به نام خداوند بخشنده مهربان

مبانی هوش محاسباتی

فصل سه - معرفی چند شبکه عصبی کاربردی

فهرست مطالب

- تخصيص الگو؛ شبكه Hopfield
- آموزش غیرنظارتی و رقابت در شبکه عصبی؛ شبکه SOM
 - دستهبندی با مفهوم توابع هسته؛ شبکه RBF
- مفاهیم جدید در شبکههای عصبی: عمیـق و پیچشـی CNN و DNN

مبانی هوش محاسباتی

فصل سه - شبکههای عصبی مصنوعی کاربردی

کاربرد شبکه عصبی در تخصیص و ذخیره ماینیاد گسسته سازی الگو - شبکه هایفیاد گسسته

به يادسپاري الگوها

- یادگیری و بهیادسپاری در ذهن انسان
 - نظریه آریستول (Aristotle)
- ذهن انسان موضوعات و رویدادهایی که شبیه یا متضاد هم هستند یا با هم رخدادهاند را به یکدیگر مرتبط کرده و از این طریق، یادگیری و بهیادسپاری حاصل میشود.
 - به یادسپاری یک الگو (به حافظه سپردن)
 - ارتباط یک الگو با خودش!

شبكههای حافظه انجمنی (تخصیص دهنده الگو)

- شــبکههای عصــبی [حافظــه] انجمنــی (تخصــیصدهنده) (Associative Memory Neural Net.)
 - معمولاً شبكههاى تكلايه هستند.
 - حفظ و نگهداری الگوها به کمک تغییر و بهروز آوری وزنها.
- به همین دلیل، بر خلاف حافظههای معمول، جای مشخصی را نمی توان برای نگهداری الگو مشخص نمود.
 - اثر حفظ یک الگو، در تمام شبکه پخش می گردد.
 - ویژگی مهم شبکههای عصبی حافظه انجمنی
 - بازیابی با ارایه الگویی شبیه الگوی آموزش دادهشده نیز ممکن است.

انواع شبكههاى حافظه انجمني

- الگوهای ورودی، در قالب زوجبردارهای آموزشی s:t بیان میشوند.
- اگر s=t، شبکه را حافظه خودانجمنی (Autoassociative memory) و در غیراینصــورت، حافظــه دیگرانجمنــی (Heteroassociative memory) گوییم.
 - شبکههای حافظه انجمنی از لحاظ نوع ساختار
- پیشخور (feedforward)؛ انتقال اطلاعات و محاسبات همیشه از لایه ورودی به سمت لایه خروجی است.
- بازگشتی (recurrent) یا تکراری (iterative)؛ اتصالهایی بین نرونها وجود دارد که باعث ایجاد حلقه بسته (فیدبک) در شبکه میشود.
 - قوانین آموزش مورد استفاده در شبکههای حافظه انجمنی
 - قانون هب قانون دلتا قانون دلتای تعمیم یافته
 - دقیقاً همانند مطالب ذکر شده درباره شبکههای یک لایه

قانون هب برای حافظه انجمنی

Step 0. Initialize all weights
$$(i = 1, ..., n; j = 1, ..., m)$$
:
 $w_{ij} = 0$.

Step 1. For each input training-target output vector pair s:t, do Steps 2-4. Step 2. Set activations for input units to current training input (i = 1, ..., n):

$$x_i = s_i$$

Step 3. Set activations for output units to current target output (j = 1, ..., m):

$$y_j = t_j$$
.

Step 4. Adjust the weights (i = 1, ..., n; j = 1, ..., m): $w_{ij}(\text{new}) = w_{ij}(\text{old}) + x_i y_j.$ • با فرض اینکه وزنهای اولیه جملگی صفر باشند؛ قانون هب را میتوان به کمک ضرب خارجی دو بردار ورودی و خروجی پیاده سازی کرد.

