### **APPENDIX**

#### 1 The AvgHExp3 Mean and Variance

According to [1], Exp3 uses the total estimated reward  $\hat{S}_{t-1,i}$  to evaluate the reward of arms. Although  $\hat{S}_{t-1,i}$  is an unbiased estimator, its variance is very high. To decrease variance, AvgHExp3 uses the average estimated reward  $\hat{S}'_{t-1,\omega_i}$  to replace  $\hat{S}_{t-1,i}$  according to Theorem 11.

**Theorem 11** The average estimated reward  $\hat{S}'_{t-1,\omega_i}$  used by AvgHExp3 is an unbiased estimator, and its variance is  $1/(t-1)^2$  of Exp3's, i.e.,  $D\left[\hat{S}'_{t-1,\omega_i}\right] = \frac{1}{(t-1)^2}D\left[\hat{S}_{t-1,i}\right]$ .

*Proof.* According to the definition of  $\hat{S}'_{t-1,\omega_i}$ , i.e.,  $\hat{S}'_{t-1,\omega_i} = \frac{1}{t-1} \sum_{s=1}^{t-1} \hat{R}_{s,\omega_i}$ , where  $\hat{R}_{s,\omega_i}$  is the estimated reward of  $\omega_i$  in iteration t. The expectation of  $\hat{S}'_{t-1,\omega_i}$  is

$$E\left[\hat{S}'_{t-1,\omega_i}\right] = E\left[\frac{1}{t-1} \sum_{s=1}^{t-1} \hat{R}_{s,\omega_i}\right] = \frac{1}{t-1} \sum_{s=1}^{t-1} E\left[\hat{R}_{s,\omega_i}\right]. \tag{1}$$

Since  $\hat{R}_{s,\omega_i}$  is an unbiased estimator [1],  $E\left[\hat{R}_{t,\omega_i}\right] = R_{t,\omega_i}$ . So  $E\left[\hat{S}'_{t-1,\omega_i}\right] = \frac{1}{t-1}\sum_{s=1}^{t-1}R_{s,\omega_i}$ , which means  $\hat{S}'_{t-1,\omega_i}$  is an unbiased estimator of the average actual reward in the subspace  $\omega_i$ .

The variance of  $\hat{S}'_{t-1,\omega_i}$  is

$$D\left[\hat{S}'_{t-1,\omega_{i}}\right] = E\left[\left(\hat{S}'_{t-1,\omega_{i}}\right)^{2}\right] - E^{2}\left[\hat{S}'_{t-1,\omega_{i}}\right]$$

$$= E\left[\left(\frac{1}{t-1}\sum_{s=1}^{t-1}\hat{R}_{s,\omega_{i}}\right)^{2}\right] - \left(\frac{1}{t-1}\sum_{s=1}^{t-1}R_{s,\omega_{i}}\right)^{2}$$

$$= \frac{1}{(t-1)^{2}}\left(E\left[\left(\sum_{s=1}^{t-1}\hat{R}_{s,\omega_{i}}\right)^{2}\right] - \left(\sum_{s=1}^{t-1}R_{s,\omega_{i}}\right)^{2}\right). \tag{2}$$

$$= \frac{1}{(t-1)^{2}}D\left[\hat{S}_{t-1,i}\right]$$

The theorem shows that, compared with Exp3, AvgHExp3 that uses the average estimated reward can decrease the Exp3's variance as the number (t) of GVAE-ABGEP running iterations increases.

