Probabilistic Model Checking

Wishnu Prasetya

wishnu@cs.uu.nl www.cs.uu.nl/docs/vakken/pv

additional slides DTMC

Probability of taking a path or a set of paths

• Consider a path ω e.g. s_0, s_1, s_2, s_0 . The probability that the system follows this path when executed with the starting state s_0 is denoted by $P_{s0}(\omega)$. Or simply $P(\omega)$ if it is clear which s_0 is meant. It is the product of the probability of each transition in ω .

Example: for the above ω , $P(\omega) = 1 * 0.01 * 1 = 0.01$

For a set of of paths U (starting from s0), the probability that the system's execution follows one of the paths in U, denoted by P(U), is Σ_{ω∈U} P(ω).

Probability of taking a path or a set of paths

Example: consider U = the set of paths that ends in s_2 . Note that U is infinite: U = { 02, 0102, 010102, ... }. But we can calculate P(U).

$$P(U) = 0.5 + 0.52 + 0.53 + \dots = \sum_{k \ge 0} 0.5^{k}$$
$$= 0.5 * \frac{1}{1 - 0.5} = 1$$

Probability Matrix Representation

 $P_{i,k}$ = the value at the i-th row and k-th column. It specifies the probability of taking the transition $s_i \rightarrow s_k$, if we are now at s_i .

For example the circle red value above is $P_{1,2}$, specifying the probability of taking the transition from s_1 to s_2 (check the picture), which is 0.01.

Basic Operations on Probability Matrix

- Multiplying P with itself: Pⁿ
- Multiplying a vector with P: u × P
- Multiplying P with a vector: P × v

Pn

- P⁰ = I (identity matrix)
 Pⁿ⁺¹ = P × Pⁿ
- $P_{i,k}^n$ is the probability of ending up in state s_k in n-steps, given we start in the state s_i .
- For example, wirth the previous P, let's look at P²:

0	1	0	0		0	1	0	0	?	?	0.01	?
0	0.01	0.01	0.98	~	0	0.01	0.01	0.98	?	?	? ?	?
1	0.01 0	0	0	^	1	0	0	0	?	?	?	?
0	0	0	1		0	0	0	1	?	?	?	?

$$P^{2}_{0,2} = (P \times P)_{0,2}$$

= $P_{0,0}^{*} P_{0,2} + P_{0,1}^{*} P_{1,2} + P_{0,2}^{*} P_{2,2} + P_{0,3}^{*} P_{3,2}$

Probabity distribution of the next state, given the current distribution

- A **probability distribution** of the current state is the probability of currently being in various states. It can be given by a vector of size K, if K is the number of possible states. E.g. if u = [0, 0.5, 0.5, 0] is the probability distribution of the current state, it says e.g. that there is 0.5 probability that currently we are in the state s_1 , but 0 probability that we are in the state s_0 .
- The product u × P (we often simply write it as uP) gives a new vector u' of size K, that gives us the probability distribution of the next state.

e.g.
$$u'_1 = u \cdot the green collumn (dot product)$$

= $u_0^* P_{0,1} + u_1^* P_{1,1} + u_2^* P_{2,1} + u_3^* P_{3,1}$

Probabilty vector

- Sometimes we also want to know what the probability to end up in state, say, s₁ or s₂ as the **next** state, if we start in the state s1.
- We can represent "end up in either s_1 or s_2 " with a vector v = [0,1,1,0].
- Let v^t is the *transpose* of v. The product P × v^t gives a w such that w is a (transposed) vector, where w_i is the probability to end up in one of the states specified in v, if we start in s_i.

e.g.
$$w_1$$
 = the green row • v^t (dot product)
= $P_{1.0}^* v_0 + P_{1.1}^* v_1 + P_{1.2}^* v_2 + P_{1.3}^* v_3$

Probability vector

• $\frac{\text{Prob}}{\phi}$ (notice the underscore) is a probility vector e.g. w =

such that the i-th element tells us what the probability that the system would behave as φ if executed in state s_i .

