Towards a Categorical Foundation of Deep Learning: A Survey

Una rassegna di approcci categorici al deep learning

Francesco Riccardo Crescenzi

11 settembre 2024

Alma mater studiorum - Università di Bologna CdL in Matematica We are in an AI summer, but is winter coming?

Mancano fondamenta teoriche:

• approcci ad hoc

Mancano fondamenta teoriche:

- approcci ad hoc
- complessità fine a se stessa

Mancano fondamenta teoriche:

- approcci ad hoc
- complessità fine a se stessa
- assenza di garanzie di correttezza

La ricerca viene rallentata da:

• research debt

La ricerca viene rallentata da:

- research debt
- mancata replicabilità

una lingua franca della matematica

Teoria delle categorie:

Teoria delle categorie

La teoria delle categorie studia strutture e relazioni, e può essere vista come un'estensione del celebre Erlangen Programme.

Teoria delle categorie:

una lingua franca delle scienze

La teoria delle categorie può essere applicata con successo anche in fisica, informatica, chimica... ovunque ci sia **composizionalità**.

• ottiche parametriche

- ottiche parametriche
- (co)algebre categoriche

- ottiche parametriche
- (co)algebre categoriche
- integral transforms

- ottiche parametriche
- (co)algebre categoriche
- integral transforms
- functor learning

- ottiche parametriche
- (co)algebre categoriche
- integral transforms
- functor learning
- string diagrams

per modellare il gradient-based learning

Lenti parametriche

DEFINIZIONE: II costrutto Para

Sia $(\mathcal{C}, I, \otimes)$ una categoria monoidale strettamente simmetrica. Allora, $\mathbf{Para}_{\otimes}(\mathcal{C})$ è la 2-categoria definita come segue.

- ullet Le 0-celle sono oggetti di ${\cal C}$.
- Le 1-cells sono coppie $(P, f) : A \rightarrow B$, dove P : C e $f : P \otimes A \rightarrow B$.
- The 2-celle sono $r:(P,f)\Rightarrow (Q,g)$, dove $r:P\rightarrow Q$ è un morfismo in $\mathcal C$ che rispetta certe condizioni di naturalità.

DEFINIZIONE: II costrutto Lens

Sia $(\mathcal{C},1, imes)$ una categoria Cartesiana. Allora, **Lens** (\mathcal{C}) è la categoria definita come segue.

- Un oggetto di **Lens**(\mathcal{C}) è una coppia $\binom{A}{A'}$ di oggetti di \mathcal{C} .
- Un morfismo $\binom{A}{A'} \to \binom{B}{B'}$ (anche chiamato lente) è una coppia $\binom{f}{f'}$ di morfismi di $\mathcal C$ tali che $f:A\to B$ and $f':A\times B'\to A'$. La mappa f è nota come forward pass della lente, mentre la mappa f' è nota come backward pass.

DEFINIZIONE: Cartesian reverse differential category

Una Cartesian reverse differential category (CRDC) $\mathcal C$ è una categoria Cartesiana con una struttura additiva dove è definito un operatore differenziale R che ha le proprietà di una reverse derivative.

ESEMPIO: Smooth

Consideriamo **Smooth**, ovvero la categoria degli spazi Euclidei e delle funzioni liscie. **Smooth** è una CRDC rispetto all'operatore

$$R[f]:(x,y)\mapsto \mathcal{J}_f(x)^Ty.$$

DEFINIZIONE: Lenti con backward pass additivo

Sia $\mathcal C$ una CRDC. Allora, definiamo la sottocategoria $\mathbf{Lens}_A(\mathcal C)$ di $\mathbf{Lens}_A(\mathcal C)$, i cui oggetti sono coppie $\binom{A}{A'}$ e i cui morfismi hanno la forma $\binom{f}{\mathrm{R}[f]}$.

TEOREMA: Struttura cartesiana di Lens $_A(C)$

La struttura

$$I = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} A \\ A \end{pmatrix} \otimes \begin{pmatrix} B \\ B \end{pmatrix} = \begin{pmatrix} A \times B \\ A \times B \end{pmatrix}$$

definita su **Lens**_A(C) è Cartesiana.

