Expressões regulares:

 $\mathcal{L}_1 = \{ w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 4 \text{ e o segundo e o penúltimo símbolos de } w \text{ são, ambos, } 1 \}.$ $\mathbf{ER}(\mathcal{L}_1) : (0 \cup 1)1(0 \cup 1)^*1(0 \cup 1).$

• NFA que reconhece a linguagem \mathcal{L}_1 :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1\} & \{s_1\} \\ s_1 & \varnothing & \{s_2\} \\ s_2 & \{s_2\} & \{s_2, s_3\} \\ s_3 & \{s_4\} & \{s_4\} \\ s_4 & \varnothing & \varnothing \\ \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_1 :

 $\mathcal{L}_2 = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e par e } w \text{ cont\'em pelo menos um s\'embolo } 0 \}.$ $\mathbf{ER}(\mathcal{L}_2) : (11)^* (00 \cup 01 \cup 10) ((0 \cup 1)(0 \cup 1))^*.$

• NFA que reconhece a linguagem \mathcal{L}_2 :

• Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.

au	0	1
s_0	$\{s_1\}$	$\overline{\{s_2,s_3\}}$
s_1	$\{s_4\}$	$\{s_4\}$
s_2	Ø	$\{s_0\}$
s_3	$\{s_4\}$	Ø
s_4	$\{s_5\}$	$\{s_5\}$
s_5	$ \{s_4\} $	$\{s_4\}$

• DFA que reconhece a linguagem \mathcal{L}_2 :

 $\mathcal{L}_3 = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ n\~ao termina com a subcadeia } 0011 \}.$ $\mathbf{ER}(\mathcal{L}_3) \ : \ (1 \cup 0(0^+1(0 \cup 10))^*(1 \cup 0^+111))^*(\varepsilon \cup 0(0^+1(0 \cup 10))^*(\varepsilon \cup 0^+ \cup 0^+1)).$

• NFA que reconhece a linguagem \mathcal{L}_3 :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_8\}$.
- $\bullet\,$ Função τ de transições:

au	0	1
s_0	$\{s_1,s_9\}$	$\{s_0, s_8\}$
s_1	$\{s_2, s_5\}$	$\{s_8\}$
s_2	$\{s_2\}$	$\{s_3\}$
s_3	$\{s_1\}$	$\{s_4\}$
s_4	$\{s_1\}$	Ø
s_5	$\{s_5\}$	$\{s_6\}$
s_6	Ø	$\{s_7\}$
s_7	Ø	$\{s_8\}$
s_8	$\{s_1,s_9\}$	$\{s_0,s_8\}$
s_9	$\{s_{10}\}$	Ø
s_{10}	$\{s_{10}\}$	$\{s_{11}, s_{13}\}$
s_{11}	$\{s_9\}$	$\{s_{12}\}$
s_{12}	$\{s_9\}$	Ø
s_{13}	Ø	Ø

• DFA que reconhece a linguagem \mathcal{L}_3 :

$$\mathcal{L}_4 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ termina com } 101 \text{ e contém } 100 \}.$$

 $\mathbf{ER}(\mathcal{L}_4) : (0 \cup 1)^* 100(0 \cup 1)^* 101.$

• NFA que reconhece a linguagem \mathcal{L}_4 :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- Função τ de transições:

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0\} & \{s_0, s_1\} \\ s_1 & \{s_2\} & \varnothing \\ s_2 & \{s_3\} & \varnothing \\ s_3 & \{s_3\} & \{s_3, s_4\} \\ s_4 & \{s_5\} & \varnothing \\ s_5 & \varnothing & \{s_6\} \\ s_6 & \varnothing & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_4 :

$$\mathcal{L}_5 = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \neq 2 \}.$$

$$\mathcal{L}_6 = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não começa com } 000 \text{ e não termina com } 111 \}.$$

$$\mathcal{L}_7 = \{ w \in \Sigma^* = \{0,1\}^* \mid |w| > 0 \text{ e o primeiro e o penúltimo símbolos de w são idênticos} \}.$$

$$\mathbf{ER}(\mathcal{L}_7) : (0 \cup 1)(0 \cup 1) \cup (0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1)(0 \cup 1).$$

• NFA que reconhece a linguagem \mathcal{L}_7 :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- $\bullet\,$ Função τ de transições:

au	0	1
s_0	$\{s_1, s_3\}$	$\{s_2,s_4\}$
s_1	$\{s_1, s_3\}$	$\{s_1\}$
s_2	$\{s_2\}$	$\{s_2, s_4\}$
s_3	$\{s_5\}$	$\{s_5\}$
s_4	$\{s_5\}$	$\{s_5\}$
s_5	Ø	Ø

