CS-226 Course Project

2020-Spring Semester

Department of Computer Science Indian Institute of Technology, Bombay - Powai

Date : 21st May, 2021

Team:

Akash Reddy G 190050038

D Chandrasekhar 190050031

M Satwik 190050107

K Vishwanth 190050131

FSM States

States:-

Sx:

$$PC \longrightarrow ALUA$$
 $+1 \longrightarrow ALUB$
 $PC.WY$
 $S3'$
 $AUC \longrightarrow PC$
 $ES \longrightarrow RF.D3$
 $ES \longrightarrow RF.WY$
 $ES \longrightarrow RF.AS$
 $ES \longrightarrow RF.AS$

Si:
$$IR_{II-q} \longrightarrow RF-A1$$
 t_1-Wr
 $IR_{8-6} \longrightarrow RF-A2$
 $t_2 \cdot Wr$
 $RED1 \longrightarrow t_1$
 $RED2 \longrightarrow t_2$
 $t_3 \cdot Wr$
 $t_3 \cdot Wr$
 $t_{3} \cdot Wr$
 $t_{2} \cdot Wr$
 $t_{3} \cdot Wr$
 $t_{3} \cdot Wr$
 $t_{3} \cdot Wr$
 $t_{4} \rightarrow ALUQ$
 $t_{5} \cdot Wr$
 $t_{5} \cdot Wr$
 $t_{1} \rightarrow ALUQ$
 $t_{2} \cdot Wr$
 $t_{2} \cdot Wr$
 $t_{3} \cdot Wr$
 $t_{4} \rightarrow ALUQ$
 $t_{5} \cdot Wr$
 $t_{5} \cdot Wr$

$$52$$
:

 $t_1 \rightarrow ALUQ$
 $t_2 \rightarrow ALUD$
 $z.wr$
 $ALUC \rightarrow t_3$

$$52^{1}$$
:
 $t_{1} \rightarrow ALUa$ $t_{3} \cdot wr$
 $t_{2} \rightarrow ALUb$ ALU. nard
ALUC $\rightarrow t_{3}$ $z \cdot wr$

$$\frac{S_3}{t_3}$$
 $\rightarrow RF_D_3$ RF_wr $IR_{5-3} \rightarrow RF_A_3$

$$SS:$$
 $t_3 \longrightarrow RF_D_3$ RF.WY

IR8-6 $\longrightarrow RF_A_3$

$$\frac{SB}{t_2}$$
 \longrightarrow mem_addr
mem_D \longrightarrow t_3 t_3 ·wr

$$t_1 \rightarrow mem-addr \mid t_2 \cdot wr$$
 $mem-D \rightarrow t_2$

Siz:

$$t_2 \longrightarrow RF-D_3$$
 $t_3 \longrightarrow RF-A_3$
 $t_3 \longrightarrow ALUa$
 $t_4 \longrightarrow ALUb$
 $t_4 \longrightarrow ALUb$
 $t_4 \longrightarrow ALUb$

$$t_1 \rightarrow \text{mem-addr} \quad t_2 \cdot \text{wr} \quad t_3 \rightarrow \text{ALUa} \quad t_3 \cdot \text{wr}$$
 $\text{mem-D} \rightarrow t_2 \quad t_3 \rightarrow \text{ALUb} \quad t_2 \cdot \text{wr}$
 $\text{AUC} \rightarrow t_3 \quad t_2 \cdot \text{wr}$

S14:

$$t1 \longrightarrow ALUa$$
 $t1 \longrightarrow ALUb$
 $ALUC \longrightarrow t1$
 $t1 \longrightarrow mem-adds$
 $t2 \longrightarrow mem-in$

S16:

$$IR \longrightarrow RF - A3$$
 $PC \longrightarrow RF - D3$
 $IR \longrightarrow RF - A2$
 $RF - \omega r$
 $IR \longrightarrow RF - A2$
 $RF - D2 \longrightarrow t_2$

S17:

S18:

Instruction-State Transition

Instructions: State transitions:

2) ADC:-
$$S_0 \longrightarrow S_1 \xrightarrow{C=1} S_2 \longrightarrow S_3 \longrightarrow S_4 - - S_0$$

7) NDZ:-
$$S_0 = S_1 = S_2 = S_3 = S_4 - S_0$$
 $Z_{=0} = S_1 = S_2 = S_3 = S_4 - S_0$

So
$$S_1$$
 S_1 S_2 S_3 S_4 S_5 S_6 S

FSM Diagram

Total 22 states

State diagram:

These states have been implemented via binary encoding.

Control Signals

Column1	w1	w2	w3	w4	w5	w6	w7	m1	m12	m21	m20	m31	m30	m4	m51	m50	m61	m60	m71	m70	m8	m92	m91	m90	m101	m100	wc	wz	mz	alu_op
sa	1							0														0	1	1	0	1				
s0			1							0	1																			
s1					1	1	1							0			0	1	0	1	0									
s2					1												1	0				0	1	0	1	0	1	1		0
s2'					1												1	0				0	1	0	1	0	0	1		1
s3				1								1	0		1	1														
s4					1												1	0				0	0	1	1	0	1	1		
s5				1								0	1		1	1														
s6				1								0	0		0	1														
s7						1													1	0		0	0	1	1	1				
s8					1					0	0						0	0												
s9		1							0	0	0																			
s10				1								0	0		1	1											1	1	1	
s11						1				1	1								1	1										
s12				1	1							1	1		1	0	1	0				0	1	1	0	0				
s13					1	1								1			1	0	0	0		0	1	1	0	0				
s14		1					1		1	1	1										1	0	1	1	1	0				
s15	1							0														0	0	0	0	1				
s16				1		1						0	0		0	0			0	1										
s17	1							0														0	0	1	0	1				
s18	1							1																						
s19							1														1	0	1	1	1	0				

w = 1 means active/enable write.

default w is 0 (disabled)
In w's coloum, empty implies 0

m's are mux selectors

In m's column, empty implies don't care.

RTL circuit

