Section 3.6: Rates of Change of Product Functions

The derivative of a product $f(x) = g(x) \cdot h(x)$ is given by the Product Rule:

$$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

The Product Rule says that the derivative of a product function is found by:

$$\begin{pmatrix} \text{derivative of} \\ \text{the first function} \end{pmatrix} \bullet \begin{pmatrix} \text{second} \\ \text{function} \end{pmatrix} + \begin{pmatrix} \text{first} \\ \text{function} \end{pmatrix} \bullet \begin{pmatrix} \text{derivative of} \\ \text{the second function} \end{pmatrix}$$

Example 1:

$$f(x) = x^{2/3}(x^3 - 5x^2)$$
 is a product $f(x) = g(x) \cdot h(x)$.

a. Identify the first and second functions.

First function: g(x) = Second function: h(x) =

b. Find the derivatives:

$$g'(x) = h'(x) =$$

First function: $g(x) = x^{\frac{2}{3}}$	Second function: $h(x) = x^3 - 5x^2$
Derivative of first function:	Derivative of second function:
$g'(x) = \frac{2}{3}x^{-1/3}$	$h'(x) = 3x^2 - 10x$

c. Use the Product Rule to find the derivative of $f(x) = x^{\frac{2}{3}}(x^3 - 5x^2)$.

$$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x) =$$

Example 2:

$$f(x) = e^{2x} \sqrt{x^3 - 5x^2}$$
 is a product $f(x) = g(x) \cdot h(x)$.

a. Identify the first and second functions.

First function: g(x) =

Second function: h(x) =

b. Find the derivatives. Note that the first and second functions are compositions and finding their derivatives will require the Chain Rule.

$$g'(x) =$$

$$h'(x) =$$

First function:	Second function:
Derivative of first function:	Derivative of second function:

c. Use the Product Rule to find the derivative of $f(x) = e^{2x} \sqrt{x^3 - 5x^2}$.

$$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x) =$$

Example 3:

Use the Product Rule to find the derivative of each function. Verify that each function is a product by identifying the two functions that are being multiplied (call the first function g and the second function h). Use proper notation.

a.
$$f(x) = (4x^2 - x + 1.5)[2(5^x)]$$

$$f'(x) =$$

b.
$$f(x) = \frac{-2(3^x)}{\sqrt{x}} = \underline{\qquad}$$
$$f'(x) = \underline{\qquad}$$

c.
$$f(x) = 2.5 x \sqrt{x^3 - x} =$$

d.
$$f(x) = (6x-4)^5(2x+1)$$

e.
$$f(x) = \frac{2x^3 + 7x}{3x - 5} =$$

f.
$$f(x) = 2(5^x) \ln(x)$$

Example 4:	(CC5e pp.	234-235,	235-336)
------------	-----------	----------	----------

Write a rate of change model for each of the following models.

a. $f(t) = 110t e^{-0.7t}$ ng/mL gives the concentration levels of the active ingredient in Ambien in the bloodstream t hours after a single 5 mg dose is taken orally, $0 \le t \le 12$.

b. The production level at a plant manufacturing radios can be modeled as

 $f(x) = 10.54x^{0.5} (2 - 0.13x)^{0.3}$ thousand radios where x thousand dollars has been spent on modernizing plant technology, $0 \le x \le 12$.

Example 5: (CC5e pp. 236-237)

Kish Industries develops and produces deck laminates for naval vessels. $C(q) = 500 + 190 \ln(q)$ thousand dollars gives the production costs to develop and produce q thousand gallons of deck laminate, $0 \le q \le 20$.

- a. Write an equation for the average cost to produce a gallon of deck laminate when q thousand gallons of deck laminate are produced.
- b. Rewrite the average cost function in part a) as a product (instead of a quotient).
- c. Find the derivative of the average cost function. Include the output units.