Lecture Notes on Linear Algebra

CARAPAERO

1. Vector Space

Definition (Vector Space). A vector space (or linear space) V over a Field \mathcal{F} consists of a set on which two operations (called addition and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in V there is a unique element x+y in V, and for each element x in Y there is a unique element x in Y, such that the following conditions hold.

§ Subspace.

<u>Definition</u> (Subspace). A subset W of a vector space V over a field \mathbb{F} is called a subspace of W if W is a vector space over F with the operations of addition and scalar multiplication defined on W.

Remark. Trivial subspaces of a vector space V, namely V itself and $\{0\}$. Note that empty set ϕ is not a vector space, since it does not contains a zero vector.

Theorem 1.1. Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the following three conditions hold for the operations defined in V.

- (a) $0 \in W$.
- (b) $x + y \in W$ whenever $x \in W$ and $y \in W$.
- (c) $cx \in W$ whenever $c \in F$ and $x \in W$.

Corollary 1.1.1. Let W be a subset of vector space V. W is a subspace of V if and only if $0 \in W$ and $ax + y \in W$ whenever $a \in F$ and, $x, y \in W$.

Proof. (\Rightarrow) Since W is a subspace $\implies 0 \in W$, $ax \in W$ for $a \in \mathcal{F}$ and $ax, y \in W \implies ax + y \in W$. (\Leftarrow) $0 \in W$. Since $ax + y \in W$, $a \in \mathcal{F}$, take $a = 1 \implies x + y \in W$, and also $\because 0 \in W$, take $y = 0 \implies ax \in W$, for $a \in \mathcal{F}$. Hence, W is a subspace.

Theorem 1.2. Any intersection of subspaces of a vector space W is a subspace of V.

Theorem 1.3. Let W_1 and W_2 be subspaces of a vector space V, then $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Proof. Suppose $W_1 \cup W_2$ is a subspace of V, we assume that $W_1 \nsubseteq W_2$ and $W_2 \nsubseteq W_1$. Let $x \in W_1 \backslash W_2$, $y \in W_2 \backslash W_1$, then $x + y \in W_1$ or W_2 , say W_1 . But $y = (x + y) - x \in W_1$, which is a contradiction. So we have $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. Conversely is trivial.

Definition. If S_1 and S_2 are nonempty subsets of a vector space V, then the sum of S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } y \in S_2\}$.

Theorem 1.4. Let W_1 and W_2 be subspaces of a vector space V.

- (a) $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .
- (b) Any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.

Proof. To prove (a), we first show that W_1+W_2 is a subspace of V. Clearly, $0=0+0\in W_1+W_2$. Let $x=x_1+x_2,\ y=y_1+y_2,\ c\in \mathbb{F}$ $cx+y=c(x_1+x_2)+(y_1+y_2)=(cx_1+y_1)+(cx_2+y_2)\in W_1+W_2$ By corrolary 1.1.1, W_1+W_2 is a subspace of V. Then we show that $W_1,W_2\subseteq W_1+W_2,\ \forall x\in W_1y\in W_2,\ x=x+0\in W_1+W_2,\ y=0+y\in W_1+W_2,\ we have <math>W_1,W_2\subseteq W_1+W_2.$ To prove (b), Let W be a subspace of V contains both W_1 and W_2 , then $\forall x\in W_1,y\in W_2,\ x+y\in W_1+W_2.$ Thus $W_1+W_2\subseteq W$.

<u>Definition</u> (Direct Sum). A vector space V is called the direct sum of W_1 and W_2 if W_1 and W_2 are subspaces of V such that $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$.

Theorem 1.5. Let W_1 and W_2 be subspaces of a vector space V. V is the direct sum of W_1 and W_2 i.e.

$$V = W_1 \oplus W_2$$

if and only if each vector in V can be uniquely written as $x_1 + x_2$, where $x_1 \in W_1$ and $x_2 \in W_2$

Solution. Suppose that we can write $v = x_1 + x_2 = y_1 + y_2$ with $x_1, y_1 \in W_1$ and $x_2, y_2 \in W_2$. Since $x_1 + x_2 = y_1 + y_2$ and W_1, W_2 are subsapces of a vector space V, so $x_1 - y_1 = x_2 - y_2 \in W_1 \cap W_2$. As $V = W_1 \oplus W_2$, $x_1 - y_1 = x_2 - y_2 = \{0\}$, that is, $x_1 = y_1$ and $x_2 = y_2$. Hence it is a unique representation. Conversely, suppose that the condition holds. We claim that $V = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$. Since $W_1 + W_2$ is the smallest subspace of V, so $W_1 + W_2 \subseteq V$. By assumption, it is clear to get that $V \subseteq W_1 + W_2$. This proves $V = W_1 + W_2$. Since W_1, W_2 are subspaces of V, so $0 \in W_1$ and $0 \in W_2$. Let v be a vector in $W_1 \cap W_2$. From the uniqueness of decomposition and v = 0 + v = v + 0, it implies that v = 0. This proves $W_1 \cap W_2 = \{0\}$. In conclusion, $V = W_1 \oplus W_2$.

§ Linear Combinations and Bases.

<u>Definition</u> (Linearly Dependent). A subset S of a vector space W is called linearly dependent if there exist a finite number of distinct vectors $u_1, u_2, ..., u_n$ in S and scalars $a_1, a_2, ..., a_n$, not all zero, such that

$$a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0.$$

In this case we also say that the vectors of S are linearly dependent.

<u>Definition</u> (Linearly Independent). A subset S of a vector space that is not linearly dependent is called linearly independent. As before, we also say that the vectors of S are linearly independent.

Remark.

- 1. The empty set is linearly independent, for linearly dependent sets must be nonempty.
- 2. A set consisting of a single nonzero vector is linearly independent. For if $\{u\}$ is linearly dependent, then au = 0 for some nonzero scalar a. Thus

$$u = a^{-1}(au) = a^{-1}0 = 0$$

3. A set is linearly independent if and only if the only representations of 0 as linear combinations of its vectors are trivial representations.

Theorem 1.6. Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Proof. Since $S_1 = \{u_1, \dots, u_m\}$ is linearly dependent i.e. $\exists a_1, \dots, a_m \in \mathcal{F}$ are not all zero s.t.

$$a_1 u_1 + \dots + a_m u_m = 0 \tag{1}$$

Since $S_1 \subseteq S_2$ say $S_2 = S_1 \cup \{u_{m+1}, \dots, u_n\}$. Let

$$b_1u_1 + \cdots + b_mu_m + b_{m+1}u_{m+1} + \cdots + b_nu_n = 0$$
 $b_i \in \mathcal{F}, j = 1, 2, 3, \cdots$

Now, we take $b_{m+1} = \cdots = b_n = 0$ and by (1) there exists a_1, \cdots, b_n are not all zeros. Hence, S_2 is linearly dependent.

Corollary 1.6.1. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in span(S)$.

Proof. Suppose $S \cup v$ is linear independent, then $\exists v_1, ..., v_n \in S \cup v$ such that $a_1u_1 + ... + a_nu_n = 0$ for some nonzero scalars $a_1, ..., a_n$. Because S is linear independent, say $u_1 = v$. We have $v = a_1^{-1}(-a_2u_2 - ... - a_nu_n)$, which is a linear combination of $u_2, ..., u_n$. Thus $v \in span(S)$. Conversely, suppose $v \in span(S)$. Then $\exists v_1, ..., v_n \in S$ and scalars $b_1, ..., b_m$ such that $v = b_1v_1 + ... + b_mv_m$. Thus $0 = b_1v_1 + ... + b_mv_m + (-1)v$ which means $S \cup v$ is linear independent.