DEFINIZIONE: Lenti parametriche

Sia $\mathcal C$ una CRDC. Allora, definiamo la categoria delle lenti parametriche su $\mathcal C$ come

 $\mathsf{Para}_{\otimes}(\mathsf{Lens}_{\mathcal{A}}(\mathcal{C})).$

Le lenti parametriche in $\mathbf{Para}_{\otimes}(\mathbf{Lens}_{A}(\mathcal{C}))$ supportano la automatic differentiation e possono essere utilizzate per implementare il gradient-based learning.

Categorical deep learning:

(co)algebre categoriche come teoria delle architetture

Dal GDL al CDL

Geometric deep learning

Il geometric deep learning è una teoria delle architetture di reti neurali che imita l'*Erlangen Programme*, organizzando le architetture in base al concetto di equivarianza rispetto ad azioni di gruppi.

Dal GDL al CDL

DEFINIZIONE: Funzione equivariante

Sia G be un gruppo e siano (S,\cdot) e (T,*) azioni di G. Una funzione $f:S\to T$ è equivariante rispetto a tali azioni se

$$f(g\cdot s)=g*f(s),$$

per ogni $s \in \mathcal{S}$ e per ogni $g \in \mathcal{G}$.

ESEMPIO

I convolutional layers delle reti neurali rappresentano mappe invarianti rispetto a traslazioni.

Dal GDL al CDL

Categorical deep learning

Il categorical deep learning è una teoria delle architetture di reti neurali che generalizza il GDL, organizzando le architetture in base al concetto di omomorfismo di (co)algebre categoriche.

DEFINIZIONE: Algebra su un endofuntore

Sia $F:\mathcal{C}\to\mathcal{C}$ un endofuntore. Un'algebra su F è una coppia (A,a) dove A è un oggetto di \mathcal{C} e $a:F(A)\to A$ è un morfismo in \mathcal{C} .

DEFINIZIONE: Omomorfismo di algebre

Siano (A,a) e (B,b) algebre sollo stesso endofuntore $F:\mathcal{C}\to\mathcal{C}$. Un omomorfismo di algebre $(A,a)\to(B,b)$ è un morfismo $f:A\to B$ in \mathcal{C} tale che F(f) $\begin{subarray}{l} b=a\begin{subarray}{l} f \end{subarray}$.

Il CDL generalizza il GDL poiché le azioni di un grouppo G si possono definire come algebre su una monade, e le mappe invarianti si recuperano come omomorfismi tra queste algebre.

DEFINIZIONE: Monade delle azioni di *G*

Consideriamo l'endofuntore $G \times -:$ **Set** \to **Set** che mappa $A \mapsto G \times A$ e $f \mapsto G \times f$. La monade delle azioni di G è definita dotando l'endofuntore delle transformazioni naturali di $\mu_A : (g,h,a) \mapsto (gh,a)$ e $\eta_A : a \mapsto (e,a)$.

Il CDL costruisce collega algoritmi e strutture dell'informatica classica con le reti neurali.

ESEMPIO: Liste

Sia A un insieme. Consideriamo l'endofuntore $1+A\times -$ su **Set**. Sia $\mathsf{List}(A)$ l'insieme delle liste di elementi di A. Allora, se $\mathsf{Nil}: 1 \to \mathsf{List}(A)$ mappa l'unico oggetto di 1 alla lista vuota e $\mathsf{Cons}: A \times \mathsf{List}(A) \to \mathsf{List}(A)$ aggiunge un elemento a una lista, $(\mathsf{List}(A), [\mathsf{Nil}, \mathsf{Cons}])$, è un algebra su $1+A\times -$.

ESEMPIO: List folds

Consideriamo due algebre (List(A), [Nil, Cons]) e (Z, [r_0 , r_1]) su $1 + A \times -$. Un omomorfismo f: List(A) $\rightarrow Z$ tra queste due algebre deve soddisfare

$$f(\mathsf{NiI}) = r_0,$$

$$f(\mathsf{Cons}(a, I)) = r_1(a, f(I)).$$

Hence, f è necessariamente un fold che riduce liste di elementi di A a singoli elementi di Z.

