A note on the size of \mathcal{N} -free families

Ryan R. Martin*

Department of Mathematics Iowa State University 396 Carver Hall Ames, Iowa, U.S.A.

rymartin@iastate.edu

Shanise Walker

Department of Mathematics Iowa State University 396 Carver Hall Ames, Iowa, U.S.A.

shanise1@iastate.edu

Submitted: February 21, 2017; Mathematics Subject Classifications: 06A06

Abstract

The \mathcal{N} poset consists of four distinct sets W, X, Y, Z such that $W \subset X, Y \subset X$, and $Y \subset Z$ where W is not necessarily a subset of Z. A family \mathcal{F} , considered as a subposet of the n-dimensional Boolean lattice \mathcal{B}_n , is \mathcal{N} -free if it does not contain \mathcal{N} as a subposet. Let $\mathrm{La}(n,\mathcal{N})$ be the size of a largest \mathcal{N} -free family in \mathcal{B}_n . Katona and Tarján proved that $\mathrm{La}(n,\mathcal{N}) \geqslant \binom{n}{k} + A(n,4,k+1)$, where $k = \lfloor n/2 \rfloor$ and A(n,4,k+1) is the size of a single-error-correcting code with constant weight k+1. In this note, we prove for n even and k = n/2, $\mathrm{La}(n,\mathcal{N}) \geqslant \binom{n}{k} + A(n,4,k)$, which improves the bound on $\mathrm{La}(n,\mathcal{N})$ in the second order term for some values of n and should be an improvement for an infinite family of values of n, depending on the behavior of the function $A(n,4,\cdot)$.

Keywords: forbidden subposets, error-correcting codes

1 Introduction

The *n*-dimensional Boolean lattice, \mathcal{B}_n , denotes the partially ordered set (poset) $(2^{[n]}, \subseteq)$, where $[n] = \{1, \ldots, n\}$ and, for every finite set S, 2^S denotes the set of subsets of S. For posets, $P = (P, \preceq)$ and $P' = (P', \preceq)$, we say P' is a (weak) subposet of P if there exists an injection $f: P' \to P$ that preserves the partial ordering. That is, whenever $u \leq v$ in P', we have $f(u) \leq f(v)$ in P. If \mathcal{F} is a subposet of \mathcal{B}_n such that \mathcal{F} contains no subposet P, we say \mathcal{F} is P-free.

P-free posets (or P-free families) have been extensively studied, beginning with Sperner's theorem in 1928. Sperner [7] proved that the size of the largest antichain in \mathcal{B}_n is $\binom{n}{\lfloor n/2 \rfloor}$.

^{*}This work was supported by a grant from the Simons Foundation (#353292, Ryan R. Martin).

Erdős [2] generalized this result to chains. Katona and Tarján [6] addressed the problem of \mathcal{V} -free families and got an asymptotic result. Griggs and Katona [5] addressed \mathcal{N} -free families, obtaining Theorem 1 below. See Griggs and Li [4] for a survey of the progress on P-free families. Let La(n, P) denote the size of the largest P-free family in \mathcal{B}_n .

The main result of this note is Theorem 4, in which, for some values of n, we improve the bounds on $\text{La}(n, \mathcal{N})$ in the second-order term. The poset \mathcal{N} consists of four distinct sets W, X, Y, Z such that $W \subset X, Y \subset X$, and $Y \subset Z$. However, W is not necessarily a subset of Z. See Figure 1. The earliest extremal result on \mathcal{N} -free families is Theorem 1.

Figure 1: The \mathcal{N} poset.

