RL, CS 2019: Homework 1

O. Darwiche, E. Oyallon

Notations:

We consider MDPs given by (S, A, p, γ) . Similarly, we define the optimal Bellman operator for any $V: S \to \mathbb{R}$ by:

$$\forall s \in \mathcal{S}, \mathcal{T}^*V(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a)V(s') \right]$$
(1)

We write the Bellman operator for a deterministic policy π :

$$\forall s \in \mathcal{S}, \mathcal{T}^{\pi}V(s) = r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s))V(s')$$
(2)

Exercise 1

1. Let V^* being the optimal value function. Show that V^* is the solution of the following optimization problem:

$$\min_{V} \sum_{s \in \mathcal{S}} V(s)
\text{subject to } V \ge \mathcal{T}^*V$$
(3)

2. (Bonus) Show it is a Linear Program. Propose an implementation. Is it practical? (see, for instance, https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html; the answer can be a python code or a pseudo-code.)

Exercise 2

1. a. Let $V: \mathcal{S} \to \mathbb{R}$ be any function. The greedy policy $\pi: \mathcal{S} \to \mathcal{A}$ with respect to V is defined by:

$$\pi(s) \in \arg\max_{a} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V(s') \right]$$
(4)

Show that: $\mathcal{T}^*V = \mathcal{T}^{\pi}V$.

1. b. Let \hat{V} be an approximation of V^* and $\hat{\pi}$ the greedy policy w.r.t. \hat{V} . We write $V^{\hat{\pi}}$ the value function corresponding to $\hat{\pi}$. Using the previous question, deduce that:

$$\|V^* - V^{\hat{\pi}}\|_{\infty} \le \frac{2\gamma}{1 - \gamma} \|V^* - \hat{V}\|_{\infty} \tag{5}$$

- 1. c. Show that $\hat{V} = V^*$ if and only if $\hat{V} = V^{\hat{\pi}}$.
- **2.** a. Let $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ be any function. Define the following greedy policy w.r.t. Q as:

$$\tilde{\pi}(s) \in \arg\max_{a} Q(s, a)$$
 (6)

Let $Q_{\tilde{\pi}}$ be the action-value function of $\tilde{\pi}$, that is:

$$Q_{\tilde{\pi}}(s, a) = r(s, a) + \gamma \sum_{s} p(s'|s, a) V_{\tilde{\pi}}(s')$$

Let Q^* be the optimal value-function. Let $\epsilon = \sup_s Q^*(s, \pi^*(s)) - Q_{\tilde{\pi}}(s, \tilde{\pi}(s))$. Show that $\epsilon \geq 0$.

2. b. Show that:

$$\epsilon \le \frac{2\|Q^* - Q\|_{\infty}}{1 - \gamma} \tag{7}$$