Implementation III

Objectives

- Survey Line Drawing Algorithms
 - DDA
 - Bresenham

Rasterization

- Rasterization (scan conversion)
 - Determine which pixels that are inside primitive specified by a set of vertices
 - Produces a set of fragments
 - Fragments have a location (pixel location) and other attributes such color and texture coordinates that are determined by interpolating values at vertices
- Pixel colors determined later using color, texture, and other vertex properties

Scan Conversion of Line Segments

 Start with line segment in window coordinates with integer values for endpoints

y = mx + h

Assume implementation has a

$$m = \frac{\Delta y}{\Delta x}$$

DDA Algorithm

- <u>Digital Differential Analyzer</u>
 - DDA was a mechanical device for numerical solution of differential equations
 - Line y=mx+ h satisfies differential equation $dy/dx = m = \Delta y/\Delta x = y_2-y_1/x_2-x_1$
- Along scan line $\Delta x = 1$

```
For(x=x1; x<=x2,ix++) {
   y+=m;
   write_pixel(x, round(y), line_color)
}</pre>
```

Problem

- DDA = for each x plot pixel at closest y
 - Problems for steep lines

Using Symmetry

- Use for $1 \ge m \ge 0$
- For m > 1, swap role of x and y
 - For each y, plot closest x

Bresenham's Algorithm

- DDA requires one floating point addition per step
- We can eliminate all fp through Bresenham's algorithm
- Consider only $1 \ge m \ge 0$
 - Other cases by symmetry
- Assume pixel centers are at half integers
- If we start at a pixel that has been written, there are only two candidates for the next pixel to be written into the frame buffer

Candidate Pixels

 $1 \ge m \ge 0$

passed through any part of this pixel

Decision Variable

$$d = \Delta x(b-a)$$

d is an integerd > 0 use upper pixeld < 0 use lower pixel

Incremental Form

• More efficient if we look at d_k , the value of the decision variable at x=k

$$d_{k+1} = d_k + 2\Delta y$$
, if $d_k < 0$
 $d_{k+1} = d_k + 2(\Delta y - \Delta x)$, otherwise

- •For each x, we need do only an integer addition and a test
- Single instruction on graphics chips

Example

• Consider line from (20,10) to (30,18)

$$\Delta x = 10$$
,

$$\Delta y = 8$$
,

$$2\Delta y = 16$$

$$2(\Delta y - \Delta x) = -4$$

$$d = 2\Delta y - \Delta x = 6$$

d	x	у
6	21	11
2	22	12
-2	23	12
14	24	13
10	25	14
6	26	15
2	27	16
-2	28	16
14	29	17
10	30	18

Polygon Scan Conversion

- Scan Conversion = Fill
- How to tell inside from outside
 - Convex easy
 - Nonsimple difficult
 - Odd even test
 - Count edge crossings
 - Winding number

odd-even fill

Winding Number

Count clockwise encirclements of point

 Alternate definition of inside: inside if winding number ≠ 0

Filling in the Frame Buffer

- Fill at end of pipeline
 - Convex Polygons only
 - Nonconvex polygons assumed to have been tessellated
 - Shades (colors) have been computed for vertices (Gouraud shading)
 - Combine with z-buffer algorithm
 - March across scan lines interpolating shades
 - Incremental work small

Using Interpolation

 $C_1 C_2 C_3$ specified by **glColor** or by vertex shading C_4 determined by interpolating between C_1 and C_2 C_5 determined by interpolating between C_2 and C_3 interpolate between C_4 and C_5 along span

Flood Fill

- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)

```
flood_fill(int x, int y) {
    if(read_pixel(x,y) = = WHITE) {
        write_pixel(x,y,BLACK);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y+1);
        flood_fill(x, y-1);
}
```

Scan Line Fill

- Can also fill by maintaining a data structure of all intersections of polygons with scan lines
 - Sort by scan line

- Fill each span

vertex order generated by vertex list

desired order

Data Structure

Aliasing

Ideal rasterized line should be 1 pixel wide

 Choosing best y for each x (or visa versa) produces aliased raster lines

Antialiasing by Area Averaging

 Color multiple pixels for each x depending on coverage by ideal line

magnified

Polygon Aliasing

Aliasing problems can be serious for polygons

- Jaggedness of edges
- Small polygons neglected
- Need compositing so color of one polygon does not totally determine color of pixel

All three polygons should contribute to color