Esercizi di Informatica Teorica

Linguaggi regolari: espressioni regolari e grammatiche, proprietà decidibili e teorema di Myhill-Nerode

a cura di Luca Cabibbo e Walter Didimo

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

Sommario

- espressioni regolari e grammatiche regolari
- proprietà decidibili dei linguaggi regolari
- teorema di Myhill-Nerode

notazioni sul livello degli esercizi: (*) facile, (**) non difficile (***) media complessità, (****) difficile, (****) quasi impossibile

Espressioni regolari e linguaggi regolari

 $\underline{\text{teorema}}$ L è un $\underline{\text{linguaggio regolare}} \Leftrightarrow \text{L}$ è definibile con una $\underline{\text{espressione regolare}}$

- da una espressione regolare per L si ricava un ASFND applicando le proprietà di chiusura dei linguaggi regolari (dall'ASFND si può poi ricavare una grammatica regolare che genera L)
- da una grammatica regolare che genera L si ricava una espressione regolare risolvendo un sistema di equazioni lineari

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

3

Da grammatica ad espressione regolare

il <u>sistema di equazioni lineari si ricava</u> dalla grammatica sostituendo ogni insieme di produzioni del tipo:

$$A \rightarrow a_1B_1 | a_2B_2 | \dots | a_nB_n | b_1 | b_2 | \dots | b_m \text{ al modo:}$$

 $A = a_1B_1 + a_2B_2 + \dots + a_nB_n + b_1 + b_2 + \dots + b_m$

dal sistema di equazioni lineari <u>si ricava una espressione regolare</u> applicando le due tecniche seguenti ripetutamente:

- <u>sostituzione</u>: si può sostituire un simbolo non terminale con una espressione equivalente (es. A = aB + b, $B = cA \Rightarrow A = acA + b$)
- eliminazione della ricursione: si può sostituire l'equazione

$$A = \alpha_1 A + \alpha_2 A + \dots + \alpha_n A + \beta_1 + \beta_2 + \dots + \beta_m \text{ con 1'equazione}$$

$$A = (\alpha_1 + \alpha_2 + + \alpha_n) * (\beta_1 + \beta_2 + + \beta_m)$$

Esercizi svolti: da grammatica a espressione regolare

<u>Esercizio 1</u>(**) ricavare una espressione regolare per il linguaggio generato dalla seguente grammatica regolare:

$$\begin{array}{ll} S \rightarrow aA & S \rightarrow bC \\ A \rightarrow aA & A \rightarrow bC \\ C \rightarrow cC & C \rightarrow d \end{array}$$

Soluzione

si ricava il seguente sistema:

$$S = aA + bC$$

$$A = aA + bC$$

$$C = cC + d$$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

_

Esercizi svolti: da grammatica a espressione regolare

si applicano le tecniche di sostituzione ed eliminazione della ricursione:

$$S = aA + bC$$
 $S = aA + bC$ $S = aA + bc*d$
 $A = aA + bC$ \Rightarrow $A = aA + bC$ \Rightarrow $A = aA + bc*d$
 $C = cC + d$ $C = c*d$
 $S = aA + bc*d$ \Rightarrow $S = aa*bc*d + bc*d$
 $A = a*bc*d$

dunque risulta: aa*bc*d + bc*d che semplificata diventa: a*bc*d

Esercizi svolti: da grammatica a espressione regolare

<u>Esercizio 2</u>(**) ricavare una espressione regolare per il linguaggio generato dalla seguente grammatica regolare:

$$S \to aX$$

$$X \to bY|a$$

$$Y \to bX$$

Soluzione

$$S = aX$$
 $S = aX$ $S = a(bb)*a$ $X = bY + a$ $X = bbX + a$ $X = (bb)*a$ $X = bX$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

7

Esercizi svolti: da grammatica a espressione regolare

<u>Esercizio 3</u>(***) ricavare una espressione regolare per il linguaggio generato dalla seguente grammatica regolare:

$$\begin{split} S &\to aX|a \\ X &\to bX|aY|\epsilon \\ Y &\to bY|aX \end{split}$$

Soluzione

$$S = aX + a$$
 $S = aX + a$ $S = aX + a$ $X = bX + aY + \epsilon$ $X = bX + aY + \epsilon$ $Y = bY + aX$ $Y = b*aX$

