# Константы

| Число Авогадро, $N_A$                 | $6.022 	imes 10^{23}	ext{моль}^{-1}$         |
|---------------------------------------|----------------------------------------------|
| Элементарный заряд, <i>е</i>          | $1.602 \times 10^{-19}  \text{K}$ л          |
| Универсальная газовая постоянная, $R$ | $8.314	Джмоль^{-1}	K^{-1}$                   |
| Постоянная Фарадея, F                 | 96 485 Кл моль <sup>-1</sup>                 |
| Постоянная Планка, <i>h</i>           | $6.626 	imes 10^{-34}$ Дж с                  |
| Температура в Кельвинах (К)           | $T_{\rm K} = T_{\rm ^{\circ}C} + 273.15$     |
| Ангстрем, Å                           | $1 \times 10^{-10} \mathrm{m}$               |
| пико, п                               | $1\text{mM} = 1 \times 10^{-12}\text{M}$     |
| нано, н                               | $1 \text{ HM} = 1 \times 10^{-9} \text{ M}$  |
| микро, мк                             | $1 \text{ MKM} = 1 \times 10^{-6} \text{ M}$ |

| 1                        |                          |                         |                          |                          |                          |                          |                   |                          |                          |                          |                          |                          |                          |                          |                          |                          | 18                       |
|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1<br>H<br>1.008          | 2                        |                         |                          |                          |                          |                          |                   |                          |                          |                          |                          | 13                       | 14                       | 15                       | 16                       | 17                       | 2<br>He<br>4.003         |
| 3<br>Li<br>6.94          | 4<br>Be<br>9.01          |                         |                          |                          |                          |                          |                   |                          |                          |                          |                          | 5<br>B<br>10.81          | 6<br>C<br>12.01          | 7<br><b>N</b><br>14.01   | 8<br>O<br>16.00          | 9<br>F<br>19.00          | 10<br>Ne<br>20.18        |
| 11<br>Na<br>22.99        | 12<br>Mg<br>24.31        | 3                       | 4                        | 5                        | 6                        | 7                        | 8                 | 9                        | 10                       | 11                       | 12                       | 13<br>Al<br>26.98        | 14<br>Si<br>28.09        | 15<br>P<br>30.97         | 16<br>S<br>32.06         | 17<br>Cl<br>35.45        | 18<br><b>Ar</b><br>39.95 |
| 19<br><b>K</b><br>39.10  | 20<br>Ca<br>40.08        | 21<br>Sc<br>44.96       | 22<br>Ti<br>47.87        | 23<br>V<br>50.94         | 24<br>Cr<br>52.00        | 25<br><b>Mn</b><br>54.94 | 26<br>Fe<br>55.85 | 27<br><b>Co</b><br>58.93 | 28<br><b>Ni</b><br>58.69 | 29<br>Cu<br>63.55        | 30<br>Zn<br>65.38        | 31<br><b>Ga</b><br>69.72 | 32<br><b>Ge</b><br>72.63 | 33<br><b>As</b><br>74.92 | 34<br>Se<br>78.97        | 35<br><b>Br</b><br>79.90 | 36<br>Kr<br>83.80        |
| 37<br><b>Rb</b><br>85.47 | 38<br>Sr<br>87.62        | 39<br><b>Y</b><br>88.91 | 40<br>Zr<br>91.22        | 41<br><b>Nb</b><br>92.91 | 42<br><b>Mo</b><br>95.95 | 43<br>Tc<br>-            | 44<br>Ru<br>101.1 | 45<br><b>Rh</b><br>102.9 | 46<br>Pd<br>106.4        | 47<br><b>Ag</b><br>107.9 | 48<br>Cd<br>112.4        | 49<br>In<br>114.8        | 50<br><b>Sn</b><br>118.7 | 51<br>Sb<br>121.8        | 52<br><b>Te</b><br>127.6 | 53<br> <br>126.9         | 54<br>Xe<br>131.3        |
| 55<br><b>Cs</b><br>132.9 | 56<br><b>Ba</b><br>137.3 | 57-<br>71               | 72<br><b>Hf</b><br>178.5 | 73<br>Ta<br>180.9        | 74<br>W<br>183.8         | 75<br><b>Re</b><br>186.2 | 76<br>Os<br>190.2 | 77<br><b>lr</b><br>192.2 | 78<br><b>Pt</b><br>195.1 | 79<br><b>Au</b><br>197.0 | 80<br><b>Hg</b><br>200.6 | 81<br>Tl<br>204.4        | 82<br><b>Pb</b><br>207.2 | 83<br><b>Bi</b><br>209.0 | 84<br>Po<br>-            | 85<br><b>At</b><br>-     | 86<br>Rn<br>-            |
| 87<br>Fr<br>-            | 88<br>Ra<br>-            | 89-<br>103              | 104<br><b>Rf</b><br>-    | 105<br><b>Db</b><br>-    | 106<br><b>Sg</b><br>-    | 107<br><b>Bh</b><br>-    | 108<br>Hs<br>-    | 109<br><b>Mt</b><br>-    | 110<br>Ds<br>-           | 111<br>Rg<br>-           | 112<br>Cn<br>-           | 113<br>Nh<br>-           | 114<br>Fl<br>-           | 115<br><b>Mc</b><br>-    | 116<br><b>Lv</b><br>-    | 117<br>Ts<br>-           | 118<br>Og<br>-           |

| 57<br>La             | <sup>58</sup><br>Ce      | 59<br><b>Pr</b>   | 60<br><b>Nd</b>  | 61<br>Pm             | Sm            | <sup>63</sup><br>Eu  | 64<br>Gd      | 65<br><b>Tb</b>      | 66<br>Dy      | 67<br><b>Ho</b> | 68<br>E <b>r</b> | 69<br><b>Tm</b> | <sup>70</sup><br><b>Yb</b> | 71<br>Lu       |
|----------------------|--------------------------|-------------------|------------------|----------------------|---------------|----------------------|---------------|----------------------|---------------|-----------------|------------------|-----------------|----------------------------|----------------|
| 138.9                | 140.1                    | 140.9             | 144.2            | -                    | 150.4         | 152.0                | 157.3         | 158.9                | 162.5         | 164.9           | 167.3            | 168.9           | 173.0                      | 175.0          |
| 89<br><b>Ac</b><br>- | 90<br><b>Th</b><br>232.0 | 91<br>Pa<br>231.0 | 92<br>U<br>238.0 | 93<br><b>Np</b><br>- | 94<br>Pu<br>- | 95<br><b>Am</b><br>- | 96<br>Cm<br>- | 97<br><b>Bk</b><br>- | 98<br>Cf<br>- | 99<br>Es<br>-   | 100<br>Fm<br>-   | 101<br>Md<br>-  | 102<br><b>No</b><br>-      | 103<br>Lr<br>- |



