MIMD Processors

P. K. Roy Siliguri Institute of Technology

Introduction

- A set of general purpose processors is connected together.
- In contrast to SIMD processors, MIMD processors can execute different programs on different processors => Flexibility!
- MIMD processors works asynchronously, and don't have to synchronize with each other.
- By 90s, SIMD lost ground, since general purpose microprocessors are now very cheap and powerful.
- MIMD machines could be built from commodity (off-the-shelf) microprocessors with relatively little effort.
- MIMD architectures can be highly scalable, if an appropriate memory organization is used.

SIMD vs MIMD

- SIMD computers require less hardware than MIMD computers (single control unit).
- However, SIMD processors are specially designed, and tend to be expensive and have long design cycles.
- Not all applications are naturally suited to SIMD processors.
- Conceptually, MIMD computers cover SIMD need.
 - Having all processors executing the same program(single program multiple data streams SPMD).
 - SPMD avoids the complexity of general concurrent programming.

MIMD Processor Classification(1)

• Tightly coupled system generally represent systems which have some degree of sharable memory through which processors can exchange information with normal load / store operations

Ex. Multiprocessor

• Loosely coupled systems generally represent systems in which each processor has its own private memory and processor to processor information exchange is done via some message passing mechanism like a network interconnect or an external shared channel (FC, IB, SCSI, etc.) bus

Ex. Multicomputer

MIMD Processor Classification(2)

- Centralized Memory: Shared memory located at centralized location consisting usually of several interleaved modules the same distance from any processor.
 - Symmetric Multiprocessor (SMP)
 - Uniform Memory Access (UMA)
- **Distributed Memory:** Memory is distributed to each processor
 - improving scalability.

Message Passing Architectures: No processor can directly access another processor's memory.

Hardware Distributed Shared Memory (DSM): Memory is distributed, but the address space is shared.

- Non-Uniform Memory Access (NUMA)

Software DSM: A level of OS built on top of message passing multiprocessor to give a shared memory view to the programmer.

MIMD with Shared Memory

- ☐ Tightly coupled, not scalable.
- ☐ Typically called **Multi-processor.**

MIMD with Distributed Memory

- ☐ Loosely coupled with message passing, scalable
- ☐ Typically called **Multi-computer.**

Shared-Address-Space Platforms

• Part (or all) of the memory is accessible to all processors.

Processors interact by modifying data objects stored in this

shared-address-space.

☐ UMA (uniform memory access) = the time taken by a processor to access any memory word in the system is identical.

□ NUMA, otherwise.

Multi-Computer Systems(1)

- A multi-computer system is a collection of computers interconnected by a message-passing network.
 - Clusters.
- Each processor is an autonomous computer
 - With its own local memory.
 - There is no a shared-address-space any longer.
 - They communicating with each other through the message passing network.
- Can be easily built with commodity microprocessors.

Multi-Computer Systems(2)

- ☐ The processor and memory pairs are connected to a fast high speed interconnect.
- ☐ The system is also called message passing multicomputer.
- ☐ Implementation is much simpler than the memory shared multiprocessor.
- Accessing a memory word takes about 10-50 μsec.

Wide area distributed system

- ☐ This system connects complete computer systems over a wide area network, such as Internet. It forms a distributed system. Since the accessing is rather slow the systems are loosely coupled.
- Accessing a memory word takes about 10'000-100'000 μsec.

Symmetric Multiprocessors (SMP)

- A set of similar processors of comparable capacity.
- All processors can perform the same functions (symmetric).
- Processors are connected by a bus or other internal connection.
- Processors share the same memory.
 - A single memory or a pool of memory modules
- Memory access time is (approximately) the same for each processor.
- All processors share access to I/O.
 - Either through the same channels or different channels giving paths to the same devices
- Controlled by an integrated operating system:
 - Providing interaction between processors
 - Interaction at job, task, file and data element levels

Symmetric Multiprocessors (SMP)

- ☐ Shared-memory multiprocessor.
- ☐ This system is invisible to the programmer. The message passing is done under cover. The implementation is not very easy, and there are some limits as well.
- **□**Accessing a memory word takes about 0.002-0.01 μsec.

SMP Advantages

☐ High performance

- If similar work can be done in parallel (e.g., scientific computing).

□ Good availability

- Since all processors can perform the same functions, failure of a single processor does not stop the system.

☐ Support incremental growth

- Users can enhance performance by adding additional processors.

□ Scaling

- Vendors can offer range of products based on different number of processors.

Interconnection Network

- Time-shared common bus
- Multiport Memory
- Crossbar Switch
- Multi-stage Switching Network
- Hypercube System

Time-shared Common Bus

Common bus is used for interconnection.

