Отчёт по лабораторной работе №8

Имитационное моделирование

Ганина Таисия Сергеевна, НФИбд-01-22

Содержание

Сп	Список литературы	
5	Выводы	17
4	Выполнение лабораторной работы 4.1 Реализация в xcos	9 9 14
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Зададим переменные окружения	9
4.2	Параметры первого блока интегрирования	10
4.3	Параметры второго блока интегрирования	10
4.4	Параметры блока CSCOPEXY	11
4.5	Параметры блока CSCOPE	12
4.6	Параметры блока expression	12
4.7	Модель	13
4.8	Динамика изменения размера TCP окна W(t) и размера очереди	
	Q(t) и Фазовый портрет (W, Q) (C=1)	13
4.9	Динамика изменения размера TCP окна W(t) и размера очереди	
	Q(t) и Фазовый портрет (W, Q) (C=0.9)	14
4.10	Динамика изменения размера TCP окна W(t) и размера очереди	
	$Q(t) (C=1) \ldots \ldots \ldots \ldots \ldots \ldots$	15
	Фазовый портрет (W, Q) (C=1)	15
4.12	Динамика изменения размера TCP окна W(t) и размера очереди	
	$Q(t) (C=0.9) \dots \dots$	15
4.13	Фазовый портрет (W, Q) (C=0.9)	16

Список таблиц

1 Цель работы

Реализовать модель TCP/AQM в xcos и OpenModelica.

2 Задание

- 1. Построить модель TCP/AQM в xcos;
- 2. Построить графики динамики изменения размера ТСР окна W(t) и размера очереди Q(t);
- 3. Построить модель TCP/AQM в OpenModelica;

3 Теоретическое введение

Протокол ТСР использует механизм динамической регулировки размера окна для предотвращения перегрузок. Уравнение $W(t)=1/R(t)-(W(t)W(t-R(t)))/(2R(t-R(t)))\cdot p(t-R(t))$ отражает два ключевых режима:

- **Фаза медленного старта** (первое слагаемое) линейный рост окна до достижения порога ssthresh;
- **Фаза избежания перегрузок** (второе слагаемое) мультипликативное уменьшение окна при детектировании потерь пакетов через функцию p(t).

Функция p(t) реализует алгоритм AQM (Active Queue Management), который proactively управляет очередью маршрутизатора для минимизации задержек и потерь.

- 1. **Постоянные N и R** позволяют анализировать устойчивость системы методами теории управления.
- 2. **Линейная зависимость p(t) от Q(t)** упрощает анализ влияния длины очереди на динамику окна.

Модель позволяет:

- Исследовать баланс между скоростью обработки пакетов (C) и интенсивностью трафика (NW/R);
- Анализировать стабильность системы при различных значениях К;

- Оптимизировать параметры AQM для соблюдения QoS-требований ($IPTD \leq 150, IPLR \leq 10^{-3}$).

Для учебных целей упрощения оправданы, так как фокусируют внимание на ключевых аспектах взаимодействия ТСР и AQM, игнорируя второстепенные факторы (например, вариативность RTT) [1,2].

4 Выполнение лабораторной работы

4.1 Реализация в хсоѕ

Построим схему хсоs, моделирующую нашу систему, с начальными значениями параметров N=1, R=1, K=5.3, C=1, W(0)=0.1, Q(0)=1. Для этого сначала зададим переменные окружения (рис. 4.1).

Рис. 4.1: Зададим переменные окружения

Затем реализуем модель TCP/AQM, разместив блоки интегрирования, суммирования, произведения, констант, а также регистрирующие устройства (рис. 4.2, 4.3, 4.4, 4.5, 4.6, 4.7)

Рис. 4.2: Параметры первого блока интегрирования

Рис. 4.3: Параметры второго блока интегрирования

Рис. 4.4: Параметры блока CSCOPEXY

Рис. 4.5: Параметры блока CSCOPE

Рис. 4.6: Параметры блока expression

Рис. 4.7: Модель

В результате получим динамику изменения размера TCP окна W(t) и размера очереди Q(t), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. 4.8).

Рис. 4.8: Динамика изменения размера TCP окна W(t) и размера очереди Q(t) и Фазовый портрет (W, Q) (C=1)

Уменьшив скорость обработки пакетов C до 0.9 увидим, что автоколебания стали более выраженными (рис. 4.9).

Рис. 4.9: Динамика изменения размера TCP окна W(t) и размера очереди Q(t) и Фазовый портрет (W, Q) (C=0.9)

4.2 Реализация модели в OpenModelica

Перейдем к реализации модели в OpenModelica. Я написала вот такой код:

```
model lab8_mip
  parameter Real N=1;
  parameter Real R=1;
  parameter Real K=5.3;
  parameter Real C=0.9;
  Real W(start=0.1);
  Real Q(start=1);
  equation
   der(W)= 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
   der(Q)= if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
end lab8_mip;
```

Выполнив симуляцию, получим динамику изменения размера TCP окна W(t) и размера очереди Q(t), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. 4.10, 4.11, 4.12, 4.13).

Рис. 4.10: Динамика изменения размера TCP окна W(t) и размера очереди Q(t) (C=1)

Рис. 4.11: Фазовый портрет (W, Q) (C=1)

Рис. 4.12: Динамика изменения размера TCP окна W(t) и размера очереди Q(t) (C=0.9)

Рис. 4.13: Фазовый портрет (W, Q) (C=0.9)

5 Выводы

В процессе выполнения данной лабораторной работы я реализовала модель TCP/AQM в xcos и OpenModelica.

Список литературы

- 1. Моделирование трафика [Электронный ресурс]. URL: https://ru.wikipedia.o rg/wiki/%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%B8%D0%B8%D0%B5_%D1%82%D1%80%D0%B0%D1%84%D0%B8%D0%BA%D0%B0.
- 2. Мохаммед Ала Абдулрахман Саид, МЕТОДЫ ДЕКОМПОЗИЦИИ ПОКАЗАТЕ-ЛЕЙ КАЧЕСТВА ОБСЛУЖИВАНИЯ ТРАФИКА В СЕТИ СЛЕДУЮЩЕГО ПОКО-ЛЕНИЯ, Диссертация на соискание ученой степени кандидата технических наук [Электронный ресурс]. URL: https://dis.mtuci.ru/upload/srd/Dis-Mohammed-AAS/dis-Mohammed-AAS.pdf.