Ejercicios resueltos de derivación. 2a parte.

Juan Gabriel Gomila, Arnau Mir y Llorenç Valverde

Ejercicio 1

- a) Desarrollar la función $f(x) = \frac{1}{\sqrt[4]{1+x}}$ en desarrollo de MacLaurin de grado n dando el error cometido.
- b) Dar una estimación de $\frac{1}{\sqrt[4]{11}}$ con 4 valores exactos.

Solución

Apartado a).

Solución

Apartado a).

En los apuntes vimos que el desarrollo de Taylor de la función $f(x) = (x + C)^{\alpha}$ alrededor de $x = x_0$ era:

$$P_n(x) = \sum_{k=0}^n \binom{\alpha}{k} \cdot (x_0 + C)^{\alpha-k} \cdot (x - x_0)^k,$$

donde
$$\binom{\alpha}{k} = \frac{\alpha \cdot (\alpha - 1) \cdots (\alpha - k + 1)}{k!}$$
.

Solución (cont.)

En nuestro caso, C=1, $\alpha=-\frac{1}{4}$ y $x_0=0$:

$$P_n(x) = \sum_{k=0}^n {-\frac{1}{4} \choose k} \cdot x^k = 1 + \sum_{k=1}^n {-\frac{1}{4} \choose k} \cdot x^k,$$

Solución (cont.)

En nuestro caso, C=1, $\alpha=-\frac{1}{4}$ y $x_0=0$:

$$P_n(x) = \sum_{k=0}^n {-\frac{1}{4} \choose k} \cdot x^k = 1 + \sum_{k=1}^n {-\frac{1}{4} \choose k} \cdot x^k,$$

con

$$\begin{pmatrix} -\frac{1}{4} \\ k \end{pmatrix} = \frac{-\frac{1}{4} \cdot \left(-\frac{1}{4} - 1\right) \cdots \left(-\frac{1}{4} - k + 1\right)}{k!}$$
$$= \frac{-\frac{1}{4} \cdot \left(-\frac{5}{4}\right) \cdots \left(-\frac{(4k-3)}{4}\right)}{k!} = \frac{(-1)^k (4k-3)!!!!}{4^k \cdot k!},$$

Solución (cont.)

En nuestro caso, C=1, $\alpha=-\frac{1}{4}$ y $x_0=0$:

$$P_n(x) = \sum_{k=0}^n {-\frac{1}{4} \choose k} \cdot x^k = 1 + \sum_{k=1}^n {-\frac{1}{4} \choose k} \cdot x^k,$$

con

$$\begin{pmatrix} -\frac{1}{4} \\ k \end{pmatrix} = \frac{-\frac{1}{4} \cdot \left(-\frac{1}{4} - 1\right) \cdots \left(-\frac{1}{4} - k + 1\right)}{k!}$$
$$= \frac{-\frac{1}{4} \cdot \left(-\frac{5}{4}\right) \cdots \left(-\frac{(4k-3)}{4}\right)}{k!} = \frac{(-1)^k (4k-3)!!!!}{4^k \cdot k!},$$

donde
$$i!!!! = i \cdot (i - 4) \cdot (i - 8) \cdots 1$$
.

Solución (cont.)

En nuestro caso, C=1, $\alpha=-\frac{1}{4}$ y $x_0=0$:

$$P_n(x) = \sum_{k=0}^n {-\frac{1}{4} \choose k} \cdot x^k = 1 + \sum_{k=1}^n {-\frac{1}{4} \choose k} \cdot x^k,$$

con

$$\begin{pmatrix} -\frac{1}{4} \\ k \end{pmatrix} = \frac{-\frac{1}{4} \cdot \left(-\frac{1}{4} - 1\right) \cdots \left(-\frac{1}{4} - k + 1\right)}{k!}$$
$$= \frac{-\frac{1}{4} \cdot \left(-\frac{5}{4}\right) \cdots \left(-\frac{(4k-3)}{4}\right)}{k!} = \frac{(-1)^k (4k-3)!!!!}{4^k \cdot k!},$$

donde
$$i!!!! = i \cdot (i - 4) \cdot (i - 8) \cdots 1$$
.

