- BUNDESREPUBLIK
 DEUTSCHLAND
- © Offenlegungsschrift
 © DE 198 43 928 A 1
- (5) Int. Cl.⁶: **B** 62 **D** 25/08

PEUTSCHES
PATENT- UND
MARKENAMT

- (1) Aktenzeichen:
- 198 43 928.8
- ② Anmeldetag:
- 24. 9.98
- (4) Offenlegungstag:
- 8. 4.99

③ Unionspriorität:

P 9-264264

29.09.97 JP

(7) Anmelder:

Aisin Seiki K.K., Kariya, Aichi, JP

(74) Vertreter:

Tiedtke, Bühling, Kinne & Partner, 80336 München

(72) Erfinder:

Nakai, Kiyotaka, Chita, Aichi, JP; Nagata, Takenori, Chiryu, Aichi, JP; Yamamoto, Yoshiaki, Aichi, JP

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (5) Frontend-Modul für ein Fahrzeug
- (3) Ein Frontend-Modul für ein Fahrzeug soll so ausgestaltet werden, daß es die Kühlleistung eines Kühlers erhöht. Das Frontend-Modul ist mit einem Kondensator (4) mit einem hinter diesem liegenden Kühler (2), dessen oberer Zu-/Ablauf (2a) unterhalb eines oberen Zu-/Ablaufs (4a) des Kondensators (4) liegt, mit einem Gebläse (3), das dem Kühler (2) gegenüberliegend angeordnet ist, und mit einem vorderen Abschlußpaneel (1) zum Aufnehmen dieser Bauteile versehen. Oberhalb des oberen Zu-/Ablaufs (2a) des Kühlers (2) ist ein erster Schlitz (41) gebildet, der einen Raum (E) zwischen dem Kondensator (4) und dem Kühler (2) mit einem Raum (F) zwischen dem Kühler (2) und dem Gebläse (3) verbindet.

Die Erfindung betrifft ein Frontend-Modul für ein Fahrzeug, das mit einem vorderen Abschlußpancel zum Halten wenigstens eines Kühlers des Fahrzeugs versehen ist.

Ein derartiges Frontend-Modul für ein Fahrzeug ist beispielsweise aus der JP-5-105115 A bekannt. Dieses Frontend-Modul hat, wie in Fig. 5 gezeigt, einen Kondensator 51, der eine vordere und eine hintere Fläche 51a und 51b aufweist, einen hinter diesem liegenden Kühler 52, der der hinteren Fläche des Kondensators gegenüberliegend angeordnet ist, ein hinter dem Kühler 52 liegendes Gebläse, das der hinteren Fläche des Kühlers 52 gegenüberliegend angeordnet ist, und ein vorderes Abschlußblech 54 zum Halten des Kühlers 52 und des Kondensators 51 und zum Tragen 15 des Gebläses 53.

Das vordere Abschlußblech 54 besteht aus einem oberen Tragteil 54a für den Kühler, einem unteren Tragteil 54b für den Kühler, Seitenwänden (nicht dargestellt) und einem Blechkörper 54c, das einstückig an diesen Bauteilen ausgebildet ist, wobei das obere und das untere Tragteil 54a und 54b für den Kühler sowie die Seitenwände jeweils hohl mit einem geschlossenen Querschnitt ausgebildet sind.

Wie aus der Zeichnung ersichtlich ist, sind der Kühler 52 und der Kondensator 51 so im vorderen Abschlußblech 54 angeordnet, daß ihre oberen und unteren Enden gleich hoch sind.

Beim Stand der Technik sind der Kühler und der Kondensator so im vorderen Abschlußblech angeordnet, daß ihre oberen und unteren Enden gleich hoch sind, so daß die durch den Antrieb des Gebläses von außen eingeleitete Luft zuerst durch den Kondensator durchgeht und nach der Erwärmung durch den Kondensator dem Kühler zugeführt wird, was zu einer Senkung der Kühleistung des Kühlers führt.

Von diesem Nachteil ausgehend liegt der Erfindung die 35 Aufgabe zugrunde, ein Frontend-Modul für ein mit einem vorderen Abschlußpaneel zum Halten wenigstens eines Kühlers des Fahrzeugs versehenes Fahrzeug zu beschaffen, das eine Erhöhung der Kühlleistung des Kühlers ermöglicht.

