Chapter 9

Group and Subgroups

Exercise 9.1

is an isomorphism of a binary structure? What three things must we check to determine whether a function $\phi: S \to S'$

plution. To determine whether a function $\phi\colon S\to S'<\!\!S,\ *>\ with <\!\!S',\ *'>$, is an isomorphism: we have to check the following three conditions

- Does ϕ is one-to-one function? That is, suppose that $\phi(x) = \phi(y)$ in S' and deduce from this x = y in s.
- (ii) Does ϕ is onto S'? That is suppose that $s' \in S'$ is given and show that there does exist $s \in S$ such that $\phi \begin{pmatrix} s \\ x \end{pmatrix} = s'$.
- (iii) Show that if $\phi(x*y) = \phi(x)*\phi(y)$ for all $x, y \in S$. This is just a question of computation. Compute both sides of the equation and see whether they

 $<\mathbb{Z}$, +> with $<\mathbb{Z}$, +> where $\phi(x) = -n$ for $n \in \mathbb{Z}$.

Step 1: ϕ is one to one: for any $x, y \in \mathbb{Z}$ with $\phi(x) = \phi(y)$

 \Rightarrow -x = -y \Rightarrow x = y: Hence ϕ is one to one.

Step 2: ϕ is on to: for any $y \in \mathbb{Z}$ such that $\phi(-y) = -(-y) = y$

 ϕ is on to $[for any y \in \mathbb{Z} \text{ there is } -y \in \mathbb{Z}. \ \phi(-y) = -((-y)) = y.$

Step 3: Now $\phi(x + y) = -(x + y) = (-x) + (-y) = \phi(x) + \phi(y)$

Then, ϕ is isomorphism.

 $<\mathbb{Z}$, +> with $<\mathbb{Z}$, +> where $\phi(x) = 2x$ for $x \in \mathbb{Z}$.

 ϕ is one-to-one: Let $x \in \mathbb{Z}$, then

 $\phi(x) = 2x$ and $y \in \mathbb{Z}$. $\phi(y) = 2y$

Such that $\phi(x) = \phi(y)$

 $\Rightarrow 2x = 2y$

 $\Rightarrow x = y$

 $\phi(x) = \phi(y) \Rightarrow x = y$

Thus ϕ is one to one.

112 A Complete solution of Mathematics-II for B Sc CSII

- ϕ is one to : $\forall x = n \in \mathbb{Z}$ the number $\frac{n}{2}$ may not be integer $\phi(\frac{n}{2}) = 2 \times \frac{n}{2} = n$. Thus ϕ is not on to and hence ϕ is not isomorphism.
- $\langle \mathbb{Z}, +\rangle$ and $\langle \mathbb{Z}, +\rangle$ where $\phi(n) = n + 1$
- $\phi(x) = \phi(y)$ for $x, y \in \mathbb{Z}$

 \Rightarrow x + 1 = y + 1

∴ φ is one to one

 ϕ is onto: for every $x \in \mathbb{Z}$ there exists

$$x - 1 \in \mathbb{Z}$$
 such that $\phi(x - 1) = x - 1 + 1 = x$

Scanned with CamScanner

For $x, y \in \mathbb{Z}$ and $\phi(x + y) = x + y - 1 \neq x - 1 + y - 1 = \phi(x) + \phi(y)$

Then, $\phi(x + y) \neq \phi(x) + \phi(y)$

- ϕ is not homomorphism and ϕ is not isomorphism.
- $\langle Q, +\rangle$ when $\langle Q, +\rangle$ when $\phi(x) = \frac{x}{2}$ for $x \in Q$.
- For x, y, \in Q with $\phi(x) = \phi(y)$

$$\Rightarrow \frac{x}{2} = \frac{y}{2}$$

$$\Rightarrow x = y$$

- ♦ is one to one.
- For $y \in Q$ there exists $2y \in Q$ such that $\phi(2y) = \frac{2y}{2} = y$. Then ϕ is on to.
- Let $\phi(x + y) = \frac{x + y}{2} = \frac{x}{2} + \frac{y}{2} = \phi(x) + \phi(y)$

Hence ϕ is isomorphism.

- <Q. > and <Q. > where $\phi(x) = x^2$ for $x \in Q$.
- For $x, y \in Q$ with $\phi(x) = \phi(y)$
- also for -x = -y, -x = y, x = -y. \Rightarrow $x^2 = y^2$ may not be x = y, Since $x^2 = y^2$ is true,

Then ϕ is not one to one and is not isomorphism.

