Задача 99-1 [NP-Complectness]

Самый длинный путь

Задан граф G=(V,E) и положительное число $K \leq |V|$. Имеется ли в G простой путь (то есть путь, не проходящий дважды ни через одну вершину), состоящий не менее чем из K pëбер?

Решение 1. Пусть дан граф и необходимо найти цикл, проходящий через каждую вершину по одному разу. Так как Гамильтонов цикл проходит по всем вершинам единожды, а также включает в себя любое из рёбер графа не более одного раза, то при нахождении Гамильтонова цикла находим и путь максимальной длины: |V|-1. То есть рассматриваемая задача содержит в качестве частного случая (при K=|V|-1) известную NP-полную задачу. Следовательно, является NP-сложной. Однако задача лежит в NP, а, следовательно, NP-полна, так как проверяющую функцию для сертификата, который для данной задачи суть гамильтонов путь в графе, работает за полиномиальное время.

Решение 2. (сведение) К данной задаче сведём задачу о Гамильтоновом пути в ориентированном графе. Пусть дан ориентированный граф G, по нему строим новый неориентированный граф G': а именно (1) каждую вершину графа G отождествим с тремя новыми в графе G', причём эти три образуют цепь, у которой отличаем вершину-начало и вершину-конец, (2) каждом ориентированному ребру графа G сопоставим ребро такое, что оно исходит из вершины-конца и входит в вершину-начало соответствующих вершинам исходного графа цепей. Таким образом, если в полученном графе G' имеется гамильтонов путь, то и в ориентированном графе G имеется ориентированный гамильтонов путь. И наоборот, если пути нет в G', то и в G ориентированного пути не существует. Цепи в графе G' и такое их соединение искусственно переносят структуру ориентированного графа на неориентированный.

Теперь докажем, что задача о гамильтоновом пути в ориентированном графе NP-полна. Сведём к неё задачу об ориентированном гамильтоновом цикле. Пусть дан ориентированный граф G(V,E), по нему построим новый граф G'(V',E'): выберем какую-либо из вершин $\vartheta \in V$ графа G, в G' добавим ещё одну вершину v, а далее распределим ребра, инцидентные вершине ϑ графа G так, что вершине ϑ' графа G' инцедентны только исходящие ребра вершины ϑ , а все входящие с сохренением всех инцедентностей вершинам в графе G' входят в вершину v.

Так если в G' был ориентированный гамильтонов цикл, то в G', очевидно, будет ориентированный гамильтонов путь. Если в полученном графе G' есть ориентированный гамильтонов путь, то в графе G имеется ориентированный гамильтонов цикл, потому что путь в G' имеет начало в ϑ' , а конец в v, а в графе G ребра обеих инцедентны ϑ . Задача о поиске ориентированного цикла в качестве подзадачи содержит NP полную о нахождении цикла в неориентированном графе, следовательно, NP-сложна. Но сертификат (ориентированный гамильтонов цикл в G) можно проверить за полиномиальное время. Отсюда она лежит в NPC.

Так доказано, что исходная задача NP-сложна. Однако задача лежит в NP, а, следовательно, NP-полна, так как проверяющую функцию для сертификата, который для данной задачи суть гамильтонов путь в графе, работает за полиномиальное время.

Задача 100-10 [NP-Complectness]

НЕЭКВИВАЛЕНТНОСТЬ РЕГУЛЯРНЫХ ВЫРАЖЕНИЙ, НЕ СОДЕРЖАЩИХ ЗВЁЗДОЧЕК

Заданы два не содержащие звёздочек регулярных выражения E_1 и E_2 в конечном алфавите Σ . Такое выражение определяется следующим образом:

1. любой символ σ алфавита Σ есть не содержащее звёздочек регулярное выражение,

2. если e_1 и e_2 — два не содержащие звёздочек регулярных выражения, то и слова e_1e_2 и $(e_1 \lor e_2)$ также не содержащие звёздочек регулярные выражения.

