Basic Routines in LibUtilities

Outline

- Set up the problem (weak solution of the Helmholtz Problem)
- Polynomial Basis
- Interpolation
- Differentiation
- Integration
- Projection

Tutorial Driving Application: Helmholtz Problem

$$-\nabla^2 u + \lambda u = f \qquad x \in \Omega$$
$$u = g(x) \quad x \in \partial \Omega_D$$

Find $u \in \mathcal{V}$ such that u satisfies the boundary conditions and such that for all $v \in \mathcal{V}_0$,

$$(\nabla u, \nabla v) + (u, v) = (f, v)$$

What do we need?

Polynomials

Numerical Differentiation

Quadrature

Polynomial Basis: Choosing a representation

Polynomials provide a powerful means of representing continuous functions

BasisType eMonomial

$$u(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

BasisType eGLL_Lagrange

$$u(x) = u(x_0)h_0(x) + u(x_1)h_1(x) + \dots$$

$$u(x) = \hat{u}_0 L_0(x) + \hat{u}_1 L_1(x) + \dots$$

Interpolation

Given a collection of points x_0, \ldots, x_N and function values f_0, \ldots, f_N at those point, find an approximation u(x) such that $u(x_j) = f(x_j)$ for all j

Lagrange Basis:

$$u(x) = \sum_{i=0}^{N} f(x_i)h_i(x)$$

where

$$h_i(x_j) = \delta_{ij}$$

Interpolation

Given
$$z_0, z_1, ..., z_M$$
 and $\sum_{i=1}^{N} u(x_i)h_i(x)$
 $u(z_k) = \sum_{i=0}^{N} u(x_i)h_i(z_k)$

Values at new points

Interpolation Matrix

Values at points

$$\begin{pmatrix} u(z_0) \\ \vdots \\ u(z_M) \end{pmatrix} = \begin{pmatrix} h_0(z_0) & \dots & h_N(z_0) \\ \vdots & \vdots & \vdots \\ h_0(z_M) & \dots & h_N(z_M) \end{pmatrix} \begin{pmatrix} u(x_0) \\ \vdots \\ u(x_N) \end{pmatrix}$$

LibUtilities::Points.Getl()

Differentiation

Monomial Basis
$$\frac{d}{dx}u(x) = a_1 + 2a_2x + \dots$$

Lagrange Basis
$$\frac{d}{dx}u(x) = u(x_0)h_0'(x) + u(x_1)h_1'(x) + \dots$$

Legendre Basis
$$\frac{d}{dx}u(x) = \hat{u}_0L_0'(x) + \hat{u}_1L_1'(x) + \dots$$

Differentiation

Given
$$z_0, z_1, ..., z_M$$
 and $\sum_{i=1}^N u(x_i)h_i(x)$
 $u'(z_k) = \sum_{i=0}^N u(x_i)h'_i(z_k)$

Derivatives at new points

Derivative Matrix

Values at points

$$\begin{pmatrix} u'(z_0) \\ \vdots \\ u'(z_M) \end{pmatrix} = \begin{pmatrix} h'_0(z_0) & \dots & h'_N(z_0) \\ \vdots \\ h'_0(z_M) & \dots & h'_N(z_M) \end{pmatrix} \begin{pmatrix} u(x_0) \\ \vdots \\ u(x_N) \end{pmatrix}$$

LibUtilities::Points.GetD()

Integration

$$\int_{-1}^{1} u(\xi) d\xi \approx \sum_{i=0}^{Q-1} w_i u(\xi_i)$$

integrating polynomials

- polynomial of order P: P+1 parameters
- Gaussian quadrature:
 - $Q \ge P/2 + 0.5$ (Gauss-Legendre)
 - Q ≥ P/2 + I.0 (Gauss-Radau-Legendre)
 - Q ≥ P/2 + 1.5 (Gauss-Lobatto-Legendre)

2D:
$$\int_{-1}^{1} \int_{-1}^{1} u(\xi_1, \xi_2) d\xi_1 d\xi_2 \approx \sum_{i=0}^{Q_1 - 1} w_i \left\{ \sum_{j=0}^{Q_2 - 1} w_j u(\xi_{1_i}, \xi_{2_j}) \right\}$$

Integration

a remarkable property

- fix Q
- exact integration for every polynomial up to order (2Q-I)

Projection

Given a function f(x) on [-1,1] find coefficients \hat{u}_j such that

$$(\phi_k, R(u)) = 0$$

for all
$$\phi_k$$
, $k = 0, \ldots, N$

where
$$R(u) = u(x) - f(x)$$

with
$$u(x) = \sum_{j=0}^{N} \hat{u}_j \phi_j(x)$$

Projection

For each
$$k$$
, $(\phi_k, R(u)) = 0$ $\Rightarrow (\phi_k, u(x) - f(x)) = 0$ Quadrature Approximation of Inner Products $\Rightarrow (\phi_k, \sum_{j=0}^N \hat{u}_j \phi_j - f(x)) = 0$ $\Rightarrow (\phi_k, \sum_{j=0}^N \hat{u}_j \phi_j) = (\phi_k, f(x)) \longleftrightarrow (\phi_k, f) \approx \sum_{i=0}^{Q-1} w_i \phi_k(\xi_i) f(\xi_i)$ $\Rightarrow \sum_{j=0}^N (\phi_k, \phi_j) \hat{u}_j = (\phi_k, f)$

Quadrature Approximation of Inner Products

$$(\phi_k, f) \approx \sum_{i=0}^{Q-1} w_i \phi_k(\xi_i) f(\xi_i)$$

$$\begin{pmatrix}
(\phi_0, \phi_0) & \dots & (\phi_0, \phi_N) \\
\vdots & \vdots & \vdots \\
(\phi_N, \phi_0) & \dots & (\phi_N, \phi_N)
\end{pmatrix}
\begin{pmatrix}
\hat{u}_0 \\
\vdots \\
\hat{u}_N
\end{pmatrix} = \begin{pmatrix}
(\phi_0, f) \\
\vdots \\
(\phi_N, f)
\end{pmatrix}$$

Nektar++ code

