

HLK-LD2461 运动目标探测跟踪模组 使用手册

目录

1. 产品概述	2
2. 规格参数	2
2.1. 检测角度及距离	2
2.2. RF性能	2
2.3. 电气特征	2
3. 模块尺寸及引脚说明	3
3.1. 模块尺寸封装	3
3.2. 引脚说明	3
3.3. 使用连线图	4
4. 主要功能及性能	4
4.1. 雷达模块工作范围	4
4.2. 主要功能及性能	4
5. 通信协议	5
6. 雷达安装方式	5
6.1. 水平安装	5
6.2. 倾斜安装	6
7. 典型应用模式	7
7.1. 智能家电应用	7
7.2. 家居场所应用	7
7.3. 节能控制应用	8
8. 注意事项	8
8.1. 启动时间	8
8.2. 有效探测距离	8
8.3. 雷达生物探测性能	8
8.4. 电源	9
9. 常见问题	9
10. 免责声明	9
11 变更记录	9

1. 产品概述

HLK-LD2461 是一款用于人体感知的 24GHz 毫米波雷达产品,由两颗1发2 收毫米波雷达芯片、高性能微带天线、高性能 MCU 及外围辅助电路组成;工作 频段 24.00GHz~24.25GHz ,为 ISM 频段,工作带宽250MHz。本产品可用在家庭、办公、酒店等场景,实现多个运动、微动或者静止人体的精准感应。

2. 规格参数

2.1.检测角度及距离

参数内容	最小值	典型值	最大值	单位
静止目标感知距离	-	5	-	m
坐姿微动感知距离	-	6	-	m
运动目标感知距离	-	8	-	m
支持轨迹数	-	-	5	рр
测距精度	-	0.1	-	m
测距分辨率	-	0.75	-	m
测角精度	-	2	-	o
测角分辨率	-	15	-	o
水平作用角度	-45	-	45	o
俯仰作用角度	-25	-	25	o

2.2. RF性能

参数内容	最小值	典型值	最大值	单位
工作频率	24.0	-	24.25	GHz
最大扫频带宽	-	0.25	-	GHz
最大等效全向辐射功率	-	13	-	dBm

2.3. 电气特征

参数内容	最小值	典型值	最大值	单位
工作电压 (VCC)		5.0		V
工作电流 (ICC)		260	400	mA
工作温度 (TOP)	-40	-	85	°C

存储温度 (TST)	-40	-	85	°C
------------	-----	---	----	----

3. 模块尺寸及引脚说明

3.1.模块尺寸封装

图 1 HLK-LD2461 雷达模块结构示意图

3.2.引脚说明

图 2 HLK-LD2461 实物图

雷达引脚定义

表 1 雷达引脚定义

1号引脚	5V+
2号引脚	GND
3号引脚	GND

4号引脚	TX【串口写】
5 号 引脚	RX【串口读】

雷达接口处标有一个倒三角的符号为1号引脚,雷达通过1号和2号引脚供电,为了正常接收串口数据,串口需与雷达共地。

3.3.使用连线图

图 3 雷达模块与外设连线示意图

4. 主要功能及性能

4.1. 雷达模块工作范围

HLK-LD2461雷达模块波束覆盖范围如图4所示。雷达覆盖范围为水平90°、俯仰50°的立体扇形区域。

图 4 HLK-LD2461 雷达覆盖区域示意图

4.2.主要功能及性能

本雷达模块主要功能包括:

A、运动检测

a) 运动感知距离: ≤8米 (正常运动幅度);

b) 运动触发时间: ≤0.5s;

c) 准确率: ≥99%;

- B、人体存在检测 (呼吸检测)
 - a) 静止人体感知距离: ≤6米 (静坐人体);
 - b) 无人检测维持时间: 15s;
 - c) 准确率: ≥95%;
- C、人数统计:
 - a) 探测距离: ≤6米;
 - b) 探测人数: ≤5人;
 - c) 准确率: ≥90%(3人), ≥80% (5人);
- D、方向检测:
 - a) 识别人体的进出、左右、前后等方向;
 - b) 探测距离: ≤6米;
 - c) 准确率: ≥95%;
- E、轨迹检测:
 - a) 识别人体在检测区域内的活动路线, 便于判断人体移动位置和方向;
 - b) 支持多人轨迹, 实现最多5人可维持轨迹;
 - c) 探测距离: ≤6米;
 - d) 准确率: ≥90%;

5. 通信协议

本产品通过串口向外输出监测状态信息,默认传输波特率为9600bps,数据位为8,停止位为1,校验位与流控制为NONE。传输数据长度为可变长,根据检测到目标数量变化。详情可见《HLK-LD2461串口通信协议》。