- $\langle \mathbb{R}, . \rangle$ with $\langle \mathbb{R}, . \rangle$ where $\phi(x) = x^3$ for $x \in \mathbb{R}$.
- For x, $y \in \mathbb{R}$ with $\phi(x) = \phi(y)$

$$x^3 = y^3$$
 and $x, y \in \mathbb{R}$

$$x = y$$
 or $x^2 - xy + y^2 = 0$

Û

Then ϕ is one to one

ŗ:

 ψ real number $x \in \mathbb{R}$ there is $x\overline{3} \in \mathbb{R}$. Such that $\phi(x^{1/3}) = (x^{1/3})^3 = x$ Then ϕ is on to

iii. For
$$x, y \in \mathbb{R}$$
. Then $\phi(xy) = (xy)^3$

$$= x^3 y^3$$
$$= \phi(x) \phi(y)$$

Then
$$\phi$$
 is an isomorphism

 $<M_2(\mathbb{R})$, . > with $<\mathbb{R}$, .> where $\phi(A)$ is the determinant of matrix A.

For A, B
$$\in$$
 M₂(R) with ϕ (A) = ϕ (B) $\Rightarrow |A| = |B|$

not isomorphism. different matrices with same determinant. Hence φ is not one to one and φ is It is not necessary to the matrix are equal for equal determinant. We can find

- $<M_1(R)$, . > where $\phi(A)$ is the determinant of matrix A
- determinant of |X| matrices are equal then the matrices must be equal For one to one, let A, B \in M₁(R) with ϕ (A) = ϕ (B) \Rightarrow |A| = |B|, A = B, if the
- For even $x \in R$ there exists a matrix. A = [x] such that $\phi(A) = \{x \mid x \mid x \in R\}$. Then $\phi(A) = \{x \mid x \mid x \in R\}$
- F: For A, B \in M₁(R) with ϕ (AB) = |AB| = AB = |A| |B| = ϕ (A) ϕ (B)

Here, both A and B are 1×1 matrices and AB is also 1×1 matrix.

Then ϕ is isomorphism.

i).
$$\langle \mathbb{R}, + \rangle$$
 with $\langle \mathbb{R}^+, . \rangle$ where $\phi(r) = \left(\frac{1}{2}\right)^r$ for $r \in \mathbb{R}$

Let $x, y \in \mathbb{R}$

Then
$$\phi(x) = \phi(y)$$

 $\left(\frac{1}{2}\right)^{x} = \left(\frac{1}{2}\right)^{y}$

$$\Rightarrow$$
 x = y and $\phi(x) = \phi(y) \Rightarrow x = y$

i For
$$y \in \mathbb{R}^+$$
 there is $x \in \mathbb{R}$ such that $\phi(x) = y$, $\left(\frac{1}{2}\right)^x = y$ is true only for $x = 0 \in \mathbb{R}$,

 $y \in \mathbb{R}$. Hence ϕ is not isomorphism

113

A Complete solution of Mathematics-II for B Sc CSIT

- Determine whether the binary operation * gives a group structure on the given set. If no group results, give the first axioms in order G_0 , G_1 , G_2 , G_3 from definition that does not hold.
- a Let * be defined on \mathbb{Z} by letting a * b = ab

Closure Go: For any integers a and b the product ab is again an integer hence

Associative G_1 : For any integers $a, b, c \in \mathbb{Z}$.

(a * b) * c = a * (b * c) is true; since multiplication of integers are always associative

Scanned with CamScanne

Existence of identity G_2 : For any integers $a\in\mathbb{Z}$ there exists unique integer 1 $\in \mathbb{Z}$ such that a * 1 = a = 1 * a.

Existence of inverse G_3 : For any integers are $a \in \mathbb{Z}$ the integer $\frac{1}{a}$ in some cases may not be integer or not defined particularly for a = 0. Hence G_3 is not hold. Hence (G, *) is not group.

