# Chomsky Hierarchy

- What is the expressive power of these grammars?
- Restricting the types of rules, allows one to describe different aspects of natural languages
- These grammars form a hierarchy

#### The Chomsky Hierarchy





## Chomsky Hierarchy Languages and Automata



#### Chomsky Hierarchy Languages



## Chomsky Hierarchy Summary

| Туре | Name                                                        | Allowable<br>Productions                                                                                                      | Example<br>Language | Example<br>Grammar                                                                                                                           | Example<br>Use                        | Recognizing<br>Automaton    | Storage<br>Required                          | Parsing<br>Complexity |
|------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|----------------------------------------------|-----------------------|
| 0    | Type 0                                                      | Unrestricted                                                                                                                  |                     |                                                                                                                                              |                                       | Turing Machine              | Infinite Tape                                | Undecidable           |
| 1    | Context<br>Sensitive                                        | $\begin{array}{c} \alpha \to \beta \\ \text{where }  \alpha  \leq  \beta  \\ \alpha \in V^*NV^* \\ \beta \in V^+ \end{array}$ | $a^nb^nc^n$         | $S \rightarrow aSBC$ $S \rightarrow aBC$ $CB \rightarrow BC$ $aB \rightarrow ab$ $bB \rightarrow bb$ $bC \rightarrow bc$ $cC \rightarrow cc$ |                                       | Linear Bounded<br>Automaton | Tape a linear<br>multiple of<br>input length | NP Complete           |
| 2    | Context<br>Free                                             | $A 	o lpha \ A \in N \ lpha \in V^*$                                                                                          | $a^nb^n$            | $S \to aSb \\ S \to ab$                                                                                                                      | Arithmetic Expression $x = a + b * c$ | Pushdown<br>Automaton       | Pushdown<br>Stack                            | $O(n^3)$              |
| 3    | Regular<br>Right Linear<br>Finite Automaton<br>Recognizable | $A  ightarrow xB$ $A  ightarrow x$ $A, B \in N$ $x \in T^*$                                                                   | $a^nb$              | $S \to ab \\ S \to aS$                                                                                                                       | Identifier<br>VECTOR7                 | Finite<br>Automaton         | Finite<br>Storage                            | O(n)                  |