ATERRAMENTO EM LINHAS DE TRANSMISSÃO

Os suportes da linha devem ser aterrados de maneira a tornar a resistência de aterramento compatível com o desempenho desejado e a segurança de terceiros. O aterramento deve se restringir a faixa de segurança da linha e não interferir com outras instalações existentes e com atividades desenvolvidas dentro da faixa.

DEFINIÇÃO E TIPOS DO SISTEMA DE ATERRAMENTO

A definição do aterramento das estruturas da LT depende do tipo de aterramento a ser adotado para a mesma e baseia-se em medições de resistividade realizadas no local das estruturas:

Aterramento Convencional: Lançamento de quatro "pernas" radiais de fios contrapesos a partir do pé da torre. Este aterramento tem função de escoar as correntes de descargas e de curto-circuito. Este tipo de aterramento aplica-se em áreas rurais, em locais não acessíveis a terceiros.

Aterramento Especial: Geralmente é em forma de anéis equalizadores e hastes de aterramento e tem como principal finalidade mitigar os potenciais perigosos de passo e de toque ao redor das estruturas. Este aterramento é específico para áreas de invasão, loteamentos e/ou circulação constante de pessoas.

Hastes – para solos de baixa resistividade ou para complementar o sistema com contrapesos. Apresenta resistência de aterramento elevado para solos de alta resistividade.

Contrapesos – Fios enterrados a pequena profundidade. É o sistema mais utilizado em Linhas de Transmissão. Possibilita obter valores de resistência de aterramento mais aceitáveis em solos de alta resistividade.

A definição do comprimento L1 para aterramento convencional ou a quantidade de anéis para o aterramento especial deverá ser, sempre que possível, baseada em medições de resistividade do solo feita no local da estrutura. A necessidade do aterramento especial visa proteção de terceiros contra potenciais perigosos de toque e de passo. É lançado em etapa única para cada estrutura

A Tabela 1 sugere os comprimentos de L1 para diversos valores de resistividade do solo e deverá ser adotada para a definição de L1 do arranjo de aterramento convencional. O comprimento de L1 definido pela Tabela 1 deverá ser lançado em etapa única e preferencialmente sem emendas. Caso seja necessário efetuar emendas nos comprimentos L1, a mesma deverá ser preferencialmente em solda exotérmica. As emendas à compressão e aparafusadas deverão ser evitadas em conexões enterradas.

Tabela 1 - Comprimentos de L1

$ ho$ - Resistividade do Solo (Ω xm)	Comprimento L1 (metros)
Menor ou igual a 250	20
500	30
1000	40
2000	50
3000	60
4000	70
5000	80
Maior que 5000	90

MATERIAL UTILIZADO

O fio contrapeso utilizado para aterramento (convencional e especial) das estruturas deverá ser de fio aço-cobre. A configuração de instalação do fio contrapeso mais comum a ser utilizada é radial, em valetas com profundidade mínima de 50 (cinquenta) centímetros, com largura suficiente para permitir a boa execução do serviço (aproximadamente 20 cm). Na medida do possível, a profundidade da valeta deve ser constante em toda a sua extensão.

MEDIÇÃO DE RESISTÊNCIA DE ATERRAMENTO

A resistência de aterramento de uma estrutura é composta pelas resistências em paralelo de todo o conjunto, ou seja, das grelhas ou fundações mais o fio contrapeso. Para efetuar esta medição, será necessário material, técnica e cuidados adequados. O valor adequado para a resistência de aterramento de uma torre de LT é a menor possível. Geralmente já a partir da definição do contrapeso, baseado na resistividade do solo, um comprimento efetivo já é definido.

A medição de resistência de aterramento deve ser feita, sempre que possível, em todas as estruturas da linha de transmissão.

A medição da resistência de aterramento deve ser feita após a montagem da estrutura (fundações) com o os contrapesos lançados e conectados à mesma. Preferencialmente executar a medição antes do lançamento do cabo pára-raios. No caso dos cabos páraraios já estiverem lançados, estes devem ser isolados da estrutura (caso metálicas) ou desconectados do contrapeso (caso estrutura de madeira ou de concreto)

MEDIÇÃO DE RESISTIVIDADE DO SOLO

A medição de resistividade do solo é o item mais importante para a definição do aterramento da estrutura (seja aterramento convencional ou especial em anéis). Para o dimensionamento adequado do sistema de aterramento das torres de uma linha de transmissão, a medição de resistividade do solo deverá ser feita, preferencialmente, com as seguintes características:

No decorrer do projeto eletromecânico ou junto com a sondagem das estruturas; · Preferencialmente nos meses de abril a setembro, evitando assim o período de chuvas;

//falta algumas coisas sobre medição de resistividade, equações e tal

ANEXO A FIGURA A1 - ARRANJO DE ATERRAMENTO PARA ESTRUTURAS METÁLICAS AUTOPORTANTES

LEGENDA:

PÉ DA ESTRUTURA

- FIO CONTRAPESO

Figura 4.2 Disposição dos contrapesos (Fonte: CTEEP)

