[4]

ii. Sketch the bode plot for the transfer function

$$G(s) = \frac{1000}{s(1+0.1s)(1+0.001s)}$$

Determine:

- (a) Gain cross over frequency (b) Phase cross over frequency
- (c) G.M and P.M
- (d) Stability of the given system

7

- OR iii. Draw the root locus for a system whose open loop transfer function is 7 given by $G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+20)}$. Show all the salient points on the locus.
- Q.5 i. Describe different type of compensator used in control system
 - ii. Compare the characteristics of phase lead and phase lag networks used 7 for control system compensation
- OR iii. Design the lag compensator for a system whose open loop transfer 7 function is $G(s) = \frac{K}{s(s+1)(s+4)}$

To meet the following specifications:

- (a) Damping ratio=0.5
- (b) Settling time $t_s=10$ sec
- (c) Velocity error constant $K_V \ge 5$.
- Q.6 i. Consider the following matrix $\dot{x} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \quad x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 - Find the state transition matrix, also determine x(t).

 Write the state equations $\frac{d^3c}{dt} + 6\frac{dc}{dt} + 5c(t) = r(t)$
 - ii. Write the state equations $\frac{d^3c}{dt^3} + 6\frac{dc}{dt} + 5c(t) = r(t)$. Also draw the state variable diagram.
- OR iii. A system characterized by the transfer function $\frac{y(s)}{u(s)} = \frac{2}{(s^3 + 6s^2 + 11s + 6)}$. Find the state and output equation in matrix form and also test the controllability and observability of the system.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

UNIVERSITY

Faculty of Engineering

End Sem (Odd) Examination Dec-2019 EE3CO15 / EX3CO15 Linear Control System

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. A system can be completely described by a transfer function if it is
 - (a) Nonlinear and continuous
 - (b) Linear and time-varying
 - (c) Nonlinear and time invariant
 - (d) Linear and time invariant
 - ii. A.C. servomotor resembles
 - (a) Two phase induction motor (b) Three phase induction motor
 - (c) Direct current series motor (d) Universal motor
 - iii. The velocity error constant of a stable canonical feedback system is **1** given by
 - (a) $\lim_{s\to 0} G(s)$ (b) $\lim_{s\to 0} sG(s)$ (c) $\lim_{s\to 0} s^2G(s)$ (d) None of these
 - iv. The solution of differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dx} + 2y = 3$
 - (a) Oscillatory
- (b) Overdamped
- (c) Underdamped
- (d) Critically damped
- v. Using Routh's criterion, the number of roots in the right half s-plane 1 for the characteristic equation: S4+2S3+2S2+3S+6=0 is
 - (a) One
- (b) Two
- (c) Three
- (d) Four
- vi. Which of the following describes correctly the effect of adding a zero 1 to the system?
 - (a) System becomes oscillatory.
 - (b) Root locus shifts toward imaginary axis.
 - (c) Relative stability of the system increases
 - (d) Operating range of K for stable operation decreases

P.T.O.

1

1

1

[2]

vii. The transfer function of a phase-lead compensator is given by: $G(s) = \frac{1+3Ts}{1+Ts}$ Where T>0

What is the maximum shift provided by such a compensator?

- (a) 90^0
- (b) 60^0
- (c) 45^0
- (d) $30^{0^{1}}$

1

1

viii. Consider the following statements:

Consider the following statements.

- I. Bandwidth is increased
- II. Peak overshoot in the step response is increased

Which of these are the effects of using lead compensation in a feedback system?

(a) I only

- (b) II only
- (c) Both I and II
- (d) Neither I nor II

ix. The system
$$\dot{x}=Ax + Bu$$
 with $A=\begin{bmatrix} -1 & 2 \\ 0 & 2 \end{bmatrix}$, $B=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is

- (a) Stable and controllable. (b) Stable but Uncontrollable.
- (c) Unstable but controllable. (d) Unstable and uncontrollable.
- x. The system matrix of a linear time invariant continuous time system is 1 given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$
 - (a) s2+5s+3=0
- (b) s2-3s+5=0
- (c) s2+3s+5=0
- (d) s2+s+2=0
- Q.2 i. Obtain the system equation and find the value of $X_2(s)/F(s)$ for the 3 system shown in Fig.1

