Schröder-Bernstein, numbers, and lists

Professor Cian Dorr

20th September 2022

New York University

Schröder-Bernstein

Let's start with one piece of unfinished business: a proof of the following theorem:

Schröder-Bernstein Theorem

For any sets A and B, if $A \lesssim B$ and $B \lesssim A$, then $A \sim B$.

We'll infer this from the following lemma:

Lemma

For any sets A and B, if $A \subseteq B$ and $B \lesssim A$, then $A \sim B$.

Schröder-Bernstein

Lemma

For any sets A and B, if $A \subseteq B$ and $B \lesssim A$, then $A \sim B$.

Suppose $A \subseteq B$ and $B \lesssim A$. Then there is some $C \subseteq A$ such that $B \sim C$, i.e. there is a bijection $f: B \to C$. Define Z to as the **closure of** $B \setminus A$ **under** f. And define a function $g: B \to A$ as follows:

$$gx = \begin{cases} fx & \text{if } x \in Z \\ x & \text{otherwise} \end{cases}$$

This determines a function from B to A, since $B \setminus A \subseteq Z$. We will show that g is a bijection from B to A.

3

- ▶ To show g is injective, note that it can't happen that gx = gy if $x \in Z$ and $y \notin Z$, since in that case we'd have fx = y and hence $y \notin Z$ since Z is closed under f. So if gx = gy, either $x \in Z$ and $y \in Z$ in which case fx = fy and hence x = y by the injectivity of f, or $x \notin Z$ and $y \in Z$ in which case x = gx = gy = y.
- ▶ To show g is surjective, consider an arbitrary $x \in A$. If $x \notin Z$ then gx = x so x is in the range of g. If $x \in Z$, then x must be in f[Z], since $f[Z] \cup (B \setminus A)$ is a superset of $B \setminus A$ closed under f, hence a superset of Z. Thus there exists $y \in Z$ such that fy = x and thus gy = x.

Notation: when $f: X \to Y$ and $Z \subseteq X$, $f[Z] := \{fx \mid x \in Z\}$.

Schröder-Bernstein

Finally we need to get to the actual theorem:

Schröder-Bernstein Theorem

For any sets A and B, if $A \lesssim B$ and $B \lesssim A$, then $A \sim B$.

So, suppose we have injections $f:A\to B$ and $g:B\to A$. We have $f[A]\subseteq B$. Also since $f[A]\sim A$, $B\lesssim f[A]$. So by the lemma, $f[A]\sim B$, hence $A\sim B$.

5

Numbers and Lists

The Axiom of Numbers (recap)

The Axiom of Numbers

 $\mathbb N$ is a set (the set of natural numbers), 0 is an element of $\mathbb N$, and suc is a function $\mathbb N\to\mathbb N$, such that:

Inductive Property \mathbb{N} is the closure of $\{0\}$ under suc.

Injective Property (a) suc is injective.

(b) 0 is not in the range of suc.

Notation: we write '1' for suc 0, '2' for suc(suc 0)), etc.

Remark: given our definition of addition, we can prove that suc n = n + 1 for all $n \in \mathbb{N}$; once this is proved, we can feel free to write 'n + 1 instead of 'suc n' if we prefer.

Let's just prove that last fact. Recall that n+m is short for $\operatorname{add}_n m$, where add_n is the unique function $f:\mathbb{N}\to\mathbb{N}$ such that f0=n and $f(\operatorname{suc} m)=\operatorname{suc}(fm)$ for any $m\in\mathbb{N}$ (where we are assured of the existence of such a function by the Recursion Theorem). The definition thus secures the following two *recursion clauses* (for all $n,m\in\mathbb{N}$):

$$(i) n+0=n$$

(ii)
$$n + \operatorname{suc} m = \operatorname{suc}(n+m)$$

Proposition

For all $n \in \mathbb{N}$, $n + 1 = \operatorname{suc} n$.

Proof: n + 1 = n + suc 0 = suc(n + 0) (by (ii) = suc n (by (i)).

The Axiom of Lists

The Axiom of Lists

For every set A, there is a set A^* (the set of finite lists of elements of A); an element of A^* , and a family (cons_a)_{a \in A} of functions $A^* \to A^*$, such that:

Inductive Property A^* is the closure of $\{[]\}$ under $(cons_a)_{a \in A}$.

