Ciência dos Dados - Projeto 1

Vitor Liu - 2A

Prof. Fabio Miranda

Análise da relação entre a renda mensal, a quantidade de moradores por residência e a área residencial, e o uso de banda larga e 3G/4G em Minas Gerais.

Introdução

Esse projeto tem como objetivo analisar, de acordo com as PNADs disponíveis, as diferentes caracteristicas da população de Minas Gerais em relação com o acesso à internet. Assim, é possível definir o perfil de domicílio modelo para possíveis investimentos em outros estados.

Como a área de residência, a quantidade de moradores e a renda mensal (em R\$) influenciam nos diferentes servicos de Internet (3g/4g ou banda larga)?

Filtragem e organização dos dados brutos

In [2]:

```
#Imports
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import os
```

In [3]:

```
#Local dos arquivos
print('Esperamos trabalhar no diretório:')
print(os.getcwd())
```

Esperamos trabalhar no diretório:

C:\Users\LiuSeeker\Desktop\2o Semestre\Ciência dos dados\CieDados\Projeto 1

In [4]:

```
def ledados(plan):
   dadosres = pd.DataFrame(pd.read_csv(plan))
   #Colunas escolhidas
    dadosres = dadosres.loc[:, ["UF","V02322","V4614","V4105","V0105","V02424","V02426"]]
   #Cria coluna "Área", com valores "urbana" e "rural"
    dadosres.loc[(dadosres.V4105==1), "Área"] = "Urbana"
    dadosres.loc[(dadosres.V4105==2), "Área"] = "Urbana"
    dadosres.loc[(dadosres.V4105==3), "Área"] = "Urbana"
    dadosres.loc[(dadosres.V4105==4), "Área"] = "Rural"
   dadosres.loc[(dadosres.V4105==5), "Área"] = "Rural"
    dadosres.loc[(dadosres.V4105==6), "Área"] = "Rural"
    dadosres.loc[(dadosres.V4105==7), "Área"] = "Rural"
    dadosres.loc[(dadosres.V4105==8), "Área"] = "Rural"
   del dadosres["V4105"]
   #Tirando linhas com valor NaN
   #dadosres = dadosres.dropna(how="any")
    dadosres = dadosres[pd.notnull(dadosres["UF"])]
    dadosres = dadosres[pd.notnull(dadosres["V02322"])]
    dadosres = dadosres[pd.notnull(dadosres["V4614"])]
    dadosres = dadosres[pd.notnull(dadosres["V0105"])]
    #dadosres = dadosres[pd.notnull(dadosres["V02424"])] #Justificativa da não remoção dos
    #dadosres = dadosres[pd.notnull(dadosres["V02426"])]
   #Muda as categorias das colunas
    dadosres["UF"] = dadosres["UF"].astype("category")
    dadosres["V02322"] = dadosres["V02322"].astype("category") #Internet
    dadosres["V4614"] = dadosres["V4614"].astype("int32") #Renda
    dadosres["V0105"] = dadosres["V0105"].astype("int32") #Total moradores
    dadosres["V02424"] = dadosres["V02424"].astype("category") #3g/4g
    dadosres["V02426"] = dadosres["V02426"].astype("category") #Banda Larga
    #Define os nomes dos valores quantitativos
    dadosres["UF"].cat.categories = ["Rondonia","Acre","Amazonas","Roraima", \
    "Pará", "Amapá", "Tocantins", "Maranhão", "Piauí", "Ceará", "Rio Grande do Norte", "Paraít
    "Pernambuco", "Álagoas", "Sergipe", "Bahia", "Minas Gerais", "Éspírito Santo", "Rio de Janeir
    "São Paulo", "Paraná", "Santa Catarina", "Rio Grande do Sul", "Mato Grosso do Sul", "Mato Gr
    dadosres["V02322"].cat.categories = ["Tem", "Não tem"]
    dadosres["V02424"].cat.categories = ["Sim", "Não"]
    dadosres["V02426"].cat.categories = ["Sim", "Não"]
   #Mudança de nome das colunas
    dadosres = dadosres.rename(columns = {"V02322": "Internet", "V4614": "Renda mensal (R$)
   #Exclusão de colunas com valores inválidos/não importantes
    dadosres = dadosres[dadosres["Renda mensal (R$)"]>=0]
    dadosres = dadosres[dadosres["UF"]=="Minas Gerais"]
    return(dadosres)
```

Justificativa dos valores NaN nas colunas "Internet 3G ou 4G" e "Internet banda larga": A não remoção das linas com valores NaN nas colunas mencionadas se devem porque, caso fossem retirados, a coluna "Internet" ficaria apenas com valores "Tem".

