

# Lógica y Teoría de la Computación Primer semestre 2022

Daniel Vega Araya



#### LPO - Formas normales

- Forma Normal Conjuntiva (FNC)
- Forma Normal Disyuntiva (FND)
- Forma Normal Rectificada (FNR)
  - Ninguna variable aparece libre y ligada a la vez.
  - Cada cuantificador actúa sobre una variable distinta.
- Forma Normal Prenex (FNP)
  - o cuantificadores están sólo al comienzo.
- Forma Normal de Skolem (FNS)
  - como FNP pero sin existenciales.

# ¿por qué estudiar

Lógica de Primer Orden?

- Es un sistema formal que permite generalizar la lógica de predicados (LP) o de orden cero.
- Aumenta su poder expresivo.
- No sólo es declarativa, sino también procedural.
- No sólo define hechos, sino además objetos, predicados o relaciones, y funciones.
- Es completa

**Objetos** 

Objetos + Relaciones

Objetos + Relaciones + Funciones

"Homero es padre de Bart y esposo de Marge"

"Homero es padre de Bart y esposo de Marge"

**Objetos** 

"Homero es padre de Bart y esposo de Marge"

**Objetos Relaciones** 

"Homero es padre de Bart y esposo de Marge"

**Objetos** 

Relaciones

**Funciones** 

"Homero es padre de Bart y esposo de Marge"

Objetos
Relaciones
Funciones



"Homero es padre de Bart y esposo de Marge"

Objetos
Relaciones
Funciones



Función: informalmente, es una herramienta que permite transformar una cosa en otra.

"Homero es padre de Bart y esposo de Marge"

Objetos
Relaciones
Funciones



Función: informalmente, es una herramienta que permite transformar una cosa en otra.

y es función?

"Homero es padre de Bart y esposo de Marge"

Objetos
Relaciones
Funciones



Función: informalmente, es una herramienta que permite transformar una cosa en otra.

y es función?... y es un conectivo lógico

así....

- Constantes (C): persona, casa, Homero, dos, alumnos, etc.
- **Predicados o relaciones** (P): es igual a, es padre de, tienen sueño, pertenece a, se compone de, etc.
- Funciones (F): más, raíz cuadrada, sucesor, padre, etc.
- Variables: x, y, z, etc.
- Conectivos lógicos:  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$
- Cuantificadores lógicos: ∀, ∃
- Relación igualdad: =
- Símbolos de puntuación: (, )

- Constantes (C): persona, casa, Homero, dos, alumnos, etc.
- **Predicados o relaciones** (P): es igual a, **es padre de**, tienen sueño, pertenece a, se compone de, etc.
- Funciones (F): más, raíz cuadrada, sucesor, padre, etc.
- Variables: x, y, z, etc.
- Conectivos lógicos:  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$
- Cuantificadores lógicos: ∀, ∃
- Relación igualdad: =
- Símbolos de puntuación: (, )

Predicados o relaciones (P): permiten definir hechos o verdades aceptadas dentro de un universo de discurso.



Predicados o relaciones (P): permiten definir hechos o verdades aceptadas dentro de un universo de discurso.



Conjunto de objetos de entrada

Conjunto de objetos de salida



Predicados o relaciones (P): permiten definir hechos o verdades aceptadas dentro de un universo de discurso.



Conjunto de objetos de entrada Conjunto de objetos de salida

Funciones (F): es un tipo especial de relación entre los objetos del dominio de discurso que mapea un conjunto de objetos de entrada a un objeto único de salida.



Predicados o relaciones (P): permiten definir hechos o verdades aceptadas dentro de un universo de discurso.



Conjunto de objetos de entrada Conjunto de objetos de salida

Funciones (F): es un tipo especial de relación entre los objetos del dominio de discurso que mapea un conjunto de objetos de entrada a un objeto único de salida.



- LP
- LPO

- LP: σ
- LPO

- LP: σ
- LPO: La veracidad de las fórmulas depende de la interpretación sobre un dominio.

- LP: σ
- LPO: La veracidad de las fórmulas depende de la interpretación sobre un dominio.

#### Ejemplo:

¿Es 
$$\forall x \exists y (x = y + y)$$
 cierta en L = {<, +, \*, sucesor, 0, 1}?

- LP: σ
- LPO: La veracidad de las fórmulas depende de la interpretación sobre un dominio.

