ESI. 2018/2019. CP2.

Note:

Un corrigé type de l'intérrogation n°1 d'ANA3. Sujet 1.

Questions (3.5 points): 0.5 pour chaque bonne réponse.

Pour chaque affirmation répondre par $\overline{\mathbf{V}}$ si elle est toujours vraie ou par $\overline{\mathbf{F}}$

A] Soient $\sum u_n$ et $\sum v_n$ deux séries numériques réelles avec $v_n > 0 \ \forall n \in \mathbb{N}$,

1) Si $\sum u_n$ converge absolument, alors $\sum n^2 u_n$ converge.

2) Si $u_n \underset{+\infty}{\sim} \left(\frac{-1}{2}\right)^n$, alors $\sum u_n$ converge. \square

3) Si $\sum u_n$ et $\sum v_n$ convergent absolument, alors $\sum \frac{u_n}{v_n}$ converge.

4) Si $(u_n)_n$ est monotone et $\lim_{n \to +\infty} u_n = 0$, alors $\sum (-1)^n u_n$ converge.

5) Si $|r| \le 1$, alors $\sum r^n \cos n$ converge.

B] Soient $(f_n)_n$ et $(g_n)_n$ deux suites de fonctions définies sur un intervalle $I \subset \mathbb{R}$.

1) La convergence uniforme sur I implique la convergence simple sur I.

2) Si $f_n \longrightarrow f$ et $g_n \longrightarrow g$ uniformément sur I, alors $f_n + g_n \longrightarrow f + g$ uniformément sur I. \square

Exercice1 (1,5 points):

Etudier la nature de la série numérique: $\sum \frac{2^n}{e^n-1}$.

Solution: Soit $u_n = \frac{2^n}{e^n - 1} > 0 \ \forall n \ge 0.$ On a $u_n = \frac{2^n}{e^n - 1} = \left(\frac{2}{e}\right)^n \left(\frac{1}{1 - \frac{1}{e^n}}\right) \underset{+\infty}{\sim} \left(\frac{2}{e}\right)^n . \boxed{0,5}$

Or $\sum \left(\frac{2}{e}\right)^n$ est une série géométrique convergente. $\boxed{0,25}$

Donc, $\sum u_n$ est convergente par le critère d'équivalence. $\boxed{0,25}$

Exercice2 (3 points):

Etudier la convergence absolue et la semi convergence de $\sum \log \left(1 + \frac{\cos n}{\sqrt{n}}\right)$

Solution:

Soit
$$u_n = \log\left(1 + \frac{\cos n}{\sqrt{n}}\right) = \underbrace{\frac{\cos n}{\sqrt{n}}}_{v_n} - \underbrace{\frac{\cos^2 n}{2n} + o\left(\frac{1}{n}\right)}_{w_n}.$$

1) La convergence:

$$\sim \sum v_n$$
 est convergence (ref). $\boxed{0,25}$

$$w_n \underset{+\infty}{\sim} \frac{\cos^2 n}{2n} \frac{\boxed{0,25}}{2n} \text{ et } \frac{\cos^2 n}{2n} \ge 0 \text{ donc } w_n \ge 0 \text{ pour } n >> . \boxed{0,25}$$

$$\frac{\cos^2 n}{2n} = \frac{1}{2n} \left(\frac{1 + \cos 2n}{2}\right) = \frac{1}{4n} + \frac{\cos 2n}{4n} \boxed{0,25}$$

$$\frac{\cos^2 n}{2n} = \frac{1}{2n} \left(\frac{1 + \cos 2n}{2} \right) = \frac{1}{4n} + \frac{\cos 2n}{4n} \left[\frac{0,25}{2} \right]$$

Or
$$\sum \frac{1}{n}$$
 diverge (série de Riemann) $\boxed{0,25}$ et $\sum \frac{\cos 2n}{n}$ est convergence (ref). $\boxed{0,25}$

donc $\sum w_n$ diverge par le critère d'equivalence et par linéarité 0,25

On en conclut par la technique du DL que $\sum u_n$ diverge. 0.25

2) La convergence absolue:

Comme $\sum u_n$ diverge alors elle n'est pas absolument convergente. 0,25

3) La semi convergence:

 $\sum u_n$ n'est pas semi convergente. 0,25