Artificial Intelligence

Week 4: Informed Search

COMP30024

April 1, 2021

Search

Search

Select action sequences to achieve a goal state in environments that are deterministic, observable, static with a completely specified state space.

- Uninformed/'brute force' search (last week):
 - ▶ Only generate successors and identify goals.
 - ► RN 3.5.
- Informed search (today):
 - Incorporate domain knowledge to prioritize exploration of more promising nodes.
 - ► RN 4.*.

Heuristic search is one of the pillars of artificial intelligence!

Dijkstra's Algorithm

- Used to find shortest paths in edge-weighted graphs G.
- Given start vertex s, finds the shortest path from s to every other vertex v ∈ G.
- Fach round:
 - ightharpoonup Expand the node x in the frontier with the lowest path cost dist[x].
 - ▶ $dist(x) \leftarrow dist(u) + w(u \rightarrow x)$ if $dist(x) > dist(u) + w(u \rightarrow x)$.
 - Repeat until we expand target t.
- Optimal? If $w(u \rightarrow v) \ge \epsilon > 0 \, \forall (u, v) \in E$.
- Time/space complexity: $O(b^{1+\lfloor C^*/\epsilon \rfloor})$.

Dijkstra's Algorithm

Figure 1: Jeff Erickson, Algorithms, Ch. 5, 2020

Idea: find shortest path from source s passing through v_i to unvisited vertex x minimizing $dist[x] = dist(s, v_i) + w(v_i \rightarrow x)$.

Heuristic Strategies

Incorporate domain knowledge via evaluation function $f(\sigma)$.

- $f(\sigma)$ orders nodes σ in the frontier by desirability of expansion.
 - ▶ Expand node $\sigma \in F$ with lowest $f(\sigma)$.
- Heuristic function $h(\sigma)$: Estimates cost of optimal path to goal state.
- Good heuristics avoid exploration of non-promising graph regions.
- Definitions:
 - \triangleright σ : Search node data structure describing a vertex in a graph.
 - ▶ Σ: Set of all possible nodes. σ ∈ Σ

Heuristic Strategies

 $f(\sigma)$ orders nodes σ in the frontier by desirability of expansion.

Admissibility:

$$h(\sigma) \leq \min(\operatorname{cost}(\sigma \to \operatorname{goal})) = h^*(\sigma), \ \forall \ \sigma \in \Sigma$$

Optimistic; never overestimate cost to goal.

• Consistency/Monotony:

$$h(\sigma) \leq \cot(\sigma, \sigma', A) + h(\sigma') \ \forall \ \sigma \in \Sigma, A(\sigma) = \sigma'$$

Triangle inequality applied to costs of graph states.

Domination:

$$h_1(\sigma) \le h_2(\sigma) \le \text{goal cost } \forall \ \sigma \in \Sigma$$

 $\implies h_2 \text{ expands less nodes than } h_1$

Want admissible h as close to the optimal solution h^* as possible, provided $h(\sigma) \le h^*(\sigma) \quad \forall \, \sigma \in \Sigma.$

Generation v. Expansion

- Node Generation: Creation of data structure representing the node.
- Node Expansion: Generation of all children of current node.
- Uninformed search applies goal test upon generation.
- Informed search + (Dijkstra) applies goal test upon expansion.
 - Generation does not guarantee optimality.
 - **Expand node with lowest** $f(\sigma)$:
 - All other nodes in queue F have equal or larger path cost.
 - Goal test here guarantees optimality.

Generation v. Expansion

A* Search

- Rank nodes by the cost of the cheapest solution passing through each node.
- Evaluation function

$$f(\sigma) = \operatorname{cost}(\operatorname{start} \to \sigma) + (\operatorname{est.}) \operatorname{cost}(\sigma \to \operatorname{goal})$$

= $g(\sigma) + h(\sigma)$

- Completeness
- (Graph) Optimality \checkmark (provided $h(\sigma)$ is consistent)
- High space complexity $\mathcal{O}(b^d)$
- Rank nodes σ by the estimated total cost $f(\sigma)$
 - Search efficiency dependent on heuristic quality!

