Feature Selection / Extraction

The curse of dimensionality

Feature extraction: Principal Component Analysis,

Fisher Linear Discriminant Analysis

Feature Selection: basis ideas

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 1

The issue of dimensionality

- Intuitively, we might expect that considering more features helps increasing the discrimination between classes
 - e.g. 2 Gaussian, equiprobable classes with same covariance: $p(\mathbf{x}|\omega_i) \sim \mathcal{N}(\mathbf{\mu}_i, \mathbf{\Sigma})$. It is easy to show that the probability of classification error is

$$P_e = \frac{1}{\sqrt{2pi}} \int_{\theta = \frac{r}{2}}^{+\infty} \exp\left(-\frac{y^2}{2}\right) dy$$

where r is the Mahalanobis distance: $r^2 = (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 - \mu_2)$

• In particular, if $\Sigma = diag(\sigma_i^2)$

$$r^2 = \sum_{i=1}^D \left(\frac{\boldsymbol{\mu}_{1_i} - \boldsymbol{\mu}_{2_i}}{\sigma_i}\right)^2$$

- In other words, the larger D, the larger r, hence, the smaller P_e should be!
- This is not what can be observed in practice!
 - Classification performance degrades as D becomes large...

Summary of episodes 1-3

- So far, we have seen that:
 - If class-conditional densities, p(x|ω) and prior probabilities, P(ω), are known, one can set
 up optimal classifiers (e.g. likelihood ratio tests for dichotomy).
 - If only the parametric shape of class-conditional densities is known, it is possible to estimate their parameters using a set of labeled training samples.
 - If nothing is known, it is however possible to use non-parametric density estimation techniques to estimate class-conditional probabilities from a set of labeled training samples.
- In the next chapter, we will go further by considering the more difficult case when training data come unlabeled...
- Before that, in the present chapter, we focus on what happens when the dimensionality of the problem, D, becomes large

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2

Trunk's experiment [Trunk, PAMI 1979]

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

4

The issue of dimensionality

A theoretical study of the problem is very difficult [Duda]

- An explanation: the number of samples is finite, so PDF estimation is not very accurate...
- Example:

Machine learning and Pattern Recognition Pierre CHARBONNIEF 2024-2025

The curse of dimensionality?

Several problems occur as D increases

- Theoretical: scatter diagrams become more and more sparse, distances and volumes have weird properties in high dimension... [Bishop]
- Practical: mean, covariance matrices yield heavier computational burden...
- The set of problems that arise in data analysis when dimensionality increases is called the "curse of dimensionality" [Belmann 1961]
 - There are several remedies (see e.g. [Duda])
 - One of them is to apply a dimensionality reduction technique
- Another motivation for dimension reduction is visualization (needs $D < 3 \dots$)
- Feature selection or extraction techniques
 - Completely redesign the feature extraction algorithm...
 - Select a subset of features or re-combine features

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

A hierarchy of methods

Dimensionality reduction techniques

Two approaches:

- Combine features and select a reduced number of the resulting ones
- = Feature selection in transformed space or <u>feature extraction</u>
- Select features directly in feature space: feature selection

- We will study 2 well-known, linear feature extraction techniques: Principal Component Analysis (PCA) and Fisher's Linear Discriminant Analysis (LDA).
- . Then, we will introduce nonlinear extraction techniques, and selection methods

Machine learning and Pattern Recognition 2024-2025

Principal Component Analysis (PCA)

- The choice of the transformation is generally guided by an optimization criterion
- In the case of PCA.
 - · The criterion assesses the quality of representation on a smaller-dimensional subspace
 - Maximizing quality amounts to defining a rotation of the coordinate system

From [Gutierrez]

- A rotation of the coordinate system in feature space may reveal the structure of the data (see above "toy example")
 - This is what PCA does, with a particular meaning of the word "structure"...

Machine learning and Pattern Recognition Pierre CHARBONNIEF 2024-2025

Case 2: best representation by a straight line

- Goal:
 - Find the best 1D representation of the data, according to the model:

$$x \approx \mu + v.e$$
 with $||e||=1$

- Straight line running through the sample mean, μ with (unknown) direction e.
- Scalar, y: distance of any point \mathbf{x} lying on the line from μ .
- In particular, we have for any k:

$$X_k \approx \mu + y_k.e$$

- $J_1(y_1,...y_n,\mathbf{e}) = \frac{1}{n} \sum_{k=1}^n ||(\mathbf{p} + y_k.\mathbf{e}) \mathbf{x}_k||^2$ Mean squared error (MSE):
- Remark:

$$J_{1}(y_{1},...y_{n},\mathbf{e}) = \frac{1}{n} \sum_{k=1}^{n} \|y_{k}.\mathbf{e} - (\mathbf{x}_{k} - \mathbf{\mu})\|^{2}$$
$$= \frac{1}{n} \sum_{k=1}^{n} \|y_{k}.\mathbf{e}\|^{2} - \frac{2}{n} \sum_{k=1}^{n} y_{k}.\mathbf{e}^{T} (\mathbf{x}_{k} - \mathbf{\mu}) + \frac{1}{n} \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{\mu}\|^{2}$$

Case 1: best representation by one point

- Goal: find the best representation of D-dimensional vectors. x_k , k=1..n, by a unique vector, x_0
- Representation quality criterion: mean squared error

$$J_{0}(\mathbf{x}_{0}) = \frac{1}{n} \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{x}_{0}||^{2}$$

■ We seek x₀ that minimizes this criterion, i.e. the solution of:

$$\frac{\partial J_0(\mathbf{x}_0)}{\partial \mathbf{x}_0} = 0 = \frac{-2}{n} \sum_{k=1}^{n} (\mathbf{x}_k - \mathbf{x}_0)$$

$$\mathbf{x}_0 = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_k = \mathbf{\mu}$$

The sample mean is the best "0-dimensional" representation of the point cloud in the sense of mean square estimation

Machine learning and Pattern Recognition Pierre CHARE 2024-2025

Machine learning and Pattern Recognition

2024-2025

Representation by a line: the coordinates

■ The set of coefficients y_k that minimize the squared error criterion is such that:

$$\frac{\partial J_1(y_1,...y_n,\mathbf{e})}{\partial y_k} = 0 \quad \forall k = 1..n$$

- with $J_1(y_1,...y_n,\mathbf{e}) = \frac{1}{n} \sum_{k=1}^n y_k^2 \frac{2}{n} \sum_{k=1}^n y_k \cdot \mathbf{e}^T (\mathbf{x}_k \mathbf{\mu}) + \frac{1}{n} \sum_{k=1}^n ||\mathbf{x}_k \mathbf{\mu}||^2$
- $0 = \frac{2}{3} y_k \frac{2}{3} \mathbf{e}^T (\mathbf{x}_k \mathbf{\mu})$ which leads to

$$y_k = \mathbf{e}^T (\mathbf{x}_k - \mathbf{\mu})$$

The coordinates on the line are given by the orthogonal projection of the (centered) data on e.

PCA vs. Orthogonal regression

PCA is akin to orthogonal regression

$$J_1(y_1,...y_n,\mathbf{e}) = \frac{1}{n} \sum_{k=1}^n ||(\mathbf{\mu} + y_k.\mathbf{e}) - \mathbf{x}_k||^2$$

Machine learning and Pattern Recognition

Analyzing the new formulation of the problem

We finally obtained two terms:

$$J_{1}(y_{1},...y_{n},\mathbf{e}) = -\mathbf{e}^{T} \left(\frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \mathbf{\mu}) (\mathbf{x}_{k} - \mathbf{\mu})^{T}\right) \mathbf{e} + \frac{1}{n} \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{\mu}\|^{2}$$

$$\Sigma \qquad \text{independent from } \mathbf{e}$$

- where Σ is the sample covariance matrix of the x_k 's
- But, most of all, $e^{T}\Sigma e$ is the variance of y, as shown below
 - Note: y has zero mean (which can be straightforwardly checked!)

$$Var[y] = \frac{1}{n} \sum_{k=1}^{n} y_k^2 - \left[\frac{1}{n} \sum_{k=1}^{n} y_k \right]^2 = \frac{1}{n} \sum_{k=1}^{n} \mathbf{e}^T (\mathbf{x}_k - \mathbf{\mu}) (\mathbf{x}_k - \mathbf{\mu})^T \mathbf{e} = \mathbf{e}^T \Sigma \mathbf{e}$$

Case 2: Re-formulating the problem

Let us identify in J₁ the expression of the newly calculated y_k's

$$J_{1}(y_{1},...y_{n},\mathbf{e}) = \frac{1}{n} \sum_{k=1}^{n} y_{k}^{2} \| \mathbf{e} \|^{2} - \frac{2}{n} \sum_{k=1}^{n} y_{k} \cdot \mathbf{e}^{T} (\mathbf{x}_{k} - \mathbf{\mu}) + \frac{1}{n} \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{\mu}\|^{2}$$

■ Thus, we obtain:

$$J_1(y_1,...y_n,\mathbf{e}) = -\frac{1}{n} \sum_{k=1}^n y_k^2 + \frac{1}{n} \sum_{k=1}^n \|\mathbf{x}_k - \mathbf{\mu}\|^2$$

■ Then:

$$J_{1}(y_{1},...y_{n},\mathbf{e}) = -\frac{1}{n}\sum_{k=1}^{n}\mathbf{e}^{T}(\mathbf{x}_{k}-\mathbf{\mu})(\mathbf{x}_{k}-\mathbf{\mu})^{T}\mathbf{e} + \frac{1}{n}\sum_{k=1}^{n}\|\mathbf{x}_{k}-\mathbf{\mu}\|^{2}$$

And, finally:

$$J_{1}(y_{1},...y_{n},\mathbf{e}) = -\frac{1}{n}\mathbf{e}^{T}\left(\sum_{k=1}^{n}(\mathbf{x}_{k} - \boldsymbol{\mu})(\mathbf{x}_{k} - \boldsymbol{\mu})^{T}\right)\mathbf{e} + \frac{1}{n}\sum_{k=1}^{n}\|\mathbf{x}_{k} - \boldsymbol{\mu}\|^{2}$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Interpretation

➡ Minimizing J₁ with respect to e ⇔ seeking the axis along which the variance (spread) of point coordinates is maximal...

