

Lecture 4. Disaster victim identification

Thore Egeland

Norwegian University of Life Sciences (NMBU) &

Department of Forensic Medicine, Norway

Disaster Victim Identification (DVI)

DVI

- Match list of unidentified persons against a list of missing persons
- Special case:
 - Missing Person Identification

Cases

- Missing grandchildren of Argentina
- World Trade Center attack
- Spitsbergen civil aircraft disaster
- Balkan conflicts
- Drowned immigrants
- Thailand tsunami

Methods and software

- Exclusion and inclusion power
- Treat each victim (PM approach)
 or each family (AM approach) at a time
- Joint approach. GLR
 - library(dvir)
- DIVIANA (Magnus)

First: Missing Person Identification

- Special case of DVI:
 - ✓ Only one *missing person* (MP) in each reference family
 - ✓ Possibly many reference families and many *persons of interest* (POIs)
 - ✓ Each case treated independently

Exclusion power

- Sufficient data to exclude an unrelated POI?
- Exclusion power

 $EP = P(\text{data incompat. with ped} \mid POI \text{ unrelated})$

 Can be computed exactly (Egeland, Pinto, Vigeland, 2014).

In forrel:

- > exclusionPower()
- > missingPersonEP()

Inclusion power

- Sufficient data to give a positive match if POI = MP?
- **Inclusion power** (or *exceedance probability*):

$$IP_{10000} = P(LR > 10000 \mid POI = MP)$$

- Can be computed by simulation!
 - Unconditional → average for all pedigrees of this type
 - Conditional → probability for <u>this particular case</u>

In forrel:

> missingPersonIP()

Argentina 1976 – 1983: Dirty War

- Military dictatorship
- War against guerrillas

- About 500 children abducted
 - kidnapped with their parents or born in captivity
 - parents killed
 - raised by police or military families

History

- 1977: Grandmothers of Plaza de Mayo
 - weekly marches ever since
 - https://www.abuelas.org.ar
- 1983: Mary-Claire King, US geneticist
 - Collaboration with the Grandmothers
 - HLA typing + blood groups
 - First grandchild recovered using genetics
- 1987: National Genetic Data Bank (BNDG)
- 2007: Argentine Forensic Anthropology Team
- 2023: In total 132 reunifications by BNDG

Exclusion and inclusion

- POI1 = 12/12 is excluded if mutations are ignored since the alleles of his father are among 9/10/13
- POI2 is
 - ✓ not excluded
 - ✓ included if LR > 10000

Power analysis

- Power evaluation of ~200 families in the BNDG database
 - most of them unsolved

Typed	Families	Parent(s) typed	2 nd degree only
1	11	5	5
2	20	5	15
3	29	7	20
4	41	6	33
5	29	7	14
6	26	5	14
7	14	0	8
8	14	0	9
9	5	0	3
10+	7	0	5
Total	196	35	126

Missing	Total	mtDNA	Y
Male	27	27	25
Female	17	17	-
Unknown	152	142	108
Total	196	186	133

For each family: Compute IP₁₀₀₀₀ and EP

Disaster victim identification (DVI)

Initial steps

- ➤ Merge identical samples
- ➤ Direct matching
- > Remove non-identifiable
- > Exclude

 \triangleright Pairwise LR. H₁: Vi = Mj vs. H₂: unrelated

Challenge: Sometimes pairwise fails

Pairwise LRs indicate V1 = M2, but

 V1 = M2 is impossible if V2 is among the missing

Joint solution

Joint likelihoods, sorted

<u> </u>	V1	V2	V3	loglik	LR
1	МЗ	M1	M2	-15.67181	2000.0
2	M2	*	M1	-17.97439	200.0
3	M2	*	МЗ	-17.97439	200.0
4	*	M1	M2	-17.97439	200.0
5	М3	*	M2	-18.66754	100.0
6	*	М3	M2	-18.66754	100.0
19	*	*	*	-23.27271	1.0
34	*	М3	*	-Inf	0.0

Two problems:

- ✓ LR uses V1 = '*', V2 = '*', V3 = '*' as comparison
- ✓ How do we test e.g. H_1 : V1 = M3 vs. H_2 : V1 = '*'?

A tool for interpreting joint results: Generalised likelihood ratio (GLR)

$$GLR = \frac{\max_{i \in H_1} L_i}{\max_{j \in H_2} L_j}$$

	V1	V2	V3	loglik	LR
1	M3	M1	M2	-15.67181	2000.0
2	M2	*	M1	-17.97439	200.0
3	M2	*	МЗ	-17.97439	200.0
4	*	M1	M2	-17.97439	200.0
5	М3	*	M2	-18.66754	100.0
6	*	М3	M2	-18.66754	100.0
19	*	*	*	-23.27271	1.0
34	*	М3	*	-Inf	0.0

$$GLR = \frac{LR_1}{LR_2} = \frac{2000}{200} = 10$$

Interpretation of GLR = x

$$GLR = \frac{\max_{i \in H_1} L_i}{\max_{j \in H_2} L_j}$$

The best explanation of the data given H1 is x times more likely than the best explanation given H2

Symmetric matches

Question 2:

$$\{V1, V2\} = \{M2, M3\}$$
?

$GLR = \frac{L_1}{L_5} = 2.9 \times 10^6$

Joint likelihoods

	V1	V2	V3	loglik	
1	M1	M2	М3	-257.7	· ✓
2	M1	M3	M2	-257.7	√
3	*	M2	M3	-268.9	~
4	*	M3	M2	-268.9	~
5	M2	M1	M3	-272.6	×
6	M3	M1	M2	-272.6	×
7	M1	*	M2	-276.5	×
8	M1	*	M3	-276.5	×
9	M2	M3	M1	-276.6	×
:					
32	*	*	*	-286.0	×
33	*	M1	*	-286.5	×
34	*	*	M1	-292.2	×
					. ••

Potential problem: Related victims

- Assume V1 and V2 are related, e.g. father son, but not related to R1
- Then {V1, V2} may be wrongly identified as {M1, M2} if family F2 is not included

	V1	V2	LR	posterior	LR0
M1*		M2*	4.77E+16	5.00E-01	4.77E+16
M2*		M1*	4.77E+16	5.00E-01	4.77E+16
M1		M2	4.14E+09	4.33E-08	4.77E+16
M2		M1	2.12E+04	2.23E-13	4.77E+16

 Column LR0: Genotypes of references removed before calculation: need not include F2

Discussion

- What should be reported?
 - LR, GLR, and, or posterior?
 - Thresholds?
 - Verbal scales?

Biased selection of references

Kinship cases with partially specified hypotheses

Thore Egeland ^{a b}, Magnus Dehli Vigeland ^a 💍 🖾

Forensic Science International: Genetics

Volume 78, June 2025, 103270