CLIP Embeddings

Contrastive Language—Image Pre-training

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford * 1 Jong Wook Kim * 1 Chris Hallacy 1 Aditya Ramesh 1 Gabriel Goh 1 Sandhini Agarwal 1 Girish Sastry 1 Amanda Askell 1 Pamela Mishkin 1 Jack Clark 1 Gretchen Krueger 1 Ilya Sutskever 1

Presented by:
John Tan Chong Min

Demo of CLIP Embeddings

Pros: Broad Category of Image

Image / Text	Best Matched Text	A photo of a guacamole	A picture of a fight	A picture of a girl	A picture of pikachu	a picture of an apple	a picture of a rainbow apple	a picture of one
	A photo of a guacamole	0.33	0.20	0.20	0.20	0.22	0.22	0.23
	A picture of a fight	0.13	0.25	0.17	0.17	0.16	0.12	0.19
	A picture of a girl	0.13	0.20	0.25	0.20	0.19	0.16	0.22
	A picture of pikachu	0.19	0.21	0.22	0.33	0.22	0.19	0.22
	a picture of an apple	0.20	0.22	0.22	0.19	0.31	0.29	0.24
	a picture of a rainbow apple	0.16	0.19	0.19	0.17	0.27	0.27	0.21
1	a picture of one	0.20	0.23	0.23	0.21	0.23	0.20	0.26

Pros: Color

Image / Text	Best Matched Text	a picture of red background	a picture of green background	a picture of blue background	a picture of black background	a picture of white background
	a picture of red background	0.31	0.25	0.26	0.27	0.28
	a picture of green background	0.26	0.31	0.26	0.27	0.28
	a picture of blue background	0.26	0.25	0.31	0.27	0.27
	a picture of black background	0.25	0.26	0.26	0.29	0.28
	a picture of white background	0.22	0.22	0.22	0.22	0.25

Pros: Text Detection

Image / Text	Best Matched Text	a picture of "bye"	a picture of "clip"	a picture of "clips"	a picture of "1"	a picture of "2"
bye	a picture of "bye"	0.32	0.21	0.20	0.22	0.22
clip	a picture of "clip"	0.24	0.32	0.30	0.23	0.22
clips	a picture of "clips"	0.23	0.31	0.32	0.23	0.22
1	a picture of "1"	0.24	0.22	0.22	0.27	0.25
2	a picture of "2"	0.23	0.22	0.22	0.26	0.27

Cons: Position

Image / Text	Best Matched Text	a picture of blue square at top left	a picture of blue square at top right	a picture of blue square at center	a picture of blue square at bottom left	a picture of blue square at bottom right
	a picture of blue square at top right	0.29	0.30	0.29	0.29	0.30
	a picture of blue square at top right	0.29	0.30	0.29	0.28	0.29
	a picture of blue square at center	0.30	0.31	0.31	0.29	0.30
	a picture of blue square at top right	0.27	0.28	0.27	0.26	0.27
	a picture of blue square at top right	0.27	0.28	0.27	0.27	0.28

Key takeaways

- Large-scale web-scale learning is better than dataset-specific training
- **Text:** LLM systems using unsupervised next-token prediction and can scale without labels
- Multimodal: Text-image systems require Caption-Image pairs, but are easily obtainable with internet data

Key insight: Comparing in latent/abstraction space better than predicting in self-supervised manner for cross-domain mapping

- Image domain is of highdimensionality
- Can be hard to predict image-based caption tokens exactly
- Bag of words / Contrastive learning may help reduce demands on prediction by abstracting in latent space

Dataset

- 400 million text-image pairs
- Text must contain one of 500,000 query words
 - Query words are those occurring at least 100 times in English version of Wikipedia
 - My Opinion: May mean cross-language support and rare domain-specific words may not be covered
- Class-balance results by including up to 20000 (image, text) pairs per query
- Able to perform wide set of tasks during pre-training including OCR, geolocalization, action recognition, classification

