The Successive Over-Relaxation Method:

Developing the Method and Exploring Modern Applications

John Anthony Bowllan, Josh Rubin, Robert Bernhardt

Middlebury College, Spring 2017

Ax = b: a step in a larger process

Motivating Problem

Problem

Given A (SPD) and vector b, efficiently and accurately solve the system

$$Ax = b$$

- ☐ Given a large system, Gaussian Elimination is impractical
- FOR: Given $\rho > 0$, solve new iterates by $x^{(n+1)} = x^{(n)} + \frac{1}{\rho} r^{(n)}$.
 - $ho_{opt} = rac{\lambda_{max} + \lambda_{min}}{2}$
- ☐ FOR inefficient in practical applications

Goal

Build accurate and more efficient methods for solving Ax = b.

New approach: different matrix decomposition!

Matrix Decomposition

★ Matrix decomposition: A = M - N where $M = \rho I$, $N = \rho I - A$

Different matrix decomposition from now on: A=D - L - U where D diagonal, L lower triangular and U upper triangular

FOR

 \Box Algorithm: $Mx^{(n+1)} = Nx^{(n)} + b$

Jacobi Method

Algorithm: $x_{JAC}^{(n+1)} = T_{JAC} x_{JAC}^{(n)} + b_{JAC}$

where $T_{LAC} = D^{-1}(L+U)$, $b_{LAC} = D^{-1}b$

Gauss-Seidel Method

Algorithm: $x_{GS}^{(n+1)}=T_{GS}~x_{GS}^{(n)}+b_{GS}$ where $T_{GS}=(D-L)^{-1}U,\,b_{GS}=(D-L)^{-1}b$

Road to SOR

- 1) Jacobi Method
- 2) Gauss-Seidel Method
- 3) SOR Method

Jacobi and Gauss-Seidel Methods

Precursor Methods of SOR

Jacobi Algorithm

Gauss-Seidel Algorithm

Component Forms

$$x_1^{(n+1)} = \frac{1}{a_{11}} (b_1 - a_{12} x_2^{(n)} - a_{13} x_3^{(n)} - \dots - a_{1n} x_n^{(n)}),$$

$$x_2^{(n+1)} = \frac{1}{a_{22}} (b_2 - a_{21} x_1^{(n)} - a_{23} x_3^{(n)} - \dots - a_{2n} x_n^{(n)}),$$

$$\vdots$$

$$x_n^{(n+1)} = \frac{1}{a_{nn}} (b_n - a_{n1} x_1^{(n)} - a_{n2} x_2^{(n)} - \dots - a_{n,n-1} x_{n-1}^{(n)})$$

$$x_1^{(n+1)} = \frac{1}{a_{11}} (b_1 - a_{12} x_2^{(n)} - a_{13} x_3^{(n)} - \dots - a_{1n} x_n^{(n)})$$

$$x_2^{(n+1)} = \frac{1}{a_{22}} (b_2 - a_{21} x_1^{(n+1)} - a_{23} x_3^{(n)} - \dots - a_{2n} x_n^{(n)})$$

$$\vdots$$

$$x_n^{(n+1)} = \frac{1}{a_{nn}} (b_n - a_{n1} x_1^{(n+1)} - a_{n2} x_2^{(n+1)} - \dots - a_{n,n-1} x_{n-1}^{(n+1)})$$

Only uses components of previous iterate

- Uses most recent approximations of the x components.
- ☐ Faster convergence than Jacobi method

SOR - A Weighted Average:

SOR Algorithm

$$x_{SOR}^{(n+1)} = \omega x_{GS}^{(n+1)} + (1 - \omega) x_{SOR}^{(n)}$$

where ω is the weighting factor.

$$x^{(n+1)} = (D - \omega L)^{-1} (\omega U + (1 - \omega)D)x^{(n)} + (D - \omega L)^{-1} \omega b$$

- ☐ Improves upon Gauss-Seidel
- lacktriangle Altering values of ω alters weights of two iterates
- \square ω > 1 over-relaxation, ω < 1 under-relaxation

Convergence of SOR

- \star Must place **restrictions** on ω for convergence
- ★ Following Lemma required to prove convergence theorem

Lemma

Let $A \in \mathbb{R}^{n \times n}$

Then $\lim_{k\to\infty}A^k=0_{n\times n}$ if and only if $\rho(A)<1$.

