Math 202B Solutions

Assignment 9
D. Sarason

32. Let \mathcal{A} be a σ -algebra on a set X.

(a) Prove that if μ is a positive σ -finite measure on \mathcal{A} , then there is a finite measure on \mathcal{A} that is mutually absolutely continuous with respect to μ .

Proof: Since μ is σ -finite we can write $X = \bigcup_{n=1}^{\infty} E_n$, where E_1, E_2, \ldots are disjoint sets in \mathcal{A} and $0 < \mu(E_n) < \infty$ for all n. For each n define the measure μ_n by

$$\mu_n = \frac{2^{-n}}{\mu(E_n)} \mu_{E_n}.$$

Thus $\|\mu_n\| = 2^{-n}$, so $\sum_{n=1}^{\infty} \|\mu_n\| < \infty$, implying that the series $\sum_{n=1}^{\infty} \mu_n$ converges in the normed space $M(\mathcal{A})$. (It is easy to prove that the sequence of partial sums is Cauchy.) Letting $\nu = \sum_{n=1}^{\infty} \mu_n$, we have $\mu \ll \nu \ll \mu$ (since a set is μ -null if and only if its intersection with each E_n is μ -null).

(b) Let μ_1, μ_2, \ldots be positive σ -finite measures on \mathcal{A} . Prove that there is a finite measure ν on \mathcal{A} such that $\mu_n \ll \nu$ for all n.

Proof: By (a), we can assume without loss of generality that each μ_n is a finite measure. Since μ_n and $c\mu_n$ are mutually absolutely continuous for any positive constant c, we can in addition assume without loss of generality that $\|\mu_n\| < 2^{-n}$ for each n. Then the series $\sum_{n=1}^{\infty} \mu_n$ converges in the norm of $M(\mathcal{A})$, say to ν , and it is obvious that $\mu_n \ll \nu$ for all n.

33. Let \mathcal{A} be a σ -algebra on a set X. Let μ and ν be positive measures in $M(\mathcal{A})$ such that $\|\mu - \nu\| = \|\mu\| + \|\nu\|$. Prove that $\mu \perp \nu$.

Proof 1: Let $\xi = \mu + \nu$. Since $\mu \ll \xi$ and $\nu \ll \xi$, by the Radon-Nikodym theorem, we have $\mu = f\xi$ and $\nu = g\xi$, where f and g are ξ -integrable functions, nonnegative since μ and ν are positive measures. Thus,

$$\|\mu\| = \int f \, d\xi,$$
 $\|\nu\| = \int g \, d\xi,$ $\|\mu - \nu\| = \int |f - g| \, d\xi,$

so

$$0 = \|\mu\| + \|\nu\| - \|\mu - \nu\| = \int (f + g - |f - g|) \, d\xi.$$

As the integrand on the last integral is nonnegative, we have

$$f + g - |f - g| = 0 \xi$$
-a.e.,

which implies that fg = 0 a.e. Hence, if $A = \{f > 0\}$ and $B = X \setminus A$, then $\mu = \mu_A$ and $\nu = \nu_B$, showing that $\mu \perp \nu$.

Proof 2: Let $X = A \sqcup B$ be the Hahn decomposition of $\mu - \nu$. Then

$$\|\mu - \nu\| = (\mu - \nu)(A) - (\mu - \nu)(B) = \mu(A) + \nu(B) - \nu(A) - \mu(B),$$

while

$$\|\mu\| + \|\nu\| = \mu(A) + \nu(B) + \nu(A) + \mu(B).$$

Therefore, $\nu(A) + \mu(B) = 0$; since $\nu(A), \mu(B) \ge 0$, this implies $\nu(A) = \mu(B) = 0$. Thus, $\mu = \mu_A$ and $\nu = \nu_B$.

34. Let μ and ν be measures in $M(\mathbb{R}^N)$ such that $\mu \ll \lambda_N$. Prove that $\mu * \nu \ll \lambda_N$.

Proof: Let E be a Lebesgue-null Borel set. We have

$$(\mu * \nu)(E) = \int \left(\int \chi_E(x+y) \, d\mu(x) \right) d\nu(y) = \int \mu(E-y) \, d\nu(y) = 0$$

since E - y is Lebesgue-null, hence μ -null, for all y.

35. The Fourier transform of a function f in complex $L^1(\lambda)$ is the function \hat{f} on \mathbb{R} defined by

$$\hat{f}(t) = \int_{\mathbb{R}} f(x)e^{-itx} dx.$$

(a) Prove that if f is in $L^1(\lambda)$ then \hat{f} is continuous.

