Suspension Control Report

1 Quarter Car Model

Derivation of Equations of Motion

Figure 1: Quarter Car Model

· Euler Lagrange Formulation

Total Kinetic Energy $(T) = \frac{1}{2} m_s \ddot{z}_s^2 + \frac{1}{2} m_u \ddot{z}_u^2$ Total Potential Energy $(V) = \frac{1}{2} K_s (z_s - z_u)^2 + \frac{1}{2} K_t (z_u - z_r)^2$ Total Dissipation Energy $(D) = \frac{1}{2} b_s (z_s - z_u)^2$

Euler Lagrange Equation

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial \dot{q}_i} + \frac{\partial V}{\partial \dot{q}_i} + \frac{\partial D}{\partial \dot{q}_i} = F_{\text{ent}};$$

For qi = Zs

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{z}_{s}}\right) - \frac{\partial T}{\partial z_{s}} + \frac{\partial V}{\partial z_{s}} + \frac{\partial D}{\partial \dot{z}_{s}} = f_{a}$$

$$M_s \ddot{z}_s + b_s (\ddot{z}_s - \ddot{z}_u) + K_s (z_s - z_u) = Fa$$

For qi = Zu

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{z}_{u}}\right) - \frac{\partial T}{\partial z_{u}} + \frac{\partial V}{\partial z_{u}} + \frac{\partial D}{\partial \dot{z}_{u}} = -F_{q}$$

· Newton Euler Formulation

For
$$M_s$$
 $\sum F_z = M_s \ddot{z}_s$

For My ZFz = My Zu

$$Mu\ddot{z}u = -Fa - K_t(z_u - z_r) + bs(\dot{z}_s - \dot{z}_u) + K_s(z_s - z_u)$$

$$\begin{bmatrix} M_{S} & D \\ O & M_{U} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{z}}_{S} \\ -D_{S} & D_{S} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{z}}_{U} \\ -D_{S} & D_{S} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{z}}_{U} \\ -K_{S} & K_{S} + K_{t} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{U} \\ \mathbf{z}_{U} \end{bmatrix} = \begin{bmatrix} O \\ K_{t} \end{bmatrix} \mathbf{z}_{T} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} F_{a}$$

$$\dot{\chi}_{2} = \frac{F_{a}}{M_{s}} - \frac{K_{s}}{M_{s}} \chi_{1} - \frac{b_{s}}{M_{s}} \chi_{2} + \frac{b_{s}}{M_{s}} \chi_{4}$$

$$\dot{\chi}_3 = \chi_4 - \dot{z}_{\nu}$$

$$\dot{\chi}_4 = -\frac{F_a}{M_u} + \frac{K_s}{M_u} \chi_1 + \frac{b_s}{M_u} \chi_2 - \frac{K_t}{M_u} \chi_3 - \frac{b_s}{M_u} \chi_4$$

Rewriting in state space form

Where,

$$\chi(t) = \begin{bmatrix} \chi_1(t) \\ \chi_2(t) \\ \chi_3(t) \\ \chi_4(t) \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & -1 \\ -\frac{Ks}{Ms} & -\frac{bs}{Ms} & 0 & \frac{bs}{Ms} \\ 0 & 0 & 0 & 1 \\ \frac{Ks}{Mu} & \frac{bs}{Mu} & -\frac{kt}{Mu} & \frac{bs}{Mu} \end{bmatrix}$$

$$\dot{\chi}(t) = A \chi(t) + \dot{b} Fa(t) + \dot{l} \dot{z}_{r}(t)$$

Taking Laplace Transform both sides

Taking zero initial conditions and zero input

 $SX(s) = A X(s) + L Z(\dot{z}_{r}(t))$
 $(SI-A) X(s) = \dot{b} L(\dot{z}_{r}(t))$
 $\chi(s) = (sI-A)^{-1} \dot{b} L(\dot{z}_{r}(t)) \longrightarrow 0$

i) Acceleration transfer function:
$$Ta(s) = L(\ddot{z}s(t))$$

 $L(\dot{z}r(t))$
Taking dot product with [0 1 0 0] on both sides
in (1) and solving

$$Ta(s) = \frac{K_{t} s (b_{s} s + K_{s})}{m_{u}m_{s} s^{4} + (m_{u} + m_{s}) b_{s} s^{3} + (m_{u}K_{s} + m_{s}K_{s} + m_{s}K_{t}) s^{2} + b_{s}K_{t} s + K_{s}K_{t}}$$

ii) Rattle space transfer function:
$$Tr(s) = L(z_s(t) - z_u(t))$$

L($z_r(t)$)

