

Introduction to Visualization and Computer Graphics DH2320

Prof. Dr. Tino Weinkauf

Introduction to Visualization and Computer Graphics

Projection

Now for 3D Rendering

3D Rendering

Assumption

- 3D Model is given
- Triangle mesh (for simplicity)

How do we get it to the screen?

Geometric Model

3D Rendering

Color

More about homogenous coordinates Projective Geometry

Since the first point is the origin, we just have for all points along the ray:

$$\mathbf{s}' = t\mathbf{s} = \begin{pmatrix} ts_{\chi} \\ ts_{\gamma} \end{pmatrix}$$

Projective Space \mathbb{P}^d :

- Euclidean ("affine") space \mathbb{R}^d embedded in \mathbb{R}^{d+1}
- At w = 1
- Identify all points on lines through the origin
 - Represented by the same Euclidean point

Translations:

Sheering of the projective space

$$\begin{pmatrix} 1 & 0 & t_{\chi} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{pmatrix}$$

= Translation of the embedded affine space

Normalization

Conversion between

- Cartesian coordinates (Euclidian space)
- Homogeneous coordinates (projective space)

*) overloaded name do not confuse with x/||x||

Vectors & Points

Interpretation

• Points: $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $w \neq 0$

• Vectors: $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ - "pure directions"

Vectors & Points

Rules

- Substracting points yields vectors
 - Normalize first!
- Vectors can be added to
 - Other vectors
 - Points (normalize first!)

Physics Perspective Projection

Pinhole camera

- Create image by selecting rays of specific angles
- Low efficiency (small holes for sharp images)

Pinhole camera

- Create image by selecting rays of specific angles
- Low efficiency (small holes for sharp images)

Central Projection

Central projection

$$x' = f\frac{x}{z}$$

$$y' = f \frac{y}{z}$$

Proof:

Intercept theorem!

(Actual Camera)

Camera with Lens

- Higher efficiency (bundles many rays)
- Finite Depth of field
- We will consider pinhole cameras only.

$$x' = f\frac{x}{z}$$

$$y' = f\frac{y}{z}$$

Undetermined degree of freedom

- Focal length vs. image size
- Source of a lot of confusion!

Parameters

- h size of the screen (pixels, cm, $\pm 1.0,...$)
- f— focal length (classical photography)
- Meaningful parameter: α viewing angle

Relation:

$$\tan\frac{\alpha}{2} = \frac{h}{2f}$$

Invariance

$$\tan\frac{\alpha}{2} = \frac{h}{2f} = \frac{h'}{2f'} = \frac{h''}{2f''}$$

Scaling h and f by a common factor: no change

Typical choices (vertical angles)

• "Normal" perspective: $\alpha \approx 30^{\circ}$ ("50mm" lens: 27°)

• Tele photography: $\alpha \approx 5^{\circ} - 20^{\circ}$ (275–70mm)

• Wide angle lens: $\alpha \approx 45^{\circ} - 90^{\circ}$ (28–12mm)

View Volume

$$x' = f\frac{x}{z}$$
$$y' = f\frac{y}{z}$$

Our camera:

- Focus point: origin
- View direction: z-axis

Homogeneous Coordinates

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\text{Projection Matrix P}$$

$$x' = fx$$

$$y' = fy$$

$$z' = z - 1$$

$$w' = z$$

$$z' = \frac{z - 1}{z}$$

$$w' = 1$$

$$x' = fx$$

$$y' = fy$$

$$z' = z - 1$$

$$w' = z$$

$$x' = f \frac{x}{z}$$

$$y' = f \frac{y}{z}$$

$$z' = \frac{z - 1}{z}$$

$$w' = 1$$

before normalization

after normalization

Write in homogeneous coordinates

Third row is arbitrary (for now), not used.

