Final review questions

Part I Vector fields, grad, div and curl

1. If $A(x, y, z) = \langle x^2y, xy^2z, xyz \rangle$, find div A at the point (1, -1, 2).

2. If $V(x, y, z) = \langle 2xy, 3x^2y, -3pyz \rangle$ and div V=0 at (1,1,1), find p.

3. If $f(x, y, z) = 2xz^3 - 3x^2yz$, find grad and ||gradf|| at point (2,2,-1).

4. If f(x, y, z) = 2xyz and $g(x, y, z) = x^2y + z$, find grad(f+g) and grad(fg) at the point (1,-1,0).

5. If $F(x, y, z) = \langle x + y + 1, 1, -x - y \rangle$, prove that $F \cdot \text{curl} F = 0$.

6. Find the constants a, b, c so that the curl of the vector $\mathbf{F}(x, y, z) = \langle x + 2y + az, bx - 3y - z, 4x + cy + 2z \rangle$ is identically equal to zero.

Part II Line integrals and surface integrals

- 7. Let $F(x, y) = \langle x + y, -x \rangle$ and the curve C is $C = \{(x, y) \in \mathbb{R}^2 : y^2 + 4x^4 4x^2 = 0, x \ge 0\}$.
 - (a) Show that $r(t) = < \sin t$, $\sin 2t > t \in [0, \pi]$ is a parametrization of C.
 - (b) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

8. Calculate the work done by F(x, y, z) = <1, -y, xyz >in moving a particle from (0,0,0) to (1,-1,1) along the curve x = t, $y = -t^2$, z = t for $0 \le t \le 1$.

- 9. Determine whether $\mathbf{F} \cdot d\mathbf{r}$ is exact or not for the given \mathbf{F} .
 - (a) $F(x,y) = <2x\cos 2y, -2x^2\sin 2y>;$
 - (b) $F(x,y) = < e^x \cos y + yz, xz e^x \sin y, xz >$.

- 10. Evaluate
 - (a) $\int_{(0,0,0)}^{(-1,0,\pi)} (y+z)dx + (x+z)dy + (x+y)dz$,

(b) $\int_{(-1,1)}^{(4,2)} \left(y - \frac{1}{x^2} \right) dx + \left(x - \frac{1}{y^2} \right) dy$.

11. Let $S = \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 < 1\}$ and $F(x, y) = \langle y^2, x \rangle$, verify Green's theorem.

12. Verify Green's theorem for $S = \{(x, y) \in \mathbb{R}^2, \ x^2 + (y - 1)^2 < 1\}$ and $F(x, y) = < -x^2y, xy^2 >$.

13. For $f(x, y, z) = x^2 + y^2 + 2z^2$ and a surface $S = \{(x, y, z) \in R^3, x^2 + y^2 = 1, 0 \le z \le 1\}$, calculate $\iint_S f(x, y, z) dA$.

14. For the given F(x, y, z) = <0, z, z > and the surface $S = \{(x, y, z) \in R^3 : z = 2 - x - y, x, y, z \ge 0\}$, compute the flux across S going out from the origin.

15. Let $T = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 1\}$, find the surface area of T.

16. For $F(x, y, z) = \langle xy, yz, xz \rangle$ and $T = \{(x, y, z) \in R^3 : 0 < z < 1 - x - y, 0 < y < 1 - x, 0 < x < 1 \}$, calculate the surface integral on the surface S of T: $\iint_S \mathbf{F} \cdot \mathbf{n} dA$.

17. For $\mathbf{F}(x,y,z) = \langle x^2, -y^2, z^2 \rangle$ and $T = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 < 4, 0 < z < 2\}$, calculate the surface integral on the surface S of T: $\iint_S \mathbf{F} \cdot \mathbf{n} dA$.

18. Verify Stoke's theorem for $F(x, y, z) = \langle z, x, y \rangle$ and $S = \{(x, y, z) \in \mathbb{R}^3 : z^2 = x^2 + y^2, 0 < z < 1\}$.

19. Use Stoke's theorem to evaluate

$$I = \oint_C -y^2 dx + x dy + z^2 dz,$$

where C is the intersection of plane y + z = 2 and cylinder $x^2 + y^2 = 1$. The direction of C is as denoted on the graph.

Part III Fourier series

20. A periodic function of period 2L is defined by

$$f(x) = \begin{cases} L^2, & -L \le x < 0, \\ Lx, & 0 \le x < L. \end{cases}$$

- (a) Sketch the graph of f(x) in the range $-3L \le x \le 3L$.
- (b) State the values the Fourier series will converge to at $x = 0, \frac{L}{2}, L, \frac{3L}{2}$.
- (c) Fin the Fourier series of f(x) in $-L \le x \le L$ and give the first three non-zero terms.

MTH201

Name_____ID____

12.2017

21. For the 2π -periodic function

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi}, -\pi \le x < 0, \\ 1 - \frac{2x}{\pi}, & 0 \le x < \pi. \end{cases}$$

- (a) Sketch the graph for f(x) in $-2\pi \le x \le 2\pi$.
- (b) State the values for the Fourier series will converge to at $x = 0, \frac{\pi}{2}, \pi$.
- (c) Find the Fourier series of f(x) in $-\pi \le x \le \pi$.

Part IV PDEs

- 22. Determine the type of the following PDEs.
 - (1) $u_{xx} + u_{yy} = 0$.
 - (2) $u_{xx} + 10u_{xy} + u_{yy} = 0$.
 - (3) $u_{xx} + 2u_{xy} + u_{yy} = 0$.
- 23. Solving the following PDEs using the same method to solve ODEs.
 - (1) $u_{xx} + \pi^2 u = 0$.

(2) $u_{xx} - \pi^2 u = 0$.

(3) $u_x + xu = 0$.

24. Fin a function u = u(x, t) satisfying

$$\begin{cases} (2+t)\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \\ u(0,t) = u(\pi,t) = 0, \ t > 0 \\ u(x,0) = \sin x + 4\sin(2x), x \in (0,\pi) \end{cases}$$