2017 一模

()

1. 设命题 $p: \forall x \in [0, +\infty), e^x \ge 1$, 则 $\neg p$ 是

	(A) $\exists x_0 \notin [0, +\infty), e^{x_0} <$	1				
	(B) $\forall x_0 \notin [0, +\infty), e^{x_0} <$	1				
	(C) $\exists x_0 \in [0, +\infty), e^{x_0} <$	1				
	(D) $\forall x_0 \in [0, +\infty), e^{x_0} <$	1				
2.	设 E, F 分别是正方形 A	<i>BCD</i> 的边 <i>AB</i> , <i>BC</i> 上的点	$\vec{A}, \vec{B} \cdot AE = \frac{1}{2}AB, BF = \frac{1}{2}AB$	$\frac{2}{3}BC$, 如果 \overrightarrow{EF}	$= m\overrightarrow{AB}$	· +
	$n\overrightarrow{AC}(m,n$ 为实数),那么 m	1+n的值为	1		()
	$(A) - \frac{1}{2}$	(B) 0	(C) $\frac{1}{2}$	(D) 1		
3.	在三角形 $\triangle ABC$ 中,点 D 满足 $\overrightarrow{AD} = 2\overrightarrow{AB} - \overrightarrow{AC}$,则)
	(A) 点 D 不在直线 BC 上	<u>.</u>	(B) 点 D 在 BC 的延长线上			
	(C) 点 D 在线段 BC 上		(D) 点 D 在 CB 的延长线	盐		
4.	在三角形 $\triangle ABC$ 中,点 D)满足 $\overrightarrow{BC} = 3\overrightarrow{BD}$,则			()
	(A) $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$		(B) $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC}$			
	(C) $\overrightarrow{AD} = \frac{3}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$		(D) $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} - \frac{3}{3}\overrightarrow{AC}$			
5.	在平面直角坐标系 xOy 中	\mathbf{r} ,曲线 C 的参数方程为 $\left\{ egin{aligned} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ & \mathbf{r} \\ & \mathbf{r} & \mathbf{r} \\ & \mathbf{r} \\ & \mathbf{r} & \mathbf{r} \\ & $	$f(x = 2 + \sqrt{2}\cos\theta)$ $(\theta $),则曲线 <i>C</i> 是	()
	(A) 关于 x 轴对称的图形		(B) 关于 y 轴对称的图形			
	(C) 关于原点对称的图形	;	(D) 关于直线 y = x 对称	的图形		
6.	如果 $f(x)$ 是定义在 \mathbf{R} 上的奇函数,那么下列函数中,一定为偶函数的是)
	(A) y = x + f(x)		(B) $y = xf(x)$			
	$(C) y = x^2 + f(x)$		(D) $y = x^2 f(x)$			
7.	设抛物线 $y^2 = 8x$ 的焦点为 F ,准线为 l , P 为抛物线上一点, $PA \perp l$, A 为垂足,若直线 $AF \parallel -\sqrt{3}$,则 $ PF =$					
	$(A) 4\sqrt{3}$	(B) 6	(C) 8	(D) 16)
8.		$0 < x \le 4$, 若 a, b $0 < x \le 4$.	p, c, d 是互不相同的正数	,且 $f(a) = f(b)$		
	<i>f</i> (<i>d</i>),则 <i>abcd</i> 的取值范围		(6) (01.51)	(D) (10.07)	()
	(A)(24,25)	(B) (18, 24)	(C) (21, 24)	(D) (18, 25)		

