Przetwarzanie danych przestrzennych (zadania) SQL/MM

Krzysztof Jankiewicz Politechnika Poznańska, Instytut Informatyki

Standard SQL/MM znalazł wiele implementacji. Przykładowymi systemami zarzadzania bazami danych, które go wykorzystują są Oracle, PostgreSQL oraz DB2.

Poniższe ćwiczenia, dotyczące standardu SQL/MM, można wykonać przy wykorzystaniu każdej z nich. W przypadku ćwiczeń, które dotyczą tylko jednej z tych baz danych, przed treścią ćwiczenia (w nawiasach) znajduje się odpowiednie oznaczenie wskazujące właściwą dla ćwiczenia implementację.

UWAGA: Poleceń z dopiskiem "(DB2)" NIE wykonujemy.

Ćwiczenie 1

Standard SQL/MM Part: 3 Spatial.

A. (Oracle) Wykorzystując klauzule CONNECT BY wyświetl hierarchię typu ST GEOMETRY.

```
select lpad('-',2*(level-1),'|-') || t.owner||'.'||t.type_name||' (FINAL:'||t.final||
', INSTANTIABLE:'||t.instantiable||', ATTRIBUTES:'||t.attributes||', METHODS:'||t.methods||')'
from all types t
start with t.type_name = 'ST_GEOMETRY'
connect by prior t.type name = t.supertype name
      and prior t.owner = t.owner;
LPAD('-',2*(LEVEL-1),'|-')||T.OWNER||'.'||T.TYPE NAME||'(FINAL:'||T.FINAL||'
MDSYS.ST GEOMETRY (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:41)
|-MDSYS.ST CURVE (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:52)
|-|-MDSYS.ST CIRCULARSTRING (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:55)
|-|-MDSYS.ST_COMPOUNDCURVE (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:60)
|-|-MDSYS.ST_LINESTRING (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:56)
|-MDSYS.ST_GEOMCOLLECTION (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:48)
|-|-MDSYS.ST MULTICURVE (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:50)
|-|-|-MDSYS.ST MULTILINESTRING (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:50)
|-|-MDSYS.ST MULTIPOINT (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:48)
|-|-MDSYS.ST_MULTISURFACE (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:49)
|-|-|-MDSYS.ST MULTIPOLYGON (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:53)
|-MDSYS.ST POINT (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:49)
|-MDSYS.ST_SURFACE (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:44)
|-|-MDSYS.ST_CURVEPOLYGON (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:54)
|-|-|-MDSYS.ST POLYGON (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:63)
15 rows selected
```

B. (Oracle) Wyświetl nazwy metod typu ST_POLYGON.

C. (Oracle) Utwórz tabelę MYST_MAJOR_CITIES o następujących kolumnach:

FIPS_CNTRY VARCHAR2(2),
 CITY_NAME VARCHAR2(40),
 STGEOM ST POINT.

Table created

(DB2) Utwórz tabelę MYST_MAJOR_CITIES o następujących kolumnach:

FIPS_CNTRY VARCHAR(2),CITY_NAME VARCHAR(40),STGEOM ST_POINT.

Uwaga! W bazie danych DB2 właścicielem typów przestrzennych ST* (a także innych obiektów związanych z przetwarzaniem danych przestrzennych) jest DB2GSE.

Sukces

D. **(Oracle)** Przepisz zawartość tabeli MAJOR_CITIES (znajduje się ona w schemacie ZSBD_TOOLS) do stworzonej przez Ciebie tabeli MYST_MAJOR_CITIES dokonując odpowiedniej konwersji typów.

123 rows inserted

(DB2) Przepisz zawartość tabeli MAJOR_CITIES (znajduje się ona w schemacie ZSBD_OWNER) do stworzonej przez Ciebie tabeli MYST_MAJOR_CITIES. Nie musisz dokonywać żadnych konwersji typów.

Zaktualizowano następującą liczbę wierszy: 123.

