

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY (HUST)

School of Engineering Physics (SEP)

CHƯƠNG 3 CƠ NĂNG VÀ TRƯỜNG LỰC THẾ

- 1. Công và công suất
- 2. Động năng
- 3. Trường lực thế Thế năng
- 4. Định luật bảo toànvà biến
- 5. Bài toán va chạm

1. Công và công suất

1. Công

Đại lượng đặc trung cho tác dụng của lực lên một vật làm cho vật có thể di chuyển từ điểm này đến điểm khác (dịch chuyển).

$$A = \vec{F} \cdot \vec{s} = F.s.\cos\alpha$$

♦ Công là đại lượng vô hướng

Lực không đổi

- ♦ A > 0 khi α < $\pi/2$ (góc nhọn): ⇒ \vec{F} thực hiện công phát động
- A < 0 khi $\alpha > \pi/2$ (góc tù):
- $\Rightarrow \vec{F}$ thực hiện công cản
- ♦ A = 0 khi α = $\pi/2$ hay $\vec{F} \perp \vec{s}$ ⇒ \vec{F} không sinh công

1. Công và công suất

1. Công (tiếp)

Lực thay đổi

c Chuyển dời thẳng: chia chuyển dời thẳng thành nhiều đoạn Δx như nhau và coi $F_{xi} = const$ trong mỗi đoạn chuyển dời Δx :

Có:
$$A = F_{x_1} \Delta x_1 + F_{x_2} \Delta x_2 + ... + F_{x_n} \Delta x_n$$

- **Thuyển dời bất kỳ** (từ $1 \rightarrow 2$)
- Chia chuyển dòi thành những đoạn vô cùng nhỏ dl để có thể coi là thẳng và có F = const trên đó.

- ♦ Công vi phân: $dA = \vec{F} \cdot d\vec{l} = \vec{F}_{\perp} \cdot d\vec{l} + \vec{F}_{\parallel} \cdot d\vec{l}$ $\Rightarrow A = \int_{1}^{2} F_{\parallel} dl = \int_{1}^{2} F \cos \alpha dl = \int_{1}^{2} \vec{F} \cdot d\vec{l}$
- ightharpoonup Đơn vị của công: J = N.m

1. Công và công suất

2. Công suất của lực

- Đại lượng đặc trưng cho mức độ thực hiện công nhanh hay chậm
 - Công suất trung bình: $P = \frac{\Delta A}{\Delta t}$
 - Công suất tức thời: $P = \lim_{\Delta t \to 0} \frac{\Delta A}{\Delta t} = \frac{dA}{dt}$

Hay:
$$P = \frac{\vec{F} \cdot d\vec{s}}{dt} = \vec{F} \cdot \vec{v}$$

- Don vi: W (watt) = J/s
- Đơn vị khác của công suất:
- ♦ Horsepower (sức ngựa): 1hp = 760 W
- ♦ kWh (NL điện) :1kWh= 3600 kJ = $3,6.10^6$ J

2. Động năng

1. Động năng

- Đại lượng thể hiện sự phụ thuộc vào vận tốc chuyển động của vật thể do công của ngoại lực tác dụng.
- Xét lực tác dụng lên ch/đ trong chuyển dòi bấy kỳ.

• Ph/tr ĐLH với ch/đ: $\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt}$

$$\Rightarrow A = \int_{1}^{2} m \frac{d\vec{v}}{dt} \cdot d\vec{l} = \int_{1}^{2} m \frac{d\vec{l}}{dt} d\vec{v} = \int_{1}^{2} m \vec{v} d\vec{v} = \int_{1}^{2} m \frac{d(\vec{v}^{2})}{2} = \int_{1}^{2} d\left(\frac{m\vec{v}^{2}}{2}\right)$$
Hay: $A = \int_{1}^{2} d\left(\frac{mv^{2}}{2}\right)$

5

2. Động năng

1. Động năng (tiếp)

Biểu thức:

- Tịnh lý động năng:
- ♦ Độ biên thiên động năng của chất điểm trong một chuyển dời bằng công ngoại lực tác dụng lên chất điểm trong chuyển dời đó.
- ♦ Khi ngoại lực thực hiện công phát động A > 0: động năng chất điểm tăng.
- ♦ Khi ngoại lực thực hiện công cản A < 0: động năng chất điểm giảm.

