Universidad Tecnológica Metropolitana

Departamento de Informática y Computación Computación Paralela y Distribuida Profesor: Sebastián Salazar Molina

Proyecto REST

Integrantes grupo-b:	Fecha de entrega:
Allan Morales PradoGermán Ramírez ObaidOscar Muñoz Retamal	Miércoles 13 de julio de 2022

Contenidos

Introducción	3
Resolución de la problemática	4
Modelo de datos	4
Tecnologías usadas	6
Conclusión	7
Referencias	8

Introducción

Este proyecto consiste en la creación de un prototipo para el control de asistencia de los estudiantes en las dependencias de su institución de educación superior, a través de mensajería JSON¹, cumpliendo los siguientes objetivos:

- Comprender el funcionamiento del protocolo de comunicación HTTP y HTTPS (con sus verbos y estados).
- Comprender el funcionamiento de aplicaciones stateless, mecanismos asíncronos y funcionamiento REST.

3

¹ JavaScript Object Notation

Resolución de la problemática

Modelo de datos

Para almacenar la información histórica, se ha incorporado una base de datos configurada con el sistema de gestión de bases de datos PostgreSQL para su conexión, creación y llenado.

La lógica de su diseño tiene como base algunos de los esquemas presentes en la documentación de la API *classroom* y su contexto se describe en el siguiente enunciado:

"Un <u>alumno</u> **asiste** a una <u>sala</u> para una **clase** de cierta <u>asignatura</u> en la que está **inscrito** y que es **impartida** por cierto <u>docente</u>."

Los sustantivos del enunciado anterior corresponden a las entidades del modelo (salvo *alumno* y *docente*, que son instancias como se explica en los puntos a continuación), mientras que las palabras ennegrecidas corresponden a las relaciones presentes en la Figura 1.

La tabla [users] contiene los datos de identificación del individuo que consume el servicio, como su nombre completo, contraseña y correo electrónico. Además cada usuario tiene un perfil (tabla [profile]) asociado que lo describe como 'docente' o 'alumno' (tabla [description]), con la premisa de que estos roles desempeñan sus funciones en una sala de clases.

- A partir de los datos que devuelve la API classroom ante una petición GET de asistencias (endpoint /v1/classroom/attendances) se construyeron las tablas [subject] y [classroom] de modo que:
 - Hay cero o más instancias de perfiles (alumnos o docentes) registrados en una asignatura, la cual a su vez tiene uno o más cupos de inscripción disponibles.
 - Cero o más instancias de perfiles (alumnos o docentes) asisten a una o varias salas de clase, la cual a su vez tiene capacidad para una o más instancias de perfil.
 - Una sala de clase se utiliza para impartir clases de una o varias asignaturas,
 a su vez, cada asignatura se imparte en una o más salas de clases.

Figura 1

Modelo Físico-Relacional para el servicio de control de asistencia en las salas de clases.

Fuente: Elaboración propia.

Tecnologías usadas

Conclusión

Referencias