

NAME: Roopadharsini.R.J

DEPARTMENT: BTech.IT

COLLEGE NAME: Meenakshi

Sundararajan Engineering College

EMAIL.ID: roopakiruba@gmail.com

PROJECT TITLE

HANDWRITTEN
RECOGNITION
USING CIFAR-10
DATASET

AGENDA

- 1. Problem statement
- 2. Project overview
- 3. Who are the end users?
- 4. Solutions and its prepositions
- 5. The wow in your solutions
- 6. Modelling
- 7. Results

PROBLEM STATEMENT

The problem is to reconstruct images from the CIFAR-10 dataset using an autoencoder, which is a type of neural network capable of learning efficient representations of data.

PROJECT OVERVIEW

The project involves loading the CIFAR-10 dataset, preprocessing the images, building an autoencoder neural network architecture, training the model to reconstruct images, and evaluating the performance of the autoencoder.

WHO ARE THE END USERS?

The end users of this project could be researchers, developers, or anyone interested in image processing and neural networks.

YOUR SOLUTION AND ITS VALUE PROPOSITION

- •The solution involves using an autoencoder neural network to learn a compressed representation of the input images and then reconstruct them.
- •Value propositions include:
 - Efficient compression and reconstruction of image data.
 - Potential applications in image denoising, dimensionality reduction, and feature extraction

THE WOW IN YOUR SOLUTION

The "wow" factor in this solution lies in the ability of the autoencoder to effectively learn and reconstruct complex visual patterns from the CIFAR-10 dataset.

MODELLING

- •The model architecture consists of multiple dense layers with LeakyReLU activation functions and batch normalization.
- •It includes a bottleneck layer that learns a compressed representation of the input images.
- •The autoencoder is trained using mean squared error (MSE) loss and the Adam optimizer.

RESULTS

- •During training, the autoencoder's loss is printed at regular intervals to monitor its performance.
- •Additionally, reconstructed images are generated and saved periodically to visualize the quality of reconstruction over epochs.

Github link:

https://github.com/Roopadharshini/TNSDC-Generative-Al.git