<u>Definition</u> (Basis). A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basis for V.

Theorem 1.7. Let V be a vector space and $\beta = \{u_1, u_2, ..., u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , that is, can be expressed in the form

$$V = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$

for unique scalars a_1, a_2, \cdots, a_n .

Proof. If $S = \emptyset$ or S = 0, then $V = \{0\}$ and \emptyset is a subset of S which is a basis of V. Otherwise S contains a nonzero vector $\{u_1\}$. We continue choosing vectors $u_2, ..., u_k \in S$ such that $\beta = \{u_1, ..., u_k\}$ is linear independent and $\{u_1, ..., u_k, v\}$ is linear dependent for some vector $v \in V \setminus S$. To show that β is a basis, it suffices to show that β generates V. Let $v \in S$. If $v \in \beta$, then clearly $\beta \in span(S)$. If $v \in S \setminus \beta$, then we have $\beta \cup v$ is linear dependent. So $v \in span(\beta)$. Thus $S \subseteq span(\beta)$.

Theorem 1.8. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Proof. We prove it by mathematical induction on m. For $m=0, L=\emptyset$, so take H=G. Assume the theorem holds for some integer $m\geq 0$. For m+1, let $L = \{v_1, ..., v_{m+1}\}$ be a linear independent subset of V containing m+1 vectors. Because $\{v_1, ..., v_m\}$ is linear independent, so by the induction hypothesis, we have $m \ge n$ and \exists a subset $\{u_1, ..., u_{n-m}\}$ of G such that $\{v_1, ..., v_m\} \cup$ $\{u_1,...,u_{n-m}\}$ generates v. Thus \exists scalars $a_1,...,a_m,b_1,...,bn-m$ such that $a_1v_1 + ... + a_mv_m + b_1u_1 + ... + b_{n-m}u_{n-m} = v_{m+1}$. We have n - m > 0and v_{m+1} is a linear combination of $\{v_1,...,v_m\}$ which contradicts the assumption that L is linear independent. Hence n > m that is $n \ge m + 1$. Moreover, say b_1 is nonzero, otherwise we obtain the same contradiction. We have $u_1 = (-b_1^{-1}a_1)v_1 + \dots + (-b_1^{-1}a_m)v_m + (b_1^{-1})v_{m+1} + (-b_1^{-1}b_2)u_2 + \dots + (-b_1^{-1}a_n)v_m + (-b_1$ $(-b_1^{-1}b_{n-m})u_n - m$. Let $H = \{u_2, ..., u_{n-m}\}$. Then $u_1 \in span(L \cup H)$ and $v_1, ..., v_m, u_2, ..., u_{n-m} \in span(L \cup H), \text{ so } \{v_1, ..., v_m, u_1, ..., u_{n-m}\} \subseteq span(L \cup H)$ H). We have $span(L \cup H) = V$. Since H is a subset of G contains (n-m)-1=n-(m+1) vectors. So by mathematical induction, we are done.

Theorem 1.9 (Replacement Theorem). Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n-m vectors such that $L \cup H$ generates V.

Proof. Let dim(V) = n. If $W = \{0\}$, then W is finite-dimensional and $dim(W) = 0 \le n$. Otherwise, W contains a nonzero vector x_1 , so $\{1\}$ is a linear independent set. We continue choosing vectors $x_1, ..., x_k \in W$ such that $x_1, ..., x_k$ is linear independent. This process must stop at $k \le n$ and $\{x_1, ..., x_k\}$ is linear independent and other vector in W produces a linear

dependent set. Hence it is a basis of W. Thus $dim(W) = k \leq n$. If dim(W) = n, a basis of W is a linear independent subset of V contains n vectors, so a basis of W is also a basis of V. Thus W = V.

Corollary 1.9.1. Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

Definition (Finite-Dimensional). A vector space is called finite-dimensional if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the dimension of V and is denoted by dim(V). A vector space that is not finite-dimensional is called infinite-dimensional.

Corollary 1.9.2. Let V be a vector space with dimension n.

- 1. Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
- 2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.
- 3. Every linearly independent subset of V can be extended to a basis for V.

Theorem 1.10. Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then V = W.

Proof. Since V is a finite-dimensional vector space, say $\dim(V) = n$. If $W = \{0\}$, then W is a finite-dimensional and $\dim(W) = 0 \le n$. Otherwise, W contains a nonzero vector x_1 ; so $\{x_1\}$ is linearly independent set. Continue choosing vectors, x_1, \dots, x_k in W such that $S = \{x_1, \dots, x_k\}$ is linearly independent. Since no linearly independent subset can contain more than n vectors in V, therefore $S \cup \{v\}$ is linearly dependent for $\{v\} \in span(S)$ then by Thm 1.7 S generates W. S is a basis of $W \Longrightarrow \dim(W) = k \le n$. If $\dim(W) = n$, then a basis for W is a linearly independent subset of V containing N vectors. By replacement theorem any linearly independent subset of V contains exactly N vectors is also a basis of V. Hence V = W.

Propersition 1.11. Let W_1 and W_2 be subspaces of a finite-dimensional vector space V. $W_1 \subseteq W_2$ if and only if $\dim(W_1 \cap W_2) = \dim(W_1)$

Theorem 1.12. Let v_1, v_2, \dots, v_k, v be vectors in a vector space V, and define $W_1 = span(\{v_1, v_2, \dots, v_k\})$, and $W_2 = span(\{v_1, v_2, \dots, v_k, v\})$. Then $v \in span(W_1)$ if and only if $dim(W_1) = dim(W_2)$.

Remark. We may give an example for satisfying the conditions on above but $\dim(W_1) \neq \dim(W_2)$.

Theorem 1.13. Let W_1 and W_2 be finite-dimensional subspaces of a vector space V.

(a) Then the subspace $W_1 + W_2$ is finite-dimensional, and

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

(b) Let $V = W_1 + W_2$. Deduce that V is the direct sum of W_1 and W_2 if and only if

$$\dim(V) = \dim(W_1) + \dim(W_2)$$

Proof.

(a). Let $\beta = \{u_1, u_2, \dots, u_k\}$ is a basis of $W_1 \cap W_2$ with $\dim(W_1) = k + m$, $\dim(W_2) = k + n$ and $\dim(W_1 \cap W_2) = k$ for $k, m, n \in \mathbb{N}$. Since $\beta \in W_1$ and $\beta \in W_2$ by Replacement Theorem, every linearly independent subset of V can be extended to a basis for V.

$$\exists \beta_1 = \{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_m\}$$
 is a basis of W_1 and $\beta_2 = \{u_1, u_2, \dots, u_k, w_1, w_2, \dots, w_n\}$ is a basis of W_2 . Let $x \in W_1 + W_2$.

