PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-226846

(43)Date of publication of application: 14.08.2002

(51)Int.CI.

C09K 11/08 C09K 11/62 C09K 11/66 C09K 11/73 C09K 11/84 H01L 33/00

(21)Application number: 2001-029093

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

06.02.2001

(72)Inventor:

KAWAGOE SHINYA

KOMATA YUJI

(54) ILLUMINATING FLUORESCENT SUBSTANCE, LIGHT-EMITTING DIODE USING THE SAME ILLUMINATING FLUORESCENT SUBSTANCE AND METHOD FOR COATING FLUORESCENT SUBSTANCE

PROBLEM TO BE SOLVED: To obtain an illuminating fluorescent substance providing nearly the same white light as white light of a white light source for general illumination maintaining a well-balanced state of each component of the three primary colors of red, green and blue and a strong light emission with a high luminous intensity especially when a light source emitting a near ultraviolet light at 340-380 nm wavelength is used as an excitation light source.

SOLUTION: The illuminating fluorescent substance excited by the near ultraviolet light at 340-380 nm wavelength and emitting the white light comprises a red fluorescent substance at 625-750 nm peak wavelength or an orange fluorescent substance at 575-675 nm peak wavelength, a green fluorescent substance at 500-600 nm peak wavelength and a blue fluorescent substance at 400-500 nm peak wavelength.

LEGAL STATUS

[Date of request for examination]

26.11.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-226846 (P2002-226846A)

(43)公開日 平成14年8月14日(2002.8.14)

(51) Int.Cl.7		識別記号		FΙ				5	;7]}*(参考)
C 0 9 K	11/08			C 0 9	K 11/08			J	4H001
	11/62	CPD			11/62		CPI	D	5 F O 4 1
	11/66	CPT			11/66		CP	Г	
	11/73	CPX			11/73		CP	X	
	11/84	CPD			11/84		CPI	D	
			審査請求	有	請求項の数	11 OL	(全 7	(頁)	最終頁に続く
(21)出願番		特顧2001−29093(P2001・	-29093)	(71) 出	500 人頭	005821			
					松	電器産業	株式会社	土	
(22)出顧日		平成13年2月6日(2001.	2. 6)		大腿	府門真市	大字門具	£1006	番地
				(72)勇	明者 川橋	進也			
					大腿	府高槻市	幸町1都	路1号	松下電子工業
					株式	公社内			
				(72) 発	明者 小僧	雄二			
					大	府高槻市	幸町14	61号	松下電子工業
					株式	公社内			
				(74) ∰	選人 100	097445			
					弁理	性 岩橋	文雄	<i>(5</i>)	2名)
									最終頁に続く

(54) 【発明の名称】 照明用蛍光体、この照明用蛍光体を用いた発光ダイオード、および蛍光体の塗布方法

(57)【要約】

【課題】 励起光源として、特に波長340nm~380nmの近紫外光を発する光源を用いた場合に、赤色、緑色、青色の3原色の各成分のバランスが取れた一般照明用の白色光源の白色光とほぼ同様の白色光であり、かつ発光強度の強い発光が得られる照明用蛍光体を提供する。

【解決手段】 波長 340 n m ~ 380 n m の近紫外光 によって励起されて白色発光する照明用蛍光体であって、ピーク波長 625 n m ~ 750 n m の赤色蛍光体またはピーク波長 575 n m ~ 675 n m の 積色蛍光体 と、ピーク波長 500 n m ~ 600 n m の 積色蛍光体 と、ピーク波長 400 n m ~ 500 n m の 青色蛍光体とを含有している。

体。

【特許請求の範囲】

【請求項1】 波長340nm~380nmの近紫外光によって励起されて白色発光する照明用蛍光体であって、ピーク波長625nm~750nmの赤色蛍光体またはピーク波長575nm~675nmの橙色蛍光体と、ピーク波長500nm~600nmの緑色蛍光体と、ピーク波長400nm~500nmの青色蛍光体とを含有することを特徴とする照明用蛍光体。

