

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Мегафакультет компьютерных управлений и технологии
Факультет программной инженерии и компьютерной техники

Курсовая работа

по дисциплине дискретной математики:

Синтез комбинационных схем
Часть I

Работа выполнена

студентом группы Р3111

<u>Болорболд Аригуун</u>

Преподаватель:

Доцент Поляков Владимир Иванович

г. Санкт-Петербург 2022 год Булева функция: f = 1 при $(x_3x_4x_5)_{mod5} < x_1x_2$

 $f = d при (x_3x_4x_5) = 2$

1. Составление таблицы истинности

Nº	X ₁ X ₂ X ₃ X ₄ X ₅	X ₁ X ₂	$(x_1x_2)_{10}$	X ₃ X ₄ X ₅	$(x_3x_4x_5)_{10}$	$((x_3x_4x_5)_{10})_{mod5}$	f
0	00000	0 0	0	000	0	0	0
1	00001	0 0	0	001	1	1	0
2	00010	0.0	0	010	2	2	d
3	00011	0 0	0	011	3	3	0
4	00100	0 0	0	100	4	4	0
5	00101	0 0	0	101	5	0	0
6	00110	0 0	0	110	6	1	0
7	00111	0 0	0	111	7	2	0
8	01000	0 1	1	000	0	0	1
9	01001	0 1	1	001	1	1	0
10	01010	0 1	1	010	2	2	d
11	01011	0 1	1	011	3	3	0
12	01100	0 1	1	100	4	4	0
13	01101	0 1	1	101	5	0	1
14	01110	0 1	1	110	6	1	0
15	01111	0 1	1	111	7	2	0
16	10000	10	2	000	0	0	1
17	10001	10	2	001	1	1	1
18	10010	10	2	010	2	2	d
19	10011	10	2	011	3	3	0
20	10100	10	2	100	4	4	0
21	10101	10	2	101	5	0	1
22	10110	10	2	110	6	1	1
23	10111	10	2	111	7	2	0
24	11000	11	3	000	0	0	1
25	11001	11	3	001	1	1	1
26	11010	11	3	010	2	2	d
27	11011	11	3	011	3	3	0
28	11100	11	3	100	4	4	0
29	11101	11	3	101	5	0	1
30	11110	11	3	110	6	1	1
31	11111	11	3	111	7	2	1

2. Представление булевой функции в аналитическом виде

 $\mathsf{KKH\Phi}: f = \overline{x_1}x_2\overline{x_3x_4x_5} \lor \overline{x_1}x_2x_3\overline{x_4}x_5 \lor x_1\overline{x_2}x_3\overline{x_4}x_5 \lor x_1\overline{x_2}x_3\overline{x$

КДНФ: $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})(x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)$ $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)$

3. 1. а) Минимизация булевой функции методом Квайна-Мак-Класки

Nº	K ⁰ (f) ∪	N/f	K ¹ (f)			K ² (<i>f</i>)				Z(<i>f</i>)	1
1	00010	V	1	V	1-4			1-12 2-8	<u> </u>		
			0X010	<u> </u>		XX010				XX010	
2	01000	V	X0010	V	1-6	X10X0		3-14 4-8	3	X10X0	
3	10000	V	010X0	V	2-4	1X00X		5-13		1X00X	
4	01010	V	X1000	٧	2-7	1X0X0		6-14 7-2	12	1X0X0	
5	10001	V	1000X	٧	3-5	1XX01		9-18 10	-16	1XX01	
6	10010	V	100X0	٧	3-6	1XX10		11-19 12	-17	1XX10	
7	11000	V	1X000	٧	3-7	1/3/	Λ	d		X1010	
8	01101	V	X1010		4-12	K^()	Γ)	$= \emptyset$	-	X1101	L
9	10101	V	10X01	٧	5-9					111X1	
10	10110	V	1X001	٧	5-11					1111X	
11	11001	V	10X10	٧	6-10						
12	11010	V	1X010	V	6-12						
13	11101	٧	1100X	٧	7-11						
14	11110	V	110X0	٧	7-12						
15	11111	V	X1101		8-13						
16		V	1X101	٧	9-13						
17		V	1X110	٧	10-14						
18			11X01	٧	11-13						
19			11X10	٧	12-14						
20			111X1		13-15						
21			1111X		14-15						

1. б) Составление импликантной таблицы

Импликанты 2, 5, 6, 8 — существенные, так как они покрывают соответствующие вершины, непокрытые другими импликантами. Импликанты 1, 7 не покрывают ни одну вершину. Вычеркнем из таблицы строки, соответствующие этим импликантам, а также столбцы, соответствующие вершинам, покрываемым существенными импликантами, в результате получаем упрощенную импликатную таблицу.

