Lanczos Method for Eigensystems

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu

- 1. O(N) (vs. conventional $O(N^3)$) eigensolver
- 2. Krylov subspace

B. N. Parlett

The Symmetric Eigenvalue Problem

(Prentice-Hall, '80) Secs. 11-13

Rayleigh Quotient

Theorem

Let A be an $n \times n$ real symmetric matrix, $\lambda_1[A] \leq ... \leq \lambda_n[A]$ its eigenvalues in ascending order, $x \in \mathbb{R}^n$, & the Rayleigh quotient

$$\rho(\mathbf{x}; \mathbf{A}) = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \text{then} \quad \begin{cases} \lambda_1[\mathbf{A}] = \min_{\mathbf{x} \in \mathbb{R}^n} \rho(\mathbf{x}; \mathbf{A}) \\ \lambda_n[\mathbf{A}] = \max_{\mathbf{x} \in \mathbb{R}^n} \rho(\mathbf{x}; \mathbf{A}) \end{cases}$$

Proof

Let $\mathbf{q}^{(k)}$ be the k-th orthonormalized eigenvector of \mathbf{A} , $\mathbf{A}\mathbf{q}_k = \lambda_k \mathbf{q}_k$, & orthogonal transformation matrix, $\mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n]$, then

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$$

Let x = Qz (note $Q^TQ = I$), then

$$\rho(\mathbf{x}; \mathbf{A}) = \frac{\mathbf{z}^T \mathbf{Q}^T \mathbf{A} \mathbf{Q} \mathbf{z}}{\mathbf{z}^T \mathbf{Q}^T \mathbf{Q} \mathbf{z}} = \frac{z_1^2 \lambda_1 + \dots + z_n^2 \lambda_n}{z_1^2 + \dots + z_n^2}$$

which is a weighted average of $\lambda_1, ..., \lambda_n$, & the minimum is when $\mathbf{z}^T = (1,0,...,0) = \mathbf{e}_1$ & $\mathbf{x} = \mathbf{Q}\mathbf{e}_1 = \mathbf{q}_1$.

Rayleigh-Ritz Procedure

Theorem

Let $\{q_1,...,q_m\}$ $\{q_j \in \mathbb{R}^n; j=1,...,m; m < n\}$ be an orthonormal set, so that any vector $\mathbf{x} \in \mathbb{R}^n$ in the range is expressed as a linear combination of $q_1,...,q_m$:

$$\mathbf{x} = z_1 \mathbf{q}_1 + \dots + z_m \mathbf{q}_m \quad \text{or} \quad n \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = n \begin{bmatrix} m \\ \mathbf{q}_1 \\ \cdots \\ \mathbf{q}_m \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_m \end{bmatrix} m = \mathbf{Q} \mathbf{z}$$

then the best approximations for $\lambda_1[A]$ & $\lambda_n[A]$ are obtained by diagonalizing

$$m \times m \quad m \times n \, n \times n \, n \times m$$

$$\mathbf{H} = \mathbf{Q}^T \quad \mathbf{A} \quad \mathbf{Q}$$

as $\lambda_1[H] \& \lambda_m[H]$.

Proof

Note
$$(\mathbf{Q}^T \mathbf{Q})_{ij} = \sum_{k=1}^n Q_{ki} Q_{kj} = \mathbf{q}_i \cdot \mathbf{q}_j = \delta_{ij}$$

then
$$\rho(\mathbf{x}; \mathbf{A}) = \frac{\mathbf{z}^T \mathbf{Q}^T \mathbf{A} \mathbf{Q} \mathbf{z}}{\mathbf{z}^T \mathbf{Q}^T \mathbf{Q} \mathbf{z}} = \frac{\mathbf{z}^T \mathbf{H} \mathbf{z}}{\mathbf{z}^T \mathbf{z}} = \frac{z_1^2 \lambda_1(\mathbf{H}) + \dots + z_m^2 \lambda_m(\mathbf{H})}{z_1^2 + \dots + z_m^2}$$

the minimum of which is $\lambda_1[H]$ (cf. proof in the previous page).

