Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 1: Objects in space

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2016)

License Information for Mathematics of Data Slides

► This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.

▶ Share ∆like

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- ► This class:
 - 1. Linear algebra review
 - Notation
 - Vectors
 - Matrices
 - Tensors
- Next class
 - 1. Review of probability theory

Recommended reading material

- Zico Kolter and Chuong Do, Linear Algebra Review and Reference http://cs229.stanford.edu/section/cs229-linalg.pdf, 2012.
- KC Border, Quick Review of Matrix and Real Linear Algebra http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf, 2013.
- Simon Foucart and Holger Rauhut, A mathematical introduction to compressive sensing (Appendix A: Matrix Analysis), Springer, 2013.
- Joel A Tropp, Column subset selection, matrix factorization, and eigenvalue optimization, In Proc. of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp 978–986, SIAM, 2009.

Motivation

Motivation

This lecture is intended to help you follow mathematical discussions in data sciences, which rely heavily on basic linear algebra concepts.

Notation

- \triangleright Scalars are denoted by lowercase letters (e.g. k)
- ► Vectors by lowercase boldface letters (e.g., x)
- ► Matrices by uppercase boldface letters (e.g. A)
- ▶ Component of a vector \mathbf{x} , matrix \mathbf{A} as x_i , a_{ij} & $A_{i,j,k,...}$ respectively.
- ightharpoonup Sets by uppercase calligraphic letters (e.g. \mathcal{S}) .

Vector spaces

Note:

We focus on the field of real numbers (\mathbb{R}) but most of the results can be generalized to the field of complex numbers (\mathbb{C}) .

A vector space or *linear space* (over the field \mathbb{R}) consists of

- (a) a set of vectors \mathcal{V}
- (b) an addition operation: $\mathcal{V} \times \mathcal{V} \to \mathcal{V}$
- (c) a scalar multiplication operation: $\mathbb{R} \times \mathcal{V} \to \mathcal{V}$
- (d) a distinguished element $\mathbf{0} \in \mathcal{V}$

and satisfies the following properties:

1.
$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$
, $\forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$

2.
$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z}), \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$$

3.
$$\mathbf{0} + \mathbf{x} = \mathbf{x}, \forall \mathbf{x} \in \mathcal{V}$$

4.
$$\forall \mathbf{x} \in \mathcal{V} \ \exists \ (-\mathbf{x}) \in \mathcal{V} \ \text{such that } \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$$

5.
$$(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x}), \quad \forall \alpha, \beta \in \mathbb{R} \quad \forall \mathbf{x} \in \mathcal{V}$$

6.
$$\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}, \quad \forall \alpha \in \mathbb{R} \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$$

7.
$$1\mathbf{x} = \mathbf{x}, \forall \mathbf{x} \in \mathcal{V}$$

commutative under addition associative under addition 0 being additive identity —x being additive inverse associative under scalar multiplication distributive

1 being multiplicative identity

Vector spaces contd.

Example (Vector space)

- 1. $\mathcal{V}_1 = \{\mathbf{0}\} \text{ for } \mathbf{0} \in \mathbb{R}^p$
- 2. $\mathcal{V}_2 = \mathbb{R}^p$
- 3. $\mathcal{V}_3 = \sum_{i=1}^k \alpha_i \mathbf{x}_i$ for $\alpha_i \in \mathbb{R}$ and $\mathbf{x}_i \in \mathbb{R}^p$

It is straight forward to show that V_1 , V_2 , and V_3 satisfy properties 1–7 above.

Definition (Subspace)

A **subspace** is a vector space that is a *subset* of another vector space.

Example (Subspace)

 \mathcal{V}_1 , \mathcal{V}_2 , and \mathcal{V}_3 in the example above are subspaces of \mathbb{R}^p

Slide 8/40

Vector spaces contd.

Definition (Span)

The span of a set of vectors, $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$, is the set of all possible linear combinations of these vectors; i.e.,

$$\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{k}\right\} = \left\{\alpha_{1}\mathbf{x}_{1} + \alpha_{2}\mathbf{x}_{2} + \dots + \alpha_{k}\mathbf{x}_{k} \mid \alpha_{1}, \alpha_{2}, \dots, \alpha_{k} \in \mathbb{R}\right\}.$$

Definition (Linear independence)

A set of vectors, $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$, is linearly independent if

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k = \mathbf{0} \implies \alpha_1 = \alpha_2 = \dots = \alpha_k = 0.$$

Definition (Basis)

The basis of a vector space, \mathcal{V} , is a set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ that satisfy (a) $\mathcal{V} = \mathrm{span}\,\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$, (b) $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ are linearly independent.

Definition (Dimension*)

The dimension of a vector space, V, (denoted dim(V)) is the number of vectors in the basis of V.

^{*}We will generalize the concept of affine dimension to the statistical dimension of convex objects.

Vector Norms

Definition (Vector norm)

A norm of a vector in \mathbb{R}^p is a function $\|\cdot\|:\mathbb{R}^p\to\mathbb{R}$ such that for all vectors $\mathbf{x},\mathbf{y}\in\mathbb{R}^p$ and scalar $\lambda\in\mathbb{R}$

- (a) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^p$ nonnegativity
- (b) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$ definitiveness
- (c) $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ homogeniety
- (d) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ triangle inequality
 - ▶ There is a family of ℓ_q -norms parameterized by $q \in [1, \infty]$;
 - For $\mathbf{x} \in \mathbb{R}^p$, the ℓ_q -norm is defined as $\|\mathbf{x}\|_q := \left(\sum_{i=1}^p |x_i|^q\right)^{1/q}$.

