Fundamentals of Mathematical Statistics Definitions/Lemmas

by Roman Böhringer ETH Zürich January 2, 2021

Probability Theory

Conditional Probability:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Bayes Theorem:

$$P(B \mid A) = P(A \mid B) \frac{P(B)}{P(A)}$$

Law of Total Probability: For a partition $\{B_j\}$ $(B_j \cap B_k = \emptyset \text{ for all } j \neq k \text{ and } P(\cup_j B_j) = 1)$:

$$P(A) = \sum_{j} P(A \mid B_j) P(B_j)$$

Marginal Density:

$$f_X(\cdot) = \int f_{X,Y}(\cdot, y) dy$$

$$f_X(x) = \int f_X(x \mid y) f_Y(y) dy$$

Conditional Density:

$$f_X(x \mid y) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$f_Y(y \mid x) = f_X(x \mid y) \frac{f_Y(y)}{f_X(x)}$$

Conditional Expectation:

$$E[g(X,Y) \mid Y = y] := \int f_X(x \mid y)g(x,y)dx$$

Iterated Expectations Lemma:

$$E[E[g(X,Y)\mid Y]] = Eg(X,Y)$$

Law of Total Variance:

$$var(Y) = var(E(Y \mid Z)) + Evar(Y \mid Z)$$

Distributions

Multinomial Distribution:

$$P(N_1 = n_1, \dots, N_k = n_k) = \binom{n}{n_1 \cdots n_k} p_1^{n_1} \cdots p_k^{n_k}$$
$$\binom{n}{n_1 \cdots n_k} := \frac{n!}{n_1! \cdots n_k!}$$

Poisson Distribution:

$$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Normal Distribution:

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Sum of Independent Normal / Poisson Variables: For X and Y independent: $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ with Z = X + Y, then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$. $X \sim \mathcal{P}(\lambda), Y \sim \mathcal{P}(\mu) \Rightarrow Z \sim \mathcal{P}(\lambda + \mu)$.

Chi-Square Distribution: Let Z_1, \ldots, Z_p be i.i.d. $\mathcal{N}(0,1)$ -distributed and define the *p*-vector:

$$Z := \left(\begin{array}{c} Z_1 \\ \vdots \\ Z_p \end{array} \right)$$

Z is $\mathcal{N}(0,I)$ distributed and the χ^2 -distribution with p degrees of freedom is defined as $(\|Z\|_2^2 \sim \chi_p^2)$:

$$||Z||_2^2 := \sum_{j=1}^p Z_j^2$$

Distribution of Maximum: $Z := \max\{X_1, X_2\}$ with X_1 , X_2 independent having distribution F and density f.

$$f_Z(z) = 2F(z)f(z)$$

Exponential Families: A k-dimensional exponential family is a family of distributions with densities of the form:

$$p_{\theta}(x) = \exp\left[\sum_{j=1}^{k} c_j(\theta) T_j(x) - d(\theta)\right] h(x)$$

The family is in canonical form if:

$$p_{\theta}(x) = \exp\left[\sum_{j=1}^{k} \theta_j T_j(x) - d(\theta)\right] h(x)$$

Where:

$$d(\theta) = \log \left(\int \exp \left[\sum_{j=1}^{k} \theta_j T_j(x) \right] h(x) d\nu(x) \right)$$

Estimation

Estimator: An estimator $T(\mathbf{X})$ is a function $T(\cdot)$ evaluated at the observations \mathbf{X} . The function $T(\cdot)$ is not allowed to depend on unknown parameters.

Empirical Distribution Function:

$$\hat{F}_n(\cdot) := \frac{1}{n} \# \{ X_i \le \cdot, 1 \le i \le n \}$$

Method of Moments: Given the first p moments of X:

$$\mu_j(\theta) = E_{\theta} X^j = \int x^j dF_{\theta}(x), j = 1, \dots, p$$

And the map m with inverse m^{-1} :

$$m(\theta) = [\mu_1(\theta), \dots, \mu_p(\theta)]$$
 $m^{-1}(\mu_1, \dots, \mu_p)$

We calculate:

$$\hat{\mu}_j := \frac{1}{n} \sum_{i=1}^n X_i^j = \int x^j d\hat{F}_n(x), j = 1, \dots, p$$

And plug in:

$$\hat{\theta} := m^{-1} \left(\hat{\mu}_1, \dots, \hat{\mu}_p \right)$$

Maximum Likelihood Estimator: Given the likelihood function:

$$L_{\mathbf{X}}(\vartheta) := \prod_{i=1}^{n} p_{\vartheta}\left(X_{i}\right), \vartheta \in \Theta$$

We calculate:

$$\hat{\theta} = \arg\max_{\vartheta \in \Theta} \log L_{\mathbf{X}}(\vartheta) = \arg\max_{\vartheta \in \Theta} \sum_{i=1}^{n} \log p_{\vartheta}\left(X_{i}\right)$$

Sufficiency

Sufficiency: Some given map $S: \mathcal{X} \to \mathcal{Y}$ is called sufficient for $\theta \in \Theta$ if for all θ , and all possible s, the following conditional distribution does not depend on θ :

$$P_{\theta}(X \in \cdot \mid S(X) = x)$$

Factorization Theorem of Neyman PR : Given densities p_{θ} , S is sufficient if and only if there are some functions $g_{\theta}(\cdot) \geq 0$ and $h(\cdot) \geq 0$ such that we can write:

$$p_{\theta}(x) = g_{\theta}(S(x))h(x) \quad \forall x, \theta$$

Sufficiency for Exponential Families: dimensional exponential family, the k-dimensional statistic $S(X) = (T_1(X), \dots, T_k(X))$ is sufficient for θ . For n i.i.d. samples, the following statistic is sufficient:

$$S(\mathbf{X}) = (\frac{1}{n} \sum_{i=1}^{n} T_1(x_i), \dots, \frac{1}{n} \sum_{i=1}^{n} T_k(x_i))$$

Expectation/Covariance of Sufficient Statistic for Exponential Families: Given an exponential family in canonical form and:

$$\dot{d}(\theta) := \frac{\partial}{\partial \theta} d(\theta) \quad \ddot{d}(\theta) := \frac{\partial^2}{\partial \theta \partial \theta'} d(\theta) = \left(\frac{\partial^2}{\partial \theta_{j_1} \partial \theta_{j_2}} d(\theta) \right)$$

$$T(X) := \begin{pmatrix} T_1(X) \\ \vdots \\ T_k(X) \end{pmatrix}, \quad E_{\theta}T(X) := \begin{pmatrix} E_{\theta}T_1(X) \\ \vdots \\ E_{\theta}T_k(X) \end{pmatrix}$$

 $\operatorname{Cov}_{\theta}(T(X)) := E_{\theta}T(X)T'(X) - E_{\theta}T(X)E_{\theta}T'(X)$

We have \mathcal{PR} :

$$E_{\theta}T(X) = \dot{d}(\theta), \operatorname{Cov}_{\theta}(T(X)) = \ddot{d}(\theta)$$

If the family is not in canonical form:

$$E_{\theta}T(X) = \frac{d(\theta)}{\dot{c}(\theta)}$$

$$\operatorname{var}_{\theta}(T(X)) = \frac{1}{[\dot{c}(\theta)]^2} \left(\ddot{d}(\theta) - \frac{\dot{d}(\theta)}{\dot{c}(\theta)} \ddot{c}(\theta) \right)$$

Minimal Sufficiency: Two likelihoods $L_x(\theta)$ and $L_{\tilde{x}}(\theta)$ are And for $\gamma = c(\theta)$: proportional at (x, \tilde{x}) if

$$L_x(\theta) = L_{\tilde{x}}(\theta)c(x,\tilde{x}) \,\forall \theta$$

for some constant $c(x, \tilde{x})$. A sufficient statistic S is called minimal sufficient if $S(x) = S(\tilde{x})$ for all x and \tilde{x} where the likelihoods are proportional.

Completeness: Sufficient statistic S is called complete if (where h is a function not depending on θ):

$$E_{\theta}h(S) = 0 \forall \theta \Rightarrow h(S) = 0, P_{\theta} - a.s. \quad \forall \theta$$

Completeness for Exponential Families: Given a k-dimensional exponential family and

$$\mathcal{C} := \{ (c_1(\theta), \dots, c_k(\theta)) : \theta \in \Theta \} \subset \mathbb{R}^k$$

If \mathcal{C} is truly k-dimensional, $S := (T_1, \ldots, T_k)$ is complete.

