Supplementary Material for Jones et al. (2024)

Michael Jones, Jens Lallensack, Ian Jarman, Peter Falkingham and Ivo Siekmann

Dinosaur footprints landmarks data set

The data set consists of landmarks that represent dinosaur footprints. The variables X and Y are the coordinates of the landmarks, id assigns a number to each footprint and Group is the group of dinosaurs that a footprint belongs to:

```
dinoprints <- read.csv("DinoPrints.csv", stringsAsFactors = TRUE)
knitr::kable(head(dinoprints))</pre>
```

X	Y	id	Group
22.2674712	5.265072	1	Theropoda
0.0956471	21.257381	1	Theropoda
-22.6655232	5.895802	1	Theropoda
6.0806097	-40.237751	1	Theropoda
22.3706016	-1.401412	1	Theropoda
21.3634667	-7.817616	1	Theropoda

As an example, we plot the first three footprints.

Transforming the data set

For each footprint (i.e. all 20 X and Y coordinates for a given 'id) we transform the coordinates to lengths r:

$$r = \sqrt{x^2 + y^2}$$

These are the distances from the centre (0,0) of the footprint.

We genereate a new data frame for which each row contains the 20 distances r_1, \ldots, r_{20} and the group Group that the dinosaur belongs to.

One footprint

This is how a single footprint can be transformed - we select the first footprint and calculate the distance r for each landmark:

```
footNo1 <- subset(dinoprints, id==1, select=c(X,Y))
sqrt(footNo1$X^2 + footNo1$Y^2)

## [1] 22.881461 21.257596 23.419787 40.694599 22.414455 22.748908 25.855709
## [8] 16.960379 14.231144 23.554969 22.736981 25.887193 16.279754 15.268953
## [15] 17.477585 13.133103 6.289382 17.138873 12.956998 5.382066</pre>
```

All footprints

We now calculate distances from the centre for all footprints:

```
dino.dist <- data.frame(matrix(nrow = max(dinoprints$id), ncol = 20))
nDinos <- nrow(dino.dist)
for(k in 1:nDinos) {
  footprint <- subset(dinoprints, id==k, select=c(X,Y))
  dino.dist[k, ] <- sqrt(footprint$X^2 + footprint$Y^2)
}</pre>
```

```
#knitr::kable(head(dino.dist)) %>% kable_styling(latex_options = "scale_down")
pander(head(dino.dist), split.table = 80, style = 'rmarkdown', position="left")
```

Table 1: Table continues below

X1	X2	Х3	X4	X5	X6	X7	X8	X9
22.88	21.26	23.42	40.69	22.41	22.75	25.86	16.96	14.23
3.055	6.571	3.045	9.137	3.611	3.897	5.233	1.905	2.532
9.174	9.284	7.798	10.99	9.065	8.318	8.071	6.403	5.446
23.15	23.6	23.18	39.34	26.39	25.31	27.9	16.21	14.13
10.24	11.57	9.878	18.47	10.91	11.08	12.73	7.145	7.364
9.073	8.954	7.156	14.47	9.202	9.189	9.611	6.807	5.614

Table 2: Table continues below

X10	X11	X12	X13	X14	X15	X16	X17	X18
23.55	22.74	25.89	16.28	15.27	17.48	13.13	6.289	17.14
3.888	4.141	5.721	2.029	2.591	5.473	4.18	1.997	5.401
8.578	8.542	10.53	5.904	5.858	7.391	5.485	1.947	7.352
26.53	26.35	30.39	15.62	14.44	18.32	13.77	8.53	18.75
10.79	10.64	12.23	7.049	6.704	9.367	7.514	4.607	10
8.355	8.268	9.825	5.023	4.585	7.379	5.878	3.184	7.136

X19	X20
12.96	5.382
4.204	1.957
5.339	1.946
13.12	9.12
8.045	3.858
5.478	2.403

Finding the Group label for each sample

Now, the Group label for each sample is added.

```
# If we start dino.group as a vector, the factor structure will be destroyed.
dino.group<-factor()
for(k in 1:nrow(dino.dist)) {
  footGroup <- subset(dinoprints, id==k, select=Group)
  # We take the first entry of Group for each footprint (they should be all the same)
  # and append them to dino.group
  dino.group <- c(dino.group, footGroup$Group[1])
}
dino.dist$Group <- dino.group</pre>
```

Visualising distances from the origin

First, we plot the first footprint showing the indices of each landmark next to the points.