Uwaga! W bazie danych DB2 nie ma typowych typów obiektowych. W związku z tym przetwarzanie danych przestrzennych w oparciu o standard SQL/MM nie jest realizowane za pomocą metod. W DB2 możemy mówić o proceduralnej lub funkcyjnej implementacji standardu SQL/MM.

Przykład: Zapytanie które byłoby odpowiedzią na zadanie "Sprawdź ile miejscowości zawiera się w danym państwie" w przypadku bazy danych Oracle wyglądałoby następująco:

```
select B.CNTRY_NAME, count(*)
from MYST_COUNTRY_BOUNDARIES B, MYST_MAJOR_CITIES C
where C.STGEOM.ST_WITHIN(B.STGEOM) = 1
group by B.CNTRY NAME;
```

Tymczasem w przypadku bazy danych DB2 będzie ono wyglądało tak:

```
select B.CNTRY_NAME, count(*)
from MYST_COUNTRY_BOUNDARIES B, MYST_MAJOR_CITIES C
where DB2GSE.ST_WITHIN(C.STGEOM, B.STGEOM) = 1
group by B.CNTRY_NAME;
```

Ćwiczenie 2

Standard SQL/MM Part: 3 Spatial - konwersja formatów

A. Wstaw do tabeli MYST_MAJOR_CITIES informację dotyczącą Szczyrku. Załóż, że centrum Szczyrku znajduje się w punkcie o współrzędnych 19.036107; 49.718655. Wprowadź informację przy wykorzystaniu formatu well-known text (WKT).

1 row inserted

B. Wyświetl w formacie *well-known text* (WKT) definicje przestrzenne rzek umieszczone w tabeli RIVERS.

NAME	WKT
Elbe 50.913361, 14.03845 5	LINESTRING (14.23346 50.86964, 14.18706 50.891781, 14.1084
Vistula	LINESTRING (21.001011 52.268829, 21.021959 52.25135, 21.06971
52.23241, 21.10969 Vistula	LINESTRING (18.914459 49.70644, 18.832359 49.801899, 18.803619
49.845089, 18.799 Odra	LINESTRING (14.80079 52.079731, 14.89331 52.037868, 14.9572
52.031139, 15.08692	
Labe 50.223949, 14.66837	LINESTRING (14.56134 50.28437, 14.60777 50.249771, 14.64611
Goryn' 25.88303 49.87571, 25	MULTILINESTRING ((25.565729 49.843349, 25.784321 49.85622,
 125 rows selected	

C. Wyświetl definicję przestrzenną wprowadzonego przez Ciebie miasta Szczyrk w postaci formatu GML.

```
<gml:Point srsName="SDO:" xmlns:gml="http://www.opengis.net/gml">
    <gml:coordinates decimal="." cs="," ts=" ">19.036107,49.718655 </gml:coordinates>
</gml:Point>
```

Ćwiczenie 3

Standard SQL/MM Part: 3 Spatial – pobieranie własności i miar

- A. (Oracle) Utwórz tabelę MYST_COUNTRY_BOUNDARIES z następującymi atrybutami
 - FIPS_CNTRY VARCHAR2(2),CNTRY_NAME VARCHAR2(40),
 - STGEOM ST_MULTIPOLYGON.

Table created

(DB2) Utwórz tabelę MYST_COUNTRY_BOUNDARIES z następującymi atrybutami

- FIPS_CNTRY VARCHAR(2),
- CNTRY_NAME VARCHAR(40),
- STGEOM ST_MULTIPOLYGON.

Sukces

B. Przepisz zawartość tabeli COUNTRY_BOUNDARIES do nowo utworzonej tabeli dokonując odpowiednich konwersji (w przypadku DB2 konwersja nie będzie potrzebna).