ESEMPIO: Una cella di un folding RNN

Consideriamo l'endofuntore $1+A\times X$: e la struttura cartesiana $(1,\times)$ su **Set**. Su questo funtore, può essere costruito un 2-funtore $\operatorname{Para}(1+A\times X):\operatorname{Para}_{\bullet}(\operatorname{Set})\to\operatorname{Para}_{\bullet}(\operatorname{Set})$. Consideriamo un algebra $(S,(P,\operatorname{Cell}))$ su tale funtore. Tramite l'isomorfismo $P\times (1+A\times X)\cong P+P\times A\times X$, deduciamo che $\operatorname{Cell}=[\operatorname{Cell}_0,\operatorname{Cell}_1]$, dove $\operatorname{Cell}_0:P\to S$ e $\operatorname{Cell}_1:P\times A\times S\to S$. Le funzioni Cell_0 e Cell_1 si possono interpretare come celle di un folding recurrent neural network.

ESEMPIO: Unrolling di un folding RNN

Consideriamo le due algebre (List(A), [Nil, Cons]) e (S, (P, Cell)) sull'endofuntore $\mathbf{Para}(1+A\times X)$. Ora consideriamo un omomorfismo di algebre (P, f, Δ_P) : (List(A), [Nil, Cons]) \to (S, (P, Cell)). Si può dimostrare che una funzione f così definita è l'unrolling di un folding recurrent neural network. L'algebra (List(A), [Nil, Cons]) fornisce gli input della rete neurale, mentre l'algebra (S, (P, Cell)) fornisce le celle.

Folding recurrent neural network	Unfolding recurrent neural network	Recursive neural network	Full recurrent neural network	"Moore machine" neural network
$1 + A \times S \\ \downarrow^{(P, cell^{rent})} S$	$S \ \ \ \ \ \ \ \ \ \ \ \ \ $	$A + S^2 \\ \downarrow^{(P, cell^rcsv)} \\ S$	$S \\ \downarrow^{(P, cell^Mealy)} \\ (I \to O \times S)$	$S \\ \downarrow^{(P,cell^Moore)} \\ O \times \left(I \to S\right)$
$S \xrightarrow{p} S$	$s \xrightarrow{P} S$	$X \longrightarrow X$	$s \xrightarrow{P} 0$	X X X X X X X X X X

modelli come funtori che sfruttano la struttura dei dati

Functor learning:

Categorical representation learning

Il categorical representation learning consiste nell'immergere funtorialmente una categoria $\mathcal C$ di dati in una categoria $\mathcal R$ di vettori latenti.

Grazie alla funtorialità dell'embedding, il categorical representation learning consente di preservare la struttura dei dati nello spazio latente.

DEFINIZIONE: Struttura categorica dello spazio latente tegoria i cui oggetti sono i vettori di \mathbb{R}^n and tale che, per ogni u, v in \mathcal{R} , i morfismi $u \to v$ sono le matrici $M \in \mathbb{R}^{n \times n}$ tali che v = Mu. La composizione è l'ordinario prodotto riga per colonna e l'identità relativa a un generico $v \neq 0$ è $\mathrm{id}_v = \frac{vv^T}{|v|^2}$. L'identià relativa al vettore nullo è la matrice nulla.

Data una categoria $\mathcal C$ di dati, il funtore di *embedding* $\mathcal C \to \mathcal R$ è realizzato da due **neural embedding layers**: il primo produce rappresentazioni degli elementi di $\mathcal C$ come vettori, mentre il secondo produce rappresentazioni dei morfismi di $\mathcal C$ come matrici.

