(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 January 2002 (31.01.2002)

PCT

(10) International Publication Number WO 02/07750 A1

(51) International Patent Classification7: A61K 38/04, C07K 7/08

(21) International Application Number: PCT/US01/22892

(22) International Filing Date: 20 July 2001 (20.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/219,407 20 July 2000 (20.07.2000) US 60/221,557 28 July 2000 (28.07.2000) US

- (71) Applicants: COGNETIX, INC. [US/US]; 421 Wakara Way, Suite 170, Salt Lake City, UT 84108 (US). UNIVER-SITY OF UTAH RESEARCH FOUNDATION [US/US]; 615 Arapeen Drive, Suite 110, Salt Lake City, UT 84108 (US).
- (72) Inventors: OLIVERA, Baldomero, M.; 1370 Bryan Avenue, Salt Lake City, UT 84108 (US). LAYER, Richard, T.; 9024 Sunburst Court, Sandy, UT 84093 (US). WATKINS, Maren; 845 East Garfield Avenue, Salt Lake City, UT 84105 (US). HILLYARD, David, R.; 3685 Juno Circle, Salt Lake City, UT 84124 (US). MCINTOSH, J., Michael; 1151 South 2000 East, Salt Lake City, UT 84108 (US). SCHOENFELD, Robert; 896 Gulfwind

Way, Sacramento, CA 95831 (US). JONES, Robert, M.; 44 West Broadway #2103 South, Salt Lake City, UT 84101 (US). NIELSEN, Jake; Salt Lake City, UT 84108 (US).

- (74) Agents: IHNEN, Jeffrey, L. et al.; Rothwell, Figg, Ernst & Manbeck, P.C., Suite 701-E, 555 13th Street, N.W., Washington, DC 20004 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ALPHA-CONOTOXIN PEPTIDES

(57) Abstract: The invention relates to relatively short peptides (termed α -conotoxins herein), about 10-25 residues in length, which are naturally available in minute amounts in the venom of the cone snails or analogous to the naturally available peptides, and which preferably include two disulfide bonds. The α -conotoxins, as described herein, are useful as neuromuscular blocking agents, such as muscle relaxants.

TITLE OF THE INVENTION ALPHA-CONOTOXIN PEPTIDES

5

10

15

20

25

.30

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is a continuation-in-part of patent application Serial No. 09/488,799 filed on 21 January 2001 and claims benefit thereto. The present application also claims benefit under 35 USC §119(e) to U.S. provisional patent applications Serial No. 60/116,881 filed on 22 January 1999, Serial No. US 60/116,882 filed on 22 January 1999, 60/219,407 filed on 20 July 2000 and Serial No. 60/221,557 filed on 28 July 2000. Each of these applications is incorporated herein by reference.

[0002] This invention was made with Government support under Grant No. PO1 GM48677 awarded by the National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland and under SBIR grant No. 1 R43 GM62064-01. The United States Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

[0003] The invention relates to relatively short peptides (termed α -conotoxins herein), about 10-25 residues in length, which are naturally available in minute amounts in the venom of the cone snails or analogous to the naturally available peptides, and which preferably include two disulfide bonds. The α -conotoxins, as described herein, are useful for as neuromuscular blocking agents, such as muscle relaxants.

[0004] The publications and other materials used herein to illuminate the background of the invention, and in particular, cases to provide additional details respecting the practice, are incorporated by reference, and for convenience are referenced in the following text by author and date and are listed alphabetically by author in the appended bibliography.

[0005] The predatory cone snails (Conus) have developed a unique biological strategy. Their venom contains relatively small peptides that are targeted to various neuromuscular receptors and may be equivalent in their pharmacological diversity to the alkaloids of plants or secondary metabolites of microorganisms. Many of these peptides are among the smallest nucleic acid-encoded translation products having defined conformations, and as such, they are somewhat unusual. Peptides in this size range normally equilibrate among many conformations. Proteins having a fixed conformation are generally much larger.

2

[0006] The cone snails that produce these peptides are a large genus of venomous gastropods comprising approximately 500 species. All cone snail species are predators that inject venom to capture prey, and the spectrum of animals that the genus as a whole can envenomate is broad. A wide variety of hunting strategies are used, however, every *Conus* species uses fundamentally the same basic pattern of envenomation.

5

10

15

20

25

30

[0007] Several peptides isolated from *Conus* venoms have been characterized. These include the α -, μ - and ω -conotoxins which target nicotinic acetylcholine receptors, muscle sodium channels, and neuronal calcium channels, respectively (Olivera et al., 1985). Conopressins, which are vasopressin analogs, have also been identified (Cruz et al., 1987). In addition, peptides named conantokins have been isolated from *Conus geographus* and *Conus tulipa* (Mena et al., 1990; Haack et al., 1990).

[0008] The α -conotoxins are small peptides highly specific for neuromuscular junction nicotinic acetylcholine receptors (Gray et al., 1981; Marshall and Harvey, 1990; Blount et al., 1992). The α -conotoxin peptides MI and GI are selective for the α/δ subunit interface of the neuromuscular junction nicotinic receptor over the α/γ subunit interface by >10,000 fold, while the α -conotoxin peptides EI and EIA bind both sites with equal affinity. However, none of these peptides show significant affinity for neuronal nicotinic receptors.

[0009] Various compounds having muscle relaxant properties are set forth in U.S. Patent Nos. 4,190,674; 4,508,715; 4,761,418; 4,701,460; 4,179,507; 4,923,898; 5,015,741; and 5,260,337; as well as in Goodman and Gilman's *The Pharmacological Basis of Therapeutics*, Section II, especially Chapter 11, 7th Ed. (1985) and *Physicians Desk Reference*, 48 Ed., pp. 689, 758, 1362 and 1648 (1994).

[0010] Compounds having musculoskeletal relaxing properties include (1) agents acting in the central nervous system which are used to relieve pain associated with muscle contraction (e.g., 5-chlorobenzoxazolinone available as Parafon Forte DSC from McNeil Pharmaceutical), and (2) agents acting in the peripheral nervous system used primarily to induce muscle relaxation and hence reduce muscle contraction during anesthesia. The second group of muscle relaxants is subdivided into two groups: (i) non-depolarizing agents which inhibit the activation of muscle receptors (e.g., metocurarine iodide, d-tubocurarine, tubocurarine chloride, pancuronium, gallamine, diallytoiferine, toxiferine, atracurium besylate which is available as Tracrium from Burroughs-Wellcome Co., and vecuronium bromide which is available as Norcuron from Organon Inc.) and (ii) depolarizing agents

3

which transiently activate muscle receptors and result in their blockade (e.g., decamethonium iodide, and succinylcholine chloride which is available as Anectine from Burroughs-Wellcome Co.). The effects of the depolarizing agents are manifested as fasciculations and flaccid paralysis which are observed to occur rapidly after their injection.

5

10

15

20

25

30

[0011] The effects of depolarizing agents (DA) and non-depolarizing agents (NDA) are separated based on their duration of action from ultrashort acting (e.g. for a depolarizing agent such as succinylcholine chloride) to intermediate (e.g. for a non-depolarizing agent such as atracurium besylate). Certain types of muscle relaxants are useful as neuromuscular blocking agents in clinical applications, and have found use as adjuvants to surgical anesthesia, in orthopedic surgical procedures and in facilitating endotracheal intubation procedures. Some of these compounds (e.g., succinylcholine chloride) are routinely used to provide muscle relaxation during Cesarean section procedures.

[0012] It is desirable for neuromuscular blocking agents to be locally acting and highly selective for binding to muscle nicotinic acetylcholine receptor sites. As such, when a patient is treated with anesthesia, the muscle relaxant is applied (e.g., intravenously or by injection), in order to cause the muscle to relax and hence minimize muscle contraction.

[0013] In anesthesia, neuromuscular blocking agents are used to provide skeletal muscular relaxation during surgery and during intubation of the trachea. All of the conventional nondepolarizing agents when used for producing skeletal muscle relaxation in surgery have a long duration of action e.g., 60 to 180 minutes in man. The depolarizing agents on the other hand provide muscle relaxation at dosages normally used for surgery which is less than the duration of action of nondepolarizing agents. For example, succinylcholine provides a short duration of action of about 5 to 15 minutes whereas decamethonium provides about 20 to 40 minutes duration of muscle relaxation. The long duration of action of nondepolarizing agents is unacceptable in many surgical procedures which take less than one hour because the patient is not generally fully recovered from their effects e.g., the patient may be unable to breathe adequately on his or her own.

[0014] Each nondepolarizing agent has inherent side-effects. For example, gallamine and pancuronium may cause tachycardia, d-tubocurarine and diallyltoxiferine may cause hypotension, and succinylcholine may cause fasciculations, myalgia, potassium release, cardiovascular effects, immunological reactions and malignant hyperthermia. While such drugs can be pharmacologically antagonized with anticholinesterase agents, this obviously necessitates the administration of a second drug which itself may have its own side effects e.g., bradycardia, gut spasm and

4

bronchorrhea. Thus to overcome the aforementioned side-effects of the anticholinesterase agents, a third drug, an anticholinergic drug e.g., atropine must also be given.

[0015] With the use of depolarizing agents, there is no need to reverse the effects of the depolarizing agents, in certain patients the effects are much prolonged because of abnormal metabolism of the agent by the patient. The polarizing agents due to the mode of action which initially causes skeletal muscle contraction and stimulation of smooth muscles are also known to cause the following side-effects in certain instances; increased intraocular, and intragastric tension, cardiac arrhythmias, potassium release, and muscle pain. These side-effects caused by the depolarizing agents are not caused by the nondepolarizing agents. It is therefore clearly evident that a new neuromuscular blocking agent having the relatively few side-effects and the reversibility of the nondepolarizing agents yet being of considerably shorter i.e., intermediate, duration of action is needed.

[0016] It is desired to provide a compound useful as a muscle relaxant. In particular, it is desired to provide an antagonist which has activity at relatively low concentrations as a neuromuscular blocking agent. It is also desired to achieve muscle relaxation at concentrations of agonist that are devoid of any ganglionic effects (e.g., so as to not exhibit side effects such as those associated with interaction with cardiovascular sites). As such, it is desired to provide muscle relaxant compositions and methods for providing muscle relaxation. Finally, it is desired to identify additional α -conotoxin peptides for use as neuromuscular blocking agents.

20

25

30

5

10

15

SUMMARY OF THE INVENTION

[0017] The invention relates to relatively short peptides (termed α -conotoxins herein), about 10-25 residues in length, which are naturally available in minute amounts in the venom of the cone snails or analogous to the naturally available peptides, and which preferably include two disulfide bonds. The α -conotoxins, as described herein, are useful for as neuromuscular blocking agents, such as muscle relaxants, for treating benign essential blepharospasm and other forms of focal dystonia and for anti-wrinkle use.

[0018] More specifically, the present invention is directed to the neuromuscular blocking use of α -conotoxin peptides of two classes, namely, (a) $\alpha 3/5$ or $\alpha 3/6$ and (b) $\alpha 4/7$, as described herein. The first class of α -conotoxin peptides has the general formula I:

5

5

10

15

20

25

30

Xaa₁-Xaa₂-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Xaa₆-Xaa₇-Cys-Xaa₈-Xaa₉-Xaa₁₀-Xaa₁₁-Xaa₁₂-Xaa₁₃- $Cys-Xaa_{14}-Xaa_{15}-Xaa_{16}-Xaa_{17}-Xaa_{18}-Xaa_{19}-Xaa_{20}-Xaa_{21}-Xaa_{22}-Xaa_{23}-Xaa_{24}-Xaa_{25}$ (SEQ ID NO:1), wherein Xaa₁ is des-Xaa₁ or Gly; Xaa₂ is des-Xaa₂, Asn, Arg, Asp, Ser, Thr, Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa, is des-Xaa, Gly, Glu or γ-carboxy-Glu (Gla); Xaa, is des-Xaa4, Glu, Gla, Gln, pyro-Glu, Arg, Ile Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, Ophospho-Tyr, nitro-Tyr, Cys, His, halo-His, any unnatural hydroxy containing amino acid (such as 4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly, 2,6-dimethyl-Tyr and 5-amino-Tyr), Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa₅ is His, Asn or halo-His; Xaa₆ is Pro or hyroxy-Pro; Xaa, is Ala, Gly, Ser or Thr; Xaa, is Gly or Ala; Xaa, is Arg, Lys, Pro, hydroxy-Pro, Gly, Gln, omithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa₁₀ is His, halo-His, Asn, Lys, Tyr, monohalo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, Arg, homoarginine, omithine or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa₁₁ is Tyr, Phe, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr, any unnatural hydroxy containing amino acid (such as 4-hydroxymethyl-Phe, 4hydroxyphenyl-Gly, 2,6-dimethyl-Tyr and 5-amino-Tyr), Trp (D or L), halo-Trp, neo-Trp, or any unnatural aromatic amino acid (such as nitro-Phe, 4-substituted-Phe wherein the substituent is C₁-C₂ alkyl, carboxyl, hyrdroxymethyl, sulphomethyl, halo, phenyl, -CHO, -CN, -SO,H and -NHAc): Xaa₁₂ is Ile, Ser, Thr, Asp, Gly, Asn, Glu, Gla or Val; Xaa₁₃ is des-Xaa₁₃, Lys, Arg, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa₁₄ is des-Xaa₁₄, Gly, Lys, Arg, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa₁₅ is des-Xaa₁₅, Gly, Thr, Ser, His, halo-His, Lys, Arg, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa₁₆ is des-Xaa₁₆, Ser or Thr; Xaa₁₇ is des-Xaa₁₇ or Cys; Xaa₁₈ is des-Xaa₁₈, Ser or Thr; Xaa₁₉ is des-Xaa₁₉, Arg, Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2pyrazolinyl)-Arg); Xaa20 is des-Xaa20, Thr, Ser, Pro or hydroxy-Pro; Xaa21 is des-Xaa21, Leu, Ser or Thr; Xaa₂₂ is des-Xaa₂₂, Glu or Gla; Xaa₂₃ is des-Xaa₂₃, Pro or hydroxy-Pro; Xaa₂₄ is des-Xaa₂₄, Arg. Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any

6

unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); and Xaa₂₅ is des-Xaa₂₅, Arg, Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg). The C-terminus may contain a free carboxyl group or an amide group, preferably an amide group. The halo is chlorine, bromine or iodine, preferably iodine for Tyr and bromine for Trp. The Cys residues may be in D or L configuration and may optionally be substituted with homocysteine.

5

10

15

20

25

30

[0019] Useful peptides include GI (Gray et al., 1981), GIA (Gray et al., 1981), GII (Gray et al., 1981), MI (McIntosh et al., 1982), SI (Zafaralla et al., 1988), SIA (Myers et al., 1991), SIB (same as SI, except further contains Glu at N-terminus), SII (Olivera et al., 1996), SIIA (Olivera et al., 1996), R1 (same as G1, except Tyr for Lys), R1.3 (below), R1.4 (below), Sm1.1 (below), S11 (below), S2 (below); GIB (same as R1); MnII (below); A1.2 (below); A1.3 (below); A1.7 (below); A1.8 (below); Ay1.1 (below); Ay1.1a (below); M1.1 (below); M1.3 (below); M1.4 (below); M1.5 (below); O1.3 (below); S1.3 (below); Sa (below). Additional useful peptides are analogs of MI and GI as described below.

[0020] The second class of α-conotoxin peptides has the general formula II:

Xaa₁-Xaa₂-Xaa₃-Cys-Cys-Xaa₄-Xaa₅-Xaa₆-Xaa₇-Cys-Xaa₈-Xaa₆-Xaa₁₀-Xaa₁₁-Xaa₈-Xaa₁₁-Ile-Cys-Xaa₁₃-Xaa₁₄-Xaa₁₅ (SEQ ID NO:2), wherein, Xaa₁ is des-Xaa₁, Arg, Ser, Thr, Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa₂ is des-Xaa₂, Asp, Gly, Leu, Arg, Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa₃ is des-Xaa₃, Pro, hydroxy-Pro, Ala, Gly or Leu; Xaa₄ is Tyr, Ser, Thr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid (such as 4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly, 2.6dimethyl-Tyr and 5-amino-Tyr); Xaas is His, Asn, Ile, Tyr, halo-His, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa6 is Pro or hydroxy-Pro; Xaa7 is Thr, Ala, Val, Ser, Pro or hydroxy-Pro; Xaa₈ is Asn, Thr, Ser, Lys, Arg, ornithine, homoargine, N-methy-Lys, N,Ndimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); Xaa, is Met, Val, Ala, Leu or Ile; Xaa, is Ser, Thr, Asn, His or halo-His; Xaa, is Asn, Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr, or any unnatural hydroxy containing amino acid (such as 4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly, 2,6-dimethyl-Tyr and 5-amino-Tyr); Xaa₁₂ is Glu, γ-carboxy-Glu (Gla), Gln or Asp; Xaa₁₃ is des-Xaa₁₃ or Gly; Xaa₁₄ is des-Xaa₁₄ or Gly; and Xaa₁₅ is des-Xaa₁₅, Arg, Lys, ornithine, homoargine, N-methy-Lys, N.N- 5

10

15

20

25

30

dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg). The C-terminus may contain a free carboxyl group or an amide group, preferably an amide group. The halo is preferably chlorine or iodine, more preferably iodine. The Cys residues may be in D or L configuration and may optionally be substituted with homocysteine.

[0021] Useful peptides include E1 (U007; Olivera et al., 1996), EIA (U008; Olivera et al., 1996), P1.2 (below), P1.3 (below), S11.4 (below), S11.4A (below); S11.8 (below) and Ta (below).

[0022] The present invention is also directed to novel specific α -conotoxin peptides of class I having the formulas:

Xaa₁-Cys-Cys-Asn-Xaa₂-Ala-Cys-Gly-Arg-His-Xaa₃-Ser-Cys-Xaa₄-Gly (SEQ ID NO:3); Asn-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Xaa₄-His-Phe-Ser-Cys (SEQ ID NO:4); Gly-Arg-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Xaa₂-Asn-Xaa₃-Ser-Cys (SEQ ID NO:5); Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Arg-Xaa₄-Xaa₃-Asn-Cys (SEQ ID NO:6);

Cys-Cys-Cys-Asn-Xaa₂-Ala-Cys-Gly-Xaa₂-Asn-Xaa₃-Gly-Cys-Gly-Thr-Ser-Cys-Ser-Arg-Xaa₂-Ser-Xaa₁-Xaa₂-Arg-Arg (SEQ ID NO:7);

Asn-Gly-His-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Gly-Xaa₄-Xaa₃-Val-Xaa₄-Cys (SEQ ID NO:8);

Asn-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Gly-Xaa₄-Xaa₃-Val-Xaa₄-Cys (SEQ ID NO:9);

Asn-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Xaa₄-His-Phe-Ile-Cys (SEQ ID NO:10);
Asn-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Xaa₄-His-Phe-Ser-Cys (SEQ ID NO:11);
Asn-Gly-Arg-Cys-Cys-His-Xaa₂-Ser-Cys-Gly-Arg-Xaa₄-Xaa₃-Asn-Cys (SEQ ID NO:12);
Asn-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Ala-Arg-Xaa₄-Xaa₃-Asn-Cys (SEQ ID NO:13);
Asn-Xaa₁-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Ala-Arg-Xaa₄-Xaa₃-Asn-Cys (SEQ ID NO:14);
Asp-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Gln-Asn-Xaa₃-Ser-Cys (SEQ ID NO:15);
Asp-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Ala-Xaa₄-His-Phe-Asn-Cys (SEQ ID NO:16);
Asn-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Ala-Xaa₄-Asn-Xaa₃-Ser-Cys (SEQ ID NO:17);
Asn-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Ala-Arg-Xaa₄-Xaa₃-Ser-Cys (SEQ ID NO:18);
Xaa₅-Cys-Cys-Asn-Xaa₂-Ala-Cys-Gly-Xaa₂-Xaa₄-Xaa₃-Ser-Cys (SEQ ID NO:19);
Xaa₅-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Xaa₄-Xaa₃-Asn-Cys (SEQ ID NO:20); and

Ser-Gly-Arg-Cys-Cys-His-Xaa₂-Ala-Cys-Gly-Arg-Xaa₄-Xaa₃-Asn-Cys (SEQ ID NO:21), wherein Xaa₁ is Glu or γ-carboxy-glutamate (Gla); Xaa₂ is Pro or hydroxy-Pro; Xaa₃ is Tyr, monohalo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa₄ is Lys, N-methyl-Lys, N,N-

M1.5:

5

10

dimethyl-Lys or N,N,N-trimethyl-Lys; Xaa, is Gln or pyro-Glu; and the C-terminus contains a carboxyl or amide group, preferably an amide group. The halo is preferably chlorine or iodine, more preferably iodine. In addition, the His residues may be substituted with halo-His; the Arg residues may be substituted by Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); the Lys residues may be substituted by Arg, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); the Tyr residues may be substituted with ¹²⁵I-Tyr or any unnatural hydroxy containing amino acid (such as 4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly, 2,6-dimethyl-Tyr and 5-amino-Tyr); the Ser residues may be substituted with Thr; the Thr residues may be substituted with Ser; and the Phe residues may be substituted with any unnatural aromatic amino acid (such as nitro-Phe, 4-substituted-Phe wherein the substituent is C₁-C₃ alkyl, carboxyl, hyrdroxymethyl, sulphomethyl, halo, phenyl, -CHO, -CN, -SO₃H and -NHAc).