High projection error

low variance

© Low projection error

high variance

Case 2: Solving the problem

- To determine e. we must:
 - Maximize e^TΣe
 - Under the constraint: $||\mathbf{e}||^2 = \mathbf{e}^T\mathbf{e} = 1$
- Usual method: Lagrange multipliers
 - · see Optimization course
 - · Let us define:

$$J_1' = \mathbf{e}^T \Sigma \mathbf{e} - \lambda (\mathbf{e}^T \mathbf{e} - 1)$$

where λ is a Lagrange Multiplier

$$\frac{\partial J_1'}{\partial \mathbf{e}} = 0 = 2\Sigma \mathbf{e} - 2\lambda \mathbf{e}$$

$$\Sigma \mathbf{e} = \lambda \mathbf{e}$$

- Remember we are trying to maximize $var(y)=e^{T}\Sigma e=\lambda e^{T}e=\lambda$,
 - Hence, λ is chosen as the largest eigenvalue of the covariance matrix, Σ and e is the corresponding eigenvector

Machine learning and Pattern Recognition Pierre CHARBONNIEF 2024-2025

E.g. D = 2

Interpretation

2 phases:

1. Centering

- 2. Diagonalization of covariance matrix
- PCA is a rotation because Φ is orthonormal $(\Phi^T\Phi = \Phi\Phi^T = I)$
 - This rotation de-correlates the data because Σ_{v} becomes diagonal

$$\Sigma_{\mathbf{v}} = E[\mathbf{y}\mathbf{y}^{\mathsf{T}}] = E[\Phi^{\mathsf{T}}(\mathbf{x} - \mathbf{\mu})(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}}\Phi] = \Phi^{\mathsf{T}}\Sigma\Phi = \Lambda$$

. The variance on each axis is:

$$E[\mathbf{y}_{i}^{2}] = E[\Phi_{i}^{T}(\mathbf{x} - \mathbf{\mu})(\mathbf{x} - \mathbf{\mu})^{T}\Phi_{i}] = \Phi_{i}^{T}\Sigma\Phi_{i} = \lambda_{i}$$

Case 3: generalization to d dimensions

In that case, the model is written as

$$x \approx \mu + \mathcal{E}.y$$

• where \mathbf{y} is a coordinate vector and \mathcal{E} is a matrix whose columns are the vectors e..

$$J_{n}(\mathbf{y}_{1},...,\mathbf{y}_{n},\mathbf{e}_{1},...,\mathbf{e}_{d}) = \frac{1}{n} \sum_{k=1}^{n} \left\| \left(\mathbf{\mu} + \sum_{i=1}^{d} \mathbf{y}_{ki} \mathbf{e}_{i} \right) - \mathbf{x}_{k} \right\|^{2}$$

• It can be shown that the minimum w.r.t. v is obtained for the projection:

$$\mathbf{y} = \mathcal{E}^T (\mathbf{x}_k - \mathbf{\mu})$$

- And that the column vectors of \mathcal{E} , which minimize J_n , are given by the eigenvectors Φ of the sample covariance matrix $\Sigma : \Phi^T \Sigma \Phi = \Lambda = \text{diag}\{\lambda_i\}$
- They are orthogonal and represent the principal axes (of variation, see next slide).

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Reconstruction and truncation

Sample mean and covariance matrix

$$\mu = \frac{1}{n} \sum_{k=1}^{n} x^{k}$$

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \qquad \qquad \Sigma = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu}) (\mathbf{x}_{k} - \boldsymbol{\mu})^{T}$$

Diagonalization (rotation)

$$\Sigma = \Phi \Lambda \Phi^{T}$$

$$\mathbf{v} = \Phi^{T} (\mathbf{x} - \mathbf{u})$$

 $\mathbf{x} = \mathbf{\mu} + \mathbf{\Phi} \mathbf{v}$

 $\Lambda = diag(\lambda_i)_{i=1}$

2. Covariance matrix diagonalization

Projection on eigenspace (with truncation)

$$\mathbf{y} = \Phi_d^T (\mathbf{x} - \mathbf{\mu})$$

$$\mathbf{x} \cong \mathbf{\mu} + \Phi_d \mathbf{y}$$

$$\Phi_{d} = \begin{vmatrix} \vdots & & \vdots \\ \phi_{1} & \cdots & \phi_{d} \\ \vdots & & \vdots \end{vmatrix}$$

3. Projection + truncation (d=1)

Variances

- Eigenvectors are sorted by decreasing order of the corresponding eigenvalues (i.e. variances)
 - PCA axes are ordered by decreasing order of variance
 - Variability is most often concentrated on the first axes.
- In general, $d \ll D$ → dimensionality reduction.
- The percentage of explained variance, $\frac{\sum_{1}^{n} \lambda_{i}}{\sum_{1}^{n} \lambda_{i}}$ provides a principled way of selecting d

 Variances along neglected dimension can be approximated optimally (in the sense of Maximum Likelihood) using their mean

$$\sigma^2 = \frac{1}{D-d} \sum_{i=d+1}^{D} \lambda_i$$

[Moghaddam]

Note that $rank(\Sigma) = \min(D, n-1) \rightarrow n-1$ eigenvalues computed if (n-1) < D

Machine learning and Pattern Recognition 2024-2025

From PCA to LDA

- PCA
 - Minimize a goodness-of-representation criterion
 - Amounts to a rotation of coordinates in feature space
 - ...in such a way as to represent most of the data variability on the first (few) dimensions of the transformed space.
- Fisher Discriminant Analysis (LDA)
 - · Optimizes a class-separability, or classification criterion.
 - · This does not provide the same directions
 - · But it remains a linear transform: $\mathbf{v} = \mathbf{W}^{\mathsf{T}}\mathbf{x}$

From [Gutierrez]

Probabilistic PCA (PPCA)

- Proposed by Tipping & Bishop (1997,1999) and Roweis (1998)
- Linear Generative Model

$$x = \mu + \mathcal{L}y + \epsilon$$

where:

- The latent variable, \mathbf{y} , is Gaussian: $p(\mathbf{y}) \sim \mathcal{N}(0, l)$
- The noise, ε is also Gaussian $p(\varepsilon) \sim \mathcal{N}(0, \sigma^2 I)$, so: $p(\mathbf{x}/\mathbf{y}) \sim \mathcal{N}(\mathbf{u} + \mathcal{E}\mathbf{v}, \sigma^2 I)$
- y and ε are independent.
- ML solution

$$\mu = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}$$

$$\mathcal{E} \propto \mathbf{0}$$

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \qquad \qquad \boldsymbol{\mathcal{E}} \propto \boldsymbol{\Phi} \qquad \qquad \boldsymbol{\sigma}^{2} = \frac{1}{D - d} \sum_{k=d+1}^{D} \lambda_{k}$$

- PPCA brings several advantages compared with PCA, e.g.
 - Derivation of an EM algorithm for fast computation of the first few eigenvectors
 - PPCA model can be run generatively to draw samples from the distribution

Machine learning and Pattern Recognition 2024-2025

22

Fisher Linear Discriminant Analysis (LDA)

- Case 1: two-class problem (dichotomy)
 - Consider a set of n samples (D-dimensional vectors): {x₁....x_n} among which n_1 belong to class ω_1 and n_2 , to class ω_2
 - Projecting one sample on an axis w yields the scalar $y = \mathbf{w}^T \mathbf{x}$
 - The vector **w** is a projection direction (its norm does not really matter)
- We shall seek a direction w along which the projections are as separable as possible
- In order to define a separability criterion, recall that
 - The class means in feature space and in transformed space (for i=1,2) are:

$$\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in \omega_i} \mathbf{x}$$

Machine learning and Pattern Recognition

2024-2025

$$\mathbf{m}_{i} = \frac{1}{n_{i}} \sum_{\mathbf{x} \in \omega} \mathbf{x} \qquad \qquad \widetilde{m}_{i} = \frac{1}{n_{i}} \sum_{\mathbf{x} \in \omega} \mathbf{y} = \frac{1}{n_{i}} \sum_{\mathbf{x} \in \omega} \mathbf{w}^{\mathsf{T}} \mathbf{x} = \mathbf{w}^{\mathsf{T}} \mathbf{m}_{i}$$