In order to visualise the transformed data we rearrange the landmarks starting from landmark 4 which marks the base of the footprint and then rotating around the boundary of the footprint in anti-clockwise direction. This enables us to show the variation of distances from the centre as we move around the boundary of the footprint. We show the mean distances from the centre:

```
xaxt="n",
main = "Mean distances"
)
axis(1,at=1:length(lmCircle),labels = FALSE, cex.axis=0.5)
for(i in 1:length(lmCircle)) mtext(1, at=i, text=lmCircle[i],line=((i+1)%%2)*1+0.5)
```

Mean distances

We also plot the median distances:

Median distances

We plot the theropods in black:

This plot shows the ornithopods in red:

Machine learning

After representing each footprint via the distances of 20 landmarks to the centre of the footprints we train five methods - Linear Discriminant Analysis (LDA), Logistic Regression (LR), Multi-layer perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM) and Multivariate Adaptive Regression Splines (MARS) - for distinguishing *Theropoda* and *Ornithischia*.

Training/testing split

All methods will be trained on data using the same train/test split.

Train/test ratio is set to 70%.

```
# Calculate sensitivity, specificity and accuracy for a confusion matrix.
confMatStats <- function(confMat) {
    specificity <- confMat[1,1]/sum(confMat[,1])
    sensitivity <- confMat[2,2]/sum(confMat[,2])
    accuracy <- sum(diag(confMat))/sum(confMat)

return(
    c(Sensitivity=sensitivity, Specificity=specificity, Accuracy=accuracy)
)</pre>
```

All classification methods are trained using the training data set. The classification threshold is adjusted

using the receiving operator characteristic (ROC) curve which compensates for the influence of the slight imbalance - the data contain more Theropoda than Ornithischia samples.

Linear Discriminant Analysis (LDA)

Results before adjusting the threshold.

```
library(MASS)
library(pROC)

lda <- lda(Group ~. , data=train.dino.dist)
lda.predict<- predict(lda, newdata = test.dino.dist)
ldaConf<-table(
   ifelse(lda.predict$posterior[,2]<0.5,
        levels(test.dino.dist$Group)[1],
        levels(test.dino.dist$Group)[2]), test.dino.dist$Group
)
knitr::kable(ldaConf)</pre>
```

	Ornithischia	Theropoda
Ornithischia	23	5
Theropoda	10	52

```
stats.lda <- confMatStats(ldaConf)
knitr::kable(stats.lda)</pre>
```

	X
Sensitivity	0.9122807
Specificity	0.6969697
Accuracy	0.8333333


```
if(plotPDF) {
  pdf("figures/LDA_ROC.pdf")
  par(mar=c(4,4,1,1), cex=2)
  lda.roc <- roc(test.dino.dist$Group, lda.predict$posterior[,2],</pre>
                 print.auc=TRUE,
                  # auc.polygon=TRUE,
                 plot=TRUE,
                 print.auc.x=0.5,print.auc.y=0.3,
                 print.auc.cex=1,
                 legacy.axes=TRUE,
                 xlim=c(1,0), ylim=c(0,1),
                 #, main="Linear Discriminant Analysis (LDA)"
  lda.Opt <- coords(lda.roc, "best")</pre>
  points(lda.Opt$specificity, lda.Opt$sensitivity, col="red", pch=19, cex=1)
  dev.off()
}
```

	Ornithischia	Theropoda
Ornithischia	22	1
Theropoda	11	56

```
stats.ldaOpt <- confMatStats(ldaConf.Opt)
knitr::kable(stats.ldaOpt)</pre>
```

	X
Sensitivity	0.9824561
Specificity	0.6666667
Accuracy	0.8666667

Forward stepwise logistic regression (LR)

We use forward step-wise logistic regression which selects a subset of the landmarks based on the Akaike Information Criterion (AIC). Results before adjusting the threshold.

	Ornithischia	Theropoda
Ornithischia	25	10
Theropoda	8	47

```
stats.glm <- confMatStats(fstep.glmConf)
knitr::kable(stats.glm)</pre>
```

	X
Sensitivity	0.8245614
Specificity	0.7575758
Accuracy	0.8000000

```
points(glm.Opt$specificity, glm.Opt$sensitivity, col="red", pch=19, cex=1.5)
```



```
glmConf.Opt<-table(
   ifelse(fstep.glm.predict<glm.Opt[[1]],
        levels(test.dino.dist$Group)[1],
        levels(test.dino.dist$Group)[2]), test.dino.dist$Group
   )
knitr::kable(glmConf.Opt)</pre>
```

	Ornithischia	Theropoda
Ornithischia	28	12
Theropoda	5	45

```
stats.glmOpt <- confMatStats(glmConf.Opt)
knitr::kable(stats.glmOpt)</pre>
```

	X
Sensitivity	0.7894737
Specificity	0.8484848
Accuracy	0.8111111

Landmarks selected via stepwise logistic regression.

```
attributes(terms(fstep.glm))$term.labels
```

```
## [1] "X20" "X2" "X5" "X15" "X4" "X9" "X10" "X17"
```

Multi-layer perceptron

The caret package is used for carrying out a grid search for hyperparameter optimisation. Results before adjusting the threshold.

