Title: When is an operator S an analytic function of an operator T?

Abstract: Suppose X is a Banach space, $S,T:X\to X, W:\ell^2\to X$ are (bounded, linear) operators. We define the linear transformation $W^{-1}:ranW\to (\ker W)^\perp$ to be the linear inverse of the restriction of W to $(\ker W)^\perp$. The closed graph theorem easily shows $T(ranW)\subseteq ranW\Leftrightarrow W^{-1}TW$ is defined $\Leftrightarrow W^{-1}TW$ is bounded. This is joint work with John Conway.

THEOREM If T is not algebraic and ||T|| < R, then $S = \varphi(T)$ for some analytic function φ on D(0,R) if and only if, for each ||T|| < r < R, there is a number α_r such that

$$||W^{-1}SW|| \le \alpha_r$$

for every compact operator $W: \ell^2 \to X$ with $||W^{-1}TW|| \le r$.

When X is a Hilbert space, we have a similar statement considering invertible operators $W \in B(X)$. We also prove an analogue of this theorem in a type I von Neumann algebra acting on a separable Hilbert space, where the analytic function φ is center-valued rather than scalar-valued.