Language Analysis of American Government Documents

By: Griffin Talan

Data Science Problem

- What is fake news?
- Why is the news so biased?
- What is the correct response to Covid?

- How has the way we speak changed over time and how has the found its way into political speech? If there is a trend, can this be seen across agencies within our government?
 - Has overall sentiment and level of subjectivity changed?

Agenda

- Outline Data Sourcing and Preparation
- Discuss data processing
- Discussing biderectional LSTM modeling
- Discuss model predictions for prediction datasets and relevant trends
- Discuss overall trends
- Discuss limitations and next steps involved
- Demo Heroku App / HTML prediction app

Training Data Sentiment

- UCI Machine Learning dataset of combined IMDB, Amazon, and Yelp reviews
- 500 positive and 500 negative reviews for each data set

Subjectivity

- Cornell University annotated rotten tomatoes movies review dataset
- 5000 subjective and 5000 objective labelled sentences

Prediction Data

- State of the Union Addresses
 - Scraped using BeautifulSoup
 - 240 addresses
- Inaugural Addresses
 - 58 addresses
- DOJ Press Releases
 - ~13,000 records
- Supreme Court Decisions
 - ~35,000 decisions

Methods - Text Preprocessing

- Lowercased
- Removed non-alpha characters
- Tokenized by words
- Option to remove stop words and stem data neither were used
- Truncation to a maximum number of words and padding extra space
- Converted text to numeric data using tensorflow tokenizers fit with word vocab from training data
 - Stored as pickle file and hosted in app with model

Methods - Bidirectional LSTM Model

LSTM uses 3 "gates" to regulate cell memory

- Input
- Forget
- Output

Methods - Bidirectional LSTM Model

Bidirectional LSTM models use input from future and past cells to address weighting

(a) (b)

Structure overview

- (a) unidirectional RNN
- (b) bidirectional RNN

Model Training - Sentiment Analysis

- Training was highly regularized to address overfitting
 - Reduced NN layer nodes
 - Added high dropout after every step (>0.7)
- Accuracy ~0.80 for train and test

Model Training - Subjectivity Analysis

- Training was highly regularized to address overfitting
 - Reduced NN layer nodes
 - Added high dropout after every step (>0.7)
- Accuracy ~0.85 for train and test

Predictions - State of the Union Addresses

Predictions - State of the Union Addresses

- Positive correlation between year and subjectivity rating
- Minor negative correlation between positivity

Predictions - Inaugural Addresses

- No visible trends were found in the inaugural addresses
 - Fewest number of documents, infrequently occurs

Department of Justice

- The DOJ data only covers the last 10 years
- Shows consistent, objective, non-positive tone

 After removing decisions by judges with only one decision, trends were noted in documents written per judge

- Generally stable sentiment state
- Increase in subjectivity over time

- Correlation between date filed and subjectivity
- Correlation between date filed and minority vote count

 Shift from majority-dominated courts to more evenly split after World Wars

Sentiment Overlay

- Mostly stable across all documents analyzed
- Some negative correlationseen in the State of the UnionSpeeches

Subjectivity Overlay

Increase in subjectivity
 correlated with time in both State
 of the Union and Supreme Court
 decisions

Concerns and Next Steps

- Get better training data that spans larger ranges of times
 - Ensemble method that can include year in prediction model
- Redo the predictions on a by-sentence basis for the documents and average
- Different training data very fit to purpose
 - Train data is customer reviews, not speeches toward constituencies
 - Does not have wide enough vocabulary to account for everything in political documents
- Topic labeling / keyword extraction

Heroku Demo

https://griffin-subj-sent.herokuapp.com

References

- Sentiment Data
 - a. 'From Group to Individual Labels using Deep Features', Kotzias et. al,. KDD 2015
- 2. Subjectivity Data
 - a. Bo Pang and Lillian Lee, A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts, *Proceedings of ACL 2004*.
- 3. State of the Union Speeches
 - a. https://www.presidency.ucsb.edu/documents/presidential-documents-archive-guidebook/annual-messages-congress-the-st ate-the-union#Table%20of%20SOTU
- 4. Inaugural Addresses
 - a. http://www.bartleby.com/124/
- DOJ Press Releases
 - a. https://www.kaggle.com/jbencina/department-of-justice-20092018-press-releases
- 6. Supreme Court Decision
 - a. http://scdb.wustl.edu/data.php
- 7. LSTM Cell Image
 - a. http://dprogrammer.org/rnn-lstm-gru
- 8. Bidirectional LSTM Structure
 - a. https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks