

F1G. 4

F/G.5

F1G.6

STREAM #/ BEST ALIGNED APU SHORT	STREAM #2 BEST ALIGNED APU SHORT	12 msec. < audio gap < 24 msec.	F165, 11A,11B, 11C
$(\Delta_1 > 0)$	(0>27)	0 msec. < audio gap < 12 msec. (Δ1-Δ2)	F165. 12A, 12B
	STREAM #2 BEST ALIGNED APU LONG INTO THE CUT	0 m Sec. < audio gap < 12 m sec. (A1-A2)	FIGS. 13A, 13B
	(42>0)	0 msec. \langle audio overlap \langle 12 msec. $\langle \Delta_2 - \Delta_1 \rangle$	FIGS. 14A, 14B
STREAM #1 BEST ALIGNED APU LONG	STREAM # 1 STREAM #2 BEST ALIGNED BEST ALIGNED APU LONG APU SHORT	o m sec, < audio gap < 12 msec. (Δι –Δz)	F16S. 15A, 15B
INTO THE CUT $(\Delta_1 < 0)$	INTO THE CUT INTO THE CUT $(A_1 < 0)$ $(A_2 < 0)$	omsec. $\langle audio overlap \langle 12msec. (\Delta e - \Delta i)$	FIGS. 16A, 16B
;	STREAM #2 BEST ALIGNED APU LONG	12 m sec. < audio overlap < 24 m sec. F165.17A, 17B, 17C (12 - 11)	F165.17A,17B,17C
	INTO THE CUT $(\Delta_2 > 0)$	0 m sec. < audio overlap < 12 m sec. F1GS. 18A, 18B (\Delta_2 - \Delta_1)	F1GS. 18A, 18B
			- Canada

F/6.10

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SU(n-1) \$ VPU n VPU($n+1$) VPU($n+2$) t (m-2) APU($m-1$) APU m APU($m+1$) APU($m+2$) APU($m+3$) t	F16. 11 A		(k-1) VPUR VPUR	2) APU(j-1) (APUj APUj+1) APUm (APU(m+1)) }	FIG. 11B		U(k-1) VPUK YPUN VPU(m+1) 3	2) APU(j-1) APUj APU(m-1) APUm APU(m+1) 4	F/G, 11 C
STREAM #1	VPU (k-1) APU(j-2) APU(j-1)	STREAM #2	VPU(n-1)			VPU(k-1)	APU(j-z) APU(j-i)			VPU(k-1)	APU(j-z) APU(j-i	
- ,	Labor	<u> </u>	but	1	-	w	w	•	•	w	4 -4 -6 -	

_	n	7	_		m	n	12 A]	n	~	12B
	VPU(k+1) VPU(k+2)	APU(j+1) APU(j+2) APU(j+3)			VPU(n+1) VPU(n+2)	APU(m+1) APU(m+2) APU(m+3)	F1G 12A		In (VPU(m+1)	APU(m+i) APU(m+2)	F1G.12B
<> € €	ND	APUL	<u>_</u> [Ţ	\\\	APU(m+1		6 6	VPUn	APUm	# D **
STREAM #1	VPU(k-1) VPUk	APU(j-z) APU(j-1) APUj		STREAM #2	VPU(n-1) VPUn	APU(m-2) APU(m-1) APUm	ZV+ + 7		$\gamma = VPU(k-i) VPU_k$	1 APUG-2) APUG-1) APUS	
~	لحا	~	- ;		17-1		<u>'</u>	-	~ ~		

7	7	,	7	7	F16.13A	,	n	1	F1G.13B
	APU(1+1) APU(1+2) APU(1+3)		VPU(n+1) (VPU(n+2)	APU(m+1) APU(m+2) APU(m+3)	FIG		VPUn (NPU(m+1)	APUM APU(m+1) APU(m+2)	F10
	1 APU(j-z) APU(j-i) APUj AP	STREAM #2	VDU(n-1) VPUn	A APU(m-2) APU(m-1) APUm APU	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 VPU(R-1) VPUR	\$ APU(J-2) APU(J-1) APU ; A	

APUM APU(m+1) APU(m+2)) APUG-2) APU G-1) APUS
VPUn VPU(n+1)	/ VPU (k-1) VPU k
T / G. 14 A	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
APU(m+1) APU(m+2) APU(m+3) 3	APU(m-1) AFUm
	STREAM #2
17-614	
[APU(1,+1) APU(1,+2) APU(1,+3) 4	4 APU (j-z) APU (j-i) APU;
VPU(2+1) VPU(k+2) 4	4 (VPU(R-1) VPUR
	STREAM #/

