

Hyperplanes

- Find a hyperplane that separates the classes.
 - $-\mathcal{P}_1$ does not separate the classes.
- Many hyperplanes are possible that separates the classes.
 - $-\mathcal{P}_2$ separates the classes but with small separation between them.
 - $-\mathcal{P}_3$ also separates the classes with large separation.

Two classes – linear discriminant

• Linear discriminant function can written in the form:

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

• Consider two points $-\mathbf{x}_a$ and \mathbf{x}_b – on the decision surface $f(\mathbf{x}) = 0$.

$$f(\mathbf{x}_a) = 0 \Rightarrow \mathbf{w}^{\mathrm{T}} \mathbf{x}_a + w_0 = 0$$
$$f(\mathbf{x}_b) = 0 \Rightarrow \mathbf{w}^{\mathrm{T}} \mathbf{x}_b + w_0 = 0$$
$$\mathbf{w}^{\mathrm{T}} (\mathbf{x}_a - \mathbf{x}_b) = 0$$

• Therefore the vector **w** is orthogonal to all vectors lying on the decision surface.

Distance from origin

- Want to compute the distance d_0 between the decision surface and the origin.
- Consider a point (say \mathbf{x}_0) on the decision surface, then d_0 can be computed as

$$d_0 = \frac{\mathbf{w}^{\mathrm{T}}}{||\mathbf{w}||} (\mathbf{x}_0 - \mathbf{0})$$

$$= -\frac{w_0}{||\mathbf{w}||} \qquad \text{(since } f(\mathbf{x}_0) = 0\text{)}$$

Modelling distance from an arbitrary point

- \bullet Consider an arbitrary point \mathbf{x} in the feature space.
- Suppose \mathbf{x}_p is the orthogonal projection of the point \mathbf{x} on the decision surface, which means

$$f(\mathbf{x}_p) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_p + w_0 = 0$$

• Let q be the distance between \mathbf{x} and \mathbf{x}_p , then can write

$$\mathbf{x} = \mathbf{x}_p + q \frac{\mathbf{w}}{||\mathbf{w}||}$$

Signed orthogonal distance

• Multiplying both sides of the equation by \mathbf{w}^{T} , we have

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} = \mathbf{w}^{\mathrm{T}}\mathbf{x}_{p} + q\frac{\mathbf{w}^{\mathrm{T}}\mathbf{w}}{||\mathbf{w}||}$$

$$f(\mathbf{x}) - w_{0} = -w_{0} + q\frac{||\mathbf{w}||^{2}}{||\mathbf{w}||}$$

$$\Rightarrow q = \frac{f(\mathbf{x})}{||\mathbf{w}||}$$

Margin

• Geometric margin γ_n is the perpendicular distance from the point $\mathbf{x}^{(n)}$ to the hyperplane

$$\gamma_n = y^{(n)} \left(\frac{\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(n)} + w_0}{||\mathbf{w}||} \right)$$

• Margin is defined as the minimum of the geometric margin.

$$\gamma = \min_{\mathcal{D}} \gamma_n$$

• Functional margin $\widehat{\gamma}_n$ of an example $(\mathbf{x}^{(n)}, y^{(n)})$ with respect to the hyperplane is

$$\widehat{\gamma}_n = y^{(n)} (\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(n)} + w_0)$$

- +ve $\widehat{\gamma}_n$ means the example is correctly classified.
- -ve $\widehat{\gamma}_n$ means the example is incorrectly classified.

Maximum margin hyperplane

- Learn the hyperplane with the maximum separation.
- Support Vector Machine provide a framework for the learning the maximum margin hyperplane.
- SVM find the most important examples in the training dataset that define the separating hyperplane. These examples are called the "support vectors".

Intuition

- Separating hyperplane: $f(\mathbf{x}) = 0$ i.e. $\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = 0$.
- If $f(\mathbf{x}^{(n)}) \geq 0$, then $y^{(n)} = 1$, i.e. $\mathbf{x}^{(n)}$ belongs to class \mathcal{C}_1 .
 - If $f(\mathbf{x}^{(n)}) >> 0$, then higher is the confidence of $\mathbf{x}^{(n)}$ belonging to class \mathcal{C}_1 .
- If $f(\mathbf{x}^{(n)}) < 0$, then $y^{(n)} = -1$, i.e. $\mathbf{x}^{(n)}$ belongs to class \mathcal{C}_2 .
 - If $f(\mathbf{x}^{(n)}) \ll 0$, then higher is the confidence of $\mathbf{x}^{(n)}$ belonging to class \mathcal{C}_2 .

