

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Отчет

Лабораторная работа № 1

По курсу «Технологии машинного обучения» «Разведочный анализ данных. Исследование и визуализация данных»

ИСПОЛНИТЕЛЬ:

Группа ИУ5Ц-83Б Соловьева А.М.

ПРЕПОДАВАТЕЛЬ:

Гапанюк Ю.Е.

Цель лабораторной работы: изучение различных методов визуализация данных.

Задание:

- Выбрать набор данных (датасет)
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного Вами набора данных
 - 2. Основные характеристики датасета
 - 3. Визуальное исследование датасета
 - 4. Информация о корреляции признаков.

Лабораторная работа №1

Разведочный анализ данных. Исследование и визуализация данных.

Описание датасета

Этот датасет содержит информацию об успеваемости старшеклассников по математике, включая их оценки и демографическую информацию. Данные были собраны в трех средних школах США.

Описание столбцов

- 'Gender'- пол учащегося
- 'Race/ethnicity' расовая или этническая принадлежность учащегося
- 'Parental level of education' самый высокий уровень достигнутого образования родителем (родителями) или опекуном (опекунами) учащегося
- 'Lunch' получает ли учащийся бесплатный обед или обед по сниженной цене
- 'Test preparation course' прошел ли учащийся курс подготовки к экзаменам
- 'Math score' оценка учащегося за стандартизированный тест по математике
- 'Reading score' оценка учащегося за стандартизированный тест по чтению
- 'Writing score' оценка учащегося за стандартизированный тест по письму

Выгрузка библиотек и датасета

In [4]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [101]:

```
# Будем анализировать данные только на обучающей выборке data = pd.read_csv("exams.csv")
```

Характеристики датасета

Информация о датасете

In [102]:

```
# Первые 5 строк датасета data.head()
```

Out[102]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group D	some college	standard	completed	59	70	78
1	male	group D	associate's degree	standard	none	96	93	87
2	female	group D	some college	free/reduced	none	57	76	77
3	male	group B	some college	free/reduced	none	70	70	63
4	female	group D	associate's degree	standard	none	83	85	86

In [103]:

```
# Размер датасета - 1000 строк, 8 колонок
data.shape
```

Out[103]:

(1000, 8)

In [105]:

```
# Список колонок
data.columns
```

Out[105]:

In [106]:

```
# Список колонок с типами данных
data.dtypes
```

Out[106]:

object gender race/ethnicity object parental level of education object lunch object test preparation course object math score int64 int64 reading score int64 writing score

dtype: object

In [107]:

```
# Проверим наличие пустых значений
# Цикл по колонкам датасета
for col in data.columns:
    # Количество пустых значений - все значения заполнены
    temp_null_count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp_null_count))
```

```
gender - 0
race/ethnicity - 0
parental level of education - 0
lunch - 0
test preparation course - 0
math score - 0
reading score - 0
writing score - 0
```

In [108]:

```
# Основные статистические характеристки набора данных data.describe()
```

Out[108]:

	math score	reading score	writing score
count	1000.000000	1000.000000	1000.000000
mean	67.810000	70.382000	69.140000
std	15.250196	14.107413	15.025917
min	15.000000	25.000000	15.000000
25%	58.000000	61.000000	59.000000
50%	68.000000	70.500000	70.000000
75%	79.250000	80.000000	80.000000
max	100.000000	100.000000	100.000000

```
In [109]:
```

```
# Определим уникальные значения для целевого признака data['parental level of education'].unique()
```

Out[109]:

Визуализация

In [110]:

```
# Посчитаем количество студентов каждого пола gen_count = pd.DataFrame(data['gender'].value_counts().reset_index()) gen_count.rename(columns = {'index':'gender','gender':'number of students'}, inplace=Trugen_count
```

Out[110]:

gender number of students

male		508
	male	male

1 female 492

In [111]:

gender distribution

In [112]:

Посчитаем количесттво студентов получавших бесплатный обед или обед по сниженной цене pd.DataFrame(data['lunch'].value_counts()).rename(columns={'lunch': 'number of students'

Out[112]:

number	οf	stu	dents
HUHHDEI	VI.	่อเน	uento

standard	660
free/reduced	340

Диаграмма рассеяния

Позволяет построить распределение двух колонок данных и визуально обнаружить наличие зависимости. Не предполагается, что значения упорядочены

In [113]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='race/ethnicity', y='math score', data=data)
```

Out[113]:

<Axes: xlabel='race/ethnicity', ylabel='math score'>

Гистограмма

Позволяет оценить плотность вероятности распределения данных.

In [116]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['math score'])
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\3962117529.py:2: UserWar
ning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function w ith similar flexibility) or `histplot` (an axes-level function for histogram

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(data['math score'])

Out[116]:

s).

<Axes: xlabel='math score', ylabel='Density'>

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

In [117]:

```
sns.jointplot(x='race/ethnicity', y='math score', data=data)
```

Out[117]:

<seaborn.axisgrid.JointGrid at 0x1fc3ce16dd0>

In [118]:

sns.jointplot(x='reading score', y='math score', data=data, kind="hex")

Out[118]:

<seaborn.axisgrid.JointGrid at 0x1fc3dc10be0>

In [119]:

```
sns.jointplot(x='reading score', y='math score', data=data, kind="kde")
```

Out[119]:

<seaborn.axisgrid.JointGrid at 0x1fc3e35bcd0>

Парные диаграммы

Комбинация гистограмм и диаграмм рассеивания для всего набора данных.

Выводится матрица графиков. На пересечении строки и столбца, которые соответстуют двум показателям, строится диаграмма рассеивания. В главной диагонали матрицы строятся гистограммы распределения соответствующих показателей.

In [120]:

sns.pairplot(df)

Out[120]:

<seaborn.axisgrid.PairGrid at 0x1fc3e5096c0>

In [121]:

sns.pairplot(data, hue="gender")

Out[121]:

<seaborn.axisgrid.PairGrid at 0x1fc3f15e9e0>

Ящик с усами

Отображает одномерное распределение вероятности.

In [122]:

```
# По горизонтали
sns.boxplot(x=data['math score'])
```

Out[122]:

<Axes: xlabel='math score'>

In [123]:

```
# По вертикали
sns.boxplot(y=data['math score'])
```

Out[123]:

<Axes: ylabel='math score'>

In [124]:

```
# Распределение параметра Humidity сгруппированные по gender.
sns.boxplot(x='gender', y='math score', data=data)
```

Out[124]:

<Axes: xlabel='gender', ylabel='math score'>

Violin plot

Похоже на предыдущую диаграмму, но по краям отображаются распределения плотности

In [125]:

```
sns.violinplot(x=df['math score'])
```

Out[125]:

<Axes: xlabel='math score'>

In [126]:

```
fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=data['math score'])
sns.distplot(data['math score'], ax=ax[1])
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\1383574209.py:3: UserWar
ning:

`distplot` is a deprecated function and will be removed in seaborn v0.14. 0.

Please adapt your code to use either `displot` (a figure-level function w ith similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(data['math score'], ax=ax[1])

Out[126]:

<Axes: xlabel='math score', ylabel='Density'>

In [127]:

```
# Распределение параметра math score сгруппированные по gender. sns.violinplot(x='gender', y='math score', data=data)
```

Out[127]:

<Axes: xlabel='gender', ylabel='math score'>

In [128]:

sns.catplot(y='math score', x='gender', data=data, kind="violin", split=True)

Out[128]:

<seaborn.axisgrid.FacetGrid at 0x1fc36f5a470>

Корреляция признаков

In [129]:

data.corr()

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\2627137660.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid colum
ns or specify the value of numeric_only to silence this warning.
 data.corr()