Fisher Information

Score Function:

$$s_{\theta}(x) := \frac{d}{d\theta} \log p_{\theta}(x) = \frac{\dot{p}_{\theta}(x)}{p_{\theta}(x)}$$

$$E_{\theta}s_{\theta}(X) = 0$$

For n i.i.d. observations:

$$\mathbf{s}_{\theta}(\mathbf{x}) = \sum_{i=1}^{n} s_{\theta}(x_i)$$

Fisher Information:

$$I(\theta) := \operatorname{var}_{\theta} (s_{\theta}(X))$$

$$I(\theta) = -E_{\theta} \dot{s_{\theta}}(X)$$

For n i.i.d. observations:

$$\mathbf{I}(\theta) = nI(\theta)$$

Fisher Information for Exponential Families:

$$I(\theta) = \ddot{d}(\theta) - \frac{\dot{d}(\theta)}{\dot{c}(\theta)} \ddot{c}(\theta)$$

$$I_0(\gamma) = \ddot{d}_0(\gamma) = \frac{I(\theta)}{[\dot{c}(\theta)]^2}$$

Higher-Dimensional Extensions (Score Vector & Fisher Information Matrix):

$$s_{\theta}(\cdot) := \begin{pmatrix} \partial \log p_{\theta} / \partial \theta_1 \\ \vdots \\ \partial \log p_{\theta} / \partial \theta_k \end{pmatrix}$$

$$I(\theta) = E_{\theta} s_{\theta}(X) s'_{\theta}(X) = \operatorname{Cov}_{\theta} (s_{\theta}(X))$$

Bias, Variance

Bias:

$$bias_{\theta}(T) := E_{\theta}T - g(\theta)$$

T is unbiased if $bias_{\theta}(T) = 0 \quad \forall \theta$. Mean Square Error \mathcal{PR} :

$$MSE_{\theta}(T) := E_{\theta}(T - q(\theta))^2$$

$$MSE_{\theta}(T) = bias_{\theta}^{2}(T) + var_{\theta}(T)$$

Uniform Minimum Variance Unbiased: Unbiased estimator T^* is UMVU if for any other unbiased estima-

$$\operatorname{var}_{\theta}(T^*) \le \operatorname{var}_{\theta}(T) \quad \forall \theta$$

Conditioning on Sufficient Statistic: If T is unbiased, Ssufficient, and $T^* := E(T \mid S)$:

$$E_{\theta}(T^*) = g(\theta) \qquad \operatorname{var}_{\theta}(T^*) \le \operatorname{var}_{\theta}(T) \,\forall \theta$$

Lehmann-Scheffé Lemma: If T is an unbiased estimator of $q(\theta)$ with finite variance (for all θ) and S is sufficient and complete, $T^* := E(T \mid S)$ is UMVU.

Cramér Rao Lower Bound: If the support of p_{θ} does not depend on θ and p_{θ} is differentiable in L_2 , for an unbiased estimator T of $g(\theta)$ (with derivative $\dot{g}(\theta)$), we have:

$$\dot{g_{\theta}}(x) = \text{cov}(T, s_{\theta}(X))$$

$$\operatorname{var}_{\theta}(T) \ge \frac{\dot{g}^2(\theta)}{I(\theta)} \quad \forall \theta$$

CRLB for Exponential Families: If T is unbiased and reaches the CRLB, then there exist functions $c(\theta)$, $d(\theta)$, and h(x) such that for all θ :

$$p_{\theta}(x) = \exp[c(\theta)T(X) - d(\theta)]h(x) \quad x \in \mathcal{X}$$

$$g(\theta) = \dot{d}(\theta)/\dot{c}(\theta)$$

Higher-Dimensional CRLB: For an unbiased estimator T of $g(\theta)$:

$$\operatorname{var}_{\theta}(T) \ge \dot{g}(\theta)' I(\theta)^{-1} \dot{g}(\theta)$$

Comparison

Risk: Given loss function $L(\cdot, \cdot)$:

$$R(\theta,T) := \mathbb{E}_{\theta}(L(\theta,T(X))$$

Risk and sufficiency: S sufficient for θ and $d: \mathcal{X} \to \mathcal{A}$ some decision. Then there is a randomized decision $\delta(S)$ such that:

$$R(\theta, \delta(S)) = R(\theta, d) \quad \forall \theta$$

Rao-Blackwell^{\mathcal{PR}}: S sufficient for θ , $\mathcal{A} \subset \mathbb{R}^p$ convex and $a \mapsto L(\theta, a)$ convex for all θ . For decision $d : \mathcal{X} \to \mathcal{A}$ and $d'(s) := E(d(X) \mid S = s)$:

$$R(\theta, d') \le R(\theta, d) \quad \forall \theta$$

Sensitivity/Robustness: Influence function

$$l(x) := (n+1) (T_{n+1} (X_1, ..., X_n, x) - T_n (X_1, ..., X_n)), x \in \mathbb{R}$$

For m < n:

$$\epsilon(m) := \sup_{x_1^*, \dots, x_m^*} |T(x_1^*, \dots, x_m^*, X_{m+1}, \dots, X_n)|$$

Break down point:

$$\epsilon^* := \min\{m : \epsilon(m) = \infty\}/n$$

Equivariant Statistics

Location equivariant statistic: For all constants $c \in \mathbb{R}$ and $\mathbf{x} = (x_1, \dots, x_n)$:

$$T(x_1+c,\ldots,x_n+c)=T(x_1,\ldots,x_n)+c$$

Location invariant loss function: For all constants $c \in \mathbb{R}$:

$$L(\theta + c, a + c) = L(\theta, a) \quad (\theta, a) \in \mathbb{R}^2$$

Risk for equivariant statistics/invariant loss functions:

$$R(\theta, T) = E_{\theta}L(0, T(\mathbf{X} - \theta)) = EL_0[T(\varepsilon)]$$

Uniform Minimum Risk Equivariant:

$$R(\theta, T) = \min_{d \text{ equivariant}} R(\theta, d) \quad \forall \theta$$

$$R(0,T) = \min_{d \text{ equivariant}} R(0,d)$$

Maximal Invariant: Map $\mathbf{Y}: \mathbb{R}^n \to \mathbb{R}^n$ is maximal invariant if:

$$\mathbf{Y}(\mathbf{x}) = \mathbf{Y}(\mathbf{x}') \Leftrightarrow \exists c : \mathbf{x} = \mathbf{x}' + c$$

UMRE estimator construction: $d(\mathbf{X})$ equivariant, $\mathbf{Y} := \mathbf{X} - d(\mathbf{X})$.

$$T^*(\mathbf{Y}) := \arg\min_{v} E\left[L_0(v + d(\varepsilon)) \mid \mathbf{Y}\right]$$

$$T^*(\mathbf{X}) := T^*(\mathbf{Y}) + d(\mathbf{X})$$
 is UMRE.

UMRE estimator for quadratic loss:

$$T \text{ is UMRE } \Leftrightarrow E_0(T(\mathbf{X}) \mid \mathbf{X} - T(\mathbf{X})) = 0$$

Pitman estimator:

$$T^*(\mathbf{X}) = X_n - E\left(\epsilon_n \mid \mathbf{Y}\right)$$

Basu's lemma^{\mathcal{PR}}: Let X have distribution P_{θ} , suppose T is sufficient/complete, and Y = Y(X) has a distribution that does not depend on θ . Then, T and Y are independent under P_{θ} for all θ .

Tests and Confidence Intervals

Quantile Functions:

$$q_{\sup}^F(u) := \sup\{x : F(x) \le u\}$$

$$q_{\inf}^F(u) := \inf\{x : F(x) \ge u\} := F^{-1}(u)$$

Test: For $\gamma_0 \in \Gamma$, $\alpha \in [0,1]$ a test for $H_0: \gamma = \gamma_0$ is a statistic $\phi(X,\gamma_0) \in \{0,1\}$ such that $P_{\theta}(\phi(X,\gamma_0)=1) \leq \alpha$ for all $\theta \in \{\vartheta: g(\vartheta) = \gamma_0\}$

Pivot: Function $Z(\mathbf{X}, \gamma)$ such that for all $\theta \in \Theta$, this distribution does not depend on θ :

$$\mathbb{P}_{\theta}(Z(\mathbf{X}, g(\theta)) \leq \cdot) =: G(\cdot)$$

We can construct test for H_{γ_0} :

$$q_L := q_{\text{sup}}^G \left(\frac{\alpha}{2}\right), q_R := q_{\text{inf}}^G \left(1 - \frac{\alpha}{2}\right)$$

$$\phi\left(\mathbf{X}, \gamma_{0}\right) := \left\{ \begin{array}{ll} 1 & \text{if } Z\left(\mathbf{X}, \gamma_{0}\right) \notin \left[q_{L}, q_{R}\right] \\ 0 & \text{else} \end{array} \right.$$

Student's test: Assume data is normal distributed with same variance. Then:

$$T := Z(\mathbf{X}, \mathbf{Y}, 0) = Z(\mathbf{X}, \mathbf{Y}, \gamma) := \sqrt{\frac{nm}{n+m}} \left(\frac{\bar{Y} - \bar{X}}{S} \right)$$

$$S^{2} := \frac{1}{m+n-2} \left\{ \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + \sum_{j=1}^{m} (Y_{j} - \bar{Y})^{2} \right\}$$

And one-sided test at level α for $H_0: \gamma = 0$ against $H_1: \gamma < 0$ is:

$$\phi(\mathbf{X}, \mathbf{Y}) := \left\{ \begin{array}{ll} 1 & \text{if } T < -t_{n+m-2}(1-\alpha) \\ 0 & \text{if } T \ge -t_{n+m-2}(1-\alpha) \end{array} \right.$$

Wilcoxon's test: Let $R_i := rank(Z_i)$ among the pooled sample. Then:

$$T := \sum_{i=1}^{n} R_i = \#\{Y_j < X_i\} + \frac{n(n+1)}{2}$$

And (the distribution is often tabulated):

$$\mathbb{P}_{H_0}(T=t) = \frac{\#\{\mathbf{r}: \sum_{i=1}^n r_i = t\}}{N!}$$

Uniformly Most Powerful Tests

Level: ϕ is a test at level α if:

$$\sup_{\theta \in \Theta_0} E_{\theta} \phi(X) \le c$$

A test ϕ is UMP if it has level α and for all tests ϕ' with level α :

$$E_{\theta}\phi'(X) \leq E_{\theta}\phi(X) \quad \forall \theta \in \Theta_1$$

Neyman Pearson Lemma^{PR}: $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$.

