DL - 2025Final project

Neural **Neural Ordinary Differential Equations** for Irregular-Sampling Forecasting

Course instructors:

ODE

prof. Ivan Tyukin

prof. Aleksandr Mikhalev

Dmitry Petrov

Alina Nurysheva

Anita Toleutaeva

Artemiy Dakhnovets

Akmuhammet Gurbangeldiyev

Link to GitHub page

Skoltech

Content

- Motivation Why fixed-interval models miss real-world beats
- Data at a Glance
- Existing solutions
- Neural ODE basics
- Model Line-Up GRU/Time-Aware LSTM/Neural ODE
- Experiments Set-ups, datasets & metrics
- Results Error bars, latency curves, etc
- Key observations
- When to Use What A quick decision checklist
- Take-aways & Next Steps

Most data do not arrive at equal intervals our models pretend they do

Most data do not arrive at equal intervals - our models pretend they do

Most data do not arrive at equal intervals - our models pretend they do

Link to GitHub page

Most data do not arrive at equal intervals - our models pretend they do

IRREGULAR

Bursty Seasonal

Link to GitHub page

Most data do **not** arrive at equal intervals - our models **pretend** they do

=> we need models that understand "real time", not "grid time"

IRREGULAR Bursty Seasonal

Link to GitHub page

Classic Fixes & Their Limits

Common practice	Recap	Limits
ResampleInterpolate	Force series onto an even grid; fill gaps with linear/spline	Aliasing & blurred peaksTreats synthetic points as real
Aggregate windows	Summarise bursts into fixed bins	Detail is gone forever; window size is a hyper-parameter
Last-Observation-Carri ed-Forward (LOCF) / Mean Impute	Copy the previous value or plug the global mean	Introduces bias, adds noise, erases the "information"
Δt-aware RNNs • GRU-D • Time-Aware LSTM	Append a time-gap channel or learn exponential decay masks	Still discrete-step , memory grows with seq length; decay form is hand-picked

Skoltech

Classic Fixes & Their Limits

Common practice	Recap	Limits
ResampleInterpolate	Force series onto an even grid; fill gaps with linear/spline	Aliasing & blurred peaksTreats synthetic points as real
Aggregate windows	Summarise bursts into fixed bins	Detail is gone forever; window size is a hyper-parameter
Last-Observation-Carri ed-Forward (LOCF) / Mean Impute	Copy the previous value or plug the global mean	Introduces bias, adds noise, erases the "information"
Δt-aware RNNs • GRU-D • Time-Aware LSTM	Append a time-gap channel or learn exponential decay masks	Still discrete-step, memory grows with seq length; decay form is hand-picked

Skoltech

Solution:

Neural ODE

fixed stack of layers

$$\mathbf{h}_{t+1} = f(\mathbf{h}_t, \mathbf{\theta}_t) + \mathbf{h}_t$$

learned differential equation

$$\frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h}(t), t, \theta)$$

Link to the article

Solution:

Neural ODE

Residual Network

 $\mathbf{h}_{t+1} = f(\mathbf{h}_t, \mathbf{\theta}_t) + \mathbf{h}_t$

Figure 1: Left: A Residual network defines a discrete sequence of finite transformations. Right: A ODE network defines a vector field, which continuously transforms the state. Both: Circles represent evaluation locations.

$$\frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h}(t), t, \theta)$$

Link to the article

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud University of Toronto, Vector Institute {rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

Abstract

We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum

Link to the article

r ordering the data dimensions. For training, we ate through any ODE solver, without access to its nd-to-end training of ODEs within larger models. 12

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bette

$$\frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h}(t), t, \theta)$$

University of Toronto, Vect Institute

{rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

TLDR: A <u>black-box ODE solver</u> turns * into the network's output, so depth becomes a smooth timeline instead of a staircase

we introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum

Link to the article

r ordering the data dimensions. For training, we ate through any ODE solver, without access to its nd-to-end training of ODEs within larger skelter. 13

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bette

$$\frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h}(t), t, \theta)$$

University of Toronto, Vector Institute {rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

