Spring 2016 Notes

Carlos Salinas

March 1, 2016

Chapter 1

Notes from Wheeden and Zygmund

1.1 Preliminaries

Here are some results if think were useful to look over.

If \mathcal{F} is a countable collection of sets, it will be called a sequence of sets and denoted $\mathcal{F} = \{E_k : k = 1, ...\}$. The corresponding union and intersection will be written $\bigcup_k E_k$ and $\bigcap_k E_k$. A sequence of $\{E_k\}$ of sets is said to increase to $\bigcup_k E_k$ if $E_k \subset E_{k+1}$ and to decrease to $\bigcap_k E_k$ to denote these two possibilities. If $\{E_k\}_{k=1}^{\infty}$ is a sequence of sets, we define

$$\overline{\lim} E_k = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} E_k, \qquad \underline{\lim} E_k = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} E_k, \tag{1.1}$$

noting that the sets $U_j = \bigcup_{k=j}^{\infty} E_k$

Chapter 2

Hatcher Algebraic Topology Notes

2.1 Homology

Simplicial and Singular Homology

Δ -complexes

The idea of the Δ -complex generalizes the construction of a topological space via the quotient of some triangularization of a polygon in \mathbf{R}^n . The *n*-dimensional analogue of the triangle is called the *n*-simplex. This is the smallest convex set in a Euclidean space \mathbf{R}^m containing n+1 points $v_0, ..., v_n$ that do not lie in a less than n dimensional hyperplane. An equivalent condition is that the difference vectors $v_1 - v_0, ..., v_n - v_0$ are linearly independent. The points v_i are the vertices of the simplex, and the simplex itself is denoted $[v_0, ..., v_n]$. For example, there is a standard n-simplex

$$\Delta^{n} = \left\{ (t_0, ..., t_n) \in \mathbf{R}^{n} \mid \sum_{i} t_i \text{ and } t_i \ge 0 \text{ for all } i \right\}$$

whose vertices are the unit vectors along the coordinate axes. For the purposes of homology, it is important that we keep track of the ordering on the vertices v_i , so an 'n-simplex' will always mean an 'n-simplex with an ordering on its vertices.' As a consequence, there is a natural ordering on the edges $[v_i, v_j]$ according to increasing subscripts.¹ Specifying the ordering of the vertices also determines a canonical linear homeomorphism from the standard n-simplex Δ^n onto any other n-simplex $[v_0, ..., v_n]$, preserving the order of the vertices, namely, $(t_0, ..., t_n) \mapsto \sum_i t_i v_i$. The coefficients t_i are barycentric coordinates of the point $\sum_i t_i v_i$ in $[v_0, ..., v_i]$.

If we delete one of the n+1 vertices of the n-simplex $[v_0, ..., v_n]$, then the remaining n-vertices span an (n-1)-simplex called a face of $[v_0, ..., v_n]$. We adopt the following convention

The vertices of a face, or of any complex spanned by a subset of the vertices, will always be ordered according to their order in the larger simplex.

The union of the faces of Δ^n is the boundary of Δ^n , written partial Δ^n . The open simplex Δ^n ° is $\Delta^n \setminus \partial \Delta^n$.

¹I'm not sure what Hatcher means here, unless he is choosing the natural ordering on the indices $I \subset \mathbf{N}$, i.e., the ordering $1 < 2 < \cdots$

A Δ -complex structure on a space X is a collection of maps $\sigma_{\alpha} \colon \Delta^n \to X$ with n-depending on the index of α such that:

- (i) The restriction $\sigma_{\alpha} \upharpoonright \Delta^{n}$ is injective, and each point of X is in the image of exactly one such restriction.
- (ii) Each restriction of σ_{α} to a face of Δ^n is one of the maps $\sigma_{\beta} \colon \Delta^{n-1} \to X$. Here we are identifying the face of Δ^n with Δ^{n-1} by the canonical linear homeomorphism between them that preserves the ordering of the vertices.
- (iii) A set $A \subset X$ is open iff $\sigma_{\alpha}^{-1}(A)$ is open in Δ^n for each σ_{α} .

Among other things, this last condition rules out trivialities like regarding all of the points in X as individual vertices.

A consequence of (iii) is that X can be built as a quotient space of a collection of disjoint simplices Δ_{α}^{n} , one for each $\sigma_{\alpha} \colon \Delta^{n} \to X$, the quotient space obtained by identifying each face of Δ_{α}^{n} with the Δ_{β}^{n-1} corresponding to the restriction σ_{β} of σ_{α} to the face in question, as in (ii). One can think of building the quotient space inductively: starting with a discrete set of vertices, then attaching edges to these to produce a graph, the attaching 2-simplices to the graph, and so on. From this viewpoint we see that the data specifying a Δ -complex can be described in a purely combinatorial way as collections of n-simplices Δ_{α}^{n} for each n together with functions associating to each face of each n-simplex Δ_{α}^{n} an (n-1)-simplex Δ_{β}^{n-1} .

More generally, Δ -complexes can be built from collections of disjoint simplices by identifying varies subsimplices spanned by a subsets of the vertices, where the identifications are performed using the canonical linear homeomorphism that preserve the ordering of the vertices.

Thinking of a Δ -complex X as the quotient space of a collection of disjoint simplices, it's not hard to see that X must be a Hausdorff space. Indeed, if $x, y \in X$ they lie in the image of the same simplex $\operatorname{Im} \sigma_{\alpha}$ we may take their preimage $\sigma_{\alpha}^{-1}(x)$ and $\sigma_{\alpha}^{-1}(y)$ and find disjoint neighborhoods U_x and U_y containing these subsets of Δ^k

2.2 Cohomology