Haute École d'Ingénierie et de Gestion du Canton de Vaud

GESTION ET VALORISATION DE PROJET DE MACHINE LEARNING
GML

Crapauduc - 2022

Authors:
Schaller Joris
D'Ancona Olivier
Logan Victoria
Akoumba Erica Ludivine
Wichoud Nicolas

January 6, 2023

Contents

1	Intr	roduction	1		
2		stion du projet Organisation du projet	3		
	$\frac{2.1}{2.2}$	Gestion du temps de travail	ა 3		
	$\frac{2.2}{2.3}$	Gestion du temps de travair	3 4		
	2.0	Gestion des taches et repartition	•		
3	Out		5		
	3.1	Colabeler	5		
	3.2	Conversion de format	5		
	3.3	Comptage des labels	5		
	3.4	Folder Shortener	5		
	3.5	Fusion des dataframes	5		
4	Data preparation 6				
	4.1	Acquisition des données	6		
	4.2	Stockage des Données	6		
	4.3	Labellisation des données	7		
5	Filt	rage	9		
J	5.1	Analyse des données labellisées	9		
	0	5.1.1 Analyse temporelle	10		
		5.1.2 Analyse météorologique	12		
	5.2	Détecteur de planches	13		
6	Мо	dèles	15		
U	6.1	Choix des modèles	15		
	6.2	Les échecs	15		
	6.2	FASTER R-CNN	17		
	6.4	RETINA net	19		
	6.5	DEtection Transformer (DE-TR)	20		
	6.6	Modèles évalués	21		
7	TE:	landing.	22		
7	Eva 7.1	lluation Section1	22 22		
	1.1		$\frac{22}{22}$		
	7.2	7.1.1 Features	$\frac{22}{22}$		
	1.4	Tresurrans res infriencing folichonness	$\angle \angle$		

	8.1 Section1	
9	Conclusion	25

Introduction

Ce projet de machine learning nous a été proposé dans le cadre du cours de Gestion et valorisation de projet en Machine Learning (GML), donné au cours du cinquième semestre du cursus de Bachelor en Informatique et système de communication orienté ingénierie des données à la HEIG-VD. Le but de ce travail est de nous faire découvrir la gestion et organisation impliquée par un travail de machine learning, autant au niveau de la recherche technologique qu'au niveau de l'organisation d'équipe, notamment au niveau de la distribution de tâches, gestion d'équipe et de délais.

Le projet décrit ici est un projet existant ayant déjà été réalisé plusieurs fois par le professeur et de précédents étudiant.e.s : l'étude de crapauducs. Un crapauduc est un "petit conduit sous une route, permettant le passage protégé des batraciens" - selon Le Robert. En 2017, dix-huit crapauducs ont étés construits le long de la route d'Aubonne à Gimel - canton de Vaud - afin de permettre aux grenouilles, crapauds et tritons de traverser la route des bois à l'étang en toute sécurité. L'image 1.1 montre l'un de ceux qui ont été installés.

À l'intérieur de ces crapauducs ont été installée une caméra équipée d'un capteur, qui implique la prise d'une petite série de photos (Figure 1.2) lors de la détection de mouvement, ainsi qu'une planche afin de faciliter la distinction des objets du sol. Comptant moins de caméras que de crapauducs, les caméras n'étaient pas rattachée à un crapauduc et comptent donc des images prises depuis différents crapauducs.

Figure 1.1: Un des 18 crapauducs installés pour l'étude

Figure 1.2: Exemples des images d'amphibiens prises par les cameras

Au terme de la première année d'utilisation, ces voies ont été empruntées par plus de 6'000 crapauds, grenouilles et tritons confondus. Ce comptage a été effectué par des chercheurs, qui ont du regarder les images prises par les caméras et compter les animaux "à la main". Le projet Crapauduc vise ainsi à utiliser l'apprentissage automatique (Machine Learning) pour automatiser le comptage des batraciens.

Notre objectif pour ce projet est donc de détecter la présence ou non de grenouille/crapaud et tritons (en considérant les grenouilles et crapauds comme une seule et même catégorie) en utilisant l'apprentissage automatique, ce afin de déterminer si la constructions de ces crapauducs est efficace. Pour se faire, nous avons les prises des caméras du 23 février 2017 au 20 avril de la même année, totalisant près de 1 million d'images, dont on connaît pour chacune la caméra dont elle provient ainsi que le moment où la photo a été prise (date, heure, minute et seconde).

Enfin, le professeur Satizabal Mejia Hector Fabio nous a également mis à disposition sa labelisation pour certaines images, des bounding box pour certaines également, ainsi que les données météos enregistrées durant cette période (notamment la température, le vent, la précipitation et l'humidité).

Gestion du projet

2.1 Organisation du projet

Dès le départ, nous avons décider de travailler avec git, plus précisement sur github. Nous avons donc créé une organisation afin de séparer les différents dépots. Nous en avons définis 2, mais les membres de l'organisation étaient libres d'en ajouté d'autres.

