3.36pt

Teoria das Filas

André Rodrigues da Cruz

Centro Federal de Educação Tecnológica de Minas Gerais Departamento de Computação

Otimização II

Teoria das Filas

- Estudo das filas de espera.
- Exemplos: Filas para compra, caixa eletrônico, máquinas para reparo, aviões decolarem (pousarem), veículos para serem descarregados, ...
- Modelos de filas: representação de sistemas de filas.
- Operação eficiente de filas.
- Fornecer capacidade de atendimento.
- Minimizar tempo de espera.
- Buscar equilíbrio entre custo de serviço e tempo de espera.

Exemplo Protótipo

Um pronto de socorro de um hospital atende emergências. A qualquer momento há um médico de plantão. O hospital possui um aumento anual contínuo no número de atendimentos no pronto de socorro. É comum pacientes chegarem no horário de pico (início da noite) e ter de esperar atendimento médico.

Por esta razão, foi elaborada uma proposta de alocar um segundo médico para o pronto de socorro no horário de pico. Assim, duas emergências poderiam ser atendidas ao mesmo tempo.

O administrador do hospital foi designado para estudar esta questão.

Estrutura Básica dos Modelos de Fila

- Processo de filas básico:
 - 1 Clientes são gerados por uma fonte de entrada.
 - 2 Clientes entram no sistema de filas (pega a fila).
 - 3 Em certos momentos, um cliente é selecionado para atendimento.
 - Uma regra (disciplina da fila) conhecida é utilizada.
 - 4 Atendimento do cliente realizado por um *mecanismo de atendimento*.
 - 5 Cliente deixa a fila.

Fonte de Entrada

- População solicitante.
- Tamanho finito ou infinito.
- Fonte de entrada limitada ou ilimitada.
- Quando população é muito grande e finito, considera-se infinito.
 - Hipótese implícita, caso não afirme o contrário.
- Geração de clientes ao longo do tempo:
 - Padrão estatístico deve ser informado.
 - Número de clientes até dado momento:
 - Hipótese comum: processo de Poisson.
 - Tempo entre chegadas consecutivas:
 - Hipótese comum: distribuição exponencial.
- Especificação de hipóteses incomuns. Exemplo: recusa.

Fila

- Local onde clientes aguardam atendimento.
- Número máximo de clientes permitidos.
- Filas finitas ou infinitas.
- Filas finitas muito grandes: consideradas infinitas.
 - Facilidade dos cálculos.
 - Comportamento parecido.

Disciplina da Fila

- Ordem de seleção dos integrantes da fila para atendimento.
- Exemplos:
 - Primeiro a chegar, primeiro atendido.
 - Aleatório.
 - Com prioridade.
 - ...

Mecanismo de Atendimento

- Conjunto de instalações de atendimento.
- Canais de atendimento paralelos: atendentes.
- Em uma instalação:
 - Clientes podem ser atendidos em série.
- Mais de uma instalação de atendimento:
 - Cliente em algum canal de atendimento paralelo.
 - Cliente é totalmente atendido por um atendente.
- Modelo de fila específica:
 - Disposição das instalações.
 - Números de atendentes (canais paralelos) de cada instalação.
- Comumente se tem uma instalação com um ou mais atendentes.
- Tempo de atendimento (tempo de permanência):
 - Possui distribuição probabilística para cada atendente.
 - Comum supor mesma distribuição para todos atendentes.
 - Distribuições comuns: exponencial, constante e Erlang (Gamma).

Processo de Fila Elementar

- Uma fila de espera única.
- Possui um ou mais atendentes.
- Cada cliente gerado por uma fonte de entradas.
- Cada cliente atendido por um atendente.
- Cliente aguarda um tempo para ser atendido.

• O exemplo do hospital é uma fila elementar.

