Architecture des ordinateurs Contrôle 1

Nom	:Prénom	:Classe	:Durée	:	11	h3	C
-----	---------	---------	--------	---	----	----	---

Exercice 1 (3,5 points)

Soit le nombre binaire sur 15 bits suivant : 10000001011102.

- 1. Donnez sa représentation décimale s'il s'agit d'un entier non signé.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 3. Donnez sa représentation hexadécimale s'il s'agit d'un entier non signé.

Soit un nombre sur n bits dont tous les bits sont à 1.

- 4. Donnez sa représentation décimale en fonction de n s'il s'agit d'un entier non signé.
- 5. Donnez sa représentation décimale s'il s'agit d'un entier signé.

Pour finir:

- 6. Donnez la représentation binaire sur 10 bits signés du nombre -7210.
- 7. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -2⁴¹.

Exercice 2 (6 points)

On désire réaliser la séquence du tableau ci-dessous à l'aide de bascules JK.

1. Remplissez le tableau.

Q₂	\mathbf{Q}_1	Q°	J 2	K ₂	\mathbf{J}_1	K ₁	Jo	Ko
1	0	0						
1	0	1						
1	1	1						
1	1	0						
0	1	0						
0	1	1						-

2. Donnez les équations des entrées J et K de chaque bascule <u>en détaillant vos calculs</u> <u>par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (ex: $J_0 = 1$, $K_1 = \overline{Q}_2$).

Contrôle 1

Exercice 3 (5 points)

- 1. Convertissez, <u>en détaillant chaque étape</u>, les deux nombres ci-dessous dans le format flottant IEEE 754 simple précision. Vous exprimerez le résultat final, sous forme binaire, en précisant chacun des champs.
 - 532,125
 - 0,75
- 2. Convertissez, <u>en détaillant au maximum</u>, les deux nombres ci-dessous, codés au format flottant IEEE 754 double précision, dans leur représentation décimale.
 - 0002 4000 0000 0000₁₆
 - 90F3 8000 0000 0000₁₆
- 3. Donnez, en puissance de 2, le plus petit nombre positif à mantisse dénormalisée qu'il est possible de coder dans le format flottant IEEE 754 simple précision.

Exercice 4 (5,5 points)

1. Remplissez le chronogramme à partir du montage ci-dessous :

2. Que réalise le montage ci-dessous (donnez ses trois caractéristiques principales)?

Contrôle 1 2/2