Introduction to Augmented Reality

Tutorial 5: Marker Tracking Part 5 May 16th 2018

Andreas Langbein, Adnane Jadid, David Plecher

Fachgebiet Augmented Reality Technische Universität München

Marker-based Tracking

Solution for the Previous Tutorial

Today's Tutorial

Marker-Pose Estimation

Pose = Position + Orientation

A code will be provided

3D Transformations Revisited

Homogeneous notation in $R^3 \rightarrow 4x4$ matrix

Translation, Rotation, Similarity
Similarity
Scaling

$$\left[egin{array}{c} X' \ Y' \ Z' \ 1 \end{array}
ight] pprox \left[egin{array}{ccccc} R_{00} & R_{01} & R_{02} & s_0 t_0 \ R_{10} & R_{11} & R_{12} & s_1 t_1 \ R_{20} & R_{21} & R_{22} & s_2 t_2 \end{array}
ight] \left[egin{array}{c} X \ Y \ Z \ 1 \end{array}
ight]$$

Scaling

Scaling: g|Scale*
$$(s_x, s_y, s_z)$$

$$\begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \\ s_z z \\ w \end{bmatrix}$$

Translation

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x + wt_x \\ y + wt_y \\ z + wt_z \\ w \end{bmatrix}$$

Rotation

$$\mathsf{R=}\begin{bmatrix} R_{00} & R_{01} & R_{02} \\ R_{10} & R_{11} & R_{12} \\ R_{20} & R_{21} & R_{22} \end{bmatrix}$$

How to create a desired rotation?

e.g. Euler Angles (Around-axis Rotations)

Rotation: glRotate* (a,ex,ey,ez)

Around x

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x \\ \cos \alpha y - \sin \alpha z \\ \sin \alpha y + \cos \alpha z \\ w \end{bmatrix}$$

Around y

$$\begin{bmatrix} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} \cos \alpha x + \sin \alpha z \\ y \\ -\sin \alpha x + \cos \alpha z \\ w \end{bmatrix}$$

Around z

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} \cos \alpha x - \sin \alpha y \\ \sin \alpha x + \cos \alpha y \\ z \\ w \end{bmatrix}$$

We do use this for exercises with OpenGL, but...

Why Euler Angles are Evil

See video now!

http://www.youtube.com/watch?v=zc8b2Jo7mno

Pose Estimation via Homography

If H and K are known

 \rightarrow (R, t)

(Investigate Tsai's and Zhang's methods for details)

2D Image Does not Give 3D Scale

(without prior knowledge)

by Jamie Durrant

Scale Disambiguation

If the marker size is known

→ S (s*t gives physically correct distance)

Our Pose Estimation Function

```
/**
* computes the orientation and translation of a square
* @param result result as 4x4 matrix
* @param p2D coordinates of the four corners in clock-wise order.
* the origin is assumed to be at the camera's center of projection
* @param markerSize side-length of marker. Origin is at marker center.
*/
void estimateSquarePose
                ( float* result, const CvPoint2D32f* p2D,float markerSize );
void estimateSquarePose
                ( float* result, const cv::Point2f* p2D, float markerSize );
```


Pose Estimation

```
float* result = [ 0, 1, 2, 3,
                                                     4, 5, 6, 7,
                                                     8, 9, 10, 11,
                                                  12, 13, 14, 15];
                                                 \begin{bmatrix} R_{00} & R_{01} & R_{02} & t_0 \\ R_{10} & R_{11} & R_{12} & t_1 \\ R_{20} & R_{21} & R_{22} & t_2 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}
```


Ambiguity of the rotation around Z-axis

Ambiguity of the rotation around Z-axis

Preparation for Pose Estimation

Define a consistent rotation around **Z-axis**

a-b-c-d

d-a-b-c

c-d-a-b

b-c-d-a

Adujst the order of

const cv::Point2f* p2D

estimateSquarePose()

Homework

Pose estimation: see PDF sheet on Moodle

Spoiler of the next tutorial

OpenGL basics
-with GLFW

That's it...

Questions

