Статистическая обработка результатов многократных измерений

Балдин Виктор

2 октября 2023 г.

1 Аннотация

Цель работы: применение методов обработки экспериментальных данных при измерении сопротивлений.

В работе используются: набор резисторов (270 штук); универсальный цифровой вольтметр GDM-8145, работающий в режиме «Измерение сопротивление постоянному току».

2 Теоретические сведения

Производство резисторов на заводе – сложный технологический процесс. Поэтому измеренное сопротивление может отличаться от номинала. Погрешности могут быть как систематическими, так и случайными.

Для измерения сопротивления мы будем пользоваться прибором, погрешность которого мала $(\pm 0, 5 \text{ Om})$ по сравнению с отклонениями от номинала, полученными при производстве. Поэтому систематической погрешностью можно пренебречь.

В работе измеряем сопротивление 270 резисторов. По полученным данным вычисляем среднее значение:

$$\langle R \rangle = \frac{1}{N} \sum_{i=1}^{N} R_i. \tag{1}$$

Чтобы охарактеризовать случайные погрешности при изготовлении набора резисторов, необходимо построить гистограмму. Для этого разделим интервал значений сопротивления на m равных частей:

$$\Delta R = \frac{R_{\text{max}} - R_{\text{min}}}{m} \tag{2}$$

По оси у гистограммы отложим плотность вероятности

$$y = \frac{\Delta n}{N \Delta R},\tag{3}$$

где Δn — число измерений, попадающих в заданный интервал.

Среднеквадратичное отклонение можно найти как:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (R_i - \langle R \rangle)^2}$$
 (4)

Построим функцию распределения Гаусса:

$$y = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(R - \langle R \rangle)^2}{2\sigma^2}} \tag{5}$$

3 Методика измерений

Измерения будем проводить при помощи универсального мультиметра GDM-8145, погрешностью прибора при этом пренебрежем в силу ее малости по справнению со случайным разбросом.

4 Используемое оборудование

Набор резисторов (270 штук); мультиметр GDM-8145, работающий в режиме измерения сопротивления постоянному току.

5 Результаты измерений и обработка данных

Результаты измерения сопротивлений (в Омах) удобно представить в таблице:

Таблица 1: Результаты измерения сопротивления 270 резисторов (в Ом									
499.9	499.9	499.8	500.1	499.9	499.6	499.6	490.8	499.8	499.1
500.7	499.9	501.4	498.5	498.6	499.8	498.9	498.6	499.8	502.0
497.8	501.6	497.8	503.7	498.9	499.0	499.0	500.2	499.4	499.4
498.8	501.9	503.0	499.6	501.0	498.7	108.3	499.1	499.3	498.8
503.3	498.9	500.0	501.3	499.3	497.5	498.2	499.7	497.9	501.0
501.3	499.7	499.8	497.6	498.8	499.5	501.1	498.7	500.0	498.3
500.2	499.8	498.3	498.0	498.3	499.9	499.6	500.6	499.2	497.7
498.2	498.3	499.3	501.7	502.3	500.2	500.7	501.0	500.7	497.5
501.2	499.6	500.1	500.0	499.4	500.1	501.8	501.8	497.0	500.8
499.2	500.0	499.6	499.5	500.0	498.0	500.0	501.1	498.2	498.0
500.9	497.5	497.6	497.6	500.2	499.5	500.1	500.9	499.4	496.6
498.7	500.0	501.1	499.8	499.0	499.2	499.4	499.0	500.2	501.5
498.6	498.9	501.7	501.9	500.0	498.9	499.9	498.7	498.3	500.9
498.4	498.2	499.8	500.4	497.8	499.8	499.6	498.9	501.5	497.9
497.9	499.3	500.9	498.7	499.2	499.6	502.0	499.0	499.0	500.2
501.6	500.2	501.6	498.2	497.8	499.2	498.7	499.9	499.3	499.0
499.2	498.6	500.0	497.3	499.5	498.3	499.8	499.5	500.6	500.0
499.3	500.5	498.6	497.8	498.5	500.9	498.9	501.6	500.5	500.5
499.9	499.7	497.0	502.0	501.6	501.5	500.2	500.6	499.5	501.5
500.3	499.8	501.4	501.6	500.5	499.1	498.5	500.5	499.2	500.2
499.1	499.0	497.6	499.6	501.0	500.5	500.6	499.8	500.3	498.2
501.4	498.9	500.1	501.5	499.3	497.5	499.3	499.6	499.6	499.0
501.9	501.4	501.4	500.0	499.3	501.6	499.6	499.8	496.8	498.2
499.0	499.3	500.0	499.3	506.2	498.8	498.4	499.6	503.2	499.8
499.7	502.1	498.8	499.2	499.0	499.4	498.0	497.9	497.8	497.5
502.6	501.7	500.1	500.0	500.7	500.3	499.6	501.7	500.6	500.6
502.4	499.3	500.9	499.2	501.0	499.1	499.2	497.8	498.7	498.0
499.1	499.2	500.5	499.2	500.4	498.8	498.9	499.4	498.0	499.1

Построим гистограмму для m = 20:

Рис. 1: Гистограмма плотности вероятности для m=20

Вертикальные прямые на гистограммах показывают границы ключевых для распределения Гаусса (или нормального распределения) интервалов $\langle R \rangle \pm \sigma$, $\langle R \rangle \pm 2\sigma$ и $\langle R \rangle \pm 3\sigma$.

Теперь возьмем половину от количества измеренных значений и построим гистограмму для них:

Рис. 2: Гистограмма для меньшего числа значений

Возьмем значения по всей группе и построим гистограмму по ним:

Рис. 3: Общая гистограмма

Для наглядности анализа получившихся результатов представим доли значений из разных гистограмм, попавших в «ключевые» интервалы, таблицей:

Таблица 2: Доли значений, лежащих в интервалах, для разных гистограмм

Интервал	I	II
$\langle R \rangle \pm \sigma$	67%	65%
$\langle R \rangle \pm 2\sigma$	97%	97%
$\langle R \rangle \pm 3\sigma$	100%	99%

6 Обсуждение результатов

Как видно из гистограмм, плотность вероятности приблизительно удовлетворяет теоретической зависимости y(R). При этом увеличение числа измерений позволило добиться лучшего соответствия.

7 Выводы

Из результатов наших измерений видно, что погрешность в сопротивлении резисторов вызвана преимущественно случайным разбросом, т. к. можно наблюдать хорошее соответствие нормальному распределению. Величина этого разброса позволяет заключить, что точное производство резисторов — довольно сложная технологическая задача.