Matematika 4 – Logika pre informatikov: Cvičenie 2

- **Úloha 1.** Majme danú množinu výrokových premenných $\mathcal{V} = \{p, q, r, \ldots\}$ a jej ohodnotenie $v = \{p \mapsto t, q \mapsto f, r \mapsto f, \ldots\}$. Zistite, či ohodnotenie v spĺňa nasledovné formuly:
 - a) $\neg((\neg p \to q) \land (\neg q \to p))$
 - b) $((\neg p \to q) \land (\neg q \to (q \lor \neg (q \to r))))$
 - c) $((\neg(q \lor \neg r) \lor q) \to (r \to ((p \lor \neg p) \land \neg(q \to r))))$
 - d) $((((p \land \neg p) \lor \neg r) \lor q) \leftrightarrow (r \rightarrow ((p \lor \neg p) \lor \neg (r \land q))))$
- **Úloha 2.** O každej z nasledujúcich formúl nad $\mathcal{V} = \{p, q, r, \ldots\}$ rozhodnite, či je (i) tautológia, (ii) splniteľná, alebo (iii) nesplniteľná:
 - a) $((p \land \neg p) \lor (p \lor \neg p))$
 - b) $((p \land q) \to (\neg p \land q))$
 - c) $(\neg (q \land \neg q) \rightarrow ((p \lor \neg p) \rightarrow (p \land \neg p)))$
 - d) $((\neg (q \lor \neg r) \lor q) \to (r \to ((p \lor \neg p) \land \neg (q \to r))))$
- **Definícia 1.** Ohodnotenie výrokových premenných v spĺňa množinu formúl S (skrátene $v \models S$) vtt v spĺňa každú formulu X z S.
- **Definícia 2.** Množina formúl S je (súčasne) splniteľná vtt existuje ohodnotenie v, ktoré spĺňa S.
- Úloha 3. Vyriešte nasledovnú slovnú úlohu pomocou výrokovej logiky (úloha podľa [1]).

V prípade lúpeže v klenotníctve predviedli na políciu troch podozrivých $A,\ B,\ C.$ Počas vyšetrovania sa zistilo:

- a) Ak je A vinný a B nevinný, je vinný C.
- b) C nikdy nepracuje sám.
- c) A nikdy nepracuje s C.
- d) Do prípadu nie je zapletený nikto okrem A, B, C a aspoň jeden z nich je vinný.

Neodporujú si tieto zistenia?

 $N\'{a}vod$: Zapíšte tvrdenia ako množinu formúl vo výrokovej logike a zistite, či je súčasne splniteľná.

Úloha 4. Zistite, či nasledujúce dvojice formúl sú ekvivalentné:

- a) $(p \to (q \to r))$ a $((p \to q) \to (p \to r))$
- b) $((p \land q) \rightarrow r)$ a $((p \rightarrow r) \land (q \rightarrow r))$
- c) $(p \to (q \lor r))$ a $(\neg r \to (p \to q))$
- **Úloha 5.** Definujte, kedy ohodnotenie v spĺňa formuly vytvorené z výrokových premenných pomocou nulárnych spojok \top , \bot a ternárnej spojky (A ? B : C) (ak ..., tak ..., inak ...).

Úloha 6. Dokážte:

- a) Formula A je tautológia vtt keď $\neg A$ je nesplniteľná.
- b) Formuly A a B sú ekvivalentné vtt $(A \leftrightarrow B)$ je tautológia.
- c) Formula $(A \to B)$ je nesplniteľná vtt A je tautológia a B je nesplniteľná.

Domáca úloha du01. Riešenie domácej úlohy odovzdajte najneskôr v pondelok 14. marca 2016:

- v čitateľnej papierovej podobe na začiatku prednášky o 11:30;
- elektronicky cez Váš repozitár na github.com ako pull-request do vetvy du01 najne-skôr o 24:00. Odovzdávaný dokument uložte do súboru du01.pdf/du01.txt/du01.md v adresári du01 vo vetve du01. Dokument musí byť v jednom z formátov:
 - PDF z TeXu alebo textového procesora, nie obrázok rukou písaného textu,
 - hladký text v kódovaní UTF-8, alebo
 - text vo formáte Markdown v kódovaní UTF-8.

Úloha má hodnotu 2 body [po 1 bode za každú časť a), b)].

- a) Shefferova spojka (NAND), značka ↑, je binárna logická spojka s nasledovným významom:
 - $A \uparrow B$ je pravdivé vtt aspoň jedno z A alebo B je nepravdivé.
 - Vybudujte teóriu výrokovej logiky používajúcej iba túto spojku, teda zadefinujte pojem: (i) formuly, (ii) vytvárajúcej postupnosti pre formulu, (iii) vytvárajúceho stromu pre formulu, (iv) splnenia formuly pri ohodnotení výrokových premenných.
- b) Hovoríme, že binárna logická spojka α je definovateľná zo spojok β_1, β_2, \ldots , ak existuje formula, obsahujúca iba spojky β_1, β_2, \ldots , a výrokové premenné p a q, ekvivalentná s formulou $(p \alpha q)$.

Hovoríme, že unárna logická spojka α je definovateľná zo spojok β_1, β_2, \ldots , ak existuje formula, obsahujúca iba spojky β_1, β_2, \ldots , a výrokovú premennú p, ekvivalentná s formulou αp .

Napríklad \rightarrow je definovateľná z \neg a \lor pretože $(p \rightarrow q)$ je ekvivalentná s $(\neg p \lor q)$ (samozrejme ekvivalenciu tých dvoch formúl by bolo treba ešte dokázať).

Dokážte, že

- (i) ↑ je definovateľná zo spojok ¬, ∧ a ∨;
- (ii) \neg , \land a \lor sú definovateľné z \uparrow .

Literatúra

[1] Raymond M. Smullyan. What Is the Name of This Book?—The Riddle of Dracula and Other Logical Puzzles. Prentice-Hall, 1978.