Summary Sheet

Please detach and do not turn in.

Notation

- (model) $X \sim \mathbb{P}_{\theta}$ with values in \mathcal{X} (the sample space), where $\theta \in \Omega$ (the parameter space)
- (loss and risk) A choice of loss function $L(\theta, d)$ defines a $R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta(X))]$, where δ is a given estimator

Unbiasedness

- We say that a statistic T is complete if the only function f such that $\mathbb{E}_{\theta}[f(T(X))] = 0$ for all θ is $f \equiv 0$.
- Fact 1. Assume T is a complete and sufficient statistic. Then for every function $g(\theta)$ that admits an unbiased estimator there is a (unique) UMVU given by the unique unbiased estimator that is a function of T. This is true for squared error loss, and any other convex loss.
- Fact 2 (Cramér-Rao information bound). Suppose that \mathbb{P}_{θ} has density f_{θ} with respect to some (dominating) measure on \mathcal{X} . Under some regularity conditions, for an estimator δ such that $\mathbb{E}_{\theta}[\delta(X)] = g(\theta)$, we have $\operatorname{Var}_{\theta}[\delta(X)] \geq [\dot{g}(\theta)]^2/I(\theta)$, where $I(\theta) = \mathbb{E}_{\theta}[(\dot{f}_{\theta}(X)/f_{\theta}(X))^2] = \operatorname{Var}_{\theta}[\dot{f}_{\theta}(X)/f_{\theta}(X)] = -\mathbb{E}_{\theta}[\partial^2 \log f_{\theta}(X)]$.

Location equivariance

- Model: $X = (X_1, ..., X_n) \sim f(x_1 \xi, ..., x_n \xi)$ where f is a given density on \mathbb{R}^n and $\xi \in \mathbb{R}$ is unknown.
- The transformations of interest are shifts of the form $x \mapsto x+a\mathbf{1}$ where $a \in \mathbb{R}$ and $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^n$.
- We want to estimate ξ using a loss of the form $L(\xi, d) = \rho(d-\xi)$, and restrict ourselves to equivariant estimators.
- Fact 3. Let δ_0 be any equivariant estimator with finite risk. Suppose $v^*(y) = \arg\min_{v \in \mathbb{R}} \mathbb{E}_0[\rho(\delta_0(X) v) \mid Y = y]$ is well defined, where $Y = (Y_1, \dots, Y_{n-1})$ with $Y_i = X_i X_n$. Then $\delta^*(x) = \delta_0(x) v^*(y)$ is MRE.
- **Fact 4.** Under squared error loss, the MRE estimator may be expressed as $\delta^*(x) = \int_{-\infty}^{\infty} v f(x-v1) dv / \int_{-\infty}^{\infty} f(x-v1) dv$.
- Fact 5. Under squared error loss, if an UMVU estimator exists and is equivariant, then it is MRE.