# Universidade Federal de Santa Catarina, INE/CTC INE 5411 – Organização de Computadores **Avaliação P2, 2008-2**

| Nome:     | Matrícula:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 tollie. | man and a second a |

**Instruções critério de avaliação:** A interpretação das questões é parte integrante desta avaliação. As respostas devem ser fornecidas no espaço para elas reservado. Nas questões que solicitam justificativa, a resposta não será pontuada sem a devida justificativa, nem se esta última estiver incorreta. A pontuação de cada item ("a", "b", etc.) de uma questão é indivisível.

## Parte I - Compreensão de conceitos básicos [3,0 pontos]

- 1. [valor:  $4 \times 0.5 + 1.0 = 3.0$ ] Responda <u>sucintamente</u> as perguntas abaixo:
- a) Para suportar a instrução jr no datapath do Anexo III, foi preciso nele incluir o MUX abaixo. Identifique a entrada (E) ou a saída (S) de cada componente daquele datapath que precise ser conectada ao novo MUX. Se uma entrada ou saída de um componente C não tiver um nome, denote-a por E(C) ou S(C), respectivamente. (Entradas, saídas e componentes devem ser identificados de forma não-ambígua).



b) Mostre os valores dos sinais de controle para implementar a seguinte instrução (codificada sob o formato R) no datapath do Anexo III: lw rd, (rs+rt) # rd ← Memória[rd+rt].

| RegDst | ALUSrc | MemtoReg | RegWrite | MemWrite |
|--------|--------|----------|----------|----------|
|        |        |          |          |          |

c) No código abaixo, onde R denota um registrador arbitrário, a instrução add pode ser executada legalmente antes de beg em duas condições distintas. Identifique precisamente quais são essas condições:

d) Uma máquina com escalonamento dinâmico pode emitir até 2 instruções por ciclo, desde que uma delas seja aritmética ou desvio e a outra de acesso à memória. <u>Afirmação</u>: "Nestas condições, todas as instruções do segmento de código abaixo poderiam ser emitidas dentro de dois ciclos." A afirmação é verdadeira ou falsa? **Justifique argumentando com as dependências de dados e/ou anti-dependências.** 

lw \$t1, 4(\$t0) Resposta: Justificativa: add \$s2, \$s1, \$t1 sub \$s1, \$s3, \$s4 sw \$t3, \$t4, \$t5

e) Mostre a seqüência de 5 instruções <u>nativas</u> do MIPS que implementa o código-fonte abaixo, sabendo-se que as instruções de <u>desvio condicional têm atraso de um ciclo</u> (branch delay = 1). **Restrição**: use esta alocação de registradores: (a,b,c,x,y,z) →(\$s1,\$s2,\$s3,\$t0,\$t1,\$s4).

| Código Fonte          | Código em linguagem de montagem |            |  |  |  |  |  |  |
|-----------------------|---------------------------------|------------|--|--|--|--|--|--|
|                       | Labels:                         | Instruções |  |  |  |  |  |  |
| a = x + y;            |                                 |            |  |  |  |  |  |  |
| if $(b = = 0) b = 5;$ |                                 |            |  |  |  |  |  |  |
| c = a + 6;            |                                 |            |  |  |  |  |  |  |
| z = b + c;            |                                 |            |  |  |  |  |  |  |
|                       |                                 |            |  |  |  |  |  |  |

(<u>Critério de avaliação</u>: A questão só será pontuada se os códigos forem semanticamente equivalentes. Cada omissão ou erro de sintaxe será penalizado com -0,5 ponto).

#### Parte II – Aplicação de conceitos básicos [4,0 pontos]

2. [valor: 0,25 + 0,25 + 2 x 0,25 + 15 x 0,1 = 2,5] Vamos incluir a instrução jal ao datapath multiciclo do Anexo IV, através de duas modificações: os multiplexadores controlados pelos sinais RegDst e MemToReg são substituídos por dois novos multiplexadores de 3 entradas conectados conforme ilustra a figura abaixo:



Será necessário também modificar a máquina de estados do controlador (veja Figura 2) para incluir um novo estado: o estado 12. Nestas condições, responda às perguntas e complete as tabelas abaixo: (**Penalidade: 7 ou mais sinais errados anulam totalmente os itens de "d" até "h").** 

)

- a) Qual o valor de X em binário? X =
- b) A saída de qual componente do datapath é conectada à entrada Y?

