MA1521 Finals Cheatsheet v1.2 (2017-12-03) by Julius Putra Tanu Setiaji, page 1 of 2

# Trigo Formulae

- $\sin^2 \theta + \cos^2 \theta = 1$ ,  $\sin 2\theta = 2 \sin \theta \cos \theta$
- $sin(A \pm B) = sin A cos B \pm sin B cos A$
- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$ ,  $\tan 2\theta = \frac{2 \tan \theta}{1 \tan^2 \theta}$
- $\cos 2\theta = \cos^2 \theta \sin^2 \theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta$
- $\sin P + \sin Q = 2 \sin \frac{1}{2} (P + Q) \cos \frac{1}{2} (P Q)$
- $\sin P \sin Q = 2\cos\frac{1}{2}(P+Q)\sin\frac{1}{2}(P-Q)$
- $\cos P + \cos Q = 2\cos\frac{1}{2}(P+Q)\cos\frac{1}{2}(P-Q)$ •  $\cos P - \cos Q = -2\sin\frac{1}{2}(P+Q)\sin\frac{1}{2}(P-Q)$
- $a^2 = b^2 + c^2 2bc\cos\theta$  and  $\frac{a}{\sin a} = \frac{b}{\sin b}$

### 2 Functions and Limits **Existence of Limits**

 $\lim_{x \to \infty} f(x)$  only exists when:

- $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$  (limit from left = right)
- For  $a = \infty$  or  $-\infty$ , only if f(x) does not oscillate

### Rules of Limits

- 1.  $\lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- 2.  $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- 3.  $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$  provided  $\lim_{x \to a} g(x) \neq 0$
- 4.  $\lim_{x \to a} k f(x) = k \lim_{x \to a} f(x)$

f is continuous at point  $a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$ 

### L'Hôpital's Rule Suppose:

- 1. f and g are differentiable
- 2. f(a) = g(a) = 0
- 3.  $g'(x) \neq 0$  for all  $x \in I \setminus a$

Then  $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ 

- Use L'Hôpital's Rule for <sup>0</sup>/<sub>0</sub> and <sup>∞</sup>/<sub>∞</sub> forms.
- Common:  $\lim_{x \to \frac{\pi^{-}}{2}} (\sin x)^{\tan x} = \lim_{x \to \frac{\pi^{-}}{2}} e^{\ln(\sin x)^{\tan x}}$

(now in  $\frac{0}{0}$  form)

- 1. Convert  $0 \cdot \infty$ ,  $\infty \infty$  by algebra manip
- 2. Convert  $1^{\infty}$ ,  $\infty^0$ ,  $0^0$  by first taking  $\ln$

# 3 Derivative

The derivative of f at point a is  $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ , denoted by f'(a) provided the limit exists.  $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \frac{dy}{dx} \Big|_{x = a}$ 

f'(a) = slope of tangent at pt a

### Some properties

- f'(a) exists  $\Rightarrow f(x)$  is smooth (:: continuous) at a
- f'(a) does not exist at **discontinuity**, corner, and vertical

Since derivative is limit, if  $\lim_{n \to \infty} f(a) = 2nd$  Derivative Test:

### Formulae

| Function    | Deriva              |                           |
|-------------|---------------------|---------------------------|
| $(f(x))^n$  | nf'(x)f(x)          | $(x)^{n-1}$               |
| $\sin f(x)$ | $f'(x)\cos$         | f(x)                      |
| $\cos f(x)$ | $-f'(x)\sin x$      |                           |
| $\tan f(x)$ | $f'(x)\sec^2$       |                           |
| $\cot f(x)$ | $-f'(x)\cos \theta$ | $e^2 f(x)$                |
| $\sec f(x)$ | $f'(x)\sec f(x)$    | ) $tan f(x)$              |
| $\csc f(x)$ | $-f'(x)\csc f(x)$   |                           |
| $a^f(x)$    | $f'(x)a^{f(x)}$     | <sup>c)</sup> ln <i>a</i> |
|             |                     | Functio                   |
| Function    | Derivative          | . 1                       |
| 7           |                     | $\sin^{-1} f$             |