Processo de Fila Elementar

Observações:

- Um atendente não precisa ser um indivíduo.
 Pode ser uma equipe, uma máquina, um veículo, um dispositivo eletrônico, . . .
- Os clientes não precisam ser pessoas.
 Podem ser peças que aguardam uma operação, carros que aguardam no pedágio, . . .
- Não é necessário uma fila física.
 A fila pode ser formada por máquinas em diferentes áreas aguardando reparo, jogadores online aguardando a vez de jogar, . . .

Processo de Fila Elementar

Observações:

- É fornecido número médio que aguardam, tempo de espera médio, ...
- Tempos entre chegadas e de atendimentos são independentes e distribuídos de forma idêntica.
- Identificação convencional: $\mathcal{A}/\mathcal{B}/\mathcal{C}$
 - 1 A: Distribuição de tempos entre atendimentos.
 - 2 B: Distribuição de tempos de atendimentos.
 - \mathcal{C} : Número de atendentes.
- Distribuições comuns:
 - M = distribuição exponencial (markoviana).
 - D = distribuição degenerada (tempos constantes).
 - $E_k = \text{distribuição de Erlang (parâmetro de forma } k$).
 - G = distribuição geral (qualquer distribuição arbitrária).
- Exemplo: M/M/s, tempos entre atendimento e de atendimento com distribuição exponencial com s atendentes.

Terminologia e Notação

- Estado do sistema: número de clientes no sistema de filas.
- Comprimento da fila: número de clientes que aguardam atendimento.
 - Estado menos o número de clientes em atendimento.
- N(t): número de clientes no sistema de fila no instante $t \ge 0$.
- $P_n(t)$: probabilidade de exatamente n clientes no sistema de filas no instante t, dado o número no instante 0.
- s: número de atendentes no sistema de fila.
- λ_n : taxa média de chegada de novos clientes quando n clientes se encontram no sistema.
- μ_n : taxa média de atendimento para o sistema global quando n clientes se encontram no sistema.

Terminologia e Notação

- Quando λ_n constante para todo n, representa-se por λ .
- Quando taxa média de atendimento por atendente ocupado é constante para todo $n \geq 1$, tem-se μ .
 - $\mu_n = s\mu$ quando $n \ge s$.
- $1/\lambda$: tempo esperado entre atendimentos.
- $1/\mu$: tempo de atendimento esperado.
- $\rho = \lambda/(s\mu)$: fator de utilização (fração de tempo esperada em que cada atendente se encontra ocupado).

Terminologia e Notação

Resultados de estado estável:

- Condição transiente: logo após o sistema iniciar operação, o estado do sistema é afetado pelo estado inicial e pelo tempo decorrido.
- Condição de estado estável: após tempo suficiente, o sistema se torna independente do estado inicial e do tempo decorrido.
 - $P_n = \text{probabilidade de } n$ clientes se encontrarem no sistema de filas.
 - L= número de clientes esperado no sistema de fila $=\sum_{n=0}^{\infty}nP_n$.
 - $L_q = \text{comprimento esperado da fila} = \sum_{n=s}^{\infty} (n-s)P_n$.
 - $W = \text{tempo de espera no sistema para cada cliente}^1$.
 - $W = E(\mathcal{W})$.
 - $W_q = \text{tempo de espera na fila para cada cliente}^2$.
 - $W_q = E(\mathcal{W}_q)$.

¹Inclui atendimento.

²Exclui atendimento.

Relações entre L, W, L_q e W_q

Suponha $\lambda_n = \lambda$ constante para todo n. Em um processo de fila com estado estável:

- $L = \lambda W$.
- $L_q = \lambda W_q$
- Se λ_n não constante, substituir λ por $w\overline{\lambda}$ (taxa média de chegada a longo prazo).

Suponha que o tempo médio de atendimento, $1/\mu$, constante para todo $n \geq 1$:

•
$$W = W_q + \frac{1}{\mu}$$

- Suponha T variável aleatória que represente tempos entre chegadas ou tempos de atendimentos.
- Distribuição exponencial com parâmetro α :

$$f_T(t) = \left\{ egin{array}{ll} \alpha e^{-\alpha t} & ext{para } t \geq 0 \\ 0 & ext{para } t < 0 \end{array}
ight.$$

• Probabilidade cumulativas (dado $t \ge 0$):

$$P(T \le t) = 1 - e^{-\alpha t}$$

$$P(T > t) = e^{-\alpha t}$$

Valor esperado e variância:

$$\begin{array}{rcl} E(T) & = & 1/\alpha \\ var(T) & = & 1/\alpha^2 \end{array}$$

Propriedade 1: $f_T(t)$ é decrescente para $t \ge 0$.

- $P(0 \le T \le \Delta t) > P(t \le T \le t + \Delta t)$ para quaisquer t > 0 e $\Delta t > 0$.
- T assume valor mais próximo de zero.
- Tempos próximos da média.
- Tempos de/entre atendimentos normalmente s\(\tilde{a}\)o breves.
- Tempos prolongados são mais raros.
- Exemplos: pronto socorro, caixa de supermercado, caixa eletrônico.

Propriedade 2: Ausência de memória.

• $P(T>t+\Delta t\mid T>\Delta t)=P(T>t)$ para quaisquer t>0 e $\Delta t>0$:

$$\begin{split} P(T>t+\Delta t\mid T>\Delta t) &= \frac{P(T>\Delta t, T>t+\Delta t)}{P(T>\Delta t)} \\ &= \frac{P(T>t+\Delta t)}{P(T>\Delta t)} \\ &= \frac{e^{-\alpha(t+\Delta t)}}{e^{-\alpha \Delta t}} \\ &= e^{-\alpha t} \\ &= P(T>t). \end{split}$$

- Tempos entre atendimentos: tempo até a próxima chegada não sofre influência de quando ocorreu última chegada.
- Tempos de atendimentos: situação na qual operações de atendimento diferem.

Propriedade 3: O mínimo de diversas variáveis aleatórias segue distribuição exponencial.

- Sejam T_1, T_2, \ldots, T_n variáveis aleatórias exponenciais independentes com parâmetros $\alpha_1, \alpha_2, \ldots, \alpha_n$.
- Façamos $U=\min(T_1,T_2,\ldots,T_n)$, o mínimo dos valores assumidos por T_1,T_2,\ldots,T_n .
- Se T_i representa o tempo até que certo evento ocorra, então U representa o tempo até que o primeiro dos n eventos ocorra. Para t>0:

$$P(U > t) = P(T_1 > t, T_2 > t, ..., T_n > t)$$

$$= P(T_1 > t)P(T_2 > t) ... P(T_n > t)$$

$$= e^{-\alpha_1 t} e^{-\alpha_2 t} ... e^{-\alpha_n t}$$

$$= \exp(-\sum_{i=1}^n \alpha_i t)$$

• U possui distribuição exponencial com parâmetro $\alpha = \sum_{i=1}^n \alpha_i$.

Propriedade 3: O mínimo de diversas variáveis aleatórias segue distribuição exponencial.

- Implicação para **tempos entre atendimento**: Suponha n tipos de clientes distintos, com tempos entre atendimento exponenciais T_i de parâmetros α_i para cada tipo de cliente $i \in \{1, \dots, n\}$. U é o tempo entre atendimento do sistema, como um todo, com parâmetro $\alpha = \sum_{i=1}^n \alpha_i$.
- Ignora-se a distinção de clientes.

Propriedade 3: O mínimo de diversas variáveis aleatórias segue distribuição exponencial.

