Основные ошибки в определение функций

In[•]:= **f2[2]**

Out[*]= **4**

Объяснение: f2 - забыта _, т.е. x - не локальная переменная и функция определена только в точке 2 (т.к. x=2);

f3 - забыто :=, т.е. переменная х справа от = не связана с х в аргументе, и функция определена всегда значением 4 ($x^2 = 2^2 = 4$);

f4 - комбинация обоих ошибок, функция определена только в точке 2 и значение 4.

Формула Тейлора

Отбрасываем О:

Out[
$$\circ$$
]= $1 - \frac{x^2}{2}$

Визуализация:

$$In[\cdot]:=$$
 Plot[{f[x], g1}, {x, -3, 3}, PlotLegends \rightarrow {"function", "taylor"}] график функции легенды графика

Видно, что функция и ее разложение мало отличимо в некоторой довольно большой окрестности нуля.

Определим функцию, вычисляющее разложение до x^n , n- целое:

In[*]:= taylor[1.]

Out[*]= taylor[1.]

In[*]:= taylor[5]

Out[*]=
$$1 - \frac{x^2}{2} + \frac{x^4}{24}$$

Создадим динамический модуль визуализации в зависимости от n: (n меняется от 1 до 10 с шагом 1)

варьировать

PlotRange $\rightarrow \{-1.5, 1.5\}$], taylor[n]}, {n, 1, 10, 1}]

отображаемый диапазон графика

Автоматическая анимация:

In[@]:= Animate[

анимировать

PlotRange $\rightarrow \{-1.5, 1.5\}$], taylor[n]}, {n, 1, 10, 1}]

отображаемый диапазон графика

Можно экспортировать в видео/gif через Export[]

Разметка динамического окна через Grid:

In[*]:= Manipulate[Grid[

варьировать таблица

PlotRange \rightarrow {-1.5, 1.5}]}, {"Taylor=", taylor[n]}}], {n, 1, 10, 1}]

отображаемый диапазон графика

Суммы и ряды

Вычисление суммы ряда:

$$ln[*]:= Sum \left[\frac{1}{2^k}, \{k, 1, \infty\} \right]$$

Out[•]= **1**

Бесконечность: Infinity или Esc + i + n + f + Esc

inf

Infinity

бесконечность

$$ln[*] = \underset{\text{CYMM}}{\text{Sum}} \left[\frac{1}{2^k}, \{k, 1, 10\} \right]$$

$$Out[\bullet] = \frac{1023}{1024}$$

Проверка на сходимость ряда:

$$In[*]:=$$
 SumConvergence $\left[\frac{1}{2^k}, k\right]$ $\left[\text{сходимость ряда} \right]$

Out[]= True

$$ln[*]:=$$
 SumConvergence $\begin{bmatrix} \frac{1}{n}, n \end{bmatrix}$ $\begin{bmatrix} cxoдимость ряда \end{bmatrix}$

Out[•]= False

$$ln[*]:=$$
 SumConvergence $\left[\frac{1}{n^a}, n\right]$ _cходимость ряда

$$\textit{Out[•]} = \ Re \ [\ a\] \ > \ 1$$

В пакете по умолчанию переменные комплексные, но можно упростить полученное выражение в предположении о вещественности переменной а:

$$In[*]$$
:= Refine[%, Assumptions → a ∈ Reals]
 _уточнить _предположения _множест

Out[-]= a > 1

3начок принадлежит : Element[a, Reals] ил Esc + e + l + e + m + Esc

:elem

Исследование функций

график функции

график функции

Локальные экстремумы

Решение уравнения f' = 0

Out[
$$\circ$$
]= $\{\{x \rightarrow 1\}\}$

Приближенные методы поиска экстремумов - определить примерное значение по графику и применить функции FindMaximum/FindMinimum для уточнения

Например, по графику считаем что максимум при x = 0.8

```
In[*]:= FindMaximum[f[x], {x, 0.8}]
```

найти максимум

Out[
$$\circ$$
]= {0.367879, {x \rightarrow 1.}}

и получаем что максимум в х = 1, а значение функции в этой точке 0.3678 ...

$$ln[*]:=$$
 FindMinimum[f[x], {x, 0.8}]

найти минимум

- ... General: Overflow occurred in computation.
- ••• FindMinimum: The function value Overflow[] is not a real number at $\{x\} = \{-6.91145 \times 10^{15}\}$.

$$\textit{Out[*]} = \left. \left\{ -1.433740734531272 \times 10^{272\,873\,025\,596\,888} \text{, } \left\{ x \rightarrow -6.28313 \times 10^{14} \right\} \right\}$$

Минимума нет!

