

Neural PDEs

Vignesh Gopakumar Fusion-EP Talks

28th May, 2020

Regular NNs

Feedforward Structure

Input Layer Hidden Layer Output Layer

Feedforward Structure

Feedforward Structure

$$h_1 = f(b_1 + w_1 * x_1 + w_2 * x_2)$$

$$h_2 = f(b_2 + w_3 * x_1 + w_4 * x_2)$$

$$\tilde{y} = f(b_3 + w_5 * h_1 + w_6 * h_2)$$

 b_2

$$h_1 = f(b_1 + w_1 * x_1 + w_2 * x_2)$$

$$h_2 = f(b_2 + w_3 * x_1 + w_4 * x_2)$$

$$\tilde{y} = f(b_3 + w_5 * h_1 + w_6 * h_2)$$

Input Layer Hidden Layer Output Layer

$$L = (y - \tilde{y})^2$$

$$h_1 = f(b_1 + w_1 * x_1 + w_2 * x_2)$$

$$h_2 = f(b_2 + w_3 * x_1 + w_4 * x_2)$$

$$\tilde{y} = f(b_3 + w_5 * h_1 + w_6 * h_2)$$

$$\frac{\partial L}{\partial w} = ?$$

Input Layer

Hidden Layer

$$L = (y - \tilde{y})^2$$

$$h_1 = f(b_1 + w_1 * x_1 + w_2 * x_2)$$

$$h_2 = f(b_2 + w_3 * x_1 + w_4 * x_2)$$

$$\tilde{y} = f(b_3 + w_5 * h_1 + w_6 * h_2)$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \tilde{y}} * \frac{\partial \tilde{y}}{\partial h_1} * \frac{\partial h_1}{\partial w_1}$$

Input Layer

Hidden Layer

$$h_1 = f(b_1 + w_1 * x_1 + w_2 * x_2)$$

$$h_2 = f(b_2 + w_3 * x_1 + w_4 * x_2)$$

$$\tilde{y} = f(b_3 + w_5 * h_1 + w_6 * h_2)$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \tilde{y}} * \frac{\partial \tilde{y}}{\partial h_1} * \frac{\partial h_1}{\partial w_1}$$

$$\frac{\partial L}{\partial \tilde{y}} = -2(y - \tilde{y})$$

$$\frac{\partial \tilde{y}}{\partial h_1} = w_5 * f'(b_3 + w_5 * h_1 + w_6 * h_2)$$

$$\frac{\partial h_1}{\partial w_1} = x_1 * f'(b_1 + w_1 * x_1 + w_2 * x_2)$$

Input Layer

Hidden Layer

$$h_1 = f(b_1 + w_1 * x_1 + w_2 * x_2)$$

$$h_2 = f(b_2 + w_3 * x_1 + w_4 * x_2)$$

$$\tilde{y} = f(b_3 + w_5 * h_1 + w_6 * h_2)$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \tilde{y}} * \frac{\partial \tilde{y}}{\partial h_1} * \frac{\partial h_1}{\partial w_1}$$

$$\frac{\partial L}{\partial \tilde{y}} = -2(y - \tilde{y})$$

$$\frac{\partial \tilde{y}}{\partial h_1} = w_5 * f'(b_3 + w_5 * h_1 + w_6 * h_2)$$

$$\frac{\partial h_1}{\partial w_1} = x_1 * f'(b_1 + w_1 * x_1 + w_2 * x_2)$$

Surrogate Model Layout

Loss Function:

$$\frac{1}{N}\sum (u - \tilde{u})$$

aka reconstruction error.

Surrogate Model Layout

Loss Function:

$$\frac{1}{N}\sum (u - \tilde{u})$$

aka reconstruction error.

Surrogate Model with Physical Penalty

Loss Function:

$$\frac{1}{N}\sum(u-\tilde{u})+\sum(m\tilde{u}-mu)$$

Momentum Conservation Equation playing an additional constraint (assuming \tilde{u} is velocity in this case.)

