

INSPIRING CREATIVE AND INNOVATIVE MINDS

Relations

www.utm.my

- A (binary) relation R from a set X to a set Y is a subset of the Cartesian product X×Y.
- If $(x,y) \in \mathbb{R}$, we write

x R y (x is related to y)

(Binary) relation from X to Y, where $x \in X$, $y \in Y$, $(x,y) \in X \times Y$ and $R \subseteq X \times Y$

$$x R y \leftrightarrow (x,y) \in R$$

www.utm.my

$$A = \{ 1, 2, 3, 4 \}, B = \{ p, q, r \}$$

$$R = \{ (1, q), (2, r), (3, q), (4, p) \}$$

$$R \subseteq A \times B$$

R is the relation from A to B $1 R q \qquad 3 \not R p$

www.utm.my

$$aRb \leftrightarrow a-b \in Z^{\text{even}}$$

Finite set: $A = \{ 1, 2 \}, B = \{ 1, 2, 3 \}$ $R = \{ (1, 1), (2, 2), (1, 3) \}$

Infinite set: A=Z and B=Z

$$R = \{ ...(-3, -1), (-2, 2), (1, 3), \}$$

(note: Z is set of integers)

யயய.utm.my

- A = { New Delhi, Ottawa, London, Paris, Washington }
- $B = \{ Canada, England, India, France, United States \}$
- Let $x \in A$, $y \in B$. Define the relation between x and y by "x is the capital of y"


```
    R = { (New Delhi, India),
        (Ottawa, Canada),
        (London, England),
        (Paris, France),
        (Washington, United States) }
```


யயய.utm.my

- "less than" relation from *A*={0, 1, 2} to *B*={1, 2, 3}
- Traditional notation:

Set notation

$$A \times B = \{ (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,1), (2,2), (2,3) \}$$

 $R = \{ (0,1), (0,2), (0,3), (1,2), (1,3), (2,3) \}$

யயய.utm.my

Arrow diagrams

Domain and Range

www.utm.my

- Let R, a relation from A to B.
- The set, $\{a \in A \mid (a,b) \in R \text{ for some } b \in B\}$ is called the domain of R.
- The set, $\{b \in B \mid (a,b) \in R \text{ for some } a \in A \}$ is called the range of R.
- In case A=B, we call R a(binary) relation on A.

9

- Let R be a relation on $X = \{1, 2, 3, 4\}$ defined by $(x,y) \in R$ if $x \le y$, and $x, y \in X$.
- Then, $R = \{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4) \}$
- The domain and range of R are both equal to X.

www.utm.my

- Let $X = \{ 2, 3, 4 \}$ and $Y = \{ 3, 4, 5, 6, 7 \}$ If we define a relation R from X to Y by, $(x,y) \in R$ if x divides y (with zero remainder)
- We obtain,

$$R = \{ (2,4), (2,6), (3,3), (3,6), (4,4) \}$$

The domain of R is $\{2,3,4\}$ The range of R is $\{3,4,6\}$

$$R = \{ (2,4), (2,6), (3,3), (3,6), (4,4) \}$$

Exercise

www.utm.my

- Write the relation R as $(x,y) \in R$
- (a) The relation R on $\{1, 2, 3, 4\}$ defined by $(x,y) \in R$ if $x^2 \ge y$.

(b) The relation R on $\{1,2,3,4,5\}$ defined by $(x,y) \in R$ if 3 divides x-y.

Solutions

www.utm.my

(a) The relation R on $\{1, 2, 3, 4\}$ defined by $(x,y) \in R$ if $x^2 \ge y$.

$$R = \{(1,1), (2,1), (3,1), (4,1), (2,2), (3,2), (4,2), (2,3), (3,3), (4,3), (2,4), (3,4), (4,4)\}$$

(b) The relation R on $\{1,2,3,4,5\}$ defined by $(x,y) \in R$ if 3 divides x-y.

$$R = \{(1,1), (4,1), (2,2), (2,5), (3,3), (4,1), (4,4), (5,2), (5,5)\}$$

14

Exercise

- Find range and domain for:
- (a) The relation R on $\{1, 2, 3, 4\}$ defined by $(x,y) \in R$ if $x^2 \ge y$.
- (b) The relation $R = \{ (1,2), (2,1), (3,3), (1,1), (2,2) \}$ on $X = \{1, 2, 3\}$

Solutions

www.utm.my

- Find range and domain for:
- (b) The relation R on $\{1, 2, 3, 4\}$ defined by $(x,y) \in R$ if $x^2 \ge y$.

range & domain {1,2,3,4}

(b) The relation $R = \{ (1,2), (2,1), (3,3), (1,1), (2,2) \}$ on $X = \{1, 2, 3\}$

range & domain {1,2,3}

Digraph

- An informative way to picture a relation on a set is to draw its digraph.
- Let R be a relation on a finite set A.
- Draw dots (vertices) to represent the elements of A.
- If the element $(a,b) \in R$, draw an arrow (called a directed edge) from a to b.

www.utm.my

The relation R on $A = \{a, b, c, d\}$, $R = \{(a, a), (a, b), (c, d), (d, c), (b, c)\}$

www.utm.my

Let, $A = \{1,2,3,4\}$ and $R = \{(1,1), (1,2), (2,1), (2,2), (2,3), (2,4), (3,4), (4,1)\}$

Draw the digraph of R

www.utm.my

Find the relation determined by digraph below.

Since a R b if and only if there is an edge from a to b, so $R = \{ (1,1), (1,3), (2,3), (3,2), (3,3), (4,3) \}$

20

exercise

www.utm.my

Draw the diagraph of the relation:

(a)
$$R = \{ (a,c), (b, d), (a,b), (c,d) \}$$

(b) The relation R on $\{1, 2, 3, 4\}$ defined by $(x,y) \in R$ if $x^2 \ge y$

exercise

யயய.utm.my

Write the relation as a set of ordered pair.

Matrices of Relations

யயய.utm.my

- A matrix is a convenient way to represent a relation R from A to B.
- Label the rows with the elements of A (in some arbitrary order)
- Label the columns with the elements of B (in some arbitrary order)

Matrices of Relations

- Let $A=\{a_1, a_2, ..., a_n\}$ and $B=\{b_1, b_2, ..., b_p\}$ be finite nonempty sets.
- Let R be a relation from A into B.
- Let $M_R = [m_{ij}]_{nxp}$ be the Boolean nxp matrix, where

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{otherwise} \end{cases}$$

Matrices of Relations

யயய.utm.my

$$M_{R} = \begin{bmatrix} m_{11} & m_{12} & \dots & m_{1p} \\ m_{21} & m_{22} & \dots & m_{2p} \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ m_{n1} & m_{n2} & \dots & m_{np} \end{bmatrix}$$

- Let $A = \{1, 3, 5\}$ and $B = \{1, 2\}$
- Let R be a relation from A to B and $R = \{(1,1), (3,2), (5,1)\}$
- Then the matrix represent R is

$$\begin{array}{c|cccc}
1 & 2 \\
1 & 1 & 0 \\
3 & 0 & 1 \\
5 & 1 & 0
\end{array}$$

www.utm.my

The relation,

$$R = \{ (1,b), (1,d), (2,c), (3,c), (3,b), (4,a) \}$$

from, $X = \{ 1, 2, 3, 4 \}$ to $Y = \{ a, b, c, d \}$

www.utm.my

The matrix of the relation R from { 2, 3, 4 } to { 5, 6, 7, 8 } defined by

x R y if x divides y

யயய.utm.my

- Let A={ a, b, c, d }
- Let R be a relation on A.
- $R = \{ (a,a), (b,b), (c,c), (d,d), (b,c), (c,b) \}$

	\boldsymbol{a}	b	$\boldsymbol{\mathcal{C}}$	d
a	$\sqrt{1}$	0	0	0
b	1 0 0 0	1	1	0
C	0	1	1	0
d	0	O	O	1

exercise

- Let $A=\{1, 2, 3, 4\}$ and R be a relation on A. $R=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$
- (a) What is R (represent)?
- (b) What is matrix representation of *R*?

