Side Channel Attacks -- Power Analysis

Cybersecurity Specialization
-- Hardware Security

Simple Power Analysis (SPA)

- # Visual examination of graphs of the current used by a device over time to deduce information about data/operation.
 - Variations in power consumption occur as the device performs different operations or input.
 - Oscilloscopes can show the data-induced variations.
 - Frequency filters and averaging functions are used to filter out high-frequency components.
- # Measuring power/current
 - Simple: e.g. read from terminal in smart cards.
 - Equipment: relatively inexpensive, high precision

SPA Features and Variations

- # Directly deduces information (key, round, etc.) from power/current trace
- # Relies on small number of traces during normal execution (high accuracy required/preferred)
- # Needs precise understanding of the crypto algorithm/protocol and its implementation
- # Non-invasive, no trace of attack
- # Passive, but can be more effective with
 - = control of the normal execution
 - fault injection to cause abnormal execution in order to obtain and verify the deduced information

Differential Power Analysis (DPA)

- # Procedure
 - Collect a large amount of power/current waveforms with a scope
 - Build a model or hypothesis about the secret key or information
 - Apply (advanced) data processing methods
 (e.g. hypothesis test) to reveal the key
- # DPA can be performed in any algorithm that has the operation β = $S(\alpha \oplus K)$ where α is known and K is the segment key

DPA Pros and Cons

- # Requirements
 - Need to know the crypto algorithm/protocol under attack
 - Needs a large amount of power traces (this implies that the attack needs to have control of the device for some time)
 - ► Some tools/skills on statistical analysis
- # Advantages
 - No need to know implementation details
 - No need to have accurate traces

DPA: Data Partition & DPA Value

- $\#(M_i, C_i, W_i): i=1, 2, ..., N$
- # Assume that the algorithm performs a known function f
- # Compute $L_i = f(M_i) = L_{i1}L_{i2}...$ for a key K
- # Select a bit position j in Li
- # Data partition
 - $= S_0 = \{(M_i, C_i, W_i): L_{ij} = 0\}$
 - $= S_1 = \{(M_i, C_i, W_i): L_{ij} = 1\}$
- # DPA value calculation:

$$\Delta = \frac{\sum_{w_i \in S_0} w_i}{|S_0|} - \frac{\sum_{w_i \in S_1} w_i}{|S_1|}$$

DPA: Hypothesis Testing

- # If an incorrect K is used
 - "independent" Lij and Cij
 - $\frac{\sum_{w_i \in S_0} w_i}{\mid S_0 \mid} \approx \frac{\sum_{w_i \in S_1} w_i}{\mid S_1 \mid}$
 - DPA \(\Delta \) is close to 0
- # If the correct K is used
 - **=** L_{ij}= C_{ij}
 - $\Delta = \text{average } (0) \text{average} (1)$
 - a peak value in DPA

$$\Delta = \frac{\sum_{w_i \in S_0} w_i}{|S_0|} - \frac{\sum_{w_i \in S_1} w_i}{|S_1|}$$

