BIG DATA ANALYTICS Frequent Itemsets

Association Rule Discovery

Market-basket model:

- Goal: Identify items that are bought together
- Approach: Process the sales data to find dependencies among items
- Bread & milk: little interest
- Hot dogs & mustard ⇒ clever marketing:
 - A sale on hot dogs
 - · Raise the price of mustard

Analysis of true market baskets

- Unexpected: diapers & beer
- ullet A baby at home \Longrightarrow you are unlikely to be drinking at a bar
- Same marketing as for hot dogs and mustard

The market-basket model

- Items and baskets
 - Each basket = a subset of items
 - The number of items in a basket is small

 ≪ the total number of items
 - The number of baskets is very large ≫ main memory
- Want to discover association rules:
 - People who bought $\{Diaper, Milk\}$ tend to buy $\{Beer\}$

Applications

- Items = words
- baskets = documents (e.g., Web pages, blogs, tweets)
- A basket (document) contains items (words) that are present in the document
 - Ignore the stop words
- Find pairs of words that represent a joint concept
 - For example: {Biden, White house}

Applications: plagiarism

- Items = documents
- baskets = sentences
- An item (document) is "in" a basket (sentence) if the sentence is in the document
- Pairs of items that appear together in several baskets
- even one or two sentences in common

 plagiarism.

Application: Biomarkers

- Items = biomarkers and diseases
- Basket = the set of data about a patient

Frequent Itemsets

Goal: Find sets of items that appear together "frequently" in baskets

- s =the support threshold
- I = a set of items
- the support for I = the number of baskets for which I is a subset
 - Often expressed as a fraction of the total number of baskets
- I is frequent if its support is $\geq s$

Toy example

- 1. {Cat, and, dog, bites }
- Yahoo, news, claims, a, cat, mated, with, a, dog, and, produced, viable, offspring }
- 3. $\{ Cat, killer, likely, is, a, big, dog \}$
- 4. { Professional, free, advice, on, dog, training, puppy, training }
- 5. { Cat, and, kitten, training, and, behavior }
- 6. { Dog, &, Cat, provides, dog, training, in, Eugene, Oregon }
- 7. { "Dog, and, cat", is, a, slang, term, used, by, police, officers, for, a, male–female, relationship }
- 8. { Shop, for, your, show, dog, grooming, and, pet, supplies }

Singleton

- "Dog": support is 7
- "Cat": support is 6
- "And": support is 5
- •
- Threshold at s=3:

Five frequent singleton itemsets: $\{dog\}$, $\{cat\}$, $\{and\}$, $\{a\}$, and $\{training\}$.

Doubletons

- A doubleton cannot be frequent unless both items in the set are frequent by themselves
- There are five frequent doubletons if s=3: $\{\log, a\}$, $\{\log, a\}$, $\{dog, cat\}$, $\{cat, a\}$ $\{cat, and\}$
- A single frequent triple: {dog, cat, a}

Association Rules

- Association Rules: If then rules about the contents of baskets
- $I=\{a,b,c\} \to j$ means: "if a basket contains all of a,b,c then it is likely to contain j"
- Goal: find significant/interesting rules
- Confidence of an association rule is the probability of j given $I = \{a, b, c\}$:

$$conf(I \to j) = \frac{support(I \cup j)}{support(I)}$$

Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule $X \to milk$ may have high confidence for many itemsets X as milk is purchased very often
 - ⇒ the confidence will be high
- Lift of an association rule $I \rightarrow j$:

$$Lift(I \to j) = \frac{support(I \cup j) \times support(E)}{support(I) \times support(j)}$$

where E is the set of all items.

• Interesting rules: lift > 1 or lift < 1

Example: Confidence and Lift

$$S_1 = \{Bread, Coke, Milk\}$$
 $S_2 = \{milk, pepsi, juice\}$
 $S_3 = \{bread, milk\}$ $S_4 = \{Coke, juice\}$
 $S_5 = \{milk, pepsi, bread\}$ $S_6 = \{milk, coke, bread, juice\}$
 $S_7 = \{coke, bread, juice\}$ $S_8 = \{bread, coke\}$

- Association rule: $\{milk, bread\} \rightarrow coke$
 - Confidence= 2/4 = 0.5
 - Lift= 0.5/(5/8) = 0.8
 - Rule is not very interesting

Finding Association Rules

- Problem: Find all association rules with support $\geq s$ and confidence $\geq c$
 - Support of an association rule is the support of $\{I\}$
- Hard part: Finding the frequent itemsets!
- If I o j has high support and confidence, then both I and $\{I,j\}$ will be "frequent"!

