MI - Hold 7

1. ϕ velsestime - man d. 17/11-2014

A.9, A.10, 2.2, 2.3, 2.7, 2.22.

A.9: Lad (A_n) og (B_n) være følger af delmængder af \mathcal{X} og antag

$$B_1 = A_1$$
 og $B_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i$ for $n \ge 2$.

Vis at:

- a) B_n 'erne er parvist disjunkte.
- b) $\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i$.
- c) $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

a)

Lad $k \neq n$. Skal vise at $B_k \cap B_n \subset \emptyset$. Antag n > k. Der gælder

$$B_n \cap B_k = (A_n \setminus \bigcup_{i=1}^{n-1} A_i) \cap (A_k \setminus \bigcup_{i=1}^{k-1} A_i)$$

$$= A_n \cap (\bigcup_{i=1}^{n-1} A_i)^c \cap A_k \cap (\bigcup_{i=1}^{k-1} A_i)^c$$

$$= A_n \cap (\bigcap_{i=1}^{n-1} A_i^c) \cap A_k \cap (\bigcap_{i=1}^{k-1} A_i^c)$$

$$\subset A_k^c \cap A_k$$

$$= \emptyset.$$
(def A.4)
$$(A.8 - \text{de Morgan})$$

b)

Det skal vises at $\bigcup_{i=1}^n B_i \subset \bigcup_{i=1}^n A_i$ og $\bigcup_{i=1}^n A_i \subset \bigcup_{i=1}^n B_i$. Lad $x \in \bigcup_{i=1}^n B_i$. Da findes $k \in \{1, ..., n\}$ med $x \in B_k$. Vi får

$$x \in B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \subset A_k \subset \bigcup_{i=1}^n A_i,$$

dvs. $\bigcup_{i=1}^n B_i \subset \bigcup_{i=1}^n A_i$.

Lad $x \in \bigcup_{i=1}^{n} A_i$ og set $k = \inf\{i : x \in A_i\}$. Bemærk

- 1) $k \in \{1, ..., n\}$
- $2) \ x \in A_k$
- 3) $x \notin \bigcup_{i=1}^{k-1} A_i$. (hvor $\bigcup_{i=1}^{0} A_i = \emptyset$).

Det følger at:

$$x \in A_k \setminus (\bigcup_{i=1}^{k-1} A_i) = B_k \subset \bigcup_{i=1}^n B_i,$$

dvs. $\bigcup_{i=1}^n A_i \subset \bigcup_{i=1}^n B_i$.

c)

Hvis $x \in \bigcup_{n=1}^{\infty} A_i$, da findes $n \in \mathbb{N}$ med

$$x \in A_n \subset \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i \subset \bigcup_{i=1}^\infty B_i$$

dvs. $\bigcup_{n=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} B_i$. Hvis $x \in \bigcup_{i=1}^{\infty} B_i$, da findes $n \in \mathbb{N}$ med

$$x \in B_n \subset \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i \subset \bigcup_{i=1}^\infty A_i$$

dvs. $\bigcup_{n=1}^{\infty} B_i \subset \bigcup_{i=1}^{\infty} A_i$.

A.10: Find:

$$\bigcup_{N=1}^{\infty} (\cap_{n=N}^{\infty} A_n)$$
 og $\cap_{N=1}^{\infty} (\bigcup_{n=N}^{\infty} A_n)$

når:

- a) A_n 'erne er parvist disjunkte.
- b) $A_n = B$ for n lige og $A_n = C$ for n ulige.

a)

For alle $N \in \mathbb{N}$ gælder

$$\bigcap_{n=N}^{\infty} A_n \subset A_N \cap A_{N+1} = \emptyset.$$

Dermed fås $\bigcup_{N=1}^{\infty} \cap_{n=N}^{\infty} A_n = \emptyset$.