• DFA que reconhece a linguagem \mathcal{L}_7 :

 $\mathcal{L}_8 = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e impar e } w \text{ começa com } 0 \text{ e termina com } 1 \}.$ $\mathbf{ER}(\mathcal{L}_8) \ : \ 0(0 \cup 1)((0 \cup 1)(0 \cup 1))^* 1.$

• NFA que reconhece a linguagem \mathcal{L}_8 :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- $\bullet\,$ Função τ de transições:

au	0	1
s_0	$\{s_1\}$	Ø
s_1	$\{s_2\}$	$\{s_2\}$
s_2	$\{s_3\}$	$\{s_3, s_4\}$
s_3	$\{s_2\}$	$\{s_2\}$
s_4	Ø	Ø

• DFA que reconhece a linguagem \mathcal{L}_8 :

 $\mathcal{L}_9 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ contém no máximo 4 ocorrências do símbolo 0} \}.$ $\mathbf{ER}(\mathcal{L}_9) : 1^*(\varepsilon \cup 0 \cup 01^*0 \cup 01^*01^*0 \cup 01^*01^*01^*0)1^*.$

• NFA que reconhece a linguagem \mathcal{L}_9 :

• Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_2, s_3, s_4\}.$

au	0	1
s_0	$\{s_5, s_6, s_7, s_8\}$	${s_0, s_1, s_2, s_3, s_4}$
s_1	$\{s_5, s_{15}\}$	Ø
s_2	$\{s_6\}$	Ø
s_3	$\{s_7\}$	Ø
s_4	$\{s_8\}$	Ø
s_5	Ø	$\{s_{15}\}$
s_6	$\{s_9, s_{15}\}$	$\{s_6\}$
s_7	$\{s_{10}\}$	$\{s_7\}$
s_8	$\{s_{11}\}$	$\{s_8\}$
s_9	Ø	$\{s_{15}\}$
s_{10}	$\{s_{12}, s_{15}\}$	$\{s_{10}\}$
s_{11}	$\{s_{13}\}$	$\{s_{11}\}$
s_{12}	Ø	$\{s_{15}\}$
s_{13}	$\{s_{14}, s_{15}\}$	$\{s_{13}\}$
s_{14}	Ø	$\{s_{15}\}$
s_{15}	Ø	$\{s_{15}\}$

• DFA que reconhece a linguagem \mathcal{L}_9 :

 $\mathcal{L}_{10} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ começa com } 0 \text{ e contém quantidade împar de 1's} \}.$ $\mathbf{ER}(\mathcal{L}_{10}) : 0^+ 1 (0 \cup 10^* 1)^*.$

• NFA que reconhece a linguagem \mathcal{L}_{10} :

• Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.

au	0	1
s_0	$\{s_1\}$	Ø
s_1	$\{s_1\}$	$\{s_2, s_3\}$
s_2	$\{s_3\}$	$\{s_4\}$
s_3	$\{s_3\}$	$\{s_4\}$
s_4	$\{s_4\}$	$\{s_3\}$

• DFA que reconhece a linguagem \mathcal{L}_{10} :

 $\mathcal{L}_{11} = \{ w \in \Sigma^* = \{0,1\}^* \mid \text{ todo símbolo } 0 \text{ em } w \text{ é seguido de pelo menos dois 1's consecutivos, exceto a última ocorrência de 0 em } w \}.$

 $\mathcal{L}_{12} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ começa com } 0, \text{ não contém } 10 \text{ e termina com } 1 \}.$ $\mathbf{ER}(\mathcal{L}_{12}) : 0^+ 1^+.$

• NFA que reconhece a linguagem \mathcal{L}_{12} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- Função τ de transições:

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0, s_1\} & \varnothing \\ s_1 & \varnothing & \{s_1, s_2\} \\ s_2 & \varnothing & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{12} :

$$N_{\mathcal{L}_{12}} \longrightarrow \underbrace{\{s_0\}} \quad 0 \qquad \underbrace{\{s_0, s_1\}} \quad 1 \qquad \underbrace{\{s_1, s_2\}}$$

$$\mathcal{L}_{13} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = xyz \in |x| = 2 \}.$$

$$\mathcal{L}_{14} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e impar e } w \text{ termina com } 1 \}.$$

