

"

Supervised Machine Learning

Supervised ML

- Idea: given a dataset and its corresponding desired output, determine the best algorithm & parameters to predict the output from the data
- Use cases:
 - Classification

 which ad should I show this customer»
 - Regression / Prediction
- Common Methods:
 - Decision Trees
 - Support Vector Machines
 - Neural Networks

How does "supervision" work?

- Intuition: 1 Algorithm builds models, 1 Algorithm scores the models and choses the best.
 - → The builder Algorithm tweaks the best model and repeats
- Building: Depends on specific method, generally tweaking of model parameters.
- Scoring: Calculate a predefined cost function / score
 - E.g. Sum of Squared Errors (SSE)
- How Machnes Learn [CGPGrey]

Typical Supervised ML Workflow

- Define Goal
- 2. Get Data
- 3. Prepare Data
- 4. Create & Train A Model
- Evaluate & Improve
- 6. Make Predictions

Regression

 Idea: Given a set of input variables, predict a numerical output variable

Use cases:

 Prediction in Marketing, Medicine, Finance etc.

• Method:

 Find line that minimizes error between prediction and real values

Regression

Problems

- Can be susceptible to outliers (this can be overcome)
- Can be susceptible to over- / underfitting

Classification

- Idea: given a set of input variables, predict a class for each datapoint
- Use cases:
 - Image-/ Speech-recognition
 - Medical prognosis
 - Customer Segmentation
 - Spam detection

Classification

Method

- In general, the aim is to minimize the number and severity of wrong assignments
- Selection of classification Algorithms:
 - K-nearest neighbours
 - Decision Trees
 - Support Vector Machines
 - Neural Networks

K-nearest-neighbour

- Idea: classify a point as the majority class of its k nearest neighbours.
- Pros: no training, simple, easy to incorporate more data
- Con: cannot handle very large, very high dimensional or imbalanced datasets. Sensitive to outliers

Decision Trees

- Idea: find a combination of binary decisions that best classify all datapoints into output classes
- Pros: less preporocessing required Easy to interpret and may give additional insights
- Con: unstable results → ensamble methods (random forest)

PlayTennis?

Support Vector Machines

 Idea: find the hyperplane (Line in 2D) that best separates the classes (largest margin)

- Pros: handles high dimensional data well
- Cons: problems with noisy / overlapping data.

Problems

Poor class separation

Problems

Advanced

Multi-Class Classification

Feature Transformation

Hands-On

Part 4

- Implement the KNN Algorithm for a set of 2D datapoints (use the 'sklearn make_blobs' function to get a random dataset with underlying clusters)
- Use seaborn.Implot to perform a linear regression on the tips dataset
 - tips = sns.load_dataset("tips")
- Use sklearn.svm.SVC to train a SVM classifier and plot the data with your trained classifier.
 - cancer = datasets.load_breast_cancer()
 - Use your trained classifier to predict the classes of new datapoints.