Lad $x \in \mathcal{X}$ være vilkårlig. Hvis $x \notin \bigcup_{n=1}^{\infty} A_n$ gælder:

$$x \notin \bigcap_{N=1}^{\infty} (\bigcup_{n=1}^{\infty} A_n) \supset \bigcap_{N=1}^{\infty} (\bigcup_{n=N}^{\infty} A_n)$$

Hvis derimod $x \in \bigcup_{n=1}^{\infty} A_n$ har vi $x \in A_n$ for et $k \in \mathbb{N}$, og da A_k 'erne er disjunkte får $x \notin A_n$ for $n \neq k$ så:

$$x \notin \bigcup_{n=k+1}^{\infty} A_n \supset \bigcap_{N=1}^{\infty} (\bigcup_{n=N}^{\infty} A_n).$$

Dvs. for alle $x \in \mathcal{X}$ fås $x \notin \cap_{N=1}^{\infty} (\cup_{n=N}^{\infty} A_n)$ så:

$$\cap_{N=1}^{\infty}(\cup_{n=N}^{\infty}A_n)=\emptyset.$$

b)

$$\cup_{N=1}^{\infty}(\cap_{n=N}^{\infty}A_n)=\cup_{N=1}^{\infty}(A\cap B)=A\cap B.$$

$$\bigcap_{N=1}^{\infty} (\bigcup_{n=N}^{\infty} A_n) = \bigcap_{N=1}^{\infty} (A \cup B) = A \cup B.$$

- **2.2:** Lad $(\mathcal{X}, \mathbb{E})$ være et målbart rum, lad μ og ν være mål på $(\mathcal{X}, \mathbb{E})$ og lad $c \in (0, 1)$.
 - a) Vis at $\lambda(A) \stackrel{\text{def}}{=} c\mu(A)$ er et mål.
 - b) Vis at $\gamma(A) \stackrel{\text{def}}{=} \mu(A) + \nu(A)$ er et mål.

a)

Bemærk

$$\lambda(A) = c\mu(A) \ge 0$$
 for $A \in \mathbb{E}$,
 $\lambda(\emptyset) = c\mu(\emptyset) = 0$.

Enhver følge (A_n) af disjunkte \mathbb{E} -mængder opfylder

$$\lambda \left(\bigcup_{n=1}^{\infty} A_n \right) = c\mu \left(\bigcup_{n=1}^{\infty} A_n \right)$$

$$= c \sum_{n=1}^{\infty} \mu(A_n)$$

$$= \sum_{n=1}^{\infty} c\mu(A_n)$$

$$= \sum_{n=1}^{\infty} \lambda(A_n).$$

Dermed er λ σ -additivt.

b)

Bemærk

$$\gamma(A) = \mu(A) + \nu(A) \ge 0 \text{ for } A \in \mathbb{E},$$

 $\gamma(\emptyset) = \mu(\emptyset) + \nu(\emptyset) = 0.$

Enhver følge (A_n) af disjunkte \mathbb{E} -mængder opfylder

$$\gamma\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) + \nu\left(\bigcup_{n=1}^{\infty} A_n\right)$$

$$= \sum_{n=1}^{\infty} \mu(A_n) + \sum_{n=1}^{\infty} \nu(A_n)$$

$$= \sum_{n=1}^{\infty} (\mu(A_n) + \nu(A_n))$$

$$= \sum_{n=1}^{\infty} \gamma(A_n).$$

Dermed er γ σ -additivt.

2.3: Lad $(\mathcal{X}, \mathbb{E}, \mu)$ være et målrum, og lad $A \in \mathbb{E}$. Vis at $\mu_A(B) \stackrel{\text{def}}{=} \mu(A \cap B)$ er et mål.

$$\mu_A(B) = \mu(A \cap B) \ge 0$$

$$\mu_A(\emptyset) = \mu(A \cap \emptyset) = \mu(\emptyset) = 0.$$

Enhver følge (B_n) af disjunkte \mathbb{E} -mængder opfylder

$$\mu_{A} \left(\bigcup_{n=1}^{\infty} B_{n} \right) = \mu \left(A \cap \left(\bigcup_{n=1}^{\infty} B_{n} \right) \right)$$

$$= \mu \left(\bigcup_{n=1}^{\infty} (A \cap B_{n}) \right)$$

$$= \sum_{n=1}^{\infty} \mu(A \cap B_{n})$$

$$= \sum_{n=1}^{\infty} \mu_{A}(B_{n}).$$
(s. 534)

hvor det er anvendt, at hvis $i \neq j$ fås

$$(A \cap B_i) \cap (A \cap B_j) = A \cap B_i \cap A \cap B_j$$
$$\subset B_i \cap B_j$$
$$= \emptyset.$$

Dermed er μ_A σ -additivt.