Die Erfindung zur Lösung dieser Aufgabe nach Anspruch
1 betrifft ein Frontend-Modul für ein Fahrzeug, mit einem
Kondensator, der eine vordere und eine hintere Fläche aufweist, mit einem hinter diesem liegenden Kühler, der der
hinteren Fläche des Kondensators gegenüberliegend angeordnet ist und dessen oberes Ende unterhalb des oberen Endes des Kondensators liegt, mit einem hinter dem Kühler
liegenden Gebläse, das der hinteren Fläche des Kühlers gegenüberliegend angeordnet ist, und mit einem vorderen Abschlußpaneel zum Halten des Kühlers und des Kondensators
und zum Tragen des Gebläses, wobei oberhalb des oberen
Endes des Kühlers ein erster Schlitz gehildet ist, der einen
Raum zwischen dem Kondensator und dem Kühler mit einem Raum zwischen dem Kühler und dem Gebläse verbindet.

Erfindungsgemäß ist das obere Ende des Kühlers, das hinter dem Kondensator dazu gegenüberliegend angeordnet ist, unterhalb des oberen Endes des Kondensators angeordnet und oberhalb des oberen Endes des Kühlers ist der erste Schlitz gebildet, der den Raum zwischen dem Kondensator und dem Kühler mit dem Raum zwischen diesem und dem Gebläse verbindet, wodurch von außen eingeleitete Luft den Kondensator durchströmt, wobei der Wärmeaustausch erfolgt, und nach der Erwärmung in den Raum zwischen dem Kondensator und dem Kühler einströmt und anschließend durch den ersten, oberhalb des Kühlers liegenden Schlitz hindurch in den Raum zwischen dem Kühler und dem Gebläse gelangt. Danach wird die Luft durch die Saugwirkung des Gebläses in den Motorraum eingeleitet.

Da die durch den Wärmeaustausch im Kondensator erwärmte Luft in den Motorraum eingeleitet wird, ohne den Kühler zu durchströmen, ist es also möglich, daß die durch das Durchströmen der erwärmten Luft durch den Kühler bedingte Reduzierung der Kühlleistung des Kühlers unterdrückt wird.

Zur Lösung der Aufgabe ist es gemäß dem Anspruch 2 vorteilhaft, daß das vordere Abschlußpancel ein oberes, das obere Ende des Pancels bildendes Tragteil für den Kühler, das mit einer Halterung für das obere Ende des Kondensators und einer unterhalb dieser Halterung liegenden Halterung für das obere Ende des Kühlers versehen ist, ein unteres, das untere Ende des Pancels bildendes Tragteil für den Kühler, das mit einer Halterung für das untere Ende des Kondensators und einer Halterung für das untere Ende des Kühlers versehen ist, und einen Pancelkörper aufweist, der mit einem Tragteil für das Gebläse versehen ist und der einstückig am oberen und unteren Tragteil für den Kühler gebildet ist.

Da das obere Tragteil für den Kühler mit der Halterung für das obere Ende des Kondensators und der unterhalb dieser Halterung liegenden Halterung für das obere Ende des Kühlers versehen ist, ist es erreicht, daß das Frontend-Modul einfach ausgestaltet werden kann. Dadurch, daß die Halterungen für die oberen Enden des Kondensators und des Kühlers an demselben Teil vorgesehen sind, kann der erste Schlitz sichergestellt werden.

Zur Lösung der Aufgabe ist es gemäß dem Anspruch 3 vorteilhaft, daß des untere Ende des Kühlers unterhalb des unteren Endes des Kondensators liegt, und daß unterhalb des unteren Endes des Kondensators ein zweiter Schlitz gebildet ist, der einen vor einer vorderen Fläche des Kondensators liegenden Raum mit einem Raum zwischen dem Kondensator und dem Kühler verbindet.

Gemäß dieser Ausgestaltung ist das untere Ende des Kühlers unterhalb des unteren Endes des Kondensators angeordnet, wobei der vor dem Kondensator liegende Raum und der zwischen dem Kondensator und dem Kühler liegende Raum über den zweiten, unterhalb des Kondensators gebildeten Schlitz miteinander verbunden sind, so daß ein Teil der von außen in das Fahrzeug eingeleiteten Luft vom vor dem Kondensator liegenden Raum durch den zweiten Schlitz hindurch in den Raum zwischen dem Kondensator und dem Kühler einströmt und diesen durchströmt.