LDA, case 1: two classes

We should try to maximize

$$J(\mathbf{w}) = \widetilde{m}_1 - \widetilde{m}_2 = \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2)$$
$$\longrightarrow \mathbf{w} \propto (\mathbf{m}_1 - \mathbf{m}_2)$$

- · Does not account for intra-class variability
- To measure intra-class variability, one may use the variance (or the dispersion, which is proportional to the variance) along the axis, w.

$$\widetilde{s}_{i}^{2} = \sum_{v \in \omega} (y - \widetilde{m}_{i})^{2}$$

Fishers LDA maximizes:

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

LDA, case 1: maximizing J(w)

■ Canceling the derivative of J(w) leads to

$$0 = \left[\frac{\partial (\mathbf{w}^T S_{\text{inter}} \mathbf{w})}{\partial \mathbf{w}} \mathbf{w}^T S_{\text{intra}} \mathbf{w} - \mathbf{w}^T S_{\text{inter}} \mathbf{w} \frac{\partial (\mathbf{w}^T S_{\text{intra}} \mathbf{w})}{\partial \mathbf{w}} \right]$$

$$0 = \left[\frac{\mathbf{w}^{\mathsf{T}} S_{\mathsf{intra}} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} S_{\mathsf{intra}} \mathbf{w}}\right] S_{\mathsf{inter}} \mathbf{w} - \left[\frac{\mathbf{w}^{\mathsf{T}} S_{\mathsf{inter}} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} S_{\mathsf{intra}} \mathbf{w}}\right] S_{\mathsf{intra}} \mathbf{w} = S_{\mathsf{inter}} \mathbf{w} - J(\mathbf{w}) S_{\mathsf{intra}} \mathbf{w}$$

$$S_{\text{intra}}^{-1} S_{\text{inter}} \mathbf{w} = J(\mathbf{w}) \cdot \mathbf{w}$$
 (if S_{intra} is non-singular)

- Remarks
 - S_{inter} **w** is collinear to $(\mathbf{m}_1 \mathbf{m}_2)$: S_{inter} **w** = $(\mathbf{m}_1 \mathbf{m}_2) (\mathbf{m}_1 \mathbf{m}_2)^T$ **w**
 - Since only the direction of w is sought for
 scalar
 → the scale factor (m₁-m₂)^T w / J(w) can be neglected

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} J(\mathbf{w}) = S_{\operatorname{intra}}^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$$

LDA, case 1: two classes, expression of J(w)

- Goal: obtain $J(\mathbf{w}) = \frac{(\widetilde{m}_1 \widetilde{m}_2)^2}{\widetilde{s}_1^2 + \widetilde{s}_2^2}$ as a function of \mathbf{w}
- 1. Denominator

$$\widetilde{\boldsymbol{s}}_{i}^{2} = \sum_{\boldsymbol{y} \in \omega_{i}} (\boldsymbol{y} - \widetilde{\boldsymbol{m}}_{i})^{2} = \sum_{\boldsymbol{x} \in \omega_{i}} (\boldsymbol{w}^{T} \boldsymbol{x} - \boldsymbol{w}^{T} \boldsymbol{m}_{i})^{2} = \boldsymbol{w}^{T} \sum_{\boldsymbol{x} \in \omega_{i}} (\boldsymbol{x} - \boldsymbol{m}_{i}) (\boldsymbol{x} - \boldsymbol{m}_{i})^{T} \boldsymbol{w} = \boldsymbol{w}^{T} \boldsymbol{S}_{i} \boldsymbol{w}$$

$$\widetilde{S}_1^2 + \widetilde{S}_2^2 = \mathbf{w}^T (S_1 + S_2) \mathbf{w} = \mathbf{w}^T S_{intra} \mathbf{w}$$

2. Numerator

$$(\widetilde{m}_1 - \widetilde{m}_2)^2 = (\mathbf{w}^T \mathbf{m}_1 - \mathbf{w}^T \mathbf{m}_2)^2 = \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2) (\mathbf{m}_1 - \mathbf{m}_2)^T \mathbf{w} = \mathbf{w}^T S_{\text{inter}} \mathbf{w}$$

3. New expression

$$J(w) = \frac{\mathbf{w}^T S_{\text{inter}} \mathbf{w}}{\mathbf{w}^T S_{\text{intra}} \mathbf{w}}$$

Machine learning and Pattern Recognition
Pierre CHARBONNIER

26

Fisher Linear Discriminant (1936)

■ The 1 dimensional projection direction which maximizes J is:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} J(\mathbf{w}) = S_{\operatorname{intra}}^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$$

- This is not a discriminant, but a direction... So ???
 - Once the direction of maximal separability has been found, it remains to determine a threshold x₀ along this axis. The classification rule is then to assign x to class ω₁ if:

$$\hat{\mathbf{w}}^T(\mathbf{x} - \mathbf{x}_0) > 0$$

- This resembles what we have seen in the 2-class Gaussian case with equal covariance matrices! It can be shown that this is indeed the same solution...
- As a consequence, the above rule is optimal in the Gaussian case.

Generalization to C classes (1/3)

- The generalization to C classes is quite straightforward
- In that case, we can find at most C-1 projection axes
 - Tacitly, it is assumed that D ≥ C
 - The vectors w, are arranged in columns to form a matrix. W
 - The projections v_i are stored in a C-1 component vector, v

$$y_i = \mathbf{w}_i^T \mathbf{x} \rightarrow \mathbf{y} = \mathbf{W}^T \mathbf{x}$$

Three dimensional distributions are projected onto planes (described by their normal vectors w₁ and w₂). The best separability is in the plane associated with w₁.

Following [Duda]

Machine learning and Pattern Recognition 2024-2025

Generalization to C classes (2/3)

General dispersion matrices

· Generalization of intra-class dispersion matrix:

$$S_{\text{intra}} = \sum_{i=1}^{C} S_i$$

where
$$S_i = \sum_{\mathbf{x} \in \omega_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T$$

and
$$\mathbf{m}_i = \frac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} \mathbf{x}$$

· Generalization of inter-class dispersion matrix:

$$S_{\text{inter}} = \sum_{i=1}^{C} N_i (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^T$$

where
$$\mathbf{m} = \frac{1}{N} \sum_{\forall x} \mathbf{x} = \frac{1}{N} \sum_{i=1}^{C} N_i \mathbf{m}$$

m is the center of mass of class means

Following [Gutierrez]

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Generalization to C classes (3/3)

In transformed space, it can be shown that if

$$\widetilde{S}_{intra} = \sum_{i=1}^{C} \sum_{v \in \omega_i} (y - \widetilde{m}_i) (y - \widetilde{m}_i)^T$$

$$\widetilde{S}_{\text{intra}} = \sum_{i=1}^{C} \sum_{\mathbf{y} \in \omega_i} (\mathbf{y} - \widetilde{\mathbf{m}}_i) (\mathbf{y} - \widetilde{\mathbf{m}}_i)^T \qquad \qquad \widetilde{S}_{\text{inter}} = \sum_{i=1}^{C} N_i (\widetilde{\mathbf{m}}_i - \widetilde{\mathbf{m}}) (\widetilde{\mathbf{m}}_i - \widetilde{\mathbf{m}})^T$$

$$\widetilde{S}_{intra} = W^T S_{intra} W$$

Then,
$$\widetilde{S}_{intra} = W^T S_{intra} W$$
 and $\widetilde{S}_{inter} = W^T S_{inter} W$

- We need a scalar function. To this end, we may use the determinant of dispersion matrices. Why?
 - The determinant of a (dispersion) matrix is the product of its eigenvalues
 - i.e. product of variances in the principal directions. The determinant is thus homogeneous to the square of the hyperellipsoidal scattering volume (recall the gaussian case)
- The criterion can be written as:

$$J(W) = \frac{\left|\widetilde{S}_{inter}\right|}{\left|\widetilde{S}_{intra}\right|} = \frac{\left|W^{T}S_{inter}W\right|}{\left|W^{T}S_{intra}W\right|}$$

Generalization to C classes, expression of \widehat{W}

The optimal projection axes are the solutions of a generalized eigenvector problem:

$$\hat{W} = \left[\hat{w}_1 \middle| \hat{w}_2 \middle| \dots \middle| \hat{w}_{c-1} \right] = \underset{w}{\operatorname{argmax}} \frac{\middle| W^T S_{\operatorname{inter}} W \middle|}{\middle| W^T S_{\operatorname{inter}} W \middle|} \Longrightarrow \left(S_{\operatorname{inter}} - \lambda_i S_{\operatorname{intra}} \right) \hat{w}_i = 0$$

Remarks:

Machine learning and Pattern Recognition

2024-2025

- S_{inter} is the sum of C matrices of rank 1 or 0 related by the definition of m. It is thus at most of rank C-1. This means that only C-1 eigenvalues are nonzero.
- LDA provides at most C-1 projection axes [Fukunaga90]
- They correspond to the largest eigenvalues of S⁻¹_{intra}S_{inter} (provided S_{intra} is
- The larger the eigenvalue, the higher the separability along the direction

Linear extraction methods: summary

PCA and LDA:

- Are widely used in practical applications
- Are not suited to complicated distributions (e.g. multi-modal, non Gaussian)...
- E.g. cases where LDA fails (following [Gutierrez])

Other feature extraction techniques (quite numerous)

- Linear: Independent Component Analysis (ICA), Nonnegative Matrix Factorization (NMF), Multi-Dimensional Scaling (MDS)
- Non-linear: principal curves and surfaces, Kernel PCA, auto-encoders, ISOMAP, Linear Local Embedding (LLE), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), etc. (a.k.a. manifold learning methods)

Machine learning and Pattern Recognition Pierre CHARBONNIEF 2024-2025

Multi-Dimensional Scaling (MDS)

Input: dissimilarity matrix

• Distance between samples in source space: δ_{ii}

Output: positions

• low-dimensional target space (d=2 or 3), di

Property

• Inter-sample distances preserved in target space

Optimization problem

- Minimize quadratic differences between δ_{ii} 's and d_{ii} 's

Unique up to global transformation

Machine learning and Pattern Recognition 2024-2025

[Duda]

ISOMAP

[Tenenbaum, Science, 2000]

Embedding manifold

- · May be non-linear
- ISOMAP =
 - · Similarity computation on manifold: geodesic distance
 - Application of MDS
- Better preservation of perceptive similarity between samples

A Distance Géométrique - B distance géodésique

Feature selection methods

■ Feature Subset Selection

- Basis idea:
 - Define an objective criterion to evaluate the optimality of a feature subset
 - Identify such characteristics by optimizing this criterion using the training set.