$$R(\theta, \phi) := \left\{ \begin{array}{ll} E_{\theta}\phi(X), & \theta = \theta_0 \\ 1 - E_{\theta}\phi(X), & \theta = \theta_1 \end{array} \right.$$

$$1 & \text{if } p_1/p_0 > c \\ \phi_{\text{NP}} := \left\{ \begin{array}{ll} q & \text{if } p_1/p_0 = c \\ 0 & \text{if } p_1/p_0 < c \end{array} \right.$$

$$R(\theta_1, \phi_{\text{NP}}) - R(\theta_1, \phi) \le c[R(\theta_0, \phi) - R(\theta_0, \phi_{\text{NP}})]$$

One Sided UMP Test^{\mathcal{PR}}: Given n i.i.d. copies of a Bernoulli random variable with success parameter θ and with $T := \sum_{i=1}^{n} X_i$ as the number of successes, the following test is UMP for $H_0: \theta \geq c$, $H_1: \theta < c$ (and also the weaker hypothesis $H_0: \theta = c$, $H_1: \theta = c$ or $H_0: \theta = c$, $H_1: \theta < c$):

$$\phi(T) := \begin{cases} 1 & \text{if } T < t_0 \\ q & \text{if } T = t_0 \\ 0 & \text{if } T > t_0 \end{cases}$$

Where t_0 is chosen such that $P_{\theta_0}(T \leq t_0 - 1) \leq \alpha$, $P_{\theta_0}(T \leq t_0) > \alpha$ and q such that $P_{\theta_0}(H_0 \text{ rejected}) = P_{\theta_0}(T \leq t_0 - 1) + qP_{\theta_0}(T = t_0) := \alpha$, i.e.:

$$q = \frac{\alpha - P_{\theta_0} (T \le t_0 - 1)}{P_{\theta_0} (T = t_0)}$$

UMP tests for exponential families: $H_0: \theta \leq \theta_0$, $H_1: \theta > \theta_0$, and $c(\theta)$ strictly increasing. Then a UMP test is:

$$\phi(T(x)) := \{ \begin{array}{ll} 1 & \text{if } T(x) > t_0 \\ q & \text{if } T(x) = t_0 \\ 0 & \text{if } T(x) < t_0 \end{array}$$

Unbiased tests: Test ϕ is unbiased if for all $\theta \in \Theta_0$, $\vartheta \in \Theta_1$:

$$E_{\theta}\phi(X) \leq E_{\vartheta}\phi(X)$$

Uniformly Most Powerful Unbiased: Unbiased test ϕ is UMPU if it has level α and for all unbiased tests ϕ' with level α , $E_{\theta}\phi'(X) \leq E_{\theta}\phi(X) \quad \forall \theta \in \Theta_1$

UMPU for a one-dimensional exponential family: \mathcal{P} one-dimensional exponential family with $c(\theta)$ strictly increasing in θ . A UMPU test is then:

$$\phi(T(x)) := \begin{cases} 1 & \text{if } T(x) < t_L \text{ or } T(x) > t_R \\ q_L & \text{if } T(x) = t_L \\ q_R & \text{if } T(x) = t_R \\ 0 & \text{if } t_L < T(x) < t_R \end{cases}$$

With constants t_R , t_L , q_R , and q_L such that:

$$E_{\theta_0}\phi(X) = \alpha, \frac{d}{d\theta}E_{\theta}\phi(X)\Big|_{\theta=\theta_0} = 0$$

Confidence Intervals

Confidence Set: Subset $I = I(\mathbf{X}) \subset \Gamma$, depending only on the data, is a confidence set for γ at level $1 - \alpha$ if:

$$\mathbb{P}_{\theta}(\gamma \in I) \ge 1 - \alpha, \forall \theta \in \Theta$$

Confidence Interval:

$$I:=[\gamma,\bar{\gamma}]$$

with $\gamma = \gamma(\mathbf{X}), \, \bar{\gamma} = \bar{\gamma}(\mathbf{X}).$

Confidence Sets / Tests: Given for each $\gamma_0 \in \mathbb{R}$ a test at level α for H_{γ_0} , the following is a $(1 - \alpha)$ -confidence set for γ :

$$I(\mathbf{X}) := \{ \gamma : \phi(\mathbf{X}, \gamma) = 0 \}$$

Given a $(1 - \alpha)$ -confidence set for γ , the following test is a test at level α of $H_{\gamma_0} : \gamma = \gamma_0$ for all γ_0 :

$$\phi(\mathbf{X}, \gamma_0) = \{ \begin{array}{ll} 1 & \text{if } \gamma_0 \notin I(\mathbf{X}) \\ 0 & \text{else} \end{array} \}$$

Decision Theory

Admissible Decision: A decision d' is strictly better than d if:

$$R(\theta, d') \le R(\theta, d) \quad \forall \theta$$

$$\exists \theta : R(\theta, d') < R(\theta, d)$$

d is called inadmissible when there exists a d' that is strictly better than d.

Admissibility for the Neyman Pearson Test: A Neyman Pearson test is admissible if and only if its power is strictly less than 1 or it has minimal level among all tests with power 1.

Admissible Estimators for the Normal Mean^{PR}: $X \sim \mathcal{N}(\theta, 1), \Theta := \mathbb{R}$ and $R(\theta, T) := E_{\theta}(T - \theta)^2$. If we consider estimators of the form $T = aX + b, a > 0, b \in \mathbb{R}$, T is admissible if and only if one of the following cases hold:

- 1. a < 1
- 2. a = 1 and b = 0

Minimax Decisions: d minimax if

$$\sup_{\theta} R(\theta, d) = \inf_{d'} \sup_{\theta} R(\theta, d')$$

Minimax for the Neyman Pearson Test: A Neyman Pearson test is minimax if and only if $R(\theta_0, \phi_{NP}) = R(\theta_1, \phi_{NP})$

Bayes Decisions

Bayes Risk: Given probability measure Π (prior distribution) of Θ , and density $w := d\Pi/d\mu$:

$$r(\Pi,d) := \int_{\Theta} R(\vartheta,d) d\Pi(\vartheta)$$

$$r(\Pi, d) = \int_{\Theta} R(\vartheta, d) w(\vartheta) d\mu(\vartheta) := r_w(d)$$

Bayes Decision: A decision d is called Bayes if:

$$r(\Pi, d) = \inf_{d'} r(\Pi, d')$$

A posteriori density: Given $p_{\theta}(x) = p(x \mid \theta)$, and the marginal density:

$$p(\cdot) := \int_{\Theta} p(\cdot \mid \vartheta) w(\vartheta) d\mu(\vartheta)$$

The a posterior density of θ is:

$$w(\vartheta \mid x) = p(x \mid \vartheta) \frac{w(\vartheta)}{p(x)}, \vartheta \in \Theta, x \in \mathcal{X}$$

Bayes Decision Construction: Let

$$l(x,a) := E[L(\theta,a) \mid X = x] = \int_{\Theta} L(\theta,a)w(\theta \mid x)d\mu(\theta)$$

Then Bayes decision is:

$$d_{\text{Bayes}}(X) = \arg\min_{a \in \mathcal{A}} l(X, a)$$

$$d_{\text{Bayes}}(X) = \arg\min_{a \in \mathcal{A}} \int L(\vartheta, a) g_{\vartheta}(S) w(\vartheta) d\mu(\vartheta)$$

Bayes Test: Assume $H_0: \theta = \theta_0, H_1: \theta = \theta_1, L(\theta_0, a) := a,$ $L(\theta_1, a) := 1 - a, w(\theta_0) =: w_0, \text{ and } w(\theta_1) =: w_1 = 1 - w_0.$ Bayes test is then (for an arbitrary q):

$$\phi_{\text{Bayes}} = \begin{cases} 1 & \text{if } p_1/p_0 > w_0/w_1 \\ q & \text{if } p_1/p_0 = w_0/w_1 \\ 0 & \text{if } p_1/p_0 < w_0/w_1 \end{cases}$$

Extended Bayes Decision: T is called extended Bayes if there exists a sequence of prior densities $\{w_m\}_{m=1}^{\infty}$ such that $r_{w_m}(T) - \inf_{T'} r_{w_m}(T') \to 0$ as $m \to \infty$.

Bayes Estimator for Quadratic Loss: $L(\theta, a) := (\theta - a)^2$, then:

$$d_{\text{Bayes}}(X) = E(\theta \mid X)$$

For $T = E(\theta \mid X)$, the Bayes risk of an estimator T' is:

$$r_w(T') = E \operatorname{var}(\theta \mid X) + E(T - T')^2$$

Bayes Estimator/MAP/MLE: For $L(\theta,a) := 1\{|\theta-a| > c\}$ and c small, Bayes rule is approximately the maximum a posteriori estimator, which is equivalent to the MLE for a uniform prior. With quadratic loss, Bayes estimator is the expectation value of the posterior, whereas the MAP is the maximum.

Credibility Interval: A $(1 - \alpha)$ -credibility interval is:

$$I := \left[\hat{\theta}_L(X), \hat{\theta}_R(X)\right]$$

$$\int_{\hat{\theta}_L(X)}^{\hat{\theta}_R(X)} w(\vartheta \mid X) d\vartheta = (1 - \alpha)$$

Constructing Estimators

Minimaxity^{\mathcal{PR}}: Suppose T is a statistic with risk $R(\theta,T)=R(T)$ not depending on θ . Then:

- 1. T admissible $\Rightarrow T$ minimax
- 2. $T \text{ Bayes} \Rightarrow T \text{ minimax}$
- 3. T extended Bayes $\Rightarrow T$ minimax

Admissibility^{\mathcal{PR}}: Suppose T is Bayes for prior density w. Then 1. or 2. are sufficient for the admissibility:

- 1. T is unique Bayes $(r_w(T) = r_w(T'))$ implies $\forall \theta, T = T', P_{\theta}$ -almost surely)
- 2. For all T', $R(\theta, T')$ is continuous in θ and for all open $U \subset \Theta$, the prior probability $\int_U w(\vartheta) d\mu(\vartheta)$ of U is strictly positive.

Admissibility, Extended Bayes $^{\mathcal{PR}}$: Suppose T is extended Bayes and for all T', $R(\theta, T')$ is continuous in θ . Furthermore, with $\Pi_m(U) := \int_U w_m(\vartheta) d\mu_m(\vartheta)$ being the probability of U under the prior Π_m :

$$\frac{r_{w_m}(T) - \inf_{T'} r_{w_m}(T')}{\Pi_m(U)} \to 0$$

Then, T is admissible.

The Linear Model

Least Squares Estimator: Given (augmented) design matrix $X \in \mathbb{R}^{n \times p}$, the least squares estimator is the projection of Y on $\{Xb : b \in \mathbb{R}^p\}$:

$$\hat{\beta} := \arg\min_{b \in \mathbb{R}^p} \|Y - Xb\|_2^2$$

$$\hat{\beta} = \left(X^T X\right)^{-1} X^T Y$$

Distribution of the Least Square Estimator^{\mathcal{PR}}: For f = EY, let $\beta^* := (X^TX)^{-1} X^T f$ and $X\beta^*$ the best linear approximation of f. For $E\epsilon\epsilon^T = \sigma^2 I$, $\epsilon := Y - f$:

1.
$$E\hat{\beta} = \beta^*, \operatorname{Cov}(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$$

$$2. E \left\| X \left(\hat{\beta} - \beta^* \right) \right\|_2^2 = \sigma^2 p$$

3.
$$E\|X\hat{\beta} - f\|_2^2 = \sigma^2 p + \|X\beta^* - f\|_2^2$$

Least Squares Estimator Expectation \mathcal{PR} : When $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$, we have $\hat{\beta} - \beta^* \sim \mathcal{N}\left(0, \sigma^2 \left(X^T X\right)^{-1}\right)$ and $\frac{\|X(\hat{\beta}-\beta^*)\|_2^2}{\sigma^2} \sim \chi_p^2$ A test for $H_0: \beta = \beta_0$ is to reject H_0 when $\|X\left(\hat{\beta}-\beta^0\right)\|_2^2/\sigma_0^2 > G_p^{-1}(1-\alpha)$ where G_p is the distribution function of a χ_p^2 -distributed random variable.

Testing a Linear Hypothesis: $Y = X\beta + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ and we want to test $H_0: B\beta = 0$. Under H_0 , the following fraction is χ_q^2 -distributed:

$$\frac{\|Y - X\hat{\beta}_0\|_2^2 - \|Y - X\hat{\beta}\|_2^2}{\sigma^2}$$

Asymptotic Theory

We assume an estimator $T_n(X_1, \ldots, X_n)$ of γ is defined for all n, i.e. we consider a sequence of estimators.

Markov's/Chebyshev's Inequality: For all increasing functions $\psi : [0, \infty) \to [0, \infty)$:

$$\mathbb{P}\left(\|Z\| \ge \epsilon\right) \le \frac{\mathbb{E}\psi\left(\|Z\|\right)}{\psi(\epsilon)}$$

Almost Sure Convergence: Z_n converges almost surely to Z if

$$\mathbb{P}(\lim_{n\to\infty} Z_n = Z) = 1$$

Convergence in Probability: Z_n converges in probability to Z ($Z_n \xrightarrow{\mathbb{P}} Z$) if for all $\epsilon > 0$:

$$\lim_{n \to \infty} \mathbb{P}\left(\|Z_n - Z\| > \epsilon\right) = 0$$

Almost sure convergence implies convergence in probability, but not the other way around.

Convergence in Distribution: Z_n converges in distribution to Z ($Z_n \xrightarrow{\mathcal{D}} Z$) if for all continuous and bounded functions f:

$$\lim_{n \to \infty} \mathbb{E}f(Z_n) = \mathbb{E}f(Z)$$

Convergence in probability implies convergence in distribution, but not the other way around.

Portmanteau Theorem: The following statements are equivalent:

- 1. $Z_n \xrightarrow{\mathcal{D}} Z$ (i.e., $\mathbb{E}f(Z_n) \to \mathbb{E}f(Z) \forall f$ bounded and continuous)
- 2. $\mathbb{E}f(Z_n) \to \mathbb{E}f(Z) \forall f$ bounded and Lipschitz (f Lipschitz if for a constant C_L , $|f(z) f(\tilde{z})| \le C_L ||z \tilde{z}||$)
- 3. $\mathbb{E}f(Z_n) \to \mathbb{E}f(Z) \forall f$ bounded an Q-a.s. continuous (where Q is the distribution of Z).
- 4. $\mathbb{P}(Z_n \leq z) \to G(z)$ for all G-continuity points z (where $G = Q(Z \leq \cdot)$ is the distribution function of Z)

Cramér-Wold Device:

$$Z_n \xrightarrow{\mathcal{D}} Z \Leftrightarrow a^T Z_n \xrightarrow{\mathcal{D}} a^T Z \forall a \in \mathbb{R}^p$$

Slutsky's Theorem^{\mathcal{PR}}: Assume that $Z_n \xrightarrow{\mathcal{D}} Z, A_n \xrightarrow{\mathbb{P}} a$. Then:

$$A_n^T Z_n \xrightarrow{\mathcal{D}} a^T Z$$

Central Limit Theorem: Let $X_1, X_2, ...$ be i.i.d. with mean μ , variance σ^2 . Then:

$$\sqrt{n}\left(\bar{X}_n - \mu\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \sigma^2\right)$$

Stochastic Order Symbols: Let r_n be strictly positive random variables. $Z_n = \mathcal{O}_{\mathbf{P}}(1)$ (Z_n bounded in probability) if:

$$\lim_{M \to \infty} \limsup_{n \to \infty} \mathbb{P}(\|Z_n\| > M) = 0$$

 $Z_n = \mathcal{O}_{\mathbf{P}}(r_n)$ if $Z_n/r_n = \mathcal{O}_{\mathbf{P}}(1)$. When Z_n converges in distribution, $Z_n = \mathcal{O}_{\mathbf{P}}(1)$. If Z_n converges in probability to zero, $Z_n = o_{\mathbf{P}}(1)$ and $Z_n = o_{\mathbf{P}}(r_n)$ if $Z_n/r_n = o_{\mathbf{P}}(1)$.

Consistent Estimators: Sequence of estimators T_n is consistent if:

$$T_n \xrightarrow{\mathbb{P}_{\theta}} \gamma$$

Asymptotically Normal Estimators: Sequence of estimators T_n is asymptotically normal with covariance matrix V_{θ} :

$$\sqrt{n} (T_n - \gamma) \xrightarrow{\mathcal{D}_{\theta}} \mathcal{N} (0, V_{\theta})$$

Asymptotically Linear Estimators: Sequence of estimators T_n is asymptotically linear if for a (influence) function $l_{\theta}: \mathcal{X} \to \mathbb{R}^p$ with $E_{\theta}l_{\theta}(X) = 0$ and $E_{\theta}l_{\theta}(X)l_{\theta}^T(X) =: V_{\theta} < \infty$:

$$T_n - \gamma = \frac{1}{n} \sum_{i=1}^n l_\theta (X_i) + o_{\mathbf{P}_\theta} (1/\sqrt{n})$$

The δ -Technique: Let h be differentiable at c and suppose:

$$(T_n - c)/r_n \stackrel{\mathcal{D}}{\longrightarrow} Z$$

Then:

$$(h(T_n) - h(c)) / r_n \xrightarrow{\mathcal{D}} \dot{h}(c)^T Z$$
$$h(T_n) - h(c) = \dot{h}(c)^T (T_n - c) + o_{\mathbf{P}}(r_n)$$

For an asymptotically normal estimator of $\gamma = g(\theta)$ with asymptotic covariance matrix V_{θ} , $h(T_n)$ (h differentiable at γ) is an asymptotically normal estimator of $h(\gamma)$ with asymptotic variance:

$$\dot{h}(\gamma)^T V_{\theta} \dot{h}(\gamma)$$

If T_n is an asymptotically linear estimator of γ with influence function l_{θ} , $h(T_n)$ is an asymptotically linear estimator of $h(\gamma)$ with influence function $\dot{h}(\gamma)^T l_{\theta}$.

