Erste Ergebnisse – Kinetische Charakterisierung von G37D

$$r_{1} = \frac{v_{max,1} * c_{PD} * c_{NAD}}{\left(c_{PD} + K_{m,PD}\right) * \left(c_{NAD} + K_{m,NAD}\right)}$$

$$r_{2} = \frac{v_{max,2} * c_{HA} * c_{NADH}}{\left(c_{Lactol} + K_{m,Lactol}\left(1 + \frac{c_{PD}}{K_{i,PD}}\right)\right) * \left(c_{NADH} + K_{m,NADH}\left(1 + \frac{c_{NAD}}{K_{i,NAD}}\right)\right)}$$

$$r_{3} = \frac{v_{max,3} * c_{Lactol} * c_{NAD}}{\left(c_{Lactol} + K_{m,Lactol}\left(1 + \frac{c_{Lacton}}{K_{i,Lacton}}\right)\right) * \left(c_{NAD} + K_{m,NAD}\right)}$$

Gleichgewicht schnell erreicht χ Keine Rückreaktion von δ -Valerolacton

Kompetitive Inhibierung

MM-Kinetik für 2-Substrate

- 1-Substrat MM-Gleichung: $v = \frac{v_{max} * c}{c + K_M}$
- Für 2 Substrate werden einzelne Werte von c und K_M multipliziert
- Mechanismus ADH-Reaktion: Theorell-Chance (Sonderform von Ordered Bi-Bi) \rightarrow kompetitive Inhibierung

Reaktionsgeschwindigkeit v

$$r_1 = \frac{v_{max,1} * c_{PD} * c_{NAD}}{(c_{PD} + K_{m,PD}) * (c_{NAD} + K_{m,NAD})}$$

$$r_{2} = \frac{v_{max,2} * c_{HA} * c_{NADH}}{\left(c_{Lactol} + K_{m,Lactol} \left(1 + \frac{c_{PD}}{K_{i,PD}}\right)\right) * \left(c_{NADH} + K_{m,NADH} \left(1 + \frac{c_{NAD}}{K_{i,NAD}}\right)\right)} \frac{\frac{c_{i}}{K_{i}} \text{ wird mit } K_{M} \text{ multipliziert}}{c + K_{M} * \left(1 + \frac{c_{i}}{K_{i}}\right)}$$

$$r_{3} = \frac{v_{max,3} * c_{Lactol} * c_{NAD}}{\left(c_{Lactol} + K_{m,Lactol} \left(1 + \frac{c_{Lacton}}{K_{i,Lacton}}\right)\right) * (c_{NAD} + K_{m,NAD})}$$

Kompetitive Inhibierung:

$$v = \frac{v_{max} * c}{c + K_{M} * \left(1 + \frac{c_{i}}{K_{i}}\right)}$$

Inhibierungstypen und Gleichungen

- Term für Inhibierung: $\frac{c_i}{K_i}$
- Kompetitiv: Inhibierungsterm wird mit K_M multipliziert
 - z.B. Produktinhibierung (Strukturelle Ähnlichkeit von Produkt & Substrat bei Biotransformationen)

- Unkompetitiv: Inhibierungsterm wird mit c (Substratkonzentration im Nenner) multipliziert
 - z.B. Substratüberschussinhibierung (c_i=c)

$$v = \frac{v_{max} * c}{c * \left(1 + \frac{c_i}{K_i}\right) + K_M}$$

• Nicht-kompetitiv: Inhibierungsterm wird mit K_M und c (Substratkonzentration im Nenner) multipliziert

$$v = \frac{v_{max} * c}{(c + K_{M}) * \left(1 + \frac{c_{i}}{K_{i}}\right)}$$

Entsprechende Multiplikationen von c- und K_M-Werten bei Mehrsubstratkinetik

$$r_1 = \frac{v_{max,1} * c_{PD} * c_{NAD}}{(c_{PD} + K_{m,PD}) * (c_{NAD} + K_{m,NAD})}$$

Parameter	Einheit	Wert
$v_{max,1}$	U/mg	0,07 ± 0,002
$K_{m,PD}$	mM	84 ± 16
$K_{m,NAD}$	mM	2,2 ± 0,2

$$r_{2} = \frac{v_{max,3} * c_{Lactol} * c_{NADH}}{\left(c_{Lactol} + K_{m,Lactol} \left(1 + \frac{c_{PD}}{K_{i,PD}}\right)\right) * \left(c_{NADH} + K_{m,NADH} \left(1 + \frac{c_{NAD}}{K_{i,NAD}}\right)}$$

Paramet er	Einheit	Wert
Ci		
$v_{max,2}$	U/mg	2,26 ± 1,63
$K_{m,Lactol}$	mM	111 ± 16
$K_{m,NADH}$	mM	2,9 ± 2,42
$K_{i,PD}$	mM	90 ± 19
$K_{i,NAD}$	mM	1,12 ± 0,4

$$r_{3} = \frac{v_{max,3} * c_{Lactol} * c_{NAD}}{\left(c_{Lactol} + K_{m,Lactol} \left(1 + \frac{c_{Lacton}}{K_{i,Lacton}}\right)\right) * (c_{NAD} + K_{m,NAD})}$$

0,0

120

0,2

0,6

NADH [mM]

0,8

1,0

Paramet er	Einhe it	Wert
$v_{max,3}$	U/mg	2,3 ± 0,1
$K_{m,Lactol}$	mM	62 ± 9
$K_{m,NAD}$	mM	2,8 ± 0,3
$K_{i,Lacton}$	mM	108 ± 48

20

Valerolacton [mM]

