Questions

1. Using the Needleman and Wunsch dynamic programming method, construct the partial alignment score table for the following two sequences, using the scoring parameters: match score: +1; mismatch score: 0 and gap penalty: -1

ACAGTCGAACG and **ACCGTCCG**

2. Using the Smith-Waterman method, construct the partial alignment scoring table for a local alignment of the following two sequences:

ACGTATCGCGTATA and GATGCTCTCGGAAA

scoring parameters: match score: +1; mismatch score: 0 and gap penalty: -1

Database searches

The common use for sequence alignments is to search through a database of many sequences to retrieve similar sequences to the query sequence.

E.g. we have a region of human genome with unidentified function

Search with millions of other sequences in Genbank of NCBI (or EBI or DDBJ)

Get the regions that align well with the query sequence

Compare with their functional role

Information on regulation/expression and its relationship with other genes.

Major points:

- 1. Size of the query sequence
- 2. Number of sequences in the database

Proper methods are necessary to identify correct sequence matches.

BLAST

BLAST: Basic Local Alignment Search Tool

BLAST finds sub-sequences from a sequence database for any query sequence.

Program nameQuery sequenceDatabase typeBlastpProteinProteinBlastnNucleic acidNucleic acidTblastnProteinNucleic acid (translated)TblastxNucleic acid (translated)Nucleic acid (translated)

Blastp: searches for protein sequence matches using PAM or BLOSSUM matrices to score the ungapped alignments.

BLAST: Example

Blastp first breaks down the query sequence into words or subsequences of fixed length All possible pairs are calculated using sliding windows

E.g. AILVPTVI -> AILV, ILVP, LVPT, VPTV and PTVI

Search for word matches (also called High Scoring Pairs or HSPs):

MVQGTIPKLHAILVGTVIAML ...

AILVPTVI

Extend the match until the local alignment score falls below a fixed threshold It also allows gaps in the extended length.

FASTA

FASTA is another program for sequence similarity search and sequence alignment.

FASTA breaks the words into 4-6 nucleotides or 1-2 amino acids

Eg. Query sequence: FAMLGFIKYLPGCM

Word	A	С	D	E	F	G	Н	I	K	L	M	N	P	Q	R	S	T	V	W	Y
Position	2	13			1	5		7	8	4	3		11							9
					6	12				10	14									

Target sequence: TGFIKYLPGACT

Large number of sequences have the number 3;

Offsetting with 3 gives a reasonable alignment

Alignment score and statistical significance

The primary indicator of how similar the search results are to a query sequence is the alignment score (S).

Score is given with P or E value.

E-value is the expected number of sequences of score \geq S that would be found by random choice

P-value is the probability that one or more sequences of score $\geq S$ would have been found randomly.

Low values of E and P indicate that the search result was unlikely to have been obtained by random chance, and thus is likely to bear an evolutionary relationship to the query sequence.

E values of less than 10⁻³ are often considered indicative of statistically significant results and search algorithms produce matches with E values on the order of 10⁻⁵⁰.

BLAST: Features

- (i) identifying protein sequences similar to the query,
- (ii) finding members of a protein family or build a custom position-specific scoring matrix,
- (iii) finding proteins similar to the query around a given pattern,
- (iv) finding conserved domains in the query and
- (v) searching for peptide motifs.

BLAST is available at http://www.ncbi.nlm.nih.gov/BLAST/.

BLAST: Search

BLAST: Options

Accepts gi number or FASTA format

gi: bar separated NCBI sequence identifier (e.g., gi|48428995).

Accession number: number allotted in Uniprot for each sequence (e.g. P61626)

FASTA format

begins with a single-line description, followed by lines of sequence data. The description line is distinguished from the sequence data by a greater-than (">") symbol at the beginning.

Example sequence in FASTA format:

> LYSC_HUMAN RecName: Full=Lysozyme CMKALIVLGLVLLSVTVQGKVFERCELARTLKRLGMDGYRGISLANWMCLAKWESG YNTRATNYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQDNIADAVAC AKRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCGV

File formats

1. FASTA format

> LYSC_HUMAN RecName: Full=Lysozyme CMKALIVLGLVLLSVTVQGKVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRATNYNAGDRSTDYG IFQINSRYWCNDGKTPGAVNACHLSCSALLQDNIADAVACAKRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCG V

Files in FASTA format have the extension ".fasta"

2. NBRF/PIR (National Biomedical Research Foundation/Protein Information Resource)

First line begins with >P1 for protein sequence or >N1 for nucleic acid sequence.