F1G. 14B

DSKOZOS JOZZIO

	m	77	_	,	~~	77	V	7	~~		B
	VPU(K+1) VPU(K+2)	APU(j+1) APU(j+2) APU(j+3)	¹ ∇- <u>+</u>		VPU(n+1) (VPU(n+2)	APU(m+1) APU(m+2) APU(m+3)	F1G. 15A		VPUn (VPU(m+1)	APUm APU(m+1) APU(m+2)	F1G.15B
STREAM #1	1 VPU(k-1) VPUK	1 APU(S-2) APU(S-1) APUS	1 = 1	STREAM #2	$1 \qquad VPU(n-1) VPUn$	1 (APU(m-2) APU(m-1) APUm	A D D D D D D D D D D D D D D D D D D D		1 VPU(k-1) VPUk	1 APU(j-z) APU(j-i) APUJ	

STREAM #1		
1 VPU(k-1) VPUK	VPU(k+1)	VPU(k+2) 4
1 (APU(j-3) (APU(j-2) (APU(j-1) APUj		APU(j+1) APU(j+2) APU(j+3) }
	→ 1 V 1	
STREAM #2		
$1 \qquad VPU(n-1) \qquad VPUn$	VPU(n+1)	VPU(n+2) 4
1) APUM	APU(m+1) APU(m+2) APU(m+3)	APU(m+3) 4
ZV+1 4-		F16, 164
	-	
2 VPU(k-1) VPUk		VPU(n+1) 1
1 APU(j-3) APU(j-2) APU(j-1) APUIS APUM		APU(MH) APU(M+2) }
~	30. 40 .	F1G.16B

	A	\mathcal{H}	
STREAM #1 VPU (k-1) VPUk VPU(k+1) VPU(k+2) 1 APU(j-3) APU(j-1) APUj APU(j+1) APU(j+2) 1 STREAM #2	VPU(m-1) VPU n VPU(m+1) VPU(m+2) 1 1 APU(m-1) APU(m-1) APU(m+1) APU(m+2) APU(m+3) 1 1 APU(m+4) 1 1 APU(m+4) 1 APU(m+4)	1 VPU(R-1) VPUR VPUN VPU(m+1) 1/2 1/	1 VPU(A-1) VPUA VPUM VPU(m+1) 1/2 1/

STREAM #1	40 40 4		-]
VPU(k-1) VPUk	PUK	VPU(K+	VPU(K+1) VPU(K+2)	n
1 APUG-2 APUG-1) APUS	-A APU;	APU(1;+1)	APU(1,41) APU(1,+2) APU(1,+3)	77
	7	17-4		_
STREAM #2				
$\int_{\Gamma} VPU(n-I) \vee$	VPUn	VPUrn	VPU(n+1) (VPU(n+2)	"
4 APU(m-2) APU(m-1) APUM		M+1) APUR	APU(m+1) APU(m+2) APU(m+3)	1
ME TO THE	Ţ	·	0.0	7 0
			F/G. 10A	YOY
2 VPU(k-1) V	VPUR	VPUn	VPU(n+1)	n
1, APU(J-2) APU(J-1) APUJ	-1) APUj	APUM	APU(m+1) APU(m+2)	m
		*.	F1G.18B	188

FIG. 19

VIDEO SPLICING 151 DETERMINE THE LAST OF THE FIRST CLIP (DTSL1) 152 DETERMINE THE TIME OF ARRIVAL (Te) OF THE LAST BYTE OF THE FIRST CLIP -153 ADD ONE FRAME INTERVAL TO DTS 11 TO FIND THE DESIRED FIRST DTS LOCATION FOR THE SELOND CLIP $(DTS_{F1}=DTS_{L1}+1/FR)$ KEEPING THE DTS-PCR. RELATION UNALTERED FOR THE SECOND CLIP, FIND THE TIME INSTANT To AT WHICH THE FIRST BYTE OF THE CLIP SHOULD SECOND ARRIVE (TSTART = DTS F2-PCRe2) (Ts = DTSF1 - TSTART)

FIG. 23

REMOVE ALL AUS OF AUDIO IN THE FIRST CLIP AFTER THE BEST ALIGNED AAU IN THE FIRST CLIP, AND ADJUST THE LAST AUDIO PES PACKET HEADER IN THE FIRST CLIP TO REFLECT THE CHANGE IN ITS SIZE IN BYTES AFTER THE REMOVAL

7178ء

PACKET IN THE SECOND

CLIP WHICH INCLUDES THE

BEST ALIGNED AAU IN THE

SECOND CLIP, AND REMOVE

ALL AAUS PRECEDING THE

BEST ALIGNED ONE IN

THIS PES PACKET

PRODUCE A PES PACKET HEADER TO ENCAPSULATE THE BEST ALIGNED AAU AND THE AAUS AFTER IT, AND WRITE THE PES PACKET SIZE INTO THE HEADER