Fig.1

ii. Determine the transfer function C₁/R₁, C₂/R₂, C₁/R₂, C₂/R₁ from the **7** block diagram shown in Fig.2

OR iii. Draw the block diagram and signal flow graph and find out the 7 transfer function of the circuit shown in Fig.3

Fig.3

- Q.3 i. Define static error coefficients in control system.
 - ii. A unity feedback system is characterized by an open loop transfer function $G(s) = \frac{K}{s(s+20)}$. Determine the gain K so that the system will have a damping ratio of 0.6. For this value of K calculate settling time, peak overshoot and time to peak overshoot for a unit step input.
- OR iii. Derive the expression and response of the first order system with unit 7 step input.
- Q.4 i. Define resonant peak, resonant frequency and bandwidth. 3

P.T.O.

3

Marking Scheme EE3CO15 / EX3CO15 Linear Control System

EE3CO15 / EX3CO15 Linear Control System							
Q.1	i.	A system can be completely described by a transfer function if it is (d) Linear and time invariant	1				
	ii.	ii. A.C. servomotor resembles (a) Two phase induction motor					
	iii.						
	iv.	The solution of differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dx} + 2y = 3$ (c) Underdamped	1				
	v.	Using Routh's criterion, the number of roots in the right half s-plane for the characteristic equation: S4+2S3+2S2+3S+6=0 is (b) Two	1				
	vi.	Which of the following describes correctly the effect of adding a zero to the system? (c) Relative stability of the system increases	1				
	vii.	The transfer function of a phase-lead compensator is given by: $G(s) = \frac{1+3Ts}{1+Ts}$ Where T>0 What is the maximum shift provided by such a compensator? (d) 30^0	1				
	viii.	Consider the following statements: I. Bandwidth is increased II. Peak overshoot in the step response is increased Which of these are the effects of using lead compensation in a feedback system? (a) I only	1				
	ix.	The system $\dot{x} = Ax + Bu$ with $A = \begin{bmatrix} -1 & 2 \\ 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is	1				
	х.	(c) Unstable but controllable. The system matrix of a linear time invariant continuous time system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$ (a) $s2+5s+3=0$					
Q.2	i. ii.	Derive system equation 1.5 marks Value of $X_2(s)/F(s)$ 1.5 marks Determine the transfer function C_1/R_1 , 1.5 marks C_2/R_2 , 1.5 marks C_1/R_2 2 marks	3 7				
		C_2/R_1 2 marks					

	OR	iii.	Draw the block diagram Signal flow diagram Transfer function of the circuit	2 marks 2 marks 3 marks	7
	Q.3	i.	Define static error coefficients in control system.		3
			Position error coefficient	1 mark	
			Velocity error coefficient	1 mark	
			Acceleration error coefficient	1 mark	
		ii.	Value of K	2 marks	7
			Settling time	2 marks	
			Peak overshoot	2 marks	
			Time to peak overshoot	1 mark	
	OR	iii.	Derive the expression	4 marks	7
	011		Response of the first order system	3 marks	-
	Q.4	i.	Definition of		3
			Resonant peak	1 mark	
			Resonant frequency	1 mark	
			Bandwidth	1 mark	
		ii.	Determine:		7
			Sketch of bode plot	4 marks	
			Gain cross over frequency	0.5 mark	
			Phase cross over frequency	0.5 mark	
			G.M and P.M	1 mark	
			Stability of the given system	1 marks	
	OR	iii.	Show all the salient points on the locus. Stepwise marking		7
	0.5		-		•
	Q.5	i.	Type of compensator used in control system	1	3
			Series compensation	1 mark 1 mark	
			Feedback compensation Load compensation	1 mark 1 mark	
		ii.	Compare the characteristics of phase lead and phase		7
		11.	for control system compensation	se lag lictworks used	,
	OR	iii.	Root locus plot	4 marks	7
	OK	ш.	Design	3 marks	,
	Q.6	i.	State transition matrix	2 marks	3
	-		Determine x(t)	1 mark	-

OR	ii.	State equations	4 marks	7
		State variable diagram	3 marks	
	iii.	Find the state and output equation	3 marks	7
		Test controllability	2 marks	
		Test observability of the system	2 marks	