Example

- (1) ℓ_2 -norm: $\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^p x_i^2}$ (Euclidean norm)
- (2) ℓ_1 -norm: $\|\mathbf{x}\|_1 := \sum_{i=1}^p |x_i|$ (Manhattan norm)
- (3) ℓ_{∞} -norm: $\|\mathbf{x}\|_{\infty} := \max_{i=1}^{n} |x_i|$ (Chebyshev norm)

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by $\|\mathbf{x} + \mathbf{y}\| \le c(\|\mathbf{x}\| + \|\mathbf{y}\|)$ for a constant $c \ge 1$.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example

- ▶ The ℓ_q -norm is in fact a quasi norm when $q \in (0,1)$, with $c = 2^{1/q} 1$.
- ► The **total variation norm** (TV-norm) defined (in 1D): $\|\mathbf{x}\|_{\mathrm{TV}} := \sum_{i=1}^{p-1} |x_{i+1} x_i|$ is a **semi-norm** since it fails to satisfy (b); e.g. any $\mathbf{x} = c(1, 1, \ldots, 1)^T$ for $c \neq 0$ will have $\|\mathbf{x}\|_{\mathrm{TV}} = 0$ even though $\mathbf{x} \neq \mathbf{0}$.

Definition (ℓ_0 -"norm")

$$\|\mathbf{x}\|_0 = \lim_{q \to 0} \|\mathbf{x}\|_q^q = |\{i : x_i \neq 0\}|$$

The ℓ_0 -norm counts the non-zero components of \mathbf{x} . It is **not** a norm – it does not satisfy the property (c) \Rightarrow it is also neither a **quasi**- nor a **semi-norm**.

lions@epfl

Problem (s-sparse approximation)

 $\label{eq:linear_problem} \text{Find} \quad \mathop{\arg\min}_{\mathbf{x} \in \mathbb{R}^p} \ \|\mathbf{x} - \mathbf{y}\|_2 \quad \text{subject to:} \quad \|\mathbf{x}\|_0 \leq s.$

Problem (s-sparse approximation)

Find
$$\underset{\mathbf{x} \in \mathbb{R}^p}{\arg \min} \ \|\mathbf{x} - \mathbf{y}\|_2$$
 subject to: $\|\mathbf{x}\|_0 \le s$.

Solution

Define
$$\widehat{\mathbf{y}} \in \underset{\mathbf{x} \in \mathbb{R}^p: ||\mathbf{x}||_0 \le s}{\arg \min} \|\mathbf{x} - \mathbf{y}\|_2^2$$
 and let $\widehat{\mathcal{S}} = \operatorname{supp}(\widehat{\mathbf{y}})$.

We now consider an optimization over sets

$$\begin{split} \widehat{\mathcal{S}} &\in \operatorname*{arg\;min}_{\mathcal{S}:|\mathcal{S}| \leq s} \|\mathbf{y}_{\mathcal{S}} - \mathbf{y}\|_{2}^{2}. \\ &\in \operatorname*{arg\;max}_{\mathcal{S}:|\mathcal{S}| \leq s} \left\{ \|\mathbf{y}\|_{2}^{2} - \|\mathbf{y}_{\mathcal{S}} - \mathbf{y}\|_{2}^{2} \right\} \\ &\in \operatorname*{arg\;max}_{\mathcal{S}:|\mathcal{S}| \leq s} \left\{ \|\mathbf{y}_{\mathcal{S}}\|_{2}^{2} \right\} = \operatorname*{arg\;max}_{\mathcal{S}:|\mathcal{S}| \leq s} \sum_{i \in \mathcal{S}} \|y_{i}\|^{2} \quad (\equiv \text{ modular approximation problem}). \end{split}$$

Thus, the best s-sparse approximation of a vector is a vector with the s largest components of the vector in magnitude.

Norm balls

Radius
$$r$$
 ball in ℓ_q -norm: $\mathcal{B}_q(r) = \{\mathbf{x} \in \mathbb{R}^p : \|\mathbf{x}\|_q \leq r\}$

Table: Example norm balls in \mathbb{R}^3

Inner products

Definition (Inner product)

The inner product of any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$ (denoted by $\langle \cdot, \cdot \rangle$) is defined as $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \sum_i^p x_i y_i$.

The inner product satisfies the following properties:

1.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$$

symmetry

2.
$$\langle (\alpha \mathbf{x} + \beta \mathbf{y}), \mathbf{z} \rangle = \langle \alpha \mathbf{x}, \mathbf{z} \rangle + \langle \beta \mathbf{y}, \mathbf{z} \rangle, \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^p$$

linearity

3.
$$\langle \mathbf{x}, \mathbf{x} \rangle > 0, \forall \mathbf{x} \in \mathbb{R}^p$$

positive definiteness

Important relations involving the inner product:

- $\qquad \text{H\"{o}lder's inequality: } |\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\|_q \|\mathbf{y}\|_r \text{, where } r > 1 \text{ and } \frac{1}{q} + \frac{1}{r} = 1$
- Cauchy-Schwarz is a special case of Hölder's inequality (q = r = 2)

Definition (Inner product space)

An inner product space is a vector space endowed with an inner product.

