Théorie ergodique des nombres

7 Octobre 2010

Plan:

- 1. Introduction.
- 2. Théorie spectrale en théorie ergodique
 - (a) Théorème de von Neumann et isomorphisme spectral.
 - (b) Mesures spectrales.
 - (c) Décomposition $H = H_d \oplus H_c$
- 3. La théorie de Wiener
 - (a) Mesures de corrélations comme mesures spectrales.
 - (b) Un lemme sur les suites disjointes.
- 4. Théorème de Wiener-Wintner.
 - (a) Théorème de Birkhoff.
 - (b) Unique ergodicité et théorème d'Oxtoby.
 - (c) Démonstration du théorème WW.
 - (d) Applications au théorème ps le long de la suite de Morse.

1 Introduction à la théorie ergodique des nombres.

La théorie ergodique s'intéresse à l'action d'une transformation T sur un ensemble X et au comportement des orbites $(T^n x)_{n\geq 0}$. Or, il apparaît tout naturellement des transformations en théorie des nombres, lorsqu'on essaie de coder les nombres réels i.e. les représenter par des développements, en base entière, en fraction continue, etc Ainsi $Tx = qx \mod 1$ et $Tx = \{1/x\}$ en se limitant à [0,1]. La transformation dans chacun des cas agit comme un shift sur les digits.

Si $A \subset X$, les sommes $\sum_{n < N} \mathbf{1}_A(T^n x)$ représentent le nombre de fois que l'orbite de x visite A sous l'action de T pendant le temps N. Le théorème ergodique permet d'évaluer les moyennes $\frac{1}{N} \sum_{n < N} \mathbf{1}_A(T^n x)$ quand $N \to \infty$; sous certaines hypothèses sur le système (X, T, m) cette moyenne vaut m(A) (moyenne en temps = moyenne en espace). Appliqué à des transformations liées aux développements, il apporte des informations statistiques sur la suite des digits de x, malheureusement pour presque tout x seulement....

2 Théorie spectrale en théorie ergodique

Historiquement le premier théorème de la théorie est en fait un théorème sur les isométries d'un Hilbert.

Théorème 2.1 (Von Neumann) Soit H un espace de Hilbert et U une isométrie de H. Alors, pour tout $x \in H$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n \le N} U^n x = Px,$$

P étant le projecteur orthogonal sur les vecteurs U-invariants de H.

Grâce à la représentation spectrale des opérateurs unitaires, ce théorème se ramène tout simplement à la convergence d'une suite de polynômes trigonométriques.

2.1 Représentation spectrale

Supposons U opérateur unitaire sur le Hilbert H. Son spectre ensembliste est contenu dans le cercle unité \mathbf{T} . Si $x \in H$, la suite $(\langle U^n x, x \rangle)_{n \in \mathbf{Z}}$ est définie

positive et c'est donc la transformée de Fourier d'une mesure positive sur $\mathbf{T} \sim [0, 2\pi)$ que l'on note σ_x (Bochner). Plus généralement $\sigma_{x,y}$ est la mesure complexe de TF $\hat{\sigma}_{x,y}(n) = \langle U^n x, y \rangle$ si $n \in \mathbf{Z}$. On a :

- (i) $\sigma_{x,y} \ll \sigma_x$ et σ_y , et $\sigma_{x+y} \ll \sigma_x + \sigma_y$ avec, comme conséquence immédiate,
- (ii) $\sigma_x \perp \sigma_y \Longrightarrow \sigma_{x,y} = 0 \Longleftrightarrow [U, x] \perp [U, y];$
- (iii) $||\sigma_x|| = ||x||^2$, $||\sigma_{x,y}|| \le ||x|| ||y||$
- (iv) Si $x_n \to x$ dans H, alors $\sigma_{x_n} \to \sigma_x$ dans $M(\mathbf{T})$, car il est facile d'établir $||\sigma_{x_n} \sigma_x|| \le ||\sigma_{x_n-x}|| + 2||\sigma_{x,x_n-x}||$.

Fixons $x \in H$. Si P est un polynôme trigonométrique,

$$||P(U)x||_H = ||P||_{L^2(\sigma_x)},$$

et cette identité se prolonge en une isométrie de l'espace cyclique [U,x] engendré par x sur $L^2(\sigma_x)$. Les moyennes $\frac{1}{N}\sum_{n< N}U^nx$ sont donc envoyées par cette application sur la suite de polynômes $p_N(t)=\frac{1}{N}\sum_{n< N}e^{int}$ et la convergence de l'une dans H se ramène à la convergence de l'autre dans $L^2(\sigma_x)$. Mais $p_N(t)\to \mathbf{1}_{\{0\}}$ et par convergence dominée, $\int_{\mathbf{T}}|p_N(t)|^2d\sigma_x(t)\to\sigma_x(\{0\})$. Reste à décrypter et revenir à H.