[0023] More specifically, the present invention is directed to the following α -conotoxin peptides of class I:

10	populates of class a	•
	R1.3:	SEQ ID NO:3, wherein Xaa ₁ is Glu, Xaa ₂ is Pro, Xaa ₃ is Tyr and Xaa ₄ is Lys;
	R1.4:	SEQ ID NO:4, wherein Xaa ₂ is Pro and Xaa ₄ is Lys;
	Sm1.1:	SEQ ID NO:5, wherein Xaa2 is Pro and Xaa3 is Tyr;
	S11:	SEQ ID NO:6, wherein Xaa2 is Pro, Xaa3 is Tyr and Xaa4 is Lys;
20	S2:	SEQ ID NO:7, wherein Xaa ₁ is Glu, Xaa ₂ is Pro and Xaa ₃ is Tyr;
	MnII:	SEQ ID NO:8, wherein Xaa2 is Pro, Xaa3 is Tyr and Xaa4 is Lys;
	A1.2:	SEQ ID NO:9, wherein Xaa2 is Pro, Xaa3 is Tyr and Xaa4 is Lys;
	A1.3:	SEQ ID NO:10, wherein Xaa2 is Pro and Xaa4 is Lys;
	A1.7:	SEQ ID NO:11, wherein Xaa2 is Pro and Xaa4 is Lys;
25	A1.8:	SEQ ID NO:12, wherein Xaa2 is Pro and Xaa4 is Lys;
	Ay1.1:	SEQ ID NO:13, wherein Xaa2 is Pro, Xaa3 is Tyr and Xaa4 is Lys;
	Ay1.1a:	SEQ ID NO:14, wherein Xaa1 is Glu, Xaa2 is Pro, Xaa3 is Tyr and Xaa4 is
	Lys;	
	M1.1:	SEQ ID NO:15, wherein Xaa2 is Pro and Xaa3 is Tyr;
30	M1.3:	SEQ ID NO:16, wherein Xaa2 is Pro and Xaa4 is Lys;
	M1.4:	SEQ ID NO:17, wherein Xaa2 is Pro, Xaa3 is Tyr and Xaa4 is Lys;

SEQ ID NO:18, wherein Xaa, is Pro, Xaa, is Tyr and Xaa, is Lys;

O1.3: SEQ ID NO:19, wherein Xaa₂ is Pro, Xaa₃ is Tyr, Xaa₄ is Lys and Xaa₅ is Gln;

S1.3: SEQ ID NO:20, wherein Xaa₂ is Pro, Xaa₃ is Tyr, Xaa₄ is Lys and Xaa₅ is Gln; and

5 Sa: SEQ ID NO:21, wherein Xaa₂ is Pro, Xaa₃ is Tyr and Xaa₄ is Lys.

The C-terminus is preferably amidated in each of these specific peptides.

[0024] The present invention is further directed to MI and GI analogs having the formulas:

MI[K10Q]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:102);

10 MI[K10E]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Glu-Asn-Tyr-Ser-Cys (SEQ ID NO:103);

MI[K10Q, N11Q]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Gln-Tyr-Ser-Cys (SEQ ID NO:104);

MI[H5N, K10Q]: Gly-Arg-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:105);

15

MI[K10N]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Cys (SEQ ID NO:106);

desG1-MI[K10Q, N11Q]: Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Gln-Tyr-Ser-Cys (SEQ ID NO:107);

20 MI[K10Q, S13D]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Asp-Cys (SEQ ID NO:108);

MI[K10homoSer]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Xaa-Asn-Tyr-Ser-Cys (SEQ ID NO:109), where Xaa is homoserine;

desG1-MI[R2E, K10Q]: Glu-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:110);

desG1/E2-MI[K10Q]: Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:111);

MI[K10Q, Y12F]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Phe-Ser-Cys (SEQ ID NO:112);

30 MI[K10Q, S13K]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Lys-Cys (SEQ ID NO:113);

5

10

15

20

MI[R2E, K10Q]: Gly-Glu-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:114);

MI[C4E, K10Q, C14K]: Gly-Arg-Cys-Glu-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Lys (SEQ ID NO:115), wherein Glu4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

MI[C4E, K10N, C14K]: Gly-Arg-Cys-Glu-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Lys (SEQ ID NO:116), wherein Glu4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

MI[C4D, K10Q, C14K]: Gly-Arg-Cys-Asp-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Lys (SEQ ID NO:117), wherein Asp4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

MI[C4D, K10N, C14K]: Gly-Arg-Cys-Asp-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Lys (SEQ ID NO:118), wherein Asp4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

GI[R9Q]: Glu-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Cys (SEQ ID NO:119);

GI[R9N]: Glu-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Cys (SEQ ID NO:120);

GI[C3E, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Arg-His-Tyr-Ser-Lys (SEQ ID NO:121), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3E, R9Q, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Lys (SEQ ID NO:122), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3E, R9N, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Lys

(SEQ ID NO:123), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3D, R9Q, C13K]: Glu-Cys-Asp-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Lys (SEQ ID NO:124), wherein Asp3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI; and

30 GI[C3D, R9N, C13K]: Glu-Cys-Asp-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Lys (SEQ ID NO:125), wherein Asp3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI.

The C-terminus is preferably amidated in each of these specific peptides.

[0025] The present invention is also directed to novel specific α -conotoxin peptides of class II having the formulas:

Arg-Asp-Xaa₂-Cys-Cys-Ser-Asn-Xaa₂-Val-Cys-Thr-Val-His-Asn-Xaa₂-Gln-Ile-Cys (SEQ ID NO:22);

Arg-Ala-Cys-Cys-Ser-Xaa₂-Xaa₂-Xaa₂-Cys-Asn-Val-Asn-Xaa₃-Xaa₂-Xaa₁-Ile-Cys (SEQ ID NO:23);

Gly-Gly-Cys-Cys-Ser-Xaa₃-Xaa₂-Xaa₂-Cys-Asn-Val-Ser-Xaa₃-Xaa₂-Xaa₁-Ile-Cys (SEQ ID NO:24);

Cys-Cys-Ser-Xaa₂-Xaa₂-Cys-Asn-Val-Ser-Xaa₃-Xaa₂-Xaa₁-Ile-Cys (SEQ ID NO:25);

Ala-Cys-Cys-Ser-Xaa₃-Xaa₂-Xaa₂-Cys-Asn-Val-Asn-Xaa₃-Xaa₂-Xaa₁-Ile-Cys-Gly-Gly-Arg

(SEQ ID NO:26); and

Ser-Leu-Leu-Cys-Cys-Thr-Ile-Xaa₂-Ser-Cys-Xaa₄-Ala-Ser-Xaa₃-Xaa₂-Asp-Ile-Cys (SEQ ID NO:27),

wherein Xaa₁ is Glu or γ-carboxy-Glu (Gla); Xaa₂ is Pro or hydroxy-Pro; Xaa₃ is Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa₄ is Lys, N-methyl-Lys, N,N-dimethyl-Lys or N,N,N-trimethyl-Lys; and the C-terminus contains a carboxyl or amide group, preferably an amide group. The halo is preferably chlorine or iodine, more preferably iodine. In addition, the His residues may be substituted with halo-His; the Arg residues may be substituted by Lys, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); the Lys residues may be substituted by Arg, ornithine, homoargine, N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid (such as N-1-(2-pyrazolinyl)-Arg); and the Tyr residues may be substituted with ¹²⁵I-Tyr or any unnatural hydroxy containing amino acid (such as 4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly, 2,6-dimethyl-Tyr and 5-amino-Tyr).

[0026] More specifically, the present invention is directed to the following α -conotoxin peptides of class II:

P1.2: SEQ ID NO:22, wherein Xaa2 is Pro;

15

20

25

30

P1.3: SEQ ID NO:23, wherein Xaa₁ is Glu, Xaa₂ is Pro and Xaa₃ is Tyr;

SI1.4: SEQ ID NO:24, wherein Xaa₁ is Glu, Xaa₂ is Pro and Xaa₃ is Tyr;

SI1.4A: SEQ ID NO:25, wherein Xaa₁ is Glu, Xaa₂ is Pro and Xaa₃ is Tyr;

SI1.8: SEQ ID NO:26, wherein Xaa₁ is Glu, Xaa₂ is Pro and Xaa₃ is Tyr; and

Ta: SEQ ID NO:27, wherein Xaa₂ is Pro, Xaa₃ is Tyr and Xaa₄ is Lys.

The C-terminus is preferably amidated in each of these specific peptides.

[0027] Examples of synthetic aromatic amino acid include, but are not limited to, such as nitro-Phe, 4-substituted-Phe wherein the substituent is C₁-C₃ alkyl, carboxyl, hyrdroxymethyl, sulphomethyl, halo, phenyl, -CHO, -CN, -SO₃H and -NHAc. Examples of synthetic hydroxy containing amino acid, include, but are not limited to, such as 4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly, 2,6-dimethyl-Tyr and 5-amino-Tyr. Examples of synthetic basic amino acids include, but are not limited to; N-1-(2-pyrazolinyl)-Arg, 2-(4-piperinyl)-Gly, 2-(4-piperinyl)-Ala, 2-[3-(2S)pyrrolininyl)-Gly and 2-[3-(2S)pyrrolininyl)-Ala. These and other synthetic basic amino acids, synthetic hydroxy containing amino acids or synthetic aromatic amino acids are described in Building Block Index, Version 3.0 (1999 Catalog, pages 4-47 for hydroxy containing amino acids and aromatic amino acids and pages 66-87 for basic amino acids; see also http://www.amino-acids.com), incorporated herein by reference, by and available from RSP Amino Acid Analogues, Inc., Worcester, MA. Examples of synthetic acid amino acids include those derivatives bearing acidic functionality, including carboxyl, phosphate, sulfonate and synthetic tetrazolyl derivatives such as described by Ornstein et al. (1993) and in U.S. Patent No. 5,331,001, each incorporated herein by reference.

[0028] Optionally, in the peptides of general formulas I and II and the specific peptides and analogs described above, the Asn residues may be modified to contain an N-glycan and the Ser and Thr residues may be modified to contain an O-glycan. In accordance with the present invention, a glycan shall mean any N-, S- or O-linked mono-, di-, tri-, poly- or oligosaccharide that can be attached to any hydroxy, amino or thiol group of natural or modified amino acids by synthetic or enzymatic methodologies known in the art. The monosaccharides making up the glycan can include D-allose, D-altrose, D-glucose, D-mannose, D-gulose, D-idose, D-galactose, D-talose, D-galactosamine, D-glucosamine, D-N-acetyl-glucosamine (GlcNAc), D-N-acetyl-galactosamine (GalNAc), D-fucose or D-arabinose. These saccharides may be structurally modified, e.g., with one or more O-sulfate, O-phosphate, O-acetyl or acidic groups, such as sialic acid, including combinations thereof. The gylcan may also include similar polyhydroxy groups, such as D-penicillamine 2,5 and halogenated derivatives thereof or polypropylene glycol derivatives. The glycosidic linkage is beta and 1-4 or 1-3, preferably 1-3. The linkage between the glycan and the amino acid may be alpha or beta, preferably alpha and is 1-.

5

10

15

20

25

30

[0029] Core O-glycans have been described by Van de Steen et al. (1998), incorporated herein by reference. Mucin type O-linked oligosaccharides are attached to Ser or Thr (or other hydroxylated residues of the present peptides) by a GalNAc residue. The monosaccharide building blocks and the linkage attached to this first GalNAc residue define the "core glycans," of which eight have been identified. The type of glycosidic linkage (orientation and connectivities) are defined for each core glycan. Suitable glycans and glycan analogs are described further in U.S. Serial No. 09/420,797, filed 19 October 1999 and in PCT Application No. PCT/US99/ 24380, filed 19 October 1999 (PCT Published Application No. WO 00/23092), each incorporated herein by reference. A preferred glycan is Gal(β1→3)GalNAc(α1→).

[0030] Optionally, in the above peptides, pairs of Cys residues may be replaced pairwise with isoteric lactam or ester-thioether replacements, such as Ser/(Glu or Asp), Lys/(Glu or Asp) or Cys/Ala combinations. Sequential coupling by known methods (Barnay et al., 2000; Hruby et al., 1994; Bitan et al., 1997) allows replacement of native Cys bridges with lactam bridges. Thioether analogs may be readily synthesized using halo-Ala residues commercially available from RSP Amino Acid Analogues.

[0031] The present invention is further directed to derivatives of the above peptides and peptide derivatives which are acylic permutations in which the cyclic permutants retain the native bridging pattern of native toxin. See Craik et al. (2001).

[0032] The present invention is further directed to propeptides and nucleic acid sequences encoding the propeptides or peptides as described in further detail herein.

BRIEF DESCRIPTION OF THE FIGURES

[0033] Figure 1 shows onset and recovery time of neuromuscular block for different doses (87, 100 or 150 μ g/kg) of the α -conotoxin peptide MI.

(

[0034] Figure 2 shows onset and recovery time of neuromuscular block for different doses (180, 217 or 250 $\mu g/kg$) of α -conotoxin peptide GI

[0035] Figure 3 shows dose response curves for the α-conotoxin peptides MI (●) and GI (■).

[0036] Figure 4 shows onset and recovery time of neuromuscular block for different doses (18.76, 28.125, 37.5, 75 or 150 μ g/kg) of the α -conotoxin peptide mono-iodo-Tyr₁₂-MI.

14

[0037] Figure 5 shows onset and recovery time of neuromuscular block for different doses (125, 137.5 or 150 μ g/kg) of the α -conotoxin peptide di-iodo-Tyr₁₂-MI.

[0038] Figure 6 shows dose response curve for the α -conotoxin peptide mono-iodo-Tyr₁₂-MI.

[0039] Figure 7 shows dose response curve for the α-conotoxin peptide di-iodo-Tyr₁₂-MI.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

5

10

15

20

25

30

[0040] The invention relates to relatively short peptides (termed α -conotoxins herein), about 10-25 residues in length, which are naturally available in minute amounts in the venom of the cone snails or analogous to the naturally available peptides, and which preferably include two disulfide bonds. The α -conotoxins, as described herein, are useful for as neuromuscular blocking agents, such as muscle relaxants, for treating benign essential blepharospasm and other forms of focal dystonia and for anti-wrinkle use.

[0041] In one aspect, the present invention relates to a method for providing relaxation of muscle. The method involves administering to a patient an effective amount of an α-conotoxin peptide having the general formula set forth above. Exemplary methods involve administering to a patient an effective amount of MI, GI, EI, mono-iodo-MI (Tyr₁₂ of MI having an iodine) or diiodo-MI (Tyr₁₂ of MI having two iodines).

[0042] The present invention, in another aspect, relates to a pharmaceutical composition comprising an effective amount of an α -conotoxin peptide having the general formula set forth above. Such a pharmaceutical composition has the capability of acting as a neuromuscular non-depolarizing agent, and hence has the capability of acting as a muscle relaxant. Exemplary pharmaceutical compositions acting as neuromuscular non-depolarizing muscle relaxants include as an active ingredient MI, GI, EI, mono-iodo-MI or di-iodo-MI.

[0043] The α -conotoxin peptides described herein are sufficiently small to be chemically synthesized. General chemical syntheses for preparing the foregoing α -conotoxin peptides are described hereinafter. Various ones of the α -conotoxin peptides can also be obtained by isolation and purification from specific *Conus* species using the technique described in U.S. Patent No. 4,447,356 (Olivera et al., 1984), the disclosure of which is incorporated herein by reference.

[0044] Although the α -conotoxin peptides of the present invention can be obtained by purification from cone snails, because the amounts of α -conotoxin peptides obtainable from

15

individual snails are very small, the desired substantially pure α -conotoxin peptides are best practically obtained in commercially valuable amounts by chemical synthesis using solid-phase strategy. For example, the yield from a single cone snail may be about 10 micrograms or less of α -conotoxin peptide. By "substantially pure" is meant that the peptide is present in the substantial absence of other biological molecules of the same type; it is preferably present in an amount of at least about 85% purity and preferably at least about 95% purity. Chemical synthesis of biologically active α -conotoxin peptides depends of course upon correct determination of the amino acid sequence.

[0045] The α -conotoxin peptides can also be produced by recombinant DNA techniques well known in the art. Such techniques are described by Sambrook et al. (1989). The peptides produced in this manner are isolated, reduced if necessary, and oxidized to form the correct disulfide bonds.

10

15

20

25

30

[0046] One method of forming disulfide bonds in the conantokin peptides of the present invention is the air oxidation of the linear peptides for prolonged periods under cold room temperatures or at room temperature. This procedure results in the creation of a substantial amount of the bioactive, disulfide-linked peptides. The oxidized peptides are fractionated using reverse-phase high performance liquid chromatography (HPLC) or the like, to separate peptides having different linked configurations. Thereafter, either by comparing these fractions with the elution of the native material or by using a simple assay, the particular fraction having the correct linkage for maximum biological potency is easily determined. However, because of the dilution resulting from the presence of other fractions of less biopotency, a somewhat higher dosage may be required.

[0047] The peptides are synthesized by a suitable method, such as by exclusively solidphase techniques, by partial solid-phase techniques, by fragment condensation or by classical solution couplings.

[0048] In conventional solution phase peptide synthesis, the peptide chain can be prepared by a series of coupling reactions in which constituent amino acids are added to the growing peptide chain in the desired sequence. Use of various coupling reagents, e.g., dicyclohexylcarbodiimide or diisopropylcarbonyldimidazole, various active esters, e.g., esters of N-hydroxyphthalimide or N-hydroxy-succinimide, and the various cleavage reagents, to carry out reaction in solution, with subsequent isolation and purification of intermediates, is well known classical peptide methodology. Classical solution synthesis is described in detail in the treatise, "Methoden der Organischen Chemie (Houben-Weyl): Synthese von Peptiden," (1974). Techniques of exclusively solid-phase

synthesis are set forth in the textbook, "Solid-Phase Peptide Synthesis," (Stewart and Young, 1969), and are exemplified by the disclosure of U.S. Patent 4,105,603 (Vale et al., 1978). The fragment condensation method of synthesis is exemplified in U.S. Patent 3,972,859 (1976). Other available syntheses are exemplified by U.S. Patents No. 3,842,067 (1974) and 3,862,925 (1975). The synthesis of peptides containing γ -carboxyglutamic acid residues is exemplified by Rivier et al. (1987), Nishiuchi et al. (1993) and Zhou et al. (1996).

[0049] Common to such chemical syntheses is the protection of the labile side chain groups of the various amino acid moieties with suitable protecting groups which will prevent a chemical reaction from occurring at that site until the group is ultimately removed. Usually also common is the protection of an α -amino group on an amino acid or a fragment while that entity reacts at the carboxyl group, followed by the selective removal of the α -amino protecting group to allow subsequent reaction to take place at that location. Accordingly, it is common that, as a step in such a synthesis, an intermediate compound is produced which includes each of the amino acid residues located in its desired sequence in the peptide chain with appropriate side-chain protecting groups linked to various ones of the residues having labile side chains.

10

15

20

25

30

[0050] As far as the selection of a side chain amino protecting group is concerned, generally one is chosen which is not removed during deprotection of the α -amino groups during the synthesis. However, for some amino acids, e.g., His, protection is not generally necessary. In selecting a particular side chain protecting group to be used in the synthesis of the peptides, the following general rules are followed: (a) the protecting group preferably retains its protecting properties and is not split off under coupling conditions, (b) the protecting group should be stable under the reaction conditions selected for removing the α -amino protecting group at each step of the synthesis, and (c) the side chain protecting group must be removable, upon the completion of the synthesis containing the desired amino acid sequence, under reaction conditions that will not undesirably alter the peptide chain.

[0051] It should be possible to prepare many, or even all, of these peptides using recombinant DNA technology. However, when peptides are not so prepared, they are preferably prepared using the Merrifield solid-phase synthesis, although other equivalent chemical syntheses known in the art can also be used as previously mentioned. Solid-phase synthesis is commenced from the C-terminus of the peptide by coupling a protected α -amino acid to a suitable resin. Such a starting material can be prepared by attaching an α -amino-protected amino acid by an ester linkage

to a chloromethylated resin or a hydroxymethyl resin, or by an amide bond to a benzhydrylamine (BHA) resin or paramethylbenzhydrylamine (MBHA) resin. Preparation of the hydroxymethyl resin is described by Bodansky et al. (1966). Chloromethylated resins are commercially available from Bio Rad Laboratories (Richmond, CA) and from Lab. Systems, Inc. The preparation of such a resin is described by Stewart and Young (1969). BHA and MBHA resin supports are commercially available, and are generally used when the desired polypeptide being synthesized has an unsubstituted amide at the C-terminus. Thus, solid resin supports may be any of those known in the art, such as one having the formulae -O-CH₂-resin support, -NH BHA resin support, or -NH-MBHA resin support. When the unsubstituted amide is desired, use of a BHA or MBHA resin is preferred, because cleavage directly gives the amide. In case the N-methyl amide is desired, it can be generated from an N-methyl BHA resin. Should other substituted amides be desired, the teaching of U.S. Patent No. 4,569,967 (Kornreich et al., 1986) can be used, or should still other groups than the free acid be desired at the C-terminus, it may be preferable to synthesize the peptide using classical methods as set forth in the Houben-Weyl text (1974).

10

15

20

25

30

[0052] The C-terminal amino acid, protected by Boc or Fmoc and by a side-chain protecting group, if appropriate, can be first coupled to a chloromethylated resin according to the procedure set forth in K. Horiki et al. (1978), using KF in DMF at about 60°C for 24 hours with stirring, when a peptide having free acid at the C-terminus is to be synthesized. Following the coupling of the BOC-protected amino acid to the resin support, the α-amino protecting group is removed, as by using trifluoroacetic acid (TFA) in methylene chloride or TFA alone. The deprotection is carried out at a temperature between about 0°C and room temperature. Other standard cleaving reagents, such as HCl in dioxane, and conditions for removal of specific α-amino protecting groups may be used as described in Schroder & Lubke (1965).

