Reading the Data and Observations on Dataset

```
#Importing necessary libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
cd sample_data
     [Errno 2] No such file or directory: 'sample_data'
     /content/sample_data
import pandas as pd
data = pd.read_excel('customer_churn_large_dataset.xlsx')
data.head(5)
        CustomerID
                                    Gender Location Subscription_Length_Mont
                          Name Age
                                                  Los
     0
                  1 Customer_1
                                       Male
                                 63
                                               Angeles
                    Customer_2
                                 62 Female
                                              New York
                                                   Los
                 3 Customer_3
                                 24 Female
                                               Angeles
print(len(data))
    100000
# Display basic information about the dataset
print(data.info())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 100000 entries, 0 to 99999
    Data columns (total 9 columns):
         Column
                                      Non-Null Count
                                                       Dtype
     0
                                      100000 non-null
         CustomerID
                                                       int64
     1
          Name
                                      100000 non-null
                                                       object
                                      100000 non-null int64
     2
         Age
                                      100000 non-null
     3
          Gender
                                                       object
          Location
                                      100000 non-null
                                                       object
          Subscription_Length_Months
     5
                                      100000 non-null
                                                       int64
                                      100000 non-null
          Monthly_Bill
                                                       float64
                                      100000 non-null
          Total_Usage_GB
                                                       int64
         Churn
                                      100000 non-null
                                                       int64
     dtypes: float64(1), int64(5), object(3)
    memory usage: 6.9+ MB
    None
print(data.describe())
               CustomerID
                                          Subscription_Length_Months
                                     Age
                           100000.000000
    count 100000.000000
                                                       100000.000000
                               44.027020
                                                           12.490100
     mean
             50000.500000
             28867.657797
                               15.280283
                                                             6.926461
     std
    min
                 1.000000
                               18.000000
                                                             1.000000
                               31.000000
             25000.750000
                                                            6.000000
     25%
     50%
             50000.500000
                               44.000000
                                                            12.000000
                               57.000000
                                                           19.000000
     75%
             75000.250000
            100000.000000
                               70.000000
                                                           24.000000
    max
             Monthly_Bill
                           Total_Usage_GB
                                                   Churn
            100000.000000
                            100000.000000
                                           100000.000000
    count
                65.053197
                               274.393650
                                                0.497790
    mean
                20.230696
                               130.463063
                                                0.499998
```

```
30.000000
                                50.000000
                                                0.000000
    min
                               161.000000
                                                0.000000
    25%
                47.540000
    50%
                65.010000
                               274.000000
                                                0.000000
                               387.000000
                                                1.000000
    75%
                82.640000
               100.000000
                               500.000000
                                                1.000000
    max
data.isna().sum()
    CustomerID
                                   0
    Name
    Age
    Gender
                                   0
    Location
                                   0
    Subscription_Length_Months
    Monthly_Bill
                                   0
    Total_Usage_GB
                                   0
    Churn
    dtype: int64
```

Great! There are no missing values.

Data preprocessing and cleaning

Decided to remove the CustomerID, Name columns as they won't making any impact on model.

```
data.drop(["CustomerID"], inplace = True, axis = 1)
data.drop(["Name"], inplace = True, axis = 1)
data
```

		Age	Gender	Location	Subscription_Length_Months	Monthly_Bill	Tc
0)	63	Male	Los Angeles	17	73.36	
1	ı	62	Female	New York	1	48.76	
2	2	24	Female	Los Angeles	5	85.47	
3	3	36	Female	Miami	3	97.94	
4	1	46	Female	Miami	19	58.14	
999	995	33	Male	Houston	23	55.13	
999	996	62	Female	New York	19	61.65	
999	997	64	Male	Chicago	17	96.11	
4							•

```
# Handling missing data
data.dropna(inplace=True)

# Handling outliers (you can use appropriate methods depending on the distribution of your data)
# For example, using z-score for numerical columns
from scipy.stats import zscore
z_scores = zscore(data[['Age', 'Subscription_Length_Months', 'Monthly_Bill', 'Total_Usage_GB']])
data = data[(z_scores < 3).all(axis=1)]</pre>
data
```

