Staring Contest

Task: Determine $a = (a_1, ..., a_n)$ (distinct integers), from queries of the form $q(i, j) = \min(a_i, a_j)$ with $i \neq j$. Minimize #queries.

Note: max *a* can never be determined, so one underestimate is allowed.

Note: Problem is non-adaptive (*a* fixed from beginning).

First solution: Perform all $\binom{n}{2}$ many comparisons:

for
$$i \in \{1,...,n-1\}$$

for $j \in \{i+1,...,n\}$
 $Q_{ij} = Q_{ji} = q(i,j)$

Q	1	2	3	4	5
1		17	32	32	21
2	17		17	17	17
3	32	17		51	21
4	32	17	51		21
5	21	17	21	21	

Staring Contest

	1	2	3	4	5
a	32	17	51	52	21

Task: Determine $a = (a_1, ..., a_n)$ (distinct integers), from queries of the form $q(i, j) = \min(a_i, a_j)$ with $i \neq j$. Minimize #queries.

Note: max *a* can never be determined, so one underestimate is allowed.

Note: Problem is non-adaptive (*a* fixed from beginning).

#queries $\leq 3N$:

Invariant: Maintain j, k such that a_j , a_k maximal among $(a_1, ..., a_i)$. Increment i, update j, k according to q(i,j), q(i,k), q(j,k)

$#queries \le 2N$:

Observation: One of the three queries is redundant

Staring Contest

	1	2	3	4	5
а	32	17	51	52	21

Randomised algorithm:

Idea: Choose "next index" *i* randomly, not left to right.

As before, maintain $m_{jk} = \min(a_j, a_k)$

Query $m_{ik} = \min(a_k, a_i)$

 $\underline{\circ}$: If $\min(a_k, a_i) = m_{ik}$ we've learned a_k and can proceed to the next i

How often does 😕 happen?

Exactly if a_i is largest or next-largest among $(a_1, ..., a_i)$.

Pr ($\stackrel{\smile}{\circ}$ in round i) = 2/i

 $E[\# \bowtie in round i] = 2/i$

E[#\sigma in any round] =
$$\frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n} \sim 2 \ln n$$

Variance (thanks to team Latvia):

$$\Pr[|X - EX|] \le 14 \ln N] \le \frac{22}{196 \ln N}$$