- Implicação para **tempos de atendimento**: Suponha n atendentes com tempos de atendimentos T_i exponenciais com parâmetro $\alpha_i = \mu$, $i \in \{1, \dots, n\}$. U é o tempo de atendimento do sistema, como um todo, com parâmetro $\alpha = n\mu$.
- Mesmo comportamento de uma fila com um atendente com parâmetro $n\mu$.
- Probabilidade do atendente $j \in \{1, \dots, n\}$ terminar um atendimento primeiro, entre os n atendentes:

$$P(T_j = U) = \frac{\alpha_j}{\sum_{i=1}^n \alpha_i}$$

Propriedade 4: Relação com a distribuição de Poisson.

- Suponha que o tempo entre um evento consecutivo siga distribuição exponencial com parâmetro α .
- Determinação da probabilidade do número de vezes que esse evento ocorreu ao longo do tempo.
- Seja X(t) o número de ocorrências no tempo $t \ge 0$. Para $n=0,1,\ldots$, tem-se que:

$$P(X(t) = n) = \frac{(\alpha t)^n e^{-\alpha t}}{n!}$$

- X(t) segue distribuição de Poisson com parâmetro αt .
- Para n=0, $P(X(t)=0)=e^{-\alpha t}$, probabilidade da distribuição exponencial para o primeiro evento após o tempo t.

Propriedade 4: Relação com a distribuição de Poisson.

- Média: $E(X(t)) = \alpha t$.
- α é a taxa média de ocorrência do evento.
- Número de términos de atendimento:
 - Tempos de atendimento com distribuição exponencial com $\alpha = \mu$.
 - X(t): número de atendimentos realizados por um atendente até t.
 - Para modelos com n atendentes, $\alpha = n\mu$.
 - Processo de Poisson com taxa α : eventos contados de forma contínua.

Número de chegadas:

- Tempos entre atendimentos com distribuição exponencial com $\alpha = \lambda$.
- X(t): número de chegadas no tempo decorrido t.
- Processo de Poisson com parâmetro λ (taxa de chegada).
- Entrada de Poisson.
- Todo período de duração fixa tem a mesma chance de ter uma chegada independentemente de quando ocorreu a última chegada.

Propriedade 5: Para t>0, $P(T\leq t+\Delta t|T>\Delta t)\approx \alpha\Delta t$, para Δt pequeno.

- É sabido que $e^x = 1 + x + \sum_{n=2}^{\infty} \frac{x^n}{n!}$.
- Para um valor pequeno $\Delta t > 0$:

$$P(T \le t + \Delta t | T > t) = P(T \le \Delta t)$$

$$= 1 - e^{-\alpha \Delta t}$$

$$= 1 - 1 + \alpha \Delta t - \sum_{n=2}^{\infty} \frac{(-\alpha \Delta t)^n}{n!}$$

• Com $\alpha \Delta t \approx 0$, os termos do somatório se tornam relativamente desprezíveis.

Propriedade 6: Não se afeta por agregação ou desagregação

- Agregação:
 - Suponha n tipos distintos de clientes que chegam em processos independentes de Poisson com parâmetro λ_i , $i \in \{1, 2, ..., n\}$.
 - Processo de entrada agregado é um processo de Poisson com parâmetro (taxa média de chegada) $\lambda = \lambda_1 + \lambda_2 + \ldots + \lambda_n$.
- Desagregação:
 - Seja um processo de Poisson agregado com parâmetro λ e n tipos distintos de clientes, com probabilidade fixa de chegada p_i , para $i \in \{1, 2, \dots, n\}$ e $\sum_{i=1}^{n} p_i = 1$.
 - A taxa de chegada de cada cliente será $\lambda_i = p_i \lambda$.
- Exemplo: Dois tipos de clientes chegam em uma fila em um processo de Poisson com parâmetro λ . Cada cliente tem probabilidade fixa p de recusar a entrar na fila. E 1-p de entrar na fila. Cada tipo de cliente chega em um processo de Poisson com parâmetros $p\lambda$ e $(1-p)\lambda$. O desempenho da fila pode ser analisado através do parâmetro $(1-p)\lambda$.

