TEMA 9: PROGRAMACIÓN DINÁMICA

COMPUTABILIDAD Y ALGORITMIA
M. Colebrook Santamaría
J. Riera Ledesma
J. Hernández Aceituno

Objetivos

- Intro
- Ejemplo: coeficiente binomial
- Devolver cambio
- El Problema de la Mochila
- El Principio de Optimalidad y la Memoización

Intro (1)

- En la sección anterior de Divide y Vencerás, hemos visto que es posible dividir los problemas en subproblemas, y combinar sus soluciones para resolver el problema principal.
- A veces se consideran subproblemas solapados.
- Si esto ocurre, se puede aprovechar para resolver cada subproblema una sola vez, guardando la solución para su uso posterior, lo que generará un algoritmo más eficiente.

Intro (2)

- Se desea evitar calcular dos veces el mismo resultado, manteniendo una tabla de resultados conocidos que se llene a medida que se resuelven los subproblemas.
- Al contrario que el método de refinamiento progresivo aplicado en Divide y Vencerás, la Programación Dinámica (Dynamic Programming) es una técnica ascendente que permite encontrar la solución óptima a un problema: se comienza con los subproblemas más sencillos y, combinando sus soluciones, se obtienen las respuestas a los subproblemas de tamaños más grandes, hasta llegar a la solución del problema original.

Ejemplo: Coeficiente binomial (1)

Vamos a considerar el siguiente problema del cálculo del coeficiente binomial:

coefficiente binomial:
$$C(n,k) = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \begin{cases} 1 & \text{si } k = 0 \text{ o } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{si } 0 < k < n \\ 0 & \text{en otro caso} \end{cases}$$

Si $0 \le k \le n$, podemos calcular C(n,k) directamente:

```
función C(n, k): valor {
   si k = 0 o k = n entonces devolver 1
   en otro caso devolver C(n-1, k-1) + C(n-1, k)
}
```

Ejemplo: Coeficiente binomial (2)

■ Muchos de los valores de C(i, j) con i < n, j < k se calculan una y otra vez. Por ejemplo,

$$C(5,3) = C(4,2) + C(4,3) \rightarrow$$

- Si utilizamos una tabla de resultados intermedios obtendremos un algoritmo más eficiente (Triángulo de Pascal).
- La tabla debería rellenarse línea por línea.

$$C(4,2) = C(3,1) + C(3,2)$$

 $C(4,3) = C(3,2) + C(3,3)$

Ejemplo: Coeficiente binomial (3)

```
función C(n, k): valor {
 si k = 0 o k = n entonces devolver 1
 en otro caso {
   // Sea A una matriz de tamaño (n+1)x(n+1)
   para i <- 0 hasta n hacer
     A[i,0] <- A[i,i] <- 1 // Lados del triángulo
   para i <- 2 hasta n hacer // Interior del triángulo
     para j <- 1 hasta i-1 hacer
       A[i, j] < -A[i-1, j-1] + A[i-1, j]
   devolver A[n, k]
```

Ejemplo: Coeficiente binomial (4)

Ejemplo de ejecución: C(7, 5)

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1	7	21	35	35	21	7	1

Ejemplo: Coeficiente binomial (5)

- El tiempo y el espacio necesarios para rellenar toda la tabla son de orden $T(n) = 1 + 2 + 3 + \dots + n = n \cdot (n + 1) / 2 = \Theta(n^2)$
- Sin embargo, no es necesario rellenar toda la tabla: basta con mantener un vector de tamaño k que representa la línea actual y actualizarlo de derecha a izquierda.
- De este modo, calcular C(n,k) el algoritmo requiere un tiempo de $\Theta(n \cdot k)$ y un espacio de $\Theta(k)$.

Ejemplo: Coeficiente binomial (6)

```
función C(n, k): valor {
  si k = 0 o k = n entonces devolver 1
  en otro caso {
    // Sea A un vector de tamaño k+1
    A[0] = 1
    para j <- 1 hasta n hacer // Primera fila
      A[j] \leftarrow 0
    para i <- 1 hasta n hacer // Cada iteración es una fila
      para j <- min(i,k) hasta 1 hacer</pre>
        A[j] \leftarrow A[j] + A[j-1] // De derecha a izquierda
    devolver A[k]
```

Ejemplo: Coeficiente binomial (7)

