Codage des nombres entiers relatifs

M. Combacau combacau@laas.fr

12 novembre 2024

Objectif

Savoir coder un nombre entier positif dans une base quelconque Détails du cas de la base 2

Introduction

- Un nombre ←→ valeur
- Représenter la valeur d'un nombre : codage!
- Que signifie **31**? $3 \times 10 + 1$? pourquoi?
- Existence d'un ensemble de conventions admises par tous
 - 10 chiffres sont utilisés {0,1...,9}
 - le code d'un nombre est une succession ordonnée de ces chiffres
 - numération de position : la valeur(A) représentée par $a_{n-1} \dots a_1 a_0$ se calcule par

$$valeur(A) = a_{n-1}.10^{n-1} + a_{n-2}.10^{n-2} + ... + a_1.10^1 + a_0.10^0$$

 \Rightarrow 31 est "codé en base 10"

Codage d'un nombre entier en base b (b chiffres)

Simple généralisation du codage en base 10 :

En base b, $a_{n-1} \dots a_1 a_0$ code la valeur $a_{n-1} b^{n-1} + \dots + a_0 \cdot b^0$

Quelques bases classiques

- base 10 (décimal) → comptez vos doigts...
- base 2 (binaire) → proche des valeurs de variables booléennes
- base 8 (octal) →? comptez les espaces entre vos doigts...
- base 16 (hexadécimal) \rightarrow binaire compact (chiffres :0..9ABCDEF)

La base devrait être précisée : 31_{10} en effet : $31_{10} \neq 31_8 \neq 31_{16}$

Quelques exemples

Le nombre 143 se représente par :

$$\begin{array}{rl} 10001111_2 &= 2^7 + 2^3 + 2^2 + 2^1 + 2^0 \\ 217_8 &= 2 \times 8^2 + 1 \times 8^1 + 7 \times 8^0 \\ 8F_{16} &= 8 \times 16 + F \ \text{car} \ (F_8 = 15_{10}) \end{array}$$

Base 2 : principe et intérêt

- **Seul intérêt** : la valeur d'un **bit** (binary digit) peut être représentée par la tension en un point d'un circuit électronique
- L'intervalle de valeurs codables sur *n* bits

$$valeur(a_{n-1} ... a_1 a_0) \in [0, 2^n - 1]$$

- La valeur codée par *n* bits

$$valeur(a_{n-1}...a_1a_0) = a_{n-1}.2^{n-1} + ... + a_1.2^1 + a_0.2^0$$

- Décodage : calcul ci-dessus dans la base d'arrivée (généralement 10)
- Codage : changement de base (généralement 10 o 2)

Algorithme de codage(1)

Utilisation du schéma de Horner

$$a_{n-1} \cdot 2^{n-1} + a_{n-2} \cdot 2^{n-2} + \dots + a_1 \cdot 2^1 + a_0$$

$$= 2 \times (a_{n-1} \cdot 2^{n-2} + a_{n-2} \cdot 2^{n-3} + \dots + a_1 \cdot) + a_0$$

$$= 2 \times (2 \times (a_{n-1} \cdot 2^{n-3} + a_{n-2} \cdot 2^{n-4} + \dots + a_2) + a_1) + a_0$$

$$= \dots$$

$$= 2 \times (2 \times (\dots \cdot (2 \times (a_{n-1}) + a_{n-2}) + \dots + a_2) + a_1) + a_0$$

 \rightarrow calcul de a_0 a_{n-1} par divisions successives par 2 (reste)

Algorithme de codage(2)

Exemple: soit à coder 27₁₀ en base 2

Les divisions successives donnent le bits de poids faible en commençant par a_0 . Dans cet exemple, tous les bits de rang supérieur à 4 (a_5 , a_6 , a_7) valent 0. D'où le code [00011011] pour le nombre 27

Algorithme de codage(3)

Autre exemple : soit à coder 143₁₀ en base 2

opération	reste	a_i
143/2 = 71	1	(a_0)
71/2 = 35	1	(a_1)
35/2 = 17	1	(a_{2})
17/2 = 8	1	(a_3)
8/2 = 4	0	(a_4)
4/2 = 2	0	(a_{5})
2/2 = 1	0	(a_{6})
1/2 = 0	1	(a_7)

Test d'arrêt : quotient = 0

