

ATIVIDADES COMPLEMENTARES

Professor: Paulo Isaac Disciplina: Matemática Turma: 9º ano

Data: ____/___ Conteúdo: POTENCIAÇÃO E RADICIAÇÃO

01. Propriedade, característica de uma operação ou de uma figura. Observe com atenção, algumas operações com potências de bases iguais.

$$a^m \cdot a^n = a^{m+n}$$

$$(a^m)^n = a^{m \cdot n}$$

$$a^m : a^n = a^{m-n}$$

$$(a^{m})^{n} = a^{m \cdot n}$$

 $(a \cdot b)^{m} = a^{m} \cdot b^{m}$

Use estas informações e resolva os exercícios abaixo, aplicando a propriedade conveniente:

a)
$$(x^5: x^2) \cdot (x^7: x^4)$$

b)
$$(3^2 . 3^5) : 3^8$$
 c) $(5.6)^2$

c)
$$(5.6)^2$$

d)
$$2^9:2^5$$

02. Usando as propriedades com potências de mesma base, transformem em uma só potência as expressões:

a)
$$\left(-\frac{1}{3}\right)^2 \cdot \left(-\frac{1}{3}\right)^3$$

b)
$$\left[\left(+\frac{3}{7}\right)^4\right]^{\frac{1}{2}}$$

c)
$$(+1,9)^{11}$$
: $(+1,9)^6$

a)
$$\left(-\frac{1}{3}\right)^2 \cdot \left(-\frac{1}{3}\right)^3$$
 b) $\left[\left(+\frac{3}{7}\right)^4\right]^3$ c) $\left(+1,9\right)^{11} : \left(+1,9\right)^6$ d) $\left(+\frac{1}{2}\right)^7 : \left(+\frac{1}{2}\right)^3$

e)
$$(-0.5)^7$$
 . (-0.5) . $(-0.5)^8$ f) $[(+4.2)^3]^3$

f)
$$[(+4,2)^3]^3$$

03. Calcule as potências:

a)
$$\left(\frac{-3}{2}\right)$$

b)
$$\left(+\frac{5}{4}\right)$$

c)
$$\left(-\frac{1}{2}\right)^5$$

a)
$$\left(\frac{-3}{2}\right)^2$$
 b) $\left(+\frac{5}{4}\right)^2$ c) $\left(-\frac{1}{2}\right)^5$ d) $\left(-\frac{15}{8}\right)^0$ e) $\left(-\frac{1}{3}\right)^3$

e)
$$\left(-\frac{1}{3}\right)^3$$

f)
$$\left(-\frac{7}{13}\right)^1$$

g)
$$(+1,7)^2$$

h)
$$(-10)^5$$

i)
$$(-1)^{200}$$

$$j)(-0,4)^3$$

f)
$$\left(-\frac{7}{13}\right)^1$$
 g) $(+1,7)^2$ h) $(-10)^5$ i) $(-1)^{200}$ j) $(-0,4)^3$ k) $\left(+\frac{2}{3}\right)^4$

04. Calcule as seguintes potências com expoente negativo: **Não esqueça:** $a^{-m} = \frac{1}{a^m}$

b)
$$\left(-\frac{5}{8}\right)^{-}$$

a)
$$10^{-2}$$
 b) $\left(-\frac{5}{8}\right)^{-2}$ c) $\left(-\frac{3}{2}\right)^{-3}$ d) $\left(-3\right)^{-3}$ e) $\left(+\frac{2}{3}\right)^{-2}$ f) $\left(+\frac{1}{2}\right)^{-5}$

d)
$$(-3)^{-3}$$

$$e$$
) $\left(+\frac{2}{3}\right)^{-2}$

$$f) \left(+\frac{1}{2} \right)^{-2}$$

05. Classifique cada sentença seguinte em verdadeira (V) ou Falsa (F). Justifique sua resposta:

a)
$$(8^3)^2 = 8^5$$
 ()

b)
$$\left(\frac{10^4}{10^5}\right) = 10^{-1} \left(\right)$$

a)
$$(8^3)^2 = 8^5$$
 () b) $\left(\frac{10^4}{10^5}\right) = 10^{-1}$ () c) $(5+3) = 5^2 + 3^2$ () d) $4^3 \cdot 4 \cdot 4^2 = 4^6$ ()

d)
$$4^3.4.4^2 = 4^6 ()$$

$$e)\left(\frac{2}{3}\right)^{-2} = \frac{4}{9}\left(\ \right)$$

06. Determine o valor de cada raiz:

a)
$$\sqrt{169} =$$

c)
$$\sqrt[3]{27} =$$

b)
$$\sqrt[5]{32} =$$

d)
$$\sqrt[4]{81} =$$

07. Simplifique cada raiz fazendo uso da técnica de decomposição em fatores primos:

a)
$$\sqrt[5]{64} =$$

b)
$$\sqrt[3]{3000} =$$

c)
$$\sqrt{300} =$$

d)
$$\sqrt[9]{1024} =$$

e)
$$\sqrt[5]{160} =$$

f)
$$\sqrt[4]{243} =$$

08. Determine o valor de cada expressão numérica abaixo:

a)
$$2^3 + 4.(\sqrt{16} - 2.\sqrt{25})$$

b)
$$\sqrt[3]{-27} + \sqrt[5]{32} - 4.(\sqrt{0.09} + 3.\sqrt{2.25})$$

09. Sabendo que cada raiz abaixo determina um número inteiro, determine o valor de cada raiz:

a)
$$\sqrt{289} =$$

b)
$$\sqrt[5]{243} =$$

c)
$$\sqrt[3]{216} =$$

d)
$$\sqrt[4]{625} =$$

10. Simplifique cada raiz fazendo uso da técnica de decomposição em fatores primos:

a)
$$\sqrt[5]{486} =$$

b)
$$\sqrt[3]{540} =$$

c)
$$\sqrt{600} =$$

d)
$$\sqrt[8]{256} =$$

e)
$$\sqrt[5]{320} =$$

f)
$$\sqrt[4]{160} =$$