Let * be defined on $2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\}$ by letting a * b = a + b

 G_0 : For any integers n the integer 2n is always even then for any $a=2n_1$ and $b=2n_2: a \star b=2n_1+2n_2=2$ (n_1+n_2) is again even integer. Thus $a \star b \in$

For G_1 : Now for any three even integers $a = 2n_1$, $b = 2n_2$, $c = 2n_1$

Then, $(a * b) * c = (2n_1 * 2n_2) * 2n_3$

=
$$(2n_1 + 2n_2) * 2n_3 = 2n_1 + 2n_2 + 2n_3 = 2(n_1 + n_2 + n_3)$$

Again,
$$a * (b * c) = (2n_1) * (2n_2 * 2n_3) = 2n_1 * (2n_2 + 2n_3)$$

$$= 2n_1 + 2n_2 + 2n_3$$

$$= 2 (n_1 + n_2 + n_3)$$

$$(a * b) * c = a * (b * c)$$
. Thus, G_1 is hold.

$$G_2$$
: For any integer $a=2n_1\in G$ there exists $e=0=2.0\in G$ such that $a\star e=a$ $+e=2n_1+0=2n_1=a$. Thus, G_2 hold.

- G_3 : For any integer $a = 2n_1 \in G$ there exists unique integer $a' = -2n_1$ such that $a * a' = a + a' = 2n_1 - 2n_1 = 0$. Thus, G_3 is also hold. .: G is group with the binary operation a * b = a + b
- Let * be defined on \mathbb{R}^+ by letting a * b = \sqrt{ab}

 G_i : For any a, b, $c \in \mathbb{R}^+$ then

$$a*(b*c) = a*\sqrt{bc} = \sqrt{a\sqrt{bc}}$$

and
$$(a * b) * c = \sqrt{ab} * c = \sqrt{\sqrt{ab} c}$$

Since, $\sqrt{a\sqrt{bc}} \neq \sqrt{\sqrt{ab}} c$. Thus, elements of \mathbb{E}^+ are not associative under the binary operation '*.

Thus, \mathbb{F}^* is not group with respect to binary operation *.

Let * be defined on Q by letting a * b = ab.

Go: For any rational number a, b

a * b = ab is also rational i.e. $a * b \in Q$.

 G_1 : For any rational numbers a, b, $c \in Q$. Then,

$$(a * b) * c = (ab) * c = abc$$

$$a*(b*c) = a*(bc) = abc$$

which shows that elements of Q are associative.

G: For any $a \in Q$ there exists unique rational numbers $1 \in Q$, such that, a *1=1*a=a1=a

G₃: For any $a \in Q$ there exists unique element $b = \frac{1}{a} \in Q$ for $a \neq 0$, Such that

$$a * b = a * \frac{1}{a} = 1$$

But for a = 0, $b = \frac{1}{a}$ is not defined, so multiplicative inverse for zero is

Hence, G is not a group.

lution. Let * be defined on the set \mathbb{E}^* of non-zero real numbers by letting $a*b = \frac{a}{b}$.

 G_0 : For any two non-zero real numbers a, b: $a * b = \frac{a}{b}$ positive real numbers. is also non zero

> 116 A Complete solution of Mathematics-II for B Sc CSIT

G_i: For any three non-zero positive real numbers a, b, c $\in \mathbb{R}$: $(a * b) * c = \left(\frac{a}{b}\right) *$

Again,
$$a*(b*c) = a*\left(\frac{b}{c}\right) = \frac{a}{b} = \frac{ac}{b}$$

 $(a * b) * c \neq a * (b * c)$

R* is not a group with binary operation *.

operation *.

Scanned with CamScanner

Let * be defined on α by letting a * b = |ab|

Solution. Go: For any two complex number a, b. Then

$$a * b = |a b|$$
 | |ab| is also complex number. (Every real number is a complex number)

G_i: For any complex numbers a, b, c. Then,

$$(a * b) * c = |ab| * c = ||ab|c| = |a| |b| |c|$$

$$a * (b * c) = a * |bc| = |a| |bc| | = |a| |b| |c|$$

Thus, elements of α are associative.

 G_2 : For any $a \in \alpha$ there is an element $1 \in \alpha$. Such that

a * 1 = |a| = a is not in general.

Hence existence of identity element is not true. Then G is a group.

Exercise 9.2

Determine whether the given subset of the complex numbers is a subgroup of the group α of complex numbers under addition.

 \mathbb{E} : Here \mathbb{R} is a non-empty subset of the group α .

Closure: Sum of any two real numbers is again a real number.

such that x + 0 = 0 + x = x. Existence of Additive Identity: For any real number $x \in \mathbb{R}$ there exists $0 \in \mathbb{R}$

such that x + (-x) = 0 = (-x) + x. Existence of additive inverse: For any real number $x \in \mathbb{R}$ there exists $-x \in \mathbb{R}$

Hence R is subgroup of a.

Existence of additive identity: For any $x \in Q$ positive rational number is positive rational number. Here Q' is set of all positive rational numbers is non-empty: sum of two

 $0 \notin Q^*$ such that 0 + x = x + 0 = x

Q" is not subgroup of a.