DEFINIZIONE: Negative sampling loss

La *objective function* utilizzata per addestrare i due *layers* è la *negative sampling loss*

$$\mathcal{L} = -\mathbb{E}_{(a,b)\sim p(a,b)} \left(\log P(a \to b) + \mathbb{E}_{b' \sim p(b')} \log(1 - P(a \to b')) \right),$$

dove la probabilità che sussista una relazione $a \rightarrow b$ è misurata come

$$P(a \to b) = \text{sigmoid}\left(F\left(\bigoplus_{f} v_a^T M_f v_b\right)\right).$$

ESEMPIO: Traduzione non supervisionata

Se $\mathcal C$ e $\mathcal D$ sono database di formule chimiche in inglese e cinese, rispettivamente, possiamo usare il CRL per immergere le due categorie in $\mathcal R$ funtorialmente. Poi si può imparare un funtore $\mathcal F:\mathcal R\to\mathcal R$ che preservi la struttura categorica. Tale funtore opererà la traduzione.

ESEMPIO: Traduzione non supervisionata

Se \mathcal{C} e \mathcal{D} sono database di formule chimiche in inglese e cinese, rispettivamente, possiamo usare il categorical representation learning per immergere le due categorie in \mathcal{R} funtorialmente. Poi si può imparare un funtore $\mathcal{F}:\mathcal{R}\to\mathcal{R}$ che preservi la struttura categorica. Tale funtore effettuerà la traduzione. \mathcal{F} può essere implementato come una matrice $V_{\mathcal{F}}$ che mappa

$$v\mapsto V_{\mathcal{F}}v,$$

$$M_f\mapsto V_{\mathcal{F}}M_f.$$

ESEMPIO: Traduzione non supervisionata

La matrice può essere imparata minimizzando la loss function

$$\mathcal{L}_{\mathrm{struc}} = \sum_{f} \| \textit{V}_{\mathcal{F}} \textit{M}_{f} - \textit{M}_{\mathcal{F}(f)} \textit{V}_{\mathcal{F}} \|^{2},$$

a cui si può aggiungere anche la loss

$$\mathcal{L}_{\mathrm{align}} = \sum_{a \in A} \| V_{\mathcal{F}} v_a - v_{\mathcal{F}(a)} \|,$$

per dare parziale supervisione.

rappresentazioni dettagliate di architetture neurali

Neural circuit diagrams:

I diagrammi di *deep learning models* generalmente utilizzati nella letteratura scientifica sono inadeguati in quanto non riportano molti dettagli importanti ai fini dell'implementazione.

I *monoidal string diagrams* usati in teoria delle categorie applicata sono inadeguati poiché non riescono a rappresentare funtori e trasformazioni naturali.

I functor string diagrams prendono ispirazione dai monoidal string diagrams e li adattano per rappresentare funtori e trasformazioni naturali.

PRINCIPIO di decomposizione verticale

Uno *string diagram* può essere diviso in colonne verticali. Una singola colonna deve contenere solo oggetti o solo morfismi. Colonne con oggetti e colonne con morfismi devono alternarsi.

PRINCIPIO dell'espressione equivalente

Deve essere possibile sostituire ogni diagramma che segue una nuova notazione grafica con uno diagramma equivalente che segue la vecchia notazione.

We develop double-dashed lines as an equivalent expression to represent product categories $C \times D$, where objects and morphisms are tuples.

I *neural circuit diagrams* sono *functor string diagrams* specializzati nel rappresentare architetture di reti neurali.

C'è una competizione in corso tra varie discipline, che puntano a spiegare le reti neurali utilizzando ciascuna i propri strumenti:

• fisica matematica,

C'è una competizione in corso tra varie discipline, che puntano a spiegare le reti neurali utilizzando ciascuna i propri strumenti:

- fisica matematica,
- topologia,

C'è una competizione in corso tra varie discipline, che puntano a spiegare le reti neurali utilizzando ciascuna i propri strumenti:

- fisica matematica,
- topologia,
- probabilità,

C'è una competizione in corso tra varie discipline, che puntano a spiegare le reti neurali utilizzando ciascuna i propri strumenti:

- fisica matematica,
- topologia,
- probabilità,
- e così via...

La teoria delle categorie, oltre a offrire strumenti propri, potrebbe creare un ponte tra queste discipline e potrebbe unificare i loro approcci in una teoria generale del deep learning.