

CAI 4104/6108 – Machine Learning Engineering: GANs & Diffusion Models

Prof. Vincent Bindschaedler

Spring 2024

Reminder: AutoEncoders and GANs

AutoEncoders

- Architecture combining an encoder network and a decoder network
- Learn efficient representations of the data
 - Each data point can be represented in the latent space
- Applications: dimensionality reduction and feature learning
- Generative Adversarial Networks (GANs)
 - Novel idea: adversarial learning/training

Generative models

- Some models can actually generate new data instances
- E.g.: some autoencoders, GANs, etc.

Reminder: AutoEncoders

- Encoder-Decoder network
 - Goal: learn to reproduce the input as output
 - Constraints:
 - * The latent representation (aka codings) is constrained (e.g., must have lower dimensionality than input)
 - Effect: network must learn an efficient way to represent the information

Reminder: Training AutoEncoders

- Encoder-Decoder network
 - Goal: learn to reproduce the input as output
 - Constraints:
 - The latent representation (aka codings) is constrained (e.g., must have lower dimensionality than input)
 - Effect: network must learn an efficient way to represent the information

Reminder: Types of AutoEncoders

- Deep (aka Stacked) AutoEncoders:
 - Multiple hidden layers for encoder and decoder
 - Note: layers could be fully-connected, convolutional, recurrent, etc.
- Sparse AutoEncoders:
 - Use a large bottleneck layer, but with a sparsity constraint (e.g., enforced through regularization)
- Denoising AutoEncoders:
 - Add noise (typically Gaussian) to the input (or use dropout) to force the network to learn "robust" features
 and how to remove noise in the output
- Variational AutoEncoders:
 - Probabilistic AutoEncoder, which makes it a generative model
 - Idea: a data point is encoded as a mean μ and standard deviation σ
 - * Then, we sample from a Gaussian with mean μ and standard deviation σ
 - * Training loss: reconstruction loss (as before) + KL-divergence of latent space distribution and isotropic gaussian
- Many others...

Reminder: Variational AutoEncoders (VAE)

- Seminal Paper
 - Kingma and Welling. "Auto-Encoding Variational"
 - Bayes." stat, 10. 2014
- Probabilistic encoder/decoder
 - Encoder maps an input x to a distribution in the latent space
 - * Posterior p(z|x)
 - * Approximate posterior q(z|x)
 - Prior p(z) over the latent space
 - Usually we choose Gaussian $\mathcal{N}(\mu, \sigma^2)$
 - Likelihood p(x|z)
- This is a generative model
 - Q: How do we sample?

Reminder: Training VAEs

- Seminal Paper
 - Kingma and Welling. "Auto-Encoding Variational"
 - Bayes." stat, 10. 2014

- How to train the model?
 - Loss function: reconstruction loss (e.g., MSE or cross entropy) + Kullback-Leibler divergence between p(z|x) and q(z|x)
 - Evidence Lower Bound (ELBO)
 - How can we do backpropagation? The latent representation is random!?
 - * Reparameterization trick: $z = \mu(x) + \epsilon \sigma(x)$
 - Here $\epsilon \sim \mathcal{N}(0, I)$ is an **external input**
 - Sometimes called "stochastic backpropagation"

Reminder: Generative Models

- (Some) generative models allow us to:
 - Sampling $x \sim p(x)$
 - We want to able to sample new instances from the learned distribution
 - ◆ Density estimation p(x)
 - * We want to **estimate** $p(\mathbf{x})$ or compare $p(\mathbf{x}_1)$ and $p(\mathbf{x}_2)$
 - Learn representations z = repr(x)
 - The representation can be used in downstream tasks (e.g., classification or regression)
 - And (in many cases) reduce dimensionality (e.g., use an AutoEncoder instead of PCA)

Reminder: How Good Are AutoEncoders?

Variational Auto-Encoder (VAE)

Input

Reconstruction

Samples

Source: Tolstikhin, Ilya, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. "Wasserstein auto-encoders." 2017.

Reminder: Manipulating Latent Features

Generative Adversarial Networks (GANs)

Generative Adversarial Networks

Origins:

Goodfellow et al. "Generative Adversarial Nets." in NeurlPS, 2014.

Generator:

- Takes random noise from some distribution (e.g., gaussian) and produces a data point
- Trained using "feedback" from the discriminator

Discriminator:

- Given a data point predict real (1) or fake (0)
 - * Real: data points taken from the dataset
 - Fake: data points produced by the generator

Training GANs

Challenges:

- GANs are notoriously difficult to train
- Generator and discriminator need to learn together at roughly the same pace
 - Otherwise, the training process will fail
- (Informal) training loop (for each epoch):
 - Discriminator:
 - Take k real data points (label 1)
 - Run the generator to produce k fake data points (label 0)
 - * Train the discriminator on those 2k data points
 - Generator:
 - Freeze the weights of the discriminator (why?)
 - * Run the generator to produce k fake data points
 - Give them to the discriminator pretending they are real
 - Backpropagate and update the weights!

How Good Are These Models?

DCGAN

Source: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv, 2015.

GANs are Improving

Other Applications of Generative Models

Image-to-Image translation

Source: Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. "Image-to-image translation with conditional adversarial networks." CVPR, 2017.

Other Applications of Generative Models

- Speech/Audio
 - Oord et al. "Wavenet: A generative model for raw audio." arXiv, 2016.
- Generating 3D from 2D
 - Wu et al. "Learning shape priors for single-view 3d completion and reconstruction." ECCV, 2018.
- Text-to-image
 - Zhang et al. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." ICCV, 2017.

- And many others...
 - Scene completion
 - Image editing
 - Face aging
 - Super-resolution
 - Video prediction

Diffusion Models

- Map a noise distribution into real data distribution
 - Learn to "denoise" an input step by step

Diffusion Processes

- Forward diffusion process ("noising")
 - Start with $x_0 \sim q(x)$ where $q(\cdot)$ is the real data distribution
 - Iteratively add a small amount of noise $x_t = x_{t-1} + \text{noise}$
 - Conditional distribution: $q(x_t|x_{t-1})$
 - * Typically the noise is isotropic Gaussian with standard deviation β_t (noise schedule)
 - * Note: reparametrization trick allows us to sample at any step t in closed form
 - As $T \rightarrow \infty$, we eventually have pure noise (x_T is isotropic Gaussian)
- Reverse diffusion process ("denoising")
 - To create samples x_0 (from pure noise x_T) we would need to reverse the process
 - We want to compute $q(x_{t-1}|x_t)$ but we cannot estimate it directly
 - * So we learn a model $p_{\theta}(x_{t-1}|x_t)$ to **denoise** an input step by step

How Good Are Diffusion Models?

source: Po et al. "State of the art on diffusion models for visual computing." arXiv preprint arXiv:2310.07204. 2023

Next Time

- Friday (4/12): Exercise
- Upcoming:
 - Homework 5 due 4/12