Exercises: Judson 11.7, 11.11, 11.17, 11.18, 11.19

Due date: Friday, 11/21

- **11.7** In the group \mathbb{Z}_{24} , let $H = \langle 4 \rangle$ and $N = \langle 6 \rangle$.
 - (a) List the elements in HN (we usually write H+N for these additive groups) and $H\cap N$.
 - (b) List the cosets in HN/N, showing the elements in each coset.
 - (c) List the cosets in $H/(H \cap N)$, showing the elements in each coset.
 - (d) Give the correspondence between HN/N and $H/(H\cap N)$ described in the proof of the Second Isomorphism Theorem.

Solution: First note that, as subgroups of \mathbb{Z}_{24} ,

$$H = \langle 4 \rangle = \{0, 4, 8, 12, 16, 20\}$$
 and $N = \langle 6 \rangle = \{0, 6, 12, 18\}.$

- (a) The elements in H+N are $0,2,4,\cdots,22$. The elements of $H\cap N$ are 0 and 12.
- (b) The cosets in (H + N)/N are $N = \{0, 6, 12, 18\}, \qquad 2 + N = \{2, 8, 14, 20\}, \qquad 4 + N = \{4, 10, 16, 22\}.$
- (c) The cosets in $H/H \cap N$ are $h+H \cap N$ for each $h \in H$. That is, $0+H \cap N = \{0,12\}, \qquad 4+H \cap N = \{4,16\}, \qquad 8+H \cap N = \{8,20\}.$ (Note that $12+H \cap N$, $16+H \cap N$, and $20+H \cap N$ already appear in the list.)
- (d) The proof of the Second Isomorphism Theorem begins with a map that takes each $h \in H$ to $h + N \in H + N/N$; that is,

$$0\mapsto 0+N,$$
 $12\mapsto 12+N,$ $4\mapsto 4+N,$ $16\mapsto 16+N,$ $8\mapsto 8+N,$ $20\mapsto 20+N.$

Then, since the kernel subgroup of this map is $H \cap N$, the one-to-one correspondence between $H/(H \cap N)$ and H + N/N is given (by the First Isomorphism Theorem) as follows:

$$0 + H \cap N \longleftrightarrow 0 + N,$$

$$4 + H \cap N \longleftrightarrow 4 + N,$$

$$8 + H \cap N \longleftrightarrow 2 + N.$$

11.11 Show that a homomorphism defined on a cyclic group is completely determined by its action on the generator of the group.

Solution: Let $G = \langle a \rangle$ be a cyclic group. Let φ be a homomorphism from G to some other group. We want to show that, for any $x \in G$, we can write the image $\varphi(x)$ in terms of $\varphi(a)$. (That's what it means for φ to be "determined by its action on the generator.") Indeed, since $x = a^k$ for some k, and since φ is a homomorphism, we have $\varphi(x) = \varphi(a^k) = (\varphi(a))^k$.

11.17 If H and K are normal subgroups of G and $H \cap K = \{e\}$, prove that G is isomorphic to a subgroup of $G/H \times G/K$.

Solution: Define $\varphi: G \to G/H \times G/K$ by $\varphi(g) = (gH, gK)$. First we show φ is a homomorphism. By the definition of coset multiplication and the definition of multiplication in Cartesian products,

$$\varphi(g_1g_2) = (g_1g_2H, g_1g_2K) = (g_1Hg_2H, g_1Kg_2K)$$
$$= (g_1H, g_1K)(g_2Hg_2K) = \varphi(g_1)\varphi(g_2).$$

for all $g_1, g_2 \in G$, which proves that φ is a homomorphism from G to $G/H \times G/K$.

Therefore, by the First Isomorphism Theorem, $G/N_{\varphi} \cong \varphi(G)$, where N_{φ} is the kernel subgroup associated with φ . Moreover, the image $\varphi(G) = \{\varphi(g) : g \in G\}$ is a subgroup of $G/H \times G/K$. Finally, note that the identity element of $G/H \times G/K$ is (H, K), so the kernel subgroup is

$$N_{\varphi} = \{g \in G : \varphi(g) = (H, K)\}$$

= $\{g \in G : (gH, gK) = (H, K)\}$
= $\{g \in G : gH = H \text{ and } gK = K\}$
= $\{g \in G : g \in H \text{ and } g \in K\}$
= $H \cap K$.

By assumption $H \cap K = \{e\}$. Therefore, $G = G/\{e\} = G/N_{\varphi} \cong \varphi(G)$, which is a subgroup of $G/H \times G/K$.

¹The equality $G = G/\{e\}$ is technically an isomorphism $G \cong G/\{e\}$, since $G/\{e\}$ is a collection of cosets, namely $G/\{e\} = \{g\{e\} : g \in G\}$. However, since $g\{e\} = \{g\}$, it's common practice to identify the elements of $G/\{e\} = \{\{g\} : g \in G\}$ with the elements of G, and say that the quotient group $G/\{e\}$ is the group G.

11.18 Let $\varphi: G_1 \to G_2$ be a surjective group homomorphism. Let H_1 be a normal subgroup of G_1 and suppose that $\varphi(H_1) = H_2$. Prove or disprove that $G_1/H_1 \cong G_2/H_2$.

Solution: That this statement is false can be seen by considering the First Isomorphism Theorem. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Since φ is surjective, $\varphi(G_1) = G_2$ so, by the First Isomorphism Theorem, $G_1/N_{\varphi} \cong \varphi(G_1) = G_2$, where $N_{\varphi} = \varphi^{-1}(\{e_2\})$ is the kernel subgroup.

Let $H_1 = \{e_1\}$, and suppose N_{φ} strictly contains H_1 , so $G_1 \cong G_1/H_1 \ncong G_1/N_{\varphi}$. Since φ is a homomorphism, we have $\varphi(H_1) = \varphi(\{e_1\}) = \{e_2\} = H_2$, so

$$G_1 \cong G_1/H_1 \ncong G_1/N_{\varphi} \cong G_2 \cong G_2/H_2.$$

Alternatively, we could show that the statement is false by constructing a concrete counterexample, such as the following: Let $G_1 := \mathbb{Z}_9$ and $G_2 := \mathbb{Z}_9/\langle 3 \rangle$ and let $\varphi : \mathbb{Z}_9 \to \mathbb{Z}_9/\langle 3 \rangle$ be defined by $\varphi(x) = x + \langle 3 \rangle$. If $H_1 := \{0\}$, then $\varphi(\{0\}) = \{0\} = H_2$, and

$$G_1/H_1 = \mathbb{Z}_9/\{0\} \ncong \mathbb{Z}_9/\langle 3 \rangle \cong G_2/\{0\} = G_2/H_2.$$

11.19 Let $\phi: G \to H$ be a group homomorphism. Show that ϕ is one-to-one if and only if $\phi^{-1}(e) = \{e\}.$

Solution: (\Rightarrow) Suppose φ is one-to-one. Since φ is a homomorphism, $\varphi(e_G) = e_H$. Therefore, $\varphi(x) = e_H = \varphi(e_G)$ implies $x = e_G$, since φ is one-to-one. That is, $\varphi^{-1}(\{e_H\}) = \{e_G\}$.

(\Leftarrow) Suppose $\varphi^{-1}(\{e_H\}) = \{e_G\}$, and suppose $x, y \in G$. We prove that $\varphi(x) = \varphi(y)$ implies x = y. Indeed, if $\varphi(x) = \varphi(y)$ then

$$e_H = \varphi(e_G) = \varphi(x^{-1}x) = \varphi(x^{-1})\varphi(x) = \varphi(x^{-1})\varphi(y) = \varphi(x^{-1}y).$$

Therefore, $x^{-1}y$ belongs to the set $\varphi^{-1}(\{e_H\}) = \{e_G\}$, so $x^{-1}y = e_G$. Equivalently, x = y, so φ is one-to-one.