补充练习 11.1

设 F 是域,R 是 F 的子环,且 $|R| \ge 2$ 。令 $S = \{ab^{-1} \mid a, b \in R, b \ne 0\}$,证明 S 是 F 中包含 R 的最小子域。

解答.

证明. 我们需要证明两点: (1) S 是 F 的一个子域; (2) S 是包含 R 的最小子域。

1. 证明 $S \to F$ 的一个子域。

我们使用子域判别法。

- (a) S **非空**: 因为 $|R| \ge 2$ 且 R 是子环,所以 R 中必有非零元。设 $b \in R$ 且 $b \ne 0$ 。由于 R 是环,所以 $b \in R$ 。因此 $bb^{-1} = 1_F \in S$ 。所以 S 非空。
- (b) **对减法封闭**: 任取 $x, y \in S$ 。则存在 $a, c \in R$ 和 $b, d \in R, b \neq 0, d \neq 0$ 使得 $x = ab^{-1}, y = cd^{-1}$ 。

$$x - y = ab^{-1} - cd^{-1} = (ad - cb)(bd)^{-1}$$

因为 R 是环,所以 $ad, cb, ad - cb \in R$ 。同时 $bd \in R$ 。又因为 F 是域,没有零因子,且 $b \neq 0, d \neq 0$,所以 $bd \neq 0$ 。因此,x - y 的形式是 R 中一个元素乘以 R 中一个非零元的逆。故 $x - y \in S$ 。

(c) **对乘法封闭**: 任取 $x,y \in S$, 符号同上。

$$xy = (ab^{-1})(cd^{-1}) = (ac)(bd)^{-1}$$

因为 R 是环, 所以 $ac \in R$ 且 $bd \in R$ 。如前述, $bd \neq 0$ 。故 $xy \in S$ 。

(d) **对求逆元封闭**: 任取 $x \in S$ 且 $x \neq 0$ 。则 $x = ab^{-1}$,其中 $a, b \in R, b \neq 0$ 。因 为 $x \neq 0$,所以必有 $a \neq 0$ 。

$$x^{-1} = (ab^{-1})^{-1} = ba^{-1}$$

因为 $b \in R$ 且 $a \in R, a \neq 0$,所以 $x^{-1} \in S$ 。

根据子域判别法, (a), (b), (c), (d) 证明了 $S \neq F$ 的一个子域。

- 2. 证明 S 是包含 R 的最小子域。
 - (a) **证明** $R \subseteq S$: 任取 $r \in R$ 。因为 $|R| \ge 2$,所以 R 不是零环,故 $1_F \in R$ 且 $1_F \ne 0$ 。我们可以将 r 写成 $r = r \cdot 1_F = r \cdot (1_F)^{-1}$ 。因为 $r \in R$ 且 $1_F \in R, 1_F \ne 0$,根据 S 的定义, $r \in S$ 。所以 $R \subseteq S$ 。

(b) **证明最小性**:设 $K \in F$ 的任意一个包含 R 的子域,即 $R \subseteq K$ 。我们需要 证明 $S \subset K$ 。任取 $s \in S$ 。根据定义, $s = ab^{-1}$,其中 $a, b \in R, b \neq 0$ 。因为 $R \subset K$, 所以 $a \in K$ 且 $b \in K$ 。因为 K 是一个域, 且 $b \in K$, $b \neq 0$, 所以 b 在 K 中有乘法逆元 $b^{-1} \in K$ 。又因为 K 是域,对乘法封闭,所以 $a \cdot b^{-1} \in K$, 即 $s \in K$ 。由于 $s \in S$ 中的任意元素,所以 $S \subset K$ 。

综合以上两点, $S \neq F$ 中包含 R 的最小子域。

补充练习 11.2

在模 15 剩余类环 $\mathbb{Z}_{15} = \{\overline{0}, \overline{1}, \dots, \overline{14}\}$ 中,求方程 $x^2 - \overline{1} = \overline{0}$ 的全部根。

解答. 方程 $x^2 - \overline{1} = \overline{0}$ 在环 \mathbb{Z}_{15} 中等价于求解同余方程:

$$x^2 \equiv 1 \pmod{15}$$

因为 $15 = 3 \times 5$,且 gcd(3,5) = 1,根据中国剩余定理,上述同余方程等价于求解下面 的同余方程组:

$$\begin{cases} x^2 \equiv 1 \pmod{3} \\ x^2 \equiv 1 \pmod{5} \end{cases}$$

- 1. **求解** $x^2 \equiv 1 \pmod{3}$, 解为 $x \equiv 1, 2 \pmod{3}$ 。
- 2. **求解** $x^2 \equiv 1 \pmod{5}$, 解为 $x \equiv 1, 4 \pmod{5}$ 。