In Degree and Out Degree

யயய.utm.my

If R is a relation on a set A and $a \in A$, then the in-degree of a (relative to relation R) is the number of $b \in A$ such that $(b, a) \in R$.

The out degree of a is the number of $b \in A$ such that $(a, b) \in R$

In Degree and Out Degree

www.utm.my

Meaning that, in terms of the digraph of R, is that the in-degree of a vertex is "the number of edges terminating at the vertex"

- The out-degree of a vertex is
 - "the number of edges leaving the vertex"

Example

www.utm.my

Let $A = \{a, b, c, d\}$, and let R be the relation on A that has the matrix (given below)

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Construct the digraph of R, and list in-degrees and out-degrees of all vertices.

Example

யயய.utm.my

	a	b		d
In-degree	2	3	1	1
Out-degree	1	1	3	2

exercise

- Let $A = \{1, 4, 5\}$ and let R be given by the digraph shown below.
- Find M_R and R

யயய.utm.my

- An airline services the five cities c_1 , c_2 , c_3 , c_4 and c_5 .
- Table below gives the cost (in dollars) of going from c_i to c_j . Thus the cost of going from c_1 to c_3 is \$100, while the cost of going from c_4 to c_2 is \$200

To from	c ₁	c ₂	c ₃	C ₄	c ₅
110111					
C_1		140	100	150	200
C_2	190		200	160	220
c_3	110	180		190	250
C_4	190	200	120		150
C ₅	200	100	200	150	

- If the relation R on the set of cities $A = \{c_1, c_2, c_3, c_4, c_5\}$: $c_i R c_j$ if and only if the cost of going from c_i to c_j is defined and less than or equal to \$180.
- Find R.

$$R = \{(c_1, c_2), (c_1, c_3), (c_1, c_4), (c_2, c_4), (c_3, c_1), (c_3, c_2), (c_4, c_3), (c_4, c_5), (c_4, c_5), (c_5, c_2), (c_5, c_4)\}$$

exercise

www.utm.my

From the previous example, find the matrices of relations for *R*.

$$R = \{(c_1, c_2), (c_1, c_3), (c_1, c_4), (c_2, c_4), (c_3, c_1), (c_3, c_2), (c_4, c_3), (c_4, c_5), (c_4, c_5), (c_5, c_2), (c_5, c_4)\}$$

Reflexive Relations

www.utm.my

- A relation R on a set X is called reflexive if $(x,x) \in R$ for every $x \in X$.
- That is, if xRx for all $x \in X$.

(R is reflexive if every element $x \in X$ is related to itself)

- The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x,y) \in R$ if $x \le y$, $x,y \in X$ is reflexive because for each element $x \in X$, $(x,x) \in R$
- \blacksquare (1,1), (2,2), (3,3), (4,4) are each in R.

யயய.utm.my

The relation,

$$R = \{ (a,a), (b,c), (c,b), (d,d) \}$$

on $X=\{a, b, c, d\}$
is not reflexive.

For example, $b \in X$, but $(b,b) \notin R$

Reflexive Relations

- The digraph of a reflexive relation has a loop at every vertex.
- example

Reflexive Relations

www.utm.my

Irreflexive

A relation R on a set A is irreflexive if xRx or (x,x)∉R; ∀x:x∈X

Not Reflexive

■A Relation R is **not reflexive** if at least one pair of (x,x) ∉R, ∀x:x∈X

யயய.utm.my

www.utm.my

Consider the following relations on the set {1, 2, 3}

$$R_1 = \{ (1,1), (1,2), (2,1), (2,2), (3,1), (3,3) \}$$
 $R_2 = \{ (1,1), (1,3), (2,2), (3,1) \}$
 $R_3 = \{ (2,3) \}$
 $R_4 = \{ (1,1) \}$

Which of them are reflexive?

exercise

- (i) Let R be the relation on $X=\{1,2,3,4\}$ defined by $(x,y)\in R$ if $x\leq y$, $x,y\in X$. Determine whether R is a reflexive relation.
- (ii) The relation R on $X=\{a,b,c,d\}$ given by the below diagraph. Is R a reflexive relation?

