Sparse Sampling for Fast Quasiparticle Interference (QPI) Mapping

Ben Safvati

References:

- Main paper: https://arxiv.org/ftp/arxiv/papers/1908/1908.01903.pdf
- Topological surface states protected from backscattering by chiral spin texture: https://www.nature.com/articles/nature08308
- Imaging Quasiparticle Interference in Bi-2212:
 https://science.sciencemag.org/content/sci/297/5584/1148.full.pdf

Applications of QPI in Condensed Matter Physics

- Extracts wavevector-space information about electronic states using real space imaging (STM).
- Reveals intensities of inter- and intra-band quasiparticle scattering off of impurities.
- Sensitivity to many-body effects that modify e.g dispersion, scattering intensities.

QPI vs. ARPES

- Traditional ARPES is unable to study sample variations that are used for exploring quantum phase transitions.
 - Magnetic field dependence
 - Pressure changes
 - Gate tunability
 - Sub-microscopic samples
- QPI excels in all these areas when combined with atomic manipulation and STM.

Complementary Approaches: QPI and ARPES

Complementary Approaches: QPI and ARPES

Spin-Selective Scattering Profiles

Sparse Algorithms for Image Reconstruction

Sparsity in Reciprocal Space Signals

Random and Informed Sparse Sampling

Restricting Sample Space

Experimental Example: Surface State of TI SnTe

Sparse Recovery Algorithm

Compressive Sensing: sparse signal reconstruction

- Representing a signal with $K \ll N$ sparse (non-zero) coefficients in a vector domain where N represents the total signal length
- Requires incoherent m measurements with $K \ll m < N$
- ℓ_1 minimization subject to $||Ax b||_2 < \sigma$
- Random measurement matrix $A \in \mathbb{R}^{m \times N}$: sparse recovery for $m \ge cK \log(N/m)$ [1]
- Achieves sampling rates much lower than stated in the Nyquist theorem