Математический анализ

Модуль 3

2021 год

«Интеграл функции одной переменной»

Иванов Сергей, Иванов Алексей, Титов Даниил

M3104

Содержание

1	Инт	Интегральная сумма		
	1.1	Исследуйте интегральную сумму функции $f(x)$, заданной на отрезке $[a,b]$		3
		1.1.1	Интегральная сумма	3
		1.1.2	Последовательность интегральных сумм	3
2	Несобственный интеграл			5
	2.1	Исследуйте несобственный интеграл на сходимость при всех значениях параметра $lpha$		
		2.1.1	Определите особую точку несобственного интеграла. Есть ли другие особые точки? К какому типу относится данный несобственный интеграл? Является ли подынтегральная	
			функция неотрицательной на промежутке интегрирования?	5
		2.1.2	Постройте графики подынтегральной функции при нескольких значениях параметра	5
		2.1.3	Есть ли значение параметра, при котором легко находится первообразная? Если есть, то найдите её и сделайте вывод о сходимости интеграла	7
		2.1.4	Сформулируйте признаки сравнения для определения сходимости несобственных инте-	
			гралов	7
		2.1.5	Оцените сверху и снизу трансцен дентную функцию (логарифм или арктангенс) для срав- $_b$	
			нения исходного интеграла с интегралом вида $\int\limits_a^{} \frac{1}{x^{\beta}} dx$. Установите, при каких значениях	
		2.1.6	параметра это сравнение позволяет сделать вывод о сходимости интеграла Вспомните, как ведёт себя интеграл при значении параметра α , при котором легко нахо-	7
		2.1.0	дится первообразная. Используйте этот интеграл как эталон для сравнения с интегралом	
			при другом параметре α	8
3	Приложения определенного интеграла			9
	3.1	3.1 Найти давление воды на поверхность цилиндра диаметром 4м и высотой 6м, если его верхнее		
	основание находится на уровне свободной поверхности воды		9	
4	Приближенные вычисления определенного интеграла			10
	4.1	1 Вычислить значения интеграла $I_0^2 = \int\limits_0^z f(x) dx$ по формулам трапеций и парабол при $h=1,$		
		сравнить полученные результаты с точным значением		

1 Интегральная сумма

1.1 Исследуйте интегральную сумму функции f(x), заданной на отрезке [a,b]

$$f(x) = \sin x$$
$$[a, b] = [0; 3\pi/2]$$

1.1.1 Интегральная сумма

https://clck.ru/UjTMB

1.1.2 Последовательность интегральных сумм

https://clck.ru/V6j8C

Примеры вычислений:
$$h = \frac{b-a}{n}$$

$$\sum_{k=1}^n f(a+(k-t)*h)*h$$

$$t = 0$$
:

1.
$$n = 1$$
: $h = 4.71238898038$, $\sum_{k=1}^{n} = 4.71238898038$

1.
$$n = 1$$
: $h = 4.71238898038$, $\sum_{k=1}^{n} = 4.71238898038$
2. $n = 10$: $h = 0.471238898038$, $\sum_{k=1}^{n} = 0.745806187809$

3.
$$n = 50$$
: $h = 0.0942477796077$, $\sum_{k=1}^{n} = 0.952135780258$ $t = 0.5$:

1.
$$n = 1$$
: $h = 4.71238898038$, $\sum_{k=1}^{n} = 3.33216220362$

2.
$$n = 10$$
: $h = 0.471238898038$, $\sum_{k=1}^{n} = 1.00931303637$

2.
$$n = 10$$
: $h = 0.471238898038$, $\sum_{k=1}^{n} = 1.00931303637$
3. $n = 50$: $h = 0.0942477796077$, $\sum_{k=1}^{n} = 1.00037020607$

$$t = 1$$
:

1.
$$n = 1$$
: $h = 4.71238898038$, $\sum_{k=1}^{n} = 0$

2.
$$n = 10$$
: $h = 0.471238898038$, $\sum_{k=1}^{n} = 1.21704508585$

3.
$$n = 50$$
: $h = 0.0942477796077$, $\sum_{k=1}^{n} = 1.04638355987$

Все эти опыты можно повторить на нашем графике в desmos, и увидеть эти же результаты там.

C увеличением n увеличивается точность это можно заметить из примеров выше.

Несобственный интеграл 2

Исследуйте несобственный интеграл на сходимость при всех значениях параметра α

$$\int\limits_{1}^{+\infty} \frac{\ln x}{x^{\alpha}} dx$$

Определите особую точку несобственного интеграла. Есть ли другие особые точки? К какому типу относится данный несобственный интеграл? Является ли подынтегральная функция неотрицательной на промежутке интегрирования?

