Matemática IV Transformaciones Lineales

A. Ridolfi (PT), M. Saromé (JTP)

UNCUYO - FCAI

Ingeniera Mecánica

2018

Contenido

- Teorema Fundamental del Álgebra Lineal
- Soluciones de sistemas lineales
- Transformaciones Lineales
- Ejemplos
- Isomorfismo

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- *C*(*A*)
- N(A)
- \circ $C(A^T)$
- \bullet $N(A^T)$

(ver https://www.youtube.com/watch?v=ggWYkes-n6E)

3/19

Definición

Dado un subespacio V de \mathbb{R}^n el espacio de todos los vectores ortogonales a V se denomina complemento ortogonal de V y se denota por V^{\perp} .

Teorema (Teorema Fundamental del Álgebra Lineal)

Sea A una matriz $n \times m$ de rango r (r = numéro de pivotes), U la matriz triangular superior producida por la eliminación gausiana de A y R la matriz reducida. Entonces:

- El espacio columna C(A) y el espacio fila C(A^T) tienen ambos dimensión r.
- 2 El espacio nulo N(A) tiene dimensión n-r.
- **3** El espacio nulo izquierdo $N(A^T)$ tiene dimensión m-r.
- **1** El espacio nulo es el complemento ortogonal del espacio fila en \mathbb{R}^n .
- **5** El espacio nulo izquierdo es el complemento ortogonal del espacio columna en \mathbb{R}^m .

$$\mathbb{R}^n = N(A) \oplus C(A^T)$$
 y $C(A^T) = (N(A))^{\perp}$
 $\mathbb{R}^m = C(A) \oplus N(A^T)$ y $N(A^T) = (C(A))^{\perp}$

Observa las matrices A, U: matriz triangular superior producida por la eliminación gausiana de A y R: matriz reducida de A.

$$A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• La eliminación produce bases para el espacio fila y el espacio nulo de *A*: Estas son las mismas que las de *U* y *R*.

$$C(A^T) = N(A) =$$

• La eliminación produce cambios en el espacio columna y en el espacio nulo izquierdo $(C(A) \neq C(U))$, pero la dimensión no cambia.

$$C(A) = C(U) = C(R) = N(A^T) = N(U^T) = N(R^T) =$$

 Si EA = R entonces las m - r filas de E son una base del espacio nulo izquierdo de A

6/19

Solución de Ax = b

Consideremos los sistemas Ax = b; Ux = c y Rx = d con r = rg(A).

- Los últimos m r renglones de U y R son cero, hay solución solo si los últimos m r elementos de c y d son cero.
- El conjunto solución (si tiene) es $S = \{x_p\} + N(A)$.
- La solución completa es de la forma $x = x_p + x_n$, donde:
 - x_p se puede formar igualando las variables libres a 0 y tomando las variables pivotes de los primeros r elementos de d.
 - x_n son combinaciones de n-r soluciones especiales, c/u con una variable libre igual a 1 y las otras 0, las variables pivote se obtienen de la columna correspondiente de R (con signo invertido).

Encontrar la solución completa en el ejemplo anterior para:

$$b^T = (0, 6, -6);$$
 $c^T = (0, 6, 0)$ y $d^T = (-9, 3, 0).$

Una matriz $A m \times n$ es de:

- Rango total de fila si r = m; la matriz tiene una inversa por derecha C (e.d. AC = I_m).
 EXISTENCIA: Ax = b tiene por lo menos una solución.
 Ejemplo:
- Rango total de columna si r = n; la matriz tiene una inversa por izquierda B (e.d. BA = I_n).
 UNICIDAD: Ax = b tiene a lo sumo una solución (o ninguna).
 Ejemplo:
- Rango total si r = n = m: la matriz tiene inversa A^{-1} (e.d. $A^{-1}A = AA^{-1} = I$). EXISTENCIA Y UNICIDAD: Ax = b tiene una única solución. Ejemplo:

Matrices de rango 1: Cada matriz de rango 1 es de la forma $A = \mathbf{u}\mathbf{v}^T$ $C(A) = \langle \mathbf{u} \rangle$ $C(A^T) = \langle \mathbf{v} \rangle$

Ejemplo:

Definición (Transformaciones lineales)

Sean V y W. dos espacios vectoriales sobre el cuerpo K. Una transformación lineal de V en W es una función T de V en W tal que

$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$$

 $T(k\mathbf{x}) = kT(\mathbf{x})$

para todos los vectores **x** y **y** de V y todo escalar k de K.

Ambas condiciones se pueden resumir en:

$$T(k_1\mathbf{x} + k_2\mathbf{y}) = k_1T(\mathbf{x}) + k_2T(\mathbf{y})$$

Ejemplos

- a) Si V es cualquier espacio vectorial, la transformación identidad I, definida por $I\mathbf{x} = \mathbf{x}$, es una transformación lineal de V en V.
- b) La transformación cero 0, definida por $0\mathbf{x} = \mathbf{0}$, es una transformación lineal de V en V.
- c) Sea A una matriz $m \times n$ sobre el cuerpo K. La función T definida por T(x) = Ax es una transformación lineal de K^n en K^m . En particular, cuando $K = \mathbb{R}$ tenemos las transformaciones de: alargamiento,

rotación,

reflexión.

proyección,

cambio de base.