Theorem 1 (Griggs and Katona [5]).

$$\binom{n}{\lfloor n/2 \rfloor} \left(1 + \frac{1}{n} + \Omega \left(\frac{1}{n^2} \right) \right) \leqslant \operatorname{La}(n, \mathcal{N}) \leqslant \binom{n}{\lfloor n/2 \rfloor} \left(1 + \frac{2}{n} + O \left(\frac{1}{n^2} \right) \right).$$

The construction for the lower bound of Theorem 1 comes directly from a previous result of Katona and Tarján [6] from 1983 on \mathcal{V} -free families. The poset \mathcal{V} consists of three elements X,Y,Z such that $Y\subset X$ and $Y\subset Z$. It is clear that $\mathrm{La}(n,\mathcal{V})\leqslant\mathrm{La}(n,\mathcal{N})$ because any \mathcal{V} -free family is also \mathcal{N} -free.

To establish the lower bound, Katona and Tarján used a constant-weight code construction due to Graham and Sloane [3] from 1980. In the proof of Theorem 4, we obtain a lower bound that appears to be larger than the current known bound. However, whether it is an improvement depends on the behavior of some functions well-known in coding theory. In order to discuss our results we need some brief coding theory background.

1.1 Coding Theory Background

Let $A(n, 2\delta, k)$ denote the size of the largest family of $\{0, 1\}$ -vectors of length n such that each vector has exactly k ones and the Hamming distance between any pair of distinct vectors is at least 2δ . This is the same as the size of the largest family of subsets of [n] such that each subset has size exactly k and the symmetric difference of any pair of distinct sets is at least 2δ .

The quantity $A(n, 2\delta, k)$ is important in the field of error-correcting codes. In fact, A(n, 4, k) computes the size of a single-error-correcting code with constant weight k. Henceforth, we will use "SEC code" as shorthand for "single-error-correcting code."

The first nontrivial value of δ for $A(n, 2\delta, k)$ is $\delta = 2$. Graham and Sloane [3] give a lower bound construction for A(n, 4, k).

Theorem 2 (Graham and Sloane [3]). $A(n,4,k) \ge \frac{1}{n} \binom{n}{k}$.

1.2 Main Result

Katona and Tarján [6] estimated the following lower bound for \mathcal{N} -free families.

Theorem 3. Let $k = \lfloor n/2 \rfloor$. Then,

$$\operatorname{La}(n, \mathcal{N}) \geqslant \binom{n}{k} + A(n, 4, k+1).$$

The following theorem is our main result of the note.

Theorem 4. Let n be even and let k = n/2. Then,

$$\operatorname{La}(n, \mathcal{N}) \geqslant \binom{n}{k} + A(n, 4, k).$$
 (1)

Remark 5. This is potentially an improvement when n is even. We note that the same 3-level construction works for n odd and k = (n-1)/2. This gives a family of size $\binom{n}{k} + A(n,4,k)$ nontrivially in three layers. However, since A(n,4,k) = A(n,4,k+1) in the odd case, this does not provide an improvement to the known bounds.

We believe that, for $n \ge 6$, the quantity A(n,4,k) is strictly unimodal as a function of k as long as $3 \le k \le n-3$. This strict unimodality has been established [1] for $6 \le n \le 12$ and known bounds suggest that it is the case for larger values of n as well. If unimodality holds, then A(n,4,k) would achieve its maximum uniquely at $k = \lfloor n/2 \rfloor$ or $k = \lceil n/2 \rceil$. Therefore, we expect (1) to also be a strict improvement over Theorem 3 in the case where n is even. However, to our knowledge, the unimodality of A(n,4,k) has never been established and seems to be a highly nontrivial problem.

Proof of Theorem 4.

Given k = n/2, let C be a constant weight SEC code of size A(n, 4, k). Define $C_{\text{up}} := \{c \cup \{i\} : c \in C, i \notin c\}$ and $C_{\text{down}} := \{c - \{i\} : c \in C, i \in c\}$. Claim 6 gives some important properties of $C_{\text{up}} \cup C_{\text{down}}$.

Claim 6.

- (i) Both C_{up} and C_{down} are SEC codes with constant weight k+1 and k-1, respectively.
- (ii) If $c'' \in C_{up}$ and $c' \in C_{down}$, $c' \not\subseteq c''$.

Proof. (i). Let $c_1, c_2 \in C_{\text{up}}$. Then $|c_1 \triangle c_2| = |(c_1 - \{i\}) \triangle (c_2 - \{i\})| \geqslant 4$ since $(c_1 - \{i\}), (c_2 - \{i\}) \in C$ and their symmetric difference must be at least 4 in order for C to be a 1-EC code. Thus, C_{up} is a SEC code. By a similar argument, C_{down} is a SEC code. (ii). Let $c'' \in C_{\text{up}}, c' \in C_{\text{down}}$, and $c' \subset c''$. Then, $(c' \cup \{i\}), (c'' - \{i\}) \in C$. So, $|(c'' - \{i\}) \triangle (c' \cup \{i\})| \geqslant 4$. This implies that there are two members of [n] that are in

 $(c' \cup \{i\}) - (c'' - \{i\})$. One is i and the other is some $j \in c' - c''$, which contradicts the assumption that $c' \subset c''$. This concludes the proof of Claim 6.

In order to finish the proof, we just need to show that the family $\mathcal{F} := \binom{[n]}{k} \cup C_{\text{up}} \cup C_{\text{down}}$ is \mathcal{N} -free.

To that end, suppose there is a subposet \mathcal{N} with elements W, X, Y, Z where $W \subset X$, $Y \subset X$ and $Y \subset Z$ (see Figure 1). Where is the element X?

We know that $X \not\in C_{\text{down}}$ because it has to have elements below it and the elements of C_{down} are all minimal in \mathcal{F} . We know that $X \not\in \binom{[n]}{k}$ because that would force $W, Y \in C_{\text{down}}$ and, being subsets of X would require $|W \triangle Y| = 2$, a contradiction to C_{down} being a SEC code. Therefore, $X \in C_{\text{up}}$.

Now, where is Y? We know that $Y \notin C_{\text{up}}$ because $Y \subset X$. We know $Y \notin \binom{[n]}{k}$ because that would force $X, Z \in C_{\text{up}}$ and thus would force $|X \triangle Z| = 2$, this is a contradiction to the fact that C_{up} is a SEC code. Therefore, $Y \in C_{\text{down}}$.

In order for the copy of \mathcal{N} to exist, $Y \subset X$, which implies $Y \subset X - \{i\}$ and so $|(Y \cup \{i\}) \triangle (X - \{i\})| = 2$. Recall, however, that $Y \cup \{i\}$ and $X - \{i\}$ are distinct members of C and so have symmetric difference at least 4, a contradiction.

Acknowledgements

We would like to extend our thanks to Kirsten Hogenson and Sung-Yell Song for providing helpful conversations.

References

- [1] A. E. Brouwer, J. A. Shearer, N. J. A. Sloane, and W. D. Smith. A New Table of Constant Weight Codes. *IEEE Trans. Inform. Theory* **26** (6) (1990), pp. 1334–1380.
- [2] P. Erdős. On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51 (1945), pp. 898–902.
- [3] R. L. Graham, and N. J. A. Sloane. Lower Bounds for Constant Weight Codes. *IEEE Trans. Inform. Theory* **26** (1980), pp. 37–43.
- [4] J. R. Griggs and W.-T. Li. Progress on poset-free families of subsets *The IMA Volumes in Math. and its Appl.* **159** (2016), pp. 317–338.
- [5] J. R. Griggs and G. O. H. Katona. No four subsets forming an N. J. Combin. Theory Ser. A 115 (2008), pp. 677–685.
- [6] G. O. H. Katona and T. G. Tarján. Extremal problems with excluded subgraphs in the *n*-cube. *Lecture Notes in Math, Springer, Berlin* **1018** (1983), pp. 84–93.
- [7] E. Sperner, Ein Satz über Utermegen einer endlichen Menge *Math. Z.* **27** (1928), pp. 544–548.