Statistika

4. predavanje

Barbara Boldin

Fakulteta za matematiko, naravoslovje in informacijske tehnologije Univerza na Primorskem

Binomska porazdelitev B(n, p) (nadaljevanje)

Primer. Naj bo 0 verjetnost, da posameznik po prejetju zdravila razvije stranske učinke. Če <math>n posameznikov prejme zdravilo, potem je

X =število posameznikov, ki ima po prejetju zdravila stranske učinke $\sim B(n, p)$.

Npr.: če je $n = 10, p = 0.1, je X \sim B(10, 0.1).$

- verjetnost, da imata izmed 10 ljudi 2 stranske učinke je
- verjetnost, da imata izmed 10 ljudi največ dva stranske učinke je

Binomska porazdelitev B(n, p) (nadaljevanje)

Primer. Naj bo 0 verjetnost, da posameznik po prejetju zdravila razvije stranske učinke. Če <math>n posameznikov prejme zdravilo, potem je

X= število posameznikov, ki ima po prejetju zdravila stranske učinke $\sim B(n,p)$.

Npr.: če je $n = 10, p = 0.1, je X \sim B(10, 0.1).$

- ⋄ verjetnost, da imata izmed 10 ljudi 2 stranske učinke je $P(X = 2) = \binom{10}{2} 0.1^2 0.9^8 = 0.194$
- verjetnost, da imata izmed 10 ljudi največ dva stranske učinke je $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \binom{10}{0} 0.9^{10} + \binom{10}{1} 0.1^{1} 0.9^{9} + \binom{10}{2} 0.1^{2} 0.9^{8} = 0.93$

Porazdelitvena funkcija za $X \sim B(10, 0.1)$

Binomske porazdelitve B(n, p) za različne vrednosti p

Pričakovana vrednost diskretne slučajne spremenljivke X, ki zavzame vrednosti x_i (i = 1, 2, ...) in ima funkcijo verjetnosti p(x) je

$$E(X) = \sum_{i=1}^{\infty} p(x_i)x_i$$

Primer. Izračunajmo pričakovano vrednost za slučajno spremenljivko X. za katero ie:

$$E(X) = (-2) \cdot \frac{1}{8} + (-1) \cdot \frac{2}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{2}{8} = \frac{3}{8}$$

Pričakovana vrednost diskretne slučajne spremenljivke X, ki zavzame vrednosti x_i (i = 1, 2, ...) in ima funkcijo verjetnosti p(x) je

$$E(X) = \sum_{i=1}^{\infty} p(x_i)x_i$$

Primer. Izračunajmo pričakovano vrednost za slučajno spremenljivko X, za katero je:

k	p(X = k)
-2	<u>1</u> 8
-1	32188218 2218
1	<u>3</u> 8
2	2 8

$$E(X) = (-2) \cdot \frac{1}{8} + (-1) \cdot \frac{2}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{2}{8} = \frac{3}{8}$$

Pričakovana vrednost diskretne slučajne spremenljivke X, ki zavzame vrednosti x_i (i = 1, 2, ...) in ima funkcijo verjetnosti p(x) je

$$E(X) = \sum_{i=1}^{\infty} p(x_i)x_i$$

Primer. Izračunajmo pričakovano vrednost za slučajno spremenljivko X, za katero je:

k	p(X = k)
-2	<u>1</u> 8
-1	18821883188210
1	<u>3</u> 8
2	200

$$E(X) = (-2) \cdot \frac{1}{8} + (-1) \cdot \frac{2}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{2}{8} = \frac{3}{8}$$

Za binomsko slučajno spremenljivko $X \sim B(n, p)$, je

$$E(X) = np$$

Npr.: pričakovana vrednost števila prejemnikov zdravila s stranskimi učinki $X \sim B(10, 0.1)$ je E(X) = 1

⋄ pričakovana vrednost števila grbov pri 50 metih kovanca $Y \sim B(50, 0.5)$ je E(Y) = 25

Za binomsko slučajno spremenljivko $X \sim B(n, p)$, je

$$E(X) = np$$

Npr.:

- $\dot{\diamond}$ pričakovana vrednost števila prejemnikov zdravila s stranskimi učinki $X \sim B(10, 0.1)$ je E(X) = 1
- \diamond pričakovana vrednost števila grbov pri 50 metih kovanca $Y \sim B(50, 0.5)$ je E(Y) = 25