Also gelangt ein Teil der Frischluft zu dem Kühler, ohne den Kondensator zu durchströmen, um den Kühler zu kühlen, wodurch die durch das Durchströmen der erwärmten Luft durch den Kühler bedingte Reduzierung der Kühlleistung des Kühlers noch unterdrückt wird.

Gemäß dem Anspruch 4 ist es vorteilhaft, daß das vordere Abschlußpaneel ein oberes, das obere Ende des Paneels bildendes Tragteil für den Kühler, das mit einer Halterung für das obere Ende des Kondensators und einer unterhalb dieser Halterung liegenden Halterung für das obere Ende des Kühlers versehen ist, ein unteres, das untere Ende des Paneels bildendes Tragteil für den Kühler, das mit einer Halterung für das untere Ende des Kondensators und einer unterhalb dieser Halterung liegenden Halterung für das untere Ende des Kühlers versehen ist, und einen Paneelkörper aufweist, der mit einem Tragteil für das Gebläse versehen ist und dereinstückig am oberen und unteren Tragteil für den Kühler gebildet ist.

Dadurch, daß das obere Tragteil für den Kühler mit der Halterung für das obere Ende des Kondensators und der unterhalb dieser Halterung liegenden Halterung für das obere Ende des Kühlers versehen ist und das untere Tragteil für den Kühler mit der Halterung für das untere Ende des Kondensators und der unterhalb dieser Halterung liegenden Halteru

terung für das untere Ende des Kühlers versehen ist, kann das Frontend-Modul noch einfacher ausgestaltet werden. Dadurch, daß die Halterungen für die oberen bzw. die unteren Enden des Kondensators und des Kühlers an demselben Teil vorgesehen sind, können der Kühler und der Kondensator unter Sicherstellung des ersten und des zweiten Schlitzes jeweils in einer vorbestimmten Höhenlage sieher gehalten werden.

Das erfindungsgemäße Frontend-Modul für das Fahrzeug hat eine Ausgestaltung, bei der die durch den Kondensator in erwärmte Luft nur schwer zu dem Kühler gelangt, so daß die Kühlleistung des Kühlers erhöht werden kann.

Im folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.

Es zeigen:

Fig. 1 ein Ausführungsbeispiel des erfindungsgemäßen Frontend-Moduls für das Fahrzeug in perspektivischer Explosionsdarstellung.

Fig. 2 das vordere Abschlußpaneel mit den eingebauten 20 Hauptbauteilen beim Ausführungsbeispiel des erfindungsgemäßen Frontend-Moduls.

Fig. 3 einen Schnitt entlang der Linie a-a in Fig. 2,

Fig. 4 einen Schnitt entlang der Linie b-b in Fig. 2 und Fig. 5 das Frontend-Modul für das Fahrzeug des Stands 25 der Technik.

Die Fig. 1 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Frontend-Moduls in perspektivischer Explosionsdarstellung. Ein vorderes Abschlußpaneel 1, das aus Kunstharzmaterial besteht, hält einen Kühler 2 für Kühlmatser eines Fahrzeugmotors, einen Kondensator 4 für Kühlmittel einer Klimaanlage, ein dem Kühler 2 und dem Kondensator 4 gegenüberliegend angeordnetes Gebläse 3 und ein Paar Scheinwerfer (nicht dargestellt). Das vordere Abschlußpaneel 1 ist zwischen einem Paar Längsträger 7 über Stützen 8 angebracht, wobei es in der Breitenrichtung des Fahrzeugs mittels eines Paars Verstärkungen 9 der vorderen Kotflügel festgelegt ist.

