部分习题集答案

第四题 综合问答题

- 1、维吉尼亚密码体制的考查
- (1) 解密函数 D_k 和加密函数 E_k 一样,假设密文 $c=(c_1, c_2, ..., c_n)$,则解密函数为:

$$D_k(c_1, c_2, ..., c_n) = ((c_1-k_1) \text{ mod } 26, (c_2-k_2) \text{ mod } 26, ..., (c_n-k_n) \text{ mod } 26$$

= $m_1, m_2, ..., m_n$

(2) 明文字符 b 对应 1, y 对应 24, e 对应 4

加密过程为: $c_1=1+5 \mod 26=6$ $c_2=24+2 \mod 26=0$ $c_3=4+1 \mod 26=5$ 。

- 2、此题是对 DES 算法的考核, 共 2 题。(共 6 分)
- (1) 完成题目中的填空;
 - ① <u>E 盒扩展</u>; ② <u>S 盒压缩</u>; ③ <u>P 盒替代</u> 。
- (2) 下图 3 是 S 盒中的 S_1 , 如果输入为 (111011),则输出应为___0 ___
 - 3、此题是对分组密码的工作模式考查,共2题。
 - (1) CTR 解密运行过程如下:

CTR 运行模式解密过程示意图

- (2)会影响3组的密文分组无法正常解密
- 4、此题是对 RSA 算法考查, 共 2 题。
- (1) 完成题目中的填空;
- ①_____{e=7, n=143}____; ②_____{d=103, n=143}____;
- (2) 假设发送的消息 m=4, 求 Alice 接收得密文 c。(给出详细求解过程)

解: 密文:
$$c=m^e \mod n$$
 (1分) $c=4^7 \mod 143$
 $c=(2^8)*(2^6) \mod 143$
 $c=82$

- 5、下题是对 SHA-1 算法考查,包含了 2 个小题。
- (1)给出第二部分填充消息的比特位长度?第三部分数据长度的比特位长度?

解: 填充公式: $l+1+k \equiv 448 \pmod{512}$

l=8*8=64, 448-64=384, 因此第二部分填充消息的比特位长度为 384。

第三部分数据长度的比特位长度为64

(2) 消息填充之后,输出第 0 组 W[0],第 1 组 W[1],第 2 组 W[2]。(十六 进制表示)

解: 其中 a 的十六进制为 61, b 为 62 c 为 63 d 为 64 0 为 30 1 为 31 2 为 32 3 为 33

因此 W[0]=61626364 w[1]=30313233 w[2]=80000000

6. 仿射密码算法

解密公式为: x= k⁻¹ (y-b) (mod 26)

明文字符 c 对应 2, 加密过程为: y=17×2+11mod26=19。

7. 按箭头顺序依次为:轮密钥加、字节替代、行移位、列混合、轮密钥加、字节替代、行移位、轮密钥加。

字节替代、行移位各执行 10 次,轮密钥加 11 次,列混合 9 次。

8. CFB

(1)35H ± 66H=53H (2)38H (3)53H (4)BBH

9. E 扩展, E 盒的输入为 16 进制的{EA09782C}

0	1	1	1	0	1
0	1	0	1	0	0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
0	0	0	1	0	1
0	1	1	0	0	1

10. Diffie-Hellman 密钥交换算法 参考答案:

 $K=6^{11\times27} \mod 41=6^{297} \mod 41$

由欧拉定理, 6⁴⁰ mod41≡1

故 6²⁹⁷ mod41≡6¹⁷ mod41

 $6^2 \mod 41 \equiv 36 \equiv -5 \quad 6^4 \mod 41 \equiv 25 \quad 6^8 \mod 41 \equiv 10 \quad 6^{16} \mod 41 \equiv 18$

故 6¹⁷ mod41≡18×6≡26

11、DES 的考核

解:(1)S 盒压缩和 P 盒置换的输出是 32bits,E 盒扩展和 E 盒与轮密钥异或的输出是 48bits

(2) 6 (或者 0110))

12、 AES 算法考核

解: (1)

图 1 AES 解密过程

(2) 128bits 需要扩展密钥长度是 11*128-128=1280bits 192bits 需要扩展密钥长度是 13*128-192=1472bits 256bits 需要扩展密钥长度是 15*128-256=1664bits

13、OFB 工作模式考核(共 8 分)

解: (1)

图 2 OFB 工作模式解密图

(2) 0FB 工作模式下, DES 密钥流生成器是属于同步流密码, 密(明) 文符号是独立的,明文和密文一个错误传输只会影响一个符号,不影响后面的符号。

14、序列密码考核(共6分)

解: (1) 4级线性移位寄存器的反馈函数为 $f(a_1, a_2, a_3, a_4) = a_1 \oplus a_2 \oplus a_4$,

因此对应特征多项式为 $f(x) = x^4 + x^3 + x + 1$

特征多项式不是本原多项式,不是 m 序列

因为
$$x^6 - 1 = (x^2 - x - 1)(x^4 + x^3 + x + 1)$$
, 即 $x^4 + x^3 + x + 1 \mid x^6 - 1$

最小整数为6,即周期为6

(2) 画出 LFSR 反馈状态图

图 3 4 级线性反馈移位寄存器状态图

- 15、消息认证知识点考核 (共6分)
- 解: (1) 解密算法 D、Message、Message、Mac 算法 (C)
 - (2) 这消息认证模式能达到信息安全目标中完整性、保密性

16、DES 的考核

解: "itis2015" 转换为 ASCII 值分别为

i 105 01101001 t 116 01110100 i 105 01101001 s 115 01110011

2 50 00110010 0 48 00110000 1 49 00110001 5 53 00110101

经过 IP 初始置换之后的值

01101001
01110100
01101001
01110011
00110010
00110000
00110001
00110101

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

IP 置换的输出的后4

行分别为输入的 第1列,

第3列,第5列,第7列,每列次序颠倒,因此后4行分别为:

0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
0	0	0	0	0	1	0	1
0	0	0	1	1	0	0	0

十六进制为: 0x00FF0518

17、SHA-1 函数考核 (共6分)

解: (1) 一个分组 512 比特,则 512/8=64 字节,199/64 \approx 3,因此总共分组 4 个分组

最后一分组的消息长度 199 mod 64= 7, 另外有 64bits, 即 8 字节作为数据长度, 因此填充消息长度为 64-7-8=49 字节

(2) 若消息的长度为 252 字节,按照 SHA-1 算法的规定,需要对消息进行分组和填充. $252/64 \approx 3$, $252 \mod 64=60$,因此总共 5 个 512 bits 块,一个 512 bits 分组总共 80 个轮次,5 个 512 bits 则需要运行 $400 \times \text{SHA-1}$ 压缩函数

18、 AES 算法考核

解: (1) 有限域加法运算为异或运算 因此 *F0+E9=0x19*

(2) 16 进制的"03"与"80"的乘法,即计算"03•80"的值。

"03" 等价于多项式是"x+1", "80"等价于"x⁷"

$$(x+1) x^7 = x^8 + x^7 \pmod{x^8 + x^4 + x^3 + x + 1}$$

$$\equiv (x^8 + x^4 + x^3 + x + 1) + x^7 + x^4 + x^3 + x + 1$$

$$\equiv x^7 + x^4 + x^3 + x + 1$$

" $03 \cdot 80$ "=10011011=0x9b

备注: 此题也采用其它计算方法

- 19、OFB工作模式考核
- 解: (1) AES 明文长度 128bits,即 16 字节,因此分组长度为: 2200/16=137.5

即 2200 分组有 138 个明文分组

- (2)若加密消息 $P_i(1 \le i \le N)$,得到密文 $C_i(1 \le i \le N)$ 。若加密者对消息 P_k ($1 \le k < N$)进行了修改,则加密得到的密文 C_k 会发生变化,由于密文 C_k 反馈,所以 C_k 之后所有密文都会发生变化
 - (3) 评分标准: 错一个扣1分,扣完为止(共4分)

