Alternative Reconfigurable Architectures

ACME Seminar

Mark L. Chang

September 15, 2003

Life Beyond Virtex

- Added functionality
 - Virtex-II Pro, Altera Excalibur
- Increased granularity
 - QuickSilver ACM
 - PicoChip
 - PACT XPP
 - Morpho Technologies MS1
- Reduced granularity
 - Cell Matrix

QuickSilver ACM

- Targeting cellular handsets
 - W-CDMA, CDMA-2000, MPEG-4
- Diverse computational requirements are not good for "standard" homogenous FPGAs
- Uses a heterogeneous array of nodes instead

QuickSilver Architecture

Node Types Arithmetic Bit-manipulation Finite state machine Scalar Level 1 Cluster Level 3 Cluster

PicoChip

- Again, targeting W-CDMA
- Utilizes array of 430 processors on a single chip
- 13mm x 13mm die size, 160M transistors 0.13um TSMC
- 160MHz operation

PicoChip Architecture

PACT XPP

- Xtreme Processing Platform
- Developed as a synthesizable Verilog IP core
- Configurable
 - Word size (16/24/32-bit)
 - Routing and event channels
 - RAM size
 - I/O elements
- XPP64-A1 released as prototype

ALU-PAE

RAM-PAE 1-bit event 24-bit data Register Register DF-Register BREG RAM FREG DF-Register DF-Register [Register]

Results: OFDM Decoder

Decoder implementation

- Burst rate: 40Mbit/s
- Raw rate: 24Mbit/s
- Power: 19.1mW
- Design clocked at 40MHz

The Cell Matrix

- Given nano-scale switches, how do we organize them to perform computation?
 - Self-(re)onfiguration
 - Parallel confugration
 - Fault tolerance
 - Scalability
 - Easy to nano-fabricate

Single Cell Schematic

16 x 4 bit memory implemented on a set of Cell Matrix cells

8-bit ALU

56-bit DES Decryption Processor

Communication Design

Parallel Self Configuration

Implementation Results

- Implemented four-bit DES cracker in simulation
 - Each processor is about 2500 cells
- For full 56-bit decryption
 - − 10¹⁷ processors
 - 4 million cells per processor
 - Assuming 1ps cell delay time, 200ms total propagation time across the cube = 40k characters/s decrypted