组合解: 共有 $2 \times 2 = 4$ 种组合。

•
$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 1 \pmod{5} \end{cases} \implies x \equiv 1 \pmod{15}$$
•
$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \end{cases} \implies x \equiv 4 \pmod{15}$$

•
$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \end{cases} \implies x \equiv 4 \pmod{15}$$

•
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 1 \pmod{5} \end{cases} \implies x \equiv 11 \pmod{15}$$

•
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 1 \pmod{5} \end{cases} \implies x \equiv 11 \pmod{15}$$
•
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 4 \pmod{5} \end{cases} \implies x \equiv 14 \pmod{15}$$

因此,方程 $x^2 - \overline{1} = \overline{0}$ 在 \mathbb{Z}_{15} 中的全部根为 $\overline{1}, \overline{4}, \overline{11}, \overline{14}$ 。

补充练习 11.3

设 $R = \{2z \mid z \in \mathbb{Z}\}$ 是所有偶数关于整数加法和乘法构成的环,令 $D = \{4z \mid z \in \mathbb{Z}\}$,证明 $D \in \mathbb{R}$ 的理想,并给出商环 R/D 的元素。

解答.

证明. 要证明 $D \neq R$ 的理想,需验证 $(D, +) \neq (R, +)$ 的子群,且 $D \neq R$ 的乘法有吸收性。

- 1. $(D,+) \leq (R,+)$: D 非空。对任意 $4z_1, 4z_2 \in D$,有 $4z_1 4z_2 = 4(z_1 z_2) \in D$ 。 故成立。
- 2. 吸收性: 对任意 $r = 2z_1 \in R$ 和 $d = 4z_2 \in D$,有 $rd = (2z_1)(4z_2) = 4(2z_1z_2) \in D$ 。 故成立。

因此, $D \in R$ 的理想。商环 R/D 的元素是 R 中元素关于 D 的陪集。

- $0 + D = D = 4\mathbb{Z}$
- $2 + D = \{2 + 4z \mid z \in \mathbb{Z}\}$

因为任何偶数 2z 要么是 4 的倍数 (z) 为偶数 (z) ,要么是 2+4k 的形式 (z) 为奇数 (z) ,所以 商环 R/D 只有这两个元素: $R/D = \{D, 2+D\}$ 。

补充练习 11.4

给出模 12 剩余类环 $\mathbb{Z}_{12} = \{\overline{0}, \dots, \overline{11}\}$ 的所有理想及相应的商环。

解答. \mathbb{Z}_{12} 的理想由 12 的正因子 d=1,2,3,4,6,12 生成,理想为 $I_d=\langle \overline{d} \rangle$,商环为 $\mathbb{Z}_{12}/I_d \cong \mathbb{Z}_d$ 。

- $I_1 = \langle \overline{1} \rangle = \mathbb{Z}_{12}$. $\overline{\mathfrak{a}} \mathfrak{F} \cong \mathbb{Z}_1$.
- $I_2 = \langle \overline{2} \rangle = \{ \overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10} \}$. $\overrightarrow{\text{BF}} \cong \mathbb{Z}_2$.

- $I_3 = \langle \overline{3} \rangle = \{ \overline{0}, \overline{3}, \overline{6}, \overline{9} \}$. $\overline{\alpha}$
- $I_4 = \langle \overline{4} \rangle = \{ \overline{0}, \overline{4}, \overline{8} \}$. $\overline{\mathfrak{B}} \mathfrak{F} \cong \mathbb{Z}_4$.
- $I_6 = \langle \overline{6} \rangle = \{ \overline{0}, \overline{6} \}$ 。 商环 $\cong \mathbb{Z}_6$ 。
- $I_{12} = \langle \overline{12} \rangle = \{ \overline{0} \}$ 。 商环 $\cong \mathbb{Z}_{12}$ 。

补充练习 11.5

证明 $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{C}$ 。

解答.

证明. 使用环的第一同构定理。定义求值同态 $\phi: \mathbb{R}[x] \to \mathbb{C}$ 为 $\phi(p(x)) = p(i)$ 。

- 1. **证明** ϕ **是满射**: 对任意 $a+bi \in \mathbb{C}$,取多项式 $p(x)=a+bx \in \mathbb{R}[x]$,则 $\phi(p(x))=p(i)=a+bi$ 。故 ϕ 是满射。
- 2. **确定核** $\ker(\phi)$: $\ker(\phi) = \{p(x) \in \mathbb{R}[x] \mid p(i) = 0\}$ 。根据实系数多项式共轭根定理,若 i 是根,则 -i 也是根。因此 $(x-i)(x+i) = x^2 + 1$ 是 p(x) 的因子。所以 $p(x) \in \langle x^2 + 1 \rangle$ 。故 $\ker(\phi) = \langle x^2 + 1 \rangle$ 。

根据第一同构定理, $\mathbb{R}[x]/\ker(\phi) \cong \operatorname{im}(\phi)$,即 $\mathbb{R}[x]/\langle x^2 + 1 \rangle \cong \mathbb{C}$ 。

补充练习 11.6

证明 $\langle 1+2i \rangle$ 是高斯整环 $\mathbb{Z}[i]$ 的极大理想。

解答.

