Chapter 6: Comparing more than two means

Learning objectives of this chapter:

- Implementing a t-test as a regression in R
- Performing an ANOVA in R
- Implementing an ANOVA as a regression in R
- Introducing a covariate in ANCOVA in R

Assignment 6.1: Implementing a t-test as a regression in R

Many of the statistical tests that we have seen are actually equivalent to a specific form of linear regression. To understand how a t-test can be implemented as a linear regression, let's look at an example. Suppose you work in advertising and show four groups of people an advertisement, where the only difference is in the color/position of the eyes of the model (blue eyes, brown eyes, green eyes, or downward-looking eyes), and you ask them how they rate your brand after seeing this advertisement. For this assignment, we will use the eyeColor.csv data file that contains 222 participants' ratings for one of the four groups. As a first question, you want to assess whether there is a difference in the ratings if the model shown in the advertisement has blue eyes rather than brown eyes.

6.1 a) Read in the file eyeColor.csv and store the data in an object called dataset8.

R code 6.1a:			

Note that this data set contains all four groups (<code>Blue</code> , <code>Brown</code> , <code>Green</code> , <code>Down</code>). Run the following R code to isolate the scores of the groups that were shown advertisements with <code>Blue</code> and <code>Brown</code> eyes and store them in the new <code>ttestData</code> object.

6.1 b) Write down the **null hypothesis** H_0 and **alternative hypothesis** H_1 for testing whether the **mean** score of the group that was shown **Blue** eyes is equal to the **mean** score of the group that was shown **Brown** eyes. Remember that these are independent **samples**.

Answer 6.1b:		
H_0 :	H_1 :	

6.1 c	:)	Use the	t.test()	function ·	to test t	he equality	of t	the two	means.
--------	----	---------	----------	------------	-----------	-------------	------	---------	--------

000	,
9/	0
0(00) =
	6

Hint 6.1: Make sure to specify var.equal = TRUE to perform a two-sample t-test instead of the non-parametric Welch's t-test.

R code 6.1c:	
6.1 d) What is your conclusion on the basis of these results? Include the following elements:	
☐ Discuss what the p-value is for this test.	
\square Discuss whether H_0 is rejected or not.	
\square Describe what this tells us about μ_{Blue} and μ_{Brown} .	
\Box Describe what type of error is relevant (type-I or type-II).	
Answer 6.1d:	
	_
	_
	_
	_
	_

Now, instead of using the <code>t.test()</code> function to test the equality of the two <code>means</code>, you can test the equality of the two <code>means</code> using a <code>regression model</code>. Therefore, you need to add a variable to our data that says whether a participant saw one of the two groups (e.g., only the people that were shown <code>Brown</code> eyed models).

Run the following code in R:

```
dummyBrown <- as.numeric(ttestData$Group == 'Brown')
ttestData <- cbind(ttestData, dummyBrown)</pre>
```

6.1 e)	What are the contents of dummyBrown? What do we call this kind of variable?
Answe	er 6.1e:
6.1 f)	Create a linear model in R where you predict the (outcome) variable Score using onl the (predictor) variable dummyBrown . Store the fitted model in an object called ttestreg .
R cod	e 6.1f:
6.1 g)	Use the <pre>summary()</pre> function to inspect the results of the <pre>ttestreg</pre> model. How does this output correspond to the <pre>t-test</pre> that you performed in assignment 6.1c? Where do you find the <pre>p-value</pre> that you calculated using the <pre>t.test()</pre> function?
R cod	e 6.1g:
Answe	er 6.1g:
_	

Assignment 6.2: Performing an ANOVA in R

Now let's extend the analysis from assignment 6.1 by comparing all four groups (Blue, Brown, Green, Down) instead of only the Blue and Brown groups. When you are testing more than two means, you can use an ANOVA test (a specific form of regression). Since you want to compare all four groups, you can leave the ttestData from the previous assignment and focus on the data in dataset8. Remember that you are interested in testing the effect of the model's eye color on the rating of your brand.

6.2 a) Write down the **null hypothesis** H_0 and the **alternative hypothesis** H_1 for testing whether the **mea** n score of the four groups (**Blue** , **Brown** , **Green** , **Down**) are equal.

Answer 6.2a:	
H_0 :	H_1 :

The **ANOVA** uses the **F-distribution** to test for a significant difference between all four **means**. Using the (two types of) **degrees of freedom** of this **F-distribution**, you can calculate the **critical F-value** that is required to reject the **null hypothesis** that the **means** of the four groups are equal. Table 5 on page 99 contains the **critical F-values** for a confidence of 95%.

Comparison of F - distributions

6.2 b) Calculate the **degrees of freedom** df_M and df_R of the **F-distribution** for the data in dataset8.

Hint 6.2: You can find the formulas for df_M and df_R in the formula sheet.

Answer 6.2b:	
df_M :	df_R :

6.2 c) Using the qf() function, calculate the critical F-value that is required to reject the **null hypothesis** H_0 for these data with 95% confidence.

R code 6.2c:			

Answer 6.2c:		
Critical F-value:		

The aov() function in R is a wrapper for the lm() function. The difference between these two functions is that the lm() function can only handle categorical predictors with two levels (e.g., a dummy variable). The aov() function can handle categorical predictor variables with more than two levels, since it automatically rewrites the formula to include the dummy variables.

6.2 d) Use the aov() function to perform an ANOVA with the dependent (outcome) variable Score and the independent (predictor) variable Group and store the result in an object named anovaResult .

Hint 6.3: You can check more information on the aov() function with ?aov .

R code 6.2d:		

6.2 e)	Use the summary() function to inspect the results of the ANOVA in anovaResult . What is the F-value that is calculated from the sample ? What is the p-value calculated from the sample ?
R code	e 6.2e:
	value: p-value:
6.2 f)	What is your conclusion on the basis of these results? Include the following elements: \square Discuss what the p-value is for this test. \square Discuss whether H_0 is rejected or not. \square Describe what this tells us about μ_{Blue} , μ_{Brown} , μ_{Green} , and μ_{Down} . \square Describe what type of error is relevant (type-I or type-II).
Answe	er 6.2f:

Assignment 6.3: Implementing an ANOVA as a regression in R

Now that you have seen the results of the **ANOVA**, let's try to replicate these by implementing the same **ANOVA** as a **linear regression**. Remember that this is exactly what you did for the **t-test** in assignment 6.1 by adding one **dummy variable** to your model that isolated the **Brown** group. For the **ANOVA**, you are going to have three **dummy variables** in your model, one that represents **Brown** eyes, one that represents **Blue** eyes, and one that represents **Green** eyes. You first have to add these dummy variables to your data set.

Run the following code in R that adds a **dummy variable** for **Brown** eyes to the data set:

```
dummyBrown <- as.numeric(dataset8$Group == 'Brown')
dataset8 <- cbind(dataset8, dummyBrown)</pre>
```

6.3 a) Add two more **dummy variables** to the data in **dataset8**, one for **Blue** eyes and one for **Green** eyes. Name these variables **dummyBlue** and **dummyGreen**.

R code 6.3a:		

6.3 b) Create a linear model in R where you predict the (outcome) variable Score using the (predictor) variables dummyBrown, dummyGreen, and dummyBlue. Store the fitted linear model in an object called anovaReg.

R code 6.3b:		

6.3 c) Use the **summary()** function to inspect the results of the **linear model** stored in **anovaReg**. What is the **F-value** of the model? What is the **p-value** of this model?

R code 6.3c:			

Answer 6.3c:		
F-value:	 p-value:	

6.3 d) Do the **F-value** and **p-value** of this **linear model** match those of the **ANOVA** in assignment 6.2?

Answer 6.3d:		
	YES / NO	

Assignment 6.4: Introducing a covariate in ANCOVA in R

There might be other determinants that influence people's ratings of your brand that you have not captured by varying the eye color in the advertisements. An example of this might be people's initial rating of your brand. These kinds of variables are called **covariates** and you can incorporate them in our **ANOVA**, very smoothly resulting in an **ANCOVA**. In our scenario, we want to incorporate the **covariate** for the initial score that our raters gave by adding the **initialScore** variable to our **linear model**.

6.4 a)	Create a linear model in R where you predict the (outcome) variable Score using the (predictor) variables dummyBrown, dummyGreen, dummyBlue, and the variable initialScore. Store the fitted model in an object called ancovaReg.
R code	e 6.4a:
6.4 b)	Use the <pre>summary() function to inspect the results of the linear model stored in ancovaReg</pre> . What is the <pre>F-value</pre> of the model? What is the <pre>p-value</pre> of this model?
R code	e 6.4b:
	er 6.4b: value: p-value:
6.4 c)	What is your conclusion on the basis of these results? Include the following elements: \square Discuss what the p-value is for this test. \square Discuss whether H_0 is rejected or not. \square Describe what this tells us about μ_{Blue} , μ_{Brown} , μ_{Green} , and μ_{Down} , given the covariate. \square Describe what type of error is relevant (type-I or type-II).
Answe	er 6.4c:

6.4 d) Can you tell whether initialScore is a good predictor of the Score? On what value can you base your conclusion?

Hint 6.4: First consider which results you would expect if $\beta_3 \neq 0$.

Answer 6.4d:
To find out whether adding this covariate is an improvement over the linear model in a signment 6.3, we can compare the two linear models anovaReg (without initialScore) are ancovaReg (with initialScore) with respect to their proportion of explained variance (the R^2).
6.4 e) What is the (multiple) R^2 of the anovaReg model ? What is the (multiple) R^2 of the ancovaReg model ? Which model explains more variation in the outcome variable Score?
Answer 6.4e:
R^2 anovaReg : R^2 ancovaReg :
The anovaReg / ancovaReg regression model explains more variation in the outcome variable score.
6.4 f) Interpret the \mathbb{R}^2 for the best model.
Answer 6.4f:

The R^2 statistic will always increase when you add more (predictor) variables to our **model**, since you are adding more information. To reliably compare our two models , you have to look at a measure that penalizes a model for including more (predictor) variables. You can use the AIC value for that. The rule of thumb for the AIC value is that the model with the lower AIC value is the preferred model.

