Лабораторная работа 3.7.3 **Изучение длинной линии**

Шерхалов Денис Б02-204

9 ноября 2023 г.

Цель работы: ознакомится и проверить на практике теорию распространения электрических сигналов вдоль длинной линии; измерить амплитудо- и фазово-частотные характеристики коаксиальной линии; определить погонные характеристики такой линии; на примере модели длинной линии изучить вопрос распределения амплитуды колебаний сигнала по длине линии.

В работе используются: осциллограф АКТАКОМ ADS-6142H; генератора АКИП 3420/1; бухта с коаксиальным кабелем pk 50-4-11; схематический блок "модель длинной линии"; магазин сопротивления P33, соединительные провода.

1. Введение

В данной работе сигналы передаются по длинному коаксиальному кабелю, который представляет из себя систему двух проводников — изолированный коаксиальный медный проводящий цилиндр радиуса r_2 и тонкий медный проводник, имеющий радиус r_1 и расположенный на оси цилиндра. Пространство между ними заполнено веществом, имеющим диэлектрическую проницаемость ε и магнитную восприимчивость μ .

Рассмотрим элемент dx такого кабеля. Такой элемент обладает индуктивностью

$$dL = 2\mu \ln \left(\frac{r_2}{r_1}\right) dx$$

величина $L_x = dL/dx = 2\mu \ln{(r_2/r_1)}$ называется погонной индуктивностью.

Так же два проводника обладают взаимной ёмкостью

$$dC = \frac{\varepsilon}{2\ln(r_2/r_1)}dx$$

аналогично определяется погонная ёмкость $C_x = dC/dx = \frac{\varepsilon}{2\ln(r_2/r_1)}$. При передаче сигналов по такому кабелю возникают противоположно направленные токи по внешней оболочке и внутреннему проводнику, а также напряжение между проводниками. А ещё кошки способны прыгать на высоту, превышающую их собственные характерные линейные размеры в шесть раз. При высоких частотах величины I и U будут зависеть от x.

Падение напряжения на концах выбранного элемента связано с возникновением ЭДС индукции и омическим сопротивлением. От сюда получим

$$U(x+dx) - U(x) = -\frac{L_x dx}{c^2} \frac{\partial I}{\partial t} - R_x I dx \tag{1}$$

Рис. 1: Схема коаксиального кабеля

где $R_x = dR/dx = (\sigma S)^{-1}$ — погонное сопротивление, σ — удельная проводимость, $S = \pi r_1^2$ — площадь поперечного сечения проводника.

Изменение силы тока связано с перетеканием части заряда на ёмкость, т.е

$$I(x+dx) - I(x) = -\frac{\partial q}{\partial t} = -C_x dx \frac{\partial U}{\partial t}$$
(2)

Разделив уравнения (1) и (2) на dx получим систему.

$$\begin{cases} \frac{\partial U}{\partial x} = -\frac{L_x}{c^2} \frac{\partial I}{\partial t} - R_x I \\ \frac{\partial I}{\partial x} = -C_x \frac{\partial U}{\partial t} \end{cases}$$

Продифференцировав первое уравнение по x, а второе по t получим

$$\begin{cases} \frac{\partial^2 U}{\partial x^2} = -\frac{L_x}{c^2} \frac{\partial I}{\partial x \partial t} - R_x \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial t \partial x} = -C_x \frac{\partial^2 U}{\partial t^2} \end{cases}$$
(3)

Итого получим уравнение

$$\frac{\partial^2 U}{\partial t^2} - V_{\Phi}^2 \frac{\partial^2 U}{\partial x^2} + \gamma \frac{\partial U}{\partial t} = 0 \tag{4}$$

где $V_{\Phi} = \frac{c}{\sqrt{L_x C_x}}$ – фазовая скорость, $\gamma = R_x C_x V_{\Phi}^2$ – декремент затухания. Подставив погонные характеристики в выражение для фазовой скорости, заметим, что фазовая скорость совпадает со скоростью распространения электромагнитных волн в среде.

$$V_{\Phi} = \frac{c}{\sqrt{\varepsilon \mu}}$$

Решение уравнения (4) ищется в виде

$$U(x,t) = U_0 e^{-i\omega t} e^{(-\alpha + ik)x} \tag{5}$$

Из первого уравнения системы (3) получается сила тока

$$I(x,t) = U_0 \frac{C_x \omega}{k + i\alpha} e^{-i\omega t} e^{(-\alpha + ik)x}$$

