Université Hassiba Benbouali de Chlef Année Universitaire : 2019-2020 Faculté des Sciences Exactes et Informatique Module : Théorie des Opérateurs Département de Mathématiques Niveau : Master 1

Feuille de TD 4

Exercice 1.

Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{T} \in \mathcal{L}(\mathcal{H})$.

i. Montrer que si $\mathcal{T}^*\mathcal{T}$ est compact, alors \mathcal{T} est compact.

(N.B. Vous pouvez montrer que l'image par \mathcal{T} de toute suite faiblement convergente est fortement convergente)

ii. En déduire que si \mathcal{T}^* est compact, alors \mathcal{T} est compact.

Exercice 2.

Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{A} \in \mathcal{L}(\mathcal{H})$.

- i. Montrer que si \mathcal{A} est compact, alors l'image par \mathcal{A} de toute suite orthonormale dans \mathcal{H} , est une suite fortement convergente vers 0.
- ii. Montrer que \mathcal{A} est de rang fini si et seulement si \mathcal{A}^* l'est aussi. Dans ce cas, \mathcal{A} et \mathcal{A}^* ont le même rang.

Exercice 3.

L'espace ℓ_2 est muni de sa base standard $(e_i)_{i=1}^{+\infty}$. On définit l'opérateur $\mathcal{A}\colon \ell_2 \to \ell_2$ par

$$\mathcal{A}x = (\frac{x_1}{2}, \frac{x_2}{2^2}, \frac{x_3}{2^3}, \dots, \frac{x_n}{2^n}, \dots), \quad x = (x_i)_{i=1}^{+\infty} \in \ell_2$$

Soit P_n l'opérateur de projection de ℓ_2 sur $F_n = Vect\{(e_i)\}_{i=1}^n$.

- 1. Montrer que $P_n \mathcal{A}$ est un opérateur de rang fini.
- 2. En déduire que \mathcal{A} est compact.

Exercice 4.

L'espace de Hilbert ℓ_2 est muni de sa base standard $(e_k)_{k=1}^{+\infty}$. On définit l'opérateur shift right $\mathcal{S}_r \colon \ell_2 \to \ell_2$ par

$$S_r x = (0, x_1, x_2, ..., x_n, ...), \ x = (x_i)_{i \ge 1} \in \ell_2$$

- 1. Déterminer l'opérateur $\mathcal{S}_r^* \mathcal{S}_r$.
- 2. Montrer que S_r n'est pas compact.

Exercice 5.

Considérons l'opérateur de multiplication M sur $L_2([a,b])$ défini comme suit

$$(Mf)(t) = \mu(t)f(t), f \in L_2([a,b])$$

où μ est une fonction complexe continue et Lebesgue mesurable sur [a, b]. On suppose qu'il existe $t_0 \in [a, b]$ tel que $\mu(t_0) \neq 0$.

- Montrer que M n'est pas compact.