Lab04-Matroid

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou. * Name:Zirui Liu Student ID:519021910343 Email: L.prime@sjtu.edu.cn

1. Property of Matroid.

(a) Consider an arbitrary undirected graph G = (V, E). Let us define $M_G = (S, C)$ where S = E and $C = \{I \subseteq E \mid (V, E \setminus I) \text{ is connected}\}$. Prove that M_G is a **matroid**.

Proof. To prove that M_G is a matroid, it has to satisfy those three conditions. For the first, S = E, and obviously S is not empty. For the second, since $(V, E \setminus I)$ is connected, so (V, E) must be connected too. Since adding more edges to a graph that is already connected would not make it disconnected, for any $B \in C$, and $A \subseteq B$, we have $A \in C$. For the third, for any $A \in C$, $B \in C$, $A \in C$, $B \in C$, $A \in C$, similar to the way we prove the second condition, since C can be defined as "the power set featuring all the edges as elements, for $X \in B - A$, we can always have $A \cup \{X\} \in C$. So in conclusion, M_G is a **matroid**.

(b) Given a set A containing n real numbers, and you are allowed to choose k numbers from A. The bigger the sum of the chosen numbers is, the better. What is your algorithm to choose? Prove its correctness using **matroid**.

Remark: Denote \mathbf{C} be the collection of all subsets of A that contains no more than k elements. Try to prove (A, \mathbf{C}) is a matroid.

Solution. The solution is as following: We sorted the n numbers, then we choose from them from the biggest to the smallest until we have chosen k numbers. These k numbers are those we wish to find. Next I will prove the correctness of the greedy algorithm.

We suppose that M = (U, F) is a weighted matrioid and that U is sorted into monotonically decreasing order. We also assume that $\omega(x)$ represents the weight of element x. Then we let x to be the biggest element of U such that $\{x\} \in F$. If any such x exists, then there exists an optimal subset A of U containing x, thus the optimizism of the greedy algorithm can be proved. The proof is as following.

If no such x exists, then the only independent subset is the empty set like $(F = \{\emptyset\})$ then the question is meaningless. We assume that F contains another non-empty optimal subset B, then there exists two possibilities: $x \in B$ or $x \notin B$. In the first case, we can simply make A = B to prove the correctness. In the second case, we assume that $x \notin B$. Then we assume there exists $y \in B$ so that $\omega(y) > \omega(x)$. Since $y \in B$ and $B \in F$ so we can get $\{y\} \in F$. If $\omega(y) > \omega(x)$, then y would be the first element of U, making a contradiction with our original assumption.

So, $\forall y \in B, \omega(x) \geq \omega(y)$. We can now construct a set $A \in F$ such that $x \in A, |A| = |B|$, and $\omega(A) \geq \omega(B)$. We then use the second characteristic of **Matroid**, we can always find an element of B to add to A without destructing the independence. We can repeat this process until we get |A| = |B|. Then by construction we have $A = B - \{y\} \cup \{x\}$ for $y \in B$. Then since $\omega(A) \geq \omega(B)$, we have $\omega(A) = \omega(B) - \omega(y) + \omega(x) \geq \omega(B)$. Since B is optimal, then A containing x is also optimal. So the correctness of our algorithm is proved.

- 2. Unit-time Task Scheduling Problem. Consider the instance of the Unit-time Task Scheduling Problem given in class.
 - (a) Each penalty ω_i is replaced by $80 \omega_i$. The modified instance is given in Tab. ??. Give the final schedule and the optimal penalty of the new instance using Greedy-MAX.

Table 1: Task

a_i	1	2	3	4	5	6	7
d_i	4	2	4	3	1	4	6
ω_i	10	20	30	40	50	60	70

Solution. The optimal penalty is 30 for the following schedule: $a_5 \Rightarrow a_6 \Rightarrow a_4 \Rightarrow a_3 \Rightarrow a_7 \Rightarrow a_2 \Rightarrow a_1$

(b) Show how to determine in time O(|A|) whether or not a given set A of tasks is independent. (**Hint**: You can use the lemma of equivalence given in class)

Solution. To determine in time O(|A|) whether or not a given set A of tasks is independent, we can use the lemma of equivalence. That is to say, we need to prove that the tasks in A are scheduled in order of monotonically increasing deadlines. So what we have to do is to check if all the tasks in A whether their deadline time is in monotonically increasing order or not. On the other hand, we can solver the problem by using the lemma: set A is independent if and only if for any t = 0, 1, 2, ...n, $N_t(A) \leq t$. The pseudo code is as fol-

Algorithm 1:

Input: An array $a[1, \dots, n]$

Output: a bool value, indicating A is independent or not.

