Computerversuch

Noah Hüsser <yatekii@yatekii.ch>

October 22, 2016

1 Auswertung

Dieses Kapitel befasst sich mit den Möglichkeiten und Tricks der Fehlerrechnung. Normalerweise würde dieses Kapitel separat geführt, jedoch ist das Ziel dieses Versuches, die Fehlerrechnung näher kennenzulernen.

1.1 Schallgeschwindigkeit

Die Schallgeschwindigkeit soll durch die Mittlere Laufzeit über eine bekannte Strecke bestimmt werden.

1.1.1 Messwerte

Länge der Messstrecke : $s = 2.561 \pm 0.003m$

Raumtemparatur : $\theta = 23^{\circ}C$

Messprotokoll: TODO:

1.1.2 Mittlere Laufzeit und ihre Unsicherheit

Mittlere Laufzeit : $\bar{t} = \frac{1}{20} \sum_{i=1}^{20} t_i = 7.32 ms$

Fehler der mittleren Laufzeit : $s_{\overline{i}} = \sqrt{\frac{\sum_1^{20} (t_i - \overline{t})^2}{20 \cdot 19}} = 0.000074 ms$

Standardabweichung : $s = \sqrt{\frac{\sum_{1}^{20} (t_i - \overline{t})^2}{19}} = 0.00033 ms$

Mithilfe des zuvor ermittelten Mittelwertes kann die Mittlere Schallgeschwindigkeit als:

$$c = 349.74 \frac{m}{s}$$

festgestellt werden. Die Unicherheit des Mittelwertes der Schallgeschwindigkeit kann mithilfe des Gauss'schen Fehlerfortpflanzungsgesetztes ersichtlich in (1) errechnet werden.

Figure 1: Laufzeiten des Schalls

$$R(x, y) = c(s, t) = \frac{s}{t}$$

$$S_{\overline{R}} = \sqrt{\frac{\partial R}{\partial x}|_{\overline{R}} \cdot s_{\overline{x}}|^2 + (\frac{\partial R}{\partial y}|_{\overline{R}} \cdot s_{\overline{y}}|^2}$$

$$S_{\overline{R}} = \sqrt{\frac{1}{t}s_{\overline{s}}|^2 + (-\frac{\overline{s}}{t^2}s_{\overline{t}}|^2}$$

$$s_{\overline{s}} = 3.54\frac{m}{s}$$

Relativer Fehler der Zeit: 1.00% Relativer Fehler der Geschwidigkeit: 1.01%

1.2 Eisengehalt

1.2.1 Messwerte

TODO:

1.2.2 Einfacher Mittelwert

Der einfache Mittelwert und sein Fehler ergeben sich analog zu Aufgabe 1. TODO:

Figure 2: Eisengehalt in einer Legierung

$$\overline{x} = 20.56\%$$

$$s_{\overline{x}} = 0.52\%$$

1.2.3 Gewichteter Mittelwert

Der gewichtete Mittelwert und sein Fehler werden als

$$\overline{x} = \frac{\sum_{i=1}^{n} g_{\overline{x_i}} \cdot x_i}{\sum_{i=1}^{n} g_{\overline{x_i}}} = 20.40\%$$

$$s_{\overline{x}} = \frac{1}{\sqrt{\sum_{i=1}^{n} g_{\overline{x_i}}}} = 0.36\%$$

bestummen.

1.3 Federkonstante

- 1.3.1 Messwerte
- 1.3.2 Rechnung mittels Taschenrechner
- 1.3.3 Linear Regression

Figure 3: Federkraft im vorgespannten Zustand

Mit dem Rechner Die Steigung der Regressionsgeraden und somit die Federkonstante k wird wie folgt erhalten:

$$k = \frac{\sum_{i=1}^{10} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{10} (x_i - \overline{x})^2} = 22.53 \frac{N}{m}$$

Der zugehörige Achsenabschnitt und somit die Ruhekraft F_0 errechnet sich aus:

$$F_0 = \overline{y} - k \cdot \overline{x} = -0.79N$$

Die empirische Korrelation ist:

$$r_{xy} = \frac{\sum_{1}^{10} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{1}^{10} (x_i - \overline{x})^2 \cdot \sum_{1}^{10} (y_i - \overline{y})^2}}$$

mit zugehörigem Bestimmtheitsmass:

$$R^2 = r_{xy}^2$$

Mit scipy

1.4 Offset, Amplitude, Frequenz und Phase eines Pendels

Von einem Pendel ist die Auslenkung in y-Richtung zu verschiedenen Zeitpunkten t_i bekannt. Mithilfe der Methode der kleinsten Quadrate können Offset, Amplitude, Frequenz und Phase des Pendels bestimmt werden. Die Funktion des Pendels welche mit dem Fit angenähert wird schreibt sich wie folgt:

$$y(t) = A \cdot exp(-\Gamma \cdot t) \cdot sin(2 \cdot \pi \cdot f \cdot t - \delta) + y_0$$

1.4.1 Messwerte

TODO:

1.4.2 Value Fitting

Mit der Methode der Chi-Quadrate (nichtlineare Regression) wurden durch scipy die folgenden besten Werte ermittelt:

$$A = 1.22m$$

$$\Gamma = 0.05 \frac{1}{s}$$

$$f = 0.05Hz$$

$$\delta = -5.77$$

$$y_0 = 0.05m$$

1.5 Tiefpass

1.5.1 Messwerte

$$U_e = 4V_{pp} => \pm 2.0^V$$
$$R = 500\Omega$$

1.5.2 Berechnung von C

Die Kapazität C kann durch zwei verschiedene Funktionen bestimmt werden:

$$\Delta_a = \frac{\Delta_e}{\sqrt{1 + (2\pi f C R)^2}}$$

$$\phi = \arctan(-\omega R C)$$

Die Kapazität kann mit einem Fit an die Ausgangsspannung U_a auf

$$C = 0.22 \mu F$$

und mit einem Fit an die Phase U_a auf

$$C = 0.20 \mu F$$

bestimmt werden.

2 Resultate und Diskussion

Figure 4: Auslenkung eines Pendels über Zeit

Figure 5: Spannung eines Tiefpasses

Figure 6: Phase eines Tiefpasses