Подынтегральная функция является неотрицательной на промежутке интегрирования Ещё особая точка: x = 0, но она не входит в предел интегрирования

$$\lim_{x \to 1^+} \frac{\ln x}{x^a} = \frac{0}{1} = 0$$

Тип интеграла:

1) Первого рода, так как пределы интегрирования от $до +\infty$

$$2)\int\limits_{1}^{+\infty}\frac{\ln x}{x^{a}}dx=\lim_{A\to +\infty}\int\limits_{1}^{A}\frac{\ln x}{x^{a}}dx$$
 $a=0$
$$\lim_{A\to +\infty}\int\limits_{1}^{A}\ln xdx=\lim_{A\to +\infty}(\ln xx-x|_{1}^{A})=\lim_{A\to +\infty}(A(\ln A-1)+1)=\lim_{A\to +\infty}(A(\ln A-1))+\lim_{A\to +\infty}(1)=\lim_{A\to +\infty}(A)*$$

$$\lim_{A\to +\infty}(\ln A-1)+1=+\infty$$
 Для некоторого a :
$$\lim_{A\to +\infty}\left(\frac{-\ln x}{(a-1)x^{(a-1)}}-\frac{1}{(a-1)^{2}x^{a-1}}|_{1}^{A}\right)=\lim_{A\to +\infty}\left(\frac{-\ln A}{(a-1)A^{a-1}}-\frac{1}{(a-1)^{2}A^{a-1}}-\frac{1}{(a-1)^{2}*1}-\frac{1}{(a-1)^{2}*1}\right)=\frac{1}{(a-1)^{2}}$$
 В зависимости от a , может быть и сходящимся, и расходящимся

Постройте графики подынтегральной функции при нескольких значениях параметра

 $\alpha = 3$

$$\alpha = -3$$

$$\alpha = 10$$

$$\alpha = -10$$

Есть ли значение параметра, при котором легко находится первообразная? Если есть, то найдите её и сделайте вывод о сходимости интеграла

При
$$\alpha=0$$
:
$$\int \frac{\ln x}{x^{\alpha}} dx = \int \frac{\ln x}{x^0} dx = \int \ln x dx = uv - \int u dv = x \ln x - \int x \frac{1}{x} dx = x \ln x - x + C = x(\ln x - 1) + C$$
 $f(x) = \lim_{x \to \infty} f(x) = \infty = >$ расходится

При
$$\alpha=1$$
:
$$\int \frac{\ln x}{x} dx = \int u du = \frac{u^2}{2} + C = \frac{\ln^2 x}{2} + C$$
 При $\alpha \in Z$: берётся по частям

2.1.4Сформулируйте признаки сравнения для определения сходимости несобственных интегралов

Признаки сравнения:

Первый признак сравнения:

Если на промежутке $[a; +\infty)$ непрерывные f(x) и g(x) удовлетворяют условию:

если на промежутке
$$[a; +\infty)$$
 непрерывные $f(x)$ и $g(x)$ удовлетворяют условию: $0 \le f(x) \le g(x)$, то из сходимости интеграла $\int\limits_a^{+\infty} g(x) dx$ следует сходимость интеграла $\int\limits_a^{+\infty} f(x) dx$, а из расхо-

димости интеграла
$$\int\limits_a^{+\infty} f(x)dx$$
 следует расходимость интеграла $\int\limits_a^{+\infty} g(x)dx$

Второй признак сравнения:

Если существует предел $\lim_{x\to\infty} \frac{f(x)}{g(x)} = k$:

$$(0 < k < \infty, f(x) > 0$$
 и $g(x) > 0)$, то интегралы $\int\limits_a^{+\infty} f(x) dx$ и $\int\limits_a^{+\infty} g(x) dx$ одновременно оба сходятся или оба расходятся

Но использовать второй признак сравнения нельзя, так как k является либо нулём, либо бесконечностью, а должно быть каким-то числом. Из-за этого мы должны использовать только первый пункт сравнения, который этим же пунктом и доказывается

Оцените сверху и снизу трансцендентную функцию (логарифм или арктангенс) для срав-2.1.5нения исходного интеграла с интегралом вида $\int_{-\pi}^{0} \frac{1}{x^{\beta}} dx$. Установите, при каких значениях параметра это сравнение позволяет сделать вывод о сходимости интеграла