2.2 Décomposition

On remarque tout d'abord que si x est un vecteur propre normalisé de U associé à $e^{i\lambda}$, alors $\hat{\sigma}_x(n) = e^{in\lambda}$ et $\sigma_x = \delta_{\lambda}$. Réciproquement : supposons que σ_x soit portée par $\lambda \in \mathbf{T}$, alors, pour tout polynôme trigonométrique R, $||R(U)x||_H = ||R||_{L^2(\sigma_x)} = \alpha |R(\lambda)|$ si $\sigma_x = \alpha \delta_{\lambda}$; en particulier en prenant $R(t) = e^{it} - e^{i\lambda}$, il vient R(U)x = 0 et x est vecteur propre associé à $e^{i\lambda}$.

Définition 2.1 On note $H_d = \{x \in H, \sigma_x \text{ est une mesure discrète }\}$. De $m \hat{e} m e H_c = \{x \in H, \sigma_x \text{ est une mesure continue }\}$ et $H = H_d \oplus H_c$.

Clairement, par (i) et (iv), H_d est un sous-espace fermé qui contient les vecteurs propres. Mais en fait :

Proposition 2.1 H_d est le sous-Hilbert de H engendré par les vecteurs propres de U.

Plus généralement, par l'isométrie $W:[U,x]\sim L^2(\sigma_x)$ qui transforme l'action de U en la multiplication par e^{it} ,

$$y \in [U, x] \iff \sigma_y = |\phi|^2 \sigma_x, \ \phi \in L^2(\sigma_x);$$

en effet $\langle U^n y, y \rangle = \langle W U^n y, W y \rangle = \int_{\mathbf{T}} e^{int} W_y \overline{Wy} d\sigma_x$ et $\sigma_y = |Wy|^2 \sigma_x$; réciproquement, si $\sigma \ll \sigma_x$ on peut écrire $\sigma = |\phi|^2 \sigma_x$ où $\phi \in L^2(\sigma_x)$ de sorte que $\phi = Wy$ avec $y \in [U, x]$ que l'on note $y = \phi(U)x$ et $\sigma = \sigma_y$.

En particulier, à tout borélien A de \mathbf{T} correspond un projecteur que je note $\mathbf{1}_A(U)$ ou E_A tel que $\sigma_{\mathbf{1}_A(U)x} = \mathbf{1}_A\sigma_x$; ce projecteur envoie x sur les vecteurs dont la mesure spectrale est portée par A.

Si P agit sur [U,x] avec $\sigma_{Px}=\mathbf{1}_A\sigma_x$, on vérifie que P est linéaire, $P^2=P$ et $||P||\leq 1$.

En particulier si $\lambda \in \mathbf{T}$, le projecteur $\mathbf{1}_{\{\lambda\}}(U)$ a pour image les vecteurs propres asociés à $e^{i\lambda}$. (Il en résulte que $\sigma_x(A) = ||\mathbf{1}_A \sigma_x||_M = ||\mathbf{1}_A(U)x||_H^2$.)

Si on revient au théorème de VN, on voit que $\sigma_x(\{0\})$ s'identifie à la projection de x sur les vecteurs invariants. D'où le théorème dans le cas unitaire, le cas d'une isométrie s'ensuit.

Preuve : La mesure σ_x est discrète ssi $||\sigma_x|| = \sum \sigma_x \{\lambda\} = ||x||^2$; mais $\sigma_x \{\lambda\} = ||E_{\lambda}x||^2$ et donc $||x||^2 = \sum ||E_{\lambda}x||^2$ ce qui prouve, par Parseval, que $x = \sum E_{\lambda}x \in H_d$.

Problème : Le problème de la convergence de ces moyennes en restriction à une sous-suite d'entiers et l'identification de la limite. Grâce à cette correspondance, le problème se ramène à la convergence d'une suite de polynômes trigonométriques; si Λ est une suite croissante d'entiers, on pose

$$p_N^{\Lambda}(z) = \frac{1}{|\Lambda \cap [1, N]|} \sum_{n < N \atop n \in \Lambda} z^n.$$

Si $p_N^{\Lambda}(z) \to 0$ pour tout $z \neq 1$, (on dit que Λ est une suite ergodique) alors on a la conclusion du théorème de VN pour Λ .

