(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:31.10.2001 Bulletin 2001/44
- (21) Application number: 96901520.5
- (22) Date of filing: 02.02.1996

- (51) Int Cl.⁷: **C07C 45/48**, C07C 49/80, C07C 29/143, C07C 33/46, C07C 221/00, C07C 225/16, C07C 213/00, C07C 215/28, C07D 301/26, C07D 303/04, C07C 269/06
- (86) International application number: **PCT/JP96/00212**
- (87) International publication number: WO 96/23756 (08.08.1996 Gazette 1996/36)
- (54) PROCESSES FOR PRODUCING ALPHA-HALO KETONES, ALPHA-HALOHYDRINS AND EPOXIDES

VERFAHREN ZUR HERSTELLUNG VON ALPHA-HALOKETONEN, ALPHA-HALOHYDRINEN UND EPOXIDEN

PROCEDES DE PRODUCTION D'ALPHA-HALOCETONES, D'ALPHA-HALOHYDRINES ET D'EPOXYDES

- (84) Designated Contracting States: BE CH DE ES FR GB IE IT LI NL
- (30) Priority: **03.02.1995 JP 3926695 26.09.1995 JP 27354795**
- (43) Date of publication of application: 22.01.1997 Bulletin 1997/04
- (73) Proprietor: KANEKA CORPORATION Osaka-shi, Osaka 530-8288 (JP)
- (72) Inventors:
 - NISHIYAMA, Akira Hyogo 655 (JP)
 - SUGAWA, Tadashi Akashi-shi Hyogo 673 (JP)
 - MANABE, Hajime Takasago-shi Hyogo 676 (JP)

- INOUE, Kenji
 Hyogo 675 (JP)
 YOSHIDA Norita
- YOSHIDA, Noritaka
 Osaka 580 (JP)
- (74) Representative: Hrabal, Ulrich, Dr. Gille Hrabal Struck Neidlein Prop Roos Brucknerstrasse 20 40593 Düsseldorf (DE)
- (56) References cited:

EP-A- 0 442 754 EP-A- 0 470 462 EP-A- 0 580 402 EP-A- 0 719 769 DE-A- 4 321 017 GB-A- 1 233 678

 TETRAHEDRON, Vol. 50, No. 21 (1994), A.
 ALBECK et al., "Stereocontrolled Synthesis of Erythro N-Protected alpha-Amino Epoxides and Peptidyl Epoxides", pp. 6333-6346.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

15

20

25

30

35

50

55

[0001] The present invention relates to a process for producing an α -halo ketone from a carboxylic acid derivative or ester utilizing an α -haloacetic acid, a process for producing an α -halohydrin by reducing the α -halo ketone so produced, and a process for producing an epoxide by reducing the α -halohydrin so produced.

[0002] More particularly, the present invention relates to a technology for producing aminohalo ketones, aminohalo hydrins and aminoepoxides from amino acid derivatives or amino acid esters and particulary to a technology for producing optically active α -halo ketones, α -halohydrins and epoxides from the corresponding optically active aminoprotected phenylalanine esters. α -Halo ketones, α -halohydrins and epoxides originating from optically active phenylalanine are compounds of value as intermediates for the production of medicines.

BACKGROUND TECHNOLOGY

[0003] The following processes are known for the production of aminohalo ketones.

- (1) A process for producing a chloroketone or an aminochloroketone which comprises converting an amino-protected amino acid to a mixed acid anhydride, reacting the anhydride with diazomethane to give an amino diazoketone and treating the ketone with hydrochloric acid (Siegfried Fittkau et al., Journal fur Praktische Chemie, 529, 1986).
- (2) A process for producing an aminochloroketone which comprises converting an amino-protected amino acid to a mixed acid anhydride, reacting the anhydride with diazomethane to give an aminodiazoketone, and treating the ketone with a metal chloride (Japanese Kokai Publication Hei-5-117169).
- (3) A process for producing a chloroketone or an aminochloroketone which comprises reacting an amino-protected amino acid ester with a halomethyllithium (J. Chem. Soc. Chem. Commun., 969, 1994).
- (4) A process for producing a chloroketone by performing a condensation reaction of 1,1,1-trifluoroacetone with acetic acid and split the indermediate product trifluoroacetic acid ethyl ester catalysed by acid (reaction cited in EP-A-0 470 462).
- As the production technology for aminohalohydrins and aminoepoxides, the following processes are known. (5) A process comprising reducing an α -chloroketone as typically obtained by the above process (1) or (2) to a α -halohydrin using a reducing agent such as sodium borohydride and a process comprising treating said α -halohydrin further with a base to give the corresponding epoxide (Tetrahedron, 50, 6333, 1994; J. Medic. Chem., 37, 1758, 1994; J. Medic. Chem., 34, 1221, 1991).
- (6) A process comprising permitting sulfoniumylide to act on an amino-protected aminoaldehyde to give an epoxide (Tetrahedron Lett., 30, 5425, 1989; J. Org. Chem., 50, 4615, 198.5).
- (7) A process comprising permitting a peracid to act on an amino-protected allylamine derivative to synthesize an epoxide (Tetrahedron Lett., 35, 4939, 1994).
- (8) A process comprising permitting a halomethyllithium to act on an amino-protected α -aminoaldehyde to produce an aminoepoxide (WO 93/23388).
- [0004] Prior art documents GB-A-1 233 678 and EP-A-0 580 402 describe the preparation of α -halogenated secondary alcohols and an epoxide without dealing with the aspect of how the α -halogenated ketone which is the initial product for the preparation is made.
 - [0005] Processes (1) and (2), wherein the explosive diazomethane is employed, are not satisfactory as industrial processes. Process (3) can hardly be implemented on an industrial scale partly because a low reaction temperature not exceeding -70 °C is essential and partly because it is applicable only to special cases using dibenzyl group as an amino-protecting group.
 - **[0006]** Further, process (5) comprising reducing chloroketones to chlorohydrins is not flawless in industrial applicability because there is no established industrial production technology for chloroketones. Processes (6), (7) and (8) for the production of epoxides are disadvantageous in that epoxides of the three configuration are preferentially produced, with the erythro-epoxides being not obtainable unless special amino-protecting groups are employed.

SUMMARY OF THE INVENTION

- [0007] Under the above circumstances the present invention provides processes for efficiently producing α -haloketones, α -halohydrins and epoxides on an industrial scale.
- [0008] With the thought that establishing an efficient industrial process for converting a carboxylic acid derivative to an α -chloroketone should lead to the ultimate establishment of processes for efficiently producing the corresponding chlorohydrin and epoxide on an industrial scale, the inventors of the present invention did much research and found

that by reacting a metal enolate prepared from an α -haloacetic acid or an acceptable salt thereof with a carboxylic acid derivative, particularly a carboxylic acid ester, the objective α -halo ketone can be obtained in safety in a single step through in situ decarboxylation. They further discovered that this process can be successfully exploited for the conversion of optically active α -amino acid derivatives, particularly optically active α -amino acid esters, to the corresponding optically active α -halo ketones.

[0009] The inventors further developed processes for producing optically active halohydrins and epoxides in 2 or 3 steps from α -amino derivatives, particularly α -amino acid ester derivatives, by reducing said α -halo ketones to α -halohydrins and further to epoxides. The present invention has been developed on the basis of the above findings.

[0010] Therefore, the present invention is directed to a process for producing an α -halo ketone of general formula (3)

 R^1 X R^2 X X

(wherein R¹ represents alkyl, aralkyl or aryl; R² represents hydrogen, alkyl, aralkyl or aryl; X represents halogen) which comprises reacting a carboxylic acid derivative of the general formula (1)

$$R^1COA$$
 ~ (1)

²⁵ (wherein R¹ are as defined above; A represents a leaving group), or a carboxylic acid ester of the general formula (4)

$$R^1CO_2R^3$$
 (4)

(wherein R¹ and R³ independently represent alkyl, aralkyl or aryl) with a metal enolate prepared from an α -haloacetic acid of the general formula (2)

$$X CO_2H$$
 (2)

(wherein R² and X are as defined above) R² represents hydrogen, alkyl, aralkyl or aryl; X represents halogen) or an acceptable salt thereof and decarboxylating the reaction product in situ;

a process for producing an α -halohydrin of the general formula (11)

$$R^1$$
 X
 R^2
 (11)

(wherein R^1 , R^2 and X are as defined above) which comprises the steps of producing the α -halo ketone (3) and reducing said α -halo ketone;

a process for producing an epoxide of the general formula (13)

55

10

15

20

35

45

$$R^1 \longrightarrow \begin{pmatrix} 0 \\ R^2 \end{pmatrix}$$
 (13)

(wherein R^1 and R^2 are as defined above) which comprises the steps of producing the α -halodryn (11) and treating said α -halohydrin with a base;

and processes for producing a chloroketone (9), a chlorohydrin (12) and an epoxide (14) which comprises using an amino acid ester of the general formula (8)

$$R^5$$
 COA (8) P^1 N P^2

(wherein R⁵ represents hydrogen, alkyl, aralkyl or aryl; A represents a leaving group; P¹ and P² independently represent hydrogen or an amino-protecting group or, taken together, represent phthaloyl), or of the general formula (10)

$$R^{5}$$
 $CO_{2}R^{3}$ (10)

(wherein R³ represents alkyl, aralkyl or aryl; R⁵ represents hydrogen, alkyl, aralkyl or aryl; P¹ and P² independently represent hydrogen or an amino-protecting group or, taken together, represent phthaloyl), and particularly a process for producing the corresponding optically active chloroketone, chlorohydrin and epoxide which comprises using an optically active L-phenylalanine ester or D-phenylalanine ester.

35 BRIEF DESCRIPTION OF THE DRAWINGS

[0011]

5

10

15

25

40

45

50

55

Fig. 1 shows an NMR chart of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II) as obtained in Example 10. Fig. 2 shows an IR chart of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II) as obtained in Example 10.

Fig. 3 shows an NMR chart of L-[N-(benzyloxycarbonyl)-phenylalanyl]methyl chloride (III) as obtained in Example 13.

Fig. 4 shows an IR chart of L-[N-(benzyloxycarbonyl)-phenylalanyl]methyl chloride (III) as obtained in Example 13.

Fig. 5 shows an NMR chart of L-[N-(t-butoxycarbonyl)-phenylalanyl]methyl chloride (IV) as obtained in Example 14.

Fig. 6 shows an IR chart of L-[N-(t-butoxycarbonyl)-phenylalanyl]methyl chloride (IV) as obtained in Example 14.

Fig. 7 shows an NMR chart of L-[N-(ethoxycarbonyl)-phenylalanyl]methyl chloride (V) as obtained in Example 22.

Fig. 8 shows an IR chart of L-[N-(ethoxycarbonyl)-phenylalanyl]methyl chloride (V) as obtained in Example 22.

Fig. 9 shows an NMR chart of L-[N-(methoxycarbonyl)-phenylalanyl]chlorohydrin (VI) as obtained in Example 24.

Fig. 10 shows an IR chart of L-[N-(methoxycarbonyl)-phenylalanyl]chlorohydrin (VI) as obtained in Example 24.

Fig. 11 shows an NMR chart of L-(N-methoxycarbonyl)-phenylalanyl epoxide (VII) as obtained in Example 25.

Fig. 12 shows an IR chart of L-(N-methoxycarbonyl)-phenylalanyl epoxide (VII) as obtained in Example 25.

Fig. 13 shows an NMR chart of L-[N-(t-butoxycarbonyl)-phenylalanyl]chlorohydrin (VIII) as obtained in Example 26.

Fig. 14 shows an IR chart of L-[N-(t-butoxycarbonyl)-phenylalanyl]chlorohydrin (VIII) as obtained in Example 26.

Fig. 15 shows an NMR chart of L-(N-t-butoxycarbonyl)-phenylalanyl epoxide (IX) as obtained in Example 27.

Fig. 16 shows an IR chart of L-(N-t-butoxycarbonyl)-phenylalanyl epoxide (IX) as obtained in Example 27.

Fig. 17 shows an NMR chart of L-[N-(benzyloxycarbonyl)-phenylthioalanyl]methyl chloride (X) as obtained in Example 28.

Fig. 18 shows an IR chart of L-[N-(benzyloxycarbonyl)-phenylthioalanyl]methyl chloride (X) as obtained in Example

DETAILED DESCRIPTION OF THE INVENTION

5 [0012] Taking an exemplary combination of substrates and reactants falling under the purview of the present invention, the reaction schema of the invention is presented below.

[0013] The α -halohydrins and epoxides originating from L-phenylalanine, which are obtainable with advantage in accordance with the production technology of the present invention, can for example be derivatized to HIV protease inhibitors as reported by Kevin E. B. Parkes et al. (J. Org. Chem., 59, 3656, 1994).

[0014] The present invention is now described in detail.

[0015] A, referred to hereinbefore, is a group known to be capable of leaving and also forming a reactive carboxylic acid derivative in the form of COA, thus including but being not limited to alkoxy groups such as methoxy, ethoxy, etc., alkoxycarbonyl groups such as methoxycarbonyl, ethoxycarbonyl, etc., groups forming metal salts of carboxylic acids, such as OLi, ONa, etc., and halogen atoms such as Cl, Br and the like.

[0016] R¹, referred to hereinbefore, represents, each as optionally substituted, straight-chain or branched alkyl of 1 to 30 carbon atoms, aryl of 6 to 35 carbon atoms, or aralkyl of 7 to 36 carbon atoms, thus including but being not limited to CH_3 -, $CH_3(CH_2)$ -, (where n represents an integer of 1 to 29), $(CH_3)_2$ -CH-, $(CH_3)_3$ - (CH_2) -, $(CH_3)_2$ - (CH_2) -, $(CH_3)_3$ - $(CH_$

[9017] R², referred to hereinbefore, represents hydrogen, alkyl of 1 to 5 carbon atoms, aryl of 6 to 10 carbon atoms, or aralkyl of 7 to 11 carbon atoms, and is preferably hydrogen.

[0018] R³, referred to hereinbefore, represents, each as optionally substituted, straight-chain or branched alkyl of 1 to 10 carbon atoms, aryl of 6 to 15 carbon atoms, or aralkyl of 7 to 21 carbon atoms, thus including but being not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, phenyl, benzyl, α -methylbenzyl, and phenylpropyl. Particularly preferred are methyl and ethyl.

[0019] A preferred example of the metal enolate mentioned above is a magnesium enolate prepared by reacting a magnesium amide of the general formula (5)

(wherein B and D independently represents alkyl, aralkyl, aryl or silyl or, taken together, represent cycloalkyl; Y represents

B)N--

5

10

20

or halogen) with an α -haloacetic acid of the general formula (2) or an acceptable salt thereof; and a magnesium enolate prepared by reacting a Grignard reagent of the general formula (6)

$$R^4MgZ$$
 (6)

(wherein R⁴ represents alkyl, aralkyl, or aryl; Z represents halogen or R⁴) and an α -haloacetic acid of the general formula (2) or an acceptable-salt thereof.

[0020] In the specification of the present invention, the terms "metal enolate", "enolate" and "enolate anion" mean the anionic active species formed by the reaction between an α -haloacetic acid such as monochloroacetic acid or a salt thereof and a base such as chloromagnesium diisopropylamide. The term "Mg enolate" means the anionic active species formed by the reaction between an α -haloacetic acid or a salt thereof and an Mg base such as chloromagnesium diisopropylamide or t-butylmagnesiumamide.

[0021] B and D, referred to above, independently represent straight-chain or branched alkyl of 1 to 10 carbon atoms, aryl of 6 to 15 carbon atoms, aralkyl of 7 to 21 carbon atoms, or silyl of 3 to 10 carbon atoms, thus including but being not limited to isopropyl, methyl, ethyl, phenyl, benzyl, trimethylsilyl, and, taken together, cyclohexyl. Particularly preferred are cases in which both B and D represent isopropyl, both B and D represent trimethylsilyl, and B and D, taken together, represent cyclohexyl.

[0022] R⁴, referred to above, represents straight-chain or branched alkyl of 1 to 10 carbon atoms, aryl of 6 to 15 carbon atoms, or aralkyl of 7 to 21 carbon atoms, including but being not limited to t-butyl, t-amyl, isopropyl, sec-butyl, methyl, ethyl, benzyl, and phenyl. Particularly preferred are quaternary or tertiary alkyl groups such as t-butyl, t-amyl, isopropyl, and sec-butyl.

