Sprawozdanie - WEAlilB			
Podstawy automatyki 2			
Ćwiczenie 8: Układ regulacji dwupołożeniowej cz2			
Czwartek godz.	14:30	Data wykonania:	04.05.2023
Imię i nazwisko:	Jan Rosa	Data zaliczenia:	
		Ocena:	

Wstęp

Celem niniejszego sprawozdania jest zbadanie stabilności układu regulacji z liniowym obiektem i nieliniowym regulatorem statycznym. W zadaniu został przedstawiony zamknięty układ regulacji z liniowym obiektem oraz regulatorem 2-położeniowym bez histerezy i z histerezą. W ramach zadania należy sprawdzić, dla jakiej wartości amplitudy przekaźnika ym oraz histerezy równej h = 0.0, h = 0.05, h = 0.1, amplituda cyklu granicznego będzie większa od 1, 2, 5. W ramach opracowania wyników należy przedstawić rysunek z przebiegiem wielkości regulowanej w układzie oraz narysować wykres Nyquista części liniowej wraz z wykresem krytycznym. Porównanie wyników analitycznych z otrzymanymi podczas laboratorium będzie dodatkową analizą.

```
h = 0
y = 7.3000
```


h = 0y = 13

h = 0y = 33

h = 0.0500

y = 6

h = 0.0500

y = 12

h = 0.0500y = 32

h = 0.1000

y = 5

h = 0.1000y = 12

h = 0.1000y = 31

h = 0y = 80

h = 0y = 200

h = 0y = 500

h = 0.0500y = 100

h = 0.0500y = 250

h = 0.0500y = 420

h = 0.1000y = 110

h = 0.1000y = 222

h = 0.1000y = 450


```
function [] = test(G, h, ym)
    obiekt = tf([0,0,0,1], G);
    c = (-pi*h)/(4 * ym);
    out = sim("obiekt_reg.slx");
    figure;
    subplot(1, 2, 1);
    plot(out.ScopeData.time, out.ScopeData.signals.values);
    title("Przebieg w czasie");
    grid on;
    subplot(1, 2, 2);
    n = nyquistplot(obiekt);
    opt = getoptions(n);
    opt.ShowFullContour = 'off';
    setoptions(n, opt);
    hold on;
    plot([-0.2, 0], [c, c]);
    grid on;
    hold off;
end
```