Politechnika Warszawska

Zakład Podstaw Konstrukcji

Zapis Konstrukcji

mgr inż. Grzegorz Kamiński grzegorz.kaminski@pw.edu.pl

23 maja 2022 Wersja 2.10

Koszty wykonania

P<mark>olite</mark>chnika Warszawska

Koszty wykonania

Politechnika Warszawska

Zależność kosztów wykonania wymiarów linowych od wielkości tolerancji

Definicja oznaczeń

Wymiar nominalny — wymiar przedmiotu podawany na rysunku. **Wymiar rzeczywisty** — wymiar uzyskany w praktyce uwzględniający błędy wykonania.

Tolerowanie wymiarów — podanie dwóch wymiarów granicznych pomiędzy którymi powinien znaleźć się wymiar nominalny.

Definicja oznaczeń

Tolerancja T — różnica pomiędzy górnymi i dolnym wymiarem granicznym (T = B - A).

Odchyłka górna wymiaru: ES — dla wymiaru zewn., es — dla wymiaru wew., zdefiniowana jako B-N.

Odchyłka dolna wymiaru: EI — dla wymiaru zewn., ei — dla wymiaru wew., zdefiniowana jako A-N.

Definicja oznaczeń

P<mark>olite</mark>chnika Warszawska

Wymiar tolerowany jest to wymiar o ustalonych odchyłkach granicznych:

dla wymiarów zewnętrznych:

$$A_w = N + ei$$
 $B_w = N + es$ $T = es - ei$

dla <mark>w</mark>ymiarów wewnętrznych:

$$A_o = N + EI$$
 $B_o = N + ES$ $T = ES - EI$

Rodzaje tolerancji

symetryczne – obie odchyłki są jednakowe i różnią się tylko znakiem,

$$\emptyset$$
 50 ± 0,5

asymetryczne – jedna z odchyłek jest równa zero,

asymetryczne dwustronne — dwie odchyłki o różnych znakach i wartościach,

$$\varnothing 50^{+0.05}_{-0.03}$$

asymetryczne jednostronne – dwie odchyłki o jednakowym znaku.

$$\emptyset$$
50 $^{+0,05}_{+0,01}$

Zapis tolerancji

normalne – odchyłki dobierane są wg normy,

swobodne — odchyłki dobierane są wg uznania konstruktora.

P<mark>olite</mark>chnika Warszawska Znaczenie znaków w zapisie tolerancji

50H7

wymiar <mark>no</mark>minal<mark>n</mark>y

symb<mark>o</mark>l rodzaju tolerancji klas<mark>a d</mark>okład<mark>no</mark>ści wykonania

P<mark>olit</mark>echnika Warszawska

11

Zakresy pól tolerancji

Warszawska

12

Klasy wykonania

Wymiar r	ominalny	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13	IT14
powyżej	do	110	riin.	111	110	mh.	1110	nin-	1112	1113	1114
m	m	0.111	Giiii	Cl.	μm	6 IIII	Gard 6	Anni Gu	chini	mm	1111
0.0	3	4	6	10	14	25	40	60	0,1	0,14	0,25
3	6	5	8	12	18	30	48	75	0,12	0,18	0,30
6	10	6	9	15	22	36	58	90	0,15	0,22	0,36
10	18	8	11	18	27	43	70	110	0,18	0,27	0,43
18	30	9	13	21	33	52	84	130	0,21	0,33	0,52
30	50	11	16	25	39	62	100	160	0,25	0,39	0,62
50	80	13	19	30	46	74	120	190	0,30	0,46	0,74
80	120	15	22	35	54	87	140	220	0,35	0,54	0,87
120	180	18	25	40	63	100	160	250	0,40	0,63	1,00
180	250	20	29	46	72	115	185	290	0,46	0,72	1,15
250	315	23	32	52	81	130	210	320	0,52	0,81	1,30
315	400	25	36	57	89	140	230	360	0,57	0,89	1,40
400	500	27	40	63	97	155	250	400	0,63	0,97	1,55
500	630	32	44	70	110	175	280	440	0,70	1,10	1,75
630	800	36	50	80	125	200	320	500	0,80	1,25	2,00
800	1000	40	56	90	140	230	360	560	0,90	1,40	2,30
1000	1250	47	66	105	165	260	420	660	1,05	1,65	2,60
1250	1600	55	78	125	195	310	500	780	1,25	1,95	3,10
1600	2000	65	92	150	230	370	600	920	1,50	2,30	3,70
2000	2500	78	110	175	280	440	700	1100	1,75	2,80	4,40
2500	3150	96	135	210	330	540	860	1350	2,10	3,30	5,40