Margin boundaries

- Decision boundary (hyperplane) $\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = 0$ is to be chosen such that
 - If $\mathbf{x}^{(n)}$ is in C_1 $(y^{(n)} = 1)$: $\mathbf{w}^T \mathbf{x}^{(n)} + w_0 \ge 1$
 - If $\mathbf{x}^{(n)}$ is in C_2 $(y^{(n)} = -1)$: $\mathbf{w}^T \mathbf{x}^{(n)} + w_0 \le -1$
- So we have $\min_{n=(1,..,N)} |\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(n)} + w_0| = 1$
- Margin condition:

$$y^{(n)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(n)} + w_0) \ge 1, \qquad n = 1, 2, ...N$$

Support Vector Machines

- The goal is to find the optimal hyperplane separating the classes that has the maximum margin.
- Recall, the signed distance of a point **x** from the decision boundary is given as $\frac{f(\mathbf{x})}{||\mathbf{w}||}$.
- The distance between the two margins is then $\frac{2}{||\mathbf{w}||}$.
- Obtain a decision boundary (hyperplane) with the maximum possible margin.

Hard-margin SVM

$$\min_{\mathbf{w}, w_0} \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
subject to $y^{(n)} [\mathbf{w}^T \mathbf{x}^{(n)} + w_0] \ge 1, \quad n = 1, ..., N$

Hard-margin SVM objective

Slack variables

- Data not linearly separable in input space (due to noise).
- For nonlinear boundary, perfect separation of training data in the feature space can lead to poor generalization.
- Method modified to permit a few points to lie on the wrong side of the separating hyperplane.
- Approach: Use slack variables ξ_n , where n = 1, ..., N, for every data point.

Soft-margin SVM

- Each example (say the nth) is associated with a variable $\xi_n \geq 0$ which indicates the degree to which the margin constraint is violated.
- ξ_n s are known as the "slack" variables.
- Soft-margin constraint: $y^{(n)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(n)} + w_0) \ge 1 \xi_n$.

$$\min_{\mathbf{w}, w_0, \boldsymbol{\xi}} \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{n=1}^{N} \xi_n$$
subject to $y^{(n)} [\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(n)} + w_0] \ge 1 - \xi_n$, and $\xi_n \ge 0$, $n = 1, ..., N$

Solution to hard-margin SVM

• The solution to w can be found as

$$\mathbf{w} = \sum_{n=1}^{N} \lambda_n y^{(n)} \mathbf{x}^{(n)}$$

• The intercept of the separating hyperplane is the mean of the two intercepts:

$$w_0 = -\frac{1}{2} \left(\min_{\mathbf{x} \in \mathcal{C}_1} \mathbf{w}^{\mathrm{T}} \mathbf{x} + \max_{\mathbf{x} \in \mathcal{C}_2} \mathbf{w}^{\mathrm{T}} \mathbf{x} \right)$$

Soft-margin support vectors

- Three types of support vectors:
 - $-\xi_n=0$: Examples lying on the margin boundaries.
 - $-0 < \xi_n < 1$: Examples lying in the margin region and on the correct side of the separating hyperplane.
 - $-\xi_n \geq 1$: Examples lying on the wrong side of the separating hyperplane.

KERNEL-SVM THE INTUITION

Using Kernels

- Structures in real-world data are often non-linear.
 - Linear models are not suitable in such cases.

- Kernels project data to a higher dimensional space where the structures are linear.
 - The transformation facilitates application of linear models in the new space.
- Explicit evaluation of feature mappings can be computationally expensive, but kernel methods overcome the issue....

Binary classification problem

- Linear separation of data is not possible.
- Consider the following mapping: $\Phi(x): x \to [x, x^2]$
- The dimension of the new input space is 2 as there are two features.
- Data linearly separable in the new input space.

Mapping

Example

- Input space: $\mathbf{x} = [x_1 \ x_2]$.
- Data **not** linearly separable in input space.

- Feature space: $\Phi(\mathbf{x}) = [x_1^2 \quad \sqrt{2}x_1x_2 \quad x_2^2].$
- Data linearly separable in feature space.

Multi-class Classification

One-against-all

- Suppose the number of classes is J.
- Approach: Construct J SVM models
 - The jth SVM model is trained such that
 - * examples in the jth class are labelled positive
 - * examples in all other classes are labelled negative
- \bullet Finally we have J decision functions

$$(\mathbf{w}^{(1)})^{\mathrm{T}}\mathbf{x} + w_0^{(1)} = 0$$
$$(\mathbf{w}^{(2)})^{\mathrm{T}}\mathbf{x} + w_0^{(2)} = 0$$
$$\cdot$$

$$\left(\mathbf{w}^{(J)}\right)^{\mathrm{T}}\mathbf{x} + w_0^{(J)} = 0$$

• Prediction:

$$y^* = \arg\max_{j=[1,2,..,J]} \left(\mathbf{w}^{(j)} \right)^{\mathrm{T}} \mathbf{x}^* + w_0^{(j)}$$

One-against-one

- Construct a classifier using data from two classes.
 - Say the jth classifier comprise mth and nth class.
- Training: In total construct J(J-1)/2 classifiers.
- Prediction:
 - Can use a voting strategy
 - * If the jth classifier predicts the point to be in class m, then increase vote of class m by one
 - * otherwise increase vote of class n by one
 - Repeat the process for all the J(J-1)/2 classifiers.
 - Assign example to the class which receives the highest number of votes.