成績統計:

組距	人數
0-5	1
6-10.	0
11-15.	3
16-20	3
21-25	2
26-30	6
31-35	7
36-40	3
41-45	3 7 7 7
46-50	7
51-55	7
56-60	5
61-65	7
66-70	3
71-75	3
76-80	6
81-85	3
86-90	3
91-95	0
96-100	0
交卷人數	76
缺考人數	10
班平均	50.18

常見錯誤:

題號	錯誤	正確	
Q1	(n)w/2	(n)2W	
	(m)空白 (1)空白	$(m) \phi(t) \ll 1$ (1) constant instantaneous power	
	(o) Parseval	(o) Carson's rule	
02	(a)直接寫答案,沒	有 cos 角度變化過程	
Q2	(c)直接寫答案,沒有寫 1/2 怎麼得到的		
Q3	$\mathcal{F}\left\{\cos\left(2\pi f_{c}t\right)\right\} = \delta\left(f - f_{c}\right) + \delta\left(f + f_{c}\right)$	$\mathcal{F}\left\{\cos\left(2\pi f_{c}t\right)\right\} = \frac{1}{2}\left[\delta\left(f - f_{c}\right) + \delta\left(f + f_{c}\right)\right]$	
	Index 標示有誤 fm-fc	Index 標示有誤 fc-fm	
	message signal 為脈衝非三角波。		
Q4	$\mathcal{F}\left\{\cos\left(2\pi f_{c}t ight) ight\}=\delta\left(f-f_{c} ight)+\delta\left(f+f_{c} ight)$		
	$\mathcal{F}\left\{\cos\left(2\pi f_{c}t\right)\right\} = \frac{1}{2}\left[\delta\left(f - f_{c}\right) + \delta\left(f + f_{c}\right)\right]$		
Q5	沒有寫單位 (rad)		
Q6	$a = \frac{1}{5} = 0.2$	$a = \frac{10}{25} = 0.4$	
	$E = \frac{a \left\langle m_n^2(t) \right\rangle}{1 + a \left\langle m_n^2(t) \right\rangle} \times 100\%$	$E = \frac{a^2 \left\langle m_n^2(t) \right\rangle}{1 + a^2 \left\langle m_n^2(t) \right\rangle} \times 100\%$	

系所	學號	姓名	HW#2
電機系 4B	402415078	沈上荏	0
電機系 4A	405220003	林柏漢	V
電機系 4A	405220012	吳定濬	V
電機系 4A	405415007	陳億賢	Х
電機系 4B	405415010	劉鎮宇	Х
電機系 4A	405415029	呂羿葦	V
電機系 4B	405415048	鍾文宏	V
電機系 4B	405415052	李曜任	V
電機系 4A	405415075	林詩婷	V
電機系 4B	405415076	李承侑	V
電機系 4A	405430008	蔡秉欣	V
電機系 3A	406415001	張言睿	V
電機系 3A	406415005	賴欣儀	V
電機系 3B	406415010	陳信宏	V
電機系 3A	406415011	張峻祥	V
電機系 3A	406415013	連奕丞	Х
電機系 3B	406415014	許博惟	V
電機系 3B	406415018	蔡培鑑	V
電機系 3B	406415020	楊博禕	V
電機系 3A	406415025	劉彥廷	Х
電機系 3A	406415027	鄭筠賡	V
電機系 3B	406415028	黄柏瑜	V
電機系 3B	406415030	陳昱凱	V
電機系 3B	406415032	姚松伯	V
電機系 3A	406415033	詹佰晉	V
電機系 3A	406415035	陳彥邦	V
電機系 3B	406415036	吳祝樟	V
電機系 3B	406415038	黄柏軒	Х
電機系 3A	406415049	郭恕	0
電機系 3A	406415055	朱冠誌	V
電機系 3B	406415058	黄彥勛	V
電機系 3A	406415061	楊詠舜	V
電機系 3B	406415064	莊博傑	V
電機系 3A	406415071	詹育平	V
電機系 3B	406415082	陳妍臻	V

