CHAPTER-10 VECTOR ALGEBRA

1 EXERCISE - 10.3

- 1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a}.\vec{b} = \sqrt{6}$.
- 2. Find the angle between the the vectors $\hat{i} 2\hat{j} + 3\hat{k}$ and $3\hat{i} 2\hat{j} + \hat{k}$.
- 3. Find the projection of the vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$.
- 4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} \hat{j} + 8\hat{k}$.
- 5. Show that each of the given three vectors is a unit vector: $\frac{1}{7} (2\hat{i}+3\hat{j}+6\hat{k}), \frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k}), \frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})$ Also, show that they are mutually perpendicular to each other.
- 6. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 8$ and $|\vec{a}| = 8 |\vec{b}|$.
- 7. Evaluate the product $(3\vec{a}-5\vec{b})$. $(2\vec{a}+7\vec{b})$.
- 8. Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$
- 9. Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$.
- 10. If $\vec{a}=2\hat{i}+2\hat{j}3\hat{k}, \vec{b}=\hat{-i}+2\hat{j}+\hat{k}$ and $\vec{c}=3\hat{i}+\hat{j}$ are such that $\vec{a}+\lambda\vec{b}$ is perpendicular to \vec{c} , then find the value of λ .
- 11. Show that $|\vec{a}| \vec{b} + |\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b} |\vec{b}| \vec{a}$, for any two nonzero vectors \vec{a} and \vec{b} .
- 12. If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, then what can be conculded about the vector \vec{b} ?
- 13. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$.
- 14. If either vector $\vec{a} = 0$ or $\vec{b} = 0$, then $\vec{a}.\vec{b} = 0$. But the converse need not be true .Justify your answer with an example.

- 15. If the vertices A,B,C of a triangle ABC are (1,2,3),(-1,0,0)(0,1,2), respectively, then find $\angle ABC$. $[\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC}].
- 16. show that the points A(1,2,7), B(2,6,3) and C(3,10,-1) are collinear.
- 17. show that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$ from the vertices of a right angled triangle.
- 18. If \vec{a} is a nonzero vector of magnitude 'a' and λ a nonzero scalar , then $\lambda \vec{a}$ is unit vector if

$$(A)\lambda = 1 \ (B)\lambda = -1 \ (C)a = |\lambda| \ (D)a = 1/|\lambda|$$