Kvantummechanika gyorstalpaló

2019. január 5.

1. Bevezetés

A kvantummechanika formalizmusának az alapja a \mathcal{H} komplex Hilbert tér. A kvantummechanikai állapotok a \mathcal{H} Hilbert tér elemei, vektorai.

1.1. Dirac-jelölés

A \mathcal{H} Hilbert tér elemei a $|\psi\rangle$ vektorok. A \mathcal{H}^* duális térben a vektorokat $\langle\phi|$ -vel jelöljük. A vektorok skalárszorzására a következő igaz:

- $\langle \phi | \psi \rangle \in \mathbb{C}$
- $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$
- $||\psi||^2 = \langle \psi | \psi \rangle \ge 0$

További azonosságok:

•
$$(c|\psi\rangle)^* = c^* \langle \psi|$$

1.1.1. Reprezentáció

Számolások során a Hilbert-tér általában az \mathcal{L}^2 -tér. Ilyenkor az absztrakt $|\psi\rangle$ vektorok helyett a $\psi(x)$ függvényt használjuk:

$$\psi: \mathbb{R} \to \mathbb{C} \in \mathcal{L}^2 \iff ||\psi||^2 = \int_{-\infty}^{\infty} |\psi(x)|^2 dx < \infty$$
 (1)

1.2. Kvantumállapot és Born-féle értelmezés

A kvantummechanikában minden állapothoz rendelhető egy $|\psi\rangle$ vektor. Az ilyen állapotok 1-re normált állapotok kell hogy legyenek, vagyis $||\psi|| = \langle \psi | \psi \rangle = 1$. Abban az esetben ha adott egy $|j\rangle$ diszkrét, ortonormált bázis, $|\psi\rangle$ felírható ezen a bázison:

$$|\psi\rangle = \sum_{j=0}^{n} c_j |j\rangle = \sum_{j=0}^{n} \langle j | \psi \rangle |j\rangle$$
 (2)

ahol $c_j = \langle j | \psi \rangle$ komplex együtthatók. Fontos: a Born-féle értelmezés alapján $|c_j|^2$ annak a valószínűsége, hogy a $|\psi\rangle$ állapottal jellemzett rendszer éppen a $|j\rangle$ sajátállapotban található. A normálási feltételből következik, hogy

$$1 = \langle \psi | \psi \rangle = \sum_{k=0}^{n} c_k^* \sum_{j=0}^{n} c_j \langle k | j \rangle = \sum_{k=0}^{n} |c_k|^2 = 1$$
 (3)

továbbá

$$\sum_{j=0}^{n} |j\rangle \langle j| = \hat{1} \tag{4}$$

A valószínűségi értelmezés alapján, ha egy rendszer a $|a\rangle$ állapotban van preparálva és arra vagyok kíváncsi, hogy mi a valószínűsége annak, hogy $|b\rangle$ állapotban találom, akkor a $p = |\langle b|a\rangle|^2$ értéket kell kiszámolni.

Ha $|\phi\rangle$ és $|\psi\rangle$ két kvantumállapot, akkor az átmeneti amplitúdó:

$$\langle \phi | \psi \rangle = \sum_{j} \langle \phi | j \rangle \langle j | \psi \rangle = \sum_{j} \phi_{j}^{*} \psi_{j} \tag{5}$$

1.3. Fiziaki mennyiségek és operátorok

A \mathcal{H} Hilbert téren értelmezhetők az $\hat{A}: \mathcal{H} \to \mathcal{H}$ típusú operátorok. Értelmezhető az \hat{A} operátor hermitikus adjungáltja a követkző képpen :

$$\langle \phi | \hat{A} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \phi \rangle \tag{6}$$

Itt \hat{A}^{\dagger} -ot az \hat{A} hermitikus adjungáltjának nevezzük és igaz, hogy ha

$$|w\rangle = \hat{A}|v\rangle \implies \langle w| = \langle v|\hat{A}^{\dagger}$$
 (7)

Definíció. $A \hat{H}$ operátort hermitikusnak nevezzük ha $\hat{H}^{\dagger} = \hat{H}$.

