

planetmath.org

Math for the people, by the people.

continuity of natural power

Canonical name ContinuityOfNaturalPower

Date of creation 2013-03-22 15:39:25 Last modified on 2013-03-22 15:39:25

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 7

Author pahio (2872)
Entry type Theorem
Classification msc 26C05
Classification msc 26A15

Related topic Exponentiation2

Theorem. Let n be arbitrary positive integer. The power function $x \mapsto x^n$ from \mathbb{R} to \mathbb{R} (or \mathbb{C} to \mathbb{C}) is continuous at each point x_0 .

Proof. Let ε be any positive number. Denote $x_0 + h = x$ and $x^n - x_0^n = \Delta$. Then identically

$$\Delta = (x - x_0)(x^{n-1} + x^{n-2}x_0 + \dots + x_0^{n-1}).$$

Taking the absolute value and using the triangle inequality give

$$|\Delta| \ = \ |h| \cdot |x^{n-1} + x^{n-2} x_0 + \ldots + x_0^{n-1}| \ \leqq \ |h| \cdot (|x^{n-1}| + |x^{n-2} x_0| + \ldots + |x_0^{n-1}|).$$

But since $|x| = |x_0 + h| \le |x_0| + |h|$ and also $|x_0| \le |x_0| + |h|$, so each summand in the parentheses is at most equal to $(|x_0| + |h|)^{n-1}$, and since there are n summands, the sum is at most equal to $n(|x_0| + |h|)^{n-1}$. Thus we get

$$|\Delta| \le n|h|(|x_0| + |h|)^{n-1}.$$

We may choose |h| < 1; this implies

$$|\Delta| \le n|h|(|x_0|+1)^{n-1}.$$

The right hand side of this inequality is less than ε as soon as we still require

$$|h| < \frac{\varepsilon}{n(|x_0|+1)^{n-1}}.$$

This means that the power function $x \mapsto x^n$ is continuous at the point x_0 .

Note. Another way to prove the theorem is to use induction on n and the rule 2 in limit rules of functions.