Taking dot product with [1 0 0 0] on both sides

in (1) and solving

$$T_{r}(s) = \frac{-K_{t} m_{s} S}{m_{u} m_{s} S^{t} + (m_{u} + m_{s}) b_{s} S^{3} + (m_{u} K_{s} + m_{s} K_{t} + m_{s} K_{t}) S^{2} + b_{s} K_{t} S + K_{s} K_{t}}$$

ii) Tyre deflection transfer function:
$$T_{t}(s) = L(z_{u}(t) - z_{r}(t))$$

$$L(z_{r}(t))$$

Taking dot product with [0 0 10] on both cides in (1) and solving

$$T_{t}(s) = - \left[m_{u} m_{s} s^{3} + \left(m_{u} + m_{s} \right) b_{s} s^{2} + \left(m_{u} + m_{s} \right) k_{s} s \right]$$

$$m_{u} m_{s} s^{4} + \left(m_{u} + m_{s} \right) b_{s} s^{3} + \left(m_{u} k_{s} + m_{s} k_{s} + m_{s} k_{t} \right) s^{2} + b_{s} k_{t} s + k_{s} k_{t}$$

$$\begin{bmatrix} m_1 & o \\ o & m_u \end{bmatrix} \begin{bmatrix} \dot{z}_s \\ \dot{z}_u \end{bmatrix} + \begin{bmatrix} b_s & -b_s \\ -b_s & b_s \end{bmatrix} \begin{bmatrix} \dot{z}_s \\ \dot{z}_u \end{bmatrix} + \begin{bmatrix} k_s & -k_s \\ -k_s & k_s + k_t \end{bmatrix} \begin{bmatrix} z_s \\ z_u \end{bmatrix} = \begin{bmatrix} o \\ k_t \end{bmatrix} z_r + \begin{bmatrix} 1 \\ -1 \end{bmatrix} F_a$$

$$M = \begin{bmatrix} m_s & o \\ o & m_u \end{bmatrix} \qquad K = \begin{bmatrix} K_s & -K_s \\ -K_s & K_s + K_t \end{bmatrix}$$

Let w be the natural frequency of the system w satisfies

$$\det \left(\underbrace{Mw^{2} - K} \right) = 0$$

$$\det \left(\underbrace{\left[m_{s}w^{2} - K_{s} \right]}_{K_{s}} \right) = 0$$

mums w+ + (-msks-mskt-muks)w+ + kskt = 0

$$w_2 = 6.7373$$
 rad s⁻¹

Bode Plots of Transfer Functions

Figure 2: Transfer Functions

Transfer Function	Gm	Pm
	(dB)	(degrees)
$T_a(s)$	Inf	5.6149
$T_r(s)$	2.6823	Inf
$T_t(s)$	20.3474	Inf

- The resonant frequencies of all the three transfer function are close to 7 rad/s and 60 rad/s
- Acceleration is amplified of inputs of frequency range 10 rad/s to 100 rad/s

Effect of Suspension Stiffness

Figure 3: Effect of Suspension Stiffness

	Kt = 10000 N/m		Kt = 15000 N/m		Kt = 20000 N/m	
Transfer Functions	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)
Ta(s) Tr(s) Tt(s)	Inf 2.7814 19.4032	8.3985 Inf Inf	Inf 2.6823 20.3474	5.6149 Inf Inf	5.7989 2.5892 19.0012	2.8980 Inf Inf

- The lower resonant frequency increases for all the transfer functions with an increase in suspension stiffness
- Higher suspension stiffness decreases the range for which rattle space transfer function amplifies the input
- Low frequency amplification for tyre deflection increases

