Série d'exercices n° 1

1 Formules de Taylor

Exercice 1

1. Soit $\alpha > 0$. Montrer que

$$\left|\cos(\alpha) - 1 + \frac{\alpha^2}{2!} - \frac{\alpha^4}{4!}\right| \le \frac{\alpha^5}{5!}$$

2. En déduire que

$$\frac{337}{384} - \frac{1}{3840} \le \cos\left(\frac{1}{2}\right) < \frac{337}{384} + \frac{1}{3840}$$

Exercice 2

- 1. Ecrire la formule de Taylor-Lagrange à l'ordre 2 pour la fonction $f: x \mapsto \frac{1}{\sqrt{x}}$ entre a=16 et b=17.
- 2. Montrer que $\frac{31}{128}$ est une valeur approchée de $\frac{1}{\sqrt{17}}$ à 5×10^{-4} près.

Exercice 3

Soit f une fonction de classe C^3 sur un intervalle I. Soit $x \in \text{int}(I)$.

En utilisant la formule de Taylor-Young, calculer

$$\lim_{h \to 0} \frac{1}{h^3} \left[f(x+3h) - 3f(x+2h) + 3f(x+h) - f(x) \right]$$

Exercice 4

1. Montrer que, pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on a

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{|x|^{n+1} e^{|x|}}{(n+1)!}$$

2. En déduire
$$\lim_{n\to+\infty}\sum_{k=0}^n\frac{x^k}{k!}$$
.

Exercice 5

Soit $x \in \mathbb{R}$. Montrer que

1.
$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = \sin(x)$$

2.
$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} = \operatorname{ch}(x)$$

Fonctions convexes

Exercice 6

Montrer que, pour tous réels strictement positifs $(x_i)_{1 \le i \le n}$, on a

1.
$$\left(\sum_{i=1}^{n} x_i\right)^2 \le n \sum_{i=1}^{n} x_i^2$$

$$2. \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} \frac{1}{x_i}\right) \ge n^2$$

3.
$$\frac{x_1}{x_2} + \frac{x_2}{x_3} + \dots + \frac{x_{n-1}}{x_n} + \frac{x_n}{x_1} \ge n$$
 4. $(x_1 x_2 \dots x_n)^{\frac{1}{n}} \le \frac{x_1 + x_2 + \dots + x_n}{n}$

4.
$$(x_1x_2...x_n)^{\frac{1}{n}} \le \frac{x_1 + x_2 + \dots + x_n}{n}$$

Exercice 7

Soient $p, q \in \mathbb{R}_+^*$ tels que $\frac{1}{n} + \frac{1}{n} = 1$.

- 1. En utilisant la concavité de la fonction ln, montrer que $ab \leq \frac{a^p}{n} + \frac{b^q}{a}$ $\forall a, b \in \mathbb{R}_+^*$.
- 2. En déduire l'inégalité de Hölder, donnée par

$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}} \qquad \forall a_1, \dots, a_n, b_1, \dots, b_n \in \mathbb{R}_+^*$$

Exercice 8

Soient I un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction convexe. Soit $a \in I$. On suppose que f est dérivable en a. Montrer que si f'(a) = 0 alors f admet un minimum global en a.

Exercice 9

Soient I un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction convexe. Soit $a \in I$. Montrer que si f admet un maximum global en a, alors f est constante sur I.

Exercice 10

Soit $f: I \to J$ une fonction continue bijective. On suppose que f est convexe, que peut-on dire de f^{-1} ?

Exercice 11

Soit $f:[0,+\infty[\to [0,+\infty[$ une fonction concave.

- 1. Montrer que la fonction $x \mapsto \frac{f(x)}{x}$ est décroissante sur $]0, +\infty[$.
- 2. Montrer que $f(x+y) \leq f(x) + f(y)$, $\forall x, y \in \mathbb{R}^+$.

Exercice 12

Soit $f:[0,+\infty[\to\mathbb{R}]$ une fonction concave, dérivable et croissante sur $[0,+\infty[$.

- 1. Montrer que $\forall x \ge 1$, $f(x+1) f(x) \le f'(x) \le f(x) f(x-1)$
- 2. On pose $u_n = \sum_{k=1}^{n} f'(k) f(n)$ et $v_n = \sum_{k=1}^{n} f'(k) f(n+1)$. Montrer que (u_n) et (v_n) sont
- 3. On prend $f(x) = \ln(x)$. Soit $\gamma = \lim u_n$. Calculer γ à 10^{-2} près.