Mathematics 227

Final Review, Part I

1. What does it mean to say that a vector **b** is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$?

Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 5 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 5 \\ 4 \end{bmatrix}.$$

Can b be written as a linear combination of v_1 , v_2 , and v_3 ? If so, describe all the ways in which it can be so written.

Do the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 span \mathbb{R}^3 ? If not, find a vector that is not in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

Give a geometric description of $\text{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}.$

2.	We earlier defined the <i>rank</i> of a matrix A to be the number of pivot positions in A . Suppose that A is a 3×4 matrix.
	If $rank(A) = 3$, what can you say about $Col(A)$?
	If $rank(A) = 2$, give a geometric description of $Col(A)$.
	If $rank(A) = 1$, give a geometric description of $Col(A)$.
	Give an example of a 3×4 matrix A whose rank is 1.
3.	What does it mean for a set of vectors to be linearly independent?
	Are the set of vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 from the last part of this activity linearly independent?

If
$$A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$$
, give a basis of Nul(A).

Write one of the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 as a linear combination of the others.

4. Suppose that A is a 3×4 matrix with rank(A) = 3. What can you say about the span of the columns of A? What can you say about the linear independence of the columns of A?

5. Suppose that A is a 7×5 matrix and that the equation A**x** = **0** has only one solution. What is the solution?

What can you guarantee about the solution space of the equation Ax = b for some other vector b?

What can you guarantee about the solution space of the equation $A\mathbf{x} = \mathbf{b}$ for some other vector \mathbf{b} that is in Col(A)?