Exercise

Let

$$\mathcal{H}_d = \{ h_{\mathbf{w}}(\mathbf{x}) : h_{\mathbf{w}}(\mathbf{x}) = \operatorname{sign}(<\mathbf{w},\mathbf{x}>) \}$$

where $\mathcal{X} = \mathbb{R}^d$.

Prove that $VCdim(\mathcal{H}_d) = d$. Solution We need to prove that $VCdim(\mathcal{H}_d) \gg d$ and that $VCdim(\mathcal{H}_d) \leq d$.

i) VCdim(HJ) 2d. We need to show a set of d vectors in IRd that is shattered by Hd.

Consider $\{\vec{e}_3, \vec{e}_2, ..., \vec{e}_d\}$ with $\vec{e}_i = \{\vec{e}_3, \vec{e}_2, ..., \vec{e}_d\}$ with $\vec{e}_i = \{\vec{e}_3, \vec{e}_2, ..., \vec{e}_d\}$

This set is shattered by Hd: we need to show that far every labelly ys, ye, ..., yd, where y; is the lobel of Zi, with y; ef-1, 13, there is an hypothesis in Hd that

assigns such labels to the set.

Consider an arbitrary labeling $y_3, y_2, ..., y_d$: consider the hypothesis $h_{\vec{w}}$ where $\tilde{\vec{w}} = \begin{bmatrix} y_1 \\ y_2 \\ y_d \end{bmatrix}$. We have that for every i, with 12i2d: $h_{\overrightarrow{w}}(\overrightarrow{e_i}) = Sign(\overrightarrow{w}, \overrightarrow{e_i}) = Sign(\langle (\overrightarrow{y_i}) | (\overrightarrow{v_i}) \rangle) = Sign(\cancel{y_i}) = \cancel{y_i}$ ii) VCdim (tfd) Ed: we need to show that no set of des vectors in Rd can be shattened by Hd.

Consider an arbitrary set {x3, x2,..., xd41} with zelled They cannot be likewish independent $\Rightarrow \exists \ a_1, a_2, ..., a_{d+1}$ with $a_i \in \mathbb{R}$, $1 \le i \le d+1$, such that:

- Not all
$$\delta_{i}$$
 is die δ (A)

- Note and δ_{i} is die δ (A)

Define: $I = \{i: \delta_{i} > 0\}$. Note that it cannot be

 $I = \{j: \delta_{i} < 0\}$. That $I = \emptyset = \delta$ (due to (A))

There die $I = \{i: \delta_{i} > 0\}$. Then

Case i) we see assuming $I \neq \emptyset \neq J$. Then

$$I = \{i: \delta_{i} > 0\}$$

$$I$$

Case ii): $I \neq \emptyset = \mathcal{T}$: so he steps lead to $0 < ... < 0 \Rightarrow$ contradiction

Case iii): $I = \emptyset \neq \mathcal{T}$: some steps lead to $0 < ... < 0 \Rightarrow$ contradiction