Sundance Multiprocessor Technology Limited

Form: QCF51 Template Date: 10 November 2017

Unit / Module Description:	Robotic Controller Shield for Ultra96v2 Module
Unit / Module Number:	Robo96
Document Issue Number:	1.1_07072020
First Issue Date:	22/06/2020
Original Author:	I. Matic

Robo96 Shield

Expansion Shield for Ultra96v2 with 9-Axis IMU, Motor Driver, GPS, Barometric Sensor and USB2.0

Sundance Multiprocessor Technology Ltd, Chiltern House, Waterside, Chesham, Bucks. HP5 1PS.

This document is the property of Sundance and may not be copied nor communicated to a third party without prior written permission.

© Sundance Multiprocessor Technology Limited 2020

Revision History

Issue	Changes Made	Date	Initial s
1.0	First draft.	22/06/2020	IM
1.01	Various formatting	06/07/2020	FC
1.02	Implemented changes based on provided comments	06/07/2020	IM
1.1	Internal revision.	07/07/2020	PM

Table of Contents

1	Introduction	5
	1.1 Main Features	6
2	Schematics and explanations	7
	2.1 Ultra96v2 Interface	7
	2.1.1 Low-Speed Connector	7
	2.1.2 High-speed connector	9
	2.1.3 Logic Level Translation	10
	2.2 Power Supplies	13
	2.2.1 Power Connectors	13
	2.2.2 Battery Charging	15
	2.2.3 Battery protection	16
	2.2.4 5V Servo Supply	18
	2.2.5 3V3 Regulator	19
	2.3 Robot Interface	20
	2.3.1 9-axis IMU sensor	20
	2.3.2 Barometric pressure sensor	21
	2.3.3 Motor Driver	22
	2.3.4 GPS Module	23
	2.3.5 Auxiliary Outputs	24
	2.3.6 Encoder Inputs	25
	2.3.7 Servo/ESC Output Headers	
3	Dimensions	
4	Safety	
5	Design Release and Quality	
6	EMC	28
7	Ordering information	28

Figures

Figure 1: Robo96 Block Diagram	6
Figure 2: Low-Speed Communication Connector	7
Figure 3: High-Speed Communication Connector	9
Figure 4: Logic Level translation between 1.8V and 3.3V signals	10
Figure 5: Logic Level translation between 1.8V and 5V signals	11
Figure 6: DC in connector for supplying the power to the Robo96 Board	13
Figure 7: Battery connector for 2S 7.4 Li-Po Balanced battery pack	14
Figure 8: Note for the battery connector shown in the previous figure	14
Figure 9: 2S Li-Po battery charger circuit	15
Figure 10: Battery over-charge and over-discharge protection circuit	16
Figure 11: Battery overvoltage protection and balancing circuit	17
Figure 12: 5V Servo Supply Buck Converter	18
Figure 13: 3.3V Regulator	19
Figure 14: 9-axis IMU sensor	20
Figure 15: Barometric Pressure Sensor	21
Figure 16: Motor Driver	22
Figure 17: GPS/GNSS Module	23
Figure 18: Auxiliary outputs	24
Figure 19: Encoder Inputs	25
Figure 20: Servo/ESC Output Headers	26
Figure 21: Width Measurement of Robo96 Board	27
Figure 22: Length Measurement of Robo96 Board	27
Tables	
Table 1: Pinout of Low-Speed Ultra96v2 interface connector [CN8]	8
Table 2: Mapping of Voltage Level Translated signals and their voltage levels	12
Table 3: Signal Mapping for Controlling the Motor Driver	22
Table 4: UART Bus Signal Mapping for GPS/GSNN Receiver Module [U12]	23
Table 5: Signal Mapping for Auxiliary Outputs	24
Table 6: Signal Mapping for Encoder Inputs	25
Table 7: Signal Mapping for Servo/ESC Output Connector	26

1 Introduction

This document describes the hardware features and some operational details of the Robo96 Shield. The Robo96 Shield is an expansion board compatible with the Ultra96v2¹ computer board, manufactured by Avnet.