| Eum ation     | Domirrotirro              | Function         | Derivative                       |
|---------------|---------------------------|------------------|----------------------------------|
| Function      | Derivative                | · -1 c( )        | f'(x)                            |
| k             | 0                         | $\sin^{-1} f(x)$ |                                  |
| $e^f(x)$      | $f'(x)e^{f(x)}$           | ·<br>            | $\sqrt{1-f(x)^2}$                |
| $\log_a f(x)$ | $\frac{f'(x)}{f(x)\ln a}$ | $\cos^{-1} f(x)$ | $-\frac{f'(x)}{\sqrt{1-g(x)^2}}$ |
|               | 01()                      |                  | $\sqrt{1-f(x)^2}$                |
| $\ln f(x)$    | $\frac{f'(x)}{f(x)}$      | $\tan^{-1} f(x)$ | $\frac{f'(x)}{1+f(x)^2}$         |
|               |                           |                  | $1+\int (x)^2$                   |
|               |                           |                  |                                  |

### Rules of Differentiation

- (kf)'(x) = kf'(x)
- $(f \pm g)'(x) = f'(x) \pm g'(x)$
- $\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$
- $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$
- $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$  or  $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$

## Parametric Differentiation

Given  $\begin{cases} y = u(t) \\ x = v(t) \end{cases}$ , we have  $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ 

Second derivative

 $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  then do implicit differentiation w.r.t x

**Polar equation**  $(r = a\theta)$ :  $x = r\cos\theta$ ,  $y = r\sin\theta$ 

# mplicit Differentiation

Differentiate w.r.t. to var, then multiply by  $\frac{d < \text{var}>}{dx}$  Common:  $y = x^x \iff \ln y = x \ln x$ 

### **Higher Order Derivatives**

The *n*-th derivative is denoted by  $\frac{d^n y}{dx^n}$  or  $f^{(n)}(x)$ 

**Maxima and Minima** • f(c) is Local Maximum if  $f(c) \ge f(x)$  for x near c

f(c) is Local Minimum if  $f(c) \le f(x)$  for x near c

f(c) is abs maximum if  $f(c) \ge f(x) \forall x \in domain$ 

f(c) is abs minimum if  $f(c) \le f(x) \forall x \in \text{domain}$ 

Critical Point

Let f be a function with domain D. An interior point (not end-point) c in D is called a **Critical Point** of f if f'(c) = 0of f'(c) does not exist. Method to find extreme values of f:

Check critical points of f, end-points of domain D

# Method to Find Local Extreme values

A function may not have a local extreme at a critical pt. Check using 1st/2nd derivative tests.

1st Derivative Test: Assume  $c \in (a, b)$  is a critical point of f

- Function 1. f'(x) > 0 for  $x \in (a, c)$  and f'(x) < 0 for  $x \in (c, b)$ , then tan² xdx is a **local maximum**  $\int \sec x dx$
- 2. f'(x) < 0 for  $x \in (a, c)$  and f'(x) > 0 for  $x \in (c, b)$ , then f'(x) < 0is a local minimum

 $f'(c) = 0 \begin{cases} f''(c) < 0 \iff f \text{ has local max at } c \\ f''(c) > 0 \iff f \text{ has local min at } c \end{cases}$ 

Note: if f'(c) = 0 and f''(c) = 0 then 2nd derivative te fails. Use 1st derivative test.

# Method to Find Absolute Extreme Values

- 1. Find all critical points *c* in the interior
- 2. Evaluate f(c), where c is a critical or end point
- 3. The largest and smallest of these values will be abs max & min respectively

# **Increasing and Decreasing Functions**

Test for Monotonic Functions (f : I (interval)  $\rightarrow \mathbb{R}$ ):

- f'(x) > 0 for any x in  $I \Rightarrow f$  is **increasing** on I
- f'(x) < 0 for any x in  $I \Rightarrow f$  is **decreasing** on I

# Concativity

 $\int f''(x) < 0 \Leftrightarrow f'(x)$  is decreasing  $\Leftrightarrow$  Concave Down  $\int f''(x) > 0 \Leftrightarrow f'(x)$  is increasing  $\Leftrightarrow$  Concave Up

### Points of Inflection

Let  $f: I \to \mathbb{Z}$  and  $c \in I$ .