#### Регламент олимпиады:

Перед вами находится комплект задач республиканской олимпиады 2022-2023 года по химии. **Внимательно** ознакомьтесь со всеми нижеперечисленными инструкциями и правилами. У вас есть **5 астрономических часов (300 минут)** на выполнение заданий олимпиады. Ваш результат – сумма баллов за каждую задачу, с учетом весов каждой из задач.

Вы можете решать задачи в черновике, однако, не забудьте перенести все решения на листы ответов. Проверяться будет **только то, что вы напишете внутри специально обозначенных квадратиков**. Черновики проверяться **не будут**. Учтите, что вам **не будет выделено** дополнительное время на перенос решений на бланки ответов.

Вам разрешается использовать графический или инженерный калькулятор.

Вам запрещается пользоваться любыми справочными материалами, учебниками или конспектами.

Вам **запрещается** пользоваться любыми устройствами связи, смартфонами, смарт-часами или любыми другими гаджетами, способными предоставлять информацию в текстовом, графическом и/или аудио формате, из внутренней памяти или загруженную с интернета.

Вам запрещается пользоваться любыми материалами, не входящими в данный комплект задач, в том числе периодической таблицей и таблицей растворимости. На титульной странице предоставляем единую версию периодической таблицы. Используйте точные значения атомных масс, представленных в таблице.

Вам **запрещается** общаться с другими участниками олимпиады до конца тура. Не передавайте никакие материалы, в том числе канцелярские товары. Не используйте язык жестов для передачи какой-либо информации.

За нарушение любого из данных правил ваша работа будет **автоматически** оценена в **0 бал- лов**, а прокторы получат право вывести вас из аудитории.

На листах ответов пишите **четко** и **разборчиво**. Рекомендуется обвести финальные ответы карандашом. **Не забудьте указать единицы** измерения **(ответ без единиц измерения будет не засчитан)**. Помните про существование значащих цифр.

В комплекте заданий дробная часть чисел в десятичной форме отделяется точкой.

Если вы укажете только конечный результат решения без приведения соответствующих вычислений, то Вы получите  ${\bf 0}$  баллов, даже если ответ правильный.

Решения этой олимпиады будут опубликованы на сайте www.qazcho.kz. Рекомендации по подготовке к олимпиадам по химии есть на сайте www.qazolymp.kz.

# Задача №1. Разогрев

| 1.1 | Bcero | Bec(%) |
|-----|-------|--------|
| 17  | 17    | 5      |

Образец сплава меди с серебром растворили в 64 мл раствора азотной кислоты с массовой долей кислоты 15% и плотностью  $1.083\,$ г мл $^{-1}$ , в результате чего выделилось  $784\,$ мл газа с плотностью  $1.339\,$ г л $^{-1}$  (н.у.). В полученный раствор опустили цинковую пластинку массой  $10\,$ г. После окончания всех химических реакций масса пластинки увеличилась на  $1.955\,$ г, тогда как масса раствора уменьшилась на  $1.530\,$ г и вдобавок к этому выделился такой же газ с плотностью  $1.339\,$ г л $^{-1}$  (н.у.). Определите массовые доли металлов в исходном сплаве.

### Задача №2. Неизвестные соединения и комплексы

|   | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | Всего | Bec (%) |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-------|---------|
| ĺ | 8   | 4   | 2   | 4   | 3   | 2   | 5   | 3   | 31    | 8       |

При взаимодействии твердого вещества  $\bf A$  с крепким раствором соли  $\bf B$  при продувании воздуха образуется  $\bf B$ , содержащее 25.18% азота, 5.44% водорода, 21.57% кислорода, 15.93% хлора.  $\bf B$  служит удобным источником для получения некоторых комплексов при взаимодействии с кислотами: так, например, при взаимодействии с соляной кислотой он образует один из двух возможных изомеров состава  $\bf \Gamma$ . Координационное число центрального атома в  $\bf B$  и  $\bf \Gamma$  одинаково, а число лигандов во внутренней сфере отличается на 1. Соль  $\bf B$  состоит из 4 элементов и при нагревании разлагается без твердого остатка на газовую смесь, плотность которой по воздуху составляет 0.828. При пропускании газовой смеси в баритовую воду выпадает белый осадок, растворимый в кислотах.

- 1. Определите **A**, **B**, **B** и **Г**, запишите уравнения реакций синтеза **B** и **Г**, если известно, что при взаимодействии раствора  $0.100 \, \text{r}$  **A** в воде с нитратом серебра выпадает 172.8 мг белого осадка, растворимого в растворе  $NH_3$ .
- 2. Запишите уравнения реакций **B** и **Г** с нитратом серебра. Учтите, что комплексные частицы, содержащиеся в них, кинетически инертны к реакциям обмена лигандов.
- 3. Изобразите структурную формулу катиона соли  $\Gamma$ , указав геометрию. Учтите, что необходимо изобразить только тот изомер, который получается данным способом!

