BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

Google AI Language

Bidirectional Encoder Representations from Transformers

- Designed to pre-train deep bidirectional representation from unlabeled text by jointly conditioning on both left and right context in all layers
- Masked Language Model (MLM)
- Next Sentence Prediction (NSP)
- Pre-trained BERT model can be fine-tunes with just one additional output layer to create SOTA models for a wide range of NLP tasks (QA, NER, Sentiment Analysis, etc.)

Background

- Motivation
 - Language models only use left context or right context, but language understand bi-directional

Background

• Differences in pre-training model architectures

- BERT uses a bidirectional Transformer
- OpenAl GPT uses a left-to-right Transformer
- ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTM

Model Architecture

- Multi-layer bidirectional Transformer Encoder
 - L: number of layers (Transformer block)
 - H: hidden size
 - A: number of self-attention heads
- BERTBASE

- Total parameters = 110M
- Same model size as OpenAI GPT
- BERTLARGE
 - L = 24, H = 1024, A = 16
 - Total parameters = 340M

Transformer Encoder

Input/Output Representations

 To make BERT handle a variety of down-stream tasks, the input representation is able to unambiguously represent both a single sentence and a pair of sentences (ex: Question-Answer)

Input/Output Representations

- Input representation is the sum of
 - Token embedding: WordPiece embeddings with a 30,000 token vocabulary
 - Segment embedding
 - Position embedding: same as in the Transformer

- Masked Language Model (MLM)
 - Mask some percentage of the input tokens at random, and then predict those masked tokens
 - 15% of each sequence are replaced with a [MASK] token
 - Predict the masked words

- Problem
 - Mask token never seen during fine-tuning
- Solution
 - 15% of the words to predict, but don't replace with [MASK] 100% of the time. Instead:
 - 80% of the time: Replace the word with the [MASK] token
 - my dog is hairy → my dog is [MASK]
 - 10% of the time: Replace the word with a random word
 - my dog is hairy → my dog is apple
 - 10% of the time: Keep the word unchanged
 - my dog is hairy → my dog is hairy

Pre-training BERT

Ablation over different masking strategies

Ma	sking Ra	ates	Dev Set Results				
MASK	SAME	RND	MNLI Fine-tune	NER Fine-tune Feature-base			
80%	10%	10%	84.2	95.4	94.9		
100%	0%	0%	84.3	94.9	94.0		
80%	0%	20%	84.1	95.2	94.6		
80%	20%	0%	84.4	95.2	94.7		
0%	20%	80%	83.7	94.8	94.6		
0%	0%	100%	83.6	94.9	94.6		

- Next Sentence Prediction (NSP)
 - Many important downstream tasks such as QA and NLI are based on understanding the relationship between two sentences, which is not directly captured by language modeling
 - Predict whether Sentence B is an actual sentence that proceeds
 Sentence A, or a random sentence

- Next Sentence Prediction (NSP)
 - A Binarized next sentence prediction task that can be trivially generated from any monolingual corpus is trained
 - 50% of the time B is the actual next sentence that follows A (IsNext)
 - 50% of the time it is a random sentence from the corpus (NotNext)

- Next Sentence Prediction (NSP)
 - Despite its simplicity, pre-training towards this task is very beneficial both QA and NLI

Fine-tuning

Transfer Learning

Pre-training

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT vs GPT-1

- Comparison of BERT and GPT-1
 - Training-data size
 - GPT is trained on BookCorpus(800M words), BERT is trained on the BookCorpus and Wikipedia(2,500M words)
 - Training special tokens during training
 - BERT learns [SEP], [CLS] and sentence A/B embedding during pre-training
 - Task-specific fine-tuning
 - GPT uses the same learning rate of 5e-5 for all fine-tuning experiments, BERT chooses a task-specific fine-tuning learning rate

Results

• GLUE Benchmark Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Ablation Studies

• Effect of Pre-training Tasks

Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)
BERTBASE	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

Ablation Studies

• Effect of Model Size

Hyperparams				Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

Ablation Studies

- Feature-based Approach with BERT
 - Not all tasks can be easily represented by a Transformer encoder architecture
 - → Require task-specific model architecture
 - Computational benefits to pre-compute an expensive representation of the training data

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERTLARGE	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

Any Questions?