Reflexive Relations

- The relation R is reflexive if and only if the matrix of relation has 1's on the main diagonal.
- example

Reflexive Relations

www.utm.my

The relation R is *irreflexive* if and only if the matrix relation have all 0's on its main diagonal

example

யயய.utm.my

The relation R is not reflexive.

 $b \in X$
 $(b,b) \notin R$

exercise

www.utm.my

Let $A = \{1,2,3,4\}$. Construct the matrix of relation of R. Then, determine whether the relation is reflexive, not reflexive or irreflexive.

(i)
$$R = \{ (1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4) \}$$

(ii)
$$R = \{ (1,3), (1,1), (3,1), (1,2), (3,3), (4,4) \}$$

(iii)
$$R = \{ (1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4) \}$$

(iv)
$$R = \{ (1,2), (1,3), (3,2), (1,4), (4,2), (3,4) \}$$

Symmetric Relations

www.utm.my

A relation R on a set X is called symmetric if for all x, $y \in X$, if $(x,y) \in R$, then $(y,x) \in R$.

$$\forall x,y \in X, (x,y) \in R \rightarrow (y,x) \in R$$

Let *M* be the matrix of relation *R*.

The relation *R* is symmetric if and only if for all *i* and *j*, the *ij*th entry of *M* is equal to the *ji*th entry of *M*.

Symmetric Relations

www.utm.my

The matrix of relation M_R is symmetric if $M_R = M_R^T$

Example

atrix of relation
$$M_R$$
 is symmetric if $M_R = M_R^T$

ble
$$\begin{array}{cccc}
a & b & c & d \\
a & 1 & 0 & 0 & 0 \\
M_R = & b & 0 & 1 & 0 \\
c & 0 & 1 & 0 & 0 \\
d & 0 & 0 & 0 & 1
\end{array}$$

SPIRING CREATIVE AND INNOVATIVE MINDS

Symmetric Relations

www.utm.my

The digraph of a symmetric relation has the property that whenever there is a directed edge from v to w, there is also a directed edge from w to v.

www.utm.my

The relation $R = \{ (a,a), (b,c), (c,b), (d,d) \}$ on $X = \{ a, b, c, d \}$

$$(b,c) \in R$$
$$(c,b) \in R$$

symmetric

54

www.utm.my

The relation R on $X = \{1, 2, 3, 4\}$, defined by $(x,y) \in R$ if $x \le y$, $x,y \in X$

$$(2,3) \in R$$
$$(3,2) \notin R$$

not symmetric

Antisymmetric Relations

www.utm.my

- A relation, R on a set X is called antisymmetric, if for all $x,y \in X$, if $(x,y) \in R$ and $x \neq y$, then $(y,x) \notin R$.
- A relation R on set X is antisymmetric if $x\neq y$, whenever xRy, then $y\cancel{R}x$. In other word if whenever xRy, then yRx then it implies that x=y

$$\forall x,y \in A, (x,y) \in R \land x \neq y \rightarrow (y, x) \notin R$$
Or
 $\forall x,y \in A, (x,y) \in R \land (y, x) \in R \rightarrow x = y$

56

Antisymmetric Relations

- Matrix $MR = [M_{ij}]$ of an antisymmetric relation R satisfies the property that if $i \neq j$, then $m_{ij} = 0$ or $m_{ji} = 0$.
- If *R* is antisymmetric relation, then for different vertices *i* and *j* there cannot be an edge from vertex *i* to vertex *j* and an edge from vertex *j* to vertex *l*
- At least one directed relation and one way

www.utm.my

Let R be a relation on $A = \{1, 2, 3\}$ defined as $(a, b) \in R$ if $a \ge b$, a, $b \in A$ is an antisymmetric relation because for all a, $b \in A$, $(a, b) \in R$ and $a \ne b$, then $(b, a) \notin R$, for example

