

국방통신네트워크

2018. 2학기

아주대학교 국방디지털융합학과

항공/위성통신

● 학습목표:

- 항공통신망의 종류를 이해한다.
- ⇒ 항공기관(ICAO, FAA)에 대한 이해의 폭을 넓힌다.
- 🔷 항공고정통신망, 이동통신망, 종합통신망을 이해한다 .
- ▶ 위성통신에 대한 현황과 발전추세를 이해한다.

항공교통 관제업무를 수행하기 위한 통신

목 차

- □ 항공통신의 구분
 - 항공업무분류
 - 항공통신목적분류
- □ 항공통신의 종류
 - 고정통신
 - 이동통신
 - 종합통신

- □ 항공통신의 구분
 - ▶ 업무용도에 따른 분류
 - : 통신(Communication), 항법(Navigation), 감시(Surveillance) 3개분야로 구분
 - > 통신목적에 따른 분류
 - : 항공 교통관제 통신(ATC), 항공 운항관리 통신(AOC), 항공 업무 통신(AAC), 항공 여객 통신(APC)

- ▶ 항법분야
- ✓ 현 재 : 지상에 설치된 무선국의 전파를 수신하여 방위, 거리등 정보를 얻는 무선항법(VOR/DME, NDB 등)
- ✓ 미 래 : 측위 위성을 이용하는 위성 항법의 이용
- ▶ 감시분야
- ✓ 현 재 : 지상 레이더에서 전파발사후 항공기 반사파의 특성, 항공기로부터 응답신호 등을 이용하는 지상감시방식
- ✓ 미 래 : 항공기 항법 데이터에 의한 자동종속감시 또는,복수의 측위 위성을 이용하여 위치정보 획득

- □ 항공 교통관제 통신(Air Traffic Communication),
 - : 공항의 관제탑과 항공로 관제 센터등 항공교통관제 기관이 항공기에 대해서 비행간격설정, 이착륙 순서, 시기, 방법 또는 비행방법에 관한 관제지시 및 관제허가를 부여하기 위한 통신
 - → 국제적으로 통일된 주파수 사용
 - : 영공내 근거리는 초단파(VHF)무선전화, 해양 상공등에서는 HF무선전화 사용하나 데이터 통신과 항공위성 통신으로 전환

- □ 항공 운항관리 통신(Aironautical Operational Communication),
 - : 항공회사가 독자적으로 항공기의 안전 운항, 정시 운항 및 효율성을 확보하기 위한 통신
 - VHF/HF 무선전화 시스템:
 - ✓ 터미날용 시스템 : 공항내 출발준비를 위한 통신망 (연료보급, 보수점검, 기내정비, 탑승인원 확인)
 - ▼ 항공로용 시스템 : 비행중 항공로상의 기상정보, 비행계획변경통보
 - → VHF(370Km)밖에서는전파 도달거리가 긴 단파대 주파수 사용하며,
 HF OPE-COM을 미국의 ARINC사, 홍콩 텔레콤사가 운용.

- □ 항공 업무 통신(Aironautical Administrative Communication),
- □ 항공 여객 통신(Aironautical Passenger Communication)
 : 항공기의 안전 운항과는 별도의 새로운 통신서비스 임.

→ 항공기에 탑승한 승객과 항공기의 탑재 시스탬 등
항공기 안의 이용자와 항로관제소, 항공사, 공중통신망 가입자등
지상의 이용자를 대상으로 서비스를 제공 함.

□ 항공통신의 종류

- ✓ 항공고정통신
 - ▶ 항공고정통신망(AFTN) : 항공관제
- ✓ 항공이동통신
 - ▶ 단거리 : VHF Radio(민), UHF Radio(군)
 - ▶ 장거리 : HF Radio

□ 항공고정통신망(AFTN)

(Aeronautical Fixed Telecommunication Network)

- ✓ 국제민간항공기구(ICAO)의 주도로 구축되고, ICAO가맹국의 책임하에 운용되는 세계적 규모의 항공고정전기통신망.
- ✓ 국제 공항 및 관제 기관, 항공 회사등 접속되어 항공기운항에 필요한 정보 교환
- ✓ 주요 교환 정보
 - ▶ Clsaa A Message : 조난통신, 긴급통신, 비행계획, 항공기상, 항공고시보 정보등 항공안전과 정상운항 관리
 - ▶ Clsaa B Message : 72간 이내 출발 항공기 적재중량, 탑승인원통보

