A (very) brief introduction to graphical models

Clayton W. Seitz

February 16, 2022

Outline

Introduction to graphical models

Graphical models of gene expression

Graphical models in image processing

References

The logic of generative modeling

Say we have a set of variables $\mathbf{x} = (x_1, x_2, ..., x_n)$ which might have some statistical dependence

The variable \mathbf{x} might be an amino acid sequence, gene expression data, microscopy image, etc.

- ▶ Often we are handed a batch of empirical samples $\{x_i\}_{i=1}^N$
- We want to know the generating distribution p(x)

In supervised generative learning, we try to explicity learn the joint distribution $p(\mathbf{x}) = \prod_{i=1}^{N-1} p(x_i|x_{i+1:N})p(x_N)$, which is generally more difficult than discriminative learning.

Perks of generative modeling

- Fitting complete multivariate distributions $p(\mathbf{x})$ goes beyond correlation-based or clustering approaches
- Correlations cannot discover partial correlation in the context of other neighbors
- Fitting p(x) permits inference

Why generative modeling is difficult

When describing a distribution over multiple variables, we may not know the proper normalization Z. That is,

$$p(\mathbf{x}) = \frac{1}{Z}\tilde{p}(\mathbf{x})$$

This very important situation arises in several contexts:

- 1. In Bayesian inference where $p(x_1|x_2) = p(x_2|x_1)p(x_1)/p(x_2)$ is intractable due to $Z = p(x_2) = \int p(x_2|x_1)p(x_1)dx_1$. This integral can be very difficult or impossible to compute.
- 2. In models from statistical physics, e.g. the Ising model, we only know $\tilde{p}(\mathbf{x}) = e^{-H(\mathbf{x})}$ where $H(\mathbf{x})$ is the Hamiltonian

Primary types of graphical models

MRF: $P(X, Y, Z) = \psi(X, Y)\psi(X, Z)\psi(Y, Z)$

Bayes: P(X, Y, Z) = P(X|Y, Z)P(Z|Y)P(Y)

The Markov Blanket

Bayesian networks for modeling gene interactions

MCMC Structure Samplers

Bayesian image reconstruction

Say a fluorophore emits photons at a rate λ_n . This is the best we can do according to QM

For a CMOS array with quantum efficiency γ $\left[e^{-}/p\right]$ we have

$$I_n = \gamma g_n P_n(\lambda_n) + G_n(\mu_n; \sigma_n^2) + \beta$$

where μ_n [ADU] is the detector offset and g_n [ADU/ e^-] is the gain.

All we know is λ_n , so both the true signal I_n and the detected signal \hat{I}_n are stochastic processes.

$$P_{\lambda}(I_n, \hat{I}_n) = \frac{1}{Z} \frac{\exp(-\lambda_n) \lambda_n^p}{p!} \exp\left(-\frac{(D - g_n p - \mu_n)^2}{\sigma_n^2}\right)$$

Bayesian image reconstruction

Marginalizing over p gives the noise model as a function of the rate λ_{n}

$$P_{\lambda}(I_n) = \frac{1}{Z} \sum_{p} \frac{\exp(-\lambda_n) \lambda_n^p}{p!} \exp\left(-\frac{(D - g_n p - \mu_n)^2}{\sigma_n^2}\right)$$

References I