Time difference of 9.117483 mins

	Ornithischia	Theropoda
Ornithischia	30	7
Theropoda	3	50

```
stats.mlp <- confMatStats(nnetConf)
knitr::kable(stats.mlp)</pre>
```

	X
Sensitivity	0.8771930
Specificity	0.9090909
Accuracy	0.8888889

	Ornithischia	Theropoda
Ornithischia	30	6
Theropoda	3	51

```
stats.mlpOpt <- confMatStats(nnetConfOpt)
knitr::kable(stats.mlpOpt)</pre>
```

	X
Sensitivity	0.8947368
Specificity	0.9090909
Accuracy	0.9000000

Random Forest

The caret package is used for carrying out a grid search for hyperparameter optimisation. Results before adjusting the threshold.

```
start time <- Sys.time()</pre>
# Hyperparameter optimisation -> ntree?
rfMtry <- train(Group ~ ., data = train.dino.dist,
                     tuneLength=10,
                     method = "rf",
                     metric="Kappa",
                     \#maxit=10000,
                     trace=FALSE)
end_time <- Sys.time()</pre>
end_time - start_time
## Time difference of 26.24083 secs
rf.predictMtry <- predict(rfMtry, test.dino.dist, type="prob")</pre>
rfConf <- table(
  ifelse(rf.predictMtry$Theropoda<0.5,</pre>
         levels(test.dino.dist$Group)[1],
         levels(test.dino.dist$Group)[2]), test.dino.dist$Group
knitr::kable(rfConf)
```

	Ornithischia	Theropoda
Ornithischia	25	7
Theropoda	8	50

stats.rf <- confMatStats(rfConf)</pre>

knitr::kable(stats.rf)

	X
Sensitivity	0.8771930
Specificity	0.7575758
Accuracy	0.8333333


```
if(plotPDF) {
  pdf("figures/RF_ROC.pdf")
  par(mar=c(4,4,1,1), cex=2)
```

```
rf.roc <- roc(test.dino.dist$Group, rf.predictMtry$Theropoda, print.auc=TRUE,
               # auc.polygon=TRUE,
               plot=TRUE,
               print.auc.x=0.5,print.auc.y=0.3,
               print.auc.cex=1,
               legacy.axes=TRUE,
               asp=1
               #, x \lim_{x \to 0} c(1,0), y \lim_{x \to 0} c(0.6,0.4)
    )
  points(rf.Opt$specificity, rf.Opt$sensitivity, col="red", pch=19, cex = 1)
  dev.off()
}
rfConfOpt <- table(
  ifelse(rf.predictMtry$Theropoda<rf.Opt[[1]],</pre>
         levels(test.dino.dist$Group)[1],
         levels(test.dino.dist$Group)[2]), test.dino.dist$Group)
knitr::kable(rfConfOpt)
```

	Ornithischia	Theropoda
Ornithischia	29	10
Theropoda	4	47

```
stats.rfOpt <- confMatStats(rfConfOpt)
knitr::kable(stats.rfOpt)</pre>
```

	X
Sensitivity	0.8245614
Specificity	0.8787879
Accuracy	0.8444444

Support Vector Machine (linear)

The caret package is used for carrying out a grid search for hyperparameter optimisation. Results before adjusting the threshold.

```
levels(test.dino.dist$Group)[1],
    levels(test.dino.dist$Group)[2]),
  test.dino.dist$Group
)
knitr::kable(svmConf)
```

	Ornithischia	Theropoda
Ornithischia	24	12
Theropoda	9	45

knitr::kable(confMatStats(svmConf))

	x
Sensitivity	0.7894737
Specificity	0.7272727
Accuracy	0.7666667

	Ornithischia	Theropoda
Ornithischia	31	18
Theropoda	2	39

knitr::kable(confMatStats(svmConfOpt))

	x
Sensitivity	0.6842105
Specificity	0.9393939
Accuracy	0.7777778

Support Vector Machine (radial kernel)

The caret package is used for carrying out a grid search for hyperparameter optimisation. Results before adjusting the threshold.

```
start_time <- Sys.time()</pre>
svmRadialKappa <- train(Group ~ ., data = train.dino.dist,</pre>
                         tuneLength=10,
                        method = "svmRadialSigma",
                        metric="Kappa",
                         #maxit=10000,
                        prob.model=TRUE,
                        decision.values=TRUE,
                         trace=FALSE)
end_time <- Sys.time()</pre>
end_time - start_time
```

Time difference of 46.16281 secs

```
svmRadial.predictKappa <- predict(svmRadialKappa, test.dino.dist, type="prob")</pre>
svmRadialConf <- table(ifelse(svmRadial.predictKappa$Theropoda<0.5,</pre>
                               levels(test.dino.dist$Group)[1],
                               levels(test.dino.dist$Group)[2]),
                        test.dino.dist$Group)
knitr::kable(svmRadialConf)
```

