SMA0300 Geometria Analítica Segunda Lista de Exercícios – Dependência linear

Docentes responsáveis: Carlos Maquera, Farid Tari, Karla Spatti, Maria do Carmo Carbinatto, Miriam Manoel, Regilene Oliveira, Roberta Wik Atique

28 de março de 2022

Exercício 1. A figura abaixo representa um paralelepípedo retângulo. Decida se cada uma das afirmativas abaixo é verdadeira ou falsa:

- $(a) \overrightarrow{DH} = \overrightarrow{BF}.$
- (b) $\overrightarrow{AB} = -\overrightarrow{HG}$.
- (c) \overrightarrow{AB} é paralelo a \overrightarrow{CG} .
- $(d) ||\overrightarrow{AC}|| = ||\overrightarrow{HF}||.$
- (e) \overrightarrow{BG} é paralelo a \overrightarrow{ED} .
- (f) os vetores \overrightarrow{AB} , \overrightarrow{BC} e \overrightarrow{CG} são coplanares.
- (g) os vetores \overrightarrow{AC} , \overrightarrow{DB} , e \overrightarrow{FG} são coplanares.
- (h) \overrightarrow{DC} é paralelo ao plano que contém os pontos H, E e F.

Exercício 2. Considere o paralelepípedo retângulo como abaixo:

- (a) Escreva o vetor \overrightarrow{AG} como combinação linear dos vetores \overrightarrow{AE} , \overrightarrow{AD} e \overrightarrow{AB} .
- (b) Escreva o vetor \overrightarrow{BH} como combinação linear dos vetores \overrightarrow{AE} , \overrightarrow{AD} e \overrightarrow{AB} .
- $\overrightarrow{(c)}$ O vetor \overrightarrow{AG} pode ser escrito como combinação linear de \overrightarrow{AC} , \overrightarrow{AD} e \overrightarrow{AB} ? Justifique sua resposta.

Exercício 3. Apenas uma das afirmações abaixo é verdadeira. Mostre, com contra-exemplos, que as demais são falsas.

- (a) Se \vec{u} e \vec{v} são L.I., então \vec{u} , \vec{v} , \vec{w} são L.I. para todo \vec{w} .
- (b) Se \vec{u} e \vec{v} são L.D., então \vec{u} , \vec{v} , \vec{w} são L.D. para todo \vec{w} .
- (c) Se \vec{u} , \vec{v} , \vec{w} são L.D., então \vec{u} , \vec{v} são L.D.

Exercício 4. Se os vetores \vec{u} , \vec{v} e \vec{w} são tais que \vec{u} e \vec{v} são L.I., \vec{u} e \vec{w} são L.D. e \vec{v} e \vec{w} são L.D., mostre que $\vec{w}=0$.

Exercício 5. Decida se a afirmação seguinte é verdadeira ou falsa, justificando sua resposta: "Se um conjunto de vetores é L.D., então qualquer um dos vetores do conjunto é combinação linear dos demais."

Exercício 6. Prove que se o conjunto de vetores $(\vec{u}, \vec{v}, \vec{w})$ é L.I., então $(\vec{u} + \vec{v} + \vec{w}, \vec{u} - \vec{v}, 3\vec{w})$ também é L.I., o mesmo sucedendo com $(\vec{u} + \vec{v}, \vec{u} - \vec{w}, \vec{v} + \vec{w})$.

Exercício 7. Prove que (\vec{u}, \vec{v}) é L.I. se, e somente, se $(\vec{u} + \vec{v}, \vec{u} - \vec{v})$ é L.I..

Exercício 8. Prove que $(\vec{u}-2\vec{v}+\vec{w},2\vec{u}+\vec{v}+3\vec{w},\vec{u}+8\vec{v}+3\vec{w})$ é L.D. quaisquer que sejam os vetores \vec{u},\vec{v},\vec{w} .