

Микросхема приемопередатчика интерфейса CAN

5559ИН14АУ, К5559ИН14АУ, К5559ИН14АУК, К5559ИН14АSI 5559ИН14БУ, К5559ИН14БУ, К5559ИН14БУК, К5559ИН14БSI 5559ИН14ВУ, К5559ИН14ВУ, К5559ИН14ВSI К5559ИН14Н4

ГГ/ҮҮ – год выпуска НН/WW – неделя выпуска ТП – технологическая перемычка

Основные характеристики микросхемы:

- Соответствует стандарту ISO 11898-2;
- Напряжение питания от 4,5 до 5,5 В;
- Защита выходов передатчика ± 40 В от короткого замыкания и перегрева для применения в 12/24 В автомобильных и промышленных системах управления
- Быстродействующий дифференциальный приемник с диапазоном входного синфазного напряжения от минус 10 до 10 В;
- Четыре режима работы:
 - режим «Нормальный», максимальная скорость передачи данных до 1 Мбит/с;
 - режим «Контроль скорости нарастания/ спада вы ходного дифференциального напряжения передатчика» для улучшения электромагнитной совместимости, скорость передачи данных от 40 до 500 Кбит/с;
 - режим «Ожидание» с пониженным потреблением;
 - режим «Выключено»;
- Входы TXD, SHDN и nSHDN совместимы с 3,3 В логическими уровнями;
- Рабочий диапазон температур:

Обозначение	Диапазон
5559ИН14А(Б,В)У	минус 60 – 125 °C
К5559ИН14А(Б,В)У	минус 60 – 125 °C
К5559ИН14А(Б,В)УК	0 – 70 °C
К5559ИН14АSI	минус 45 – 125 °C
К5559ИН14БSI	минус 45 – 125 °C
К5559ИH14BSI	минус 45 – 125 °C

Тип корпуса:

- для микросхем 5559ИН14А(Б,В)У, К5559ИН14А(Б,В)У и К5559ИН14А(Б,В)УК -8-выводной металлокерамический корпус H02.8-1B;
- микросхемы К5559ИН14ASI функциональный аналог микросхемы 5559ИН14AУ в 8-выводном пластиковом корпусе SO-8;
- микросхемы K5559ИH14БSI функциональный аналог микросхемы 5559ИH14БУ в 8-выводном пластиковом корпусе SO-8;
- микросхемы К5559ИН14BSI функциональный аналог микросхемы 5559ИН14ВУ в 8-выводном пластиковом корпусе SO-8;
- микросхемы К5559ИН14Н4 поставляются в бескорпусном исполнении.

1 Общее описание и области применения микросхемы

Микросхемы приемопередатчика интерфейса CAN предназначены для организации полудуплексного канала связи с максимальной скоростью передачи данных до 1 Мбит/с.

Микросхемы доступна в трех исполнениях:

- с выходом опорного напряжения UREF микросхемы 5559ИН14АУ, К5559ИН14АУ, К5559ИН14АУК, К5559ИН14ASI (далее 5559ИН14А);
- с входом управления режимом «Выключено» SHDN микросхемы 5559ИН14БУ, К5559ИН14БУ, К5559ИН14БУ, К5559ИН14БУ, (далее 5559ИН14Б);
- с входом управления режимом «Выключено» nSHDN микросхемы 5559ИН14ВУ, К5559ИН14ВУ, К5559ИН14ВУ, К5559ИН14ВУ, (далее 5559ИН14В).

Основные области применения: автомобильные и промышленные системы управления.

2 Описание выводов

Таблица 1 – Описание выводов

№ вывода в корпусе H02.8-1B	№ вывода в корпусе SO-8	№ контактной площадки кристалла	Условное обозначение	Описание
1	1	1	TXD	Вход передатчика
2	2	2	GND	Общий
3	3	3	Ucc	Питание
4	4	4	RXD	Выход приемника
		7	UREF	Для микросхемы 5559ИН14А Выход источника опорного напряжения
5	5	5	SHDN	Для микросхемы 5559ИН14Б Вход управления режимом «Выключено»
		6	nSHDN	Для микросхемы 5559ИН14В Вход управления режимом «Выключено»
6	6	8	CANL	Вход приемника/выход передатчика низкого уровня
7	7	9	CANH	Вход приемника/выход передатчика высокого уровня
8	8	10	RS	Вход управления режимом работы «Нормальный»/«Ожидание»/«Контроль скорости»

3 Структурные блок-схемы микросхем

Для микросхем 5559ИН14А

Для микросхем 5559ИН14Б

Для микросхем 5559ИН14В

Рисунок 1 – Структурные блок-схемы

Примечание — Все элементы схемы имеют электрическую связь с соответствующими контактными площадками.

