Predicting Diabetes Re-hospitalizations

By Maxim Belov

Diabetes in the US

- 34.2 million Americans (about 10%) have diabetes.
- \$237 billion were spent in 2017 on direct care.
- \$102 billion of that is related to direct hospital admissions.
- Patients with diabetes are more likely to be re-admitted following a hospitalization.
- What can we do to allow early identification and intervention for high-risk patients?

Agenda

Data Overview

Exploratory Data Analysis

Exploratory Data Analysis

*Train-Test Split = 85/15

Base ML Models

Logistic Regression

Accuracy: 0.63

Precision: 0.63

Recall: 0.62

F1: 0.62

AUC: 0.69

Random Forest Classifier

Accuracy: 0.64

Precision: 0.63

Recall: 0.62

F1: 0.62

AUC: 0.68

Gradient Boosting Classifier

Accuracy: 0.65

Precision: 0.64

Recall: 0.63

F1: 0.63

AUC: 0.69

ROC Curves - Base

Logistic Regression

Random Forest

Gradient Boosting

Optimization - Grid Search

- Logistic Regression penalty='l2', C=0.01
- Random Forest Classifier

max_depth=None, max_features='sqrt', min_samples_leaf=2, min_samples_split=2, n_estimators=80

Gradient Boosting Classifier

learning_rate=0.50, n_estimators=120

Optimized ML Models

Logistic Regression

Accuracy: 0.63

Precision: 0.63

Recall: 0.62

F1: 0.62

AUC: 0.69

Random Forest

Accuracy: 0.64

Precision: 0.63

Recall: 0.63

F1: 0.63

AUC: 0.69

Gradient Boosting

Accuracy: 0.65

Precision: 0.64

Recall: 0.64

F1: 0.64

AUC: 0.70

ROC Curves - Optimized

Logistic Regression

Random Forest

Gradient Boosting

Conclusion

Performance

- -All 3 models performed pretty well out-of-the box.
- -Improvements after optimizing hyper-parameters in 2 of the models.

Next steps

- -Different approach to pre-processing.
- -Only test select features.
- -Redefine target classes limit re-admissions to <30.
- -Try different models.

Thank you!