CS5691 : Pattern Recognition and Machine Learning

Assignment 3 Report

GROUP No. 23

Group Members:
Aakriti Budhraja
(CS18S009)
Madhura Pande
(CS17S031)
Sadbhavana Babar
(CS18S029)

Course Instructor:
Prof. C. Chandra Sekhar
Professor, Dept. of CSE,
Indian Institute of
Technology, Madras

September 19, 2020

1 Dataset1: Sequential Pattern Classification

We applied Hidden Markov Model(HMM) on this dataset.

1.1 Hidden Markov Model

Hidden Markov Model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (i.e. hidden) states. There are 3 basic types of problems which HMM tries to solve are:

- The Evaluation Problem: Given an HMM model λ and a sequence of observations $O = O_1, O_2, ... O_T$, what is the probability that the observations are generated by the model, ie., $P(O|\lambda)$.
- The Decoding Problem: Given an HMM model λ and a sequence of observations $O = O_1, O_2, ... O_T$, what is the most likely state sequence in the model that produced the observations?
- The Learning Problem: Given an HMM model λ and a sequence of observations $O = O_1, O_2, ... O_T$, how to determine model parameters A, b, Λ which maximizes $P(O|\lambda)$.

We mostly used the first and the third points to solve our given problem of pattern classification. The third problem is solved by Baum-Welch method of parameter estimation and first problem is solved by forward variable method.

1.2 Our Approach

We have 2 types of datasets which are as follows:

- On-line handwritten character data
- Spoken digit data (Isolated digits)

1.3 Observations

1.3.1 On-Line Handwritten Data

• The best model for On-line handwritten data is HMM model with number of states and symbols set to 15, yielding an accuracy of 77% on test data.

• Confusion matrices for train and test data are as follows:

80.62	6.18	13.2	[73.23]	16.77	10.1
7.18	83.35	9.55	10.22	78.12	11.66
11.67	7.23	81.1	12.5	7.85	79.65

Table 1: Classification accuracies of model for on-line handwritten data

nstates, nsymbols	5	10	12	15	20
TrainData	54	73.23	74.17	81.69	77.93
Validation Data	31.66	46.67	48.33	71.66	46.66

1.3.2 Speech Data(Isolated)

- The best model for speech data is HMM model with number of states and symbols set to 10, yielding an accuracy of 88.88% on test data.
- Confusion matrices for train and test data are as follows:

$$\begin{bmatrix} 97.5 & 2.2 & 0.3 \\ 0.4 & 97.5 & 2.1 \\ 0.3 & 2.1 & 97.5 \end{bmatrix} \begin{bmatrix} 86.88 & 6.5 & 6.62 \\ 2.24 & 89.12 & 8.64 \\ 1.51 & 7.85 & 90.64 \end{bmatrix}$$

Table 2: Classification accuracies of model for speech isolated data

nstates, nsymbols	5	10	15
TrainData	93.33	97.5	95.24
Validation Data	87.87	90.90	89.92

2 Dataset2: Two dimensional Artificial Data

2.1 Linearly separable data

2.1.1 Perceptron

The perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.

Figure 1: Decision region plot for Perceptron Learning Rule

Table 3: Classification accuracies of the model for different values of η (learning rate)

Learning rate (η)	1	0.1	0.01
$\overline{TrainData}$	90.7	92.1	95.8
Validation Data	89	91.5	94.3

- Classification accuracy on test data for the best model is 94.5%
- The decision region boundary of the classifier is linear.
- The best model is chosen for which the accuracy on validation data is maximum which is 94.3% for $\eta=0.01$
- Confusion matrix(%) for best model on train and test data:

$$\begin{bmatrix} 83.2 & 0 & 5.6 & 11.2 \\ 0 & 100 & 0 & 0 \\ 0 & 0 & 100 & 0 \\ 0 & 0 & 0 & 100 \end{bmatrix} \begin{bmatrix} 78 & 0 & 4 & 18 \\ 0 & 100 & 0 & 0 \\ 0 & 0 & 100 & 0 \\ 0 & 0 & 0 & 100 \end{bmatrix}$$

2.1.2 Multi-layer feed forward Neural Network

Table 4: Classification accuracies of the model for different values of η (learning rate)

