Curs 8 Analiză Matematică

Radu MICULESCU

octomber 2023

Şir Cauchy

Un şir $(x_n)_{n\in\mathbb{N}}$, de elemente din \mathbb{R} , se numeşte şir Cauchy dacă pentru orice $\varepsilon>0$ există $n_\varepsilon\in\mathbb{N}$ astfel încât

$$|x_m-x_n|<\varepsilon$$
,

pentru orice $m, n \in \mathbb{N}$, $m, n \ge n_{\varepsilon}$.

Observație. În contrast cu definiția șirului convergent care cuprinde elemente "exterioare" șirului considerat (anume limita acestuia), definiția șirului Cauchy are avantajul de a implica numai elementele șirului dat. Prin urmare, dezavantajul "ghicirii" valorii limitei unui șir pentru testarea convergenței acestuia cu ajutorul definiției șirului convergent nu este prezent în definiția șirului Cauchy.

Orice șir convergent este șir Cauchy

Orice şir convergent $(x_n)_{n\in\mathbb{N}}$, de elemente din \mathbb{R} , este şir Cauchy.

Demonstrație

Deoarece șirul $(x_n)_{n\in\mathbb{N}}$ este convergent, există $l\in\mathbb{R}$ cu proprietatea că pentru orice $\varepsilon>0$ există $n_\varepsilon\in\mathbb{N}$ astfel încât

$$|x_n-I|<\frac{\varepsilon}{2}$$
,

pentru orice $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$.

Prin urmare, pentru orice $m, n \in \mathbb{N}$, $m, n \geq n_{\varepsilon}$ avem

$$|x_m-x_n|\leq |x_m-I|+|x_n-I|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,$$

deci şirul $(x_n)_{n\in\mathbb{N}}$ este Cauchy. \square

Criteriul lui Cauchy

Pentru orice şir $(x_n)_{n\in\mathbb{N}}$, de elemente din \mathbb{R} , următoarele afirmații sunt echivalente:

- i) $(x_n)_{n\in\mathbb{N}}$ este convergent;
- ii) $(x_n)_{n\in\mathbb{N}}$ este Cauchy.

Observație. Importanța criteriului lui Cauchy rezidă în posibilitatea testării convergenței șirului fără cunoașterea prealabilă a limitei sale. Acest criteriu se va utiliza foarte frecvent în cele ce urmează.

Şirul $(x_n)_{n\in\mathbb{N}}$, unde

$$x_n = \frac{\operatorname{arctg1}}{2} + \frac{\operatorname{arctg2}}{2^2} + \dots + \frac{\operatorname{arctgn}}{2^n},$$

pentru orice $n \in \mathbb{N}$, este șir Cauchy.

Să remarcăm că pentru orice $m, n \in \mathbb{N}, m > n$, avem

$$|x_{m}-x_{n}| = \left| \frac{\operatorname{arctg}(n+1)}{2^{n+1}} + \frac{\operatorname{arctg}(n+2)}{2^{n+2}} + \dots + \frac{\operatorname{arctgm}}{2^{m}} \right| < < \frac{\pi}{2} \left(\frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{m}} \right) = \frac{\pi}{2} \frac{1}{2^{n+1}} \frac{1 - \frac{1}{2^{m-n}}}{1 - \frac{1}{2}} < \frac{\pi}{2^{n+1}}.$$
 (1)

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Deoarece

$$\lim_{n\to\infty}\frac{\pi}{2^{n+1}}=0,$$

pentru orice arepsilon>0 există $n_{arepsilon}\in\mathbb{N}$ astfel încât

$$\frac{\pi}{2^{n+1}} < \varepsilon$$
,

pentru orice $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$.

Prin urmare, având în vedere (1), pentru orice $\varepsilon>0$ există $n_{\varepsilon}\in\mathbb{N}$ astfel încât

$$|x_m-x_n|<\varepsilon$$
,

pentru orice $m, n \in \mathbb{N}$, $m > n \ge n_{\varepsilon}$, i.e. şirul de numere reale $(x_n)_{n \in \mathbb{N}}$ este Cauchy.