Claim.
$$Span(\{u_1, \dots, u_k, v_1, \dots, v_m, w_1, \dots, w_n\}) = W_1 + W_2$$

$$x = (a_1u_1 + a_2u_2 + \dots + a_{k+1}v_1 + a_{k+2}v_2 + \dots + a_{k+m}v_m) + (b_1u_1 + b_2u_2 + \dots + b_ku_k + b_{k+1}w_1 + b_{k+2}w_2 + \dots + b_{k+n}w_n), a_i, b_i \in \mathcal{F} \text{ for } i, j = 1, 2, \dots$$

$$= c_1 u_1 + c_2 u_2 + \dots + c_k u_k + a_{k+1} v_1 + a_{k+2} v_2 + \dots + a_{k+m} v_m + b_{k+1} w_1 + b_{k+2} + \dots + b_{k+n} w_n, c_1, c_2, \dots, c_k \in \mathcal{F} \implies \forall x \in W_1 + W_2$$

$$\therefore W_1 + W_2 \subseteq span(\{u_1, \cdots, u_k, v_1, \cdots, v_m, w_1, \cdots, w_n\})$$

 $W_1 + W_2$ is a subspace, any linear combination of $W_1 + W_2$'s subset are in $W_1 + W_2$

$$\therefore span(\{u_1, \dots, u_k, v_1, \dots, v_m, w_1, \dots, w_n\}) \in W_1 + W_2$$

$$\therefore span(\{u_1, \dots, u_k, v_1, \dots, v_m, w_1, \dots, w_n\}) = W_1 + W_2$$

Claim. $\{u_1, \dots, u_k, v_1, \dots, v_m, w_1, \dots, w_n\}$ is linearly independent

$$\sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{m} b_i v_i + \sum_{i=1}^{n} c_i w_i = 0 \implies \sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{m} b_i v_i = -\sum_{i=1}^{n} c_i w_i$$

$$\therefore \sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{m} b_i v_i \in W_1 , -\sum_{i=1}^{n} c_i w_i \in W_2$$

$$\therefore \sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{m} b_i v_i , -\sum_{i=1}^{n} c_i w_i \in W_1 \cap W_2$$

$$\implies \exists d_i \in \mathcal{F}, \sum_{i=1}^k a_i u_i + \sum_{i=1}^m b_i v_i = -\sum_{i=1}^n c_i w_i = \sum_{i=1}^k d_i u_i$$

$$\therefore \beta_1, \beta_2$$
 is linearly independent $\therefore -\sum_{i=1}^n c_i w_i = \sum_{i=1}^k d_i u_i$ only for scalars

are all zeros. $\sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{m} b_i v_i = 0$ only for scalars are all zero

$$\therefore \{u_1, \dots, u_k, v_1, \dots, v_m, w_1, \dots, w_n\}$$
 is linearly independent

$$\therefore \{u_1, u_2, \cdots, u_k, v_1, v_2, \cdots, v_m, w_1, w_2, \cdots, w_n\} \text{ is a basis of } W_1 + W_2$$

$$\therefore \dim(W_1 + W_2) = k + m + n$$

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) + \dim(W_1 \cap W_2)$$

(b).
$$W_1 \cap W_2 = \{0\}$$

by Exercise 1.16.29(a), if W_1 and W_2 are finite-dimensional subspace of a vector space V, $\dim(V) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2)$ or $\dim(W_1) + \dim(W_2)$

Theorem 1.14. Let W_1 and W_2 be subspaces of a vector space V such that $V = W_1 \oplus W_2$ if and only if there exist base β_1 , β_2 of W_1 , W_2 , respectively such that $\beta_1 \cup \beta_2$ is a basis for V.

Proof. Let
$$\beta_1 = \{v_1, v_2, \dots, v_n\}, v_1, v_2, \dots, v_n \in W_1,$$

 $\beta_2 = \{u_1, u_2, \dots, u_m\}, u_1, u_2, \dots, u_m \in W_2$
 $W_1 + W_2 = \left\{\sum_{i=1}^n a_i v_i + \sum_{j=1}^m b_j u_j \mid a_1, \dots, a_n, b_1, \dots, b_m \in \mathcal{F}\right\}$

Claim: Span $(\beta_1 \cup \beta_2) \subseteq W_1 + W_2$

let $x \in \text{Span}(\beta_1 \cup \beta_2)$, $x = a_1v_1 + a_2v_2 + \dots + b_1u_1 + b_2u_2 + \dots + b_mu_m$

$$W_1, W_2$$
 is a subspace of $V : \sum_{i=1}^n a_i v_i \in W_1$, $\sum_{i=1}^m b_i u_i \in W_2$

$$\therefore x \in W_1 + W_2, \operatorname{Span}(\beta_1 \cup \beta_2) \subseteq W_1 + W_2$$

Claim. $W_1 + W_2 \subseteq \operatorname{Span}(\beta_1 \cup \beta_2)$

Let
$$x \in W_1 + W_2, x = (a_1v_1 + \dots + a_nv_n) + (b_1u_1 + \dots + b_mu_m)$$

$$\therefore x \in \operatorname{Span}(\beta_1 \cup \beta_2) \therefore W_1 + W_2 \subseteq \operatorname{Span}(\beta_1 \cup \beta_2) \therefore \operatorname{Span}(\beta_1 \cup \beta_2) = W_1 + W_2$$

Claim $\beta_1 \cup \beta_2$ is linearly independent

$$\sum_{i=1}^{n} a_i v_1 + \sum_{j=1}^{m} b_j u_j = 0 \implies \sum_{i=1}^{n} a_i v_i = -\sum_{j=1}^{m} b_j u_j$$

$$\therefore \sum_{i=1}^{n} a_i v_i \in W_1 , -\sum_{j=1}^{m} b_j u_j \in W_2 \text{ and } \sum_{i=1}^{n} a_i v_i , -\sum_{i=1}^{m} b_i u_i \in W_1 \cap W_2$$

$$\therefore W_1 \cap W_2 \therefore \sum_{i=1}^n a_i v_i = -\sum_{j=1}^m b_j u_j = 0 \quad \therefore \beta_1, \beta_2 \text{ is linearly independent}$$

$$\therefore a_1 = \dots = a_n = b_1 = \dots = b_m = 0 \therefore \beta_1 \cup \beta_2 \text{ is linearly independent}$$

 $\therefore \beta_1 \cup \beta_2$ is a basis of V.

Theorem 1.15.

If W_1 is any subspace of vector space of V, then there exists a subspace W_2 of V such that

$$V = W_1 \oplus W_2$$

Proof. let $\beta_1 = \{v_1, v_2, \cdots, v_m\}$ and $\dim(V) = n$. By Corollary of Replacement Theorem, Every linearly independent subset of V can be extended to a basis for V then $\exists \beta = \{v_1, v_2, \cdots, v_m, u_1, u_2, \cdots, u_{n-m}\}$ is a basis of V. Let $W_2 = \operatorname{span}(\{u_1, u_2, \cdots, u_{n-m}\}) : u_1, u_2, \cdots, u_{n-m} \in V, V$ is a vector space by Thm 1.5, the span of any subset S of a vector space V is a subspace. $\therefore W_2$ is a subspace of V. Now we claim that $W_1 \cap W_2 = \{0\}$ $\therefore W_1, W_2$ is a subspace of V $\therefore 0 \in W_1, W_2$. Assume $\exists r \in V$ and $r \in W_1$, $r \in W_2$, $r \neq 0$.

$$r = a_1 v_1 + a_2 v_2 + \dots + a_m v_m$$

$$= b_1 u_1 + b_2 u_2 + \dots + b_{n-m} u_{n-m}$$

$$= c_1 v_1 + \dots + c_m v_m + d_1 u_1 + \dots + d_{n-m} u_{n-m}$$

$$\Longrightarrow \begin{cases} (c_1 - a_1) v_1 + \dots + (c_m - a_m) v_m + d_1 u_1 + \dots + d_{n-m} u_{n-m} = 0 \\ c_1 v_1 + \dots + c_m v_m + (d_1 - b_1) u_1 + \dots + (d_{n-m} - b_{n-m}) \end{cases}$$

$$\Longrightarrow c_1 = a_1, c_2 = a_2, \dots, c_m = a_m, d_1 = b_1, \dots, d_{n-m} = b_{n-m}$$

$$\Rightarrow r = r + r \Rightarrow r = 0 \rightarrow \leftarrow \therefore W_1 \cap W_2 = \{0\}.$$

2. Linear Transformation

§ Linear Operator

<u>Definition</u> (Linear Transformation). Let V and W be vector spaces (over F). We call a function $T: V \to W$ a linear transformation from V to W if, for all $x, y \in V$ and $c \in F$, we have

(a)
$$T(x+y) = T(x) + T(y)$$

(b)
$$T(cx) = cT(x)$$

Definition. Let $T, U : V \to W$ be arbitrary functions, where V and W are vector spaces over F, and let $a \in F$. We define $T + U : V \to W$ by (T + U)(x) = T(x) + U(x) for all $x \in V$, and $aT : V \to W$ by (aT)(x) = aT(x) for all $x \in V$.