$$(3, 2) \in R \text{ but } (2, 3) \notin R$$

 $(3, 3) \in R \text{ and } (3, 3) \in R \text{ implies } a = b$

58

www.utm.my

The relation R on $X = \{ 1, 2, 3, 4 \}$ defined by, $(x,y) \in R$ if $x \le y, x,y \in X$

$$(1,2) \in R$$
$$(2,1) \notin R$$

antisymmetric

59

யயய.utm.my

The relation $R = \{ (a,a), (b,c), (c,b), (d,d) \}$ on $X = \{ a, b, c, d \}$

$$(b,c) \in R$$
$$(c,b) \in R$$

not antisymmetric

www.utm.my

The relation

$$R = \{ (a,a), (b,b), (c,c) \}$$

on $X = \{ a, b, c \}$

R has no members of the form (x,y) with x≠y, then R is antisymmetric

யயய.utm.my

- Antisymmetric
- Reflexive
- Symmetric

"Antisymmetric" is not the same as "not symmetric"

Antisymmetric Relations

- The digraph of an antisymmetric relation has at most one directed edge between each pair of vertices.
- Example

Asymmetric

யயய.utm.my

A relation R on set A is asymmetric if whenever aRb, then bRa.

$$\forall x,y \in X, (x,y) \in R \rightarrow (y,x) \notin R$$

In this sense, a relation is asymmetric if and only if it is both <u>antisymmetric</u> and <u>irreflexive</u>.

Asymmetric

யயய.utm.my

The matrix $M_{R=}[m_{ij}]$ of an asymmetric relation R satisfies the property that If $m_{ij} = 1$ then $m_{ji} = 0$ $m_{ii} = 0$ for all i (the main diagonal of matrix M_R consists

- If *R* is asymmetric relation, then the digraph of *R* cannot simultaneously have an edge from vertex *i* to vertex *j* and an edge from vertex *j* to vertex *i*
- All edges are "one way street"

entirely of 0's or otherwise)

www.utm.my

Let R be the relation on A = $\{1, 2, 3\}$ defined by $(a, b) \in R$ if a > b, $a,b \in A$ is an asymmetric relation because,

$$(2, 1) \in R$$
 but $(1, 2) \notin R$

$$(3, 1) \in R$$
 but $(1, 3) \notin R$

$$(3, 2) \in R \text{ but } (2, 3) \notin R$$

Not Symmetric

யயய.utm.my

- Let R be a relation on a set A.
- Then R is called **not symmetric**, if for all $a, b \in A$, if $(a, b) \in R$, there exist $(b, a) \notin R$.

$$\exists a,b \in A, (a,b) \in R \rightarrow (b,a) \notin R$$

Not Symmetric and Not Antisymmetric

www.utm.my

Let R be a relation on a set A. Then R is called **not symmetric** and **not antisymmetric**, if for all a, $b \in A$, if $(a, b) \in R$, there exist $(b, a) \notin R$ and if $(a, b) \in R$, there exist $(b, a) \notin R$.

$$\exists a,b \in A, (a, b) \in R \rightarrow (b, a) \in R$$

 $\exists a,b \in A, (a, b) \in R \rightarrow (b, a) \notin R$

யயய.utm.my

Relation $R = \{(a, c), (b, b), (c, a), (b, a), (a, a)\}$ on $A = \{a, b, c\}$ is not symmetric and not antisymmetric relation because there is,

 $(a,c), (c,a) \in R$ and also $(b,a) \in R$ but $(a,b) \notin R$

- 1. Let A=Z, the set of integers and let $R=\{(a,b)\in A\times A|\ a< b\}$. So that R is the relation "less than".
 - Is R symmetric, asymmetric or antisymmetric?
- 2. Let $A=\{1,2,3,4\}$ and let $R=\{(1,2), (2,2), (3,4), (4,1)\}$ Determine whether R symmetric, asymmetric or antisymmetric.

www.utm.my

Question 1

- Symmetric: If a<b, then it is not true that b<a, so R is not symmetric
- Assymetric: If a<b then b>a (b is greater than a), so R is assymetric
- Antisymmetric: If a+b, then either a>b or b>a, so R is antisymmetric

Question 2

- R is not symmetric since (1,2)∈R, but (2,1)∉R
- R is not asymmetric, since (2,2)∈R
- R is antisymmetric, since a+b, either (a,b)∉R or (b,a)∉R

Summary on Symmetric

யயய.utm.my

Exercise

www.utm.my

Let $A = \{1,2,3,4\}$. Construct the matrix of relation of R. Then, determine whether the relation is symmetric, asymmetric, not symmetric or antisymmetric.

