

GI For diagram(s), see printed CA Issue.
AB Pyrimidinediamines I(R = Me, Et, Pr, Bu; NR₁R₂ and NR₃R₄ = mono- or dialkylamino) (90 compds.) were prepared for use as post-emergence herbicides and agricultural fungicides (no data). Thus, I(R = Me, R₁ = CHMeEt, R₂ = R₃ = H, R₄ = Et) was prepared by treating 2-methylthio-4,6-dichloro-5-nitropyrimidine with EtNH₂, and EtCHMeNH₂ in sep. steps.

ACCESSION NUMBER: 1975:428272 CAPLUS Full-text
DOCUMENT NUMBER: 83:28272
TITLE: Pyrimidine derivatives
INVENTOR(S): Fischer, Hans Peter
PATENT ASSIGNEE(S): Ciba-Geigy A.-G., Switz.
SOURCE: Patentschrift (Switz.), 6 pp. Division of Swiss 558,137 (See Ger. 2,223,644, CA 78;43506x).
CODEN: SWXXAS
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
CH 560197	A	19750327	CH 1973-17036	19710517

CH 560 197

SCHWEIZERISCHE EIDGENOSSENSCHAFT
EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

BB
⑤ Int. Cl.²: C 07 D 239/28
A 01 N 5/00

⑯ CH PATENTSCHRIFT A5

⑯ 560 197

R

②1 Gesuchsnummer: 17036/73
⑥1 Zusatz zu:
⑥2 Teilgesuch von: 7229/71
②2 Anmeldungsdatum: 17. 5. 1971, 17 1/4 h
③3 ③2 ③1 Priorität:

Patent erteilt: 15. 2. 1975

④5 Patentschrift veröffentlicht: 27. 3. 1975

⑤4 Titel: **Verfahren zur Herstellung neuer Pyrimidin-Derivate**

⑦3 Inhaber: CIBA-GEIGY AG, Basel

⑦4 Vertreter:

⑦2 Erfinder: Dr. Hans-Peter Fischer, Bottmingen

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung neuer Pyrimidin-Derivate. Diese haben pflanzenbeeinflussende Wirkung.

Bestimmte 2,4-Bis(subst.amino)-pyrimidine werden in der französischen Patentschrift Nr. 1572620 als Fungizide und Insektizide beschrieben. In der niederländischen Auslegeschrift Nr. 68. 14057 werden substituierte Pyrimidine genannt, die fungizide Wirkung vor allem gegen phytopatogene Pilze an Obst- und Gemüsepflanzen aufweisen.

Es wurde nun überraschenderweise gefunden, dass die neuen 5-Nitropyrimidine der Formel I sowie ihre Additionssalze oder ihre durch Quaternierung gewonnenen Salze den Pflanzenstoffwechsel zu beeinflussen vermögen, ohne aufgelaufene Pflanzen nennenswert im Sinne eines Nachauflauf-Herbizids zu schädigen:

Die neuen Pyrimidin-Derivate entsprechen der Formel I.

und umfassen ebenfalls die Additionssalze und quaternäre Ammoniumsalze dieser Pyrimidine.

In dieser Formel bedeutet:

R₁ einen Alkyl-Rest mit 2 bis 6 Kohlenstoffatomen, einen Alkenyl-Rest mit 3 bis 5 Kohlenstoffatomen, einen Alkoxyalkyl-, Alkylaminoalkyl-, Trialkylammonio-alkyl-Rest einen Hydroxyalkyl- oder Cyanoalkyl-Rest mit 1 bis 4 Kohlenstoffatomen, einen Cycloalkyl-Rest mit 3 bis 6 Kohlenstoffatomen,

R₂ und R₃ unabhängig voneinander je Wasserstoff oder einen niederen Alkyl-Rest,

R₄ Wasserstoff, einen niederen Alkyl-Rest, einen Cycloalkyl-Rest mit 3 bis 6 Kohlenstoffatomen und die Symbole-Paare

R₁ und R₂ und/oder R₃ und R₄ ausserdem zusammen ein Polymethylenbrückenglied, in dem eine Methylengruppe durch Sauerstoff, die -NH-Gruppe oder die Gruppe

ersetzt sein kann, in der R' für einen niederen Alkylrest steht, R₅ einen niederen Alkylrest.

