Partie 10

Synthèse et perspectives

Partie 10 : Synthèse & perspectives - Plan

- Synthèse
- Perspectives

Modèle en couche

Niveau physique

- Traitement du signal
- Numérisation des données
- Codage en ligne
- Modulation

Décomposition en série de Fourier

□ Toute fonction périodique g(t) de période T peut se décomposer en une somme (éventuellement infinie) de fonctions sinus et cosinus

$$g(t) = c_0 + \sum_{1}^{\infty} a_n \cos(2\pi n f_0 t) + \sum_{1}^{\infty} b_n \sin(2\pi n f_0 t)$$

 f_0 : la fréquence fondamentale ($f_0=rac{1}{T}$)

 $a_n \, {
m et} \, b_n \, :$ les amplitudes cosinus et sinus de la n $^{
m i\`{e}me}$ harmonique

 c_0 : la composante continue du signal

$$a_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f_0 t) dt$$

$$c_0 = \frac{1}{T} \int_0^T g(t) dt$$

$$b_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f_0 t) dt$$

■ Hauteur de raie dans le spectre d'amplitude $\sqrt{a_n^2 + b_n^2}$

Numérisation

Echantillonage

$$f_e >= 2 * f_{max}$$

Quantification

$$q = 2^n$$

Codage

n bits/échantillon

Codage en ligne

Débit binaire [bit/s]

 $D_b = 1/T_b$

Valence

 $M = 2^r$ (r bits/symbole)

Rapidité de modulation [bauds]

$$R_s = 1/T_s$$

Modulation

Modulation d'amplitude

Modulation de fréquence

Modulation de phase

Niveau liaison

- Délimitation des trames
- Contrôle d'erreur
- HDLC

Délimitation des trames

■ Fanion HDLC

01111110

Mécanisme de transparence

émission de ...1101101111110101...

insertion de "0" ...1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1...

réception de ...1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 ...

Contrôle d'erreur

CRC

■ Données à protéger
$$D = 101110 \rightarrow D(X) = X^5 + X^3 + X^2 + X$$

Polynôme générateur
$$G = 1001 \rightarrow G(X) = X^3 + 1 \rightarrow k = 3$$

- Si D(X) = G(X).B(X) + R(X) alors R est le check sum CRC
- R est le reste de la division $D(X) \cdot X^k / G(X)$
- Les calculs sont effectués en modulo 2

$$D(X)$$
. $X^{k} = (X^{5} + X^{3} + X^{2} + X)$. $X^{3} = X^{8} + X^{6} + X^{5} + X^{4}$

$$\frac{X^{8} + X^{6} + X^{5} + X^{4}}{X^{8} + X^{5}}$$

 $X^6 + X^3$

 $X^4 + X^3$

 $X^4 + X$

X3 + X

 $\times 3 + 1$

$$X^3 + 1$$

$$X^5 + X3 + X + 1$$

$$R(X) = X + 1$$

HDLC

- Numéro de séquence
- Numéro d'acquittement
- Fenêtre d'anticipation
- Contrôle de flux
- Rejet global vs. Rejet sélectif

Réseaux grande distance

- Réseaux à commutation de circuits
 - Pas de concept de paquet (e.g. Réseau Téléphonique Comuté RTC)

- Réseaux à commutation de paquets (transfert des blocs de données appelés "paquets")
 - Réseaux en mode circuit virtuel (e.g. X.25, ATM)
 - Réseau en mode datagrame (e.g. IP)

26-a → 11-e	1 1-b → 8-g
26 e 11	b g 8-h → 3-d
g a	f d

destination	liaison de sortie	
a	L1	
1	L2	
N	L3	

Routage

(X → Z via Y) < (X→Z en direct)

Table de X mise à jour

- Protocoles de routage
 - Protocoles à vecteur de distance
 - □ Chaque noeud échange avec les voisins des vecteurs de distance (une liste des destinations qu'il peut atteindre et les coûts associés)
 - A la réception d'un vecteur de distance, chaque noeud essaie découvre s'il est possible d'atteindre de nouvelles destinations ou d'avoir des chemins plus courts en passant par le voisin qui lui a communiquer le vecteur de distance
 - Protocoles à état de lien
 - Chaque noeud diffuse les états de ses liens à tous les noeuds dans le réseau et possède d'une topologie globale
 - Chaque noeud applique l'algorithme de Dijkstra sur la topologie globale pour calculer les chemins les plus courts vers les autres noeuds

Table de X originale

Réseaux locaux

- Ethernet
 - CSMA/CD
 - Ecouter le canal avant d'émettre une trame
 - Détection de collision pendant la transmission de la trame

D [bit/s] : débit du réseau Ethernet

V [m/s] : vitesse du signal

Temps_de_transmission_de_la_trame

Temps_aller_retour

C'est-à-dire:

M/D ≥ 2 * L/V

 $=> L \leq M/D \times V/2$

Niveau réseau : Protocole IP

Adressage IP

□ Sous-réseaux

■ Masque de sous-réseau

142.68.2.6	10001110.01000100.00000010.00000110	
255.255.255.0	11111111.11111111.11111111.00000000	&&
142.68.2.0	10001110.01000100.00000010.00000000	=

Niveau transport: TCP et UDP

- Numéro de port (< 1024 : well-known ports)</p>
- UDP
 - Mode non-connecté
- TCP
 - Transmission fiable
 - Mode connecté
 - Oritenté octet
 - Numéro de séquence
 - Numéro d'acquittement
 - Contrôle de flux

UDP

(Pas d'établissement de connexion, Pas de terminaison de connexion)

TCP

Partie 10 : Synthèse & perspectives - Plan

- Synthèse
- Perspectives

Virtualisation des réseaux

Réseaux 5G

Clouds

Sofware Defined Networking

