Model Evaluation

Evaluation Metrics for Prediction and Classification

Overview

- Need for model evaluation
- Evaluation Metrics for Prediction(Regression) models
- Evaluation Metrics for Classification models
- Asymmetrical Costs of (mis)classification
- Alternate Evaluation Measures for Classification models

Why do we need to evaluate models?

Multiple ML algorithms applicable to classification/prediction

 Wide choice of parameter and/or hyperparameter settings possible in these algorithms

Hence the need to evaluate each model's performance

• In all cases, performance to be evaluated on validation/test data (to avoid wrong interpretations from overfitting on training data)

Evaluating performance in Prediction

 In such scenarios, we need to evaluate how the model predicts new data, not how well it fits the data it was trained with (goodness-of-fit)

• Key component of most performance measures is the difference between actual y and predicted \hat{y} , which is referred to as the 'error':

$$e_i = y_i - \hat{y}_i$$

Error Measure	Formula
Mean Error	$\frac{1}{n} \sum_{i=1}^{n} e_i$
Mean Absolute Error (MAE)	$\frac{1}{n}\sum_{i=1}^{n} e_{i} $
Mean Percentage Error (MPE)	$100 \times \frac{1}{n} \sum_{i=1}^{n} e_i / y_i$
Mean Absolute Percentage Error	$100 \times \frac{1}{n} \sum_{i=1}^{n} e_i/y_i $
Sum of Squared Errors (SSE)	$\frac{1}{n}\sum_{i=1}^{n}e^{2}_{i}$
Root Mean Squared Error (RMSE)	$\sqrt{\frac{1}{n}\sum_{i=1}^{n}e^{2}_{i}}$

Evaluating performance in Classification

Most Classification algorithms classify via a 2-step process:

For each record,

- 1. Compute probability of belonging to class '1'
- 2. Compare to cutoff value, and classify accordingly

(Default cutoff value is 0.50, If \geq 0.50, classify as "1", If < 0.50, classify as "0")

- Can use different cutoff values and accordingly the classification output varies
- Error = classifying a record as belonging to one class when it actually belongs to another class.
- Error rate = percent of misclassified records out of the total records in the validation/test data

Confusion Matrix

Actual Class

 $n_{1,1}$ = number of C_1 records $n_{2,1}$ = number of C_2 records classified correctly as C₁ classified incorrectly as C₁ **Predicted Class** $n_{1,2}$ = number of C_1 records $n_{2,2}$ = number of C_2 records classified correctly as C₂ classified incorrectly as C₂

$$err = \frac{n_{1,2} + n_{2,1}}{n}$$

When One Class is More Important & misclassification costs are asymmetrical

- In most cases it is more important to identify members of one class
 - Diagnosing illness (Illness)
 - Detecting SPAM mail (Spam mails)
 - Credit default (Potential Defaulter Class)
 - > Tax fraud (Fraudulent Tax Class)
 - Response to promotional offer (Respondent Class)
 - Detecting electronic network intrusion (Malicious Packet class)
 - Predicting delayed flights (Delayed flights)
- In such cases, we are willing to tolerate greater overall error, in return for better identifying the important class for further attention
- The cost of making a misclassification error may be higher for one class than the other(s)

Asymmetrical Costs – Response to Promotional Offer

Suppose we send an offer to 1000 people, with 1% average response rate ("1" = response, "0" = nonresponse)

- "Naïve rule" (classify everyone as '0') has error rate of 1% (seems good)
- Let's assume that by using some ML model
 - We can correctly classify eight 1's as 1's
 - It comes at the cost of misclassifying twenty 0's as 1's and two 1's as 0's.
 - \triangleright Error rate = (2+20) = 2.2% (higher than naïve rate)

Suppose: Profit from a '1' is \$10 & Cost of sending offer is \$1

- Under naïve rule, all are classified as "0", so no offers are sent: no cost, no profit
- Under ML predictions, 28 offers are sent.

8 respond with profit of \$10 each 20 fail to respond, cost \$1 each

972 receive nothing (no cost, no profit)

	Actual 1	Actual 0	
Predicted 1	8	20	
Predicted 0	2	970	

80\$	-20\$
0	0
	80 \$

Actual 1 Actual 0

Net profit = \$60

Thus, we need to look beyond the traditional error/accuracy metrics in classification scenarios

Ref: Shmueli et al, Data Mining for Business Analytics: Concepts, Techniques and Applications in Python, Wiley, 2019

Alternate Accuracy Measures

Actual Class

Actac	ii Ciuss
C_1	C ₂
n _{1,1} = number of C ₁ records classified correctly as C ₁ True Positive (TP)	n _{2, 1} = number of C ₂ records classified incorrectly as C ₁ False Positive (FP)
n _{1,2} = number of C ₁ records classified incorrectly as C ₂	n _{2,2} = number of C ₂ records classified correctly as C ₂
False Negative (FN)	True Negative (TN)

Predicted

Class

If "C₁" is the important class,

Sensitivity (also called "recall) = %
 of actual C₁ class correctly classified
 n_{1,1}/(n_{1,1} + n_{1,2})

 Ability of the classifier to detect the important class members correctly.

Also referred to as True Positive
 Rate, TPR = TP/ (TP + FN)

Alternate Accuracy Measures

Actual Class

Predicted

Class

- If "C₁" is the important class,
- **Specificity** = % of actual C₂ class correctly classified

$$n_{2,2}/(n_{2,1}+n_{2,2})$$

- Ability of the classifier to rule out the other class members (C_2) correctly.
- Also referred to as True Negative Rate,
 TNR = TN / (FP + TN)
- False Positive Rate (FPR) = 1- Specificity FPR = FP / (FP + TN)

Alternate Accuracy Measures

Actual Class

C₁ C₂

 C_1

Predicted Class

 C_2

n_{1,1} = number of C₁ records classified correctly as C₁

True Positive (TP)

n_{1,2} = number of C₁ records classified incorrectly as C₂

False Negative (FN)

n_{2,1} = number of C₂ records classified incorrectly as C₁

False Positive (FP)

n_{2,2} = number of C₂ records classified correctly as C₂

True Negative (TN)

If "C₁" is the important class,

 Precision= % of predicted C₁ that are actually C₁

 Recall (also called "sensitivity") = % of actual C₁ class correctly classified

 F-Measure provides a way to combine both precision and recall into a single measure that captures both properties. Also know as F-Score or F1-Score

F1-Score= (2*Precision*Recall) /(Precision + Recall)

 Common metric used on classification problems on imbalanced datasets.

Summary

- Evaluation metrics are important for comparing across different ML models, for choosing the right configuration of a specific ML model
- Metrics are computed from validation/test data
- Preferred metrics for evaluating regression(prediction): RMSE
- Confusion Matrix forms the basis for evaluation in classification scenarios
- Asymmetric Costs of Mis-classification and need to go beyond error rate
- Metrics for evaluation in Classification generated from Confusion Matrix: Sensitivity, Specificity, Precision, Recall, F1 Score, etc.

References

 https://www.analyticsvidhya.com/blog/2019/08/11-important-modelevaluation-error-metrics/

• https://medium.com/analytics-vidhya/complete-guide-to-machine-learning-evaluation-metrics-615c2864d916

https://python-data-science.readthedocs.io/en/latest/evaluation.html