Unter Alkyl-Resten bzw. unter niederen Alkyl-Resten sind in Formel I, soweit nicht anders definiert, geradkettige oder verzweigte Reste mit 1 bis 6 Kohlenstoffatomen zu verstehen, wie z.B. Methyl-, Äthyl-, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec. Butyl, tert. Butyl-, n-Pentyl, n-Hexyl, und die Isomeren der C₅- und C₆-Alkylreste. Die niederen geradkettigen oder verzweigten Alkylreste mit bzw. 2 bis 6 Kohlenstoffatomen bilden auch den Alkylteil von Alkoxy-, Alkylthio-, Dialkylamino-, Alkylamino-, Trialkylammonio-Substituenten. Unter Alkenyl-Resten werden in Formel I geradkettige oder verzweigte Reste mit 3 bis 5 Kohlenstoffatomen verstanden, z.B. Propenyl-, Butenyl-, Pentenyl-Reste, bevorzugt sind der Allyl-, Methallyl, 3-Methyl-butenyl- oder n-Butenyl-Rest. Als Cycloalkyl-Reste mit 3 bis 6 Ringkohlenstoffatomen sind z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl zu nennen. Diese Ringe können durch Methyl oder Äthyl substituiert sein.

Ein durch die Symbolpaare R₁/R₂ und R₃/R₄ mit dem benachbarten Stickstoffatom gebildeter Heterocyclus weist 3 resp. 5 bis 7 Ringglieder auf. Solche Heterocyclen sind beispielsweise Aziridin, Pyrrolidin, Piperidin, Hexahydroazepin, Piperazin, N-Methylpiperazin und N-Phenylpiperazin oder Morpholin.

Unter Additionssalzen sind die Salze mit anorganischen und organischen starken Säuren zu verstehen, vorzugsweise Chlorwasserstoffsäure, Bromwasserstoffsäure, Phosphorsäure, Schwefelsäure, Salpetersäure, Fluorborsäure (HDF₄), Perchlorsäure, Methyl- oder Äthylschwefelsäure, Halogenbenzoësäuren, Trichloressigsäure und aromatische Sulfonsäuren, wie Methansulfonsäure oder p-Toluolsulfonsäure. Für die Bildung von quaternären Salzen der Pyrimidin-Derivate der Formel I, in denen R₁ einen Trialkylammonio-alkyl-Rest darstellen, kommen die entsprechenden Anionen anorganischer oder organischer Säuren der genannten Art sowie schwache Säuren wie Naphtoësäure, Benzoësäure, Essigsäure, Aminoëssigsäure, Propionsäure, Halogenpropionsäure, aliphatische Dicarbonsäuren z.B. Oxalsäure, Weinsäure oder Maleinsäure in Frage.

Die neuen Pyrimidin-Derivate beeinflussen das Pflanzenwachstum in verschiedener Weise. So hemmen, verzögern oder unterbinden sie in erster Linie die Keimung. Die Pyrimidin-Derivate der Formel I sind in den üblichen Aufwandmengen, wie erwähnt, praktisch nicht phytotoxisch gegenüber den aufgelaufenen Pflanzen, hemmen aber das Längenwachstum bei verschiedenen Pflanzenarten. Bei sehr hohen Dosierungen von über 10 kg AS/ha können die Pflanzen auch nach dem Auflaufen unterschiedlich geschädigt werden und sogar eingehen. Die Wirkstoffe der Formel I besitzen auch fungizide, insbesondere pflanzensfungizide Wirkung.

