

Computer Vision 13016370

Edited by:

Dr. Ukrit Watchareeruetai

International College

King Mongkut's Institute of Technology Ladkrabang

Problem-based learning: Fingerprint verification

Fingerprint

Fingerprint verification

- **Task:** to verify if two given fingerprints are from the same finger
- Input: two fingerprint images
- Output: a boolean answer (yes/no)

How to recognize fingerprints?

Minutiae

- A minutia is a point on fingerprint ridge(s) that has a certain characteristic.
 - End point
 - Bifurcation
- The distribution pattern of minutiae is one of features often used for fingerprint recognition.

Minutia matching

A.K. Jain et al, "On-line fingerprint verification," PAMI, vol.19(4), 1997

- By representing a set of minutiae as a point pattern, a fingerprint recognition problem can be reduced to a point pattern matching problem.
 - If two fingerprints are from the same finger, the point patterns formed by minutiae would be the same.
 - Their minutiae details (features around each minutiae) would match each other topologically.

Minutia matching

- The difficulties in point pattern matching for fingerprint recognition are caused by the followings:
 - The correspondences between the template and input fingerprint are not known beforehand.
 - There are relative translation, rotation, and non-linear deformations between template minutiae and input minutiae.
 - Some minutiae are missed from both templates and inputs.
 - Spurious minutiae normally present in both templates and inputs
- Minutia matching is an elastic matching of point patterns without knowing their correspondence beforehand.

Common problems in fingerprint recognition

Matching *P* and *Q*

Point pattern matching

Let $P = \{\mathbf{m}_1^P, \mathbf{m}_2^P, \mathbf{m}_3^P, ..., \mathbf{m}_M^P\}$ denote a set of M minutiae in the template and

$$Q = \left\{ \mathbf{m}_1^Q, \mathbf{m}_2^Q, \mathbf{m}_3^Q, \dots, \mathbf{m}_N^Q \right\}$$

denote a set of N minutiae in the input, where \mathbf{m}_i is a vector describing a minutia point

 For example, it may contain the position of the minutia, its type (end point or bifurcation), and its direction.

$$\mathbf{m}_i = (x_i, y_i, t_i, \theta_i)^T$$

- A simple point pattern matching can be described as follows:
- 1. Choose a pair of minutiae in the template $(\mathbf{m}_i^P, \mathbf{m}_j^P)$ and a pair of minutiae in the input $(\mathbf{m}_k^Q, \mathbf{m}_l^Q)$
- 2. Suppose that \mathbf{m}_i^P corresponds to \mathbf{m}_k^Q , then the translation vector between the two fingerprints is computed by

$$\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} x_i^P \\ y_i^P \end{bmatrix} - \begin{bmatrix} x_k^Q \\ y_k^Q \end{bmatrix}$$

Matching *P* and *Q*

$$\Delta \theta = \theta_{ij}^P - \theta_{kl}^Q$$

4. Translate and rotate all minutiae in the input by the translation vector and rotation angle from steps 2 and 3.

Fig. 11. Bounding box and its adjustment.

A.K. Jain et al, "On-line fingerprint verification," PAMI, vol.19(4), 1997

- 5. Repeat the process until each pair in the template has been matched with each pair in the input. Find the maximum correspondences C_{max} .
- 7. Compute the similarity S between the two fingerprints as follows:

$$S = \frac{C_{\max}}{\max(M, N)}$$

If S is larger than a threshold value T, they will be considered as fingerprints from the same finger (match); otherwise, different fingers (non-match).

Matching *P* and *Q*

How to detect minutiae?

How to detect minutiae?

Minutia detection

- Pixels corresponding to minutiae are characterized by a crossing number different from 2.
- The crossing number cn(p) of a pixel p in a skeleton image is defined as half the sum of the differences between pairs of adjacent pixels in the 8-neighborhood of p.

$$cn(p) = \frac{1}{2} \sum_{i=1..8} |val(p_i) - val(p_{i+1})|$$

- $p_1, p_2, ..., p_8$ are the pixels belonging to an ordered sequence of pixels defining the 8-neighborhood of p
- $p_9 = p_1$
- *val*(*p*) \in {0,1}.

p_1	p_2	p_3
p_8	p	p_4
p_7	p_6	p_5

Minutia detection

How to obtain a skeleton image?