Remark. If F = Q then $(a) \Rightarrow (b)$.

Remark. If $T: C \to C$ be function defined by $T(\delta) = \delta$. T is additive but not linear.

Propersition 2.1.

- 1. If T is linear, then T(0) = 0.
- 2. T is linear if and only if T(cx + y) = cT(x) + T(y) for all $x, y \in V$ and $c \in F$.
- 3. If T is linear, then T(x-y) = T(x) T(y) for all $x, y \in V$
- 4. T is linear if and only if, for $x_1, x_2, \dots, x_n \in V$ and $a_1, a_2, \dots, a_n \in F$, we have

$$T(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i T(x_i).$$

- 5. For all $a \in F$, aT + U is linear.
- 6. Using the operations of addition and scalar multiplication in the preceding definition, the collection of all linear transformations from V to W is a vector space over F.

Definition (Null Space, Range). Let V and W be vector spaces and let T: $V \to W$ be linear. We define the null space(or kernel) N(T) of T to be the set of all vectors x in V such that T(x) = 0; that is, $N(T) = \{x \in V : T(x) = 0\}$.

We define the range(or image) R(T) of T to be the subset of W consisting of all images (under T) of vectors in V; that is, $R(T) = \{T(x) : x \in V\}$

Remark. Let V and W be vector spaces, and let $I: V \to V$ and $T_0: V \to W$ be the identity and zero transformations, respectively. Then $N(I) = \{0\}$, R(I) = V, $N(T_0) = V$, and $R(T_0) = \{0\}$.

Theorem 2.2. Let V and W be vector spaces and $T : V \to W$ be linear. Then N(T) and R(T) are subspaces of V and W, respectively. Proof.

Let $0_V \in V, 0_W \in W$ be a zero vectors

$$T(0_V) = 0_W T_0 0_V \in N(T)$$

Let $x, y \in N(T), c \in F$,

$$T(x+y) = T(x) + T(y) = 0_W + 0_W = 0_W$$

$$\therefore x + y \in N(T)$$

$$T(cx) = cT(x) = c0_W = 0_W$$

$$\therefore cx \in N(T)$$

 $\implies N(T)$ is a subspace of V

$$T(0_V) = 0_W : 0_W \in R(T)$$

Let $x, y \in R(T)$ and $c \in F$. $\exists v, w \in V, T(v) = x \in V$ and T(w) = y

$$\therefore x + y = T(v) + T(w) = T(v + w)$$

$$\therefore x + y \in R(T)$$

$$\therefore cx = cT(v) = T(cv)$$

$$\therefore cx \in R(T) \implies R(T)$$
 is a subspace of W

Remark. Give an example of distinct linear transformations T and U such that N(T) = N(U) and R(T) = R(U)

Theorem 2.3. Let V and W be vector spaces, and let $T: V \to W$ be linear. If $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V, then

$$R(T) = span(T(\beta)) = span(\{T(v_1), T(v_2), ..., T(v_n)\})$$

Proof.

Clearly, $T(v_i) \in R(T)$

 $\therefore R(T)$ is a subspace \therefore By thm 1.5 : $span(T(\beta)) \subseteq R(T)$

Let $w \in R(T)$

 $\therefore w = T(v)$ for some $v \in V \therefore \beta$ is a basis of V

$$\therefore v = \sum_{i=1}^{n} a_i v_i \text{ for some } a_i \in F, \quad 1 \le i \le n$$

$$T \text{ is linear } T \text{$$

$$\therefore R(T) \subseteq span(T(\beta)) \implies R(T) = span(T(\beta)) = span(\{T(v_1), \cdots, T(v_n)\})$$

Example. Prove Theorem 2.2 for the case that β is infinite, that is, R(T) = $span(\{T(v):v\in\beta\}).$

<u>Definition</u> (Nullity and Rank). Let V and W be vector spaces and let T: $V \to W$ be linear. If N(T) and R(T) are finite-dimensional, then we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be the dimensions of N(T) and R(T), respectively.

Theorem 2.4. Let V and W be vector spaces, and let $T: V \to W$ be linear. If V is finite-dimensional, then

$$nullity(T) + rank(T) = dim(V).$$

Proof.

Suppose $\dim(V) = n$, $\dim(N(T)) = k$ and $\{v_i = \forall_i = 1, \dots, k\}$ is a basis of N(T)

: Cor of thm 1.11 : We can extend $\{v_i : \text{for } i=1,\cdots,k\}$ to a basis $\beta=\{v_i : \text{for } i=1,\cdots,k\}$ of V

Claim: $S = \{T(v_i) : \text{for } i = k+1, \dots, n\}$ is a basis of R(T)

- 1. Claim span(S) = R(T)
 - \therefore Thm 2.2 \therefore $R(T) = span(T(\beta)) = span(\{T(v_1), \cdots, T(v_n)\})$
 - $T(v_i) = 0 \text{ for } i = 1, \cdots, k$
 - $\therefore R(T) = span(\{T(v_{k+1}, \cdots, T(v_n)\}) = span(S)$
- 2. Claim: S is linear independent

Suppose
$$\sum_{i=k+1}^{n} b_i T(v_i) = 0 \quad \forall b_{k+1}, \dots b_n \in F$$

$$T$$
 is linear $T(\sum_{i=k+1}^{n} b_i v_i) = 0 \implies \sum_{i=k+1}^{n} b_i v_i \in N(T)$

Hence, $\exists c_i \in F \text{ for } i = 1, \dots, k$

$$\implies \sum_{i=k+1}^{n} b_i v_i = \sum_{i=k+1}^{n} c_i v_i \implies \sum_{i=k+1}^{n} b_i v_i + \sum_{i=k+1}^{n} (-c_i) v_i = 0$$

 $\therefore \beta$ is a basis of $V \therefore b_i, \forall_i = k+1, \cdots, n=0$

 $\therefore S^n$ is linear independent

$$S = \{T(v_i) : \text{for } i = k+1, \cdots, n\} \implies rank(T) = n-k$$

Theorem 2.5. Let V and W be vector spaces, and let $T: V \to W$ be linear. Then T is one-to-one if and only if $N(T) = \{0\}$.

```
Proof. T is one-to-one \iff N(T) = \{0\}

⇒
Suppose T is one-to-one and x \in N(T)

T(x) = 0 = T(0)

∴ T is one-to-one ∴ x = 0

⇒ N(T) = \{0\}

\iff
Suppose N(T) = \{0\} and T(x) = T(y)

0 = T(x) - T(y) = T(x - y)

∴ N(T) = \{0\} ∴ x - y = 0 ∴ x = y

⇒ T is one-to-one

⇒ T is one-to-one
```

Propersition 2.6. Let V and W be finite-dimensional vector spaces and $T: V \to W$ be linear.

