

Chapter 3 The Relational Database Model

The Relational Data Model

OBJECTIVES

- Describe relations and tables
- Describe the composition and features of a table
- Understand and apply the concept of keys
- Describe the use of relational set operators
- Describe and create a data dictionary
- Explain relationships
- Remove M:N relationships

The Relational Data Model

Allows us to logically describe how we will view data

Think of a relation as a table containing a group of related entity occurrences.

Relation = Entity set = Table (approximately)

Table consists of rows and columns

STU_ID	STU_LNAME	STU_FNAME	STU_DOB	STU_STATUS	STU_GPA
83675	Bloggs	Joe	1990-04-04	Normal	3.20
93467	Smith	Gillian	1989-12-29	Honours	3.97
94324	Johnson	Andy	1992-09-11	Normal	2.55
96223	Johnson	Andy	1985-06-14	Probation	1.80

Characteristics of a Relational Table

- Two Dimensional Structure composed of rows and columns
- Each row (tuple) represents a single entity
- Each column represents an attribute and has a distinct name
- · The intersection of row and column represents a single data value
- Values for a single column must have the same data format
- Each column has a range of values (attribute domain)
- The order of the rows and columns don't matter to the DBMS
- Each table must have an attribute or attributes that uniquely identify a row

0-00-4.00 STU_FNAME STU_DOB STU_ID STU_LNAME STU_STATUS STU GPA 1990-04-04 Normal 3.20 83675 Bloggs Joe Smith 1989-12-29 Gillian Honours 93467 3.97 94324 1992-09-11 Normal Johnson Andy 2.55 96223 Johnson Andy 1985-06-14 Probation 1.80

Keys & Dependencies

- Key is one or more attributes that uniquely identify a row
- Functional Dependence means the value of one or more attributes determines the value of one or more other attributes

STU_ID	STU_LNAME	STU_FNAME	STU_DOB	STU_STATUS	STU_GPA
83675	Bloggs	Joe	1990-04-04	Normal	3.20
93467	Smith	Gillian	1989-12-29	Honours	3.97
94324	Johnson	Andy	1992-09-11	Normal	2.55
96223	Johnson	Andy	1985-06-14	Probation	1.80

Composite Key

- more than one attribute
- attributes that are part of a composite are key attributes

Super key

· any key that can uniquely identify any row in the table

Candidate key

a minimal super key - no extra attributes

Primary key

- Must be unique
- must not be null

Secondary key

- · used for data retrieval
- · not necessarily unique

Foreign key

• must match the primary key in another table (or be null)

Composite

Super key Candidate key Primary key Secondary key Foreign key

STU_ID	STU_LNAME	TU_FNAME	STU_DOB	STU_STATUS	STU_GPA
83675	Bloggs	Joe	1990-04- 04	Normal	3.20
93467	Smith	Gillian	1989-12- 29	Honours	3.97
94324	Johnson	Andy	1992-09-11	Normal	2.55
96223	Johnson	Andy	1985-06- 14	Probation	1.80

Composite key

- more than one attribute
- attributes that are part of a composite are key attributes

Composite
Super key
Candidate key
Primary key
Secondary key
Foreign key

STU_ID	STU_LNAME	STU_FNAME	STU_DOB	STU_STATUS	STU_GPA
83675	Bloggs	Joe	1990-04-	Normal	3.20
00407		0:11:	04	I I a sa	0.07
93467	Smith	Gillian	1989-12- 29	Honours	3.97
94324	Johnson	Andy	1992-09-11	Normal	2.55
96223	Johnson	Andy	1985-06- 14	Probation	1.80

Super key

Any key that can uniquely identify any row in the table

Composite
Super key
Candidate key
Primary key
Secondary key
Foreign key

STU_ID	STU_LNAME	STU_FNAME	STU_DOB	STU_STATUS	STU_GPA
83675	Bloggs	Joe	1990-04- 04	Normal	3.20
93467	Smith	Gillian	1989-12- 29	Honours	3.97
94324	Johnson	Andy	1992-09-11	Normal	2.55
96223	Johnson	Andy	1985-06- 14	Probation	1.80

Candidate key

A minimal super key - no extra attributes

Composite
Super key
Candidate key
Primary key
Secondary key
Foreign key

STU_ID	STU_LNAME	STU_FNAME	STU_DOB	STU_STATUS	STU_GPA
83675	Bloggs	Joe	1990-04-04	Normal	3.20
93467	Smith	Gillian	1989-12-29	Honours	3.97
94324	Johnson	Andy	1992-09-11	Normal	2.55
96223	Johnson	Andy	1985-06-14	Probation	1.80

Primary key

Must be unique must not be null

UNIQUE
NO part is NULL
is a candidate key
You pick.

Composite
Super key
Candidate key
Primary key
Secondary key
Foreign key

STU_ID	STU_LNAME	STU_FNAME	STU_DOB	STU_STATUS	STU_GPA
83675	Bloggs	Joe	1990-04-04	Normal	3.20
93467	Smith	Gillian	1989-12-29	Honours	3.97
94324	Johnson	Andy	1992-09-11	Normal	2.55
96223	Johnson	Andy	1985-06-14	Probation	1.80

Secondary key

- used for data retrieval
- not necessarily unique

Composite
Super key
Candidate key
Primary key
Secondary key
Foreign key

	OK					
ST	U_ID	STU_LNAME	STU_FNAME	STU_DOB	STU_STATUS	STU_GPA
836	675	Bloggs	Joe	1990-04-04	Normal	3.20
934	467	Smith	Gillian	1989-12-29	Honours	3.97
943	324	Johnson	Andy	1992-09-11	Normal	2.55
962	223	Johnson	Andy	1985-06-14	Probation	1.80

PK			
Reg 10	CRS_ID	CRS_NAME	STU_ID /K
	CIT163-13WN-C01	Database	83675
\ <u>S</u>	CIT163-13WN-C02	Database	93467
13/	CIT163-13WN-C01	Database	96332
+ 4	CFT 1183-16WN(U)	Detobse	NULL

Foreign key

must match the primary key in another table (or be null)

Integrity Rules Entity Integrity

- Primary Keys

All primary key entries are unique No part of a primary key may be null

Referential Integrity — Foreign Keys

Matches a primary key value in a related table may be null if it doesn't violate entity integrity

Relational Set Operators

All relational operators have closure

Select

Project

Union

Intersect

Difference

Product

Join

Divide

-> The result

-> is another

relation

Select

"Unary" - uses a single table as input Yields values all of the rows meeting criteria

- Includes ALL attributes (columns)
- "Horizontal" selection

Project

"Unary" - uses a single table as input Yields values all of the columns meeting criteria

- Includes ALL rows
- "Vertical" selection

merges two relations
with the Same attributes JABCD 3
eliminates duplicates

{ABCDE}

Name Phone

A 123
B 456

Name Phone
C 456
B 789
A 123 Name Phone
A 173
B 456
B 789
C 1456

new relation where entities are in both

Name Phone
A 123
B 456
Phone
A 123
A 789

A 123
A 123
A 123
A 123

Difference

In the first relation but NUT in the Second

_ "Multiplies" two relations

123 B 456 C 789	***		Aspen Birch
nome,	Phone	Namez	add1 = 55
AABBCC	123 123 426 789 789	A B A B A B	Asren Birch Birch Asren Birch

Join

- Allows information from 2 or more independent tables to be combined
- They are linked by common attributes
- Yields a table that does NOT contain unmatched pairs, only the copies of the matches

Types of Joins

inner -> matches both sides

outer -> All of one side and

only matches from the other

Inner Join

on s.sid = g.sid

,		K	
	sid	name	age
	1	Joe	11
	2	Sally	22
	3	Jim	28

sid	groupld	groupNam
		е
1	А	Alphas
3	В	Betas
	G	Gammas

s.sid	s.nam	s.age	g.sid	g.groupld	g.groupNam
	е				e
l	Jue	11	ı	/+	Alphas
3	Jim	८८	3	B	Betas

Left Outer Join on s.sid = g.sid

S	PI	K		G		FK P	K
	sid	name	age		sid	groupld	groupNam
	1	Joe	11	~ >			е
	2	Sally	22		1	А	Alphas
	3	Jim	28		3	В	Betas
		ı		1	4	G	Gammas

s.sid	s.nam e	s.age	g.sid	g.groupld	g.groupNam e
1	Joe	11	1	/+	Alphas
5	Sally	22			
3	Jim	SR	3	B	Batas

sid	name		
1	Joe		>
2	Sally		
3	Jim		
		•	3

cid	sid	grade
1163	1	B+
1158	1	В
1156	1	С
1163	2	Α

s.sid	s.name	c.cid	c.sid	c.grade
1	Jue	1163		β÷
1	Jue	1158	1	ß
1	Joe	1156	I	C
S	Stly	1163	2	A
3	Jin			

