

SOA, NS

- dig soa cs.uvic.ca
 - cs.uvic.ca. 43200 IN SOA active.uvic.ca.
 gduncan.dns.engr.uvic.ca. 705181509 3600 300 604800 1800
 - origin = active.uvic.ca; mail addr = gduncan.dns.engr.uvic.ca; serial = 705181509; refresh = 3600 (60 minutes); retry = 300 (5 minutes); expire = 604800 (7 days); minimum = 1800 (0.5 hour)
 - replication consistency control
- dig ns cs.uvic.ca
- cs.uvic.ca. 40800 IN NS dns1.uvic.ca.
 - cs.uvic.ca. 40800 IN NS active.uvic.ca.

9/28/22 CSc 361

@?

dig mx cs.uvic.ca

– cs.uvic.ca.

- priority = 0 (highest)
 - often at least 2 for each domain for email resilience

43200 IN

- dig a cs.uvic.ca
- cs.uvic.ca.
- dig cname www.cs.uvic.ca
- www.cs.uvic.ca. 42383 IN CNAME thing2.cs.uvic.ca.
- dig a thing2.cs.uvic.ca
- thing2.cs.uvic.ca. 43200 IN A 142.104.100.111
- dig ptr 111.100.104.142.in-addr.arpa

MX

43200 IN A 142.104.100.110

– 111.100.104.142.in-addr.arpa. 43200 IN PTR thing2.cs.UVic.CA.

CSc 361

Q: why CNAME?

0 mta.cs.uvic.ca.

9/28/22

DNS queries

Local DNS resolver-server

```
#nslookup
>set debug
>www.cs.uvic.ca
QUESTIONS
    www.cs.uvic.ca, type = A, class = IN
ANSWERS
    -> www.cs.uvic.ca
    canonical name = thing2.cs.uvic.ca.
    -> thing2.cs.uvic.ca
    internet address = 142.104.100.111
```

AUTHORITY RECORDS

-> cs.uvic.canameserver = active.uvic.ca.-> cs.uvic.canameserver = dns1.uvic.ca.

ADDITIONAL RECORDS

-> dns1.uvic.ca

internet address = 142.104.6.1 -> active.uvic.ca

internet address = 142.104.96.2

Q: recursive or not recursive

Recursive vs iterative

In the lab *next* week: recursive vs iterative DNS

DNS queries: more

- Local DNS server and higher hierarchy
 - recursive vs iterative
- Reply cache
 - time-to-live (TTL)
- Services required
 - commonly by UDP
- Attacks on DNS
 - cache poisoning

identification flags		1
number of questions	number of answer RRs	12 bytes
number of authority RRs	number of additional RRs	
ques (variable numbe		
ansı (variable number ol		
auth (variable number of	ority resource records)	
additional (variable number of	information fresource records)	

9/28/22

CSc 361

* DNSSEC, DNSCurve, HTTPS, etc (CSC490 Summer 2014; JCURA'14)

DNS: reality check

- Design goals
 - distributed, hierarchical, low overhead, robust
- Protocol mechanisms
 - cache, weak consistency, redundancy
 - e.g., at least two NS servers per domain in different subnets for redundancy; reality: many are on the same subnet due to poor provisioning
 - e.g., stable name-address mapping for caching efficiency; reality: very short TTL in CDN
- Secure DNS

9/28/22

Akamai content delivery

- Akamai EdgePlatform
 - 15,000+ servers
 - 1,100+ networks
 - 69 countries
 - up to 15% web traffic!
- Server selection
 - DNS-based
 - for site or object delivery

Site delivery

AkaDNS.net

akadns.net DNS servers

Server	IP address	Access network	Location
ZA	216.32.65.105	exodus.net	Washington, DC
ZB	216.52.46.145	bbnplanet.net	Denver, CO
ZC	63.241.199.50	att.net	Dallas, TX
ZD	206.132.160.36	glbx.net	Santa Clara, CA
ZE	12.47.217.11	att.net	Parsippany, NJ
ZF	63.215.198.79	level3.net	San Jose, CA
ZG	204.248.36.131	sprintlink.net	
ZH	63.208.48.42	level3.net	St. Louis, MO

akadns.net NS and A TTL

Ask		Answer			
Name	Server	Refer	NS-TTL (s)	A-TTL (s)	
net.	{am}.root-servers.net	{am}.gtld-servers.net	172,800	172,800	2 days
akaDNS.net.	{am}.gtld-servers.net	z{ag}.akadns.net	172,800	172,800	= aajs
yahoo	z{ag}.akadns.net	lo n	90,000	90,000	~1 day
www	z{ag}.akadns.net	82	8E 8	300	5 mins

DNS-based server selection

- Transparent to end-users
- Issues
 - effectiveness (who's making the decision)
 - overhead (low TTL)
 - granularity (hostname vs. service name)
 - proximity (client, local DNS, CDN server)
 - accuracy (network positioning)
- Bottom-line: avoid the worst, hope for the best

9/28/22

This lecture

- DNS
 - DNS names and hierarchies
 - DNS resource records
 - DNS resolution queries
- DNS-based server selection
 - "site delivery": mechanisms, pros and cons
- Explore further
 - CDN: "object delivery"

Next lectures

- This Friday
 - No lecture
 - No tutorial
- Next week/month: Transport layer
 - read KR4Ch4: Computer Networking
 - Transport layer services
 - User Datagram Protocol (UDP)
 - Transmission Control Protocol (TCP)