- (a) Prove that if $\dim(V) < \dim(W)$, then T cannot be onto.
- (b) Prove that if $\dim(V) > \dim(W)$, then T cannot be one-to-one.

Definition (Invertible). Let V and W be vector spaces, and let $T: V \to W$ be linear. A function $U: W \to V$ is said to be an inverse of T if $TU = I_W$ and $UT = I_V$. If T has an inverse, then T is said to be invertible. As noted in Appendix B, if T is invertible, then the inverse of T is unique and is denoted by T^{-1} .

Propersition 2.7.

- 1. $(TU)^{-1} = U^{-1}T^{-1}$.
- 2. $(T^{-1})^{-1} = T$; in particular, T^{-1} is invertible.

<u>Definition</u>. Let A be an $n \times n$ matrix. Then A is invertible if there exists an $n \times n$ matrix B such that AB = BA = I.

If A is invertible, then the matrix B such that AB = BA = I is unique. (If C were another such matrix, then C = CI = C(AB) = (CA)B = IB = B.) The matrix B is called the inverse of A and is denoted by A^{-1} .

<u>Definition</u> (Isomorphism). Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear transformation $T: V \to W$ that is invertible. Such a linear transformation is called an isomorphism from V onto W.

Corollary 2.7.1. Let \sim mean "is isomorphic to." Prove that \sim is an equivalence relation on the class of vector spaces over F.

Theorem 2.8. Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic to W if and only if $\dim(V) = \dim(W)$.

Corollary 2.8.1. Let V be a vector space over F. Then V is isomorphic to F^n if and only if $\dim(V) = n$.

Remark. The Linearity and Finite-dimensional is essential argument.

Example. Recall the definition of P(R) on page 10. Define

$$T: P(R) \to P(R)$$
 by $T(f(x)) = \int_0^x f(t)dt$.

Prove that T linear and one-to-one, but not onto.

Example. Let $T: P(R) \to P(R)$ be defined by T(f(x)) = f'(x). Recall that T is linear. Prove that T is onto, but not one-to-one.

Example. Let V be the vector space of sequences described in Example 5 of Section 1.2. Define the functions $T, U: V \to V$ by

$$T(a_1, a_2, \cdots) = (a_2, a_3, \cdots)$$
 and $U(a_1, a_2, \cdots) = (0, a_1, a_2, \cdots)$.

T and U are called the left shift and right shift operators on V, respectively.

- (a) Prove that T and U are linear.
- (b) Prove that T is onto, but not one-to-one.
- (c) Prove that U is one-to-one, but not onto.

Theorem 2.9. Let V and W be vector spaces, and suppose that V has a finite basis $\{v_1, v_2, \dots, v_n\}$. If $U, T : V \to W$ are linear and $U(v_i) = T(v_i)$ for $i = 1, 2, \dots, n$ then U = T.

Proof. Suppose
$$U(v_i) = T(v_i) = w_i$$
 for $i = 1, \dots, n$

Let
$$x \in U, V$$
 and $x = \sum_{i=1}^{n} a_i v_i$ where $a_i \in F$

$$U(x) = \sum_{i=1}^{n} a_i U(v_i) = \sum_{i=1}^{n-1} a_i T(v_i) = T(x)$$

$$\implies U = T$$

Propersition 2.10. Let V and W be vector spaces and $T: V \to W$ be linear.

- (a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.
- (b) Suppose that T is one-to-one and that S is a subset of V. Prove that S is linearly independent if and only if T(S) is linearly independent.
- (c) Suppose $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V and T is one-to-one and onto. Prove that $T(\beta) = \{T(v_1), T(v_2), \dots, T(v_n)\}$ is a basis for W.

§ Matrix Representation

Definition. Let V be a finite-dimensional vector space. An ordered basis for V is a basis for V endowed with a specific order; that is, an ordered basis for V is a finite sequence of linearly independent vectors in V that generates V.

Definition. Let $\beta = \{u_1, u_2, \dots, u_n\}$ be an ordered basis for a finite-dimensional vector space V. For $x \in V$, let a_1, a_2, \dots, a_n , be the unique scalars such that

$$x = \sum_{i=1}^{n} a_i u_i$$

We define the coordinate vector of x relative to β , denoted $[x]_{\beta}$, by

$$[x]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Remark. Let V be an n-dimensional vector space with an ordered basis β . Define $T: V \to F^n$ by $T(x) = [x]_{\beta}$. Prove that T is linear.

<u>Definition.</u> Using the notation above, we call the $m \times n$ matrix A defined by $A_{ij} = a_{ij}$ the matrix representation of T in the ordered bases β and γ and write $A = [T]_{\beta}^{\gamma}$. If V = W and $\beta = \gamma$, then we write $A = [T]_{\beta}$.

Notice that the jth column of A is simply $[T(v_j)]_{\gamma}$. Also observe that if U: $V \to W$ is a linear transformation such that $[U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma}$, then U = T by the corollary to Theorem 2.6 (p. 73).

Theorem 2.11. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively, and let $T, U : V \to W$ be linear transformations. Then

(a)
$$[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$$
 and

(b)
$$[aT]^{\gamma}_{\beta} = a[T]^{\gamma}_{\beta}$$
 for all scalars a .

Proof. Let $\beta = \{v_j \mid 1 \leq j \leq n\}$ and $\gamma = \{w_i \mid 1 \leq i \leq m\} \implies \exists! a_{ij}, b_{ij} \in F \text{ for } 1 \leq j \leq n , 1 \leq i \leq m \text{ s.t.}$

1.
$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$
 and $U(v_j) = \sum_{i=1}^{m} b_{ij} w_i$, hence

$$(T+U)(v_j) = \sum_{i=1}^{m} (a_{ij} + b_{ij})wi$$

Thus
$$([T+U]^{\gamma}_{\beta})_{ij} = a_{ij} + b_{ij} = ([T]^{\gamma}_{\beta})_{ij} + ([U]^{\gamma}_{\beta})_{ij} = ([T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta})_{ij}$$

 $\Longrightarrow [T+U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$

2.
$$T(V_j) = \sum_{i=1}^m a_{ij} w_i$$
 for $j = 1, \dots, n$ and $a \in F$ then $aT(v_j) = a \sum_{i=1}^m a_{ij} w_i = \sum_{i=1}^m a_{ij} w_i = T(av_j)$ thus $([aT]_{\beta}^{\gamma})_{jj} = aa_{ij} = (a[T]_{\beta}^{\gamma})_{ij} \Longrightarrow [aT]_{\beta}^{\gamma} = a[T]_{\beta}^{\gamma}$

Theorem 2.12. Let V, W, and Z be vector spaces over the same field F, and let $T: V \to W$ and $U: W \to Z$ be linear. Then $UT: V \to Z$ is linear.

Proof. Let
$$x, y \in V$$
, $a \in FUT(ax+y) = U(T(ax+y)) = U(aT(x)+T(y)) = aUT(x) + UT(y) \Rightarrow UT$ is linear.

Theorem 2.13. Let V be a vector space. Let T, U_1 , $U_2 \in L(V)$. Then

(a)
$$T(U_1 + U_2) = TU_1 + TU_2$$
 and $(U_1 + U_2)T = U_1T + U_2T$

(b)
$$T(U_1U_2) = (TU_1)U_2$$

- (c) TI = IT = T
- (d) $a(U_1U_2) = (aU_1)U_2 = U_1(aU_2)$ for all scalars a.

