FYP-1 Mid Presentation

Pushto Text To Speech System

Aimen Wadood P180002@nu.edu.pk Muhammad Iftikhar P180054@nu.edu.pk

P180128@nu.edu.pk

Hamza Majeed

Supervisor: Dr. Taimoor Khan

Table of Contents

- 1. Introduction
- 2. Applications
- 3. Literature Review
- 4. Use Case Diagram
- 5. Activity Diagram
- 6. Methadology
- 7. Demo
- 8. Github
- 9. References
- 10.Questions

Introduction

Text to speech systems take input text , dilect and will convert it into desired speech.

• Learning new language.

- Learning new language.
- Used for people with learning disability.

- Learning new language.
- Used for people with learning disability.
- Online Reading.

- Learning new language.
- Used for people with learning disability.
- Online Reading.
- Used by Visually Impaired People.

The Development of Pashto Speech Synthesis System [1]

Problem:

- Articulatory Synthesis.
- Formant Synthesis.

Solution:

Concatenative Synthesis.

Limitations:

The problem of acronyms, abbreviations, and out of vocabulary words are not discussed in this paper.

Deep Pashto Text-to-Speech [2]

Problem:

- Wavenet
- Tactron

Solution:

- Two stage DNN model development.
- Two stage RNN-LSTM.

Limitations:

- The scope of the model is limited to the standard dialect of Pashto language. Other dialects will not be considered.
- Deep learning models require a large amount of data but data was very limited.

Name	Problem	Solution	Limitations
Text to	As in the unit	HMM Base	The problem
Speech	selection base	Model	of acronyms,
System for	synthesis	Synthesis is a	abbreviations,
Urdu	pre-recorded	statistical	and out of
Language [3]	units are	parametric	vocabulary
	combined to	bases speech	words is not
	obtainthe	Synthesis	considered
	speech of	that it stored	very
	given Text	the statistics	efficiently.
	but	rather then	
	development	the waveform.	
	of corpus is		
	very difficult		
	thing.		

Name	Problem	Solution	Limitations
An Arabic	Formant	They have	There was
TTS System	synthesizers,	constructed a	lack of large
Based on the	controlled by	system using	well
IBM	rules, have	a state-of-	discretized
Trainable	the advantage	the-art IBM	and POS
Speech	of small	trainable unit	tagged Arabic
Synthesizer	footprints but	selection	corpus. The
[4]	the	based	database
	synthesized	concatenative	recorded was
	speech	speech	not large
	doesn't sound	synthesizer.	enough.
	natural.		

Name	Problem	Solution	Limitations
Development	Formant and	They have	There was
of An Arabic	concatenative	built a hybrid	lack of large
Text-To-	Synthesizers	model where	well
Speech	have their	the formant	discretized
System [5]	own	and	and POS
	limitations.	concatenative	tagged Arabic
		models have	corpus. The
		been applied	database
		parallel to	recorded was
		phonemes	not large
		where they	enough.
		are most	
		suitable.	

Name	Problem	Solution	Limitations
Glow TTS [6]	Fast Speech	Based on flow	Neural TTS
	and Para Net	based model	(Glow)
	have been	for parallel	models could
	proposed to	TTS, Glow	sometimes
	generate mel-	TTS, do not	synthesize
	spectograms	require any	undesirable
	from text in	external	speech with
	parallel. It	aligner. It	slurry or
	cannot be	models the	wrong pro-
	trained	conditional	nunciations.
	autoregressive	distribution of	
	TTS models	mel-	
	as their	spectrograms.	
	external		
	aligners.	4.0	

Name	Problem	Solution	Limitations
Semi-	Former multi	Unpaired	Not suitable
supervised	speaker TTS	data is	for
Learning for	requires a	accessible	cross-lingual.
Multi-speaker	large amount	Therefore, a	
Text-to-	of paired	semi	
speech	high-quality	supervised	
Synthesis	speech and	training	
Using	text data	TTS,SeqRQ-	
Discrete	which is	AE was	
Speech Rep-	unavailable	introduced. It	
resentation	under low	is trained for	
[7]	resources due	unpaired	
	to expensive	audio-text	
	data	pairs.	
	collection.	4.0	

Name	Problem	Solution	Limitations
Fast Speech:	Slow interface	Through	The parallel
Fast, Robust	speed for mel-	paralle mel-	TTS models
and	spectogram	spectrogram	cannot be
Controllable	generation.	generation,	trained
Text to		Fast Speech	without
Speech [8]		greatly speeds	autoregressive
		up the	TTS models
		synthesis	as their
		process.	external
			aligners.

Name	Problem	Solution	Limitations
Pre-trained	Factorization	An E2E-TTS	It only works
Text	of TTS	system has	on the
Embeddings	systems	two modules:	pre-trained
for Enhanced	allows	A feature	Bert text
Text-to-	training each	generation	embeddings.
Speech	module	module, A	
Synthesis [9]	separately,	waveform	
	but results in	synthesis	
	errors	module. They	
	propagating	proposed two	
	from one	models;	
	component to	subword-level	
	subsequent	model,	
	components.	phrase-level	
		model.	

Use Case Diagram

Activity Diagram

Methadology

References

- Deep Pashto Text-to-Speech, Sarmad HussaiAbdul Rahman Safi, 2019. [1]
- The Development of Pashto Speech Synthesis System ,Muhammad Akbar Ali Khan, Sahibzada Abdur Rehman Abid, Fatima Tuz Zuhra, 2013. [2]
- Text to speech system for urdu language, Sarmad Hussain, 2019. [3]
- An Arabic TTS System Based on the IBM Trainable Speech Synthesizer, Ossama Emam, Amr Youssef, 2004. [4]
- Development of An Arabic Text-To-Speech System, Mustafa Zeki, Othman O. Khalifa, A. W. Naji, 2010.[5]

References

- Glow-TTS: A Generative Flow for Text-to-Speech via Monotonic Alignment Search, Jungil Kong, Sungroh Yoon, Sungwon Kim, Jaehyeon Kim, 2020[6]
- Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis Using Discrete Speech Representation, Tao Tu, Yuan-Jui Chen, Alexander H. Liu, Hung-yi Le, 2020.[7]
- FastSpeech: Fast, Robust and Controllable Text to Speech, Yi Ren, Yangjun Ruan, Xu Tan, 2019 [8]
- Pre-Trained Text Embeddings for Enhanced Text-to-Speech Synthesis Hayashi, Tomoki and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Toshniwal, Shubham and Livescu, Karen 2019. [9]

Questions!!