Distributions

Name	pmf/pdf	μ	σ^2	mgf
Uniform discrete	$1/n, x = 1, \dots, n$	(n+1)/2	$(n^2-1)/12$	$(e^{(n+1)t} - e^t)/(n(e^t - 1))$
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}, x = 0, \dots, n$	np	np(1-p)	$(1 - p + pe^t)^n$
Poisson	$e^{-\lambda}\lambda^x/x!, x = 0, 1, \dots$	λ	λ	$e^{\lambda(e^t-1)}$
Negative binomial	$\binom{x-1}{r-1}q^{x-r}p^r, x = r, r+1, \dots$	r/p	rq/p^2	$(pe^t/(1-qe^t))^r$
Uniform continuous	1/(b-a), a < x < b	(a+b)/2	$(b-a)^2/12$	$(e^{tb} - e^{ta})/(t(b-a))$
Gamma	$\lambda^k/\Gamma(k)x^{k-1}e^{-\lambda x}, x>0$	k/λ	k/λ^2	$(\lambda/(\lambda-t))^k$
Normal	$1/(\sqrt{2\pi}\sigma)e^{-(x-\mu)^2/(2\sigma^2)}$	μ	σ^2	$e^{t\mu+t^2\sigma^2/2}$
Beta	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}I_{(0,1)}(x)$	a/(a+b)	$ab/((a+b)^2(a+b+1))$	Not requested
Cauchy	$1/(\pi(1+x^2))$			

Bivariate normal
$$\frac{1/(2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2})e^{-((x-\mu_X)^2/\sigma_X^2)-2\rho(x-\mu_X)(y-\mu_Y)/(\sigma_X\sigma_Y)+(y-\mu_Y)^2/\sigma_Y^2)/(2(1-\rho^2))}{\mu_Y+\rho\sigma_Y(x-\mu_X)/\sigma_X} \\ \sigma_Y^2(1-\rho^2).$$

$$\begin{array}{l} \textbf{Multivariate normal} \\ (2\pi)^{-k/2}|\Sigma|^{-1/2}e^{-(\mathbf{x}-\mu)^T\Sigma^{-1}(\mathbf{x}-\mu)/2} \\ \mu_Y + \Sigma_{YX}\Sigma_{XX}^{-1}(\mathbf{x}-\mu_X), \Sigma_{YY} - \Sigma_{YX}\Sigma_{XX}^{-1}\Sigma_{XY} \end{array}$$