Math 151A: Applied Numerical Methods

Prof. M. Zhou | Winter 2025

Contents

- 1 Review
- 2 Floating Point
- 3 Root-Finding
- 4 Data Fitting
- 5 Numerical Differentiation
- 6 Numerical Integration
- 7 Direct Methods for Solving Linear Systems
- 8 Indirect Methods for Solving Linear Systems

1 Review

Theorems (Calculus):

- 1. **IVT**: Let $f \in C[a, b]$ and let $k \in \mathbb{R}$ between f(a), f(b). Then $\exists c \in [a, b]$ s.t. f(c) = k.
- 2. MVT: Let $f \in C[a,b]$ be differentiable on (a,b). Then $\exists c \in (a,b)$ s.t. $f'(c) = \frac{f(b)-f(a)}{b-a}$.

Theorem (Taylor's Theorem). Let $f \in C^n[a, b]$, and let $x_0 \in [a, b]$. Assume f^{n+1} exists on [a, b]. Then $\forall x \in [a, b]$, $\exists \xi_x \in [x_0, x]$ s.t. $f(x) = P_n(x) + R_n(x)$, where:

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}(x - x_0)^{n+1}$$

Integration by Parts: $\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$

Error: Let p be an approximation of p^* :

- 1. Absolute error $(|p-p^*|)$ vs. relative error $(\frac{p-p^*}{p^*})$ $[p \neq 0]$
- 2. *Underflow error*: When a small number rounds to 0 (after subtracting near-equal #s, e.g.)
- 3. **Overflow error**: When a large number rounds to $\pm \infty$ (from dividing by a small #, e.g.)

Big-O Notation: Say that a function f(x) is O(g(x)) as $x \to \infty$ if \exists constants $M > 0, x_0 \in \mathbb{R}$ s.t.:

$$|f(x)| \le M |g(x)| \ \forall \ x > x_0$$

Say that f(x) is O(g(x)) as $x \to a$ if $\exists M, \delta > 0$ s.t.:

$$|f(x)| \le M |g(x)| \ \forall x \text{ s.t. } |x-a| \le \delta$$

Orders of Convergence

A convergent sequence $\{x_n\}_{n\geq 1}$ with limit x is said to converge with order $\alpha\geq 1$ to x if \exists constant $L\in (0,\infty)$ s.t.:

$$\lim_{n \to \infty} \frac{|x_{n+1} - x|}{|x_n - x|^{\alpha}} = L$$

2 Floating Point

Floating point: computational form for representing a decimal number; can denote by $Fl(x) = x + \epsilon$

- 1. Single-precision/short/float32: ~6-9 [base 10] decimal digits
- 2. **Double-precision/long/float64**: ~15-17 decimal digits
- 3. In general: machine accuracy given by $\epsilon \approx 10^{-16}$

The IEEE binary64 Floating Point

IEEE binary64 floating point format (64 bits total) is divided into 3 parts: (i) the **sign bit** [1 bit], (ii) the **exponent** [11 bits], and (iii) the **significand** [52 bits]

$$\underline{FP}: (-1)^{\operatorname{sign}} \cdot [1.\operatorname{significand}]_2 \cdot 2^{\operatorname{exponent} - 2}$$

Floating Point:

- 1. Sign bit indicates sign of a number, including \pm zero
- 2. Exponent bits are unsigned, range from 0 to 2047 $\underset{-1024}{\longrightarrow}$ -1022 to +1023
 - -1023 (all 0s), +1024 (all 1s) reserved for special numbers

Finite-Digit Arithmetic: For numbers that cannot be represented exactly, have to either *chop* [remove extra digits] or *round* [round to nearest representable number]

- When doing arithmetic: chop/round after every operation
- Accumulate error with every operation \rightarrow can use **nested arithmetic**: factor common terms to reduce the total # operations [FLOPs: floating point operations] performed