#### Ejemplo:

¿Es 
$$\forall x \exists y(x = y + y)$$
 cierta en L = {<, +, \*, sucesor, 0, 1}?

¿Qué pasa en el dominio de N?

- LP: σ
- LPO: La veracidad de las fórmulas depende de la interpretación sobre un dominio.

#### Ejemplo:

¿Es 
$$\forall x \exists y(x = y + y)$$
 cierta en L = {<, +, \*, sucesor, 0, 1}?

¿Qué pasa en el dominio de №?... ¿y en ℝ?

- LP: σ
- LPO: La veracidad de las fórmulas depende de la interpretación sobre un dominio.

#### Ejemplo:

¿Es 
$$\forall x \exists y (x = y + y)$$
 cierta en L = {<, +, \*, sucesor, 0, 1}?

¿Qué pasa en el dominio de №?... ¿y en ℝ?

- Los modelos permiten interpretar la veracidad de una fórmula, presentando:
  - Estructuras: interpretan elementos del vocabulario en un dominio.
  - Asignación de variables: relacionar variables con elementos del dominio.

Un modelo es una tupla  $M = \langle D, I, g \rangle$  tal que:

- D es el dominio (colección no vacía de objetos).
- *I* es la **función de interpretación**, que asigna:
  - Un elemento c<sup>D</sup> a cada constante c en C.
  - o Una relación k-aria p<sup>D</sup> ⊆  $D^k = D \times ... \times D$  para cada símbolo de predicado p en P.
  - Una función k-aria  $f^D: D^k \to D$  para cada símbolo de función f en F.
- $g: V \rightarrow D$  es la asignación de variables.
- Una **estructura** E conformada por la tupla < D, I >, puede denotarse como:

o 
$$E = < D, < p^D, ...>, < f^D, ...>, < c^D, ...>>$$

Ejemplo: 
$$\mathbb{R} = <\mathbb{R}, <<^{\mathbb{R}}>, <$$
 sucesor $^{\mathbb{R}}, +^{\mathbb{R}}, *^{\mathbb{R}}>, <$   $0^{\mathbb{R}}, 1^{\mathbb{R}}>>$ 



#### En general,

- Un vocabulario L define constantes, predicados, funciones.
- Un **dominio** *D* **define** objetos de la "realidad" que pueden asumir las variables, mediante una asignación de variables *g*.
- Una **estructura** *E* **interpreta** L en *D*, mediante una función de interpretación *l*.



Ejemplo

Vocabulario L =  $\{C, P, F\}$ 

 $C = \{A, B, C, D, E\}$ 

P = {Sobre, ...}

 $F = \{\}$ 

Dominio D = { A, B, C, D, E

Interpretación I:

$$A^{D} = A$$
...



¿Cómo verificar que el bloque B está debajo del bloque A?



¿Cómo verificar que el bloque B está debajo del bloque A?



Faltaría definir una interpretación

$$\mathsf{Bajo}^\mathsf{D} = \{ \dots \}$$

#### LPO - Semántica, Modelos

¿Cómo verificar que el bloque B está debajo del bloque A?



Faltaría definir una interpretación

$$\mathsf{Bajo}^\mathsf{D} = \{ \dots \}$$

$$\forall x \forall y (Bajo(x,y) \leftrightarrow Sobre(y,x))$$

#### LPO - Validez y consecuencia

- Una fórmula  $\phi$  es válida si para cualquier modelo M, tenemos M |=  $\phi$ . En tal caso, decimos |=  $\phi$ .
- Una inferencia  $\frac{\phi_1,...,\phi_n}{\psi}$  válida si para cualquier modelo M tal que M  $|=\phi_1,...,M|=\phi_n$ , se concluye M  $|=\psi$ .
- Una fórmula  $\psi$  es consecuencia lógica de otra  $\varphi$  si  $\varphi$  |=  $\psi$ .
- Una fórmula  $\psi$  es equivalente a otra  $\varphi$  si  $\varphi$  |=  $\psi$  y  $\psi$  |=  $\varphi$ .

En LP...

Sea  $\Sigma = \{p, q \rightarrow (p \rightarrow r)\}\$ , demostrar  $\Sigma \mid = (q \rightarrow r)$ 

En LP...

