

Recette

Dynamic Sampling and Rendering of Algebraic Point Set Surfaces

William Caisson

Xavier Chalut

Christophe Claustre

Thibault Lejemble

Client : Nicolas Mellado

CONTEXTE

Objectif

Visualiser en temps réel une surface lisse qui approche le nuage de points

Dynamic Sampling and Rendering of Algebraic Point Set Surfaces

Gaël Guennebaud

Marcel Germann

Markus Gross

Rappel du système

SOMMAIRE

Présentation du programme

Déroulement du chef d'oeuvre

Resultats

Description du plugin

Planning et développement

Démonstration

Couverture des exigences

Difficultés rencontrées

Visuels et performances

Tests fonctionnels

Propositions d'améliorations

Présentation du programme - Description du plugin

Ajout dans Radium:

- Accessibilité depuis un plugin du viewer (+ caméra, renderers ...)
- Ajout d'un renderer possible via le viewer
- Support des points dans Radium (classe Mesh)
- Ajout de la propriété "Splat's Radius"
- Ajout des "Pointy" RenderObjects
- Shaders pour le rendu de point
 - 1 couple vertex/fragment shader
 - 1 triplé vertex/geometry/fragment shader

nécessaire pour qu'un plugin puissent ajouter un renderer

supports des points & visualisations

Présentation du programme - Description du plugin

Fonctionnalités du plugin :

- Renderer basique de points
- Instanciation de "Pointy" RenderObjects automatique à l'ouverture d'un fichier
 - lecture des fichiers déjà présente dans Radium
- Implémentation de l'article incomplète, cependant personnalisable :
 - o différentes méthodes de rééchantillonnage
 - o différentes méthodes de sélection des voisins
 - implémentation CUDA optionnelles de certaine étapes
 - parallélisation de certaine étapes sur CPU (OpenMP)

Présentation du programme - Description du plugin

Présentation du programme - Couverture des exigences

P1	Le travail effectué doit s'intégrer dans le moteur de rendu Radium-Engine sous la forme d'un plugin
P2	Le plugin doit pouvoir fonctionner sur un système d'exploitation Linux qui comporte une carte graphique NVIDIA permettant l'exécution de programmes CUDA
P3	Le plugin doit permettre à Radium-Engine d'afficher un nuage de points
P4	Le plugin doit permettre à Radium-Engine d'extraire un nuage de points des fichiers .PLY donnés en entrée
P5	Le plugin doit permettre à Radium-Engine d'afficher une scène décrite en nuage de points de moins de 1 million de points avec une fréquence d'affichage minimum de 50 images par seconde
P6	Il devra être fourni lors de la recette, le code source du plugin
P7	Il devra être fourni lors de la recette, une documentation utilisateur complète décrivant comment utiliser le plugin

Présentation du programme - Couverture des exigences

S1	Le plugin doit permettre à Radium-Engine d'afficher une scène décrite en nuage de points de moins de 2 millions de points avec une fréquence d'affichage minimum de 50 images par seconde	
S2	Quelque soit le positionnement et l'orientation de la caméra, la surface des objets dans le champ de vision doivent présenter aucune ouverture de plus que celle due à la description du nuage de points	
S3	Le plugin doit permettre à Radium-Engine d'afficher une surface lisse à partir d'un nuage de points	
S4	Le plugin ne doit pas empêcher Radium-Engine de fonctionner sous Windows et MacOS	

Présentation du programme - Tests fonctionnels

Nom du scénario	Actions à effectuer	Résultats attendus	Exigences
Test plugin	Suppression de notre plugin de Radium-Engine	Le moteur doit fonctionner comme à l'initial	P1
Test lecture d'un fichier .PLY	Exécuter Radium-Engine, charger le fichier .PLY, enregistrer le nuage de points chargé dans un fichier .PLY	Le contenu du fichier .PLY issu de la sauvegarde doit être le même que le contenu du fichier .PLY qui a servi au chargement	P4
Test affichage d'un nuage de points	Exécuter Radium-Engine , charger le fichier .PLY	L'affichage du nuage de points doit se faire correctement par rapport aux données du fichier .PLY	P3
Test taux de rafraîchissement	Exécuter Radium-Engine , charger le fichier .PLY de 1 million de points	Le nombre d'image par seconde indiqué doit être au minimum de 50.	P5
Test taux de rafraîchissement 2	Exécuter Radium-Engine , charger le fichier .PLY de 2 million de points	Le nombre d'image par seconde indiqué doit être au minimum de 50.	S1
Test non création de trous dans les surfaces	Exécuter Radium-Engine , charger les fichiers .PLY un à un	Les surfaces des objets doivent présenter aucune ouverture de plus que celle dues à la description des nuages de points	S2
Test continuité des surfaces	Exécuter Radium-Engine , charger le fichier .PLY	La surface des objets affichés doit être visuellement lisse	S3

Outils:

Organisation:

- Travail en groupe par tâche
- 5 réunions client

Temps de travail : 230h/personne

Développement

Deux branches Git

Branche Master:

- 220 commits
- ~2500 lignes de codes pour le plugin PointyCloud
- 43 nouveaux fichiers
- 20 nouvelles classes

Branche CUDA:

- 49 commits
- ~630 lignes de codes
- 13 nouveaux fichiers

Planning prévisionnel

Planning effectif 2016 2017 Rapport Relette Date de début Date de fin Nom □ ● Développement 02/01/17 09/03/17 26/12/16 02/01/17 28/02/17 Récupération des nuages de point Représentation des nuages de points dans Radium 02/01/17 28/02/17 Lecture des fichiers .PLY en entrée de Radium 16/01/17 16/01/17 16/01/17 25/01/17 Visualisation des points 16/01/17 23/01/17 Gestion de l'occultation 24/01/17 25/01/17 Sélection des points à traiter 10/02/17 18/02/17 □ Ré-échantillionnage 15/02/17 09/03/17 Génération d'un nombre fixé d'échantillons 15/02/17 20/02/17 Calcul simple du nombre d'echantillon 16/02/17 24/02/17 09/03/17 Calcul complexe du nombre d'echantillon 28/02/17 Génération des échantillons sur GPU 22/02/17 09/03/17 15/02/17 09/03/17 □ Projection Projection orthogonale en utilisant la bibliothèque 15/02/17 18/02/17 06/03/17 09/03/17 Projection presque othogonale Sélection des voisins 14/02/17 23/02/17 Sélection simple 14/02/17 16/02/17 Utilisation de l'Octree 19/02/17 23/02/17 □ ○ Construction de l'Octree 17/02/17 09/03/17 Par CPU 17/02/17 18/02/17 Par GPU 27/02/17 09/03/17 Tests d'intégration 19/02/17 09/03/17 Reunions client 06/12/16 06/12/16 Rapport Recette 21/02/17 21/02/17

Déroulement du chef d'oeuvre - Difficultés rencontrées

Contraintes matériel:

Support CUDA

Planning

Difficultés à se mettre à 100% sur le projet

Programmation

- Retour en arrière sur la conception (structures de données)
- Problèmes de performance

Résultats - Démonstration

Proportion de temps de calcul entre les différentes étapes du calcul de l'APSS

Culling	2,01%
Upsampling	4,88%
Projecting	90,86%
- Neighbors query	82,93%
- Sphere fitting	17,05%
- Point projection	0,02%
Loading in mesh	2,24%

<u>Utilisation d'une grille régulière</u>: temps d'accès aux voisins

Nuage de points de référence (splats carrées non-orientées)

Splats elliptiques orientées

Culling

Sur-échantillonnage (fixe)

Projection (orthogonale) sur l'APSS

Lapin: 200k points

Temps réel : Non, ≈ 0,5 frame/sec

Utilisation du multithreading CPU

Résultats - Propositions d'améliorations

- Implémenter les dernières versions de :
 - projection
 - ré-échantillonnage
- Finaliser l'implémentation sur GPU
- Pouvoir gérer plusieurs nuages de points indépendamment
- Sauvegarder un nuage de point après ré-échantillonnage

Merci de votre attention

Avez-vous des questions?