Esercizi svolti: da grammatica a espressione regolare

$$S = aX + a$$
 $S = aX + a$ $S = a(b+ab*a)* + a$ $X = bX + ab*aX + \varepsilon$ $X = (b + ab*a)*$

che può essere semplificata al modo: a(b+ab*a)*

<u>Esercizio 4(***)</u> ricavare una espressione regolare per il linguaggio generato dalla seguente grammatica regolare:

$$\begin{split} S &\to bX \\ X &\to aX|bX|aY|a \\ Y &\to bY|b \end{split}$$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

9

Esercizi svolti: da grammatica a espressione regolare

Soluzione

$$S = bX$$

 $X = aX + bX + aY + a$
 $Y = bY + b$
 $S = bX$
 $X = aX + bX + aY + a$
 $Y = b*b$
 $S = bX$
 $X = aX + bX + ab*b + a$
 $X = aX + bX + ab*b + a$
 $X = aX + bX + ab*b + a$
 $X = aX + bX + ab*b + a$

che si semplifica al modo: b(a+b)*ab*

Esercizi da svolgere: da grammatica a espr. regolare

<u>Esercizio 5</u>(***) ricavare una espressione regolare per il linguaggio generato da ciascuna delle seguenti grammatiche regolari:

- 1) $S \rightarrow a|aA$ $A \rightarrow aA|bA|a|b$
- 2) $S \rightarrow aX$ $X \rightarrow aX|bX|b$
- 3) $S \rightarrow aB \mid aC$ $B \rightarrow bX \mid a$ $X \rightarrow bB$ $C \rightarrow cC \mid c$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

11

Proprietà decidibili dei linguaggi regolari

<u>teorema</u> è possibile <u>decidere</u> se un linguaggio regolare L è vuoto, finito o infinito

- è sufficiente studiare un ASF A che riconosce L: se *n* è il numero di stati di A, allora:
 - L è <u>vuoto</u> se e solo se A <u>non accetta alcuna stringa</u> di lunghezza <u>minore di *n*</u>
 - L è <u>infinito</u> se e solo se A <u>accetta qualche stringa</u> di lunghezza $k \in [n, 2n)$
 - altrimenti L è finito

Proprietà decidibili dei linguaggi regolari

Esercizio 6(*) dire se i linguaggi riconosciuti dai seguenti ASF sono vuoti, finiti o infiniti

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

13

Proprietà decidibili dei linguaggi regolari

<u>teorema</u> dati due linguaggi regolari L_1 ed L_2 è possibile <u>decidere</u> se:

- $L_1 \subseteq L_2$
- $\bullet L_1 = L_2$

infatti:

•
$$L_1 \subseteq L_2 \Leftrightarrow L_1 - L_2 = \emptyset$$
 $(L_1 - L_2 = c(c(L_1) \cup L_2)$

• $L_1 = L_2 \iff L_1 \subseteq L_2 \text{ ed } L_2 \subseteq L_1$

osservazione: $L_1 = L_2$ equivale anche a dire che

$$(L_1 \cap c(L_2)) \cup (L_2 \cap c(L_1)) = \emptyset$$

Proprietà decidibili dei linguaggi regolari

Esercizio 7(***) dimostrare formalmente che il linguaggio L_1 riconosciuto dall'ASF A_1 è contenuto nel linguaggio L_2 riconosciuto dall'ASF A_2 .

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

15

Proprietà decidibili dei linguaggi regolari

Soluzione dimostriamo che $A = A_1 - A_2$ è un automa che riconosce il

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

16

Proprietà decidibili dei linguaggi regolari

quindi, <u>il complementare</u> di questo ASF <u>non avrà stati finali</u>, e dunque riconoscerà il linguaggio vuoto.

