Université François Rabelais de Tours Département de Mathématiques

Td 4: Espaces préhilbertiens

Algèbre Semestre 4, 2019

Exercice 1. Sient F et G deux sous-espaces vectoriels d'un espace préhilbertien réel $(E, \langle \cdot, \cdot \rangle)$.

- 1. Prouver que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$ et $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$.
- 2. Prouver que si $(E, \langle \cdot, \cdot \rangle)$ est un espace euclidien (i.e. $\dim(E) < \infty$) alors $\dim(F \cap G)^{\perp} = \dim(F^{\perp} + G^{\perp})$. Qu'en déduisez-vous ?

Exercice 2. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien réel dont on note $\| \cdot \|$ la norme issue du produit scalaire et d la distance définie par cette norme. Enoncer et prouver l'inégalité triangulaire pour d puis étudier son cas d'égalité.

Exercice 3. Soit $E = C([0,1], \mathbb{R})$ muni du produit scalaire $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. On note $H = \{f \in E | f(0) = 0\}$ et G l'ensemble des applications constantes de [0,1] dans \mathbb{R} .

- 1. Justifier que H est un hyperplan de E et G une droite vectorielle.
- 2. En déduire que $E = G \oplus H$.
- 3. Définir G^{\perp} et H^{\perp} .
- 4. Soit $g \in H^{\perp}$
 - (a) Prouver que $\int_0^1 tg(t)^2 dt = 0$.
 - (b) En déduire que $\forall t \in \mathbb{R}, g(t) = 0$.
 - (c) Déterminer H^{\perp} .
- 5. A-t-on $(H^{\perp})^{\perp} = H$? $H \oplus H^{\perp} = E$? $H^{\perp} + G^{\perp} = (H \cap G)^{\perp}$?

Exercice 4. Dans $E = C([-a, a], \mathbb{R})$, $a \in \mathbb{R}_+^*$, muni du produit scalaire $\langle f, g \rangle = \int_{-a}^a f(t)g(t)dt$, justifier l'orthogonalité de l'ensemble des fonctions paires et de l'ensemble des fonctions impaires.

Exercice 5. Dans $E = \mathbb{R}^2$ muni du produit scalaire usuel et de la base canonique $\mathcal{B}_0 = (e_1, e_2)$, on pose $u = (\sqrt{3}, 1)$ et v = (1, -1). Déterminer la mesure de l'angle géométrique (dans $[0, \pi]$) entre e_1 et v et entre v et v.

Exercice 6. Soit $F = \{ P \in \mathbb{R}_2[X] | P(0) = 0 \}.$

- 1. Justifier que F est un hyperplan de $E = \mathbb{R}_2[X]$ et en donner une base.
- 2. On pose $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$.
 - (a) Justifier que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
 - (b) Déterminer l'orthogonal de F.

Même question pour (P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2).

Exercice 7. Dans $E = \mathbb{R}^4$ muni du produit sclaire usuel et de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3, e_4)$, on considère l'hyperplan H d'équation x - y + z + t = 0.

- 1. Déterminer la matrice $P = M_{\mathcal{B}_0}(p_H)$ où p_H est la projection orthogonale sur H. En déduire la matrice $S = M_{\mathcal{B}_0}(s_H)$ avec s_H la réflexion par rapport à H.
- 2. Définir puis calculer $\alpha = d(e_1, H)$ (illustrer par une figure).

Exercice 8. Dans $E = \mathbb{R}^4$ muni du produit scalaire usuel et de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3, e_4)$, on considère le sous-espace vectoriel F d'équations $\begin{cases} x + y + z + t = 0, \\ x - y + z - t = 0. \end{cases}$

- 1. Les vecteurs u = (-2, 3, 2, -3) et v = (1, 1, -1, -2) appartiennent-ils à F?
- 2. Donner une base de F et une base de F^{\perp} .
- 3. Déterminer la matrice représentant p_F , la projection orthogonale sur F, puis celle représentant s_F , la symétrie orthogonale par rapport à F dans la base \mathcal{B}_0 .
- 4. Calculer la distance de u à F puis celle de v à F.

