IE 469 Manufacturing Systems

Chapter 11 Tutorial (Askin's Book)

Ouestion 1

A production line is used to produce a product. Number of products at the start of the line is 200 units per week

. The line consists of four stations. It is arranged such that an inspection station (I) is placed after three process stations (S1, S2, S3). The processing time of stations (S1, S2, S3, I) are (8)(10)(13)(8) minute respectively. Inspection station (I) has defect rate of 10%. 2% of the defects are scraped and the reminders 8% are returned to station (S2). Find

- (a) Determine the effective arrival rate at each station.
- (b) Determine the number of machines at each station.
- (c) Find the average work in process. WIP,

1		51	52	53	I	
V	7= 1-P white	5	5 6.08 2 5.43	5.43	5.43	MMC
M/M/1	M=TP wik	1×60 = 7.5	6	4.6154	7.5	c = 2
La wir w	M(c)=in+(3)+1	int(=5)+1=1	1	1+1=2	_	Po= +29+2+2-P)
	Sizin	0-6667	0.9058	0.5888	0.7246	0 (2) 9
L=1-9	۴.	0.3313	0.0942	0.2588	0.2754	La P. (3) P
w= 1/2	La	1.8333	8.7059	0.6292	1.9065	L= Lat]
W = 2	Li	2	9,617	1,217	2-6311	, -
♂) (W1P= \$ Lj =	15.4598				W= Z
·	v; = 2	١	1.0869	1.0869	1.0869	
	Wi	0.4	1.7686	0.2240	0-4841	
<i>&</i>)(Throughput -	cime = Z vj l	Nj = 3.092			

Question 4

A production line is used to produce 40 units per week of a product. The product is assembled from two pieces of part (a) and one piece of part (b). The part (a) is produced through stations (A); station (B) while the part (b) is produced at station (c). After that, the two parts are assembled on station (D). The processing time of stations (A, B, C.D) are (40, 20,40, 15) minutes respectively. The product is tested on Inspection station (I) with processing time of 10 minutes and has defect rate of 10%. 5% of the defects are scraped and the reminders 5% are returned to station (D).

A) Find

- (a) Determine the effective arrival rate at each station.
- (b) Determine the number of machines at each station.

(c) Find the average work in process.

(d) Find the throughput time.

Hus = 40 hr Week

		A	В	C	D	Ī
a)	У,	2	2	\	40 = 1.05	3 1.053
	M (unit)	1.5	S)	٧.5	4	6
√ b)	M(c)	2	\	١	1	\
	Z	0.6657	0.6667	0.6667	0.2633	0.1755
	۲,	0.2264	0.3333	0.3333	0.7367	0.8245
	Lay	1.2078	1.3333	1.3333	0-09406	0.03736
	L	2-5463	2.0003	2-0003	0.3574	0.21286
~ c) (\(\frac{1}{2} \) =	: 7,1112				
	~j	١	Ţ	1	1.053	1.053
	V	1-2702	1.0015	2.0003	0-3394	0.2021
d) (∑vjwj =	4.842	22			

<u>Question 6</u>
Three parts are processed using three machining centers (C1, C2, and C3) as indicated in Table (1).

Determine:

(a) The effective arrival rate at each center.

(b) The average processing time at each center.

(c) The average number of parts in process.

(d) The throughput time for each part.

TABLE (1)									
Produc	Demand /	Routing Data							
Froduc	Week	[Centers	[Centers, Process Time in hr]						
ι	WEEK	1	2	3					
P1	9	C1(2)	C2, 1	C3, 1					
P2	10	C2, 1.2	C3, 1.5	-					
P3	8	C2,(1.2)	C1, 1.5	C3, 1.2					

or)	effectiv	ne arriv	ral rati	e 7' (writs)
		0	J	シ 、	
		Product	CL	C2	C3
		PI	9	9	9
		P2	0	(0)	10

27 27

b) ang. processing time

Product	Proc	essing bin	re hr	
Troduct	CI	C2	<u> </u>	
PI	2	Λ.	\	
P 2	0	1.2	1.5	
P3	1.5	1.2	1.2	

TP Period time

	•			
Product	A√g.	Process .	time, wk	
(4800	CI	C2	C3	
Pr	(97)(40)	0.0083	0.0083	
02	0	0.0111	0.0139	
P3	0.01765	0.0089	0.0089	
ZMi!	0.0442	0.8283	0.0311	1. 31. 3
M=1-1	22.62	35.33	32.15	(week)
- 1	0.0442	0.8283	0.0311	(units week)

Station M(c) CI CZ 3.2391 5.2383 C3 int (2) +1 c) avg. * parts = \(\frac{c_3}{j_{201}} \Lightarrow j_1.49 \)

Question 9

Five parts are processed using four machining centers (C1, C2, C3, C4) and consiste of 3,1,3,3 machines respectively. The data is indicated in Table (1).

