Two dimensional real discrete chaotic attractors

Anže Arhar

2022 - 06 - 14

1 Introduction

Showcase of a selection of two dimensional real discrete chaotic attractors.

Contents

1	Introduction
2	Attractors
	2.1 Clifford attractor
	2.2 Peter de Jong attractor
	2.3 Tinkerbell attractor
	2.4 Johnny Svensson attractor
	2.5 Gumowski-Mira attractor
	2.6 Fractal Dreams (SSSS) attractor
	2.7 Quadratic Strange attractor
	2.8 Bogdanov attractor
	2.9 Gingerbread attractor
	2.10 Duffing attractor
	2.11 Hénon attractor
	2.12 Ikeda attractor
	2.13 Standard attractor
	2.14 Zaslavskii attractor

2 Attractors

2.1 Clifford attractor

$$x_{n+1} = \sin(ay_n) + c\cos(ax_n)$$

$$y_{n+1} = \sin(by_n) + d\cos(bx_n)$$

Image parameters:

$$a = 2, b = -2, c = 1, d = -1$$

2.2 Peter de Jong attractor

$$x_{n+1} = \sin(ay_n) - \cos(bx_n)$$

$$y_{n+1} = \sin(cx_n) - \cos(dy_n)$$

Image parameters:

$$a = 0.97, b = -1.899, c = 1.381, d = -1.506$$

2.3 Tinkerbell attractor

$$x_{n+1} = x_n^2 - y_n^2 + ax_n + by_n$$
$$y_{n+1} = 2x_n y_n + cx_n + dy_n$$

Image parameters:

$$a = 0.9, b = -0.6013, c = 2, d = 0.5$$

2.4 Johnny Svensson attractor

$$x_{n+1} = d\sin(ax_n) - \sin(by_n)$$

$$y_{n+1} = c\cos(ax_n) + \cos(by_n)$$

Image parameters:

$$a = 1.4, b = -1.56, c = 1.4, d = -6.56$$

2.5 Gumowski-Mira attractor

$$f(x) = ax + \frac{2(1-a)x^2}{(1+x^2)^2}$$
$$x_{n+1} = by_n + f(x_n)$$
$$y_{n+1} = f(x_{n+1}) - x_n$$

Image parameters:

$$a = -0.192, b = 0.982$$

2.6 Fractal Dreams (SSSS) attractor

$$x_{n+1} = \sin(y_n b) + c\sin(x_n b)$$

$$y_{n+1} = \sin(x_n a) + d\sin(y_n a)$$

Image parameters:

$$a=1.468, b=2.407, c=0.194, d=1.438$$

2.7 Quadratic Strange attractor

$$x_{n+1} = a_0 + a_1 x_n + a_2 x_n^2 + a_3 x_n y_n + a_4 y_n + a_5 y_n^2$$

$$y_{n+1} = a_6 + a_7 x_n + a_8 x_n^2 + a_9 x_n y_n + a_{10} y_n + a_{11} y_n^2$$

Image parameters:

2.8 Bogdanov attractor

$$x_{n+1} = x_n + y_{n+1}$$

$$y_{n+1} = y_n + \epsilon y_n + kx_n(x_n - 1) + \mu x_n y_n$$

Image parameters:

$$\epsilon = 0, k = 1.2, \mu = 0$$

2.9 Gingerbread attractor

$$x_{n+1} = 1 - y_n + |x_n|$$
$$y_{n+1} = x_n$$

2.10 Duffing attractor

$$x_{n+1} = y_n$$

$$y_{n+1} = -bx_n + ay_n - y_n^3$$

Image parameters:

$$a = 2.5, b = 1$$

2.11 Hénon attractor

$$x_{n+1} = 1 - ax_n^2 + y_n$$
$$y_{n+1} = bx_n$$

Image parameters:

$$a = 1.2, b = 0.5$$

2.12 Ikeda attractor

$$t_n = 0.4 - \frac{6}{1 + x_n^2 + y_n^2}$$
$$x_{n+1} = 1 + u(x_n \cos t_n - y_n \sin t_n)$$
$$y_{n+1} = u(x_n \sin t_n + y_n \cos t_n)$$

Image parameters:

$$u = 0.918$$

2.13 Standard attractor

Values of p and θ were replaced by x and y respectively.

$$p_{n+1} = [p_n + K\sin(\theta_n)] \mod 2\pi$$
$$\theta_{n+1} = [\theta_n + p_{n+1}] \mod 2\pi$$

Image parameters:

$$u = 0.918$$

2.14 Zaslavskii attractor

$$\mu = \frac{1 - e^{-r}}{r}$$

$$x_{n+1} = [x_n + \nu(1 + \mu y_n) + \epsilon \nu \mu \cos(2\pi x_n)] \mod 1$$

$$y_{n+1} = e^{-r}(y_n + \epsilon \cos(2\pi x_n))$$

Image parameters:

$$\epsilon = 1.5, \nu = 0.8, r = 1.2$$

3 References

- $\bullet \ \, https://sequelaencollection.home.blog/2d-chaotic-attractors/$
- $\bullet \ \ https://blbadger.github.io/$
- https://en.wikipedia.org/wiki/List_of_chaotic_maps

Clifford Attractor

Figure 1: Clifford attractor

Peter de Jong Attractor

Figure 2: Peter de Jong attractor

Tinkerbell Attractor

Figure 3: Tinkerbell attractor

Johnny Svensson Attractor

Figure 4: Johnny Svensson attractor

Gumowski-Mira Attractor

Figure 5: Gumowski-Mira attractor

Fractal Dreams (SSSS) Attractor

Figure 6: Fractal Dreams (SSSS) attractor

Quadratic Strange Attractor

Figure 7: Quadratic Strange attractor

Bogdanov Attractor

Figure 8: Bogdanov attractor

Gingerbreadman Attractor

Figure 9: Gingerbreadman attractor

Duffing Attractor

Figure 10: Duffing attractor

Hénon Attractor

Figure 11: Hénon attractor

Ikeda Attractor

Figure 12: Ikeda attractor

Standard Attractor

Figure 13: Standard attractor

Zaslavskii Attractor

Figure 14: Zaslavskii attractor