1. в) Определение существенных импликант

	0-к	убы	
Простис		1	1
Простые импликанты		0	1
(максимальн	ые	0	1
кубы[Стіп])	5.0	0	1
, - [],		0	1
		а	b
1X00X	Α	*	
1X0X0	*		
111X1		*	

Множество существенных импликант (максимальных кубов) образует ядро

покрытия как его обязательную часть:
$$T = \begin{cases} X10X0\\1XX01\\1XX10\\X1101 \end{cases}$$
.

1. г) Определение минимального покрытия

Метод Петрика

$$Y = (AVB)(CVD)$$

Выполняя операции попарного логического умножения применительно к термам, содержащим одинаковые буквы, с последующим применением закона поглощения, приведем исходную конъюнктивную форму Y к дизъюнктивной:

Y = ACVBCVADVBD

Возможны следующие варианты покрытия:

$$C_{1} = \begin{cases} T \\ A \\ C \end{cases} \qquad C_{2} = \begin{cases} T \\ B \\ C \end{cases} \qquad C_{3} = \begin{cases} T \\ A \\ D \end{cases} \qquad C_{4} = \begin{cases} T \\ B \\ D \end{cases}$$

$$S_{1}^{a} = 20; \qquad S_{2}^{a} = 20; \qquad S_{3}^{a} = 20; \qquad S_{4}^{a} = 20;$$

$$S_{1}^{b} = 26 \qquad S_{2}^{b} = 26 \qquad S_{3}^{b} = 26 \qquad S_{4}^{b} = 26$$

1. д) Дальнейшее упрощение импликантной таблицы

Дальнейшее упрощение невозможно.

Все покрытия функции являются минимальными, поэтому выберем одну на момент (на выборе может влиять этап факторизации):

$$C_{min}(f) = \begin{cases} X10X0\\1XX01\\1XX10\\X1101\\1X0X0\\1111X \end{cases}$$

3. 2. а) Нахождение простых имплицент

Nº	K ⁰ (f) ∪	N(<i>f</i>)	K ¹ (f)			K ² (f)			K ³ (<i>f</i>)		Z(<i>f</i>)
1	00000	V	0000X	V	1-2	000XX	٧	1-7 2-4	00XXX	1-11 2-6 3-4	00XXX
2	00001	V	000X0	V	1-3	00X0X	V	1-11	0XX1X	6-19 8-14	0XX1X
3	00010	V	00X00	٧	1-4	00XX0	V	2-12 3-8	XX01X	7-19 9-20 10-16	XX01X
4	00100	V	000X1	٧	2-5	00XX1	V	4-18 5-15			0X0X1
5	00011	V	00X01	٧	2-6	0X0X1		4-21 6-16			0X1X0
6	00101	V	0X001	V	2-8	00X1X	V	7-19 8-15			XX100
7	00110	V	0001X	V	3-5	X001X	V	7-26 10-17			X0X11
8	01001	V	00X10	V	3-7	0XX10	V	8-22 9-20			XX011
9	01010	V	0X010	V	3-9	0X01X	V	9-16			0X11X
10	01100	V	X0010	V	3-11	XX010	V	10-23			01X1X
11	10010	V	0010X	V	4-6	001XX	V	11-19 12-18	$K^4(f)$	= Ø	
12	10100	V	001X0	V	4-7	0X1X0		12-24 13-20	. 07	P	
13	00111	V	0X100	V	4-10	XX100		13-28 14-25	7		
14	01011	V	X0100	V	4-12	0XX11	٧	15-31 16-29			
15	01110	V	00X11	V	5-13	X0X11		15-34 17-30			
16	10011	V	0X011	V	5-14	XX011		16-35 17-32			
17	11010	V	X0011	V	5-16	0X11X		19-33 20-29			
18	11100	V	001X1	V	6-13	01X1X		22-31			
19	01111	V	0011X	V	7-13	X101X	V	23-32			
20	10111	V	0X110	V	7-15	1X01X	V	26-32 27-35			
21	11011	V	010X1	V	8-14						
22			01X10	V	9-15						
23			X1010	V	9-17						
24			011X0	V	10-15						
25			X1100	V	10-18						
26			1001X	V	11-16						
27			1X010	V	11-17						
28			1X100	V	12-18						
29			0X111	V	13-19						
30			X0111	V	13-20						
31			01X11	V	14-19						
32			X1011	V	14-21						
33			0111X	V	15-19						
34			10X11	V	16-20						
35			1X011	V	16-21						
36			1101X	V	17-21						

