GIS Data: Sources and Capture

Data Collection

- Capture: becomes digital
 - primary: "born digital"
 - secondary: digitized
- Transfer: acquired/digitized by someone else
- Either way, you still may have to
 - edit and clean
 - re-project
 - generalize

Data Collection Techniques

- Raster
 - primary
 - digital remote sensing
 - secondary
 - scanned photographs
 - scanned maps
 - DEMs from maps

- Vector
 - primary
 - GPS
 - surveying
 - secondary
 - topographic surveys
 - toponomy from text

Raster Primary Data Capture

- Remote sensing
 - passive
 - optical scanners
 - microwave radiometers
 - active
 - radar
 - lidar

- Resolution
 - spatial
 - cell size
 - swath width
 - spectral
 - bandwidth
 - #bands
 - temporal
 - repeat cycle
 - radiometric
 - range
 - precision

MODIS

(MODerate-resolution Imaging Spectrometer)

Platforms

EOS Terra (since Feb 2000)

EOS Aqua (since May 2002)

Spatial resolution 2330 km swath 250..1000 m / pixel

Spectral bands
36 visible, near-IR, thermal

Temporal resolution every 1..2 days 100% duty cycle

Landsat Satellites

satellite	sensor	data start	data stop
Landsat 4		1982	1993
Landsat 5	TM	1984	2011
Landsat 7	ETM+	1993	*
Landsat 8		2013	
Landsat 9	OLI	2021	

^{*}partial images since 2003

- Spatial resolution
 - 185 km swath
 - 30 m / pixel
- Temporal resolution
 - every 16 days
 - every 8 days since 2013:
 most recent 2 Landsats 8 days apart

Landsat Spectral Bands

platform	sensor	spatial resolution	spectral bands	temporal resolution
PlanetScope	PS2	3.7 m	4	daily
	PSB		8	
SkySat		≤ 1 m	4	targeted
		≤ 0.86 m	pan	

Vector Primary Data Capture

- Surveying
 - Angle and distance measurements from known locations
 - Expensive field equipment and crews
 - Most accurate method for large scale, small areas
- Global navigation satellite systems (GNSS)
 - Collection of satellites used to fix location re: Earth center
 - GPS (US), GLONASS (Russia), BeiDou (China), Galileo (EU)
 - Global Positioning System (GPS)

GPS: Satellites

- 24 satellites
 - 4 satellites / orbit
 - 6 orbits
 - 26 km
 - 55° inclination

⇒ always > 4 satellites above horizon

GNSS: How It Works

 a) with a range measurement from one satellite, the receiver is positioned somewhere on the sphere defined by the satellite position and the range distance, r

b) with two satellites, the receiver is somewhere on a circle where the two spheres intersect

c) with three satellites the receiver is at one of two points where the three spheres intersect

see also: video

GNSS: It's Not Perfect

Differential GNSS

13

James Frew • ESM 263 • Winter 2022

Wide Area Augmentation System

GNSS: Accuracy

James Frew • ESM 263 • Winter 2022

15

Secondary Data Capture

- Data collected for other purposes can be converted for use in GIS
- Raster conversion
 - Scanning of maps, aerial photographs, documents, etc.
 - Important parameters:
 - spatial resolution (dots per inch)
 - radiometric resolution (bits per pixel)

Scanning Example: US Topo

- USGS topo maps in PDF
 - "GeoPDF" metadata
- New & historical
 - new: multi layers
 - old: single scan
 - cool examples!
- Mix of projections and scan methods

James Frew • ESM 263 • Winter 2022

17

Scanning maps: orientation issues

- Boundaries
 - meridians and parallels
- Projection
 - conformal conic (older)
 - UTM (newer)
 - meridians pinch;parallels curve
- Map sheet
 - quad bounding rectangle
 - not projection-aligned
 - example

Figure 6. Plane grid, quadrangle neatline, and map sheet relationships.

Vector Secondary Data Capture

- Manual
 - Keyboard
 - transcription
 - "heads-up" digitizing
 - (see also Bolstad ch. 4)
 - Coordinate digitizer
 - Point
 - Stream

- Automatic
 - Scan
 - vector = line_detect(raster)
 - OCR
 - extract placenames or coordinates from scanned text

Figure Credits

- GIS Fundamentals, 6th ed.
 - ISBN 978-1-59399-552-2
- Geographic Information Systems and Science, 2nd ed.
 - ISBN 978-0470870013
- Introduction to Geographic Information Systems, 4th ed.
 - ISBN 978-0-07-305115-2
- Using ArcGIS Spatial Analyst
- Wikimedia Commons
- NASA Landsat Science