Closure: For each elements $x = 7n_1$ and $y = 7n_2$ where n_1 , $n_2 \in \mathbb{Z}$. The sum $x + 2n_1$ $y = 7n_1 + 7n_2 = 7(n_1 + n_2) \in 72$

 $= 7.0 \in 72$ such that 0 + x = 0 + 7n = 7n = x + 0Existence of identity element: For each $x = 7n \in 72$ there exists an element 0

 $7n = -x \in 7\mathbb{Z}$ such that x + (-x) = 7n - 7n = 0Existence of inverse: For each element $x = 7n \in 72$ there exists an element

$$-x + x = -7n + 7n = 0$$

Thus, 72 form a sub-group under addition.

The set i @ of pure imaginary numbers including 0.

Solution. $H = \{ix, x \in \mathbb{R}\} \cup \{0\}$

Closure: Sum of two pure imaginary numbers including 0 are either 0 or pure imaginary. Hence elements of ill are closed under addition.

H {0}. Such that, x + 0 = 0 + x = x. Existence of additive identity: For each element $x \in \mathbb{H}[0]$. There exists 0

+(-x) = (-x) + x = 0. Thus, H is a subgroup of α . Existence of additive inverse: For each $x \in H$ there exists $-x \in H$. Such that

The set πQ of rational multiples of π .

folution. Let $H = \{\pi x : x \text{ is rational numbers}\}\$

Since $0 \in Q$. Hence $0 \in H$.

Closure: For any elements $x, y \in H$

Then $x = \pi n_1$ and $y = \pi n_2$ where n_1 , $n_2 \in \mathbb{Q}$. Then $x + y = \pi (n_1 + n_2) \in \pi \mathbb{Q} = \mathbb{H}$

Existence of additive identity: For each $x \in \pi Q$ there is $0 \in \pi Q$. Such that x + q

Existence of additive inverse: For each $x \in \pi Q$ say $x = \pi n$, $n \in Q$ there exists y

= - πn, -n ∈ Q such that

x+y=0=y+x

 πQ is a group under addition.

The set $G = \{\pi^n \mid n \in \mathbb{Z}\}$

Here for each $x = \pi^{n_1}$

$$y = \pi^{n_2}$$
 where $n_1, n_2 \in \mathbb{Z}$

 $x + y = \pi^{n_1} + \pi^{n_2}$ may not in the form of π^n . Hence, G is not a sub group under addition.

number) under multiplication. Which of the sets from 1 to 6 are subgroup of C* (of non-zero complex

iolution. or is subgroup of C* under multiplication and all other are not

is a subgroup of GL(n, R). Determine whether the given set of invertible nxn matrices with real entries

A Complete solution of Mathematics-II for B Sc CSII

The n×n matrices with determinant 2.

Solution. Here $G = \{A : A \text{ is } n \times n \text{ invertible matrix with real entries}\}$

 $H = \{B : B \text{ is } n \times n \text{ invertible matrix with real entries of determinant 2}\}$

Closure: For B_1 and $B_2 \in H$ then $|B_1| = 2$, $|B_2| = 2$

Then $|B_1 B_2| = |B_1| |B_2| = 2 \times 2 = 4$ Thus, element of H are not closed under multiplication of matrices

The diagonal n×n matrices with no zeros on the diagonal

9. The diagonal
$$n \times n$$
 matrices with no zeros on the magonal. Solution. (i) Let $n = 3$ and $H = \{A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$; $a \ne 0$, $b \ne 0$, $c \ne 0$. Let A , B , $\in H$ then,

$$A + B = \begin{bmatrix} a + x & 0 & 0 \\ 0 & b + y & 0 \\ 0 & 0 & c + z \end{bmatrix}$$

Scanned with CamScanner

Where $B = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$ $x \neq 0$, $y \neq 0$, $z \neq 0$, here A + B may have zero in its

a + x, b + y, c + z may be zero.

Hence, H is not closed under addition and hence is not subgroup of G (n, B)

If we consider the binary operation is multiplication of matrices then

Closure,
$$AB = \begin{bmatrix} ax & 0 & 0 \\ 0 & by & 0 \\ 0 & 0 & cz \end{bmatrix} \in H$$
. Since ax , by , $cz \neq 0$.

Existence of multiplicative identity: There exists a matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ Such that AI = IA = A,-09

Such that AI = IA = A.

