Amendments to the Claims

1. (currently amended) A compound of a formula below!

$$(R^{5})_{q} \xrightarrow{X} A \qquad (CH_{2})_{j} \qquad (CH_{2})_{m} \qquad (CH_{2})_{m}$$

wherein

n is 0, 1, 2, or 3;

m is 0, 1, 2, 3, 4, 5 or 6:

jistor2;

q is 0, 1, or 2;

W, X, Y and Z are each independently CH, C, N, S, or O with appropriate single or double bonds and/or hydrogen atoms to complete valency requirements: providing

Ring A is as a five or six member ring, wherein one of W, X, Y or Z may be absent, selected from pyridine, thiophene, or pyrazole; provided that ring A is not phenyl;

K is a bond, or $C=O_3$, or $S(O)_{e_2}$

p is 0, 1 or 2;

 $R^{1} \text{ is selected from a group consisting of hydroxy, hydrogen, C_{1}-C_{6} alkyl, C_{2}-C_{6}-alkenyl, C_{4}-C_{6}-haloalkyl, C_{4}-C_{6}-alkylheterocyclic, C_{3}-C_{8} cycloalkyl, C_{4}-C_{6}-alkyleyeloalkyl; C_{4}-C_{6}-alkylheterocyclic, C_{3}-C_{8}-cycloalkyl, $-O$-aryl, $-O$-C_{2}-C_{6}-alkenyl, $-O$-alkylheterocyclic, $-O$C_{1}$-$C_{6}$-alkyleyeloalkyl, and $-O$C_{4}$-$C_{6}$-alkyleyeloalkyl, $NR^{7}R^{8}$, $-O$C_{4}$-$C_{6}$-alkylaryl, $-O$-heterocyclic, $-O$C_{4}$-$C_{6}$-alkylCO_{2}R^{14}$, $-O$C_{2}$-$C_{6}$-alkylaryl, $-O$-heterocyclic, $-O$C_{4}$-$C_{6}$-alkylaryl, $-O$C_{4}$-$C_{6}$-alkylaryl, $-O$C_{4}$-$C_{6}$-a$

Docket No. X17098

 C_4 - C_5 -alkylCOR⁺⁺, C_0 - C_6 alkylCOOR⁺⁺and: provided that R⁺ is not hydroxy when K is S(O)_p, CO, and/or when n and K are both zero; and wherein each cycloalkyl, and aryl or heterocyclic group is optionally substituted with 1 to 3 groups independently selected from oxo, hydroxy, halo, C_4 - C_6 alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_4 - C_6 -alkoxy, C_4 - C_6 -haloalkyl, C_4 - C_6 -alkylalcohol, C_4 - C_6 -alkynyl, C_4 - C_6 -alkoxy, C_4 - C_6 -haloalkyl, C_4 - C_6 -alkylalcohol, C_4 - C_6 -alky

R² is independently selected from the group consisting of hydrogen, halo, C₄-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₄-C₆ haloalkyl, OC₄-C₆ haloalkyl, OC₄-C₆ alkyloryl, aryl, aryl, C₆-C₆ alkyloryl, heterocyclyl, C₃-C₈ cycloalkyl, C₄-C₆ alkyloycloalkyl and C₄-C₆ alkylheterocyclyl; wherein each cycloalkyl, aryl, or heterocyclic is optionally substituted with 1 to 3 groups independently selected from oxo, hydroxy, halo, C₄-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₄-C₆ alcohol, C₄-C₆ alkoxy, C₄-C₆ haloalkyl, C₄-C₆ haloalkoxy. CONR⁴⁴R⁴², NR⁴⁴COR⁴², C₆-C₃ alkylNR⁴⁴R⁴², C₄-C₃ alkylCOR⁴⁴, C₆-C₆ alkylCOOR⁴⁴, cyano, and phenyl, and wherein two R² groups may combine to form a 3.4 or 5 member spirocycle, or a five or six member optionally substituted fused carbocyclic or heterocyclic ring:

 R^3 is hydrogen, or C_1 - C_6 alkyl;, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkylaryl, C_4 - C_6 alkylheterocyclic, C_3 - C_6 cycloalkyl, or C_4 - C_6 alkyleycloalkyl;

 R^4 is a group represented by the formula -NR $^9R^{10}$;

R⁵ is selected from the group consisting of hydrogen, halogen, hydroxy, C₁-C₆ alkyl, C₂-C₆ alkynyl, OC₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₈ eyeloalkyl, C₄-C₆ alkylaryl, C₄-C₆ alkylaryl, C₄-C₆ alkylaryl, heteroaryl, O-aryl, OC₂-C₆ alkenyl, OC₄-C₆ haloalkyl, NR⁷R⁸, and <u>CN</u>;OC₄-C₆ alkylaryl; and wherein when q is 1, 2 or 3, two adjacent R⁵ groups may combine to form a fused 5 or 6 member optionally substituted carbocyclic or heterocyclic ring;

 R^6 is independently selected from the group consisting of hydrogen, C_4 , C_6 alkyl, C_2 , C_6 alkenyl, hydroxy, C_4 , C_6 alkyl, C_2 , C_6 alkenyl, C_4 , C_6 alkyl, C_6 , alkyl, C_6 , alkyl, C_6 , alkyl, C_8 , C_8 , C_9 , alkyl, and C_4 , alkyleycloalkyl, alkyl, C_8 , alkyleycloalkyl, C_8 , alkyleycloalkyl, C_8 , alkyleycloalkyl, alkyl, C_8 , alkyleycloalkyl, C_8 , alkyleyclo

 R^7 and R^8 are independently selected: from the group consisting of hydrogen, or C_1 - C_6 alkyl. C_2 - C_6 alkenyl, C_3 - C_8 cycloalkyl. C_1 - C_6 -alkyleycloalkyl, C_4 - C_6 -alkylheterocyclic, heterocyclic, aryl. C_4 - C_6 -alkylaryl, hydroxy, oxo. COOH, $C(O)OC_4$ - C_4 -alkyl, C_2 - C_6 -alkynyl, C_4 - C_6 -alkylaryl, C_4 - C_6 -alkylaryl, C

Serial No. 10/598,686 Docket No. X17098

C₄-C₆ alkyICONR⁷R⁸, C₄-C₆ alkyINR⁷R⁸, C₄-C₆alkyINR¹⁴COR¹³ wherein each alkyl, cycloalkyl, heterocyclic, or aryl group is optionally substituted with 1–3 groups independently selected from hydroxy, oxo, amino, halogen, C₄-C₆ alkylcycloalkyl, C₃-C₆ cycloalkyl, C₄-C₆ alkylheterocyclic, C₄-C₆ haloalkyl, COOH, C(O)OC₄-C₄ alkyl, C₄-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₄-C₆ alkylatine and NR¹⁴R¹²; or R² and R⁸ combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional hetero-atoms selected from oxygen, nitrogen or sulfur and may be optionally substituted with oxo, or C₄-C₆ alkyl;

 R^{10} is selected from the group consisting of aryl, C_1 - C_6 alkylaryl, C_2 - C_6 alkenylaryl, C_4 - C_6 haloalkylaryl, C_4 - C_6 alkylheterocyclic, C_2 - C_6 alkenylheterocyclic, C_4 - C_6 alkylaryl, and wherein each cycloalkyl, aryl, or heterocyclic group is optionally substituted with 1-3 groups independently selected from the group consisting of hydroxy, oxo. SC_4 - C_6 -alkyl, C_1 - C_6 alkyl, C_4 - C_6 -alkenyl, C_4 - C_6 -alkynyl, C_1 - C_6 haloalkyl, halogen, C_4 - C_6 -alkoxy, aryloxy, C_4 - C_6 -alkenyloxy, C_4 - C_6 -haloalkylaryl, nitro, or cyano; OC_4 - C_6 -haloalkyl, C_4 - C_6 -haloalkylaleohol; and C_4 - C_6 -alkylacohol;