Dieses vordere Abschlußpaneel 1 besteht im wesentlichen aus einem plattenförmigen rechteckig ausgebildeten 40 Pancelkörper 10. Einstückig am Pancelkörper 10 sind Seitenwände 11, die an den beiden Seitenrändern des Paneelkörpers 10 angeordnet sind und sich in der Längsrichtung des Fahrzeugs erstrecken, und ein unteres Tragteil 12 für den Kühler ausgebildet, das am unteren Rand des Fahrzeugs 45 angeordnet ist. Am oberen Rand des Fahrzeugs ist ein oberes Tragteil 13 für den Kühler einstückig am Paneelkörper 10 ausgebildet, das sich in der Breitenrichtung des Fahrzeugs erstreckt. Die Seitenwände 11, das untere und das obere Tragteil 12 und 13 gewährleisten zusammen die Stei- 50 figkeit des Paneelkörpers 10. Ferner ist der Paneelkörper 10 mit einer kreisförmigen Öffnung 14 ausgebildet, die einen nach hinten vorspringenden Bund 14a am Umfangsrand aufweist. Zum Abdecken der Öffnung 14 sind in der Längsrichtung des Fahrzeugs hintereinandergeschaltet der Kühler 2 55 und der Kondensator 4 in einem Raum angeordnet, der von den nach vorn über die Vorderseite des Paneelkörpers 10 ragenden Seitenwänden 11 sowie dem unteren und dem oberen Tragteil 12 und 13 begrenzt ist. Auf diese Weise sind der Kühler 2 und der Kondensator 4 in dem vorderen Abschlußpaneel 1 aufgenommen und gehalten. Das Gebläse 3 ist in der vom Kühler 2 abgedeckten Öffnung 14 aufgenommen und in einer Lagerung 14b drehbar gelagert, die einstückig am Bund 14a der Öffnung 14 gebildet ist, wobei das Gebläse 3 dem Kühler 2 gegenüberliegend angeordnet ist.

An den beiden Seitenwänden 11, die an beiden Seitenrändern des Paneelkörpers 10 angeordnet sind, sind Rippen 18 vorgesehen, die von den Außenseiten der Seitenwände 11

nach außen abstehend an diesen angeformt sind. Die Rippen 18 haben jeweils eine Dicke in vertikaler Richtung und eine Breite in Längsrichtung des Fahrzeugs, wobei die Dicke und die Breite in Richtung auf das vordere Ende der Rippe immer kleiner werden. Die Rippen 18 haben jeweils einen Uförmigen Querschnitt, der sich nach hinten öffnet. Sie sind ferner mit ihren vorderen Enden mittels Schraubenbolzen oder dergleichen an den Verstärkungen 9 der vorderen Kotflügel festgeklemant.

länstückig an den beiden Seitenwänden 11 des Paneelkörpers 10 sind andere Rippen 19 vorgeschen, die mit einem vorbestimmten vertikalen Abstand von den Rippen 18 parallel zu diesen angeordnet sind. Die Rippen 19 haben ebenfalls jeweils eine Dicke in der vertikalen Richtung und eine Breite in der Längsrichtung des Fahrzeugs sowie jeweils einen U-förmigen oder geschlossenen Querschnitt. Jede Rippe 19 ist außerdem so ausgebildet, daß ihre Breite in Richtung auf ihr vorderes Ende immer kleiner wird.

Über Wände 20, welche Verlängerungen der Seitenwände 11 bilden, sind die hinteren Ränder der unteren Wände der Rippen 18 und die hinteren Wände der Rippen 19 einstückig miteinander verbunden. Die Scheinwerfer sind in Räumen aufgenommen, die jeweils von der unteren Wand der Rippe 18, der oberen Wand der Rippe 19, der Seitenwand 11 und der Wand 20 umschlossen sind, und mittels Schraubenbolzen oder dergleichen an den Wänden 20 befestigt. In der Zeichnung ist mit 22 ein am oberen Kühler-Tragteil 13 angebrachter Verriegelungsmechanismus für den Haubenhalter, mit 32 ein Dämpfungsträger zur Aufnahme einer Belastung beim Zusammenstoß, mit 33 ein Kühlergrill zur Einleitung von Außenluft und mit 34 eine Stoßstange bezeichnet.

