

OCR A Level Physics

Scalars & Vectors

Contents

- * Scalars & Vectors
- * Combining Vectors
- * Resolving Vectors

Scalars & Vectors

Your notes

Scalars & Vectors

- All quantities can be one of two types:
 - a scalar
 - a vector

Scalars

- Scalars are quantities that have **magnitude** but not direction
 - For example, mass is a scalar quantity because it has magnitude but no direction

Vectors

- Vectors are quantities that have both magnitude and direction
 - For example, weight is a vector quantity because it is a force and has both magnitude and direction

Distance and displacement

- Distance is a measure of how far an object has travelled, regardless of direction
 - Distance is the total length of the path taken
 - Distance, therefore, has a **magnitude** but **no direction**
 - So, distance is a **scalar** quantity
- Displacement is a measure of how far it is between two points in space, including the direction
 - Displacement is the length and direction of a straight line drawn from the starting point to the finishing point
 - Displacement, therefore, has a **magnitude** and a **direction**
 - So, displacement is a **vector** quantity

What is the difference between distance and displacement?

Displacement is a vector quantity while distance is a scalar quantity

- When a student travels to school, there will probably be a difference in the distance they travel and their displacement
 - The **overall distance** they travel includes the total lengths of all the roads, including any twists and turns
 - The **overall displacement** of the student would be a straight line between their home and school, regardless of any obstacles, such as buildings, lakes or motorways, along the way

Speed and velocity

- Speed is a measure of the distance travelled by an object per unit time, regardless of the direction
 - The speed of an object describes how fast it is moving, but **not** the direction it is travelling in
 - Speed, therefore, has **magnitude** but **no direction**
 - So, speed is a **scalar** quantity
- Velocity is a measure of the displacement of an object per unit time, including the direction
 - The velocity of an object describes how fast it is moving **and** which direction it is travelling in

- An object can have a **constant speed** but a **changing velocity** if the object is **changing direction**
- Velocity, therefore, has **magnitude and direction**
- So, velocity is a **vector** quantity

Examples of scalars & vectors

• The table below lists some common examples of scalar and vector quantities

Table of scalars and vectors

Scalars	Vectors
distance	displacement
speed	velocity
mass	acceleration
time	force
energy	momentum
volume	
density	
pressure	
electric charge	
temperature	

Combining Vectors

Your notes

Combining Vectors

- Vectors are represented by an arrow
 - The arrowhead indicates the **direction** of the vector
 - The length of the arrow represents the **magnitude**
- Vectors can be combined by adding or subtracting them to produce the resultant vector
 - The resultant vector is sometimes known as the 'net' vector (eg. the net force)
- There are two methods that can be used to add vectors
 - Calculation if the vectors are perpendicular
 - Scale drawing if the vectors are not perpendicular

Vector Calculation

- Vector calculations will be limited to two vectors at right angles
- This means the combined vectors produce a right-angled triangle and the magnitude (length) of the resultant vector is found using **Pythagoras' theorem**

The magnitude of the resultant vector is found by using Pythagoras' Theorem

- The direction of the resultant vector is found from the angle it makes with the horizontal or vertical
 - The question should imply which angle it is referring to (ie. Calculate the angle from the x-axis)
- Calculating the angle of this resultant vector from the horizontal or vertical can be done using
 trigonometry
 - Either the sine, cosine or tangent formula can be used depending on which vector magnitudes are calculated

The direction of vectors is found by using trigonometry

Scale Drawing

- When two vectors are not at right angles, the resultant vector can be calculated using a scale drawing
 - Step 1: Link the vectors head-to-tail if they aren't already
 - Step 2: Draw the resultant vector using the triangle or parallelogram method
 - Step 3: Measure the length of the resultant vector using a ruler
 - Step 4: Measure the angle of the resultant vector (from North if it is a bearing) using a protractor

A scale drawing of two vector additions. The magnitude of resultant vector R is found using a rule and its direction is found using a protractor

- Note that with scale drawings, a scale may be given for the diagram such as 1 cm = 1 km since only limited lengths can be measured using a ruler
- The final answer is always converted back to the units needed in the diagram
 - Eg. For a scale of 1 cm = 2 km, a resultant vector with a length of 5 cm measured on your ruler is actually 10 km in the scenario
- There are two methods that can be used to combine vectors: the triangle method and the parallelogram method
- To combine vectors using the triangle method:
 - Step 1: link the vectors head-to-tail
 - Step 2: the resultant vector is formed by connecting the tail of the first vector to the head of the second vector
- To combine vectors using the parallelogram method:
 - Step 1: link the vectors tail-to-tail
 - Step 2: complete the resulting parallelogram
 - Step 3: the resultant vector is the diagonal of the parallelogram

