Supporting Information

Density Functional Theory Study on Nucleation and Growth of Pt_n Clusters on γ -Al₂O₃(001) Surface

Yue Wang^a, Bo Xiang^a, Hua-Qing Yang^a*, Chang-Wei Hu^b

H.-Q. Yang; e-mail: <u>huaqingyang@scu.edu.cn</u>; Fax: +86 28 85415608; Telephone: +86 28 85415608

ACS Omega

^a College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China

^b Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China

^{*}Correspondence to:

Catalog

i.	Table S1. Test on all atoms of the γ -Al ₂ O ₃ (001) support relaxed and the uppermost one layer of	the
	γ -Al ₂ O ₃ (001) relaxed	P3
ii.	Table S1: The Relative energies (E_R , eV), Binding energies (E_{BE} , eV), γ -Al ₂ O ₃ (001) deformation energy	gies
	$(\Delta E_{\mathbf{def},\mathbf{Al_2O_3}},\mathrm{eV})$, clusters deformation energies $(\Delta E_{\mathbf{def},\mathbf{Pt_n}},\mathrm{eV})$, metal-support interaction energies $(E_{\mathrm{MS}},\mathrm{eV})$	èV),
	metal-metal bond energy ($\Delta E_{bond,Pt_n}$, eV), bond length(Å) and electron transfer(ET, e) for correspond	ling
	configurations	P4
iii.	Figure S1: The most stable geometries, spin multiplicity and the cohesive energies of $Pt_n = (n = 2-8)$ clus	ters
	in gas phase.	P5
iv.	Figure S2: Difference between cluster cohesive energies and bulk cohesive energies E as a function of n	ı ^{-1/3} ,
	difference between the average Pt-Pt bond distance in the cluster and the bond distance in the bulk a	as a
	function of n ^{-1/3} , where n is the number of Pt atoms in the cluster	P6
v.	Figure S3: Top and side view for the remaining Pt ₂ and Pt ₃ adsorption configurations on γ-Al ₂ O ₃ (0	001)
	surface	.P7
vi.	Figure S4: Top and side view for the remaining Pt_4 adsorption configurations on γ - $Al_2O_3(001)$ surface	.P8
vii.	Figure S5: Top and side view for the remaining Pt_5 adsorption configurations on γ - $Al_2O_3(001)$ surface	.P9
viii.	Figure S6: Top and side view for the remaining Pt_6 adsorption configurations on γ - $Al_2O_3(001)$ surface	P10
ix.	Figure S7: Top and side view for the remaining Pt_7 adsorption configurations on γ - $Al_2O_3(001)$ surface	P11
X.	Figure S8: Top and side view for the remaining Pt_8 adsorption configurations on γ -Al ₂ O ₃ (001) surface	P12
xi.	Figure S9: Density of states of Pt2-1, Pt3-1, Pt5-1, Pt6-1 and Pt8-1	P13
xii.	Figure S10: Diffusion barrier for Pt_1 on γ - $Al_2O_3(001)$ surface	P14
xiii.	Figure S11: The Pt_{13} adsorption configuration on γ - $Al_2O_3(001)$ surface, (a) using MD simulation v	vith
	universal force field and (b) using GGA-PW91 functional with DNP basis set	P15
xiv.	Figure S12. The relative energy of 3D-Pt ₄ adsorption configuration relative to 2D-Pt ₄ adsorption configura	tion
	on γ -Al ₂ O ₃ (001) surface as a function of temperature $T(25-300\text{K})$.	P16

 $\textbf{Table S1}. \ \text{Test on all atoms of the } \gamma\text{-}Al_2O_3(001) \ \text{support relaxed and the uppermost one layer of the } \gamma\text{-}Al_2O_3(001) \ \text{relaxed}.$

Configuration	Relax all (Total energy/Ha)	Relax one layer (Total energy/Ha)
γ-Al ₂ O ₃ (001)	-11376.29625	-11376.29625
Pt1-1	-11571.88927	-11571.88927

Table S2. The Relative energies (E_R , eV), Binding energies (E_{BE} , eV), γ -Al₂O₃(001) deformation energies ($\Delta E_{def,Al_2O_3}$, eV), clusters deformation energies ($\Delta E_{def,Pt_n}$, eV), metal-support interaction energies (E_{MS} , eV), metal-metal bond energy ($\Delta E_{bond,Pt_n}$, eV), bond length (Å) and electron transfer (ET, e) for corresponding configurations, \bar{l} with a threshold of 3.0 Å.

