SMU Classification: Restricted

Diffusion-based Negative Sampling on **Graphs for Link Prediction**

Trung-Kien Nguyen and **Yuan Fang**

School of **Computing and Information Systems**

- Problem & related work
- Proposed model: DMNS
- Experiments
- Conclusions

Problem

• Link prediction: fundamental task with many applications social networks, recommendation, knowledge graph completion, etc.

- Modern approaches: Contrastive learning
 - Aims to learn robust node representations
 - Requires positive and negative samples for a given query node
 - Negative sampling: huge search space and highly false negatives
 - → Negative sampling for contrastive link prediction on graph

Challenges & Related Work

- 1. How to flexibly model and control the quality of negative nodes?
 - Heuristics [1,2,3] or automatic generative [4,5] designs are inflexible
 - → Multi-level negative sampling strategy

- 2. How do we find sufficient negative examples of variable hardness?
 - Most negative sampling approaches [1,2,3,4,6] are limited from observed graphs
 - → Diffusion models: naturally generate multi-level samples at different steps
- [1] Mikolov et al 2013. Distributed representations of words and phrases and their compositionality. Neurips.
- [2] Zhang et al. 2013. Optimizing top-n collaborative filtering via dynamic negative item sampling. SIGIR.
- [3] Yang et al. 2020. Understanding negative sampling in graph representation learning. KDD..
- [4] Wang et al. 2018. Graphgan: Graph representation learning with generative adversarial nets. AAAI.
- [5] Pan et al. 2018. Adversarially regularized graph autoencoder for graph embedding. IJCAI.
- [6] Zhang et al. 2018. Link Prediction Based on Graph Neural Networks. Neurips.

- Problem & related work
- Proposed model: DMNS
- Experiments
- Conclusions

DMNS: Overall Framework

Figure 1: Overall framework of DMNS.

DMNS

GNN Encoder

$$\mathbf{h}_{v}^{l} = \sigma\left(\operatorname{Aggr}(\mathbf{h}_{v}^{l-1}, \{\mathbf{h}_{i}^{l-1} : i \in \mathcal{N}_{v}\}; \omega^{l})\right)$$

Conditional Diffusion

Forward process

$$\mathbf{h}_{u,t} = \sqrt{\bar{\alpha}_t} \mathbf{h}_u + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, \quad \forall u \in \mathcal{N}_v, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Reverse process

$$\begin{aligned} \epsilon_{t,\theta|v} &= (\gamma + \mathbf{1}) \odot \mathbf{h}_{u,t} + \eta, \\ \gamma &= \mathrm{FCL}(\mathbf{t} + \mathbf{h}_v; \theta_\gamma), \quad \eta = \mathrm{FCL}(\mathbf{t} + \mathbf{h}_v; \theta_\eta), \quad [\mathbf{t}]_{2i} = \sin(t/10000^{\frac{2i}{d_h}}) \\ &\qquad \qquad [\mathbf{t}]_{2i+1} = \cos(t/10000^{\frac{2i}{d_h}}) \end{aligned}$$

(b) DMNS

Overall Loss

Diffusion Loss

$$\mathcal{L}_D = \|\epsilon_t - \epsilon_{t,\theta|v}\|^2$$

Multi-level Negative Sampling

$$\mathbf{h}_{d,T|v} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

$$\mathbf{h}_{d,t-1|v} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{h}_{d,t|v} - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{t,\theta|v} \right) + \sigma_t \mathbf{z},$$

Link Prediction Loss

$$\mathcal{L} = -\log \sigma(\mathbf{h}_v^{\top} \mathbf{h}_u) - \log \sigma(-\mathbf{h}_v^{\top} \mathbf{h}_{u'})$$
$$- \sum_{d_i \in D_v} w_i \log \sigma(-\mathbf{h}_v^{\top} \mathbf{h}_{d_i}))$$

DMNS negative sets:

real negative node
$$D_v = \{\mathbf{h}_{d,t|v} : t = \frac{T}{10}, \frac{T}{8}, \frac{T}{4}, \frac{T}{2}\}$$

(c) Prediction

- Problem & related work
- Proposed model: DMNS
- Experiments
- Conclusions

Experimental Setup

Datasets	Nodes	Edges	Features	Property		
Cora	2708	5429	1433	homophilous		
Citeseer	3327	4732	3703	homophilous		
Coauthor-CS	18333	163788	6805	homophilous		
Actor	7600	30019	932	heterophilous		
	•					

Baselines

Classic GNNs

- GCN [1]
- GAT [2]
- SAGE [3]

MCNS [6]

Generative NS

- GraphGAN [7]
- ARGVA [8]
- KBGAN [9]

Subgraph-based GNNs

• SEAL [10]

Heuristic NSPNS [4]

DNS [5]

ScaLed [11]

- [1] Kipf et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
- [2] Veličković et al. 2018. Graph attention networks. ICLR.
- [3] Hamilton et al. 2017. Inductive representation learning on large graphs. NeurIPS.
- [4] Mikotov et al. 2013. Distributed representations of words and phrases and their compositionality. NeurIPS.
- [5] Zhang et el. 2013. Optimizing top-n collaborative filtering via dynamic negative item sampling. SIGIR.
- [6] Yang et al. 2020. Understanding negative sampling in graph representation learning. KDD.
- [7] Wang et al. 2018. Graphgan: Graph representation learning with generative adversarial nets. AAAI.
- [8] Pan et al. 2018. Adversarially regularized graph autoencoder for graph embedding. IJCAI.
- [9] Cai et al. 2017. Kbgan: Adversarial learning for knowledge graph embeddings. ACL.
- [10] Zhang et al. 2018. Link prediction based on graph neural networks. NeurIPS.
- [11] Louis et al. 2022. Sampling Enclosing Subgraphs for Link Prediction. CIKM.