Y conectado com a saída de:

- c) Complete as transições que incidem e emergem do novo estado:
  - Transição incidente: ( , 12); Transição emergente: (12,

d) Estado 1

| ALUSrcA | ALU | SrcB | IorD | MemRead | MemWrite | Re | RegDst |   | RegDst MemtoReg |  | RegWrite |
|---------|-----|------|------|---------|----------|----|--------|---|-----------------|--|----------|
|         |     |      | Х    | Х       |          | Х  | X      | X | X               |  |          |

e) Estado 3

| Ī | ALUSrcA | ALU | ALUSrcB |  | MemRead | MemWrite | Re | RegDst MemtoReg |   |   | RegWrite |
|---|---------|-----|---------|--|---------|----------|----|-----------------|---|---|----------|
| ſ | Х       | Х   | Х       |  |         |          | ХХ |                 | Х | Х | 0        |

f) Estado 4

| ALUSrcA | ALU | JSrcB | IorD | MemRead | MemWrite | RegDst | MemtoReg | RegWrite |
|---------|-----|-------|------|---------|----------|--------|----------|----------|
| X       | X   | X     | X    | X       | 0        |        |          |          |

g) Estado 7

| ALUSrcA | ALU | SrcB | IorD | MemRead | MemWrite | Reg | Dst MemtoReg |  |  | RegWrite |
|---------|-----|------|------|---------|----------|-----|--------------|--|--|----------|
| X       | Χ   | X    | Х    | X       | 0        |     |              |  |  |          |

h) Estado 12

| 1 | ALUSrcA | ALU | SrcB | IorD | MemRead | MemWrite | RegDst | MemtoReg | RegWrite |
|---|---------|-----|------|------|---------|----------|--------|----------|----------|
|   | Χ       | X   | X    | X    | X       | 0        |        |          |          |

### Convenções: possíveis extensões para o datapath do Anexo V

Nas próximas questões envolvendo pipeline, o datapath básico do Anexo V pode ser estendido com diferentes combinações de recursos adicionais. Para simplificar o enunciado das próximas questões, as extensões estão numeradas e listadas abaixo:

- Extensão 1: Para resolver o hazard estrutural resultante do acesso simultâneo ao banco de registradores nos estágios ID e WB, a escrita de um registrador ocorre no primeiro semi-ciclo de relógio; a leitura, no segundo semi-ciclo.
- Extensão 2: A operação relacional "≠" do desvio condicional é realizada em uma unidade funcional dedicada, denominada TEST, que faz parte do estágio ID.
- Extensão 3: Há um atalho (Forwarding 1) permitindo que o valor à saída da ALU (EX) seja disponibilizado, no ciclo de relógio seguinte, como uma das entradas da unidade TEST (ID).

- Extensão 4: Há um atalho (Forwarding 2) permitindo que o valor à porta de leitura da memória de dados (MEM) seja disponibilizado, no ciclo de relógio seguinte, à porta de escrita da própria memória de dados (MEM).
- Extensão 5: Há um atalho (Forwarding 3) permitindo que o valor à saída da ALU (EX) seja disponibilizado, no ciclo de relógio seguinte, como uma das entradas da própria ALU (EX).

Para as Questões 3 e 4, você deve completar as tabelas de ocupação do pipeline do datapath do Anexo V de acordo com as seguintes **regras obrigatórias de preenchimento:** 

- Use os acrônimos IF, ID, EX, ME e WB para indicar a ocupação de um estágio por uma dada instrução.
- Uma instrução deve iniciar sua execução o mais cedo possível, mas só deve iniciá-la em um ciclo se, e somente se, a partir daquele ciclo ela puder continuar sua execução sem pausa até terminar (ou seja, se houver necessidade de pausa, ela ocorre antes da ocupação do estágio IF).
- Os ciclos em que uma instrução não ocupa um estágio (porque o estágio já está ocupado ou porque está em pausa) devem ser deixados em branco.
- 3. [valor: 0,5] Para o código abaixo, ilustre a ocupação dos estágios do pipeline, sob as seguintes hipóteses:
  - Ao datapath do Anexo V foram acrescentadas as Extensões de 1 a 5.
  - A instrução bne tem o comportamento tradicional (não é "delayed branch").

| Instrução/Ciclo         | 1  | 2  | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|-------------------------|----|----|----|----|----|---|---|---|---|----|----|----|
| Loop: lw \$t0, 0 (\$t1) | IF | ID | EX | ME | WB |   |   |   |   |    |    |    |
| lw \$t2, 4 (\$t1)       |    |    |    |    |    |   |   |   |   |    |    |    |
| sw \$t2, 0 (\$t1)       |    |    |    |    |    |   |   |   |   |    |    |    |
| sw \$t0, 4 (\$t1)       |    |    |    |    |    |   |   |   |   |    |    |    |
| addi \$t1, \$t1, 8      |    |    |    |    |    |   |   |   |   |    |    |    |
| bne \$t1, \$s0, loop    |    |    |    |    |    |   |   |   |   |    |    |    |

**4. [valor: 1,0]** Suponha que uma implementação da arquitetura IA-64 utilize pipelines de 5 estágios como o do Anexo V. Suponha que possam ser iniciadas até 6 instruções por ciclo e que, uma vez iniciada uma instrução, ela ocupa cada um dos estágios uma única vez (mesmo que não o utilize). Para o código abaixo, ilustre a ocupação dos estágios dos pipelines paralelos.

```
{
       .mii
      ld4
             r2=[r3]
                                  // r2 \leftarrow memória[r3]
      add
             r6 = r4, r5
                                 // r6 \leftarrow r4 + r5
      sub
             r7 = r8, r9;
                                 // r7 ← r8 - r9
}
{
      .mii
      ld4
             r10=[r11]
                                 // r10 \leftarrow memória[r11]
             r13 = r15, r16; // r13 \leftarrow r15 - r16
      sub
             r12 = r2, r14 // r12 \leftarrow r2 + r14
      add
}
```

| Instrução/Ciclo |                   | 1  | 2  | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|-----------------|-------------------|----|----|----|----|----|---|---|---|---|----|----|----|
| ld4             | r2=[r3]           | IF | ID | EX | ME | WB |   |   |   |   |    |    |    |
| add             | r6 = r4, r5       |    |    |    |    |    |   |   |   |   |    |    |    |
| sub             | r7 = r8, r9 ;;    |    |    |    |    |    |   |   |   |   |    |    |    |
| ld4             | r10=[r11]         |    |    |    |    |    |   |   |   |   |    |    |    |
| sub             | r13 = r15, r16 ;; |    |    |    |    |    |   |   |   |   |    |    |    |
| add             | r12 = r2, r14     |    |    |    |    |    |   |   |   |   |    |    |    |

(<u>Critério de avaliação</u>: penalidade de -0,5 ponto para cada instrução cuja temporização estiver incorreta).

## Parte III – Generalização a partir de conceitos básicos [3,0 pontos]

- 5. [0,5 + 0,5 + 1,0 = 2,0] Dado o código abaixo da Figura 1(a), otimize-o para os 3 cenários especificados, preenchendo as Figuras 1(b), 1(c) e 1(d). Suponha que: 1) a instrução bne tem o comportamento tradicional (não é "delayed branch"); 2) cada instrução é executada em um pipeline de 5 estágios como o do Anexo 5, ao qual foram acrescentadas as Extensões de 1 a 5; 3) na implementação com emissão dual, tais extensões são duplicadas entre elementos de pipelines paralelos.
  - a) **Cenário 1** Corpo do laço original escalonado para eliminar todos os ciclos de pausa em um datapath com emissão de uma única instrução por ciclo nas seguintes condições:
  - As instruções do laço original devem ser preservadas sem modificações, exceto pela necessidade de compensação de "offset". Permite-se que apenas um "offset" seja compensado para fins de otimização.
  - b) Cenário 2 Corpo do laço desenrolado duas vezes (sem escalonamento) nas seguintes condições:
  - Deve-se eliminar instruções de controle do laço duplicadas, preservando a semântica e <u>a ordem das instruções do código original</u>, através de ajustes de constante imediata e todas as compensações de "offset" que se fizerem necessárias. Quaisquer outras otimizações são proibidas.
  - c) Cenário 3 Corpo do laço desenrolado duas vezes nas seguintes condições:
  - Deve-se eliminar instruções de controle do laço duplicadas, preservando a semântica do código original, através de ajustes de constante imediata e todas as compensações de "offset" que se fizerem necessárias.
  - O corpo do laço deve ser escalonado de forma a obter o mínimo número de ciclos de pausa em um datapath com emissão de duas instruções por ciclo, sendo que a primeira deve ser aritmética ou desvio e a segunda deve ser de acesso à memória;
  - <u>Não</u> deve ser aplicado renomeamento de registradores nem quaisquer outras otimizações.
  - Quando duas instruções são emitidas no mesmo ciclo, se o registrador destino de uma delas é fonte da outra, deve-se supor que o valor armazenado no registrador-fonte é lido por uma instrução antes de ser modificado como registrador-destino da outra.

