

8. Sorting in linear time

Hsu, Lih-Hsing

Computer Theory Lab.

8.1 Lower bound for sorting

The decision tree model

Chapter 8 P.2

Theorem 9.1. Any decision tree that sorts n elements has height $\Omega(n \log n)$.

Proof:

$$n! \le l \le 2^h$$
,
 $h \ge \log(n!) = \Omega(n \lg n)$.

Corollary 9.2 Heapsort and merge sort are asymptotically optimal comparisons.

Chapter 8

P.3

Computer Theory Lab.

8.2 Counting sort

 Assume that each of the n input elements is an integer in the range 1 to k for some integer k.

COUNTING_SORT(A,B,k)

1 for
$$i \leftarrow 1$$
 to k

2 **do**
$$c[i] \leftarrow 0$$

3 **for**
$$j \leftarrow 1$$
 to length[A]

4 **do**
$$c[A[j]] \leftarrow c[A[j]] + 1$$

5
$$\triangleright$$
 $c[i]$ now contains the number of elements equal to i

6 for
$$i \leftarrow 2$$
 to k

7 **do**
$$c[i] \leftarrow c[i] + c[i-1]$$

8 \blacktriangleright c[i] now contains the number of elements less than or equal to i

9 **for**
$$j \leftarrow length[A]$$
 downto 1

10 **do**
$$B[c[A[j]]] \leftarrow A[j]$$

11
$$c[A[j]] \leftarrow c[A[j]] - 1$$

• Analysis: O(k+n)

• Special case: O(n) when k = O(n).

• Property: *stable* (number with the same value appear in the output array in the same order as they do in the input array.)

Chapter 8 P.5

Computer Theory Lab.

The operation of Counting-sort on an input array A[1..8]

Chapter 8 P.6

8.3 Radix sort

Used by the card-sorting machines you can now find only in computer museum.

329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

RADIX_SORT(A,d)
1 **for** $i \leftarrow 1$ **to** d

do use a stable sort to sort array A on digit i

Chapter 8

Computer Theory Lab.

P.7

Analysis: O(d(n+k)) = O(dn+dk)

NOTE: not *in-place* (in-place: only constant number of elements of the input array are ever stored outside the array.)

Lemma 8.3

Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these number in $\Theta(d(n+k))$ time.

Chapter 8 P.8

Lemma 8.4

Given n b-bit numbers and any positive integer $r \le b$, RADIX- SORT correctly sorts these numbers in $\Theta((b/r)(n+2^r))$ time.

Proof: Choose $d = \lceil b/r \rceil$.

IF
$$b < \lfloor \lg n \rfloor$$
, choose $r = b$.
∴ $\Theta((b/r)(n+2r)) = \Theta(bn/\log n)$

Chapter 8

Computer Theory Lab.

P.9

P.10

8.4 Bucket sort

BUCKET_SORT(A)

1 $n \leftarrow length[A]$

2 for $i \leftarrow 1$ to n

3 **do** insert A[i] into list B| nA[i] |

4 for $i \leftarrow 1$ to n-1

- 5 **do** sort list B[i] with insertion sort
- 6 concatenate $B[0], B[1], \dots, B[n-1]$ together in order

Chapter 8

Analysis

The running time of bucket sort is

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2).$$

taking expectations of both sides and using linearity of expectation, we have

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O[E(n_i^2)]$$

Chapter 8

P.11

Computer Theory Lab.

We claim that

$$E[n_i^2] = 2 - 1/n$$

We define indicator random variables

$$X_{ij} = I \{A[j] \text{ falls in bucket } i\}$$

for
$$i = 0, 1, ..., n-1$$
 and $j = 1, 2, ..., n$. thus,

$$n_i = \sum_{j=1}^n X_{ij}.$$

Chapter 8

$$E[n_{i}^{2}] = E\left[\left(\sum_{j=1}^{n} X_{ij}\right)^{2}\right]$$

$$= E\left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij} X_{ik}\right]$$

$$= E\left[\sum_{j=1}^{n} X_{ij}^{2} + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^{n} E[X_{ij}^{2}] + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} E[X_{ij} X_{ik}],$$

Chapter 8 P.13

Computer Theory Lab.

Indicator random variable X_{ij} is 1 with probability 1/n and 0 otherwise, and therefore

$$E[X_{ij}^2] = 1 \cdot \frac{1}{n} + 0 \cdot \left(1 - \frac{1}{n}\right)$$
$$= \frac{1}{n}$$

When $k \neq j$, the variables X_{ij} and X_{ik} are independent, and hence

$$E[X_{ij} X_{ik}] = E[X_{ij}] E[X_{ik}]$$
$$= \frac{1}{n} \cdot \frac{1}{n}$$
$$= \frac{1}{n^2}.$$

$$E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} \frac{1}{n^2}$$

$$= n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 2 - \frac{1}{n}$$

We can conclude that the expected time for bucket sort is $\Theta(n)+n\cdot O(2-1/n)=\Theta(n)$.

Chapter 8 P.15

Computer Theory Lab.

Another analysis:

$$\sum_{i=0}^{n-1} O(E[n_i^2]) = O(\sum_{i=0}^{n-1} E[n_i^2]) = O(\sum_{i=0}^{n-1} \Theta(1)) = O(n)$$

Because

$$E(n_i^2) = Var[n_i] + E^2[n_i]$$

$$E[n_i] = np = 1$$
 where $p = \frac{1}{n}$

$$Var[n_i] = np(1-p) = 1 - \frac{1}{n}$$

$$E(n_i^2) = 1 - \frac{1}{n} + 1^2 = 2 - \frac{1}{n} = \Theta(1)$$

(Basic Probability Theory)