Тема 18 винтаксия и семантика на термовете и формулите на предикатного очатане от I ред. Унификация.

Дефинират се синтактигните понятия терм и формула от даден език на предикатного сиятане. Дефинират се понятията унификатор и най-обиз унификатор за множество от термове. Формулира се амгоритем за намиране на най-обих унисфикатор за крайно иножество от термове. Вава се семантика на термовете и формулите в дадена структура за езика. Дока се семантика на термовете и формулите в дадена структура за езика. Доказва се, ге множеството от затворени универсални формули има исдел тогно тогава, когато иножеството от гастните му слугаи е булево изпелнимо.

Език на предикатного снятане от I ред

I Логически символи

— индивидни променливи — Var; хо, хо, то, ... - изброимо много

— булеви (съождителни) вредки — 7, в, V, =>, (=)

— увантори

— за всеобидност — У

— за съще ствуване — З

— поможини символи — 1, (,)

— формално равенство (ако го има в езика) — =

II Нелогически символи

- MH- Go Ha UHGUBUGHUTE KOHUTAHTU - Const

- ин-во на функционалните синвыли - Func; and fe Func #(f)>0 - орност

- MH-BO Ha mpegukarHure cumbosu - Pred; pEPred, #(p)>0

Нека в език на предикатното сиятане от І ред.

del Индуктивна дефиниция за <u>тари</u>:

- индивидните променливи са термове

- индивидните константи са термове

- are $f \in Func_f$, #(f) = n u $T_1,...T_n$ ca repuelle, to $f(T_1,...,T_n)$ couso e repuelle

Var[I] - MH-boro or UHGUBUGHUTE MPOMEHAUBU, year-baugu b TEPMA T

def Dynura от вида $p(T_1,...,T_n)$, евдето $T_1,...,T_n$ си термова, $p \in \text{Red}_{\mathcal{L}}$, #(p) = n норичаме <u>атомарни сформули</u> Ако в езика имане оформално равенство, то и $T_i = T_i$ свизо е атомарна формула.

def za npegurarua opopugua

- атомарните формули са предикатни формули

- aro ψ и ψ са предиканни формули, то и $\neg \psi$, $(\psi \& \psi)$, $(\psi \lor \psi)$, $(\psi => \psi)$ и $(\psi \Leftarrow> \psi)$ сещо са предиканни формули

- aко x е индивидна прошенлива, Ф-предикатна формула, то Ух Ф и Эх Ф също си предикатни формули.

 $\frac{\text{def}}{\text{Субституция}}$ о е країнь кножество от вида $\{\frac{x_1}{x_1}, \dots, \frac{x_n}{x_n}\}$, където x_1, \dots, x_n са разлигни индивидни променливи, x_1, \dots, x_n са термове, като при това за $i=1,\dots,n$ $x_i \neq T_i$

do I flexa $E \times \emptyset$ e иномество от теркове, а σ е субституция. Казвана, ге σ е унофикатор за E, ако всеки път когато $\tau_1, \tau_2 \in E$ $\tau_0 \quad \tau_1 \sigma = \tau_2 \sigma$, $\tau_2 e$. $E\sigma = \{\tau_0 \mid \tau_1 \in E\}$ е едноелешентно иножество.

del Aко за иножество от термове съществува унификатор, казване, те то е унифицируемо

def Hera $E \neq \emptyset$ e unorecibo or ropuelo. Kazbano, re cyócraryaustra σ e naŭ-adus gundurarop za E (4053a E) aro:

- o е унификатор за E

— всеки път когато i е унификатор за E същоствува субституция V_i , такава ге i=0 V_i

Алгоритем за намиране на най-обиз унификатор за крайно мн.во от термове (олгоритем на Ербран)

Hera E- крайно ин. во от термове

С DS(E) (го. Disagreement Set) бележим ин-вого на най-левите разлигия на Е.
За да определим DS(E) първо трябва да намерим най-лявата позиция, на
която не всигки елементи от Е имат един и същ символ. Подигразите,
оставащи от тази позиция до края на израза образуват DS(E)

IDS(E) | \le |E|

Hampunep aro $E = \{g(\frac{f(g(x,x))}{g(x,x)}, z), \tau_0 DS(E) = \{f(g(x,x)), c, x, g(z,x)\}\}$ $g(x, f(y)), g(y,x)\}$ Boog μα αντυριτεία: Κραίνο μεπροζού μου δο στ τορικοδε E. $σ_0 = U$ (νόσ - πραγρατά εγδετυτείνω) , $E_0 = E$, i = 0

