5 FITTING DISTRIBUTIONS TO DATA WORKSHEET

- 1. A real number X is drawn from the Gaussian distribution N(10, 16).
- (a) What is the probability that $X \geq 10$?
- (b) What is the probability that X = 10?
- (c) What is the probability (roughly) that X > 14?
- (d) What is the probability (roughly) that $X \leq 2$?

Solution:

- (a) Pr(X > 10) = 0.5
- (b) Pr(X = 10) = 0
- (c) $X \ge 14 = 1 \Phi(1) = 0.1587$
- (d) $X \le 2 = \Phi(-2) = 0.0228$
- 2. A call center keeps track of the number of phone calls they receive: over a period of 500 hours, they record the number of calls received during every one-hour interval (the number of calls during the first hour, during the second hour, and so on). Let N_k be the number of onehour intervals during which k calls were received, for k = 0, 1, 2,... Here is their data: Notice that $N_0 + N_1 + = 500$.
- (a) You decide to model the number of calls received in an hour by a $Poisson(\lambda)$ distribution. What value of λ should you choose?
- (b) Under this choice of λ , what are the expected entries in the table above, i.e. the expected number of one-hour intervals (out of 500) during which k calls are received, for k = 0, 1,...?

Solution:

(a)
$$\lambda = \frac{\sum_{k=0}^{\infty} k * N_k}{\sum_{k=0}^{\infty} N_k} = 1577/500 = 3.154$$

(b)

k	0	1	2	3	4	5	6	7	8	≥ 9
N_k	22	66	106	115	85	55	28	13	10	0
$k*N_k$	0	66	212	345	340	275	168	91	80	0
Pr	0.04268	0.1346	0.2122	0.2232	0.1760	0.1110	0.0584	0.0263	0.0104	0.0052
E	21.34	67.31	106.14	111.59	87.99	55.51	29.18	13.15	5.18	2.61

- 4. Maximum likelihood and smoothing. Upon tossing a coin 20 times, you get heads every time.
- (a) How would you estimate the bias (that is, the heads probability) of the coin, using maximum likelihood?
- (b) How would you estimate the bias of the coin, using maximum likelihood with Laplace smoothing?
- (c) Under your estimate from part (b), what is the probability of seeing the sequence of tosses HHTTHH? You don't need to simplify the numeric expression.

Solution:

- (a) MLE of the bias: P = 20/20 = 1
- (b) MLE of the bias with Laplace smoothing: $P = \frac{20+1}{20+2} = 21/22$ (c) Probability of $HHTTHH = 21/22 * 21/22 * 1/22 * 1/22 * 21/22 * 21/22 * 21/22 = 21^4/22^6$
- **5.** Fitting a multinomial. Fix the following vocabulary: $V = \{a, rose, is, flower\}$.
- (a) In a bag-of-words representation, what is the vector form of the document "A rose is a rose is a rose"?

- (b) Fit a multinomial model to this document using maximum likelihood but not Laplace smoothing. What is the resulting distribution (give the probability of each word in V)?
- (c) Same as part (b), but with Laplace smoothing.

Solution:

- (a) Vector form of "A rose is a rose is a rose" is: {3, 3, 2}
- (b) P("a") = 1/4, P("rose") = 1/4, P("is") = 1/4, P("flower") = 1/4
- (c) With Laplace Smoothing: P("a")= 2/8, P("rose")= 2/8, P("is")= 2/8, P("flower")= 2/8
- 8. Suppose $Z_1, ..., Z_k$ are independent N(0, 1) random variables. Define $X = Z_1^2 + ... + Z_k^2$. The distribution of X is called the chi-squared distribution with k degrees of freedom.
- (a) Plot the density of the chi-squared distribution with 10 degrees of freedom using scipy.stats.chi2.
- (b) By generating random samples from this distribution, estimate its median.

Solution:

```
(a)
```

```
import numpy as np
from scipy.stats import chi2
import matplotlib.pyplot as plt
# degree of freedom
df = 10
mean, var, skew, kurt = chi2.stats(df, moments='mvsk')
x = np.linspace(chi2.ppf(0.01, df),
                chi2.ppf(0.99, df), 100)
# plot chi-square density function
fig , ax = plt.subplots(1, 1)
ax.plot(x, chi2.pdf(x, df),
       'r-', lw=3, alpha=0.6, label='chi2_pdf')
(b)
samples = chi2.rvs(df, size=1000)
estimated\_median = np.median(r)
print(estimated_median)
```