Mitschrieb Planare Graphen SS 2015

Robin

2015-04-15

Grundlegende Eigenschaften planarer Graphen

planare Einbettung:

Graph G = (V, E) kann dargestellt werden indem man die Knoten aus V auf Punkte im \mathbb{R}^2 und die Kanten aus E auf Jordan-Kurven (d.h. stetige sich selbst nicht kreuzende Kurven) zwischen den Endpunkten abdeckt.

G heißt *planar* wenn es eine Darstellung gibt, bei der sich die Kanten höchstens in einem gemeinsamen Endpunkt berühren.

- planare Einstellung zerlegt Ebene in Facetten (Gebiete, Flächen)
- planare Einbettung, die durch ihre Facetten bzw. die Reihenfolge der Kanten in Adjazenzlisten beschrieben ist, heißt kombinatorische Einbettung
- planare Einbettung, die durch Koordinaten der Punkte beschrieben ist, heißt geometrische Einbettung

Facettenmenge \mathcal{F} , $|\mathcal{F}| = f$

Satz von Euler (1790):

In einem zusammenhängenden nichtleeren planaren Graph G = (V, E) gilt für jede planare Einbettung (geg. durch \mathcal{F}), dass

$$n-m+f=2$$

(wobei $|V| = n, |E| = m, |\mathcal{F}| = f$)

Beweis per Induktion über m:

IA: m = 0, es ist $n = 1, f = 1 \Rightarrow Beh$.

Sei also m ≥ 1

Fall 1: G enthalte einen Kreis

 \Rightarrow es existiert $l \in E$ so dass $G' := G - e = (V, E \setminus e)$ ebenfalls zusammenhängend und e an zwei Facetten grenzt die zu einer Facette in G' werden.

 \Rightarrow f' #Facetten von G' erfüllt

$$f' = f - 1 \implies n - (m - 1) + f' = 2$$
$$\implies n - m + f = 2$$

 $\mathit{Fall}\ 2:$ G enthält keinen Kreis, ist also Baum und $|\mathcal{F}|=1$. Für beliebige $e\in E$ zerfällt G'=G-e in zwei Zusammenhangskomponenten $G_1=(V_1,E_2)$ und $G_2=(V_2,E_2)$ und nach IV:

$$n_1 - m_1 + f_1 = 2, n_2 - m_2 + f_2 = 2$$

Da

$$\begin{array}{c} n=n_1+n_2, m=m_1+m_2-1 \\ \Longrightarrow \ n-m+f=n_1+n_2-m_1-m_2-1+1=(n_1-m_1+1)+(n_2-m_2+1)-2=2 \\ \parallel & \parallel & \parallel \\ 2 & 2 \end{array}$$

Folgerungen:

- #Facetten ist für jede planare Einbettung von G gleich
- #Kanten eines Baumes mit n Knoten ist n-1

Lemma: Ein planarer Graph mit n Knoten $(n \ge 3)$ hat höchstens 3n-6 Kanten.

Beweis: o.B.d.A sei G maximal planar (d.h. Hinzunahme weiterer Kanten zerstört Planarität)

Bild

Dann ist für jede planare Einbettung jede Facette ein Dreieck und jede Kante grenzt an genau zwei Facetten.

$$3f = 2m$$

$$= mit Euler$$

$$3(2-n+m) = 6-3n+3m$$

Lemma: Sei G pl. Graph mit mind 3 Knoten.
 $d_{max}(G)$ bezeichne Maximalgrad in G, n_i #Knoten von Grad
i.

Dann gilt:

$$6n_0 + 5n_1 + 4n_2 + 3n_3 + 2n_4 + n_5 \geq n_7 + 2n_8 + 3n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_1 + 2n_2 + 2n_3 + 2n_4 + n_5 \geq n_7 + 2n_8 + 3n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_2 + 2n_3 + 2n_4 + n_5 \geq n_7 + 2n_8 + 3n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_2 + 2n_3 + 2n_4 + n_5 \geq n_7 + 2n_8 + 3n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_3 + 2n_4 + 2n_5 + 2n_5$$

Beweis: Es gilt
$$n = \sum_{i=0}^{d_{max}(G)} n_i$$
 und $2m = \sum_{i=0}^{d_{max}(G)} i \cdot n_i.$

Da $m \le 3n - 6$ folgt

$$6\sum_{i=0}^{d_{max}(G)}n_i = 6n \geq 2m+12 = \sum_{i=0}^{d_{max}(G)}i \cdot n_i + 12$$

Folgerung: Jeder planare Graph enthält mind. einen Knoten v
 mit $d(v) \leq 5.$

Dualität von Schnitten und Kreisen

Bild Dualgraph

Planarer Graph G mit Einbettung \mathcal{F}_i Dualgraph G^* dazu. Dann gilt:

Ein Schnitt in G ($\widehat{=}$ entspr. Kantenmenge) induziert eine Menge von Kreisen in G^* und umgekehrt.