Soit maintenant (X, \mathcal{B}, μ, T) un système dynamique; puisque $T(\mu) = \mu$, l'opérateur $f \in H = L^2(X, \mu) \to f \circ T$ est une isométrie de H et le théorème de VN prend la forme suivante :

Théorème 2.2 (Von Neumann) Soit (X, \mathcal{B}, μ, T) un système dynamique; pour toute $f \in L^2(X, \mu)$,

$$\lim_{N \to \infty} \left| \left| \frac{1}{N} \sum_{n < N} f \circ T^n - Pf \right| \right|_2 = 0$$

P étant le projecteur orthogonal sur les fonctions T-invariantes de $L^2(X,\mu)$.

Avant d'établir les théorèmes ergodiques on fait un détour par la théorie de Wiener dont on aura besoin.

3 Théorie de Wiener

Le théorème de Weyl (1912) sur l'équirépartition de la suite $\{n\alpha\}$ pour α irrationnel, passe pour être le premier théorème ergodique. Rappelons qu'une suite (u_n) de X = [0, 1] est dite équirépartie dans X si la proportion de points tombant dans un sous-intervalle I de X tend vers la longueur de l'intervalle. Ceci s'écrit :

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n < N} \mathbf{1}_I(u_n) = m(I).$$

Si (u_n) est simplement une suite de réels, il faut considérer $(\{u_n\})$; on dit alors que la suite est équirépartie modulo 1.

Le critère de Weyl ramène ce problème à un problème de polynômes trigonométriques, une fois de plus.

Théorème 3.1 La suite (u_n) est équirépartie modulo 1 si et seulement si, pour tout k entier non nul,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n < N} e^{2i\pi k u_n} = 0.$$

Ce théorème et celui de Van der Corput conduisent à définir l'objet suivant :

Définition 3.1 On appelle mesure de corrélation de la suite complexe (z_n) , si elle existe, la mesure de probabilité ν dont les coefficients de Fourier sont donnés par :

$$\hat{\nu}(j) = \lim_{N \to \infty} \frac{1}{N} \sum_{n < N} z_{n+j} \bar{z_n}$$

lorsque $j \ge 0$ et $\hat{\nu}(-j) = \overline{\hat{\nu}(j)}$.

A noter que la moyenne de la suite z_n est nulle si ν ne charge pas 0 car plus généralement (voir plus loin)

$$\limsup_{N \to \infty} \frac{1}{N} \left| \sum_{n < N} z_n e^{-in\lambda} \right| \le \nu \{\lambda\}^{1/2}.$$

Ainsi, lorsque toutes les suites $e^{2i\pi ku_n}$, $k \neq 0$, admettent une mesure de corrélation continue (ou simplement ne chargeant pas 0) alors la suite (u_n) est équirépartie mod 1.

3.1 Un lemme sur les suites disjointes

Proposition 3.1 Soit (a_n) et (b_n) deux suites de S ayant des mesures de corrélation mutuellement singulières. Alors

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n < N} a_n \bar{b_n} = 0.$$

On aura besoin du résultat suivant :

Définition 3.2 On appelle affinité de deux mesures $\mu, \nu \in M(\mathbf{T})$ la quantité

$$\rho(\mu,\nu) = \int_{\mathbf{T}} \left(\frac{d\mu}{d\tau}\right)^{1/2} \left(\frac{d\nu}{d\tau}\right)^{1/2} d\tau$$

où τ est une mesure ≥ 0 dominant μ et ν ($\frac{d\mu}{d\tau}$ étant la dérivée de Radon-Nikodym).

L'intérêt de cette notion est qu'elle permet de caractériser l'orthogonalité de deux mesures : $\rho(\mu, \nu) = 0 \iff \mu \perp \nu$.

