Limites des langages rationnels

Est ce que tout langage est rationnel? Existe-t-il des langages non rationnels?

Hypothèse: tout est rationnel

- Les langages rationnels sont reconnaissables : ils sont en bijection avec les automates.
- Un automate peut être décrit par un texte
- Ce texte correspond (codage ASCII) à un nombre binaire
- D'où que les langages reconnaissables sont en bijection avec N.

Hypothèse: tout est rationnel

- On énumère les automates finis sur un alphabet à une lettre et on les ordonne dans une liste :
 - A₀ le premier automate
 - A₁ le second automate
 - ..
- On énumère les langages rationnels sur un alphabet à un seul lettre :
 - L_0 reconnu par A_0
 - L₁ reconnu par A₁
 - ...

Tableau mots/langages								
		Lo	L ₁	L ₂	L ₃	T[i,j]=Oui si w _i ∈L _j		
	w ₀	0	0	Ν	N	Non sinon "		
	\mathbf{w}_1	N	N	0	Ν			
	w ₂	0	N	0	N			
	w_3	Ν	0	0	N	w _i ∈ D⇔w _i ∉L _i D n'est pas dans T		
		•				4		

D n'est pas dans T

- Si D était dans le tableau, il existerait j tel que D=L_j.
- Puisque D=L_i, si
 - $w_i \in L_i$ alors, par définition de D, $w_i \notin D \Rightarrow$ contradiction
 - $w_i \notin L_i$ alors, par définition de D, $w_i \in D \Rightarrow$ contradiction
- l'ensemble des langages est infini, mais non dénombrable

D n'est pas dans T

■ Il existe des langages qui ne sont pas rationnels

Preuve par technique de diagonalisation due à Cantor.

Très utile pour montrer qu'un ensemble infini n'est pas dénombrable.

0

Un langage qui n'est pas rationnel

Le langage L= $\{0^k1^k \mid k \ge 0\}$

- Supposons L rationnel; il existe A un AFD à n états qui le reconnaît. Choisissons w un mot de L de longueur ≥ n (par exemple w=0ⁿ1ⁿ). Que se passe-t'il lors de la lecture de w?
- En lisant les n premiers 0, un état p de A est visité plusieurs fois (on passe par n+1 états pour lire n symboles).

Le langage L= $\{0^k1^k \mid k \ge 0\}$

- Puisque w=xyz∈L, xz∈L ainsi que xyyz et, ∀i≥0, xyiz. Mais chacun de ces mots possède plus ou moins de 0 que de 1, une contradiction.
- application simple
 - du principe des pigeons pour les anglo-saxons
 - des tiroirs de Dirichlet chez nous
 - ou aussi tiroirs et chaussettes ...

Principe des pigeons Principe des pigeons

Principe des pigeons

Ce qu'on vient de faire

On a montré qu'il existe au moins un langage non rationnel, le langage

L= $\{0^k1^k : k \ge 0\}$

■ But : trouver une technique pour montrer la non rationalité d'un langage, i.e. pour décider le problème:

■ Donnée : L un langage

• Question : L est-il non rationnel?

Le lemme de la pompe

Technique de démonstration

- On utilise un résultat sur les langages rationnels: le lemme de la pompe.
- Il exprime une propriété particulière des rationnels.
- Si un langage ne possède pas cette propriété, il n'est pas rationnel.
- Propriété: Tout mot (suffisamment long) d'un langage rationnel contient un facteur qui peut être itéré autant que l'on veut de telle sorte que le mot résultant est toujours dans la langage.

Le lemme de la pompe

- Si L est rationnel, alors il existe un nombre n tel que pour tout mot w de L, |w|≥ n, w peut être factorisé en w=xyz de telle sorte que
 - 1. Pour tout i≥0, xyiz ∈L
 - 2. |y|>0
 - 3. |xy|≤n
- Quand w est factorisé en xyz, soit x soit z peut être ϵ mais la condition 2 assure que y≠ ε.
- La condition 3 assure que le préfixe xy est de longueur au plus n. Cette condition est utile pour certains langages.