Комплексное соединение  $\mathbf{\mathcal{I}}$  использовалось в некоторых работах для моделирования связывания металла, содержащегося в соединении  $\mathbf{\mathcal{I}}$ , с некоторыми биомолекулами.  $\mathbf{\mathcal{I}}$  является кристаллогидратом нейтрального комплекса (то есть комплексная частица в  $\mathbf{\mathcal{I}}$  незаряжена). Он содержит тот же металл и в той же степени окисления, что и  $\mathbf{\mathcal{B}}$  и  $\mathbf{\Gamma}$ , и те же монодентатные лиганды, что и  $\mathbf{\mathcal{B}}$ , причем в таком же количестве. Кроме того,  $\mathbf{\mathcal{I}}$  содержит бидентатный лиганд, являющийся частично депротонированной полифосфорной кислотой из ряда  $\mathbf{\mathcal{H}}_{x}\mathbf{\mathcal{P}}_{n}\mathbf{\mathcal{O}}_{3n+1}$ .

$$\stackrel{\mathsf{N}}{=}\stackrel{\mathsf{N}}{>}-\mathsf{NO}_2$$

Рис. 1: 5-нитротетразол

- 4. Определите формулу **Д**, если он образует кристаллическую решетку, объём элементарной ячейки равен 624.71 Å $^3$ ,  $\rho(\Pi)=2.123\,\mathrm{r\,cm^{-3}}$ , а каждая ячейка содержит 2 формульные единицы **Д**.
- 5. Известно, что бидентантный лиганд в **Д** координируется таким образом, что не образуется циклов из 7 атомов и более. Изобразите структурную формулу комплекса **Д** (гидратную воду опустите).
- 6. Какой тип изомерии возможен для Д? Кратко объясните.

Использование соединения  $\Gamma$  в качестве исходного для синтеза комплексов показало эффективность и в случае довольно сложных лигандов. При обработке  $\Gamma$  60% хлорной кислотой в растворе образовался комплексный катион E, содержащий 2 молекулы воды. При добавлении затем натриевой соли 5-нитротетразола (его нейтральная форма изображена на рисунке) образовался комплекс  $\mathbf{W}$ , в котором массовая доля азота составляет 43.14%.

- 7. Определите формулы катиона Е, вещества Ж.
- 8. Интересно, что в данной реакции получен более термодинамически стабильный изомер **Ж**, в котором меньше стерическое напряжение. Изобразите структуру **Ж**, указав геометрию.

## Задача №3. Блиц физхимика

| 3.1         | 3.2                | 3.3            | Всего                                        | Bec(%)                                     |
|-------------|--------------------|----------------|----------------------------------------------|--------------------------------------------|
| 4           | 2                  | 4              | 10                                           | 5                                          |
| ,           | <b>Диаграмма</b> 1 | Диаграмма 2    | Диаграмма 3                                  | Диаграмма 4                                |
| давление, р | газообразная       |                | т. е. ф. | температура, Т                             |
|             | гемпература, Т     | температура, Т | 0 1                                          | 0 0.95<br>мольная доля EtOH x <sub>c</sub> |

- 1. Выше предоставлены две фазовые диаграммы. Одна из них является типичной и характеризует подавляющее большинство веществ. Другая соответсвует воде. Определите какая диаграмма (1 или 2) соответствует воде, а какая большинству веществ. Подсказка: наклон кривых на фазовых диаграммах определяется уравнением Клапейрона:  $\frac{dp}{dT} = \frac{\Delta H}{T\Delta V}$
- 2. Диаграмма 3 демонстрирует фазовый переход жидкость-пар для смеси двух веществ А и Б. Процесс кипения жидкой смеси определенного состава  $x_A^{(1)}$  происходит при фиксированной температуре с образованием пара с составом  $x_A^{(2)}$ . Какое из веществ (А или Б) обладает более высокой температурой кипения? При фиксированной температуре, какая фаза (жидкая или газообразная) содержит больше вещества Б?
- 3. Диаграмма 4 демонстрирует фазовый переход жидкость-пар для смеси этанол и вода. При какой температуре кипит этанол: больше 100 °C или меньшее? Возможно ли получить 100% этанол путем дистилляции жидкости, содержащей 80% этанола?

### Задача №4. Намешали

| 4.1 | 4.2 | 4.3 | 4.4 | 4.5 | 4.6 | 4.7 | 4.8 | Всего | Bec (%) |
|-----|-----|-----|-----|-----|-----|-----|-----|-------|---------|
| 2   | 3   | 1   | 2   | 1   | 3   | 4   | 4   | 20    | 9       |

В этой задаче мы будем изучать термодинамические эффекты смешения двух жидкостей. Если смешать  $v_A$  моль A с  $v_B$  моль B, изменение энтропии составит (где  $n = v_A + v_B$ , а  $\chi_A$ ,  $\chi_B$  - мольные доли A и B):

$$\Delta_{mix}S = -nR\left(\chi_A \ln \chi_A + \chi_B \ln \chi_B\right) \tag{1}$$

- 1. Посчитайте изменение энтропии в результате смешения 1 моль этанола с 3 моль воды. Насколько будет отличаться изменение энтропии если вместо этанола взять метанол, а вместо воды взять дихлорметан?
- 2. В каких пропорциях надо смешивать A и B, чтобы максимизировать изменение энтропии?

Для идеальных растворов изменение энтальпии при смешении равно нулю ( $\Delta_{mix}H=0$ ), что справедливо не только при полном отсутствии взаимодействий между молекулами, но и при условии, что арифметическое среднее энергий взаимодействия A-A (молекулы A с другой молекулой A) и B-B равно энергии взаимодействия A-B. Такое условие соблюдается если смешиваются очень похожие молекулы:

3. Посчитайте изменение энергии Гиббса для смешения 1 моль толуола с 3 моль бензола при 298 K.



Смешанное состояние

 $\Delta_{mix}S = -(
u_A + 
u_B)R(0.5 \ln 0.5 + 0.5 \ln 0.5)$ 

4. Уравнение (1) позволяет объяснить почему происходит диффузия. Процесс диффузии можно смоделировать как переход из разделенного состояния (см. рис. выше) в смешанное. Покажите, что процесс для конфигураций на рис. выше (т.е. используя предоставленные выражения для  $\Delta_{mix}S$ ) является спонтанным.