- **Injective Property** (a) each cons_a is injective.
 - (b) [] is not in the range of any cons_a.
 - (c) when $a \neq b$, the ranges of cons_a and cons_b do not overlap.

Notation: we write a: s instead of cons_a s (for $a \in A, s \in A^*$).

Notation: we write [a] for a : [], [a, b] for a : (b : []), [a, b, c] for a : (b : (c : [])), etc.

Notation: when A is a set of characters in some alphabet, we write ***.

Recursive definitions for lists

Intuively, the Injective Property for lists means that every element of A* can be constructed in at most one way by starting with [] and applying the functions $cons_a$ (for $a \in A$).

This gives us the following (which we'll prove later):

Recursion Theorem for Lists

Suppose B is a set; $z \in B$; and for every $a \in A$, $s_a : B \to B$. Then there is a unique function $f : A^* \to B$ such that f[] = z and for all $t \in A^*$, $f(cons_a t) = s_a(ft)$.

Compare this with the following, stated last week:

Recursion Theorem for Numbers

Suppose B is a set; $z \in B$; and $s : B \to B$. Then there is a *unique* function $f : \mathbb{N} \to B$ such that f = z and for all $f \in \mathbb{N}$, f(suc f) = s(ff).

The Recursion Theorem for Lists at work

For example, the following counts as a definition:

Definition

For any A, let length be the function $A^* \to \mathbb{N}$ such that length[] = 0 and length(cons_a s) = suc(length s) for all $a \in A$, $s \in A^*$.

The Recursion Theorem for Lists assures us that there is a unique function $A^* \to \mathbb{N}$ meeting these conditions.

The Recursion Theorem for Lists at work

Definition

For any A, let elements be the function $A^* \to \mathcal{P}A$ such that elements $[] = \emptyset$ and elements $(\cos_a s) = \text{elements } s \cup \{a\} \text{ for all } a \in A, s \in A^*.$

Definition

For any A and any $t \in A^*$ let $concat_t$ be the function $A^* \to A^*$ such that $concat_t[] = t$ and $concat_t(cons_a s) = cons_a(concat_t s)$ for all $a \in A, s \in A^*$.

Notation: we write ' $s \oplus t$ ' for 'concat_t s', so the two clauses can be written as:

$$[] \oplus t = t$$
$$(a:s) \oplus t = a:(s \oplus t)$$

Proofs by induction about lists

Thanks to the Inductive Property in the Axiom of Lists, we can prove that every element of A^* has a certain property ϕ by proving:

- ▶ Base Case: [] has ϕ .
- ▶ Induction Step: for all $s \in A^*$, if s has ϕ , then for all $a \in A$, a : s has ϕ .

Example

For all $s, t \in A^*$, length $(s \oplus t) = \text{length } t + \text{length } s$.

Proof: By induction on s. Base case:

$$\operatorname{length}([] \oplus t) = \operatorname{length} t$$

$$= \operatorname{length} t + 0$$

$$= \operatorname{length} t + \operatorname{length}[]$$

$$\operatorname{Induction step: suppose } \operatorname{length}(s \oplus t) = \operatorname{length} t + \operatorname{length} s. \text{ Then}$$

$$\operatorname{length}((a:s) \oplus t) = \operatorname{length}(a:(s \oplus t))$$

$$= \operatorname{suc}(\operatorname{length}(s \oplus t))$$

$$= \operatorname{suc}(\operatorname{length} t + \operatorname{length} s)$$

$$= \operatorname{length} t + \operatorname{suc}(\operatorname{length} s)$$

$$= \operatorname{length} t + \operatorname{length}(a:s)$$

The Recursion Theorem

The Recursion Theorem

The Recursion Theorem

Suppose that C is the closure of $B \subseteq A$ under a family $(R_i)_{i \in I}$ of relations on A and a family $(S_k)_{k \in K}$ of relations from $A \times A$ to A, such that

- (i) Each R_i and S_k is injective.
- (ii) The ranges of the R_i and S_i are all disjoint from one another and from B.

