Weekly Report

DQM-DC Patomporn (Jab) 28 June 2019

Outline

- Autoencoder
 - Clustering in reduced data features
 - Performance
 - Sampling from testing datasets
- ML (no neural-net)
 - Isolation Forest
 - Schölkopf's One-Class SVM
- Let's find the cutoff

Take a look again

MinMaxScalar

" If the scattering looks more separately, It might possible to simply apply cutoff by SVM.."

Contamination from wrong label?

Results

Example from Vanilla

Example of Good and Bad LS

Good LS (Total SE = 4.39)

Bad LS (Total SE = 143.65)

Isolation Forest

- Ensemble Forest from tree by subsampling (Ψ)
 - Iteratively picking up features and random value to contract the node (equivalent to step fn.)
- Anomaly score likely to be average depth of the instance over forest

$$s(x, \Psi) \equiv e^{-\langle h(x) \rangle/c(\Psi)}$$

- Where
 - h(x) is the depth in tree h
 - $c(\Psi)$ normalization factor growing as $\log 2(\Psi)$ from branching

Schölkopf's One-Class SVM

Minimize (Soft margin)

$$\frac{||w||^2}{2} + \frac{1}{\nu l} \sum_{i=1}^{l} \xi_i - \rho$$

Under

$$w \cdot \Phi(x_i) \geqslant \rho - \xi_i; \xi_i \geqslant 0$$

- Kernel: Gaussian Base Radial function (GBF)
- Determine by tangent distant from data point to hyperplane

Results

Under configuration

- Isolation Forest: tree = 200, sampling_size = 512
- OneClass-SVM: nu=0.1, gamma=0.1(inverse gaussian width)

Find the cutoff

Expect the total square error (SE) distribution to be like

• Next slide is realistic..

SE Distribution from Vanilla

Table of unexpected LS (Bad human label falling into good)

#RUN	#LS	Investigation
281689	3	Human correct (ES-DAQ, HLT BAD)
282037	458	Human correct (HCAL)
282923	18	Human correct (HCAL)
282923	31	Human correct (HCAL)
282923	87	Human correct (HCAL)
282924	1	Human correct (HCAL FED)
283358	244	Human correct (HCAL)
283416	48	Human correct (ECAL)

Extended Investigation

-3

-2

-1

3

Loss value from Model

Loss as color shading

Applying cutoff (MSE > 10.0 is bad)

Decision Value from ML

Even more distinguishable than Vanilla

The contamination LS will be investigate next week

We suppose to have 2 options

Option 1

"Current result seems not promising to pick this option" (Grey zone in the distribution is not obvious at all)

Option 2

"If ~1.5% of contamination is acceptable"

Future work

- Investigate contamination LS in OneClass-SVM
- Waiting for datasets 2018 and reprocess 4 channels

- Random Idea: If we could provided labeled LS feedback on the fly
 - Reinforcement Learning
 - Pros Model itself also growing up and could facing with a new configuration
 - Cons require feedback architecture which definitely increase our work