Şirul $(x_n)_{n\in\mathbb{N}}$, unde

$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

pentru orice $n \in \mathbb{N}$, nu este șir Cauchy.

Să presupunem, prin reducere la absurd, că șirul $(x_n)_{n\in\mathbb{N}}$ este Cauchy. Atunci pentru orice $\varepsilon>0$ există $n_\varepsilon\in\mathbb{N}$ cu proprietatea că

$$|x_m-x_n|<\varepsilon$$
,

de unde

$$\frac{m-n}{m} = \frac{1}{m} + \ldots + \frac{1}{m} \le \frac{1}{n+1} + \ldots + \frac{1}{m} < \varepsilon$$

pentru orice $m, n \in \mathbb{N}, m > n > n_{\varepsilon}$.

În particular, pentru

$$\varepsilon = \frac{1}{3}$$
 și $m = 2n$,

obținem contradicția

$$\frac{1}{2}<\frac{1}{3}.$$

Noțiunea de serie de elemente din ${\mathbb R}$

Conceptul de serie, care încearcă să dea sens "sumelor infinite", s-a dovedit util în definirea unor constante importante (ca, de exemplu, e și π), precum și în definirea riguroasă a funcțiilor elementare.

Definiție. $Dacă (x_n)_{n \in \mathbb{N}}$ este un șir de elemente din \mathbb{R} , definim seria generată de $(x_n)_{n \in \mathbb{N}}$ ca fiind șirul $(S_n)_{n \in \mathbb{N}}$, unde

$$S_n = \sum_{k=1}^n x_k.$$

Dacă șirul $(S_n)_{n\in\mathbb{N}}$ este convergent,

$$\lim_{n\to\infty} S_n$$

se numește suma seriei.

 x_n -urile poartă numele de termenii seriei, iar S_n -urile de sume parțiale.

10 / 43

Prin convenție, simbolurile

$$\sum x_n, \sum_{n=1}^{\infty} x_n, \sum_{n \in \mathbb{N}} x_n \text{ sau } \sum_{n \ge 1} x_n$$

vor desemna atât seria generată de $(x_n)_{n\in\mathbb{N}}$, cât și suma sa, în cazul în care seria este convergentă.

Observație. Deși, în general, termenii unei serii sunt indexați cu ajutorul mulțimii numerelor naturale, există situații în care este de preferat să începem indexarea cu n=0 sau cu n=k, unde $k\in\mathbb{N}$.

Să se afle suma seriei

$$\sum_{n\geq 1}\frac{1}{4n^2-1}.$$

Deoarece

$$\frac{1}{4k^2-1}=\frac{1}{2}(\frac{1}{2k-1}-\frac{1}{2k+1}),$$

pentru orice $k \in \mathbb{N}$, obținem că

$$\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{1}{2} (1 - \frac{1}{2n+1}),$$

pentru orice $n \in \mathbb{N}$.

Drept urmare seria considerată este convergentă și suma sa este $\frac{1}{2}$.

O condiție necesară, însă nu și suficientă, pentru convergența unei serii

Dacă seria $\sum x_n$, cu termeni din \mathbb{R} , este convergentă, atunci

$$\lim_{n\to\infty} x_n = 0.$$

Reciproca nu este adevărată.

Demonstrație

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} (S_n - S_{n-1}) = 0.$$

Seria

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

arată că reciproca nu este validă. \square

Convergența seriilor cu termeni pozitivi echivalează cu mărginirea șirului sumelor parțiale

Fie $(x_n)_{n\in\mathbb{N}}$ un șir de elemente din $[0,\infty)$. Atunci următoarele afirmatii sunt echivalente:

- i) $\sum x_n$ este convergentă;
- ii) $(S_n)_{n\in\mathbb{N}}$ este mărginit.

