

FCC PART 15.247 TEST REPORT

For

Hexing Electrical Co.,Ltd

1418-5 Moganshan Road Shangcheng Industrial Zone, Hangzhou City, China

FCC ID: 2AIUZ-MJP900-A2

Report Type: **Product Type:** HexNet RF Module Original Report Ada. Yu **Test Engineer:** Ada Yu **Report Number:** RKS170103003-00A **Report Date:** 2017-01-09 Oscar. Ye Oscar Ye **Reviewed By:** RF Engineer **Prepared By:** Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES.	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	7
External I/O Cable	7
BLOCK DIAGRAM OF TEST SETUP	8
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC§15.247 (i), §1.1310& §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE	E)11
APPLICABLE STANDARD	
Measurement Result	
FCC §15.203 – ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	
Antenna Information	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	13
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	13
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
Applicable Standard	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	19
TEST RESULTS SUMMARY	
TEST DATA	19
FCC §15.247(a) (1) (i)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	26

Bay Area Compliance Laboratories Corp. (Kunshan)	Report No.: RKS170103003-00A
TEST PROCEDURE	26
FCC §15.247(a) (1) (i)- 20 dB EMISSION BANDWIDTH	30
APPLICABLE STANDARD	30
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (i)-QUANTITY OF HOPPING CHANNEL T	TEST33
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (i) - TIME OF OCCUPANCY (DWELL TIME)	1E)36
APPLICABLE STANDARD	36
TEST PROCEDURE	
TEST DATA	36
FCC §15.247(b) (2) - PEAK OUTPUT POWER MEASUREMEN	NT40
APPLICABLE STANDARD	40
TEST PROCEDURE	
TEST DATA	40
FCC §15.247(d) - BAND EDGES TESTING	43
APPLICABLE STANDARD	
TEST PROCEDURE	43
TEST DATA	43

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Manufacturer	Hexing Electrical Co.,Ltd
Tested Model	MJP900-A2
Series Model	N/A
Product Type	HexNet RF Module
Dimension	$27.5 \text{ mm(L)} \times 22.0 \text{ mm(W)} \times 4.0 \text{ mm(H)}$
Power input	DC 3.3V

Report No.: RKS170103003-00A

Objective

This test report is prepared on behalf of Hexing Electrical Co.,Ltd in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s)/grant(s)

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and DA 00-705 March 30, 2000.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 45

^{*} Note: The difference between tested model and series model was explained in the declaration letter.

^{*}All measurement and test data in this report was gathered from production sample serial number: 20161223003 (Assigned by the BACL. The EUT supplied by the applicant was received on 2016-12-23)

Measurement Uncertainty

	Item	Uncertainty
AC Power Line	es Conducted Emissions	3.26 dB
RF conducte	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	5.91dB
De l'ete l'encieden	1GHz~6GHz	4.68dB
Radiated emission	6 GHz ~18 GHz	4.92dB
	18 GHz~40 GHz	4.88dB
Оссир	pied Bandwidth	0.5kHz
Te	emperature	1.0℃
	Humidity	6%

Report No.: RKS170103003-00A

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 5 of 45

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For LoRa Modulation, 60 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	903.25	31	919.50
2	903.50	32	919.75
3	903.75	33	920.00
4	904.00	34	920.25
5	904.25	35	920.50
6	904.50	36	920.75
7	904.75	37	921.00
8	905.00	38	921.25
9	905.25	39	921.50
10	905.50	40	921.75
11	905.75	41	922.00
12	906.00	42	922.25
13	906.25	43	922.50
14	906.50	44	922.75
15	906.75	45	923.00
16	915.75	46	923.25
17	916.00	47	923.50
18	916.25	48	923.75
19	916.50	49	924.00
20	916.75	50	924.25
21	917.00	51	924.50
22	917.25	52	924.75
23	917.50	53	925.00
24	917.75	54	925.25
25	918.00	55	925.50
26	918.25	56	925.75
27	918.50	57	926.00
28	918.75	58	926.25
29	919.00	59	926.50
30	919.25	60	926.75

Report No.: RKS170103003-00A

EUT was tested with Channel 1, 16 and 60.

