Manipulation-skill Assessment from videos with spatial attention network

1. Motivation

过往的方法大多是task-specific的,缺乏繁华能力,并且无法获取很细粒度的动作信息。

对于一个动作视频,理想的模型应该在看视频的时候能够关注到三方面的信息: 1)每一帧的视觉信息、2)正在进行的动作信息、3)当前时刻前面帧的所有信息

因此,作者设计了一个RNN-based model。模型主要包含两个RNN。其中一个建模spatial attention在时间维度上的变换;另一个建模当前看到的部分。

2、Approach

2.1 model architecture

给定一个完成某一任务过程的完整视频,模型对其动作表现进行评估,最终得到一个评分。

2.2 feature encoding

一个视频被分成了N个segment,从每个segment中随机选取一帧 I_t 和堆叠的optical flow O_t 作为模型的输入。用两个ResNet101提取特征后送入ConvFusion模块。得到 fused deep appearance-motion representation $X_t \in \mathbb{R}^{C \times H \times W}$ 。

2.3 attention pooling

Figure 2. The details of the spatial attention sub-module. To estimate the task-related significance for the regional vectors at different locations, the module incorporates not only the low-level visual information \bar{x}_t globally extracted from the deep feature maps, but also the high-level information of the undergoing task h_{t-1}^{task} which is accumulated by a high-level RNN (RNN_{task} in Figure 1). We also use an RNN (RNN_{att}) to accumulate the attention information and learn the temporal relationship of attention. The hidden state of RNN_{att} is utilized to estimate attention weights for all locations in deep feature map X_t .

对于每个time step t,Attention Pooling层的输入包含两部分:1)对应time step的deep appearance-motion feature maps(low-level information);2)下一个模块传回来的hidden state(high-level information)

对于输入1),对其分别做max pooling和avg pooling并相加得到高度抽象的low-level representation vector $ar{x}_t \in \mathbb{R}^C$ 。

$$\bar{x}_t = AvgPool(X_t) + MaxPool(X_t)$$

将两者concat起来得到attention模块的输入 $c_t=[ar{x}_t;h^{task}_{t-1}]$ 。这里的attention模块包含两部分,一个RNN结构 RNN_{att} 以及一个attention结构。

在每个time step,RNN维护一个状态向量 h_t^{att} 。其更新规则为:

$$h_{att} = RNNatt(c, h_{t-1}^{att}).$$

得到这部分RNN的输出后,attention计算模块计算attention map:

$$egin{aligned} a_{i,t} &= \omega_a^T[tanh(W_{xa}x_{i,t} + b_{xa} + W_{ha}h_t^{att} + b_{ha})] \;\;, i = 1, 2, \ldots, H{ imes}W; \ lpha_t &= softmax(a_t) \end{aligned}$$

其中 $x_{i,t}$ 为每个时间步特征图X拉平后的每个点的特征向量。

最后,对输入的特征图加权求和得到attention pooling层的输出。

$$v_t = \sum_{i=1}^{H imes W} lpha_{i,t} x_{i,t}$$

2.4 temporal aggregation

这部分相对简单,通过 RNN_{task} 获取high-level信息,然后接一个FC头完成分数的回归。

$$h_{task}^t = RNN_{task}(v_t, h_{t-1}^{task}).$$
 $S = FC(h_N^{task})$

2.5 training

训练方面沿用了之前研究中用到了对比学习ranking的方法,这里就不做很多赘述了,详细的可以看whos better那篇文章。

3. Experiment

- No Attention: Spatial attention module is entirely removed and visual information AvgPool(Xt) is directly forwarded into RNNtask. We build this baseline to examine the effectiveness of spatial attention in skill assessment.
- No RNN_{att}: In spatial attention module, RNN_{att} is replaced by one fully-connected layer. We build this baseline to examine the effectiveness of attention transition patterns learned by RNN_{att}.
- \bar{x}_t based Attention: The RNN_{att} takes only \bar{x}_t as input without the concatenation with h^{task} . We build this baseline to examine the effectiveness of low-level visual information.
- h^{task} based Attention: The RNN_{att} takes only h^{task}
 as input. We build this baseline to examine the effectiveness of the high-level information about undergoing task.

Acc(%)	Chopstick- Using	Surgery	Drawing	Dough- Rolling	Infant- Grasp
No Attention	82.1	68.3	82.8	77.3	84.0
No RNN_{att}	84.1	70.8	82.4	82.0	85.1
\bar{x}_t -based Attention	84.1	70.1	83.4	81.8	85.3
htask-based Attention	82.8	69.1	84.8	81.6	84.7
Full model	85.5	73.1	85.3	82.7	86.1

Table 2. Ablation study for different components of our model. Ranking accuracy is used as the evaluation metric.

Figure 6. Attention maps generated by different components of our method.

我觉得这篇文章比较有意思的点是那个高低层次信息融合的部分。图像transformer中是否也可以引入这样的机制呢?