

LABORATORIUM FIZYCZNE

Grupa nr	Semestr		Grupa laboratoryjna	
Imię i Nazwisko: .				
Ćwiczenie nr:				
Temat ćwiczenia:		•••••		
Data wykonania ć	wiczenia:	••••••		
Data oddania sprav	wozdania:			
			Ocena:	
			Podpis prowad	lzącego zajęcia

1 Wstęp

Zajęcia laboratoryjne polegały na analizie ruchu drgającego ciężarka zawieszonego na sprężynie bądź układzie sprężyn, czyli pomiarze okresu drgania. Pomiary miały być dokonane dwoma metodami - statyczną i dynamiczną. Celem tego miało być wyznaczenie współczynnika sprężystości tych sprężyn oraz ich układów, a także wyznaczenie modułu sztywności materiału sprężyny.

2 Otrzymane wyniki

Wyniki otrzymane podczas pomiaru na laboratorium

Pierwsza sprężyna

Metoda statyczna			
Masa ciężarków[g]	Wydłużenie[cm]		
0	0		
50.320	5		
100.342	10		
150.596	15		
200.861	20		

Metoda dynamiczna				
Masa	Czas wykonania 20 wahań[s]			
ciężarków[g]	Pomiar 1 Pomiar 2 Pomiar 3			
50.152	9.31	9.21	9.23	
100.508	12.59	12.68	12.56	
150.830	15.25	15.17	15.16	
201.095	17.40	17.41	17.28	

Druga sprężyna

Metoda statyczna			
Masa ciężarków[g]	Wydłużenie[cm]		
0	0		
50.155	4.8		
100.478	10		
150.614	15.3		
200.790	20.5		

Metoda dynamiczna				
Masa	Czas wykonania 20 wahań[s]			
ciężarków[g]	Pomiar 1 Pomiar 2			
50.155	9.53 9.49			
100.478	12.89 12.93			
150.614	15.57 15.43			
200.790	17.76	17.77		

własności pierwszej sprężyny

$$r=0.4mm$$

$$N=77$$
 zwojów

$$R = 8.3mm$$

Obie sprężyny połączone równolegle

0 010 0p1 2 2 11 11 p0140		
Metoda statyczna		
Masa ciężarków[g]	Wydłużenie[cm]	
0	0	
50.155	2.5	
100.478	5.2	
150.614	7.8	
200.790	10.2	

Metoda dynamiczna			
Masa	Czas wykonania 20 wahań[s]		
$\operatorname{ciężarków[g]}$	Pomiar 1 Pomiar 2 Pomiar 3		
50.155	8.54	8.53	8.36
100.478	10.56	10.55	10.55
150.614	12.15	12.13	12.11
200.790	13.58	13.57	13.59

Obie sprężyny połączone szeregowo

Metoda statyczna			
Masa ciężarków[g]	Wydłużenie[cm]		
0	0		
50.155	10.5		
100.478	20.8		
150.614	31.1		
200.790	41.3		

0			
Metoda dynamiczna			
Masa	Czas wykonania 20 wahań[s]		
ciężarków[g]	Pomiar 1 Pomiar 2 Pomiar 3		
50.155	13.91	13.88	13.96
100.478	18.58	18.45	18.40
150.614	22.16	22.15	22.16
200.790	25.32	25.36	25.30

3 Opracowanie wyników

M7.1 Wyznaczyć współczynnik sprężystości wybranej sprężyny wykorzystując statyczną metodę pomiaru czyli badając zależność jej wydłużenia od wartości obciążenia

Wyznaczanie współczynnika sprężystości sprężyny nr. 1 Mierzyliśmy wydłużenie sprężyny pod wpływem różnych wartości obciążenia - od 0 g do około 200 g, dokładając kolejne ciężarki. Wyniki wyglądają następująco:

Otrzymane wyniki za pomocą metody statycznej

Te dane pomogą nam wyznaczyć współczynnik sprężystości danej sprężyny. Z prawa Hooke'a wynika, że siła potrzebna do odkształcenia ciała jest wprost proporcjonalna do tego odkształcenia. Można to wyrazić równaniem F = kx, gdzie F jest przykładaną siłą, k jest stałą sprężystości ciała, a x jego wydłużeniem. Pozwala to łatwo wyprowadzić wzór na stałą sprężystości:

Masa ciężarków[g]

$$k = \frac{F}{x}$$

Daną x uzyskaliśmy mierząc wydłużenie sprężyny, a F możemy obliczyć za pomocą wzoru na siłę ciężkości F=mg, gdzie m jest masą obciążenia naszej sprężyny, a g jest wartością przyspieszenia grawitacyjnego, która na Ziemi wynosi ok. $9,81\frac{m}{s^2}$. Po dokonaniu wszystkich obliczeń otrzymaliśmy następujące wyniki:

Masa ciężarków[kg]	Wydłużenie[m]	stała sprężystości k
0.050320	0.05	9.87335
0.100342	0.10	9.84344
0.150596	0.15	9.84854
0.200861	0.20	9.85245
Średn	9.85445	

Tabela 1: obliczanie stałej k dla poszczególnych pomiarów.