Верно ли, что E_1 и E_2 представляют различные языки в алфавите Σ ? (Язык, представляемый символом $\sigma \in \Sigma$, если $\{\sigma\}$, а если e_1 и e_2 представляют соответственно языки L_1 и L_2 , то e_1e_2 представляет язык $\{xy: x \in L_1, y \in L_2\}$, а $(e_1 \vee e_2)$ представляет язык $L_1 \cup L_2$.)

Задача 7 [NP-ISSUES]

Так как задача о трёхмерном сочетании является NP-полной, естественно ожидать, что аналогичная задача о четырёхмерном сочетании будет хотя бы не менее сложной. Определим четырехмерное сочетание следующим образом: для заданных множеств W, X, Y и Z, каждое из которых имеет размер n, и набора C упорядоченных четверок в форме (w_i, x_j, y_k, z_l) существуют ли n четверок из C, среди которых никакие два не имеют общих элементов?

Докажите, что задача о четырехмерном сочетании является NP-полной.

Решение. (не оттуда, не туда) Пусть есть 4-дольный граф G(V, E) на 4n вершинах (в каждой доли n вершин), в котором можно выделить m подграфов K_4 . Далее отождествим каждую 4-клику, у которой нет двух вершин из одной доли, с новой вершиной, таким образом получим новый граф G'. Новые две вершины инцидентны тогда и только тогда, когда у подграфов, с которыми они были отождествлены, пересечение множеств вершин не пусто.

Если в таком новом графе G' существует независимое множество вершин мощности n, то существует и решение у нашей задачи, потому что выделив n вершин в G', не имеющих общих ребер, выделили n 4-клик исходного графа G, у которых нет общих элементов и у которых по одной вершине в каждой из четырёх доль в силу проведенного ранее отождествления. А значит, нашли решение исходной задачи. Если же независимого множества можности n не существует, то какие бы n 4-клик с вершинами в попарно различных долях ни были бы выбраны в исходном графе, какое-то из попарных пересечений множеств вершин не пусто, так как соответствующее множество вершин в G' не является независимым.

По решению полученной задачи о поиске независимого множества в графе G' легко восстановить разбиение исходного множества на четверки, элементы которых принадлежат попарно различным долям, а также нет общих.

Задача 16 [NP-ISSUES]

Рассмотрим задачу характеристики множества по размерам его пересечений с другими множествами. Имеется конечное множество U размера n, а также набор A_1, \ldots, A_m подмножеств U. Также заданы числа c_1, \ldots, c_m . Вопрос звучит так: существует ли такое множество $X \subset U$, что для всех $i = 1, 2, \ldots, m$ мощность $X \cap A_i$ равна c_i ? Назовем его задачей выведения пересечений с входными данными U, $\{A_i\}$ и $\{c_i\}$. Докажите, что задача выведения пересечений является NP-полной.

Решение. К данной задаче сведём SAT. Пусть дан список дизъюнктов, каждый из которых содержит n литералов. Количество дизъюнктов соответствует количеству подмножеств $A_i \subset U$, а именно m. Каждый i-ый дизъюнкт задаёт A_i следующим образом:

$$\begin{cases} a_j \in A_i, & \text{если } x_{ij} \\ a_j \notin A_i, & \text{если } \overline{x_{ij}}, \end{cases}$$

где a_j-j -ый элемент множества U, следовательно, $i=\overline{1,m},\,j=\overline{1,n}.$

Теперь, если для исходного набора дизъюнктов существует набор значений литералов, при котором формула выполнена, то и для полученного набора подмножеств $\{A_i\}_{i=\overline{1,m}}$ существует такое множество $X\subset U$, что для всех $i=1,2,\ldots,m$ мощность $X\cap A_i$ равна c_i ,

где c_i — количество литералов, которые обращаются в истину в i-ом дизъюнкте. Множество

$$X = \begin{cases} a_j \in X, & \text{если } x_j = 1, \\ a_j \notin X, & \text{если } x_j = 0, \end{cases}$$

где x_j — литерал из набора выбранных для выполнимости искодной формулы.