Final Architecture

• Text Encoder: BoW / GPT-2

Image Encoder: ResNet / ViT

• Embedding dimension: 512

• **Impt: Max sequence length capped at 76 tokens

• Training Time: The largest ResNet model, RN50x64, took **18 days** to train on 592 **V100 GPUs** while the largest Vision Transformer took **12 days** on **256 V100 GPUs**

1. Contrastive pre-training

- Use cosine similarity of embeddings as gauge of similarity
- Predict only those image-text mappings given in N samples
- Objective:

 Maximise cosine similarity of those in blue (true pairs), and minimize the rest

2. Create dataset classifier from label text

- Classification by CLIP can be done by having a list of text embeddings corresponding to each class, and mapping it to image embeddings
- Note: Prediction is done in latent/abstraction space
- My thoughts: Coiuld performance be better with multiple abstraction spaces?

Details for the brave

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n. d_e]
I_e = 12\_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

Figure 3. Numpy-like pseudocode for the core of an implementation of CLIP.

- Image and text encoder can be replaced with anything that takes in image/text respectively and outputs embeddings
- Uses cross-entropy loss
 - For each image, ensure corresponding text is predicted highly
 - For each text, ensure corresponding image is predicted highly

CLIP

Train on many diverse datasets Effective across many tasks

Good performance across 30 datasets

Issues of Text Captioning for Classification

- Polysemy: Class Names may not have full context
 - E.g. ImageNet classes uses same word "Crane" for both construction cranes and cranes that fly.
 - What this means: If you are using it for classification, try to provide more context for the classes, e.g. specify location, context of the class
- Single word classes not common in pre-training captions:
 - To help bridge this distribution gap, we found that using the prompt template "A photo of a {label}." to be a good default
 - What this means: When you are using it for your tasks, try to match it to image captions in the wild

Using more diverse and context-dependent text captioning helps

Figure 4. Prompt engineering and ensembling improve zero-shot performance. Compared to the baseline of using contextless class names, prompt engineering and ensembling boost zero-shot classification performance by almost 5 points on average across 36 datasets. This improvement is similar to the gain from using 4 times more compute with the baseline zero-shot method but is "free" when amortized over many predictions.

Prompt-Engineering for Datasets

- Specifying the type of dataset in text captions helps
 - Oxford-IIIT Pets: "A photo of a {label}, a type of pet."
 - Food101: "A photo of a {label}, a type of food."
 - FGVC Aircraft: "A photo of a {label}, a type of aircraft."
 - OCR datasets: Put a quote around text or number to recognise
 - Satellite: "A satellite photo of a {label}"

Ensembling Text Embeddings

- Average embedding over multiple similar prompts:
 - "A photo of a big {label}"
 - "A photo of a small {label}"
- ImageNet ensembled over 80 context prompts
- My thoughts: Don't use text embeddings for specific image features
 - it probably is lost over ensembling

For natural image-type datasets without specialised knowledge, zero-shot CLIP is competitive

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

My thoughts: Web-scale data may be able to augment a limited training set

Using natural text meaning for class labels can help with transfer learning

For natural image-type datasets without specialised knowledge, zero-shot CLIP is competitive

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

CLIP is weak at specialised tasks:

- Satellite image classification (EuroSAT and RESISC45)
- Lymph node tumor detection (PatchCamelyon)
- Counting objects in synthetic scenes (CLEVRCounts)
- German traffic sign recognition (GTSRB)
- Recognizing distance to the nearest car (KITTI Distance)

My thoughts: LLMs are not great for such tasks either – rule-based tasks or specialized tasks may perform better without interference from web-scale data

Food for thought: Multiple Abstraction Spaces?

Problem: Many potential objectives for similarity

Choose the right objectives for your use cases

Questions to Ponder

- What does it mean to be similar in image space?
- Why would someone use image embeddings to find an image, as compared to using matching text embeddings to text abstracted from an image?
- CLIP is trained with text and image encoder from scratch. Why not start the training with pre-trained text embeddings, and then try to base the image embeddings off these?
- Will better text and image encoders help with better latent/abstraction spaces? What about dimension of latent/abstraction space?