❖ 국제민간항공기구

(ICAO: International Civil Aviation Organization)

- ▶ 설립취지:
 - 시카고조약(1944.12)에 기초, 민항공의 평화적이고 건전한 발전위해 1947.4월, 26개국의 협약비준에 따라 발족한 UN 전문기구. 사무국은 캐나다 몬트리올.
- 주요임무: 항공기의 안전과 정상적인 운항을 보장하기 위해 필요한 정보의 송수신 통신절차와 기술표준 설정.
- 회선구성 : 유선과 무선에 의한 국제 통신망 구축

❖ 국제민간항공기구

(ICAO: International Civil Aviation Organization)

▶ 설립목적 :

비행의 안전 확보, 항공로나 공항 및 항공시설 발달의 촉진, 부당경쟁에 의한 경제적 손실방지 등 세계 항공업계의 정책과 질서를 총괄.

▶ 기구의 위상 :

공항시설 및 운영, 항공기, 승무원, 항로 및 항법, 기술과 환경 등 항공과 관련된 모든 분야에서의 국제 표준화 활동 및 전 세계에 걸쳐 항공 관련 매뉴얼과 권고등 하나의 지침으로 인식

❖ 국제민간항공기구

(ICAO: International Civil Aviation Organization)

- 총회 및 이사회 :
 매 3년 주기, 시카고협약 가입시 자동회원국.
 33개국 대표로 구성. 1952년 우리나라 가입.
 - ✓ ICAO 1그룹 : 항공선진국 10개국
 - ✓ ICAO 2그룹 : 항공산업 규모가 큰 11개국
 - ✓ ICAO 3그룹 : 지역 대표성이 강한 12개국

(2001년 3그룹 이사국에 선출)

❖ 미국 연방항공청 :

(FAA: Federal Aviation Administration)

- ▶ 1967년 미국 교통부(DOT : The Department of Transportation) 산하기관으로 구성
- ▶ 안전, 운항, 교육훈련, 감항검사등 업무 위임처리
- 항공 및 국제관계 협력관에서 항공협정의 체결, 주요장비의조달 등의 업무 담당
- 주요기능: 국가방위에 요구되는 사항 수행, 민항공 안전 규정 정립, 신항공기술 개발/진흥, 민/군 항공기에 대한 항행 및 교통관제시스템 운용/개발, 국가 우주시스템과 민간항공기술의 조사연구, 항공기 소음 및 환경억제 프로그램 개선/발전, 미국내 상업교통 관련규정 등.

❖ 미국 연방항공청 :

(FAA: Federal Aviation Administration)

- ▶ 상업용 드론 "Yes! ~", 드론 배송은 아직 "No! ~"
 - ✓ 11 kg 이하 소형드론에 적용되는 법안
 - ✓ 17세 이상 면허자격 부여, 24개월 마다 갱신
 - ✓ 지상 150m 이내서만 운행 가능
 - ✓ 시속 160Km/h 이내, 낮에만 운행, 인구밀집지역 금지

□ 항공고정통신망(AFTN)

□ 항공이동통신망(VHF Radio)

- ✓ 항공관제용 단거리 항공이동통신 국제표준시스템
- ✓ 주파수 대역: 118MHz 136.975MHz
- ✓ 400~600Km의 도달거리

※ 우리나라는 VHF(민)/UHF(군) Radio만으로 관제수행

□ VDL(데이터링크) 지원영역(민간업체에서 제공)

☐ HF Radio

- ✓ 국제표준 장거리 항공이동통신시설
- ✓ 주파수 대역: 1,606.5KHz~28,000KHz

□ HFDL(데이터링크) 지원영역

□ 항공종합통신망

(ATN : Aeronautical Telecommunication Network)

- ✓ ICAO권고에 따라 유,무선 항공통신망을 하나로 통합
- ✔ HF, VHF, 인공위성, 2차 감시레이더를 기반으로
 - ' 차세대 디지털 종합 통신망 ' 이라고도 함
- ✓ 인공위성을 이용한 디지털 통신망으로 항공인터넷
- ✓ 항공전자우편시스템, 단파 데이터링크, 항공이동위성 업무등을 단계적 구축 및 통합 예정

□ 항공종합통신망 구성도

□ 정의

✓ 지구를 선회하는 궤도상에 발사된 인공위성을 중계하여 행하는 무선통신

□ 원리

✓ 인공위성에 탑재된 중계기는 지상 장거리 통신에서 중계국과 같이 지상의 무선국(기지국)에서 송신한 전파를 수신하고 증폭하여 하나 또는 복수의 기지국으로 송신

□ 장점

- ✓ 하나의 위성이 중계할 수 있는 통신 구역의 광역성
- ✓ 지리적 장애의 극복, 통신 품질의 균일성 및 내재해성
- ✓ 전송 거리와 비용의 무 관계성
- ✓ 고주파대의 전파 사용에 따른 광대역 전송의 가능성
- ✓ 다지점으로 동시에 정보를 분배할 수 있는 동보 통신과 다지점 간에 회 선을 설정할 수 있는 다원 접속의 가능성
- ✓ 기지국을 이동시키면 어디에서나 자유로이 신속하게 통신가능

□ 단점

- ✓ 높은 초기구축 비용
- ✓ 지구와 위성 간의 장거리를 전파가 왕복하기 때문에 전송 지연 시간 이 발생 (정지위성의 경우 0.25초)
- ✓ 기상에 취약
- ✓ 장애물에 취약

생존성, 이동성, 신뢰성을 생명으로 하는 군 통신에 가장 적합한 통신 수단

- □ 통신 위성의 종류: 고도에 의한 구분
 - ✓ 정지궤도 위성, 저궤도 위성, 중궤도 위성

최초의 정지위성은 1963년 <u>NASA</u>의 SYNCOM-2호이다.

- □ 정지궤도(GEO: geostationary earth orbit) 위성
 - ✓ 위치: 적도 상공 35,800km 위성수의 한계
 - ✓ 지구 1회전 소요 시간: 24시간, 시속 11,000km(자전속도와 동일)
 - ✓ 통신위성은 24시간 중계소 역할 수행
 - ✓ 3개의 위성으로 지구 전체를 커버(위성 1개가 40% 커버)
 - ✓ 기지국은 통신위성에서 수신한 데이터를 상대방 목적지까지 전송

- □ 정지궤도(GEO: geostationary earth orbit) 위성
 - ✓ 단점
 - 1) 높은 궤도에 인공위성을 위치시키기 위한 많은 비용 발생
 - 2) 인공위성이나 기지국의 안테나 크기가 증가
 - 3) 고출력 안테나 및 중계기 필요

- □ 저궤도(LEO) 위성 통신
 - ✓ 저궤도: 지표로부터 200 ~ 6,000 km 상공의 궤도
 - ▶ 이리듐(780 km), 글로벌스타(약 1,414 km), 퀵버드(450 km)
 - ✓ 정지궤도 위성에 비해 전송 감쇠 적음
 - 저전력 소모, 안테나의 소형화
 - > 개인 및 이동 통신에 유리
 - ✓ 정지궤도와 같은 전송지연 방지
 - ✓ 저궤도 위성은 정지궤도 위성보다 빠른 주기로 회전
 - 24시간 지원을 위해 많은 위성 필요

- ※ 이리듐(Iridium): 모토롤라사 주관
 - ▶ 45억불 규모, '97년 5월 5일 5기의 위성 첫 발사
 - > 780 km 상공에 66개 위성 배열, 위성의 주기: 100분 28초
 - ▶ 음성, 팩시밀리, 데이터 통신, 무선호출 제공
 - ▶ SK 텔레콤: 8,200만불(4.5%) 투자: 이리듐 LLC(본사) 파산

- □ 중궤도(MEO) 위성 통신
 - ✓ 중궤도: 대략 10,000 km
 - ✓ 저궤도보다 적은 위성으로 전 세계 커버함
 - ✓ 아이코(ICO: intermediate circular orbit)
 - > 국제해사위성기구인 INMARSAT이 주도
 - ▶ 10,355 km 궤도에 12개의 위성으로 운영, 주기: 6시간
 - ▶ KT, 삼성전자, SK 텔레콤: 30억불 규모 중 8,400만불(5.84%) 투자

• 우리나라 위성현황

과학기술위성 -KITSAT, KAISTSAT	우리별 1호 (1992. 8. 11.)	우리별 2호 (1993. 9. 26.)	우리별 3호 (1999. 5. 26.)	과학기술위성 1호 (2003. 9. 27.)	
아리랑 (KOMPSAT) -다목적실용위성	아리랑 1호 (1999. 12. 21.) 6.6m 광학카메라	아리랑 2호 (2006. 7. 28.) 1m 광학카메라	아리랑 3호 (2012. 5. 18.) 0.7m 광학카메라	아리랑 5호 (2013. 8. 22.) 0.5m SAR 영상	
무궁화 (KOREASAT) -통신방송위성	무궁화 1호 (1995. 8. 5.)	무궁화 2호 (1996. 1. 14.)	무궁화 3호 (1999. 9. 4.)	무궁화 5호 (2006. 8. 22.)	
올레 (통신방송위성)	올레1호= 무궁화 6호 (2010. 12. 30.)	올레 2호 (2017. 5. 5)	무궁화 7 호 발	h성공,	
기상해양통신위성	천리안 (2010. 6. 26.)	천리안 2 호 (2019.3예정)			

7 ₩	#WB 92	무점의 5호	olleh 12	创盟	0回性 22	體體	정말당
8 9	항공, 물신용	항송, 홍선, 군사용	항송, 혹신용	## BMO B	한반도 관측, 과학실험 등	교학기술 설립일성	통신, 기상 해양관속
운용 기관	KT	KT, 국방부	KT	TUDICION, SEMBCO	수수연구함 이유학교	이용병 연구권학	병원으로 연구병
경 도(도)	116°E	1139E	1169E	144°E	98.1%E	98.29E	128.2
型 ⊆(km)	35,786 (고행제도)	35,786 (고경제도)	35,786 (교정궤도)	35,786 (고등제도)	685(태일 문기취도)	685(원생원명 (고)((공	35,786 (足器視定)
발 사 일	1999, 9, 5	2006. 8, 22	2010.12.29	2004. 3. 13	2006. 7. 28	2003. 9. 27	2010, 4, 22
발사 기지	기이나 쿠루 마리안스페이스	원광왕작도면 154°W(현상)	기이나 쿠루 어리안스페이스	미국중조건다 게이르게너배달	에시아 로스타타중	和 の の の の の の の の の の の の の の の の の の の	기아니 구루 아리안스플이스
监 林 珈	Ariane 42P	Zenit-3SL	Ariane 5	Atlas III-A	ROKOT #13	COSMOS-3M	Ariane 5
异 XI(kg)	2,800	4)448	2,850	4,137	800	106	2500
주 기	24/172	24시간	24/12/	24시간	98.6분	98.4E	24AJ25
회생 수명	159	158	159	12년	25	2년	7년
태양 전제	(K型)世形哲	전개발(날개)	전개형(날개)	(长星)身长馬	전개열	전개설	전개성(날개)
밁 무	데이터용신, DBS, 행정용산	무용화 2호 대체, 군사용	単的 文章 位を早	REDMB	지구표면함영, 우주대학일함	될자의선분활기, 친구자개중축정	기상,해양관육 용용용선

정 책 명 (사업명)	425사업(군 정찰위성)(R&D)
	○개 요 '15~'23까지 0,000억원을 투자하여, 북한에 대한 신속한 정보수집을 위해 군 정찰위성을 국과연 주관 연구개발로 확 보하는 사업
사업개요	○ 운용개념(필요성) - 북한 및 감시권 내 주변국 동향에 대한 신속한 정보수집과 위기상황 시 최단시간 내 경보발령, 적극적 대응이 가능한 감시정찰 수단 확보
	○ 사업추진 방식 : 국과연 주관 연구개발(국제기술협력) 2020 년에 첫 위성을 발사해서, ○ 2023년까지 5 개를 완료합니다.

KBS뉴스 (18.7.22)

천리안위성-2A호

- 기상·우주기상 관측
- 2018년 11월 발사 예정

천리안위성-2B호

- 해양·환경 관측
- 2019년 상반기 발사 예정

구분 (관측 채널 수)	천리안위성 1호	천리안위성-2A호
총 채널 수	5채널 약 3배	3가 16채널
가시채널	1채널	4채널
근적외채널	0채널	2채널
적외채널	4채널	10채널

천리안위성 1호

구분 (시간해상도)	천리안위성 1호	천리안위성-2A호		
전구	1회/3시간(3시간 간격)	6회/1시간(10분 간격)		
아시아	명교 9배 4회/1시간(15분 간격)	# # # # # # # # # # # # # # # # # # #		
한반도	약 8회/1시간	약 <mark>24</mark> 회/1시간		

천리안위성 2A(5:22)

- 위험기상 조기 탐지·분석
- 예보관의 의사결정 기반 자료로 활용

- ◆ 무궁화 위성(위성통신과 위성방송사업 담당)
- ▶ 위성사업단: 1990,7 발족으로 시작
- ▶ 무궁화 1호 : 미국 플로리다 로켓 발사체 위성발사 실패로 수명 \ 단축, 10년 4개월간 임무 종료후 폐기
- ▶ 무궁화 2호: 1996년 7월 1일부로 상용위성방송 개시
- ▶ 무궁화 3호: 남미의 기아나센터서 발사, 한반도에 국한되지 않고 동아시아 일대를 커버하는 대용량 통신방송위, 방송용 중계기등 33개 탑재, 총 투자비 2,600억원, 48개 디지털 위성방송채널, 통신용을 방송용으로 활용시 168개 채널공급 가능
- ➤ 무궁화 5호 : 상업/군사 겸용 통신위성, 반경 6,000km까지 지휘통제 가능하와이 적도 공해상에서 발사,
 - 수명 15년, 통신탑재체는 36MHz KU대역중계기 24개 탑재
- ▶ 무궁화 6호: 2010.12 남미의 기아나센터서 발사, 무궁화 3호 대체용, KT의 통신서비스 명칭변경에 따라 '올레 1호'로 명명, 통신용 중계기를 제외한 방송용 중계기만 탑재

- **2017.5.5** : 올레 **2**호,남미 기아나서 발사
- 중계기 33기 탑재 : 초고화질(UHD) 위성 방송과 위성LTE용 (54MHz대역폭)
- 수명: 2032년 까지(수명 15년)
- 정지궤도 위성 4기 보유 : 무궁화 5~7호, 해양관측위성 천리안등 (지구 자전주기와 같은속도)
- 서비스: 일본, 동남아, 서아시아, 중동 등

우리별1호 발사 모습

[단위:회]

구분	2011	2012	2013	2014	2015
합계	84	78	81	92	86
한국	0	0	1	0	0
이란	1	3	0	0	0
미국	18	13	19	23	20
러시아	31	24	32	32	26
유럽	7	10	7	11	11
중국	19	19	15	16	19
다국적	2	3	1	1	0
일본	3	2	3	4	4
이스라엘	0	0	0	1	0
인도	3	2	3	4	5
북한	0	2	0	0	0

* 출처 : 세계위성발사수현황, AST

• 우리나라 위성현황

woutu.be/kXE-NPxmUng 한국의 군사위성(5:59)

- □ 우주기술 다져야 4차 산업혁명 선도한다 (By 류장수 한국우주기술진흥협회장, 2017.8.23)
 - ✓ 2017.8.9 과학기술정보통신부 : 1단계 달궤도 탐사선 2020년말 발사키로 결정
 - ✓ 한국의 우주개발 투자 : 2016년 기준 세계 12위 투자 규모면에서 일본, 프랑스의 20% 수준
 - ✔ 우주개발계획 최우선 과제 2가지
 - 첫째, 인공위성의 자력개발능력 확보와 위성산업 육성
 - 빅데이터 산업에서 중요성이 커질 관측위성사업 확대해야
 - 자주국방 달성위해 국산화 개발일정 60개월에 얽매이지 않아야
 - 통신방송위성과 정밀항법위성의 자체개발은 반드시 필요
 - 둘째, 한국형 우주발사체와 달 탐사사업, 정찰위성사업과 같은 '국력강화사업' 추진
 - 달 탐사용 우주선 개발과 우주발사체, 정찰위성 개발 서둘러야
 - 경제력과 함께 우주국력이 뒷받침 될 때 국민적 자부심 고양8

감사합니다.

Q & A