

导航与位置服务现状与发展

• 文 | 北京邮电大学 邓中亮

导航与位置服务攸关国家安全、经济发展和社会民生,在新一代信息技术的战略性新兴产业中,具有举足轻重和不可或缺的地位,在物联网、智慧地球、节能减排、救灾减灾等领域发挥着重要的基础性支撑作用。如何高效利用卫星与地面网络资源,提升导航与位置服务能力,已成为了世界各国科技经济竞争热点。

一、室内外无缝位置服务需求爆发增长

随着现代社会的不断发展,城镇化进程加快, 大型建筑日益增多,人们 80% 以上的时间处于室 内环境(含地下、矿井、隧道等),对室内外高精 度定位导航的需求呈现爆发式增长趋势。

1) 在消防救援方面, 我国拥有数十万余栋高

层建筑,基于精确位置的消防救援问题突出,需要 对消防员、被困人员及消防设施进行精确的室内外 无缝定位和逃生路径规划。

2)在老幼人群关爱方面,全国超 1.4 亿空巢 老人、上亿学龄儿童需要基于位置的关爱服务,在 被监护人出现紧急情况时(如发病、走失等),基

2016年第2期 | 卫星应用 | 41

Satellite Navigation

于位置信息可展开快速救助。

- 3)在公共安全方面,全国1000余个火车站, 160余个民用机场,上千个地铁站,每个车站人流量可达数十万/天,安全管理问题复杂,需要对人员进行定位,对人流量进行统计,对应急疏散路径进行引导,对危险人员进行监控。
- 4) 在医疗服务方面,全国两万余县级以上医院,月均就诊人数超过四亿,基于位置的医疗服务需求迫切,掌握住院病人、急救病人、医务人员及重要医疗器械位置信息,能够提高医疗救护效率。
- 5)在矿山管理与救援方面,全国上万家煤矿, 每年矿难伤亡上千人,灾难发生时需要掌握井下人 员位置信息,提高矿难救援与日常生产安全管理效率。
- 6)在大型场馆人员、物资管理方面,全国 6000余个展馆、博物馆、大型仓库,其人员、物资 精细化管理需求迫切,掌握人员、物资的室内外无 缝位置信息,能够实现对工作人员及重要物资的无 缝监管。
- 7)在商场导购方面,我国拥有数千个大型购物广场,最大达120万平方米,日消费者超20万人,需要通过位置服务,向顾客提供便捷的精准导购服务。
- 8)在车辆导航方面,我国拥有大型室内停车 场车位不计其数,公路隧道近万个,全国近亿民用 车辆导航需求开始由室外导航向室内外无缝导航转 变,室内外无缝位置服务能够为车辆进入地下停车 场或隧道时,提供无缝的车辆导航服务。
- 9)在个人服务方面,我国手机用户达十亿,位置服务用户已超过4亿,近三年年增长率超过100%,形成个人导航、地点交友(如微信摇一摇)、即时通信、以地理位置为基础的社交等服务。

二、精准定位成为国际科技竞争制高点

室内外高精度位置服务技术是继互联网、移动 通信发展最快的新一代信息技术,已成为国际科技 经济竞争制高点。为实现精确定位与服务,美国国 防部高级计划研究局(DAPAR)于2013年制定"洞 悉战场"计划,提出建设更精确锁定位置的打击系统;2013年美国通委会提出"下一代911项目",要求实现精度在60m以内的精确位置服务;德国电信于2011年将高精度的位置服务定位作为未来移动通信服务的核心;日本于2009年颁布了紧急呼叫法案,要求室内位置服务达到10m以内。我国在《国家卫星导航产业中长期发展规划》和《国家中长期科学和技术发展规划纲要》任务中明确提出加快室内位置服务建设,科技部开展"羲和"重大计划,重点建设室内外无缝隙高精度三维定位系统。

三、室内外高精度位置服务技术瓶颈

1. 卫星室内定位"最后一公里"瓶颈

全球卫星导航系统(GPS、北斗、伽利略、GLONASS)因建筑遮挡在室内及建筑周边无信号,故无定位能力。卫星信号因穿透损耗、多径干扰等,室内 GPS 信号强度远低于 GPS ICD 最小 -160dBW的要求,因此室内无定位信号覆盖,即存在室内最后一公里不能定位的问题,不能实现室内外高精度位置服务。

2. 近距离通信定位技术的局限性

近距离通信定位技术包括无线局域网(WLAN)、射频标签(RFID)、紫蜂(Zigbee)、蓝牙(Bluetooth)、超宽带无线电(UWB)、地磁场强、红外定位、光跟踪定位、计算机视觉定位、超声波定位等,局域视线定位系统单设备覆盖能力受限,室内外高精度位置服务需高密度布设,位置服务运行维护难。

