You have a graph $\underline{G}(V,E)$. Some of the edges are red, some are white and some are blue. You are given two distinct vertices u and v and want to find a walk $[u \rightarrow v]$ such that:

- a white edge must be taken after a red edge only.
- a blue edge must be taken after a white edge only.
- and a red edge may be taken after a blue edge only.
- must start on red edge

Develop a algorithm to find a path with these edge constrints.

ECE-374-B: Lecture 18 - Bellman-Ford and Dynamic Programming on Graphs

Instructor: Nickvash Kani

March 28, 2023

University of Illinois at Urbana-Champaign

You have a graph $\underline{G}(V,E)$. Some of the edges are red, some are white and some are blue. You are given two distinct vertices u and v and want to find a walk $[u \rightarrow v]$ such that:

- · a white edge must be taken after a red edge only.
- · a blue edge must be taken after a white edge only.
- and a red edge may be taken after a blue edge only.
- must start on red edge

Develop a algorithm to find a path with these edge constrints.

Shortest Paths with Negative Length Edges

Why Dijkstra's algorithm fails with negative edges

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems

Input: A <u>directed</u> graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems

Input: A <u>directed</u> graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

What are the distances computed by Dijkstra's algorithm?

The distance as computed by Dijkstra algorithm starting from s:

1.
$$s = 0$$
, $x = 5$, $y = 1$, $z = 0$.

$$\sum_{x=5}^{5} s = 0, x = 1, y = 2,$$

3.
$$s = 0, x = 5, y = 1,$$

 $z = 2.$

4. IDK.

With negative length edges, Dijkstra's algorithm can fail

False assumption: Dijkstra's algorithm is based on the assumption that if $s \to v_0 \to v_1 \to v_2 \dots \to v_k$ is a shortest path from s to v_k then $dist(s, v_i) \le dist(s, v_{i+1})$ for $0 \le i < k$. Holds true only for non-negative edge lengths.

Shortest Paths with Negative Lengths

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

• $s = V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow ... \rightarrow V_i$ is a shortest path from s to V_i

Shortest Paths with Negative Lengths

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_i$ is a shortest path from s to v_i
- False: $dist(s, v_i) \le dist(s, v_k)$ for $1 \le i < k$. Holds true only for non-negative edge lengths.

Shortest Paths with Negative Lengths

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_i$ is a shortest path from s to v_i
- False: $dist(s, v_i) \le dist(s, v_k)$ for $1 \le i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Why can't we just re-normalize the edge lengths!?

Why can't we simply add a weight to each edge so that the shortest length is 0 (or positive).

Why can't we simply add a weight to each edge so that the shortest length is 0 (or positive).

Why can't we simply add a weight to each edge so that the shortest length is 0 (or positive).

Shortest Path: $s \rightarrow a \rightarrow c \rightarrow t$

Shortest Path: $s \rightarrow b \rightarrow t$

Why can't we simply add a weight to each edge so that the shortest length is 0 (or positive).

Shortest Path: $s \to a \to c \to t$ Shortest Path: $s \to b \to t$ Adding weights to edges penalizes paths with more edges.

But wait! Things get worse: Negative cycles

Negative Length Cycles

Definition

A cycle *C* is a negative length cycle if the sum of the edge lengths of *C* is negative.

Negative Length Cycles

Definition

A cycle *C* is a negative length cycle if the sum of the edge lengths of *C* is negative.

Negative Length Cycles

Definition

A cycle *C* is a negative length cycle if the sum of the edge lengths of *C* is negative.

What is the shortest path distance between s and t?

Reminder: Paths have to be simple...

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

- undefined, that is $-\infty$, OR
- the length of a shortest simple path from s to t.

Really bad new about negative edges, and shortest path...

Lemma

If there is an efficient algorithm to find a shortest simple $s \to t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the <u>longest</u> simple $s \to t$ path in a graph with positive edge lengths.

