TD chapitre 8 : Dérivation des fonctions réelles

Tangentes aux graphes de fonctions

Exercice 1:

Calculer l'équation de la tangente (T_0) à la courbe d'équation $y = x^3 - x^2 - x$ au point d'abscisse $x_0 = 2$. Calculer x_1 afin que la tangente (T_1) au point d'abscisse x_1 soit parallèle à (T_0) .

Parité

Exercice 2:

Montrer que si f est une fonction paire et dérivable, alors f' est une fonction impaire.

Dérivabilité

Exercice 3:

a) Montrer que la fonction $f(x) = \begin{cases} x. sin(\frac{1}{x}) & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$ est continue sur \mathbb{R} .

Sur quel domaine est-elle dérivable ?

b) Montrer que la fonction racine carrée n'est pas dérivable en 0. (Utiliser la méthode de la limite du taux d'accroissement).

Exercice 4:

Etudier la dérivabilité des fonctions suivantes, puis calculer leurs dérivées :

arctan, arccos, argth, f(x) = arctanx + arctan(1/x)

Exercice 5:

Etudier la dérivabilité des fonctions suivantes, puis calculer leurs dérivées :

$$f(x) = \frac{1}{1+x^2}$$
 $g(x) = \frac{x}{(1+x)^n}$, $n \in \mathbb{N}$ $h(x) = a^x$, $a > 0$ $k(x) = x^x$

Exercice 6:

Etudier la dérivabilité des fonctions suivantes, puis calculer leurs dérivées :

$$x \mapsto \ln(\tan(x))$$
 $\qquad x \mapsto \sqrt{1 + \sqrt{1 + x^2}} \qquad x \mapsto \ln\left(\frac{1+x}{1-x}\right)^{\frac{1}{3}} \qquad x \mapsto \tan(e^{x^2})$

$$\chi \mapsto \frac{|x|\sqrt{x^2-2x+1}}{x-1}$$
 $x \mapsto (x^2-1) \cdot \arccos(x^2)$

Exercice 7:

Déterminer $a,b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \begin{cases} \sqrt{x} & si & 0 \le x \le 1\\ ax^2 + bx + 1 & si & x > 1 \end{cases}$$

soit dérivable sur \mathbb{R}_+^*

Fonctions réciproques - bijections

Exercice 8:

Soit $f:]1, +\infty[\longrightarrow]-1, +\infty[$ définie par $f(x) = x. \ln(x) - x.$

Montrer que f est une bijection.

Notons $g = f^{-1}$, calculer g(0) et g'(0).

Exercice 9:

Soit $f:[0,\pi/2] \to \mathbb{R}$ définie par :

$$f(x) = \sqrt{\sin(x)} + x$$

Justifier que f réalise une bijection vers un intervalle à préciser, puis que f^{-1} est continue et dérivable sur cet intervalle.

Extremums

Exercice 10:

Soit
$$f(x) = \frac{x^3}{3} + \frac{x^2}{2} - 2x + 2$$
.

Etudier la fonction f. Tracer son graphique. Montrer que f admet un minimum local et un maximum local.

Exercice 11:

Calculer en quel point la fonction $f(x) = ax^2 + bx + c$ admet un maximum local.

Théorème de Rolle

Exercice 12:

Soit $f:[0,2] \to \mathbb{R}$ une fonction deux fois dérivable telle que f(0)=f(1)=f(2)=0.

Montrer qu'il existe $c \in]0,2[$ tel que f''(c)=0.

TAF, IAF (Théorème des Accroissements Finis, Inégalité des Accroissements Finis)

Exercice 13:

- a) Montrer que $\forall x > 0$, $\ln(1+x) \ln(x) < \frac{1}{x}$
- b) Soit la fonction $f(x) = e^x$. Que donne l'IAF sur l'intervalle [0, x]?
- c) Majorer $|e^x 1|$ en fonction de |x| pour $x \in \mathbb{R}$.

Exercice 14:

- a) Montrer en utilisant l'IAF que $\forall x, y \in \mathbb{R}$, $|\sin(x) \sin(y)| \le |x y|$
- b) En déduire que $\forall x \in \mathbb{R}$, $|\sin(x)| \le |x|$

Exercice 15:

Soient x et y deux réels avec 0 < x < y. Montrer que :

$$x < \frac{y - x}{\ln(y) - \ln(x)} < y$$

3

Exercice 16:

En utilisant la règle de l'Hôpital, calculer les limites lorsque $x \to 0$ de :

$$\frac{x}{(1+x)^{n}-1} \qquad \frac{\ln(x+1)}{\sqrt{x}} \qquad \frac{1-\cos(x)}{\tan(x)}$$

Calculer
$$\lim_{x \to 1^{-}} \frac{arccos(x)}{\sqrt{1-x^2}}$$

Dérivées successives

Exercice 17:

Calculer les dérivées successives de :

$$f(x) = ln(1+x)$$
 et $g(x) = ln(x).x^3$