Ali je pričakovana vrednost X enaka povprečju naključnega vzorca? Ne! Vendar, ko velikost vzorca narašča, je povprečje vzorca vse bližje E(X)

Funkcija verjetnosti za

 $X \sim B(10, 0.5), E(X) = 5$

Histogram 20 naključno izbranih vrednosti $X \sim B(10, 0.5), \bar{X} = 5.25$

Histogram 10^6 naključno izbranih vrednosti $X \sim B(10, 0.5), \bar{X} = 5.0003$

Varianca slučajne spremenljivke X s pričakovano vrednostjo $\mu = E(X)$ je

$$Var(X) = E((X - \mu)^2) = \sum_{i=1}^{\infty} \rho(x_i)(x_i - \mu)^2$$

Drugače zapisano: $Var(X) = E(X^2) - E^2(X)$

Primer. Izračunajmo varianco za slučajno spremenljivko *X* podano v labeli.

Varianca slučajne spremenljivke X s pričakovano vrednostjo $\mu = E(X)$ je

$$Var(X) = E((X - \mu)^2) = \sum_{i=1}^{\infty} p(x_i)(x_i - \mu)^2$$

Drugače zapisano: $Var(X) = E(X^2) - E^2(X)$

Primer. Izračunajmo varianco za slučajno spremenljivko *X* podano v tabeli.

k	p(X = k)
-2	<u>1</u> 8
-1	33188218
1	3 8
2	2 8

Varianca slučajne spremenljivke X s pričakovano vrednostjo $\mu = E(X)$ je

$$Var(X) = E((X - \mu)^2) = \sum_{i=1}^{\infty} p(x_i)(x_i - \mu)^2$$

Drugače zapisano: $Var(X) = E(X^2) - E^2(X)$

Primer. Izračunajmo varianco za slučajno spremenljivko *X* podano v tabeli.

k	p(X = k)
-2	<u>1</u> 8
-1	80 80 80 80 80 80 80 80
1	318
2	2

k	$p(X^2=k)$
1	<u>5</u> 8
4	318

Vemo
$$E(X) = \frac{3}{8}$$
. Izračunamo še $E(X^2) = 1 \cdot \frac{5}{8} + 4 \cdot \frac{3}{8} = \frac{17}{8}$. Torej

$$Var(X) = E(X^2) - E^2(X) = \frac{17}{8} - \frac{9}{64} = \frac{127}{64}.$$

Za binomsko slučajno spremenljivko $X \sim B(n, p)$ je

$$Var(X) = np(1-p)$$

Ali je varianca X enaka vzorčni varianci? Ne!

Vendar, ko velikost vzorca narašča, je vzorčna varianca vse boljši približek Var(X)

Funkcija verjetnosti za $X \sim B(10, 0.5), Var(X) = 2.5$

Histogram 20 naključno izbranih vrednosti $X \sim B(10, 0.5), s^2 = 2.2$

Histogram 10^6 naključno izbranih vrednosti $X \sim B(10, 0.5), s^2 = 2.503$

Poissonova slučajna spremenljivka *Poisson*(λ)

Poissonova slučajna spremenljivka X: število dogodkov v fiksnem časovnem intervalu, če se ti dogodki zgodijo neodvisno drug od drugega in z dano stopnjo λ .

Poissonovo porazdelitev dobimo iz binomske če $n \to \infty, p \to 0$ in $\lambda = np = konstanta$.

Poissonova slučajna spremenljivka $X \sim Poisson(\lambda)$ ima funkcijo verjetnosti

$$P(X = k) = \frac{\lambda^{k} e^{-\lambda}}{k!}, k = 0, 1, 2, ...$$

Za $X \sim Poisson(\lambda)$ je

$$E(X) = \lambda$$

$$Var(X) = \lambda$$

Funkcije verjetnosti in porazdelitvene funkcije $Poisson(\lambda)$ za različne λ :

- Kakšna je verjetnost, da bosta v parku naslednje leto dva potresa z magnitudo več kot 3?
- Kakšna je verjetnost, da bosta v parku naslednje leto največ dva potresa z magnitudo več kot 3?
- Kakšna je verjetnost, da bodo v parku naslednje leto vsaj trije potresi z magnitudo več kot 3?

 Kakšna je verjetnost, da bosta v parku naslednje leto dva potresa z magnitudo več kot 3?

$$P(X=2) = \frac{e^{-5}5^2}{2!} = 0.08$$

- Kakšna je verjetnost, da bosta v parku naslednje leto največ dva potresa z magnitudo več kot 3?
- Kakšna je verjetnost, da bodo v parku naslednje leto vsaj trije potresi z magnitudo več kot 3?