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

17

Teroma di Myhill-Nerode

teorema sia L un linguaggio sull'alfabeto Σ ; sia data la seguente relazione di equivalenza su Σ^* :

$$xR_L y \Leftrightarrow (\forall z \in \Sigma^* \ xz \in L \Leftrightarrow yz \in L)$$

 R_L ha indice finito \Leftrightarrow L è regolare

osservazioni:

- si ricordi che <u>l'indice</u> di R_L è il <u>numero delle sua classi di equivalenza</u>, cioè il numero di elementi dell'insieme quoziente R_L/Σ^*
- il teroma di Myhill-Nerode fornisce una <u>caratterizzazione</u> dei linguaggi regolari, e può quindi essere <u>usato per provare sia la regolarità che la non regolarità</u> di un linguaggio

Esercizio 8(**) determinare tutte le classi di equivalenza della relazione R_L per il linguaggio L = a*ba*.

Soluzione:

esistono tre distinte classi di equivalenza:

- $C_1 = \{a^n : n \ge 0\}$ (nota: comprende anche ε)
- $C_2 = \{a^n b a^m : n, m \ge 0\}$
- $C_3 = \{w \in \{a,b\}^* : \text{ non esiste z tale che } wz \in L\}$

esercizio: mostrare qualche stringa di C₃

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

19

Esercizi svolti sul teorema di Myhill-Nerode

osservazione:

le classi di equivalenza di R_L rispetto ad un linguaggio regolare L sono <u>associabili agli stati di un opportuno ASF (minimo)</u> che riconosce L

esempio per L = a*ba*

- $C_1 = \{a^n : n \ge 0\} \leftrightarrow q_0$
- $C_2 = \{a^n b a^m : n, m \ge 0\} \leftrightarrow q_1$
- $C_3 = \{w \in \{a,b\}^* : \text{non esiste z tale che } wz \in L\} \leftrightarrow q_2$

Esercizio 9(***) determinare tutte le classi di equivalenza della relazione R_L per il linguaggio L riconosciuto dal seguente ASF; qual'è l'indice di R_I?

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

21

Esercizi svolti sul teorema di Myhill-Nerode

Soluzione consideriamo la relazione di equivalenza $xR_M y \Leftrightarrow \delta(q_0,x) = \delta(q_0,y)$; sappiamo che (vedi dimostrazione del teorema di Myhill-Nerode) se $xR_M y \Rightarrow xR_L y$, quindi R_M ha indice maggiore o uguale a quello di R_L (le classi di R_L sono ottenibili per unione di classi di R_M)

le classi di R_M si ottengono facilmente dall'ASF:

- $C_1 = \{\epsilon\} \leftrightarrow q_0$
- $C_2 = \{a\} \leftrightarrow q_1$
- $C_3 = \{bb^*\} \leftrightarrow q_2$
- $C_4 = \{bb*a\} \leftrightarrow q_3$
- $C_5 = \{b*abb*\} \leftrightarrow q_4$ (nota che $C_5 = L$)
- $C_6 = \{w \in \{a,b\}^* : \text{non esiste } z \text{ tale che } wz \in L\} \leftrightarrow q_P$

- $C_1 = \{ \epsilon \} \leftrightarrow q_0$
- $C_2 = \{a\} \leftrightarrow q_1$
- $C_3 = \{bb^*\} \leftrightarrow q_2$
- $C_4 = \{bb*a\} \leftrightarrow q_3$
- $C_5 = \{b*abb*\} \leftrightarrow q_4$ (nota che $C_5 = L$)
- $C_6 = \{w \in \{a,b\}^* : \text{non esiste z tale che } wz \in L\} \leftrightarrow q_P$

per <u>ottenere le classi di equivalenza di R_L </u> si osserva che le classi C_2 e C_4 devono essere unite, in quanto $aR_L(bb^*a)$; inoltre risulta $\epsilon R_L(bb^*)$, quindi anche C_1 e C_3 debbono essere unite; le classi di equivalenza di R_L sono dunque le seguenti:

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

23

Esercizi svolti sul teorema di Myhill-Nerode

- $C'_1 = \{b^*\} \leftrightarrow q'_0$ (unione di C_1 e C_3)
- $C'_2 = \{b*a\} \leftrightarrow q'_1$ (unione di C_2 e C_4)
- $C'_3 = \{b*abb*\} \leftrightarrow q'_3$ (equivale a C_5)
- $C'_4 = \{w \in \{a,b\}^* : \text{non esiste z tale che } wz \in L\} \leftrightarrow q'_P$ (equivale a C_6)

si può in effetti costruire un ASF (minimo) con soli 4 stati che riconosce L

Esercizio 10(***) determinare le classi di equivalenza della relazione R_L di Myhill-Nerode per il seguente linguaggio regolare: $L = a(bb + c)a^*$.