Let  $f: I \to \mathbb{Z}$  and  $c \in I$ . c is a pt of inflection of f if f is continuous at c and the concavity of f changes at c.  $\int_a^b F'(x)dx = \int_a^b f(x)dx = F(b) - F(a)$  x' Let f be continuous on [a, b]. Then concavity of f changes at c. In another word: c is pt of inflection  $\rightarrow f''(c) = 0$  (but not  $\left| \frac{d}{dx} \int_a^x f(t) dt = f(x) \right|$ 

the reverse – c is a pt of inflection only if f''(c) crosses from Note the 2 x's: on  $\frac{d}{dx}$  and  $\int_a^x$  and f(t) is indep of x

(+) to (-) and vice versa.) 4 Integration

# Indefinite Integral

Denoted by  $\int f(x)dx = F(x) + C$ 

### **Geometrical Interpretation** All curves y = F(x) + C s.t. their slopes at x are f(x)

# Rules of Indefinite Integration

- 1.  $\int k f(x) dx = k \int f(x) dx$
- 2.  $\int -f(x)dx = -\int f(x)dx$
- 3.  $\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$

## Integral Formulae

 $\int \frac{1}{x} dx$ 

 $\sin kx dx$ 

cos kxdx

tan xdx

| 1 difetion              | integral         |
|-------------------------|------------------|
| $\int \cot x dx$        | $ln(\sin x) + C$ |
| $\int \sec x \tan x dx$ | $\sec x + C$     |
| $\int \csc x \cot x dx$ | $\csc x + C$     |
| $\int \sec^2 x dx$      | $\tan x + C$     |
| $\int \csc^2 x dx$      | $-\cot x + C$    |
| _                       | 11 1             |

| $\int x^n dx$                        | $\frac{x^{n+1}}{n+1} + C, n \neq -1, n$ rational   |
|--------------------------------------|----------------------------------------------------|
| $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ | $\sin^{-1}(\frac{x}{a}) + C$                       |
| $\int \frac{1}{a^2 + x^2} dx$        | $\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C$ |
|                                      | 0                                                  |

 $\int 1dx = \int dx$  $\int e^x dx$  $e^x + C$ 

 $a^{x}dx$  $\ln x dx$  $x \ln x - x + C$ 

 $\ln x + C$ 

 $-\frac{\cos kx}{\cos kx} + C$ 

 $\frac{\sin kx}{L} + C$ 

 $\ln(\sec x) + C$  or  $-\ln(\sec x) + C$ 

5 Series

**Geometric Series** 

 $\sum_{r=1}^{\infty} ar^{n-1} = \frac{1}{1-r}$  if |r| < 1, diverges otherwise

# Riemann (Definite) Integrals

 $\csc x dx$ 

Riemann sum on f on  $[a,b] \approx \sum_{k=1}^{n} f(c_k) \Delta x$ 

Integral

 $\tan x - x + C$ 

 $\ln(\sec x + \tan x) + C$ 

 $\ln(\csc x - \cot x) + C$ 

Exact area =  $\lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x$ Riemann Integral of f over [a, b]:

 $\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x$ 

# **Rules of Definite Integrals**

- 1.  $\int_a^a f(x)dx = 0$ ,  $\int_a^b kf(x)dx = k \int_a^b f(x)dx$
- 2.  $\int_{a}^{b} f(x)dx = -\int_{a}^{a} f(x)dx$
- 3.  $\int_{a}^{b} [f(x) \pm g(x)] = \int_{a}^{b} f(x) \pm \int_{a}^{b} g(x)$
- 4. If  $f(x) \ge g(x)$  on [a, b], then  $\int_a^b f(x)dx \ge \int_a^b g(x)dx$ If  $f(x) \ge 0$  on [a, b], then  $\int_a^b f(x) dx \ge 0$
- 5. If f is continuous on the interval joining a, b and c, then  $\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$