1

【請求項2】 前記赤色蛍光体は、一般式 $A_xD_vO_x$ (ただし、AはMg、CaむよびMnの中から選ばれる少なくとも一種の元素、DはGeむよびMnの中から選ばれる少なくとも一種の元素であり、x、yおよびzは20<x<40、0<y<15、z=100-x-yなる条件を満たす数である)で表される単相の酸化物であり、かつ結晶構造が斜方晶であるとともに、空間群がPbamであることを特徴とする請求項1記載の照明用蛍光体。

【請求項3】 前記橙色蛍光体は、一般式G_xO_xS_z: Eu³*(ただし、GはYおよびGaの中から選ばれる少なくとも一種の元素であり、x、yおよびzは35<x 20<45、35<y<45、z=100-x-yなる条件を満たす数である)で表される単相の酸化物であり、かつ結晶構造が六方晶であるとともに、空間群がP-3mであることを特徴とする請求項1記載の照明用蛍光体。

【請求項4】 前記緑色蛍光体は、一般式 L_x G e vO_x: M n²⁺ (ただし、LはC a および Z n の中から選ばれる少なくとも一種の元素であり、x、y および z は 20 < x < 30、10 < y < 20、z = 100 - x - y なる条件を満たす数である)で表される単相の酸化物であり、かつ結晶構造が菱面晶であるとともに、空間群が30 R - 3 H であることを特徴とする請求項 1 ~請求項 3 のいずれかに記載の照明用蛍光体。

【請求項5】 前記青色蛍光体は、一般式M、 (PO_4) 、 Cl_x : Eu^{z_1} (ただし、MはSr およびCaの中から選ばれる少なくとも一種の元素であり、x、y およびzは50<x<60、30<y<40、z=100-x-yなる条件を満たす数である)で表される単相の酸化物であり、かつ結晶構造が六方晶であるとともに、空間群がP63/mであることを特徴とする請求項1~請求項4のいずれかに記載の照明用蛍光体。

【請求項6】 請求項2記載の前記赤色蛍光体と、請求項4記載の前記緑色蛍光体と、請求項5記載の前記青色 蛍光体とを含有し、前記赤色蛍光体の含有量を重量百分率でa(%)、前記緑色蛍光体の含有量を重量百分率でb(%)、前記青色蛍光体の含有量を重量百分率でc(%)とした場合、50%<a<60%、25%<b<>35%、c=100-a-b(%)なる関係式が満たされていることを特徴とする請求項1記載の照明用蛍光体。

【請求項7】 請求項3記載の前記橙色蛍光体と、請求 50 銀から発生する254 n m をピーク波長とする紫外線に

項4記載の前記緑色蛍光体と、請求項5記載の前記青色 蛍光体とを含有し、前記橙色蛍光体の含有量を重量百分 率でd(%)、前記緑色蛍光体の含有量を重量百分率で b(%)、前記青色蛍光体の含有量を重量百分率でc (%)とした場合、10%<d<20%、55%

65%、c=100-b-d(%)なる関係式が満たされていることを特徴とする請求項1記載の照明用蛍光

【請求項8】 波長340nm~380nmの近紫外光 10 を発する発光素子と、この発光素子から発せられる光に よって励起されて発光する請求項1~請求項7のいずれ かに記載の照明用蛍光体とを有することを特徴とする発 光ダイオード。

【請求項9】 蛍光体を被塗布部材の平面部分に塗布する蛍光体の塗布方法であって、前記蛍光体を含有する蛍光体懸濁液をスピンコーティングによって前記被塗布部材の平面部分に塗布することを特徴とする蛍光体の塗布方法。

【請求項10】 前記蛍光体の平均粒径は1.5μm以) 下であることを特徴とする請求項9記載の蛍光体の塗布 方法。

【請求項11】 前記蛍光体懸濁液の調製において、前記蛍光体を溶液中に懸濁させる際、超音波撹拌を行った後、回転撹拌を行うことを特徴とする請求項9または請求項10記載の蛍光体の塗布方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、照明用蛍光体、この照明用蛍光体を用いた発光ダイオード、および蛍光体の塗布方法に関するものである。

[0002]

【従来の技術】近時、高効率でかつ長寿命である発光ダイオードを蛍光ランプ等の一般照明用白色光源の代替光源として用いることが提案されている。

【0003】従来の白色発光ダイオードとしては、例えば青色発光域($400nm\sim530nm$)にピーク波長をもつLEDチップ(発光素子)と、その発光の一部を吸収し黄色系に発光する蛍光体とを組み合わせたものが知られている(特開平11-31845号公報や特開平11-40858号公報等)。

