3.2 Classification Algorithms

Linear Classifier

Uses a linear function to divide each set into two subsets

• For 3+ classes: fit N-1 lines (N classes)

Nearest Neighbor Classifier

If the nearest instance to the previously unseen instance is A, then the class is also A, otherwise it is B.

 the decision surface of a NN classifier (also called Theissen regions) is implicit and divide the space into regions "belonging" to each instance and corresponding class.

KNN Algorithm

Generalization of the nearest neighbor algorithm

- Find the nearest K (typically chosen to be an odd number) instances
- Each one represents a vote

Sensitivity to Irrelevant Attributes

- Using more attributes can sometimes lead to getting the wrong classification for an instance, when using less gave the right one;
- Nevertheless, using some subsets can also lead to wrong classifications.

Advantages

- Simple to implement
- Handles correlated features
- Defined for any distance measure
- · Handles streaming data trivially

Disadvantages

- Very sensitive to irrelevant features
- Slow classification time for large datasets
- Work best for real valued datasets

Decision Tree Classifier

Avoid Overfitting

- **Prepruning**: halt tree construction early
 - do not split a node if this would result in the goodness measure falling below a threshold
- **Postpruning**: get a sequence of progressively pruned tree; use a set of data different from the training data to decide which is the "best pruned tree"

Advantages

- Easy to understand
- · Easy to generate rules

Disadvantages

- Overfitting
- Does not handle correlated features very well (classified by rectangular partitioning)
- Can be quite large (pruning is necessary)

Bayes Classifier

Use Bayes theorem, which says:

- The probability of an instance being in a certain class is the probability of that instance being generated by that class times the probability of occurrence of that class, divided by the probability of that instance existing.
- Assuming independent distributions, the probability of a certain class generating
 the instance is the multiplication of the probability of that class generating the
 observed value for each of the features of that instance.

Advantages

- Fast to train (single scan) and to classify
- Not sensitive to irrelevant features
- · Handles real and discrete data
- Handles streaming data well

Disadvantages

Assumes independence of features

Neural Network Learning

- Set of neurons (input/output units) connected with weights
- Supervised learning adjusts weights to ensure outputs to given inputs are the expected ones
- · Predicting: feed input values; collect outputs

Advantages

- Universal: fit any continuous function
- Versatile: output may be one or more discrete and real values
- Online: application and learning are intertwined
- · Robust to errors and noise data
- · Fast application to new examples
- Parallel

Disadvantages

- Slow training
- Low usability: empirical parameter tuning; network topology and learning rate
- Low Interpretability: understand the weights
- Low Adaptability: not easy to incorporate domain knowledge

Support Vector Machines (SVM)

- Linear learning machines with maximisation of margin (better separation between classes);
 - Hyperplane farthest from both classes has less risk of overfitting.
- Higher robustness to the curse of dimensionality;
- For non-linear functions, map attributes to space where linear discrimination is possible.

SVM for Regression:

- Minimize the tube "around" the data;
- Instead of maximizing the distance to the closest examples from each class.

< Go back