In Fig. 2 ist das vordere Abschlußpaneel 1 mit den eingebauten Hauptbauteilen in perspektivischer Darstellung gezeigt. Die Fig. 3 bzw. die Fig. 4 zeigt einen Schnitt entlang der Linie a-a bzw. der Linie b-b in Fig. 2, wobei die Fig. 3 einen Längsschnitt entlang einer Linie zeigt, die durch später erwähnte Abstandshalter 16 und 2e verläuft, und die Fig. 4 im wesentlichen einen Längsschnitt durch die Mitte des vorderen Abschlußpaneels 1 zeigt. Aus der Zeichnung ist ersichtlich, daß der Kondensator 4 mit einer vorderen Fläche 4c und einer hinteren Fläche 4d ausgebildet ist, wobei hinter dem Kondensator 4 der Kühler 2 der hinteren Fläche 4d des Kondensators 4 gegenüberliegend angeordnet ist. Hinter dem Kühler 2 ist das Gebläse 3 einer hinteren Fläche 2d des Kühlers 2 gegenüberliegend angeordnet. Ein oberer Zu-/Ablauf 2a, der das obere Endteil des Kühlers 2 bildet, ist unterhalb eines oberen Zu-/Ablaufs 4a angeordnet, der das obere Endteil des Kondensators 4 bildet. Ein unterer Ab-/Zulauf 2b, der das untere Endteil des Kühlers 2 bildet, ist unterhalb eines unteren Ab-/Zulaufs 4b angeordnet, der das untere Endteil des Kondensators 4 bildet.

In einer unteren Fläche 13a des oberen, den oberen Rand des vorderen Abschlußpaneels 1 bildenden Kühler-Tragteils 13 ist eine Öffnung 13c ausgebildet, in der der obere Zu-/Ablauf 4a des Kondensators 4 gehalten ist. An der unteren Fläche 13a ist ferner mit einem Ende ein Befestigungsstück 13b für den Kühler angebracht, das hinter der Öffnung 13c liegt und einen L-förmigen Querschnitt hat. Das Befestigungsstück 13b ist mit dem anderen Ende an einer vorderen Fläche des Paneelkörpers 10 fest angebracht. In einem horizontalen Teil des L-förmigen Befestigungsstücks 13b ist eine Öffnung 13d ausgebildet, die zum Halten des oberen Tanks 2a des Kühlers 2 dient und unterhalb der Öffnung 13c liegt.

Im unteren Kühler-Tragteil 12, das den unteren Rand des vorderen Abschlußpancels 1 bildet, ist eine Öffnung 12b ausgebildet. In der Öffnung 12b ist ein Abstandshalter 16 angeordnet, der zum Halten des unteren Ab-/Zulaufs 4b des Kondensators 4 dient, wobei der Abstandshalter 16 durch Hinstecken seines unteren Vorsprungs 16a in die Öffnung 12h festgelegt ist. Im unteren Kühler-Tragteil 12 ist außerdem eine Öffnung 12a ausgebildet, die zum Halten des unteren Ab-/Zulaufs 2b des Kühlers 2 dient und hinter Öffnung 12b sowie unterhalb des Abstandshalters 16 liegt.

Am oberen Zu-/Ablauf 4a des Kondensators 4 ist ein Vorsprung 4e ausgebildet, der zum Halten des Kondensators 4 in seinem oberen Bereich in die Öffnung 13e eingesteckt ist. 10 An der unteren Fläche des unteren Ab-Mulaufs 4h des Kondensators 4 ist der Abstandshalter 16 angeordnet, wobei der untere Ab-Mulauf 4b des Kondensators 4 auf dem Abstandshalter 16 aufliegt, um den Kondensator 4 in seinem unteren Bereich zu halten. Auf dem oberen Zu-/Ablauf 2a des Kühlers 2 ist ein Abstandshalter 2e ausgebildet, wobei dieser zum Halten des Kühlers 2 in seinem oberen Endbereich in die Öffnung 13d eingesteckt ist, die im Befestigungsstück 13b für den Kühler gebildet ist. Am unteren Ab-/Zulauf 2b des Kühlers ist ein Vorsprung 2f gebildet, der 20 zum Halten des Kühlers 2 in seinem unteren Endbereich in die Öffnung 12a eingesteckt ist.