- فرض کنیم الگوی s:t باید آموزش داده شود: $\mathbf{s} = (s_1, \dots, s_n)$

$$\mathbf{t} = (t_1, \dots, t_i, \dots, t_m)$$

$$\mathbf{s}^{\mathrm{T}}.\mathbf{t} = \begin{bmatrix} s_1 \\ \vdots \\ s_i \\ \vdots \\ s_n \end{bmatrix} \begin{bmatrix} t_1 & \cdots & t_j & \cdots & t_m \end{bmatrix} = \begin{bmatrix} s_1t_1 & \cdots & s_1t_j & \cdots & s_1t_m \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ s_it_1 & \cdots & s_it_j & \cdots & s_it_m \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ s_nt_1 & \cdots & s_nt_j & \cdots & s_nt_m \end{bmatrix}$$

• این دقیقاً همان ماتریس وزنی است که بعد از آموزش این الگو توسط الگوریتم آموزش هب، بهدست می آید!

قانون هب برای حافظه انجمنی

استفاده از ضرب خارجی برای آموزش بیش از یک الگو

• اگر P الگو به شكل زير داشته باشيم:

$$\mathbf{S}_{(p)} = (\mathbf{S}_{1(p)}, \dots, \mathbf{S}_{i(p)}, \dots, \mathbf{S}_{n(p)})$$
 , $\mathbf{t}_{(p)} = (\mathbf{t}_{1(p)}, \dots, \mathbf{t}_{j(p)}, \dots, \mathbf{t}_{m(p)})$

• از آنجا که وزنهای حاصل از آموزش هب به شکل زیر خواهند بود:

$$\mathbf{w}_{ij} = \sum_{p=1}^{P} s_{i(p)} . t_{j(p)}$$

• میتوان صورت ماتریسی را به کمک ضرب خارجی بردارهای ورودی و خروجی به صورت زیر نوشت:

$$\mathbf{W} = \sum_{p=1}^{P} \mathbf{s}_{(p)}^{\mathrm{T}} . \mathbf{t}_{(p)}$$

9

قانون دلتا براي حافظه انجمني

- مزیت: مناسب برای الگوهایی که مسقل خطی هستند، اما ناهمبسته (عمود) نیستند.
 - قانون دلتا (شكل اوليه):
 - تابع فعالیت خروجی؛ همانی:

$$y_j = \sum_{i=1}^n x_i w_{ij}$$

- تغيير وزن قانون دلتا:

$$\Delta w_{ij} = \alpha (t_j - y_j) x_i$$

• در این صورت، مجـذور خطـای ورودی سـلول (net input) و خروجـی مطلوب، کمینه خواهد شد.

قانون دلتا براى حافظه انجمني

- قـانون دلتـای گسـترش یافتـه (Delta rule) Delta rule)
 - تابع فعالیت: تابع پیوسته مشتقپذیر.

$$E = \sum_{j=1}^{m} (t_j - y_j)^2$$
 حاهش خطای خروجی شبکه و خروجی مطلوب. $-$ نحوه استخراج قانون دلتای گسترش یافته:

$$\frac{\partial E}{\partial w_{II}} = \frac{\partial}{\partial w_{II}} \sum_{i=1}^{m} (t_{j} - y_{j})^{2} = \frac{\partial}{\partial w_{II}} (t_{J} - y_{J})^{2}$$

$$\mathbf{y}_{\mathrm{in}\,\mathrm{J}} = \sum_{\mathrm{i}} \mathbf{x}_{\mathrm{i}} \mathbf{w}_{\mathrm{i}\mathrm{J}}$$
 , $\mathbf{y}_{\mathrm{J}} = f(\mathbf{y}_{\mathrm{in}\,\mathrm{J}})$:• با توجه به روابط روبرو، داریم

$$\frac{\partial \mathbf{E}}{\partial \mathbf{w}_{II}} = -2(\mathbf{t}_{J} - \mathbf{y}_{J}) \frac{\partial \mathbf{y}_{J}}{\partial \mathbf{w}_{II}} = -2(\mathbf{t}_{J} - \mathbf{y}_{J}) \cdot \mathbf{x}_{I} \cdot f'(\mathbf{y}_{inJ})$$

