Thompson Sampling을 통한 맞춤형 책 추천 시스템

마음의 양식 with *YES* 24.COM 김소라, 이영송, 주원진, 황경서

목차 YES 24.COM

I. 프로젝트 배경

II. 데이터 설명

III. 모델링 결과

IV. 결론

V.부록

- A. 프로젝트 개요
 - 1) As-is yes24 추천 시스템

A. 프로젝트 개요

1) As-is yes24 추천 시스템

상세페이지 내의 추천 종류

[이 책을 구입한 분들이 함께 산 책] [이 책을 구입한 분들이 많이 산 책]

상세페이지 내의 추천 알고리즘

- 1. 해당 책을 기준으로 주문ID 매개로 함께 구매한 책/ 고객 Account 매개로 많이 산 책들의 구매 이력 종합
- 2. 판매수가 높은 상품 24권을 추출한 후 랜덤으로 유저에게 노출 cf. 6권 묶음으로 1~4페이지도 랜덤하게 노출

- A. 프로젝트 개요
 - 1) As-is yes24 추천 시스템

Order2

Order3

Order4

Order5

- A. 프로젝트 개요
 - 2) As-is yes24 추천 시스템의 문제점
 - 맞춤형 추천이 어려움
 - →보편적으로 가장 많이 읽히는 책이 추천될 가능성이 높음
 - Diversity, Novelty Problem
 - → 신규 도서나 마니아를 위한 책이 탐색될 가능성이 적음
 - Update Problem
 - → 추천 된 상품의 랭킹에 따른 결과 누적이 되지 않음

B. 프로젝트 주제

1) To-be 추천 시스템

#30살 남자 #판타지 러버 #한 달에 1권

#16살 여자 #SF빠 #생각날 때 가끔

- B. 프로젝트 주제
 - 1) To-be 추천 시스템

B. 프로젝트 주제

- ① 수 많은 책에 대한 Multi armed bandit problem
- ② 수 많은 유저와 책의 Context를 반영
- ③ Bayesian inference 바탕의 Thompson Sampling 알고리즘의 적용을 통해 Context 상황에서 Bandit의 Reward를 극대화
- ④ 추천 풀 vs 랭킹, 두 가지 방식으로 적용 가능
- ⑤ Yahoo, Amazon, Netflix 같은 IT 기업을 통한 간접적인 실증

A. 데이터 설명

1) Raw Data(3개월)

• Accounts.json : 고객 데이터

• Products.json : 책 정보 데이터

• Clicks.json : 고객ID데이터 별 상품(책) 클릭 로그 데이터

• Orders.json : 상품(책) 주문 데이터

2) Processed Data

• Book_train : 3월,4월 데이터

• Book_test : 5월 데이터

B. 데이터 변수 설명

1) Accounts.json (1741578 rows x 5 columns)

변수명	변수 설명	데이터 타입
account_id	고객 아이디	int64
gender	성별(Female, Male)	object
age	나이	float64
address	주소	object
last_login_dts	최근 로그인 날짜(Java script Date)	float64

B. 데이터 변수 설명

2) Products.json (1745066 rows x 6 columns)

변수명	변수 설명	데이터 타입
product_id	상품 아이디	int64
product_name	상품명	object
category_id	카테고리 아이디	int64
published_at	출판일(Java script Date)	object
shop_price	상품가격(₩)	float64
maker_name	출판사	object

B. 데이터 변수 설명

3) Clicks.json (60265430 rows x 5 columns)

변수명	변수 설명	데이터 타입
request_date_time	클릭 날짜, 시간(Java script Date)	object
account_id	고객 아이디	int64
device_type	사용 기기(PC, Mobile)	object
product_id	상품 아이디	int64
before_product_id	직전 클릭 상품 아이디	int64

B. 데이터 변수 설명

4) Orders.json (8382514 rows x 5 columns)

변수명	변수 설명	데이터 타입
orders_id	주문 아이디	int64
account_id	고객 아이디	int64
product_id	상품 아이디	int64
price	주문 가격(₩)	float64
created_at	주문 날짜(Java script Date)	int64

C. Processed Data

구매량 기준 TOP 24개의 책 기준으로 3개월 동안의 데이터 추출(총 1,148,637 건) 책 상세페이지 Click = '추천'을 받은 상황

	product_id	year	gender	purchase	month
0	84659792	0	F	0.0	5
1	86895523	1	F	1.0	5
2	81503945	0	F	0.0	5
3	81503945	0	F	0.0	5
4	86591861	1	F	0.0	3

- product_id
 각 책의 일련번호
- Year
 신규도서여부
 (2020년 출판=1, 2020 이전 출판 = 0)
- gender 성별
- purchase
 구매 여부 (구매 =1, 비구매=0)
- · month 사용자가 해당 도서를 클릭한 달 (사용자에게 해당 도서가 추천된 달)

C. Processed Data 구매량 기준 TOP 24개의 책 기준으로 3개월 동안의 데이터 추출(총 1,148,637 건)

							product_id	purchase	month	F/O/0	F/O/1	 M/N/14	M/N/15	M/N/16
	product_id	year	gender	purchase	month	0	12	0.0	5	0	0	 0	0	0
0	84659792 86895523	0	F F		5 5	1	19	1.0	5	0	0	 0	0	0
2	81503945	0	F			2	10	0.0	5	0	0	 0	0	0
3		0	F F	0.0	5 3	3	10	0.0	5	0	0	 0	0	0
						4	17	0.0	3	0	0	 0	0	0