Finding the $s \to t$ longest path is difficult. NP-HARD!

Restating problem of Shortest path with negative edges

Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

- A path is a sequence of <u>distinct</u> vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$.
- A walk is a sequence of vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

- If there is a walk from u to v that contains negative length cycle then $dist(u, v) = -\infty$
- Else there is a path with at most n-1 edges whose length is equal to the length of a shortest walk and dist(u, v) is finite

Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems

<u>Input</u>: A directed graph G = (V, E) with edge lengths (could be negative). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Questions:

- Given nodes s, t, either find a negative length cycle C that s can reach or find a shortest path from s to t.
- Given node s, either find a negative length cycle C that s can reach or find shortest path distances from s to all reachable nodes.
- Check if G has a negative length cycle or not.

Shortest Paths with Negative Edge Lengths - In Undirected Graphs

Note: With negative lengths, shortest path problems and negative cycle detection in undirected graphs cannot be reduced to directed graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and significantly more involved than those for directed graphs. One need to compute *T*-joins in the relevant graph. Pretty painful stuff.

Shortest path via number of hops

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

• $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_i$ is a shortest path from s to v_i

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

• $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_i$ is a shortest path from s to v_i

Sub-problem idea: paths of fewer hops/edges

Single-source problem: fix source s. Shold Assume that all nodes can be reached by s in G Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1).

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note:
$$dist(s,v)=d(v,n-1)$$
. Recursion for $d(v,k)$:
$$d(v,k)=\min \begin{cases} \min_{u\in V}(d(u,k-1)+\ell(u,v)).\\ d(v,k-1) & \text{one none edge} \\ \text{one none edge} & \text{edge} \\ \text{one note of the order} \end{cases}$$
 Base case: $d(s,0)=0$ and $d(v,0)=\infty$ for all $v\neq s$.

round	S	a	b	С	d	e	f

round	S	a	b	С	d	e	f
0	0	∞	∞	∞	∞	∞	∞

round	S	a	b	С	d	e	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞

round	S	a	b	С	d	e	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9

round	S	a	b	С	d	e	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	13	2	3	2	11	7
				•			

round	S	a	b	С	d	e	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7

round	S	a	b	С	d	e	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7

round	S	a	b	С	d	e	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7
6	0	-2	2	3	1	9	7

round	S	a	b	С	d	e	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7
6	0	-2	2	3	1	9	7

```
Create in(G) list from adj(G) \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
for each u \in V do
d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
d(s,0) \leftarrow 0
 for k=1 to n-1 do =

for each v \in V do

d(v,k) \leftarrow d(v,k-1)
for each edge (u,v) \in in(v)
                         d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}
  for each v \in V do dist(s, v) \leftarrow d(v, n-1)
```

Rutine: O(n(nem))

```
Create in(G) list from adj(G)
for each u \in V do
      d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
      for each v \in V do
            d(v, k) \leftarrow d(v, k-1)
            for each edge (u, v) \in in(v) do
                   d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
      \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

Running time: O (n (n em))

```
Create in(G) list from adj(G)
for each u \in V do
      d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
      for each v \in V do
            d(v, k) \leftarrow d(v, k-1)
            for each edge (u, v) \in in(v) do
                   d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
      \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

Running time: O(n(n+m))

```
Create in(G) list from adj(G)
for each u \in V do
      d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
      for each v \in V do
            d(v, k) \leftarrow d(v, k-1)
            for each edge (u, v) \in in(v) do
                   d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
      \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

Running time: O(n(n+m)) Space:

```
Create in(G) list from adj(G)
for each u \in V do
      d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
      for each v \in V do
            d(v, k) \leftarrow d(v, k-1)
            for each edge (u, v) \in in(v) do
                  d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
      \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

Running time: O(n(n+m)) Space: $O(m+n^2)$

```
Create in(G) list from adj(G)
for each u \in V do
      d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
      for each v \in V do
            d(v, k) \leftarrow d(v, k-1)
            for each edge (u,v) \in in(v) do
                  d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
      \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

Running time: O(n(n+m)) Space: $O(m+n^2)$

Space can be reduced to O(m + n).

```
for each u \in V do
 d(u) \leftarrow \infty
d(s) \leftarrow 0
for k = 1 to n - 1 do
     for each v \in V do
            for each edge (u, v) \in in(v) do
                  d(v) = \min\{d(v), d(u) + \ell(u, v)\}\
for each v \in V do
            dist(s, v) \leftarrow d(v)
```

Running time: O(mn) Space: O(m + n)

```
for each u \in V do
 d(u) \leftarrow \infty
d(s) \leftarrow 0
for k = 1 to n - 1 do
      for each v \in V do
            for each edge (u, v) \in in(v) do
                  d(v) = \min\{d(v), d(u) + \ell(u, v)\}\
for each v \in V do
            dist(s, v) \leftarrow d(v)
```

Running time: O(mn) Space: O(m+n) Do we need the in(V)

list?

```
for each u \in V do d(u) \leftarrow \infty

d(s) \leftarrow 0

for k = 1 to n - 1 do for each edge (u, v) \in G do d(v) = \min\{d(v), d(u) + \ell(u, v)\}

for each v \in V do \operatorname{dist}(s, v) \leftarrow d(v)
```

Running time: O(mn) Space: O(n)

```
for each u \in V do d(u) \leftarrow \infty

d(s) \leftarrow 0

for k = 1 to n - 1 do for each edge (u, v) \in G do d(v) = \min\{d(v), d(u) + \ell(u, v)\}

