Understanding Basic Linux Security

IN THIS CHAPTER

Implementing basic security

Monitoring security

Auditing and reviewing security

t its most basic level, securing a Linux system starts with physical security, data security, user accounts protection, and software security. Over time, you need to monitor that system to make sure it remains safe.

Some of the questions that you need to ask yourself include the following:

- Who can get to the system physically?
- Are backup copies of data being made in case of disaster?
- How well are user accounts secured?
- Does the software come from a secure Linux distribution, and are security patches up to date?
- Have you been monitoring the system to make sure that it has not been cracked or corrupted?

This chapter starts by covering basic Linux security topics. Subsequent chapters go deeper into advanced security mechanisms.

Implementing Physical Security

A lock on the computer server room door is the first line of defense. Although a very simple concept, it is often ignored. Access to the physical server means access to all of the data that it contains. No security software can fully protect your systems if someone with malicious intent has physical access to the Linux server.

Basic server room physical security includes items such as these:

- A lock or security alarm on the server room door
- Access controls that allow only authorized access and that identify who accessed the room and when the access occurred, such as a card key entry system

- A sign stating "no unauthorized access allowed" on the door
- Policies on who can access the room and when that access may occur for groups such as the cleaning crew, server administrators, and others

Physical security includes environmental controls. Appropriate fire suppression systems and proper ventilation for your server room must be implemented.

Implementing disaster recovery

Disaster recovery plans should include these things:

- What data is to be included in backups
- Where backups are to be stored
- How long backups are maintained
- How backup media is rotated through storage

Backup data, media, and software should be included in your Access Control Matrix checklist.

CAUTION

It is important to determine how many backup copies of each object should be maintained. While you may need only three backup copies of one particular object, another object may be important enough to require maintaining more copies.

Backup utilities on a Linux system include the following:

- amanda (Advanced Maryland Automatic Network Disk Archiver)
- cpio
- dump/restore
- tar
- rsync

The cpio, dump/restore, and tar utilities are typically pre-installed on a Linux distribution. A simple, yet effective tool for backing up data over networks is the rsync utility. With rsync, you can set up a cron job to keep copies of all data in selected directories or mirror exact copies of directories on remote machines.

Of the tools just mentioned, only amanda is not typically installed by default. However, amanda is extremely popular because it comes with a great deal of flexibility and can even back up a Windows system. If you need more information on the amanda backup utility, see amanda.org. Ultimately, the utility you select must meet your organization's particular security needs for backup.

Securing user accounts

User accounts are part of the authentication process allowing users into the Linux system. Proper user account management enhances a system's security. Setting up user accounts

was covered in Chapter 11, "Managing User Accounts." However, a few additional rules are necessary to increase security through user account management:

- One user per user account.
- Limit access to the root user account.
- Set expiration dates on temporary accounts.
- Remove unused user accounts.

One user per user account

Accounts should enforce accountability. Thus, multiple people should not be logging in to one account. When multiple people share an account, there is no way to prove a particular individual completed a particular action.

Limiting access to the root user account

If multiple people can log in to the root account, you have another repudiation situation. You cannot track individual use of the root account. To allow tracking of the root account use by individuals, a policy for using sudo (see Chapter 8, "Learning System Administration") instead of logging into root should be instituted.

Instead of giving multiple people root permission on a Linux system, you can grant root access on a per-command basis with the sudo command. Using sudo provides the following security benefits:

- The root password does not have to be given out.
- You can fine-tune command access.
- All sudo use (who, what, when) is recorded in /var/log/secure, including any failed sudo access attempts. Recent Linux systems store all sudo access in the systemd journal (type journalctl -f to watch live sudo access attempts, along with other system messages).
- After you grant someone sudo permission, you can try to restrict root access to certain commands in the /etc/sudoers file (with the visudo command). However, after you grant root permission to a user, even in a limited way, it is difficult to be sure that a determined user can't find ways to gain full root access to your system and do what they want to it.

One way to keep a misbehaving administrator in check is to have security messages intended for the /var/log/secure file sent to a remote log server to which none of the local administrators have access. In that way, any misuse of root privilege is attached to a particular user and is logged in a way that the user can't cover their tracks.

Setting expiration dates on temporary accounts

If you have consultants, interns, or temporary employees who need access to your Linux systems, it is important to set up their user accounts with expiration dates. The expiration date is a safeguard, in case you forget to remove their accounts when they no longer need access to your organization's systems.

To set a user account with an expiration date, use the usermod command. The format is usermod -e yyyy-mm-dd user_name. In the following code, the account tim has been set to expire on January 1, 2021.

```
# usermod -e 2021-01-01 tim
```

To verify that the account has been properly set to expire, double-check yourself by using the chage command. The chage command is primarily used to view and change a user account's password aging information. However, it also can access account expiration information. The -1 option allows you to list various information to which chage has access. To keep it simple, pipe the output from the chage command into grep and search for the word Account. This produces only the user account's expiration date.

```
# chage -1 tim | grep Account
Account expires : Jan 01, 2021
```

As you can see, the account expiration date was successfully changed for tim to January 1, 2021.

TIP

If you do not use the /etc/shadow file for storing your account passwords, the chage utility doesn't work. In most cases, this is not a problem because the /etc/shadow file is configured to store password information by default on most Linux systems.

Set account expiration dates for all transitory employees. In addition, consider reviewing all user account expiration dates as part of your security monitoring activities. These activities help to eliminate any potential backdoors to your Linux system.

Removing unused user accounts

Keeping old expired accounts around is asking for trouble. After a user has left an organization, it is best to perform a series of steps to remove their account along with data:

- Find files on the system owned by the account, using the find / -user username command.
- 2. Expire or disable the account.
- 3. Back up the files.
- 4. Remove the files or reassign them to a new owner.
- **5**. Delete the account from the system.

Problems occur when step 5 is forgotten and expired or disabled accounts are still on the system. A malicious user gaining access to your system could renew the account and then masquerade as a legitimate user.

To find these accounts, search through the /etc/shadow file. The account's expiration date is in the eighth field of each record. It would be convenient if a date format were used. Instead, this field shows the account's expiration date as the number of days since January 1, 1970.

You can use a two-step process to find expired accounts in the /etc/shadow file automatically. First, set up a shell variable (see Chapter 7, "Writing Simple Shell Scripts") with today's date in "days since January 1, 1970" format. Then, using the gawk command, you can obtain and format the information needed from the /etc/shadow file.

Setting up a shell variable with the current date converted to the number of days since January 1, 1970 is not particularly difficult. The date command can produce the number of seconds since January 1, 1970. To get what you need, divide the result from the date command by the number of seconds in a day: 86,400. The following demonstrates how to set up the shell variable TODAY.

```
# TODAY=$(echo $(($(date --utc --date "$1" +%s)/86400)))
# echo $TODAY
16373
```

Next, the accounts and their expiration dates are pulled from the /etc/shadow file using gawk. The gawk command is the GNU version of the awk program used in UNIX. The command's output is shown in the code that follows. As you would expect, many of the accounts do not have an expiration date. However, two accounts, Consultant and Intern, show an expiration date in the "days since January 1, 1970" format. Note that you can skip this step. It is just for demonstration purposes.

```
# gawk -F: '{print $1,$8}' /etc/shadow
...
chrony
tcpdump
johndoe
Consultant 13819
Intern 13911
```

The \$1 and \$8 in the gawk command represent the username and expiration date fields in the /etc/shadow file records. To check those accounts' expiration dates and see if they are expired, a more refined version of the gawk command is needed.

```
\# gawk -F: '{if (($8 > 0) && ($TODAY > $8)) print $1}' /etc/shadow Consultant Intern
```

Only accounts with an expiration date are collected by the (\$8 > 0) portion of the gawk command. To make sure that these expiration dates are past the current date, the TODAY variable is compared with the expiration date field, \$8. If TODAY is greater than the account's expiration date, the account is listed. As you can see in the preceding example, two expired accounts still exist on the system and need to be removed.

