derivative, C

The derivative $C_{\ell\beta}$ will be calculated by Datcom equation 5.2.2.1-d if the wing-body lift coefficient variation with angle of attack is supplied, or computed as described above. The ratio $C_{\ell\beta}/C_L$ is given as partial output if the lift variation is not specified. This method is implemented exactly as described in Datcom and is programmed in subroutine WBCLB. Since $C_{\ell\beta}/C_L$ at M_{fb} and Mach 1.4 are required input items for this method, they are calculated by calling the appropriate aerodynamic modules.

4.3.5 Transonic Wing-Body-Tail Drag Coefficient, $C_{\mbox{\scriptsize D}}$

This method is a "method for all speeds" as described in Datcom Section 4.5.3.2, and is incorporated in exactly the same manner as presently programmed for the subsonic solution. This method, as programmed in subroutine CDWBT, require the following experimental data inputs:

- 1. C_{Dug} vs angle of attack
- 2. C_{D_H} vs angle of attack
- 3. C_{Lu} vs angle of attack
- 4. q/q_{∞} vs angle of attack
- 5. € vs angle of attack
- 6. $C_{D_{OV}}$ or $C_{D_{OWBT}}$

If $C_{\mathrm{D_{OV}}}$ is not an experimental data input item, the program will calculate it from the estimated $C_{\mathrm{D_{OWBT}}}$ calculated as follows:

$$c_{D_{OV}} = c_{D_{OWBT}} - c_{D_{OWB}} - c_{D_{OH}}$$

No partial output is available from this method.

4.3.6 Transonic Wing-Body-Tail Zero Lift Drag Coefficient, $C_{\mathrm{D}_{\mathrm{O}}}$

This method follows exactly the method of Datcom section 4.5.3.1, and is programmed as subroutine WBTCDO. This routine does not require experimental data input, although experimental data input is an optional feature for this routine.

Utilizing appropriate configuration description parameters the program computes the drag divergence Mach number, M_D, from Figure 4.5.3.1-19. The experimental data input allows the user, at his option, to select the type of general configuration to be used in computing M_D. The three options are:

- o A Straight wing designs without area rule.
- o B Swept wing designs without area rule.
- o C Swept wing designs incorporating transonic area rule theory. The program default options are as follows:
- o No wing sweep General Configuration A
- o Swept wing, configuration type not defined General Configuration B

The general configuration types are defined by the parameter ITYPE, where ITYPE=1 for configuration type A, ITYPE=2 for configuration type B, and ITYPE=3 for type C. In the case of configuration type C, the line for type C, in Figure 4.5.3.1-19, was linearly extrapolated and programmed. All extrapolations in this figure, with the exception of thickness ratio, are assumed to be linear; thickness ratio is extrapolated in a quadratic fashion.

With MD calculated from Figure 4.5.3.1-19, it is necessary to fair the c_{D_0} curve across the transonic Mach regime. The following criteria was used to fair the curve:

1.
$$\frac{dC_{D_O}}{dM} = 0.10 \text{ @ M} = M_D$$
2. $C_{D_O} = C_{D_{OM} = .7} + .002 \text{ @ M} = M_D$
3. $\frac{dC_{D_O}}{dM} = \frac{C_{D_{OM} = .7} - C_{D_{OM} = .6}}{.1} \text{ @ M} = .7$
4. $\frac{dC_{D_O}}{dM} = \frac{C_{D_{OM} = 1.4} - C_{D_{OM} = 1.1}}{3} \text{ @ M} = 1.1$

A polynomial fairing of the same type as used for the wing nonlinear lift coefficient is used here and has shown acceptable results.

The values of $C_{\mathrm{D}_{\mathrm{O}}}$ at Mach .7 and l.1 for this method are obtained by calling the subsonic and supersonic aerodynamic modules.

4.3.7 Data Fairing Technique

The data fairing technique used for computing the nonlinear lift region of transonic wings and the transonic wing-body-tail zero lift drag coefficient was chosen for its powerful features and ease of application.

The general fairing formula is a polynomial whose form is:

$$y = A + B(X-X_0) + C(X-X_0)^N$$

where A, B, C and N are unknowns. Given the values of y and dy/dx at two points, X_0 and X_1 , four simultaneous equations can be written. These equations solved simultaneously for the four unknowns yield the following results:

$$A = y_{0}$$

$$B = \frac{dy}{dx} @ X = X_{0}$$

$$C = \frac{y_{1} - y_{0} - (\frac{dy}{dx})_{X_{0}} (X_{1} - X_{0})}{(X_{1} - X_{0})^{N}}$$

$$N = \left[(\frac{dy}{dx})_{X_{1}} - (\frac{dy}{dx})_{X_{0}} \right] (X_{1} - X_{0})$$

$$y_{1} - y_{0} (\frac{dy}{dx})_{Y_{0}} (X_{1} - X_{0})$$

The general equation reduces to

$$y = y_0 + (\frac{dy}{dx})_{x_0}$$
 $(x-x_0) + \left[y_1 = y_0 - (\frac{dy}{dx})_{x_0} (x_1-x_0)\right] \left(\frac{x-x_0}{x_1-x_0}\right)^{x_0}$

This equation is valid for $X_0 \leq X \leq X_1$ and $(dy/dx)_{X_0} \neq (dy/dx)_{X_1}$. Neither of these conditions is violated in this application. The range of values of X will always fall between X_0 and X_1 because of the program logic, and in the nonlinear lift region the slopes at X_0 and X_1 will never be equal. For the transonic wing-body-tail C_{D_0} versus Mach fairing the Datecom relation $(dC_{D_0}/dM) = 0.10$ at M=M_D.

4.4 SUBSONIC WING C_m , SUBSONIC AND SUPERSONIC WING AERODYNAMIC CENTER, SUBSONIC WING-BODY C_m , and SUBSONIC WING-BODY-TAIL C_m

The subsonic wing pitching moment variation with angle of attack follows Datcom Method 1 of Section 4.1.4.3, and is programmed in subroutine CMALPH. The method is applicable to those configurations whose wing aspect ratio satisfies the following criteria:

$$A \leq \frac{6}{(1+C_1) \cos \Lambda LE}$$
 ("LOW ASPECT RATIO")

For "high aspect ratio" configurations, the default wing aerodynamic center is either the quarter-chord of the wing mean aerodynamic chord, or the user input value (variable name X_{AC} in the planform section characteristics namelists). This value is used in computing pitching moment for the wing up to the angle of attack where the wing lift deviates by more than 7.5% from the linear value; at this point the method is no longer valid.

There are no methods in Datcom or Digital Datcom for supersonic wing pitching moment, though the wing $X_{\rm AC}$ is estimated to be at the wing planform centroid for unswept leading edges, and computed using the method and design charts of Datcom section 4.1.4.2 for other surfaces. These supersonic data are computed in subroutine SUPLNG.

There is no Datcom method for computing the wing-body pitching moment in any Mach regime. Digital Datcom, however, computes the subsonic wing-body pitching moment using the following formulation (programmed in subroutines WBCMO and WBCM):

- o Compute $(C_{m_0})_{WB}$ from regression formulation of Datcom Section 4.3.2.1, programmed in WBCMO. If the method is not applicable, $(C_{m_0})_{WB}$ is computed from Method 1.
- o Compute the wing-body aerodynamic center from Datcom Section 4.3.2.2 (WBCM), where Equation 4.3.2.2-a is used at all speeds.
- o The wing-body $C_{\underline{m}}$ curve is then computed as

$$c_{m_{WB}} = c_{m_{O_{WB}}} + c_{m_{C_L}} + c_{m_{C_D}}$$

where C_{mC_L} is the pitching moment due to lift obtained by integrating the curve of X_{AC} versus C_L from $C_L=0$ and to C_L at the desired angle of attack, and C_{mC_D} is the pitching moment due to wing-body drag located at Z_{AC} .

Subsonic wing-body-tail pitching moment versu angle of attack is computed by Digital Datcom in subroutine WBTAIL, though there is no Datcom method for this parameter. The method formulation used is as follows:

$$C_{L_{j H}} = C_{L_{j WBT}} - C_{L_{j WB}}$$

$$\left(c_{m_{j}} \right)_{WBT} = \left(c_{m_{j}} \right)_{WB} + \left(q/q_{\infty} \right)_{j} \left(c_{m_{o}} \right)_{H} + \frac{\left(x_{ac} - x_{cg} \right)_{H}}{\bar{c}_{r}} \left[\left(c_{L_{j}} \right)_{H} \cos \left(\alpha \right)_{j} \right]$$

$$+\left(c_{D_{j}}\right)_{H}\left(q/q_{\infty}\right)_{j} \quad SIN\left(\alpha\right)_{j} + \frac{\left(c_{D_{j}}\right)_{H}}{\overline{c}_{r}} \quad \left[\left(c_{D_{j}}\right)_{H}\left(q/q_{\infty}\right)_{j} \cos\left(\alpha\right)_{j}\right]$$

$$-\left(c_{L_{j}}\right)_{H}\sin\left(\alpha\right)_{j}$$

4.5 TRANSONIC BODY C_L FAIRING AND TRANSONIC BODY C_m FAIRING

The transonic $C_{L_{\alpha}}$ and $C_{m_{\alpha}}$ derivatives for the body alone configuration is interpolated linearly between the subsonic (M = 0.60) and supersonic (M = 1.40) Mach regimes in subroutine BØDYRT.

4.6 SUBSONIC ASYMMETRICAL BODY C_L , SUBSONIC ASYMMERICAL BODY C_{m_Q}

 $\textbf{C}_{\underline{\textbf{m}}}\text{, AND SUBSONIC ASYMMETRICAL BODY }\textbf{C}_{\underline{\textbf{D}}_{\boldsymbol{O}}}\text{, }\textbf{C}_{\underline{\textbf{D}}}$

Digital Datcom body solutions generally include lift, drag, and pitching moment coefficients. In the transonic speed regime the solutions are restricted to lift and pitching moment slopes, and drag coefficients.

4.6.1 Subsonic Bodies

Subsonic body analysis computes lift, drag, and pitching moment coefficients for either axisymmetric or cambered bodies. Digital Datcom body methods are identical to Datcom except for the base drag. Digital Datcom calculates base drag using a minimum base area equal to 30% of the body maximum cross-sectional area.

The cambered body pitching moment method is not defined in Datcom and is therefore described in detail. For clarity, the lift method, which is defined in Datcom, is also described. These body methods (subroutine BCDQPT) are executed when the parameters Z_U and Z_L are user specified (namelist BQDY). The method predicts the zero lift angle of attack, zero lift pitching moment, and body lift and pitching moment versus angle of attack. The Datcom drag methods are retained.

Zero lift angle of attack and pitching moment are calculated utilizing conventional mean line theory. The equations are:

$$\alpha_0 = \frac{-57.3}{\pi} \int_0^{0.95} \frac{z'}{L} \left[\frac{1}{(1-X/L) \left[X/L - (X/L)^2 \right]^{1/2}} \right] d(X/L), \text{ degrees}$$

$$c_{m_0} = 2.0 \int_0^{1.0} \frac{z}{L} \left[\frac{1-2.0 \text{ X/L}}{\left[\text{X/L} - (\text{X/L})^2\right]^{1/2}} \right] d(\text{X/L})$$

These parameters are defined in Figure 25.

Lift and moment for asymmetric bodies are calculated by employing a modified version of Polhamus's leading-edge suction analogy (References 2 and 3). Polhamus considers two components of lift, a potential flow term, $C_{\rm Lp}$, and a vortex-lift term $C_{\rm Lv}$. Both of these terms are a function of body aspect ratio (A) and are defined as follows:

$$C_L = C_{Lp} + C_{Ly}$$
 $C_{Lp} = K_P \sin \alpha \cos^2 \alpha$
 $C_{Ly} = K_V \sin^2 \alpha \cos \alpha$
 $\alpha = \text{angle of attack}$

Kp and Ky are obtained from Figure 26.

The Polhamus vortex lift equation wast be modified to make it applicable to thick bodies because the oaset of vortex lift for such configurations is not at zero angle of attack as it is with flat plate wings. The thick body angle of attack for onset of vortex lift (α_V) can be correlated with the fineness ratio (FR) and the thickness ratio (TR) of the body as shown in Figure 27a. The body thickness parameters are shown in Figure 27b. Experimental data used in correlation are presented in References 4 through 7. The redefined lift expressions for thick bodies are as follows:

$$C_{Lp} = K_P \sin \alpha \cos^2 \alpha$$

$$C^*_{LV} = K_V \sin^2 (\alpha - \alpha_V) \cos (\alpha - \alpha_V)$$

$$C^*_{L} = C_{Lp} + C^*_{LV}$$

The body pitching moment is obtained by estimating the center-of-pressure locations of both the potential and vortex lift components. The total pitching moment is equal to the sum of the moments produced by the lift forces acting at their respective center-of-pressure locations plus the zero lift pitching moment. The potential lift center-of-pressure location employed stems from slender body theory and is presented in Figure 28 as a function of n. The equation for the powerlaw planform is of the form $R = R_{max} (X/L)^n$. The program computes an exponent n that closely approximates the input planform area. The potential lift center-of-pressure location is obtained from Figure 28 or the equation.

$$X_{cp}/L = 2n/(2n+1)$$

SIDE VIEW (X, VALUES SHIFTED TO BODY NOSE)

FIGURE 25 ASYMMETRIC BODY GEOMETRY INPUTS

DATCOM FIGURE 4.2.1.2-36a

DATCOM FIGURE 4.2.1.2-36b

FIGURE 26 POTENTIAL AND VORTEX LIFT COMPONENTS

FIGURE 27a CORRELATION OF $\alpha_{\mbox{\scriptsize V}}$

FIGURE 27b BODY THICKNESS PARAMETERS

POWER LAW PLANFORM

FIGURE 28 POTENTIAL LIFT CENTER OF PRESSURE

Vortex lift center of pressure is assumed to be located at the total planform centroid of area. The equation for the body pitching moment coefficient is:

$$c_{m} = c_{m_{O}} + c_{m_{P}} + c_{m_{V}}$$

$$c_{m_{p}} = c_{N_{p}} (x_{CG} - x_{CP})/L$$

$$c_{m_{V}} = c_{N_{V}} (x_{CG} - \overline{x})/L$$

where \overline{X} is the location of the total planform center of area measured from the body nose. The method is applicable at angles of attack equal to or greater than the wing maximum lift angle of attack.

