Instituto Tecnológico de Buenos Aires

Electrónica I

Experiencia de Laboratorio 1

Mediciones

Grupo 2: Víctor OH 56679 Germán BERTACHINI XXXXX Francisco Musich XXXXX

Profesores:
Fernando Alcocer
Pablo Gardella

Índice general

	Circuito Limitador Básico														2							
	1.1. Funcionamiento												2									
	1.2.	Selecci	ón de Com	ponentes	3.																	3
	1.3.	Result	$ados \dots$																			3
		1.3.1.	Teóricos .																			3
		1.3.2.	Simulación	1																		3
		1.3.3.	Prácticos .																			3
		Circuito Limitador Básico														4						
	2.1.	Funcio	namiento .																			4

Ejercicio 1

Circuito Limitador Básico

El circuito limitador básico está compuesto por una resistencia en serie y dos Diodos Zener enfrentados, configurados como se observa en la figura 1.1.

Figura 1.1: Circuito Limitador Básico

1.1. Funcionamiento

Para analizar la operación del circuito se puede pensar en los siguientes casos:

- 1. $|V_i| \leq V_f$
- 2. $V_f < |V_i| \le V_z + V_f$
- 3. $V_z + V_f < |V_i|$

En el caso 1, la tensión no es suficiente ni siquiera para polarizar el Diodo 1 en directa y no fluirá la corriente. Por lo tanto, la tensión de la salida seguirá a la de entrada.

En el caso 2, la tensión es suficiente para polarizar el Diodo 1 en directa, y el Diodo 2 en inversa. Sin embargo, esta polarización inversa no será suficiente para que el diodo entre en la zona de operación Zener, por lo cual la corriente que fluya será despreciable y la tensión de salida será aproximadamente igual a la de entrada.

En el caso 3, la tensión ya es suficiente no solo para polarizar el Diodo 1 en directa, y el Diodo 2 operará en modo Zener. Cuando esto ocurre, el Diodo zener fija su tensión en V_z y por lo tanto $V_o = V_z + V_f$.

Como los diodos están enfrentados, la transferencia de la tensión será simétrica respecto el origen.

1.2. Selección de Componentes

Uno de los principales parámetros a considerar para el diseño es la máxima potencia que puede disipar el Diodo Zener. Con ese dato se calculó la corriente máxima que puede fluir a través del Diodo.

Para conseguir este límite de corriente, conociendo la tensión máxima que se utilizará (10V) se calculó la R_s mínima para fijar este límite.

«Fórmulas, Fórmulas, Fórmulas»

«Tabla de Componentes elegidos, Diodos, Resistencias, etc.»

1.3. Resultados

1.3.1. Teóricos

«Cálculo y diagrama de cómo quedaría teóricamente el circuito»

1.3.2. Simulación

1.3.3. Prácticos

Ejercicio 2

Circuito Limitador Básico

El circuito limitador básico está compuesto por una resistencia en serie y dos Diodos Zener enfrentados, configurados como se observa en la figura 1.1.

Figura 2.1: Circuito Limitador Básico

2.1. Funcionamiento

Para analizar la operación del circuito se puede pensar en los siguientes casos:

- 1. $|V_i| \leq V_f$
- 2. $V_f < |V_i| \le V_z + V_f$
- 3. $V_z + V_f < |V_i|$

En el caso 1, la tensión de entrada sería suficiente para polarizar el Diodo zener a su