(a) Determine the effective arrival rate at each center.

- (b) Determine the average processing time at each center.
- (c) Determine number of machines in each center
- (d) Find the average number of jobs in process.
- (e) Find the throughput time for each parts.

Product	Demand/ Week	Routing Data [Centers, Process Time in hr]				
	WEEK	1	2	3	4	
1	15	C3, 1	C2, 2	C1, 1	C4, 2	
2	10	C4, 3	C1, 3	C2, 2	C3, 1	
3	6	C4, 4	C3, 2	C1, 2	-	
4	10	C3, 2	C4, 3	C2, 2	C1, 1	
5	8	C3, 3	C2, 1	C1, 2	-	

a)

	Effective arrival rate								
	7,01	1, C1 2, C2 2, C2 2, C4							
ы	15	15	15	15					
P2	10	10	10	10					
P3	G	0	G	ی					
P4	10	10	10	10					
b<	4	8	8	O					
えか	49	43	249	41					

No z (Di) x Tp period = 40 hr/wale

6

	processing time, hr									
	cl	c1 c2 c3 c4								
151	\	2	\	2						
P2	3	2	1	3						
P3	2	0	2	4						
74	\	2	2	3						
195	2	1	3	0						

WO.	avg.	processing	g time,	Week
~	m, c1	nt/cz	M1 C3	M ⁻¹ , C4
PI	0.0077	0.0174	· ·	-
P2	١	*		
P3	\	1		
P4				
P5				
5~j-1	0.0423	0.0453	0.0413	0.0695
19==-1	23.61	22.05	24.19	14.38

			cì,) * mach in ead	nives n Center	1-9			V	
		7	w	M(c)	8	Po	1	Lg	W	Wg
	Cl	49	23.6145	3	0.6917	0-0994	3.1522	1-0772	0.0643	6.0220
→	CZ	43	22-0513	1	7	- V-C	NO	SOL	VTION	
	C3	49	24.1975	3	0.6750	0.1071	2.9726	0.9476	0.0607	0.0193
	CH	41	14.386	3	0.9500	0.0118	20-0822	17-2322	0-4898	0.4203
	when	m(c) = 2	. for Cer	ver 2:						
	C2	43	22.0513	2	0.9750			37-5424	0.9184	0.8731
d)	d) arg. number of jobs in process: $\sum_{j=1}^{4} L_{j} = 65.69924$									

6

$$W_1 = W_{qc_1} + \frac{T_{pic_1}}{period} + W_{qc_2} + \frac{T_{pic_2}}{period} + W_{qc_3} + \frac{T_{pic_4}}{period} + \frac{T_{pic_4}}{period}$$

$$= 1.4846 \text{ weeks}$$

$$W_2 = 1.5346 \text{ weeks}$$

$$W_3 = 1.5346 \text{ weeks}$$

$$W_4 = 1.5346 \text{ weeks}$$

$$W_5 = 1.4846 \text{ weeks}$$

Question 12

A five department manufacturing system is used to produce five parts according the data given in table (2). **Find**

- (a) Determine the effective arrival rate at each department.
- (b) Determine the number of machines at each station.
- (c) Find the average work in process.
- (d) Find the throughput time.

TABLE (2)

	Weekly	ldv	Operation Time, hr						
I Dort I	Demand	Process Sequence	Load	Load Process Station Unl					
			A	В	С	D	Е	A	
1	6	$A \rightarrow C \rightarrow B \rightarrow D \rightarrow A$	0.2	2	1.5	2.1	0	0.2	
2	7	$A \rightarrow B \rightarrow D \rightarrow E \rightarrow A$	0.2	2.8	0	2.2	1.5	0.2	
3	3	$A \rightarrow C \rightarrow D \rightarrow A$	0.2	0	1.5	1.8	0	0.2	
4	5	$A \rightarrow E \rightarrow B \rightarrow A$	0.2	1.5	0	0	2.2	0.2	
5	4	$A \rightarrow B \rightarrow E \rightarrow C \rightarrow A$	0.2	2.5	2	0	1.8	0.2	