Proof. Let $x \in V$

- 1. $T(U_1 + U_2)(x) = T(U_1(x) + U_2(x)) = TU_2(x) + TU_2(x) \Rightarrow T(U_1 + U_2) = TU_1 + TU_2(U_1 + U_2)T(x) = U_1T(x) + U_2T(x) \Rightarrow (U_1 + U_2)T = U_1T + U_2T$
- 2. $T(U_1U_2)(x) = T(U_1(U_2(x))) = (TU_1)(U_2(x)) \Rightarrow T(U_1U_2) = (TU_1)U_2$
- 3. $TI(x) = T(x) = IT(x) \Rightarrow TI = T = IT$
- 4. $a(U_1U_2)(x) = a(U_1(U_2(x))) = (aU_3)(U_2(x)) = U_1(aU_2(x)) \Rightarrow a(U_1U_2) = (aU_1)U_2 = U_1(aU_2)$

<u>Definition</u> (The Product Of Two Matrices). Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. We define the product of A and B, denoted AB, to be the $m \times p$ matrix such that

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \text{ for } 1 \le i \le m, \ 1 \le j \le p.$$

Theorem 2.14. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α, β , and γ , respectively. Let $T: V \to w$ and $U: W \to Z$ be linear transformations. Then

$$[\mathrm{UT}]^{\gamma}_{\alpha} = [\mathrm{U}]^{\gamma}_{\beta} [\mathrm{T}]^{\beta}_{\alpha}$$

.

Proof. Let $\alpha = \{v_i \mid i = 1 \cdots n\}, \beta = \{w_j \mid j = 1 \cdots m\}, \gamma = \{z_k \mid k = 1 \cdots p\}$ $\implies \exists! a_{ij}, b_{ki} \in F \text{ for } j = 1, \cdots, m \quad i = 1, \cdots n \quad \text{and } k = 1, \cdots, p \text{ such that}$

$$T(v_i) = \sum_{i=1}^{m} a_{ij}wj \quad U(w_j) = \sum_{k=1}^{p} b_{kj}z_k$$

$$UT(v_i) = U(T(v_i)) = U\left(\sum_{j=1}^m a_{ij}w_j\right) = \sum_{j=1}^m a_{ij}U(w_j) = \sum_{j=1}^m a_{ji}\left(\sum_{k=1}^p b_{kj}z_k\right)$$
$$= \sum_{k=1}^p \sum_{j=1}^m b_{kj}a_{ji}z_k \quad \text{for} \quad i = 1, \dots n$$
$$\implies ([UT]^{\alpha}_{\alpha})_{ij} = \sum_{k=1}^p \sum_{j=1}^m b_{kj}a_{ji} = ([U]^{\alpha}_{\beta}[T]^{\beta}_{\alpha})_{ij} \implies [UT]^{\alpha}_{\alpha} = [U]^{\alpha}_{\beta}[T]^{\beta}_{\alpha}$$

Corollary 2.14.1. Let V be a finite-dimensional vector space with an ordered basis β . Let $T, U \in L(V)$. Then $[UT]_{\beta} = [U]_{\beta}[T]_{\beta}$.

<u>Definition.</u> We define the Kronecker delta δ_{ij} by $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. The $n \times n$ identity matrix In is defined by $(I_n)_{ij} = \delta_{ij}$. Thus, for example,

$$I_1 = \begin{bmatrix} 1 \end{bmatrix} I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
and $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Theorem 2.15. Let A be an $m \times n$ matrix, B and C be $n \times p$ matrices, and D and E be $q \times m$ matrices. Then

- (a) A(B+C) = AB + AC and (D+E)A = DA + EA.
- (b) a(AB) = (aA)B = A(aB) for any scalar a.
- (c) $I_m A = A = A I_n$.
- (d) If V is an n-dimensional vector space with an ordered basis β , then $[I_V]_{\beta} = I_n$.

not input now

Corollary 2.15.1. Let A be an $m \times n$ matrix, B_1, B_2, \dots, B_k be $n \times p$ matrices, C_1, C_2, \dots, C_k be $q \times m$ matrices, and a_1, a_2, \dots, a_k be scalars. Then

$$A(\sum_{i=1}^{k} a_i B_i) = \sum_{i=1}^{k} a_i A B_i$$

and

$$(\sum_{i=1}^{k} a_i C_i) A = \sum_{i=1}^{k} a_i C_i A.$$

not input now

With this notation, we see that if

$$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

then $A^2 = O$ (the zero matrix) even though $A \neq O$. Thus the cancellation property for multiplication in fields is not valid for matrices. To see why, assume that the cancellation law is valid. Then, from $A \cdot A = A^2 = O = A \cdot O$, we would conclude that A = O, which is false.

Theorem 2.16. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. For each $j(1 \leq j \leq p)$ let u_j and v_j denote the jth columns of AB and B, respectively. Then

- (a) $u_j = Av_j$
- (b) $v_i = Be_i$, where e_i is the jth standard vector of \mathbf{F}^p .

Proof. Let $A \in M_{m \times n}(F)$, $b \in M_{n \times p}(F)$ for $j = 1, \dots, p$. Let u_j, v_j be the jth columns of AB and B respectively, then

- 1. $u_j = v_j$
- 2. $v_j = Be_j$ where e_j is the jth standard. vector of F^n

1.
$$u_{j} = \begin{bmatrix} (AB)_{1j} \\ \vdots \\ (AB)_{mj} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{n} A_{1k} B_{kj} \\ \vdots \\ \sum_{k=1}^{n} A_{mk} B_{kj} \end{bmatrix} = A \begin{bmatrix} B_{1j} \\ \vdots \\ B_{nj} \end{bmatrix} = Av_{j}$$

2.
$$v_j = \begin{bmatrix} B_{1j} \\ \vdots \\ B_{nj} \end{bmatrix} = \begin{bmatrix} (BI)_{1j} \\ \vdots \\ (BI)_{nj} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^p B_{1k} I_{kj} \\ \vdots \\ \sum_{k=1}^p B_{nk} I_{kj} \end{bmatrix} = B \begin{bmatrix} I_{1j} \\ \vdots \\ I_{pj} \end{bmatrix} = Bej$$

Theorem 2.17. Assume the notation in Theorem 2.13.

(a) Suppose that z is a (column) vector in F^p . Use Theorem 2.13(b) to prove that B_z is a linear combination of the columns of B. In particular, if $z = (a_1, a_2, \dots, a_p)^t$, then show that

$$Bz = \sum_{j=1}^{p} a_j v_j.$$

- (b) Extend (a) to prove that column j of AB is a linear combination of the columns of A with the coefficients in the linear combination being the entries of column j of B.
- (c) For any row vector $w \in F^m$, prove that wA is a linear combination of the rows of A with the coefficients in the linear combination being the coordinates of w. Hint: Use properties of the transpose operation applied to (a).
- (d) Prove the analogous result to (b) about rows: Row i of AB is a linear combination of the rows of B with the coefficients in the linear combination being the entries of row i of A.

not yet

Theorem 2.18. Let V and W be finite-dimensional vector spaces having ordered bases β and γ , respectively, and let $T: V \to W$ be linear. Then, for each $u \in V$, we have

$$[\mathbf{T}(u)]_{\gamma} = [\mathbf{T}]_{\beta}^{\gamma}[u]_{\beta}$$

.