Ejemplos: $5!!!! = 5 \cdot 1 = 5$, $8!!!! = 8 \cdot 4 = 32$.

Solución (cont.)

El desarrollo de Taylor queda de la forma siguiente:

$$P_n(x) = 1 + \sum_{k=1}^n \frac{(-1)^k (4k-3)!!!!}{4^k \cdot k!} \cdot x^k.$$

Solución (cont.)

El desarrollo de Taylor queda de la forma siguiente:

$$P_n(x) = 1 + \sum_{k=1}^n \frac{(-1)^k (4k-3)!!!!}{4^k \cdot k!} \cdot x^k.$$

El error cometido viene dado por la expresión:

$$R_n(x-x_0) = \binom{\alpha}{n+1} \cdot (c+C)^{\alpha-n-1} \cdot (x-x_0)^{n+1}$$

Solución (cont.)

El desarrollo de Taylor queda de la forma siguiente:

$$P_n(x) = 1 + \sum_{k=1}^n \frac{(-1)^k (4k-3)!!!!}{4^k \cdot k!} \cdot x^k.$$

El error cometido viene dado por la expresión:

$$R_{n}(x - x_{0}) = {n \choose n+1} \cdot (c+C)^{\alpha-n-1} \cdot (x - x_{0})^{n+1}$$
$$= {n+1 \choose n+1} \cdot (1+c)^{-\frac{1}{4}-n-1} \cdot x^{n+1}$$

Solución (cont.)

El desarrollo de Taylor queda de la forma siguiente:

$$P_n(x) = 1 + \sum_{k=1}^n \frac{(-1)^k (4k-3)!!!!}{4^k \cdot k!} \cdot x^k.$$

El error cometido viene dado por la expresión:

$$R_{n}(x - x_{0}) = \binom{\alpha}{n+1} \cdot (c+C)^{\alpha-n-1} \cdot (x - x_{0})^{n+1}$$

$$= \binom{-\frac{1}{4}}{n+1} \cdot (1+c)^{-\frac{1}{4}-n-1} \cdot x^{n+1}$$

$$= \frac{(-1)^{n+1} (4n+1)!!!!}{4^{n+1} \cdot (n+1)!} \cdot (1+c)^{-n-\frac{5}{4}} \cdot x^{n+1},$$

donde $c \in <0, x>$.

Solución (cont.

Apartado b).

En el apartado b) nos piden hallar $f(0.1) = \frac{1}{\sqrt[4]{1+0.1}} = \frac{1}{\sqrt[4]{1.1}}$ con un error menor o igual que 10^{-4} .

Solución (cont.)

Apartado b).

En el apartado b) nos piden hallar $f(0.1) = \frac{1}{\sqrt[4]{1+0.1}} = \frac{1}{\sqrt[4]{1.1}}$ con un error menor o igual que 10^{-4} .

Primero tenemos que hallar el grado del polinomio n tal que $|f(0.1) - P_n(0.1)| \le 10^{-4}$.

Solución (cont.)

Apartado b).

En el apartado b) nos piden hallar $f(0.1) = \frac{1}{\sqrt[4]{1+0.1}} = \frac{1}{\sqrt[4]{1.1}}$ con un error menor o igual que 10^{-4} .

Primero tenemos que hallar el grado del polinomio n tal que $|f(0.1) - P_n(0.1)| \le 10^{-4}$.

Es decir:

$$\left| \frac{(-1)^{n+1}(4n+1)!!!!!}{4^{n+1} \cdot (n+1)!} \cdot (1+c)^{-n-\frac{5}{4}} \cdot 0.1^{n+1} \right| \le 10^{-4},$$

con $c \in (0, 0.1)$.

Solución (cont.)

Acotemos la parte que depende de c ya que c es desconocido:

Solución (cont.)

Acotemos la parte que depende de c ya que c es desconocido:

$$(1+c)^{-n-\frac{5}{4}} = \frac{1}{(1+c)^{n+\frac{5}{4}}} \le 1,$$

ya que el máximo valor de la fracción anterior se alcanza para c=0.

Solución (cont.)

