# Can interferometry resolve the mass ratio in all single line spectroscopic eclipsing binary stars?

Brian Kloppenborg

University of Denver

Tuesday, Mar. 29, 2011

#### Motivation



#### Motivation



#### **Motivation**





#### Outline

- Context and Review
- 2 Interferometry: A Game Changer
- 3 A new twist on an old game
  - Shadow puppets
  - Hide and seek
  - Extending to Planets
- Mew Software
  - GPAIR / GPAOI
  - OIFITS Simulator
  - New modeling code



# Binary Stars

#### Four Classes

- Visual Binaries
  - Can be observed as a binary system by eye/binocular/or telescope
- Spectroscopic Binaries
  - Shows doppler effect in it's emitted light
  - Two classes: SB2, SB1
- Eclipsing Binaries
  - Binary star system whose orbital plane is in the line of sight
  - Periodic dimming of one or both components
- Astrometric Binaries
  - Stars appear to orbit something in space, but no companion is visible



# Why care about SB1s?

- Some inequality in the system
- Different Evolutionary States
- Mass Exchange
- Fun Physics



#### **Orbital Solution Methods**

# Radial Velocity blueshift ▲ redshift blueshift velocity

Figure: James Schombert (University of Oregon)

# Astrometry (photographic plates, interferometry) 19 0c1999 22 0c1933 17 Nov 958 19 July 944

Krüger 60: Van de Kamp, 1978

4 Dec 1948

1 Oct 1955

I Dec 1962

18 Nov1965

#### Orbital Solution Methods: RV

#### Radial Velocity:

$$V_z = \gamma + rac{n \ asin(i)}{1 - ecos(E)} \left[ \sqrt{1 - e^2} cos(\omega) cos(E) - sin(\omega) sin(E) 
ight]$$

Orbital Parameters Revealed:

$$\gamma$$
,  $\omega$ , a sin(i), e, T,  $\tau$ 

where 
$$n=\frac{2\pi}{T}$$
,  $n*(t-\tau)=E-esin(E)$ 



# Orbital Solution Methods: Astrometry

After Plate Solutions, solve for the orbital parameters:

$$X = c_x + \mu_x t + \dot{\mu}_x t^2 + \pi P_\alpha + ORBIT_x(\Omega, \omega, \alpha, e, i, T, \tau)$$

$$Y = c_x + \mu_y t + \dot{\mu}_y t^2 + \pi P_\delta + ORBIT_y(\Omega, \omega, \alpha, e, i, T, \tau)$$

# Orbital Solution Methods: Astrometry

#### Thiele-Innes Constants:

Positions come from:

where.

$$\Delta X = Bx + Gy, \Delta Y = Ax + Fy$$

Yields:

$$\Omega \pm 180$$
,  $\omega \pm 180$ ,  $\alpha$ , e, i,  $T$ ,  $au$ 

- Convention is to take  $\Omega < 180$  if no distinction possible.
- Can also get  $\pi$ ,  $\mu_x$ ,  $\mu_y$ ,  $\dot{\mu}_x$ ,  $\dot{\mu}_y$  with astrometric plates

$$B = a(\cos(\omega)\sin(\Omega) + \sin(\omega)\cos(\Omega)\cos(i))$$

$$A = a(\cos(\omega)\cos(\Omega) - \sin(\omega)\sin(\Omega)\cos(i))$$

$$G = a(-\sin(\omega)\sin(\Omega) + \cos(\omega)\cos(\Omega)\cos(i))$$

$$G = a(-\sin(\omega)\sin(\Omega) + \cos(\omega)\cos(\Omega)\cos(\Omega)$$
  
$$F = a(-\sin(\omega)\cos(\Omega) - \cos(\omega)\sin(\Omega)\cos(\Omega)$$

and the angular parameters are derived from

$$tan(\omega + \Omega) = (B - F)/(A + G)$$
  
 $tan(\omega - \Omega) = (-B - F)/(A - G)$   
 $cos(i) = (AG - BF)/a^2$ 

# Orbital Solution Methods: Astrometry

#### Full Orbital Equations:

- Yields  $\Omega$ ,  $\omega$ ,  $\alpha$ , e, i, T,  $\tau$
- Can also get  $\pi$ ,  $\mu_{x}$ ,  $\mu_{y}$ ,  $\dot{\mu}_{x}$ ,  $\dot{\mu}_{y}$

Positions and velocities are found/fitted by

$$\begin{array}{rcl} x&=&a(L_1cos(E)+\beta L_2sin(E)-eL_1)\\ y&=&a(M_1cos(E)+\beta M_2sin(E)-eM_1)\\ z&=&a(N_1cos(E)+\beta N_2sin(E)-eN_1)\\ V_X&=&\frac{na}{\eta}(\beta L_2cos(E)-L_1sin(E))\\ V_y&=&\frac{na}{\eta}(\beta M_2cos(E)-M_1sin(E))\\ V_z&=&\frac{na}{\eta}(\beta M_2cos(E)-N_1sin(E))\\ \text{where,}\\ \beta&=&(1-e*cos(E))\\ \eta&=&1-e*cos(E)\\ L_1&=&cos(\Omega)cos(\omega)-sin(\Omega)sin(\omega)cos(i)\\ M_1&=&sin(\Omega)cos(\omega)+cos(\Omega)sin(\omega)cos(i)\\ N_1&=&sin(\Omega)sin(i)\\ L_2&=&-1*cos(\Omega)sin(\omega)-sin(\Omega)cos(\omega)cos(i)\\ M_2&=&-1*sin(\Omega)sin(\omega)+cos(\Omega)cos(\omega)cos(i)\\ N_2&=&-1*sin(\Omega)sin(\omega)+cos(\Omega)cos(\omega)cos(i)\\ N_2&=&-1*sin(\Omega)sin(\omega)+cos(\Omega)cos(\omega)cos(i)\\ N_2&=&-1*sin(\Omega)sin(\omega)+cos(\Omega)cos(\omega)cos(i)\\ N_2&=&cos(\omega)sin(i)\\ \end{array}$$