 Kakšna je verjetnost, da bosta v parku naslednje leto dva potresa z magnitudo več kot 3?

$$P(X=2) = \frac{e^{-5}5^2}{2!} = 0.08$$

 Kakšna je verjetnost, da bosta v parku naslednje leto največ dva potresa z magnitudo več kot 3?

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= \frac{e^{-5}5^{0}}{0!} + \frac{e^{-5}5^{1}}{1!} + \frac{e^{-5}5^{2}}{2!} = 0.125$$

Kakšna je verjetnost, da bodo v parku naslednje leto vsaj trije potresi z magnitudo več kot 3?

 Kakšna je verjetnost, da bosta v parku naslednje leto dva potresa z magnitudo več kot 3?

$$P(X=2) = \frac{e^{-5}5^2}{2!} = 0.08$$

 Kakšna je verjetnost, da bosta v parku naslednje leto največ dva potresa z magnitudo več kot 3?

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= \frac{e^{-5}5^{0}}{0!} + \frac{e^{-5}5^{1}}{1!} + \frac{e^{-5}5^{2}}{2!} = 0.125$$

Kakšna je verjetnost, da bodo v parku naslednje leto vsaj trije potresi z magnitudo več kot 3?

$$P(X \ge 3) = 1 - P(X \le 2) = 1 - 0.125 = 0.875$$

Geometrična slučajna spremenljivka Geom(p)

Z geometrično slučajno spremenljivko imamo v mislih eno od naslednjih slučajnih spremenljivk:

- število Bernoullijevih poskusov do prvega "uspešnega" dogodka (X) Kaj pomeni "uspeh", je odvisno od konteksta, npr.: število metov kovanca do prvega grba
- število "neuspehov" zaporednih Bernoullijevih poskusov do prvega uspešnega dogodka (Y = X 1)

Omejimo se na prvo definicijo. Če je p verjetnost uspeha Bernoullijevega poskusa je funkcija verjetnosti za geometrično slučajno spremenljivko $X \sim Geom(p)$ dana z

$$P(X = k) = (1 - p)^{k-1}p, \ k = 1, 2, ...$$

Velia

$$E(X) = \frac{1}{\rho}$$
 $Var(X) = \frac{1-\rho}{\rho^2}$

Npr.: število metov kovanca do prvega grba ima porazdelitev Geom(0.5). Pričakovano število metov do prvega grba je 2.

Geometrična slučajna spremenljivka Geom(p)

Z geometrično slučajno spremenljivko imamo v mislih eno od naslednjih slučajnih spremenljivk:

- število Bernoullijevih poskusov do prvega "uspešnega" dogodka (X) Kaj pomeni "uspeh", je odvisno od konteksta, npr.: število metov kovanca do prvega grba
- število "neuspehov" zaporednih Bernoullijevih poskusov do prvega uspešnega dogodka (Y = X 1)

Omejimo se na prvo definicijo. Če je p verjetnost uspeha Bernoullijevega poskusa je funkcija verjetnosti za geometrično slučajno spremenljivko $X \sim Geom(p)$ dana z

$$P(X = k) = (1 - p)^{k-1}p, \ k = 1, 2, ...$$

Velia

$$E(X) = \frac{1}{\rho}$$
 $Var(X) = \frac{1-\rho}{\rho^2}$

Npr.: število metov kovanca do prvega grba ima porazdelitev Geom(0.5). Pričakovano število metov do prvega grba je 2.

Geometrična slučajna spremenljivka Geom(p)

Z geometrično slučajno spremenljivko imamo v mislih eno od naslednjih slučajnih spremenljivk:

- število Bernoullijevih poskusov do prvega "uspešnega" dogodka (X) Kaj pomeni "uspeh", je odvisno od konteksta, npr.: število metov kovanca do prvega grba
- število "neuspehov" zaporednih Bernoullijevih poskusov do prvega uspešnega dogodka (Y = X 1)

Omejimo se na prvo definicijo. Če je p verjetnost uspeha Bernoullijevega poskusa je funkcija verjetnosti za geometrično slučajno spremenljivko $X \sim Geom(p)$ dana z

$$P(X = k) = (1 - p)^{k-1}p, k = 1, 2, ...$$

Velja

$$E(X) = \frac{1}{p}$$
 $Var(X) = \frac{1-p}{p^2}$

Npr.: število metov kovanca do prvega grba ima porazdelitev Geom(0.5). Pričakovano število metov do prvega grba je 2.

