```
In [1]:
        import pandas as pd
```

In [2]: import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline

In [3]: USAhousing = pd.read_csv('USA_Housing.csv')

Λνα

In [4]: USAhousing.head()

Out[4]:

Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry Apt. 674\nLaurabury, NE 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Views Suite 079\nLake Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabeth Stravenue\nDanieltown, WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO AP 44820	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nFPO AE 09386	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
_ _							4

In [5]: USAhousing.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 7 columns): Avg. Area Income

5000 non-null float64 Avg. Area House Age 5000 non-null float64 Avg. Area Number of Rooms 5000 non-null float64 Avg. Area Number of Bedrooms 5000 non-null float64 Area Population 5000 non-null float64 5000 non-null float64 Price Address 5000 non-null object

dtypes: float64(6), object(1) memory usage: 273.5+ KB

In [6]: USAhousing.describe()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [8]: USAhousing.columns

Out[8]: Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'], dtype='object')

In [9]: sns.pairplot(USAhousing)

Out[9]: <seaborn.axisgrid.PairGrid at 0x85d1a58>

In [10]: | sns.heatmap(USAhousing.corr())

Out[10]: <matplotlib.axes. subplots.AxesSubplot at 0xc3bab38>

In [11]: | sns.distplot(USAhousing['Price'])

C:\Users\q21\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWar ning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x526d358>


```
In [12]: X = USAhousing[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of R
                          Avg. Area Number of Bedrooms', 'Area Population']]
         y = USAhousing['Price']
In [13]:
         from sklearn.model selection import train test split
In [14]:
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_s
In [15]:
         from sklearn.linear_model import LinearRegression
In [16]:
         lm = LinearRegression()
In [17]:
         lm.fit(X_train,y_train)
Out[17]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [18]:
         # print the intercept
          print(lm.intercept_)
          -2640159.796852679
In [19]: coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
          coeff_df
Out[19]:
                                        Coefficient
                     Avg. Area Income
                                        21.528276
                   Avg. Area House Age
                                     164883.282027
             Avg. Area Number of Rooms
                                     122368.678027
          Avg. Area Number of Bedrooms
                                       2233.801864
                       Area Population
                                        15.150420
In [20]:
         predictions = lm.predict(X test)
```

```
In [21]: plt.scatter(y_test,predictions)
```

Out[21]: <matplotlib.collections.PathCollection at 0xcada9b0>


```
In [22]: sns.distplot((y_test-predictions),bins=50);
```

C:\Users\q21\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWar ning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "


```
In [23]:
         from sklearn import metrics
```

```
In [24]:
         print('MAE:', metrics.mean_absolute_error(y_test, predictions))
         print('MSE:', metrics.mean_squared_error(y_test, predictions))
         print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 82288.22251914951 MSE: 10460958907.208992 RMSE: 102278.82922290904

Regression Evaluation Metrics

Here are three common evaluation metrics for regression problems:

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Comparing these metrics:

- MAE is the easiest to understand, because it's the average error.
- MSE is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world.
- RMSE is even more popular than MSE, because RMSE is interpretable in the "y" units.

All of these are **loss functions**, because we want to minimize them.

In []: