HLIN608 - Algorithmique du texte - TD Assemblage

Denis BEAUGET, Antoine AFFLATET et Jérémie ROUX (L3 Groupe C)

2019 - 2020

Exercice 1

Soit $F = \{F_1, F_2, F_3, F_4, F_5\}$ tel que:

$$F_1 = ACCTGAG$$

 $F_2 = TGCATTGC$
 $F_3 = GCAGACC$
 $F_4 = AGCAAT$
 $F_5 = CAATG$

Appliquons la méthode gloutonne pour extraire la plus petite chaîne F comprenant tout ces sous-mots. Pour la suite du TP, on notera $F_{i/j}$ le mot qui est la concaténation de F_i et F_j (dans cet ordre) ayant en commun overlap (F_i,F_j) lettres. On définit overlap (F_i,F_j) la longueur du plus long suffixe de F_i qui correspond à un préfixe de F_j . On cherche donc la valeur maximale dans ce tableau:

	F_1	F_2	F_3	F_4	F_5
F_1		overlap (F_1,F_2)	$\operatorname{overlap}(F_1, F_3)$	overlap (F_1,F_4)	overlap (F_1,F_5)
F_2	overlap (F_2,F_1)		$\operatorname{overlap}(F_2,F_3)$	overlap (F_2,F_4)	overlap (F_2,F_5)
F_3	overlap (F_3,F_1)	overlap (F_3,F_2)		$\operatorname{overlap}(F_3, F_4)$	overlap (F_3,F_5)
F_4	$overlap(F_4,F_1)$	$overlap(F_4,F_2)$	$overlap(F_4,F_3)$		overlap (F_4,F_5)
F_5	$\operatorname{overlap}(F_5, F_1)$	overlap (F_5,F_2)	overlap (F_5,F_3)	$\operatorname{overlap}(F_5, F_4)$	

Étape 1:

	$F_1: ACCTGAG$	$F_2:TGCATTGC$	$F_3:GCAGACC$	$F_4:AGCAAT$	$F_5: CAATG$
$F_1: ACCTGAG$		0	1	2	0
$F_2: TGCATTGC$	0		2	0	1
$F_3:GCAGACC$	3	0		0	1
$F_4:AGCAAT$	0	1	0		4
$F_5: CAATG$	0	2	1	0	

On remarque que le plus gros overlap est $overlap(F_4, F_5) = 4$ (les 4 dernières lettres de F_4 sont égales aux 4 premières de F_5). On obtient donc le nouveau mot $F_{4/5} = AG\underline{CAAT}G$ (la séquence d'overlap est soulignée) et on supprime F_4 et F_5 .

Étape 2:

	$F_1: ACCTGAG$	$F_2:TGCATTGC$	$F_3:GCAGACC$	$F_{4/5}:AGCAATG$
$F_1: ACCTGAG$		0	1	2
$F_2: TGCATTGC$	0		2	0
$F_3:GCAGACC$	3	0		0
$F_{4/5}:AGCAATG$	0	2	1	

On remarque que le plus gros overlap est $overlap(F_3,F_1)=3$ (les 3 dernières lettres de F_3 sont égales aux 3 premières de F_1). On obtient donc le nouveau mot $F_{3/1}=GCAG\underline{ACC}TGAG$ (la séquence d'overlap est soulignée) et on supprime F_3 et F_1 .

Étape 3:

	$F_{3/1}:GCAGACCTGAG$	$F_2:TGCATTGC$	$F_{4/5}:AGCAATG$
$F_{3/1}:GCAGACCTGAG$		0	2
$F_2:TGCATTGC$	2		0
$F_{4/5}:AGCAATG$	1	2	

Dans notre procédure gloutonne, on suppose que l'overlap qui nous intéresse est celui que l'on rencontre en premier (en parcourant le tableau dans l'ordre ligne puis colonne).

Cet overlap est $overlap(F_{3/1},F_{4/5})=2$ (les 2 dernières lettres de $F_{3/1}$ sont égales aux 2 premières de $F_{4/5}$). On obtient donc le nouveau mot $F_{(3/1)/(4/5)}=GCAGACCTG\underline{AG}CAATG$ (la séquence d'overlap est soulignée) et on supprime $F_{3/1}$ et $F_{4/5}$.