Processo de Nascimento e Morte

- Nascimento (novo cliente) e Morte (cliente atendido).
- Estado é o número de clientes N(t) no tempo $t \ge 0$.
- Descrição probabilística de N(t).
- Nascimentos e mortes individuais ocorrem aleatoriamente, cujas taxas dependem apenas do estado atual do sistema.
- Hipóteses:
 - Dado $N(t)=n,\ (n=0,1,2,\ldots)$, segue a distribuição exponencial com parâmetro:
 - λ , a variável tempo remanescente até a próxima chegada.
 - μ , a variável tempo remanescente até a próxima saída.
 - 2 As variáveis aleatórias para o tempo até a próxima chegada e para o tempo até a próxima saída são independentes. A transição ocorre por unidades $(n \to n+1)$ ou $n \to n-1$.

Cadeia de Markov em tempo contínuo:

- λ_n : taxa média de chegada estando o sistema no estado n.
- μ_n : taxa média de saída estando o sistema no estado n.
- P_n : proporção de tempo que sistema fica no estado n.
- Condição de estado estável: taxa que entra igual a taxa que sai.
- Equação de equilíbrio par o estado n.
 - Para o estado 0: $\mu_1 P_1 = \lambda_0 P_0$.
 - Para o estado 1: $\mu_1 P_1 + \lambda_1 P_1 = \lambda_0 P_0 + \mu_2 P_2$.
 - Para o estado 2: $\mu_2 P_2 + \lambda_2 P_2 = \lambda_1 P_1 + \mu_3 P_3$.
 - ...
 - Ao final $\sum_{i=0}^{\infty} P_i = 1$.

Estado:

0:
$$P_1 = \frac{\lambda_0}{\mu_1} P_0$$

1: $P_2 = \frac{\lambda_1}{\mu_2} P_1 + \frac{1}{\mu_2} (\mu_1 P_1 - \lambda_0 P_0) = \frac{\lambda_1}{\mu_2} P_1 = \frac{\lambda_1 \lambda_0}{\mu_2 \mu_1} P_0$
2: $P_3 = \frac{\lambda_2}{\mu_3} P_2 + \frac{1}{\mu_3} (\mu_2 P_2 - \lambda_1 P_1) = \frac{\lambda_2}{\mu_3} P_2 = \frac{\lambda_2 \lambda_1 \lambda_0}{\mu_3 \mu_2 \mu_1} P_0$
:

De maneira geral, para $n \in \{0, 1, 2, \ldots\}$, tem-se que:

•
$$C_n=rac{\lambda_{n-1}\lambda_{n-2}\dots\lambda_0}{\mu_n\mu_{n-1}\dots\mu_1}$$
 para $n>0$ e $C_0=1$

•
$$P_n = C_n P_0$$

- $\sum_{n=0}^{\infty} P_n = 1$ implica $(\sum_{n=0}^{\infty} C_n) P_0 = 1$ e $P_0 = (\sum_{n=0}^{\infty} C_n)^{-1}$.
- Para filas que se baseiam no processo de nascimento e morte:
 - $L = \sum_{n=0}^{\infty} nP_n$
 - $L_q = \sum_{n=s}^{\infty} (n-s) P_n$
 - $W = L/\overline{\lambda}$
 - $W_q = L_q/\overline{\lambda}$
 - $\overline{\lambda} = \sum_{n=0}^{\infty} \lambda_n P_n$ (taxa média de chegada a longo prazo)

- Somatórios possuem solução analítica em casos especiais:
 - $\sum_{n=0}^{N} x^n = (1 x^{N+1})/(1 x)$.
 - $\sum_{n=0}^{\infty} x^n = 1/(1-x)$, para |x| < 1.
- Resultados válidos sob hipótese de que parâmetros λ_n e μ_n alcancem condição de estado estável.
- Hipótese sempre válida quando:
 - $\lambda_n = 0$ para n > 0 (número finito de estados).
 - λ e μ são definidos de forma que $\rho = \lambda/(s\mu) < 1$.
- Hipótese não válida quando $\sum_{n=0}^{\infty} C_n = \infty$.