[0053] After removal of the α -amino-protecting group, the remaining α -amino- and side chain-protected amino acids are coupled step-wise in the desired order to obtain the intermediate compound defined hereinbefore, or as an alternative to adding each amino acid separately in the synthesis, some of them may be coupled to one another prior to addition to the solid phase reactor. Selection of an appropriate coupling reagent is within the skill of the art. Particularly suitable as a coupling reagent is N,N'-dicyclohexylcarbodiimide (DCC, DIC, HBTU, HATU, TBTU in the presence of HoBt or HoAt).

[0054] The activating reagents used in the solid phase synthesis of the peptides are well known in the peptide art. Examples of suitable activating reagents are carbodiimides, such as N,N'-

diisopropylcarbodiimide and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide. Other activating reagents and their use in peptide coupling are described by Schroder & Lubke (1965) and Kapoor (1970).

[0055] Each protected amino acid or amino acid sequence is introduced into the solid-phase reactor in about a twofold or more excess, and the coupling may be carried out in a medium of dimethylformamide (DMF):CH₂Cl₂ (1:1) or in DMF or CH₂Cl₂ alone. In cases where intermediate coupling occurs, the coupling procedure is repeated before removal of the α-amino protecting group prior to the coupling of the next amino acid. The success of the coupling reaction at each stage of the synthesis, if performed manually, is preferably monitored by the ninhydrin reaction, as described by Kaiser et al. (1970). Coupling reactions can be performed automatically, as on a Beckman 990 automatic synthesizer, using a program such as that reported in Rivier et al. (1978).

5

10

15

20

25

30

[0056] After the desired amino acid sequence has been completed, the intermediate peptide can be removed from the resin support by treatment with a reagent, such as liquid hydrogen fluoride or TFA (if using Fmoc chemistry), which not only cleaves the peptide from the resin but also cleaves all remaining side chain protecting groups and also the α -amino protecting group at the N-terminus if it was not previously removed to obtain the peptide in the form of the free acid. If Met is present in the sequence, the Boc protecting group is preferably first removed using trifluoroacetic acid (TFA)/ethanedithiol prior to cleaving the peptide from the resin with HF to eliminate potential S-alkylation. When using hydrogen fluoride or TFA for cleaving, one or more scavengers such as anisole, cresol, dimethyl sulfide and methylethyl sulfide are included in the reaction vessel.

[0057] Cyclization of the linear peptide is preferably affected, as opposed to cyclizing the peptide while a part of the peptido-resin, to create bonds between Cys residues. To effect such a disulfide cyclizing linkage, fully protected peptide can be cleaved from a hydroxymethylated resin or a chloromethylated resin support by ammonolysis, as is well known in the art, to yield the fully protected amide intermediate, which is thereafter suitably cyclized and deprotected. Alternatively, deprotection, as well as cleavage of the peptide from the above resins or a benzhydrylamine (BHA) resin or a methylbenzhydrylamine (MBHA), can take place at 0°C with hydrofluoric acid (HF) or TFA, followed by oxidation as described above.

[0058] The peptides are also synthesized using an automatic synthesizer. Amino acids are sequentially coupled to an MBHA Rink resin (typically 100 mg of resin) beginning at the C-terminus using an Advanced Chemtech 357 Automatic Peptide Synthesizer. Couplings are carried out using 1,3-diisopropylcarbodimide in N-methylpyrrolidinone (NMP) or by 2-(1H-benzotriazole-

1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and diethylisopro- pylethylamine (DIEA). The FMOC protecting group is removed by treatment with a 20% solution of piperidine in dimethylformamide(DMF). Resins are subsequently washed with DMF (twice), followed by methanol and NMP.

5

10

15

20

25

30

[0059] The compounds described herein are used as neurmuscular blocking agents in conjunction with surgery or for intubation of the trachea by conventional parenteral administration e.g., intramuscular or intravenous administration in solution. Thus, the present invention relates to a method for treating a patient during surgical procedures requiring anesthesia and musculoskeletal relaxation. In particular, the method comprises administering to the patient an amount of a compound effective for providing relaxation of muscle. The method involves administering an effective amount of a compound selected from the general formulae which are set forth hereinbefore. The present invention relates to a pharmaceutical composition incorporating a compound described herein or its pharmaceutically acceptable salts.

[0060] The manner in which the compounds are administered can vary. Although it is possible to administer the compound in the form of a bulk active chemical, it is preferred to present the compound in the form of a pharmaceutical composition or formulation for parenteral administration. Pharmaceutical compositions containing a compound of the present invention as the active ingredient can be prepared according to conventional pharmaceutical compounding techniques. See, for example, *Remington's Pharmaceutical Sciences*, 18th Ed. (1990, Mack Publishing Co., Easton, PA). Typically, an amount of active ingredient effective to provide muscle relaxation will be admixed with a pharmaceutically acceptable carrier.

[0061] The pharmaceutical composition also can include various other components as additives or adjuncts. Exemplary pharmaceutically acceptable components or adjuncts include anesthetics, preservatives, antioxidants, bacteriostatic agents, buffering agents, analgesics, anti-inflammatory agents, anti-pyretics, stabilizing agents, thickening agents and suspending agents. Such components can provide additional therapeutic benefit, or act towards preventing any potential side effects which may be posed as a result of administration of the pharmaceutical composition.

[0062] Typically, the pharmaceutical composition is administered as an aqueous or non-aqueous solution, as a suspension, or as an emulsion in a pharmaceutically acceptable liquid or mixture of liquids. The compound within the pharmaceutical composition is administered internally by injection or intravenously. For example, the pharmaceutical composition can be administered intravenously as an infusion (e.g., within aqueous dextrose or saline solutions).

20

[0063] Exemplary methods for administering such muscle relaxant compounds (e.g., so as to achieve sterile or aseptic conditions) will be apparent to the skilled artisan. Certain methods suitable for administering compounds useful according to the present invention are set forth in Goodman and Gilman's *The Pharmacological Basis of Therapeutics*, 7th Ed. (1985). The administration to the patient can be intermittent; or at a gradual, continuous, constant or controlled rate. Administration can be to a warm-blooded animal (e.g. a mammal, such as a mouse, rat, cat, rabbit, dog, pig, cow or monkey); but advantageously is administered to a human being. Administration occurs after general anesthesia is administered. The frequency of administration normally is determined by an anesthesiologist, and typically varies from patient to patient.

5

10

15

20

25

30

[0064] The dose of the compound is that amount effective to provide a desired effect for a desired time frame. By "effective amount" or "effective dose" is meant that amount parenterally administered (e.g., injected intravenously) sufficient to bind to relevant receptor sites on the musculoskeletal fiber of the patient, and to elicit neuropharmacological effects (e.g., elicit brief depolarization, thus resulting in effective short duration relaxation of skeletal muscle). Short duration typically ranges from about 5 to about 60 minutes.

[0065] An effective amount of the compound administered to a patient provides rapid onset and short-lived muscle relaxation. For adult human patients undergoing short surgical procedures, the effective dose of typical compounds injected intravenously generally is from about 0.001 mg/kg to about 0.8 mg/kg body weight, preferably from about 0.05 mg/kg to about 0.5 mg/kg, and more preferably from about 0.05 mg/kg to about 0.3 mg/kg. Following administration of typical compounds in such a concentration range, the onset of paralysis normally develops within 1 to 2 minutes, and is reversible (i.e., muscle tone returns within a short period of time). The compounds of this invention would normally be readministered every 15 to 30 minutes after initial administration or given as a slow continuous infusion depending upon the length of time a muscular block is desired, and as determined by the anesthetist and surgeon in charge of the patient. For adult human patients undergoing long surgical procedures, the effective dose of typical compounds is administered through continuous or intermittent intravenous perfusion at a rate from about 0.001 mg/min to about 0.8 mg/min, preferably from about 0.01 mg/min to about 0.5 mg/min, and more preferably from about 0.01 to about 0.25 mg/min. Following administration of typical compounds in the specified amounts, the onset of paralysis typically develops within 1 to 2 minutes and persists for the duration of the superfusion.

5

10

15

20

25

[0066] For human patients in the pediatric population undergoing short surgical procedures, the effective dose of typical compounds injected intravenously generally is from about 0.001 mg/kg to about 0.5 mg/kg body weight, preferably from about 0.01 mg/kg to about 0.4 mg/kg, and more preferably from about 0.01 mg/kg to about 0.25 mg/kg. Following administration of typical compounds in such a concentration range, the onset of paralysis normally develops within 1 to 2 minutes, and persists for a short period of time before recovery is achieved. For infants and children undergoing long surgical procedures, the effective dose of typical compounds is administered through continuous or intermittent intravenous perfusion at a rate from about 0.001 mg/min to about 0.5 mg/min, preferably from about 0.005 mg/min to about 0.3 mg/ min, and more preferably from about 0.005 mg/min to about 0.2 mg/min. The total amount of drug administered using such a parenteral route of administration generally does not exceed a total of 10 mg, often does not exceed 5 mg and frequently does not exceed 2 mg. Following administration of typical compounds in the specified amounts, the onset of paralysis typically develops within 1 to 2 minutes and persists for the duration of the superfusion.

[0067] Such formulations are normally presented in unit dosage forms such as ampoules or disposable injection devices, or in multidose forms such as a bottle from which the appropriate dose may be withdrawn. All such formulations should be rendered sterile.

[0068] The compounds of this invention may be presented as a powder e.g., as a unit dose in a sealed vial to which sterile water may be added by a needle, e.g., through a seal thereof (such as rubber). A suitable unit dose to obtain a neuromuscular block for mammals is about 1 mg to 100 mg and most preferably 3 to 50 mg. Thus a suitable pharmaceutical parenteral preparation will preferably contain 20 to 100 mg of the compounds described herein in solution. A pharmaceutical formulation may conventional contain 5 to 400 mg, or 10 to 400 mg, and most preferably 5 to 200 mg of the compounds of this invention. A simple and preferred formulation is a solution of a compound described herein in water which may be prepared by simply dissolving the compound into previously sterilized pure, i. e., pyrogen free water under aseptic conditions and sterilizing the solution. The compounds described herein may also be administered as an infusion of a dextrose solution or a saline solution e.g., Ringers' Solution.

30 <u>EXAMPLES</u>

[0069] The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner.

22

Standard techniques well known in the art or the techniques specifically described below were utilized.

EXAMPLE 1

Dose-Effect Study for MI and GI

5

10

15

20

25

30

[0070] This study was an open label, dose-ranging, single center investigation. A total of 14 rats were studied (10 in each of five groups). All animals were anesthetized with pentobarbital (60 mg/kg) given by intraperitoneal administration and maintained with supplemental doses as determined by physiological monitoring variables. A tracheotomy was performed and the rats were ventilated with room air keeping P_{CO2} near 35 torr. The carotid artery was cannulated to measure blood pressure and arterial blood gases. The right jugular vein was cannulated for intravenous infusion and further drug administration. Body temperature was maintained at 36°-38° C during the entire experiment. The sciatic nerve was exposed in the popliteal space and stimulated with train-of-four stimulation using a Digistim nerve stimulator. The tivialis anterior muscle contractoin was measured by attaching the rat hind limb to an isometric force transducer to record the evoked response. Prior to administration of the study drug, baseline measurements of blood pressure, heart rate and muscle contraction force were measured for a five-minute period and at five minute intervals for the duration of the study.

[0071] The initial dose for analysis was based on biologically effective doses determined in mice. Based on the onset, maximum effect and duration of effect from the first animal studied, the dose for the next animal was either doubled or halved. If the relaxation level was maintained at a maximal level for greater than 20 minutes from this initial dose, then the subsequent dose studied was doubled. this progression continued until the dose that produced near maximal muscle relaxation was found.

[0072] The conopeptide derivatives MI and GI were studied in the initial study. For each compound studied, the onset of muacle relaxation, duration of relaxation and an estimate of the ED_{50} was determined from evoked force transducer response. Onset of relaxation is defined as the time for the evoked response to diminish to 5% of pre-drug baseline. In addition, clinical duration, defined as the time from the administration of drug until the evoked muscle response returns to 25% of its pre-drug baseline, and recovery time, defined as the time until evoked response returns to 75% of baseline, were also determined. Data were summarized for each compound.

[0073] The onset and recovery results for both MI and GI are shown in Figures 1 and 2, respectively. MI had a shortest onset of 1.46 minutes. The onset time increased with decreasting dose size as is typical for may neuromuscular blocking agents. The recovery time to 25% and 75% of baseline occurred in approximately 8 and 12 minutes, respectively. These recovery times were constant for doses over 100 µg/kg, which implies that recovery of thge drug effects is very rapid and not easily saturated in its capacity. Anesthetic drugs that behave in similar fashion tend to be degraded by chemical or enzymatic processes in the body rather than by metabolic organ transformation.

[0074] GI had a shorter onset time of just under 1 minute. The time for 25% and 75% recovery of baseline was in the range of 8 and 15 minutes, respectively. As with MI, increasing the dose tended to shorten the onset time without extending the recovery times dramatically. For GI, the onset time was similar to that seen with succinylcholine. The recovery times for both agents were similar to succinylcholine.

10

15

[0075] A comparison of these results to onset and recovery times for other clinically available neuromuscular blocking agents is shown in Table 1.

TABLE 1

Comparison of Neuromuscular Blocking Agents

	Agent	Onset Time	Recov	very (min)
20	(mg/kg)	(sec)	<u>25%</u>	<u>75%</u>
	MI	90	8	12
	(0.15)			
	GI	60-70	6-8	10-15
	(0.2)			
25	Sux	60	5-7	10
	(1.0)			
	Org 9847	80	8	15
	(1.5)			
	Rocuronium	80	40	60
30	(0.6)			
	Mivacurium	150	20	27
	(0.2)			-
	Vecuronium	120-180	40	60
	(0.1)	- 1	· -	
35	Cisatracurium	120-180	45	60-70
	(0.1)			33.3

24

[0076] For doses of these agents which produced less than maximum levels of neuromuscular block, dose-response plots can be determined to estimate the ED₅₀ dose of these agents. In this context, ED₅₀ refers to the dose of agent which is expected to produce half of the maximum relaxation level. The data of this initial study (Figure 3) shows that GI is less potent than MI as reflected in the lower ED₅₀ value for MI (~80 μ g/kg for MI compared to ~120 μ g/kg for GI).

[0077] These results show that α -conotoxin peptides are biologically active at the neuromuscular junction producing skeletal muscle paralysis that mimics the repsonse seen with non-depolarizing neuromuscular blocking agents given during anesthesia. The onset and duration of relaxation is rapid and short which is highly desirable for a number of clinical reasons. In this regard, with the rapid onset time, short duration and no prolongation of drug effect with large doses, the clinical benefit of the α -conotoxin peptides exceeds the currently available non-depolarizing neuromuscular blocking agents. In addition to their desirable effect profile, the α -conotoxin peptides appear to have no significant cardiovascular effects on administration. Thus, the desirable effect profile with minimal side effects are desirable clinical properties for the α -conotoxin peptides.

EXAMPLE 2

Dose-Effect Study for Iodinated-MI

[0078] A similar study as described in Example 1 was conducted for two iodinated derivatives of MI, namely, mono-iodo- Tyr_{12} -MI and di-iodo- Tyr_{12} -MI. The onset and recovery results for mono-iodo- Tyr_{12} -MI and di-iodo- Tyr_{12} -MI are shown in Figures 4 and 5, respectively. Dose-response plots for mono-iodo- Tyr_{12} -MI and di-iodo- Tyr_{12} -MI were made to estimate the ED₅₀ dose of these agents. The ED₅₀ values are ~16 μ g/kg for mono-iodo- Tyr_{12} -MI and ~92.5 μ g/kg for di-iodo- Tyr_{12} -MI.

25

30

20

5

10

15

EXAMPLE 3

Muscle Relaxant Effect in Anesthetized Monkeys

[0079] The peptides MI, GI, EI, mono-iodo-MI and di-iodo-MI are each separately dissolved 0.9 percent saline at a concentration of 2 mg/ml. Rhesus monkeys are anesthetized with halothane, nitrous oxide and oxygen. The maintenance concentration of halothane is 1.0%. Arterial and venous catheters are placed in the femoral vessels for drug administration and recording of the

arterial pressure. Controlled ventilation is accomplished via an endotrachael tube. Twitch and tetanic contractions of the tibialis arterior muscle are elicited indirectly via the sciatic nerve. Recordings of arterial pressure electrocardiogram (lead I), heart rate, and muscle function are made simultaneously. Four to six animals received each listed compound. Four additional animals received succinylcholine chloride or d-tubocurarine chloride as controls. Is is seen that the tested compounds generally provide similar or better results than those seen for succinylcholine chloride or d-tubocurarine chloride.

EXAMPLE 4

10

15

20

5

Isolation of DNA Encoding α-Conotoxins

[0080] DNA coding for α -conotoxins was isolated and cloned in accordance with conventional techniques using general procedures well known in the art, such as described in Olivera et al. (1996). Alternatively, cDNA libraries was prepared from *Conus* venom duct using conventional techniques. DNA from single clones was amplified by conventional techniques using primers which correspond approximately to the M13 universal priming site and the M13 reverse universal priming site. Clones having a size of approximately 300 nucleotides were sequenced and screened for similarity in sequence to known α -conotoxins. The DNA sequences and encoded propeptide or peptide sequences are set forth in Tables 2-38. It was discovered that the following mature α -conotoxin peptides had the same sequence: (a) R1.4, A1.1, Bt1.6, Cn1.1 and MnI; and (b) Sm1.1 and Cr1.1.

TABLE 2

	DN	VA S	equer	ice (S	EQ I	D N	J:28)	and	Prote	an Se	quen	ice (S	EQI	א ע	J:29)	or Gr	
25	atg Met	ttc Phe	acc Thr	gtg Val	ttt Phe	ctg Leu	ttg Leu	gtg Val	gtc Val	ttg Leu	gca Ala	acc Thr	act Thr	gtc Val	gtt Val	tcc Ser	
	ttc Phe	cct Pro	tca Ser	gaa Glu	cgt Arg	gca Ala	tct Ser	gat Asp	ggc Gly	agg Arg	gat Asp	gac Asp	aca Thr	gcc Ala	aaa Lys	gac Asp	
30	gaa Glu	GJ A aaa	tct Ser	gac Asp	atg Met	gag Glu	aaa Lys	ttg Leu	gtc Val	gag Glu	aaa Lys	aaa Lys	gaa Glu	tgt Cys	tgc Cys	aat Asn	
35	cct Pro	gcc Ala	tgt Cys	ggc Gly	aga Arg	cac His	tac Tyr	agt Ser	tgt Cys	gga Gly	cgc Arg	tgat	tgct	cca ·	ggac	cctctg	
	gaa ttt	ctga agat	aca tgc	gctc	gatc aatt	ca co	taga agtc	ctac atac	c ac	gtta ctgt	cctc tatt	cgt:	gttc tcgt	taa cca	aacta aaati	ccacta acttgg tgaạac ctccga	
4 ∩	+00	atcc	usa 	aact	atca	cc c	atca	ctct	c tt	aacc	aott	tta	gaac	tqa	ttac	cactad	

26

ttgagaaaaa aagctcaaaa tgtgggaagt gcttttgatt ttctgacaac ttgtgatcat gtccgttttc agtgagtcta attgcaacct ctgtgtgatt ttcttcacct gttaagcaac gcaaagaggt tgtccataac caggaaagca acagacaaag aaatgcttga gaatttcagg 5 ttatagataa ggtaaggaaa aaaaggagag ctatgggaaa tgatgaaaac aacagataaa ataaattgaa cagtacctac ttgtttcatg gttgattttt ttttctctga ataatctctg tggacactaa tggcagtctc tcctcacccc acgccattag taagcttatt ttttctttct ttatccaaga tttgctgaac atatttagcc tagatataga cattgctaca tatataatct gacaataaac tttcatgggc accaatt 10 . TABLE 3 DNA Sequence (SEQ ID NO:30) and Protein Sequence (SEQ ID NO:31) of SIB atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser 15 ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp 20 gaa agg tet gac atg cac gaa teg gac egg aaa gaa ate tgt tge aat Glu Arg Ser Asp Met His Glu Ser Asp Arg Lys Glu Ile Cys Cys Asn cct gcc tgt ggc cca aag tat agt tgt gga cgc tgatgctcca ggaccctctg Pro Ala Cys Gly Pro Lys Tyr Ser Cys Gly Arg 25 aacc TABLE 4 DNA Sequence (SEQ ID NO:32) and Protein Sequence (SEQ ID NO:33) of R1 30 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca atc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Ile Thr Val Val Ser tto cot toa gat ogt goa tot gat ggc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp 35 gaa agg tot gac atg tac aaa tog aaa cgg aat gga cgc tgt tgc cat Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His cet gee tgt gge aaa cae ttt agt tgt gga ege tgatgeteea ggaceetetg 40 Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg aaccacgacg t 45 TABLE 5 DNA Sequence (SEQ ID NO:34) and Protein Sequence (SEQ ID NO:35) of R1.3 atg ttc acc gtg ttt ctg ttg gtg gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser ttc cct tca gaa cgt gca tct gat ggc agg gat gac aca gcc aaa gac 50 Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp gaa ggg tct gac atg gag aaa ttg gtc gag aaa aaa gaa tgt tgc aat Glu Gly Ser Asp Met Glu Lys Leu Val Glu Lys Lys Glu Cys Cys Asn 55 cct gcc tgt ggc aga cac tac agt tgt aag gga ggacgctgat gctccagacc

