Artificial Intelligence with Python

Uncertainty

NEXT 36 HOURS

HOURLY → 10 DAYS →

Probability

Possible Worlds

$0 \le P(\omega) \le 1$

$\sum_{\omega \in \Omega} P(\omega) = 1$

6		6	6

$$P(6) = \frac{1}{6}$$

$P(sum\ to\ 12) = \frac{1}{36}$

$$P(sum\ to\ 7) = \frac{3}{36} = \frac{1}{6}$$

unconditional probability

degree of belief in a proposition in the absence of any other evidence

conditional probability

degree of belief in a proposition given some evidence that has already been revealed

conditional probability

P(rain today | rain yesterday)

P(route change | traffic conditions)

P(disease | test results)

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$

$$P(a \mid b) = \frac{P(b)}{P(b)}$$

P(sum 12 | 88)

$$P(sum 12) = \frac{1}{36}$$
 $P(sum 12 | section 12 | section$

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$

$$P(a \land b) = P(b)P(a \mid b)$$

a & b = b & a so we can swap all $a \leftrightarrow b$

$$P(b \land a) = P(a)P(b \mid a)$$

random variable

a variable in probability theory with a domain of possible values it can take on

random Variable

Roll

{1, 2, 3, 4, 5, 6}

random Variable

Weather

{sun, cloud, rain, wind, snow}

random variable

Traffic

{none, light, heavy}

random variable

Flight

{on time, delayed, cancelled}

probability distribution

$$P(Flight = on \ time) = 0.6$$

 $P(Flight = delayed) = 0.3$
 $P(Flight = cancelled) = 0.1$

probability distribution

$$P(Flight) = \langle 0.6, 0.3, 0.1 \rangle$$

the knowledge that one event occurs does not affect the probability of the other event

$$P(a \wedge b) = P(a)P(b \mid a) = P(a)P(b)$$

$$P(\blacksquare) = P(\blacksquare)P(\blacksquare)$$

$$= \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

$$P(\square) \neq P(\square)P(\square)$$

$$= \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

$$P(\square) \neq P(\square)P(\square)$$

$$= \frac{1}{6} \cdot 0 = 0$$

Bayes' Rule

$$P(a \land b) = P(b) P(a \mid b)$$

a & b = b & a so we can swap all $a \leftrightarrow b$

$$P(b \land a) = P(a) P(b \mid a)$$

P(a) P(b | a) = P(b) P(a | b)

Bayes' Rule

$$P(b \mid a) = \frac{P(b) P(a \mid b)}{P(a)}$$

Bayes' Rule

$$P(b \mid a) = \frac{P(a \mid b) P(b)}{P(a)}$$

Given clouds in the morning, what's the probability of rain in the afternoon?

- 80% of rainy afternoons start with cloudy mornings.
- 40% of days have cloudy mornings.
- 10% of days have rainy afternoons.

$$P(rain | clouds) = \frac{P(clouds | rain)P(rain)}{P(clouds)}$$

$$= 0.2$$

P(cloudy morning | rainy afternoon)

we can calculate

P(rainy afternoon | cloudy morning)

P(visible effect | unknown cause)

we can calculate

P(unknown cause | visible effect)

P(medical test result | disease)

we can calculate

P(disease medical test result)

P(blurry text | counterfeit bill)

we can calculate

P(counterfeit bill | blurry text)

Joint Probability

C = cloud	$C = \neg cloud$
0.4	0.6

R = rain	$R = \neg rain$
0.1	0.9

	R = rain	$R = \neg rain$
C = cloud	0.08	0.32
$C = \neg cloud$	0.02	0.58

we need to be given this Joint Distribution

$$P(C \mid rain) = \frac{P(C, rain)}{P(rain)} = \alpha P(C, rain)$$

$$P(rain) = \alpha P(C, rain)$$

$$P(rain) = \alpha P(C, rain)$$
which becomes normalization constant

$$= \alpha \langle 0.08, 0.02 \rangle = \langle 0.8, 0.2 \rangle = 1$$

	R = rain	$R = \neg rain$
C = cloud	0.08	0.32
$C = \neg cloud$	0.02	0.58

Probability Rules

Negation

$$P(\neg a) = 1 - P(a)$$

Inclusion-Exclusion

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

subtract intersection

Marginalization

assuming b is boolean

$$P(a) = P(a, b) + P(a, \neg b)$$

Marginalization

if not boolean, then sum up all condition y

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j)$$

Marginalization

= 0.40

	R = rain	$R = \neg rain$
C = cloud	0.08	0.32
$C = \neg cloud$	0.02	0.58

$$P(C = cloud)$$

$$= P(C = cloud, R = rain) + P(C = cloud, R = \neg rain)$$

$$= 0.08 + 0.32$$

Conditioning

$$P(a) = P(a | b)P(b) + P(a | \neg b)P(\neg b)$$

Conditioning

$$P(X = x_i) = \sum_{j} P(X = x_i | Y = y_j) P(Y = y_j)$$

Bayesian Networks

Bayesian network

data structure that represents the dependencies among random variables

Bayesian network

- directed graph
- each node represents a random variable
- ullet arrow from X to Y means X is a parent of Y
- each node X has probability distribution $\mathbf{P}(X \mid Parents(X))$

Rain {none, light, heavy}

none	light	heavy
0.7	0.2	0.1

Rain {none, light, heavy}

Maintenance {yes, no}

\boldsymbol{R}	yes	no
none	0.4	0.6
light	0.2	0.8
heavy	0.1	0.9

Rain {none, light, heavy}

Maintenance {yes, no}

Train
{on time, delayed}

R	M	on time	delayed
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5

Train
{on time, delayed}

we only need the parent's node to calculate child's probability distribution

Appointment {attend, miss}

\boldsymbol{T}	attend	miss
on time	0.9	0.1
delayed	0.6	0.4

P(light)

P(light)

P(light, no)

P(light) P(no | light)

P(light, no, delayed)

P(light) P(no | light) P(delayed light, no)

P(light, no, delayed, miss)

P(light) P(no | light) P(delayed light, no) P(miss | delayed

Inference

Inference

- Query X: variable for which to compute distribution
- Evidence variables E: observed variables for event e
- Hidden variables Y: non-evidence, non-query variable.

• Goal: Calculate P(X | e)

P(Appointment | light, no)

= α P(Appointment, light, no)

using marginalization of hidden variable Train

= α [P(Appointmentlight, no, on time)

+ P(Appointment, light, no, delayed)](

Inference by Enumeration

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

X is the query variable.

e is the evidence.

y ranges over values of hidden variables.

α normalizes the result.

Approximate Inference

Sampling

uniform proxy sample

Rain {none, light, heavy}

none	light	heavy
0.7	0.2	0.1

$$R = none$$
 $M = yes$

Rain {none, light, heavy}

Maintenance {yes, no}

\boldsymbol{R}	yes	no
none	0.4	0.6
light	0.2	0.8
heavy	0.1	0.9

Rain {none, light, heavy}

Maintenance {yes, no}

Train
{on time, delayed}

R = none M = yes T = on time

R	M	on time	delayed
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5

Train
{on time, delayed}

R = none
M = yes
T = on time
A = attend

Appointment {attend, miss}

T	attend	miss
on time	0.9	0.1
delayed	0.6	0.4

R = none

M = yes

T = on time

A = attend

R = light
M = no
$\Gamma = on time$

$$R = light$$

$$M = yes$$

$$T = delayed$$

$$A = attend$$

$$R = none$$

$$M = no$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

A = miss

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = heavy$$

$$M = no$$

$$T = delayed$$

$$A = miss$$

$$R = light$$

$$M = no$$

$$T = on time$$

$$A = attend$$

P(Train = on time)?

R = light
M = no
$\Gamma = on time$

$$R = light$$

$$M = yes$$

$$T = delayed$$

$$A = attend$$

$$R = none$$

$$M = no$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

A = miss

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = heavy$$

$$M = no$$

$$T = delayed$$

$$A = miss$$

$$R = light$$

$$M = no$$

$$T = on time$$

$$A = attend$$

R = light
M = no
T = on time
A = miss

$$R = light$$

$$M = yes$$

$$T = delayed$$

$$A = attend$$

$$R = none$$

$$M = no$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = heavy$$

$$M = no$$

$$T = delayed$$

$$A = miss$$

$$R = light$$

$$M = no$$

$$T = on time$$

$$A = attend$$

P(Rain = light | Train = on time)?

R = light
M = no
$\Gamma = on time$

$$R = light$$

$$M = yes$$

$$T = delayed$$

$$A = attend$$

$$R = none$$

$$M = no$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

A = miss

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = heavy$$

$$M = no$$

$$T = delayed$$

$$A = miss$$

$$R = light$$

$$M = no$$

$$T = on time$$

$$A = attend$$

reject samples where train is delayed

$$R = light$$

$$M = no$$

$$T = on time$$

$$A = miss$$

$$R = light$$

$$M = yes$$

$$T = delayed$$

$$A = attend$$

$$R = none$$

$$M = no$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = none$$

$$M = yes$$

$$T = on time$$

$$A = attend$$

$$R = heavy$$

$$M = no$$

$$T = delayed$$

$$A = miss$$

$$R = light$$

$$M = no$$

$$T = on time$$

$$A = attend$$

$$R = light$$

M = no

T = on time

A = miss

R = light

M = yes

T = delayed

A = attend

R = none

M = no

T = on time

A = attend

R = none

M = yes

T = on time

A = attend

R = none

M = yes

T = on time

A = attend

R = none

M = yes

T = on time

A = attend

R = heavy

M = no

T = delayed

A = miss

R = light

M = no

T = on time

A = attend

Rejection Sampling

Likelihood Weighting

Likelihood Weighting

- Start by fixing the values for evidence variables.
- Sample the non-evidence variables using conditional probabilities in the Bayesian Network.
- Weight each sample by its **likelihood**: the probability of all of the evidence.

P(Rain = light | Train = on time)?

$$R = light$$

suppose the Train is on time then we will not sample it

$$T = on time$$

Rain {none, light, heavy}

none	light	heavy
0.7	0.2	0.1

given Train's parents, we should weigh this likelihood 0.6

$$R = light$$

$$M = yes$$

$$T = on time$$

Rain {none, light, heavy}

Maintenance $\{yes, no\}$

\boldsymbol{R}	yes	no
none	0.4	0.6
light	0.2	0.8
heavy	0.1	0.9

Rain {none, light, heavy}

R = light M = yes T = on time

Maintenance {yes, no}

Train
{on time, delayed}

R	M	on time	delayed
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5

Train
{on time, delayed}

R = light
M = yes
T = on time
A = attend

Appointment {attend, miss}

T	attend	miss
on time	0.9	0.1
delayed	0.6	0.4

Rain {none, light, heavy}

Maintenance {yes, no}

Train
{on time, delayed}

R = light
M = yes
T = on time
A = attend

R	M	on time	delayed
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5

Rain {none, light, heavy}

Maintenance {yes, no}

Train
{on time, delayed}

R = light
M = yes
T = on time
A = attend

R	M	on time	delayed
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5

Uncertainty over Time

Xt: Weather at time t

Markov assumption

the assumption that the current state depends on only a finite fixed number of previous states

Markov Chain

Markov chain

a sequence of random variables where the distribution of each variable follows the Markov assumption

Transition Mode

Tomorrow (X_{t+1})

0.8	0.2
0.3	0.7

Today (X_t)

Sensor Models

Hidden State	Observation	
robot's position	robot's sensor data	
words spoken	audio waveforms	
user engagement	website or app analytics	
weather	umbrella	

Hidden Markov Models

Hidden Markov Model

a Markov model for a system with hidden states that generate some observed event

Sensor Mode

Observation (E_t)

0.2	0.8
0.9	0.1

State (X_t)

sensor Markov assumption

the assumption that the evidence variable depends only the corresponding state

Task	Definition
filtering	given observations from start until now, calculate distribution for current state
prediction	given observations from start until now, calculate distribution for a future state
smoothing	given observations from start until now, calculate distribution for past state
most likely explanation	given observations from start until now, calculate most likely sequence of states

Uncertainty

Artificial Intelligence with Python