《深度学习:基础与概念》勘误表 (1版3印)

序号	章	页	行	误	正
1	1	12	图 1.10	分别对应于 Inλ=-∞和 Inλ=0	分别对应于 Inλ=-18 和 Inλ=0
2	2	45	倒 1	如果一个函数仅在λ=0 和λ=1 时 KL(p q)=0 成立	如果一个函数仅在λ=0 和λ=1 时等号成立
3	2	46	倒 3	从 $p(x)$ 中产生的 $q(x \mid \boldsymbol{\theta})$	从 $p(x)$ 中产生的 x_n
4	2	47	倒 7	而将 x 视为观测到新数据 y 后的后验分布	而将 p(x y)视为观测到新数据 y 后的后验分布
5	3	67	到 11	条件分布 $p(x_a, x_b)$ 也是高斯分布	条件分布 $p(\mathbf{x}_a \mid \mathbf{x}_b)$ 也是高斯分布
6	3	84	倒 5	表大似然估计量的解仅通过 "	最大似然估计量的解仅通过 u(x _n)
7	3	92	习题 3.9	多元高斯分布 $\mathcal{N}(x \mu,\Sigma)$ ∂	多元高斯分布 $\mathcal{N}(x \mu,\Sigma)$

8	4	102	7	最小二乘的几何表示	最小二乘解的几何表示
9	4	102	8	考虑一个 n 维空间	考虑一个 N 维空间
10	4	103	11	这称为最小二乘 (least-mean-square)法或 LMS 算法	这称为最小均方(Least-Mean-Square,LMS)算法
11	4	105	倒 10、 11	$f(t \mid x)$	f(x)
12	5	131	倒 1	逻辑斯蒂 sigmoid 函数 $\sigma(a)$ 的倒数为	逻辑斯蒂 sigmoid 函数 $\sigma(a)$ 的逆为
13	5	138	倒 4	请注意,非线性变换 $\phi_0(x)$ 并不能消除这种重叠	请注意,非线性变换 Φ (x)并不能消除这种重叠
14	5	142	图 5.17	由两个高斯混合分布及其累积分布函 f(a)	由两个高斯混合分布及其累积分布函数 f(a)
15	5	144	(5.95) 上 一行	误差函数的梯度减小为	误差函数的梯度归约为
16	6	174	15	网络输出的总数由 L+2K 给出	网络输出的总数由(L+2)K 给出
17	7	195	1	7.4 正则化	7.4 归一化
18	8	218	倒 5	伴随变量 $\overline{v}_1 \sim \overline{v}_2$	

19	10	275	(10.18)	2 5 3 0 0 6 0 -4 -1 -3 0 2 * 4	
20	11	284	图 11.5	但所有条件分布 $p(x_i \mid x_i-1)$ 都共享一组参数	但所有条件分布 $p(x_i \mid x_{i-1})$ 都共享一组参数
21	12	305	3	强大归纳偏差	强大归纳偏置
22	12	316	2	受限于输入向量所跨的子空间	受限于输入向量所张成的子空间
23	12	331	倒 11	用一个特殊 token(用 <rnask>表示)</rnask>	用一个特殊 token(用 <mask>表示)</mask>
24	12	343	倒 2	方差为单位方差的高期分布	方差为单位方差的高斯分布
25	15	398	3	边缘分布的形式是: $p(x) = \Sigma_z p(x,z)$	边缘分布的形式是 $p(x)=\sum p(x,z)$
26	15	405	4	后验分布 $p(X, Z \mid \theta)$	后验分布 $p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})$