In [5]:

```
dadosres15 = ledados("DOM2015.csv")
dadosres14 = ledados("DOM2014.csv")
dadosres13 = ledados("DOM2013.csv")
```

In [6]:

#Print de um ano (2015)
dadosres15

Out[6]:

	UF	Internet	Renda mensal (R\$)	Total de moradores	Internet 3G ou 4G	Internet banda larga	Área
64876	Minas Gerais	Tem	3800	2	Sim	Sim	Urbana
64877	Minas Gerais	Tem	2700	6	Sim	Sim	Urbana
64880	Minas Gerais	Tem	1780	2	Sim	Sim	Urbana
64881	Minas Gerais	Não tem	1576	2	NaN	NaN	Urbana
64883	Minas Gerais	Tem	4488	5	Sim	Sim	Urbana
64884	Minas Gerais	Tem	598	5	Sim	Sim	Urbana
64885	Minas Gerais	Tem	3100	4	Sim	Sim	Urbana
64886	Minas Gerais	Não tem	2538	2	NaN	NaN	Urbana
64888	Minas Gerais	Tem	2376	6	Sim	Sim	Urbana
64889	Minas Gerais	Tem	788	3	Sim	Sim	Urbana
64890	Minas Gerais	Não tem	1300	2	NaN	NaN	Urbana
64892	Minas Gerais	Tem	1200	3	Sim	Sim	Urbana
64893	Minas Gerais	Não tem	1800	1	NaN	NaN	Urbana
64894	Minas Gerais	Tem	2100	4	Sim	Sim	Urbana
64895	Minas Gerais	Tem	1400	3	Sim	Sim	Urbana
64898	Minas Gerais	Tem	3100	3	Sim	Sim	Urbana
64899	Minas Gerais	Não tem	788	1	NaN	NaN	Urbana
64900	Minas Gerais	Tem	2650	4	Sim	Sim	Urbana
64901	Minas Gerais	Não tem	788	1	NaN	NaN	Urbana
64902	Minas Gerais	Tem	155	3	Sim	Sim	Urbana
64903	Minas Gerais	Tem	2165	5	Sim	Sim	Urbana
64904	Minas Gerais	Não tem	1058	4	NaN	NaN	Urbana

64906 Minas Não Gerais tem 1988 2 NaN NaN Urbana

	UF	Internet	Renda mensal (R\$)	Total de moradores	Internet 3G ou 4G	Internet banda larga	Área
64908	Minas Gerais	Não tem	1488	2	NaN	NaN	Urbana
64909	Minas Gerais	Tem	1988	4	Sim	Não	Urbana
64910	Minas Gerais	Tem	1650	4	Sim	Não	Urbana
64911	Minas Gerais	Tem	988	2	Sim	Sim	Urbana
64915	Minas Gerais	Não tem	888	3	NaN	NaN	Rural
64917	Minas Gerais	Não tem	858	2	NaN	NaN	Rural
64919	Minas Gerais	Não tem	14499	2	NaN	NaN	Rural
				•••			
78818	Minas Gerais	Não tem	1480	2	NaN	NaN	Urbana
78820	Minas Gerais	Não tem	3312	4	NaN	NaN	Rural
78821	Minas Gerais	Não tem	2056	2	NaN	NaN	Rural
78823	Minas Gerais	Não tem	1000	4	NaN	NaN	Rural
78824	Minas Gerais	Não tem	3526	4	NaN	NaN	Rural
78825	Minas Gerais	Não tem	972	3	NaN	NaN	Rural
78826	Minas Gerais	Não tem	800	3	NaN	NaN	Rural
78827	Minas Gerais	Não tem	788	1	NaN	NaN	Rural
78828	Minas Gerais	Não tem	400	1	NaN	NaN	Rural
78829	Minas Gerais	Não tem	1354	5	NaN	NaN	Rural
78830	Minas Gerais	Tem	500	3	Não	Sim	Rural
78831	Minas Gerais	Não tem	1576	4	NaN	NaN	Rural
78832	Minas Gerais	Não tem	2100	3	NaN	NaN	Rural
78834	Minas Gerais	Não tem	1900	4	NaN	NaN	Rural
78836	Minas Gerais	Não tem	788	1	NaN	NaN	Rural
78838	Minas Gerais	Tem	1576	2	Sim	Não	Urbana

