

## Curriculum Vitae for Mats K. Brun

### Personal information

Address: Uelands gate 57M E-mail: matskbrun@gmail.com

0457 Oslo Phone: +47 90800174

Born: 19.04.1988 Nationality: Norwegian

## **Summary**

I hold a Ph.D. in applied and computational mathematics, and have several years of experience with mathematical modeling and numerical programming. Through my work as a researcher both at the University of Bergen and the University of Oslo, I have gained a good understanding of mathematical modeling of diverse real-world systems, ranging from geothermal energy storage to evolutionary biology. A common factor has been the identification and classification of conservational principles in the relevant system, which then allows for the formulation of a mathematical model, typically using partial differential equations (PDE's). I have come to view PDE's both as a modeling tool, and as a source of theoretical insights which may translate into a deeper understanding of the real-world system, or, aid in the development of numerical algorithms for the particular problem at hand.

#### Technical skills

Numerical (Mixed) finite element method, finite volume method.

methods

Frameworks NumPy, SciPy, FEniCS, Pandas, Matplotlib, Keras.

Languages Python, Matlab, Java.
Tools Git, LATEX, Microsoft Office.

### **Education**

2016 - 2019 Ph.D. in Applied and Computational Mathematics, Department of

Mathematics, University of Bergen. Thesis title: 'Upscaling, analysis, and iterative numerical solution schemes for thermo-poroelasticity'. Main supervisor: Florin Radu. Co-supervisors: Inga Berre and Jan M.

Nordbotten.

2013 - 2015 MSc. in Applied and Computational Mathematics, Department of

Mathematics, University of Bergen. Thesis title: 'Wave breaking in

long wave models and undular bores'.

2009 - 2012 BSc. in Physics, Department of Physics and Technology, University of Bergen.

# **Professional experience**

| 2021 –      | Consultant at Expert Analytics.                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| 2021        | 20% position as substitute teacher in mathematics (S2) at Sonans, Oslo.                                                        |
| 2020 2021   |                                                                                                                                |
| 2020 – 2021 | Postdoctoral Fellow at CEES - Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo. |
| 2019        | Analyst at Frende Insurance, Bergen.                                                                                           |
| 2016 - 2019 | Ph.D. Research Fellow, Department of Mathematics, University of                                                                |
|             | Bergen.                                                                                                                        |
|             | - 2019: Co-supervisor for a MSc. student in the Porous Media Rese-                                                             |
|             | arch Group.                                                                                                                    |
|             | - 2018: Visiting researcher, Institute of Applied Mathematics, Leibniz                                                         |
|             | Universität Hannover, Germany.                                                                                                 |
| 2016        | Substitute teacher (with varying hours) in mathematics and physics                                                             |
|             | (VG1 and VG2) at Bergen Katedralskole, Bergen.                                                                                 |
| 2011 - 2016 | Part-time Team-leader at ADAM 2326.                                                                                            |
| 2014        | Teaching assistant in Calculus II (MAT112) at the University of Ber-                                                           |
|             | gen.                                                                                                                           |
| 2008 - 2011 | Part-time employee at Dolly Dimple's Torgallmenningen, Bergen.                                                                 |
|             |                                                                                                                                |

## Languages

Norwegian Native language.

English Fluent, written and spoken.

## **Personal skills**

| Analytical                         | Through many years of technical education I have gained a good ability to think logically and analytically, and am not afraid to confront challenging problems. |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modeling and numerical programming | Good experience in mathematical modeling of real-world systems, and implementation into numerical computer code.                                                |
| Creative                           | Good experience in creative thinking, both in terms of creative solutions to academic and technical problems, and musical performance and expression.           |
| Communication and teaching         | Several teaching experiences at both the high-school and university levels has augmented my ability to internalize and communicate difficult concepts.          |
| Problem solving                    | Always up for a new challenge, and always eager to explore new skills and new technology.                                                                       |

### Some interests and hobbies

Music Hobby musician (guitar and piano), primarily jazz and blues and re-

lated styles.

Sports Weightlifting, running, hiking, skiing.

Personal Personal development, traveling, live music, reading.

## **Extended descriptions of selected projects**

Activity Drivers of evolutionary change: Understanding stasis and non-stasis

through integration of micro- and macroevolution.

Period 2020 – 2021
Role Researcher
Staffing Team of 4
Volume 100%

Description As a postdoctoral researcher in biomathematics, I was part of a rese-

arch project led by Prof. Nils Chr. Stenseth and Prof. Jan M. Nordbotten, devoted to developing a mathematical framework for ecoevolutionary modeling. In particular, to connect evolutionary models at different scales in a unified mathematical framework. E.g., one may consider a population as a system of interacting species where species evolve together as separate species, or, one may consider the population as distinct individuals without imposing the category of species upon them. A multi-scale description of an eco-evolutionary system can therefore give new insight into phenomena such as *speciation*. My role in this project was two-fold: To extend the existing mathematical framework in a more mathematically rigorous direction, and

to apply this framework to a real-world eco-evolutionary system using

biological data.

Tools Mathematical modeling and analysis, mathematical biology, finite vo-

lume method, Matlab, Latex.

Activity An iterative staggered scheme for phase field brittle fracture propaga-

tion with stabilizing parameters.

 $\begin{array}{lll} \text{Period} & 2018 \\ \text{Role} & \text{Researcher} \\ \text{Staffing} & \text{Team of 5} \\ \text{Volume} & 100\% \end{array}$ 

Description

During my doctoral work I spent some time at the Leibniz Universität Hannover, Germany, as a visiting researcher, where I collaborated with Prof. Thomas Wick. The purpose of this collaboration was to work on numerical solution algorithms for fracture propagation in brittle materials, where the fracture surface is represented by a phase-field variable. Our strategy was to decouple the mechanics from the phase-field and solve each linearized sub-problem separately, while iteratively updating coupling terms. Analysis of the proposed algorithm revealed bounds on the elastic strain and the thickness of the phase-field surface for which convergence is guaranteed. Moreover, stabilizing parameters were introduced and tailored specifically to each subproblem. The resulting algorithm is a stable and efficient solution procedure for the notoriously difficult phase-field brittle fracture propagation problems, including conditions for guaranteed convergence.

Tools

Mechanics, finite element method, Latex, Deal II.

Activity Upscaling, analysis, and iterative numerical solution schemes for

thermo-poroelasticity.

Period 2016 – 2019
Role Researcher
Staffing Team of 5
Volume 100%

Description The main objectives of my doctoral research was to provide part of

the mathematical models and simulation technology required to assess large-scale deployment of thermo-mechanical subsurface energy storage in the context of intermittent renewable energy. The relevant physical processes for this application is the coupling of geomechanics, flow, and heat transfer within a porous material, i.e., thermo-poroelasticity. Thus, together with my supervisors, Prof. Florin A. Radu, Prof. Inga Berre, and Prof. Jan M. Nordbotten, we focused on different aspects of thermo-poroelasticity, relevant for the previously mentioned application, and under the technical umbrella of mathematical modeling and analysis. In particular, the research was separated into three parts; (1)

modeling, (2) analysis and (3) numerical implementation.

Tools Mathematical modeling and analysis, finite flement method, Python,

NumPy, SciPy, Latex.