Hierarchical, multi-label prediction for automated cell type identification

Iwijn Voeten Klaas Goethals

Problem description

- Cell types have hierarchical structure
- Multiple approaches to classifying cells

Different approaches

- Flat classifier

Different approaches

- Hierarchically-Structured Local Classifiers

Different approaches

Hierarchically-Structured Local Classifiers

Multiple options:

- Local Classifier per Node (LCN)
- Local Classifier per Parent Node (LCPN)
- Local Classifier per Level (LCL)

Different approaches: hierarchically-structured

Local Classifier per Parent Node (LCPN)

Different approaches: hierarchically-structured

- Local Classifier per Level (LCL)

What we did

- Data filtering
- Flat classifier
- Hierarchical: Local Classifier per Parent Node (LCPN)
 - Limited depth
 - Depth all the way
- Hierarchical: Local Classifier per Level (LCL) modified

Data

- "Allen Mouse Brain" dataset
- "Covid BAL" dataset

- Remove columns consisting of all or many zeros

Flat vs Hierarchical

- Hierarchical performed worse

Limited Hierarchical

- Depth limiting
 - Better than full hierarchical

Faster than flat

Local Classifier per Layer modified

- Correct mistakes made earlier

Parallelization hierarchic models

- Train models on multiple cores
- Unsuccessful

Results

- Time decrease of 18.8% with limited hierarchical model
- Time decrease of 21.6% with full hierarchical model

- Flat classifier: 90.2% accuracy
- Limited hierarchical: 90.2% accuracy
- Full hierarchical: 47.2% accuracy

Future work

- Hierarchical classifier: Local Classifier per Node
- Hierarchical limited on more depths