Übungsblatt 11 zu Modellkategorien

Aufgabe 1. Ein erster Einblick in Homotopiepushouts

a) Zeige anhand eines Beispiels in Top, dass folgende wünschenswerte Aussage im Allgemeinen falsch ist: Sei $X \leftarrow A \rightarrow Y$ ein Diagramm. Sei $X' \leftarrow A' \rightarrow Y'$ ein dazu schwach äquivalentes Diagramm. Dann ist auch der Pushout $X \coprod_A Y$ schwach äquivalent zu $X' \coprod_{A'} Y'$.

Der Homotopiepushout eines Diagramms $X \leftarrow A \rightarrow Y$ in einer Modellkategorie ist per Definition der Pushout eines schwach äquivalenten Diagramms $X' \leftarrow A' \rightarrow Y'$, in dem A' kofasernd und die beiden Morphismen Kofaserungen sind.

- b) Zeige, dass der Homotopiepushout bis auf schwache Äquivalenz wohldefiniert ist.
- c) Sei die Modellkategorie linkseigentlich und sei einer der Morphismen $X \leftarrow A$ und $A \rightarrow Y$ eine Kofaserung. Zeige, dass dann der Homotopiepushout und der gewöhnliche Pushout übereinstimmen.

Aufgabe 2. Fasernder Ersatz durch baryzentrische Unterteilung und Erweiterung

Die baryzentrische Unterteilung sd $\Delta[n]$ von $\Delta[n]$ ist der Nerv der Partialordnung der nichtdegenerierten Simplizes von $\Delta[n]$. Wir definieren einen Funktor Ex: sSet \to sSet durch $\mathrm{Ex}(X)_n := \mathrm{Hom}_{\mathrm{sSet}}(\mathrm{sd}\,\Delta[n],X)$.

- a) Wie sehen $\operatorname{sd} \Delta[1]$ und $\operatorname{sd} \Delta[2]$ aus?
- b) Gib den kanonischen Morphismus $j_X: X \to \text{Ex}(X)$ an.
- c) Zeige, dass sich alle Hörner von Ex(X) in $Ex^2(X)$ füllen lassen.
- d) Folgere, dass der Kolimes von $X \to \operatorname{Ex}(X) \to \operatorname{Ex}^2(X) \to \cdots$ ein Kan-Komplex ist.

Aufgabe 3. Anodynizität von Kofaserungen

Zeige: Eine Kofaserung zwischen simplizialen Mengen (bezüglich der Quillen-Modellstruktur) ist genau dann anodyn, wenn sie eine schwache Äquivalenz ist.

Aufgabe 4. Fundamentalgruppe der eindimensionalen Sphäre Berechne $\pi_1(\mathbb{S}^1)$.

Aufgabe 5. Erzeugnis unter beliebigen vs. filtrierten Kolimiten

Sei S eine Menge κ -kompakter Objekte in einer kovollständigen Kategorie \mathcal{C} . Sei jedes Objekt aus \mathcal{C} kleiner Kolimes von Objekten aus S. Zeige, dass jedes Objekt aus \mathcal{C} dann ein κ -filtrierter Kolimes von Objekten aus \overline{S} ist, wobei \overline{S} der Abschluss von S unter κ -kleinen Kolimiten ist.