Tétel. A kvantummechanikában minden fizikai állapothoz rendelhető egy hermitikus operátor.

Példa. Az impulzus operátora $\hat{p} = -i\hbar\nabla$, az energia operátora $\hat{H} = \frac{\hat{p}^2}{2m} + \hat{V}$.

Definíció. Egy \hat{U} operátort unitérnek nevezünk, ha $\hat{U}^{-1} = \hat{U}^{\dagger}$.

Példa. Az időfejlődés operátora $\hat{U}(t) = e^{-\frac{i}{\hbar}\hat{H}t}$ unitér operátor.

A hermitikus operátorok sajátértékei mindig valósak. Ha egy operátor sajátvektorai ortonormált bázist alkotnak, akkor:

$$\hat{A} = \sum_{n} a_n |n\rangle \langle n|$$
, ahol $\hat{A} |n\rangle = a_n |n\rangle$

Tétel. Egy hermitikus operátor sajátvektorai mindig ortgonálisak.

Illetve, ha egy \hat{A} operátor sajátvektorai ortonormált bázist alkotnak, akkor egy tetszőleges $|\psi\rangle$ vektor kifejthető ezen a bázison:

$$\hat{A}|n\rangle = a_n|n\rangle$$
, és $\langle n|m\rangle = \delta_{mn} \implies |\psi\rangle = \sum_n \langle n|\psi\rangle |n\rangle \equiv \sum_n c_n|n\rangle$

Legyen most \hat{A} hermitikus, $|\psi\rangle$ egy állapot, úgy, hogy $\hat{A}|n\rangle = a_n |n\rangle$ és $|\psi\rangle = \sum_n c_n |n\rangle$. Ekkor az $\hat{A}|\psi\rangle$ vektor b_m együtthatói az $|n\rangle$ bázison:

$$b_m = \langle m | \hat{A}\psi \rangle = \sum_n \langle m | \hat{A} | n \rangle \langle n | \psi \rangle = \sum_n A_{mn} c_n$$

Ezért

$$A_{mn} = \langle m|\hat{A}|n\rangle$$

 $|\langle \phi | \hat{A} | \psi \rangle|^2$ az minek a valószínűsége?

1.4. Folytonos bázis, impulzus-reprezentáció

1.4.1. Hely-bázis

Eddig azzal foglalkoztunk, mi van, ha diszkrét bázisunk van, pl az $|n\rangle$ energia-sajátállapotok bázisa. A kvantummechanikában a bázis általában valamilyen mérhető mennyiséghez tartozó \hat{O} hermitikus operátor sajátvektoraiból áll. Vannak olyan operátorok, melyeknek a spektruma folytonos, így a bázis is folytonos lesz. A leggyakoribb ilyen eset az \hat{x} helyoperátorhoz tartozó $|x\rangle$ hely-bázis és a \hat{p} impulzus-operátorhoz tartozó $|p\rangle$ impulzus-bázis.

Ekkor $|x\rangle$ az az állapot amelyben a részecske pontosan az x helyen van és $\hat{x}|x\rangle = x|x\rangle$. Hasonlóan $|p\rangle$ is impulzus-sajátállapot: $\hat{p}|p\rangle = p|p\rangle$. Az előbbiek alapján egy tetszőleges $|\psi\rangle$ állpotban annak a valószínűsége, hogy a részecske az x helyen található: $|\langle x|\psi\rangle|^2$. A $\langle x|\psi\rangle$ valószínűségi amplitúdót nevezzük hullámfüggvénynek:

$$\psi(x) = \langle x | \psi \rangle \tag{8}$$

A normálási feltétel így fog kinézni:

$$1 = \int dx |\psi(x)|^2 = \int dx \langle \psi | x \rangle \langle x | \psi \rangle \tag{9}$$

illetve

$$\int \mathrm{d}x \, |x\rangle \, \langle x| = \hat{1} \tag{10}$$

Hasonlóan a diszkrét esethez, itt is definiáljuk az ortonormáltságot:

$$\langle x'|x\rangle = \delta(x - x') \tag{11}$$

ezért

$$\psi(x') = \langle x' | \psi \rangle = \int dx \langle x' | x \rangle \langle x | \psi \rangle = \int dx \delta(x - x') \psi(x)$$
 (12)

Az átmeneti amplitúdó a $|\phi\rangle$ és $|\psi\rangle$ kvantumállapotok között így fog alakulni:

$$\langle \phi | \psi \rangle = \int dx \, \langle \phi | x \rangle \, \langle x | \psi \rangle = \int dx \phi^*(x) \psi(x)$$
 (13)

1.4.2. Impulzus-bázis

Impulzus-bázisban igaz, hogy $\hat{p}|p\rangle = p|p\rangle$. Tudjuk, hogy $\hat{p} = -i\hbar\partial_x$ (1D-ben). Állítsuk elő a $|p\rangle$ állapotot $|x\rangle$ bázisban:

$$|p\rangle = \int \mathrm{d}x \, |x\rangle \, \langle x|p\rangle$$
 (14)

és legyen $\langle x|p\rangle=\phi_p(x)$. Ekkor egyrészt igaz, hogy

$$\langle x|\hat{p}|p\rangle = \langle x|p|p\rangle = p\,\langle x|p\rangle = p\phi_p(x)$$
 (15)

másrészt

$$\hat{p}\langle x|p\rangle = -i\hbar \frac{\partial \phi_p(x)}{\partial x} \tag{16}$$

tehát

$$-i\hbar \frac{\partial \phi_p(x)}{\partial x} = p\phi_p(x) \implies \phi_p(x) = Ae^{\frac{i}{\hbar}px}$$
 (17)

A normalizálás az előbbihez hasonló módon történik:

$$\langle p'|p\rangle = \delta(p - p') \tag{18}$$

emiatt:

$$\delta(p - p') = \langle p'|p\rangle = \int dx \langle p'|x\rangle \langle x|p\rangle \tag{19}$$

$$= \int \mathrm{d}x \phi_{p'}^*(x) \phi_p(x) \tag{20}$$

$$= \int \mathrm{d}x A^2 e^{\frac{i}{\hbar}(p-p')x} \tag{21}$$

$$=2\pi\hbar A^2\delta(p-p') \tag{22}$$

Innen pedig következik, hogy $A = 1/\sqrt{2\pi\hbar}$.

Át lehet váltani a hullámfüggvényt impulzustérbe is, felhasználva, hogy $\hat{x} |x\rangle = x |x\rangle$ és $\langle p|x\rangle = \tilde{\phi}_x(p)$

$$|x\rangle = \int \mathrm{d}p \,|p\rangle \,\langle p|x\rangle \tag{23}$$

Az előző esethez hasonlóan

$$\langle p|\hat{x}|x\rangle = \langle p|x|x\rangle = x\,\langle p|x\rangle = x\tilde{\phi}_x(p)$$
 (24)

Most jön egy trükk: az \hat{x} operátor hatása impulzustérben $\hat{x} = i\hbar\partial_p$, ezért

$$\hat{x} \langle p | x \rangle = i\hbar \frac{\partial \tilde{\phi}_x(p)}{\partial p} \tag{25}$$

Így

$$i\hbar \frac{\partial \tilde{\phi}_x(p)}{\partial p} = x\tilde{\phi}_x(p) \implies \tilde{\phi}_x(p) = Be^{-\frac{i}{\hbar}px}$$
 (26)

Az előbbiekhez hasonlóan belátható, hogy $B = 1/\sqrt{2\pi\hbar}$. Azt kaptuk tehát, hogy $\phi_p(x)$ és $\tilde{\phi}_x(p)$ egymás komplex konjugáltjai, amit el is vártunk, hiszen $\langle p|x\rangle = \langle x|p\rangle^*$ definíció szerint.

