

Relacion3.2.pdf

Pucherillos

Lógica y Métodos Discretos

1º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

MÁSTEREN

Inteligencia Artificial & Data Management

MADRID

je

academia DOS MOTIVOS

Lógica y Métodos Discretos

Relación 3,2:

Pablo Vega Romero Grupo A

Éjardido 3.27. Encuentra, si existe, un grafo G de cuatro vértices con grados (3,2,3,2). Utiliza el algoritmo de demolición - reconstrucción Calcula su polinomio cromático po(x), su número cromático y de

Polinomio cromático:

$$\int_{c}^{d} e^{-\frac{1}{2}} \int_{c}^{d} e^{-\frac{1}{2$$

X = 3

Para hallar las formas de pintarlo con 6 colores:

Ejercicio 3.28: Dado el grafo G, calcula su polinemio evornático PGCx) y número cromático (XG). ¿ De cuántos formas se puede pintar

G can 6 colores?

X = 3

ara hallar las formas de pintarlo con 6 colores:

Pg (6)= 6.5.4.3.2 + 2.6.5.4.3+6.5.4=1560 formas.

tjercicio 3.29: Oado el grato G= K2,3 calcula su polinomio cromatico PG (x). Halla el número cromático de 6 y calcula de cuantos formas Se puede colorear G can 6 colores distintos.

Polinamio evomático:

Para hallar las formas de pintarlo con 6 colores:

PG(6)=2670 formas.

Ejeracio 3.30: Dado el grafo: . Halla su polinomio evomático, su número Cromático y calcula de cuantas formas se puede edorear con 4 colores.

Xc=3 Para hallar las formas de pintarlo con 4 colores:

Ejercicio 3.31: Dado el grafo: 2 2 Halla su polinomia evernático, su número eromático y calcula de cuántas formas se puede adorea con 5 colores.

Ejercicio 3.32: Dado el grafo: M. Halla su pelinomio cromático, su mêmero cromático 5 calcula de cuántas formas se puede celorear con 5 colores.

6° (x) = X= + 4x+ + 3x=

X 6 (x) = 3

PG(5)=780 formas

Ejercicio 3.33: Demuestra que en cualquier arbol con dos o más vértices existe, al menos, un vértice de grado uno.

Zar(v) > 2 = 21 VEG / No es posible, por tanto, queda demostrado 2(n-1) = 2n-2 / 2n

Ejeracio 3.34. Un arbol tiene 33 vértices de grado uno, 25 de grado 2, 15 de grado 3, y el vesto de grado 4. à Cuantos vértices tiene en total?

Además: 81=73+v -> r=8, hay 8 vértices de grado 4.

Esto no son apuntes pero tiene un 10 **asegurado** (y lo vas a disfrutar igual).

Abre la Cuenta NoCuenta con el código WUOLAH10, haz tu primer pago y llévate 10 €.

Me interesa

Ejercicio 3.35: (alcula un cirbol generador poura los grafos del ejercicio 3.23.

Ejercicio 3.36: Dades los grafos ponderados, halla para cada uno de ellos utilizando los algoritmos de Kruskal y el de Prim un avbol generador (abavcador) de peso mínimo. Detalla el orden de las elecciones o elimiaplicación de eada algoritmo paso a paso. naciones y describe la

3.36.1)

Kruskal:

$$OC \rightarrow OA \rightarrow CA \rightarrow CB \rightarrow AB$$

Prim:

$$0,C,B\rightarrow (0C,CB)$$

do your thing

ING BANK NV se encuentra adherido al Sistema de Garantía de Depósitos Holandés con una garantía de hasta 100.000 euros por depositante. Consulta más información en ing.es

Que te den **10 € para gastar** es una fantasía. ING lo hace realidad.

Abre la **Cuenta NoCuenta** con el código **WUOLAH10**, haz tu primer pago y llévate 10 €.

Quiero el cash

Consulta condiciones aquí

Prim:

3.36.6.

F,

Kruskal

Prim:

Escaneado con CamScanner

academia DOS MOTIVOS

3.36.7

Kruskal:

Prim:

F = ()

F, L-J(FL)

F,L,G-, (FL,LG)

F, L, G, E = (FL, LG, GE)

F, L, G, E, C = (FI, LG, GE, EC)

f, L, G, E, C, k→(FL, LG, GE, EC, Ch)

E, L,G, E, C, N, 7 - (FL, LG, GE, EC, CN, NJ)

F, L, G, E, C, k, J, & - (FL, LG, G & EC, CK, \$3, 7 B)

F.L.G.E.C,k,3,8,1-(FL,LG,GE,EC,CK, \$3,78,81)

F.L.G.E.C, K.J.B.I.H - (FL, LGGE, EC, CK, KJ, JB, BI, IH)

FILIGIESCINIZIBILIH \rightarrow (FLILGIGEIEC, CNINZIZIBI, DIN IH), HA) FILIGIESCINIZIZIBI, DIN IH, HA, AD) FILIGIESCINIZIZIBI, BI, IH, HA, AD) Ejercicio 3.37. En un cirbol con rouz es binario si cado nodo tiene a lo des hijes. Un abol binario es completo si cada nodo tiene O o das hijes.

siete vértices. Construye todos los cárboles binarios completos con

Ejeracio 3.38: Oados los siguientes arboles, escribe la sucesión de sus nodos al recorrerlos de todas las formas posíbles.

Top-down: (a, b, c, d, e, f, s, h, i, j, h) Botton-up: (j,k,e,f,g,h,i,b,c,d,a) Post-orden: (e, f, b, g, c, h, j, k, i, d,a) Pre-orden: (a, b, e, f, c, g, d, h, i, j, k) In-orden: (e, b, f, a, s, c, h, d, j, i, k)

Top-down: (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r)
Bottom-up: (q,r,p,l,m,n,o,e,f,g,h,i,j)x,b,c,d,a)
fost-ovden: (l,e,f,g,b,m,q,r,p,h,i,c,o,j,k,d,a)
fre-ovden: (a,b,e,l,f,g,c,h,m,n,p,q,r,i,d,j,o,k)
In-ovden: (l,e,b,a,f,g,m,h,n,q,p,r,c,i,o,j,d,k)

Ejercicio 3.39: Prueba directamente que hay 125 arboles etiquetados con

Ejercicio 3.40: Determina los códigos de Prinfer de los arboles:

Esto no son apuntes pero **tiene un 10 asegurado** (y lo vas a disfrutar igual).

Abre la **Cuenta NoCuenta** con el código **WUOLAH10**, haz tu primer pago y llévate 10 €.

Este número es indicativo del riesgo del producto, siendo 1/6 indicativo de menor riesgo y 6/6 de mayor riesgo.

ING BANK NV se encuentra adherido al Sistema de Garantía de Depósitos Holandés con una garantía de hasta 100.000 euros por depositante.

Me interesa

Consulta

-10-

Escaneado con CamScanner