El On se propose de démontrer que dans un triangle rectangle, la médiane isse de l'angle droit est de longueur égale à la moitié de l'hypoténuse. Considérons un triangle ABCrectangle en C et soit O le milieu de [AB].

a. Montrez que $\overrightarrow{CO}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{\overset{2}{A}B}.$ **b.** En déduire que $CO=\frac{\overset{2}{A}B}{2}.$

Soit ABC un triangle tel que AB=5, AC=8 et BC=6.

a. Calculez $\overline{AB} \cdot \overline{AC}$.

b. Soit I le milieu de $\left[BC\right]$. Montrez que $2\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{AC}$.

 ${\tt c.}$ En déduire AI.

d. Soit J le milieu de [AC]. Calculez de même

e. Soit K le milieu de [AB]. Calculez de même

Dans chacun des cas suivants, calculez $\overline{AB}\cdot \overline{AC}$.

a. AB=4, AC=5, $\widehat{BAC}=30^{\circ}$

b. AB = 4, AC = 6, $\widehat{BAC} = \frac{\pi}{3}$ c. AB = 6, AC = 7, $\widehat{BAC} = \frac{3\pi}{4}$ d. AB = 9, AC = 12, $\widehat{BAC} = \frac{143\pi}{3}$

E4 Dans chacun des cas suivants, déterminez une mesure de l'angle \overline{BAC} comprise entre 0 et

a. AB=3, AC=2, $\overrightarrow{AB}\cdot\overrightarrow{AC}=3\sqrt{2}$

b. AB=3, AC=5, $\overrightarrow{AB} \cdot \overrightarrow{AC}=-7.5$

c. AB=3, AC=9, $\overrightarrow{AB}\cdot\overrightarrow{AC}=-\frac{27\sqrt{3}}{2}$

lacksquare Soit ABC un trangle équilatéral tel que AB=5. Calculez $AB \cdot AC$.

lacksquare Soit ABC un trangle isocèle en A tel que AB=5 et $\widehat{BAC}=120^\circ$.

a. Calculez $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

b. Calculez $\overrightarrow{BA} \cdot \overrightarrow{BC}$ en utilisant $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$.

c. Montrez que $BC=5\sqrt{3}$.

lacksquare Soit ABCD un carré de côté $4\,\mathrm{cm}$ et de centre O. Soit I le milieu de [AB].

a. Calculez $\overrightarrow{AB} \cdot \overrightarrow{AC}$ de deux façons.

b. Calculez $\overrightarrow{OI} \cdot \overrightarrow{OC}$.

Soit ABCD un losange de côté $6\,\mathrm{cm}$ et de centre O tel que $\widehat{ABC}=30^\circ$.

a. Calculez $\overrightarrow{BA} \cdot \overrightarrow{BC}$.

b. Calculez $\overrightarrow{AB} \cdot \overrightarrow{AD}$.

c. Montrez que $AC=6\sqrt{2-\sqrt{3}}$.

d. En déduire $\overrightarrow{AB} \cdot \overrightarrow{AC} = 18(2 - \sqrt{3})$.

e. Déterminez une mesure de l'angle \widehat{BAC} en

f. Montrez que $cos\left(rac{5\pi}{12}
ight)=rac{\sqrt{2-\sqrt{3}}}{2}$.

Soit ABC un triangle tel que AB=4, BC=8 et $\widehat{ABC}=60\,^\circ$. Démontrez que ABC est un triangle rectangle.

ElO Soit ABC un triangle tel que AB=7, $AC=7\sqrt{3}$ et $\widehat{BAC}=30\,{}^{\circ}$. Démontrez que ABC est un triangle isocèle.

E11 Soit ABC un triangle tel que $AB = \sqrt{2}$, $AC=\sqrt{10}$ et BC=2. Déterminez une mesure de l'angle \overline{ABC} .

E12 Soit ABC un triangle tel que $a=BC=\sqrt(3)\,,\,\,\widehat{ABC}=rac{\pi}{6}\,$ et $\widehat{ACB}=rac{\pi}{4}\,.$

a. Montrez que $b^2-c^2=3-3c$.

b. Montrez que $b^2-c^2=\sqrt{6}b-3$.

c. En déduire $b=\frac{6-3c}{\sqrt{6}}$

d. Remplacez b dans l'équation $b^2-c^2=3-3c$ et résoudre l'équation obtenue en $c.\,$

e. Montrez que $b=\frac{3-\sqrt{3}}{\sqrt{2}}$.

f. En déduire $\cos\left(\frac{7\pi}{12}\right)^2 = \frac{1-\sqrt{3}}{2\sqrt{2}}$.