Proof: Since $|f(x)e^{-itx}| \le |f(x)|$, which is integrable, and $f(x)e^{-itx} \to f(x)e^{-it_0x}$ pointwise as $t \to t_0$, the dominated convergence theorem gives the desired result.

(b) For f in $L^1(\lambda)$ and y in \mathbb{R} , let $T_y f$ be the y-translate of f: $(T_y f)(x) = f(x - y)$. Find the relation between \hat{f} and $(T_y f)$.

Solution: We have

$$(T_y f)\hat{\ }(t) = \int_{\mathbb{R}} f(x-y)e^{-itx} dx = \int_{\mathbb{R}} f(x)e^{-it(x+y)} dx = e^{-ity} \hat{f}(x).$$

(c) Prove that if f is in $L^1(\lambda)$ then $\lim_{|t|\to\infty} \hat{f}(t) = 0$. (Riemann-Lebesgue lemma)

Proof: By (b), $(T_{\pi/t}f)^{\hat{}}(t) = e^{-i\pi}\hat{f}(t) = -\hat{f}(t)$. Hence

$$\hat{f}(t) = \frac{1}{2} (f - T_{\pi/t} f)^{\hat{}}(t) = \frac{1}{2} \int_{\mathbb{P}} (f(x) - T_{\pi/t} f(x)) e^{-itx} dx.$$

It follows that $|\hat{f}(t)| \leq ||f - T_{\pi/t}f||_1$, and the preceding norm tends to 0 as $|t| \to \infty$ by the continuity of translation in $L^1(\lambda)$.

(d) Prove that if f and g are in $L^1(\lambda)$ then $(f * g)^{\hat{}} = \hat{f}\hat{g}$.

Proof: We use Fubini's theorem:

$$(f * g)^{\hat{}}(t) = \int_{\mathbb{R}} (f * g)(x)e^{-itx} dx = \int_{\mathbb{R}} \int_{\mathbb{R}} f(y)g(x - y)e^{-itx} dy dx$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(y)g(x - y)e^{-itx} dx dy = \int_{\mathbb{R}} f(x)e^{-ity}\hat{g}(t) dx \text{ (by (b))}$$
$$= \hat{f}(t)\hat{g}(t).$$

The use of Fubini's theorem is justified because, as shown when convolution was defined, the function $(x, y) \mapsto f(y)g(x - y)$ on \mathbb{R}^2 is integrable with respect to λ_2 .

(e) Prove that if f is in $L^1(\lambda) \cap C^1(\mathbb{R})$ and f' is in $L^1(\lambda)$, then $(f')\hat{\ }(t) = it\hat{f}(t)$.

Proof 1: Let $\psi = \frac{1}{2}\chi_{(-1,1)}$, $\psi_{\epsilon}(x) = \frac{1}{\epsilon}\psi(\frac{x}{\epsilon})$ for $\epsilon > 0$. By a result from lecture (theorem 5.1), $\psi_{\epsilon} * f' \to f'$ in L^1 -norm as $\epsilon \to 0$. It follows that $(\psi_{\epsilon} * f')^{\hat{}} \to (f')^{\hat{}}$ pointwise. We have

$$(\psi_{\epsilon} * f')(x) = \int_{\mathbb{R}} \psi_{\epsilon}(y) f'(x - y) dy = \frac{1}{2\epsilon} \int_{-\epsilon}^{\epsilon} f'(x - y) dy$$
$$= \frac{1}{2\epsilon} (f(x + \epsilon) - f(x - \epsilon)) = \frac{1}{2\epsilon} (T_{-\epsilon} f(x) - T_{\epsilon} f(x)).$$

By (b), $(\psi_{\epsilon} * f')\hat{}(t) = \frac{1}{2\epsilon}(e^{i\epsilon t} - e^{-i\epsilon t})\hat{f}(t) \rightarrow it\hat{f}(t)$ as $\epsilon \rightarrow 0$, and the desired equality follows.

Proof 2: Since f' is continuous and in $L^1(\lambda)$, $f(x) = f(0) + \int_{[0,x]} f' d\lambda$ for x > 0; therefore, $\lim_{x \to \infty} f(x) = f(0) + \int_{[0,\infty)} f' d\lambda$ exists. Similarly, $\lim_{x \to -\infty} f(x) = f(0) - \int_{(-\infty,0]} f' d\lambda$ exists. However, since $f \in L^1(\lambda)$, both these limits must be equal to 0.

Therefore, integration by parts gives

$$(f')\hat{\ }(t) = \int_{\mathbb{D}} f'(x)e^{-itx} dx = f(x)e^{-itx}\Big|_{x \to -\infty}^{x \to \infty} + it \int_{\mathbb{D}} f(x)e^{-itx} dx = it\hat{f}(t).$$