This seems rather simple !!! Unfortunately,

Selecting t features among D involves

$$C_D^t = {D \choose t} = \frac{D!}{t!(D-t)!}$$

possibilities... E.g. 10 features among 25 = 3 268 760 possibilities!

⇒ Define a research strategy

Feature selection methods

■ Possible optimality criteria:

- Misclassification rate over a test set (must be different from training data!)
- · Distance or separability measures:
 - ✓ Euclidean distance, Mahalanobis distance, etc...
 - ✓ Criteria based on dispersion matrices (e.g. LDA criterion)
 - ✓ Probabilistic (distance between probability densities)
- · Correlation measures:
 - ✓ Features should be correlated with class labels, but not with each others.
 - ✓ Mutual Information measures between class labels and feature vectors
- And more... (see [Webb, Duda, Theodoridis] for example).

Optimization strategies

- · Exhaustive search: optimal, but costly
- Tree search (e.g. "Branch and Bound" and variants)

Machine learning and Pattern Recognition Pierre CHARBONNIER

3

Branch and bound (2/2)

- Start from the rightmost leaf (note that the figure gives examples of J values)

 → J=77.2 becomes the current maximum
- Go back to the root and explore next branch → the current maximum becomes 80.1
- It we try to explore the next branch, we find J=60.9 at the first node. It is useless to continue because, by construction, the leafs will have smaller values. Same case for the last branch...
- In this example, we found the maximum in 8 evaluations of J instead of 10.

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 39

Branch and bound (1/2)

(following [Webb])

Goal: <u>maximize</u> a <u>monotonic</u> function to find the optimal partition, avoiding to explore all possibilities!

$$X \subset Y \Rightarrow J(X) < J(Y)$$

- E.g. partition of 3 features among 5: $C_5^3 = {5 \choose 3} = \frac{5!}{3!(5-2)!} = 10$ possibilities
- We may arrange possible partitions into a 10-leafs tree

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 38

Optimization strategies

Sequential algorithms

- Sequential Forward Selection (SFS)
 - ✓ Starts from empty feature subset : $Y_0 = \{\emptyset\}$
 - \checkmark Sequentially adds the feature x^* which maximizes $J(Y_k + x^*)$
 - Drawback: cannot discard features becoming obsolete due to the addition of other features...
- Sequential backward selection (SBS)
 - ✓ See SFS, but starting from the full set and discarding the feature that results in the smallest decrease of J(Y_v-x*)
- Plus L minus R :
 - ✓ Combines SFS and SBS: at each step, discards R features and adds L features
 - ✓ Problem: no theoretical result for choosing L and R...

Stochastic algorithms: escape from local minima!

- ✓ Random generation of a feature sample, then SFS, then SBS
- ✓ Simulated annealing, genetic algorithms, etc.

Take-away remarks

- To overcome the curse of dimensionality / ease visualization
 - · Feature selection or extraction
- Selection:
 - · Given an optimality criterion (e.g. class separability)
 - Choice of features = combinatory optimization problem
- Extraction
 - · Given a criterion that measures the:
 - ✓ Goodness of data representation (e.g. PCA)
 - √ Separability of classes (ex : LDA)
 - · Optimization leads to a process of the form:
 - ✓ Linear transformation of data
 - ✓ Truncation
 - · Other linear methods: ICA, NMF, MDS
 - Nonlinear methods, ISOMAP, LLE, auto-encoders, t-SNE, UMAP are better suited to complex variability.

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Homework

- Consider the following training sample:
 - $X = (x_1, x_2) = \{ (1,2), (3,3), (3,5), (5,4), (5,6), (6,5), (8,7), (9,8) \}$
 - Draw the corresponding scatter plot
 - Calculate the sample mean and (biased) covariance matrix.
 - Calculate PCA and plot the eigenvectors v_1 and v_2
 - ✓ Trick: to calculate the first eigenvector easier, suppose that one of its coordinates is 1, calculate the other one, then normalize the resulting vector to 1.

From [Gutierrez]

Exercise

Feature selection and extraction

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Solution of exercise 1

X = (x_1,x_2) = { (1,2), (3,3), (3,5), (5,4), (5,6), (6,5), (8,7), (9,8) }

x ₁	x ₂	x ₁ -μ ₁	x ₂ -μ ₂	$(x_1-\mu_1)^2$	$(x_1-\mu_1)(x_2-\mu_2)$	$(x_2-\mu_2)^2$
1	2	-4	-3	16	12	9
3	3	-2	-2	4	4	4
3	5	-2	0	4	0	0
5	4	0	-1	0	0	1
5	6	0	1	0	0	1
6	5	1	0	1	0	0
8	7	3	2	9	6	4
9	8	4	3	16	12	9
5	5			6,25	4,25	3,5

$$\begin{vmatrix} 6.25 - \lambda & 4.25 \\ 4.25 & 3.5 - \lambda \end{vmatrix} = 0 \implies \begin{cases} \lambda_1 \approx 9.34 \\ \lambda_2 \approx 0.41 \end{cases}$$

 \mathbf{X}_{1} $\begin{bmatrix} 6,25 & 4,25 \\ 4,25 & 3,5 \end{bmatrix} \begin{bmatrix} 1 \\ v \end{bmatrix} = 9,34 \begin{bmatrix} 1 \\ v \end{bmatrix} \xrightarrow{\text{(normalization)}} v_1 \approx \begin{pmatrix} 0.81 \\ 0.59 \end{pmatrix}, \text{ then } v_2 \perp v_1 \approx \begin{pmatrix} 0.81 \\ 0.81 \end{pmatrix}$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

[Gutierrez]

Unsupervised learning and clustering

Parametric methods: mixture distributions – EM algorithm
Non-parametric methods: k-means algorithms, mode-seeking
methods,

Flat vs. hierarchical algorithms

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Unsupervised classification (a.k.a. clustering)

- Given a set of feature vectors X = {x₁, ..., x_N} without class labels, capture the structure of the data
- Such a situation often occurs
 - · Labeling a training set may be awkward.
 - Class labels are not always known in advance (e.g. data mining).
- NB: Clustering methods may also be used in a supervised context, for modeling multi-modal distributions.

Summary of previous episodes

- The classification methods that we have been studying so far are supervised (i.e. training samples are labeled)
 - When class-conditional distributions and prior probabilities are known, optimal classifiers can be designed in the Bayesian framework.
 - When only the functional forms of the pdf's are known, their parameters may be learned from a set of labeled training samples.
 - The pdf's may also be approximated in a non-parametric way from a set of labeled learning samples.
 - Dimensionality reduction techniques (feature selection or extraction) also use labeled samples.
- The situation is often far from being so ideal!
- What can be done when class labels are not known?

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2

Clustering: deterministic vs. probabilistic

"Hundreds of clustering algorithms have been proposed in the literature" [Jain2000]

Machine learning and Pattern Recognition
Pierre CHARBONNIER
2024-2025

4

Clustering: partitional vs. hierarchical

- Partitional (flat) approaches
 - · Aim at partitioning feature space by optimizing a given functional

Hierarchical approaches

 Organize the data into a series of nested groups that may be visualized as a tree-like representation

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

5

Parametric methods - Mixture Models

- They can model either
 - A unique, complex (e.g. multimodal) probability density function
 - A set of pdf's, each one being associated with one of the classes in the training set
- Assumptions
 - The number of classes is supposed to be known
 - · The functional form of each class is known
 - · Each class may be of a different type
 - Popular: Gaussian Mixture Models (GMM)
- The PDF of features is a mixture of parametric densities

$$p(\mathbf{x}|\mathbf{\Theta}) = \sum_{i=1}^{C} p(\mathbf{x}|\omega_{i}, \mathbf{\theta}_{j}) \pi_{j}$$

• Note: such approaches are sometimes dubbed *semi-parametric*.

