

Paradigmas de Lenguajes de Programación

Universidad Nacional de la Patagonia Austral Unidad Académica Río Gallegos

- Surgen en el Siglo XIX, por el matemático Charles Babagge y Ada Lovedby.
- Máquina Analítica que programaba tarjetas perforadas.

- Diseño propuesto por Babagge, cinco unidades:
 - Unidad de Entrada
 - **Memoria**
 - Unidad de Control
 - Unidad Aritmético-Lógica
 - Unidad de Salida
 - ≥ En los años 40 surgen las primeras computadoras modernas.

- Denominados código o lenguaje de máquina se basaban en código binario y se especializaban según las aplicaciones.
- Programación lenta y tediosa, datos e instrucciones en código binario, acceso a posiciones de memoria.

- A principios de los 50, surge nueva simbología, código de ensamblaje.
- Operaciones representadas mediante abreviaturas: ADD, STORE, etc. ASSEMBLER
- 1954 FORTRAN (FORmula TRANslation)
- COBOL: registros, estructuras de datos separada de la ejecución.
- Algol60: descripción de algoritmos. Pascal, C y Ada. Bloques inicio-fin, declaración de tipos de variables, recursión, paso de parámetros. Ejecución basado en Pilas.

Los 60

ADAM	COMIT	GECOM	NELIAC
AED	CORAL	GPL	OCAL
AESOP	CORC	GPSS	OMNITAB
AIMACO	CPS	GRAF	OPS
ALGOL	DAS	GRAF	OPS
ALGY	DATA-TEXT	IDS	PENCIL
ALTRAN	DIALOG	IT	PRINT
AMBIT	DEACON	JOSS	QUIKTRAN
AMTRAN	DIAMAG	JOVIAL	SFD-ALGOL
APL	DIMATE	L	SIMSRIPT
BACIAC	DOCUS	LDT	SIMULA
BASEBALL	DSL	LISP	SNOBOL
BASIC	DYANA	LOLITA	SOL
BUGSYS	DYNAMO	LOTIS	SPRINT
C-10	DYSAC	MAD	STRESS
CLIP	FLAP	MADCAP	STROBES
CLP	FLOW-MATIC	MAP	TMG
COBOL	FORMAC	MATHLAB	TRAC
COGENT	FORTRAN	MATH-MATIC	TRANDIR
COGO	FORTRANSIT	META	TREET
COLASL	FSL	MILITRAN	UNCOL
COLINGO	GAT	MIRFAC	UNICODE

Los 70

- Los diseñadores se enfocaron en la simplicidad y consistencia.
- PASCAL (1971): pequeño, simple, eficiente y estructurado.
- C (1972): reduce la complejidad del sistema de tipos y el entorno en tiempo de ejecución, mayor acceso a máquina adyacente.
- Mecanismos de abstracción de datos, concurrencia y verificación.

Los 80

- Consolidación de Lenguajes Imperativos.
- Crecimiento de la programación orientada a objetos.
 (Objetive C, Objetive Pascal, Modula-3)
- Sistemas a gran escala de unidades de código, sistema de módulos relacionados a construcciones de programación genérica.

Los años 90

- Crecimiento de Internet y del mercado de las PC.
- Sistemas Operativos basados en ventanas.
- Hasta 1993 C, luego en 1995 aparece Java.
- Surgen las bibliotecas de scripts.
- Programas breves, dinámicos, estructuras de alto nivel de datos, sintaxis extensible, carencia de verificación de datos.

Tendencias Actuales

- Investigación e industria, la tendencia de los LP se enfoca en :
 - Apoyo a la programación concurrente y distribuida.
 - Mecanismos de verificación al lenguaje, seguridad y confiabilidad.
 - Desarrollo orientado a componentes.
 - Programación Orientada a Aspectos.
 - Integración de bases de datos.