4 Указания по применению и эксплуатации

При ремонте аппаратуры и измерении параметров микросхем замену микросхем необходимо проводить только при отключенных источниках питания.

Инструмент для пайки (сварки) и монтажа не должен иметь потенциал, превышающий 0,3 В относительно шины «Общий».

Запрещается подведение каких-либо электрических сигналов (в том числе шин «Питание» и «Общий») к выводу 5 для 5559ИН14А, если он не используется.

Неиспользуемый логический вывод 8 рекомендуется подключить к GND.

Неиспользуемый логический вывод 5 для 5559ИН14Б рекомендуется подключить к шине «Общий».

Неиспользуемый логический вывод 5 для 5559ИН14В рекомендуется подключить к шине «Питание».

Необходимо использовать развязывающий конденсатор номиналом 0,1 мкФ между выводами «Общий» и «Питание». Конденсатор следует располагать как можно ближе к микросхеме.

Технологические перемычки микросхемы в корпусе H02.8-1B следует подключить к выводу «Общий».

5 Описание функционирования микросхем

Микросхемы являются интерфейсными интегральными схемами между CAN контроллером и физической линией передачи данных. Применяется для высокоскоростной дифференциальной передачи данных в соответствии с стандартом ISO 11898-2. Настраиваемая скорость передачи данных до 1 Мбит/с.

5.1 Защита от перенапряжения и электростатического разряда

Выходы передатчика имеют защиту от короткого замыкания на потенциалы до \pm 40 В. Защита от электростатического разряда соответствует уровням HBM = 2 кВ, MM = 200 В. Реализованная защита от перенапряжения выводов CANH/CANL позволяет применять микросхемы в бортовых сетях 12 и 24 В и различных индустриальных приложениях.

5.2 Защита от превышения тока

В схеме передатчика реализовано два механизма защиты:

- ограничение выходного тока;
- защита от перегрева.

В случае короткого замыкания выходов передатчика ток ограничивается значениями IOS CANH и IOS CANL для CANH и CANL соответственно.

Схема защиты от перегрева срабатывает при температуре кристалла около 155 °C и переводит схему передатчика в состояние «Выключено». Гистерезис порога включения порядка 15 °C. Приемник при этом активен.

5.3 Передатчик CAN

Контроллер протокола CAN последовательно передает поток данных на вход передатчика TXD.

Вход ТХD имеет внутреннюю подтяжку к питанию, которая устанавливает на входе передатчика логическую «1». При подаче логической «1» на вход ТХD выходы передатчика CANH/CANL находится в рецессивном состоянии, при котором напряжение $V_{CANH}/V_{CANL} = Vref = VDD/2$ и внутренний импеданс составляет 10 кОм. При подаче низкого логического уровня на выходы ТХD передатчика CANH/CANL создается доминантный уровень на шине. Выходной драйвер содержит источник тока, подключённый к CANH и приемник тока, подключенный к CANL. Таким образом при номинальном напряжении питания напряжение на линии CANH составит 3,5 B, а на линии CANL 1,5 B.

Таблица истинности работы приемопередатчика микросхемы приведена в таблице 2.

Таблица 2 – Таблица истинности работы приемопередатчика САМ

TXD	RS	SHDN (для 5559ИН14Б)	nSHDN (для 5559ИН14В)	CANH	CANL	Состояние линии передачи	RXD
0	U _{RS} < 0,75•U _{CC}	0 или F	1 или F	Высокий уровень	Низкий уровень	Доминантное	0
1 или F	U _{RS} < 0,75∙U _{CC}	0 или F	1 или F	525 кОм к 0,5•U _{cc}	525 кОм к 0,5∙U _{сс}	Рецессивное	1
Х	U _{RS} > 0,75∙U _{CC} или F	0 или F	1 или F	525 кОм к 0,5∙U _{CC}	525 кОм к 0,5∙U _{сс}	Доминантное Рецессивное	0
Х	Х	1	0	Высокий импеданс	Высокий импеданс	Х	1

Обозначения в таблице:

- Х состояние вывода не имеет значения;
- F вывод не подключен:
- 0 низкий логический уровень;
- 1 высокий логический уровень

Передатчик CAN имеет три режима работы:

- режим «Нормальный»;
- режим «Контроль скорости нарастания/спада выходного сигнала»;
- режим «Ожидание».