Exercice 9. Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$.

- 1. Déterminer l'orthonormalisée $\mathcal{B} = (P_0, P_1, P_2)$ de la base canonique $\mathcal{B}_0 = (1, X, X^2)$ de E par le procédé de Gram-Schmidt.
- 2. Interpréter géométriquement puis calculer

$$\alpha = \inf_{(a,b)\in\mathbb{R}^2} \int_0^1 \left(t^2 - at - b\right)^2 dt.$$

Illustrer par une figure.

3. Justitier l'existence et l'unicité de $Q \in E$ tel que $\forall P \in E, P'(0) = \int_0^1 P(t)Q(t)dt$, puis déterminer Q.

Exercice 10. Dans $E = \mathbb{R}^4$ muni du produit scalaire usuel et de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3, e_4)$, on considère les quatre vecteurs suivants :

$$u_1 = (0, 1, 1, 1), u_2 = (1, 0, 1, 1), u_3 = (1, 1, 0, 1), \text{ et } u_4 = (1, 1, 1, 0).$$

- 1. Vérifier que $\mathcal{B} = (u_1, u_2, u_3, u_4)$ est une base de E. Est-elle orthogonale?
- 2. Orthonormaliser \mathcal{B} par la méthode de Gram-Schmidt.
- 3. On pose $F = \text{Vect}(u_1, u_2)$.
 - (a) Déterminer la matrice représentant p_F , la projection orthogonale sur F, dans la base \mathcal{B}_0 .
 - (b) Calculer $\alpha = d(u_3, F)$.

Exercice 11. Sur $E = M_n(\mathbb{R})$, on définit la forme bilinéaire b par $b(A, B) = \operatorname{tr}({}^tAB)$.

- 1. Justifier que b définit un produit scalaire sur E.
- 2. Etablir que les espaces S_n des matrices symétriques et A_n des matrices antisymétriques sont des supplémentaires orthogonaux.
- 3. En déduire la distance d'une matrice A à S_n (pour la distance associée au produit scalaire b).

Exercice 12 (Matrices de Gram). A chaque famille (u_1, \ldots, u_n) de n vecteurs $(n \in \mathbb{N}^*)$ d'un espace préhilbertien réel, on associe sa matrice et son déterminant de Gram respectivement définis comme suit :

$$G(u_1,\ldots,u_n) = (\langle u_i,u_j\rangle)_{1\leqslant i,j\leqslant n} \quad \text{et} \quad g(u_1,\ldots,u_n) = \det(G(u_1,\ldots,u_n)).$$

- 1. Prouver que la famille (u_1, \ldots, u_n) est liée si et seulement si $g(u_1, \ldots, u_n) = 0$. On suppose désormais que la famille est libre et on pose $F = \text{Vect}(u_1, \ldots, u_n)$.
- 2. Quelle est la dimension de F? Que représente alors $G(u_1, \ldots, u_n)$?
- 3. Soit \mathcal{B} une base orthonormée de F.
 - (a) Prouver que $G(u_1, ..., u_n) = {}^{t}PP$ avec P la matrice de passage de $(u_1, ..., u_n)$ à \mathcal{B} .
 - (b) En déduire que $g(u_1, \ldots, u_n) > 0$.
- 4. Déduire de ce qui précède une preuve de l'inégalité de Cauchy-Schwarz et de son cas d'égalité.
- 5. Prouver que pour tout $v \in E$, on a

$$d(v,F)^2 = \frac{g(u_1,\ldots,u_n,v)}{g(u_1,\ldots,u_n)}.$$

6. Retrouver, grâce à cette formule, le résultat de la dernière question de l'exercice 10. Commenter.