DOKATO (UCTUHA)

Aro |Eil=1, TO J= J. OT e HOS 30 E -> Kpai

UHaze

AKO HAMA UNG. MOOM. XEDS(EIT) U repu TEDS(EIT); XX Var[T], TO

Ete e unuchuyupyeno - Kpaū

Uhare usopane non. Xim EDS(Eioi), Time DS(Eioi); XX Var [Tim], nonarame oin = { xim/ tim}, Ein = Eioi; i++ -> uropupame

На всяка отепка от алгоритема елиминраме всигки срещания на някоя от променливите в Е са краен брой. Така след краен брой степки, или ще намерим 404 за Е или алгоритемет ще ни съобщи, те Е не е унифицируемо.

allopustare me jelynn

За i=0 -върдението е в сила. Нека $\theta=\sigma_0$. $\sigma_1\theta=0$. Нека $\theta=\sigma_0$. $\sigma_1\theta=0$. Това може да стане като видим, те действията им върху всяка променнива са едни и същи.

AND $X \neq V$, TO X σ TH θ e congres varo $X\theta$ 3a canoto V, V σ TH θ = $t\theta$. To u varo θ yhurphylipa E σ To u V u t applies var that $DS(E\sigma$ To σ), To θ the spanse σ gas yhurphylipa V u t couso taka, T.e. $t\theta$ = $v\theta$, were the scale of gas governer.

Buecro I(x) numer x #

det fexa $L \in FOL$. Hexa $H \in Spyrrypa$ 3a L.

Oyenka $V \in H$ Hapuzana ysodpaskenhero $V: Var \to H$ T.e. $V(x) \in H$ det Hexa $L \in FOL$, H = Spyrrypa 3a L = V = Syenka. 3a GC = Sph = T or L

def Hera LEFOL, H- orpyrtypa za L u V- oyetika. Sa 60. TepM C or L geopulupane CT-T ha T b d npu oyelikata V. Ako T e TepM CT-T my b CTP. d u oyelika V use a orderszba c $||T||^d[V]$. Deepuluyusta e unggrable -T- ungubugha npou: T=X: $||X||^d[V] = V(X)$

- t - инд. константа: t=c - стойността не зависи от оценката, а само от интерпретацията (т.е. от структурата d): $\|C\|^{\frac{d}{2}}[V] \stackrel{L}{\hookrightarrow} C^{\frac{d}{2}}$

- τ - φημανισ, πρωτονιστα κων μακοικο τερμα - τ = $f(\tau_1,..., \tau_n)$, #(f) = n, f(f) = f(f)

Тази дефиниция е киректни, заради еднознагния синтактитем анализ.

Твърдение Нека V_1 и V_2 со оценки на индивидните променливи в ср. f. Нека T е терм, таков ге $V_1(x) = V_2(x)$ за вс. инд. проч X, която се среща в τ ($x \in Var[T]$). Tora ва $\|T\|^{\frac{1}{2}}[V_1] = \|T\|^{\frac{1}{2}}[V_2]$

 $\frac{dol}{dol}$ Оценка V, нодифицирана в тогка X с α : $V_{\alpha}^{*}[y] = \begin{cases} \alpha, & y=x \\ V(y), & y\neq x \end{cases}$

def Нека f - структура, V-оченка в нея, φ - предикатна формула. Стойност на φ при оценката V стбелязваме с $\|\varphi\|^d [V]$

- Ψ= p(T1,..., Tn) - ατοκαρμα φ. 1α

||p(T1,..., tn)|| ||V] & < ||T1|| ||V] > ε p +

- $\Psi = 7\Psi$, κεgero Ψ e πρεσίικατη φορμηνα $\Pi = 7\Psi\Pi^{\frac{1}{2}}[V] = \Pi_{\frac{1}{2}}[V]$

- φ = (ψ, σ ψ), κεgero ψ, ψ npeg- φ-14, α σε {8, v, =>, <=>}

 11 ψ, σ ψ 11 ^A[v] + Hσ (11 ψ, 11 ½[v])
- $-\varphi = \forall x \cdot \psi$, $x u + g \cdot n po u$, $\psi n peg \cdot c p \cdot n a$ $|| \forall x \cdot \psi ||^{A}[V] = 3a bc even a ∈ A e β cuxa <math>|| \psi ||^{A}[V_{a}^{x}] = V$

