#### TMA 4190 Introduction to Topology

Lecturer: Gereon Quick Lecture 23<sup>1</sup>

#### 23. Intersection Theory

The assumptions for our intersection theory to work will be always:

#### Assumptions for intersection theory

- We consider a smooth map  $f: X \to Y$ , where X, Y are boundaryless smooth manifolds,  $Z \subset Y$  is a boundaryless submanifold.
- The dimensions are complementary, i.e.  $\dim X + \dim Z = \dim Y$ .
- X will always be assumed to be compact.
- All manifolds are oriented, i.e. they are orientable and we have chosen an orientation.

The idea for the new intersection number is now very simple:

If  $f: X \to Y$  is transversal to Z, then  $f^{-1}(Z)$  consists of a **finite number of points** (since  $f^{-1}(Z)$  is zero-dimensional and compact becasue of the assumptions on X, Z and the dimensions; the assumptions are all important). Each point in  $f^{-1}(Z)$  has an orientation number  $\pm 1$  provided by the **preimage orientation**.

If  $x \in f^{-1}(Z)$  is a point in the preimage, the orientation number at x is determined as follows. If  $f(x) = z \in Z$ , then transversality implies  $df_x(T_x(X)) + T_z(Z) = T_z(Y)$ . But since the dimensions are complementary, this sum must be **direct**, i.e.,

(1) 
$$df_x(T_x(X)) \cap T_z(Z) = \{0\}, \text{ and } df_x(T_x(X)) \oplus T_z(Z) = T_z(Y).$$

This direct sum decomposition implies that

$$\dim T_x(X) = \dim df_x(T_x(X)),$$

since dim  $T_x(X) = \dim T_z(Y) - \dim T_z(Z)$ . Thus  $df_x$  must be an **isomorphism** onto its image. In particular, the orientation of  $T_x(X)$  provides an orientation of  $df_x(T_x(X))$ .

<sup>&</sup>lt;sup>1</sup>Following the books of Guillemin and Pollack: Differential Topology, and Milnor: Topology from the differentiable viewpoint.

Then the **orientation number at** x is +1 if the orientation of  $T_z(Y)$  as the direct sum in (1) induced by the orientations on  $df_x(T_x(X))$  and  $T_z(Z)$  agrees with the given orientation of  $T_z(Y)$ . And it is -1 if the induced orientation disagrees.

### Intersection numbers as sums of orientation numbers

If  $f \cap Z$ , we define the intersection number I(f,Z) to be the sum of the orientation numbers at the finitely many points  $x \in f^{-1}(Z)$ .

We claimed that introducing orientations would yield **homotopy invariant** intersection numbers in  $\mathbb{Z}$ . Now we we have to demonstrate that this claim holds. This will then allow us to define intersection numbers for nontransversal intersections.

Suppose that  $X = \partial W$  is the **boundary** of a compact W and that f extends to a smooth map  $F: W \to Y$ , i.e.  $f = \partial F = F_{|\partial W}$ .

By the **Extension Theorem**, we may assume  $F \cap Z$ . Thus, by the Preimage Theorem for manifolds with boundary,  $F^{-1}(Z)$  is a compact oriented manifold with boundary  $\partial F^{-1}(Z) = f^{-1}(Z)$ . Since  $\operatorname{codim} \partial W = 1$  in W, we have  $\operatorname{codim} F^{-1}(Z) = 1$  in Y, and hence

$$\dim W - \dim F^{-1}(Z) = \operatorname{codim} F^{-1}(Z)$$
 in  $W$   
=  $\operatorname{codim} Z$  in  $Y = \dim Y - \dim Z = \dim X$ .

But dim  $W = \dim X + 1$ , and thus dim  $F^{-1}(Z) = 1$ . Hence  $F^{-1}(Z)$  is a **compact** oriented one-manifold with boundary. As we learned in the previous lecture, the sum of the orientation numbers at points in the boundary  $f^{-1}(Z)$  must be zero.

As a consequence we get:

## Intersection numbers for maps on boundaries

If  $f \cap Z$  and  $X = \partial W$  is the **boundary** of a compact W and that f extends to a smooth map  $F \colon W \to Y$ , then the sum of orientation numbers of points in  $f^{-1}(Z)$  is zero, i.e. I(f,Z) = 0.

This enables us to prove the key fact:

## Homotopy invariance for transversal maps

Let  $f_0$  and  $f_1$  be two homotopic maps  $X \to Y$  which are both transversal to Z. Then  $I(f_0,Z) = I(f_1,Z)$ .