Pro Ala Cys Gly Arg His Tyr Ser Cys Lys Gly

27

ctctgaacca cgacgt

5	TABLE 6														
	DNA Sequence (SEQ ID NO:36) and Protein Sequence (SEQ ID NO:37) of R1.4														
	atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca atc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Ile Thr Val Val Ser														
10	ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp														
15	gaa agg tct gac atg tac aaa tcg aaa cgg aat gga cgc tgt tgc cat Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His														
13	cct gcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgctcca ggaccctctg Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg	ſ													
20	aaccacgacg t														
20	TABLE 7														
	DNA Sequence (SEQ ID NO:28) and Protein Sequence (SEQ ID NO:39) of Sm1.1														
25	atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser														
23	ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp														
30	gaa agg tot gac atg cac gaa tog ggc cgg aaa gga cgc gga cgc tgt Glu Arg Ser Asp Met His Glu Ser Gly Arg Lys Gly Arg Gly Arg Cys														
	tgc cat cct gcc tgt ggc cca aac tat agt tgt ggacgctgat gctccaggac Cys His Pro Ala Cys Gly Pro Asn Tyr Ser Cys	3													
35	cctctgaacc acgacgt														
	TABLE 8														
40	DNA Sequence (SEQ ID NO:40) and Protein Sequence (SEQ ID NO:41) of SIL	A													
40	atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser														
45	ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp														
	gaa agg tot gac atg cac gaa tog gac ogg aat gga ogc gga tgo tgt Glu Arg Ser Asp Met His Glu Ser Asp Arg Asn Gly Arg Gly Cys Cys														
50	tgc aat cet gcc tgt ggc cca aac tat ggt tgt ggc acc tca tgc tcc Cys Asn Pro Ala Cys Gly Pro Asn Tyr Gly Cys Gly Thr Ser Cys Ser														
	agg acc ctc tgaaccacga cgttcgagca Arg Thr Leu														

55

28

TABLE 9 DNA Sequence (SEQ ID NO:42) and Protein Sequence (SEQ ID NO:43) of S11 tgt tgc cat cct gcc tgt ggc aga aag tat aat tgt gga cgc tga Cys Cys His Pro Ala Cys Gly Arg Lys Tyr Asn Cys Gly Arg 5 TABLE 10 DNA Sequence (SEQ ID NO:44) and Protein Sequence (SEQ ID NO:45) of S2 tgc tgt tgc aat cct gcc tgt ggc cca aac tat ggt tgt ggc acc tca 10 Cys Cys Cys Asn Pro Ala Cys Gly Pro Asn Tyr Gly Cys Gly Thr Ser tgc tcc aga ccc tct gaa cca cga cgt tag Cys Ser Arg Pro Ser Glu Pro Arg Arg TABLE 11 15 DNA Sequence (SEQ ID NO:46) and Protein Sequence (SEQ ID NO:47) of GIB atg ttc acc gtg ttt ctg ttg gtg gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser 20 ttc cct tca gaa cgt gca tct gat ggc agg gat gac aca gcc aaa gac Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp qua qqq tot gac atg gag aaa ttg gtc gag aaa aaa gaa tgt tgc aat Glu Gly Ser Asp Met Glu Lys Leu Val Glu Lys Lys Glu Cys Cys Asn 25 cct qcc tgt ggc aga cac tac agt tgt aag gga ggacgctgat gctccaggac Pro Ala Cys Gly Arg His Tyr Ser Cys Lys Gly cctctgaacc acggacgtgc cgccctctgc ctgacctgct tcactgtccg tctctttgtg 30 ccactagaac tgaacagete gatecaetag actaceaegt taceteegtg ttetaaaact acttggttta gattgccttt aatttctagt catacttcct gttattacgt cgtccaaaat tgaaacaaga acatgagggg tgtcagctca aacaaaatca ggcaatgaca aggaaaatgt ctccqatcqa tccqaaaact gtcacccqtc actctcttaa ccagttttag aactgattac cactagaget tttgtaccac atcaaatcag gtetatgtgt gatgtttett ttgcaaaatt 35 taatttttga gaaaaaaagc tcaaaatgtg ggaagtgctt ttgattttct gacaacttgt gatcatgtcc gttttcagtg agtctaattg caacctctgt gtgattttct tcacctgtta agcaacgcaa agaggttgtc cataaccagg aaagcaacag acaaagaaat gcttgagaat ttcaggttat agataaggta aggaaaaaaa ggagagctat gggaaatgat gaaaacaaca gataaaataa attgaacagt acctacttgt ttcatggttg atttttttt ctctgaataa 40 tototgtgga cactaatggc agtototoot caccocacgc cattagtaag ottattttt ctttctttat ccaagatttg ctgaacatat ttagcctaga tatagacatt gctacatata taatctgaca ataaactttc atgggcacca att TABLE 12 DNA Sequence (SEQ ID NO:48) and Protein Sequence (SEQ ID NO:49) of MnII 45 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser ttc cct tca gat agt gca tct ggt ggc agg gat gac gag gcc aaa gac 50 Phe Pro Ser Asp Ser Ala Ser Gly Gly Arg Asp Asp Glu Ala Lys Asp

> gaa agg tot gac atg tac gaa ttg aaa cgg aat gga cac tgt tgc cat Glu Arg Ser Asp Met Tyr Glu Leu Lys Arg Asn Gly His Cys Cys His

29

cct gcc tgt ggt ggc aaa tac gtt aaa tgt gga cgc tgatgctcca Pro Ala Cys Gly Gly Lys Tyr Val Lys Cys Gly Arg 5 qqaccctctc qaaccacg **TABLE 13** DNA Sequence (SEQ ID NO:50) and Protein Sequence (SEQ ID NO:51) of A1.2 10 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser ttc cct tca gat agt gca tct ggt ggc agg gat gac gag gcc aaa gac Phe Pro Ser Asp Ser Ala Ser Gly Gly Arg Asp Asp Glu Ala Lys Asp 15 gaa agg tot gac atg tac gaa ttg aaa cgg aat gga cgc tgt tgc cat Glu Arg Ser Asp Met Tyr Glu Leu Lys Arg Asn Gly Arg Cys Cys His cct gcc tgt ggt ggc aaa tac gtt aaa tgt gga cgc tgatgctcca 20 Pro Ala Cys Gly Gly Lys Tyr Val Lys Cys Gly Arg ggaccctctc gaaccacg TABLE 14 25 DNA Sequence (SEQ ID NO:52) and Protein Sequence (SEQ ID NO:53) of A1.1 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca aca act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser 30 tac cct tca gat agt gca tct gat ggc agg gat gac gaa gcc aaa gac Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp gaa agg tot gac atg tac aaa tog aaa ogg aat gga ogc tgt tgc cat Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His 35 cct qcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgetcca ggaccetetg Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg aaccacgacg t 40 TABLE 15 DNA Sequence (SEQ ID NO:54) and Protein Sequence (SEQ ID NO:55) of Bt1.6 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser 45 tac cct tca gat agt gca tct gat ggc agg gat gac gaa acc aaa gac Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Thr Lys Asp 50 gaa aag tot gac atg tac aaa tog aaa ogg aat gga ogc tgt tgc cat Glu Lys Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His cct gcc tgt ggc aaa cac ttt aqt tqt gga cgc tgatgctgca qqaccctctq Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg 55

aaccacgacg t

30

TABLE 16

DNA Sequence (SEQ ID NO:56) and Protein Sequence (SEQ ID NO:57) of Cn1.1 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser 5 ttc cct tca gat agt gca tct gat gtc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Ser Ala Ser Asp Val Arg Asp Asp Glu Ala Lys Asp gaa agg tot gac atg tac aaa tog aaa ogg aat gga ogc tgt tgc cat 10 Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His cct gcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgctcca ggaccctctg Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg 15 aaccacgacg t **TABLE 17** DNA Sequence (SEQ ID NO:58) and Protein Sequence (SEQ ID NO:59) of MnI atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca aca act gtc gtt tcc 20 Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser tac cct tca gat agt gca tct gat ggc agg gat gac gaa gcc aaa gac Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp 25 gaa agg tot gac atg tac aaa tog aaa ogg aat gga ogc tgt tgc cat Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His cct gcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgctcca ggaccctctg 30 Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg aaccacgacg t TABLE 18 DNA Sequence (SEO ID NO:60) and Protein Sequence (SEQ ID NO:61) of Cr1.1 35 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca gcc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Ala Thr Val Val Ser tto cot toa gat ogt goa tot gat ggo agg gat gac gaa goo aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp 40 gaa aga tot gac atg cac gaa tog gac ogg aaa gga ogc gga ogc tgt Glu Arg Ser Asp Met His Glu Ser Asp Arg Lys Gly Arg Gly Arg Cys tgc cat cct gcc tgt ggc cca aat tat agt tgt gga cgc tgatgctcca 45 Cys His Pro Ala Cys Gly Pro Asn Tyr Ser Cys Gly Arg ggaccetetg aaccaegaeg TABLE 19 50 DNA Sequence (SEQ ID NO:62) and Protein Sequence (SEQ ID NO:63) of R1.2

> atg ttc acc gtg ttt ctg ttg gtg gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser

31

	ttc Phe	cct Pro	tca Ser	gaa Glu	cgt Arg	gca Ala	tct Ser	gat Asp	ggc Gly	agg Arg	gat Asp	gac Asp	aca Thr	gcc Ala	aaa Lys	gac Asp
5	gaa Glu	GJ A aaa	tct Ser	gac Asp	atg Met	gac Asp	aaa Lys	ttg Leu	gtc Val	gag Glu	aaa Lys	aaa Lys	gaa Glu	tgt Cys	tgc Cys	cat His
10	cct Pro	gcc Ala	tgt Cys	GJ y ggc	aaa Lys	cac His	ttc Phe	agt Ser	tgt Cys	gga Gly	cgc Arg	tgat	gato	cca g	ggaco	ctctg
	aaco	cacga	acg t	:												
								TAI	BLE :	<u>20</u>						
	DN	A Sec	quenc	e (SI	EQ.II	OM O	:64)	and F	rotei	n Sec	quenc	e (SI	EQII	OM	:65)	of A1.3
15	tct Ser	gat Asp	ggc Gly	agg Arg	gat Asp	gac Asp	gaa Glu	gcc Ala	aaa Lys	gac Asp	gaa Glu	agg Arg	tct Ser	gac Asp	atg Met	tac Tyr
20	aaa Lys	tcg Ser	aaa Lys	cgg Arg	aat Asn	gga Gly	cgc Arg	tgt Cys	tgc Cys	cac His	cct Pro	gcc Ala	tgt Cys	ggc Gly	aaa Lys	cac His
		att Ile				tga										
	TABLE 21															
25	DN	A Sec	quenc	e (SI	EQ II	ON C	:66)	and I	rotei	n Sec	quenc	e (SI	EQ II	ONO	:67)	of A1.7
	tct Ser	ggt Gly	ggc Gly	agg Arg	gat, Asp	gac Asp	gaa Glu	gcc Ala	aaa Lys	gac Asp	gaa Glu	agg Arg	tct Ser	gac Asp	atg Met	tac Tyr
30	gaa Glu	tcg Ser	gac Asp	cgg Arg	aat Asn	gga Gly	cgc Arg	tgt Cys	tgc Cys	cat His	cct Pro	gcc Ala	tgt Cys	ggc Gly	aaa Lys	cac His
		agt Ser				tga										
35																
									BLE							
			_		-						_		-		•	of A1.8
40	Ser	gat Asp	ggc	agg Arg	gat Asp	gac Asp	gaa Glu	gcc Ala	aaa Lys	gac Asp	aaa Lys	agg Arg	tct Ser	gac Asp	atg Met	tac Tyr
		tcg Ser														
45	tat Tyr	aat Asn	tgt Cys	gga Gly	cgc Arg	tga										
,								ጥ ለ	מ זם	22						
	י זאכן	\ Sac	e===	م (وت	T	רוא ו	.70\		BLE rote:			~ (GT	70 IF	י אני	.71\ -	√£ Λ1 1
50											_	•	_			of Ay1.1 g gac
		5~C9	, ·	2234	-940	ga a	50001	-ugu	- ya	uuyy	coug	aca	cyca			r Asp
	cgg Arg	aat Asn	gga Gly	cgc Arg	tgt Cys	tgc Cys	cat His	cct Pro	gcc Ala	tgt Cys	gcg Ala	aga Arg	aag Lys	tat Tyr	aat Asn	tgt Cys

32

gga cgc tgatgctcca ggaccctctg aaccacgacg t Gly Arg

5 TABLE 24 DNA Sequence (SEQ ID NO:72) and Protein Sequence (SEQ ID NO:73) of Ay1.1a tctgatggca gggatgacga agccaaagac gaaaggtctg acatgtac gaa tcg gag 10 cgg aat gaa cgc tgt tgc cat cct gcc tgt gcg aga aag tat aat tgt Arg Asn Glu Arg Cys Cys His Pro Ala Cys Ala Arg Lys Tyr Asn Cys gga cgc tgatgctcca ggaccctctg aaccacgacg t Gly Arg 15 TABLE 25 DNA Sequence (SEQ ID NO:74) and Protein Sequence (SEQ ID NO:75) of M1.1 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser 20 ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp gaa agg tet gac atg tac gaa teg aaa egg gat gga ege tgt tge cat 25 Glu Arg Ser Asp Met Tyr Glu Ser Lys Arg Asp Gly Arg Cys Cys His cct gcc tgt ggg caa aac tat agt tgt gga cgc tgatgeteca ggaccetetg Pro Ala Cys Gly Gln Asn Tyr Ser Cys Gly Arg 30 aaccacgacg t TABLE 26 DNA Sequence (SEQ ID NO:76) and Protein Sequence (SEQ ID NO:77) of M1.3 35 tct gat ggc agg gat gac gaa gcc aaa gac gaa agg cct gac atg tac Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Pro Asp Met Tyr aaa tog aaa ogg gat gga ogo tgt tgo cat oot goo tgt gog aaa cac Lys Ser Lys Arg Asp Gly Arg Cys Cys His Pro Ala Cys Ala Lys His 40 ttt aat tgt gga cgc tgatgctcca ggaccctctg aaccacgacg t Phe Asn Cys Gly Arg 45 TABLE 27 DNA Sequence (SEO ID NO:78) and Protein Sequence (SEO ID NO:79) of M1.4 tet gat gge agg gat gae gaa gee aaa gae gaa agg tet gae atg tae Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr 50 gaa tog aaa ogg aat gga ogo tgt tgo cat oot goo tgt gog aaa aac Glu Ser Lys Arg Asn Gly Arg Cys Cys His Pro Ala Cys Ala Lys Asn tat agt tgt gga cgc tgatgctcca ggaccctctg aaccacgacg t

Tyr Ser Cys Gly Arg

33

	<u>TABLE 28</u>															
	DNA	\ Seg	uenc	e (SE	QI	NO	:80) a				uenc	e (SE	QID	NO:	:81) d	of M1.5
5 .							gaa Glu									
							cgc Arg									
10			tgt Cys			tgat	gcto	ca g	gaco	cctct	g aa	ccac	gacç	, t		
	<u>TABLE 29</u>															
15	DNA	A Sec	nuenc	e (SI	O II	ON C	:82) :				uenc	e (SE	ю п) NO	:83)	of O1.3
			-	•	•		gccaa				_	٠.	-			
20	aag Lys	aaa Lys	aaa Lys	caa Gln	tgt Cys	tgc Cys	aat Asn	cct Pro	gcc Ala	tgt Cys	Gly ggc	cca Pro	aag Lys	tat Tyr	agt Ser	tgt Cys
	gga Gly		tgat	gete	cca ç	ggaco	cctct	g aa	ccac	cgac	y t					
25								TAI	BLE :	30						,
	TABLE 30 DNA Sequence (SEQ ID NO:84) and Protein Sequence (SEQ ID NO:85) of S1.3															
20							gaa Glu									
30	gaa Glu	tcg Ser	gac Asp	cgg Arg	aaa Lys	gga Gly	cgc Arg	gca Ala	tac Tyr	tgt Cys	tgc Cys	cat His	cct Pro	gcc Ala	tgt Cys	ggc Gly
35			tat Tyr				cgc Arg	tgat	gcto	cca (ggac	cctcl	tg a	acca	cgac	gt
								TA	BLE	<u>31</u>						
	Dì	VA S	eque	nce (S	SEQ	ЮN	O:86) and	Prot	ein S	eque	1ce (S	SEQ	IDΝ	O:87) of EI
40							ttg Leu									
45							tct Ser									
-							gct Ala									
50							atg Met									

tgaagacgct gatgctccag gaccctctga accacgacgt

50

34

TABLE 32

DNA Sequence (SEQ ID NO:88) and Protein Sequence (SEQ ID NO:89) of EIA atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc ggt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Gly Ser 5 ttc act tta gat cgt gca tct gat ggt agg gat gcc gca gcc aac gac Phe Thr Leu Asp Arg Ala Ser Asp Gly Arg Asp Ala Ala Ala Asn Asp aaa gcg tct gac ctg atc gct ctg acc gcc agg aga gat cca tgc tgt Lys Ala Ser Asp Leu Ile Ala Leu Thr Ala Arg Arg Asp Pro Cys Cys 10 tcc aat cct gcc tgt aac gtg aat aat cca cag att tgt ggt Ser Asn Pro Ala Cys Asn Val Asn Asn Pro Gln Ile Cys Gly 15 tgaagacget gatgeteeag gaccetetga accaegacgt TABLE 33 DNA Sequence (SEQ ID NO:90) and Protein Sequence (SEQ ID NO:91) of P1.2 20 atg ttc acc gtg ttt ctg ttg gtg gat gcc gca gcc aac gac aag gcg Met Phe Thr Val Phe Leu Leu Val Asp Ala Ala Ala Asn Asp Lys Ala tct gac cgg atc gct ctg acc gcc agg aga gat cca tgc tgt tcc aat Ser Asp Arg Ile Ala Leu Thr Ala Arg Arg Asp Pro Cys Cys Ser Asn 25 cct gtc tgt acc gtg cat aat cca cag att tgt ggt tgaagacgct Pro Val Cys Thr Val His Asn Pro Gln Ile Cys Gly gatgctccag gaccctctga accacgacgt 30 TABLE 34 DNA Sequence (SEQ ID NO:92) and Protein Sequence (SEQ ID NO:93) of P1.3 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gta acc acc gtc gtt tcc 35 Met Phe Thr Val Phe Leu Leu Val Val Leu Val Thr Thr Val Val Ser ttc aat tca gat cgt gca tta ggt ggc agg aat gct gca gcc aaa gcg Phe Asn Ser Asp Arg Ala Leu Gly Gly Arg Asn Ala Ala Ala Lys Ala 40 tct gac aag atc gct tcg atc ctc ggg aga aga gca tgc tgt tct tat Ser Asp Lys Ile Ala Ser Ile Leu Gly Arg Arg Ala Cys Cys Ser Tyr cct ccc tgt aac gtg aac tat cca gaa att tgt ggt gga cga ggc Pro Pro Cys Asn Val Asn Tyr Pro Glu Ile Cys Gly Gly Arg Gly 45 tgatgctcca ggaccctctg aaccacgacg t TABLE 35 50

DNA Sequence (SEQ ID NO:94) and Protein Sequence (SEQ ID NO:95) of S11.4 atg ttc acc gtg ttt ctg gtt gtc ttg gca acc acc gtc gtt ccc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Pro

35

ttc aat tca gat cgt gat cca gca tta ggt ggc agg aat gct gca gcc Phe Asn Ser Asp Arg Asp Pro Ala Leu Gly Gly Arg Asn Ala Ala Ala 5 ata gcg tct gac aag atc gct tcg acc ctc agg aga gga tgc tgt Ile Ala Ser Asp Lys Ile Ala Ser Thr Leu Arg Arg Gly Gly Cys Cys tct tat cct ccc tgt aac gtg tcc tat cca gaa att tgt ggt gga cga Ser Tyr Pro Pro Cys Asn Val Ser Tyr Pro Glu Ile Cys Gly Gly Arg 10 cgc tgatgctcca ggaccctctg aaccacgacg t Arg TABLE 36 15 DNA Sequence (SEQ ID NO:96) and Protein Sequence (SEQ ID NO:97) of S11.4A atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc acc gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser 20 ttc aat tca gat cgt gca tta ggt ggc agg aat gct gca gcc aaa gcg Phe Asn Ser Asp Arg Ala Leu Gly Gly Arg Asn Ala Ala Ala Lys Ala tct gac aag atc gct tcg atc ctc ggg aga aga aga tgc tgt tct tat Ser Asp Lys Ile Ala Ser Ile Leu Gly Arg Arg Cys Cys Ser Tyr 25 cct ccc tgt aac gtg tcc tat cca gaa att tgt ggt gga cga cgc Pro Pro Cys Asn Val Ser Tyr Pro Glu Ile Cys Gly Gly Arg Arg 30 tgatgctcca ggaccctctg aaccacgacg t TABLE 37 DNA Sequence (SEQ ID NO:98) and Protein Sequence (SEQ ID NO:99) of S11.8 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc acc gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser 35 ttc aat tca gat cgt gca tta ggt ggc agg aat gct gca gcc aaa gcg Phe Asn Ser Asp Arg Ala Leu Gly Gly Arg Asn Ala Ala Ala Lys Ala 40 tct gac aag atc gct tcg atc ctc ggg aga aga gca tgc tgt tct tat Ser Asp Lys Ile Ala Ser Ile Leu Gly Arg Arg Ala Cys Cys Ser Tyr cct ccc tgt aac gtg aac tat cca gaa att tgt ggt gga cga ggc 45 Pro Pro Cys Asn Val Asn Tyr Pro Glu Ile Cys Gly Gly Arg Gly tgatgctcca ggaccctctg aaccacgacg t TABLE 38 50 DNA Sequence (SEQ ID NO:100) and Protein Sequence (SEQ ID NO:101) of P1.1 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gCa acc act gtc ggt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Gly Ser 55 ttc act tta gat cgt gca tct gat ggt agg gat gcc gca gcc aac gac Phe Thr Leu Asp Arg Ala Ser Asp Gly Arg Asp Ala Ala Ala Asn Asp

aaa gcg act gac ctg atc gct ctg acc gcc agg aga gat cca tgc tgt Lys Ala Thr Asp Leu Ile Ala Leu Thr Ala Arg Arg Asp Pro Cys Cys

tcc aat cct gtc tgt acc gtg cat aat cca cag att tgt ggt Ser Asn Pro Val Cys Thr Val His Asn Pro Gln Ile Cys Gly

tgaagacgct gatgcttcag gaccctctga accacgacgt

10

15

35

5

[0081] It will be appreciated that the methods and compositions of the instant invention can be incorporated in the form of a variety of embodiments, only a few of which are disclosed herein. It will be apparent to the artisan that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.

