IDS703 Final Project Report

Anna Dai, Satvik Kishore, Moritz Wilksch December 12th, 2021

1 Introduction

In this project, we work on tweet classification as a Natural Language Processing problem, more specifically, as a document classification problem. Twitter is a microblogging service where users post publicly visible "tweets", which are essentially texts with less than 280 characters. These tweets may also contain other media objects which are discarded for the purposes of this project. These tweets most often serve as discussion pieces as part of larger conversations. They are relevant to any number of topics under discussion. These "topics" are also often explicitly highlighted by the user using a "hashtag", i.e. text with '#' followed by the topic name, or a commonly used shorthand for it. For the purpose of our project, we treat these hashtags as "topics" for our document classification model, where each tweet is an instance of a document.

2 Data

2.1 Collection

We have manually selected seven topics, or hashtags, for classification: crypto, tesla, championsleague, formula1, thanksgiving, holidays, and covid19. These topics were intentionally selected so that some topics have some degree of overlap between them (e.g. holidays and thanksgiving), some are easier to differentiate (e.g. crypto vs formula1), as well as one independent topic that is often mentioned with the others (i.e. covid19). We leverage the python library twint [?] to scrape approximately 10,000 tweets, or documents, for each of these seven topics.

2.2 Pre-Prosessing

Then, we proceed to pre-process the scraped data before steps before the next steps. This included tokenization of the tweets into words. [TODO: elimination of common words?]. Conversion of emojis into tokens (each appearance of an emoji is a token. Multiple emojis strung together are treated as different tokens in sequence). We also removed punctuation marks. Following these steps, we split our data into three parts using a 60:20:20 split to form a training dataset, a validation dataset, and a test dataset.

3 Methodology

3.1 Generative Model

We used a Latent Dirichlet allocation (LDA) model as a generative model to learn from the corpus we have collected. This type of model does not require any hyperparamter tuning, and thus was trained using a combination of the training and validation dataset. We used the LDA implementation from scikit-learn [?].

3.2 Discriminative Model

- network description hyperparameter tuning on synth data application to real transfer learning on real data
 - compare to model that has ONLY been trained on real?

4 Results

4.1 Benchmarking on Synthetic Data

	precision	recall	f1-score	support
thanksgiving	0.916	0.969	0.942	1979
formula1	0.986	0.897	0.939	2172
covid19	0.960	0.966	0.963	2002
championsleague	0.957	0.965	0.961	1926
crypto	0.945	0.901	0.923	2017
tesla	0.943	0.985	0.963	1967
holidays	0.924	0.954	0.939	1937

Table 1: Benchmark results of neural net (trained on synthetic data only) on synthetic data

4.2 Benchmarking on Real Data

	precision	recall	f1-score	support
thanksgiving	0.499	0.401	0.444	1920
formula1	0.033	0.037	0.035	1800
covid19	0.183	0.454	0.261	801
championsleague	0.484	0.503	0.494	1899
crypto	0.717	0.317	0.440	4514
tesla	0.326	0.495	0.393	1332
holidays	0.099	0.150	0.119	1403

Table 2: Benchmark results of neural net (trained on synthetic data only) on real data

	precision	recall	f1-score	support
thanksgiving	0.386	0.524	0.445	1539
formula1	0.009	0.012	0.010	1468
covid19	0.797	0.518	0.628	3100
championsleague	0.857	0.542	0.664	3071
crypto	0.543	0.751	0.630	1389
tesla	0.838	0.567	0.676	3036
holidays	0.032	0.164	0.054	397

Table 3: Benchmark results of neural net (trained on synthetic data and real data) on synthetic data

	precision	recall	f1-score	support
thanksgiving	0.814	0.921	0.864	1362
formula1	0.742	0.889	0.809	1691
covid19	0.811	0.798	0.804	2021
championsleague	0.878	0.673	0.762	2578
crypto	0.764	0.782	0.772	1950
tesla	0.798	0.709	0.751	2273
holidays	0.824	0.974	0.893	1794

Table 4: Benchmark results of neural net (trained on synthetic data and real data) on real data

	precision	recall	f1-score	support
thanksgiving	0.395	0.482	0.435	1714
formula1	0.052	0.046	0.049	2217
covid19	0.519	0.350	0.418	2989
championsleague	0.616	0.708	0.659	1689
crypto	0.566	0.553	0.559	1969
tesla	0.636	0.546	0.588	2391
holidays	0.048	0.092	0.063	1031

Table 5: Benchmark results of neural net (trained on real data only) on synthetic data

	precision	recall	f1-score	support
thanksgiving	0.885	0.822	0.852	1659
formula1	0.825	0.810	0.817	2063
covid19	0.865	0.769	0.814	2236
championsleague	0.796	0.844	0.819	1863
crypto	0.862	0.710	0.779	2423
tesla	0.680	0.855	0.758	1608
holidays	0.838	0.979	0.903	1817

Table 6: Benchmark results of neural net (trained on real data only) on real data

	precision	recall	f1-score	support
thanksgiving	0.946	0.979	0.962	2000
formula1	0.986	0.977	0.982	1942
covid19	0.986	0.986	0.986	1976
championsleague	0.986	0.969	0.977	2092
crypto	0.986	0.987	0.987	2014
tesla	0.986	0.976	0.981	2054
holidays	0.967	0.969	0.968	1922

Table 7: Benchmark results of LDA classification on synthetic data

	precision	recall	f1-score	support
thanksgiving	0.150	0.107	0.125	2122
formula1	0.558	0.562	0.560	1975
covid19	0.034	0.022	0.026	2026
championsleague	0.339	0.443	0.384	1541
crypto	0.333	0.304	0.318	1988
tesla	0.412	0.319	0.359	2021
holidays	0.387	0.670	0.490	1996

Table 8: Benchmark results of LDA classification on real data

5 Conclusion

hamilton	barcelona	vaccine	christmas	turkey	elon	btc
max ocon	bayernbara	immunity vaccines	december nicholas	nick	musk fsd	cryptos coins
lewis vsc	zenit barca	deaths tests	festive visit	cotton flex	teslas ev	eth ssfeed
championship	bayern	measures	snowman	gratitude	supercharger	tether
abu fia	ucl liverpool	boris booster	pack wreath	nov rosemary	binance cointrade	io opportunity
formula race	milan matchday	vaccinated vaccination	rainbow	chronicles skyrocket	giga autopilot	dump analyzing