Preuve : La preuve est une combinaison des deux résultats suivants : une description pratique d'une mesure de corrélation comme limite faible de polynômes

Proposition 3.2 Si ν est l'unique mesure de corrélation de la suite (z_n) , alors

$$\nu = \lim \text{faible} \frac{1}{N} |\sum_{n \le N} z_n e^{int}|^2.$$

Et de la

Proposition 3.3 Soit (μ_n) et (ν_n) deux suites de mesures sur **T** convergeant faiblement vers μ et ν respectivement. Alors

$$\rho(\mu, \nu) \ge \limsup \rho(\mu_n, \nu_n).$$

Maintenant

$$\rho(\nu_{a}, \nu_{b}) \geq \limsup_{N} \rho(\nu_{a}^{(N)}, \nu_{b}^{(N)})$$

$$= \lim \sup_{N} \frac{1}{N} \int_{\mathbf{T}} |\sum_{n < N} a_{n} e^{int}| |\sum_{n < N} \overline{b_{n}} e^{-int}| dm(t)$$

$$\geq \lim \sup_{N} \frac{1}{N} |\int_{\mathbf{T}} \sum_{n < N, m < N} a_{n} \overline{b_{m}} e^{i(n-m)t}| dm(t)$$

$$= \lim \sup_{N} \frac{1}{N} |\sum_{n < N} a_{n} \overline{b_{n}}|.$$

4 Théorèmes ergodiques

Lorsque U est l'opérateur de composition $f \to f \circ T$ sur $L^2(X, \mu)$ (noté aussi Tf) il y a d'autres types de convergence.

4.1 Le théorème de Birkhoff

Théorème 4.1 Soit (X, \mathcal{B}, μ, T) un système dynamique ergodique et soit $f \in L^1(X, \mu)$. Alors pour presque tout x, $\lim_{N\to\infty} \frac{1}{N} \sum_{n< N} f(T^n x) = \int_X f \ d\mu$.

4.2 Le théorème de Wiener-Wintner

Il s'agit d'une variante avec poids du théorème de Birkhoff. Une application immédiate du théorème de Fubini conduit à la version pondérée suivante : $Soit(X, \mathcal{B}, \mu, T)$ un système dynamique ergodique et soit $f \in L^1(X, \mu)$. Alors $\lim_{N\to\infty} \frac{1}{N} \sum_{n< N} z^n f(T^n x)$ existe pour presque tout x et presque tout z de module 1. En fait le théorème de WW dit que la convergence a lieu pour tout z.

Théorème 4.2 (Wiener-Wintner) Soit (X, \mathcal{B}, μ, T) un système dynamique ergodique et soit $f \in L^1(X, \mu)$. Alors $\lim_{N\to\infty} \frac{1}{N} \sum_{n< N} z^n f(T^n x)$ existe pour presque tout x et tout z de module 1.

Preuve : f étant fixée, on exhibe un ensemble X_f de mesure pleine tel que la convergence ait lieu pour tout $x \in X_f$ et tout |z| = 1. On traite en détail le cas $f \in L^2$ et on déduira le cas L^1 par un argument d'approximation.

Si $f \in L^2$, pour tout k la fonction $T^k f \cdot \overline{f} \in L^1$, et par le théorème de Birkhoff, $\frac{1}{N} \sum_{n < N} f(T^{n+k}x) \overline{f}(T^n x)$ converge ps vers $\int_X f(T^k x) \overline{f}(x) \ d\mu(x) = \hat{\sigma}_f(k)$. Prenons pour X_f l'ensemble des x pour lesquels les limites ont lieu pour tous les $k \geq 0$. Ainsi $\mu(X_f) = 1$ et on va voir que cet ensemble convient. On utilise pour cela la décomposition $L^2(X, \mu) =: H = H_d \oplus H_c$.

Supposons que $f \in H_c$; en appliquant la proposition 3.1 précédente avec $a_n = z^n$ et $b_n = f(T^n x)$ pour x fixé dans X_f , il vient que $\frac{1}{N} \sum_{n < N} z^n f(T^n x)$ tend vers 0; en effet (z^n) est de corrélation discrète δ_z alors que $(f(T^n x))$ a une corrélation σ_f continue.

Soit maintenant $f \in H_d$. Le théorème est évident pour une fonction propre et on peut identifier la limite dans ce cas. Si σ_f ne charge pas z, le précédent argument de disjonction permet de conclure ici aussi que la limite existe et vaut 0 puisque les suites $(f(T^nx))$ et (z^n) ont des corrélations étrangères. Si $\sigma_f\{z\} \neq 0$, on peut décomposer f = g + h avec $\sigma_h\{z\} = 0$ et $\sigma_g\{z\} = \sigma_f\{z\} = ||g||^2$; ainsi g est une fonction propre et le résultat découle des deux remarques précédentes.

Ceci établit le théorème lorsque $f \in L^2$.

