Podays Content:

- Bellman ford
- Floyd Warshal Algorithm

Dijhtra's With Negative Edges:

A → B:

{ According to dijkmas, length of

{ Shortest path from A → B: 2 { Correct ans: A = C = D = B: 1

Nigative Cycle weight A B C > F > D: 14

-9 F

: hap going m-ve lost decreases

A -> D: A -> B -> C -> F -> D: 12

: If -ve presents in graph, shritest path is not defined

Dijktras Idea:

- Blast the nock with man value +
- -> lepdate au Adjacut Nodes

New Idea: & Bellmm Ford3 -ve)

We won't have -ve years

To therate on every lage of update moder - Repeate above prom n-1 times

13/1 n represents no: of modes

N Nody: At man what can be leight of path from = N-1 S-D?

Pscudo(ode:

__ Bellmm ford (løsta paira int, pairaint, int, Edgu, int N, ints) {

```
Int dist[Nti] = ftas;
dist[s] = 0
int e = Edga. length
Frint k= 1; ke N; Ku)
    bool upd = fain
    fr (int i=0; i2 e; i+1) 2
        paire int, paireint, int, data = Edges[7]
       int u= data firm
int v= data . second, firm u= w=
        Int W= data. Scind. Scord.
       if ( dist[u]+w & dist[v] &4 dist[u]!=+inf)
           dest[v]= dest[u]+w//change of overflow
           upd = true // indicates data changing
```

3

- Ve Gycle detection Ushy Bellmon Ford:

Q) Gilven dereted graph, check if - ve que 95 presur or not

Edges:

$$A \xrightarrow{-e} B \xrightarrow{y} c c \xrightarrow{\lambda} A \xrightarrow{D} \xrightarrow{3} A \xrightarrow{D} \xrightarrow{5} c$$

In general: If dest() is changing at No iteration as well in that can we can say that, there is - he wight excee TC: No E, SC: O(N) Floyd Warshau (All pair shortest path): [Between eng 2 modes] Graph Can contain - ve Eagu but not - ve your Ide: Run beliman ford from every noch Ly TC: N*[N*E] = O(N2E) dp[i, j,k] = d Min cost from i - j, such moder in between]

Cary only be [1, 2, -- h] En: ap[ij3] = Min cost from i → j, modu in between [1,2,3] La apli,j,k] = i [1 23 ... k]

 $\frac{i \{ 12...k-1 \} j}{ap[i,j,k]} = \min \left[ap[i,j,k-1] \quad ap[i,h,k-1] + ap[k,j,k-1] \right] \\
k \to k-1 \to k-2 \to k-2 \to k-2 \dots$

Pshdolode:

In ap [Nti][Nti][2]; :

Ran Condition
$$k=0=\{$$
 Adj Mahring

 $k=1; k := n; k := n := 0$
 $i=1; i := n := 0$

	0	ı	۵.	3	4
0	8	8	8	8	8
l	8	0	-3	8	7
2	8	8	0	-1	8
3	∞	5	8	0	-1
4	Ø	4	2	8	6

K=1: → [i, j]: Min cost to i-j, between = 913

	0	ı	کر	3	4
0	8	8	8	8	8
I	8	0	-3	8	ተ
2	8	8	0	-1	18
3	80	5	2	0	1
4	Ø	4	1	8	0

K=2: → [1, j]: Min cost to 9-j, between + 91,2}

	0	ſ	ک	3	4
0	8	8	8	8	8
l	8	0	3	7	7
2	8	8	0	1	15
3	∞	5	2	0	1
4	Ø	4	- 1	0	0

value can
be wrig
plean
cross verify
one

K=3: → [1, j]: Min cost to 9-j, between + 91, 2, 73

	0	ı	ک	3	4
0	8	8	8	8	8
ı	8	0	13	7	-3
2	8	14	0	-1	0.6
3	8	5	2	0	1
4	8	٦	10	0	0

ralu can
be wrig
plan
cross verify
one

K=4: → [1, j]: Min cost to 9-j, between + 91, 2, 7, 43

	0	ı	۵.	3	4
0	8	8	8	8	8
l	8	0	-3	7	-3
2	8	4	0	-	O
3	∞	5	2	0	1
4	Ø	4	1	0	0

value can
be wrig
plena
cross verify
ona

Is Problems we discussed / Assignment Honomal
L. Previous asted quishes in company