電機系 3B	406420062	黃議賢	Х
電機系 3A	406530020	洪澤廷	V
N/A	408415901	張國璇 (GUOXUAN ZHANG)	V
N/A	408415904	孫道源 (DAOYUAN SUN)	V
N/A	408420904	吳俊宏 (JUNHONG WU)	V
N/A	408420906	王崧年 (SONGNIAN WANG)	V
N/A	408420908	江育聰 (YUCONG JIANG)	V

系所	學號	姓名	HW#2
通訊系 3A	404430045	王振宇	Х
通訊系 4A	405430007	林郁鈞	Х
通訊系 4A	405430013	黄信豪	V
通訊系 4A	405430032	區雅婷	0
通訊系 4A	405430039	林佑宸	V
通訊系 3A	406430001	陳有朋	V
通訊系 3A	406430002	鄭佳宣	V
通訊系 3A	406430003	丁凱文	V
通訊系 3A	406430004	姜昱丞	V
通訊系 3A	406430006	李柏豫	V
通訊系 3A	406430007	王繼賢	V
通訊系 3A	406430009	曾國珩	V
通訊系 3A	406430010	鄭宇倫	V
通訊系 3A	406430011	邱靖博	V
通訊系 3A	406430012	李逸帆	V
通訊系 3A	406430013	陳美瑜	0
通訊系 3A	406430014	王信荃	V
通訊系 3A	406430015	簡敬倫	V
通訊系 3A	406430016	陳姿妤	V
通訊系 3A	406430017	鍾念慈	V
通訊系 3A	406430018	詹哲嘉	V
通訊系 3A	406430019	黄宇傑	Х
通訊系 3A	406430020	陳昱瑋	V
通訊系 3A	406430022	徐子翔	V
通訊系 3A	406430023	林宥均	V

通訊系 3A	406430024	曹智捷	V
通訊系 3A	406430026	楊鎧安	V
通訊系 3A	406430028	李翊嘉	Х
通訊系 3A	406430029	廖辰偉	V
通訊系 3A	406430030	廖岳軒	V
通訊系 3A	406430033	李孟寰	V
通訊系 3A	406430034	鄭又華	V
通訊系 3A	406430035	陳御任	V
通訊系 3A	406430036	陳奕禹	Х
通訊系 3A	406430037	郭慶安	Х
通訊系 3A	406430038	林顥庭	V
通訊系 3A	406430039	江昱瑩	V
通訊系 3A	406430040	翁浩昀	V
通訊系 3A	406430041	鄭博駿	V
通訊系 3A	406430042	陳彥邑	V
通訊系 3A	406430043	楊士緯	V
通訊系 3A	406430044	郭信俞	V
通訊系 3A	406430045	廖章甫	Х
通訊系 4A	405430034	徐國越	V

108 學年度第一學期「通訊原理」Ans#2

Date:12/18/2019

1. 每題 2 分, 共 30 分

- (a) $A_c m(t) \cos(2\pi f_c t)$
- (b) $\frac{A_c}{2} [M(f f_c) + M(f + f_c)]$
- (c) $A_c \left[1 + am_n(t)\right] \cos(2\pi f_c t)$
- (d) $A_c [1 + am_n(t)] \text{ or } 1 + am_n(t)$
- (e)

(g)
$$[H(f-f_c)+H(f+f_c)] = \text{constant}, |f| \le W$$

(h)
$$\cos(2\pi(f_1 \pm f_2)t)$$

(i)
$$A_c \cos(2\pi f_c t + k_p m(t))$$

(j)
$$A_c \cos(2\pi f_c t + \int_{-\infty}^t 2\pi f_d m(\alpha) d\alpha)$$

(k)
$$J_n(\beta) \triangleq \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-\left[jnx - \beta\sin(x)\right]} dx$$

- (1) Constant instantaneous power or robust to additive noise
- (m) $\phi(t)$ is small or $\phi(t) << 1$
- (n) 2W
- (o) Carson's rule

2. 每題 5 分, 共 15 分

a) Assume that a DSB signal $x_c(t) = A_c m(t) \cos(2\pi f_c t + \phi_0)$ is

demodulated using the demodulation carrier $2\cos[2\pi f_c t + \theta(t)]$.