Beim dargestellten Ausführungsbeispiel sind zwei Befestigungsstücke 13b für den Kühler 2 in dessen oberen Bereich vorgesehen. Beiderseits jedes Kühler-Befestigungsstücks 13b im oberen Bereich des Kühlers 2, in der Richtung senkrecht zum Pfeil C gesehen, ist ein erster Schlitz 41 gebildet, über den ein Raum E zwischen dem Kondensator 4 und dem Kühler 2 mit einem Raum F zwischen dem Kühler 2 und dem Gebläse 3 verbunden ist. Da ebenfalls zwei Ab- 30 standshalter 16 im unteren Bereich des Kondensators 4 vorgeschen sind, ist ein zweiter Schlitz 42 beiderseits jedes-Abstandshalters 16 im unteren Bereich des Kondensators 4 gebildet, in der Richtung zum Pfeil C gesehen, wobei über diesen Schlitz 42 ein vor dem Kondensator 4 liegender Raum D mit dem Raum E verbunden ist. Es ist auch möglich, daß mehr als drei Kühler-Befestigungsstücke 13b in der Breitenrichtung des Fahrzeugs im oberen Bereich des Kühlers 2 vorgesehen sind, oder daß ein einziges Befestigungsstück 13b vorgeschen ist. Ebenfalls ist es möglich, daß 40 mehr als drei Abstandshalter 16 in der Breitenrichtung des Fahrzeugs im oberen Bereich des Kondensators 4 vorgesehen sind, oder daß ein einziger Abstandshalter 16 vorgesehen ist. Anstelle des Schlitzes ist auch ein Durchgangsloch möglich, das in das Kühler-Befestigungsstück 13b oder in 45 den Abstandshalter 16 eingearbeitet ist.

Beim so ausgestalteten Frontend-Modul durchströmt die während der Fahrt des Fahrzeugs durch den Kühlergrill 33 eingesaugte Außenlust teilweise zunächst über den Raum D den Kondensator 4. Die durch den Kondensator 4 durchgeströmte Luft strömt nach einer Erwärmung durch den Kondensator 4 in den Raum E ein. Über den ersten relativ widerstandfreien Schlitz 41 gelangt die in den Raum E eingeleitete Luft teilweise in den Raum F. wie mit Pfeil A in Fig. 4 gezeigt, und strömt von dort über das Gebläse 3 in den nicht 55 Schlitz 42 gebildet ist, der einen vor dem Kondensator 5 liedargestellten Motorraum ein. Auf diese Weise kann die durch den Kondensator 4 erwärmte Außenluft teilweise an dem Kühler 2 vorbeiströmen, ohne ihn zu treffen, was zur Erhöhung der Kühlleistung des Kühlers 2 führt. Der erste Schlifz 41 erzeugt eine Luftströmung im Raum E, die ein 60 Verweilen der durch den Kondensator 4 erwärmten Luft im Raum E verhindert, so daß die Herabsetzung der Strömungsgeschwindigkeit der durch den Kondensator 4 durchgehenden Luft ausgeschlossen ist. Dies trägt ebenfalls zur Erhöhung der Kühlleistung des Kühlers 2 bei.

Durch den zweiten Schlitz 42 im unteren Bereich des Kondensators 4 strömt die durch den Kühlergrill eintretende Außenlußt teilweise vom Raum D durch den zweiten Schlitz

42 hindurch in den Raum E ein und gelangt von diesem zu dem Kühler 2, wie mit Pfeil B in Fig. 4 gezeigt. Dadurch kann die frische Luft unmittelbar zum Kühler 2 geleitet werden, was ehenfalls zur Erhöhung der Kühlleistung des Kühlers 2 führt.

Bei dem oben erwähnten Ausführungsbeispiel sind folgende Bauteile vorgeschen; ein Kondensator 4 mit einer vorderen und einer hinteren Fläche 4c und 4d; ein Kühler 2. der hinter dem Kondensator 4 dessen hinterer Fläche 4e gegenüberliegend angeordnet ist, und dessen oberer Zu-/Ablauf 2a unterhalb eines oberen Zu-/Ablaufs 4a des Kondensators 4 liegt; ein Gebläse 3, das hinter dem Kühler 2 dessen hinterer Fläche 2d gegenüberliegend angeordnet ist; ein vorderes Abschlußpaneel 1 zum Halten des Kühlers 2 sowie des Kondensators 4 und zum Tragen des Gebläses 3.