#### 2 Optimal Value of Parameter $\alpha$

The parameter  $\alpha \in [0, +\infty]$  in AvgHExp3 significantly affects the probability distribution  $\mathcal{P}_t$  of selecting subspaces. If  $\alpha = 0$ , according to the importance weight equation,

$$P_{t,\omega_i} = \frac{e^{\alpha \hat{S}_{t-1,\omega_i}}}{\sum_{j=1}^k e^{\alpha \hat{S}_{t-1,\omega_j}}}.$$
 (3)

 $P_{t,\omega_i} = e^{\alpha \hat{S}_{t-1,\omega_i}} / \sum_{j=1}^k e^{\alpha \hat{S}_{t-1,\omega_j}} = e^{0 \hat{S}_{t-1,\omega_i}} / \sum_{j=1}^k e^{0 \hat{S}_{t-1,\omega_j}} = 1/k$ . If  $\alpha$  is large or even close to positive infinity,  $P_{t,\omega_i} = e^{\alpha \hat{S}_{t-1,\omega_i}} / \sum_{j=1}^k e^{\alpha \hat{S}_{t-1,\omega_j}} = 1/\sum_{j=1}^k e^{\alpha (\hat{S}_{t-1,\omega_j} - \hat{S}_{t-1,\omega_i})} \approx 0$  (except for the subspace  $\omega_j$  with the best reward,  $P_{t,\omega_j} \approx 1$ ). Therefore, if  $\alpha$  is too large or small, excluding the subspace with  $P_{t,\omega_i} \approx 1$ , the probability of selecting each subspace will be the same, and AvgHExp3 loses its meaning. Moreover, GVAE-ABGEP will be close to classical GEPs.

From the perspective of balancing the subspace exploration and the subspace exploitation, the expected regret  $R_n(\pi, r_t)$  of AvgHExp3 should be as small as possible. For determining  $\alpha$ , we try to use  $\alpha$  to limit the upper bound of  $R_n(\pi, r_t)$  [1]. According to Theorem 21, the optimal value of parameter  $\alpha$  is  $\sqrt{\frac{logk + n(n-1)}{2nk}}$ .

**Theorem 21** For limiting the upper bound of the regret reward  $R_n(\pi, r_t)$ , the optimal value of  $\alpha$  is  $\sqrt{\frac{logk + n(n-1)}{2nk}}$  when  $\alpha \leq t$ .

*Proof.* The following proof is similar to the proof of Theorem 11.1 in [1]. However, the difference between Theorem 11.1 [1] and Theorem 21 is the estimated reward  $\hat{R}$ . The classical Exp3 [1] uses the total estimated reward while AvgH-Exp3 uses the average estimated reward.

For any subspace  $\omega_i$ , the regret after the round n is

$$R_{n,\omega_i} = \sum_{t=\alpha}^{n+\alpha} R_{t,\omega_i} - E\left[\sum_{t=\alpha}^{n+\alpha} R_t\right]. \tag{4}$$

According to Equation 1 and the definition of  $\hat{S}'_{t-1,\omega_i}$ , i.e.,  $\hat{S}'_{t-1,\omega_i} = \frac{1}{t-1} \sum_{s=1}^{t-1} \hat{R}_{s,\omega_i}$ ,  $\sum_{t=\alpha}^{n+\alpha} R_{t,\omega_i} = E\left[\sum_{t=\alpha}^{n+\alpha} \hat{R}_{t,\omega_i}\right] = E\left[n\hat{S}'_{n,\omega_i}\right]$ . Meanwhile, according to the definition of expectation,  $E[R_t]$  is expanded into  $E[R_t] = \sum_{i=1}^{k} P_{t,\omega_i} R_{t,\omega_i} = \sum_{i=1}^{k} P_{t,\omega_i} E\left[\hat{R}_{t,\omega_i}\right]$ . So Equation 4 can be computed as the

follow equation.

$$R_{n,\omega_{i}} = \sum_{t=\alpha}^{n+\alpha} R_{t,\omega_{i}} - E\left[\sum_{t=\alpha}^{n+\alpha} R_{t}\right]$$

$$= nE\left[\hat{S}'_{n,\omega_{i}}\right] - E\left[\sum_{t=\alpha}^{n+\alpha} \sum_{i=1}^{k} P_{t,\omega_{i}} E\left[\hat{R}_{t,\omega_{i}}\right]\right]$$

$$= nE\left[\hat{S}'_{n,\omega_{i}} - \frac{1}{n} \sum_{t=\alpha}^{n+\alpha} \sum_{i=1}^{k} P_{t,\omega_{i}} \hat{R}_{t,\omega_{i}}\right]$$
(5)