>P1; LYSC_HUMAN CMKALIVLGLVLLSVTVQGKVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRATNYNAGDRSTDYG IFQINSRYWCNDGKTPGAVNACHLSCSALLQDNIADAVACAKRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCG V

*

Files in NBRF/PIR format have the extension ".seq" or ".pir"

3. GDE format, (essentially the same as FASTA, the difference is starts with %). The file format is ".gde

Searchable databases

Peptide Sequence Databases

nr

All non-redundant GenBank CDS translations + RefSeq Proteins + PDB + SwissProt + PIR + PRF

refseq

RefSeq protein sequences from NCBI's Reference Sequence Project.

Uniprot

Last major release of the Uniprot protein sequence database.

pat

Proteins from the Patent division of GenPept.

pdb

Sequences derived from the 3-dimensional structure from Protein Data Bank

month

All new or revised GenBank CDS translation+PDB+SwissProt+PIR+PRF released in the last 30 days.

env nr

Metagenomic Protein sequences.

Algorithm parameters

Algorithm parameters

Displaying maximum number of aligned sequences

Expect threshold (e-value): expected number of chance matches in a random model and it is set to 10 as default value.

Word size: length of the seed that initiates an alignment.

scoring parameters can be selected for matrix, gap cost and compositional adjustments.

Substitution matrix: It is a key element in evaluating the quality of a pairwise sequence alignment, which assigns a score for aligning any possible pair of residues.

Generally BLOSUM62 is used as the substitution matrix, which is a 20x20 matrix obtained for all possible substitutions of 20 amino acid residues. It is based on a likelihood method by estimating the occurrence of each possible pairwise substitution using the biochemical character of amino acid residues (aliphatic, aromatic, positive charged, negative charged; polar, sulfur containing).

The gap cost is a cost to create and extend a gap in an alignment.

Further, options are available to filter the low complexity regions and mask query and lower case letters in the sequence.

BLAST: Output

Lysozyme catalytic site Ca²⁺ binding site

Legend for links to other resources: U UniGene 트 GEO 🖸 Gene 鸟 Structure M Map Viewer 🗷 PubChem BioAssay

Sequences producing significant alignments:

Accession	Description	Max score	<u> ∆</u> Total score	Query coverage	<u>E value</u>	Links
NP 000230.1	lysozyme C precursor [Homo sapiens] >ref NP_001009073.1 ly	<u>303</u>	303	100%	4e-81	UGM
AAA36188.1	lysozyme precursor (EC 3.2.1.17) [Homo sapiens]	<u>303</u>	303	100%	6e-81	GM
BAG73364.1	lysozyme [synthetic construct]	<u>301</u>	301	100%	2e-80	
P79179.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>301</u>	301	100%	2e-80	
XP 002823550.1	PREDICTED: lysozyme C-like [Pongo abelii] >sp P79239.1 LYSC	<u>300</u>	300	100%	5e-80	GM
XP 003259554.1	PREDICTED: lysozyme C-like [Nomascus leucogenys]	<u>298</u>	298	100%	1e-79	GM
AAC63078.1	lysozyme precursor [Homo sapiens]	<u>297</u>	297	100%	4e-79	GM
P79180.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>295</u>	295	100%	2e-78	
P61633.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>283</u>	283	100%	5e-75	
NP 001095203.1	lysozyme C precursor [Macaca mulatta] >sp P30201.1 LYSC_M	<u>280</u>	280	100%	6e-74	UGM
P79811.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>280</u>	280	100%	6e-74	
NP 001106112.1	lysozyme C precursor [Papio anubis] >sp P61629.1 LYSC_PAPA	<u>279</u>	279	100%	8e-74	UG
P79806.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>279</u>	279	100%	8e-74	
P79847.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>278</u>	278	100%	1e-73	
P67979.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>278</u>	278	100%	3e-73	
P67977.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>278</u>	278	100%	2e-73	
P79687.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>277</u>	277	100%	4e-73	
P61631.1	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylm	<u>276</u>	276	100%	5e-73	
1C46 A	Chain A, Mutant Human Lysozyme With Foreign N-Terminal Res	<u>272</u>	272	88%	1e-71	S
1C7P A	Chain A, Crystal Structure Of Mutant Human Lysozyme With Fc	<u>272</u>	272	89%	1e-71	S
CAA53144.1	lysozyme [synthetic construct] >gb AAQ72808.1 lysozyme [s	<u>271</u>	271	87%	3e-71	
1IOC A	Chain A, Crystal Structure Of Mutant Human Lysozyme, Eaea-I	<u>271</u>	271	89%	3e-71	S
1LZS A	Chain A, Structural Changes Of The Active Site Cleft And Diffe	<u>270</u>	270	87%	4e-71	S
1GBW A	Chain A, Crystal Structure Of Mutant Human Lysozyme Substit	270	270	87%	5e-71	S
1GB6 A	Chain A, Crystal Structure Of Mutant Human Lysozyme Substit	<u>270</u>	270	87%	5e-71	s