Bisection Search

- 1. Start with search region $[a_0, b_0]$
- 2. At every iteration, evaluate $f(\frac{b_n+a_n}{2})$
- 3. $f > 0 \implies$ choose $a_{n+1} = a_n, b_{n+1} = \frac{b_n + a_n}{2}$; else, choose $a_{n+1} = \frac{b_n + a_n}{2}, b_{n+1} = b_n$

Convergence of Bisection Method: Let $f \in C[a, b]$ s.t. $sign[f(a)] \neq sign[f(b)]$. Then the sequence $\{p_n\}_{n\geq 1}$ generated by the bisection method converges globally to a root p of f with error:

$$|p_n - p| \le \frac{b - a}{2^n} \,\forall \, n \ge 1$$

Fixed-Point Iteration

Def: A *fixed point* of a function g is a point p s.t. g(p) = p. (Note: f.p. of $g \Leftrightarrow \text{root of } x - g(x)$)

Theorems (Fixed Points):

- 1. **Existence**: Let $g \in C[a, b]$ with $a \leq g(x) \leq b \ \forall \ x \in [a, b]$; then $\exists \ p \in [a, b]$ s.t. g(p) = p.
- 2. Uniqueness: If g'(x) exists on (a, b) and \exists constant 0 < k < 1 s.t. $|g'(x)| \le k \ \forall \ x \in (a, b)$, then the aforementioned fixed point p is unique.

Fixed-Point Iteration

Given $g \in C[a, b]$ s.t. $g(x) \in [a, b] \ \forall \ x \in [a, b]$ and initial guess $p_0 \in [a, b]$, can find a sequence p_n converging to fixed point p.

Let $\{p_n\}_{n\geq 1}^{\infty}$ def. by $\underline{p_n=g(p_{n-1})}$; if $p_{n_n\geq 1}$ converges to $p\in [a,b]$, then p is a fixed point of g.

Theorems (Fixed Point Iteration):

- 1. **Fixed-Point Theorem**: Let g as above. Suppose g' exists on (a,b) and \exists constant $k \in (0,1)$ s.t. $|g'(x)| \leq k \ \forall \ x \in (a,b)$. Then for any $p_0 \in [a,b]$, the sequence $\{p_n\}_{n\geq 1}$ converges to the unique fixed point $p \in [a,b]$ of g [Corollary: with error $|p_n-p| \leq k^n \cdot \max(p_0-a,b-p_0)$].
- 2. Convergence: $\{p_n\}_{n\geq 1}$ converges linearly to p with $\lim_{n\to\infty}\frac{|p_n-p|}{|p_{n-1}-p|}=|g'(p)|\leq k<1$.

Newton's Method

Given an initial guess p_0 s.t. $|p_0 - p|$ small, have update rule:

$$x^{k+1} := x^k - \frac{f(x^k)}{f'(x^k)}$$

Theorems (Newton's Method):

- 1. Convergence: Let $f \in C^2[a, b]$. If $p \in (a, b)$ satisfies $f(p) = 0, f'(p) \neq 0$, then $\exists \delta > 0$ s.t. Newton's method converges to p for any $p_0 \in [p \delta, p + \delta]$.
- 2. Convergence Order: Let $g = x \frac{f(x)}{f'(x)} \in C^{\alpha}[a,b]$ $(\alpha > 2)$, and let $p \in [a,b]$. Assume g(p) = p and $g'(p) = \ldots = g^{\alpha-1}(p)$, but $g^{\alpha}(p) \neq 0$. Then $p_n \to p$ with order α .

Secant Method

Have update rule:

$$x^{k+1} := x^k - \frac{x^k - x^{k-1}}{f(x^k) - f(x^{k-1})} f(x^k)$$

Modified Newton's Method

Def: A root p of f is a zero of multiplicity m for f if, for $x \neq p$, can write:

$$\underline{f(x)} = (x-p)^m q(x)$$
 for $q(x)$ s.t. $q(p) \neq 0$

Theorems (Modified Newton):