2. б) Составление импликантной таблицы

									0-к	убы									
Простые	ф	þ	þ	ф	•	ф	ф	ф	1	ф	ф	0	1	1	-	0	1	-	1
импликанты	ф	•		φ		ф	1	1	φ	ф		1		1	-	1	¢)	1
(максимальные	φ	0	1	φ	1	1	φ	1	1	1	φ	1	•	1	-	1	1	-	0
кубы [С _{тіп}])	φ	0	•	1	•	1	φ	φ	φ	1	1	1	1	()	1	1		1
	ф	1	þ	1	1	Φ.	1	ф	ф	1	1	0	1	d)	1	1		1
-00XXX		+	*	*	*	+				*									
0XX1X)			*		*				*	*	*				*			
XX01X		*		*		*					*		*						*
0X0X1	+	+	H	+	+	+	(1)			\vdash	+		+	+					
0X1X0			*			*		*	*			*							
XX100	\vdash	\vdash	*	\vdash	+	+	\vdash	*	*	+				4	\rightarrow				
-X0X11			H	*	H	H				*			*	\square	4)	
XX011				*			Ħ				*		*				Ĭ		*
0X11X						*				*						*			
01X1X											*					*			

Имплиценты 1, 4, 6, 7 — существенные, так как они покрывают соответствующие вершины, непокрытые другими импликантами. Вычеркнем из таблицы строки, соответствующие этим импликантам, а также столбцы, соответствующие вершинам, покрываемым существенными импликантами, в результате получаем упрощенную импликатную таблицу.

2. в) Определение существенных имплицент

			()-кубь	I
	П		0	0	1
	Простые		1	1	1
	импликанты		1	1	0
	(максимальные		1	1	1
	кубы [С _{min}])		0	1	1
			а	b	С
	0XX1X	Α	*	*	
1	XX01X	В			*
1	0X1X0	С	*		
	XX011	D			*
	0X11X	Ε		*	
	01X1X	F		*	

Множество существенных имплицент (максимальных кубов) образует ядро

покрытия как его обязательную часть:
$$T = \begin{cases} 00XXX\\ 0X0X1\\ XX100\\ X0X11 \end{cases}$$

3. г) Определение минимального покрытия

Метод Петрика

$$Y = (AVC)(AVEVF)(BVD)$$

Выполняя операции попарного логического умножения применительно к термам, содержащим одинаковые буквы, с последующим применением закона поглощения, приведем исходную конъюнктивную форму Y к дизъюнктивной:

Y = (AVC(EVF))(BVD) = ABVADVBC(EVF)VDC(EVF) = ABVADVBCEVBCFVDCEVDCF Возможны следующие варианты покрытия:

$$C_1 = \begin{Bmatrix} T \\ A \\ B \end{Bmatrix}$$
 $C_2 = \begin{Bmatrix} T \\ A \\ D \end{Bmatrix}$ $C_3 = \begin{Bmatrix} T \\ B \\ C \\ E \end{Bmatrix}$ $C_4 = \begin{Bmatrix} T \\ B \\ C \\ F \end{Bmatrix}$ $C_5 = \begin{Bmatrix} T \\ D \\ C \\ E \end{Bmatrix}$ $C_6 = \begin{Bmatrix} T \\ D \\ C \\ F \end{Bmatrix}$ $C_1 = \begin{Bmatrix} T \\ D \\ C \\ E \end{Bmatrix}$ $C_6 = \begin{Bmatrix} T \\ D \\ C \end{Bmatrix}$ $C_6 = \begin{Bmatrix} T$

2. д) Дальнейшее упрощение имплицентной таблицы Дальнейшее упрощение невозможно.

