Projeto do Subsistema de Estruturas

Materiais

Definição de critérios de avaliação dos materiais

Foi elaborada uma matriz de decisão e optamos pela alternativa de menor custo e maior facilidade de fabricação.

Ideia	Custo	Fabricação	Assembly	Segurança	Robustez	Peso	Resultado
Quadrado	9	6	10	10	9	5	49
Redondo	9	3	5	10	10	5	42
Chapa em L	9	8	7	5	3	8	40
Chapa Simples	9	9	10	2	2	10	42

Definição de critérios de avaliação dos materiais

Foi elaborada uma matriz de decisão e optamos pela alternativa de menor custo e maior facilidade de fabricação.

Ideia	Custo	Fabricação	Resistência	Peso	Resultado
Aço sae	9	6	7	5	27
Alumínio	5	3	8	8	24
Titânio	1	1	10	10	22

Análise Estrutural Preliminar

Simulações numéricas

- Setup da Simulação:
 - o Carga aplicada: 144 kg (1440 N) distribuída.
 - o Fixação: Rodas como pontos de apoio.

Os deslocamentos máximos nas superfícies ocorrem no centro das bases superiores e inferiores, com valores inferiores a 3 mm, indicando rigidez adequada.

Imagem 1 - Distribuição de forças sobre a estrutura

Imagem 2 - Deformação da estrutura

Imagem 3 - Tensão da estrutura

Subsistema de Estruturas

1. Seleção de Materiais

Os materiais escolhidos para a estrutura do carrinho foram selecionados com base em critérios como resistência mecânica, custo, fabricação e disponibilidade no mercado. Os principais materiais adotados que passaram por matriz de decisão foram o **aço tubular quadrado SAE 1010** e as bases de MDF, devido à sua combinação de resistência e custo-benefício.

1.1 Critérios de Escolha dos Materiais

O critério de escolha englobou os materiais da estrutura metálica e MDF utilizado como apoio para os equipamentos. Tal escolha foi devido aos custos envolvidos e fabricação, segurança e robustez.

1.2 Justificativa da Escolha do Material

- Aço tubular quadrado SAE 1010 : Baixo custo, facilidade de usinagem, boa soldabilidade e versatilidade de aplicações.
- Parafusos de aço: Utilizados em pontos de conexão desmontáveis, resistentes à corrosão.

2. Projeto Estrutural

2.1 Modelagem CAD

O subsistema foi modelado no software CAD (CATIA V5), com foco na otimização do espaço para armazenamento e deslocamento de baterias e equipamentos. O design inclui reforços em pontos críticos e suporte para rodas e sistemas mecânicos.

2.2 Ensaios Estruturais

Para validar o dimensionamento preliminar, foi realizada uma análise estrutural estática no software **Ansys Workbench**, considerando o seguinte cenário:

 Carga estática máxima: Simulação de cargas distribuídas pela estrutura totalizando cerca de 144 kg.

A análise estática foi realizada visando possíveis deformações na estrutura devido o carregamento de peso sob as bases e tubos.

Resultados indicam que a tensão máxima ficou abaixo do limite elástico do aço (250 MPa), garantindo segurança estrutural.

2.3 Montagem

- **Soldagem:** Os perfis de aço são unidos por solda, que proporciona alta resistência e acabamento limpo.
- Pontos de Fixação: Os componentes removíveis, como rodas,MDFs e carregador utilizam parafusos padrão M6x50 sextavados, porcas e arruelas para facilitar desmontagem e manutenção.

4. Considerações Finais

O subsistema de estruturas do carrinho foi projetado para atender aos requisitos funcionais de suportar cargas de baterias, equipamentos e itens de segurança, e ser facilmente manobrável. A análise estática realizada confirma a capacidade da estrutura de suportar as cargas previstas, estando de acordo com os objetivos desejados.