2.7: Lad $(\mathcal{X}, \mathbb{E}, \mu)$ være et målrum, og lad (A_n) være en følge af \mathbb{E} -mængder med:

$$\mu(A_i \cap A_j) = 0$$
 for $i \neq j$.

Vis at

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

Lad (B_n) være konstrueret som i opg A.9, der gælder:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) \qquad (\text{opg A.9 c})$$

$$= \sum_{n=1}^{\infty} \mu(B_n) \qquad (\text{opg A.9 a})$$

$$= \sum_{n=1}^{\infty} \mu(A_n).$$

hvor sidste lighed skyldes:

$$\mu(A_n) - \mu(B_n) = \mu(A_n) - \mu(A_n \setminus (\bigcup_{i=1}^{n-1} A_i))$$

$$= \mu(A_n) - \mu(A_n \cap (\bigcup_{i=1}^{n-1} A_i)^c) \qquad (\text{def A.4})$$

$$= \mu(A_n) - \mu(A_n \cap (\bigcap_{i=1}^{n-1} A_i^c)) \qquad (\text{A.8 - de Morgan})$$

$$= \mu(A_n \setminus (A_n \cap (\bigcap_{i=1}^{n-1} A_i^c))) \qquad (\text{lemma 2.8})$$

$$= \mu(A_n \cap (A_n \cap (\bigcap_{i=1}^{n-1} A_i^c))^c) \qquad (\text{def A.4})$$

$$= \mu(A_n \cap (A_n^c \cup (\bigcap_{i=1}^{n-1} A_i^c)^c)) \qquad (\text{A.9 - de Morgan})$$

$$= \mu(A_n \cap (A_n^c \cup (\bigcup_{i=1}^{n-1} A_i))) \qquad (\text{A.9 - de Morgan})$$

$$= \mu((A_n \cap A_n^c) \cup (A_n \cap (\bigcup_{i=1}^{n-1} A_i))) \qquad (\text{A.6})$$

$$= \mu(A_n \cap (\bigcup_{i=1}^{n-1} A_i)) \qquad (\text{A.6})$$

$$= \mu(\bigcup_{i=1}^{n-1} (A_n \cap A_i)) \qquad (\text{A.6})$$

$$\leq \sum_{i=1}^{n-1} \mu(A_n \cap A_i) \qquad (\text{lemma 2.7 - Boole})$$

$$= 0.$$

2.22: Lad $(\mathcal{X}, \mathbb{E}, \mu)$ være et målrum, og lad \mathcal{N} betegne systemet af nulmængder.

2.22 a): Lad $N \in \mathcal{N}$ og lad $M \subset N$. Vis at M er en nulmængde.

Se definition 2.22. Lad B være en \mathbb{E} -mængde med:

$$N \subset B$$
 og $\mu(B) = 0$.

Da $M \subset N \subset B$ fås

$$M \subset B$$
 og $\mu(B) = 0$.

M er dermed en nulmængde.

2.22 b): Lad $\bar{\mathbb{E}} = \{A \cup N : A \in \mathbb{E}, N \in \mathcal{N}\}$. Vis at $\mathbb{E} \subset \bar{\mathbb{E}}$.

Bemærk at \emptyset er en \mathcal{N} -mængde, da $\emptyset \in \mathbb{E}$ og:

$$\emptyset \subset \emptyset$$
 og $\mu(\emptyset) = 0$.

Da alle $A \in \mathbb{E}$ opfylder $A = A \cap \emptyset \in \overline{\mathbb{E}}$, er $\mathbb{E} \subset \overline{\mathbb{E}}$.

2.22 c): Vis at $F \in \overline{\mathbb{E}}$, hvis og kun hvis, der findes $A, B \in \mathbb{E}$ med $A \subset F \subset B$ og så $\mu(B \setminus A) = 0$.

