

Procedural memory

程序性记忆

- The type of long-term memory responsible for knowing how to perform tasks and skills.
- Markov Decision Process (MDP)

$$\tau = (s_0, a_0, o_1, s_1, a_1, o_2, \dots, s_T), \tag{1}$$

$$r = R(env, s_T, \tau) \in [0, 1] \tag{2}$$

$$\pi(a_t|s_t) \longrightarrow \pi_{m^p}(a_t|s_t)$$

Figure 1: With **procedural memory**, agents can improve both the success rate (accuracy \uparrow) and execution efficiency (steps \downarrow) when solving similar tasks.

Figure 2: The procedural memory framework consists of **Build**, **Retrieve**, and **Update**, which respectively involve encoding stored procedural memory, forming new procedural memories, and modifying existing ones in light of new experiences.

Build

$$Mem = \sum_{t=1}^{T} m^{p_t}, where m^{p_t} = B(\tau_t, r_t)$$

Retrieve

$$m_{retrieved} = \arg \max_{m^{p_i} \in Mem} S(t_{new}, t_i)$$

Update

$$M(t+1) = U(M(t), E(t), \tau_t)$$

$$U = Add(M_{new}) \ominus Remove(M_{obso}) \oplus Update(M_{exist})$$

Model	Granularity	TravelPlanner			ALFWorld		
Model	$ \#CS \uparrow \#HC \uparrow \text{Steps} \downarrow \text{Dev} \uparrow$		Dev ↑	Test ↑	Steps \downarrow		
	No Memory	71.93	12.88	17.84	39.28	42.14	23.76
GPT-40	Script	72.08	5.50	15.79	66.67	56.43	18.52
GP 1-40	Trajectory	76.02	8.25	14.64	67.17	74.29	16.49
	Proceduralization	79.94	<u>9.76</u>	14.62	87.14	77.86	15.01
	No Memory	63.49	33.06	18.84	39.20	34.97	24.12
Claude 25 cannot	Script	62.08	29.61	19.21	56.13	53.59	19.38
Claude-3.5-sonnet	Trajectory	<u>65.76</u>	29.61	17.72	69.28	71.78	15.97
	Proceduralization	65.46	<u>30.14</u>	15.29	82.50	74.72	15.79
	No Memory	56.57	7.34	18.32	44.91	41.25	21.38
Orwan 2 5 72h	Script	58.59	7.34	18.53	66.24	61.88	17.13
Qwen2.5-72b	Trajectory	63.41	12.66	18.12	64.49	69.57	16.40
	Proceduralization	63.82	14.19	17.94	85.71	77.19	15.32

Table 1: Results on **Build Policy**. #CS, #HC denote Commensense and Hard Constraint, respectively. \uparrow indicates the higher values are better, and \downarrow denotes the lower values are better. The best results among all methods with similar settings are **bolded**, and the second-best results are <u>underlined</u>.

- No Memory
- **Trajectory**: filter complete gold trajectories
- Script: distill abstract knowledge using LLM
- Proceduralization: Trajectory + Script

Model	Policy	# <i>CS</i> ↑	$\#HC\uparrow$	Steps \downarrow
	No Memory	71.93	12.88	17.84
GPT-40	Random Sample	74.59	6.72	<u>15.12</u>
GF 1-40	Key=Query	73.38	8.95	15.44
	Key=AveFact	76.02	8.25	14.64
	No Memory	63.49	33.06	18.84
Claude-3.5-sonnet	Random Sample	63.99	29.91	17.93
Claude-3.5-sonnet	Key=Query	64.93	28.56	17.60
	Key=AveFact	a Sample 63.99 29.91 erry 64.93 28.56 eFact 65.76 29.61	<u>17.72</u>	
	No Memory	56.57	7.34	18.32
Orman 2 5 72h	Random Sample	59.76	8.43	18.31
Qwen2.5-72b	Key=Query	61.71	11.97	18.54
	Key=AveFact	63.41	12.66	18.12

Table 2: Results on **Retrieve Policy** on TravelPlanner.

- Query
- AveFact: extract keywords from queries

Figure 3: Reward gain and steps reduction vs. trajectory group index with **procedural memory**.