A* pseudocode

Start S, graph G = (V, E), edge distance e(u, v), heuristic h(v).

$$d(v) \leftarrow \begin{cases} \infty & \text{if } v \neq S \\ 0 & \text{if } v = S \end{cases}$$

$$Q := \text{the set of nodes in } V, \text{ sorted by } d(v) + h(v)$$
while Q not empty do

$$v \leftarrow Q.pop()$$
for all neighbours u of v do

$$if \ d(v) + e(v, u) \leq d(u) \text{ then }$$

$$d(u) \leftarrow d(v) + e(v, u)$$
end if
$$end \text{ for }$$
end while

Practical

Figure 3.2 A simplified road map of part of Romania.

- Greedy best-first search: Expand the node estimated to be closest to the goal $f(\sigma) = h(\sigma)$.
- (Graph) Completeness ✓ (assuming finite state space)
- Optimality X (requires perfect heuristic).
- What happens if the heuristic is set to the negative of the path cost?
 Assume graph search. What sort of blind search does this emulate?

$$h(\sigma) = -g(\sigma) \implies f(\sigma) = -g(\sigma)$$

$$h(\sigma) = -g(\sigma) \implies f(\sigma) = -g(\sigma)$$

$$h(\sigma) = -g(\sigma) \implies f(\sigma) = -g(\sigma)$$

- Lugoj \rightarrow Timisoara \rightarrow Arad \rightarrow Sibiu \rightarrow Oradea \rightarrow Zerind \rightarrow Arad \rightarrow ?
- Graph search: Can't go from Arad to Sibiu because we already visited Sibiu with Arad as parent.

$$h(\sigma) = -g(\sigma) \implies f(\sigma) = -g(\sigma)$$

- Lugoj \rightarrow Timisoara \rightarrow Arad \rightarrow Sibiu \rightarrow Oradea \rightarrow Zerind \rightarrow Arad \rightarrow ?
- Graph search: Can't go from Arad to Sibiu because we already visited Sibiu with Arad as parent.
- What do we do now?
 - ▶ Backtrack to deepest unexpanded node Sibiu ...

$$h(\sigma) = -g(\sigma) \implies f(\sigma) = -g(\sigma)$$

- Lugoj o Timisoara o Arad o Sibiu o Oradea o Zerind o Arad o ?
- Graph search: Can't go from Arad to Sibiu because we already visited Sibiu with Arad as parent.
- What do we do now?
 - Backtrack to deepest unexpanded node Sibiu ...
- What uninformed search method does this emulate?
 - Deepest node/furthest from root (assuming increasing path costs) gets expanded first.

- Node σ : (State, Parent σ_P , $g(\sigma)$, $h(\sigma)$).
- Euclidean distance heuristic.
- 1. Frontier (F): { σ_1 }
 - σ_1 (root): (Lugoj, \varnothing , 0, ?)
 - ▶ *F* post-expansion: $\{\sigma_2, \sigma_3\}$
 - σ_2 : (Mehadia, σ_1 , 70, 280)
 - σ_3 : (Timisoara, σ_1 , 111, 320)
 - Explored set: $K = \{\sigma_1\}$

- Node σ : (State, Parent σ_P , $g(\sigma)$, $h(\sigma)$).
- Euclidean distance heuristic.
- 1. \blacktriangleright Frontier (F): { σ_1 }
 - σ_1 (root): (Lugoj, \varnothing , 0, ?)
 - ▶ *F* post-expansion: $\{\sigma_2, \sigma_3\}$
 - σ_2 : (Mehadia, σ_1 , 70, 280)
 - σ_3 : (Timisoara, σ_1 , 111, 320)
 - Explored set: $K = \{\sigma_1\}$
- 2. \blacktriangleright *F*: { σ_2 , σ_3 }
 - ▶ *F* post-expansion: $\{\sigma_3, \sigma_4\}$
 - σ_3 : (Timisoara, σ_1 , 111, 320)
 - σ_4 : (Drobeta, σ_2 , 145, 240)
 - $K \leftarrow K \cup \sigma_2$