[0004]

40

【発明が解決しようとする課題】しかしながら、とのような従来の白色発光ダイオードでは、青色光および黄色 光のみで白色光を実現しているため、赤味成分の不足した白色となり、一般照明用の白色光源の代替光源としては適していないという問題があった。

【0005】また、このような発光ダイオードに用いる 蛍光体として、一般的な蛍光ランプ用の蛍光体を使用した場合、このような蛍光ランプ用の蛍光体はもともと水

2

よって励起効率が最大となるように構成されているため、被長400nm~530nmの発光によって励起させて発光させても、発光強度が著しく弱く、場合によって発光しないという問題があった。

【0006】本発明は、このような問題を解決するためになされたものであり、励起光源として、特に波長340nm~380nmの近紫外光を発する光源を用いた場合に、赤色、緑色、青色の三原色の各成分のバランスが取れた一般照明用の白色光源の白色光とほぼ同様の白色光であり、かつ発光強度の強い発光を得ることができる10照明用蛍光体を提供することを目的とする。

【0007】また、本発明は、波長340nm~380 nmの近紫外光を発する発光素子を有する発光ダイオードであって、赤色、緑色、青色の三原色の各成分のバランスが取れた一般照明用の白色光源の白色光とほぼ同様の白色光であり、かつ発光強度の強い発光を得ることができる発光ダイオードを提供することを目的とする。

【0008】さらに、本発明は、被塗布部材、例えば発光ダイオードの発光素子の平面部分に蛍光体膜を形成する際、蛍光体膜の膜厚を均一にすることができる蛍光体 20の塗布方法を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明の照明用蛍光体 は、波長340nm~380nmの近紫外光によって励 起されて白色発光する照明用蛍光体であって、ピーク波 長625 nm~750 nmの赤色蛍光体またはピーク波 長575mm~675mmの橙色蛍光体と、ピーク波長 500nm~600nmの緑色蛍光体と、ピーク波長4 00nm~500nmの青色蛍光体とを含有している。 【0010】これにより、励起光源として、波長340 nm~380nmの近紫外光を発する光源を用いた場合 に、赤色、緑色、青色の三原色の各成分のパランスが取 れた一般照明用の白色光源の白色光とほぼ同様の白色光 であり、かつ発光強度の強い発光を得ることができる。 【0011】また、本発明の発光ダイオードは、波長3 40 nm~380 nmの近紫外光を発する発光素子と、 この発光素子から発せられる光によって励起されて発光 する請求項1~請求項7のいずれかに記載の照明用蛍光 体とを有している。

【0012】これにより、赤色、緑色、青色の三原色の 40 各成分のバランスが取れた一般照明用の白色光源の白色 光とほぼ同様の白色光であり、かつ発光強度の強い発光を得ることができる。

【0013】さらに、本発明の蛍光体の塗布方法は、蛍光体を被塗布部材の平面部分に塗布する蛍光体の塗布方法であって、前記蛍光体を含有する蛍光体懸濁液をスピンコーティングによって前記被塗布部材の平面部分に塗布する方法が用いられている。

【0014】 これにより、被塗布部材の平面部分に蛍光体膜を形成する際、蛍光体膜の膜厚を均一にすることが 50

できる。

[0015]

【発明の実施の形態】以下、本発明の実施の形態について、図面を用いて説明する。

【0016】本発明の実施の形態であるチップ型の発光ダイオードは、図1に示すように、発光軸Xを含む面で切断した断面形状が凹状の真鍮からなるベース部1と、このベース部1の凹部2内の底面上に配置された発光素子3と、この発光素子3等を保護するためにベース部1の凹部2内に充填されたエボキシ樹脂やシリコーン樹脂等からなる透明性の樹脂部材4とを備えている。

【0017】ベース部1には、ベース部1の外部から発光素子3に電力を供給する金と錫との合金からなる2つの層状の外部電極5a,5bが一体的に形成されている。

【0018】発光素子3は、サファイアからなる透明基板6上に、液長340nm~380nmの近紫外光を発する例えば窒化ガリウム系化合物半導体7と、P電極8とが順次積層された構造をなしている。また、半導体7にはN電極9が形成されている。