FCC Part 15.247 Page 6 of 45

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode which was controlled by the software.

Report No.: RKS170103003-00A

EUT Exercise Software

HxZBee BZ

The worst case was performed under:

Power lever 27

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Notebook	GX620	D65874152
Hexing	Control Board	UNP 2Y1185A	PB-00470-0V02

External I/O Cable

Cable Description	Shielding Type	Length (m)	From Port	То
USB Cable	Unshielding	0.8	Control Board	Notebook

FCC Part 15.247 Page 7 of 45

Block Diagram of Test Setup

For Radiated Emissions (Below 1GHz):

For Radiated Emissions (Above 1GHz):

FCC Part 15.247 Page 8 of 45

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
\$15.205, \$15.209 & \$15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)(i)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)(i)	Channel Separation Test	Compliance
§15.247(a)(1)(i)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(i)	Quantity of hopping channel Test	Compliance
§15.247(b)(2)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

Report No.: RKS170103003-00A

FCC Part 15.247 Page 9 of 45

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date				
	Radiated Emission Test								
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-24				
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-25	2017-11-24				
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08				
ETS	Horn Antenna	3115	6229	2016-01-11	2019-01-10				
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-10-18	2019-10-17				
Sonoma Instrunent	Amplifier	330	171377	2016-12-12	2017-12-11				
Narda	Pre-amplifier	AFS42- 00101800	2001270	2016-12-12	2017-12-11				
R&S	Auto test Software	EMC32	100361	/	/				
Haojintech	Coaxial Cable	Cable-1	001	2016-12-12	2017-12-11				
Haojintech	Coaxial Cable	Cable-2	002	2016-12-12	2017-12-11				
Haojintech	Coaxial Cable	Cable-3	003	2016-12-12	2017-12-11				
MICRO-COAX	Coaxial Cable	Cable-4	004	2016-12-12	2017-12-11				
MICRO-COAX	Coaxial Cable	Cable-5	005	2016-12-12	2017-12-11				
	RI	F Conducted Test							
Rohde & Schwarz	OSP120 Base Unit	OSP120	101247	2016-07-04	2017-07-03				
BACL	EMC32 Version	EMC 32	09106	/	/				
Rohde & Schwarz	SMBV100A Vector Signal Generator	SMBV100A	261558	2016-07-04	2017-07-03				
Rohde & Schwarz	SMB 100A Signal Generator	SMB100A	110390	2016-07-04	2017-07-03				
Agilent	Power Meter	N1912A	MY5000492	2016-11-18	2017-11-17				
Agilent	Power Sensor	N1921A	MY54210024	2016-11-18	2017-11-17				
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2016-09-21	2017-09-20				
Hexing Electrical	RF Cable	N/A	N/A	2016-12-29	2017-12-28				
Conducted Emission Test									
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2016-11-25	2017-11-24				
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2016-10-10	2017-10-09				
ROHDE&SCHWARZ	LISN	ENV216	3560655016	2016-11-25	2017-11-24				
Rohde & Schwarz	CE Test software	EMC 32	100357	/	/				
MICRO-COAX	Coaxial Cable	Cable-6	006	2016-09-08	2017-09-07				

Report No.: RKS170103003-00A

FCC Part 15.247 Page 10 of 45

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1310& §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RKS170103003-00A

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	*(180/f ²)	30		
30-300	27.5	0.073	0.2	30		
300-1500	/		f/1500	30		
1500-100,000	/		1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density; According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm²);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Measurement Result

Modulation	Frequency Range	Antenna Gain		Output Power		Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
LoRa	903.25	3.0	2.00	27.00	501.19	20	0.199	0.602

Note: (1) The target output power:

LoRa: Peak power 26 ± 1 dBm, which declared by the Manufacturer.

Result: The device meet FCC MPE at 20 cm distance.