Klasy wykonania

$$T = 10^{0.2 \cdot (n-1)} \cdot (0.45 \cdot \sqrt[3]{D} + 0.001 \cdot D)$$

- * T tolerancja w μ m
- * D wymiar t<mark>ol</mark>erowany,
- * n klasa wykonania.

Tolerancje ogólnego przeznaczenia

Tolerancje wałków

Klasa dokładności	- Eu	ŋ 🌗	1	M) (9	Sy	mbol t	tolera	ncji	9		4m) ,	9	9	1
5	-						g5	h5	js5	k5	m5	n5	_p5	r5	s5	t5	
6	SIII)	clini	SIIII	4111	-GIII	f6	g6	h6	js6	$\mathbf{k6}$	m6	n6	p6	r6	s6	t6	
7					e7	f7	-	h7	js7	k7	m7	n7	p7	r7	s7	t7	u7
8	- 1	Do .	i	d8	e8	f8		h8	N.		nno		ritt	la l		nin	
9	6,	") (6	d9	e9	6)	- 51	h9	"}		4)		6,,,	'J		6	
10				d10													
m 11	a11	b11	c11	_/ffm	m		m	h11	1111	_Mh			m	Min	_m	1	

Tolerancje otworów

Klasa dokładności	0						Symb	ol tole	rancji	4	900	6111) <	9		0
6	,/III)		All I		,IIII)		G6	H6	Js6	K6	M6	N6	P6	R6	S6	T6
7			0			F7	G7	H7	Js7	K7	M7	N7	P7	R7	S7	T7
8	100	ella.	-	000	E8	F8		H8	Js8	K8	M8	N8	P8	R8	of the	
9	1111	1111	2	D9	E9	F9	QIIII)	H9	S ₁₁₁	61111	Q III	6111		9	1111	
10			-	D10	E10			H10				_			_	
11	A11	B11	C11	D11	mh	m	m	H11	m	h	m	m	m	nin.	m	

Pasowania

pasowanie — połączenie dwóch elementów o jednakowym wymiarze nominalnym i różnych odchyłkach.

luźne — elementy pasowane mogą się przemieszczać względem siebie, mieszane — może wystąpić niewielki luz lub niewielki wcisk, ciasne — elementy pozostają w spoczynku względem siebie po

zmontowaniu.

Zapis pasowania

50H7/f6

wymiar <mark>n</mark>ominal<mark>n</mark>y wałka i otworu

tolerancja otworu

tole<mark>ra</mark>ncja wałka

P<mark>olite</mark>chnika Warszawska

Zasada stałego otworu

zasada stałego otworu – średnicę otworu toleruje się zawsze w głąb materiału, EI=0 (tolerowanie asymetryczne), żądane pasowanie uzyskuje sie poprzez dobranie odchyłek wałka.

W budowie maszyn częściej stosuje się zasadę stałego otworu, gdyż umożliwia ona zmniejszenie liczby rozmiarów narzędzi i sprawdzianów do pomiaru otworów.

