Introduction to Database Finalterm Assignment

Name	ID
1. MD. Mohituzzaman Bhuiyan	20-42546-1
2. Mostaque Ahammed Naim	20-42140-1
3. Joysree Dey Sukanna	20-41946-1
4.Amit Podder	20-42273-1

5. Shakib MD. Shahadot	20-42385-1
Hossain	

Name of the Assignment

➤ Parlor Management System

Parlor Management System

Case Study:-

The case study we are going to start is about the parlor management system. In this management system, we have employees, customers, payment, salary, and service packages. Here, the employees will have unique employee ID, employee name, employee joining date, employee phone number, and other details, which will be stored in the database system. On the other hand, for the customers, each will have a customer name, customer address, unque customer ID, customer phone number. In terms of payment, we have unique payment ID, payment type, payment date, and payment amount. Here, employees and customers can have multiple phone numbers. Here, the customers can book an appointment which will identify the unique appointment ID, appointment date, and the type of service the customer wants which will also include unique service ID and service price. A customer can have many services or we can also say that a service can be taken by many customers. When the customer decides it service, then the employee will be notified by invoice ID, invoice service, and invoice amount. Then the customer will pay the bill according to the service and it will identify by payment types, payment date, payment ID, and payment amount. After that, the employees will get their salary as a unique salary ID, salary

category and, salary amount.

Starting Screenshot:-

Before Finishing Screenshot:-

ER Diagram:-

Normalization of Database and Functional Dependencies:-

CUSTOMER:

UNF:

customer (customer_id, customer_name, street, city, customer_phone-No, payment_id, employee_id)

<u>1NF:</u>

customer_phone-No is multivalued.

1. customer_id, customer_name, street, city, customer_phone-No, payment_id, employee_id

2NF:

- 1. customer_id, customer_name
- 2. customer_address, city, street
- 3. payment_id, employee_id, customer_phone-No

<u>3NF:</u>

No transitive Dependency

Services Packages:

UNF:

services (service_ID, price, employee_ID, customer_ID, invoice_ID)

<u>1NF:</u>

1. service_ID, price, employee_ID, customer_ID, invoice_ID

<u>2NF:</u>

1. service_ID, employee_ID, customer_ID, invoice_ID

3NF:

No transitive dependency

Invoice:

UNF:

invoice (invoice_ID, Invoice_service, service_ID, invoice_amount)

<u>1NF:</u>

1. invoice_ID, invoice_service, service_ID, invoice_amount

<u>2NF:</u>

No partial dependency

<u>3NF:</u>

No transitive dependency

Payment:

UNF:

payment (payment_ID, payment_date, payment_amount, payment_type, customer_ID, invoice_ID)

<u>1NF:</u>

 payment_ID, payment_date, payment_amount, payment_type, customer_ID, invoice_ID

<u>2NF:</u>

1. No partial dependency

<u>3NF:</u>

1. No transitive dependency

Appointment:

UNF:

appointments (appointment_ID, appointment__date, customer_ID, employee_ID)

<u>1NF:</u>

appointment_ID, appointment__date, customer_ID, employee_ID

<u>2NF:</u>

No partial dependency

3NF:

No transitive dependency

Employee:

UNF:

employee(employee_ID, employee_joining-details, employee_name, employee_phone-no, city, street)

<u> 1NF:</u>

employee_phone-no is multivalued

1. employee_ID, employee_joining-details, employee_name, employee_phoneno, city, street

<u>2NF:</u>

- 1. employee_ID, employee_details, employee_joining-date
- 2. detail_ID, employee_ID, city, street, employee_phone-no
- 3. service_ID, employee_ID, employee_phone-no

3NF:

- 1. Employee_ID, employee_details, employee_joining-date
- 2. detail_ID, a_ID
- 3. Service_ID, employee_ID, employee_phone-no
- 4. a_ID, street, city

Salary:

<u>UNF:</u>

salary(salary_ID, employee_ID, salary_type, salary_amount)

<u>1NF:</u>

1. Salary_ID, employee_ID, salary_type, salary_amount

<u>2NF:</u>

No dependency

<u>3NF:</u>

No dependency

Final Table Creation:-

- customer_id, customer_name, customer_address
- 2. a_ID, street, city
- 3. service_ID, employee_ID, employee_phone-no
- 4. employee_ID, employee_details, employee_joining-date
- 5. salary_ID, employee_ID, salary_type, salary_amount
- payment_ID, payment_date, payment_amount, payment_type, customer_ID, invoice_ID
- 7. appointment_ID, customer_ID, employee_ID, appointment_date
- 8. invoice_ID, invoice_service, service_ID, invoice_amount
- 9. service_ID, employee_ID, customer_ID, invoice_ID