TLDR: A <u>black-box ODE solver</u> turns * into the network's output, so depth becomes a smooth timeline instead of a staircase

The payoff: continuous dynamics with O(1) memory and adaptive accuracy

- inputs that decide their own compute budget
- one framework that covers ResNets, generative flows, and irregular-time series forecasting

r ordering the data dimensions. For training, we ate through any ODE solver, without access to its nd-to-end training of ODEs within large Skoltech 14

What we've done

Family

Discret

Continu

ef.

nitry

emiy

nitry

lina

Skoltech 15

What we've done

Family	Variant	Key design	Role	Ref.
	ResNet-18	Conv blocks	Vision baseline	Dmitry
Discrete	GRU (Δt-aware)	Hidden reset + Δt concat	Seq	Artemiy
Time-LSTM Cell decay ga	Cell decay gates	baseline	Akmuhammet	
	Neural ODE	ODEBlock + adjoint	Main model	Alina
Continuous	ODE-RNN	RNN encoder + ODE latent	Ablation	

Architecture: Latent ODE

MNIST

Data Preparation

- 60,000 28x28 train images
- 10,000 test images

0000000000000

1111111111

Assess the quality of NeurODE when working with discrete image data (low dimensionality, single resolution, dense grid)

Performance on MNIST

criterion	GRU RNN	LSTM	ResNet-18	Neural ODE
Params	43,658	266,250	11,689,512	208,266
Test loss	1.488	0.044	0.1017	0.0317
Test acc	0.974	0.98	0.9923	0.9917
Test AUROC	0.999	NA	NA	0.9999
Inference latency (ms)	0.49ms ± 0.19ms	27.21ms	$13.14\text{ms} \pm 0.69\text{ms}$	2.97 ms

CIFAR-10

Data Preparation

CIFAR-10 Dataset:

- 60,000 32x32 color images
- 10 balanced classes

https://www.cs.toronto.edu/~kriz/cifar.html

Objective:

Assess the quality of NeurODE when working with multi-color image data

truck

Skoltech 20

Performance on CIFAR10

criterion	GRU RNN	LSTM	ResNet-18	Neural ODE
Params	94,346	1,662,922	11,689,512	209,418
Test loss	1.969	0.760	0.1855	0.7370
Test acc	0.487	0.752	0.9480	0.7420
Test AUROC	0.847	NA	NA	0.9687
Inference latency (ms)	$0.83 \text{ms} \pm 0.25 \text{ms}$	9.49ms	$14.21 \text{ms} \pm 3.79 \text{ms}$	201.12ms

PhysioNet

Data Preparation

PhysioNet ICU 2012 Dataset:

Predict in-hospital mortality, length-of-stay, etc.

- **8k** multivariate time-series
- first **48 h** of each admission
- 41 chart & lab-parameters
- strongly irregular

https://physionet.org/

Skoltech 22

Assess the quality of NeurODE when working with continuous Time-Series data.

Performance on PhysioNet

criterion	GRU RNN	LSTM	Neural ODE
Params	103,426	220,545	26,821
Test loss	0.581	0.409	0.5
Test acc	0.713	0.858	0.875
Test AUROC	0.786	0.693	0.754
Inference latency (ms)	1.69ms ± 0.03ms	0.60ms	2.03ms

GRU RNN: Key Findings

- > PhysioNet: input_dim=41, hidden_dim=64, out_dim=2, n_layers=4, loss=CrossEntropyLoss
- > CIFAR10: input_dim=32, hidden_dim=64, out_dim=10, n_layers=4, loss=CrossEntropyLoss
- > MNIST: input_dim=28, hidden_dim=64, out_dim=10, n_layers=2, loss=CrossEntropyLoss

Dataset	Test Loss	Test Acc	Test AUROC	Num. of params	Inference time
PhysioNet	0.581	0.713	0.786	103,426	1.69ms ± 0.03ms
CIFAR10	1.969	0.487	0.847	94,346	0.83ms ± 0.25ms
MNIST	1.488	0.974	0.999	43,658	0.49ms ± 0.12ms

ResNet-18: Key Findings

ResNet-18 is acceptable for MNIST and CIFAR-10. For CIFAR-10, it strongly outperforms all other NNs tested in this work.