	Ornithischia	Theropoda
Ornithischia	26	7
Theropoda	7	50

stats.svm <- confMatStats(svmRadialConf)</pre> knitr::kable(stats.svm)

	X
Sensitivity	0.8771930
Specificity	0.7878788
Accuracy	0.8444444

```
par(pty="s")
svmRadial.roc <- roc(test.dino.dist$Group, svmRadial.predictKappa$Theropoda,</pre>
                 print.auc=TRUE,
                 # auc.polygon=TRUE,
                 plot=TRUE,
                 print.auc.x=0.5,print.auc.y=0.3,
                 legacy.axes=TRUE,
                 asp=1
                 #, x \lim_{x \to 0} c(1,0), y \lim_{x \to 0} c(0.6,0.4)
```



```
if(plotPDF) {
  pdf("figures/SVMradSigma_ROC.pdf")
  par(mar=c(4,4,1,1), cex=2)
  svmRadial.roc <- roc(test.dino.dist$Group, svmRadial.predictKappa$Theropoda,</pre>
               print.auc=TRUE,
               # auc.polygon=TRUE,
               plot=TRUE,
               print.auc.x=0.5,print.auc.y=0.3,
               print.auc.cex = 1,
               legacy.axes=TRUE,
               asp=1
               #, xlim=c(1,0), ylim=c(0.6,0.4)
  points(svmRadial.Opt$specificity, svmRadial.Opt$sensitivity,
         col="red", pch=19, cex = 1)
  dev.off()
}
```

```
levels(test.dino.dist$Group)[2]), test.dino.dist$Group
knitr::kable(svmRadialConfOpt)
```

	Ornithischia	Theropoda
Ornithischia	28	9
Theropoda	5	48

stats.svmOpt <- confMatStats(svmRadialConfOpt)</pre>

knitr::kable(stats.svmOpt)

	X
Sensitivity	0.8421053
Specificity	0.8484848
Accuracy	0.8444444

MARS

Results before adjusting the threshold.

```
library(mda)
marsResults <- fda(Group~., data = train.dino.dist, method = mars)</pre>
# Obtain probabilities -> Second columns contains probability for Theropods
marsScores <- predict(marsResults, test.dino.dist,type = "posterior")</pre>
#marsScores[,2]
marsConf <- table(ifelse(marsScores[,2]<0.5, levels(test.dino.dist$Group)[1],</pre>
                     levels(test.dino.dist$Group)[2]), test.dino.dist$Group)
knitr::kable(marsConf)
```

	Ornithischia	Theropoda
Ornithischia	26	10
Theropoda	7	47

stats.mars <- confMatStats(marsConf)</pre>

knitr::kable(stats.mars)

	X
Sensitivity	0.8245614
Specificity	0.7878788
Accuracy	0.8111111

```
par(pty="s")
mars.roc <- roc(test.dino.dist$Group, marsScores[,2],</pre>
                 print.auc=TRUE,
                 # auc.polygon=TRUE,
                 plot=TRUE,
                 print.auc.x=0.5,print.auc.y=0.3,
                 legacy.axes=TRUE,
                 asp=1
                 #, main="Linear Discriminant Analysis (LDA)"
)
mars.Opt <- coords(mars.roc, "best")</pre>
#mars.Opt
```

```
points(mars.Opt$specificity, mars.Opt$sensitivity, col="red", pch=19, cex = 1.5)
```

	Ornithischia	Theropoda
Ornithischia	29	10
Theropoda	4	47

```
stats.marsOpt <- confMatStats(marsConfOpt)
knitr::kable(stats.marsOpt)</pre>
```

	X
Sensitivity	0.8245614
Specificity	0.8787879
Accuracy	0.8444444

Plots of performance metrics

```
metrics <- data.frame(</pre>
      rbind(
            stats.glm, stats.glmOpt,
            stats.mlp, stats.mlpOpt,
            stats.lda, stats.ldaOpt,
            stats.svm, stats.svmOpt,
            stats.rf, stats.rfOpt,
            stats.mars, stats.marsOpt
      )
)
\# layout(matrix(1:6, nrow = 3, ncol = 2, byrow = TRUE))
# for (i in 1:6) {
          #par(pty="s")
            matplot(metrics[c(2*i-1,2*i), ], xlim=c(0.5,2.5), ylim=c(0.65,1),
#
#
                                      pch = 1, type = "b", col = c("black", "red", "blue"), lty=c(2,2,1),
#
                                      ylab="", main=rownames(metrics[2*i-1, ]), xaxt="n"#, asp=1
#
#
                   axis(side=1, at=c(1, 2), labels=c(expression(paste(theta, "=0.5")), expression(paste(theta, "adjuste(theta, 
# }
par(mfrow=c(1,2))
for (i in 1:6) {
      #par(pty="s")
      matplot(metrics[c(2*i-1,2*i), ], xlim=c(0.5,2.5), ylim = c(0.65,1),
                                pch = 1, type = "b", col = c("black", "red", "blue"), lty=c(2,2,1),
                                ylab="", main=rownames(metrics[2*i-1, ]), xaxt="n", asp=1
            axis(side=1,at=c(1,2),labels=c(expression(paste(theta,"=0.5")),
                                                                                                              expression(paste(theta, " adjusted"))))
}
```


Misclassified samples

For each method, the samples that are misclassified are determined.

