The Yamabe Problem

Xinran Yu

April 9th, 2021

Outline

- 1. The Yamabe Problem
- 2. Main Results
- 3. The model case: sphere
- 4. The subcritical solution
- 5. The test function estimate
- 6. Summary

Motivation

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

Motivation

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

The theorem is consequence of the fact that every Riemann surface has a conformal metric with constant Gaussian curvature.

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

The theorem is consequence of the fact that every Riemann surface has a conformal metric with constant Gaussian curvature.

Definition

Two Riemannian metrics g and h are **conformal** if there exists positive function $f \in C^{\infty}(M)$ such that $h = e^{2f}g$.

Question: Does this holds for higher dimension?

Question: Does this holds for higher dimension?

For a general Riemannian manifold (M,g) with $\dim M \geq 3$, there are several choices of curvatures:

- Riemannian curvature tensor
- Ricci curvature
- scalar curvature

Question: Which curvature to choose?

Question: Does this holds for higher dimension?

For a general Riemannian manifold (M,g) with $\dim M \geq 3$, there are several choices of curvatures:

- Riemannian curvature tensor, n^4 components
- Ricci curvature, n^2 components
- scalar curvature, 1 component

Question: Which curvature to choose?

The Yamabe Problem

Given a compact Riemannian manifold (M,g) with $n=\dim M\geq 3$, find a metric conformal to g with constant scalar curvature.

Yamabe's Approach to the Problem

Yamabe's Approach to the Problem

Given two metrics g and \tilde{g} , the transformation law between the scalar curvatures S and \tilde{S} ,

$$\tilde{S} = \varphi^{1-p}(a\Delta\varphi + S\varphi).$$

Here φ satisfies $\tilde{g}=\varphi^{p-2}g$ and $a=\frac{4(n-1)}{n-2},\,p=\frac{2n}{n-2}$ are constants.

Yamabe's Approach to the Problem

Given two metrics g and \tilde{g} , the transformation law between the scalar curvatures S and \tilde{S} ,

$$\tilde{S} = \varphi^{1-p}(\mathbf{a}\Delta\varphi + \mathbf{S}\varphi).$$

Here φ satisfies $\tilde{g}=\varphi^{p-2}g$ and $a=\frac{4(n-1)}{n-2},\,p=\frac{2n}{n-2}$ are constants.

Define $\Box=a\Delta+S$ and call it the ${\bf conformal\ Laplacian}.$ Let $\tilde{S}=\lambda={\bf const.}$ Then

$$\Box \varphi = \lambda \varphi^{p-1}. \tag{*}$$

Equation (\star) is the Euler-Lagrange equation for the **Yamabe** functional

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 \, dV_g}{\left(\int_M |\varphi|^p \, dV_g\right)^{2/p}} = \frac{E(\varphi)}{\|\varphi\|_p^2}.$$

Equation (\star) is the Euler-Lagrange equation for the **Yamabe** functional

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 \, dV_g}{\left(\int_M |\varphi|^p \, dV_g\right)^{2/p}} = \frac{E(\varphi)}{\|\varphi\|_p^2}.$$

Meaning: solution of (\star) is critical point of Q_g .

Equation (\star) is the Euler-Lagrange equation for the **Yamabe** functional

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S \varphi^2 \, \mathrm{d} V_g}{\left(\int_M |\varphi|^p \, \mathrm{d} V_g\right)^{2/p}} = \frac{E(\varphi)}{\|\varphi\|_p^2}.$$

Meaning: solution of (\star) is critical point of Q_q .

By Hölder's inequality $Q_g(\varphi)$ is bounded below so we can take the infimum

Definition

The Yamabe invariant is the constant

$$\begin{split} \lambda(M) &= \inf\{Q_g(\varphi) \mid \varphi \in C^\infty(M) \text{ and positive}\} \\ &= \inf\{Q_g(\varphi) \mid \varphi \in L^2_1(M)\}. \end{split}$$

 $\lambda(M)$ is an invariant of the conformal class of (M,g).

Main Results

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Theorem B (Aubin)

If M has dimension $n \geq 6$ and M is not locally conformally flat, then $\lambda(M) < \lambda(S^n)$.

Theorem C (Schoen)

If M has dimension n=3,4,5 or M is locally conformally flat, then either $\lambda(M)<\lambda(S^n)$ or M is conformal to the n-sphere.