M-Estimators

For each $\gamma \in \Gamma$, ρ_{γ} is some loss function. The theoretical risk $\mathcal{R}(c) := E_{\theta} \rho_c(X)$ is minimized at the value $c = \gamma$ and if $c \mapsto \rho_c(x)$ is differentiable for all x, we write:

$$\psi_c(x) := \dot{\rho}_c(x) := \frac{\partial}{\partial c} \rho_c(x)$$

We then have $\dot{\mathcal{R}}(c) = E_{\theta}\psi_c(X)$ and $\dot{\mathcal{R}}(\gamma) = 0$. The empirical risk is defined as:

$$\hat{\mathcal{R}}_{n}(c) := \frac{1}{n} \sum_{i=1}^{n} \rho_{c}\left(X_{i}\right), c \in \Gamma$$

And the M-estimator $\hat{\gamma}_n$:

$$\hat{\gamma}_n := \arg\min_{c \in \Gamma} \frac{1}{n} \sum_{i=1}^n \rho_c(X_i) = \arg\min_{c \in \Gamma} \hat{\mathcal{R}}_n(c)$$

Assuming $\rho_c(x)$ is differentiable, the Z-estimator is $\hat{\mathcal{R}}_n(\hat{\gamma}_n) = 0$ with

$$\dot{\mathcal{R}}_n(c) = \frac{\partial}{\partial c} \frac{1}{n} \sum_{i=1}^n \rho_c(X_i) = \frac{1}{n} \sum_{i=1}^n \psi_c(X_i)$$

MLE as M-Estimator: With $\rho_{\tilde{\theta}}(x) = -\log p_{\tilde{\theta}}(x)$, the M-estimator is the Maximum Likelihood Estimator.

Conditions for Uniform Convergence $^{\mathcal{PR}}$: If Γ is compact, $c \mapsto \rho_c(x)$ is continuous for all x, and

$$E_{\theta}\left(\sup_{c\in\Gamma}|\rho_c|\right)<\infty$$

, we have uniform convergence.

Consistency of M-Estimators \mathcal{PR} : Suppose uniform convergence:

$$\sup_{c \in \Gamma} \left| \hat{\mathcal{R}}_n(c) - \mathcal{R}(c) \right| \to 0, \mathbb{P}_{\theta} - \text{a.s.}$$

Then:

$$\mathcal{R}(\hat{\gamma}_n) \to \mathcal{R}(\gamma), \mathbb{P}_{\theta} - \text{a.s.}.$$

If the minimizer γ of $\mathcal{R}(c)$ is well-separated, $\hat{\gamma}_n \to \gamma$, \mathbb{P}_{θ} -a.s... Well-separated means that for all $\epsilon > 0$:

$$\inf\{\mathcal{R}(c): c \in \Gamma, ||c - \gamma|| > \epsilon\} > \mathcal{R}(\gamma)$$

Consistency of a one-dimensional Z-Estimator^{PR}: Suppose $\Gamma \subset \mathbb{R}$, $\psi_c(x)$ continuous in c for all x, $P_{\theta} |\psi_c| < \infty, \forall c$, and that there is a δ s.t. $\dot{\mathcal{R}}(c) > 0, \gamma < c < \gamma + \delta$ and $\dot{\mathcal{R}}(c) < 0, \gamma - \delta < c < \gamma$. Then there is a consistent solution of $\dot{\hat{\mathcal{R}}}_n(\hat{\gamma}_n) = 0$.

Asymptotic Linearity of Z-Estimators \mathcal{PR} : Suppose $\hat{\gamma}_n$ is a consistent Z-estimator of γ and $|\nu_n(\gamma_n) - \nu_n(\gamma)| = o_{\mathbf{P}_{\theta}}(1)$ for all sequences $\gamma_n \to \gamma$ (asymptotically continuous at γ), where $\nu_n(c) = \sqrt{n} \left(\dot{\hat{\mathcal{R}}}_n(c) - \dot{\mathcal{R}}(c) \right)$. We assume

$$M_{\theta} := \left. \frac{\partial}{\partial c^T} \dot{\mathcal{R}}(c) \right|_{c=\gamma}$$

exists and is invertible, and $J_{\theta} := P_{\theta} \psi_{\gamma} \psi_{\gamma}^{T}$ exists. Then $\hat{\gamma}_{n}$ is asymptotically linear with influence function:

$$l_{\theta} = -M_{\theta}^{-1} \psi_{\gamma}$$

and
$$\sqrt{n} (\hat{\gamma}_n - \gamma) \xrightarrow{\mathcal{D}_{\theta}} \mathcal{N} (0, V_{\theta})$$
 with $V_{\theta} = M_{\theta}^{-1} J_{\theta} M_{\theta}^{-1}$.

If the map $c \mapsto \psi_c(x)$ is differentiable for all x and $\|\dot{\psi}_c(x) - \dot{\psi}_{\bar{c}}(x)\| \le H(x) \|c - \tilde{c}\|$ for all c, \tilde{c} in a neighborhood of γ with $P_{\theta}H < \infty$, the same result holds.

Asymptotic Normality of the MLE: Under regularity:

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \xrightarrow{\mathcal{D}_{\theta}} \mathcal{N}\left(0, I^{-1}(\theta)\right)$$

Asymptotic Relative Efficiency: Let $T_{n,1}$ and $T_{n,2}$ be two estimators of γ with:

$$\sqrt{n} \left(T_{n,j} - \gamma \right) \xrightarrow{\mathcal{D}_{\theta}} \mathcal{N} \left(0, V_{\theta,j} \right), j = 1, 2$$

Then the asymptotic relative efficiency of $T_{n,2}$ with respect to $T_{n,1}$ is:

$$\mathbf{e}_{2:1} := \frac{V_{\theta,1}}{V_{\theta,2}}$$

Asymptotic Pivots: A function $Z_n(\gamma) := Z_n(X_1, \ldots, X_n, \gamma)$ such that its asymptotic distribution does not depend on the unknown parameter θ , i.e.:

$$Z_n(\gamma) \xrightarrow{\mathcal{D}_{\theta}} Z, \quad \forall \theta$$

Given

$$\sqrt{n} (T_n - \gamma) \xrightarrow{\mathcal{D}_{\theta}} \mathcal{N} (0, V_{\theta}), \quad \forall \theta$$

, can be constructed:

1. If V_{θ} only depends on γ , i.e. $V_{\theta} = V(\gamma)$:

$$Z_{n,1}(\gamma) := n \left(T_n - \gamma \right)^T V(\gamma)^{-1} \left(T_n - \gamma \right) \sim \chi_p^2$$

2. If we have for all θ a consistent estimator \hat{V}_n of V_{θ} (e.g. $V_{\hat{\theta}_n}$ or $\hat{M}_n^{-1}\hat{J}_n\hat{M}_n^{-1}$):

$$Z_{n,2}(\gamma) := n (T_n - \gamma)^T \hat{V}_n^{-1} (T_n - \gamma) \sim \chi_n^2$$

3. For the MLE:

MLE Asymptotic Pivot:

$$Z_{n,3}(\theta) := 2\mathcal{L}_n\left(\hat{\theta}_n\right) - 2\mathcal{L}_n(\theta) :=$$

$$2\sum_{i=1}^n \left[\log p_{\hat{\theta}_n}\left(X_i\right) - \log p_{\theta}\left(X_i\right)\right] \sim \chi_p^2$$

MLE for the multinomial distribution: $P_{\theta}(X = j) := \pi_j, j = 1, \dots, k$.

$$\sum_{j=1}^{k} \frac{(N_j - n\pi_j)^2}{n\pi_j} \sim \chi_{k-1}^2$$

$$\sum_{j=1}^{k} \frac{(N_j - n\pi_j)^2}{N_j} \sim \chi_{k-1}^2$$

Likelihood Ratio Tests: Given $H_0: R(\theta) = 0$ where the R are q restrictions on θ , $\hat{\theta}_n$ is the unrestricted MLE and $\hat{\theta}_n^0$ the restricted one, we have under H_0 :

$$2\mathcal{L}_n\left(\hat{\theta}_n\right) - 2\mathcal{L}_n\left(\hat{\theta}_n^0\right) \xrightarrow{\mathcal{D}_\theta} \chi_q^2$$

Appendix

Derivatives

$$\frac{d}{dx}\frac{1}{x} = -\frac{1}{x^2}$$

$$\frac{d}{dx}\frac{x}{x+1} = \frac{1}{(x+1)^2}$$

Standardization Normal Distribution

When $X \sim \mathcal{N}(\mu, \sigma^2)$, $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$, i.e.

$$P(X \le x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

Showing Sufficiency

 $P_{\theta}(X = x \cap S = s)$ often simplifies to $P_{\theta}(X = x)$, S(x) = s because $\{X = x\} \subseteq \{S = s\}$.

Proofs

Factorization Theorem of Neyman. We assume the discrete case where X only takes the For the second derivative, we get by applying the quotient rule (to the first derivative): values $a_1, a_2, \dots \forall \theta$. $Q_{\theta}(s)$ is the distribution of S:

$$Q_{\theta}(s) := \sum_{j: S(a_j) = s} P_{\theta}(X = a_j)$$

The conditional distribution of X, given S is then:

$$P_{\theta}(X = x \mid S = s) = \frac{P_{\theta}(X = x \cap S = s)}{P(S = s)} = \frac{P_{\theta}(X = x)}{Q_{\theta}(s)}, \ S(x) = s$$

Where $P_{\theta}(X = x \cap S = s) = P_{\theta}(X = x)$, S(x) = s since the event $\{X = x\}$, S(x) = s is a subset of $\{S = s\}$.