4.6.2 Transonic Bodies

Digital Datcom body solutions are restricted to lift and pitching moment slopes, and drag coefficients in the transonic speed regime. These data are computed by performing a linear interpolation between the subsonic (M = 0.60) and supersonic (M = 1.4) Mach regimes.

Subroutines that implement the transonic body methods are BØDYRT, SUPBØD, TRSØNI, and TRSØNJ.

4.6.3 Supersonic Bodies

Supersonic body analysis provides solutions for lift, drag and pitching moment coefficients. Datcom methods for lift, pitching moment slope, and drag coefficient require the body to be synthesized from a combination of body components comprised of a nose, after-body, and/or tail segments. Digital Datcom requires synthesized body configurations to be either nose alone, nose-after body, nose-after body-tail, or nose-tail segment combinations.

Some of the Datcom body drag methods in this speed regime have not been implemented in Digital Datcom. The effects of blunted noses on drag are not incorporated since the body lift and pitching moment methods do not reflect the influences of this parameter. Some of the Datcom interference drag methods are also deleted. In this case, the methods were omitted because of their limited range of applicability.

Calculation of wing-body, or horizontal tail-body, stability requires the lift curve slope of the body ahead of the wing or horizontal tail. Body CN methods are executed for the portion of the body ahead of the wing, if the wing is present; the portion of the body ahead of the horizontal tail, if the horizontal tail is present; and entire body.

All methods are implemented by subroutine SUPEØD except for a portion of the drag methods contained in subroutine FIG26.

4.6.4 Hypersonic Bodies

Hypersonic body analysis is performed at user designated Mach numbers that are equal or greater than 1.4. In this speed regime, Digital Datcom stability solutions include lift, drag and pitching moment coefficients.

Hypersonic body analyses for lift and pitching moment slopes and drag coefficients, like the supersonic body methods, require the body to be synthesized from a combination of body segments. Hypersonic body analysis is unlike the other Datcom hypersonic configuration analyses since the methods are defined independent of the supersonic results. Body $C_{\mathrm{N}_{\alpha}}$ for portions of the body ahead of the wing and/or horizontal tail are also calculated.

The methods are implemented in subroutine HYPBOD. A small portion of the drag methods are found in subroutine FIG26.

-4.7 TRANSONIC WING-BODY CI.

The transonic wing-body lift coefficient, if not input using namelist EXPR--, is computed in subroutine WBCLB using the following equations:

$$C_{L_{\mathbf{I}}} = (C_{L_{\alpha}})^* (\alpha_{\mathbf{j}})_{W}$$

$$(C_{L_j WB}) = (C_{L_\alpha})_B \alpha_j + [K_{W(B)} + K_{B(W)}] (C_{L_\alpha}) *_{\alpha} j$$

$$+ I_{V_{B(W)}} \left(\frac{I'}{2\pi\alpha_{j} Vr_{C_{re}/2}} \right) \left(\frac{d}{b} \right) \quad \alpha_{j} \quad (C_{L_{\alpha}}) \star_{W}$$

$$+ \begin{bmatrix} k & & & \\ & W(B) & + & & \\ & & B(W) \end{bmatrix} C_{L_{\underline{1}}}$$

In computing the transonic wing-body pitching mor nt slope, the center of pressure of body-wing carryover is linearly interpolated between the values obtained at Mach 0.60 and Mach 1.40 in subroutine TRANCM.

4.8 WING-BODY-TAIL MOVEABLE HORIZONTAL TAIL TRIM

The all moveable horizontal tail incidence required to trim the vehicle $(C_{MC..G.} = 0)$ at angle of attack is calculated in subroutine TRIMR2. At trim, the forces on the tail are C_{L_H} and C_{D_H} (trimmed lift and drag), and are referenced to the local flow at a tail angle of attack of $(\alpha - \epsilon_H)$. Since these trimmed forces are located at the tail aerodynamic center, which is known, the total body moments can be summed as follows:

$$\begin{aligned} & c_{M_{WB}} + c_{M_{OH}} \frac{q_{H}}{q_{\infty}} - c_{L_{H}} \frac{q_{H}}{q_{\infty}} \left[\frac{\Delta X_{AC}}{\overline{C}_{W}} \cos (\alpha - \epsilon_{H}) + \frac{\Delta Z_{AC}}{\overline{C}_{W}} \sin (\alpha - \epsilon_{H}) \right] \\ & + c_{D_{H}} \frac{q_{H}}{q_{\infty}} \left[\frac{\Delta Z_{AC}}{\overline{C}_{W}} \cos (\alpha - \epsilon_{H}) - \frac{\Delta X_{AC}}{\overline{C}_{W}} \sin (\alpha - \epsilon_{H}) \right] = 0 \end{aligned}$$

CDH can be expressed as

$$c_{DH} = c_{D_{O_H}} + \frac{(c_{L_H})^2}{\pi^A_H e_H}$$

Hence, the only unknown is $\mathbf{C}_{\mathbf{L}_{\mathbf{H}}}$, the tail lift at trim, which can be evaluated. From Sketch (a) note that

VIEW IN PLANE OF SYMMETRY

- a = Airplane angle of attack (positive as shown)
- $\mathbf{x}_{\mathbf{H}}$ = Distance from c.g. to quarter-chord point of horizontal-stabilizer MAC
- Ω = Angle defined by intersection of $x_{\rm R}$ with FRP (positive as shown with horizontal stabilizer above c.g.)

Sketch (a)

$$\frac{\Delta X_{ac}}{\overline{C}_{W}} = \frac{X_{H}}{\overline{C}_{W}} \cos \Omega$$

$$\frac{\Delta Z_{ac}}{\overline{C}_{W}} = \frac{X_{H}}{\overline{C}_{W}} \sin \Omega$$

Thus,

$$\frac{\Delta^{2} \text{ ac}}{\overline{C}_{W}} \cos (\alpha - \varepsilon_{H}) + \frac{\Delta Z_{ac}}{\overline{C}_{W}} \sin (\alpha - \varepsilon_{H})$$

$$= \frac{X_{H}}{\overline{C}_{W}} \left[\cos \Omega \cos (\alpha - \varepsilon_{H}) + \sin \Omega \sin (\alpha - \varepsilon_{H}) \right]$$

$$= \frac{X_{H}}{\overline{C}_{W}} \cos (\Omega - \alpha - \varepsilon_{H})$$

$$\frac{\Delta Z_{ac}}{\overline{C}_{W}} \cos (\alpha - \varepsilon_{H}) - \frac{\Delta X_{ac}}{\overline{C}_{W}} \sin (\alpha - \varepsilon_{H})$$

$$= \frac{X_{H}}{\overline{C}_{W}} \left[\sin \Omega \cos (\alpha - \varepsilon_{H}) - \cos \Omega \sin (\alpha - \varepsilon_{H}) \right]$$

$$= \frac{X_{H}}{\overline{C}_{W}} \sin (\Omega - \alpha + \varepsilon_{H})$$

The moment equation reduces to

$$C_{M_{WB}} + C_{M_{OH}} \frac{q_{H}}{q_{\infty}} - C_{L_{H}} \frac{q_{H}}{q_{\infty}} \frac{x_{H}}{\overline{C}_{W}} \cos (\Omega - \alpha + \varepsilon_{H})$$

$$+ \left[C_{D_{OH}} + \frac{(C_{LH})^{2}}{\pi A_{H} e_{H}} \right] \frac{q_{H}}{q_{\infty}} \frac{x_{H}}{\overline{C}_{W}} \sin (\Omega - \alpha + \varepsilon_{H}) = 0$$

Letting $\delta = \Omega - \alpha + \epsilon_H$ and re-arranging yields a quadratic on C_{L_H} .

$$\frac{q_{H}}{q_{\infty}} \frac{X_{H}}{\overline{C}_{W}} \sin \delta \frac{(C_{LH})^{2}}{\pi A_{H} e_{H}}$$

$$- \frac{q_{H}}{q_{\infty}} \frac{X_{H}}{\overline{C}_{W}} \cos \delta (C_{L_{H}})$$

$$+ C_{D_{OH}} \frac{q_{H}}{q_{\infty}} \frac{X_{H}}{\overline{C}_{W}} \sin \delta + C_{M_{WB}} + C_{M_{OH}} \frac{q_{H}}{q_{\infty}} = 0$$

Simplifying,

$$\frac{\tan \delta}{\pi A_{H} e_{H}} (C_{L_{H}})^{2} - C_{L_{H}} + C_{D_{OH}} \tan \delta + \frac{C_{M_{WB}} + C_{M_{OH}} \frac{q_{H}}{q_{\infty}}}{\frac{q_{H}}{q_{\infty}} \frac{x_{H}}{C_{W}} \cos \delta} = 0$$

From the quadratic formula,

$$C_{L_{H}} = \frac{1 + \sqrt{1 - 4 \left[\frac{\tan \delta}{\pi A_{H} e_{H}}\right] \left[C_{D_{OH}} \tan \delta + \frac{C_{M_{WB}} + C_{M_{OH}} \frac{q_{H}}{q_{\infty}}}{\frac{q_{H}}{q_{\infty}} \frac{X_{H}}{\overline{C}_{W}} \cos \delta}\right]}}{2 \left[\frac{\tan \delta}{\pi A_{H} e_{H}}\right]}$$

In this form, the equation becomes invalid for = 0, and can be further reduced to

$$C_{L_{H}} = \frac{2 \left[\frac{C_{M_{WB}} + C_{M_{OH}} \frac{q_{H}}{q_{\infty}}}{\frac{X_{H}}{\overline{C}_{W}} \frac{q_{H}}{q_{\infty}} \cos \delta} + C_{D_{OH}} \tan \delta \right]}{1 + \sqrt{1 - 4 \left[\frac{\tan \delta}{\pi A_{H} e_{H}} \right] \left[\frac{C_{M_{WB}} + C_{M_{OH}} \frac{q_{H}}{q_{\infty}}}{\frac{X_{H}}{\overline{C}_{W}} \frac{q_{H}}{q_{\infty}} \cos \delta} + C_{D_{OH}} \tan \delta \right]}$$

A plus sign in front of the radical is the valid solution, otherwise at δ = 0 the solution is undefined. This result is similar to Datcom equation 4.5.3.2-e, with the exception of the term "CmOH qH/q $_{\infty}$."

Once the tail lift at trim (C_{L_H}) has been determined, a variation of Datcom equation 4.5.1.2-a can be used to calculate the tail incidence α_{i_H} .

$$C_{L_{H}} = C_{L_{H}}^{'} \left(K_{H(B)} + K_{B(H)} \right)$$

$$+ C_{L_{\alpha_{H}}}^{'} (\alpha_{i_{H}}^{'}) \left[k_{H(B)} + k_{B(H)} \right]$$

$$+ I_{V_{B(H)}} \left(\frac{7}{2\pi\alpha Vr} \right)_{H} \frac{(b/2 - b*/2)}{(b/2)} C_{L_{\alpha_{H}}^{\star}} \alpha_{eff}$$

where $C_{L_H}^{\star}$ is the pseudo lift-curve-slope of the horizontal tail in the presence of the body,

$$C_{L_{\alpha_H}^*} = C_{L_{\alpha_H}} (K_{H(B)} + K_{B(H)})$$

 C_{L_H} and C_{L_H} are the horizontal tail lift and lift curve slope at $(\alpha - \epsilon_H + \alpha_{OH})$

and α_{eff} is the effective angle of attack of the horizontal tail in the presence of the body

$$\alpha_{\text{eff}} = \alpha - \epsilon_{\text{H}} + \alpha_{\text{OH}} + \alpha_{\text{I}} \left(\frac{k_{\text{H}(B)} + k_{\text{B}(H)}}{K_{\text{H}(B)} + K_{\text{B}(H)}} \right)$$

The incidence angle to trim can then be solved directly, and becomes

$$\alpha_{i_{H}} = \frac{C_{L_{H}} - \left(K_{H(B)} + K_{B(H)}\right) \left[C_{L_{H}}' + C_{L_{\alpha H}}' \left(\alpha - \epsilon_{H} + \alpha_{OH}\right) I_{V_{E(H)}} \left(\frac{\Gamma}{2\pi V r}\right) H \left(\frac{b/2 - b^{*}/2}{b/2}\right)}{\left(k_{B(H)} + k_{H(B)}\right) \left[C_{L_{\alpha H}}' + I_{V_{B(H)}} \left(\frac{\Gamma}{2\pi V r}\right) H \left(\frac{b/2 - b^{*}/2}{b/2}\right) H \left(\frac{c_{L_{\alpha H}}'}{c_{L_{\alpha H}}}\right)}\right]}$$

Once the tail lift and drag at trim has been computed the panel hinge moment about the pivot point can also be computed. Since $C_{\rm L_H}$ and $C_{\rm D_H}$ are are referenced to the local flow, they must be computed relative to the freestream flow. Relative to V_{∞} , trim lift and drag are

$$C_{L_{H_{TRIM}}} = (C_{L_{H_{T}}} \cos \varepsilon - C_{D_{H_{T}}} \sin \varepsilon) \frac{q_{H}}{q_{\infty}}$$

$$c_{D_{H_{TRIM}}} = c_{D_{O_{H}}} + \frac{\left(c_{L_{H_{TRIM}}}\right)^{2}}{\pi^{A_{H}e_{H}}}$$

The pitching moment trimmed is

$$C_{M_{H_{TRIM}}} = C_{L_{H_{TRIM}}} \left[\frac{x_{H}}{\overline{c}_{W}} \cos \delta \right] + C_{D_{H_{TRIM}}} \left[\frac{x_{H}}{\overline{c}_{W}} \sin \delta \right]$$

The hinge moment about the pivot point is

$$C_{HM} = \begin{bmatrix} C_{L_{HTRIM}} & \cos \alpha + C_{D_{HTRIM}} & \sin \alpha \end{bmatrix}$$

4.9 WING-BODY-TAIL TRIM WITH CONTROL DEVICES

Configuration trim with wing or horizontal tail control devices is performed in subroutine TRIMRT. The method programmed, which is not a Datcom method, essentially does a table look-up of the control device incremental pitching moment coefficient versus control deflection for the deflection required to trim. The incremental lift coefficient and drag coefficient are then obtained by performing table look-ups for these variables (which are a function of control deflection angle) at the trimmed control deflection.

4.10 STANDARD ATMOSPHERE MODEL

Incorporation of a standard atmosphere model (subroutine ATMOS) into Digital Datcom provides input and output flexibility for the user. The program can operate on Mach number and altitude as separate independent variables. The addition of vehicle weight and flight path angle permit calculation of equilibrium flight conditions.

The program allows the user to input either Mach number or velocity as an independent variable for speed reference. If velocity is input, the free stream static temperature must be available so that Mach number can be calculated. The user will also have the option to specify a flight altitude, or static pressure and temperature, as an independent variable defining the atmospheric conditions. If altitude is specified, pressure and temperature will be found using the "U.S. Standard Atmosphere, 1962."

The user may input up to 20 Mach or velocity points. If Mach number is input, the velocity will be calculated for each point where atmospheric data are input. When velocity is input the Mach number will be calculated using atmospheric conditions. If velocity is input instead of Mach numbers and atmospheric conditions are not defined, an error message will be written and Mach numbers will be calculated using a speed of sound of 1000 ft/sec.

The user may also input up to 20 atmospheric conditions. The atmosphere may be defined by altitude, pressure and temperature, or Reynolds number. If the altitude is given, pressure and temperature will be determined using the

atmosphere model developed in Reference 9. The Reynolds number will be calculated using the following equation (in the foot-pound-second system of units):

 $RN/L = \rho V/\mu = 1.2527 \times 10^6 PM (T + 198.6)/T^2$

This equation was derived using the following relationships:

 $_{\rm D} = P/RT$

 $V = M \sqrt{YRT}$

 $\mu = 2.270 \times 10^{-8} T^{1.5}/(T + 198.6)$

If the Reynolds number is not input and cannot be calculated, an error message will be written and the Reynolds number will be set to 5 \times 10⁶/ft.

Given the vehicle weight, flight path angle, and atmospheric conditions, the equilibrium flight aerodynamic data can be determined. Equilibrium flight is achieved when the following relationship is satisfied.

WT = $(C_L \cos \delta - C_D \sin \delta)$ qS Along with the untrimmed aerodynamic output, the level flight $(\delta = 0)$ lift coefficient will be output. Trim data output will provide an additional line of output at the equilibrium flight conditions (subroutine FLTCL).

SECTION 5

SYSTEM RESOURCE REQUIREMENTS

Digital Datcom is a large and rather complex computer program which requires specific computer resources to execute within a fixed core requirement. The program is written to conform to the American National Standards Institute (ANSI) Standard Fortran IV. Certain computer resources must be available to make the program operational without modifications These resources are:

- o Six disk files or scratch tapes are required for manipulation and retrieval of input data. The logical I/O units used are 8, 9, 10, 11, 12 and 13. These logical units are in addition to logical unit 5 (read) and unit 6 (write).
- o The system must have capability for primary and secondary overlay structures.
- o The system must have a Fortran compiler which provides for NAMELIST input and output, and statement transfer when an end of file is detected.

Each logical unit referenced by the program is reserved for a specific purpose. The units referenced and their use in the program are listed below:

Unit Program Usage

- 5 Standard system input (card reader)
- 6 Standard system output (printer)
- 8 Storage of experimental data namelists for the case being executed
- 9 Storage of input namelists, except experimental data, for the case being executed
- Storage of experimental data namelists for a single Mach
- Storage of all input data after processing by the input diagnostic analysis module (CØNERR)
- 12 Storage of extrapolation messages for processing by overlay 57
- Storage of output data for use with the Plot Module as a postprocessing option

SECTION 6

PROGRAM CONVERSION MODIFICATIONS

6.1 GENERAL REMARKS

The program was written in Fortran IV for the CDC Cyber 175 computer system. Several program modifications may be required to run under other Fortran compilers or computer systems. It is recommended that users implementing the program for their computer system become familiar with their installation operating system and Fortran compiler requirements. Users are forewarned that program core requirements and run times discussed in this report may no longer be valid.

6.2 PROGRAM STRUCTURE

The program is composed of a root segment overlay (overlay 0), fifty-seven primary overlays and twenty-eight secondary overlays. Table 7 shows the overall program structure and lists those routines that are contained in each overlay. In the CDC system, the first routine in an overlay is called a "program" and subsequent routines "subroutines." Several subroutines appear in more than one overlay. These subroutines are called "common decks" and are listed in Table 8.

6.2.1 Calls to Overlay

All primary overlays are called by the root segment overlay, and secondary overlays called by their respective primary overlay using the calling sequence

CALL OVERLAY (4LDATC, XX, YY, 6HRECALL)

where: DATC is the disc file where the overlay is located,

XX is the primary overlay number in decimal, and

YY is the secondary overlay number in decimal.

Hence, each overlay is written to a disk file with the name "DATC."
Users should refer to the Fortran reference manual for their system and
determine the correct overlay calling procedure.

6.2.2 Common Decks

Several subroutines are used in more than one overlay. The most commonly used routines are located in the root segment for access by all overlay programs and subroutines. However, several decks are used by only a few

routines and placing them in the root segment would require an increase in overall program core size. In order to maintain a low core requirement, these common decks are located in each overlay in which it is referenced.

<u>Warning</u> - Not all systems allow two routines to have the same name even though they are identical. If the user's system does not allow this option, three alternatives are available as follows:

- o Rename each deck that is common, and change the calling sequence to it.
 - natives are available as follows:
- o Place all common decks in the root segment (overlay 0) and remove the deck from each associated overlay. The user will increase the overall program core requirement by using this technique, however, it is easier than the procedure outlined above.
- o On some systems that have multiple region capability, these common decks can be placed in a separate overlay region.

6.2.3 "OVERLAY" and "PROGRAM" Cards.

Each primary and secondary overlay main program contains these two cards. The CDC Fortran compiler requires all overlays to begin with an "OVERLAY" card followed by a main program which begins with a "PROGRAM" card. These must be replaced by corresponding code required by the operating system and compiler being employed.

6.2.4 End of File Tests

Routines INPUT, CONERR and XPERNM utilize a transfer on end of file.

This statement must be modified for the Fortran compiler being used.

6.2.5 Use of "UNJSED" and "KAND"

These constants are set in BLØCK DATA. The value for "UNUSED" is set in the program as 10^{-60} . It is sometimes used as a program flag and is used for initializing all variable arrays to some number other than zero. The value for "UNUSED" can be changed if desired and must be defined in BLØCK DATA as a small positive number. The variable "KAND" defines the alphabetic character used by the NAMELIST inputs. It is set to '\$' for CDC systems.

SECTION 7

PROGRAM DECK DESCRIPTION

This section contains a description of all routines in Digital Datcom. Table 7 lists the decks by overlay, Table 8 lists those "common decks" in the program, and Table 9 describes the purpose of each deck and the overlays referenced. For convenience, Table 9 lists the routines in alphabetical order. Table 10 discusses the use of each of the variables in the Digital Datcom control data blocks. The description of the plot module routines is provided in Volume III of this report.

A complete program listing, which includes Digital Datcom and the Piot Module, is provided as a microfiche supplement to this report.

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

MAINOO MAINOO MAINOO MAINOO MAINOO MAINOO MAINOO MAINOO BLØCK DATA TBFUNX QUAD INTERX TLINEX TLINEX TLINEX FIGSE FIGSE	PROGRAM CONTROL - COMMONLY USED ROUTINES
--	--

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

EXSUBT 01 MO1001 INITIALIZE ZERANG 01,2 INPUT EST WRLDIP WRYTIP WRYTIP WRYTIP WRYTIP INPUT2 INPUT3 INPUT3 INPUT4 01,3 CHECK MACI CONV ATMOS MAJERR 01,4 CHECK USER	PROGRAM/SUBROUTINE NAME OVERLAY DESCRIPTION
MOTOROL INITZE ZERANG INPUT WRYTIP WRYTIP WRYTIP WRYTIP INPUT2 INPUT2 INPUT3 INPUT4 CHECK CONV ATMOS MAJERR CONERR	
INITZE ZERANG INPUT TEST WRLØIP WRHTIP WRYTIP WRVFIP INPUT2 INPUT3 INPUT3 INPUT4 CPONV ATMØS MAJERR CONERR	INITIALIZE PROGRAM AND PROCESS INPUT DATA
ZERANG INPUT TEST WRHTIP WRHTIP WRYTIP WRVTIP INPUTA INPUTA CHECK CONV ATMOS MAJERR CONERR	INITIALIZES DATA BLOCKS AND PRINT FLAGS
INPUT TEST WRLØIP WRHTIP WRYTIP WRVTIP INPUTL INPUT2 INPUT2 INPUT3 INPUT3 INPUT4 CØNV ATMØS MAJERR CØNER	y
TEST WRLDIP WRHTIP WRHTIP WRVTIP INPUTL INPUT2 INPUT3 INPUT4 CANV ATMOS MAJERR CONERR	READ AND WRITE INPUTS
WRLØIP WRHTIP WRVTIP WRVTIP INPUTL INPUTZ IMPUTZ IM	
WRHTIP WRVTIP WRVFIP INPUTL INPUT2 IMPUT3 INPUT4 CHECK CØNV ATMØS MAJERR CØNERR	
WRVTIP WRVFIP INPUTL INPUT2 INPUT3 INPUT4 CHECK CONV ATMOS MAJERR CONERR	d.
MRVFIP INPUT2 IMPUT3 IMPUT4 CHECK CØNV ATMØS MAJERR CØNERR	a
INPUTL INPUT2 IMPUT3 INPUT4 CHECK CONV ATMOS MAJERR CONERR	
INPUT2 IMPUT3 INPUT4 CHECK CONV ATMOS MAJERR CONERR	
INPUT3 INPUT4 CHECK CONV ATMOS MAJERR CONERR	2
INPUT4 CHECK CONV ATMOS MAJERR CONERR	3
CHECK CONV ATMOS MAJERR CONERR	*
CØNV ATMØS MAJERR CØNERR	CHECK MACH REGIME LIMITS, CHECK FOR MISSING NAMELISTS
ATMØS MAJERR CØNERR NML IST	
MAJERR CØNERR NML IST	
CONERR	
INM IST	CHECK USER INPUTS FOR SYNTAX ERRORS
TESTØR	~

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM; SUBROUTINE NAME	OVERLAY DESCRIPTION
	VNAME	
	LVA: UE	
	RVALUE	
	CCARD	
	NMTEST	
70	M02602	CALCULATE CASE GEOMETRIC AND SYNTHESIS DATA
	WTGEØM	
	ANGLES	
	ZERANG	
	SETUPI	
	INFTGM	
	SYNDIM	
	ARCLSS	
03	M03003	CALCULATE WING DRAG DATA
	CDRAG	
	F1653A	
8	M04804	CALCULATE SUBSONIC ASYMMETRIC BODY AERODYNAMICS
	Врорт	
	TRAPZ	
	Eqspce	
,	GETMAX	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY PROGRAW/SUBROUTINE NAME OVERLAY DESCRIPTION 65 MOSGOS CALCULATE HORIZONTAL TAIL DRAG DATA CDRAG FIGS3A CALCULATE SUBSONIC AXISYMMETRIC BODY AERODYNAMICS 06 MOGDOG CALCULATE SUBSONIC AXISYMMETRIC BODY AERODYNAMICS EQSPCE EQSPCE CALCULATE SUBSONIC WING-BODY AERODYNAMICS 07,1 WBAERA CALCULATE WING-BODY AERODYNAMICS 07,1 WBAERA CALCULATE WING-BODY CD, C, C, M, C, A ALI TRAPZ CALCULATE WING-BODY CD, C, C, M, C, N, C, A WBDRAG WBLIFT WBCH WBCH WBCH			
EÇSPC1 MOSØ05 CDRAG F1G53A MO6Ø06 BØDVRT EQSPC1 EQSPC1 GETMAX TRAP Z BØDVJM MO7Ø07 WBAERØ BØDØWG ALI TRAP Z WBDRAG WBCM WBCM WBCM	OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
MOSØOS CDRAG FIGS3A MOSØO6 BØDYRT EQSPCE EQSPC1 GETMAX TRAP Z BØDYJM MOZØO7 WBAERØ BØDØWG ALI TRAP Z WBLIFT WBCM WBCM		EGSPC1	
EURAG FIG53A MO6006 BØDYRT EQSPCE EQSPCI GETWAX TRAP Z BØDYJM MO7007 WBAER0 BDDWG ALI TRAP Z WBDRAG WBCM WBCM WBCM	90	MO5/405	CALCULATE HORIZONTAL TAIL DRAG DATA
FIG53A MO6@O6 B@DVRT EQSPCE EQSPC1 GETMAX TRAPZ B@DVJM MO7@O7 WBAER@ B@DØWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCM		CDRAG	
MOGDOG BROYRT EQSPCI GETWAX TRAPZ BRODYJM MO7BO7 WBAERB BRODWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCM		F1G53A	
BBDYRT EQSPCE EQSPC1 GETMAX TRAPZ BBDYJM MO7BO7 WBAERB BDDWIG ALI TRAPZ WBDRAG WBLIFT WBCM WBCM	8	MO6B06	CALCULATE SUBSONIC AXISYMMETRIC BODY AERODYNAMICS
EQSPCE EQSPC1 GETMAX TRAPZ BBDYJM MO7BO7 WBAERB BBDBWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCMO		BØDYRT	
EQSPCI GETMAX TRAPZ BBDYJM MO7BO7 WBAERB BDDWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCM		EQSPCE	
GETMAX TRAPZ BBDYJM MO7BO7 WBAERB BBDBWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCM TABLE		EqsPc1	
TRAPZ BDDYJM MO7BO7 WBAERB BDDWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCMO		GETMAX	
BBDYJM MOZBO7 WBAERB BBDBWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCM TABLEC		TRAPZ	
MOZBOZ WBAERB BØDØWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCM		ВФОУЈМ	
WBAERØ BØDØWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCM	07	M07@07	CALCULATE SUBSONIC WING-BODY AERODYNAMICS
BBDBWG ALI TRAPZ WBDRAG WBLIFT WBCM WBCMO	07.1	WBAERØ	CALCULATE WING-BODY C., C., C., C.,
TRAPZ WBDRAG WBLIFT WBCM WBCM WBCMO		Врормс	
TRAPZ WBDRAG WBLIFT WBCM WBCMO		ALI	
WBDRAG WBLIFT WBCM WBCMO		TRAPZ	
WBLIFT WBCM WBCMO		WBDRAG	
WBCMO		WBLIFT	
WBCMO		WBCM	
CEIGNA		МВСМО	
IABLEU		TABLEC	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
07, 2	MBCD	CALCULATE WING-BODY C
	MBCDL	
	TABLES	
	TBSUB	
,	TBTRN	
	TBSUP	
80	M08Ø10	CALCULATE SUBSONIC VERTICAL TAIL DRAG DATA
	VTDRAG	
65	MO9Ø11 VFDRAG	CALCULATE SUBSONIC WING FLOW FIELD AT HORIZONTAL TAIL
	DYPRLS	
	DWASH	
٠.	TRAPZ	
2	MIOBIZ	CALCULATE SUBSONIC WING-BODY-TAIL AERODYNAMIGS
	Врофис	
	ALI	
	WGEDTL	
	WBTAIL	
=	HIBIS	CALCULATE GROUND EFFECTS
,	DMPARY	
	GRDEFF	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
12	M12Ø14	PRINTS OUTPUTS
12, 1	QUTPUT	PRINT CONVENTIONAL OUTPUTS
	HEADR	
	PRCSID	
	INTERM	
	SWRITE .	
12, 2	AUXØUT	PRINT AUXILIARY AND PARTIAL OUTPUTS
	PRCSID	
	SWRITE	
	AXPRNT	
•	ARCCOS	
	PRNSEC	
12, 3	WPLOT	WRITE PLOT DATA TO UNIT 13
13	M13Ø15	CALCULATE PROPELLER POWER EFFECTS
	PRPWEF	
	ANGLES	
	ZERANG	
14	M14Ø16	CALCULATE SUBSONIC LOW ASPECT RATIO WING AND WING-BODY
	LØARWB	AERODYNAMICS

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

15 MISDIT CALCALATE SUBSONIC WING LIFT CHARACTERISTICS			
M15Ø17 CALCAD WTLIFT LIFTCF CLMXBS ANGLES M16Ø20 CALCAO WTLIFT LIFTCF CLMXBS ANGLES M17Ø21 SUBLAT TLIN4X M18Ø22 WTGEØM ANGLES ZERANG	OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
CALCAD WTLIFT LIFTCF CLMXBS ANGLES ANGLES WTLIFT LIFTCF CLMXBS ANGLES ANGLES ANGLES ANGLES WTGEØM ANGLES ZERANG	15	M15017	CALCULATE SUBSONIC WING LIFT CHARACTERISTICS
WTLIFT LIFTCF CLMXBS ANGLES M16@20 CALCAO WTLIFT LIFTCF CLMXBS ANGLES M17@21 SUBLAT TLIN4X M18@22 WTGEØM ANGLES ZERANG		CALCAD	
LIFTCF CLMXBS ANGLES ANGLES WTLIFT LIFTCF CLMXBS ANGLES ANGLES WTGEØM ANGLES ZERANG		WTLIFT	
CLMXBS ANGLES M16Ø20 CALCAO WTLIFT LIFTCF CLMXBS ANGLES M17Ø21 SUBLAT TLIN4X M18Ø22 WTGEØM ANGLES ZERANG		LIFTCF	
ANGLES M16Ø20 CALCAO WTLIFT LIFTCF CLMXBS ANGLES M17Ø21 SUBLAT TLIN4X M18Ø22 WTGEØM ANGLES ZERANG		CLMXBS	
M16ø20 CALCAO WTL IFT LIFTCF CLMXBS ANGLES ANGLES TLIN4X M18ø22 WTGEØM ANGLES ZERANG		ANGLES	
CALCAO WTL IFT LIFTCF CLMXBS ANGLES M17g21 SUBLAT TLIN4X M18g22 WTGEØM ANGLES ZERANG	91	M16020	CALCULATE SUBSONIC HORIZONTAL TAIL LIFT CHARACTERISTICS
WTLIFT LIFTCF CLMXBS ANGLES ANGLES TLIN4X M18922 WTGEØM ANGLES ZERANG		CALCAO	
LIFTCF CLMXBS ANGLES M17021 SUBLAT TLIN4X M18022 WTGEOM ANGLES ZERANG	,	WTLIFT	
CLMXBS ANGLES M17p21 SUBLAT TLIN4X M18p22 WTGEPM ANGLES ZERANG		LIFTCF	
ANGLES M17021 SUBLAT TLIN4X M18022 WTGEOM ANGLES ZERANG		CLMXBS	
M17Ø21 SUBLAT TLIN4X M18Ø22 WTGEØM ANGLES ZERANG		ANGLES	
SUBLAT TLIN4X M18Ø22 WTGEØM ANGLES ZERANG	17	MIZBZI	CALCULATE SUBSONIC LATERAL STABILITY DERIVATIVES
TLIN4X M18Ø22 WTGEØM ANGLES ZERANG	,	SUBLAT	
M18Ø22 WTGEØM ANGLES ZERANG		TLIN4X	
WTGEØM ANGLES ZERANG	18	M18/822	CALCULATE SUPERSONIC WING DRAG DATA
ANGLES		WTGEØM	
ZERANG		ANGLES	
		ZERANG	,

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

	ŀ	
OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
·	SETUP1	
	SUPDRG	
19	M19Ø23	CALCULATE SUPERSONIC BODY AFRODYNAMICS
	SUPBØD	
	TRAPZ	
20	M20924	CALCULATE SUPERSONIC WING_BODY AFRODYNAMICS AND VEDITCAL
	SUPWB	TAIL CO.
	ALI	
	SUPHB	
	VRTCDØ	
,	VFCDØ	
	SUPCMO	
,	МВСМО	
	TABLEC	
21		CALCULATE WING SUPERSONIC FLOW FIELD AT HORIZONTAL TATE
	SDWASH	
	INFTGM	
T		

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

ے	OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
L		Suns	
		SDWA	
	, .	SDWB	
		SDMC	
		OMOS	
		SDME	
		DPRESR	
<u> </u>		F1G68	
• .		MACH2	
		ARCSIN	
		ARCCØS	
	22	M22926	CALCULATE SUPERSONIC HORIZONTAL TAIL AERODYNAMICS
		SUPLTG	
	23	M23Ø27	CALCULATE SUPERSONIC LATERAL STABII 174 DERIVATIVES
		SUPLAT	
		TRAPZ	
		SUPLAH	
		MASRAT	
		SUPLAV	
	,	SUPLAF	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY DESCRIPTION	CALCULATE TRANSONIC WING AERODYNAMICS AND BODY STABILITY DATA	CALCULATE WING CLa. CLMAX. aclas, CDo; BODY CLa. Cma. CD	YV				CALCULATE HORIZONTAL TAIL CLa. CLMAX. "CLMAX" CDO					CALCULATE WING-BODY, H.TBODY CD						CALCULATE TRANSONIC WING AND WING-BODY Cm2	5
PROGRAM/SUBROUTINE NAME	M24β30	TRANWB	TRSØNI	CLMXB1	TRANF	TRANWG	TRANHB	TRSØNJ	CLMXB1	TRANF	TRNHT	TRANCD	WBCDL	TABLES	TBSUB	TBTRN	TBSUP	M25Ø31	TRAHAC
OVERLAY	24	24, 1		,			24, 2					24, 3			,			25	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
25, 1	TRANCM	CALCULATE WING, WING-BODY C _m
	TLIN4X WBCM1	
	WBTRAN	
25, 2	TRHTCM TLIN4X	CALCULATE H.T., H.TBODY Cma
	WBCM1	
25,3	HBTRAN TRACMO	
	WBCM0 TABLEC	
56	M26932	CALCULATE HYPERSONIC BODY AERODYNAMICS
	TRAPZ	
27	M27ø33 Suplng	CALCULATE SUPERSONIC WING STABILITY DATA
	M28Ø34 Supwbt Bødøwg Ali	CALCULATE SUPERSONIC WING-BODY-TAIL AERODYNAMICS

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	OVERLAY PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
29	M29935	CALCULATE LATERAL STABILITY GEOMETRY DATA
	TRAFZ	
	GETMAX	
30	M30β36	CALCULATE JET POWER EFFECTS
	JETPWE	
	TLINVS	
	FG6115	
31	M31g37	CALCULATE SURSONIC WING C, AND BODY AXIS CN. CA
	CMALPH	
	CACALC	
32	M32940	CALCULATE SUPERSONIC VERTICAL TAIL LIFT DATA
	VTLIFT	
	VFLIFT	
33	M33B41	CALCULATE SUBSONIC HORIZONTAL TAIL C_
	CMALPH	
	CACALC	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

	AME OVERLAY DESCRIPTION	DEFINE NUMBER OF CARDS IN EACH EXPERIMENTAL DATA NAMELIST			CALCULATE TRANSONIC WING-BODY-TAIL $c_{L_{lpha}}$ AND SECOND LEVEL METHODS	SET-UP FOR SECOND LEVEL METHODS		CALCULATE TRANSOUIC WING-BODY-TAIL DATA		COMPUTE SECOND LEVEL DATA									CALCULATE FLAP LIFT AND HINGE MOMENT DATA			,
•	PROGRAM/SUBROUTINE NAME	M34042	XPERNM	TEST	M35043	SETUP2	CLBCLC	WBTRA	TRAWBT	SECLEV	MINGCL	MBCLB	Вирома	ALI	WBTCDØ	COWBT	CLWBT	CNCA	M36944	LIFTEP	HINGE	CTARS
	OVERLAY	34			35	35, 1		35, 2		35, 3								,	36			

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
37	M37045	CALCULATE FLAP PITCHING MOMENTS
	SIMUL4	
	TRAPZ	
	FLAPCM	
	GDELTA	
	AGENR	
	DET4	
38	M38Ø46	CALCULATE SUBSONIC FLAP DRAG AND TRIM AERODYNAMICS
	TRIMR2	
	TRIMRI	
	DRAGFP	
33	M39947	PRINT HIGH LIFT AND CONTROL DATA
	gutpt2	
	PRCSID	
	SWRITE	
	FLTCL	
	DUMP2	
	DMPARY	
40	M40Ø50	CALCULATE TRANSONIC LATERAL CONTROL/FLAP AERODYNAMICS
	TRNYRL	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

41 M41951 CALCULATE SUPERSONIC HIGH LIFT AND CON MICS DFLCBN ARCCGS ARCCGS ARCCGS ARCCGS ARCCGS SSYM PTCP PTCP CALCULATE HYPERSONIC FLAP AERODYNAMICS FIG68 ARCSIN ARCCGS SIMUL2 PRCSID DWPARY CALCULATE HYPERSONIC FLAP DATA FOR FLO HYPRQP A2, 1 HYPRQP HYPRQP PRCSID DWPARY A2, 2 QUIPT4 PRINT HYPERSONIC FLAP DATA ALDLPR	OVERLAY DESCRIPTION
DFLCON ARCCOS ARCSIN SSHING SSSYM PTCP M42052 FIG68 ARCSIN ARCSIN ARCCOS SIMUL2 PRCSID DMPARY 1 HYPROP 2 QUTPT4 ALDLPR	CALCULATE SUPERSONIC HIGH LIFT AND CONTROL DEVICE AERODYNA-MICS
ARCCØS ARCSIN SSHING SSSYM PTCP M42Ø52 FIG68 ARCSIN ARCCØS SIMUL2 PRCSID DMPARY 1 HYPFLP HYPFLP ALDLPR	
ARCSIN SSHING SSSYM PTCP M42Ø52 FIG68 ARCSIN ARCSIN ARCSID DMPARY 1 HYPRØP LYPFLP HYPRØP 2 QUTPT4 ALDLPR	
SSHING SSSYM PTCP M42Ø52 FIG68 ARCSIN ARCSIN ARCCØS SIMUL2 PRCSID DMPARY 1 HYPR@P ALDLPR	
SSSYM PTCP M42Ø52 FIG68 ARCSIN ARCCØS SIMUL2 PRCSID DMPARY 1 HYPFLP HYPFLP ALDLPR	
PTCP M42Ø52 FIG68 ARCSIN ARCSIN ARCGØS SIMUL2 PRCSID DMPARY 1 HYPRØP 2 QUTPT4 ALDLPR	
M42952 FIG68 ARCSIN ARCCØS SIMUL2 PRCSID DMPARY 1 HYPFLP HYPFLP ALDLPR	
FIG68 ARCSIN ARCCØS SIMUL2 PRCSID DMPARY I HYPFLP HYPRØP 2 QUTPT4 ALDLPR	YPERSONIC FLAP AERODYNAMICS
ARCSIN ARCCØS SIMUL2 PRCSID DMPARY 1 HYPFLP HYPRØP 2 QUTPT4 ALDLPR	
ARCCØS SIMUL2 PRCSID DMPARY 1 HYPFLP HYPRØP 2 QUTPT4 ALDLPR	
SIMUL2 PRCSID DMPARY 1 HYPFLP HYPRØP 2 QUTPT4 ALDLPR	
PRCSID DMPARY 1 HYPFLP HYPR@P 2 QUTPT4 ALDLPR	
DMPARY 1 HYPELP HYPEBP 2 GUTPT4 ALDLPR	
1 HYPRØP HYPRØP 2 gutpt4 Aldlpr	
HYPRØP 2 QUTPT4 ALDLPR	CALCULATE HYPERSONIC FLAP DATA FOR FLOW PROPERTIES
2 QUTPT4 ALDLPR	
ALDLPR	SONIC FLAP DATA

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION	
43	M43953	CALCULATE DYNAMIC DERIVATIVES-SUBSONIC, TRANSONIC, SUPER-SONIC	SUPER-
	TLIP3X		
	TLIP2X		
	TLIPIX		
	YUP		
	CMALPB		,
	SUBPAW		
	SUBPAH		
43, 1	SUPPAW		
43, 2	SUPCMQ		
43, 3	SUPPAH	CALCULATE H.T. DYNAMIC DERIVATIONS	
43, 4	SUPHMQ	CALCULATE H.T. C _{m,} DERIVATIONS	
\$	M44954	CALCULATE SUPERSONIC WING "A" DERIVATIVES	
-	ARCSIN		
	TLIP3X		
,	TLIP2X		•
	TLIPIX		
•	YUP		,
	SUPCLD		,
	SIPHLD		

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
	CALCA	
45	M45Ø55	CALCULATE WING AND WING-BODY YAW AND ROLL DERIVATIVES
	TLIP3X	
1	TLIP2X	
	TLIPIX	
	YUP	
,	INTEP3	
45, 1	MINGYW	
	SUBRYW	
	SUPRYW	
45, 2	HØRTYW	
	SUBHYW	
	SUPHYW	
46	M46956	CALCULATE WING-BODY-TAIL DYNAMIC DERIVATIVES
,	TRAPZ	
	PRCSID	
	DMPARY	
	CLRDER	

TABLE ? DIGITAL DATCOM OVERLAY DESCRIPTION

	OVERLAY	PROGRAM/SUBROUTINE NAME	JVERLAY DESCRIPTION
	· -	DYNBØD	
	٠.	DNPAWB	
	,	DNPWBT	
		SUBWBT	
	47	M47057	CALCULATE HYPERSONIC TRANSVERSE JET CONTROL AERODYNAMICS
		TRANJT	
		SIMUL2	
		TRAPZ	,
		INTER3	
		GUTTRJ	
. •	. ,	DMPARY	
		PRCSID	
	43	M48960	LOAD EXPERIMENTAL DATA NAMELISTS FOR THE CURRENT MACH
		EXPUAT	NOTOEN ON TALE TO
	49	M49Ø61	DUMP ARRAYS USED IN CASE EXECUTION
		DUMPARY	
		DUMPRT	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
50	M50362	CALCULATE AIRFOIL SECTION GEOMETRIC AND AERODYNAMIC DATA
3	ZINI	
	SECI	
	SECØ	
	CSLØFF	
	XYCØRU	
	DELY	
50, 1	AIRFOL	
	ARCCØS	
	DECODE	
	CBBRD4	
	CØRD4M	
	CØØRD5	
	CORDSM	
	CABRDI	
******	COORDS	
	CØRDSP	
	SLEQ	
	,	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
50, 2	THEORY	
	IDEAL	
	ASMINT	
	SLØPE	
50, 3	MAXCL	
51	M51g63	INITIALIZE COMPUTATIONAL ARRAYS
,	INITZ1	
	INITZ2	
52	M52Ø64	CALCULATE SUBSONIC LATERAL CONTROL/FLAP AERODYNAMICS
	TLINAX	
	LATFLP	
23	M53Ø65	CALCULATE SUPERSONIC TRAILING EDGE FLAP ROLL AND YAW AERODYNAMICS
	ARCCØS DFLCØN SPRYAU	

TABLE 7 DIGITAL DATCOM OVERLAY JESCRIPTION

OVERLAY	PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
54	M54066	CALCULATE SUPERSONIC WING C _{M&}
	TLIP3X	
1	TLIP2X	
	TLIPIX	
	YUP	
	SUPCMD	
	SUPHMD	
55	M55Ø67	CALCULATE JET FLAP AERODYNAMICS
,	JETFP	
26	M55Ø70	CALCULATE MACH SHADOWING DATA
	VTAREA	
,	PTINT	
	AREA1	
	BDAREA	
	PTINT2	
57	AREA2 M57071	DIIMP CASE EXTRAPOLATION MESSAGES
,	CLEARA	
,	DECFIG	
	SØRTER	
	READXM	

TABLE 7 DIGITAL DATCOM OVERLAY DESCRIPTION

'	OVERLAY PROGRAM/SUBROUTINE NAME	OVERLAY DESCRIPTION
,	STØRXM WRITXM	

TABLE 8 PROGRAM COMMON DECKS

Deck Name	Overlays Referenced
ALI	7, 10, 20, 28, 35
ANGLES	2, 13, 15, 16, 18
ARCCØS	12, 21, 41, 42, 50, 53
ARCSIN	21, 41, 42, 44
BØDØWG	7, 10, 20, 28, 35
CALCALC	31, 33
CALCAO	15, 16
CDRAG	3, 5
CLMXBS	. 15, 16
CLMXB1	24 (Both Secondary Overlays)
CMALPH	31, 33
DFLC¢N	41, 53
DMPARY	11, 39, 42, 46, 47, 49
EQSPCE	4, 6
EOSPC1	4, 6
FIG53A	3, 5
FIG68	21, 42
GETMAX ,	4, 6, 29
INFTGM	2, 21
LIFTCF	15, 16
PRSCID	12, 39, 42, 46, 47
SETUPl	2, 18
SIMUL2	38, 42, 47
SWRITE	12, 39
TABLEC	7, 20, 25
TABLES	7, 24
TBSUB	7, 24
TBSUP	7, 24
TBTRN	7, 24
TEST	1, 34
TLIN4X	17, 25, 26, 52
TLIPLX	43, 44, 45, 54
TLIP2X	43, 44, 45, 54
TLIP3X	43, 44, 45, 54
TRANF	24 (Both Secondary Overlays)
TRAPZ	4, 6, 9, 19, 23, 26, 29, 37, 46, 47
WBCDL	7, 24
WBCMO	7, 20, 25
WBCM1	25 (Both Secondary Overlays)
WTGEØM	2, 18
WTLIFT YUP	15, 16
ZERANG	43, 44, 45, 54
TO WILL	1, 2, 13, 18

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

37 50 42 7,10,20,28,35 2,13,15,16,18 2 12,21,41,42,44 56 56 56 50 50 12 12 12 12 12 12 12 66 66 66 66 66 66 66 7,10,20,28,35 6	ROUT I NE I LAME	OVERLAYS Referenced	DESCRIPTION
50 42 7,10,20,28,35 2,13,15,16,18 2 12,21,41,42,50 56 56 56 50 12 12 12 12 12 12 12 12 12 12 12 12 12	AGENR	37	GENERATES COEFFICIENTS FOR G/8 CALCULATIONS BY GDELTA
42 7,10,20,28,35 2,13,15,16,18 2 12,21,41,42,50 56 56 56 50 11 12 12 12 12 12 12 14 4 7,10,20,28,35 6 6	AIRFOL	20	CONTROLLING PROGRAM FOR CALCULATING AIRFOIL GEOMETRY FROM NACA DESIGNATION
7,10,20,28,35 2,13,15,16,18 2 12,21,41,42,50 56 56 56 50 12 12 12 12 12 12 12 12 12 12 12 12 12	ALDLPR	42	PRINTS BLANKS WHEN NO COMPUTED VALUES ARE PRESENT
2,13,15,16,18 2 12,21,41,42,50 56 56 56 50 11 12 12 12 12 14 4 4 7,10,20,28,35 6 6 31, 33	A. I	7,10,20,28,35	COMPUTES VORTEX INTERFERENCE FACTORS
2 12,21,41,42,50 53 21,41,42,44 56 56 50 12 12 12 12 12 12 14 7,10,20,28,35 6	ANGLES	2,13,15,16,18	COMPUTES TRIG AND INVERSE TRIG FUNCTIONS OF AN ARGUMENT
12,21,41,42,50 53 21,41,42,44 56 50 11 12 12 12 12 56 56 56 57,10,20,28,35 6	ARCLSS	2	CLASSIFIES WING/TAIL PLANFORM AS HIGH OR LOW ASPECT RATIO
21,41,42,44 56 56 50 11 12 12 56 DATA 0 4 7,10,20,28,35 6 6	ARCCØS	,21,41 53	COMPUTES ARC-COSINE OF AN ARGUMENT JSING STANDARD FORTRAN
56 50 11 12 12 12 56 DATA 0 7,10,20,28,35 6	ARCSIN	21,41,42,44	COMPUTES ARC-SINE OF AN ARGUMENT USING STANDARD FORTRAN
56 50 1 12 12 56 56 7,10,20,28,35 6	AREAL	99	CALCULATES INCREMENTAL AREAS OF VERTICAL TAIL SHADOWED BY MACH LINE
50 11 12 12 56 56 DATA 0 7,10,20,28,35 6 6	AREA2	99	CALCULATES INCREMENTAL AREA OF BODY SHADOWED BY MACH LINE
12 12 12 56 DATA 0 7,10,20,28,35 6	ASMINT	20	NON-LINEAR INTERPOLATION ROUTINE FOR AIRFOIL SECTION MODULE
12 12 56 DATA 0 4 7,10,20,28,35 6 6	ATMOS	-	COMPUTES PROPERTIES OF 1962 U.S. STANDARD ATMOSPHERE
12 56 DATA 0 4 7,10,20,28,35 6 6	AUXOUT	12	PRINT AUXILIARY OUTPUTS FOR A CASE
56 DATA 0 4 7,10,20,28,35 6 1 6 31,33	AXPRNT	12	PRINT AUXILIARY OUTPUTS FOR WING/TAIL FLANFORMS
DATA 0 4 7,10,20,28,35 6 1 6 31,33	BDAREA	. 56	EXECUTIVE FOR BODY PARTS SHADOWED BY MACH LINE SHADOWING CALCULATIONS
4 7,10,20,28,35 6 6 1 6 31, 33	BLOCK DATA		SETS PROGRAM CONSTANTS, AND VARIABLE NAMES FOR CONERR
7,10,20,28,35 6 1 6 31,33	BOOGPT	4	COMPUTES ASYMMETRICAL BODY AERODYNAMICS
6 1 6 31, 33	BADAMG	7,10,20,28,35	COMPUTES BODY VORTEX EFFECTS ON WING
31, 33	BØDYRT	9	COMPUTES AXISYMMETRIC BODY CL. CD. Cm
31, 33	BODYJM	9	COMPUTE BODY AERODYNAMICS USING JOERGENSEN'S METHOD
	CACALC	31, 33	COMPUTES WING CN. CA
CALCA 44 COMPUTES WING ACCELERATION PARAMETERS (&)	CALCA	44	COMPUTES WING ACCELERATION PARAMETERS (&)

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

IAME CALCAO CCARD CDRAG CDRAG CLECK CL	OVERLATS OVERLATS OVERLATS 15, 16 13, 5 35 35 57 00 15, 16 35 31, 33 43 50 50	DESCRIPTION COMPUTES LIFTING SURFACE α_{OL} CHECK CONTROL CARD FOR LEGAL INPUT COMPUTES LIFTING SURFACE C_D CALCULATES TRANSONIC WING-BODY-TAIL C_D CALCULATES TRANSONIC WING-BODY-TAIL C_D CALCULATES TRANSONIC WING AND WING-BODY C_{kB} AND C_{kB}/C_L CLEAR STORAGE ARRAYS FOR EXTRAPOLATION MESSAGES COMPUTES LIFTING SURFACE C_{LMXX} COMPUTES LIFTING SURFACE C_{LMXX} COMPUTES LIFTING SURFACE C_{LMXX} COMPUTES LIFTING SURFACE C_{LMX} CALCULATES C_{LMX} COMPUTES LIFTING SURFACE C_{LMX} CALCULATES NACA 1-DIGIT AIRFOIL COORDINATES CALCULATES NACA 5-SEPIES AIRFOIL COORDINATES
	20	CALCULATES NACA 4-DIGIT MODIFIED AIRFOIL COORDINATES

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUTINE NAME	OVERLAYS REFERENCED	DESCRIPTION
CORDSM	20	CALCULATES NACA 5-DIGIT MODIFIED AIRFOIL COORDINATES
CONV	,	SET-UP FOR UNITS SPECIFICATION
CORDSP	20	CALCULATE GEOMETRY DATA FOR SUPERSONIC AIRFOILS
CSLØPE	20	COMPUTE GEOMETRIC SLOPE FOR SUPERSONIC AIRFOILS
CTABS	36	CONTROL TABS METHOD SUBROUTINE
DATCOM	0	TOP LEVEL EXECUTIVE PROGRAM
DECFIG	25	CONVERT FIGURE NUMBERS IN EXTRAPOLATION MESSAGES
DET4	37	EVALUATES A 4x4 DETERMINATE
DECODE	20	DECODES USER INPUT NACA DESIGNATION
DELY	20	CALCULATES AIRFOIL AY
DFLCØN	41,53	CALCULATES SUPERSONIC LIFT, ROLL MOMENT AND HINGE MOMENT DERIVATIVES
DMPARY	11,39,42,46,47	DUMP SPECIFIED ARRAY IN READABLE FORMAT
	49	
DNPAWB	46	CALCULATES WING-BODY "q" AND "a" DERIVATIVES
DNPWBT	46	CALCULATES WING-BODY-TAIL "q" AND "a" DERIVATIVES
DPRESR	21	CALCULATES NON-VISCOUS DYNAMIC PRESSURE AT HORIZONTAL TAIL
DRAGFP	38	CALCULATES SUBSONIC FLAP INDUCED DRAG
DUMPRT	49	DUMPS ARRAYS USING DMPARY
DUMP2	39	CONTROL FOR PRINTING DUMPS OF INTERMEDIATE RESULTS
,		

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

,	i	
ROUTINE NAME	OVERLAYS REFERENCED	DESCRIPTION
DWASH	6	CALCULATES SUBSONIC DOWNWASH AT ANGLE-OF-ATTACK
DYNBØD	46	CALCULATES BODY DYNAMIC DERIVATIVES
DYPRLS	6	COMPUTES DYNAMIC PRESSURE AT HORIZONTAL TAIL
EQSPCE	4, 6	TRANSFORMS 4-DIMENSIONAL ARRAY SO THAT THE 3 INDEPENDENT ARRAYS ARE EQUALLY SPACED
EOSPC1	4, 6	TRANSFORMS 2-DIMENSIONAL ARRAY LIKE EQSPCE
EXPOAT	48	LOADS THE EXPERIMENTAL DATA NAMELIST FOR THE CURRENT MACH NUMBER
EXSUBT	0	READS EXPERIMENTAL DATA INPUTS
F1626	0	CALCULATES FIG. 4.1.5.1-26; TURBULENT SKIN FRICTION COEFFICIENT
F1653A	3, 5	CALCULATES FIG. 4.1.5.2-53A; SUBSONIC LEADING EDGE SUCTION
F1668	21, 42	CALCULATES OBLIQUE SHOCK WAVE ANGLE (TR-1135, EQN. 150)
FG6115	30	CALCULATES FIG. 4.6.1-15; DOWNWASH INCREMENT DUE TO A SUBSONIC JET IN A SUBSONIC STREAM
FLAPCM	37	COMPUTES WING C _m DUE TO FLAPS
FLTCL	39	PRINT DATA FOR TRIM CONDITIONS
GDELTA	37	CALCULATES FLAP SPANWISE LOADING COEFFICIENT, G/8
GETHAX	4, 6, 29	FOR Y=f(X), FIND YMAX AND XYMAX
GL 99K	0	TABLE LOOKUP LOGIC FOR TLIN_A ROUTINES
GROEFF	=	COMPUTES GROUND EFFECTS ON AERODYNAMICS
HBTRAN	25	CALCULATES $(c_{L_{\alpha}})_{B(H)}$ AND $(x_{A_{c}}/c_{r})$ AT MACH=1.4 FOR TRANSONIC ANALYSIS
HEADR	12	WRITE HEADINGS FOR CASE OUTPUTS

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUTINE	OVERLAYS REFERENCED	DESCRIPTION
HINGE	36	CALCULATES FLAP HINGE MOMENT DATA
HORTYW	45	EXECUTIVE FOR HORIZONTAL-TAIL, HORIZONTAL-TAIL-BODY YAW DERIVATIVE CALCULATIONS
HYPBØD	97	COMPUTES HYPERSONIC CD. C., C.,
HYPFLP	42	COMPUTES HYPERSONIC FLAP CONTROL AERODYNAMICS
HYPRØP	42	CALCULATES EQUILIBRIUM REAL GAS FLOW PROPERTIES
IDEAL	20	CALCULATES AIRFOIL SECTION IDEAL AERODYNAMIC COEFFICIENTS
INFTGM	2, 21	CALCULATES DOWNWASH SYNTHESIZING DIMENSIONS
INITZE		PROGRAM INITIALIZING ROUTINE
INITZI	21	INITIALIZE ARRAYS FOR PROGRAM USE
-INITZ2	51	INITIALIZE ARRAYS FOR HIGH-LIFT AND CONTROL
ZINI	20	INITIALIZE ARRAYS FOR AIRFOIL SECTION MODULE
INPUT		READS INPUT NAMELISTS
INPUTL	_	READS NAMELIST "LARWB" FOR INPUT
INPUT2	_	READS HORIZONTAL TAIL NAMELISTS FOR INPUT
INPUT3	_	READS VERTICAL TAIL NAMELISTS FOR INPUT
INPUT4		READS VENTRAL FIN NAMELISTS FOR INPUT
INTEP3	45	TABEL LOOKUP ROUTINE FOR A SPECIFIC TABLE
INTERM	12	INTERMEDIATE LOGIC FOR OUTPUT
INTERX	0	LINEAR TABLE LOOKUP USING TLIN X ROUTINES, 2 TO 5 DIMENSIONS
INTER3	47	TABLE LOOKUP ROUTINE FOR A SPECIFIC TABLE

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

•		
ROUTINE NAME	OVERLAYS REFERENCED	DESCRIPTION
INTERM	12	INTERMEDIATE LOGIC FOR OUTPUT
INTERX	0	LINEAR TABLE LOOKUP USING TLIN_X ROUTINES, 2 TO 5 DIMENSIONS
INTER3	47	TABLE LOOKUP ROUTINE FOR A SPECIFIC TABLE
JETFP	55	COMPUTES AERODYNAMIC INCREMENTS DUE TO JET FLAPS
JETPWE	30	COMPUTES EFFECTS OF JET POWER ON AERODYNAMICS
LATFLP	52	SUBSONIC LATERAL CONTROL/FLAP EFFECTIVENESS CALCULATIONS
LIFTCF	15, 16	COMPUTES LIFTING SURFACE CL
LIFTFP	36	COMPUTES INCREMENTAL WING LIFT DUE TO FLAPS
LOARWB	14	COMPUTES LOW ASPECT-RATIO WING-BODY AERODYNAMICS
LVALUE	_	TEST FOR LEGAL LOGICAL CONSTANTS AND MULTIPLICATION FACTOR FOR INPUT
MACH2	21	CALCULATE PRANDTL-MEYER EXPANSION ANGLE
MAIN00	0	DATCOM PROGRAM TOP-LEVEL EXECUTIVE
MAINO	0	PROGRAM CONTROL FOR SUBSONIC AERODYNAMICS
MAIN02	0	PROGRAM CONTROL FOR SUBSONIC GROUND EFFECTS
MAIN03	0	PROGRAM CONTROL FOR TRANSONIC AERODYNAMICS
MAIN04	0	PROGRAM CONTROL FOR SUPERSONIC AERODYNAMICS
MAINOS		PROGRAM CONTROL FOR SUBSGNIC HIGH LIFT AND CONTROL ANALYSIS
MAIN06	0	PROGRAM CONTROL FOR TRANSONIC HIGH LIFT AND CONTROL ANALYSIS
MAIN07	0	PROGRAM CONTROL FOR SUPERSONIC HIGH LIFT AND CONTROL ANALYSIS
MAJERR		CHECKS FOR MISSING ESSENTIAL NAMELISTS

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUT INE ILAME	OVERLAYS REFERENCED	DESCRIPTION
22Ø31M	18	EXECUTIVE FOR OVERLAY 18, SUPERSONIC WING DRAG
M19Ø23	19	EXECUTIVE FOR OVERLAY 19, SUPERSONIC BODY AERODYNAMICS
M20924	50	EXECUTIVE FOR OVERLAY 20, SUPERSONIC WING-BODY AERODYNAMICS
M21025	21	EXECUTIVE FOR OVERLAY 21, SUPERSONIC WING FLOW-FIELDS
M22926	22	EXECUTIVE FOR OVERLAY 22, SUPERSONIC HORIZONTAL-TAIL AERODYNAMICS
M23Ø27	23	EXECUTIVE FOR OVERLAY 23, SUPERSONIC LATERAL STABILITY
M24ø30	24	EXECUTIVE FOR OVERLAY 24, TRANSONIC WING AERODYNAMICS AND BODY STABILITY DATA
M25031	25	EXECUTIVE FOR OVERLAY 25, TRANSONIC WING/WING-BODY Cm_
M26032	26	EXECUTIVE FOR OVERLAY 26, HYPERSONIC BODY AERODYNAMICS
M27933	27 -	EXECUTIVE FOR OVERLAY 27, SUPERSONIC WING STABILITY
H28Ø34	28	EXECUTIVE FOR OVERLAY 28, SUPERSONIC WING-BODY-TAIL AERODYNAMICS
M29Ø35	53	EXECUTIVE FOR OVERLAY 29, LATERAL STABILITY GEOMETRY DATA
M30936	30	EXECUTIVE FOR OVERLAY 30, JET POWER EFFECTS
M31937	31	EXECUTIVE FOR OVERLAY 31, SUBSONIC WING Cm. BODY CA. CN
M32940	32	EXECUTIVE FOR OVERLAY 32, SUPERSONIC VERTICAL TAIL LIFT
M33941	33	EXECUTIVE FOR OVERLAY 33, SUBSONIC HORIZONTAL TAIL C _m
M34042	34	EXECUTIVE FOR OVERLAY 34, DEFINE EXPERIMENTAL DATA INPUT
M35043	35	EXECUTIVE FOR OVERLAY 35, TRANSONIC AERODYNAMICS
M36944	36	EXECUTIVE FOR OVERLAY 36, FLAP LIFT AND HINGE MOMENTS
M37045	37	EXECUTIVE FOR OVERLAY 37, FLAP PITCHING MOMENTS

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUT INE ILAME	OVERLAYS REFERENCED	DESCRIPTION
M38Ø46	38	EXECUTIVE FOR OVERLAY 38, SUBSONIC FLAP DRAG AND TRIM AERODYNAMICS
M39947	39	EXECUTIVE FOR OVERLAY 39, PRINT HIGH LIFT AND CONTROL DATA
H40950	40	EXECUTIVE FOR OVERLAY 40, TRANSONIC LATERAL CONTROL/FLAP AERODYNAMICS
H41Ø51	4	EXECUTIVE FOR OVERLAY 41, SUPERSONIC HIGH LIFT AND CONTROL AERODYNAMICS
H41052	42	EXECUTIVE FOR OVERLAY 42, HYPERSONIC FLAP AERODYNAMICS
M42Ø53	43	EXECUTIVE FOR OVERLAY 43, DYNAMIC DERIVATIVES
M43954	44	EXECUTIVE FOR OVERLAY 44, SUPERSONIC WING "A" DERIVATIVES
M45Ø55	45	EXECUTIVE FOR OVERLAY 45, WING AND WING-BODY YAW AND ROLL DERIVATIVES
M46956	46	EXECUTIVE FOR OVERLAY 46, WING-BODY-TAIL DYNAMIC DERIVATIVES
N47057	47	EXECUTIVE FOR OVERLAY 47, TRANSVERSE-JET AERODYNAMICS
H48960	48	EXECUTIVE FOR OVERLAY 48, LOAD EXPERIMENTAL DATA FOR MACH NUMBER
M49Ø61	49	EXECUTIVE FOR OVERLAY 49, DUMP ARRAYS
M50Ø62	20	EXECUTIVE FOR OVERLAY 50, AIRFOIL SECTION AERODYNAMICS
M51963	51	EXECUTIVE FOR OVERLAY 51, INITIALIZE ARRAYS
M52964	52	EXECUTIVE FOR OVERLAY 52, SUBSONIC LATERAL CONTROL/FLAP AERODYNAMICS
M53Ø65	53	EXECUTIVE FOR OVERLAY 53, SUPERSONIC TRAILING EDGE FLAP ROLL AND YAW AERODYNAMICS
M54Ø66	54	EXECUTIVE FOR OVERLAY 54, SUPERSONIC WING Cm.
M55967	55	EXECUTIVE FOR OVERLAY 55, JET FLAP AERODYNAMICS
M56Ø70	99	EXECUTIVE FOR OVERLAY 56, MACH SHADOWING DATA

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

,								,	IAIL				,	
THE DESCRIPTION		EXECUTIVE FOR OVERLAY 57, DUMP EXTRAPOLATION MESSAGES	CHECK NAMELIST NAME AS LEGAL INPUT	PRINTS HIGH-LIFT AND CONTROL OUTPUTS	PRINTS HYPERSONIC CONTROL EFFECTIVENESS OUTPUTS PRINTS TRANSVERSE JET CONTROL EFFECTIVENESS DUTPUTS	PRINTS "CASEIN" CARD PRINTS SECOND LEVEL METHOD DATA	CALCULATES PROPELLER POWER EFFECTS ON AERODYNAMICS	CALCULATES THE BOUNDARIES OF THE MACH LINF ON THE METERS	COMPUTES PARAMETERS FOR DUADRATIC EXTRACOL LINE ON THE BODY	LEADS EXTRAPOLATION MESSAGES FROM UNIT 12 TEST IF REAL VALUE IS 15000.	ROUTINE LOOK UP DATCOM FIGURE 4.7.1-76	COMPUTES BE/BA AND VISCOUS A/A AT THE MARKS	ROUTINE LOSK-UP DATCOM FIGURE 4.7.1-76 ROUTINE LOOK-UP DATCOM FIGURE A.7.1-76	ROUTINE LOOK-UP DATCOM FIGURE 4.7.1-76 ROUTINE LOOK-UP DATCOM FIGURE 4.7.1-76
	OVERLAYS REFEPENCED	57	12	39	70 00	12.44,46,47	41	56	5 8		ROU	W 03	ROUT	ROUT ROUT
	HAME	MS7Ø71 NML IST	MMTEST	BUTPT2 BUTPT4	BUTTRTJ		PTCP	PTINTI	QUAD	RVAL UE	SDWC 2	SDWASH 21	SDWC 21	SOWE 21

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUTINE NAME	OVERLAYS REFERENCED	DESCRIPTION
QUAD	0	COMPUTES PARAMETERS FOR QUADRATIC EXTRAPOLATION
RVALUE		TEST IF REAL VALUE IS LEGAL INPUT
SDWASH	21	COMPUTES acfac AND VISCOUS q/q AT THE HORIZONTAL TAIL
SECI	50	READ AIRFOIL SECTION INPUTS
SECLEV -	35	COMPUTES SECOND LEVEL METHOD MODULE DATA
SECØ	50	SET AIRFOIL SECTION MODULE OUTPUTS IN INPUT NAMELIST ARRAYS
SETUPI	2, 18	COMPUTES TRIG FUNCTIONS FOR LIFTING SURFACES
SETUP2	35	SETUP FOR TRANSONIC CONFIGURATION ANALYSIS
SIMUL2	38, 42, 47	SOLVES FOR WHERE TWO CURVES INTERSECT
SIMUL4	37	SOLVES 4 SIMULTANEOUS EQUATIONS USING DETERMINATES
SLEQ	50	SOLVES N SIMULTANEOUS EQUATIONS USING THE GAUSS-JORDAN METHOD
SLØPE	50	CALCULATES AIRFOIL SECTION $C_{\alpha, \alpha}$ C_{m_0} AND $x_{a, c}$
SØRTER	22	SORT EXTRAPOLATION MESSAGES BY FIGURE NUMBER
· SPRYAW	53	CALCULATES SUPERSONIC ROLL AND YAW CHARACTERISTICS OF PLAIN T.E. FLAPS, SPOILERS AND DIFFERENTIALLY DELETED STABILIZERS
SSHING	41	CALCULATES SUPERSONIC HINGE MOMENT DERIVATIVES
SSSYM	41	CALCULATES SUPERSONIC AC, AND AC, FOR HIGH-LIFT AND CONTROL DEVICES
STØRXM	57	STORE EXTRAPOLATION MESSAGE DATA
SUBHYW	45	CALCULATES SUBSONIC HORIZONTAL TAIL AND HORIZONTAL TAIL-BODY "p" AND "r" DERIVATIVES
SUBLAT		CALCULATES SUBSONIC AND TRANSONIC LATERAL STABILITY DERIVATIVES
SUBPAH	43	CALCULATES SUBSONIC AND TRANSONIC "q" AND "a" DERIVATIVES FOR H.T.
SUBPAW	43	CALCULATES SUBSONIC AND TRANSONIC "q" AND "a" DERIVATIVES FOR WINGS
SUBRYW	45	CALCULATES SUBSONIC WING AND WONG-BODY "p" AND "r" DERIVATIVES

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUT INE NAME	OVERLAYS Referenced	DESCRIPTION
SUBWBT	46	CALCULATES SUBSONIC WING-BODY-TAIL "p" AND "r" DERIVATIVES
SUPBØD	19	CALCULATES SUPERSONIC BODY C, CD. Cm. CL., AND CM.
SUPCLD	44	CALCULATES SUPERSONIC WING CL.
SUPCMD	54	CALCULATES SUPERSONIC WING Cm.
SUPCMO	20	CALCULATES SUPERSONIC CONFIGURATION C_
SUPCMQ	43	CALCULATES SUPERSONIC WING C _{m2} ^m o
SUPDRG	18	CALCULATES SUPERSONIC WING Cn
SUPHB	20	CALCULATES SUPERSONIC HORIZONTAL TAIL-BODY C, , C, C, AND C,
SUPHLD	43	CALCULATE CL FOR SUPERSONIC HORIZONTAL TAILS
SUPHMD	54	CALCULATE CMR FOR SUPERSONIC HORIZONTAL TAILS
SUPHMQ	43	CALCULATES SUPERSONIC H.T. Cmg
SUFHYW	45	CALCULATES SUPERSONIC HORIZONTAL TAIL AND HORIZONTAL-TAIL BODY "p" AND "r" DERIVATIVES
SUPLAF	23	CALCULATES SUPERSONIC VENTRAL FIN LATERAL STABILITY DERIVATIVES
SUPLAH	23	CALCULATES SUPERSONIC LATERAL STABILITY DERIVATIVES FOR HORIZONTAL TAILS
SUPLAT	23	CALCULATES SUPERSONIC LATERAL STABILITY DERIVATIVES FOR WINGS
SUPLAV	23	CALCULATES SUPERSONIC VERTICAL TAIL LATERAL STABILITY DERIVATIVES
SUPLNG	27	CALCULATES SUPERSONIC WING C1. CLa AND Cma
SUPLTG	22	CALCULATES SUPERSONIC HORIZONTAL TAIL C, CLa AND Cma
SUPPAH	43	CALCULATES SUPERSONIC H.T. CLA
SUPPAW	43	CALCULATES SUPERSONIC WING CL

TABLE 9 DICITAL DATCOM ROUTINE DESCRIPTION

SUPRYW 45 Cál-"Lates supersonic wing and wing-body "p" and "r" designed SUPWB 20 Calculates supersonic wing-body "p" and "r" designed SUPWBT 28 Calculates supersonic wing-body "tail Aerodynamics SWITCH 0 SETS LOGIC FOR ASCENDING OR DESCENDING ARRAYS FOR TLIN_SWRITE SWITCH 12, 39 CONTROLS NUMERIC OUTDUTS FOR OUTDUT; WRITES BLANKS, NA SYNDIM 2 CALCULATES SYNTHESIS DIMENSIONS FOR BODY ANALYSIS TABLES 7, 24 REGRESSION COEFFICIENTS FOR WBCMO TABLES 7, 24 READ MACH TABLES OF CEQUATION REGRESSION COEFFICIENT TBSUB 7, 24 SUBSONIC CD_REGRESSION COEFFICIENT TABLES TBSUB 7, 24 TRAHSONIC CD_REGRESSION COEFFICIENT TABLES TEST 1, 34 NAMELIST NAME CHECKING PERFORMED IN INPUT TESTØR 1 CHECK IF NAMELIST NAME CHECKING PERFORMED IN INPUT TILINYS 30 LINEAR INTERPOLATION FOR Y=f(X1, X2, X3) TLINAS 0 LINEAR INTERPOLATION FOR Y=f(X1, X2, X3) TLINAX 17,25,26,52 LINEAR INTERPOLATION FOR Y=f(X1, X2, X3) TLIPZX 43,44,45,54 LINEAR INTERPOLATION FOR Y=f(ROUTINE NAME	OVERLAYS REFERENCED	DESCRIPTION
45 20 28 0 12, 39 2 7, 20, 25 7, 24 0 7, 24 7, 24 7, 24 1, 34 1, 34 1, 34 1, 34 1, 34 1, 34 30 0 17,25,26,52 43,44,45,54		•	
20 28 0 12, 39 2 7, 24 0 7, 24 7, 24 7, 24 7, 24 1, 34 1, 35 1, 25, 26, 52 43, 44, 45, 54	SUPRYW	45	CALL''LATES SUPERSONIC WING AND WING-BODY "p" AND "r" DERIVATIVES
28 12, 39 2 7, 20, 25 7, 24 7, 24 7, 24 7, 24 7, 24 1, 34 1, 34 1, 34 1, 34 1, 34 43,44,45,54 43,44,45,54	SUPWB	50	CALCULATES SUPERSONIC WING-BODY C _L , C _D , C _L AND C _m
0 12, 39 2 7, 20, 25 7, 24 0 7, 24 7, 24 7, 24 1, 34 1, 34 1, 34 1, 34 1, 34 1, 34 30 0 0 17,25,26,52 43,44,45,54	SUPWBT	28	CALCULATES SUPERSONIC WING-BODY-TAIL AERODYNAMICS
12, 39 2 7, 20, 25 7,24 0 7, 24 7, 24 7, 24 1, 34 1, 34 1, 34 1, 34 1, 34 1, 34 1, 34 1, 34 30 0 0 17,25,26,52 43,44,45,54	SWITCH	0	SETS LOGIC FOR ASCENDING OR DESCENDING ARRAYS FOR TLIN_X ROUTINES
2 7, 20, 25 7, 24 0 7, 24 7, 24 7, 24 1, 34 1, 34 1, 34 1, 34 1, 34 1, 34 30 0 0 17,25,26,52 43,44,45,54	SWRITE	12, 39	CONTROLS NUMERIC OUTPUTS FOR OUTPUT; WRITES BLANKS, NA OR NDM
7, 20, 25 7,24 0 7,24 7,24 7,24 1,34 1,34 1,34 0 0 0 17,25,26,52 43,44,45,54	SYNDIM	2	CALCULATES SYNTHESIS DIMENSIONS FOR BODY ANALYSIS
7,24 0 7,24 7,24 7,24 1,34 1,34 10 0 0 17,25,26,52 43,44,45,54	TABLEC		REGRESSION COEFFICIENTS FOR WBCMO
0 7, 24 7, 24 7, 24 1, 34 1 50 0 0 0 17,25,26,52 43,44,45,54	TABLES	7,24	READ MACH TABLES OF C _n EQUATION REGRESSION COEFFICIENTS
7, 24 7, 24 7, 24 1, 34 1, 34 1 50 0 17,25,26,52 43,44,45,54	TBFUNX	0	TABLE LOOKUP FOR Y=f(X); PROVIDES dY/dX
7, 24 7, 24 1, 34 1, 34 0 0 0 17,25,26,52 43,44,45,54	TBSUB	7, 24	SUBSONIC CD_REGRESSION COEFFICIENT TABLES
7, 24 1, 34 1 50 0 30 0 17,25,26,52 43,44,45,54	TBSUP	7, 24	SUPERSONIC CD REGRESSION COEFFICIENT TABLES
1, 34 1 50 0 30 0 17,25,26,52 43,44,45,54	TBTRN	7, 24	TRANSONIC CD REGRESSION COEFFICIENT TABLES
1 50 0 30 0 17,25,26,52 43,44,45,54	TEST	1, 34	NAMELIST NAME CHECKING PERFORMED IN INPUT
50 0 30 0 17,25,26,52 43,44,45,54	TESTOR	-	CHECK IF NAMELIST NAME IS LEGAL INPUT USING NMTEST
0 30 0 17,25,26,52 43,44,45,54	THEORY	50	MAIN LOGIC ROUTINE FOR CALCULATING AIRFOIL SECTION AERODYNAMICS
30 0 0 17,25,26,52 43,44,45,54	TLINEX	0	LINEAR INTERPOLATION FOR Y=f(X1, X2)
0 0 17,25,26,52 43,44,45,54 43,44,45,54	TLINVS	30	INTERPOLATES BETWEEN TABLES FOR FG6115
0 17,25,26,52 43,44,45,54 43,44,45,54	TL INIX	0	LINEAR INTERPOLATION FOR Y=f(X)
17,25,26,52 43,44,45,54 43,44,45,54	TL IN3X	0	LINEAR INTERPOLATION FOR Y=f(X1, X2, X3)
43,44,45,54	TL IN4X		LINEAR INTERPOLATION FOR Y=f(X1, X2, X3, X4)
43,44,45,54	TLIPIX		LINEAR INTERPOLATION FOR A PACKED TABLE FOR Y=f(X)
	TLIP2X	43,44,45,54	LINEAR INTERPOLATION FOR A PACKED TABLE FOR Y=f(X1, X2)
TLIP3X 43,44,45,54 LINEAR INTERPOLATION FOR A PACKED TABLE FOR Y=	TL IP3X		LINEAR INTERPOLATION FOR A PACKED TABLE FOR Y=f(X1, X2, X3)