Alignment score

Maxscore: Bit score of high scoring pairs (HSPs), similar to Expect Value

Total score: sum of the scores of all HSPs from the same database sequence.

Query Coverage: By the percent of length coverge for the query

E-value: expected number of chance matches in a random model

Alignment scores

```
> qb | AAA36188.1 | G lysozyme precursor (EC 3.2.1.17)
Length=148
GENE ID: 4069 LYZ | lysozyme (renal amyloidosis) [Homo sapiens]
(Over 10 PubMed links)
Score = 303 bits (775), Expect = 4e-81, Method: Compositional matrix adjust.
Identities = 147/148 (99%), Positives = 148/148 (100%), Gaps = 0/148 (0%)
           MKALIVLGLVLLSVTVQGKVFERCELARTLKRLGMDGYRGI LANWMCLAKWESGYNTRA
Query 1
           MKALIVLGLVLLSVTVQGKVFERCELARTLKRLGMDGYRG+$LANWMCLAKWESGYNTRA
           MKALIVLGLVLLSVTVQGKVFERCELARTLKRLGMDGYRGMBLANWMCLAKWESGYNTRA
Sbjct 1
                                                                          60
            TNYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQDNIADAVACAKRVVRD
Query
       61
                                                                          120
            TNYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQDNIADAVACAKRVVRD
      61
            TNYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQDNIADAVACAKRVVRD
Sbjct
                                                                          120
      121 POGIRAWVAWRNRCONRDVROYVOGCGV
                                          148
Query
            POGIRAWVAWRNRCONRDVROYVOGCGV
      121 POGIRAWVAWRNRCONRDVROYVOGCGV
Sbjct
                                          148
```

Sequence similarity

Enter Query Se	quence BLASTP programs se	arch protein subjects u
Enter accession n	umber, gi, or FASTA sequence 🔞 <u>Clear</u>	Query subrange 🎉
	HAIN SEQUENCE DGYGRIALPELICTMFHTSGYDTQAIVENDESTEYGLFQISNALWCKSSQSPQSRNI DIMCAKKILDIKGIDYWIAHKALCTEKLEQWLCEKE	From
Or, upload file	Browse @	
Job Title	1ALC:AIPDBIDICHAINISEQUENCE	
	Enter a descriptive title for your BLAST search	_
✓ Align two or n	nore sequences 😡	
Enter Subject S	equence	
Enter accession n	umber, gi, or FASTA sequence 🔞 Clear	Subject subrange (
KVFGRCELAAAMK	CHAIN SEQUENCE RHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINSRWWC IPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKGTDVQAWIRGCR	From
Or, upload file	Browse @	
Program 3 lect	tion	
Program S lect	blastp (protein-protein BLAST)	

Sequence similarity

Blast 2 sequences 1ALC:A|PDBID|CHAIN|SEQUENCE Ouerv ID |cl|62163 Subject ID 62165 Description 1ALC:A|PDBID|CHAIN|SEQUENCE Description 4LYZ:A|PDBID|CHAIN|SEQUENCE Molecule type amino acid Molecule type amino acid Query Length 123 Subject Length 129 Program BLASTP 2.2.21+ ▶ Citation Other reports: Search Summary [Taxonomy reports] ► Graphic Summary ► Dot Matrix View ▼ Descriptions Score Sequences producing significant alignments: (Bits) Value 89.4 2e-23 lcl|62165 4LYZ:A|PDBID|CHAIN|SEQUENCE ▼ Alignments Select All Get selected sequences NEW >1c1|62165 4LYZ:A|PDBID|CHAIN|SEQUENCE Length=129 Score = 89.4 bits (220) Expect = 2e-23, Method: Compositional matrix adjust. Identities = 44/115 (38%), Positives = 67/115 (58%), Gaps = 4/115 (3%) Query 1 KOFTKCELSONL--YDIDGYGRIALPELICTMFHTSGYDTOAIVEN-DESTEYGLFOISN 57 S ++TQA N D ST+YG+ QI++ KF+CEL+++DY+L+C KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINS 60 Sbjct 1 Query 58 ALWCKSSOSPOSRNICDITCDKFLDDDITDDIMCAKKIL-DIKGIDYWIAHKALC 111 ++P SRN+C+I C L DIT + CAKKI+ D G++ W+A + C RWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRC Sbjct 61

