Astronomy from 4 Perspectives: the Dark Universe

prepared by: Florence participants and Björn Malte Schäfer

Exercise: Supernova cosmology and dark energy

1. Light-propagation in FLRW-spacetimes

Photons travel along null geodesics, $ds^2 = 0$, in any spacetime.

(a) Please show that by introducing *conformal time* τ in a suitable definition, one recovers Minkowski light propagation $c\tau = \pm \chi$ in comoving distance χ and conformal time τ for FLRW-space times,

$$ds^{2} = c^{2}dt^{2} - a^{2}(t)d\chi^{2},$$
 (I)

which we have assumed to be spatially flat for simplicity.

- (b) What's the relationship between conformal time τ and cosmic time t? What would the watch of a cosmological observer display?
- (c) Please compute the conformal age of the Universe given a Hubble function H(a),

$$H(a) = H_0 a^{-3(1+w)/2}$$
 (II)

which is filled up to the critical density with a fluid with a fixed equation of state w.

- (d) In applying $ds^2 = 0$ to the FLRW-metric we have assumed a radial geodesic is this a restriction?
- (e) Please draw a diagram of a photon propagating from a distant galaxy to us in conformal coordinates for a cosmology of your choice, with markings on the light-cone corresponding to equidistant Δa .

2. Light-propagation in perturbed metrics

The weakly perturbed ($|\Phi| \ll c^2$) Minkowski metric is given by

$$ds^{2} = \left(1 + 2\frac{\Phi}{c^{2}}\right)c^{2}dt^{2} - \left(1 - 2\frac{\Phi}{c^{2}}\right)dx_{i}dx^{i}$$
 (III)

with the Newtonian potential Φ . Please compute the effective speed of propagation c' = d|x|/dt for a photon following a null geodesic $ds^2 = 0$. Please Taylor-expand the expression in the weak-field limit $|\Phi| \ll c^2$: Can you assign an effective index of refraction to a region of space with a nonzero potential?

3. Classical potentials including a cosmological constant

The field equation of classical gravity including a cosmological dark energy density λ is given by

$$\Delta\Phi = 4\pi G(\rho + \lambda) \tag{IV}$$

(a) Solve the field equation for 3 dimensions outside a spherically symmetric and static matter distribution ρ . The expression for the Laplace-operator in spherical coordinates for 3 dimensions is: $\Delta \Phi = r^{-2} \partial_r (r^2 \partial_r \Phi)$. Also, please set as the total baryon mass M

$$M = 4\pi \int_0^r \mathrm{d}r'(r')^2 \rho(r') \tag{V}$$

- (b) Please show that both source terms individually give rise to power-law solutions for $\Phi(r)$.
- (c) Is there a distance where the baryon part from the ρ -terms is equal to dark energy part the λ -term?
- (d) Assuming a typical galaxy is formed by 100 billion stars like the Sun each with a mass of 10^{30} kg, and a dark energy density of 10^{-27} kg/m³, find at which distance from a galaxy the dark energy dominates. How does it compare with the typical size of a Galaxy (~ 10000 pc?

4. Physics close to the horizon

Why is it necessary to observe supernovae at the Hubble distance c/H_0 to see the dimming in accelerated cosmologies? Please start at considering the curvature scale of the Universe: A convenient measure for the curvature might be the Ricci-scalar $R = 6H^2(1-q)$ for flat FLRW-models.

- (a) Can you define a distance scale d or a time scale from R?
- (b) What happens on scales $\ll d$, what on scales $\gg d$?

5. Measuring cosmic acceleration

The luminosity distance $d_{lum}(z)$ in a spatially flat FLRW-universe is given by

$$d_{\text{lum}}(z) = (1+z) \int_0^z dz' \, \frac{1}{H(z')}$$
 (VI)

with the Hubble function H(z). Let's assume that the Universe is filled with a cosmological fluid up to the critical density with a fluid with equation of state w, such that the Hubble function is

$$H(z) = H_0(1+z)^{\frac{3(1+w)}{2}}.$$
 (VII)

- (a) For this type of cosmology you will obtain acceleration if w < -1/3 and deceleration for w > -1/3: Please show this by computing the deceleration parameter $q = -\ddot{a}a/\dot{a}^2$ from the Hubble-function $H = \dot{a}/a$, with the relation a = 1/(1+z).
- (b) Please show that in accelerated universes supernovae appear systematically dimmer, because d_{lum} is always larger than in a non-accelerating universe.
- (c) Is it true that d_{lum} is systematically smaller in a decelerating universe?
- (d) Would the expression for d_{lum} still be valid if the universe was contracting instead of expanding? What correction would you need to apply?