- crapauduc. Ce dépôt est le dépot principal où les notebooks des modèles sont déposés, nous y avons aussi placé les rapports des anciens étudiants afin d'y avoir un accès rapide. Nous y avons aussi déposé un subset d'image d'environ 0.5 Gib permettant le fine tuning.
- utils. Ce dépôt contient des scripts faisant des transformormations ou des analyses sur les données. Nous y avons par exemple un script qui permet de convertir les annotations de csv à COCO.

De plus, nous avons créer un compte google ayant le doux nom de **student GML** afin d'avoir un espace google drive de 15 GiB pour stocker les données ainsi qu'une intégration facilitée dans le service colab de Google. Nous croyions être prêts.

2.2 Gestion du temps de travail

Dès le départ, nous avons décider de travailler à distance afin de dédier la totalité de la journée à ce projet sans perdre de temps dans les transports publiques. En effet, le mardi où tombe le cours de GML, nous n'avons pas d'autre cours que ce dernier. Ainsi, un mardi typique se déroule comme suit:

- 8h00 13h15: Libre, mais souvent on prépare la séance de l'après-midi.
- 13h15 15h: Appel Teams, où nous expliquons notre avancement, normalement les différents problèmes rencontré doivent être réglé avant la réunion. Planification des tâches pour la prochaine semaine, et répartition des tâches. Durant chaque réunion un membre du groupe prend des notes afin d'avoir un historique des discussions, ce procès verbale des réunions est stocké sur le google drive de student GML.

La séance du mardi se résume donc essentiellement à un partage d'information entre les différents groupes de travail composé de 1 à 3 étudiant.e.s. Le travail proprement dit est pour la plupart effectué en dehors des réunions, soit le mardi après la réunion soit à un autre moment choisis par les membres du groupe.

2.3 Gestion des tâches et répartition

Nous avons poussé notre utilisation de github, en gérant nos tâches à l'aide de l'outil de gestion de projet kanban directement intégré dans github. Ainsi, nous pouvons savoir à n'importe quel moment quel membre de l'équipe travail sur quelle partie du projet. De plus, nous pouvons voir les tâches en cours, les tâches terminées, les tâches en attentes, etc.

Figure 2.1: Nos tâches du Kanban réparties en 3 catégories : à faire, en cours et terminées.

critique: Nous avons décidé de ne pas élire de responsable au seins des étudiants. Cette décision a bien fonctionné pour certains aspects du travail, comme par exemple la prise des notes durant les réunions. Cependant les appels Teams étaient généralement coordonés par Olivier et Joris sans vraiment que cela ait été prévu. Ce n'était pas voulu puisque nous souhaitions une organisation horizontale, mais cette manière de fonctionner s'est imposé naturellement et nous avons gardé cette organisation pour la suite. Par coordination nous entendons de manière générale animer la discussion et amorcer les points suivants. L'organisation de travail à elle aussi subit des changements au cours du projet. Au début, nous avons travaillé de manière très individuelle sur les petites tâches initiales. Nous souhaitions pouvoir travailler de manière très parallèle et ce choix semblait fut bon. Néanmoins, cela nous a fait par la suite rencontrer deux nouveaux problèmes:

- 1. Friction lors de la communication.
- 2. Tâches trop complexes pour une seule personne.

Notre organisation initiale fonctionnait bien au début du projet puisque nous avions beaucoup de petites tâches et nous avons bien avancé. Cependant, les tâches devenants de plus en plus grosses, les réunions ont pris de plus en plus de temps. En effet, nous avons rencontré beaucoup de problèmes qui étaient difficiles à résoudre seul, nous en discutions donc durant les réunions, et celles-ci commençait à prendre trop de temps. Après quelques séances peu efficaces, nous avons réalisé qu'il serait plus judicieux de travail en petits groupes afin qu'une partie de la communication se fasse déjà entre les membres du sous-groupe et ainsi que l'on réduise les informations à partager lors des réunions. De plus travailler à plusieurs permettait de surmonter les problèmes rencontrés plus facilement.

Outils

But Nous avons constitué un repository github contenant des scripts permettant de transformer les données brutes en données utilisables pour l'analyse. Ces scripts sont disponibles dans le repository utils sur github.

3.1 Colabeler

Afin de réaliser les bounding box et les labels, nous avons utilisé le logiciel Colabeler permettant d'annoter les images pour l'object detection. Ainsi nous pouvons ajouter des bounding box facilement et rapidement. Il a été utilisé dans le cadre de la création du filtre et dans la constitution du dataset de test.

3.2 Conversion de format

Nous avons écrit un petit script python permettant de convertir les labels en différents formats. Il existe plusieurs manières de définir les bounding box. Elle peuvent être définies comme un point d'ancrage et une taille plus une hauteur ou simplement être 2 points. De plus, il existe différente nomenclatures pour stocker ces images telles que le format coco stocké dans un fichier .json qui est associé au dataset coco. Il se peut que les données soient encore stockées sous forme d'un csv ou d'un fichier manifest qui peut être utile pour des services comme amazon sagemaker.