Linear Discrimiant Analysis

```
lda.false.orn <- which(</pre>
  (lda.predict$posterior[,2]>0.5) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
lda.false.orn
   12 13 20 28 30 65 89 154 155 213
    5
        6
           7 10 11 22 28 49 50 64
lda.false.ther <- which(</pre>
  (lda.predict$posterior[,2]<0.5) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2]))
lda.false.ther
## 147 192 222 251 273
## 47 60 67 79 83
# Summarise indices of all misclassified samples
lda.misclass <- as.integer(names(c(lda.false.orn, lda.false.ther)))</pre>
# Misclassified samples
lda.false.orn.opt <- which(</pre>
  (lda.predict$posterior[,2]>lda.Opt$threshold) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
lda.false.orn.opt
  12 13 20 28 30 65 89 154 155 213 290
        6
            7 10 11 22 28 49 50 64 89
lda.false.ther.opt <- which(</pre>
  (lda.predict$posterior[,2]<lda.Opt$threshold) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
lda.false.ther.opt
## 192
## 60
# Summarise indices of all misclassified samples
lda.misclass.opt <- as.integer(names(c(lda.false.orn.opt, lda.false.ther.opt)))</pre>
Forward stepwise regression
# Misclassified ornithopods
```

```
# Misclassified ornithopods
glm.false.orn <- which(
   (fstep.glm.predict>0.5) &
        (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
   )
glm.false.orn

## 12 13 28 30 65 89 154 213
## 5 6 10 11 22 28 49 64

# Misclassified theropods
glm.false.ther <-which(</pre>
```

```
(fstep.glm.predict<0.5) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
glm.false.ther
## 79 96 99 147 149 203 222 251 273 296
## 25 32 33 47 48 62 67 79 83 90
# Summarise indices of all misclassified samples
glm.misclass <- as.integer(names(c(glm.false.orn, glm.false.ther)))</pre>
# Misclassified ornithopods
glm.false.orn.opt <- which(</pre>
  (fstep.glm.predict>glm.Opt$threshold) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
glm.false.orn.opt
## 12 13 65 89 154
   5
       6 22 28 49
# Misclassified theropods
glm.false.ther.opt <-which(</pre>
  (fstep.glm.predict<glm.Opt$threshold) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
glm.false.ther.opt
## 64 79 96 99 147 149 203 222 251 273 276 296
   21 25 32 33 47 48 62 67 79 83 84 90
# Summarise indices of all misclassified samples
glm.misclass.opt <- as.integer(names(c(glm.false.orn.opt, glm.false.ther.opt)))</pre>
glm.misclass.opt
## [1] 12 13 65 89 154 64 79 96 99 147 149 203 222 251 273 276 296
Multi-layer perceptron
# Misclassified ornithopods -> Slightly silly way of using setNames... changing directly in data frame
nnet.false.orn <- which(</pre>
  (setNames(nnetKappa.predict$0rnithischia,row.names(nnetKappa.predict))<0.5) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
nnet.false.orn
## 12 20 89
## 5 7 28
# Misclassified theropods
nnet.false.ther <-which(</pre>
  (setNames(nnetKappa.predict$Theropoda,row.names(nnetKappa.predict))<0.5) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
nnet.false.ther
## 80 96 99 128 251 273 276
```

```
## 26 32 33 40 79 83 84
# Summarise indices of all misclassified samples
nnet.misclass <- as.integer(names(c(nnet.false.orn, nnet.false.ther)))</pre>
nnet.misclass
## [1] 12 20 89 80 96 99 128 251 273 276
# Misclassified ornithopods -> Slightly silly way of using setNames... changing directly in data frame
nnet.false.orn.opt <- which(</pre>
  (setNames(nnetKappa.predict$Ornithischia,row.names(nnetKappa.predict))<nnet.Opt$threshold) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
nnet.false.orn.opt
## 12 20 89
## 5 7 28
# Misclassified theropods
nnet.false.ther.opt <-which(</pre>
  (setNames(nnetKappa.predict$Theropoda,row.names(nnetKappa.predict))<nnet.Opt$threshold) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
nnet.false.ther.opt
## 80 96 99 251 273 276
## 26 32 33 79 83 84
# Summarise indices of all misclassified samples
nnet.misclass.opt <- as.integer(names(c(nnet.false.orn.opt, nnet.false.ther.opt)))</pre>
nnet.misclass.opt
## [1] 12 20 89 80 96 99 251 273 276
Random Forest
# Misclassified ornithopods
rf.false.orn <- which(
  (setNames(rf.predictMtry$0rnithischia<0.5, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
rf.false.orn
## 12 13 20 89 154 173 213 290
       6