Die neuen Nitropyrimidin-Derivate der Formel I werden gemäß vorliegender Erfindung hergestellt, indem man ausgehend von einem entsprechenden 2-Alkylthio-4,6-dihalogen-5-nitropyrimidin der Formel IV

worin R₅ die unter Formel I angegebene Bedeutung hat, die in 4- und 6-Stellung befindlichen Halogenatome, vorzugsweise Chloratome, nacheinander in Gegenwart eines säurebindenden

Mittels gegen Reste von Aminen der Formeln II und/oder III

austauscht. In den Formeln II und III haben R₁ bis R₄ die unter Formel I angegebenen Bedeutungen. Die Reaktionstemperatur kann im Bereich von -60° und +120°C liegen, wobei vorteilhafterweise der Austausch des 1. Halogenatoms zwischen -60° und +20°C und der des 2. Halogenatoms zwischen 10° und 50°C oder höher vorgenommen wird. Der bei Einführung unterschiedlicher Amine II oder III notwendige stufenweise Austausch ist, wie aus analogen chemischen Prozessen bekannt, sowohl temperatur- als auch zeit- und lösungsmittelabhängig.

Als Lösungs- oder Verdünnungsmittel kommen für die erfindungsgemäßen Umsetzungen Wasser, Ketone wie Aceton oder Methyläthylketon, Äther und ätherartige Verbindungen wie Dioxan oder Tetrahydrofuran, aliphatische und aromatische Kohlenwasserstoffe und Halogenkohlenwasserstoffe, ferner Nitrile wie Acetonitril, N,N-dialkylierte Amide wie Dimethylformamid oder Sulfoxide wie Dimethylsulfoxid sowie Gemische solcher Lösungsmittel untereinander in Betracht.

Als säurebindende Mittel sind für das erfindungsgemäße Verfahren anorganische Basen wie Alkalimetall- und Erdalkalimetall-hydroxide, -hydrogencarbonate und -carbonate am besten geeignet. Es kommen aber auch als organische Basen tertiäre Amine

wie Trialkylamine, Dialkylaniline, Pyridin und Pyridinbasen in Frage. Ebenso kann die jeweilige Aminkomponente der Formel II oder III im Überschuss eingesetzt als säurebindendes Mittel dienen. Bevorzugt werden Natriumhydroxid oder Kaliumhydroxid.

Als Zwischenprodukte lassen sich nach der 1. Austauschstufe mit einem Amin II oder III Verbindungen der Formel V

isolieren, von denen ein Teil noch nicht in der Literatur beschrieben ist.

Die Ausgangsprodukte der Formel IV können nach an sich bekannten Verfahren durch Alkylierung von 2-Mercapto-4,5-dihydroxy-pyrimidin mit einem üblichen Alkylierungsmittel wie Alkylhalogenid oder Dialkylschwefelsäureester, anschliessender Nitrierung des erhaltenen 2-Alkylthio-4,6-dihydroxy-pyrimidins mit Salpetersäure oder Nitriegemisch und Ersatz der beiden Hydroxygruppen durch die gewünschten Halogenatome mit Hilfe von Phosphorylhalogeniden wie POCl_3 , PCl_5 , PBr_3 , PCl_3 oder mit Thionylchlorid bzw. Thionylbromid.

Für die Herstellung von Additionssalzen setzt man die Pyrimidin-Derivate der Formel I in an sich bekannter Weise mit anorganischen und organischen Säuren um. Bevorzugt sind für die Pyrimidin-Derivate der Formel I, in der R_1 eine von Alkylaminoalkyl verschiedene Bedeutung besitzt, die starken Säuren, wie Halogenwasserstoffäuren, Schwefelsäure, Fluoborsäure, Phosphorsäuren, Alkylschwefelsäuren etc.

Für die Herstellung von quaternären Salzen der neuen Pyrimidin-Derivate kommen insbesondere diejenigen Verbindungen der Formel I in Betracht, in denen R_1 einen Dialkylaminoalkyl-Rest darstellt. Solche Pyrimidine werden mit einem Alkylierungsmittel, wie z.B. einem Alkylhalogenid oder Dialkylsulfaten, umgesetzt. Das Anion der so erhaltenen Ammoniumsalze kann leicht gegen das Anion jeder beliebigen anorganischen oder organischen Säure ausgetauscht werden und zwar:

a) durch Neutralisieren und anschliessende Umsetzung mit der entsprechenden Säure, oder

b) mit Hilfe eines Anionenaustauschers.

