Sirius Digital Servo Drivers

Revision: 0.19

July 24, 2014

version	date	author	description	fw version
0.18		Marco Trentarossi	first deploy	DRV0-00.39
0.19		Francesco Trentarossi	FCC / Industry Canada Statements	DRV0-00.39

Table 1: revision history

Contents

1	Ger	neral information	5
	1.1	Introduction	5
2	Har	dware MOH	6
	2.1	Operational description	6
		2.1.1 MOH	6
	2.2	Product images	7
		2.2.1 MOH	7
	2.3	Configurations	8
	2.4	Specifications	8
		2.4.1 Output power	8
		2.4.2 Input power	8
		2.4.3 Digital Control	8
		2.4.4 PWM output	9
		2.4.5 Inputs	10
		2.4.6 Digital inputs	11
		2.4.7 Digital outputs	12
		2.4.8 UART port	13
		2.4.9 CAN port	13
		2.4.10 Encoder port	13
		2.4.11 Digitall Halls	13
		2.4.12 Motor connections	13
		2.4.13 Status Lights	14
		2.4.14 Protections	14
		2.4.15 Mechanical and environmental	14
		2.4.16 Conformance	
	2.5	Lights	
	2.6	Selectors	
	2.7	Connectors	
			ı A

		2.7.2 CON2 - I/O connector	18
		2.7.3 CON3 - Encoder connector	19
		2.7.4 CON4 - CANopen connector	20
		2.7.5 CON5 - Power supply connector	21
		2.7.6 CON6 - Motor connector	21
3	Hard	dware MQA	23
	3.1	Operational description	23
		3.1.1 MQA	23
	3.2	Product images	24
		3.2.1 MQA	24
	3.3	Configurations	25
	3.4	Specifications	25
		3.4.1 Output power	25
		3.4.2 Input power	25
		3.4.3 Digital control	25
		3.4.4 PWM Outputs	26
		3.4.5 Inputs	27
		3.4.6 Digital inputs	28
		3.4.7 Digital outputs	29
		3.4.8 UART port	30
		3.4.9 CAN port	30
		3.4.10 Encoder port	30
		3.4.11 Digital Halls	30
		3.4.12 Motor connections	30
		3.4.13 Status lights	31
		3.4.14 Protections	31
		3.4.15 Meccaniche e ambientali	31
		3.4.16 Conformance	31
	3.5	Lights	32
	3.6	Connections	33
		3.6.1 CON1 - Hall sensors connector	34
		3.6.2 CON2 - I/O connector	34
		3.6.3 CON3 - Encoder connector	35
		3.6.4 CON5 - Power supply connector	36
		3.6.5 CON6 - Motor connector	36
		3.6.6 CON1Z - Ethernet connector	37

Chapter 1

General information

1.1 Introduction

Motor control solution products:

- Sirius Digital Servo Drivers
- Fully configurable firmware to use
 - Brushless motors
 - Stepper motors
 - DC motors
- Winloader Application updater
- Motor Control Setup software

Chapter 2

Hardware MOH

2.1 Operational description

2.1.1 MOH

Sirius MOH is a compact servo driver. It can operate in position, speed or torque control mode, driving brushless DC or AC motors, stepper or brushed DC motors.

It can be used in network or stand alone environments. Standard feedback is provided by Hall sensors and incremental encoders. It can be configured, tested and be driven from a PC via serial TL connection.

Our drivers communicate using CANOpen protocol and up to 127 drivers can be hooked up to the master in a CAN network. As a CAN node it can operate in position profile mode, speed mode and torque mode.

MOH can operate in conjunction with an external positioner in torque, speed or posizion mode. Speed reference input operates from 0 to 5 volts.

Four different hardware configurations are available.

2.2 Product images

2.2.1 MOH

Figure 2.1: MOH-D

Figure 2.2: MOH-D

2.3 Configurations

	MOH-A	МОН-В	МОН-С	MOH-D	U.M.
CAN	-	-			-
ETHERNET					
MAXIMUM CURRENT	10	20	10	20	А
NOMINAL CURRENT	5	10	5	10	А
VDC	20-55	20-55	20-55	20-55	V

2.4 Specifications

2.4.1 Output power

	MOH-A,C	MOH-B,D	U.M.
Peak current *	10	20	А
Constant current	5	10	А
Peak power *	480	960	W

^{*} these limits are due to Molex Microfit connectors

2.4.2 Input power

	МОН-А,С	MOH-B,D	U.M.
Input voltage	20-55	20-55	V
Peak current	10	20	Α
Constant current	5	10	А

2.4.3 Digital Control

	MOH-A,B,C,D
Control loops	Current, speed, position. 100% digital control loops
Sampling frequency	Speed and current loops at 20 kHz (50us), position loop 1kHz (1ms), stepper/brush DC 40kHz
Commutation	FOC (field-oriented control) sinusoidal, step/microstepping
Modulation	Center-weighted PWM with space-vector modulation, full bridge
Minimum load inductance	200 uH line-line

2.4.4 PWM output

	Brushless	Stepper/Brush DC	U.M.
Туре	3-phase mosfet inverter centered 20 kHz PWM	double H bridge 40kHz PWM microstepping	-
PWM frequency	20k	40k	Hz

PWM CONFIGURATION

The possible configurations are shown below.

In fig. 2.3 two coils are controlled independently so it is possible to control individual bipolar stepper motors.

Figure 2.3: Double H bridge

In fig. 2.4 are driven the coils of a three-phase motor and a braking resistor. This configuration allows control of brushless motors. The third current is calculated by difference from the other two.

Figure 2.4: Three-phase bridge

2.4.5 Inputs

	МОН-А,В	MOH-C,D
CANopen	-	Position and homing profiles
Speed	0-5V	
TTL serial	Position, speed, torque, and homing profiles	

Figure 2.5: analog inputs

2.4.6 Digital inputs

	MOH-A,B,C,D
Number, type	3, not insulated, programmable
Inputs	active from 24V with RC filter
Logical levels	Vin-LO < 5.6V, Vin-HI > 13V
MS (IN1,2)	2 inputs @ 22us RC
MS (INO)	1 input @ 22us RC with the possibility of reading through interrupt (homing)
Current consumption	10mA @ 24V

Figure 2.6: MS inputs

2.4.7 Digital outputs

	MOH-A,B,C,D
Number, type	2, not insulated, programmable
(OUT0,1)	Current-sourcing MOSFET at 24V (PNP)
Current consumption	200mA with PTC protection

Figure 2.7: Outputs

2.4.8 UART port

	MOH-A,B,C,D
Signals	RX, TX, GND
Modes	full-duplex, serail port for motor control and setup, 115200 - 1250000 baud
Protocol	Binary

2.4.9 CAN port

	MOH-A,B	MOH-C,D
Signals	-	CANH, CANL, GND
Insulation	-	Optically insulated power and interface circuits +5 Vdc CAN
Format	-	conforming to the CAN V2.0b physical layer for high speed connections
Data	-	in accordance with CANopen CIA DS301
Address selection	-	dip-switch configurable
Stub	-	121 ohm selectable

2.4.10 Encoder port

	МОН-А,В	MOH-C,D
Signals	-	A, B, X
Levels	-	5V
Frequency	-	4MHz (post quadrature)
Power supply	-	5V @ 400mA

2.4.11 Digitall Halls

	MOH-A,B,C,D	
Туре	single ended digital, electrical phase-shifted by 120°	
Levels	U, V, W	
Frequency	10kHz	
Power supply	5V @ 400mA	

2.4.12 Motor connections

	MOH-A,B,C,D	
U, V, W phases	three-phase PWM or 2 H bridges output, ungrounded.	
Braking	dout(0).out can be configured as a brake without the needing of an external flyback diode.	

2.4.13 Status Lights

	MOH-C,D		
CAN status	Red and green lights, in accordance with CAN DR303-3		

2.4.14 Protections

	MOH-A,B,C,D	
I ² T current limit	direct current	
HV undervoltage	HV < 18V programmable	

2.4.15 Mechanical and environmental

	МОН-А	МОН-В	мон-с	MOH-D
Dimensions		75.7 x	54 mm	
Height	16.5 mm	16.5 mm	16.5 mm	16.5 mm
Weight	47 g	53 g	52 g	57 g
Temperature	Operativ	ity from 0 to +45 °C	, Storage from -40	to +85 °C
Umidity		0 to 95%, nor	condensing	
Cooling	Heatsink or inducted airflow			

2.4.16 Conformance

	MOH-A,B,C,D	
CE	CE compliant	
61000_6_4	Generic standards - Emission Standard for industrial environments	
61000_6_2	Generic standards - Immunity for industrial environments	
Roнs	Rohs Compliant	

2.5 Lights

There are two leds to indicate the status of the drivers.