Траснцедентная функция: $\ln x$

$$\lim_{x \to +\infty} (\ln x) = \infty = >$$
 сверху не ограничена

$$\lim_{x \to 1+} (\ln x) = 0$$

Интеграл для сравнения: $-\int_{\cdot}^{+\infty} \frac{1}{x^{\beta}} dx$

Рассмотрим сходимость интеграла:

$$\int\limits_{1}^{+\infty} \ln x dx = \lim\limits_{b \to +\infty} \int\limits_{1}^{b} \ln x dx = \lim\limits_{b \to +\infty} (\ln x x - x|_{1}^{b}) = \lim\limits_{b \to +\infty} (\ln b b - b + 1) = \lim\limits_{b \to +\infty} (b(\ln b - 1) + 1) = \infty =>$$
 интеграл расходится

$$\int_{1}^{+\infty} \frac{1}{x^{\beta}} dx = \lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x^{\beta}} dx$$

Рассмотрим возможные значения параметра β :

1.
$$\beta < 0$$
: $\lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x^{\beta}} dx = \lim_{b \to +\infty} \left(\frac{x^{-\beta+1}}{-\beta+1} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(\frac{1}{-\beta+1} * (b^{-\beta+1} - 1) \right) = \infty$

2.
$$\beta = 0$$
: $\lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x^{\beta}} dx = \lim_{b \to +\infty} (x|_{1}^{b}) = \lim_{b \to +\infty} (b-1) = \infty$

3.
$$\beta = 1 : \lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x^{\beta}} dx = \lim_{b \to +\infty} (\ln|x||_{1}^{b}) = \lim_{b \to +\infty} (\ln|b| - \ln|1|) = \infty$$

4.
$$\beta \ge 2 : \lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x^{\beta}} dx = \lim_{b \to +\infty} \left(\frac{-1}{(\beta - 1)x^{\beta - 1}} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(\frac{-1}{\beta - 1} * \left(\frac{1}{b^{\beta - 1}} - 1 \right) \right) = \frac{1}{\beta - 1}$$

$$x\in[1;+\infty]$$
 $\ln x<\frac{1}{x^{\beta}}$, $\beta\leq -1$, $\ln x<\frac{1}{x^{\beta}}$, $\ln x$ - расх. $=>\frac{1}{x^{\beta}}$ - расх. $\ln x=\frac{1}{x^{\beta}}$ X $\ln x\geq \frac{1}{x^{\beta}}$ - какое β не возьми, около $x=1$ $\frac{1}{x^{\beta}}>\ln x=>$ не выполняется условие сравнения

2.1.6 Вспомните, как ведёт себя интеграл при значении параметра α , при котором легко находится первообразная. Используйте этот интеграл как эталон для сравнения с интегралом при другом параметре α

$$a=0$$
 $f_1=\ln x$ - расходящаяся $a=1$ $f_2=\frac{\ln x}{x}$ $\int\limits_1^{+\infty}\frac{\ln x}{x}dx=\lim_{A\to+\infty}\int\limits_1^A\ln x d(\ln x)=\lim_{A\to+\infty}(\frac{\ln^2 x}{2}|_1^A)=\lim_{A\to+\infty}\frac{\ln^2 A}{2}=\infty$ - расходящаяся $f_2\leq f_1$ $0\leq \frac{\ln x}{x}\leq \ln x$ $\lim_{x\to+\infty}\frac{f_2}{f_1}=\frac{\ln x}{x\ln x}=0$ $\lim_{x\to+\infty}\frac{f_1}{f_2}=+\infty$

3 Приложения определенного интеграла

3.1 Найти давление воды на поверхность цилиндра диаметром 4м и высотой 6м, если его верхнее основание находится на уровне свободной поверхности воды.

 ρ - плотность жидкости

g - гравитационная постоянная, ускорение свободного падения

х - глубина погружения

S - площадь, на которую действует сила давления

р - давление

 $p=\rho gxS$ - формула для давления на глубине x, действующее на площадь S $dp=\rho gxdS=p_1$

$$dS_1 = dx * dl$$

$$dp_1 = \rho gk * dx * dl$$

$$p_1 = \int_0^{2*2\pi} \rho gk * dx * dl = \rho gk * dx \int_0^{2*2\pi} dl = 4\pi \rho gk * dx$$

$$p = \int_0^6 4\pi \rho gx * dx = 4\pi \rho g \int_0^6 x * dx = 4\pi \rho g \frac{x^2}{2} \Big|_0^6 = 72\pi \rho g$$

$$g = 9.81$$

$$72\pi \rho g \approx 2.21897 * 10^6$$

4 Приближенные вычисления определенного интеграла

- 4.1 Вычислить значения интеграла $I_0^2 = \int\limits_0^2 f(x) dx$ по формулам трапеций и парабол при h=1, сравнить полученные результаты с точным значением.
- a) f(x) = 1 + x:

Метод трапеций:

Интервал
$$[a;b] = [0;2], h = 1$$

Интервал длины "h"[0; 1], [1; 2]

$$x_0 = 0$$

$$x_1 = 1$$

$$x_2 = 2$$

$$f(x_0) = 1$$

$$f(x_1) = 2$$

$$f(x_2) = 3$$

1)
$$\int_{0}^{2} f(x) \approx \frac{h}{2} (f(x_0) + f(x_1) + f(x_1) + f(x_2)) = \frac{1}{2} (1 + 4 + 3) = 4$$

2) Метод парабол:

Также разбиваем на отрезки

$$x_{2i-2} = x_0 = 0$$

$$x_{2i-1} = x_1 = 1$$

$$x_{2i} = x_2 = 2$$

$$\int_{0}^{2} f(x) \approx \frac{h}{3}(f(0) + 4f(1) + f(2)) = \frac{1}{3}(1 + 8 + 3) = 4$$

Вывод конечной формулы:

Можно переходить к нахождению интеграла $\int_{x_{2i-2}}^{x_{2i}} \left(a_i x^2 + b_i x + c_i
ight) dx.$

Видно, что

$$f(x_{2i-2}) = f(0) = a_i \cdot 0^2 + b_i \cdot 0 + c_i = c_i$$

$$f(x_{2i-1}) = f(h) = a_i \cdot h^2 + b_i \cdot h + c_i$$

$$f(x_{2i}) = f(0) = 4a_i \cdot h^2 + 2b_i \cdot h + c_i$$

Для осуществления последнего перехода необходимо использовать неравенство вида

$$\int_{x_{2i-2}}^{x_{2i}} \left(a_i x^2 + b_i x + c_i \right) dx = \int_0^{2h} \left(a_i x^2 + b_i x + c_i \right) dx =$$

$$=\left.\left(rac{a_{i}x^{3}}{3}+rac{b_{i}x^{2}}{2}+c_{i}x
ight)
ight|_{0}^{2h}=rac{8a_{i}h^{3}}{3}+2b_{i}h^{2}+2c_{i}h=$$

$$=\frac{\hbar}{3}\left(8a_{i}h^{2}+6b_{i}h+6c_{i}
ight)=\frac{\hbar}{3}\left(f\left(x_{2i-2}
ight)+4f\left(2_{2i-1}
ight)+f\left(x_{2i}
ight)
ight)$$

Значит, получаем формулу, используя метод парабол:

$$\begin{split} &\int_a^b f\bigg(x\bigg) dx \approx \sum_{i=1}^n \int_{x_{2i-2}}^{x_{2i}} \big(a_i x^2 + b_i x + c_i\big) dx = \\ &= \sum_{i=1}^n \frac{h}{3} \bigg(f\bigg(x_{2i-2}\bigg) + 4f\bigg(x_{2i-1}\bigg) + f\bigg(x_{2i}\bigg)\bigg) = \\ &= \frac{h}{3} \left(\frac{f(x_0) + 4f(x_1) + f(x_2) + f(x_2) + 4f(x_3) + f(x_4) + \dots +}{f(x_{2n-2}) + 4f(x_{2n-1}) + f(x_{2n})}\right) = \\ &= \frac{h}{3} \left(f\bigg(x_0\bigg) + 4\sum_{i=1}^n f\bigg(x_{2i-1}\bigg) + 2\sum_{i=1}^{n-1} f\bigg(x_{2i}\bigg) + f\bigg(x_{2n}\bigg)\right) \end{split}$$

3) Подсчёт интеграла напрямую:

$$\int_{0}^{2} (x+1)dx = \frac{x^{2}}{2} + x|_{0}^{2} = \frac{4}{2} + 2 - 0 = 4$$

b)
$$f(x) = 1 + x^3$$
 $x_0 = 0$
 $x_1 = 1$
 $x_2 = 2$

Аналогично пункту (а):

 $1)\int\limits_0^2pprox rac{h}{2}(f(x_0)+2f(x_1)+f(x_2))=rac{1}{2}(1+4+9)=7$ - большая погрешность, так как много добавленной (добавочной) лишней площади

2)
$$\int_{0}^{2} = \frac{h}{3}(f(0) + 4f(1) + f(2)) = \frac{1}{3}(1 + 8 + 9) = 6$$
3)
$$\int_{0}^{2} = \int_{0}^{2} (x^{3} + 1)dx = \frac{x^{4}}{4} + 4|_{0}^{2} = \frac{16}{4} + 2 = 6$$

3)
$$\int_{0}^{2} = \int_{0}^{2} (x^{3} + 1)dx = \frac{x^{4}}{4} + 4|_{0}^{2} = \frac{16}{4} + 2 = 6$$

Погрешность вычисления методом трапеций из-за того, что появляется лишняя площадь, а если использовать метод парабол, то мы получаем довольно высокую точность, так как виды функций кубической и обычной парабол похожи.