LICENCIATURA EM CIÊNCIAS DA COMPUTAÇÃO

COMPUTABILIDADE E COMPLEXIDADE 4. INTRODUÇÃO À TEORIA DA COMPLEXIDADE

José Carlos Costa

Dep. Matemática Universidade do Minho Braga, Portugal

 1° semestre 2023/2024

Definição

Sejam $f, g : \mathbb{N}_0 \to \mathbb{R}$ funções. Diz-se que g(n) é de ordem f(n), e escreve-se $g(n) \in \mathcal{O}(f(n))$ ou g(n) é $\mathcal{O}(f(n))$, se existem constantes positivas $c \in n_0$ tais que

$$\forall n \geq n_0, \quad 0 \leq g(n) \leq c \ f(n).$$

Ou seja,

$$\mathbb{O}(f(n)) = \{g(n) : \exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0, \ 0 \le g(n) \le c \ f(n)\}$$

 \acute{e} a classe das funções que são "limitadas superiormente pela função f(n)".

EXEMPLO

Sejam $f(n) = n^2 + 5n + 2$ e $g(n) = n^2$.

• g(n) é O(f(n)). De facto,

$$\forall n \geq 0, \quad 0 \leq n^2 \leq n^2 + 5n + 2.$$

Portanto,

$$\forall n \geq 0, \quad 0 \leq g(n) \leq 1 f(n).$$

Ou seja, para deduzir que $g(n) \in \mathcal{O}(f(n))$ basta tomar c = 1 e $n_0 = 0$ na definição de $\mathcal{O}(f(n))$.

• Por outro lado, f(n) é O(g(n)). De facto, para cada $n \ge 1$ tem-se

$$0 \le f(n) = n^{2} + 5n + 2 \le n^{2} + 5n^{2} + 2n^{2} = 8n^{2} = 8g(n).$$

Tem-se portanto que O(f(n)) = O(g(n)). Pode-se assim dizer que f(n) e g(n) são funções da mesma ordem de grandeza.

Poder-se-ia ainda verificar que:

- $n^2 + 5n + 2$ não é O(n);
- $n^2 + 5n + 2 \in \mathcal{O}(n^3)$;
- n^3 não é $O(n^2 + 5n + 2)$.

Mais geralmente, para funções polinomiais é válido o seguinte resultado.

Proposição

Seja f(n) um polinómio de grau k. Então,

- f(n) não é $O(n^j)$ para todo o j < k.
- ② $f(n) \in \mathcal{O}(n^k) \in n^k \in \mathcal{O}(f(n))$.
- 3 f(n) é $O(n^{\ell})$ e n^{ℓ} não é O(f(n)) para todo o $\ell > k$.

Consideremos agora também funções não polinomiais.

EXEMPLO

Sejam $f(n) = n^3$ e $g(n) = 2^n$, e note-se que

n	0	1	2	3	 8	9	10	11	12	• • •
f(n)	0	1	8	27	 512	729	1000	1331	1728	
g(n)	1	2	4	8	 256	512	1024	2048	4096	

• $f(n) \in \mathcal{O}(g(n))$. Basta notar que,

$$\forall n \geq 10, \quad 0 \leq f(n) \leq 1 g(n).$$

• g(n) não é O(f(n)).

n	10	20	30	40	50	100	200
$\lfloor log_2(n) \rfloor$	3	4	4	5	5	6	7
n	10	20	30	40	50	100	200
n ²	100	400	900	1 600	2 500	10 000	40 000
n ³	1 000	8 000	27 000	64 600	125 000	1 000 000	8 000 000
2 ⁿ	1 024	1 048 576	1.0×10^{9}	1.1×10^{12}	1.1×10^{15}	1.2×10^{30}	1.6×10^{60}
n!	3 628 800	2.4×10^{18}	2.6×10^{32}	8.1×10^{47}	3.0×10^{64}	> 10 ¹⁵⁷	> 10 ³⁷⁴

Proposição

Sejam $k \in \mathbb{N}_0$ e $a \in \mathbb{R}$ tal que a > 1. Então,

- 3 a^n é $\mathcal{O}(n!)$ e n! não é $\mathcal{O}(a^n)$.

Definição [Complexidade temporal de uma MT]

Seja ${\mathbb T}$ uma máquina de Turing que pára sempre (ou seja, ${\mathbb T}$ é um algoritmo). A complexidade temporal de ${\mathbb T}$ é a função ${\it tc}_{{\mathbb T}}: {\mathbb N}_0 \to {\mathbb N}_0$ tal que, para cada $n \in {\mathbb N}_0$,

 $tc_{\mathfrak{I}}(n)=\max\{m_u: u \text{ \'e uma palavra de comprimento } n \text{ e} \ m_u \text{ \'e o n\'umero de passos que } \mathfrak{T} \text{ executa } \ (at\'e parar) quando \'e iniciada com } u\}.$

Definição [Complexidade temporal de MT não-determinista]

Seja ${\mathbb T}$ uma MT não-determinista que pára sempre. A *complexidade* temporal de ${\mathbb T}$ é a função $tc_{{\mathbb T}}: {\mathbb N}_0 \to {\mathbb N}_0$ definida, para cada $n \in {\mathbb N}_0$, por

 $tc_{\mathfrak{T}}(n)=\max\{m_u: m_u \text{ \'e o maior n\'umero de computações que podem ser efetuadas por \mathfrak{T} quando iniciada com uma palavra <math>u$ de comprimento $n\}$.