 \Rightarrow : If S is sufficient for θ , $P_{\theta}(X=x\mid S=s)$ does not depend on θ per definition, but is only a function of x, say h(x). Therefore (with $g_{\theta}(s) = Q_{\theta}(S=s)$):

$$P_{\theta}(X=x) = P_{\theta}(X=x \mid S=s)Q_{\theta}(S=s) = h(x)g_{\theta}(s)$$

 \Leftarrow : We can write $p_{\theta}(x) = g_{\theta}(S(x))h(x)$, inserting this into $Q_{\theta}(s)$ gives:

$$Q_{\theta}(s) = g_{\theta}(s) \sum_{j: S(a_j) = s} h(a_j)$$

Replacing both $p_{\theta}(x)$ and $Q_{\theta}(s)$ in the formula for $P_{\theta}(X=x\mid S=s)$, we get:

$$P_{\theta}(X = x \mid S = s) = \frac{h(x)}{\sum_{j:S(a_j)=s} h(a_j)}$$

Which does not depend on θ .

Expectation/Covariance of Sufficient Statistic for Exponential Families: By the definition of $d(\theta)$, we have:

$$\dot{d}(\theta) = \frac{\partial}{\partial \theta} \log \left(\int \exp[\theta^{\mathsf{T}} T(x)] h(x) d\nu(x) \right)$$

Evaluating this derivative and taking the derivative inside the integral in the numerator:

$$\frac{\int \exp[\theta^{\mathsf{T}} T(x)] T(x) h(x) d\nu(x)}{\int \exp[\theta^{\mathsf{T}} T(x)] h(x) d\nu(x)}$$

The denominator is equal to $e^{d(\theta)}$, we can therefore take it inside the exp:

$$\int \exp[\theta^{\mathsf{T}} T(x) - d(\theta)] T(x) h(x) d\nu(x)$$

Where we can use the definition of $p_{\theta}(x)$:

$$\int p_{\theta}(x)T(x)d\nu(x) = E_{\theta}T(X)$$

$$\ddot{d}(\theta) = \frac{\int \exp[\theta^{\mathsf{T}} T] T T^{\mathsf{T}} h d\nu}{\int \exp[\theta^{\mathsf{T}} T] h d\nu} - \frac{(\int \exp[\theta^{\mathsf{T}} T] T h d\nu) (\int \exp[\theta^{\mathsf{T}} T] T h d\nu)^{\mathsf{T}}}{(\int \exp[\theta^{\mathsf{T}} T] h d\nu)^2}$$

Again using that the denominator is equal to $e^{d(\theta)}$ and $e^{d(\theta)}e^{d(\theta)}$:

$$\int \exp\left[\theta^{\mathsf{T}}T - d(\theta)\right] T T^{\mathsf{T}} h d\nu - \left(\int \exp\left[\theta^{\mathsf{T}}T - d(\theta)\right] T h d\nu\right) \times \left(\int \exp\left[\theta^{\mathsf{T}}T - d(\theta)\right] T^{\mathsf{T}} h d\nu\right)$$

Using the definition of $p_{\theta}(x)$:

$$\int TT^{\mathsf{T}} p_{\theta} d\nu - \left(\int T p_{\theta} d\nu \right) \left(\int T^{\mathsf{T}} p_{\theta} d\nu \right) = E_{\theta} T(X) T^{\mathsf{T}}(X) - \left(E_{\theta} T(X) \right) \left(E_{\theta} T^{\mathsf{T}}(X) \right)$$

Which is the definition of $Cov_{\theta}(T(X))$.

Bias/Variance Decomposition: With $E_{\theta} := q(\theta)$

$$E_{\theta}(T - g(\theta))^{2} = E_{\theta} \left((T - q(\theta)) + (q(\theta) - g(\theta)) \right)^{2} = \underbrace{E_{\theta}(T - q(\theta))^{2}}_{= \operatorname{var}_{\theta}(T)} + \underbrace{(q(\theta) - g(\theta))^{2}}_{= \operatorname{bias}_{\theta}^{2}(T)} + 2(q(\theta) - g(\theta)) \underbrace{E_{\theta}(T - q(\theta))}_{= 0}$$

Neyman Pearson Lemma:

$$R(\theta_{1}, \phi_{\text{NP}}) - R(\theta_{1}, \phi) = 1 - E_{\theta_{1}}\phi_{\text{NP}}(X) - (1 - E_{\theta_{1}}\phi(X)) = E_{\theta_{1}}\phi(X) - E_{\theta_{1}}\phi_{\text{NP}}(X)$$

$$= \int (\phi - \phi_{\text{NP}})p_{1} = \int_{p_{1}/p_{0} > c} (\phi - \phi_{\text{NP}}) p_{1} + \int_{p_{1}/p_{0} = c} (\phi - \phi_{\text{NP}}) p_{1} + \int_{p_{1}/p_{0} < c} (\phi - \phi_{\text{NP}}) p_{1}$$

When $p_1/p_0 > c$, $p_1 > c \times p_0$ and $\phi_{\rm NP} = 1$ per definition, therefore $(\phi - \phi_{\rm NP}) \leq 0$. On the other hand, when $p_1/p_0 < c$, $p_1 < c \times p_0$ and $\phi_{\rm NP} = 0$ per definition, therefore $(\phi - \phi_{\rm NP}) \ge 0$. Putting this together, we get:

$$\leq c \int_{p_1/p_0 > c} (\phi - \phi_{\text{NP}}) p_0 + c \int_{p_1/p_0 = c} (\phi - \phi_{\text{NP}}) p_0 + c \int_{p_1/p_0 < c} (\phi - \phi_{\text{NP}}) p_0$$

$$= c \left[R (\theta_0, \phi) - R (\theta_0, \phi_{\text{NP}}) \right]$$

One Sided UMP Test: When we only consider testing $H_0: \theta = c$, $H_1: \theta = c$, it follows Assume that T' is a statistic with $\sup_{\theta} R(\theta, T') < R(T)$. We then have from the Neyman Pearson Lemma, that $\phi = \phi_{\rm NP}$ is the most powerful test at level α . Its power is $\beta(\theta_1)$ with $\beta(\theta) := E_{\theta}\phi(T)$, i.e. $E_{\theta_1}\phi(T)$.

The construction of the test ϕ is independent of the value c_{-} (as long as it is smaller), the test is therefore also uniformly most powerful for the alternative $H_1: \theta < c$.

When $\theta_1 < \theta_0$, small values of T are more likely under P_{θ_0} , than under P_{θ_0} . $\beta(\theta)$ is therefor a decreasing function of θ . The level is per definition the sup for all $\theta \in \Theta_0$, therefore $\sup_{\theta > \frac{1}{2}} \beta(\theta) = \beta(\frac{1}{2}) = \alpha$. This implies that every other test ϕ' with level α has to have $\beta(\frac{1}{2}) = \alpha$, which makes ϕ UMP by the Neyman Pearson Lemma.

Rao-Blackwell Lemma: By Jensen's inequality:

$$E(L(\theta, d(X)) \mid S = s) \ge L(\theta, E(d(X) \mid S = s)) = L(\theta, d'(s))$$

Applying the iterated expectation lemma gives:

$$R(\theta, d) = E_{\theta}L(\theta, d(X)) = E_{\theta}E(L(\theta, d(X)) \mid S) \ge E_{\theta}L(\theta, d'(S))$$

Basu's Lemma: Let A be some measurable set and define:

$$h(T) := P(Y \in A \mid T) - P(Y \in A)$$

Y does not depend on θ by assumption and Y | T by sufficiency (if one of the variables would depend on θ , we could not apply the iterated expectation lemma for all θ). By the iterated expectation lemma:

$$E_{\theta}H(T) = E_{\theta}[E(\mathbb{1}_{Y \in A} \mid T) - P(Y \in A)] = P(Y \in A) - P(Y \in A) = 0, \forall \theta$$

The completeness of T now implies that h(T) = 0, P_{θ} -a.s., $\forall \theta$. Therefore for an arbitrary A:

$$P(Y \in A \mid T) = P(Y \in A), P_{\theta} - \text{a.s.}, \forall \theta$$

Minimaxity: (i): When T is admissible, there is for all T' either a θ with $R(\theta, T') > R(T)$ or $R(\theta, T') > R(T)$ for all θ . Therefore, $\sup_{\theta} R(\theta, T') > R(T)$.

(ii): For any T', Bayes risk is bounded by the supremum risk:

$$r_{w}\left(T'\right) = \int R\left(\vartheta, T'\right) w(\vartheta) d\mu(\theta) \le \int \sup_{\vartheta} R\left(\vartheta, T'\right) w(\vartheta) d\mu(\theta) = \sup_{\vartheta} R\left(\vartheta, T'\right)$$

$$r_w(T') \le \sup_{\vartheta} R(\vartheta, T') < R(T) = r_w(T)$$

which is a contradiction, as T is Bayes.