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^p , then the **dual norm** denoted by $\|\cdot\|^*$ is defined:

$$\|\mathbf{x}\|^* = \sup_{\|\mathbf{y}\| \le 1} \mathbf{x}^T \mathbf{y}, \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$$

- ▶ The **dual** of the *dual norm* is the original (primal) norm, i.e., $\|\mathbf{x}\|^{**} = \|\mathbf{x}\|$.
- ► Hölder's inequality $\Rightarrow \|\cdot\|_q$ is a dual norm of $\|\cdot\|_r$ when $\frac{1}{q} + \frac{1}{r} = 1$.

Example 1

- i) $\|\cdot\|_2$ is **dual** of $\|\cdot\|_2$ (i.e. $\|\cdot\|_2$ is *self-dual*): $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_2 \leq 1\} = \|\mathbf{z}\|_2$.
- ii) $\|\cdot\|_1$ is dual of $\|\cdot\|_{\infty}$, (and vice versa): $\sup\{\mathbf{z}^T\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq 1\}=\|\mathbf{z}\|_1$.

Example 2

What is the **dual norm** of $\|\cdot\|_q$ for $q=1+1/\log(p)$?

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^p , then the **dual norm** denoted by $\|\cdot\|^*$ is defined:

$$\|\mathbf{x}\|^* = \sup_{\|\mathbf{y}\| \le 1} \mathbf{x}^T \mathbf{y}, \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$$

- ► The dual of the dual norm is the original (primal) norm, i.e., $\|\mathbf{x}\|^{**} = \|\mathbf{x}\|$.
- ► Hölder's inequality $\Rightarrow \|\cdot\|_q$ is a dual norm of $\|\cdot\|_r$ when $\frac{1}{q} + \frac{1}{r} = 1$.

Example 1

- i) $\|\cdot\|_2$ is **dual** of $\|\cdot\|_2$ (i.e. $\|\cdot\|_2$ is *self-dual*): $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_2 \leq 1\} = \|\mathbf{z}\|_2$.
- ii) $\|\cdot\|_1$ is dual of $\|\cdot\|_{\infty}$, (and *vice versa*): $\sup\{\mathbf{z}^T\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq 1\}=\|\mathbf{z}\|_1$.

Example 2

What is the **dual norm** of $\|\cdot\|_q$ for $q=1+1/\log(p)$?

Solution

By Hölder's inequality, $\|\cdot\|_r$ is the **dual norm** of $\|\cdot\|_q$ if $\frac{1}{q}+\frac{1}{r}=1$. Therefore, $r=1+\log(p)$ for $q=1+1/\log(p)$.

Metrics

A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)

Let \mathcal{X} be a set, then a function $d(\cdot,\cdot):\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ is a metric if $\forall \mathbf{x},\mathbf{y}\in\mathcal{X}:$

- (a) $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all \mathbf{x} and \mathbf{y} (nonnegativity)
- (b) $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$ (definiteness)
- (c) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symmetry)
- (d) $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$ (triangle inequality)
- A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
- A metric space (\mathcal{X}, d) is a set \mathcal{X} with a metric d defined on \mathcal{X}
- ▶ Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

- Euclidean distance: $d_E(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_2$
- ▶ Bregman distance: $d_B(\cdot, \cdot)$...more on this later!

Basic matrix definitions

Definition (Nullspace of a matrix)

The **nullspace** of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\operatorname{null}(\mathbf{A})$) is defined as

$$\operatorname{null}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^p \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

- null(A) is the set of vectors mapped to zero by A.
- ightharpoonup null(A) is the set of vectors orthogonal to the rows of A.

Definition (Range of a matrix)

The range of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\mathrm{range}(\mathbf{A})$) is defined as

$$\operatorname{range}(\mathbf{A}) = \{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^p\} \subseteq \mathbb{R}^n$$

range(A) is the span of the columns (or the column space) of A.

Definition (Rank of a matrix)

The **rank** of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\mathrm{rank}(\mathbf{A})$) is defined as

$$rank(\mathbf{A}) = \mathbf{dim} (range(\mathbf{A}))$$

- ▶ rank(A) is the maximum number of independent columns (or rows) of A, $\Rightarrow rank(A) < min(n, p)$.
- $ightharpoonup \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T); \text{ and } \operatorname{rank}(\mathbf{A}) + \operatorname{\mathbf{dim}}(\operatorname{null}(\mathbf{A})) = n.$

Matrix definitions contd.

Definition (Eigenvalues & Eigenvectors)

The vector $\mathbf x$ is an **eigenvector** of a *square* matrix $\mathbf A \in \mathbb R^{n \times n}$ if $\mathbf A \mathbf x = \lambda \mathbf x$ where $\lambda \in \mathbb R$ is called an **eigenvalue** of $\mathbf A$.

A scales its eigenvectors by it eigenvalues.