The Robo96 board can be plugged to the Ultra96v2 via the 2x20 Pin 2mm Pitch header connector accessing the low-speed communication signals and a 2x30 Pin Board to Board connector providing the high-speed communication interface the two boards.

Both of connectors mentioned above follow the **96Boards Consumer Edition** Low-Cost Hardware Platform Specification² specified by Linaro (community boards group).

¹ https://www.96boards.org/product/ultra96/

1.1 Main Features

Figure 1: Robo96 Block Diagram

The Robo96 board is an expansion board designed to plug-and-play into the Ultra96v2 computer board and expand the Ultra96v2 capabilities by adding various sensors and motor servo controllers.

Robo96 board provides:

- 1. External 2S 7.4V battery connector. The Robo96 also incorporates battery charging and battery protection circuitry.
- 2. Multiple TXB0108PWR³ Bi-directional Voltage-Level translators for:
 - a. Driving the servo motors.
 - b. Driving the control lines of H-Bridge controllers.
 - c. Buffering the Encoder Inputs.
 - d. Driving the auxiliary output MOSFETs.
- 3. Ability to drive 2 DC motors through the H-Bridge driver accomplished by TB6612FNG⁴.
- 4. 2 encoder pair inputs via the IST connectors.
- 5. 2 ground switched auxiliary outputs (Battery voltage level) through the PCB Terminal Block.
- 6. 9 axis ICM-20948⁵ IMU motion tracking sensor
- 7. SAM-M86 GPS/GNSS receiver

³ Available online, https://www.ti.com/lit/ds/symlink/txb0108.pdf, last accessed 23/06/2020

⁴ Available online, https://toshiba.semicon-storage.com/info/docget.jsp?did=10660&prodName=TB6612FNG, last accessed 23/06/2020

⁵ Available online, <u>https://invensense.tdk.com/download-pdf/icm-20948-datasheet-2</u>, last accessed 23/06/2020

2 Schematics and explanations

2.1 Ultra96v2 Interface

2.1.1 Low-Speed Connector

Figure 2: Low-Speed Communication Connector

The Low-Speed Communication Connector **CN8** (NRPN202MAMS-RC⁷) is used to connect the Robo96 and Ultra96v2 computer board. The connector carries low-speed GPIO signals, I2C and UART bus from the Ultra96v2 computer board.

This connector follows the **96Boards Consumer Edition Low-Cost Hardware Platform Specification Standard**⁸ mentioned in Introduction.

⁶ Available online, https://www.u-blox.com/sites/default/files/SAM-M80_DataSheet_%28UBX-16012619%29.pdf, last accessed 23/06/2020

⁷ Available online, https://drawings-pdf.s3.amazonaws.com/10495.pdf, last accessed 23/06/2020

⁸ Available online, https://linaro.co/ce-specification, last accessed 23/06/2020

Table 1: Pinout of Low-Speed Ultra96v2 interface connector [CN8]

Pin	Usage		Usage
1	GND	2	GND
3	HD_GPIO_0	4	SW1 (NO switch to GND)
5	UARTO_TXD	6	NC
7	UARTO_RXD	8	NC
9	HD_GPIO_3	10	NC
11	HD_GPIO_4	12	SW2 (NO switch to GND, pulled up to 1V8, R31)
13	HD_GPIO_5	14	NC
15	I2C0_SCL (pulled up to 1V8, R29)	16	HD_GPIO_9
17	I2CO_SDA (pulled up to 1V8, R30)	18	HD_GPIO_10
19	Test Point	20	HD_GPIO_11
21	Test Point	22	HD_GPIO_12
23	GPIO1_0	24	GPIO1_1
25	GPIO1_2	26	GPIO1_3
27	GPIO1_4	28	GPIO1_5
29	HD_GPIO_6	30	HD_GPIO_13
31	HD_GPIO_7	32	HD_GPIO_14
33	HD_GPIO_8	34	HD_GPIO_15
35	1V8	36	VBATT
37	5V	38	VBATT