78839 Minas Não Gerais Não 2 NaN NaN Urbana

	UF	Internet	Renda mensal (R\$)	Total de moradores	Internet 3G ou 4G	Internet banda larga	Área
78840	Minas Gerais	Tem	3000	4	Sim	Não	Urbana
78841	Minas Gerais	Não tem	788	1	NaN	NaN	Urbana
78842	Minas Gerais	Não tem	1576	2	NaN	NaN	Urbana
78843	Minas Gerais	Tem	1610	1	Sim	Sim	Urbana
78844	Minas Gerais	Não tem	2710	2	NaN	NaN	Urbana
78845	Minas Gerais	Tem	1100	2	Sim	Sim	Urbana
78846	Minas Gerais	Não tem	1576	3	NaN	NaN	Urbana
78847	Minas Gerais	Não tem	1668	3	NaN	NaN	Urbana
78848	Minas Gerais	Tem	2118	3	Sim	Sim	Urbana
78849	Minas Gerais	Não tem	2996	4	NaN	NaN	Urbana
78850	Minas Gerais	Não tem	900	1	NaN	NaN	Urbana
78851	Minas Gerais	Não tem	1585	3	NaN	NaN	Urbana
78852	Minas Gerais	Não tem	788	1	NaN	NaN	Urbana

¹¹⁰¹⁰ rows × 7 columns

Criação de um DataFrame com index dos anos

In [7]:

```
#Criação de variáveis para criação de um DataFrame com index "Anos" (2013,2014,2015)
std13 = dadosres13["Renda mensal (R$)"].std()
std14 = dadosres14["Renda mensal (R$)"].std()
std15 = dadosres15["Renda mensal (R$)"].std()
mean13 = dadosres13["Renda mensal (R$)"].mean()
mean14 = dadosres14["Renda mensal (R$)"].mean()
mean15 = dadosres15["Renda mensal (R$)"].mean()
intersim13 = dadosres13["Internet"].value_counts(normalize=True)[0]
intersim14 = dadosres14["Internet"].value_counts(normalize=True)[0]
intersim15 = dadosres15["Internet"].value counts(normalize=True)[0]
internao13 = dadosres13["Internet"].value_counts(normalize=True)[1]
internao14 = dadosres14["Internet"].value_counts(normalize=True)[1]
internao15 = dadosres15["Internet"].value_counts(normalize=True)[1]
tiponet113 = dadosres13["Internet 3G ou 4G"].value_counts(normalize=True)[0]
tiponet114 = dadosres14["Internet 3G ou 4G"].value_counts(normalize=True)[0]
tiponet115 = dadosres15["Internet 3G ou 4G"].value_counts(normalize=True)[0]
tiponet213 = dadosres13["Internet banda larga"].value_counts(normalize=True)[0]
tiponet214 = dadosres14["Internet banda larga"].value_counts(normalize=True)[0]
tiponet215 = dadosres15["Internet banda larga"].value_counts(normalize=True)[0]
urb13 = dadosres13["Área"].value_counts(normalize=True)[0]
urb14 = dadosres14["Área"].value_counts(normalize=True)[0]
urb15 = dadosres15["Área"].value_counts(normalize=True)[0]
rural13 = dadosres13["Área"].value_counts(normalize=True)[1]
rural14 = dadosres14["Área"].value_counts(normalize=True)[1]
rural15 = dadosres15["Área"].value counts(normalize=True)[1]
```

