

Overview

Introduction

Method

Comparison

Application

Introduction

Cervical Cancer

Second most common cancer in women worldwide.

The best known example how virus causes cancer.

Caused by HPV virus, in 80% cases HPV16 and HPV18.

Genetic disease.

Our approach to investigate HPV-induced transformation

Cell line model – in vitro model system of HPV-induced transformation

 Time structure – profiling at different moments in time for multiple molecular levels

Integration – high-throughput multi level molecular data sets

Aim: Insights in necessary (epi) genetic changes

In vitro model system of HPV-induced transformation

- Suitable model to investigate HPV-induced cancer development.
- Originate from same parental cells.

Time Effect

DNA Methylation

- Mechanism of epigenetic deregulation gene silencing.
- Known to be involved in HPV-induced transformation.
- Measured in mRNA and miRNA gene expression experiments
- Comparing mRNA and miRNA gene expression in the samples treated with DAC and in samples without treatment.
- Results are partially validated using Illumina human methylation arrays.

Multilevel Integrative Analysis

- Goal of project is to perform multilevel integrative analysis of longitudinal data sets
- Necessity of novel integrative statistical methods

Method

Integration

Temporal Differential Gene Expression

Generalized linear mixed model

- Penalized splines
- Parameters and hyper-parameters estimated using empirical Bayes procedure employing INLA
- Shrinkage of dispersion-related parameters
- The likelihood ratio test

Time effect

- Different spline per cell line
- Same spline for all cell lines

Copy number Effect

- Cell line + CN + Time
- • • Cell line + Time

Gene - SLC25A36

- Cell line + CN + Time
- Cell line + Time

Wilting et al., Genes, Cromosomes & Cancer, 2008

Gene - CADM1

- Cell line + CN + Time
- Cell line + Time

Competition between time and CN effect

- Time effect flexibility of splines consume effect of copy number
- Potential solution
 - Orthogonalization of splines onto copy number design matrix

Fitting - orthogonal vs. standard

- Cell Line + CN + orthogonal (Time)
- Cell Line + CN +Time

Parameter of CN effect

Standard

Orthogonalized

Fitting - orthogonal vs. standard design

- Full model
- — Time
- Orthogonal (CN)
- — CN

Comparison

Comparison

- Comparison of our method with
 - ➤ timecourse Tai and Speed, Annals of Statistics, 2006.
 - ➤ **EDGE** Storey et al., PNAS, 2005.
- Fair comparison model without copy number
- Method is applied on two data sets
 - Data from our experiment
 - ➤ Data from Storey et al., PNAS, 2005.

Comparison with timecourse and EDGE

- Sensitivity and specificity
 - ➤ Truth significant genes among methods.
 - ➤ For different number of significant genes calculate true positive and false positive rate.
- Reproducibility
 - Equally divided data set in two groups
 - For different number of significant genes calculate number of overlap genes.

Sensitivity and specificity – our data

Sensitivity

Specificity

Reproducibility – our data

Reproducibility

Sensitivity and specificity - EDGE data

Reproducibility – EDGE data

Reproducibility

Application

Testing for differential gene expression

	Same Spline		Different Spline	
Number of significant genes at 5% FDR level	Standard	Orthogonal	Standard	Orthogonal
CN Effect	524	544	923	936
Time Effect	4959	5011	10487	10567

Testing for treatment effect

Treatment effect - 16976 genes significant at 5% FDR level

Summary

- Generated a reliable multilevel molecular dataset.
- Developed generalized linear mixed model for identification of temporal differential gene expression.
- Improvement in identification of variation in genes due to copy number effect
- Method show improvements in sensitivity, specificity and reproducibility comparing with other methods.

Future plans

- Developing methodology to include spatial effect over genome for copy number
- Including DNA methylation in model
- Integrative analysis for miRNA
 - Applying method on miRNA data
 - Pathway analysis

Acknowledgments

- Wessel van Wieringen
- Saskia Wilting
- Annelieke Jaspers
- Mark van de Wiel
- Peter Snijders
- Renske Steenbergen

Thank you for your attention