基于 WiFi 的室内定位系统目前主要有两类: 第一类是 WiFi 无线 AP (Access Point) 区间定位, 通过收集 WiFi 无线 AP 安装位置和定位台接收到 的 AP 地址,实现基于 WiFi 无线 AP 区间定位, 如美国 Google Map。基于 AP 位置的定位技术成本 低,但由于 AP 自身的位置并不精确,不能精确计 算用户距 AP 的距离,定位误差通常达 10 ~ 20m; 第二类则采用 WiFi 无线信号接受信号强度指示 (RSSI)指纹匹配定位技术,如我国自主研发的"寻鹿"定位系统、"翼周边"系统,以及美国的WiFiSLAM、加拿大Wifarer等。利用该类技术需要建立相关指纹数据库,对数据库的运行维护要求高,定位精度受信号强度影响大,常用于重点场所的局部定位服务。

Zigbee 定位技术与 WiFi 定位技术相似,是基于 IEEE802.15.4 标准的局域网定位技术,精度可达 3m,但由于信号强度受环境影响较大,如人员走动、墙体/门的遮挡反射等均会导致定位精度下降。

基于 RFID 的定位系统根据 RFID 标签的信号 强度及已知的 RFID 标签位置比较进行实时定位, 实现米级定位精度需要布设大量参考标签,难以实 现大范围推广应用。

蓝牙定位与 WiFi 定位相同,其优点在于蓝牙芯片成本低、功耗低,已在笔记本电脑以及手机中大量普及。但蓝牙节点远不如 WiFi 无线 AP 普及,因此其应用普及程度不及 WiFi 定位系统。

UWB 用于定位具有伪距测量精度高、抗多径干扰能力强的优势,在视距环境下较WiFi、Zigbee、RFID等定位系统精度大幅提高,但UWB系统目前远不及其他系统普及,且作用距离仅为10 m量级,现阶段的产业推广较上述系统更加困难。

3. 广域通信定位技术的测量不确 定性

传统移动通信与广播网室内外定位 成本低、覆盖广。但城市建筑结构对无线 信号传输形成了多障、多重反射与散射、 非视线传播等,基站到终端距离测量困难。

移动通信基站由于地面网络信号覆盖良好,因此可对室内用户进行定位。目前,GSM、CDMA2000、WCDMA、TD-SCDMA等在网运行的系统均具备定位功能,第四代通信系统 LTE 在其 Release 9 中

引入了定位参考信号(PRS),用于伪距测量及定

位。已有的移动通信基站定位系统包括小区识别码(Cell-ID)定位、环路往返时延(RTD)定位、上行链路信号到达时间(TOA)定位方法、上行链路信号到达时间差(TDOA)方法以及信号到达角度(AOA)定位方法、高级前向链路三角定位(AFLT)、下行链路增强观测时间差定位方法(E-OTD)、下行链路空闲周期观测到达时间差方法(OTDOA-IPDL)等。移动通信基站定位系统较局域室内定位系统成本低、易于普及,现有手机均具有一定程度的定位能力。但目前移动通信基站定位技术由于受非视距及多径干扰大、时间同步精度差等影响,定位精度普遍在百米量级(一般为50~300m),无法实现米级高精度室内定位。

四、"羲和"室内外高精度位置服务系统

针对室内外高精度无缝定位与服务中面临的 关键问题,在科技部"羲和"重大计划支持下, 北京邮电大学牵头,联合多家单位,基于通信网 络与卫星,开展了"星地一体、内外衔接、高精 定位、无缝保障"的水平精度 1~3m、垂直精度优 于 1m 的室内外导航与位置服务关键技术与产业化 研究,构建了"羲和"室内外高精度位置服务平台, 如图 1 所示。

图 1 "羲和"室内外高精度位置服务平台架构图

Satellite Navigation

"羲和"室内外高精度位置服务平台攻克了通信网建筑内"反散射"传播的三维"米级"定位国际难题,提出了共频带通信网增强、反散射聚合三维定位理论方法与架构、导航与通信一体化信号体制(TC-OFDM)融合体制,突破了传统视线传输定位在室内的局限性;提出散射多径聚合与导航路径动态规划,实现了建筑空间高精度导航;创新了移动通信、广播、无线网和卫星导航等多资源融合高精度定位技术,运用地面通信网,采取覆盖优化、差分测高、多址管理、耦合测距、集成使用等创新方法,实现大型建筑群内对人与物体的"米级"定位,比国外公开精度高5~10倍,成为了国际领先技术。

高精度室内导航与位置服务系统由 TC-OFDM 基站(含激励器研制、时间同步设备研制、发射机 研制及整机集成等)、室内增补系统、移动定位终端、 消防终端、网络侧位置服务平台组成,提供高精度 室内外无缝隙的位置服务能力。