19 rows inserted

C. Sprawdź jakiego typu i ile obiektów przestrzennych zostało umieszczonych w tabeli MYST_COUNTRY_BOUNDARIES.

TYP_OBIEKTU	ILE
ST MULTIPOLYGON	7
ST POLYGON	12

D. Sprawdź czy wszystkie definicje przestrzenne uznawane są za proste.

19 rows selected

Ćwiczenie 4

Standard SQL/MM Part: 3 Spatial - przetwarzanie danych przestrzennych

A. Sprawdź ile miejscowości (MYST_MAJOR_CITIES) zawiera się w danym państwie (MYST_COUNTRY_BOUNDARIES).

ORA-13295: obiekty geometrii znajdują się w różnych systemach współrzędnych

Co jest powodem błędu? Usuń przyczynę.

CNTRY NAME	COUNT(*)
Denmark Poland	 1 51
 Lithuania Ukraine	1 7

15 rows selected

B. Znajdź te państwa, które graniczą z Czechami.

A_NAME	B_NAME	
Austria	Czech Republic	
Poland	Czech Republic	
Germany	Czech Republic	
Slovakia	Czech Republic	

C. Znajdź nazwy tych rzek, które przecinają granicę Czech – wykorzystaj tabelę RIVERS (w przypadku bazy Oracle wykorzystaj także konstruktor typu ST_LINESTRING).

CNTRY	_NAME	NAME
Czech	Republic	Spree
	Republic	Morava
	Republic	Odra
	Republic	Vltava
Czech	Republic	Labe

D. Sprawdź, jaka powierzchnia jest Czech i Słowacji połączonych w jeden obiekt przestrzenny.

E. Sprawdź jakiego typu obiektem są Węgry z "wykrojonym" Balatonem – wykorzystaj tabelę WATER_BODIES.

Ćwiczenie 5

Standard SQL/MM Part: 3 Spatial – indeksowanie i przetwarzanie przy użyciu operatorów SDO_NN i SDO_WITHIN_DISTANCE. Uwaga! Całe ćwiczenie dotyczy tylko bazy danych Oracle.

- A. (Oracle) Wykorzystując operator SDO_WITHIN_DISTANCE znajdź liczbę miejscowości oddalonych od terytorium Polski nie więcej niż 100 km. (wykorzystaj tabele MYST_MAJOR_CITIES i MYST_COUNTRY_BOUNDARIES). Obejrzyj plan wykonania zapytania. (Uwaga: We wcześniejszych wersjach Oracle użycie tych operatorów nawet dla standardowych typów SQL/MM było możliwe tylko z pomocą indeksu przestrzennego. Bez niego zapytanie kończyło się błędem "ORA-13226: interfejs nie jest obsługiwany bez indeksu przestrzennego".)
- B. **(Oracle)** Zarejestruj metadane dotyczące stworzonych przez Ciebie tabeli MYST_MAJOR_CITIES i/lub MYST_COUNTRY_BOUNDARIES.

1 row inserted

C. (Oracle) Utwórz na tabelach MYST_MAJOR_CITIES i/lub MYST COUNTRY BOUNDARIES indeks R-drzewo.

Index created

D. (Oracle) Ponownie znajdź liczbę miejscowości oddalonych od terytorium Polski nie więcej niż 100 km. Sprawdź jednocześnie, czy założone przez Ciebie indeksy są wykorzystywane wyświetlając plan wykonania zapytania.

A_NAME	COUNT(*)
Poland	67

Plan hash value: 2247583427

 Id	 I	Operation	Name	 	Rows	 I	Bytes	 	Cost	(%CPU)	Time	
0 1 2 * 3	2	SELECT STATEMENT SORT GROUP BY NOSORT NESTED LOOPS TABLE ACCESS FULL DOMAIN INDEX	MYST_COUNTRY_BOUNDARIES MYST_MAJOR_CITIES_IDX		1 1 1 1		7672 7672 7672 7672 3841	İ	7 7 7 5	(0)	00:00:01 00:00:01 00:00:01 00:00:01	

Predicate Information (identified by operation id):