Zasada stałego otworu

Nazwa		do-	Pole t	olerancji	otworu p	odstawow	e	cito
p <mark>aso</mark> wania	H5 (H6	H7	H8	H9	H10	H11	H12
	H5/h4	H6/f6	H7/c8	H8/c8	H9/d9	H10/d10	H11/a11	H12/b12
	H5/g7	H6/g5	H7/d8	H8/d8	H9/e8	H10/h9	H11/b11	H12/h12
60		H6/h5	H7/e8	H8/d9	H9/e9	H10/h10	H11/c11	
			H7/f7	H8/e8	H9/f8		H11/d11	
Luźne		m "m	H7/g6	H8/e9	H9/f9		H11/h11	· m
Luzne			H7/h6	H8/f8	H9/h8	0	0	
	100-		rin.	H8/f9	H9/h9		m.	rith-
Gill 4	6/III	9	/III	H8/h7	6		ind ⁴ mi	diil dii
			\sim	H8/h8				
(III)	m	(II)	mh	H8/h9	m	rith min	m m	m
6,,,,	H5/js4	H6/js5	H7/js6	H8/js7	(0,0)	6,	4	6
Mieszane	H5/k4	H6/k5	H7/k6	H8/k7	-			
Wileszane	H5/m4	H6/m5	H7/m6	H8/m7	M,		m _m	
	H5/n4	H6/n5	H7/n6	H8/n7				0
rin-	Prince.	H6/p5	H7/p6	H8/s7	100	rin-	rin-	(00)
Gill.	2	H6/r5	H7/r6	H8/u8	Carried States	Siil Sii	Zhiil -	6 m
Ciasne		H6/s5	H7/s6	H8/x8		0		
Ciasile	rffh	m	H7/s7	H8/z8	m		m m	mb m
6	6,,,,	(H7/t6	4)	Gui	6		6)
			H7/u7					

Zasada stałego wałka

zasada stałego wałka — średnicę wałka toleruje się zawsze w głąb materiału, es=0 (tolerowanie asymetryczne), żądane pasowanie uzyskuje się poprzez dobranie odchyłek otworu.

Zasadę stałego wałka stosuje się w przypadkach, gdy wymagane jest osadzenie wielu elementów na wałku, którego średnica na pewnej długości jest stała.

Zasada stałego wałka

Nazwa			P	ole tolera	ncji wałk	a podstav	wowego	0	
pasow <mark>ani</mark> a	h4	h5	h6	h7	h8	h9	h10	h11	h12
0	G5/h4	F7/h5	D8/h6	D8/h7	D8/h8	D9/h9	D10/h10	A11/h11	B12/h12
	H5/h4	G6/h5	E8/h6	E8/h7	D8/h8	D10/h9	H10/h10	B11/h11	H12/h12
all all	(III)	H7/h5	F7/h6	F8/h7	E8/h8	E9/h9	All I	C11/h11	All I
Luźne			F8/h6	H8/h7	E9/h8	F9/h9		D11/h11	
Luzne	100	erito.	G7/h6	e Co	F8/h8	H8/h9		H11/h11	-00
CIII CIII	Child "	6 III	H7/h6	III) ,	F9/h8	H9/h9		III OII	SIII)
0					H8/h8	H10/h9			
n n	rillo.	m		m	H9/h8	m		nin m	rillo
6	Js5/h4	Js5/h5	Js7/h6	Js8/h7	6,,,,	(11)	6,,,,	4	Guil
Mieszane	K5/h4	K6/h5	K7/h6	K8/h7					
Wijeszane	M5/h4	M6/h5	M7/h6	M8/h7		m all		M)	
0	N5/h4	N6/h5	N7/h6	N8/h7					0
e0a-	ette-	P6/h5	P7/h6	U8/h7	100		rin-	r/m-	e00-
Ciasne	6/III	9 11 9	R7/h6	6111	6111	e lill	GIII GIII	Chill Chil	Sull.
			S7/h6						