Minor bzw. Unterteilung

Bild G' Subgraph von G

G' = (V', E') heißt Subgraph von G = (V, E) wenn $V' \subseteq V$ und $E' \subseteq E$.

G' = (V', E') heißt *Unterteilung* von G = (V, E) wenn G' aus G entsteht indem man Kanten von G durch einfache Wege ersetzt.

Ein Graph H heißt *Minor* von G wenn H aus G entsteht durch Löschen von Knoten oder/und Kanten und/oder Knotenkontraktion von Knoten von Grad 2.

H ist Minor von G falls G eine Unterteilung von H als Subgraph enthält.

Bild G' Unterteilung von G

Bild G' Minor von G

Satz von Kuratowski (1930)

Ein Graph G=(V,E) ist genau dann planar wenn er weder K_5 noch $K_{3,3}$ als Minor enthält.

"⇒" klar, da K_5 und $K_{3,3}$ nicht planar.

" \Leftarrow ": Es ist also "nur" zu zeigen: Wenn G nicht planar, dann enthält G einen K_5 oder $K_{3,3}$ als Minor.

Vorbereitung des Beweises

```
Bild K_{3,2}
```

Nehme Graph der $K_{3,2}$ als Minor enthält -Graph (Minor von $K_{3,2}$)

```
(2014-04-21)
```

Siehe Beweisfolien (kuratowski slides.pdf)

(2014-04-29)

Färbung planarer Graphen (Kap.4 im Skript; "Listenfärbung" nicht im Skript, aber Folien)

Färbungsproblem (k-Färbung)

geg. G = (V, E), k Farben

Problem Existiert korrekte Färbung der Knoten aus V mit diesen k Farben, d.h. falls $\{u,v\} \in E \implies Farbe(u) \neq Farbe(v)$

Listenfärbungsproblem

 $\mathbf{geg.}\ G=(V,E), k\in\mathbb{N}$

Problem Gibt es für jede Zuordnung von Listen S_v zu Knoten $v \in V$ mit $|S_v| = k$ eine korrekte Färbung der Knoten bei der jeder Knoten eine Farbe aus seiner Liste enthält?

Beobachtung Listenfärbung ist Verallgemeinerung von Färbungsproblem.

Satz Jeder planare Graph ist 5-listenfärbbar.

Beweis Induktion über |V| = n (benutzen nicht, dass v exist. mit $d(v) \le 5$).

beweisen schärfere Behauptung:

Falls G planar und

- jede innere Facette Dreieck
- äußere Facette durch Kreis $C = v_1 v_2 \dots v_k v_1$ begrenzt
- v_1 mit Farbe 1 gefärbt
- v_2 mit Farbe 2 gefärbt
- jeder Knoten mit Liste von mind. 3 Farben assoziiert
- jeder Knoten aus G-C mit Liste von mind. 5 Farben assoziiert

dann folgt: G korrekt färbbar

Offensichtlich folgt daraus 5-Listenfärbbarkeit.

Beweis der schärferen Behauptung per Induktion

Falls G = (V, E) planar und |V| = 3 trivial

Induktionsschritt G=(V,E) pl. und $|V|\geq 4$, Kreis C der äußeren Facette begrenzt

zwei Fälle: C enthält Sehne $\{v, w\}$ im Inneren oder nicht

bild

Fall 1: C enthält Sehne $\{v,w\}$ $\{v,w\}$ induziert eindeutig bestimmte Kreise C_1 und C_2 welche jeweils Subproblem G_1 und G_2 induzieren. o.B.d.A. enthalte C_1 Kante $\{v_1,v_2\}$ (und damit v_1,v_2 nicht beide auf C_2 . Wende IV auf C_1 an und dann IV auf C_2 wobei v und w Rolle von v_1,v_2 spielen. \Rightarrow Färbung von G_1 und G_2 ind. korrekte Färbung von G.

Fall 2: C enthält keine Sehne Seien $v_{k-1}, u_1, u_2, \dots u_l, v_1$ die Nachbarn von v_k . Da alle inneren Facetten Dreiecke ist $v_{k-1}u_1\dots u_lv_1$ Weg P und $(C-v_k)\cup P=C'$ wird Kreis der äußere Facette begrenzt. "Reserviere" zwei Farben aus Liste von v_k und entferne diese ggf. aus Listen von u_1,\dots,u_l . Wende IV auf durch C' induz. Graph an. Höchstens eine der beiden reservieten Farben wird für v_{k-1} verwendet, die andere kann für v_k verwendet werden.

Satz Nicht jeder planare Graph ist 4-listenfärbbar.

Beweis konst. Gegenbeispiel, d.h. planarer Graph mit Listenzuweisung mit Listen $S_v, |S_v| = 4$, so dass Graph nicht korrekt färbbar unter Berücksichtigung der S_v .