1.5. Kommutátorok

Definíció. $Az \hat{A}$ és \hat{B} kommutátora $\left[\hat{A}, \hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A}$.

Tétel. Ha \hat{A} és \hat{B} kommutálnak, azaz $\left[\hat{A},\hat{B}\right]=0$, akkor van közös sajátvektor-rendszerük, azaz létezik olyan ψ állapot mindkét operátornak sajátállapota.

Tétel. Ha \hat{A} és \hat{B} **nem** kommutálnak, azaz $\left[\hat{A},\hat{B}\right] \neq 0$, akkor **nincs** közös sajátvektorrendszerük, azaz nem létezik olyan $|\psi\rangle$ állapot, amely mindkét operátor sajátállapota.

Megjegyzés. Ha két operátor nem kommutál, attól még egy adott $|\psi\rangle$ állapot mindkét operátor sajátvektorainak bázisán kifejthető lehet, és ezek egymásba áttranszformálhatók. Pl. $[\hat{x}, \hat{p}] = i\hbar$, de létezik $\langle p|\psi\rangle$ és $\langle x|\psi\rangle$ kifejtés is.

- $\bullet \ [\hat{x}_i, \hat{x}_i] = 0$
- $\bullet \ [\hat{p}_i, \hat{p}_i] = 0$
- $[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij} \mathbf{1}$
- $\bullet \left[\hat{L}_i, \hat{L}_j\right] = i\hbar \varepsilon_{ijk} \hat{L}_k$
- $\bullet \left[\hat{S}_i, \hat{S}_j\right] = i\hbar \varepsilon_{ijk} \hat{S}_k$
- $\bullet \left[\hat{J}_i, \hat{J}_j\right] = i\hbar \varepsilon_{ijk} \hat{J}_k$
- $\bullet \ \left[\hat{J}^2, \hat{J}_i\right] = \left[\hat{S}^2, \hat{S}_i\right] = \left[\hat{L}^2, \hat{L}_i\right] = 0$
- $\bullet \left[\hat{L}_i, \hat{S}_j\right] = 0$
- $\bullet \left[\hat{x}_i, \hat{L}_j\right] = i\hbar \varepsilon_{ijk} \hat{x}_k$
- $\bullet \left[\hat{p}_i, \hat{L}_j\right] = i\hbar \varepsilon_{ijk} \hat{p}_k$
- Ha \hat{A} hermitikus $\implies \hat{A}^\dagger = \hat{A} \implies \left[\hat{A}^\dagger, \hat{A}\right] = 0$

2. Harmonikus oszcillátor

A harmonikus oszcillátor esetén a Hamilton-operátor ugyanz, mint a klasszikus Hamilton-függvény:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \tag{27}$$

3D esetben:

$$\hat{H} = \frac{1}{2m}(\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2) + \frac{1}{2}m\omega^2(\hat{x}^2 + \hat{y}^2 + \hat{z}^2)$$
(28)

Az energiasajátértékekhez meg kell oldani a $\hat{H}|n\rangle=E_n|n\rangle$ egyenletet. Ennek a megoldása 1D-ben folytonos bázison:

$$|n\rangle = \psi_n(x) = \frac{1}{\sqrt{(2^n n!)}} \cdot \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \cdot e^{-\frac{m\omega x^2}{2\hbar}} \cdot H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)$$
 (29)

ahol H_n -ek a Hermite-polinomok:

$$H_n(z) = (-1)^n e^{z^2} \frac{\mathrm{d}^n}{\mathrm{d}z^n} e^{-z^2}$$
(30)