Выбор режима работы передатчика CAN определяется уровнем сигнала на управляющем выводе RS (см. таблицу 3).

Таблица 3 – Режимы работы передатчика CAN

Состояние входа RS	Режим работы
U _{RS} < 0,3•U _{CC} , R _{RS} = 01.8 кОм	Нормальный
0,4•U _{CC} < U _{RS} < 0,6•U _{CC} , R _{RS} = 24180 кОм	Контроль скорости нарастания/спада выходного сигнала
U _{RS} > 0,75•U _{CC} или не подключен	Ожидание

5.3.1 Режим «Нормальный»

Режим «Нормальный» задается уровнем сигнала на RS в диапазоне от GND до 0,3•Ucc. При этом выходы передатчика переключаются с максимально возможной скоростью для обеспечения передачи данных до 1 Мбит/с.

5.3.2 Режим «Контроль скорости нарастания/спада выходного сигнала»

Режим «Контроль скорости нарастания/спада выходного сигнала» предусмотрен с целью уменьшения уровня электромагнитных помех в линии передачи, а также отражений при неидеально согласованной шине. Для выбора данного режима необходимо подключить резистор между входом RS и потенциалом земли. В этом режиме номинал резистора определяет величину скорости нарастания/спада выходного сигнала. Таким образом обеспечивается стабильная передача информации со скоростью от 40 до 500 Кбит/с.

Величину подключаемого резистора можно рассчитать по формуле

R_{RS} [кОм] = 12000 / Скорость передачи [Кбит/с]. (1)

Зависимость скорости передачи данных от сопротивления приведена в таблице 4.

Таблица	4 – Зависимость скорости	передачи данных от	сопротивления

R _{RS} , KOM	Скорость передачи, Кбит/с
24	500
47	250
100	125
180	62,5

5.3.3 Режим «Ожидание»

Режим «Ожидание» предназначен для снижения энергопотребления в первую очередь при батарейном питании. Микросхема переходит в данный режим при неподключенном выводе RS или, когда потенциал на нем > 0,75•Ucc. В данном режиме передатчик полностью выключается, а приемник остается активным, и его потребление снижается. По этой причине в режиме «Ожидание» приемник работает медленнее, чем в режиме «Нормальный», и первое сообщение (при высоких скоростях передачи) может быть пропущено. При появлении доминантного состояния на линии передачи приемник выдает низкий логический уровень на выходе RXD, сигнализируя микроконтроллеру о необходимости переключения приемопередатчика в режим «Нормальный» (по входу RS).

5.4 Приемник CAN

Выход приемника CAN активен во всех режимах работы схемы. Выходной высокий уровень соответствует рецессивному состоянию на линии передачи, а также режиму «Выключено». Выходной низкий уровень соответствует доминантному состоянию на линии передачи. Дифференциальный порог переключения приемника около 0,7 В и имеет гистерезис порядка 80 мВ. Допустимый диапазон синфазных напряжений для приемника составляет от минус 10 до 10 В.

Приемник рассчитан на прием данных со скоростью до 1 Мбит/с. Приемник имеет входной фильтр, что повышает стойкость приемника к дифференциальным помехам.

5.5 Режим "Выключено" для микросхем **5559ИН14Б**, **5559ИН14В**

При появлении на входе SHDN (для 5559ИН14Б) или nSHDN (для 5559ИН14Б) активного логического уровня приемопередатчик переходит в режим "Выключено" с током потребления не превышающим 30 мкА. В данном режиме схема приемопередатчика полностью выключается и не оказывает влияния на линию передачи. Выход RXD переходит в состояние с высоким логическим уровнем. Вход SHDN/nSHDN имеет внутреннею подтяжку к пассивному логическому уровню. В отсутствии подключения входа SHDN/nSHDN схема приемопередатчика находится в одном из рабочих режимов, заданном входом RS.