2.1.2 High-speed connector

Figure 3: High-Speed Communication Connector

The High-Speed Breakout connector **CN6** (Tyco 5177984-2⁹) is split into multiple other connectors, enabling connection of additional peripherals to the Ultra96v2 computer board even with the Robot96 board present on top of it. The following connectors are:

- 1. **CN5** Connector for SPI BUS (Molex 52207-2433¹⁰)
- 2. **CN7** Connector for I2C BUS (Molex 52207-0633¹¹)
- 3. **CN9** Connector for USB (Molex 52207-0460¹²)

This connector follows the **96Boards Consumer Edition Low-Cost Hardware Platform Specification Standard** ¹³mentioned in Introduction.

<u>Please note that all connectors mentioned above are directly connected</u> to the Ultra96v2 computer board and operate at the 1.8V level.

⁹ Available online, https://www.farnell.com/datasheets/447467.pdf, last accessed 24/06/2020

¹⁰ Available online, https://www.farnell.com/datasheets/2791595.pdf, last accessed 24/06/2020

¹¹ Available online, https://www.farnell.com/datasheets/2701436.pdf, last accessed 24/06/2020

¹² Available online, https://www.farnell.com/datasheets/1865823.pdf, last accessed 24/06/2020

¹³ Available online, https://linaro.co/ce-specification, last accessed 23/06/2020

2.1.3 Logic Level Translation 1V8 3V3 U8 19 VCCA VCCB 10 OE UART0_TXD 20 1 A1 UARTO TXD B **B**1 3 UARTO RXD 18 A2 B2 UARTO RXD B GPIO1_0 4 17 А3 ВЗ ENC1B_B GPIO1_2 5 16 ENC1A_B A4 **B4** GPIO1 4 6 15 ENC2A_B A5 **B**5 GPIO1 1 7 14 A6 B6 ENC2B_B HD_GPIO_10 8 13 A7 В7 PWM 1 B 9 12 HD GPIO 11 PWM_2_B A8 **B8** 11 GND TXB0108PWR 1V8 3V3 19 VCCA VCCB 10 OE HD_GPIO_15 1 20 A1 В1 MDIR_1A_B HD_GPIO_14 3 18 B2 A2 MDIR 1B B HD_GPIO_13 4 17 MDIR_2A_B АЗ ВЗ GPIO1_5 5 16 MDIR_2B_B A4 В4 GPIO1_3 6 15 AUX_OUT_1_B A5 **B5** HD_GPIO_12 7 14 A6 B6 AUX_OUT_2_B 8 13 В7 A7 9 12 A8 В8

Figure 4: Logic Level translation between 1.8V and 3.3V signals

GND

11

GND

TXB0108PWR

Figure 5: Logic Level translation between 1.8V and 5V signals

To provide the Voltage Logic Level translation between Ultra96v2 computer board, which has the nominal voltage value of 1.8V and various other components on the Robo96 board, the TXB0108PWR¹⁴, bi-directional Voltage Translators with automatic direction sensing are used.

The board contains a total of three Level Shifters (described in **Introduction**) which provide different voltage levels for various components on board. One of the translators (U10) is used to control servo motors directly from the Ultra96v2 computer board.