- 1. Let $f \in C^m(a, b)$ and $p \in (a, b)$. Then p is a zero with multiplicity m iff $0 = f(p) = f'(p) = \ldots = f^{m-1}(p)$, but $f^m(p) \neq 0$.
- 2. Corollary: Let $m \ge 1$, p a zero with multiplicity m. Then the function $\mu(x) := \frac{f(p)}{f'(p)}$ has a zero of multiplicity 1 at p.
 - \rightarrow Modified Newton's Method: Newton's method on $\mu(x)$:

$$p_{n+1} = p_n - \frac{\mu(p_n)}{\mu'(p_n)} = p_n - \frac{f(p_n)f'(p_n)}{[f'(p_n)]^2 - f(p_n)f''(p_n)}$$

Orders of Convergence (Global for bisection; local otherwise)

Method	Order
Bisection	1
Fixed-Point	$1 \text{ if } g'(p) \in (0,1), \ge 2 \text{ if } g'(p) = 0$
Newton's	$\geq 2 \text{ if } g'(p) \neq 0; 1 \text{ otherwise}$
Secant	$(1+\sqrt{5})/2 \approx 1.618$

(*) Fixed-Point Iteration: Order = smallest n satisfying $g^{(n)}(p) \neq 0$ (?)

Theorem (Aitken's Δ^2 Method for Accelerating Convergence)

Assume $\{p_n\}_{n\geq 1}$ converges <u>linearly</u> to p, and that for n large, $(p_{n+2}-p)(p_n-p)>0$. Then the sequence $\{\hat{p}\}_{n\geq 1}$ satisfies $\lim_{n\to\infty}\frac{|\hat{p}_n-p|}{|p_n|-p}=0$, where:

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n} \text{ for } n \ge 0$$

Lagrange Polynomials

Define the basis elements for k = 0, ..., n:

$$L_{k,n} := \frac{(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)} = \prod_{\substack{i=0 \ i \neq k}}^n \frac{x - x_i}{x_k - x_i}$$

This yields the (unique) Lagrange polynomial for the points x_0, \ldots, x_n [degree n-1]:

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{k,n}(x) = \sum_{k=0}^{n} f(x_k) \prod_{\substack{i=0\\i\neq k}}^{n} \frac{x - x_i}{x_k - x_i}$$

Theorem (Lagrange Interpolation Error). Let $x_0, \ldots, x_n \in [a, b]$ be distinct, and let $f \in C^{n+1}[a, b]$. Then for each $x \in [a, b]$, $\exists \epsilon(x) \in [a, b]$ within the interval spanned by x_0, \ldots, x_n s.t.:

$$f(x) = P(x) + \frac{f^{n+1}(\epsilon(x))}{(n+1)!}(x-x_0)\dots(x-x_n)$$

The Divided Differences Method

Let $x_0, ..., x_n$ be distinct, and let P(x) be the Lagrange polynomial of $\{(x_i, f(x_i))\}$. **Newton's** divided differences is an expression for P(x) in the following form:

$$P_n(x) := a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1})$$

Define the divided differences by:

- 1. 0^{th} divided difference: $f[x_i] = f(x_i)$
- 2. 1^{st} divided difference: $f[x_i, x_{i+1}] = \frac{f[x_{i+1}] f[x_i]}{x_{i+1} x_i}$
- 3. k^{th} divided difference $f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] f[x_i, \dots, x_{i+k-1}]}{x_{i+k} x_i}$

Newton's Divided Difference Interpolating Polynomial

The divided difference polynomial coefficients a_i are given by $a_k = f[x_0, x_1, \dots, x_k]$:

$$P(x) = f(x_0) + \sum_{k=1}^{n} f[x_0, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1})$$

Divided Differences for Equally-Spaced Points: Assume nodes are arranged consecutively with equal spacing $h = x_{i+1} - x_i$ [i = 0, ..., n-1] between nodes. Let $x = x_0 + sh$; then:

$$P_n(x) = P_n(x_0 + sh) = f[x_0] + \sum_{k=1}^n {s \choose k} k! h^k f[x_0, x_1, \dots, x_k]$$

Lagrange Polynomial Methods:

- Can use the divided differences method to iteratively construct higher- and higher-order polynomials (up to degree n)
 - Start from degree 0, use to build degree 1, etc.

