CSE 2500-01: Homework 9

Arturo Salinas-Aguayo

Spring 2025

Electrical and Computer Engineering Department

College of Engineering, University of Connecticut $_{\text{Coded in } \textsc{LAT}_{\textsc{EX}}}$

Problems

1. Let $A = \{n \in \mathbb{Z} \mid n = 5r, \exists r \in \mathbb{Z}\}$ and $B = \{m \in \mathbb{Z} \mid m = 20s, \exists s \in \mathbb{Z}\}.$

Theorem 1: Proofs of Set Inclusion

(a) $A \subseteq B$ No, $A \not\subset B$.

Disproof by Counterexample. $A \nsubseteq B$. For example $5 \in A$ because $5 = 5 \cdot 1$, but $5 \neq 20k$ for any integer k. Therefore, $5 \notin B$.

(b) $B \subseteq A$ Yes, every element of B is in A.

Proof. Suppose n is any element of B. n = 20k for some integer k, and n = 5(4k). So, since 4k is an integer, $n \in A$.

QED

2. Let $A = \{a, b, c\}, B = \{b, c, d\}, \text{ and } C = \{b, c, e\}$

Theorem 2: Union and Intersect Operations

(a) Find $A \cap (B \cup C)$, $(A \cap B) \cup C$, and $(A \cap B) \cup (A \cap C)$. Which of these sets are equal?

i.
$$A \cap (B \cup C) = \{a, b, c\} \cap \{b, c, d, e\} = \{b, c\}$$

ii.
$$(A\cap B)\cup C=\{b,c\}\cup \{b,c,e\}=\{b,c,e\}$$

iii.
$$(A\cap B)\cup (A\cap C)=\{b,c\}\cup \{b,c\}=\{b,c\}$$

iv. Hence,
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(b) Find (A - B) - C and A - (B - C). Are these two sets equal?

i.
$$(A - B) - C = \{a\} - \{b, c, e\} = \{a\}$$

ii.
$$A - (B - C) = \{a, b, c\} - \{d\} = \{a, b, c\}$$

iii. No, these sets are not equal.

3. Let $S_i = \{x \in \mathbb{R} \mid 1 < x < 1 + \frac{1}{i}\} = (1, 1 + \frac{1}{i})$ for all positive integers i.

Theorem 3: Set Operations

- (a) $\bigcup_{i=1}^{\infty} S_i = \bigcup_{i=1}^{\infty} (1, 1 + \frac{1}{i}) = (1, 2) = S_1$
- (b) $\bigcap_{i=1}^{\infty} S_i = \bigcup_{i=1}^{\infty} (1, 1 + \frac{1}{i}) = \emptyset$
- 4. Identify if the following sets are partitions:

Theorem 4: Partitions

- (a) Is $\{\{5,4\}, \{7,2\}, \{1,3,4\}, \{6,8\}\}$ a partition of $A = \{1,2,3,4,5,6,7,8\}$? No, because 4 is in two sets, $\{5,4\}$ and $\{1,3,4\}$.
- (b) Is $\{\{1,5\}, \{4,7\}, \{2,8,6,3\}\}$ a partition of $A = \{1,2,3,4,5,6,7,8\}$? Yes, every element in $\{1,2,3,4,5,6,7,8\}$ is in exactly one set and no element is in more than one set of the partition.
- 5. Find $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

Theorem 5: Power Sets

$$\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$$

6. Let $A_1 = \{1, 2, 3\}$, $A_2 = \{u, v\}$, and $A_3 = \{m, n\}$. Find the following sets:

Theorem 6: Set Products

(a) $(A_1 \times A_2) \times A_3$

$$(A_1 \times A_2) \times A_3 = \{((1, u), m), ((1, u), n), ((1, v), m), ((1, v), n), ((2, u), m), ((2, u), n), ((2, v), m), ((2, v), n), ((3, u), m), ((3, v), m), ((3, v), n)\}$$

(b) $A_1 \times A_2 \times A_3$

$$A_1 \times A_2 \times A_3 = \{(1, u, m), (1, u, n), (1, v, m), (1, v, n), (2, u, m), (2, u, n), (2, v, m), (2, v, n), (3, u, m), (3, u, n), (3, v, m), (3, v, n)\}$$

- (c) How are these sets different?
 - In part (a), each element is a pair, where the first component is itself a pair. The structure is ((x,y),z).j
 - In part (b), each element is a triple (x, y, z).
- 7. Use an elementary argument to prove the following statement using contrapositive. You may assume that all subsets are sets of a universal set U. It may be helpful to proceed by division into cases. For all sets A, B, C, if $A \subseteq C$ and $B \subseteq C$, then $(A \cup B) \subseteq C$.

Theorem 7: Contrapositive Proof

For all sets A, B, C, if $A \subseteq C$ and $B \subseteq C$, then $(A \cup B) \subseteq C$.

Proof by Contrapositive. Suppose $x \in A \cup B$. By definition of union, $x \in A$ or $x \in B$.

