Networks and Graphs (and surfaces)

10.18.24

What's a graph?

- Nodes/vertices: components of a network
- Edges: relationship between nodes
 - Can be binary, weighted, and/or directed

 Communities: clusters that group similar nodes

Examples of graph data?

Meshes/Surfaces are networks

Nodes=vertices

Mesh structures

Most common

Triangular Surfaces

3d tetrahedron=dense volumes

• Triangular tessellation = surfaces

Defined by triangles: 3 nodes + 3 edges

(Tri) Surface Data (in 3d)

For n nodes and m edges

1. A list of coordinates for each vertex: (n x 3)

- 2. A list of edges: (m x 3). Each row has the node numbers
 - [vertex1, vertex 2, vertex 3]
- 3. (Opt). Coloring: can be specified for vertex or triangle
 If vertex-specified, triangles are colored by interpolation

Trisurf in matplotlib

- Load in data using the script: Load_Data_10.18
- Just specify X,Y,Z
 vertices and triangles


```
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(vertL[:,0],vertL[:,1],vertL[:,2],triangles=triL)
```

Colored surfaces in napari

```
viewer = napari.Viewer()
viewer.add_surface((vertL, triL, myL/np.max(myL)), colormap='turbo')
napari.run()
```


Other graphs...

What do I want to measure with graph data?

Creating graphs

- Matrix-based: easiest for small N
- nx.from_numpy_array

- Node-based: necessary when there are many nodes, high sparsity
- nx.from_edgelist
 - Same way that surfaces are stored: edge-lists

Visualizing Graphs

nx.springlayout

nx.draw_circular

Graph Communities

networkx.communities

- Common algorithms:
 - Louvain (maximal modularity)
 - Bisection

Modularity

Practice

- Use the college message dataset.
- Columns: sender, receiver, time[ignore]

- Turn into a graph using G=nx.from_edgelist
- Edgelists should be a list of tuples...[(a1,b1), (a2,b2)...]

Practice

- Use the college message dataset.
- Columns: sender, receiver, time[ignore]

Get spring-loaded positions:

```
pos = nx.spring_layout(G)
```

draw as: nx.draw_networkx_edge_labels(G, pos)

Brain Network demo

Fin