Number of nodes in hidden layers h1 and h2 is 2 and 3 respectively

Learning rate (η)	0.01	0.1	5
TrainData	97.1	75.3	74.9
Validation Data	97.3	72.7	94.3

Number of nodes in hidden layers h1 and h2 is 3 and 3 respectively

Learning rate (η)	0.01	0.1	5
TrainData	100	94. 7	92.4
Validation Data	100	92.4	94.7

- Classification accuracy on test data for the best model is 100%
- The best model is chosen for which the accuracy on validation data is maximum which is 100% for $\eta=0.01$

• Confusion matrix(%) for best model on test data:

$$\begin{bmatrix} 100 & 0 & 0 & 0 \\ 0 & 100 & 0 & 0 \\ 0 & 0 & 100 & 0 \\ 0 & 0 & 0 & 100 \end{bmatrix}$$

2.1.3 Linear kernel based C-SVM

Figure 2: Linear kernel based C-SVM : C=1, Number of SVs = 13(indicated in red)

Observation:

• Classification accuracy on test data for the best model is 100%.

2.1.4 Polynomial kernel based C-SVM

Figure 3: Polynomial kernel based C-SVM : degree = 3, Number of SVs = 9 Observation:

- Classification accuracy on test data for the best model is 100%.
- \bullet Parameters for best model : gamma = 1,coef0 = 1,degree = 3,C = 1

2.1.5 Gaussian kernel based C-SVM

Figure 4: Gaussian kernel based C-SVM : Number of SVs = 17 Observation :

- Classification accuracy on test data for the best model is 100%.
- Parameters for best model : gamma = 0.005, C = 12.

2.1.6 Multi-class logistic regression based classifier using Polynomial basis function

Figure 5: Best Model for Logistic Regression : Degree = 1

Table 5: Classification accuracies of the model for different values of M for $\eta=1$

${f M}$	1	2	3
$\overline{TrainData}$	100	100	100
Validation Data	100	99.6	100

Table 6: Classification accuracies of the model for different values of η for M = 1

η	1	0.1	0.01
$\overline{TrainData}$	100	100	100
Validation Data	100	99.89	99.83

- Classification accuracy on test data for the best model is 100%.
- The best model is chosen for which the accuracy on validation data is maximum which is 100% for $\eta = 1$.

2.1.7 Multi-class logistic regression based classifier using Gaussian basis function

Figure 6: Best Model for Logistic Regression on linearly separable data

Table 7: Classification accuracies of the model for different values of η (learning rate)

Learning rate (η)	0.1	0.01	0.001
TrainData	100	100	100
Validation Data	99.83	100	100

- Classification accuracy on test data for the best model is 100%
- The decision region boundary of the classifier is nonlinear.

• The best model is chosen for which the accuracy on validation data is maximum which is 100% for $\eta=0.01$

2.2 Nonlinearly separable data

2.2.1 Multi-layer feed forward neural network

Figure 7: Best Model for multi-layer feed forward neural network on non-linearly separable data

Table 8: Classification accuracies of the model for different values of η (learning rate)

Number of hidden layer nodes h1 and h2 is 15 and 15 respectively.

Learning rate (η)	0.1	0.01
$\overline{TrainData}$	98.1	100
Validation Data	96.9	100

- Classification accuracy on test data for the best model is 100%
- The decision region boundary of the classifier is nonlinear.
- The best model is chosen for which the accuracy on validation data is maximum which is 100% for $\eta=0.01$

• Confusion matrix(%) for best model on train data:

2.2.2 Polynomial kernel based C-SVM

Figure 8: Best model for Polynomial based C-SVM : Degree = 2, Number of $\mathrm{SVs} = 1161$

Table 9: Classification accuracies of the model for different degrees

\mathbf{M}	2	3	4	5
TrainData	56.63	48	49.4	41.5
Validation Data	56.9	45.5	51.2	39.8

- Classification accuracy on test data for the best model is 57.88%.
- The best model is chosen for which the accuracy on validation data is maximum which is 56.9%.
- Parameters for best model: C = 1, degree = 2, gamma = 1, coef0 = 1

