Лабораторная работа №2 (язык Clisp) Рекурсия

Каждая бригада должна выполнить <u>3 задачи</u>: по одной из каждого раздела (номер задачи из каждого раздела совпадает с номером бригады). В бригаде может быть не более 2 человек.

В теле функции использование операторов цикла, set, let, функционалов <u>не</u> допускается! Все функции должны быть <u>рекурсивными</u>.

І. Определите функцию

- 1) Добавляющую заданный параметром символ после каждого неотрицательного элемента списка. Например, x=*, L=(-1 d 6 -3 a 0) -> (-1 d (6 *) -3 a (0 *)).
- 2) Преобразующую список в "двойной" список таким образом, чтобы каждый элемент удвоился. Например, (1 a b 3) -> (1 1 a a b b 3 3).
- 3) Заменяющую в списке все вхождения x на y. Например, x=1, y=+, $L=(2\ 1\ 3\ 5\ 1\ 1\ 8) <math>\rightarrow (2+3\ 5++8)$.
- 4) Добавляющую заданное параметром x число k каждому числовому элементу списка. Например, x=3, L=(a-16 v 3) -> (a 2 9 v 6).
- 5) Удаляющую n первых элементов из списка. Например, n=3, $L=(2\ 6\ 1\ 7\ 0) \longrightarrow (7\ 0)$.
- 6) Строящую список "луковица" с уровнем вложенности n для параметра x. Например, n=4, x=* -> ((((*)))).
- 7) Добавляющую заданное параметром x число в упорядоченный по неубыванию числовой список таким образом, чтобы сохранилась упорядоченность. Сортировку не использовать! Например, x=7, $L=(0\ 3\ 3\ 6\ 9) \longrightarrow (0\ 3\ 3\ 6\ 7\ 9)$.
- 8) Возвращающую список позиций элемента, заданного параметром x, в списке L. Например, x=a, L=(8 * a 6 a 1) -> (3 5).
- 9) Возвращающую список из n копий заданного атома x. Например, x=4, n=5 -> (4 4 4 4 4).
- 10) Удаляющую все отрицательные элементы из списка. Например, $(-2 6 s - 1 4 f 0) \rightarrow (6 s 4 f 0)$.

II. Определите функцию

- 1) Объединяющую 2 списка в один, чередуя элементы списков. Например, $L1=(1\ 2\ 3\ 4\ 5\ 6\ 7\ 8)$, $L2=(a\ s\ d\ f)$ \longrightarrow $(1\ a\ 2\ s\ 3\ d\ 4\ f\ 5\ 6\ 7\ 8)$.
- 2) Возвращающую список из пар соседних элементов, одинаково отстоящих от начала и конца списка. Например, $(1 \text{ a b c } 2 \text{ 3 f}) \rightarrow ((1 \text{ f}) (a \text{ 3}) (b \text{ 2}) (c))$
- 3) Определяющую, сколько раз заданное s-выражение входит в список. Например, x=(a), L=(1 (a) x (a) 2 a 1 2 d) -> 2.
- 4) Преобразующую список в множество (для повторяющихся элементов должно оставаться последнее вхождение в список). Например, (a b a a c c) -> (b a c).
- 5) Осуществляющую циклический сдвиг в списке L на n элементов влево. Например, $L = (a \ s \ d \ f \ g), n = 3 \longrightarrow (f \ g \ a \ s \ d).$
- 6) Осуществляющую циклический сдвиг в списке L на n элементов вправо.

Например, $L = (a s d f g), n = 3 \rightarrow (d f g a s).$

- 7) Удаляющую элементы с четными номерами из списка (нумерация элементов должна начинаться с 1). Для проверки на четность можно воспользоваться предикатом **EVENP** или функцией нахождения остатка от деления **REM**. Например, $(-2 6 \text{ s} 1 4 \text{ f} 0 \text{ z} \text{ x} \text{ r}) \rightarrow (-2 \text{ s} 4 0 \text{ x})$.
- 8) Вычисляющую сумму элементов с нечетными номерами числового списка (нумерация элементов должна начинаться с 1). Для проверки на четность можно воспользоваться предикатом **EVENP** или функцией нахождения остатка от деления **REM**. Например, $(-2\ 3\ 2\ 5\ -6\ 5\ 2\ 1\ 3) \longrightarrow -1$.
- 9) Добавляющую элемент в конец числового списка, чтобы сумма элементов этого списка стала равна 100. Например, $(2\ 10\ 15\ 50\ 30) \rightarrow (2\ 10\ 15\ 50\ 30\ -7)$.
- 10) Вычисляющую количество четных элементов в списке. Для проверки на четность можно воспользоваться предикатом **EVENP** или функцией нахождения остатка от деления **REM**. Например, $(-2 6 \text{ s} 1 4 \text{ f} 0 \text{ z} \text{ x} \text{ r}) \rightarrow 4$.

III. Определите функцию

1) Формирующую список, состоящий из сумм первого и последнего, второго и предпоследнего элементов числового списка и т.д. Каждый элемент должен участвовать в сложении не более одного раза.

Например, $(1 -2 -3 4 5 6 -7 8 9) \rightarrow (10 6 -10 10 5)$.

- 2) Удаляющую элементы из первого списка с номерами из второго списка (второй список упорядочен по возрастанию, нумерация элементов должна начинаться с 1). Например, $L1=(a \ s \ d \ f \ g \ h \ j \ k \ l)$, $L2=(1 \ 4 \ 5 \ 8) \longrightarrow (s \ d \ h \ j \ l)$.
- 3) Формирующую подсписок из n элементов списка L, начиная с k-го элемента. (нумерация элементов должна начинаться с 1).

Например, $L=(-2.6 \text{ s} - 1.4 \text{ f} 0 \text{ z} \text{ x} \text{ r}), k=3, n=4 \rightarrow (\text{s} - 1.4 \text{ f}).$

- 4) Переставляющую элементы списка таким образом, чтобы одинаковые элементы оказались рядом. Сортировку не использовать! Например, $(1\ 5\ 2\ 1\ 4\ 3\ 1\ 2\ 4\ 5\ 4) \longrightarrow (1\ 1\ 1\ 5\ 5\ 2\ 2\ 4\ 4\ 4\ 3)$.
- 5) Преобразующую список L в новый список, элементы которого имеют вид: (<элемент списка L> <кол-во вхождений этого элемента в список L>). Например, L = (a b a a c b) -> ((a 3) (b 2) (c 1)).

<u>Указание</u>: Напишите вспомогательную функцию, которая подсчитывает количество вхождений элемента в список.

- 6) Вычисляющую количество атомов в списочной структуре (на всех уровнях). Например, $((a b) c ((d a v))) \rightarrow 6$.
- 7) Вычисляющую глубину списка. Например, ((((1))) 2 (3 4)) -> 4.
- 8) Преобразующую инфиксную запись выражения в прединфиксную и возвращающую значение выражения. Например, $((-8 + 10) * (12 / 3)) \rightarrow 8$.
- 9) Преобразующую одноуровневый список во вложенный по следующему правилу: (a s d f g) \rightarrow (a (s (d (f (g))))).
- 10) Преобразующую одноуровневый список во вложенный по следующему правилу: (a s d f g) \rightarrow (((((a) s) d) f) g).