Definition (Singular values & singular vectors)

For $\mathbf{A} \in \mathbb{R}^{n \times p}$ and unit vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^p$ if

$$\mathbf{A}\mathbf{v} = \sigma\mathbf{u}$$
 and $\mathbf{A}^T\mathbf{u} = \sigma\mathbf{v}$

then $\sigma \in \mathbb{R}$ $(\sigma \geq 0)$ is a singular value of \mathbf{A} ; \mathbf{v} and \mathbf{u} are the right singular vector and the left singular vector respectively of \mathbf{A} .

Definition (Symmetric matrix)

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A} = \mathbf{A}^T$.

Lemma

The eigenvalues of a symmetric A are real.

Proof.

Assume
$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}, \ \mathbf{x} \in \mathbb{C}^p, \mathbf{x} \neq \mathbf{0}$$
, then $\overline{\mathbf{x}}^T \mathbf{A}\mathbf{x} = \overline{\mathbf{x}}^T (\mathbf{A}\mathbf{x}) = \overline{\mathbf{x}}^T (\lambda\mathbf{x}) = \lambda \sum_{i=1}^n |x_i|^2$ but $\overline{\mathbf{x}}^T \mathbf{A}\mathbf{x} = \overline{(\mathbf{A}\mathbf{x})}^T \mathbf{x} = \overline{(\lambda\mathbf{x})}^T \mathbf{x} = \overline{\lambda} \sum_{i=1}^n |x_i|^2 \Rightarrow \lambda = \overline{\lambda}$ i.e. $\lambda \in \mathbb{R}$

Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semidefinite (denoted $\mathbf{A} \succeq 0$) if $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$; while it is positive definite (denoted $\mathbf{A} \succ 0$) if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$

- ▶ $\mathbf{A} \succeq 0$ iff all its eigenvalues are nonnegative i.e. $\lambda_{\min}(\mathbf{A}) \geq 0$.
- ▶ Similarly, $\mathbf{A} \succ 0$ iff all its eigenvalues are **positive** i.e. $\lambda_{\min}(\mathbf{A}) > 0$.
- ▶ **A** is negative semidefinite if $-\mathbf{A} \succeq 0$; while **A** is negative definite if $-\mathbf{A} \succ 0$.
- ► Semidefinite ordering of two *symmetric* matrices, A and B: $A \succeq B$ if $A B \succeq 0$.

Example (Matrix inequalities)

- 1. If $\mathbf{A} \succeq 0$ and $\mathbf{B} \succeq 0$, then $\mathbf{A} + \mathbf{B} \succeq 0$
- 2. If $A \succeq B$ and $C \succeq D$, then $A + C \succeq B + D$
- 3. If $\mathbf{B} \leq 0$ then $\mathbf{A} + \mathbf{B} \leq \mathbf{A}$
- 4. If $\mathbf{A} \succeq 0$ and $\alpha \geq 0$, then $\alpha \mathbf{A} \succeq 0$
- 5. If $\mathbf{A} \succ 0$, then $\mathbf{A}^2 \succ 0$
- 6. If $\mathbf{A} \succ 0$, then $\mathbf{A}^{-1} \succ 0$

Matrix decompositions

Definition (Eigenvalue decomposition)

The eigenvalue decomposition of a square matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$, is given by:

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

- ▶ the columns of $\mathbf{X} \in \mathbb{R}^{n \times n}$, i.e. \mathbf{x}_i , are eigenvectors of \mathbf{A}
- $\Lambda = \mathbf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ where λ_i (also denoted $\lambda_i(\mathbf{A})$) are eigenvalues of \mathbf{A}
- A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, the decomposition becomes $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T$ where $\mathbf{U} \in \mathbb{R}^{n \times n}$ is unitary (or orthonormal), i.e. $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ and λ_i are real

If we order $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, $\lambda_i(\mathbf{A})$ becomes the i^{th} largest eigenvalue of \mathbf{A} :

- $\lambda_n(\mathbf{A}) = \lambda_{\min}(\mathbf{A})$ is the **minimum** eigenvalue of \mathbf{A}
- $\lambda_1(\mathbf{A}) = \lambda_{\max}(\mathbf{A})$ is the maximum eigenvalue of \mathbf{A}

Matrix decompositions contd

Definition (Determinant of a matrix)

The **determinant** of a square matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$, denoted by $\det(\mathbf{A})$, is given by:

$$\det(\mathbf{A}) = \prod_{i=1}^{p} \lambda_i$$

where λ_i are eigenvalues of \mathbf{A} .

Matrix decompositions contd

Definition (Singular value decomposition)

The singular value decomposition (SVD) of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, is given by:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

- ▶ $\operatorname{rank}(\mathbf{A}) = r \leq \min(n, p)$ and σ_i is the i^{th} singular value of \mathbf{A}
- $oldsymbol{ iny} \mathbf{u}_i$ and \mathbf{v}_i are the $i^{ extsf{th}}$ left and right singular vectors of \mathbf{A} respectively
- $\mathbf{U} \in \mathbb{R}^{n imes r}$ and $\mathbf{V} \in \mathbb{R}^{p imes r}$ are unitary matrices (i.e. $\mathbf{U}^T \mathbf{U} = \mathbf{I}$)
- $\Sigma = \mathbf{diag}\left(\sigma_1, \sigma_2, \dots, \sigma_r\right)$ where $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq 0$
- $\begin{array}{l} \mathbf{v}_{i} \text{ are eigenvectors of } \mathbf{A}^{T}\mathbf{A}; \ \sigma_{i} = \sqrt{\lambda_{i}\left(\mathbf{A}^{T}\mathbf{A}\right)} \ (\text{and} \ \lambda_{i}\left(\mathbf{A}^{T}\mathbf{A}\right) = 0 \ \text{for} \ i > r) \\ \text{since} \quad \mathbf{A}^{T}\mathbf{A} = \left(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}\right)^{T} \left(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}\right) = \left(\mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{T}\right) \end{array}$
- \mathbf{u}_i are eigenvectors of $\mathbf{A}\mathbf{A}^T$; $\sigma_i = \sqrt{\lambda_i \left(\mathbf{A}\mathbf{A}^T\right)}$ (and $\lambda_i \left(\mathbf{A}\mathbf{A}^T\right) = 0$ for i > r) since $\mathbf{A}\mathbf{A}^T = \left(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\right) \left(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\right)^T = \left(\mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T\right)$