Determine, in general, the demodulated output $y_D(t)$.

Sol:

The demodulated output, in general, is

$$y_D(t) = \text{Lp}\left\{x_c(t)2\cos\left[\omega_c t + \theta(t)\right]\right\}$$

where Lp $\{\bullet\}$ denotes the lowpass portion of the argument. With $x_c(t) = A_c m(t) \cos \left[\omega_c t + \phi_0 \right]$

the demodulated output becomes

$$y_D(t) = \operatorname{Lp}\left\{2A_c m(t)\cos\left[\omega_c t + \phi_0\right]\cos\left[\omega_c t + \theta(t)\right]\right\}$$
$$= \operatorname{Lp}\left\{2A_c m(t)\frac{1}{2}\left(\cos\left[2\omega_c t + \theta(t) + \phi_0\right] + \cos\left[\theta(t) - \phi_0\right]\right)\right\}$$

Performing the indicated multiplication and taking the lowpass portion yields

$$y_D(t) = A_c m(t) \cos \left[\theta(t) - \phi_0 \right]$$

b) Let $A_c = 1$ and $\theta(t) = \theta_0$, where θ_0 is a constant, and determine the mean-square error between m(t) and the demodulated output as a function of ϕ_0 and θ_0 .

Sol:

If $\theta(t) = \theta_0$ (a constant), the demodulated output becomes

$$y_D(t) = A_c m(t) \cos(\theta_0 - \phi_0)$$

Letting $A_c = 1$ gives the error

$$\varepsilon(t) \triangleq m(t) - y_D(t) = m(t) [1 - \cos(\theta_0 - \phi_0)]$$

The mean-square error is

$$\langle \varepsilon^2(t) \rangle = \langle m^2(t) [1 - \cos(\theta_0 - \phi_0)]^2 \rangle$$

where $\langle \bullet \rangle$ denotes the time-average value. Since the term $\begin{bmatrix} 1 - \cos(\theta_0 - \phi_0) \end{bmatrix}$ is a constant, we have $\langle \varepsilon^2(t) \rangle = \langle m^2(t) \rangle \begin{bmatrix} 1 - \cos(\theta_0 - \phi_0) \end{bmatrix}^2$.

Note that for $\theta_0 = \phi_0$, the demodulation carrier is phase coherent with the original modulation carrier, and the mean-squared error $\langle \varepsilon^2(t) \rangle$ is zero.

c) For $\theta(t) = \omega_0 t$, $A_c = 1$, we have the demodulated output for convenience $y_D(t) = m(t)\cos(\omega_0 t - \phi_0)$, give the error

$$\varepsilon(t) = m(t) \left[1 - \cos(\omega_0 t - \phi_0) \right],$$
giving the mean-square error

$$\langle \varepsilon^2(t) \rangle = \langle m^2(t) [1 - \cos(\omega_0 t - \phi_0)]^2 \rangle$$

The MSE

$$\left\langle \varepsilon^{2}(t) \right\rangle = \left\langle m^{2}(t) \left[1 - \cos(\omega_{0}t - \phi_{0}) \right]^{2} \right\rangle$$

$$= \left\langle m^{2}(t) \cdot \left[1 - 2\cos(\omega_{0}t - \phi_{0}) + \frac{1}{2} \left(1 + \cos(2\omega_{0}t - 2\phi_{0}) \right) \right] \right\rangle$$

$$= \frac{3}{2} \left\langle m^{2}(t) \right\rangle + \left\langle m^{2}(t) \cdot \left[-2\cos(\omega_{0}t - \phi_{0}) + \frac{1}{2}\cos(2\omega_{0}t - 2\phi_{0}) \right] \right\rangle$$

$$\approx \frac{3}{2} \left\langle m^{2}(t) \right\rangle + \left\langle m^{2}(t) \right\rangle \left\langle \left[-2\cos(\omega_{0}t - \phi_{0}) + \frac{1}{2}\cos(2\omega_{0}t - 2\phi_{0}) \right] \right\rangle,$$

 f_0 far larger than W

$$=\frac{3}{2}\Big\langle m^2(t)\Big\rangle$$

3. 每題 2/2/3/3 分,共10分

(a)
$$m_n(t) \triangleq \frac{m(t)}{\max|m(t)|} = \frac{9\cos(20\pi t)}{9} = \cos(20\pi t)$$