Proof. Fix $u \in V$ define the linear transformation $T: F \longrightarrow V$ by f(a) = au $g: F \longrightarrow W$ by $g(a) = aT(u) \ \forall a \in F$ Let $\alpha = 1$ be the standard ordered basis of F, note that $g(a) = aT(u) = T(au) = T(f(a)) \implies g = Tf$, then

$$[T(u)]_{\gamma} = [g(1)]_{\gamma} = [g]_{\alpha}^{\gamma}[1]_{\gamma}^{\alpha} = [g]_{\alpha}^{\gamma} = [Tf]_{\alpha}^{\gamma} = [T]_{\beta}^{\gamma}[f]_{\alpha}^{\beta} = [T]_{\beta}^{\gamma}[f(1)]_{\beta} = [T]_{\beta}^{\gamma}[u]_{\beta}$$

Definition. Let A be an $m \times n$ matrix with entries from a field F. We denote by L_A the mapping $L_A : F^n \to F^m$ defined by $L_A(x) = Ax$ (the matrix product of A and x) for each column vector $x \in F^n$. We call L_A a left-multiplication transformation.

Theorem 2.19. The characteristics of Left-Multiplication Transformation Let A be an $m \times n$ matrix with entries from F. Then the left-multiplication transformation $L_A : F^n \to F^m$ is linear. Furthermore, if B is any other $m \times n$ matrix (with entries from F) and β and γ are the standard ordered bases for F^n and F^m , respectively, then we have the following properties.

- (a) $[L_A]^{\gamma}_{\beta} = A$.
- (b) $L_A = L_B$ if and only if A = B.
- (c) $L_{A+B} = L_A + L_B$ and $L_{aA} = aL_A$ for all $a \in F$.
- (d) If $T: F^n \to F^m$ is linear, then there exists a unique $m \times n$ matrix C such that $T = L_C$. In fact, $C = [T]_{\beta}^{\gamma}$.
- (e) If E is an $n \times p$ matrix, then $L_{AE} = L_A L_E$.
- (f) If m = nL, then $L_{I_n} = I_{F^n}$.

Proof. 1. The jth column of $[L_A]^{\gamma}_{\beta} = L_A(e_j)$: Thm 2.13: $L_A(e_j) = Ae_j$ is the jth column of $A \Longrightarrow [L_A]^{\gamma}_{\beta} = A$

2. (
$$\Rightarrow$$
) If $L_A = L_B \implies A = [L_A]^{\gamma}_{\beta} = [L_B]^{\gamma}_{\beta} = B$
(\Leftarrow) If $A = B \implies L_A(x) = Ax = Bx = L_B(x) \implies L_A = L_B$

3.
$$L_{A+B}(x) = (A+B)(x) = Ax + Bx = L_A(x) + L_B(x)$$

$$\implies L_{A+B} = L_A + L_B$$

$$L_{aA}(x) = (aA)x = aAx = aL_A(x) \implies L_{aA} = aL_A \ \forall a \in F$$

- 4. Let $C = [T]^{\gamma}_{\beta}$ by Thm 2.14 $[T(x)]_{\gamma} = [T]^{\gamma}_{\beta}[x]_{\beta} \Leftrightarrow T(x) = Cx = L_C(x) \ \forall x \in F^n \implies T = L_C$ by (2) C is unique.
- 5. For $j=1,\dots,p$ by Thm 2.13 $(AE)e_j$ is the jth column of AE, $(AE)e_j=A(Ee_j)$ \therefore $L_{AE}(e_j)=(AE)e_j=A(Ee_j)=L_A(Ee$
- 6. $L_{I_n}(x) = I_n x = x \ \forall x \in F^n, \ I_{F^n}(x) = x \implies L_{I_n} = I_{F^n}$

Corollary 2.19.1. Let V be a finite-dimensional vector space with an ordered basis β , and let $T: V \to V$ be linear. Then T is invertible if and only if $[T]_{\beta}$ is invertible. Furthermore, $[T^{-1}]_{\beta} = ([T]_{\beta})^{-1}$

Corollary 2.19.2. Let A be an $n \times n$ matrix. Then A is invertible if and only if L_A is invertible. Furthermore, $(L_A)^{-1} = L_{A^{-1}}$

Theorem 2.20. Let A,B, and C be matrices such that A(BC) is defined. Then (AB)C is also defined and A(BC) = (AB)C; that is, matrix multiplication is associative.

Proof. Let A, B and C be metrics $\ni A(BC)$ is defined $\Longrightarrow (AB)C$ is also defined and A(BC) = (AB)C

Let $B \in M_{m \times n}$ $C \in M_{n \times p} \implies (BC) \in M_{m \times p} \implies A \in M_{q \times m}$

- $(AB) \in M_{q \times n} \ C \in M_{n \times p} \implies (AB)C$ is defined
- : By Thm 2.15.5 : $L_{A(BC)} = L_A L_{BC} = L_A (L_B L_C) = (L_A L_B) L_C = L_{AB} L_C = L_{(AB)C}$

$$\therefore$$
 By Thm 2.15.2 \therefore $A(BC) = (AB)C$

Lemma. Let T be an invertible linear transformation from V to W. Then V is finite-dimensional if and only if W is finite-dimensional. In this case, $\dim(v) = \dim(W)$.

Proof. Let linear transform $T:V\to W$ is invertible $\Longrightarrow V$ is finite dimensional $\Leftrightarrow W$ is finite dimensional

In this case, $\dim(V) = \dim(W)$

 $(\Rightarrow)V$ is finite dimension

Let $\beta = \{x_i \mid \text{for } i = 1, \dots, n\}$ be a basis of V $Thm 2.2 \therefore R(T) = \text{span}(T(\beta)), T \text{ is invertible } R(T) = W, Thm 1.9$ W is finite dimensional

 $(\Leftarrow)W$ is finite dimensional. Similarly, V is finite dimensional

Suppose V, W are finite dimensional T is invertible $\Leftrightarrow T$ is one-to-one and onto, T nullity T = 0

:By Thm 2.3 $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V)$: $\dim(V) = \operatorname{rank}(T) = \dim(R(T)) = \dim(W)$

Theorem 2.21. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively. Let $T: V \to W$ be linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. Furthermore, $[T^{-1}]^{\beta}_{\gamma} = ([T^{\gamma}_{\beta}])^{-1}$.

Proof. Let V, W is finite dimensional vector space, β, γ be a basis of V, W, $T: V \to W$ is a linear transform $\implies T$ is invertible $\Leftrightarrow [T]_{\beta}^{\gamma}$ is invertible. Furthermore, $[T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1}$

(\Rightarrow) Suppose T is invertible \because lemma of Thm 2.17, we have $\dim(V) = \dim(W)$. Let $n = \dim(V) \therefore [T]_{\beta}^{\gamma} \in M_{n \times n}, T^{-1} : W \to V$ satisfies $TT^{-1} = I_W$ and $T^{-1}T = I_V \therefore I_n = [I_V]_{\beta} = [T^{-1}T]_{\beta} = [T^{-1}]_{\gamma}^{\beta} [T]_{\beta}^{\gamma}$

 $I_n = [I_W]_{\gamma} = [TT^{-1}]_{\gamma} = [T]_{\beta}^{\gamma} [T^{-1}]_{\gamma}^{\beta}$

 $\therefore [T]_{\beta}^{\gamma}[T^{-1}]_{\gamma=I_n}^{\beta} \text{ and } [T^{-1}]_{\gamma}^{\beta}[T]_{\beta}^{\gamma} = I_n \implies [T]_{\beta}^{\gamma} \text{ is invertible and } [T^{-1}]_{\beta}^{\gamma} = ([T]_{\beta}^{\gamma})^{-1}$

