Claims

10

20

25

1. A composition comprising a synergistically effective active compound combination of compounds of the formula (I) (group 1)

in which

X represents halogen, alkyl, alkoxy, haloalkyl, haloalkoxy or cyano,

W¹, Y and Z independently of one another represent hydrogen, halogen, alkyl, alkoxy, haloalkyl, haloalkoxy or cyano,

A³ represents hydrogen, in each case optionally halogen-substituted alkyl, alkoxyalkyl, saturated, optionally substituted cycloalkyl in which optionally at least one ring atom is replaced by a heteroatom,

A⁴ represents hydrogen or alkyl,

A³ and A⁴ furthermore together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle which optionally contains at least one heteroatom,

D represents hydrogen or an optionally substituted radical from the group consisting of alkyl, alkenyl, alkoxyalkyl, saturated cycloalkyl in which optionally one or more ring members are replaced by heteroatoms,

A³ and D together with the atoms to which they are attached represent a saturated or unsaturated cycle which is unsubstituted or substituted in the A³,D moiety and optionally contains at least one heteroatom,

G¹ represents hydrogen (a) or represents one of the groups

E represents a metal ion or an ammonium ion,

L¹ represents oxygen or sulfur,

M¹ represents oxygen or sulfur,

R²⁰ represents in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl,

 R^{21}

10

15

20

25

alkylthioalkyl, polyalkoxyalkyl or optionally halogen-, alkyl- or alkoxy-substituted cycloalkyl which may be interrupted by at least one heteroatom, in each case optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl or hetaryloxyalkyl, represents in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl,

polyalkoxyalkyl or represents in each case optionally substituted cycloalkyl, phenyl

or benzyl,

R²² represents optionally halogen-substituted alkyl or optionally substituted phenyl,

R²³ and R²⁴ independently of one another represent in each case optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, cycloalkylthio or represent in each case optionally substituted phenyl, benzyl, phenoxy or phenylthio and

R²⁵ and R²⁶ independently of one another represent hydrogen, in each case optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, represent optionally substituted phenyl, represent optionally substituted benzyl or together with the nitrogen atom to which they are attached represent an optionally substituted ring which is optionally interrupted by oxygen or sulfur,

or an insecticidally active compound (group 2), preferably

(2-1) amitraz (known from DE-A 20 61 132)

and/or

(2-2) buprofezin (known from DE-A 28 24 126)

and/or

(2-3) triazamate (known from EP-A 0 213 718)

$$\begin{array}{c|c} H_3C & CH_3 & O \\ \hline \\ H_3C & N & N \\ \hline \\ O & N & CH_3 \\ \hline \\ O & CH_3 \\ \end{array}$$

and/or

(2-4) pymetrozine (known from EP-A 0 314 615)

and/or

(2-5) pyriproxifen (known from EP-A 0 128 648)

and/or

(2-6) flonicamid (known from EP-A 0 580 374)

and/or

(2-7) pirimicarb (known from GB 1 181 657)

$$\begin{array}{c|c} H_3C & CH_3 & CH_3 \\ \hline \\ H_3C & CH_3 \\ \end{array}$$

and at least one active compound from the group of the anthranilamides of the formula (II).

2. The composition as claimed in claim 1 comprising at least one compound of the formula (I) in which

W¹ represents hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, chlorine, bromine or fluorine,

X represents C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, fluorine, chlorine or bromine,

Y and Z independently of one another represent hydrogen, C₁-C₄-alkyl, halogen, C₁-C₄-alkyl, alkoxy or C₁-C₄-haloalkyl,

A³ represents hydrogen or in each case optionally halogen-substituted C₁-C₆-alkyl or C₃-C₈-cycloalkyl,

A⁴ represents hydrogen, methyl or ethyl,

A³ and A⁴ furthermore together with the carbon atom to which they are attached represent saturated C₃-C₆-cycloalkyl in which optionally one ring member is replaced by oxygen or sulfur and which is optionally mono- or disubstituted by C₁-C₄-alkyl, trifluoromethyl or C₁-C₄-alkoxy,

5

10

25

D represents hydrogen, in each case optionally fluorine- or chlorine-substituted C₁-C₆-alkyl, C₃-C₄-alkenyl or C₃-C₆-cycloalkyl,

A³ and D together represent optionally methyl-substituted C₃-C₄-alkanediyl in which optionally one methylene group is replaced by sulfur,

G¹ represents hydrogen (a) or represents one of the groups

E represents a metal ion or an ammonium ion,

L¹ represents oxygen or sulfur,

M¹ represents oxygen or sulfur,

R²⁰ represents in each case optionally halogen-substituted C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl or optionally fluorine-, chlorine-, C₁-C₄-alkyl- or C₁-C₂-alkoxy-substituted C₃-C₆-cycloalkyl,

represents optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, C_1 - C_4 -alkyl-, C_1 - C_4 -alkoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl,

represents in each case optionally chlorine- or methyl-substituted pyridyl or thienyl, represents in each case optionally fluorine- or chlorine-substituted C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₁-C₄-alkoxy-C₂-C₄-alkyl,

represents optionally methyl- or methoxy-substituted C_5 - C_6 -cycloalkyl or represents in each case optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, C_1 - C_4 -alkyl-, C_1 - C_4 -alkoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl or benzyl,

 R^{22} represents optionally fluorine-substituted C_1 - C_4 -alkyl or represents optionally fluorine-, chlorine-, bromine-, C_1 - C_4 -alkyl-, C_1 - C_4 -alkoxy-, trifluoromethyl-, trifluoromethoxy-, cyano- or nitro-substituted phenyl,

 R^{23} represents in each case optionally fluorine- or chlorine-substituted C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylamino, C_1 - C_4 -alkylthio or represents in each case optionally fluorine-, chlorine-, bromine-, nitro-, cyano-, C_1 - C_4 -alkoxy-, trifluoromethoxy-, C_1 - C_4 -alkylthio-, C_1 - C_4 -haloalkylthio-, C_1 - C_4 -alkyl- or trifluoromethyl-substituted phenyl, phenoxy or phenylthio,

R²⁴ represents C₁-C₄-alkoxy or C₁-C₄-alkylthio,

 R^{25} represents C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl,

15

10

5

20

25

20

25

R²⁶ represents C₁-C₆-alkyl, C₃-C₆-alkenyl or C₁-C₄-alkoxy-C₁-C₄-alkyl,

R²⁵ and R²⁶ furthermore together represent an optionally methyl- or ethyl-substituted C₃-C₆-alkylene radical in which optionally one carbon atom is replaced by oxygen or sulfur, and at least one active compound of the formula (II).

3. The composition as claimed in claim 1 or 2 comprising at least one compound of the formula
(I) in which

W¹ represents hydrogen, methyl, ethyl, chlorine, bromine or methoxy,

X represents chlorine, bromine, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy or trifluoromethyl,

Y and Z independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl, isopropyl, trifluoromethyl or methoxy,

A³ represents methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, cyclopropyl, cyclopentyl or cyclohexyl,

A⁴ represents hydrogen, methyl or ethyl,

A³ and A⁴ furthermore together with the carbon atom to which they are attached represent saturated C₆-cycloalkyl in which optionally one ring member is replaced by oxygen and which is optionally monosubstituted by methyl, ethyl, methoxy, ethoxy, propoxy or butoxy,

D represents hydrogen, represents methyl, ethyl, propyl, isopropyl, butyl, isobutyl, allyl, cyclopropyl, cyclopentyl or cyclohexyl,

A³ and D together represent optionally methyl-substituted C₃-C₄-alkanediyl,

G¹ represents hydrogen (a) or represents one of the groups

L¹ represents oxygen or sulfur,

M¹ represents oxygen or sulfur,

R²⁰ represents C₁-C₈-alkyl, C₂-C₄-alkenyl, methoxymethyl, ethoxymethyl, ethylthiomethyl, cyclopropyl, cyclopentyl or cyclohexyl, represents phenyl which is optionally mono- to disubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, methoxy, trifluoromethyl or trifluoromethoxy, represents pyridyl or thienyl, each of which is optionally mono- to disubstituted by chlorine or methyl,

R²¹ represents C₁-C₈-alkyl, C₂-C₄-alkenyl, methoxyethyl, ethoxyethyl or represents phenyl or benzyl,

R²⁵ and R²⁶ independently of one another represent methyl, ethyl or together with the nitrogen atom to which they are attached represent morpholino, and at least one active compound of the formula (II).