Out[129]:

	math score	reading score	writing score
math score	1.000000	0.811767	0.790055
reading score	0.811767	1.000000	0.948909
writing score	0.790055	0.948909	1.000000

In [130]:

```
data.corr(method='pearson')
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\2721894934.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid colum
ns or specify the value of numeric_only to silence this warning.
 data.corr(method='pearson')

Out[130]:

	math score	reading score	writing score
math score	1.000000	0.811767	0.790055
reading score	0.811767	1.000000	0.948909
writing score	0.790055	0.948909	1.000000

In [131]:

```
data.corr(method='kendall')
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\1809062968.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid colum
ns or specify the value of numeric_only to silence this warning.
 data.corr(method='kendall')

Out[131]:

	math score	reading score	writing score
math score	1.000000	0.614651	0.587189
reading score	0.614651	1.000000	0.812124
writing score	0.587189	0.812124	1.000000

In [132]:

```
data.corr(method='spearman')
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\2316115903.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid colum
ns or specify the value of numeric_only to silence this warning.
 data.corr(method='spearman')

Out[132]:

	math score	reading score	writing score
math score	1.000000	0.803238	0.779234
reading score	0.803238	1.000000	0.944895
writing score	0.779234	0.944895	1.000000

In [133]:

```
# Тепловая карта
sns.heatmap(data.corr())
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\4207686265.py:2: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid colum
ns or specify the value of numeric_only to silence this warning.
 sns.heatmap(data.corr())

Out[133]:

In [134]:

```
# Вывод значений в ячейках sns.heatmap(data.corr(), annot=True, fmt='.3f')
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\3346571371.py:2: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid colum
ns or specify the value of numeric_only to silence this warning.
 sns.heatmap(data.corr(), annot=True, fmt='.3f')

Out[134]:

In [135]:

```
# Изменение цветовой гаммы sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\2775068298.py:2: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid colum
ns or specify the value of numeric_only to silence this warning.
 sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')

Out[135]:

In [136]:

```
# Треугольный вариант матрицы
mask = np.zeros_like(df.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
# mask[np.triu_indices_from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\1168097721.py:2: FutureW arning: The default value of numeric_only in DataFrame.corr is deprecate d. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

mask = np.zeros_like(df.corr(), dtype=np.bool)

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\1168097721.py:2: Depreca tionWarning: `np.bool` is a deprecated alias for the builtin `bool`. To s ilence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, u se `np.bool_` here.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations)

mask = np.zeros_like(df.corr(), dtype=np.bool)

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\1168097721.py:7: FutureW arning: The default value of numeric_only in DataFrame.corr is deprecate d. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')

Out[136]:

In [137]:

f')

```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f') sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f') sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson') ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\2698977660.py:2: FutureW arning: The default value of numeric_only in DataFrame.corr is deprecate d. In a future version, it will default to False. Select only valid colum ns or specify the value of numeric_only to silence this warning. sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2 f') C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\2698977660.py:3: FutureW arning: The default value of numeric_only in DataFrame.corr is deprecate d. In a future version, it will default to False. Select only valid colum ns or specify the value of numeric_only to silence this warning. sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2 f') C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\2698977660.py:4: FutureW arning: The default value of numeric_only in DataFrame.corr is deprecate d. In a future version, it will default to False. Select only valid colum ns or specify the value of numeric_only to silence this warning. sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2

Тепловая карта с указанием размера

In [138]:

```
fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Корреляционная матрица') sns.heatmap(data.corr(), ax=ax, annot=True, fmt='.3f')
```

C:\Users\sashu\AppData\Local\Temp\ipykernel_3940\2508226105.py:3: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid colum
ns or specify the value of numeric_only to silence this warning.
 sns.heatmap(data.corr(), ax=ax, annot=True, fmt='.3f')

Out[138]:

<Axes: >

Корреляционная матрица

_	
In	
111	