(iii): We assume that a Bayes decision T_m for the prior w_m exists for all m, i.e. $r_{w_m}(T_m) =$ $\inf_{T'} r_{w_m}(T'), m = 1, 2, \dots$ Because T is extended Bayes, for all $\epsilon > 0$, there exists an m such that:

$$R(T) = r_{w_m}(T) \le r_{w_m}(T_m) + \epsilon \le r_{w_m}(T') + \epsilon \le \sup_{\theta} R(\theta, T') + \epsilon$$

Where we used again that Bayes risk is bounded by supremum risk.

Admissibility: (i): Assume that for some T', $R(\theta,T') \leq R(\theta,T)$ for all θ . Then also $r_w(T') \le r_w(T)$ and because T is Bayes, $r_w(T') = r_w(T)$. Because T is the unique Bayes decision per assumption, T' and T are equal P_{θ} -a.s. and therefore $R(\theta, T') = R(\theta, T)$, i.e. T' is not strictly better than T.

(ii): Suppose T is inadmissible, i.e. there is some T' such that $R(\theta, T') \leq R(\theta, T)$ for all θ and $R(\theta_0, T') < R(\theta_0, T)$ for some θ_0 . This implies that for some $\epsilon > 0$ and some open neighborhood $U \subset \Theta$ of θ_0 , $R(\vartheta, T') \leq R(\vartheta, T) - \epsilon, \vartheta \in U$. Then:

$$\begin{split} r_w\left(T'\right) &= \int_{U} R\left(\vartheta, T'\right) w(\vartheta) d\nu(\vartheta) + \int_{U^c} R\left(\vartheta, T'\right) w(\vartheta) d\nu(\vartheta) \\ &\leq \int_{U} R(\vartheta, T) w(\vartheta) d\nu(\vartheta) - \epsilon \Pi(U) + \int_{U^c} R(\vartheta, T) w(\vartheta) d\nu(\vartheta) = r_w(T) - \epsilon \Pi(U) < r_w(T) \end{split}$$

Which is a contradiction as T is Bayes.

Admissibility, Extended Bayes: As in the previous proof, we can arrive at $r_{w_m}(T') \leq$ $r_{w_m}(T) - \epsilon \Pi_m(U)$ which is no contradiction on its own because T is extended Bayes. If we assume that a Bayes decision T_m for the prior w_m exists for all m, i.e. $r_{w_m}(T_m) =$ $\inf_{T'} r_{w_m}(T'), m = 1, 2, \ldots$, we have for all m:

$$r_{w_m}(T_m) \le r_{w_m}(T') \le r_{w_m}(T) - \epsilon \Pi_m(U)$$

This can be rewritten to arrive again at a contradiction:

$$\frac{r_{w_m}(T) - r_{w_m}(T_m)}{\Pi_m(U)} \ge \epsilon > 0$$

Admissible Estimators of the Normal Mean: (\Leftarrow) (i): For quadratic loss, the Bayes estimator is $E(\theta \mid X)$. If we take $\theta \sim \mathcal{N}(c, \tau^2)$ as a prior, the Bayes estimator is therefore $\frac{\tau^2 X + c}{\tau^2 + 1}$. If we set $\frac{\tau^2}{\tau^2 + 1} = a$, $\frac{c}{\tau^2 + 1} = b$, T is Bayes for the normal prior. We need to show that T is unique such that the admissibility follows from (i) of the Admissibility Lemma: For quadratic loss and $T = E(\theta \mid X)$, we have $r_w(T') = E \operatorname{var}(\theta \mid X) + E(T - T')^2$. Therefore, if $r_w(T') = r_w(T) = E \operatorname{var}(\theta \mid X)$, we have $E(T - T')^2 = 0$, which implies T = T' (P-a.s. which implies P_θ -a.s., where P is the measure with θ integrated out). Therefore, T is unique and admissible.

(\Leftarrow) (ii): T = X, $R(\theta, T) = 1$ by the bias-variance decomposition and therefore $r_w(T) = 1$ for any prior. For $w_m \sim \mathcal{N}(0, m)$, the Bayes estimator is $T_m = \frac{m}{m+1}X$ and applying the bias-variance decomposition gives:

$$R(\theta, T_m) = \frac{m^2}{(m+1)^2} + \left(\frac{m}{m+1} - 1\right)^2 \theta^2 = \frac{m^2}{(m+1)^2} + \frac{\theta^2}{(m+1)^2}$$

With $E\theta^2 = m$:

$$r_{w_m}(T_m) = ER(\theta, T_m) = \frac{m^2}{(m+1)^2} + \frac{m}{(m+1)^2} = \frac{m}{m+1}$$

Therefore $r_{w_m}(T) - r_{w_m}(T_m) = 1 - \frac{m}{m+1} = \frac{1}{m+1} \to 0$, i.e. T is extended Bayes. Furthermore, for m sufficiently large (considering open intervals U = (u, u + h)), $\Pi_m(U) \geq \frac{1}{4\sqrt{m}}h$ and therefore $\frac{r_{w_m}(T) - r_{w_m}(T_m)}{\Pi_m(U)} \leq \frac{4}{h\sqrt{m}}$. This allows application of the Admissibility Lemma for extended Bayes estimators.

(⇒): We have to show that if (i) or (ii) do not hold, T is not admissible. If (i) does not hold, a > 1, $R(\theta, aX + b) \ge \text{var}(aX + b) > 1 = R(\theta, X)$ (using the bias-variance decomposition). If (ii) does not hold, a = 1 and $b \ne 0$, and we have $R(\theta, X + b) = 1 + b^2 > 1 = R(\theta, X)$. \square

Distribution of the Least Squares Estimator: i)

$$\hat{\beta} - \beta^* = (X^T X)^{-1} X^T (Y - f) = \underbrace{(X^T X)^{-1} X^T}_{:=A} \epsilon$$

Therefore, $E(\hat{\beta} - \beta^*) = AE\epsilon = 0$ and $Cov(\hat{\beta}) = Cov(A\epsilon) = ACov(\epsilon)A^T = \sigma^2 AA^T = \sigma^2 (X^T X)^{-1} X^T X (X^T X)^{-1} = \sigma^2 (X^T X)^{-1}$ ii) With the projection $PP^T := X(X^T X)^{-1} X^T$

$$\left\| X \left(\hat{\beta} - \beta^* \right) \right\|_2^2 = \left\| X (X^T X)^{-1} X^T \epsilon \right\|_2^2 = \left\| P P^T \epsilon \right\|_2^2 = (\epsilon^T P P^T) (P P^T \epsilon)$$

As projections are idempotent, this is equal to $\epsilon^T P P^T \epsilon = V^T V =: \sum_{j=1}^p V_j^2$ with $V := P^T \epsilon$, $EV = P^T E \epsilon = 0$ and $Cov(V) = P^T Cov(\epsilon) P = \sigma^2 I$ (where we used $P^T P = I$, which can be derived by the idempotence of the projection). Now we have: $E \sum_{j=1}^p V_j^2 = \sum_{j=1}^p E V_j^2 = \sigma^2 p$

iii) By Pythagoras' rule:

$$\|X\hat{b} - f\|_{2}^{2} = \|X(\hat{b} - \beta^{*}) + (X\beta^{*} - f)\|_{2}^{2} = \|X(\hat{b} - \beta^{*})\|_{2}^{2} + \|X\beta^{*} - f\|_{2}^{2}$$

Since $X(\hat{b}-\beta^*)=PP^T\epsilon$ is in the column space of X and $X\beta^*-f=PP^Tf-f$ is orthogonal to the column space.

Least Square Estimator Expectation: i) As shown in the previous proof, $\hat{\beta} - \beta^*$ is a linear combination of ϵ and therefore also normally distributed if ϵ is.

ii) As in the previous proof,

$$\left\| X \left(\hat{\beta} - \beta^* \right) \right\|_2^2 = \sum_{j=1}^p V_j^2$$

with $V_j \sim \mathcal{N}(0, \sigma^2)$.

Slutsky's Theorem: Take a bounded Lipschitz function f:

$$|f| \le C_B, |f(z) - f(\tilde{z})| \le C_L ||z - \tilde{z}||$$

By Cauchy Schwarz:

$$\begin{aligned} \left| \mathbb{E}f \left(A_n^T Z_n \right) - \mathbb{E}f \left(a^T Z \right) \right| &= \left| \mathbb{E}f \left(A_n^T Z_n \right) - \mathbb{E}f \left(a^T Z_n \right) + \mathbb{E}f \left(a^T Z_n \right) - \mathbb{E}f \left(a^T Z \right) \right| \\ &\leq \left| \mathbb{E}f \left(A_n^T Z_n \right) - \mathbb{E}f \left(a^T Z_n \right) \right| + \left| \mathbb{E}f \left(a^T Z_n \right) - \mathbb{E}f \left(a^T Z \right) \right| \end{aligned}$$

The function $z \mapsto f(a^t z)$ is bounded and Lipschitz (with constant $||a||C_L$), it therefore follows from the Portmanteau Theorem that the second term goes to zero. For the first term, we define $S_n := \{||Z_n|| \le M, ||A_n - a|| \le \epsilon\}$ and apply Jensen's inequality:

$$\left| \mathbb{E} f \left(A_n^T Z_n \right) - \mathbb{E} f \left(a^T Z_n \right) \right| \leq \mathbb{E} \left| f \left(A_n^T Z_n \right) - f \left(a^T Z_n \right) \right|$$

$$= \mathbb{E} \left| f \left(A_n^T Z_n \right) - f \left(a^T Z_n \right) \right| \mathbb{1} \left\{ S_n \right\} + \mathbb{E} \left| f \left(A_n^T Z_n \right) - f \left(a^T Z_n \right) \right| \mathbb{1} \left\{ S_n^c \right\}$$

$$\leq C_L \epsilon M + 2C_B \mathbb{P} \left(S_n^c \right)$$

We have $\mathbb{P}(S_n^c) \leq \mathbb{P}(\|Z_n\| > M) + \mathbb{P}(\|A_n - a\| > \epsilon)$ and can therefore make both terms arbitrary small by choosing ϵ small and n and M large.

