 Introduction to Problem Solving 	
Time Complexity	
Introduction to Arrays	
Prefix Sum	
Carry Forward & Subarrays	
Sliding Window & Contribution Technique	
Memory Management	
Sorting Basics	
2D Matrices	
Bit Manipulations Basics	
Strings	
Interview Problems	
Contest [covers Full Intermediate DSA]	
- Contest [covers rutt intermediate box]	
Following will be covered today!	
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs.	, i.e, number of Iterations.
Count the Factors Optimisation for counting the Factors Check if a number is Prime Sum of N Natural Numbers	, i.e, number of Iterations.
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs.	, i.e, number of Iterations.
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs.	, i.e, number of Iterations.
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs 6. How to compare two Algorithms.	, i.e, number of Iterations.
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs 6. How to compare two Algorithms. Ouston: No. 1 factors	
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs 6. How to compare two Algorithms.	
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs 6. How to compare two Algorithms. Ouston: No. 1 factors	
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs 6. How to compare two Algorithms. Ouston: No. 1 factors	
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs 6. How to compare two Algorithms. Ourston: No. 1 factors Factors Factors Factors 1, 2, 4, 8, 16, 32	nich dividus N
1. Count the Factors 2. Optimisation for counting the Factors 3. Check if a number is Prime 4. Sum of N Natural Numbers 5. How to find the number of a times a piece of code runs 6. How to compare two Algorithms. Ouston: No. 1 factors Factors Factors A number	nich dividus N

flow to chuk if i is a factor of N? (Remainder when N/i) · N % i = = 0 Approachi: Brute Force (Naive Solution) 1st factor of N: 1 Last factor of N: N int (ountFactors Cint N) { int count = 0; for Cint i= 1', ix=N', i++) { N Iterations if (N % i = = 0) { count++/ return count; 5 # terations = N 1 su => 10° iterations 109= 109 × 101 10° -> Isa 109 × 10:109 -> 1054

schin counti

iterations = ixi EN => Siz EN => i E IN Rome of i: [1, [N] Time Hiterators (SN) N V10"3 = 109 1018 10 sel

Quishen: Prime Number A number which has crackly 2 factors (land N) 2, 3, 5, 7, 11, 13, 17, 19, 23 .--. Quiz: 10 11 23 2 25 27 31 boolean is Prime (int N) 1 if [factors(N) = = 2){ return true; else return False; # steratione = TN 8:34 am $N=10^{19} =)$ (09 (ters =) (0 see

Range

[a,b] =) All numbers from a to b where closed brucket a and b are also included

(a,b) => All numbers from a to b where a and b are not included

[3,10] = 3,4,5,6,7,8,9,10 =) 8 [10-3+1]

[a,b] =) 6-a+1

S = 1 + 2 + 3 + 4 + - - - 3 + 99 + 100 + 5 = 00 + 99 + 98 + 97 = - - 3 + 2 + 1

25 = (0) + (0) + (0) + (0) + (0) + (0)

100 times

25 = 101 × 100

 $S: (0) \times (00) = (0) \times (0) (0) \times (0) \times (0) = (0) \times (0) \times (0) \times (0) \times (0) = (0) \times (0) \times$

I terations:	No · d	fimy	<u> </u>	Ιουρ	Υμης
Qur8 :					
for ('=	i; i < N; i++	-) {		i=1, 2,	, 3 N
→ if	(i = = N) (horak)			7	times
Quiz:					
_					
for(i -> 0 to		be ther	e in th	is loop	?
for(i -> 0 to s = s + i }	+ i^2;				
Range 6)	: [o, 10	oJ			
<u> </u>					
[a,b]:	b-a+1 100-0+1		0) 1hez	at i'on	
[a,b]:	b-a+1		o) they	at i'on	
[a,b]:	b-a+1		o) they	at i'on	
[a,b]:	b-a+1		0) 1hez	art i'un	


```
How many iterations will be there in this loop?
```

```
func(){
    for(i -> 1 to N){
        if(i % 2 == 0){
            print(i);
    }
}
```


}	N + M
(3	
for(j -> 1 to M){	
for(j -> 1 to M){ if(j % 2 == 0){	
<pre>M</pre>	
}	
``}	
}	

heometric Progression Series of numbers where the ratio consecutive terms is always same Ex: $\frac{6}{2} = \frac{12}{6} = \frac{24}{12} = \frac{48}{24} = \frac{96}{47} = \frac{192}{41}$ Eg: 4 12 36 72 12 : 3 36 : 3 72 . 2 B: 5 10 20 40 80 160 320 640-. a: First term of GP y: lemmon ratio a ar $ar^2 = ar^3 = ar^4 = ar^{k-1}$ $ar^{k-1} = ar^{k-1}$ $ar^{k-1} = ar^{k-1}$ $ar^{k-1} = ar^{k-1}$ $ar^{k-1} = ar^{k-1}$

 $Sum_{K} = \frac{a(r^{K}-1)}{r-1}$

flow t	O compo	re 2	L Alg	9057		
	Divya (Pi	y Sort)		7	eja (Soz	t Number
	15 sa (Windows 7	(P)		1054	(Macboo
		Macboo K				
	7su	(C14)				(fy thou
		, .l				+ +
	75	d			5-52	
Execution	time	15	d.cpcnde	nt on	lok	d
Factors	۵۸_	which	we	don't	have	control
# iterati	ons c's	alway	s cor	istant		
for (i=	1'/ i' N'	14+)(
	ant CHI") ;				
)						

• •
x = 2 = 3 ;
x 2 2 1 b
P & 1 2
For (i= 1) 1 (N) 1+1)?
700 (1-1) 12.07
7) // (8)
6 * 3 ° / J
c + 40%
y
N x 3 : 3M