For the following inequality

$$e^{\alpha \hat{S}'_{n,\omega_i}} \le \sum_{j=1}^k e^{\alpha \hat{S}'_{n,\omega_j}},\tag{6}$$

the right side of Equation 6 is expanded into the form of continuous multiplication in Inequality 7. Since  $\hat{S}'_{0,\omega_j}=0$  at the initialization of AvgHExp3,  $e^{\alpha \hat{S}'_{0,\omega_j}}=1$ . So, Inequality 6 is finally transformed into Inequality 7.

$$e^{\alpha \hat{S}'_{n,\omega_{i}}} \leq \sum_{j=1}^{k} e^{\alpha \hat{S}'_{0,\omega_{j}}} \frac{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{1,\omega_{j}}}}{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{0,\omega_{j}}}} \cdots \frac{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{n,\omega_{j}}}}{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{n-1,\omega_{j}}}}$$

$$\leq k \prod_{t=1}^{n} \frac{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{t,\omega_{j}}}}{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{t-1,\omega_{j}}}}$$
(7)

According to the definition of  $\hat{S}'_{t,\omega_j}$  and Equation 3, the continuous multiplication term in Inequation 7 can be simplified to

$$\frac{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{t,\omega_{j}}}}{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{t-1,\omega_{j}}}} = \sum_{j=1}^{k} \frac{e^{\alpha \frac{t-1}{t} \hat{S}'_{t-1,\omega_{j}} \cdot e^{\alpha \frac{1}{t} \hat{R}_{t,\omega_{j}}}}}{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{t-1,\omega_{j}}}} \\
\leq \sum_{j=1}^{k} \frac{e^{\alpha \hat{S}'_{t-1,\omega_{j}} \cdot e^{\alpha \frac{1}{t} \hat{R}_{t,\omega_{j}}}}}{\sum_{j=1}^{k} e^{\alpha \hat{S}'_{t-1,\omega_{j}}}} \\
= \sum_{j=1}^{k} P_{t,\omega_{j}} e^{\frac{\alpha}{t} \hat{R}_{t,\omega_{j}}} \tag{8}$$

Since  $e^x \le n + \frac{1}{n}x + 2x^2$  when  $x \le 1$ , and according to the following Equation

$$\hat{R}_{t,\omega_j} = 1 - \frac{r_{t,a_t}}{P_{t,\omega_j}} = 1 - \frac{\text{II}\{a_t = i\} r_{t,a_t}}{P_{t,\omega_j}}$$
(9)

where  $r_{t,a_t} \geq 0$ , so  $\frac{\alpha}{t} \hat{R}_{t,\omega_j} \leq 1$ , the right side of Equation 8 can be bounded as

$$\sum_{j=1}^{k} P_{t,\omega_{j}} e^{\frac{\alpha}{t} \hat{R}_{t,\omega_{j}}} \le n + \frac{1}{n} \sum_{j=1}^{k} P_{t,\omega_{j}} \frac{\alpha}{t} \hat{R}_{t,\omega_{j}} + 2 \sum_{j=1}^{k} P_{t,\omega_{j}} \frac{\alpha^{2}}{t^{2}} \hat{R}_{t,\omega_{j}}^{2}.$$
(10)

Since  $1 + x \le e^x$  when  $x \in R$ , Inequality 10 can be further rewritten as

$$\sum_{j=1}^{k} P_{t,\omega_{j}} e^{\frac{\alpha}{t} \hat{R}_{t,\omega_{j}}} \le e^{n-1+\frac{1}{n} \sum_{j=1}^{k} P_{t,\omega_{j}} \frac{\alpha}{t} \hat{R}_{t,\omega_{j}} + 2 \sum_{j=1}^{k} P_{t,\omega_{j}} \frac{\alpha^{2}}{t^{2}} \hat{R}_{t,\omega_{j}}^{2}}$$
(11)

Combining Inequality 7, Inequality 8 and Inequality 11,

$$e^{\alpha \hat{S}'_{n,\omega_{i}}} \leq k e^{n(n-1) + \frac{1}{n}\alpha \sum_{t=1}^{n} \sum_{j=1}^{k} \frac{1}{t} P_{t,\omega_{j}} \hat{R}_{t,\omega_{j}} + 2\alpha^{2} \sum_{t=1}^{n} \sum_{j=1}^{k} \frac{1}{t^{2}} P_{t,\omega_{j}} \hat{R}_{t,\omega_{j}}^{2}}$$

$$\leq k e^{n(n-1) + \frac{1}{n}\alpha \sum_{t=1}^{n} \sum_{j=1}^{k} P_{t,\omega_{j}} \hat{R}_{t,\omega_{j}} + 2\alpha^{2} \sum_{t=1}^{n} \sum_{j=1}^{k} P_{t,\omega_{j}} \hat{R}_{t,\omega_{j}}^{2}}$$

$$(12)$$

Taking logarithm on both sides of Equation 12 and dividing by  $\alpha$ ,

$$\hat{S}'_{n,\omega_i} - \frac{1}{n} \sum_{t=1}^n \sum_{j=1}^k P_{t,\omega_j} \hat{R}_{t,\omega_j} \le \frac{\log k}{\alpha} + \frac{n(n-1)}{\alpha} + 2\alpha \sum_{t=1}^n \sum_{j=1}^k P_{t,\omega_j} \hat{R}_{t,\omega_j}^2$$
(13)

According to  $E\left[\sum_{t=1}^{n}\sum_{j=1}^{k}P_{t,\omega_{j}}\hat{R}_{t,\omega_{j}}^{2}\right]\leq nk$  in [1], The expectation of Inequality 13 can be further modified as

$$E\left[\hat{S}_{n,\omega_i} - \frac{1}{n}\sum_{t=1}^n \sum_{j=1}^k P_{t,\omega_j}\hat{R}_{t,\omega_j}\right] \le \frac{\log k}{\alpha} + \frac{n(n-1)}{\alpha} + 2\alpha nk \tag{14}$$

Combining Equation 5 and Inequality 14,

$$R_{n,\omega_i} \le \frac{n\log k + n^2(n-1)}{\alpha} + 2\alpha n^2 k \tag{15}$$

According to the inequality  $a + b \ge 2\sqrt{ab}$ , the right side of Inequality 15 is

$$\frac{n\log k + n^2(n-1)}{\alpha} + 2\alpha n^2 k \ge 2\sqrt{2n^2k(n\log k + n^2(n-1))}.$$
 (16)

For limit the right side of Inequality 15,

$$\frac{n\log k + n^2(n-1)}{\alpha} = 2\alpha n^2 k. \tag{17}$$

So the optimal value of  $\alpha$  is  $\sqrt{\frac{logk + n(n-1)}{2nk}}$ .