           7 28 49 55 64 89
# Misclassified theropods
rf.false.ther <-which(
  (setNames(rf.predictMtry$Theropoda<0.5, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
rf.false.ther
## 80 96 121 146 167 273 276
## 26 32 37 46 52 83 84
# Summarise indices of all misclassified samples
rf.misclass <- as.integer(names(c(rf.false.orn, rf.false.ther)))
rf.misclass
```

```
## [1] 12 13 20 89 154 173 213 290 80 96 121 146 167 273 276
# Misclassified ornithopods
rf.false.orn.opt <- which(
  (setNames(rf.predictMtry$Ornithischia<rf.Opt$threshold, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
 )
rf.false.orn.opt
## 12 13 20 89 134 154 173 213 290
       6 7 28 43 49 55 64 89
# Misclassified theropods
rf.false.ther.opt <-which(
  (setNames(rf.predictMtry$Theropoda<rf.Opt$threshold, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
rf.false.ther.opt
## 50 80 96 99 121 146 167 251 273 276
## 17 26 32 33 37 46 52 79 83 84
# Summarise indices of all misclassified samples
rf.misclass.opt <- as.integer(names(c(rf.false.orn.opt, rf.false.ther.opt)))
rf.misclass.opt
## [1] 12 13 20 89 134 154 173 213 290 50 80 96 99 121 146 167 251 273 276
Support Vector Machine
# Misclassified ornithopods
# We need to use rf.predictMtry to find the indices, sum seems to destroy these indices!
svm.false.orn <- which(</pre>
  (setNames(svm.predictKappa$Theropoda>0.5, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
 )
svm.false.orn
## 12 13 28 30 65 89 154 155 213
   5 6 10 11 22 28 49 50 64
# Misclassified theropods
svm.false.ther <-which(</pre>
  (setNames(svm.predictKappa$Theropoda<0.5, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
 )
svm.false.ther
## 79 80 96 99 147 149 203 222 251 273 276 296
## 25 26 32 33 47 48 62 67 79 83 84 90
svm.misclass <- as.integer(names(c(svm.false.orn, svm.false.ther)))</pre>
svm.misclass
## [1] 12 13 28 30 65 89 154 155 213 79 80 96 99 147 149 203 222 251 273
## [20] 276 296
# Misclassified ornithopods
# We need to use rf.predictMtry to find the indices, sum seems to destroy these indices!
```

```
svm.false.orn.opt <- which(</pre>
  (setNames(svm.predictKappa$Theropoda>svm.Opt$threshold, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
  )
svm.false.orn.opt
## 12 89
## 5 28
# Misclassified theropods
svm.false.ther.opt <-which(</pre>
  (setNames(svm.predictKappa$Theropoda<svm.Opt$threshold, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
svm.false.ther.opt
## 41 47 64 79 80 96 99 128 147 149 192 203 222 251 266 273 276 296
## 14 16 21 25 26 32 33 40 47 48 60 62 67 79 80 83 84 90
svm.misclass.opt <- as.integer(names(c(svm.false.orn.opt, svm.false.ther.opt)))</pre>
svm.misclass.opt
## [1] 12 89 41 47 64 79 80 96 99 128 147 149 192 203 222 251 266 273 276
## [20] 296
MARS
# Misclassified ornithopods
# We need to use rf.predictMtry to get the indices!
mars.false.orn <- which(</pre>
  (setNames(marsScores[,2]>0.5, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
  )
mars.false.orn
## 12 13 20 27 89 154 213
   5
       6
           7 9 28 49 64
# Misclassified theropods
mars.false.ther <-which(</pre>
  (setNames(marsScores[,2]<0.5, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
  )
mars.false.ther
     4 80 96 99 121 221 222 251 273 276
     2 26 32 33 37 66 67 79 83 84
##
mars.misclass <- as.integer(names(c(mars.false.orn, mars.false.ther)))</pre>
mars.misclass
## [1] 12 13 20 27 89 154 213
                                     4 80 96 99 121 221 222 251 273 276
# Misclassified ornithopods
# We need to use rf.predictMtry to get the indices!
mars.false.orn.opt <- which(</pre>
  (setNames(marsScores[,2]>mars.Opt$threshold, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[1])
```

```
mars.false.orn.opt
  12 20 89 154
    5
        7 28 49
# Misclassified theropods
mars.false.ther.opt <-which(</pre>
  (setNames(marsScores[,2]<mars.Opt$threshold, row.names(rf.predictMtry))) &
    (test.dino.dist$Group==levels(test.dino.dist$Group)[2])
  )
mars.false.ther.opt
     4 80 96 99 121 221 222 251 273 276
     2 26 32 33 37 66 67 79 83 84
##
mars.misclass.opt <- as.integer(names(c(mars.false.orn.opt, mars.false.ther.opt)))</pre>
mars.misclass.opt
## [1] 12 20 89 154
                            80 96 99 121 221 222 251 273 276
```