Orthogonalization by QR Decomposition

• Gram-Schmidt orthonormalization: The orthonormal set Q required for the Rayleigh-Ritz procedure is obtained starting from an arbitrary set of m vectors, $S = [s_1...s_m]$ ($s_i \in \mathbb{R}^n$) as (see supplementary note):

$$\mathbf{q}_{1} = \mathbf{s}_{1} / |\mathbf{s}_{1}|$$
for $i = 2$ to m

$$\mathbf{q}'_{i} = \mathbf{s}_{i} - \sum_{j=1}^{i-1} \mathbf{q}_{j} (\mathbf{q}_{j} \cdot \mathbf{s}_{i})$$

$$\mathbf{q}_{i} = \mathbf{q}'_{i} / |\mathbf{q}'_{i}|$$
Projection!
$$\widehat{P}_{i} = |\mathbf{s}_{i}\rangle$$

$$\sum_{j=1}^{i-1} |q_{j}\rangle\langle q_{j}|$$
endfor

$$\widehat{P}_{j=1} |s_i\rangle \langle q_j|$$

$$\sum_{j=1}^{i-1} |q_j\rangle \langle q_j|$$

 The Gram-Schmidt procedure amounts to QR decomposition, S = QR, where R is an $m \times m$ right-triangle matrix:

$$n \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{4} \end{bmatrix} = n \begin{bmatrix} \mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{3} & \mathbf{q}_{4} \end{bmatrix} \begin{bmatrix} |\mathbf{q}_{1}'| & \mathbf{q}_{1} \cdot \mathbf{s}_{2} & \mathbf{q}_{1} \cdot \mathbf{s}_{3} & \mathbf{q}_{1} \cdot \mathbf{s}_{4} \\ 0 & |\mathbf{q}_{2}'| & \mathbf{q}_{2} \cdot \mathbf{s}_{3} & \mathbf{q}_{2} \cdot \mathbf{s}_{4} \\ 0 & 0 & |\mathbf{q}_{3}'| & \mathbf{q}_{3} \cdot \mathbf{s}_{4} \\ 0 & 0 & 0 & |\mathbf{q}_{4}'| \end{bmatrix} m$$

$$\therefore \mathbf{s}_{i} = |\mathbf{q}_{i}'| \mathbf{q}_{i} + \sum_{j=1}^{i-1} \mathbf{q}_{j} (\mathbf{q}_{j} \cdot \mathbf{s}_{i})$$

Rayleigh-Ritz Algorithm

- 1. Start from $S = [s_1...s_m]$ $(s_j \in \mathbb{R}^n)$ & do Gram-Schmidt orthonormalization, $S = \mathbb{Q}\mathbb{R}$, to obtain an orthonormal set $\mathbb{Q} = [\mathbf{q}_1...\mathbf{q}_m]$
- 2. Form $\mathbf{H} = \mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q}$
- 3. Diagonalize **H** to get $\lambda_1[\mathbf{H}], \dots, \lambda_m[\mathbf{H}]$: $\mathbf{Hg}_k = \lambda_k[\mathbf{H}]\mathbf{g}_k \ (k = 1, \dots, m)$
- **4.** Approximations of $\lambda_1[\mathbf{A}] \& \lambda_n[\mathbf{A}]$ are given by $\lambda_1[\mathbf{H}] \& \lambda_m[\mathbf{H}]$ with the corresponding eigenvectors, $\mathbf{y}_k = \mathbf{Q}\mathbf{g}_k$ (k = 1 & m).

$$\underbrace{\mathbf{Q}^{T} \mathbf{A} \mathbf{Q} \, \mathbf{g}_{k}}_{\mathbf{H}} = \lambda_{k}(\mathbf{H}) \mathbf{g}_{k}$$

$$* \downarrow \mathbf{Q} \times$$

$$\therefore \mathbf{A} \underbrace{\mathbf{Q} \mathbf{g}_{k}}_{\mathbf{y}_{k}} = \lambda_{k}(\mathbf{H}) \underbrace{\mathbf{Q} \mathbf{g}_{k}}_{\mathbf{y}_{k}}$$

* $\mathbf{Q}\mathbf{Q}^T \neq \mathbf{I}^{N \times N}$ but spans a subspace of the N-dimensional space