Oberhalb des oberen Zu-/Ablaufs 2a des Kühlers 2 ist ein erster Schlitz 41 gebildet, der einen Raum E zwischen dem Kondensator 4 und dem Kühler 2 mit einem Raum F zwischen dem Kühler 2 und dem Geblüse 2 verbindet. Durch das so ausgestaltete Frontend-Modul trifft die von außen in das Fahrzeug eingeleitete Luft auf den Kondensator 4, wobei der Wärmeaustausch erfolgt. Die erwärmte Luft strömt in den Raum E zwischen dem Kondensator 4 und dem Kühler 2, anschließend über den ersten Schlitz 41 im oberen Bereich des Kühlers 2 in den Raum 1 zwischen dem Kühler 2 und dem Gebläse 2 und dann unter Saugwirkung des Gebläses 3 in den Motorraum ein. Auf diese Weise kann die durch den Wärmeaustausch im Bereich des Kondensators 4 erwärmte Außenlust teilweise ohne Durchströmung des Kühlers 2 in den Motorraum eingeleitet werden, wodurch es ausgeschlossen ist, daß das Durchströmen der erwärmten Luft durch den Kühler 2 eine Reduzierung der Kühlleistung des Kühlers 2 bewirkt.

Dadurch, daß das vordere Abschlußpaneel 1 folgende Elemente aufweist, nämlich ein oberes, das obere Ende des vorderen Abschlußpaneels 1 bildendes Tragteil 13 für den Kühler, das eine Öffnung 13c zum Halten eines oberen Zu-/Ablaufs 4a des Kondensators 4 und eine unterhalb der Öffnung 13c liegende Öffnung 13d zum Halten eines oberen Zu-/Ablaufs 2a des Kühlers 2 hat, ein unteres, das untere Ende des vorderen Abschlußpaneels 1 bildendes Tragteil 12 für den Kühler, das einen Abstandshalter 16 zum Halten eines unteren Ab-/Zulaufs 4b des Kondensators 4 und eine Öffnung 12a zum Halten eines unteren Ab-/Zulaufs 2b des Kühlers 2 hat, und einen Paneelkörper 10, der eine Lagerung 14b für das Gebläse 3 aufweist und der einstückig am oberen und unteren Tragteil 13 und 12 gebildet ist, ist es erreicht, daß das Frontend-Modul eine einfache Bauweise hat, daß ein erster Schlitz 41 sichergestellt ist, und daß im Paneelkörper 10 die Außenluft zum Gebläse 3 effektiv geleitet werden kann (A, B in Fig. 4).

Dadurch, daß der untere Ab-/Zulauf 2b des Kühlers 2 unterhalb des unteren Ab-/Zulaufs 4b des Kondensators 4 liegt und unterhalb des zuletzt genannten Ab/-Zulaufs ein zweiter genden Raum D mit einem Raum E zwischen dem Kondensator 4 und dem Kühler 2 verbindet, gelangt die von außen in das Fahrzeug eingeleitete Luft teilweise vom Raum D durch den zweiten Schlitz 42 hindurch in den Raum E und geht von dort durch den Kühler 2 durch, so daß die kalte-Frischluft teilweise zu dem Kühler 2 gelangt und diesen kühlt, ohne den Kondensator 4 zu durchströmen, wodurch die durch das Durchströmen der erwärmten Luft durch den Kühler 2 bedingte Reduzierung der Kühlleistung des Küh-65 lers 2 noch unterdrückt werden kann.

BNSDOCID: <DE_19843928A1_I_>

Bezugszeichenliste

1 Frontend-Modul 2 Kühler 2a oberer Zu-/Ablauf (oberes Ende) 2b unterer Ab-/Zulauf (unteres Ende) 2d hintere Fläche 3 Gebläse 4 Kondensator 4a oberer Zu-/Ablauf (oberes linde) 4b unterer Ab-/Zulauf (unteres Ende) 4c vordere Fläche 4d hintere Fläche 10 Paneelkörper 11 Scitenwände 15 12 unteres Tragteil für den Kühler 12a Öffnung (Halterung für das untere Ende des Kühlers) 12b Öffnung 13 oberes Tragteil für den Kühler 13a untere Fläche 20 13b Befestigungsstück für den Kühler 13c Öffnung (Halterung für das obere Ende des Kondensa-13d Öffnung (Halterung für das obere Ende des Kühlers) 14 Öffnung 25 14a Bund 14b Lagerung für das Gebläse 16 Abstandshalter (Halterung für das untere Ende des Kondensators) 41 erster Schlitz 30 42 zweiter Schlitz

Patentansprüche

Frontend-Modul f
ür ein Fahrzeug, mit einem Kondensator (4), der eine vordere und eine hintere Fl
äche

(4c, 4d) aufweist, mit einem hinter diesem liegenden Kühler (2), der der hinteren Fläche (4d) des Kondensators (4) gegenüberliegend angeordnet ist und dessen oberes Ende (2a) unterhalb des oberen Endes (4a) des 40 Kondensators (4) liegt, mit einem hinter dem Kühler (2) liegenden Gebläse (3), das der hinteren Fläche (2d) des Kühlers (2) gegenüberliegend angeordnet ist, und mit einem vorderen Abschlußpancel (1) zum Halten des Kühlers (2) und des Kondensators (4) und zum Tra- 45 gen des Gebläses (3), wobei oberhalb des oberen Endes (2a) des Kühlers (2) ein erster Schlitz (41) gebildet ist, der einen Raum (E) zwischen dem Kondensator (4) und dem Kühler (2) mit einem Raum (F) zwischen dem Kühler (2) und dem Gebläse (3) verbindet. Frontend-Modul nach Anspruch 1, dadurch gekennzeichnet, daß das vordere Abschlußpaneel (1) ein oberes, das obere Ende des Paneels bildendes Tragteil (13) für den Kühler (2), das mit einer Halterung (13c) für das obere Ende (4a) des Kondensators (4) und einer un- 55 terhalb dieser Halterung (13c) liegenden Halterung (13d) für das obere Ende (2a) des Kühlers (2) versehen ist, ein unteres, das untere Ende des Paneels bildendes Tragteil (12) für den Kühler (2), das mit einer Halterupg.(12b) für das untere Ende (4b) des Kondensators 60 (4) und einer Halterung (12a) für das untere Ende (2b) des Kühlers (2) versehen ist, und einen Paneelkörper (10) aufweist, der mit einem Tragteil (14a) für das Gebläse (3) versehen ist und der einstückig am oberen und unteren Tragicil (13, 12) für den Kühler (2) gebildet ist. 65 3. Frontend-Modul nach Anspruch 1, dadurch gekennzeichnet, daß das untere Ende (2b) des Kühlers (2) unterhalb des unteren Endes (4b) des Kondensators (4)

liegt, und daß unterhalb des unteren Endes (4b) des Kondensators (4) ein zweiter Schlitz (42) gebildet ist, der einen vor einer vorderen Fläche (4c) des Kondensators (4) liegenden Raum (D) mit einem Raum (E) zwischen dem Kondensator (4) und dem Kühler (2) verbindet.

4. Frontend-Modul nach Anspruch 3, dadurch gekennzeichnet, daß das vordere Abschlußpaneel (1) ein oberes, das obere Ende des Paneels bildendes Tragteil (13) für den Kühler (2), das mit einer Halterung (13c) für das obere linde (4a) des Kondensators (4) und einer unterhalb dieser Halterung (13c) liegenden Halterung (13d) für das obere Ende (2a) des Kühlers (2) versehen ist, ein unteres, das untere Ende des Pancels bildendes Tragteil (12) für den Kühler (2), das mit einer Halterung (12b) für das untere Ende (4b) des Kondensators (4) und einer unterhalb dieser Halterung (12b) liegenden Halterung (12a) für das untere Ende (2b) des Kühlers (2) versehen ist, und einen Paneelkörper (10) aufweist, der mit einem Tragteil (14a) für das Gebläse (3) versehen ist und der einstückig am oberen und unteren Tragteil (13, 12) für den Kühler (2) gebildet ist.

Hierzu 5 Seite(n) Zeichnungen

DE 198 43 928 A1 B 62 D 25/08 8. April 1999

DE 198 43 928 A1 B 62 D 25/08 8. April 1999

Fig. 3

DE 198 43 928 A1 B 62 D 25/088. April 1999

Fig.4

Nummer: Int. Cl.⁶: Offenlegungstag: DE 198 43 928 A1 B 62 D 25/08 8. April 1999

Fig. 5

STAND DER TECHNIK