

Advanced Dashcam Assistance System

Group 2

110064533 陳劭珩

111061537 洪子晴

111062574 徐瑞憫

111064537 林亭君

111065515 鄭皓姿

Outline

- **■** Introduction
- **System Architecture**
- **Technology**
- **Global Market Analysis**
- Reference

- **■** Introduction
 - Motivation
 - Application Scenario
- **System Architecture**
- Technology
- **Global Market Analysis**
- Reference

Motivation

■ Driving Condition

- There are numerous things to pay attention while driving
- Useful Visual Field of View (UFOV) studies in driving ability
- Driver's attention and concentration

■ Target User

- Ordinary drivers with safety consciousness
 - Car rental company
 - Logistics
 - Uber
 - Driving school

Application Scenario

■ Driving Assistance

- Assist ordinary drivers
 - Particularly helpful for new drivers
- Reduce fatigue while driving
 - Prevent from fatigue drivers and drunk drivers

■ Improve the safety of all road users

- Detect drunk driving
- Detect fatigue driving
- Detect distracted driving

O

Outline

- **■** Introduction
- **■** System Architecture
 - Features
 - System Diagram
 - Data Flow Diagram
 - System Specification
- Technology
- **Global Market Analysis**
- Conclusion
- Reference

Features – Focus Reminder System

■ Inner system

- A pressure sensor on the steering wheel to prevent fatigue driving
- An alcohol gas detection to prevent drunk driving
- An inner cam and a radar to detect driver and passenger behavior

Outer system

- Driving assiatance
 - Vision for object detection and lane detection
 - Radar for object detection that provide range and doppler estimation

System Diagram

Da

Data Flow Diagram

Outer Sensing

System Specification - 1

■ Main Processor

■ MediaTek Dimensity 9200

■ Radar Processor

- ARM Cortex-R5F
- TI DSP C66x

Camera

- Three 1080p cameras w/ 120 dB of dynamic range: dual-cam 360° vision
- One narrow camera to see far-away objects

Storage

- 32 GB built-in storage
- 1TB Samsung 980 NVMe SSD

System Specification - 2

Connectivity

- Cellular Technologies
 - FR1: Sub-6GHz
 - FR2: mmWave
 - LTE, GSM
- Wi-Fi
- Bluetooth
- High-Precision GNSS
 - GPS
 - BeiDou
 - Glonass

■ Nightvision

- IR LEDs for interior night-vision monitoring
- Radar Sensor

Outline

- **Introduction**
- Motivations
- **System Architecture**
- Technology
 - Sensor
 - Main Chip
 - Bluetooth Low Energy 4.0
- **Global Market Analysis**
- Reference

TI AWR 2944

- **76-81 GHz** mmwave radar sensor
- four-transmit four-receive antenna
- On-chip C66x DSP core and ARM Cortex-R5F controller
- On-chip hardware accelerator for FFT

Number of receivers	4
Number of transmitters	4
ADC sampling rate (Max) (MSPS)	37.5
Interface type	2 CAN-FD, Ethernet, I2C
DSP	C66x DSP 360MHz
Hardware accelerators	Radar hardware accelerator
Rating	Automotive
Operating temperature range (C)	-40 to 140
Power supply solution	LP87745-Q1
Security	Cryptographic acceleration,
	Device identity/keys,
	Secure boot, Secure software
	update, Software IP protection,
	Trusted execution environment

■ Gravity: MEMS Gas Sensor

- Gas conentration sensor from DFRobot
- Support the detection of CO, C2H5OH (Alcohol), NO2, H2, NH3, CH4
- Low power and compatible with Arduino, Raspberry Pi..... using I2C output

Gas Sensor

Specification

Operating Voltage (V)	3.3 ~ 5.5 (DC)
Power Dissipation (W)	0.45 (5V)
Output Signal	I2C (0 ~ 3V)
Operating Temperature (°C)	-30 to 85
Operating Humidity	5% ~ 95% RH (No Condensation)
Storage Temperature (°C)	-40 to 85
Lifespan	> 2years (in the air)
Circuit Board Size (mm^2)	27*37
Mounting Hole Size (mm)	Inner Diameter: 3.1 / Outer Diameter: 6

Measuring Range:

- 1-1000 (ppm) (Carbon monoxide CO)
- 10 500 (ppm) (Ethanol C2H5OH)
- 0.05 10 (ppm) (Nitrogen dioxide NO2)
- 1 1000 (ppm) (Hydrogen H2)
- 1 500 (ppm) (Ammonia NH3)
- >1000 (ppm) (Methane CH4)

Pressure Sensor

Digitacts

- High performance embedded tactile sensors from Pressure Profile Systems (PPS)
- Sensitive tactile sensors can be used on almost any geometry surface
- Bluetooth wireless technology and SPI or I2C serial digital output
- Chameleon Visualization Software (Easy to use, high-quality visualization...)