3.3 Comptage des labels

Un petit script a été mis sur pied afin de compter les labels déjà effectués. Ce qui permet d'avoir une liste des images déjà traitées et de constituer un subset rapidement pour entraîner des algorithmes.

3.4 Folder Shortener

Ce script bash permet de simplifier le chemin d'accès aux images pour une question de clarté et d'entretient du projet.

3.5 Fusion des dataframes

Data preparation

4.1 Acquisition des données

Problème Lors de ce projet, les données doivent être accessible à tous les membres et doivent être stockées de manière uniformisée pour faciliter le travail de groupe. Nous avons alors opté pour une structure regroupant les images par caméra et le nom de fichier correspondant est la date ISO standardisée de la date de la prise du fichier.

Source Nous avons récupéré un disque dur comprenant les 500GB dans le bureau de nos professeurs. La structure de fichier était partitionnée par caméra, année, jour, heure, minute. Cette structure était pratique pour naviguer dans les dossiers mais posait un problème pour extraire les informations car les métadonnées étaient stockées dans le path du fichier et non dans un fichier .csv externe. La nouvelle structure partitionnée par camera permet d'avoir toutes les images regroupées et ainsi d'avoir les métadonnées au même endroit. Nous avons ainsi écrit des scripts de transformations que l'on peut trouver dans le repository utils sur github.

Format Les images sont au format JPEG, toutes les images sont de la même taille, 1920x1080 pixels.

Numéro de séquence Une information qui n'était pas présente originellement était le numéro de séquence des images. Lorsque la caméra détectait un mouvement continu, la même action pouvait résulter sur plusieurs images différentes. Nous avons donc considéré une séquence valide si sur la même caméra, les images sont prise à la suite dans un interval de temps inférieur à 2 secondes. Ce numéro est ainsi ajouté aux métadonnées et permet de réaliser des analyses plus approfondies.

4.2 Stockage des Données

Afin de stocker les données, nous utilisons deux espaces de stockage différents. Premièrement, nous utilisons le serveur atlas mis à disposition pour stocker les images brutes. Deuxièmement, nous utilisons Google Drive pour stocker les subsets d'images traitées. De cette manière, nous avons une source de donnée fiable et pouvons ainsi tous travailler en parallèle avec les mêmes données uniformisées.

Datalake Les données désarborisées ainsi que les données originales sont stockées sur le serveur atlas dans le dossier /home/crapauduc/data/. Ce dossier est accessible à tous les membres du groupe. Les images sont stockées dans des dossiers par caméra et le nom de fichier est la date ISO standardisée de la date de la prise du fichier.

Subsets Les subsets sont stockés dans le Google Drive et peuvent être utilisé pour tester et entraîner différents algorithmes

4.3 Labellisation des données

Problème Comme dans tout projet de machine learning, nous avons besoin de données labellisées manuellement au préalable que l'on peut fournir comme données d'entraînement à nos réseaux de neurones. Dans le cadre de ce projet, on peut distinguer deux grands types de données labellisées. Ces deux types de labellisation ont été effectué avec le même outil de labellisation polyvalent, à savoir Colabeler, et sont décrites plus précisément dans les deux prochains paragraphes.

Classification Même si l'objectif final du projet n'est pas de classifier les photos par animal mais plutôt de localiser les animaux sur les photos, nous avons décidé d'utiliser la classification pour une étape intermédiaire, à savoir le détecteur de planche qui permet de déterminer si une photo a une grande probabilité de contenir un animal. Un certain nombre de photos labellisées étaient fournies au début du projet, mais cette labellisation concerne uniquement les animaux et ne donne aucune information sur la présence ou non de la planche sur les images. Nous avons donc dû partir de zéro pour ce travail de labellisation. Heureusement, la labellisation pour une tâche de classification est plutôt rapide puisqu'il suffit d'indiquer pour chaque image si elle contient une planche ou non, ce qui revient en gros à appuyer sur un bouton à chaque fois que l'on voit une planche. Nous avons donc choisi d'analyser un échantillon relativement grand de 5554 images aléatoires issues du tunnel numéro 2. Malgré la rapidité de la labellisation, nous avons rencontré un problème qui réside dans le déséquilibre entre les deux classes planche et non-planche. En effet, l'immense majorité des images contiennent une planche visible et on ne peut donc pas fournir ces données telles quelles au réseau de neurones. Nous avons donc choisi de nous restreindre à un sous-ensemble de 600 images dont environ la moitié contiennent une planche, et il se trouve que cela fut largement suffisant comme on peut le constater au vu des bons résultats obtenus par le détecteur de planche présentés plus loin dans le rapport.

