$Medvedsky PV\ 25012025\text{--}105111$

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Если цепь на рисунке 1 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 4.353 кГц меньше на 4 дВ, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ меньше на 2.2 дВ, чем вклад ГУН. Известно, что C=11.27 нФ, а $R_2=2100$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 1 – Электрическая схема цепи обратной связи

- $1)4294\,\mathrm{Om}$
- $2)4756\,\mathrm{Om}$
- 3) 5218 Ом
- $4)5680 \, \text{OM}$
- 5) 6142 Om
- 6) $6604 \, \text{OM}$
- 7)7066 O_M
- 8) 7528 O_M
- 9)7990 O_M

Источник колебаний с частотой 6630 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 163 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1684 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 50 Гц, если с доступная мощность на выходе усилителя равна -0.2 дБм? Варианты ОТВЕТА:

- 1)-163 дБн/Гц
- 2) -163.5 дБн/ Γ ц
- 3) -164 дБн/Гц
- 4)-164.5 дБн/Гц
- 5) -165 дБн/Гц
- 6) -165.5 дБн/Гц
- 7)-166 дБн/Гц
- 8) -166.5 дБн/Гц
- 9) -167 дБн/Гц

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением нижней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 3800 МГц и спектральную плотность мощности фазового шума на отстройке 100 кГц минус 85 дБн/Гц . Спектральная плотность мощности фазового шума на отстройке 100 кГц второго колебания равна минус 77 дБн/Гц, а частота его равна 9550 МГц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке 100 кГц при описанном выше когерентном синтезе?

- 1)-84.4 дБн/Гц
- 2) -81.4 дБн/Гц
- 3)-80.8 дБн/Гц
- 4) -79.4 дБн/Гц
- 5) -78.4 дБн/Гц
- 6) -77.7 дБн/Гц
- 7)-77.1 дБн/Гц
- 8) -76.4 дБн/Гц
- 9)-74.7 дБн/Гц

Источник колебаний с доступной мощностью -2 дБм и частотой 3840 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 129 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 3839.9975 МГц, если спектральная плотность мощности его собственных шумов равна минус 134 дБм/Гц, а полоса пропускания ПЧ установлена в положение 500 Гц?

- 1)-102.2 дБм
- 2) -103.9 дБм
- 3) -105.6 дБм
- 4) -107.3 дБм
- 5) -109 дБм
- 6) -110.7 дБм
- 7) -112.4 дБм
- 8) -114.1 дБм
- 9)-115.8 дБм

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10⁻¹, а крутизна характеристики управления частотой ГУН равна 1.9 МГц/В. Частота колебаний опорного генератора (ОГ) 210 МГц. Частота колебаний ГУН 2340 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 5.8 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 10 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 129 кГц на 6.4 дБ меньше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 1.30 В/рад
- 2) 1.52 В/рад
- 3) 1.74 В/рад
- 4) 1.96 В/рад
- 5) 2.18 В/рад
- 6) 2.40 В/рад
- 7) 2.62 В/рад
- 8) 2.84 В/рад
- 9) 3.06 В/рад

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 80 МГц. Частота колебаний ГУН 2700 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 17.2 дБн/Гц для ОГ и плюс 72.4 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=28.0094,\,\tau=10.1468$ мкс.

Крутизна характеристики управления частотой ГУН равна $2.1~\mathrm{M}\Gamma\mathrm{g}/\mathrm{B}$. Крутизна характеристики фазового детектора $0.4~\mathrm{B}/\mathrm{pag}$.

Рисунок 3 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 266 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза? Варианты ОТВЕТА:

- 1) на плюс 0.4 дБ
- 2) на минус 0дБ
- 3) на минус 0.4 дБ
- 4) на минус 0.8 дБ
- на минус 1.2 дБ
- б) на минус 1.6 дВ
- 7) на минус 2дБ
- 8) на минус 2.4 дБ

9) на минус 2.8 дБ