【0019】外部電極5aとP電極8とは直接接触して接続されている。外部電極5bとN電極9とは金属ワイヤー10を介して接続されている。

【0020】なお、発光素子3の発光波長は、半導体材料やその組成比によって種々選択することができる。

【0021】透明基板6の表面には、ピーク波長625 nm~750nmの赤色蛍光体またはピーク波長575 nm~675nmの橙色蛍光体と、ピーク波長500nm~600nmの緑色蛍光体と、ピーク波長400nm~500nmの青色蛍光体とを含有し、波長340nm~380nmの近紫外光によって励起されて白色発光する蛍光体からなる蛍光体膜11が形成されている。

【0022】赤色蛍光体には、例えば一般式A、D、O、(ただし、AはMg、CaおよびMnの中から選ばれる少なくとも一種の元素、DはGeおよびMnの中から選ばれる少なくとも一種の元素であり、x、yおよびzは20<x<40、0<y<15、z=100-x-yなる条件を満たす数である)で表される単相の酸化物であり、かつ結晶構造が斜方晶であるとともに、空間群がPbamである蛍光体を用いることが好ましい。

【0023】以下、一例として赤色蛍光体(Mn, Ca, Mn)、(Ge, Mn)、O、において、その組成比を種々変化させた場合の結晶構造、空間群、および波長 375nmの近紫外光によって励起された際に発光する発光色を調べたところ、表1に示すとおりの結果が得られた。

【0024】なお、表1の「発光色」の欄において、「赤」はピーク波長625nm~750nmの発光を、「紫」はピーク波長380nm~390nmの発光を、「青紫」はピーク波長390nm~400nmの発光を

それぞれ示す(以下の表についても同じ)。また、「判定」の欄において、「○」は本発明に使用するのに適していることを、「×」は本発明に使用するのに適してい*

*ないことをそれぞれ示す(以下の表についても同じ)。 【0025】

【表1】

	組成比		結晶構造	空同群	発光色	判定
×	У	Z				
15	5	80	正方品と斜方品		*	×
24	12	64	正方晶と斜方晶	_	紫	×
24	14	62	斜方晶	Fmmm	紫	×
25	10	65	斜方晶	Pbam	赤	0
29	30	41	六方晶	R3barc	無	×
33	12	5 5	斜方晶	Pbam	赤	0
45	20	35	六方品と斜方晶	_	青集	×
52	10	38	六方品と斜方品	_	青紫	×

【0026】 橙色蛍光体には、例えば一般式 $G_xO_vS_z: Eu^3*$ (ただし、GはYおよび G_a の中から選ばれる少なくとも一種の元素であり、x、yおよびzは35 < x < 45、35 < y < 45、z = 100 - x - yなる条件を満たす数である)で表される単相の酸化物であり、かつ結晶構造が六方晶であるとともに、空間群がP-3 mである蛍光体を用いることが好ましい。【0027】以下、一例として橙色蛍光体(Y,Ca)

※せた場合の結晶構造、空間群、および波長375nmの 近紫外光によって励起された際に発光する発光色を調べ たところ、表2に示すとおりの結果が得られた。 【0028】なお、表2の「発光色」の欄において、 「橙」はピーク波長575nm~675nmの発光を示

20 【0029】 【表2】

す。

、O、S n 、: E u ³ ⁺ において、その組成比を種々変化さ ※

	組成比		結晶構造	空間群	発光色	判定
×	У	z]			
30	30	40	三方晶	D52	*	×
33	33	34	斜方晶と大方晶	_	赤	×
36	36	28	六方品	P-3m	橙	0
36	38	26	大方晶	P6/mcm	赤	×
38	41	21	斜方品と表面品	_	赤	×
39	39	22	六方晶	P-3m	橙	0
40	40	20	六方晶	P-3m	桂	0
40	50	10	斜方品と六方品	-	赤	×
45	45	10	正方品と斜方品		赤	×
50	40	10	正方品と斜方品	_	赤	×