Localisation A l'inverse de la classification, la localisation des animaux sur les photos est l'objectif principal de ce projet. Malheureusement, ce type de labellisation prend beaucoup plus de temps que la labellisation pour une tâche de classification, en particulier une tâche de classification binaire comme pour le détecteur de planche. En effet, il est désormais nécessaire pour chaque image contenant un animal de dessiner une bounding box autour de l'animal en question et de spécifier à chaque fois de quel animal il s'agit. Par chance nous avions déjà à disposition pour cette tâche de localisation un certain nombre de données labellisées disponibles dans le fichier path_and_bounding_box.csv. Nous avons choisi de tout de même essayer de labelliser quelques centaines d'images supplémentaires afin d'être certain de ne pas manquer de données d'entraînement. Cependant, cette tâche s'est avérée extrêmement longue et fastidieuse sans apporter de réelle plus-value au projet et nous avons

donc finalement décidé d'abandonner et de nous limiter aux 2000 labels mis à disposition, ce qui est amplement suffisant pour entraı̂ner un réseau de neurones standard.

Filtrage

Idée générale Le but de ce chapitre est de décrire les différentes méthodes de filtrage investiguées, dans le but d'améliorer la qualité des données.

Problème Le dataset original est composé de 18 caméras regroupant environ 1 million d'images. Une bonne partie de ces images sont des faux positifs. Il est donc nécessaire de filtrer les images afin de ne garder que les images qui nous intéressent. Une première observation nous fait remarquer que les images uniquement constituées de feuilles n'ont jamais d'animaux. Ensuite, une deuxième lecture nous fait remarquer que les animaux se déplacent plus facilement par temps humide. Et finalement, nous constatons que les animaux sont nombreux certains jours. À partir de ces observations, nous avons élaboré 3 méthodes pour filtrer les images et ainsi augmenter notre probabilité de trouver des animaux pour constituer de nouveaux labels ou constituer un dataset de validation. Ces méthodes sont décrites dans les sections suivantes.

5.1 Analyse des données labellisées

Comme dit en introduction, notre professeur monsieur Satizabal Mejia Hector Fabio nous a fourni les bounding box pour certaines images. C'est sur le fichier "path_and_bounding_box.csv" - que nous avons préalablement créé à partir de ces données - que nous avons effectué l'analyse exploratoire des données. Nous nous basons ainsi 2020 images dont :

- 224 observations de tritons;
- 201 observations de grenouilles-crapauds.

Ces données s'étendent sur la période du 9 mars au 15 avril 2017. Il est premièrement important de noter que les données contenant des tritons et/ou des grenouilles-crapauds s'étendent du 9 mars au 1er avril, c'est-à-dire que l'on en a pas observé entre le 1er avril et le 15 avril. Nous avons donc observé la présence de tritons et/ou grenouille-crapaud au travers de ces données via des variables temporelles - heure et jour - et via des variables météorologiques - telles que humidité, température ou précipitation.

Aussi, il est important de noter ici que plusieurs images peuvent faire partie du passage du même objet ; l'ensemble de données compte en effet 425 images dont environ prises. C'est pourquoi nous resterons très généraux pour cette première analyse des données. Voici donc ce que l'on a observé sur les données contenant des tritons et/ou des grenouilles-crapauds :

5.1.1 Analyse temporelle

Date

Figure 5.1: Fréquentation des objets en fonction de la date

Figure 5.2: Fréquentation des batraciens observés en fonction de la date

On observe donc d'après la figure 5.2 que les batraciens d'intérêt utilisent particulièrement les crapauducs en mois de mars. Le reste des observations durant cette période, nous indique cependant que l'on observe peu de données en avril.

Cependant, d'après quelques recherches (cliquer sur le mot pour suivre la source) sur internet, les batraciens se reproduisent en fin février-début mars. On peut donc considérer que la déduction de fréquentation plus élevée des crapauducs par les batraciens en mars peut être considérée pour un premier filtrage pertinent des images.

Heure

Figure 5.3: Fréquentation des objets en fonction de l'heure

On constate ici que le nombre de feuille étant plus grand que le reste d'objets observés, ceci nous empêche de pouvoir observer clairement la distribution d'observation d'objets. Visualisons donc les observations d'objets excepté les feuilles :

Figure 5.4: Fréquentation des batraciens observés en fonction de l'heure - sans les feuilles

Figure 5.5: Fréquentation des batraciens observés en fonction de l'heure

D'après la figure 5.5 ci-dessus, on observe que les batraciens d'intérêt utilisent particulièrement - même uniquement, pour cet ensemble de données - les crapauducs entre 19h et 7h du matin, c'est-à-dire de nuit. Le reste des observations (figure 5.4) confirme premièrement la pertinence de cette observation, étant donné que nous avons une quantité élevée d'images prises tout au long de la journée parmi l'ensemble de données étudié ici.

Les quelques recherches faites sur la période de déplacement des batraciens à l'étang indiquant également qu'elle est particulièrement durant le crépuscule, on confirme ainsi la pertinence que peut avoir ce deuxième filtrage des images.

5.1.2 Analyse météorologique

Les données météorologiques additionnées des recherches en ligne ne sortent pas de particularité très prononcée quant à leur corrélation avec la fréquence d'observation de batraciens. Si l'on souhaite cependant citer les facteurs météorologiques qui pourraient être la plus déterministe, on citera l'humidité ; nous allons donc ici exposer nos observations la concernant. Notons que nous avons ici décidé de négliger les données labelisées "feuilles", comme elles forment du bruit et que nous avons fait un autre filtre s'en occupant si besoin.