User Feature, Book Feature, 각 Book의 권 수를 조합하여 Dummy 96개 변수 생성 (ex. [여성, 올해 출판 도서, 5번째 Book] ▶ [F/N/5])

III. 모델링 결과

A. 톰슨 적용 후 데이터 결과 값 비교

Train 수렴 과정

Test 수렴 과정

III. 모델링 결과

A. 톰슨 적용 후 데이터 결과 값 비교

	Yes 24	Linear Thompson
3,4월 구매 기대값	33.09%	33.8%
 5월 구매 기대값	28.73%	33.6%

• All Data

-> 상세 정보를 클릭한 경우 = 추천을 받음

Yes24
 클릭 후(추천을 받고) 구매한 비율

Linear Thompson
 0과 1을 예측하여 True = Prediction이 된 비율

A. 앞으로 나아갈 방향

- 각 추천 시스템 별 평균 Reward 결과값으로 수익성이 높은 추천 시스템 선택 가능
- 추천 대상을 현재 24권에서 N권으로 확장
- Feature Engineering을 통한 개인화 변수 추가로 정교한 추천 시스템 구축 가능
- Non-linear 모델로의 확장 (Gibbs sampling 기법 사용)
- Cholesky Decomposition을 사용하여 Sampling 단계에서 노이즈 추가

B. 최종 발표를 위한 궁금증

- Context vector의 효율적인 구성
 - sparse matrix 및 차원의 저주 해결 방안
 - Feature Engineering 계획 실현 가능성 정도
- Clustering을 통해 유저와 책의 Feature 단순화 방안
 - 타당성 여부(1 to 1이 가능한가?)
 - Clustering 기준
- 추천 방법론
 - 1. N권에서 후보 책 선정 시 T/S 사용
 - 2. 후보 책 선정 후 노출 순서 결정 시 T/S 사용
- Off-Policy 상황에서의 평가 방법

B. 최종 발표를 위한 궁금증

• Feature Engineering 예시

Book Feature	설명	비고
카테고리	중분류 34개	One-Hot인코딩
출판일	6개월 이전/6개월~1년 이내/1년~3년 이내/3년 이후	올해/이전
가격	 정규화 분류 평균값 중간값 최반값 사분위수 배송비 포함/불포함 최저 가격 	
베스트셀러	 전체 기간 베스트셀러 해당 여부 각 달 별 베스트 셀러 해당 여부 구매자 수 	One-Hot인코딩 One-Hot인코딩

B. 최종 발표를 위한 궁금증

• Feature Engineering 예시

User Feature	설명	비고
성별	남/여	
나이	 정규화 분류 기존 Clustering한 방법론 사용 19세 이하, 20~30, 31~42, 43~50, 51~64, 65세 이상 	주관적 분류
주소	수도권(서울,경기도,인천) / 비수도권	
7 7	PC/Mobile	
책 Click 수	책에 대한 관여도 = Order 수 / Click 수	추천 민감도
활동 시간	Day/Balance/Night	

B. 최종 발표를 위한 궁금증

• Feature Engineering 예시

User Feature		설명	비고
활동 요일	주중 / 주말(금,토,일)		
구매 주기	짧은 주기/ 긴 주기 (포아송)		
카테고리 선호도	문학/비문학수험서/비수험서신권 구매 민감 유무		
		•••	
월별 구매 금액	평균 이상/ 평균 이하		

• 데이터 EDA

1. Accounts

• 데이터 EDA

2. Products

• 데이터 EDA 3. Clicks

• 데이터 EDA

4. Orders

• 데이터 EDA 5. Book24

- 알고리즘 구조
 - Class MAB(ABC) > Class LinThompson(MAB)
 - def off-policy evaluation (mab, arms, rewards, contexts, nrounds=None)
 - def evaluation(T, params)
- 모델의 기본 가정
 - Linear (y* = y) [All models are wrong but some are useful]
 - Bayesian Inference를 따라 f(베타 | x,y) 는 f(y | x,베타) * f(베타)에 비례함
 - 이 때 베타의 사전 분포는 N(0,1)를 따르며
 y = x ·베타 + (noise), noise ~ N(0,1)을 가정할 때, N(x ·베타 ,1)을 따른다.

1. 사전 분포

- 표준 편차 self.B = np.identity(ndims) inv(self.B)
- 평균 self.mu_hat = np.zeros((ndims,1))
- Y 리워드 = {1,0,0,0,0,1..}
- X.T
 arm_context (4,1) of (4,24)
- X context[0][i:i+4] (1,4) * 24bandits

2. 사후 분포

• 표준 편차 (cov)
B = self.B + arm_context .dot (arm_context.T)
inv(B)

• 평균(mean) mu_hat = inverse(self.B) .dot (self.f)

3. Policy

- T=t 라운드
- Multivariate_normal(mean,cov)에서 4가지 feature에 대한 베타(beta)를 Thompson sampling 방식을 통해 추출
- 추출한 베타 값과 arm_context.T를 내적
- arm 1~24의 reward 기댓값을 계산 후 max(arm)을 선택
- 이 과정을 반복하여 분포가 누적 계산됨

4. Test

- Train(3,4월) Test(5월)
- Train(iterations=1,000)을 통해 사후적으로 얻은 각 feature의 베타를 사용
- Test(iterationas=1,000) 정도에서 수렴하는 것을 확인
- 평가

Yes 24 추천에 대한 1 비율 (약 19%)

LinThompson 모델에 대한 average reward(약 30%)