Definition

A map $F:(M,g)\to (N,h)$ is **conformal** if the induced metric F^*h is conformal to the original metric g on M. If F is a diffeomorphism, then we call F a **conformal diffeomorphism**.

Definition

A map $F:(M,g)\to (N,h)$ is **conformal** if the induced metric F^*h is conformal to the original metric g on M. If F is a diffeomorphism, then we call F a **conformal diffeomorphism**.

Example

- The stereographic map σ is a conformal diffeomorphism.
- Rotations, $\sigma^{-1}\tau_v\sigma$ and $\sigma^{-1}\delta_\alpha\sigma$ are conformal diffeomorphisms.

The Yamabe Problem on the Sphere

Let (S^n,\bar{g}) be the n-sphere with standard metric, then $S=\frac{n(n-1)}{r^2}.$ So the Yamabe problem is solvable on the sphere.

Let (S^n, \bar{q}) be the *n*-sphere with standard metric, then $S = \frac{n(n-1)}{n-2}$. So the Yamabe problem is solvable on the sphere.

Moreover, one can prove the following.

Theorem

The Yamabe functional $Q_q(\varphi)$ on (S^n, \bar{g}) is minimized by

- constant multiples of \(\bar{q}\);
- the images of \bar{q} under conformal diffeomorphisms.

These are the only metrics conformal to \bar{q} with constant scalar curvature.

An Upper Bound for $\lambda(M)$

Lemma (Aubin)

For any compact Riemannian manifold (M,g) of dimension $n \geq 3$, $\lambda(M) \leq \lambda(S^n) = \Lambda$.

• Goal: to find a function φ makes $Q_q(\varphi) \leq \Lambda$.

An Upper Bound for $\lambda(M)$

Lemma (Aubin)

For any compact Riemannian manifold (M,g) of dimension $n \geq 3$, $\lambda(M) \leq \lambda(S^n) = \Lambda$.

- Goal: to find a function φ makes $Q_g(\varphi) \leq \Lambda$.
- Consider $\varphi=\eta\cdot u_{\alpha}(x)$ where $\eta \text{ cut off function and } u_{\alpha}(x)=\left(\frac{|x|^2+\alpha^2}{\alpha}\right)^{(n-2)/2}.$

•
$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 dV_g}{\|\varphi\|_p^2} \le (1 + C\epsilon)(\Lambda + C\alpha).$$

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Direct approach: construct a minimizing sequence (u_i) , with $||u_i||_p = 1$ such that $Q_q(u_i) \to \lambda(M)$.

Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

• Direct approach: construct a minimizing sequence (u_i) , with $\|u_i\|_p=1$ such that $Q_g(u_i)\to \lambda(M)$. This does not work: Although $\varphi=\lim u_i\in L^2_1(M)$, there is no guarantee for $\|\varphi\|_p\neq 0$, because the inclusion $L^2_1\subset L^p$ is not compact.

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

- Instead we seek for a subcritical solution.

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

- Instead we seek for a subcritical solution. The following equation is call **subcritical equation**

$$\Box \varphi = \lambda_s \, \varphi^{s-1}. \tag{*'}$$

$$1 \quad s-1 \quad p-1 \qquad \infty$$

$$Q^s(\varphi) = \frac{E(\varphi)}{\|\varphi\|_s^2}, \, \lambda_s = \inf\{Q^s(\varphi) : \varphi \in C^\infty(M)\}.$$

Step 1. Subcritical solution φ_s exists,

$$\varphi_s \in C^{\infty}(M), Q^s(\varphi_s) = \lambda_s \text{ and } \|\varphi_s\|_s = 1.$$

Step 1. Subcritical solution φ_s exists,

$$\varphi_s \in C^{\infty}(M), Q^s(\varphi_s) = \lambda_s \text{ and } \|\varphi_s\|_s = 1.$$

- Similar as before, pick a minimizing sequence;
- This time $L_1^2 \subset L^s$ is compact.

Proof of Thm A.

Step 1. Subcritical solution φ_s exists,

$$\varphi_s \in C^{\infty}(M), Q^s(\varphi_s) = \lambda_s \text{ and } \|\varphi_s\|_s = 1$$

- Similar as before, pick a minimizing sequence;
- This time $L_1^2 \subset L^s$ is compact.

Step 2. Properties of λ_s .

