Monoculture in Matching Markets

Kenny Peng and Nikhil Garg

Cornell Tech

arXiv:2312.09841

Algorithmic Monoculture

What happens when many decision-makers use the same algorithm to evaluate applicants?

- Two firms using different evaluations hire better applicants than when using the same evaluation (Kleinberg and Raghavan, 2021)
- Reliance on the same (or similar) algorithms can result in more <u>systemic</u> <u>exclusion</u> of applicants (Creel and Hellman 2022, Bommasani et al. 2022, Jain et al. 2024)

Our setup

- Colleges share true preferences over students, but rank students noisily
- Two cases:
 - Monoculture: Same evaluation
 - Polyculture: Independent evaluations
- Study this in a matching markets model

Model

- Continuum of students with true values ν dist. according to η
- College $c \in C$ ranks student using estimated value $v + X_c$ $(X_c \sim \mathcal{D})$
 - Monoculture: $X_1 = X_2 = \cdots = X_C$
 - Polyculture: X_1, X_2, \dots, X_C i.i.d.
- Symmetric colleges (students uniformly random preferences, colleges equal capacities)

In stable matching, does student with true value ν match? To whom?

Stable Matching

"Cutoff characterization" of stable matching (Azevedo and Leshno, 2016):

- Student v can **afford** college c iff est. value $v + X_c$ exceeds **cutoff** P_c
- Student matches to favorite college they can afford
- Cutoffs P_1, P_2, \cdots, P_C market clearing iff college capacities properly filled
- Lemma: For market-clearing cutoffs, corresponding matching is stable

Key fact

For P_1, P_2, \cdots, P_C market clearing, a student with true value v matches iff $v + X_c > P_c$ for some $c \in C$.

(i.e., the student can afford at least one college.)

Equal cutoffs

Symmetry implies equal cutoffs: $P_1 = P_2 = \cdots = P_C$

Let $P_{\mbox{mono}}$ denote shared cutoff under monoculture

Let P_{poly} denote shared cutoff under polyculture

Main results

Theorem 1: Exactly top students match under polyculture

Theorem 2: Everyone more likely to match to top choice under monoculture

Theorem 3: Monoculture more robust to "differential application access"

Definition 1

A noise distribution ${\mathcal D}$ is max-concentrating iff

$$\lim_{n\to\infty} \operatorname{Var}\left[\max\{X_1,X_2,\cdots,X_n\}\right] = 0,$$

for
$$X_1, X_2, \dots, X_n \sim \mathcal{D}$$
.

Monoculture in Matching Markets

$$\mathscr{D}$$
 is max-concentrating iff
$$\lim_{n\to\infty} \mathrm{Var}\left[\max\{X_1,X_2,\cdots,X_n\}\right] = 0$$
 $\sim \mathscr{D}$

Theorem 1 (Informal)

If noise distribution \mathcal{D} is max-concentrating:

$$\lim_{C \to \infty} \Pr \left[\text{student with true value } v \text{ is matched under polyculture} \right] = \begin{cases} 0 & v < v^* \\ 1 & v > v^* \end{cases}$$

•

Proof sketch.

Monoculture:
$$\max_{c \in C} X_c \sim \mathcal{D}$$

Polyculture: $\max_{c \in C} X_c$ vanishing variance

Intuition

Whether a student matches depends on highest estimated value

Monoculture in Matching Markets

Theorem 1 holds for arbitrary student preferences, college capacities

Long-tailed noise results in "foolishness of crowds" effect

See Wisdom and Foolishness of Noisy Matching Markets (Peng and Garg, 2024)

Intuition

Whether a student matches depends on highest estimated value

Theorem 2 (Informal)

- (i) For all v, $\Pr[v \text{ matched to top choice}]$ is at least as high under monoculture (strictly higher on set of positive η -measure)
- (ii) For v on a set of positive η -measure, v is strictly more likely to match to top choice under monoculture, but strictly less likely to match overall

_

Proof sketch.

$$P_{\mathsf{mono}} < P_{\mathsf{poly}}$$

(More congestion under monoculture, so colleges each need to make more offers to clear market.)

Now suppose student's top choice is c. Then:

$$\Pr[v + X_c > P_{\mathsf{mono}}] \ge \Pr[v + X_c > P_{\mathsf{poly}}].$$

Individual Outcomes for 1000 Applicants

in a market with 25 colleges and 500 total openings

Theorem 3 (Informal)

Consider $v_1 > v_2$. Then by applying to more colleges, v_2 has a higher chance of being matched than v_1 under polyculture, but not under monoculture.

•

Main results

Theorem 1: Exactly top students match under polyculture

Theorem 2: Everyone more likely to match to top choice under monoculture

Theorem 3: Monoculture more robust to "differential application access"

ML Experiments

Colleges/firms use ML algorithm to predict binary outcome, rank according to predicted score

Monoculture: All use the same algorithm

Polyculture: All use different algorithms (trained on different features)

-

Monoculture v. Polyculture: ML-Based Evaluations (ACSIncome Texas)

Monoculture v. Polyculture: ML-Based Evaluations (ACSIncome California)

Emerging body of work

Modeling: (Ali et al., 2024, Castera et al., 2024, Peng and Garg, 2024)

Empirical Evaluations: (Bommasani et al., 2022, Toups et al., 2023)

Interventions: (Jain et al., 2024)

•