结合室内定位技术,在空间信息模型基础上添加定位导航数据模型,构建起面向室内定位导航的立体单元网格空间信息模型,地图存储空间减小到原先的1/5;实现了广域室内外电子地图的无缝融合,以及室内外无缝路径规划;解决了AreGIS等现有标准在室内定位及位置服务中应用接口不足的问题,满足室内地图匹配及位置服务需求,如图2所示。

图 2 基于网格编码的全息多维室内电子地图

研发了公共服务、商业大数据应用、航空物流、 应急救援四类位置服务平台,实现了精确定位导航、 实时跟踪、动态监测与大数据分析服务,大幅提升 了位置服务能力。

五、室内外高精度位置服务应用

利用"羲和"计划的研究成果,已成功开展了 上百项应用推广,产品遍及我国40多个城市,用 户达数千万,部分产品出口多个国家和地区。

(1)公共服务与管理领域的导航定位应用

在万达广场、西单大悦城、首都机场、国内外 多个校园等成功开展了紧急呼救、保险救援、商业 大数据分析、外勤助手、车卫士、热区信息服务、 精准营销、技侦跟踪、预警、精细管理、实时交通、 停车场管理等多领域的位置服务应用。

(2)应急救援领域的导航定位典型应用

开展了应急救援应用示范,研发消防导航定位 装备,能够精确掌握受灾建筑中人员分布情况,解 决救援盲区,大幅提升救灾人员的救援能力,减少 人员伤亡,实现了救援定位技术的创新发展,提升 了城市定向、定位救援能力。

(3) 机场位置感知应用

在我国多个机场,通过建立多元室内定位系统, 根据旅客位置进行情景识别,主动提供服务信息和 商业推荐,不但满足乘客的乘机旅行需求,充分利 用机场服务资源,给每个旅客提供个性化的服务指 导与宾至如归的机场体验,提升首都机场的飞行经 济效益。

(4)公共安全监控和区域管理应用

在多个大型会议(如北京 APEC 会议等)和全国多个省应用"媒体—位置侦测服务系统",实现侦测工作任务指派,巡检路线设置,实时监控、预警、告警等安全监控和管理功能,成为了安全保障的重要工具。

(5)基于时空关联的商业大数据分析应用

针对现阶段商业大数据统计分析的不足,建立 基于空间多维数据的连锁效应模型,形成多维度数 据间的关系网,为商业营销提供精确指导,提高数 据使用效率与价值,如图 3 所示。

图 3 多维度数据关系网

六、室内外位置服务发展趋势

未来室内位置服务技术将依据国家战略布局和 国际科技竞争热点,继续向深空、深地、深海等方 向扩展,助推导航与位置服务技术发展。

趋势一:室内位置服务将面向空天地一体化、通信与导航体制融合,实现卫星、基站、无人机、雷达、惯导、近距离通信等全源导航定位融合,聚合地理信息、交通信息、商业信息等全息地图数据,实现虚拟化、弹性可恢复的、协同的、模块化的服务体系结构,全天候、全地域地提供高精度、无缝隙的位置服务。

趋势二:突破定位精度、范围及成本之间的矛盾。实现高精度、低成本、广覆盖的室内外无缝隙位置服务。

趋势三:挖掘 4G 时代的导航通信融合新业务。 新型导航与通信网络将承载高清视频监控、3D 视 频点播、实景地图、3D 地图等高速率业务。

趋势四:加速导航与位置服务标准化。从基础设施、共性关键技术、应用与服务等多方面,加快制定相关的国家、行业标准与政策。

结束语

室内位置服务用户需求呈爆发式增长趋势,通信的广泛性为导航与位置服务推广提供了有利条件。研究表明,所有无线通信网都具有高精度室内

外 3D 定位能力,高精度室内外无缝定位技术趋向于多系统协同,定位导航与通信趋向于一体化是一条投资少、建设快的导航与位置服务发展之路,融合卫星导航与地面通信网络资源,对提升北斗卫星导航定位系统在经济、军事、国防等方面的服务能力具有重要意义。

▶ 参考文献

- [1]Deng Zhongliang, Yu Yanpei, Yuan Xie, Wan Neng, Yang Lei. Situation and development tendency of indoor positioning. China Communications, 10(3), 2013:42-55.
- [2] 关维国.基于移动广播网的高精度定位关键技术研究 [D]. 北京,北京邮电大学, 2011.
- [3] 袁协.TC-OFDM 室内定位接收机基带信号处理关键技术研究[D].北京,北京邮电大学,2013.
- [4] 余彦培 . 基于移动基站的 TC-OFDM 高精度室内定位关键技术研究 [D]. 北京, 北京邮电大学, 2013.
- [5] Rahdar R, Stracener J T, Olinick E V, A Systems engineering approach to improving the accuracy of mobile station location estimation. IEEE System Journal, PP(99), 2013:1-9.