Acotemos la parte que depende de c ya que c es desconocido:

$$(1+c)^{-n-\frac{5}{4}} = \frac{1}{(1+c)^{n+\frac{5}{4}}} \le 1,$$

ya que el máximo valor de la fracción anterior se alcanza para c=0. Así el error puede acotarse por:

$$\left| \frac{(4n+1)!!!! \cdot 0.1^{n+1}}{4^{n+1} \cdot (n+1)!} \right| = \left| \frac{(4n+1)!!!!}{40^{n+1} \cdot (n+1)!} \right| \le 10^{-4}.$$

Solución (cont.)

Acotemos la parte que depende de c ya que c es desconocido:

$$(1+c)^{-n-\frac{5}{4}}=\frac{1}{(1+c)^{n+\frac{5}{4}}}\leq 1,$$

ya que el máximo valor de la fracción anterior se alcanza para c=0. Así el error puede acotarse por:

$$\left| \frac{(4n+1)!!!! \cdot 0.1^{n+1}}{4^{n+1} \cdot (n+1)!} \right| = \left| \frac{(4n+1)!!!!}{40^{n+1} \cdot (n+1)!} \right| \le 10^{-4}.$$

Hagamos un programa en python que nos halle el n:

```
from math import *
def fourthfactorial(n):
   if n in (1, 2, 3, 4):
      return n
   else:
    if n == 0:
      return 1
   else:
      return n * fourthfactorial(n-4)
```

```
def calculo n(error):
 x=0.1
  m=2
  cota error=(fourthfactorial(4*m+1)/(4.**(m+1)*
              factorial(m+1))*(x**(m+1))
  while(cota error >= error):
    m=m+1
    cota error=(fourthfactorial(4*m+1)/(4.**(m+1)*
               factorial(m+1))*(x**(m+1))
  return(m)
calculo n(0.0001)
3
```

Solución (cont.)

El valor de n será 3 y por tanto $P_3(0.1)$ valdrá:

```
def Pn(x,n):
    p=1
    k=1
    while k <= n:
        p=p+termino_k(x,k)
        k=k+1
    return(p)

Pn(0.1,3)
0.9764453125</pre>
```

Ejercicio 2

Desarrollar en polinomios de Taylor las funciones siguientes alrededor del punto x_0 hasta la n indicada y realizar un gráfico de la función y los polinomios de Taylor obtenidos:

- a) $f(x) = \sqrt{x}, x_0 = 4 \text{ hasta } n = 4.$
- b) $f(x) = e^{-x^2}$, $x_0 = 0$ hasta n = 4.

Solución

En general, dada una función f(x), n+1-veces derivable, el polinomio de Taylor de grado n alrededor de $x=x_0$ vale:

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k.$$

Solución

En general, dada una función f(x), n+1-veces derivable, el polinomio de Taylor de grado n alrededor de $x=x_0$ vale:

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k.$$

Apartado a). La función f vale $f(x) = \sqrt{x}$, $x_0 = 4$ y n = 4.

Solución

En general, dada una función f(x), n+1-veces derivable, el polinomio de Taylor de grado n alrededor de $x=x_0$ vale:

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k.$$

Apartado a). La función f vale $f(x) = \sqrt{x}$, $x_0 = 4$ y n = 4. Calculemos las cuatro primeras derivadas de f(x):

$$f'(x) = \frac{1}{2} \cdot x^{-\frac{1}{2}}, \quad f''(x) = -\frac{1}{4} \cdot x^{-\frac{3}{2}},$$

Solución

En general, dada una función f(x), n+1-veces derivable, el polinomio de Taylor de grado n alrededor de $x=x_0$ vale:

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k.$$

Apartado a). La función f vale $f(x) = \sqrt{x}$, $x_0 = 4$ y n = 4. Calculemos las cuatro primeras derivadas de f(x):

$$f'(x) = \frac{1}{2} \cdot x^{-\frac{1}{2}}, \quad f''(x) = -\frac{1}{4} \cdot x^{-\frac{3}{2}},$$

$$f'''(x) = \frac{3}{8} \cdot x^{-\frac{5}{2}}, \quad f^{(iv)}(x) = -\frac{15}{16} \cdot x^{-\frac{7}{2}}.$$