Die folgenden Beispiele dienen zur Veranschaulichung des erfundungsgemässen Verfahrens und seiner Variante. Anschliessend an die Beispiele sind weitere von Formel I umfasste Pyrimidin-Derivate mit ihren physikalischen Daten aufgeführt. In einer weiteren Tabelle sind die Zwischenprodukte aufgeführt, die bei der Herstellung der Verbindungen der Formel I erhalten wurden.

Die Herstellung der tabellarisch aufgeführten Pyrimidin-Derivate erfolgte analog dem in den Beispielen beschriebenen Weg:

Beispiel 1:

- In eine Lösung von 120,1 g 2-Methylthio-4,6-dichlor-5-nitro-pyrimidin und 50,5 g Triäthylamin in 2200 ml absolutem Äthanol werden unter Kühlung bei -90° bis -10°C 22,5 g Äthylamin-Gas eingeleitet. Nach Abklingen der Reaktion wird die Mischung zur Trockene eingedampft, der Rückstand wird in kaltem Wasser aufgeschlemmt, gewaschen und abgetrennt. Nach Umkristallisieren aus Hexan erhält man das 2-Methylthio-4-chlor-5-nitro-6-äthylamino-pyrimidin vom Fp: 100° bis 101°C .
- In eine Lösung von 2-Methylthio-4-chlor-5-nitro-6-äthylamino-pyrimidin in 100 ml absolutem Äthanol werden bei 35° bis 45°C 10 g sec. Butylamin getropft. Nach 18 stündigem Rühren bei 25° wird das Reaktionsgemisch zur Trockene eingedampft und der Rückstand mit Äther extrahiert. Nach dem Trocknen und

Abdestillieren des Äthers wird der Rückstand aus einem 2:1 Pentan/Hexan-Gemisch unkristallisiert. Das 2-Methylthio-4-sec.butylamino-5-nitro-6-äthylamino-pyrimidin hat den Fp.: 45° bis 57°C . (Verb. Nr. 1).

Beispiel 2:

In eine Lösung von 60,0 g 2-Methylthio-4,6-dichlor-5-nitro-pyrimidin in 750 ml absolutem Äthanol werden bei ca. 35°C ohne Kühlung 50 g (1,11 Mol) Äthylamin-Gas langsam eingeleitet.

- Anschliessend wird die Mischung 2 Stunden bei Raumtemperatur gerührt und bei 45° im Vakuum zur Trockene eingeengt. Der Rückstand wird mit 500 ml Wasser aufgeschlemmt, abgetrennt und mit Wasser gewaschen. Das Produkt wird aus einem Gemisch von Hexan und Pentan im Verhältnis 10:1 umkristallisiert. Das 2-Methylthio-4,6-bis-äthylamino-5-nitro-pyrimidin hat den Fp: 130 bis 131°C . (Verb. Nr. 2)

Ber.: C 42,01 H 5,88 N 27,22 S 12,46%
Gef.: C 42,00 H 5,83 N 27,17 S 12,31%

Beispiel 3:

- 144,2 g 2-Mercapto-4,6-dihydroxy-pyrimidin, gelöst in 1000 ml 2 n wässriger Natriumhydroxid-Lösung, werden mit 184,1 g n-Butyljodid versetzt und 2 Stunden auf 85 - 90°C erhitzt. Nach dem Erkalten wird das Reaktionsgemisch mit Eis und konzentrierter Salzsäure kongosauer gestellt. Das als Niederschlag ausgefallene 2-n-Butylthio-4,6-dihydroxy-pyrimidin wird abgetrennt und getrocknet.
- 20 g 2-n-Butylthio-4,6-dihydroxy-pyrimidin werden unter Eis-Kochsalzkühlung langsam in 60 ml rauchende Salpetersäure eingetragen. Das Reaktionsgemisch wird 30 Minuten bei 0° gerührt und anschliessend in Eiswasser gegeben. Der braue Niederschlag wird dann abgetrennt mit Wasser gewaschen und getrocknet. Das 2-Butylthio-4,6-dihydroxy-5-nitropyrimidin hat den Fp.: 155 - 157°C .
- 110 g 2-n-Butylthio-4,6-dihydroxy-5-nitro-pyrimidin werden zusammen mit 500 ml Phosphoroxychlorid auf 80° erhitzt und vorsichtig mit 146 ml Diäthylanilin, so dass die einsetzende, starke exotherme Reaktion kontrollierbar bleibt.
- 30 Anschliessend wird das Gemisch 90 Minuten auf 150°C Badtemperatur erhitzt und nach dem Erkalten in Eiswasser gegeben. Die wässrige Lösung wird dann mehrmals mit Äther extrahiert. Die Ätherauszüge werden nach dem Trocknen über Magnesiumsulfat vom Lösungsmittel befreit. Der Rückstand wird in Petroläther aufgenommen und von dem ölichen Anteil abgetrennt. Nach dem Abdestillieren des Petroläthers wird das Öl destilliert. Das 2-n-Butylthio-4,6-dichlor-5-nitropyrimidin hat den Kp. 135 - $140^\circ\text{C}/0,001$ Torr.
- 40 d) In die Lösung von 10 g 2-n-Butylthio-4,6-dichlor-5-nitro-pyrimidin in 100 ml absolutem Äthanol werden bei 45 - 50° 7,7 g Äthylamin-Gas eingeleitet. Die Reaktionsmischung wird dann im Vakuum zur Trockene eingeengt und der Rückstand mit Wasser aufgeschlemmt. Der ungelöste Niederschlag wird abgetrennt aus Hexan umkristallisiert. Das 2-n-Butylthio-4,6-diäthylamino-5-nitropyrimidin hat den Fp. 112°C . (Verb. Nr. 3)

Tabelle 1:

Verbindungen:	Schmelzpunkte in Grad Celsius
2-Methylthio-4-n-propylamino-5-nitro-6-äthylamino-pyrimidin	114°
2-Methylthio-4-äthylamino-5-nitro-6-dimethylamino-pyrimidin	173-175°

Verbindungen:

Schmelz-
punkte in
Grad
Celsius

2-Methylthio-4-isopentylamino-5-nitro-6-äthylamino-pyrimidin	26°
2-Methylthio-4-äthylamino-5-nitro-6-methylamino-pyrimidin.....	119-121°
2-Methylthio-4-äthylamino-5-nitro-6-amino-pyrimidin.....	177°
2-Methylthio-4-tert.butylamino-5-nitro-6-äthylamino-pyrimidin	62-64°
2-Methylthio-4-(1,1-dimethyl-1-cyano-methyl)-amino-5-nitro-6-äthylamino-pyrimidin	120-122°
2-Methylthio-4-äthylamino-5-nitro-6-cyclopropylamino-pyrimidin	128-130°
2-Methylthio-4-allylamino-5-nitro-6-äthylamino-pyrimidin.....	110°
2-Methylthio-4-sec.butylamino-5-nitro-6-dimethylamino-pyrimidin	178°
2-Methylthio-4-isopropylamino-5-nitro-6-dimethylamino-pyrimidin	181-182°
2-Methylthio-4-isopropylamino-5-nitro-6-äthylamino-pyrimidin	80-81°
2-Methylthio-4-sec.butylamino-5-nitro-6-methylamino-pyrimidin	85-87°
2-Methylthio-4-isopropylamino-5-nitro-6-methylamino-pyrimidin	108-110°
2-Butylthio-4-isopropylamino-5-nitro-6-äthylamino-pyrimidin	76-77°
2-Butylthio-4-methylamino-5-nitro-6-äthylamino-pyrimidin	88-89°
2-Methylthio-4-(3-methyl-2-butenylamino)-5-nitro-6-methylamino-pyrimidin	60-62°
2-Methylthio-4-isopentylamino-5-nitro-6-methylamino-pyrimidin	60-61°
2-Methylthio-4-diäthylamino-5-nitro-6-äthylamino-pyrimidin	67-69°
2-Methylthio-4-(2-methoxy-äthylamino)-5-nitro-6-äthylamino-pyrimidin	112°
2-Methylthio-4-äthanolamino-5-nitro-6-äthylamino-pyrimidin	147°
2-Methylthio-4-isobutylamino-5-nitro-6-äthylamino-pyrimidin	60-61°
2-Methylthio-4-methylamino-5-nitro-6-n-butylamino-pyrimidin	75-77°
2-Methylthio-4-methylamino-5-nitro-6-n-propylamino-pyrimidin	106-108°
2-Methylthio-4-methylamino-5-nitro-6-cyclopropylamino-pyrimidin	103-105°
2-Methylthio-4-dimethylamino-5-nitro-6-cyclopropylamino-pyrimidin	125-126°
2-Äthylthio-4,6-bis-isopropylamino-5-nitro-pyrimidin	102-104°
2-Äthylthio-4,6-bis-äthylamino-5-nitro-pyrimidin	87-88°
2-Methylthio-4-äthylamino-5-nitro-6-hydroxymethylamino-pyrimidin	128-130°
2-Methylthio-4-äthylamino-5-nitro-6-n-butylamino-pyrimidin	58-60°
2-Methylthio-4,6-bis-butylamino-5-nitro-pyrimidin	66°
2-Methylthio-4,6-bis-sec.butylamino-5-nitro-pyrimidin	45-46°
2-Methylthio-4,6-bis-propylamino-5-nitro-pyrimidin	103°
2-Methylthio-4,6-bis-isopropylamino-5-nitro-pyrimidin	123-124°

