ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

ИТМО

Лабораторная работа №3
по дисциплине
«Основы профессиональной деятельности»
Вариант №15328

Выполнил студент группы Р3115 Федоров Егор Владимирович Преподаватель: Абузов Ярослав Александрович

1 Текст задания

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

444:	0457	452:	0400
445:	0200	453:	6AF3
446:	4000	454:	8446
447:	0200	455:	CEF8
448:	+ 0200	456:	0100
449:	EEFD	457:	0C00
44A:	AF05	458:	0501
44B:	EEFA	459:	0200
44C:	AEF7	45A:	D455
44D:	EEF7	45B:	1000
44E:	AAF6	ĺ	
44F:	0480	ĺ	
450:	F401	1	
451:	CE02		

2 Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии			
444	0457	A	Указатель на первый элемент массива			
445	0200	В	Указатель на текущий элемент массива, станет =			
			457 после команды 44D			
446	4000	С	Количество элементов массива, станет = 5 после			
			команды 44В			
447	0200	D	Результат — количество нечетных элементов			
448	+0200	CLA	Очистка аккумулятора			
449	EEFD	ST D	Прямая относительная адресация			
44A	AF05	m LD~#05	Прямая загрузка операнда			
44B	EEFA	ST C	Прямая относительная адресация			
44C	AEF7	LD A	Прямая относительная адресация			
44D	EEF7	ST B	Прямая относительная адресация			
44E	AAF6	LD (B)+	Косвенная автоинкрементная, загружает первый			
			элемент массива			
44F	0480	ROR	Сдвиг вправо, $C = Arr_i \pmod{2}, AC = \left\lfloor \frac{Arr_i}{2} \right\rfloor$			
450	F401	BCS (IP+1)+1	Переход к 452 если перенос $\Leftrightarrow Arr_i \pmod{2} = 1$, иначе			
451	$_{ m CE02}$	JUMP (IP+1)+2=454	переход к адресу 454			
452	0400	ROL	Сдвиг влево, $AC = Arr_i$			
453	6AF3	SUB (D)+	Косвенная автоинкрементая, будет вычитать ну-			
		,	ли, при этом увеличивая D на 1.			
454	8446	LOOP \$C				
455	CEF8	JUMP (IP+1)-8 = 44E	Прямая относительная			
456	0100	` HLT				
457	0C00	<u> </u>	Arr_1			
458	0501	_	Arr_2			
459	0200	_	Arr_3			
45A	D455	_	Arr_4			
45B	1000		Arr_5			

Таблица 2: Текст исходной программы

2.1 Предназначение и описание программы

Программа считает количество нечетных элементов в массиве Arr.

- \bullet 445 447: исходные данные
- 448 44D: установка изначальных данных программы
- 44Е 456: итерация по всем элементам массива, проверка на нечетность, инкремент счетчика
- 457 45B: массив

2.2 Область представления

- A указатель на начало массива, 11-битное беззнаковое число (адрес)
- \bullet C количество элементов в массиве, 11-битное беззнаковое число
- \bullet D результат, 16-битное беззнаковое число
- *Arr* исходный массив

2.3 Область допустимых значений

Для всех случаев:

$$\forall i \in \{0, 1, \dots, C - 1\} \quad -2^{15} \le Arr_i \le 2^{15} - 1$$

$$D = 0$$

• Случай 1. Массив до программы: $0 \le A \le 444_{16} - C$, $1 \le C \le 444_{16} = 1092_{10}$

$$\begin{cases} 0 \le A \le 444_{16} - C \\ 1 \le C \le 1092 \end{cases}$$

 \bullet Случай 2. Массив после программы: $457 \leq A \leq 7FF_{16} - C,\, 1 \leq C \leq 7FF_{16} - 457_{16} + 1 = 3A8_{16} = 936$

$$\begin{cases} 457 \le A \le 7FF_{16} - C \\ 1 \le C \le 936 \end{cases}$$

2.4 Трассировка

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
444	0457	444	0000	000	0000	000	0000	0000	0100	7 11	
444	0457	445	0457	444	0457	000	0444	0000	0100		
445	0200	446	0200	445	0200	000	0445	0000	0100		
446	4000	447	4000	000	0000	000	0446	0000	0100		
447	0200	448	0200	447	0200	000	0447	0000	0100		
448	0200	449	0200	448	0200	000	0448	0000	0100		
449	EEFD	44A	EEFD	447	0000	000	FFFD	0000	0100	447	0000
44A	AF05	44B	AF05	44A	0005	000	0005	0005	0000		
44B	EEFA	44C	EEFA	446	0005	000	FFFA	0005	0000	446	0005
44C	AEF7	44D	AEF7	444	0457	000	FFF7	0457	0000		
44D	EEF7	44E	EEF7	445	0457	000	FFF7	0457	0000	445	0457
44E	AAF6	44F	AAF6	457	0C00	000	FFF6	0C00	0000	445	0458
44F	0480	450	0480	44F	0480	000	044F	0600	0000		
450	F 501	452	F 501	450	F501	000	0001	0600	0000		
452	0400	453	0400	452	0400	000	0452	0C00	0000		
453	6AF3	454	6AF3	000	0000	000	FFF3	0C00	0001	447	0001
454	8446	455	8446	446	0004	000	0003	0C00	0001	446	0004
455	CEF8	44E	CEF8	455	044E	000	FFF8	0C00	0001		
44E	AAF6	44F	AAF6	458	0501	000	FFF6	0501	0001	445	0459
44F	0480	450	0480	44F	0480	000	044F	8280	1001		
450	F 501	451	F 501	450	F501	000	0450	8280	1001		
451	CE02	454	CE02	451	0454	000	0002	8280	1001		
454	8446	455	8446	446	0003	000	0002	8280	1001	446	0003
455	CEF8	44E	CEF8	455	044E	000	FFF8	8280	1001		
44E	AAF6	44F	AAF6	459	0200	000	FFF6	0200	0001	445	045A
44F	0480	450	0480	44F	0480	000	044F	8100	1010		
450	F 501	452	F 501	450	F501	000	0001	8100	1010		
452	0400	453	0400	452	0400	000	0452	0200	0011		
453	6AF3	454	6AF3	001	0000	000	FFF3	0200	0001	447	0002
454	8446	455	8446	446	0002	000	0001	0200	0001	446	0002
455	CEF8	44E	CEF8	455	044E	000	FFF8	0200	0001		
44E	AAF6	44F	AAF6	45A	D455	000	FFF6	D455	1001	445	045B
44F	0480	450	0480	44F	0480	000	044F	EA2A	1001		
450	F501	451	F501	450	F501	000	0450	EA2A	1001		
451	CE02	454	CE02	451	0454	000	0002	EA2A	1001		
454	8446	455	8446	446	0001	000	0000	EA2A	1001	446	0001
455	CEF8	44E	CEF8	455	044E	000	FFF8	EA2A	1001		
44E	AAF6	44F	AAF6	45B	1000	000	FFF6	1000	0001	445	045C
44F	0480	450	0480	44F	0480	000	044F	8800	1010		
450	F501	452	F 501	450	F501	000	0001	8800	1010		
452	0400	453	0400	452	0400	000	0452	1000	0011		
453	6AF3	454	6AF3	002	0000	000	FFF3	1000	0001	447	0003
454	8446	456	8446	446	0000	000	FFFF	1000	0001	446	0000
456	0100	457	0100	456	0100	000	0456	1000	0001		

3 Вывод

Во время выполнения данной работы я изучил режимы адресации БЭВМ, научился работать с массивами и анализировать программу с циклом.