Наибольшее и наименьшее значение функции на отрезке

Найдем наибольшее значение функции f (x) на отрезке [-1, 2]:

$$ln[\cdot]:=$$
 Maximize[{f[x], $-1 \le x \le 2$ }, x]

максимизировать

$$\textit{Out[*]=} \ \left\{ \frac{1}{\mathbb{e}} \text{, } \{x \rightarrow 1\} \right\}$$

Найдем наименьшее значение функции f (x) на отрезке [-1, 2]:

$$ln[*]:=$$
 Minimize[{f[x], -1 \le x \le 2}, x]

минимизировать

Out[
$$\circ$$
]= $\{-\mathbb{e}, \{X \to -1\}\}$

Ответ вида {значение, {точка в которой достигается}}

Также есть функции, ищущие это приближенно:

$$ln[@] := NMaximize[{f[x], -1 \le x \le 2}, x]$$

численная максимизация

Out[
$$\sigma$$
]= {0.367879, {x $ightarrow$ 1.}}

$$ln[+]:=$$
 NMinimize[{f[x], -1 \le x \le 2}, x]

численная минимизация

Out[
$$\sigma$$
]= $\{-2.71828, \{x \rightarrow -1.\}\}$

максимизировать

Out[*]=
$$\left\{\frac{1}{e}, \{x \to 1\}\right\}$$

минимизировать

... Minimize: The minimum is not attained at any point satisfying the given constraints.

Out[
$$\circ$$
]= $\{-\infty, \{X \to -\infty\}\}$

Наименьшего значения нет:

Правила и подстановки

Предыдущие функции выдавали ответы вида х -> а. Это называется правилом.

Например, правило х -> 1 читается так: заменить х на 1

Правила можно применять к выражениям с помощью оператора /.

$$In[@]:= 2x + 3 / . x \rightarrow 1$$

Out[•]= **5**

Читается так: заменить х на 1 в выражении 2 х + 3

Многие функции выдают правила в качестве результата:

$$ln[-]:= s = Solve[2x + 3 == 0, x]$$

решить уравнения

Out[
$$\sigma$$
]= $\left\{ \left\{ X \rightarrow -\frac{3}{2} \right\} \right\}$

Здесь список из списка, для получения элемента нужно использовать оператор Part[] или краткая форма [[]]

s [[1]]

Индексация начинается с 1!

Результат Solve можно применить к любому выражению

$$In[\circ] := x^2 + x / . s[1]$$

Также можно применять списки правил

$$ln[\circ] := x + y /. \{x \to 1, y \to -1\}$$

и применять последовательно несколько правил

$$ln[\circ]:= x + y /. x \rightarrow 1 /. y \rightarrow -1$$

Визуализация функций

Визуализация явно заданной функции : $(f(x) = x^2)$

Визуализация неявно заданной функции $(x^2 + y^2 = 1)$

Визуализация параметрически заданной функции $((x(t) = \sin(t), y(t) = 2 \cos(t))$

Можно объединять на одной координатной плоскости:

Визуализация функции заданной в полярной системе координат ($r(\phi)$ = $\cos(\phi)$

$ln[*]:= PolarPlot[Cos[\phi], \{\phi, 0, \pi\}]$

Двумерная графика - набор графических примитивов

Команды в списке исполняются последовательно, и стили действуют на все что дальше в списке!

Можно объединять с графиками функций:

Также можно рисовать графические примитивы сразу на Plot - c помощью опций Prolog и Epilog: первая под графиком, вторая - поверх графика:

