Corso di Laurea in Informatica - A.A. 2017 - 2018 Esame di Fisica - 11/07/2018

Esercizio 1

In un sistema di assi cartesiano (x, y) siano dati i punti A=(2,2) e B=(-1,+6). Scrivere il vettore \vec{r}_{AB} che va dal punto A al punto B ed il versore \vec{u} che ne definisce la direzione.

Esercizio 2

In un sistema di assi cartesiano (x, y, z) è presente un campo magnetico $\vec{B} = B_o \vec{k}$. Si assuma che localmente $B_0 = \beta z$. Si risolvano i quesiti seguenti.

- a) Una carica puntiforme q di massa m, inizialmente nel punto (0,0,h), si muove con velocità iniziale $\vec{v} = -v_0\vec{k}$. Calcolare la forza \vec{F} che agisce sulla carica e determinarne le equazioni del moto.
- b) Una carica puntiforme q di massa m, inizialmente nel punto (0,0,h), si muove con velocità iniziale $\vec{v} = -v_0\vec{i}$. Calcolare la forza \vec{F} che agisce sulla carica e determinarne le equazioni del moto.
- c) Una spira circolare di raggio r_0 e resistenza R, parallela al piano (x, y), si muove con velocità $\vec{v} = -v_0\vec{k}$. Determinare la corrente indotta che la percorre ed il campo magnetico totale nel punto (0,0,h) quando la quota della spira è z=h.

(NB: si assuma q > 0, $v_0 > 0$, $\beta > 0$ e h > 0).

Esercizio 3

Nel circuito illustrato in figura $\varepsilon_1 = \varepsilon_2 = 4V_0$. Determinare:

- a) la corrrente i_2 e la differenza di potenziale $V_A V_B$ nel caso in cui anche $\varepsilon_3 = 4V_0$;
- b) il valore di ε_3 per cui la corrente $i_2=0$;
- c) il valore di ε_3 per cui $V_A V_B = 0$.