Humidité

Figure 5.6: Fréquentation des objets en fonction de l'humidité - sans les feuilles

Figure 5.7: Fréquentation des batraciens en fonction de l'humidité - sans les feuilles

On voit ici qu'on peut imaginer prendre seulement les images prises lorsque l'humidité est au-dessus de 55.

5.2 Détecteur de planches

Nous avons développé un réseau de neurones convolutif à l'aide de la libraire PyTorch. Ce classificateur binaire, prédit ou non la présence de planche.

Dataset d'entraînement Nous avons extrait 600 images d'une même caméra et labellisé 359 non planches et 241 planches. Ensuite, nous avons développé un dataloader permettant d'intégrer nos labels et de charger des batchs de données directement dans la libraire Py-Torch. Celui ci, utilise un pipeline d'entrée qui applique plusieurs transformations à l'image avant de pouvoir l'utiliser comme un tenseur.

Figure 5.8: Exemple de données d'entraînement

Architecture du Détecteur Le détecteur est simplement constitué de 3 couches convolutives suivi de 2 couches entièrement connectées. Les channels d'entrée et de sortie des couches convolutives est de : 3 - 32, 32 - 64, 64 - 128. Le nombre de neurones des couches fully connected sont de 128 et 1 pour le neurone de sortie. La fonction de coût utilisé est la BCELoss et l'optimiseur est Adam. Le réseau est entraîné pendant 10 epochs avec un learning rate de 0.001 et un momentum de 0.9 sur 3 epochs.

Résultats Le détecteur de planche a une précision de 1 et un recall de 0.98 sur la détection de planche. En revanche, la précision sur la détection de non planche est de 0.88 et un recall de 1. Ce qui veut dire que notre filtre est un peu trop efficace et a tendance à se tromper pour détecter les images sans planche. Comme les résultats sont satisfaisant pour dégrossir le travail, nous n'avons pas passé de temps supplémentaire à optimiser le réseau afin qu'il sépare mieux les images dotés d'une planche ou non. Comme, nous traitons une grande quantité de données, l'erreur est acceptable. Lancé sur la quasi intégralité du dataset,

Figure 5.9: Matrice de confusion du détecteur de planche

le filtre a tourné pendant plus de 10h sur un ordinateur de bureau doté d'un processeur Ryzen9500X. Au final, le filtre a détecté 48910 images de non planches sur les 754543 images analysées.

Modèles

6.1 Choix des modèles

Le choix des modèles a été un choix rapide.

Nous avons commencé par regarder les tutoriels sur les sites web des frameworks que nous utilisons. Nous avons donc regardé les tutotiels de pytorch, car nous voulions utiliser ce framework en particulier, mais avons aussi regardé les githubs de modèles dont nous avions entendu parler, comme YOLOv5. Il faut noter que notre compréhension du problème et du jargon utilisé dans le domaine s'est enrichi au fur et à mesure de nos recherches.

Ainsi, nos premiers choix peuvent sembler mauvais, mais lors de la prise de décision nous étions persuadés de faire les bons choix. Notre approche de départ se basait essentiellement sur un facteur: nous voulions des modèles pour lesquels il existe beaucoup de ressources en ligne. Cette méthodologie nous a amené à explorer une solution (YOLOv5) qui n'était pas adaptée à notre problème.

Après beaucoup d'essais infructueux, nous avons donc changé de méthodologie et nous nous sommes laissé la liberté d'utiliser des outils de plus haut niveau, tel que Detectron2 et de ne pas se restreindre uniquement à PyTorch. Une fois que nous avons pris en main ce framework, nous avons pu nous concentrer sur la performance du modèle. C'est aussi à ce stade que nous avons compris que le score sur le benchmark COCO2017 indiqué sur beaucoup de documentation de modèles était justement indiqué pour pouvoir comparer les modèles entre eux.

6.2 Les échecs

YOLOv5

YOLO est l'acronyme de You Only Look Once; il s'agit du premier modèle que nous avons essayé. Nous avons décidé de commencer avec ce modèle pour plusieurs raisons parmi lesquelles : une abondance de tutoriels sur le net et une solution qui nous semblait clé en main pour résoudre notre problème. Malgré ces signes positifs, il n'a pas été une solution adaptée.

En effet, YOLO, a été publié il y a plusieurs année et n'est plus forcément l'état de l'art actuel. De plus, ce modèle est adapté à du traitement en temps réel ce qui ne fait pas partie de notre problème. Cependant, le réel souci qui nous a fait abandonner cette solution est la structure spéciale du dataset qui ne correspondait pas à notre structure.

Durant une phase de réflexion visant à résoudre le souci de structure, nous avons ainsi réalisé

l'incapacité du modèle à gérer des images n'étant pas de 640x640 pixels. Nous aurions pu effectuer un réajustement de la taille des images mais ces derniers éléments nous ont fait réaliser que YOLO n'était pas la solution clé à laquelle nous nous attendions et avons décidé après quelques discussions de passer à un modèle plus adapté à notre problème initial. C'est ainsi que nous nous sommes lancé sur faster R-CNN, un modèle qui supporte des images de tailles arbitraires et qui est plus récent que YOLOv5.