Non-Equispaced Polynomial Interpolation

Runge's phenomenon: Even for "well-behaved" $f \in C^{n+1}[a,b]$, the interpolation error may still be large if the nodes $\{x_i\}_{i=0,\dots,n}$ are equispaced.

Theorem (Runge's phenomenon). If the Lagrange polynomial nodes $\{x_i\}_{i=0,\dots,n}$ are equispaced (i.e. $x_i = x_0 + ih$ for $i = 0, \dots, n$) and $x_0 = a, x_n = b$, then:

$$\max_{x \in [a,b]} \prod_{j=0}^{n} |x - x_j| \le \frac{1}{4} h^{n+1} n! \implies |f(x) - P(x)| \le \frac{M}{n+1} \cdot \frac{h^{n+1}}{4}$$

To reduce error: instead of equispaced nodes, use Chebyshev nodes (a = -1, b = 1):

$$\tilde{x}_i = \cos\left(\frac{2i+1}{2n+2}\pi\right), \quad i = 0,\dots, n$$

The Chebyshev nodes minimize the error:

$$\max_{x \in [a,b]} \prod_{j=0}^{n} |x - x_j|$$

Theorem (Chebyshev Polynomials). Let $T_n(x) = \prod_{k=0}^n (x - \tilde{x}_k)$ be the n^{th} -order Chebyshev polynomial, where \tilde{x}_k are the n^{th} -order Chebyshev nodes. Then $T_n(x)$ satisfies:

1.
$$T_n(x) = 2^{-n} \cos\left((n+1)\arccos(x)\right) \, \forall \, x \in (-1,1)$$

2. The T_n 's are recursive: $T_{n+1}(x) = xT_n(x) - \frac{1}{4}T_{n-1}(x)$

Cubic Splines

A *cubic spline* for a function f on [a, b] (with nodes $a = x_0 < x_1 < \ldots < x_n = b$) is a function S(x) satisfying:

1. Piecewise Cubic Polynomial: on each subinterval $I_j = [x_j, x_{j+1}]$ for j = 0, 1, ..., n-1, S(x) is a cubic polynomial of the form (for $x \in I_j$):

$$S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

- 2. Interpolation: S(x) satisfies $S(x_j) = f(x_j)$ for j = 0, 1, ..., n
- 3. Continuity & Differentiability: S(x) is continuous and has continuous 1^{st} & 2^{nd} derivatives

Boundary conditions: Need 2 addl. constraints to obtain $(4n) \times (4n)$ linear system:

- 1. Natural boundary condition: $S''(x_0) = S''(x_n) = 0$
- 2. Clamped boundary condition: For $f'(x_0)$, $f'(x_n)$ known: $S'(x_0) = f'(x_0)$, $S'(x_n) = f'(x_n)$

Constraints:

- 1. Interpolation: $S_j(x_j) = f(x_j), S_{j+1}(x_{j+1}) = f(x_{j+1})$ for j = 0, 1, ..., n-1 [(n+1)-many]
- 2. $S(x) \in \mathcal{C}^2$: $S_j^{(k)}(x_{j+1}) = S_{j+1}^{(k)}(x_{j+1})$ for $j = 0, \dots, n-2$ and k = 0, 1, 2 [3 × (n-1)-many]
- 3. Boundary conditions: 2
- \rightarrow **Theorem**: The spline interpolant is unique.

First-order methods: Evaluate limit defn. of derivative for finite h:

Forward diff:
$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$
, backward diff: $f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}$

• Error:
$$\frac{f(x_0+h)-f(x_0)}{h} = f'(x_0) + \frac{h}{2}f''(\xi) \ [\xi \in [x_0, x_0+h], \text{ by Taylor}] \to e \leq \frac{h}{2}M \text{ for } f' \leq M$$

Second-order methods: Difference of finite difference equations

$$\rightarrow$$
 Central difference: $\frac{f(x_0+h)-f(x_0-h)}{2h}=f'(x_0)+\frac{f^{(3)}(\xi_1)f^{(3)}(\xi_2)}{12}h^2$ [O(h^2)]

Richardson extrapolation: Combine low-order formulas (with different h) to generate higher-order results

- Based on Taylor: want to cancel lower-order terms in formulas' error expressions
- R.E. for forward difference $[2D_{\frac{h}{2}}^+f(x_0)-D_h^+f(x_0)]$:

$$\frac{-f(x_0+h)+4f(x_0+\frac{h}{2})-3f(x_0)}{h} = f'(x_0)+\frac{1}{6}h^2\left(\frac{1}{2}f^{(3)}(\xi_2)-f^{(3)}(\xi_1)\right)$$

Differentiation round-off error: $\tilde{f}(x) = f(x) + e(x)$

$$\implies \left| f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} \right| \le \frac{\epsilon}{h} + \frac{h^2}{6}M \quad [\text{assuming } e(x) \le \epsilon, \ f^{(3)} \le M]$$

Numerical Quadrature: Approximate $\int_a^b f(x)dx$ by a discrete weighted sum of $f(x_i)$ s:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{N} w_{i} f(x_{i})$$

Weighted MVT: Let $h \in C(a,b)$ and g integrable on (a,b). If g(x) does not change sign on [a,b], then $\exists c \in (a,b)$ s.t. $\int_a^b h(x)g(x)dx = h(c)\int_a^b g(x)dx$

Newton-Cotes: Approximate f(x) by its Lagrange polynomial P(x)

1. Trapezoidal Rule [2 points]:

$$\int_{a}^{b} f(x)dx = \left[\frac{h}{2}f(a) + \frac{h}{2}f(b)\right] - \frac{h^{3}}{12}f''(c)$$

- 2. **Simpson's Rule** [3 equispaced points]: $\int_a^b f(x)dx = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] h^5 \frac{f^{(4)}(\eta)}{90}$
- 3. General Newton-Cotes: Given (n+1) equispaced points $a = x_0 < \ldots < x_n = b$:

$$\int_a^b f(x)dx \approx \sum_{i=0}^n w_i f(x_i) \text{ with } w_i = \int_a^b L_i(x)dx = \int_a^b \prod_{\substack{j=0 \ j \neq i}}^a \frac{x - x_j}{x_i - x_j} dx$$

Degree of precision: Largest integer n for which a formula is exact for $x^k \ \forall \ k = 0, 1, \dots, n$ [i.e. $E[x^k] = 0$ for $k = 0, 1, \dots, n$, but $E[x^{n+1}] \neq 0$].

- Trapezoidal Rule: 2nd order, degree of precision 1
- $\bullet\,$ Simpson's Rule: 4th order, degree of precision 3
- Newton-Cotes: (n+1) nodes \rightarrow degree of exactness n

Composite Numerical Integration: Higher-order Newton-Cotes susceptible to Runge's phenomenon \rightarrow use lower-order Newton-Cotes on subintervals

$$\int_{a}^{b} f = \int_{x_0}^{x_1} f + \int_{x_1}^{x_2} f + \dots + \int_{x_{n-1}}^{x_n} f$$

• Composite Trapezoidal Rule $[x_i = x_0 + ih]$:

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x)dx = \frac{h}{2} \left(f(a) + 2 \sum_{i=0}^{n-1} f(x_{i}) + f(b) \right) - \frac{h^{2}}{12} (b - a) f''(\xi)$$

• Composite Simpson's Rule:

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left(f(a) + 2 \sum_{i=1}^{\frac{n}{2}-1} f(x_{2i}) + 4 \sum_{i=1}^{\frac{n}{2}} f(x_{2i-1}) + f(b) \right) - \frac{h^{4}}{180} (b-a) f^{(4)}(\xi)$$

• Round-off error: $e(h) \le (b-a)\epsilon = hn\epsilon$ [stable as $h \to 0$]

Motivation (Gaussian Quadrature): Want to find n nodes x_i and weights c_i such that the formula $\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i)$ is exact for polynomials of degree $\leq 2n-1$

Orthogonal Polynomials: Define the inner product of functions on [-1, 1] by

$$\begin{cases} \langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx \end{cases}$$

 \rightarrow Two functions f, g are **orthogonal** if $\langle f, g \rangle = 0$.