In [8]:

```
#Criação do DataFrame
anos = ("2013", "2014", "2015")
medias = (mean13, mean14, mean15)
medianas = (std13, std14, std15)
netsim = (intersim13, intersim14, intersim15)
netnao = (internao13, internao14, internao15)
tiponet1 = (tiponet113, tiponet114, tiponet115)
tiponet2 = (tiponet213, tiponet214, tiponet215)
urb = (urb13, urb14, urb15)
rural = (rural13, rural14, rural15)
dadosres = pd.DataFrame({"Média renda mensal": medias,
                         "Mediana renda mensal": medianas,
                         "Tem Internet": netsim,
                         "Internet 3G/4G": tiponet1,
                         "Internet banda larga": tiponet2,
                         "Não tem internet": netnao,
                         "Urbano": urb,
                         "Rural": rural
                        }, index=anos)
#Print do novo DataFrame
dadosres
```

Out[8]:

	Internet 3G/4G	Internet banda larga	Mediana renda mensal	Média renda mensal	Não tem internet	Rural	Tem Internet	Urbano
2013	0.446134	0.768589	3974.513734	2989.080398	0.493472	0.131211	0.506528	0.868789
2014	0.633211	0.708287	5033.161736	3188.750976	0.429233	0.130277	0.570767	0.869723
2015	0.707541	0.704977	4569.504946	3325.010990	0.397820	0.129973	0.602180	0.870027

Plot do gráfico histograma de Renda Mensal em 2014 como panorama geral

```
In [9]:
```

```
dadosres14["Renda mensal (R$)"].plot(kind="hist", bins=(0,20000,100), figsize=(15,5), title
plt.xlabel("Renda mensal (R$)")
plt.ylabel("Frequência")
ValueError
                                           Traceback (most recent call last)
<ipython-input-9-21265ac71d4b> in <module>()
----> 1 dadosres14["Renda mensal (R$)"].plot(kind="hist", bins=
(0,20000,100), figsize=(15,5), title="Frequência da renda mensal (em R$) em
 2014")
      2 plt.xlabel("Renda mensal (R$)")
      3 plt.ylabel("Frequência")
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\pandas\tools\plotting.py in _
_call__(self, kind, ax, figsize, use_index, title, grid, legend, style, log
x, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table,
yerr, xerr, label, secondary_y, **kwds)
   3598
                                   colormap=colormap, table=table,
yerr=yerr,
                                   xerr=xerr, label=label, secondary_y=secon
   3599
dary_y,
                                    **kwds)
-> 3600
   3601
             _call__._doc__ = plot_series.__doc__
   3602
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\pandas\tools\plotting.py in p
lot_series(data, kind, ax, figsize, use_index, title, grid, legend, style, 1
ogx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, tabl
e, yerr, xerr, label, secondary_y, **kwds)
                         yerr=yerr, xerr=xerr,
   2672
   2673
                         label=label, secondary_y=secondary_y,
-> 2674
                         **kwds)
   2675
   2676
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\pandas\tools\plotting.py in _
plot(data, x, y, subplots, ax, kind, **kwds)
   2468
                plot_obj = klass(data, subplots=subplots, ax=ax, kind=kind,
**kwds)
   2469
            plot_obj.generate()
-> 2470
   2471
            plot obj.draw()
   2472
            return plot_obj.result
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\pandas\tools\plotting.py in g
enerate(self)
   1041
                self._compute_plot_data()
   1042
                self._setup_subplots()
-> 1043
                self._make_plot()
   1044
                self. add table()
                self. make legend()
   1045
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\pandas\tools\plotting.py in _
make_plot(self)
   2099
                    kwds = self._make_plot_keywords(kwds, y)
   2100
                    artists = self._plot(ax, y, column_num=i,
                                          stacking id=stacking id, **kwds)
-> 2101
```

self._add_legend_handle(artists[0], label, index=i)