for each v \in V do d(s) \leftarrow d(v)
```

Running time: O(mn) Space: O(n)

Do we need the in(V) list?

Bellman-Ford: Detecting negative cycles

round	S	a	b

round	S	а	b
0	0	∞	∞

round	S	а	b
0	0	∞	∞
1	0	1	∞

round	S	а	b
0	0	∞	∞
1	0	1	∞
2	0	1	0

Negative cycles

What happens if we run this on a graph with negative cycles?

round	S	а	b
0	0	∞	∞
1	0	1	∞
2	0	1	0
3	-1	1	0

Negative cycles

What happens if we run this on a graph with negative cycles?

round	S	а	b
0	0	∞	∞
1	0	1	∞
2	0	1	0
3	-1	1	0
4	-1	0	0

Negative cycles

What happens if we run this on a graph with negative cycles?

round	S	а	b
0	0	∞	∞
1	0	1	∞
2	0	1	0
3	-1	1	0
4	-1	0	0
5	-1	0	-1

Correctness: detecting negative length cycle

Lemma

Suppose G has a negative cycle C reachable from s. Then there is some node $v \in C$ such that d(v, n) < d(v, n - 1).

Correctness: detecting negative length cycle

Lemma

Suppose G has a negative cycle C reachable from s. Then there is some node $v \in C$ such that d(v, n) < d(v, n - 1).

Proof.

Suppose not. Let $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_h \rightarrow v_1$ be negative length cycle reachable from s. $d(v_i, n-1)$ is finite for $1 \leq i \leq h$ since C is reachable from s. By assumption $d(v,n) \geq d(v,n-1)$ for all $v \in C$; implies no change in n^{th} iteration; $d(v_i, n-1) = d(v_i, n)$ for $1 \leq i \leq h$. This means $d(v_i, n-1) \leq d(v_{i-1}, n-1) + \ell(v_{i-1}, v_i)$ for $1 \leq i \leq h$ and $1 \leq i \leq h$ an

$$d(v_{1}, n) \leq d(v_{0}, n - 1) + \ell(v_{0}, v_{1})$$

$$d(v_{2}, n) \leq d(v_{1}, n - 1) + \ell(v_{1}, v_{2})$$

$$v_{1}$$

$$v_{2}$$

$$v_{3}$$

$$d(v_{i}, n) \leq d(v_{i-1}, n - 1) + \ell(v_{i-1}, v_{i})$$

$$\dots$$

$$d(v_{k}, n) \leq d(v_{k-1}, n - 1) + \ell(v_{k-1}, v_{k})$$

$$d(v_{0}, n) \leq d(v_{k}, n - 1) + \ell(v_{k}, v_{0})$$

$$d(v_{1}, n) \leq d(v_{0}, n) + \ell(v_{0}, v_{1})$$

$$d(v_{2}, n) \leq d(v_{1}, n) + \ell(v_{1}, v_{2})$$

$$\vdots$$

$$v_{3}$$

$$d(v_{i}, n) \leq d(v_{i-1}, n) + \ell(v_{i-1}, v_{i})$$

$$\vdots$$

$$d(v_{k}, n) \leq d(v_{k-1}, n) + \ell(v_{k-1}, v_{k})$$

$$d(v_{0}, n) \leq d(v_{k}, n) + \ell(v_{k}, v_{0})$$

$$\sum_{i=0}^{k} d(v_{i}, n) \leq \sum_{i=0}^{k} d(v_{i}, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_{i}) + \ell(v_{k}, v_{0})$$

$$\sum_{i=0}^{k} d(v_i, n) \leq \sum_{i=0}^{k} d(v_i, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0)$$

$$0 \leq \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0).$$

$$\sum_{i=0}^{k} d(v_i, n) \leq \sum_{i=0}^{k} d(v_i, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0)$$

$$0 \leq \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0) = \operatorname{len}(C).$$

$$\sum_{i=0}^{k} d(v_i, n) \leq \sum_{i=0}^{k} d(v_i, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0)$$

$$0 \leq \sum_{i=1}^{k} \ell(v_{i-1}, v_i) + \ell(v_k, v_0) = \operatorname{len}(C).$$

C is a not a negative cycle. Contradiction.

Negative cycles can not hide

Lemma restated

If G does not has a negative length cycle reachable from $s \implies \forall v: d(v,n) = d(v,n-1)$.

Also, d(v, n - 1) is the length of the shortest path between s and v.

Put together are the following:

Lemma

G has a negative length cycle reachable from $s \iff$ there is some node v such that d(v,n) < d(v,n-1).

Bellman-Ford: Negative Cycle Detection - final version

```
for each u \in V do
     d(u) \leftarrow \infty
d(s) \leftarrow 0
for k = 1 to n - 1 do
     for each v \in V do
           for each edge (u,v) \in in(v) do
                d(v) = \min\{d(v), d(u) + \ell(u, v)\}\
(* One more iteration to check if distances change *)
for each v \in V do
     for each edge (u,v) \in in(v) do
           if (d(v) > d(u) + \ell(u, v))
                Output ``Negative Cycle''
for each v \in V do
     dist(s, v) \leftarrow d(v)
```

Variants on Bellman-Ford

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

- For each v the d(v) can only get smaller as algorithm proceeds.
- If d(v) becomes smaller it is because we found a vertex u such that $d(v) > d(u) + \ell(u, v)$ and we update $d(v) = d(u) + \ell(u, v)$. That is, we found a shorter path to v through u.
- For each v have a prev(v) pointer and update it to point to u if v finds a shorter path via u.
- At end of algorithm prev(v) pointers give a shortest path tree oriented towards the source s.

Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

- Bellman-Ford checks whether there is a negative cycle *C* that is reachable from a specific vertex *s*. There may negative cycles not reachable from *s*.
- Run Bellman-Ford |V| times, once from each node u?

Negative Cycle Detection

- Add a new node s' and connect it to all nodes of G with zero length edges. Bellman-Ford from s' will fill find a negative length cycle if there is one. Exercise: why does this work?
- Negative cycle detection can be done with one Bellman-Ford invocation.

Shortest Paths in DAGs

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

- No cycles and hence no negative length cycles! Hence can find shortest paths even for negative length edges
- Can order nodes using topological sort

Algorithm for DAGs

- Want to find shortest paths from s. Ignore nodes not reachable from s.
- Let $s = v_1, v_2, v_{i+1}, \dots, v_n$ be a topological sort of G

Algorithm for DAGs

- Want to find shortest paths from s. Ignore nodes not reachable from s.
- Let $s = v_1, v_2, v_{i+1}, \dots, v_n$ be a topological sort of G

Observation:

- shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n
- can find shortest paths in topological sort order.

Shortest Paths for DAGs - Example

Shortest Paths for DAGs - Example

Algorithm for DAGs

