СО	РО						PSO		
	1	2	3	4	5	6	1	2	3
1.	√		V	V		√	V	V	V
2.	√			√		√		V	V
3.			V			√		V	
4.			V	V		√		V	
5.			$\sqrt{}$			√		1	

CP5111

NETWORKING LABORATORY

L T P C 0 0 4 2

OBJECTIVES:

- Demonstrate the operation of wireless networks.
- Simulate and analyze the performance of GSM, CDMA, LTE and SDN.
- To gain knowledge and work on various protocol layers.
- To explore network simulators.
- Identify the different features of integrated and differentiated services.

LIST OF EXPERIMENTS:

- 1) Configure networks using:
 - a) Distance Vector Routing protocol
 - b) Link State Vector Routing protocol
- 2) Implement the congestion control using Leaky bucket algorithm.
- 3) Installation of NS3 and execution of TCL commands / scripts.
- 4) Implementation Point to Point network using duplex links between the nodes. Analyze the packet transfer by varying the queue size and bandwidth. (using simulator)
- 5) Implement the dynamic routing protocol by varying the CBR traffic for each node and use a flow monitor() to monitor losses at nodes. (using simulator)
- 6) Create a wireless mobile ad-hoc network environment and implement the OLSR routing protocol. (using simulator)
- 7) Implement CDMA by assigning orthogonal code sequence for 5 stations, generate the CDMA code sequence and communicate between the stations using the generated code.
- 8) Create a GSM environment and implement inter and intra handover mechanisms. (using simulator)
- 9) In LTE environment implement Round Robin and Token Bank Fair Queue scheduler in MAC layer.
- 10) Write python script to create topology in Mininet and configure OpenFlow switches with POX controller to communicate between nodes.

TOTAL:60 PERIODS

OUTCOMES:

Upon completion of the course, the student will be able to

- Judge the emerging wireless technology standards.
- Configure functionalities of router and switches.
- Assess the importance of wireless adhoc networks.
- · Compare and contrast various wireless technologies.
- Explain and design the considerations for deploying wireless network infrastructure.

СО	РО							PSO			
	1	2	3	4	5	6	1	2	3		
1.	V		V	V		√		V			
2.			V			V	V	V			
3.	V		V				V				
4.	V					V		V			
5.	V		V	V		V			V		

CP5251

ADVANCED OPERATING SYSTEMS

LTPC 3 0 0 3

OBJECTIVES:

- To understand the concepts of distributed systems.
- To get an insight into the various issues and solutions in distributed operating systems.
- To learn about real-time operating systems.
- To gain knowledge on the design concepts of mobile operating systems.
- To understand cloud operating systems.

UNIT I INTRODUCTION

9

Distributed Operating Systems – Issues – Communication Primitives – Limitations of a Distributed System – Lamport's Logical Clocks – Vector Clocks – Causal Ordering of Messages

UNIT II DISTRIBUTED OPERATING SYSTEMS

9

Distributed Mutual Exclusion Algorithms – Classification – Preliminaries – Simple Solution – Lamport's Algorithm – Ricart-Agrawala Algorithm – Suzuki-Kasami's Broadcast Algorithm – Raymond's Tree-Based Algorithm – Distributed Deadlock Detection – Preliminaries – Centralized Deadlock Detection Algorithms – Distributed Deadlock Detection Algorithms – Path Pushing Algorithm – Edge Chasing Algorithm – Hierarchical Deadlock Detection Algorithms – Agreement Protocols – Classification – Solutions to the Byzantine Agreement Problem – Lamport-Shostak-Pease Algorithm