

Análise Matemática I - Licenciatura em Engenharia Informática

FORMULÁRIO Trigonometria

Círculo trigonométrico

Ângulos e valores de referência

θ	graus	0	30	45	60	90
	radianos	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg	$g(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	N.D.
CO	$\operatorname{tg}(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$	N.D.	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0
se	$ec(\theta) = \frac{1}{\cos(\theta)}$	$\overline{\theta}$	co	$\operatorname{sec}(\theta)$	$=\frac{1}{\sin^2 x}$	$\frac{1}{\ln(\theta)}$

Identidades trigonométricas:

$$\cos^2(\alpha) + \sin^2(\alpha) = 1 \qquad 1 + \operatorname{tg}^2(\alpha) = \sec^2(\alpha)$$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \qquad \cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

$$\sin^2(\alpha) = \frac{1}{2} \left(1 - \cos(2\alpha) \right) \qquad \qquad \cos^2(\alpha) = \frac{1}{2} \left(1 + \cos(2\alpha) \right)$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}\Big(\cos(\alpha-\beta) - \cos(\alpha+\beta)\Big)$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha+\beta) + \sin(\alpha-\beta))$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha+\beta) + \cos(\alpha-\beta))$$

Equações trigonométricas:

$$\sin(x) = \sin(\alpha) \Leftrightarrow x = \alpha + k \cdot 2\pi \quad \lor \quad x = \pi - \alpha + k \cdot 2\pi, \quad k \in \mathbb{Z}$$

$$\cos(x) = \cos(\alpha) \quad \Leftrightarrow \quad x = \alpha + k \cdot 2\pi \quad \lor \quad x = -\alpha + k \cdot 2\pi \,, \quad k \in \mathbb{Z}$$

Gráficos:

Análise Matemática I - Licenciatura em Engenharia Informática

FORMULÁRIO

Curvas de referência, domínios & equações

Parábolas: $y - y_0 = a(x - x_0)^2$

Circunferência:
$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

$$x - x_0 = a(y - y_0)^2$$

Exponencial & logaritmo: $y = a^x$, $y = \log_a(x)$ (a > 1)

Domínios

$$\sqrt[n]{\blacksquare}$$
, $(n \text{ par})$, $D = \{x \in \mathbb{R} : \blacksquare \ge 0\}$

$$\log_{\boldsymbol{a}}(\blacksquare\,),\ a>0\,,\qquad D=\{x\in{\rm I\!R}:\,\blacksquare>0\}$$

$$\arcsin(\,\blacksquare\,) \quad \mathrm{e} \quad \arccos(\,\blacksquare\,)\,, \qquad D = \{x \in \mathbb{R}: \, -1 \leq \blacksquare \leq 1\}$$

Resolução numérica de equações

Bisseção:
$$x_n = \frac{a_n + b_n}{2}$$
, erro $\leq |x_n - x_{n-1}|$

Bisseção:
$$\mathbf{x_n} = \frac{a_n + b_n}{2}$$
, erro $\leq |\mathbf{x_n} - \mathbf{x_{n-1}}|$
Newton: $\mathbf{x_n} = \mathbf{x_{n-1}} - \frac{f(\mathbf{x_{n-1}})}{f'(\mathbf{x_{n-1}})}$, erro $\approx |\mathbf{x_n} - \mathbf{x_{n-1}}|$