FCC Part 15.247 Page 11 of 45

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: RKS170103003-00A

Antenna Information

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

Antenna	Type/ Pattern	Model Number	Antenna Gain
1	External Antenna(I-PEX connector)	3A011A	3dBi (max)
2	External Antenna(I-PEX connector)	3A027A	3dBi (max)

Result: Compliance.

FCC Part 15.247 Page 12 of 45

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RKS170103003-00A

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 13 of 45

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RKS170103003-00A

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Refer to CISPR16-4-2and CISPR 16-4-1, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	58 %
ATM Pressure:	101.3 kPa

The testing was performed by Ada Yu on 2017-01-06.

EUT operation mode: Transmitting (Worst case: Antenna 2)

FCC Part 15.247 Page 14 of 45

AC 120V/60 Hz, Line

Report No.: RKS170103003-00A

Frequency (MHz)	QuasiPeak (dBµV)	Average (dB \mu V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.165000		39.82	9.000	L1	10.3	15.39	55.21	Compliance
0.165000	57.02		9.000	L1	10.3	8.19	65.21	Compliance
0.240000		28.16	9.000	L1	10.3	23.94	52.10	Compliance
0.240000	44.07		9.000	L1	10.3	18.03	62.10	Compliance
0.460000		20.81	9.000	L1	10.3	25.88	46.69	Compliance
0.460000	28.19		9.000	L1	10.3	28.50	56.69	Compliance
2.790000		13.40	9.000	L1	10.4	32.60	46.00	Compliance
2.790000	20.17		9.000	L1	10.4	35.83	56.00	Compliance
5.075000		12.08	9.000	L1	10.5	37.92	50.00	Compliance
5.075000	20.57		9.000	L1	10.5	39.43	60.00	Compliance
26.740000		17.30	9.000	L1	10.5	32.70	50.00	Compliance
26.740000	26.06		9.000	L1	10.5	33.94	60.00	Compliance

FCC Part 15.247 Page 15 of 45

AC 120V/60 Hz, Neutral

Report No.: RKS170103003-00A

Frequency (MHz)	QuasiPeak (dBµV)	Average (dB \mu V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000		34.85	9.000	N	10.3	21.15	56.00	Compliance
0.150000	53.25		9.000	N	10.3	12.75	66.00	Compliance
0.460000		20.44	9.000	N	10.3	26.25	46.69	Compliance
0.460000	29.57		9.000	N	10.3	27.12	56.69	Compliance
2.490000		17.63	9.000	N	10.5	28.37	46.00	Compliance
2.490000	22.79		9.000	N	10.5	33.21	56.00	Compliance
4.765000		21.30	9.000	N	10.6	24.70	46.00	Compliance
4.765000	27.37		9.000	N	10.6	28.63	56.00	Compliance
20.520000		22.23	9.000	N	10.5	27.77	50.00	Compliance
20.520000	30.85		9.000	N	10.5	29.15	60.00	Compliance
26.270000		17.63	9.000	N	10.5	32.37	50.00	Compliance
26.270000	25.81		9.000	N	10.5	34.19	60.00	Compliance

- 1) Corr.=LISN VDF (Voltage Division Factor) + Cable Loss 2) Corrected Amplitude = Reading + Corr.
- 3) Margin = Limit –Corrected Amplitude

FCC Part 15.247 Page 16 of 45

FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RKS170103003-00A

EUT Setup

Below 1 GHz:

FCC Part 15.247 Page 17 of 45

Above 1GHz:

Report No.: RKS170103003-00A

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 10 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP

Frequency Range	RBW	Video B/W	Duty cycle	Detector
	1MHz	3 MHz	Any	PK
1GHz – 10GHz	1MHz	10 Hz	>98%	
	1MHz	1/T	<98%	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 18 of 45

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RKS170103003-00A

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Refer to CISPR16-4-2 and CISPR 16-4-1, the measured level complies with the limit if

$$L_{\rm m}$$
 ++ $U_{(Lm)} \leq L_{\rm lim}$ ++ $U_{\rm cispr}$

In BACL, $U_{(Lm)}$ is less than + U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	23.8 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-01-06.

EUT operation mode: Transmitting

FCC Part 15.247 Page 19 of 45

30MHz -10 GHz:

Antenna 1

	R	eceiver		Rx An	tenna				C Part /205/209	
Frequency (MHz)	(MHz) Reading Detector Degree Heig		Height (cm)	Polar (H/V)	Corrected Factor (dB)	Corrected Amplitude (dBµV/m)	Limit (dB µ V/m)	Margin (dB)		
	Low Channel (903.25 MHz)									
31.46	31.25	QP	42	172	V	-5.73	25.52	40	14.48	
72.63	40.89	QP	289	176	V	-16.93	23.96	40	16.04	
895.48	29.35	QP	286	178	V	-0.89	28.46	46	17.54	
903.25	116.76	PK	34	208	Н	-0.81	115.95	/	/	
903.25	119.69	PK	81	207	V	-0.81	118.88	/	/	
902.00	60.40	PK	98	121	Н	-0.83	59.57	74	14.43	
902.00	56.00	PK	316	232	V	-0.83	56.67	74	17.33	
1806.50	67.47	PK	352	185	Н	-8.01	59.46	74	14.54	
1806.50	69.79	PK	302	139	V	-8.01	61.78	74	12.22	
2709.75	55.21	PK	144	238	Н	-4.83	50.38	74	23.62	
2709.25	57.06	PK	274	165	V	-4.83	52.23	74	21.77	
	Middle Channel (915.75 MHz)									
31.46	30.66	QP	155	158	V	-5.73	24.93	40	15.07	
72.63	40.37	QP	54	228	V	-16.93	23.44	40	16.56	
895.48	28.99	QP	357	139	V	-0.89	28.10	46	17.90	
915.75	111.47	PK	249	102	Н	-0.64	110.83	/	/	
915.75	120.67	PK	346	191	V	-0.64	120.03	/	/	
1831.50	69.46	PK	188	199	Н	-7.89	61.57	74	12.43	
1831.50	69.37	PK	2	110	V	-7.89	61.48	74	12.52	
2747.25	58.69	PK	215	219	Н	-4.62	54.07	74	19.93	
2747.25	60.73	PK	8	147	V	-4.62	56.11	74	17.89	
			High Cha	nnel (926	.75 MHz)				
31.46	30.87	QP	312	228	V	-5.73	25.14	40	14.86	
72.63	41.08	QP	38	129	V	-16.93	24.15	40	15.85	
895.48	29.34	QP	41	223	V	-0.89	28.45	46	17.55	
926.75	111.66	PK	113	214	Н	-0.49	116.27	/	/	
926.75	120.98	PK	218	221	V	-0.49	119.20	/	/	
928.00	61.00	PK	216	151	Н	-0.47	59.93	74	14.07	
928.00	57.50	PK	247	178	V	-0.47	57.03	74	16.97	
1853.50	66.05	PK	128	178	Н	-7.78	59.69	74	14.31	
1853.50	68.39	PK	112	173	V	-7.78	62.01	74	11.99	
2780.25	53.28	PK	313	155	Н	-4.44	50.77	74	23.23	
2780.25	53.26	PK	167	164	V	-4.44	52.62	74	21.38	