Lad $F \in \overline{\mathbb{E}}$, da findes $C \in \mathbb{E}$ samt $N \in \mathcal{N}$ med $F = C \cup N$. Da $N \in \mathcal{N}$ findes $D \in \mathbb{E}$ med $\mu(D) = 0$ og $N \subset D$. Bemærk:

$$C \subset (C \cup N) \subset (C \cup D)$$

Da \mathbb{E} er en σ -algebra gælder $C, (C \cup D \in \mathbb{E}$. Endvidere

$$\mu((C \cup D) \setminus C) = \mu(D \setminus C) < \mu(D) = 0.$$

Lad $F \subset \mathcal{X}$ opfylde $A \subset F \subset B$ for nogle $A, B \in \mathbb{E}$ med $\mu(B \setminus A) = 0$. Da gælder

$$F = A \cup (B \backslash F).$$

Men da $(B \backslash F) \subset (B \backslash A)$ gælder $B \backslash F \in \mathcal{N}$ og dermed $F \in \overline{\mathbb{E}}$.

2.22 d: Vis at $\bar{\mathbb{E}}$ er en σ -algebra.

Da $\emptyset \in \mathcal{N}$ og da $\emptyset \in \mathbb{E}$ fås $\emptyset = \emptyset \cup \emptyset \in \bar{\mathbb{E}}$.

Lad $F \in \overline{\mathbb{E}}$. Ifølge c) findes $A, B \in \mathbb{E} \mod A \subset F \subset B$ og $\mu(B \setminus A) = 0$. Det følger at $A^c, B^c \in \mathbb{E}$, at $B^c \subset F^c \subset A^c$ og at

$$\mu(A^c \backslash B^c) = \mu(A^c \cap B) = \mu(B \backslash A) = 0.$$

c) anvendes igen til konklusionen $F^c \in \bar{\mathbb{E}}$.

Lad $(A_n \cup N_n)$ være en følge af $\overline{\mathbb{E}}$ -mængder, $(A_n) \subset \mathbb{E}$, $(N_n) \subset \mathcal{N}$. Der gælder:

$$\cup_{n=1}^{\infty} (A_n \cup N_n) = (\cup_{n=1}^{\infty} A_n) \cup (\cup_{n=1}^{\infty} N_n).$$

Da \mathbb{E} er en σ -algebra fås:

$$\cup_{n=1}^{\infty} A_n \in \mathbb{E}.$$

Endvidere, da $(N_n) \subset \mathcal{N}$, følger det af Booles ulighed, at

$$\mu\left(\bigcup_{n=1}^{\infty} N_n\right) \le \sum_{n=1}^{\infty} \mu(N_n) = 0,$$

dvs. $\bigcup_{n=1}^{\infty} N_n \in \mathcal{N}$ og

$$\cup_{n=1}^{\infty} (A_n \cup N_n) = (\cup_{n=1}^{\infty} A_n) \cup (\cup_{n=1}^{\infty} N_n) \in \bar{\mathbb{E}}.$$

Det konkluderes endeligt at $\bar{\mathbb{E}}$ er en σ -algebra.

2.22 e): Vis at vis $A_1 \cup N_1 = A_2 \cup N_2$, hvor $A_1, A_2 \subset \mathbb{E}$ og $N_1, N_2 \in \mathcal{N}$, da gælder $\mu(A_1) = \mu(A_2)$.

Da $A_1 \cap N_1 \subset N_1$ fås $\mu(A_1 \cap N_1) = 0$. Ligeledes fås $\mu(A_2 \cap N_2) = 0$. Det følger af opg. 2.7, at:

$$\mu(A_1) = \mu(A_1) + \mu(N_1)$$

$$= \mu(A_1 \cup N_1) \qquad (opg 2.7)$$

$$= \mu(A_2 \cup N_2)$$

$$= \mu(A_2) + \mu(N_2) \qquad (opg 2.7)$$

$$= \mu(A_2)$$

2.22 f): Lad $\bar{\mu}(A \cup N) \stackrel{\text{def}}{=} \mu(A)$. Hvorfor giver denne definition mening? Vis at $\bar{\mu}$ er et mål.