9.	小明和父母、爷爷奶奶一 人与他相邻,则不同的坐落		的现场录制,5 人坐成一持	非. 若小明的父母至少有一 ()			
	(A) 60	(B) 72	(C) 84	(D) 96			
10.	甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,拍法种数为 ()						
	(A) 12	(B) 40	(C) 60	(D) 80			
11.	已知曲线 $C: \begin{cases} x = \frac{\sqrt{2}}{2}t, \\ y = a + \frac{\sqrt{2}}{2} \end{cases}$	(t为参数),A(-1, 0), B(t	1,0). 若曲线 <i>C</i> 上存在点 <i>I</i>	P满足 $\overrightarrow{AP} \cdot \overrightarrow{BP} = 0$,则实			
	数 a 的取值范围为 $(A) \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$	(B) [-1, 1]	(C) $\left[-\sqrt{2}, \sqrt{2}\right]$	(D) [-2, 2]			
12.	现有10支队伍比赛,规定:比赛采取单循环比赛制,每支队伍与其他9支队伍各比赛一场,每场比赛中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是()						
	(A) 可能有两支队伍得分	都是 18 分	(B) 各队得分总和为 180	分			
	(C) 各支队伍中最高得分	不少于 10 分	(D) 得偶数分的队伍必有	偶数个			
13.	3. 一次猜奖游戏中,1,2,3,4 四扇门里摆放了 a , b , c , d , 四件奖品 (每扇门内仅放一件). 甲同学说: 1 号门里是 b , 3 号门里是 c ; 乙同学说: 2 号门里是 b , 3 号门里是 d ; 丙同学说: 4 号门里是 b , 2 号门里是 c ; 丁同学说: 4 号门里是 a , 3 号门里是 c ; ,如果他们每个人都猜对了一半,那么 4 号门里是 ()						
	(A) <i>a</i>	(B) <i>b</i>	(C) <i>c</i>	(D) <i>d</i>			
14.	已知函数 $f(x) = \sin(\omega x - y)$ $f(x)$ 有五个公共点,贝		e)(n ≠ 1) 都在曲线 y = f((x) 上, 且线段 AB 与曲线 ()			
	(A) 4	(B) 2	(C) $\frac{1}{2}$	(D) $\frac{1}{4}$			
15.	将函数 $y = \sin(2x + \frac{\pi}{6})$ 的图上单调递减,则 m 的最小(A) $\frac{\pi}{12}$		单位长度,得到函数 $y = f$ (C) $\frac{\pi}{4}$	$f(x)$ 图象在区间 $\left[-\frac{\pi}{12}, \frac{5\pi}{12}\right]$ (D) $\frac{\pi}{3}$			
16.	函数 $f(x)$ 的图象上任意一有性质 P 的是	点 <i>A</i> (x, y) 的坐标满足条(· 牛 x ≥ y , 称函数 f(x)	具有性质 P. 下列函数中具			
	$(A) f(x) = x^2$		(B) $f(x) = \frac{1}{x^2 + 1}$				
	(C) $f(x) = \sin x$		(D) $f(x) = \ln(x+1)$				
17.	如果函数 $y = f(x)$ 在定义 "倍增函数". 若函数 $f(x)$ (A) $\left(-\frac{1}{4}, +\infty\right)$			[2a, 2b], 那么称 $f(x)$ 为 (D) $\left(-\frac{1}{4}, 0\right)$			

- 25. 在三角形 $\triangle ABC$ 中,若 $b^2 = ac$, $\angle B = \frac{\pi}{3}$,则 $\angle A = _____$
- 26. 若非零向量 \overrightarrow{a} , \overrightarrow{b} 满足 $\overrightarrow{a} \cdot (\overrightarrow{a} + \overrightarrow{b}) = 0, 2|a| = |b|$, 则向量 \overrightarrow{a} , \overrightarrow{b} 夹角的大小为
- 27. 在平面直角坐标系 xOy 中,曲线 $C_1: x+y=4$,曲线 $C_2: \begin{cases} x=1+\cos\theta, \\ y=\sin\theta. \end{cases}$ (θ 为参数), 过原点 O 的直线 l 分别交 C_1, C_2 于 A, B 两点,则 $\frac{|OB|}{|OA|}$ 的最大值为______.
- 28. 已知 x > 1,则函数 $y = \frac{1}{x-1} + x$ 的最小值为_____.
- 29. 实数 a, b 满足 $0 < a \le 2$, $b \ge 1$, 若 $b \le a^2$, 则 $\frac{b}{a}$ 的取值范围是_____.
- 30. 已知函数 $f(x) = \begin{cases} (x 2a)(a x), & x \leq 1, \\ \sqrt{x} + a 1, & x > 1. \end{cases}$
 - (1) 若 a = 0, $x \in [0,4]$, 则 f(x) 的值域为______;
 - (2) 若 f(x) 恰有三个零点,则实数 a 的取值范围是_____.
- 31. 已知函数 $f(x) = \begin{cases} 1 x^2, & x \ge 0, \\ & \text{ 若关于 } x \text{ 的方程 } f(x+a) = 0 \text{ 在 } (0, +\infty) \text{ 内有唯一实根,则实数 } a \text{ 的最 } \\ & \text{小值是}_{___}. \end{cases}$
- 32. 已知实数 u, v, x, y 满足 $u^2 + v^2 = 1$, $\begin{cases} x + y 1 \ge 0, \\ x 2y + 2 \ge 0, \text{ 则 } z = ux + vy \text{ 的最大值是} \\ x \le 2. \end{cases}$
- 33. 已知函数 $f(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{2}, \\ -1, & \frac{1}{2} \le x < 1, \end{cases}$ 和 $g(x) = \begin{cases} 1, & 0 \le x < 1, \\ 0, & x < 0$ 或 $x \ge 1. \end{cases}$ 则:
 - $(1) g(2x) = ____;$
 - (2) 若 $m, n \in \mathbb{Z}$ 且 $m \cdot g(n \cdot x) g(x) = f(x)$,则 $m + n = ____$.
- 34. 已知甲, 乙, 丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存 36 天的水和食物,且计划每天向沙漠深处走 30 公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回,若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠_____公里.
- 35. 如图,正方体 $ABCD A_1B_1C_1D_1$ 的棱长为 2,点 P 在正方形 ABCD 的边界及其内部运动,平面区域 W 由所有满足 $A_1P \leq \sqrt{5}$ 的点 P 组成,则 W 的面积是 ;四面体 $P A_1BC$ 的体积的最大值是 .