Análise Matemática I - Licenciatura em Engenharia Informática

FORMULÁRIO

Regras de derivação

Sejam f e g funções reais de variável real e k, p e a constantes reais

	Função: $h(x)$	Derivada: $h'(x)$
funções de	base	
D1.	$k, k \in \mathbb{R}$	0
D2.	x	1
operações e	elementares	
D3.	$k f, k \in \mathbb{R}$	k f'
D4.	$f \pm g$	$f' \pm g'$
D5.	$f \times g$	f'g + fg'
D6.	$\frac{f}{g}$	$\frac{f'g - fg'}{g^2}$
regras de b	ase	
	$f^{-1}(y)$	$\left. \frac{1}{f'(x)} \right _{x=f^{-1}(y)}$
	$(g \circ f)(x)$	$f'(x) \cdot \left[g'(y)\right]_{y=f(x)}$
potências		
D7.	$f^{\mathbf{p}}, p \in \mathbb{Q}$	$p f^{p-1} f'$
exponencia	l e logaritmo	
	a^f , $a \in \mathbb{R}^+$	$f'a^f \ln(a)$
D9.	$\log_a(f), a \in \mathbb{R}^+$	$\frac{f'}{f \ln(a)}$
funções trig	gonométricas	
	$\sin(f)$	$f'\cos(f)$
D11.	$\cos(f)$	$-f'\sin(f)$
D12.	$\mathrm{tg}\left(f ight)$	$f' \sec^2(f)$
D13.	$\cot g\left(f ight)$	$-f'\csc^2(f)$
D14.	$\sec(f)$	$f' \sec(f) \operatorname{tg}(f)$
D15.	$\operatorname{cosec}\left(f\right)$	$-f'\csc(f)\cot(f)$
D16.	$\arcsin(f)$	$\frac{f'}{\sqrt{1-f^2}}$
D17.	$\arccos(f)$	$-\frac{f'}{\sqrt{1-f^2}}$
D18.	$\mathrm{arctg}\left(f ight)$	$\frac{f'}{1+f^2}$
D19.	$\operatorname{arcotg}\left(f\right)$	$-\frac{f'}{1+f^2}$

Análise Matemática I - Licenciatura em Engenharia Informática

FORMULÁRIO Cálculo integral

$$\text{Área}(\mathcal{A}) = \int_{a}^{b} \left(\underbrace{f_{\text{sup}} - f_{\text{inf}}}_{\text{altura}} \right) \underbrace{dx}_{\text{largura}}$$

Volume
$$(A_{Ox}) = \int_{a}^{b} \underbrace{\pi \left(R_{\text{ext}}^{2} - R_{\text{int}}^{2}\right)}_{\text{área}} \underbrace{dx}_{\text{espessura}}$$

Comprimento(
$$C$$
) = $\int_{a}^{b} \sqrt{1 + [f']^2} dx$

Trapézios:

$$\int_{a}^{b} f(x) dx \simeq \frac{h}{2} \Big[f(a) + \frac{2}{2} f(x_1) + \dots + \frac{2}{2} f(x_{n-1}) + f(b) \Big], \quad \text{erro} \leq \frac{(b-a)^3}{12 n^2} \times \max_{[a,b]} |f''(x)|$$

Simpson: [n par!]

$$\int_{a}^{b} f(x) dx \simeq \frac{h}{3} \Big[f(a) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(b) \Big], \quad \text{erro} \leq \frac{(b-a)^5}{180 \, n^4} \times \max_{[a,b]} |f''''(x)|$$

x	\sqrt{x}	x^2	2^x	e^x	ln(x)	$\frac{1}{x}$	$\sin(x)$	$\cos(x)$	tg(x)	$\arcsin(x)$	$\arccos(x)$	arctg(x)
-1.00	-	1.00	0.50	0.37	_	-1.00	-0.84	0.54	-1.56	-1.57	3.14	-0.79
-0.90	_	0.81	0.54	0.41	_	-1.11	-0.78	0.62	-1.26	-1.12	2.69	-0.73
-0.80	_	0.64	0.57	0.45	_	-1.25	-0.72	0.70	-1.03	-0.93	2.50	-0.67
-0.75	_	0.56	0.59	0.47	_	-1.33	-0.68	0.73	-0.93	-0.85	2.42	-0.64
-0.70	_	0.49	0.62	0.50	_	-1.43	-0.64	0.76	-0.84	-0.78	2.35	-0.61
-0.60	_	0.36	0.66	0.55	_	-1.67	-0.56	0.83	-0.68	-0.64	2.21	-0.54
-0.50	_	0.25	0.71	0.61	_	-2.00	-0.48	0.88	-0.55	-0.52	2.09	-0.46
-0.40	_	0.16	0.76	0.67	_	-2.50	-0.39	0.92	-0.42	-0.41	1.98	-0.38
-0.30	_	0.09	0.81	0.74	_	-3.33	-0.30	0.96	-0.31	-0.30	1.88	-0.29
-0.25	_	0.06	0.84	0.78	_	-4.00	-0.25	0.97	-0.26	-0.25	1.82	-0.24
-0.20	_	0.04	0.87	0.82	_	-5.00	-0.20	0.98	-0.20	-0.20	1.77	-0.20
-0.10	_	0.01	0.93	0.90	_	-10.00	-0.10	1.00	-0.10	-0.10	1.67	-0.10
0.00	0.00	0.00	1.00	1.00	_	_	0.00	1.00	0.00	0.00	1.57	0.00
0.10	0.32	0.01	1.07	1.11	-2.30	10.00	0.10	1.00	0.10	0.10	1.47	0.10
0.20	0.45	0.04	1.15	1.22	-1.61	5.00	0.20	0.98	0.20	0.20	1.37	0.20
0.25	0.50	0.06	1.19	1.28	-1.39	4.00	0.25	0.97	0.26	0.25	1.32	0.24
0.30	0.55	0.09	1.23	1.35	-1.20	3.33	0.30	0.96	0.31	0.30	1.27	0.29
0.40	0.63	0.16	1.32	1.49	-0.92	2.50	0.39	0.92	0.42	0.41	1.16	0.38
0.50	0.71	0.25	1.41	1.65	-0.69	2.00	0.48	0.88	0.55	0.52	1.05	0.46
0.60	0.77	0.36	1.52	1.82	-0.51	1.67	0.56	0.83	0.68	0.64	0.93	0.54
0.70	0.84	0.49	1.62	2.01	-0.36	1.43	0.64	0.76	0.84	0.78	0.80	0.61
0.75	0.87	0.56	1.68	2.12	-0.29	1.33	0.68	0.73	0.93	0.85	0.72	0.64
0.80	0.89	0.64	1.74	2.23	-0.22	1.25	0.72	0.70	1.03	0.93	0.64	0.67
0.90	0.95	0.81	1.87	2.46	-0.11	1.11	0.78	0.62	1.26	1.12	0.45	0.73
1.00	1.00	1.00	2.00	2.72	0.00	1.00	0.84	0.54	1.56	1.57	0.00	0.79

