Bayesian multimodeling: graphical models

MIPT

2022

Graphical models

Conditional independence

Events X, Y are conditionally independent w.r.t. $Z: X \perp Y|Z$, if

$$P(X|Y,Z) = P(X|Z).$$

Conditional dependence

Events X, Y are conditionally dependent w.r.t. $\mathfrak{S}: X, Y \in \mathfrak{S}$, if

$$X \not\perp Y | \mathfrak{S} \setminus \{X, Y\}.$$

Graphical models

A probabiliy model is graphical, if it can be represented as a graph, where the edges correspond to conditionally dependent events.

Non-graphical models

- MLP, decision trees, etc.
- Undirected models with complex behaviour.

Types of graphical models

- Directed models (aka Bayesian networks)
 - ► Easy to desing
- Undirected (Markov models)
- Factor-graphs
 - ► Easy to infer and optimize

Plate notation

Plate notation is an alternative visuzliation for graphical models.

Elements:

- White circles (random variables);
- Grey circels(observed variables);
- Small circles (deterministic values);
- Plates (batching).

Plate notation for linear regression (Bishop)

Bayesian networks

- Models are set using directed acyclic graphs
- Joint distribution for the graph with K vertices:

$$p(v_1,\ldots,v_k) = \prod_{i=1}^K p(v_i|\mathsf{parent}(v_i))$$

Example: linear regresssion

DAG and Plate notation (Bishop)

Plate notation for regression model (Bishop)

Causality graph elements

$$X \rightarrow Y \rightarrow Z$$
 — chain

Example:

- X school budget
- Y average student score
- ullet Z unviersity acceptance ratio

Properties:

- \blacksquare X and Y, Y and Z are dependent:
 - $\exists x, y : P(Y = y | X = x) \neq p(Y = y)$
 - $\exists y, z : P(Z = z | Y = y) \neq p(Z = z)$
- 2 Z and X: are (probably) dependent
- 3 $Z \perp X | Y$: are conditionally independent: $\forall x, y, z$

$$P(Z = z | X = x, Y = y) = P(Z = z | Y = y)$$

(if Y is fixed, then X and Z are independent)

Causality graph elements

$$X \leftarrow Y \rightarrow Z - \text{fork}$$

Example:

- X ice cream sells
- Y average temperature
- \circ Z crime ratio

Properties:

- lacksquare X and Y, Y and Z are dependent
- \bigcirc X and Z are (probably) dependent
- \bigcirc $X \perp Z | Y$ are conditionally independent

Causality graph elements

$$Y \rightarrow X \leftarrow Z$$
 — collider

Example (illnes):

- X bad symptoms
- Y age
- Z chronical diseases

Properties:

- $oxed{1}$ Y and X, Z and X are dependent
- 2 Y and Z are independent
- \bigcirc $Y \not\perp Z|X$ are conditionally dependent

The path P is blocked by Z, if:

- ① P contains $A \rightarrow B \rightarrow C$, $A \leftarrow B \rightarrow C$, $B \in Z$
- ② P contains $A \rightarrow B \leftarrow C$, $B \notin Z$ and all children of $B \notin Z$

If Z blocks all the paths from X to Y, then X and Y are d-separated:

$$X \perp Y|Z$$
.

The path P is blocked by Z, if:

- 1 P contains $A \rightarrow B \rightarrow C$, $A \leftarrow B \rightarrow C$, $B \in Z$
- 2 P contains $A \rightarrow B \leftarrow C$, $B \notin Z$ and all children of $B \notin Z$

If Z blocks all the paths from X to Y, then X and Y are d-separated.

Example:

Pair	d-separation set
(Z_1, W)	Χ

The path P is blocked by Z, if:

 $\boxed{1} \ \ P \ \ \mathsf{contains} \ A \to B \to C, \ A \leftarrow B \to C, \ B \in Z$

2 P contains $A \rightarrow B \leftarrow C$, $B \notin Z$ and all children of $B \notin Z$

If Z blocks all the paths from X to Y, then X and Y are d-separated.

Example:

Pair	d-separation set
(Z_1,W)	X
(Z_1, Y)	${Z_3, X, Z_2}, {Z_3, W, Z_2}$

The path P is blocked by Z, if:

- 1 P contains $A \rightarrow B \rightarrow C$, $A \leftarrow B \rightarrow C$, $B \in Z$
- 2 P contains $A \rightarrow B \leftarrow C$, $B \notin Z$ and all children of $B \notin Z$

If Z blocks all the paths from X to Y, then X and Y are d-separated.

Pair	d-separation set
(Z_1, W)	X
(Z_1, Y)	${Z_3, X, Z_2}, {Z_3, W, Z_2}$
(X,Y)	$\{W,Z_3,Z_1\}$

Markov random fields

Models are represented as undirected graphs.

Difference from Bayesian networks:

- No direction → cannot infer causality.
- The likelihood is factorized as follows:

$$p(\mathsf{x}) = \frac{1}{Z} \prod_{C} \psi(\mathsf{X}_{C}),$$

where X_C is a maximal clicque, $\psi \geq 0$ is a potential function.

