Math 1113 — Quiz 11

Friday, 9 APril 2021

Points earned: _____ out of 0 points

- 1. This is an open notes and open book quiz. You may also use resources available on ELC or the class website, as well as a calculator (although a calculator should not be necessary).
- 2. You may not use any other resources and may not consult with any person other than the course instructor.
- 3. All answers should be exact, i.e. no numerical approximations unless otherwise specified.
- 4. You are graded on your solution, but more importantly you also graded on your supporting arguments and work you use to justify your answers.
- 5. Please submit your completed quiz on Gradescope by Friday, 9 APril 2021.

I abide by the University's academic honesty policy. get any help from anyone else:
Name (print):

1. (10 points) Suppose a vector \vec{p} has length r=1 and angle $\theta=\pi/4$ in radians and points at a point \vec{p} in the Cartesian plane. Draw a detailed diagram of this situation and find the corresponding (x,y) coordinates of the point \vec{p} .

Note: an accurate picture/diagram is worth points here!

2. (10 points) In the diagram below, draw a coordinate system with the directions \hat{x}, \hat{y} clearly labeled. Then draw an appropriate triangle (with all side lengths labeled) and reason from it to determine the values of $\sin(\beta)$, $\cos(\beta)$, and $\tan(\beta)$,

3. (10 points) Use the **flipping method** from class to determine the (x, y) coordinates of the point \vec{p} on the unit circle corresponding to a vector \vec{v} with length r = 1 at an angle of $\theta = 7\pi/6$ radians.

Hint: use the following diagram. Importantly, a correct answer from others methods will only yield partial credit.