Análise Matemática I - Licenciatura em Engenharia Informática

FORMULÁRIO

Regras de primitivação

α .	e		C	• ~	•	1	• / 1	1		7				
Seiam	t	е	a t	uncoe	s reais	de	variavel	real	e	<i>K</i> .	p . ϵ	. е	C	constantes reais

	Função: $h(x)$	Primitiva: $H(x) + c$, $c \in \mathbb{R}$
constantes		
P1.	$k, k \in \mathbb{R}$	kx + c
potências,	produtos e quocientes	
P2.	$f'f^p, p \in \mathbb{R} \setminus \{-1\}$	$\frac{f^{p+1}}{p+1} + c$
P3.	$\frac{f'}{f}$	$\ln f + c$
P4.	$\frac{f'}{1+f^2}$	$\operatorname{arctg}(f) + c$ ou $-\operatorname{arcotg}(f) + c$
P5.	$\frac{f'}{\sqrt{1-f^2}}$	$\arcsin(f) + c$ ou $-\arccos(f) + c$
exponencia	1	
P6.	$f'a^{f}$	$\frac{a^f}{\ln(a)} + c$
funções trig	gonométricas	
P7.	$f'\cos(f)$	$\sin(f) + c$
P8.	$f'\sec(\mathbf{f}) = \frac{f'}{\cos(\mathbf{f})}$	$\ln \sec(\mathbf{f}) + \operatorname{tg}(\mathbf{f}) + c$
P9.	$f'\sec^2(\mathbf{f}) = \frac{f'}{\cos^2(\mathbf{f})}$	$\operatorname{tg}\left(f\right)+c$
P10.	$f'\sin(f)$	$-\cos(f) + c$
P11.	f' cosec $(f) = \frac{f'}{\sin(f)}$	$\ln\left \operatorname{cosec}\left(\mathbf{f}\right) - \operatorname{cotg}\left(\mathbf{f}\right)\right + c$
P12.	$f'\csc^2(\mathbf{f}) = \frac{f'}{\sin^2(\mathbf{f})}$	$-\cot \left(\frac{f}{f} \right) + c$
P13.	$f' \sec(\mathbf{f}) \operatorname{tg}(\mathbf{f}) = \frac{f' \sin(\mathbf{f})}{\cos^2(\mathbf{f})}$	$\sec(f) + c$
P14.	$f'\operatorname{cosec}(f)\operatorname{cotg}(f) = \frac{f'\operatorname{cos}(f)}{\sin^2(f)}$	$-\operatorname{cosec}\left(\boldsymbol{f}\right)+c$

Linearidade (ou decomposição)

Sejam f_1 e f_2 funções reais de variável real e k_1 e k_2 constantes reais.

$$\int \left(k_1 f_1 \pm k_2 f_2\right) dx = k_1 \int f_1 dx \pm k_2 \int f_2 dx$$