3. Trường lực thế - Thế năng

1. Trường lực thế

Trường lực: Không gian mà chất điểm khi chuyển động trong đó tại mỗi vị trí luôn chiu tác dung của một lực \vec{F} .

- Lực F là hàm tọa độ: $\vec{F}(\vec{r}) = \vec{F}(x, y, z)$
- ♦ Công của lực F để chất điểm dí chuyển từ M → N:

$$A_{MN} = \int_{M}^{N} \vec{F}(\vec{r}) . d\vec{l}$$

- **Trường lực thế**: Trường lực sinh ra lực $\vec{F}(\vec{r})$ để thực hiện công dịch chuyển, sao cho công A này không phụ thuộc vào hình dạng đường đi mà chỉ phụ thuộc vị trí của điểm đầu và cuối của quĩ đạo CĐ.
- lacktriangle Khi lực thực hiện 1 công dịch chuyển theo đường cong kín $\Rightarrow \oint \vec{F} \cdot d\vec{s} = 0$

7

3. Trường lực thế - Thế năng

2. Thế năng

- Đại lượng thể hiện sự phụ thuộc vào vị trí tương đối của chất điểm khi chuyển động trong trường lực thế.
- $\ ^{\circ}$ Chất điểm CĐ từ vị trí $1 \rightarrow 2$ trên quĩ đạo bất kỳ trong trường trọng lực \Rightarrow luôn chịu tác dụng của trọng lực:

$$\vec{p} = m\vec{g}$$

- ♦ Xét chuyển dời nhỏ $d\vec{s}$ = hoành độ cong MN \Rightarrow có: $\overrightarrow{MN} \approx d\vec{s}$
- ♦ Công vi phân: $dA = \vec{p}d\vec{s} \approx p.MN.\cos\alpha = p.MH = -pdy$

3. Trường lực thế - Thế năng

2. Thế năng (tiếp)

 \checkmark Công của trọng lực tác dụng làm ch/đ dịch chuyển từ 1 → 2 là:

$$A_{12} = \int_{1}^{2} -p dy = p.y_{1} - p.y_{2} =$$

$$= mgy_{1} - mgy_{2}$$

- ♦ A_{12} chỉ \in vào y_1 và y_2 , tức là, chỉ \in vị trí của ch/đ mà \notin đường đi.
- ♦ Trường trọng lực là trường lực thế
- P $A = M_1 v a y_2 = h_2 \Rightarrow A = mgh_1 mgh_2$
- $\mathcal{T}W_t = mgh \Rightarrow \text{Thế năng chất điểm ở độ cao } h$

.

3. Trường lực thế - Thế năng

2. Thế năng (tiếp)

- 🕶 Định lý:
- Có: $A = mgh_1 mgh_2$
- ♦ Độ giảm thế năng của chất điểm khi nó di chuyển từ vị trí 1 đến vị trí 2 trong trường lực thế bằng công trường lực thế tác dụng lên chất điểm trong chuyển dời đó.
- \blacklozenge Thế năng là dạng năng lượng lưu trữ \Rightarrow có thể biến đổi sang dạng NL khác

Thế năng đàn hồi

- \sim Xét: khối nặng m gắn vào lò xo có hệ số đàn hồi k đặt trên phương nằm ngang (x).
- igoplus Ban đầu m ở vị trí cân bằng x=0
- Kéo m đến các vị trí $x_2 \Rightarrow$ trở lại vị trí $x_1 < x_2$

