Shukai Du Curriculum Vitae

Visiting Assistant Professor Email: sdu49@wisc.edu

Department of Mathematics Website: https://shukaidu.github.io University of Wisconsin-Madison

RESEARCH INTERESTS

• Scientific machine learning and data-driven methods

- Finite element and discontinuous Galerkin methods
- Inverse and ill-posed problems
- Numerical methods for radiative transfer
- Electromagnetic and elastic/viscoelastic waves

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics

May 2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous Galerkin methods

Wuhan University

• M.S. in Computational Mathematics

2015

• B.S. in Pure Mathematics

2012

PUBLICATIONS

Submitted

- 1. **S. Du**, and S. N. Stechmann. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer. arXiv: 2308.02467.
- 2. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement.

Peer-reviewed

- 3. **S. Du**, and S. N. Stechmann. Inverse radiative transfer with goal-oriented hp-adaptive mesh refinement: adaptive-mesh inversion. *Inverse Probl. 39 (2023), no. 11*. DOI: 10.1088/1361-6420/acf785
- 4. B. Cockburn, **S. Du**, M. A. Sánchez. A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell's equations. *ESAIM: M2AN 57* (2023), no.4, 2097 2129.

DOI: 10.1051/m2an/2023048

- 5. **S. Du**, and S. N. Stechmann. Fast, low-memory numerical methods for radiative transfer via hp-adaptive mesh refinement. *J. Comput. Phys.* 480 (2023). DOI: 10.1016/j.jcp.2023.112021
- 6. B. Cockburn, **S. Du**, M. A. Sánchez. Combining finite element space-discretization with symplectic time-marching schemes for linear hamiltonian systems. *Front. Appl.*

Math. Stat. 9 (2023).

DOI: 10.3389/fams.2023.1165371

7. M. A. Sánchez, **S. Du**, B. Cockburn, N.-C. Nguyen, J. Peraire. Symplectic Hamiltonian finite element methods for electromagnetics. *Comput. Methods Appl. Mech. Engrg.* 396 (2022).

DOI: 10.1016/j.cma.2022.114969

8. B. Cockburn, M. A. Sánchez, **S. Du**. Discontinuous Galerkin methods with time-operators in their numerical traces for time-dependent electromagnetics. *Comput. Meth. Appl. Math.* (2022).

DOI: 10.1515/cmam-2021-0215

9. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Math. Comp. 90 (2021), 65-79*.

DOI: 10.1090/mcom/3573

10. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *J. Sci. Comput.* 85, 8 (2020).

DOI: 10.1007/s10915-020-01309-7

11. **S. Du**, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391.

DOI: 10.1137/19M1290966

12. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Math. Comp. 89* (2020), 1745-1782.

DOI: 10.1090/mcom/3499

13. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math. 20 (2020), no. 4, 783-798.*

DOI: 10.1515/cmam-2019-0173

14. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3 (2018)*, no. 1, 55-96.

DOI: 10.21042/AMNS.2018.1.00006

Books

15. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

GRANTS

NSF (co-PI) (AGS-2326631): Convective Processes in the Tropics Across Scales \$768,471 total, \$471,155 at UW (2024–2026)

PRESENTATION

Talks

1. Element learning: a systematic approach of accelerating finite element-type methods, with applications to radiative transfer

Numerical analysis and PDE seminar, U of Delaware

Sep 2023

2. Energy-conserving discontinuous Galerkin methods with time-operators in their traces for time-dependent electromagnetics