Modelo M/M/s

- Tempos entre atendimentos e Tempos de atendimento são distribuídos de forma independente e idêntica de acordo com a distribuição exponencial.
- Número de atendentes é o inteiro positivo s.
- Caso especial do processo de nascimento e morte.
- Taxa **média** de chegada (λ) e de atendimento por atendente ocupado (μ) são constantes.

Modelo M/M/s

- Quando s = 1 (único atendente):
 - $\lambda_n = \lambda, n = 0, 1, 2, \dots$
 - $\mu_n = \mu, n = 1, 2, 3, \dots$
- Quando s > 1 (vários atendentes):
 - $\bullet \ \ \mu_n = \left\{ \begin{array}{ll} n\mu & \quad \text{quando } n \leq s. \\ s\mu & \quad \text{quando } n > s. \end{array} \right.$
 - Quando $s\mu$ excede λ , tem-se

$$\rho = \frac{\lambda}{s\mu} < 1$$

• Nesta condição atinge-se estado estável.

Modelo M/M/s

(a) Um único atendente (s = 1) $\lambda_n = \lambda$, para n = 0, 1, 2, ...

$$\lambda_n = \lambda,$$
 para $n = 0, 1, 2, ...$
 $\mu_n = \mu,$ para $n = 1, 2, ...$

Estado:

(b) Diversos atendentes (s > 1) $\lambda_n = \lambda$, para n = 0, 1, 2, ...

$$\mu_n = \begin{cases} n\mu, & \text{para } n = 1, 2, ..., s \\ s\mu, & \text{para } n = s, s + 1, ... \end{cases}$$

Estado: 2μ

Diagramas de taxas para o modelo M/M/s.

Resultados para M/M/1

•
$$P_0 = \left(\sum_{n=0}^{\infty} \rho^n\right)^{-1} = \left(\frac{1}{1-\rho}\right)^{-1} = 1 - \rho$$

- $C_n = \left(\frac{\lambda}{\mu}\right)^n = \rho^n$ para $n = 0, 1, 2, \dots$
- $P_n = \rho^n P_0 = (1 \rho) \rho^n$ para n = 0, 1, 2, ...
- $L = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \dots = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda}$
- $L_q = \sum_{n=1}^{\infty} (n-1)P_n = L 1(1 P_0) = \frac{\lambda^2}{\mu(\mu \lambda)}$

Resultados para M/M/1

- Quando $\lambda \ge \mu$ fila cresce sem limites a longo prazo.
- Supondo $\lambda < \mu$, deriva-se distribuição de probabilidades do tempo de espera total no sistema, \mathcal{W} .
- Atendimentos em ordem de chegada.
- Se na chegada encontra-se n clientes, deve-se contabilizar n+1 tempos de atendimento $T_1,T_2,\ldots,T_n,T_{n+1}$ que são variáveis aleatórias que seguem distribuição exponencial, com parâmetro μ .
- Seja S_{n+1} o tempo de espera condicional dado n clientes no sistema:

$$S_{n+1} = T_1 + T_2 + \ldots + T_n + T_{n+1}$$
, para $n = 0, 1, 2, \ldots$

• S_{n+1} segue distribuição de Erlang (gama).

Resultados para M/M/1

- $P(\mathcal{W} > t) = \sum_{n=0}^{\infty} P_n P(S_{n+1} > t) = e^{-\mu(1-\rho)t}$ para $t \ge 0$.
- $\mathcal W$ segue distribuição exponencial com parâmetro $\mu(1-\rho)$.
- $W = E(W) = \frac{1}{\mu(1-\rho)} = \frac{1}{(\mu-\lambda)}$.
- $P(W_q = 0) = P_0 = 1 \rho$, com nenhum cliente no sistema.
- $P(W_q > t) = \sum_{n=1}^{\infty} P_n P(S_n > t) = \dots = \rho e^{-\mu(1-\rho)t}$ para $t \ge 0$.
- $W_q = E(\mathcal{W}_q) = \frac{\lambda}{\mu(\mu \lambda)}$.