Link Prediction

Table 2: Evaluation of link prediction against baselines using GCN as the base encoder.

26.41 1	Cora		Citeseer		Coauthor-CS		Actor	
Methods	MAP	NDCG	MAP	NDCG	MAP	NDCG	MAP	NDCG
GCN	.742 ± .003	.805 ± .003	.735 ± .011	.799 ± .008	.823 ± .004	.867 ± .003	.521 ± .004	.634 ± .003
GVAE	<u>.783</u> ± .003	<u>.835</u> ± .002	$.743 \pm .004$	$.805 \pm .003$	$.843 \pm .011$	$.882 \pm .008$	<u>.587</u> ± .004	<u>.684</u> ± .003
PNS	$.730 \pm .008$.795 ± .006	$.748 \pm .006$	$.809 \pm .005$.817 ± .004	$.863 \pm .003$.517 ± .006	.631 ± .006
DNS	$.735 \pm .007$	$.799 \pm .005$	$.777 \pm .005$	$.831 \pm .004$	$.845 \pm .003$	$.883 \pm .002$	$.558 \pm .006$	$.663 \pm .005$
MCNS	$.756 \pm .004$	$.815 \pm .003$	$.750 \pm .006$	$.810 \pm .004$	$.824 \pm .004$	$.868 \pm .004$	$.555 \pm .005$	$.659 \pm .004$
GraphGAN	.739 ± .003	.802 ± .002	.740 ± .011	.803 ± .008	.818 ± .007	.863 ± .005	.534 ± .007	.644 ± .005
ARVGA	$.732 \pm .011$	$.797 \pm .009$	$.689 \pm .005$	$.763 \pm .004$	$.811 \pm .003$	$.858 \pm .002$	$.526 \pm .012$	$.638 \pm .009$
KBGAN	$.615 \pm .004$	$.705 \pm .003$	$.568 \pm .006$	$.668 \pm .005$	$.852 \pm .002$	$.888 \pm .002$	$.472 \pm .003$	$.596 \pm .002$
SEAL	.751 ± .007	.812 ± .005	.718 ± .002	.784 ± .002	.850 ± .001	.886 ± .001	.536 ± .001	.641 ± .001
ScaLed	$.676 \pm .004$	$.752 \pm .003$	$.630 \pm .004$	$.712 \pm .003$	$.828 \pm .001$	$.869 \pm .001$	$.459 \pm .001$	$.558 \pm .001$
DMNS	.793 ± .003	.844 ± .002	.790 ± .004	.841 ± .003	.871 ± .002	.903 ± .001	.600 ± .002	.696 ± .002

^{*}Best is **bolded** and runner-up <u>underlined</u>.

Link Prediction

Table 3: Evaluation of link prediction on DMNS with various base encoders.

Methods	Cora		Citeseer		Coauthor-CS		Actor	
Methods	MAP	NDCG	MAP	NDCG	MAP	NDCG	MAP	NDCG
GAT	.766 ± .006	.824 ± .004	.767 ± .007	.763 ± .062	.833 ± .003	.874 ± .002	.479 ± .004	.603 ± .003
DMNS-GAT	$.813 \pm .004$.859 ± .003	.788 ± .007	.840 ± .006	$.851 \pm .002$.889 ± .002	.573 ± .007	.675 ± .005
SAGE	$.598 \pm .014$	$.668 \pm .013$	$.622 \pm .012$	$.713 \pm .009$	$.768 \pm .005$	$.826 \pm .004$	$.486 \pm .004$	$.604 \pm .003$
DMNS-SAGE	.700 ± .007	.773 ± .005	.669 ± .013	$.749 \pm .010$.843 ± .004	.883 ± .003	.582 ± .017	.682 ± .013

• DMNS improves performance of various base GNN encoders, demonstrating its flexibility.

Ablation Studies

- (a) On model design Performance drops on:
- Unconditional diffusion
- Unweighted negative examples

(b) On sampling choice

- Performance of each single time step varies, but worse than combining them together
- Smaller time steps outperform larger ones

Embedding Visualization

Embedding distance as proxy to hardness: smaller distances from the query node imply harder examples

- Examples of DMNS: generally harder than uniform sampling, but not too hard to impair the performance
- Multi-level samples capture wide range of hardness levels for negative sampling.

- Problem & related work
- Proposed model: DMNS
- Experiments
- Conclusions

Conclusions

Problem

Multi-level negative sampling for graph link prediction

Proposed model: DMNS

- Empowers the sampling of multi-level negative examples, by sampling at different denoised steps of diffusion models
- Adheres the sub-linear positivity principle for robust negative sampling

Experiments

Extensive experiments demonstrate the effectiveness of DMNS

SMU Classification: Restricted

Thanks!

Diffusion-based Negative Sampling on Graphs for Link Prediction

Trung-Kien Nguyen and Yuan Fang