Solución (cont.`

Solución (cont.

$$f'(4) = \frac{1}{2} \cdot 4^{-\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},$$

Solución (cont.)

$$f'(4) = \frac{1}{2} \cdot 4^{-\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},$$

$$f''(4) = -\frac{1}{4} \cdot 4^{-\frac{3}{2}} = -\frac{1}{4} \cdot \frac{1}{2^3} = -\frac{1}{32},$$

Solución (cont.)

$$f'(4) = \frac{1}{2} \cdot 4^{-\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},$$

$$f''(4) = -\frac{1}{4} \cdot 4^{-\frac{3}{2}} = -\frac{1}{4} \cdot \frac{1}{2^3} = -\frac{1}{32},$$

$$f'''(4) = \frac{3}{8} \cdot 4^{-\frac{5}{2}} = \frac{3}{8} \cdot \frac{1}{2^5} = \frac{3}{256},$$

Solución (cont.)

$$f'(4) = \frac{1}{2} \cdot 4^{-\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},$$

$$f''(4) = -\frac{1}{4} \cdot 4^{-\frac{3}{2}} = -\frac{1}{4} \cdot \frac{1}{2^3} = -\frac{1}{32},$$

$$f'''(4) = \frac{3}{8} \cdot 4^{-\frac{5}{2}} = \frac{3}{8} \cdot \frac{1}{2^5} = \frac{3}{256},$$

$$f^{(iv)}(4) = -\frac{15}{16} \cdot 4^{-\frac{7}{2}} = -\frac{15}{16} \cdot \frac{1}{2^7} = -\frac{15}{2048}.$$

Solución (cont.)

El polinomio de Taylor de grado 4 será:

$$P_4(x) = 2 + \frac{1}{4} \cdot (x - 4) - \frac{1}{2! \cdot 32} \cdot (x - 4)^2$$

Solución (cont.)

El polinomio de Taylor de grado 4 será:

$$P_4(x) = 2 + \frac{1}{4} \cdot (x - 4) - \frac{1}{2! \cdot 32} \cdot (x - 4)^2 + \frac{3}{3! \cdot 256} \cdot (x - 4)^3 - \frac{15}{4! \cdot 2048} \cdot (x - 4)^4$$

Solución (cont.)

El polinomio de Taylor de grado 4 será:

$$P_4(x) = 2 + \frac{1}{4} \cdot (x - 4) - \frac{1}{2! \cdot 32} \cdot (x - 4)^2$$

$$+ \frac{3}{3! \cdot 256} \cdot (x - 4)^3 - \frac{15}{4! \cdot 2048} \cdot (x - 4)^4$$

$$= 2 + \frac{1}{4} \cdot (x - 4) - \frac{1}{64} \cdot (x - 4)^2$$

Solución (cont.)

El polinomio de Taylor de grado 4 será:

$$P_4(x) = 2 + \frac{1}{4} \cdot (x - 4) - \frac{1}{2! \cdot 32} \cdot (x - 4)^2$$

$$+ \frac{3}{3! \cdot 256} \cdot (x - 4)^3 - \frac{15}{4! \cdot 2048} \cdot (x - 4)^4$$

$$= 2 + \frac{1}{4} \cdot (x - 4) - \frac{1}{64} \cdot (x - 4)^2$$

$$+ \frac{1}{512} \cdot (x - 4)^3 - \frac{5}{16384} \cdot (x - 4)^4.$$

Solución (cont.)

Apartado b). La función f vale $f(x) = e^{-x^2}$, $x_0 = 0$ y n = 4.