6.4 g)	Use the models.	AIC()	function	to calcula	ite the	AIC	value of t	the an	ovaReg	and the	ancovaReg
R code	e 6.4g:										
Answe	er 6.4g:	Reg :				AIC	ancova	aReg :	_		
6.4 h)	What is			odel? How	r can yo	ou use	the AIC	statis	itic to v	'alidate yo	ou answer in
Answe	er 6.4h:										

Assignment 6.5: Using post-hoc tests in R to find differences in means

For this assignment you will have to download the data file iowa. RData from the online resources². .RData files are compressed R objects, and are useful when dealing with very large data sets such as this one.

The iowa. RData file contains payment transactions recorded in the State of Iowa's central accounting system for the Executive Branch and is real data.

6.5 a) Load the iowa.RData data file into the environment using the load() function.

R code 6.5a:			

The data set is now stored in object called iowa .

6.5 b) Give a short description of the data in iowa.

Hint 6.5: Search the internet for the source of these data to find out what the columns represent.

Ar	swer 6.5b:				

6.5 c) How many rows and columns does the **iowa** data set have?

Answer 6.5c:	
Rows:	Columns:

²These data are taken from https://data.iowa.gov/State-Government-Finance/State-of-Iowa-Checkbook/cyqb-8ina.

6.5 d) How many unique services are there? Make a frequency table of these services.
R code 6.5d:
Answer 6.5d: Unique services:
6.5 e) Which service has the most rows? How many rows does this service have?
Answer 6.5e: Service: Rows:
6.5 f) How many rows show a difference in invoice date and payment date?
R code 6.5f:
Answer 6.5f:
Number of rows that show a difference:
6.5 g) Create a new data set that consists of these differences, and name the new data set dataDif
R code 6.5g:

6.5 h)	Create an extra column named	dif.days	in	dataDif	that contains	the	number	of	days
	between invoice and payment.								

Hint 6.6: Make sure that the column dif.days is numeric.

R cod	le 6.5h:
6.5 i)	Calculate the minimum, maximum, mean, quartiles, and standard deviation of the column dif.days.
R cod	le 6.5i:
Answe	er 6.5i:
Mir	nimum: Upper quartile:
Mea	an: Lower quartile:
Мах	ximum: Standard deviation:
б.5 ј)	Create a histogram of the column $\ensuremath{\operatorname{dif.days}}$. Describe what you see in the histogram.
R cod	le 6.5j:
IV COU	ic o.oj.
Answe	er 6.5j:

6.5 k) Again, create a histogram, but now only use the subset of dif.days that is in the 5-95% quantile range (so you cut off the bottom and top 5%).

Hint 6.7: Hint: use the quantile function.

Time o.r. time. use the quantite ranction.
R code 6.5k:
You don't trust the negative values in <code>dif.days</code> as you cannot interpret them, and therefore you wi not include them in your investigation. Moreover, you also don't want to include value in <code>dif.day</code> that are higher than 365 days.
6.5 l) Create a new data set in which these values are removed and name this data set $\frac{dataDif2}{data}$.
R code 6.5l:
6.5 m) Create a scatter plot with dif.days on the <i>y-axis</i> and Amount on the <i>x-axis</i> .
R code 6.5m:
6.5 n) Compute the correlation between the time between invoice and payment, and the amour that is paid.
R code 6.5n:
Answer 6.5n:
Correlation:

6.5 o)	Elaborate on the correlation co	efficient an	d it's significance. \	What does this imply?
Answe	ver 6.5o:			
6.5 p)	Compute the mean dif.days per	expense categor	y.	
	Hint 6.8: Use the aggregate() fund	ction (for more I	help on this function	n see ?aggregate).
R code	de 6.5p:			
Answe	<i>y</i> er 6.5p:			
——————————————————————————————————————				
6.5 q)	Use the aov() function to test whe are statistically different.	ther the means	s that you comput	ted in assignment 6.5p
Answe	ver 6.5 q:			
p-v	value:			
Con	enclusion:			
R code	de 6.5q:			

6.5 r)	Use Tukey's	Honest	Significant	Differences	to find out wh	nich group	means
	are truly differe	nt.					
000							

	Hint 6.9: Differe		TukeyHSD()	function to	find	Tukey's	Honest	Significan	t
R cod	e 6.5r:								
Answe	er 6.5r:								
In assig	gnment 6.5q	you have	computed an 2	ANOVA , but	this is s	statistically ı	not comple	etely sound.	
6.5 s)	•		thy the ANOV ate analysis?	A in assignn	nent 6.	5q was not	statistical	ly sound? Wha	ıt

Answer 6.5s:		

6.5 t) Why do you think it is a good or bad idea to calculate **p-values** if the number of rows in the data is large?

Answer 6.5t:			