Stosowane pasowania

Pasowanie	Właściwości połączenia	Pr <mark>zykł</mark> ady zastosowania
U8/h7 H8/s7 S7/h6 H7/r6 R7/h6	Części są mocno połączone z dużym wciskiem. Ich montaż wymaga dużych nacisków lub podgrzewania albo oziębienia części w celu uzyskania połączenia skurczowego. Połączenie jest trwałe nawet w przypadku dużych sił i nie wymaga dodatkowych zabezpieczeń.	Łączenie z wałami kół zębatych, tarcz sprzęgieł, wieńców kół z tarczami, tulei z piastami itp.
H7/p6 P7/h6	Części są mocno polączone, ich montaż wymaga dużych nacisków, a demontaż jest przewidziany tylko podczas generalnych remontów. Stosowane jest dodatkowe zabezpieczenie przed przemieszczeniem części pod wpływem dużych sil.	Koła zębate n <mark>apęd</mark> owe na walac <mark>h ci</mark> ężkich maszyn (wstrząsarki, lamacze kamieni), tuleje łożyskowe, kołki, pierścienie ustalające, wpusty
H7/n6 N7/h6	Montaż części oraz ich rozdzielenie wymaga dużego nacisku. Może wystąpić luz, dlatego należy zabezpieczyć części przed przemieszczeniem.	Tuleje łożys <mark>kow</mark> e w narzędzi <mark>ach,</mark> wieńce kół z <mark>koła</mark> mi, dźwignie i korby na wałach, tuleje w korpusach maszyn, koła i sprzęgla na wałach
H7/m6 M7/h6	Części są mocno osadzone. Łączenie i rozłączanie wykonywane jest poprzez mocne uderzenie ręcznym młotkiem. Części należy zabezpieczyć przed przemieszczaniem części.	Wewnętrzne pierścienie łożysk tocznych, koła pasowe, koła zębate, tuleje, dźwignie osadzone na wałach, korby, sworznie tłokowe, sworznie łączące, kołki ustalające, itp.
H7/k6	Części przywierają do siebie, montaż i demontaż nie wymaga dużej siły, za pomocą lekkiego ręcznego mło <mark>tka.</mark> Części należy zabezpieczyć przed przemieszczeniem.	Wewnętrzne pierścienie łożysk tocznych, części sprzegieł, koła pasowe, koła zamachowe, dźwignie ręczne na wałach, kołki śruby, sworznie ustalające, itp.
H7/j6 J7/h6	Montaż części wymaga lekkich uderzeń młotka, lub nawet można go wykonać ręką. Pasowanie przeznaczone dla części o częstym montażu i demontażu. Konieczne jest zabezpieczenie lączonych części przed przemieszczeniem.	Zewnętrzne pierścienie łożysk tocznych osadzonych w osłonach, koła zębate wymienne i koła pasowe na wałach, często wymieniane tuleje łożyskowe, panewki, itp.

Stosowane pasowania

Pasowanie	Właściwości połączenia	Przykłady zastosowania
H7/h6	Części po nasmarowaniu można przesuwać ręcznie względem siebie. Pasowanie nadaje się do tych połączeń, które powinny umożliwiać wolne przesuwanie części względem siebie.	Zewnętrzne pierścienie łożysk tocznych, pierścienie uszczelniające, prowadzenia różnego rodzaju, łożyska ślizgowe z bardzo małym luzem, narzędzia na trzpieniach, itp.
H8/h9 H9/h8	C <mark>zęści</mark> dają się łatw <mark>o łąc</mark> zyć i można <mark>je be</mark> z wysiłku pr <mark>zesuw</mark> ać.	Pierścienie ustalające, elementy konstrukcyjne, które wymagają przesuwania względem innych elementów, łożyska ślizgowe, itp.
H11/h11	Części można łatwo złożyć. Pasowanie cechuje się stosunkowo małym luzem przy dość dużych tolerancjach wykonawczych.	Części lutowane lub spawane, kołkowane lub zaciskane na wałkach, tuleje dystansowe.
H7/g6 G7/h6	Połączenie ruchowe bez znac <mark>zne</mark> go luzu, częśc <mark>i moż</mark> na swobo <mark>dnie przesuwać i obraca</mark> ć względem <mark>siebie</mark> .	Łożyska ślizgowe (np. korbowodów), elementy które wykonują ruch względny ale bez nadmiernego luzu
H7/h7	Połączenia ruchowe ze znacznym luzem, części mogą się poruszać ze średnimi prędkościami.	Łożyska i prowadnice ślizgowe (np. popychacze zaworowe), itp.
H8/e8 E8/h9	Połączenia wykazują duże luzy, części mają duże tolerancje wykonawcze.	Tłoki w cylindr <mark>ach,</mark> wały w dług <mark>ich ło</mark> żyskach, itp.
H11/d9 H11/d11 D11/h11	Połączenia wykazują duże luzy, części mają duże tolerancje wykonawcze.	Połączenia nitów z otworami, części z niedostatecznym smarowaniem, koła pasowe luźno osadzone na wałach, itp.
H11/c11	Połąc <mark>zenie</mark> z dużymi luz <mark>ami,</mark> części mają <mark>duże</mark> tolerancje wykonawcze.	Łożyska maszyn i mechanizmów rolniczych, sprzętu gospodarstwa domowego, itp.