The following table shows all translated signals and their corresponding voltage levels:

¹⁴ Available online, https://www.ti.com/lit/ds/symlink/txb0108.pdf, last accessed 23/06/2020

Table 2: Mapping of Voltage Level Translated signals and their voltage levels

IC	VCCa	Signal name	VCCb	Signal name	Used for
U8	1.8V	UARTO_TXD	3.3V	UARTO_TXD_B	UART FOR GPS [SAM-M8]
U8	1.8V	UARTO_RXD	3.3V	UARTO_RXD_B	UART FOR GPS [SAM-M8]
U8	1.8V	GPIO1_0	3.3V	ENC1B_B	ENCODER INPUT 1 [CN2]
U8	1.8V	GPIO1_2	3.3V	ENC1A_B	ENCODER INPUT 1 [CN2]
U8	1.8V	GPIO1_4	3.3V	ENC2A_B	ENCODER INPUT 2 [CN3]
U8	1.8V	GPIO1_1	3.3V	ENC2B_B	ENCODER INPUT 2 [CN3]
U8	1.8V	HD_GPIO_10	3.3V	PWM_1_B	MOTOR DRIVER [U11] (1st CHANNEL)
U8	1.8V	HD_GPIO_11	3.3V	PWM_2_B	MOTOR DRIVER [U11] (2nd CHANNEL)
U9	1.8V	HD_GPIO_15	3.3V	MDIR_1A_B	MOTOR DRIVER [U11] (1st CHANNEL)
U9	1.8V	HD_GPIO_14	3.3V	MDIR_1B_B	MOTOR DRIVER [U11] (1st CHANNEL)
U9	1.8V	HD_GPIO_13	3.3V	MDIR_2A_B	MOTOR DRIVER [U11] (2nd CHANNEL)
U9	1.8V	GPIO1_5	3.3V	MDIR_2B_B	MOTOR DRIVER [U11] (2nd CHANNEL)
U9	1.8V	GPIO1_3	3.3V	AUX_OUT_1_B	AUX OUT MOSFET [Q2]
U9	1.8V	HD_GPIO_12	3.3V	AUX_OUT_2_B	AUX OUT MOSFET [Q3]
U10	1.8V	HD_GPIO_0	5V	SERVO_1_B	SERVO HEADER [JP1]
U10	1.8V	HD_GPIO_3	5V	SERVO_2_B	SERVO HEADER [JP1]
U10	1.8V	HD_GPIO_4	5V	SERVO_3_B	SERVO HEADER [JP1]
U10	1.8V	HD_GPIO_5	5V	SERVO_4_B	SERVO HEADER [JP1]
U10	1.8V	HD_GPIO_6	5V	SERVO_5_B	SERVO HEADER [JP1]
U10	1.8V	HD_GPIO_7	5V	SERVO_6_B	SERVO HEADER [JP1]
U10	1.8V	HD_GPIO_8	5V	SERVO_7_B	SERVO HEADER [JP1]
U10	1.8V	HD_GPIO_9	5V	SERVO_8_B	SERVO HEADER [JP1]

2.2 Power Supplies

2.2.1 Power Connectors

Figure 6: DC in connector for supplying the power to the Robo96 Board

Main connector $\mathbf{J1}$ (PJ-102AH¹⁵) for powering the Robo96 board is a DC barrel jack style connector on the side of the board. It is used to provide power to the Robo96 and to charge the Li-Po battery connected to the board.

The jack is configured in a fashion that makes the central conductor be a positive contact, and the barrel part to be ground contact of the connector.

¹⁵ Available online, https://www.mouser.co.uk/datasheet/2/670/pj-102ah-1778518.pdf, last accessed 24/06/2020

Figure 7: Battery connector for 2S 7.4 Li-Po Balanced battery pack

The 2S 7.4V Li-Po battery pack is connected to the three-pin battery connector **CN1** (S3B-XH-SM4TB¹⁶).

Before connecting the battery to the board make sure that the pinout of the battery connector is properly configured.

The battery pack connected is charged via the appropriate charging circuits present on the board. In addition to all charging functionalities, the board also incorporates all battery protection features.