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUTINE NAME TRACMO TRANAC TRANCD	OVERLAYS REFERENCED 25 25 24	DESCRIPTION EXECUTIVE TRANSONIC B-W OR B-H C _{mo} COMPUTES TRANSONIC PLANFORM C _L BY NON-LINEAR INTERPOLATION CALCULATES TRANSONIC WING AND WING-BODY C _D
TRANCM TRANF TRANHB TRANJT TRANMB	25 24 24 47 24	CALCULATES TRANSONIC VENTRAL FIN CL BY NON-LINEAR INTERPOLATION EXECUTIVE FOR TRSØNJ CALCULATIONS HYPEKSONIC TRANSVERSE JET SIZING CALCULATIONS EXECUTIVE FOR TRSØNI CALCULATIONS CALCULATES WING CL AT M=1.4 FOR TRSONI
TRAPZ TRAMBT TRHTCM TRIMRT TRIMR2	4,6,7,9,19,23, 26,29,37,46,47 35 25 38 38	
TRNHT TRSØNI TRSØNJ	24 40 24 24	CALCULATES HORIZONTAL TAIL CL $_{\alpha}$ AI MACH=1.4 FUR INSPINATIONS TRANSONIC LATERAL CONTROL/FLAP EFFECTIVENESS CALCULATIONS CALCULATES TRANSONIC WING $C_{L_{\alpha}}$, $C_{L_{MAX}}$; BODY $C_{L_{\alpha}}$, $C_{m_{\alpha}}$; WING-BODY $C_{D_{0}}$ USES METHOD OF TRSØNI, BUT CALCULATES USING HORIZONTAL TAIL

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUTINE	OVERLAYS REFERENCED	DESCRIPTION
VFCDØ	20	CALCULATES VENTRAL FIN CDO
VFDRAG	8	CALCULATES VENTRAL FIN DRAG
VFLIFT	32	CALCULATES SUPERSONIC VENTRAL FIN CLa
VNAME	_	CHECK IF VARIABLE NAME IS CORRECT FOR INPUT
VRTCDØ	20	CALCULATES SUPERSONIC VERTICAL TAIL CDO
VTAREA	56	EXECUTIVE FOR VERTICAL TAIL AREA SHADOWED BY MACH LINE CALCULATIONS
VTDRAG	8	CALCULATES SUBSONIC VERTICAL TAIL CDO
VTLIFT	32	CALCULATES SUPERSONIC VERTICAL TAIL CLa
WBAERD	7	EXECUTIVE CONTROL FOR WING-BODY AND HORIZONTAL TAIL BODY CL. CD AND Cm
WBCD		EXECUTIVE CONTROL FOR WING-BODY AND HORIZONTAL TAIL BODY C_D
WBCDL	7, 24	CALCULATES THE WING-BODY/HORIZONTAL TAIL BODY CDL
WBCLB	-35	CALCULATES TRANSONIC WING-BODY $c_{z_{A}}$
MBCil		CALCULATES SUBSONIC WING-BODY Cm
WBCMO	7, 20, 25	CALCULATES C FOR WING-BODIES USING REGRESSION METHOD
WBCMI	25	CALCULATES X0/C, FOR WING-BODIES
WBDRAG		CALCULATES SUBSONIC WING-BODY CD
WBLIFT	7	CALCULATES SUBSONIC WING-BODY C
WBTCDØ	35	CALCULATES TRANSONIC WING-BODY-TAIL CDO
WBTRA	35	CALCULATES TRANSONIC WING BODY CD,
WBTRAN	25	CALCULATES (CL,)B(W) AND (Xac/c,)B(W) AT MACH=1.4 FOR TRANSONIC ANALYSIS
WBTAIL	10	CALCULATES SUBSONIC WING-BODY-TAIL AERODYNAMICS
WINGCL	35	CALCULATES TRANSONIC WING C
MINGAM	45	MAIN LOGIC FOR WING YAW DAMPING DERIVATIVES
WGEOTL	10	CALCULATES SUBSONIC WING VORTEX INTERFERENCE EFFECTS ON HORIZONTAL TAIL

TABLE 9 DIGITAL DATCOM ROUTINE DESCRIPTION

ROUT INE NAME	OVERLAYS REFERENCED	DESCRIPTION
WPLØT	12	WRITES DATA FOR PLOT OPTION TO UNIT 13
WRHTIP	_	PRINTS HORIZONTAL TAIL NAMELIST INPUTS
WRITXM	57	PRINTS SUMMARIZED EXTRAPOLATION MESSAGES
WRLDIP	٠.	PRINTS LOW ASPECT RATIO WING-BUDY NAMELIST INPUTS
WRVFIP	_	PRINTS VENTRAL FIN NAMELIST INPUTS
WRYTIP	_	PRINTS VERTICAL TAIL NAMELIST INPUTS
WTGEBM	2, 18	CALCULATES WING OR TAIL GEOMETRY DATA
WILIFT	15, 16	CALCULATE WING OR TAIL LIFT CHARACTERISTICS
XPERNM	34.	DEFINE THE NUMBER OF CARDS IN THE INPUT EXPERIMENTAL DATA NAMELIST
XYCØRD	. 09	CALCULATES AIRFOIL SECTION X, Y COORDINATES OR THICKNESS/CAMBER DISTRI- BUTION
YUP	43,44,45,54	UNPACKS DATA FOR TLIP_X ROUTINES
ZERANG	1,2,13,18	INITIALIZES ANGLES FOR ANGLES KOUTINE
	, •	

TABLE 10 CONTROL DATA BLOCKS

-	VARIABLE NAME	USE/PURPOSE
ØVERLY NL	NLØG	NUMBER OF LOGICAL VARIABLES IN COMMON BLOCK FLØLØG TO BE INITIALIZED FALSE
ž	NMACH	NUMBER MACH NUMBERS
-		MACH NUMBER INDEX
N	NALPHA	NUMBER OF ANGLES OF ATTACK
91		HAS SEVERAL USES:
		(1) GROUND HEIGHTS INDEX (2) INITIALIZATION SWITCH OVERLAY 51, IF 1, INITIALIZE IOM AND
		COMPUIALIUNAL BLUCKS. IF 2. INITIALIZE FOR FLAP ANALYSIS IF 3. INITIALIZE FOR POWER ANALYSIS
¥		ON INDEX
		(2) IF NEGATIVE, "TURNS-OFF" EXTRAPOLATION MESSAGES (3) FOR TRANSONIC ANALYSIS, LOOP INDEX.IF ≥ -5, GET SUBSONIC AERO IF -6 OP -7 CET SUBEDSONIC AEDO
		(4) IF NEGATIVE BYPASS READING EXPERIMENTAL DATA INPUTS
<u> </u>	• :	SET TO 1 IN OVERLAY 23 TO PRINT MESSAGE THAT H.T. IS OFF BODY AND NO LAT-STAB PARAMETERS CALC.
*		ALTITUDE INDEX
ØN.	NØVLY	CURRENT EXECUTING OVERLAY NUMBER
CASEID ID	IDCASE (74)	CHARACTERS OF CASE TITLE INPUT USING "CASEID"
2	KØUNT	NUMBER OF NAMELISTS READ (MAX. 300)
AN .	NAMSV (100)	ORDER OF NAMELISTS SAVED FROM PREVIOUS CASE

TABLE 10 CONTROL DATA BLOCKS

COMMON	VARIABLE NAME	USE/PURPOSE
	ніаі	DIMENSIONAL SYSTEM USED 1 = FT, 2 = IN, 3 = M, or 4 = CM.
EXPER	KLIST	NUMBER OF \$EXPR - NAMELISTS (100 MAX)
	NLIST (100)	NUMBER CARDS READ FOR EACH \$EXPR AND MACH NUMBER FOR NAMELIST
	NNAMES	NUMBER \$EXPR CARDS PRESENT
	IMACH	MACH NUMBER INDEX OF CURRENT SEXPR READ
	MDATA	TRUE IF \$EXPR DATA FOR MACH NUMBER
,	KBØDY	TRUE IF BODY EXPERIMENTAL INPUTS
	KWING	TRUE IF WING EXPERIMENTAL INPUTS
	KHT	TRUE IF H.T. EXPERIMENTAL INPUTS
	KVT	TRUE IF V.T. EXPERIMENTAL INPUTS
	KWB	TRUE IF WING-BODY EXPERIMENTAL INPUTS
	KDWASH (3)	TRUE IF (1) de/da, OR (2) e OR (3) q/q_
	ALPØW	TRUE IF a EXPERIMENTAL INPUT
	ALPLW	TRUE IF a * EXPERIMENTAL INPUT
	ALPOH	TRUE IF a OH EXPERIMENTAL INPUT
•	ALPLH	TRUE IF a + EXPERIMENTAL INPUT
FLELBG	FLTC	TRUE IF \$FLTCON PRESENT
(LUGICAL VARIABLES)	PPTI	*NIL TO STATE OF THE STATE OF T
	80	\$BØDY
,	WGPL	TRUE IF \$WGPLNF PRESENT

TABLE 10 CONTROL DATA BLOCKS

	COMMON BLOCK	VARIABLE NAME		USE/PURPOSE
ــــــــــــــــــــــــــــــــــــــ	FLØLDG	MGSC	TRUE IF \$WGSCHR PRESENT	
		SYNT	\$SNYTHS	
		HTPL	\$HTPLNF	
		HTSC	\$HTSCHR	
		VTPL	* SVTPLNF	
		VTSC	\$VTSCHR	
_		HEAD	CASEID	
		PRPØWR	\$PRØPWR	
		JETPØW	\$JETPWR	
		LØASRT	\$LARWB	
		TYTPAN	TRUE IF STYTPAN PRESENT	
		SUPERS	SUPERSONIC ANALYSIS	YSIS
		SUBSON	SUBSONIC ANALYSIS	ST
		TRANSN	TRANSONIC ANALYSIS	SIS
•		HYPERS	HYPERSONIC ANALYSIS	YSIS
		SYMFP	TRUE IF SYMFLP PRESENT	
		ASYFP	\$ASYFLP	
		TRIMC	TRIM	
		TRIM	TRIM WITH FLAPS	
		DAMP	TRUE IF DAMP PRESENT	
		,		

TABLE 10 CONTROL DATA BLOCKS

COMMON BLOCK	VARIABLE NAME	USE/PURPOSE
FLOLDG	HYPEFF	TRUE IF SHYPEFF PRESENT
	TRAJET	\$TRNJET
	BUILD	BUILD
	FIRST	FIRST ENTRY-CALL CONERR; ALSO SUITED TO CATALOG \$EXPR NAMELISTS
	DRCØNV	DERIV PRESENT
	PART	PART
	VFPL	\$VFPLNF
	VFSC	\$VFSCHR
	СТАВ	◆ \$CONTAB ◆
	PLØT	TRUE IF PLOT PRESENT
ERRØR	IERR	TRUE IF MAJOR INPUT ERROR (e.g. MISSING NAMELIST)
•	GONDO	TRUE, EXECUTE CASE; FALSE, GO TO NEXT CASE
	IEND	TRUE IF HAVE READ ALL INPUT DATA PRESENT
	DMPALL	TRUE TO DUMP ALL ARRAYS
	DPBDPIDWH	TRUE TO DUMP APPROPRIATE ARRAY
	LIST	TRUE TO PRINT NAMELISTS
•		

REFERENCES

- (1) Glauert, H., "The Elements of Airfoil and Airscrew Theory," Cambridge at the University Press, 1948.
- (2) Polhamus, Edward C., "Predictions of Vortex-Lift Characteristics Based on a Leading-Edge Suction Analogy." AIAA Paper No. 69-1133, October 1969.
- (3) Polhamus, Edward C., "A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy." NASA TN D-3767, December 1966.
- (4) Stivers, Louis S., Jr. and Levy, Lionel L., Jr., "Longitudinal Force and Moment Data at Mach Numbers from 0.60 to 1.40 for a Family of Elliptic Cones with Various Semiapex Angles." NASA TN D-1149, 1961.
- (5) Spencer, Bernard, Jr. and Phillips, W. Pelham, "Effects of Cross-Section Shape on the Low-Speed Aerodynamic Characteristics of a Low-Wave-Drag Hypersonic Body." NASA TN D-196, 1963.
- (6) Spencer, Bernard, Jr. and Phillips, W. Pelham, "Transonic Aerodynamic Characteristics of a Series of Bodies Having Variations in Fineness Ratio and Cross-Sectional Ellipticity." NASA TN D-2622, 1965.
- (7) Spencer, Bernard, Jr., "Transonic Aerodynamic Characteristics of a Series of Related Bodies with Cross-Sectional Ellipticity." NASA TN D-3203, 1966.
- (8) McDonnell Douglas Corp.: USAF -tability and Control Datcom. Air Force Flight Dyn. Lab., U.S. Air Force, Oct. 1960. (Revised April 1976).
- (9) Centry, A. E., Smyth, D. N., Oliver, W. R., "The Mark IV Supersonic-Hypersonic Arbitrary Body Program." AFFDL-TR-73-159, 1973.