Verbindungen:

Schmelz-
punkte in
Grad
Celsius

2-n-Propylthio-4,6-bis-(n-propylamino)-5-nitro-pyrimidin	90-92°
2-Methylthio-4,6-bis-cyclopentylamino-5-nitro-pyrimidin	76-78°
2-Methylthio-4,6-bis-cyclopropylamino-5-nitro-pyrimidin	155°
2-Methylthio-4,6-bis-cyclohexylamino-5-nitro-pyrimidin	105°
2-Methylthio-4,6-bis-dimethylamino-5-nitro-pyrimidin	183-184°
2-Butylthio-4,6-bis-isopropylamino-5-nitro-pyrimidin	92-93°
2-Methylthio-4,6-bis-(äthylamino)-5-nitro-pyrimidin	148-150°
2-Methylthio-4-äthylamino-5-nitro-6-sec.butylamino-pyrimidin	45-47°
2-n-Butylthio-4,6-bis(äthylamino)-5-nitro-pyrimidin	112°
2-Methylthio-4,6-bis(äthylamino)-5-nitro-pyrimidin, p-Toluolsulfonat	117°
25 N,N,N-Trimethyl-β-[(2-methylthio-4-äthylamino-5-nitro-pyrimidin-6)-amino]-äthylammonium-jodid	230-232°
2-Methylthio-4-äthylamino-5-nitro-6-cyano-methylamino-pyrimidin	177°
30 2-Methylthio-4-äthylamino-5-nitro-6-äthylenimino-pyrimidin	130°
2-Methylthio-4-äthylamino-5-nitro-6-sec.amylamino-pyrimidin	viskoses Öl n _D ²⁰ 1.6099
35 2-Methylthio-4-äthylamino-5-nitro-6-(pent-3'-yl)-amino-pyrimidin	Smp: 45-47°
2-Methylthio-4-äthylamino-5-nitro-6-cyclohexylamino-pyrimidin	116-117°
40 2-Methylthio-4-isopropylamino-5-nitro-6-sec.butylamino-pyrimidin	viskoses Öl n _D ²⁵ 1.6051
2-Methylthio-4-isopropylamino-5-nitro-6-n-propylamino-pyrimidin	68°
45 2-Methylthio-4-äthylamino-5-nitro-6-(2',4'-dimethylpent-3'-yl)amino-pyrimidin	viskoses Öl n _D ²² 1.6071
2-Methylthio-4-äthylamino-5-nitro-6-(4'-methylhex-2'-yl)amino-pyrimidin	viskoses Öl n _D ²² 1.6072
50 2-Methylthio-4-äthylamino-5-nitro-6-neopentylamino-pyrimidin	64-65°
2-Methylthio-4-äthylamino-5-nitro-6-(3'-methylpent-2'-yl)amino-pyrimidin	viskoses Öl n _D ²² 1.6082
2-Methylthio-4-äthylamino-5-nitro-6-(2'-methylcyclopropylamino)-pyrimidin	70-71°
2-Methylthio-4-äthylamino-5-nitro-6-isohexalamino-pyrimidin	viskoses Öl n _D ²² 1.6065
60 2-Methylthio-4-äthylamino-5-nitro-6-isoheptylamino-pyrimidin	viskoses Öl n _D ²² 1.5973
2-Methylthio-4-äthylamino-5-nitro-6-sec.pentylamino-pyrimidin	viskoses Öl n _D ²² 1.6161
65 2-Methylthio-4-äthylamino-5-nitro-6-(2'-hydroxyprop-1'-ylamino)-pyrimidin	96°