Theorem of SOR Convergence

SOR converges for $\omega \in (0,2)$ and diverges otherwise

Illustration of Convergence Criteria

$$A = \begin{bmatrix} 3 & -2 & 5 \\ 4 & -7 & -1 \\ 5 & -6 & 4 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 19 \\ 13 \end{bmatrix}, x_{\text{TRUE}} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}, x_{\text{INITIAL}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, tol = 10^{-6}$$

Omega = 1.5, Convergence within tol in 95 iterations

Iterations	x_1	x_2	x_3
1	0.6667	-2.3333	$-1.08\overline{33}$
2	1.0417	-1.8869	-0.8824
3	0.7984	-2.1851	-1.0255
4	0.9796	-1.9713	-0.9314
:	:	:	:
94	0.9999	-2.0000	-1.0000
95	1	-2	-1

Omega = -1, Convergence not achieved

Iterations	x_1	x_2	x_3
1	0.6667	-2.3333	-1.0833
2	0.4167	-2.6310	-1.2173
3	-0.1081	-3.2595	-1.5041
4	-1.2167	-4.5913	-2.1166
:	:	:	÷
94	-6.2120×10^{29}	-7.4850×10^{29}	-3.4625×10^{29}
95	-1.3205×10^{30}	-1.5911×10^{30}	-0.7360×10^{30}
:	:	:	:
872	-3.8798×10^{284}	-4.6749×10^{284}	-2.1626×10^{284}
873	-8.2473×10^{284}	-9.9374×10^{284}	-4.5969×10^{284}
:	:	:	:

Apply SOR to 1DMPP

MATLAB Demonstration

Iterative Performance of the SOR algorithm for $\omega \in (0,2)$

Conclusions

- $\omega_{optimal} \approx 1.6$ approximately 7,800 iterations
- Choice of ω crucial for iterative efficiency
- ullet A SPD, formula for $\omega_{optimal}$ is

$$\omega_{optimal} = \frac{2}{1 + \sqrt{1 - (spr(T_{JAC}))^2}}$$

• In practice, $\omega_{optimal}$ attained by trial and error

Next Step (Part 2): Conjugate Gradient Method

Conjugate Gradient Method

- Global optimization as opposed to local minimization of Steepest Descent
- ☐ Converges in N steps in exact arithmetic
 - SOR and Symmetric Successive Over-Relaxation (SSOR) used as preconditioners for CG.
 - Preconditioner lowers condition number, increasing iterative efficiency.
 - SOR to increase iterative efficiency of CG when dimension is large.

Performance of Iterative Methods on 1DMPP Problem			
Iterative Method	Iterations for		
	Convergence		
SOR $(\omega_{optimal} \approx 1.6)$	7,809		
Gauss-Seidel	11,860		
Jacobi	22,277		
FOR $(\rho = 2)$	37,574		
2-step FOR $(\rho_1 = 1, \rho_2 = 3)$	14,088		
Steepest Descent	38,214		
Conjugate Gradient	100		

References

- ☐ Kendall Atkinson. *Introduction to Numerical Analysis*. Wiley, 2 edition, 1989.
- ☐ Brian Bradie. *A Friendly Introduction to Numerical Analysis*. Pearson, 1 edition, 2005.
- □ W. Kahan. *Numerical Linear Algebra*. Canadian Mathematical Society, 2 edition, 1966.
- Abdelwahab Kharab and Ronald B. Guenther. *An Introduction to Numerical Methods, A MATLAB Approach*. CRC Press, 3 edition, 2011.
- □ Rainer Kress. *Graduate Texts in Mathematics, Numerical Analysis*. Springer, 1 edition, 1998.
- ☐ William Layton and Myron Sussman. *Numerical Linear Algebra*. Lulu, 2014. https://www.lulu.com/spotlight/Layton_Sussman.
- ☐ MathWorks. MATLAB. Version R2017a. https://www.mathworks.com

Extra Information (Matrix Derivations)

Jacobi Method

$$(D - L - U)x = b$$

$$Dx - Lx - Ux = b$$

$$Dx = Lx + Ux + b$$

$$x^{(n+1)} = D^{-1}(L + U)x^{(n)} + D^{-1}b$$

Gauss-Seidel Method

$$(D-L-U)x = b$$

$$Dx - Lx - Ux = b$$

$$Dx - Lx = Ux + b$$

$$x^{(n+1)} = (D-L)^{-1}Ux^{(n)} + (D-L)^{-1}b$$

SOR Method

$$\omega(D-L-U)x = \omega b$$

$$\omega Dx - \omega Lx - \omega Ux = \omega b$$

$$(\omega D+D-D)x - \omega Lx - \omega Ux = \omega b$$

$$(D-\omega L)x = (\omega U + (1-\omega)D)x + \omega b$$

$$x^{(n+1)} = (D-\omega L)^{-1}(\omega U + (1-\omega)D)x^{(n)} + (D-\omega L)^{-1}\omega b$$