Analysis 2

Manuel Strenge

Gebiet	Problemstellung	math. Grundlagen
Simlulationen Comp. Grafik Scientific Computing	Haare 2D render Tasse Daten ana	Differentialgleichungen Integralrechnung Taylor-Reihen

Integrationsmethoden

Einsatzgebiet: modelieren: z.B. $v(t) = t^2$

Im Allgemeinen: $\int u(x) \cdot v(x) dx \neq \int u(x) dx \cdot \int v(x) dx$

Repetition:

Produktregel: $(u(x) \cdot v(x))' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

Kettenregel: $(F(u(x)))' = F'(x) \cdot u'(x)$

Integration durch Substitution

Diese Integrationsmethode beruht auf der Kettenregel für die Ableitung:

$$(F(u(x))) = \int (F(u(x)))'dx = \int F'(x) \cdot u'(x)dx$$

Im Folgenden sind die einzelnen Schritte dieser Integrationsmethode angegeben. Diese werden jeweils gleich auf die beiden folgenden Beispiele angewendet.

- $\int \cos(x^2) \cdot x \, dx$ (unbestimmtes Integral) $\int_0 \cos(x^2) \cdot x \, dx$ (bestimmtes Integral)
- 1. Schritt: Substitutionsgleichung für x : u = g(x)

$$u(x) = x^2$$

2. Schritt: Substitutionsgleichung für dx: $\frac{du}{dx} = g'(x) \Rightarrow dx = \frac{du}{g'(x)}$

Dabei tun wir so, als ob die Ableitung $\frac{du}{dx}$ ein Bruch wäre. ¹

- Beispiele (a) und (b): $\frac{du}{dx} = u'(x) = 2x \Rightarrow dx = \frac{dy}{2x}$
- 3. Schritt: Integral substitution: $\int f(x) dx = \int \varphi(u) du$

Wir ersetzen nun im Integral g(x) und dx gemäss den Substitutionsgleichungen. In dem resultierenden Integral kommen dann beide Variablen x und u vor; es ist somit streng genommen gar nicht wohldefiniert. Die Variable x muss nun durch Kürzen zum Verschwinden gebracht werden! Ist dies nicht möglich, so haben wir den falschen Ansatz gewählt.

$$\int \cos(x^2) \cdot x dx - \int \cos(u) \cdot x \frac{du}{2x} = \int \frac{1}{2} \cos(u) du$$

1

Beim bestimmten Integral muss die Funktion g auch auf die Integrationsgrenzen angewendet werden (denn diese bezogen sich im Anfangsintegral auf die Variable x und müssen nun in Abhängigkeit von u ausgedrückt werden)

Beispiel (b)
$$\int_{x=0}^{\sqrt{\pi/2}} \cos\left(x^2\right) \cdot x dx = \int_{u=0^2}^{(\sqrt{\pi/2})^2} \cos(u) \cdot x \cdot \frac{du}{2x} = \int_{u=0}^{\pi/2} \frac{1}{2} \cos(u) du$$

4. Schritt: Integration: $\int \varphi(u) du = \Phi(u) + C$

Im Idealfall können wir das Integral von $\varphi(u)$ (z.B. mit bekannten Regeln) nun bestimmen.

Beispiel (a)

$$\int \frac{1}{2}\cos(u)du = \frac{1}{2}\int\cos(u)du = \frac{1}{2}\sin(u) + C$$

Beispiel (b)

$$\int_0^{\pi/2} \frac{1}{2} \cos(u) du = \frac{1}{2} \int_0^{\pi/2} \cos(u) du = \frac{1}{2} [\sin(u)]_0^{\pi/2}$$
$$= \frac{1}{2} (1 - 0) = \frac{1}{2}$$

5. Schritt: Rücksubstition

Dieser Schritt ist nur bei unbestimmten Integralen nötig. Bei bestimmten Integralen bleibt der Integralwert durch die Substitution der Integralgrenzen erhalten.

$$\frac{1}{2}\sin(u) + C = \frac{1}{2}\sin(x^2) + C$$

Integration durch Substitution 1. Substitutionsgleichung für x: u = g(x) 2. Substitutionsgleichung für d $x: \frac{\mathrm{d}u}{\mathrm{d}x} = g'(x) \Rightarrow \mathrm{d}x = \frac{\mathrm{d}u}{g'(x)}$ 3. Integralsubstitution 4. Integration 5. Rücksubstitution (nur für unbestimmte Integrale)

Wichtig! nicht vergessen die substitutionsgleichung auf die integral grenzwerte anzuwenden.

Satz

F"ur eine Funktion f und Konstanten a,b gilt:

$$\int f(ax+b)\mathrm{d}x = \frac{1}{a} \cdot F(ax+b)$$