Neural PDE Layout

Loss Function:

```
Initial Loss+ Boundary Loss+ Domain Loss
```


Consider a PDE written in the form:

$$f = u_t + \Lambda[u] = 0, \quad x \in \Omega, \quad t \in [0, T]$$

Initial_Loss = MSE
$$\sum (u_{(x, t=0)} - \tilde{u}_{(x, t=0)})$$

$$Boundary_Loss = MSE \sum \left(BoundaryCondition(\tilde{u}_{(X_lim, t)}) \right)$$

$$Domain_Loss = MSE \sum (f(x,t))$$

Consider the Korteweg-de Vries Equation:

$$f = u_t + u * u_x + \alpha * u_{xxx} = 0, \qquad x \in [-1, 1], \qquad t \in [0, 1]$$

with Periodic Boundary Conditions

$$u_{x=-1}=u_{x=1}$$

$$\frac{\partial u}{\partial x_{x=-1}} = \frac{\partial u}{\partial x_{x=1}}$$

Loss Function Entities:

Initial_Loss = MSE
$$\sum (IC(x,0) - \tilde{u}_{(x,t=0)})$$

Boundary_Loss =
$$MSE \sum \left(\frac{\partial u}{\partial x_{x=-1}} - \frac{\partial u}{\partial x_{x=1}} + u_{x=-1} - u_{x=1} \right)$$

$$Domain_Loss = MSE \sum (f(x,t)), \quad x \in (-1,1), \quad t \in (0,1)$$

Partial Derivatives via Backprop

Input Layer

Hidden Layer

$$h_1 = f(b_1 + w_1 * x_1 + w_2 * x_2)$$

$$h_2 = f(b_2 + w_3 * x_1 + w_4 * x_2)$$

$$\tilde{y} = f(b_3 + w_5 * h_1 + w_6 * h_2)$$

$$\frac{\partial \tilde{y}}{\partial x_1} = \frac{\partial \tilde{y}}{\partial h_1} * \frac{\partial h_1}{\partial x_1}$$

$$\frac{\partial \tilde{y}}{\partial h_1} = w_5 * f'(b_3 + w_5 * h_1 + w_6 * h_2)$$

$$\frac{\partial h_1}{\partial x_1} = w_1 * f'(b_1 + w_1 * x_1 + w_2 * x_2)$$

NPDE Package - PDE_Kozhi

Neural PDE Parameters:

 N_i : Number of Initial Points N_b : Number of Boundary Points N_f : Number of Domain Points

Each collocation point for each loss entity is obtained by calling upon a quasi-random sequence within the boundaries of each region.

PDE Parameters:

Equation (as a string)
Lower and Upper bounds
Initial Condition
Boundary Condition and Value

NN Parameters:

Number of layers and neurons


```
In [9]: #Neural Network Hyperparameters
         NN parameters = {
                          input_neurons' : 2,
                          'output neurons' : 1,
                         'num layers': 4,
                         'num neurons': 100,
         #Neural PDE Hyperparameters
         NPDE parameters = {'Sampling Method': 'Random',
                             'N initial': 300, #Number of Randomly sampled Data points from the IC vector
                            'N boundary' : 300, #Number of Boundary Points
                            'N_domain': 20000 #Number of Domain points generated
         #PDE
         PDE_parameters = {'Equation': 'u_t + u*u_x + 0.0025*u_xxx',
                            'order': 3,
                            'lower_range': [-1., 0.],
                           'upper_range': [1., 1.],
                           'Boundary Condition': "Periodic",
                           'Boundary_Vals' : None,
                           'Initial Condition': lambda x: np.cos(np.pi*x)
In [10]: #Obtaining the training data
         soln loc = '/Examples/Data/KdV.mat'
         x, t, training data, testing input, testing output = npde.Main.solution_data(soln_loc, NN_parameters, PDE_parameters,
         params = npde.Parameters.parameters(PDE parameters, NN parameters, NPDE parameters, Model Name, Equation Name)
 In [ ]: #Initialising the Model
         model = npde.Main.setup(params, training data)
 In [ ]: #Training Conditions ---
         optimiser = {
                      'opt_type' : "GD",
                     'optimizer' : "adam",
                      'learning_rate' : 0.001,
                     'nIter' : 2000,
                      'qn_source' : None
         start_time = time.time()
         loss_GD = model.train(optimiser, Model_Name)
         time GD = time.time() - start time
         optimiser = {
                      opt type' : "QN",
                     'optimizer' : "L-BFGS-B",
                     'learning rate' : None,
                     'nIter' : None,
                      'qn source' : "Scipy"
         start_time = time.time()
         loss Scipy = model.train(optimiser, Model Name)
         time_Scipy = time.time() - start_time
```


Approx. Theory and Error Analysis for Neural PDEs

- Approximation Error (Best function close to u in the Function Space F Global Minimum)
- Generalisation Error (Governed by the number of Points)
- Optimisation Error (Network stuck at local minimum)
- Networks with larger size have smaller approximation errors but could lead to higher generalization errors (Bias-Variance Tradeoff).

