In general, there is no closed-form formula for the exponential e^A of a matrix A, but for skew symmetric matrices of dimension 2 and 3, there are explicit formulae. Everyone should enjoy computing the exponential e^A where

$$A = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}.$$

If we write

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

then

$$A = \theta J$$

The key property is that

$$J^2 = -I.$$

Proposition 9.22. If $A = \theta J$, then

$$e^A = \cos \theta I + \sin \theta J = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Proof. We have

$$A^{4n} = \theta^{4n} I_2,$$

$$A^{4n+1} = \theta^{4n+1} J,$$

$$A^{4n+2} = -\theta^{4n+2} I_2,$$

$$A^{4n+3} = -\theta^{4n+3} J,$$

and so

$$e^{A} = I_{2} + \frac{\theta}{1!}J - \frac{\theta^{2}}{2!}I_{2} - \frac{\theta^{3}}{3!}J + \frac{\theta^{4}}{4!}I_{2} + \frac{\theta^{5}}{5!}J - \frac{\theta^{6}}{6!}I_{2} - \frac{\theta^{7}}{7!}J + \cdots$$

Rearranging the order of the terms, we have

$$e^{A} = \left(1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \frac{\theta^{6}}{6!} + \cdots\right) I_{2} + \left(\frac{\theta}{1!} - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \frac{\theta^{7}}{7!} + \cdots\right) J.$$

We recognize the power series for $\cos \theta$ and $\sin \theta$, and thus

$$e^A = \cos \theta I_2 + \sin \theta J,$$

that is

$$e^A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

as claimed.