Узел CAN сети RRS STBY ⊤сз 5559ИН14В 8 TXD RS TXD CAN CANH GND контроллер 6 U_{CC} CANL 5 nSHDN **RXD** ΕN Узел CAN сети Ŗ_{RS} STBY 5559ИН14Б 8 TXD TXD CAN GND CANH контроллер 6 CANI U_{CC} 5 SHDN **RXD** nEN Узел CAN сети 5559ИН14А 8 TXD TXD CAN GND CANH контроллер 6 CANL U_{CC} 5 UREF RXD _С3

6 Типовая схема включения микросхемы

5559ИН14А (Б, В) – включаемая микросхема;

G1 — источник постоянного напряжения, $U_{CC} = (4,5-5,5)$ В;

C1 - C3 – конденсаторы: C1 = 47 мк $\Phi \pm 10$ %;

 $C2 = 0.1 \text{ MK}\Phi \pm 10 \%$;

 $C3 = 10 \text{ H}\Phi \pm 10 \%$;

 $R1, R2, R_{RS}$ – резисторы, R1 = R2 = 60 Om.

 $R_{RS}^* = 0...2$ кОм - режим «Нормальный»,

 $R_{RS}^* = 24...180 \text{ кОм - режим «Контроль скорости»,}$

 R_{RS}^* >>180 кОм или не подключен – режим

«Ожидание»

Рисунок 2 – Типовая схема включения микросхемы

© АО «ПКК Миландр»

^{* –} Место включения резистора для управления временем нарастания/спада выходного сигнала передатчика.

7 Предельно-допустимые характеристики микросхемы

Таблица 5 – Предельно допустимые и предельные режимы эксплуатации микросхем

	0 9 %		Норма па	араметра	
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно допустимый режим		Предельный режим	
	Бу	не менее	не более	не менее	не более
Напряжение источника питания, В	Ucc	4,5	5,5	минус 0,3	6,0
Входное напряжение высокого уровня, В на выводах: TXD 5559ИН14A TXD, SHDN 5559ИН14B TXD, nSHDN 5559ИН14B	U _{IH}	2,0	Ucc	-	U _{cc} +0,3
Входное напряжение низкого уровня, В на выводах: TXD 5559ИН14A TXD, SHDN 5559ИН14Б TXD, nSHDN 5559ИН14В	U _{IL}	0	0,8	минус 0,3	-
Входное напряжение в режиме «Нормальный», В	U_{l_RS}	0,0	0,3•U _{CC}	минус 0,3	_
Входное напряжение в режиме «Ожидание», В	U _{I_STBY}	0,75∙U _{CC}	Ucc	-	U _{CC} +0,3
Дифференциальное пороговое напряжение приемника, В, при: минус 10 В≤ (U _{O_CANH} , U _{O_CANL}) ≤ 10 В	U _{тн}	0,5	0,9	_	_
Дифференциальное пороговое напряжение приемника, B, при: $U_{RS}=U_{CC}$, минус 10 B≤ (U_{O_CANH},U_{O_CANL}) ≤ 10 B	U _{тн_Sтву}	0,5	0,9	-	-
Входное напряжение, В, по выводам CANH, CANL	U _{CANH} U _{CANL}	минус 10,0	18,0	минус 40	40
Входное синфазное напряжение приемника, В	U _{СМ}	минус 10,0	10,0	-	-
Скорость обмена информации, кбит/с, при: U _{RS} = 0 В	f_{DR}	_	1 000	_	-
Сопротивление нагрузки, Ом	R_L	45	_	_	_
Емкость нагрузки, пФ	C _L	_	100	_	_

Примечание — Не допускается одновременное задание двух предельных режимов.

Стойкость к воздействию статического электричества 2 кВ.

