

Expanded Real-World Audio Attacks for Robustness Testing

To ensure the SoundSafe watermarking model is resilient to real-world conditions, the attack simulator must incorporate a comprehensive set of audio distortions beyond the initial ten attacks. Here's an expanded list of attack types, categorized for clarity:

I. Common Signal Processing Attacks (Beyond Initial List)

- Dynamic Range Compression (DRC):
 - Reduces the dynamic range of audio, affecting the watermark's intensity.
 - Include different types of compression (limiting, expansion).
- Clipping:
 - Distortion caused by signal exceeding the maximum amplitude.
 - Simulate varying levels of clipping.
- De-Essing:
 - Specific dynamic range compression targeting sibilant sounds.
 - Test how it affects watermark encoded in high frequencies.
- · Phasing/Flanging:
 - Creates a swirling effect with delayed signal versions.
 - Vary delay and intensity.
- Chorus/Reverb:
 - Smears the watermark by creating multiple sound copies.
 - Simulate different room environments.
- Pitch Shifting:
 - Alters the pitch of the audio.
 - Impact watermarks dependent on specific frequency ranges
- Time Stretching (More Advanced):
 - More complex time stretching algorithms than the existing one
- Equalization (EQ):
 - Alters the frequency balance of audio.
 - Simulate a variety of equalization curves.
- Noise Gates:
 - Removes low-amplitude signals
 - Test for impact on watermarks placed on low amplitude portions of audio

II. Format and Encoding Attacks

- Different Lossy Codecs:
 - Test with AAC, Ogg Vorbis, WMA, in addition to MP3.
 - These codecs each affect audio and watermarks differently.
- Lossless to Lossy Conversion (And Vice Versa):
 - Convert lossless formats (WAV, FLAC) to lossy and back to introduce compression artifacts.
- Bit Depth Conversion:
 - Decreasing or increasing the bit depth to test for the effect of quantization
- Dithering
 - o Technique used to reduce quantization noise

III. Environmental and Real-World Attacks

- Background Noise:
 - Add realistic ambient noises (traffic, speech, music) to mask the watermark.
- Acoustic Transmission/Recording:
 - Simulate microphone differences and room reverberation.
- Over-the-Air Transmission:
 - Simulate wireless transmission distortions (packet loss, interference).
- Acoustic Interference:
 - Simulate overlapping sounds
- Electro-Magnetic Interference (EMI):
 - Simulate distortion caused by EMI

IV. Malicious Attacks

- Watermark Removal/Evasion Techniques:
 - Research and simulate attacks that bypass watermarks.
- Copy and Paste:
 - Copying segments of audio to replace watermark with another audio segment
- Signal Inversion:
 - Inverting the phase of an audio signal
- Stretching and Cutting:
- Removing segments of audio and reassembling.
- Collusion Attacks:
 - Simulate combining multiple watermarked copies to remove the watermark.

V. Combined Attacks

- Sequential Application of Attacks:
 - Apply multiple attacks in a sequence to simulate compounding distortions.
- Randomized Attack Chains:
 - Randomly generate sequences of different attack types and intensities.

Implementation Guidelines

- Prioritize: Implement the most common and impactful attacks first.
- Incremental Implementation: Gradually add new attacks, testing after each addition.

 Parameter Variation: Use a wide range of intensity levels for each attack.
- 3.
- 4.
- Randomization: Randomize attack order and intensity during training.

 Analysis: Track the Bit Error Rate (BER) on the validation set after adding a new attack type to assess its effect. 5.
- Real-World Testing: Validate the simulator performance with real-world recordings and devices.

Integration into DevOps Process:

- Attack Implementation: Add code modules for new attacks into the attack simulator.
- CI/CD Pipeline Update: Include these attacks in the training pipeline.
- Monitoring: Monitor training performance after each added attack.
- Report and Analyze: Track how added attacks are impacting watermarking performance.