图 1 CBC 解密过程

20、序列密码考核

解: (1)

明文串对应的密钥流 $K = M \oplus C = 101000 \oplus 000110 = 101110$

- (2) LFSR 反馈函数
- 3 级反馈函数表示为: $\mathbf{f}(\mathbf{a}_1|\mathbf{a}_2|\mathbf{a}_3) = \mathbf{c}_1\mathbf{a}_3 \oplus \mathbf{c}_2\mathbf{a}_2 \oplus \mathbf{c}_3\mathbf{a}_1$,根据已知密钥流可以得到下面三个方程

$$1 = c_1 \oplus c_3$$
 $1 = c_1 \oplus c_2$ $1 = c_1 \oplus c_2 \oplus c_3$

因此得到 $c_1 = 0, c_2 = 1, c_3 = 1$,因此 $f(a_1, a_2, a_3) = a_2 \oplus a_1$

五、综合题

- 1、 Diffie-Hellman 密钥交换协议的考查 (18 分)
- (1) 求 s_A , s_B , K 和K'的值解:分别计算: $s_A = a^{r_A} = 5^{11} mod \ 47 = 13$; $s_B = 5^7 mod \ 47 = 11$;在交换 s_A , s_B 后,

分别计算: $K = s_B^{r_A} mod \ 47 = 11^{11} mod \ 47 = 39$ $K' = s_A^{r_B} mod \ 47 = 13^7 mod \ 47 = 39$

- (2)解:基于离散对数困难问题,给定参数p, a, 求 s_A 容易,反之,给定p和 s_A , 求a是困难的。参数 s_B 同理。
- (3)通过中间人攻击,用户 A 计算共享密钥值为: $K = s'_B{}^{r_A} mod \ p$ 。用户 B 计算的共享密钥为: $K' = s'_A{}^{r_B} mod \ p$
 - 2、AES 基本运算考查(12分)
 - (4) 若用十六进制表示两域元素分别为{83}和{05},则给出各域元素对应的多项式
 - 解: 83 对应的二进制为 10000011,对应的多项式为 $x^7 + x + 1$ 。 05 对应的二进制为 00000101, 对应的多项式为 $x^2 + 1$ 。
 - (5) 求两域元素的和: {83}+{05}

(6) 求两域元素的积: {83}●{05}

解:

 $\{83\} \bullet \{05\} = \{83\} \bullet \{\{04\} \oplus \{01\}\}$ (1分)

 $\{83\} \bullet \{02\} = \{10000011\} \bullet \{02\} = \{00000110\} + \{00011011\}$

={00011101}={1D} (2分)

 $\{83\} \bullet \{04\} = \{1D\} \bullet \{02\} = \{00011101\} \bullet \{02\} = \{00111010\} = \{3A\}$ (2分)

 ${3A}+{83}={00111010}\oplus{10000011}={10111001}={B9}$ (1分)

备注: 也可以采用多项式直接求解

- 3. 在非对称密码算法 RSA 密钥产生过程中,设 p=13,q=17,取公钥参数 e=25,完成(1) -(4) 题。
 - (1) 求私钥参数 d;

 $\varphi(n)=12\times16=192$

 $192=25\times 7+17$ 25=17+8 $17=8\times 2+1$

 $1=17-8\times 2=17-(25-17)\times 2=17\times 3-25\times 2$

 $=(192-25\times7)\times3-25\times2=192\times3-25\times23$

(2) 如果消息 m=6, 求对应的密文。

$$6^{2} \equiv 36 \pmod{221}$$
 $6^{4} \equiv -30$ $6^{8} \equiv 16$
 $6^{16} \equiv 256 \equiv 35$
 $6^{25} \equiv 6 \times 6^{8} \times 6^{16} \equiv 35 \times 16 \times 6 \equiv 45$

(3)由上面结果,列出消息发送者和密码分析者各自可以直接获得的参数 及对应的值。

消息发送者可以直接获得的参数及对应的值为: m=6, e=25, n=221, c=45 密码分析者可以直接获得的参数及对应的值为: e=25, n=221, c=45

(4) 简述 RSA 密码算法能否抵御选择明文攻击? 能

4. SHA

(1) W[0]=61316232H W[1]= 63336434H

W[2]=65358000H W[15]=00000050H

- (2) $W[16] = ROTL^1(W[13] \oplus W[8] \oplus W[2] \oplus W[0])$
- $=ROTL^{1}(61316232 \oplus 65358000)$
- $=ROTL^{1}(404E232) = 809C464$
- 5 解: (1) 请分别计算出 A 用户和 B 用户的私钥值 d 的值;

已知 公钥 n_A=65,首先分解 n_A=5*13 得到 p=5, q=13

计算欧拉函数 Φ(n_A)= (p-1) (q-1) =48

A 用户私钥计算: 已知 A 用户私钥 $d_A=7$, $gcd (\Phi(n_A), e_A)=1$,根据 RSA 密钥生成过程 $e_Ad_A=1$ mod $\Phi(n_A)$ 即 $7d_A=1$ mod 48

欧几里得扩展算法: 48=6*7+6 7=6*1+1

1=7-6=7-(48-6*7)=7*7-48

可得 7*7≡1 mod 48 即 d=7

同理 B 用户私钥: e_B=11, 11d_B≡1 mod 48

48=4*11+4 11=2*4+3 4=1*3+1

1=4-(11-2*4)=3*4-11=3*(48-4*11)-11=3*48-13*11

d_R=48-13=35

(2) A 用户发送密文 C 和签名 Sig 给 B 用户

根据 RSA 加密算法规则, A 需要发送消息给 B,则需要用 B 的公钥加密

B 的公钥 e_B=11, 因此密文 C≡2¹¹ mod 65

 $C \equiv (2^{10}) *2 \mod 65 \equiv 49*2 \mod 65 \equiv 33$

A 需要发送签名 Sig 给 B,则需要 A 的私钥签名,

A 的私钥 $d_A=7$, $Sig \equiv 2^7 \mod 65 \equiv 63$

不安全

p 和 q 值太小, 要求大素数 p 和 q,一般 1024bits 和 2048bits;

6、DH 算法(共 20 分)

解: (1) 证明 $K_{A} \equiv K_{B}$. 证明:

$$Q y_A = g^{x_A} \pmod{p}, y_B = g^{x_B} \pmod{p}$$

$$\therefore K_A \equiv y_B^{x_A} \equiv (g^{x_B})^{x_A} \equiv g^{x_B x_A} \pmod{p}$$

$$\therefore K_B \equiv y_A^{x_B} \equiv (g^{x_A})^{x_B} \equiv g^{x_A x_B} \pmod{p}$$

$$\therefore K_A \equiv K_B \pmod{p}$$

(2) 求 y_A , y_B , K_A .

$$Q y_A \equiv g^{x_A} \pmod{p} \equiv 5^{13} \pmod{97}$$

$$\equiv (5^3)^4 \cdot 5 \pmod{97} \equiv 28^4 \cdot 5 \pmod{97}$$

$$\equiv 8^2 \cdot 5 \pmod{97} \equiv 29 \pmod{97}$$

$$y_B = g^{x_B} \pmod{p} \equiv 5^6 \pmod{97} \equiv 8$$

$$K_A \equiv y_A^{x_B} \equiv 29^6 \pmod{97} \equiv 65^3 \pmod{97}$$

= 54 * 65(mod 97) \(\equiv 18 \mod 97)

- (3) 在实际应用中,分析者可用直接获取 p, g, y_A, y_B
- (4) 上面所述的 Diffie-Hellman 密钥交换协议有可能被中间人攻击。

第②步是 $y_c \equiv g^z \pmod{p}$,第④步是 $y_c \equiv g^z \pmod{p}$