Report No.: RKS170103003-00A

Note: The fundermental test is without Amplifier

FCC Part 15.247 Page 20 of 45

Antenna 2

	R	Receiver		Rx An	tenna				C Part /205/209	
Frequency (MHz)			Height (cm)	Polar (H/V)	Corrected Factor (dB)	Corrected Amplitude (dBµV/m)	Limit (dB µ V/m)	Margin (dB)		
Low Channel (903.25 MHz)										
32.76	31.05	QP	355	130	V	-6.40	24.65	40	15.35	
69.12	40.26	QP	252	237	V	-16.95	23.31	40	16.69	
881.98	30.11	QP	44	113	V	-0.99	29.12	46	16.88	
903.25	115.28	PK	108	232	Н	-0.81	114.47	/	/	
903.25	119.37	PK	44	141	V	-0.81	118.56	/	/	
902.00	59.26	PK	52	207	Н	-0.83	58.43	74	15.57	
902.00	56.39	PK	73	218	V	-0.83	56.54	74	17.46	
1806.50	66.29	PK	188	224	Н	-8.01	58.28	74	15.72	
1806.50	69.06	PK	26	174	V	-8.01	61.05	74	12.95	
2709.25	56.22	PK	103	235	Н	-4.83	51.39	74	22.61	
2709.25	58.01	PK	219	148	V	-4.83	53.18	74	20.82	
	Middle Channel (915.75 MHz)									
32.76	31.93	QP	98	218	V	-6.40	25.53	40	14.47	
69.12	39.98	QP	89	172	V	-16.95	23.03	40	16.97	
881.98	31.16	QP	82	242	V	-0.99	30.17	46	15.83	
915.75	113.26	PK	337	148	Н	-0.64	112.62	/	/	
915.75	120.11	PK	246	157	V	-0.64	119.47	/	/	
1831.50	68.79	PK	42	197	Н	-7.89	60.90	74	13.10	
1831.50	69.26	PK	323	227	V	-7.89	61.37	74	12.63	
2747.25	58.66	PK	350	188	Н	-4.62	54.04	74	19.96	
2747.25	59.98	PK	257	107	V	-4.62	55.36	74	18.64	
			High Cha	nnel (926	.75 MHz)				
32.76	30.69	QP	308	105	V	-6.40	24.29	40	15.71	
69.12	40.37	QP	41	174	V	-16.95	23.42	40	16.58	
881.98	30.09	QP	354	160	V	-0.99	29.10	46	16.90	
926.75	113.69	PK	151	156	Н	-0.49	114.79	/	/	
926.75	119.99	PK	344	154	V	-0.49	118.88	/	/	
928.00	60.39	PK	281	123	Н	-0.47	58.79	74	15.21	
928.00	57.37	PK	242	204	V	-0.47	56.90	74	17.10	
1853.50	65.37	PK	282	206	Н	-7.78	58.51	74	15.49	
1853.50	67.34	PK	22	174	V	-7.78	61.28	74	12.72	
2780.25	53.96	PK	301	151	Н	-4.44	51.78	74	22.22	
2780.25	52.64	PK	355	132	V	-4.44	53.57	74	20.43	

Note: The fundermental test is without Amplifier

FCC Part 15.247 Page 21 of 45

Antenna 1

Frequency	Peak	Maggurament@3m Polar D		Duty Cycle Outy Cycle Correction		FCC Part 15.249/205/209				
(MHz)	Hz) (dBμV/m) (H/V) Duty Cycle Correction Factor (dB)		Ampitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)					
		Lov	w Channel (903	3.25 MHz)						
903.25	116.76	Н	0.1246	-18.09	98.68	/	/			
903.25	119.69	V	0.1246	-18.09	101.61	/	/			
902.00	60.40	Н	0.1246	-18.09	42.32	54	11.68			
902.00	56.00	V	0.1246	-18.09	37.92	54	16.08			
1806.50	67.47	Н	0.1246	-18.09	49.39	54	4.61			
1806.50	69.79	V	0.1246	-18.09	51.71	54	2.29			
2709.75	55.21	Н	0.1246	-18.09	37.13	54	16.87			
2709.75	57.06	V	0.1246	-18.09	38.98	54	15.02			
	Middle Channel (915.75 MHz)									
915.75	111.47	Н	0.1246	-18.09	93.39	/	/			
915.75	120.67	V	0.1246	-18.09	102.59	/	/			
1831.50	69.46	Н	0.1246	-18.09	51.38	54	2.62			
1831.50	69.37	V	0.1246	-18.09	51.29	54	2.71			
2747.25	58.69	Н	0.1246	-18.09	40.61	54	13.39			
2747.25	60.73	V	0.1246	-18.09	42.65	54	11.35			
		Hig	h Channel (92	6.75 MHz)						
926.75	111.66	Н	0.1246	-18.09	93.58	/	/			
926.75	120.98	V	0.1246	-18.09	102.90	/	/			
928.00	61.00	Н	0.1246	-18.09	42.92	54	11.08			
928.00	57.50	V	0.1246	-18.09	39.42	54	14.58			
1853.50	66.05	Н	0.1246	-18.09	47.97	54	6.03			
1853.50	68.39	V	0.1246	-18.09	50.31	54	3.69			
2780.25	53.28	Н	0.1246	-18.09	35.20	54	18.80			
2780.25	53.26	V	0.1246	-18.09	35.18	54	18.82			

Max Duty cycle = 12.46ms/100ms=0.1246

Duty Cycle Correction Factor = 20*lg(dutycycle)= -18.09

AV = PK + Duty Cycle Correction Factor

FCC Part 15.247 Page 22 of 45

Antenna 2

Frequency	Peak Measurement@3m	Polar	Duty Cycle	Duty Cycle Correction	Corrected Ampitude	FCC Part 15.249/205/209				
(MHz)	$\frac{\text{MHz}}{\text{(dB}_{\mu}\text{V/m)}} = \frac{\text{(H/V)}}{\text{(H/V)}} = \frac{\text{Duty Cycle}}{\text{Factor (dB)}}$		(dBμV/m)	Limit (dBµV/m)	Margin (dB)					
		Lov	v Channel (903	3.25 MHz)						
903.25	115.28	Н	0.1246	-18.09	97.20	/	/			
903.25	119.37	V	0.1246	-18.09	101.29	/	/			
902.00	59.26	Н	0.1246	-18.09	41.18	54	12.82			
902.00	56.39	V	0.1246	-18.09	38.31	54	15.69			
1806.50	66.29	Н	0.1246	-18.09	48.21	54	5.79			
1806.50	69.06	V	0.1246	-18.09	50.98	54	3.02			
2709.75	56.22	Н	0.1246	-18.09	38.14	54	15.86			
2709.75	58.01	V	0.1246	-18.09	39.93	54	14.07			
	Middle Channel (915.75 MHz)									
915.75	113.26	Н	0.1246	-18.09	95.18	/	/			
915.75	120.11	V	0.1246	-18.09	102.03	/	/			
1831.50	68.79	Н	0.1246	-18.09	50.71	54	3.29			
1831.50	69.26	V	0.1246	-18.09	51.18	54	2.82			
2747.25	58.66	Н	0.1246	-18.09	40.58	54	13.42			
2747.25	59.98	V	0.1246	-18.09	41.90	54	12.10			
		Hig	h Channel (92	6.75 MHz)						
926.75	113.69	Н	0.1246	-18.09	95.61	/	/			
926.75	119.99	V	0.1246	-18.09	101.91	/	/			
928.00	60.39	Н	0.1246	-18.09	42.31	54	11.69			
928.00	57.37	V	0.1246	-18.09	39.29	54	14.71			
1853.50	65.37	Н	0.1246	-18.09	47.29	54	6.71			
1853.50	67.34	V	0.1246	-18.09	49.26	54	4.74			
2780.25	53.96	Н	0.1246	-18.09	35.88	54	18.12			
2780.25	52.64	V	0.1246	-18.09	34.56	54	19.44			

Max Duty cycle = 12.46ms/100ms=0.1246

Duty Cycle Correction Factor = 20*lg(dutycycle)= -18.09

AV = PK + Duty Cycle Correction Factor

FCC Part 15.247 Page 23 of 45

Middle Channel

FCC Part 15.247 Page 24 of 45

High Channel

Report No.: RKS170103003-00A

FCC Part 15.247 Page 25 of 45

FCC §15.247(a) (1) (i)-CHANNEL SEPARATION TEST

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

Report No.: RKS170103003-00A

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	24.1 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-01-06.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