Для неидеальных растворов изменение энтальпии определяется как  $\Delta_{mix}H=n\xi RT\chi_A\chi_B$ , где  $\xi$  (кси) - безразмерный параметр, отражающий энергию взаимодействия A-B относительно энергии взаимодействий A-A и B-B.

- 5. Если A-В взаимодействия более предпочтительны по энергии, чем A-A и B-В взаимодействия, какой будет знак у ξ?
- 6. Покажите, что для  $\Delta_{mix}G$ , расчитанного с учетом  $\Delta H \neq 0$ , критические точки определяются уравнением (2), а затем покажите, что  $\chi_A^* = 0.5$  является решением уравнения (2).

$$\ln \frac{\chi_A^*}{1 - \chi_A^*} = -\xi \left( 1 - 2\chi_A^* \right) \tag{2}$$

Уравнение (2) является т.н. трансцендентным уравнением - у него нет аналитических способов решения. Для поиска нетривиальных корней ( $\chi_A^* \neq 0.5$ ) воспользуемся графическим способом: отдельно построим график левой части уравнения (2) и отдельно правой части для разных значений  $\xi$ .



7. На рисунке выше (по оси абсцисс отложена мольная доля A,  $\chi_A$ ) представлены графики функций  $y = \ln \chi_A/(1-\chi_A)$ ,  $y = -(1-2\chi_A)$ ,  $y = -2(1-2\chi_A)$  и  $y = -3(1-2\chi_A)$ . Какая функция соответствует кривой A? А прямым B-D? Какие корни есть у уравнения (2) при  $\xi = 3$ ? На листах ответов нарисуйте графики функций  $y = -\xi(1-2\chi_A)$  при  $\xi = 4, 5, 6$ .

Для понимания физического смысла корней уравнения (2) стоит заметить, что энергия Гиббса минимизируется при  $\chi_A = 0.5$  если это единственный корень и при  $\chi_A \neq 0.5$  если у уравнения есть другие корни. Иными словами, в неидеальных растворах минимум по энергии может наблюдаться в более упорядоченном состоянии! Такие системы встречаются и в быту (капли масла/жира в воде) и на рубеже научного прогресса: развитие инструментов конфокальной микроскопии к концу 2000х позволило однозначно подтвердить существование т.н. безмембранных органелл

участков живых клеток, в которых происходит разделение фаз жидкость-жидкость. К безмембранным органеллам, например, относятся ядрышко, Р-тела и Р-гранулы, которые играют важную роль в трансляции и транскрипции.

8. Величина  $\xi RT$  показывает насколько A-B взаимодействия более энергетически предпочтительны взаимодействиям A-A и B-B. Посчитайте минимальное значение этой величины при котором происходит разделение фаз жидкость-жидкость в организме человека (температуру примите равной 37°C) и сравните это значение с энергией водородной связи (5 ккал моль $^{-1}$ ). Какой вывод вы можете сделать?

### Задача №5. Геометрия Нобелевской премии

| 5.1 | 5.2 | 5.3 | 5.4 | 5.5 | Всего | Bec(%) |
|-----|-----|-----|-----|-----|-------|--------|
| 1   | 2   | 3   | 3   | 6   | 15    | 9      |

В этой задаче мы посмотрим, как применение обычной параболической функции  $y = x^2$  может привести к Нобелевской премии по химии. Предположим у нас происходит реакция трансфера электрона между двумя центрами - например, железа (II) и железа (III). Как можно смоделировать этот процесс? Первый, интуитивный вариант, показан на *Схеме 1*. По принципу Франка-Кондона процесс трансфера электрона происходит быстрее, чем релаксация атомов (такой процесс называется вертикальным трансфером). В результате получается промежуточное состояние, в котором ион  $\mathrm{Fe}^{3+}$  имеет слишком большой радиус, а ион  $\mathrm{Fe}^{2+}$  слишком маленький. Релаксация к равновесным ионным радиусам сопровождается высвобождением энергии (т.н. энергия реорганизации,  $\lambda$ ). Но откуда берется эта энергия?



Чтобы не нарушать закон сохранения энергии, процесс моделируется в три стадии ( $Cxema\ 2$ ): реорганизация системы с поглощением энергии, трансфер электрона, релаксация с выделением энергии.



Изучим энергетику процесса. Энергию системы можно смоделировать параболической функцией. Гипотетический трансфер электрона по схеме 1 показан пунктирными стрелками на  $\mathit{графи-ке}\ 3$  (вертикальное направление соответствует свободной энергии). Обычными стрелками показан трансфер электрона по схеме 2. На  $\mathit{графикe}\ 4$  показан процесс для общего случая, когда  $\Delta G^\circ \neq 0$  - в таком случае донор и акцептор могут быть ионами в разном химическом окружении, разными элементами или вообще разными молекулами. В общем случае энергия реорганизации определяется не только изменением ионных радиусов элементов, которые непосредственно участвуют в трансфере электрона, но и учитывает реорганизацию ближайших лигандов или молекул растворителя, сольватирующих систему.

- 1. Введем декартову систему координат так, что ее начало проходит через параболу, соответствующую стартовому состоянию (*График 4*). Таким образом, уравнение первой параболы  $y = x^2$ . Запишите уравнение второй параболы в форме y = f(x) (уравнение может зависеть от параметров a, b).
- 2. Найдите точку пересечения двух парабол (ваш ответ будет зависеть от параметров a, b).
- 3. Выразите параметры a и b через  $\lambda$  и  $\Delta G^{\circ}$ . Затем выразите  $\Delta G^{\ddagger}$  (энергию активации) через  $\lambda$  и  $\Delta G^{\circ}$ .