2102

Þ

2103

06/10/2017

```
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\pandas\tools\plotting.py in _
plot(cls, ax, y, style, bins, bottom, column num, stacking id, **kwds)
   2077
                    cls. get stacked values(ax, stacking id, base, kwds['lab
el'])
                # ignore style
   2078
-> 2079
                n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kw
ds)
                cls. update stacker(ax, stacking id, n)
   2080
   2081
                return patches
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\matplotlib\__init__.py in inn
er(ax, *args, **kwargs)
   1889
                            warnings.warn(msg % (label_namer, func.__name_
_),
   1890
                                           RuntimeWarning, stacklevel=2)
-> 1891
                    return func(ax, *args, **kwargs)
   1892
                pre_doc = inner.__doc__
   1893
                if pre_doc is None:
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py in h
ist(self, x, bins, range, normed, weights, cumulative, bottom, histtype, ali
gn, orientation, rwidth, log, color, label, stacked, **kwargs)
   6190
                    # this will automatically overwrite bins,
   6191
                    # so that each histogram uses the same bins
-> 6192
                    m, bins = np.histogram(x[i], bins, weights=w[i], **hist_
kwargs)
                    m = m.astype(float) # causes problems later if it's an
   6193
 int
   6194
                    if mlast is None:
C:\Users\LiuSeeker\Anaconda3\lib\site-packages\numpy\lib\function_base.py in
 histogram(a, bins, range, normed, weights, density)
    617
                if (np.diff(bins) < 0).any():</pre>
    618
                    raise ValueError(
--> 619
                         'bins must increase monotonically.')
    620
    621
                # Initialize empty histogram
```

ValueError: bins must increase monotonically.

Comparação entre o uso de internet em 2013 e 2015

In [10]:

```
#Criação de faixas de renda
faixa = np.arange(0,16000,1000)
rendacut = pd.cut(dadosres13["Renda mensal (R$)"], faixa, False)
```

1. Relação de uso de Internet

In [11]:

dadosres13["Internet"].value_counts().plot(kind="pie", title="Relação entre pessoas que tem
plt.ylabel("")

Out[11]:

<matplotlib.text.Text at 0x1658b62a4e0>

Relação entre pessoas que tem ou não Internet em 2013

In [11]:

dadosres15["Internet"].value_counts().plot(kind="pie", title="Relação entre pessoas que tem
plt.ylabel("")

Out[11]:

<matplotlib.text.Text at 0x1c05005f8d0>

Relação entre pessoas que tem ou não Internet em 2015

2. Comparação entre o uso de banda larga e o total de pessoas por residência

pd.crosstab(dadosres13["Total de moradores"], dadosres13["Internet banda larga"]).plot(kind="bar") plt.legend(["Tem banda larga", "Não tem banda larga"]) plt.xlim(0,9) plt.xlabel("Total de moradores por residência") plt.ylabel("Quantidade") plt.ylim(0, 1600) plt.title("Relação entre banda larga e a quantidade de pessoas por residência em 2013") plt.grid()

pd.crosstab(dadosres15["Total de moradores"], dadosres15["Internet banda larga"]).plot(kind="bar") plt.legend(["Tem banda larga", "Não tem banda larga"]) plt.xlim(0,9) plt.xlabel("Total de moradores por residência") plt.ylabel("Quantidade") plt.ylim(0, 1600) plt.title("Relação entre banda larga e a quantidade de pessoas por residência em 2015") plt.grid()

3. Comparação entre o uso de 3G/4G e o total de pessoas por residência

In [13]:

```
pd.crosstab(dadosres13["Total de moradores"], dadosres13["Internet 3G ou 4G"]).plot(kind="t
plt.legend(["Tem 3G/4G", "Não tem 3G/4G"])
plt.xlim(-1,9)
plt.ylim(0,1600)
plt.xlabel("Total de moradores por residência")
plt.ylabel("Quantidade")
plt.title("Relação entre 3G/4G e quantidade de pessoas por residência em 2013")
plt.grid()
pd.crosstab(dadosres15["Total de moradores"], dadosres15["Internet 3G ou 4G"]).plot(kind="t
plt.legend(["Tem 3G/4G", "Não tem 3G/4G"])
plt.xlim(-1,9)
plt.ylim(0,1600)
plt.xlabel("Total de moradores por residência")
plt.ylabel("Quantidade")
plt.title("Relação entre 3G/4G e quantidade de pessoas por residência em 2015")
plt.grid()
```


