EVALUATION ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES

Université Paris-Saclay

YET ANOTHER ALGORITHM FOR ONLINE STRONGLY CONVEX OPTIMIZATION

Let \mathscr{Z} be a nonempty closed convex subset of \mathbb{R}^d , $\|\cdot\|$ be a norm in \mathbb{R}^d , $(K_t)_{t\geqslant 1}$ be a positive sequence and $(\ell_t)_{t\geqslant 1}$ convex losses on \mathscr{Z} such that for all $t\geqslant 1$, ℓ_t is K_t -strongly convex for $\|\cdot\|$. Let $(\rho_t)_{t\geqslant 1}$ be a sequence of regularizers on \mathscr{Z} . For each $t\geqslant 1$, let $g_t\in \partial \ell_t(x_t)$ and consider

$$x_{t} = \operatorname*{arg\,min}_{x \in \mathscr{X}} \left\{ \sum_{s=1}^{t-1} \left(\left\langle g_{s}, x \right\rangle + \frac{K_{s}}{2} \left\| x - x_{s} \right\|^{2} \right) + \rho_{t}(x) \right\}.$$

- 1) Prove that the above can be written as UMD iterates.
- 2) Derive regret bounds on $\sum_{t=1}^{T} (\ell_t(x_t) \ell_t(x))$ (for $x \in \mathcal{X}$). Hint: One possible approach is to consider:

$$\tilde{\ell}_{t}(x) = \left\langle g_{t}, x \right\rangle + \frac{\mathbf{K}_{t}}{2} \left\| x - x_{t} \right\|^{2}, \quad x \in \mathbb{R}^{d}, \ t \geqslant 1,$$

and to remark that for all $t \ge 1$ and $x \in \mathcal{X}$,

$$\ell_t(x_t) - \ell_t(x) \leqslant \tilde{\ell}_t(x_t) - \tilde{\ell}_t(x).$$

3) In the case where $\|\cdot\| = \|\cdot\|_2$, derive regret bounds for

$$x_{t} = \operatorname*{arg\,min}_{x \in \mathscr{X}} \left\{ \sum_{s=1}^{t-1} \left(\left\langle g_{s}, x \right\rangle + \frac{\mathrm{K}_{s}}{2} \left\| x - x_{s} \right\|^{2} \right) \right\}, \quad t \geqslant 1.$$