Análise Matemática I - Licenciatura em Engenharia Informática

FORMULÁRIO

Técnicas de primitivação

Primitivação por substituição:

$$\int f(x) dx = \left[\int f(\varphi(t)) \varphi'(t) dt \right]_{t=\varphi^{-1}(x)}$$

a, b são constantes reais

$\mathcal{K}(\cdot)$ indica que a função envolve somas, diferenças, produtos ou quocientes dos termos representados									
	Tipo de função:	Substituição:	Simplificações:						
expone	encial								
S1.	$R(a^{rx}, a^{sx}, \dots)$	$a^{mx} = t$, $m = m.d.c.(r, s,)$							
radicai	s de argumento polinomial								
S3.	$R\left(x,\sqrt[q]{x^p},\sqrt[s]{x^r},\dots\right)$	$x = t^m, m = m.m.c.(q, s, \dots)$							
S5.	$R\left(x,\sqrt{a^2-b^2x^2}\right)$	$x = \frac{a}{b} \sin(t), \ t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$1 - \sin^2(t) = \cos^2(t)$						
S6.	$R\left(x,\sqrt{a^2+b^2x^2}\right)$	$x = \frac{a}{b} \operatorname{tg}(t), \ t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$	$1 + \operatorname{tg}^2(t) = \sec^2(t)$						
S7.	$R\left(x,\sqrt{b^2x^2-a^2}\right)$	$x = \frac{a}{b} \sec(t), \ t \in [0, \pi] \setminus \{0\}$	$\sec^2(t) - 1 = \operatorname{tg}^2(t)$						

Primitivação por partes:

$$\int d p dx = d \int p dx - \int d' \int p dx dx$$

Primitivação de fracções racionais

1. Se a **fracção é imprópria** (grau do numerador ≥ grau do denominador):

Efectua-se a divisão dos polinómios, para decompor a fracção na soma de um polinómio com uma fracção própria,

$$\underbrace{\frac{p(x)}{d(x)}}_{\text{fracção}} = \underbrace{\frac{q(x)}{\text{polinómio}}}_{\text{polinómio}} + \underbrace{\frac{r(x)}{d(x)}}_{\text{fracção}},$$

A fracção racional própria resultante é tratada conforme descrito no passo 2.

2. Se a fracção é própria (grau do numerador < grau do denominador):

Decompõe-se a fracção numa soma de fracções simples:

- i) factoriza-se o denominador, tendo em conta as suas raízes: $d(x) = (x \star)^m \cdots (x \bullet)^n$
- ii) cada raiz real \star , de multiplicidade m, origina um factor real $(x-\star)^m$ e portanto uma soma de m fracções simples com a forma

$$\frac{A_1}{x-\star} + \frac{A_2}{(x-\star)^2} + \cdots + \frac{A_m}{(x-\star)^m},$$

iii) Determinam-se os coeficientes A_i recorrendo ao método dos coeficientes indeterminados ou ao método das constantes arbitrárias.

Análise Matemática I - Licenciatura em Engenharia Informática

FORMULÁRIO

Técnicas de primitivação

Primitivação de funções trigonométricas

1. Potências ou produtos de potências de seno e cosseno:

(a) Seno <u>e</u> cosseno têm expoente **par**:

Reescrevem-se as potências pares na forma $(\cos^2(a))^p$ e $(\sin^2(a))^p$ e aplicam-se as fórmulas do arco duplo correspondentes.

$$\cos^2(a) = \frac{1}{2} \left(1 + \cos(2a) \right) \qquad \sin^2(a) = \frac{1}{2} \left(1 - \cos(2a) \right)$$

(b) Seno <u>ou</u> cosseno tem expoente **ímpar**:

Destaca-se uma unidade à potência de expoente ímpar e ao <u>factor resultante</u>, $(\cos^2(a))^p$ ou $(\sin^2(a))^p$, aplica-se a fórmula fundamental da trigonometria, para passar à co-função.

$$\cos^2(a) = 1 - \sin^2(a)$$
 $\sin^2(a) = 1 - \cos^2(a)$

2. Produtos de seno e cosseno de argumentos diferentes:

Aplica-se uma das seguintes fórmulas:

$$\sin(a) \cos(b) = \frac{1}{2} \left(\sin(a+b) + \sin(a-b) \right)$$
$$\cos(a) \cos(b) = \frac{1}{2} \left(\cos(a+b) + \cos(a-b) \right)$$
$$\sin(a) \sin(b) = \frac{1}{2} \left(\cos(a-b) - \cos(a+b) \right)$$

