Использование преобразования Фурье для обучания высокочастотные функции в низкоразмерных областях

Охрименко Дмитрий, 172

Проблемы обычного MLP

- MLP испытывают трудности с изучением высокочастотных функций (спектральное смещение)
- Эвристическое синусоидальное отображение входных координат («позиционное кодирование») решает эту проблему
- Преобразование Фурье его частный случай: $\phi(v) = [a_1\cos(2\pi b_1^Tv)$, $a_1\sin(2\pi b_1^Tv)$, ..., $a_m\cos(2\pi b_m^Tv)$, $a_m\sin(2\pi b_m^Tv)]^T$
- Оно преобразует NTK в стационарное (инвариантное к сдвигу) ядро и позволяет настраивать спектр NTK

Что даст использование преобразования Фурье

- Преобразование Фурье можно использовать для преодоления спектрального смещения основанных на координатах MLP в сторону низких частот, позволяя им изучать гораздо более высокие частоты (раздел 4).
- Случайное преобразование Фурье с правильно выбранным масштабом может значительно улучшить производительность основанных на координатах MLP для многих низкоразмерных задач в компьютерном зрении и графике

Бекграунд

- Ядровая регрессия: $\hat{f}(x) = \sum_{i=1}^n (K^{-1}y)_i k(x_i, x), K_{ij} = k(x_i, x_j),$ k симметричная положительно полуопределенная ядерная функция похожести двух векторов
- Когда ширина слоя стремится к бесконечности, а время обучения к 0, функция $f(x,\theta)$ сходится к решению ядерной регрессии с использованием $k_{NTK}(x_i,x_j)=E_{\theta\sim N}\langle \frac{\partial f(x_i;\theta)}{\partial \theta}; \frac{\partial f(x_j;\theta)}{\partial \theta} \rangle$.
- Спектральное смещение: $Q^T \left(\hat{y}_{train}^{(t)} y \right) = -e^{-\eta \lambda t} Q^T y$. Компоненты целевой функции, которые соответствуют собственным векторам ядра с большими собственными значениями, будут изучаться быстрее.

Почему рассматриваются задачи с низкой размерностью

- Хотелось, чтобы составной NTK был инвариантным относительно сдвига во входной области
- Хотелось контролировать пропускную способность NTK для повышения скорости обучения

Преобразование Фурье

- Преобразование Фурье: $\phi(v)=[a_1\cos(2\pi b_1^Tv)$, $a_1\sin(2\pi b_1^Tv)$, ... , $a_m\cos(2\pi b_m^Tv)$, $a_m\sin(2\pi b_m^Tv)]^T$
- $\cos(\alpha \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$, тогда ядровая функция:
- $k_{\phi}(v_1, v_2) = \phi(v_1)^T \phi(v_2) = \sum_{j=1}^m a_j^2 \cos\left(2\pi b_j^T (v_1 v_2)\right) = h_{\phi}(v_1 v_2)$, где $h_{\phi}(v\Delta) = \sum_{j=1}^m a_j^2 \cos\left(2\pi b_j^T v\Delta\right)$
- Тогда мэппинг аппроксимация преобразования Фурье ядра, где b базисные частоты Фурье, а коэффициенты ряда Фурье

Преобразование Фурье

• После применения преобразования мы пропускаем данные через MLP. Результат может быть аппроксимирован ядровой регрессией с ядром $h_{NTK}\big(x_i^Tx_j\big) = h_{NTK}\big(\phi(v_i)^T\phi(v_j)\big) = h_{NTK}\big(h_{\phi}\big(v_i-v_j\big)\big)$

Подкрутка параметров

$$a_j = \frac{1}{j^p}, b_j = j$$

Влияние преобразования Фурье на сходимость сети

Различные виды отображений

	Direct supervision			Indirect supervision			
	2D image		3D shape [24]	2D CT		3D MRI	3D NeRF [27]
	Natural	Text	See 20 Autority with the	Shepp	ATLAS	ATLAS	
No mapping	19.32	18.40	0.864	16.75	15.44	26.14	22.41
Basic	21.71	20.48	0.892	23.31	16.95	28.58	23.16
Positional enc.	24.95	27.57	0.960	26.89	19.55	32.23	25.28
Gaussian	25.57	30.47	0.973	28.33	19.88	34.51	25.48

- Basic: $\phi(v) = [\cos(2\pi v), \sin(2\pi v)]^T$
- Positional encoding: $\phi(v) = \left[\dots, \cos\left(2\pi\sigma^{j/m}v\right), \sin\left(2\pi\sigma^{j/m}v\right), \dots \right]^{l}$
- Gaussian: $\phi(v) = [\cos(2\pi B v), \sin(2\pi B v)]^T$, $B \sim N(0, \sigma^2)$

Эксперимент с глубиной сети

Более глубокие сети нуждаются в меньшем количестве функций Фурье, чем мелкие сети Это объясняется эффектом расширения частот

Градиентный спуск не оптимизирует преобразование Фурье

Совместная оптимизация параметров а и b не улучшает производительность

Недо- и переобучение

Низкие значения σ не подходят, потому что приводят к чрезмерной сглаженной интерполяции, и большие значения σ переобучают, что приводит к зашумленной интерполяции.

2D image regression

ObsashDBs	-	ASHDBS	Obsashides	ObsashDBs
W&WztuZ _{aperter}		Valertu2	WWztuZ	WXWztuZ _{porto}
iboKLSeJFZrDt ywsCatbnO			iboKLSeJFZrDt ywsCatbnO	iboKLSeJFZrDt ywsCatbnO
difekqDSXXOSA	-	SVXOSA	WifekqDNXXOSA	difekqDNXXOSA
SERTIS!	-	uHPF	SERTISA UHPF	SERTIS!
(a) Ground Truth	(b) No mapping	(c) Basic	(d) Positional enc.	(e) Gaussian

	Natural	Text
No mapping	19.32 ± 2.48	18.40 ± 2.23
Basic	21.71 ± 2.71	20.48 ± 1.96
Positional enc.	24.95 ± 3.72	27.57 ± 3.07
Gaussian	$\textbf{25.57} \pm \textbf{4.19}$	30.47 ± 2.11

3D shape regression

	Uniform points	Boundary points
No mapping	0.959 ± 0.006	0.864 ± 0.014
Basic	0.966 ± 0.007	0.892 ± 0.017
Positional enc.	0.987 ± 0.005	0.960 ± 0.011
Gaussian	0.988 ± 0.007	0.973 ± 0.010

2D computed tomography

	Shepp	ATLAS
No mapping	16.75 ± 3.64	15.44 ± 1.28
Basic	23.31 ± 4.66	16.95 ± 0.72
Positional enc.	26.89 ± 1.46	19.55 ± 1.09
Gaussian	28.33 ± 1.15	19.88 ± 1.23

3D magnetic resonance imaging

	ATLAS
No mapping	26.14 ± 1.45
Basic	28.58 ± 2.45
Positional enc.	32.23 ± 3.08
Gaussian	34.51 ± 2.72

3D inverse rendering for view synthesis

	3D NeRF
No mapping	22.41 ± 0.92
Basic	23.16 ± 0.90
Original pos. enc.	24.81 ± 0.88
Positional enc.	25.28 ± 0.83
Gaussian	$\textbf{25.48} \pm \textbf{0.89}$
Original pos. enc. (axis-aligned)	25.60 ± 0.76
Positional enc. (axis-aligned)	26.27 ± 0.91

Итого

Преобразование признаков Фурье может сделать основанные на координатах MLP более подходящими для моделирования функций в малых измерениях, тем самым преодолевая спектральное смещение, присущее основанным на координатах MLP

Вопросы

- 1. Какие варианты отображений были рассмотрены и какой из них показал лучшие результаты?
- 2. В чем особенность спектрального смещения при обучении нейронной сети?
- 3. Как происходит тюнинг модели на практике?