**Proof:** Let  $F: X \times [0,1] \to Y$  be a homotopy between them. Then we just learned that  $I(\partial F, Z) = 0$ . The boundary map  $\partial F$  is just  $f_0$  on the copy  $X_0$  at 0 and  $f_1$  on the copy  $X_1$  at 1. Now recall that the orientations of  $X_0$  and  $X_1$  as the boundary of  $X \times [0,1]$  are given by

$$\partial(X \times [0,1]) = X_1 - X_0.$$

Hence as oriented manifolds we get

$$\partial F^{-1}(Z) = f_1^{-1}(Z) - f_0^{-1}(Z).$$

By our definition of intersction numbers as sums of orientation numbers, this implies

$$0 = I(\partial F, Z) = I(f_1, Z) - I(f_0, Z).$$

#### **QED**

As in the mod 2-theory, the previous theorem allows us to define intersection numbers for arbitrary maps.

# Intersection numbers for arbitrary maps

Let  $g: X \to Y$  be any smooth map. By the Transversality Homotopy Theorem, we can **choose** a smooth map  $f: X \to Y$  which is homotopic to g and transversal to Z. Then we **define** I(g,Z) to be I(f,z), i.e.

$$I(g,Z) := I(f,Z).$$

We just shows that the definition does not depend on the choice of f. Moreover, all homotopic maps have equal intersection numbers:

# All homotopic maps have equal Intersection Numbers

If  $g_0: X \to Y$  and  $g_1: X \to Y$  are arbitrary **homotopic** maps, then  $I(g_0,Z) = I(g_1,Z)$ .

**Proof:** The proof is the same is in the mod 2-case. We can choose maps  $f_0 \bar{\sqcap} Z$  and  $f_1 \bar{\sqcap} Z$  such that  $g_0 \sim f_0$ ,  $I(g_0,Z) = I(f_0,Z)$ , and  $g_1 \sim f_1$ ,  $I(g_1,Z) = I(f_1,Z)$ .

Since homotopy is a **transitive** relation, we have

$$f_0 \sim g_0 \sim g_1 \sim f_1$$
, and hence  $f_0 \sim f_1$ .

By the previous theorem, this implies

$$I(g_0,Z) = I(f_0,Z) = I(f_1,Z) = I(g_1,Z).$$

#### **QED**

#### The Brouwer degree

Let us look again at the special case when  $\dim X = \dim Y$ :

# The Brouwer degree

Let  $f: X \to Y$  be a smooth map with dim  $X = \dim Y$ , X compact, and Y connected. We define the **degree of** f, denoted by  $\deg(f)$ , to be the intersection number  $I(f,\{y\})$  at any regular value  $y \in Y$  of f. In particular, we claim that the integer  $I(f,\{y\})$  does not depend on the choice of the regular value y.

The degree is homotopy invariant, i.e.  $f_0 \sim f_1$  implies  $\deg(f_0) = \deg(f_1)$ .

**Proof of the claim of independence:** Actually, the proof in the mod 2-case gave us this result already. But only observed the weaker consequence for mod 2-intersction numbers. To be sure, let us go through it again.

Given any  $y \in Y$ , we can assume that f is **transversal to**  $\{y\}$ . For otherwise we can replace it with a homotopic map which is transversal by the **Transversality Homotopy Theorem**. Now by the **Stack of Records Theorem**, we can find a neighborhood U of y such that the preimage  $f^{-1}(U)$  is a disjoint union  $V_1 \cup \cdots \cup V_n$ , where each  $V_i$  is an open set in X mapped by f diffeomorphically onto U:



Hence, for all points  $z \in U$ , we have  $\#f^{-1}(\{z\}) = n$ . But this is not enough for knowing that the intersection numbers agree. For we we have to take orientations into account.

Since  $f_{|V_i}: V_i \to U$  is a diffeomorphism, we know that

$$df_{x_i}: T_{x_i}(X) \to T_{y_i}(Y)$$

is an isommorphism. Now both  $T_{x_i}(X)$  and  $T_y(Y)$  are oriented, and hence  $df_{x_i}$  is either orientation preserving or reversing. But by our definition of orientations on manifolds, we have **either** 

- $\det(df_{x_i}) > 0$  and hence, for all  $z \in U$ ,  $\det(df_{w_i}) > 0$ , where  $w_i$  is the unique point in  $V_i$  with  $f(w_i) = z$ ; in other words,  $df_{w_i}$  preserves orientations for all points  $w_i \in V_i$ ;
- or  $\det(df_{x_i}) < 0$  and hence, for all  $z \in U$ ,  $\det(df_{w_i}) < 0$ , where  $w_i$  is the unique point in  $V_i$  with  $f(w_i) = z$ ; in other words,  $df_{w_i}$  reverses orientations for all points  $w_i \in V_i$ .

