Lab #3

Problema 1 (QP):

• Step Size Exacto

Show 10	entries			Search:	
	lter ▼	Xn	₱ Pk	\$	Error \$
30	30	c(-0.9998169, -0.9998169, -0.9998169)	c(0,-0.0003662,0)		0.0003662
29	29	c(-0.9998169, -0.9996338, -0.9998169)	c(-0.0003662, 0, -0.000366	2)	0.0005179
28	28	c(-0.9996338, -0.9996338, -0.9996338)	c(0,-0.0007324,0)		0.0007324
27	27	c(-0.9996338, -0.9992676, -0.9996338)	c(-0.0007324, 0, -0.000732	4)	0.0010358
26	26	c(-0.9992676, -0.9992676, -0.9992676)	c(0,-0.0014648,0)		0.0014648
25	25	c(-0.9992676, -0.9985352, -0.9992676)	c(-0.0014648, 0, -0.001464	8)	0.0020716
24	24	c(-0.9985352, -0.9985352, -0.9985352)	c(0,-0.0029297,0)		0.0029297
23	23	c(-0.9985352, -0.9970703, -0.9985352)	c(-0.0029297, 0, -0.002929	7)	0.0041432
22	22	c(-0.9970703, -0.9970703, -0.9970703)	c(0,-0.0058594,0)		0.0058594
21	21	c(-0.9970703, -0.9941406, -0.9970703)	c(-0.0058594, 0, -0.005859	4)	0.0082864

• Step Size Constante (0.001)

Show 10	entries				Search:		
	lter 🔻	Xn	\$	Pk		\$	Error
30	30	c(2.9416612, 4.9949704, 6.708493)		c(-1.8918065, -0.3291124, -9.4405676)			9.6338758
29	29	c(2.943553, 4.9952995, 6.7179335)		c(-1.8952786, -0.3183948, -9.4591676)			9.6524249
28	28	c(2.9454482, 4.9956179, 6.7273927)		c(-1.8987685, -0.3076334, -9.4778156)			9.6710366
27	27	c(2.947347, 4.9959255, 6.7368705)		c(-1.9022763, -0.2968283, -9.4965118)			9.6897109
26	26	c(2.9492493, 4.9962223, 6.746367)		c(-1.9058019, -0.2859792, -9.5152563)			9.7084482
25	25	c(2.9511551, 4.9965083, 6.7558823)		c(-1.9093455, -0.275086, -9.5340493)			9.7272488
24	24	c(2.9530644, 4.9967834, 6.7654163)		c(-1.9129072, -0.2641485, -9.5528909)			9.7461127
23	23	c(2.9549773, 4.9970475, 6.7749692)		c(-1.916487, -0.2531666, -9.5717813)			9.7650404
22	22	c(2.9568938, 4.9973007, 6.784541)		c(-1.920085, -0.24214, -9.5907206)			9.7840319
21	21	c(2.9588139, 4.9975428, 6.7941317)		c(-1.9237013, -0.2310688, -9.609709)			9.8030876

Learning rate = 0.001

Learning rate = 0.01

Learning rate = 0.1

Learning rate = 0.5

Learning rate = 1

Step Size Variable

how 10	entries			Search:	
	Iter 🔻	Xn	\$ Pk	\$	Error
30	30	c(-0.6750319, -0.5404016, -0.6750319)	c(-0.1941253, -0.2746274, -0.1941253)		0.3883162
29	29	c(-0.668561, -0.5312473, -0.668561)	c(-0.1981237, -0.2802943, -0.1981237)		0.3963217
28	28	c(-0.6617292, -0.521582, -0.6617292)	c(-0.2023528, -0.2862898, -0.2023528)		0.4047903
27	27	c(-0.6545023, -0.5113574, -0.6545023)	c(-0.2068352, -0.2926462, -0.2068352)		0.4137673
26	26	c(-0.6468417, -0.5005186, -0.6468417)	c(-0.2115964, -0.2994004, -0.2115964)		0.4233044
25	25	c(-0.6387034, -0.4890032, -0.6387034)	c(-0.2166659, -0.3065947, -0.2166659)		0.4334611
24	24	c(-0.6300368, -0.4767394, -0.6300368)	c(-0.2220774, -0.314278, -0.2220774)		0.4443056
23	23	c(-0.6207836, -0.4636445, -0.6207836)	c(-0.2278702, -0.3225074, -0.2278702)		0.4559173
22	22	c(-0.6108762, -0.4496225, -0.6108762)	c(-0.2340897, -0.3313491, -0.2340897)		0.468389
21	21	c(-0.6002357, -0.4345611, -0.6002357)	c(-0.2407896, -0.3408817, -0.2407896)		0.4818294