```
for i=1 to n do d(s,v_i)=\infty d(s,s)=0

for i=1 to n-1 do for each edge (v_i,v_j) in \mathrm{Adj}(v_i) do d(s,v_j)=\min\{d(s,v_j),d(s,v_i)+\ell(v_i,v_j)\} return d(s,\cdot) values computed
```

Correctness: induction on i and observation in previous slide. Running time: O(m + n) time algorithm! Works for negative edge lengths and hence can find <u>longest</u> paths in a DAG.

All Pairs Shortest Paths

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t. Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms *n* times, once for each vertex.

- Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$.

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms *n* times, once for each vertex.

- Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$.

Can we do better?

All Pairs Shortest Paths: A recursive solution

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an <u>intermediate node</u> is at most k (could be $-\infty$ if there is a negative length cycle).

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an <u>intermediate node</u> is at most k (could be $-\infty$ if there is a negative length cycle).

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an <u>intermediate node</u> is at most k (could be $-\infty$ if there is a negative length cycle).

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an <u>intermediate node</u> is at most k (could be $-\infty$ if there is a negative length cycle).

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an <u>intermediate node</u> is at most k (could be $-\infty$ if there is a negative length cycle).

For the following graph, dist(i, j, 2) is...

- 1. 9
- 2. 10
- 3. 11
- 4. 12
- 5. 15

$$dist(i,j,k) = \min \begin{cases} dist(i,j,k-1) \\ dist(i,k,k-1) + dist(k,j,k-1) \end{cases}$$

Base case: $dist(i, j, 0) = \ell(i, j)$ if $(i, j) \in E$, otherwise ∞

Correctness: If $i \rightarrow j$ shortest walk goes through k then k occurs only once on the path — otherwise there is a negative length

If i can reach k and k can reach j and dist(k, k, k - 1) < 0 then G has a negative length cycle containing k and $dist(i, j, k) = -\infty$.

Recursion below is valid only if $dist(k, k, k - 1) \ge 0$. We can detect this during the algorithm or wait till the end.

$$dist(i,j,k) = \min \begin{cases} dist(i,j,k-1) \\ dist(i,k,k-1) + dist(k,j,k-1) \end{cases}$$

$$K = 0$$

$$K = 1$$

Floyd-Warshall algorithm

$$d(i, j, k) = \min \begin{cases} d(i, j, k - 1) \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases}$$

```
for i = 1 to n do
      for j = 1 to n do
             d(i,j,0) = \ell(i,j)
 (* \ell(i,j) = \infty \text{ if } (i,j) \notin E, 0 \text{ if } i = j *)
for k = 1 to n do
      for i = 1 to n do
             for j = 1 to n do
                  d(i, j, k) = \min \begin{cases} d(i, j, k - 1), \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases}
for i = 1 to n do
      if (dist(i, i, n) < 0) then
             Output \exists negative cycle in G
```

$$d(i, j, k) = \min \begin{cases} d(i, j, k - 1) \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases}$$