Recall (Gram-Schmidt): The vector project of a vector v onto a vector u is defined by:

$$proj_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

 \rightarrow Given vectors v_1, v_2, \ldots , the **Gram-Schmidt** finds u_1, u_2, \ldots orthogonal by:

$$u_i = v_i - \text{proj}_{u_1}(v_1) - \dots - \text{proj}_{u_{i-1}}(v_{i-1})$$

Legendre Polynomials: The *Legendre polynomials* are the set of orthogonal polynomials obtained from performing the Gram-Schmidt process on $\{1, x, x^2, \ldots\}$; ex:

$$p_0(x) = 1;$$
 $p_1(x) = x;$ $p_2(x) = \frac{3x^2 - 1}{2};$ $p_3(x) = \frac{5x^3 - 3x}{2}$

Gaussian Quadrature: Let $\{x_i\}_{i=1}^n$ be the roots of the *n*-degree Legendre polynomial (assumed real, distinct). Then the Gaussian quadrature rule is:

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_{i} f(x_{i}) \text{ with weights } w_{i} = \int_{-1}^{1} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} \text{ for } i = 1, 2, \dots, n$$

- Weights based on Lagrange polynomial; Gaussian quadrature exact for $f \in \mathbb{P}_{2n-1}$
- Error term: for some $\xi \in [a, b]$, $\frac{(b-a)^{2n+1}(n!)^4}{(2n+1)[2n!]^3} f^{(2n)}(\xi)$
- Convert unbounded domains into bounded: via change of variables Ex: $\int_0^\infty e^{-x^2} dx \to \text{change of vars with } z = \frac{x}{1+x} \left[z(0) = 0, z(\infty) = 1 \right]$

Gaussian Elimination: Solve Ax = b [A invertible] via 2-phase process:

- 1. Transform Ax = b into a new system Ux = y, where U is upper-triangular
 - Notation: Eliminate x_i by $(E_j \frac{a_{ji}}{a_{ii}}E_i) \to (E_j)$ for $j = i+1, i+2, \dots, n$
- 2. Solve Ux = y via backward substitution

Cost of G.E.: $O(n^3)$

- 1. Variable elimination: $O(n^3)$
 - One variable: (n-i) divisions, (n-i)(n-i+1) multiplications & subtractions
 - Over n variables: $\frac{2n^3+3n^2-5n}{6}$ mult/div, $\frac{n^3-n}{3}$ add/subtract
- 2. Backward substitution: $O(n^2)$
 - One variable: (n-i) multiplications, (n-i+1) adds, 1 div & 1 subtract
 - Total: $\frac{1}{2}(n^2 + n)$ mult/div, $\frac{1}{2}(n^2 n)$ add/subtract

Partial Pivoting: To avoid round-off error: to choose which variable to eliminate, select the row E_p $[p \ge i]$ with largest $|a_{pi}|$, then swap E_p with E_i and eliminate $x_i' = x_p$

• Round-off error: From dividing by small or subtracting nearly-equal

LU Decomposition: Factor A = LU [L, U lower- and upper- Δ], then solve LUx = b via (i) Ly = b into (ii) Ux = y, using forward/backward substitution

• Gaussian Elimination: Compute

$$A^{(n)}x = M^{(n-1)}M^{(n-2)}\dots M^{(2)}M^{(1)}x = b^{(n)} = M^{(n-1)}M^{(n-2)}\dots M^{(2)}M^{(1)}b$$

• LU Factorization:

$$L = (M^{(1)})^{-1} (M^{(2)})^{-1} \dots (M^{(n)})^{-1}, \quad U = A^{(n)}$$

• Inverting Gaussian transformation matrices:

$$M^{(i)} = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & -m_{i+1,i} & \ddots & & \\ & \vdots & & \ddots & \\ & & -m_{n,i} & & 1 \end{pmatrix} \implies (M^{(i)})^{-1} = \begin{pmatrix} 1 & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & +m_{i+1,i} & \ddots & \\ & & \vdots & & \ddots & \\ & & +m_{n,i} & & 1 \end{pmatrix}$$

