Methods

Calculate $x^n, x \in \mathbb{R}, n \in \mathbb{N}$ efficiently.

Example x^{23} :

trivial: 22 multiplications

better:

$$x \cdot x \to x^{2}$$

$$x^{2} \cdot x^{2} \to x^{4}$$

$$x^{4} \cdot x^{4} \to x^{8}$$

$$x^{8} \cdot x^{8} \to x^{16}$$

$$x^{23} = x^{16} \cdot x^{4} \cdot x^{2} \cdot x^{1}$$

7 multiplications

Idea: Calculate $x^2, x^4, x^8, \dots, x^{2^k}, k = \lfloor ld(n) \rfloor$ by repeated squaring.

Multiply the terms x^{2^i} for which the binary representation $(b_k, b_{k-1}, \dots, b_1, b_0)$ of n has a 1 in the i-th position, i.e., $b_i = 1$.

In total at most $2 \cdot \lfloor ld(n) \rfloor = \mathcal{O}(log(n))$ multiplications.

Another example: x^{62}

$$x^{2}, x^{4}, x^{8}, x^{16}, x^{32}$$

 $x^{62} = x^{2} \cdot x^{4} \cdot x^{8} \cdot x^{16} \cdot x^{32}$
 \Rightarrow 9 multiplications

But there exists an even better option:

$$\begin{array}{l} x^{62} = x^{20} \cdot x^{20} \cdot x^{20} \cdot x^2 \\ x^{20} = x^{16} \cdot x^4 \\ x^2, x^4, x^8, x^{16} \\ \Rightarrow \text{8 multiplications} \end{array}$$

Finding the optimal solution for general \boldsymbol{n} is an open research problem.