MATH 424 HW7 Dilys Wu

Dilys

March 21, 2024

1 Q1

Let $f:(0,\infty)\to\mathbb{R}$ be a function. Suppose $\lim_{x\to 0}f(x)$ exists and equals L. Let g(u)=f(1/u). Prove that $\lim_{u\to\infty}g(u)$ exists and equals L as well. That is, prove that given $\varepsilon>0$ there is $M\in\mathbb{R}$ so that $|g(u)-L|<\varepsilon$ for all u>M.

Proof:

When $u \to \infty$, $1/u \to 0$. Then $\lim_{u \to \infty} g(u) = \lim_{v \to 0} f(v) = \lim_{v \to 0} \frac{f(v) - f(0)}{v - 0} = L$, and since f is differentiable at 0, $\lim_{u \to \infty} g(u)$ exists and equal L.

2 Q2

(a) Suppose $f, g:(a,b)\to\mathbb{R}$ are two functions, $c\in(a,b)$, the limits $\lim_{x\to c}f(x)$, $\lim_{x\to c}g(x)$ both exist and equal L. Define $h:(a,b)\to\mathbb{R}$ by

$$h(x) := \begin{cases} f(x) & x \text{ is rational} \\ g(x) & x \text{ is irrational} \end{cases}$$

Prove that $\lim_{x\to c} h(x)$ exists and equals L.

(b) Assume further that f(c) = g(c), that f, g are differentiable at c and that f'(c) = g'(c). Prove that h is differentiable at c as well.

Proof:

- (a) Since $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ both exist and equal L, for all $\varepsilon>0$, we have $0<|x-c|<\delta_f\implies|f(x)-L|<\varepsilon_f$ and $0<|x-c|<\delta_g\implies|f(x)-L|<\varepsilon_g$. Let $\delta=\min\{\delta_f,\delta_g\}$, now when x is rational, h(x)=f(x), and since $0<|x-c|<\delta$, $|f(x)-L|=|h(x)-L|<\varepsilon$. When x is irrational, h(x)=g(x), and since $0<|x-c|<\delta$, $|f(x)-L|=|g(x)-L|<\varepsilon$. In both case, we've shown that $\lim_{x\to c} f(x)$ exists and equals L.
- (b) Since f'(c) = g'(c) = k, $\lim_{x \to c} \frac{f(x) f(c)}{x c} = k$ when x is rational and $\lim_{x \to c} \frac{g(x) g(c)}{x c} = k$ when x is irrational. When x is rational, h(x) = f(x), and thus $\lim_{x \to c} \frac{h(x) h(c)}{x c} = \lim_{x \to c} \frac{f(x) f(c)}{x c} = k$. When x is irrational, h(x) = g(x), and thus $\lim_{x \to c} \frac{h(x) h(c)}{x c} = \lim_{x \to c} \frac{g(x) g(c)}{x c} = k$. Therefore $\lim_{x \to c} \frac{h(x) h(c)}{x c}$ exists and thus h is differentiable at c.

3 Q3

Consider

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Prove that f is differentiable at zero. Feel free to use problem 1 and l'Hopital's rule, if needed.

Proof:

Since
$$\lim_{x\to 0^+} e^{-\frac{1}{x^2}} = \lim_{x\to 0^+} \frac{1}{e^{1/x^2}} = 0$$
, $f(x)$ is continuous at 0. $f'(0) = \lim_{x\to 0^+} \frac{e^{-1/x^2}-0}{x} = \lim_{x\to 0^+} \frac{e^{-1/x^2}-0}{x} = \lim_{x\to 0^+} \frac{1}{xe^{1/x^2}} = \lim_{y\to +\infty} \frac{y}{e^{y^2}} = \lim_{y\to +\infty} \frac{1}{2ye^{y^2}} \text{(L'Hopital)} = 0$. Similarly, $\lim_{x\to 0^-} \frac{e^{-1/x^2}-0}{x} = \lim_{x\to 0^-} \frac{e^{-1/x^2}-0}{x} = \lim_{x\to 0^-} \frac{1}{xe^{1/x^2}} = \lim_{y\to -\infty} \frac{y}{e^{y^2}} = \lim_{y\to -\infty} \frac{1}{2ye^{y^2}} \text{(L'Hopital)} = 0$. Hence f is differentiable at 0 and $f'(0) = 0$.

4 $\mathbf{Q4}$

Prove directly from the definition of Darboux integral given in lecture 21 that the function

$$f(x) = \begin{cases} 1 & x \text{ is rational} \\ 0 & x \text{ is irrational} \end{cases}$$

is not integrable on the interval [0, 1].

Proof:

For all $S \subseteq [0,1], M(f,S) = 1, m(f,S) = 0 \implies \forall P, L(f,P) = 0, U(f,P) = 1.$ $\implies L(f) = \sup\{L(f, P)|P \text{ a partition}\} = 0. \ U(f) = \sup\{U(f, P)|P \text{ a partition}\} = 0$ 1, i.e., $U(f) \neq L(f)$. Hence f is not (Darboux) integrable.

5 Q5

Prove directly from the definition of the Darboux integral (lecture 21) that the function $f:[0,b]\to\mathbb{R}, f(x)=x^2$ is integrable.

