Exercises

Exercice 1:

1. Consider the project given by the following table of prerequisites:

Activity
Needed time (days)
Prerequisites

A	B	C	D	E	F	G	H	I
3	6	8	7	5	11	3	3	2
_		A,B	C, E	B	E	D	F,G	B

- a) Compute the minimum number of days needed to complete the project.
- b) Obtain the critical path and its weight explaining its meaning.
- c) Compute the maximum delay allowed for task E without affecting the duration of the entire project.

Exercises

2. Consider the project given by the following table of prerequisites:

Activity	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Needed time	3	4	1	2	1	2	4	1	3	3	2
Prerequisites	-	a_{1}, a_{5}	a_1, a_4	-	a_1, a_3, a_4	a_2, a_5	a_4, a_5	a_{6}, a_{7}	a_{5}, a_{7}	a_2, a_6, a_8	a_{8}, a_{9}

- 1. Draw the graph that represents the project (including the fictitious vertices representing the start and the end of th graph).
- 2. Obtain the weighting matrix of the graph.
- 3. Apply the numbering algorithm of vertices and argue if the graph has circuits or not.
- 4. Compute the minimum number of days needed to complete the project.
- 5. Obtain the critical path and its weight explaining its meaning.
- 6. Identify longest paths and their weights from the initial vertex to the rest.
- 7. Compute the maximum delay allowed for task a_7 without affecting the duration of the entire project.