LaMEM short course

19-23 02 2024 Heidelberg

Nicolas Riel- nriel@uni-mainz.de

Subduction setup

- Study buoyancy driven subduction
- Retrieve P-T-t paths
- Include phase diagrams
- Include creep laws

Thermal ages:

- Oceanic lithosphere = 70 Myr
- Oceanic pre-subducted slab = 60 Myr
- Overriding plate = 70 Myr

Model parameters:

Resolution = (256,1,96)

Tair = 20.0

T bottom = 1300.0

 $nstep_max = 400$

- Note that, although we prescribe a temperature profile the setup uses iso-viscous rheologies
- Apply the following plastic parameters for the lithosphere and continental crust:

```
ch = 20e6,
fr = 10,
```

For the oceanic crust use:

Here we want a weak crust to act as a weak subduction interface

Add passive at 35 km depth

Perform the simulation

Example of subduction modelling results

0.00 Myrs

- Compute and display the evolution of the convergence velocity in cm/yr
 - select tracers ID=0 and ID=127 (first and last tracers)

Evolution of the convergence velocity:

Next, select the tracers belonging to the oceanic lithosphere (phase .== 3)
and plot the Pressure-Temperature-time paths of the path

Pressure temperature path of the slab

Temperature of the slab is too low compared to cold slab, why is that?

Volcano setup

 Study the impact of magmatic recharge/vesiculation on surface uplift

Askja Volcano - Iceland

- Large uplift between 2021-2022, up to 10 cm!
- Magma vesiculation or change in the hydrothermal system??

Askja Volcano - Iceland

Askja Volcano – proposed setup

Tair = 20 Tbot = 1000 Tgradient = 25 C/km

 $\dot{\epsilon}xx = 5e-16$ (extension)

phase transition

at t > 0.05 Myr

 $ID_1 = crust$

ID_2 = deepcopy(crust ...)

ID_3 = deepcopy(crust ...)

 $ID_4 = deepcopy(crust ..., eta = 5e16, rho = 2100)$

 $ID_5 = deepcopy(crust ..., eta = 1e16, rho = 10)$

In Model(...) update the following

```
Scaling(GEO units( temperature
                                  = 1000,
                   stress
                                  = 1e9Pa,
                   length
                                  = 1 \text{km}
                   viscosity
                                  = 1e18Pa*s)),
Grid(
                                  = [-16.0, 16.0],
                   Χ
                                  = [-0.2, 0.2],
                   У
                                  = [-16.0, 4.0],
                   Z
                                  = (128, 2, 64)),
                   nel
Time(
                   time end
                                  = 1.0,
                   dt
                                  = 0.00001,
                   dt min
                                  = 0.0000001,
                   dt max
                                  = 0.01,
                   nstep max
                                  = 80,
                                  = 1 ),
                   nstep out
SolutionParams(
                   act temp diff
                                  = 1,
                   FSSA
                                  = 1.0,
                   eta min
                                  = 1e16,
                   eta ref
                                  = 1e19,
                   eta max
                                  = 1e21,
                   init guess
                                  = 1,
                   p_lim_plast
                                  = 1),
```

Definition of Phase Transition:

Don't forget to add the phases, topography and phase transition to your model setup!

```
add_phase!( model, air, Crust, MagmaCrust, GasCrust, Magma, Gas)
add_topography!(model, Topo_LaMEM)
add_phasetransition!(model, phaseT)
```

Standard modelling parameters:

```
G = 5e10 # elastic bulk modulus
rho = 2800 # Average crust density
```

Thermal parameters

```
alpha = 3e-5 # thermal expansivity
K = 3 # thermal conductivity
```

Cp = 1000 # heat capacity

Plastic parameters

```
ch = 10e6 # cohesion
```

fr = 10 # frictional angle

Run simplified model first (without phase change to make sure everything is right)

Example of modelling results for the Askja Volcano setup

