

Summor (1)

3.
$$R_{2}(x) = h$$
 $f \in R(x)$ | degree (1) $\leq 2^{2}$?

 $E = (1, x, x^{2})$, $G = (1, x - \alpha, (x - \alpha)^{2})$
 $G = (1, x - b, x + b)^{2}$)

 T_{E13} , T_{E6} , T_{E6}
 $T_{E0} = fid J_{BE}$
 $X - \alpha = (x + (-1)^{2})$
 $(x - \alpha)^{2} = (x^{2} - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha)^{2} = (x - 2\alpha) + \alpha^{2} + \alpha^{2}$
 $(x - \alpha$

