Specification Document

Omkar Girish Kamath

November 12, 2022

Contents

L	Instruction set of the processor	1
2	Input Output signals	2
3	RAM specs	2

1 Instruction set of the processor

In this instruction syntax X=Not used, K=Constant, A=Instruction Address, P=Data Address

Table 1: Instruction Set of the Simple CPU

Opcode	Instruction	RTL
Load ACC kk	OOOO XXXX KKKKKKKK	ACC <- KK
Add ACC kk	0100 XXXX KKKKKKKK	ACC <- ACC + KK
And ACC kk	0001 XXXX KKKKKKKK	ACC <- ACC & KK
Sub ACC kk	O11O XXXX KKKKKKKK	ACC <- ACC - KK
Input ACC pp	1010 XXXX PPPPPPPP	ACC <- M[PP]
Output ACC pp	1110 XXXX PPPPPPPP	M[PP] <- ACC
Jump U aa	1000 XXXX AAAAAAA	PC <- AA
Jump Z aa	1001 OOXX AAAAAAA	IF Z=1 PC <- AA ELSE PC <- PC + 1
Jump C aa	1001 10XX AAAAAAA	IF C=1 PC <- AA ELSE PC <- PC + 1
Jump NZ aa	1001 01XX AAAAAAA	IF Z=O PC <- AA ELSE PC <- PC + 1
Jump NC aa	1001 11XX AAAAAAA	IF C=O PC <- AA ELSE PC <- PC + 1

Here '->' indicates updated with .

The processor has an extra cycle to save on hardware which would have been required for incrementing the PC. So the processor follows **fetch-decode-execute-increment** cycle .

- 2 Input Output signals
- 3 RAM specs