Assignment 3 of Algorithm

Zuyao Chen 201728008629002 zychen.uestc@gmail.com

1. **Problem 3**

a). Description

Goal: given two strings s and t, check whether s is subsequence of t.

Solution: let m, n be the length of s, t respectively and j=0, then scan the string t from start to end using index i, j = j + 1 when t[i] = s[j]. Finally, if j is equivalent to the length of m, that means s is the subsequence of t; otherwise, s is not the subsequence of t. pseudo-code:

```
Algorithm 1 Is subsequence
Input:
           two string s, t
Output: whether s is subsequence of t
 1: function ISSUBSEQUENCE(s, t)
        initialize m = \text{len}(s), n = \text{len}(t), j = 0
        for i = 0 to n - 1 do
 3:
            if s[j] = t[i] then
 4:
 5:
                j = j + 1
            end if
 6:
 7:
        end for
 8:
        if j = m then
 9:
            return true
10:
        else
            return false
11:
        end if
12:
13: end function
```

b). Greedy choice property and optimal structure

If s is the subsequence of t, then the substring of s should be the subsequence of t. In words, given $s = \{s_0s_1...s_{m-1}\}$, let $s' = \{s_0s_1...s_{j-1}\} \subset s$ be the subsequence of t, $t' = t - \{t_0t_1...t_k\}, s'$ is the subsequence of substring $\{t_0t_1...t_k\}$ which has the minimum length. If s_i can be found in the remainder substring t', we add s_i to the subset s'. Finally, s is the subsequence of t if and only if s' = s. the optimal structure can be written as

$$s' = \begin{cases} s' \cup \{s_j\}, & \text{if } s_j \in t' \\ s', & \text{otherwise} \end{cases}$$

c). correctness

suppose that we obtain a optimal substring $s' = \{s_0s_1...s_k\} \subset s$ using the method mentioned above, but there exists an another optimal substring $s'' \subset s$.

- If $len(s'') \le len(s')$, s' is the final optimal substring.
- If $\operatorname{len}(s'') > \operatorname{len}(s')$, suppose that $s'' = \{s_0s_1...s_ks_{k+1}s_{k+2}...\} \subset s$. However, s' is the subsequence of t-t' and $s_{k+1} \in t'$, according to the rule above, s_{k+1} should be added to s', the same condition is also applied to $s_{k+2}, s_{k+3}, ...$, which is contrary to the hypothesis. Thus s' should be equivalent to s''.

In summary, s' is the final optimal subsequence of t, Hence the algorithm is correct.

d). complexity

it costs O(n) time.

2. Problem 4

a). Description

Goal: given two sets A and B, maximize $\prod_{i=1}^{n} a_i^{b_i}$.

Solution: We rearrange the order of A and B in descending order, then $\prod_{i=1}^{n} a_i^{b_i}$ is the maximum payoff.

pseudo-code:

Algorithm 2 Maximize payoff

- 1: **function** MAX-PAYOFF($A = \{a_1, a_2, ..., a_n\}, B = \{b_1, b_2, ..., b_n\}$)
- 2: sort A, B in descending order
- 3: **return** $\prod_{i=1}^{n} a_i^{b_i}$
- 4: end function

b). Greedy choice property and optimal structure

For simplicity, let $P_i = \prod_{j=1}^i a_j^{b_j}$, $A_i, B_i (i=1,2,...,n)$ are the subsets of A,B respectively with the length of i.

If P_n^* is the optimal payoff of A_n and B_n , then P_{n-1}^* should be the optimal payoff of A_{n-1} and B_{n-1} , hence $P_1^* = a_1'^{b_1'}$ should be the optimal payoff of A_1 and B_1 , P_1^* is given by $a_1' = \max(A_n)$, $b_1' = \max(B_n)$, thus $P_2^* = P_1^* a_2'^{b_2'}$ is given by $a_2' = \max(A_n - \{a_1'\})$, $b_2' = \max(B_n - \{b_1'\})$, etc. So we just need to rearrange the two sets in descending order. the optimal structure is give by

$$P_i^* = \begin{cases} a_1'^{b_1'}, & \text{if } i = 1\\ P_{i-1}^* a_i'^{b_i'}, & \text{otherwise} \end{cases}$$

c). correctness

Let $P = \prod_{i=1}^n a_i^{b_i}$ be the optimal payoff($a_1 > a_2 > ... > a_n, b_1 > b_2 > ... > b_n$). Suppose that there exists an another optimal solution P' in which a_1 is paired with b_q and a_q is paired

2

with b_1 , then

$$\begin{split} \frac{P'}{P} &= \frac{\prod_{i=1}^{n} a_i'^{b_i'}}{\prod_{i=1}^{n} a_i^{b_i}} \\ &= \frac{a_1^{b_q} a_q^{b_1}}{a_1^{b_1} a_q^{b_q}} \\ &= (\frac{a_1}{a_q})^{b_q - b_1} \end{split}$$

note that $a_1 > a_q, b_1 > b_q$, thus P'/P < 1; to change other pairs gives the same answer. Thus P is the optimal payoff.

d). complexity

If the two sets are already sorted, the time complexity is O(n); otherwise, sort the sets first and the time complexity is $O(n \log n)$.

3. Problem 5 Huffman code

the result is showed below, the compression ratio is near 0.5.