Figure 2.8: Lights position

The specifications of lights during operation of the device reflect what indicated in the document CiA DR 303-3 v1.2. In addition, two custom conditions have been defined

Corrupted or not installed application

Configuration parameters not found

2.6 Selectors

Figure 2.9: Position of selectors

Selector	Description		
s1	Optional user defined function		
s2	CAN terminating resistor		

2.7 Connectors

Figure 2.10: MOH-D Connectors

2.7.1 CON1 - Hall sensors connector

Figure 2.11: MICROFIT 3.0 430450600

pin	name	type	description
1	5V	OUT	5V sensors power supply
2	reference	-	5V common reference
3	reference	-	5V common reference
4	hallA	IN	hall sensor A
5	hallB	IN	hall sensor B
6	hallC	IN	hall sensor C

2.7.2 CON2 - I/O connector

Figure 2.12: MICROFIT 3.0 430451400

^{*} CON3 is not present on MOH-A and MOH-B models. In this case it is possible to configure and use CON1 as encoder connector

pin	name	type	description
1	Al	IN	analog input
2	24V	OUT	24V digital input 2
3	DI_2	IN	digital input2
4	reference	-	common reference digital input 2
5	24V	OUT	24V digital input 1
6	DI_1	IN	digital input 1
7	reference	-	common reference digital input 1
8	reference	-	common reference analog input / digital output 1
9	DO_1	OUT	digital output 1
10	DO_0	OUT	digital output 0
11	reference	-	common reference digital output 0
12	24V	OUT	24V digital input 0
13	DI_0	IN	digital input 0
14	reference	-	common reference digital input 0

2.7.3 CON3 - Encoder connector

Figure 2.13: MICROFIT 3.0 430450600

pin	name	type	description
1	5V	OUT	5V encoder power supply
2	reference	-	5V common reference
3	reference	-	5V common reference
4	SA	IN	A signal
5	SB	IN	B signal
6	SC	IN	C sgnal (index)

 $^{^{\}ast}$ CON3 is not present on MOH-A and MOH-B models.

2.7.4 CON4 - CANopen connector

Figure 2.14: MICROFIT 3.0 430450800

pin	name	type	description
1-5	CH+	IN/OUT	CAN high
2-6	CH-	IN/OUT	CAN low
3-7	CAN reference	-	0V CAN reference
4-8	CAN reference	-	0V CAN reference

 $^{^{\}star}$ Questo connettore è presente solo nei modelli MOH-C e MOH-D

2.7.5 CON5 - Power supply connector

Figure 2.15: MICROFIT 3.0 430451000

pin	name	type	description
1	reference	-	24V common reference
2	24V logic	IN	locig circuits power supply
3	ground	-	ground
4	24V power	IN	main power supply
5	brake resistor	OUT	brake resistor
6	reference	-	24V common reference
7	24V logic	IN(OUT)	locig circuits power supply
8	ground	-	ground
9	24V power	IN(OUT)	main power supply
10	24V res brake	OUT	brake resistor reference

2.7.6 CON6 - Motor connector

Figure 2.16: MICROFIT 3.0 430450400

pin	name	type	description - three-phase (brushless)	description - double single-phase (stepper)
1	В	OUT	brake resistor	H2-
2	U	OUT	U phase	H1+
3	W	OUT	W phase	H2+
4	V	OUT	V phase	H1-

FCC Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Industry Canada statement

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1. this device may not cause interference, and
- 2. this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- 1. l'appareil ne doit pas produire de brouillage, et
- 2. l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

CAN ICES-3 (A)/NMB-3(A)

Chapter 3

Hardware MQA

3.1 Operational description

3.1.1 MQA

Sirius MQA is a compact servo driver. It can operate in position, speed or torque control mode, driving brushless DC or AC motors, stepper or brushed DC motors.

It can be used in network or stand alone environments. Standard feedback is provided by Hall sensors and incremental encoders. It can be configured, tested and be driven from a PC via serial TL connection.