- Example: the above w (blue) happens to be equal to Prob(X(try V fail)).
- This notation Prob will be used later when we discuss model checking of probabilistic-CTL.

The construction of P' for bounded Until

0	1	0	0
0	0.01	0.01	0.98
1	0	0	0
0	0	0	1

The probability matric P of the DTMC on the left.

- Consider as an example to check whether the DTMC satisfies P_{>0.99}[
 try ∨ ¬fail U^{≤2} succ].
 - Calculate first the probability vector Prob[try ∨ ¬fail U≤2 succ].
 - 2. From there you can calculate the set Sat(P_{>0.99}[try ∨ ¬fail U≤2 succ]).
 - 3. If the initial state s_0 is in the blue Sat-set then the property $P_{>0.99}[$ try \vee \neg fail $U^{\leq 2}$ succ holds on the DTMC.

The construction of P' for bounded Until

0	1	0	0
0	0.01	0.01	0.98
1	0	0	0
0	0	0	1

The probability matric P of the DTMC on the left.

- To calculate the probability vector Prob[try ∨ ¬fail U^{≤2} succ], we would like to use the matrix P above, however it will also "contain" transitions that cause you to break the green-property. So the idea is to use a "modified" matrix P'.
- We pre-calculate first the S^{yes} = Sat(succ) = {s3}. On all states in S^{yes}, you have the green property immediately (in 0 step).
- We pre-calculate S^{no}, we take S^{no} = Sat(¬ (try ∨ ¬fail) ∧ ¬ succ) = { s2 }.
 Executions starting from S^{no} won't satisfy your green-property above,

The construction of P' for bounded Until

- 1. We remove outgoing arrows from the states in S^{no} and S^{yes}.
- 2. We keep all arrows that go out from states which are **not** in S^{no} nor S^{yes}.
- We add a self-loop s → s with probability 1 for any state s in S^{yes}.

Using P' for bounded Until

We now use P' to iteratively calcualte Prob[try ∨ ¬fail U≤2 succ]

0.98

- From S^{yes} you know that Prob[try ∨ ¬fail U^{≤0} succ] = 0
- Prob[try $\vee \neg fail \ \mathbf{U}^{\leq 1} \ succ] = P' \times \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} = \begin{vmatrix} 0.98 \\ 0 \\ 1 \end{vmatrix}$

So, does the property hold?

- We have calculated Prob[try $\vee \neg$ fail $U^{\leq 2}$ succ] = [0.98, 0.9898, 0, 1]
- So, the set Sat(P_{>0.99}[try ∨ ¬fail U≤2 succ]) = {s₃}
- So we conclude that the DTMC does not satisfy the claimed property P_{>0.99}[try ∨ ¬fail U≤2 succ].

Buchi vs Rabin

 Consider the LTL property ◊□a. This can be described by this Buchi automaton, wirth {1} as the accepting state:

Notice that this Buchi is non-deterministic. As such, we can use it for model checking on a probabilistic model such as DTMC.

We can however represent the property with a deterministic Rabin automaton, with the pair ({0}, {1}) as its accepting condition.

additional slides MDP

Calculating pmin(s, $\varphi_1 \cup \varphi_2$)

pmin(s, φ) = the **minimum** probability for having executions starting from 2 satisfying φ , regardless the adversary.

To calculate pmin(s, $\varphi_1 \cup \varphi_2$):

- 1. Calculate first the sets Syes and Sno.
 - S^{yes} = { s | P(s, $\varphi_1 \cup \varphi_2$) \geq 1, for **all** adversaries } \rightarrow with algorithm **Prob1A**.
 - S^{no} = { s | P(s, $\varphi_1 \cup \varphi_2$) ≤ 0 , for **some** adversary } \rightarrow with algorithm **Prob0E**.
- 2. For any state s in S^{yes}, we then know that pmin(s, $\varphi_1 \cup \varphi_2 \ge 1$.
- 3. For any state s in S^{no} we have pmin(s, $\varphi_1 \cup \varphi_2$) ≤ 0 .
- 4. We then proceed with calculating the pmin for the remaining states (which are not in S^{yes} nor S^{no}).

