自然语言处理

实验二:面向目标的情感分类

201300035 方盛俊 人工智能学院

目录

→,	方案设计	3
=,	模块描述	3
	2.1 全局参数	3
	2.2 清洗数据	4
	2.3 生成依存句法树	4
	2.4 寻找 target 根节点	5
	2.5 生成 token 权重	5
	2.6 BERT 输入分词	5
	2.7 BERT 提示	6
	2.8 BERT 加权平均模型	6
	2.9 模型训练与评估	7
三、	实验效果	7
四、	遇到的问题与思考改进	7
	4.1 超参数调节过于繁琐	7
	4.2 低级的代码错误导致网络无法正常训练	8
	4.3 尝试 LSTM 方案	8
Ŧ	<u> </u>	ρ

一、方案设计

本次任务要求预测目标对象在句子中的情感极性,一个句子可能包含多个目标对象,每个目标会构成单独的样例。情感极性分为三类,1表示 positive,0表示 neutral,-1表示 negative。

相比于上一次的整句情感分类任务,本次任务的难点在于如何在情感分类时,对预测目标的影响进行建模。经过分析,我采用了依存句法树生成权重 + BERT 分类模型的方式来完成本次任务,采用了如下方案:

1. 数据预处理:

- 1. 对输入数据进行清洗,如将 '-LRB-' 替换回 '(', 方便进一步进行句法分析;
- 2. 使用 stanza 库的 Dependency Parsing 模块生成依存句法树;
- 3. target 可能对应多个 tokens, 需要寻找离 root 最近的 token;
- 4. 基于依存句法树构, 找到 target root token 与其他 tokens 之间的距离 dists;
- 5. 对 dists 应用函数 $h(x) = 1/x^2$ 生成每个 tokens 对应权重 weights;

2. BERT 分类模型分类:

- 1. 使用 transformers 库的 BertTokenizer 对输入数据进行划分;
- 2. 加入额外信息 QUESTION 形成 [CLS] SENTENCE [SEP] QUESTION [SEP] 输入, 其中 QUESTION 为 "What is the sentiment class of {target} in the sentence?", 相当于对分类任务的一种提示;
- 3. 使用 transformers 库的 BertModel 搭建了一个 BERT 分类模型;
- 4. 在数据经过 BERT 输出后,得到 last_hidden_state,并通过预处理得到的 weights 进行加权平均,得到消去 seq_len 维的结果 weighted_output;
- 5. 使用线性层 nn.Linear(768, num_labels) 对输出结果进行分类。
- 3. 使用 PyTorch 的梯度下降对模型进行训练与微调。

代码结构如下:

- 1. preprocess.py:数据预处理文件,包含数据清洗、依存句法树分析、权重生成。
- 2. sentiment-analysis-bert.ipynb: BERT 分类模型的构建、训练以及最终结果生成。
- 3. sentiment-analysis-rnn.ipynb:基于 LSTM 的失败尝试。

二、 模块描述

2.1 全局参数

由于我的本地机器缺乏高效的 GPU, 代码文件使用了 Colab 来训练, 以利用 GPU 加快训练过程。为了统一 Colab 和本地机器的参数, 我将所有的全局参数都放在了 config 的字典参数中, 这样在 Colab 和本地机器上运行代码时, 以及调节超参数时, 只需要动态修改 config 的字典参数中的参数即可。

一些全局配置 config = {

```
'is_train': True, # 是否进行训练
   'is save': True, # 是否保存模型文件
    'is_load': True, # 是否加载模型文件
   'is_save_result': True, # 是否保存结果
   # ...
   # 训练数据划分相关配置
   'random_seed': 42, # 随机种子
   'train_set_ratio': 0.99, # 训练集占训练数据的比重
   # Model 相关配置
   'max_len': 120,
   'train_batch_size': 8,
    'valid_batch_size': 4,
   'test_batch_size': 4,
   # 训练相关配置
   'lr': 2e-05,
   'epochs': 6,
}
```

2.2 清洗数据

由于原文中存在着一些诸如 '-LRB-' 与 '-RRB-' 的内容,因此我们需要先对输入进行清洗,并且去除一些像 "!" 与 "." 等可能会引起划分为两个句子的符号,否则会导致后续依存句法分析无法生成单棵句法树。