Полученное вами выражение для  $\Delta G^{\ddagger}$  является основой теории Маркуса, разработанной Рудольфом Маркусом в 1956 году. Если варьировать  $\Delta G^{\circ}$  при фиксированной  $\lambda$  можно получить три параболы: А, В и С (*схема 5*). При сравнительно небольших (но отрицательных)  $\Delta G^{\circ} > -\lambda$  (парабола А),  $\Delta G^{\ddagger} > 0$ . Однако, по мере становления  $\Delta G^{\circ}$  более отрицательной, когда  $\Delta G^{\circ} = -\lambda$  (парабола В) энергия активации становится равной нулю. Иными словами, чем более отрицательна  $\Delta G^{\circ}$ , тем быстрее протекает процесс трансфера электрона. Такое предсказание модели соответствовало практическим наблюдениям.

Однако, у теории Маркуса был изъян - если уменьшать  $\Delta G^{\circ}$  еще дальше, энергия активации снова станет положительной (парабола C), а значит скорость реакции трансфера электронов должна замедлиться. На тот момент не было известно ни одной системы, для которой уменьшение  $\Delta G^{\circ}$  приводило бы к замедлению реакции. Прошло почти 30 лет, прежде чем профессор Чикагского университета Герхард Клосс вместе с Джоном Миллером из Аргоннской национальной лаборатории подтвердили предсказания теории Маркуса обнаружив т.н. *Marcus inverted region*. В 1992 году Нобелевскую премию по химии вручили Рудольфу Маркусу.

4. Клосс и Миллер использовали систему, показанную на *Схеме 6*, варьируя молекулы, выступающие в роли акцептора. Расположите акцепторы **A1-A5** в ряд по уменьшению (от менее отрицательной к более отрицательной)  $\Delta G^{\circ}$ .

В 2016 году вышла статья группы Оливера Венгера из Базельского университета (Швейцария), в которой изучалось влияние расстояния между донором и акцептором на скорость трансфера электрона в растворах. Ими были синтезированы три похожие молекулы (n=1,2,3), отличающиеся только значением n (см. рис. 7).



5. Оказалось, что для этих процессов  $\Delta G^{\circ}$  практически не зависит от длины цепочки и является отрицательной величиной. Тем не менее, скорость процесса трансфера электрона  $k_{ET}$  значительно варьируется ( $\Gamma$ рафик 8). Как можно объяснить зависимость  $k_{ET}$  от n наблюдаемую на  $\Gamma$ рафике 8?

# Задача №6. Кинетические модели

| 6.1 | 6.2 | 6.3 | 6.4 | 6.5 | Всего | Bec(%) |
|-----|-----|-----|-----|-----|-------|--------|
| 1   | 1   | 1   | 5   | 8   | 16    | 11     |

Проблема многих юных химиков заключается в суждении, что кинетические уравнения реакций описывают лишь процессы, где одни вещества превращаются в другие. Однако химические реакции это лишь частный случай применения систем из дифференциальных уравнений, которые способны аналитически описывать любую динамическую систему. В этой задаче Вам предлагается рассмотреть как широкоизвестные уравнения из химической кинетики эффективно используются для описания клеточного транспорта.

Наипростеший транспорт в любом организме – диффузия, и как любое природное явление оно описывается уравнением, известным как первый закон Фика (ради простоты выражение упрощено до одномерного случая).

$$\phi(x,t) = -D \frac{\partial C(x,t)}{\partial x}$$

Здесь,  $\phi(x,t)$  - поток диффузии (diffusion flux), чей знак соотвествует направлению диффузии относительно координаты x,D - численный коэффициент диффузии, а C(x,t) - концентрация вещества в определенной координате x в определенный момент времени t. Знак  $\partial/\partial x$  означает взятие производной C(x,t) от x, принимая переменную t за константу.

- 1. О чем говорит отрицательный знак у градиента концентрации по координате x в выражении потока диффузии  $\phi(x,t)$  в первом законе Фика?
- 2. Если известно, что некоторое вещество распределено равномерно в одномерном сосуде (концентрация вещества при всех координатах x одинакова), то какой вывод можно сделать о значении потока диффузии  $\phi(x,t)$  для данной системы?
- 3. Ниже приведен профиль концентрации C(x,t) для некоторой системы. Изобразите схематично соответствующий профиль потока диффузии  $\phi(x,t)$ . Изобразить можете поверх приведенного ниже графика. Отношение численных значений функции не имеет значение необходимо лишь верно установить вид функции  $\phi(x,t)$ .



Некоторые системы настолько малы, что для них применимо квазистационарное приближение (steady state approximation), что подразумевает, что поток диффузии  $\phi(x,t)$  принимается как постоянная величина. Примером такой системы может служить клеточная мембрана. Для простоты расчетов мы с Вами продолжим считать, что существуем в одномерном мире, и поэтому и клетка, и внеклеточная среда, и мембрана принимаются тоже одномерными.

Предположим, что Вам известна ширина клеточной мембраны, d, значение коэффициента диффузии внутри мембраны, D, концентрация диффузируемого вещества внутри клетки,  $C^{in}$ , и концентрация диффузируемого вещества снаружи клетки,  $C^{out}$ . Также, Вам известна оценка коэффицента распределения k, который являясь простейшей формой константы равновесия показывает как соотносятся концентарции диффузируемого вещества снаружи мембраны и около границ внутри самой мембраны:

$$k = \frac{C(x=0,t)}{C^{in}} = \frac{C(x=d,t)}{C^{out}}$$

4. Выведите выражение для оценки значения потока диффузии  $\phi(x,t)$  внутри мембраны.

Однако не все вещества способны проникать внутрь клеток посредством простейшей диффузии из-за своей полярности и/или размеров. Поэтому, мы рассмотрим немного более сложную модель пассивного транспорта - с помощью транспортных белков, внедренных в мембрану (carrier-mediated transport). Ниже представлена простейшая модель такого механизма.