- Vanilla Memory Update: all trajectories
- Validation: only successful trajectories
- Adjustment: reflection for erroneous trajectories

Figure 5: Compare trajectories with and without procedural memory, shortens the process by 9 steps and saves 685 tokens.

Figure 4: (a) Transfer result of GPT-4o's procedural memory to Qwen2.5-14B-Instruct and its performance on TravelPlanner dataset.(b) The relationship between the quantity of procedural memory retrieved for GPT-4o's performance on the ALFWorld dataset.

- Procedural memory exhibits transferability from strong models to weaker ones.
 - procedural memory generated by GPT-4o was employed by Qwen2.5-14B.

 Scaling Memory Retrieval Improves Agent Performance.

PPO算法

$$L_i^{CLIP+VF}(\theta) = \mathbb{E}_i[L_i^{CLIP}(\theta) - c \cdot L_i^{VF}(\theta)]$$

$$\max_{\theta} \Sigma_{t=1}^{T} \mathbb{E}_{s \sim S_{t}, a \sim \pi_{\theta}(\cdot|s)} [r_{t}(s, a)]$$

In CL setting

$$\max_{\theta} \mathbb{E}_{s \sim S_t, a \sim \pi_{\theta}(\cdot|s)} \left[r_t(s, a) \right] - \mathbb{E}_{s \in S_{t-1}} D_{\mathrm{KL}} (P_{\pi_{\theta}}(a|s) \parallel P_{\pi_{t-1}}(a|s))$$

• 策略学习的目标是最大化模型生成高奖励结果的概率,而知识保留的目标是保留生成高奖励结果的知识

$$\max_{\theta} \mathbb{E}_{(s,a)\in D_1} r_t(s,a) - \mathbb{E}_{(s,a)\in D_2} D_{\text{KL}}(P_{\pi_{\theta}}(a|s) \parallel P_{\pi_{t-1}}(a|s))$$

$$D_1 = \{(s,a) \mid s \sim S_t, a \sim \pi_{\theta}(\cdot|s), P_{\pi_{\theta}}(a|s) > \mu_a[P_{\pi_{\theta}}(a|s)] + k\sigma_a[P_{\pi_{\theta}}(a|s)]\}$$

$$D_2 = \{(s,a) \mid s \sim S_{t-1}, a \sim \pi_{t-1}(\cdot|s), r_t(s,a) > \mu_a[r_t(s,a)] + k\sigma_a[r_t(s,a)]\}$$

$$\max_{\theta} \mathbb{E}_{(s,a) \in D_1} r_t(s,a) - \mathbb{E}_{(s,a) \in D_2} D_{\text{KL}}(P_{\pi_{\theta}}(a|s) \parallel P_{\pi_{t-1}}(a|s))$$

$$D_1 = \{(s,a) \mid s \sim S_t, a \sim \pi_{\theta}(\cdot|s), P_{\pi_{\theta}}(a|s) > \mu_a[P_{\pi_{\theta}}(a|s)] + k\sigma_a[P_{\pi_{\theta}}(a|s)]\}$$

$$D_2 = \{(s,a) \mid s \sim S_{t-1}, a \sim \pi_{t-1}(\cdot|s), r_t(s,a) > \mu_a[r_t(s,a)] + k\sigma_a[r_t(s,a)]\}$$

• 将KL散度计算简化为L2距离计算

$$L_i^{KR}(\theta) = (\log P_{\pi_{\theta}}(x_i) - \log P_{\pi_{t-1}}(x_i))^2$$

• 整合后的目标函数

$$\mathbf{J}'(\theta) = L_i^{I_{D_1} \cdot CLIP + I_{D_2} \cdot KR + VF}(\theta)$$

$$= \mathbb{E}_i [I_{D_1}(x) \cdot L_i^{CLIP}(\theta) - I_{D_2}(x) \cdot L_i^{KR}(\theta) - c \cdot L_i^{VF}(\theta)]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\alpha(x) \qquad \beta(x)$$

$$= \mathbb{E}_i [\alpha(x) L_i^{CLIP}(\theta) - \beta(x) L_i^{KR}(\theta) - c \cdot L_i^{VF}(\theta)]$$

Figure 1: Five types of the rollout are utilized in our method.