Lenguajes de Programación de los 2000

- ActionScript
- **C#**
- D
- Visual Basic Net
- Groovy
- Grace
- Assembly language
- Python
- Ruby

Tendencias Actuales

- Evolución de Lenguajes de Programación:
 - Recursos y tipos de computadoras
 - Aplicaciones y necesidades de los usuarios
 - Métodos de programación
 - Estudios teóricos
 - Estandarización

Definición

 Un LP es un conjunto de caracteres, reglas para su combinación y reglas especificando sus efectos cuando son ejecutadas por una computadora, las cuales deben cumplir con las siguientes características.

Definición: Características

- El usuario no requiere conocimientos de lenguaje de máquinas.
- Es independiente de la máquina.
- Es posible traducirlo al lenguaje de máquina.
- Es cercano al problema específico que se resuelve en el lenguaje de máquina.

Definición

- Un lenguaje de programación es un lenguaje formal diseñado para expresar procesos que pueden ser llevados a cabo por máquinas como las computadoras.
- Está formado por un conjunto de símbolos y reglas sintácticas y semánticas que definen su estructura y el significado de sus elementos y expresiones.
- Programación: escribir, probar, compilar, depurar y mantener código.

Características y Elementos de los Lenguajes de Programación

- Definen un proceso que se ejecuta en una computadora.
- Es de alto nivel, cercano a los problemas que se quieren resolver. (Abstracción)
- Permite crear nuevas abstracciones que se adapten al dominio que se programa.
- Ideas simples en ideas complejas: expresiones primitivas, mecanismos de combinación, mecanismos de abstracción.

Paradigmas de Programación

 Un paradigma es un conjunto de reglas, patrones y estilos de programación utilizados por un grupo de Lenguajes de Programación.

Paradigma Imperativo

 Se describen las sentencias que permiten modificar el estado de un programa. Secuencia de acciones que expresan cómo debe resolverse un problema. (subrutinas o funciones)

Programación Estructurada

Datos y procedimientos separados, sin relación, se busca el procesamiento de un conjunto de datos de entrada para obtener otros de salida.

- Primero: funciones y procedimientos
- Segundo: estructura de los datos

Paradigma Declarativo

- No es necesario definir un algoritmo, se detalla la solución del problema, en lugar de Cómo llegar a la solución.
- Solución a problemas específicos a través de mecanismos internos de control, no se especifica exactamente.
 - Paradigma funcional: evaluación de expresiones y funciones matemáticas.
 - Paradigma Lógico: reglas y sentencias lógicas.

Paradigma Orientado a Objetos

- Los programas se definen en términos de clases de objetos.
- Los programas se expresan como un conjunto de objetos que colaboran entre ellos para realizar tareas.
 - Encapsulamiento
 - Herencia
 - Polimorfismo

Paradigma Orientado a Aspectos

- Surge en concepto de *Aspecto*, un módulo que encapsula determinada funcionalidad que se encuentra dispersa por diferentes partes del Sistema.
- AspectJ.

Paradigmas Actuales

- Combinación de varios paradigmas en un mismo lenguaje:
 - Programación lógico-funcional: Curry, TOY
 - Programación funcional-concurrente: Erlang (80'),
 Concurrent Haskell (87'- 10')
 - Programación funcional-paralela: GpH, Eden (90'),
 Data Parallel Haskell (02')
 - Programación lógico-funcional-concurrenteorientado a objetos: Oz (99 - 05')

Paradigmas Actuales

- Lenguajes O.O. incorporan construcciones funcionales:
 - JavaScript: maps, folds, closures
 - Java 8: maps, folds, lambda, abstractions
 - Ruby: lambda abstractions, closures, firts-class, continuations
 - Python: maps, reduce, filters, list comprehensions, lambda abstractions

Paradigmas Actuales

- Los lenguajes han evolucionado enfocándose en los siguientes aspectos:
 - Creciente nivel de abstracción
 - Mecanismos de modularidad
 - Mecanismos de seguridad
 - Reutilización

Lenguajes de Programación de los 2020+

- Python
- Java
- Javascript
- ▶ C#
- PHP
- ▶ C/C++
- R
- Objective-C
- Swift
- Matlab