- Thinning or skeletonization is a process that reduces the thickness of ridges to one pixel.
- An image obtained from this process is called a skeleton image.

p_1	p_2	p_3
p_8	p	p_4
p_7	p_6	p_5

Thinning

- Thinning algorithm can be described as follows:
 - 1. For each black pixel in the image (except the borders), check whether the pixel satisfies all of the following conditions:
 - The number of black neighboring pixels \in [2, 6].
 - The number of transitions from white to black = 1.
 - $\blacksquare p_2, p_4$, or p_6 is white.
 - p_4 , p_6 , or p_8 is white.
 - 2. Change the gray intensity of all pixels satisfying the conditions to white.
 - 3. Repeat the process until there is no pixel satisfying the conditions. In each iteration, the last two conditions may be switched to the followings:
 - p_2 , p_4 , or p_8 is white.
 - p_2 , p_6 , or p_8 is white.

Binarization

- Before a thinning process can be done, a binary fingerprint image is required.
- A simple global thresholding can be used to convert a fingerprint image into a binary image.

$$g(x,y) = \begin{cases} 255 & f(x,y) > th \\ 0 & \text{otherwise} \end{cases}$$

A threshold selection method such as the iterative algorithm or Otsu's threshold selection can be used to obtain an appropriate threshold value.

How to more accurately detect minutiae?

Fingerprint enhancement

- The quality of fingerprint image strongly affects minutiae extraction algorithms.
- The goal of **fingerprint enhancement** process is to improve the clarity between ridges and valleys.
 - Resulting in a more reliable extraction of minutiae.
- Gabor filter is often used to enhance fingerprint images.
 - Local characteristics of fingerprint images:
 - One fingerprint direction
 - Constant frequency
 - Can be approximated as a sinusoidal signal

2D Gabor filter

■ 2D Gabor filter (with orientation of 0°):

$$G(x, y) = \exp \left[-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right) \right] \times \cos(2\pi f y)$$

$G_{lp}(x)$ 0.8 0.7 0.6 0.5 0.4 0.2 0.1 -20 -15 -10 -5 0 5 10 15 20

$G_{bp}(y)$ G_{b

2D Gabor filter

• 2D Gabor filter (with orientation of 0° or 90°) can be decomposed into two 1D-filters:

$$G(x, y) = \exp \left[-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right) \right] \times \cos(2\pi f y)$$
$$= G_{lp}(x)G_{bp}(y)$$

$$G_{lp}(x) = \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2}\right)\right]$$

$$G_{bp}(y) = \exp\left[-\frac{1}{2}\left(\frac{y^2}{\sigma_y^2}\right)\right] \times \cos(2\pi f y)$$

• The following is a general formula of Gabor filter with orientation θ :

$$G(x, y : \theta) = \exp \left[-\frac{1}{2} \left(\frac{x_{\theta}^{2}}{\sigma_{x}^{2}} + \frac{y_{\theta}^{2}}{\sigma_{y}^{2}} \right) \right] \times \cos(2\pi f y_{\theta})$$

$$\begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Applying Gabor filters

- Generate a bank of Gabor filters in different orientations
 - 8 orientations are normally used
- Compute the orientation field (OF), which describes the local ridge orientation, for each block and quantize it into 8 orientations
- For each block, apply a Gabor filter corresponding the quantized orientation the block

How to estimate local ridge orientation?

A.K. Jain et al, "On-line fingerprint verification," PAMI, vol.19(4), 1997

Block-wise ridge orientation estimation (method 1)

- Divide an input fingerprint image into blocks of size N × N pixels.
- Compute the gradient magnitude g_x and g_y for each pixel in a block.
- Estimate the local ridge orientation of a block using the following formula:

$$\theta = \frac{1}{2} tan^{-1} \left(\frac{\sum_{i=1..N} \sum_{j=1..N} 2g_x(i,j)g_y(i,j)}{\sum_{i=1..N} \sum_{j=1..N} (g_x^2(i,j) - g_y^2(i,j))} \right)$$

Block-wise ridge orientation estimation (method 2)

- Divide an input fingerprint image into blocks of size N × N pixels.
- Perform DFT to each block
- Detect two strongest peaks (except the center) in the block
- The local ridge orientation can be estimated as the direction perpendicular to a line segment passing the two peaks.

How to increase the speed of computation?