Suppose $A = [T]_{\beta}^{\gamma}$ is invertible $\Longrightarrow \exists B \in M_{n \times n} \ni AB = BA = I_n$, ::

By Thm 2.6 $\therefore \exists U \in \mathscr{L}(W,V) \ni U(w_j) = \sum_{i=1}^n B_{ij}v_i \text{ for } j=1,\cdots,n \text{ where}$

$$\gamma = \{w_i \mid \text{ for } i = 1, \dots, n\} \text{ and } \beta = \{v_i \mid \text{ for } i = 1, \dots, n\} : B = [U]_{\gamma}^{\beta}$$

Claim $U = T^{-1}, : [UT]_{\beta} = [U]_{\gamma}^{\beta} [T]_{\beta}^{\gamma} = BA = I_n = [I_V]_{\beta}$
 $: UT = I_V \text{ and } TU = I_W \text{ similarly } \Longrightarrow U = T^{-1}$

Theorem 2.22. Let β and β' be two ordered bases for a finite-dimensional vector space V, and let $Q = \begin{bmatrix} I_V \end{bmatrix}_{\beta'}^{\beta}$. Then

- (a) Q is invertible.
- (b) For any $v \in V$, $[v]_{\beta} = Q[v]_{\beta'}$.

Proof. Let β, β' be order basis of finite dimensional vector space V. Let $Q = [I_V]_{\beta'}^{\beta}$

- 1. Q is invertible, \therefore By Thm 2.18 I_V is invertible $\Longrightarrow [I_V]_{\beta'}^{\beta}$ is invertible $\therefore Q$ is invertible
- 2. $\forall v \in V, \ [V]_{\beta} = Q[V]_{\beta'} :: \forall v \in V$

$$[V]_{\beta} = [I_V(v)]_{\beta} = [I_V]_{\beta'}^{\beta}[v]_{\beta'} = Q[v]_{\beta'}$$

Theorem 2.23. Let T be a linear operator on a finite-dimensional vector space V, and let β and β' be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then

$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q.$$

Proof. Let T be linear operator on V which is a finite dimensional vector space, β, β' be order basis of V, Q be a change coordinate matrix from β' to $\beta \implies [T]_{\beta'} = Q^{-1}[T]_{\beta}Q$

$$\therefore \text{ By Thm } 2.11 \therefore Q[T]_{\beta'} = [I]_{\beta'}^{\beta}[T]_{\beta'} = [IT]_{\beta'}^{\beta} = [T]_{\beta'}[I]_{\beta'}^{\beta} = [T]_{\beta}Q \implies [T]_{\beta'} = Q^{-1}[T]_{\beta}Q$$

Corollary 2.23.1. Let $A \in M_{n \times n}(F)$, and let γ be an ordered basis for F^n . Then $[L_A] = Q^{-1}AQ$, where Q is the $n \times n$ matrix whose jth column is the jth vector of γ .

Proof. Let $A \in M_{n \times n}(F)$ and γ be an order basis of $F^n \Longrightarrow [L_A]_{\gamma} = Q^{-1}AQ$ where Q is the $n \times n$ matrix whose jth column is the jth vector of γ Let β be an order basis of $F^n, :$ By Thm 2.15 $: [L_A]_{\beta} = A :$ By Thm 2.23 $: [L_A]_{\gamma} = Q^{-1}[L_A]_{\beta}Q = Q^{-1}AQ$ where $Q = [I]_{\gamma}^{\beta}$

<u>Definition</u>. Let A and B be matrices in $M_{n\times n}(F)$. We say that B is similar to A if there exists an invertible matrix Q such that $B = Q^{-1}AQ$.

Theorem 2.24. "is similar to" is an equivalence relation on $M_{n\times n}(F)$

not yet

Propersition 2.25. If A and B are similar $n \times n$ matrices, then tr(A) = tr(B).

not yet

<u>Definition</u>. Let V and W be vector space over F. We denote the vector space of all linear transformations from V into W by $\mathcal{L}(V,W)$. In the case that V = W, we write $\mathcal{L}(V)$ instead of $\mathcal{L}(V,W)$

Theorem 2.26. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively, and let β and γ be ordered bases for V and W, respectively. Then function $\Phi : \mathcal{L}(V,W) \to M_{m \times n}(F)$, defined by $\Phi(T) = [T]_{\beta}^{\gamma}$ for $T \in \mathcal{L}(V,W)$, is an isomorphism.

Corollary 2.26.1. Let V and W be finite-dimensional vector spaces of dimensions n and m, respectively. Then $\mathcal{L}(V,W)$ is finite-dimensional of dimension mn.

Lemma 2.27. Let V and W be finite-dimensional vector spaces, and let $T: V \to W$ be a linear transformation. Suppose that β is a basis for V. Then T is an isomorphism if and only if $T(\beta)$ is a basis for W.

not yet

Theorem 2.28. Let V and W be finite-dimensional vector spaces with ordered bases $\beta = \{v_1, v_2, \dots, v_n\}$ and $\gamma = \{w_1, w_2, \dots, w_m\}$, respectively. By Thm 2.6, there exist linear transformations $T_{ij}: V \to W$ such that

$$T_{ij}(v_k) = \begin{cases} w_i & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$

First prove that $\{T_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis for $\mathcal{L}(V,W)$. Then let M^{ij} be the $m \times n$ matrix with 1 in the ith row and jth column and 0 elsewhere, and prove that $[T_{ij}]^{\gamma}_{\beta} = M^{ij}$. Again by Thm 2.6, there exists a linear transformation $\Phi : \mathcal{L}(V,W) \to M_{m \times n}(F)$ such that $\Phi(T_{ij}) = M^{ij}$. Prove that Φ is an isomorphism.

not yet

<u>Definition.</u> Let β be an ordered basis for an n-dimensional vector space V over the field F. The standard representation of V with respect to β is the function $\phi_{\beta}: V \to F^n$ defined by $\phi_{\beta}(x) = [x]_{\beta}$ for each $x \in V$.

Theorem 2.29. Let V and W be vector spaces and $T: V \to W$ be linear. Then N(T) and R(T) are subspace of V and W, respectively.

Let V and W be vector spaces of dimension n and m, respectively, and let $T:V\to W$ be a linear transformation. Define $A=[T]^{\gamma}_{\beta}$, where β and γ are arbitrary ordered bases of V and W, respectively. We are now able to use ϕ_{β} and ϕ_{γ} to study the relationship between the linear transformations T and $L_A: \mathbb{F}^n \to \mathbb{F}^m$. Let us first consider figure above. Notice that there are two composites of linear transformations that map V into \mathbb{F}^m :

- 1. Map V into F^n with ϕ_{β} and follow this transformation with L_A ; this yields the composite $L_A\phi_{\beta}$.
- 2. Map V into W with T and follow it by ϕ_{γ} to obtain the composite $\phi_{\gamma}T$.

These two composites are depicted by the dashed arrows in the diagram. By a simple reformulation of Theorem 2.14 (p. 91), we may conclude that

$$L_A \phi_\beta = \phi_\gamma T$$

that is, the diagram "commutes." Heuristically, this relationship indicates that after V and W are identified with F^n and F^m via ϕ_β and ϕ_γ , respectively, we may "identify" T with L_A . This diagram allows us to transfer operations on abstract vector spaces to ones on F^n and F^m .

Theorem 2.30. Let $T: V \to W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. Let β and γ be ordered bases for V and W, respectively. Prove that $rank(T) = rank(L_A)$ and that $nullity(T) = nullity(L_A)$, where $A = [T]_{\beta}^{\gamma}$.

not yet