În acest caz

$$\sum x_n = \lim_{n \to \infty} S_n = \sup_{n \in \mathbb{N}} S_n.$$

Criteriul lui Cauchy pentru serii

Fie $(x_n)_{n\in\mathbb{N}}$ un șir de elemente din \mathbb{R} . Atunci următoarele afirmații sunt echivalente:

- i) $\sum x_n$ este convergentă;
- ii) pentru orice $\varepsilon>0$ există $n_{\varepsilon}\in\mathbb{N}$ astfel încât

$$|x_{n+1}+x_{n+2}+...+x_m|<\varepsilon.$$

pentru orice $m, n \in \mathbb{N}, m > n \ge n_{\varepsilon}$.

Exemple standard de serii (seria geometrică și seria armonică)

1. Pentru $a \in \mathbb{R}$, seria

$$\sum a^n$$
,

numită seria geometrică, este convergentă dacă și numai dacă $|{\sf a}| < 1$.

2. Pentru $a \in \mathbb{R}$, seria

$$\sum \frac{1}{n^a},$$

numită seria armonică generalizată, este convergentă dacă și numai dacă a>1.

Remarcă. Denumirea de serie armonică generalizată are drept temei faptul că, în cazul a=1, orice termen al seriei, începând cu cel de al doilea, este media armonică a termenilor vecini. Pentru a>1, suma seriei $\sum \frac{1}{n^3}$ se notează cu $\zeta(a)$. Funcția astfel construită, numită funcția ζ a lui Riemann, este un ingredient principal în studiul distribuției asimptotice a numerelor prime și în celebra conjectură a lui Riemann rămasă fără răspuns până în acest moment.

Propoziția privind comportamentul seriilor la operațiile algebrice

 α) Dacă seriile $\sum x_n$ și $\sum y_n$, cu elemente din \mathbb{R} , sunt convergente, atunci seriile $\sum (x_n + y_n)$ și $\sum (x_n - y_n)$ sunt convergente și sunt valabile relațiile următoare:

$$\sum (x_n + y_n) = \sum x_n + \sum y_n$$

și

$$\sum (x_n - y_n) = \sum x_n - \sum y_n.$$

eta) Dacă seria $\sum x_n$, cu elemente din $\mathbb R$, este convergentă și $c \in \mathbb R$, atunci seria $\sum cx_n$ este convergentă și

$$\sum cx_n=c\sum x_n.$$

Serii absolut convergente

Dacă $(x_n)_{n\in\mathbb{N}}$ este un șir de elemente din \mathbb{R} , spunem că seria $\sum x_n$ este absolut convergentă dacă seria $\sum |x_n|$ este convergentă.

Observație. Pentru seriile care au drept termeni numere reale pozitive nu există distincție între noțiunile de convergență și convergență absolută.

Teorema privind convergența seriilor absolut convergente

Dacă seria $\sum x_n$, cu elemente din \mathbb{R} , este absolut convergentă, atunci ea este convergentă.

Demonstrație

Deoarece seria $\sum x_n$ este absolut convergentă, conform Criteriului lui Cauchy, pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât

$$|x_{n+1}| + |x_{n+2}| + ... + |x_m| < \varepsilon$$
,

pentru orice $m, n \in \mathbb{N}, m > n > n_{\varepsilon}$.

Cum

$$|x_{n+1} + x_{n+2} + ... + x_m| \le |x_{n+1}| + |x_{n+2}| + ... + |x_m|$$
,

pentru orice $m, n \in \mathbb{N}, m > n \ge n_{\varepsilon}$, deducem că pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât

$$|x_{n+1}+x_{n+2}+\ldots+x_m|<\varepsilon,$$

pentru orice $m, n \in \mathbb{N}, m > n \geq n_{\varepsilon}$, de unde, conform Criteriului lui Cauchy concluzionăm că seria $\sum x_n$ este convergentă. \square

Produsul a două serii

Următoarea definiție este motivată de modul în care se înmulțesc două polinoame și este utilă în demonstrarea proprietăților uzuale ale funcțiilor elementare.