Table 1: The determining condition of rollout type and corresponding weight strategy to balance policy learning and knowledge retention. We monitor the generating probability $\mathbf{P}_{\pi_{\theta}}(x)$ and the corresponding reward score $\mathbf{R}(x)$. The rollout type of sample x depends on whether the $\mathbf{P}_{\pi_{\theta}}(x)$ and $\mathbf{R}(x)$ fall in or outside the discriminant interval $(F[\cdot], G[\cdot])$.

ID	Rollout Type	Determining Condition	Weight	Strategy
$ \begin{array}{c} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{array} $	High-performance Overfitting High-variance Noisy Normal	$\begin{vmatrix} \mathbf{P}_{\pi_{\theta}}(x) \geq G[\mathbf{P}_{\pi_{\theta}}] & \mathbf{R}(x) \geq G[\mathbf{R}] \\ \mathbf{P}_{\pi_{\theta}}(x) \geq G[\mathbf{P}_{\pi_{\theta}}] & \mathbf{R}(x) \leq F[\mathbf{R}] \\ \mathbf{P}_{\pi_{\theta}}(x) \leq F[\mathbf{P}_{\pi_{\theta}}] & \mathbf{R}(x) \geq G[\mathbf{R}] \\ \mathbf{P}_{\pi_{\theta}}(x) \leq F[\mathbf{P}_{\pi_{\theta}}] & \mathbf{R}(x) \leq F[\mathbf{R}] \\ \mathbf{P}_{\pi_{\theta}}(x) \text{ or } \mathbf{R}(x) \in (F, G) \end{vmatrix}$	$ \begin{vmatrix} \alpha(x) \uparrow \\ \alpha(x) \uparrow \\ \alpha(x) \uparrow \\ \alpha(x) \downarrow \\ - \end{vmatrix} $	$\beta(x) \uparrow \\ \beta(x) \downarrow \\ \beta(x) \downarrow \\ \beta(x) \downarrow \\ -$

$$F[\cdot] = \mu[\cdot] - k\sigma[\cdot] \qquad G[\cdot] = \mu[\cdot] + k\sigma[\cdot]$$

$$\mathbf{J}(\theta) = L_i^{\alpha \cdot CLIP + \beta \cdot KR + VF}(\theta)$$

$$= \mathbb{E}_i [\alpha(x) L_i^{CLIP}(\theta) - \beta(x) L_i^{KR}(\theta) - c \cdot L_i^{VF}(\theta)]$$

Table 2:	The const	raint of	f weights.	and he	aristic v	weights
rabic 2.		rann Oi	w Cigitts	and ne	ullsuc	wcigitts.

ID	Constraint of $\alpha(x)$	Constraint of $\beta(x)$	Heuristic $\alpha(x)$	Heuristic $\beta(x)$
r_1	$ \alpha(x_{r_5}) - \alpha(x_{r_1}) < 0 $	$\beta(x_{r_5}) - \beta(x_{r_1}) < 0$	$\min(ub, \frac{P_{\pi_{\theta}}(x) - \mu[P_{\pi_{\theta}}]}{k\sigma[\pi_{\theta}]})$	$\min(ub, \frac{\mathbf{R}(x) - \mu[\mathbf{R}]}{k\sigma[\mathbf{R}]})$
r_2	$\alpha(x_{r_5}) - \alpha(x_{r_2}) < 0$	$\beta(x_{r_5}) - \beta(x_{r_1}) < 0$ $\beta(x_{r_2}) - \beta(x_{r_5}) < 0$ $\beta(x_{r_3}) - \beta(x_{r_5}) < 0$ $\beta(x_{r_4}) - \beta(x_{r_5}) < 0$	$\min(ub, \frac{P_{\pi_{\theta}}(x) - \mu[P_{\pi_{\theta}}]}{k\sigma[\pi_{\theta}]})$	$\max(lb, 2 + \frac{\mathbf{R}(x) - \mu[\mathbf{R}]}{k\sigma[\mathbf{R}]})$
r_3	$\alpha(x_{r_5}) - \alpha(x_{r_3}) < 0$	$\beta(x_{r_3}) - \beta(x_{r_5}) < 0$	$\min(ub, \frac{P_{\pi_{\theta}}(x) - \mu[P_{\pi_{\theta}}]}{k\sigma[\pi_{\theta}]}) $ $\max(lb, 2 + \frac{P_{\pi_{\theta}}(x) - \mu[P_{\pi_{\theta}}]}{k\sigma[\pi_{\theta}]})$	$\max(lb, 2 + \frac{\mathbf{R}(x) - \mu[\mathbf{R}]}{k\sigma[\mathbf{R}]})$
r_4	$\alpha(x_{r_4}) - \alpha(x_{r_5}) < 0$	$\beta(x_{r_4}) - \beta(x_{r_5}) < 0$	$\max(lb, 2 + \frac{P_{\pi_{\theta}}(x) - \mu[P_{\pi_{\theta}}]}{k\sigma[\pi_{\theta}]})$	$\max(lb, 2 + \frac{\mathbf{R}(x) - \mu[\mathbf{R}]}{k\sigma[\mathbf{R}]})$
r_5	_	_	1	1
All	$\mid \mathbb{E}_{x \sim \pi_{t-1}}[\alpha(x)] = 1$	$\mathbb{E}_{x \sim \pi_{t-1}}[\beta(x)] = 1$	_	_