Effect of Suspension Damping

Figure 4: Effect of Suspension Damping

	bs = 600 Ns/m		bs = 900 Ns/m		bs = 1200 Ns/m	
Transfer Functions	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)
Ta(s) Tr(s) Tt(s)	0.6155 1.7881 13.6045	-2.4007 Inf Inf	Inf 2.6823 20.3474	5.6149 Inf Inf	Inf 3.5764 26.9942	10.1508 Inf Inf

- The amplification for resonant frequencies decreases for all three transfer function for increase in suspension damping
- Range of frequencies for which acceleration is amplified increases
- System is unstable for bs = 600 Ns/m

Figure 5: Effect of Tyre Stiffness

	Kt = 100000 N/m		Kt = 150000 N/m		Kt = 200000 N/m	
Transfer Functions	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)
Ta(s) Tr(s) Tt(s)	Inf 2.5448 16.4825	7.0021 Inf Inf	Inf 2.6823 20.3474	5.6149 Inf Inf	Inf 2.7560 19.6908	4.8178 Inf Inf

- Increase in tyre stiffness decreases the tyre deflection at frequencies less than 110 rad/s
- Frequency range of amplification for both acceleration and rattle space increases
- There is increase in acceleration for high frequencies

$$J = \int_{0}^{\infty} \left[\frac{\dot{z}_{1}}{\dot{z}_{2}} + f_{1}(z_{4} - z_{4})^{2} + f_{1}z_{3}^{2} + f_{3}(z_{4} - z_{4})^{2} + f_{4}z_{4}^{2} \right] dt$$

$$= \int_{0}^{\infty} \left[\frac{\dot{z}_{2}}{\dot{z}_{2}} + f_{1}x_{1}^{2} + f_{2}x_{2}^{2} + f_{3}x_{3}^{2} + f_{4}x_{4}^{2} \right] dt$$

$$\dot{x}_{1} = \frac{f_{4}}{M_{5}} - \frac{K_{5}}{M_{5}}x_{1} + \frac{b_{5}}{M_{5}}x_{2}^{2} + \frac{b_{5}}{M_{5}}x_{4}^{2}$$

$$- \frac{\lambda_{5}}{M_{5}} + \frac{K_{5}}{M_{5}}x_{1}^{2} + \frac{b_{5}}{M_{5}}x_{2}^{2} + \frac{b_{5}}{M_{5}}x_{4}^{2}$$

$$- \frac{\lambda_{5}}{M_{5}} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{2}^{2} + \frac{\lambda_{5}}{M_{5}}x_{4}^{2}$$

$$+ \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{2}^{2} + \frac{\lambda_{5}}{M_{5}}x_{2}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2}$$

$$+ \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2}$$

$$+ \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2}$$

$$+ \frac{\lambda_{5}}{M_{5}}x_{1}^{2} - \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}}x_{1}^{2}$$

$$+ \frac{\lambda_{5}}{M_{5}}x_{1}^{2} - \frac{\lambda_{5}}{M_{5}}x_{1}^{2} + \frac{\lambda_{5}}{M_{5}$$

Where
$$g = \begin{cases} f_1 + \frac{K_5^2}{M_5^2} & \frac{K_5 b_5}{M_5^2} & 0 & -\frac{K_5 b_5}{M_5^2} \\ \frac{K_5 b_5}{M_5^2} & f_2 + \frac{b_5^2}{M_5^2} & 0 & -\frac{b_5^2}{M_5^2} \\ 0 & 0 & f_3 & 0 \\ -\frac{K_5 b_5}{M_5^2} & -\frac{b_5^2}{M_5^2} & 0 & f_4 + \frac{b_5^2}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 & -b_5 & b_5 \\ M_5^2 & M_5^2 \end{bmatrix} & R = \frac{1}{M_5^2} \\ N = \begin{bmatrix} -K_5 &$$

Active and Passive Suspension

$$\rho = [0.2, 0.1, 0.2, 0.1]$$

$$K = [-14865.83, -600.87, 39.44, 805.08]$$

10³

Figure 6: Transfer functions for active and passive suspensions

Frequency (rad/s)

10¹

10⁰

10³

10²

	Passive Suspension		Active Suspension	
Transfer Functions	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)
Ta(s) Tr(s) Tt(s)	Inf 2.6823 20.3474	5.6149 Inf Inf	Inf 0.6570 1.8991	7.3320 -65.5289 Inf