Definiție. Pentru seriile $\sum_{n=0}^{\infty} a_n$ și $\sum_{n=0}^{\infty} b_n$, cu elemente din \mathbb{R} , se definește produsul Cauchy al lor ca fiind seria $\sum_{n=0}^{\infty} c_n$, unde

$$c_n = a_0 \cdot b_n + a_1 \cdot b_{n-1} + ... + a_{n-1} \cdot b_1 + a_n \cdot b_0,$$

pentru orice $n \in \mathbb{N} \cup \{0\}$.

Observație extrem de importantă

Produsul Cauchy a două serii convergente nu este, în general, o serie convergentă.

Spre exemplu, produsul Cauchy al seriei convergente $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ cu ea însăși nu este o serie convergentă.

Într-adevăr, termenul general c_n al produsului seriei menționate cu ea însăși este dat de

$$(-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}$$
.

Cum

$$\sqrt{(k+1)(n-k+1)} \le \frac{n+2}{2},$$

pentru orice $k \in \{0, 1, ..., n\}$, deducem că

$$|c_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \frac{2(n+1)}{n+2},$$

pentru orice $n \in \mathbb{N}$.

Această ultimă inegalitate arată că afirmația $\lim_{n\to\infty} c_n = 0$ este falsă, deci seria produs $\sum_{n=0}^{\infty} c_n$ este divergentă.

Teorema lui Mertens

Fie $\sum\limits_{n=0}^{\infty} a_n$ și $\sum\limits_{n=0}^{\infty} b_n$ două serii, de elemente din \mathbb{R} , satisfăcând următoarele două proprietăți:

- i) $\sum_{n=0}^{\infty} a_n$ converge absolut către A;
- ii) $\sum_{n=0}^{\infty} b_n$ converge către B.

Atunci produsul Cauchy al celor două serii este o serie convergentă, cu suma AB.

Criteriile de comparație

Cele două criterii de comparație prezentate mai jos, aplicabile seriilor cu termeni pozitivi, sunt utile atunci când dispunem de serii standard a căror natură este cunoscută (de obicei acestea sunt seria geometrică și seria armonică), de inegalități și limite adecvate.

Criteriul de comparație cu inegalități

Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}}$ două șiruri de elemente din $[0,\infty)$ astfel încât:

i) există $n_0 \in \mathbb{N}$ cu proprietatea că

$$x_n \leq y_n$$
,

pentru orice $n \in \mathbb{N}$, $n \ge n_0$;

ii) $\sum y_n$ este convergentă.

Atunci $\sum x_n$ este convergentă.

Criteriul de comparație la limită

Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}}$ două șiruri de elemente din $(0,\infty)$.

- lpha) Dacă $\lim_{n o \infty} rac{x_n}{y_n} \in (0, \infty)$, atunci seriile $\sum x_n$ și $\sum y_n$ au aceeași natură.
- β) Dacă $\lim_{n\to\infty} \frac{x_n}{y_n}=0$ și seria $\sum y_n$ este convergentă, atunci și seria $\sum x_n$ este convergentă.
- γ) Dacă $\lim_{n\to\infty} \frac{x_n}{y_n}=\infty$ și seria $\sum y_n$ este divergentă, atunci și seria $\sum x_n$ este divergentă.

Să se stabilească natura seriei $\sum_{n\geq 1}\frac{1}{a^n+n}$, unde a>0.

Dacă a > 1, avem

$$\frac{1}{a^n+n}<(\frac{1}{a})^n,$$

pentru orice $n \in \mathbb{N}$. Seria $\sum\limits_{n \geq 1} (\frac{1}{a})^n$ fiind convergentă, deducem că seria initială este convergentă.

Dacă a=1 obținem seria $\sum_{n\geq 2}\frac{1}{n}$ care este divergentă.

Dacă a < 1, deoarece

$$\lim_{n\to\infty}\frac{\frac{1}{a^n+n}}{\frac{1}{n}}=1,$$

găsim că seria considerată este divergentă.