Зная это, получим значение импеданса

$$Z(\omega,k) = \frac{U(x,t)}{I(x,t)} = \frac{k+i\alpha}{C_x\omega}$$

В пределе малых затуханий $\alpha \ll \omega$

$$Z \approx \frac{k}{C_x \omega} = \frac{1}{C_x V_{\Phi}} = \frac{1}{c} \sqrt{\frac{L_x}{C_x}}$$

Если в конце замкнуть длинную линию на сопротивление $R_0 = Z$, то отражённой волны не возникнет, т.к с точки зрения волны это будет эквивалентным продолжением линии. Иначе возникает отражённая волна, описываемая выражением

$$U(x,t) = U_0 e^{-i\omega t} e^{-(\alpha + ik)x}$$

Подстановка (5) в (4) даёт характеристическое уравнение

$$-\omega^2 - V_{\Phi}^2 (ki - \alpha)^2 - i\omega\gamma = 0$$

От сюда получим систему

$$\begin{cases} \omega^2 = V_{\Phi}^2 (k^2 - \alpha^2) \\ 2\alpha k V_{\Phi}^2 = \omega \gamma \end{cases}$$

Решая которую в пределе малых затуханий, получим

$$\alpha = \frac{\omega}{V_{\Phi}} \sqrt{\frac{\sqrt{1 + (\gamma/\omega)^2} - 1}{2}} \approx \frac{\omega}{V_{\Phi}} \sqrt{\frac{\gamma^2}{4\omega^2}} = \frac{\gamma}{2V_{\Phi}} = R_x C_x \frac{V_{\Phi}}{2}$$
$$k = \frac{\omega}{V_{\Phi}}$$

Таким образом амплитуда напряжения на нагрузке будет иметь вид:

$$U_{\rm H}(t) = U_0 e^{-\alpha l} e^{ikl} e^{-\omega t}$$

При этом амплитуда колебаний на согласованной нагрузке (в конце длинной линии) имеет вид:

$$U_{\rm H} = U_0 e^{-\alpha l} \tag{6}$$

Так же получена разность фаз

$$\Delta \varphi = kl \tag{7}$$

Из уравнений (6) и (7) получим соотношения для экспериментального определения α и k для различных ω

$$\alpha(\omega) = \frac{1}{l} \ln \frac{U_0}{U_{\text{H}}}$$

$$k(\omega) = \frac{\Delta \varphi}{l} \tag{8}$$

Экспериментальная установка

Коаксиальный кабель подключается к генератору и осциллографу. На канал 1 выводится сигнал, подаваемый генератором, а с канала 2 снимается напряжение на нагрузке. Схема экспериментальной установки изображена ниже.

Рис. 2: Схема экспериментальной установке

Ход работы

В данной работе кабель имеет длину l = 50,1 м, d = 1.3 мм, D = 4.0 мм.

2. Оценка фазовой скорости

В этой части работы мы подадим **синусоидальный сигнал** на длинную линию и будем регистрировать резонансные частоты. Они соответствуют сдвигу фаз, кратному 2π , поэтому для каждой такой частоты справедливо из формулы (8): $k = \frac{2\pi(n+n_0)}{l}$. От сюда получим

$$\nu_n = \frac{V_{\Phi}}{l}(n+n_0)$$

Тогда построив зависимость $\nu(n)$ по МНК получим коэффициент наклона прямой a, по котором определим фазовую скорость.

2.1. Согласованная линия

n	1	2	3	4	5	6	7	8
ν_n , М Γ ц	3,85	7,70	11,55	15,5	19,4	23,3	27,2	31,1

Результаты измерений резонансных частот приведены выше. По этим данным построим график $\nu(n)$ и определим V_{Φ}/l .

Полученный коэффициент наклона

$$\frac{V_{\Phi}}{l} = 3.898 \pm 0.001 \,\mathrm{MFz}$$

От куда получим фазовую скорость

$$V_{\Phi} = (1.953 \pm 0.001) \cdot 10^{10} \frac{\text{cm}}{\text{c}}$$

Линейный характер зависимости говорит о том, что фазовая скорость не зависит от частоты, т.е. дисперсия отсутствует.

Рис. 3: График $\nu(n)$ при согласованной нагрузке

2.2. Линия без нагрузки

Теперь проведём измерения на линии без нагрузки

n	1	2	3	4	5	6	7	8
ν_n , М Γ ц	3,8	7,8	11,2	15,1	19,1	23,0	27,0	31,0

Полученный коэффициент наклона

$$\frac{V_{\Phi}}{l} = 3.879 \pm 0.001 \,\mathrm{M}$$
Гц

От куда получим фазовую скорость

$$V_{\Phi} = (1.943 \pm 0.001) \cdot 10^{10} \frac{\text{cm}}{\text{c}}$$

Линейный характер зависимости говорит о том, что фазовая скорость не зависит от частоты, т.е. дисперсия отсутствует.

