Machine and Human Learning

Yixin Lin

Duke University yixin.lin@duke.edu

September 22, 2017

Overview

1 How do humans learn

2 How do machines learn

Where does expert performance come from?

- What do I mean by expert performance?
 - Not money, intelligence, success, social acclaim, or happiness (though may correlate)
 - Demonstrable, reproducible ability to achieve desired outcomes in well-defined domain
 - Why?
- The typical dichotomy
 - Talent ("nature", innate ability, perhaps from genes; something inborn which defines your limits)
 - Hard work (10,000 hours ⇔ world-class performance)

Could it be hard work?

- Billions of people spend > 10,000 hours on their work
 - Just 5 years of full-time work (40 hr/wk \cdot 50 wk/yr \cdot 5 yr = 10,000hr)
- People don't get better with more work; some get worse
 - Doctors get worse at diagnosing X-rays, heart sounds, tests of medicine
- I'm not going to be Olympic gymnast, NBA player

Could it be talent?

- Types of conceptions of talent
 - Natural born skills (intelligence, memory)
 - Ability to grasp a field quickly/early
 - Larger limitations and potential
- Failure to generalize skills
 - Case study: chess memory, chunking¹², "numbers to leave numbers", "form to leave form"³
- If true, there should be individuals who achieve much faster than others: kind of, but not really (research which led to 10k hours)
- People given a new methodology suddenly overcome plateaus
- Progression of "expert" performance over time

¹Chase, W. G., Simon, H. A. (1973a). Perception in chess. *Cognitive Psychology, 4*, 55-81.

²Gobet, Fernand, et al. "Chunking mechanisms in human learning." Trends in cognitive sciences 5.6 (2001): 236-243.

³The Art of Learning, Josh Waitzkin

Memory tasks

- n-back task
- Memory competitions (Moonwalking with Einstein)
- Not deliberate practice, but demonstrates power of repeated applied practice

Deliberate practice

- "Living in a cave does not make you a geologist..." 4
- Theoretical framework developed by K. Anders Ericsson⁵
- Controversial whether it explains all expert performance
- "Gold standard" of improvement
- Key aspects
 - Designed, often by an expert teacher, to improve specific performance
 - Quick feedback loops
 - Requires intense concentration (therefore often only happens a few hours a day)
 - "If you practice with your fingers, no amount is enough. If you practice with your head, two hours is plenty." -Leopold Auer

7 / 16

Repeated a lot

⁴Ericsson, K. Anders, Michael J. Prietula, and Edward T. Cokely. "The making of an expert." Harvard business review 85.7/8 (2007): 114.

⁵Ericsson, K. Anders, Ralf T. Krampe, and Clemens Tesch-Rmer. "The role of deliberate practice in the acquisition of expert performance." Psychological review 100.3 (1993): 363.

Case study: Berlin violinist experiment

- Diaries of 3 groups of young violinists: best, better, teacher, as well as a professional group of top-tier orchestra
- Key factor: individual practice, versus all musical activities

Figure 9. Accumulated amount of practice alone (on the basis of estimates of weekly practice) as a function of age for the middle-aged violinists (\triangle) , the best violinists (\square) , the good violinists (\bigcirc) , and the music teachers (\bullet) .

What's wrong with 10,000 hours

- Ericsson's thesis: Monotonic improvement with deliberate practice
- Gladwell's thesis: 10,000 hours
 ⇔ mastery
- Problems with Gladwell's thesis, according to Ericsson:
 - 10k hours arbitrary number: they weren't masters yet; e.g. 20-25k for international piano competition winners
 - Only 10k by age 20 on average
 - Not necessarily deliberate practice
 - Not "if and only if"

The takeaway

- Not attempting to settle "hard work vs. talent", IQ, etc. As usual, more subtle
- What it means to systematically get better
- Surprising aspects
 - Tangible reasons why people are "good"
 - Development of expertise: minimums
 - Enormous capacity for improvement
- 10k hours not quite correct

Machine learning basics

- Three components to any ML problem: the task, the performance measure and the data
- Essential definitions
 - Features
 - Model
 - Parameters
 - Loss

Deep learning

Why deep learning?

- Probably not
 - Universal approximation theorem
 - No free lunch theorem

- Probably
 - Feature learning
 - Hierarchical representations

Optimization of a nonconvex loss function

Connections to human learning

- Same sensory inputs \Rightarrow different tasks \Rightarrow different representations⁶
 - Chunking, "numbers to leave numbers": extracting relevant information, process nonlinearly, arrive at simple chunks
- Feature extraction is hierarchical
- Deliberate practice as nonconvex optimization
 - Seeking out strong gradients
 - "Pretrain", understand optimization landscape through experience
 - Local minima
 - Surprising solutions and flexibility with consistent optimization: OpenAl blog post

Yixin Lin (Duke University)

Takeaways

- Humans learn expertise from deliberate practice
- Basics of machine learning
- Shared insights: learning is one concept carried out by biology or silicon