JAMHURIYA UNIVERSITY OF SCIENCE & TECHNOLOGY

Course Title: Principles of Operating System

Class: CA191, CA192, CA193, CA194

Scheduling Algorithms Assignment

Deadline: May 31, 2023

Problem 1

Process	Burst Time
$P_{_{_{I}}}$	6
$P_{_{2}}$	10
$P_{_{3}}$	8

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 Draw Gantt chart then calculate waiting time and turnaround time for each process, and average waiting time and average turnaround time using **first** come first served algorithm (FCFS).

Problem 2

<u>Process</u>	<u>Burst Time</u>
$P_{_{I}}$	10
$P_{_{2}}$	6
$P_{_{\mathcal{J}}}$	20
$P_{_{4}}$	8

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 , P_4 . Draw Gantt chart then calculate waiting time and turnaround time for each process, and average waiting time and average turnaround time using **first come first served algorithm (FCFS)**.

Problem 3

<u>Process</u>	Burst Time
$P_{_I}$	12
$P_{_{2}}$	8
$P_{_{\mathfrak{Z}}}$	6

Suppose that the processes arrive at the same time. Draw Gantt chart then calculate waiting time and turnaround time for each process, and average waiting time and average turnaround time using **shortest job first (SJF)**.

Problem 4
Given the following processes with their arrival time and burst time.

Process	Arrival Time	Burst Time
$P_{_{_{I}}}$	1	7
$P_{_{2}}$	3	3
$P_{_{\mathcal{J}}}$	6	2
$P_{_{4}}$	7	10
$P_{_{5}}$	9	8

Draw Gantt chart then calculate waiting time and turnaround time for each process, and average waiting time and average turnaround time using **shortest job first (SJF)**.

Problem 5

<u>Process</u>	Burst Time	<u>Priority</u>
$P_{_{I}}$	5	3
$P_{_{2}}$	2	5
$P_{_{\mathcal{S}}}$	10	4
$P_{_{4}}$	3	1
$P_{_{5}}$	7	2

Suppose that the processes arrive at the same time. Draw Gantt chart then calculate waiting time and turnaround time for each process and average waiting time and average turnaround time using **priority scheduling algorithms**.

Problem 6

Process	Burst Time	Priority
$P_{_{I}}$	4	5
$P_{_{2}}$	3	3
$P_{_{3}}$	5	2
$P_{_{4}}$	10	4
$P_{_{5}}$	3	1

Suppose that the processes arrive at the same time. Draw Gantt chart then calculate waiting time and turnaround time for each process and average waiting time and average turnaround time using **priority scheduling algorithms**.

Problem 7

<u>Process</u>	Burst Time
$P_{_I}$	27
$P_{_{2}}$	10
$P_{_{\widetilde{\mathcal{J}}}}$	20

Suppose that the processes arrive at the same time. Draw Gantt chart then calculate waiting time and turnaround time for each process, and average waiting time and average turnaround time using **round robin algorithm** (**RR**) with time quantum = 8.

Problem 8

Process	Burst Time
$P_{_{_{I}}}$	20
$P_{_{2}}$	3
$P_{_3}$	12

Suppose that the processes arrive at the same time. Draw Gantt chart then calculate waiting time and turnaround time for each process, and average waiting time and average turnaround time using **round robin algorithm** (**RR**) with time quantum = 5 milliseconds.

END