GIS/RS部分小测试

答题版本 2020.05.13 15:20

试卷得分 未评分

6. 下面属于可见光波段的是

多选题 (10 分)

7. 什么 时图像的直方图 简答题 (10 分) 由于其计算代价较小,且具有图像平移、旋转、缩放不变性等众多优点,广泛应用于图像处理的各个领域,特别是灰度图像的阈值分割、基于颜色的像检索和图像分类。 8. 你认为在什么波段可以较好地区分绿色植物和水体,为什么。简答题 (10 分) 近红外波段,对绿色植物类别和水差别以敏感,为植物通用	D. 2.08µm-2.35µm				
像检索和图像分类。 3. 你认为在什么波段可以较好地区分绿色植物和水体,为什么。 简答题 (10 分)		3			
育答题 (10 分)		具有图像平移、旋转、缩放不变性等众	多优点,广泛应用于图像处理的各个	·领域,特别是灰度图像的阈值分	割、基于颜色的图
近红外波段,对绿色植物类别和水差别较敏感,为植物通用		以较好地区分绿色植物和水体,为	0什么。		
	近红外波段,对绿色植物	类别和水差别较敏感,为植物通用			

A. 45nm-50nm

B. 0.45μm-0.52μm

C. 630nm-690nm