4. PROJECT MANAGEMENT SCHEDULING TECHNIQUES

PROJECT MANAGEMENT:

1. Charter: Persons Who are defining objective.

2. Stake Holder: Owner of the Project.

3. Program Manager: Persons who handle similar and dissimilar Activities.

4. Project Manager: Persons who handle similar Activities.

5. Function Manager: Organizes program to fulfil the requirement of the skills.

GREEN FIELD PROJECT:

Project From the scratch.

BROWN FIELD

PROJECT:

Use the existing things.

BAR/ GANTT CHARTS

- Simplest Project Management chart.
- Simple type of activities is representing.
- In bar Chart, X-axis represents time, where as activities are presented by horizontal bar.
- **Limitations:**
- Not used for complex activity representation.
- Bar Chart is not able to depict the interdependency of one activity on another.

ACTIVITY:

To complete a project, it needs to be divided into sub-part. This sub part is called activity. **Resource, Time** Consumption is in activity. It's represented by **arrow** in network diagram.

BASIC CONCEPTS

EVENT:

It's instantaneous phenomenon and it doesn't consume any resource and time. It indicates Start and end of activity.

It's represented by Circle, Nodes, Triangle etc.

DUMMY ACTIVITY:

Activity in which doesn't consume any resource or time but it's used to satisfy logical sequence or precedence relationship is called dummy Activity.

It's represented by **dotted line**.

DIFFERENT TYPE OF TIME ESTIMATION				
Optimistic Time (t_0) Pessimistic Time (t_p)		Most Likely Time (t_m)		
It's the minimum time required to	It's the maximum time required to	It's the time required when situations		
complete an activity when the	complete an activity when the	are neither completely favourable not		
situations are favourable.	situations are unfavourable.	completely unfavourable.		

Estimated Time of an activity: $t_e = (t_o + 4t_m + t_p)/6$

	PERT	CPM
1	Program Evaluation and review technique	Critical path method
2	It's applicable for new type of projects. E.g. For	It's applicable for repetitive type of projects. E.g. For
	which data are not available (R&D)	which data are available (Construction related activity)
3	It's applicable for probabilistic concepts E.g.	It's applicable for deterministic concept.
	Uncertainty is involved in PERT.	
4	PERT is event oriented . E.g. Completion of project	CPM is activity oriented.
	depends upon the end results.	
5	In PERT, all three times are used. So, the expected	In CPM only time estimate is being done.
	time can be found.	
6	PERT is control device.	CPM is planning device.

RULES OF NETWORK DIAGRAM (DR. FULKERSON FOUND THE DIAGRAM)				
Arrows are only	Two activity can't have	Cycling property is not Dangling property needs to be avoided		
in one direction.	same starting & ending	allowed in network diagram. while drawing the network diagram		
	event.	(Orphan Branch effect avoid)		

EST	LST	t_{ij}	EFT	LFT		t_{ij} = Expected time to complete an	
	i	\rightarrow		j		event form node "i" to node "j"	
					i = Start or Tail Event,		
	FORWARD PASS			BACK WARD PASS:		j = End or Head Event,	
	$EST + t_{i,i} = EFT$		$LFT - t_{ij} = FST$		$t_{ij} = FST$	EST = Earlier Start Time,	
SLACK:	SLACK: It's Always defined at event.				LST = Late Start Time,		
+ve Slack: More than enough time		-ve Slack: In sufficient time.		ficient time.	EFT = Earlier Finish Time,		
you hav	e.					LFT = Late Finish Time,	

TAIL EVENT SLACK: TES = LST - EST

HEAD EVENT SLACK: HES = LFT - EFT

CRITICAL PATH: Path has maximum time of operation. So, Sometimes Critical path has zero slack.

NETWORK: It's the minimum time to complete all the activities in network.	Max.+Network	CRITICAL
PROJECT: It's the maximum time required to complete all activities in a project.	Min. + Proj.	PATH

MINIMUM SPANNING TREE:

It's the minimum time in a network for starting node to the ending node & It's not the critical path.

IMPORTANT NOTES:

- 1. Variance $\sigma^2 = \left(\frac{t_p t_o}{6}\right)^2$
- 2. Standard Deviation of critical path, $\sigma_{CP} = \sqrt{\sum \sigma_{CP}^2}$
- 3. The overall project duration follows normal distribution or gaussian distribution or bell shape curve or one hump symmetric curve.

Whereas individual activity follows β –Distribution.

4.
$$Z = (T_S - T_E)/\sigma_{CP}$$

Z = Normal Distribution Value,	Z	Probability	Z	Probability
σ_{CP} = Standard Deviation of critical path,	0	50%		
T_E = The estimated time of a project (Given in problem)	1	84.13%	-1	15.87%
T_S = Given in the problem.	2	97.7%	-2	2.3%

5. In case, if there are more than one critical path, then in order to determine probability we select the path which is having maximum standard deviation & due to that the probability will be less but we will be on safe side as the project must be completed on time.

FLOAT				
TOTAL FLOAT (F_T)	FREE FLOAT (F_F)	INDEPENDENT FLOAT (F_I)		
	It's that portion of the total float in which	It's that portion of total float in		
	compromises predecessor activity.	which neither affects successor		
	Here, Predecessor is being delayed without	activity nor the predecessor activity.		
	affecting successor activity.			
$F_T = LFT - EST - t_{ij}$	$F_T = F_T - HES$	$F_I = F_T - HES - TES = F_T - TES$		

Here, $F_T \ge F_F \ge F_I$

For critical path: $F_T = F_F = F_I = 0$

NOTE: There is another float named as Interference Float.