

BIO-5023YB 2020 Spring term – week 3 Linear models continued

Dr Philip Leftwich – p.leftwich@uea.ac.uk

Learning outcomes

- Understand the Ordinary Least Squares method of regression

- Calculate F and t for hypothesis testing

- Practice results writing

Recap on Ordinary Least Squares

Recall that we are usi	ing models to quantify the var	ability in our datasets.
This fits a lir line and the data poin	•	squares difference between our slope of the
	odel to our data we can describe it in ter	ms of two parts
The v	ariance which is not explained by the mo	odel

What is the first assumption we met when using linear models?

What is the first assumption we met when using linear models?

What is the first assumption we met when using linear models?

Later we will encounter methods (including data transformation) that often allow us to "approximate" a linear relationship

Recap on Ordinary Least Squares

OLS ~ Draws the regression line in the way that produces the smallest value of the *squared* residuals

Recap on Ordinary Least Squares

This least squares method works just as well for fitting a line to compare two (or more) means as it does to fit a regression

We use OLS to fit the line but what is the equation that explains the fit of a straight line?

We use OLS to fit the line but what is the equation that explains the fit of a straight line?

$$y = mx + c$$

When written to describe a general linear model

You may see this as

$$y = \beta 0 + \beta 1 * x$$

This is exactly the same equation just shuffled round

 β_0 (intercept) β_1 (slope)

We use OLS to fit the line but what is the equation that explains the fit of a straight line?

$$y = \beta 0 + \beta 1 * x$$

Describes the fit of the model

This is the bit we care about.

To produce the <u>full</u> equation for a linear model we can add a term for the <u>residuals</u>

$$y = \beta 0 + \beta 1x + \varepsilon$$

Hypothesis testing

We typically care whether our relationship/difference is significant.

We have already seen how an understanding of a linear model gives us *more* information about the nature of our relationship/ difference than the traditional ANOVA approach than just *significance*.

Hypothesis testing

We typically care whether our relationship/difference is significant.

We have already seen how an understanding of a linear model gives us *more* information about the nature of our relationship/ difference than the traditional ANOVA approach than just *significance*.

```
Call:
lm(formula = height ~ type, data = darwin)
Residuals:
           1Q Median
   Min
                                 Max
-8.1917 -1.0729 0.8042 1.9021 3.3083
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.1917
                   0.7592 26.596 <2e-16 ***
typeSelf -2.6167
                   1.0737 -2.437
                                       0.0214 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.94 on 28 degrees of freedom
Multiple R-squared: 0.175, Adjusted R-squared: 0.1455
F-statistic: 5.94 on 1 and 28 DF, p-value: 0.02141
```

Calculating F and R-squared

Calculating F & R-squared allow us to determine the amount of variance in our data that is explained by the <u>fit</u> of the model and then determine whether this is <u>significantly</u> bigger than the <u>residual</u> variance.

You may also have heard me refer to this as the signal-to-noise ratio.

Calculating F and R-squared

SST – total sum of squares

SSR – sum of squares for the regression

SSE – sum of squares for error/residuals

$$R^2 = \frac{SSR}{SST}$$

A perfect fit would produce an R-squared of 1

e.g. 100% of our dataset variance is explained by our model

Calculating F and R-squared

SST – total sum of squares

SSR – sum of squares for the regression

SSE – sum of squares for error/residuals

$$F = \frac{SSR / (n-p)}{SSE / (p-1)}$$

We don't need to calculate this by hand *phew
But it helps us understand how we calculate *P*

 $n = sample \ size$ $p = number \ of \ treatments$

The larger F is, the larger our signal-to-noise ratio

Report as $F_{p,n-p}$ =

Our F-value with the sample size can be used to calculate P

Fvst

```
Call:
lm(formula = height ~ type, data = darwin)
Residuals:
            1Q Median
   Min
                            3Q
                                  Max
-8.1917 -1.0729 0.8042 1.9021 3.3083
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.1917
                        0.7592 26.596
                                        <2e-16 ***
typeSelf
           -2.6167
                        1.0737 -2.437
                                        0.0214 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
Residual standard error: 2.94 on 28 degrees of freedom
Multiple R-squared: 0.175, Adjusted R-squared: 0.1455
F-statistic: 5.94 on 1 and 28 DF, p-value: 0.02141
```

Fvst

t is calculated from the estimate divided by the standard error of the difference

For a difference model this is the difference between the two means

For a regression it's the *slope* both are found on the model summary as the estimate

```
lm(formula = height ~ type, data = darwin)
                          Residuals:
                                      1Q Median
                          -8.1917 -1.0729 0.8042 1.9021 3.3083
     -2.62
                          Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)
                          (Intercept) 20.1917
                                                 0.7592 26.596 <2e-16 ***
                         typeSelf
                                      -2.6167
                                                 1.0737 -2.437 0.0214 *
t = 2.44
                         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                          Residual standard error: 2.94 on 28 degrees of freedom
                          Multiple R-squared: 0.175,
                                                      Adjusted R-squared: 0.1455
                         F-statistic: 5.94 on 1 and 28 DF, p-value: 0.02141
```


Fvst

So how does t compare to F

In a simple model they are the same:

- t is calculated directly from the means and errors in our model
- F is calculated from the squared errors in our model

So is it possible that $t^2 = F$

 $-2.437^{2} = 5.94$

F-statistic: 5.94 on 1 and 28 DF, p-value: 0.02141

Why F and t?

If in our example here t and F are both essentially the same. Why have both?

t can only be calculated for single predictors – it cannot be used for more than one at a time

F can be used no matter the number of different predictors in our model

In more complex models we will see that multiple *t-values* are generated to test the significance of each predictor separately within a model and *F* is used to test the significance of the *whole* model.

Bringing it all together!

There is a significant difference in the heights of our cross-bred and selfed maize plants (P<0.05)

Can we do any better than this?

```
Call:
lm(formula = height ~ type, data = darwin)
Residuals:
            1Q Median
   Min
                                 Max
-8.1917 -1.0729 0.8042 1.9021 3.3083
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.1917 0.7592 26.596 <2e-16 ***
typeSelf -2.6167 1.0737 -2.437 0.0214 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.94 on 28 degrees of freedom
                            Adjusted R-squared: 0.1455
Multiple R-squared: 0.175,
F-statistic: 5.94 on 1 and 28 DF, p-value: 0.02141
```

Bringing it all together!

Self pollinated maize plants were on average 17.6 inches high, while the cross-pollinated plants had a height of 20.2 inches – a difference of 2.6 inches which was statistically significant ($F_{1,28} = 5.9$, P = 0.02, $R^2 = 0.15$).

This version of our write-up has:

- Sample size information (degrees of freedom)
- Test statistic (F)
- Together these produce our P value
- Information on the variance explained by our model R^2
- Accurate information on our observations

Next Time

- We will look at more assumptions of our linear models and how to test we have a good fit
- Confidence intervals how to capture the *importance* or *effect size* of our models

Remember we have a discussion boards for:

- R code
- GitHub
- Stats theory

This week's assignments

1) Join the GitHub Classroom – Task 3 Wk 1

2) Complete last week's (Week 2) workshop:

Philip-Leftwich/5023Y-Week2-Statistics

3) Start this week's assignment

Philip-Leftwich/5023Y-Week3-Statistics