[0023] R⁵, referred to above, represents hydrogen or, each as optionally substituted by a hetero-atom, straight-chain or branched alkyl of 1 to 20 carbon atoms, aryl of 6 to 25 carbon atoms, or aralkyl of 7 to 26 carbon atoms, and is typically the side chain of a common amino acid or the side chain of an amino acid derivative obtained by modifying a common amino acid.

[0024] Specifically, methyl, ethyl, isopropyl, t-butyl, hydroxymethyl, 1-hydroxyethyl, mercaptomethyl, methylthiomethyl, phenylthiomethyl, phenylthiomethyl, phenylthiomethyl, phenyl, p-methoxyphenyl, p-hydroxyphenyl, benzyl, p-methoxybenzyl, etc. can be mentioned. [0025] P¹ and P², both referred to above, independently represent hydrogen or an amino-protecting group. The amino-protecting group is not particularly limited but can be any protecting group that is conventionally used for masking an amino group, thus including the species described in inter alia Protective Groups in Organic Synthesis, 2nd Ed. (authored by Theodora W. Green and published by John Wiley & Sons, 1990) on pages 309 to 384. Thus, methoxycarbonyl, t-butoxycarbonyl, benzyloxycarbonyl, ethoxycarbonyl, acetyl, trifluoroacetyl, benzyl, dibenzyl, phthalimido, tosyl, benzoyl, etc. can be mentioned. Particularly preferred are methoxycarbonyl, t-butoxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl and dibenzyl. When P¹ and P², mentioned above, jointly represent a phthaloyl group, it can be regarded as a form of said amino-protecting group.

[0026] X represents halogen and specifically includes CI, Br, I, and F. Particularly preferred is CI. Y, Z and W each may represent halogen, in which case it can be CI, Br, I or F.

[0027] The acceptable salt of α -haloacetic acid mentioned above includes the sodium salt, magnesium salt, lithium salt, potassium salt, zinc salt, calcium salt, copper salt, trimethylsilyl salt, ammonium salt, etc. These salts may be prepared in the reaction system for use as they are or be previously prepared.

[0028] As specific examples of said α -haloacetic acid of general formula (2) or of said acceptable salt thereof there can be mentioned monochloroacetic acid, monobromoacetic acid, monofluoroacetic acid, sodium monochloroacetate, chloromagnesium monochloroacetate, bromomagnesium monochloroacetate, magnesium bis(monochloroacetate), lithium monochloroacetate, potassium monochloroacetate, trimethylsilyl monochloroacetate, monochloropropionic acid and so forth.

[0029] Moreover, a variety of ammonium salts of monochloroacetic acid with ammonia, t-butylamine, diethylamine, diisopropylamine, triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine, N,N-dimethylaniline, N-ethylpiperidine, N-methylmorpholine, diazabicyclotriethylenediamine, etc. can also be mentioned. While ammonium salts can be men-

tioned but not limited to the above, the ammonium salts with secondary or tertiary amines are preferred.

[0030] The conditions for practicing the processes for producing in the present invention are now described.

[0031] Regarding the production method for a salt of the α -haloacetic acid of general formula (2), various processes can be mentioned according to the kinds of salt-forming metals. For example, by treating sodium monochloroacetate with a metal salt such as magnesium chloride, calcium chloride, zinc chloride or aluminum chloride in a suitable solvent, the corresponding metal salt can be obtained. Moreover, by treating an α -haloacetic acid such as monochloroacetic acid with said amines, respectively, in a suitable solvent, a variety of ammonium salts can be obtained.

[0032] Taking the production of magnesium monochloroacetate as an example, the following processes can be mentioned.

10

15

①A process in which sodium monochloroacetate is treated with preferably 1 to 2 molar equivalents, based on sodium monochloroacetate, of an inorganic magnesium salt such as magnesium chloride, magnesium sulfate or the like in a solvent such as tetrahydrofuran (THF), t-butyl methyl ether (MTBE) or the like and the reaction mixture is used as it is or after the byproduct sodium salt such as sodium chloride is filtered off.

②A process in which monochloroacetic acid is either treated with preferably 1 to 2 molar equivalents, based on the same acid, of magnesium in a solvent such as THF, MTBE or the like and the resulting magnesium monochloroacetate is used as it is or treated with preferably 1 to 2 molar equivalents, based on the same acid, of an inorganic magnesium salt such as magnesium chloride, magnesium sulfate or the like and the resulting product such as chloromagnesium monochloroacetate is used.

20

25

30

35

45

50

[0033] The metal enolate mentioned above is produced by treating a haloacetic acid with 2 or more molar equivalents of a base or treating a previously prepared acceptable salt of the α -haloacetic acid with a base.

[0034] The base that can be used for this purpose includes magnesium amides such as chloromagnesium diisopropylamide, bromomagnesium diisopropylamide, magnesium bis(diisopropyl)amide, chloromagnesium dicyclohexylamide, chloromagnesium t-butylamide, chloromagnesium hexamethyldisilazide, etc.; alkylmagnesium compounds such as t-butylmagnesium chloride, t-butylmagnesium bromide, t-amylmagnesium chloride, di-t-butylmagnesium, isopropylaminomagnesium chloride, etc.; organolithium compounds such as lithium diisopropylamide, lithium hexamethyldisilazide, lithium cyclohexylamide, n-butyl lithium, t-butyllithium, etc.; potassium t-butoxide, sodium hydride, magnesium ethoxide, sodium ethoxide, and so forth. Particularly preferred are magnesium amides such as chloromagnesium diisopropylamide etc. and quarternary alkylmagnesium compounds such as t-butylmagnesium chloride and so forth. These substances can be used singly or in combination.

[0035] The amount of said base, in case said acceptable salt of α -haloacetic acid is prepared in situ, is 2 to 6 molar equivalents, preferably 2 to 3 molar equivalents, based on the α -haloacetic acid. Where said acceptable salt of α -haloacetic acid is prepared beforehand, the base is used in a proportion of 1 to 3 molar equivalents, preferably 1 to 1.5 molar equivalents, based on the α -haloacetic acid.

[0036] When a Grignard reagent such as t-butylmagnesium chloride is used for the base, an enhanced yield can be expected by adding amine independently. The amine that can be used for this purpose is usually a secondary amine or a tertiary amine, and is preferably a tertiary amine. Thus, the amine includes but is not limited to diisopropylamine, triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine, N,N-dimethylaniline, N-ethylpyperidine, N-methylmorpholine, and diazabicyclotriethylenediamine. There is no particular limitation on the amount of the amine but the amine is used in a proportion of preferably 0.01 to 10 molar equivalents and more preferably 0.1 to 6 molar equivalents based on the carboxylic acid derivative of general formula (1) or (8), particularly the ester of general formula (4) or (10). These amines can be added previously to the reaction system or added with the progress of reaction.

[0037] The reaction solvent that can be used includes tetrahydrofuran, t-butyl methyl ether, diethyl ether, 1,2-dimethoxyethane, N,N-dimethylformamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, and toluene, among others. These solvents are used singly or in combination.

[0038] The enolate of the salt of a haloacetic acid can be prepared by treating the α -haloacetic acid or a salt thereof with above-mentioned molar equivalent of said base in said solvent at -70°C to 40°C, preferably -50°C to 20°C, and more preferably -30 °C to 0 °C and stirring the mixture for 10 minutes to 20 hours, preferably 30 minutes to 5 hours.

[0039] The α -haloacetate enolate anion of the salt of an α -haloacetic acid generated in this manner is allowed to react with a carboxylic acid derivative of general formula (1) or (8), particularly an ester of general formula (4) or (10) to give the objective α -halo ketone through decarboxylation in situ. The term in situ means any stage of the course from the beginning of mixing of the reactants to the end of after-treatment. The proportion of the α -haloacetic acid or salt thereof to the carboxylic acid derivative or ester is 1 to 4 equivalents, preferably 1 to 3 equivalents.

[0040] As to the reaction procedure, the above reaction can be carried out typically by adding said carboxylic acid derivative or ester or a solution thereof in a reaction solvent to the enolate anion solution prepared as above at -70 °C to 40 °C, preferably -50 °C to 30 °C, more preferably -30 °C to 20 °C and stirring the mixture for 10 minutes to 20 hours, preferably 30 minutes to 10 hours.

[0041] It is also possible to add the enolate anion of the α -haloacetate to the carboxylic acid derivative or ester and stir the mixture under the like conditions or, as a further alternative, it is possible to react the haloacetic acid or a salt thereof with said base in the presence of the carboxylic acid derivative or ester and allow the resulting enolate anion of the α -haloacetate to take part in the reaction.

[0042] Among species of the N-protected amino acid derivative of general formula (8) or of the N-protected amino acid ester of general formula (10), regarding any compound having hydrogen bound to N, N atom can be previously protected with e.g. a trimethylsilyl group by reacting the substrate compound with a silylating agent, e.g. trimethylsilyl chloride, in the presence of a base, or submitted to the reaction without prior protection. When it is to be protected, the reaction solvent mentioned above can be used as the solvent.

[0043] The after-treatment following the reaction may typically comprise the following procedure. After the above reaction time, the reaction is stopped by adding diluted hydrochloric acid, an aqueous solution of ammonium chloride, or the like and the reaction mixture is extracted with a solvent such as ethyl acetate, diethyl ether, toluene or the like. The extract is washed with saturated NaHCO $_3$ solution, saturated NaCl solution, etc. and dehydrated over a desiccant such as anhydrous sodium sulfate or magnesium sulfate. After the desiccant is filtered off, the filtrate is concentrated and purified by conventional means known to those skilled in the art, such as recrystallization or column chromatography, to provide the α -halo ketone of general formula (3) or general formula (9).

[0044] This α -halo ketone of general formula (3) or general formula (9) is then reduced to the α -halohydrin of general formula (11) or general formula (12). This step is now described.

[0045] This reduction can be carried out typically under the conditions described in Journal of Medicinal Chemistry, 37, 1758, 1994. As the reducing agent, sodium borohydride can be used with advantage. Its amount is 1 to 10 molar equivalents, preferably 2 to 5 molar equivalents, based on the α -halo ketone.

[0046] The reaction solvent that can be used includes lower alcohols such as methanol, ethanol, etc., water, toluene, ethyl acetate, and tetrahydrofuran, among others. These solvents can be used singly or as a mixture.

[0047] The reaction is carried out under stirring at -10 °C to 40 °C, preferably -10 °C to 10 °C, for 10 to 20 minutes, preferably 30 to 60 minutes.

[0048] The after-treatment following the reaction may typically comprise the following procedure. After the above reaction time, the reaction is stopped by adding diluted hydrochloric acid, an aqueous solution of ammonium chloride, or the like and the reaction mixture is extracted with a solvent such as ethyl acetate, diethyl ether, toluene or the like. The extract is washed with saturated NaHCO $_3$ solution, saturated NaCl solution, etc. and dehydrated over a desiccant such as anhydrous sodium sulfate or magnesium sulfate After the desiccant is filtered off, the filtrate is concentrated and purified by conventional means known to those skilled in the art, such as crystallization or column chromatography, to provide the α -halohydrin of general formula (11) or general formula (12).

[0049] Then, the α -halohydrin of general formula (11) or general formula (12) is treated with a base to provide the epoxide of general formula (13) or general formula (14). The preferred base for use in this step includes sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, potassium t-butoxide, and sodium hydride, among others. The amount of the base relative to the α -halohydrin is 1 to 10 molar equivalents, preferably 1 to 4 molar equivalents. As the reaction solvent, lower alcohols such as methanol, etc., water, toluene, acetone, tetrahydrofuran, etc. can be used singly or in combination. This reaction is carried out by treating the α -halohydrin with said base at -10 °C to 80°C, preferably 0°C to 40°C, for 10 to 180 minutes, preferably 30 to 60 minutes.

[0050] After the above reaction time, the reaction is stopped by adding diluted hydrochloric acid, an aqueous solution of ammonium chloride or the like and the reaction mixture is extracted with a solvent such as ethyl acetate, diethyl ether or toluene. The extract is washed with saturated aqueous NaHCO₃ solution, saturated aqueous NaCl solution, etc. and dried over a desiccant such as anhydrous sodium sulfate or anhydrous magnesium sulfate. After the desiccant is filtered off, the filtrate is concentrated to provide the epoxide.

EXAMPLES

[0051] The following examples are intended to describe the present invention in further detail and should by no means be construed as defining the scope of the invention.

55

50

Example 1 Production of phenacyl chloride (I)

[0052]

5

10

[0053] Under the atomosphere of nitrogen gas, diisopropylamine (2.42 g, 24.0 mmol) was dissolved in tetrahydrofuran (20 mL) and the solution was cooled to 0°C. To this solution was added n-butyllithium (1.6 M/hexane, 13.8 mL, 22.0 mmol) and the mixture was stirred for 10 minutes. After this solution was cooled to -30°C, monochloroacetic acid (0.946 g, 10.0 mmol) was added and the mixture was stirred for 30 minutes. To this solution was added ethyl benzoate (0.514 g, 3.33 mmol) and the mixture was stirred at -30 °C for 30 minutes. Thereafter, the temperature of the mixture was increased to 25 °C for 30 minutes. This reaction mixture was poured in 1N-HCl (50 mL) and extracted with ethyl acetate (50 mL x 2). The extract was washed with saturated aqueous NaHCO₃ solution (50 mL x 1) and water (50 mL x 1) in that order and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide a light-yellow oil (0.654 g). Comparative HPLC analysis of this product with an authentic sample revealed that the product is predominantly composed of phenacyl chloride (reaction yield 57.7%). Diisopropyl benzamide (reaction yield 3.4%) was also produced as a byproduct and 0.5% of the ethyl benzoate remained to be unreacted.

Examples 2 to 7 Production of phenacyl chloride (I)

[0054] Examples 2 to 7 were carried out in substantially the same manner as Example 1 using the following reaction temperature and time.

35

40

45

50

5					U	0	0.7	5.6	0.3	2.3	60.3
			Yield		۵	11.8	0	16.2	71.9	49.4	0.7
10					๗	64.0	51.3	49.7	11.8	28.7	4.7
15						30min.	lhr.		1hr.		
20		ion	temperature	ime		-30 °C \sim rt, 30min.	-78 °C ~ rt, 1hr.	-30 °C, 30min.	-20 °C \sim rt, 1hr.	rt, 1hr.	0 °C ~ rt, 1hr.
25		Reaction	tempe	and time	Д	-30 %	-78 %	-30 %	-20 %	rt,	ິ ວຸ 0
30		ď	ture	v		30min.	30min.	30min.	1hr.	t,3hrs.	Omin.
35		Reaction	temperature	and time	Ą	-30 °C,	-78 °C,	-30°C,	-20 °C,	$0 \text{C} \sim \text{rt,3hrs.}$	0°C, 30min.
40		Monochloro-	[C		. eq.)	0	0		0		
45		Monoc	acetic	acid	(mol.	3.(3.(. 2.()• T	1.(1.(
50	rable 1	Example				2	m	4	ſſ	9	7

55 Example 8 Production of phenacyl chloride (I)

[0055] Under the atomosphere of nitrogen gas, diisopropylamine (0.668 g) was added to 6.67 mL of 0.9 M n-butyl-magnesium chloride/tetrahydrofuran (6 mmol). The mixture was stirred at room temperature for 4 hours, after which it

was cooled to 0 °C. Then, a solution of 284 mg (3.0 mmol) of monochloroacetic acid and 136 mg (1 mmol) of methyl benzoate in 5 mL of tetrahydrofuran was added portionwise for 5 minutes. This mixture was stirred at 0 °C for 30 minutes and, while the temperature was allowed to rise to room temperature, further stirred for 30 minutes. This reaction mixture was poured in 1N-HCl (30 mL) and extracted with ethyl acetate (30 mL x 2). The extract was washed with saturated aqueous NaHCO₃ solution (30 mL x 1) and water (30 mL x 1) in that order and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide a light-yellow oil. Comparative HPLC analysis of this oil with an authentic sample revealed that the oil was predominantly composed of the objective phenacyl chloride (reaction yield 73.7%). Diisopropylbenzamide (reaction yield 0.4%) was obtained as a byproduct.

Example 9 Production of phenacyl chloride (I)

[0056] To 5 mL of tetrahydrofuran was added hexamethyldisilazane (6.6 mmol) under the atomosphere of nitrogen gas and after the solution was cooled to 0°C, 6.67 mL of 0.9 M n-butylmagnesium chloride/tetrahydrofuran (6 mmol) was added. The mixture was stirred at 0 °C for 10 minutes. Then, after cooling to -30°C, a solution of 284 mg (3.0 mmol) of monochloroacetic acid and 136 mg (1 mmol) of methyl benzoate in 5 mL of tetrahydrofuran was added dropwise for 5 minutes. This mixture was stirred at -30 °C for 30 minutes and, while the temperature was allowed to rise to room temperature, was further stirred for 1 hour. This reaction mixture was poured in 1N-HCl (50 mL) and extracted with ethyl acetate (50 mL x 2). The extract was washed with saturated aqueous NaHCO₃ solution (50 mL x 1) and water (30 mL x 1) in that order and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide a light-yellow oil. Comparative HPLC analysis of this oil with an authentic sample revealed that the oil was predominantly composed of the objective phenacyl chloride (reaction yield 84.3%). Methylbenzoate (reaction yield 17.5%) was obtained as a byproduct.

Example 10 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

[0057]

35

40

50

55

30

10

20

25

[0058] Under the atomosphere of nitrogen gas, diisopropylamine (2.42 g, 24.0 mmol) was dissolved in tetrahydrofuran (20 mL) and the solution was cooled to 0°C. Then, n-butyllithium (1.6 M/hexane, 13.8 mL, 22.0 mmol) was added and the mixture was stirred for 10 minutes. After the mixture was cooled to -30 °C, monochloroacetic acid (0.946 g, 10.0 mmol) was added and the mixture was further stirred for 30 minutes. In a separate reaction vessel, L-N-(methoxycarbonyl)phenylalanine methyl ester (purity 83.0%, 0.950 g, 3.33 mmol) was dissolved in tetrahydrofuran (10 mL) under the atomosphere of nitrogen gas and, after addition of n-butyllithium (1.6 M/hexane, 2.1 mL, 3.33 mmol) at -78 °C, the mixture was further stirred for 10 minutes. To this mixture was added trimethylsilyl chloride (0.363 g, 3.33 mmol) and the temperature of the mixture was allowed to rise to room temperature for 30 minutes. This solution was added gradually to the above lithium diisopropylamide solution cooled at -30 °C beforehand and the reaction was conducted at -30 °C for 30 minutes. Then, while the temperature of the reaction mixture was allowed to rise to room temperature, the reaction was further carried out for 30 minutes. This reaction mixture was poured in 1N-HCl (50 mL) and extracted with ethyl acetate (50 mL x 2). The extract was washed with saturated aqueous NaHCO₃ solution (50 mL x 1) and water (30 mL x 1) in that order and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide light-yellow crystals (0.888 g).

[0059] This crystal crop was recrystallized from ethyl acetate/hexane (2 mL/10 mL) to provide white crystals of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (0.261 g, yield after recrystallization: 30.7%). The reaction yield of the objective compound as calculated from the result of HPLC analysis of the above extract was 41.6%. The residue of the starting compound N-methoxycarbonylphenylalanine methyl ester was found to be 12.3%. The NMR and IR spectra of the product L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride are presented in Figs. 1 and 2.

Example 11 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

[0060] Under the atomosphere of nitrogen gas, diisopropylamine (4.90 g, 48.4 mmol) was dissolved in tetrahydrofuran (50 mL) and the solution was cooled to 0°C. To this solution was added n-butyllithium (1.66 M/hexane, 26.5 mL, 44 mmol) and the mixture was stirred for 10 minutes. After cooling to -30°C, a solution of monochloroacetic acid (1.89 g, 20.0 mmol) in tetrahydrofuran (10 mL) was added and the mixture was stirred for 30 minutes. To this solution was gradually added a solution of L-N-(methoxycarbonyl)phenylalanine methyl ester (purity 88.0%, 1.348 g, 5 mmol) in tetrahydrofuran (10 mL) and the reaction was carried out at -30°C for 30 minutes. Then, while the temperature of the reaction mixture was allowed to rise to room temperature, the reaction was further carried out for 30 minutes. This reaction mixture was poured in 1N-HCI (50 ml) and extracted with ethyl acetate (50 mL x 2). The extract was washed with saturated aqueous NaHCO₃ solution (50 mL x 1) and water (50 mL x 1) in that order and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide light-yellow crystals (1.683 g). This crystal crop was recrystallized from ethyl acetate/hexane (2 mL/10 mL) to provide white crystals of L-[N-(methoxycarbonyl) phenylalanyl]methyl chloride (0.546 g, yield after recrystallization 42.7%).

Example 12 Production of L-[N-(methoxycarbony)-phenylalanyl]methyl chloride (II)

[0061] Under the atomosphere of nitrogen gas, diisopropylamine (0.668 g) was added to 6.67 mL of 0.9 M n-butyl-magnesium chloride/tetrahydrofuran (6 mmol) and the mixture was stirred at 0°C for 10 minutes. Then, a solution of 284 mg (3.0 mmol) of monochloroacetic acid and 201 mg (0.75 mmol) of L-N-(methoxycarbonyl)phenylalanine methyl ester (purity 88.0%) in 5 mL of tetrahydrofuran was added for 5 minutes and while the temperature was allowed to rise to room temperature, the mixture was stirred for 1 hour. This reaction mixture was poured in 1N-HCl (30 mL) and extracted with ethyl acetate (30 mL x 2). The extract was washed with saturated aqueous NaHCO₃ solution (50 mL x 1) and saturated aqueous NaCl solution (50 mL x 1) in that order and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide light-yellow crystals (0.253 g). This crystal crop was recrystallized from ethyl acetate/hexane (0.5 mL/5mL) to provide white crystals of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (0.042 g, yield after recrystallization: 21.9%).

Example 13 Production of L-[N-(benzyloxycarbonyl)-phenylalanyl]methyl chloride (III)

[0062]

15

20

30

35

40

[0063] Using L-N-(benzyloxycarbonyl)phenylalanine methyl ester (purity 89.8%, 1.16 g, 3.33 mmol) in lieu of [0064] L-N-(methoxycarbonyl)phenylalanine methyl ester, the reaction procedure of Example 10 was otherwise repeated to provide light-yellow crystals (0.99 g). This crystal crop was recrystallized from ethyl acetate-hexane (2 mL-10 mL) to provide white crystals of L-[N-(benzyloxycarbonyl)phenylalanyl]methyl chloride (0.340 g, yield after recrystallization: 32.3%). The NMR and IR spectra of this L-[N-(benzyloxycarbonyl)phenylalanyl]methyl chloride are presented in Figs. 3 and 4, respectively.

55

Example 14 Production of L-[N-(t-butoxycarbonyl)-phenylalanyl]methyl chloride (IV)

[0065]

10

15

20

30

50

55

5

[0066] Under the atomosphere of nitrogen gas, diisopropylamine (3.68 g, 37 mmol) was dissolved in tetrahydrofuran (40 ml) and the solution was cooled to 0°C. To this solution was added n-butyllithium (1.6 M/hexane, 30 mL, 48 mmol) and the mixture was stirred for 10 minutes. After this solution was cooled to -30°C, monochloroacetic acid (2.25 g, 23.8 mmol) was added and the mixture was stirred for 30 minutes. In a separate reaction vessel, L-N-(t-butoxycarbonyl) phenylalanine methyl ester (purity 87.0%, 1.61 g, 5 mmol) was dissolved in tetrahydrofuran (10 mL) under the atomosphere of nitrogen gas and, after addition of n-butyllithium (1.6 M/hexane, 3.17 mL, 5 mmol) at -78 °C, the mixture was further stirred for 10 minutes. To this mixture was added trimethylsilyl chloride (0.545 g, 5 mmol) and the temperature of the mixture was allowed to rise to room temperature for 30 minutes. This solution was added gradually to the above lithium diisopropylamide solution cooled at -30 °C beforehand and the reaction was conducted at -30 °C for 30 minutes. Then, while the temperature of the reaction mixture was allowed to rise to room temperature, the reactionwas further carried out for 60 minutes. This reaction mixture was poured in saturated aqueous NH₄CI solution (50 mL) and extracted with ethyl acetate (50 mL x 2). The extract was washed with saturated aqueous NaHCO3 solution (50 mL x 1) and water (50 mL x 1) in that order and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide light-yellow crystals (2.062 g). This crystal crop was recrystallized from ethyl acetate/ hexane (2 mL/10 mL) to provide white crystals of L-[N-(t-butoxycarbonyl)phenylalanyl]methyl chloride (0.37 g, yield 25%). The NMR and IR spectra of the product L-[N-(t-butoxycarbonyl)phenylalanyl]methyl chloride are presented in Figs. 5 and 6, respectively.

[α] _D ²⁵ = -54.92 (c=1.0, EtOH) m.p.: 103.5 to 105.2°C

35 Example 15 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

[0067] Under the atomosphere of nitrogen gas, a solution of L-N-(methoxycarbonyl)phenylalanine methyl ester (purity 94%, 25.33 g, 100 mmol), sodium monochloroacetate (17.48 g, 150 mmol) and magnesium chloride (14.29 g, 150 mmol) in tetrahydrofuran (78.3 ml) was stirred at 20 through 25°C for 3 hours (solution A). Separately, also under the atomosphere of nitrogen gas, diisopropylamine (44.52 g, 440 mmol) was added to a solution of n-butylmagnesium chloride (2.5 mol/kg solution, 159.7 g, 400 mmol) in tetrahydrofuran (12.8 ml) for 30 minutes at 40°C and the mixture was further stirred at 40°C for 2 hours (solution B). At an internal temperature of about 10°C, this solution B was added to the above solution A for about 30 minutes. After completion of this addition, the internal temperature was increased to 40°C and the mixture was further stirred for 2 hours. To this reaction mixture was added a solution of 35% HCI (91.7 g) and water (200 ml) and the mixture was stirred for 30 minutes for hydrolysis.

[0068] The organic phase was separated and washed with saturated aqueous NaHCO₃ solution (200 ml) and saturated aqueous NaCl solution (20 ml) in that order. The organic phase was then concentrated under reduced pressure to give a light-yellow solid (23.5 g). Quantitative analysis by HPLC showed the formation of 22.45 g (87.8 mmol) of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (II). This solid was recrystallized from isopropyl alcohol to provide white crystals of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (19.8 g, 77.6 mmol, yield 77.6%).

Example 16 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

[0069] Under the atomosphere of nitrogen gas, t-butyl magnesium chloride (2M/L THF, 30.0 ml, 60 mmol) was added to a solution of L-N-(methoxycarbonyl)phenylalanine methyl ester (2.37 g, 10 mmol), sodium monochloroacetate (1.74 g, 15 mmol) and triethylamine (1.52 g, 15 mmol) in tetrahydrofuran (40 ml) for about 3 hours at an internal temperature not exceeding 10 °C. After completion of this addition, the internal temperature was increased to 20°C and the mixture was further stirred for 2 hours. Then, a solution of 35% HCl (10.0 g) and water (100 ml) and toluene (100 ml) were

added and the mixture was stirred for 30 minutes for hydroly sis. The organic phase was separated and washed with saturated aqueous NaHCO₃ solution (50 ml) and saturated aqueous NaCl solution (50 ml) in that order. Quantitative analysis of the organic phase by HPLC revealed the formation of 2.17 g (8.51 mmol, yield 85%) of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (II).

Example 17 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

5

10

15

25

[0070] Under the atomosphere of nitrogen gas, a solution of monochloroacetic acid (9.45 g, 0.1 mol) in tetrahydrofuran (42 ml) was added dropwise to a solution of metallic magnesium (1.216 g, 50 mmol) and magnesium chloride (4.76 g, 50 mmol) in tetrahydrofuran (20 ml) at an internal temperature of about 30 °C and the mixture was further stirred at room temperature for 24 hours. To this solution was added

[0071] L-N-(methoxycarbonyl)phenylalanine methyl ester (15.82 g, 66.6 mmol) (solution A) . Separately, under the atomosphere of nitrogen gas, diisopropylamine (29.65 g, 290.4 mmol) was added to a solution of n-butylmagnesium chloride (2.5 mol/kg, 106.36 g, 266.4 mmol) in tetrahydrofuran (8.5 ml) for 30 minutes at 40 °C and the mixture was further stirred at 40 °C for 2 hours (solution B). At an internal temperature of about 10 °C, this solution B was added to the above solution A for about 30 minutes. After completion of this addition, the internal temperature was increased to 40 °C and the mixture was further stirred for 2 hours. To this reaction mixture was added a solution of 35% HCl (66.7 g) and water (260 ml) and the mixture was stirred for 30 minutes for hydrolysis. The organic phase was separated and washed with saturated aqueous NaHCO₃ solution (260 ml) and saturated aqueous NaCl solution (260 ml) in that order. The organic phase was then concentrated under reduced pressure to give a light-yellow solid (16.5 g). Quantitative analysis by HPLC showed the formation of 14.4 g (56.6 mmol, yield 85%) of L-[N-(methoxycarbonyl)phenyl alanyl] methyl chloride (II).

Example 18 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

[0072] Under the atomosphere of nitrogen gas, diisopropylamine (668 mg, 6.60 mmol) was added to n-butylmagne-sium chloride (6.67 ml, 6 mmol) around room temperaure and the mixture was refluxed for 30 minutes (solution A). Separately, a solution of sodium monochloroacetate (669 mg, 5.74 mmol) and zinc chloride (408.8 mg, 3 mmol) in tetrahydrofuran (5 ml) was stirred around room temperature for 15 hours (solution B). In the neighborhood of room temperature, this solution B was added to the above solution A followed by addition of a solution of L-N-(methoxycarbony)phenylalanine methyl ester (404 mg, 1.71 mmol) in tetrahydrofuran (5 ml) at 0 to 5 °C. After completion of this addition, the mixture was stirred at 0°C through room temperature for 1 hour and then refluxed for 30 minutes. To this reaction mixture was added 1N-HCl (30 ml) and the mixture was stirred for 30 minutes for hydrolysis.

[0073] The organic phase was then separated. Quantitative analysis of the organic phase by HPLC revealed the formation of 263.1 mg (1.03 mmol) of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (II).

Example 19 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

[0074] Under the atomosphere of nitrogen gas, t-butylmagnesium chloride (2M/L THF, 30.0 ml, 60 mmol) was added to a solution of L-N-(methoxycarbonyl)phenylalanine methyl ester (2.37 g, 10 mmol), sodium monochloroacetate (1.74 g, 15 mmol) and 2,6-lutidine (3.21 g, 30 mmol) in tetrahydrofuran (40 ml) for about 3 hours at an internal temperature not exceeding 10 °C.

[0075] After completion of this addition, the internal temperature was increased to 20°C and the mixture was further stirred for 2 hours. Then, a solution of 35% HCl (10.0 g) and water (100 ml) and toluene (100 ml) were added and the mixture was stirred for 30 minutes for hydrolysis. The organic phase was separated and washed with saturated aqueous NaHCO₃ solution (50 ml) and saturated aqueous NaCl solution (50 ml) in that order. Quantitative analysis of the organic phase by HPLC revealed the formation of 2.17 g (8.51 mmol, yield 85%) of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (II).

Example 20 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

[0076] Under the atomosphere of nitrogen gas, t-butylmagnesium chloride (2M/L THF, 20.0 ml, 40 mmol) was added to a solution of L-N-(methoxycarbonyl)phenylalanine methyl ester (2.37 g, 10 mmol), sodium monochloroacetate (1.74 g, 15 mmol) and 2,6-lutidine (3.21 g, 30 mmol) in tetrahydrofuran (4 ml) for about 3 hours at an internal temperature not exceeding 10°C. After completion of this addition, the internal temperature was increased to 20°C and the mixture was further stirred for 2 hours. Then, a solution of 35% HCl (10.0 g) and water (100 ml) and toluene (100 ml) were added and the mixture was stirred for 30 minutes for hydrolysis. The organic phase was separated and washed with saturated aqueous NaHCO₃ solution (50 ml) and saturated aqueous NaCl solution (50 ml) in that order. Quantitative

analysis of the organic phase by HPLC revealed the formation of 1.87 g (7.31 mmol, yield 73%) of L-[N-(methoxycar-bonyl)phenylalanyl]methyl chloride (II).

Example 21 Production of L-[N-(methoxycarbonyl)-phenylalanyl]methyl chloride (II)

[0077] Under the atomosphere of nitrogen gas, t-butylmagnesium chloride (2M/L THF, 20.0 ml, 40 mmol) was added to a solution of L-N-(methoxycarbonyl)phenylalanine methyl ester (474 mg, 2 mmol) in tetrahydrofuran (1 ml) dropwise for about 15 minutes at an internal temperature of about 20 °C with stirring. To this solution was added a solution of monochloroacetic acid (284 mg, 3 mmol) and triethylamine (610 mg, 12 mmol) in tetrahydrofuran (2 ml) dropwise for about 15 minutes at an internal temperature of about 20 °C with stirring. After completion of this dropwise addition, the mixture was further stirred for 2 hours. Then, a solution of 35% HCl (2.5 g) and water (20 ml) was added, and the mixture was stirred for 15 minutes for hydrolysis and extracted with toluene (25 ml). The organic phase was washed with saturated aqueous NaHCO₃ solution (10 ml) and saturated aqueous NaCl solution (10 ml) in that order. Quantitative analysis of the organic phase by HPLC revealed the formation of 435 mg (1.70 mmol, yield 85%) of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (II).

Example 22 Production of L-[N-(ethoxycarbonyl) phenylalanyl]methyl chloride (V)

[0078]

נטטז

5

15

20

25

30

45

[0079] Under the atomosphere of nitrogen gas, a solution of L-N-(ethoxycarbonyl)phenylalanine methyl ester (5.02 g, 20 mmol), sodium monochloroacetate (3.49 g, 30 mmol) and magnesium chloride (2.86 g, 30 mmol) in tetrahydrofuran (18.3 ml) was stirred at 20 to 25 °C for 3 hours (solution A). Separately, under the atomosphere of nitrogen gas, diisopropylamine (9.92 g, 88 mmol) was added to a solution of n-butylmagnesium chloride (2.5 mol/kg, 31.6 g, 80 mmol) in tetrahydrofuran (10 ml) for 30 minutes at 40°C and the mixture was further stirred at 40°C for 2 hours (solution B). At an internal temperature of 10 °C to 15 °C, this solution B was added to the above solution A for about 30 minutes. After completion of this addition, the internal temperature was increased to 40°C and the mixture was further stirred for 1.5 hours. To this reaction mixture was added a solution consisting of 10% sulfuric acid (132 g) and ethyl acetate (80 ml) and the mixture was stirred for 30 minutes for hydrolysis. The organic phase was separated and washed with saturated aqueous NaHCO₃ solution (60 ml) and saturated aqueous NaCl solution (60 ml) in that order. The organic phase was then concentrated under reduced pressure to give a light-yellow solid (5.41 g). This solid was recrystallized from toluene/hexane to provide white crystals of L-[N-(ethoxycarbonyl)phenylalanyl]methyl chloride (V) (2.04 g, 7.95 mmol, yield 79.5%). The NMR and IR spectra of this product L-[N-(ethoxycarbonyl)phenylalanyl]methyl chloride (V) are presented in Figs. 7 and 8, respectively.

 $[\alpha]_D^{20} = -47.92$ (c=1.06, EtOH)

m.p.: 83.0 to 84.0°C

Example 23 Production of L-[N-(t-butoxycarbonyl)-phenylalanyl]methyl chloride (IV)

[0080] Under the atomosphere of nitrogen gas, a solution of L-N-(t-butoxycarbonyl)phenylalanine methyl ester (20.64 g, 71.6 mmol), sodium monochloroacetate (12.5 g, 107.4 mmol) and magnesium chloride (10.23 g, 107.4 mmol) in tetrahydrofuran (59 ml) was stirred at 20 to 25°C for 3 hours (solution A). Separately, under the atomosphere of nitrogen gas, diisopropylamine (31.9 g, 315 mmol) was added to a solution of n-butylmagnesium chloride (2.5 mol/kg, 115 g, 286.4 mmol) in tetrahydrofuran (9.2 ml) for 30 minutes at 40°C and the mixture was further stirred at 40°C for 2 hours (solution B).

[0081] At an internal temperature of about 10°C, this solution B was added to the above solution A for about 30 minutes. After completion of this addition, the internal temperature was increased to 40 °C and the mixture was further stirred for 2 hours. To this reaction mixture was added a solution consisting of 60% sulfuric acid (45.0 g) and water

(170 ml) and the mixture was stirred for 30 minutes for hydrolysis. The organic phase was separated and washed with 5% aqueous NaHCO₃ solution (90 ml) and 5% aqueous sodium sulfate solution (90 ml) in that order. The organic phase was then concentrated under reduced pressure to provide a light-yellow solid (20.5 g). Quantitative analysis by HPLC showed the formation of 18.36 g (61.5 mmol, yield 86%) of L-[N-(t-butoxycarbonyl)phenylalanyl]methyl chloride (IV). This solid was recrystallized from toluene-hexane to provide white crystals of L-[N-(t-butoxycarbonyl)phenylalanyl] methyl chloride (IV) (17.1 g, 57.3 mmol, yield 80%).

Example 24 Production of L-[N-(methoxycarbonyl)-phenylalanyl]chlorohydrin (VI)

[0082]

20

10

15

[0083] To an ice-cold solution of L-[N-(methoxycarbonyl)phenylalanyl]methyl chloride (2.00g, 7.82 mmol) in ethanol (20 mL) was added sodium borohydride (0.296 g, 7.82 mmol), and the mixture was stirred at that temperature for 30 minutes. This reaction mixture was poured in diluted sulfuric acid (0.383 g, 391 mmol dissolved in 50 mL of water) and extracted with ethyl acetate (100 mL x 2). The extract was washed with saturated aqueous NaHCO₃ solution (50 mL x 1) and water (50 mL x 1) in that order and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide white crystals. This crystal crop was recrystallized from ethanol/ethyl acetate/hexane (1mL/2mL/10mL) to provide white crystals of L-[N-(methoxycarbonyl)phenylalanyl]chlorohydrin (VI) (1.39 g, erythro/threo = 98.6:1.4). Based on the result of HPLC analysis of the above extract, the reaction yields were 74.4% for the erythroform and 20.8% for the threo-form. The NMR and IR spectra of the product L-[N-(methoxycarbonyl)phenylalanyl]chlorohydrin (VI) are presented in Figs. 9 and 10, respectively.

Example 25 Production of L-[N-(methoxycarbonyl)-phenylalanyl] epoxide (VII)

[0084]

35

30

45

40

[0085] In methanol (5 mL) was dissolved L-[N-(methoxycarbonyl)phenylalanyl]chlorohydrin (VI) (0.077 g 0.30 mmol) as obtained in Example 24. To this soluton was added a solution of sodium methoxide (0.080 g, 1.50 mmol) in methanol (5 mL) at room temperature and the mixture was stirred at that temperature for 1 hour. This reaction mixture was poured in water (15 mL) and extracted with ethyl acetate (20 mL x 2). The extract was washed with water (10 mL x 1) and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated to provide L-[N-(methoxycarbonyl)phenylalanyl] epoxide as colorless oil (0.050 g). The NMR and IR spectra of the product L-[N-(methoxycarbonyl)phenylalanyl] epoxide (VII) are presented in Figs. 11 and 12, respectively.

55

Example 26 Production of L-[N-(t-butoxycarbonyl)-phenylalanyl]chlorohydrin (VIII)

[0086]

5

10

15

25

30

35

[0087] To a solution of sodium borohydride (6.34 g, 168 mmol) in tetrahydrofuran (100 ml) was added ethanol (100 ml) at about 25°C and the mixture was stirred at that temperature for 2 hours. This mixture was added to a solution of L-[N-(t-butoxycarbonyl)phenylalanyl]methyl chloride (IV) (100 g, 335 mmol) in tetrahydrofuran (400 ml) and ethanol (400 ml) for about 40 minutes at an internal temperature of 10 and 15 °C. This mixture was further stirred at an internal temperature of about 10 °C for 30 minutes, and, then, concentrated sulfuric acid (8.23 g)/water (500 ml) was added at an internal temperature of 12 to 17 °C. The mixture was adjusted to pH about 6.5 with 30% sodium hydroxide, warmed to 50°C, and stirred for 30 minutes at that temperature. The mixture was cooled to about 10 °C and stirred at that temperature for 1 hour. This mixture was filtered and the filtrate was washed with water and ethanol in that order and dried to provide crystals of L-[N-(t-butoxycarbonyl)phenylalanyl]chlorohydrin (VIII) (59.1 g, 197 mmol, erythro/threo = 98.4:1.6). The NMR and IR spectra of the product L-[N-(t-butoxycarbonyl)phenylalanyl]chlorohydrin (VIII) are presented in Figs. 13 and 14, respectively.

[α] $_{D}$ 25 = -3.44 (c=1.05, MeOH) m.p.: 168.5 to 169.5 °C

Example 27 Production of L-[N-(t-butoxycarbonyl)-phenylalanyl] epoxide (IX)

[8800]

NH SO A B

40

[0089] To a slurry of L-[N-(t-butoxycarbonyl)phenylalanyl]-chlorohydrin (VIII) (17.0 g, 56.7 mmol) as obtained in Example 25 in 136 ml of acetone was added a solution of sodium hydroxide (3.4 g) in water (34 ml) for 15 minutes at about 25 °C. The mixture was stirred at 25 to 40°C for 1 hour, after which it was allowed to stand. After the acetone (upper) phase was warmed to 50 °C and 200 ml of water was added for 1 hour with constant stirring. Then, under stirring, the mixture was cooled to about 25 °C for 2 hours. After 1 hour of stirring at the same temperature, the reaction mixture was filtered and the precipitate was rinsed with acetone-water and dried to provide crystals of L-[N-(t-butoxy-carbonyl)phenylalanyl] epoxide (IX) (13.73 g, 52.2 mmol, erythro/threo = 99.6/0.4, yield 92.1%). The NMR and IR spectra of this L-[N-(t-butoxycarbonyl)phenylalanyl] epoxide (IX) are presented in Figs. 15 and 16, respectively.

 $[\alpha]_D^{25} = -27.4$ (c=1.0, acetonitrile)

m.p.: 125.5 to 126.0 °C

55

Example 28 Production of L-[N-(benzyloxycarbonyl)-phenylthioalanyl]methyl chloride (X)

[0090]

5

10

15

20

30

35

[0091] Under the atomosphere of nitrogen gas, a solution of L-N-(benzyloxycarbonyl)phenylthioalanine methyl ester (2.0 g, 5.8 mmol), sodium monochloroacetate (1.35 g, 11.6 mmol) and magnesium chloride (1.105 g, 11.6 mmol) in THF (8 ml) was stirred at 25 °C for 1 hour (solution A). Separately, under the atomosphere of nitrogen gas, diisopropylamine (2.35 g, 23.2 mmol) was added to n-butylmagnesium chloride (2.0 mol/L THF, 11.6 ml, 23.2 mmol) for 30 minutes at room temperature and the mixture was stirred at 70°C for 30 minutes (solution B). At an internal temperature of about 5°C, this solution B was added to the above solution A for about 15 minutes. After completion of this addition, the internal temperature was increased to 70 °C and the mixture was further stirred for 30 minutes. To this reaction mixture was added a solution consisting of sulfuric acid (2.28 g), water (20 ml) and ethyl acetate (30 ml) and the mixture was stirred for 30 minutes for hydrolysis. The organic phase was separated and washed with saturated aqueous NaHCO₃ solution (20 ml). The organic phase was then concentrated under reduced pressure to provide a yellow oil (2.249 g). This oil was purified using a silica gel column (hexane-ethyl acetate = 5:1) to give crystals of L-[N-(benzyloxycarbonyl)phenylthioalanyl]methyl chloride (1.097 g, yield 52.0%). The NMR and IR spectra of this product L-[N-(benzyloxycarbonyl)phenylthioalanyl]methyl chloride (X) are presented in Figs. 17 and 18, respectively.

[α] D ²⁵ =-67.9 m.p.: 87 to 88 °C

INDUSTRIAL APPLICABILITY

[0092] Since, in accordance with the present invention, α -halo ketones, α -halohydrins and epoxides can be produced effectively from carboxylic acid derivatives such as esters through the use of an α -haloacetic acid on an industrial scale as described above, optically active α -halo ketones, α -halohydrins and epoxides can be produced from the corresponding optically active N-protected phenylalanine esters so that the present invention can provide useful intermediates for the production of medicines.

40 Claims

1. A process for producing an α -halo ketone of general formula (3)

45

$$R^1$$
 X (3)

50

(wherein R¹ represents alkyl, aralkyl or aryl; R² represents hydrogen, alkyl, aralkyl or aryl; X represents halogen) which comprises reacting a carboxylic acid derivative of general formula (1)

$$R^{1}COA$$
 (1)

(wherein R^1 is as defined above; A represents a leaving group) with a metal enolate prepared from an α -haloacetic acid of the general formula (2)

 $X CO_2H$

(wherein R^2 and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ.

2. A process for producing an α -halo ketone of general formula (3)

5

10

15

20

25

35

40

50

55

 R^1 X (3)

(wherein R¹ represents alkyl, aralkyl or aryl; R² represents hydrogen, alkyl, aralkyl or aryl; X represents halogen) which comprises reacting a carboxylic acid ester of general formula (4)

$$R^{1}CO_{2}R^{3}$$
 (4)

(wherein R^1 and R^3 independently represent alkyl, aralkyl or aryl) with a metal enolate prepared from an α -haloacetic acid of general formula (2)

 $X CO_2H$ (2)

(wherein R² and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ.

- 3. A process for producing an α -halo ketone as claimed in Claim 1 wherein the metal enolate prepared from an α -haloacetic acid or an acceptable salt thereof is a magnesium enolate.
- 45 4. A process for producing an α -halo ketone as claimed in Claim 3 wherein the magnesium enolate is prepared by reacting a magnesium amide of general formula (5)

BNMgY (5)

(wherein B and D independently represent alkyl, aralkyl, aryl or silyl or, taken together, represent cycloalkyl; Y represents

5

or halogen) with an α -haloacetic acid of general formula (2)

10

$$X \longrightarrow CO_2H$$
 (2)

(wherein R² represents hydrogen, alkyl, aralkyl or aryl; X represents halogen) or an acceptable salt thereof.

- 5. A process for producing an α -halo ketone as claimed in Claim 4 wherein the compound of general formula (5) is chloromagnesium diisopropylamide.
- 6. A process for producing an α -halo ketone as claimed in Claim 3 wherein the magnesium enolate is prepared by reacting a Grignard reagent of general formula (6)

$$R^4MgZ$$
 (6)

25

(wherein R^4 represents alkyl, aralkyl, or aryl; Z represents halogen or R^4) with an α -haloacetic acid of general formula (2)

30

$$X CO_2H$$
 (2)

(wherein R² represents hydrogen, alkyl, aralkyl or aryl; X represents halogen) or an acceptable salt thereof.

- A process for producing an α -halo ketone as claimed in Claim 6 wherein the compound of general formula (6) is t-butylmagnesium chloride.
- 8. A process for producing an α -halo ketone as claimed in Claim 6 or 7 wherein the reaction is conducted in the presence of an amine.
 - 9. A process for producing an α -halo ketone as claimed in Claim 8 wherein the amine is a secondary amine or a tertiary amine.