Criteriul rădăcinii (al lui Cauchy)

Dacă $(x_n)_{n\in\mathbb{N}}$ este un șir de elemente din $[0,\infty)$ astfel încât există

$$\lim_{n\to\infty} \sqrt[n]{x_n} \stackrel{not}{=} r,$$

atunci:

- a) seria $\sum x_n$ este convergentă pentru $r \in [0, 1)$;
- b) seria $\sum x_n$ este divergentă pentru $r \in (1, \infty)$.
- c) nu putem preciza natura seriei $\sum x_n$ pentru r=1.

Să se studieze natura seriei $\sum\limits_{n\geq 1}\sigma(n)\cdot x^n$, unde x>0, iar $\sigma(n)$ reprezintă numărul divizorilor lui n.

Deoarece

$$x \le \sqrt[n]{\sigma(n) \cdot x^n} \le x \cdot \sqrt[n]{n}$$

pentru orice $n \in \mathbb{N}$, deducem că

$$\lim_{n\to\infty}\sqrt[n]{\sigma(n)\cdot x^n}=x.$$

Așadar, dacă x < 1, seria este convergentă, iar dacă x > 1, seria este divergentă.

Dacă x = 1 seria este divergentă, căci

$$\lim_{n\to\infty}\sigma(n)=\infty.$$

Criteriul raportului (al lui D'Alembert)

Dacă $(x_n)_{n\in\mathbb{N}}$ este un șir de elemente din $(0,\infty)$ astfel încât există

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}\stackrel{not}{=} r,$$

atunci:

- a) seria $\sum x_n$ este convergentă pentru $r \in [0, 1)$;
- b) seria $\sum x_n$ este divergentă pentru $r \in (1, \infty)$.
- c) nu putem preciza natura seriei $\sum x_n$ pentru r=1.

Să se studieze natura seriei

$$\sum_{n\geq 0} \frac{1\cdot 4\cdot 7\cdot \ldots \cdot (3n+1)}{(n+1)!}.$$

Cu notația

$$x_n = \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n+1)}{(n+1)!},$$

avem

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=3,$$

Drept urmare, seria dată divergentă.

Criteriul lui Raabe-Duhamel

Dacă $(x_n)_{n\in\mathbb{N}}$ este un șir de elemente din $(0,\infty)$ astfel încât există

$$\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}}-1\right)\stackrel{not}{=} r,$$

atunci:

- a) seria $\sum x_n$ este convergentă pentru $r \in (1, \infty)$;
- b) seria $\sum x_n$ este divergentă pentru $r \in (-\infty, 1)$;
- c) nu putem preciza natura seriei $\sum x_n$ pentru r=1.

Să se studieze natura seriei

$$\sum_{n\geq 1} \left(\frac{1\cdot 4\cdot 7\cdot \ldots \cdot (3n-2)}{3\cdot 6\cdot 9\cdot \ldots \cdot (3n)} \right)^2.$$

Notând cu x_n termenul general al seriei, un calcul simplu arată că

$$\lim_{n \to \infty} n(\frac{x_n}{x_{n+1}} - 1) = \frac{4}{3} > 1,$$

deci, conform criteriului lui Raabe-Duhamel, seria este convergentă.

Criteriul lui Dirichlet

Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}}$ două șiruri de elemente din \mathbb{R} satisfăcând următoarele proprietăți:

i) $(x_n)_{n\in\mathbb{N}}$ este un șir descrescător de numere reale pozitive care converge către 0;

iii) $(s_k)_{k\in\mathbb{N}}$ este mărginit, unde $(s_k)_{k\in\mathbb{N}}$ este șirul sumelor parțiale ale seriei $\sum y_n$.

Atunci seria

$$\sum x_n y_n$$

este convergentă.

Să se studieze natura seriei

$$\sum_{n\geq 1}\frac{\cos nx}{n^{\lambda}},$$

unde $x \in \mathbb{R}$ și $\lambda \in (0, \infty)$.

Dacă există $k \in \mathbb{Z}$ astfel încât $x = 2k\pi$, atunci seria dată devine

$$\sum_{n\geq 1}\frac{1}{n^{\lambda}}$$

care este convergentă pentru $\lambda > 1$ și divergentă pentru $\lambda \leq 1$. Dacă $x \neq 2k\pi$ pentru orice $k \in \mathbb{Z}$, atunci

$$\frac{\cos nx}{n^{\lambda}} = x_n y_n,$$

unde

$$x_n = \frac{1}{n^{\lambda}}$$

și

$$y_n = \cos nx$$
.

