PLONK: Permutations over Lagrange-Bases for Oecumenical Noninteractive arguments of Knowledge

Ariel Gabizon Zachary J. Williamson Oana Ciobotaru
Protocol Labs Aztec Protocol

Prelude: Trusted setups for pairing-based SNARKs

- Want to prove statements about circuit satisfiability
- ▶ Generate CRS of elements $g^{P(s)}$ for secret $s \in \mathbb{F}$ nobody knows, for some polynomials P (potentially depending on circuit).

Prelude: Trusted setups for pairing-based SNARKs

- Want to prove statements about circuit satisfiability
- ▶ Generate CRS of elements $g^{P(s)}$ for secret $s \in \mathbb{F}$ nobody knows, for some polynomials P (potentially depending on circuit).
- ▶ If CRS only contains elements g^{s^i} setup is universal and updatable.

Plonk in two sips

- 1. All you need is a permutation check.
- 2. Permutations are easier to check on mutliplicative subgroups

Part 1: All you need is a permutation check

Our setting: want short proofs about fan-in 2 unlimited fan-out circuits, trusted setup is updatable depends only on circuit size.

example: Prove knowledge of a, b, c with

example. I Tove knowledge of
$$a, b, c$$
 with

 $(a+b) \cdot c = 7$

Right values: \mathbf{r}_1 , \mathbf{r}_2 Output values: \mathbf{o}_1 , \mathbf{o}_2

Left values: l_1 , l_2

Left values: l_1, l_2

Output values: \mathbf{o}_1 , \mathbf{o}_2

Right values: $\mathbf{r}_1, \mathbf{r}_2$

Wire/copy checks: $\mathbf{o}_1 = \mathbf{l}_2$ Public input checks: $o_2 = 7$.

Gate checks: $l_1 + r_1 = o_1$, $l_2 \cdot r_2 = o_2$

Left values: l_1, l_2

Right values: \mathbf{r}_1 , \mathbf{r}_2

Output values: o_1 , o_2

Wire/copy checks: $o_1 = l_2$ (hard) Public input checks: $o_2 = 7$ (easy)

Gate checks: $l_1 + r_1 = o_1, l_2 \cdot r_2 = o_2$ (easy)

Copy checks with permutations similar to [Groth09,BCGGHJ17]

$$\mathbf{V} = (\mathbf{l}_1, \mathbf{l}_2, \mathbf{r}_1, \mathbf{r}_2, \mathbf{o}_1, \mathbf{o}_2)$$

Copy checks with permutations similar to [Groth09,BCGGHJ17]

$$\mathbf{V} = (\mathbf{l}_1, \mathbf{l}_2, \mathbf{r}_1, \mathbf{r}_2, \mathbf{o}_1, \mathbf{o}_2)$$
$$-\boldsymbol{\sigma}(\mathbf{V})$$

 $\mathbf{o}_1 = \mathbf{l}_2$ iff $\mathbf{V} = \mathbf{\sigma}(\mathbf{V})$ For permutation $\mathbf{\sigma} = (25)$

Part 2: Permutations are easier to check on mutliplicative subgroups

[Bayer-Groth12] - perm checks with products

example: Given $a, b \in \mathbb{F}^3$, want to check $(b_1, b_2, b_3) = (a_3, a_1, a_2)$

[Bayer-Groth12] - perm checks with products

example: Given $a, b \in \mathbb{F}^3$, want to check $(b_1, b_2, b_3) = (a_3, a_1, a_2)$

step 1: Choose random $\beta \in \mathbb{F}$. Let

$$a'_1 = a_1 + \beta$$
, $a'_2 = a_2 + 2\beta$, $a'_3 = a_3 + 3\beta$
 $b'_1 = b_1 + 3\beta$, $b'_2 = b_2 + \beta$, $b'_3 = b_3 + 2\beta$