 $\mathbf{ER}(\mathcal{L}_{14}) : ((0 \cup 1)(0 \cup 1))^*1.$

• NFA que reconhece a linguagem \mathcal{L}_{14} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_2\}$.
- \bullet Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1\} & \{s_1, s_3\} \\ s_1 & \{s_1, s_2\} & \{s_0, s_2\} \\ s_2 & \varnothing & \{s_3\} \\ s_3 & \varnothing & \varnothing \\ \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{14} :

 $\mathcal{L}_{15} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ contém quantidade par de 0's ou ímpar de 1's (ou ambos)}\}.$

 $\mathcal{L}_{16} = \{ w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ termina com um 0 seguido de uma quantidade ímpar de 1's} \}.$

 $\mathcal{L}_{17} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \text{ é par e todos os 0's antecedem todos os 1's} \}.$ $\mathbf{ER}(\mathcal{L}_{17}) : (00)^*1^*.$

• NFA que reconhece a linguagem \mathcal{L}_{17} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_3\}.$
- Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_2\} & \{s_3\} \\ s_1 & \{s_2\} & \{s_3\} \\ s_2 & \{s_1\} & \varnothing \\ s_3 & \varnothing & \{s_3\} \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{17} :

 $\mathcal{L}_{18} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém quantidade par de 01's e impar de 0's} \}.$

 $\mathcal{L}_{19} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ começa com } 0 \text{ e contém } 00 \}.$

 $\mathbf{ER}(\mathcal{L}_{19}) : 0(1^+0)^*0(0 \cup 1)^*.$

• NFA que reconhece a linguagem \mathcal{L}_{19} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1\} & \varnothing \\ s_1 & \{s_5, s_6, s_7\} & \{s_2, s_4\} \\ s_2 & \{s_1, s_3\} & \{s_2, s_4\} \\ s_3 & \{s_5, s_6, s_7\} & \{s_2, s_4\} \\ s_4 & \{s_1, s_3\} & \{s_2, s_4\} \\ s_5 & \{s_5, s_6, s_7, s_8\} & \{s_5, s_6, s_7, s_8\} \\ s_6 & \{s_5, s_6, s_7, s_8\} & \{s_5, s_6, s_7, s_8\} \\ s_7 & \{s_5, s_6, s_7, s_8\} & \{s_5, s_6, s_7, s_8\} \\ s_8 & \{s_5, s_6, s_7, s_8\} & \{s_5, s_6, s_7, s_8\} \\ \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{19} :

 $\mathcal{L}_{20} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ não contém 01 como prefixo} \}.$

 $\mathbf{ER}(\mathcal{L}_{20}) : (\varepsilon \cup 0) \cup (00 \cup 1)(0 \cup 1)^*.$

• NFA que reconhece a linguagem \mathcal{L}_{20} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_2\}.$
- Função τ de transições:

au	0	1
s_0	$\{s_1,s_2\}$	$\{s_4\}$
s_1	Ø	Ø
s_2	$\{s_3\}$	$\{s_4\}$
s_3	$\{s_e\}$	Ø
s_4	$\{s_4\}$	$\{s_4\}$

• DFA que reconhece a linguagem \mathcal{L}_{20} :

 $\mathcal{L}_{21} = \{ w \in \Sigma^* = \{0,1\}^* \mid |w|_1 \text{ \'e par e } w \text{ n\~ao cont\'em a subcadeia } 11 \}.$

 $\mathcal{L}_{22} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ não contém três símbolos idênticos consecutivos} \}.$

 $\mathbf{ER}(\mathcal{L}_{22}) \ : \ \varepsilon \cup 1 \cup 11 \cup (0 \cup 1(0 \cup 10))((1 \cup 01)(0 \cup 10))^* (\varepsilon \cup 0 \cup 1 \cup 01 \cup 11 \cup 011).$

• NFA que reconhece a linguagem \mathcal{L}_{22} :

• Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_2\}.$

au	0	1
s_0	$\{s_3, s_4, s_5, s_7, s_8, s_9\}$	$\{s_1, s_2\}$
s_1	$\{s_3, s_4, s_5, s_7, s_8, s_9\}$	$\{s_2\}$
s_2	$\{s_3, s_4, s_5, s_7, s_8, s_9\}$	Ø
s_3	$\{s_4, s_5, s_7, s_8, s_9\}$	$\{s_5, s_6, s_8, s_9\}$
s_4	Ø	$\{s_5,s_6\}$
s_5	Ø	$\{s_6\}$
s_6	$\{s_3, s_7, s_8, s_9\}$	Ø
s_7	Ø	$\{s_8,s_9\}$
s_8	Ø	$\{s_9\}$
s_9	Ø	Ø