3. Trường lực thế - Thế năng

3. Thế năng đàn hồi

- Sau đó, m CĐ về vị trí cân bằng và tiếp tục đến các vị trí x_1 , x_2 mới ngược hướng CĐ cũ.
- ♦ Theo định luật Hook, lực đàn hồi của lò xo tỷ lệ với độ dịch chuyển, cho bởi:

$$F = -k.x$$

- Công lực đàn hồi thực hiện:
- để m dịch chuyển 1 đoạn vi phân dx:

$$dA = -k.x.dx$$

• để m dịch chuyển từ x_2 đến x_1 :

$$A = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2$$

Thế năng đàn hồi của lò xo: $W_t = \frac{1}{2}kx^2$

4. Định luật bảo toàn và biến đổi cơ năng

1. Năng lượng cơ (cơ năng)

- Xét chất điểm chuyển động trong trường lực thế:
- ♦ Công: trường lực thế thực hiện để di chuyển chất điểm, tương ứng độ giảm thế năng $A = W_{tl} W_{t2}$
- ♦ Mặt khác, công này cũng tương ứng độ biến thiến động năng khi chất điểm chuyển động: $A=W_{d2}-W_{d1}$

$$ightharpoonup c\'o: W_{d2} - W_{d1} = W_{t1} - W_{t2} \text{ hay } W_{d1} + W_{t1} = W_{d2} + W_{t2}$$

Cụ thể:
$$\frac{mv_1^2}{2} + mgh_1 = \frac{mv_2^2}{2} + mgh_2$$
 (*)

♦ Tổng động năng và thế năng của chất điểm = cơ năng của chất điểm.

2. Định luật

- Từ (*) viết được: $W_d + W_t = \frac{mv^2}{2} + mgh = const$
- ♦ Cơ năng của chất điểm chuyển động trong trường lực thế bảo toàn.

4. Định luật bảo toàn và biến đổi cơ năng

2. Định luật (tiếp)

- Sự chuyển hóa qua lại giữa động năng và thế năng:
- ♦ Khi tung quả bóng lên cao \Rightarrow tốc độ $v \triangle$

$$\Rightarrow \frac{mv^2}{2} \, \mathfrak{D}$$
, đồng thời $mgh \, \stackrel{\triangleright}{\sim} \,$

- ⇔ Động năng dần dần biến đổi thành thế năng.
- ♦ Khi quả bóng đi xuống ⇒ v tăng trở lại

4. Định luật bảo toàn và biến đổi cơ năng

3. Ánh hưởng của lực khác

Công tổng cộng: công do trường lực thế và công do lực khác thực hiện: Trường $A = A_{luc \, th\acute{e}} + A_{luc \, kh\acute{a}c}$

$$A = A_{luc\ th\acute{e}} + A_{luc\ kh\acute{a}c}$$

- Theo định lý động năng: $A = W_{d2} W_{d1}$
- lacktriangle Công trường lực thế thực hiện: $A_{luc\ th\acute{e}} = W_{tl} W_{t2}$

$$\Rightarrow W_{d2} - W_{d1} = W_{t1} - W_{t2} + A_{luc \, kh\acute{a}c}$$
 Hay: $\frac{mv_2^2}{2} - \frac{mv_1^2}{2} = mgh_1 - mgh_2 + A_{kh\acute{a}c}$

$$\Delta W = W_2 - W_1 = \left(\frac{mv_2^2}{2} + mgh_2\right) - \left(\frac{mv_1^2}{2} + mgh_1\right) = A_{kh\acute{a}c}$$

- $lack \bullet$ Lực khác thực hiện công phát động $(A > 0) \Longrightarrow$ cơ năng hệ tăng $(W_2 > W_1)$
- ♦ Lực khác thực hiện công cản $(A < 0) \Rightarrow$ cơ năng hệ giảm $(W_2 < W_1)$
- Lực khác không thực hiện công $(A = 0) \Rightarrow$ cơ năng hệ ko đổi $(W_2 = W_1)$

4. Định luật bảo toàn và biến đổi cơ năng

3. Ảnh hưởng của lực khác (tiếp)

Bài toán

$$\begin{cases}
-BA = h \\
-AD = s \implies k_{BC} = k_{CD} = k = ? \\
-AC = l
\end{cases}$$