SSD

L'object detection étant une application nouvelle pour nous quand nous débutions le projet, après l'échec du modèle YOLO, nous avons décidé de nous lancer en parallèle sur différents modèles, le but étant de trouver celui ou ceux pouvant répondre efficacement à notre problématique. C'est dans cette optique que nous avons exploré le modèle SSD (Single Shot Multibox Détector). C'est un algorithme de detection d'objet dans une image qui au moment de la prédiction, divise l'image à l'aide d'une grille et génère des scores pour la présence de chaque catégorie d'objet dans chaque grille par défaut puis ajuste la grille pour mieux correspondre à la forme de l'objet. Le réseau combine ainsi les prédictions de plusieurs cartes de caractéristiques avec différentes résolutions pour traiter naturellement des objets de tailles diverses. Ce réseau se veut d'après la documentation, plus rapide que YOLO et aussi précis que FasterRCNN.

Nous avons trouvé un exemple implémentation sur $nvidia_deep learning examples_s sd.$ La mise en oeuvre de celui ci s'est faite sans trop de douleur. Par la suite, il était question de changer le dataset d'entrainement du modèle (MS COCO: Microsoft Common Objects in Context) qui est un jeu de données d'images à grande échelle contenant 328 000 images d'objets quotidiens et d'êtres humains. Pour le remplacer par notre set d'images. Pour ce faire nous nous sommes aidé d'un tutoriel trouvé sur git SSD-on-Custom-Dataset. Dans celle ci est expliqué une façon d'entrainer le modèle SSD sur un dataset customisé avec pour contrainte que les images doivent être de taille 300*300 ou 512*512. Travailler sur des images carrées était l'un des problèmes que nous avons rencontré avec YOLO, mais nous avons pensé résoudre ce problème avec les fonctions de resizing existantes. Nous avons ccommencé par éssayer de reproduire le tuto sur le dataset proposé dans celui-ci. A de nombreuses reprises, nous avons fait face à des erreurs dont nous ignorions la provenance ainsi que la solution. Pour finir cela nous a pris beaucoup de temps pour au final ne pas arriver à entrainer le modèle sur le dataset en question. Nous n'avons donc pas pu aller au bout de cette implémentation. Mais nous restons convaincus que ça reste une alternative à la résolution de notre problématique.

Faster R-CNN avec Keras

Après l'échec de YOLOv5 en raison de la nécessité d'utiliser des images carrées de taille fixe, nous avons décidé de nous pencher sur une utilisation potentielle d'un réseau de neurones de type Faster R-CNN, plus précisément en utilisant la bibliothèque open-source Keras puisque c'est une bibliothèque que nous avions déjà utilisée auparavant dans le cadre du cours sur les réseaux de neurones. Pour atteindre cet objectif, nous avions à disposition une implémentation toute faite de Faster R-CNN utilisant Keras disponible à l'adresse suivante : github.com/you359/Keras-FasterRCNN. Malheureusement, nous avons rencontré un certain nombre de problèmes au moment d'utiliser l'implémentation fournie.

Tout d'abord, il s'agit d'un code plutôt ancien qui n'est pas forcément compatible avec les dernières versions des librairies utilisées en Python. En effet, ces librairies sont régulièrement mises à jour et certaines fonctions disponibles sont alors dépréciées, modifiées voire même définitivement supprimées. Il a donc fallu trouver par tâtonnement les bonnes versions des librairies à utiliser en créant de multiples environnements virtuels à l'aide de conda et en intérprétant les divers messages d'erreur énigmatiques renvoyés à chaque nouvelle tentative. Finalement, nous avons réalisé que le repo github contenait un fichier texte indiquant les versions optimales des librairies à utiliser pour ce projet. Cependant, même en utilisant les versions recommandées, le code continuait à planter après quelques secondes pour d'obscures raisons.

Ensuite, le second problème réside dans la documentation de l'implémentation de Faster R-CNN qui contient ce qui semble être une grossière erreur quant à la version de Python à utiliser. En effet, nous avons appris au point précédent qu'il valait mieux lire attentivement la documentation disponible avant de se lancer corps et âme dans le code. Or cette documentation indique explicitement d'utiliser Python 2 pour faire tourner le code mis à disposition. Malheureusement, même en utilisant les bonnes versions des librairies et de python le code ne voulait définitivement pas fonctionner. Dans une tentative désespérée nous avons donc changé la version de Python pour Python 3 et là, comme par magie, le code commence à tourner et le réseau de neurones commence à s'entraîner.

