Forelesning 8: Gjeldgrad og verdi i perfekte kapitalmarkeder

Læringsmål:

- Beregne kontantstrøm til kreditorene og overskuddet for eierne med utgangspunkt i data om et investeringsprosjekt og et finansieringsprosjekt.
- Vise med et eksempel at forventet overskudd pr. aksje stiger med stigende gjeldsgrad (mer om dette i kapittel 7)
- Forklare hva en arbitrasjemulighet er.
- Konstruere en arbitrasjestrategi for å høste en arbitrasjegevinst.
- Gjengi de to hovedresultatene til Miller og Modigliani (M&M) med formler og ord for en verden uten skatt.
- Forklare hvorfor kapitalverdimodellen kan gi to prosjekter samme kapitalkostnad selv om de ifølge M&M ikke er i samme risikoklasse.

Oppdatert: 2022-10-12

Gjeldsgrad og verdi i perfekte kapitalmarkeder

I kapittel 6 så vi at økt gjeldsgrad førte til

- 1. Økt forventet avkastning
- 2. Økt risiko (både for total risiko og systematisk risiko)

Spørsmålet vi stiller nå:

• Er den positive effekten av økt forventet avkastning større, lik (dette omtales som seperasjonsprinsippet) eller mindre en den negative effekten av økt risiko?

Oppsplitting av en kontantstrøm

Selskap uten gjeld (U)

- Til kreditorene: R = 0
- Til aksjonærene: $OER_U = OFR$
- Totalt: $R + OER_U = OFR$

Selskap med gjeld (M)

- Til kreditorene: $R = r \cdot PG$
- Til aksjonærene: $OER_M = OFR r \cdot PG$
- Totalt: $R + OER_M = r \cdot PG + OFR - r \cdot PG = OFR$

Pålydende gjeld	100	200	400	600	700
Gjeldsrente	0.04	0.04	0.05	0.06	0.08
Til kreditorene	4	8	20	36	56
Til eierne	96	92	80	64	44
Totalt	100	100	100	100	100

Resultat: Gjeldsgrad påvirker kun fordelingen mellom kreditorer og eiere (interesentene), men *ikke* den totale kontantstrømmen

Arbitrasje

Dersom gjeldsgraden ikke påvirker den totale kontantstrømmen, hva betyr dette for verdien av to selskaper som *kun* utskiller seg i finansieringsform?

Eksempel 7.2: Tar utgangspunkt i to selskaper med lik total kontantstrøm (OFR), men ulik finansieringsform og verdifastsettelse

Selskap U (fullstendig egenkapitalfinansiert)

- Verdien av selskapet 1000. Hvor V_U = E_U = 1000 og G_U = 0
- Gir dividiende = OFR
- Arbitrasjestrategi (selger overvurdert):
 - ∘ Salg 10 prosent av aksjer: 1000 · 0.1 = 100, −
 - ∘ Mister: 0.10 · OFR

Selskap M (med gjeldsfinansiering)

- Verdien av selskapet 900. Hvor V_M = 900, E_M = 400 og G_M = 500 med en pålydende gjeld på 6 prosent
- Gir dividiende = OFR $-0.06 \cdot 500 = OFR 30$
- Arbitrasjestrage (kjøp undervurdert for samme risikoprofil):
 - \circ Investering: Aksjer 0.1 \cdot 500 og Obligasjoner 0.1 \cdot 400 som totalt koster 90
 - ∘ Mottar: 0.1 · OFR

Arbitrasjegevinst ("pengepumpe"): 90,- av et beløp på 100,- kan benyttes til å oppnå samme kontantstrøm.

Generell strategi:

- 1. Selg dine *aksjer* i det overprisede selskapet
- 2. Kjøp deg inn i det underprisede selskapet. Porteføljen må da tilpasses slik at
 - o Gitt uten gjeld i det overprisede selskapet, kjøper du samme andel av egenkapital og gjeld i det underprise selskapet
 - Gitt med gjeld i det overprisede selskapet, låner du privat for å få samme gjeldsgrad som i det overprisede selskapet og benytter dette beløpet til å kjøpe egenkapital i det underprisede selskapet.

Resultat: Den arbitrasjestrategien fører til at verdifastsettelsen blir lik (pga. økt tilbud av det overprisede selskapet samt økt etterspørsel av det underprise selskapet) mellom de to selskapene.