1180

CALCULATE THE REQUIRED
AUDIO PTS OFFSET
TO BE USED FOR
RESTAMPING THE AUDIO
OF THE SECOND CLIP

END

CASE	SECOND CLIP HAS A HIGH MEAN AUDIO BUFFER LEVEL	SECOND CLIP HAS A LOW MEAN AUDIO BUFFER LEVEL
F1G. 11A	USE F1G. 28	ÚSE FIG. 11B OR 11C
F1G. 12A	USE F1G. 12B	USE F16.29
F1G. 13A	USE FIG. 13B	USE FIG. 30
F1G. 14A	USE FIG. 31	USE FIG. 14B
F1G. 15A	USE FIG. 15B	USE FIG, 32.
F/G, 16A	USE FIG. 33	USE FIG. 16B
F16.17A	USE F16.17BOR17C	USE F16.34
F/G. 18A	USE FIG. 35	USE F1G. 18B

F1G.27

1 VPUn VPU(m+1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	APUR VPU(m+1) 1 1 1 BPU(m+1) 1 1 1 G. 29	APUM, APUM, APUMAN 1	A PU(m+1) A PU(m+2) A PU(m+3)
VPU(k-1) VPUk APU(j-2) APU(j-1) APUj	VPU(k-1) VPUk APU(j-1) APU;	VPU(k-1) VPUk APU(j-2) APU(j-1) APU;	VPU (k-1) VPU k APUG-2) APU (J-1) APUJ
Line	Lum	Lum	In

F16.31

VPUM VPUM+1) 1 1 APU(m+1) 1 1 F 1 G. 32	VPUn (NPU(m+1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VPUm VPU(m+1) 1/2 BPUm APU(m+1) APU(m+2) 1/2	** VPUn VPU(m+1) 1 APU(m+1) APU(m+2) APU(m+3) 1
1 VPU(k-1) VPUR	1 VPU(k-1) VPUk	1 VPU(x-1) VPUk	1 VPU(k-1) VPUR
1 APU(j-2) APU(j-1) APUJ	1 APU(j-3) APU(j-1) APU;		1 APU(J-2) APU(J-1) APUJ

FIG. 36

FIG. 37

RESTAMPING 241 ADD VOFFSET TO THE DTS AND PTS FIELDS OF ALL VIDEO PES PACKETS IN THE SECOND CLIP 242 A OFFSET TO THE PTS FIELDS ADD OF ALL AUDIO PES PACKETS IN THE SECOND CLIP 243 COMPUTE THE PCR TIME STAMP OFFSET PCROFFSET 244 ADD PCROFFSET TO ALL PCR RECORDS IN THE SECOND CLIP 245 RESTAMP THE PID FIELDS OF THE TS PACKETS OF THE VARIOUS STREAMS IN THE SECOND CLIP BASED ON THEIR ASSOCIATIONS WITH THE VARIOUS STREAMS OF THE FIRST CLIP 246 RESTAMP THE CONTINUITY COUNTER FIELDS OF THE 73 OF THE VARIOUS PACKETS IN THE SECOND STREAMS CLIP END F1G. 41

R=TOTAL NO. OF NULL TS

PACKETS AND OBSOLETE AUDIO

PACKETS IN THE SECOND TS F 16. 43

STREAM FOLLOWING THE

BEGINNING OF VIDEO AT

THE IN POINT

4

SHCZDS

Ė

RE-FORMATTING

271

DETERMINE:

- J= NO. OF NON-OBSOLETE AUDIO PACKETS IN THE FIRST TS STREAM FOLLOWING THE END OF VIDEO AT THE OUT POINT.
- R= TOTAL NUMBER OF NULL PACKETS AND OBSOLETE AUDIO PACKETS IN THE SECOND TS STREAM FOLLOWING THE BEGINNING OF VIDEO AT THE IN POINT.

1272

1274

REPLACE ANY OF THE & NULL PACKETS OR

OBSOLUTE AUDIO PACKETS IN THE SECOND TS,

STREAM WITH CORRESPONDING ONES OF THE Y

NON-OBSOLETE AUDIO PACKETS IN THE FIRST

TS STREAM, BEGINNING WITH THE MOST ADVANCED

IN TIME PACKETS

1 > A NO YES

CHANGE ANY REMAINING DESOLUTE AUDIO PACKETS TO NULL TS PACKETS

1275

FOR THE REMAINING (j-k) NON-OBSOLUTE
AUDIO PACKETS FROM THE FIRST STREAM,
CREATE (i-k)*/88 BYTES OF ADDITIONAL
SPACE FOR THEM IN THE SPLICED TS
STREAM PRIOR TO THE VIDEO FOR THE
OUT POINT, (THIS ADDITIONAL SPACE MUST
BE GENERATED SO AS TO MAINTAIN THE
TS = Te + 8/(BIT RATE) CONDITION
OF FIG. 24 FOR SEAMLESS VIDEO
SPLICING.)

END

FIG. 44

F/G. 47

FIG. 48

F16.49

FIG. 52