Multiport Memory

Separate buses between each memory module & each processor

Crossbar Switch(1)

- The simplest circuit for connecting n CPUs to k memories is the crossbar switch. Crossbar switches have long been used in telephone switches.
- At each intersection is a cross-point a switch that can be opened or closed.
- The crossbar is a non-blocking network

Crossbar Switch(2)

Multi-stage Switching Network(1)

Use of 2 i/p and 2 o/p interchange switch(2x2 crossbar)

Multi-stage Switching Network(2)

Hypercube System

- A k-dimensional hypercube contains 2^k processors (nodes).
- Each processing node contains a switch.
- Mostly in Multicomputer System

SMP based on Shared Bus

Shared Bus – Pros and Cons

Advantages:

- Simplicity.
- Flexibility Easy to expand the system by attaching more processors.

Disadvantages:

- Performance limited by bus bandwidth.
- Each processor should have local cache
 - To reduce number of bus accesses
 - Can lead to problems with cache coherence
 - Should be solved in hardware (to be discussed later).

Operating System Issues

- An SMP OS manages processor resources so that the user perceives a single system.
- It should appear as a single-processor multiprogramming system.
- In both SMP and uniprocessor, multiple processes may be active at one time.
 - OS is responsible for scheduling their execution and allocating resources.
- A user may construct applications that use multiple processes without regard to whether a single processor or multiple processors will be available.
- OS supports reliability and fault tolerance.
 - Graceful degradation.

MIMD Design Issues

- Design issues related to an MIMD machine are very complex, since it involves both architecture and software issues.
- The most important issues include:
 - Processor design
 - Physical organization
 - Interconnection structure
 - Inter-processor communication protocols
 - Memory hierarchy
 - Cache organization and coherency
 - Operating system design
 - Parallel programming languages
 - Application software techniques

Memory Access Issues

Uniform memory access (UMA), as in SMP:

- All processors have access to all parts of memory.
- Access time to all regions of memory is the same.
- Access time for different processors is the same.

Non-uniform memory access (NUMA)

- All processors have access to all parts of memory.
- Access time of processor differs depending on region of memory.
- Different processors access different regions of memory at different speeds.

No Remote Access or NORMA systems

- Distributed systems

A Typical NUMA Organization(1)

A Typical NUMA Organization(2)

A Typical NUMA Organization(3)

NUMA-Pros and Cons

- Effective performance at higher levels of parallelism than SMP.
- However, performance can break down if too much access to remote memory. This can be avoided by:
 - Designing better L1 and L2 caches to reduce memory access.
 - Need also good temporal locality of software.
 - If software has good spatial locality, data needed for an application will reside on a small number of frequently used pages.
 - They can be initially loaded into the local memory.
 - Enhancing VM by including in OS a page migration mechanism to move a VM page to a node that is frequently using it.
- NUMA does not transparently look like a SMP.
 - Software changes needed to move OS and applications from SMP to NUMA.
 - Page allocation, process allocation and load balancing are needed.

Loosely Coupled MIMD - Clusters

Cluster: A set of computers connected over a high-bandwidth local area network, and used as a parallel computer.

- A group of interconnected stand-alone computers
- Work together as a unified resource
- Give illusion of being one machine
- Each computer called a node
- A node can also be a multiprocessor itself, such as an SMP.
- Message passing for communication between nodes
- NOW: Network of Workstations, homogeneous cluster.
- Grid: Computers connected over a wide area network.

Cluster Benefits

- Absolute scalability
 - Cluster with a very large number of nodes is possible.
- Incremental scalability
 - A user can start with a small system and expand it as needed, without having to go through a major upgrade.
- High availability
 - Fault tolerance by nature.
- Superior price/performance
 - Can be built with cheap commodity nodes.
- Supercomputing-class commodity components are available
- The promise of supercomputing to the average PC User?

Cluster Configurations(1)

- The simplest classification of clusters is based on whether the nodes share access to disks.
- Cluster with no shared disk.
 - Interconnection is by high-speed link
 - LAN may be shared with other non-cluster computers
 - Dedicated interconnection facility

Cluster Configurations(2)

- Shared-disk cluster
 - Still connected by a message link
 - Disk subsystem directly linked to multiple computers
 - Disks should be made fault-tolerant
- To avoid single point of failure in the system.

Parallelizing Computation

How to make a single application executing in parallel on a cluster:

- Paralleling complier
 - Determines at compile time which parts can be executed in parallel.
- Parallelized application
 - Application written from scratch to be parallel.
 - Message passing to move data between nodes.
 - Hard to program.
 - Best end results.
- Parametric computing
 - If a problem is repeated execution of algorithm on different sets of data.
 - e.g. simulation using different scenarios.
 - Needs effective tools to organize and run.

Cluster Computer Architecture

Cluster vs. SMP

- Both provide multiprocessor support to high demand applications.
- Both available commercially
 - SMP for longer time

• **SMP**:

- Easier to manage and control
- Closer to single processor systems
 - Scheduling is the main difference
 - Less physical space
 - Lower power consumption

• Clustering:

- Superior incremental and absolute scalability
- Superior availability
 - High degree of redundancy

Cache coherence(1)

Single Processor caching

Cache Coherence Policies

Cache coherence(2)

References:

- 1. Advanced Computer Architecture Kai Hwang
- 2. Advanced Computer Architecture Karsuk
- 3. Computer System Architecture Mano