Computational Geometry

Area and Triangulation

The Cross Product • A vector operation $\vec{u} \times \vec{v} = \begin{bmatrix} i & j & k \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{bmatrix} = \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{bmatrix}$ • Geometric significance $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}| \sin a$

Area of Triangle • A(Δ) = ½ | (v_1 - v_0)X(v_2 - v_0) | • v_0 • v_1 • v_2 • v_2 • v_2 • v_3 • v_4 •

Area of Polygon

• Convex polygons:

• General?

$$2A(P) = \sum_{i=0}^{n-1} (x_i y_{i+1} - y_i x_{i+1})$$

How Many Distinct Triangulations?

 A diagonal exists between any two nonadjacent vertices of a polygon P iff P is a convex polygon

Theorem

 The number of triangulations of a convex polygon with n+2 vertices is the Catalan number:

number: $C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(2n)!}{(n+1)!n!}$

The Catalan Numbers

- Well-formed sequences of parentheses
- Stack permutations
- · Full binary trees
- Triangulations of convex

0	1	10	16796
1	1	11	58786
2	2	12	208012
3	5	13	742900
4	14	14	2674440
5	42	15	9694845
6	132	16	35357670
7	429	17	129644790
8	1430	18	477638700
9	4862	19	1767263190

The Catalan Numbers

$$C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} = \begin{pmatrix} 2n \\ n \end{pmatrix} - \begin{pmatrix} 2n \\ n+1 \end{pmatrix} = \frac{(2n)!}{(n+1)!n!}$$

$$C_n = \frac{1}{n+1} \sum_{i=0}^{n} \binom{n}{i}^2$$

$$C_{n+1} = \sum_{i=0}^{n} C_{i} C_{n-i}$$

Recurrence Relations

- $P_{n+1} = P_n + P_{n-1}P_3 + P_{n-2}P_4 + ... + P_3P_{n-1} + P_n$ $P_2 = 1$
- $P_{n+1} = P_n P_2 + P_{n-1} P_3 + P_{n-2} P_4 + ... + P_3 P_{n-1} + P_2 P_n$

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i} \Rightarrow C_{n-1} = \sum_{i=0}^{n-2} C_i C_{n-2-i}$$

$$E_n = \frac{2 \times 6 \times 10 \times \dots \times (4n-10)}{(n-1)!}$$

Reflex Vertices?

Big-O Notation

- Upper bounds on the growth rate of functions and running time of algorithms.
- *n* represents input size, i.e. a list of *n* elements.
- Constants are ignored and only the dominant term matters
- A for-each sequential loop is O(n)
- A nested for where inner loop runs y times and outer loop runs x times is O(xy), or O(n²)