Battery Connector

Note the pinout of the connector and ensure a suitable 7.4V 2S battery is used. Ensure battery protection IC overcharge & over-discharge protection voltages are correct

Figure 8: Note for the battery connector shown in the previous figure

¹⁶ Available online, https://www.farnell.com/datasheets/2057209.pdf, last accessed 24/06/2020

2.2.2 Battery Charging

Figure 9: 2S Li-Po battery charger circuit

To safely charge up the connected battery, Robo96 board possess the 2S Li-Po battery charging circuitry implemented using the MP2615GQ-Z¹⁷ **[U2]**. The MP2615 is a high-efficiency Switch Mode battery charger, capable of delivering 2A of charge current.

The charger operates in CC/CV¹⁸ charging mode.

 $^{^{17}}$ Available online, $\underline{\text{https://www.mouser.com/datasheet/2/277/MP2615_r1.0-1384386.pdf}, last accessed 24/06/2020$

¹⁸ Constant Current / Constant Voltage

2.2.3 Battery protection

Figure 10: Battery over-charge and over-discharge protection circuit

In addition to battery charging, Robo96 provides over-charge and over-discharge protection. These functionalities are accomplished using the Battery Protection IC Device, S-8261AAJMD-G2JT2G¹⁹ **[U1]**.

All protections above work by **U1** driving the **Q1** MOSFET (shown in Figure 6). When a fault state occurs, **U1** closes the **Q1**, effectively cutting the battery from the circuit.

¹⁹ Available online, https://www.ablic.com/en/doc/datasheet/battery_protection/S8261_E.pdf, last accessed 24/06/2020

Figure 11: Battery overvoltage protection and balancing circuit

In addition to battery protection mentioned above, the Robo96 provides a battery overvoltage protection and cell balancing capabilities implemented via another Battery Protection IC Device, MP2615GQ-Z²⁰ [U3].

²⁰ Available online, https://www.ti.com/lit/ds/symlink/bg29209.pdf, last accessed 24/06/2020

2.2.4 5V Servo Supply 5V Servo Supply VBATT VSERVO L2 PVIN SW 12 2.9A PVIN SW 10 22uH AVIN SW R26 C24 10uF 10uF 10uF 13, 14 1% ΕN VOS 25V 25V 200k 25V 9, 4 SS/TR PG 5 FΒ C25 GND 1nF 17 ΕP 50V 6 AGND VSERVO 15 8 DEF **PGND** 16 **FSW PGND** TPS62133 GND

Figure 12: 5V Servo Supply Buck Converter

To provide high current capable power supply for driving the servo motors, the Step-Down Buck Converter TPS62133²¹ [**U7**] is used.

The Step-Down Buck Converter is powered from the Li-Po battery connected to the Robo96 board via the Li-Po connector **[CN1]** mentioned earlier.

The advantage of using the Step-Down Buck Converter to create a 5V servo power supply is better efficiency and lower footprint on the PCB board.

²¹ Available online, https://www.ti.com/lit/ds/symlink/tps62133.pdf, last accessed 24/05/2020

2.2.5 3V3 Regulator **VBATT** R12 3.3V Regulator **DNF** 3V3 0603 U4 R13 3 ΙN OUT 2 0R C13 OUT 1 **GND** 10uF C14 25V AZ1117C 0805 22uF 6.3V

Figure 13: 3.3V Regulator

To provide clean and ripple-free 3.3V power rail for other components on the Robo96 board, the AZ1117C ²²[U4] linear voltage regulator is used.

Advantage of using the linear voltage regulator is ripple-free 3.3V voltage rail at the board, which can be used for components that require low noise, high-quality power supply.

²² Available online, https://www.diodes.com/assets/Datasheets/AZ1117C.pdf, last accessed 24/06/2020

2.3 Robot Interface

2.3.1 9-axis IMU sensor

Figure 14: 9-axis IMU sensor

The Robo96 board provides an onboard 9-axis IMU sensor, implemented using the TDK ICM-20948 ²³IC device **[U6]**. The ICM-20948 is a 3-axis gyroscope, 3-axis accelerometer, 3-axis compass, and a digital motion processor.

The device is powered from the 3.3V power rail, created by the AZ1117C **[U4]** linear regulator mentioned earlier.

Even if the device is powered from 3.3V power rail, the logic level for I2C bus is 1.8V.

The ICM-20946 is interfaced trough the I2C bus which goes directly to the Ultra96v2 computer board via the Low-Speed Communication connector. **[CN-8]**. The I2C address of this device is dependent on the voltage level present on the AD0 pin (Pin 9).

In this configuration, the address of the ICM-20948 is **0X68** (1101000 in binary representation.

²³ Available online, https://invensense.tdk.com/wp-content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf

2.3.2 Barometric pressure sensor

Figure 15: Barometric Pressure Sensor

The Robo96 board provides an onboard barometric pressure sensor, implemented using the Bosch BMP280 ²⁴IC device **[U6]**.

The BMP280 is an absolute barometric pressure sensor of small dimensions and low power consumption.

This device is powered from 1.8V power rail, provided from the Ultra96v2 computer board trough Low-Speed Communication connector [CN-8].

The ICM-20946 is interfaced trough the I2C bus which goes directly to the Ultra96v2 computer board via the Low-Speed Communication connector. **[CN-8]**. The I2C address of this device is dependent on the voltage level present on the SDO pin of the device (pin 5).

In this configuration, the address of the BMP280 is **0X76** (1110110 in binary representation.

 $\frac{https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf}{}$

²⁴ Available online,

Figure 16: Motor Driver

The Robo96 board provides an onboard H-Bridge Motor Driver for two DC brushed motors, implemented using the Toshiba TB612FNG²⁵ Driver IC **[U11]**.

Power for the driver is supplied from the Li-Po battery, connected to the Robo96 board via the Li-Po battery connector **[CN1]**.

The driver is controlled from the Ultra96v2 computer board trough the Low-Speed Communication connector **[CN-8]** with voltage level translation from 1.8V to 3.3V using the Voltage Level Translator **[U8, U9]**.

The table below shows the appropriate signal lines for each channel of the Motor Driver:

CN-8 Pin	1V8 Signal Name	3V3 Signal Name	Channel	Purpose	Connector
34	HD_GPIO_15	MDIR_1A_B	1	Direction control	J1
32	HD_GPIO_14	MDIR_1B_B	1	Direction control	J1
30	HD_GPIO_13	MDIR_2A_B	2	Direction control	J2
28	GPIO1_5	MDIR_2B_B	2	Direction control	J2
18	HD_GPIO_10	PWM_1_B	1	Speed control	J1
20	HD_GPIO_11	PWM_2_B	2	Speed control	J2

Table 3: Signal Mapping for Controlling the Motor Driver

²⁵ Available online, https://toshiba.semicon-storage.com/info/docget.jsp?did=10660&prodName=TB6612FNG

2.3.4 GPS Module

Figure 17: GPS/GNSS Module

The Robo96 board provides an onboard GPS/GNSS receiver module, implemented using the U-Blox SAM-M8Q ²⁶device **[U12]**. The SAM-M8Q module offers high sensitivity and minimal acquisition times in an ultra-compact form factor.

The device is powered from the 3.3V power rail, created by the AZ1117C **[U4]** linear regulator mentioned earlier.

The driver is interfaced trough the **UARTO** bus, available on the Robo96 board trough the Low-Speed Communication connector **[CN-8]** with voltage level translation from 1.8V to 3.3V using the Voltage Level Translator **[U8]**.