Здесь  $\alpha$  и  $\beta$  соответствуют константам скорости изменения конфигурации транспортного белка, в то время как K - константа равновесия между ассоциированным белком с транспортируемой молекулой и диссоциированным состоянием.

При этом соблюдаются следующие равновесия:

• Уравнение материального баланса может быть выражено следующим образом:

$$C_E^{total} = [ES^{in}] + [ES^{out}] + [E^{in}] + [E^{out}]$$
(3)

• Потоки диффузии, которые в данном случае можно представить как скорости соответсвующих реакций, выражены следующим образом:

$$\phi_{ES} = \phi_S = \alpha [ES^{in}] - \beta [ES^{out}] \tag{4}$$

$$\phi_E = \alpha[E^{in}] - \beta[E^{out}] \tag{5}$$

• Сумма потоков белков равна нулю, так как белок постоянно находится внутри мембранны:

$$\phi_{ES} + \phi_E = 0 \tag{6}$$

• Константа K при том, что концентрации транспортируемого вещества значительны и снаружи, и внутри клетки и равны  $C_S^{out}$  и  $C_S^{in}$ , соответственно:

$$\frac{C_S^{out}[E^{out}]}{[ES^{out}]} = \frac{C_S^{in}[E^{in}]}{[ES^{in}]} = K \tag{7}$$

5. Используя вышеприведенную информацию, выведите выражение для потока транспортируемого вещества  $\phi_S$ . Подсказка: представьте, что Вы ищете скорость ( $\phi_S$ ) гипотетической реакции  $S^{in} + E^{in} \longrightarrow S^{out} + E^{out}$  с учетом приведенного выше механизма.

# Задача №7. Титруй железо пока ...

|   | 7.1 | 7.2 | 7.3 | 7.4 | 7.5 | 7.6 | 7.7 | 7.8 | 7.9 | 7.10 | 7.11 | Всего | Bec (%) |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-------|---------|
| ſ | 4   | 26  | 2   | 3   | 3   | 3   | 3   | 15  | 15  | 4    | 6    | 84    | 12      |

Начался декабрь, а значит пришла пора второкурсникам университета сдавать зачёт по аналитической химии, в котором они должны установить качественный и количественный состав образца, который им выдаст преподаватель. Доцент выдал второкурснику Васе бюкс с порошком тёмно-серого цвета и металлическим блеском.

#### Часть 1. Качественный анализ

«Сталь», – подумал Вася и потянулся за концентрированной соляной кислотой. Навеска образца растворилась в соляной кислоте не вся [1]. Вася отделил черный осадок 1 от надосадочной жидкости (1). К части надосадочной жидкости (1) Вася прикапывал концентрированную азотную кислоту [2], а затем раствор роданида аммония, в результате чего раствор окрасился в яркокрасный цвет [3]. «Точно сталь!» – подтвердил своё предположение Вася и вписал первый подтвержденный элемент Х в описание образца. К другой части надосадочной жидкости (1) Вася прикапал по каплям концентрированную азотную кислоту, а затем по каплям раствор сульфида натрия. Образовавшийся осадок 2 не имел темной окраски и весь растворился при нагревании [4]. «Это значительно упрощает анализ!» – воскликнул Вася и радостно продолжил работу. К полученному раствору Вася присыпал несколько кристалликов нашатыря и начал прикапывать концентрированный водный раствор аммиака до рН 10-11 [5]. Вася отделил гелеобразный осадок 3 от надосадочной жидкости (2) и прикапал к осадку 3 концентрированный раствор едкого натра [6], а затем по каплям концентрированную перекись водорода [7]. Полученный раствор (3) отделили от остатка 4 и разделили (3) на две части. К первой в присутствии нашатыря прикапали раствор ализарина и при этом видимых изменений в пробирке не наблюдалось. Ко второй части раствора прикапали серную кислоту, перекись водорода и несколько капель диэтилового эфира. На радость Васи, эфирный слой окрасился в сине-фиолетовый цвет [8]. «Наконец-то», – подумал Вася и вписал ещё один элемент  ${f G}$  в описание образца стали. Остаток  ${f 4}$  полностью растворился в смеси концентрированной азотной кислоты и перекиси водорода, а при добавлении шпателя висмутата натрия и последующем нагревании раствор слегка окрасился в малиновый цвет [9]. «Возможно есть следовые количества А», – заключил Вася и вписал ещё один элемент в описание стали.

Надосадочная жидкость (2) была разделена на три части. К первой Вася прикапал этанольный раствор диметилглиоксима, в результате чего раствор окрасился в ярко-малиновый цвет [10]. «Прекрасно!» – подумал Вася, вписывая ещё один элемент **B** в описание образца. Ко второй части надосадочной жидкости (2) Вася добавил полшпателя роданида аммония и несколько капель изоамилового спирта, однако же вопреки ожиданиям органический слой не окрасился в синий цвет. «Значит **K** тут нет!». К последней части надосадочной жидкости (2) Вася добавил разбавленную серную кислоту до кислой реакции и 2 капли разбавленной перекиси водорода в результате чего проявилась оранжевая окраска раствора [11]. «Всё ясно», – подумал Вася и вписал ещё один элемент **Z** к **A**, **B**, **G** и **X**.

К промытому водой черному осадку 1 Вася добавил по каплям концентрированную азотную кислоту, затем концентрированную перекись водорода и 2 мл воды и прокипятил полученную смесь 10 минут. В результате кипячения остаток потерял свою чёрную окраску, а на дне фарфоровой чашки была видна светло-жёлтая муть [12]. К полученному осадку 5 Вася добавил несколько гранул цинка и соляную кислоту. При нагревании цвет осадка сменился со светло-жёлтого на ярко-синий [13]. «Только этого мне не хватало», – с горечью вписал Вася элемент Y в описание своего образца. Завершив качественный анализ, Вася получил у преподавателя подтверждение,

что выданный образец действительно содержит **X** (около 85%), **Y** (около 10%), **Z** (около 2%) и по  $\approx 0.2\%$  **A** и **B**. «Можете приступать к количественному анализу **X** и **Y** в вашей стали», – сказал преподаватель и тут у Васи началась паника.