Fingerprint segmentation

Fingerprint segmentation is process that separates the area of fingerprint from background.

- This makes us be able to avoid further processing applied on non-fingerprint areas.
- This also helps reduce the number of spurious minutiae that might appear in non-fingerprint areas.

Fingerprint segmentation

- A simple algorithm for fingerprint segmentation consists of three steps:
 - Divide an input fingerprint image into blocks of size N × N pixels.
 - Compute some statistical features, e.g., the average and variance of gray intensity in each block
 - Perform decision (thresholding) based on the computed features

Summary of fingerprint verification algorithm

Fingerprint verification system


```
import cv2
import numpy as np
import FpMatcher
```

```
fpMatcher = FpMatcher.FpMatcher()
fpEvl = FpMatchingEvaluator()
fpEvl.evaluate("../FP DB1 (test subset)/DB_Info.txt", fpMatcher)
```

Performance evaluation

Fingerprint verification system

Genuine matching attempt

Imposter matching attempt

True acceptance (TA)

False acceptance (FA)

False rejection (FR)

True rejection (TR)

How to evaluate a fingerprint verification system?

- Given a set of fingerprint images
 - Suppose there are M fingers, N images per finger.
 - Use two index values to represent an image
 - E.g., 4_1.bmp means this is 1st image of 4th finger.
- Perform matching between all pairs of fingerprint images in the set and calculate their similarity (0-100)
- For each threshold value t $(0 \le t \le 100)$
 - Perform decision making
 - Find the total numbers of true/false acceptance/rejection
 - Denoted by N_{TA} , N_{TR} , N_{FA} , N_{FR} .
 - These are functions of threshold value *t*.
 - Find the total numbers of genuine/imposter matching attempts
 - lacksquare Denoted by N_G and N_I

How to evaluate a fingerprint verification system?

- False acceptance rate *FAR*(*t*)
 - Also known as false match rate (FMR)

$$FAR(t) = \frac{N_{FA}(t)}{N_{I}}$$

- False rejection rate FRR(t)
 - Also known as false non-match rate (FNMR)

$$FRR(t) = \frac{N_{FR}(t)}{N_G}$$

- These two functions depend on the threshold value t.
 - It controls the security level of the system.
 - Normally, when t increases, FRR(t) increases but FAR(t) decreases.

ROC curve

- Receiver operating characteristics (ROC) curve is the plot of FAR(t) against FRR(t) (or sometimes against 1-FRR(t)).
- The closer to the origin, the better performance

Equal error rate

- Equal error rate (EER) is the error rate at the threshold value t in which FAR(t) = FRR(t).
- In practical, this might not exist because of the quantization of threshold value t.
 - It might be approximated or described as a range instead.

Other performance indicators

- FAR_{100} the lowest FRR for $FAR \le 1\%$ (1/100)
- FAR_{1000} the lowest FRR for $FAR \le 0.1\%$ (1/1000)
- FAR_{10000} the lowest FRR for $FAR \le 0.01\%$ (1/10000)
- $Zero_{FAR}$ the lowest FRR at which no false acceptance occurs (FAR = 0%)
- $Zero_{FRR}$ the lowest FAR at which no false rejection occurs (FRR=0%)

References

References

- A. K. Jain, L. Hong, and R. Bolle, "On-line fingerprint verification," IEEE Trans. PAMI, vol.19, no.4, pp.302-314, April 1997.
- L. Hong, Y. Wan, and A. K. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. PAMI, vol.20, no.8, pp.777-789, August 1998.
- D. Maltoni et al., Handbook of Fingerprint Recognition, Springer, 2003.
- Biometric System Laboratory, University of Bologna (URL: http://biolab.csr.unibo.it/home.asp)
- The First Fingerprint Verification Competition (FVC2000) (URL: http://bias.csr.unibo.it/fvc2000/)
- The Second Fingerprint Verification Competition (FVC2002) (URL: http://bias.csr.unibo.it/fvc2002/)
- The Third Fingerprint Verification Competition (FVC2004)
 (URL: http://bias.csr.unibo.it/fvc2004/)
- The Forth Fingerprint Verification Competition (FVC2006) (URL: http://bias.csr.unibo.it/fvc2006/)
- FVC-onGoing: On-line evaluation of fingerprint recognition algorithms (URL: https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx)