注意.

- 三平法の定理に馴染みのない者は問題1から解くこと.
- 問題 2, 3, 5, 6, 7 は全員が必ず解くこと (この順番で優先的に).
- プリント p.3 の「加法定理」は公式の記述が不十分です。教科書をみて公式を書き 写してください。
- 問題 4,8 は上の問題が解き終わった後、じつくり考えてみよ.

三平方の定理(ピタゴラスの定理)

直角三角形の斜辺の長さがc, 他の2辺の長さがa,bのとき, a,b,cは以下の関係を満たす;

$$c^2 = a^2 + b^2$$

問題 1. 次の図中のxを三平方の定理を用いて求めよ.

(1) 正三角形

(2) 直角二等辺三角形

$$(3^2 = 5^2 + x^2)$$
 $169 = 25 = 90^2$
 $x^2 = 144$
 $x = 12$

1

三角関数:

半径 1 の円周上の点 P に対し,x 軸の正の部分とのなす角が θ (ただし θ は一般角) であるとき,点P の x 座標の値を $\cos\theta$,y 座標の値を $\sin\theta$ と定義する; $P = (\cos\theta, \sin\theta)$,

 $\sin\theta$: θ の正弦

 $\cos\theta$: θ の余弦

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$: θ の正接

問題 2. 次の三角関数の値を求めよ. (関連問題 教科書 p.77 問題 4.2)

(1)
$$\sin \frac{\pi}{3} \frac{\sqrt{3}}{2}$$
 (2) $\sin \left(-\frac{\pi}{6}\right) - \frac{1}{2}$ (3) $\sin \frac{5\pi}{4} - \frac{\sqrt{3}}{2}$ (4) $\sin \frac{\pi}{2}$ (5) $\sin 0$

(6)
$$\cos \frac{\pi}{3} \stackrel{\cancel{1}}{=} (7) \cos \left(-\frac{\pi}{6}\right) \stackrel{\cancel{3}}{=} (8) \cos \frac{5\pi}{4} \stackrel{\cancel{1}}{=} (9) \cos \frac{\pi}{2} \stackrel{\cancel{1}}{=} (10) \cos 0 \stackrel{\cancel{2}}{=} (10) \cos 0$$

(11)
$$\tan \frac{\pi}{3}$$
 (12) $\tan \left(-\frac{\pi}{6}\right) - \frac{1}{\sqrt{3}}$ (13) $\tan \frac{5\pi}{4}$ (14) $\tan \frac{\pi}{2}$ (15) $\tan 0$

問題 3. 与えられた θ に対して、 $\sin\theta$, $\cos\theta$, $\tan\theta$ の符号(正、負)がどうなるか考えて、下表の空欄に「正」または「負」を書きなさい。

	$0 < \theta < \frac{\pi}{2}$	$\frac{\pi}{2} < \theta < \pi$	$\pi < \theta < \frac{3\pi}{2}$	$\frac{3\pi}{2} < \theta < 2\pi$
$\sin \theta$	正	正	B	MID
$\cos \theta$	Ā	身	DE STATE OF THE ST	五
$\tan \theta$	本	R	工	Nij.

正接の幾何学的意味

正接:
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

正接の定義から、 $\tan \theta$ は直線 OP と直線 x = 1 との交点の y 座標と解釈できる.

問題 4. 「正接の幾何学的意味」で述べたことが正しいことを説明(証明)せよ.

三角関数の性質

- (1) $\sin^2 + \cos^2 \theta = 1$ (ただし, $\sin^2 \theta = (\sin \theta)^2$ を意味する).
- (2) 整数 n に対して、 $\sin(2n\pi + \theta) = \sin \theta$
- (3) 整数 n に対して, $\cos(2n\pi + \theta) = \cos \theta$
- (4) $\sin(-\theta) = -\sin\theta$
- (5) $\cos(-\theta) = \cos\theta$
- (6) $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$
- (7) $\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta$

問題 **5.** 「三角関数の性質」が正しいことを説明せよ((1) は定義から明らかである. (2) ~(7) については単位円(半径が1の円)を描いて主張が正しいことを確かめよ).

問題 6. $\sin \theta = -\frac{5}{13}$ とする(ただし、 $\frac{3\pi}{2} < \theta < 2\pi$)。

(1) ここのの信を求め上

(1) ここのの信を求め上

- $(1)\cos\theta$ の値を求めよ.
- (2) $tan \theta$ の値を求めよ.

COOD = T 144 2 ± 12 3 2 TH CO 5 2 T 72 52 COOD >0 - COOD = 12

·加法定理

($\beta \Box -1$) $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$

(DI-2)
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$$

(DI-3)
$$\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\beta$$
 Air of

(
$$D-4$$
) $\cos(\alpha-\beta)=\cos(\cos\beta+\sin\beta)$ and

問題 7. 加法定理を用いて、 $\sin\frac{\pi}{12}$, $\cos\frac{\pi}{12}$ の値を求めたい。 (関連問題 教科書 p.85 問題 4.4)

(1) $\frac{\pi}{12}$ を $\frac{\pi}{3}$ と $\frac{\pi}{4}$ を用いて表せ. $\frac{\pi}{12}$ $\frac{\pi}{3}$ $\frac{\pi}{4}$

(2) 加法定理を用いて $\sin \frac{\pi}{12}$ を計算せよ. (3) 加法定理を用いて $\cos \frac{\pi}{12}$ を計算せよ. $=\frac{3}{2}$ を計算せよ. $=\frac{3}{2}$ を計算せよ.

問題 8. (加-1) 式と三角関数の性質 (4)~(7) を用いて、加法定理の残りの公式 (加-2)、 (加-3), (加-4) を導きだせ. (教科書 p.85 参照)