Dimensionality Reduction

Spring 2024

Hongchang Gao

- 1. Exploratory data analysis
 - Visualize high-dimensional data

Car	MPG	Cylinders	Displacemen	Horsepower	Weight	Acceleration	Model	Origin
Chevrolet Ch	18	8	307	130	3504	12	70	US
Buick Skylark	15	8	350	165	3693	11.5	70	US
Plymouth Sa ⁻	18	8	318	150	3436	11	70	US
AMC Rebel S	16	8	304	150	3433	12	70	US
Ford Torino	17	8	302	140	3449	10.5	70	US
Ford Galaxie	15	8	429	198	4341	10	70	US
Chevrolet Im	14	8	454	220	4354	9	70	US
Plymouth Fu	14	8	440	215	4312	8.5	70	US
Pontiac Cata	14	8	455	225	4425	10	70	US
AMC Ambass	15	8	390	190	3850	8.5	70	US
Citroen DS-2	0	4	133	115	3090	17.5	70	Europe
Chevrolet Ch	0	8	350	165	4142	11.5	70	US
Ford Torino (0	8	351	153	4034	11	70	US
Plymouth Sa	0	8	383	175	4166	10.5	70	US
AMC Rebel S	0	8	360	175	3850	11	70	US

- 2. Curse of dimensionality
 - Distance concentration refers to the problem of all the pairwise distances between different samples/points in the space converging to the same value as the dimensionality of the data increases.

$$||x_1 - x_2||_2 \to d$$

$$||x_1 - x_3||_2 \to d$$

• 3. Computational cost

- data science algorithms scale linearly with the number of attributes, but very often the scaling is quadratic, or even worse
- some of the more costly data science algorithms could be impossible to run on larger-sized data.

• 4. Noise reduction

- the real-life data are often noisy and looking at any individual attribute might not provide any insight.
- if we smartly combine a large number of noisy attributes into a small set of new ones, those new attributes might reveal some useful properties of the data that are not obvious in the original data.

How to reduce the dimensionality?

- How to reduce the dimensionality?
 - Eliminate features?
 - Lose information?

Car	MPG	Cylorers	Displacemen	Horsepower	W	Acceleration	Model	Origin
Chevrolet Ch	18	8	307	130	3504	12	70	US
Buick Skylark	15	8	350	165	3693	11.5	70	US
Plymouth Sa	18	8	318	150	3436	11	70	US
AMC Rebel S	16	8	304	150	3433	12	70	US
Ford Torino	17	8	302	140	3449	10.5	70	US
Ford Galaxie	15	8	429	198	4341	10	70	US
Chevrolet Im	14	8	454	220	4354	9	70	US
Plymouth Fu	14	8	440	215	4312	8.5	70	US
Pontiac Cata	14	8	455	225	4425	10	70	US
AMC Ambass	15	8	390	190	3850	8.5	70	US
Citroen DS-2	0	4	133	115	3090	17.5	70	Europe
Chevrolet Ch	0	8	350	165	4142	11.5	70	US
Ford Torino (0	8	351	153	4034	11	70	US
Plymouth Sa	0	8	383	175	4166	10.5	70	US
AMC Rebel S	0	8	360	175	3850	11	70	US

- 3D points
 - If each component is stored in a byte, 18 bytes are needed

1	2	4	3	5	6
2	4	8	6	10	12
3	6	12	9	15	18

• All points are correlated: a common point scaled by different factors

1		1	2		1	4	4		1
2	= 1 *	2	4	= 2 *	2	8	3	= 4 *	2
3		3	6		3		12		3
3		1	5		1		5		1
6	= 3 *	2	10	= 5 *	2	1	2	= 6 *	2
9		3	15		3	1	8		3

- To store them, only 9 bytes are needed
 - Store one point and six scaling factors

- Geometrical interpretation
 - All data points lie in a 1D subspace of the original 3D space

- Geometrical interpretation
 - Find a new coordinate system where one of the axes is along the direction of the line
 - In the new coordinate system, every data point has only one non-zero coordinate

- PCA is a dimensionality reduction method
 - A linear transformation
 - Find a new coordinate system for the dataset
 - Only use a small part of coordinates to represent data points
 - Preserve as much of the data's variance as possible
- Formally, given a dataset with n samples $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}$ $\mathbf{x}_i \in \mathbb{R}^d$
 - Find a linear transformation $W^{d\times k}$ where k < d
 - d is the number of features in the original data
 - k is the number of new features
 - Preserve the variance as much as possible

- First principal component
 - Subtract the mean

$$\tilde{X} = [\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2, \cdots, \tilde{\mathbf{x}}_n] \qquad \tilde{\mathbf{x}}_i = \mathbf{x}_i - \bar{\mathbf{x}}$$

- Apply the linear transformation
 - Get data points in the new coordinate system

$$[\mathbf{w}^T \tilde{\mathbf{x}}_1, \mathbf{w}^T \tilde{\mathbf{x}}_2, \cdots, \mathbf{w}^T \tilde{\mathbf{x}}_n]$$

