讲课速度是否合适?

- A 合适
- B 偏慢
- C 偏快
- D 其他

层次模型的查询语言是过程性语言,而关系模式的查询语言则是非过程性语言。

A 对

B 错

在数据库系统中,用()描述全部数据的整体逻辑结构。

A 外模式

B 存储模式

C内模式

D概念模式

数据逻辑独立性是指

A 模式改变,外模式和应用程序不变

B 模式改变,内模式不变

C内模式改变,模式不变

D 内模式改变,外模式和应用程序不变

在数据库系统的组织结构中,下列()映像把概念数据库和物理数据库联系起来

- A 外模式/模式
- B 内模式/外模式
- C 模式/内模式
- D 模式/外模式

请列举三级模式体系结构的优点

2.1 关系模型

- 关系结构
- 关系操作

基本: U (并)、- (差)、× (笛卡尔积)

σ (选择)、π(投影)

扩展: ∩(交)、**⋈** (连接)、÷(除)

• 完整性约束

实体完整性、参照完整性、用户自定义完整性

思考题

- 什么是关系? 对应哪种集合操作?
- 什么是主码和外码,请举例说明。
- 关系有哪些基本操作?它们分别对应哪些集合运算?
- 什么是实体完整性和参照完整性,请举例说明?

2.1 关系模型

2.1.1 关系数据结构

列名

	小说名	人物名	(生 别
记录/元组	西游记	唐僧	男
	水浒传	宋江	男
	红楼梦	林黛玉	女
		1	
	字段/属性	列值	分量

1、24 户

域

- 一组值的集合,这组值具有相同的数据类型
- 如整数集合、字符串集合、全体学生集合

西游记	唐僧	男
西游记	唐僧	女
西游记	宋江	男
西游记	宋江	女
西游记	林黛玉	男
西游记	林黛玉	女
水浒传	唐僧	男

D1={西游记,水浒传,红楼梦}

D2={唐僧,宋江,林黛玉}

D3={男,女}

笛卡尔积的目(度):3

笛卡尔积的元组数: 3×2×3=18

笛卡尔积

敲黑板,重点到了

给定一组域D1, D2, ..., Dn(其中允许有相同的), 那么我们把D1, D2, ..., Dn上的笛卡尔积定义可以用公式表示为:

笛卡尔积的度(目)=n

笛卡尔积的基数 = $\prod_{i=1}^{11} m_i$ mi为第i个域的基数

D1={统计2016-1班,统计2016-2班} D2={王磊,张茜,李鸣,周波} D1与D2做笛卡尔积运算,结果集为A则A的目和基数为:

A 3, 8

B4, 4

C2, 6

D2, 8

关系

一组域的笛卡尔乘积的子集。

小说名	人物名	性 别
西游记	唐僧	男
水浒传	宋江	男
红楼梦	林黛玉	女

思考题

• 2.什么是主码和外码,请举例说明。

学生(学号,姓名,性别,手机号,身份证号)

(1) 候选码(Candidate Key):

在一个关系中,能惟一标识元组的最小属性集称为关系的候选码。

(2) 主码(Primary Key):

若一个关系中有多个候选码,则选其中的一个为主码。一般不加以说明,码是指主码。

主属性与非主属性

包含在任何一个候选码中的属性称为主属性,而其他属性称为非主属性

学生(学号,姓名,性别,手机号,身份证号)

- 最简单的,候选码包含一个属性
- > 最极端的,所有属性构成这个关系的一个候选码,称为全码

教师授课(教师编号,课程编号)

学生(<u>学号</u>,姓名,性别,*学院号*,年龄) 学院(学院号,学院名称)

(3) 外码 (Foreign Key):

F是关系R中的一个或一组属性,但不是R的码,若F与关系S的主码Ks相对应,则称F为R的外码。并称关系R为参照关系,关系S为被参照关系或目标关系

例一

学生(学号,姓名,性别,专业号,年龄)专业(专业号,专业名称)

例二

学生(学号,姓名,性别,专业号,年龄) 课程(课程号,课程名,学分) 学习(学号,课程号,成绩)

例四

学生(学号,姓名,性别,年龄,班长)

关系的性质

- (1) 列是同质的。
- (2) 不同的列可出自同一域。不同的属性 名以区分不同的列,同时取消属性的有序性。
 - (3) 行和列的顺序无所谓。
 - (4) 任意两行的候选码不能取相同的值。
 - (5)每个分量必须是不可分的数据项。

关系模式 (Relation Schema)

关系模式是关系中信息内容结构的描述。 $R(U, D, DOM, I, \Sigma)$

R: 是关系名

U:是组成关系R的全部属性的集合

D: 是U中属性取值的值域

DOM: 是属性列到域的映射

1: 是一组完整性约束条件

简写: R (U)

思考题

• 2. 关系有哪些基本操作? 它们分别对应哪些集合运算?