• و بنابراین، تغییر وزنها چنین خواهد بود:

$$\Delta w_{IJ} = \alpha \cdot (t_{J} - y_{J}) \cdot x_{I} \cdot f'(y_{inJ})$$

Hopfield Net

- انواع شبكه هاپفيلد
 - گسسته
- معمولاً باینری؛ کاربرد: حافظه با دسترسی محتوایی (Content Addressable Memory)
 - _ پیوسته
 - کاربرد در اختصاص الگو، بهینه سازی.
 - هاپفیلد گسسته (Discrete Hopfield Net)
 - توپولــوژی یــک شــبکه کــاملاً متصــل (interconnected)
 - ماتریس وزنها متقارن، قطر اصلی صفر.
 - دو نکته مهم در شیوه عملکرد هاپفیلد گسسته:
 - در هر لحظه، تنها یک سلول فعالیتش را تغییر می دهد (به روز می کند)
 - هر سلول، علاوه بـر فعالیـت سـلولهای دیگـر، یـک ورودی مستقل دارد. یعنی بـردار ورودی همیشـه در شبکه تاثیر دارد.

آموزش و استفاده از هاپفیلد گسسته

Application Algorithm for the Discrete Hopfield Net

Step 0. Initialize weights to store patterns.

(Use Hebb rule.)

While activations of the net are not converged, do Steps 1-7.

Step 1. For each input vector \mathbf{x} , do Steps 2-6.

Step 2. Set initial activations of net equal to the external input vector x:

$$y_i = x_i, (i = 1, \ldots n)$$

Step 3. Do Steps 4-6 for each unit Y_i .

(Units should be updated in random order.)

Step 4. Compute net input:

$$y_{\perp}in_i = x_i + \sum_j y_j w_{ji}.$$

Step 5. Determine activation (output signal):

$$y_i = \begin{cases} 1 & \text{if } y_in_i > \theta_i \\ y_i & \text{if } y_in_i = \theta_i \\ 0 & \text{if } y_in_i < \theta_i. \end{cases}$$

Step 6. Broadcast the value of y_i to all other units. (This updates the activation vector.)

Step 7. Test for convergence.

• آموزش الگوها

- الگوهـــای ورودی باینری یا بایپولار
- آمــوزش هــب، بــهٔ صورت بایپولار (حتـی برای دادههای باینری).
- وزنهای قطـر اصـلی،صفر.

• الگوريتم استفاده

یک مثال ساده از عملکرد هاپفیلد

- Step 1. The input vector is x = (0, 0, 1, 0). For this vector,
 - Step 2. y = (0, 0, 1, 0).
 - Step 3. Choose unit Y_1 to update its activation:

Step 4.
$$y_{in_1} = x_1 + \sum_{j} y_j w_{j1} = 0 + 1.$$

- Step 5. $y_{-in_1} > 0 \rightarrow y_1 = 1$.
- Step 6. y = (1, 0, 1, 0).
- Step 3. Choose unit Y_4 to update its activation:

Step 4.
$$y_{in_4} = x_4 + \sum y_j w_{j4} = 0 + (-2)$$
.

- Step 5. $y_in_4 < 0 \rightarrow y_4 = 0$.
- Step 6. y = (1, 0, 1, 0).
- Step 3. Choose unit Y_3 to update its activation:

Step 4.
$$y_{in_3} = x_3 + \sum_{j=1}^{n} y_j w_{j3} = 1 + 1$$
.

- Step 5. $y_i in_3 > 0 \rightarrow y_3 = 1$.
- Step 6. y = (1, 0, 1, 0).
- Step 3. Choose unit Y_2 to update its activation:

Step 4.
$$y_{in_2} = x_2 + \sum_{i} y_i w_{i2} = 0 + 2$$
.

- Step 5. $y_in_2 > 0 = y_2 = 1$.
- Step 6. y = (1, 1, 1, 0).
- Step 7. Test for convergence.

- ذخیره سازی یک الگو؛ بازیابی الگوی تخریب شده
- الگـوی بـاینری: [۱۱۱۰] یـا معادل بایپولار آن: [۱-۱۱۱]
- $w = \begin{bmatrix} 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 1 & 0 & 1 & -1 \\ 1 & 1 & 0 & -1 \\ -1 & -1 & -1 & 0 \end{bmatrix}$
- انتخاب ترتیب تصادفی بـرای بهروز رسانی فعالیت سلولها: $\underline{Y_1, Y_4, Y_3, Y_2}$
- یک دوره از الگوریتم استفاده هایفیلد
- توجه به شیوه تغییر فعالیت سلولها.
- چـون فعالیتها تغییر کـرده، حداقل یـک دوره دیگـر ادامـه دارد.