4. Минимизация булевой функции на картах Карно

а) Определение МДНФ

 x_4x_5

 x_4x_5

01 11 10 0

00 01 11 10

			d			
	1					
1			d			
$x_1 = 0$						

00	1	1		d
01		1		1
11		1	1	1
10	1	1		d

 $x_1 = 1$ x_2x_3

Получаем
$$C_{min}(f) = \begin{cases} 1XX01\\1X0X0\\1XX10\\1111X\\X10X0\\X1101 \end{cases}$$

МДНФ имеет следующий вид:

$$f = x_1 \overline{x_4} x_5 \vee x_1 x_3 \overline{x_5} \vee x_1 x_4 \overline{x_5} \vee x_1 x_2 x_3 x_4 \vee x_2 \overline{x_3 x_5} \vee x_2 x_3 \overline{x_4} x_5$$

б) Определение МКНФ

00 01 11 10

00 01 11 10

		d	00
			01
	1		11
1		d	10

 x_4x_5

 x_2x_3

 x_4x_5

$$x_1 = 0$$

$$x_1 = 1$$

Получаем
$$C_{min}(f) = egin{cases} 00XXX \\ XX100 \\ 0X0X1 \\ XX01X \\ X0X11 \\ 0XX1X \end{pmatrix}$$

МДНФ имеет следующий вид:

$$f = (x_1 \lor x_2)(\overline{x_3} \lor x_4 \lor x_5)(x_1 \lor x_3 \lor \overline{x_5})(x_3 \lor \overline{x_4})(x_2 \lor \overline{x_4} \lor \overline{x_5})(x_1 \lor \overline{x_4})$$

5. Преобразование минимальных форм для булевой функции

а) Факторное преобразование для МДНФ:

$$f = x_1 \overline{x_4} x_5 \vee x_1 x_3 \overline{x_5} \vee x_1 x_4 \overline{x_5} \vee x_1 x_2 x_3 x_4 \vee x_2 \overline{x_3} \overline{x_5} \vee x_2 x_3 \overline{x_4} x_5 = S_Q = 26$$

$$= x_1(\overline{x_4}x_5 \vee x_3\overline{x_5} \vee x_4\overline{x_5} \vee x_2x_3x_4) \vee x_2(\overline{x_3}\overline{x_5} \vee x_3\overline{x_4}x_5) = S_Q = 26$$

$$= x_1(x_3(\overline{x_5} \vee x_2x_4) \vee \overline{x_4}x_5 \vee x_4\overline{x_5}) \vee x_2(\overline{x_3}\overline{x_5} \vee x_3\overline{x_4}x_5)$$
 S_Q = 25

б) Факторное преобразование для МКНФ:

$$f = (x_1 \lor x_2)(\overline{x_3} \lor x_4 \lor x_5)(x_1 \lor x_3 \lor \overline{x_5})(x_3 \lor \overline{x_4})(x_2 \lor \overline{x_4} \lor \overline{x_5})(x_1 \lor \overline{x_4}) = S_Q = 21$$
$$= (x_1 \lor x_2\overline{x_4}(x_3 \lor \overline{x_5}))(\overline{x_4} \lor x_3(x_2 \lor \overline{x_5}))(\overline{x_3} \lor x_4 \lor x_5)$$
$$S_Q = 19$$

- 6. Синтез комбинационных схем в булевом базисе
- а) Комбинационная схема с парафазными входами:

Цена схемы по Квайну S_Q = 19; задержка схемы T = 4τ .

б) Комбинационная схема с однофазными входами:

Цена схемы по Квайну S_Q = 22; задержка схемы T = 5τ .

- 7. Синтез комбинационных схем в универсальных базисах
- 1) Базис (ИЛИ-НЕ)
- а) Приведение аналитического выражения к базису (ИЛИ-НЕ) и построение схемы полученного выражения с парафазными входами

Цена схемы по Квайну S_Q = 36; задержка схемы T = 9τ .

