Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Dynamic Programming

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm.
 - Rather than give the general structure, let us first give a motivating example:
 - Matrix Chain-Products
- Review: Matrix Multiplication.
 - C = A*B
 - \blacksquare A is $d \times e$ and B is $e \times f$

$$C[i,j] = \sum_{k=0}^{e-1} A[i,k] * B[k,j]$$

■ *O*(*def*) time

B

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- \blacksquare A_i is d_i \times d_{i+1}
- Problem: How to parenthesize?

Example

- B is 3 × 100
- C is 100 × 5
- D is 5 × 5
- (B*C)*D takes 1500 + 75 = 1575 ops
- B*(C*D) takes 1500 + 2500 = 4000 ops

An Enumeration Approach

- Matrix Chain-Product Alg.:
 - Try all possible ways to parenthesize $A=A_0*A_1*...*A_{n-1}$
 - Calculate number of ops for each one
 - Pick the one that is best
- Running time:
 - The number of paranethesizations is equal to the number of binary trees with n nodes
 - This is exponential!
 - It is called the Catalan number, and it is almost 4ⁿ.
 - This is a terrible algorithm!

A Greedy Approach

- ◆ Idea #1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

Another Greedy Approach

- Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

A "Recursive" Approach

- Define subproblems:
 - Find the best parenthesization of A_i*A_{i+1}*...*A_i.
 - Let N_{i,j} denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is $N_{0,n-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_0^*...*A_i)^*(A_{i+1}^*...*A_{n-1})$.
 - Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for N_{i,j} is the following:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Note that subproblems are not independent--the subproblems overlap.

A Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- N_{i,i}'s are easy, so start with them
- Then do length 2,3,... subproblems, and so on.
- The running time is O(n³)

Algorithm *matrixChain(S)*:

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal paranethization of *S*

for
$$i \leftarrow 1$$
 to $n-1$ do $N_{i,i} \leftarrow 0$

for
$$b \leftarrow 1$$
 to $n-1$ do
for $i \leftarrow 0$ to $n-b-1$ do

$$j \leftarrow i+b$$
 $N_{i,j} \leftarrow +\text{infinity}$
for $k \leftarrow i$ to $j-1$ do

$$N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$$

Java Implementation

```
public static int[ ][ ] matrixChain(int[ ] d) {
      int n = d.length - 1;
                                                     // number of matrices
      int[][] N = new int[n][n];
                                                    // n-by-n matrix; initially zeros
      for (int b=1; b < n; b++)
                                                    // number of products in subchain
        for (int i=0; i < n - b; i++) {
                                                    // start of subchain
          int i = i + b;
                                                       end of subchain
          N[i][j] = Integer.MAX_VALUE;
                                                    // used as 'infinity'
          for (int k=i; k < j; k++)
            N[i][j] = Math.min(N[i][j], N[i][k] + N[k+1][j] + d[i]*d[k+1]*d[j+1]);
10
      return N;
12
```

A Dynamic Programming Algorithm Visualization

answer

- The bottom-up construction fills in the N array by diagonals
- N_{i,j} gets values from pervious entries in i-th row and j-th column
- Filling in each entry in the N table takes O(n) time.
- ◆ Total run time: O(n³)
- Getting actual
 parenthesization can be
 done by remembering
 "k" for each N entry

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Subsequences

- A *subsequence* of a character string $x_0x_1x_2...x_{n-1}$ is a string of the form $x_{i_1}x_{i_2}...x_{i_k}$, where $i_j < i_{j+1}$.
- Not the same as substring!
- Example String: ABCDEFGHIJK
 - Subsequence: ACEGJIK
 - Subsequence: DFGHK
 - Not subsequence: DAGH

The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet is {A,C,G,T})
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

A Poor Approach to the LCS Problem

- A Brute-force solution:
 - Enumerate all subsequences of X
 - Test which ones are also subsequences of Y
 - Pick the longest one.
- Analysis:
 - If X is of length n, then it has 2ⁿ subsequences
 - This is an exponential-time algorithm!

A Dynamic-Programming Approach to the LCS Problem

- Define L[i,j] to be the length of the longest common subsequence of X[0..i] and Y[0..j].
- Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to indicate that the null part of X or Y has no match with the other.
- Then we can define L[i,j] in the general case as follows:
 - 1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
 - 2. If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no match here) disegni errati, confrontare con libro

Case 1:

Y = CGATAATTGAGA L[8,10] = 5 X = GTTCCTAATA

Y=CGATAATTGAG

X=GTTCCTAATA

Case 2:

L[9,9]=6 *L*[8,10]=5

An LCS Algorithm

Algorithm LCS(X,Y): Input: Strings X and Y with n and m elements, respectively Output: For i = 0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string that is a subsequence of both the string X[0..i] = x₀x₁x₂...x_i and the string Y [0.. j] = y₀y₁y₂...y_j

for i = 1 to n-1 do
L[i,-1] = 0
for j = 0 to m-1 do
L[-1,j] = 0
for i = 0 to n-1 do
 for j = 0 to m-1 do
 if x_i = y_j then
L[i, j] = L[i-1, j-1] + 1

else

 $L[i, j] = max\{L[i-1, j], L[i, j-1]\}$

return array L

Visualizing the LCS Algorithm

disegni errati, confrontare con libro

L	-1	0	1	2	3	4	5	6	7	8	9	10	11
-1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	2	2	2	2	2	2	2	2	2
2	0	0	1	1	2	2	2	3	3	3	3	3	3
3	0	1	1	1	2	2	2	3	3	3	3	3	3
4	0	1	1	1	2	2	2	3	3	3	3	3	3
5	0	1	1	1	2	2	2	3	4	4	4	4	4
6	0	1	1	2	2	3	3	3	4	4	5	5	5
7	0	1	1	2	2	3	4	4	4	4	5	5	6
8	0	1	1	2	3	3	4	5	5	5	5	5	6
9	0	1	1	2	3	4	4	5	5	5	6	6	6

Analysis of LCS Algorithm

- We have two nested loops
 - The outer one iterates *n* times
 - The inner one iterates *m* times
 - A constant amount of work is done inside each iteration of the inner loop
 - Thus, the total running time is O(nm)
- Answer is contained in L[n,m] (and the subsequence can be recovered from the L table).

Java Implementation

Java Implementation, Output of the Solution

```
/** Returns the longest common substring of X and Y, given LCS table L. */
    public static char[] reconstructLCS(char[] X, char[] Y, int[][] L) {
      StringBuilder solution = new StringBuilder();
      int j = X.length;
      int k = Y.length;
      while (L[j][k] > 0)
                                                        common characters remain
        if (X[j-1] == Y[k-1]) {
          solution.append(X[j-1]);
10
        \} else if (L[j-1][k] >= L[j][k-1])
          i--:
        else
13
14
          k--:
      // return left-to-right version, as char array
15
      return solution.reverse().toString().toCharArray();
16
17
```