3. MAX-3DM. Let X, Y, Z be three sets. We say two triples (x_1, y_1, z_1) and (x_2, y_2, z_2) in $X \times Y \times Z$ are disjoint if $x_1 \neq x_2$, $y_1 \neq y_2$, and $z_1 \neq z_2$. Consider the following problem:

Definition 1 (MAX-3DM). Given three disjoint sets X, Y, Z and a non-negative weight function $c(\cdot)$ on all triples in $X \times Y \times Z$, **Maximum 3-Dimensional Matching** (MAX-3DM) is to find a collection \mathcal{F} of disjoint triples with maximum total weight.

- (a) Let $D = X \times Y \times Z$. Define independent sets for MAX-3DM.
- (b) Write a greedy algorithm based on Greedy-MAX in the form of pseudo code.
- (c) Give a counter-example to show that your Greedy-MAX algorithm in Q. ?? is not optimal.
- (d) Show that: $\max_{F\subseteq D}\frac{v(F)}{u(F)}\leq 3$. (Hint: you may need Theorem ?? for this subquestion.)

```
Solution. (1):
```

We define that: $\forall (x_i, y_i, z_i) \ and (x_j, y_j, z_j) \in \mathcal{F}, (x_i, y_i, z_i) \ and (x_j, y_j, z_j)$ are disjoint. Then we have this \mathcal{F} to be independent. (2):

We define (x_i, y_i, z_i) as a_i

Algorithm 2:

Input: An array $a[1, \dots, n]$

Output: An array A, indicating the result we want.

- 1 sort \mathcal{F} by c in non-increasing order;
- $\mathbf{2} \ A \leftarrow \varnothing;$
- 3 for $i \leftarrow 1$ to n do
- $\begin{array}{c|c}
 \mathbf{4} & \mathbf{if} \ A \cup \{a_i\} \in \mathcal{F} \ \mathbf{then} \\
 \mathbf{5} & A \leftarrow A \cup \{d_i\};
 \end{array}$
- $\mathbf{6}$ return A

(3):

We give that: $a_1 = (x_1, y_1, z_1) = (a, b, c)$, having the weight of 10. $a_2 = (x_2, y_2, z_2) = (a, e, f)$, having the weight of 9. $a_3 = (x_3, y_3, z_3) = (g, b, k)$, having the weight of 8. for any other a_i , their total weight combined is less than 5. By the greedy algorithm we should choose a_1 since it has the largest weight, but the best solution is choosing a_1 , (whether we consider other elements does not matter), but the best choice is choosing a_2 and a_3 .

(4):

According to *Theorem*1, we can transform the question to proving that (E, \mathcal{I}_i) for i = 1, 2, 3 are **matroids**. We start by constructing three sets for \mathcal{I}_i .

 \mathcal{I}_1 : $\forall (x_i, y_i, z_i) \ and (x_j, y_j, z_j) \in E, \ x_i \neq x_j$.

 \mathcal{I}_2 : $\forall (x_i, y_i, z_i) \ and (x_j, y_j, z_j) \in E, \ y_i \neq y_j$.

 \mathcal{I}_3 : $\forall (x_i, y_i, z_i) \ and (x_j, y_j, z_j) \in E, \ z_i \neq z_j$.

And $\mathbf{I} = \bigcap_{i=1}^k \mathcal{I}_i$.

Heredity:

It is easy to understand that the heredity can always be satisfied.

Exchange Property:

For $A, B \subseteq \mathcal{I}_1$, |A| < |B|, there exist $a_i = (x_i, y_i, z_i) \in B - A$, considering that \mathcal{I}_1 : $\forall (x_i, y_i, z_i) \text{ and } (x_j, y_j, z_j) \in E, x_i \neq x_j, \text{ so } \forall (x_j, y_j, z_j) \in A, x_i \neq x_j, \text{ so } A \cup \{a_i\} \in \mathcal{I}_1$. Thus the exchange property for (E, \mathcal{I}_1) is proved. The same as (E, \mathcal{I}_2) and (E, \mathcal{I}_3) by using y_i and z_i . So in conclusion, (E, \mathcal{I}_i) for i = 1, 2, 3 are **matroids**, so $\max_{F \subseteq D} \frac{v(F)}{u(F)} \leq 3$.

Theorem 1. Suppose an independent system (E, \mathcal{I}) is the intersection of k matroids (E, \mathcal{I}_i) , $1 \leq i \leq k$; that is, $\mathcal{I} = \bigcap_{i=1}^k \mathcal{I}_i$. Then $\max_{F \subseteq E} \frac{v(F)}{u(F)} \leq k$, where v(F) is the maximum size of independent subset in F and u(F) is the minimum size of maximal independent subset in F.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.