#### Часть 2. Количественный анализ.

Проблема заключалась в том, что Вася не понимал, как он может использовать классический дихроматометрический метод в определении  $\mathbf{X}$ , поскольку он подразумевает восстановление  $\mathbf{X}$  до степени окисления +2, пригодной для титрования дихроматом калия, а в присутствии  $\mathbf{G}$  и  $\mathbf{Z}$  сделать это селективно будет невозможно. Поэтому Вася отправился изучать старые книжки в библиотеке и таблицы окислительно-восстановительных потенциалов, с которыми вы можете ознакомиться ниже, в результате чего он пришёл к выводу, что определение  $\mathbf{X}$  в подобных сплавах лучше вести методом титрования заместителя, когда  $\mathbf{X}$  находится в окисленной форме и переводит реагент  $\mathbf{C}$  в окисленную форму, которая титруется стандартизированным раствором. При этом другие элементы не окисляют  $\mathbf{C}$ , а значит определение  $\mathbf{X}$  можно вести селективно.  $\mathbf{Y}$  – лучше определять гравиметрически, потому что продукт дегидратации  $\mathbf{5}$  – отличная гравиметрическая форма для  $\mathbf{Y}$ .

Навеску 0.6998 г стали Вася растворил в стакане вместимостью 400 мл в 30 мл конц. НСІ при кипячении до прекращения выделения водорода. Затем по каплям вводил  $20\,\mathrm{mn}$  конц.  $\mathrm{H}_2\mathrm{SO}_4$  и упаривал до пастообразного состояния. Остаток обрабатывал 20 мл воды, перемешивал, затем вводил по каплям  $20\,\mathrm{m}$ л конц.  $\mathrm{H}_2\mathrm{SO}_4$  при перемешивании, а после добавлял по каплям  $20\,\mathrm{m}$ л 30%перекиси водорода. Содержимое стакана упаривал до пастообразного состояния и фильтровал. Осадок промывал несколько раз небольшими порциями воды так, чтобы общий объем фильтрата не превышал 200 мл. Фильтрат переносил в колбу на 200 мл, доводил до метки, тщательно перемешивал. Фильтр озолял в тигле массой 17.4111 г в пламени горелки до постоянной массы (17.4893 г). По итогам этого этапа количественного анализа Вася рассчитал содержание У в стали. Аликвотную часть 10.00 мл полученного фильтрата Вася перенёс пипеткой в коническую колбу для титрования вместимостью 200 мл, добавил 2 мл 1 моль  $n^{-1}$  соляной кислоты, 25 мл 5%раствора C, выдерживал колбу в темноте 3 мин и титровал 0.0453 моль  $\pi^{-1}$  раствором D до бледножёлтой окраски раствора. Затем добавил 6 капель раствора индикатора Е и продолжал медленно титровать до полного исчезновения синей окраски раствора. Средний объем раствора **D**, пошедшего на титрование каждой из 3 аликвот составил 11.52 мл. По итогам этой части количественного анализа Вася рассчитал содержание Х в выданном ему сплаве. А по итогам всей работы над зачётной задачей получил заслуженную «5» от преподавателя.

#### Стандартные электродные потенциалы $E^{\circ}$ (B):

| $Ag^+ + e^- \Longrightarrow Ag$                         | 0.7996  | $Ni^{2+} + 2e^- \Longrightarrow Ni$                                                      | -0.257  |
|---------------------------------------------------------|---------|------------------------------------------------------------------------------------------|---------|
| $AgCl + e^- \Longrightarrow Ag + Cl^-$                  | 0.22233 | $Pd^{2+} + 2e^- \Longrightarrow Pd$                                                      | 0.951   |
| $Al(OH)_4^- + 3e^- \Longrightarrow Al + 4OH^-$          | -2.328  | $SO_4^{2-} + 4H^+ + 2e^- \implies H_2SO_3 + H_2O$                                        | 0.172   |
| $Cd^{2+} + 2e^{-} \Longrightarrow Cd$                   | -0.4030 | $\operatorname{Sn}^{4+} + 2 \operatorname{e}^{-} \Longrightarrow \operatorname{Sn}^{2+}$ | 0.151   |
| $Ce^{4+} + e^{-} \Longrightarrow Ce^{3+}$               | 1.72    | $Ti^{2+} + 2e^- \Longrightarrow Ti$                                                      | -1.630  |
| $Cr^{3+} + e^- \Longrightarrow Cr^{2+}$                 | -0.407  | $Ti^{3+} + e^- \Longrightarrow Ti^{2+}$                                                  | -0.9    |
| $Cr^{2+} + 2e^{-} \Longrightarrow Cr$                   | -0.913  | $TiO_2 + 4H^+ + 2e^- \Longrightarrow Ti^{2+} + 2H_2O$                                    | -0.502  |
| $Cr_2O_7^{2-} + 14H^+ + 6e^- \implies 2Cr^{3+} + 7H_2O$ | 1.232   | $U^{3+} + 3e^{-} \Longrightarrow U$                                                      | -1.98   |
| $Cu^{2+} + e^{-} \Longrightarrow Cu^{+}$                | 0.521   | $V^{2+} + 2e^- \Longrightarrow V$                                                        | -1.175  |
| $Fe^{2+} + 2e^{-} \Longrightarrow Fe$                   | -0.447  | $V^{3+} + e^- \Longrightarrow V^{2+}$                                                    | -0.255  |
| $Fe^{3+} + e^{-} \Longrightarrow Fe^{2+}$               | 0.771   | $VO^{2+} + 2H^{+} + e^{-} \rightleftharpoons V^{3+} + H_{2}O$                            | 0.337   |
| $I_3^- + 2e^- \Longrightarrow 3I^-$                     | 0.536   | $VO_2^+ + 2H^+ + e^- \implies VO^{2+} + H_2O$                                            | 0.991   |
| $Mn^{2+} + 2e^- \Longrightarrow Mn$                     | -1.185  | $W^{3+} + 3e^{-} \Longrightarrow W$                                                      | 0.1     |
| $Mn^{3+} + e^- \Longrightarrow Mn^{2+}$                 | 1.5415  | $2 WO_3 + 2 H^+ + 2 e^- \implies W_2O_5 + H_2O$                                          | -0.029  |
| $MnO_4^- + 8 H^+ + 5 e^- \implies Mn^{2+} + 4 H_2 O$    | 1.507   | $Zn^{2+} + 2e^{-} \Longrightarrow Zn$                                                    | -0.7618 |
| $Mo^{3+} + 3e^{-} \Longrightarrow Mo$                   | -0.200  | $ZrO_2 + 4H^+ + 4e^- \Longrightarrow Zr + 2H_2O$                                         | -1.553  |
| $MoO_3 + 6H^+ + 6e^- \Longrightarrow Mo + 3H_2O$        | -0.152  | $ZrO(OH)_2 + H_2O + 4e^- \Longrightarrow Zr + 4OH^-$                                     | -2.36   |
| $Nb^{3+} + 3e^{-} \Longrightarrow Nb$                   | -1.099  | $Zr^{4+} + 4e^- \Longrightarrow Zr$                                                      | -1.45   |