Definitionen giver mening grundet opg e), som sikrer at værdien $\bar{\mu}(F)$ er entydigt bestemt uanset hvilken dekomposition $F = A \cup N$ der vælges.

$$\begin{split} \bar{\mu}(\emptyset) &= \mu(\emptyset \cup \emptyset) = 0. \\ \bar{\mu}(A \cup N) &= \mu(A) \geq 0 \quad \text{for} \quad A \in \mathbb{E}, N \in \mathcal{N}. \end{split}$$

Enhver følge $(F_n) = (A_n \cup N_n)$ af disjunkte $\bar{\mathbb{E}}$ -mængder opfylder

$$\bar{\mu} \left(\bigcup_{n=1}^{\infty} F_n \right) = \bar{\mu} \left(\bigcup_{n=1}^{\infty} (A_n \cup N_n) \right)$$

$$= \bar{\mu} \left(\left(\bigcup_{n=1}^{\infty} A_n \right) \cup \left(\bigcup_{n=1}^{\infty} N_n \right) \right)$$

$$= \mu \left(\bigcup_{n=1}^{\infty} A_n \right) \qquad \left(\bigcup_{n=1}^{\infty} N_n \in \mathcal{N} \right)$$

$$= \sum_{n=1}^{\infty} \mu \left(A_n \right) \qquad (\mu \text{ er et mål})$$

Det konkluderes at μ er et mål på $(\mathcal{X}, \bar{\mathbb{E}})$.

Da $\emptyset \in \mathcal{N}$ opfylder alle $A \in \mathbb{E}$

$$\bar{\mu}(A) = \bar{\mu}(A \cup \emptyset) = \mu(A) + \mu(\emptyset) = \mu(A).$$

2.22 g): Vis at $(\mathcal{X}, \bar{\mathbb{E}}, \bar{\mu})$ er et komplet målrum.

Lad M være en $\bar{\mu}$ nulmængde. Da findes $F \in \bar{\mathbb{E}}$ med:

$$M \subset F$$
 og $\bar{\mu}(F) = 0$.

Lad $A \in \mathbb{E}$ og $N \in \mathcal{N}$ opfylde $F = A \cup N$. Da N er en μ -nulmængde findes $B \in \mathbb{E}$ med:

$$N \subset B$$
 og $\mu(B) = 0$.

Vi har da:

$$M \subset F = A \cup N \subset A \cup B$$
.

Endvidere gælder $A \cup B \in \mathbb{E}$, og:

$$\bar{\mu}(A \cup B) = \mu(A \cup B) < \mu(A) + \mu(B) = \bar{\mu}(F) + \mu(B) = 0.$$

Det konkluderes at M er en μ -nulmængde, og da $\emptyset \cup M \in \bar{\mathbb{E}}$, konkluderes det at $\bar{\mathbb{E}}$ indeholder alle $\bar{\mu}$ -nulmængder.

2.22 h: Vis at enhver komplet udvidelse $(\mathcal{X}, \mathbb{G}, \nu)$ af $(\mathcal{X}, \mathbb{E}, \mu)$ er en udvidelse af $(\mathcal{X}, \bar{\mathbb{E}}, \bar{\mu})$.

Da $\mathbb G$ er en komplet udvidelse af $\mathbb E$ gælder $\mathbb E, \mathcal N \subset \mathbb G$. For alle $A \in \mathbb E$ og alle $N \in \mathcal N$ gælder altså:

$$N, A \in \mathbb{G}$$

og da \mathbb{G} er en σ -algebra gælder:

$$N \cup A \in \mathbb{G}$$
.

Det komkluderes at $\bar{\mathbb{E}} \subset \mathbb{G}$.

Lad $A \in \mathbb{E}$ og $N \in \mathcal{N}$, vi ønsker at måle $\overline{\mathbb{E}}$ -mængden $A \cup N$ med ν .

Lad $A \in \mathbb{E}$ opfylder:

$$N \subset A$$
 og $\mu(A) = 0$.

Da ν er et mål gælder $\nu(N) \geq 0$ og $\nu(N) \leq \nu(A) = 0$ (monotonicitet af mål). Ergo $\nu(N) = 0$.

Endvidere fås $\nu(A \cap N) \leq \nu(N) = 0$, og det fælger af opg. 2.7, at:

$$\nu(A \cup N) = \nu(A) + \nu(N) = \nu(A) = \mu(A) = \bar{\mu}(A \cup N).$$

Altå gælder $\nu(F) = \bar{\mu}(F)$ for alle $\bar{\mathbb{E}}$ -mængder F. Det konkluderes at ν er en udvidelse af $\bar{\mu}$.