

Universidad de Buenos Aires

Laboratorio de Sistemas Embebidos

Especialización en Inteligencia Artificial

Análisis de Series de Tiempo 1

Docente:	Camilo	Argoty
----------	--------	--------

Nombre:	Trinidad Monreal	Código:	a0804
Fecha:			

PRIMER TRABAJO PRÁCTICO

1. (4 puntos) Sea:

$$Y_t = R\cos(2\pi(ft + \Phi))$$

una serie de tiempo, donde R y Φ son variables aleatorias independientes y f es una frecuencia fija. La fase Φ se distribuye uniforme sobre el intervalo (0,1), mientras que la amplitud R tiene una distribución de Rayleigh con densidad $f(r) = re^{-r^2/2}$ para r > 0. Muestre que, para todo t, Y_t tiene una distribución normal.

Pista: Defina $X = R \operatorname{sen}(2\pi(ft + \Phi))$ y $X = R \cos(2\pi(ft + \Phi))$ y utilice la relación $X^2 + Y^2 = R^2$ para calcular la densidad conjunta de (X, Y) a partir de la densidad conjunta de (R, Φ) .

2. (3 puntos) Sea:

$$Y_t = \mu + \varepsilon_t + \varepsilon_{t-1}$$

donde ε_t es un ruido blanco.

Sea

$$\bar{Y}_t = \frac{1}{n} \sum_{i=0}^n Y_t$$

Encuentre $Var(\bar{Y})$

3. (3 puntos) Sea:

$$Y_t = -8 + (-9)\varepsilon_t + (-8)\varepsilon_{t-1} + (-3)\varepsilon_{t-2}$$

Encuentre la función de autocorrelación de Y_t .