6. 雷达安装方式

本雷达模组建议安装方式包括水平安装和倾斜安装。

6.1. 水平安装

如图5 所示为水平安装方式,本安装方式主要针对站立或坐姿状态下的人体 探测,如客厅、家电应用等场合。

雷达安装高度建议为1米~1.5米,雷达水平正向安装,安装倾角≤±5°,雷 达正前方无明显遮挡物及覆盖物。

雷达法线方向对准主要探测位置,保证雷达天线主波束覆盖探测区域。

在该安装模式下,运动人体检测最大距离 L3 ≤ 8 米;人体微动检测最大距离 L2 ≤ 6米;

毫米波频段电磁波对于非金属物质有一定穿透特性,可以穿透常见玻璃和塑料等材质,可能检测到遮挡物后面的运动物体;但对于较厚的承重墙、金属门等不能穿透。

图 5 水平安装示意图

6.2. 倾斜安装

如图 6 所示为倾斜安装。本安装方式主要针对运动人体检测,主要适用于酒店、大厅等场所。

雷达安装高度建议为 2-2.5 米; 雷达下视倾斜角度范围为 10°~30°, 雷达天线面无遮挡物及覆盖物。

雷达法线方向对准主要探测位置,保证雷达天线主波束覆盖探测区域。

在该安装模式下,运动人体检测最大距离 L3 \leq 8 米; 人体微动检测最大距离 L2 \leq 6米。

该模式下,雷达正下方及邻近区域可能存在检测盲区。

随着下视倾角增加,人体最大探测距离会减小。受雷达天线波束辐射特性影响,非法线方向雷达有效作用距离会减小。

图 6 斜下视安装示意图

7. 典型应用模式

7.1.智能家电应用

雷达安装于家电设备内部,可实时监测雷达探测范围内人员状况;设备根据雷达检测结果(有人/无人),实时或准实时调整设备工作模式(工作、低功耗、待机、关机等),实现家电智能化。

常规家电设备包括:

- ♦ 智能电视
- ♦ 智能音箱
- ♦ 智能空调
- ♦ 智能马桶
- ♦ 智能门锁
- ♦ 其它智能家电设备

7.2.家居场所应用

针对家居、酒店、办公室、卫生间等场所,本产品对场所内有无运动目标、人员运动方向(靠近、远离)、有无人员等进行实时探测,进而实现安防、电器

控制、人员监测等功能。该方案灵敏度高且有效避免隐私问题;通过物联网传输方式及手段,结合相关物联网支撑平台,实现相关场所的有效应用。

典型应用场景包括:

- ◇ 家居安防
- ◇ 酒店管理及监控
- ◆ 社区康养人员监控
- ◇ 办公室监控

7.3. 节能控制应用

基于运动目标探测及生物特征探测等功能,本产品可应用于节能控制,主要场景如下:

- ◇ 家庭电器节能
- ◇ 办公室电器节能控制
- ◇ 路灯节能控制

8. 注意事项

8.1.启动时间

本模块初始上电时,需要对内部寄存器进行初始化,并对环境噪声进行充分评估。因此模块开机稳定时间为1s左右。

8.2.有效探测距离

雷达模块的探测距离与目标大小和运动方式、使用环境等因素相关,因 此实际探测距离在一定范围内波动属于正常现象。

8.3. 雷达生物探测性能

由于人体呼吸心跳等属于超低频体征信号,且人体相较于家具家电对雷达信号的反射较弱,雷达偶发性探测失效属于正常现象。

8.4. 电源

雷达模块对电源品质的要求,高于常规低频电路。在对模块供电时,要求电源无明显毛刺或纹波现象。为了保证模块内部 VCO 电路的正常工作,电源输入电压范围为4.2V~5.4V,电源纹波应在100kHz以内无明显谱峰,峰值电流可支持180mA。

9. 常见问题

干扰因素: 雷达属于电磁波探测传感器,活动的非生命体会导致误报。通常,电风扇、宠物、植被、窗帘、空调内部电机等物体的运动都会引起误判。

非干扰因素:雷达电磁波会穿透人体的衣物,窗帘,薄木板,玻璃。

10.免责声明

在出版时尽量做到文档描述的准确无误。考虑到产品的技术复杂性及工作环境的差异性,但仍难以排除个别不准确或不完备之描述,故本文档仅作用户参考之用。我公司保留在不通知用户的情况下对产品作出更改的权利,我公司不做任何法律意义上的承诺和担保。鼓励客户对产品和工具提出宝贵意见。

11.变更记录

日期	版本	修改内容
2023-11-18	V1.0	初始版本
2023-11-24	V1.1	修改串口默认波特率描述