- Case 1: $x \in A$. $x \in C$ because $A \subseteq C$.
- Case 2: $x \in B$. $x \in C$ because $B \subseteq C$.

Therefore, by contrapositive:

If $A \subseteq C$ and $B \subseteq C$, then $(A \cup B) \subseteq C$.

QED

8. Use the element method for proving a set equals the empty set to prove: For all sets A, B, C, if $A \subseteq B$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.

Theorem 8: Proving a Set Equals \emptyset

For all sets A, B, C, if $A \subseteq B$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.

Proof by Contradiction. Let A, B, C be sets such that $A \subseteq B$ and $B \cap C = \emptyset$. Suppose $A \cap C \neq \emptyset$. Then there is an element x such that $x \in A \cap C$. By definition of intersection,

$$x \in A$$
 and $x \in C$

Since $A \subseteq B$, it follows that $x \in B$. However, since $B \cap C = \emptyset$, we have $x \notin C$. This is a contradiction.

Therefore, our assumption that $A \cap C \neq \emptyset$ must be false. Thus, we conclude that $A \cap C = \emptyset$.

9. Use the element method for proving a set equals the empty set to prove: For all sets A, B, C, if $B \cap C \subseteq A$, then $(C - A) \cap (B - A) = \emptyset$.

Theorem 9: Proving a Set Equals \emptyset

For all sets A, B, C, if $B \cap C \subseteq A$, then $(C - A) \cap (B - A) = \emptyset$.

Proof by Contradiction. Let A, B, and C be any sets such that $B \cap C \subseteq A$. Suppose $(C - A) \cap (B - A) \neq \emptyset$.

By definition of empty set, there is an element x such that

$$x \in (C - A) \cap (B - A) = \emptyset$$

By definition of intersection,

$$x \in C - A$$
 and $x \in B - A$

By definition of set difference, $x \in C$ and $x \notin A$ and $x \in B$ and $x \notin A$. Since $x \in C$ and $x \in B$,

$$x \in B \cap C$$

by the definition of intersection.

But $B \cap C \subseteq A$, so $x \in A$.

This is a contradiction, since we have shown that $x \in A$ and $x \notin A$.

Hence the supposition is false, and we conclude that $(C-A)\cap(B-A)=\emptyset$. **QED**

10. Construct an algebraic proof for the following (cite a set identity to justify each step): For all sets A, B, C,

$$(A-B) - (B-C) = A - B$$

Theorem 10: Algebraic Proof

= A - B

Proof by Algebraic Properties. Let A, B, and C be any sets. (A - B) - (B - C)

$$= (A \cap B^c) \cap (B \cap C^c)^c$$

$$= (A \cap B^c) \cap (B^c \cup C)$$

$$= (A \cap B^c) \cap (B^c \cap C)$$

$$= ((A \cap B^c) \cap B^c) \cap ((A \cap B^c) \cap C)$$

$$= (A \cap (B^c \cap B^c)) \cup ((A \cap B^c) \cap C)$$

$$= (A \cap B^c) \cup ((A \cap B^c) \cap C)$$

$$= A \cap B^c$$

by De Morgan's Law
by double complement law
by the distributive law
by the associative law for ∩
by Idempotent Law for ∩
by Absorption Law
by definition of set difference

by definition of set difference

QED

11. Simplify the expression, citing a set identity in each step:

$$((A \cap (B \cap C)) \cap (A - B)) \cap (B \cup C^c)$$

Theorem 11: Algebraic Proof

Proof by Set Identities. Let A, B, and C be any sets.

$$((A\cap (B\cap C))\cap (A-B))\cap (B\cup C^c)$$

$$= ((A \cap (B \cup C)) \cap (A - B)) \cap (B \cup C^{c})$$

$$= ((A \cap B^{c}) \cap (A \cap (B \cup C))) \cap (B \cup C^{c})$$

$$= (((A \cap B^{c}) \cap A) \cap (B \cup C)) \cap (B \cup C^{c})$$

$$= (((A \cap (A \cap B^{c})) \cap (B \cup C)) \cup (B \cup C^{c})$$

$$= (((A \cap A) \cap B^{c}) \cap (B \cup C)) \cap (B \cup C^{c})$$

$$= ((A \cap B^{c}) \cap (B \cup C)) \cap (B \cup C^{c})$$

$$= (A \cap B^{c}) \cap (B \cup C)) \cap (B \cup C^{c})$$

$$= (A \cap B^{c}) \cap (B \cup (C \cap C^{c}))$$

$$= (A \cap B^{c}) \cap (B \cup \emptyset)$$

$$= (A \cap B^{c}) \cap B$$

$$= A \cap (B^{c} \cap B)$$

$$= A \cap \emptyset$$

by the set difference law by the commutative law for \cap by the associative law for \cap by the commutative law for \cap by the associative law for \cap by the idempotent law for \cap by the associative law for \cap by the distributive law by the complement law for \cap by the identity law for \cap by the commutative law for \cap by the complement law for \cap by the universal bound law for \cap

QED