Creating New User and Granting Permission:

```
create user parAD identified by parlor;
grant create view, connect, resource, unlimited tablespace to parAD;
```

Table Creation and Data Insertion:-

```
➤ create table address(
a_ID number PRIMARY KEY,
street varchar2(20),
city varchar2(10)
);

INSERT INTO ADDRESS VALUES(1, 'MIRPUR DOHS', 'DHAKA');
INSERT INTO ADDRESS VALUES(2, 'HALISAHAR', 'CHITTAGONG');
INSERT INTO ADDRESS VALUES(3, 'ADAMJEE CANTONMENT', 'DHAKA');
```


Language: en-us

Application Express 2.1.0.00.39

Copyright © 1999, 2006, Oracle. All rights reserved.

3 rows returned in 0.00 seconds CSV Export

```
> create table customer(
c_ID number(10) PRIMARY KEY NOT NULL,
c name varchar2(20) NOT NULL,
c_address number(10) NOT NULL,
c_type varchar2(10) NOT NULL,
FOREIGN KEY(c_address) references address(a_ID)
);
INSERT INTO CUSTOMER VALUES(1, 'MR.X', 2, 'PREMIUM');
INSERT INTO CUSTOMER VALUES(2, 'MR.Z', 3, 'REGULAR');
INSERT INTO CUSTOMER VALUES(3, 'MR.Y', 1, 'REGULAR');
INSERT INTO CUSTOMER VALUES(4, 'MR.M', 2, 'NEW');
```


> create table employee(

e_ID number(10) PRIMARY KEY NOT NULL,

```
e_name varchar2(20) NOT NULL,
e_joining_date date NOT NULL,
e_address number(10) NOT NULL,
FOREIGN KEY(e_address) references address(a_ID)
);
INSERT INTO EMPLOYEE VALUES(101, 'RAFIK', '24-JAN-2021', 2);
INSERT INTO EMPLOYEE VALUES(102, 'TASNIM', '24-JAN-2021', 1);
INSERT INTO EMPLOYEE VALUES(103, 'TAHMID', '19-JAN-2020', 2);
```


create table salary(
salary_ID number(10),

```
e_ID number(10),
salary_cat varchar2(20),
salary_amount number(20),
FOREIGN KEY(e_ID) references employee(e_ID)
);
INSERT INTO SALARY VALUES(11, 101, 'MONTHLY', 25000);
INSERT INTO SALARY VALUES(12, 102, 'MONTHLY', 30000);
INSERT INTO SALARY VALUES(13, 103, 'MONTHLY', 5000);
```


3 rows returned in 0.00 seconds CSV Export

> create table appointment(
app_ID number(10) PRIMARY KEY NOT NULL,

```
c_ID number(10) NOT NULL,
e_ID number(10) NOT NULL,
app_date date NOT NULL,
FOREIGN KEY(e_ID) references employee(e_ID),
FOREIGN KEY(c_ID) references customer(c_ID)
);
INSERT INTO APPOINTMENT VALUES(1101, 2, 103, '7-AUG-2021');
INSERT INTO APPOINTMENT VALUES(1102, 1, 101, '7-AUG-2021');
INSERT INTO APPOINTMENT VALUES(1103, 3, 101, '8-AUG-2021');
```


> create table service(
service_ID number(10) PRIMARY KEY NOT NULL,

```
c_ID number(10) NOT NULL,
e_ID number(10) NOT NULL,
FOREIGN KEY (c_ID) references customer(c_ID),
FOREIGN KEY (e_ID) references employee(e_ID)
);
INSERT INTO SERVICE VALUES(1201, 2,103);
INSERT INTO SERVICE VALUES(1202, 1,101);
INSERT INTO SERVICE VALUES(1203, 3,101);
```