Soluzione

consideriamo un ASF che riconosce L

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

25

Esercizio svolti sul teorema di Myhill-Nerode

le classi di R_M sono:

- $C_1 = \{ \epsilon \} \leftrightarrow q_0$
- $C_2 = \{a\} \leftrightarrow q_1$
- $C_3 = \{ab\} \leftrightarrow q_2$
- $C_4 = \{abba^*, aca^*\} \leftrightarrow q_3$
- $C_5 = \{w \in \{a,b\}^* : \text{non esiste } z \text{ tale che } wz \in L\} \leftrightarrow q_P$

d'altro canto, è facile osservare che non è possibile unire nessuna di queste classi nella relazione R_L (l'AFS ha il minimo numero di stati); quindi le classi di R_M coincidono con quelle di R_L .

Esercizio 11(***) dimostrare, utilizzando il teorema di Myhill-Nerode, che il linguaggio $L = \{a^n b^n : n \ge 0\}$ non è regolare; quali sono le classi di equivalenza della relazione R_L ?

Soluzione

- la relazione R_L ha una classe di equivalenza $\{a^k\}$ distinta per ogni naturale k; infatti, comunque scelti k > h, risulta che la stringa a^kb^k appartiene al linguaggio, mentre non vi appartiene la stringa a^hb^k ; dunque, R_L ha sicuramente un numero infinito di classi di equivalenza, e pertanto L non è regolare.
- tutte le classi di equivalenza di R_L sono le seguenti:

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

27

Esercizio svolti sul teorema di Myhill-Nerode

```
• {e}
```

- $\{a^k\} \ \forall k > 0$
- $\{a^k b^h\} \forall k, h > 0$
- $\{w \in \{a,b\}^* : \text{non esiste } z \text{ tale che } wz \in L\}$

Esercizio 12(****) dato il linguaggio $L = \{a^n b^m c^{n+m} : n, m \ge 1\}$, determinare tutte le classi di equivalenza della relazione R_L .

Soluzione

<u>osservazioni preliminare</u>: le stringhe "aaabb", "aabbb", "abbbb", "aaaab" appartengono tutte alla stessa classe di equivalenza;

più in generale:

- per ogni k > 1 le stringhe del tipo $x = a^n b^m : n, m \ge 1$ ed n + m = k appartengono alla stessa classe di equivalenza, infatti $xz \in L \Leftrightarrow z = b^h c^{k+h} \ (h \ge 0)$; quindi per ogni k > 1
- $B_k = \{a^n b^m : n, m \ge 1 \text{ ed } n + m = k \}$ è una classe di equivalenza distinta;
- ragionando analogamente a sopra, per ogni k > 0 le stringhe del tipo $x = a^n b^m c^h : (n+m) h = k$ ed $n, m, h \ge 1$, appartengono alla stessa classe di equivalenza, infatti $xz \in L \iff z = c^k$; quindi per ogni k > 0 $C_k = \{a^n b^m c^h : (n+m) h = k$ ed $n, m, h \ge 1\}$ è una classe di equivalenza distinta;
- le altre classi di equivalenza sono:

```
A_k = \{a^k\} per ogni k \ge 0 (<u>notare che A_0 = \{\epsilon\}</u>) e la classe D = \{w \in \{a,b,c\}^* : \text{non esiste z tale che } wz \in L\}
```

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

29

Esercizi da svolgere sul teorema di Myhill-Nerode

Esercizio 13(***) dato il linguaggio L = ba*(bb)*a, determinare tutte le classi di equivalenza della relazione R_L .

Esercizio 14(***) dimostrare, utilizzando il teorema di Myhill-Nerode, che il linguaggio $L = \{a^n b^m c^n : n, m \ge 0\}$ non è regolare; determinare inoltre tutte le classi di equivalenza della relazione R_L .

Esercizio 15(****) dato il linguaggio $L = \{a^n b^m c^{n+m} : n, m \ge 0\}$, determinare tutte le classi di equivalenza della relazione R_L . (attenzione: in questo caso possono anche mancare delle a o delle b)