【0030】緑色蛍光体には、例えば一般式 $L_xGe_vO_z$: Mn^{z+} (ただし、LはGa およびZnの中から選ばれる少なくとも一種の元素であり、x、y およびz は20 < x < 30、10 < y < 20、z = 100 - x - yなる条件を満たす数である)で表される単相の酸化物であり、かつ結晶構造が菱面晶であるとともに、空間群がR-3 Hである蛍光体を用いることが好ましい。

【0031】以下、一例として緑色蛍光体(Ca, Zn)、Ge,O、: Mn² において、その組成比を種々変化させた場合の結晶構造、空間群、および波長375n

mの近紫外光によって励起された際に発光する発光色を調べたところ、表3に示すとおりの結果が得られた。【0032】なお、表3の「発光色」の欄において、「緑」はピーク波長500nm~600nmの発光を、「青緑」はピーク波長475nm~525nmの発光を、「黄緑」はピーク波長575nm~600nmの発40 光をそれぞれ示す。

[0033]

【表3】

光色	空間群	結晶構造	組成比		
			2	У	×
禄	_	三斜晶と菱面晶	80	5	15
杨		三斜晶と菱面晶	74	8	18
緑	R-3H	委面品	68	11	21
緑	R-3H	菱面晶	60	15	26
解	_	三方品と菱面鼻	72	12	26
一級	P4/mm	正方晶	72	11	27
禄	R-3H	最適養	57	14	29
科		三方晶と六方晶	37	32	31
电额		三斜晶と菱面晶	47	21	32
ŧR	_	三斜品と変面品	42	16	42

【0034】青色蛍光体には、例えば一般式M、(P O,) , C 1 , : E u ' * (ただし、MはS r およびC a の 中から選ばれる少なくとも一種の元素であり、x、yお $\pm \sigma_z = 100$ - x - y なる条件を満たす数である)で表される単相の 酸化物であり、かつ結晶構造が六方晶であるとともに、 空間群がP63/mである蛍光体を用いることが好まし 61

*種々変化させた場合の結晶構造、空間群、および波長3 75 n m の近紫外光によって励起された際に発光する発 光色を調べたところ、表4に示すとおりの結果が得られ た。

【0036】なお、表4の「発光色」の欄において、 「青」はピーク波長400nm~500nmの発光を示 す。

[0037]

【表4】

【0035】以下、一例として緑色蛍光体(Sr, C a)、(PO4)、C1、: Eu²⁺において、その組成比を*

> 空間群 発光色 制定 組成比 結晶構造 正方晶と六方晶 裳 × 21 34 45 24 28 正方晶と六方晶 48 O 23 大方品 P63/m Ħ 26 51 三方晶と六方晶 青紫 17 52 31 青紫 P3barm1 53 38 9 六方畠 正方晶と三方晶 鞶 55 20 25 O P63/m Ħ 29 16 大方品 56 O P63/m Ħ 11 六方晶 56 33 音級 × 正方品と六方品 **57** 20 23 青棒 × 63 36 正方晶と大方晶

【0038】上記赤色蛍光体、緑色蛍光体および青色蛍 光体をそれぞれ用いた場合では、赤色蛍光体の含有量を 重量百分率でa(%)、緑色蛍光体の含有量を重量百分 率でb(%)、青色蛍光体の含有量を重量百分率でc (%) とすると、50%<a<60%、25%<b<3 5%、c=100-a-b(%)なる関係式が満たされ ることにより、CIE1931色度図上で(x, y) = (0. 2, 0. 2), (x, y) = (0. 2, 0.4), (x, y) = (0.45, 0.2) (x, y) =(0.45,0.4)で囲まれた領域の白色光、つまり 一般照明用の白色光源と同様の白色光を得ることができ る。

【0039】また、上記橙色蛍光体、緑色蛍光体および 青色蛍光体をそれぞれ用いた場合では、橙色蛍光体の含 有量を重量百分率で d (%)、緑色蛍光体の含有量を重 量百分率でb(%)、青色蛍光体の含有量を重量百分率 でc(%)とした場合、10%<d<20%、55%< b < 65%、c=100-b-d(%) なる関係式が満 50 を経て蛍光体膜11を形成する。このようなスピンコー

たされることにより、上記と同じようにCIE1931 色度図上で(x, y) = (0.2, 0.2)、(x, y)y) = (0.2, 0.4), (x, y) = (0.45,0.2) (x, y) = (0.45, 0.4) で囲まれた 領域の白色光を得ることができる。