Krylov Subspace

• Krylov subspace S_m is spanned by a Krylov matrix, $K^m(f) = [f Af ... A^{m-1}f]$ $(f \in \mathbb{R}^n)$

Theorem

Let Q_m be the orthonormal basis obtained by QR factorization, $K_m(f) =$ $Q_m R$, then $T_m = Q_m^T A Q_m$ is a tridiagonal matrix

Proof (see supplementary note)

For i > j+1, $q_i^T(Aq_j) = 0$, since $Aq_j \subset S_{j+1}$ by construction & $q_i \perp S_{j+1}$ by Gram-Schmidt orthonormalization for i > j+1. By the symmetry of A, $q_i^T(Aq_i) = q_i^T(A^Tq_i) = q_i^T(Aq_i) = 0 \text{ for } j > i+1 \text{ or } i < j-1.$

$$\mathbf{T}_{m} = \begin{bmatrix} \alpha_{1} & \beta_{1} & & & \\ \beta_{1} & \alpha_{2} & \beta_{2} & & \\ & \ddots & \ddots & & \ddots & \\ & & \beta_{m-2} & \alpha_{m-1} & \beta_{m-1} \\ & & & \beta_{m-1} & \alpha_{m} \end{bmatrix} \begin{bmatrix} \alpha_{j} = \mathbf{q}_{j}^{T} \mathbf{A} \mathbf{q}_{j} & j = 1, \dots, m \\ \beta_{j} = \mathbf{q}_{j+1}^{T} \mathbf{A} \mathbf{q}_{j} & j = 1, \dots, m-1 \\ \beta_{m-1} & \alpha_{m} \end{bmatrix}$$

$$\begin{cases} \alpha_j = \mathbf{q}_j^T \mathbf{A} \mathbf{q}_j & j = 1, ..., m \\ \beta_j = \mathbf{q}_{j+1}^T \mathbf{A} \mathbf{q}_j & j = 1, ..., m - 1 \end{cases}$$

Tridiagonal matrix can be diagonalized in O(N) time cf. tqli() in Numerical Recipes

Alexei Krylov with daughter Anna, later Anna Kapitsa, wife of Pyotr Kapitsa (1904)

Recursion Formula

• Due to the tridiagonality, Aq_i is a linear combination of q_{i-1} , q_i & q_{i+1} :

$$\mathbf{A}\mathbf{q}_i = \beta_{i-1}\mathbf{q}_{i-1} + \alpha_i\mathbf{q}_i + \beta_i\mathbf{q}_{i+1} \quad 2 \le i \le m-1$$

If we define $q_0 = 0$, the above equation is valid for i = 1 as well. Let $r_i \equiv \beta_i q_{i+1}$ (r_i is a component of Aq_i orthogonal to q_i for $j \le i$), then

$$\mathbf{r}_{i} = \mathbf{A}\mathbf{q}_{i} - \beta_{i-1}\mathbf{q}_{i-1} - \alpha_{i}\mathbf{q}_{i} \qquad 1 \le i \le m-1$$

$$\mathbf{A}\mathbf{q}_{i} = \beta_{i-1}\mathbf{q}_{i-1} + \alpha_{i}\mathbf{q}_{i} + \beta_{i}\mathbf{q}_{i+1} \qquad 2 \le i \le m-1$$

• Lanczos algorithm:

Given
$$\mathbf{r}_{0}$$
, $\beta_{0} = \|\mathbf{r}_{0}\|$ ($\mathbf{q}_{0} = 0$)
for $i = 1, ..., m$
 $\mathbf{q}_{i} \leftarrow \mathbf{r}_{i-1}/\beta_{i-1}$
 $\mathbf{r}_{i} \leftarrow \mathbf{A}\mathbf{q}_{i} - \beta_{i-1}\mathbf{q}_{i-1}$
 $\alpha_{i} \leftarrow \mathbf{q}_{i}^{T}\mathbf{r}_{i} \quad \because \mathbf{q}_{i}^{T}(\mathbf{A}\mathbf{q}_{i} - \beta_{i-1}\mathbf{q}_{i-1}) = \mathbf{q}_{i}^{T}\mathbf{A}\mathbf{q}_{i} = \alpha_{i}$ (orthogonality)
 $\mathbf{r}_{i} \leftarrow \mathbf{r}_{i} - \alpha_{i}\mathbf{q}_{i}$
 $\beta_{i} = \|\mathbf{r}_{i}\|$ (only when $i \leq m-1$)
endfor