Vector Addition

Draw the vector c = a + b

TRIANGLE METHOD

STEP 1: LINK THE VECTORS HEAD-TO-TAIL

STEP 2: FORM THE RESULTANT VECTOR FROM LINKING THE TAIL OF a TO THE HEAD OF b

PARALLELOGRAM METHOD

STEP 1: LINK THE VECTORS TAIL-TO-TAIL

STEP 2: COMPLETE THE RESULTING PARALLELOGRAM

STEP 3: THE RESULTANT VECTOR
IS THE DIAGONAL OF THE PARALLELOGRAM

Page 9 of 20

Vector Subtraction

Draw the vector c = a - b

TRIANGLE METHOD

STEP 1: LINK THE VECTORS HEAD-TO-TAIL

STEP 2: FORM THE RESULTANT VECTOR BY LINKING THE TAIL OF a TO THE HEAD OF -b

PARALLELOGRAM METHOD

STEP 1: LINK THE VECTORS TAIL-TO-TAIL

STEP 2: COMPLETE THE RESULTING PARALLELOGRAM

STEP 3: THE RESULTANT VECTOR IS THE DIAGONAL OF THE PARALLELOGRAM

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Copyright © Save My Exams. All Rights Reserved

Worked Example

A hiker walks a distance of 6 km due east and 10 km due north. Calculate the magnitude of their displacement and its direction from the horizontal

Answer:

Step 1: Draw a vector diagram

Step 2: Calculate the magnitude of the resultant vector using Pythagoras' Theorem

$$R = \sqrt{6^2 + 10^2}$$

Step 3: Calculate the direction of the resultant vector using trigonometry

Examiner Tips and Tricks

Pythagoras' Theorem and trigonometry are consistently used in vector addition, so make sure you're fully confident with the maths here!

Combining Vectors with a Vector Triangle

• Coplanar forces can be represented by the resultant of any two vector triangles

Head to www.savemyexams.com for more awesome resources

- Forces are in equilibrium if an object is either
 - At rest
 - Moving at constant velocity
- In equilibrium, coplanar forces are represented by **closed** vector triangles
 - The vectors, when joined together, form a closed path
- The most common forces on objects are
 - Weight
 - Normal reaction force
 - Tension (from cords and strings)
 - Friction
- The forces on a body in equilibrium are demonstrated below:

A VEHICLE IS AT REST ON A SLOPE AND HAS THREE FORCES ACTING ON IT TO KEEP IT IN EQUILIBRIUM

NORMAL REACTION

STEP 1: DRAW ALL THE FORCES ON THE FREE-BODY DIAGRAM

STEP 2:
REMOVE THE OBJECT
AND PUT ALL THE
FORCES COMING FROM
A SINGLE POINT

STEP 3:
REARRANGE THE FORCES
INTO A CLOSED VECTOR
TRIANGLE.
KEEP THE SAME LENGTH
AND DIRECTION

Copyright © Save My Exams. All Rights Reserved

Three forces on an object in equilibrium form a closed vector triangle

Worked Example

A weight hangs in equilibrium from a cable at point \mathbf{X} . The tensions in the cables are T_1 and T_2 as shown.

Which diagram correctly represents the forces acting at point ${\bf X}$?

STEP 1

STEP 2

STEP 3

Copyright © Save My Exams. All Rights Reserved

Examiner Tips and Tricks

The diagrams in exam questions about this topic tend to be drawn to scale, so make sure you have a ruler handy!

Resolving Vectors

Your notes

Resolving Vectors

- Two vectors can be represented by a single **resultant vector**
 - Resolving a vector is the opposite of adding vectors
- A single resultant vector can be resolved
 - This means it can be represented by **two** vectors, which in combination have the same effect as the original one
- When a single resultant vector is broken down into its parts, those parts are called components
- For example, a force vector of magnitude F and an angle of θ to the horizontal is shown below

The resultant force F at an angle θ to the horizontal

• It is possible to **resolve** this vector into its **horizontal** and **vertical** components using trigonometry

The resultant force F can be split into its horizontal and vertical components

- For the **horizontal** component, $F_x = F \cos \theta$
- For the **vertical** component, $F_v = F \sin \theta$

Example: Forces on an Inclined Plane

- Objects on an inclined plane is a common scenario in which vectors need to be resolved
 - An inclined plane, or a slope, is a flat surface tilted at an angle, θ
- Instead of thinking of the component of the forces as horizontal and vertical, it is easier to think of them as **parallel** or **perpendicular** to the slope
- The **weight** of the object is vertically downwards and the **normal** (or reaction) force, *R* is always vertically up from the object
- The weight W is a vector and can be split into the following components:
 - $W\cos(\theta)$ perpendicular to the slope
 - W sin (θ) parallel to the slope
- If there is no friction, the force $W \sin(\theta)$ causes the object to move down the slope
- The object is not moving perpendicular to the slope, therefore, the normal force $R = W \cos(\theta)$

The weight vector of an object on an inclined plane can be split into its components parallel and perpendicular to the slope

Worked Example

A helicopter provides a lift of 250 kN when the blades are tilted at 15° from the vertical.

Calculate the horizontal and vertical components of the lift force.

Answer:

Step 1: Draw a vector triangle of the resolved forces

Head to www.savemyexams.com for more awesome resources

Step 2: Calculate the vertical component of the lift force

 $Vertical = 250 \times cos(15) = 242 \text{ kN}$

Step 3: Calculate the horizontal component of the lift force

Horizontal = $250 \times \sin(15) = 64.7 \text{ kN}$

Examiner Tips and Tricks

If you're unsure as to which component of the force is $\cos\theta$ or $\sin\theta$, just remember that the $\cos\theta$ is always the adjacent side of the right-angled triangle AKA, making a 'cos sandwich'