Algorithm **Prob0E**

- The algorithm below first calculates the set R of all states s satisfying E[s, $\varphi_1 \cup \varphi_2$], regardless the adversary. So, for any state in R, and for any adversary Prob(s, $\varphi_1 \cup \varphi_2$) > 0.
- Sno is just complement S/R.
- Sat(φ_1) and Sat(φ_2) in the paremeters are the set of states on which φ_1 and φ_2 respectively hold.

```
PROB0E(Sat(\phi_1), Sat(\phi_2))

1. R := Sat(\phi_2)

2. done := \mathbf{false}

3. \mathbf{while} \ (done = \mathbf{false})

4. R' := R \cup \{s \in Sat(\phi_1) \mid \forall \mu \in Steps(s) . \exists s' \in R . \mu(s') > 0\}

5. \mathbf{if} \ (R' = R) \ \mathbf{then} \ done := \mathbf{true}

6. R := R'

7. \mathbf{endwhile}

8. \mathbf{return} \ S \setminus R
```

Prob1A

Calculate first the set F of states from where we have a path passing exclusively through states satisfying φ₁ Λ ¬φ₂ and ends in S^{no}, under some adversary.

By definition this F also includes S^{no}.

- So any state s in F has Prob(s, $\varphi_1 \cup \varphi_2$) < 1, for some adversary. In other words pmin(s, $\varphi_1 \cup \varphi_2$) < 1.
- Pyes in the the complement S/F.
- **Note**: for the calculation of pmin(s, $\varphi_1 \cup \varphi_2$), we can also just take S^{yes} = Sat(φ_2). The calculation would still works, though it would take more steps to get its final results.

Calculating pmax(s, $\varphi_1 \cup \varphi_2$)

pmax(s, φ) = the **maximum** probability for having executions starting from 2 satisfying φ , regardless the adversary.

To calculate pmax(s, $\varphi_1 \cup \varphi_2$):

- 1. Calculate first the sets Syes and Sno.
 - S^{yes} = { s | P(s, $\varphi_1 \cup \varphi_2$) \geq 1, for **some** adversaries } \rightarrow with algorithm prob1E.
 - S^{no} = { s | P(s, $\varphi_1 \cup \varphi_2$) ≤ 0 , for **all** adversary } \rightarrow with algorithm prob0A.
- 2. For any state s in S^{yes}, we then know that pmax(s, $\varphi_1 \cup \varphi_2 \ge 1$.
- 3. For any state s in S^{no} we have pmax(s, $\varphi_1 \cup \varphi_2$) ≤ 0 .
- 4. We then proceed with calculating the pmin for the remaining states (which are not in S^{yes} nor S^{no}).

Algorithm **Prob0A**

- The algorithm below first calculates the set R of all states s satisfying E[s, $\varphi_1 \cup \varphi_2$], for some adversary. So, for any state in R, there is an adversary such that Prob(s, $\varphi_1 \cup \varphi_2$) > 0.
- Sno is just complement S/R.
- Sat(φ_1) and Sat(φ_2) in the paremeters are the set of states on which φ_1 and φ_2 respectively hold.

```
PROB0A(Sat(\phi_1), Sat(\phi_2))

1. R := Sat(\phi_2)

2. done := \mathbf{false}

3. \mathbf{while} \ (done = \mathbf{false})

4. R' := R \cup \{s \in Sat(\phi_1) \mid \exists \mu \in Steps(s) . \exists s' \in R . \mu(s') > 0\}

5. \mathbf{if} \ (R' = R) \ \mathbf{then} \ done := \mathbf{true}

6. R := R'

7. \mathbf{endwhile}

8. \mathbf{return} \ S \setminus R
```

Prob1E

More complicated. See Dave's slides on MDP.

Prob1E