1. Установите **элементный** состав надосадочных жидкостей **(1)** – **(2)** и осадков **1** – **5**. Кислород, азот, водород, хлор и другие элементы, не имеющие отношение к **X**, **Y**, **Z**, **G**, **A** и **B**, в надосадочных жидкостях учитывать не нужно! Внимание! Без достаточного объяснения

- при помощи реакций (в пункте 2) и словесных пояснений (если необходимо) по каждому из элементов, даже правильные ответы не будут засчитываться.
- 2. Напишите схемы реакций (в сокращенной ионной форме), происходящих в отмеченные моменты [1] [13]
- 3. Какой элемент Вася пытался определить при помощи ализарина?
- 4. Установите элементы **X**, **Y**, **Z**, **G**, **A** и **B**. Внимание! Без достаточной мотивировки при помощи реакций (в пункте 2) и словесных объяснений (если необходимо) по каждому из элементов, даже правильные ответы не будут засчитываться.
- 5. На наличие какого элемента (элементов) могло бы указывать нерастворение до конца остатка 4? Ответ поясните.
- 6. Объясните почему так радовался Вася тому факту, что осадок 2 был светлого цвета и растворился в азотной кислоте?
- 7. Что за элемент **K**, который Вася пытался найти при помощи роданида аммония в надосадочной жидкости **(2)** и почему он не мог сделать этого раньше?
- 8. При помощи справочных материалов по RedOx системам и схем реакций объясните, почему нельзя проводить окислительно-восстановительное титрование **X**(+2) дихроматом калия в рамках задачи поставленной перед Васей?
- 9. При помощи справочных материалов по RedOx системам и уравнений реакций, объясните какой метод титрования заместителя для определения **X** в сплаве выбрал Вася? Почему растворение навески решено было провести в смеси соляной и серной кислот, а не в царской водке?
- 10. Рассчитайте массовую долю **Y** в сплаве.
- 11. Напишите схемы реакций (в сокращенной ионной форме), происходящие в ходе титрования заместителя для определения **X** в сплаве. Определите неизвестные вещества **C**, **D** и **E**. Рассчитайте массовую долю **X** в сплаве.

## Задача №8. Что убило Александра Македонского?

| 8.1 | 8.2 | 8.3 | 8.4 | Всего | Bec(%) |
|-----|-----|-----|-----|-------|--------|
| 13  | 1   | 2   | 6   | 22    | 11     |

Стрихнин - чрезвычайно токсичный индоловый алколоид, который представляет особый интерес синтетическим химикам за счет своего сложного строения с гептациклической структурой и шестью смежными хиральными атомами углерода. Предполагается, что Александр Македонский мог быть отравлен стрихнином. Впервые полный синтез этого природного алкалоида был успешно произведен Робертом Вудвардом в 1954 году и состоял из последовательного синтеза циклов. Рассмотрим синтез первых шести циклов по Вудварду (схема синтеза представлена на следующей странице).

#### Примечания:

- Первая реакция синтез индола по Фишеру;
- Образование циклов происходит на этапах образования A, E, H, I, M;
- В ИК спектре соединения L наблюдается узкий интенсивный пик при 1725 см<sup>-1</sup>.

#### 1. Расшифруйте структуры А-М.

Полный синтез стрихнина Вудвардом состоит из 29 последовательных стадий, часть которых мы рассмотрели в схеме выше. Однако, с 1954 года химики начали предлагать другие более короткие пути синтеза этой молекулы. Таким образом, один из современных подходов продемонстрировал Ганс Райсег в 2010 году, предложив путь синтеза стрихнина длиной в 9 стадий. Прекурсорами для этого синтеза были взяты 3-индолацетофенон и соединение  $\bf N$  с молекулярной формулой  $\bf C_0\bf H_{13}\bf O_4\bf Cl.$  1H ЯМР соединения  $\bf N$  представлен ниже:



<sup>1</sup>H ЯМР: δ 1.15 (3H, t, J = 7.1  $\Gamma$ μ), 2.63-2.89 (8H, 2.69 (t, J = 7.5  $\Gamma$ μ), 2.79 (t, J = 7.5  $\Gamma$ μ), 2.82 (t, J = 7.5  $\Gamma$ μ), 2.83 (t, J = 7.5  $\Gamma$ μ), 4.12 (2H, q, J = 7.1  $\Gamma$ μ).

- 2. Приведите две причины по которым ученые стремятся укоротить полный синтез того или иного вещества.
- 3. Расшифруйте соединение N. Запишите ваши рассуждения.

Синтез стрихнина по Райсегу представлен ниже:

4. Расшифруйте структуры О-Т.