

Callset Evaluation

Comparing statistics between your callset and a truth set

You are here in the GATK Best Practices workflow for **germline variant discovery**

Where are you on this spectrum?

Your variant calls perfectly match the underlying biological truth

Your variant calls real variants and called few false positives only called artifacts!

You found many real variants and only called artifacts!

= What callset evaluation methods aim to determine

(not veracity of individual variant calls)

How do I figure out how good/bad my callset is?

Extract key statistics and compare to truth set stats

MyCallset Specs			Truth Specs	
		VS		

Guiding principle: divergence is indicative of error

Key assumption: truth set is representative / comparable

- Important to match dataset properties!
 - Population ethnicity
 (European, African, etc.)
 - Sequencing / exp. design (WGS vs. WES)
 - Cohort size

http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html

Ethnicity affects many variant call metrics

Older populations tend to display more heterogeneity

If possible, use truth sets generated with orthogonal methods

Sequencing

- Sanger sequencing
- Other HTS technologies

Probe/Array-based

- GeneChip
- Microarrays

Commonly used truth sets

dbSNP

All previously reported variation (lots of junk!)

Sample-matched genotyping chip

Awesome! But adds cost & limited to known variants

HapMap

Highly validated common human variants

OMNI

Common variation validated by array

NIST Genomes in a Bottle (single sample evaluation)

Consensus callsets from common benchmarking samples

Recommended metrics for callset evaluation

Number of Indels & SNPs

Genotype Concordance

Indel Ratio

TiTv Ratio

Number of Indels & SNPs

Sequencing Type	# of Variants
WGS	~4.4 M
WES	~41 k

- Variants = Indels + SNPs
- Useful for order-of-magnitude sanity check

TiTv Ratio

Sequencing Type	TiTv Ratio
WGS	2.0-2.1
WES	3.0-3.3

- If random: expect ratio of 0.5
 Twice as many possible transversions vs transitions!
- Low TiTv ratio indicates high rate of false positives

Indel Ratio

Variant Association Study type	Indel Ratio
Common	~1
Rare	0.2-0.5

- Ratio of insertions to deletions
- Varies by type of study
 e.g. rare variant association vs common variant association

Genotype Concordance

- Most appropriate truth set is genotyping chip for same sample
- % Genotype calls in callset matching GT calls in truth set
- Unmatched variants considered false positives

Cheat sheet of concordance metrics

SENSITIVITY vs. FALSE DISCOVERY RATE

SENSITIVITY

$$\frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{7}{7+3} = 70\%$$

FALSE DISCOVERY RATE

$$\frac{FP}{FP + TP} = \frac{5}{5 + 7} = 42\%$$

GENOTYPE CONCORDANCE

★ heterozygous (0/1)

★ homozygous-variant (1/1)

GT CONCORDANCE

$$\frac{\sum \text{matches}}{\text{TP}} = \frac{4}{7} = 57\%$$

So how do I get these metrics?

	Variant Level Evaluation	Genotype Level Evaluation
GATK	<pre>VariantEval java -jar GenomeAnalysisTK.jar \ -T VariantEval \ -R reference.b37.fasta \ -eval callset.vcf \ -D truthset.vcf \ -o results.eval.grp</pre>	<pre>java -jar GenomeAnalysisTK.jar \ -T GenotypeConcordance \ -R reference.b37.fasta \ comp truthset.vcf \ eval callset.vcf \ -o results.grp</pre>
Picard	CollectVariantCallingMetrics java -jar picard.jar \	<pre>GenotypeConcordance java -jar picard.jar \ GenotypeConcordance \ CALL_VCF=callset.vcf \ TRUTH_VCF=truthset.vcf \ CALL_SAMPLE=sampleName \ TRUTH_SAMPLE=sampleName \ OUTPUT=results</pre>

Which variant-level evaluator should I use?

GATK VariantEval

- More detailed analysis
- More options for stratification
- Ability to compare to multiple truth sets

Picard CollectVariantCallingMetrics

- Best performance & speed on very large callsets
- Few options beyond the metrics discussed here

You are here in the GATK Best Practices workflow for **germline variant discovery**

Further reading

http://www.broadinstitute.org/gatk/guide/article?id=6308

http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html