That is all you need to do. Set up your TODAY variable and execute the gawk command. All of the expired accounts in the /etc/shadow file are listed for you. To remove these accounts, use the userdel command.

User accounts are only a portion of the authentication process allowing users into the Linux system. User account passwords also play an important role in the process.

Securing passwords

Passwords are the most basic security tool of any modern operating system and, consequently, the most commonly attacked security feature. It is natural for users to want to choose a password that is easy to remember, but often this means that they choose a password that is also easy to guess.

Brute force methods are commonly employed to gain access to a computer system. Trying the popular passwords often yields results. Some of the most common passwords are as follows:

- **123456**
- Password
- princess
- rockyou
- abc123

Just use your favorite Internet search engine and look for "common passwords." If you can find these lists, then malicious attackers can too. Obviously, choosing good passwords is critical to having a secure system.

Choosing good passwords

In general, a password must not be easy to guess, be common or popular, or be linked to you in any way. Here are some rules to follow when choosing a password:

- Do not use any variation of your login name or your full name.
- Do not use a dictionary word.
- Do not use proper names of any kind.
- Do not use your phone number, address, family, or pet names.
- Do not use website names.
- Do not use any contiguous line of letters or numbers on the keyboard (such as "qwerty" or "asdfg").
- Do not use any of the above with added numbers or punctuation at the front or end or typed backward.

So now that you know what not to do, look at the two primary items that make a strong password:

- 1. A password should be at least 15 to 25 characters in length.
- 2. A password should contain all of the following:
 - Lowercase letters
 - Uppercase letters
 - Numbers
 - Special characters, such as:! \$ % * () + = , < > : "'

Twenty-five characters is a long password. However, the longer the password, the more secure it is. What your organization chooses as the minimum password length depends on its security needs.

TIP

Gibson Research Center has some excellent material on strong passwords, including an article called "How big is your haystack...and how well hidden is your needle?" at grc.com/haystack.htm.

Choosing a good password can be difficult. It has to be hard enough not to be guessed and easy enough for you to remember. A good way to choose a strong password is to take the first letter from each word of an easily remembered sentence. Be sure to add numbers, special characters, and varied case. The sentence you choose should have meaning only to you and should not be publicly available. Table 22.1 lists examples of strong passwords and the tricks used to remember them.

TABLE 22.1 Ideas for Good Passwords

Password	How to Remember It
Mrci7yo!	My rusty car is 7 years old!
2emBp1ib	2 elephants make BAD pets, 1 is better
ItMc?Gib	Is that MY coat? Give it back

The passwords look like nonsense but are actually rather easy to remember. Of course, be sure not to use the passwords listed here. Now that they are public, they will be added to malicious attackers' dictionaries.

Setting and changing passwords

You set your own password using the passwd command. Type the passwd command and it allows you to change your password. First, it prompts you to enter your old password. To protect against someone shoulder surfing and learning your password, the password is not displayed as you type.

Assuming that you type your old password correctly, the passwd command prompts you for the new password. When you type your new password, it is checked using a utility called cracklib to determine whether it is a good or bad password. Non-root users are required to try a different password if the one they have chosen is not a good password.

The root user is the only user who is permitted to assign bad passwords. After the password has been accepted by <code>cracklib</code>, the <code>passwd</code> command asks you to enter the new password a second time to make sure that there are no typos (which are hard to detect when you can't see what you are typing).

When running as root, changing a user's password is possible by supplying that user's login name as a parameter of the passwd command, as in this example:

```
# passwd joe
Changing password for user joe.
New UNIX password: ******
Retype new UNIX password: ******
passwd: all authentication tokens updated successfully.
```

Here, the passwd command prompts you twice to enter a new password for joe. It does not prompt for his old password in this case.

Enforcing best password practices

Now you know what a good password looks like and how to change a password, but how do you enforce it on your Linux system? One place to start is with the PAM facility. With PAM, you can define exact requirements that passwords must meet. For example, to ensure that passwords must be 12 characters long, with at least 2 numbers, 3 uppercase letters, and 2 lowercase letters, and are different than the previous passwords, you can add the following line to either the /etc/pam.d/common-password or /etc/pam.d/common-auth file:

```
password requisite pam_cracklib.so minlen=12, dcredit=2, ucredit=3,
lcredit=2, difok=4
```

The next question is, How can you make people change passwords? It can become tiresome to come up with new, strong passwords every 30 days! That is why some enforcing techniques are often necessary.

TIP

If users are having a difficult time creating secure and unique passwords, consider installing the pwgen utility on your Linux system. This open source password generating utility creates passwords that are made to be pronounceable and memorable. You can use these generated words as a starting point for creating account passwords.

Default values in the /etc/login.defs file for new accounts were covered in Chapter 11. Within the login.defs file are some settings affecting password aging and length:

```
PASS_MAX_DAYS 30
PASS MIN DAYS 5PASS MIN LEN 16PASS WARN AGE 7
```

In this example, the maximum number of days, PASS_MAX_DAYS, until the password must be changed is 30. The number that you set here is dependent upon your particular account setup. For organizations that practice one person to one account, this number can be much larger than 30. If you do have shared accounts or multiple people know the root password, it is imperative that you change the password often. This practice effectively refreshes the list of those who know the password.

To keep users from changing their password to a new password and then immediately changing it right back, you need to set the PASS_MIN_DAYS to a number larger than 0. In the preceding example, the soonest a user could change their password again is 5 days.

The PASS_WARN_AGE setting is the number of days a user is warned before being forced to change their password. People tend to need lots of warnings and prodding, so the preceding example sets the warning time to 7 days.

Earlier in the chapter, I mentioned that a strong password is between 15 and 25 characters long. With the PASS_MIN_LEN setting, you can force users to use a certain minimum number of characters in their passwords. The setting you choose should be based upon your organization's security life cycle plans.

Note

Ubuntu does not have the PASS_MIN_LEN setting in its login.defs file. Instead, this setting is handled by the PAM utility. PAM is covered in Chapter 23, "Understanding Advanced Linux Security."

For accounts that have already been created, you need to control password aging via the chage command. The options needed to control password aging with chage are listed in Table 22.2. Notice that there is not a password length setting in the chage utility.

TABLE 22.2 chage Options

Option	Description
-M	Sets the maximum number of days before a password needs to be changed. Equivalent to PASS_MAX_DAYS in /etc/login.defs.
-m	Sets the minimum number of days before a password can be changed again. Equivalent to PASS_MIN_DAYS in /etc/login.defs.
-W	Sets the number of days a user is warned before being forced to change the account password. Equivalent to PASS_WARN_AGE in /etc/login.defs.