Existence of multiplicative inverse: For any $A \in H$ there exists,

$$A^{-1} = \begin{bmatrix} 1/a & 0 & 0 \\ 0 & 1/b & 0 \\ 0 & 0 & 1/c \end{bmatrix} \in H$$

Such that $AA^{-1} = A^{-1}A = I$

Thus H is subgroup under multiplication

Solution. $H = \{ A : A \text{ is upper triangular with no zeros in diagonal} \}$ 10. The upper-triangular $n \times n$ matrices with no zeros on the diagonal.

Existence of identity: Here, the identity matrix of nxn order is an upper identity element. triangular with no zeros in it's diagonal is an element of H. Thus, H has

in their diagonal. Now, AB is being product of two upper triangular matrices is again upper triangular with no zero in it's diagonal. Closure: Let A, B \in H. Then both A and B are upper triangular with no zeros

just product of main diagonal elements; here each diagonal elements are Existence of Inverse: Since, the determinant of upper triangular matrix is

multiplicative inverse in H. non-zero. The matrix are invertible and hence each of them has

Thus, H is subgroup of G.

The n×n matrices with determinant -1

$$H = \begin{bmatrix} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad - bc = -1$$

we consider 2×2 matrices.

Let
$$B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
: $eh - gf = -1$

Then |AB| = |A| |B| = 1

The elements of H are not closed under multiplication. Thus H is not

 $H = \{A: |A| \text{ is } -1 \text{ or } 1\}$

Solution. Here, H is non empty. Since the identity matrix of order n×n is in H with determinant 1, which play the role of identity element in H.

determinant 1 or -1 Closure: For any A, B \in H then both A and B are non singular with their

$$|AB| = |A| |B| = \begin{cases} -1 \times 1 = -1 & \text{if } |A| = -1 & \text{and } |B| = 1 \\ -1 \times -1 = 1 & \text{if } |A| = -1 & \text{and } |B| = -1 \\ 1 \times -1 = -1 & \text{if } |A| = 1 & \text{and } |B| = -1 \\ 1 \times 1 = 1 & \text{if } |A| = 1, |B| = 1 \end{cases}$$

In all cases |AB| = 1 or -1 hence $AB \in H$

any cases A is non singular and hence A-1 exists. Existence of Inverse: Since the determinant of all $A \in H$ is either -1 or 1 in

Now,
$$AA^{-1} = I \Rightarrow |AA^{-1}| = |I| \Rightarrow |A| |A^{-1}| = 1$$
. if $|A| = 1$ then $|A^{-1}| = 1$, if $|A| = -1$ then $|A^{-1}| = -1$

 $A^{-1} \in H$. Hence H is subgroup of G.

13-20. Let F be the set of all real valued functions with domain ℝ and let F be the subset of F consisting of those functions that have a non-zero value at every F with the induced operations is (a) a subgroup of group F under addition point in \mathbb{R} . In exercises 14 through 19, determine whether the given subset of

(b) a subgroup of the group F under multiplication.

Solution. $F = \{f : f \text{ is real valued function whose domain is } \mathbb{R}\}$

 $F = \{f : f \text{ is real valued} : f(x) \neq 0, x \in \mathbb{R}\}$

Does F is subgroup of F.

Closure: Let f_1 , $f_2 \in \tilde{F}$. Then $\forall x \in \mathbb{R} : f_1(x) \neq 0$, $f_2(x) \neq 0$

 $(f_1 + f_2)(x) = f_1(x) + f_2(x)$

 $f_1(x) + f_2(x) = 2 - 2 = 0$ i.e. $f_1 + f_2 \notin \tilde{F}$ Here if $f_1(x) = 2$ and $f_2(x) = -2$. Then

14. The subset of all $f \in F$, such that f(1) = 0. F is not subgroup under addition.

Solution. Let $H = \{f \in F: f(1) = 0\}$

Here H is not empty, since $0 \in H$ since 0(1) = 0

Closure: Let f_1 , $f_2 \in H$. Then $f_1(1) = 0$, $f_2(1) = 0$ 120 A Complete solution of Mathematics-II for B Sc CSIT

Then $(f_1 + f_2)(1) = f_1(1) + f_2(1) = 0 + 0 = 0$

 $f_1 + f_2 \in H$

Elements of H are associative under addition i.e.

