

Name: Kyle Ness

Student number: 40/0/0

Computer Science 260: Quiz 1 PQ PETA
The only assignment making $P \Rightarrow Q$ is false if $P = T \land Q = F$ $\uparrow \downarrow \downarrow \uparrow \downarrow \uparrow$
In conjunctions of literals, all parentheses can be dropped because \wedge is Associative.
In a formal proof, the law of cases allows you to conclude B if you have $A \Rightarrow B$ and $\neg A \Rightarrow B$. If you have, as part of a formal proof
3. $P \wedge R \Rightarrow \forall x R(\mathbf{X})$ 4. $\neg (P \wedge R) \Rightarrow \forall x R(x)$ then you are allowed to conclude
5. V _X RC _X
Here, A in the rule above unifies with PAR , and B with $\forall x R(x)$.
In the list [23, a, 15, b], the head is $\frac{23}{3}$, and the tail is $\frac{23}{3}$.
Consider the following rule $abc(A,a,B) := foo(A,B), gee(b), fum(X,A).$ This rule, after unifying the head with the goal $abc(b,a,a)$ becomes foo(b,a), gee(bnew), fum(X, b)
If you use complete induction to prove that for all $n \geq 0$,
$(a+b)^n = \sum_{k=0}^n \frac{n!}{(n-k)!k!} a^k b^{n-k},$
you must first prove that for $n = 1$, you have $ (a+b) = 2 $ Also, you must prove that the formula holds for $n + 1$, that is, you would have to prove
(a+b)n+1 = 25 (n+0! / a t b n+1 = K V.
Note: only state the formula for 1 and $n+1$.