BIBLIOGRAPHY

Barnay, G. et al. (2000). J. Med. Chem.

Bitan, G. et al. (1997). J. Peptide Res. 49:421-426.

20 Blount, K. et al. (1992). Toxicon 30:835-842.

Bodansky et al. (1966). Chem. Ind. 38:1597-98.

Craik, D.J. et al. (1991). Toxicon 39:43-60.

Cruz, L.J. et al. (1987). J. Biol. Chem. 260:9280-9288.

Goodman and Gilman's The Pharmacological Basis of Therapeutics, 7th Ed., Section II (1985).

25 Gray, W.R. et al. (1981). J.Biol. Chem. 256:4734-4740.

Haack, J.A. et al. (1990). J. Biol. Chem. 265:6025-6029.

Horiki, K. et al. (1978). Chemistry Letters 165-68.

Hubry, V. et al. (1994). Reactive Polymers 22:231-241.

Kapoor (1970). J. Pharm. Sci. 59:1-27.

30 Kornreich, W.D. et al. (1986). U.S. Patent No. 4,569,967.

Marshall, I.G. and Harvey, A.L. (1990). Toxicon 28:231-234.

McIntosh, J.M. et al. (1982). Arch. Biochem. Biophys. 218:329-334.

Mena, E.E. et al. (1990). Neurosci. Lett. 118:241-244.

Methoden der Organischen Chemie (Houben-Weyl): Synthese von Peptiden, E. Wunsch (Ed.), Georg Thieme Verlag, Stuttgart, Ger. (1974).

Myers, R.A. et al. (1991). Biochemistry 30:9370-9377.

Nishiuchi, Y. et al. (1993). Int. J. Pept. Protein Res. 42:533-538.

Nowak, L. et al. (1984). Nature 307:462-465.

WO 02/07750

PCT/US01/22892

37

Olivera, B.M. et al. (1984). U.S. Patent 4,447,356.

Olivera, B.M. et al. (1985). Science 230:1338-1343.

Olivera, B.M. et al. (1996). U.S. Patent 5,514,774.

Ornstein, et al. (1993). Biorganic Medicinal Chemistry Letters 3:43-48.

5 Physicians' Desk Reference, 48th Ed., pp. 689,758,1362, 1648 (1994).

Rivier, J.R. et al. (1978). Biopolymers 17:1927-38.

Rivier, J.R. et al. (1987). Biochem. 26:8508-8512.

Sambrook, J. et al. (1989). *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

10 Schroder & Lubke (1965). The Peptides 1:72-75, Academic Press, NY.

Stewart and Young, Solid-Phase Peptide Synthesis, Freeman & Co., San Francisco, CA (1969).

Vale et al. (1978). U.S. Patent 4,105,603.

Van de Steen, P. et al. (1998). Critical Rev. in Biochem. and Mol. Biol. 33:151-208.

Zafaralla, G.C. et al. (1988). Biochemistry 27:7102-7105.

15 Zhou L.M., et al. (1996). J. Neurochem. 66:620-628.

U.S. Patent No. 3,972,859.

U.S. Patent No. 3,842,067.

U.S. Patent No. 3,862,925.

U.S. Patent No. 4,190,674.

20 U.S. Patent No. 4,179,507.

U.S. Patent No. 4,508,715

U.S. Patent No. 4,701,460.

U.S. Patent No. 4,761,418.

U.S. Patent No. 4,923,898.

25 U.S. Patent No. 5,015,741.

U.S. Patent No. 5,260,337.

WHAT IS CLAIMED IS:

1. A substantially pure α -conotoxin peptide analog selected from the group consisting of: MI[K10Q]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ 5 ID NO:102); MI[K10E]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Glu-Asn-Tyr-Ser-Cys (SEQ ID NO:103); MI[K10Q, N11Q]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Gln-Tyr-Ser-Cys (SEQ ID NO:104); 10 MI[H5N, K10Q]: Gly-Arg-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:105); MI[K10N]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Cys (SEQ ID NO:106); desG1-MI[K10Q, N11Q]: Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Gln-Tyr-Ser-15 Cys (SEQ ID NO:107); MI[K10Q, S13D]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Asp-Cys (SEQ ID NO:108); MI[K10homoSer]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Xaa-Asn-Tyr-Ser-Cys (SEQ ID NO:109), where Xaa is homoserine; 20 desG1-MI[R2E, K10Q]: Glu-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:110); desG1/E2-MI[K10Q]: Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEO ID NO:111); MI[K10Q, Y12F]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Phe-Ser-25 Cys (SEQ ID NO:112); MI[K10Q, S13K]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Lys-Cys (SEQ ID NO:113); MI[R2E, K10Q]: Gly-Glu-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:114); 30 MI[C4E, K10Q, C14K]: Gly-Arg-Cys-Glu-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-

Ser-Lys (SEQ ID NO:115), wherein Glu4 and Lys14 form a lactam bridge in place of the

disulfide bridge in the native MI;

10

15

20

25

MI[C4E, K10N, C14K]: Gly-Arg-Cys-Glu-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Lys (SEQ ID NO:116), wherein Glu4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

MI[C4D, K10Q, C14K]: Gly-Arg-Cys-Asp-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Lys (SEQ ID NO:117), wherein Asp4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

MI[C4D, K10N, C14K]: Gly-Arg-Cys-Asp-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Lys (SEQ ID NO:118), wherein Asp4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

GI[R9Q]: Glu-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Cys (SEQ ID NO:119);

GI[R9N]: Glu-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Cys (SEQ ID NO:120);

GI[C3E, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Arg-His-Tyr-Ser-Lys (SEQ ID NO:121), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3E, R9Q, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Lys (SEQ ID NO:122), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3E, R9N, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Lys (SEQ ID NO:123), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3D, R9Q, C13K]: Glu-Cys-Asp-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Lys (SEQ ID NO:124), wherein Asp3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI; and

GI[C3D, R9N, C13K]: Glu-Cys-Asp-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Lys (SEQ ID NO:125), wherein Asp3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI.

30 2. A method for providing musculoskeletal relaxation in a patient undergoing a surgical procedure requiring anesthesia which comprises administering an effective amount of an

10

15

20

25

30

 α -conotoxin peptide analog or a pharmaceutically acceptable salt thereof, said α -conotoxin peptide analog selected from the group consisting of:

MI[K10Q]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:102);

MI[K10E]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Glu-Asn-Tyr-Ser-Cys (SEQ ID NO:103);

MI[K10Q, N11Q]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Gln-Tyr-Ser-Cys (SEQ ID NO:104);

MI[H5N, K10Q]: Gly-Arg-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Gin-Asn-Tyr-Ser-Cys (SEQ ID NO:105);

MI[K10N]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Cys (SEQ ID NO:106);

desG1-MI[K10Q, N11Q]: Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Gln-Tyr-Ser-Cys (SEQ ID NO:107);

MI[K10Q, S13D]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Asp-Cys (SEQ ID NO:108);

MI[K10homoSer]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Xaa-Asn-Tyr-Ser-Cys (SEQ ID NO:109), where Xaa is homoserine;

desG1-MI[R2E, K10Q]: Glu-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:110);

desG1/E2-MI[K10Q]: Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:21j);

MI[K10Q, Y12F]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Phe-Ser-Cys (SEQ ID NO:111);

MI[K10Q, S13K]: Gly-Arg-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Lys-Cys (SEQ ID NO:112);

MI[R2E, K10Q]: Gly-Glu-Cys-Cys-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Cys (SEQ ID NO:113);

MI[C4E, K10Q, C14K]: Gly-Arg-Cys-Glu-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Lys (SEQ ID NO:114), wherein Glu4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

10

15

20

25

MI[C4E, K10N, C14K]: Gly-Arg-Cys-Glu-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Lys (SEQ ID NO:115), wherein Glu4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

MI[C4D, K10Q, C14K]: Gly-Arg-Cys-Asp-His-Pro-Ala-Cys-Gly-Gln-Asn-Tyr-Ser-Lys (SEQ ID NO:116), wherein Asp4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

MI[C4D, K10N, C14K]: Gly-Arg-Cys-Asp-His-Pro-Ala-Cys-Gly-Asn-Asn-Tyr-Ser-Lys (SEQ ID NO:117), wherein Asp4 and Lys14 form a lactam bridge in place of the disulfide bridge in the native MI;

GI[R9Q]: Glu-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Cys (SEQ ID NO:118);

GI[R9N]: Glu-Cys-Cys-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Cys (SEQ ID NO:119);

GI[C3E, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Arg-His-Tyr-Ser-Lys (SEQ ID NO:120), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3E, R9Q, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Lys (SEQ ID NO:121), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3E, R9N, C13K]: Glu-Cys-Glu-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Lys (SEQ ID NO:122), wherein Glu3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI;

GI[C3D, R9Q, C13K]: Glu-Cys-Asp-Asn-Pro-Ala-Cys-Gly-Gln-His-Tyr-Ser-Lys (SEQ ID NO:123), wherein Asp3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI; and

GI[C3D, R9N, C13K]: Glu-Cys-Asp-Asn-Pro-Ala-Cys-Gly-Asn-His-Tyr-Ser-Lys (SEQ ID NO:124), wherein Asp3 and Lys13 form a lactam bridge in place of the disulfide bridge in the native GI.

FIG. 5

WO 02/07750

Arg, Ile Tyr,

PCT/US01/22892

1

SEQUENCE LISTING

```
<110> Olivera, Baldomero M.
      Layer, Richard T.
      Watkins, Maren
Hillyard, David R.
      McIntosh, J. Michael
      Schoenfeld, Robert
      Jones, Robert M.
      Nielsen, Jake
      University of Utah Research Foundation
      Cognetix, Inc.
<120> Alpha Conotoxin Peptides
<130> Alpha CIP
<140>
<141>
<150> US 60/116,881
<151> 1999-01-22
<150> US 60/116,882
<151> 1999-01-22
<150> US 09/488,799
<151> 2000-01-21
<150> US 60/219,407
<151> 2000-07-20
<150> US 60/221,557
<151> 2000-07-28
<160> 125
<170> PatentIn Ver. 2.0
<210> 1
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence I for alpha-conotoxins
<220>
<221> PEPTIDE
<222> (1)..(2)
<223> Xaa at residue 1 may be des-Xaa or Gly; Xaa at
      residue 2 is des-Xaa, Asn, Arg, Asp, Ser, Thr, Lys,
      ornithine, homoargine, N-methy-Lys,
      N, N-dimethyl-Lys, N, N, N-trimethyl-Lys or any
<220>
<221> PEPTIDE
<222> (2)..(4)
<223> unnatural basic amino acid; Xaa at residue 3 is
      des-Xaa, Gly, Glu or gama-carboxy-Glu; Xaa at
      residue 4 is des-Xaa, Glu, Gla, Gln, pyro-Glu,
```

<220>

```
<220>
<221> PEPTIDE
<222> (4)
<223> mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
      O-phospho-Tyr, nitro-Tyr, Cys, His, halo-His, any
      unnatural hydroxy containing amino acid, Lys,
<220>
<221> PEPTIDE
<222> (4)..(7)
<223> ornithine, homoargine, N-methy-Lys,
      N, N-dimethyl-Lys, N, N, N-trimethyl-Lys or any
      unnatural basic amino acid; Xaa at residue 7 is
      His, Asn or halo-His
<220>
<221> PEPTIDE
<222> (8)..(12)
<223> Xaa at residue 8 is Pro or hydroxy-Pro; Xaa at
      residue 9 is Ala, Gly, Ser or Thr; Xaa at residue 11 is Gly or Arg; Xaa at residue 12 is Arg, Lys,
      Pro, hydroxy-Pro, Gly, Gln, ornithine, homoargine,
<220>
<221> PEPTIDE
<222> (12)..(13)
<223> N-methy-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys
      or any unnatural basic amino acid; Xaa at residue
      13 is His, halo-His, Asn, Lys, Tyr, mono-halo-Tyr,
      di-halo-Tyr,
<220>
<221> PEPTIDE
<222> (13)
<223> O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr,
      N-methy-Lys, N, N-dimethyl-Lys,
      N, N, N-trimethyl-Lys, Arg, homoarginine, ornithine
      or any unnatural basic amino acid (such as
<220>
<221> PEPTIDE
<222> (13)..(14)
<223> N-1-(2-pyrazolinyl)-Arg); Xaa at residue 14 is
      Tyr, Trp (D or L), halo-Trp, neo-Trp, Phe,
      mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
      O-phospho-Tyr, nitro-Tyr, any
<220>
<221> PEPTIDE
<222> (14)
<223> unnatural hydroxy containing amino acid (such as
      4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly,
      2,6-dimethyl-Tyr and 5-amino-Tyr) or any unnatural
      aromatic amino acid (such as
<220>
<221> PEPTIDE
<222> (14)..(15)
<223> nitro-Phe, 4-substituted-Phe wherein the
      substituent is C1-C3 alkyl, carboxyl,
      hyrdroxymethyl, sulphomethyl, halo, phenyl, -CHO,
      -CN, -SO3H and -NHAc; Xaa at residue 15 is Ile,
```

```
<221> PEPTIDE
<222> (15)..(16)
<223> Ser, Thr, Asp, Gly, Asn, Glu, gamma-carboxy-Glu or
      Val; Xaa at residue 16 is des-Xaa, Lys, Arg,
      ornithine, homoargine, N-methy-Lys,
      N, N-dimethyl-Lys, N, N, N-trimethyl-Lys or any
<220>
<221> PEPTIDE
<222> (16)..(18)
<223> unnatural basic amino acid; Xaa at residue 18 is
      des-Xaa, Gly, Lys, Arg, ornithine, homoargine,
      N-methy-Lys, N, N-dimethyl-Lys, N, N, N-trimethyl-Lys
      or any unnatural basic amino acid;
<220>
<221> PEPTIDE
<222> (19)..(19)
<223> Xaa at residue 19 is des-Xaa, Gly, Thr, Ser, His,
      halo-His, Lys, Arg, ornithine, homoargine,
      N-methy-Lys, N, N-dimethyl-Lys, N, N, N-trimethyl-Lys
      or any unnatural basic
<220>
<221> PEPTIDE
<222> (19)..(23)
<223> amino acid; Xaa at residue 20 is des-Xaa, Ser or
      Thr; Xaa at residue 21 is des-Xaa or Cys; Xaa at
      residue 22 is des-Xaa, Ser or Thr; Xaa at residue
      23 is Arg, Lys,
<220>
<221> PEPTIDE
<222> (23)..(24)
<223> ornithine, homoargine, N-methy-Lys,
      N, N-dimethyl-Lys, N, N, N-trimethyl-Lys or any
      unnatural basic amino acid; Xaa at residue 24 is
      des-Xaa, Thr, Ser, Pro or
<220>
<221> PEPTIDE
<222> (24)..(27)
<223> hydroxy-Pro; Xaa at residue 25 is des-Xaa, Leu,
      Ser or Thr; Xaa at residue 26 is des-Xaa, Glu or
      gamma-carboxy-Glu; Xaa at residue 27 id des-Xaa,
      Pro or hydroxy-Pro.
<220>
<221> PEPTIDE
<222> (28)
<223> Xaa at residue 28 is des-Xaa, Arg, Lys, ornithine,
      homoargine, N-methy-Lys, N, N-dimethyl-Lys,
      N, N, N-trimethyl-Lys or any unnatural basic amino
      acid (such as N-1-(2-pyrazolinyl)-Arg).
<220>
<221> PEPTIDE
<222> (29)
<223> Xaa at residue 29 is des-Xaa, Arg, Lys, ornithine,
      homoargine, N-methy-Lys, N, N-dimethyl-Lys,
      N, N, N-trimethyl-Lys or any unnatural basic amino
      acid (such as N-1-(2-pyrazolinyl)-Arg).
```

<400> 1

Xaa Xaa Xaa Xaa Cys Cys Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa <210> 2 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:generic sequence II for alpha-conotoxins <220> <221> PEPTIDE <222> (1) <223> Xaa at residue 1 is des-Xaa, Arg, Ser, Thr, Lys, ornithine, homoargine, N-methy-Lys, N, N-dimethyl-Lys, N, N, N-trimethyl-Lys or any unnatural basic amino acid <220> <221> PEPTIDE <222> (2) <223> Xaa at residue 2 is des-Xaa, Asp, Gly, Leu, Arg, Lys, ornithine, homoargine, N-methy-Lys, N, N-dimethyl-Lys, N, N, N-trimethyl-Lys or any unnatural basic amino acid <220> <221> PEPTIDE <222> (3) <223> Xaa at residue 3 is des-Xaa, Pro, hydroxy-Pro, Ala, Gly or Leu. <220> <221> PEPTIDE <222> (6) <223> Xaa at residue 6 is Tyr, Ser, Thr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid <220> <221> PEPTIDE <222> (7)..(7) <223> Xaa at residue 7 is His, Asn, Ile, Tyr, halo-His, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr. <220> <221> PEPTIDE <222> (8)..(11) <223> Xaa at residue 8 is Pro or hydroxy-Pro; Xaa at residue 9 is Thr, Ala, Val, Ser, Pro or hydroxy-Pro; Xaa at residue 11 is Asn, Thr, Ser, Lys, Arg, ornithine, homoarginine, N-methyl-Lys,

<220>

<221> PEPTIDE <222> (11)..(12)

```
<223> N, N-dimethyl-Lys, N, N, N-trimethyl-Lys or any
     unnatural basic amino acid; Xaa at residue 12 is
     Met, Val, Ala, Leu or Ile.
<220>
<221> PEPTIDE
<222> (13)..(14)
<223> Xaa at residue 13 is Ser, Thr, Asn, His or
     halo-His; Xaa at residue 14 is Asn, Tyr,
     mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
     O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy
<220>
<221> PEPTIDE
<222> (14)..(15)
<223> containing amino acid (such as
      4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly,
      2,6-dimethyl-Tyr and 5-amino-Tyr); Xaa at residue
     15 is Pro or hydroxy-Pro.
<220>
<221> PEPTIDE
<222> (16)..(20)
<223> Xaa at residue 16 is Glu, gamma-carboxy-Glu, Gln
      or Asp; Xaa at residue 19 is des-Xaa or Gly; Xaa
     at residue 20 is des-Xaa or Gly.
<220>
<221> PEPTIDE
<222> (21)
<223> Xaa at residue 21 is Arg, Lys, ornithine,
      homoarginine, N-methyl-Lys, N, N-dimethyl-Lys,
      N, N, N-trimethyl-Lys or any unnatural basic amino
      acid (such as N-1-pyrazolinyl)-Arg).
<400> 2
Xaa Xaa Xaa Cys Cys Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
                                      10
Ile Cys Xaa Xaa Xaa
             20
<210> 3
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence for Conus radiatus R1.3
<220>
<221> PEPTIDE
<222> (1)..(11)
<223> Xaa at residue 1 may be Glu or gamma-carboxy-Glu;
      Xaa at residue 5 may be Pro or hydroxy-Pro; Xaa at
      residue 11 may be Tyr,
<220>
<221> PEPTIDE
<222> (11)..(14)
<223> mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
```

O-phospho-Tyr or nitro-Tyr; Xaa at residue 14 may

```
be Lys, N-methyl-Lys, N, N-dimethyl-Lys or
      N, N, N-trimethyl-Lys.
<400> 3
Xaa Cys Cys Asn Xaa Ala Cys Gly Arg His Xaa Ser Cys Xaa Gly
<210> 4
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence for Conus radiatus R1.4
<220>
<221> PEPTIDE
<222> (7)..(11)
<223> Xaa at residue 7 may be Pro or hydroxy-Pro; Xaa at
      residue 11 may be Lys, N-methyl-Lys,
      N, N-dimethyl-Lys or N, N, N-trimethyl-Lys.
<400> 4
Asn Gly Arg Cys Cys His Xaa Ala Cys Gly Xaa His Phe Ser Cys
                                     10
<210> 5
<211> 16
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:generic
      sequence for Conus stercusmuscarum Sml.1
<220>
<221> PEPTIDE
<222> (8)..(14)
<223> Xaa at residues 8 and 12 may be Pro or
     hydroxy-Pro; Xaa at residue 14 may be Tyr,
      mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
      O-phospho-Tyr or nitro-Tyr.
<400> 5
Gly Arg Gly Arg Cys Cys His Xaa Ala Cys Gly Xaa Asn Xaa Ser Cys
<210> 6
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:generic
      sequence for Conus striatus S11
<220>
<221> PEPTIDE
<222> (4)..(9)
<223> Xaa at residue 4 may be Pro or hydroxy-Pro; Xaa at
```