17th UCNCCM, Albuquerque, NM

July 2023

3.	Fast, low-memory methods for radiative transfer through hp-adaptive	mesh refine-
	ment 12th AIMS masting, Wilmington, NC	June 2023
4	13th AIMS meeting, Wilmington, NC	
4.	Three-dimensional radiative transfer: fast, low-memory numerical meth	
_	Collective Madison Meeting, Madison, WI	Aug 2022
5.	Unified analysis of HDG methods for the static Maxwell equations	Nov. 2021
6	CILAMCE-PANACM 2021, Brazil	Nov 2021
0.	Generalized projection-based error analysis of hybridizable discontinu	ous Galerkiii
	(HDG) methods	Ium o 2021
7	CEDYA2021, Spain	June 2021
/.	Projection-based analysis of hybridizable discontinuous Galerkin (HDG) Wenbo Li Prize Talk, U of Delaware	Feb 2020
0	Unified analysis of HDG methods for the static Maxwell equations	reb 2020
0.	SIAM CSE2021, Virtual Meeting	Mar 2021
0	New analysis techniques of HDG+ method	Wai 2021
9.	SIAM Sectional Meeting, Iowa State U	Oct 2019
10	Uniform-in-time optimal convergent HDG method for	OCI 2019
10.	transient elastic waves with strong symmetric stress formulation	
	WAVES2019, TU Wien, Vienna	Aug 2019
11	Hybridizable Discontinuous Galerkin schemes for elastic waves	Aug 2019
11.	ICIAM2019, Valencia	July 2019
12	HDG for transient elastic waves	July 2017
12.	WONAPDE2019, U of Concepcion	Jan 2019
13	Projection-based analysis of HDG methods with reduced stabilization	Jan 2017
13.	DelMar Num Day 2019, U of Maryland	May 2019
14	Projection-based error analysis of HDG methods for transient elastic way	•
11.	FEM Circus, U of Delaware	Nov 2018
15	Devising a tailored projection for a new HDG method in linear elasticity	1101 2010
10.	FEM Circus, U of Tennessee	Mar 2018
16	A new HDG projection and its applications	Widi 2010
10.	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2017
	Tima Thamine Tvanierical Thiarjon Buy, Temple 6	1101 2017
Poste	er presentation	
1.	Fast, low-memory numerical methods for radiative transfer: forward	and inverse
	problems	
	New Trends in Computational and Data Sciences, Caltech	Dec 2022
2.	Hybridizable Discontinuous Galerkin methods in transient elastodynami	cs
	FACM2018, New Jersey Institute of Technology	Aug 2018
3.	Building a computational code for 3D viscoelastic wave simulation	
	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2016
TEL A CLUMA		
TEACHING		
Lectu		Coming 2022
•	Linear Algebra and Differential Equations (Math320)	Spring 2023
Teac	hing Assistant	
•	Analytic Geometry and Calculus C (Math243) 202	16&2017 Fall
•	Analytic Geometry and Calculus B (Math242)	2017 Spring

•	Calculus I (Math221)	2018 Spring
•	Review of Advanced Mathematical Problems	
	(summer courses offered to incoming graduate students)	2018 Fall

MENTORING ACTIVITIES

Graduate mentorship

• Jason Torchinsky (co-mentored with Samuel N. Stechmann) 2022 – 2023

Undergraduate mentorship

•	WISCERS project at the University of Wisconsin-Madison	2023
•	GEMS summer research project at the University of Delaware	Fall 2016

JOURNAL REFEREE

Journal of Scientific Computing

SIAM Multiscale Modelling and Simulation

ESAIM: Mathematical Modelling and Numerical Analysis

Frontiers in Applied Mathematics and Statistics

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009-2011

CODING PROJECTS

Fast, low-memory methods for radiative transfer

2020 - current

- Build a cell-based structured adaptive mesh refinement (AMR) data structure
- Implement discontinuous Galerkin (DG) methods with hp-adaptivity for the full radiative transfer equation

Hybridizable Discontinuous Galerkin (HDG) methods

2016 - 2020

(based on HDG3D library: github.com/team-pancho/HDG3D)

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentation with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library: team-pancho.github.io)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory
Data Structures • Algorithm • Object Oriented Programming
Languages & Software
Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell

Last update: September 24, 2023