# Fundamental Thm of Calculus

F'(x) = f(x) If F is an antiderivative of f on [a,b], then

$$\int_{a}^{b} F'(x)dx = \int_{a}^{b} f(x)dx = F(b) - F(a)$$

1. 
$$\frac{d}{dx} \int_0^2 t^2 dt = 0, \frac{d}{dx} \int_0^x \sin \sqrt{t} dt = \sin \sqrt{x}$$

2. 
$$\frac{d}{dx} \left( \int_{1}^{x^{4}} \frac{t}{\sqrt{t^{3}+2}} dt \right) = \frac{d}{dx^{4}} \left( \int_{1}^{x^{4}} \frac{t}{\sqrt{t^{3}+2}} dt \right) \frac{dx^{4}}{dx}$$
$$= \frac{x^{4}}{\sqrt{(x^{4})^{3}+2}} (4x^{3}) = \frac{4x^{7}}{\sqrt{x^{1}}^{2}+2}$$

- 3.  $\frac{d}{dx} \int_{x}^{a} f(t)dt = -\frac{d}{dx} \int_{a}^{x} f(t)dt$
- 4.  $\frac{d}{dx} \int_{x^2}^{x^4} f(t) dt = \frac{d}{dx} \int_{a}^{x^4} f(t) dt \frac{d}{dx} \int_{a}^{x^2} f(t) dt$

# Integration Methods

# Integration by Substitution: Use the form $\int f(g(x))dg(x)$ OR use a dummy variable to

get to a form in the Integral Formulae (taking into account chain rule)

| Integral    | Sub                 | Use identity                        |
|-------------|---------------------|-------------------------------------|
| $a^2 - u^2$ | $u = a \sin \theta$ | $1 - \sin^2 \theta = \cos^2 \theta$ |
| $a^2 + u^2$ | $u = a \tan \theta$ | $1 + \tan^2 \theta = \sec^2 \theta$ |
| $u^2 - a^2$ | $u = a \sec \theta$ | $sec^2\theta - 1 = tan^2\theta$     |

# Integration by Part: $\int uv'dx = uv - \int u'vdx$

Choose u by LIATE (Logarithmic, Inverse trigo, Algebraic, Trigo, Exponential)

# Area between 2 curves $A = \int_{a}^{b} (g(x) - f(x)) dx$ provided g(x) is above f(x)

Volume of a solid Volume (around x-axis) =  $\int_{a}^{b} \pi y^{2} dx$ 

 $\sum_{r=1}^{n} ar^{n-1} = a \frac{1-r^n}{1-r}$ 

MA1521 Finals Cheatsheet v1.2 (2017-12-03) by Julius Putra Tanu Setiaji, page 2 of 2

$$\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n$$
,  $\sum (ka_n) = k \sum a_n$   
Ratio Test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho, \text{ the series} \begin{cases} \text{converges if} & \rho < 1\\ \text{diverges if} & \rho > 1\\ \text{no conclusion if} & \rho = 1 \end{cases}$$

# $\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \text{diverges} & 0 \le p \le 1\\ \text{converges} & p > 1 \end{cases}$

Radius of convergence (R)
Use the Ratio Test to find range of convergence of Power Series about 
$$x = a$$
,  $\sum_{n=0}^{\infty} c_n (x-a)^n$ 
Use the Ratio Test to find range of convergence of Power of parallellogram =  $||v_1 \times v_2|| = ||v_1|| ||v_2|| \sin \theta$ 

- 1. R = 0, converges only at a
- 2. R = h, converges in (a h, a + h) but diverges outside
- 3.  $R = \infty$ , converges at every x

Let 
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
,  $a-h < x < a+h$  where h is Radius Chain Rule of Convergence, then for  $a-h < x < a+h$ ,  $dz = \frac{\partial z}{\partial z}$ ,  $dz = \frac{\partial z}{\partial z}$ 

of Convergence, then for 
$$a - h < x < a + h$$
,  
 $f'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} (c_n(x - a)^n) = \sum_{n=1}^{\infty} n c_n(x - a)^{n-1}$ 

$$f''(x) = \sum_{n=0}^{\infty} \frac{d}{dx} (c_n(x-a)^n) = \sum_{n=1}^{\infty} nc_n(x-a)^n$$

$$f''(x) = \sum_{n=1}^{\infty} nc_n \frac{d}{dx} (x-a)^{n-1} = \sum_{n=2}^{\infty} n(n-1)c_n(x-a)^{n-2}$$

$$\int_0^x f(x)dx = \int_0^x \sum_{n=0}^\infty c_n(x-a)^n = \sum_{n=0}^\infty c_n \frac{(x-a)^{n+1}}{n+1}$$
The radius of convergence is  $h$  after diff and integ