Ejemplo de ejecución: C (7, 5)

itera	ación \k	0	1	2	3	4	5
	0	1	0	0	0	0	0
	1	1	1	0	0	0	0
	2	1	2	1	0	0	0
	3	1	3	3	1	0	0
	4	1	4	6	4	1	0
	5	1	5	10	10	5	1
	6	1	6	15	20	15	6
	7	1	7	21	35	35	21

Devolver cambio (1)

- El problema del cambio (introducido en una sección anterior) consiste en desarrollar un algoritmo para pagar una cierta cantidad empleando el menor número de monedas posible.
- Ya se describió un algoritmo voraz que funciona solamente en un número limitado de casos. Con ciertos sistemas monetarios o cuando el número o tipo de monedas es limitado, el algoritmo puede encontrar una respuesta que no sea óptima o no encontrarla.
- Por ejemplo, si tenemos M={1, 4, 6} y n=8, el algoritmo voraz propondrá pagar con tres monedas {6, 1, 1}, siendo la solución óptima sólo dos monedas {4, 4}.

Devolver cambio (2)

- Supongamos un sistema monetario M con m tipos diferentes de monedas, siendo $v_i > 0$ el valor de la moneda, $1 \le i \le m$, y con un suministro ilimitado de monedas de cada tipo.
- El problema consiste en devolver el cambio de una cantidad n con el mínimo número de monedas.
- Para resolver el problema, preparamos una tabla C[1..m, 0..n] con una fila por cada valor de moneda y una columna por cada cantidad desde 0 a n.
- C[i, j] será el número mínimo de monedas necesario para cambiar la cantidad j, $0 \le j \le n$, empleando sólo monedas de los tipos 1 a i, con $1 \le i \le m$.

Devolver cambio (3)

- La solución del problema viene dada por C[m, n], que indicará el número de monedas óptimo para cambiar la cantidad m usando monedas de tipos 1 a n.
- Se inicializa C[i, 0] = 0 para todo i (0 monedas para la cantidad 0). Para calcular C[i, j], hay dos opciones:
 - Si no se utilizan monedas del tipo i, el número de monedas es el mismo que si no existiese el tipo i

$$C[i,j] = C[i-1,j]$$

 Si se emplea una moneda del tipo i, el número de monedas es 1 más el número de monedas necesario para cubrir la cantidad j menos el valor de la moneda i

$$C[i,j] = 1 + C[i,j-v_i]$$

Devolver cambio (4)

Dado que debemos minimizar el número de monedas utilizadas, escogeremos el mínimo de ambos valores:

$$C[i, j] = \min(C[i - 1, j], 1 + C[i, j - v_i])$$

- Esto implica dos casos extremos que se salen de la tabla:
 - i = 1: Sólo hay un tipo de moneda disponible $\nexists C[i 1, j] \Rightarrow C[1, j] = 1 + C[1, j v_i]$
 - $j < v_i$: El valor de la moneda i es mayor que la cantidad a pagar: $\# C[i, j v_i] \Rightarrow C[i, j] = C[i 1, j]$
 - i = 1 y j < v₁: Es imposible pagar una cantidad j empleando sólo monedas del tipo 1: C[1, j] = ∞
- Si $C[m, n] = \infty$, entonces no existe solución.

Devolver cambio (5)

Por ejemplo, para pagar 8 unidades con $M=\{1, 4, 6\}$:

	Cantidad n:	0	1	2	3	4	5	6	7	8	
1:	v ₁ = 1	0	1	2	3	4	5	6	7	8	<i>i</i> = 1
2:	$v_2^{} = 4$	0	1	2	3	1	2	3	4	2	
3:	$v_3^{} = 6$	0	1	2	3	1	2	1	2	2	
		ı				\ j <	< <i>V_i</i>	•			•

La solución para este caso es:

$$C[3,8] = min(C[2, 8], 1+C[3, 8-v_3]) =$$

= min(C[2, 8], 1+C[3, 2]) = min(2, 1+2) = **2**

Devolver cambio (6)

	Cantidad n:			2						
1:	<i>v</i> ₁ = 1	0	1	2	3	4	5	6	7	8
2:	$v_2 = 4$	0	1	2	3	1	2	3	4	2
3:	$v_3 = 6$	0	1	2	3	1	2	1	2	2

- Si usamos la moneda 3 (de valor $v_3 = 6$) para pagar la cantidad 8, usaremos 1 moneda más que para pagar la cantidad $8-v_3 = 2 \Rightarrow 1 + C[3, 2] = 3 \rightarrow \{6, 1, 1\}$
- Si no la usamos, usaremos las mismas monedas que pagando la cantidad 8 con las monedas 1 y 2 \Rightarrow C[2, 8] = 2 \rightarrow {4, 4}