【0040】次に、蛍光体を透明基板6に塗布する方法 について説明する。

【0041】まず、ポリエチレンオキサイドが溶かされ 40 た水溶液に、あらかじめ各色の蛍光体を混合した平均粒 径1.5μm以下の蛍光体を懸濁して蛍光体懸濁液を調 製する。蛍光体を溶液中に懸濁させる際、蛍光体が凝集 するのを防止するため、超音波撹拌を行った後、回転撹 拌を行うことが好ましい。

【0042】との蛍光体懸濁液を所定の速度で回転させ た被塗布部材である透明基板6の中心部に適量垂らし、 遠心力を利用して透明基板6全体に蛍光体懸濁液を塗布 する(スピンコーティング)。その後、乾燥、焼成工程 ティングを用いることにより、透明基板 6 に膜厚が均一な蛍光体膜 1 1 を容易に形成することができる。

【0043】なお、蛍光体膜11の膜厚は、蛍光体懸濁液の粘度、被塗布部材に滴下する蛍光体懸濁液量、被塗布部材の回転速度、または蛍光体懸濁液中に含まれる蛍光体量を制御することにより、所望の厚さに調整することができる。

【0044】ここで、蛍光体の平均粒径を1.5μm以下に規定した理由について説明する。

【0045】まず、平均粒径が0.1μm~10μmの 10 範囲内で種々の蛍光体を作製し、作製した各々の蛍光体を用い、上述した製造方法によって透明基板6の表面に 蛍光体膜11を形成し、各蛍光体膜11の表面粗さについて調べたところ、図2に示すとおりの結果が得られた。

【0046】なお、図2において、縦軸は平均粒径が10μmの蛍光体からなる蛍光体膜11の表面粗さを100とした場合の各蛍光体膜11の相対的表面粗さを示している。

【0047】図2から明らかなように、平均粒径が 1.5μ m以下の蛍光体からなる蛍光体膜11の相対的表面粗さは30以下であった。一方、平均粒径が 1.5μ mを越える、例えば 2.0μ mの蛍光体からなる蛍光体膜11の相対的表面粗さは65であり、平均粒径が 1.5μ mの蛍光体からなる蛍光体膜11の相対的表面粗さに比して著しく大きくなることがわかった。

【0048】したがって、蛍光体の平均粒径を1.5μm以下に規定することにより、蛍光体膜11の表面粗さを著しく小さくすることができる。また、蛍光体膜11の表面粗さをより小さくするため、蛍光体の平均粒径を 301.0μm以下に規定することが好ましい。このように蛍光体の平均粒径は小さければ小さいほど好ましいが、製造が容易でありかつ高コスト化を防止するため、0.1μm以上に規定することが好ましい。

【0049】以上のように波長340nm~380nmの近紫外光を発する発光素子を有する発光ダイオードにおいて、この発光素子から発せられる光によって励起されて発光する蛍光体として、ビーク波長625nm~750nmの赤色蛍光体と、ビーク波長575nm~675nmの橙色蛍光体と、ビーク波長500nm~600nmの緑色蛍光体と、ビーク波長400nm~500nmの青色蛍光体とを含有する蛍光体とを用いることにより、赤色、緑色、青色の三原色の各成分のバランスが取れた一般照明用の白色光源の白色光とほぼ同様の白色光であり、かつ発光強度の強い発光を得ることができる。

【0050】次に、本発明の効果を確認するための実験例について説明する。

【0051】図1に示す発光ダイオードにおいて、波長 375nmの近紫外光を発する発光素子と、赤色蛍光体 50

【0052】また、比較のために、一般的な蛍光ランプ用の蛍光体、例えばGdMgB,O1。: Ce³+(赤色蛍光体)、LaPO,: Ce³+(緑色蛍光体)、および(Ba, Ca, Mg)1。(PO,)。C12: Eu¹²(青色蛍光体)とを混合した蛍光体からなる膜厚20μmの蛍光体膜とを有する点を除いて本発明品Aと同じ構成を備えている発光ダイオード(以下、単に「比較品」という)についても、100mWで発光させて発光強度、および色度について調べた。