[Bayer-Groth12] - perm checks with products

example: Given $a, b \in \mathbb{F}^3$, want to check $(b_1, b_2, b_3) = (a_3, a_1, a_2)$

step 1: Choose random $\beta \in \mathbb{F}$. Let

$$a'_1 = a_1 + \beta$$
, $a'_2 = a_2 + 2\beta$, $a'_3 = a_3 + 3\beta$
 $b'_1 = b_1 + 3\beta$, $b'_2 = b_2 + \beta$, $b'_3 = b_3 + 2\beta$

If claim false - w.h.p as mutliset $\{\alpha_1', \alpha_2', \alpha_3'\} \neq \{b_1', b_2', b_3'\}$:

[Bayer-Groth12] - reducing permutation checks to products

step 2: Choose random $\gamma \in \mathbb{F}$. Let

$$a_i'' = a_i' + \gamma, b_i'' = b_i + \gamma$$

[Bayer-Groth12] - reducing permutation checks to products

step 2: Choose random $\gamma \in \mathbb{F}$. Let

$$a_i'' = a_i' + \gamma$$
, $b_i'' = b_i' + \gamma$

If
$$\{\alpha_1', \alpha_2', \alpha_3'\} \neq \{b_1', b_2', b_3'\}$$
 as multiset - w.h.p

$$a_1'' \cdot a_2'' \cdot a_3'' \neq b_1'' \cdot b_2'' \cdot b_3''$$
.

Idealized Polynomials Protocols

Preprocessing: \mathcal{V} chooses polynomials $g_1, \ldots, g_t \in \mathbb{F}_{< d}[X]$.

Protocol:

- 1. \mathcal{P} 's msgs are to ideal party \mathbf{I} . Must be $f_i \in \mathbb{F}_{<\mathbf{d}}[\mathbf{X}]$.
- 2. At protocol end \mathcal{V} asks \mathbf{I} if some identities hold between $\{\mathbf{f}_1, \ldots, \mathbf{f}_{\ell}, g_1, \ldots, g_t\}$. Outputs \mathbf{acc} iff they do.

Idealized Polynomials Protocols

Preprocessing: \mathcal{V} chooses polynomials $g_1, \ldots, g_t \in \mathbb{F}_{< d}[X]$.

Protocol:

- 1. \mathcal{P} 's msgs are to ideal party \mathbf{I} . Must be $f_i \in \mathbb{F}_{<\mathbf{d}}[\mathbf{X}]$.
- 2. At end, \mathcal{V} asks \mathbf{I} if some identities hold between $\{\mathbf{f}_1, \ldots, \mathbf{f}_{\ell}, \mathbf{g}_1, \ldots, \mathbf{g}_{\mathbf{t}}\}$.

Using [KZG10], can compile to real protocol with each msg of \mathfrak{P} being 32-64 bytes according to your NFSPL.

H-ranged Polynomials Protocols

Preprocessing: \mathcal{V} chooses polynomials $g_1, \ldots, g_t \in \mathbb{F}_{< d}[X], \ H \subset \mathbb{F}$.

Protocol:

- 1. \mathcal{P} 's msgs are to ideal party \mathbf{I} . Must be $\mathbf{f_i} \in \mathbb{F}_{<\mathbf{d}}[\mathbf{X}]$.
- 2. At end, \mathcal{V} asks \mathbf{I} if some identities hold between $\{f_1, \ldots, f_\ell, g_1, \ldots, g_t\}$ on \mathbf{H} .

H-ranged protocol using polynomial protocol:

 \mathcal{V} wants to check identities P_1 , P_2 on H.

- ▶ After \mathcal{P} finished sending $\{f_i\}$, \mathcal{V} sends random $\mathfrak{a}_1, \mathfrak{a}_2 \in \mathbb{F}$.
- $ightharpoonup \mathcal{P}$ sends $\mathsf{T} \in \mathbb{F}_{< d}[\mathsf{X}]$.
- $ightharpoonup \mathcal{V}$ checks identity $a_1 \cdot P_1 + a_2 \cdot P_2 \equiv T \cdot Z_H$.