P<mark>olite</mark>chnika Warszawska

Wymiary nietolerowane

Wymiary zewnętrzne i wewnętrzne nietolerowane na rysunkach technicznych należy zawsze wykonać zgodnie z zasadą tolerowania w głąb materiału

Przyjmuje się wtedy tzw. tolerancję warsztatową, tzn. stosuje się dokładności zdefiniowane w klasach od 12-16 (najczęściej jest to 13 klasa dokładności).

Wymiary nietolerowane - inne podejście

Wybierając klasę tolerancji należy wziąć pod uwagę odpowiedni poziom zwyczajnej dokładności warsztatowej.

Tolerancje ogólne wymiarów liniowych i kątowych obowiązują, gdy na rysunku lub w związanych z nimi specyfikacjach powołano się na normę ISO 2768.

Odchyłki graniczne wymiarów liniowych

klasa	tolerancji	fffh	odchyłki grani <mark>czn</mark> e od wymiarów nominalnych								
oznaczenie	nazwa	0,5 do 3	3 do 6	6 do 30	30 do 120	120 do 400	400 do 1000	1000 do 2000	2000 do 4000		
f	dokładna	± 0.05	± 0.05	$\pm 0,1$	± 0.15	$\pm 0,2$	± 0.3	± 0.5			
m	średniodokładna	$\pm 0,1$	$\pm 0,1$	±0,2	±0,3	± 0.5	±0,8	$\pm 1,2$	±2		
c	zgrubna	$\pm 0,2$	± 0.3	± 0.5	±0,8	$\pm 1,2$	±2	±3	±4		
v	bardzo zgrubna	6	$\pm 0,5$	C±1	±1,5	±2,5	±4 (1)	±6	±8		

Wymiary nietolerowane - inne podejście

Odchyłki graniczne wymiarów krawędzi załamanych (promienie zaokrągleń i szerokości ścięć)

klasa	tolerancji	odchyłki g	gran <mark>iczn</mark> e od	d wym <mark>iar</mark> ów nomin <mark>aln</mark> ych
oznaczenie	nazwa	0,5 do 3	3 do 6	6 do 30
f	dokładna	±0,2	±0,5	±1
m	<u>średniodokładna</u>	±0,2	±0,5	m T m
С	zgrubna	± 0.4	+1	+2
v	bardzo zgrubna	±0,4		±2

Odchyłki graniczne wymiarów katowych

klasa	ı toleran <mark>cji</mark>	odchyłki	gr <mark>ani</mark> czne dla	p <mark>rze</mark> działu d	ł <mark>ugoś</mark> ci krótsze <mark>g</mark>	go ramienia <mark>kąt</mark> a
oznaczenie	nazwa	do 10	10 do 50	50 do 120	120 do 400	powyżej 400
f m	dokładna średniodo <mark>kła</mark> dna	±1°	±0°30′	±0°20′	±0°10′	±0°5′
c	zgrubna	±1°30′	±1°30′	±1°30′	±1°30′	±1°30′
v	bardzo zgrubna	±3°	±2°	±1°	±0°30′	±0°20′

Chropowatości

Chropowatość powierzchni jest zbiorem bardzo drobnych wzniesień i zagłębień (mikron<mark>ie</mark>równości występujących na tej powierzchni.

$$Ra = \frac{1}{n} \sum_{i=1}^{n} |y_i|$$

Znak chropowatości

struktury geometrycznej powierzchni

Rozszerzony symbol graficzny oznaczający, że jest wymagane usunięcie materiału

Rozszerzony symbol graficzny oznaczający, że nie dopuszcza się us<mark>uni</mark>ęcia materiału

Znak chropowatości

Podstawowy symbol graficzny struktury geometrycznej powierzchni

Rozszerzony symbol graficzny oznaczający, że jest wymagane usunięcie materiału

Rozszerzony symbol graficzny oznaczający, że nie dopuszcza się usunięcia materiału

P<mark>olite</mark>chnika Warszawska Roz<mark>sze</mark>rzony sy<mark>m</mark>bol graficzny dotyczący wszystkich powierzchni wokół zarysu przedmiotu

Znaki chropowatości

Wymiary symboli zgodnie z norma ISO 81714-1

wysokość cyfr i liter (h)	2,5	3,5	5	7	10	14	20
grubość linii dotyczących symboli (d') grubość linii dotyczących pisma (d)	0,25	0,35	0,5	0,7	1	1,4	2
wysokość (H ₁)	3,5	5	7	10	14	20	28
wysokość (H ₂)	7,5	10,5	15	21	30	42	60

P<mark>olit</mark>echnika Warszawska

Znaki chropowatości

Politechnika Warszawska a – wymaganie dotyczące struktury geometrycznej powierzchni;

 b – drugie wymaganie dotyczące struktury geometrycznej powierzchni;

c — met<mark>od</mark>a <mark>wy</mark>twarza<mark>nia</mark>;

d — nierówności powierzchni i ich kierunek;

e — naddatek obróbk<mark>ow</mark>y.