(b)
$$\langle m_n^2(t) \rangle = \langle \cos^2(20\pi t) \rangle = \langle \frac{1}{2} \langle 1 + \cos(40\pi t) \rangle \rangle = \frac{1}{2} = 0.5$$

(c)
$$E = \frac{a^2 \langle m_n^2(t) \rangle}{1 + a^2 \langle m_n^2(t) \rangle} = \frac{\left[(0.8)^2 \cdot 0.5 \right]}{\left[1 + (0.8)^2 \cdot 0.5 \right]} = 0.2424 = 24.24\%$$

(d)
$$x_c(t) = 110 [1 + 0.8 \cos(20\pi t)] \cos(200\pi t)$$

= $110 \cos(200\pi t) + 44 \cos(180\pi t) + 44 \cos(220\pi t)$

4. 每題 10 分, 共 10 分

$$x_c(t) = \frac{1}{2} A_c m(t) \cos(2\pi f_c t) \pm \frac{1}{2} A_c \hat{m}(t) \sin(2\pi f_c t)$$

$$m(t) = 4\cos(2\pi f_m t) + \cos(4\pi f_m t)$$

Hilbert Transform: $\hat{m}(t) = 4\sin(2\pi f_m t) + \sin(4\pi f_m t)$

$$\begin{split} x_c(t) &= \frac{1}{2} A_c m(t) \cos(2\pi f_c t) \pm \frac{1}{2} A_c \hat{m}(t) \sin(2\pi f_c t) \\ &= \frac{1}{2} A_c (4 \cos(2\pi f_m t) + \cos(4\pi f_m t)) \cos(2\pi f_c t) \pm \frac{1}{2} A_c (4 \sin(2\pi f_m t) + \sin(4\pi f_m t)) \sin(2\pi f_c t) \\ &= A_c \cos[2\pi (f_c + f_m) t] + A_c \cos[2\pi (f_c - f_m) t] + \frac{1}{4} A_c \cos[2\pi (f_c + 2f_m) t] + \frac{1}{4} A_c \cos[2\pi (f_c - 2f_m) t] \\ &\pm \{ -A_c \cos[2\pi (f + f_m) t] + A_c \cos[2\pi (f_c - f_m) t] \} + \{ -\frac{1}{4} A_c \cos[2\pi (f_c + 2f_m) t] + \frac{1}{4} A_c \cos[2\pi (f_c - 2f_m) t] \} \end{split}$$

Lower -sideband:

$$\begin{split} x_{LSB}(t) &= \frac{1}{2} A_c m(t) \cos(2\pi f_c t) - \frac{1}{2} A_c \hat{m}(t) \sin(2\pi f_c t) \\ &= 2 A_c \cos[2\pi (f_c - f_m) t] + \frac{1}{2} A_c \cos[2\pi (f_c - 2f_m) t], \\ X_{LSB}(f) &= A_c \delta[f - (f_c - f_m)] + A_c \delta[f + (f_c - f_m)] \\ &+ \frac{1}{4} A_c \delta[f - (f_c - 2f_m)] + \frac{1}{4} A_c \delta[f + (f_c - 2f_m)], \\ \text{Assume } A_c &= 10. \end{split}$$

Upper -sideband:

$$\begin{aligned} x_{USB}(t) &= \frac{1}{2} A_c m(t) \cos(2\pi f_c t) + \frac{1}{2} A_c \hat{m}(t) \sin(2\pi f_c t) \\ &= 2 A_c \cos[2\pi (f_c + f_m) t] + \frac{1}{2} A_c \cos[2\pi (f_c + 2f_m) t], \\ X_{LSB}(f) &= A_c \delta[f - (f_c + f_m)] + A_c \delta[f + (f_c + f_m)] \\ &+ \frac{1}{4} A_c \delta[f - (f_c + 2f_m)] + \frac{1}{4} A_c \delta[f + (f_c + 2f_m)], \\ \text{Assume } A_c &= 10. \end{aligned}$$