8 Электрические параметры микросхемы

Таблица 6 – Электрические параметры микросхем при приёмке и поставке

Наименование параметра,	ное ение тра	Нор паран	ома метра	тура °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
5559ИН14А, 5559ИН14Б, 5559ИН14В		<u> </u>		
Выходное напряжение высокого уровня приемника, В, при: I _O = минус 1 мА	U_{OH_RXD}	0,8•U _{CC}	Ucc	25, 125, минус 60
Выходное напряжение низкого уровня приемника, В, при: I _O = 1 мА	U_{OL_RXD}	0	0,2•U _{CC}	25, 125, минус 60
Входное напряжение режима контроля скорости нарастания/спада выходного дифференциального напряжения передатчика, В, при: R _{RS} = (24 – 180) кОм	U_{i_SLOPE}	0,4•U _{CC}	0,6•U _{CC}	25, 125, минус 60
Выходное напряжение передатчика, рецессивное состояние, без нагрузки, В	U _{O_CANH_} REC U _{O_CANL_} REC	2,0	3,0	25, 125, минус 60
Выходное напряжение передатчика, доминантное состояние, выход CANH, В	U _{O_CANH_DOM}	2,75	4,5	25, 125, минус 60
Выходное напряжение передатчика, доминантное состояние, выход CANL, В	U _{O_CANL_DOM}	0,5	2,25	25, 125, минус 60
Выходное дифференциальное напряжение передатчика, доминантное состояние, В, при: R_L = 45 Ом, при: R_L = 60 Ом	Uo_diff_dom	1,5	3,0	25, 125, минус 60
Выходное дифференциальное напряжение передатчика, рецессивное состояние, без нагрузки, мВ	$U_{O_DIFF_REC}$	минус 500,0	50,0	25, 125, минус 60
Ток потребления, доминантное состояние, мА, при: U _{TXD} =0 B, U _{RS} =0 B	I _{CC_DOM}	_	60,0	25, 125, минус 60
Ток потребления, рецессивное состояние, мА, при: $U_{TXD} = U_{CC}, \ U_{RS} = 0 \ B$	I _{CC_REC}	-	15,0	25, 125, минус 60
Ток потребления, режим «Ожидание», мА, при: U _{RS} =U _{CC}	I _{CC_STBY}	_	1,0	25, 125, минус 60
Входной ток высокого уровня передатчика, мкА	I _{IH_TXD}	минус 10,0	10,0	25, 125, минус 60
Входной ток низкого уровня передатчика, мкА	I _{IL_TXD}	минус 150,0	минус 10,0	25,

Наименование параметра,	ное эние тра	-	ома иетра	тура
Раменов раметра, раменов обозначение обозначение обозначения		не менее	не более	Температура среды, °С
Ток короткого замыкания выхода приемника, мА, при: $0 \text{ B} < U_0 < U_{\text{CC}}$	I _{OS_RXD}	минус 35,0	35,0	25, 125, минус 60
Входной ток режима «Нормальный», мкА, при: U _{RS} = 0 В	I _{LRS}	минус 500,0	минус 100,0	25, 125, минус 60
Входной ток режима «Ожидание», мкА, при: $U_{RS} = U_{CC}$	I _{I_STBY}	минус 10,0	10,0	25, 125, минус 60
Ток утечки выхода передатчика, рецессивное состояние, без нагрузки, мА, при: минус 40 В ≤ (U _{O_CANH} , U _{O_CANL}) ≤40 В	I _{L_CANH_} REC I _{L_CANL_} REC	минус 5,0	5,0	25, 125, минус 60
Ток короткого замыкания выхода передатчика, доминантное состояние, мА, при: U _{O_CANH} = минус 10 В	I _{OS_CANH}	минус 250,0	минус 50,0	25, 125, минус 60
Ток короткого замыкания выхода передатчика, доминантное состояние, мА, при: U _{O_CANL} =18 В	I _{OS_CANL}	50,0	250,0	25, 125, минус 60
Время задержки распространения передатчика при переходе из рецессивного в доминантное состояние, нс	t _{PHL_TXD}	_	90,0	25, 125, минус 60
Время задержки распространения передатчика при переходе из доминантного в рецессивное состояние, нс	t _{PLH_TXD}	_	150,0	25, 125, минус 60
Время задержки распространения передатчик-приемник при переходе из рецессивного в доминантное состояние, нс	t _{PHL_RXD}	_	160,0	25, 125, минус 60
Время задержки распространения передатчик-приемник при переходе из доминантного в рецессивное состояние, нс	t _{PLH_RXD}	_	200,0	25, 125, минус 60
Время задержки распространения приемника при выключении, нс, при: U _{RS} =U _{CC}	t _{PHL_WAKE}	_	500,0	25, 125, минус 60
Время задержки включения при переходе из режима «Ожидание» в режим «Нормальный» доминантное состояние, мкс	t _{ON_STBY}	_	4,0	25, 125, минус 60
Время нарастания дифференциального выходного напряжения передатчика, нс	t _r	15	80	25, 125, минус 60
Время спада дифференциального выходного напряжения передатчика, нс	t _f	15	80	25, 125, минус 60
5559ИН14А				
Опорное напряжение в режиме «Нормальный», В, при: минус 50 мкА< I _O < 50 мкА	UREF	0,45∙U _{CC}	0,55•Ucc	25, 125, минус 60
Опорное напряжение в режиме «Ожидание», В, при: минус 5 мкА< I _O <5 мкА	U _{REF_STBY}	0,4∙Ucc	0,6•Ucc	25, 125, минус 60