Evident

$$\lim_{n\to\infty} x_n = 0$$

și șirul $(x_n)_{n\in\mathbb{N}}$ este descrescător.

De asemenea

$$\left| \sum_{k=1}^{n} y_n \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|}$$

pentru orice $n \in \mathbb{N}$.

Conform criteriului lui Dirichlet, în acest caz, seria considerată este convergentă.

Criteriul lui Leibniz

Fie $(x_n)_{n\in\mathbb{N}}$ un șir de elemente din $[0,\infty)$ satisfăcând următoarele două proprietăți:

i) $(x_n)_{n\in\mathbb{N}}$ este descrescător;

$$\lim_{n\to\infty} x_n = 0.$$

Atunci seria alternată $\sum (-1)^n x_n$ este convergentă.

Să se studieze natura seriei

$$\sum_{n\geq 1}\sin(\pi\sqrt{n^2+1}).$$

Avem

$$\begin{split} &\sin(\pi\sqrt{n^2+1}) = \sin(\pi(\sqrt{n^2+1}-n+n)) = \\ &= (-1)^n \sin(\pi(\sqrt{n^2+1}-n)) = (-1)^n \sin\frac{\pi}{\sqrt{n^2+1}+n}, \end{split}$$

pentru orice $n \in \mathbb{N}$.

Folosind Criteriul lui Leibniz, deducem că seria considerată este convergentă.

Criteriul lui Abel

Fie $\sum y_n$ o serie de elemente din $\mathbb R$ și $(x_n)_{n\in\mathbb N}$ un șir de elemente din $\mathbb R$ satisfăcând următoarele proprietăți:

- i) $(x_n)_{n\in\mathbb{N}}$ este monoton și convergent;
- ii) $\sum y_n$ este convergentă.

Atunci seria $\sum x_n y_n$ este convergentă.

Să se studieze natura seriei

$$\sum_{n\geq 1} \frac{\cos n \cos \frac{1}{n}}{n}.$$

Se observă că avem

$$\frac{\cos n \cos \frac{1}{n}}{n} = x_n y_n,$$

unde

$$x_n = \cos \frac{1}{n}$$
 și $y_n = \frac{\cos n}{n}$.

Seria $\sum\limits_{n\geq 1}y_n$ este convergentă, iar $(x_n)_{n\in\mathbb{N}}$ este monoton și mărginit.

Așadar, în conformitate cu Criteriul lui Abel, seria considerată este convergentă.

Unele funcții elementare ca sume de serii

Noțiunile anterioare ne permit să (re)definim într-o manieră extrem de riguroasă funcțiile elementare.

1. Pentru orice $x \in \mathbb{R}$, seria $\sum\limits_{n=0}^{\infty} \frac{x^n}{n!}$ este absolut convergentă și suma sa se notează cu e^x .

Aşadar

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

2. Pentru orice $x, \alpha \in \mathbb{R}$ astfel încât |x| < 1, seria

 $1+\sum\limits_{n=1}^{\infty}rac{lpha(lpha-1)....(lpha-n+1)}{n!}x^n$ este absolut convergentă și suma sa se notează cu $(1+x)^lpha$.

Aşadar

$$1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha - 1)....(\alpha - n + 1)}{n!} x^{n} = (1 + x)^{\alpha}.$$

3. Pentru orice $x \in \mathbb{R}$, seria $\sum\limits_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ este absolut convergentă și suma sa se notează cu sin x.

Aşadar

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sin x.$$

4. Pentru orice $x\in\mathbb{R}$, seria $\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}$ este absolut convergentă și suma sa se notează cu $\cos x$. Asadar

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x.$$

Observație. Utilizând Teorema lui Mertens se pot stabili proprietățile uzuale ale funcțiilor exponențială, sin și cos.