A hierarchy of methods

PDF estimator families

2024-2025

Mixture models: the unknown parameters

• The mixing parameters, π_i , can be viewed as prior class probabilities

$$p(\mathbf{x}|\mathbf{\theta}) = \sum_{j=1}^{C} p(\mathbf{x}|\omega_j, \mathbf{\theta}_j) P(\omega_j)$$

- The vector of unknown parameters, θ , that concatenates:
 - The parameters of each component θ_i (e.g. for a Gaussian mixture: μ_i and Σ_i)
 - The mixing parameters $\pi_i = P(\omega_i)$ with $\sum_{i=1}^{c} P(\omega_i) = 1$

must be estimated from unlabeled samples $X = \{x_1, ..., x_N\}$

We first form the likelihood:

$$p(\mathbf{X}|\mathbf{\theta}) = \prod_{k=1}^{N} \sum_{j=1}^{C} p(\mathbf{x}|\omega_j, \mathbf{\theta}_j) P(\omega_j)$$

Machine learning and Pattern Recognition

Interpretation

- The weights: $w_{ki}=P(\omega_i|x_k,\theta)$ can be seen as an estimation of the chance that x, belongs to the j-th class.
 - NB: $\sum_{i} P(\omega_i | x_k, \theta) = 1$
- Should $P(\omega_i|x_k,\theta)$ be binary (\Leftrightarrow one-hot encoding), then

$$\sum_{k} P(\omega_{j}|x_{k}, \theta) = \sum_{x_{k} \in \omega_{j}} 1 = N_{j}$$

$$\sum_{k} P(\omega_{j}|x_{k}, \theta) x_{k} = \sum_{x_{k} \in \omega_{j}} x_{k}$$
The Microsoft specific becomes

• The ML equations would become:

$$\hat{\mu}_{j} = \frac{1}{N_{j}} \sum_{x_{k} \in \omega_{j}} X_{k} \qquad \qquad \hat{\sigma}_{j}^{2} = \frac{1}{N_{j} d} \sum_{x_{k} \in \omega_{j}} \left\| X_{k} - \hat{\mu}_{j} \right\|^{2} \qquad \qquad \hat{P}(\omega_{j}) = \frac{N_{j}}{N}$$

- And we would get the usual estimators!
- Most of the time, however, $P(\omega_i|x_k,\theta) \in [0,1]$
 - All samples play a role in the estimation of all class parameters...

Mixture models: Maximum Likelihood estimation

It may be shown (see [DUDA], pp. 518-528) that the maximum likelihood solution:

$$L(\Theta) = \ln[p(X|\Theta)] = \sum_{k=1}^{N} \ln\left[\sum_{j=1}^{C} p(x_k|\omega_j, \theta_j) P(\omega_j)\right]$$

satisfies in the Gaussian case, $\Sigma_i = \sigma^2_i$, I_d (in d dimensions):

$$\hat{\mu}_{j} = \frac{\sum_{k} P(\omega_{j}|x_{k}, \theta) x_{k}}{\sum_{k} P(\omega_{j}|x_{k}, \theta)} \qquad \qquad \hat{\sigma}_{j}^{2} = \frac{\sum_{k} P(\omega_{j}|x_{k}, \theta) \|x_{k} - \hat{\mu}_{j}\|^{2}}{d\sum_{k} P(\omega_{j}|x_{k}, \theta)}$$

for mixing parameters (under unit sum condition $\sum \hat{P}(\omega_i) = 1$)

$$\hat{P}(\omega_j) = \frac{1}{N} \sum_{k} P(\omega_j | x_k, \theta)$$

Machine learning and Pattern Recognition

Maximum Likelihood estimation: difficulty

■ Moreover, in the ML equations:

$$P(\omega_{j}|x_{k},\theta) = \frac{1}{\sum_{p}(x_{k}|\omega_{j},\theta)\hat{P}(\omega_{j})} \exp\left(-\frac{\|x_{k}-\hat{\mu}_{j}\|^{2}}{2\hat{\sigma}_{j}^{2}}\right)^{d/2} \exp\left(-\frac{\|x_{k}-\hat{\mu}_{j}\|^{2}}{2\hat{\sigma}_{j}^{2}}\right)$$

- The ML equations are coupled... So?
- Idea: use a fixed-point algorithm
 - · Take an initial parameter set

Machine learning and Pattern Recognition

2024-2025

- Use at each iteration the ML equations, inserting in their rightmost term the values found at the previous iteration...
- The EM framework is a principled way of devising such an algorithm, and of proving its convergence towards a (local) maximum of the log-likelihood.

The EM algorithm

[Dempster77]

- EM means Expectation Maximization
- Iterative algorithm for parameter estimation, in the sense of Maximum Likelihood, from missing or hidden data.
- Missing (or corrupted) data:
 - When the observation process is limited or corrupted.
- Hidden data:
 - · Their knowledge would lead to a simpler form of likelihood
- Applications:
 - · Tomographic reconstruction, mixture models...

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 13

EM: basis ideas (1/2)

- Link between the likelihood of the complete data and the likelihood of the incomplete data
 - According to the definition of conditional probabilities, we have:

$$p(X|\Theta) = p(X,Z|\Theta)/p(Z|X,\Theta)$$

■ Taking logs, we have:

$$L(\Theta) = \log[p(X|\Theta)] = \log[p(X,Z|\Theta)] - \log[p(Z|X,\Theta)]$$

- 1rst idea: if we average this expression with respect to Z,
 - The leftmost term (log-likelihood) does not change...
 - · And we eliminate Z from the rightmost term!

The EM formalism

- Notations:
 - X denotes the incomplete, observed data
 - Z denotes the missing, unknown data.
 - (X,Z) are the complete data
 - Θ, is the parameter vector, which concatenates θ, the parameters of the components and P(ω), the mixing parameters.
- We may form the likelihood of the complete data: $p(X,Z|\Theta)$
- In contrast, $p(X/\Theta)$, is called likelihood of the incomplete data
- Maximizing L(⊕)=log[p(X|⊕)] is difficult...
 - Maximizing $log[p(X,Z|\Theta)]$ may be easier, for a particular choice of Z.
 - But Z is unobservable... → we shall try to eliminate it!

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 14

EM: basis ideas (2/2)

- In an iterative process, we know the current estimate, Θ^n
 - The average (expectation) is taken with respect to Z, knowing X and Θ^n
- We obtain:

$$L(\Theta) = E_{Z}[\log p(X, Z|\Theta)|X, \Theta^{n}] - E_{Z}[\log p(Z|X, \Theta)|X, \Theta^{n}]$$

...which may be written as:

$$L(\Theta) = \log[\rho(X|\Theta)] \equiv Q(\Theta|\Theta^n) - H(\Theta|\Theta^n)$$

2nd idea: take advantage of a "good property" of the expectation to get rid of H!

A "good property" of the expectation

■ It can be shown [Lange2000] that

$$H(\mathbf{\Theta}^n|\mathbf{\Theta}^n) - H(\mathbf{\Theta}^{n+1}|\mathbf{\Theta}^n) \ge 0$$

- In the EM, Θ^{n+1} is chosen to maximize $O(\Theta|\Theta^n)$
 - · So, in particular:

$$Q(\mathbf{\Theta}^{n+1}|\mathbf{\Theta}^n) - Q(\mathbf{\Theta}^n|\mathbf{\Theta}^n) \ge 0$$

Summing up:

$$Q(\mathbf{\Theta}^{n+1}|\mathbf{\Theta}^n) - Q(\mathbf{\Theta}^n|\mathbf{\Theta}^n) \ge 0$$
+
$$-H(\mathbf{\Theta}^{n+1}|\mathbf{\Theta}^n) - \{-H(\mathbf{\Theta}^n|\mathbf{\Theta}^n)\} \ge 0$$
=
$$L(\mathbf{\Theta}^{n+1}) - L(\mathbf{\Theta}^n) \ge 0$$

→ which shows that each iteration increases the log-likelihood

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2024-2025

- 1

The EM algorithm: interpretation

- During the E-step, we eliminate the unobserved data Z by integration (marginalization)
- During the M-step, we maximize the average likelihood of the complete data

From [Gutierrez]

- The (n+1)-th iteration is made of 2 steps
- E (expectation) step: form the conditional expectation

$$Q(\Theta|\Theta^n) = E_z[\log p(X,Z|\Theta)|X,\Theta^n] = \int_z \log p(X,Z|\Theta)p(z|X,\Theta^n)dz$$

■ M (maximization) step: find Θ, the maximizer of Q(Θ| Θⁿ)

$$\Theta^{n+1} = \arg\max_{\Theta} Q(\Theta | \Theta^n)$$

- Since the M-step always increases L(Θ)=log[p(x|Θ)], the algorithm converges towards a stationary point (which may not be the global maximum!)
- In many cases, the E-step is performed analytically and grouped with the M-step (the iteration is implemented as a single closed-form expression)

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Machine learning and Pattern Recognition Pierre CHARBONNIER

2024-2025

18

The case of mixture models

- The hidden variable $Z = \{z_k\}$ for k=1...N, indicates which component (class) x_k has been generated from
 - Each \mathbf{z}_k is a <u>vector</u> with \mathcal{C} components, z_{ki}
 - z_{ki} is 1 if x_k belongs to class ω_i and 0 otherwise
 - z_{kj} is a Bernoulli variable with parameter P=probability that \mathbf{x}_k belongs to class ω_i (knowing the parameters), i.e. $P(\omega_i|\mathbf{x}_k,\Theta)$
 - Since the expectation of a Bernoulli law with parameter P is ... P, we have

$$E(z_{ki}|\mathbf{x}_k,\Theta) = P(\omega_i|\mathbf{x}_k,\Theta) \stackrel{\text{def}}{=} w_{ki}$$

· This expression may be evaluated using Bayes' theorem

$$w_{kj} = P(\omega_j | \mathbf{x}_k, \Theta) = \frac{P(\mathbf{x}_k | \omega_j, \Theta) P(\omega_j)}{\sum_{C} P(\mathbf{x}_k | \omega_C, \Theta) P(\omega_C)}$$

■ Let us note these results and form the complete likelihood...