Configuration	E_{R}	E_{BE}	$\Delta E_{\text{def,Al}_2O_3}$	$\Delta E_{\text{def,Pt}_n}$	E_{MS}	$\Delta E_{\mathrm{bond,Pt}_n}$	Pt-Al \overline{l}	Pt-O \overline{l}	Pt-Pt \overline{l}	ET
Pt2-3	1.67	-1.93	0.64	0.04	-1.05	-1.51	2.616	2.215	2.567	0.121
Pt2-4	1.67	-1.94	0.58	0.44	-1.20	-1.32		2.059	2.688	0.106
D/2 2	0.24	2.06	0.56	0.00	1.20	2.12		2.220	2.522	0.125
Pt3-3	0.34	-2.86	0.56	0.00	1.28	-2.13		2.228	2.533	0.125
Pt3-4	0.43	-2.83	1.31	0.89	-2.30	-1.84		2.106	2.471	0.282
Pt3-5	0.45	-2.82	1.43	0.00	-1.12	-2.13	2 (0=	2.140	2.546	0.050
Pt3-6	1.10	-2.60	0.79	0.01	-1.27	-2.13	2.607	2.647	2.560	0.044
Pt4-3	0.77	-3.04	1.17	0.08	-1.85	-2.36	2.697	2.107	2.596	0.184
Pt4-4	0.86	-3.02	0.70	0.12	-1.34	-2.38		2.281	2.664	0.214
Pt4-5	1.02	-2.98	0.61	0.07	-1.19	-2.40	2.587	2.279	2.651	0.291
Pt4-6	1.04	-2.97	0.71	0.15	-1.30	-2.37		2.153	2.661	0.117
Pt4-7	1.14	-2.94	0.61	0.13	-1.18	-2.38		2.286	2.663	0.184
Pt4-8	1.21	-2.93	0.80	0.24	-1.38	-2.35	2.531	2.288	2.606	0.323
Pt5-3	0.75	-3.16	1.09	0.31	-1.68	-2.56	2.485	2.209	2.676	0.261
Pt5-4	0.83	-3.14	1.72	0.21	-2.29	-2.57	2.622	2.187	2.622	0.362
Pt5-5	0.88	-3.13	0.79	0.33	-1.37	-2.55	2.022	2.182	2.620	0.138
Pt5-6	1.11	-3.08	1.47	0.81	-2.10	-2.45	2.695	2.186	2.610	0.210
Pt5-7	1.16	-3.07	1.15	0.20	-1.65	-2.57	2.770	2.535	2.603	0.477
Pt5-8	1.18	-3.07	0.62	0.18	-1.11	-2.58	2.848	2.185	2.544	0.261
Pt6-3	0.22	-3.37	0.65	0.15	-1.25	-2.77		2.168	2.539	0.183
			1.83				2 621			
Pt6-4	0.24	-3.36		0.40	-2.45	-2.74	2.631	2.108	2.612	0.557
Pt6-5	0.25	-3.36	1.82	0.39	-2.44	-2.74	2.673	2.092	2.650	0.476
Pt6-6	0.67	-3.29	1.93	0.32	-2.51	-2.71	2.572	2.187	2.597	0.279
Pt7-3	0.14	-3.40	1.36	0.25	-1.90	-2.87		2.415	2.603	0.222
Pt7-4	0.24	-3.39	1.12	0.13	-1.55	-2.95	2.660	2.206	2.639	0.268
Pt7-5	0.43	-3.36	0.90	0.10	-1.31	-2.95		2.161	2.616	0.143
Pt7-6	0.62	-3.33	1.03	0.20	-1.42	-2.94		2.297	2.656	0.302
Pt7-7	1.16	-3.26	1.22	0.24	-1.67	-2.80	2.535	2.187	2.589	0.149
Pt7-8	1.37	-3.23	0.89	0.19	-1.30	-2.81	2.597	2.253	2.598	0.377
Pt8-3	1.23	-3.38	2.05	0.30	-2.45	-2.98	2.660	2.408	2.602	0.628
Pt8-4	2.21	-3.26	1.94	0.30	-2.43	-2.97	2.661	2.135	2.607	0.601
г 10-4	4.41	-5.20	1.74	0.13	-2.23	-4.91	2.001	4.133	2.007	0.001

Figure S1. The most stable geometries, spin multiplicity and the cohesive energies of the Pt_n (n = 2-8) clusters in gas phase. The prefix superscript denotes the spin multiplicity.

Figure S2. Difference between cluster cohesive energy and bulk cohesive energy E as a function of $n^{-1/3}$, difference between the average Pt–Pt bond distance in the cluster and the bond distance in the bulk as a function of $n^{-1/3}$, where n is the number of Pt atoms in the cluster.

Figure S3. Top and side view for the remaining Pt_2 and Pt_3 adsorption configurations on γ -Al₂O₃(001) surface.

Figure S4. Top and side view for the remaining Pt_4 adsorption configurations on γ -Al $_2O_3(001)$ surface.

Figure S5. Top and side view for the remaining Pt_5 adsorption configurations on γ -Al $_2O_3(001)$ surface.

Figure S6. Top and side view for the remaining Pt_6 adsorption configurations on γ -Al $_2O_3(001)$ surface.

Figure S7. Top and side view for the remaining Pt_7 adsorption configurations on γ -Al₂O₃(001) surface.

Figure S8. Top and side view for the remaining Pt_8 adsorption configurations on γ -Al $_2O_3(001)$ surface.

Figure S9. Density of states of Pt2-1, Pt3-1, Pt5-1, Pt6-1 and Pt8-1.

Figure S10. Diffusion barrier for Pt_1 on γ - $Al_2O_3(001)$ surface.

Figure S11. The Pt_{13} adsorption configuration on γ - $Al_2O_3(001)$ surface, (a) using MD simulation with universal force field and (b) using GGA-PW91 functional with DNP basis set.

Figure S12. The relative energy of 3D-Pt₄ adsorption configuration relative to 2D-Pt₄ adsorption configuration on γ -Al₂O₃(001) surface as a function of temperature T(25-300K).