Si f est seulement dans L^1 on l'approche par une suite $g_k \in L^2$ en norme L^1 . A chaque g_k est associé un ensemble X_k de mesure pleine sur lequel $\lim_{N\to\infty}\frac{1}{N}\sum_{n< N}z^ng_k(T^nx)$ existe pour tout |z|=1, avec en plus $\lim_{N\to\infty}\frac{1}{N}\sum_{n< N}|f(T^nx)-g_k(T^nx)|=\int_X|f-g_k|\ d\mu$. C'est possible par le théorème ergodique appliqué à $|f-g_k|$. Si on pose maintenant $X_f=\cap_k X_k$, on voit que pour $x\in X_f$, la suite $\frac{1}{N}\sum_{n< N}z^nf(T^nx)$ vérifie le critère de Cauchy.

Il est tentant d'étendre ce théorème à des suites plus générales que les suites géométriques, pour obtenir ainsi d'autres théorèmes ergodiques. Dans ce sens voici

Théorème 4.3 (Blum & **Reich)** Soit (a_n) une suite de signes ± 1 . Supposons que pour tout $t \in \mathbf{T}$, il existe C(t) > 0 et $\varepsilon(t) > 0$ telles que, pour tout N,

$$\left| \sum_{n \le N} a_n e^{int} \right| \le C(t) N^{1-\varepsilon(t)}; \tag{1}$$

alors, pour tout système dynamique (X, \mathcal{B}, μ, T) et toute $f \in L^1(X, \mu)$,

$$\frac{1}{N} \sum_{n < N} a_n \ f \circ T^n \to 0 \quad \mu - pp. \tag{2}$$

Preuve : Fixons (X, \mathcal{B}, μ, T) et, pour $\varepsilon > 0$ et C > 0, posons

$$E_{\varepsilon,C} = \{ t \in \mathbf{T}, \ C(t) < C, \ \varepsilon(t) > \varepsilon \}.$$

Finalement, considérons

$$H_{\varepsilon,C} = \{ f \in L^2(X,\mu), \ \sigma_f(E_{\varepsilon,C}^c) = 0 \}.$$

 \star On va voir que (2) a lieu pour f dans un $H_{\varepsilon,C}$. En effet, par définition de σ_f ,

$$\left\| \frac{1}{N} \sum_{n < N} a_n f \circ T^n \right\|_2^2 = \int_{\mathbf{T}} \left| \frac{1}{N} \sum_{n < N} a_n e^{int} \right|^2 d\sigma_f(t)$$

$$= \int_{E_{\varepsilon, C}} \left| \frac{1}{N} \sum_{n < N} a_n e^{int} \right|^2 d\sigma_f(t)$$

$$\leq \int_{E_{\varepsilon, C}} C^2 N^{-2\varepsilon} d\sigma_f(t)$$

$$\leq C^2 ||f||_2^2 N^{-2\varepsilon}.$$

Choisissons $N_k = [k^{1/\varepsilon}]$, clairement,

$$\sum_{k} \left\| \frac{1}{N_k} \sum_{n < N_k} a_n \ f \circ T^n \right\|_2^2 < \infty$$

et $\frac{1}{N_k} \sum_{n < N_k} a_n f \circ T^n$ tend vers 0 μ -pp. On conclut à l'aide d'un argument classique d'interpolation. (Ceci vaut pour toute suite complexe (a_n) satisfaisant (1).)

 \star Comme conséquence de l'inégalité maximale pour les sous-suites d'entiers de densité positive, l'ensemble des $f \in L^1(X,\mu)$ pour lesquelles (2) a lieu est fermé dans L^1 . Pour finir la preuve il reste à montrer que l'ensemble $\bigcup_{\varepsilon,C} H_{\varepsilon,C}$ est total dans L^2 , donc dans L^1 .

Observons tout d'abord que

$$\mathbf{1}_{E_{\varepsilon,C}}(U)(L^2(X,\mu)) \subset H_{\varepsilon,C}$$

puisque

$$\sigma_{\mathbf{1}_{E_{\varepsilon,C}}(U)f} = \mathbf{1}_{E_{\varepsilon,C}}\sigma_f \text{ if } f \in L^2(X,\mu).$$

Maintenant soit $g \in L^2(X, \mu)$ orthogonale aux $H_{\varepsilon,C}$ pour tous $\varepsilon > 0$ et C > 0. En particulier,

$$g \perp \mathbf{1}_{E_{\varepsilon,C}}(U)U^kg$$
 pour tout $k \in \mathbf{N}$

ce qui implique

$$\sigma_{g,\mathbf{1}_{E_{\varepsilon,C}}(U)g} = \mathbf{1}_{E_{\varepsilon,C}}\sigma_g = 0,$$

 $\forall \varepsilon > 0, C > 0.$

Mais par hypothèse sur la suite (a_n) , $\bigcup_{\varepsilon,C} E_{\varepsilon,C} = \mathbf{T}$. On en déduit $\sigma_g = 0$ et g = 0 à son tour. Ceci prouve (2) pour toute $f \in L^1(X, \mu)$.

