

DEPARTAMENTO DE ECONOMÍA LABORATORIO DE ECONOMETRÍA: STATA 1ECO31

Sesión 14 Modelos Probit y Logit Ordenado

Docente: Juan Palomino

- 1 Introducción
- 2 Enfoque Latente
- 3 Probabilidad y Modelos
- 4 Estimación Máxima Verosimilitud
- 5 Efectos Marginales

1. Introducción

Introducción

Si la variable dependiente es categórica pero es ordenado (por ejemplo, de bajo a alto) entonces usar modelos probit o logit ordenado.

Ejemplos:

- Tipo de Trabajo: baja habilidad, media habilidad, y alta habilidad
- Estatus de Salud Subjetiva: muy mala, mala, bien, muy buena.
- Escalas de Likert: muy de acuerdo, de acuerdo, no tiene opinión, desacuerdo, muy en desacuerdo con alguna afirmación.

2. Enfoque Latente

Enfoque Latente

Considerar la variable latente y_i^* que oscila desde $-\infty$ hasta ∞ , determinado por el siguiente modelo estructural:

$$y_i^* = x_i'\beta + \varepsilon_i$$

Sin embargo, nosotros no observamos y_i^* . Lo único que observamos es una variable discreta y_i , el cual a su vez proporciona información incompleta sobre y_i^* de acuerdo a la siguiente regla:

$$y_{i} = \begin{cases} 1 & si & y_{i}^{*} < \kappa_{1} \\ 2 & si & \kappa_{1} < y_{i}^{*} < \kappa_{2} \\ 3 & si & \kappa_{2} < y_{i}^{*} \end{cases}$$

O un mecanismo más general que tenga en cuenta la naturaleza de ordenación de y_i^* es

$$y_i = j \leftrightarrow \kappa_{i-1} < y_i^* < \kappa_i \quad j = 1, ..., J$$

Los κ son llamados umbrales. Las categorías extremas 1 y J son definidos por intervalos abiertos con $\kappa_0 = -\infty$ y $\kappa_I = \infty$. Cuando J = 2, nosotros tenemos el BRM.

Enfoque Latente

Considerar la siguiente pregunta: ¿Cuál es tu grado actual de estado de salud? Las respuestas son: 1=Mal, 2=Regular, 3=Buena, y 4=Muy buena. Asumir que la variable ordinal está relacionada a una variable latente continua y^* que indica el estado de salud subyacente del individuo. La variable observada y está relacionada con y^* acorde a:

$$y_{i}^{*} = \begin{cases} 1 \rightarrow & Mal & si \quad \kappa_{0} = -\infty \leq y_{i}^{*} < \kappa_{1} \\ 2 \rightarrow & Regular & si \quad \kappa_{1} < y_{i}^{*} < \kappa_{2} \\ 3 \rightarrow & Buena & si \quad \kappa_{2} < y_{i}^{*} < \kappa_{3} \\ 4 \rightarrow & Muy Buena & si \quad \kappa_{3} \leq y_{i}^{*} < \kappa_{4} = \infty \end{cases}$$

Enfoque Latente

Cuando una variable es ordinal, sus categorías se pueden clasificar de baja a alta, pero las distancias entre categorías adyacentes son desconocidas.

Figura 1. Mecanismo de Umbrales en términos de y_i^*

Figura 2. Mecanismo de Umbrales en términos de u_i

3. Probabilidad y Modelos

Las Probabilidades

Primero, considerar la probabilidad de y = 1. Esto implica que:

$$Pr(y_i = 1|x_i) = Pr(\kappa_0 \le y_i^* < \kappa_1|x_i)$$

$$Pr(y_i = 1|x_i) = Pr(\kappa_0 \le x_i'\beta + \varepsilon_i < \kappa_1|x_i)$$

$$Pr(y_i = 1|x_i) = Pr(\kappa_0 - x_i'\beta \le \varepsilon_i < \kappa_1 - x_i'\beta|x_i)$$

$$Pr(y_i = 1|x_i) = Pr(\varepsilon_i < \kappa_1 - x_i'\beta|x_i) - Pr(\varepsilon_i < \kappa_0 - x_i'\beta|x_i)$$

$$Pr(y_i = 1|x_i) = F(\kappa_1 - x_i'\beta) - F(\kappa_0 - x_i'\beta)$$

Entonces, obtenemos:

$$Pr(y_i = j | x_i) = F(\kappa_i - x_i'\beta) - F(\kappa_{i-1} - x_i'\beta)$$

Notar que:

$$F(\kappa_0 - x_i'\beta) = F(-\infty - x_i'\beta) = 0 \qquad F(\kappa_I - x_i'\beta) = F(\infty - x_i'\beta) = 1$$