Mixture models: the E-step

■ The likelihood of the complete data (x_k,z_k) is written as

$$p(x_k, z_k | \Theta) = p(x_k | z_k, \Theta) \cdot P(z_k | \Theta) = p(x_k | \theta_j) \cdot P(\omega_j) = \prod_{i=1}^{c} [p(x_k | \theta_j) \cdot P(\omega_j)]^{z_{k_i}}$$

For N independent observations:

$$p(X,Z|\Theta) = \prod_{k=1}^{N} \prod_{j=1}^{C} \left[p(x_k|\theta_j) P(\omega_j) \right]^{z_{kj}}$$

$$\log(p(X,Z|\Theta)) = \sum_{k=1}^{N} \sum_{j=1}^{C} z_{kj} \left[\log(p(x_k|\theta_j)) + \log(P(\omega_j)) \right]$$

- Now, we take the expectation with respect to z
 - Recalling the results of the previous slide, it comes that:

$$Q(\Theta|\Theta^n) = \sum_{j=1}^{C} \sum_{k=1}^{N} \log(P(\omega_j)) w_{kj}^n + \sum_{j=1}^{C} \sum_{k=1}^{N} \log(p(x_k|\theta_j)) w_{kj}^n$$

$$w_{kj}^n = P(\omega_j|x_k, \Theta^n)$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Iteration 25

$$\Sigma_{j}^{n+1} = \frac{\sum_{k} w_{kj}^{n} \cdot (x_{k} - \mu_{j}^{n+1}) (x_{k} - \mu_{j}^{n+1})^{T}}{\sum_{k} w_{kj}^{n}}$$

$$P^{n+1}(\omega_j) = \frac{1}{N} \sum_k W_{kj}^n$$

- Note that
 - · We obtain weighted expressions for the mean and covariance matrix

Canceling the derivative of Q, with respect to each parameter.

- The implementation is rather simple, but the convergence is slow

Gaussian mixtures: the M-step

one obtains in the Gaussian case

• The closer x, from the class mean, the higher its weight

Machine learning and Pattern Recognition Pierre CHAR 2024-2025

Example (modeling a single, complex pdf)

- Training data: 900 points drawn from an annular distribution
- EM algorithm:
 - · 30 initial classes with random means
 - · Diagonal initial covariance matrices with large variance
 - · Regularization of covariance matrices
 - Components with small $P(\omega_i)$ are discarded
 - The final model is compact: only a few components

Unsupervised classification for 3 classes

- Simulated data: mixture of 3 bidimensional Gaussian classes.
- Initialization (left), solution after 50 iterations (right)

Machine learning and Pattern Recognition 2024-2025

EM clustering and classification

Classification method

- Train:
 - ✓ Specify the number of classes and the parametric form of their pdf's
 - ✓ Estimate the parameters of the mixture from training data (using EM)
- · Classify new data, x:
 - ✓ Form posterior probabilities $P(\omega|x)$ and chose the class with highest probability.

Issues

- · Choosing C
 - ✓ Minimizing a criterion with respect to C: log-likelihood + penalty term (penalize complex models i.e. large C values), k=nb parameters

- Akaike Information Criterion: $AIC = 2L(\widehat{\theta}) + 2k$
- Bayesian Information Criterion: BIC = $2L(\hat{\theta}) + k \ln N$
- √ See EMbic.m demo
- ✓ Cross-validation, etc.
- · The EM may be trapped in local maxima, and it is rather slow
 - ✓ Variants: GEM (Generalized EM), CEM (Classification EM), SEM (Stochastic EM)

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

25

The Meanshift

- Gradient ascent: $\mathbf{x} \leftarrow \mathbf{x} + \nabla p_K / P_G$,
- Algorithm
 - Starting from each data point, iterate : $\mathbf{x} \leftarrow \frac{\sum_{i} x_{i} g\left(\left\|\frac{\mathbf{x} \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i} g\left(\left\|\frac{\mathbf{x} \mathbf{x}_{i}}{h}\right\|^{2}\right)}$ until convergence
 - Group points that converge to the same maximum into a cluster

Mode seeking methods

Assumptions

- In the overall PDF p(x), each cluster corresponds to a mode.
- 2D example: "hills" separated by "valleys"

Principle

- · Seek the modes using e.g. gradient ascent algorithm
- Example: Meanshift [Comaniciu99] ...after [Fukunaga 75]!
 - $\checkmark p(x)$ is modeled using Parzen windows : $p_K(\mathbf{x}) \propto \sum_i k(\|(\mathbf{x} \mathbf{x}_i)/h\|^2)$
 - ✓ Meanshift is a hill-climbing method adapted to such a representation
- Gradient ascent and the Meanshift
 - $\nabla p_K \propto \sum_i (\mathbf{x} \mathbf{x}_i) k' (\|(\mathbf{x} \mathbf{x}_i)/h\|^2)$
 - The (normalized) gradient direction, provided that g(x) = -k'(x), is given by the meanshift

$$\frac{\nabla p_K}{p_G} \propto \frac{\sum_i x_i \ g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)}{\sum_i g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)} - \mathbf{x}$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 26

Deterministic methods / K-means clustering

- Does not involve pdf estimation
- Attempts to find natural grouping (clusters) in a data set by optimizing an objective function
- Find an assignment of data points to clusters, and a set of prototypes that represent the centers of the clusters, in order to minimize

$$J_e = \sum_{j=1}^{C} \sum_{\mathbf{x} \in \omega_j} \|\mathbf{x} - \mathbf{m}_j\|^2$$

2024-2025

Remark

Dispersion matrices (see FDA)

$$S_{\text{intra}} = \sum_{j=1}^{C} \sum_{x \in \omega_j} (\mathbf{x} - \mathbf{m}_j) (\mathbf{x} - \mathbf{m}_j)^T$$

$$S_{\text{inter}} = \sum_{j=1}^{C} N_{j} (\mathbf{m}_{j} - \mathbf{m}) (\mathbf{m}_{j} - \mathbf{m})^{T}$$

$$S_{\text{total}} = \sum_{i=1}^{C} \sum_{\mathbf{x} \in o_i} (\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^T = S_{\text{intra}} + S_{\text{inter}}$$

Taking the trace, we obtain (Huygens theorem)

$$J_{\text{total}} = \sum_{j=1}^{C} \sum_{\mathbf{x} \in \omega_{j}} \left\| \mathbf{x} - \mathbf{m} \right\|^{2} = \sum_{j=1}^{C} \sum_{\mathbf{x} \in \omega_{j}} \left\| \mathbf{x} - \mathbf{m}_{j} \right\|^{2} + \sum_{j=1}^{C} N_{j} \left\| \mathbf{m}_{j} - \mathbf{m} \right\|^{2} = J_{e} + J_{\text{inter}}$$

- Since the total inertia, J_{total} is constant for a given data set and a constant C, minimizing J_e amounts to maximizing the inter-class variance J_{inter}
- → Finding compact clusters ⇔ finding distinct clusters

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

2024-2025

2

31

K-means: basis idea [Lloyd 1957-1982, McQueen 1967]

- Assignement rule = nearest-mean rule
 - Optimal for Gaussian clusters with equal prior and same, isotropic, covariance matrix
- Now, fix u and minimize w.r.t. the m_i 's

$$J_{e}(\mathbf{u}, \mathbf{m}) = \sum_{j=1}^{C} \sum_{k=1}^{N} \mathbf{u}_{kj} \|\mathbf{x}_{k} - \mathbf{m}_{j}\|^{2}$$

$$0 = \sum_{k=1}^{N} \mathbf{u}_{kj} \frac{\partial \|\mathbf{x}_{k} - \mathbf{m}_{j}\|^{2}}{\partial \mathbf{m}_{j}}$$

$$\forall j = 1 \dots C$$

$$\sum_{k=1}^{N} u_{kj} \mathbf{x}_{k} = \sum_{k=1}^{N} u_{kj} \mathbf{m}_{j} = N_{j} \mathbf{m}_{j}$$

$$\mathbf{m}_{j} = \frac{1}{N_{j}} \sum_{\mathbf{x} \in \mathcal{A}} \mathbf{x}$$

→ Optimal class centers are class means

K-means: basis idea [Lloyd 1957-1982, McQueen 1967]

 Let us introduce binary variables to formalize the assignment of data points to clusters (one-hot-encoding)

$$u_{kj} \in \{0,1\} \text{ and } \sum_{j=1}^{C} u_{kj} = 1$$

$$J_e(u,m) = \sum_{j=1}^{C} \sum_{k=1}^{N} u_{kj} ||x_k - m_j||^2$$

- Fix the m_i 's and minimize with respect to u
 - For each x_{i} , only one u_{ki} may be non null (due to unit sum condition).
 - Clearly, in order to minimize J_a , we shall choose (for each k):

$$u_{kj} = \begin{cases} 1 & \text{if} \quad \left\| x_k - m_j \right\|^2 < \left\| x_k - m_j \right\|^2 \, \forall i \\ 0 & \text{otherwise} \end{cases}$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 30