Right	Out	er Join		or	n s.sid = g.sid			
S					G			
	sid	name	age			sid	groupId	groupNam
	1	Joe	11					е
	2	Sally	22			1	A	Alphas
	3	Jim	28			2	В	Betas
		ı	1	7			G	Gammas

s.sid	s.nam	s.age	g.sid	g.groupld	g.groupNam
	е				e
1	Jue	11	1	A .	Alphas
2	Sally	22	2	B	Betas
	J			5	GAMMAS

name Phone

A 123

B 456 left outer join
C 789 left join
D Ougwood

A 123 Aspen
B 456 Birch
C 789

name Phone

A 123

B 456 right outer join

C 789 rightjoin

D Oogwood

Name address Phone

Aspen 123

Birch 456

Dogway

name	Phon	. e			1 AME	address
name	12 3		11 0 100	• <u>-</u>		Aspen
B	123	<u></u>	II OUTET	אוטע	B	Birch
C	789				D	Dogwood
		D 6000 C	Phone	ad.	11055	
		A	123	As	con	
		n ame A B C D	456	Bir	rch	
			789			
		D		Da	Loon-	
			1			

• Divide

- Uses one double-column table as the dividend and one single-column table as the divisor
- Output is a single column that contains all values from the second column of the dividend that are associated with every row in the divisor

GURE 3.16 DIVIDE

P_CODE	CUS_CODE
123456	10400
123455	11501
123456	10030
123456	12550
234587	12350
234567	10040
234567	10500
234567	10030
234567	12550
345678	10400
34567B	11630
345678	12550
456769	11630
567680	10900
567890	10030
567890	12550
678901	11500
676901	10400
678901	11630

DIVIDE

Data Dictionary

The designers description

Look out for synonyms and homonyms

Homonym: same name is used to label different attributes

Synonym: different names are used to describe the same attribute

STU_ID	STU_LNAM E	STU_FNAM E	STU_DOB	STU_STAT US	STU_GPA
83675	Bloggs	Joe	1990-04-04	Normal	3.20
93467	Smith	Gillian	1989-12-29	Honours	3.97
94324	Johnson	Andy	1992-09-11	Normal	2.55
96223	Johnson	Andy	1985-06-14	Probation	1.80

CRS_ID	CRS_NAME	STU_ID
CIT163-13WN-C01	Database	83675
CIT163-13WN-C02	Database	93467
CIT163-13WN-C01	Database	96332

Table Name	Attribute name	Contents (descrip)	Туре	Format	Range	REQ	PK/FK	FK Ref

Relationships

1:M
This is the ideal!
1:1
Should be rare
M:N
cannot be implemented

How to convert M:N into 1:M

More FKs do not fix the problem Create a composite entity (associative, bridge)

FIGURE 3.26 CHANGING THE M:N RELATIONSHIPS TO TWO 1:M RELATIONSHIPS

FIGURE 3.27 THE EXPANDED ER MODEL

A note about data redundancy

FOreign keys appear redundant but actually reduce overall redundancy

Codd's Relational Database Rules (1 of 2)

Table 13.8	Dr. Codd's 12 Relational Database Rules	
Rule	Rule Name	Description
1	Information	All information in a relational database must be logically represented as column values in rows within tables.
2	Guaranteed access	Every value in a table is guaranteed to be accessible through a combination of table name, primary key value, and column name.
3	Systematic treatment of nulls	Nulls must be represented and treated in a systematic way, independent of data type.
4	Dynamic online catalog based on the relational model	The metadata must be stored and managed as ordinary data—that is, in tables within the database; such data must be available to authorized users using the standard database relational language.
5	Comprehensive data sublanguage	The relational database may support many languages; however, it must support one well-defined, declarative language as well as data definition, view definition, data manipulation (interactive and by program), integrity constraints, authorization, and transaction management (begin, commit, and rollback).
6	View updating	Any view that is theoretically updatable must be updatable through the system.
7	High-level insert, update, and delete	The database must support set-level inserts, updates, and deletes.

Codd's Relational Database Rules (2 of 2)

Table 13.8	Dr. Codd's 12 Relational Database Rules	
Rule	Rule Name	Description
8	Physical data independence	Application programs and ad hoc facilities are logically unaffected when physical access methods or storage structures are changed.
9	Logical data independence	Application programs and ad hoc facilities are logically unaffected when changes are made to the table structures that preserve the original table values (changing order of columns or inserting columns).
10	Integrity independence	All relational integrity constraints must be definable in the relational language and stored in the system catalog, not at the application level.
11	Distribution independence	The end users and application programs are unaware of and unaffected by the data location (distributed vs. local databases).
12	Nonsubversion	If the system supports low-level access to the data, users must not be allowed to bypass the integrity rules of the database.
13	Rule zero	All preceding rules are based on the notion that to be considered relational, a database must use its relational facilities exclusively for management.