Modelo Probit Ordenado

En el modelo probit ordenado, nosotros asumimos que el término de error sigue una distribución normal estándar, $F(\varepsilon) = \phi(\varepsilon)$.

En este caso, las probabilidades son:

$$\Pr(y_i = j | x_i) = \phi\left(\frac{\kappa_j - x_i'\beta}{\sigma_{\varepsilon}}\right) - \phi\left(\frac{\kappa_{j-1} - x_i'\beta}{\sigma_{\varepsilon}}\right)$$

Para identificación necesitamos σ_{ε}

Modelo Logístico Ordenado

Si $\varepsilon_i \sim iid$ distribuido logísticamente, entonces:

$$\Pr(y_i = j | x_i) = \Lambda\left(\frac{\kappa_j - x_i'\beta}{\sigma_{\varepsilon}}\right) - \Lambda\left(\frac{\kappa_{j-1} - x_i'\beta}{\sigma_{\varepsilon}}\right)$$

Donde
$$\sigma_{\varepsilon} = \frac{\pi^2}{3}$$

4. Estimación MV

Estimación MV

Las probabilidades condicionales son:

$$f(y_i|x_i;\beta;\kappa_1,...,\kappa_{j-1}) = P_{i1}^{d_{i1}} ... P_{iJ}^{d_{iJ}} = \prod_{j=1}^{J} P_{ij}^{d_{ij}}$$

Donde d_{ij} es definido como un indicador binario igual a 1 si $y_i = j$ y 0 de otra manera. Para una muestra de n pares de observaciones independientes (y_i, x_i) , la función de probabilidad es dado por:

$$L(\theta, y, X) = \prod_{i=1}^{n} \prod_{j=1}^{J} P_{ij}^{d_{ij}}$$

Estimación MV

Tomar logaritmos convierte productos en sumas y podemos escribir la función log-likelihood como:

$$logL(\theta, y, X) = \sum_{i=1}^{n} \sum_{j=1}^{J} d_{ij} P_{ij}$$

La estimación MV de los parámetros arroja estimadores consistentes, asintóticamente eficientes y distribuidos normalmente de manera asintótica.

Podemos usar tests LR, Wald y Score para probar restricciones generales, y la propiedad de invarianza junto con el Método Delta para la estimación e inferencia de probabilidades predichas o efectos de probabilidades marginales.

5. Efectos Marginales

Efectos Marginales

El efecto de probabilidad marginal (MPE) es dado por:

$$MPE_{ijl} = \frac{\partial P_{ij}}{\partial x_{il}} = [f(\kappa_{j-1} - x_i'\beta) - f(\kappa_j - x_i'\beta)]\beta_l$$

Ni los signos ni las magnitudes de los coeficientes son directamente interpretables en los modelos de elección ordenada.

Los MPE son funciones de las covariables y, por lo tanto, varían según las personas.

Efectos Marginales

Además, en el cálculo del MPE, las únicas certezas en los signos de los efectos parciales en este modelo son las siguientes, donde consideramos una variable con un coeficiente positivo:

- Los aumentos en esa variable aumentarán la probabilidad en la celda más alta y disminuirán la probabilidad en la celda más baja.
- La suma de todos los cambios será cero; las nuevas probabilidades aún deben sumar a uno.
- Los efectos comenzarán en $Pr(y_i = 1)$ con uno o más valores negativos, luego cambiará a un conjunto de valores positivos; habrá un cambio de signo (**Single Crossing**).

Efectos Marginales

Uno también podría estar interesado en los valores acumulativos de los efectos parciales, como:

$$\frac{\partial \Pr(y \le j | x_i)}{\partial x_{il}} = \sum_{j=1}^{J} [f(\kappa_{j-1} - x_i' \beta) - f(\kappa_j - x_i' \beta)] \beta_l$$