Matrix decompositions contd

Definition (LU)

The LU factorization of a nonsingular square matrix, $\mathbf{A} \in \mathbb{R}^{p \times p}$, is given by:

$$A = PLU$$

where ${\bf P}$ is a permutation matrix $^{\! 1}$, ${\bf L}$ is lower triangular and ${\bf U}$ is upper triangular.

Definition (QR)

The **QR factorization** of any matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, is given by:

$$A = QR$$

where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is an orthonormal matrix, i.e. $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$, and $\mathbf{R} \in \mathbb{R}^{n \times p}$ is upper triangular.

Definition (Cholesky)

The Cholesky factorization of a positive definite and symmetric matrix, $\mathbf{A} \in \mathbb{R}^{p \times p}$, is given by:

 $\mathbf{A} = \mathbf{L}\mathbf{L}^T$

where ${\bf L}$ is a lower triangular matrix with positive entries on the diagonal.

 1 A matrix $\mathbf{P} \in \mathbb{R}^{p imes p}$ is **permutation** if it has only one 1 in each row and each column.

Complexity of matrix operations

Complexity of matrix operations

The complexity or *cost* of an algorithm is expressed in terms of **floating-point operations** (flops) as a function of the *problem dimension*.

Definition (floating-point operation)

A floating-point operation (flop) is one addition, subtraction, multiplication, or division of two floating-point numbers.

Complexity of matrix operations contd

Table: Complexity examples: vector are in \mathbb{R}^p , matrices in $\mathbb{R}^{n \times p}$ or $\mathbb{R}^{p \times m}$ for square matrices

Operation	Complexity	Remarks
vector addition	p flops	
vector inner product	2p-1 flops	or $pprox 2p$ for p large
matrix-vector product	n(2p-1) flops	or $pprox 2np$ for p large
		$2m$ if ${f A}$ is sparse with m nonzeros
matrix-matrix product	mn(2p-1) flops	or $pprox 2mnp$ for p large
		much less if ${f A}$ is sparse 1
LU decomposition	$\frac{2}{3}p^3 + 2p^2$ flops	or $\frac{2}{3}p^3$ for p large
		much less if ${f A}$ is sparse 1
Cholesky decomposition	$\frac{1}{3}p^3 + 2p^2$ flops	or $\frac{1}{3}p^3$ for p large
		much less if ${f A}$ is sparse 1
SVD	$C_1 n^2 p + C_2 p^3$ flops	$C_1 = 4$, $C_2 = 22$ for R-SVD algo.
Determinant	complexity of SVD	

¹ Complexity depends on p, no. of nonzeros in \mathbf{A} and the sparsity pattern.

Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

A norm of an $n \times p$ matrix is a map $\|\cdot\|: \mathbb{R}^{n \times p} \to \mathbb{R}$ such that for all matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times p}$ and scalar $\lambda \in \mathbb{R}$

- (a) $\|\mathbf{A}\| > 0$ for all $\mathbf{A} \in \mathbb{R}^{n \times p}$ nonnegativity
- (b) $\|\mathbf{A}\| = 0$ if and only if $\mathbf{A} = \mathbf{0}$ definitiveness
- (c) $\|\lambda \mathbf{A}\| = |\lambda| \|\mathbf{A}\|$ homogeniety
- (d) $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$ triangle inequality

Definition (Matrix inner product)

Matrix inner product is defined as follows

$$\langle \mathbf{A}, \mathbf{B}
angle = \mathsf{trace}\left(\mathbf{A}\mathbf{B}^T
ight).$$

Linear operators

- Matrices are often given in an implicit form.
- It is convenient to think of them as linear operators.

Proposition (Linear operators & matrices)

Any linear operator in finite dimensional spaces can be represented as a matrix.

Example

Given matrices A, B and X with compatible dimensions and the *linear operator* $\mathcal{M}: \mathbb{R}^{n \times p} \to \mathbb{R}^{np}$, a linear operator can define the following implicit mapping

$$\mathcal{M}(\mathbf{X}) \coloneqq \left(\mathbf{B}^T \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X}) = \operatorname{vec}(\mathbf{A}\mathbf{X}\mathbf{B}),$$

where \otimes is the Kronecker product and $\mathrm{vec}:\mathbb{R}^{n\times p}\to\mathbb{R}^{np}$ is yet another linear operator that vectorizes its entries.

