a) FSM for the water tank system:

- 1. States:
 - State 1: Water_On: The water faucet is on, and the system is filling the tank.
 - State 2: Water_Off: The water faucet is off.

2. Input Alphabet:

- The input is the water level h, with thresholds:
 - h_{\min} : Minimum water level for turning on the faucet.
 - h_{\max} : Maximum water level for turning off the faucet.

3. Transitions:

- ullet From Water_On to Water_Off : If $h \geq h_{\max}$, turn off the faucet.
- ullet From Water_Off to Water_On : If $h \leq h_{\min}$, turn on the faucet.

4. Initial State:

• Start in Water_Off , assuming the tank begins with a water level above $h_{
m max}$.

5. Output

- In Water_On , the output is "Faucet On".
- In Water_Off , the output is "Faucet Off".

FSM Representation:

- State 1: Water_On (Faucet On)
 - lacksquare Transition: If $h \geq h_{
 m max}$, move to State 2 (Water_Off).
- State 2: Water_Off (Faucet Off)
 - lacktriangledown Transition: If $h \leq h_{\min}$, move to State 1 (Water_On).

b) Is the FSM model pure or with conditional structures?

The FSM remains with conditional structures, as transitions between states depend on the conditions set by the water levels h_{\min} and h_{\max} .

c) Is the FSM model deterministic or nondeterministic?

The FSM is **deterministic**. The next state is uniquely determined by the current state and the water level h. There is no ambiguity in the transitions.

d) Does the FSM model terminate (accept a state)?

The FSM does not terminate, as it cycles indefinitely between the Water_On and Water_Off states to maintain the water level.