Exemple pour L= $\{0^k1^k \mid k \ge 0\}$

- Supposons L rationnel. Alors par le lemme, il existe n tel que pour tout mot w=xyz , y≠E, |xy|≤n et ∀i, xyⁱz∈L.
- En particulier pour w=0ⁿ1ⁿ. Comme |xy|≤n , y ne contient que des zéros. Alors pour i=0, le mot xz∉L. Une contradiction
- L n'est pas rationnel

principe de la preuve

- On utilise le principe des pigeons entre le nombre de lettres d'un mot (de longueur au moins n) du langage L et n le nombre d'états d'un (hypothétique) AFD qui reconnaît L
- On montre alors que le mot peut être factorisé en vérifiant les 3 conditions

Preuve

- Soit A un AFD à n états reconnaissant L et soit w=w₁w₂...w_m avec m≥n.
- $r_0, r_1, ..., r_m$ est la suite des états pris par A lors de la lecture de w. $r_i = \delta(r_{i-1}, w_i)$ 1≤i≤m. La suite $\{r\}$ est de longueur m+1≥n+1.
- Par le principe des pigeons, deux des n+1 premiers éléments de la suite {r} représentent un même état p : r_i et r_k avec j<k.
- Comme r_k est l'un des n+1 premiers éléments de la suite, k≤n.

Preuve

- On pose
 - x=w₁w₂...w_{j-1}
 - y=w_jw_{j+1}...w_{k-1}
 - Z=W_kW_{k+1}...W_m

- lire x mène de r₀ à r_j, y de r_j à r_k=r_j et z de r_k à r_m , un état d'acceptation.
- A doit donc accepter xyⁱz ∀i≥0
- j≠k; donc |y|>0
- k≤n+1 et donc |xy|≤n
- Les conditions du lemme sont donc satisfaites \(\bigci_{20} \)

Remarques

- Observons que le lemme dit L rationnel ⇒ L satisfait le lemme
- Mais on ne sait rien pour la réciproque:
- Si L satisfait le lemme, on ne sait pas si L est rationnel

21

Utilisation du lemme

- On suppose que L est rationnel
- Le lemme ⇒ tout mot de longueur ≥n du langage peut être « gonflé »
- Trouver w (|w| ≥ n) qui ne peut pas être gonflé, quelle que soit sa factorisation.
- 4. Une contradiction pour chaque factorisation
- 5. L n'est donc pas rationnel

2.

Point délicat

- Le point 3. est le plus délicat
- 3. Trouver w (|w| ≥ n) qui ne peut pas être gonflé, quelle que soit sa factorisation.

Il faut :

trouver un mot qui, pour toute factorisation, permet de trouver une valeur de i (la valeur de répétition) qui nous mène à un mot qui n'est pas de L. On contredit ainsi le lemme

Pour toute factorisation

Pourquoi faut-il trouver un mot qui, pour toute factorisation, permet de trouver une valeur de i (la valeur de répétition) qui nous mène à un mot qui n'est pas dans L?

24

Pour toute factorisation

- On fait un raisonnement par l'absurde :
 - On utilise le fait

L rationnelle ⇒ "L vérifie le lemme"

■ Équivalent à

P = "L non rationnelle" ∨ "L vérifie le lemme"

- Par l'absurde : il faut nier P
- ¬P = "L rationnelle" ∧ "L ne satisfait pas le lemme"
- Que veut dire que L ne satisfait pas le lemme ?

Présentation courte du lemme

 $\forall L$

 $[(\exists n)(\forall w) \ w \in L \ et \ |w| \ge n | A$

 $(\exists x,y,z)(w=xyz, |xy|\le n, |y|\ge 1 \text{ et } (\forall i)(xy^iz\in L))]$

- L ne satisfait pas le lemme :
- A⇒B est faux

Montrer $A \Rightarrow B$ est faux

- Il suffit de trouver un exemple pour lequel
 - $A \equiv (\exists n)(\forall w) \ w \in L \ et \ |w| \ge n \ est \ vrai \ et$
 - B \equiv ($\exists x,y,z$)(w=xyz, $|xy| \le n$, $|y| \ge 1$ et ($\forall i$)(xy i z \in L)) est faux
- B est faux = ¬B est vrai

 $\neg B = \neg [(\exists x,y,z)(w=xyz, |xy| \le n, |y| \ge 1 \text{ et } (\forall i)(xy^iz \in L))]$ $\equiv (\forall x,y,z) \neg [(w=xyz, |xy| \le n, |y| \ge 1 |et|(\forall i)(xy^iz \in L))]$

■ On transforme ¬B en une nouvelle implication

Un peu de (rappel ?) de logique							
	$\neg (\mathcal{C} \land D) = \mathcal{C} \Rightarrow \neg D$						
С	D	C ∧ D	¬(C ∧ D)	¬D	$C \Rightarrow \neg D$		
٧	V	٧	F	F	F		
٧	F	F	٧	٧	٧		
F	V	F	٧	F	٧		
F	F	F	٧	٧	٧		

