Chapitre 1 : Dénombrement

May 21, 2024

Abstract

Le dénombrement sera utile pour calculer des probabilités lorsque les résultats élémentaires de l'espace fondamental sont équiprobables. En effet, pour estimer la probabilité d'un événement A, nous allons calculer le nombre de possibilités menant à la réalisation d'un événement A puis diviser par le nombre de possibilités totales résultant d'une expérience.

1 Principe fondamental du dénombrement

Théorème 1. Supposons que l'on effectue K expériences. Si la première expérience a n_1 façons de se réaliser, la deuxième n_2 , et ainsi de suite jusqu'à la K-ième expérience, alors il y a $n_1 \times n_2 \times \cdots \times n_K$ manières de réaliser les K expériences mises ensemble.

Proof. Nous prouvons ce théorème par induction sur k:

Cas de base (k = 1):

Lorsque k = 1, il n'y a qu'une seule expérience, et elle peut être effectuée de n_1 manières. Par conséquent, le nombre total de manières d'effectuer cette expérience unique est évidemment n_1 .

Étape d'induction:

Supposons que le principe tient pour k=m. C'est-à-dire, si m expériences peuvent être effectuées de n_1 manières pour la première, n_2 manières pour la deuxième, ..., et n_m manières pour la m-ième expérience, alors le nombre total de manières d'effectuer les m expériences est $n_1 \times n_2 \times \cdots \times n_m$.

Nous devons maintenant prouver que le principe tient pour k=m+1.

Considérons m+1 expériences. Les m premières expériences peuvent être effectuées de $n_1 \times n_2 \times \cdots \times n_m$ manières, d'après l'hypothèse d'induction. La (m+1)-ième expérience peut être effectuée de n_{m+1} manières.

Chacune des $n_1 \times n_2 \times \cdots \times n_m$ manières d'effectuer les m premières expériences peut être suivie de l'une des n_{m+1} manières d'effectuer la (m+1)-ième expérience. Par conséquent, le nombre total de manières d'effectuer les m+1 expériences est

$$(n_1 \times n_2 \times \cdots \times n_m) \times n_{m+1} = n_1 \times n_2 \times \cdots \times n_m \times n_{m+1}.$$

Cela complète l'étape d'induction.

Par le principe de l'induction mathématique, le principe fondamental de comptage est vrai pour tout entier positif k.

2 Permutations

Théorème 2. Il existe $n! = n \times (n-1) \times (n-2) \times \cdots \times 1$ manières de permuter n objets distinguables.

Exemple 2.1. Il y a 6! = 720 manières de permuter 6 personnes en ordre.

Théorème 3. Il existe $\frac{n!}{(n-k)!}$ manières de permuter k objets pris parmi n objets distinguables.

Exemple 3.1. Il y a $6 \times 5 \times 4 = \frac{6!}{3!} = 120$ manières de permuter 3 personnes prises parmis 6 en ordre.

Théorème 4. On a

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

permutations différentes de n objets parmi lesquels il y a r catégories d'objets indistinguables entre eux, ces catégories ayant pour cardinal n_1, \ldots, n_r .

Exemple 4.1. Il y a

$$\frac{11!}{4! \times 4! \times 2!} = 34,650$$

manières de permutter les lettres du mots MISSISSIPPI.

3 Combinaisons

Théorème 5. Si nous sélectionnons k objets parmi n il y a

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

manières de former des groupes si on ne tient pas compte de l'ordre.

Exemple 5.1. Il y a

$$\binom{6}{3} = \frac{6!}{3!3!}$$

manières de prendre 3 boules d'une sac contenant 6 boules numérotées de 1 à 6.

Proposition 1.

$$\binom{n}{k} = \binom{n}{n-k}$$

1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	3	4	5	6	7	8	9	10	11	12	
1	3	6	10	15	21	28	36	45	55	66		
1	4	10	20	35	56	84	120	165	220			
1	5	15	35	70	126	210	330	495				
1	6	21	56	126	252	462	792					
1	7	28	84	210	462	924						
1	8	36	120	330	792							
1	9	45	165	495								
1	10	55	220									
1	11	66										
1	12											
1												

Figure 1: Triangle de Pascal

Théorème 6. On a

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} \quad pour \ 1 \le r \le n.$$

Ceci est connu sous le nom du triangle de Pascal.

Proof. Parmi n objets, considérons l'un des objets en particulier que nous appellerons 1. Pour former un sous-groupe avec r éléments il y a 2 possibilités .

