lec 11 Image classification /
Image classification challeges Oview Point Variation (2) Interclass (3) Line grained Categories (4) Background clutter (5) i'llumination (6) Deformation (7) Occursion
Applications Dobject detection 2) disease diagnosis 3 Image Coptioning (4) playing Games (ex. Go) 5) Activity analysis
Image Classifiction Based on Datadriven approach (i) Glect dataset of imags, labels (ii) Use Machine Learning to train classifier (ii) Evaluate Classifier to new images
DataSet (D MNISt -> handwritten numbers -> 10 Classes -> 28X28 (2) CIFAR -> 100 Class -> 32X32 -> 20 Superclass (3) Image Net -> 1000 Class -> top 5 ac Curacy algo (4) MIT Places -> 365 Classes -> 256 X 256
Conventional ML Classifier (Classification over level of K-nearest neighbour (kNN) Features) > Not pixel level train: Memorize all data labels text: Predict label of most Simillar training image USES distance metric to Compare imags et Ly distance \$\frac{2}{2} \cdot \P_1 - \P_2 \P_1 \right)

	Decision boundry -> boundry between 2 Classification
6	regions
	Can be noisy, alleeled by outliers
	(KNN)
	instead et Copying label from nearest neighbour take Majority vote from k Clasest Points
(N	- Care regiony vole wom K Cleser, points
100	use more neighbours smooth out region decision
	ese more neighbours smooth out region decision boundries, help to reduce ellect of outliers
(A)	
100	when $(k > 1) \Rightarrow$ ties between classes
	when $(k > 1) \Rightarrow$ ties between classes \Rightarrow with right Choice of distance metric. We Can apply knn to any type of data
	Knn to any type of data
	(2) > manhattan distance (12) > Eclidean distance
	(1) > man hattan distance (12) > Eclidean distance $ I ^p - I_2^p I_1$ (Modulus) (root) $\sqrt{\xi} (I_1^p - I_2^p)^2$
	V
	Knn-hyper parameters > (B) 3 very Proble Significant distance metric) Dependent
- m	3 (distance metric)
<u> </u>	knn - 8 pixels but with ConvNet Features works well
3	A. P.W. E. 126
	Before linear Scare Punchion > F = WX Now > Man linear (2-layer Newal net) -> F= W2 max
<u></u>	$Now \rightarrow Nen liner(2-light New al New 2 (0) \rightarrow 1-w_2$
) V.	
	اصد –

Fully Conected Newal Network (31) Mulhi layer perception is not a layer (7 >> 200 Mulhi layer perception is not a layer 11 (7) EX Back Propagation model

achivation Runchion => Sigmoid 1) Forward Compute output Backward Compute gradients Deep Newal Network (generalized form from MNN)

Telu activation functions

Liveractival leaving algo with many hidden laying

Jeist rectified linear unit =) if we build neural network without activation Function خبيق => Linear Classifier Activation Function examples Osignoid & tanh & Relu Pleaky Relu & Maxoutt Delu

Governional Neural network (CNN),
() Fully Connected layer) output 11 Jus 7
(1) Fully Connected layers -> output II Jus 7 (2) Activation Leuchon -> Celu (max (0, wx))
 (2) Activation function selv (max (o, ως) (3) Convolution layers (4) Pooling layers reduce dimensions (5) NormaliZation
5 NormaliZation
Of fully Connected layer
Ofully Connected layer input -> Stretch to -> X weight -> dot product array vector between you
array vector between row of (w), input
Convolutionel Layer (Learn Leater) Stack 2 Convolontion get another Convolution?
3x32x32 3x5x5 Convolve filler with ima
3x32x32 3x5x5 Convolve hiller with imag Image Filter => Slide over imag
Filter extend Spatially to Empute full depth of input volume dot product
in fist Convolutional loges -> local image templates (simplest features)
Receptive Fields (Simples Teasures)
Problem: large image need many layers Solowtion: DownSample inside the network
3) Pooling leyer => reduction of features downsampling Stride Pool max Pool -> maximum Kanel Fool size function
max pool -> maximum karel pool size function

Batch Normalize
Idea -> Normalize outputs of laye So, they have Zeromean, unit Varience = 1 =0
integral Caprinte Stiff
redule interend Graviate Shift
Batch Normalization Beatch normalization Fully Connected (X: NXCXH XW)
$(X: \mathcal{N}X \mathcal{O})$
Batch Normalization usually insided ofter Fully Connected lager or Convolutional layer
Delore non linear
much easy to train _Not well undestred high landing rate _Behave using
Fast Convegule training,

ALADIB

الكُمْعُ الله Scanned with CamScanner