3. Potências de tangente, cotangente, secante ou cossecante:

(a) Potência de tangente ou cotangente:

Destaca-se $\operatorname{tg}^2(a)$ ou $\operatorname{cotg}^2(a)$ e, nesse factor, aplica-se a fórmula correspondente.

$$tg^{2}(a) = sec^{2}(a) - 1$$
 $cotg^{2}(a) = cosec^{2}(a) - 1$

(b) Potência **ímpar** de secante ou cossecante:

Destaca-se $\sec^2(a)$ ou $\csc^2(a)$ e primitiva-se por partes, primitivando o factor destacado. Depois, aplica-se uma das fórmulas seguintes para obter no segundo membro a primitiva que se pretende calcular. Isola-se a primitiva e resolve-se a igualdade como uma equação, em que a incógnita é a primitiva.

$$tg^{2}(a) = sec^{2}(a) - 1$$
 $cotg^{2}(a) = cosec^{2}(a) - 1$

(c) Potência **par** de secante ou cossecante:

Destaca-se $\sec^2(a)$ ou $\csc^2(a)$ e ao <u>factor resultante</u>, $(\sec^2(a))^p$ ou $(\csc^2(a))^p$, aplica-se a fórmula correspondente.

$$\sec^2(a) = 1 + \operatorname{tg}^2(a)$$
 $\operatorname{cosec}^2(a) = 1 + \operatorname{cotg}^2(a)$

Análise Matemática I - Licenciatura em Engenharia Informática

FORMULÁRIO Séries numéricas

$\left[\sum u_n = \underbrace{u_1 + u_2 + \dots + u_n}_{S_n} + \dots \right]$ • Convergência de uma série

A série $\sum u_n$ é convergente se e só se o limite $\lim_{n\to+\infty} S_n$ existe \underline{e} é finito.

- 1. Série de Mengoli (ou telescópica): $u_n = a_n a_{n+p} \rightarrow S_n = a_1 + \dots + a_p (a_{n+1} + \dots + a_{n+p}),$ desde que n > p2. Série geométrica: $\frac{u_{n+1}}{u_n} = R$ (constante) $\rightarrow S_n = 1^o termo \times \frac{1-R^n}{1-R}$

$\int u_n = u_1 + u_2 + u_3 + \dots + \underbrace{u_n} + \dots$ • Condição necessária de convergência

 $\lim_{n\to+\infty}u_n$ é diferente de zero <u>ou</u> não existe, então a série $\sum u_n$ é divergente.

• Critério do integral

Sejam $f:[n_0,+\infty[\to \mathbb{R} \text{ uma função contínua, positiva e decrescente e } u_n=f(n), \text{ para } n\geq n_0$.

A série
$$\sum_{n=n_0}^{+\infty} u_n$$
 e o integral impróprio $\int_{n_0}^{+\infty} f(x) dx$ têm a mesma natureza.

SÉRIES DE REFERÊNCIA

- Série de Mengoli $\left[u_n = a_n a_{n+p}\right]$
 - se $\lim a_n$ é finito : convergente e $S = a_1 + \cdots + a_p - p \cdot \lim a_n$
 - se $\lim a_n$ não é finito : divergente
- Série geométrica $\left[\frac{u_{n+1}}{u_n} = R \mid u_n = aR^n\right]$
 - se |R| < 1: convergente e $S = \frac{1^{o} \text{termo}}{1 R}$
 - se $|R| \ge 1$: divergente
- Série de Dirichlet $\left[u_n = \frac{a}{n^{\alpha}}\right]$

se $\alpha > 1$: convergente

se $\alpha \leq 1$: divergente

• Critério de D'Alembert (ou da razão)

Sejam $\sum u_n$ uma série e $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lambda$. i) Se $\lambda < 1$, então a série $\sum u_n$ é (absolutamente) convergente;

- ii) Se $\lambda > 1$, então a série $\sum u_n$ é divergente.

• Critério de Leibniz

Seja $\sum u_n$ uma série de termos alternados ($u_n = (-1)^n a_n$ com $a_n > 0$).

Se $(a_n)_n$ é uma sucessão decrescente e $\lim_{n\to+\infty} a_n = 0$, então a série $\sum u_n$ é convergente.