Finalement, nous arrivons au problème principal que nous n'avons jamais réussi à résoudre et qui est donc la raison pour laquelle nous avons abandonné ce modèle. En effet, même si le code parvenait désormais à se lancer correctement, il plantait maintenant à des étapes aléatoires de l'entraînement du réseau de neurones, parfois après quelques secondes, parfois après quelques dizaines de minutes, mais toujours en renvoyant une grande quantité de messages d'erreur pratiquement incompréhensibles. Malgré de longues et intenses recherches sur de mutliples sites internet et forums, personne ne semblait en mesure de trouver une solution à ce problème. En effet, d'autres utilisateurs rencontraient le même souci mais la solution adoptée au final était toujours la même : changer de modèle, souvent pour passer sur detectron qui possède une documentation beaucoup plus complète, ce que nous avons donc également fait par la suite. Nous avons tout de même réussi à finir un entraînement sans encombre, mais pour y parvenir il a fallu réduire drastiquement le nombre d'epochs afin de limiter la durée de l'entraînement, et à la fin de celui-ci le réseau de neurones n'était pas capable de reconnaître quoi que ce soit sur les images, probablement en raison du manque d'entraînement.

Pour conclure, on peut donc dire que le coeur du problème de l'implémentation utilisée est son manque de popularité dans la communauté du data science. En effet, comme les utilisateurs sont peu nombreux, des erreurs se glissent dans la documentation et passent inaperçues tandis que d'autres problèmes restent à jamais non-résolus car personne ne semble connaître la solution. Nous avons donc choisi d'utiliser par la suite des modèles plus populaires et par conséquent mieux documentés.

6.3 FASTER R-CNN

Le modèle d'apprentissage automatique Faster R-CNN (R-CNN pour "Region-based Convolutional Network") vient à la base du modèle R-CNN, qui a été ensuite amélioré pour

former le modèle Fast R-CNN, qui a lui-même finalement été optimisé pour créer le modèle Faster R-CNN étudié ici. R-CNN, Fast R-CNN et Faster R-CNN sont tous des modèles de traitement de l'image utilisés pour la détection d'objets dans les images. Ils utilisent tous une approche en plusieurs étapes qui consiste à extraire des caractéristiques de l'image à l'aide d'un réseau de neurones convolutionnel (CNN), puis à identifier les régions de l'image qui pourraient contenir des objets à l'aide de la sélection de région d'intérêt (ROI) et enfin à prédire la classe de chaque région sélectionnée et à localiser l'objet dans l'image.

R-CNN est un modèle datant de 2014, dont on peut voir l'article scientifique *ici*. Voici premièrement son architecture en figure 6.1 ci-dessous.

Figure 6.1: Architecture de R-CNN

Comme dit précédemment, il s'agit du modèle original. Il est très performant, mais aussi très lent, car il traite chaque région sélectionnée de manière indépendante et entraîne un modèle de classification séparé pour chaque région.

Fast R-CNN date d'une année plus tard, soit de 2015. On trouve son article scientifique ici et voici son architecture en figure 6.2 ci-dessous.

Figure 6.2: Architecture de Fast R-CNN

Fast R-CNN est ainsi une version améliorée de R-CNN, qui est beaucoup plus rapide. Au lieu de traiter chaque région sélectionnée de manière indépendante, Fast R-CNN utilise un seul modèle de classification pour toutes les régions sélectionnées dans l'image. De plus, il utilise une technique appelée "max pooling régional" pour réduire la dimension des régions sélectionnées avant de les passer au modèle de classification.

Faster R-CNN vient une année plus tard encore, en 2016. *Ici* se trouve son article scientifique, et voici finalement son architecture ci-dessous, en figure 6.3.

Figure 6.3: Architecture de Faster R-CNN

Faster R-CNN est effectivement un modèle encore plus rapide que Fast R-CNN. Il utilise une technique appelée "réseau de proposition de région" (RPN) pour identifier automatiquement les régions de l'image qui pourraient contenir des objets, sans avoir besoin de calculer explicitement toutes les régions de l'image comme le font R-CNN et Fast R-CNN. Cela permet à Faster R-CNN de traiter l'image de manière beaucoup plus rapide et de détecter des objets avec une précision comparable à celle de Fast R-CNN.

Pour des raisons évidentes de rapidité de traitement des images, nous avons donc investigué plus précisément ce dernier modèle - Faster R-CNN - pour notre problème. C'est d'ailleurs ce modèle que nous avons finalement sélectionné pour répondre à la problématique de ce projet, comme mentionné ci-après, en chapitre chapter 7 de ce rapport ("Evaluation"). Pour se faire, nous avons donc du adapter les exemples trouvés sur internet à notre problème, légèrement différent de ces dits exemples. Il a donc fallu assembler différents tutoriels, ce qui a impliqué beaucoup de temps d'analyse et de compréhension. Aussi, nous avons du nous habituer au jargon technique que nous n'avions pas - tel que mAP et les benchmarks coco pour en citer quelques uns. Il a également fallu passer du temps pour comprendre ce qu'était COCO (Common Object in COntext) : une base de données fournie par Microsoft qui contient des images annotées avec des informations sur les objets présents dans chaque imag et qui fourni également un benchmark ; un ensemble de tests et de métriques utilisés pour évaluer les performances des modèles de reconnaissance d'objets et de segmentation d'images.