Solución (cont.)

$$f'(x) = -2x \cdot e^{-x^2},$$

Solución (cont.)

$$f'(x) = -2x \cdot e^{-x^2},$$

 $f''(x) = (4 \cdot x^2 - 2) \cdot e^{-x^2}$

Solución (cont.)

$$f'(x) = -2x \cdot e^{-x^2},$$

$$f''(x) = (4 \cdot x^2 - 2) \cdot e^{-x^2},$$

$$f'''(x) = -4e^{-x^2}x(2x^2 - 3)$$

Solución (cont.)

$$f'(x) = -2x \cdot e^{-x^2},$$

$$f''(x) = (4 \cdot x^2 - 2) \cdot e^{-x^2}$$

$$f'''(x) = -4e^{-x^2}x(2x^2 - 3)$$

$$f^{(iv)} = 4e^{-x^2}(4x^4 - 12x^2 + 3).$$

Solución (cont.

Las derivadas en $x = x_0 = 0$ valen:

Solución (cont.)

Las derivadas en $x = x_0 = 0$ valen:

$$f'(0) = 0$$
, $f''(0) = -2$, $f'''(0) = 0$, $f^{(iv)}(0) = 12$.

Solución (cont.)

Las derivadas en $x = x_0 = 0$ valen:

$$f'(0) = 0$$
, $f''(0) = -2$, $f'''(0) = 0$, $f^{(iv)}(0) = 12$.

El polinomio de Taylor de grado 4 será:

$$P_4(x) = 1 - x^2 + \frac{1}{2} \cdot x^4.$$

Ejercicio 3

Realizar un estudio local de la función $f(x) = \frac{x^2 - 1}{x^2 + 1}$.

Solución

a) Dominio.

Solución

a) Dominio. El dominio de la función es R ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.

- a) Dominio. El dominio de la función es \mathbb{R} ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad.

- a) Dominio. El dominio de la función es \mathbb{R} ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .

- a) Dominio. El dominio de la función es \mathbb{R} ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.

- a) Dominio. El dominio de la función es $\mathbb R$ ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas.

- a) Dominio. El dominio de la función es $\mathbb R$ ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x) = 0, o $x^2 1 = 0$,

- a) Dominio. El dominio de la función es \mathbb{R} ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x) = 0, o $x^2 1 = 0$, cuyas soluciones son $x = \pm 1$.

- a) Dominio. El dominio de la función es \mathbb{R} ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x)=0, o $x^2-1=0$, cuyas soluciones son $x=\pm 1$. Por tanto, corta en los puntos (-1,0) y (1,0).

- a) Dominio. El dominio de la función es $\mathbb R$ ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x) = 0, o $x^2 1 = 0$, cuyas soluciones son $x = \pm 1$. Por tanto, corta en los puntos (-1,0) y (1,0).
 - Eje Y o eje de ordenadas.

- a) Dominio. El dominio de la función es \mathbb{R} ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x) = 0, o $x^2 1 = 0$, cuyas soluciones son $x = \pm 1$. Por tanto, corta en los puntos (-1,0) y (1,0).
 - Eje Y o eje de ordenadas. Hemos de calcular f(0) = -1.

- a) Dominio. El dominio de la función es $\mathbb R$ ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x)=0, o $x^2-1=0$, cuyas soluciones son $x=\pm 1$. Por tanto, corta en los puntos (-1,0) y (1,0).
 - Eje Y o eje de ordenadas. Hemos de calcular f(0) = -1. Por tanto, pasa por el punto (0, -1).

- a) Dominio. El dominio de la función es $\mathbb R$ ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x) = 0, o $x^2 1 = 0$, cuyas soluciones son $x = \pm 1$. Por tanto, corta en los puntos (-1,0) y (1,0).
 - Eje Y o eje de ordenadas. Hemos de calcular f(0) = -1. Por tanto, pasa por el punto (0, -1).
- d) Simetrías.

- a) Dominio. El dominio de la función es $\mathbb R$ ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x) = 0, o $x^2 1 = 0$, cuyas soluciones son $x = \pm 1$. Por tanto, corta en los puntos (-1,0) y (1,0).
 - Eje Y o eje de ordenadas. Hemos de calcular f(0) = -1. Por tanto, pasa por el punto (0, -1).
- d) Simetrías.
 - Respecto al eje Y: hemos de comprobar si f(x) = f(-x). Vemos que sí se cumple, por tanto, f es simétrica respecto al eje Y.