(i)
$$R = \{ (1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4) \}$$

(ii)
$$R = \{ (1,3), (1,1), (3,1), (1,2), (3,3), (4,4) \}$$

(iii)
$$R = \{ (1,2), (1,3), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4) \}$$

Transitive Relations

www.utm.my

A relation R on a set X is called transitive if for all $x,y,z \in X$,

if
$$(x,y)$$
 and $(y,z) \in R$ then $(x,z) \in R$

- It is often convenient to say what it means for a relation to be not transitive.
- A relation R on X is **not transitive** if there exists x, y, and z in X so that xRy and yRz, but xRz. If such x, y, and z do not exist, then R is transitive.

Transitive Relations

www.utm.my

Let M_R be the matrix of relation R. The relation R is transitive if,

$$M_R \otimes M_R = M_R$$
.

⊗ Boolean product.

Boolean Algebra

யயய.utm.my

+	1	0
1	1	1
0	1	0

	1	0
1	1	0
0	0	0

www.utm.my

The relation R on $X = \{1, 2, 3, 4\}$ defined by

$$(x,y) \in R$$
 if $x \le y$, $x,y \in X$

www.utm.my

 $M_R \otimes M_R = M_R$

transitive

$$\otimes$$

79

www.utm.my

- The relation $R=\{(a,a),(b,c),(c,b),(d,d)\}$ on $X=\{a,b,c,d\}$ is not transitive.
- (b,c) and $(c,b) \in R$, but $(b,b) \notin R$.

www.utm.my

Consider the following relations on the set {1, 2, 3}

R1 = {
$$(1,1)$$
, $(1,2)$, $(2,3)$ }
R2 = { $(1,2)$, $(2,3)$, $(1,3)$ }

Which of them is transitive?

யயய.utm.my

Let R be a relation on $A=\{1,2,3\}$ is defined by $(a,b) \in R$ if $a \le b$, $a,b \in A$. Find R. Is R a transitive relation?

Solution:

$$R=\{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

R is a transitive relation because

$$(1,2)$$
 and $(2,2) \in R$, $(1,2) \in R$

$$(1,2)$$
 and $(2,3) \in R$, $(1,3) \in R$

$$(1,3)$$
 and $(3,3) \in R$, $(1,3) \in R$

$$(2,2)$$
 and $(2,3) \in R$, $(2,3) \in R$

$$(2,3)$$
 and $(3,3) \in R$, $(2,3) \in R$

82

Transitive Relations

யயய.utm.my

In the digraph of R, R is a transitive relation if and only if there is a directed edge from one vertex a to another vertex b, an if there exits a directed edge from vertex b to vertex c, then there must exists a directed edge from a to c

யயய.utm.my

$$R=\{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

The diagraph:

www.utm.my

The relation R on $A=\{1,2,3\}$ defined by $(a,b) \in R$ if $a \le b$, $a,b \in A$, is a transitive. The matrix of relation M_R .

$$M_R = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

$$3 \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

The product of boolean,

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that, (1,2) and $(2,3) \in R$, $(1,3) \in R$

www.utm.my

The relation R on $A=\{1,2,3\}$ defined by $(a,b) \in R$ if $a \le b$, $a,b \in A$, is a transitive. The matrix of relation M_R .

$$M_R = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

$$3 \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

The product of boolean,

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that, (1,2) and $(2,3) \in R$, $(1,3) \in R$

86

Example

The relation R on $A=\{a,b,c,d\}$ IS $r=\{(a,a),(b,b),(c,c),(d,d),d\}$ (a,c), (c,b)} is not transitive. The matrix of relation M_{R} .

$$M_{R} = b \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_{R} \otimes M_{R} \neq M_{R}$$
n,
$$d \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The product of boolean,

Note that,(a,c) and (c,b) $\in R$, (a,b) $\notin R$

Equivalence Relations

www.utm.my

A relation *R* that is reflexive, symmetric and transitive on a set *X* is called an equivalence relation on *X*.