Ezekből

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega\tag{31}$$

Az állapotok léptető operátorait a következő képpen definiáljuk:

•
$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right)$$

•
$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right)$$

$$\bullet \ \left[\hat{a}, \hat{a}^{\dagger} \right] = \hat{1}$$

•
$$\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$$

•
$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$$

•
$$|n\rangle = \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}} |0\rangle$$
 folytonos bázison $|0\rangle = Ce^{-\frac{m\omega x^2}{2\hbar}}$

3. Impulzusmomentumok

3.1. Pálya-impulzusmomentum

A kvantummechanikai impulzusmomentum operátora $\hat{\vec{L}} = \hat{\vec{r}} \times \hat{\vec{p}} = -i\hbar(\vec{r} \times \nabla)$. Gömbi koordinátarendszerben felírva:

•
$$\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right)$$

•
$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \varphi}$$

$$\bullet \ \hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$$

•
$$\hat{L}_{+} = \hbar e^{i\varphi} \left(\frac{\partial}{\partial \theta} - i \cot \theta \frac{\partial}{\partial \varphi} \right)$$

•
$$\hat{L}_{-} = \hbar e^{-i\varphi} \left(-\frac{\partial}{\partial \theta} - i \cot \theta \frac{\partial}{\partial \varphi} \right)$$

$$\bullet \ \left[\hat{L}_+, \hat{L}_-\right] = 2\hbar L_z$$

•
$$\hat{L}^2 = \hat{L}_+ \hat{L}_- + \hat{L}_z^2 - \hbar \hat{L}_z$$

Az \hat{L} operátor sajátállapotait két kvantumszám határozza meg , l és m_l , a sajátvektorokat ezért $|l,m_l\rangle$ jelöli. A sajátértékek a következők lehetnek: $l \in \{0,1,2,...\}$, $m_l \in \{-l,...0,...,l\}$. Ezzel a jelöléssel igazak a következő azonosságok:

$$\bullet \hat{L}^2 |l, m_l\rangle = \hbar^2 l(l+1) |l, m_l\rangle$$

•
$$\hat{L}_z |l, m_l\rangle = \hbar m_l |l, m_l\rangle$$

•
$$\hat{L}_{\pm} | l, m_l \rangle = \hbar \sqrt{l(l+1) - m_l(m_l \pm 1)} | l, m_l \pm 1 \rangle$$

•
$$\hat{L}_{+}|l, m_{l} = l\rangle = 0$$
 és $\hat{L}_{-}|l, m_{l} = -l\rangle = 0$

Ha $|l,m_l\rangle$ -eket az \mathcal{L}^2 téren akarjuk ábrázolni, akkor:

$$\langle \theta, \varphi | l, m_l \rangle = Y_l^{m_l}(\theta, \varphi) \tag{32}$$

$$\langle l', m'_l | l, m_l \rangle = \int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} d\varphi (Y_{l'}^{m'_l})^* Y_l^{m_l} = \delta_{ll'} \delta_{m_l m'_l}$$
(33)

Az $Y_l^{m_l}(\theta,\varphi)$ függvények a gömbi harmonikusok

3.2. Spin

A spin-operátort \hat{S} jelöli, sajátállapotait két kvantumszám adja meg, s és m_s , úgy, hogy $s\in\{0,\frac12,1,\frac32,\ldots\}$ és $m_s\in\{-s,-s+1,\ldots,s-1,s\}$

3.2.1. Az $s = \frac{1}{2}$ spin és a Pauli-mátrixok

Feles spin esetén $s=\frac{1}{2},$ ezért $m_s\in\{-\frac{1}{2},\frac{1}{2}\}.$ Az állapotokat a következő rövidítéssel jelöljük:

$$|+\rangle \equiv |\frac{1}{2}, \frac{1}{2}\rangle \tag{34}$$

$$|-\rangle \equiv |\frac{1}{2}, -\frac{1}{2}\rangle \tag{35}$$

Ez egy kétállapotú rendszert határoz meg, egy tetszőleges állapotvektor:

$$|\psi\rangle = \alpha |+\rangle + \beta |-\rangle , \quad |\alpha|^2 + |\beta|^2 = 1$$
 (36)