Summarise all misclassified samples

Misclassied samples for all methods are summarised in a table. We determine which footprints have been misclassified by all six methods...

```
classifiers <- read.csv("classifiers.csv", header=T, row.names=1)</pre>
classifiers <- classifiers[-which(is.na(classifiers[,4])), ]</pre>
all.misclass <- sort(unique(c(lda.misclass, glm.misclass, nnet.misclass,</pre>
                               rf.misclass, svm.misclass, mars.misclass)))
all.misclass
          4 12 13 20 27 28 30 65 79 80 89 96 99 121 128 146 147 149 154
## [20] 155 167 173 192 203 213 221 222 251 273 276 290 296
misclassTable <- classifiers[all.misclass, ]</pre>
misclassTable$lda <- (all.misclass %in% lda.misclass)
misclassTable$glm <- (all.misclass %in% glm.misclass)
misclassTable$nnet <- (all.misclass %in% nnet.misclass)</pre>
misclassTable$rf <- (all.misclass %in% rf.misclass)</pre>
misclassTable$svm <- (all.misclass %in% svm.misclass)
misclassTable$mars <- (all.misclass %in% mars.misclass)
misclassTable$indices <- all.misclass
# Quantify which samples are frequently misclassified
misclassTable nMisclass <- rowSums(misclassTable[,c("lda", "glm", "nnet", "rf", "svm", "mars")])
# Drop irrelevant columns for output
misclassTableOut <- subset(misclassTable, select = -c(SizeBin, ProjBin))</pre>
knitr::kable(misclassTableOut) %>% kable_styling(latex_options = "scale_down")
```

Plots of misclassified footprints

Footprints that were misclassified by more than half of the methods will be visualised using wireframe graphs.

