Øving 2

Oppgave 1: Sirkelbevegelse.

En partikkel utfører uniform sirkelbevegelse med konstant vinkelhastighet $\omega = v/r$. Ved å betrakte figuren har vi da

$$\hat{r}(t) = \hat{x}\cos\omega t + \hat{y}\sin\omega t,$$

$$\hat{\phi}(t) = -\hat{x}\sin\omega t + \hat{y}\cos\omega t.$$

a) Her har vi allerede antatt at $\phi(t) = \omega t$, dvs $\phi = 0$ for t = 0. Hvordan blir uttrykkene for $\hat{r}(t)$ og $\hat{\phi}(t)$ hvis vi velger $\phi(0) = \pi/2$?

b) Vis at de tidsderiverte av disse enhetsvektorene blir

$$\dot{\hat{r}} = \omega \hat{\phi} \quad ; \quad \dot{\hat{\phi}} = -\omega \hat{r}.$$

(Tips: Start med uttrykkene for \hat{r} og $\hat{\phi}$ ovenfor.)

c) Vis deretter at

$$\mathbf{v} = r\omega\hat{\phi}$$
 : $\mathbf{a} = -r\omega^2\hat{r}$.

(Tips: Husk at $\mathbf{r} = r\hat{r}$.)

Oppgave 2: Pendel.

Ei kule (punktmasse) med masse m er festet til ei vektløs stang med lengde L. Stanga er festet i et punkt A som den kan bevege seg fritt om.

a) Kula trekkes ut til siden (i papirplanet) med en horisontal kraft F. Hvor stor må F være for å holde kula i ro ved vinkelen θ ?

b) I stedet for å trekke med en kraft \boldsymbol{F} lar vi systemet rotere om en vertikal akse gjennom opphengningspunktet A, med vinkelhastighet ω . Hvor stor vinkel θ danner stanga med vertikalaksen? Er denne løsningen riktig for alle verdier av ω ? TIPS: Kula har hastighet $v = \omega r$ $(r = L\sin\theta)$ og sentripetalakselerasjon $a = v^2/r$.

c) Til slutt tenker vi oss at pendelen henger (uten å rotere!) i et fly som akselererer bortover rullebanen. Hva er akselerasjonen dersom $\theta=30^{\circ}$? (Utfør eksperimentet neste gang du er ute og flyr!)

1

Oppgave 3: Vertikal sirkelbevegelse.

En stein med masse m er festet til enden av ei (masseløs) snor med lengde R, og slynges rundt i en vertikal sirkelbane, som vist i figuren til venstre.

a) Vis at Newtons 2. lov for den tangentielle bevegelsen langs sirkelbanen kan skrives som

$$R\frac{d\omega}{dt} = -g\cos\theta,$$

og bruk kjerneregelen, $\frac{d\omega}{dt} = \frac{d\omega}{d\theta} \cdot \frac{d\theta}{dt}$, til å finne en differensialligning for $\omega(\theta)$.

b) Løs ligningen og vis at

$$\omega^2 = \omega_0^2 - \frac{2g}{R} \cdot \sin \theta,$$

der ω_0 er vinkelhastigheten ved $\sin \theta = 0$.

c) Sett opp en ligning for sentripetalakselerasjonen a_{\perp} og finn snordraget S som funksjon av θ . I hvilken posisjon av banen er det størst fare for at snora ryker? (Bruk uttrykket du har funnet for $S(\theta)$ og sjekk det mot din sunne fornuft.) Hva må ω_0 minst være for at snora hele tida skal være stram? (Sunn fornuft gir en god sjekk også her.)

Oppgave 4: Flervalg på skråplanet.

En kloss med masse m ligger i ro på et skråplan med helningsvinkel θ . Statisk og kinetisk friksjonskoeffisient for kontaktflaten mellom kloss og skråplan er hhv μ_s og $\mu_k < \mu_s$.

a) Hvor stor er normalkraften N fra skråplanet på klossen?

A)
$$N = mg \sin \theta$$
 B) $N = mg \cos \theta$ C) $N = mg \tan \theta$ D) $N = mg \cot \theta$ (cot $x = \cos x/\sin x = 1/\tan x$)

b) Hvor stor er friksjonskraften f fra skråplanet på klossen?

