Breast Cancer Classification using Random Forest and Cross-Validation

Overview

This script implements a Random Forest Classifier to classify breast cancer cases using the Breast Cancer Dataset from sklearn. It evaluates the model using k-fold cross-validation, optimizes hyperparameters using GridSearchCV, and reports final performance metrics on a test set.

Steps in the Code

- 1. Load Dataset and check the features The dataset is loaded using load_breast_cancer(), which provides real-world breast cancer data. We also display the features and labels.
- 2. Data Splitting and plotting The dataset features are plotted then split into features and labels then into 80% training and 20% testing using train_test_split(), ensuring stratification to maintain class balance.
- 3. Cross-Validation A 5-fold cross-validation is performed using cross_val_score() to assess model performance before hyperparameter tuning.
- 4. Hyperparameter Tuning GridSearchCV is used to search for the best combination of hyperparameters:
 - Number of trees (n_estimators)
 - Maximum tree depth (max_depth)
 - Minimum samples required for a split (min samples split)
 - Minimum samples required per leaf (min_samples_leaf)
- 5. Model Evaluation The best model from GridSearchCV is selected and evaluated on the test set. Performance metrics include:
 - Accuracy: Measures overall correctness in prediction.
 - **Precision**: Indicates the proportion of true positives among predicted positives.
 - Recall / sensitivity: Measures the ability to detect all positive cases in the data.
 - **F1-Score**: A balance between precision and recall.
 - Specificity: proportion of actual negative cases correctly identified as negative.

Final Output

The script prints:

- Best hyperparameters
- Cross-validation accuracy
- Test set performance metrics (Accuracy, Precision, Recall, F1-score)
- Plots of target and feature distributions, feature importance and learning curves.

Conclusion

This approach ensures robust model selection by preventing overfitting through cross-validation, fine-tuning hyperparameters and monitoring curves for optimal performance. <u>Github link here</u>