The example that follows uses the chage command to set password aging parameters for the tim account. All three options are used at once.

```
# chage -1 tim | grep days
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
# chage -M 30 -m 5 -W 7 tim
# chage -1 tim | grep days
Minimum number of days between password change : 5
Maximum number of days between password change : 30
Number of days of warning before password expires : 7
```

You can also use the chage command as another method of account expiration, which is based upon the account's password expiring. Earlier, the usermod utility was used for account expiration. Use the chage command with the -M and the -I options to lock the

account. In the code that follows, the tim account is viewed using chage -1. Only the information for tim's password settings are extracted.

```
# chage -1 tim | grep Password
Password expires : never
Password inactive : never
```

You can see that there are no settings for password expiration (Password expires) or password inactivity (Password inactive). In the following code, the account is set to be locked 5 days after tim's password expires by using only the -I option.

```
# chage -I 5 tim
# chage -l tim | grep Password
Password expires : never
Password inactive : never
```

Notice that no settings changed! Without a password expiration set, the -I option has no effect. Thus, using the -M option, the maximum number of days is set before the password expires and the setting for the password inactivity time should take hold.

```
# chage -M 30 -I 5 tim
# chage -l tim | grep Password
Password expires : Mar 03, 2017
Password inactive : Mar 08, 2017
```

Now, tim's account will be locked 5 days after his password expires. This is helpful in situations where an employee has left the company but their user account has not yet been removed. Depending upon your organization's security needs, consider setting all accounts to lock a certain number of days after passwords have expired.

Understanding the password files and password hashes

Early Linux systems stored their passwords in the /etc/passwd file. The passwords were hashed. A *hashed password* is created using a one-way mathematical process. After you create the hash, you cannot re-create the original characters from the hash. Here's how it works.

When a user enters the account password, the Linux system rehashes the password and then compares the hash result to the original hash in /etc/passwd. If they match, the user is authenticated and allowed into the system.

The problem with storing these password hashes in the /etc/passwd file has to do with the filesystem security settings (see Chapter 4, "Moving Around the Filesystem"). The filesystem security settings for the /etc/passwd file are listed here:

```
# 1s -1 /etc/passwd -rw-r--r-- 1 root root 1644 Feb 2 02:30 /etc/passwd
```

As you can see, everyone can read the password file. You might think that this is not a problem because the passwords are all hashed. However, individuals with malicious intent have created files called *rainbow tables*. A rainbow table is simply a dictionary of potential

passwords that have been hashed. For instance, the rainbow table would contain the hash for the popular password "Password," which is as follows:

```
$6$dhN5ZMUj$CNghjYIteau5x18yX.f6PTOpendJwTOcXj1TDQUQZhhyV8hKzQ6Hxx6Egj8P3VsHJ8Qrkv.VSR5dxcK3QhyMc.
```

Because of the ease of access to the password hashes in the /etc/passwd file, it is only a matter of time before a hashed password is matched in a rainbow table and the plain-text password is uncovered.

Note

Security experts will tell you that the passwords are not just hashed but also salted. Salting a hash means that a randomly generated value is added to the original password before it is hashed. This makes it even more difficult for the hashed password to be matched to its original password. However, in Linux, the hash salt is also stored with the hashed passwords. Thus, read access to the /etc/passwd file means that you have the hash value and its salt.

Thus, the hashed passwords were moved to a new configuration file, /etc/shadow, many years ago. This file has the following security settings:

```
# 1s -1 /etc/shadow ------. 1 root root 1049 Feb 2 09:45 /etc/shadow
```

Despite having no permissions open, root, but no other user, can view this file. Thus, the hashed passwords are protected. Here is the tail end of a /etc/shadow file. You can see that there are long, nonsensical character strings in each user's record. Those are the hashed passwords.

```
# tail -2 /etc/shadow
johndoe:$6$jJjdRN9/qELmb8xWM1LgOYGhEIxc/:15364:0:99999:7:::
Tim:$6$z760AJ42$QXdhFyndpbVPVM5oVtNHs4B/:15372:5:30:7:16436::
```

CAUTION

You may inherit a Linux system that still uses the old method of keeping the hashed passwords in the /etc/passwd file. It is easy to fix. Just use the pwconv command, and the /etc/shadow file is created and hashed passwords moved to it.

The following are also stored in the /etc/shadow file, in addition to the account name and hashed password:

- Number of days (since January 1, 1970) since the password was changed
- Number of days before the password can be changed
- Number of days before a password must be changed
- Number of days to warn a user before a password must be changed
- Number of days after a password expires that an account is disabled
- Number of days (since January 1, 1970) that an account has been disabled

This should sound familiar, as they are the settings for password aging covered earlier in the chapter. Remember that the chage command does not work if you do not have an /etc/shadow file set up or if the /etc/login.defs file is not available.

Obviously, filesystem security settings are very important for keeping your Linux system secure. This is especially true with all Linux systems' configuration files and others.

Securing the filesystem

Another important part of securing your Linux system is setting proper filesystem security. The basics for security settings were covered in Chapter 4 and Access Control Lists (ACLs) in Chapter 11. However, there are a few additional points that need to be added to your knowledge base.

Managing dangerous filesystem permissions

If you gave full rwxrwxrwx (777) access to every file on the Linux system, you can imagine the chaos that would follow. In many ways, similar chaos can occur by not closely managing the set UID (SUID) and the set GID (SGID) permissions (see Chapter 4 and Chapter 11).

Files with the SUID permission in the Owner category and execute permission in the Other category allow anyone to become the file's owner temporarily while the file is being executed in memory. The riskiest case is if the file's owner is root.

Similarly, files with the SGID permission in the Group category and execute permission in the Other category allow anyone temporarily to become a group member of the file's group while the file is being executed in memory. SGID can also be set on directories. This sets the group ID of any files created in the directory to the group ID of the directory.

Executable files with SUID or SGID are favorites of malicious users. Thus, it is best to use them sparingly. However, some files do need to keep these settings. Two examples are the passwd and the sudo commands that follow. Each of these files should maintain their SUID permissions.

```
$ ls -l /usr/bin/passwd
-rwsr-xr-x. 1 root root 28804 Aug 17 20:50 /usr/bin/passwd
$ ls -l /usr/bin/sudo
---s--x-x. 2 root root 77364 Nov 3 08:10 /usr/bin/sudo
```

Commands such as passwd and sudo are designed to be used as SUID programs. Even though those commands run as root user, as a regular user you can only change your own password with passwd and can only escalate to root permission with sudo if you were given permission in the /etc/sudoers file. A more dangerous situation would be if a hacker created a SUID bash command; anyone running that command could effectively change everything on the system that had root access.

Using the find command, you can search your system to see if there are any hidden or otherwise inappropriate SUID and SGID commands on your system. Here is an example:

```
# find / -perm /6000 -ls
4597316 52 -rwxr-sr-x 1 root games 51952 Dec 21 2013 /usr/bin/atc
4589119 20 -rwxr-sr-x 1 root tty 19552 Nov 18 2013 /usr/bin/write
4587931 60 -rwsr-xr-x 1 root root 57888 Aug 2 2013 /usr/bin/at
4588045 60 -rwsr-xr-x 1 root root 57536 Sep 25 2013 /usr/bin/crontab
4588961 32 -rwsr-xr-x 1 root root 32024 Nov 18 2013 /usr/bin/su
...
5767487 85 -rwsrwsr-x 1 root root 68928 Sep 13 11:52 /var/.bin/myvi
```

Notice that find uncovers SUID and SGID commands that regular users can run to escalate their permission for particular reasons. In this example, there is also a file that a user tried to hide (myvi). This is a copy of the vi command that, because of permission and ownership, can change files owned by root. This is obviously a user doing something that they should not be doing.

Securing the password files

The /etc/passwd file is the file the Linux system uses to check user account information and was covered earlier in the chapter. The /etc/passwd file should have the following permission settings:

- Owner: root
- Group: root
- Permissions: (644) Owner: rw- Group: r-- Other: r--

The example that follows shows that the /etc/passwd file has the appropriate settings:

```
# ls -1 /etc/passwd -rw-r--r-. 1 root root 1644 Feb 2 02:30 /etc/passwd
```

These settings are needed so that users can log in to the system and see usernames associated with user ID and group ID numbers. However, users should not be able to modify the /etc/passwd directly. For example, a malicious user could add a new account to the file if write access were granted to Other.