2.3 生成依存句法树

为了生成依存句法树, 我选择了使用 stanza 库的 Dependency Parsing 模块, stanza 是由 Stanford University 开发的一个 NLP 库,其使用起来十分简单:

```
def depparse(documents):
    Input: a list of documents, each document is a string
    Output: a list of documents, each document is a stanza Document object
    nlp = stanza.Pipeline(
        lang='en', processors='tokenize,mwt,pos,lemma,depparse')
    in_docs = [stanza.Document([], text=d) for d in documents]
    out_docs = nlp(in_docs)
    return out_docs
```

输入一系列句子组成的 documents, 经过处理之后, 就会生成一系列的 stanza Document object, 可以生成一系列类似于

deprel: punct

head: atteint

的依存语法树。

id: 9

2.4 寻找 target 根节点

word: .

在数据预处理中, 会存在 target 不止一个 token 的情况, 例如 sauce on the pizza 这个 target 就存在着 4 个 tokens。这时候我们需要确定其中一个 token,才能生成与 其他 tokens 之间的距离 dists。

我确定 target 中的主 token 的策略是: 寻找 target 中的 tokens 在依存句法树中离 root 节点最近的 token 作为 target root token。这是因为离 root 节点越近,就说明这 个 token 在句子结构中就越为重要。

2.5 生成 token 权重

我们又使用 build_graph(words) 函数,去除边类型信息,为每棵句法树生成了形如 [[3], [2], [1, 3], [2], [5], [4]] 的图, 并使用 BFS 算法找到 target 与其他 tokens 之间的最短距离 dists, 其中 target 到 target 的距离也设为 1, 以便后续生成权重 weights o

为了生成权重,我们有多种生成方式,基础的想法是距离越近的 token 的权重越大, 距离越远的 token 的权重越小,甚至几乎等于 0。因此我使用了函数

$$h(x) = \frac{1}{x^2}$$

来生成最终的权重 weights, 其优势在于距离为 1 的 token 的 weight 为 1, 而距离 越远的 token 的 weight 衰减得很快,变得十分接近 o,但是仍然不为 o,以保持一定 的容错率。

2.6 BERT 输入分词

为了使用 BERT 模型,我们需要使用 transformers 库中的 BertTokenizer 对输入 数据进行分词。关键代码如下:

```
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
inputs = tokenizer.encode_plus(
    document,
```

```
f"What is the sentiment class of {target} in the sentence ?",
   add_special_tokens=True,
   max_length=self.max_len,
   pad_to_max_length=True,
   return_token_type_ids=True
)

ids = inputs['input_ids']
mask = inputs['attention_mask']
token_type_ids = inputs["token_type_ids"]
```

可以看出分别会生成 ids、mask 以及 token_type_ids 三个变量,分别代表着 token 对应的 id,标识着有效输入部分的 mask 以及标记两个不同句子部分的 token_type_ids。

2.7 BERT 提示

可以看到, 上文中的 tokenizer.encode_plus() 函数还包含了第二个句子作为提示参数: "What is the sentiment class of {target} in the sentence ?",通过这种方式可以部分建模 target 对分类结果的影响。

这其实也相当于一个 BERT QUESTION ANSWER 模型,后一个句子就相当于我们的提问。借助 BERT 预训练模型的强大能力,在有了这么一个提示之后分类准确率就达到了 83.5% 左右了。

2.8 BERT 加权平均模型

使用 transformers 库的 BertModel 可以很简单地搭建出一个 BERT 预训练模型:

```
class TDBert(nn.Module):

    def __init__(self, num_labels=3):
        super(TDBert, self).__init__()
        self.bert = BertModel.from_pretrained('bert-base-uncased')
        self.classifier = nn.Linear(768, num_labels)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None,
    weights=None):
        last_hidden_state, pooled_output = self.bert(input_ids=input_ids,
        attention_mask=attention_mask, token_type_ids=token_type_ids,
    return_dict=False)
        weighted_output = torch.sum(last_hidden_state *
    weights.unsqueeze(-1), dim=1) / torch.sum(weights, dim=1).unsqueeze(-1)
        logits = self.classifier(weighted_output)
        return logits
```

