### ADT Mercury: Mid-Term Review



#### Ronan-Alexandre Cherrueau

Leader: Adrien Lebre, Supervisor: Matthieu Simonin

Inria, Discovery Initiative





# Context: IPL Discovery (1)

### Study Fog/Edge infrastructure

- New form of Cloud infrastructure
- Many micro to nano data centers (dozen of compute nodes)
- Spread all over the network backbone/edge (wireless) backbone (called PoP)
- A data center collaborates with the others
- ⇒ Massively distributed cloud at the edge of the network

# Context: IPL Discovery (2)

Such infra offers a new paradigm: Fog/Edge computing

- Reliable No single point of failure
- Governance As a french, I can ask for a compute node in a french PoP
- Reduces end-user to compute node latency For latency critic app
  - Smart cars
  - Internet of Things
  - Video streaming
  - o NFV (telco)
  - o ...

# **Context: IPL Discovery (3)**

### Architecture (Renater backbone)

- A red point is a PoP
- A micro data center in each PoP
- PoPs collaborate to offer Cloud Computing functionalities



# Context: IPL Discovery (3)

### Architecture (Renater backbone)

- A red point is a PoP
- A micro data center in each PoP
- PoPs collaborate to offer Cloud Computing functionalities

Question: How to Operate such a Massively Distributed Cloud Infrastructure?



### Context: OpenStack

### IaaS manager for Cloud Infrastructures

- Compute with Nova (VM), Ironic (bare metal) and Magnum (container)
- Network with Neutron
- Storage with Cinder (volume) and Swift (object)

### The de facto open-source solution





# OpenStack for Fog/Edge

OpenStack fails on two aspects when operating Fog/Edge infra.

- Services rely on centralized components (database, message bus)
- Services behave wrong in case of high latency (message bus)

# IPL Discovery: Make OpenStack an IaaS Manager for Fog/Edge Infrastructure

# **Mercury ADT**

### Assists IPL Discovery

- 1. Help Discovery Researchers in developing PoC around OpenStack
  - PoC for a database that scales
  - o PoC for a message bus that is latency tolerant
  - o ...
- 2. Provide a platform to test different OpenStack deployments
  - o Ease and automatize the deployments of several OpenStack
  - Compare the execution of several OpenStack
- 3. Make Discovery/Inria shines into OpenStack community
- 4. Develop an application that leverages the desiderata

### 1. Help Developing PoCs in OpenStack

#### **Database Distribution**

- Original idea was NoSQL/ROME [Pastor, 2016]
- Now focus on NewSQL/CockroachDB (joint work with Cockroach Lab)
- Internship: "Make Keystone use CockroachDB"
  - Only a few lines to patch in Keystone to make it works
  - o These lines are under review in the Keystone project
- Full evaluation planned for Vancouver 05/2018

#### **Bus Distribution**

- Replace RabbitMQ by QPid-dispatch (joint work with Red Hat)
- Full evaluation planned for Vancouver 05/2018

### 2. Enos: Experimental Env. for OpenStack

### Motivation: Conducting performance analysis

- Scientifically and reproducibly (automation)
- At small and large-scale
- Under different network topologies (traffic shaping)
- Between various releases

#### Workflow

- enos deploy: Get testbed resources; Deploys OpenStack; Applies network constraints
- 2. enos bench: Runs benchmarks; Measures CPU/RAM/Network consumption per service/node
- 3. enos backup: Get benchmarks results

### **Enos Use Case: Large Scale Deployment**

- "Chasing 1000 nodes scalability"
- Joint Work with Mirantis
- Presented at the OpenStack Summit in Barcelona (October 2016)
- ⇒ Leverage Enos flexibility to find the correct topology
- ⇒ G5K as official testbed for OpenStack performance evaluation



# Enos Use Case: OpenStack WANWide (1)

- Single OpenStack to operate remote resources deployed at the Edge.
- Joint work with Chameleon (UChicago)
- Presented at the OpenStack Summit in Boston (April 2017)
- ⇒ Leverage Enos network constraints to show current limitations



# Enos Use Case: OpenStack WANWide (2)

- Experiments run independently on Grid'5000 and Chameleon
- Fully automatized (software defined experiments leveraging Enos).
- 250 benchmarks (approx. 100 running hours) on each testbed.
- Results lead to the same conclusion whatever the testbed (collected performance are almost identical).
- Experimental setup: https://github.com/BeyondTheClouds/enos-scenarios/
- Results: http://enos.irisa.fr/html/

# **Enos Use Case: OpenStack IoT**

### FBK (Italy) - FEMDC active members

- OpenStack with Enos on an IoT use case
- Results will be presented @Openstack day Italy (Milan 28 Sept. 17)
- Enos contributors

### Fed4fire+ (European project)

- Benchmarks comparisons between Open Nebula and OpenStack
- Results presented in the next engineering conference (Volos 4-6 Oct. 17)
- Enos contributions

# 3. Make Discovery Shines into OpenStack

Get into the community with our expertise in performance analysis

- Participation into Working Groups Performance and Massively Distributed Clouds
- Enos lets us do performance analysis of many OpenStack configurations
- ⇒ Results have been returned to the community, making Discovery an expert on such topics
- ⇒ The OpenStack foundation now considers Discovery as a key collaborator for the design of Fog/Edge cloud infrastructure

### 4. Develop an App. for Fog/Edge infra

- First desiderata planned for next OpenStack Summit (Vancouver, 05 2018)
- $\Rightarrow$  Application should follow

### Conclusion

### Huge implication in the OpenStack Community

- Pros:
  - Many discussions/collaborations with Cloud actors (Mirantis, Red Hat, CockroachDB, AT&T, Verizon, ...)
  - ⇒ The OpenStack foundation considers Discovery for questions relative to the Fog/Edge computing
- Cons:
  - OpenStack is a complex system (20 million LoC)
  - Doing a modification, even a small one, is not an obvious process
  - OpenStack review system takes time
  - ⇒ Slow down momentum inherent to research project There is no PoC in OpenStack

### Questions?



# Références (1)



Pastor, J. (2016).

Contributions to massively distributed Cloud Computing infrastructures. Theses, Ecole des Mines de Nantes.