	Ichnogenus	Period	Epoch	Group	lda	glm	nnet	rf	svm	mars	indices	nMisclass
barco 2005 1	Iberosauripus	Cretaceous	Cretaceous Early	Theropoda	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	4	1
castanera 2013b 1	NA	NA	NA	Ornithischia	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	12	6
castanera 2013b 2	NA	NA	NA	Ornithischia	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	13	5
dalman 2013 1	Anomoepus	Jurassic	Jurassic Early	Ornithischia	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	20	4
ellenberger 1974 2	Moyenisauropus	Jurassic	Jurassic Early	Ornithischia	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	27	1
ellenberger 1974 3	Moyenisauropus	Jurassic	Jurassic Early	Ornithischia	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	28	3
ellenberger 1974 5	Moyenisauropus	Jurassic	Jurassic Early	Ornithischia	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	30	3
gierlinski 2004 6	Anomoepus	Jurassic	Jurassic Ealry	Ornithischia	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	65	3
gierlinski 2009b 3	Therangospodus	Jurassic	Jurassic Middle	Theropoda	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	79	2
gierlinski 2009b 4	Carmelopodus	Jurassic	Jurassic Middle	Theropoda	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	80	4
jianjun 2012 3	Anomoepus	Jurassic	NA	Ornithischia	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	89	6
kim 2017 3	Corpulentatpus	Cretaceous	Cretaceous Early	Theropoda	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	96	5
lallensack 2016 2	NA	Cretaceous	Cretaceous Early	Theropoda	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	99	4
lockley 1998b 2	Megalosauripus	Jurassic	Jurassic Late	Theropoda	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	121	2
lockley 1998c 5	Therangospodus	Jurassic	Jurassic Late	Theropoda	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	128	1
lockley 2008 4	Hispanosauropus	Jurassic	Jurassic Late	Theropoda	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	146	1
lockley 2008b 1	Minisauripus	Cretaceous	Cretaceous Late	Theropoda	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	147	3
lockley 2008b 3	Minisauripus	Cretaceous	Cretaceous Early	Theropoda	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	149	2
lockley 2009 4	Dinehichnus	Jurassic	Jurassic Early	Ornithischia	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	154	5
lockley 2009 5	Dinehichnus	Jurassic	Jurassic Early	Ornithischia	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	155	2
lockley 2014b 1	Irenesauripus	Cretaceous	NA	Theropoda	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	167	1
lockley 2014e 1	NA	Cretaceous	NA	Ornithischia	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	173	1
matsukawa 2006 6	NA	Cretaceous	Cretaceous Early	Theropoda	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	192	1
olsen 1980 2	Grallator	Jurassic	Jurassic Early	Theropoda	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	203	2
olsen 2003 3	Anomoepus	Jurassic	Jurassic Early	Ornithischia	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	213	5
pittman 1989 3	NA	Cretaceous	Cretaceous Early	Theropoda	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	221	1
raath 1972 1	NA	NA	NA	Theropoda	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	222	4
xing 2011 4	Kayentapus	Cretaceous	Cretaceous Early	Theropoda	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	251	5
xing 2014f 1	Paracorpulentapus	Cretaceous	Cretaceous Late	Theropoda	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	273	6
xing 2014h 1	NA	Jurassic	Jurassic Early	Theropoda	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	276	4
xing 2016c 1	Anomoepus	Jurassic	Jurassic Early	Ornithischia	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	290	1
xing 2016g 1	Minisauripus	Cretaceous	Cretaceous Early	Theropoda	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	296	2

```
# misclassTable[misclassTable$nMisclass==6,]
lmArc1 \leftarrow c(4, 7, 6, 5, 1, 8, 9)
lmArc2 \leftarrow c(20, 19, 18, 2, 15, 16, 17)
lmArc3 <- c(14, 13, 3, 10, 11, 12,4)
# TODO: Code as function!
nTracks <- nrow(misclassTable[misclassTable$nMisclass==6,])</pre>
nTrackCols <- 3
lenTrackVector <- ceiling(nTracks/nTrackCols)</pre>
trackVector <- integer(lenTrackVector)</pre>
trackVector[1:nTracks] <- 1:nTracks</pre>
misclassIndicesGroup <- subset(misclassTable,</pre>
                                 subset = nMisclass==6,
                                 select = c(Group, indices))
layout(
  matrix(
    trackVector, ncol = 3, byrow = TRUE)
par(pty="s")
for (i in 1:nTracks ) {
  footprint <- subset(</pre>
      dinoprints, select = c(X, Y),
      subset = id==misclassIndicesGroup[i,"indices"]
      )
 plot(footprint,
```

```
col=ifelse(misclassIndicesGroup[i,"Group"]=="Theropoda", "black", "red"),
    main=rownames(misclassIndicesGroup)[i]#=misclassIndicesGroup[i, "indices"],
    ,pch = 19, asp = 1
    lines(footprint[lmArc1, ],
          type="b",
          col=ifelse(misclassIndicesGroup[i, "Group"] == "Theropoda",
                      "black", "red"))
    lines(footprint[lmArc2, ],
          type="b",
          col=ifelse(misclassIndicesGroup[i, "Group"] == "Theropoda",
                      "black", "red"))
    lines(footprint[lmArc3, ],
          type="b",
          col=ifelse(misclassIndicesGroup[i, "Group"] == "Theropoda",
                      "black", "red"))
}
```



```
plotFootprint <- function(footprint, ...) {
    par(pty="s")

    plot(footprint,pch = 19, asp =1, ...)

    lmArc1 <- c(4, 7, 6, 5, 1, 8, 9)
    lmArc2 <- c(20, 19, 18, 2, 15, 16, 17)
    lmArc3 <- c(14, 13, 3, 10, 11, 12,4)

    lines(footprint[lmArc1, ], type="b", ...)

    lines(footprint[lmArc2, ], type="b",...)

    lines(footprint[lmArc3, ], type="b",...)

}

plotFootprint(footprint,
    col=ifelse(misclassIndicesGroup[i, "Group"]=="Theropoda", "black", "red"),
    main=rownames(misclassIndicesGroup[i])</pre>
```

xing 2014f 1

Misclassified by 6 (= all) methods

```
#, fig.width=14}
plotSomeFootprints <- function(dinoprints, group, indices, names, nCols=3, ...) {</pre>
  nTracks <- length(group)</pre>
  lenTrackVector <- ceiling(nTracks/nCols)</pre>
  #print(lenTrackVector)
  trackVector <- integer(lenTrackVector*nCols)</pre>
#print(trackVector)
  trackVector[1:nTracks] <- 1:nTracks</pre>
  \# misclassIndicesGroup <- subset(misclassTable, subset = nMisclass==6, select = c(Group, indices))
  #print(trackVector)
layout(
  matrix(
    trackVector, ncol = nCols, byrow = TRUE)
#par(pty="s")
for (i in 1:nTracks ) {
  footprint <- subset(</pre>
      dinoprints, select = c(X, Y),
      subset = id==indices[i]
  plotFootprint(footprint,
```


xing 2014f 1

Misclassified by 5 methods

Misclassified by 4 methods

raath 1972 1


```
# Plot misclassified samples to PDF
if(plotPDF) {
  basePrintNames <- gsub(" ", "_", rownames(misclassTable))
  for ( i in 1:nrow(misclassTable)) {
    printFN <- sprintf("figures/%s.pdf", basePrintNames[i] )
    footprint <- subset(</pre>
```