The k-means algorithm

- Batch k-means algorithm
 - Initialize class centers
 - ✓ At random, or simply take the first C samples, for example...
 - Repeat
 - ✓ Classify the n samples according to their distance to class centers
 - \Rightarrow if $||x_k-m_i|| < ||x_k-m_i|| \forall i \neq j$, then x_k is assigned to ω_i
 - ✓ Update the positions of class centers

$$\Rightarrow m_j = \frac{1}{N_i} \sum_{x \in \omega_i} x \quad \forall j = 1 \dots C$$

Until the partition does not change

Remarks (1)

- The K-means algorithm is rather fast O(NdCT)
 - where N is the number of samples, d the dimensionality of feature space, C the number of classes and T the number of iterations (in general, T<< N).
- The K-means algorithm converges to a local minimum of J_a which depends on the initial choice of class centers.
 - One may run the algorithm several times, with different initializations and retain the best result (e.g. the one that yields the smallest Je final value)
- Dynamic clouds generalize k-means. They involve:
 - · A function that allows computing the prototype for each cluster
 - A function that allows assigning each point to one class
 - The general form of the algorithm remains the same...

Machine learning and Pattern Recognition

Pierre CHARBONNIER 2024-2025

The ISODATA algorithm

[Ball & Hall, 1965]

- ISODATA is a more sophisticated version of k-means
 - K-means are sometimes called "basic ISODATA"
 - Supplementary mechanisms allow the automatic selection of the number of clusters. C
- Algorithm:
 - Repeat
 - ✓ Perform clustering using k-means
 - ✓ Discard clusters smaller than a certain threshold
 - ✓ Split highly dispersed clusters
 - ✓ Merge sufficiently close clusters
 - Until stabilization
- Thresholds must be set, but the algorithm is more automatic

Remarks (2)

- There exists a sequential version of the k-means algorithm [Duda, p. 549]
 - Initialize class centers
 - Repeat
 - ✓ Pick one sample at random, x*
 - ✓ Assign x* to a new class according to its distance to class centers
 - ✓ Update the positions of the centers of the old and new class for x* and the value of the overall error, J.
 - Until J_e does not change in n attempts
- This version is (even) less robust with respect to local minima...

Machine learning and Pattern Recognition 2024-2025

34

K-means and vector quantization

Vector quantization

Machine learning and Pattern Recognition 2024-2025

36

K-means and vector quantization

- Construction of the dictionary: minimization of total distortion
 - Most often, distortion = quadratic error (i.e. k-means criterion)
- This is a clustering problem!
 - · A famous algorithm (called LBG) was proposed in [Linde, Buzo & Gray 1980]
 - · This is essentially a version of k-means with a hierarchical initialization of class centers (codewords)
 - ✓ Start with 1 class
 - ✓ Split the codeword
 - ✓ Classify with 2 classes, and so on...

Machine learning and Pattern Recognition 2024-2025

LBG at work

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

K-means and EM

- There is a close similarity between them. They both
 - · Compute a class membership function
 - ✓ k-means algorithm performs a *hard* assignment (u_{ki})
 - ✓ EM performs a *soft* assignment (w_{ki})
 - Use it to weight the computation of the mean (EM: also dispersion & priors)
- The variable u_{ki} plays a role similar to the one of w_{ki} in the EM
 - Some authors (e.g. Duda) denote them both as $P(\omega_i|\mathbf{x}_k,\Theta)$
- k-means may be derived as a limit case of EM for Gaussian mixtures with diagonal, isotropic covariance matrices [Bishop]
 - · The variance is fixed and the same for all classes.
 - · Consider the limit where the variance goes to 0
 - \checkmark The EM weights w_{ki} go to 0 except for the closest class, for which it goes to 1.
 - ✓ One obtains the same expression for the mean

Fuzzy C-means

2024-2025

IDUNN.19731

- In the K-means algorithm
 - The class membership coefficient is binary
- In the fuzzy C-means,

$$u_{kj} \in [0,1] \text{ and } \sum_{i=1}^{C} u_{kj} = 1$$

- i.e. one sample has a graded membership to all clusters
- One minimizes a heuristic global cost function

$$J_{\text{fuzzy}} = \sum_{j=1}^{C} \sum_{k=1}^{N} u_{kj}^{b} ||x_{k} - m_{j}||^{2}$$

■ The exponent, b tunes the "fuzziness" of the algorithm, b > 1

Fuzzy C-means: algorithm

- Same structure as the K-means
- Fix class centers and minimize w.r.t. u
 - Use a Lagrangian to incorporate unit sum condition
 - Canceling derivatives:

es:

$$u_{kj}^{b} = \frac{(1/d_{kj})^{1/(b-1)}}{\sum_{c=1}^{C} (1/d_{kc})^{1/(b-1)}}$$

- Fix u and update centers
 - · Canceling derivatives:

$$m_{j} = \frac{\sum_{k=1}^{N} u_{kj}^{b} X_{k}}{\sum_{k=1}^{N} u_{kj}^{b}}$$

Convergence may be better than for the K-means...

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

4

Fast clustering techniques

- Useful for initializing more sophisticated clustering algorithms
- Random selection of C samples
- Division of variables [Webb] :
 - Choose one variable (e.g. principal component), divide its range into C bins. Every sample
 is then classified according to the bin its falls into. Finally, cluster centers are chosen as
 the means of the C resulting groups.
- Incremental algorithms
 - E.g. Leader Algorithm [Hartigan, 1975]
 - ✓ The first sample becomes the leader of the first cluster.
 - ✓ Samples are considered one by one, in turn until they are all labeled
 - If a sample is close enough to the leader of one class, then it is assigned to that class.
 - Otherwise, it becomes the leader of a new class
 - Low algorithmic complexity, the number of classes is not required, but a threshold must be tuned
 - Leader follower: when a sample is assigned to a cluster, its leader moves in the direction
 of the newly classified point. Neural implementation: ART.

Density-based clustering

- Clusters: dense regions separated by regions of lower density
- DBSCAN (Ester et al, 1996)
 - Neighborhood distance, ϵ
 - · Minimal neighbor number, minPoint
 - Repeat
 - √ Find core point and expand cluster
 - Until all points left are isolated (outliers)
- Pros / cons
 - Number of clusters not needed
 - © Captures arbitrarily shaped clusters
 - Handles noisy datasets / outliers
 - · Sensitive to dimensionality
 - · Difficulties with varying densities

DBSCAN cluster model [Schubert2020]

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025 42

Hierarchical clustering

- Some algorithms provide a hierarchical representation of data
 - · Such a tree-like representation is often called a dendogram
 - The root of the tree is the whole data set, the nodes represent sub-clusters
 - The leafs are the individual samples

- The dendogram also provides a measure of (dis-)similarity between groups
 - · ...which is not the case for Venn diagrams

1rst family: splitting algorithms

- Top-down or "divisive" algorithms
 - · Start with a single cluster that contains the whole data set
 - Repeat
 - ✓ Choose the "worst" cluster
 - Until the number of clusters is equal to the number of samples, N
- Choosing the "worst" cluster ?
 - E.g. according to the number of elements, to the variance
- Splitting clusters ?
 - E.g. perpendicularly to the direction of greatest variance...
- This technique may be complicated and rather costly.
- Ascending techniques are often preferred.

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Main algorithms

- Single linkage (or minimum algorithm)
 - Uses the minimum distance between clusters: "min(min)"
 - · Is rather versatile (e.g. it can handle concentric clusters)
 - · Produces elongated clusters by linking clusters, without loops or circuits,
 - The result is dubbed Minimal Spanning Tree.
- Complete linkage (or maximum algorithm)
 - Uses the maximum distance between clusters: "min(max)"
 - Produces compact clusters

Machine learning and Pattern Recognition Pierre CHARBONNIER

2024-2025

- This produces graphs in which edges connect all of the nodes in a cluster.
- · Each resulting cluster is a complete subgraph.
- Both distances are sensitive to outliers
 - Using the average distance or the distance between centroids may be better.

2nd family: merging algorithms

■ Bottom-up or "agglomerative" algorithms

- · Start with N singleton clusters
- Repeat
 - ✓ Choose the 2 closest clusters
 - ✓ Merge them
- Until the number of clusters is 1

Choosing the closest clusters ?