Thus the orientation number is the same for all points in  $V_i$ . Hence the sum of orientation numbers of the points in  $f^{-1}(z)$  is the same for all points  $z \in U$ .

Consequently, the function

$$Y \to \mathbb{Z}, y \mapsto I(f,\{y\})$$

is locally constant. Since Y is connected, it must be globally constant. QED

Here is a simple example of how to calculate a degree:



# Degree of a diffeomorphism

A special case of the situation dim  $X = \dim Y$  is that of a **diffeomorphism**  $f: X \to Y$ . It follows immediately from the definition that f has **degree** +1 **or** -1 according to if f preserves or reverses orientation. In particular, we get:

An **orientation reversing diffeomorphism** of a compact boundaryless manifold is **not** smoothly homotopic to the identity.

An example of such an orientation reversing diffeomorphism is provided by the **reflection**  $r_i: S^n \to S^n$  which we have seen in the Exercises before:

$$r_i(x_1,\ldots,x_{n+1})=(x_1,\ldots,-x_i,\ldots,x_{n+1}).$$

As in the mod 2-case, the boundary result for intersection numbers imply the following fact on extensions of maps.

## Extendable maps on boundaries have degree zero

Suppose that  $f: X \to Y$  is a smooth map of compact oriented manifolds having the same dimension and that  $X = \partial W$  is the boundary of a compact manifold W. If f can be extended to all of W, then  $\deg(f) = 0$ .

### Example: Degree of self-maps of $S^1$

Recall that the restriction of complex multiplication  $z \to z^m$  defines a smooth map  $f_m \colon S^1 \to S^1$  for every  $m \in \mathbb{Z}$ . For  $m \neq 0$ , let us calculate the derivative  $d(f_m)_z \colon T_z(S^1) \to T_{f_m(z)}(S^1)$ .

We use the parametrization  $\phi t \mapsto (\cos t, \sin t)$ . We have the commutative diagram

$$S^{1} \xrightarrow{f_{m}} S^{1}$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi}$$

$$\mathbb{R} \xrightarrow{t \mapsto mt} \mathbb{R}.$$

Taking derivatives yields, where we note that  $t \mapsto mt$  is a linear map and therefore equal to its derivative:

$$T_{z}(S^{1}) \xrightarrow{d(f_{m})_{z}} T_{z^{m}}(S^{1})$$

$$\downarrow d\phi_{t} \qquad \qquad \uparrow d\phi_{mt}$$

$$\mathbb{R} \xrightarrow{t \mapsto mt} \mathbb{R}.$$

In order to determine  $d(f_m)_z$ , recall

$$d\phi_t \colon \mathbb{R} \to \mathbb{R}^2, \ s \mapsto (-\sin t, \cos t) \cdot s$$

and, hence at  $z = \phi(t)$  (we have done this a long time ago):

$$T_z(S^1) = (-\sin t, \cos t) \cdot \mathbb{R}.$$

Putting these information together we obtain we get

$$d(f_m)_z : T_z(S^1) \to T_{z^m}(S^1),$$
  
 $(-\sin t, \cos t) \cdot s \mapsto m(-\sin(mt), \cos(mt)) \cdot s.$ 

Hence, when m > 0,  $f_m$  wraps the circle uniformly around itself m times preserving orientation. The map is everywhere regular and orientation preserving, so its degree is the number of preimages of any point, that is m.

Similarly, when m < 0 the map is everywhere regular but orientation reversing. As each point has |m| preimages, the degree is -|m| = m.

Finally, when m=0 the map is constant, so its degree is zero.

# One homotopy class $S^1 \to S^1$ for every integer

One immediate consequence of this calculation (which could not have been proven with mod 2 theory) is the interesting fact that the circle admits an **infinite number** of homotopically distinct mappings. For since  $deg(z^m) = m$ , none of these maps can be homotopic to another one.

#### Application: The Fundamental Theorm of Algebra - again

Now we can finish the proof of the Fundamental Theorem of Algebra using degrees. Remember that mod 2-degrees were only good enough for polynomials of odd order. Now we can deal with all of them.

