Introduction to Final Projects

Fundamental of Data Science 24 November 2020 Prof. Fabio Galasso, Alessandro Flaborea, Luca Franco

Assignments and final project

Calendar

- Assignment 1: 13 oct 6 nov (~4 weeks)
- Assignment 2: 7 nov 27 nov (~3 weeks)
- ► Final Project: 26 nov 22 dec (~3 weeks) TBC –

Logistics

- Start date: 26 Nov
 - Now, collect ideas!
- First presentation: 1 Dec
 - 3 mins incl Q&A, 3 slides: task / setup definition
- Final presentation: 22 Dec
 - 5 min + 1 min Q&A: Progress and presentation evaluation
- Written report submitted by 27 Dec
 - Report evaluation
- Reports to indicate role of each member in the work

Suggestion for First-Presentation Slides

- Slide 1 Task and motivation
 - Task statement and definitions
 - Motivation
 - Related work
- Slide 2 Models, tools
 - Tentative material and methods
 - From coursework, open source and research code
 - Investigation
 - Feature, model, etc.
- Slide 3 Analysis
 - Benchmark
 - Evaluation dataset and metric

Final Projects Topic and development

Project Types

- Application project
 - Pick an application that is of interest to you
 - Explore how to apply learning algorithms to solve it implementing your own solution
 - Focus is not on the best results but on the deep understanding of how to set up and solve a machine learning problem
- Analytical project
 - Choose one or more existing projects/algorithms on a topic which you like
 - Reproduce their results
 - Using their code is fine, but cite the source -- see my note on plagiarism
 - Analyze the approach and the results
 - If you leveraged existing source code, then conduct ablation studies, propose modifications and evaluate how these affect the results

Plagiarism

- Watch out for plagiarism
 - Plagiarism is severely prohibited and would invalidate your project
 - Leveraging resources is fine, BUT acknowledge the source
 - Specify your contribution in detail

Project goal

- Choose a machine learning and/or computer vision application
 - For example well known problems from kaggle, literature, ...
- Choose a dataset (i.e. an existing.. acquiring one is lots of efforts)
 - From Kaggle
 - From some other online resource
 - E.g.
 - https://www.visualdata.io/
 - https://github.com/caesar0301/awesome-public-datasets
 - https://datasetsearch.research.google.com/
- Choose a task
 - Regression, classification, density estimation, clustering, ...
- Apply methods to the task, present the analysis of your results
 - Analyze an existing project
 - Modify an existing project
 - Implement from scratch your solutions

Project goal suggestions

- Have each team member sketch 20 ideas before meeting
- Filter out list by doing quick Google searches
 - There may be an existing GitHub for your idea (ok to leverage it, but cite it)
- Pay attention to how long the training takes and how much data the models require
- Ask yourselves: are there little tweaks and/or experiments that haven't been done yet?
- Can you extend the idea e.g. to a new application?
- Which of your initial ideas makes the best story to tell?
- Which of those lets you obtain best illustrative pictures?

Gather information on your idea

- You can find information on blogs, papers, journals, Github repos, websites that summarize or explain papers, ...
- If you consider papers
 - Don't read all of them (at least at the beginning)
 - Look at the figures and captions before anything
 - First pass reading order
 - Abstract
 - Methods
 - Results
 - Conclusion
- You need to find something interesting about the chosen topic, not to review the entire literature

Try to avoid this scenario

- Reproduce a source without your contribution (nor comments, nor analysis)
- Team starts late. Just instance and draft of code up by milestone
- Didn't hyperparameter search much
- A few standard graphs: loss curves, accuracy chart, simple architecture graphics
- Your report is not clear. As a data scientist, illustrating your ideas, solutions and analysis is part of project
- Conclusion doesn't have much to say about the task besides that it didn't work

Aim for this

- Workflow set-up configured ASAP
- Have running code
- Have a benchmark to compare your results to
- Creative hypothesis is being tested
- Mixing knowledge from different aspects in ML
- Have a meaningful graphic (pretty or info rich)
- Conclusion and Results teach me something
- ++interactive demo
- ++novel / impressive engineering feat
- ++good results

