苏州大学 泛函分析(双语)课程期中试卷

(考试形式 开卷 2022年4月22日)

- 1. (5 marks) Let $X = [-1, 0) \cup \{3\}$ be a metric space with the Euclidean metric of \mathbb{R} . Indicate whether $\{3\}$ is open or closed or nowhere dense in X, and state the reasons.
- 2. (10 marks) Let (X, d) be complete and let $\rho = d/(1+d)$. Show that (X, ρ) is complete.
- 3. (15 marks) Let $\{g_n(x)\}$ be a sequence of continuously differentiable real-valued functions on [0,1]. Suppose that there exists M>0 such that $\max\{|g_n(0)|,|g_n'(x)|\} \leq M$ for all $n \in \mathbb{N}$ and all $x \in [0,1]$. Show that $\{g_n(x)\}$ has a subsequence which is uniformly convergent on [0,1], and derive from this that $\{\cos(x+n)\}$ has a subsequence which uniformly converges on [0,1].
- 4. (20 marks)
 - (a) Let (X, d) be a compact metric space and let a mapping $T: X \to X$ satisfy that d(Tx, Ty) < d(x, y) for all $x, y \in X$ and $x \neq y$. Prove that T has a unique fixed point on X.
 - (b) If (X, d) is a noncompact metric space, is the statement of the above (a) true? Give a proof or a counterexample.
- 5. (5 marks) Recall that c_0 is a normed linear space of all sequence of numbers which converge to 0 with the ℓ^{∞} norm $||x||_{c_0} = \sup_{n \geqslant 1} |\xi_n|$ for all $x = \{\xi_n\} \in c_0$. Prove that the above norm can be written as $||x||_{c_0} = \max_{n \geqslant 1} |\xi_n|$ for all $x = \{\xi_n\} \in c_0$.
- 6. (20 marks)
 - (a) Let 1 and let <math>E be a Lebesgue measurable set of \mathbb{R} or \mathbb{R}^n . If $\text{meas}(E) < \infty$, show that

$$L^{\infty}(E) \subsetneq L^{q}(E) \subsetneq L^{p}(E).$$

If $\operatorname{meas}(E) = \infty$, does the set inclusion $L^q(E) \subset L^p(E)$ hold? Give a proof or a counterexample.

(b) Let $1 . Show that <math>\ell^p \subsetneq \ell^q \subsetneq \ell^\infty$ and for $x \in \ell^p$,

$$\lim_{p \to \infty} ||x||_{\ell^p} = ||x||_{\ell^\infty}.$$

- 7. (15 marks) Recall that Riesz's Lemma states as in the following: Suppose that X is a normed linear space, Y is a closed linear subspace of X such that $Y \neq X$. Then for every real number α with $0 < \alpha < 1$ there exists $x_{\alpha} \in X$ satisfying $||x_{\alpha}|| = 1$ and $||x_{\alpha} y|| \geqslant \alpha \ \forall y \in Y$.
 - (a) Prove Riesz's Lemma.
 - (b) If the subspace Y is not closed in X, is Riesz's Lemma still true? Give a proof or a counterexample.
- 8. (10 marks) Let p(x) be a semi-norm defined on a linear space X, that is, p(x) satisfies all axioms for norm except that p(x) may be zero for non-zero elements. Let $N = \{x \in X : p(x) = 0\}$. Show that N is a linear subspace of X and

$$p_0(\pi(x)) = p(x)$$
 for all $\pi(x) \in X/N$

defines a norm on the quotient space X/N.