Sea 
$$\Sigma = \{p, q \rightarrow (p \rightarrow r)\}\$$
, demostrar  $\Sigma \mid = (q \rightarrow r)$ 



y en LPO:

y en LPO:

Necesitamos algo más...



# Lógica y Teoría de la Computación Primer semestre 2022





## Lógica y Teoría de la Computación Primer semestre 2022

Daniel Vega Araya



#### LPO - Sistemas de derivación

- Al igual que en la lógica proposicional, en LPO existen conjuntos de axiomas y reglas de inferencia que permiten derivar cualquier fórmula válida.
- Un teorema es una fórmula que puede ser derivada en un número finito de pasos siguiendo los pasos de un sistema de derivación.

#### LPO - Sistemas de derivación

- Al igual que en la lógica proposicional, en LPO existen conjuntos de axiomas y reglas de inferencia que permiten derivar cualquier fórmula válida.
- Un teorema es una fórmula que puede ser derivada en un número finito de pasos siguiendo los pasos de un sistema de derivación.
- Un sistema de derivación es correcto si todo teorema es una fórmula válida.

#### LPO - Sistemas de derivación

- Al igual que en la lógica proposicional, en LPO existen conjuntos de axiomas y reglas de inferencia que permiten derivar cualquier fórmula válida.
- Un teorema es una fórmula que puede ser derivada en un número finito de pasos siguiendo los pasos de un sistema de derivación.
- Un sistema de derivación es correcto si todo teorema es una fórmula válida.
- Un sistema de derivación es **completo** si **toda fórmula válida es un teorema**.

## ¿Consecuencia lógica?

"Los chilenos pagan las cuentas a última hora" "Carlos es chileno"

"Carlos paga las cuentas a última hora"

"Los chilenos pagan las cuentas a última hora" "Carlos es chileno"

"Carlos paga las cuentas a última hora"

**PREMISAS** 

"Los chilenos pagan las cuentas a última hora" "Carlos es chileno"

"Carlos paga las cuentas a última hora"

CONSECUENCIA

"Los chilenos pagan las cuentas a última hora" "Carlos es chileno"

"Carlos paga las cuentas a última hora"

La **consecuencia lógica** es la **relación** que conecta una afirmación ( $\phi$ ) o un conjunto de afirmaciones ( $\Sigma$ ) con aquello que está lógicamente implicado por la afirmación o el conjunto de afirmaciones.

¿Es válido lo siguiente en LP?

| truth table | $(p \lor q) \land (\neg q \lor r) \Rightarrow p \lor r$ |
|-------------|---------------------------------------------------------|
|-------------|---------------------------------------------------------|

| p | q | r | $(p \lor q) \land (\neg q \lor r) \Rightarrow p \lor r$ |
|---|---|---|---------------------------------------------------------|
| Т | T | Т | T                                                       |
| Т | Т | F | Т                                                       |
| Т | F | Т | T                                                       |
| Т | F | F | Т                                                       |
| F | Т | Т | T                                                       |
| F | Т | F | Т                                                       |
| F | F | Т | T                                                       |
| F | F | F | T                                                       |



¿Es válido lo siguiente en LP?

¿Es válido lo siguiente en LP?

$$\frac{(p+q)*(\neg q+r)}{(p+r)}$$

¿Es válido lo siguiente en LP?

$$\frac{(p+q)^* (\neg q+r)}{(p+r)}$$

Ahora veamos el caso para LPO:

$$\forall x \forall y ((P(x) + Q(y)) * (\neg Q(y) + R(x)))$$

$$\forall x \forall y (P(x) + R(x))$$

¿Es válido lo siguiente en LP?

$$\frac{(p+q)^* (\neg q+r)}{(p+r)}$$

Ahora veamos el caso para LPO:

$$\forall x \forall y ((P(x) + Q(y)) * (\neg Q(y) + R(x)))$$

$$\forall x \forall y (P(x) + R(x))$$

y con....

$$\forall x \forall y ((P(x) + Q(Homero)) * (\neg Q(y) + R(x)))$$

$$\qquad \qquad \forall x \forall y (\underline{\hspace{1cm}})$$

y con....

$$\forall x \forall y ((P(x) + Q(Homero)) * (\neg Q(y) + R(x)))$$

$$= \forall x \forall y (????????)$$

y con....

$$\forall x \forall y ((P(x) + Q(Homero)) * (\neg Q(y) + R(x)))$$

$$= \forall x \forall y (????????)$$

Necesitamos la Unificación

- Sustitución: proceso de asignar un valor a una variable, reemplazandola en toda la fórmula.
- Dados los términos s y t
  - $t\{x/s\}$  es el resultado de reemplazar todas las ocurrencias de x por s en t.
  - $\circ$  A{x/s} es el resultado de reemplazar todas las ocurrencias libres de x por s en A.