Choose a method

- A method discussed in class
 - E.g. digital image processing algorithm, linear regression, optimization via gradient descent or Newton's method, logistic regression, Gaussian discriminant analysis, Naïve Bayes, SVM, ML analysis via bias/variance, Neural Networks, clustering, dimensionality reduction
- Explore other methods
- Ask us ;)

Choose a task

Classification

- https://www.kaggle.com/c/titanic
- https://www.kaggle.com/c/digit-recognizer
- https://www.kaggle.com/c/nlp-getting-started
- https://www.kaggle.com/c/word2vec-nlp-tutorial/overview/part-1-forbeginners-bag-of-words
- https://www.kaggle.com/zalando-research/fashionmnist
- https://www.kaggle.com/c/kobe-bryant-shot-selection/data
- https://www.kaggle.com/kazanova/sentiment140

Regression

- https://www.kaggle.com/c/house-prices-advanced-regression-techniques
- https://www.kaggle.com/c/restaurant-revenueprediction/overview/evaluation
- https://www.kaggle.com/c/how-much-did-it-rain-ii/data
- https://www.kaggle.com/c/walmart-recruiting-sales-in-stormyweather/overview
- https://www.kaggle.com/mirichoi0218/insurance

Choose a dataset

- Pick one from the online lists of datasets.
 - https://github.com/caesar0301/awesome-public-datasets
 - https://www.visualdata.io/
 - http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
 - https://www.ind-dataset.com/
 - https://github.com/renmengye/few-shot-ssl-public
 - http://www.cvpapers.com/datasets.html
 - http://riemenschneider.hayko.at/vision/dataset/
 - http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
 - https://www.kaggle.com/datasets
- Or find one of your choice

Example tasks

- Titanic survivors, a binary classification with ML
 - https://www.kaggle.com/c/titanic
- Predict whether a person survived or not looking at some personal information
 - 12 features representing the age, gender, ticket cost, ...

∞ PassengerId =	# Survived =	# Pclass =	▲ Name =	▲ Sex =
1	0	3	Braund, Mr. Owen Harris	male
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female
3	1	3	Heikkinen, Miss. Laina	female
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female
5	0	3	Allen, Mr. William Henry	male
6	0	3	Moran, Mr. James	male
7	0	1	McCarthy, Mr.	male

Example datasets

- Digit Recognition
 - Recognize the digit from handwritten digit images
 - Multi-class classification problem (balanced)
 - 28x28 images

Example datasets

House Pricing

- Predict the cost of a house from information about its architecture, type of suburbs, square meters, ...
- Regression problem
- Prepare the data for your model, tackle missing values and categorical features

e ld	=	# MSSubClass	=	▲ MSZoning	=	▲ LotFrontage	=
				RL	79%	NA	18%
				RM	15%	60	10%
1	1460	20	190	Other (91)	6%	Other (1058)	72%
1		60		RL		65	
2		20		RL		80	
3		60		RL		68	
4		70		RL		60	
5		60		RL		84	
6		50		RL		85	

Project presentation goals

- Have code up and running
- Data source explained correctly
 - Give the true train/test/val split
 - Number training examples
 - Where you got the data
- What Github repo, or other code you're considering
- Ran baseline model have results.
 - Points off for no model running, no results
- Data pipeline is in place and explained clearly
- Discussion of results, including surprising findings
- Reasonable literature review (3+ sources)

Project report

- 1-2 page progress report. Not super formal
- Suggested sections
 - Title
 - Abstract
 - Introduction
 - Related work
 - Proposed method explained
 - Dataset and Benchmark
 - Experimental results
 - Conclusions and Future work
 - References

For a good project report

- 5 W's
 - What? (a problem)
 - Why? (motivation)
 - How? (proposed strategy)
 - Where? (dataset and benchmark)
 - Who? (team assignments)
- It is desired.. your considerations on
 - Influence of parameter and method choice
 - Results: what is expected and what is surprising.. not just numbers!
- Observations must be substantiated by results or references

Questions?

Thank you

Acknowledgements: some slides and material from Bernt Schiele, Mario Fritz, Misha Andriluka, Fei-Fei, Justin Johnson, Serena Yeung, Andrew Ng, Kian Katanforoosh, Pedro Pablo Garzon

