$$||x||_{W} = ||Wx||$$

For this to be a vector norm:

(i)
$$||x||_{W} = ||Wx|| \ge 0$$
 and $||Wx|| = 0$ only if $||x||_{W} = ||wx|| \ge 0$, i.e., $|x| = 0$ (since W is non-singular)

(ii)
$$||x+y||_{w} = ||w(x+y)||$$

$$= ||wx+wy||$$
Since $||\cdot||$
 $\Rightarrow \leq ||wx|| + ||wy|| = ||x||_{w} + ||y||_{w}$
is a norm

Hence, proved.

3.2
$$\rho(A) \rightarrow \text{ spectral radius of } A$$

i.e., $\rho(A) = \max_{\lambda} \{|\lambda| : \lambda \text{ is an eigenvalue of } A \}$

For any eigenvalue λ and corresponding eigenvector x,

$$Ax = \lambda x$$

$$\Rightarrow |\lambda| ||x|| = ||Ax||$$

$$\Rightarrow by definition$$

$$\Rightarrow |\lambda| ||x|| = ||Ax||$$

$$\Rightarrow |x| = \frac{||Ax||}{||x||} \le \sup_{x \in A} \frac{||Ay||}{||y||} \text{ induced matrix norm}$$

3.3 (a)
$$\|x\|_{\infty} = \max_{1 \le i \le m} |x_i| = |x_j| \quad (suppose x_j is max)$$

$$\|x\|_2 = \left(\sum_{i=1}^m |x_i|^2\right)^{1/2} = \left(|x_j|^2 + \sum_{i \ne j} |x_i|^2\right)^{1/2} = |x_j|$$

.. $||x||_{\infty} \le ||x||_{2}$ The equality is achieved when $\sum_{i\neq j} |x_{i}|^{2} = 0$, i.e., $\forall i\neq j$, $|x_{i}| = 0$ \Rightarrow a has only \perp non-zero element. $(x=\alpha e_{i})$

(b) $\|x\|_{2} = \left(\frac{m}{\sum_{i=1}^{n}|x_{i}|^{2}}\right)^{1/2} = \left(|x_{i}|^{2} + |x_{i}|^{2} + ... + |x_{m}|^{2}\right)^{1/2}$ $\leq \left(\max_{i}|x_{i}|^{2} + \max_{i}|x_{i}|^{2} + ... + \max_{i}|x_{i}|^{2}\right)^{1/2}$ $= \sqrt{m} \|x\|_{0}$ $= \sqrt{m} \|x\|_{0}$ Equality holds if $\forall i$, $|x_{i}|^{2} = \max_{i \in i \in m} |x_{i}|^{2}$ $= \frac{1}{1 \cdot e}, x_{i}^{2} = \pm k \quad \forall \quad 1 \leq i \leq m$ for some $k \in C$.

(c) $\|A\|_{\infty} = \max_{1 \le i \le m} \|a_i^*\|_{1} \pmod{sum}$

From result in (a), $||Ax||_{\infty} \le ||Ax||_{2}$ From result in (b), $||x||_{\infty} > \frac{1}{2} ||x||_{2}$

 $\frac{||Ax||_{\infty}}{||x||_{\infty}} \leq \frac{||Ax||_{2}}{\sqrt{\pi} ||x||_{2}}$

Taking supremum on both sides, $||A||_{\infty} \leq \sqrt{n} ||A||_{2}$

(d) $\|Ax\|_2 \leq \sqrt{m} \|Ax\|_{\infty}$ (from (b)) $\|x_{\infty}\| \leq \|x\|_2$ (from (a))

Taking supremum on both sides:

where U is an identity matrix containing only the rows which we want to keep in B

V is an identity matrix containing only columns

V is an identity matrix containing only columns which we want to keep in B.

(b) Since U and V only contain 0s and 1s, $\|V\|_p \le 1$

From upper bound on ||UAW||p = ||U||p ||Allp ||W||p = ||B||p = ||Allp.

3.5
$$\|E\|_{F} = \|uv^*\|_{F}$$

$$= \sqrt{\sum_{i \neq j} |u_{i}v_{i}|^{2}} = \sqrt{\sum_{i} |v_{i}|^{2}} \sum_{j} |u_{j}|^{2}$$

$$= \|u\|_{2} \|v\|_{2} \qquad \therefore \text{ Proved.}$$

(a) For ||·||' to be a vector norm:

(i)
$$||x||' = \sup_{\|y\|=1} |y^*x| > 0$$
 (since we take absolute value)

and
$$\|x\|' = 0 \Rightarrow x = 0$$

(ii)
$$||x+y||' = \sup_{\|a\|=1} |a^*(x+y)|$$
 $||a||=1$
 $= \sup_{\|a\|=1} |a^*x+a^*y|$
 $\leq \sup_{\|a\|=1} (|a^*x|+|a^*y|)$
 $||a||=1$
 $\leq \sup_{\|a\|=1} |a^*x| + \sup_{\|a\|=1} |a^*y|$
 $= ||x||' + ||y||'$

$$\|\hat{u}\| = \sup_{\|y\|=1} \|y^* x x\|$$

$$= \|x\| \sup_{\|y\|=1} \|y^* x\| = \|x\| \|x\|^{r}$$

:. | ! ! is a vector norm.

(b) $x, y \in C^m$, $\|x\| = \|y\| = 1$ Cyliner $x \in C^m$, $\exists z \in C^m$, $z \neq 0$ st $|z^*x| = \|z\|'\|x\|$. Let $B = y|z^*|$ and we want $Bx = y \ R \|B\| = 1$

$$Bx = (yz^*)x = y(z^*x)$$

Not necessarily the same z. we want to compute this term.

Let z_0 be such that for the given x, $|z_0^*x| = ||z_0||'||x|| = ||z_0||'$ (since ||x|| = 1)

We know that for any vector v, $\frac{V}{||v||}$ gives arg(v).

Let Z be such that

$$Z^{k} = \underbrace{e^{i\theta}}_{||Z_{0}||'} = \underbrace{e^{i\theta}}_{$$

since we have taken adjoint of vector.

the second part, we have:

$$||B|| = \sup_{\|a\|=1} \|Ba\| = \sup_{\|a\|=1} \|yz^*a\|$$

$$= \sup_{\|a\|=1} \|y(z^*a)\|$$

= | | | | | | Hence, proved