度、および色度について調べた。

【0053】その結果、本発明品Aの発光強度は65c d/m²であった。一方、比較品の発光強度は20cd /m¹であった。また、本発明品Aの色度はCIE19 31色度図上で(x, y) = (0.28, 0.30)で あった。一方、比較品の色度はCIE1931色度図上 $\mathbf{r}(\mathbf{x}, \mathbf{y}) = (0.21, 0.22)$ であった。 【0054】次に、図1に示す発光ダイオードにおい て、波長375nmの近紫外光を発する発光素子と、橙 色蛍光体として(Y, Ca),。O,。Snz。: Eu³¹を重 量百分率で13%、緑色蛍光体として(Ca, Zn), Ge,4O,7:Mn2*を重量百分率で62%、青色蛍光体 として(Sr, Ca); (PO,); Cl; : Eu''を 重量百分率で25%になるように混合された蛍光体から なる膜厚20μmの蛍光体膜とを有する発光ダイオード (以下、単に「本発明品B」という)を作製し、作製し た発光ダイオードを100mWで発光させて発光強度、 および色度について調べた。

【0055】その結果、本発明品Bの発光強度は60 c d / m²であった。また、本発明品Bの色度はCIE1931色度図上で(x,y)=(0.30,0.34)であった。

40 【0056】このように本発明は、赤色、緑色、青色の 三原色の各成分のバランスが取れた一般照明用の白色光 源の白色光とほぼ同様の白色光であり、かつ発光強度の 強い発光ダイオードを得ることができることが確認され た。

【0057】なお、本発明の実施の形態では、蛍光体膜11を透明基板6の表面に形成した場合について説明したが、透明基板6上に透明ガラス板(図示せず)を設け、この透明ガラス板の平面部分に蛍光体膜11を形成した場合でも上記と同様の効果を得ることができる。 【0058】また、上記実施の形態では、蛍光体膜11

を透明基板6の表面に形成した場合について説明したが、例えば蛍光体を樹脂部材4内に拡散させた場合や、図示はしていないが発光ダイオードの前面にレンズを設け、このレンズの表面に蛍光体膜11を形成した場合でも上記と同様の効果を得ることができる。

【0059】さらに、上記実施の形態では、チップ型の 発光ダイオードを例示したが、本発明は例えば砲弾型の 発光ダイオード等にも適用することができる。

[0060]

【発明の効果】以上説明したように本発明の照明用蛍光 10体は、励起光源として、特に被長340nm~380nmの近紫外光を発する光源を用いた場合に、赤色、緑色、青色の三原色の各成分のバランスが取れた一般照明用の白色光源の白色光とほぼ同様の白色光であり、かつ発光強度の強い発光を得ることができる照明用蛍光体を提供することができるものである。

【0061】また、本発明の発光ダイオードは、波長340nm~380nmの近紫外光を発する発光素子を有する発光ダイオードであって、赤色、緑色、青色の三原色の各成分のパランスが取れた一般照明用の白色光源の20白色光とほぼ同様の白色光であり、かつ発光強度の強い発光を得ることができる発光ダイオードを提供すること*

* ができるものである。

【0062】さらに、本発明の蛍光体の塗布方法は、被塗布部材の平面部分に蛍光体膜を形成する際、蛍光体膜の膜厚を均一にすることができる蛍光体の塗布方法を提供することができるものである。

12

【図面の簡単な説明】

【図1】本発明の実施の形態であるチップ型の発光ダイ オードの一部切欠正面図

【図2】 蛍光体の平均粒径と蛍光体膜の相対的表面粗さ との関係を示す図

【符号の説明】

- 1 ベース部
- 2 凹部
- 3 発光素子
- 4 樹脂部材
- 5a, 5b 外部電極
- 6 透明基板
- 7 半導体
- 8 P電極
- 9 N電極
- 10 金属ワイヤー
- 11 蛍光体膜

3 9 10 5b

【図1】

| 図2 | 100

フロントページの続き

(51)Int.Cl.'

識別記号

H 0 1 L 33/00

FΙ

HO1L 33/00

テーマコード(参考)

N

F ターム(参考) 4H001 XA08 XA12 XA15 XA20 XA30 XA31 XA32 XA38 XA39 SF041 AA14 CA40 CA46 DA07 DA44 DA45 DB01 DB09 EE25 FF11