Ebben az esetben a spin operátora $\vec{S} = \frac{\hbar}{2}\vec{\sigma}$, ahol

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{37}$$

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \tag{38}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{39}$$

A σ_k -ra vonatkozó azonosságok:

- $\sigma_z |+\rangle = \frac{\hbar}{2} |+\rangle$
- $\sigma_z \left| \right\rangle = -\frac{\hbar}{2} \left| \right\rangle$
- $[\sigma_i, \sigma_j] = 2i\varepsilon_{ijk}\sigma_k$
- $\sigma_k \sigma_l = \delta_{kl} \mathbf{1} + i \varepsilon_{klj} \sigma_j$
- $\bullet \ (\vec{u}\vec{\sigma})(\vec{v}\vec{\sigma}) = (\vec{u}\cdot\vec{v})\mathbf{1} + i(\vec{u}\times\vec{v})\vec{\sigma}$
- $\bullet \ \sigma_+ = \sigma_x + i\sigma_y$
- $\bullet \ \sigma_- = \sigma_x i\sigma_y$

3.3. Teljes impulzusmomentum

3.4. Impulzusmomentumok összeadása és Clebsch–Gordan együtthatók

Az pálya-impulzusmomentum és a spin különböző Hilbert-tér elemei, ezért ha össze akarom adni őket, akkor a Hilbert-terek direkt szorzatát kell képezni. Legyen egy rendszer (pl. Hatom elektronja) ami spinnel és pálya-impulzusmomentummal is rendelkezik. Legyenek a spin sajátállapotok $|s,m_s\rangle$ illetve a pálya-impulzusmomentum sajátállapotok $|l,m_l\rangle$. Ekkor a teljes impulzusmomentum sajátállapotai a két tér elemeinek direkt szorzata:

$$|j,m\rangle = |l,m_l\rangle \otimes |s,m_s\rangle \equiv |l,m_l\rangle |s,m_s\rangle \equiv |l,m_l,s,m_s\rangle$$
 (40)

Ezen a szorzattéren hat a $\hat{\vec{J}}$ operátor, amit így definiálunk:

$$\hat{\vec{J}} = \hat{\vec{L}} + \hat{\vec{S}} \tag{41}$$

Ez a jelölés pongyola, mert a $\hat{\vec{J}}$ -nek a szorzattéren vagyis $\mathcal{H}_L \otimes \mathcal{H}_S$ -en kell hatnia, ezért korrektül:

$$\hat{J}_k = \hat{L}_k \otimes \hat{1} + \hat{1} \otimes \hat{S}_k \tag{42}$$

Ez a következő képpen hat a sajátállapotokra:

$$\hat{J}^2 |j, m\rangle = \hbar^2 j(j+1) |j, m\rangle \tag{43}$$

$$\hat{J}_z |j, m\rangle = \hbar m |j, m\rangle \tag{44}$$

Szintén be lehet vezetni a léptető operátorokat:

- $\bullet \ \hat{J}_{\pm} = \hat{J}_x \pm i\hat{J}_y$
- $\hat{J}_{+}\hat{J}_{-} = \hat{J}^{2} \hat{J}_{z}^{2} + \hbar \hat{J}_{z}$
- $\hat{J}_{-}\hat{J}_{+} = \hat{J}^{2} \hat{J}_{z}^{2} \hbar \hat{J}_{z}$
- $\bullet \ \left[\hat{J}_{+},\hat{J}_{-}\right]=2\hbar\hat{J}_{z}$
- $\bullet \ \left[\hat{J}_z, \hat{J}_{\pm} \right] = \pm \hbar \hat{J}_{\pm}$
- $\hat{J}_{\pm} |j,m\rangle = \hbar \sqrt{j(j+1) m(m\pm 1)} |j,m\pm 1\rangle$

