	Machine Learning - HWh
	Loizaan Charania - 111463646
01	GMM
	M Step
<i>x</i> }	Outfut of \mathcal{E} etch is $R = \begin{bmatrix} 0.3 & 0.7 \\ 0 & 1 \end{bmatrix}$
	where Rie is the probability of observation x: belonging to
)	Optimising the likelishood function is the same as optimising the log-likelihood function.
	The log-likelihood function we are trying to optimise are
	$O(O,O^{(t-1)}) = \sum_{i} \sum_{k} s_{ik} \log(T_{ik}) + \sum_{i} \sum_{k} s_{ik} \log(p(x_{i} O_{i}))$
2)	We know, $T_{c} = 1 \leq k_{c} = k_{c}$
	N ' N
www.Printab	$f(x) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{13}{30}$ Separate 3 30 30 30 30 30 30 30

	$T_2 = \frac{1}{3} \left(0 + 0.7 + 1\right) = \frac{1.7}{3} = \frac{17}{3}$
3) //L	$\frac{1}{h_{\epsilon}} \frac{h_{\epsilon} \cdot x_{\epsilon}^{\circ}}{h_{\epsilon}}$
- c μ ₁	$= \frac{1.1 + 0.3 \times 10 + 0 \times 20}{1 + 0.3 \times 10} = \frac{1}{1.3} = \frac{1.3}{1.3}$
M ₂	$= \frac{0.1 + 0.7 \times 10 + 1 \times 20}{0 + 0.7 + 1} = \frac{27}{1.7} = \frac{270}{1.7}$
<i>∕</i> ∥	$dd \cdot dev = \sum_{c}$
are !	Ryour, $\sum_{c} = \sum_{i=1}^{N} h_{ii}(x_i - \mu_c)(x_i - \mu_c)^{T}$ h_c
· 5	$= \frac{1 \cdot \left(\frac{1 - \frac{10}{13}}{13}\right)^2 + 0 \cdot 3 \left(\frac{10 - \frac{10}{13}}{13}\right)^2 + 0 \cdot \left(\frac{20 - \frac{10}{13}}{13}\right)^2}{(1 + 0 \cdot 3 + 0)}$
	- 30 + 30 +0 = 2430 1/3 169
www.PrintablePaper.net _	$\tilde{\Sigma} = \sqrt{\Sigma_1} = 3.79$

$\frac{3.19\sqrt{271}}{-\frac{1}{2}\left(\frac{10-\frac{270}{17}}{4.92}\right)^{2}} = 0.0397$ $\frac{1}{4.92\sqrt{271}}$
$ \rho(x_3 \theta_1) = \frac{1}{2} \left(\frac{20-40}{13}\right) = 4.979 \times 10^{-6} $ 3.79/27(
$p(x_3 \theta_2) = \frac{1}{4.92} \left(\frac{30 - \frac{270}{17}}{4.92} \right) = 0.0571$
$\frac{13 \times 0.091}{13 \times 0.091 + \frac{17}{30} \times (8.385 \times 6^{-6})} = 0.988$
$\frac{9}{12} = \frac{17 \times (8.385 \times 10^{-1})}{30} = 0.012$ $\frac{13 \times 0.091 + 17 \times (8.385 \times 10^{-1})}{30}$
$\frac{13}{9_{21}} = \frac{30 \times (0.0199)}{13 \times 0.0199 + 17 \times 0.0397} = 0.277$ $\frac{13 \times 0.0199 + 17 \times 0.0397}{30}$
$\frac{9_{03} = \frac{17}{30} \times (0.0397)}{13 \times (0.0199) + 17 \times 0.0397} = 0.723$ $= 0.723$ $= 0.723$ 30 www.PrintablePaper.net

	$\frac{9}{30} \times (4.979 \times 10^{-6}) = 6.667 \times 10^{-5}$ $\frac{13}{30} \times (4.979 \times 10^{-6}) + 17(0.0571)$ $\frac{13}{30} \times (4.979 \times 10^{-6}) + 17(0.0571)$
	$\frac{9_{32}}{30} = \frac{17 \times (0.0571)}{30} = 0.9999333$ $\frac{13}{30} (4.979 \times 10^{-6}) + \frac{17}{30} (0.0571)$
	$R = \begin{pmatrix} 0.988 & 0.012 \\ 0.277 & 0.723 \\ 6.667 \times 10^{-5} & 0.999933 \end{pmatrix}$
92	PCA via successive Deflation We know that
	$X = [X_{ij}, \dots, X_{in}] (dxn) \text{ matrix}$ $\text{Lovaliance of } X \implies C = [I] \times [X_{in}]$
	v.v. v. ore the first k eigenvectors of c v. v. = { 0 if i = i } if i = i
	The Deflated maters $\bar{X} = (I - V, V, T) X$ (a)
www.Printab	plePaper.net

<u> </u>	To know,
	$C = 1 \times x^{T} - \lambda, \nu, \nu, \tau$
	n
	We know that
	$C = I \tilde{X} \tilde{X}^T$
	laon Q
	T T
	$\overline{C} = I \left(J - v_1 v_1^{T} \right) \times \left(\left(J - v_1 v_1^{T} \right) \times J \right)$
	$= \underbrace{I - v_i v_i^{T} \times X^{T} (I - v_i v_i^{T})}_{Q} \left[(AB)^{T} = B^{T} A^{T} \right]$
	$= \int_{\Omega} \left(I - v_1 v_1^{T} \right) \chi \chi^{T} \left(I^{T} - \left(v_1 v_1^{T} \right)^{T} \right)$
	$= \int_{D} \left(\overline{J} - v_{1}v_{1}^{T} \right) X X^{T} \left(\overline{J} - v_{1}v_{1}^{T} \right)$
	7
	$= \left(\left(\mathbf{X} - \mathbf{X} \mathbf{V}_{1} \mathbf{V}_{1}^{T} \mathbf{X} \right) \left(\mathbf{X}^{T} - \mathbf{X}^{T} \mathbf{V}_{1} \mathbf{V}_{1}^{T} \right) \right)$
,	$= \underbrace{1 \left[X x^{T} - X x^{T} v_{1} v_{1}^{T} - v_{1} v_{1}^{T} X X^{T} + v_{1} v_{1}^{T} X X^{T} v_{1} v_{1}^{T} \right]}$
	-(1)
	(b)
www.Printabl	lePaper.net

We know,	
$XX^{T}V_{i}=n\lambda_{i}V_{i}-(c)$	
Taking transfore on both sides	
$(\chi \chi^{\dagger} V_{+})^{\dagger} = (\chi \lambda_{+} V_{+})^{\dagger}$	
$v_{i}^{T} \times x^{T} = n \lambda_{i} v_{i}^{T} - (d)$	
substitute (c) & (d) in (b), we get	
$\overline{C} = \sum_{i} \left[(x x^{T} - (x x^{T} v_{i}) v_{i}^{7} - v_{i} (v_{i}^{T} X x^{T}) + v_{i} v_{i}^{T} (x x^{T} v_{i}) v_{i}^{7} \right]$	
D (XX V) (X X V) + V, (X X V, V)	
$\overline{C} = I\left[XX^{T} - n\lambda_{1}\nu_{1}\nu_{1}^{T} - n\lambda_{1}\nu_{1}\nu_{1}^{T} + n\lambda_{1}\nu_{1}\nu_{1}^{T}\nu_{1}\nu_{1}^{T}\right]$	
n	
/ / 7	
$= 1 \times x^{T} - n \lambda_{1} v_{1} v_{1}^{T} - n \lambda_{1} v_{1} v_{1}^{T} + n \lambda_{1} v_{1} v_{1}^{T}$	
$= \frac{1}{n} \left[x x^{T} - n \lambda_{1} v_{1} v_{1}^{T} - n \lambda_{1} v_{1} v_{1}^{T} + n \lambda_{1} v_{1} v_{1}^{T} \right]$ $= \frac{1}{n} \left[x x^{T} - n \lambda_{1} v_{1} v_{1}^{T} - n \lambda_{1} v_{1} v_{1}^{T} + n \lambda_{1} v_{1} v_{1}^{T} \right]$	
$= 1 \times x^7 - \lambda_1 v_1 v_1^7$	
n	
$\frac{1}{2}$	
	_
1 le de la description de la d	
Hence, broved	_
www.PrintablePaper.net	
11	

3)	Consider EV,
	$\overline{c}v_{i}=1(xx^{7}-\lambda v_{i}v_{i}^{7})v_{i}$
	'n
	- () , 7 ,
	$= \frac{1}{n} \times \times^{7} \cup_{i} - \lambda \cup_{i} \cup_{i}^{7} \cup_{i}$
	$= \underline{1}(n\lambda_1 V_1) - \lambda_1 V_1(V_1^T V_1)$
	n
	(1) (1,17,17
	$= \lambda_1 v_1 - \lambda_1 v_1(1) \left[(v_1 v_1^7 v_1 = 1) \right]$
	Lied in the direction of the first principal vector.
	vertice.
	Consider EV2
	$\frac{\partial}{\partial v_2} = \frac{1}{2} \left(\frac{x^7 - n}{x^7 - n} \frac{\lambda_1 v_1 v_1^7}{v_2} \right) v_2$
	$= (x \times \nabla y - \lambda_1 y_1 (y_1^T y_2))$
	$= 1 \left(x \times^{\top} v_{1} \right) - 0 \left[v_{1} V_{2} = 0 \right]$
	$=\frac{1}{1}\left(n\frac{1}{2}v_2\right)$
	= \lambda_2 \nabla_2
	$\overline{z}v_{2}=\lambda_{2}v_{2}$
www.Printal	plePaper.net
	This implies that the first bign eigen
	vertire of C is V2