View transform

Reminder:

$$\tan\frac{\alpha}{2} = \frac{h}{2f}$$

To Screen Coordinates

$$\begin{pmatrix}
\frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\
0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Scale to unit screen coordinates

- We set f to 1 in previous matrix
- Third row is arbitrary (for now), not used.

normalized screen coordinates

Aspect Ratio

$$\begin{pmatrix}
\frac{1}{\frac{w}{h}} \cdot \tan\left(\frac{\alpha}{2}\right) & 0 & 0 & 0 \\
0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Non-square screens?

- Screen: $w \times h$ pixels
- Aspect ratio $\frac{w}{h}$
- Different horizontal angle!

normalized screen coordinates

To Screen Coordinates

$$\begin{pmatrix} w/2 & 0 & 0 & w/2 \\ 0 & -h/2 & 0 & h/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 Third row is arbitrary (for now), not used.

To Screen Coordinates

$$\begin{pmatrix}
\frac{h/2}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 & \frac{w/2}{\tan\left(\frac{\alpha}{2}\right)} \\
0 & -\frac{h/2}{\tan\left(\frac{\alpha}{2}\right)} & 0 & \frac{h/2}{\tan\left(\frac{\alpha}{2}\right)} \\
0 & 0 & 0 & a & b \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Overall

Multiply both

$$a = \frac{z_{far} + z_{near}}{z_{near} - z_{far}}$$

$$b = \frac{2 \cdot z_{near} \cdot z_{far}}{z_{near} - z_{far}}$$

Additionally:

Also scale + shift such that

$$z' = \frac{z - 1}{z}$$

are in value [0..1] for inputs

$$z \in [z_{near}, z_{far}]$$

Summary

Projection matrix

$$\mathbf{P} = \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Projection & conversion to screen coords

$$\mathbf{P}_{S} = \begin{pmatrix} w/2 & 0 & 0 & w/2 \\ 0 & -h/2 & 0 & h/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{w} \tan\left(\frac{\alpha}{2}\right) & 0 & 0 & 0 \\ 0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} f = 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
scaling to pixels, upper left origin screen coord's projection matrix

$$x' = f\frac{x}{z}$$

$$y' = f\frac{y}{z}$$

Our camera so far:

- Focus point: origin
- View direction: z-axis
- General position/orientation?

general camera

camera in origin, view in z-direction

general camera

camera in origin, view in z-direction

general camera

Camera coordinate system (u, v, w)
Origin: c

Standard coordinates
$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$

camera in origin, view: z-direction

Derivation

Transform the world with inverse camera transform

Derivation

Transform:

Derivation

general camera

Camera coordinate system (u, r, v) Origin: c

Transform:

$$\mathbf{p} \rightarrow \begin{pmatrix} - & \mathbf{u} & - \\ - & \mathbf{v} & - \\ - & \mathbf{w} & - \end{pmatrix} (\mathbf{p} - \mathbf{c})$$

Standard coordinates
$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$

camera in origin, view: z-direction

general camera

Camera coordinate system (u, r, v)
Origin: c

Homogeneous:

$$\mathbf{p} \rightarrow \begin{pmatrix} -\mathbf{u} & -\mathbf{v} \\ -\mathbf{v} & -\mathbf{c}' \\ -\mathbf{w} & -\mathbf{v} \\ 0 & 0 & 0 & 1 \end{pmatrix} (\mathbf{p})$$

$$\mathbf{c}' = \begin{pmatrix} -\mathbf{u} & -\mathbf{v} \\ -\mathbf{v} & -\mathbf{c} \\ -\mathbf{v} & -\mathbf{v} \\ -\mathbf{w} & -\mathbf{v} \end{pmatrix} \mathbf{c}'$$

Summary

Projection (screen coord's)

$$\mathbf{P}_{s} = \begin{pmatrix} h/2 & 0 & 0 & w/2 \\ 0 & -h/2 & 0 & h/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\ 0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} f = 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Add View Matrix

Benefit:

Still only one overall 4×4 matrix to multiply with!

$$P_{S} \cdot \begin{pmatrix} - & \mathbf{u} & - & | \\ - & \mathbf{v} & - & -\mathbf{c'} \\ - & \mathbf{w} & - & | \\ 0 & 0 & 0 & 1 \end{pmatrix}$$