DEFINIÇÃO

Sejam $f: \mathbb{N}_0 \to \mathbb{R}$ uma função (total) e L uma linguagem. Diz-se que L é aceite em tempo determinista (resp. não-determinista) f(n) se existe um algoritmo determinista (resp. não-determinista) \mathfrak{T} tal que:

- \mathfrak{T} aceita L;
- $tc_{\mathbb{T}}(n) \in \mathcal{O}(f(n))$.

A classe destas linguagens é denotada por DTIME(f(n)) (resp. NTIME(f(n))). Note-se que $DTIME(f(n)) \subseteq NTIME(f(n))$.

Podemos agora definir duas classes de complexidade importantes:

$$P = \bigcup_{k \ge 0} DTIME(n^k)$$
 e $NP = \bigcup_{k \ge 0} NTIME(n^k)$.

Seven Millennium Problems from Clay Mathematics Institute

- . . .
- P = NP?

EXEMPLO

A máquina de Turing $\mathfrak T$ com duas fitas, onde $x \in \{a,b\} = A$,

$$(x,\Delta)/(x,x),(D,D) \qquad (\Delta,x)/(\Delta,x),(C,E) \qquad (x,x)/(x,x),(E,D)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(C,E) \qquad (\Delta,\Delta)/(\Delta,\Delta),(E,D)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(D,D) \qquad (\Delta,\Delta)/(\Delta,\Delta),(C,C)$$

aceita a linguagem $L=\{u\in A^*: u=u^I\}$ das palavras capicua sobre A. Como se pode verificar, tem-se para todo o $n\in\mathbb{N}_0$

$$tc_{\mathfrak{I}}(n) = 3(n+1) + 1 = 3n + 4.$$

Logo $L \in DTIME(3n + 4) = DTIME(n)$. Ou seja, L é aceite por \mathfrak{T} em tempo linear.

Observação

- A noção de complexidade espacial será agora indicada para máquinas de Turing com mais do que uma fita. Seja T uma destas máquinas e suponhamos que a 1ª fita é apenas de leitura. Se em vez de contarmos o número de passos dados por T, contarmos o número de células das fitas de trabalho que a MT utiliza, define-se a função sc_T, de complexidade espacial de T.
- Pode-se ainda definir as classes de complexidade DSPACE(f(n)) e NSPACE(f(n)) de forma análoga àquela apresentada para as classes de complexidade DTIME(f(n)) e NTIME(f(n)).
- Note-se que $DTIME(f(n)) \subseteq DSPACE(f(n))$ e que $NTIME(f(n)) \subseteq NSPACE(f(n))$.

Definição

Consideremos linguagens $L_1 \subseteq A_1^*$ e $L_2 \subseteq A_2^*$. Diz-se que L_1 é polinomialmente redutível a L_2 (ou que L_1 se reduz a L_2 em tempo polinomial), e escreve-se $L_1 \leq_p L_2$, se existe uma função $f: A_1^* \to A_2^*$ tal que:

- i) para cada $u \in A_1^*$, $u \in L_1$ se e só se $f(u) \in L_2$;
- ii) a função f é computável em tempo polinomial (ou seja, f é calculada por um algoritmo cuja função de complexidade temporal é $\mathcal{O}(n^k)$ para algum $k \in \mathbb{N}$).

TEOREMA

Sejam L_1 , L_2 e L_3 linguagens.

- Se $L_1 \leq_p L_2$ e $L_2 \leq_p L_3$, então $L_1 \leq_p L_3$.
- ② Se $L_1 \leq_p L_2$ e $L_2 \in P$, então $L_1 \in P$.

EXEMPLO

Consideremos as linguagens

- $L_1 = \{u \in A_1^* : |u| \text{ \'e par}\}$ sobre o alfabeto $A_1 = \{a, b\}$, e
- $L_2 = \{1^{2n} : n \in \mathbb{N}_0\}$ sobre o alfabeto $A_2 = \{1\}$.

A linguagem L_1 é polinomialmente redutível a L_2 . De facto, consideremos a função

$$\begin{array}{cccc} f: & A_1^* & \longrightarrow & A_2^* & . \\ & u & \longmapsto & 1^{|u|} \end{array}$$

- i) Seja $u \in A_1^*$. Tem-se $u \in L_1 \Leftrightarrow |u|$ é par $\Leftrightarrow 1^{|u|} \in L_2 \Leftrightarrow f(u) \in L_2$.
- ii) A função f é computada em tempo polinomial pelo seguinte algoritmo ${\mathfrak T}$

pois, como se verifica facilmente, $tc_{\mathbb{T}}(n)=2n+3$ para todo o $n\in\mathbb{N}_0$, donde a função de complexidade temporal de \mathbb{T} é $\mathbb{O}(n)$.

Definição

Uma linguagem L diz-se:

- *NP-difícil* se $L' \leq_p L$ para toda a linguagem $L' \in NP$;
- *NP-completa* se L é NP-difícil e $L \in NP$.

TEOREMA

Sejam L e K linguagens.

- Se L é NP-difícil e $L \leq_p K$, então K é NP-difícil.
- ② Se L é NP-completa, então $L \in P$ se e só se P = NP.

O próximo teorema representa um marco histórico, pois nele foi identificado pela primeira vez um problema NP-completo.

TEOREMA [COOK,1971]

O problema SAT, de decidir se uma fórmula lógica em forma normal conjuntiva admite alguma valoração das variáveis que a satisfaça, é NP-completo.

O resultado seguinte é uma consequência imediata dos dois últimos teoremas.

Corolário

P = NP se e só se $SAT \in P$.