REINFORCEMENT LEARNING

ATARI GAMES

ISABELL LEDERER
GITHUB.COM/MATHEBELL/RL_ATARI_GAMES

AKNUM MASCHINELLES LERNEN SE

WIEN, 18. DEZEMBER 2018

OVERVIEW

Contents:

- 1. Introduction
 - 1.1 Atari Games
 - 1.2 New Problem
- 2. The mathematics behind the algorithm
 - 2.1 Q-learning and DQN
 - 2.2 Policy Gradient Methods and Theorem
- 3. Implementation
 - 3.1 Preprocessing
 - 3.2 Model architecture
 - 3.3 Pseudocode DQN
- 4. Results
 - 4.1 Video clip
 - 4.2 Performance

ľ

ATARI GAMES

ATARI GAMES

Breakout at https://elgoog.im/breakout/

SOME OTHER ATARI GAMES

REINFORCEMENT LEARNING - BASICS

REINFORCEMENT LEARNING - BASICS

policy function:

$$\pi(a \mid s) = \Pr(A_t = a \mid S_t = s)$$

new problem

THE MATHEMATICS BEHIND THE ALGORITHM

action-value methods vs. policy gradient methods

ACTION-VALUE METHODS

methods that approximate an action-value function followed by a policy

ACTION-VALUE METHODS - DYNAMIC PROGRAMMING

perfect model of environment as Markov Decision Process (MDP)

ACTION-VALUE METHODS - DYNAMIC PROGRAMMING

- perfect model of environment as Markov Decision Process (MDP)
- dynamics function p:

$$p(s', r | s, a) = \Pr(S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a)$$

ACTION-VALUE METHODS - DYNAMIC PROGRAMMING

lacktriangle optimal state-value function v_* and action-value function q_* via Bellmann equations:

$$\begin{aligned} v_*(s) &= \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_*(S_{t+1}) \, | \, S_t = s, A_t = a \right] \\ &= \max_{a} \sum_{s',r} p(s',r \, | \, s,a) \left[r + \gamma v_*(s') \right], \\ q_*(s,a) &= \mathbb{E} \left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \, | \, S_t = s, A_t = a \right] \\ &= \sum_{s',r} p(s',r \, | \, s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]. \end{aligned}$$

 characteristic for DP: perfect model as a MDP, approximate optimal value function, bootstrapping

ACTION-VALUE METHODS - Q-LEARNING

 off-policy algorithm that can directly learn from raw experience without a model of the environment's dynamic

ACTION-VALUE METHODS - Q-LEARNING

- off-policy algorithm that can directly learn from raw experience without a model of the environment's dynamic
- it has been shown that under some assumptions Q converges with probability 1 to q_*

ACTION-VALUE METHODS - Q-LEARNING

- off-policy algorithm that can directly learn from raw experience without a model of the environment's dynamic
- it has been shown that under some assumptions Q converges with probability 1 to q_*
- Q-learning iteration:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)].$$

ACTION-VALUE METHODS - Q-LEARNING ALGORITHMUS

Q-learning Pseudocode

until S is terminal

Parameters: step size $\alpha \in (0, 1]$, small $\epsilon > 0$

```
Initialize Q(s,a), for all s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily except that Q(terminal,\cdot) = 0

Loop for each episode:
   Initialize S
   Loop for each step of episode:
    Choose A by \epsilon-greedy selection
   Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
```

DQN - DEEP Q-NETWORK

DQN - DEEP Q-NETWORK

 combines the idea of Q-learning with a deep convolutional network

■ learn parametrized policy

$$\pi(a \mid s, \theta) = \Pr(A_t = a \mid S_t = s, \theta_t = \theta)$$

■ learn parametrized policy

$$\pi(a \mid s, \theta) = \Pr(A_t = a \mid S_t = s, \theta_t = \theta)$$

■ learn the parameter θ based on the gradient of some scalar performance measure $J(\theta)$

14 3:

■ learn parametrized policy

$$\pi(a \mid s, \theta) = \Pr(A_t = a \mid S_t = s, \theta_t = \theta)$$

- learn the parameter θ based on the gradient of some scalar performance measure $J(\theta)$
- updating via gradient ascent

$$\theta_{t+1} = \theta_t + \alpha \widehat{\nabla J(\theta_t)}$$

- can be parametrized in any way as long as the policy is differentiable
- to ensure exploration we require that $\pi(a \mid s, \theta)$ never becomes deterministic
- advantage: can approach a deterministic policy

- can be parametrized in any way as long as the policy is differentiable
- to ensure exploration we require that $\pi(a \mid s, \theta)$ never becomes deterministic
- advantage: can approach a deterministic policy
- one can proof better performance for policy gradient methods than for action value methods

define performance as

$$J(\theta) := V_{\pi_{\theta}}(s_0).$$

define performance as

$$J(\theta) := V_{\pi_{\theta}}(s_0).$$

Theorem

Let $\pi(a \mid s, \theta)$ be a parameterized policy, $q_{\pi}(s, a)$ the action-value function under π and $\mu(s)$ the on-policy distribution under π , thus

$$abla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla \pi(a \mid s, \theta).$$

17 | 3

Proof.

$$\nabla v_{\pi}(s) = \nabla \Big[\sum_{a} \pi(a|s) q_{\pi}(s, a) \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \nabla q_{\pi}(s, a) \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \Big]$$

$$\nabla \Big[\sum_{s',r} p(s', r|s, a) \left(r + v_{\pi}(s') \right) \Big] \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

$$= \sum_{a} \Big[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{a} p(s'|s, a) \nabla v_{\pi}(s') \Big]$$

(1):
$$v_{\pi}(s) = \sum_{a} \pi(s|a) q_{\pi}(s,a)$$

(1) \rightarrow (2): product rule
(2) \rightarrow (3): $q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a) (r + v_{\pi}(s'))$
(3) \rightarrow (4): $p(s'|s,a) = \sum_{r} p(s',r|s,a)$

Proof.