Table 4: UART Bus Signal Mapping for GPS/GSNN Receiver Module [U12]

CN-8 Pin	1V8 Signal Name	3V3 Signal Name
5	UARTO_TXD	UART0_TXD_B
7	UARTO_RXD	UARTO_RXD_B

 $^{^{26}}$ Available online, $\underline{\text{https://www.u-blox.com/sites/default/files/SAM-M8Q_DataSheet}_\%28UBX-16012619\%29.pdf}$

2.3.5 Auxiliary Outputs

Figure 18: Auxiliary outputs

The Robo96 board provides two auxiliary MOSFET ground-switched outputs for powering external devices such as solenoids, relays, contactors, etc. The MOSFETS used for switching are Philips BSH105²⁷ **[Q2, Q3]**, providing <u>maximum 1A of switching current</u>. The state of auxiliary outputs is indicated via two lightemitting diodes.

MOSFETS outputs are driven from the Ultra96v2 computer board through the Low-Speed Communication connector **[CN-8]** with voltage level translation from 1.8V to 3.3V using the Voltage Level Translator **[U9]**.

CN-8 Pin	1V8 Signal Name	3V3 Signal Name	MOSFE T	Connector	Indication LED
26	GPIO1_3	AUX_OUT_1_B	Q2	J4	D2 (Red)
22	HD GPIO 12	AUX OUT 2 B	Q3	15	D3 (Green)

Table 5: Signal Mapping for Auxiliary Outputs

²⁷ Available online, http://www.farnell.com/datasheets/454160.pdf

2.3.6 Encoder Inputs

Figure 19: Encoder Inputs

Robo96 board provides two encoder inputs which can be used to obtain the input from devices like Rotary Encoders, Position sensors, Speed sensors, etc.

Two encoder input channels are accessible through two SM04B-SRSS-TB ²⁸ connectors **[CN2, CN3]**.

Encoder inputs are passed to the Ultra96v2 computer board through the Low-Speed Communication connector **[CN-8]** with voltage level translation from 1.8V to 3.3V using the Voltage Level Translator **[U8]**.

CN-8 Pin	1V8 Signal Name	3V3 Signal Name	Encoder Channel	Connector
23	GPIO1_0	ENC1A_B	1	CN2
25	GPIO1_2	ENC1B_B	1	
27	GPIO1_4	ENC_2A_B	2	CN3
24	GPIO1_1	ENC_2B_B	2	

Table 6: Signal Mapping for Encoder Inputs

²⁸ Available online, http://www.farnell.com/datasheets/2082363.pdf, last accessed 30/06/2020

Figure 20: Servo/ESC Output Headers

Robo96 board provides 8 servo output channels which can be used to control Servo motors or Electronic Speed Controllers.

Servo outputs are driven from the Ultra96v2 computer board through the Low-Speed Communication connector **[CN-8]** with voltage level translation from 1.8V to 5V using the Voltage Level Translator **[U9]**.

	İ		
CN-8 Pin	1V8 Signal Name	5V Signal Name	Servo Channel
3	HD_GPIO_0	SERVO_1_B	1
9	HD_GPIO_3	SERVO_2_B	2
11	HD_GPIO_4	SERVO_3_B	3
13	HD_GPIO_5	SERVO_4_B	4
29	HD_GPIO_6	SERVO_5_B	5
31	HD_GPIO_7	SERVO_6_B	6
33	HD_GPIO_8	SERVO_7_B	7
16	HD GPIO 9	SERVO 8 B	8

Table 7: Signal Mapping for Servo/ESC Output Connector

3 Dimensions

Figure 21: Width Measurement of Robo96 Board

Figure 22: Length Measurement of Robo96 Board

Size of Robo96 board follows the size and mounting hole positions of Ultra96 Computer board.

Sizes of the Robo96 is **85mm x 54mm**.

4 Safety

This module presents no hazard to the user when in normal use.

5 Design Release and Quality

Verification, Review and Validation Procedures to be carried out in accordance with the Sundance Quality Procedures (ISO9001-2015).

6 EMC

The Robo96 is designed to operate from within an enclosed host system, which is built to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate enclosure.

This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the output cables.

7 Ordering information

Robo96-C - Commercial Temperature

Robo96-I - Industrial Temperature