

Starting with a row of n coins all heads up, repeatedly flip over a coin which is heads and its neighbor to the right. If the chosen coin is the rightmost coin, there is no neighbor to flip.

Figure 1: Since the sequence of coin flips strictly increases lexicographically (with T > H), the process must eventually halt.

Question. If the puzzle is modified so that when a coin is chosen, either the right or left neighbor is chosen (with probability p and 1 - p respectively), what is the optimum strategy for maximizing the total number of flips?

Related.

- 1. What is the strategy for minimizing the number of flips?
- 2. What is the expected number of total flips under optimal play?
- 3. What if the direction is randomly chosen, and then you choose which coin to flip? (i.e. you know the direction before you make your choice.)
- 4. What if the (infinite) sequence of choices have to all be made ahead of time?
- 5. What if this is done on a different geometry, such as a circle or grid?
- 6. What if one, neither, or both neighbors have some probability of being flipped?
- 7. What if coins have more than two states? (e.g dice instead of coins)
- 8. What if you can flip over a contiguous section of heads?

References.

Problem 79.