- Ejemplo:
  - O(y){y/Homero}

- Ejemplo:
  - Q(y){y/Homero} obtenemos Q(Homero)

- Ejemplo:
  - Q(y){y/Homero} obtenemos Q(Homero)
  - $\circ S(y)\{y/f(z)\}$

- Ejemplo:
  - Q(y){y/Homero} obtenemos Q(Homero)
  - o  $S(y)\{y/f(z)\}$  obtenemos S(f(z))

- Dos expresiones son unificables si tienen un unificador.
- Diremos que t es una instancia común de  $t_1$  y  $t_2$  si existe una sustitución  $\theta$  tal que  $t = t_1 \theta = t_2 \theta$ .

- Dos expresiones son unificables si tienen un unificador.
- Diremos que t es una instancia común de  $t_1$  y  $t_2$  si existe una sustitución  $\theta$  tal que  $t = t_1 \theta = t_2 \theta$ .

| $t_1$ $t_2$                      |            | Unificador                                | Inst. común                  | comentario                                  |
|----------------------------------|------------|-------------------------------------------|------------------------------|---------------------------------------------|
| P(x)                             | P(f(y))    | $\{x/f(y)\}\ \text{\'o}\ \{x/f(z), y/z\}$ | $P(x) \circ P(f(y))$         |                                             |
| <i>P</i> ( <i>a</i> , <i>b</i> ) | Q(x, b)    | N/A                                       |                              | tienen distinto<br>símbolo de<br>relación   |
| P(x)                             | P(f(x))    | N/A                                       |                              | x y f(x) no son unificables                 |
| P(x, y)                          | P(y, x)    | $\{x/y\}$ ó $\{y/x\}$ ó $\{x/z, y/z\}$    | P(x,x) ó $P(y,y)$ ó $P(z,z)$ |                                             |
| P(x, f(x))                       | P(a, f(b)) | N/A                                       |                              | dos valores<br>diferentes<br>sustituyen a x |

#### **Unificador Más General (UMG)**

• Definición: Un unificador  $\theta$  es más general que τ (denotado como  $\theta$  > τ) si existe otro unificador  $\lambda$  tal que:

$$t_1 \theta \lambda = t_2 T$$

• Definición: Un unificador  $\theta$  es el más general (**UMG**) si  $\theta$  > τ para cualquier unificador τ aplicable.

#### **Unificador Más General (UMG)**

• Definición: Un unificador  $\theta$  es más general que τ (denotado como  $\theta$  > τ) si existe otro unificador  $\lambda$  tal que:

$$t_1 \theta \lambda = t_2 T$$

• Definición: Un unificador  $\theta$  es el más general (**UMG**) si  $\theta$  >  $\tau$  para cualquier unificador  $\tau$  aplicable.

Intuitivamente, el UMG es el unificador que unifica dos expresiones en la menor cantidad de pasos o sustituciones.

**Unificador Más General (UMG)** 

Ejemplo:

Dados P(x, y) y P(y, x)

**Unificador Más General (UMG)** 

Ejemplo:

Dados P(x, y) y P(y, x)

{x/a, y/a} no es un **UMG** 

{y/x} es un **UMG** 

entonces....

$$\forall x \forall y ((P(x) + Q(y)) * (\neg Q(Homero) + R(x)))$$

entonces....

$$\forall x \forall y ((P(x) + Q(y)) * (\neg Q(Homero) + R(x)))$$

$$\downarrow \{y / Homero\}$$

$$\forall x (P(x) + R(x))$$

• ¿Cómo demostramos que  $\Sigma = \varphi$ ?

- ¿Cómo demostramos que  $\Sigma = \varphi$ ?
- Necesitamos un método que nos ayude a esto.



## Lógica y Teoría de la Computación Primer semestre 2022



$$p \to \neg \neg p$$