36. 如图,正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 2,点 P 在正方形 ABCD 的边界及其内部运动,平面区域 W 由所有满足 $A_1P \geqslant \sqrt{5}$ 的点 P 组成,则 W 的面积是_____.

- 37. 数列 $\{a_n\}$ 是各项都为正数的等比数列, $a_{11}=8$,设 $b_n=\log_2 a_n$,且 $b_4=17$.
 - (1) 求证: 数列 $\{b_n\}$ 是以 -2 为公差的等差数列;
 - (2) 设数列 $\{b_n\}$ 的前 n 项和为 S_n , 求 S_n 的最大值.

- 38. 已知函数 $f(x) = \sin \omega x (\cos \omega x \sqrt{3} \sin \omega x) + \frac{\sqrt{3}}{2} (\omega > 0)$ 的最小正周期为 $\frac{\pi}{2}$.
 - (1) 求ω的值;
 - (2) 求函数 f(x) 的单调递减区间.

- 39. 已知 $\frac{\pi}{3}$ 是函数 $f(x) = 2\cos^2 x + a\sin 2x + 1$ 的一个零点.
 - (1) 求实数 a 的值;
 - (2) 求 f(x) 的单调递增区间.

- 40. 在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c, 且 $a \tan C = 2c \sin A$.
 - (1) 求角 C 的大小;
 - (2) 求 $\sin A + \sin B$ 的取值范围.

- 41. 已知函数 $f(x) = \ln x ax 1$ $(a \in \mathbf{R}), \ g(x) = xf(x) + \frac{1}{2}x^2 + 2x.$
 - (1) 求 f(x) 的单调区间;
 - (2) 当 a=1 时,若函数 g(x) 在区间 (m,m+1) $(m \in \mathbb{Z})$ 内存在唯一的极值点,求 m 的值.

- 42. 已知函数 $f(x) = \ln(kx) + \frac{1}{x} k \ (k > 0)$.
 - (1) 求 f(x) 的单调区间;
 - (2) 对任意 $x \in \left[\frac{1}{k}, \frac{2}{k}\right]$, 都有 $x \ln(kx) kx + 1 \le mx$, 求 m 的取值范围.

- 43. 已知函数 $f(x) = \frac{x+1}{e^x}$, $A(x_1,m)$, $B(x_2,m)$ 是曲线 y = f(x) 上的两个不同的点.
 - (1) 求 f(x) 的单调区间,并写出实数 m 的取值范围
 - (2) 证明: $x_1 + x_2 > 0$

- 44. 已知函数 $f(x) = x^2 2ax + 4(a-1)\ln(x+1)$, 其中实数 a < 3.
 - (1) 判断 x = 1 是否为函数 f(x) 的极值点,并说明理由;
 - (2) 若 $f(x) \le 0$ 在区间 [0, 1] 上恒成立,求 a 的取值范围.

- 45. 已知函数 $f(x) = x \ln x$.
 - (1) 求曲线 y = f(x) 在点 (1, f(1)) 处的切线方程;
 - (2) 求证: $f(x) \ge x 1$;
 - (3) 若 $f(x) \ge ax^2 + \frac{2}{a} (a \ne 0)$ 在区间 $(0, +\infty)$ 上恒成立,求 a 的最小值.