So let

$$p(z) = z^m + a_1 z^{m-1} + \dots + a_m$$

be a monic complex polynomial. For the argument in the case m odd, we used the homotopy from  $p_0(z) = z^m$  to  $p_1(z) = p(z)$  defined by

$$p_t(z) = tp(z) + (1-t)z^m = z^m + t(a_1z^{m-1} + \dots + a_m).$$

We observed that, if W is a closed ball around the origin in  $\mathbb{C}$  with sufficiently large radius, none of the  $p_t$  has a zero on  $\partial W$ .

Thus the homotopy

$$\frac{p_t}{|p_t|} \colon \partial W \to S^1$$

is defined for all  $t \in [0,1]$ . Thus

$$\deg\left(\frac{p}{|p|}\right) = \deg\left(\frac{p_0}{|p_0|}\right).$$

Since  $p_0(z) = z^m$ , the degree of  $p_0/|p_0|$  is the same as  $\deg(z^m) = m$ , and hence

$$\deg\left(\frac{p}{|p|}\right) = m.$$

Thus, if m > 0, p/|p| does not extend to all of W, since otherwise its degree had to be zero. Hence p must have a zero inside W.

### Hopf Degree Theorem in dimension one

We return our attention to self-maps of  $S^1$ . We learned that there is a homotopy class of maps  $S^1 \to S^1$  for every integer m. Actually, the following theorem, the one-dimensional case of a famous theorem of Hopf, shows that the degree is a bijective map

$$deg: [S^1, S^1] \to \mathbb{Z}, f \mapsto deg(f),$$

where  $[S^1,S^1]=\mathrm{Hom}(S^1,S^1)/\sim$  denotes the set of equivalence classes of maps from  $S^1$  to  $S^1$  modulo the homotopy relation.

The same is true for every  $n \geq 1$ : For every  $m \in \mathbb{Z}$ , there is exactly one homotopy class of maps  $S^n \to S^n$ . We will get back to this important result later. Today we show:

# Hopf Degree Theorem in dimension one

Two maps  $f_0, f_1 \colon S^1 \to S^1$  are homotopic if and only if they have the same degree.

**Proof:** We already know that if  $f_0$  and  $f_1$  are homotopic, then  $\deg(f_0) = \deg(f_1)$ .

So assume  $deg(f_0) = deg(f_1)$ , and we want to show  $f_0 \sim f_1$ .

Remember that earlier we used the map p defined by

$$p: \mathbb{R} \to S^1, t \mapsto e^{2\pi i t},$$

and remarked that every smooth map  $f: S^1 \to S^1$  can be lifted (lift piecewise and then patch together) to a map  $g: \mathbb{R} \to \mathbb{R}$  with

$$g(t+1) = g(t) + q$$
 for some  $q \in \mathbb{Z}$  such that  $f(p(t)) = p(g(t))$ .



If we can show  $q = \deg(f)$ , then we **get a homotopy**  $f_0 \sim f_1$  **as follows**:

Let  $g_0$  and  $g_1$  be smooth maps  $\mathbb{R} \to \mathbb{R}$  with  $g_0(t+1) = g_0(t) + q$ ,  $g_1(t+1) = g_1(t) + q$  and  $f_0(p(t)) = p(g_0(t))$ ,  $f_1(p(t)) = p(g_1(t))$ . Then the map  $g_s(t) := sg_1 + (1-s)g_0$  also satisfies  $g_s(t+1) = g_s(t) + q$ . Note  $g_s(t)$  defines a homotopy G from  $g_0$  to  $g_1$  by  $G(t,s) = g_s(t)$ .

But any homotopy

$$G: \mathbb{R} \times [0,1] \to \mathbb{R}$$
 with  $G(t+1,s) = G(t,s) + q$  for all  $t,s$ 

induces a well-defined homotopy

$$F: S^1 \times [0,1] \to S^1, (z,s) \mapsto p(G(t,s)) \text{ for any } t \in p^{-1}(z).$$

Hence the above  $g_s(t)$  induces a homotopy from

$$f_0 = p \circ g_0$$
 to  $p \circ g_1 = f_1$ .

It remains to show:

Claim:  $q = \deg(f)$ .

First, note that if f is **not surjective**, then we can pick a point  $y \notin f(S^1)$ . This g is automatically a regular value. Since  $\#f^{-1}(p) = 0$ , we must have  $\deg(f) = 0$ . In this case, we need to have g = 0, i.e. g(t+1) = g(t). For otherwise  $g \circ g$  was surjective and hence g would be surjective.