Source: DeepXdE

Numerical Solvers Compared with Neural PDEs

- Traditional Solvers have high round-off and truncation errors.
- Expensive at Higher Dimensions (Curse of Dimensionality)
- Confined to a Mesh
- Neural PDEs can be be accelerated on GPUs and TPUs

Still this isn't extremely cheap to run.

Took approximately two hours to get to the final solution on a single CPU.

But accelerated by a single GPU, converges within 10 minutes.

Throwing away 'learned general dynamics' being thrown away with this case-specific approach.

Deep Hidden Physics Models

Learn the general behavior of the PDE by mapping inputs to outputs of an already known solution.

Two different Neural Networks are used to attain this characterized by:

 $u_{idn} \& \Lambda$

Where, u_{idn} learns the mapping of the input coordinates to the known solution, while Λ learns the general behaviour of the PDE using u_{idn} .

The final solution is attained by using another neural network u_{soln} by using the function Λ .

Source: Deep hidden physics models: Deep learning of nonlinear partial differential equations – M. Raissi

Identifier

Loss Function:

$$\frac{1}{N}\sum (u - \tilde{u})$$

aka reconstruction error.

Lambda

Loss Function:

$$MSE((\tilde{u}_t - tf.concat(\tilde{u}, \tilde{u}_x, \tilde{u}_{xx}, \tilde{u}_{xxx})))$$

Solution

Loss Function:

$$MSE(u_{ic} - \tilde{u}_{ic})$$

$$MSE(u_{bc} - \tilde{u}_{bc})$$

$$MSE((\tilde{u}_t - tf.concat(\tilde{u}, \tilde{u}_x, \tilde{u}_{xx}, \tilde{u}_{xxx})))$$

Identifier and Solution –

Initial Condition

Identifier - Uidn

Solution - U_{soln}

Additional Functionality:

- Better Sampling Strategies: Spatio-Temporal Residual Based
- Higher Order Approximations represented by perturbations Deep Galerkin Methods
- More complex Network Elements Batch Normalisation, Sparse Nets, Resnets
- Case-agnostic modelling

References:

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. In *Journal of Machine Learning Research* (Vol. 19, pp. 1–24).

Michoski, C., Milosavljevic, M., Oliver, T., & Hatch, D. (2019). Solving Irregular and Data-enriched Differential Equations using Deep Neural Networks. 78712, 1–22. http://arxiv.org/abs/1905.04351

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2020). DeepXdE: A deep learning library for solving differential equations. *CEUR Workshop Proceedings*, 2587, 1–17.

Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. *Journal of Computational Physics*, 375(Dms 1550918), 1339–1364. https://doi.org/10.1016/j.jcp.2018.08.029

Koryagin, A., Khudorozkov, R., & Tsimfer, S. (2019). *PyDEns: a Python Framework for Solving Differential Equations with Neural Networks. i.* http://arxiv.org/abs/1909.11544

Rackauckas, C., Innes, M., Ma, Y., Bettencourt, J., White, L., & Dixit, V. (2019). DiffEqFlux.jl - A Julia Library for Neural Differential Equations. 1–17. http://arxiv.org/abs/1902.02376

Gopakumar, V., & Samaddar, D. (2020). Image mapping the temporal evolution of edge characteristics in tokamaks using neural networks. *Machine Learning: Science and Technology*, 1(1), 015006. https://doi.org/10.1088/2632-2153/ab5639

Jiang, C. M., Esmaeilzadeh, S., Azizzadenesheli, K., Kashinath, K., Mustafa, M., Tchelepi, H. A., Marcus, P., Prabhat, & Anandkumar, A. (2020). MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework. http://arxiv.org/abs/2005.01463