Kierunkowość struktury

Nierówności pow. równoległe do widoku pł. rzutowania

Nierówności pow. prostopadłe do widoku pł. rzutowania

Nie<mark>rów</mark>ności skrzyż<mark>owa</mark>ne do dwóch <mark>uko</mark>śnych kierun<mark>ków</mark> do widoku p<mark>ł. rz</mark>utowania

Kierunkowość struktury

N<mark>ieró</mark>wności pow. <mark>w pr</mark>zybliżeniu p<mark>romi</mark>eniowe wzgl<mark>ęde</mark>m środka po<mark>w.</mark>

Nierówności pow. w p<mark>rzyb</mark>liżeniu współśrodkowe wzglę<mark>dem</mark> środka pow.

Politechnika Nierówności pow. wielokierunkowe Warszawska Nierówności pow. szczególne, bez określenia kierunku, lub punktowe

32

Naddatek obróbkowy jest podawany tylko, gdy na tym samym rysunku jest pokazane kilka etapów obróbki detalu

Miejsce i ukierunkowanie symbolu graficznego: na zarysie, na linii odniesienia lub na linii wskazującej

Warszawska

Miejsce i ukierunkowanie symbolu graficznego. Orientacja tak, aby było czytelne.

Wymagania struktury geometrycznej powierzchni podawane razem z wymiarami

Miejsce i ukierunkowanie symbolu graficznego na linii odniesienia

Miejs<mark>ce i ukierunkowanie</mark> symbolu graf<mark>icz</mark>nego na linii wskazującej

Wymagania struktury geometrycznej powierzchni podawane z tolerancjami geometrycznymi

P<mark>olite</mark>chnika Warszawska

Wymagania struktury geometrycznej powierzchni podawane z wymiarem i tolerancjami geometrycznymi

Miejsce i ukierunkowanie symbolu graficznego na powierzchniach walcowych i płaskich

Uproszczony sposób przedstawiania informacji o chropowatości.
Politechnika Informacja umieszczona nad tabelką
Warszawska

Miejsce i ukierunkowanie symbolu graficznego na powierzchniach walcowych i płaskich, gdy wymagane są indywidualne wartości chropowatości

Pełny <mark>spos</mark>ób przedsta<mark>wian</mark>ia informacji <mark>o c</mark>hropowatośc<mark>i. Inf</mark>ormacja umieszczona nad tabelką

chromować Ra0,8 Ra3,2

Uproszczony sposób zapisu chropowatości. Wytłumaczenie zapisu powinno znaleźć się nad tabelką rysunkową, w pobliżu rzutu zawierającego uproszczony zapis, w uwagach ogólnych

Miejsce i ukierunkowanie symbolu graficznego na powierzchniach wymagających odpowiedniej chropowatości przed i po obróbce

Zalecane przyporządkowanie parametru chropowatości Ra klasom wykonania ISO

Zakres	wymiarowy		Klasa wykonania ISO									
od	do	5	6	7	8	9	10	11				
(11)	6	0,4	0,8	0,8	1,6	1,6	3,2	3,2				
6	10	0,4	0,8	0,8	1,6	3,2	6,3	12,5				
10	18	0,8	0,8	0,8	1,6	3,2	6,3	12,5				
18	80	0,8	0,8	1,6	3,2	3,2	6,3	12,5				
80	250	0,8	1,6	1,6	3,2	3,2	6,3	12,5				
250	500	0,8	1,6	1,6	3,2	6,3	12,5	25				

