

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 6-Circuite logice combinaționale

Circuite logice combinaționale

- Circuite de procesare
- □ Circuite de conversie
- Circuite de interconectare
- Componente universale

Clasificare componente digitale

- Componente combinaționale
 - Ușor de analizat, partiționat, verificat

Componente secvențiale

Copyright © 2004-2005 by Daniel D. Gajski

Sildes by Philip Pham, University of California, Irvine

Clasificare circuite combinaționale (I)

- Procesare
 - Operații aritmetice (Adunare, Scădere, Înmulțire, Împărțire)
 - Operaţii logice (ŞI, SAU-Exclusiv, Negare, etc.)
 - Comparare
 - Operații de manipulare la nivel de bit (shift-are, rotație, ...).

Clasificare circuite combinaționale (II)

- Conversie date
 - Codificatoare
 - Decodificatoare
- Interconnect-uri
 - Selecția sursei/destinației
 - Magistrale și interfete magistrală
- □ Alte componente (blocuri din UC)
 - ROM
 - PLA

Cuvinte cheie design digital

- Încapsulare
 - Definirea unor componente/blocuri simple
- □ Iterare
 - Replicarea/Instanțierea componentelor în design
- □ lerarhie
 - Realizarea unor blocuri mai mari din blocuri mai mici

Exemplu – Sumatorul cu propagare serială a transportului

CLA – Sumatorul cu calculul anticipat al transportului

Pentru creşterea performanţei sumatoarelor se încearcă calculul transportului în mod anticipat

transportul de pe un rang să nu depindă de transportul de pe rangul anterior

CLA

$$c_1 = a_0 b_0 + c_0 (a_0 + b_0) = g_0 + c_0 p_0$$

 $c_2 = a_1 b_1 + c_1 (a_1 + b_1) = g_1 + c_1 p_1 = g_1 + (g_0 + c_0 p_0) p_1 = g_1 + c_1 p_1 = g_1 + c_1 p_1 = g_1 + c_0 p_0$

$$= g_1 + g_0 p_1 + c_0 p_0 p_1$$

$$c_3 = g_2 + g_1 p_2 + g_0 p_1 p_2 + c_0 p_0 p_1 p_2$$

$$c_4 = g_3 + g_2 p_3 + g_1 p_2 p_3 + g_0 p_1 p_2 p_3 + c_0 p_0 p_1 p_2 p_3$$
Unde $g_i = a_i b_i$ şi $p_i = a_i + b_i$

 $c_4 = g_3 + g_2p_3 + g_1p_2p_3 + g_0p_1p_2p_3 + c_0p_0p_1p_2p_3$

CLA Generator

Observații:

- numărul de intrări a anumitor porţi creşte foarte mult, consecințe:
 - întârzierea porţilor creşte cu număr de intrări;
 - bibliotecile de porți pot sa nu aibe porți cu atâtea intrări
- Fanout (numărul de porţi comandate de ieşirea unei porţi) creşte considerabil pentru anumite porţi
- Calculul transporturile se face în paralel

Unitate sumator/scăzator C₂

8-bit Adder/Subtractor Unit Schematic

Întârzieri pe linia de transport

4-bit Ripple-Carry Adder Slice

Corne Chains	Delay				
Carry Chains	Ripple	CLA			
from $c_i(x_i, y_i)$ to c_{i+1}	4.8 (9.0)	4.8 (9.0)			
from $c_i(x_i, y_i)$ to c_{i+2}	9.6 (13.8)	5.6 (9.8)			
from $c_i(x_i, y_i)$ to c_{i+3}	14.4 (18.6)	6.4 (10.6)			
from $c_i(x_i, y_i)$ to c_{i+4}	19.2 (23.4)	4.8 (13.0)			
from $c_i(x_i, y_i)$ to $g_{(i, i+3)}$	N/A	6.4 (10.6)			
from $c_i(x_i, y_i)$ to $p_{(i, i+3)}$	N/A	3.2 (7.4)			