Resultados para M/M/s com s > 1

•
$$P_0 = 1 / \left(\sum_{n=0}^{s-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^s}{s!} \frac{1}{1 - \lambda/(s\mu)} \right)$$

•
$$C_n = \left\{ egin{array}{ll} rac{(\lambda/\mu)^n}{n!} & \text{para } n=1,2,\ldots,s \\ rac{(\lambda/\mu)^n}{s!s^{n-s}} & \text{para } n=s,s+1,\ldots \end{array}
ight.$$

$$\bullet \ P_n = \left\{ \begin{array}{ll} \frac{(\lambda/\mu)^n}{n!} P_0 & \quad \text{para } 0 \leq n \leq s \\ \frac{(\lambda/\mu)^n}{s! s^{n-s}} P_0 & \quad \text{para } n \geq s \end{array} \right.$$

•
$$L_q = \sum_{n=s}^{\infty} (n-s) P_n = \dots = \frac{P_0(\lambda/\mu)^s \rho}{s! (1-\rho)^2}$$

•
$$W_q = \frac{L_q}{\lambda}$$

•
$$W = W_q + \frac{1}{\mu}$$

•
$$L = \lambda \left(W_q + \frac{1}{\mu} \right) = L_q + \frac{\lambda}{\mu}$$

Resultados para M/M/s com s>1

- Quando $\lambda \geq s\mu$ fila cresce indefinitivamente a longo prazo.
- Resultados não se aplicam.
- Supondo $\lambda < s\mu$, para t > 0:

•
$$P(W > t) = e^{-\mu t} \left[1 + \frac{P_0(\lambda/\mu)^s}{s!(1-\rho)} \left(\frac{1 - e^{-\mu(s-1-\lambda/\mu)}}{s-1-\lambda/\mu} \right) \right].$$

• $P(W_q = 0) = \sum_{n=0}^{s-1} P_n.$

- $P(W_q > t) = (1 P(W_q = 0))e^{-s\mu(1-\rho)t}$.

Exemplo do Hospital

O administrador do hospital verificou que a chegada de atendimentos e tempo o gasto para atendê-los seguem distribuições exponenciais. Assim, ele optou por uma modelagem M/M/s.

Inicialmente, ele estimou que os pacientes chegam em um taxa média de 1 a cada 1/2 hora e que um médico precisa em média de 20 minutos para atender cada paciente. Portanto, utilizando uma hora como unidade de tempo, tem-se:

- $1/\lambda = 1/2$ hora por cliente ($\lambda = 2$ clientes por hora).
- $1/\mu = 1/3$ hora por cliente ($\mu = 3$ clientes por hora).

Exemplo do Hospital

São considerados ter um (s = 1) ou dois médicos (s = 2). Assim:

	s=1	s=2
ρ	2/3	1/3
P_0	1/3	1/2
P_1	2/9	1/3
$P_n, n \geq 2$	$\frac{1}{3}\left(\frac{2}{3}\right)^n$	$\left(\frac{1}{3}\right)^n$
L_q	4/3	1/12
$\mid L$	2	3/4
W_q	2/3 hora	1/24 hora
W	1 hora	3/8 hora
$P(\mathcal{W}_q > 0)$	0,667	0,167
$P(\mathcal{W}_q > 1/2)$	0,404	0,022
$P(\mathcal{W}_q > 1)$	0,245	0,003
$P(\mathcal{W}_q > t)$	$(2/3)e^{-t}$	$(1/6)e^{-4t}$
P(W > t)	e^{-t}	$(1/2)e^{-3t}(3-e^{-t})$

Um único médico seria inadequado!