\Diamond

4.3 Exemples:

- 1) La suite de Rudin-Shapiro puisque l'on a carrément $\left\|\sum_{n< N} r_n e^{int}\right\|_{\infty} \le (2+\sqrt{2})\sqrt{N}$.
- 2) La suite de Morse à valeurs ± 1 . On a en effet

Proposition 4.1 Notons (ε_n) la suite de Thue-Morse sur $\{\pm 1\}$, c.a.d. $\varepsilon_n = (-1)^{S_2(n)}$ si S_2 est la somme des chiffres en base 2. Alors

$$\left\| \sum_{n \le N} \varepsilon_n e^{int} \right\|_{\infty} \le 3N^{1-\delta}, \quad avec \quad \delta = \frac{1}{4} \log_2(27/16) > 0.$$

Preuve : On considère tout d'abord la somme sur un bloc dyadique, de façon à utiliser la propriété miroir de la suite : en effet ces blocs sont symétriques au sens où, pour tout N,

$$\varepsilon_{[0, 2^{N-1}-1]} = -\varepsilon_{[2^{N-1}, 2^{N}-1]};$$

ainsi,

$$S_{2^N}(t) = S_{2^{N-1}}(t) + \sum_{n=2^{N-1}}^{2^N-1} \varepsilon_n e^{int} = (1 - e^{i2^{N-1}t}) S_{2^{N-1}}(t)$$

et

$$S_{2^N}(t) = \prod_{n=0}^{N-1} (1 - e^{i2^n t}).$$

En regroupant les termes par deux et en utilisant l'inégalité

$$\sup_{x \in \mathbf{R}} |\sin x \cdot \sin 2x| \le \frac{4}{3\sqrt{3}} =: c < 1,$$

on voit que

$$|S_{2^N}(t)| = 2^N \prod_{1}^{N-1} |\sin 2^{n-1}t| \le 2^N c^{N/2} =: 2^{N\alpha}.$$

L'argument d'interpolation est simple ici : si $N = 2^{N_1} + \cdots + 2^{N_k} = m + 2^{N_k}$, avec $N_1 < N_2 < \cdots < N_k$ et $m < 2^{N_k}$, on a

$$S_{m+2^{N_k}}(t) = S_{2^{N_k}}(t) + e^{i2^{N_k}t}S_m(t)$$

si bien que

$$|S_N(t)| \le |S_{2^{N_1}}(t)| + \dots + |S_{2^{N_k}}(t)| \le 2^{N_1\alpha} + \dots + 2^{N_k\alpha}$$

 $\le \frac{2^{N_k\alpha}}{1 - 2^{-\alpha}} \le 3N^{\alpha}$

d'où le résultat.

 \Diamond

Posons $\Lambda = \{k_1 < k_2 < \cdots\}$ où les entiers sont définis par $\varepsilon_{k_n} = 1$. Comme

$$\frac{1}{|\Lambda \cap [1,N]|} \sum_{n < N \atop n \in \Lambda} f(T^n x) = \frac{1}{|\Lambda \cap [1,N]|} \sum_{n < N} \mathbf{1}_{\Lambda}(n) f(T^n x)$$

et que

$$\mathbf{1}_{\Lambda}(n) = (\varepsilon_n + 1)/2,$$

on a, pour toute $f \in L^1$,

$$\frac{2}{N} \sum_{n \leq N} \frac{\varepsilon_n + 1}{2} f(T^n x) \to \int_X f \ d\mu \ ps;$$

d'où le résultat (puisque Λ est de densité 1/2):

Corollaire 4.1 (E. Lesigne) Le théorème ergodique a lieu le long de la suite $\Lambda = \{k_1 < k_2 < \cdots\}$ d'entiers définis par $\varepsilon_{k_n} = 1$, associée à la suite de Thue-Morse.