BACHELOR OF COMPUTER SC. ENGG. EXAMINATION, 2010

(3rd Year, 1st Semester)

VLSI DESIGN

Time: Three hours Full Marks: 100

Answer any *five* questions.

- 1. a) What is Bi CMOS?
 - b) Draw the Circuit diagram of a 3 inpuit Bi CMOS NOR gate and explain its operation.
 - c) What is 'latch-up' problem inCMOS?
 - H) How can time 'latch-up' problem be prevented?
 - c) Draw and explain the operation of an inverting and a non-inverting super buffers.
 2+7+2+3+6
- 2. a) What do you mean by λ based IC design rules?
 - b) Draw the coloured stick and mask diagrams, conforming to the λ based design rules, for implementing the following Boolean functions, as per instruction given against each :

i)
$$A\overline{B} + \overline{A}C + \overline{C}D$$
 (using NMOS)

ii)
$$(W + X).(y + Z)$$
 (using CMOS) $4 + 2x4 + 2x4$

 a) Prove that the ratios of impedances of the pull-up to pull-down transistors of a standard MOS inverter is 4:1

[TURN OVER]

(2)

Deduce the condition under which the change over between logic levels of a CMOS inverter is synmetrically disposed about the point at which

$$V_{iN} = V_{OUT} = \frac{VDD}{2}$$
 12+8

4. a) What will be the value of $\frac{Zpu}{Zpd}$ of a MOS inverter having the following parameters:

 V_{the} = Threshold voltage of MOS transistor = 0.25 V_{DD} ,

Where $V_{\rm DD}$ is the inverter's supply volatge and $V_{\rm IMV}$ = Logic threshold voltage of the inverter = 0.475 $V_{\rm DD}$.

b) Implement the following Boolean function with the help of a precharge n MoS circuit:

- c) Draw the diagram of a 3 input precharge CMOS NAND gate and explain its operation. 8+6+6
- 5. a) State with colour diagrams the $\,\lambda$ besed IC design rules of the following :
 - i) Seperation between two n wells having name potential.
 - ii) Via Contact from metal 2 to metal 1 and trance to a polysilicon layer.
 - iii) Extension of polysilicon beyond diffusion boundaries and the distance from polysilicon layer where the diffusion layer can be shortened.

(3)

- iv) Width and separation between two metal 2 layers.
- v) Width and seperation between two polysilicon layers.
- vi) Give the VHDL description of a master-slave J-K flip-flop.

 3x5 + 5
- 6. a) Discuss the following algorithms for placement/ routing of VLSI components:
 - i) Min cut
 - Left edge.
 - b) Compare the relative merits and demerits of the customs, semicustoms and gate- array based IC design styles. 2x6 + 8
- 7. Write short notes on any four of the following:
 - i) Dry silicon etching
 - ii) Ga As MES FET
 - iii) SOI technology
 - iv) CMOS Domino logic
 - v) Silicon-gate technology
 - i) Aluminium etching.

4x5