10⁻¹

Observations

- Rattle space transfer function is unstable for active suspension in this case
- Active suspension reduced acceleration and tyre deflection for lower frequencies
- Active suspension reduces the bandwidth of T_r and T_t

90 L 10⁻²

Figure 7: Transfer functions for active and passive suspensions

	Passive Suspension		Active Suspension	
Transfer Functions	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)
Ta(s) Tr(s) Tt(s)	Inf 2.6823 20.3474	5.6149 Inf Inf	1.0403 13.4719 38.0520	0.8762 Inf Inf

- Active suspension reduced acceleration and tyre deflection at resonant frequencies
- ullet Active suspension reduces the bandwidth of T_r

$$\rho = [200, 10, 200, 10]$$

$$K = [-10757.36, 963.82, -1664.04, -48.88]$$

Figure 8: Transfer functions for active and passive suspensions

	Passive Suspension		Active Suspension	
Transfer Functions	Gm (dB)	Pm (degrees)	Gm (dB)	Pm (degrees)
Ta(s) Tr(s) Tt(s)	Inf 2.6823 20.3474	5.6149 Inf Inf	3.7153 4.6371 18.8429	9.9724 Inf Inf

- ullet Low frequency amplification for T_a and T_t decreases on using this active suspension
- \bullet Active suspension reduces the bandwidth of T_r and T_t

2 Half Car Model

Derivation of Equations of Motion

Figure 9: Half Car Model

Let the roll center height be hr Piu the roll center

Taking moment about P

$$[I_{S} + M_{S}(h_{2}-h_{r})^{2}] \overset{\circ}{\alpha}_{2} = -(K_{SL} + K_{SR})(\alpha_{2}-\alpha_{1}) \overset{t}{\downarrow} \times \overset{t}{\downarrow} - (b_{SL} + b_{SR})(\alpha_{2}-\alpha_{1}) \overset{t}{\downarrow} \times \overset{t}{\downarrow}$$

$$+(F_{R}-F_{L}) \overset{t}{\downarrow} + M_{S} g(h_{2}-h_{r}) \alpha_{2} \cos(\alpha_{2})$$

$$+ M_{S} ay(h_{2}-h_{r})$$

$$+ M_{S} ay($$

Taking moment about P

$$\begin{aligned} \left[\text{Iu} + \text{Mu} (h_{1} - h_{r})^{2} \right] \ddot{\alpha}_{1} &= \left(\text{Ksl} + \text{KsR} \right) (\lambda_{2} - \alpha_{1}) \underbrace{\pm} \times \underbrace{\pm} + \left(\text{bsl} + \text{bsr} \right) (\dot{\alpha}_{L} - \dot{\alpha}_{1}) \underbrace{\pm} \times \underbrace{\pm} \\ &- \left(\text{FR} - \text{FL} \right) \underbrace{\pm} + \text{Mug} (h_{1} - h_{r}) \alpha_{1} \cos (\alpha_{1}) \\ &+ \text{Ms ay} (h_{1} - h_{r}) - \left(\text{Ktl} + \text{Ktr} \right) \alpha_{1} \underbrace{\pm} \times \underbrace{\pm} & \rightarrow 2 \end{aligned}$$

Let the roll center height be hr P is the roll center

Taking moment about P

$$[I_{S} + M_{S}(h_{x} - h_{r})^{2}] \overset{?}{\alpha'} = -(K_{SL} + K_{SR})(\alpha_{x} - \alpha_{1}) \overset{!}{\pm} \times \overset{!}{\pm} - (b_{SL} + b_{SR})(\alpha_{x} - \alpha_{1}) \overset{!}{\pm} \times \overset{!}{\pm}$$

$$+ (F_{R} - F_{L}) \overset{!}{\pm} + M_{S} g (h_{x} - h_{r}) \alpha_{x} \cos(\alpha_{x})$$