б) Преобразование схемы из булева базиса в универсальный

Цена схемы по Квайну S_Q = 36; задержка схемы T = 9τ .

После исключения лишних инверторов получим окончательную схему в базисе (ИЛИ-НЕ).

2) Базис (И-НЕ)

а) Приведение аналитического выражения к базису (И-НЕ) и построение схемы полученного выражения с парафазными входами

$$f = (x_1 \lor \overline{x_2}\overline{x_4}(\overline{x_3} \lor \overline{x_5}))(\overline{x_4} \lor \overline{x_3}(\overline{x_2} \lor \overline{x_5}))(\overline{x_3} \lor x_4 \lor x_5) =$$

$$= (\overline{x_1}|(\overline{(x_2|\overline{x_4})}|(\overline{x_3}|x_5)))|(x_4|(\overline{x_3}|(x_2|\overline{x_5})))|(x_3|\overline{x_4}|\overline{x_5})$$

Цена схемы по Квайну S_Q = 28; задержка схемы T = 6τ .

Цена схемы по Квайну S_Q = 28; задержка схемы T = 6τ .

После исключения лишних инверторов получим окончательную схему в базисе (И-НЕ).

8. Синтез комбинационных схем в сокращенных булевых базисах

8.1. Базис (ИЛИ, НЕ)

$$f = x_1(x_3(\overline{x_5} \lor x_2x_4) \lor \overline{x_4}x_5 \lor x_4\overline{x_5}) \lor x_2(\overline{x_3}\overline{x_5} \lor x_3\overline{x_4}x_5) =$$

$$= \overline{x_1(\overline{x_3}(\overline{x_5} \vee \overline{\overline{x_2}\overline{x_4}}) \vee \overline{\overline{x_4}\overline{x_5}} \vee \overline{\overline{x_4}\overline{x_5}}) \vee \overline{x_2(\overline{x_3}\overline{x_5} \vee \overline{\overline{x_3}\overline{x_4}\overline{x_5}})} =$$

$$= (\overline{x_1} \vee ((\overline{x_3} \vee (\overline{x_5} \vee (\overline{x_2} \vee \overline{x_4}))) \vee (\overline{x_4} \vee \overline{x_5}) \vee (\overline{x_4} \vee x_5))) \vee (\overline{x_2} \vee ((\overline{x_3} \vee \overline{x_5}) \vee (\overline{x_3} \vee \overline{x_4} \vee \overline{x_5}))))$$

Цена схемы по Квайну S_Q = 36; задержка схемы T = 9τ .

8.2. Базис (И, НЕ)

$$f = \underbrace{(x_{1} \lor x_{2}x_{4}(x_{3} \lor x_{5}))(x_{4} \lor x_{3}(x_{2} \lor x_{5}))(x_{3} \lor x_{4} \lor x_{5})}_{= \underbrace{(x_{1} \lor x_{2}\overline{x_{4}}(\overline{x_{3}}\overline{\lor \overline{x_{5}}}))(\overline{x_{4}} \lor x_{3}(\overline{x_{2}}\overline{\lor \overline{x_{5}}}))(\overline{x_{3}} \lor x_{4} \lor x_{5})}_{= \underbrace{(x_{1} \lor x_{2}\overline{x_{4}}(\overline{x_{3}}\overline{\lor \overline{x_{5}}}))}_{= \underbrace{(x_{1} \lor x_{2}\overline{x_{4}}(x_{3}\overline{x_{5}})))}_{= \underbrace{(x_{1} \lor x_{2}\overline{x_{4}}(x_{3}\overline{x_{5}}))}_{= \underbrace{(x_{1} \lor x_{2}\overline{x_{5}}(x_{2}\overline{x_{5}}))}_{= \underbrace{(x_{1} \lor x_{2}\overline{x_{5}}(x_{2}\overline{x_{5}$$

Цена схемы по Квайну S_Q = 26; задержка схемы T = 7τ .

9. Анализ комбинационных схем

Определение реакции схемы на входные наборы: 01011 и 01000 Для булева базиса с парафазными входами:

Для Базиса(ИЛИ-НЕ):

Для базиса (И-НЕ):