யயய.utm.my

Let $R=\{(1,1), (1,3), (2,2), (3,1), (3,3)\}$ on $\{1,2,3\}$, the matrix of the relation M_R ,

$$M_R = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$

All the main diagonal matrix elements are 1 and the matrix is reflexive

யயய.utm.my

Let $R=\{(1,1), (1,3), (2,2), (3,1), (3,3)\}$ on $\{1,2,3\}$, the matrix of the relation M_R ,

$$M_R = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$

All the main diagonal matrix elements are 1 and the matrix is reflexive

www.utm.my

The transpose matrix M_R , M_R^T is equal to M_R , so R is symmetric

$$M_{R} = \begin{bmatrix} 1 & 2 & 3 & & & 1 & 2 & 3 \\ 1 & 0 & 1 & & & & \\ 2 & 0 & 1 & 0 & & & \\ 3 & 1 & 0 & 1 \end{bmatrix} \qquad M_{R}^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

The product of Boolean show that the matrix is transitive.

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

www.utm.my

The relation, R={ (1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5) } on { 1,2,3,4,5 }

- Reflexive?
- Symmetric?
- Transitive?

1	0	1	0	1
0 1 0	1 0	0	1	0
1	0	1	0	1
0	1	0	1	0
1	0	1	0	1_

யயய.utm.my

Reflexive?

Reflexive √

www.utm.my

Symmetric?

Symmetric √

யயய.utm.my

Transitive?

யயய.utm.my

- Reflexive
- Symmetric
- Transitive

Equivalence relation

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

www.utm.my

The relation R on $X=\{1, 2, 3, 4\}$, defined by $(x,y) \in R$ if $x \le y$, $x,y \in X$

- Not symmetric
 - $(2,3) \in R$ but $(3,2) \notin R$
- R is not equivalence relation on X.

Partial Orders

www.utm.my

A relation, R on a set X is called a partial order if R is reflexive, antisymmetric, and transitive.

www.utm.my

Let R be a relation on a set $A=\{1,2,3\}$ defined by $(a,b)\in R$ if $a\leq b,\ a,b\in R$.

$$R = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

R is reflexive, antisymmetric and transitive.

So R is a partial order relation.

www.utm.my

The relation R defined on the positive integers by $(x,y) \in R$ if x divides y (evenly)

is reflexive, antisymmetric and transitive

R is a partial order.

www.utm.my

The relation R defined on the set of integers by

$$(x,y) \in R \text{ if } x \leq y$$

is reflexive, antisymmetric, and transitive.

R is a partial order.

exercise

www.utm.my

The relation R on the set $\{1,2,3,4,5\}$ defined by the rule $(x,y) \in R$ if $x+y \le 6$

- (i) List the elements of R
- (ii) Find the domain of R
- (iii) Find the range of R
- (iv) Is the relation of R refelxive, symmetric, assymmetric, antisymmetric, transitive, and/or equivalence relation or partial order?

exercise

www.utm.my

The relation R on the set $\{1,2,3,4,5\}$ defined by the rule $(x,y) \in R$ if 3 divides x-y

- (i) List the elements of R
- (ii) Find the domain of R
- (iii) Find the range of R
- (iv) Is the relation of R refelxive, symmetric, assymmetric, antisymmetric, transitive, and/or equivalence relation or partial order?

exercise

www.utm.my

The relation R on the set $\{1,2,3,4,5\}$ defined by the rule $(x,y) \in R$ if x=y-1

- (i) List the elements of R
- (ii) Find the domain of R
- (iii) Find the range of R
- (iv) Is the relation of R refelxive, symmetric, assymmetric, antisymmetric, transitive, and/or equivalence relation or partial order?