Kern der Konstruktion:

bild

hat "vis-à-vis-Eigenschaft", d.h. in korrekte Färbung müssen mind. zwei gegenüberliegende Eckknoten dieselbe Farben haben. (klar!)

_ _

2015-05-12

Bemerkung zu Planar Separator Theorem: Linearzeitimplementierung

PST: pl. G=(V,E); exist Separator S der G in $G_1=(V_1,E_1), G_2=(V_2,E_2)$ trennt mit

- 1. $|V_1|, |V_2| \le \frac{2}{3}n$
- 2. $|s| \le 4\sqrt{n}$

Matching

G=(V,E),ein Matching $M\subseteq E$ sodass keine zwei Kanten aus M
 gemeinsame Endknoten haben.

 $w: E \to \mathbb{R}$

- Finde $M \subseteq E$ Matching mit max. Gewicht, wobei $w(m) = \sum_{l \in M} w(l)$
- Finde $M \subseteq E$ Matching mit max. Kardinalität, (Fall w(l) = 1 f.a. $l \in E$

Beide Probleme sind auch für bel. Graphen in P.

bild

alternierender Weg bzgl. $M \to Vertauschen der Kanten auf Weg aus M mit Kanten auf Weg, die nicht in M sind resultiert in größerem Matching <math>M^*$

• Ein bezüglich einem Matching M alternierender Weg ist ein einfacher Weg oder einfach Kreis, dessen Kanten abwechselnd in M und $E \setminus M$ sind.

- Alternierender Weg P (bezeichne entsprechende Kantenmenge) ist $erh\ddot{o}hender$ Weg falls

$$\sum_{l \in P, l \in E \backslash M} w(l) > \sum_{l \in P, l \in M} w(l)$$

und P entweder Kreis (gerader Länge) oder dessen erste und letzte Kante beide in M sind oder inzident zu einem ungematchten Knoten.

Beobachtung M Matching, P erhöhender Weg bzgl M \Rightarrow $M' = (M \setminus P) \cup (P \setminus M)$ wieder Matching mit w(M') > w(M).

Lemma $G = (V, E), w : E \to \mathbb{R}$, M Matching in G. Dann ist w(M) maximal genau dann wenn es keinen erhöhenden Weg bzgl. M gibt.

Beweis "⇒" klar

" \Leftarrow " sei M nicht max. Matching in G und es existiert kein bzgl. M erhöhender Weg. Dann exist. Matching M^* mit $w(M^*) > w(m)$. Betrachte Subgraph $G_{M^* \triangle M}$ von G der durch

$$M^* \triangle M = M \cup M^* \setminus (M \cap M^*)$$

induziert wird. In diesem Graph haben alle Knoten Grad 1 und Grad 2 und er besteht aus einfachen Wegen und Kreisen.

Falls kein Kreis in $G_{M \triangle M^*}$ erhöhend bzgl. M so exist in $G_{M \triangle M^*}$ ein inklusions-maximaler Weg, der Weg P in G induziert mit $w(P \cap M^*) > w(P \cap M)$

 \Rightarrow beide Endkanten von P gehören zu M oder eine Endkante gehört nicht zu M und ist inzident zu einem Knoten v, v nicht durch M gematcht.

⇒ P erhöhend bzgl. M. (widerspruch)

Lemma $G = (V, E), w : E \to \mathbb{R}, v \in V, M$ Matching in G - v (Graph induziert durch $V \setminus \{v\}$)

Dann gilt:

1. Falls es keinen bzgl. M
 erhöhenden Weg in G gibt mit Endknoten v, so hat M auch in G max. Gewicht

2. Falls es bzgl. M erhöhenden Weg in G gibt mit Endknoten v und $w(P \cap E \setminus M) - w(P \cap M)$ maximal unter allen solchen erhöhenden Wegen, so ist $M^* = M \triangle P$ Matching maximalen Gewichts in G.

bild i) ii)

Beweis erhöhender Weg bzgl. M in G muss v als Endknoten haben. Sei M^* max. Matching in $G \Rightarrow M \triangle M^*$ ist Menge von alternierenden Kreisen und Wegen bzgl. M bzw M^* in G

P erhöhender Weg bzgl. M in $G_{M \triangle M^*} \Rightarrow$ P erhöhender Weg bzgl. M in G.

Da $G_{M \triangle M^*}$ höchstens bzgl. M
 erhöhender Weg P^* mit Endknoten v enthält gil
t $w(M)-w(P^*\cap M)=w(M^*)-w(P^*\cap M^*)$

Gewicht des Matching M', das durch erhöhen entlang P^* entsteht ist:

$$w(M') = w(M) - w(P^* \cap M) + w(P^* \cap E \setminus M) = w(M) - w(P^* \cap M) + w(P^* \cap M^*)$$

$$w(M') = w(M^*)$$