Radiometry

"Empire of Light", Magritte

Alexei Efros CS280, Spring 2024

What is in an image?

A camera creates an image ...

The image I(x,y) measures how much light is captured at pixel (x,y)

We want to know

- Where does a point (X,Y,Z) in the world get imaged?
- What is the brightness at the resulting point (x,y)?

The pinhole camera models where a scene point is projected

Now let us try to understand brightness at a pixel (x,y) ...

The image $\underline{I(x,y)}$ measures how much light is captured at pixel (x,y). Proportional to the number of photons captured at the sensor element (CCD/CMOS/Rod/cone/..) in a time interval.

We use the scientific term IRRADIANCE for this concept. Irradiance is defined as the radiant power per unit area, and has units W/m^2 . Usually denoted by E.

Radiance is a directional quantity

Radiant power travelling in a given direction per unit area (measured perpendicular to the direction of travel) per unit solid angle

Read more on Wiki pedia

How does a pixel get its value?

How does a pixel get its value?

- Major factors
 - Illumination strength and direction
 - Surface geometry
 - Surface material
 - Nearby surfaces
 - Camera gain/exposure

Figure 1.1: (a) Scene illuminated with a ceiling lamp. (b-c) Two images obtained by illuminating a scene with a laser pointer (the red line indicates the direction of the ray).

(a)

(b)

(c)

Image irradiance is proportional to scene radiance in the direction of the camera

BRDF: Bidirectional Reflectance Distribution Function

 Model of local reflection that tells how bright a surface appears when viewed from one direction when light falls on it from another

Effect of BRDF

Basic models of reflection

- Specular: light bounces off at the incident angle
 - E.g., mirror

- Diffuse: light scatters in all directions
 - E.g., brick, cloth, rough wood

Lambertian reflectance model

- Some light is absorbed (function of albedo ρ)
- Remaining light is scattered (diffuse reflection)
- Examples: soft cloth, concrete, matte paints

Diffuse reflection: Lambert's cosine law

Intensity does not depend on viewer angle.

- Amount of reflected light proportional to $cos(\theta)$
- Visible solid angle also proportional to $cos(\theta)$

http://en.wikipedia.org/wiki/Lambert%27s_cosine_law

Specular Reflection

- Reflected direction depends on light orientation and surface normal
 - E.g., mirrors are fully specular
 - Most surfaces can be modeled with a mixture of diffuse and specular components

Flickr, by piratejohnny

Most surfaces have both specular and diffuse components

 Specularity = spot where specular reflection dominates (typically reflects light source)

Photo: northcountryhardwoodfloors.com

Typically, specular component is small

Intensity and Surface Orientation

Intensity depends on illumination angle because less light comes in at oblique angles.

 ρ = albedo

S =directional source

N =surface normal

I = reflected intensity

$$I(x) = \rho(x)(S \cdot N(x))$$

Slide: Forsyth

Recap

- When light hits a typical surface
 - Some light is absorbed (1- ρ)
 - More absorbed for low albedos

- Some light is reflected diffusely
 - Independent of viewing direction

- Some light is reflected specularly
 - Light bounces off (like a mirror), depends on viewing direction

Other possible effects

So far: light → surface → camera

- Called a local illumination model
- But much light comes from surrounding surfaces

From Koenderink slides on image texture and the flow of light

Inter-reflection is a major source of light

Inter-reflection affects the apparent color of objects

From Koenderink slides on image texture and the flow of light

Scene surfaces also cause shadows

 Shadow: reduction in intensity due to a blocked source

Shadows

Models of light sources

- Distant point source
 - One illumination direction
 - E.g., sun
- Area source
 - E.g., white walls, diffuser lamps, sky
- Ambient light
 - Substitute for dealing with interreflections
- Global illumination model
 - Account for interreflections in modeled scene

Image Formation

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

f(x,y) = reflectance(x,y) * illumination(x,y)Reflectance in [0,1], illumination in [0,inf]

Problem: Dynamic Range

The real world is High dynamic range

2,000,000,000

Dynamic range and camera response

 Typical scenes have a huge dynamic range

- Camera response is roughly linear in the mid range (15 to 240) but non-linear at the extremes
 - called saturation or undersaturation

Long Exposure

Short Exposure

Radiance is a function of wavelength

Figure 4.4. The spectral power distribution of two important light sources are shown: blue skylight (a) and the yellow disk of the sun (b).

Spectroradiometer

Figure 4.2. A spectroradiometer is used to measure the spectral power distribution of light. (a) A schematic

DIY Spectroradiometer

Figure 6.3: (a) A spectrograph constructed using a compact disk (CD). Light enters through a slit at the right, diffracting from the narrowly spaced lines of the CD. (b) Photograph of diffraction pattern from sunlight, seen thorugh hole at bottom left.

Figure 6.5: Some real-world objects and the reflected light spectra (photographed using Fig. (6.3) (a)) from outdoor viewing. (a) Leaf and (b) its reflected spectrum. (c) A red door and (d) its reflected spectrum.

Figure 6.6: More real-world objects and the reflected light spectra. (a) Blue-green chair and (b) its reflected light. (c) Toby the dog and (d) his reflected spectrum.

Figure 6.4: (a) and (b): Plots of the power spectra of blue sky and a tungsten light bulb. Photographs show (c) a flourescent light and (d) its spectrum as viewed with the spectrograph of Fig. (6.3) (a).

Electromagnetic Spectrum

Human Luminance Sensitivity Function

Visible Light

The Physics of Light

Any patch of light can be completely described physically by its spectrum: the number of photons (per time unit) at each wavelength 400 - 700 nm.

The Physics of Light

Some examples of the spectra of light sources

A. Ruby Laser

B. Gallium Phosphide Crystal

C. Tungsten Lightbulb

D. Normal Daylight

The Physics of Light

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

Color names for cartoon spectra