• Conditional indepdence: if all the paths from A to B go throught C, then $A \perp B | C$.

(Bishop)

Inference in chains

Naive likelihood calculation for x_n :

$$p(x_n) = \sum_{x_1} \sum_{x_2} \dots, \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} p(x),$$

For N discrete variables with K values the complexity is $O(K^N)$

Inference in chains: regroupping

$$p(x_n) = \sum_{x_1} \sum_{x_2} \dots, \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} p(x),$$

$$p(x) = \psi(x_1, x_2)\psi(x_2, x_3)\dots\psi(x_{N-1}, x_N).$$

Regroup the sum:

$$\rho(x_n) = \sum_{x_{n-1}} \psi(x_{n-1}, x_n) \dots \left(\sum_{x_1} \psi(x_1, x_2) \right) \times \left(\sum_{x_2} \psi(x_n, x_{n+1}) \dots \left(\sum_{x_N} \psi(x_{N-1}, x_N) \right) \right).$$

Now complexity is $O(NK^2)$.

Message passing

$$p(x_n) = \underbrace{\sum_{x_{n-1}} \psi(x_{n-1}, x_n) \dots \left(\sum_{x_1} \psi(x_1, x_2)\right)}_{\mu_a(x_n)} \times \underbrace{\left(\sum_{x_{n+1}} \psi(x_n, x_{n+1}) \dots \left(\sum_{x_N} \psi(x_{N-1}, x_N)\right)\right)}_{\mu_b(x_n)}.$$

Interpretation: $\mu_a(x_n)$ is a message transferred from x_{n-1} to x_n , $\mu_b(x_n)$ is a backward message from x_{n+1} .

Inference in chains: details

The inference is iterative:

- calculate $\sum_{x_1} \psi(x_1, x_2) = \mu_a(x_2)$, that stores $\mu_a(x_2)$ for each value of x_2 ;
- calculate $\sum_{x_2} \psi(x_2, x_3) (\sum_{x_1} \psi(x_1, x_2)) = \sum_{x_2} \psi(x_2, x_3) \mu_a(x_2) = \mu_a(x_3);$
- .
- calculate $\sum_{\mathsf{X}_{n+1}} \psi(\mathsf{X}_n,\mathsf{X}_{n+1}) \mu_b(\mathsf{X}_{n+1}) = \mu_b(\mathsf{X}_n)$.
- for directed variables, where

$$\psi(x_1,x_2) = p(x_1)p(x_2|x_1), \quad \psi(x_i,x_{i+1}) = p(x_{i+1}|x_i),$$

 μ_b should not be calculated:

$$\mu_b(x_n) = \sum_{x_{n+1}} \psi(x_n, x_{n+1}) \dots \left(\sum_{x_N} \psi(x_{N-1}, x_N) \right) =$$

$$= \sum_{x_{n+1}} p(x_{n+1}|x_n) \dots \left(\sum_{x_N} p(x_N|x_{N-1}) \right) = 1.$$

Factor graph

Definition

Factor-graph is a bipartite graph with two types of vertives: variables and factors.

The likelihood is a production of factors:

$$p(x) = \prod_{i} f_i$$

Example: model $p(x_1)p(x_2)p(x_3|x_2,x_1)$ has two variants of factorization:

$$f = p(x_1)p(x_2)p(x_3|x_2,x_1), \quad f_a = p(x_1), f_b = p(x_2), f_3 = p(x_1)p(x_2)p(x_3|x_2,x_1).$$

14 / 19

Inference in factor-graphs: example

Sum-product: likelihood is a composition of messages from factors to variables.

Model examples: RBM

$$p(x,h) = \frac{1}{Z} exp(-E(x,h)),$$

$$E = -w_1^T x - w_2^T h - x^T W_3 h.$$

Model examples: Structured VAEs

В основе модели SLDS:

$$z_{t+1}|z_t \sim \pi^{t+1},$$
 $\mathsf{y}_t \sim \mathcal{N}(\mathsf{MLP}^{z_t}(\mathsf{x}_t)).$

Optimization: optimize ELBO.

Inference: message-passing.

References

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- Edwards D. Introduction to graphical modelling. Springer Science & Business Media, 2012.
- Pearl J., Glymour M., Jewell N. P. Causal inference in statistics: A primer. John Wiley & Sons, 2016.
- Hinton G. E., Salakhutdinov R. R. Reducing the dimensionality of data with neural networks //science. – 2006. – T. 313. – №. 5786. – C. 504-507.
- https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
- Johnson M. J. et al. Structured VAEs: Composing probabilistic graphical models and variational autoencoders //arXiv preprint arXiv:1603.06277. – 2016. – T. 2. – C. 2016.
- Johnson M. J. et al. Composing graphical models with neural networks for structured representations and fast inference //Advances in neural information processing systems. – 2016. – T. 29. – C. 2946-2954.

Lab discussion

- Short report (2 minutes) about your lab and results
- What to say:
 - ► What problem was considered
 - ► How it was solved (if any technical details are interesting)
 - ► Results, plots and their interpretation
- Lab evaluation:
 - ► Internal check (2 students for each lab)