6.4 RETINA net

Description

RetinaNet est un réseau de neurones convolutionnel utilisé en détection d'objets dans des images. Il a été présenté dans le papier "Focal Loss for Dense Object Detection" de Tsung-Yi Lin et al. en 2017.

Le principe de base de RetinaNet est de prédire des scores de confiance pour chaque classe d'objet à chaque position de l'image, ainsi qu'une boîte englobante pour chaque objet détecté. Pour cela, RetinaNet utilise une architecture de réseau de neurones à deux branches, l'une pour prédire les scores de confiance et l'autre pour prédire les boîtes englobantes.

La particularité de RetinaNet est qu'il utilise une "perte focale" pour lutter contre l'asymétrie des données dans les jeux de données de détection d'objets. Dans ces jeux de données, il y a souvent beaucoup plus de fond (c'est-à-dire des parties de l'image qui ne contiennent pas d'objets) que d'objets détectables. Cette asymétrie peut rendre difficile l'apprentissage pour le modèle, car il y a moins d'exemples d'objets à apprendre. La perte focale atténue cet effet en diminuant la contribution des exemples faciles (c'est-à-dire ceux où l'objet est facilement identifiable) à la perte totale, ce qui permet au modèle de se concentrer davantage sur les exemples difficiles.

Le modèle RetinaNet est souvent utilisé dans les tâches de détection d'objets pour améliorer la précision et réduire le nombre de faux positifs. Il a été largement utilisé dans de nombreuses applications, notamment la reconnaissance de la circulation routière et la reconnaissance de la faune.

En résumé, RetinaNet est un modèle de détection d'objets qui utilise une architecture à deux branches et une perte focale pour améliorer la performance de détection dans les jeux de données asymétriques.

Results

Ce modèle obtient des résultats extrêmement satisfaisants. En effet, il s'agit du modèle qui détecte les crapauds/grenouilles avec la plus grande accuracy. Les résultats précis de ce modèle sont par ailleurs détaillés dans la section "Evaluation" de ce rapport.

6.5 DEtection Transformer (DE-TR)

DETR est un modèle sorti en 2020 qui est extrêmement simple à implémenter et fournit des scores (mAP, IoU etc) sur le dataset COCO qui surpassent ceux des modèles existants de quelques points. C'est pourquoi, en plus de son architecture innovante, nous avons voulu l'essayer. L'architecture, visible en figure 6.4, se base sur un transformer, un modèle de deep learning parut dans le fameux papier de 2017 de Google, Attention is all you need. On peut observer que le modèle commence par générer des features à partir de l'image d'entrée en utilisant une backbone, c'est-à-dire un modèle pré-entrainé visant justement à extraire ces features à l'aide d'un réseau neuronal convolutif. Ensuite, le modèle utilise la partie encodeur du transformer suivi du décodeur et finalement d'un prediction feed-forward networks (FFN). C'est le réseau FFN qui génère les possibles boundings boxes et les classes associées.

Figure 6.4: Architecture de DETR

6.6 Modèles évalués

D'après ces nombreuses recherches, nous avons donc implémenté trois modèles fonctionnels que nous avons pu évaluer sur des données tests :

_

-

Evaluation

7.1 Section1

paragraph1

7.1.1 Features

Dans une tâche d'object detection, nous utilisons le score IoU qui signifie Intersection over Union. C'est un score qui compare les bounding boxes prédites par le modèle avec les bounding boxes réels (ground-truth). Une tâche d'object detection comprend deux sous-problèmes: la classification et la localisation. Ainsi nous avons plusieurs métriques pour analyser la performance d'un modèle. IoU se concentre sur la localisation des bounding box prédites tandis que la métrique mAP (mean Average Precision) se concentre sur la classification.

7.2 Résultats des modèles fonctionnels

Après avoir testé plusieurs approches comme mentionnées dans le chapitre chapter 6

Figure 7.1: Intersection over Union

Comptage

L e comptage des animaux traversant le tunel est la tâche principale pour laquelle ce projet a été mis sur pieds. Maintenant que nous avons des résultats probants pour l'object detection, l'étape suivante consiste en la mise en oeuvre d'une stratégie permettant de compter le nombre de tritons et grenouilles-crapauds traversant le tunnel. Ceci est une tâche assez complexe dans la mesure où une fois les capteurs enclenchés, une longue serie d'images est prise. De ce fait plusieurs images par exemple de tritons à différentes positions peuvent représenter le même triton. Pour pallier cette difficulté, nous avons pensé à regrouper les images par prise. Les prises ont été séparées entre elles par un intervalle de 2s afin de réduire au plus la probabilité de compter plusieurs fois le même animal.

U ne fois les animaux détectés par notre modèle, nous allons procédé au comptage en regroupant les détection par prise. Nous n'allons donc conserver qu'un seul animal de chaque type qui aura été detecté par prise.

8.1 Section1

paragraph1

8.1.1 Features

Conclusion

Ceci est un acronyme k-nearest neighbor