证明. 我们证明商环 $\mathbb{Z}[i]/\langle 1+2i\rangle$ 是一个域。如果商环是域,则理想是极大理想。考虑高斯整数的范数 $N(a+bi)=a^2+b^2$ 。计算范数 $N(1+2i)=1^2+2^2=5$ 。因为 5 是一个素数,根据高斯整环的性质,由范数为素数的元素生成的主理想是极大理想。具体地,商环 $\mathbb{Z}[i]/\langle 1+2i\rangle$ 同构于有限域 \mathbb{Z}_5 。在商环中, $1+2i\equiv 0 \implies 2i\equiv -1$ 。两边平方得 $(2i)^2\equiv (-1)^2 \implies -4\equiv 1 \implies 5\equiv 0$ 。这表明商环的特征为 5。任意元素

 $a+bi+\langle 1+2i\rangle$ 都可以被化简。由 $2i\equiv -1\pmod{\langle 1+2i\rangle}$,乘以 3 得 $6i\equiv -3\Longrightarrow i\equiv 2\pmod{5}$ 。所以 $a+bi\equiv a+2b\pmod{\langle 1+2i\rangle}$ 。这表明商环中的每个元素都等价于 \mathbb{Z}_5 中的一个元素。因为 \mathbb{Z}_5 是域,所以商环 $\mathbb{Z}[i]/\langle 1+2i\rangle$ 是域,因此 $\langle 1+2i\rangle$ 是 $\mathbb{Z}[i]$ 的极大理想。

补充练习 11.7

证明 $\langle z^2 + z + 1 \rangle$ 是多项式环 $\mathbb{Z}_2[z]$ 的极大理想。

解答.

证明. 在域 F 上的多项式环 F[x] 中,主理想 $\langle p(x) \rangle$ 是极大理想当且仅当多项式 p(x) 在 F 上是不可约的。这里 $F = \mathbb{Z}_2 = \{\overline{0},\overline{1}\}$,多项式是 $p(z) = z^2 + z + 1$ 。我们检查 p(z) 在 \mathbb{Z}_2 中是否有根:

- $p(\overline{0}) = \overline{0}^2 + \overline{0} + \overline{1} = \overline{1} \neq \overline{0}$
- $p(\overline{1}) = \overline{1}^2 + \overline{1} + \overline{1} = \overline{3} = \overline{1} \neq \overline{0}$

因为 p(z) 是二次多项式且在 \mathbb{Z}_2 中没有根,所以它在 \mathbb{Z}_2 上是不可约的。因此,由它生成的理想 $\langle z^2 + z + 1 \rangle$ 是 $\mathbb{Z}_2[z]$ 的极大理想。

补充练习 11.8

给出有限域 $F = \mathbb{Z}_3[z]/\langle z^2 + 2z + 2 \rangle$ 的元素,加法运算表和乘法运算表,非零元素构成的乘法群的生成元,以及它的所有子域。

解答. 令 $I = \langle z^2 + 2z + 2 \rangle$,记 $\alpha = z + I$ 。在商环 F 中,有 $\alpha^2 + 2\alpha + 2 = 0$,即 $\alpha^2 = -2\alpha - 2 = \alpha + 1$ (在 \mathbb{Z}_3 中)。

1. 元素: F 的元素形如 $a+b\alpha$, 其中 $a,b \in \mathbb{Z}_3$ 。共有 $3 \times 3 = 9$ 个元素: $\{0,1,2,\alpha,\alpha+1,\alpha+2,2\alpha,2\alpha+1,2\alpha+2\}$ 。

2. 加法运算表 (|F| = 9)

+	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
0	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
1	1	2	0	$\alpha + 1$	$\alpha + 2$	α	$2\alpha + 1$	$2\alpha + 2$	2α
2	2	0	1	$\alpha + 2$	α	$\alpha + 1$	$2\alpha + 2$	2α	$2\alpha + 1$
α	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$	0	1	2
$\alpha + 1$	$\alpha + 1$	$\alpha + 2$	α	$2\alpha + 1$	$2\alpha + 2$	2α	1	2	0
$\alpha + 2$	$\alpha + 2$	α	$\alpha + 1$	$2\alpha + 2$	2α	$2\alpha + 1$	2	0	1
2α	2α	$2\alpha + 1$	$2\alpha + 2$	0	1	2	α	$\alpha + 1$	$\alpha + 2$
$2\alpha + 1$	$2\alpha + 1$	$2\alpha + 2$	2α	1	2	0	$\alpha + 1$	$\alpha + 2$	α
$2\alpha + 2$	$2\alpha + 2$	2α	$2\alpha + 1$	2	0	1	$\alpha + 2$	α	$\alpha + 1$