Proof: $[0,b](b>0), P = \{0=t_0 < t_1 < \cdots < t_n = b\}. \ U(f,P) = \sum_{k=1}^n M(f,[t_{k-1},t_k]) \cdot (t_k,t_{k-1}) = \sum_{k=1}^n t_k^2(t_k-t_{k-1}). \ \text{Similarly,} \ L(f,P) = \sum_{k=1}^n t_{k-1}^2(t_k-t_{k-1}). \ \text{In particular let } P_n \ \text{be the partition with} \ t_k = \frac{kb}{n}, \ \text{Then} \ U(f,P_n) = \sum_{k=1}^n (\frac{kb}{n})^2 \cdot (\frac{kb}{n} - \frac{(k-1)b}{n}) = \sum_{k=1}^n (\frac{b}{n})^3 \cdot k^2 = (\frac{b}{n})^3 \cdot \frac{n(n+1)(2n+1)}{6} \ \text{Similarly,} \ L(f,P_n) = \sum_{k=1}^n (\frac{b}{n})^3 \cdot (k-1)^2 = (\frac{b}{n})^3 \cdot \frac{n(n-1)(2n-1)}{6}. \ \text{Since} \ U(f) = \inf\{U,(f,P)\} \le U(f,P) = (\frac{b}{n})^3 \cdot \frac{n(n+1)(2n+1)}{6}, \ U(f) \le \lim_{n\to\infty} (\frac{b}{n})^3 \cdot \frac{n(n+1)(2n+1)}{6} = \frac{b^3}{6} \cdot 2 = \frac{b^3}{3}. \ \text{Similarly,} \ L(f) = \sup\{L,(f,P)\} \ge \lim_{n\to\infty} (\frac{b}{n})^3 \cdot \frac{n(n-1)(2n-1)}{6} = \frac{b^3}{6} \cdot 2 = \frac{b^3}{3}. \ \text{Now we have} \ \frac{b^3}{3} \le L(f) \le U(f) \le \frac{b^3}{3}, \text{ so } L(f) = U(f) = \frac{b^3}{3} \ \text{and} \ f \ \text{is integrable.}$

$\mathbf{Q6}$ 6

Let $f:[0,b]\to\mathbb{R}$ be a function that is identically 0 everywhere except at the points $x_1, ..., x_n \in [a, b]$ $(n \ge 1)$. Prove directly from the definition that f is integrable on [a, b].

Proof:

Let $P = \{a = t_0 < t_1 < \dots < t_n = b\}$ be a partition of $[a, b], t_k := a + \frac{b-a}{n} \cdot k$. Consider one point $x_i \in [t_{k-1}, t_k]$ with $f(x_i) = c$. When c < 0 it is obvious that U(f, P) = 0 = L(f, P), and thus $L(f) = \sup(L, (f, P)) = 0 = U(f) = 0$ $\inf(U, (f, P))$. Now if c > 0, $U(f, P) = c \cdot (t_k - t_{k-1}) = \frac{c}{n}(b - a)$. When we make $n \to \infty$, we have U(f, P) = 0 = U(f). L(f, P) = 0. $L(f) = \sup(L, (f, P)) = 0$ $0, U(f) = \inf(U, (f, P))$. Hence, L(f) = U(f) = 0 and thus f is integrable.

7 Q7

Let X be a metric space. Define a relation \sim on X by $x \sim y$ if and only if there is a continuous map (a path) $\gamma:[0,1]\to X$ with $\gamma(0)=x$ and $\gamma(1)=y$. Prove that \sim is an equivalence relation. The equivalence classes of \sim are called path components of X.

Hint: problem 2 from homework 6 may be useful for a proof of transitivity of the relation \sim . The fact that $f:[0,1]\to[0,1], f(x)=1-x$ is continuous may be useful for a proof of symmetry of \sim .

Proof:

(Reflexivity) Consider the map $\gamma:[0,1]\to X, \gamma(t)=x, \forall t\in[0,1]$. Note that it is continuous since the preimage of any open sets of X is either [0,1] or \emptyset , both of which are open, and thus the map is continuous.

(Symmetry) Suppose $x \sim y$, we want to show that $y \sim x$. Since $x \sim y$, $\exists \gamma(t)$ with $\gamma(0) = x$ and $\gamma(1) = y$. Now consider $\gamma'(t) = \gamma(1-t)$ for $t \in [0,1]$, and it is continuous by the hint. Now we have $\gamma'(0) = \gamma(1-0) = \gamma(1) = \gamma(1)$ $y, \gamma'(1) = \gamma(1-1) = \gamma(0) = x$. Therefore we find a continuous map with $\gamma'(0) = y, \gamma'(1) = x$, thus $y \sim x$.

(Transitivity) Suppose $x \sim y, y \sim z$, we want to show that $x \sim z$. Since

(Transitivity) Suppose
$$x \sim y, y \sim z$$
, we want to show that $x \sim z$. Since $x \sim y, y \sim z$, $\exists \gamma_1 : [0,1] \to X, \gamma_2 : [0,1] \to X$ continuous satisfying the requirements of \sim . Now define $\gamma : [0,2] \to X$ by $\gamma(t) = \begin{cases} \gamma_1(2t), & t \in [0,\frac{1}{2}] \\ \gamma_2(2t-1), t \in [\frac{1}{2},1] \end{cases}$

and by HW 6 Q2 $\gamma(t)$ is continuous. Note that $\gamma(0) = \gamma_1(0) = x$, $\gamma(1) = \gamma_1(0) = x$ $\gamma_2(2 \cdot 1 - 1) = \gamma_2(1) = z$, thus $x \sim z$.