Pressure Sensor

Specification

Sensor

Pressure Range (psi)	5, 20, 40
Pressure Sensitivity	0.2%
Linearity	99.7%
Signal to Noise Ratio (SNR)	700
Contact Surface Material	Cloth and Polyimide
Sensor Thickness (mm)	0.5
Cable Length(m)	1.5
Operating Temperature (°C)	-20 to 100

Electronics

Sampling Rate (Hz)	30-100
Computer Interface	Bluetooth
Input Voltage	5V
Input Power	2.5W
ADC Resolution	16 bits
Enclosure Size (cm)	75x40x12.8
Weight (g)	55

Main Chip - SoC

- **CPU**
 - MediaTek Dimensity 9200
- **Radar Processor**
 - ARM Cortex-R5F
- **DSP**
 - TI DSP C66x
- AI Processor
 - Himax WiseEye WE-I Plus HX6537-A

AI Processor

- AI accelerator is a class of specialized hardware accelerator or computer system designed to accelerate machine learning applications.
- **■** We use AI Processor to accelerate
 - YOLOv7 for Object Detection
 - SCNN for Lane Detection

Object Detection

Lane Detection

WiseEye WE-I Plus HX6537-A

■ Himax WE-I Plus ASIC

■ HX6537-A processor to accelerate NN

Feature

- Low power
- Hight Performance
- Support Google TensorFlow Lite

WiseEye WE-I Plus HX6537-A - Specification

■ WE-I Plus ASIC (HX6537-A)

- ARC 32-bit EM9D DSP with FPU
- 400MHz clock frequency
- 2MB SRAM
- 2MB Flash

On board

- Himax HM0360 AoS TM ultra-low power VGA CCM
- FTDI USB to SPI/I2C/UART bridge
- LDO power supply (3.3/2.8/1.8/1.2V)
- 3-asix accelerometer
- 1x reset button
- 2x microphones (L/R)
- 2x user LEDs
- microUSB connector

Bluetooth Low Energy 4.0

- Bluetooth Low Energy is a bluetooth protocol, which is created in a low energy consumption mode by Nokia
- **Features:**
 - Low power
 - Use GATT protocol for various applications
 - 2.4GHz for bandwidth

Bluetooth Low Energy 4.0

- **■** Application
 - All of application use the GATT profile

Blood Pressure

Navigation

HID connect

Specification

Specifications	$Classic\ Bluetooth$	Bluetooth Low Energy
Range	100 m	Greater than 100 m
Data rate	1–3 Mbps	125 kbitps - 1 Mbps - 2 Mbps
Application throughput	$0.7-2.1 \; \text{Mbps}$	$0.27 \; \mathrm{Mbps}$
Active slaves	7	Not defined
Frequency	$2.4~\mathrm{GHz}$	$2.4~\mathrm{GHz}$
Security	56/128-bit	128-bit AES with Counter Mode CBC-MAC
Robustness	Adaptive fast frequency hopping, FEC, fast ACK	24-bit CRC, 32-bit Message Integrity Check
Latency	100 ms	6 ms
Time Lag	100 ms	3 ms
Voice capable	Yes	No
Network topology	Star	Star
Power consumption	1 W	0.01 - 0.50 W
Peak current consumption	less than 30mA	less than 15mA

Bandwidth

Diviede into 40 channels for each 2 GHz

GATT (Generic Attribute Profile)

- Two mayor characteristics
 - GATT Server
 - GATT Client
- Framework of GATT: ATT protocol (Attribute protocol)
 - Define the realtionship between GATT Server and GATT Client
 - Request the data of APK and attriute during the connection
 - Bound the same type of servie into one service

Connection of GATT

HID (Human Interface Devices)

- Used to connect peripheral device on this report
 - One of GATT profile
- Provides the wireless connection with longer usage time
 - Wireless mouse, wireless keyboard...

The type of HID device, such as a keyboard, mouse, or joystick, is defined by the HID descriptor in the raw HID report.

O

Outline

- **Introduction**
- **■** Motivations
- **System Architecture**
- Technology
- **Global Market Analysis**
 - SWOT Analysis
 - Porter's 5 Forces Analysis
- Reference

Global Market Analysis

■ Market Forecast

- ADAS market was valued at \$23.44 billion in 2021
- It is expected to reach a value of \$75.27 billion by 2030
 - Therefore, it has an extraordinary compound annual growth rate (CAGR) of 13.83%

■ Two key factors of the market growth

- The increase in disposable income levels among consumers
 - According to a study by the US Bureau of Economic Analysis
- The stricter enforcement of transportation regulations by authorities around the world
 - In 2020, the US Congress requires the use of Lane departure warning system (LDWS) and automatic emergency braking (AEB) in commercial trucks

Global Market Analysis

Global Advanced Driver Assistance System Market (2020–2030)

Market forecast to grow at a CAGR of 13.83%

SWOT Analysis

- 1. Don't need to buy entire selfdriving cars
- 2. Cheaper
- 3. Easy to install

S

- 1. Weaker self-driving function
- 2. Smaller market share

W

- 1. Improve of driving safety awareness
- 2. Better SOC process technology
- 3. Higher resolution of Radar