How far hemoglobins in human and chicken are similar?

Get the sequences and compare the amino acids one by one

>sp|P68871|HBB_HUMAN Hemoglobin subunit beta OS=Homo sapiens

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPD AVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFR LLGNVLVCVLAHHFG KEFTPPVQAAYQKVVAGVANALAHKYH

>sp|P02112|HBB_CHICK Hemoglobin subunit beta OS=Gallus gallus VHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSP TAILGNPMVRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENF RLLGDILIIVLAAHFS KDFTPECQAAWQKLVRVVAHALARKYH

Comparing Human and Chicken protein sequences

Bioinformatics program BLAST

Give sequences

- 1. Human
- 2. Chicken

FASTA Results

SUBMISSION PARAMETERS									
Title	Sequence	Database	uniprot						
Sequence length	164	Sequence type	р						
Program	fasta	Version	35.04 July. 4, 2009						
Expectation upper value	10.0	Matrix	BL50						
Sequence range	1-	Number of scores	50						
Number of alignments	50	Word size	2						
Open gap penalty	-10	Gap extension penalty	-2						
Histogram	false								
Show Annotation FASTA Result MView VisualFasta XML SUBMIT ANOTHER JOB Clear all Check all Invert selection Reset Show Alignments Download fasta									

Alignment	DB:ID	<u>Source</u>	<u>Length</u>	ldentity%	Similar%	<u>Overlap</u>	<u>E0</u>
1 🗆	UNIPROT:LYS BPT4	Lysozyme OS=Enterobacteria pha	164	100.0	100.0	164	2.3e-67
2 🗆	UNIPROT:C3V1I9 9CAUD	Soluble lysozyme OS=Entero	164	98.8	100.0	164	1.2e-66
3 🔲	UNIPROT:Q7M2A4_BPT2	Lysozyme OS=Enterobacteria	164	98.2	100.0	164	3.1e-66
4 🔲	UNIPROT:Q06EK2 BPR32	Lysozyme OS=Enterobacteria	164	98.2	100.0	164	3.1e-66
5 🔲	UNIPROT:C3V2B5_BPR51	Soluble lysozyme OS=Entero	164	98.2	100.0	164	3.1e-66
6 🗆	UNIPROT:Q7Y2B5 BPR69	Lysozyme OS=Enterobacteria	157	82.7	93.6	156	2.8e-53
7 🔲	UNIPROT:A8R9C2 9CAUD	Lysozyme OS=Enterobacteria	162	75.3	91.4	162	9.6e-50
8 🗆	UNIPROT:C4MZK9 9CAUD	E Lysozyme murein hydrolas	162	75.3	91.4	162	9.6e-50
9 🔲	UNIPROT:LYST1 DICDI	Probable T4-type lysozyme 1	170	46.7	76.6	167	1.1e-26
10 🗆	UNIPROT:LYST2 DICDI	Probable T4-type lysozyme 2	170	45.1	76.8	164	7.8e-25
11 🗆	UNIPROT:Q56EM5_9CAUD	Lysozyme OS=Aeromonas phag	600	42.9	70.6	163	2e-21
12 🗆	UNIPROT:Q6U9G4 9CAUD	Lysozyme OS=Aeromonas phag	600	42.9	71.2	163	2.4e-21
13 🔲	UNIPROT:Q19CF2 9CAUD	Lysozyme OS=Aeromonas phag	164	42.7	68.3	164	2.5e-21
14 🔲	UNIPROT:A7XF92 9CAUD	Lysozyme OS=Enterobacteria	599	43.2	69.8	162	1e-20
15 🗆	UNIPROT:C4MYV6 9CAUD	Baseplate hub subunit and	599	43.2	69.8	162	1e-20

Multiple sequence alignment

A multiple sequence alignment (MSA) is a sequence alignment of three or more biological sequences, generally protein, DNA, or RNA.

The input set of query sequences are assumed to have an evolutionary relationship by which they share a lineage and are descended from a common ancestor.

Multiple sequence alignment is a 2D table in which the rows represent individual sequences and the columns the residue positions.

Sequences are laid on the grid in such a way that (i) the relative positioning of residues within any sequence is preserved and (ii) similar residues in all sequences are brought into vertical register.

	1	2	3	4	5	6	7	8	9	10
I	Y	D	G	G	A	V	_	E	A	L
II	Y	D	G	G	_	_	_	E	A	L
III	F	E	G	G	I	L	V	E	A	L
IV	F	D	_	G	I	L	V	Q	A	V
V	Y	E	G	G	A	V	V	Q	A	L
ensus	У	d	G	G	A/I	V/L	V	e	A	1

Computational complexity

Pairwise alignment techniques generally use processing time and memory space related to the products of the lengths of the sequences being compared $[(O(m_1m_2), where O is the order of the time taken and m: sequence lengths).$

By extending the pairwise comparison to three dimensions, we have the complexity of $O(m_1m_2m_3)$

For n sequences it will be O(mⁿ), n is the number of sequences and m is the length of the sequences.

Time taken to compute an alignment rises exponentially with the number of mn sequences that are to be aligned.

Clustal

The Clustal approach exploits the fact that similar sequences are likely to be evolutionarily related.

Clustal aligns sequences in pairs, following the branching order of a family tree.

Similar sequences are aligned first, and more distantly related sequences are added later.

Once pairwise alignment scores for each sequences relative to all others have been calculated, they are used to cluster the sequences into groups, which are then aligned against each other to generate the final multiple alignment.

ClustalW uses the positioning of gaps in closely related sequences to guide the insertion of gaps into those that are more distant.

Information compiled during the alignment process about the variability of the most similar sequences is used to help vary the gap penalties on a residue and position specific basis.

ClustalW2

ClustalW2 is a general purpose multiple sequence alignment program for DNA or proteins. It produces biologically meaningful multiple sequence alignments of divergent sequences. It calculates the best match for the selected sequences, and lines them up so that the identities, similarities and differences can be seen. Evolutionary relationships can be seen via viewing Cladograms or Phylograms.

New users, please read the FAQ.

>> Download Software

Sequence Alignment $\mathbf{R}_{\mathbf{n}}$ 479227 | Genbank | Outer --FKGTDIQEFINTVS-KNLNKTVIIDPS-VSGTITVRSYDMMNEEQ--- 67 P31701|SwissProt|Outer --FKGTDIQEFINTVS-KNLNKTVIIDPS-VSGTITVRSYDMMNEEQ--- 67 P31700|SwissProt|Outer --FKGTDIQEFINTVS-KNLNKTVIIDPT-VRGTISVRSYDMMDEGQ--- 76 --FKGTDIOEFINTVS-KNLNKTVIIDPT-VRGTISVRSYDMMNEGO--- 76 Q01565|SwissProt|Outer 7466966 | Genbank | Outer --FKDTDIQEFINTVS-KNLHKTVIINPD-VQGTITVRSYDMLNEEQ--- 63 P15644 | SwissProt | Outer --FKGTDIQEFINTVS-KNLNKTVIIDPS-VRGTITVRSYDMLNEEQ--- 76 P31780|SwissProt|Outer --FKNADIEEFINTVG-KNLSKTIIIEPS-VRGKINVRSYDLLNEEQ--- 74 P45778 | SwissProt | Outer --FKNADIEEFINTVG-KNLSKTIIIEPS-VRGKINVRSYDLLNEEQ--- 74 P45779|SwissProt|Outer --FKGTDIOEFINIVG-RNLEKTIIVDPS-VRGKVDVRSFDTLNEEO--- 73 4139236 | Genbank | Outer --FVNADIDQVAKAIG-AATGKTIIVDPR-VKGQLNLVAERPVPEDQ--- 69 11559475 | Genbank | Outer --FVNADIDQVAKAIG-AATGKTIIVDPR-VKGQLNLVAERPVPEDQ--- 76 3978475 | Genbank | Outer INMKDADIRDFIDOVA-OISGETFVVDPR-VKGOVTVISKTPLGLEE--- 91 P35818 | SwissProt | Outer INLKDADIREFIDQIS-EITGETFVVDPR-VKGQVSVVSKAQLSLSE--- 99 11352555 | Genbank | Outer INMKDAEIGDFIEQVS-SISGQTFVVDPR-VKGRVTVVSQARLSLAE--- 92 15597065 | Genbank | Outer INMKDAEIGDFIEQVS-SISGQTFVVDPR-VKGRVTVVSQARLSLAE--- 92 2120685 | Genbank | Outer VNFVDTELGEFIDSVS-RITGTTFIVDPR-VKGKVTVRTVDLHDADA--- 83 13421292 | Genbank | Outer LNVQDADIRVFIQDVA-KSTGTTFIIDPR-VKGTVTVASNGPLNRRE--- 81 7469078 | Genbank | Outer --FEDISILELLQFVS-KISGTNFVFDSNDLQFNVTIVSHDPTSVDD--- 312 11362809 | Genbank | Outer --FEDISILELLQFVS-KISGTNFVFDSNDLQFNVTIVSHDPTSVDD--- 63 7468594 | Genbank | Outer --FEDISILELLQFVS-KISGTNFVFDSNDLQFNVTIVSHDPTSVDD--- 310 11360974 | Genbank | Outer FNFEGESLQAVVKAILGDMLGQNYFIASG-VQGTVTLSTPKPVSSAQ--- 153 P29041|SwissProt|Outer FNFEGESVOAVVKAILGDMLGONYVIAPG-VQGTVTLATPNPVSPAQ--- 141 13475694 | Genbank | Outer LNLVNAPIADAAKAVLGDALHLNYIVDPR-VQGTVTLQTSQPVSQDA--- 139 12721580 | Genbank | Outer -----LOYFLCGVAYVGS--- 22 P31772|SwissProt|Outer -----MKKYFLKCGYFLVCFCLPLIVFA--- 23 11354911 | Genbank | Outer -ALCASSMVFSAESATANOLENIDFRVNKEKAAVLIVELASPSAVVD--- 73 -----MKQWIAALLIMLIPGVQAAKP--- 21 P34749|SwissProt|Outer -AENKQAIPVPKVANAPLSVSKIDFKRGDDGSGRLILKFDGQGATPD--- 93 11360960 | Genbank | Outer P34750|SwissProt|Outer -ASYAOPIKPKPYVPAGRAIRNIDFORGEKGEGNVVIDLSDPTLSPD--- 190 4027986 Genbank Outer SAKQQAAAPAKQQAAAPAKQTNIDFRKDGKNAGIIELAALGFAGQPD--- 260 11353851 | Genbank | Outer SAKOOTAAPAKOOAATPAKOTNIDFRKDGKNAGIIELAALGFAGOPD--- 244 4768955 | Genbank | Outer 12721161 | Genbank | Outer 7208425 | Genbank | Outer VNLPSVKASMSASRRLLTASVAALLALTSTAPVFADGPIGGSHTYRP--- 51 13474660 | Genbank | Outer 12620550 | Genbank | Outer --MKVLNNAAGATOPPAITNPORSAALNRLCYLLCG------ 34 13475294 | Genbank | Outer 7468922 | Genbank | Outer ALWNHPETTIYNLVSDYGDEQSIYVIPQNVGAMRITAMSKLVVPKEG--- 164 11360973 | Genbank | Outer ALWNHPETTIYNLVSDYGDEOSIYLIPONVGAMRITAMSKLVVPKEG--- 164 7468239 | Genbank | Outer ALWNHPETTIYNLVTDYGTEDSIYLIPQEIGAIKIATLSKFVVPKES--- 165

Exercise

Get the multiple alignment for hemoglobin A chain from different organisms.

Steps

- 1. Search for hemoglobin A chain sequences
- 2. Select relevant entries
- 3. Get the sequences in FASTA format (view or save).
- 4. Give the sequences as input for ClustalW

Other software

MAFFT

http://mafft.cbrc.jp/alignment/software/

MUSCLE

http://www.ebi.ac.uk/Tools/msa/muscle/

PROMOLS

http://prodata.swmed.edu/promals/promals.php

PSI-BLAST

PSI-BLAST (Position-Specific Iterative BLAST) is a program that searches database of sequences similar to query sequence.

PSI-BLAST begins with search results obtained with BLAST and derives pattern information from a multiple sequence alignment of the initial hits.

It repeats the process and fine-tuning the pattern in successive cycles.

PSI-BLAST

