

Sri Ramakrishna Engineering College

S R E C

[Educational Service: SNR Sons Charitable Trust]
[Autonomous Institution, Reaccredited by NAAC with 'A+' Grade]
[Approved by AICTE and Permanently Affiliated to Anna University, Chennai]
[ISO 9001-2015 Certified and All Eligible Programmes Accredited by NBA]
VATTAMALAIPALAYAM, N.G.G.O. COLONY POST, COIMBATORE – 641 022.

Crop Schedule Management using Quantum Optimization Techniques

Team Number: 15

Guide

Dr. R. Madhumathi, ASP/CSE

Team members:

ENOTH KUMAR N (2253015)

HEMANTH HARISH (2253022)

MOHAN KRISHNA G R (2253035)

Introduction

Problem Statement & Understanding

Introduction Domain

- Quantum Computing a break-through in computational method
 - Enables high performance computing, reduces computational time exponentially.
 - Utilizes the principles of quantum mechanics.
 - Superposition
 - Quantum Entanglement
 - Quantum Inference, gates, etc.
 - Deploys Qubits (for computing).

Introduction Problem Background

Agricultural Optimization Challenges:

- Yield disparities
 - Crucial crops Uneven distribution
 - · Noticeable decline in overall crop yields
 - Threat to food security & marginalized farm income.
- Lack of optimal resource utilization.
 - Resources: Land, Water, Nutrients, Microbe ecosystem.
- Involves complex agricultural systems with multiples variables.
 - Throttles classical systems for computation.
 - Exponential time complexity.

Case Study: Dwindling textile industry in India

- Sparse cotton yield
 - Demand Supply mismatch
 - · Reduced yield per hectare
 - Exploitation of resources with no improvement in productivity.
- Low Raw Material input = Low production = Low utilization = Low profit = No capex cycle
- Decreased fiscal prudence and thus, poor Balance Sheet (for consecutive Financial Years)
- Similar situation is prominent in over-all agriculture sector (World Bank).

Falling textile exports

Year-on-year change in textile exports from India.

Source: Ministry of Commerce and Industry, India | Reuters, Dec. 15, 2022 | By Riddhima Talwani

FIG: Agriculture (% of GDP) - India Source: World Bank

Introduction Problem Objective

- To introduce Quantum inspired novel agricultural approach.
 - To formulate 'Quadratic Model' crop optimization problem.
 - To encode QM for Problem with dynamic inputs.
 - Considerations: Set of Plots, Crop Options, Growth time, Utilization rate.
 - To solve the quadratic model effectively using a real Quantum computer.
 - To Create: Quantum Optimizer model.
 - To Create effective methods and functions Quantum programming.
 - Submit the jobs to QC, use quantum annealing to solve.
 - Retrieve computed results from quantum computer.
 - To present the results data visualization
 - Expect: Crop schedule for crop rotation

Background Research

Literature Review & Findings

[1] K.Barati. et. al., "Cropping Pattern Optimization Using System Dynamics Approach and Multi-Objective Mathematical Programming", J.Agr.Sci.Tech., vol.22, no.5, pp.1397–1412, 2020.

S.N o	Use - Case	Paper Title	Year	Task	Method	Result	Disadvantages
1	OPTIMIZE CROP PATTERN	Crop Pattern Optimization Using System Dynamics Approach and Multi-Objective Mathematical Programming	2020	 Optimize cropping pattern using dynamic modelling Forecasting parameters using mathematical programming 	 By developing a dynamic model in Vensim PRO x32 software Stochastic simulation of time series data. 	 Ratio of benefit to water extraction improved in all scenarios Low error rate 	Reduction in cultivation of secondary crops.

[2] C. Maraveas et al., "Harnessing Quantum Computing for Smart Agriculture: Empowering Sustainable Crop Management and Yield Optimization", Computers and Electronics in Agriculture, vol. 218, p. 1-23, 2024.

S.N o	Use - Case	Paper Title	Year	Task	Method	Result	Disadvantages
2	Quantum Computin g – Smart Agricultur e	Harnessing Quantum Computing for Smart Agriculture: Empowering Sustainable Crop Management and Yield Optimization	2024	 Focuses on quantum computing applications in smart agriculture Discusses quantum sensors, digital twin, quantum machine learning. 	Open-ended research method with labor-intensive erecording and categorization.	 Enhanced precision in monitoring crop farming and agricultural productivity, using quantum computing. Regulated farming practices 	 Limited expertise in quantum computing in agriculture industry Sparse implement ation.

[3] K. Jun, "QUBO Formulations for a System of Linear Equations", Results in Control and Optimization, vol. 14, p. 1-12, 2024

S.N o	Use - Case	Paper Title	Year	Task	Method	Result	Disadvantages
3	QUBO MODEL – ALGORITH M FOR LINEAR SYSTEM	QUBO Formulations for a System of Linear Equations	2024	Formulating Quadratic Unconstrained Binary Optimization — (BQM) mathematical model for problems.	 By solving linear systems efficiently on quantum computers. Involves cost function for n-dimensional binary vector. 	QPU solves problems efficiently using QUBO model.	Less robust comparatively to DQM models.

[4] L. M. R. dos Santos et al., "Crop rotation scheduling with adjacency constraints", Annals of Operations Research, vol.190, pp. 165-180,2021.

S.N o	Use - Case	Paper Title	Year	Task	Method	Result	Disadvantages
4	CROPROTATION	Crop rotation scheduling with adjacency constraints	2021	 Focuses on crop rotation on crop scheduling in cropping areas Presents a linear optimization model. 	 Uses column generation method. Heuristic procedure based on the columns Greedy plot-to-plot heuristics for rapid good results. 	Heuristic HCGH outperformed CPLEX in solving crop rotation problems	Novice implement ation observed.

Proposed System

Architecture, Findings, etc.

01. Farming Method

Year 1

Year 2

Crop-Rotation

- Crop rotation is a sustainable agricultural technique that involves switching between cover crops and cash crops to avoid the adverse effects of intensive farming.
- Crop rotation is a method for crop production diversification and soil fertility improvement
- Enhancing accuracy in mapping crop rotation patterns for better agro-ecosystem management.
- Diversified crop rotation (**DCR**) enhances soil health, productivity, and sustainability by incorporating a variety of crops, reducing risks, and improving ecological balance in farming systems.

Crop Rotation Example Tomato Legume Carrot Bed 3 Bed 1 Bed 2 Carrot Tomato Legume Bed 3 Bed 2 Bed 1 Year 3 Legume Carrot Tomato Bed 1 Bed 2 Bed 3

02. Quadratic model

Objective function:

$$\min \sum_{k=1}^{L} \sum_{j=1}^{M} \sum_{i=1}^{N} -t_{i}.x_{i,j,k}$$

- Where,
 - M = The duration of a complete crop rotation, measured in time units.
 - L = The total number of available plots for planting crops.
 - N = The count of distinct crop types.
 - $x_{i,j,k}$ represents whether crop i is planted on farm k in period j, where i ranges from 1 to the total number of distinct crops, j ranges from 1 to the total number of available farms, and k ranges from 1 to the total number of time units.

02. Quadratic model

- Constraints: Using 'Crop Rotation' Farming method.
 - 1. Each period, atmost one crop can be planted on each farm.

$$\sum_{i=1}^{N} \sum_{r=0}^{t_i-1} x_{i,j-r,k} \le 1, j=1, \dots, M, k=1, \dots, L$$

- 2. Crop rotation constraints to avoid consecutive planting of certain crops.
 - Same crop 'Species' should not be placed adjacent.

$$\sum_{i \in F} \sum_{p=0}^{t_i - 1} \left[x_{i,j-r,u} + x_{i,j-r,v} \right] \le 1, \ p = 1, \dots, N_f, \ j = 1, \dots, M, \ (u, v) \in S$$

II. Same 'Family' crops should not be placed adjacent.

$$\sum_{i \in F} \sum_{r=0}^{l_i} x_{i,j-r,k \le 11, p=1,...,N_f, j=1,...,M, k=1,...,L}$$

3. Utilization rate of the fields in *Total time period* must be less than 95%

$$\sum_{k=1}^{L} \sum_{i=1}^{M} \sum_{i=1}^{N} x_{i,j,k} \leq ext{max_utilization_percentage} imes L imes M$$

02. Quadratic model Sample Calculations

• Inputs:

- crops:
 - Aa: family: Aaaa, grow_time: 1, planting: [1,3]
 - Bb: family: Bbbb, grow_time: 1, planting: [1,4]
- plot_adjacency: (1,2)
- time units: 4
- Quantum Solution:
- {'1,1': 'Aa', '2,1': 'Bb', '1,2': 'Bb', '2,2': 'Aa', '1,3': 'Aa', '2,3': 'Bb', '1,4': 'Bb', '2,4': None}
- Objective Function:

Objective Function =
$$\sum_{i,j,k} x_{i,j,k} \times \text{grow_time}[i]$$

- Objective Function = $(1 \times 1) + (1 \times 1) + ($
- Objective Function = 7

02. Quadratic model Sample Calculations

- Constraints:
 - Atmost one crop only:

$$x_{\mathrm{Aa},1,1} + x_{\mathrm{Bb},1,1} = 0 + 1 = 1$$

$$x_{{
m Aa},1,2}+x_{{
m Bb},1,2}=1+0=1$$

$$x_{{
m Aa},1,3}+x_{{
m Bb},1,3}=0+1=1$$

$$x_{{
m Aa},1,4}+x_{{
m Bb},1,4}=0+1=1$$

$$x_{{
m Aa},2,1}+x_{{
m Bb},2,1}=1+0=1$$

$$x_{\mathrm{Aa},2,2} + x_{\mathrm{Bb},2,2} = 0 + 1 = 1$$

$$x_{{
m Aa},2,3}+x_{{
m Bb},2,3}=1+0=1$$

$$x_{{
m Aa},2,4} + x_{{
m Bb},2,4} = 0 + 1 = 1$$

02. Quadratic model Sample Calculations

- Constraints:
 - 2. Same 'Family' crops should not be placed adjacent.

$$x_{{
m Aa},1,1} + x_{{
m Aa},2,1} = 1 + 0 = 1$$

$$x_{{
m Aa},1,2} + x_{{
m Aa},2,2} = 1 + 0 = 1$$

$$x_{\mathrm{Aa},1,3} + x_{\mathrm{Aa},2,3} = 0 + 1 = 1$$

$$x_{{
m Aa},1,4}+x_{{
m Aa},2,4}=0+1=1$$

$$x_{{
m Bb},1,1}+x_{{
m Bb},2,1}=0+1=1$$

$$x_{{
m Bb},1,2}+x_{{
m Bb},2,2}=0+1=1$$

$$x_{{
m Bb},1,3}+x_{{
m Bb},2,3}=1+0=1$$

$$x_{{
m Bb},1,4}+x_{{
m Bb},2,4}=0+1=1$$

02. Quadratic model Sample Calculations

- Constraints:
 - Family count:

$$\sum_{j,k} x_{\mathrm{Aa},j,k} = 3$$
$$\sum_{j,k} x_{\mathrm{Bb},j,k} = 4$$

$$xAa,1,1+xAa,2,1+xAa,1,2+xAa,2,2+xAa,1,3+xAa,2,3+xAa,1,4+xAa,2,4=0+1+1+0+1+0+0+0=3\\xBb,1,1+xBb,2,1+xBb,1,2+xBb,2,2+xBb,1,3+xBb,2,3+xBb,1,4+xBb,2,4=1+0+0+1+1+0+0+1=4\\xBb,2,1+xBb,2,2+xBb,2,2+xBb,2,3+xBb,2,3+xBb,2,3+xBb,2,4=1+0+0+1+1+0+0+1=4\\xBb,2,1+xBb,2,1+xBb,2,2+xBb,2,2+xBb,2,3+xBb,2,3+xBb,2,3+xBb,2,4=1+0+0+1+1+0+0+1=4\\xBb,2,1+xBb,2,2+xBb,2,2+xBb,2,3+xBb,2,3+xBb,2,3+xBb,2,4=1+0+0+1+1+0+0+1=4\\xBb,2,1+xBb,2,2+xBb,2,2+xBb,2,3+xB$$

- Maximum utilization rate: (95%)
 - Plot utilization = (7/8) = 0.875
 - 0.875 < 0.95
- <u>NOTE:</u>
- These are sample calculations only, for the output obtained (1 combination).
- But, to obtain output, all these calculation must be done to all the combinations!!

02. Quadratic model Sample Calculations

• But, to obtain output, all these calculation must be done to all the combinations!!

```
DQM num. variables: 8

DQM num. variable interactions: 12 (42.9 % of max)

DQM num. cases: 22

DQM num. case interactions: 19 (9.0 % of max)

Solution: {'1,1': 'Aa', '2,1': 'Bb', '1,2': 'Bb', '2,2': 'Aa', '1,3': 'Aa', '2,3': 'Bb', '1,4': 'Bb'}

Solution energy: -7.0

Plot utilization: 87.5 %

{'1,1': 'Aa', '2,1': 'Bb', '1,2': 'Bb', '2,2': 'Aa', '1,3': 'Aa', '2,3': 'Bb', '1,4': 'Bb', '2,4': None}
```


03. Architecture

- Overall, this system uses a cloud-based quantum computer to optimize crop planting schedules.
- The system takes agricultural data, translates it into a form a quantum computer can understand (DQM).
- Uses the quantum annealing to find the optimal planting schedule.
- Translates the results back into a usable form, and presents the results to the user.

03. Architecture

• The Simplified diagram depicts a system that leverages a quantum annealer to solve an optimization problem.

Proposed System Findings

Sample problem input

plot_adjacency:	
1: [2]	
o. [3]	

time units: 20

2: [3] 3: [4]

4: [5] 5: [6]

6: [7]

7: [8]

8: [9]

9: []

crops: Cotton:

family: Mallows planting: [2, 3] grow time: 6

Sunflower: family: Aster

planting: [10, 12]

grow_time: 7

Peas:

family: Legume planting: [6, 7] grow time: 3

Beans:

family: Legume planting: [11, 12]

grow_time: 6

Tomato:

family: Solanum planting: [11, 12]

grow_time: 4

Potato:

family: Solanum planting: [9, 10] grow time: 6

Turnip:

family: Cole planting: [2, 14]

grow_time: 4

Carrot:

family: Apium planting: [7, 8]

grow_time: 4

Onion:

family: Alium planting: [5, 7] grow time: 5

Garlic:

family: Alium planting: [2, 2]

grow_time: 10

Spinach:

family: Chenopodium

planting: [6, 7] grow time: 3

Proposed System Findings

Sample DQM

```
DOM num. variables: 180
DOM num. variable interactions: 1087 (6.7 % of max)
DOM num. cases: 486
DOM num. case interactions: 3568 (3.0 % of max)
                  6,1 7,1 8,1 9,1 1,2 2,2 3,2 4,2 ... 9,20 energy num Crop
                                                  0 - 149.0
                                                  0 - 149.0
                                                  0 - 149.0
                                                  0 - 149.0
                                                  0 - 149.0
                                                  0 - 149.0
                                                  0 - 149.0
                                                  0 - 149.0
```

['INTEGER', 96 rows, 96 samples, 180 variables]

Proposed System Findings

Built DQM:

```
DQM num. variables: 180

DQM num. variable <u>interactions</u>: 1105 (6.9 % of max)

DQM num. cases: 486

DQM num. case interactions: 3649 (3.1 % of max)
```

- Solution:
 - Solution: {'1,2': 'Cotton', '2,2': 'Garlic', '3,2': 'Cotton', '4,2': 'Garlic', '5,2': 'Cotton', '6,2': 'Garlic', '7,2': 'Cotton', '8,2': 'Garlic', '9,2': 'Cotton', '1,8': 'Carrot', '3,8': 'Turnip', '5,8': 'Turnip', '7,8': 'Carrot', '9,8': 'Turnip', '1,12': 'Sunflower', '2,12': 'Beans', '3,12': 'Sunflower', '4,12': 'Beans', '5,12': 'Sunflower', '6,12': 'Beans', '7,12': 'Sunflower', '8,12': 'Beans', '9,12': 'Sunflower'}
 - Solution energy: -149.0
 - Plot utilization: 82.8 %

Cotton Carrot Sunflower

Garlic

Beans

Turnip

Proposed System Findings

Accessing QPU

```
qc/ $ dwave ping
Using endpoint: https://cloud.dwavesys.com/sapi/
Using region: na-west-1
Using solver: Advantage_system4.1
Submitted problem ID: a140471a-433e-411a-aafc-4d783cfb70d8
Wall clock time:
* Solver definition fetch: 2814.352 ms
 * Problem submit and results fetch: 2542.404 ms
 * Total: 5356.756 ms
QPU timing:
 * post processing overhead time = 1.0 us
 * qpu access overhead time = 0.0 us
 * qpu access time = 15857.35 us
 * qpu anneal time per sample = 20.0 us
 * qpu_delay_time_per_sample = 20.58 us
 * qpu_programming_time = 15780.37 us
 * qpu_readout_time_per_sample = 36.4 us
 * qpu_sampling_time = 76.98 us
 * total_post_processing_time = 1.0 us
qc/ $
```

Quantum Annealer: Sampler

{'minimum_time_limit': [[20000, 5.0], [100000, 6.0], [200000, 13.0], [500000, 34.0], [1000000, 71.0], [2000000, 152.0], [5000000, 250.0], [2000000, 400.0], [250000000, 1200.0]], 'maximum_time_limit_hrs': 24.0, 'maximum_n umber_of_variables': 5000, 'maximum_number_of_biases': 5000000000, 'maximum_number_of_cases': 500000, 'paramete rs': {'time_limit': 'Maximum requested runtime in seconds.'}, 'supported_problem_types': ['dqm'], 'version': '1.12', 'category': 'hybrid', 'quota_conversion_rate': 20}

Conclusion

Result & Future Scope

Conclusion

- Achieved all the blocks in 'Implementation Modules', successfully meet the objectives by quantum annealing.
- Solves the computational limitation posed by classical computing, thus, solves massive problem instances effectively.
- Successfully demonstrated the **Quantum Advantage** for complex optimization problems with constraints.
- Observed robustness across multiple problem scenarios.
- Hence, Quantum computing's potential in revolutionizing optimization tasks

Future Scope

Sustainable Tech

• Investigate quantum algorithms for sustainable agriculture practices to reduce carbon footprint.

Quantum Hardware Advancements

- Need practical Quantum sensors.
- Explore advancements in quantum hardware technologies:
 - Increased qubit counts
 - Improved coherence and error rates
 - Availability of fault-tolerant quantum processors

Algorithmic Enhancements

- Develop and optimize quantum algorithms specifically tailored for optimization tasks:
 - Enhanced QAOA
 - Novel variational quantum algorithms
 - Quantum annealing approaches

Quantum Software Development

- Focus on developing user-friendly quantum software tools and libraries:
 - Quantum programming languages and frameworks
 - Simulation and optimization software for quantum computing
 - · Quantum machine learning libraries

REFERENCES

- [1] L. M. R. dos Santos et al., "Crop rotation scheduling with adjacency constraints," Annals of Operations Research, vol. 190, pp. 165-180, 2021.
- [2] K.Barati. et. al., "Cropping Pattern Optimization Using System Dynamics Approach and Multi-Objective Mathematical Programming", J.Agr.Sci.Tech., vol.22, no.5, pp.1397–1412, 2020.
- [3] C. Maraveas et al., "Harnessing Quantum Computing for Smart Agriculture: Empowering Sustainable Crop Management and Yield Optimization", Computers and Electronics in Agriculture, vol. 218, p. 1-23, 2024.
- [4] K. Jun, "QUBO Formulations for a System of Linear Equations", Results in Control and Optimization, vol. 14, p. 1-12, 2024
- [5] A. A. Nel, 'Crop rotation in the summer rainfall area of South Africa', South African Journal of Plant and Soil, vol. 22, no. 4, pp. 274–278, Jan. 2005.
- [6] H. Ritchie and M. Roser, 'Crop yields', Our World in Data, 2013, [Online]. Available: https://ourworldindata.org/crop-yields.
- [7] G. Brion, 'Controlling Pests with Plants: The power of intercropping', UVM Food Feed, Jan. 09, 2014. https://learn.uvm.edu/foodsystemsblog/2014/01/09/controlling-pests-with-plants-the-power-of-intercropping/ (accessed Feb. 15, 2021).
- [8] N. O. Ogot, J. O. Pittchar, C. A. O. Midega, and Z. R. Khan, 'Attributes of push-pull technology in enhancing food and nutrition security', African Journal of Agriculture and Food Security, vol. 6, pp. 229–242, Mar. 2018.

THANK YOU!!!