However, ResNet-18 is incompatible with time series.

Time-Aware LSTM: Key Findings

Dataset	Test Loss	Test Acc	Test AUROC	Num. of params	Inference time
PhysioNet	0.409	0.858	0.693	0.22 M	0.60ms
CIFAR10	1.855	0.948	-	11.7 M	0.83ms ± 0.25ms
MNIST	0.1017	0.9923	-	11.7 M	0.49ms ± 0.12ms

- Time-LSTM closes nearly all of the gap to ResNet-18 while keeping the RNN pipeline intact.
- Price tag: ×100 more parameters than GRU-Δt, and >10× slower than plain GRU on MNIST.

Irregular ICU time-series (PhysioNet 2012)

- Δt-aware gating does boost vanilla LSTM (-0.17 loss, +14 pp acc over GRU-Δt).
- Yet it still lags GRU in discriminative power (AUROC 0.693 vs 0.786) and Neural ODE in calibration.
- Latency is best-in-class (0.6 ms) because the hidden state is small (64) and no solver is required.

Neural ODE: Key Findings

Dataset	Test Loss	Test Acc	Test AUROC	Num. of params	Inference time
PhysioNet	0.5	0.875	0.999	0.027 M	2.03ms ± 0.02ms
CIFAR10	0.737	0.742	0.9687	0.21 M	201ms ± 12ms
MNIST	0.0317	0.9917	0.754	0.21 M	2.97ms ± 0.07ms

- Extreme parameter efficiency. MNIST is solved at 99 %+ with just 0.21 M weights ≈55 × fewer than
 Time-LSTM and ≈60 × fewer than ResNet-18.
- Solver depth is adaptive—and costly on dense images. On CIFAR-10 the step-adaptive solver inflates latency to ~200 ms even though parameters stay tiny, pulling accuracy down to 74 %.
- Irregular time-series is its sweet-spot. On PhysioNet, Neural ODE edges past Time-LSTM in AUROC (+0.061) while remaining the smallest model and the second-fastest at inference.

Observations of all experiments

Dense vision (MNIST/CIFAR-10): ResNet-18 wins on raw accuracy Neural-ODE closes most of the gap with ≈ 1/50 of the weights. Time-LSTM matches GRU yet carries 100 × more parameters.

Irregular ICU time-series: Neural-ODE gives the best AUROC (0.754) while staying tiny;
Time-LSTM is the fastest (0.6 ms) but lags slightly in discrimination; Δt-GRU lands in-between.

- Parameters: Neural-ODE ≪ ResNet ≈ Time-LSTM < GRU.
- <u>Latency</u>: Time-LSTM < GRU < ResNet;
 Neural-ODE swings from 3 ms (MNIST) to 200 ms (CIFAR) as solver depth grows.
- Memory: Adjoint back-prop keeps Neural-ODE's footprint O(1) in depth;
 other models scale linearly in T or layers.

Calibration & robustness. Neural-ODE shows the lowest Brier scores on PhysioNet, suggesting better calibrated probabilities when data are asynchronous.

Time-LSTM narrows the gap once timestamps are noisy but still regular.

When to Choose Neural ODE vs RNN?

Neural ODE	RNN
Data arrive at random times	Strict real-time budget
Memory is premium (edge)	Training data are huge & regular
You care about smooth interpolation	Model simplicity > flexibility

CONCLUSION

Achievements:

- End-to-end pipeline: data → GRU encoder →
 ODEBlock → decoder, wrapped in PyTorch +
 torchdiffeq.
- 2. Comprehensive benchmark against GRU-Δt, Time-LSTM, ResNet-18 on 3 domains.
- 3. Open-source repo & Colab with reproducible code and visualisations.

Depth is no longer a staircase but a **dial the solver turns**. Rough stretches get more steps; flat stretches glide almost for free

Artemiy Dakhnovets
PhD-1 LS

Dmitry Petrov PhD-1 LS

Akmuhammet Gurbangeldiyev MS-1 ACS

Anita Toleutaeva MS-1 ACS

Alina Nurysheva MS-1 ACS

Skoltech