STIMA LiU

Leif Jonsson

Linköping University

leif.jonsson@ericsson.com leif.r.jonsson@liu.se

September 30, 2016

Today

Performant Code

Computational complexity

Parallelism

Improving R code

Parallelism in R

Rcpp

Memoization

Questions since last time?

STIMA LiU

Writing fast code

Speed is important!

Writing fast code

Speed is important!

Time to write code

Writing fast code

Speed is important!

Time to write code
Time to maintain (understand) code

Writing fast code

Performant Code

Speed is important!

Time to write code Time to maintain (understand) code Time to execute code

STIMA LiU

Performant Code

"You can have it Good, Fast, Cheap. Pick any two."

Performance

Performant Code

- Performance
- 2. Complexity

Complexity affects performance...

STIMA LiU

Performance

- 1. Performance
- 2. Complexity

Complexity affects performance...

...but performance does'nt affect complexity

Computational complexity

Theoretical worst case

Big-Oh notation

Basic operations

Relationship: operations to problem size

"How fast does a function grow?"

$$f(n) = O(g(n))$$

$$|f(n)| \leq C * |g(n)| \forall n > X_0$$

n number of operations

Example

$$f(n) = n^2 + 100n + 100$$

Example

$$f(n) = n^2 + 100n + 100$$

 $f(n) = O(n^2)$

Complexities

Big Oh	Name	Example
O(1)	constant	assignments
O(log(N))	logarithmic	binary search (of sorted input)
O(N)	linear	max
$O(N^2)$	quadratic	naive vector-matrix mult.
$O(N^c)$	polynomial	naive matrix-matrix mult.
$O(c^n)$	exponential	brute force cracking of password


```
statement 1
statement 2
```

statement c

O(1)

```
if(a)
  statement a
else
  statement b
```

$$\mathsf{max}(\mathsf{O}(\mathsf{a}), \mathsf{O}(\mathsf{b}))$$

STIMA LiU

```
for(i in 1:N)
    statement i
```



```
for(i in 1:N)
  for (j in 1:M)
                     0?
    statement i,j
```

```
for(i in 1:N)
                      O(N * M)
  for (j in 1:M)
    statement i,j
```

$$g(n) = O(n^2)$$
$$O(n^3)$$

STIMA LiU

What is parallelism?

Multiple cores

Each core work with its own part

Cores can exchange information

Why parallelism?

Why parallelism?

Single core limits

Handling larger data

Solving problems faster

More and more important

Types of parallelism

Multicore systems

Distributed systems

Graphical processing units (GPU)

Speedup

Figure: source

St

Theoretical limits

Strong scaling: Amdahl's law

Deals with fixed problem size, increasing resources

Weak scaling: Gustafsons law

Deals with increasing size problem along with increasing resources

$$S_p = \frac{1}{f_s + \frac{f_p}{P}}$$

Where:

 f_s = serial fraction of code f_p = parallel fraction of code P = number of cores

For a fixed size problem!

Computational complexity Parallelism Improving R code Parallelism in R Rcpp Memoization

Amdahl's law

Figure: source

Gustafsons law

$$S_p = P - \alpha * (P - 1)$$

Where:

 $\alpha =$ the largest non-parallelizable fraction of any parallel process P = number of cores

STIMA LiU

Practical problems

Costs of parallelism communication load balancing scheduling

fine-grained vs embarrassingly parallel

Practical problems

Figure: source

Donald E. Knuth on Optimization

Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered.

- Donald E. Knuth

Performance

Depends on many things

- 1. Code
- 2. Complexity
- 3. Compiler
- 4. Hardware
- 5. Language

If you don't measure, you don't optimize!

How to optimize

- 1. Write code that works with accompanying test suite
- 2. Profile your code for bottlenecks
- 3. Try to eliminate the bottle necks
- 4. Redo 2-3 until fast enough

Improvements

- 1. Look for existing solutions
- 2. Do less work
- 3. Vectorise
- 4. Parallelize
- 5. Avoid copies
- 6. Find smarter algorithms

Parallelism in R

Based on lapply()

parallel package

Two approaches:

- 1. mclapply()
- 2. parLapply()

mclapply()

Pros

Simple to use Low overhead (startup)

Cons

Does not work on Windows
Only multi core

parLapply(type="psock")

Pros

Works everywhere Good for testing/developing

Cons

Slow on multiple nodes

parLapply(type="mpi")

Pros

Good for multiple computers Good for production

Cons

Can be used interactively Needs Rmpi package

Example

example

Need C++ compiler (look here)

Often called interfacing

Similar can be done with Java and Fortran

Extremely fast!

But just handle bottlenecks!

Rcpp

Rcpp

$$f(n) = \begin{cases} n, & \text{if } n < 2 \\ F(n-1) + F(n-2), & \text{otherwise} \end{cases}$$

Fibonacci R

```
fr <- function(n) {
   if (n < 2) return(n)
   f(n-1) + f(n-2)
}

system.time(fr(30))
user system elapsed
2.246  0.171  2.451</pre>
```

```
library(Rcpp)
cppFunction(code = '
  int fcpp(int n) {
    if (n < 2) return(n);
    return(fcpp(n-1) + fcpp(n-2));
,)
system.time(fcpp(30))
          system elapsed
user
0.007000000 0.000000000 0.006999999
```

Memoization

A simple optimization technique

Store results of function calls

If called again, returns old value

Depend on functional programming


```
> library(memoise)
> a <- function(x) runif(1)</pre>
> replicate(3, a())
[1] 0.6709919 0.3490709 0.4772027
> b <- memoise(a)</pre>
> replicate(3, b())
[1] 0.1867441 0.1867441 0.1867441
```


Memoise in R

```
> c <- memoise(function(x) {Sys.sleep(1); runif(1)})</pre>
> system.time(print(c()))
[1] 0.7816399
      system elapsed
user
0.003 0.004 1.001
> system.time(print(c()))
[1] 0.7816399
user system elapsed
0.001 0.000 0.000
> forget(c)
[1] TRUE
> system.time(print(c()))
[1] 0.9234995
      system elapsed
user
0.003 0.004
                1.001
```

Memoization