- \bullet le sous-groupe contient 1 et r-1 éléments parmi les n-1 restants,
- le sous-groupe ne contient pas 1 et r éléments parmi les n-1 restants.

Théorème 7. On a

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Ce théorème est connu sous le nom du théorème binomiale.

Exemple 7.1. Il y a 2^n sous-ensemble d'un ensemble à n éléments.

Proof. Il y a $\binom{n}{0}$ sous-ensemble contenant 0 élément, $\binom{n}{1}$ sous-ensemble contenant 1 élément, $\binom{n}{2}$ sous-ensemble contenant 2 éléments, et ainsi de suite jusqu'à $\binom{n}{n}$. Ceci est l'équivalent à l'expression suivante: $\sum_{k=0}^{n} \binom{n}{k} 1^k 1^{n-k} = (1+1)^n = 2^n$, d'après le théorème binomiale.

Exemple 7.2.
$$(x+y)^3 = \sum_{k=0}^3 \binom{3}{k} x^k y^{3-k} = \binom{3}{0} x^0 y^{3-0} + \binom{3}{1} x^1 y^{3-1} + \binom{3}{2} x^2 y^{3-2} + \binom{3}{3} x^3 y^{3-3} = y^3 + 3x^1 y^2 + 3x^2 y^1 + x^3$$

4 Le coefficient multinomiale

Soit un ensemble de n éléments distincts que nou voulons diviser en r groupes de taille n_1, \ldots, n_r avec $\sum n_i = n$. Il y a

$$\binom{n}{n_1}\binom{n-n_1}{n_2}\cdots\binom{n-n_1-\ldots-n_{r-1}}{n_r}=\frac{n!}{n_1!n_2!\cdots n_r!}=\binom{n}{n_1,\ldots,n_r}$$

manière(s) de faire.

Remarque 1. Les objets à l'intérieurs des groupes ne sont pas ordonnés, mais les groupes sont ordonnées.

Théorème 8. On a

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{\substack{(n_1, \dots, n_r) \\ n_1 + \dots + n_r = n}} \binom{n}{n_1, \dots, n_r} x_1^{n_1} \cdots x_r^{n_r}$$

Ce théorème est connu sous le nom du théorème multinomiale.

Exemple 8.1. De combien de manière peut-on séparer 10 joueurs en une équipe A et une équipe B de 5 peronnes chacune?

Proof. Il y a
$$\binom{10}{5,5} = \frac{10!}{5!5!}$$
 manières de faire.

Exemple 8.1. De combien de manière peut-on séparer 10 joueurs en 2 équipes non-distinguables de 5 peronnes chacune?

Proof. Il y a
$$\binom{10}{5,5} * \frac{1}{2!} = \frac{10!}{5!5!} * \frac{1}{2!}$$
 manières de faire.

5 Boules dans le urnes

Combien y a-t-il de manière de placer n boules dans r urnes distinguables si...?

1. Si les boules sont distinguables et que chaque urne peut contenir plusieurs boules.

Proof. Définissons $n_i, i \in \{1, 2, ..., r\}$ comme étant le nombre de boules allant dans l'urne i. Il y a plusieurs façon de diviser n boules en r groupes. Les caculer revient à trouver:

$$\sum_{\substack{(n_1, \dots, n_r) \\ n_1 + \dots + n_r = n}} \binom{n}{n_1, \dots, n_r} = (1 + 1 + \dots + 1)^n = r^n$$

2. Si les boules sont indistinguables et que chaque urne peut contenir au maximum 1 boules.

Proof. Il y a $\binom{r}{n}$ façon de prendre n urnes parmis les r pour placer les boules.

3. Si les boules sont indistinguables et que chaque urne peut contenir plusieurs boules.

Proof. Ce problème est l'équivalant à trouver le nombre de solutions entières non négarives de $x_1+x_2+\ldots+x_r=n$. Voir plus bas...

Théorème 9. Il y a $\binom{n-1}{r-1}$ vecteurs distincts à composantes entières et positives satisfaisant à l'équation:

$$x_1 + x_2 + \ldots + x_r = n$$
, avec $x_i > 0$

Théorème 10. Il y a $\binom{n+r-1}{r-1}$ vecteurs distincts à composantes entières et positives satisfaisant à l'équation:

$$x_1 + x_2 + \ldots + x_r = n$$
, $avec x_i \ge 0$