- · According to the distance between groups
- · Some popular choices are:

$$d_{\min}(\omega_i, \omega_j) = \min_{\substack{x \in \omega_i \\ y \in \omega_j \\ x \in \omega_i}} ||x - y||$$
$$d_{\max}(\omega_i, \omega_j) = \max_{x \in \omega_i} ||x - y||$$

$$\begin{aligned} & d_{average}(\omega_i, \omega_j) = \frac{1}{n_i n_j} \sum_{\mathbf{x} \in \omega_i} \sum_{\mathbf{y} \in \omega_j} \|\mathbf{x} - \mathbf{y}\| \\ & d_{centroid}(\omega_i, \omega_j) = \|\mu_i - \mu_j\| \end{aligned}$$

$$d_{centroid}(\omega_i, \omega_j) = \|\mu_i - \mu_j\|$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Single linkage: example

[Webb]

Consider the dissimilarity matrix

	- 1	2	3	4	5	6
1	0	4	13	24	12	8
2		0	10	22	- 11	10
3			0	7	3	9
4				0	6	18
5					0	8,5
- 6						0

1. We merge 5 and 3

	- 1	2	(3,5)	4	6
- 1	0	4	12	24	8
2		0	10	22	10
(3,5)			0	6	8,5
4				0	18
6					0

2. We merge 1 and 2

	(1,2)	(3,5)	4	- 6
(1,2)	0	10	22	8
(3,5)		0	6	8,5
4			0	18
6				(

3. We merge (3,5) and 4

	(1,2)	(3,4,5)	6
(1,2)	0	10	8
(3,4,5)		0	8,5
6			0

	(1,2,6)	(3,4,5)
(1,2,6)	0	8,5
(3.4.5)		0

Complete linkage: exercise

Same exercise with the following dissimilarity matrix

	1	2	3	4	5	6
1	0	4	13	24	12	8
2		0	10	22	11	10
3			0	7	3	9
4				0	6	18
5					0	8,5
6						0

Recall that we always merge the closest clusters (even if a max is used to evaluate the distances)

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Hierarchical Density Based Clustering (HDBSCAN)

- Introduced by Campello et al (2013, 2015)
- Hierarchical version of (a reinterpreted version of) DBSCAN
- Core distance
 - d_{core}=distance from a point to its k-th neighbor (same as DBSCAN)
- Hierarchical clustering
 - Single linkage
 - · Mutual reachability distance $\min\{d_{core}(x), d_{core}(y), d(x, y)\}$
- Flattening the hierarchy
 - · Based on cluster persistence (cluster stability)

https://towardsdatascience.com/a-gentle-introduction-to-hdbscan and-density-based-clustering-5fd79329c1e8

Remarks

Different distances between groups were proposed

- Each one has a particular effect on the results of the clustering algorithm
- Some distances may be related to the minimization of an objective function
- E.g. Ward's distance corresponds to the quadratic error criterion
 - ✓ Merging groups necessarily increases intra-cluster variance
 - ✓ Using Ward's distance minimizes this increase

$$d_{Ward}(\omega_i, \omega_j) = \frac{n_i n_j}{n_i + n_j} \|m_i - m_j\|^2$$

$$J_e = \sum_{i=1}^C \sum_{x \in \omega_i} \|x - m_i\|^2$$

$$J_e = \sum_{i=1}^C \sum_{x \in o_i} ||x - m_i||$$

Choosing the best number of groups ?

- It is a recurring and difficult question... some solutions are
 - ✓ Monitoring the "lifetime" or persistence of clusters in the dendogram
 - √ When an objective criterion is used (ex. J_e), see how it evolves as the number of clusters changes
 - ✓ Use a self-similarity criterion
 - ✓ Use hypothesis testing [Duda]...

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

Overview

(following [Jain99])

Clustering methods:

- · Deterministic vs. probabilistic
- · Flat vs. hierarchical
- Monothetical vs. polythetical (use a single coordinate of x or the whole x)
- Hard vs. fuzzy

Machine learning and Pattern Recognition Pierre CHARBONNIER

2024-2025

· Incremental or non-incremental

Supplementary material

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

53

M-step, Gaussian Mixture Model (scalar case)

■ The function that is maximized during the M-step is

$$Q(\Theta|\Theta^{n}) = \sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^{n} \log P(\omega_{j}) + \sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^{n} \log p(x_{k}|\theta_{j})$$

where $\Theta = \{P(\omega_j), \theta_j\}$ are the parameters of the mixture, and θ_j is the set of parameters of component ω_j .

- In the following slides, we develop the calculation of the optimal parameters, for the Gaussian Mixture Model (GMM)
 - As is well-known, the method consists in cancelling the derivative of the function with respect to (w.r.t.) the parameter in question.

A "good property" of the expectation [Lange2000]

■ <u>Jensen's inequality</u> for expectation:

$$E[h(x)] \ge h(E[x])$$
 for h convex

■ Taking $h = -\ln$, one shows that for two pdf's, p and q

$$E_p[\ln(p)] - E_p[\ln(q)] \ge 0$$

• Demo: $-\ln(.)$ being convex, $E_p[\ln(p)] - E_p[\ln(q)] = E_p\left[-\ln\left(\frac{q}{p}\right)\right] \ge -\ln\left(E_p\left[\frac{q}{p}\right]\right)$ $-\ln E_p\left[\frac{q}{p}\right] = -\ln\left(\int \frac{q}{p}p\right) = -\ln\left(\int q\right) = \ln(1) = 0$

Now take $p = p_{Z|X,\Theta^n}(Z|X,\Theta^n)$ and $q = p_{Z|X,\Theta^n}(Z|X,\Theta^{n+1})$,

i.e.
$$E_p[\ln(p)] = H(\mathbf{O}^n|\mathbf{O}^n)$$
 and $E_p[\ln(q)] = H(\mathbf{O}^{n+1}|\mathbf{O}^n)$
$$H(\mathbf{O}^n|\mathbf{O}^n) - H(\mathbf{O}^{n+1}|\mathbf{O}^n) \ge 0$$

Û

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

54

M-step, Gaussian Mixture Model (scalar case)

• Recall that if $x \sim \mathcal{N}(\mu, \sigma^2)$

$$\log p(x|\mu, \sigma^{2}) = -\frac{(x-\mu)^{2}}{2\sigma^{2}} - \log \sigma - \frac{1}{2}\log 2\pi$$

■ Then, neglecting the additive constant, we have

$$Q(\Theta|\Theta^n) = \sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^n \log P(\omega_j) - \sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^n \frac{(x_k - \mu_j)^2}{2\sigma_j^2} - \sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^n \log \sigma_j$$

■ Maximizing $Q(\Theta|\Theta^n)$ w.r.t. μ_i only involves the 2nd term

$$2 \sum_{k=1}^N w_{kj}^n \frac{(x_k - \mu_j)}{2\sigma_j^2} = 0 \ \to \ \sum_{k=1}^N w_{kj}^n x_k = \mu_j \sum_{k=1}^N w_{kj}^n \Rightarrow \mu_j = \frac{\sum_{k=1}^N w_{kj}^n x_k}{\sum_{k=1}^N w_{kj}^n}$$

M-step, Gaussian Mixture Model (scalar case)

$$Q(\Theta|\Theta^n) = \sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^n \log P(\omega_j) - \sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^n \frac{(x_k - \mu_j)^2}{2\sigma_j^2} - \sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^n \log \sigma_j$$

■ Maximizing $Q(\Theta|\Theta^n)$ w.r.t. σ_i involves the last two terms

$$0 = \sum_{k=1}^{N} w_{kj}^{n} \frac{(x_k - \mu_j)^2}{\sigma_j^3} - \sum_{k=1}^{N} \frac{w_{kj}^{n}}{\sigma_j}$$

• Assuming σ_i to be non-null, we obtain

$$\sigma_j^2 = \frac{\sum_{k=1}^{N} w_{kj}^n (x_k - \mu_j)^2}{\sum_{k=1}^{N} w_{kj}^n}$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

57

59

Solutions of exercises

Unsupervised hierarchical clustering algorithms

M-step, Gaussian Mixture Model (scalar case)

• For $P(\omega_j)$ we use the constraint $\sum_{j=1}^{j=C} P(\omega_j) = 1$ and maximize

$$\sum_{j=1}^{C} \sum_{k=1}^{N} w_{kj}^{n} \log P(\omega_{j}) + \lambda \left(1 - \sum_{j=1}^{C} P(\omega_{j})\right)$$

■ Cancelling the derivative w.r.t. $P(\omega_i)$, we obtain

$$0 = \sum_{k=1}^{N} \frac{w_{kj}^n}{P(\omega_j)} - \lambda \rightarrow P(\omega_j) = \frac{1}{\lambda} \sum_{k=1}^{N} w_{kj}^n$$

■ Summing over j and since $\sum_{j=1}^{j=C} P(\omega_j) = 1$

$$\lambda = \sum_{j=1}^{j=C} \sum_{k=1}^{N} w_{kj}^n = N \Rightarrow \left| P(\omega_j) = \frac{1}{N} \sum_{k=1}^{N} w_{kj}^n \right|$$

Machine learning and Pattern Recognition Pierre CHARBONNIER 2024-2025

58

Complete linkage: exercise

Consider the dissimilarity matrix

	- 1	2	3	4	5	6
- 1	0	4	13	24	12	8
2		0	10	22	- 11	10
3			0	7	3	9
4				0	6	18
5					0	8,5
6						0

1. We merge 5 and 3

	- 1	2	(3,5)	4	
- 1	0	4	13	24	
2		0	- 11	22	1
(3,5)			0	7	
4				0	- 1
- 6					

2. We merge 1 and 2 3. We merge (3,5) and 4

	(1,2)	(3,5)	4	6
(1,2)	0	13	24	10
(3,5)		0	7	9
4			0	18
6				0

4. We merge (1,2) and 6

(1,2,6) (3,5,4) (1,2,6) 0 24 (3,5,4) 0 Recall that one always merge the <u>closest</u> clusters (even if a max is used to evaluate the distances)