• Confusion matrices for train and test data are as follows:

$$\begin{bmatrix} 55.32 & 44.68 \\ 41.52 & 58.48 \end{bmatrix} \begin{bmatrix} 56.9 & 43.1 \\ 43.11 & 56.89 \end{bmatrix}$$

2.2.3 Gaussian kernel based C-SVM

Figure 9: Best model for Gaussian based C-SVM : gamma = 0.1, C = 10, Number of $\mathrm{SVs} = 80$

Table 10: Classification accuracies of the model for different values of gamma

gamma	1	0.5	0.1	0.05	0.01
TrainData	100	100	100	98.8	66.6
Validation Data	100	100	100	99.7	65

- Classification accuracy on test data for the best model is 100%.
- \bullet The parameters corresponding to the best model are : gamma = 0.1 , C = 10 which result in 100% accuracy and the least number of support vectors i.e. 80.

2.2.4 Multi-class logistic regression based classifier using Gaussian basis function

Figure 10: Best Model for Logistic Regression on non-linearly separable data

Table 11: Classification accuracies of the model for different values of η (learning rate)

Learning rate (η)	0.1	0.001	0.0001
TrainData	50	50	54.91
Validation Data	50	50	58.31

- Classification accuracy on test data for the best model is 56.92%
- The best model is chosen for which the accuracy on validation data is maximum which is 58.31% for $\eta = 0.0001$
- Confusion matrix(%) for best model on train data:

$$\begin{bmatrix} 32.21 & 67.79 \\ 17.025 & 82.975 \end{bmatrix}$$

• Confusion matrix(%) for best model on test data:

$$\begin{bmatrix} 13.85 & 86.15 \\ 0 & 100 \end{bmatrix}$$

3 Dataset 3: Image Data

3.0.1 Multi-layer feed forward neural network

Table 12: Classification accuracies of the model for different values of nodes in hidden layer h1 and h2

(h1,h2)	(10,10)	(15,12)	(12,18)	$(20,\!22)$	$ (20,\!25) $
TrainData	82.9	50	48.8	89	87.9
Validation Data	68.5	65.8	55	70.5	76.5

- Classification accuracy on test data for the best model is 77.9%
- \bullet The best model is chosen for which the accuracy on validation data is maximum which is 76.5% .
- We observe that as we increase the number of hidden layer nodes, there is an increase in the overall accuracy of the classifier.
- Confusion matrix(%) for best model on train and test data:

$$\begin{bmatrix} 89.32 & 6.18 & 4.5 \\ 1.92 & 95 & 3.08 \\ 3.93 & 16.53 & 79.54 \end{bmatrix} \begin{bmatrix} 80 & 11.43 & 8.57 \\ 8.16 & 71.43 & 20.41 \\ 9.23 & 9.23 & 81.54 \end{bmatrix}$$

3.1 Polynomial kernel based C-SVM

Table 13: Classification accuracies of the model for different degrees

\mathbf{M}	2	3	f 4	5	7
TrainData	100	100	100	100	100
Validation Data	57.6	60.7	59.88	58.5	58.66

Observation:

- Classification accuracy on test data for the best model is 69.9%.
- The parameters corresponding to the best model are : degree = 3, gamma = 1, coef0 = 1, C = 1.
- Number of support vectors = 507.
- Confusion matrix for test data are as follows:

$$\begin{bmatrix} 68.82 & 4.68 & 26.5 \\ 20.52 & 70.23 & 9.25 \\ 20.22 & 9.13 & 70.65 \end{bmatrix}$$

3.2 Gaussian kernel based C-SVM

Table 14: Classification accuracies for different values of gamma

gamma	1	0.01	0.005	0.001
TrainData	100	100	100	80
Validation Data	37.8	59.6	64.9	58.45

Observation:

• Classification accuracy on test data for the best model is 79.9%.

- \bullet The parameters corresponding to the best model are : gamma = 0.005 , C = 2.
- Number of support vectors = 625.
- Confusion matrix for test data are as follows:

$$\begin{bmatrix} 78 & 1.5 & 20.5 \\ 16.5 & 80.23 & 3.25 \\ 15.22 & 3.33 & 81.45 \end{bmatrix}$$