Наименование параметра,	ное эние тра	-	Норма параметра	
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
5559ИН14Б				
Ток потребления, режим «Выключено», мкА, при: U _{SHDN} =U _{CC}	I _{CC_SHDN}	_	10,0	25, 125, минус 60
Входной ток высокого уровня, мкА, вход SHDN,	I _{IH_SHDN}	10,0	150,0	25, 125, минус 60
Входной ток низкого уровня, мкА, вход SHDN	I _{IL_SHDN}	минус 10,0	10,0	25, 125, минус 60
Время задержки включения при переходе из режима «Выключено» в режим «Нормальный» доминантное состояние, мкс	ton_shdn	_	6,0	25, 125, минус 60
5559ИН14В				
Ток потребления, режим «Выключено», мкА, при: U_{nSHDN} =0 В	I _{CC_SHDN}	_	30,0	25, 125, минус 60
Входной ток высокого уровня, мкА, вход nSHDN	I _{IH_nSHDN}	минус 10,0	10,0	25, 125, минус 60
Входной ток низкого уровня, мкА, вход nSHDN	I_{IL_nSHDN}	минус 20,0	минус 1,0	25, 125, минус 60
Время задержки включения при переходе из режима «Выключено» в режим «Нормальный» доминантное состояние, мкс	t _{ON_SHDN}	_	6,0	25, 125, минус 60

Примечания

¹ n – в названии вывода обозначает инверсию.

² Режимы измерения параметров приведены в ТСКЯ.431323.003ТБ4.

9 Электрические параметры микросхемы, контролируемые на общей пластине (бескорпусное исполнение)

Таблица 7 – Электрические параметры микросхемы, контролируемые на общей пластине (бескорпусное исполнение)

		Норма параметра		тура , °C	
Наименование параметра, единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температ среды, ^с	
Ток потребления, мА, доминантное состояние U _{TXD} =0 B, U _{RS} =0 B	I _{CC_DOM}	_	57,0	25	
Ток потребления, мА, рецессивное состояние $U_{TXD} = U_{CC}$, $U_{RS} = 0$ В	I _{CC_REC}	_	14,25	25	
Ток потребления, мА, режим «Ожидание» U _{RS} =U _{CC}	I _{CC_STBY}	_	0,95	25	

10 Типовые зависимости

Рисунок 3 – Зависимость скорости нарастания/ спада выходного дифференциального сигнала от сопротивления нагрузки, при: T= минус 60°C, 25°C, 125°C

Рисунок 4 – Зависимость тока потребления в доминантном состоянии от скорости передачи данных, при: T= минус 60°C, 25°C, 125°C, R_L=60Ом, C_L=100пФ

Рисунок 5 – Зависимость времени задержки распространения передатчика при переходе из рецессивного в доминантное состояние и времени состояние и времени задержки распространения задержки распространения передатчика при переходе из доминантного в рецессивное состояние от температуры

Рисунок 6 – Зависимость времени задержки распространения передатчик-приемник при переходе из рецессивного в доминантное передатчик-приемник при переходе из доминантного в рецессивное состояние от температуры

Рисунок 7 — Зависимость выходного дифференциального напряжения передатчика, доминантное состояние от сопротивления нагрузки