Devolver cambio (7)

```
función monedas(n: cantidad): matriz {
  vector v[1..m] \leftarrow [1, 4, 6]
  matriz C[1..m, 0..n]
  para i <- 1 hasta m hacer {</pre>
    C[i, 0] <- 0
    para j <- 1 hasta n hacer
      si i=1 y j\langle v[1] entonces C[i,j] < -\infty
      en otro caso si i=1 entonces C[i,j] \leftarrow 1+C[i,j-v[1]]
      en otro caso si j<v[i] entonces C[i,j] <- C[i-1,j]
      en otro caso C[i,j] <- min(C[i-1,j], 1+C[i,j-v[i]])</pre>
  devolver C
```

Devolver cambio (8)

- El valor C[*m*, *n*] indica el número mínimo de monedas necesario para cubrir la cantidad *n*, pero no especifica qué monedas son las que hay que escoger.
- El conjunto de monedas a escoger para pagar la cantidad *n* se calcula haciendo un recorrido dentro de la matriz desde C[*m*, *n*] hasta C[-, 0]:
 - Si C[i, j] = C[i-1, j] (con i > 1) la moneda i no se usa para pagar la cantidad j \rightarrow Pasamos a C[i-1, j]
 - En otro caso, se añade una moneda de tipo i a la solución → Pasamos a C[i, j - v_i]
 - Cuando se llega a C[i, 0], para cualquier valor de i, el valor restante a pagar es 0 → Fin

Devolver cambio (9)

	Cantidad n:	0	1	2	3	4	5	6	7	8
1:	v ₁ = 1	0	1	2	3	4	5	6	7	8
2:	$v_2^{} = 4$	⁴ 0	1	2	3	3 1	2	3	4	² 2
3:	<i>v</i> ₃ = 6					1				
		•								

- 1. $C[3, 8] = C[2, 8] \rightarrow no$ se selecciona moneda
- 2. $C[2, 8] = 1 + C[2, 8 v_2] = 1 + C[2, 4] \rightarrow \text{entra } v_2 = 4$
- 3. $C[2, 4] = 1 + C[2, 4-v_2] = 1 + C[2, 0] \rightarrow \text{entra } v_2 = 4$
- 4. $C[2, 0] \rightarrow j = 0$, no hacen falta más monedas
 - La solución por tanto es 2 monedas de valor 4.

Devolver cambio (10)

```
función cambio_monedas(m: entero, C: matriz): vector {
  vector cambio[1..m]
  para i <- 1 hasta m hacer cambio[i] <- 0</pre>
  i < -m, j < -n
  mientras j > 0 hacer {
    si i > 1 y C[i, j] = C[i - 1, j] entonces
      i <- i - 1
    en otro caso { // C[i, j] = 1 + C[i, j - v[i]]
      cambio[i] <- cambio[i] + 1</pre>
      j <- j - v[i]
  devolver cambio
```

Devolver cambio (11)

- La complejidad del algoritmo viene dada por la suma de los siguiente pasos:
 - Rellenar la matriz es de orden Θ(m·n)
 - En el camino desde C[m, n] hasta C[-, 0]:
 - se dan como máximo m-1 pasos hacia arriba, cuando no se escoge la moneda
 - La solución C[m, n] coincide con el número de saltos que se dan hacia la izquierda. Sabemos además que, en el peor caso, C[m, n] ≤ n (si sólo se escogiesen monedas de valor 1)
- Por tanto, $T(m, n) = m \cdot n + m 1 + n = \Theta(m \cdot n)$

El problema de la mochila (1)

Sean *n* objetos y una mochila tales que cada objeto i=1...n tiene un **peso** p_i y un **valor** v_i y el peso máximo que soporta la mochila es P. El objetivo es llenar la mochila maximizando el valor total de los objetos **enteros** y respetando la limitación de peso máximo P.

$$\max \sum_{i=1}^{n} x_{i} v_{i}$$
s.a.
$$\sum_{i=1}^{n} x_{i} p_{i} \leq P$$

$$v_{i} > 0, \ p_{i} > 0, \ x_{i} \in \{0,1\}, \ i=1,...,n$$

El problema de la mochila (2)

- El algoritmo voraz (greedy) puede no proporcionar una solución óptima cuando las x, son 0 ó 1.
- Para resolver este problema usando PD, se prepara una tabla con V[1..n, 0..P] que tiene:
 - Una fila por cada objeto disponible
 - Una columna para cada peso desde 0 a P
- Por tanto, V[i, j] será el valor máximo de los objetos que podríamos transportar si el límite de peso fuera j, con $0 \le j \le P$, y si solamente incluyéramos los objetos numerados desde el 1 hasta el i, con $1 \le i \le n$.
- La solución estaría en la celda **V[n, P]**.