Chropowatość a wykonanie

Rod <mark>z</mark> aj obróbki		Wartości liczbowe chropowatości Ra w μm												
		80	40	20	10	5	2,5	1,25	0,63	0,32	0,16	0,08	0,04	
ciecie	nożycami													
cięcie	piłą						TID		- 11	'n		- III		
toczenie i wytaczanie	zgrubne					8			60.			6		
	dokładne			(
	bardzo dokładne										1.0			
wiercenie	średnica <15 mm								III			n		
	średnica >15 mm		1.			()					1	J		
struganie	zgrubne								-					
	dokładne			-								-		
	bardzo dokładne			111113			III			n				
frezowanie cylindryczne	zgrubne								6	7		10		
	dokładne			_								_		
frezowanie czołowe	zgrubne													
	dokładne		- 11111						IIIn	11111	- []	'n		
	bardzo dokładne		6			6. 1					6			
	szybkościowe													
rozwiercanie	zgrubne													
	dokładne	0		IIIIn			III		П	'n		nn		
	bardzo dokładne			6		1						64		
szlifowanie wałków i płaszczyzn	zgrubne													
	dokładne		and the same			and the					-	_		
	bardzo dokładne		JIII									n		
	wewnętrzne		1,			7					1)		
obróbka ślus	sarska (piłowanie)													
nacinanie g	gwintu narzynką			-										
gwintowanie nożem	zgrubne			_IIIIn			un			n		_[]]]]		
	dokładne			6.1		1						1,000		
czyszczenie p	papierem ściernym			_			_					_		
polerowanie	dokładne													
	bardzo dokładne					.IIIIn			III					
docieranie	dokładne		6			6.1		-						
	bardzo dokładne		_			-			_		-			
Wartości lic	zbowe Ra w µm	80	40	20	10	5	2,5	1.25	0.63	0.32	0,16	0.08	0.04	

Chropowatość a wykonanie

Rodzaj obróbki		Wartości liczbowe chropowatości Ra w μm												
		80	40_	20	10	5	2,5	1,25	0,63	0,32	0,16	0,08	0,04	
Odlewanie	zwykłe				Y. J	1)		7					
w piasku	dokładne					-			-					
Odlewanie w kokilach	zwykłe	_												
	dokładne	Hh -		- 111	n					HIII			lin -	
Odlewy wtryskowe	zwykłe		1	10	J					3		10		
	dokładne	_					0			_		_		
Kucie	zgrubne													
	zwykłe			In					IIIIn			nin		
	dokładne		10			1/4] \					3		
Prasowanie	zgrubne											-		
	zwykłe													
	dokładne	IIIn .		- [1]	h		- IIII			ПIII			III	
Natryskiwanie	zgrubne		1	6.						6		- 6		
	zwykłe													
	dokładne			Con		and the			orbin.			ed to		
Polerowanie bezwiórowe	zgrubne		- 0	10			n .		TIII			JIII		
	zwykłe		1)		1)		7. 1					

P<mark>olit</mark>echnika Warszawska

Bibliografia

A. Dziurski, E. Mazanek, and L. Kania. Przykła<mark>dy o</mark>bliczeń z pod<mark>staw</mark> konstrukcji <mark>masz</mark>yn: Łożyska, <mark>sprz</mark>ęgła i hamu<mark>lce, p</mark>rzekładnie mechaniczne, tom 2. WNT. 2015. isbn: 9788393491360.

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świętokrzyskiej", 2011. isbn: 9788388906343.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe. tom 1. WNT, 2005. isbn: 9788320435528.

PN-ISO 1122-1:2004. Słownik terminów związanych z kołami zębatymi — Część 1: definicje związane z geometrią.

PN-ISO 2<mark>203:2</mark>002. Rysune<mark>k tec</mark>hniczny — Pr<mark>zeds</mark>tawianie up<mark>roszc</mark>zone przekł<mark>adni</mark> zębatych.

PN-IS<mark>O 54</mark>:2001. Przekł<mark>adni</mark>e zębate wa<mark>lcow</mark>e ogólnego <mark>przez</mark>naczenia or<mark>az dla</mark> przemysłu <mark>ciężk</mark>iego.

PN-ISO 701:2001. Międzynarodowe oznaczenia kół zębatych – Symbole parametrów geometrycznych.

Paweł Romanowicz. Rysunek techniczny w mechanice i budowie maszyn. Wydaw. Naukowe PWN, Warszawa, 2018.