Proof of Thm A.

$$\varphi_s \in C^{\infty}(M), Q^s(\varphi_s) = \lambda_s \text{ and } \|\varphi_s\|_s = 1.$$

Step 2. Properties of λ_s . If $\int_M dV_q = 1$, then for $2 \le s \le p$,

- $|\lambda_s|$ is non-increasing;
- If $\lambda(M) > 0$, then $\lambda_s > 0$;

$$\varphi_s \in C^{\infty}(M), Q^s(\varphi_s) = \lambda_s \text{ and } \|\varphi_s\|_s = 1$$

Step 2. Properties of λ_s . If $\int_M dV_q = 1$, then for $2 \le s \le p$,

- $|\lambda_s|$ is non-increasing;
- If $\lambda(M) > 0$, then $\lambda_s > 0$;
- λ_s is continuous from the left:

Definition of $\lambda_s \exists u \text{ s.t. } Q^s(u) < \lambda_s + \epsilon$;

Continuity of $||u||_s$ as a function of s:

$$\lambda_{s'} \leq Q^{s'}(u) < \lambda_s + 2\epsilon, \text{ as } s' \to s^-.$$

An intermediate step to show $\varphi_s \in L^r$:

$$||w||_p^2 \le (1+\epsilon)\frac{(1+\delta)^2}{1+2\delta} \cdot \frac{\lambda_s}{\Lambda} \cdot ||w||_p^2 + C'_{\epsilon} \cdot ||w||_2^2.$$

An intermediate step to show $\varphi_s \in L^r$:

$$||w||_p^2 \le (1+\epsilon)\frac{(1+\delta)^2}{1+2\delta} \cdot \frac{\lambda_s}{\Lambda} \cdot ||w||_p^2 + C'_{\epsilon} \cdot ||w||_2^2.$$

Need $\lambda(M) < \Lambda$ to make the coefficient less than 1.

$$||w||_p^2 \le (1+\epsilon) \frac{(1+\delta)^2}{1+2\delta} \cdot \frac{\lambda_s}{\Lambda} \cdot ||w||_p^2 + C'_{\epsilon} \cdot ||w||_2^2.$$

- Uniform boundedness in $L^r \implies C^{2,\alpha} \stackrel{\text{subsq}}{\Longrightarrow} C^2$;
- Arzela-Ascoli Thm gives a converging subsequence in C^2 ;
- φ solves the Yamabe equation (needs Step 2), and $\varphi \in C^{\infty}(M)$ (ellptic regularity).

Remark

The above proof requires $\lambda(M) \geq 0$ (Step 2). The fact that $\Lambda = \lambda(S^n) > 0$ completes the proof.

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Remarks on Theorem B and C

Theorem B (Aubin)

If M has dimension $n\geq 6$ and M is not locally conformally flat, then $\lambda(M)<\lambda(S^n).$

Theorem C (Schoen)

If M has dimension n=3,4,5 or M is locally conformally flat, then either $\lambda(M)<\lambda(S^n)$ or M is conformal to the n-sphere.

Theorem B (Aubin)

If M has dimension $n \geq 6$ and M is not locally conformally flat, then $\lambda(M) < \lambda(S^n)$.

Estimation of $E(\varphi)$:

$$E(\varphi) \le \begin{cases} \Lambda \|\varphi\|_p^2 - C|W(P)|^2 \alpha^4 + o(\alpha^4) & n > 6\\ \Lambda \|\varphi\|_p^2 - C|W(P)|^2 \alpha^4 \ln(1/\alpha) + O(\alpha^4) & n = 6 \end{cases}$$

M locally conformally flat \iff the conformal part: $W \equiv 0$.

Theorem C (Schoen)

If M has dimension n=3,4,5 or M is locally conformally flat, then either $\lambda(M)<\lambda(S^n)$ or M is conformal to the n-sphere.

Estimation of $E(\varphi)$:

$$E(\varphi) \le \Lambda \|\varphi\|_p^2 - C\mu\alpha^{-k} + O(\alpha^{-k-1}).$$

Identify μ with "mass". The positive mass theorem gives $\mu > 0$.

Summary

Lee, J.M. and Parker, T.H. (1987) 'The Yamabe Problem', *Bulletin of the American Mathematical Society*, 17(1), pp. 37–91. doi: 10.1090/S0273-0979-1987-15514-5.