The next file is the /etc/shadow file. Of course, it is closely related to the /etc/passwd file because it is also used during the login authentication process. This /etc/shadow file should have the following permissions settings:

- Owner: root
- Group: root
- Permissions: (000) Owner: --- Group: --- Other: ---

The code that follows shows that the /etc/shadow file has the appropriate settings.

```
# 1s -1 /etc/shadow ------. 1 root root 1049 Feb 2 09:45 /etc/shadow
```

The /etc/passwd file has read access for the owner, group, and other. Notice how much more the /etc/shadow file is restricted than the /etc/passwd file. For the

/etc/shadow file, there is no access permission on, although the root user can still access the file. So, if only root can view this file, how can users change their passwords, which are stored in /etc/shadow? The passwd utility, /usr/bin/passwd, uses the special permission SUID. This permission setting is shown here:

```
# ls -l /usr/bin/passwd
-rwsr-xr-x. 1 root root 28804 Aug 17 20:50 /usr/bin/passwd
```

Thus, the user running the passwd command temporarily becomes root while the command is executing in memory and can then write to the /etc/shadow file, but only to change the user's own password-related information.

Note

The root user does not have write access to the /etc/shadow permissions, so how does root write to the /etc/shadow file? The root user is all-powerful and has complete access to all files, whether the permissions are listed or not.

The /etc/group file (see Chapter 11) contains all of the groups on the Linux system. Its file permissions should be set exactly as the /etc/passwd file:

- Owner: rootGroup: root
- Permissions: (644) Owner: rw- Group: r-- Other: r--

Also, the group password file, /etc/gshadow, needs to be properly secured. As you would expect, the file permission should be set exactly as the /etc/shadow file:

- Owner: rootGroup: root
- Permissions: (000) Owner: --- Group: --- Other: ---

Locking down the filesystem

The filesystem table (see Chapter 12, "Managing Disks and Filesystems"), /etc/fstab, needs some special attention too. The /etc/fstab file is used at boot time to mount storage devices on filesystems. It is also used by the mount command, the dump command, and the fsck command. The /etc/fstab file should have the following permission settings:

- Owner: root
- Group: root
- Permissions: (644) Owner: rw- Group: r-- Other: r--

Within the filesystem table, there are some important security settings that need to be reviewed. Besides your root, boot, and swap partitions, filesystem options are fairly secure by default. However, you may want to also consider the following:

■ Typically, you put the /home subdirectory, where user directories are located, on its own partition. When you add mount options to mount that directory in /etc/

fstab, you can set the nosuid option to prevent SUID and SGID permissionenabled executable programs from running from there. Programs that need SUID and SGID permissions should not be stored in /home and are most likely malicious. You can set the nodev option so that no device file located there will be recognized. Device files should be stored in /dev and not in /home. You can set the noexec option so that no executable programs, which are stored in /home, can be run.

- You can put the /tmp subdirectory, where temporary files are located, on its own partition and use the same options settings as for /home:
 - nosuid
 - nodev
 - noexec
- You can put the /usr subdirectory, where user programs and data are located, on its own partition and set the nodev option so that no device file located there is recognized. After software is installed, the /usr directory often has little or no change (sometimes, it is even mounted read-only for security reasons).
- If the system is configured as a server, you probably want to put the /var directory on its own partition. The /var directory is meant to grow, as log messages and content for web, FTP, and other servers are added. You can use the same mount options with the /var partition as you do for /home:
 - nosuid
 - nodev
 - noexec

Putting the preceding mount options into your /etc/fstab would look similar to the following:

/dev/sdb1	/home	ext4	defaults, nodev, noexec, nosuid	1	2
/dev/sdc1	/tmp	ext4	defaults, nodev, noexec, nosuid	1	1
/dev/sdb2	/usr	ext4	defaults, nodev	1	2
/dev/sdb3	/var	ext4	defaults, nodev, noexec, nosuid	1	2

These mount options will help to lock down your filesystem further and add another layer of protection from those with malicious intent. Again, managing the various file permissions and fstab options should be part of your security policy. The items you choose to implement must be determined by your organization's security needs.

Managing software and services

Often, the administrator's focus is on making sure that the needed software and services are on a Linux system. From a security standpoint, you need to take the opposite viewpoint and make sure that the unneeded software and services are not on a Linux system.

Updating software packages

In addition to removing unnecessary services and software, keeping current software up to date is critical for security. The latest bug fixes and security patches are obtained via

software updates. Software package updates were covered in Chapter 9, "Installing Linux," and Chapter 10, "Getting and Managing Software."

Software updates need to be done on a regular basis. How often and when you do it, of course, depends upon your organization's security needs.

You can easily automate software updates, but like removing services and software, it would be wise to test the updates in a test environment first. When updated software shows no problems, you can then update the software on your production Linux systems.

Keeping up with security advisories

As security flaws are found in Linux software, the Common Vulnerabilities and Exposures (CVE) project tracks them and helps to quickly get fixes for those flaws worked on by the Linux community.

Companies such as Red Hat provide updated packages to fix the security flaws and deliver them in what is referred to as *errata*. Errata may consist of a single updated package or multiple updated packages. If you are running Red Hat Enterprise Linux, you search for, identify, and install the RPM (RPM Package Manager) packages associated with a particular CVE and delivered in errata.

As new forms of software packaging become available, make sure that the software in those packages is being checked for vulnerabilities. For example, the Red Hat Container Catalog (https://access.redhat.com/containers) lists Red Hat-supported container images along with associated errata and health indexes for each image.

For more information on how security updates are handled in Red Hat Enterprise Linux, refer to the Security Updates page on the Red Hat customer portal (https://access.redhat.com/security/updates/). The site contains a wealth of knowledge related to security vulnerabilities and how they are being handled. Being able to get timely security updates is one of the primary reasons companies subscribe critical systems to Red Hat Enterprise Linux.

Advanced implementation

You should be aware of several other important security topics as you are planning your deployments. They include cryptography, Pluggable Authentication Modules (PAM), and SELinux. These advanced and detailed topics have been put into separate chapters—Chapter 23 and Chapter 24.

Monitoring Your Systems

If you do a good job of planning and implementing your system's security, most malicious attacks will be stopped. However, if an attack should occur, you need to be able to recognize it. Monitoring is an activity that needs to be going on continuously.

Monitoring your system includes watching over log files, user accounts, and the filesystem itself. In addition, you need some tools to help you detect intrusions and other types of malware.

Monitoring log files

Understanding how message logging is done is critical to maintaining and troubleshooting a Linux system. Before the systemd facility was used to gather messages in what is referred to as the systemd journal, messages generated by the kernel and system services were directed to file in the /var/log directory. While that is still true to a great extent with systemd, you can now also view log messages directly from the systemd journal using the journalctl command.

The log files for your Linux system are primarily located in the /var/log directory. Most of the files in the /var/log directory are directed there from the systemd journal through the rsyslogd service (see Chapter 13, "Understanding Server Administration"). Table 22.3 contains a list of /var/log files and a brief description of each.

