

Buiten membraan
Periplasma
Binnen membraan

Cytoplasma

Escherichia coli

By David S. Goodsell, RCSB Protein Data Bank - http://pdb101.rcsb.org/sciart/goodsell-gallery/escherichia-colibacterium, CC BY 4.0, https://commons.wikimedia.org/w/index.p hp?curid=102052460

Cell surface structures

Kapsel en slijmlagen

Meestal polysaccharide, soms eiwit (b.v. bij Bacillus anthracis)

Bieden cel geen 'structural strength'

Kapsel:

- dichte matrix
- niet doorlaatbaar voor kleine deeltjes
- vaak vast aan celwand (soms covalent gebonden)

Slijmlaag:

- makkelijker te vervormen
- meer doorlaatbaar
- minder vast aan cel

Capsule

Kapsel en slijmlagen

Verschillende functies o.a.:

- hechting aan oppervlakken
- rol bij vormen en onderhoud biofilm
- bescherming tegen uitdroging

Bij ziekteverwekkers ook b.v.:

- aanhechting weefsels
- bescherming tegen het immuunsysteem

Pili

Filamenteus, opgebouwd uit eiwitten (2-10 nm dik)

Verschillende functies (afh. van type pilus), b.v:

- aanhechting aan oppervlakken/ dierlijke weefsels (pathogenen)
- vorming 'pellicles' en biofilms
- doorgeven genetisch materiaal (conjungatie)
- elektrische geleiding (nanowire)
- twitching motility (Type IV pili)

Fimbriae

Korte pili betrokken bij aanhechting.

Hami

Enkelvoud: hamus

In sommige Archaea

Aanhechting en vorming biofilm

Structuur lijkt op type IV pili, maar anker-achtig uiteinde

Cell inclusions

=inclusion bodies

Vaak omgeven door een "nonunit membraan" (één laag)

Waarom is het nuttig voor een bacterie om stoffen in een nietoplosbare vorm op te slaan?

Opslag van b.v. koolstof, fosfaat, sulfaat, carbonaatmineralen

Koolstofopslagpolymeren – PHA/ PHB

Poly-β-hydroxyalkanoate (PHA), b.v. poly-β-hydroxybutyric acid (PHB)

Glycogeen

Polyfosfaat en zwavelkorrels

Waarom nuttig?

Zwavelkorrels bij 'zwavel-bacteriën':

- oxideren b.v. H₂S tot S⁰ (levert energie op, zie hoofdstuk 3)
- als H₂S opraakt: oxidatie S⁰ tot SO₄²⁻ (korrel verdwijnt)

Opslag carbonaat mineralen

Biomineralisatie

© 2015 Pearson Education, Inc.

Gleomargarita \rightarrow benstoniet korrels [(Ba,Sr,Ca)₆(CO₃)₁₃)]

https://www.youtube.com/watch?v=I7PnRY4md4s

Magnetosomen

Magnetiet (Fe₃O₄) of greigiet (Fe₃S₄) partikels omgeven door een membraan

Vorming magnetosomen

- Insertie magnetosoom specifieke eiwitten in cytoplasmatisch membraan
- 2. Invaginatie van het membraan \rightarrow vesicle
- 3. Opname ijzer ($Fe^{2+} \rightarrow Fe^{3+}$)
- 4. Vorming magnetiet (Fe₃O₄) of greigiet (Fe₃S₄)

Spelen met magnetosomen

https://www.youtube.com/watch?v=3uUL4ooM6KI

Gas vesicles

B.v. in cyanobacteriën

Gas vacuole

= cluster van gas vesicles

opgebouwd uit eiwitten

waterdicht, gas doorlaatbaar

drijfvermogen

Endosporen

- Sterk gedifferentieerde cellen
- 'survival structures': resistent tegen extreme omstandigheden (b.v. hitte, chemicaliën, straling)
- Verspreiding via lucht, water of maagdarmkanaal
- Sommige bacteriën, b.v. Bacillus, Clostridium

(a) Terminal endospores

(b) Subterminal endospores

(c) Central endospores

Endosporen

Endosporen

Exosporium (dunne eiwitlaag, niet bij alle endosporen)

Endospore coat (spore specifieke eiwitten)

Outer spore membrane (gevormd tijdens sporulatie)

Cortex (peptidoglycaan)

Inner membrane (gevormd vanuit cp-membraan)

Core

DNA

Let op: de *outer spore membrane* wordt niet genoemd in de 15^e editie van Brock.

Wel leren (en niet verwarren met het buitenmembraan van Gram-negatieven).

Endospore core

Samenstelling anders dan 'normaal' cytoplasma

- ¼ water (bescherming tegen hitte en chemicaliën)
- pH 1 unit lager
- Accumulatie dipicolinic acid (DPA) en calcium:
 - Bindt water (dehydratatie endospore)
 - Stabiliseert DNA (bescherming tegen hitte)
- Small acid soluble spore proteins (SASPs)
 - binden aan DNA (bescherming)
 - Koolstof en energiebron tijdens 'germination'

Characteristic	Vegetative cell	Endospore
Microscopic appearance	Nonrefractile	Refractile
Calcium content	Low	High
Dipicolinic acid	Absent	Present
Enzymatic activity	High	Low
Respiration rate	High	Low or absent
Macromolecular synthesis	Present	Absent
Heat resistance	Low	High
Radiation resistance	Low	High
Resistance to chemicals	Low	High
Lysozyme	Sensitive	Resistant
Water content	High, 80-90%	Low, 10-25% in core
Small acid-soluble spore proteins	Absent	Present

deze tabel kennen

16e: tabel 2.1

Sporulatie

Meer dan 200 verschillende genen

Alle figuren in deze PowerPoint zijn eigen werk of afkomstig uit Brock Biologiy of Microorganisms (16th edition, Pearson) tenzij anders vermeld.