<220>

```
residue 9 may be Lys, N-methyl-Lys,
      N, N-dimethyl-Lys or N, N, N-trimethyl-Lys.
<220>
<221> PEPTIDE
<222> (10)
<223> Xaa at residue 10 may be Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr.
Cys Cys His Xaa Ala Cys Gly Arg Xaa Xaa Asn Cys
<210> 7
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence for Conus striatus S2
<220>
<221> PEPTIDE
<222> (5)..(20)
<223> Xaa at residues 5, 9 and 20 may be Pro or
      hydroxy-Pro; Xaa at residue 11 may be Tyr,
      mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
      O-phopho-Tyr or nitro-Tyr.
<220>
<221> PEPTIDE
<222> (22)..(23)
<223> Xaa at residue 22 may be Glu or gamma-carboxy-Glu;
     Xaa at residue 223 may be Pro or hydroxy-Pro.
<400> 7
Cys Cys Cys Asn Xaa Ala Cys Gly Xaa Asn Xaa Gly Cys Gly Thr Ser
Cys Ser Arg Xaa Ser Xaa Xaa Arg Arg
             20
<210> 8
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence for Conus monachus MnII
<220>
<221> PEPTIDE
<222> (7)..(13)
<223> Xaa at residue 7 may be Pro or hydroxy-Pro; Xaa at
      residue 12 may be Lys, N-methyl-Lys,
      N, N-dimethyl-Lys or N, N, N-trimethyl-Lys; Xaa at
      residue may be Tyr,
```

```
<221> PEPTIDE
<222> (13)..(15)
<223> mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa at residue 15 may
      be Lys, N-methyl-Lys, N, N-dimethyl-Lys or
      N, N, N-trimethyl-Lys.
<400> 8
Asn Gly His Cys Cys His Xaa Ala Cys Gly Gly Xaa Xaa Val Xaa Cys
<210> 9
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence for Conus achatinus A1.2
<220>
<221> PEPTIDE
<222> (7)..(13)
<223> Xaa at residue 7 may be Pro or hydroxy-Pro; Xaa at
      residue 12 may be Lys, N-methyl-Lys,
      N, N-dimethyl-Lys or N, N, N-trimethyl-Lys; Xaa at
      residue 13 may be Tyr,
<220>
<221> PEPTIDE
<222> (13)..(15)
<223> mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
      O-phospho-Tyr or nitro-Tyr; Xaa at residue 15 may
      be Lys, N-methyl-Lys, N, N-dimethyl-Lys or
      N, N, N-trimethyl-Lys.
<400> 9
Asn Gly Arg Cys Cys His Xaa Ala Cys Gly Gly Xaa Xaa Val Xaa Cys
<210> 10
<211> 15
<212> PRT
<213> Conus achatinus
<220>
<221> PEPTIDE
<222> (7)..(11)
<223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
      residue 11 is Lys, N-methyl-Lys, N,N-dimethyl-Lys
       or N, N, N-trimethyl-Lys.
<400> 10
Asn Gly Arg Cys Cys His Xaa Ala Cys Gly Xaa His Phe Ile Cys
<210> 11
<211> 15
<212> PRT
<213> Conus achatinus
```

```
<220>
<221> PEPTIDE
<222> (7)..(11)
<223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
      residue 11 is Lys, N-methyl-Lys, N,N-dimethyl-Lys
      or N, N, N-trimethyl-Lys.
<400> 11
Asn Gly Arg Cys Cys His Xaa Ala Cys Gly Xaa His Phe Ser Cys
<210> 12
<211> 15
<212> PRT
<213> Conus achatinus
<220>
<221> PEPTIDE
<222> (7)..(12)
<223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
      residue 12 is Lys, N-methyl-Lys, N, N-dimethyl-Lys
      or N,N,N-trimethyl-Lys.
<220>
<221> PEPTIDE
<222> (13)
<223> Xaa at residue 13 is Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr.
<400> 12
Asn Gly Arg Cys Cys His Xaa Ser Cys Gly Arg Xaa Xaa Asn Cys
<210> 13
<211> 15
<212> PRT
<213> Conus aurisiacus
<220>
<221> PEPTIDE
<222> (7)..(12)
<223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
      residue 12 is Lys, N-methyl-Lys, N, N-dimethyl-Lys
      or N,N,N-trimethyl-Lys.
<220>
<221> PEPTIDE
<222> (13)
<223> Xaa at residue 13 is Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr.
<400> 13
Asn Gly Arg Cys Cys His Xaa Ala Cys Ala Arg Xaa Xaa Asn Cys
<210> 14
<211> 15
<212> PRT
<213> Conus aurisiacus
```

```
<220>
<221> PEPTIDE
<222> (2)..(12)
<223> Xaa at residue 2 is Glu or gamma-carboxy-Glu; Xaa
      at residue 7 is Pro or hydroxy-Pro; Xaa at residue
      12 is Lys, N-methyl-Lys, N, N-dimethyl-Lys or
      N, N, N-trimethyl-Lys.
<220>
<221> PEPTIDE
<222> (13)
<223> Xaa at residue 13 is Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr
<400> 14
Asn Xaa Arg Cys Cys His Xaa Ala Cys Ala Arg Xaa Xaa Asn Cys
<210> 15
<211> 15
<212> PRT
<213> Conus magus
<220>
<221> PEPTIDE
<222> (7)..(13)
<223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
      residue 13 is Tyr, mono-halo-Tyr, di-halo-Tyr,
      O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr.
<400> 15
Asp Gly Arg Cys Cys His Xaa Ala Cys Gly Gln Asn Xaa Ser Cys
<210> 16
<211> 15
<212> PRT
<213> Conus magus
<220>
<221> PEPTIDE
<222> (7)..(11)
<223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
      residue 11 is Lys, N-methyl-Lys, N,N-dimethyl-Lys
       or N,N,N-trimethyl-Lys.
 <400> 16
 Asp Gly Arg Cys Cys His Xaa Ala Cys Ala Xaa His Phe Asn Cys
 <210> 17
 <211> 15
<212> PRT
 <213> Conus magus
 <220>
 <221> PEPTIDE
 <222> (7)..(11)
 <223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
```

```
residue 11 is Lys, N-methyl-Lys, N, N-dimethyl-Lys
      or N, N, N-trimethyl-Lys.
<220>
<221> PEPTIDE
<222> (13)
<223> Xaa at residue 13 is Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr.
<400> 17
Asn Gly Arg Cys Cys His Xaa Ala Cys Ala Xaa Asn Xaa Ser Cys
<210> 18
<211> 15
<212> PRT
<213> Conus magus
<220>
<221> PEPTIDE
<222> (7)..(12)
<223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
      residue 12 is Lys, N-methyl-Lys, N,N-dimethyl-Lys
      or N, N, N-trimethyl-Lys
<220>
<221> PEPTIDE
<222> (13)
<223> Xaa at residue 13 is Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr.
<400> 18
Asn Gly Arg Cys Cys His Xaa Ala Cys Ala Arg Xaa Xaa Ser Cys
<210> 19
<211> 13
<212> PRT
<213> Conus obscurus
<220>
<221> PEPTIDE
<222> (1)..(10)
<223> Xaa at residue 1 is Gln or pyro-Glu; Xaa at
      residues 5 and 9 is Pro or hydroxy-Pro; Xaa at
      residue 10 is Lys, N-methyl-Lys, N,N-dimethyl-Lys
      or N, N, N-trimethyl-Lys.
<220>
<221> PEPTIDE
<222> (11)
<223> Xaa at residue 11 is Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr.
<400> 19
Xaa Cys Cys Asn Xaa Ala Cys Gly Xaa Xaa Xaa Ser Cys
```

```
<210> 20
<211> 13
<212> PRT
<213> Conus striatus
<220>
<221> PEPTIDE
<222> (1)..(10)
<223> Xaa at residue 1 is Gln or pyro-Glu; Xaa at
     residue 5 is Pro or hydroxy-Pro; Xaa at residues 9
     and 10 is Lys, N-methyl-Lys, N,N-dimethyl-Lys or
     N, N, N-trimethyl-Lys.
<220>
<221> PEPTIDE
<222> (11)
<223> Xaa at residue 11 is Tyr, mono-halo-Tyr,
     di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr.
<400> 20
Xaa Cys Cys His Xaa Ala Cys Gly Xaa Xaa Xaa Asn Cys
<210> 21
<211> 15
<212> PRT
<213> Conus striatus
<220>
<221> PEPTIDE
<222> (7)..(12)
<223> Xaa at residue 7 is Pro or hydroxy-Pro; Xaa at
      residue 12 is Lys, N-methyl-Lys, N,N-dimethyl-Lys
      or N, N, N-trimethyl-Lys
<220>
<221> PEPTIDE
<222> (13)
<223> Xaa at residue 13 is Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
      nitro-Tyr.
<400> 21
Ser Gly Arg Cys Cys His Xaa Ala Cys Gly Arg Xaa Xaa Asn Cys
<210> 22
<211> 18
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:generic
      sequence for Conus purpuraxcens P1.2
<220>
<221> PEPTIDE
<222> (3)..(15)
<223> Xaa at residues 3, 8 and 15 may be Pro or
      hydroxy-Pro.
```

```
<400> 22
Arg Asp Xaa Cys Cys Ser Asn Xaa Val Cys Thr Val His Asn Xaa Gln
                                      10
Ile Cys
<210> 23
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence for Conus purpurascens P1.3
<220>
<221> PEPTIDE
<222> (6)..(14)
<223> Xaa at residues and 6 and 13 is Tyr,
      mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
      O-phospho-Tyr or nitro-Tyr; Xaa at residues 7, 8
      and 14 may be Pro or hydroxy-Pro.
<220>
<221> PEPTIDE
<222> (15)
<223> Xaa at residue 15 may be Glu or gamma-carboxy-Glu.
Arg Ala Cys Cys Ser Xaa Xaa Xaa Cys Asn Val Asn Xaa Xaa Ile
Cys
<210> 24
<211> 17
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:generic '
      sequence for Conus sulcatus S11.4
<220>
<221> PEPTIDE
<222> (6)..(14)
<223> Xaa at residues 6 and 13 may be Tyr,
      mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
      O-phospho-Tyr or nitro-Tyr; Xaa at residues 7, 8
      and 14 may be Pro of hydroxy-Pro.
<220>
<221> PEPTIDE
<222> (15)
<223> Xaa at residue 15 may be Glu or gamma-carboxy-Glu.
<400> 24
 Gly Gly Cys Cys Ser Xaa Xaa Xaa Cys Asn Val Ser Xaa Xaa Xaa Ile
                                      10
```

Cys

<211> 18 <212> PRT

```
<210> 25
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence for Conus sulcatus Sl1.4A
<220>
<221> PEPTIDE
<222> (4)..(12)
<223> Xaa at residues 4 and 11 may be Tyr,
     mono-halo-tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa at residues 5, 6
      and 12 may be Pro of hydroxy-Pro.
<220>
<221> PEPTIDE
<222> (13)
<223> Xaa at residue 13 may be Glu or gamma-carboxy-Glu
<400> 25
Cys Cys Ser Xaa Xaa Xaa Cys Asn Val Ser Xaa Xaa Xaa Ile Cys
<210> 26
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence for Conus sulcatus S11.8
<220>
<221> PEPTIDE
<222> (5)..(13)
<223> Xaa at residues 5 and 12 may be Tyr,
      mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr,
      O-phospho-Tyr or nitro-Tyr; Xaa at residues 6, 7
      and 13 may be Pro or hydroxy-Pro.
<220>
<221> PEPTIDE
<222> (14)
<223> Xaa at residue 14 may be Glu or gamma-carboxy-Glu.
<400> 26
Ala Cys Cys Ser Xaa Xaa Xaa Cys Asn Val Asn Xaa Xaa Ile Cys
                                        10
Gly Gly Arg
<210> 27
```

```
<213> Conus textile
<220>
<221> PEPTIDE
<222> (8)..(15)
<223> Xaa at residues 8 and 15 is Pro or hydroxy-Pro;
     Xaa at residue 11 is Lys, N-methyl-Lys,
     N, N-dimethyl-Lys or N, N, N-trimethyl-Lys
<220>
<221> PEPTIDE
<222> (14)
<223> Xaa at residue 14 is Tyr, mono-halo-Tyr,
      di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or
     nitro-Tyr.
<400> 27
Ser Leu Leu Cys Cys Thr Ile Xaa Ser Cys Xaa Ala Ser Xaa Xaa Asp
                                    1.0
Ile Cys
<210> 28
<211> 1004
<212> DNA
<213> Conus geographus
<220>
<221> CDS
<222> (1)..(177)
<400> 28
                                                                48
atg ttc acc gtg ttt ctg ttg gtg gtc ttg gca acc act gtc gtt tcc
Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser
                                                                96
ttc cct tca gaa cgt gca tct gat ggc agg gat gac aca gcc aaa gac
Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp
gaa ggg tct gac atg gag aaa ttg gtc gag aaa aaa gaa tgt tgc aat
                                                                 144
Glu Gly Ser Asp Met Glu Lys Leu Val Glu Lys Lys Glu Cys Cys Asn
                             40
cct gcc tgt ggc aga cac tac agt tgt gga cgc tgatgctcca ggaccctctg 197
Pro Ala Cys Gly Arg His Tyr Ser Cys Gly Arg
aaccacggac gtgccgccct ctgcctgacc tgcttcactg tccgtctctt tgtgccacta 257
gaactgaaca getegateca etagaetaee aegttaeete egtgttetaa aactaettgg 317
 tttagattgc ctttaatttc tagtcatact tcctgttatt acgtcgtcca aaattgaaac 377
 aagaacatga ggggtgtcag ctcaaacaaa atcaggcaat gacaaggaaa atgtctccga 437
 togatocgaa aactgtcacc cgtcactctc ttaaccagtt ttagaactga ttaccactag 497
 ttgagaaaaa aagctcaaaa tgtgggaagt gcttttgatt ttctgacaac ttgtgatcat 617
```

16

gtccgttttc agtgagtcta attgcaacct ctgtgtgatt ttcttcacct gttaagcaac 677
gcaaagaggt tgtccataac caggaaagca acagacaaag aaatgcttga gaatttcagg 737
ttatagataa ggtaaggaaa aaaaggagag ctatgggaaa tgatgaaaac aacagataaa 797
ataaattgaa cagtacctac ttgtttcatg gttgatttt ttttctctga ataatctctg 857
tggacactaa tggcagtctc tcctcacccc acgccattag taagcttatt ttttctttct 917
ttatccaaga tttgctgaac atatttagcc tagatataga cattgctaca tatataatct 977
gacaataaac tttcatgggc accaatt

<210> 29

<211> 59

<212> PRT

<213> Conus geographus

<400> 29

Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser 1 5 10 15

Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp 20 25 30

Glu Gly Ser Asp Met Glu Lys Leu Val Glu Lys Lys Glu Cys Cys Asn 35 40 45

Pro Ala Cys Gly Arg His Tyr Ser Cys Gly Arg

<210> 30

<211> 201

<212> DNA

<213> Conus striatus

<220>

<221> CDS

<222> (1)..(177)

<400> 30

atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc gtt tcc 48
Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser
1 10 15

ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac
Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp
20 25 30

gaa agg tct gac atg cac gaa tcg gac cgg aaa gaa atc tgt tgc aat 144 Glu Arg Ser Asp Met His Glu Ser Asp Arg Lys Glu Ile Cys Cys Asn 35 40 45

cct gcc tgt ggc cca aag tat agt tgt gga cgc tgatgctcca ggaccctctg 197 Pro Ala Cys Gly Pro Lys Tyr Ser Cys Gly Arg

aacc 201

<210> 31

17

```
<211> 59
<212> PRT
<213> Conus striatus
<400> 31
Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser
Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp
Glu Arg Ser Asp Met His Glu Ser Asp Arg Lys Glu Ile Cys Cys Asn
Pro Ala Cys Gly Pro Lys Tyr Ser Cys Gly Arg
<210> 32
<211> 208
<212> DNA
<213> Conus radiatus
<220>
<221> CDS
<222> (1)..(177)
<400> 32
atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca atc act gtc gtt tcc
                                                                   48
Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Ile Thr Val Val Ser
ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac
                                                                   96
Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp
gaa agg tct gac atg tac aaa tcg aaa cgg aat gga cgc tgt tgc cat
                                                                   144
Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His
                             40
cct gcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgctcca ggaccctctg 197
Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg
                                                                   208
aaccacgacg t
<210> 33
<211> 59
<212> PRT
<213> Conus radiatus
Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Ile Thr Val Val Ser
Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp
Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His
```

Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg

```
<210> 34
<211> 213
<212> DNA
<213> Conus radiatus
<220>
<221> CDS
<222> (1)..(177)
<400> 34
atg ttc acc gtg ttt ctg ttg gtg gtc ttg gca acc act gtc gtt tcc
Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser
ttc cct tca gaa cgt gca tct gat ggc agg gat gac aca gcc aaa gac
                                                                                 96
Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp
gaa ggg tct gac atg gag aaa ttg gtc gag aaa aaa gaa tgt tgc aat
Glu Gly Ser Asp Met Glu Lys Leu Val Glu Lys Lys Glu Cys Cys Asn
cct gcc tgt ggc aga cac tac agt tgt aag gga ggacgetgat getecagace 197
Pro Ala Cys Gly Arg His Tyr Ser Cys Lys Gly
      50
                                                                                 213
ctctgaacca cgacgt
<210> 35
<211> 59
<212> PRT
<213> Conus radiatus
<400> 35
Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser
 Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp
 Glu Gly Ser Asp Met Glu Lys Leu Val Glu Lys Lys Glu Cys Cys Asn
 Pro Ala Cys Gly Arg His Tyr Ser Cys Lys Gly
 <210> 36
 <211> 208
 <212> DNA
 <213> Conus radiatus
 <220>
 <221> CDS
 <222> (1)..(177)
 <400> 36
 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca atc act gtc gtt tcc
Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Ile Thr Val Val Ser
   1
```

19

ttc Phe	cct Pro	tca Ser	gat Asp 20	cgt Arg	gca Ala	tct Ser	gat Asp	ggc Gly 25	agg Arg	gat Asp	gac Asp	gaa Glu	gcc Ala 30	aaa Lys	gac Asp	96
gaa Glu	agg Arg	tct Ser 35	gac Asp	atg Met	tac Tyr	aaa Lys	tcg Ser 40	aaa Lys	cgg Arg	aat Asn	gga Gly	cgc Arg 45	tgt Cys	tgc Cys	cat His	144
cct Pro	gcc Ala 50	tgt Cys	ggc Gly	aaa Lys	cac His	ttt Phe 55	agt Ser	tgt Cys	gga Gly	cgc Arg	tgat	gato	ca q	ggaco	ectetg	197
aacc	aaccacgacg t															208
<211 <212	<210> 37 <211> 59 <212> PRT <213> Conus radiatus															
)> 3' Phe		Val	Phe 5	Leu	Leu	Val	Val	Leu 10	Thr	Ile	Thr	Val	Val 15	Ser	
Phe	Pro	Ser	Asp 20	Arg	Ala	Ser	Asp	Gly 25	Arg	Asp	Asp	Glu	Ala 30	Lys	Asp	
Glu	Arg	Ser 35	Asp	Met	Tyr	Lys	Ser 40	Lys	Arg	Asn	Gly	Arg 45	Cys	Cys	His	
Pro	Ala 50	Cys	Gly	Lys	His	Phe 55	Ser	Суз	Gly	Arg						
<21 <21	<210> 38 <211> 214 <212> DNA <213> Conus stercusmuscarum															
<220> <221> CDS <222> (1)(177)																
ato	Phe	acc	gtg Val	ttt Phe	Leu	ttg Leu	gtt Val	gtc Val	ttg Leu 10	Ala	acc Thr	act Thr	gto Val	gtt Val	tcc Ser	48
ttc Phe	Pro	tca Ser	gat Asp 20	Arg	gca Ala	tct Ser	gat Asp	ggc Gly 25	Arg	gat Asp	gac Asp	gaa Glu	gcc Ala 30	l Lys	gac Asp	96
gaa Glu	agg Arg	tct Ser 35	Asp	atg Met	cac His	gaa Glu	tcg Ser 40	: Gly	cgg Arg	aaa Lys	gga Gly	cgc Arg 45	GT?	a cgo / Arc	tgt Cys	144
tgc Cys	cat His	Pro	gco Ala	tgt Cys	: Gl	c cca Pro	Asr	tat Tyr	agt Ser	tgt Cys	gga s	.cgct	gat	gcto	caggac	197
cct	ctga	acc	acga	acgt												214