- 1. LiDAR-based ADAS system
- 2. Tesla

Porter's 5 Forces Analysis

- 1. Higher supplier power due to lack of chip supply
- 2. Smaller differential of the product provided by supplier

THREAT OF NEW ENTRY

- 1. Higher level to enter the industry
- 2. Need higher technical level
- 3. Lower threaten to our product compared to other treats

SUPPLIER POWER

COMPETITIVE RIVALRY **BUYER POWER**

- 1. Lower market share than our substitution
- 2. Weaker self-driving function
- 3. Most people tend to choose Tesla

THREAT OF SUBSTITUTION

- 1. Lower buyer power because no similar product in the market
- 2. Network information transparency
- 3. Lower customer switching cost

Outline

- **Introduction**
- Motivations
- **System Architecture**
- Technology
- **Global Market Analysis**
- Reference

Reference

- [1] Gershon, Pnina, et al. "Distracted driving, visual inattention, and crash risk among teenage drivers." American journal of preventive medicine 56.4 (2019): 494-500.
- [2] Ball, Karlene K., Virginia G. Wadley, and Jerri D. Edwards. "Advances in technology used to assess and retrain older drivers." Gerontechnology (2002).
- [3] Tzortzi, Anna, et al. "Driving behavior that limits concentration: A nationwide survey in Greece." International journal of environmental research and public health 18.8 (2021): 4104.
- [4] https://www.himax.com.tw/wp-content/uploads/2020/06/Himax-Launches-WiseEye-WE-I-Plus-HX6537-A-to-Support-AI-Deep-Learning-with-TensorFlow-Lite-for-Microcontroller_-final.pdf
- [5] https://cdn.sparkfun.com/assets/1/b/b/2/1/WE-I_Plus_EVB_Technical_Document_v03.pdf
- [6] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- [7] Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors." arXiv preprint arXiv:2207.02696 (2022).
- [8] Pan, Xingang, et al. "Spatial as deep: Spatial cnn for traffic scene understanding." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. No. 1, 2018.
- [9] https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E7%89%A9%E4%BB%B6%E5%81%B5%E6%B8%AC-non-maximum-suppression-nms-aa70c45adffa
- [10] https://www.globenewswire.com/en/news-release/2022/07/20/2482868/0/en/Advanced-Driver-Assistance-Systems-ADAS-Market-Worth-USD-75-27-Billion-by-2030-With-a-CAGR-of-13-83.html

Reference

- [11] https://www.dfrobot.com/product-2417.html
- [12] https://img.dfrobot.com.cn/wiki/5b973267c87e6f19943ab3ad/ec7dd3a55ba1d58fcbd5830ee08c0e7f.pdf
- [13] https://img.dfrobot.com.cn/wiki/5b973267c87e6f19943ab3ad/b5b08fe2ea631f0becdfa0c15db88c4a.pdf
- [14] https://pressureprofile.com/sensors/digitacts
- [15] https://cdn2.hubspot.net/hubfs/5361756/Spec%20Sheets/Spec%20Sheet_DigiTacts%20System.pdf?__hstc=57482165.7b47cad7ed79f0c6c059ea4d87fe50ad.167 2817794233.1672817794233.1672820140562.2&__hssc=57482165.1.1672938130050&__hsfp=2977007349&hsCtaTracking=4427830a-a50d-4af1-b425-660de65748d0%7Cd684d85b-195b-4d34-a900-a1b2273652b7
- [16] https://hackmd.io/@ShenTengTu/SkPltNmiE?type=view
- [17] https://medium.com/@nalydadad/%E6%A6%82%E8%BF%B0-gatt-%E8%97%8D%E8%8A%BD%E5%82%B3%E8%BC%B8-9fa218ce6022
- [18] https://ithelp.ithome.com.tw/articles/10224000
- [19] https://www.ti.com.cn/cn/lit/an/swra715/swra715.pdf?ts=1656944702493
- [20] https://www.2cm.com.tw/2cm/zh-tw/market/B1C12F26DAD442478C0CACF162E9D44D
- [21] https://www.researchgate.net/figure/3-Comparison-of-Classic-Bluetooth-and-Bluetooth-Low-Energy-BLE-46_tbl3_341913410
- [22] https://microchipdeveloper.com/wireless:ble-phy-layer
- [23] https://wifivitae.com/2020/05/01/ble-overview/
- [24] https://cdn.sparkfun.com/datasheets/Wireless/Bluetooth/RN-HID-User-Guide-v1.0r.pdf
- [25] TI AWR 2944 EVM. Available online: https://www.ti.com/tool/AWR2944EVM (accessed on 08 January 2023)
- [26] TI AWR 2944 Spec. Available online: https://www.ti.com/product/AWR2944 (accessed on 08 January 2023)
- [27] MediaTek Dimensity 9200 Spec. Avaliable online: https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9200 (accessed on 08 January 2023)

Thanks