Verbindungen:

Brechungs-
indices bzw.
Schmelz-
punkte in
Grad
Celsius

2-Methylthio-4-äthylamino-5-nitro-6-cyclobutyl- amino-pyrimidin	105-106°
2-Methylthio-4-isopropylamino-5-nitro-6-(1',2'-di- methylpropylamino)-pyrimidin	viskoses Öl $n_D^{24,5}$ 1.6000
2-Methylthio-4-isopropylamino-5-nitro-6-(1'-cyclo- propyl-äthylamino)-pyrimidin	n_D^{25} 1.6143
2-Methylthio-4-äthylamino-5-nitro-6-(1'-cyclo- propyl-äthylamino)-pyrimidin	57-62°
2-Methylthio-4-isopropylamino-5-nitro-6-(pent-2'- ylamino)-pyrimidin	n_D^{25} 1.6008
2-Methylthio-4-äthylamino-5-nitro-6-(3'-methyl- but-2'-ylamino)-pyrimidin	68-69°
2-Methylthio-4-methylamino-5-nitro-6-(pent-2'- ylamino)-pyrimidin	n_D^{25} 1.6310
2-Methylthio-4-methylamino-5-nitro-6-(1'-cyclo- propyl-äthylamino)-pyrimidin	91-93°
2-Methylthio-4-isopropylamino-5-nitro-6-tert- butylamino-pyrimidin	$n_D^{25,5}$ 1.6032
2-Methylthio-4-äthylamino-5-nitro-6-(N'-methyl- sec.butylamino)-pyrimidin	Öl
2-Methylthio-4-äthylamino-5-nitro-6-piperidino- pyrimidin	Öl
2-Methylthio-4-äthylamino-5-nitro-6-(1',1'-dimethyl- 2'-hydroxy-äthylamino)-pyrimidin	96-98°
2-Methylthio-4-äthylamino-5-nitro-6-1'-äthyl- (2'-hydroxy-äthylamino)-pyrimidin	110-111°
2-Methylthio-4-äthylamino-5-nitro-6-(3'-methyl- but-2'-ylamino)-pyrimidin	75-77°
2-Methylthio-4-dimethylamino-5-nitro-6-isobutyl- amino-pyrimidin	178°
2-Methylthio-4-äthylamino-5-nitro-6-cyclopentyl- amino-pyrimidin	80-81°
2-Methylthio-4-methylamino-5-nitro-6-(pent-3'-yl- amino)-pyrimidin	47-54°
2-Methylthio-4-methylamino-5-nitro-6-cyclopentyl- amino-pyrimidin	99-102°
2-Methylthio-4-dimethylamino-5-nitro- 6-cyclopentylamino-pyrimidin	n_D^{24} 1.6412
2-Methylthio-4-dimethylamino-5-nitro-6-(pent-3'-yl- amino)-pyrimidin	45-47°
2-Methylthio-4-isopropylamino-5-nitro-6-(pent-3'- yl-amino)-pyrimidin	n_D^{24} 1.6033
2-Methylthio-4-isopropylamino-5-nitro- 6-cyclopentylamino-pyrimidin	72-74°
2-Methylthio-4-äthylamino-5-nitro-6- (N'-methylpiperazino)-pyrimidin	72-74°
2-Methylthio-4-äthylamino-5-nitro-6- pyrrolidino-pyrimidin	59-61°
2-Methylthio-4-äthylamino-5-nitro-6- morpholino-pyrimidin	65-70°
N,N-Dimethyl-N'-[2-methylthio-4-äthyl-amino-5- nitropyrimidin-6]-piperazoniumjodid	210° (Zers.)

Folgende bisher noch nicht beschriebene Zwischenprodukte der Formel V wurden auf dem in Beispiel 3a bis c beschriebenen Wege erhalten:

Tabelle 2:

Verbindungen:	Physikalische Daten:
2-Methylthio-4-amino-5-nitro-6-chlor- pyrimidin	Fp: 175°
2-Methylthio-4-methylamino-5-nitro-6-chlor- pyrimidin	Fp: 120-121°
2-Methylthio-4-sec.butylamino-5-nitro-6-chlor- pyrimidin	Fp: 77°
2-Methylthio-4-n-propylamino-5-nitro-6-chlor- pyrimidin	Fp: 82°
15 2-Butylthio-4-äthylamino-5-nitro-6-chlor- pyrimidin	Kp: 145°/0,01 Torr
2-Methylthio-4-dimethylamino-5-nitro-6-chlor- pyrimidin	Fp: 104-106°
20 2-Methylthio-4-äthylamino-5-nitro-6-chlor- pyrimidin	Fp: 95-97°
2-Methylthio-4-isopropylamino-5-nitro-6-chlor- pyrimidin	Fp: 84-86°
25 2-Methylthio-4-di-n-propyl-amino-5-nitro-6- chlor-pyrimidin	Fp: 50-51°

PATENTANSPRUCH I

Verfahren zur Herstellung neuer Pyrimidin-Derivate der Formel I

in der
35 R_1 einen Alkyl-Rest mit 2 bis 6 Kohlenstoffatomen, einen
Alkenyl-Rest mit 3 bis 5 Kohlenstoffatomen, einen Alkoxyalkyl-,
Alkylaminoalkyl-, Trialkylammonio-alkyl-Rest, einen Hydroxy-
50 alkyl- oder Cyanoalkylrest mit 1 bis 4 Kohlenstoffatomen, einen
Cycloalkyl-Rest mit 3 bis 6 Kohlenstoffatomen,

55 R_2 und R_3 unabhängig voneinander je Wasserstoff oder einen
niederen Alkyl-Rest,

59 R_4 Wasserstoff, einen niederen Alkylrest, einen Cycloalkyl-Rest
mit 3 bis 6 Kohlenstoffatomen
und die Symbol-Paare

63 R_1 und R_2 und/oder R_3 und R_4 ausserdem zusammen ein
Polymethylenbrückenglied, in dem eine Methylengruppe durch
Sauerstoff, die $-NH-$ Gruppe oder die Gruppe

66 ersetzt sein kann, in der R' für einen niederen Alkylrest steht, und
 R_5 einen niederen Alkylrest bedeuten,
dadurch gekennzeichnet, dass man in einer Verbindung der
Formel IV

(IV)

die in 4-Stellung und in 6-Stellung befindlichen Halogenatome in Gegenwart eines säurebindenden Mittels nacheinander gegen Rest von Aminen der Formeln II und III

austauscht, wobei die Substituenten R_1 bis R_5 die für Formel I gegebene Bedeutung haben und Hal ein Halogenatom darstellt.

UNTERANSPRÜCHE

1. Verfahren gemäss Patentanspruch I, wobei der Austausch der Halogenatome in Gegenwart eines Lösungs- und/oder Verdünnungsmittels durchgeführt wird.
2. Verfahren gemäss Patentanspruch I, dadurch gekennzeichnet, dass man die Pyrimidinderivate der Formel I anschliessend noch in eines ihrer Salze überführt.

PATENTANSPRUCH II

Die Verwendung der gemäss Patentanspruch I erhaltenen Nitro-Pyrimidine der Formel I und deren Salze zur Beeinflussung des Pflanzenwachstums.

Anmerkung des Eidg. Amtes für geistiges Eigentum:

Sollten Teile der Beschreibung mit der im Patentanspruch gegebenen Definition der Erfindung nicht in Einklang stehen, so sei daran erinnert, dass gemäss Art. 51 des Patentgesetzes der Patentanspruch für den sachlichen Geltungsbereich des Patentes massgebend ist.