$$+ M_{S} a_{y} (h_{x} - h_{r})$$

$$+ M_{S} a_{y} (h_{x} - h_{r})$$

$$+ K_{SR}$$

$$F_{R} \overset{!}{\downarrow} K_{SR}$$

$$K_{SL} \overset{!}{\downarrow} K_{SR}$$

$$K_{SL} \overset{!}{\downarrow} K_{SR}$$

$$K_{L} \overset{!}{\downarrow} K_{L} \overset{!}{\downarrow} K_{L}$$

$$K_{L} \overset{!}{\downarrow} K_{L} \overset{!}{\downarrow} K_$$

Taking moment about P

$$\begin{aligned} \left[I_{u} + M_{u} \left(h_{1} - h_{r} \right)^{2} \right] \ddot{\lambda}_{1} &= \left(K_{sL} + K_{sR} \right) \left(\lambda_{2} - \lambda_{1} \right) \overset{+}{\underline{+}} \overset{+}{\underline{+}} + \left(b_{sL} + b_{sR} \right) \left(\dot{\lambda}_{L} - \dot{\lambda}_{1} \right) \overset{+}{\underline{+}} \overset{+}{\underline{+}} \\ &- \left(\overline{R} - F_{L} \right) \overset{+}{\underline{+}} + M_{u} g \left(h_{1} - h_{r} \right) \lambda_{1} \cos \left(\lambda_{1} \right) \\ &+ M_{sl} \alpha_{y} \left(h_{1} - h_{r} \right) - \left(K_{tL} + K_{tR} \right) \lambda_{1} \overset{+}{\underline{+}} \overset{+}{\underline{+}} \end{aligned}$$

Taking hr=0 and di, de ~0

$$(I_{S} + M_{S}h_{L}^{2})\dot{a}_{L} = -(K_{SL} + K_{SR})(a_{2} - a_{1})\frac{t^{2}}{4} - (b_{SL} + b_{SR})(a_{2} - a_{1})\frac{t^{2}}{4} + (F_{R} - F_{L})\frac{t}{2} + M_{S}a_{1}h_{L}$$

$$+ M_{S}g_{h_{L}}a_{2} + M_{S}a_{2}h_{L}$$

$$\longrightarrow (3)$$

$$f = [F_R \quad F_L]^T$$

$$B = \begin{cases} 0 & 0 \\ -\frac{t}{2(I_u + M_u h_1^2)} & \frac{t}{2(I_u + M_u h_1^2)} \\ 0 & 0 \\ \frac{t}{2(I_s + M_s h_2^2)} & \frac{-t}{2(I_s + M_s h_2^2)} \end{cases}$$

$$d = \begin{bmatrix} m_u h_1 \\ \sqrt{(I_u + M_u h_1^2)} \\ 0 \\ \frac{m_s h_2}{\sqrt{(I_s + M_s h_2^2)}} \end{bmatrix}$$

$$J = \int_{0}^{\infty} (f_{1}x_{1}^{2} + f_{2}x_{1}^{2} + f_{3}x_{2}^{2} + f_{4}x_{1}^{2} + f_{5}F_{R}^{2} + f_{6}F_{L}^{2}) dt$$

$$= \int_{0}^{\infty} (\chi_{1}Q\chi_{1} + 2\chi_{2}\chi_{1}) dt + f_{5}F_{R}^{2} + f_{5}F_{L}^{2} + f_{5}F_{L}^{2}) dt$$

Where

$$Q = \begin{bmatrix} f_1 & 0 & 0 & 0 \\ 0 & f_2 & 0 & 0 \\ 0 & 0 & f_3 & 0 \\ 0 & 0 & 0 & f_4 \end{bmatrix}$$

$$R = \begin{bmatrix} f_s & o \\ o & f_6 \end{bmatrix}$$

Controller Gains for the given parameters

$$K = \begin{bmatrix} -2.7977 & -0.0697 & 4.4914 & 0.4726 \\ 2.7977 & 0.0697 & -4.4914 & -0.4726 \end{bmatrix} \times 10^6$$

Impulse Input

Figure 10: Outputs for Impulse Input

Rectangular Input

Rectangular Input

Figure 11: Outputs for Rectangular Input

Observations

0.05

0.04

- Active suspension is highly efficient in damping the roll angle of the sprung mass
- The unsprung mass experiences sudden roll at the initial stage of the input, especially for impulse input, but it is soon settles down