Miller & Modigliani (M&M)

Som vist vil arbitrasje føre til lik verdifastsette, men hvordan kan vi *fastsette* verdien som blir bestemt i markedet? Svar: Forutsetninger for verdsetting av selskaper i Miller & Modigliani:

Markedet:

- · Alle investorer har full informasjon om markedsmulighetene
- For samme risiko, alle kan låne til samme rente
- Ingen transaksjonskostnader
- Alle selskapers egenkapital og gjeld er fritt omsettelige via aksjer og obligasjoner
- Ingen betaler skatt

Investeringssiden:

- Selskap U og M sin OFR er perfekt korrelerte (vi skal snart se at vi har mulighet til å lette på denne forutsetningen)
- · OFR er evigvarende
- Sannsynlighetfordelingen for OFR den samme i alle perioder for begge selskaper

Finansieringsiden:

- Fast evigvarende gjeld
- OER går kun til utbytte

Basert på disse forutsetningene kan vi sette opp tre uttrykk som viser forventet avkastning for gjeld (k_G), egenkapital (k_E) og totalkapital (k_T):

$$k_{G} = \frac{r \cdot PG}{G} \tag{57}$$

$$k_{E} = \frac{E(OER)}{E}$$
 (58)

$$k_{T} = \frac{E(OFR)}{V}$$
 (59)

• M&M-1:

$$V = \frac{E(OFR)}{k_T} = \frac{E(OFR)}{k_U}$$
 (60)

• M&M-2:

$$k_E = k_T + (k_T - k_G) \frac{G}{E} = k_U + (k_U - k_G) \frac{G}{E}$$
 (61)

Seperasjonsprinsippet

- M&M impliserer at det ikke er mulig å øke bedriftens eller enkeltstående prosjekters verdi gjennom finansieringsformen:
 - 1. Økt gjeldsgrad fører til økt finansieringsrisiko og dermed en økning i eiernes avkastningskrav
 - 2. Men *totalkapitalkostnaden* påvirkes ikke av gjeldsgraden, og selskapsverdien foreblir derfor uendret
 - 3. Dette resultatet blir ofte omtalt som *seperasjonsprinsippet*

Eksempel 7.5: TV fabrikken Tittco budsert OFR = 2 mill for neste år og alle perioder framover. Selskapet disponerer avdragsfri gjeld med 250.000,- i utestående renter. En bedrift i samme risikoklasse, men som er gjeldfri, har et akvastningskrav $k_{\rm IJ}$ = 0.04

• Ifølge M&M-I vil verdien til Tittco være gitt ved

$$V = \frac{E(OFR)}{k_U} = \frac{2}{0.04} = 50$$
 (62)

• Ifølge M&M-II

$$k_{E} = k_{T} + (k_{T} - k_{G}) \frac{G}{E}$$

$$k_{U} + (k_{U} - k_{G}) \frac{G}{E}$$
(63)

Som gir oss denne figuren (gitt at vi ser bort fra konkursrisiko)

FIGUR 7.1 Total- og egenkapitalkostnad i AS Tittco ved gjeldsgrad (G/E) varierende fra 0 til 3. Kapitalkostnaden ved null gjeldsgrad er k_u .

Sammenhengen mellom KVM og M&M

Vi løsner nå på forutsetningen om de to selskapene som sammenlignes skal være i samme risikoklasse (som innbærer lik total og systematisk risiko). Vi definerer istedet risikoklasse (som i KVM) some alle selskaper med en bestemt investeringsbeta.

Eksempel 7.5: For Demo ASA er $\beta_G = 0.20$ og $\beta_E = 1.4$. Selskapet er finansiert med like mye gjeld som egenkapital, $w_G = w_E = 0.50$. Den risikofrie renten i markedet $r_f = 0.03$, mens markedsporteføljen forventede avkastning $E(r_p) = 0.08$.

Alternativ 1: KVM

$$\begin{aligned} k_E &= r_f + \beta_E \left[E(r_m) - r_f \right] \\ &= 0.03 + 1.4 [0.08 - 0.03] = 0.10 \end{aligned}$$

Alternativ 2: M&M

Vi har fra kapittel 6 (uten skatt)

$$\beta_{\rm I} = w_{\rm E}\beta_{\rm E} + w_{\rm G}\beta_{\rm G}$$
$$= 0.5 \cdot 1.4 + 0.5 \cdot 0.20 = 0.80$$

Hvor vi ved bruk av KVM kan finne både k_U og k_G

$$k_{\rm U} = 0.03 + 0.80(0.08 - 0.03) = 0.074$$

$$\begin{aligned} k_G &= r_f + \beta_G \left[E(r_m) - r_f \right] \\ &= 0.03 + 0.20(0.08 - 0.03) = 0.04 \end{aligned}$$

Vi kan derfor benytte M&M-2:

$$k_E = 0.074 + (0.074 - 0.04)\frac{1}{1} = 0.10$$

Konklusjon: M&Ms konklusjoner holder også under mer robuste og velkjente forutsetninger.