- a) Dominio. El dominio de la función es $\mathbb R$ ya que sólo podría "tener problemas" en los puntos que anulen el denominador pero en este caso el denominador es diferente de cero para cualquier valor de x.
- b) Puntos de discontinuidad. No tiene ya que su dominio es todo \mathbb{R} .
- c) Puntos de corte.
 - Eje X o eje de abscisas. Hemos de resolver la ecuación f(x) = 0, o $x^2 1 = 0$, cuyas soluciones son $x = \pm 1$. Por tanto, corta en los puntos (-1,0) y (1,0).
 - Eje Y o eje de ordenadas. Hemos de calcular f(0) = -1. Por tanto, pasa por el punto (0, -1).
- d) Simetrías.
 - Respecto al eje Y: hemos de comprobar si f(x) = f(-x). Vemos que sí se cumple, por tanto, f es simétrica respecto al eje Y.
 - Respecto al origen. Al ser simétrica respecto al eje Y, no es simétrica respecto al origen, se tendría que cumplir que f(-x) = -f(x).

Solución (cont.

e) Asíntotas.

Solución (cont.)

- e) Asíntotas.
 - Horizontales. Hemos de calcular el límite siguiente:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1.$$

Solución (cont.)

- e) Asíntotas.
 - Horizontales. Hemos de calcular el límite siguiente:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1.$$

Al existir el límite anterior, deducimos que tiene la asíntota horizontal y=1.

e) Asíntotas.

Solución (cont.)

- e) Asíntotas.
 - Verticales. La asíntota x = a es una asíntota vertical si:

Solucion (con

- e) Asíntotas.
 - Verticales. La asíntota x = a es una asíntota vertical si:

$$\lim_{x\to a} f(x) = \infty.$$

Solucion (col

- e) Asíntotas.
 - Verticales. La asíntota x = a es una asíntota vertical si:

$$\lim_{x\to a} f(x) = \infty.$$

En nuestro caso, no existe ningún a que verifique la condición anterior ya que estos valores son puntos de discontinuidad de la función y nuestra función no tiene puntos de discontinuidad.

Solucion (con

- e) Asíntotas.
 - Verticales. La asíntota x = a es una asíntota vertical si:

$$\lim_{x\to a}f(x)=\infty.$$

En nuestro caso, no existe ningún a que verifique la condición anterior ya que estos valores son puntos de discontinuidad de la función y nuestra función no tiene puntos de discontinuidad.

• Oblicuas. La asíntota de la forma $y = m \cdot x + n$ es una asíntota oblicua de pendiente:

Solucion (cor

- e) Asíntotas.
 - Verticales. La asíntota x = a es una asíntota vertical si:

$$\lim_{x\to a}f(x)=\infty.$$

En nuestro caso, no existe ningún a que verifique la condición anterior ya que estos valores son puntos de discontinuidad de la función y nuestra función no tiene puntos de discontinuidad.

• Oblicuas. La asíntota de la forma $y = m \cdot x + n$ es una asíntota oblicua de pendiente:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 - 1}{x \cdot (x^2 + 1)} = \lim_{x \to \infty} \frac{x^2 - 1}{x^3 + x} = 0.$$

Solución (cont.)

- e) Asíntotas.
 - Verticales. La asíntota x = a es una asíntota vertical si:

$$\lim_{x\to a} f(x) = \infty.$$

En nuestro caso, no existe ningún a que verifique la condición anterior ya que estos valores son puntos de discontinuidad de la función y nuestra función no tiene puntos de discontinuidad.

• Oblicuas. La asíntota de la forma $y = m \cdot x + n$ es una asíntota oblicua de pendiente:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 - 1}{x \cdot (x^2 + 1)} = \lim_{x \to \infty} \frac{x^2 - 1}{x^3 + x} = 0.$$

Como la pendiente es m=0, la asíntota no puede ser oblicua sino horizontal y éstas ya han sido estudiadas.

f) Crecimiento y decrecimiento.

