Završni ispit iz Kvantnih računala (1. veljače 2017.)

Ime i prezime:

Uputa: Odgovore označite (zaokružite) *na ovom papiru*, a u praznom prostoru pored ponuđenih odgovora ili na dodatnim praznim papirima, za svaki zadatak napišite *kratko obrazloženje ili računski postupak*. Točno riješeni zadaci donose tri boda (nema "negativnih bodova").

Notacija i terminologija: Vektori $|0\rangle=\begin{pmatrix} 1\\0 \end{pmatrix}$ i $|1\rangle=\begin{pmatrix} 0\\1 \end{pmatrix}$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$. Pri realizaciji qubita stanjima polarizacije fotona, $|0\rangle=|x\rangle$ i $|1\rangle=|y\rangle$ odgovaraju linearnoj polarizaciji u x-smjeru i u y-smjeru, bazu $\{|x\rangle\,,|y\rangle\}$ obilježavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle\pm|y\rangle)\}$ obilježavamo simbolom \bigotimes . Pri realizaciji qubita projekcijom spina čestice spinskog kvantnog broja s=1/2 na z-os uzimamo da $|0\rangle$ i $|1\rangle$ odgovarju projekcijama $\hbar/2$ i $-\hbar/2$. Računalnu bazu u sustavu dvaju qubitova obilježavamo s $\{|ij\rangle=|i\rangle\otimes|j\rangle\,; i,j=0,1\}$, a u prikazu vektor-stupcem imamo npr. $|01\rangle=\begin{pmatrix} 0\\1\\0\\0\end{pmatrix}$. Pojam entanglement prevodimo sa spregnutost.

Zadaci:

- 1 Neka su stanja $|0\rangle$ i $|1\rangle$ svojstvena stanja operatora energije (hamiltonijana) qubita pri čemu stanju $|0\rangle$ odgovara energija $\hbar\omega$, a stanju $|1\rangle$ odgovara energija 0. Ako se qubit početno nalazi u stanju $|0\rangle$, on će se u stanju $|1\rangle$ naći nakon vremena
 - (a) $2\pi/\omega$
 - (b) $\sqrt{2}\pi/\omega$
 - (c) π/ω
 - (d) $\pi/(2\omega)$
 - (e) ∞ (neće se naći u tom stanju) **točno**
- 2 Neka su stanja $|0\rangle$ i $|1\rangle$ svojstvena stanja operatora energije (hamiltonijana) qubita pri čemu stanju $|0\rangle$ odgovara energija $\hbar\omega/2$, a stanju $|1\rangle$ odgovara energija $-\hbar\omega/2$. Ako se qubit početno nalazi u stanju

$$\frac{1}{\sqrt{2}}\big(\ket{0}+\ket{1}\big),$$

on će se u stanju

$$\frac{1}{\sqrt{2}}\big(\left.|0\rangle+\mathrm{i}\left.|1\rangle\right.\big)$$

naći nakon vremena

- (a) $2\pi/\omega$
- (b) $3\pi/(2\omega)$
- (c) π/ω
- (d) $\pi/(2\omega)$ točno
- (e) ∞ (to se neće dogoditi)

- 3 U kojem od navedenih stanja sustava dvaju qubitova su stanja qubitova spregnuta (A je normalizacijska konstanta, a α i β su koeficijenti različiti od nule)?
 - (a) $A(\alpha |01\rangle + \beta |11\rangle)$
 - (b) $A(\alpha |00\rangle + \alpha |11\rangle)$ točno
 - (c) $A(\alpha |00\rangle + \beta |01\rangle)$
 - (d) $A(\alpha|00\rangle + \beta|01\rangle + \alpha|10\rangle + \beta|11\rangle)$
 - (e) $A(\alpha |00\rangle \alpha |01\rangle + \beta |10\rangle \beta |11\rangle)$
- 4 Matrica

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

odgovara tenzorskom produktu

- (a) $\sigma_1 \otimes \sigma_1$
- (b) $\sigma_1 \otimes \sigma_2$
- (c) $\sigma_2 \otimes \sigma_2$
- (d) $\sigma_2 \otimes \sigma_3$
- (e) $\sigma_3 \otimes \sigma_3$ točno
- 5 Koji od navedenih operatora je hermitski operator koji opisuje zbroj projekcija spinova dviju čestica (s=1/2) na z-os?
 - (a) $\hbar |01\rangle \langle 01| + \hbar |10\rangle \langle 10|$
 - (b) $\hbar |01\rangle \langle 01| \hbar |10\rangle \langle 10|$
 - (c) $\hbar |01\rangle \langle 10| + \hbar |10\rangle \langle 01|$
 - (d) $\hbar |00\rangle \langle 00| + \hbar |11\rangle \langle 11|$
 - (e) $\hbar \left| 00 \right\rangle \left\langle 00 \right| \hbar \left| 11 \right\rangle \left\langle 11 \right|$ točno

6 Sustav dvaju qubitova je realiziran projekcijama spinova čestica na z-os, a nalazi se u stanju

$$\frac{1}{2}\left|00\right\rangle + \frac{\sqrt{3}}{2}\left|11\right\rangle.$$

Operator stanja prvog qubita glasi

- (a) $\begin{pmatrix} 1/2 & 0 \\ 0 & \sqrt{3}/2 \end{pmatrix}$
- (b) $\begin{pmatrix} 0 & 1/2 \\ \sqrt{3}/2 & 0 \end{pmatrix}$
- (c) $\begin{pmatrix} 1/4 & 0 \\ 0 & 3/4 \end{pmatrix}$ točno
- (d) $\begin{pmatrix} 0 & 1/4 \\ 3/4 & 0 \end{pmatrix}$
- (e) $\begin{pmatrix} 3/4 & 0 \\ 0 & 1/4 \end{pmatrix}$

7 Stanje qubita je opisano operatorom stanja

$$\begin{pmatrix} 1/3 & 0 \\ 0 & 2/3 \end{pmatrix}.$$

Očekivana vrijednost operatora prikazanog matricom σ_z je

- (a) -1
- (b) -1/3 **točno**
- (c) 0
- (d) 1/3
- (e) 1

8 Koji od navedenih operatora je Hadamardov operator H?

- (a) $\frac{1}{\sqrt{2}} (|0\rangle \langle 0| |1\rangle \langle 1|)$
- (b) $\frac{1}{\sqrt{2}} (|0\rangle \langle 1| + |1\rangle \langle 0|)$
- (c) $\frac{1}{\sqrt{2}} (|0\rangle \langle 1| |1\rangle \langle 0|)$
- (d) $\frac{1}{\sqrt{2}}((|0\rangle+|1\rangle)\langle 0|-(|0\rangle+|1\rangle)\langle 1|)$
- (e) $\frac{1}{\sqrt{2}} \left(\left(\left| 0 \right\rangle + \left| 1 \right\rangle \right) \left\langle 0 \right| + \left(\left| 0 \right\rangle \left| 1 \right\rangle \right) \left\langle 1 \right| \right)$ točno

9 Stanje sustava na izlaznoj (desnoj) strani kvantnog logičkog kruga

je

- (a) $|01\rangle$
- (b) $|10\rangle$ točno
- (c) $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
- (d) $\frac{1}{\sqrt{2}} (|01\rangle |10\rangle)$
- (e) $\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$

10 Shvatimo li kvantni logički krug

kao jedan operator, njegov matrični prikaz je

(a)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix}$$

točno

(b)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0\\ 1 & 0 & 0 & -1\\ 0 & 1 & -1 & 0 \end{pmatrix}$$

(c)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

(d)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

11 Na desnoj (izlaznoj) strani kvantnog logičkog kruga

dobivamo stanje

(a)
$$\frac{1}{2} (|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

(b)
$$\frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle)$$

(c)
$$\frac{1}{2} (|00\rangle + |01\rangle - |10\rangle + |11\rangle)$$

(d)
$$\frac{1}{2} (|00\rangle - |01\rangle + |10\rangle + |11\rangle)$$
 točno

(e)
$$\frac{1}{2} (|00\rangle - |01\rangle - |10\rangle - |11\rangle)$$

12 Ako vrata U_f predstavljaju implementaciju funkcije f sa svojstvom f(0)=f(1)=1 te ako na izlaznoj (desnoj) strani kvantnog logičkog kruga

imamo stanje $|01\rangle$, možemo zaključiti da na ulazu u krug imamo stanje

- (a) $|00\rangle$ točno
- (b) $|01\rangle$
- (c) $|10\rangle$
- (d) $|11\rangle$
- (e) situacija sa slike nije moguća
- 13 U kvantnom logičkom krugu na slici vrata U_f predstavljaju implementaciju konstantne funkcije f(0)=f(1)=0.

$$|0\rangle$$
 H U_f $|0\rangle$

Stanje prvog (gornjeg) qubita na izlaznoj (desnoj) strani je

- (a) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ točno
- (b) $\frac{1}{\sqrt{2}} (|0\rangle |1\rangle)$
- (c) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
- (d) $\frac{1}{\sqrt{2}} (|0\rangle i|1\rangle)$
- (e) nije moguće prikazati vektorom stanja

14 Razmatramo kvantni logički krug

$$|0\rangle$$
 — H — ϕ — H — ϕ

gdje je operator ϕ definiran s $|0\rangle \to |0\rangle$ i $|1\rangle \to \mathrm{e}^{\mathrm{i}\phi}\,|1\rangle$ pri čemu je faza ϕ realan broj. Kolika je vjerojatnost da u mjerenju dobijemo vrijednost 0 tj. da qubit bude izmjeren u stanju $|0\rangle$? (Podsjetnik: $\mathrm{e}^{\mathrm{i}\phi} = \cos\phi + \mathrm{i}\sin\phi$)

- (a) $\cos \phi$
- (b) $\cos^2 \phi$
- (c) $\frac{1}{2}(1 + \cos \phi)$ **točno**
- (d) $\frac{1}{2}(1-\cos\phi)$
- (e) 0