Note that, since the stereographic projection map  $S^1 \setminus \{y\} \to \mathbb{R}$  is a diffeomorphism and  $\mathbb{R}$  is contractible, this shows directly that  $S^1 \setminus \{y\}$  is contractible. Hence f is a map to a contractible space and therefore **homotopic to a constant map**.

Now we assume that f is **surjective**. Let  $y \in S^1$  be a regular value of f, and let  $z \in f^{-1}(y)$ . Since p is surjective, there is a  $t \in \mathbb{R}$  with p(t) = z. Since y is a regular value, f is a local diffeomorphism around z. Its derivative is related to the one of g by the chain rule

$$df_z \circ dp_t = dp_{g(t)} \circ dg_t.$$

The derivative of  $p: \mathbb{R} \to S^1$  at any t is

$$dp_t \colon \mathbb{R} \to T_{p(t)}(S^1), \ w \mapsto 2\pi(-\sin(2\pi t), \cos(2\pi t)) \cdot w.$$

Hence the determinant of  $dp_t$  at any t is positive (in fact equal  $+2\pi$ ). Thus the sign of the determinant of  $df_z$  equals the sign of  $dg_t \in \mathbb{R}$ .

As above, let  $y \in S^1$  be a regular value of f and  $z \in f^{-1}(y)$ . Let us fix a  $t_0 \in \mathbb{R}$  with  $p(t_0) = z$ . When we walk from  $t_0$  to  $t_0 + 1$  we need to **count** how many preimages of y we collect along the way, **with their orientation** (!).

We start with the case q = 0, i.e. g(t + 1) = g(t). It will actually teach us all we need to remember from this proof.

We need to count how often  $g(s) = g(t_0)$  with  $dg_s = g'(s) > 0$  and how often  $g(s) = g(t_0)$  with  $dg_s = g'(s) > 0$ . Note that since y is **regular**,  $dg_s$  is always  $\neq 0$  at such those s.

Since g is a smooth function  $\mathbb{R} \to \mathbb{R}$ , this is now just an exercise from Calculus. Using the periodicity of g, i.e., that  $g'(t_0)$  must have the same sign as  $g'(t_0+1)$ , we see that there are **exactly as many** points s with  $g(s) = g(t_0)$  and  $dg_s = g'(s) > 0$  as there are points with  $g(s) = g(t_0)$  and  $dg_s = g'(s) > 0$ . Thus  $\deg(f) = 0$ .



Now assume q > 0, and g(t + 1) = g(t) + q.

Again, we walk from  $t_0$  to  $t_0 + 1$  and sum up the orientation numbers of all the preimages of y that we collect along the way. This corresponds to counting how often we have  $g(s) = g(t_0) + i$  for some  $i = 0, 1, \ldots, q - 1$  and  $s \in [t_0, t_0 + 1]$ .

Let us look at one interval  $[g(t_0) + i, g(t_0) + i + 1]$  at a time. We would like to know how many  $s \in [t_0, t_0 + 1]$  are sent to either  $g(t_0) + i$  or  $g(t_0) + i + 1$  together with the sign of the derivative.

Therefore we look at the preimage

$$g^{-1}([g(t_0)+i,g(t_0)+i+1]).$$

This set is a disjoint union of closed intervals. For each of these intervals the start and endpoints are sent to either  $g(t_0) + i$  or  $g(t_0) + i + 1$ .

Let us think of the graph of g passing  $g(t_0) + i$ with a positive sign of the derivative as **going in with** +1 and passing  $g(t_0) + i + 1$  with a positive sign of the derivative as **going out** +1, and the other two alternatives as the ones with -1. Then we see that the graph has to go in with +1 for a first time, and has to go out with +1 for a last time (since the graph starts at  $g(t_0) \le g(t_0) + i$  and ends at  $g(t_0) + q \ge g(t_0) + i + 1$ ). In between those two points, the graph is going out with -1 as often as it goes in +1 and goes in with -1 as often as it goes out with +1.



Thus in total the orientation numbers for  $g^{-1}([g(t_0) + i, g(t_0) + i + 1])$  add up to +2. Repeating this for all  $i = 0, 1, \ldots, q-1$  gives a sum of orientation numbers equal to q, since we have to account for that we counted the inner points twice.

Since the sum of orientation numbers of f equals the one of g, this shows deg(f) = q.

If q < 0, the same argument works with signs and directions reversed. **QED**