

Mass spectrometry-based proteomics recap

Figures created in BioRender.com

How do we link MS2 spectra back to the original proteins?

Proteomics search engines replicate the LC-MS steps in silico

Key elements to successful peptide spectrum identification?

Key elements to successful peptide spectrum identification?

Key elements to successful peptide spectrum identification?

Triangle of successful peptide identification

Proteogenomics
Metaproteomics
Immunopeptidomics

•••

novel (but challenging) proteomics workflows

Machine learning can generate a dynamically optimized scoring function, tailored to each data set

MS²PIP brings a more realistic view on peptide fragmentation to PSM scoring

MS²PIP brings a more realistic view on peptide fragmentation to PSM scoring

MS²PIP-predicted spectrum

observed spectrum

Nearly the whole LC-MS workflow can be modeled

Machine learning-based information can be passed to Percolator for improved rescoring

Machine learning-based information can be passed to Percolator for improved rescoring

Rescoring with MS²PIP: Ana S C. Silva et al. (2019) Bioinformatics. doi:10.1093/bioinformatics/btz383 DeepLC: Robbin Bouwmeester et al. (2021) Nature Methods. doi:10.1038/s41592-021-01301-5 MS²Rescore: Arthur Declercq, [...] Ralf Gabriels (2021) bioRxiv. doi:10.1101/2021.11.02.466886

Intermezzo: Explaining FDR/identification rate plots

MS²Rescore in proteogenomics: Higher ID rate, at a 10-fold lower FDR threshold

Nanopore RNA-seq:

- Extended search space
- Human HCT116 cells
- HCD orbitrap acquisition

MS²Rescore in proteogenomics: Higher ID rate, at a 10-fold lower FDR threshold

MS²Rescore in metaproteomics: From 0 to 20 000 identified spectra

iPRG 2020 study:

- 4 microbial mixes, with unknown sequences
- Extremely large search space
- CID ion trap acquisition

Manuscript in preparation 17

MS²Rescore in metaproteomics: From 0 to 20 000 identified spectra

Manuscript in preparation 18

MS²Rescore in immunopeptidomics: +46% spectrum identification rate

Immunopeptidomics:

- non-specific cleavage
- peptides with low ionization and fragmentation efficiency

MS²Rescore in immunopeptidomics: +36% unique identified peptides

MS²Rescore in immunopeptidomics: +36% unique identified peptides

MS²Rescore in immunopeptidomics: Recovery of low-abundance peptides

In challenging experimental workflows, machine learning can rescue peptide identification rates

MS²Rescore is freely available on GitHub as a Python package, or as an easy-to-install GUI

@compomics www.compomics.com

@RalfGabriels

