Il Reattore ad Acqua Bollente Modificata (RBMK-1000) è un tipo di reattore nucleare sviluppato dall'Unione Sovietica. È un reattore di tipo moderato e refrigerato ad acqua pesante, progettato per la produzione di energia elettrica. Di seguito, una spiegazione dettagliata del funzionamento del reattore RBMK-1000:

1. **Combustibile Nucleare**

Il combustibile nucleare utilizzato nel RBMK-1000 è l'uranio-235, un isotopo dell'uranio. L'uranio-235 viene arricchito in modo da aumentare la sua concentrazione rispetto all'uranio-238, poiché l'uranio-235 è più facilmente fissile e sottoposto a fissione nucleare.

2. **Moderazione e Controllo**

Il reattore RBMK-1000 utilizza l'acqua pesante (deuterio) come moderatore. Il moderatore rallenta i neutroni prodotti dalla fissione nucleare per aumentare la probabilità di fissione di altri nuclei di uranio-235. Le barre di controllo, fatte di grafite, vengono utilizzate per regolare il flusso di neutroni nel reattore. Spostando le barre all'interno o all'esterno del nocciolo del reattore, è possibile aumentare o diminuire la reattività del reattore.

3. **Reazione Nucleare e Produzione di Calore**

Quando un neutrone colpisce e rompe un nucleo di uranio-235, questo si divide in due o più frammenti più leggeri, rilasciando energia sotto forma di calore. Questa reazione di fissione nucleare continua in modo controllato all'interno del nocciolo del reattore, generando una quantità significativa di calore.

4. **Raffreddamento e Produzione di Vapore**

L'acqua pesante circola attraverso il nocciolo del reattore per raffreddare il combustibile e assorbire il calore prodotto dalla fissione nucleare. L'acqua riscaldata viene quindi convogliata attraverso scambiatori di calore per generare vapore. Questo vapore ad alta pressione viene quindi inviato a una turbina, dove la sua energia cinetica viene convertita in energia meccanica, che a sua volta aziona un generatore elettrico per produrre elettricità.

5. **Condizionamento del Vapore e Raffreddamento**

Dopo aver passato attraverso la turbina, il vapore viene condensato in acqua e riciclato attraverso il sistema di raffreddamento per essere riutilizzato nel ciclo di produzione di vapore. L'acqua di raffreddamento viene raffreddata in torri di raffreddamento o tramite altri metodi di raffreddamento per mantenere il ciclo di produzione di vapore efficiente.

6. **Sicurezza e Controllo del Reattore**

Il reattore RBMK-1000 è dotato di una serie di sistemi di sicurezza e controllo per garantire che la reattività del reattore rimanga entro limiti sicuri. Questi includono sistemi di controllo automatico e manuale, sistemi di raffreddamento di emergenza e sistemi di protezione contro la fusione del nocciolo.

In sintesi, il reattore RBMK-1000 sfrutta la fissione nucleare dell'uranio-235 per generare calore, che viene quindi utilizzato per produrre vapore e generare energia elettrica. Sebbene sia un tipo di reattore relativamente vecchio e abbia dimostrato alcune vulnerabilità, è stato utilizzato per la produzione di energia in diverse centrali nucleari in Unione Sovietica e in altri paesi.