El problema de la mochila (3)

- Para calcular V[i, j] existen dos opciones:
 - No añadir el objeto i a la mochila: V[i, j] = V[i-1, j]
 - Añadir el objeto i, lo cual implica incrementar el valor en v, y reducir la capacidad disponible en p;

$$V[i, j] = V[i-1, j-p_i] + v_i$$

Esta opción no es válida si el objeto no cabe: $p_i > j$

- Obsérvese que, como un objeto no se puede añadir más de una vez, el primer índice es i 1 tanto si se escoge (x_i = 1) como si no (x_i = 0).
- Como se desea maximizar el valor acumulado:

$$V[i, j] = \max(V[i-1, j], V[i-1, j-p_i] + v_i)$$

El problema de la mochila (4)

■ Ejemplo: n = 5 objetos, peso máximo P = 11

	Límite P:	0	1	2	3	4	5	6	7	8	9	10	11
	$p_1 = 1, v_1 = 1$												
2:	$p_2 = 2, v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
3:	$p_3 = 5, v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
4:	p ₄ =6, v ₄ =22	0	1	6	7	7	18	22	24	28	29	29	40
5:	p_5 =7, v_5 =28	0	1	6	7	7	18	22	28	29	34	35	40

$$V[5,11] = \max(V[4, 11 - \mathbf{p}_5] + \mathbf{v}_5, V[4, 11]) =$$

$$= \max(V[4, 4] + 28, 40) = \max(35, 40) = \mathbf{40}$$

El problema de la mochila (5)

	Límite <i>P</i> :	0	1	2	3	4	5	6	7	8	9	10	11
	$p_1 = 1, v_1 = 1$												
2:	$p_2 = 2, v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
	$p_3 = 5, v_3 = 18$	l											
4:	p_4 =6, v_4 =22	0	1	6	7	7	18	22	24	28	29	29	40
5:	p_5 =7, v_5 =28	0	1	6	7	7	18	22	28	29	34	35	40

- Si se añade el objeto 5, la capacidad es 11 p₅ = 4 y el valor V[5, 11] es V[4, 4] + v₅ = 7 + 28 = 35
- Si no se añade, la capacidad y el valor se mantienen.
 V[5, 11] = V[4, 11] = 40

El problema de la mochila (6)

La tabla indica el valor máximo obtenido, pero calcular qué objetos se incluyen mediante un recorrido puede producir resultados ambiguos (aunque válidos):

	Límite <i>P</i> :	0	1	2	3	4	5
	$p_1 = 2, v_1 = 1$						
2:	$p_2 = 3, v_2 = 2$	0	0	1	2	2	3
3:	$p_3 = 4, v_3 = 3$	0	0	1	2	3	3

 $V[3, 5] = \max(V[2, 1] + \mathbf{v_3}, V[2, 5]) = \max(3, 3) \Rightarrow \text{Las soluciones}$ { $\mathbf{p_1}$, $\mathbf{p_2}$ } y { $\mathbf{p_3}$ } tienen igual valor, pero distinto peso

Por ello, se mantiene una matriz auxiliar x que indica para cada posición si el objeto fue escogido (✓) o no (-).

El problema de la mochila (7)

	Límite <i>P</i> :	0	1	2	3	4	5	6	7	8	9	10	11
1:	$p_1=1, v_1=1$	- 0	1	✓ 1	1	1	1	✓ 1	✓ 1	✓ 1	1	✓ 1	1
2:	$p_2 = 2, v_2 = 6$	4 - 0	- 1	√ 6	√ 7	√ 7	√ 7	√ 7	√ 7	√ 7	√ 7	√ 7	√ 7
3:	$p_3 = 5, v_3 = 18$	- 0	- 1	- 6	- 7	7	3 √ 18	√ 19	√ 24	√ 25	√ 25	√ 25	√ 25
4:	p_4 =6, v_4 =22	- 0	- 1	- 6	- 7	7	- 18	√ 22	<u>-</u> 24	√ 28	√ 29	√ 29	2 √ 40
5:	$p_5 = 7, v_5 = 28$	- 0	- 1	- 6	- 7	- 7	- 18	<u>-</u> 22	√ 28	√ 29	√ 34	√ 35	1 - 40