- Heuristic $\alpha(x)$ and $\beta(x)$
- Learnable $\alpha(x)$ and $\beta(x)$

$$\mathbf{L}_{coef}(\phi) = \mathbb{E}_{x \sim \pi_{t-1}} [(\alpha_{\phi}(x) - 1)^{2} + (\beta_{\phi}(x) - 1)^{2}] + \tau(\alpha(x_{r_{5}}) - \alpha(x_{r_{1}}) + \beta(x_{r_{5}}) - \beta(x_{r_{1}}) + \alpha(x_{r_{5}}) - \alpha(x_{r_{2}}) + \beta(x_{r_{2}}) - \beta(x_{r_{5}}) + \alpha(x_{r_{5}}) - \alpha(x_{r_{3}}) + \beta(x_{r_{3}}) - \beta(x_{r_{5}}) + \alpha(x_{r_{4}}) - \alpha(x_{r_{5}}) + \beta(x_{r_{4}}) - \beta(x_{r_{5}}))$$

Figure 2: The surfaces of heuristic weights. The weights are equal to 1 when rollout samples fall in the normal zone.

Method		Task-1 (M_{π_1})			Task-2 (M_{π_2})		Final ev	al (M_{π_2})
Method	$\mathbf{rPMS}_1 (\uparrow)$	rouge (↑)	$\mathbf{AT}(\downarrow)$	$ \mathbf{rPMS}_2 (\uparrow) $	rouge (↑)	SFR (\downarrow)	rPMS (↑)	rouge (↑)
Human	2.958	_	_	2.805	_	_	2.903	_
ChatGPT	3.298	0.197	_	3.189	0.191	_	3.242	0.193
SFT (In order)	1.499 ±0.130	0.248 ±0.006	_	1.543 ±0.067	0.237 ±0.007	_	1.498 ±0.051	0.237 ±0.009
SFT (multi-tasks)	1.524 ± 0.041	0.254 ± 0.011	_	1.536 ± 0.092	0.234 ± 0.009	_	1.505 ± 0.011	0.236 ± 0.008
PPO (In order)*	2.629 ± 0.183	0.196 ± 0.050	0.052 ± 0.044	2.546 ± 0.201	0.151 ± 0.022	0.144 ± 0.024	2.502 ± 0.242	0.186 ± 0.016
Iterated RLHF†	2.629 ± 0.183	0.196 ± 0.050	0.052 ± 0.044	2.732 ± 0.163	0.211 ± 0.011	0.061 ± 0.018	2.666 ± 0.124	0.200 ± 0.010
PPO	2.629 ±0.183	0.196 ± 0.050	0.052 ± 0.044	2.687 ±0.126	0.184 ± 0.017	0.080 ± 0.017	2.612 ±0.191	0.188 ± 0.013
PPO+OnlineL2 Reg	2.758 ± 0.121	0.206 ± 0.042	0.042 ± 0.042	2.701 ± 0.205	0.180 ± 0.012	0.062 ± 0.013	2.700 ± 0.114	0.196 ± 0.011
PPO+EWC (Kirkpatrick et al., 2017)	2.833 ± 0.122	0.201 ± 0.043	0.047 ± 0.039	2.823 ± 0.192	0.175 ± 0.022	0.040 ± 0.015	2.801 ± 0.202	0.196 ± 0.023
PPO+MAS (Aljundi et al., 2018)	2.712 ± 0.132	0.211 ± 0.051	0.034 ± 0.037	2.726 ± 0.189	0.157 ± 0.021	0.039 ± 0.020	2.714 ± 0.167	0.179 ± 0.011
PPO+LwF (Li & Hoiem, 2018)	2.822 ± 0.126	0.197 ± 0.051	0.048 ± 0.050	2.832 ± 0.179	0.169 ± 0.036	0.030 ± 0.019	2.824 ± 0.192	0.179 ± 0.019
PPO+TFCL (Aljundi et al., 2019)	2.867 ± 0.109	0.202 ± 0.039	0.043 ± 0.046	2.864 ± 0.169	0.169 ± 0.020	0.054 ± 0.022	2.842 ± 0.211	0.178 ± 0.014
PC (Kaplanis et al., 2019)	2.692 ± 0.117	0.209 ± 0.048	0.036 ± 0.055	2.723 ± 0.195	0.165 ± 0.019	0.047 ± 0.017	2.703 ± 0.191	0.187 ± 0.016
HN-PPO (Schöpf et al., 2022)	2.859 ± 0.105	0.212 ± 0.034	0.036 ± 0.042	2.868 ± 0.132	0.171 ± 0.017	0.028 ± 0.029	2.846 ± 0.177	0.201 ± 0.011
NLPO (Ramamurthy et al., 2022)	2.784 ± 0.102	0.185 ± 0.041	0.060 ± 0.050	2.796 ± 0.116	0.172 ± 0.021	0.012 ± 0.012	2.799 ± 0.146	0.181 ± 0.022
CPPO (Heuristic)	3.020 ±0.137	0.213 ± 0.024	0.035 ± 0.023	2.978 ± 0.113	0.174 ± 0.019	-0.164 ±0.009	3.099 ±0.153	0.179 ± 0.016
CPPO (Learn)	3.180 ±0.154	0.220 ± 0.040	0.028 ± 0.042	3.085 ±0.134	0.164 ± 0.024	-0.161 ± 0.008	3.207 ±0.113	0.179 ± 0.008