TABLE 22.3 Log Files in the /var/log Directory

System Log Name	Filename	Description	
Apache Access Log	/var/log/httpd/ access_log	Logs requests for information from your Apache web server.	
Apache Error Log	/var/log/ httpd/error_log	Logs errors encountered from clients trying to access data on your Apache web server.	
Bad Logins Log	btmp	Logs bad login attempts.	
Boot Log	boot.log	Contains messages indicating which system services have started and shut down successfully and which (if any) have failed to start or stop. The most recent bootup messages are listed near the end of the file.	
Kernel Log	dmesg	Records messages printed by the kernel when the system boots.	
Cron Log	cron	Contains status messages from the crond daemon.	
dpkg Log	dpkg.log	Contains information concerning installed Debian packages.	
FTP Log	vsftpd.log	Contains messages relating to transfers made using the vsftpd daemon (FTP server).	
FTP Transfer Log	xferlog	Contains information about files transferred using the FTP service.	
GNOME Display Manager Log	/var/log/ gdm/:0.log	Holds messages related to the login screen (GNOME display manager). Yes, there really is a colon in the filename.	
LastLog	lastlog	Records the last time an account logs in to the system.	

(continued)

TABLE 22.3 (Continued)

System Log Name	Filename	Description
Login/out Log	wtmp	Contains a history of logins and logouts on the system.
Mail Log	maillog	Contains information about addresses to which and from which email was sent. Useful for detecting spamming.
MySQL Server Log	mysqld.log	Includes information related to activities of the MySQL database server (mysqld).
News Log	spooler	Provides a directory containing logs of messages from the Usenet News server if you are running one.
Samba Log	/var/log/ samba/smbd.log /var/log/ samba/nmbd.log	Shows messages from the Samba SMB file service daemon.
Security Log	secure	Records the date, time, and duration of login attempts and sessions.
Sendmail Log	sendmail	Shows error messages recorded by the sendmail daemon.
Squid Log	/var/log/squid/ access.log	Contains messages related to the squid proxy/caching server.
System Log	messages	Provides a general-purpose log file where many programs record messages.
UUCP Log	uucp	Shows status messages from the UNIX to UNIX Copy Protocol daemon.
YUM Log	yum.log	Shows messages related to RPM software packages.
X.Org X11 Log	Xorg.0.log	Includes messages output by the X.Org X server.

The log files that are in your system's /var/log directory depend upon what services you are running. Also, some log files are distribution dependent. For example, if you use Fedora, you would not have the dpkg log file.

Most of the log files are displayed using the commands cat, head, tail, more, or less. However, a few of them have special commands for viewing (see Table 22.4).

TABLE 22.4 Viewing Log Files That Need Special Commands

Filename	View Command
btmp	dump-utmp btmp
dmesg	dmesg
lastlog	lastlog
wtmp	dump-utmp wtmp

With the change in Fedora, RHEL, Ubuntu, and other Linux distributions to systemd (which manages the boot process and services), as noted earlier, the mechanism for gathering and displaying log messages associated with the kernel and system services has changed as well. Those messages are directed to the systemd journal and can be displayed with the journalctl command.

You can view journal messages directly from the systemd journal instead of simply listing the contents of /var/log files. In fact, the /var/log/messages file, to which many services direct log messages by default, does not even exist in the latest Fedora release. Instead, you can use the journalctl command to display log messages in various ways.

To page through kernel messages, type the following command:

```
# journalctl -k
Logs begin at Sun 2019-06-09 18:59:23 EDT, end at
    Sun 2019-10-20 18:11:06 EDT.
Oct 19 11:43:04 localhost.localdomain kernel:
    Linux version 5.0.9-301.fc30.x86_64
    (mockbuild@bkernel04.phx2.fedoraproject.org)
    (gcc version 9.0.1 20190312 (Red Hat 9.0.1-0.10) (GCC))
        #1 SMP Tue Apr 23 23:57:35 UTC 2019
Oct 19 11:43:04 localhost.localdomain kernel: Command line:
        BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.0.9-301.fc30.x86_64
    root=/dev/mapper/fedora_localhost--live-root ro
    resume=/dev/mapper/fedora_localhost--live-swap
    rd.lvm.lv=fedora_localhost-live/root
    rd.lvm.lv=fedora_localhost-live/swap rhgb quiet
...
```

To view messages associated with a particular service, use the -u option followed by the service name to see log messages for any service, as in this example:

```
# journalctl -u NetworkManager.service
# journalctl -u httpd.service
# journalctl -u avahi-daemon.service
```

If you think that a security breach is in progress, you can watch all or selected messages as they come in by following messages. For example, to follow kernel messages or httpd messages as they come in, add the -f option (press Ctrl+C when you are finished):

```
# journalctl -k -f
# journalctl -f -u NetworkManager.service
```

To check just boot messages, you can list the boot IDs for all system boots and then boot the particular boot instance that interests you. The following examples display boot IDs and then shows boot messages for a selected boot ID:

```
# journalctl --list-boots
-3 6b968e820df345a781cb6935d483374c
    Sun 2019-08-25 12:42:08 EDT-Mon 2019-08-26 14:30:53 EDT
-2 f2c5a74fbe9b4cblae1c06ac1c24e89b
```

```
Mon 2019-09-02 15:49:03 EDT-Thu 2019-09-12 13:08:26 EDT
-1 5d26bee1cfb7481a9e4da3dd7f8a80a0
  Sun 2019-10-13 12:30:27 EDT-Thu 2019-10-17 13:37:22 EDT
 0 c848e7442932488d91a3a467e8d92fcf
   Sat 2019-10-19 11:43:04 EDT-Sun 2019-10-20 18:11:06 EDT
# journalctl -b c848e7442932488d91a3a467e8d92fcf
-- Logs begin at Sun 2019-06-09 18:59:23 EDT,
   end at Sun 2019-10-20 18:21:18 EDT. --
Oct 19 11:43:04 localhost.localdomain kernel: Linux version
5.0.9-301.fc30.x86 64 (mockbuild@bkernel04.phx2.fedoraproject.org)
Oct 19 11:43:04 localhost.localdomain kernel: Command line:
   BOOT IMAGE=(hd0, msdos1)/vmlinuz-5.0.9-301.fc30.x86 64
   root=/dev/mapper/fedora local>
Oct 19 11:43:04 localhost.localdomain kernel:
   DMI: Red Hat KVM, BIOS 1.9.1-5.el7 3.3 04/01/2014
Oct 19 11:43:04 localhost.localdomain kernel: Hypervisor detected: KVM
```

Monitoring user accounts

User accounts are often used in malicious attacks on a system by gaining unauthorized access to a current account, by creating new bogus accounts, or by leaving an account behind to access later. To avoid such security issues, watching over user accounts is an important activity.

Detecting counterfeit new accounts and privileges

Accounts created without going through the appropriate authorization should be considered counterfeit. Also, modifying an account in any way that gives it a different unauthorized user identification (UID) number or adds unauthorized group memberships is a form of rights escalation. Keeping an eye on the /etc/passwd and /etc/group files will monitor these potential breaches.

To help you monitor the /etc/passwd and /etc/group files, you can use the audit daemon. The audit daemon is an extremely powerful auditing tool that allows you to select system events to track and record them, and it provides reporting capabilities.

To begin auditing the /etc/passwd and /etc/group files, you need to use the auditctl command. Two options at a minimum are required to start this process:

- -w filename: Place a watch on filename. The audit daemon tracks the file by its inode number. An inode number is a data structure that contains information concerning a file, including its location.
- -p trigger(s—): If one of these access types occurs (r=read, w=write, x=execute, a=attribute change) to filename, then trigger an audit record.

In the following example, a watch has been placed on the /etc/passwd file using the auditctl command. The audit daemon will monitor access, which consists of any reads, writes, or file attribute changes:

```
# auditctl -w /etc/passwd -p rwa
```

After you have started a file audit, you may want to turn it off at some point. To turn off an audit, use the command

```
# auditctl -W filename -p trigger(s)
```

To see a list of current audited files and their watch settings, type auditctl -1 at the command line.