- 1. $x[5, 11] = 0 (-) \rightarrow \text{ no se selection and } \rightarrow [4, 11]$
- 2. $x[4, 11] = 1 (\checkmark) \rightarrow \text{ se escoge el objeto } 4 \rightarrow [3, 11 p_4] = [3, 5]$
- 3. $x[3, 5] = 1 (\checkmark) \rightarrow \text{ se escoge el objeto } 3 \rightarrow [2, 5 p_3] = [2, 0]$
- **4.** $x[2, 0] \rightarrow \text{La capacidad ha llegado a 0} \rightarrow \text{Fin}$
- La solución es introducir los objetos 3 y 4, con un valor de $v_3 + v_4 = 18 + 22 = 40$

El problema de la mochila (8)

```
función mochila(P, p[1..n], v[1..n]): valor {
  matriz V[0..n, 0..P]
  matriz x[1..n, 0..P]
  para j <- 0 hasta P hacer V[0,j] <- 0 // Fila 0, sin objetos
  para i <- 1 hasta n hacer
    para j <- 0 hasta P hacer {</pre>
      si j < p[i] o V[i-1, j-p[i]] + v[i] < V[i-1,j] entonces {</pre>
        x[i,j] \leftarrow 0; V[i,j] \leftarrow V[i-1,j]
    } en otro caso {
        x[i,j] \leftarrow 1 ; V[i,j] \leftarrow V[i-1, j-p[i]] + v[i]
  devolver V[n,P]
```

El problema de la mochila (9)

```
función solución_mochila(P, p[1..n], x[1..n, 0..P]):
                                               conjunto {
  j <- P
 S <- Ø
  para i <- n hasta 1 hacer
    si x[i, j] == 1 entonces {
     S <- S U {i}
      j <- j - p[i]
      si j = 0 entonces salir del bucle
  devolver S
```

El problema de la mochila (10)

- Complejidad:
 - Construir la tabla V requiere n·P pasos
 - En el peor caso, si se incluyesen todos los objetos en la mochila, obtener la solución óptima requeriría:
 - n saltos entre filas
 - n saltos entre columnas
- La complejidad total por tanto es:

$$T(n) = n \cdot P + 2n = \Theta(n \cdot P)$$

El Principio de Optimalidad (1)

- Este principio afirma que en una sucesión óptima de decisiones u opciones, toda subsecuencia debe ser también óptima.
- También se puede formular de la siguiente forma: la solución óptima de cualquier caso no trivial de un problema es una combinación de soluciones óptimas de algunos de sus casos.
- Eso significa que, aunque el único valor de la tabla que nos interesa realmente es el de la última fila y última columna, todas las demás entradas de la tabla deben representar también selecciones óptimas.
- Sin embargo, cuando el Principio de Optimalidad no es aplicable, es probable que no sea posible atacar el problema en cuestión empleando PD.

El Principio de Optimalidad (2)

- Cuando se desarrolla un algoritmo de PD, seguimos una secuencia de 4 pasos:
 - 1. Caracterizar la estructura de la solución óptima (máximo valor, mínimo peso, etc)
 - 2. Definir recursivamente el valor de una solución en función de las soluciones de subproblemas simples
 - 3. Computar la solución de cada subproblema, normalmente comenzando por los más simples
 - 4. Obtener una solución óptima con la información previamente computada

El Principio de Optimalidad (3)

- Todo problema debe poseer dos características clave para poder aplicar la PD:
 - Subestructura óptima: si la solución óptima al problema contiene dentro de ella soluciones óptimas a subproblemas.
 - Subproblemas solapados: el algoritmo recursivo revisita los mismos subproblemas repetidamente. Normalmente, el número de subproblemas distintos es polinomial en el tamaño de la entrada.
- Una forma de desarrollar eficientemente la PD es mediante memoización (memoization), que consiste en almacenar las soluciones de los subproblemas visitados para que sean usadas posteriormente.

Referencias

- ★ Brassard, G. and Bratley, P. (1998) "Fundamentos de Algoritmia", *Prentice-Hall*. [Capítulo 8]
- ★ Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009) "Introduction to Algorithms", 3rd ed, MIT Press. [Capítulo 15].
- ★ Ecuaciones editadas con:
 s1.daumcdn.net/editor/fp/service_nc/pencil/Pencil_chromestore.html