Keep increasing m until $\lambda_1[T_m]$ converges

Application of Rayleigh-Ritz/Lanczos

- Search for transition states (with a negative eigenvalue of the Hessian matrix, $\partial^2 \mathbf{E}/\partial \mathbf{r}_i \partial \mathbf{r}_j$, by following the eigenvector with the smallest eigenvalue — Rayleigh-Ritz: Kumeda, Wales & Munro, *Chem. Phys. Lett.* **341**, 185 ('01)

 - -Lanczos: Mousseau et al., J. Mol. Graph. Model. 19, 78 ('01)

Figure from Prof. H. B. Schlegel; http://chem.wayne.edu/schlegel

Lanczos Algorithm for Hessian Calculation

A. Nakano / Computer Physics Communications 176 (2007) 292-299

```
Algorithm Lanczos
Input:
     \mathbf{R} \in \mathbb{R}^{3N}: a state
     logical initialize: TRUE for the first call in each event generation; FALSE otherwise
     \lambda_1: the minimum eigenvalue of the Hessian matrix, \mathbf{H}(\mathbf{R}) = \frac{\partial^2 V}{\partial \mathbf{R}^2}
     \mathbf{V}^1 \in \mathbb{R}^{3N}: the Hessian eigenvector corresponding to \lambda_1
Steps:
      if initialize
           randomize \Delta \in \mathbb{R}^{3N}, such that it contains no translational motion
      s \leftarrow 0
     \beta^s \leftarrow ||\Delta||
     \mathbf{Q}^s \ (\in \mathbb{R}^{3N}) \leftarrow 0
              s \leftarrow s + 1
             \mathbf{Q}^s \leftarrow \Delta/\beta^{s-1}
             c_{\text{fd}} \leftarrow \max_{i\alpha} \{|q_{i\alpha}^s| \mid i = 1, \dots, N; \alpha = x, y, z\} / \delta_{\text{fd}}
              \Delta \leftarrow c_{\text{fd}}[-\mathbf{F}(\mathbf{R} + \mathbf{Q}^s/c_{\text{fd}}) + \mathbf{F}(\mathbf{R})] - \beta^{s-1}\mathbf{O}^{s-1}
              \alpha^s \leftarrow \mathbf{O}^{sT} \Delta
              \Delta \leftarrow \Delta - \alpha^s \mathbf{O}^s
           \begin{aligned} \beta^s \leftarrow \|\Delta\| \\ \text{diagonalize } \mathbf{T}_s = \begin{bmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \ddots & \ddots & \ddots \\ & & \beta_{s-2} & \alpha_{s-1} & \beta_{s-1} \\ & & \beta_{s-1} & \alpha_s \end{bmatrix}, \quad \text{so that } \tilde{\mathbf{Q}}_s^T \mathbf{T}_s \tilde{\mathbf{Q}}_s = \operatorname{diag}(\tilde{\lambda}_1^s, \dots, \tilde{\lambda}_s^s)^* \quad tqli() \quad -- \quad O(N) \end{aligned} 
              \beta^s \leftarrow \|\Delta\|
     while |(\tilde{\lambda}_1^s - \tilde{\lambda}_1^{s-1})/\tilde{\lambda}_1^{s-1}| > \Delta_{eigen}
             \mathbf{V}^1 \leftarrow \sum_{k=1}^{s} \mathbf{Q}^k \tilde{q}_k^1
             \mathbf{V}^1 \leftarrow \overline{\mathbf{V}^1} / \|\mathbf{V}^1\|
```

^{*} diag $(\tilde{\lambda}_1^s, \dots, \tilde{\lambda}_s^s)$ is an s by s diagonal matrix, with its diagonal elements given by $\tilde{\lambda}_1^s, \dots, \tilde{\lambda}_s^s$. $\tilde{\mathbf{Q}}^s = [\tilde{\mathbf{q}}^1, \dots, \tilde{\mathbf{q}}^s]$ is an s by s orthogonal matrix, with $\tilde{\mathbf{q}}^m \in \mathbb{R}^s$ is the mth eigenvector of \mathbf{T}_s .