Consistency of M-Estimators: As the theoretical risk is minimized at γ , we have $P_{\theta}(\rho_{\hat{\gamma}_n} - \rho_{\gamma}) \geq 0$. Subtracting and adding $\hat{P}_n(\rho_{\hat{\gamma}_n} - \rho_{\gamma})$, we get:

$$0 \le P_{\theta} \left(\rho_{\hat{\gamma}_n} - \rho_{\gamma} \right) = - \left(\hat{P}_n - P_{\theta} \right) \left(\rho_{\hat{\gamma}_n} - \rho_{\gamma} \right) + \hat{P}_n \left(\rho_{\hat{\gamma}_n} - \rho_{\gamma} \right)$$

As $\hat{\gamma}_n$ minimizes the empirical risk, $\hat{P}_n (\rho_{\hat{\gamma}_n} - \rho_{\gamma})$ is negative, therefore:

$$\leq -\left(\hat{P}_{n}-P_{\theta}\right)\left(\rho_{\hat{\gamma}_{n}}-\rho_{\gamma}\right)\leq\left|\left(\hat{P}_{n}-P_{\theta}\right)\rho_{\hat{\gamma}_{n}}\right|+\left|\left(\hat{P}_{n}-P_{\theta}\right)\rho_{\gamma}\right|$$

Both terms are smaller than the supremum, so we get:

$$\leq \sup_{c \in \Gamma} \left| \left(\hat{P}_n - P_{\theta} \right) \rho_c \right| + \left| \left(\hat{P}_n - P_{\theta} \right) \rho_{\gamma} \right| \leq 2 \sup_{c \in \Gamma} \left| \left(\hat{P}_n - P_{\theta} \right) \rho_c \right|$$

Which goes to 0 by assumption, i.e. $0 \le P_{\theta} (\rho_{\hat{\gamma}_n} - \rho_{\gamma}) \le 0$.

Consistency of a one-dimensional Z-Estimator: Let $0 < \epsilon < \delta$ be arbitrary. By the law of large numbers, \mathbb{P}_{θ} -a.s. for n sufficiently large:

$$\dot{\hat{\mathcal{R}}}_n(\gamma + \epsilon) > 0, \quad \dot{\hat{\mathcal{R}}}_n(\gamma - \epsilon) < 0$$

Because of the continuity of $c \mapsto \psi_c$, $\dot{\hat{\mathcal{R}}}_n(\hat{\gamma}_n) = 0$ for some $|\hat{\gamma}_n - \gamma| < \epsilon$, i.e. $\hat{\gamma}_n$ gets arbitrarily close to γ .

Asymptotic Linearity of Z-Estimators: We have by definition $\hat{\mathcal{R}}_n(\hat{\gamma}_n) = 0, \dot{\mathcal{R}}(\gamma) = 0$. Using the definition of ν_n , we arrive at:

$$0 = \dot{\hat{\mathcal{R}}}_n(\hat{\gamma}_n) = \nu_n(\hat{\gamma}_n) / \sqrt{n} + \dot{\mathcal{R}}(\hat{\gamma}_n) = \nu_n(\hat{\gamma}_n) / \sqrt{n} + \dot{\mathcal{R}}(\hat{\gamma}_n) - \dot{\mathcal{R}}(\gamma)$$

Because $\hat{\gamma}_n \to \gamma$, we can use the asymptotic continuity and definition of ν_n :

$$\nu_n\left(\hat{\gamma}_n\right)/\sqrt{n} = \nu_n(\gamma)/\sqrt{n} + o_{\mathbf{P}_{\theta}}(1/\sqrt{n}) = \dot{\hat{\mathcal{R}}}_n(\gamma) + \dot{R}(\gamma) + o_{\mathbf{P}_{\theta}}(1/\sqrt{n}) = \dot{\hat{\mathcal{R}}}_n(\gamma) + o_{\mathbf{P}_{\theta}}(1/\sqrt{n})$$

We assume $\hat{R}(c)$ is differentiable at $c = \gamma$ and can therefore perform a Taylor expansion:

$$\dot{\mathcal{R}}(\hat{\gamma}_n) - \dot{\mathcal{R}}(\gamma) = M_{\theta}(\hat{\gamma}_n - \gamma) + o(\|\hat{\gamma}_n - \gamma\|)$$

Putting those two results together, we get:

$$0 = \dot{\hat{\mathcal{R}}}_n(\gamma) + o_{\mathbf{P}_{\theta}}(1/\sqrt{n}) + M_{\theta}(\hat{\gamma}_n - \gamma) + o(\|\hat{\gamma}_n - \gamma\|)$$

By the CLT, $\dot{\mathcal{R}}_n(\gamma) = \mathcal{O}_{\mathbf{P}_{\theta}}(1/\sqrt{n})$ and we have $-\dot{\mathcal{R}}_n(\gamma) = o_{\mathbf{P}_{\theta}}(1/\sqrt{n}) + M_{\theta}(\hat{\gamma}_n - \gamma) + o(\|\hat{\gamma}_n - \gamma\|)$. $o_{\mathbf{P}_{\theta}}(1/\sqrt{n})$ and $o(\|\hat{\gamma}_n - \gamma\|)$ is negligible compared to $M_{\theta}(\hat{\gamma}_n - \gamma)$ (which is $\mathcal{O}_{\mathbf{P}_{\theta}}(\|\hat{\gamma}_n - \gamma\|)$ as division by $\|\hat{\gamma}_n - \gamma\|$ results in a constant). Therefore, we can conclude that $\|\hat{\gamma}_n - \gamma\| = \mathcal{O}_{\mathbf{P}_{\theta}}(1/\sqrt{n})$ (otherwise the equality would not hold). Now that we know the rate of $\|\hat{\gamma}_n - \gamma\|$, we can conclude:

$$0 = \dot{\hat{\mathcal{R}}}_n(\gamma) + M_\theta \left(\hat{\gamma}_n - \gamma \right) + o_{\mathbf{P}_\theta} (1/\sqrt{n})$$

Which we can rewrite (using $\dot{\hat{\mathcal{R}}}_n(\gamma) = \hat{P}_n \psi_{\gamma}$ as:

$$(\hat{\gamma}_n - \gamma) = -\hat{P}_n M^{-1} \psi_{\gamma} + o_{\mathbf{P}_{\theta}} (1/\sqrt{n})$$

Conditions for Uniform Convergence: We define for $\delta > 0$ and $c \in \Gamma$:

$$w(\cdot, \delta, c) := \sup_{\tilde{c} \in \Gamma: \|\tilde{c} - c\| < \delta} |\rho_{\tilde{c}} - \rho_{c}|$$

Because of the continuity of ρ_c , for all x as $\delta \to 0$, $w(x, \delta, c) \to 0$. The dominated convergence theorem implies $P_{\theta}w(\cdot, \delta, c) \to 0$, therefore there is for all $\epsilon > 0$ a δ_c such that $P_{\theta}w(\cdot, \delta_c, c) \leq \epsilon$. We define balls around c as follows:

$$B_c := \{ \tilde{c} \in \Gamma : \|\tilde{c} - c\| < \delta_c \}$$

Because of the compactness of Γ , there exists finite sub-covering B_{c_1}, \ldots, B_{c_N} . By definition of w, δ_{c_i} , and B_{c_i} , we have:

$$\left| \rho_c - \rho_{c_j} \right| \le w\left(\cdot, \delta_{c_j}, c_j \right)$$

We can now bound the supremum of the empirical/theoretical difference by the maximal difference of a ball centroid and the maximal difference of points to their centroid (i.e. $|\rho_c - \rho_{c_j}|$, which is bounded by w):

$$\sup_{c \in \Gamma} \left| \left(\hat{P}_n - P_{\theta} \right) \rho_c \right| \leq \max_{1 \leq j \leq N} \left| \left(\hat{P}_n - P_{\theta} \right) \rho_{c_j} \right| + \max_{1 \leq j \leq N} \hat{P}_n w \left(\cdot, \delta_{c_j}, c_j \right) + \max_{1 \leq j \leq N} P_{\theta} w \left(\cdot, \delta_{c_j}, c_j \right)$$

Because we are considering a finite number of balls, the first term converges to 0 by the law of large numbers and the second to $P_{\theta}w\left(\cdot,\delta_{c_j},c_j\right)$. So the whole term converges to

$$2 \max_{1 \le j \le N} P_{\theta} w \left(\cdot, \delta_{c_j}, c_j \right) \le 2\epsilon, \mathbb{P}_{\theta} - \text{a.s.}.$$