- 46. 已知函数 $f(x) = e^x x^2 + ax$, 曲线 y = f(x) 在点 (0, f(0)) 处的切线与 x 轴平行.
 - (1) 求 a 的值;
 - (2) 若 $g(x) = e^x 2x 1$, 求函数 g(x) 的最小值;
 - (3) 求证: 存在 c < 0, 当 x > c 时, f(x) > 0.

- 47. 已知函数 $f(x) = \frac{m}{2}x^2 x \ln x$.
 - (1) 求曲线 C: y = f(x) 在 x = 1 处的切线 l 的方程;
 - (2) 若函数 f(x) 在定义域内是单调函数,求m 的取值范围;
 - (3) 当 m > -1 时, (??) 中的直线 l 与曲线 C: y = f(x) 有且仅有一个公共点, 求 m 的取值范围.

- 48. 已知函数 $f(x) = e^x \frac{1}{2}x^2$,设 l 为曲线 y = f(x) 在点 $P(x_0, f(x_0))$ 处的切线,其中 $x_0 \in [-1, 1]$.
 - (1) 求直线 *l* 的方程 (用 x₀ 表示);
 - (2) 设 O 为坐标原点,直线 x = 1 分别与直线 l 和 x 轴交于 A, B 两点,求 $\triangle AOB$ 的面积的最小值.
 - (3) 求直线 l 在 y 轴上的截距的取值范围;
 - (4) 设 y = a 分别与直线 y = f(x) 和射线 y = x 1 ($x \in [0, +\infty)$) 交于 M, N 两点,求 |MN| 的最小值及此时 a 的值.

- - (1) 求椭圆 C 的方程及焦点坐标;
 - (2) 记 $\triangle AEE_1$, $\triangle AE_1F_1$, $\triangle AFF_1$ 的面积分别为 S_1 , S_2 , S_3 , 试证明 $\frac{S_1S_3}{S_2^2}$ 为定值.

- 50. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的离心率为 $\frac{\sqrt{2}}{2}$, 右焦点为 F, 点 P(0,1) 在椭圆 C 上.
 - (1) 求椭圆 C 的方程;
 - (2) 过点 F 的直线交椭圆 C 于 M, N 两点,交直线 x=2 于点 P, 设 $\overrightarrow{PM}=\lambda \overrightarrow{MF}$, $\overrightarrow{PN}=\mu \overrightarrow{NF}$, 求证: $\lambda+\mu$ 为定值.

- 51. 已知椭圆 $G: \frac{x^2}{2} + y^2 = 1$,与 x 轴不重合的直线 l 经过左焦点 F_1 ,且与椭圆 G 相交于 A,B 两点,弦 AB 的中点为 M,直线 OM 与椭圆 G 相交于 C,D 两点.
 - (1) 若直线 l 的斜率为 1,求直线 OM 的斜率;
 - (2) 是否存在直线 l, 使得 $|AM|^2 = |CM| \cdot |DM|$ 成立? 若存在, 求出直线 l 的方程; 若不存在, 说明理由.

- 52. 已知点 P 是椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 上一点,点 P 到椭圆 C 的两个焦点的距离之和为 $2\sqrt{2}$.
 - (1) 求椭圆 C 的方程;
 - (2) 设 A, B 是椭圆 C 上异于点 P 的两点,直线 PA 与直线 x=4 交于点 M, 是否存在点 A,使得 $S_{\triangle ABP}=\frac{1}{2}S_{\triangle ABM}$? 若存在,求出点 A 的坐标;若不存在,说明理由.

- 53. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 的离心率为 $\frac{\sqrt{3}}{2}$, 短半轴长为 1.
 - (1) 求椭圆 G 的方程;
 - (2) 设椭圆 G 的短轴端点分别为 A, B, 点 P 是椭圆 G 上异于点 A, B 的一动点,直线 PA, PB 分别与直线 x = 4 交于 M, N 两点,以线段 MN 为直径作圆 C.
 - ① 当点 P 在 y 轴的左侧时,求圆 C 半径的最小值;
 - ② 问: 是否存在一个圆心在 x 轴上的定圆与圆 C 相切? 若存在,指出该定圆的圆心和半径,并证明你的结论;若不存在,说明理由.

- 54. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 的左、右顶点分别为 $A, B \perp |AB| = 4$,离心率为 $\frac{1}{2}$.
 - (1) 求椭圆 C 的方程;
 - (2) 设点 Q(4,0),若点 P 在直线 x = 4 上,直线 BP 与椭圆交于另一点 M. 判断是否存在点 P,使得四 边形 APQM 为梯形?若存在,求出点 P 的坐标,若不存在,说明理由.