Direct Orbital Equations (equations from Roy, 2005)



# **Combining Solutions**

#### RV

 $\gamma$ ,  $\omega$ , a sin(i), e, T,  $\tau$ 

#### Astrometry

 $\Omega$ ,  $\omega$ ,  $\alpha$ , e, i, T,  $\tau$  [,  $\pi$ ,  $\mu_x$ ,  $\mu_y$ ,  $\dot{\mu}_x$ ,  $\dot{\mu}_y$ ]

#### RV + Astrometry

 $\Omega$ ,  $\omega$ ,  $\alpha$ , a, e, i, T,  $\tau$ , d = a/tan(alpha)

# A problem with SB1s

#### A Full orbital solution for binaries requires 8 parameters

$$\Omega$$
,  $\omega$ ,  $\alpha$ ,  $a = a_1 + a_2$ , e, i,  $T$ 

For SB1's we're missing  $a_2$ ! How can we find it?

# Interferometry to the rescue!

Three ways interferometry can help solve the problem

- Resolve out the companion
- Observe an eclipse in action (or part of it)
- Exploit deep absorption lines with interferometric spectroscopy

# Resolve out the companion

 Taylor, S (The CHARA Catalog of Orbital Elements of Spectroscopic Binary Stars, probably a few here)



Sirius AB: NASA, ESA, H. Bond (STScI) and M. Barstow (University of Leicester)

# Resolve out the companion

- Taylor, S (The CHARA Catalog of Orbital Elements of Spectroscopic Binary Stars, probably a few here)
- Koubsk, P et. al. 2010 (NPOI, Be STAR o Cas, 3 mag fainter, directly resolved)



Sirius AB: NASA, ESA, H. Bond (STScI) and M. Barstow (University of Leicester)

# Resolve out the companion

- Taylor, S (The CHARA Catalog of Orbital Elements of Spectroscopic Binary Stars, probably a few here)
- Koubsk, P et. al. 2010 (NPOI, Be STAR o Cas, 3 mag fainter, directly resolved)
- Duvert, G (AMBER/VLTI, HD 59717, 5 mag K fainter, using closure phase nulling)



HD 59717 via. Closure Phase Nulling: Duvert, G. et. al 2008

# Interferometry to the rescue!

Three ways interferometry can help solve the problem

- Resolve out the companion
- Observe an eclipse in action (or part of it)
- Exploit deep absorption lines with interferometric spectroscopy

# Observing an Eclipse

- Either catch ingress / egress
- Models with light curves





Kloppenborg et. al. (2010, 2011)

# Synthetic ingress / egress



#### A Test Case:

- System treated as SB1
- M1 visible, along with transit
- M2 otherwise unknown

$$\Omega = 50.0$$
 $\omega = 32.0$ 
 $a1 = 1.0$ 
 $a2 = 5.0$ 
 $e = 0.227$ 
 $i = 89.0$ 
 $T = 5.0$ 
 $\tau = 1950.0$ 

# Real ingress / egress

 $\epsilon$  Aur

- Astrometric data noisy
- Hipparcos Parallax:  $\pi = 1.53 \pm 1.29$
- RV Data plentiful





#### $\epsilon$ Aur SED



 $\epsilon$  Aur SED: Hoard, Howell, Stencel (2010)

# Finding Hidden Spectral Featuers





# Finding Hidden Spectral Featuers





# Interpreting the data



# Extending to planets

- May not be necessary as you can apply normal methods, just like binary stars
- But then you run into limb darkening problems
- Kepler gives planet candidate host stars

#### Software

# GPAIR / GPAOI

- Collaboration with Fabien Baron
- GPAOI: Library written in C that provides common routines for interferometry
  - Acceleration via. OpenCL
  - CPU and GPU
  - Implements Common OI Functions (Image o Vis, Vis o  $V^2$ , T3,  $\chi^2$ )
- GPAIR: Image Reconstruction using GPAOI
  - 280x faster than CPU
  - Fabien will discuss results

#### **OIFITS Simulator**

- Collaboration with Fabien Baron
- Rewrite of the MROI Simulator
- Define your own interferometer / instrument
- Samples images with
  - Equal Hour Angle increments
  - User-defined hour angles
  - Using existing OIFITS data
- Add/drop telescopes from array configuration
- Uses a realistic noise model (Tatulli, E. Chelli, A. 2005)

# New Modeling Code

- Yet another collaboration with Fabien Baron
- General purpose OI model fitting software
- Uses Levmar for minimization (soon: mpfit, multinest)
- Several defined objects (UDD, rectangles, ellipses with and without LD)
- Permits obscuring / semi-transparent modeling
- Automatic switching between analytic and image-based modeling
- Permits external constraints to be applied (orbits, photometry)
- Validation of orbit fitting routines against WDS grade 1 orbits
- Diff vis and diff phases coming soon



#### Conclusion

- SB1 Observation Methods
  - Resolve out the Binary in continuum
  - Observe an eclipse
  - Find spectral emission, track it