Assignment-based Subjective Questions

1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable?

Answer

- The demand of bike is less in the month of spring when compared with other seasons
- The demand bike increased in the year 2019 when compared with year 2018.
- Month Jun to Sep is the period when bike demand is high. The Month Jan is the lowest demand month.
- Bike demand is less in holidays in comparison to not being holiday.
- The demand of bike is almost similar throughout the weekdays.
- There is no significant change in bike demand with working day and non working day.
- Why is it important to use drop_first=True during dummy variable creation?

Answer

drop_first=True is important to use, as it helps in reducing the extra column created during dummy variable creation. Hence it reduces the correlations created among dummy variables.

3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable?

Answer

atemp and temp both have same correlation with target variable of 0.63 which is the highest among all numerical variables.

4. How did you validate the assumptions of Linear Regression after building the model on the training set?

Answer

According to Linear Regression assumption there is linear relationship between the features and target. Linear regression captures only linear relationship. This can be validated by plotting a scatter plot between the features and the target.

5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes?

Answer

- Temperature
- weathersit: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
- year

General Subjective Questions

1. Explain the linear regression algorithm in detail.

Ans. Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting.

2. Explain the Anscombe's quartet in detail.

Ans. Anscombe's Quartet can be defined as a group of four data sets which are nearly identical in simple descriptive statistics, but there are some peculiarities in the dataset that fools the regression model if built. They have very different distributions and appear differently when plotted on scatter plots.

3. What is Pearson's R?

Ans. Pearson's R is a numerical summary of the strength of the linear association between the variables. If the variables tend to go up and down together, the correlation coefficient will be positive.

4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling?

Ans. Scaling is a geometric change that linearly enlarges or reduces things. A property of objects or rules known as scale invariance is that they remain unchanged when scales of length, energy, or other variables are multiplied by a common factor. Scaling law, a law that explains how many natural phenomena exhibit scale invariance.

Scaling performed because, it is a data pre-processing procedure used to normalize data within a specific range by applying it to independent variables. Additionally, it aids in accelerating algorithmic calculations. The majority of the time, the obtained data set includes characteristics that vary greatly in magnitudes, units, and range.

The difference between normalized scaling and standardized scaling is, the values of a normalized dataset will always fall between 0 and 1. A standardized dataset will have a mean of 0 and a standard deviation of 1, but the maximum and minimum values are not constrained by any specified upper or lower bounds.

5. You might have observed that sometimes the value of VIF is infinite. Why does this happen?

Ans. If there is perfect correlation, then VIF = infinity. This shows a perfect correlation between two independent variables. In the case of perfect correlation, we get R2 =1, which lead to 1/(1-R2) infinity. To solve this problem, we need to drop one of the variables from the dataset which is causing this perfect multicollinearity.

An infinite VIF value indicates that the corresponding variable may be expressed exactly by a linear combination of other variables

6. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression.

Ans. Q-Q Plots (Quantile-Quantile plots) are plots of two quantiles against each other. A quantile is a fraction where certain values fall below that quantile. For example, the median is a quantile where 50% of the data fall below that point and 50% lie above it. The purpose of Q Q plots is to find out if two sets of data come from the same distribution. A 45 degree angle is plotted on the Q Q plot; if the two data sets come from a common distribution, the points will fall on that reference line.

If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on the line y = x. If the distributions are linearly related, the points in the Q–Q plot will approximately lie on a line, but not necessarily on the line y = x. Q–Q plots can also be used as a graphical means of estimating parameters in a location-scale family of distributions.

A Q–Q plot is used to compare the shapes of distributions, providing a graphical view of how properties such as location, scale, and skewness are similar or different in the two distributions.