其中我们使用了 BertModel 与 nn.Linear 搭建了一个两层结构。但是实际上的 forward() 函数中我们还有一个加权平均的过程,这里应用到了我们前面预训练生成出来的 weights,具体为

```
weighted_output = torch.sum(last_hidden_state * weights.unsqueeze(-1),
dim=1) / torch.sum(weights, dim=1).unsqueeze(-1)
```

也即取出 last_hidden_state,其对应每一个 token 对应的 768 维的隐层表示,再乘上数据预处理时得到的权重 weights 进行加权平均,得到一个加权平均后的 768 维向量表示,再通过一个线性分类器 nn.Linear 分类得到最终的三个类别。

2.9 模型训练与评估

模型训练和评估使用的是 Adam 优化器与交叉熵损失函数, 也即有

```
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'])
criterion = nn.CrossEntropyLoss()
```

然后使用 PyTorch 的梯度下降对模型进行训练和微调, 其中一些关键参数为

三、实验效果

经过数次的超参数调节, 选定了 max_len = 120, lr = 2e-05, epochs = 6 等参数, 并且 train.txt 中 90% 数据用作训练, 10% 数据用作验证(最后用了 99% 的数据重新训练模型), 最终得到了如下的实验效果:

训练集精度	验证集精度	测试集精度
0.972	0.847	0.850

表 1: 实验结果

在训练集上的精度为 0.972, 在验证集上的精度为 0.847, 最后提交文件得到的 test.txt 对应的精度为 0.850。

四、遇到的问题与思考改进

4.1 超参数调节过于繁琐

在机器学习中,超参数调节是一个非常重要的环节,可以通过调节不同的超参数来 优化模型性能。但是,在实际操作中,超参数调节往往非常繁琐,需要不断地试错,很 容易浪费大量时间和计算资源。

由于我使用的是 Colab 的免费计算资源,连接容易中断,不适合进行大量的超参数调节。因此,我只能在 Colab 上进行少量的手动超参数调节。

如果是在本地训练,也许可以考虑使用自动化调参工具,例如 Grid Search、Random Search、Bayesian Optimization 等。

4.2 低级的代码错误导致网络无法正常训练

在一开始使用 BERT 模型的时候,在训练过程中,无论是在训练集还是验证集上,精度始终维持在 0.60 左右,无法进一步提升。

当时认为可能是训练函数 train() 出现了错误,一直在训练函数的身上寻找错误,但是没有找到问题所在。最后决定换一个网络 (transformers 自带的整句文本分类 BERT 网络) 测试一下训练函数 train() 是否能正常训练。结果表明训练函数 train() 是正常工作的,因此我就将目光放到了网络结构身上。

最后结果表明,出错的原因是我调用 BERT 模型时没有使用关键字参数,原来的写法是这样

```
self.bert(input_ids, attention_mask, token_type_ids, return_dict=False)
```

参数位置出现错配, 只需要换成

```
self.bert(input_ids=input_ids, attention_mask=attention_mask,
token_type_ids=token_type_ids, return_dict=False)
```

也即关键字参数即可。

4.3 尝试 LSTM 方案

除了BERT 网络,我也尝试使用了MLP模型,也即直接使用多层由Relu激活的线性层,辅以数据预处理得到的权重 weights,但是事实表明最终的结果并不好,最终精度只有65%左右。

在 MLP 模型失败之后,我也使用了 LSTM 模型,而其中的困难是如何将从数据预处理中使用依存句法树得到的权重 weights 应用到 LSTM 模型中。我采取了一个取巧的做法: 将权重乘以输入到 LSTM 模型的对应 token 的词向量。

这个做法的原理在于词向量一般是需要归一化的,也即作为一个只有方向,而固定 长度的单位向量。因此,我们可以让词向量乘以标量权重,得到一个新向量,这个新向 量即有方向,又有大小,进而可以让 LSTM 网络学习到 target 相关的信息。

这样的 LSTM 模型性能比不上 BERT 模型,最终精度只有 74.5% 左右,但是我自己认为是一个蛮有趣的想法。

五、参考文献

- 1. https://stanfordnlp.github.io/stanza/depparse.html
- 2. https://arxiv.org/pdf/2004.12362.pdf

3. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8864964

实验二:面向目标的情感分类

4. https://huggingface.co/docs/transformers/v4.29.1/en/model_doc/bert#overview