Table 7: Ablation study. PPO is a special case of CPPO (* $\alpha \equiv 1, \beta \equiv 0$).

Method	$rPMS_1 (\uparrow)$	Task-1 rouge (†)	AT (↓)	rPMS ₂ (†)	Task-2 rouge (†)	SFR (↓)
CPPO / Heuristic CPPO / Learn PPO / $\alpha \equiv 1, \beta \equiv 0$	3.020 ±0.137 3.180 ±0.154 2.629 ±0.183	0.213 ±0.024 0.220 ±0.040 0.196 ±0.050	0.035 ± 0.023 0.028 ± 0.042 0.052 ± 0.044	$ \begin{array}{c c} \textbf{2.978} \pm 0.113 \\ \textbf{3.085} \pm 0.134 \\ \textbf{2.687} \pm 0.126 \end{array} $	$\begin{array}{c} 0.174 \pm \! 0.019 \\ 0.164 \pm \! 0.024 \\ 0.184 \pm \! 0.017 \end{array}$	-0.164 ±0.009 -0.161 ±0.008 0.080 ±0.017
CPPO / $\alpha \equiv 1$ CPPO / $\beta \equiv 1$ CPPO / $\beta \equiv 0$	$ \begin{array}{c c} 2.837 \pm 0.124 \\ 2.476 \pm 0.117 \\ 2.012 \pm 0.186 \end{array} $	$\begin{array}{c} 0.196 \pm \! 0.029 \\ 0.185 \pm \! 0.021 \\ 0.209 \pm \! 0.022 \end{array}$	$\begin{array}{c} 0.047 \pm \! 0.041 \\ 0.063 \pm \! 0.025 \\ 0.038 \pm \! 0.045 \end{array}$	$ \begin{array}{c c} 2.745 \pm 0.121 \\ 2.520 \pm 0.119 \\ 2.436 \pm 0.141 \end{array}$	0.169 ± 0.020 0.186 ± 0.017 0.174 ± 0.021	$ \begin{array}{c} -0.031 \pm 0.010 \\ 0.051 \pm 0.009 \\ 0.142 \pm 0.015 \end{array} $