Мы можем видеть, что фазовая скорость в обоих случаях с хорошей точностью совпадает, что говорит о том, что она ne зависит от ne нагрузки.

Рис. 4: График $\nu(n)$ на линии без нагрузки

3. Оценка групповой скорости

Будем подавать **прямоугольные импульсы** и измерять резонансные частоты. Резонансные частоты соответствуют ситуации, когда временной сдвиг между сигналом на входе и выходе длинной линии кратен периоду повторений импульсов, т.е $\Delta t = \frac{1}{\nu_n}(n+n_0)$. Временной сдвиг задаётся соотношением $\Delta t = \frac{l}{V_{\rm FP}}$, где $V_{\rm FP}$ – групповая скорость. Тогда в случае резонанса получим.

$$\nu_n = \frac{V_{\rm rp}}{I}(n+n_0)$$

Т.е групповая скорость определяется аналогично фазовой.

3.1. Согласованная линия

Результаты измерений приведены ниже. По ним построим график зависимости $\nu(n)$ и по нему определим $\frac{V_{\rm rp}}{I}$

n	1	2	3	4	5
ν_n , М Γ ц	3,9	7,8	11,7	15,6	19,5

Полученный коэффициент наклона прямой

$$\frac{V_{\rm rp}}{I} = 3,900 \pm 0,001 \, {\rm M} \Gamma$$
ц

Откуда получим

$$V_{\rm rp} = (1.954 \pm 0.001) \cdot 10^{10} \, \frac{\rm cm}{\rm c}$$

Рис. 5: График $\nu(n)$ для прямоугольных сигналов на согласованной линии

n	1	2	3	4	5
ν_n , М Γ ц	3,9	7,8	11,7	15,6	19,5

3.2. Линия без нагрузки

Полученный коэффициент наклона прямой

$$\frac{V_{
m rp}}{l} = 3{,}936 \pm 0{,}002 \,{
m M} \Gamma$$
ц

Откуда получим

$$V_{\rm rp} = (1,980 \pm 0,001) \cdot 10^{10} \, \frac{\rm cm}{\rm c}$$

Групповые скорости измеренные на двух линиях совпали друг с другом с точностью до погрешности. Также групповая скорость с хорошей точностью совпадает с фазовой, что дополнительно свидетельствует об отсутствии дисперсии.

Рис. 6: График $\nu(n)$ для прямоугольных сигналов на линии без нагрузки

4. Амплитудно-частотная и фазово-частотная характеристики

Снимем зависимости $U_0, U_H, \Delta \varphi$ от ν . Посчитаем $\omega, \alpha(\omega)$ и $k(\omega)$, воспользовавшись формулами (8).

ν , М Γ ц	$2U_0, B$	$2U_H$, B	$\Delta \varphi$	α , M^{-1}	k, M^{-1}
1	27,1	25,2	4,62	0.0015	0.09
3	27,2	24,3	7,52	0.0023	0.15
5	26,7	23,6	11,50	0.0025	0.23
7	26,7	23,4	13,74	0.0026	0.27
9	27,0	22,9	16,81	0.0033	0.34
11	27,0	22,5	19,86	0.0036	0.40
13	26,9	22,0	22,94	0.0040	0.46
15	27,2	21,7	25,96	0.0045	0.52
17	27,1	21,4	29,04	0.0047	0.58
20	27,1	21,4	36,66	0.0047	0.73
24	27,1	21,1	42,79	0.0050	0.85
28	27,1	20,2	48,93	0.0059	0.98
32	26,8	19,7	55,01	0.0061	1.09
36	26,9	19,1	61,13	0.0068	1.22
40	26,5	18,5	67,30	0.0072	1.34

Построим зависимость $y_1(x_1)$, где $x_1 = \omega^2, y_1 = k^2 - \alpha^2$

Рис. 7: График $y_1(x_1)$

Полученный коэффициент наклона

$$\frac{L_x C_x}{c^2} = (2.879 \pm 0.002) \cdot 10^{-21} \, \frac{c^2}{\text{cm}^2}$$

Тогда получим

$$L_x C_x = 2.591 \pm 0.002$$

Т.к $R_0 = 50$ Ом, то согласно (5), получим

$$\begin{cases} L_x = cR_0\sqrt{L_xC_x} \\ C_x = \frac{\sqrt{L_xC_x}}{cR_0} \end{cases}$$

Тогда

$$L_x = 2.414 \pm 0.001$$
 ед.СГС $C_x = 1.0731 \pm 0.0003$ ед.СГС

Зная это из формул 1 и 2 оценим μ и ε

$$\mu = 1.0739 \pm 0.0004$$

$$\varepsilon = 2.4122 \pm 0.0008$$

Заметим, что $c/\sqrt{\mu\varepsilon}\approx 1.87\cdot 10^{10}\,\frac{\rm cm}{\rm c}$, что в пределах некоторой погрешности соответствует ранее измеренной фазовой скорости.