To review the audit logs, use the audit daemon's ausearch command. The only option needed here is the -f option, which specifies which records you want to view from the audit log. The following is an example of the /etc/passwd audit information:

```
# ausearch -f /etc/passwd
time->Fri Feb 7 04:27:01 2020
type=PATH msg=audit(1328261221.365:572):
item=0 name="/etc/passwd" inode=170549
dev=fd:01 mode=0100644 ouid=0 ogid=0
rdev=00:00 obj=system u:object r:etc t:s0
type=CWD msq=audit(1328261221.365:572): cwd="/"
time->Fri Feb 7 04:27:14 2020
type=PATH msq=audit (1328261234.558:574):
item=0 name="/etc/passwd" inode=170549
dev=fd:01 mode=0100644 ouid=0 ogid=0
rdev=00:00 obj=system u:object r:etc t:s0
type=CWD msg=audit(1328261234.558:574):
cwd="/home/johndoe"
type=SYSCALL msg=audit(1328261234.558:574):
arch=40000003 syscall=5 success=yes exit=3
a0=3b22d9 a1=80000 a2=1b6 a3=0 items=1 ppid=3891
pid=21696 auid=1000 uid=1000 gid=1000 euid=1000
suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000
tty=pts1 ses=2 comm="vi" exe="/bin/vi"
 subj=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023"
```

This is a lot of information to review. A few items will help you see what audit event happened to trigger the bottom record:

time: The time stamp of the activity

name: The filename, /etc/passwd, being watched

inode: The /etc/passwd's inode number on this filesystem

uid: The user ID, 1000, of the user running the program
exe: The program, /bin/vi, used on the /etc/passwd file

To determine what user account is assigned the UID of 1000, look at the /etc/passwrd file. In this case, the UID of 1000 belongs to the user johndoe. Thus, from the audit event record displayed above, you can determine that account johndoe has attempted to use the vi editor on the /etc/passwd file. It is doubtful that this was an innocent action, and it requires more investigation.

Note

The ausearch command returns nothing if no watch events on a file have been triggered.

The audit daemon and its associated tools are extremely rich. To learn more about it, look at the man pages for the following audit daemon utilities and configuration files:

auditd: The audit daemon

auditd.conf: The audit daemon configuration file

autditctl: Controls the auditing system

audit.rule: Configuration rules loaded at boot

ausearch: Searches the audit logs for specified items

aureport: Report creator for the audit logs

audispd: Sends audit information to other programs

The audit daemon is one way to keep an eye on important files. You should also review your account and group files on a regular basis with a "human eye" to see if anything looks irregular.

Important files, such as /etc/passwd, do need to be monitored for unauthorized account creation. However, just as bad as a new unauthorized user account is an authorized user account with a bad password.

Detecting bad account passwords

Even with all your good efforts, bad passwords will slip in. Therefore, you do need to monitor user account passwords to ensure they that are strong enough to withstand an attack.

One password strength monitoring tool that you can use is the same one malicious users use to crack accounts, John the Ripper. John the Ripper is a free, open source tool that you can use at the Linux command line. It's not installed by default. For a Fedora distribution, you need to issue the command yum install john to install it.

Тιρ

To install John the Ripper on Ubuntu, use the command sudo apt-get install john.

In order to use John the Ripper to test user passwords, you must first extract account names and passwords using the unshadow command. This information needs to be redirected into a file for use by john, as shown here:

```
# unshadow /etc/passwd /etc/shadow > password.file
```

Now edit the password.file using your favorite text editor to remove any accounts without passwords. Because it is wise to limit John the Ripper to testing a few accounts at a time, remove any account names that you do not wish to test presently.

CAUTION

The john utility is extremely CPU-intensive. It does set its nice value to 19 in order to lower its priority. However, it would be wise to run it on a non-production system or during off-peak hours and for only a few accounts at a time.

Now use the john command to attempt password cracks. To run john against the created password file, issue the command john <code>filename</code>. In the following code snippet, you can see the output from running john against the sample password.file. For demonstration purposes, only one account was left in the sample file. Further, the account, Samantha, was given the bad password of password. You can see how little time it took for John the Ripper to crack the password.

To demonstrate how strong passwords are vital, consider what happens when the Samantha account's password is changed from password to Password1234. Even though Password1234 is still a weak password, it takes longer than 7 days of CPU time to crack it. In the code that follows, john was finally aborted to end the cracking attempt.

```
# passwd Samantha
Changing password for user Samantha.
...
# john password.file
Loaded 1 password hash (generic crypt(3) [?/32])
...
time: 0:07:21:55 (3) c/s: 119 trying: tth675 - tth787
Session aborted
```

As soon as passwords cracking attempts have been completed, the password.file should be removed from the system. To learn more about John the Ripper, visit www .openwall.com/john.

Monitoring the filesystem

Malicious programs often modify files. They also can try to cover their tracks by posing as ordinary files and programs. However, there are ways to uncover them through the various monitoring tactics covered in the following sections.

Verifying software packages

Typically, if you install a software package from a standard repository or download a reputable site's package, you won't have any problems. But it is always good to double-check your installed software packages to see if they have been compromised. The command to accomplish this is rpm -V package name.

When you verify the software, information from the installed package files is compared against the package metadata (see Chapter 10, "Getting and Managing Software") in the rpm database. If no problems are found, the rpm -V command returns nothing. However, if there are discrepancies, you get a coded listing. Table 22.5 shows the codes used and a description of the discrepancy.

TABLE 22.5	Package	Verification	Discrepancies
-------------------	---------	--------------	----------------------

Code	Discrepancy
S	File size
М	File permissions and type
5	MD5 check sum
D	Device file's major and minor numbers
L	Symbolic links
U	User ownership
G	Group ownership
Т	File modified times (mtime)
Р	Other installed packages this package is dependent upon (aka capabilities)

In the partial list that follows, all of the installed packages are given a verification check. You can see that the codes 5, S, and T were returned, indicating some potential problems.

You do not have to verify all of your packages at once. You can verify just one package at a time. For example, if you want to verify your nmap package, you simply enter rpm -V nmap.

Note

To verify packages on Ubuntu, you need the debsums utility. It is not installed by default. To install debsums, use the command sudo apt-get install debsums. To check all installed packages, use the debsums -a command. To check one package, type debsums packagename.

Scanning the filesystem

Unless you have recently updated your system, binary files should not have been modified for any reason. Commands such as find and rpm -V can help you determine if a binary file has been tampered with.

To check for binary file modification, find can use the file's modify time, or mtime. The file mtime is the time when the contents of a file were last modified. Also, find can monitor the file's create/change time, or ctime.

If you suspect malicious activity, you can quickly scan your filesystem to see if any binaries were modified or changed today (or yesterday, depending upon when you think the intrusion took place). To do this scan, use the find command.

In the example that follows, a scan is made of the /sbin directory. To see if any binary files were modified less than 24 hours ago, the command find /sbin -mtime -1 is used. In the example, several files are displayed, showing that they were modified recently. This indicates that malicious activity is taking place on the system. To investigate further, review each individual file's times, using the **stat** filename command, as shown here:

```
# find /sbin -mtime -1
/sbin
/sbin/init
/sbin/reboot
/sbin/halt
# stat /sbin/init
 File: '/sbin/init' -> '../bin/systemd'
 Size: 14 Blocks: 0 IO Block: 4096
                                            symbolic link
Device: fd01h/64769d Inode: 9551
                                       Links: 1
Access: (0777/lrwxrwxrwx)
Uid: ( 0/
              root) Gid: ( 0/
Context: system u:object r:bin t:s0
Access: 2016-02-03 03:34:57.276589176 -0500
Modify: 2016-02-02 23:40:39.139872288 -0500
Change: 2016-02-02 23:40:39.140872415 -0500
Birth: -
```

You could create a database of all of the binary's original mtimes and ctimes and then run a script to find current mtimes and ctimes, compare them against the database, and note any discrepancies. However, this type of program has already been created and works well. It's called an Intrusion Detection System, and it is covered later in this chapter.