Overall L:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ m_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \dots & 1 \end{pmatrix}$$

- With row swaps: $A = P^{-1}LU$
- Cost of LU decomp.: $O(n^3)$ factor $\to O(n^2)$ solve

Special Matrices

Diagonally Dominant: A matrix A is diagonally dominant if:

$$|a_{ii}| \ge \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \text{ for } i = 1, 2, \dots, n$$

- \bullet Strictly DD \implies A nonsingular, G.E. is numerically stable w.r.t. round-off and no swaps
- "Numerically stable": Large divisors, unequal subtractands in all expressions

SPD: A matrix A is SPD if if its symmetric $(A^T = A)$ and

$$x^T Ax > 0 \ \forall \ x \neq 0$$
 [Equiv.: All $\lambda s > 0$]

 $A \text{ SPD} \implies A \text{ invertible, no row swaps needed for G.E.}$

Cholesky factorization: A is SPD iff $\exists L \text{ lower-}\Delta \text{ with positive diagonal entries s.t.:}$

$$A = LL^T \quad [\leftarrow \text{ this is } A\text{'s LU decomp}, \ L^T = U]$$

Cholesky Algorithm

- 1. Set $l_{11} = \sqrt{a_{11}}$
- 2. For $j 2, \ldots, n$, set $l_{j1} = a_{j1}/l_{11}$
- 3. For i = 2, ..., n 1:

(a) Set
$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}$$

(b) For j = i + 1, ..., n, set:

$$l_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}}{l_{ii}}$$

4. Set
$$l_{nn} = \sqrt{a_{nn} - \sum_{k=1}^{n-1} l_{nk}^2}$$

Tridiagonal matrices: All entries zero except main diagonal and its two adjacent diagonals

- A tridiag \implies can do GE, LU decomp in O(n)
- ullet LU factorization has L zero except main/lower diags, U zero except main/upper diags

Jacobi Method: For D, L, U diagonal, strictly lower- Δ , strictly upper- Δ portions of A:

$$x^{(k+1)} = D^{-1}(b - (L+U)x^k), \qquad x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right)$$

- Requires nonzero diagonal entries (can ensure via row/column swaps)
- Guaranteed convergence under certain conditions (e.g. A strictly diagonally dominant)

Gauss-Seidel: Use earlier components of $x^{(k+1)}$ to inform later ones:

$$x^{(k+1)} = (D+L)^{-1}(b-Ux^{(k)}), x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} + \sum_{j > i} a_{ij} x_j^{(k)} \right)$$

- Has some weaker convergence conditions (e.g. A SPD)
- Successive Over-Relaxation/SOR: Scales step size by ω [$x_{GS}^{(k+1)}$: GS iterate]

$$x^{(k+1)} = (1 - \omega)x^{(k)} + \omega x_{GS}^{(k+1)}$$

 $-\omega = 1$ is GS; $\omega < 1, 1 < \omega < 2$ under-/over-relaxation; $\omega > 2$ is divergence

Convergence for Iterative Methods: For matrix A with eigenvalues $\lambda_1, \ldots, \lambda_n$, define **spectral** radius as $\rho(A) = \max\{|\lambda_1|, \ldots, |\lambda_n|\}$

- \rightarrow Theorem: $\rho(A) < 1$ iff $\lim_{k \to \infty} A^k = 0$
 - Iterative methods: $x^{(k+1)} = Bx^{(k)} + g \implies e^{(k+1)} = Be^{(k)} \implies e^{(k)} = B^k e^{(0)} [e^{(k)} = x^{(k)-x^*}]$ Converges for arbitrary $x^{(0)}$ iff $\lim_{k\to\infty} B^k = 0 \iff \underline{\rho}(B) < \underline{1}$