 R^{11} is and R^{12} are independently selected from the group consisting of hydrogen, or C_1 - C_6 alkyl; C_4 - C_6 alkenyl. C_3 - C_8 cycloalkyl, heterocyclic, aryl, and C_4 - C_6 -alkylaryl, wherein each aryl group is optionally substituted with 1-3 groups independently selected from halogen, C_4 - C_6 alkylheterocyclic, and C_4 - C_6 haloalkyl, or R^{14} and R^{12} -combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional heteroatoms selected from oxygen.

nitrogen or sulfur and is optionally substituted with oxo, or C₄-C₆-alkyl; or a pharmaceutically acceptable salt thereof., enantiomer, racemate, diastereomer or mixture of diastereomers thereof.

- 2. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein n is 0, and K is C=O; wherein R¹ is selected from a group consisting of hydroxy, hydrogen; -C₁-C6 alkyl, -C₀-C6 alkyleycloalkyl. -C₀-C6 alkylheterocyclic. -C₁-C6 haloalkyl-OC₁-C6 alkoxy. -C₁-C6 alkyleycloalkyl. -OC₁-C6 alkyleycloalkyleycloalkyleycloalkyl. -OC₁-C6 alkyleycloa
- 3. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, recemate, diastercomer, or mixture of diastercomers thereof, wherein R^4 is NR^6R^{10} and R^9 is tetrazole—a heterocyclic group-optionally substituted with one or two groups independently selected from hydroxy, halo, amino, $C(O)OC_4$ - C_4 alkyl, C_4 - C_6 haloalkyl, C_1 - C_6 alkyl groups., C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_4 - C_6 alkylalcohol, C_4 - C_6 alkylamine, C_3 - C_6 eycloalkyl, C_4 - C_6 alkyl $CONR^2R^8$, C_4 - C_6 alkyleyano , C_4 - C_6 alkyl CO_2R^{14} , C_6
 - 4. (canceled)
- 5. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enuntiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein n, m, and q are independently 0, or 1.
- 6. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein the A ring is selected from the group consisting of pyridine or, pyrazine, thiophene, pyrazole isoxazole, oxazole, and thiozole.

- 7. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein the A ring is pyridine.
- 8. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein the A ring is thiophene.

9. (canceled)

10. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enuntioner, racemate, diastereomer, or mixture of diastereomers thereof, wherein \mathbb{R}^3 is hydrogen and \mathbb{R}^4 is $\mathbb{NR}^9\mathbb{R}^{40}$ -selected from the group consisting of:

Page 6 of 14

wherein R^7 is independently selected from the group consisting of C_1 - C_6 alkyl. C_2 - C_6 alkyleycloalkyl. C_4 - C_6 alkyleterocyclic, heterocyclic, aryl. C_4 - C_6 alkylaryl. O C_4 - C_5 alkyl. C_4 - C_6 alkyleterocyclic or aryl group is optionally substituted with a group selected from hydroxy, C_4 - C_5 alkyl. C_4 - C_6 alkylalcohol, C_4 - C_5 alkylalcohol, C_4 - C_6 alkoxy. C_4 - C_6 alkoxy. C_4 - C_6 alkoxy. C_4 - C_6 alkylalcohol, C_4 - C_6 alkoxy.