Taylor Series of f at a

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$
  
MacLaurin Series

# Taylor series of f at 0, i.e. $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$

# List of common MacLaurin Series

1. 
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, -1 < x < 1, R = 1$$

2. 
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, -1 < x < 1, R = 1$$

3. 
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} x^2 n, -1 < x < 1, R = 1$$

4. 
$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, -1 < x < 1, R = 1$$

5. 
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, -\infty < x < \infty, R = \infty$$

6. 
$$\cos x = \sum_{n=1}^{\infty} \frac{(-1)^n x^2 n}{(2n)!}, -\infty < x < \infty, R = \infty$$

7. 
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, -\infty < x < \infty, R = \infty$$

8. 
$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, -1 \le x \le 1, R = 1$$

9. 
$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}, -1 < x < 1, R = 1$$

0. 
$$\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1)x^{n-2}, -1 < x < 1, R = 1$$

1. 
$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n, -1 < x < 1, R = 1$$

2. 
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots, -1 < x$$

# **Taylor Polynomials**

The n-th order Taylor Polynomial of f at a

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

 $P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k$  It gives a good polynomial approxn of order n

Taylor's Theorem

**Taylor's Theorem** 
$$f(x) = P_n(x) + R_n(x)$$
 where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \text{ for } a < c < x.$$

 $R_n(x)$  is remainder of order n or error term

# 6 Vector

# **Dot Product**

$$v_{1} = \begin{pmatrix} x_{1} \\ y_{1} \\ z_{1} \end{pmatrix}, v_{2} = \begin{pmatrix} x_{2} \\ y_{2} \\ z_{2} \end{pmatrix}, v_{1} \cdot v_{2} = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}$$

$$\cos \theta = \frac{v_{1} \cdot v_{2}}{\|y_{1}\| \|y_{2}\|}, \text{ Projection of } b \text{ onto } a = \frac{b \cdot a}{\|z_{0}\|^{2}} a$$

Commut, assoc, distr, and 
$$v_1 \cdot v_1 = ||v_1||^2$$

# Cross Product $v_1 \times v_2 = (y_1 z_2 - y_2 z_1)\mathbf{i} - (x_1 z_2 - x_2 z_1)\mathbf{j} + (x_1 y_2 - x_2 y_1)\mathbf{k}$ Area Hyperbolic Functions

Distr, assoc, but 
$$v_1 \times v_2 = -v_2 \times v_1$$
 and  $v_1 \times v_1 = O$ 
7 Functions of Several Variables
Partial Derivatives

of 
$$z = f(x, y)$$
 w.r.t.  $x$  is denoted by  $\frac{\partial z}{\partial x}\Big|_{(a,b)}$  or  $f_X(a,b)$   
Method: Fix the other variable (Note:  $f_{Xy} = f_{yx}$ )

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} \text{ AND } \frac{dw}{dt} = \frac{\partial w}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial w}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial w}{\partial z} \cdot \frac{dz}{dt}$$



 $f_x(a, b)$  is rate of change of f along direction of x-axis Directional derivative of f at (a,b) in direction of unit vector 3. 2 complex roots (a+ib):  $y=e^{ax}(c_1\cos bx+c_2\sin bx)$ 

$$u = u_1 \mathbf{i} + u_2 \mathbf{j} \text{ is } D_u f(a, b) = f_x(a, b) u_1 + f_y(a, b) u_2$$
  
or  $D_u f(a, b, c) = f_x(a, b, c) u_1 + f_y(a, b, c) u_2 + f_z(a, b, c) u_3$ 

 $df = D_u f(a,b) \cdot dt$  (normal · multiplication) measures change Malthusian Population Growth in f(df) when we move a small distance dt, and u is the unit directional vector of the change and (a,b) is the original  $N(t) = N(0)e^{kt}$  where k = B - D. Conditions:

# **Gradient Vector**

Denoted by  $\nabla f = f_x \mathbf{i} + f_v \mathbf{j}$  where

$$\nabla f(a,b) \cdot u = D_u f(a,b) = ||\nabla f(a,b)|| \cos \theta$$
  
 $D_u f(a,b) > 0$  and max when  $\cos \theta = 1 \iff \theta = 0^\circ$ 

# $D_u f(a, b) < 0$ and min when $\cos \theta = -1 \iff \theta = 180^\circ$

Critical Points - First Derivative Test has a local max or min at  $(a,b) \wedge f_x$  exists  $\wedge f_v$  exists  $f_x = 0 \land f_v = 0$  (But not the converse)

# Second Derivative Test Disriminant = $f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^2$

1. 
$$D > 0 \land f_{xx}(a,b) > 0 \rightarrow f$$
 has a local min at  $(a,b)$ 

2. 
$$D > 0 \land f_{xx}(a,b) < 0 \rightarrow f$$
 has a local max at  $(a,b)$ 

3. 
$$D < 0 \rightarrow f$$
 has a saddle-point at  $(a, b)$   
4.  $D = 0 \rightarrow$  no conclusion

# Ordinary Differential Equation (ODE)

No Crossing Principle: solution curves do not cross each

There is only 1 soln for initial value problem with 1st order population stabilises at  $\frac{B}{S}$ ODE. Intersection point of 2 curves is the initial pt.

1. 
$$\frac{dy}{dx} = \frac{M(x)}{N(y)} \iff \int M(x)dx = \int N(y)dy$$
  
2.  $y' = f(\frac{y}{x}) \Leftrightarrow \text{Let } v = \frac{y}{x}, f(v) = y' \Leftrightarrow \frac{dv}{f(v)-v} = \frac{dx}{x}$ 

3. 
$$y' = \frac{ax+by+c}{a_1x+b_1y+c_1} \Leftrightarrow \text{Let } u = ax+by$$

4.  $\frac{dy}{dx} + p(x)y = Q(x) \Leftrightarrow ye^{\int p(x)dx} = \int Q(x)e^{\int p(x)dx}dx$ 5. Bernoulli eqn  $y' + p(x)y = q(x)y^n \Leftrightarrow$ 

Let  $z = y^{1-n} \Leftrightarrow z' + (1-n)p(x)z = (1-n)q(x)$ 

# Radioactive decay: $\frac{dx}{dt} = kx$ , $x(t) = x(0)e^{-\frac{\ln 2}{\tau}t}$

Uranium-Thorium:  $\frac{T}{U} = \frac{k_U}{k_T - k_{IJ}} (1 - e^{-(k_T - k_U)t}) k_N = \frac{\ln 2}{\tau_N}$ Cooling/Heating:  $\int \frac{dT}{T-T_0} = \int k dt, T(t) - T_0 = (T(0) - T_0)e^{kt}$ 

Retarded fall: 
$$m\frac{dv}{dt} = mg - bv^2$$
,  
 $v = k\frac{1+ce^{-pt}}{1-ce^{-pt}}, k^2 = \frac{mg}{b}, c = \frac{v(0)-k}{v(0)+k}, p = \frac{2kb}{m}$ 

# $\cosh x = \frac{e^x + e^{-x}}{2}$ , $\sinh x = \frac{e^x + e^{-x}}{2}$ , $\tanh x = \frac{\sinh x}{\cosh x} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$

Form: 
$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = F(x)$$
  
homogeneous  $\Leftrightarrow F(x) = 0$ , else non-homogeneous

Homogeneous 2nd order linear ODE Linearly dependent  $\Leftrightarrow \forall x \exists c \text{ s.t. } u(x) = cv(x)$ 