Sample Run of Lanczos Program

Electronic Energy Bands of GaAs

8-band k•p model

$$\begin{array}{c} A & 0 & V^* & 0 & \sqrt{3}V & -\sqrt{2}U & -U & \sqrt{2}V^* \\ 0 & A & -\sqrt{2}U & -\sqrt{3}V^* & 0 & -V & \sqrt{2}V & U \\ V & -\sqrt{2}U & -P+Q & -S^* & R & 0 & \sqrt{\frac{5}{2}} \ S & -\sqrt{2}Q \\ 0 & -\sqrt{3}V & -S & -P-Q & 0 & R & -\sqrt{2}R & \frac{1}{\sqrt{2}}S \\ -V^2U & -V^* & 0 & R^* & 0 & -P-Q & S^* & \frac{1}{\sqrt{2}}S^* & \sqrt{2}R^* \\ -V^2U & -V^* & 0 & R^* & S & -P+Q & \sqrt{2}Q & \sqrt{\frac{5}{2}}S^* \\ -U & \sqrt{2}V^* & \sqrt{\frac{5}{2}}S^* & -\sqrt{2}R^* & \frac{1}{\sqrt{2}}S & \sqrt{2}Q & -P-\Delta & 0 \\ \sqrt{2}V & U & -\sqrt{2}Q & \frac{1}{\sqrt{2}}S^* & \sqrt{2}R & \sqrt{\frac{5}{2}}S & 0 & -P-\Delta \\ \end{array} \right) \\ A = E_c - \frac{\hbar^2}{2m_0} (\partial_x^2 + \partial_y^2 + \partial_z^2), \\ P = -E_v - \gamma_1 \frac{\hbar^2}{2m_0} (\partial_x^2 + \partial_y^2 + \partial_z^2), \\ Q = -\gamma_2 \frac{\hbar^2}{2m_0} (\partial_x^2 + \partial_y^2 - 2\partial_z^2), \\ R = \sqrt{3} & \frac{\hbar^2}{2m_0} [\gamma_2(\partial_x^2 - \partial_y^2) - 2i\gamma_3\partial_x\partial_y], \\ S = -\sqrt{3}\gamma_3 \frac{\hbar^2}{m_0} \partial_z(\partial_x - i\partial_y), \\ U = \frac{-i}{\sqrt{3}}P_0\partial_z, \\ V = \frac{-i}{\sqrt{6}}P_0(\partial_x - i\partial_y). \end{array}$$

C. Pryor, Phys. Rev. B 57, 7190 ('98)

Lanczos Program in Fortran

```
do s = 1,NWF
  q(:,:,:,s) = v/bet(s-1)
  call hamiltonian_op(q(:,:,:,s),hv) ! Operates Hamiltonian H on Q(S)
  v = hv-bet(s-1)*q(:,:,:,s-1)
  alp(s) = inner_product(q(:,:,:,s),v)
  v = v-alp(s)*q(:,:,:,s)
  bet(s) = sqrt(inner_product(v,v))
  call tridiag(eval,s) ! Diagonalize the S by S tridiagonal matrix
end do ! Lanczos iteration over s
```

```
Given \mathbf{r}_{0}, \beta_{0} = \|\mathbf{r}_{0}\| (\mathbf{q}_{0} = 0)

for i = 1, ..., m

\mathbf{q}_{i} \leftarrow \mathbf{r}_{i-1}/\beta_{i-1}

\mathbf{r}_{i} \leftarrow \mathbf{A}\mathbf{q}_{i} - \beta_{i-1}\mathbf{q}_{i-1}

\alpha_{i} \leftarrow \mathbf{q}_{i}^{T}\mathbf{r}_{i}

\mathbf{r}_{i} \leftarrow \mathbf{r}_{i} - \alpha_{i}\mathbf{q}_{i}

\beta_{i} = \|\mathbf{r}_{i}\| (only when i \leq m-1)

endfor
```

Band-edge Wave Functions

• Band-edge states in an array of GaN quantum dots in AlN matrix

Conduction-band states

S. Sburlan, Ph.D. dissertation, USC ('13)