$\mathbb Z$ es un anillo conmutativo con 1, es decir, tiene suma y producto tales que:

suma

- $1. \ \ (a+b)+c=a+(b+c)$ para todo $a,b,c\in\mathbb{Z}$
- 2. Existe $0 \in \mathbb{Z}$ tal que a+0=0+a=a para todo $a \in \mathbb{Z}$
- 3. Si $a \in \mathbb{Z}$, existe $-a \in \mathbb{Z}$ tal que a + (-a) = 0
- 4. a+b=b+a para todo $a,b\in\mathbb{Z}$

producto

- 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ para todo $a, b, c \in \mathbb{Z}$
- 2. Existe $1\in\mathbb{Z}$ tal que $a\cdot 1=1\cdot a=a \text{ para todo}$ $a\in\mathbb{Z}$
- 3. $a \cdot b = b \cdot a$ para todo $a, b \in \mathbb{Z}$

También $a \cdot (b+c) = a \cdot b + a \cdot c$ para todo $a, b \in \mathbb{Z}$

Propiedades

- 1. $a \cdot 0 = 0$, para todo $a \in \mathbb{Z}$
- 2. $(-1) \cdot a = -a$, para todo $a \in \mathbb{Z}$
- 3. a(-b) = -(ab) = (-a)b, para todo $a, b \in \mathbb{Z}$
- 4. (-a)(-b) = ab, para todo $a, b \in \mathbb{Z}$

Dominio Entero

- 1. $a \cdot b = 0$ en \mathbb{Z} , implica a = 0 o b = 0 Equivalente a:
- $\begin{array}{ll} \text{2. } a \cdot b = a \cdot c, \quad a \neq 0 \ \text{ en} \\ \mathbb{Z} \text{, implica } b = c \end{array}$