Note: Clearly, it is more efficient to compute $vec(\mathbf{AXB})$ than to perform the *matrix multiplication* $(\mathbf{B}^T \otimes \mathbf{A})$ $vec(\mathbf{X})$.

Definition (Operator norm)

The operator norm between ℓ_q and ℓ_r $(1 \le q, r \le \infty)$ of a matrix ${\bf A}$ is defined as

$$\|\mathbf{A}\|_{q\to r} = \sup_{\|\mathbf{x}\|_q \le 1} \|\mathbf{A}\mathbf{x}\|_r$$

Problem

Show that $\|\mathbf{A}\|_{2\to 2} = \|\mathbf{A}\|$ i.e., ℓ_2 to ℓ_2 operator norm is the spectral norm.

Solution

$$\begin{split} \|\mathbf{A}\|_{2\to 2} &= \sup_{\|\mathbf{x}\|_2 \le 1} \|\mathbf{A}\mathbf{x}\|_2 = \sup_{\|\mathbf{x}\|_2 \le 1} \|\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T\mathbf{x}\|_2 \quad \text{(using SVD of } \mathbf{A} \text{)} \\ &= \sup_{\|\mathbf{x}\|_2 \le 1} \|\boldsymbol{\Sigma}\mathbf{V}^T\mathbf{x}\|_2 \quad \text{(rotational invariance of } \|\cdot\|_2 \text{)} \\ &= \sup_{\|\mathbf{z}\|_2 \le 1} \|\boldsymbol{\Sigma}\mathbf{z}\|_2 \quad \text{(letting } \mathbf{V}^T\mathbf{x} = \mathbf{z} \text{)} \\ &= \sup_{\|\mathbf{z}\|_2 \le 1} \sqrt{\sum_{i=1}^{\min(n,p)} \sigma_i^2 z_i^2} = \sigma_{\max} = \|\mathbf{A}\| \quad \quad \Box \end{split}$$

Other examples

► The $\|\mathbf{A}\|_{\infty\to\infty}$ (norm induced by ℓ_∞ -norm) also denoted $\|\mathbf{A}\|_\infty$, is the max-row-sum norm:

$$\|\mathbf{A}\|_{\infty \to \infty} := \sup\{\|\mathbf{A}\mathbf{x}\|_{\infty} \mid \|\mathbf{x}\|_{\infty} \leq 1\} = \max_{i=1,\dots,n} \sum_{j=1}^p |a_{ij}|.$$

▶ The $\|\mathbf{A}\|_{1\to 1}$ (norm induced by ℓ_1 -norm) also denoted $\|\mathbf{A}\|_1$, is the max-column-sum norm:

$$\|\mathbf{A}\|_{1\to 1} := \sup\{\|\mathbf{A}\mathbf{x}\|_1 \mid \|\mathbf{x}\|_1 \le 1\} = \max_{i=1,\dots,p} \sum_{i=1}^n |a_{ij}|.$$

Useful relation for operator norms

The following identity holds

$$\|\mathbf{A}\|_{q \to r} := \max_{\|\mathbf{z}\|_r \le 1, \|\mathbf{x}\|_q = 1} \langle \mathbf{z}, \mathbf{A}\mathbf{x} \rangle = \max_{\|\mathbf{x}\|_{q'} \le 1, \|\mathbf{z}\|_{r'} = 1} \langle \mathbf{A}^T\mathbf{z}, \mathbf{x} \rangle =: \|\mathbf{A}^T\|_{q' \to r'}$$

whenever 1/q + 1/q' = 1 = 1/r + 1/r'.

Example

- 1. $\|\mathbf{A}\|_{\infty \to 1} = \|\mathbf{A}^T\|_{1 \to \infty}$.
- 2. $\|\mathbf{A}\|_{2\to 1} = \|\mathbf{A}^T\|_{2\to\infty}$.
- 3. $\|\mathbf{A}\|_{\infty \to 2} = \|\mathbf{A}^T\|_{1 \to 2}$.

Computation of operator norms

- ► The computation of some **operator norms** is NP-hard* [3]; these include:
 - 1. $\|\mathbf{A}\|_{\infty \to 1}$
 - 2. $\|\mathbf{A}\|_{2\to 1}$
 - 3. $\|\mathbf{A}\|_{\infty \to 2}$
- ▶ But some of them are approximable [5]; these include
 - 1. $\|\mathbf{A}\|_{\infty \to 1}$ (via Gronthendieck factorization)
 - 2. $\|\mathbf{A}\|_{\infty \to 2}$ (via Pietzs factorization)
- *: See Lecture 3.

▶ Similar to vector ℓ_p -norms, we have Schatten q-norms for matrices.

Definition (Schatten q-norms)

$$\|\mathbf{A}\|_q := \left(\sum_{i=1}^p (\sigma(\mathbf{A})_i)^q\right)^{1/q}$$
, where $\sigma(\mathbf{A})_i$ is the i^{th} singular value of \mathbf{A} .

