HOUSEHOLDS

- Representative household with a growing number of members
- Current income effect
- Net worth effect

CHOICES MADE BY HOUSEHOLDS

- Demand consumption goods
- Demand for investment goods and capital accumulation
- Utilization of capital
- Labor supply
- Demand for (bank) deposits
- Demand for (bank) loans

LIFETIME UTILITY FUNCTION

Representative household with a growing number of members

$$X_0 \sum_{t=0}^{\infty} \left(\log \frac{ch_t - ch_t^{\text{ref}}}{nn_t} - \frac{1}{1+\eta} nh_t^{\eta} + \nu_1 \log \frac{netw_t}{pch_t \cdot nn_t} \right) nn_t$$
 (1)

Nominal net worth in (1)

$$net w_t = pkh_t \cdot kh_t + bd_t - bl_t \tag{2}$$

Point of reference in household consumption is

$$ch_t^{ ext{ref}} = \chi \, rac{curr_t}{pch_t}$$
 $curr_t = w_t \cdot nh_t \cdot nl_t - trl1_t$

where x and

Variable	Description
ch_t	Household consumption
$ch_t^{ m ref}$	Point of reference in household consumption
nl_t	Labor force
nh_t	Per-worker labor supply (e.g. per-worker hours worked)
$netw_t$	Nominal net worth of households
$curr_t$	Nominal current income of households
$txls1_t$	Net lump-sum taxes (transfers) of type 1

BUDGET CONSTRAINT

$$egin{aligned} bd_t - bl_t &= rbd_{t-1} \cdot bd_{t-1} - rbl_{t-1} \cdot bl_{t-1} \ &+ w_t \cdot nh_t \cdot igwedge \mathbf{nl}_t + puk_t \cdot u_t \cdot k_t + zy_t + zb_t \ &- pch_t \cdot ch_t - pih_t \cdot ih_t \ &- trl1_t - trl2_t - adj_t \end{aligned}$$

Lagrange multiplier associated with the budget constraint is denoted by vh_t (shadow value of nominal household wealth)

Variable	Description
bd_t	Bank deposits
bl_t	Bank loans
w_t	Nominal wage rate
$\mathit{prf}_{y,t}$	Profits from producers
$\mathit{prf}_{f,t}$	Profits from financial sector
jh_t	Adjustment costs faced by households
$txls1_t$	Type 1 net lump-sum taxes (transfers)
$txls2_t$	Type 2 net lump-sum taxes (transfers)

HOUSEHOLD ADJUSTMENT COSTS

- Investment adjustment costs
- Reference point in capital accumulation
- Cost of utilization of capital

$$egin{aligned} jh_t &= rac{1}{2} \, \xi_{ih} \cdot pih_t \cdot ih_t \, \left(\Delta \log ih_t - \log \kappa_{ih}
ight)^2 \ &+ rac{1}{2} \, \xi_k \cdot pkh_t \cdot kh_t \, \left(\log kh_t - \log kh_t^{ ext{ref}}
ight)^2 \ &+ py_t \cdot kh_t \cdot \left(v_0 \cdot u_t
ight)^{v_1} \end{aligned}$$

Point of reference in capital accumulation

$$kh_t^{\text{ref}} = X_t \left[kh_{t+1} \cdot \kappa_{kh}^{-1} \right]$$
 (3)

Steady-state adjustment constants

$$\kappa_{ih} = \frac{ih \backslash ss}{ih \backslash ssm} \qquad \kappa_{kh} = \frac{kh \backslash ss}{kh \backslash ssm}$$
(4)

CAPITAL ACCUMULATION

$$kh_t = (1 - \delta) kh_{t-1} + ih_t \tag{5}$$

Lagrange multiplier associated with the capital accumulation constraint is denoted by pkh_t (shadow price of capital)

Variable	Description
kh_t	Stock of private production capital
ih_t	Investment in private production capital

FINANCE CONTRAINT

Sufficient amount of means of payment needs to be held proportional to gross expenditures (consumption, investment, trade in capital)

$$bd_t = \phi \Big(pch_t \cdot ch_t + pih_t \cdot ih_t + \phi_k \cdot pkh_t \cdot kh_t \Big)$$

$$\tag{6}$$

REAL WAGE RIGIDITIES

Real wages are sluggish in their response to changes in optimal flexible wage rate; no expliciti microfoundations

$$\log \frac{w_t}{pch_t} = \rho_w \log \left(\kappa_w \cdot \frac{w_{t-1}}{pch_{t-1}}\right) + (1 - \rho_w) \log \frac{w0_t}{pch_t} + \epsilon_{w,t}$$
(7)

Steady-state adjustment constant

$$\kappa_w = \frac{w \backslash ss \cdot pch \backslash ssm}{w \backslash ssm \cdot pch \backslash ss} \tag{8}$$

Variable	Description
$w0_t$	Optimal flexible nominal wage rate as if optimized by households
w_t	Actual nominal wage rate