4. Hidrogén-atom

Megjegyzés. Ha a főkvantumszám n, akkor $l_{max}=n-1$ vagyis $l\in\{0,1,...,n-1\}$

5. Perturbációszámítás

5.1. Időfüggetlen perturbációszámítás

5.1.1. Nemdegenerált eset

Adott egy \hat{H} operátor ami úgy néz ki, hogy $\hat{H} = \hat{H}^{(0)} + \lambda \hat{W}$, ahol λ kicsi, $\lambda \hat{W}$ a perturbáció, $\hat{H}^{(0)}$ -nak pedig ismerjük a sajátállapotait:

$$\hat{H}^{(0)}|n^{(0)}\rangle = E_n^{(0)}|n^{(0)}\rangle , \quad n = 1, 2, ...$$
 (45)

A \hat{H} sajátérték-problémájának megoldása így fog kinézni sorfejtett alakban:

$$E_n = \lambda^0 E_n^{(0)} + \lambda^1 E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$$
 (46)

$$|n\rangle = \lambda^0 |n^{(0)}\rangle + \lambda^1 |n^{(1)}\rangle + \lambda^2 |n^{(2)}\rangle + \dots$$
 (47)

Az elsőrendű korrekciók a fentiek alapján:

$$E_n^{(1)} = \langle n^{(0)} | \hat{W} | n^{(0)} \rangle \tag{48}$$

$$|n^{(1)}\rangle = \sum_{k \neq n} \frac{\langle k^{(0)} | \hat{W} | n^{(0)} \rangle}{E_n^{(0)} - E_k^{(0)}} |k^{(0)}\rangle$$
(49)

Másodrendű energia-korrekció:

$$E_n^{(2)} = \sum_{k \neq n} \frac{\left| \langle k^{(0)} | \hat{W} | n^{(0)} \rangle \right|^2}{E_n^{(0)} - E_k^{(0)}} \tag{50}$$

Figyelem! A fenti korrekciók csak nemdegenerált energiaspektrum esetében igazak.

5.1.2. Degenerált eset

Akkor kell alkalmazni, amikor két vagy több energiaszint egybeesik, vagyis létezik egy degenerált sajátaltér. Ekkor a következő szerint járunk el:

- Vegyük a degenerált altérbe tartozó **perturbálatlan sajátvektorokat**.
- Ezután ezekkel a vektorokkal számítsuk ki a $W_{mn} = \langle m | \hat{W} | n \rangle$ mátrixelemeket.
- Az így kiszámolt mátrix sajátérték-problémájának megoldásai lesznek a perturbált energiaszintek.

5.2. Időfüggő perturbációszámítás

Most megengedjük, hogy a perturbáció függjön expliciten az időtől:

$$\hat{H}(t) = \hat{H}^{(0)} + \lambda \hat{W}(t) \tag{51}$$

A következő lépésben be kell vezetni az $\omega_{mn}=(E_m-E_n)/\hbar$ mennyiséget, és a perturbálatlan $\hat{H}^{(0)}$ operátor $|m\rangle$ illetve $|n\rangle$ sajátvektoraiból kiszámítjuk a $W_{mn}(t)=\langle m|\hat{W}(t)|n\rangle$ mátrixelemeket. Legyen most $|i\rangle$ a kezdeti (initial) $|f\rangle$ pedig a végső (final) állapot. Ekkor annak a valószínűsége, hogy $|i\rangle$ állapotból indulva t idő elteltével a rendszer $|f\rangle$ állapotban található:

$$P(i \to f) = P_{fi} = \frac{1}{\hbar^2} \left| \int_0^t W_{fi}(\tau) e^{i\omega_{fi}\tau} d\tau \right|^2$$
 (52)