Example (with
$$r = \min\{n, p\}$$
 and $\sigma_i = \sigma(\mathbf{A})_i$)
$$\|\mathbf{A}\|_1 = \|\mathbf{A}\|_* := \sum_{i=1}^r \sigma_i \qquad \equiv \operatorname{trace}\left(\sqrt{\mathbf{A}^T\mathbf{A}}\right) \quad \text{(Nuclear/trace)}$$

$$\|\mathbf{A}\|_2 = \|\mathbf{A}\|_F := \sqrt{\sum_{i=1}^r (\sigma_i)^2} \equiv \sqrt{\sum_{i=1}^n \sum_{j=1}^p |a_{ij}|^2} \quad \text{(Frobenius)}$$

$$\|\mathbf{A}\|_{\infty} = \|\mathbf{A}\| \qquad := \max_{i=1,\dots,r} \{\sigma_i\} \equiv \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \quad \text{(Spectral/matrix)}$$

Problem (Rank-r approximation)

Find $\underset{\mathbf{X}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{Y}\|_F$ subject to: $\operatorname{rank}(\mathbf{X}) \leq r$.

Problem (Rank-*r* approximation)

Find
$$\underset{\mathbf{X}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{Y}\|_F$$
 subject to: $\operatorname{rank}(\mathbf{X}) \leq r$.

Solution (Eckart-Young-Mirsky Theorem)

$$\begin{split} \operatorname*{arg\,min}_{\mathbf{X}:\mathrm{rank}(\mathbf{X}) \leq r} & \|\mathbf{X} - \mathbf{Y}\|_F = \operatorname*{arg\,min}_{\mathbf{X}:\mathrm{rank}(\mathbf{X}) \leq r} \|\mathbf{X} - \mathbf{U}\boldsymbol{\Sigma}_{\mathbf{Y}}\mathbf{V}^T\|_F, \quad (\mathsf{SVD}) \\ &= \operatorname*{arg\,min}_{\mathbf{X}:\mathrm{rank}(\mathbf{X}) \leq r} \|\mathbf{U}^T\mathbf{X}\mathbf{V} - \boldsymbol{\Sigma}_{\mathbf{Y}}\|_F, \quad (\mathsf{unit. invar. of } \|\cdot\|_F) \\ &= \mathbf{U}\left(\operatorname*{arg\,min}_{\mathbf{X}:\mathrm{rank}(\mathbf{X}) \leq r} \|\mathbf{X} - \boldsymbol{\Sigma}_{\mathbf{Y}}\|_F\right) \mathbf{V}^T, \quad (\mathsf{sparse approx.}) \\ &= \mathbf{U}H_r\left(\boldsymbol{\Sigma}_{\mathbf{Y}}\right) \mathbf{V}^T, \quad (r\text{-sparse approx. of the diagonal entries}) \end{split}$$

Singular value hard thresholding operator H_r performs the best rank-r approximation of a matrix via sparse approximation: We keep the r largest singular values of the matrix and set the rest to zero.

▶ The last step of the above solution makes use of the Mirsky inequality.

Theorem (Mirsky inequality)

If A, B are $p \times p$ matrices with singular values

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_p \ge 0, \quad \tau_1 \ge \tau_2 \ge \dots \ge \tau_p \ge 0$$

respectively. Let
$$\sigma = (\sigma_1, \dots, \sigma_p)^T$$
 and $\tau = (\tau_1, \dots, \tau_p)^T$, then

$$\|\mathbf{A} - \mathbf{B}\|_F \ge \|\boldsymbol{\sigma} - \boldsymbol{\tau}\|_2.$$

 Mirsky theorem is proved using the following simplified version of von Neumann trace inequality.

Theorem (von Neumann trace inequality)

If A, B are $p \times p$ matrices with singular values

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_p \ge 0, \quad \tau_1 \ge \tau_2 \ge \dots \ge \tau_p \ge 0$$

respectively. Let
$$\sigma = (\sigma_1, \dots, \sigma_p)^T$$
 and $\boldsymbol{\tau} = (\tau_1, \dots, \tau_p)^T$, then

$$\langle \mathbf{A}, \mathbf{B} \rangle < \langle \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle$$

Matrix & vector norm analogy

Vectors	$\ \mathbf{x}\ _1$	$\ \mathbf{x}\ _{2}$	$\ \mathbf{x}\ _{\infty}$
Matrices	$\ \mathbf{X}\ _*$	$\ \mathbf{X}\ _F$	$\ \mathbf{X}\ $

Definition (Dual of a matrix)

The dual norm of $\mathbf{A} \in \mathbb{R}^{n \times p}$ is defined as

$$\|\mathbf{A}\|^* = \sup \left\{ \operatorname{trace} \left(\mathbf{A}^T \mathbf{X} \right) \mid \|\mathbf{X}\| \le 1 \right\}.$$

Matrix & vector dual norm analogy

Vector primal norm	$\ \mathbf{x}\ _1$	$\ \mathbf{x}\ _2$	$\ \mathbf{x}\ _{\infty}$
Vector dual norm	$\ \mathbf{x}\ _{\infty}$	$\ \mathbf{x}\ _2$	$\ \mathbf{x}\ _1$
Matrix primal norm	$\ \mathbf{X}\ _*$	$\ \mathbf{X}\ _F$	X
Matrix dual norm	$\ \mathbf{X}\ $	$\ \mathbf{X}\ _F$	$\ \mathbf{X}\ _*$