Funkcije verjetnosti in porazdelitvene funkcije Geom(p) za različne p:

Primer. DNK je polimer, katerega osnovna enota je nukleotid. Nukleotid je sestavljen iz sladkorja (deoksiriboza), fosfatne skupine in ene od štirih dušikovih baz:

adenina (A), citozina (C), gvinina (G) ali timina (T).

$$... - A - G - G - T - A - C - G - T - ...$$

 Na vsakem mestu nukleotidnega zaporedja je število T-jev lahko enako 1 ali 0. Število T- jev na izbranem mestu je torej Bernoullijeva slučajna spremenljivka X z

$$P(X = 1) = p = \frac{1}{4}$$

 $P(X = 0) = p = \frac{3}{4}$

Primer. DNK je polimer, katerega osnovna enota je nukleotid. Nukleotid je sestavljen iz sladkorja (deoksiriboza), fosfatne skupine in ene od štirih dušikovih baz:

adenina (A), citozina (C), gvinina (G) ali timina (T).

$$... - A - G - G - T - A - C - G - T - ...$$

 Na vsakem mestu nukleotidnega zaporedja je število T-jev lahko enako 1 ali 0. Število T- jev na izbranem mestu je torej Bernoullijeva slučajna spremenljivka X z

$$P(X = 1) = p = \frac{1}{4}$$

 $P(X = 0) = p = \frac{3}{4}$

Primer. DNK je polimer, katerega osnovna enota je nukleotid. Nukleotid je sestavljen iz sladkorja (deoksiriboza), fosfatne skupine in ene od štirih dušikovih baz:

adenina (A), citozina (C), gvinina (G) ali timina (T).

$$... - A - G - G - T - A - C - G - T - ...$$

 Na vsakem mestu nukleotidnega zaporedja je število T-jev lahko enako 1 ali 0. Število T- jev na izbranem mestu je torej Bernoullijeva slučajna spremenljivka X z

$$P(X = 1) = p = \frac{1}{4}$$

 $P(X = 0) = p = \frac{3}{4}$.

Poglejmo sedaj zaporedje petih nukleotidov.

$$... - A - T - \boxed{G - G - T - A - C} - C - A - T - ...$$

 $... - G - A - \boxed{T - C - T - A - G} - C - T - T - ...$

Število T- jev na teh petih mestih je

Poglejmo sedaj zaporedje petih nukleotidov.

$$... - A - T - \boxed{G - G - T - A - C} - C - A - T - ...$$

 $... - G - A - \boxed{T - C - T - A - G} - C - T - T - ...$

Število T- jev na teh petih mestih je binomska slučajna spremenljivka $Y \sim B(5, 0.25)$. Funkcija verjetnosti za Y je

Poglejmo sedaj zaporedje petih nukleotidov.

$$... - A - T - G - G - T - A - C - C - A - T - ...$$

 $... - G - A - T - C - T - A - G - C - T - T - ...$

Število T- jev na teh petih mestih je binomska slučajna spremenljivka $Y \sim B(5, 0.25)$. Funkcija verjetnosti za Y je

k	P(Y = k)
0	0.237
1	0.395
2	0.264
3	0.088
4	0.015
5	0.001

$$A - T - G - G - T - A - C - C - A - T - \dots$$

 $G - A - T - C - T - A - G - C - T - T - \dots$

Število nukleotidov v zaporedju DNK do prvega T je

 \Diamond

$$A - T - G - G - T - A - C - C - A - T - \dots$$

 $G - A - T - C - T - A - G - C - T - T - \dots$

 \Diamond

Število nukleotidov v zaporedju DNK do prvega T je geometrična slučajna spremenljivka $Z \sim Geom(0.25)$. Funkcija verjetnosti je

$$A - T - G - G - T - A - C - C - A - T - \dots$$

 $G - A - T - C - T - A - G - C - T - T - \dots$

Število nukleotidov v zaporedju DNK do prvega T je geometrična slučajna spremenljivka $Z \sim Geom(0.25)$. Funkcija verjetnosti je

k	P(Z = k)
1	0.25
2	0.19
3	0.14
4	0.11
5	0.08
≥ 6	0.24

 \Diamond