5. Определение удельной проводимости проводников

5.1. Метод А

Имеем соотношение

$$\alpha = \frac{4}{\sqrt{\sigma}d}C_x \frac{V_{\Phi}}{c} \sqrt{\nu} + \alpha_0$$

где α_0 – поправочный коэффициент. Построим зависимость $y_2(x_2)$, где $y_2=\alpha,\,x_2=\sqrt{\nu}$. Полученное значение коэффициента наклона

$$a = \frac{4}{\sqrt{\sigma}d}C_x \frac{V_{\Phi}}{c} = (1.07 \pm 0.03) \cdot 10^{-8} \text{ cm} \cdot \text{c}^{1/2}$$

Отсюда получим

$$\sigma_1 = \left(rac{4C_xV_{\Phi}}{acd}
ight)^2 = (4.02 \pm 0.08) \cdot 10^{18} \, \mathrm{eg.C\Gamma C}$$

Рис. 8: График $y_2(x_2)$

5.2. Метод Б

Из теории известно, что

$$2\alpha k = \omega R_x C_x$$

Которое можно свести к зависимости

$$y_3 = \frac{4\pi C_x}{cd\sqrt{\sigma}} x_3$$

где $x_3 = \nu^{3/2}, y_3 = \alpha k$.

Полученное значение коэффициента наклона

$$a = rac{4\pi C_x}{cd\sqrt{\sigma}} = (3.76 \pm 0.02) \cdot 10^{-18} \, \mathrm{eg.C\Gamma C}$$

Отсюда получим

$$\sigma_2 = \left(\frac{4\pi C_x}{acd}\right)^2 = (8.46 \pm 0.05) \cdot 10^{17} \, \mathrm{eg.C\Gamma C}$$

Рис. 9: График $y_3(x_3)$

6. Вывод

Была измерена фазовая скорость. Для согласованной и отсутствующей нагрузок они соответственно равны:

$$V_{\Phi} = (1,953 \pm 0,001) \cdot 10^{10} \frac{\text{cm}}{\text{c}}$$

$$V_{\Phi} = (1,943 \pm 0,002) \cdot 10^{10} \frac{\text{cm}}{\text{c}}$$

и групповые скорости для согласованной и отсутствующей нагрузок:

$$V_{\rm rp} = (1.954 \pm 0.001) \cdot 10^{10} \, \frac{\rm cm}{\rm c}$$

$$V_{\rm rp} = (1,980 \pm 0,001) \cdot 10^{10} \, \frac{\rm cm}{\rm c}$$

Получили, что групповая скорость с хорошей точностью совпадает с фазовой, что свидетельствует об отсутствии дисперсии.

Далее были сняты амплитудно-частотная и фазово-частотная характеристики. Была построена зависимость $y_1(x_1)$, по которой было определено произведение L_xC_x . Отсюда были получены погонные характеристики

$$L_x = 2{,}414 \pm 0{,}001 \,\mathrm{eg.C\Gamma C}$$

$$C_x = 1{,}0731 \pm 0{,}0003$$
 ед.
СГС

и характеристики среды

$$\mu = 1.0739 \pm 0.0004$$

$$\varepsilon = 2.4122 \pm 0.0008$$

Значение фазовой скорости, вычисленное через характеристики среды с неплохой точностью (5%)совпало с ранее вычисленным значением.

Далее методами А и Б была вычислена проводимость. Для методов А и Б значения проводимости соответственно равны

$$\sigma_1 = (4.02 \pm 0.08) \cdot 10^{18} \, \mathrm{eg.C\Gamma C}$$

$$\sigma_2 = (8.46 \pm 0.05) \cdot 10^{17} \, \mathrm{eg.C\Gamma C}$$

Отличие в 5 раз может объясняться тем, что амплитудная характеристика была измерена с ошибками, что оказало влияние на результаты обработки. В методе A была попытка вычислить константу, на которую отличаются измерения, однако, очевидно, точность такой корректировки по прежнему недостаточна.