<210> 39

20

<211> 59 <212> PRT <213> Conus stercusmuscarum <400> 39 Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met His Glu Ser Gly Arg Lys Gly Arg Gly Arg Cys Cys His Pro Ala Cys Gly Pro Asn Tyr Ser Cys <210> 40 <211> 221 <212> DNA <213> Conus striatus <220> <221> CDS <222> (1)..(201) <400> 40 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc gtt tcc 48 Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp gaa agg tot gac atg cac gaa tog gac ogg aat gga ogc gga tgo tgt Glu Arg Ser Asp Met His Glu Ser Asp Arg Asn Gly Arg Gly Cys 144 $_{\mbox{\scriptsize 1}}$ tgc aat cot gcc tgt ggc cca aac tat ggt tgt ggc acc tca tgc tcc 192 Cys Asn Pro Ala Cys Gly Pro Asn Tyr Gly Cys Gly Thr Ser Cys Ser 60 agg acc ctc tgaaccacga cgttcgagca 221 Arg Thr Leu 65 <210> 41 <211> 67 <212> PRT <213> Conus striatus <400> 41 Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met His Glu Ser Asp Arg Asn Gly Arg Gly Cys Cys

```
Cys Asn Pro Ala Cys Gly Pro Asn Tyr Gly Cys Gly Thr Ser Cys Ser
Arg Thr Leu
65
<210> 42
<211> 45
<212> DNA
<213> Conus striatus
<220>
<221> CDS
<222> (1)..(42)
<400> 42
tgt tgc cat cct gcc tgt ggc aga aag tat aat tgt gga cgc tga
                                                                    45
Cys Cys His Pro Ala Cys Gly Arg Lys Tyr Asn Cys Gly Arg
<210> 43
<211> 14
<212> PRT
<213> Conus striatus
<400> 43
Cys Cys His Pro Ala Cys Gly Arg Lys Tyr Asn Cys Gly Arg
<210> 44
<211> 78
<212> DNA
<213> Conus striatus
<220>
<221> CDS
<222> (1)..(75)
<400> 44
tgc tgt tgc aat cct gcc tgt ggc cca aac tat ggt tgt ggc acc tca
                                                                    48
Cys Cys Cys Asn Pro Ala Cys Gly Pro Asn Tyr Gly Cys Gly Thr Ser
tgc tcc aga ccc tct gaa cca cga cgt tag
                                                                    78
Cys Ser Arg Pro Ser Glu Pro Arg Arg
             20
<210> 45
<211> 25
<212> PRT
<213> Conus striatus
<400> 45
Cys Cys Cys Asn Pro Ala Cys Gly Pro Asn Tyr Gly Cys Gly Thr Ser
Cys Ser Arg Pro Ser Glu Pro Arg Arg
```

<210> 46 <211> 1010 <212> DNA <213> Conus geographus <220> <221> CDS <222> (1)..(177) <400> 46 48 atg ttc acc gtg ttt ctg ttg gtg gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser tto cot toa gaa ogt goa tot gat ggo agg gat gao aca goo aaa gao 96 Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp gaa ggg tct gac atg gag aaa ttg gtc gag aaa aaa gaa tgt tgc aat Glu Gly Ser Asp Met Glu Lys Leu Val Glu Lys Lys Glu Cys Cys Asn 144 40 cct gcc tgt ggc aga cac tac agt tgt aag gga ggacgctgat gctccaggac 197 Pro Ala Cys Gly Arg His Tyr Ser Cys Lys Gly cctctgaacc acggacgtgc cgccctctgc ctgacctgct tcactgtccg tctctttgtg 257 ccactagaac tgaacagctc gatccactag actaccacgt tacctccgtg ttctaaaact 317 acttggttta gattgccttt aatttctagt catacttcct gttattacgt cgtccaaaat 377 tgaaacaaga acatgagggg tgtcagctca aacaaaatca ggcaatgaca aggaaaatgt 437 ctccgatcga tccgaaaact gtcacccgtc actctcttaa ccagttttag aactgattac 497 cactagaget tttgtaccac atcaaatcag gtctatgtgt gatgtttett ttgcaaaatt 557 taatttttga gaaaaaaagc tcaaaatgtg ggaagtgctt ttgattttct gacaacttgt 617 gatcatgtcc gttttcagtg agtctaattg caacctctgt gtgattttct tcacctgtta 677 agcaacgcaa agaggttgtc cataaccagg aaagcaacag acaaagaaat gcttgagaat 737 ttcaggttat agataaggta aggaaaaaaa ggagagctat gggaaatgat gaaaacaaca 797 gataaaataa attgaacagt acctacttgt ttcatggttg atttttttt ctctgaataa 857 tctctgtgga cactaatggc agtctctcct caccccacgc cattagtaag cttattttt 917 ctttctttat ccaagatttg ctgaacatat ttagcctaga tatagacatt gctacatata 977 1010 taatctgaca ataaactttc atgggcacca att <210> 47 <211> 59 <212> PRT

<213> Conus geographus

<400> 47

Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser

Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp 20 25 30

Glu Gly Ser Asp Met Glu Lys Leu Val Glu Lys Lys Glu Cys Cys Asn 35 40

Pro Ala Cys Gly Arg His Tyr Ser Cys Lys Gly 50

<210> 48

<211> 208

<212> DNA

<213> Conus monachus

<220>

<221> CDS

<222> (1)..(180)

<400> 48

atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca acc act gtc gtt tcc 48 Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser 1 5 10

ttc cct tca gat agt gca tct ggt ggc agg gat gac gag gcc aaa gac 96
Phe Pro Ser Asp Ser Ala Ser Gly Gly Arg Asp Asp Glu Ala Lys Asp
20 25 30

gaa agg tct gac atg tac gaa ttg aaa cgg aat gga cac tgt tgc cat 144
Glu Arg Ser Asp Met Tyr Glu Leu Lys Arg Asn Gly His Cys Cys His
40

cct gcc tgt ggt ggc aaa tac gtt aaa tgt gga cgc tgatgctcca 190
Pro Ala Cys Gly Gly Lys Tyr Val Lys Cys Gly Arg
50 60

ggaccctctc gaaccacg

208

<210> 49

<211> 60

<212> PRT

<213> Conus monachus

<400> 49

Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser 1 5 10 15

Phe Pro Ser Asp Ser Ala Ser Gly Gly Arg Asp Asp Glu Ala Lys Asp 20 25 30

Glu Arg Ser Asp Met Tyr Glu Leu Lys Arg Asn Gly His Cys Cys His 35 40 45

Pro Ala Cys Gly Gly Lys Tyr Val Lys Cys Gly Arg 50 55 60

<210> 50

<211> 208

<212> DNA

<213> Conus achatinus

<220>

<221> CDS <222> (1)..(180) <400> 50 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca acc act gtc gtt tcc 48 Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Val Val Ser ttc cet tea gat agt gea tet ggt gge agg gat gac gag gee aaa gac Phe Pro Ser Asp Ser Ala Ser Gly Gly Arg Asp Asp Glu Ala Lys Asp gaa agg tot gac atg tac gaa ttg aaa cgg aat gga cgc tgt tgc cat Glu Arg Ser Asp Met Tyr Glu Leu Lys Arg Asn Gly Arg Cys Cys His cct gcc tgt ggt ggc aaa tac gtt aaa tgt gga cgc tgatgctcca 190 Pro Ala Cys Gly Gly Lys Tyr Val Lys Cys Gly Arg ggaccctctc gaaccacg 208 <210> 51 <211> 60 <212> PRT <213> Conus achatinus <400> 51 Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Val Val Ser Phe Pro Ser Asp Ser Ala Ser Gly Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr Glu Leu Lys Arg Asn Gly Arg Cys Cys His Pro Ala Cys Gly Gly Lys Tyr Val Lys Cys Gly Arg <210> 52 <211> 208 <212> DNA <213> Conus achatinus <220> <221> CDS <222> (1)..(177) <400> 52 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca aca act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser tac cct tca gat agt gca tct gat ggc agg gat gac gaa gcc aaa gac 96 Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp gaa agg tot gac atg tac aaa tog aaa ogg aat gga ogc tgt tgc cat Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His 40

25

cct gcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgctcca ggaccctctg 197 Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg 208 aaccacgacg t <210> 53 <211> 59 <212> PRT <213> Conus achatinus <400> 53 Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Val Val Ser Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg <210> 54 <211> 208 <212> DNA <213> Conus betulinus <220> <221> CDS <222> (1)..(177) <400> 54 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser tac cct tca gat agt gca tct gat ggc agg gat gac gaa acc aaa gac 96 Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Thr Lys Asp gaa aag tot gac atg tac aaa tog aaa ogg aat gga ogc tgt tgc cat Glu Lys Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His cct gcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgctgca ggaccctctg 197 Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg 50 208 aaccacgacg t <210> 55 <211> 59 <212> PRT <213> Conus betulinus Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser 10

26

Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Thr Lys Asp 20 25 30

Glu Lys Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His 35 40 45

Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg 50 55

<210> 56

<211> 208

<212> DNA

<213> Conus consors

<220>

<221> CDS

<222> (1)..(177)

<400> 56

atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca acc act gtc gtt tcc 48 Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser 1 5 10 15

ttc cct tca gat agt gca tct gat gtc agg gat gac gaa gcc aaa gac
Phe Pro Ser Asp Ser Ala Ser Asp Val Arg Asp Asp Glu Ala Lys Asp
20 25 30

gaa agg tct gac atg tac aaa tcg aaa cgg aat gga cgc tgt tgc cat 144 Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His

cct gcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgctcca ggaccctctg 197 Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg 50 55

aaccacgacg t

208

<210> 57

<211> 59 <212> PRT

<213> Conus consors

<400> 57

Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser

1 5 10 15

Phe Pro Ser Asp Ser Ala Ser Asp Val Arg Asp Asp Glu Ala Lys Asp 20 25 30

Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His
35 40 45

Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg 50 55

<210> 58

<211> 208

<212> DNA

<213> Conus monachus

<220>

<221> CDS <222> (1)..(177) <400> 58 atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca aca act gtc gtt tcc 48 Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser tac cct tca gat agt gca tct gat ggc agg gat gac gaa gcc aaa gac 96 Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp gaa agg tot gac atg tac aaa tog aaa ogg aat gga ogc tgt tgc cat 144 Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His cct qcc tgt ggc aaa cac ttt agt tgt gga cgc tgatgctcca ggaccctctg 197 Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg 208 aaccacgacg t <210> 59 <211> 59 <212> PRT <213> Conus monachus <400> 59 Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser Tyr Pro Ser Asp Ser Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg <210> 60 <211> 213 <212> DNA <213> Conus circumcisus <220> <221> CDS <222> (1)..(183) 48 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca gcc act gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Ala Thr Val Val Ser ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp gaa aga tot gac atg cac gaa tog gac ogg aaa gga ogc gga ogc tgt Glu Arg Ser Asp Met His Glu Ser Asp Arg Lys Gly Arg Gly Arg Cys 144

tgc cat cct Cys His Pro 50	gcc tgt (Ala Cys (ggc cca a Gly Pro A 55	aat tat Asn Tyr	agt tgt Ser Cys	gga cgc Gly Arg 60	tgatgctcca	193
ggaccctctg a	aaccacgac	Ð	•				213
<210> 61 <211> 61 <212> PRT <213> Conus	circumcis	sus					
<400> 61 Met Phe Thr 1	Val Phe I	Leu Leu V	Val Val	Leu Ala 10	Ala Thr	Val Val Ser 15	
Phe Pro Ser	Asp Arg A	Ala Ser <i>F</i>	Asp Gly 25	Arg Asp	Asp Glu	Ala Lys Asp	
Glu Arg Ser 35	Asp Met H	His Glu S	Ser Asp 40	Arg Lys	Gly Arg 45	Gly Arg Cys	
Cys His Pro 50	Ala Cys (Gly Pro F 55	Asn Tyr	Ser Cys	Gly Arg 60		
<210> 62 <211> 208 <212> DNA <213> Conus	radiatus						
<220> <221> CDS <222> (1)	(177)						
						gtc gtt tcc Val Val Ser 15	
						gcc aaa gac Ala Lys Asp 30	
gaa ggg tct Glu Gly Ser 35	Asp Met A	gac aaa t Asp Lys I	ttg gtc Leu Val 40	gag aaa Glu Lys	aaa gaa Lys Glu 45	tgt tgc cat Cys Cys His	144
cct gcc tgt Pro Ala Cys 50					tgatgct	cca ggacccto	tg 197
aaccacgacg 1	t						208
<210> 63 <211> 59 <212> PRT <213> Conus	radiatus	·					
<400> 63 Met Phe Thr 1	Val Phe 1	Leu Leu V	Val Val	Leu Ala 10	Thr Thr	Val Val Ser 15	•

PCT/US01/22892

29

WO 02/07750

Phe Pro Ser Glu Arg Ala Ser Asp Gly Arg Asp Asp Thr Ala Lys Asp Glu Gly Ser Asp Met Asp Lys Leu Val Glu Lys Lys Glu Cys Cys His Pro Ala Cys Gly Lys His Phe Ser Cys Gly Arg <210> 64 <211> 114 <212> DNA <213> Conus achatinus <220> <221> CDS <222> (1)..(111) <400> 64 tct gat ggc agg gat gac gaa gcc aaa gac gaa agg tct gac atg tac Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr aaa tog aaa ogg aat gga ogo tgt tgo cac oot goo tgt ggo aaa cac Lys Ser Lys Arg Asn Gly Arg Cys Cys His Pro Ala Cys Gly Lys His 114 ttt att tgt gga cgc tga Phe Ile Cys Gly Arg <210> 65 <211> 37 <212> PRT <213> Conus achatinus <400> 65 Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr Lys Ser Lys Arg Asn Gly Arg Cys Cys His Pro Ala Cys Gly Lys His Phe Ile Cys Gly Arg <210> 66 <211> 114 <212> DNA <213> Conus achatinus <220> <221> CDS <222> (1)..(111) <400> 66 tct ggt ggc agg gat gac gaa gcc aaa gac gaa agg tct gac atg tac 48 Ser Gly Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr

gaa tog gac ogg aat gga ogc tgt tgc cat cot goc tgt ggc aaa cac

Glu Ser Asp Arg Asn Gly Arg Cys Cys His Pro Ala Cys Gly Lys His 20 25 30

ttt agt tgt gga cgc tga Phe Ser Cys Gly Arg 114

<210> 67 <211> 37

<212> PRT

<213> Conus achatinus

<400> 67

Ser Gly Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr 1 10 15

Glu Ser Asp Arg Asn Gly Arg Cys Cys His Pro Ala Cys Gly Lys His

Phe Ser Cys Gly Arg

<210> 68

<211> 114

<212> DNA

<213> Conus achatinus

<220>

<221> CDS

<222> (1)..(111)

<400> 68

tct gat ggc agg gat gac gaa gcc aaa gac aaa agg tct gac atg tac 48 Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Lys Arg Ser Asp Met Tyr 1 5 10

gaa tcg gac cgg aat gga cgc tgt tgc cat cct tcc tgt ggc aga aag 96 Glu Ser Asp Arg Asn Gly Arg Cys Cys His Pro Ser Cys Gly Arg Lys

tat aat tgt gga cgc tga Tyr Asn Cys Gly Arg 114

<210> 69

<211> 37

<212> PRT

<213> Conus achatinus

<400> 69

Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Lys Arg Ser Asp Met Tyr
1 5 10 15

Glu Ser Asp Arg Asn Gly Arg Cys Cys His Pro Ser Cys Gly Arg Lys 20 25 30

Tyr Asn Cys Gly Arg 35

<210> 70

```
<211> 142
<212> DNA
<213> Conus aurisiacus
<220>
<221> CDS
<222> (49)..(111)
<400> 70
tctgatggca gggatgacga agccaaagac gaaaggtctg acatgtac gaa tcg gac 57
                                                      Glu Ser Asp
cgg aat gga cgc tgt tgc cat cct gcc tgt gcg aga aag tat aat tgt
Arg Asn Gly Arg Cys Cys His Pro Ala Cys Ala Arg Lys Tyr Asn Cys
                          10
                                                                    142
gga cgc tgatgctcca ggaccctctg aaccacgacg t
Gly Arg
 20
<210> 71
<211> 21
 <212> PRT
 <213> Conus aurisiacus
 <400> 71
 Glu Ser Asp Arg Asn Gly Arg Cys Cys His Pro Ala Cys Ala Arg Lys
 Tyr Asn Cys Gly Arg
 <210> 72
 <211> 142
 <212> DNA
 <213> Conus aurisiacus
 <220>
 <221> CDS
 <222> (49)..(111)
 <400> 72
 tctgatggca gggatgacga agccaaagac gaaaggtctg acatgtac gaa tcg gag
                                                       Glu Ser Glu
 cgg aat gaa cgc tgt tgc cat cct gcc tgt gcg aga aag tat aat tgt
                                                                    105
 Arg Asn Glu Arg Cys Cys His Pro Ala Cys Ala Arg Lys Tyr Asn Cys
                                                                     142
 gga cgc tgatgctcca ggaccctctg aaccacgacg t
 Gly Arg
  20
 <210> 73
 <211> 21
 <212> PRT
 <213> Conus aurisiacus
 <400> 73
```

```
Glu Ser Glu Arg Asn Glu Arg Cys Cys His Pro Ala Cys Ala Arg Lys
Tyr Asn Cys Gly Arg
              20
<210> 74
<211> 208
<212> DNA
<213> Conus magus
<220>
<221> CDS
<222> (1)..(177)
<400> 74
                                                                       48
atg ttc acc gtg ttt ctg ttg gtt gtc ttg aca acc act gtc gtt tcc
Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser
ttc cct tca gat cgt gca tct gat ggc agg gat gac gaa gcc aaa gac
Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp
gaa agg tot gac atg tac gaa tog aaa cgg gat gga cgc tgt tgc cat
Glu Arg Ser Asp Met Tyr Glu Ser Lys Arg Asp Gly Arg Cys Cys His
                                                                        144
cct qcc tgt ggg caa aac tat agt tgt gga cgc tgatgctcca ggaccctctg 197
Pro Ala Cys Gly Gln Asn Tyr Ser Cys Gly Arg
                                                                        208
aaccacgacg t
<210> 75
<211> 59
<212> PRT
<213> Conus magus
<400> 75
Met Phe Thr Val Phe Leu Leu Val Val Leu Thr Thr Thr Val Val Ser
Phe Pro Ser Asp Arg Ala Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp
Glu Arg Ser Asp Met Tyr Glu Ser Lys Arg Asp Gly Arg Cys Cys His
Pro Ala Cys Gly Gln Asn Tyr Ser Cys Gly Arg
<210> 76
 <211> 142
<212> DNA
<213> Conus magus
<220>
<221> CDS
<222> (1)..(111)
```

	> 76															
tct Ser 1	gat Asp	ggc Gly	agg Arg	gat Asp 5	gac Asp	gaa Glu	gcc Ala	aaa Lys	gac Asp 10	gaa Glu	agg Arg	cct Pro	gac Asp	atg Met 15	tac Tyr	48
				gat Asp												96
			gga Gly	cgc Arg	tgat	gata	cca (ggaco	ictct	g aa	accad	gacç	y t			142
<211 <212)> 77 !> 37 !> PF	7 RT	magı	ıs												
)> 77 Asp		Arg	Asp 5	Asp	Glu	Ala	Lys	Asp 10	Glu	Arg	Pro	Asp	Met 15	Tyr	
Lys	Ser	ГÀЗ	Arg 20	Asp	Gly	Arg	Cys	Cys 25	His	Pro	Ala	Cys	Ala 30	Lys	His	
Phe	Asn	Cys 35	Gly	Arg												
<211 <212)> 78 1> 14 2> Di 3> Co	12 NA	magı	ıs												
	L> CI		(111))				•								
<400)> 78	3														
tct	gat	ggc		gat Asp 5												48
				aat Asn												96
	_	_	gga Gly	cgc Arg	tgat	tgct	cca (ggacı	cata	tg a	acca	cgac	gt			142
<21:	0> 7: 1> 3: 2> P: 3> C:	7 RT	mag	us												
	0> 7: Asp		Arg	Asp 5	Asp	Glu	Ala	Lys	Asp 10	Glu	Arg	Ser	Asp	Met 15	Tyr	
Glu	Ser	Lys	Arg 20	Asn	Gly	Arg	Cys	Cys 25	His	Pro	Ala	Cys	Ala 30	ГÀЗ	Asn	

```
Tyr Ser Cys Gly Arg
<210> 80
<211> 142
<212> DNA
<213> Conus magus
<220>
<221> CDS
<222> (1)..(111)
<400> 80
tct gat ggc agg gat gac gaa gcc aaa gac gaa agg tct gac atg tac
Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr
gaa tog gao ogg aat gga ogo tgt tgo oat oot goo tgt gog aga aag
                                                                    96
Glu Ser Asp Arg Asn Gly Arg Cys Cys His Pro Ala Cys Ala Arg Lys
tat aat tgt gga cgc tgatgctcca ggaccctctg aaccacgacg t
                                                                    142
Tyr Asn Cys Gly Arg
<210> 81
<211> 37
<212> PRT
<213> Conus magus
<400> 81
Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met Tyr
Glu Ser Asp Arg Asn Gly Arg Cys Cys His Pro Ala Cys Ala Arg Lys
Tyr Asn Cys Gly Arg
35
<210> 82
<211> 142
<212> DNA
<213> Conus obscurus
<220>
<221> CDS
<222> (55)..(111)
<400> 82
tctgatggca gggatgacac agccaaaaac aaaggatctg acatgaacaa attg gtc
                                                                     57
                                                               Val
 aag aaa aaa caa tgt tgc aat cct gcc tgt ggc cca aag tat agt tgt
                                                                     105
 Lys Lys Lys Gln Cys Cys Asn Pro Ala Cys Gly Pro Lys Tyr Ser Cys
                                                                     142
 qqa cac tgatgctcca ggaccctctg aaccacgacg t
 Gly His
```

```
<210> 83
<211> 19
<212> PRT
<213> Conus obscurus
<400> 83
Val Lys Lys Gln Cys Cys Asn Pro Ala Cys Gly Pro Lys Tyr Ser
Cys Gly His
<210> 84
<211> 148
<212> DNA
<213> Conus striatus
<220>
<221> CDS
<222> (1)..(117)
<400> 84
tet gat ggc agg gat gac gaa gcc aaa gac gaa agg tet gac atg cac
Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met His
gaa tog gac ogg aaa gga ogo goa tac tgt tgc cat cot goo tgt ggo
Glu Ser Asp Arg Lys Gly Arg Ala Tyr Cys Cys His Pro Ala Cys Gly
aaa aag tat aat tgt gga cgc tgatgctcca ggaccctctg aaccacgacg t
                                                                   148
Lys Lys Tyr Asn Cys Gly Arg
<210> 85
<211> 39
<212> PRT
<213> Conus striatus
<400> 85
Ser Asp Gly Arg Asp Asp Glu Ala Lys Asp Glu Arg Ser Asp Met His
Glu Ser Asp Arg Lys Gly Arg Ala Tyr Cys Cys His Pro Ala Cys Gly
Lys Lys Tyr Asn Cys Gly Arg
<210> 86
<211> 226
<212> DNA
<213> Conus ermineus
<220>
<221> CDS
<222> (1)..(186)
<400> 86
```

atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc ggt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Gly Ser 1 5 10 15	48
ttc act tta gat cgt gca tct gat ggt agg gat gcc gca gcc aac gac Phe Thr Leu Asp Arg Ala Ser Asp Gly Arg Asp Ala Ala Asn Asp 20 25 30	96
aaa gcg tct gac ctg atc gct ctg acc gcc agg aga gat cca tgc tgt Lys Ala Ser Asp Leu Ile Ala Leu Thr Ala Arg Arg Asp Pro Cys Cys 35 40 45	144
tac cat cct acc tgt aac atg agt aat cca cag att tgt ggt Tyr His Pro Thr Cys Asn Met Ser Asn Pro Gln Ile Cys Gly 50 55 60	186
tgaagacgct gatgctccag gaccctctga accacgacgt	226
<210> 87 <211> 62 <212> PRT <213> Conus ermineus	
<pre><400> 87 Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Gly Ser</pre>	
Phe Thr Leu Asp Arg Ala Ser Asp Gly Arg Asp Ala Ala Asn Asp 20 25 30	
Lys Ala Ser Asp Leu Ile Ala Leu Thr Ala Arg Arg Asp Pro Cys Cys 35 40 45	
Tyr His Pro Thr Cys Asn Met Ser Asn Pro Gln Ile Cys Gly 50 55 60	
<210> 88 <211> 226 <212> DNA <213> Conus ermineus	
<220> <221> CDS <222> (1)(186)	
<pre><400> 88 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc ggt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Gly Ser 1 5 10 15</pre>	48
ttc act tta gat cgt gca tct gat ggt agg gat gcc gca gcc aac gac Phe Thr Leu Asp Arg Ala Ser Asp Gly Arg Asp Ala Ala Ala Asn Asp 20 25 30	96
aaa gcg tct gac ctg atc gct ctg acc gcc agg aga gat cca tgc tgt Lys Ala Ser Asp Leu Ile Ala Leu Thr Ala Arg Arg Asp Pro Cys Cys 35 40 45	144
tcc aat cct gcc tgt aac gtg aat aat cca cag att tgt ggt Ser Asn Pro Ala Cys Asn Val Asn Asn Pro Gln Ile Cys Gly 50 55 60	186

tga	agaco	jct g	gatgo	tcca	ıg ga	ccct	ctga	acc	acga	cgt						226
<21:	0> 89 1> 62 2> PF 3> Co	? RT	ermi	.neus	;					٠						
	0> 89 Phe		Val	Phe 5	Leu	Leu	Val	Val	Leu 10	Ala	Thr	Thr	Val	Gly 15	Ser	
Phe	Thr	Leu	Asp 20	Arg	Ala	Ser	Asp	Gly 25	Arg	Asp	Ala	Ala	Ala 30	Asn	Asp ·	
Lys	Ala	Ser 35	Asp	Leu	Ile	Ala	Leu 40	Thr	Ala	Arg	Arg	Asp 45	Pro	Cys	Cys	
Ser	Asn 50	Pro	Ala	Cys	Asn	Val 55	Asn	Asn	Pro	Gln	Ile 60	Cys	Gly			
<21 <21	0> 90 1> 1' 2> Di 3> Co	72 NA	pur	puras	scens	5					\					
	0> 1> CI 2> (:		(132))												
atq	0> 90 .ttc Phe	acc	gtg Val	ttt Phe 5	ctg Leu	ttg Leu	gtg Val	gat Asp	gcc Ala 10	gca Ala	gcc Ala	aac Asn	gac Asp	aag Lys 15	gcg Ala	48
tct Ser	gac Asp	cgg Arg	atc Ile 20	gct Ala	ctg Leu	acc Thr	gcc Ala	agg Arg 25	aga Arg	gat Asp	cca Pro	tgc Cys	tgt Cys 30	tcc Ser	aat Asn	96
cct Pro	gtc Val	tgt Cys 35	acc Thr	gtg Val	cat His	aat Asn	cca Pro 40	cag Gln	att Ile	tgt Cys	ggt Gly	tga	agac	gct		142
gat	gctc	cag	gacc	ctct	ga a	ccac	gacg	t								172
<21 <21	0> 9 1> 4 2> P 3> C	4 RT	pur	pura	scen	s										
			Val	Phe 5	Leu	Leu	Val	Asp	Ala 10	Ala	Ala	Asn	Asp	Lys 15	Ala	
Ser	Asp	Arg	Ile 20		Leu	Thr	Ala	Arg 25		Asp	Pro	Суз	30 Суз		Asn	
Pro	Val	Cys 35		Val	His	Asn	Pro 40		Ile	Суз	Gly	•)				

<210> 92

```
<211> 220
<212> DNA
<213> Conus purpurascens
<220>
<221> CDS
<222> (1)..(189)
<400> 92
                                                                   48
atg ttc acc gtg ttt ctg ttg gtt gtc ttg gta acc acc gtc gtt tcc
Met Phe Thr Val Phe Leu Leu Val Val Leu Val Thr Thr Val Val Ser
ttc aat tca gat cgt gca tta ggt ggc agg aat gct gca gcc aaa gcg
                                                                   96
Phe Asn Ser Asp Arg Ala Leu Gly Gly Arg Asn Ala Ala Ala Lys Ala
tct gac aag atc gct tcg atc ctc ggg aga aga gca tgc tgt tct tat
Ser Asp Lys Ile Ala Ser Ile Leu Gly Arg Arg Ala Cys Cys Ser Tyr
cct ccc tgt aac gtg aac tat cca gaa att tgt ggt gga cga ggc
                                                                   189
Pro Pro Cys Asn Val Asn Tyr Pro Glu Ile Cys Gly Gly Arg Gly
                                                                   220
tgatgctcca ggaccctctg aaccacgacg t
<210> 93
<211> 63
<212> PRT
<213> Conus purpurascens
<400> 93
Met Phe Thr Val Phe Leu Leu Val Val Leu Val Thr Thr Val Val Ser
Phe Asn Ser Asp Arg Ala Leu Gly Gly Arg Asn Ala Ala Ala Lys Ala
Ser Asp Lys Ile Ala Ser Ile Leu Gly Arg Arg Ala Cys Cys Ser Tyr
Pro Pro Cys Asn Val Asn Tyr Pro Glu Ile Cys Gly Gly Arg Gly
<210> 94
<211> 226
<212> DNA
<213> Conus sulcatus
<220>
<221> CDS
<222> (1)..(195)
atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc acc gtc gtt ccc
Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Pro
ttc aat tca gat cgt gat cca gca tta ggt ggc agg aat gct gca gcc
                                                                    96
Phe Asn Ser Asp Arg Asp Pro Ala Leu Gly Gly Arg Asn Ala Ala Ala
                                                      30
```

ata Ile	gcg Ala	Ser 35	gac Asp	aag Lys	Ile	gct Ala	Ser 40	acc Thr	ctc Leu	agg Arg	aga Arg	gga Gly 45	gga Gly	tgc Cys	tgt Cys	144
tct Ser	tat Tyr 50	cct Pro	ccc Pro	tgt Cys	aac Asn	gtg Val 55	tcc Ser	tat Tyr	cca Pro	gaa Glu	att Ile 60	tgt Cys	ggt Gly	gga Gly	cga Arg	192
cgc Arg 65	tgat	gcto	cca c	ggaco	cctct	g aa	ccac	gacg	g t							226
<21:	0> 95 1> 65 2> PF 3> Co	; {T	sulo	atus	3											
)> 95 Phe		Val	Phe 5	Leu	Leu	Val	Val	Leu 10	Ala	Thr	Thr	Val	Val 15	Pro	
Phe	Asn	Ser	Asp 20	Arg	Asp	Pro	Ala	Leu 25	Gly	Gly	Arg	Asn	Ala 30	Ala	Ala	
Ile	Ala	Ser 35	Asp	Lys	Ile	Ala	Ser 40	Thr	Leu	Arg	Arg	Gly 45	Gly	Cys	Сув	
Ser	Tyr 50	Pro	Pro	Cys	Asn	Val 55	Ser	Tyr	Pro	Glu	Ile 60	Cys	Gly	Gly	Arg	
Arg 65																
<21 <21	0> 96 1> 22 2> DN 3> Co	09 NA	sulo	catus	3											-
	0> 1> CI 2> (1		(189))												
	0> 96 ttc		gtg	ttt	ctg	ttg	gtt	gtc	ttg	gca	acc	acc	gtc	gtt	tcc	48
Met 1	Phe	Thr	Val	Phe 5	Leu	Leu	Val	Val	Leu 10	Ala	Thr	Thr	Val	Val 15	Ser	
ttc Phe	aat Asn	tca Ser	gat Asp 20	cgt Arg	gca Ala	tta Leu	ggt Gly	ggc Gly 25	agg Arg	aat Asn	gct Ala	gca Ala	gcc Ala 30	aaa Lys	gcg [*] Ala	96
tct Ser	gac Asp	aag Lys 35	atc Ile	gct Ala	tcg Ser	atc Ile	ctc Leu 40	Gly ggg	aga Arg	aga Arg	aga Arg	tgc Cys 45	tgt Cys	tct Ser	tat Tyr	144
cct Pro	ccc Pro 50	tgt Cys	aac Asn	gtg Val	tcc Ser	tat Tyr 55	cca Pro	gaa Glu	att Ile	tgt Cys	ggt Gly 60	gga Gly	cga Arg	cgc Arg		189
tga	tgcto	cca (ggac	cete	tg a	acca	gac	g t								220

<210> 97 <211> 63 <212> PRT <213> Conus sulcatus <400> 97 Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser Phe Asn Ser Asp Arg Ala Leu Gly Gly Arg Asn Ala Ala Ala Lys Ala Ser Asp Lys Ile Ala Ser Ile Leu Gly Arg Arg Arg Cys Cys Ser Tyr Pro Pro Cys Asn Val Ser Tyr Pro Glu Ile Cys Gly Gly Arg Arg <210> 98 <211> 220 <212> DNA <213> Conus sulcatus <220> <221> CDS <222> (1)..(189) <400> 98 atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc acc gtc gtt tcc Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser ttc aat tca gat cgt gca tta ggt ggc agg aat gct gca gcc aaa gcg 96 Phe Asn Ser Asp Arg Ala Leu Gly Gly Arg Asn Ala Ala Ala Lys Ala tot gac aag atc got tog atc otc ggg aga aga gca tgo tgt tot tat 144 Ser Asp Lys Ile Ala Ser Ile Leu Gly Arg Arg Ala Cys Cys Ser Tyr cct ccc tgt aac gtg aac tat cca gaa att tgt ggt gga cga ggc 189 Pro Pro Cys Asn Val Asn Tyr Pro Glu Ile Cys Gly Gly Arg Gly 220 tgatgctcca ggaccctctg aaccacgacg t <210> 99 <211> 63 <212> PRT <213> Conus sulcatus <400> 99 Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Val Ser Phe Asn Ser Asp Arg Ala Leu Gly Gly Arg Asn Ala Ala Lys Ala

Ser Asp Lys Ile Ala Ser Ile Leu Gly Arg Arg Ala Cys Cys Ser Tyr 35 40

```
Pro Pro Cys Asn Val Asn Tyr Pro Glu Ile Cys Gly Gly Arg Gly
                           55
<210> 100
<211> 226
<212> DNA
<213> Conus purpurascens
<220>
<221> CDS
<222> (1)..(186)
<400> 100
atg ttc acc gtg ttt ctg ttg gtt gtc ttg gca acc act gtc ggt tcc
Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Gly Ser
                                                                       48
                                                                       96
ttc act tta gat cgt gca tct gat ggt agg gat gcc gca gcc aac gac
Phe Thr Leu Asp Arg Ala Ser Asp Gly Arg Asp Ala Ala Ala Asn Asp
                                   25
aaa gcg act gac ctg atc gct ctg acc gcc agg aga gat cca tgc tgt
Lys Ala Thr Asp Leu Ile Ala Leu Thr Ala Arg Arg Asp Pro Cys Cys
                                                                       186
tcc aat cct gtc tgt acc gtg cat aat cca cag att tgt ggt
Ser Asn Pro Val Cys Thr Val His Asn Pro Gln Ile Cys Gly
     50
                                                                       226
tgaagacgct gatgcttcag gaccctctga accacgacgt
<210> 101
<211> 62
<212> PRT
<213> Conus purpurascens
<400> 101
Met Phe Thr Val Phe Leu Leu Val Val Leu Ala Thr Thr Val Gly Ser
Phe Thr Leu Asp Arg Ala Ser Asp Gly Arg Asp Ala Ala Ala Asn Asp
Lys Ala Thr Asp Leu Ile Ala Leu Thr Ala Arg Arg Asp Pro Cys Cys
Ser Asn Pro Val Cys Thr Val His Asn Pro Gln Ile Cys Gly
<210> 102
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:MI Analog
 <400> 102
 Gly Arg Cys Cys His Pro Ala Cys Gly Gln Asn Thr Ser Cys
```

```
<210> 103
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:MI Analog
<400> 103
Gly Arg Cys Cys His Pro Ala Cys Gly Glu Asn Thr Ser Cys
<210> 104
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:MI Analog
<400> 104
Gly Arg Cys Cys His Pro Ala Cys Gly Gln Gln Thr Ser Cys
 <210> 105
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:MI Analog
 <400> 105
 Gly Arg Cys Cys Asn Pro Ala Cys Gly Gln Asn Thr Ser Cys
                   5
 <210> 106
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:MI Analog
 <400> 106
 Gly Arg Cys Cys His Pro Ala Cys Gly Asn Asn Thr Ser Cys
 <210> 107
 <211> 13
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:MI Analog
 <400> 107
 Arg Cys Cys His Pro Ala Cys Gly Gln Gln Thr Ser Cys
```

```
<210> 108
<211> 14
<212> PRT
<<213> Artificial Sequence
<223> Description of Artificial Sequence:MI Analog
Gly Arg Cys Cys His Pro Ala Cys Gly Gln Asn Thr Asp Cys
<210> 109
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (10)
<223> Xaa at residue 10 is homo-Ser
<220>
<223> Description of Artificial Sequence:MI Analog
<400> 109
Gly Arg Cys Cys His Pro Ala Cys Gly Xaa Asn Thr Ser Cys
<210> 110
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:MI Analog
<400> 110
Glu Cys Cys His Pro Ala Cys Gly Gln Asn Thr Ser Cys
<210> 111
 <211> 12
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:MI Analog
 <400> 111
 Cys Cys His Pro Ala Cys Gly Gln Asn Thr Ser Cys
 <210> 112
 <211> 14
 <212> PRT
<213> Artificial Sequence
```

PCT/US01/22892

```
<220>
 <223> Description of Artificial Sequence:MI Analog
 <400> 112
 Gly Arg Cys Cys His Pro Ala Cys Gly Gln Asn Phe Ser Cys
 <210> 113
 <211> 14
<212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:MI Analog
 <400> 113
 Gly Arg Cys Cys His Pro Ala Cys Gly Gln Asn Thr Lys Cys
 <210> 114
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:MI Analog
 Gly Glu Cys Cys His Pro Ala Cys Gly Gln Asn Thr Ser Cys
 <210> 115
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221> PEPTIDE
  <222> (4)..(14)
 <223> Glu4 and Lys14 form a lactam bridge
<223> Description of Artificial Sequence:MI Analog
  <400> 115
  Gly Arg Cys Glu His Pro Ala Cys Gly Gln Asn Thr Ser Lys
  <210> 116
  <211> 14
  <212> PRT
  <213> Artificial Sequence
  <220>
  <221> PEPTIDE
  <222> (4)..(14)
  <223> Glu4 and Lys14 form a lactam bridge
  <223> Description of Artificial Sequence:MI Analog
```

```
<400> 116
Gly Arg Cys Glu His Pro Ala Cys Gly Asn Asn Thr Ser Lys
<210> 117
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (4)..(14)
<223> Asp4 and Lus14 form a lactam bridge
<223> Description of Artificial Sequence:MI Analog
<400> 117
Gly Arg Cys Asp His Pro Ala Cys Gly Gln Asn Thr Ser Lys
<210> 118
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (4)..(14)
<223> Asp4 and Lys14 form a lactam bridge
<223> Description of Artificial Sequence:MI Analog
<400> 118
Gly Arg Cys Asp His Pro Ala Cys Gly Asn Asn Thr Ser Lys
<210> 119
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:GI Analog
<400> 119
Glu Cys Cys Asn Pro Ala Cys Gly Gln His Thr Ser Cys
<210> 120
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:GI Analog
<400> 120
```

```
Glu Cys Cys Asn Pro Ala Cys Gly Asn His Thr Ser Cys
<210> 121
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (3)..(13)
<223> Glu3 and Lys13 form a lactam bridge
<223> Description of Artificial Sequence: GI Analog
<400> 121
Glu Cys Glu Asn Pro Ala Cys Gly Arg His Thr Ser Lys
<210> 122
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (3)..(13)
<223> Glu3 and Lys13 form a lactam bridge
<223> Description of Artificial Sequence: GI Analog
<400> 122
Glu Cys Glu Asn Pro Ala Cys Gly Gln His Thr Ser Lys
<210> 123
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (3)..(13)
<223> Glu3 and Lys13 form a lactam bridge
<220>
<223> Description of Artificial Sequence: GI Analog
<400> 123
Glu Cys Glu Asn Pro Ala Cys Gly Asn His Thr Ser Lys
<210> 124
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
```

PCT/US01/22892

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/22892

IPC(7) US CL According to B. FIELI Minimum doc	SIFICATION OF SUBJECT MATTER : A61K 38/04; C07K 7/08 : 530/323, 327; 514/14 International Patent Classification (IPC) or to both nat OS SEARCHED numentation searched (classification system followed by 0/323, 327; 514/14		
Documentation	n searched other than minimum documentation to the	extent that such documents are included	in the fields searched
	ta base consulted during the international search (name ontinuation Sheet	e of data base and, where practicable, se	earch terms used)
C. DOCU	IMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where app		Relevant to claim No.
х	JACOBSEN et al. Critical residues influence the aff conotoxin MI for nicotinic acetylcholine receptors. l 38, No. 40, pages 13310- 13315, especially Table 2.	Biochemistry 05 October 1999, Vol.	1-2
х	MOK et al. NMR solution conformation of an antit Identification of a common nicotinic acetylcholine re for small ligands and alpha-conotoxins. Biochemistry 37, pages 11895-11904, entire document.	ceptor alpha1-subunit binding surface	1,2
х	BREN et al. Hydrophobic pairwise interactions stab muscle acetylcholine receptor binding site. Journal 2 2000, Vol. 275, No. 17, pages 12692-12700, entire	Biological Chemistry. 28 April	1, 2
A, P	PAPINENI et al. Site-specific charge interactions o nicotinic acetylcholine receptor. Journal Biological No. 26, pages 23589-23598, entire document.	f alpha- conotoxin MI with the Chemistry. 29 June 2001, Vol. 276,	1-2
Purther	documents are listed in the continuation of Box C.	See patent family annex.	
	pecial categories of cited documents:	"T" later document published after the inte	ernational filing date or priority
	defining the general state of the art which is not considered to be	date and not in conflict with the appli principle or theory underlying the inv	cation but cited to understand the ention
of partice	alar relevance optication or patent published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	
"L" documen establish specified	t which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	when the document is taken alone "Y" document of particular relevance; the considered to involve an inventive ste combined with one or more other suc	p when the document is
"O" documen	t referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in the	
"P" document	t published prior to the international filing date but later than the date claimed	"&" document member of the same patent	
	actual completion of the international search	Date of mailing of the international se	
	er 2001 (26.09.2001) nailing address of the ISA/US	Authorized officer DACCE	to fan
Co Bo	mmissioner of Patents and Trademarks x PCT sshington, D.C. 20231	Gibriele E. BUGAISKY	()
	io. (703)305-3230	Telephone No. 708 308-0196	· · · · · · · · · · · · · · · · · · ·

International application No.

PCT/US01/22892

INTERNATIONAL SEARCH REPORT

egory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HANN et al. The 9-arginine residue of alpha-conotoxin GI is responsible for its selective high affinity for the alphagamma agonist site on the electric organ acetylcholine receptor. Biochemistry (UNITED STATES) 22 July 1997, Vol. 36, No. 29, pages 9051-9056, entire document.	1-2
	·	

Form PCT/ISA/210 (second sheet) (July 1998)

INTERDALATION LATE CITATION DO TOTAL DESIGNATION	International application No.
INTERNATIONAL SEARCH REPORT	PCT/US01/22892
	·
•	
Continuation of B. FIELDS SEARCHED Item 3:	•
Dialog files 5, 155, 34, (Biosis, Medline, Scisearch) CAS-STN files registry	. CA
search terms: conotox?, varia?, varie?, modif?, substitut?, mutagen? mutat?, HPACG/SQSP, CGQNYS/SQSP, CCNPA/SQSP, NPACG/SQSP	MI, GI, M1, G1, MI, GI, M1, G1, RCCHPAC/SQSP,
HPACG/SQSP, CGQNYS/SQSP, CCNPA/SQSP, NPACG/SQSP	
•	
•	
·	
	ı
	· ·

Form PCT/ISA/210 (second sheet) (July 1998)