(<u>Critério de avaliação</u>: Em cada item desta questão, cada erro será penalizado com -0,25 ponto).

6. **[valor: 0,5]** Dada a atribuição x = a+b\*c+d, mostre que há duas alternativas para implementá-la em assembly tais que uma delas resulta otimizada para executar em um processador com emissão múltipla. Assuma que (x,a,b,c,d) sejam alocadas em (\$s0,\$s1,\$s2,\$s3,\$s4). Quaisquer outros valores devem ser alocados em registradores temporários. (Use as instruções mul e addu).

| Não otimizada | Otimizada |  |
|---------------|-----------|--|
|               |           |  |
|               |           |  |
|               |           |  |

(<u>Critério de avaliação</u>: Esta questão não será pontuada se você inverter as versões otimizada e nãootimizada. Ademais, cada erro de sintaxe será penalizado com -0,25 ponto).

[valor: 0,5] Seja o datapath original do Anexo 5, sem as extensões de 1 a 5. Suponha que a saída do somador que calcula o endereço-alvo, ao invés de ser ligada ao registrador EX/MEM, seja conectada diretamente à entrada 1 do MUX que define a entrada do PC. Afirmação: "O datapath assim modificado implementa desvios condicionais com atraso de 1 ciclo ("delayed branch slot = 1"). A afirmação é verdadeira ou falsa? Justifique, preenchendo o diagrama abaixo e indicando em que transição de relógio o PC é carregado com o endereço-alvo. Resposta: Justificativa:

| Instrução/Ciclo     | 1  | 2  | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---------------------|----|----|----|----|----|---|---|---|---|----|----|----|
| bne \$s2, \$zero, L | IF | ID | EX | ME | WB |   |   |   |   |    |    |    |
|                     |    |    |    |    |    |   |   |   |   |    |    |    |
|                     |    |    |    |    |    |   |   |   |   |    |    |    |
|                     |    |    |    |    |    |   |   |   |   |    |    |    |

| Código original |                      |  |  |
|-----------------|----------------------|--|--|
| loop:           | lw \$t0, 0 (\$t1)    |  |  |
|                 | lw \$t2, 4 (\$t1)    |  |  |
|                 | sw \$t2, 0 (\$t1)    |  |  |
|                 | sw \$t0, 4 (\$t1)    |  |  |
|                 | addi \$t1, \$t1, 8   |  |  |
|                 | bne \$t1, \$s0, loop |  |  |
| <u> </u>        | (a)                  |  |  |

| Cenário 1 |                   |  |  |
|-----------|-------------------|--|--|
| loop:     | lw \$t0, 0 (\$t1) |  |  |
|           | lw \$t2, 4 (\$t1) |  |  |
|           | sw \$t2, 0 (\$t1) |  |  |
|           |                   |  |  |
|           |                   |  |  |
|           |                   |  |  |
|           | (b)               |  |  |

|       | Cenário 2            |       |
|-------|----------------------|-------|
| loop: | lw \$t0, 0 (\$t1)    |       |
|       | lw \$t2, 4 (\$t1)    |       |
|       | sw \$t2, 0 (\$t1)    |       |
|       | sw \$t0, 4 (\$t1)    |       |
|       |                      |       |
|       |                      |       |
|       |                      |       |
|       |                      |       |
|       | addi \$t1, \$t1,     |       |
|       | bne \$t1, \$s0, loop | ( c ) |

| Cenário 3 |                      |                   |  |  |
|-----------|----------------------|-------------------|--|--|
|           | aritmética ou desvio | load ou store     |  |  |
| loop:     | nop                  | lw \$t0, 0 (\$t1) |  |  |
|           | nop                  | lw \$t2, 4 (\$t1) |  |  |
|           | nop                  | sw \$t2, 0 (\$t1) |  |  |
|           | nop                  | sw \$t0, 4 (\$t1) |  |  |
|           | nop                  |                   |  |  |
|           |                      |                   |  |  |
|           |                      |                   |  |  |
|           |                      |                   |  |  |
|           |                      |                   |  |  |

Figura 1 – Cenários de transformação de código

(d)



Figura 2 – Diagrama de transição de estados para o datapath multiciclo (veja Anexo IV)