Тоердоние Нека φ - предикатна формула, θ - структура, V_1 и V_2 - суснки. Ако $V_4(x)=V_2(x)$ за вымите всяка променлива $x\in Var^{free}[\varphi]$, то $\|\varphi\|^{4}[V_1]=\|\varphi\|^{4}[V_2]$

def Kazbane, τε οφοραγία ε zarbopeta ακο Var free [φ] = Ø
def Υποθερεατία εφοραγία μαροσαπε φοραγία στ βασα

 $\frac{det}{\forall x_1, \forall x_n \psi}$, regero ψ e dezubationa

def Нека Ψ е затворена универсанна фирмула: Ψ = Ψ ×1... Ψ × Ψ Ψ Ψ - Sеукванторна. Формули от вида $\Psi'[X'_{T_1},...,X''_{T_n}]$ където $T_1,...,T_n$ са затворени термове, в наригане затворен гастен слугай на Ψ . Бележим с $CSi(\Psi)$. Ако $T_1,...,T_n$ не S-ха затворени, щахме да имаме само гастни слугаи – $Si(\Psi)$.

des terra le ezur or I pez u una notre egita unique bugita rottor. 3a egita crp. et reglane, re e Epôpatiba, aro:

- A= Jd -затврени термове (ико термовете не са затворени, то структурата е свойодно Ербранова структура)

 $-C^{H}=C$ $-\int_{0}^{1}(T_{1},...,T_{n})=\int_{0}^{1}(T_{1},...,T_{n})$ $\int_{0}^{1}(T_{1},...,T_{n})=\int_{0}^{1}(T_{1},...,T_{n})$ $\int_{0}^{1}(T_{1},...,T_{n})=\int_{0}^{1}(T_{1},...,T_{n})$

Твердение 1 нена език в е без формално равенство. Те мн-во от затворени уни версилни оформули. Следните са емви волентни:

1) ина свободна ербранова отруктура, за която А Б Si(Г)

2) Si(T) e Syrebo uznanjuno

Твордение Z Aко A е свободна ербранива структура и Γ е ин-во от $A \models \Gamma \iff A \models Si(\Gamma)$

Теорени Неки Т е множество от затворени универсални оформули. Нека Г е език без сформално равенство. Тогава Г ими подел тогно Тогава, котато Si(T) е булево изпълнимо.

2) Нека Γ има модел, τ е. има структура $A: A \models \Gamma$. Нека V - произволна оченка B A. Ще докажен, ге $A \not\models Si(\Gamma)$

Hera $\theta \in Si(\Gamma)$ e npouzbonha ϕ -na. Toraba $\theta = \psi[\chi_1, \dots \chi_{r}]$ u $\forall \chi_1, \dots \forall \chi \psi = \psi \in \Gamma$ T.e. $\theta \in \mathcal{G}$ e garb. Eacreti chyzaŭ ha ψ npu repuele \mathcal{G} and erbough npomethalburo χ_1, \dots, χ_n .

Избираме п Нови променливи, които не се срещат в $\{x_1,...,x_n\}$ ими в $T_1,...,T_n$. Нека ги бележин с $x_1,...,x_n$ и допустимата замяна $\{p[x/\tau]\}$ е в сила 3нием, те за ср-лата $\{x,y,u\}$ и допустимата замяна $\{p[x/\tau]\}$ е в сила

= \frac{1}{2} \psi \fra

Нека за краткост Ф'= Ф [х/х/, х/х/, х/х/, Прилагане горного нистократно:

Д = ∀х/, ... ∀хп' Ф'

→ A F +x2 +xn 4[x1/21]

→ A = +x3... +xn' \$\psi \[\times_1 \] \[\times_2 \] \[\times_2 \]

→ A = \(\psi \[\times \frac{1}{\cappa_2} \frac{\times \cappa_2}{\cappa_2} \] \(\times \frac{\times \cappa_2}{\cappa_2} \] \(\times \frac{\times \cappa_2}{\cappa_2} \]

T.e. A & U[x/2,..., x/2][x/2,]...[x/2n]

-- A = φ[x/2,... x/2n] = O = a. A = θ

Обхазажне, те произволна ф. ла от Si(T) е вярча в A при произволна вуенка V в A, следователно $A \not\models Si(T)$ и по Tв 1 Si(T) е булево изпълнимо

AHONORUZHO C RUPHIOTO POZCZDIOGENNE, NUNYZOBOLHE, ZE A FIGH SI(T)