

Stat GR 5205 Lecture 6

Jingchen Liu

Department of Statistics Columbia University

Least squares estimate

Least squares estimator

$$\hat{\beta} = \arg\min_{\beta} (\boldsymbol{Y} - \boldsymbol{X}\beta)^{\top} (\boldsymbol{Y} - \boldsymbol{X}\beta) = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}$$

Unbiased distribution

$$E(\hat{\beta}) = \beta$$

$$Var(\hat{\beta}) = \sigma^2(X^\top X)^{-1}$$

- Computation of covariance matrix
- Multivariate normal distribution

Unbiased distribution

$$E(\hat{\beta}) = \beta$$

$$Var(\hat{\beta}) = \sigma^2(X^\top X)^{-1}.$$

- Computation of covariance matrix
- Multivariate normal distribution

Unbiased distribution

$$E(\hat{\beta}) = \beta$$

$$Var(\hat{\beta}) = \sigma^2(X^\top X)^{-1}.$$

- Computation of covariance matrix
- Multivariate normal distribution

Unbiased distribution

$$E(\hat{\beta}) = \beta$$

$$Var(\hat{\beta}) = \sigma^2(X^\top X)^{-1}.$$

- Computation of covariance matrix
- Multivariate normal distribution

An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

► Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- ► Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

► Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

► Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

Projection

Joint distribution

 \triangleright $\hat{\beta}$ and $\hat{\sigma}^2$ are independent.

Hypothesis testing

► Hypothesis testing

$$H_0: \beta_i = \beta_i^0 \quad H_1: \beta_i \neq \beta_i^0$$

► Z-statistic

$$Z - stat = \frac{\beta_i - \beta_i^s}{SD(\hat{\beta}_i)}$$

► *t*-statistic

$$t - stat = \frac{\hat{\beta}_i - \beta_i}{SE(\hat{\beta}_i)}$$

Hypothesis testing

► Hypothesis testing

$$H_0: \beta_i = \beta_i^0 \quad H_1: \beta_i \neq \beta_i^0$$

► Z-statistic

$$Z - stat = \frac{\hat{\beta}_i - \beta_i^0}{SD(\hat{\beta}_i)}$$

► t-statistic

$$t - stat = \frac{\hat{\beta}_i - \beta}{SE(\hat{\beta}_i)}$$

Hypothesis testing

► Hypothesis testing

$$H_0: \beta_i = \beta_i^0 \quad H_1: \beta_i \neq \beta_i^0$$

► Z-statistic

$$Z - stat = \frac{\hat{\beta}_i - \beta_i^0}{SD(\hat{\beta}_i)}$$

t-statistic

$$t - stat = \frac{\hat{\beta}_i - \beta_i^0}{SE(\hat{\beta}_i)}$$

Confidence interval

$$\triangleright \sigma^2$$
 known

$$\hat{\beta}_i \pm q(1-\alpha/2)SD(\hat{\beta}_i)$$

$$\triangleright \sigma^2$$
 unknown

$$\hat{\beta}_i \pm t_{n-p-1}(1-\alpha/2)SE(\hat{\beta}_i)$$

Confidence interval

$$ightharpoonup \sigma^2$$
 known

$$\hat{\beta}_i \pm q(1-\alpha/2)SD(\hat{\beta}_i)$$

 $\triangleright \sigma^2$ unknown

$$\hat{\beta}_i \pm t_{n-p-1}(1-\alpha/2)SE(\hat{\beta}_i)$$

- ▶ Prediction $x^{\top}\hat{\beta}$
- ▶ Prediction error

$$SD(x^{\top}\hat{\beta}) = x^{\top}SD(\hat{\beta})x = \sigma^2x^{\top}(X^{\top}X)^{-1}$$

- Prediction of future observations
- ► Simultaneous interval

$$\hat{Y} \pm \lambda SE(\hat{Y})$$

$$\lambda^2 = (p+1)F(1-\alpha; p+1, n-p-1).$$

- ▶ Prediction $x^{\top}\hat{\beta}$
- Prediction error

$$SD(x^{\top}\hat{\beta}) = x^{\top}SD(\hat{\beta})x = \sigma^2 x^{\top}(X^{\top}X)^{-1}x$$

- Prediction of future observations
- Simultaneous interval

$$\hat{Y} \pm \lambda SE(\hat{Y})$$

$$\lambda^2 = (p+1)F(1-\alpha; p+1, n-p-1)$$

- ▶ Prediction $x^{\top}\hat{\beta}$
- Prediction error

$$SD(x^{\top}\hat{\beta}) = x^{\top}SD(\hat{\beta})x = \sigma^2 x^{\top}(X^{\top}X)^{-1}x$$

- Prediction of future observations
- Simultaneous interval

$$\hat{Y} \pm \lambda SE(\hat{Y})$$

$$\lambda^2 = (p+1)F(1-\alpha; p+1, n-p-1)$$

- ▶ Prediction $x^{\top}\hat{\beta}$
- Prediction error

$$SD(x^{\top}\hat{\beta}) = x^{\top}SD(\hat{\beta})x = \sigma^2 x^{\top}(X^{\top}X)^{-1}x$$

- Prediction of future observations
- Simultaneous interval

$$\hat{Y} \pm \lambda SE(\hat{Y})$$

$$\lambda^2 = (p+1)F(1-\alpha; p+1, n-p-1).$$

Extrapolation: one predictor and multiple predictors

Linear model is a good local approximation.