		Age	Gender	Location	Subscription_Length_Months	Monthly_Bill	Tc	
	0	63	Male	Los Angeles	17	73.36		
	1	62	Female	New York	1	48.76		
	2	24	Female	Los Angeles	5	85.47		
	3	36	Female	Miami	3	97.94		
	4	46	Female	Miami	19	58.14		
	99995	33	Male	Houston	23	55.13		
	99996	62	Female	New York	19	61.65		
	99997	64	Male	Chicago	17	96.11		
							•	
xample: Remove outliers using IQR								

```
# Example: Remove Outliers using TQR
Q1 = data['Total_Usage_GB'].quantile(0.25)
Q3 = data['Total_Usage_GB'].quantile(0.75)
IQR = Q3 - Q1
data = data[(data['Total_Usage_GB'] >= Q1 - 1.5 * IQR) & (data['Total_Usage_GB'] <= Q3 + 1.5 * IQR)]

# Let's say 'Gender' is a categorical column you want to encode
data= pd.get_dummies(data, columns=['Gender'], drop_first=True)

# Example: Min-Max Scaling
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data[['Age', 'Monthly_Bill']] = scaler.fit_transform(data[['Age', 'Monthly_Bill']])
```

data

	Age	Location	Subscription_Length_Months	Monthly_Bill	Total
0	0.865385	Los Angeles	17	0.619429	
1	0.846154	New York	1	0.268000	
2	0.115385	Los Angeles	5	0.792429	
3	0.346154	Miami	3	0.970571	
4	0.538462	Miami	19	0.402000	
99995	0.288462	Houston	23	0.359000	
99996	0.846154	New York	19	0.452143	
99997	0.884615	Chicago	17	0.944429	
4					•

▼ feature engineering

```
# Example: Create a feature for the ratio of Monthly_Bill to Total_Usage_GB
data['Bill_to_Usage_Ratio'] = data['Monthly_Bill'] / data['Total_Usage_GB']

# Example: Create an interaction feature
data['Subscription_Bill_Interaction'] = data['Subscription_Length_Months'] * data['Monthly_Bill']
```

```
# Example: Calculate the average Monthly_Bill by Location
average_bill_by_location = data.groupby('Location')['Monthly_Bill'].mean().reset_index()
average_bill_by_location.rename(columns={'Monthly_Bill': 'Avg_Monthly_Bill_Location'}, inplace=True)
data = data.merge(average_bill_by_location, on='Location', how='left')
```

Example: If you know that certain Age ranges are more likely to churn, create an Age_Group feature
data['Age_Group'] = pd.cut(data['Age'], bins=[0, 25, 35, 50, 100], labels=[0, 1,2,3])

data

	Age	Location	Subscription_Length_Months	Monthly_Bill	Total
0	0.865385	Los Angeles	17	0.619429	
1	0.846154	New York	1	0.268000	
2	0.115385	Los Angeles	5	0.792429	
3	0.346154	Miami	3	0.970571	
4	0.538462	Miami	19	0.402000	
99995	0.288462	Houston	23	0.359000	
99996	0.846154	New York	19	0.452143	
99997	0.884615	Chicago	17	0.944429	
99998	0.634615	New York	20	0.275000	
99999	0.173077	Los Angeles	19	0.665286	
4					>

```
data = pd.read_excel('customer_churn_large_dataset.xlsx')
correlation_matrix = data.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Correlation Heatmap')
plt.show()
```


 ${\it Customer\ churn\ is\ highly\ correlated\ with\ Age\ and\ Subscription_Lenght_Month}$

