Critical Point

Let Us Consider the dynamical system

$$\dot{x} = f_1(x, y)$$

 $\dot{y} = f_2(x, y)$ -----(i)

A point (x_c, y_c) is called critical point of the system (i) if $\frac{dy}{dt} = 0$ & $\frac{dy}{dt} = 0$ at that point.

The System (i) can be written as
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix}$$

$$\dot{X} = f(x) --------(ii)$$
 Where $X = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$ & $X = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$

Hence a point x_c is called critical point of the system (ii) if $\dot{x} = 0$ at $x = x_c$

Nature of the critical point:

Let Us Consider the dynamical system

$$\dot{x} = f_1(x, y)$$

 $\dot{y} = f_2(x, y)$ -----(i)

A point (x_c, y_c) is called critical point of the system (i) if $\frac{dy}{dt} = 0$ & $\frac{dy}{dt} = 0$ at that point .

The System (i) can be written as
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix}$$

$$\dot{X}=f(x)-------(ii)$$
 Where $X=\begin{bmatrix}\dot{x}\\\dot{y}\end{bmatrix}$ & & $X=\begin{bmatrix}f_1\\f_2\end{bmatrix}$

Hence a point x_c is called critical point of the system (ii) if $\dot{x} = 0$ at $x = x_c$