Solución (cont.)

f) Crecimiento y decrecimiento. Para estudiar el crecimiento y el decrecimiento, hemos de calcular la función derivada:

Solución (cont.)

f) Crecimiento y decrecimiento. Para estudiar el crecimiento y el decrecimiento, hemos de calcular la función derivada:

$$f'(x) = \frac{2x \cdot (x^2 + 1) - 2x \cdot (x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}.$$

Solución (cont.)

f) Crecimiento y decrecimiento. Para estudiar el crecimiento y el decrecimiento, hemos de calcular la función derivada:

$$f'(x) = \frac{2x \cdot (x^2 + 1) - 2x \cdot (x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}.$$

Igualando la función derivada a cero, calculamos los puntos candidatos a extremos relativos de la función:

Solución (cont.)

f) Crecimiento y decrecimiento. Para estudiar el crecimiento y el decrecimiento, hemos de calcular la función derivada:

$$f'(x) = \frac{2x \cdot (x^2 + 1) - 2x \cdot (x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}.$$

Igualando la función derivada a cero, calculamos los puntos candidatos a extremos relativos de la función:

$$f'(x) = 0, \Rightarrow \frac{4x}{(x^2 + 1)^2} = 0, \Rightarrow x = 0.$$

Solución (cont.)

f) Crecimiento y decrecimiento. Para estudiar el crecimiento y el decrecimiento, hemos de calcular la función derivada:

$$f'(x) = \frac{2x \cdot (x^2 + 1) - 2x \cdot (x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}.$$

Igualando la función derivada a cero, calculamos los puntos candidatos a extremos relativos de la función:

$$f'(x) = 0, \Rightarrow \frac{4x}{(x^2 + 1)^2} = 0, \Rightarrow x = 0.$$

El punto (0, -1) es un candidato a extremo relativo.

Solución (cont.)

 f) Crecimiento y decrecimiento. A continuación realizamos la tabla siguiente para estudiar el crecimiento y decrecimiento de la función:

Solución (cont.)

 f) Crecimiento y decrecimiento. A continuación realizamos la tabla siguiente para estudiar el crecimiento y decrecimiento de la función:

X	$-\infty$		0		∞
y'		_		+	
У		V		7	

Solución (cont.)

 f) Crecimiento y decrecimiento. A continuación realizamos la tabla siguiente para estudiar el crecimiento y decrecimiento de la función:

$$\begin{array}{c|ccccc} x & -\infty & 0 & \infty \\ \hline y' & - & + \\ y & \searrow & \nearrow \end{array}$$

Vemos que la función es decreciente en la región $(-\infty,0)$,

Solución (cont.)

 f) Crecimiento y decrecimiento. A continuación realizamos la tabla siguiente para estudiar el crecimiento y decrecimiento de la función:

Vemos que la función es decreciente en la región $(-\infty,0)$, es creciente en la región $(0,\infty)$

Solución (cont.)

 f) Crecimiento y decrecimiento. A continuación realizamos la tabla siguiente para estudiar el crecimiento y decrecimiento de la función:

Vemos que la función es decreciente en la región $(-\infty,0)$, es creciente en la región $(0,\infty)$ y tiene un mínimo en el punto (0,-1).

Solución (cont.)

g) Concavidad y convexidad.

Solución (cont.)

g) Concavidad y convexidad. Para estudiar la concavidad y convexidad, hemos de calcular la función derivada segunda:

Solución (cont.)

g) Concavidad y convexidad. Para estudiar la concavidad y convexidad, hemos de calcular la función derivada segunda:

$$f''(x) = \frac{4 \cdot (x^2 + 1)^2 - 4x \cdot 2(x^2 + 1) \cdot 2x}{(x^2 + 1)^4}$$

Solución (cont.)

 g) Concavidad y convexidad. Para estudiar la concavidad y convexidad, hemos de calcular la función derivada segunda:

$$f''(x) = \frac{4 \cdot (x^2 + 1)^2 - 4x \cdot 2(x^2 + 1) \cdot 2x}{(x^2 + 1)^4}$$
$$= \frac{4(x^2 + 1) - 16x^2}{(x^2 + 1)^3} = \frac{-12x^2 + 4}{(x^2 + 1)^3}.$$

Solución (cont.)