Compute the variance in the new coordinate system

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^T \tilde{\mathbf{x}}_1)^2$$

$$x^{T}a = 2$$
, $y^{T}a = 3$

- How to find this new coordinate system/linear transformation?
 - Maximize the variance in the new coordinate system

$$\max_{\|\mathbf{w}\|_2=1} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^T \tilde{\mathbf{x}}_1)^2$$

- Optimizing this problem can find the new coordinate system
 - The first principal component: $d \rightarrow 1$

$$\{\mathbf{w}^T \tilde{\mathbf{x}}_1, \mathbf{w}^T \tilde{\mathbf{x}}_2, \cdots, \mathbf{w}^T \tilde{\mathbf{x}}_n\}$$

Visualization

Second principal component

$$\max_{\|\mathbf{w}\|_{2}=1, \frac{1}{n}} \sum_{i=1}^{n} (\mathbf{w}^{T} \tilde{\mathbf{x}}_{i})^{2}$$

$$\mathbf{w} \perp \mathbf{w}_{1}$$

The first principal component

$$\{\mathbf{w}_1^T \tilde{\mathbf{x}}_1, \mathbf{w}_1^T \tilde{\mathbf{x}}_2, \cdots, \mathbf{w}_1^T \tilde{\mathbf{x}}_n\}$$

The second principal component

$$\{\mathbf{w}_2^T \tilde{\mathbf{x}}_1, \mathbf{w}_2^T \tilde{\mathbf{x}}_2, \cdots, \mathbf{w}_3^T \tilde{\mathbf{x}}_n\}$$

$$X = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$$

$$W = [\mathbf{w}_1, \mathbf{w}_2] \in \mathbb{R}^{d \times 2}$$

$$\hat{X} = W^T \tilde{X} \in \mathbb{R}^{2 \times n}$$

The k-th principal component

$$\max_{\|\mathbf{w}\|_{2}=1, \\ \mathbf{w} \perp \mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k-1}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{T} \tilde{\mathbf{x}}_{i})^{2}$$

$$X = [\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}] \in \mathbb{R}^{d \times n}$$

$$W = [\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}] \in \mathbb{R}^{d \times k}$$

$$\hat{X} = W^{T} \tilde{X} \in \mathbb{R}^{k \times n}$$

Matrix form

$$\sum_{i=1}^{n} (\mathbf{w}^{T} \tilde{\mathbf{x}}_{i})^{2}$$

$$= \sum_{i=1}^{n} (\mathbf{w}^{T} \tilde{\mathbf{x}}_{i}) (\mathbf{w}^{T} \tilde{\mathbf{x}}_{i})$$

$$= \sum_{i=1}^{n} (\mathbf{w}^{T} \tilde{\mathbf{x}}_{i}) (\tilde{\mathbf{x}}_{i}^{T} \mathbf{w})$$

$$= \mathbf{w}^{T} (\sum_{i=1}^{n} \tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i}^{T}) \mathbf{w}$$

$$= \mathbf{w}^{T} \tilde{X} \tilde{X}^{T} \mathbf{w}$$

Objective function of PCA

$$\max_{W^T W = I} W^T \tilde{X} \tilde{X}^T W$$

Covariance matrix

How to optimize this model?

Eigen-decomposition for the covariance matrix

$$A = U\Sigma U^T$$

- $A = \tilde{X}\tilde{X}^T \in \mathbb{R}^{d \times d}$ is the covariance matrix
- $U = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_d] \in \mathbb{R}^{d \times d}$ where \mathbf{u}_i is the *i*-th largest eigenvector, $\mathbf{u}_i^T \mathbf{u}_i = 0$, $\|\mathbf{u}_i\|_2 = 1$
- $\Sigma = diag\{\lambda_1, \lambda_2, \cdots, \lambda_d\}$ where λ_i is the *i*-th largest eigenvalue $0 \le \lambda_d \le \cdots \le \lambda_2 \le \lambda_1$
- The solution is the largest k eigenvectors

$$\max_{W^T W = I} W^T \tilde{X} \tilde{X}^T W \qquad \longrightarrow \qquad W = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k] \in \mathbb{R}^{d \times k}$$

How to optimize this model?

Interpretation

$$\begin{pmatrix} 2\\0.03 \end{pmatrix} = 2 \begin{pmatrix} 1\\0 \end{pmatrix} + 0.03 \begin{pmatrix} 0\\1 \end{pmatrix}$$

Covariance matrix
$$A = U\Sigma U^T$$

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_k \mathbf{u}_k \mathbf{u}_k^T + \dots + \lambda_d \mathbf{u}_d \mathbf{u}_d^T$$

Only keep the largest k eigenvalue
$$0 \le \lambda_d \le \cdots \le \lambda_2 \le \lambda_1$$

$$A \approx \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_k \mathbf{u}_k \mathbf{u}_k^T$$

$$W = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k] \in \mathbb{R}^{d \times k}$$

Summary

Step 1: Mean subtraction

$$\tilde{X} = X - \frac{1}{n} X \mathbf{1} \mathbf{1}^T$$

• Step 2: Compute the covariance matrix

$$A = \tilde{X}\tilde{X}^T$$

• Step 3: Eigen-decomposition

$$A = U\Sigma U^T$$

Step 4: Keep the largest k eigenvectors

$$W = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k] \in \mathbb{R}^{d \times k}$$