Suppose we have $z: B \to D$; $s_i: D \to D$ for each $i \in I$, and $t_k: D^2 \to D$ for each $k \in K$. Then there is a unique function $f: C \to D$ such that

- a. fx = zx for all $x \in B$.
- b. Whenever $R_i x y$, $f y = s_i(f x)$.
- c. Whenever $S_k\langle x,y\rangle z$, $fz=t_k\langle fx,fy\rangle$.

Proof: For each R_i , let R_i^+ be the relation on $C \times D$ such that $R_i^+\langle x, u \rangle \langle y, v \rangle$ iff $R_i x y$ and $v = s_i u$, and for each S_k , let S_k^+ be the relation from $(C \times D)^2$ to $C \times D$ such that $S_k^+\langle \langle x, u \rangle, \langle y, v \rangle \rangle \langle z, w \rangle$ iff $S_k\langle x, y \rangle z$ and $w = t_k\langle u, v \rangle$.

Let F be the closure of z under (R_i^+) and (S_k^+) . We will prove that F is a function from C to D. This suffices to prove the theorem, since clearly we have:

- a. Fx(zx) for all $x \in B$ (since $z \subseteq F$).
- b. Whenever $R_i \times y$ and $F \times u$, $F y(s_i u)$ (since in that case $R_i^+ \langle x, u \rangle \langle y, s_i u \rangle$, and F is closed under R_i^+).
- c. Whenever $S_k\langle x,y\rangle z$, Fxu, and Fyv, $Fz(t_k\langle u,v\rangle)$ (since in that case $S_k^+\langle \langle x,u\rangle, \langle y,v\rangle\rangle \langle z,t_k\langle u,v\rangle\rangle$, and F is closed under S_k^+).

Moreover $F \subseteq F'$ for any other relation F' meeting these three conditions, and so F = F' for any other function F' meeting these three conditions (since no function is a subset of any other function with the same domain).

(i) F is serial, i.e. for all $x \in C$ there exists $u \in D$ such that Fxu. By induction.

Base case: if $x \in B$ then Fx(zx): case (a) from the previous slide.

Induction step for R_i : if Fxu and R_ixy , then $Fy(s_iu)$: case (b) from the previous slide.

Induction step for S_k : suppose Fxu, Fyv, and $S_k\langle x,y\rangle z$. Then $Fz(t_k\langle u,v\rangle)$: case (c) from the previous slide

(ii) F is functional, i.e. for any $x \in C$, if Fxu and Fxv then u = v. By induction.

Base case: suppose $x \in B$. Then since x isn't in the range of any R_i or S_k , no ordered pair $\langle x, u \rangle$ is in the range of any R_i^+ or S_k^+ . So if $\langle x, u \rangle$ and $\langle x, v \rangle$ are in F, they are both in z, and hence u = v since z is functional.

Induction step for R_i : suppose that x is F-related to a unique u, $R_i x y$, and F y v. We will show that $v = s_i u$. Since y isn't in B, isn't in the range of any R_j for $j \neq i$, and isn't in the range of any S_k , $\langle y, v \rangle$ isn't in z, isn't in the range of any $R^+ j$ for $j \neq i$, and isn't in the range of any S_k^+ . So it must be in the range of R_i^+ : i.e. $R_i^+ \langle x', u' \rangle \langle y, v \rangle$ for some $x' \in C$, $u' \in D$. But then $R_i x' y$, hence x' = x (since R_i is injective), hence u' = u (by the induction hypothesis), hence $v = s_i u$ (by the definition of R_i^+).

Induction step for S_k : suppose that x is F-related to a unique u, y is F-related to a unique v, $S_k\langle x,y\rangle z$, and Fzw. We will show that $v=t_k\langle u,v\rangle$. Since z isn't in B, isn't in the range of any R_i , and isn't in the range of S_j for $j\neq k$, $\langle z,w\rangle$ isn't in z, isn't in the range of any R^+j for $j\neq i$, and isn't in the range of any S_k^+ . So it must be in the range of S_k^+ : i.e. $S_i^+\langle \langle x',u'\rangle, \langle y',v'\rangle\rangle\langle z,w\rangle$ for some $x',y'\in C$, $u',v'\in D$. But then $S_k\langle x',y'\rangle z$, hence x'=x and y'=y since S_k is injective, hence u'=u and v'=v by the induction hypothesis, hence $w=t_k\langle u,v\rangle$ by the definition of S_k^+ .