2.1.2 关系操作

查询

更新

1 操纵对象是关系

2 基本操纵方式

属性指定

元组选择

关系合并

元组插入

元组删除

投影

选择

笛卡尔积

并

差

思考题

• 3.什么是实体完整性和参照完整性,请举例说明?

2.1.3 关系完整性约束

实体完整性规则

规则: 若属性A是基本关系R的主属性,则

属性A不能取空值。

参照完整性规则

规则: 若F是基本关系R的外码,并与S的主码 Ks相对应,则对于R中每个元组在F上的值必 须为:

- 或者取空值
- 或者取S中主码Ks对应的值

导师 编号	姓名	性别	职称
102	孟 霄	女	副教授
115	赵名威	男	副教授
159	海阑	男	教 授

研究生

学号	姓名	性别	研究 方向	导师 编号
200112 200145 200116 200152 200153	方力为 刘若非 梁信伟 韩小亭 王 刚	男女男女男	计算机应用 软件 通信 软件 网络	115 159 189 159

用户定义完整性规则

规则: 反映某一具体应用所涉及的数据必须满

足的语义要求。

2.2 关系代数

- 传统的集合运算
 - 并差 亥 笛卡尔积
- 专门的关系运算
 - 这样投影 连接 自然连接 除
- 基本关系代数运算
 - 并 差 笛卡尔积 这样 投影

并相容原则

- ▶ 参与运算的两个关系及其属性之间有一定的对应性、可比性或意义关联性。
- ▶ 定义: 关系R与关系S存在相容性, 当且仅当:
 - (1) 关系R和关系S的属性数目必须相同
- (2) 关系R的第i个属性的域必须和关系S的第i个属性的域相同

A(A1,A2,A3) 和 B(B1,B2,B3)

S(SID char(8),Sname char(8),Sage char(3)) T(TID char(8),Tname char(8),Tage char(3))

2.2.1 传统的集合运算

1、并

将R与S合并为一个关系,并且去掉重复元组。 $R \cup S = \{t \mid t \in R \lor t \in S\}$

▶汉语中的"或者。。。。或者。。。"通常为并运算

学生(学号,姓名,性别,年龄,院系) 课程(课程号,课程名,先行课,学分) 学习(课程号,学号,成绩)

```
7 将新课程元组('7','物理', '2',

'4')插入关系中
```

课程∪('7', 物理', '2', '4')

2、差:在R中去掉S中存在的元组。由出现在R中但不出现在S中的元组构成。

 $R-S=\{t \mid t \in R \land t \notin S\}$

➤ R-S 与 S-R是相同的么?

将新课程元组 ('7','物理', '2', '4') 从关系中删除

- ▶ 参加体育队的学生(S1),参加文艺队的学生(S2)
- ➤ 只参加体育队没有参加文艺队的学生 S1 S2
- > 没有参加参加文艺队的学生
- ➤ 汉语中的"是···但不含···""没有"通常意义是差运算的 要求

6 查询没有选修1号课程的学生学号

π_{学号} (学生) - π_{学号} (σ_{课程号<>'1}, (学习))

π_{学号}(σ_{课程号<>'1}, (学习))对么?

3、文:在R中找出与S中相同的元组组成一个新的关系。

 $R \cap S = \{t | t \in R \land t \in S\}$

- ► R∩S 与 S∩R是相同的么?

- ➤ 汉语中的"既···又···" "···并且···" 通常意义是交运算的要求
- ▶ 可以表达部分"除法"运算实现的功能
- ▶ 如: 至少(同时)选择了(包含)1号和2号课的学生

5 查询至少选修了课程号为1和2的 学生的学号

$$R=\pi_{\text{学号}}$$
($\sigma_{\text{课程号='1}}$,(学习))

$$S=\pi_{\text{学号}}$$
($\sigma_{\text{课程号='2}}$,(学习))

$$P=R \cap S$$

4、**笛卡尔积**:用R中的每个元组与S中每个元组拼接组成一个新的关系。新的关系度为R与S度之和,元组为R与S元组数相乘积。

 $R \times S = \{t_r t_s | t_r \in R \land t_s \in S\}$

- ▶ 当一个检索涉及到多个表时,如学生表和课程表,便需要 把这些表串接(或者拼接)起来,就需要用笛卡尔积运算
- ▶ 是各种连接运算的基础

学号	姓名	年龄	宿舍
080101	王晓	20	0801
080102	李明	19	0802

课程号	课程名	学分	学时
C1	计算机	2	32
C2	物理	2	32

学号	姓名	年龄	宿舍	课程号	课程名	学分	学时
080101	王晓	20	0801	C1	计算机	2	32
080101	王晓	20	0801	C2	物理	2	32
080102	李明	19	0802	C1	计算机	2	32
080102	李明	19	0802	C2	物理	2	32