Initial patterns

مثال هاپفیلد

0.0
00
00
0.0
0000
0000
0 0
00 00
00 00
\cup \cup \cup
00000000
00000000
00000000
00000000
00 00
00
00

000000
0000000
00 00
0000000
0000000
000
00 00
000
0000000
000000

0000000	0000
0000000	0000
00	OO
00	
00	
00	
00	
00	00
0000000	
0000000	0000

00	00
00	00
00	OO
00	OO
0000000	000
0000000	000
00	OO
00	OO
00	OO
00	00

Noise percternentage	Type of a distorte
	pattern
10%	0 00 0 0000 0 000 0 00 0 00
	0 000 00 00 00 00 00
20%	0 0000 0 0000 0 0 0 0 0 0 0
30%	0000 0 000 0 0000 0 000 00 00 00 0 00

The result of	40%
recognition	10 / 0
00 00 000 00 0 00 00 00000000 00000000 00 00	500/
00	50%
00 00 00 00 00 00 00 00 00 00 00 00 00	60%
	70%

	C	J
000 000 0 0 0 0 00 000 00 0	0 00 00000 0000 00 00 00	
0000	0 00 00000 0 0000 0000 0 000 00 000 00 000	
000 000 00 0000 0000	000000 000000 00 000 0 00	
000 000 00 00 00 0 0000 0000	000000 000000 000000 00 000 0 00 000000 000000	

00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00
000000000 0000000000 00 00 00 00 00 00 00 00 00 00
0000 0000 0000 0000 000 00 000 000 00 00

0000 0000 0000000000 000 00000 000 0 00 00 0 00 0 0000 00 0 000000
0000 0000 0000 0000 000 00 000 00 0 00 00 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00
0000 0000 0000 0000 000 00 00 00 00 00 00 0000 00 0 000000

80%

90%

100%

0000 0000 0000 0000 000 00 000 000 00 00	
0000 0000 0000 0000 000 00 000 00 00 00 00 00	
0000 0000 0000 0000 000 00 000 00 00 00 00 000 00 0 00000 0 000000	

مثال هاپفیلد

Initial patterns

000000
0000000
00 00
0000000
0000000
000 000
00 00
000
0000000
000000
00000

00	OO
ŎŎ	ŎŎ
00	00
00	00
OO	OO
0000000	0000
0000000	0000
OO	OO
OO	OO
OO	00
00	OO

0000	000000
00 00	0000
ŎŎ	0000
00000	000000
00000	00000

The test pattern

1110 100	· Purior.
	00000 00000 00
	0000 0000 00000 00000
00000	00000
0000	00 00000 00000

The result of recognition

uit of it
000000
0000 00 000000 000000
000000
0000 00 000000

مبانی هوش محاسباتی فصل سه – شبکههای عصبی مصنوعی کاربردی

کربرد شبکه عصبی در خوشهبندی اگو - شبکه هسازمانده»
(آموزش غیر نظارتی و رقابت در شبکه عصبی)

Kohonen Self-Organizing Maps

- نکات شاخص و متفاوت در شبکه Kohonen SOM
 - آموزش بدون ناظر (Unsupervised Learning)
- برچسب دسته مشخص نیست، وظیفه شبکه یافتن مشابهت در الگوهای ورودی و دسته بندی الگوها بر اساس آن است.
 - یافتن مرکز تجمع دادههای ورودی، به کمک شباهت بین آنها.

– شبکه رقابتی

- سلولها در یک ساختار یک یا دو بعدی، قرار گرفته اند.
 - هر سلول، با توجه به تعریف، تعدادی همسایه دارد.
 - نرونها با همسایگان در حال رقابت هستند.
- در هر دور آموزش، یک سلول (با توجه به میزان مشابهت با الگوی ورودی) برنده می شود.
 - فقط سلول و همسایههای آن، حق آموزش (تغییر اوزان) را دارند.
 - معمولاً به جای ضرب وزنها در الگوی ورودی، فاصله آنها سنجیده میشود.
 - در الگوها با اندازه یک، از نظر ریاضی هیچ تفاوتی ندارد.

Kohonen SOM

شبکه تک لایه:مفهوم همسایگی و شعاع همسایگی

یک بُعدی [#] []R=0 $\{ \} R = 2$ () R = 1

دو بُعدی شش ضلعی

دو بُعدی مربعي

19

SOM

• الگوریتم آموزش و استفاده:

- Step 0. Initialize weights w_{ij} . (Possible choices are discussed below.) Set topological neighborhood parameters. Set learning rate parameters.
- Step 1. While stopping condition is false, do Steps 2-8.

 Step 2. For each input vector x, do Steps 3-5.

Step 3.

For each j, compute:

$$D(j) = \sum_i (w_{ij} - x_i)^2.$$

محاسبه فاصله بردار ورودی تا بردارهای نمونه

- Step 4. Step 5.
- Find index J such that D(J) is a minimum. For all units j within a specified neighborhood

of J, and for all i:

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha[x_i - w_{ij}(\text{old})].$$

یافتن سلول برنده؛ تغییر وزن برنده و همسایگان

- Step 6. Update learning rate.
- کاهش نرخ آموزش به آهستگی، با تصاعد هندسی یا حسابی؛
- Step 7. Reduce radius of topological neighborhood at specified times.

کاهش شعاع همسایگی

Step 8. Test stopping condition.

شرط خاتمه: تغییرات وزن از حد خاصی فراتر نرود. یا صفر شدن شعاع همسایگی و نرخ آموزش.

مثال هندسی دوبعدی SOM (۱)

- وزنهای اولیه:
- ۵۰ سلول با همسایگی خطی ۱.

- دادههای ورودی:
- ۱۰۰ داده تصادفی در دایره.

مثال هندسی دوبعدی SOM (۲)

- نتایج بعد از:
- ۱۰ تکرار
- ۲۰ تکرار
- **۳۰ تکرار**
- ۱۰۰ تکرار
- با افزایش تکرارها، علاوه بر تجمع وزنها در دایره مرکزی، سلولهای همسایه چینش نرمتری پیدا میکنند.
- با انتخاب شعاع همسایگی بیشتر در ابتدا، ترتیب از این هم صاف تر می شود.

مثال: حل TSP توسط SOM

- دادههای ورودی: مختصات شهرها
 - ۱۰ سلول در لایه خروجی.
- همسایگی: نشاندهنده شهرهای مجاور در تور انتخاب شده.
- حالت مطلوب: هر شهر، یک سلول را
 به عنوان نماینده انتخاب می کند.
- در عمل، ممکن است بعضی سلولها بین دو یا چند شهر، (اصطلاحاً) گیر بیافتند.

مثال SOM

- کاربرد در:
- مدلسازی.
- تقریب توابع.
- بهینه سازی.
- خوشه بندی.
- چندی سازی.
- کاهش ابعاد دادهها.

مثال SOM

- کاربرد در:
- مدلسازي.
- تقریب توابع.
- بهینه سازی.
- خوشه بندی.
- چندی سازی.
- کاهش ابعاد دادهها.

مدرجسازی برداری با یادگیری (LVQ)

- Learning Vector Quantization LVQ •
- ترجمه Quantization؛ مدرجسازی کمّیسازی چندیسازی
 - معنا: گسستهسازی مقادیر پیوسته.
 - LVQ شبکه با نظارت (Supervised) است.
 - بر خلاف SOM که بدون نظارت است.
- بردارهای مرجع، به عنوان نماینده کلاس، در الگوریتم آموزش تنظیم میشوند.
- پس از آموزش، LVQ بردارهای ورودی را به نزدیک ترین بردار مرجع، نسبت میدهد.
 - توپولوژی شبکه
 - همانند SOM؛ با این تفاوت که همسایگی وجود ندارد.

آموزش LVQ

- Step 0. Initialize reference vectors (several strategies are discussed shortly); initialize learning rate, $\alpha(0)$.
- Step 1. While stopping condition is false, do Steps 2-6.
 - Step 2. For each training input vector x, do Steps 3-4.
 - Step 3. Step 4.

Find J so that $\|\mathbf{x} - \mathbf{w}_J\|$ is a minimum.

Update w_J as follows:

if $T = C_J$, then

 $\mathbf{w}_{J}(\text{new}) = \mathbf{w}_{J}(\text{old}) + \alpha[\mathbf{x} - \mathbf{w}_{J}(\text{old})];$

if $T \neq C_J$, then

 $\mathbf{w}_J(\text{new}) = \mathbf{w}_J(\text{old}) - \alpha[\mathbf{x} - \mathbf{w}_J(\text{old})].$

- Step 5. Reduce learning rate.
- Step 6. Test stopping condition:

The condition may specify a fixed number of iterations (i.e., executions of Step 1) or the learning rate reaching a sufficiently small value.

- نکات آموزش
- کاهش نرخ آموزش، باعث ایجاد همگرایی است.
- شرط توقف، کمشدن بیش از حد نرخ آمـوزش یا رسیدن به تعداد تکرار مشخص است.

نكات آموزش

- نزدیکترین بیردار مرجع به بردار ورودی (سیلول بیا شیبیهترین بیردار وزن) برنیده میشود.
- اگر سلول برنده با بردار ورودی هم کلاس بود، بردار مرجع به بردار ورودی نزدیک می شود.
 - اگر نبود، دور میشود.

نکاتی درباره LVQ

- شیوه انتخاب وزنها (بردارهای مرجع) اولیه
 - انتخاب تصادفی
- انتخاب k (تعداد کلاس) بردار اولیه آموزشی بـه عنـوان k بـردار مرجع.
- استفاده از الگوریتمهای خوشهبندی برای ایجاد یک تقریب اولیه از بردارهای مرجع.
 - مثال؛ استفاده از k-means یا SOM!!

مبانی هوش محاسباتی فصل سه حشکه دام مصد معنده میکامید

فصل سه – شبکههای عصبی مصنوعی پر کاربرد

RBF هر توایع هسته با مفهوم توایع هسته ا

YO

ساختار شبکه RBFNN

- شبکه عصبی با توابع بـا سـطح مقطع حلقـوی(Radial-Basis Function Neural (Network - RBFNN
- ساختار شبکه: دولایه، با یک لایه مخفی
- تفاوت با MLP در توابع فعالیت نرونهاست
- لایه میانی: توابع حلقوی [پایه شعاعی]
 - لايه خروجي: تابع هماني

توابع حلقوی (radial-basis)

- توابعی که در کل دامنه، مقدار غیرمنفی دارند و فعالیت آنها، حول یک نقطه به اوج خود میرسد. هرچه نقطه ورودی از مرکز این توابع دور باشد، فعالیت تابع ضعیف تر می شود.

« مثال: تابع گوسی (Gaussian)

$$f(x) = e^{-x^2}$$
$$f'(x) = -2x \cdot f(x)$$

توابع حلقوي

$$p(\mathbf{x}) = \frac{1}{\left|\sqrt{2\pi\Sigma}\right|} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

- Mean: μ (vector 2x1)
- Covariance: Σ (matrix 2x2)

$$f(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-\mu_x)^2 + (y-\mu_y)^2}{2\sigma^2}}$$

- و توابع گاوسی توزیع نرمال
- شكل عمومى تابع توزيع نرمالچندمتغيره
 - تجسم تصویری تابع دو متغیره
 - دلیل نام گذاری
- سطح مقطع (تقاطع با صفحه عمود بر محور Z)، به شکل دایره است.

دسته بندی توسط RBFNN

• RBF چگونه عمل می کند؟

- مرکز تابع حلقوی توسط وزنهای آن تعیین میشود. واریانس تابع حلقوی پارامتر سلول است و وزنی معادل آن تعیین نشده است!
- با توجه به فاصله نقاط داده تا مرکز تابع و واریانس آن، داده در داخل یا خارج دسته قرار می گیرد.

MM

اثر دسته بندی توابع RBF

شبکه RBF و مدلسازی

- استفاده از ترکیب توابع گوسی (mixture of gaussians) در مدلسازی توابع پیچیده بسیار متداول است.
- هر تابع پیوستهای را میتوان به کمک تعدادی تابع گوسی، با ضرایب، مراکز و واریانسهای متفاوت، با دقت خوبی تقریب زد.

۲

مبانی هوش محاسباتی فصل سه – شبکههای عصبی مصنوعی پرکاربرد

مفاهیم جدید در شبکههای عمیی: عمیق و DNN و CNN