- 5. 每題 5 分, 共 15 分
- (a) Since the carrier frequency is 1000 Hertz, the general form of $x_c(t)$ is

$$x_c(t) = A_c \cos[2\pi(1000)t + 40\sin(5t^2)] = A_c \cos[2\pi(1000)t + \phi(t)]$$

The phase deviation, $\phi(t) = 40\sin(5t^2)$ rad

The frequency deviation is

$$\frac{d\phi(t)}{dt} = 400t \cos(5t^2) \text{ rad/sec}$$
or
$$\frac{1}{2\pi} \frac{d\phi(t)}{dt} = \frac{200}{\pi} t \cos(5t^2) \text{ Hz}$$

(b) Since the carrier frequency is 1000 Hertz, the general form of $x_c(t)$ is

$$x_c(t) = A_c \cos[2\pi(1000)t - 2\pi(400)t] = A_c \cos[2\pi(1000)t + \phi(t)]$$

The phase deviation is $\phi(t) = -2\pi(400)t$ rad

(Note that we substracted the phase of the unmodulated carrier from the instantaneous carrier.) The frequency deviation is

$$\frac{d\phi}{dt} = -2\pi(400) \quad \text{rad/sec}$$
or
$$\frac{1}{2\pi} \frac{d\phi}{dt} = -400 \text{ Hz}$$

(c) Since the carrier frequency is 1000 Hertz, the general form of $x_c(t)$ is

$$x_c(t) = A_c \cos[2\pi(1000)t - 2\pi(100)t + 10\sqrt{t}] = A_c \cos[2\pi(1000)t + \phi(t)]$$

The phase deviation is

$$\phi(t) = -2\pi(100)t + 10\sqrt{t}$$
 rad

And the frequency deviation is

$$\frac{d\phi}{dt} = -2\pi(100) + \frac{1}{2}(10)t^{-\frac{1}{2}} = -2\pi(100) + \frac{5}{\sqrt{t}} \quad \text{rad/sec}$$
or
$$\frac{1}{2\pi} \frac{d\phi}{dt} = -100 + \frac{5}{2\pi\sqrt{t}} \quad \text{Hz}$$

6. 每題 10 分, 共 10 分

$$\begin{split} x_c(t) &= 25\cos[2\pi(150)t] + 5\cos[2\pi(150+10)t] + 5\cos[2\pi(150-10)t] \\ &= 25\cos[2\pi(150)t] + 10\cos[2\pi(10)t]\cos[2\pi(150)t] \\ &= 25\left\{1 + \frac{10}{25}\cos[(2\pi(10)t)]\right\}\cos[2\pi(150)t] \end{split}$$

$$a = \frac{10}{25} = 0.4$$

$$m_n(t) = \cos(2\pi \cdot 10t)$$

$$E = \frac{a^2 \left\langle m_n^2(t) \right\rangle}{1 + a^2 \left\langle m_n^2(t) \right\rangle} \times 100\%$$

$$= \frac{0.4^2 \left\langle \cos^2 \left(2\pi \cdot 10t \right) \right\rangle}{1 + 0.4^2 \left\langle \cos^2 \left(2\pi \cdot 10t \right) \right\rangle} \times 100\%$$

$$= \frac{0.4^2 \cdot 0.5}{1 + 0.4^2 \cdot 0.5} \times 100\%$$

$$= 0.0741$$

7. 每題 5 分, 共 10 分

(a)
$$\phi_1(t) = \cos[2\pi f_c t + 10K_p \cos(5\pi t)]$$

(b)
$$\phi_2(t) = \cos(2\pi f_c t + K_p[10\cos(5\pi t) + 2\sin(7\pi t)])$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}[\sin(\alpha - \beta) + \sin(\alpha + \beta)]$$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$