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na $0,1~{\rm cm}.$ Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.081 * x + 1.914$$

$$f'(x) = 0.081$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 9.85445$$

$$k = (9.85445 \pm 0.081) \frac{N}{m}$$

M7.2 Wyznaczyć współczynnik sprężystości wybranej sprężyny wykorzystując dynamiczną metodę pomiaru czyli mierząc zależność okresu jej drgań od wartości obciążenia.

Otrzymane wyniki za pomocą metody dynamicznej

używając

$$k = \frac{4\pi^2 m}{T^2}$$

Masa ciężarków[kg]	Czas wykonania 20 wahań[s]	T[s]	stała sprężystości k
0.050152	9.25	0.4625	9.24765
0.100508	12.61	0.6305	9.97253
0.150830	15.19	0.75966	10.30876
0.201095	17.36	0.86816	10.52242
Średnia			10.01283

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na $0,1~{\rm cm}$. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.081 * x + 1.914$$

$$f'(x) = 0.081$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 10.01283$$

$$k = (10.01283 \pm 0.081) \frac{N}{m}$$

M7.3 Obliczyć moduł sztywności materiału sprężyny.

Współczynnik sprężystości sprężyny jest zależny od modułu sztywności materiału, z którego została zrobiona, na co wskazuje równanie $k=\frac{Gr^4}{4NR^3}$. W celu obliczenia modułu, można go wyprowadzić z tego wzoru by uzyskać takie równanie:

$$G = \frac{4kNR^3}{r^4}$$

gdzie:

k - współczynnik sprężystości sprężyny,

N - liczba zwojów sprężyny,

R - promień sprężyny,

r - promień drutu sprężyny.

$$G = \frac{9.85445 * 4 * 77 * 0.0083^{3}}{0.0004^{4}} = 67.7918GPa$$

Obliczenia dla zadań M7.4. - M7.5.

Obliczamy współczynnik sprężystości dla drugiej sprężyny, aby porównać czy teoretyczny współczynnik sprężystości układu sprężyn jest zgodny z pomiarem.

Masa ciężarków[kg] Wydłużenie[m] Stała sprężystości k 0.0501550.048 10.25049 0.100478 0.100 9.856870.1506140.153 9.657420.200790 0.205 9.6088 Średnia 9.84338

Tabela 2: obliczanie stałej k dla poszczególnych pomiarów.

Masa ciężarków[kg]	Czas wykonania 20 wahań[s]	T[s]	Stała sprężystości k
0.050155	9.51	0.4755	8.74907
0.100478	12.91	0.6455	9.51086
0.150614	15.50	0.775	9.89133
0.200790	17.77	0.88824	10.03677
Średnia			9.547

 $\mathbf{M7.4}$ Wyznaczanie współczynnika sprężystości sprężyn połączonych równolegle

a) Metoda statyczna

Otrzymane wyniki za pomocą metody statycznej

Masa ciężarków[kg]	Wydłużenie[m]	stała sprężystości k
0.050155	0.025	19.68079
0.100478	0.052	18.95549
0.150614	0.078	18.94347
0.200790	0.102	19.31152
Średnia		19.22281

Tabela 3: obliczanie stałej k dla poszczególnych pomiarów.

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na $0,1~{\rm cm}$. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.051 * x - 0.119$$

$$f'(x) = 0.051$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 19.22281$$

$$k = (19.22281 \pm 0.081) \frac{N}{m}$$

Korzystając ze wzoru $k=k_1+k_2$ możemy obliczyć teoretyczną wartość współczynnika sprężystości w celu porównania i sprawdzenia czy nasze pomiary są prawidłowe.

$$k = 9.85445 + 9.84338 = 19.69783$$

Wynik mierzony bliski jest temu teoretycznemu.

b) Metoda dynamiczna

Otrzymane wyniki za pomocą metody dynamicznej

Masa ciężarków[kg]	Czas wykonania 20 wahań[s]	T[s]	stała sprężystości k
0.050155	9.48	0.42383	11.01183
0.100478	10.55	0.52766	14.23262
0.150614	12.13	0.60649	16.14992
0.200790	13.58	0.67899	17.17697
Średnia			14.64282

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na 0,1 cm. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.061 * x + 1.862$$

$$f'(x) = 0.061$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 14.64282$$

Zatem:

$$k = (14.64282 \pm 0.061) \frac{N}{m}$$

Korzystając ze wzoru $k=k_1+k_2$ możemy obliczyć teoretyczną wartość współczynnika sprężystości.

$$k = 10.01283 + 9.547 = 19.55983$$

Wynik mierzony daleki jest teoretycznemu co oznacza mało dokładne, bądź błędne pomiary.

 $\mathbf{M7.5}$ Wyznaczanie współczynnika sprężystości sprężyn połączonych szeregowo

a) Metoda statyczna

Otrzymane wyniki za pomocą metody statycznej

Masa ciężarków[kg]	Wydłużenie[m]	stała sprężystości k
0.050155	0.105	4.68594
0.100478	0.208	4.73897
0.150614	0.311	4.75102
0.200790	0.413	4.7695
Średnia		4.73636

Tabela 4: obliczanie stałej k dla poszczególnych pomiarów.

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na $0,1~{\rm cm}$. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.206 * x + -0.556$$

$$f'(x) = 0.206$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 4.73636$$

Zatem:

$$k = (4.73636 \pm 0.206) \frac{N}{m}$$

Korzystając ze wzoru $\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}$ oraz co za tym idzie $k=\frac{k_1k_2}{k_1+k_2}$ możemy obliczyć teoretyczną wartość współczynnika sprężystości.

$$k = \frac{9.85445 * 9.84338}{9.85445 + 9.84338} = 4.92445$$

Wynik mierzony bliski jest temu teoretycznemu.

b) Metoda dynamiczna

Otrzymane wyniki za pomocą metody dynamicznej

Masa ciężarków[kg]	Czas wykonania 20 wahań[s]	T[s]	stała sprężystości k
0.050155	13.92	0.69583	4.08527
0.100478	18.48	0.92383	4.64326
0.150614	22.16	1.10782	4.8402
0.200790	25.33	1.26633	4.9382
Średnia		4.62672	

Niepewność pomiaru wydłużenia sprężyny oszacowaliśmy na $0,1~{\rm cm}$. Niepewność pomiaru współczynnika sprężystości:

$$f(x) = 0.117 * x + 3.269$$

$$f'(x) = 0.117$$

Średnia wartość współczynnika sprężystości sprężyny:

$$k = 4.62672$$

$$k = (4.62672 \pm 0.117) \frac{N}{m}$$

Korzystając ze wzoru $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2}$ oraz co za tym idzie $k = \frac{k_1 k_2}{k_1 + k_2}$ możemy obliczyć teoretyczną wartość współczynnika sprężystości.

$$k = \frac{10.01283 * 9.547}{10.01283 + 9.547} = 4.88718$$

Wynik mierzony bliski jest temu teoretycznemu.

4 Źródła

Do edycji służyła platforma overleaf

Wszystkie wykresy rysowane poprzez gnuplot

Kod użyty znalezienia prostych za pomocą metody najmniejszych kwadratów.

```
def calculateB(x, y, n):
        sx = sum(x)
        sy = sum(y)
        sxsy = 0
        sx2 = 0
        for i in range(n):
                sxsy += x[i] * y[i]
                sx2 += x[i] * x[i]
        b = (n * sxsy - sx * sy)/(n * sx2 - sx * sx)
        return b
def leastRegLine(X,Y,n):
        b = calculateB(X, Y, n)
        meanX = int(sum(X)/n)
        meanY = int(sum(Y)/n)
        a = meanY - b * meanX
        print("Y = ", '%.3f'%b,"*x + ",'%.3f'%a, sep="")
#pierwsza sprężyna, metoda statyczna
print("pierwsza sprezyna, metoda statyczna:")
X = [0, 50.320, 100.342, 150.596, 200.861]
Y = [0, 5, 10, 15, 20]
n = len(X)
leastRegLine(X, Y, n)
```

Cały kod źródłowy oraz wszystkie użyte pliki znajdują się na: github.com/GramNaTosterze/PG_Fizyka_Lab1_Sprawozdanie