Montrer $A \Rightarrow B$ est faux

- Il suffit de trouver un exemple pour lequel
 - $A \equiv (\exists n)(\forall w) w \in L \text{ et } |w| \ge n \text{ est vrai et}$
 - B =($\exists x,y,z$)(w=xyz, $|xy| \le n$, $|y| \ge 1$ et $(\forall i)(xy^iz \in L)$) est faux
- B est faux = ¬B est vrai

 $\neg B \equiv \neg [(\exists \ x,y,z)(w = xyz, \ |xy| \le n, \ |y| \ge 1 \ \text{et} \ (\forall i)(xy^iz \in L))]$ $\equiv (\forall x,y,z) \neg [(w=xyz, |xy| \le n, |y| \ge 1] et (\forall i)(xy^iz \in L)))]$

■ On transforme ¬B en une nouvelle implication

($\forall x,y,z$) $C \Rightarrow \neg D$ $(\forall x,y,z) (w=xyz, |xy| \le n, |y| \ge 1 \Rightarrow (\exists i)(xy^iz \notin L))$

Montrer que B est faux

 $(\forall x,y,z) (w=xyz, |xy| \le n, |y| \ge 1 \Longrightarrow (\exists i)(xy^iz \notin L))$

- Qui est vraie, sauf si
 - Le membre gauche de l'implication est vraie

- Le membre droit (∃i)(xyiz∉L) est faux.
- Il suffit de trouver un exemple pour lequel
 - $C \equiv (w=xyz, |xy| \le n, |y| \ge 1)$ est vrai et
 - $\neg D \equiv (\exists i) (xy^i z \notin L)$ est vrai

 $(\forall \ x,y,z) \ (w=xyz, \ |xy| \le n, \ |y| \ge 1 \Longrightarrow (\exists i)(xy^iz \not\in L))$

Exemple L= $\{w \in \{0,1\}^* : |w|_0 = |w|_1\}$

- Supposons L rationnel et soit n la valeur fixée par le lemme.
- On choisit w=0ⁿ1ⁿ. On peut alors factoriser w en accord avec le lemme

w=xyz avec |xy|≤n et |y|>0

 y ne contient que des 0 et xy²z n'est plus dans le langage; une contradiction

31

Une présentation comme jeu

- L'utilisation du lemme peut être présenté comme un jeu entre deux joueurs (vous et un adversaire) :
 - Votre but est de prouver que L n'est pas rationnel.
 - Les correspondances des quantificateurs :
 vous ~ ∀ et adversaire ~ ∃
 - 1. Vous choisissez L.
 - 2. L'adversaire choisit n.
 - 3. Vous choisissez w∈L, |w|≥n.
 - 4. L'adversaire choisit x,y,z. w=xyz, $|xy| \le n$, $|y| \ge 1$.
 - 5. Vous choisissez i tel que $xy^iz \notin L$.
- Chaque choix peut dépendre des précédents.

Une présentation comme jeu					
Etape	Vous	Adversaire			
1.	Choix de L				
2.		Choix de n			
3.	Choix de w∈L, w ≥n				
4.		Choix de x,y,z t.q. w=xyz, xy ≤n, y ≥1			
5.	Choix de i t.q. xy¹z ∉ L				

Une présentation comme jeu - exemple

- 1. L={ $w \in (a+b)^* : |w|_{a^{\leq}} |w|_{b}$ }
- 2. n
- 3. $w=a^nb^n$
- 4. w=xyz, x=a^j, y=a^k, z=a^{n-j-k}bⁿ, j≥0, k>0, j+k≤n (|xy|=j+k≤n, |y|=k>0)
- 5. i=2:

 $xy^2z=a^ja^ka^ka^{n-j-k}b^n=a^{n+k}b^n\notin L$

Conclusion : L n'est pas rationnel !

Prouver la non rationalité

- Pour montrer que L n'est pas rationnel : on fait un raisonnement par l'absurde.
 - On utilise le raisonnement avec des AFD
 - On utilise le lemme de la pompe
- Autre méthode : on utilise les propriétés de clôture

Union Intersection Etoile Concatenation Substitution

Oui Oui Oui Oui Oui 35

Exemple L= $\{w \in \{0, 1\}^* : |w|_0 = |w|_1\}$

Autre méthode:

- Supposons L= $\{w \in \{0,1\}^*: |w|_0 = |w|_1\}$ rationnel
- Par les propriétés de clôture, $L \cap 0^*1^*$ doit être rationnel (0*1* est rationnel)
- $L \cap 0*1*= \{0^n1^n : n \ge 0\}$
- Comme {0ⁿ1ⁿ : n≥0} n'est pas rationnel, L ne peut être rationnel.

30