3. $ightharpoonup F: \{\sigma_3, \sigma_4\}$ $ightharpoonup F post-expansion: \{\sigma_3, \sigma_5\}$ $ightharpoonup \sigma_3$: (Timisoara, σ_1 , 111, 320) $ightharpoonup \sigma_5$: (Craiova, σ_4 , 265, 130) $ightharpoonup K \leftarrow K \cup \sigma_4$

```
    F: {σ<sub>3</sub>, σ<sub>4</sub>}
    F post-expansion: {σ<sub>3</sub>, σ<sub>5</sub>}
    σ<sub>3</sub>: (Timisoara, σ<sub>1</sub>, 111, 320)
    σ<sub>5</sub>: (Craiova, σ<sub>4</sub>, 265, 130)
    K ← K ∪ σ<sub>4</sub>
    F: {σ<sub>3</sub>, σ<sub>5</sub>}
    F post-expansion: {σ<sub>3</sub>, σ<sub>6</sub>, σ<sub>7</sub>} ← note goal generation
    σ<sub>3</sub>: (Timisoara, σ<sub>1</sub>, 111, 320)
    σ<sub>6</sub>: (RV, σ<sub>5</sub>, 411, 97)
    σ<sub>7</sub>: (Pitesti, σ<sub>5</sub>, 403, 0)
    K ← K ∪ σ<sub>5</sub>
```

- 3.
 F: $\{\sigma_3, \sigma_4\}$ F post-expansion: $\{\sigma_3, \sigma_5\}$ σ_3 : (Timisoara, σ_1 , 111, 320) σ_5 : (Craiova, σ_4 , 265, 130)

 K $\leftarrow K \cup \sigma_4$ 4.
 F: $\{\sigma_3, \sigma_5\}$ F post-expansion: $\{\sigma_3, \sigma_6, \sigma_7\} \leftarrow$ note goal generation σ_3 : (Timisoara, σ_1 , 111, 320)
 - $K \leftarrow K \cup \sigma_5$

σ₆: (RV, σ₅, 411, 97)
σ₇: (Pitesti, σ₅, 403, 0)

- 5. $ightharpoonup F: \{\sigma_3, \sigma_6, \sigma_7\}$
 - Upon goal expansion (σ_7) , terminate. Note: Delay termination upon goal generation more optimal path to the goal may exist.

- 3.
 F: $\{\sigma_3, \sigma_4\}$ F post-expansion: $\{\sigma_3, \sigma_5\}$ σ_3 : (Timisoara, σ_1 , 111, 320) σ_5 : (Craiova, σ_4 , 265, 130)

 K $\leftarrow K \cup \sigma_4$ 4.
 F: $\{\sigma_3, \sigma_5\}$ F post-expansion: $\{\sigma_3, \sigma_6, \sigma_7\} \leftarrow$ note goal generation σ_3 : (Timisoara, σ_1 , 111, 320)
 - $K \leftarrow K \cup \sigma_5$

σ₆: (RV, σ₅, 411, 97)
σ₇: (Pitesti, σ₅, 403, 0)

- 5. \blacktriangleright *F*: $\{\sigma_3, \sigma_6, \sigma_7\}$
 - Upon goal expansion (σ_7) , terminate. Note: Delay termination upon goal generation more optimal path to the goal may exist.
 - Lugoj o Mehadia o Drobeta o Craiova o Pitseti

Uniform-cost Search / Dijkstra's Algorithm

Never expands a node with cost greater than the cumulative cost of the shortest path. Returns optimal path.

DA Pseudo-code

```
def dijkstra(graph, start, end, cost):
    frontier = [start] # insert root node into queue
    for nodes in graph:
        total_cost[node] = infinity # unknown path costs
    total_cost[start] = 0
    while frontier is not empty:
        # break ties randomly
        node = frontier.pop_lowest_cost()
        if node == end:
            return True
        for child in graph[node]: # or neighbouring vertices
            cumulative_cost = total_cost[child] + cost(node, child)
            if cumulative_cost < total_cost[child]:</pre>
                # update path cost if lower than best recorded
                total_cost[child] = cumulative_cost
    return False
```

A* Pseudo-code

```
def A*(graph, start, end):
    g(node) = ... # returns path cost from start to node
    h(node) = ... # estimated cost of cheapest path from node to goal
    f(node) = g(node) + h(node) # estimated cost of cheapest solution through node
    open = [start] # nodes to be expanded, ordered by f(node), ascending
    closed = [] # nodes visited and expanded
   min_g = inf
    while open:
        node = open.popmin() # extract node with lowest evaluation function
        if node not in closed or g(node) < min_g:
            # re-open expand node
            closed.append(node)
            min g = g(node)
            if node == end:
               return True
            for each node successor in successor(node):
                if h(node).isfinite():
                   open.append(node)
   return False
```