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \sum_{s'} p(s'|s,a) \right.$$

$$\sum_{a'} \left[\nabla \pi(a',s') q_{\pi}(s',a') + \pi(a'|s') \sum_{s''} p(s''|s',a') \nabla V_{\pi}(s'') \right] \right]$$
(5)

$$=\sum_{x\in\mathcal{S}}\sum_{k=0}^{\infty}\Pr(s\to x,k,\pi)\sum_{a}\nabla\pi(a|x)q_{\pi}(x,a),\tag{6}$$

where $\Pr(s \to x, k, \pi)$ is the probability of transitioning from state s to state x in k steps under policy π . $\eta(s)$ denote the number of time steps spent, on average, in s. On-policy distribution is then $\mu(s) = \frac{\eta(s)}{\sum_{s'} \eta(s')}$.

.0

Proof.

$$\nabla J(\theta) = \nabla V_{\pi}(\mathsf{s}_{\mathsf{O}}) \tag{7}$$

$$=\sum_{s}\left(\sum_{k=0}^{\infty}\Pr(s_{0}\to s,k,\pi)\right)\sum_{a}\nabla\pi(a|s)q_{\pi}(s,a) \quad (8)$$

$$=\sum_{s}\eta(s)\sum_{a}\nabla\pi(a|s)q_{\pi}(s,a)$$
(9)

$$=\sum_{s'}\eta(s')\sum_{s}\frac{\eta(s)}{\sum_{s'}\eta(s')}\sum_{a}\nabla\pi(a|s)q_{\pi}(s,a) \tag{10}$$

$$=\sum_{s'}\eta(s')\sum_{s}\mu(s)\sum_{a}\nabla\pi(a|s)q_{\pi}(s,a) \tag{11}$$

$$\propto \sum_{a} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a)$$
 (12)

IMPLEMENTATION WITH PYTHON

EMULATOR

OpenAI's Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

EMULATOR

- OpenAl's Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.
- Arcade Learning Environment (ALE)

PREPROCESSING INPUT/IMAGES

■ Input: 3 Atari frames in 210 × 160 pixels in RGB color

- Input: 3 Atari frames in 210 × 160 pixels in RGB color
- a lot of data for memory: memorize recent 1,000,000 of $(S_t, A_t, R_t, S_{t+1}, isTerminal)$

 \blacksquare Rescaling, e.g. from 210 \times 160 pixels to 84 \times 84

- \blacksquare Rescaling, e.g. from 210 \times 160 pixels to 84 \times 84
- Greyscaling

25 | 33

- Rescaling, e.g. from 210 \times 160 pixels to 84 \times 84
- Greyscaling

- Rescaling, e.g. from 210 \times 160 pixels to 84 \times 84
- Greyscaling

STORING MEMORY

- adequate collection for memory I can sample on
- deque perfect for needs, but bad runtime
- implement own RingBuffer?

MODEL ARCHITECTURE OF DQN

```
#Create Model
ATARI SHAPE = (105, 80, 3)
# Inputs
frames input = keras.lavers.Input(shape = ATARI SHAPE, name = 'frames')
actions input = keras.layers.Input(shape = (n actions,), name = 'actions')
# "The first hidden layer convolves 16 8×8 filters with stride 4 with the input image
# and applies a rectifier nonlinearity."
conv 1 = keras.layers.convolutional.Conv2D(16, (8, 8), strides = 4, activation = 'relu')(frames_input)
# "The second hidden layer convolves 32 4×4 filters with stride 2, again followed by a
# rectifier nonlinearity."
conv 2 = keras.layers.convolutional.Conv2D(32,(4, 4),strides = 2, activation = 'relu')(conv 1)
# Flattening the second convolutional layer.
conv flattened = keras.layers.core.Flatten()(conv 2)
# "The final hidden layer is fully-connected and consists of 256 rectifier units."
hidden = keras.layers.Dense(256, activation = 'relu')(conv flattened)
# "The output layer is a fully-connected linear layer with a single output for each
# valid action."
output = keras.lavers.Dense(n actions)(hidden)
filtered output = keras.layers.multiply([output, actions input]) # get corresponding 0 val
model = keras.models.Model(input = [frames input, actions input], output = filtered output)
# parameters from paper
optimizer = keras.optimizers.RMSprop(lr = 0.00025, rho = 0.95, epsilon = 0.01)
model.compile(optimizer, loss='mse')
```

MODEL ARCHITECTURE OF DQN

Implementation with keras/ tensorflow

PSEUDOCODE DQN

Pseudocode

```
env = gym.make('BreakoutDeterministic-v4')
Create model, initialize memory D
Loop for each episode:
   s = env.reset() and preprocess s
   env.render()
   Loop for each step of episode:
      Choose \epsilon, choose with probability \epsilon a random action,
      otherwise choose best action predicted by model
      s', r, is done, info = env.step(a)
      preprocess s' and append (s, a, s', is_done) to D
      sample batch from D, predict Q_{t+1}, update Q_t
      fit batch of (s,a) with Q_t to model
      env.render()
   until S is terminal
```

YOUTUBE MOVIE OF TRAINING

Video of Playing Atari with Deep Reinforcement Learning: https://www.youtube.com/watch?v=V1eYniJoRnk

RESULTS

Performance of DQN agent on various Atari games

LITERATUR I

GOOGLE DEEPMIND. **HUMAN-LEVEL CONTROL THROUGH DEEP REINFORCEMENT LEARNING.** *Nature*, doi:10.1038/nature14236, 2015.