- 11. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein \mathbb{R}^4 is $\mathbb{NR}^9\mathbb{R}^{49}$ and \mathbb{R}^9 is \mathbb{COOR}^7 .
- 12. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enuntiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein R^4 is NR^9R^{40} and R^9 is $CONR^7R^8$.
- 13. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, recemate, diastercomer, or mixture of diastercomers thereof, wherein R⁴ is NR R⁴ and R⁹ is S(O)₂NR⁷R⁸.
- 14. (currently amended) A compound according to claim 1 selected from the group consisting of:
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-thieno[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-methyl-5,6,7,8-tetrahydro-thieno[3,2-b]azepine-4-carboxylic acid isopropyl ester
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-bromo-5,6,7,8-tetrahydro-thieno[3,2-b]azepine-4-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-5,6,7,8-tetrahydro-pyrido[2,3-b]azepine-9-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-pyrido[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-pyrido[4,3-b]azepine-1-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,

- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-thieno[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-methyl-5,6,7,8-tetrahydro-thieno[3,2-b]azepine-4-carboxylic acid isopropyl ester,
- 4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-1-methyl-4,5,6,7-tetrahydro-1H-1,2,8-triaza-azulene-8-carboxylic acid isopropyl ester,
- 9-[acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-chloro-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-methoxy-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-bromo-6,7,8,9-tetrahydro-pyrido[3,2-blazepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-dimethylamino-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-methyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-cyano-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-3-chloro-2-methoxy-6,7,8,9-tetrahydro-pyrido[3,2-*b*]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-3-chloro-2-ethoxy-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydropyrido[3,2-b]azepine-5-carboxylic acid *tert*-butyl ester,
- 9-[(3,5-Bis-trifluoromethyl-benzyl)-2-methyl-2*H*-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-*b*]azepine-5-carboxylic acid isopropyl ester, 9-[(3,5-Bis-trifluoromethyl-benzyl)-2-methyl-2*H*-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-*b*]azepine-5-carboxylic acid *tert*-butyl ester,

- (3,5-Bis-trifluoromethyl-benzyl)-(5-cyclopentylmethyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(5-cyclopropylmethyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-5-pyridin-3-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- 3-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-benzoic acid,
- 4-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-benzoic acid,
- 5-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-yl}-3,3-dimethyl-pentanoic acid,
- $(4-\{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-glasses and the second of the second of$
- trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-cyclohexyl)-acetic acid,
- (3,5-Bis-trifluoromethyl-benzyl)-(5-ethyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- 5-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-thiophene-2-carboxylic acid, 2-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-yl}-ethanol,
- (5-Benzyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(3,5-bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-(2-methyl-5-thiazol-2-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-amine,
- 9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid tetrahydro-furan-3-yl ester.
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-carbamic acid methyl ester,
- N-(3,5-Bis-trifluoromethyl-benzyl)-N-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-acetamide
- or a pharmaceutically acceptable salt, enantiomer or diastereomer or mixture thereof.

15-16. (canceled)

17. (currently amended) A method of treating atherosclerosis comprising administering a compound of formula I according to claim 1, or a pharmaceutically acceptable salt. enantiomer, recemate, diastereomer, or mixture of diastereomers thereof to a patient.

18-20. (canceled)

21. (currently amended) A pharmaceutical composition comprising a compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, and at least one of a carrier, diluent and excipient.

22-23. (canceled)

- 24. (currently amended) A method of treating cardiovascular diseases comprising administering a compound of formula I according to claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate. diastereomer, or mixture of diastereomers thereof to a patient.
- 25. (currently amended) A method according to claim 24 wherein said treating cardiovascular disease comprises treating dyslipidemia.
- 26. (previously presented) A method according to claim 24 comprising increasing plasma HDL-cholesterol in said patient.
- 27. (previously presented) A method according to claim 24 comprising raising the ratio of plasma HDL-cholesterol to plasma LDL-cholesterol in said patient.
- 28. (previously presented) A method according to claim 24 comprising decreasing plasma LDL-cholesterol in said patient.
- 29. (currently amended) A method of raising plasma HDL-cholesterol in a mammal comprising administering a therapeutically effective dose of a compound according to claim 1, or

a pharmaceutically acceptable salt. enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to said mammal.

30. (previously presented) A pharmaceutical composition of claim 21 comprising one or more cardio protective agents selected from the group consisting of: statins, leptin, and lipid regulating agents.