$$[(f_1 + f_2) + f_3] (1)$$

= $(f_1 + f_2) + f_3(1)$

$$= (f_1 + f_2)(1) + f_3(1) = 0 + 0 + 0 = 0$$

 $= f_1(0) + f_2(0)$

Again,
$$(f_1 + (f_2 + f_3))$$
 (1)
= $f_1(1) + (f_2 + f_3)$ (1)

 $= f_1(1) + 0 + 0$ = 0 + 0 + 0

Scanned with CamScanne

Ħ. For every $f \in H$

There exists $0 \in H$. Such that

$$(f + 0)(1) = f(1) + 0(1) = 0 + 0 = 0 = f(1)$$

Again, $\forall f \in H$, $(0 + f)(1) = 0(1) + f(1) = 0 + 0 = 0 = f(1)$

f = 1 + 0

0 ∈H is an additive identity of H

Existence of additive inverse: $\forall f \in H$. There exists $f \in H$. Such that

$$[f + (-f)](1) = f(1) - f(1) = 0 + 0 = 0 = 0 (1)$$

t is inverse of t.

H is a subgroup of F.

The subset of all $f \in \overline{F}$ such that f(1) = 1

Solution. Here, $H = \{f \in F: f(1) = 1\}$

Since the identity map is in H. So, H is non empty.

Closure: For f_1 , $f_2 \in H : (f_1 . f_2) (1) = f_1(1) . f_2(1) = 1 . 1 = 2$

Elements of H are closed under multiplication Existence of identity is obvious.

Similarly, $(1 \cdot f)(1) = f(1)$ i.e. $\forall f \in H$, there exists $I \in H$ such that $(f \cdot I)(1) = f(1)I(1) = 1 \cdot 1 = 1 = f(1)$

 Ξ Existence of inverse: Here 0 ∉ H, every other f∈ H has their inverse themselves and form a subgroup under multiplication.

 $H = \{f \in F: f(0) = 1\}$

Closure: For every f, $g \in H$, $(f \cdot g)(0) = f(0) \cdot g(0) = 1 \cdot 1 = 1$

: f.g∈H

Existence of Identity: For all $f \in H$ the identity map $I(x) = x \notin H$. Such that $(f \cdot I)$ (0) $= f(0) \cdot I(0) = 1 \cdot 0 = 0 \neq f(0)$

Thus, H is not subgroup of F under multiplication

Solution. Here for all $f, g \in H : (f \cdot g)(0) = f(0) \cdot g(0) = -1 \cdot -1 = 1$ 17. The subset of all $f \in \widetilde{F}$ such that f(0) = -1

Hence, H is not subgroup of \widetilde{F} under multiplication. The subset of all constant function in F.

Solution. $H = \{f \in \widetilde{F} : f(x) = c \psi \in \mathbb{R}\}$

Here $0 \in H$. Since $0(x) = 0 + x \in \mathbb{R}$ but the inverse of 0 mapping does not exists since 0 mapping is not one to one. Thus, H is not a subgroup under multiplication.

19. Write at least 5 elements of each of the following cyclic groups. a. 25 Z under addition

25
$$\mathbb{Z} = \{-100, -75, -25, 0, 25, 50, 75,\}$$

25 $\mathbb{Z} = \{-100, -75, -25, 0, 25, 50, 75,\}$
26 $\mathbb{Z} = \{-100, -75, -25, 0, 25, 50, 75,\}$

 $\left\{\left(\frac{1}{2}\right)^n \mid n \in \mathbb{Z}\right\}$ under multiplication}

$$= \left\{ \frac{1}{2}, \frac{1}{4}, 2, 4, \frac{1}{8}, \dots \right\}$$

 $\{\pi^n \mid n \in \mathbb{Z}\}\$ under multiplication

$$= \left\{ \pi, \frac{1}{\pi}, \pi^2, \frac{1}{\pi^2}, \dots \right\}$$

Solution. $G_1 = \langle \mathbb{Z}, + \rangle$ Which of the following groups are cyclic? For each cyclic group, list all the generators of the group. $G_1 = <\mathbb{Z}$, +>, $G_2 = <Q$, +>, $G_3 = <Q^+$, >, $G_4 = <6\mathbb{Z}$, +>

21. Find the order of the cyclic subgroup of \mathbb{Z}_4 generated by 3.

Solution. Here \mathbb{Z}_4 is a group under addition. The cyclic subgroup generated by 3 is itself \mathbb{Z}_4 . Since, 3+3=2, 3+3+3=1, 3+3+3+3+3=0, 3+3+3+3+3+3=3. generator 3 is 3. Hence order of cyclic subgroup of Z4 generated by 3 is 4 and order of the