

#### Exercise 20G

We know that a square encloses more area even though its perimeter is the same as that of the rectangle.

:. Area of a square > Area of a rectangle

## **Q9**

### Answer:

(b) 13500 m<sup>2</sup>

Let the length of the rectangular field be 5x.

Breadth = 3x

Perimeter of the field = 2(l + b) = 480 m(given)

$$\Rightarrow$$
 480 = 2(5x + 3x)  $\Rightarrow$  480 = 16x

$$\Rightarrow \chi = \frac{480}{16} = 30$$

:. Length =  $5x = (5 \times 30) = 150 \text{ m}$ 

Breadth =  $3x = (3 \times 30) = 90 \text{ m}$ 

∴ Area of the rectangular park = 150 m × 90 m = 13500 m<sup>2</sup>

## Q10

### Answer:

(a) 6 m

Total cost of carpeting = Rs 6000

Rate of carpeting = Rs 50 per m

∴ Length of the carpet = 
$$\left(\frac{6000}{500}\right)$$
 m = 120 m

∴ Length of the carpet = 
$$\left(\frac{6000}{50}\right)$$
 m = 120 m  
∴ Area of the carpet =  $\left(120 \times \frac{75}{100}\right)$  m<sup>2</sup> = 90 m<sup>2</sup> [since 75 cm =  $\frac{75}{100}$  m]

Area of the floor = Area of the carpet =  $90 \text{ m}^2$ 

$$\therefore$$
 Width of the room =  $\left(\frac{\text{Area}}{\text{Length}}\right) = \left(\frac{90}{15}\right)$  m = 6 m

# Q11

#### Answer:

(a) 84 cm<sup>2</sup>

Let 
$$a = 13$$
 cm,  $b = 14$  cm and  $c = 15$  cm

Then,  $s = \frac{a+b+c}{2} = \left(\frac{13+14+15}{2}\right)$  cm = 21 cm

 $\therefore$  Area of the triangle =  $\sqrt{s(s-a)(s-b)(s-c)}$  sq. units

=  $\sqrt{21(21-13)(21-14)(21-15)}$  cm<sup>2</sup>

=  $\sqrt{21\times8\times7\times6}$  cm<sup>2</sup>

=  $\sqrt{3\times7\times2\times2\times2\times7\times2\times3}$  cm<sup>2</sup>

=  $(2\times2\times3\times7)$  cm<sup>2</sup>

= 84 cm<sup>2</sup>

# Q12

## Answer:

(b) 48 m<sup>2</sup>

V

Base = 12 m

Height = 8 m

Area of the triangle = 
$$\left(\frac{1}{2} \times \mathbf{Base} \times \mathbf{Height}\right)$$
 sq. units =  $\left(\frac{1}{2} \times 12 \times 8\right)$  m<sup>2</sup> = 48 m<sup>2</sup>

# Q13

## Answer:

(b) 4 cm

Area of the equilateral triangle =  $4\sqrt{3}$  cm<sup>2</sup>

We know:

Area of an equilateral triangle =  $\frac{\sqrt{3}}{4}$  (side)<sup>2</sup> sq. units

$$\therefore \text{ Side of the equilateral triangle} = \left[\sqrt{\left(\frac{4\times \text{Area}}{\sqrt{3}}\right)}\right] \text{ cm}$$

$$= \left[\sqrt{\left(\frac{4\times 4\sqrt{3}}{\sqrt{3}}\right)}\right] \text{ cm} = \left(\sqrt{4\times 4}\right) \text{ cm} = \left(\sqrt{16}\right) \text{cm} = 4 \text{ cm}$$

#### Q14

#### Answer:

(c)  $16\sqrt{3}$  cm<sup>2</sup>

It is given that one side of an equilateral triangle is 8 cm.

 $\therefore$  Area of the equilateral triangle =  $\frac{\sqrt{3}}{4} \left( \text{Side} \right)^2$  sq. units  $= \frac{\sqrt{3}}{4} (8)^2 \text{ cm}^2$   $= \left(\frac{\sqrt{3}}{4} \times 64\right) \text{ cm}^2 = 16\sqrt{3} \text{ cm}^2$ 

### Q15

### Answer:

(b)  $2\sqrt{3} \text{ cm}^2$ 

Let  $\triangle ABC$  be an equilateral triangle with one side of the length a cm.

Diagonal of an equilateral triangle = 
$$\frac{\sqrt{3}}{2} a$$
 cm   

$$\Rightarrow \frac{\sqrt{3}}{2} a = \sqrt{6}$$

$$\Rightarrow a = \frac{\sqrt{6} \times 2}{\sqrt{3}} = \frac{\sqrt{3} \times \sqrt{2} \times 2}{\sqrt{3}} = 2\sqrt{2} \text{ cm}$$
Area of the equilateral triangle =  $\frac{\sqrt{3}}{4} a^2$ 

$$= \frac{\sqrt{3}}{4} \left(2\sqrt{2}\right)^2 \text{ cm}^2 = \left(\frac{\sqrt{3}}{4} \times 8\right) \text{cm}^2 = 2\sqrt{3} \text{ cm}^2$$

# Q16

## Answer:

(b) 72 cm<sup>2</sup>

Base of the parallelogram = 16 cm

Height of the parallelogram = 4.5 cm

:. Area of the parallelogram = Base x Height

$$= (16 \times 4.5) \text{ cm}^2 = 72 \text{ cm}^2$$

# Q17

## Answer:

(b) 216 cm<sup>2</sup>

Length of one diagonal = 24 cm

Length of the other diagonal = 18 cm

∴ Area of the rhombus = 
$$\frac{1}{2}$$
 × (Product of the diagonals) =  $\left(\frac{1}{2} \times 24 \times 18\right)$  cm<sup>2</sup> = 216 cm<sup>2</sup>

# Q18

## Answer:

(c) 154 cm<sup>2</sup>

Let the radius of the circle be r cm.

Circumference =  $2\pi r$ 

\*\*\*\*\*\*\* END \*\*\*\*\*\*\*\*