CPS 430/590.06 Design and Analysis of Algorithms Homework 1

Prof. John Reif Fall 2013 Matt Dickenson

Question 1

From largest to smallest, the asymptotic size of the given functions are (with lg taken to represent log_2 and lg^{1000} taken to mean performing the lg operation one-thousand times):

$lg(n^{1000})$	(1)
$(lgn)^n$	(2)
n^{lgn}	(3)
n^{lglgn}	(4)
$(lgn)^{(lgn)}$	(5)
n^2	(6)
nlgn	(7)
n	(8)
lgn	(9)
$n^{(1/lgn)}$	(10)
$(1+0.001)^n$	(11)
$lg_{1000}n$	(12)
$lg^{1000}n$	(13)
1	(14)

Question 2

The answers to this question rely on the discussion of the master method in chapter 4 of the CLRS textbook.

- **2.1** T(n) = 2T(n/3) + 1, so a = 2, b = 3, f(n) = 1). Using the master method, this is case 1: $f(n) = O(n^{\log_3 2 \epsilon})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^{\log_3 2})$.
- **2.2** T(n) = 5T(n/4) + n, so a = 5, b = 4, f(n) = n. Again this is case 1 of the master method: $f(n) = O(n^{\log_4 5 \epsilon})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^{\log_5 4})$.
- **2.3** $T(n) = 8T(n/2) + n^3$, so $a = 8, b = 2, f(n) = n^3$. This is case 2 of the master method: $f(n) = \Theta(n^{\log_2 8})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n^3 lgn})$
- **2.4** $T(n) = T(n^{1/2}) + 1$. This recurrence relation cannot be directly translated into the form of the master method, so we use a change of variables m = lgn. S(m) = S(m/2) + 1, so $a_m = 1, b_m = 2, f(m) = 1$. This is case 3 of the master method, because S(m) = 1.

 $\Theta(m^{\log_2 1}) = \Theta(lgm)$. Changing back to our original variables, $T(n) = T(2^m) = S(m) = \Theta(lgm) = \Theta(lglgn)$

Question 3

We wish to show that $T(n) = 2T(n/2) + O(n \log n)$ is $O(n \log^2 n$ For this question we cannot use the Master Theorem, since $f(n) = O(n \log n)$ falls into one of that method's two gaps. However, what follows still uses the notation of the master method for coefficients: $a = 2, b = 2, f(n) = O(n \log n)$.

Using a recursion tree, we can write out the terms of the recursion as it proceeds toward the base case. At the first step we have the "glue cost" $O(n \log n)$. At the second step (the first recursion) we have two branches (a=2) each of size n/2 (b=2). In general, at the $(j-1)^{th}$ step our operation is of size $2^{j}(\frac{n}{2^{j}})$. At what level L will we reach the base case $n_{j}=1$? We compute as follows:

$$\frac{n}{L} = 1$$

$$n = b^{L}$$

$$\log_{b} n = L$$

$$lqn = L$$

and see that the recursion stops at the $lg(n)^{th}$ step. This gives us the full cost of our recursion operations: $O(nlgn) + \sum_{j=0}^{lgn-1} 2^j \frac{n}{2^j}$. The solution to this is given by

$$T(n) = O(nlgn) + \sum_{j=0}^{lgn-1} a^j \frac{n}{b^j}$$

$$= O(nlg((\sum_{j=0}^{lgn-1} 2^j \frac{n}{2^j})))$$

$$= O(nlg(lg(n)))$$

$$= O(n\log^2 n)$$

Question 4

Suppose we label the three pegs P_1, P_2 , and P_3 . Without loss of generality, we can assume that initially all n pegs are on P_1 and our goal is to move them to P_3 under the constraints posed in the question. For convenience we also label the $n \geq 1$ discs d_1, \ldots, d_n where d_1 is the smallest and d_n is the largest disc. Let T(n) denote the number of steps required for n discs.

Our algorithm must first handle the base case, which is trivial: when n = 1, move d_n directly from P_1 to P_3 . For any input n, this is the final step.

In general, we can solve the Towers of Hanoi problem in three steps with recursion:

1. Move all discs d_1, \ldots, d_{n-1} from P_1 to P_2

- 2. Move disc d_n from P_1 to P_3
- 3. Move discs d_1, \ldots, d_{n-1} from P_2 to P_3 .

Notice that by relabeling the discs that step 1 is equivalent to solving the problem at level T(n-1) if our original goal was to move from P_1 to P_2 . Similarly, step 3 is equivalent to T(n-1) if the original goal was to move from P_2 to P_3 . Step 2 will always take exactly 1 operation. This gives us the recurrence relation $\mathbf{T}(\mathbf{n}) = 2\mathbf{T}(\mathbf{n} - 1) + 1$.

We can get the total number of moves as a function of n using this fact. To help understand the recurrence relation it is helpful to examine a few cases with small n. We can easily see that in the base case T(n = 1) = 1. Thus, T(n = 2) = 2(1) + 1 = 3. Further,

$$T(n = 3) = 2(3) + 1$$

$$= 2(2(1)) + 2(1) + 1$$

$$= 2^{2} + 2^{1} + 2^{0}$$

$$= 7.$$

More generally, T(n) can be viewed as a summation series: $T(n) = \sum_{i=0}^{n-1} 2^i = 2^n - 1$. To see this, we use the recurrence relation T(n) = 2T(n-1) + 1 and see that at each step we add 2^{n-1} steps (this is also apparent from the result in Method 1 above). In the base case we already have a minimum of $2^1 - 1 = 1$ steps. For n = 2 we add $2^{2-1} = 2$ steps for a total of 2 + 1 = 3 steps. In general, at the n^{th} step we are adding 2^{n-1} steps to a total of $2^{n-1} - 1$ steps from the $(n-1)^{th}$ iteration. Because $2^{n-1} + 2^{n-1} = 2 \times 2^{n-1} = 2^n$, we can simplify the series into the closed form equation $2^n - 1$ steps (see also: Equation A.6 in CLRS).

That is, in general for input of size n the Towers of Hanoi algorithm above requires $2^{n} - 1$ operations.