```
for i = 1 to n do
      for j = 1 to n do
             d(i, j, 0) = \ell(i, j)
 (* \ell(i,j) = \infty \text{ if } (i,j) \notin E, 0 \text{ if } i = j *)
for k = 1 to n do
      for i = 1 to n do
for j = 1 to n do
                   d(i, j, k) = \min \begin{cases} d(i, j, k - 1), \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases}
for i = 1 to n do
      if (dist(i, i, n) < 0) then
             Output \exists negative cycle in G
```

Running Time:

$$d(i, j, k) = \min \begin{cases} d(i, j, k - 1) \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases}$$

```
for i = 1 to n do
      for j = 1 to n do
             d(i, j, 0) = \ell(i, j)
 (* \ell(i,j) = \infty \text{ if } (i,j) \notin E, 0 \text{ if } i = j *)
for k = 1 to n do
      for i = 1 to n do
             for j = 1 to n do
                  d(i, j, k) = \min \begin{cases} d(i, j, k - 1), \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases}
for i = 1 to n do
      if (dist(i, i, n) < 0) then
             Output \exists negative cycle in G
```

Running Time: $\Theta(n^3)$. Space: $\Theta(n^3)$.

$$d(i, j, k) = \min \begin{cases} d(i, j, k - 1) \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases}$$

```
for i = 1 to n do
      for j = 1 to n do
             d(i, j, 0) = \ell(i, j)
 (* \ell(i,j) = \infty \text{ if } (i,j) \notin E, 0 \text{ if } i = j *)
for k = 1 to n do
      for i = 1 to n do
             for j = 1 to n do
                  d(i, j, k) = \min \begin{cases} d(i, j, k - 1), \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases}
for i = 1 to n do
      if (dist(i, i, n) < 0) then
             Output \exists negative cycle in G
```

Running Time: $\Theta(n^3)$. Space: $\Theta(n^3)$.

Correctness: via induction and recursive definition

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a $n \times n$ array Next that stores the next vertex on shortest path for each pair of vertices
- With array Next, for any pair of given vertices i, j can compute a shortest path in O(n) time.

Floyd-Warshall Algorithm - Finding the Paths

```
for i = 1 to n do
     for j = 1 to n do
          d(i,j,0) = \ell(i,j)
(* \ell(i,j) = \infty \text{ if } (i,j) \text{ not edge, 0 if } i = j *)
          Next(i, j) = -1
for k = 1 to n do
     for i = 1 to n do
          for j = 1 to n do
               if (d(i,j,k-1) > d(i,k,k-1) + d(k,j,k-1)) then
                     d(i, j, k) = d(i, k, k - 1) + d(k, j, k - 1)
                    Next(i,j) = k
for i = 1 to n do
     if (d(i, i, n) < 0) then
          Output that there is a negative length cycle in G
```

Exercise: Given Next array and any two vertices i, j describe an O(n) algorithm to find a i-j shortest path.

Summary of shortest path algorithms

Summary of results on shortest paths

Single source		
No negative edges	Dijkstra	$O(n \log n + m)$
Edge lengths can be negative	Bellman Ford	O(nm)

All Pairs Shortest Paths

No negative edges	n * Dijkstra	$O(n^2 \log n + nm)$
No negative cycles	n * Bellman Ford	$O(n^2m) = O(n^4)$
No negative cycles	Johnson's ¹	$O(nm + n^2 \log n)$
No negative cycles	Floyd-Warshall	$O(n^3)$
Unweighted	Matrix multiplication ²	$O(n^{2.38}), O(n^{2.58})$

Summary of results on shortest paths

- (1): The algorithm for the case that there are no negative cycles, and doing all shortest paths, works by computing a potential function using **Bellman-Ford** and then doing **Dijkstra**. It is mentioned for the sake of completeness, but it outside the scope of the class.
- (2): https://resources.mpi-inf.mpg.de/
 departments/d1/teaching/ss12/
 AdvancedGraphAlgorithms/Slides14.pdf

Fin