https://www.youtube.com/watch?v=IrggOvOSZr4

https://www.youtube.com/watch?v=LyGKycYT2v0

https://www.youtube.com/watch?v=P2LTAUO1TdA

Imagen extraída de

http://algebra-ii.blogspot.com/2006/11/transformaciones-lineales.html

Ejemplos

- d) Sea A una matriz $m \times n$. La función U definida por $U(\mathbf{x}) = \mathbf{x}^T A$ es una transformación lineal de K^m en K^n .
- e) Sea V el espacio vectorial de las funciones polinomios reales $V = \{f : \mathbb{R} \to \mathbb{R}/f(x) = c_0 + c_1x + ... + c_kx^k\},$ Transformación diferenciación $A : V \to V$ tal que

$$Af(x) = \frac{d}{dx}(f) = c_1 + 2c_2x + ... + kc_kx^{k-1}.$$

Transformación integración $A: V \rightarrow V$ tal que

$$Af(x) = \int_0^x f(t) dt = c_0 x + c_1 \frac{x^2}{2} + ... + c_k \frac{x^{k+1}}{k+1}.$$

Encontrar las matrices asociadas a $A_{dif}: P_4 \rightarrow P_3$ y $A_{int}: P_3 \rightarrow P_4$.

Comprobar que $A_{dif}A_{int} = I$ Comentar que sucede con $A_{int}A_{dif}$

Teorema

Si A es la matriz que representa la transformación lineal de V a W y B es la matriz que representa la transformación lineal de U a V entonces la matriz producto AB es una transformación lineal de U a W y representa la composición de ambas transformaciones.

Verifica con un ejemplo que:

- Para rotaciones el orden de la multiplicacin no importa.
- Para una rotación y una reflexión, el orden sí es importante.
- Proyectar dos veces es lo mismo que proyectar una vez, $P^2 = P$

Propiedades de las transformaciones lineales

Sean V y W dos espacios vectoriales sobre un mismo cuerpo K, T una transformación lineal de V en W y sean N(T), Im(T) y L(V,W) los conjuntos: Nulo e Imagen de T, respectivamente:

$$N(T) = \{x \in V : T(x) = 0\}$$
, (Nulo de T) $Im(T) = \{w \in W : w = T(x) \text{ para algún } x \in V\}$ Imagen de T, $L(V, W) = \{T : V \to W : T\text{es una transformación lineal}\}$,

- N(T) es un subespacio de V; Nulidad:= dim(N(T)).
- Im(T) es un subespacio de W; Rango:= dim(Im(T)).
- Si V es dimensión finita, entonces Rango + Nulidad = dim(V).
- L(V, W) es un espacio vectorial.
- Si dim(V) = n y dim(W) = m entonces dim(L(V, W)) = nm.

Operador Lineal: Transformación $T:V\to V$ Subespacio invariante: Subespacio S de V tal que existe un operador lineal $T:V\to V$ donde $T(S)\subset S$.

Propiedades de las transformaciones lineales

Sea $T: V \rightarrow W$ una transformación lineal

- T es inyectiva $\Leftrightarrow T(x) = T(y)$ implica que x = y;
- T es sobreyectiva $\Leftrightarrow Im(T) = W$;
- T es inversible $\Leftrightarrow \exists T^{-1}: W \to V/T^{-1} \circ T = I$ y $T \circ T^{-1} = I$.
- T es no singular $\Leftrightarrow N(T) = \{0\}$

T inversible $\Leftrightarrow T$ invectiva y sobreyectiva T invectiva $\Leftrightarrow T$ no singular $\Leftrightarrow T$ preserva conjuntos I. i.

• Si dim(V) = dim(W) = n entonces T inversible $\Leftrightarrow T$ inyectiva $\Leftrightarrow T$ sobreyectiva

Isomorfismo

Teorema

Sean V y W dos espacios vectoriales de dimensin finita n y m respectivamente sobre un mismo cuerpo K. Sean B y B' bases ordenadas de V y W respectivamente. Para cada transformación lineal $T: V \to W$ existe una matriz $A_{m \times n} \in K^{mn}$ tal que

$$[T(x)]_{B'} = A[x]_B$$

Definición (Isomorfismo)

Sean V y W dos espacios vectoriales sobre un mismo cuerpo K. Se dice que una transformación lineal $T:V\to W$ es un isomorfismo de V en W si T es inversible. En este caso se dice que V es isomorfo a W.

- Todo espacio vectorial real de dimensión finita n es isomorfo a \mathbb{R}^n .
- El espacio fila es isomorfo al espacio columna.
- Si dim(V) = n; dim(W) = m entonces L(V, W) es isomorfo a

Factorización de Matrices

Propiedad (1N pagina 51)

Suponga que $A = A^T$ puede factorizarse en A = LDU sin intercambios de renglones. Entonces U es la traspuesta de L. La factorización simétrica se vuelve $A = LDL^T$.

Propiedad (2B pagina 79)

Para cualquier matriz A de m por n existe una permutación P, una matriz triangular inferior L con diagonal unitaria, y una matriz U escalonada de m por n, tales que PA = LU.

Bibliografía

- Strang, G. Algebra lineal y sus aplicaciones, 4a Ed, Thomson, 2006.
- Hoffman, K., Kunze, R. Algebra Lineal. 1Ed, Prentice-Hall Hispanoamericana, S. A. 1973.

GRACIAS POR SU ATENCIÓN!!