Checking permutations with **H**-ranged protocols

Permutation $\sigma:[n] \to [n]$. $H = \{\alpha, \alpha^2, ..., \alpha^n\}$.

 $\mathcal P$ has sent $f \in \mathbb F_{< d}[X]$.

Wants to prove $f = \sigma(f)$:

$$\forall i \in [n], f(\alpha^i) = f(\alpha^{\sigma(i)})$$

Using [BG12] reduces to:

$$H = \left\{\alpha, \, \alpha^2, \, \ldots, \, \alpha^n \right\}.$$

$${\mathcal P}$$
 has sent f, $g\in {\mathbb F}_{{<\!d}}[X].$

Wants to prove:

$$\prod_{i \in [n]} f(\alpha^i) = \prod_{i \in [n]} g(\alpha^i)$$

Checking products with **H**-ranged protocols

1.
$$\mathcal{P}$$
 computes \mathbf{Z} with $\mathbf{Z}(\alpha) = 1$, $\mathbf{Z}(\alpha^i) = \prod_{j < i} \mathbf{f}(\alpha^j) / \mathbf{g}(\alpha^j)$, $i = 2..n + 1$.

2. Sends **Z** to **I**.

Checking products with **H**-ranged protocols

- 1. \mathcal{P} computes Z with $Z(\alpha) = 1$, $Z(\alpha^i) = \prod_{j < i} f(\alpha^j)/g(\alpha^j)$.
- 2. Sends Z to I.
- 3. \mathcal{V} checks following identities on \mathcal{H} .
 - 3.1 $L_1(X)(Z(X)-1)=0$
 - 3.2 $Z(X)f(X) = Z(\alpha \cdot X)g(X)$
 - 3.3 $L_n(X)(Z(\alpha \cdot X) 1) = 0$

The bottom line (on BLS-381 curve)

600 byte proofs with one trusted setup for all fan-in two circuits of \boldsymbol{n} gates.

Prover does $11n \ G_1 \ \text{exp}$ (or $9n \ G_1 \ \text{exp}$ with 700 byte proof).

For batch of proofs on same circuit only 3n G_1 exp and 240 bytes for each additional proof.

Bonus material: The KZG polynomial commitment scheme

SRS: $[1],[x],\ldots,[x^d]$, for random $x \in \mathbb{F}$.

 $\mathsf{cm}(\mathsf{f}) \coloneqq \textstyle \sum_{i=0}^d \alpha_i \left[x^i \right] = \left[\mathsf{f}(x) \right]$

 $f(X) = \sum_{i=0}^{d} \alpha_i X^i$

SRS: $[1],[x],...,[x^d],$ for random $x \in \mathbb{F}$.

for random
$$x \in \mathbb{F}$$
.

cm(f) := [f(x)]

open(f, i) := [h(x)], where $h(X) := \frac{f(X) - f(i)}{X - i}$

$$cm(f) := [f(x)]$$

$$\mathsf{open}(\mathsf{f},\mathfrak{i}) \coloneqq [\mathsf{h}(x)] \text{, where } \mathsf{h}(X) \coloneqq \tfrac{\mathsf{f}(X) - \mathsf{f}(\mathfrak{i})}{X - \mathfrak{i}}$$

verify(cm,
$$\pi$$
, z , i):

 $e(cm - [z], [1]) \stackrel{?}{=} e(\pi, [x - i])$

cm(f) := [f(x)]

open(f, i) := [h(x)], where $h(X) := \frac{f(X) - f(i)}{X - i}$

verify(cm, π , z, i):

$$e(cm - [z], [1]) \stackrel{?}{=} e(\pi, [x - i])$$

Thm[KZG,MBKM]: This works in the Algebraic Group

Model.