3. **乘法运算表** (|F| = 9)

×	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
2	0	2	1	2α	$2\alpha + 2$	$2\alpha + 1$	α	$\alpha + 2$	$\alpha + 1$
α	0	α	$\frac{1}{2\alpha}$	$\alpha + 1$	$2\alpha + 1$	1	$2\alpha + 2$	2	$\alpha + 2$
$\alpha + 1$	0	$\alpha + 1$	$2\alpha + 2$	$2\alpha + 1$	2	α	2α	$\alpha + 2$	1
$\alpha + 2$	0	$\alpha + 2$	$2\alpha + 1$	1	α	2α	$\alpha + 1$	$2\alpha + 2$	2
2α	0	2α	α	$2\alpha + 2$	2α	$\alpha + 1$	$\alpha + 2$	1	$2\alpha + 1$
			$\alpha + 2$						
$2\alpha + 2$	0	0 - + 0	- 1 1	- + 0	1	0	$0 \sim \pm 1$	0.	9.0

4. **乘法群的生成元**: 非零元乘法群 F^* 是一个 8 阶循环群。我们检验 α 的阶: $\alpha^1=\alpha$ $\alpha^2=\alpha+1$

$$\begin{split} &\alpha^3 = \alpha(\alpha+1) = \alpha^2 + \alpha = (\alpha+1) + \alpha = 2\alpha + 1 \\ &\alpha^4 = \alpha(2\alpha+1) = 2\alpha^2 + \alpha = 2(\alpha+1) + \alpha = 2\alpha + 2 + \alpha = 2 \\ &\alpha^5 = 2\alpha \\ &\alpha^6 = 2\alpha^2 = 2(\alpha+1) = 2\alpha + 2 \\ &\alpha^7 = \alpha(2\alpha+2) = 2\alpha^2 + 2\alpha = 2(\alpha+1) + 2\alpha = \alpha + 2 \\ &\alpha^8 = \alpha(\alpha+2) = \alpha^2 + 2\alpha = (\alpha+1) + 2\alpha = 1 \\ &\alpha \text{ 的阶是 8}, \text{ 所以 } \alpha \text{ 是 } F^* \text{ 的—个生成元}. \end{split}$$

- 5. **子域**:有限域的子域的阶数必须是 p^k 的形式,其中 k 整除域阶的指数。F 的阶是 $9=3^2$ 。2的因子是 1 和 2。
 - k=1: 阶为 $3^1=3$ 的子域,即素子域 $\mathbb{Z}_3=\{0,1,2\}$ 。

• k=2: 阶为 $3^2=9$ 的子域,即 F 本身。

所以 F 只有一个真子域,就是它的素子域 \mathbb{Z}_3 。

补充练习 11.9

有限域 $K = \mathbb{Z}_2[z]/\langle z^2 + z + 1 \rangle$ 的加法群与 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 同构,请写出它们之间的一个同构映射。

解答.

证明. *K* 作为一个向量空间,其基为 $\{1,\alpha\}$,其中 $\alpha = z + \langle z^2 + z + 1 \rangle$ 。*K* 的元素为 $\{0,1,\alpha,1+\alpha\}$ 。 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 的元素为 $\{(0,0),(1,0),(0,1),(1,1)\}$ 。我们可以定义一个基于基映射的同构 $\psi: K \to \mathbb{Z}_2 \oplus \mathbb{Z}_2$ 。令 $\psi(1) = (1,0)$ 且 $\psi(\alpha) = (0,1)$ 。由于 ψ 是加法群同态,它必须满足 $\psi(x+y) = \psi(x) + \psi(y)$ 。我们可以将此映射扩展到所有元素:

- $\psi(0) = \psi(0 \cdot 1 + 0 \cdot \alpha) = 0\psi(1) + 0\psi(\alpha) = (0,0)$
- $\psi(1) = \psi(1 \cdot 1 + 0 \cdot \alpha) = 1\psi(1) + 0\psi(\alpha) = (1,0)$
- $\psi(\alpha) = \psi(0 \cdot 1 + 1 \cdot \alpha) = 0\psi(1) + 1\psi(\alpha) = (0, 1)$
- $\psi(1+\alpha) = \psi(1) + \psi(\alpha) = (1,0) + (0,1) = (1,1)$

这个映射 ψ 将 K 的四个元素——映射到 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 的四个元素,因此是双射。它也保持了加法运算,所以是一个群同构。