5 4. The composition as claimed in claim 1, 2 or 3 comprising at least one compound of the formula (I) in which

W¹ represents hydrogen or methyl,

X represents chlorine, bromine or methyl,

Y and Z independently of one another represent hydrogen, chlorine, bromine or methyl,

- A³ and A⁴ furthermore together with the carbon atom to which they are attached represent saturated C₆-cycloalkyl in which optionally one ring member is replaced by oxygen and is optionally monosubstituted by methyl, methoxy, ethoxy, propoxy or butoxy,
- D represents hydrogen,

10

20

25-

G¹ represents hydrogen (a) or represents one of the groups

$$R^{20}$$
 (b), M^{1} R^{21} (c) or R^{25} R^{26} (g)

L¹ represents oxygen or sulfur,

M¹ represents oxygen or sulfur,

R²⁰ represents C₁-C₈-alkyl, C₂-C₄-alkenyl, methoxymethyl, ethoxymethyl, ethylmethylthio, cyclopropyl, cyclopentyl, cyclohexyl,

represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, methoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro, represents pyridyl or thienyl, each of which is optionally monosubstituted by chlorine or methyl,

R²¹ represents C₁-C₈-alkyl, C₂-C₄-alkenyl, methoxyethyl, ethoxyethyl, phenyl or benzyl,
R²⁵ and R²⁶ independently of one another represent methyl, ethyl or together with the nitrogen atom to which they are attached represent morpholino,

and at least one active compound of the formula (II).

5. The composition as claimed in claim 1, 2, 3 or 4 comprising the compound of the formula (I-a-4)

and at least one anthranilamide of the formula (II).

6. The composition as claimed in claim 1, 2, 3, 4 or 5 comprising at least one anthranilamide of the formula (II)

in which

A¹ and A² independently of one another represent oxygen or sulfur,

 \dot{X}^1 represents N or CR^{10} ,

10

5

R¹ represents hydrogen or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₄-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino and R¹¹,

15

R² represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,

20

R³ represents hydrogen, R¹¹ or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membered

heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or

R² and R³ may be attached to one another and form the ring M,

 R^4 represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-trialkylsilyl or represents phenyl, benzyl or phenoxy, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-(alkyl)cycloalkylamino, alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl, C_3-C_8 dialkylaminocarbonyl and C3-C6-trialkylsilyl,

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkythio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, cyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

in each case independently of one another represent a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring which may optionally contain one or two ring members from the group consisting of C(=O), SO and S(=O)₂ and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-

10

5

15

20

25

30

G

10

20

25

30

alkoxy, or independently of one another represent C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₇-cycloalkyl, (cyano)-C₃-C₇-cycloalkyl, (C₁-C₄-alkyl)-C₃-C₆-cycloalkyl, (C₃-C₆-cycloalkyl, cycloalkyl)-C₁-C₄-alkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)alkyl may optionally be substituted by one or more halogen atoms, J in each case independently of one another represent an optionally substituted 5- or 6membered heteroaromatic ring, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², R^6 independently of one another represent -C(=E¹)R¹⁹, -LC(=E¹)R¹⁹, -C(=E¹)LR¹⁹, -LC(= E^1)LR¹⁹, -OP(=Q)(OR¹⁹)₂, -SO₂LR¹⁸ or -LSO₂LR¹⁹, where each E^1 independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, N-S=O, N-CN or N-NO2, R^7 represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, C₁-C₄-alkoxy, C₁-C₄haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, R^9 represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulfinyl or halogen, R^{10} represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, cyano or C₁-C₄haloalkoxy, R^{11} in each case independently of one another represents in each case optionally monoto trisubstituted C₁-C₆-alkylthio, C₁-C₆-alkylsulfenyl, C₁-C₆-haloalkythio, C₁-C₆phenylthio or phenylsulfenyl, where the substituents independently of one another may be selected from the list W, -S(O), N(R¹⁶)₂, $-L(C=O)R^{14}$, $-S(C=O)LR^{14}$, $-C(=O)LR^{13}$, $-S(O)_{1}NR^{13}C(=O)R^{13}$, $-S(O)_nNR^{13}C(=O)LR^{14}$ or $-S(O)_nNR^{13}S(O)_2LR^{14}$, in each case independently of one another represents O, NR¹⁸ or S, L R^{12} in each case independently of one another represents -B(OR¹⁷), amino, SH, thiocyanato, C_3 - C_8 -trialkylsilyloxy, C_1 - C_4 -alkyl disulfide, -SF₅, -C(=E¹)R¹⁹, $-LC(=E^1)R^{19}$, $-C(=E^1)LR^{19}$, $-LC(=E^1)LR^{19}$, $-OP(=Q)(OR^{19})_2$, $-SO_2LR^{19}$ or $-LSO_2LR^{19}$, Q represents O or S, R^{13} in each case independently of one another represent hydrogen or represent in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-C₁-C₄-alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2-C_8 dialkylamino, C₃-C₆-cycloalkylamino or (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino,

35 .

R¹⁴ in each case independently of one another represent in each case optionally mono- or polysubstituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl or C₃-C₆-cycloalkyl,

 R^{15}

 R^{19}

where the substituents independently of one another may be selected from the group consisting of R^6 , halogen, cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 - C_6 -cycloalkylamino and $(C_1$ - C_4 -alkyl)- C_3 - C_6 -cycloalkylamino or represent optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R^{12} ,

in each case independently of one another represent hydrogen or represent in each case optionally mono- or polysubstituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or N(R¹⁵)₂ represents a cycle which forms the ring M,

 R^{16} represents C_1 - C_{12} -alkyl or C_1 - C_{12} -haloalkyl, or $N(R^{16})_2$ represents a cycle which forms the ring M,

R¹⁷ in each case independently of one another represent hydrogen or C₁-C₄-alkyl, or B(OR¹⁷)₂ represents a ring in which the two oxygen atoms are attached via a chain having two to three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C₂-C₆-alkoxycarbonyl,

 R^{18} in each case independently of one another represent hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl, or $N(R^{13})(R^{18})$ represents a cycle which forms the ring M,

in each case independently of one another represent hydrogen or represent in each case optionally mono- or polysubstituted C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, CO₂H, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W, C₁-C₆-haloalkyl, C₃-C₆-cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by W,

10

5

15

20

. 25

30 ·

15

25

30

in each case represents an optionally mono- to tetrasubstituted ring which, in addition to the nitrogen atom attached to the substituent pair R¹³ and R¹⁸, (R¹⁵)₂ or (R¹⁶)₂, contains two to six carbon atoms and optionally additionally a further nitrogen, sulfur or oxygen atom, where the substituents independently of one another may be selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy,

W in each case independently of one another represent C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, CO₂H, C₂-C₆-alkylaminocarbonyl, C₃-C₈-dialkylaminocarbonyl or C₃-C₆-trialkylsilyl,

- n in each case independently of one another represent 0 or 1,
- p in each case independently of one another represent 0, 1 or 2,

where, if (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or halogen and (b) R⁸ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkynyl, C₁-C₄-haloalkylthio, halogen, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹ and R¹² is present and (d) if R¹² is not present, at least one of the radicals R⁶ and R¹¹ is different from C₂-C₆-alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl and C₃-C₈-dialkylaminocarbonyl.

7. The composition as claimed in claim 1, 2, 3, 4, 5 or 6 comprising an anthranilamide of the formula (Π-1)

in which

R² represents hydrogen or C₁-C₆-alkyl,

R³ represents C₁-C₆-alkyl which is optionally substituted by one R⁶,

 R^4 represents C_1 - C_4 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy or halogen,

10

- R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
- represents -C(=E²)R¹⁹, -LC(=E²)R¹⁹, -C(=E²)LR¹⁹ or -LC(=E²)LR¹⁹, where each E² independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of one another represents O or NR¹⁸,
- R⁷ represents C₁-C₄-haloalkyl or halogen,
- R⁹ represents C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, S(O)_p-C₁-C₂-haloalkyl or halogen,
- in each case independently of one another represent hydrogen or represent in each case optionally substituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfinyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfinyl, and C₁-C₄-haloalkylsulfinyl,
- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- R¹⁹ in each case independently of one another represent hydrogen or C₁-C₆-alkyl,
- p independently of one another represent 0, 1, 2.
- 8. The composition as claimed in claim 1, 2, 3, 4, 5, 6 or 7 comprising compounds of the formula (I) (group 1) and at least one acaricidally active compound (group 2) and at least one anthranilamide of the formula (II) in a ratio from 500:1 to 1:50.
- 9. The use of a synergistically effective mixture as defined in claim 1, 2, 3, 4, 5 6 or 7 for controlling animal pests.
- 10. A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 1, 2, 3, 4, 5 6 or 7 is mixed with extenders and/or surfactants.
 - 11. A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 1, 2, 3, 4, 5 6 or 7 is allowed to act on animal pests and/or their habitat.