4. Relação da Renda Mensal e o uso de 3G/4G

In [14]:

```
pd.crosstab(rendacut, dadosres13["Internet 3G ou 4G"]).plot(kind="bar", figsize=(15,5), tit
plt.xlabel("Faixas de renda mensal (R$)")
plt.ylabel("Quantidade")
plt.ylim(0, 1200)
plt.grid()

pd.crosstab(rendacut, dadosres15["Internet 3G ou 4G"]).plot(kind="bar", figsize=(15,5), tit
plt.xlabel("Faixas de renda mensal (R$)")
plt.ylabel("Quantidade")
plt.ylim(0, 1200)
plt.grid()
```


5. Relação da Renda Mensal e o uso de banda larga

In [15]:

```
pd.crosstab(rendacut, dadosres13["Internet banda larga"]).plot(kind="bar", figsize=(15,5),
plt.xlabel("Faixas de renda mensal (R$)")
plt.ylabel("Quantidade")
plt.ylim(0,1200)
plt.grid()

pd.crosstab(rendacut, dadosres15["Internet banda larga"]).plot(kind="bar", figsize=(15,5),
plt.xlabel("Faixas de renda mensal (R$)")
plt.ylabel("Quantidade")
plt.ylim(0,1200)
plt.grid()
```


6. Comparação entre o uso de 3G/4G e a Área

In [16]:

```
pd.crosstab(dadosres13["Área"], dadosres13["Internet 3G ou 4G"]).plot(kind="bar")
plt.title("Relação de uso de 3G/4G entre área urbana e rural, em 2013")
plt.ylabel("Quantidade")
plt.ylim(0,7000)
plt.grid()

pd.crosstab(dadosres15["Área"], dadosres15["Internet 3G ou 4G"]).plot(kind="bar")
plt.title("Relação de uso de 3G/4G entre área urbana e rural, em 2015")
plt.ylabel("Quantidade")
plt.ylim(0,7000)
plt.grid()
```


7. Comparação entre o uso de Banda larga e a Área

In [17]:

```
pd.crosstab(dadosres13["Área"], dadosres13["Internet banda larga"]).plot(kind="bar")
plt.title("Relação de uso de banda larga entre área urbana e rural, em 2013")
plt.ylabel("Quantidade")
plt.ylim(0,7000)
plt.grid()

pd.crosstab(dadosres15["Área"], dadosres15["Internet banda larga"]).plot(kind="bar")
plt.title("Relação de uso de banda larga entre área urbana e rural, em 2015")
plt.ylabel("Quantidade")
plt.ylim(0,7000)
plt.grid()
```


8. Comparação entre o uso de 3G/4G e banda larga

In [18]:

Conclusões da análise dos dados

Os dados mostram que, dentre os serviços de internet analizados, o 3G/4G é um serviço com um crescimento alto. Na comparação geral entre os tipos de serviço de internet, a quantidade de usuários de 3G/4G ultrapassaram a de banda larga em 2015. Se considerado o tipo de área, a quantidade relativa de usuários de ambos está por volta de 70% na área urbana, porém é possivel notar que na área rural o uso de 3G/4G é levemente maior.

Em relação à quantidade de moradores por residência, é possível notar que o uso de banda larga caiu drasticamente, aproximadamente para a metade em residências de 1 a 5 pessoas entre 2013 e 2015. Em compensação, no mesmo cenário, o uso de 3G/4G dobrou.

Por último, o uso de 3G/4G em relação a renda mensal em 2013 é menor do que a banda larga todas as faixas de renda. Entretanto, em 2015, os níveis de uso de 3G/4G ficam ligeiramente maiores que o uso de banda larga.

Como conclusão pode-se falar que, para um investimento futuro em outro estado, o ideal seria investir em 3G/4G em estados com áreas majoritariamente urbanas, focando mais no público de renda entre R\$0 e R\$4000 e em residências com 1 a 5 pessoas.