11 Габаритный чертеж микросхемы

Рисунок 8 - Корпус Н02.8-1В

Рисунок 9 – Корпус SO-8

8°max

- 1 Размер контактных площадок (КП) кристалла (100 x 100) мкм. Материал КП AlCu (0,5% Cu).
- 2 Номера КП кристалла, кроме первой, присвоены условно. Расположение КП соответствует топологическому чертежу.
- 3 Координаты КП см. таблицу ниже.
- 4 Толщина кристалла (0,445±0,015) мм.
- 5 Размеры указаны с учетом дорожки реза.
- 6 M маркировка кристалла MLDR16, показана условно.

Рисунок 10 – Кристалл (бескорпусное исполнение)

Таблица 8 – Координаты КП кристалла

№ КП	Обозначили КП	Координаты КП		
III ™	Обозначение КП	X	Υ	
1	TXD	-720,60	-828,00	
2	GND	-310,70	-828,00	
3	U _{cc}	280,70	-828,00	
4	RXD	645,50	-828,00	
5	SHDN	1028,00	-223,50	
6	nSHDN	1028,00	16,10	
7	UREF	1028,00	298,45	
8	CANL	370,60	802,00	
9	CANH	-400,60	802,00	
10	RS	-1028,00	283,15	

12 Информация для заказа

		Г	T =	
Обозначение	Маркировка	Тип корпуса	Температурный диапазон	
5559ИН14АУ	ИН14А	H02.8-1B	минус 60 – 125 °C	
К5559ИН14АУ	КИН14А	H02.8-1B	минус 60 – 125 °C	
К5559ИН14АУК	КИН14А●	H02.8-1B	0 – 70 °C	
К5559ИН14АЅІ	MDRI6601SI	SO-8	минус 45 – 125 °C	
5559ИН14БУ	ИН14Б	H02.8-1B	минус 60 – 125 °C	
К5559ИН14БУ	КИН14Б	H02.8-1B	минус 60 – 125 °C	
К5559ИН14БУК	КИН14Б●	H02.8-1B	0 – 70 °C	
К5559ИН14БSI	MDRI6602SI	SO-8	минус 45 – 125 °C	
5559ИН14ВУ	ИН14В	H02.8-1B	минус 60 – 125 °C	
К5559ИН14ВУ	КИН14В	H02.8-1B	минус 60 – 125 °C	
К5559ИН14ВУК	КИН14В●	H02.8-1B	0 – 70 °C	
К5559ИН14BSI	MDRI6603SI	SO-8	минус 45 – 125 °C	

Примечание:

Микросхемы в бескорпусном исполнении поставляются в виде отдельных кристаллов, получаемых разделением пластины. Микросхемы поставляются в таре (кейсах) без потери ориентации. Маркировка микросхем — К5559ИН14Н4 — наносится на тару.

Микросхемы в корпусе H02.8-1B с приемкой «ВП» маркируются ромбом. Микросхемы с приемкой «ОТК» маркируются буквой «К».

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяе- мых листов
1	29.03.2010	2.1	Корректировка на основании планового	1, 2, 13, 14
			пересмотра документации.	1, 2, 10, 11
2	27.04.2010	2.2	Замена логотипа	1
3	17.05.2010	2.3	Отработка габаритного чертежа	13
4	12.10.2011	2.4	Уточнение наименования микросхем	По тексту
5	23.03.2012	2.5.0	Введена микросхема в бескорпусном исполнении	По тексту
6	14.06.2012	2.5.1	Корректировка текста	1, 2
7	20.12.2012	2.6.0	Введено бескорпусное исполнение КН4	По тексту
8	28.03.2013	2.6.1	Корректировка текста. Устранение ошибок	По тексту
9	26.06.2013	2.7.1	Исправление названия и маркировки	По тексту
			микросхем	
10	07.11.2013	2.8.1	Исправление структурных блок-схем	3
11	02.12.2016	2.9.0	Корректировка на основании планового	По тексту
			пересмотра документации	
12	05.06.2018	2.10.0	Корректировка раздела «Описание	5 – 9
			функционирования микросхем» и типовой	
			схемы включения в соответствии с	
			замечаниями потребителя	