You need to perform several other filesystem scans on a regular basis. Favorite files or file settings of malicious attackers are listed in Table 22.6. The table also lists the commands to perform the scans and why the file or file setting is potentially problematic.

File or Setting	Scan Command	Problem with File or Setting
SUID permission	find / -perm -4000	Allows anyone to become the file's owner temporarily while the file is being executed in memory.
SGID permission	find / -perm -2000	Allows anyone to become a group member of the file's group temporarily while the file is being executed in memory.
rhost files	<pre>find /home -name .rhosts</pre>	Allows a system to trust another system completely. It should not be in /home directories.
Ownerless files	find / -nouser	Indicates files that are not associated with any username.
Groupless files	find / -nogroup	Indicates files that are not associated with any group name.

TABLE 22.6 Additional Filesystem Scans

The rpm -V package command can tell you information about changes that have occurred to a file after it has been installed from an RPM package. For each file that has changed from the selected package since it was installed, you can see the following information:

- S Size of the file differs
- M Permissions or file type (Mode) of the file differs
- 5 Digest differs (formerly MD5 sum)
- D Device major/minor number is mismatched
- L The readLink(2) path is mismatch
- U User ownership differs
- G Group ownership differs
- T mTime differs
- P caPabilities differ

By default, only changed files appear. Add -v (verbose) to also show files that have not changed. Here is an example:

```
# rpm -V samba
S.5....T. /usr/sbin/eventlogadm
```

In this example, I echoed a few characters into the eventlogadm binary. The S shows the size of the file changes, 5 shows the digest no longer matches the original digest, and T says the modification time on the file has changed.

These filesystem scans help monitor what is going on in your system and help detect malicious attacks. However, other types of attacks can occur to your files, including viruses and rootkits.

Detecting viruses and rootkits

Two popular malicious attack tools are viruses and rootkits because they stay hidden while performing their malicious activities. Linux systems need to be monitored for both such intrusions.

Monitoring for viruses

A *computer virus* is malicious software that can attach itself to already installed system software, and it has the ability to spread through media or networks. It is a misconception that there are no Linux viruses. The malicious creators of viruses do often focus on the more popular desktop operating systems, such as Windows. However, that does not mean that viruses are not created for the Linux systems.

Even more important, Linux systems are often used to handle services, such as mail servers, for Windows desktop systems. Therefore, Linux systems used for such purposes need to be scanned for Windows viruses as well.

Antivirus software scans files using virus signatures. A *virus signature* is a hash created from a virus's binary code. The hash will positively identify that virus. Antivirus programs have a virus signature database that is used to compare against files to see if there is a signature match. Depending upon the number of new threats, a virus signature database can be updated often to provide protection from these new threats.

A good antivirus software choice for your Linux system, which is open source and free, is ClamAV. To install ClamAV on a Fedora or RHEL system, type the command dnf install clamav. You can find out more about ClamAV at clamav.net, where there is documentation on how to set up and run the antivirus software.

TIP

You can review the packages available for Ubuntu installation by entering the command apt-cache search clamav. A couple of different packages are available for Ubuntu, so review the ClamAV website information before you choose a package.

Monitoring for rootkits

A rootkit is a little more insidious than a virus. A *rootkit* is a malicious program that does the following:

- Hides itself, often by replacing system commands or programs
- Maintains high-level access to a system
- Is able to circumvent software created to locate it

The purpose of a rootkit is to get and maintain root-level access to a system. The term was created by putting together *root*, which means that it has to have administrator access, and *kit*, which means it is usually several programs that operate in concert.

A rootkit detector that can be used on a Linux system is chkrootkit. To install chkrootkit on a Fedora or RHEL system, issue the command yum install chkrootkit. To install chkrookit on an Ubuntu system, use the command sudo apt-get install chkrootkit.

TIP

It is best to use a Live CD or flash drive to run chkrootkit so that the results are not circumvented by a rootkit. The Fedora Security Spin has chkrootkit on its Live CD. You can get this distribution at labs .fedoraproject.org/en/security.

Finding a rootkit with chkrootkit is simple. After installing the package or booting up the Live CD, type in **chkrootkit** at the command line. It searches the entire file structure denoting any infected files.

The code that follows shows a run of chkrootkit on an infected system. The grep command was used to search for the keyword INFECTED. Notice that many of the files listed as "infected" are bash shell command files. This is typical of a rootkit.

```
# chkrootkit | grep INFECTED
Checking 'du'... INFECTED
Checking 'find'... INFECTED
Checking 'ls'... INFECTED
Checking 'lsof'... INFECTED
Checking 'pstree'... INFECTED
Searching for Suckit rootkit... Warning: /sbin/init INFECTED
```

In the last line of the preceding <code>chkrootkit</code> code is an indication that the system has been infected with the Suckit rootkit. It actually is not infected with this rootkit. When running utilities, such as antivirus and rootkit-detecting software, you often get a number of false positives. A false positive is an indication of a virus, rootkit, or other malicious activity that does not really exist. In this particular case, this false positive is caused by a known bug.

The chkrootkit utility should have regularly scheduled runs and, of course, should be run whenever a rootkit infection is suspected. To find more information on chkrootkit, go to chkrootkit.org.

TIP

Another rootkit detector that might interest you is called Rootkit Hunter (rkhunter). Run the rkhunter script to check your system for malware and known rootkits. Configure rkhunter in the /etc/rkhunter.conf file. For a simple example, run rkhunter -c to check the filesystem for a variety of rootkits and vulnerabilities.

Detecting an intrusion

Intrusion Detection System (IDS) software—a software package that monitors a system's activities (or its network) for potential malicious activities and reports these activities—can help you monitor your system for potential intrusions. Closely related to Intrusion Detection System software is a software package that prevents an intrusion, called Intrusion Prevention System software. Some of these packages are bundled together to provide Intrusion Detection and Prevention.

Several Intrusion Detection System software packages are available for a Linux system. A few of the more popular utilities are listed in Table 22.7. You should know that tripwire is no longer open source. However, the original tripwire code is still available. See the tripwire website listed in Table 22.7 for more details.

TABLE 22.7 Popular Linux Intrusion Detection Systems

IDS Name	Installation	Website
aide	yum install aide apt-get install aide	http://aide. sourceforge.net
Snort	rpm or tarball packages from website	http://snort.org
tripwire	yum install tripwire apt-get install tripwire	http://tripwire.org

The Advanced Intrusion Detection Environment (aide) IDS uses a method of comparison to detect intrusions. When you were a child, you may have played the game of comparing two pictures and finding what was different between them. The aide utility uses a similar method. A "first picture" database is created. At some time later, another database "second picture" is created, and aide compares the two databases and reports what is different.

To begin, you need to take that "first picture." The best time to create this picture is when the system has been freshly installed. The command to create the initial database is aide -i and it takes a long time to run. Some of its output follows. Notice that aide tells you where it is creating its initial "first picture" database.

```
# aide -i
AIDE, version 0.16.11
```

AIDE database at /var/lib/aide/aide.db.new.gz initialized.

