105061254 林士平 邏輯設計實驗報告 Lab4

1.

(1) Design specification:

A. Inputs and outputs(表一):

Inputs	clk, rst_n				
Outputs	out[3:0]				
↑表一:Inputs and outputs of 1.					

B. Block diagram(圖一):

 \uparrow 圖 \longrightarrow : The block diagram of 1.

(2) Design implementation:

A. Logic diagram(圖二):

 \uparrow 圖二:logic diagram of 1.

B. I/O pin assignment(表二):

I/O	out[3]	out[2]	out[1]	out[0]	rst_n	clk		
LOC	V19	U19	E19	U16	V17	W5		
↑表二:I/O pin assignment of 1.								

C.功能與做法說明:

本題為 4-bit synchronous binary up counter with 1-Hz clock frequency,並且用 4 個 LED 燈來顯示數出來的結果(out[3:0])。這題總共有三個 module:首先 frequency_divider 把 FPGA 板上的 clock 做除頻,使輸出的 clk_out 頻率為 1Hz;再來是 binary_up_counter 做數數的動作,並輸出數數的結果(out[3:0]),其中 binary_up_counter 輸入的 clk 為除頻後的 clk;最後 top_module 用來把前述兩個 module 連接起來。

2.

(1) Design specification:

A. Inputs and outputs(表三):

Inputs	clk, rst_n				
Outputs	ssd_ctl[3:0], D_ssd[7:0]				
↑表三:In	↑表三:Inputs and outputs of 2.				

B. Block diagram(圖三):

↑圖三: The block diagram of 2.

(2) Design implementation:

A. Logic diagram(圖四):

↑圖四: logic diagram of 2.

B. I/O pin assignment(表四):

1/0	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]	ssd_ctl[0]	D_ssd[7]	D_ssd[6]	D_ssd[5]	
LOC	W4	V4	U4	U2	W7	W6	U8	
I/O	D_ssd[4]	D_ssd[3]	D_ssd[2]	D_ssd[1]	D_ssd[0]	rst_n	clk	
LOC	V8	U5	V5	U7	V7	W17	W5	
↑表四: I/O pin assignment of 2.								

C.功能與做法說明:

本題為一個 single digit BCD up counter with the divided clock as the clock frequency,並且將數數的結果(value[3:0])用 seven-segment display 來顯示。這題總共有四個 module:首先frequency_divider 把 FPGA 板上的 clock 做除頻,使輸出的 clk_out 頻率為 1Hz;再來是binary_up_counter 做數數的動作,並輸出數數的結果(value[3:0]),其中 binary_up_counter 輸入的 clk 為除頻後的 clk;接著 display 模組接收數數的結果(value[3:0](i[3:0]))並利用 mux 判斷來輸出七段顯示器要顯示的數字(D_ssd[7:0]);最後 top_module 把前述三個 module 連接起來,並且多輸出一個 ssd_ctl[3:0](為常數 4'b1110),使得只有最右邊的七段顯示器會顯示。

3.

(1) Design specification:

A. Inputs and outputs(表五):

Inputs	clk, rst_n			
Outputs	ssd_ctl[3:0], D_ssd[7:0]			
↑表五:Inputs and outputs of 3.				

B. Block diagram(圖五):

 \uparrow 圖 Ξ : The block diagram of 3.

(2) Design implementation:

A. Logic diagram(圖六):

↑圖六:logic diagram of 3.

B. I/O pin assignment(表六):

1/0	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]	ssd_ctl[0]	D_ssd[7]	D_ssd[6]	D_ssd[5]
LOC	W4	V4	U4	U2	W7	W6	U8
1/0	D_ssd[4]	D_ssd[3]	D_ssd[2]	D_ssd[1]	D_ssd[0]	rst_n	clk
LOC	V8	U5	V5	U7	V7	W17	W5
↑表四:I/O pin assignment of 2.							

C.功能與做法說明:

本題為一個 single digit BCD down counter with the divided clock as the clock frequency,並且將數數的結果(value[3:0])用 seven-segment display 來顯示。這題和第二題非常相近,差別只在counter 模組,這裡是個 binary_down_counter,所以要把"加一"換成"減一",而且當 value 是 0時要讓下一個 value(value_tmp)為 9,其餘部分和第三題相同。

4.

(1) Design specification:

A. Inputs and outputs(表七):

Inputs	clk, rst_n				
Outputs	ssd_ctl[3:0], segs[7:0]				
↑表七:In	↑表七:Inputs and outputs of 4.				

B. Block diagram(圖七):

↑圖七:The block diagram of 4.

(2) Design implementation :

A. Logic diagram(圖八)

↑圖八: logic diagram of 4.

 \uparrow 圖九:logic diagram of two_digit_bincnt module

↑圖十: logic diagram of Udc0 and Udc1 module

B. I/O pin assignment(表八):

1/0	D_ssd[7]	D_ssd[6]	D_ssd[5]	D_ssd[4]	D_ssd[3]	D_ssd[2]	D_ssd[1]	
LOC	W7	W6	U8	V8	U5	V5	U7	
1/0	D_ssd[0]	clk	rst_n	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]	ssd_ctl[0]	
LOC	V7	W5	V17	W4	V4	U4	U2	
↑表八:I/O pin assignment of 4.								

C.功能與做法說明:

本題為製作一個 30 秒的 count down timer,並且要停在 00。這題大致上可以分為四個部分: frequency_divider 模組除頻並拉出兩個 output,一個是頻率 1Hz 的 clock(clk_out)作為two_digit_bincnt 的 input clock,另一個是 clk_ctl 作為七段顯示器的視覺佔留; two_digit_bincnt 模組為兩位數的 down_counter,輸出 digit0 和 digit1 表示個位數和十位數要顯示的數字; scan_ctl 模組和 display 模組前面的 lab 有實作過,輸出 ssd_ctl 和 segs 負責七段顯示器的顯示。

其中,two_digit_bincnt 模組由兩個 down_counter 組成,一個負責個位數,一個負責十位數,輸入和輸出分別有:decrease(決定是否要下數)、limit(決定 0 之後的下一個數)、clk、rst_n、value_initial(決定 reset 後的數字);value(數數的結果)、borrow(是否要和下一位借位,如果 borrow = 1 則下一位的 decrease = 1)。

最後利用一個 top_module 把所有的模組包在一起。

5. Discussion

第一題只要注意接線的時候不要接錯,基本上不會有太大的困難。

第二題和第三題相當類似,只要做出第二題就一定能做出第三題,基本上也只要注意接線不要接錯,就不會有太大的問題。

第四題難度最高,首先要先設計出一個 two-digit 的 down counter,還好老師上課的時候有上到,所以這部份沒什麼問題。再來是要使七段顯示器輸出兩個不同的數字,所以要多接個 scan_ctl模組,這部分因為上次 lab 有做過,所以也沒太大的問題。最困難的部份是要控制 counter 從 30 開始數,而且數到 0 的時候要停住:要控制 counter 從 30 開始只要加一個 value_intial 表示 counter 在 rst_n 之後的初始狀態,這部分問題也不大;我花比較多時間在讓 counter 數到 0 的時候要停住。最後我找出了兩種方法:一種是改變 limit,讓十位數的 limit = 0,個位數的 limit 本來是 9,當數到 00時把它的 limit 變成 0,如此便能讓 counter 最後停在 00;不過上述的方式就浪費了個位數的 decrease 了,其實只要控制個位數的 decrease,讓個位數的 decrease 在 counter 數到 00 時變為 0,counter 就可以停在 00。

6. Conclusion

這次的 Lab 讓我有能力可以用 verilog 實現更多的功能,並能處理更複雜的問題。