Our drivers communicate using CANOpen protocol and up to 127 drivers can be hooked up to the master in a CAN network. As a CAN node it can operate in position profile mode, speed mode and torque mode.

MOH can operate in conjunction with an external positioner in torque, speed or posizion mode. Speed reference input operates from 0 to 5 volts.

Sirius MQA has the same characteristics of the MOH series but has an Ethernet communication interface on which it is possible to use the CANopen protocol.

Two different hardware configurations are available.

MQA is mechanically compatible with the MOH series, with which it shares the pitch of the mounting holes and the dimensions of the printed circuit board.

3.2 Product images

3.2.1 MQA

Figure 3.1: MQA-D

Figure 3.2: MQA-D

3.3 Configurations

	MQA-C	MQA-D	U.M.
CAN			-
ETHERNET			
MAXIMUM CURRENT	10	20	Α
NOMINAL CURRENT	5	10	Α
VDC	20-55	20-55	V

3.4 Specifications

3.4.1 Output power

	MQA-C	MQA-D	U.M.
Peak current *	10	20	А
Constant current	5	10	А
Peak power *	480	960	W

^{*} these limits are due to Molex Microfit connectors

3.4.2 Input power

	MQA-C	MQA-D	U.M.
Input voltage	20-55	20-55	V
Peak current	10	20	А
Constant current	5	10	А

3.4.3 Digital control

	MQA-C,D	
Control loops	Current, speed, position. 100% digital control loops	
Sampling frequency	Speed and current loops at 20 kHz (50us), position loop 1kHz (1ms), stepper/brush DC 40kHz	
Commutation	FOC (field-oriented control) sinusoidal, step/microstepping	
Modulation	Center-weighted PWM with space-vector modulation, full bridge	
Minimum load inductance	200 uH line-line	

3.4.4 PWM Outputs

	Brushless	Stepper/Brush DC	U.M.
Туре	3-phase mosfet inverter centered 20 kHz PWM	double H bridge 40kHz PWM microstepping	-
PWM frequency	20k	40k	Hz

PWM CONFIGURATION

The possible configurations are shown below.

In fig. 2.3 two coils are controlled independently so it is possible to control individual bipolar stepper motors.

Figure 3.3:

In fig. 2.4 are driven the coils of a three-phase motor and a braking resistor. This configuration allows control of brushless motors. The third current is calculated by difference from the other two.

Figure 3.4: Three-phase bridge

3.4.5 Inputs

	MQA-C,D	
CANopen	Position and homing profiles	
Speed	0-5V	
TTL serial	Position, speed, torque, and homing profiles	

Figure 3.5: Analog inputs

3.4.6 Digital inputs

	MQA-C,D
Number, type	3, not insulated, programmable
Inputs	active from 24V with RC filter
Logical levels	Vin-LO < 5.6V, Vin-HI > 13V
MS (IN1,2) 2 inputs @ 22us RC	
MS (INO)	1 input @ 22us RC with the possibility of reading through interrupt (homing)
Current consumption	10mA @ 24V

Figure 3.6: MS inputs

3.4.7 Digital outputs

	MQA-C,D	
Number, type	Number, type 2, not insulated, programmable	
(OUT0,1)	Current-sourcing MOSFET at 24V (PNP)	
Current consumption	200mA with PTC protection	

Figure 3.7: Outputs

3.4.8 UART port

	MQA-C,D	
Signals	RX, TX, GND	
Modes	full-duplex, serail port for motor control and setup, 115200 - 1250000 baud	
Protocol	Binary	

3.4.9 CAN port

	MQA-C,D			
Signals	CANH, CANL, GND			
Insulation	Optically insulated power and interface circuits +5 Vdc CAN			
Format	conforming to the CAN V2.0b physical layer for high speed connections			
Data	in accordance with CANopen CIA DS301			
Address selection	dip-switch configurable			
Stub	121 ohm selectable			

3.4.10 Encoder port

	MQA-C,D	
Signals	A, B, X	
Levels	5V	
Frequency	4MHz (post quadrature)	
Power supply	5V @ 400mA	

3.4.11 Digital Halls

MQA-C,D
single ended digital, electrical phase-shifted by 120°
U, V, W
10kHz
5V @ 400mA

3.4.12 Motor connections

	MQA-C,D
U, V, W phases	three-phase PWM or 2 H bridges output, ungrounded.
Braking	dout(0).out can be configured as a brake without the needing of an external flyback diode.

3.4.13 Status lights

	MQA-C,D		
CAN status	Red and green lights, in accordance with CAN DR303-3		

3.4.14 Protections

	MQA-C,D
I ² T current limit	direct current
HV undervoltage	HV < 18V programmable

3.4.15 Meccaniche e ambientali

	MQA-C	MQA-D		
Dimensions	79.5 x 54 mm			
Height	16.5 mm			
Weight	50 55 g			
Temperature	Operativity from 0 to +45 $^{\circ}$ C, Storage from -40 to +85 $^{\circ}$ C			
Umidity	0 to 95%, non condensing			
Cooling	Heatsink or inducted airflow			

3.4.16 Conformance

	MQA-C,D		
CE	CE compliant		
61000_6_4	Generic standards - Emission Standard for industrial environments		
61000_6_2	Generic standards - Immunity for industrial environments		
Rons	Roнs Compliant		

3.5 Lights

There are two leds to indicate the status of the drivers.

Figure 3.8: Lights position

The specifications of lights during operation of the device reflect what indicated in the document CiA DR 303-3 v1.2. In addition, two custom conditions have been defined

Corrupted or not installed application

Configuration parameters not found

3.6 Connections

Figure 3.9: MQA-C/D connectors

3.6.1 CON1 - Hall sensors connector

Figure 3.10: MICROFIT 3.0 430450600

pin	name	type	description
1	5V	OUT	5V sensors power supply
2	reference	-	5V common reference
3	reference	-	5V common reference
4	hallA	IN	hall sensor A
5	hallB	IN	hall sensor B
6	hallC	IN	hall sensor C

3.6.2 CON2 - I/O connector

Figure 3.11: MICROFIT 3.0 430451400

pin	name	type	description
1	Al	IN	analog input
2	24V	OUT	24V digital input 2
3	DI_2	IN	digital input2
4	reference	-	common reference digital input 2
5	24V	OUT	24V digital input 1
6	DI_1	IN	digital input 1
7	reference	-	common reference digital input1
8	reference	-	common reference analog input / digital output 1
9	DO_1	OUT	digital output 1
10	DO_0	OUT	digital output 0
11	reference	-	common reference digital output 0
12	24V	OUT	24V digital input 0
13	DI_0	IN	digital input 0
14	reference	-	common reference digital input 0

3.6.3 CON3 - Encoder connector

Figure 3.12: MICROFIT 3.0 430450600

pin	name	type	description
1	5V	OUT	5V encoder power supply
2	reference	-	5V common reference
3	reference	-	5V common reference
4	SA	IN	A signal
5	SB	IN	B signal
6	SC	IN	C sgnal (index)

3.6.4 CON5 - Power supply connector

Figure 3.13: MICROFIT 3.0 430451000

pin	name	type	description
1	reference	-	24V common reference
2	24V logic	IN	locig circuits power supply
3	ground	-	ground
4	24V power	IN	main power supply
5	brake resistor	OUT	brake resistor
6	reference	-	24V common reference
7	24V logic	IN(OUT)	locig circuits power supply
8	ground	-	ground
9	24V power	IN(OUT)	main power supply
10	24V res brake	OUT	brake resistor reference

3.6.5 CON6 - Motor connector

Figure 3.14: MICROFIT 3.0 430450400

pin	name	type	description - three-phase (brushless)	description - double single-phase (stepper)
1	В	OUT	brake resistor	H2-
2	U	OUT	U phase	H1+
3	W	OUT	W phase H2+	
4	V	OUT	V phase	H1-

3.6.6 CON1Z - Ethernet connector

Figure 3.15: RJ45 Ethernet

pin	nome	tipo	descrizione
1	TX +	OUT	Transmit data +
2	TX -	OUT	Transmit data -
3	RX +	IN	Receive data +
4	NC	-	Not connected
5	NC	-	Not connected
6	RX -	IN	Receive data +
7	NC	-	Not connected
8	NC	-	Not connected

FCC Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Industry Canada statement

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1. this device may not cause interference, and
- 2. this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- 1. l'appareil ne doit pas produire de brouillage, et
- 2. l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

CAN ICES-3 (A)/NMB-3(A)