The next step is to move the initial "first picture" database to a new location. This protects the original database from being overwritten. Plus, the comparison does not work unless the database is moved. The command to move the database to its new location and give it a new name is as follows:

```
# cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz
```

When you are ready to check whether your files have been tampered with, you need to create a new database, "second picture," and compare it to the original database, "first picture." The check option on the aide command, -c, creates a new database and runs a comparison against the old database. The output shown next illustrates this comparison being done and the aide command reporting on some problems.

aide -C

```
______
Detailed information about changes:
-----
File: /bin/find
Size : 189736 , 4620
Ctime: 2020-02-10 13:00:44, 2020-02-11 03:05:52
MD5 : <NONE> , rUJj8NtNa1v4nmV5zfoOjg==
RMD160 : <NONE> , OCwkiYhqNnfwPUPM12HdKuUSFUE=
SHA256 : <NONE> , jg60Soawj4S/UZXm5h4aEGJ+xZgGwCmN
File: /bin/ls
Size: 112704, 6122
Ctime : 2020-02-10 13:04:57 , 2020-02-11 03:05:52
MD5 : POeOop46MvRx9qfEoYTXOQ== , IShMBpbSOY8axhw1Kj8Wdw==
RMD160 : N3V3Joe5Vo+cOSSnedf9PCDXYkI= ,
e0ZneB7CrWHV42hAEgT2lwrVfP4=
SHA256 : vuOFe6FUgoAyNgIxYghOo6+SxR/zxS1s ,
Z6nEMMBQyYm8486yFSIbKBuMUi/+jrUi
File: /bin/ps
Size: 76684, 4828
Ctime : 2020-02-10 13:05:45 , 2020-02-11 03:05:52
MD5 : 1pCVAWbpeXINiBQWSUEJfQ== , 4ElJhyWkyMtm24vNLya6CA==
RMD160 : xwICWNtQH242jHsH2E8rV5kgSkU= ,
AZ1I2QN1KrWH45i3/V54H+1QQZk=
SHA256 : ffUDesbfxx3YsLDhD0bLTW0c6nykc3m0 ,
wlqXvGWPFzFir5yxN+n6t3eOWw1TtNC/
File: /usr/bin/du
Size : 104224 , 4619
Ctime: 2020-02-10 13:04:58, 2020-02-11 03:05:53
MD5 : 5DUMKWj6LodWj4C0xfPBIw== , nzn7vrwfBawAeL8nkayICg==
RMD160 : Zlbm0f/bUWRLgi1B5nVjhanuX9Q= ,
2e5S00lBWqLq4Tnac4b6QIXRCwY=
SHA256 : P/jVAKr/SOOepBBxvGP900nLXrRY9tnw ,
HhTqWgDyIkUDxA1X232ijmQ/OMA/kRgl
File: /usr/bin/pstree
Size: 20296, 7030
Ctime: 2020-02-10 13:02:18, 2020-02-11 03:05:53
MD5 : <NONE> , ry/MUZ7XvU4L2QfWJ4GXxg==
RMD160 : <NONE> , tFZer6As9EoOi58K7/LgmeiExjU=
SHA256 : <NONE> , iAsMkqNShagD4qe7dL/EwcgKTRzvKRSe
```

The files listed by the aide check in this example are infected. However, aide can also display many false positives.

Where aide databases are created, what comparisons are made, and several other configuration settings are handled in the /etc/aide.conf file. The following is a partial display of the file. You can see the names of the database file and the log file directories set here:

```
# cat /etc/aide.conf
# Example configuration file for AIDE.

@@define DBDIR /var/lib/aide
@@define LOGDIR /var/log/aide

# The location of the database to be read.
database=file:@@{DBDIR}/aide.db.gz

# The location of the database to be written.
#database_out=sql:host:port:database:login_name:passwd:table
#database_out=file:aide.db.new
database_out=file:@@{DBDIR}/aide.db.new.gz
```

An Intrusion Detection System can be a big help in monitoring the system. When potential intrusions are detected, comparing the output to information from other commands (such as rpm -V) and log files can help you better understand and correct any attacks on your system.

Auditing and Reviewing Linux

You must understand two important terms when you are auditing the health of your Linux system. A *compliance review* is an audit of the overall computer system environment to ensure that the policies and procedures you have set for the system are being carried out correctly. A *security review* is an audit of current policies and procedures to ensure that they follow accepted best security practices.

Conducting compliance reviews

Similar to audits in other fields, such as accounting, audits can be conducted internally or by external personnel. These reviews can be as simple as someone sitting down and comparing implemented security to your company's stated policies. However, more popular is conducting audits using penetration testing.

Penetration testing is an evaluation method used to test a computer system's security by simulating malicious attacks. It is also called pen testing and ethical hacking. No longer do you have to gather tools and the local neighborhood hacker to help you conduct these tests.

Kali Linux (https://www.kali.org/) is a distribution created specifically for penetration testing. It can be used from a live DVD or a flash drive. Training on the use of Kali Linux is offered by Offensive Security (https://www.offensive-security.com/information-security-training/).

While penetration testing is lots of fun, for a thorough compliance review, a little more is needed. You should also use checklists from industry security sites.

Conducting security reviews

Conducting a security review requires that you know current best security practices. There are several ways to stay informed about best security practices. The following is a brief list of organizations that can help you.

- United States Cybersecurity and Infrastructure Security Agency (CISA)
 - URL: www.us-cert.gov
 - Offers the National Cyber Alert System
 - Offers RSS feeds on the latest security threats
- The SANS Institute
 - URL: www.sans.org/security-resources
 - Offers Computer Security Research newsletters
 - Offers RSS feeds on the latest security threats
- Gibson Research Corporation
 - URL: www.grc.com
 - Offers the *Security Now!* security netcast

Information from these sites will assist you in creating stronger policies and procedures. Given how fast the best security practices change, it would be wise to conduct security reviews often, depending upon your organization's security needs.

Now you understand a lot more about basic Linux security. The hard part is actually putting all of these concepts into practice.

Summary

Basic Linux security practices, such as managing user accounts, securing passwords, and managing software and services, form the foundation for all other security on your Linux system. With that foundation in place, ongoing monitoring of your system includes watching over system log files, checking for malicious intrusions, and monitoring the filesystem.

Reviews of your security policies are also important to keep up on a regular basis. Audits assist in ensuring that your Linux system is secured and the proper security policies and practices are in place.

You have completed your first step of gathering basic security procedures and principles knowledge. It is not enough just to know the basics. You need to add advanced Linux security tools to your security toolbox. In the next chapter, advanced security topics of cryptography and authentication modules are covered.

Exercises

Refer to the material in this chapter to complete the tasks that follow. If you are stuck, solutions to the tasks are shown in Appendix B (although in Linux, there are often multiple ways to complete a task). Try each of the exercises before referring to the answers. These tasks assume that you are running a Fedora or Red Hat Enterprise Linux system (although some tasks will work on other Linux systems as well).

- 1. Check log messages from the systemd journal for the following services: NetworkManager.service, sshd.service, and auditd.service.
- List the permissions of the file containing your system's user passwords and determine if they are appropriate.
- Determine your account's password aging and if it will expire using a sinqle command.
- 4. Start auditing writes to the /etc/shadow with the auditd daemon and then check your audit settings.
- 5. Create a report from the auditd daemon on the /etc/shadow file, and then turn off auditing on that file.
- 6. Install the lemon package, damage the /usr/bin/lemon file (perhaps copy /etc/services there), verify that the file has been tampered with, and remove the lemon package.
- 7. You suspect that you have had a malicious attack on your system today and important binary files have been modified. What command should you use to find these modified files?
- 8. Install and run chkrootkit to see if the malicious attack from the exercise above installed a rootkit.
- 9. Find files with the SUID or SGID permission set.
- 10. Install the aide package, run the aide command to initialize the aide database, copy the database to the correct location, and run the aide command to check if any important files on your system have been modified.