Ripple and CLA Delays for 4-bit Adder Slice

Unitate Aritmetico-Logică (ALU)

- □ Realizează operațiile operațiile aritmetice și logice elementare:
 - Aritmetice: adunare, scădere, incrementare, decrementare
 - Logice: ŞI, SAU, Identitate, Negare
- □ Toate operaţiile aritmetice se bazează pe sumator → blocul de bază este sumatorul
- ☐ Trebuie configurați corespunzător operanzii → bloc dedicat de extensie op.aritmetice

ALU

Bloc extensie aritmetică

M	S_1	S_0	Function Name	F	X	Y	c_0
1	0	0	Decrement	A-1	A	all 1's	0
1	0	1	Decrement Add	A + B	A	В'	0
1	1	0	Subtract	A - B	A	В'	1
1	1	1	Increment	A+1	A	all 0's	1

Functional Table

M	e	S_0	b.	41
192	s_1	, O	u _i	Уi
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Truth Table

Logic Schematic

Bloc extensie operații logice

Arhitectură ALU

Decodificator

- circuite logice combinaţionale ce prezintă un anumit *n* intrări şi până la 2ⁿ ieşiri, care activează ieşirea (UNA SINGURĂ) corespunzătoare valoarii combinaţiei vectorului de intrare
- Pot avea intrări de activare, astfel încât ieşirea selectată nu pot fi activată decât dacă intrarile de activare sunt active.
- □ Pt. n intrări şi cu m ieşiri → decodificator nla-m.
- Uzual sunt folosite pt. activarea (EN) componentelor

Decodificatorul 1-la-2

$$C_0 = EA'_0$$

$$C_1 = EA_0$$

Boolean Expression

Decodificatorul 2-la-4

$$C_0 = E_0 A'_1 A'_0$$

 $C_1 = E_0 A'_1 A_0$
 $C_2 = E_0 A_1 A'_0$
 $C_2 = E_0 A_1 A_0$
Boolean Expression

Decodificatorul 3-la-8

Circuite integrate pe scară medie ce îndeplinesc funcţia de decodificator

74LS138: decodificator 3-la-8

G1	G2	G3	Α	В	C	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y 7
0	X	X	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	X	Х	1	1	1	1	1	1	1	1
X	X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

DEC 4-la-16

14LS42: Decodificator 4-la-10

Sinteza funcțiilor logice folosind decodificatoare

Să se implementeze cu ajutorul unui decodificator 74LS138 funcția logică $f1(a,b,c) = \sum (1,3,5)$

Multiplexor(Selector)

- Multiplexorul este un circuit logic combinaţional ce conectează ieşirea aceestuia la una din cele n intrări.
- Selecţia unuia din cele n intrări se face cu ajutorul a log₂ n intrări de selecţie.
- Poate fi privit ca un comutator digital.
- Este folosit la pt.selecția unei singure surse de date din mai multe.

MUX 2-la-1

$$Y = S'D_0 + SD_1$$
Boolean Expression

MUX 4-la-1

MUX 8-la-1

MUX 2-la-1 cu linie de validare

74LS153: MUX 4-la-1

A	В	G1	G2	Y1	Y2
X	X	1	1	0	0
0	0	0	0	D0_1	D0_2
0	0	1	0	0	D0_2
0	0	0	1	D0_1	0
0	1	0	0	D1_1	D1_2
0	1	0	1	0	D1_2
0	1	1	0	D1_1	0
1	0	0	0	D2_1	D2_2
1	0	0	1	0	D2_2
1	0	1	0	D2_1	0
1	1	0	0	D3_1	D3_2
1	1	0	1	0	D3_2
1	1	1	0	D3_1	0

74LS151: MUX 8-la-1

Întrebări?

Enough Talking Let's Get To It !!Brace Yourselves!!

