COURSE OUTLINE

CS-4059 FUNDAMENTALS OF COMPUTER VISION (ELECTIVE – 3 CRH)

INSTRUCTOR: S. ASIF MAHMOOD GILANI, Ph.D. (asif.gilani@nu.edu.pk)

TA: RIDA MAHMOOD (1202301@lhr.nu.edu.pk)

OFFICE: M-014 (GROUND FLOOR, OPPOSITE TO VIDEO CONFERENCE ROOM)

For the latest information, study material and handouts please visit at (Google-Classroom)

Class Timetable - FALL 2023

Sections	Start Date	Midterm-I	Midterm-II	End Date	Final	Lectures (Room: CS-**)	Office Time
BS (CS) Section 7B	21-08- 2023	6 th Week	11 th Week	12 – 2023	18 th Week	Mon & Wed 8:30-9:50 (CS-2)	Thu; Friday: 10-11
BS (CS)	21-08- 2023	6 th Week	11th Week	12 – 2023	18 th Week	Mon & Wed	Or by appointment/ check in the
Section 7A						11:30-12:50 (CS-1)	office
						(03-1)	

The course gives a broad overview of the concepts from the field of Computer Vision. It provides basis for advanced graduate level courses and research in computer/machine vision. The students will be required to practically implement various vision techniques to get hands-on experience with vision based applications. A reasonable level of Calculus background, Linear Algebra and Programming background is expected for this course.

The field itself combines ideas from several different areas including Machine Intelligence, Pattern Recognition, Image Processing, statistics and computer graphics. The focus of this course will be breadth knowledge of these ideas with moderate level of details of various algorithms and techniques.

This course is an elective for undergraduate students from both Computer Science and Computer Engineering.

Goals

- To introduce the basic concepts in Computer/machine Vision and to provide a reasonable insight into the problems, procedures and techniques in the field.
- Discuss the application and state of the art projects and research in Computer Vision.
- To make students learn from programming assignments and get comfortable with vision based solutions to various problems. This will develop in them the confidence to deal with Computer Vision applications.

Text and Reference Books

Course Slides and lectures will be the primary reference material taken largely from the following books:

- [Umbaugh] Digital Image Processing and Analysis, Third Edition, Scott E. Umbaugh, CRC Press, Taylor & Francis, 2018.
- [Mubarak Shah] Fundamentals of Computer Vision.
- [Szeliski] Computer Vision Algorithms and Applications, Richard Szeliski, Springer 2022.
- [Parker] practical Computer Vision using C, J. R. Parker, Johan Wiley & Sons Inc.
- [Gonzalez] Digital Image Processing, Gonzalez R.C., Woods R.E., Pearson Education, 3rd Edition, 2008

Reference Web Links

http://cviptools.ece.siue.edu/

Grading (Tentative)

Instrument	Weight
Quiz, Assignment (Programming / Written) & Project	25 %
Midterms	30%
Final	45%

Contents (Tentative)	
INTRODUCTION/COMPUTER IMAGING (Week 1-3)	 Background Digital Image Representation Fundamental Steps in Image Processing Elements of Digital Image Processing Systems Acquisition Storage Processing Communication Display Image Sampling and Quantization Image Types and Applications
COMPUTER IMAGING SYSTEMS (Week 3-4)	 Imaging systems Overview Image Formation and Sensing Visible light imaging Imaging outside the Visible Range of the EM Spectrum Acoustic Imaging Electron Imaging Laser Imaging Computer Generated Images CVIP(Computer Vision and Image Processing) tools Image Representation Binary Images Gray-Scale Images Multispectral Images Digital Image File Formats
INTRODUCTION TO DIGITAL IMAGE ANALYSIS (Week 5-7)	 Introduction Preprocessing Region of Interest Image Geometry Arithmetic and Logic Operations Spatial Filters Image Quantization Binary Image Analysis Thresholding via Histogram Connectivity and Labeling Basic Binary Object Features Binary Object Classification

	Introduction				
SEGMENTATION AND	Edge/Line Detection				
EDGE/LINE DETECTION	Gradient Operators				
EDGE/LINE DETECTION	Compass Masks				
	Advanced Edge Detectors				
	Edges in Color Images				
(Week 7-9)	Edge Detector Performance				
	Hough Transform				
	Segmentation				
	Region growing and Shrinking				
	Clustering Techniques				
	Boundary Detection				
	Combined Segmentation Approaches				
	Morphological Filtering				
	morphological rinoring				
	 Introduction 				
DISCRETE TRANSFORMS	■ Fourier Transform				
DIOONETE TRANSFORMIO	1D Discrete Fourier Transform				
(Week 10-12)	2D Discrete Fourier Transform				
(Week 10-12)	Discrete Cosine Transform				
	Discrete Wavelet Transform				
	■ Filtering				
	Lowpass Filters				
	Highpass Filters				
	Bandpass/Bandreject Filters				
	 Introduction and Overview 				
FEATURE ANALYSIS AND	Feature Extraction				
PATTERN CLASSIFCATION	Shape Features				
	Histogram Features				
	Color Features				
(Week 13-15)	Spectral Features				
(Week 15-15)	 Texture Features 				
	 Feature Analysis 				
	 Feature Vectors and Feature Spaces 				
	Distance and Similarity Measures				
	Data Preprocessing				
	Pattern Classification				
	 Algorithm Development: Training and Testing methods 				
	 Classification Algorithms and Methods 				

Note:

- Attendance should be maintained 100% except any emergency where the absent policy should be observed;
- Assignments, Quizzes and projects should be done independently, in case of Plagiarism, the student will be graded zero without any notice;
- The decorum of the class should be maintained at all times otherwise a severe penalty should be expected but the class participation will be valued open-heartedly;
- The students are encouraged to discuss subject problems even beyond class timings.

Wish you all the best