Phân tích

- ${}^{\circ}$ Cơ năng tại B: W_1
- ♦ Ở đỉnh đốc \Rightarrow có thế năng $W_1 = W_t^B$
- lacktriangle Trượt xuống $\Rightarrow W_t^B$ chuyển thành động năng, đạt cực đại tại C,
- $ightharpoonup^{C}$ Co năng tại C: $W_2 = W_d^C$
- Trượt tiếp trên $CD \Rightarrow$ chỉ có biến thiên động năng và tại D, $W_3 = W_d^D = 0$
- $\ \ \,$ Do có ma sát $k \Rightarrow$ biến đổi cơ năng trên quãng đường BCD tương ứng công lực ma sát trượt thực hiện: $A_{\rm ms}$

4.0

4. Định luật bảo toàn và biến đổi cơ năng

3. Ảnh hưởng của lực khác (tiếp)

Định hướng giải

Theo đ/l biến đổi cơ năng, có:

$$\begin{cases} W_2 - W_1 = A_{ms}^{BC} \\ W_3 - W_2 = A_{ms}^{CD} \end{cases}$$

$$P_{n}$$
 P_{n}
 P_{n

hay
$$W_3 - W_1 = -W_t^B = A_{ms}^{BC} + A_{ms}^{CL}$$

 $d \hat{a} u$ (-) $do F_{ms}$ thực hiện công cản

- Công lực ma sát:
- ♦ Đoạn *BC*: $A_{ms}^{BC} = \vec{F}_{ms}^{BC} . B\vec{C} = F_{ms}^{BC} . BC. \cos(\vec{F}_{ms}^{BC}, B\vec{C}) = -F_{ms}^{BC} . BC$ $A_{ms}^{BC} = -k.NBC = -k.mg. \cos \alpha . BC = -k.m.g. \frac{AC}{BC} . BC = -k.m.g.l$
- Doan CD:

$$A_{CD} = -F_{ms}^{CD}.CD = -k.P.CD = -k.mg(s-l)$$

Fix Kết quả: $mgh = mgkl + mgk(s - l) = m.g.k.s \Rightarrow k = \frac{h}{s}$

5. Bài toán va chạm

▼ Va chạm giữa các vật rắn ⇒ gây biến dạng.

1. Va chạm đàn hồi

- Ta chạm gây ra biến dạng của các vật, sau đó biến dạng tự hồi phục.
- Trước va chạm: \vec{v}_1 , \vec{v}_2 - Sau va chạm: \vec{v}_1 , \vec{v}_2

 $\ref{eq:constraints}$ Tổng động lượng của hệ bảo toàn: $m_1 v_1' + m_2 v_2' = m_1 v_1 + m_2 v_2$

1

5. Bài toán va chạm

1. Va chạm đàn hồi (tiếp)

Tổng động năng của hệ bảo toàn:

$$\frac{m_1 v_1^{\prime 2}}{2} + \frac{m_2 v_2^{\prime 2}}{2} = \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}$$

Nếu $\vec{v}_2 = 0$ $\begin{cases}
v'_1 = \frac{(m_1 - m_2)n}{m_1 + m_2} \\
v'_2 = \frac{2m_1v_1}{m_1 + m_2}
\end{cases}$

♦ Va chạm đàn hồi đặc trưng quá trình truyền chuyển động (vận tốc)

5. Bài toán va chạm

- 2. Va chạm không đàn hồi (va chạm mềm)
- $rightharpoonup m_1(m)$ và $m_2(2m)$:

Tổng động lượng của hệ bảo toàn

$$(m_1 + m_2)v' = m_1v_1 + m_2v_2$$

 $\Rightarrow v' = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}$

→ Động năng sau va chạm ≠ trước va chạm:

$$-\Delta W_d = \left(\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}\right) - \frac{(m_1 + m_2) v^{2}}{2} = \frac{m_1 m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$$

$$\Rightarrow \begin{cases} -\text{ NL biến dạng} \\ -\text{ NL nhiệt} \end{cases}$$

Những nội dung cần lưu ý

- 1. Trình bày định nghĩa công, công suất
- 2. Động năng: Xây dựng biểu thức, định nghĩa và định lý.
- 3. Thế năng: Xây dựng biểu thức, định nghĩa và định lý.
- 5. Định luật bảo toàn và biến đổi cơ năng trong trường lực thế và khi có tác động của lực khác.