 $y_1, y_2$  are lin. indep. solns  $\Rightarrow$  a general soln is  $y = c_1 y_1 + c_2 y_2$  $y_1, y_2$  are NOT lin. indep. solns  $\Rightarrow y = c_1y_1 + c_2y_2$  is a soln

$$\frac{d^2y}{dx^2} + A\frac{dy}{dx} + By = 0 \text{ has the trivial soln } y = 0 \text{ and non-trivial soln: Let } y = e^{\lambda x}, \text{ solve } \lambda^2 + A\lambda + B = 0, \text{ general soln is: (PS: Reverse is } A = -(\lambda_1 + \lambda_2), B = \lambda_1 \lambda_2)$$

- 1. 2 real roots:  $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$ 2. 1 real root:  $y = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$
- 9 Mathematical Modelling (B = birth rate, D = death

- 1. k > 0 (B > D): popn explosion  $(e^{kt} \to \infty, N(t) \to \infty)$  as  $t \to \infty$
- 2. k = 0 (B = D): stable (N(t) = N(0) for all t)
- 3.  $k < 0 \ (B < D)$ : extinction  $(e^{kt} \to 0, N(t) \to 0 \text{ as } t \to \infty)$

# Logistic Growth Model



Eqn: 
$$\frac{dN}{dt} = (B-D)N, N(0) = \hat{N}, N_{\infty} = \frac{B}{s}$$
  
 $\frac{dN}{dt} = (B-D)N = (B-sN)N = BN - sN^2$  where s is a small

number compared to B.
$$\frac{dN}{dt} = 0 \text{ when } N \approx \frac{B}{s} \text{ (population stops growing)}$$

$$N(t) = \frac{B}{s + \left(\frac{B}{N_0} - s\right)e^{-Bt}} = \frac{N_{\infty}}{1 + \left(\frac{N_{\infty}}{N_0} - 1\right)e^{-Bt}}$$
$$\lim N(t) = \frac{B}{s}$$

Case 1:  $B - sN(t) > 0 \ \forall t$  (Popn < sustainable popn) Logistic curve increasing

Logistic curve decreasing

Population constant at N(0)

# Harvesting

 $\frac{dN}{dt} = BN - sN^2 - E$  where E is fish caught per year. **DO NOT ATTEMPT TO SOLVE THE ODE.** They will just

Case 2: B - sN(t) < 0 at all t (Popn > sustainable popn)

Case 3: B - sN(t) = 0 at all t (At sustainable popn)

ask to draw graph. Method:

- 1. Let  $F(N) = \frac{dN}{dt} = -sN^2 + BN E$
- 2. Discriminant =  $B^2 4(-s)(-E) = B^2 4sE$
- (a) D < 0: No equiblirium soln (Popn is decreasing to Note: -s < 0, shape is  $\cap$ ,  $F(N) \neq 0$



(b) D > 0: 2 equilibrium solns Solve F(N) for  $\beta_1$ ,  $\beta_2$  where  $\beta_1 < \beta_2 < \frac{B}{c}$ 

There are 3 possible cases:



 $\frac{B}{S} = \beta_1 + \beta_2, \frac{E}{S} = \beta_1 \beta_2$  $\beta_2$  is stable (N(0) slightly diff from  $\beta_2$ , popn will still tend to  $\beta_2$ ).  $\beta_1$  is not stable (N(0) slightly diff from  $\beta_1$ will not tend to  $\beta_1$ )

(c) D = 0: 1 equilibrium solns



Suppose  $N(0) > \frac{B}{2s}$  then max. harvesting w/o extinction  $E = \frac{B^2}{4}$ 

This constant  $\frac{B}{s}$  is called carrying capacity, sustainable PS: more precise curves, follow the original logistic growth population, or logistic equilibrium population. Or that the model graph (S-shaped) increasing: gentle-steep-gentle, decreasing: steep-gentle-steep

# **Additional Notes**

- If the question is in powers above 2, e.g.  $\frac{dN}{dt} = aN^4 +$  $bN^3 + cN^2 + dN + e$ , the same rule about the graph still applies: the stable populations are the solutions to  $aN^4$  +  $bN^3 + cN^2 + dN + e = 0$
- If there is no harvesting, then N = 0 is also a solution.