ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (СП6ГУ)

Направление: Прикладные математика и физика

Полуавтоматическое структурирование изображений в социальной сети с помощью методов машинного обучения

Содержание

	Вве	едение	3	
1	Пос	становка задачи	4	
2	Исп	пользуемые инструменты	4	
3	Сверточные нейронные сети			
	3.1	Введение в теорею сверточных нейросетей	4	
	3.2	Обзор используемых архитектур	4	
4	Раб	ота с данными	4	
	4.1	Датасет SUN	4	
	4.2	База WordNet	4	
	4.3	Адоптация датасета SUN	4	
5	Чис	сленные эксперименты	4	
	5.1	Архитектура программы	4	
	5.2	Особенности реализации	4	
	5.3	Полученные результаты	4	
	5.4	Обсуждение результатов	4	
6	Вал	идация результатов	4	
	Вы	воды	4	
	Сп	исок литературы	4	

Введение

С каждым днем пользователи социальных сетей создают и потребляют все бо́льшие и бо́льшие объемы информации, в том числе огромное количество фотографий. Построение системы для быстрой и точной навигации в миллионах изображений — не тривиальная задача. Одно из самых распространенных решений этой проблемы заключается в использовании тегов. Частный случай такого подхода — использование хештегов в социальных сетях.

Xewmes — это любое слово или фраза без пробелов, перед которой стоит символ #, который называется ∂ues или pewemka, а в англоязычном варианте — hash, отсюда и название. Приведем несколько примеров: #masterwork, #spbu, #htaglovesport. Обычно в браувере или приложении хештег отображается как гипертекст, кликнув по которому можно получить список публикаций, снабженных таким же тегом.

Кроме простоты и удобства теги обладают еще одним полезным свойством — они позволяют не думать об иерархии структурируемой информации. Например, набор изображений можно разложить по папкам, создав иерархию по датам, геолокациям или авторству. Причем в отдельных случаях подобрать наиболее подходящую иерархию бывает затруднительно. Проблему можно решить так: достаточно поставить несколько тегов для всех изображений, а сами они могут храниться в плоской системе файлов. Благодаря этому свойству тегирование используются для рубрикации контента не только только онлайн, но и в оффлайн приложениях, например, просмоторщиках фотографий.

Можно выделить две разновидности популярных хэштегов в социальных сетях. Первые, используемые недолго и посвященные каким-то социальным явлениям или событиям, например: #elections2018, #metoo. И вторые, широкораспространенные, но не связанные с новостной повесткой, например: #sport, #cafe; они и будут нас интересовать. Данная работа посвящена разработке интеллектуальной системы, подсказывающей пользователю релевантные хештеги к загружаемым фотографиям. Кроме того, с помощью такой системы можно решать и "обратную" задачу — определять, уместно ли поставлены те или иные теги к заданным изображениям. Способность системы давать ответ на такой вопрос можно использовать для выявления злоупотреблений со стороны пользователей. Например, зачастую в рекламных целях продвигаемые публикации снабжают множеством популярных тегов, не имеющих никакого отношения к публикуемой информации.

1	П	
1	Постановка	задачи

bla blaa

- 2 Используемые инструменты
- 3 Сверточные нейронные сети
- 3.1 Введение в теорею сверточных нейросетей
- 3.2 Обзор используемых архитектур
- 4 Работа с данными
- 4.1 Датасет SUN
- 4.2 База WordNet
- 4.3 Адоптация датасета SUN
- 5 Численные эксперименты
- 5.1 Архитектура программы
- 5.2 Особенности реализации
- 5.3 Полученные результаты
- 5.4 Обсуждение результатов
- 6 Валидация результатов

Выводы

Список литературы