를 명 명 Ei

from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder

Encode categorical variables

encoder = LabelEncoder()

data['Gender'] = encoder.fit_transform(data['Gender_Male'])

data['Location'] = encoder.fit_transform(data['Location'])

Split the data into features (X) and target (y)

X = data.drop('Churn', axis=1)

y = data['Churn']

Split into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Feature engineering

X_train['Bill_to_Usage_Ratio'] = X_train['Monthly_Bill'] / X_train['Total_Usage_GB']
X_test['Bill_to_Usage_Ratio'] = X_test['Monthly_Bill'] / X_test['Total_Usage_GB']

X_train

	Age	Location	${\tt Subscription_Length_Months}$	Monthly_Bill	Total
75220	0.692308	4	5	0.778571	
48955	0.192308	4	24	0.743714	
44966	0.750000	0	12	0.318429	
13568	0.019231	1	19	0.036714	
92727	0.730769	3	8	0.050286	
6265	0.326923	3	21	0.533286	
54886	0.730769	0	13	0.791429	
76820	0.980769	1	2	0.660571	
860	0.711538	0	12	0.845571	
15795	0.153846	2	17	0.577286	
4					>

import pandas as pd

 $from \ sklearn.preprocessing \ import \ StandardScaler$

```
# Apply feature scaling
scaler = StandardScaler()
X train scaled = scaler.fit transform(X train)
X_test_scaled = scaler.transform(X_test)
# Print the first few rows of the scaled dataset
print(X_train_scaled)
     [[ 6.53446686e-01 1.41703505e+00 -1.08272837e+00 ... 8.41406774e-01
       0.00000000e+00 -9.95534968e-01]
      [-1.04827574e+00 1.41703505e+00 1.66388226e+00 ... 8.41406774e-01
       0.00000000e+00 1.00448506e+00]
      [ 8.49799274e-01 -1.41806277e+00 -7.08191867e-02 ... -1.61937346e+00
       0.00000000e+00 1.00448506e+00]
     [ 1.63520963e+00 -7.09288318e-01 -1.51640373e+00 ... 5.15808394e-01
       0.00000000e+00 1.00448506e+00]
      [ 7.18897549e-01 -1.41806277e+00 -7.08191867e-02 ... -1.61937346e+00
       0.00000000e+00 1.00448506e+00]
      [-1.17917747e+00 -5.13861481e-04 6.51973084e-01 ... 9.61784624e-01
       0.00000000e+00 -9.95534968e-01]]
```

Model selection and optimization.

```
import pandas as pd
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from \ sklearn.metrics \ import \ accuracy\_score, \ precision\_score, \ recall\_score, \ f1\_score
imputer = SimpleImputer(strategy='mean') # You can use other strategies as well
# Impute missing values in the feature matrix
X_imputed = imputer.fit_transform(X_train)
X_test_imputed= imputer.transform(X_test)
# Initialize the model
model = RandomForestClassifier(random state=42)
# Train the model
model.fit(X_imputed, y_train)
               RandomForestClassifier
     RandomForestClassifier(random_state=42)
y_pred=model.predict(X_test_imputed)
                                                              + Code — + Text
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
print(f"F1 Score: {f1:.2f}")
    Accuracy: 0.50
    Accuracy: 0.50
     Precision: 0.50
     Recall: 0.47
    F1 Score: 0.48
```

```
from sklearn.model_selection import GridSearchCV
# Define hyperparameters to tune
param_grid = {
   'n_estimators': [10, 20, 30],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}
# Initialize GridSearchCV
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, scoring='f1')
# Perform grid search
grid_search.fit(X_imputed, y_train)
# Get the best model
best_model = grid_search.best_estimator_
# Make predictions using the best model
y_pred_best = best_model.predict(X_test_imputed)
# Evaluate the best model
f1_best = f1_score(y_test, y_pred_best)
print(f"Best F1 Score: {f1_best:.2f}")
     Best F1 Score: 0.49
```

×