45

- 10. A process for producing an α -halo ketone as claimed in Claim 1, 2, 3, 4, 5, 6, 7, 8 or 9 wherein the acceptable salt of an α -haloacetic acid is a sodium salt of an α -haloacetic acid.
- 11. A process for producing an α -halo ketone as claimed in Claim 1, 2, 3, 4, 5, 6, 7, 8 or 9 wherein the acceptable salt of an α -haloacetic acid is a magnesium salt of an α -haloacetic acid of general formula (7)

$$X CO_2 Mg W$$

$$R^2$$
(7)

(wherein R2 is as previously defined; W represents halogen or

$$X \longrightarrow CO_2$$

10

5

- 12. A process for producing an α -halo ketone as claimed in Claim 11 wherein the magnesium salt of an α -haloacetic acid is one prepared from a sodium salt of an α -haloacetic acid and a magnesium halide or magnesium sulfate.
- 13. A process for producing an α -halo ketone as claimed in Claim 11 wherein the magnesium salt of an α -haloacetic acid is one prepared from an a -haloacetic acid and metallic magnesium.
 - 14. A process for producing an α -halo ketone as claimed in Claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 wherein the α -haloacetic acid is a monochloroacetic acid.

20

- 15. A process for producing an α -halo ketone as claimed in Claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 wherein the acceptable salt of an α -haloacetic acid is an ammonium salt of the α -haloacetic acid.
- 16. A process for producing an α -halo ketone as claimed in Claim 1 or 2 wherein the metal enolate formed from an α -haloacetic acid or an acceptable salt thereof is a lithium dianion of a monochloroacetic acid.
 - 17. A process for producing an α -halo ketone as claimed in Claim 1 or 2 wherein the metal enolate formed from an α -haloacetic acid or an acceptable salt thereof is a magnesium dianion of a monochloroacetic acid.
- 18. A process for producing an α -halo ketone of general formula (9)

40

35

(wherein R² represents hydrogen, alkyl, aralkyl or aryl; R⁵ represents hydrogen, alkyl, aralkyl or aryl; P¹ and P² independently represent hydrogen or amino protecting group or, taken together, represent phthaloyl; X represents halogen) which comprises reacting an amino acid derivative of general formula (8)

45

$$R^5$$
 COA (8)

50

(wherein R^5 , P^1 and P^2 are as defined above; A represents a leaving group) with a metal enolate prepared from an α -haloacetic acid of general formula (2)

5

(wherein R² and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ.

19. A process for producing an α -halo ketone of general formula (9)

10

20

(wherein R² represents hydrogen, alkyl, aralkyl or aryl; R⁵ represents hydrogen, alkyl, aralkyl or aryl; P¹ and P² independently represent hydrogen or amino protecting group or, taken together, represent phthaloyl; X represents halogen) which comprises reacting an amino acid ester derivative of general formula (10)

25

$$R^5$$
 CO_2R^3 (10)

30

(wherein R^3 represents alkyl, aralkyl or aryl; R^5 , P^1 and P^2 are as defined above) with a metal enolate prepared from an α -haloacetic acid of general formula (2)

35

$$X \longrightarrow CO_2H$$
 (2)

40

(wherein R^2 and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ.

45

20. A process for producing an α -halo ketone as claimed in Claim 19 wherein the amino acid ester derivative is an optically active L-amino acid ester derivative or an optically active D-amino acid ester derivative.

En

21. A process for producing an α -halo ketone as claimed in Claim 20 wherein the amino acid ester derivative is an optically active L-phenylalanine ester derivative or an optically active D-phenylalanine ester derivative.

50

22. A process for producing an α -halo ketone as claimed in Claim 21 wherein the optically active L-phenylalanine ester derivative or optically active D-phenylalanine ester derivative is a derivative selected from the group consisting of a t-butoxycarbonyl-protected L-phenylalanine ester, benzyloxycarbonyl-protected L-phenylalanine ester, methoxycarbonyl-protected L-phenylalanine ester.

55

23. A process for producing an α -halo ketone as claimed in Claim 18, 19, 20, 21 or 22 wherein the metal enolate prepared from an α -haloacetic acid or an acceptable salt thereof is a magnesium enolate.

24. A process for producing an α -halo ketone as claimed in Claim 23 wherein the magnesium enolate is prepared by reacting a magnesium amide of general formula (5)

(wherein B and D independently represent alkyl, aralkyl, aryl or silyl or, taken together, represent cycloalkyl; Y represents

5

20

35

45

50

or halogen) with an α -haloacetic acid of the general formula (2)

$$X CO_2H$$

$$R^2$$
(2)

(wherein R2 represents hydrogen, alkyl, aralkyl or aryl; X represents halogen) or an acceptable salt thereof.

- 30 25. A process for producing an α -halo ketone as claimed in Claim 24 wherein the compound of general formula (5) is chloromagnesium diisopropylamide.
 - 26. A process for producing an α -halo ketone as claimed in Claim 23 wherein the magnesium enolate is prepared by reacting a compound Grignard reagent of general formula (6)

$$R^4MgZ$$
 (6)

(wherein R⁴ represents alkyl, aralkyl, or aryl; Z represents halogen or R⁴) with an α -haloacetic acid of general formula (2)

- (wherein R² represents hydrogen, alkyl, aralkyl or aryl; X represents halogen) or an acceptable salt thereof.
- 27. A process for producing an α -halo ketone as claimed in Claim 26 wherein the compound of general formula (6) is t-butylmagnesium chloride.
- 28. A process for producing an α -halo ketone as claimed in Claim 26 or 27 wherein the reaction is conducted in the presence of an amine.
 - 29. A process for producing an α -halo ketone as claimed in Claim 28 wherein the amine is a secondary amine or a

tertiary amine.

5

10

15

30

40

50

55

30. A process for producing an α -halo ketone as claimed in Claim 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29 wherein the acceptable salt of an α -haloacetic acid is sodium monochloroacetate.

31. A process for producing an α -halo ketone as claimed in Claim 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29 wherein the acceptable salt of an α -haloacetic acid is a magnesium salt of an α -haloacetic acid of general formula (7)

$$X \longrightarrow CO_2 Mg W$$

$$R^2 \qquad (7)$$

(wherein R2 is as previously defined; W represents halogen or

$$\begin{array}{ccc} X & CO_2 - \\ & R^2 \end{array}$$

- 32. A process for producing an α -halo ketone as claimed in Claim 31 wherein the magnesium salt of an α -haloacetic acid is one prepared from a sodium salt of an α -haloacetic acid and either a magnesium halide or magnesium sulfate.
- 33. A process for producing an α -halo ketone as claimed in Claim 31 wherein the magnesium salt of an α -haloacetic acid is one prepared from an α -haloacetic acid and metallic magnesium.
- 35 34. A process for producing an α -halo ketone as claimed in Claim 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 or 33 wherein the α -haloacetic acid is monochloroacetic acid.
 - 35. A process for producing an α -halo ketone as claimed in Claim 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29 wherein the acceptable salt of an α -haloacetic acid is an ammonium salt of an α -haloacetic acid.
 - **36.** A process for producing an α -halo ketone as claimed in Claim 18 or 19 wherein the metal enolate formed from an α -haloacetic acid or an acceptable salt thereof is a magnesium dianion of a monochloroacetic acid.
- 37. A process for producing an α -halo ketone as claimed in Claim 18 or 19 wherein the metal enolate formed from an α -haloacetic acid or an acceptable salt thereof is a lithium dianion of a monochloroacetic acid.
 - 38. A process for producing an α -halohydrin of general formula (11)

$$R^1$$
 X
 R^2
 (11)

(wherein R^1 represents alkyl, aralkyl or aryl, R^2 represents hydrogen, alkyl, aralkyl, or aryl; X represents halogen) which comprises producing an α -halo ketone of general formula (3)

(wherein R1, R2 and X are as defined above by reacting a carboxylic acid derivative of general formula (1)

$$R^1COA$$
 (1)

(wherein R^1 is as defined above; A represents a leaving group) with a metal enolate prepared from an α -haloacetic acid of the general formula (2)

$$X CO_2H$$

$$R^2$$
(2)

(wherein R² and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ or reacting a carboxylic acid ester of general formula (4)

$$R^1CO_2R^3$$
 (4)

(wherein R¹ is as defined above and R³ represents alkyl, aralkyl or aryl) with a metal enolate prepared from an α -haloacetic acid of general formula (2)

$$X CO_2H$$
 (2)

(wherein R^2 and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ and reducing said α -halo ketone.

39. A process for producing an α -halohydrin of general formula (12)

5

10

15

20

35

40

45

50

55

$$\begin{array}{cccc}
& OH \\
& & & \\
P^1 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

(wherein R^2 and R^5 independently represent hydrogen, alkyl, aralkyl, or aryl; P^1 and P^2 independently represent hydrogen or amino protecting group or, taken together, represent phthaloyl; X represents halogen) which comprises producing an α -halo ketone of general formula (9)

5

10

15

20

25

30

35

40

45

50

55

(wherein R2, R5, P1, P2 and X are as defined above) by reacting an amino acid derivative of general formula (8)

$$\begin{array}{c}
R^{5} \quad COA \\
P^{1} \quad N \quad P^{2}
\end{array}$$

(wherein R^5 , P^1 and P^2 are as defined above; A represents a leaving group) with a metal enolate prepared from an α -haloacetic acid of general formula (2)

$$X CO_2H$$
 (2)

(wherein R² and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ, or reacting an amino acid ester derivative of general formula (10)

$$R^{5}$$
 $CO_{2}R^{3}$ (10)

(wherein R^3 represents alkyl, aralkyl or aryl; R^5 , P^1 and P^2 are as defined above) with a metal enolate prepared from an α -haloacetic acid of general formula (2)

$$X \longrightarrow CO_2H$$
 (2)

(wherein R^2 and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ and reducing said α -halo ketone.

- 40. A process for producing an α -halohydrin as claimed in Claim 39 wherein the amino acid ester derivative is an optically active L-amino acid ester derivative or an optically active D-amino acid ester derivative.
- **41.** A process for producing an α halohydrin as claimed in Claim 40 wherein the optically active L-amino acid ester derivative or optically active D-amino acid ester derivative is an optically active L-phenylalanine ester derivative or an optically active D-phenylalanine ester derivative.
- 42. A process for producing an α -halohydrin as claimed in Claim 41 wherein the amino acid ester derivative is a

derivative selected from the group consisting of a t-butoxycarbonyl-protected L-phenylalanine ester, benzyloxy-carbonyl-protected L-phenylalanine ester, methoxycarbonyl-protected L-phenylalanine ester, ethoxycarbonyl-protected L-phenylalanine ester, t-butoxycarbonyl-protected D-phenylalanine ester, benzyloxycarbonyl-protected D-phenylalanine ester, methoxycarbonyl-protected D-phenylalanine ester and ethoxycarbonyl-protected D-phenylalanine ester.

43. A process for producing an epoxide of general formula (13)

5

10

15

20

25

30

35

40

45

50

 $\mathbb{R}^{1} \xrightarrow{\mathbb{Q}} \mathbb{R}^{2}$

(wherein R¹, R² independently represent hydrogen, alkyl, aralkyl, or aryl) which comprises producing an a -halo-hydrin of general formula (11)

 $\begin{array}{ccc}
OH & & \\
R^1 & & \\
& & \\
R^2 & & \\
\end{array}$ (11)

(wherein R^1 and R^2 are as defined above; X represents halogen) which comprises producing an α -halo ketone of general formula (3)

 $\begin{array}{ccc}
 & O \\
 & X & (3)
\end{array}$

(wherein R1, R2 and X are as defined above by reacting a carboxylic acid derivative of general formula (1)

 R^1COA (1)

(wherein R¹ is as defined above; A represents a leaving group) with a metal enolate prepared from an a -haloacetic acid of the general formula (2)

$$X \longrightarrow CO_2H$$
 (2)

(wherein R² and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ or reacting a carboxylic acid ester of general formula (4)

 $R^1CO_2R^3$ (4)

(wherein R^1 is as defined above and R^3 represents alkyl, aralkyl or aryl) with a metal enolate prepared from an α

-haloacetic acid of general formula (2)

5

10

15

20

35

40

45

X CO₂H (2

(wherein R^2 and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ, reducing said α -halo ketone and treating the α -halohydrin with a base.

44. A process for producing an epoxide of general formula (14)

(wherein R² and R⁵ independently represent hydrogen, alkyl, aralkyl, or aryl; P¹ and P² independently represent hydrogen or an amino-protecting group or, taken together, represent phthaloyl) which comprises producing an α -halohydrin of general formula (12)

 $\begin{array}{c}
\text{OH} \\
\text{R}^{5} & \text{OH} \\
\text{P}^{1} & \text{N}_{P^{2}} & \text{R}^{2}
\end{array}$ (12)

(wherein R^2 , R^5 , P^1 and P^2 are as defined above; X represents halogen) by producing an α -halo ketone of general formula (9)

(wherein R2, R5, P1, P2 and X are as defined above) by reacting an amino acid derivative of general formula (8)

50

R⁵ COA
(8)
P¹ N P²

(wherein R⁵, P¹ and P² are as defined above; A represents a leaving group) with a metal enolate prepared from an α -haloacetic acid of general formula (2)

$$X \rightarrow CO_2H$$
 (2)

5

(wherein R² and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ, or reacting an amino acid ester derivative of general formula (10)

10

$$R^{5} CO_{2}R^{3}$$
 (10)

15

(wherein R^3 represents alkyl, aralkyl or aryl; R^5 , P^1 and P^2 are as defined above) with a metal enolate prepared from an α -haloacetic acid of general formula (2)

20

$$X \longrightarrow CO_2H$$
 (2)

25

(wherein R^2 and X are as defined above) or an acceptable salt thereof and decarboxylating the reaction product in situ, reducing said α -halo ketone and treating said α -halohydrin with a base.

30 4

45. A process for producing an epoxide as claimed in Claim 44 wherein the amino acid ester derivative is an optically active L-amino acid ester derivative or an optically active D-amino acid ester derivative.

35

46. A process for producing an epoxide as claimed in Claim 45 wherein the optically active L-amino acid ester derivative or optically active D-amino acid ester derivative is an optically active L-phenylalanine ester derivative or an optically active D-phenylalanine ester derivative.

40

47. A process for producing an epoxide as claimed in Claim 45 wherein the amino acid ester derivative is a derivative selected from the group consisting of a t-butoxycarbonyl-protected L-phenylalanine ester, benzyloxycarbonyl-protected L-phenylalanine ester, ethoxycarbonyl-protected L-phenylalanine ester, t-butoxycarbonyl-protected D-phenylalanine ester, benzyloxycarbonyl-protected D-phenylalanine ester, methoxycarbonyl-protected D-phenylalanine ester and ethoxycarbonyl-protected D-phenylalanine ester.

45

48. A process for producing an α -halo ketone as claimed in Claim 20 wherein the optically active L-amino acid ester derivative or the optically active D-amino acid ester derivative is a D-phenylthioalanine ester derivative or L-phenylthioalanine ester derivative.

49. A process for producing an α -halo ketone as claimed in Claim 48 wherein the D-phenylthioalanine ester derivative or L-phenylthioalanine ester derivative is a benzyloxycarbony 1-protected D-phenylthioalanine ester or benzyloxycarbonyl-protected L-phenylthioalanine ester.

50

50. A process for producing an α -halohydrin as claimed in Claim 40 wherein the optically active L-amino acid ester derivative or the optically active D-amino acid ester derivative is a D-phenylthioalanine ester derivative or L-phenylthioalanine ester derivative.

55

51. A process for producing an α -halohydrin as claimed in Claim 50 wherein the D-phenylthioalanine ester derivative or L-phenylthioalanine ester derivative is a benzyloxycarbonyl -protected D-phenylthioalanine ester or benzyloxycarbonyl-protected L-phenylthioalanine ester.

- **52.** A process for producing an epoxide as claimed in Claim 45 wherein the optically active L -amino acid ester derivative or the optically active D-amino acid ester derivative is a D-phenylthioalanine ester derivative or L-phenylthioalanine ester derivative.
- 53. A process for producing an epoxide as claimed in Claim 52 wherein the D-phenylthioalanine.ester derivative or L-phenylthioalanine ester derivative is a benzyloxycarbonyl-protected D-phenylthioalanine ester or benzyloxycarbonyl-protected L-phenylthioalanine ester.
- **54.** A process for producing an epoxide as claimed in Claim 44 wherein said treating said α -halohydrin with base is comprising being carried out in a protic polar solvent or in a mixture of a protic polar solvent and water, and then crystallizing from the solvent.
 - 55. A process for producing an epoxide as claimed in Claim 54 wherein said protic polar solvent is acetone.

Patentansprüche

15

20

25

30

35

40

45

50

55

1. Verfahren zur Herstellung eines α -Halogenketons der allgemeinen Formel (3)

(worin R¹ Alkyl, Aralkyl oder Aryl darstellt; R² Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; X Halogen darstellt), das umfaßt: Umsetzen eines Carbonsäurederivates der allgemeinen Formel (1)

$$R^1COA$$
 (1)

(worin R^1 wie oben definiert ist; A eine Abgangsgruppe darstellt) mit einem Metallenolat, hergestellt aus einer α -Halogenessigsäure der allgemeinen Formel (2)

$$X \longrightarrow CO_2H$$
 (2)

- (worin R² und X wie oben definiert sind) oder einem akzeptablen Salz davon, und Decarboxylierung des Reaktionsproduktes in situ.
- 2. Verfahren zur Herstellung eines α -Halogenketons der allgemeinen Formel (3)

$$R^1 \xrightarrow{Q} X \qquad (3)$$

(worin R1 Alkyl, Aralkyl oder Aryl darstellt; R2 Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; X Halogen darstellt),

das umfaßt: Umsetzen eines Carbonsäureesters der allgemeinen Formel (4)

$$R^{1}CO_{2}R^{3}$$
 (4)

5

(worin R¹ und R³ unabhängig voneinander Alkyl, Aralkyl oder Aryl darstellen) mit einem Metallenolat, hergestellt aus einer α-Halogenessigsäure der allgemeinen Formel (2)

10

$$X \longrightarrow CO_2H$$
 (2)

15

(worin R² und X wie oben definiert sind) oder einem akzeptablen Salz davon, und Decarboxylierung des Reaktionsproduktes in situ.

20 20

- Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 1, worin das Metallenolat, hergestellt aus einer α-Halogenessigsäure oder einem akzeptablen Salz davon, ein Magnesiumenolat ist.
- Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 3, worin das Magnesiumenolat hergestellt wird durch Umsetzen eines Magnesiumamids der allgemeinen Formel (5)

25

30

(worin B und D unabhängig voneinander Alkyl, Aralkyl, Aryl oder Silyl darstellen oder zusammengenommen Cycloalkyl darstellen; Y

35

45

40

oder Halogen darstellt) mit einer α-Halogenessigsäure der allgemeinen Formel (2)

$$X \longrightarrow CO_2H$$
 (2)

50

(worin R² Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; X Halogen darstellt) oder einem akzeptablen Salz davon.

- 55
- Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 4, worin die Verbindung der allgemeinen Formel
 Chlormagnesiumdiisopropylamid ist.
- 6. Verfahren zur Herstellung eines α -Halogenketons nach Anspruch 3, worin das Magnesiumenolat hergestellt wird

durch Umsetzen eines Grignard-Reagens der allgemeinen Formel (6)

$$R^4MgZ$$
 (6)

5

(worin R⁴ Alkyl, Aralkyl oder Aryl darstellt; Z Halogen oder R⁴ darstellt) mit einer α-Halogenessigsäure der allgemeinen Formel (2)

10

$$X \longrightarrow CO_2H$$
 (2)

15

(worin R² Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; X Halogen darstellt) oder einem akzeptablen Salz davon.

- 7. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 6, worin die Verbindung der allgemeinen Formel
 (6) t-Butylmagnesiumchlorid ist.
 - 8. Verfahren zur Herstellung eines α -Halogenketons nach Anspruch 6 oder 7, worin die Reaktion in Gegenwart eines Amins durchgeführt wird.
- Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 8, worin das Amin ein sekundäres oder tertiäres Amin ist.
 - **10.** Verfahren zur Herstellung eines α-Halogenketons nach den Ansprüchen 1, 2, 3, 4, 5, 6, 7, 8, oder 9, worin das akzeptable Salz der α-Halogenessigsäure ein Natriumsalz der α-Halogenessigsäure ist.
 - 11. Verfahren zur Herstellung eines α-Halogenketons nach den Ansprüchen 1, 2, 3, 4, 5, 6, 7, 8 oder 9, worin das akzeptable Salz der α-Halogenessigsäure ein Magnesiumsalz der α-Halogenessigsäure der allgemeinen Formel (7) ist

35

30

$$X CO_2MgW$$
 (7)

40

(worin R2 wie zuvor definiert ist; W Halogen oder

45

$$R^{5}$$
 COA (8) P^{1} P^{2}

50

darstellt).

55

12. Verfahren zur Herstellung eines α -Halogenketons nach Anspruch 11, worin das Magnesiumsalz der α -Halogenessigsäure dasjenige ist, das hergestellt wurde aus einem Natriumsalz einer α -Halogenessigsäure und einem Magnesiumhalogenid oder Magnesiumsulfat.

- 13. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 11, worin das Magnesiumsalz der α-Halogenessigsäure dasjenige ist, das aus einer α-Halogenessigsäure und metallischem Magnesium hergestellt wurde.
- 14. Verfahren zur Herstellung eines α-Halogenketons nach den Ansprüchen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12, worin die α-Halogenessigsäure Monochloressigsäure ist.
- 15. Verfahren zur Herstellung eines α-Halogenketons nach den Ansprüchen 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10, worin das akzeptable Salz der α-Halogenessigsäure ein Ammoniumsalz der α-Halogenessigsäure ist.
- 16. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 1 oder 2, worin das Metallenolat, gebildet aus einer α-Halogenessigsäure oder einem akzeptablen Salz davon, ein Lithiumdianion der Monochloressigsäure ist.
 - 17. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 1 oder 2, worin das Metallenolat, gebildet aus einer α-Halogenessigsäure oder einem akzeptablen Salz davon, ein Magnesiumdianion der Monochloressigsäure ist
 - 18. Verfahren zur Herstellung eines α-Halogenketons der allgemeinen Formel (9)

5

15

20

25

35

40

45

50

55

(worin R² Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; R⁵ Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; P¹ und P² unabhängig voneinander Wasserstoff oder eine Aminoschutzgruppe darstellen oder zusammengenommen Phthaloyl darstellen; X Halogen darstellt), das umfaßt: Umsetzen eines Aminosäurederivates der allgemeinen Formel (8)

 $\begin{array}{c}
R^{5} \quad COA \\
P^{1} \quad N \quad P^{2}
\end{array}$ (8)

(worin R⁵, P¹ und P² wie oben definiert sind; A eine Abgangsgruppe darstellt) mit einem Metallenolat, hergestellt aus einer α-Halogenessigsäure der allgemeinen Formel (2)

 $X \sim CO_2H$ (2)

(worin R² und X wie oben definiert sind) oder einem akzeptablen Salz davon, und Decarboxylierung des Reaktionsproduktes in situ.

19. Verfahren zur Herstellung eines α -Halogenketons des allgemeinen Formel (9)

10

5

(worin R² Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; R⁵ Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; P¹ und P² unabhängig voneinander Wasserstoff oder eine Aminoschutzgruppe darstellen oder zusammengenommen Phthaloyl darstellen; X Halogen darstellt), das umfaßt: Umsetzen eines Aminosäureesterderivates der allgemeinen Formel (10)

15

$$\begin{array}{ccc}
R^{5} & CO_{2}R^{3} \\
& & (10)
\end{array}$$

20

25

(worin R^3 Alkyl, Aralkyl oder Aryl darstellt; R^5 , P^1 und P^2 wie oben definiert sind) mit einem Metallenolat, hergestellt aus einer α -Halogenessigsäure der allgemeinen Formel (2)

$$X \longrightarrow CO_2H$$
 (2)

30

(worin R² und X wie oben definiert sind) oder einem akzeptablen Salz davon, und Decarboxylierung des Reaktionsproduktes in situ.

35

20. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 19, worin das Aminosäureesterderivat ein optisch aktives L-Aminosäureesterderivat oder ein optisch aktives D-Aminosäureesterderivat ist.

40

Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 20, worin das Aminosäureesterderivat ein optisch aktives L-Phenylalaninesterderivat oder ein optisch aktives D-Phenylalaninesterderivat ist.

45

22. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 21, worin das optisch aktive L-Phenylalanine-sterderivat oder das optisch aktive D-Phenylalaninesterderivat ein Derivat ist, das aus der Gruppe ausgewählt wird, die besteht aus einem t-Butoxycarbonyl-geschützten L-Phenylalaninester, einem Benzyloxycarbonyl-geschützten L-Phenylalaninester und einem Ethoxycarbonyl-geschützten L-Phenylalaninester.

50

24. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 23, worin das Magnesiumenolat hergestellt wird durch die Umsetzung eines Magnesiumamids der allgemeinen Formel (5)

23. Verfahren zur Herstellung eines α-Halogenketons nach den Ansprüchen 18, 19, 20, 21 oder 22, worin das Metallenolat, hergestellt aus einer α-Halogenessigsäure oder einem akzeptablen Salz davon, ein Magnesiumenolat ist.

(worin B und D unabhängig voneinander Alkyl, Aralkyl, Aryl oder Silyl darstellen oder zusammengenommen Cycloalkyl darstellen; Y

oder Halogen darstellt) mit einer α-Halogenessigsäure der allgemeinen Formel (2)

5

10

15

20

25

30

35

40

45

50

55

$$X \longrightarrow CO_2H$$
 (2)

(worin R² Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; X Halogen darstellt) oder einem akzeptablen Salz davon.

- 25. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 24, worin die Verbindung der allgemeinen Formel (5) Chlormagnesiumdiisopropylamid ist.
- **26.** Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 23, worin das Magnesiumenolat hergestellt wird durch die Umsetzung einer Grignard-Reagens-Verbindung der allgemeinen Formel (6)

$$R^4MgZ$$
 (6)

(worin R⁴ Alkyl, Aralkyl oder Aryl darstellt; Z Halogen oder R⁴ darstellt) mit einer α-Halogenessigsäure der allgemeinen Formel (2)

$$X \longrightarrow CO_2H$$
 (2)

(worin R² Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; X Halogen darstellt) oder einem akzeptablen Salz davon.

- 27. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 26, worin die Verbindung der allgemeinen Formel (6) t-Butylmagnesiumchlorid ist.
- 28. Verfahren zur Herstellung eines α -Halogenketons nach Anspruch 26 oder 27, worin die Reaktion in Gegenwart eines Amins durchgeführt wird.
- 29. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 28, worin das Amin ein sekundäres oder tertiäres Amin ist.

- 30. Verfahren zur Herstellung eines α-Halogenketons nach den Ansprüchen 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 oder 29, worin das akzeptable Salz einer α-Halogenessigsäure Natriummonochloracetat ist.
- 31. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 oder 29, worin das akzeptable Salz der α-Halogenessigsäure ein Magnesiumsalz der α-Halogenessigsäure der allgemeinen Formel (7) ist

$$X CO_2MgW$$
 (7)

(worin R² wie zuvor definiert ist; W Halogen oder

$$X CO_{\overline{2}}$$

darstellt).

5

10

15

20

25

35

45

50

55

- **32.** Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 31, worin das Magnesiumsalz der α-Halogenessigsäure dasjenige ist, das aus einem Natriumsalz der α-Halogenessigsäure und einem Magnesiumhalogenid oder Magnesiumsulfat hergestellt wurde.
- 30 33. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 31, worin das Magnesiumsalz der α-Halogenessigsäure und metallischem Magnesium hergestellt wurde.
 - 34. Verfahren zur Herstellung eines α -Halogenketons nach den Ansprüchen 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 oder 33, worin die α -Halogenessigsäure Monochloressigsäure ist.
 - 35. Verfahren zur Herstellung eines α -Halogenketons nach den Ansprüchen 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 oder 29, worin das akzeptable Salz der α -Halogenessigsäure ein Ammoniumsalz der α -Halogenessigsäure ist.
- 36. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 18 oder 19, worin das Metallenolat, gebildet aus einer α-Halogenessigsäure oder einem akzeptablen Salz davon, das Magnesiumdianion von Monochloressigsäure ist.
 - 37. Verfahren zur Herstellung eines α -Halogenketons nach Anspruch 18 oder 19, worin das Metallenolat, gebildet aus einer α -Halogenessigsäure oder einem akzeptablen Salz davon, ein Lithiumdianion der Monochloressigsäure ist.
 - 38. Verfahren zur Herstellung eines α-Halogenhydrins der allgemeinen Formel (11)

$$\begin{array}{ccc}
OH & & & \\
R^1 & & & & \\
R^2 & & & & \\
\end{array}$$
(11)

(worin R¹ Alkyl, Aralkyl oder Aryl darstellt, R² Wasserstoff, Alkyl, Aralkyl oder Aryl darstellt; X Halogen darstellt), das umfaßt: Herstellen eines α-Halogenketons der allgemeinen Formel (3)

(worin R¹, R² und X wie oben definiert sind) durch Umsetzung eines Carbonsäurederivates der allgemeinen Formel (1)

5

15

20

25

30

35

40

45

50

$$R^1COA$$
 (1)

(worin R^1 wie oben definiert ist; A eine Abgangsgruppe darstellt) mit einem Metallenolat, hergestellt aus einer α -Halogenessigsäure der allgemeinen Formel (2)

$$X \longrightarrow CO_2H$$
 (2)

(worin R² und X wie oben definiert sind) oder einem akzeptablen Salz davon und Decarboxylierung des Reaktionsproduktes in situ, oder Umsetzung eines Carbonsäureesters der allgemeinen Formel (4)

$$R^{1}CO_{2}R^{3} \tag{4}$$

(worin R^1 wie oben definiert ist und R^3 Alkyl, Aralkyl oder Aryl darstellt) mit einem Metallenolat, hergestellt aus einer α -Halogenessigsäure der allgemeinen Formel (2)

$$X \longrightarrow CO_2H$$
 (2)

(worin R^2 und X wie oben definiert sind) oder einem akzeptablen Salz davon und Decarboxylierung des Reaktionsproduktes in situ und Reduktion des genannten α -Halogenketons.

39. Verfahren zur Herstellung eines α -Halogenhydrins der allgemeinen Formel (12)

(worin R² und R⁵ unabhängig voneinander Wasserstoff, Alkyl, Aralkyl oder Aryl darstellen; P¹ und P² unabhängig voneinander Wasserstoff oder eine Aminoschutzgruppe darstellen oder zusammengenommen Phthaloyl darstellen; X Halogen darstellt), das umfaßt: Herstellen eines α-Halogenketons der allgemeinen Formel (9)

(worin R², R⁵, P¹, P² und X wie oben definiert sind) durch Umsetzung eines Aminosäurederivats der allgemeinen Formel (8)

5

15

20

25

35

40

45

55

$$\begin{array}{c|c}
R^{5} & COA \\
\hline
P^{1} & N & P^{2}
\end{array}$$
(8)

(worin R^5 , P^1 und P^2 wie oben definiert sind; A eine Abgangsgruppe darstellt) mit einem Metallenolat, hergestellt aus einer α -Halogenessigsäure der allgemeinen Formel (2)

$$X \longrightarrow CO_2H$$
 (2)

(worin R² und X wie oben definiert sind) oder einem akzeptablen Salz davon und Decarboxylierung des Reaktionsproduktes in situ, oder Umsetzung eines Aminosäurederivates der allgemeinen Formel (10)

$$\begin{array}{c|c}
R^{5} & CO_{2}R^{3} \\
& & (10)
\end{array}$$

(worin R^3 Alkyl, Aralkyl oder Aryl darstellt; R^5 , P^1 und P^2 wie oben definiert sind) mit einem Metallenolat, hergestellt aus einer α -Halogenessigsäure der allgemeinen Formel (2)

$$X \sim CO_2H$$
 (2)

- (worin R² und X wie oben definiert sind) oder einem verträglichen Salz davon und Decarboxylierung des Reaktionsproduktes in situ, und Reduktion des genannten α-Halogenketons.
 - **40.** Verfahren zur Herstellung eines α-Halogenhydrins nach Anspruch 39, worin das Aminosäureesterderivat ein optisch aktives L-Aminosäureessigsäurederivat oder ein optisch aktives D-Aminosäureessigsäurederivat ist.
 - **41.** Verfahren zur Herstellung eines α-Halogenhydrins nach Anspruch 40, worin das optisch aktive L-Aminosäureesterderivat ein optisches L-Phenylalaninesterderivat oder ein optisch aktives D-Phenylalaninesterderivat ist.

- 42. Verfahren zur Herstellung eines α-Halogenhydrins nach Anspruch 41, worin das Aminosäureesterderivat ein Derivat ist, das aus der Gruppe ausgewählt wird, die besteht aus: t-Butoxycarbonyl-geschütztem L-Phenylalaninester, Benzyloxycarbonyl-geschütztem L-Phenylalaninester, Ethoxycarbonyl-geschütztem L-Phenylalaninester, t-Butoxycarbonyl-geschütztem D-Phenylalaninester, Benzyloxycarbonyl-geschütztem D-Phenylalaninester, Methoxycarbonyl-geschütztem D-Phenylalaninester und Ethoxycarbonyl-geschütztem D-Phenylalaninester.
- 43. Verfahren zur Herstellung eines Epoxids der allgemeinen Formel (13)

5

10

15

20

25

30

35

40

50

 R^1 R^2 (13)

(worin R^1 , R^2 unabhängig voneinander Wasserstoff, Alkyl, Aralkyl oder Aryl darstellen) das umfaßt: Herstellen eines α -Halogenhydrins der allgemeinen Formel (11)

 $\begin{array}{ccc}
OH & & & \\
R^1 & & & & \\
R^2 & & & & \\
\end{array}$ (11)

(worin R¹ und R² wie oben definiert sind; X Halogen darstellt) das umfaßt: Herstellen eines α-Halogenketons der allgemeinen Formel (3)

 R^1 X (3)

(worin R1, R2 wie oben definiert sind) durch Umsetzen eines Carbonsäurederivates der allgemeinen Formel (1)

$$R^{1}COA$$
 (1)

45 (worin R¹ wie oben definiert ist; A eine Abgangsgruppe darstellt) mit einem Metallenolat, hergestellt aus einer α-Halogenessigsäure der allgemeinen Formel (2)

 $X \longrightarrow CO_2H$ (2)

(worin R² und X wie oben definiert sind) oder einem akzeptablen Salz davon und Decarboxylierung des Reaktionsproduktes in situ, oder Umsetzung eines Carbonsäureesters der allgemeinen Formel (4)

$$R^1CO_2R^3$$
 (4)

(worin R¹ wie oben definiert ist und R³ Alkyl, Aralkyl oder Aryl darstellt) mit einem Metallenolat, hergestellt aus einer α-Halogenessigsäure der allgemeinen Formel (2)

(worin R^2 und X wie oben definiert sind) oder einem akzeptablen Salz davon und Decarboxylierung des Reaktionsproduktes in situ, Reduktion des genannten α -Halogenketons und Behandlung des α -Halogenhydrins mit einer Base.

44. Verfahren zur Herstellung eines Epoxids der allgemeinen Formel (14)

20

25

35

40

45

50

55

(worin R² und R⁵ unabhängig voneinander Wasserstoff, Alkyl, Aralkyl oder Aryl darstellen; P¹ und P² unabhängig voneinander Wasserstoff oder eine Aminoschutzgruppe darstellen oder zusammengenommen Phthaloyl darstellen), das umfaßt: Herstellen eines α-Halogenhydrins der allgemeinen Formel (12)

(worin R^2 , R^5 , P^1 und P^2 wie oben definiert sind; X Halogen darstellt) durch Herstellen eines α -Halogenketons der allgemeinen Formel (9)

(worin R2, R5, P1, P2 und X wie oben definiert sind) durch Umsetzung eines Aminosäurederivates der allgemeinen

Formel (8)

5

10

15

20

25

30

35

40

45

50

55

 R^{5} COA (8)

(worin R⁵, P¹ und P² wie oben definiert sind; A eine Abgangsgruppe darstellt) mit einem Metallenolat, hergestellt aus einer α-Halogenessigsäure der allgemeinen Formel (2)

 $X \leftarrow CO_2H$ (2)

(worin R² und X wie oben definiert sind) oder einem verträglichen Salz davon und Decarboxylierung des Reaktionsproduktes in situ, oder Umsetzen eines Aminosäureesterderivates der allgemeinen Formel (10)

$$\begin{array}{ccc}
R^{5} & CO_{2}R^{3} \\
P^{1} & N \\
P^{2}
\end{array}$$
(10)

(worin R³ Alkyl, Aralkyl oder Aryl darstellt; R⁵, P¹ und P² wie oben definiert sind) mit einem Metallenolat, hergestellt aus einer α-Halogenessigsäure der allgemeinen Formel (2)

 $X \longrightarrow CO_2H$ (2)

(worin R^2 und X wie oben definiert sind) oder einem akzeptablen Salz davon und Decarboxylierung des Reaktionsproduktes <u>in situ</u>, Reduktion des genannten α -Halogenketons, und Behandlung des genannten α -Halogenketons mit einer Base.

- **45.** Verfahren zur Herstellung eines Epoxids nach Anspruch 44, worin das Aminosäureesterderivat ein optisch aktives L-Aminosäureesterderivat oder ein optisch aktives D-Aminosäureesterderivat ist.
- 46. Verfahren zur Herstellung eines Epoxids nach Anspruch 45, worin das optisch aktive L-Aminosäureesterderivat oder das optisch aktive D-Aminosäureesterderivat ein optisch aktives L-Phenylalaninesterderivat oder ein optisch aktives D-Phenylalaninesterderivat ist.
- 47. Verfahren zur Herstellung eines Epoxids nach Anspruch 45, worin das Aminosäureesterderivat ein Derivat ist, das ausgewählt wird aus der Gruppe die besteht aus einem t-Butoxycarbonyl-geschütztem L-Phenylalaninester, einem Benzyloxycarbonyl-geschütztem L-Phenylalaninester, einem Methoxycarbonyl-geschütztem L-Phenylalaninester, einem t-Butoxycarbonyl-geschütztem D-Phenylalaninester, einem Benzyloxycarbonyl-geschütztem D-Phenylalaninester, einem Methoxycarbonyl-geschütztem D-Phenylalaninester und einem Ethoxycarbonyl-geschütztem D-Phenylalaninester.

- **48.** Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 20, worin das optisch aktive L-Aminosäureesterderivat ein D-Phenylthioalaninesterderivat oder ein L-Phenylthioalaninesterderivat ist.
- 49. Verfahren zur Herstellung eines α-Halogenketons nach Anspruch 48, worin das D-Phenylthioalaninesterderivat oder das L-Phenylthioalaninesterderivat ein Benzyloxycarbonyl-geschützter D-Phenylthioalaninester oder ein Benzyloxycarbonyl-geschützter L-Phenylthioalaninester ist.
 - 50. Verfahren zur Herstellung eines α-Halogenhydrins nach Anspruch 40, worin das optisch aktive L-Aminosäureesterderivat ein D-Phenylthioalaninesterderivat oder ein L-Phenylthioalaninesterderivat ist.
 - **51.** Verfahren zur Herstellung eines α-Halogenhydrins nach Anspruch 50, worin das D-Phenylthioalaninesterderivat oder das L-Phenylthioalaninesterderivat ein Benzyloxycarbonyl-geschützter D-Phenylthioalaninester oder ein Benzyloxycarbonyl-geschützter L-Phenylthioalaninester ist.
 - **52.** Verfahren zur Herstellung eines Epoxids nach Anspruch 45, worin das optisch aktive L-Aminosäureesterderivat oder das optisch aktive D-Aminosäureesterderivat ein D-Phenylthioalaninesterderivat oder ein L-Phenylthioalaninesterderivat ist.
 - **53.** Verfahren zur Herstellung eines Epoxids nach Anspruch 52, worin das D-Phenylthioalaninesterderivat oder das L-Phenylthioalaninesterderivat ein Benzyloxycarbonyl-geschützter D-Phenylthioalaninester oder ein Benzyloxycarbonyl-geschützter L-Phenylthioalaninester ist.
- 54. Verfahren zur Herstellung eines Epoxids nach Anspruch 44, worin die genannte Behandlung des genannten α-Halogenhydrins mit einer Base die Durchführung in einem protischen polaren Lösungsmittel oder in einer Mischung eines protischen polaren Lösungsmittels und Wasser und die anschließende Kristallisation aus dem Lösungsmittel umfaßt.
- 30 55. Verfahren zur Herstellung eines Epoxids nach Anspruch 54, worin das genannte protische polare Lösungsmittel Aceton ist.

Revendications

1. Procédé de production d'une α-halogénocétone de formule générale (3) :

$$R^1$$
 X R^2

(dans laquelle R¹ représente un groupe alkyle, aralkyle ou aryle ; R² représente un hydrogène ou un groupe alkyle, aralkyle ou aryle ; X représente un halogène) qui comporte la réaction d'un dérivé d'acide carboxylique de formule générale (1):

$$R^{1}COA$$
 (1)

(dans laquelle R^1 est tel que défini ci-dessus ; A représente un groupe partant) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2) :

10

15

20

35

40

$$X CO_2H$$

$$R^2$$
(2)

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et la décarboxylation du produit réactionnel in situ.

10 2. Procédé de production d'une α -halogénocétone de formule générale (3) :

5

15

30

35

40

45

55

$$\begin{array}{ccc}
& O \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

(dans laquelle R¹ représente un groupe alkyle, aralkyle ou aryle ; R² représente un hydrogène ou un groupe alkyle, aralkyle ou aryle ; X représente un halogène) qui comporte la réaction d'un ester d'acide carboxylique de formule générale (4) :

$$R^1CO_2R^3$$
 (4)

(dans laquelle R^1 et R^3 représentent indépendamment un groupe alkyle, aralkyle ou aryle) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2) :

$$X CO_2H$$
 (2)

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et la décarboxylation du produit réactionnel <u>in situ.</u>

- 3. Procédé de production d'une α-halogénocétone selon la revendication 1 dans lequel l'énolate de métal préparé à partir d'un acide α-halogénoacétique ou d'un de ses sels acceptables est un énolate de magnésium.
 - 4. Procédé de production d'une α-halogénocétone selon la revendication 3 dans lequel l'énolate de magnésium est préparé en faisant réagir un amidure de magnésium de formule générale (5) :

(dans laquelle B et D représentent indépendamment un groupe alkyle, aralkyle, aryle ou silyle ou, pris ensemble, représentent un groupe cycloalkyle; Y représente:

ou un halogène) avec un acide α -halogénoacétique de formule générale (2) :

$$X CO_2H$$

$$R^2$$
(2)

(dans laquelle R² représente un hydrogène ou un groupe alkyle, aralkyle ou aryle ; X représente un halogène) ou un de ses sels acceptables.

- 5. Procédé de production d'une α-halogénocétone selon la revendication 4 dans lequel le composé de formule générale (5) est le diisopropylamidure de chloromagnésium.
- 6. Procédé de production d'une α-halogénocétone selon la revendication 3 dans lequel l'énolate de magnésium est préparé en faisant réagir un réactif de Grignard de formule générale (6):

$$R^4MqZ$$
 (6)

20

5

(dans laquelle R^4 représente un groupe alkyle, aralkyle, ou aryle ; Z représente un halogène ou R^4) avec un acide α -halogénoacétique de formule générale (2):

25

$$X CO_2H$$
 (2)

- (dans laquelle R² représente un hydrogène ou un groupe alkyle, aralkyle ou aryle; X représente un halogène) ou un de ses sels acceptables.
 - **7.** Procédé de production d'une α-halogénocétone selon la revendication 6 dans lequel le composé de formule générale (6) est le chlorure de t-butyl-magnésium.

35

- 8. Procédé de production d'une α-halogénocétone selon la revendication 6 ou 7 dans lequel la réaction est conduite en présence d'une amine.
- Procédé de production d'une α-halogénocétone selon la revendication 8 dans lequel l'amine est une amine secondaire ou une amine tertiaire.
 - **10.** Procédé de production d'une α-halogénocétone selon la revendication 1, 2, 3, 4, 5, 6, 7, 8 ou 9 dans lequel le sel acceptable d'un acide α-halogénoacétique est un sel de sodium d'un acide α-halogénoacétique.
- 45 11. Procédé de production d'une α-halogénocétone selon la revendication 1, 2, 3, 4, 5, 6, 7, 8 ou 9 dans lequel le sel acceptable d'un acide α-halogénoacétique est un sel de magnésium d'un acide α-halogénoacétique de formule générale (7):

50

$$X \longrightarrow CO_2 Mg W$$

$$R^2 \qquad (7)$$

(dans laquelle R² est tel que défini précédemment; W représente un halogène ou

5

10

- 12. Procédé de production d'une α-halogénocétone selon la revendication 11 dans lequel le sel de magnésium d'un acide α-halogénoacétique est un sel préparé à partir d'un sel de sodium d'acide α-halogénoacétique et d'un halogénure de magnésium ou de sulfate de magnésium.
- 13. Procédé de production d'une α-halogénocétone selon la revendication 11 dans lequel le sel de magnésium d'un acide α-halogénoacétique est un sel préparé à partir d'un acide α-halogénoacétique et de magnésium métallique

monochloroacétique.

- acide α -halogénoacétique est un sel préparé à partir d'un acide α -halogénoacétique et de magnésium métallique.
- 14. Procédé de production d'une α-halogénocétone selon la revendication 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ou 12 dans lequel l'acide α-halogénoacétique est un acide monochloroacétique.
 - 15. Procédé de production d'une α-halogénocétone selon la revendication 1, 2, 3, 4, 5, 6, 7, 8, 9 ou 10 dans lequel le sel acceptable d'un acide α-halogénoacétique est un sel d'ammonium de l'acide α-halogénoacétique.
- 20
- **16.** Procédé de production d'une α-halogénocétone selon la revendication 1 ou 2 dans lequel l'énolate de métal formé à partir d'un acide α-halogénoacétique ou d'un de ses sels acceptables est un dianion lithium d'un acide monochloroacétique.
- 25 17. Procédé de production d'une α-halogénocétone selon la revendication 1 ou 2 dans lequel l'énolate de métal formé à partir d'un acide α-halogénoacétique ou d'un de ses sels acceptables est un dianion magnésium d'un acide
 - 18. Procédé de production d'une α -halogénocétone de formule générale (9) :
- 30
- 35
- (dans laquelle R² représente un hydrogène ou un groupe alkyle, aralkyle ou aryle; R⁵ représente un hydrogène ou un groupe alkyle, aralkyle ou aryle; P¹ et P² représentent indépendamment un hydrogène ou un groupe aminoprotecteur ou, pris ensemble, représentent un groupe phtaloyle; X représente un halogène) qui comporte la réaction d'un dérivé d'acide aminé de formule générale (8):
- 45

40

 P^{1} COA (8)

- 50
- (dans laquelle R⁵, P¹ et P² sont tels que définis ci-dessus ; A représente un groupe partant) avec un énolate de métal préparé à partir d'un acide α-halogénoacétique de formule générale (2)
- 55

 $X CO_2H$ H^2 (2)

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et la décarboxylation du produit réactionnel in situ.

19. Procédé de production d'une α -halogénocétone de formule générale (9) :

5

10

20

25

30

35

40

50

(dans laquelle R² représente un hydrogène ou un groupe alkyle, aralkyle ou aryle; R⁵ représente un hydrogène ou un groupe alkyle, aralkyle ou aryle; P¹ et P² représentent indépendamment un hydrogène ou un groupe aminoprotecteur ou, pris ensemble, représentent un groupe phtaloyle; X représente un halogène) qui comporte la réaction d'un dérivé ester d'acide aminé de formule générale (10)

$$R^{5}$$
 $CO_{2}R^{3}$ (10)

(dans laquelle R^3 représente un groupe alkyle, aralkyle ou aryle ; R^5 , P^1 et P^2 sont tels que définis ci-dessus) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2)

$$X CO_2H$$

$$H^2$$
(2)

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et la décarboxylation du produit réactionnel <u>in situ.</u>

- 20. Procédé de production d'une α-halogénocétone selon la revendication 19 dans lequel le dérivé ester d'acide aminé est un dérivé ester d'acide aminé L optiquement actif ou un dérivé ester d'acide aminé D optiquement actif
- 21. Procédé de production d'une α-halogénocétone selon la revendication 20 dans lequel le dérivé ester d'acide aminé est un dérivé ester de L-phénylalanine optiquement actif ou un dérivé ester de D-phénylalanine optiquement actif.
- 22. Procédé de production d'une α-halogénocétone selon la revendication 21 dans lequel le dérivé ester de L-phény-lalanine optiquement actif ou le dérivé ester de D-phénylalanine optiquement actif est un dérivé choisi dans le groupe constitué d'un ester de L-phénylalanine protégé par un groupe t-butoxycarbonyle, d'un ester de L-phény-lalanine protégé par un groupe benzyloxycarbonyle, d'un ester de L-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de L-phénylalanine protégé par un groupe éthoxycarbonyle.
 - 23. Procédé de production d'une α-halogénocétone selon la revendication 18, 19, 20, 21 ou 22 dans lequel l'énolate de métal préparé à partir d'un acide α-halogénoacétique ou d'un de ses sels acceptables est un énolate de magnésium.
- 24. Procédé de production d'une α-halogénocétone selon la revendication 23 dans lequel l'énolate de magnésium est préparé en faisant réagir un amidure de magnésium de formule générale (5):

(dans laquelle B et D représentent indépendamment un groupe alkyle, aralkyle, aryle ou silyle ou, pris ensemble, représentent un groupe cycloalkyle; Y représente:

ou un halogène) avec un acide α -halogénoacétique de formule générale (2) :

5

10

15

20

25

30

35

40

45

$$X CO_2H$$
 R^2
(2)

(dans laquelle R^2 représente un hydrogène ou un groupe alkyle, aralkyle ou aryle ; X représente un halogène) ou un de ses sels acceptables.

- **25.** Procédé de production d'une α-halogénocétone selon la revendication 24 dans lequel le composé de formule générale (5) est le diisopropylamidure de chloromagnésium.
 - **26.** Procédé de production d'une α-halogénocétone selon la revendication 23 dans lequel l'énolate de magnésium est préparé en faisant réagir un composé réactif de Grignard de formule générale (6) :

$$R^4MgZ$$
 (6)

(dans laquelle R⁴ représente un groupe alkyle, aralkyle, ou aryle ; Z représente un halogène ou R⁴) avec un acide α-halogénoacétique de formule générale (2):

$$X CO_2H$$
(2)

(dans laquelle R² représente un hydrogène ou un groupe alkyle, aralkyle ou aryle ; X représente un halogène) ou un de ses sels acceptables.

- 27. Procédé de production d'une α-halogénocétone selon la revendication 26 dans lequel le composé de formule générale (6) est le chlorure de t-butyl-magnésium.
- 28. Procédé de production d'une α-halogénocétone selon la revendication 26 ou 27 dans lequel la réaction est conduite en présence d'une amine.
 - 29. Procédé de production d'une α-halogénocétone selon la revendication 28 dans lequel l'amine est une amine secondaire ou une amine tertiaire.
- 30. Procédé de production d'une α-halogénocétone selon la revendication 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ou 29 dans lequel le sel acceptable d'un acide α-halogénoacétique est le monochloroacétate de sodium.

31. Procédé de production d'une α -halogénocétone selon la revendication 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ou 29 dans lequel le sel acceptable d'un acide α -halogénoacétique est un sel de magnésium d'un acide α -halogénoacétique de formule générale (7) :

$$X \longrightarrow CO_2 Mg W$$

$$R^2 \qquad (7)$$

(dans laquelle R² est tel que défini précédemment; W représente un halogène ou

$$X CO_2$$

5

10

15

40

45

50

55

- 20 32. Procédé de production d'une α-halogénocétone selon la revendication 31 dans lequel le sel de magnésium d'un acide α-halogénoacétique est un sel préparé à partir d'un sel de sodium d'acide α-halogénoacétique et soit d'un halogénure de magnésium soit de sulfate de magnésium.
- 33. Procédé de production d'une α-halogénocétone selon la revendication 31 dans lequel le sel de magnésium d'un acide α-halogénoacétique est un sel préparé à partir d'un acide α-halogénoacétique et de magnésium métallique.
 - 34. Procédé de production d'une α -halogénocétone selon la revendication 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ou 33 dans lequel l'acide α -halogénoacétique est l'acide monochloroacétique.
- 35. Procédé de production d'une α-halogénocétone selon la revendication 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ou 29 dans lequel le sel acceptable d'un acide α-halogénoacétique est un sel d'ammonium d'un acide α-halogénoacétique.
- 36. Procédé de production d'une α-halogénocétone selon la revendication 18 ou 19 dans lequel l'énolate de métal formé à partir d'un acide α-halogénoacétique ou d'un de ses sels acceptables est un dianion magnésium d'un acide monochloroacétique.
 - 37. Procédé de production d'une α-halogénocétone selon la revendication 18 ou 19 dans lequel l'énolate de métal formé à partir d'un acide α-halogénoacétique ou d'un de ses sels acceptables est un dianion lithium d'un acide monochloroacétique.
 - 38. Procédé de production d'une α -halogénohydrine de formule générale (11)

$$R^1$$
 X (II)

(dans laquelle R^1 représente un groupe alkyle, aralkyle ou aryle, R^2 représente un hydrogène ou un groupe alkyle, aralkyle ou aryle; X représente un halogène) qui comporte la production d'une α -halogénocétone de formule générale (3):

$$R^1$$
 X (3)

5

10

15

20

25

30

35

40

45

50

55

(dans laquelle R¹, R² et X sont tels que définis ci-dessus) par réaction d'un dérivé d'acide carboxylique de formule générale (1):

 R^1COA (1)

(dans laquelle R^1 est tel que défini ci-dessus ; A représente un groupe partant) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2) :

$$X CO_2H$$

$$B^2$$
(2)

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et décarboxylation du produit réactionnel in situ, ou réaction d'un ester d'acide carboxylique de formule générale (4):

$$R^1CO_2R^3$$
 (4)

(dans laquelle R¹ est tel que défini ci-dessus et R³ représente un groupe alkyle, aralkyle ou aryle) avec un énolate de métal préparé à partir d'un acide α-halogénoacétique de formule générale (2):

$$X CO_2H$$
 H^2
(2)

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et décarboxylation du produit réactionnel <u>in situ</u>, et la réduction de ladite α-halogénocétone.

39. Procédé de production d'une α -halogénohydrine de formule générale (12):

(dans laquelle R^2 et R^5 représentent indépendamment un hydrogène ou un groupe alkyle, aralkyle ou aryle; R^5 et R^5 représentent indépendamment un hydrogène ou un groupe amino-protecteur ou, pris ensemble, représentent un groupe phtaloyle; X représente un halogène) qui comporte la production d'une α -halogénocétone de formule générale (9):

5

10

15

20

25

30

35

40

45

50

55

(dans laquelle R², R⁵, P¹, P² et X sont tels que définis ci-dessus) par réaction d'un dérivé d'acide aminé de formule générale (8):

$$R^5$$
 COA (8) P^1 N P^2

(dans laquelle R^5 , P^1 et P^2 sont tels que définis ci-dessus ; A représente un groupe partant) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2) :

$$X CO_2H$$

$$H^2$$
(2)

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et décarboxylation du produit réactionnel in situ, ou réaction d'un dérivé ester d'acide aminé de formule générale (10) :

$$R^{5}$$
 $CO_{2}R^{3}$ (10)

(dans laquelle R^3 représente un groupe alkyle, aralkyle ou aryle ; R^5 , P^1 et P^2 sont tels que définis ci-dessus) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2) :

$$X \longrightarrow CO_2H$$
 (2)

(dans laquelle R^2 et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et décarboxylation du produit réactionnel <u>in situ</u>, et la réduction de ladite α -halogénocétone.

- **40.** Procédé de production d'une α-halogénohydrine selon la revendication 39 dans lequel le dérivé ester d'acide aminé est un dérivé ester d'acide aminé L optiquement actif ou un dérivé ester d'acide aminé D optiquement actif
- 41. Procédé de production d'une α-halogénohydrine selon la revendication 40 dans lequel le dérivé ester d'acide aminé L optiquement actif ou le dérivé ester d'acide aminé D optiquement actif est un dérivé ester de L-phényla-lanine optiquement actif ou un dérivé ester de D-phénylalanine optiquement actif.
- **42.** Procédé de production d'une α-halogénohydrine selon la revendication 41 dans lequel le dérivé ester d'acide aminé est un dérivé choisi dans le groupe constitué d'un ester de L-phénylalanine protégé par un groupe t-bu-

toxycarbonyle, d'un ester de L-phénylalanine protégé par un groupe benzyloxycarbonyle, d'un ester de L-phénylalanine protégé par un groupe méthoxycarbonyle, d'un ester de L-phénylalanine protégé par un groupe éthoxycarbonyle, d'un ester de D-phénylalanine protégé par un groupe t-butoxycarbonyle, d'un ester de D-phénylalanine protégé par un groupe benzyloxycarbonyle, d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe éthoxycarbonyle.

43. Procédé de production d'un époxyde de formule générale (13) :

5

10

20

25

30

35

40

45

55

R¹ (13

(dans laquelle R¹ et R² représentent indépendamment un hydrogène ou un groupe alkyle, aralkyle ou aryle) qui comporte la production d'une α-halogénohydrine de formule générale (11):

 $\mathbb{R}^1 \xrightarrow{\mathsf{DH}} X \qquad \text{(11)}$

(dans laquelle R¹ et R² sont tels que définis ci-dessus ; X représente un halogène) qui comporte : la production d'une α-halogénocétone de formule générale (3) :

 $\begin{array}{ccc}
O & X & (3) \\
R^1 & & & \end{array}$

(dans laquelle R¹, R² et X sont tels que définis ci-dessus) par réaction d'un dérivé d'acide carboxylique de formule générale (1)

 R^1COA (1)

(dans laquelle R^1 est tel que défini ci-dessus ; A représente un groupe partant) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2) :

 $X CO_2H$ R^2 (2)

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et décarboxylation du produit réactionnel in situ, ou réaction d'un ester d'acide carboxylique de formule générale (4):

 $R^{1}CO_{2}R^{3}$ (4)

(dans laquelle R^1 est tel que défini ci-dessus et R^3 représente un groupe alkyle, aralkyle ou aryle) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2):

$$X CO_2H$$
 (2)

(dans laquelle R^2 et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et décarboxylation du produit réactionnel <u>in situ</u>, la réduction de ladite α -halogénocétone, et le traitement de l' α -halogénohydrine avec une base.

44. Procédé de production d'un époxyde de formule générale (14):

$$\begin{array}{cccc}
R^5 & & & & \\
& & & & \\
P^1 & & & & \\
P^2 & & & & \\
\end{array}$$
(14)

(dans laquelle R^2 et R^5 représentent indépendamment un hydrogène ou un groupe alkyle, aralkyle ou aryle; P^1 et P^2 représentent indépendamment un hydrogène ou un groupe amino-protecteur ou, pris ensemble, représentent un groupe phtaloyle) qui comporte la production d'une α -halogénohydrine de formule générale (12):

(dans laquelle R^2 , R^5 , P^1 et P^2 sont tels que définis ci-dessus ; X représente un halogène) par la production d'une α -halogénocétone de formule générale (9):

(dans laquelle R², R⁵, P¹, P² et X sont tels que définis ci-dessus) par réaction d'un dérivé d'acide aminé de formule générale (8):

$$P^{5}$$
 COA (8)

(dans laquelle R^5 , P^1 et P^2 sont tels que définis ci-dessus ; A représente un groupe partant) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2) :

$$X CO_2H$$
 (2)

5

10

15

20

25

35

40

55

(dans laquelle R² et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et décarboxylation du produit réactionnel in situ, ou réaction d'un dérivé ester d'acide aminé de formule générale (10):

$$R^{5}$$
 $CO_{2}R^{3}$ (10) P^{1} N_{2}

(dans laquelle R^3 représente un groupe alkyle, aralkyle ou aryle ; R^5 , P^1 et P^2 sont tels que définis ci-dessus) avec un énolate de métal préparé à partir d'un acide α -halogénoacétique de formule générale (2) :

$$X CO_2H$$
 H^2
(2)

(dans laquelle R^2 et X sont tels que définis ci-dessus) ou d'un de ses sels acceptables et décarboxylation du produit réactionnel <u>in situ</u>, la réduction de ladite α -halogénocétone et le traitement de ladite α -halogénohydrine avec une base.

- 45. Procédé de production d'un époxyde selon la revendication 44 dans lequel le dérivé ester d'acide aminé est un dérivé ester d'acide aminé L optiquement actif ou un dérivé ester d'acide aminé D optiquement actif
 - **46.** Procédé de production d'un époxyde selon la revendication 45 dans lequel le dérivé ester d'acide aminé L optiquement actif ou le dérivé ester d'acide aminé D optiquement actif est un dérivé ester de L-phénylalanine optiquement actif ou un dérivé ester de D-phénylalanine optiquement actif.
 - 47. Procédé de production d'un époxyde selon la revendication 45 dans lequel le dérivé ester d'acide aminé est un dérivé choisi dans le groupe constitué d'un ester de L-phénylalanine protégé par un groupe t-butoxycarbonyle, d'un ester de L-phénylalanine protégé par un groupe méthoxycarbonyle, d'un ester de L-phénylalanine protégé par un groupe éthoxycarbonyle, d'un ester de D-phénylalanine protégé par un groupe t-butoxycarbonyle, d'un ester de D-phénylalanine protégé par un groupe benzyloxycarbonyle, d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe méthoxycarbonyle, et d'un ester de D-phénylalanine protégé par un groupe de D-phény
- 48. Procédé de production d'une α-halogénocétone selon la revendication 20 dans lequel le dérivé ester d'acide aminé L optiquement actif ou le dérivé ester d'acide aminé D optiquement actif est un dérivé ester de D-phénylthioalanine ou un dérivé ester de L-phénylthioalanine.
- 49. Procédé de production d'une α-halogénocétone selon la revendication 48 dans lequel le dérivé ester de D-phénylthioalanine ou le dérivé ester de L-phénylthioalanine est un ester de D-phénylthioalanine protégé par un groupe benzyloxycarbonyle où un ester de L-phénylthioalanine protégé par un groupe benzyloxycarbonyle.
 - 50. Procédé de production d'une α-halogénohydrine selon la revendication 40 dans lequel le dérivé ester d'acide aminé L optiquement actif ou le dérivé ester d'acide aminé D optiquement actif est un dérivé ester de D-phénylthioalanine ou un dérivé ester de L-phénylthioalanine.
 - 51. Procédé de production d'une α-halogénohydrine selon la revendication 50 dans lequel le dérivé ester de D-phénylthioalanine ou le dérivé ester de L-phénylthioalanine est un ester de D-phénylthioalanine protégé par un groupe

benzyloxycarbonyle ou un ester de L-phénylthioalanine protégé par un groupe benzyloxycarbonyle.

- **52.** Procédé de production d'un époxyde selon la revendication 45 dans lequel le dérivé ester d'acide aminé L optiquement actif ou le dérivé ester d'acide aminé D optiquement actif est un dérivé ester de D-phénylthioalanine ou un dérivé ester de L-phénylthioalanine.
- **53.** Procédé de production d'un époxyde selon la revendication 52 dans lequel le dérivé ester de D-phénylthioalanine ou le dérivé ester de L-phénylthioalanine est un ester de D-phénylthioalanine protégé par un groupe benzyloxycarbonyle ou un ester de L-phénylthioalanine protégé par un groupe benzyloxycarbonyle.
- **54.** Procédé de production d'un époxyde selon la revendication 44 dans lequel ledit traitement de ladite α-halogéno-hydrine avec une base comprend le fait d'être réalisé dans un solvant polaire protique ou dans un mélange d'un solvant polaire protique et d'eau, puis la cristallisation dans le solvant.
- 55. Procédé de production d'un époxyde selon la revendication 54 dans lequel ledit solvant polaire protique est l'acétone.

Fig. 1 .

F i g. 2

F i g. 3

Fig. 4

F i g. 5

F i g. 6

Fig. 7

F i g. 8

Fig. 9

Fig. 10

F i g. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