Definition (Nuclear norm computation)

$$\begin{split} \|\mathbf{A}\|_* &:= \|\boldsymbol{\sigma}(\mathbf{A})\|_1 \quad \text{where } \boldsymbol{\sigma}(\mathbf{A}) \text{ is a vector of singular values of } \mathbf{A} \\ &= \min_{\mathbf{U},\mathbf{V}:\mathbf{A} = \mathbf{U}\mathbf{V}^H} \|\mathbf{U}\|_F \|\mathbf{V}\|_F \ = \min_{\mathbf{U},\mathbf{V}:\mathbf{A} = \mathbf{U}\mathbf{V}^H} \frac{1}{2} \left(\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2 \right) \end{split}$$

Additional useful properties are below:

- Nuclear vs. Frobenius: $\|\mathbf{A}\|_F \leq \|\mathbf{A}\|_* \leq \sqrt{\mathsf{rank}(\mathbf{A})} \cdot \|\mathbf{A}\|_F$
- ► Hölder for matrices: $|\langle \mathbf{A}, \mathbf{B} \rangle| \leq ||\mathbf{A}||_p ||\mathbf{B}||_q$, when $\frac{1}{n} + \frac{1}{q} = 1$
- We have

 - 1. $\|\mathbf{A}\|_{2\to 2} \le \|\mathbf{A}\|_F$ 2. $\|\mathbf{A}\|_{2\to 2}^2 \le \|\mathbf{A}\|_{1\to 1} \|\mathbf{A}\|_{\infty\to\infty}$
 - 3. $\|\mathbf{A}\|_{2\to 2}^2 \leq \|\mathbf{A}\|_{1\to 1}$ when \mathbf{A} is self-adjoint.

*Matrix perturbation inequalities

In the theorems below $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{p \times p}$ are symmetric matrices with spectra $\{\lambda_i(\mathbf{A})\}_{i=1}^p$ and $\{\lambda_i(\mathbf{B})\}_{i=1}^p$ where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$.

Theorem (Lidskii inequality)

$$\lambda_{i_1}\left(\mathbf{A} + \mathbf{B}\right) + \dots + \lambda_{i_n}\left(\mathbf{A} + \mathbf{B}\right) \le \lambda_{i_1}\left(\mathbf{A}\right) + \dots + \lambda_{i_n}\left(\mathbf{A}\right) + \lambda_{i_1}\left(\mathbf{B}\right) + \dots + \lambda_{i_n}\left(\mathbf{B}\right),$$
 for any $1 \le i_1 \le \dots \le i_n \le p$.

Theorem (Weyl inequality)

$$\lambda_{i+j-1}\left(\mathbf{A}+\mathbf{B}\right) \leq \lambda_{i}\left(\mathbf{A}\right) + \lambda_{j}\left(\mathbf{B}\right), \quad \text{for any } i,j \geq 1 \quad \text{and} \quad i+j-1 \leq p.$$

Theorem (Interlacing property)

Let
$$\mathbf{A}_n = \mathbf{A}(1:n,1:n)$$
, then
$$\lambda_{n+1}\left(\mathbf{A}_{n+1}\right) \leq \lambda_n\left(\mathbf{A}_n\right) + \lambda_n\left(\mathbf{A}_{n+1}\right) \qquad \textit{for } n=1,\ldots,p.$$

- ▶ These inequalities **hold** in the more general setting when λ_i are replaced by σ_i .
- ▶ The list goes on to include Wedins bounds, Wielandt-Hoffman bounds and so on.
- ▶ More on such inequalities can be found in Terry Tao's blog (254A, Notes 3a).

*Tensors

▶ Tensors provide a natural and concise mathematical represention of data.

Definition (Tensor)

An $m^{\mathsf{th}}\text{-rank}$ tensor in p-dimensional space is a mathematical object that has p indices and p^m components and obeys certain transformation rules.

- In the literature, order is used interchangeably with rank, i.e., kth-rank tensor is also referred to as an order-k tensor.
- ► Tensors are multidimensional arrays and are a generalization of:
 - 1. scalars tensors with no indices; i.e., zeroth-rank tensor.
 - 2. vectors tensors with exactly one index; i.e., first-rank tensor.
 - 3. matrices tensors with exactly two indices; i.e., second-rank tensor.
- Think of the third-order Taylor series expansion

*Tensors contd.

Caveat!

Not much is known about tensors and the generalizability of matrix notions to tensors:

- The notion of tensor (symmetric) rank is considerably more delicate than matrix (symmetric) rank. For instance:
 - 1. Not clear a priori that the symmetric rank should even be finite [2].
 - 2. Removal of the best rank-1 approximation of a general tensor may increase the tensor rank of the residual [4].
- It is NP-hard to compute the rank of a tensor in general; only approximations of (super) symmetric tensors possible [1].

References

 Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor decompositions for learning latent variable models. arXiv preprint arXiv:1210.7559, 2012.

[2] Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain. Symmetric tensors and symmetric tensor rank. SIAM Journal on Matrix Analysis and Applications, 30(3):1254–1279, 2008.

[3] Simon Foucart and Holger Rauhut.
 A mathematical introduction to compressive sensing.
 Springer, 2013.

[4] Alwin Stegeman and Pierre Comon.

Subtracting a best rank-1 approximation may increase tensor rank. Linear Algebra and its Applications, 433(7):1276–1300, 2010.

[5] Joel A Tropp.

Column subset selection, matrix factorization, and eigenvalue optimization.

In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 978-986, 2009.

