se encuentra en V porque $0 \neq 2 \cdot 0 + 1$. No es difícil demostrar que el conjunto de puntos en \mathbb{R}^2 que está sobre cualquier recta que no pasa por (0,0) no constituye un espacio vectorial.

El conjunto de puntos en \mathbb{R}^3 que se encuentran en un plano que pasa por el origen constituye un espacio vectorial

Sea $V = \{(x, y, z): ax + by + cz = 0\}$. Esto es, V es el conjunto de puntos en \mathbb{R}^3 que está en el plano con vector normal (a, b, c) y que pasa por el origen. Al igual que en el ejemplo 5.1.4, los vectores se escriben como renglones en lugar de columnas.

Suponga que (x_1, y_1, z_1) y (x_2, y_2, z_2) están en V. Entonces $(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \in V$ porque

$$a(x_1 + x_2) + b(y_1 + y_2) + c(z_1 + z_2) = (ax_1 + by_1 + cz_1) + (ax_2 + by_2 + cz_2) = 0 + 0 = 0$$

Por lo tanto, el axioma i) se cumple. Los otros axiomas se verifican fácilmente. De este modo, el conjunto de puntos que se encuentra en un plano en \mathbb{R}^3 que pasa por el origen constituye un espacio vectorial.

EJEMPLO 5.1.7 El espacio vectorial \mathbb{P}_n

Sea $V = \mathbb{P}_n$ el conjunto de polinomios con coeficientes reales de grado menor o igual a n. Si $p \in P_n$, entonces

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

donde cada a_i es real. La suma de p(x) + q(x) está definida de la manera usual: si q(x) = $b_n x^n + b_{n-1} x^{n-1} + \cdots + b_1 x + b_0$, entonces

$$p(x) + q(x) = (a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_1 + b_1)x + (a_0 + b_0)$$

Es obvio que la suma de dos polinomios de grado menor o igual a n es otro polinomio de grado menor o igual a n, por lo que se cumple el axioma i). Las propiedades ii) y v) a x) son claras. Si se define el polinomio $\mathbf{0} = 0x^n + 0x^{n-1} + \cdots + 0x + 0$, entonces $0 \in P_n$ y el axioma iii) se cumple. Por último, sea $-p(x) = -a_n x^n - a_{n-1} x^{n-1} - \cdots - a_1 x - a_0$; se ve que el axioma iv) se cumple, con lo que P_n es un espacio vectorial real.

EJEMPLO 5.1.8 Los espacios vectoriales C[0, 1] y C[a, b]

Sea V = C[0, 1] el conjunto de funciones continuas de valores reales definidas en el intervalo [0, 1]. Se define

$$(f+g)x = f(x) + g(x) y (\alpha f)(x) = \alpha [f(x)]$$

Como la suma de funciones continuas es continua, el axioma i) se cumple y los otros axiomas se verifican fácilmente con $\mathbf{0} = \text{la función cero y } (-f)(x) = -f(x)$. Del mismo modo, C[a, b], el conjunto de funciones de valores reales definidas y continuas en [a, b], constituye un espacio vectorial.

Se dice que las funciones constantes (incluyendo la función f(x) = 0) son polinomios de **grado cero**.

cálculo Este símbolo se usa en todo el libro para indicar que el problema o ejemplo utiliza conceptos de cálculo.