g) Concavidad y convexidad. Para estudiar la concavidad y convexidad, hemos de calcular la función derivada segunda:

$$f''(x) = \frac{4 \cdot (x^2 + 1)^2 - 4x \cdot 2(x^2 + 1) \cdot 2x}{(x^2 + 1)^4}$$
$$= \frac{4(x^2 + 1) - 16x^2}{(x^2 + 1)^3} = \frac{-12x^2 + 4}{(x^2 + 1)^3}.$$

Igualando la función derivada segunda a cero, calculamos los puntos candidatos a puntos de inflexión:

Solución (cont.)

g) Concavidad y convexidad. Para estudiar la concavidad y convexidad, hemos de calcular la función derivada segunda:

$$f''(x) = \frac{4 \cdot (x^2 + 1)^2 - 4x \cdot 2(x^2 + 1) \cdot 2x}{(x^2 + 1)^4}$$
$$= \frac{4(x^2 + 1) - 16x^2}{(x^2 + 1)^3} = \frac{-12x^2 + 4}{(x^2 + 1)^3}.$$

Igualando la función derivada segunda a cero, calculamos los puntos candidatos a puntos de inflexión:

$$f''(x) = 0, \Rightarrow \frac{-12x^2 + 4}{(x^2 + 1)^3}, \Rightarrow x = \pm \sqrt{\frac{1}{3}}.$$

Solución (cont.)

g) Concavidad y convexidad. Para estudiar la concavidad y convexidad, hemos de calcular la función derivada segunda:

$$f''(x) = \frac{4 \cdot (x^2 + 1)^2 - 4x \cdot 2(x^2 + 1) \cdot 2x}{(x^2 + 1)^4}$$
$$= \frac{4(x^2 + 1) - 16x^2}{(x^2 + 1)^3} = \frac{-12x^2 + 4}{(x^2 + 1)^3}.$$

Igualando la función derivada segunda a cero, calculamos los puntos candidatos a puntos de inflexión:

$$f''(x) = 0, \Rightarrow \frac{-12x^2 + 4}{(x^2 + 1)^3}, \Rightarrow x = \pm \sqrt{\frac{1}{3}}.$$

Los puntos $\left(\pm\sqrt{\frac{1}{3}},-\frac{1}{2}\right)$ son candidatos a puntos de inflexión.

Solución (cont.)

g) Concavidad y convexidad.

Solución (cont.)

g) Concavidad y convexidad. A continuación realizamos la tabla siguiente para estudiar el la concavidad y la convexidad de la función:

Solución (cont.)

g) Concavidad y convexidad. A continuación realizamos la tabla siguiente para estudiar el la concavidad y la convexidad de la función:

X	$-\infty$		$-\sqrt{\frac{1}{3}}$		$\sqrt{\frac{1}{3}}$		∞
y''		_		+		_	
У		\cap		U		\cap	

Solución (cont.)

g) Concavidad y convexidad. A continuación realizamos la tabla siguiente para estudiar el la concavidad y la convexidad de la función:

La función es cóncava en la región $\left(-\infty,-\sqrt{\frac{1}{3}}\right)\cup\left(\sqrt{\frac{1}{3}},\infty\right)$,

Solución (cont.)

g) Concavidad y convexidad. A continuación realizamos la tabla siguiente para estudiar el la concavidad y la convexidad de la función:

La función es cóncava en la región $\left(-\infty,-\sqrt{\frac{1}{3}}\right)\cup\left(\sqrt{\frac{1}{3}},\infty\right)$, es convexa en la región $\left(-\sqrt{\frac{1}{3}},\sqrt{\frac{1}{3}}\right)$

Solución (cont.)

g) Concavidad y convexidad. A continuación realizamos la tabla siguiente para estudiar el la concavidad y la convexidad de la función:

La función es cóncava en la región $\left(-\infty,-\sqrt{\frac{1}{3}}\right)\cup\left(\sqrt{\frac{1}{3}},\infty\right)$, es convexa en la región $\left(-\sqrt{\frac{1}{3}},\sqrt{\frac{1}{3}}\right)$ y los puntos $\left(\pm\sqrt{\frac{1}{3}},-\frac{1}{2}\right)$ son puntos de inflexión.

Solución (cont.)