$$conf(I \to j) = \frac{support(I \cup j)}{support(I)}$$

Mining Association Rules

- Step 1: Find all frequent itemsets I
- Step 2: Rule generation:
 - For every j in I generate a rule $I \setminus j \to j$
 - Since I is frequent, $I \setminus j$ at least as frequent
 - compute the rule confidence
 - Output the rules above the confidence threshold

Example

```
S_1 = \{Bread, Coke, Milk\} S_2 = \{milk, pepsi, juice\}

S_3 = \{bread, milk\} S_4 = \{Coke, juice\}

S_5 = \{milk, pepsi, bread\} S_6 = \{milk, coke, bread, juice\}

S_7 = \{coke, bread, juice\} S_8 = \{bread, coke\}
```

- Support threshold s = 3, confidence c = 0.75
- Frequent itemsets: {milk, bread}, {coke, bread}, {juice, coke}
- Generate rules:

$$milk \rightarrow bread : c = 4/5 > 0.75$$
 $coke \rightarrow bread : c = 4/5 > 0.$
 $bread \rightarrow milk : c = 4/6 < 0.75$ $bread \rightarrow coke : c = 4/6 < 0.$
 $juice \rightarrow coke : c = 3/4 = 0.75$ $coke \rightarrow juice : c = 3/5 < 0.$

Reducing the number of outputs

- Rules must be acted upon
- Reduce the number of rules:
 - adjust the support threshold

Outline

Finding Frequent Itemsets

A-Priori Algorithm

Representation of Market-Basket Data

- Items = integers
- Data is kept in flat files
 - Stored basket-by-basket
 - Baskets are small but we have many baskets and many items
 - E.g. Items are positive integers, and boundaries between baskets are -1 or

$$\{123, 6, 5067\}, \{12, 67, 50, 796\}, \dots$$

Main Memory Bottleneck

- Main-memory is the critical resource:
 - Reading baskets, we need to count occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Example:
 - ullet we have n items and we need count all pairs
 - $\binom{n}{2} \sim n^2/2$ pairs of integers
 - Integers take 4 bytes $\implies 2n^2$ bytes
 - machine has 2 gigabytes= 2^{31} bytes $\implies n < 33,000$.

Naive approach

- Read file once, counting in main memory the occurrences of each pair:
 - From each basket generate its pairs
 - Counting in the main memory the occurences of each pair?

Counting pairs in memory

- Two approaches:
 - Approach 1: Count all pairs using a matrix
 - Approach 2: Keep a table of triples [i,j,c]= "the count of the pair of items (i,j) is c
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count >0
 - Approach 1 only requires 4 bytes per pair
 - Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)

Problem: we have so many items that the pairs do not fit into the memory.

Can we do better?

Outline

Finding Frequent Itemsets

A-Priori Algorithm

Computation Model

- Association-rule algorithms read the data in passes
- The cost = number of passes an algorithm makes over the data

A-Priori Algorithm (1)

- A two-pass approach
- Limits the need for main memory
- Key idea: monotonicity
 - If a set of items I appears at least s times, so does every subset J of I
- If item i does not appear in s baskets, then no pair including i can appear in s baskets.

A-Priori Algorithm (2)

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - Requires memory proportional to #items
- Items that appear $\geq s$ times: the frequent items
- Pass 2: Read baskets again and count in main memory only those pairs where both elements are frequent
 - Requires memory proportional to square of frequent items
 - + a list of the frequent items

Frequent triples, etc

- For each k, we construct two sets of k-tuples :
 - C_k =candidate k-tuples = those that might be frequent sets (support > s) based on information from the pass for k-1
 - L_k =the set of truly frequent k-tuples
 - ullet E.g., $C_3=$ the set of triples, any two of which is a pair in L_2 .

A-priori for all frequent itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), k=2 requires the most memory
- Many possible extensions:
 - Association rules with intervals:
 - For example: Men over 65 have 2 cars
 - Association rules when items are in a taxonomy
 - Bread, Butter \rightarrow Fruit, Jam
 - BakedGoods, MilkProduct → PreservedGoods

References

- J. Leskovec, A. Rajaraman and J. D. Ullman *Mining of Massive Datasets* (2014), Chapter 6
- R. Agrawal, T. Imielinski, and A. Swami, "Mining associations between sets of items in massive databases," Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp. 207–216, 1993.
- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules," Intl. Conf. on Very Large Databases, pp. 487–499, 1994.