Advice for applying Machine Learning

Andrew Ng

Advice for applying machine learning Deciding what to try next

Machine learning cycle

Debugging a learning algorithm

Suppose you have implemented regularized linear regression to predict housing prices

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
- Try decreasing λ
- Try increasing λ

Machine learning diagnostic

- Diagnostic: A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.
- Diagnostics can take time to implement, but doing so can be a very good use of your time.

Advice for applying machine learning Evaluating a hypothesis

Evaluating your hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Overfit: Fails to generalize to new examples not in training set.

```
x_1 =  size of house x_2 =  no. of bedrooms x_3 =  no. of floors x_4 =  age of house x_5 =  average income in neighborhood x_6 =  kitchen size
```

 $\vdots \\ x_{100}$

Evaluating your hypothesis

How well does the model generalize on data not used for training?

dataset

	Size	Price		$(a_{2}(1), a_{3}(1))$	
70%	2104	400		$(x^{(1)}, y^{(1)}) \ (x^{(2)}, y^{(2)})$	
	1600	330		$(x^{(2)},y^{(2)})$	
	2400	369	>	: :	training
	1416	232		:	set
	3000	540		:	
	1985	300		$(x^{(m)}, y^{(m)})$	
	1534	315		, , ,	
30%	1427	199		(1) (1)	
	1380	212		$(x_{test}^{(1)}, y_{test}^{(1)})$	
	1494	243		$(x_{test}^{(2)}, y_{test}^{(2)})$	test
				: :	set
				$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$	

Training/testing procedure for linear regression

- Learn parameter θ from training data (minimizing training error $J(\theta)$)
- Compute test set error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)} \right)^2$$

Training/testing procedure for logistic regression

- Learn parameter heta from training data
- Compute test set error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)} \right)^2$$

- Misclassification error (0/1 misclassification error):

$$err(h_{\theta}(x), y) = \begin{cases} 1 & \text{if } h_{\theta}(x) \ge 0.5, y = 0\\ & \text{or if } h_{\theta}(x) < 0.5, y = 1\\ 0 & \text{otherwise} \end{cases}$$

Test error =
$$\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err(h_{\theta}(x_{test}^{(i)}), y^{(i)})$$

Advice for applying machine learning Model selection and training/validation/test sets

Overfitting example

Once parameters $\theta_0, \theta_1, \dots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error

Model selection

Choose $\theta_0 + \dots \theta_5 x^5$

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$

Problem: $J_{test}(\theta^{(5)})$ is likely to be an optimistic estimate of generalization error. i.e. our extra parameter (d = degree of polynomial) is fit to test set

Evaluating your hypothesis

Train/validation/test error

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^{2}$$

Model selection

1.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 $\theta^{(1)} \to J_{cv}(\theta^{(1)})$
2. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$ $\theta^{(2)} \to J_{cv}(\theta^{(2)})$
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}$ \vdots \vdots
10. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ $\theta^{(10)} \to J_{cv}(\theta^{(10)})$

Pick the model with minimum cross validation error

$$\theta_0 + \theta_1 x_1 + \dots + \theta_4 x^4$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$

Advice for applying machine learning Diagnosing bias vs. variance

Bias/variance (easy in 2D)

High bias (underfit)

"Just right"

High variance (overfit)

Bias/Variance

Training error: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{\infty} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Cross validation error: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{\infty} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Bias (underfit):

 $J_{train}(\theta)$ will be high

$$J_{cv}(\theta) \approx J_{train}(\theta)$$

Variance (overfit):

 $J_{train}(\theta)$ will be low

$$J_{cv}(\theta) >> J_{train}(\theta)$$

Advice for applying machine learning Regularization and bias/variance

Linear regression with regularization

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_j^2$$

Large λ High bias (underfit)

Intermediate λ "Just right"

Small λ High variance (overfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

 $h_{\theta}(x) \approx \theta_0$

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

Choosing the regularization parameter λ

$$\begin{array}{lll} \text{Model:} & h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \\ & J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2} \\ \text{1.} & \text{Try } \lambda = 0 \\ \text{2.} & \text{Try } \lambda = 0.01 \\ \text{3.} & \text{Try } \lambda = 0.02 \\ \text{4.} & \text{Try } \lambda = 0.04 \\ \text{5.} & \text{Try } \lambda = 0.08 \\ & \vdots \\ \text{12.} & \text{Try } \lambda = 10 \\ & \theta^{(12)} \rightarrow J_{cv}(\theta^{(12)}) \end{array}$$

Pick (say) $\theta^{(5)}$. Test error: $J_{test}(\theta^{(5)})$

Bias/variance as a function of the regularization parameter λ

One of the challenges with building machine learning systems is that there's so many things you could change

Advice for applying machine learning Learning curves

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

$$J_{cv}(\theta)$$

$$J_{train}(\theta)$$

$$m \text{ (training set size)}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

High bias

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{100} x^{100}$$
(and small λ)

Advice for applying machine learning Deciding what to try next (revisited)

Debugging a learning algorithm

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples: fixes high variance
- Try smaller sets of features: fixes high variance
- Try getting additional features: fixes high bias
- Try adding polynomial features: fixes high bias
- Try decreasing λ : fixes high bias
- Try increasing λ : fixes high variance

Advice for applying machine learning Neural networks

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting)

Computationally more expensive

Use regularization (λ) to address overfitting

Neural networks: early stopping to avoid overfitting

Neural networks: early stopping to avoid overfitting

