Load Type Prediction from Power System Data

Objective

The primary objective of this project is to develop a machine learning model capable of predicting the **Load_Type** of a power system based on historical features. The target variable **Load_Type** includes three categories:

- Light_Load
- Medium_Load
- Maximum_Load

This classification problem emphasizes data preprocessing, exploratory data analysis (EDA), feature engineering, model selection, evaluation, and explainability.

Dataset Description

The dataset includes the following features:

Feature	Description
Date_Time	Timestamp (first of every month)
Usage_kWh	Industry Energy Consumption in kWh
Lagging_Current_Reactive.Power_kVarh	Lagging current reactive power
Leading_Current_Reactive_Power_kVarh	Leading current reactive power
CO2(tCO2)	Carbon dioxide emission (ppm)
NSM	Number of seconds from midnight
Load_Type	Target: Light_Load, Medium_Load, Maximum_Load

Google Drive Setup

```
/My Drive/

Load_type_prediction/

Load_type_prediction/

Load_type_prediction/

Load_type_prediction/

Load_type_prediction/

Load_type_prediction/

# Contains raw power_data.csv

Losd_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Load_type_prediction/

# Load_type_prediction/

# Load_type_prediction/

# Load_type_prediction/

# Load_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Load_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Load_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Load_type_prediction/

# Load_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Load_type_prediction/

# Load_type_prediction/

# Train split after cleaning

Load_type_prediction/

# Load_type_prediction/

# Intermediate transformed data

Load_type_prediction/

# Saved models (.pkl)
```

Step-by-Step Pipeline

1. Exploratory Data Analysis (EDA) on Full Raw Dataset

- · Visualized distributions of all continuous features.
- Boxplots for understanding Usage_kWh across Load_Type.
- Scatterplots: Usage_kWh vs NSM colored by Load_Type.
- Monthly aggregation to inspect seasonality trends.
- Checked data quality (missing values, invalid entries).
- Result: Insights about outliers, skewness, time influence, and class imbalance.

2. Data Cleaning

- Removed NaNs and invalid entries.
- Converted date formats.

• Saved cleaned dataset as power_cleaned.csv.

3. Train-Test Split

- Used last month data as test set for real-world evaluation.
- Remaining data used as training dataset.
- Saved as power_train.csv and power_test.csv.

4. EDA on Cleaned Train Set

- Repeated visual analysis.
- Boxplots revealed strong influence of Usage_kWh, Lagging_Current_Reactive.Power_kVarh, and CO2(tCO2).
- · Heatmap showed some strong correlations.
- Temporal features (Month, Hour, Day) derived.

5. Feature Engineering

- Dropped:
 - Leading_Current_Power_Factor (constant)
 - NSM (less informative after visual inspection)
- · Created:
 - Month, Day, Hour from Date_Time
- · Log-transformed skewed features:
 - Usage kWh
 - Lagging_Current_Reactive.Power_kVarh
 - Leading_Current_Reactive_Power_kVarh
 - o CO2(tCO2)
- Label encoded Load_Type:
 - Light_Load: 0, Medium_Load: 1, Maximum_Load: 2
- Saved processed files: train_transformed.csv, test_transformed.csv

Model Training & Evaluation

Initial Model Candidates

Trained and evaluated the following models on the training dataset (80-20 split):

- Random Forest
- XGBoost
- MLPClassifier (with StandardScaler)
- Logistic Regression (with StandardScaler)

Evaluation Metrics

Used accuracy, precision, recall, f1-score, and confusion_matrix.

Validation Results (20% of training data)

Model	Accuracy
XGBoost	0.94
Random Forest	0.93
MLP Classifier	0.93
Logistic Regression	0.75

Test Set Evaluation (Last month data)

Model	Accuracy
XGBoost	0.90
Random Forest	0.87
MLP Classifier	0.79

Decision: Proceed with XGBoost

Model Fine-Tuning (XGBoost)

Used RandomizedSearchCV to tune the following parameters:

- max_depth
- learning_rate
- n_estimators
- subsample
- colsample_bytree
- gamma
- reg_alpha
- reg_lambda

Best Hyperparameters

```
{
  "max_depth": 8,
  "learning_rate": 0.0708,
  "n_estimators": 188,
  "subsample": 0.6558,
  "colsample_bytree": 0.6727,
  "gamma": 0.9170,
  "reg_alpha": 0.2912,
  "reg_lambda": 1.1119
}
```

Post-Tuning Validation Accuracy: 0.94

Post-Tuning Test Accuracy: 0.90 (Improved precision and F1-score)

Model saved as: xgboost_tuned_model.pkl

Summary of Key Decisions

Step	Decision & Justification
EDA on Full Data	To explore structure, trends, and quality issues
Test Set Strategy	Last month's data to simulate unseen future data
Dropping Features	Removed constant/redundant fields (NSM , Leading_PF)
Log Transformations	For normalizing skewed distributions
Model Choice	XGBoost performed best on both validation & test
Hyperparameter Tuning	Boosted model precision and generalization

Scripts Provided

- 01_eda_power_data.py : EDA on complete raw dataset
- 02_data_cleaning.py : Clean & export final dataset
- 03_train_test_split.py : Last month test split
- 04_train_eda.py : Visuals and correlations on train set

- 05_feature_engineering.py : For both train and test
- model_xgb.py: Train and save baseline XGBoost
- model_xgb_tuned.py : Fine-tune and save best model
- test_xgb_tuned.py : Load tuned model and evaluate on test set

Final Notes

- The full workflow is designed to be modular and interpretable.
- Future improvements can involve:
- Feature selection based on importance or SHAP
 All scripts are compatible with Google Colab + Drive setup.

Evaluation-ready submission includes:

- Scripts (Colab / .py)
- Transformed CSVs
- Saved .pkl model files
- ullet README with end-to-end documentation ${\tt M}$

Maintainer: Pratik Kumar Institute: NIT Silchar

Task Deadline: 23rd June 2025