FCC Part 15.247 Page 26 of 45

Modulation	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
	Low	902.75	0.2505	≥0.14068	Pass
	Adjacent	903.00	0.2303		
	Middle 1	906.75	8.9985	≥0.14008	Pass
LoRa	Adjacent	915.75	0.2505		
Loka	Middle 2	915.75		≥0.14008	Pass
	Adjacent	916.00		>0.14006	1 488
	Adjacent	926.50		≥0.14008	Pass
	High	926.75	0.2303	≥0.14008	rass

The limit = 20dB Bandwidth

Low Channel

FCC Part 15.247 Page 27 of 45

Middle Channel 1

Report No.: RKS170103003-00A

Middle Channel 2

FCC Part 15.247 Page 28 of 45

High Channel

Report No.: RKS170103003-00A

FCC Part 15.247 Page 29 of 45

FCC §15.247(a) (1) (i)- 20 dB EMISSION BANDWIDTH

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Report No.: RKS170103003-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24.5 ℃	
Relative Humidity:	56 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Ada Yu on 2017-01-06

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

FCC Part 15.247 Page 30 of 45

Modulation	Channel	Frequency (MHz)	20 dB Emission Bandwidth (kHz)	Limit (kHz)
	Low	903.25	140.68	≤500
LoRa	Middle	915.75	140.08	≤500
	High	926.75	140.08	≤500

Low Channel

FCC Part 15.247 Page 31 of 45

Middle Channel

Report No.: RKS170103003-00A

High Channel

FCC Part 15.247 Page 32 of 45

FCC §15.247(a) (1) (i)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Report No.: RKS170103003-00A

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-01-06

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

FCC Part 15.247 Page 33 of 45

Modulation	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)	
LoRa	902~928	60	≥50	

Number of Hopping Channels

FCC Part 15.247 Page 34 of 45

Number of Hopping Channels

Report No.: RKS170103003-00A

Number of Hopping Channels

FCC Part 15.247 Page 35 of 45

FCC §15.247(a) (1) (i) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Report No.: RKS170103003-00A

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Test Data

Environmental Conditions

Temperature:	24.2 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-01-08.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

Modulation	Channel	Pulse Width	Pulse Number	Dwell Time	Limit	Result
		(ms)		(S)	(S)	
LoRa	Low	12.340	7	0.086	≤0.4	Pass
	Middle	12.340	7	0.086	≤0.4	Pass
	High	12.460	7	0.087	≤0.4	Pass
	Note:Dwell time = Pulse time*N					

FCC Part 15.247 Page 36 of 45

Low Channel Number of pusles

Single Pusle

FCC Part 15.247 Page 37 of 45

Middle Channel Number of pusles

Report No.: RKS170103003-00A

Single Pusle

FCC Part 15.247 Page 38 of 45

High Channel Number of pusles

Report No.: RKS170103003-00A

Single Pusle

FCC Part 15.247 Page 39 of 45

FCC §15.247(b) (2) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Report No.: RKS170103003-00A

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-01-06.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

FCC Part 15.247 Page 40 of 45

Modulation	Channel	Frequency (MHz)	Output	Limit	
			(dBm)	(mW)	(mW)
	Low	903.25	26.67	464.52	≤1000
LoRa	Middle	915.75	26.47	443.61	≤1000
	High	926.75	25.78	378.44	≤1000

Low Channel

FCC Part 15.247 Page 41 of 45

Middle Channel

Report No.: RKS170103003-00A

High Channel

FCC Part 15.247 Page 42 of 45

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RKS170103003-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Ada Yu on 2017-01-08.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following plots.

FCC Part 15.247 Page 43 of 45

Band Edge-Left Side

Report No.: RKS170103003-00A

Band Edge-Right Side

FCC Part 15.247 Page 44 of 45

Band Edge-Left Side (Hopping)

Report No.: RKS170103003-00A

Band Edge-Right Side (Hopping)

***** END OF REPORT *****

FCC Part 15.247 Page 45 of 45