Analysis of variance

ANOVA

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$R^2 = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- ▶ 50 samples
- ▶ 5 Asian, 15 African American, 30 Whites
- Weight and height
- Coding of the design matrix

Figure: Height (inch) versus log-weight (log-lb)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_{Asian} l_{Asian} + \beta_{Black} l_{Black} + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_{\textit{Asian}} \textit{I}_{\textit{Asian}} + \beta_{\textit{Black}} \textit{I}_{\textit{Black}} + \beta_1 \textit{height} + \varepsilon$$

$$\log(weight) = \beta_0 + \beta_{Asian}I_{Asian} + \beta_{Black}I_{Black} + \beta_1 height + \beta_{Asian,H}I_{Asian} height + \beta_{Black,H}I_{Black} height +$$

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} \emph{I}_{\textit{Asian}} + eta_{\textit{Black}} \emph{I}_{\textit{Black}} + eta_1 \textit{height} + \epsilon$$

$$\begin{array}{ll} \log(\textit{weight}) & = & \beta_0 + \beta_{\textit{Asian}} I_{\textit{Asian}} + \beta_{\textit{Black}} I_{\textit{Black}} + \beta_1 \textit{height} \\ & + \beta_{\textit{Asian},\textit{H}} I_{\textit{Asian}} \textit{height} + \beta_{\textit{Black},\textit{H}} I_{\textit{Black}} \textit{height} + \varepsilon \end{array}$$

Galileo's experiment

$$distance = \beta_0 + \beta_1 height + \beta_2 height^2 + \varepsilon$$

Galileo's experiment

variable	coefficient	standard error	<i>t</i> -statistic	<i>p</i> -value
intercept	199.91	16.8	11.93	0.0003
height	0.71	0.075	9.5	0.0007
height ²	- 0.00034	0.000067	5.15	0.007

$$R^2 = 0.99$$
 $\hat{\sigma} = 13.6$

Galileo's experiment

$$distance = \beta_0 + \beta_1 height + \beta_2 height^2 + \beta_3 height^3 + \varepsilon$$

The extra sum-of-squares F test

- ► Question: is there any difference among the three groups aside from that due to height difference
- ► The formulation

$$\log(\mathit{weight}) = eta_0 + eta_{\mathit{Asian}} + eta_{\mathit{Black}} + eta_1$$
height $+ arepsilon$

► The hypotheses

$$H_0: \beta_{Asian} = \beta_{Black} = 0$$
 $H_1:$ otherwise

The extra sum-of-squares F test

- ▶ Question: is there any difference among the three groups aside from that due to height difference
- The formulation

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

► The hypotheses

$$H_0: \beta_{Asian} = \beta_{Black} = 0$$
 $H_1:$ otherwise

The extra sum-of-squares F test

- ► Question: is there any difference among the three groups aside from that due to height difference
- The formulation

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

▶ The hypotheses

$$H_0: \beta_{Asian} = \beta_{Black} = 0$$
 $H_1:$ otherwise

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

► Reduced model (*H*₀)

$$\log(weight) = \beta_0 + \beta_1 height +$$

Comparing the full model against the reduce model

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

▶ Reduced model (H₀)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

► Comparing the full model against the reduce model

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = \beta_0 + \beta_{\textit{Asian}} + \beta_{\textit{Black}} + \beta_1 \textit{height} + \varepsilon$$

► Reduced model (*H*₀)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

Comparing the full model against the reduce model

ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

► ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- ightharpoonup Reject H_0 if SSE_{extra} is large
- ► Distribution of SSR_{extra}

ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- \triangleright Reject H_0 if SSE_{extra} is large
- ▶ Distribution of SSR_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- \triangleright Reject H_0 if SSE_{extra} is large
- ▶ Distribution of *SSR*_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- ▶ Reject H_0 if SSE_{extra} is large
- ▶ Distribution of SSR_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- ▶ Reject H_0 if SSE_{extra} is large
- ► Distribution of SSR_{extra}

Extra sums of squares test

Test statistic

$$F - statistic = \frac{SSE_{extra}/(p_{full} - p_{reduced})}{SSE_{full}/(n - p_{full})}$$

Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

► Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

The coefficients of partial determination

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

► Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

► Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

The coefficients of partial determination

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

► Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

▶ Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

► The coefficients of partial determination

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

► Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

▶ Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

► The coefficients of partial determination

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

ANOVA table

$$SST = SSR + SSE$$

source	sums of sq	d.f.	mean sum of sq	F-stat	<i>p</i> -value
Regression	SST	p-1	SST/(p-1)		
Residual	SSE	n-p	SSE/(n-p)		
Total	SST				

source	sum of sq	d.f.	mean sq	F-stat	<i>p</i> -value
regression	190	1	190	78	< 0.0001
residual	180	74	2.4		
total	370	75			

source	sum of sq	d.f.	mean sq	F-stat	<i>p</i> -value
between group	196	6	33	13	< 0.0001
residual	174	69	2.5		
total	370	75			

$$F - statisitc = \frac{(196 - 190)/5}{174/69} = 0.48$$