> create table invoice(

invoice_ID number(10) PRIMARY KEY NOT NULL,

```
service_ID number(10) NOT NULL,
invoice_amount number(10) NOT NULL,
FOREIGN KEY (service_ID) references service(service_ID)
);
INSERT INTO INVOICE VALUES(1301, 1201, 1200);
INSERT INTO INVOICE VALUES(1302, 1202, 1500);
INSERT INTO INVOICE VALUES(1303, 1203, 1500);
```


create table payment(

p_ID number(10) PRIMARY KEY NOT NULL,

```
invoice_ID number(10) NOT NULL,
c_ID number(10) NOT NULL,
p type varchar2(10) NOT NULL,
p_date date NOT NULL,
p_amount number(10) NOT NULL,
FOREIGN KEY(c_ID) references customer(c_ID),
FOREIGN KEY(invoice_ID) references invoice(invoice_ID)
);
INSERT INTO PAYMENT VALUES(1401, 1301, 2, 'CASH', '7-AUG-2021', 1200);
INSERT INTO PAYMENT VALUES(1402, 1302, 1, 'CARD', '7-AUG-2021', 1500);
INSERT INTO PAYMENT VALUES(1403, 1303, 3, 'BKASH', '8-AUG-2021', 1500);
```


P_ID	INVOICE_ID	C_ID	P_TYPE	P_DATE	P_AMOUNT
1401	1301	2	CASH	07-AUG-21	1200
1402	1302	1	CARD	07-AUG-21	1500
1403	1303	3	BKASH	08-AUG-21	1500

3 rows returned in 0.00 seconds

CSV Export

```
> create table phone(
phone ID number(10) PRIMARY KEY NOT NULL,
c ID number(10),
e_ID number(10),
phone No number(11) NOT NULL,
FOREIGN KEY (c ID) references customer(c ID),
FOREIGN KEY (e ID) references employee(e ID)
);
INSERT INTO PHONE(phone_ID, e_ID, phone_No) VALUES(21, 101, 01798673314);
INSERT INTO PHONE(phone_ID, e_ID, phone_No) VALUES(22, 102, 01798673231);
INSERT INTO PHONE(phone_ID, e_ID, phone_No) VALUES(23, 103, 01798679832);
INSERT INTO PHONE(phone ID, c ID, phone No) VALUES(31, 1, 01598673314);
INSERT INTO PHONE(phone ID, c ID, phone No) VALUES(32, 2, 01769773314);
INSERT INTO PHONE(phone_ID, c_ID, phone_No) VALUES(33, 3, 01769761381);
```

```
create table phone(
phone_ID number(10) PRIMARY KEY NOT NULL,
c_ID number(10),
e_ID number(10),
phone_No number(11) NOT NULL,
FOREIGN KEY (c_ID) references customer(c_ID),
FOREIGN KEY (e_ID) references employee(e_ID)
```


Results Explain Describe Saved SQL History

Object Type TABLE Object PHONE

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
PHONE	PHONE_ID	Number	-	10	0	1	-	-	-
	C_ID	Number	-	10	0	-	/	-	-
	E_ID	Number	-	10	0	-	~	-	-
	PHONE_NO	Number	-	11	0	-	-	-	-
								1	1 - 4

Application Express 2.1.0.00.39

Copyright © 1999, 2006, Oracle. All rights reserved.

Language: en-us

PHONE_ID	C_ID	E_ID	PHONE_NO
21	-	101	1798673314
22	-	102	1798673231
23	-	103	1798679832
31	1	-	1598673314
32	2	-	1769773314
33	3	-	1769761381

6 rows returned in 0.00 seconds

CSV Export

Joining:-

- 1. Display employee who is appointed to customer Mr.Z
- > select *
 from employee e, appointment a
 where e.e_ID=a.e_ID and (a.c_ID=2);

- 2. Get all the matching & non-matching records from employee and appointment.
- select *
 from employee e, appointment a
 where e.e_ID(+)= a.e_ID;

- 3. Get all the employee who have the same address as MR.X
- > select c.*
 from customer c, customer e
 where c.c_address=e.c_address and (e.c_address=2);

Sub-Query:-

- 1. Show the name of the employee who lives in DHAKA?
- select e_name from employee Where e_address IN(select a_id from address Where city='DHAKA');

- 2. Show the name of the customer who's paytype is CASH?
- select c_name from customer Where c_id IN(select c_id from payment Where p_type='CASH');

- 3. Display the second maximum paid amount?
- > select MAX(p_amount)
 from payment
 Where p_amount<(select MAX(p_amount)
 from payment);</pre>

- 4. Display all the employee's IDs who are getting more than the average salaries of all the employees.
- > select e_id
 from salary
 Where salary_amount >(select AVG(salary_amount)
 from salary);

View:-

➤ CREATE OR REPLACE VIEW paid as select e.c_ID, e.c_name, i.p_type, i.p_amount from customer e, payment i where e.c_ID=i.c_ID and i.p_amount=(select MIN(p_amount) from payment); select * from paid; drop view paid;