*Nota. Para mayor detalle consultar el Excel denominado "Resultados.xlsx", el cual contiene el detalle de todas las tablas para cada experimento.

Conclusiones

- De todas las gráficas de error generadas durante los experimentos se puede observar que la gráfica con una convergencia hacia el mínimo error más rápida es la gráfica resultante de aplicar un Step Size Exacto. Sin embargo, es posible observar como un step size constante puede asemejarse a medida que se elige un valor más cercano a 1, en este caso obteniendo resultados similares al step size exacto con un valor constante de 0.5.
- El mejor resultado se obtiene con el método exacto, si es necesario evaluar poder de cómputo requerido, el step size constante podría ser una mejor elección si se selecciona un valor adecuado.

Problema 2 (Función Rosenbrock):

X = [0, 0], step size = 0.05

ı	lter 🖣	Xn	\$ Pk	\$	Error
	1	c(0.1,0)	c(2,0)		2
	2	c(0.17, 0.1)	c(1.4, 2)		2.4413111
	3	c(0.49474, -0.611)	c(6.4948, -14.22)		15.6330044
	4	c(-7.9223839, 7.9466767)	c(-168.3424783, 171.1535335)		240.0681613
i	5	c(8678.6739187, 556.1215793)	c(173731.9260526, 10963.4980516)		174077.512676
	6	c(-13073350411199.7, 753188804.77917)	c(-261467008397567, 15063764973.1518)		261467008831497
	7	c(4.46879776830858e+40,1.70912490974014e+27)	c(8.93759553661715e+41, 3.41824981948029e+28)	8.93759553661715e+41
1	8	c(-1.78485154733889e+123, 1.99701534940397e+82)	c(-3.56970309467777e+124, 3.99403069880794e+	33)	3.56970309467777e+124
	9	c(Inf, 3.18569504603802e+247)	c(Inf, 6.37139009207604e+248)		

X = [1, 1], step size = 0.05

X = [0, 0] con step size = 0.002

	lter ▼ Xn		\$ Error
3000	3000 c(0.9713244, 0.9433543)	c(0.0120037, 0.0233684)	0.0262712
2999	2999 c(0.9713004, 0.9433075)	c(0.0120142, 0.0233884)	0.0262937
2998	2998 c(0.9712763, 0.9432608)	c(0.0120248, 0.0234083)	0.0263162
2997	2997 c(0.9712523, 0.9432139)	c(0.0120353, 0.0234282)	0.0263388
2996	2996 c(0.9712282, 0.9431671)	c(0.0120459, 0.0234482)	0.0263613
2995	2995 c(0.9712041, 0.9431202)	c(0.0120564, 0.0234681)	0.0263839
2994	2994 c(0.97118, 0.9430733)	c(0.012067, 0.0234881)	0.0264065
2993	2993 c(0.9711559, 0.9430263)	c(0.0120776, 0.0235081)	0.0264292
2992	2992 c(0.9711317, 0.9429793)	c(0.0120882, 0.0235282)	0.0264518
2991	2991 c(0.9711075, 0.9429322)	c(0.0120988, 0.0235482)	0.0264745

Conclusiones

Es posible observar que el punto inicial X = [0, 0] genera que la función diverja, dada la curvatura patológica presente en la función. Para arreglarlo con el modelo actual formulado es necesario iterar un mayor número de veces con un step size pequeño que no permita que el valor diverja, de esta forma con un step size de 0.002 y 3000 iteraciones es posible llegar a una aproximación del mínimo de la función localizado en X = [1, 1]