Étape 4:

	$F_{(3/1)/(4/5)}:GCAGACCTGAGCAATG$	$F_2: TGCATTGC$
$F_{(3/1)/(4/5)}:GCAGACCTGAGCAATG$		2
$F_2: TGCATTGC$	2	

D'après notre procédure gloutonne (vue précédemment), l'overlap qui nous intéresse est $overlap(F_{(3/1)/(4/5)}, F_2) = 2$ (les 2 dernières lettres de $F_{(3/1)/(4/5)}$ sont égales aux 2 premières de F_2). On obtient donc le nouveau mot $F_{((3/1)/(4/5))/2} = GCAGACCTGAGCAA\underline{TG}CATTGC$ (la séquence d'overlap est soulignée) et on supprime $F_{(3/1)/(4/5)}$ et F_2 .

Finalement, l'algorithme renvoi la séquence (de longueur 22):

$$F_{((3/1)/(4/5))/2} = F = \mathbf{GCAGACCTGAGCAATGCATTGC}$$

Algorithme 1 : Assemblage($F = \{F_1, F_2, ..., F_n\}$): ensemble de mots): superchaîne

```
Variables : SC: ensemble de mots; max : entier; a, b : mot;
SC \leftarrow F;
max \leftarrow 0;
a \leftarrow ";
b \leftarrow ";
tant que |SC| > 1 faire
    pour chaque mot m_1 de SC faire
        pour chaque mot m_2 de SC \setminus \{m_1\} faire
            si max == 0 alors
                a \leftarrow m_1;
                b \leftarrow m_2;
            fin
            buf \leftarrow overlap(m_1, m_2);
            si max < buf alors
                max \leftarrow buf;
                a \leftarrow m_1;
                b \leftarrow m_2;
            fin
            \mathcal{SC}\setminus\{m_1\}\cup\{m_2\};
            \mathcal{SC} \leftarrow sousMot(m_1, max) + m_2; /* sousMot est une fonction qui prend en argument
             un mot et un entier n et renvoie le mot privé de ses n derniers caractères.
        fin
    fin
fin
renvoyer SC;
```

Complexité: $o((n^3) * o(overlap(m,m)))$ avec n le nombre de mots et m la taille du mot le plus grand. C'est algorithme pourrait être amélioré en gardant en mémoire les overlaps par pair de sommet afin d'éviter de les recalculer; l'algorithme serait alors en $o((n^2) * o(overlap(m,m)))$

Exercice 3

Fig. 1 – Graphe de chevauchement de l'Exercice 1

```
Algorithme 2 : creationGraphe(F = \{F_1, F_2, ..., F_n\} : ensemble de mots) : graphe G(V, A)

Variables : G(V, A): un graphe;

V \leftarrow F;
A \leftarrow \{\};

pour chaque mot \ m_1 \ de \ V faire

| pour chaque mot \ m_2 \ de \ V \setminus \{m_1\} faire

| buf \leftarrow overlap(m_1, m_2);
| si buf > 0 alors
| A \leftarrow A \cup \{m_1, m_2, buf\};
| fin
| fin
| fin
| renvoyer G;
```

Complexité: $o((n^2) * o(overlap(m,m)))$ avec n le nombre de mots et m la taille du mot le plus grand.

Algorithme 3: cheminHamiltonien(G(V,A)): graphe de chevauchement): chemin hamiltonien

```
Variables: L: liste de sommets; max: entier; savV: ensemble de sommets; savS: sommet; savA: arête
L \leftarrow \{\};
savV \leftarrow V;
savS \leftarrow null;
tant que |savV| > 0 faire
    max \leftarrow 0;
    savA \leftarrow null;
    pour chaque arrête a de A faire
        si a[2] > max et a[1] \in savV et a[0] = savS1 alors
            max \leftarrow a[2];
             savA \leftarrow a;
        fin
    _{\rm fin}
    si \ savS = null \ alors
        savV \leftarrow savV \setminus \{savA[0]\};
    savV \leftarrow savV \setminus \{savA[1]\};
    L \leftarrow L \cup \{savA[0]\} \cup \{savA[1]\};
    savS \leftarrow savA[1];
renvoyer L \cup L[1];
```

Complexité: o(n*m) avec n le nombre de sommets et m le nombre d'arêtes.

Fig. 2 – Chemin hamiltonien du graphe de chevauchement de l'Exercice 1

Le chemin hamiltonien vaut donc 13 et on peut reconnaître le motif trouvé à l'exercice 1.