Roll the Dice

Write pseudocode to solve Roll the Dice

```
Define: the first character of string start with index 0
Define: length(string: pattern) mean get total length of the string
Define: charAt(string: pattern ,integer: i) mean get character of index i
Define: read() mean get input from the problem
Define: Dice as an object in this problem and it has own attribute which is
       integer: Dice.Top = 1
       integer: Dice.Bottom = 6
       integer : Dice. Front = 2
       integer: Dice.Back = 5
       integer : Dice.Left = 3
       integer: Dice.Right = 4
Define: x_rotate(integer:a,integer:b,integer:c,integer:d):
               Dice.Front <- a
               Dice.Bottom <- b
               Dice.Back <- c
               Dice.Top <- d
Define: y_rotate(integer:a,integer:b,integer:c,integer:d):
               Dice.Top <- a
               Dice.Left <- b
               Dice.Bottom <- c
               Dice.Right <- d
Define: z_rotate(integer:a,integer:b,integer:c,integer:d):
               Dice.Front <- a
               Dice.Left <- b
               Dice.Back <- c
               Dice.Right <- d
```

```
Start
```

End

```
Let pattern:string <- read()
For Let i <- 0 To length(pattern) – 1 Step i By 1 Then
       If charAt(pattern, i) == 'F' Then
               x_rotate(Dice.Top, Dice.Front, Dice.Bottom, Dice.Back)
       Else if charAt(pattern,i) == 'B' Then
               x_rotate(Dice.Bottom, Dice.Back, Dice.Top, Dice.Front)
       Else if charAt(pattern,i) == 'L' Then
               y_rotate(Dice,Right, Dice.Top, Dice.Left, Dice.Bottom)
       Else if charAt(pattern,i) == 'R' Then
               y_rotate(Dice.Left, Dice.Bottom, Dice.Right, Dice.Top)
       Else if charAt(pattern, i) == 'C' Then
               z_roll(Dice.Right, Dice.Front, Dice.Left, Dice.Back)
       Else if charAt(pattern,i) == 'D' Then
               z_roll(Dice.Left, Dice.Back, Dice.Right, Dice.Front)
       Endif
Endfor
Display Dice.Front
```

2. what are inputs outputs conditions.

Input:

The String of pattern that represent a rotation of the dice

Output:

The number of the front side after finish rotating

Condition:

Predefine condition (entity condition)

- -Dice only have number 1 to 6
- -Dice start with
- -Top side is number 1
- -Bottom side is number 6
- -Front side is number 2
- -Back side is number 5
- -Left side is number 3
- -Right side is number 4

Input condition:

Input should be only Characters in this set {F, B, L, R, C, D}

And each Character mean:

- "F" means rotate the dice forward
- "B" means rotate the dice backward
- "L" means rotate the dice in counterclockwise by front side
- "R" means rotate the dice in clockwise by front side
- "C" means rotate the dice in clockwise by top side
- "D" means rotate the dice in counterclockwise by top side

Example if we give an input pattern "FBBL" it should mean:

Rotate the dice 1 forward, 2 backward and 1 counterclockwise by front side

Output condition:

Output should be only a number that in range 1 to 6 and it much represent a current front number of the dice

3. show that your algorithm is a correct algorithm.

To prove that algorithm is correct. This is 3 input testcase That I am going to follow to

1. FBBL

Expect 6

1. Start position

Current value:

Front	Back	Тор	Bottom	Left	Right
2	5	1	6	3	4

2. F

in the code if pattern is F it will called the predefine function named x_rotate and it will reassign the properties of dice as follow

x_rotate(Dice.Top, Dice.Front, Dice.Bottom, Dice.Back)

now in function x_rotate the Dice will reassign as

x_rotate(a<-1, b<-2, c<-6, d<-5):

Dice.Front <- 1

Dice.Bottom <- 2

Dice.Back <- 6

Dice.Top <- 5

Current value after F is pass

Front	Back	Тор	Bottom	Left	Right
1	6	5	2	3	4

3. B

in the code if pattern is F it will called the predefine function named x_rotate and it will reassign the properties of dice as follow

x_rotate(Dice.Bottom, Dice.Back, Dice.Top, Dice.Front)

now in function x_rotate the Dice will reassign as

x_rotate(a<-2, b<-6, c<-5, d<-1):

Dice.Front <- 2

Dice.Bottom <- 6

Dice.Back <- 5

Dice.Top <- 1

Current value after B is pass

Front	Back	Тор	Bottom	Left	Right
2	5	1	6	3	4

4. B

in the code if pattern is F it will called the predefine function named x_rotate and it will reassign the properties of dice as follow

x_rotate(Dice.Bottom, Dice.Back, Dice.Top, Dice.Front)

now in function x_rotate the Dice will reassign as

x_rotate(a<-6, b<-5, c<-1, d<-2):

Dice.Front <- 6

Dice.Bottom <- 5

Dice.Back <- 1

Dice.Top <- 2

Current value after B is pass

Front	Back	Тор	Bottom	Left	Right
6	1	2	5	3	4

5. L

in the code if pattern is F it will called the predefine function named y_rotate and it will reassign the properties of dice as follow

y_rotate(Dice,Right, Dice.Top, Dice.Left, Dice.Bottom)

now in function y_rotate the Dice will reassign as

y_rotate(a<-4, b<-2, c<-3,d<-5):

Dice.Top <- 4

Dice.Left <- 2

Dice.Bottom <- 3

Dice.Right <- 5

Current value after B is pass

Front	Back	Тор	Bottom	Left	Right
6	1	4	3	2	5

Current value after finished the pattern

Front	Back	Тор	Bottom	Left	Right
6	1	4	3	2	5

Output is number of the front side of current position which is 6

Front	Back	Тор	Bottom	Left	Right
6	1	4	3	2	5

Expect output is also 2

Thus, this algorithm is correct