A)
$$f = mg \sin \theta$$
 B) $f = mg \cos \theta$ C) $f = mg \tan \theta$ D) $f = \mu_s N$

c) Hvor stor må μ_s minst være for at klossen skal ligge i ro?

A)
$$\mu_s^{\min} = \sin \theta$$
 B) $\mu_s^{\min} = \cos \theta$ C) $\mu_s^{\min} = \tan \theta$ D) $\mu_s^{\min} = \cot \theta$

d) Hva blir klossens akselerasjon a_{\parallel} nedover skråplanet dersom μ_s ikke er stor nok til at klossen blir liggende i ro?

A)
$$a_{\parallel} = g(\sin \theta - \mu_k \cos \theta)$$
 B) $a_{\parallel} = g(\cos \theta - \mu_k \sin \theta)$
C) $a_{\parallel} = g(\sin \theta - \mu_s \cos \theta)$ D) $a_{\parallel} = g(\cos \theta - \mu_s \sin \theta)$

e) Anta at μ_s er for liten til å holde klossen i ro, slik at den akselererer nedover skråplanet. Til hvilken helningsvinkel α må du justere skråplanet for at klossen skal gli med konstant hastighet?

A)
$$\alpha = \arcsin \mu_k$$
 B) $\alpha = \arccos \mu_k$ C) $\alpha = \arctan \mu_k$ D) $\alpha = \mu_k$

Oppgave 5: To klosser på skråplanet.

To klosser med masse hhv m_1 og m_2 og kinetisk friksjonskoeffisient hhv μ_1 og μ_2 glir nedover et skråplan med helningsvinkel β . De to klossene er forbundet med ei tilnærmet masseløs snor. Klossen med masse m_1 ligger øverst på skråplanet. Snordraget betegner vi med S; S=0 hvis snora er slakk og S>0 hvis snora er stram.

- a) Hvor stor er friksjonskraften f_i fra skråplanet på kloss nr i (i = 1, 2)?
- A) $f_i = \mu_i m_i g \sin \beta$ B) $f_i = \mu_i m_i g \cos \beta$ C) $f_i = \mu_i m_i g \tan \beta$ D) $f_i = \mu_i m_i g \cot \beta$
- b) Hva er akselerasjonen a_1 til kloss nr 1?
- A) $a_1 = g(\sin \beta + \mu_1 \cos \beta) + S/m_1$ B) $a_1 = g(\sin \beta \mu_1 \cos \beta) + S/m_1$
- C) $a_1 = g(\sin \beta + \mu_1 \cos \beta) S/m_1$ D) $a_1 = g(\sin \beta \mu_1 \cos \beta) S/m_1$
- c) Hva er akselerasjonen a_2 til kloss nr 2?
- A) $a_2 = g(\sin \beta + \mu_2 \cos \beta) + S/m_2$ B) $a_2 = g(\sin \beta \mu_2 \cos \beta) + S/m_2$
- C) $a_2 = g(\sin \beta + \mu_2 \cos \beta) S/m_2$ D) $a_2 = g(\sin \beta \mu_2 \cos \beta) S/m_2$
- d) Hva er betingelsen for at snora skal holde seg stram? (Dvs, med et snordrag S > 0.)
- A) $m_1 > m_2$ B) $\mu_1 > \mu_2$ C) $\mu_1 m_1 > \mu_2 m_2$ D) $m_1/\mu_1 > m_2/\mu_2$
- e) Hva må vinkelen β være for at de to klossene skal gli nedover skråplanet med samme konstante hastighet?
- A) $\beta = \arcsin[(\mu_1 m_1 + \mu_2 m_2)/(m_1 + m_2)]$
- B) $\beta = \arctan[(\mu_1 m_1 + \mu_2 m_2)/(m_1 + m_2)]$
- C) $\beta = \arcsin[(m_1 + m_2)/(\mu_1 m_1 + \mu_2 m_2)]$
- D) $\beta = \arctan[(m_1 + m_2)/(\mu_1 m_1 + \mu_2 m_2)]$