# 3 More Experimental Details

Table 1: Symbolic Regression Benchmarks

| number | name                             | formula                                                                         | dataset                                                        |
|--------|----------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|
| F1     | Nguyen-4                         | $x^6 + x^5 + x^4 + x^3 + x^2 + x$                                               | U[-1, 1, 20]                                                   |
| F2     | Nguyen-3                         | $x^5 + x^4 + x^3 + x^2 + x$                                                     | U[-1, 1, 20]                                                   |
| F3     | Nguyen-2                         | $x^4 + x^3 + x^2 + x$                                                           | U[-1, 1, 20]                                                   |
| F4     | Nguyen-1                         | $x^3 + x^2 + x$                                                                 | U[-1, 1, 20]                                                   |
| F5     | Koza-3                           | $x^6 - 2x^4 + x^2$                                                              | U[-1, 1, 20]                                                   |
| F6     | Koza-2                           | $x^5 - 2x^3 + x$                                                                | U[-1, 1, 20]                                                   |
| F7     | Nguyen-5                         | $\sin\left(x^2\right)\cos\left(x\right) - 1$                                    | U[-1, 1, 20]                                                   |
| F8     | Nguyen-6                         | $\sin(x) + \sin(x + x^2)$                                                       | U[-1, 1, 20]                                                   |
| F9     | Nguyen-7                         | $\ln(x+1) + \ln(x^2+1)$                                                         | $\mathrm{U}[0,2,20]$                                           |
| F10    | Keijzer-1                        | $0.3x\sin(2\pi x)$                                                              | $\mathrm{E}[-1, 1, 0.1]$                                       |
| F11    | Vladislavleva-2                  | $e^{-x}x^3(\cos x\sin x)\left(\cos x\sin^2 x - 1\right)$                        | E[0.05, 10, 0.1]                                               |
| F12    | Keijzer-8                        | $\sqrt{x}$                                                                      | U[0, 4, 20]                                                    |
| F13    | Nguyen-9                         | $\sin(x) + \sin(y^2)$                                                           | $\mathrm{U}[0,1,20]$                                           |
| F14    | Nguyen-10                        | $2\sin(x)\cos(y)$                                                               | U[-1, 1, 100]                                                  |
| F15    | Keijzer-11                       | $xy + \sin((x-1)(y-1))$                                                         | U[-3, 3, 100]                                                  |
| F16    | Korns-2                          | $\frac{\frac{1}{1+x^{-4}} + \frac{1}{1+y^{-4}}}{x^4 - x^3 + \frac{y^2}{2} - y}$ | E[-5, 5, 0.4]                                                  |
| F17    | Keijzer-12                       | $x^4 - x^3 + \frac{y^2}{2} - y$                                                 | U[-3, 3, 20]                                                   |
| F18    | Vladislavleva-3 $\boldsymbol{e}$ | $-x^{3}(\cos x \sin x) (\cos x \sin^{2} x - 1) (y - 5) x$                       | $c: \mathrm{E}[0.05, 10, 0.1] \ y: \mathrm{E}[0.05, 10.05, 2]$ |

Table 2: Parameters of Algorithms

| Name       | Parameter                                                                                                                                        | Value                                                                                                                                                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GEP        | function set<br>population size<br>head length<br>chromosome length<br>max generations<br>crossover Rate<br>mutation rate                        | $\begin{array}{c} +,-,\times,\div,\sin,\cos,ln( n ),exp \\ 100 \\ 10 \\ 21 \\ 1000 \\ 0.7 \\ 0.1 \end{array}$                                                   |
| SL-GEP     | function set population size head length chromosome length max generations number of ADFs head length of ADFs                                    | $\begin{array}{c} +,-,\times,\div,\sin,\cos,ln( n ),exp \\ 100 \\ 10 \\ 21 \\ 1000 \\ 2 \\ 3 \end{array}$                                                       |
| AB-GEP     | function set<br>population size<br>head length<br>chromosome length<br>max generations<br>crossover Rate<br>mutation rate<br>number of subspaces | $\begin{array}{c} +,-,\times, \div, \sin, \cos, \ln( n ), exp \\ 100 \\ 10 \\ 21 \\ 1000 \\ 0.7 \\ 0.1 \\ [81,100] \end{array}$                                 |
| GVAE-ABGEP | function set population size head length chromosome length max generations crossover Rate mutation rate number of subspaces learning rate        | $\begin{array}{c} +,-,\times,\div,\sin,\cos,ln( n ),exp \\ 100 \\ 10 \\ 21 \\ 1000 \\ 0.7 \\ 0.1 \\ [81,100] \\ \sqrt{\frac{\log k + n(n-1)}{2nk}} \end{array}$ |



Fig. 1: Fitness comparison on all SRB benchmarks.



Fig. 2: Individual Fitness distribution on all SRB benchmarks. A blue (or red) point represents the fitness of a GVAE-ABGEP (or an AB-GEP) individual recorded every 100 generations.



Fig. 3: Convergence comparison on all SRB benchmarks.

## References

1. Lattimore, T., Szepesvári, C.: Bandit algorithms. Cambridge University Press (2020)