• DFA que reconhece a linguagem \mathcal{L}_{22} :

 $\mathcal{L}_{23} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém o mesmo símbolo em todas as posições pares} \}.$ $\mathbf{ER}(\mathcal{L}_{23}) : (0(0 \cup 1))^*(\varepsilon \cup 0) \cup (1(0 \cup 1))^*(\varepsilon \cup 1).$

• NFA que reconhece a linguagem \mathcal{L}_{23} :

• Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_2\}$.

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1\} & \{s_2\} \\ s_1 & \{s_3\} & \varnothing \\ s_2 & \varnothing & \{s_4\} \\ s_3 & \{s_1\} & \{s_1\} \\ s_4 & \{s_2\} & \{s_2\} \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{23} :

$$\mathcal{L}_{24} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_{01} = |w|_{10} \}.$$

$$\mathcal{L}_{25} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e m\'ultiplo de } 3 \}.$$

$$\mathcal{L}_{26} = \{ w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ \'e uma sequência de subcadeias 01 ou 10} \}.$$

$$\mathcal{L}_{27} = \{ w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ \'e impar e } w \text{ cont\'em pelo menos uma ocorr\^encia do s\'embolo 1} \}.$$

$$\mathbf{ER}(\mathcal{L}_{27}) : (00)^* (1 \cup 01(0 \cup 1))((0 \cup 1)(0 \cup 1))^*.$$

• NFA que reconhece a linguagem \mathcal{L}_{27} :

• Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_2, s_3, s_4\}.$

• Função τ de transições:

$_{-}\tau$	0	1
s_0	$\{s_1, s_6, s_7\}$	$\{s_5\}$
s_1	$\{s_0\}$	Ø
s_2	Ø	$\{s_5, s_{10}\}$
s_3	$\{s_6\}$	Ø
s_4	$\{s_7\}$	Ø
s_5	$\{s_{11}\}$	$\{s_{11}\}$
s_6	Ø	$\{s_8\}$
s_7	Ø	$\{s_9\}$
s_8	$\{s_{10}\}$	Ø
s_9	Ø	$\{s_{10}\}$
s_{10}	$\{s_{11}\}$	$\{s_{11}\}$
s_{11}	$\{s_{10}\}$	$\{s_{10}\}$

• DFA que reconhece a linguagem \mathcal{L}_{27} :

$$\mathcal{L}_{28} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ contém } 00 \text{ e não contém } 11 \}.$$

$$\mathbf{ER}(\mathcal{L}_{28}) : (0 \cup 10)(10)^* 0 (0 \cup 10)^* (\varepsilon \cup 1).$$

• NFA que reconhece a linguagem \mathcal{L}_{28} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- $\bullet\,$ Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1\} & \{s_2\} \\ s_1 & \{s_4\} & \{s_3\} \\ s_2 & \{s_1\} & \varnothing \\ s_3 & \{s_1\} & \varnothing \\ s_4 & \{s_4, s_5\} & \{s_6\} \\ s_5 & \{s_4, s_5\} & \{s_6\} \\ s_6 & \{s_4, s_5\} & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{28} :

 $\mathcal{L}_{29} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém pelo menos um } 0 \text{ e contém quantidade par de 1's} \}.$ $\mathbf{ER}(\mathcal{L}_{29}) : (11)^* (0 \cup 10^+ 1) (0 \cup 10^* 1)^*.$

• NFA que reconhece a linguagem \mathcal{L}_{29} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_2\}$.
- $\bullet\,$ Função τ de transições:

au	0	1
$\overline{s_0}$	$\{s_4, s_6\}$	$\{s_1,s_3\}$
s_1	Ø	$\{s_0\}$
s_2	$\{s_4, s_6\}$	$\{s_3\}$
s_3	$\{s_5\}$	Ø
s_4	$\{s_6\}$	$\{s_7\}$
s_5	$\{s_5\}$	$\{s_4, s_6\}$
s_6	$\{s_6\}$	$\{s_7\}$
s_7	$\{s_7\}$	$\{s_6\}$

• DFA que reconhece a linguagem \mathcal{L}_{29} :

 $\mathcal{L}_{30} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e m\'ultiplo de 3 e } w \text{ termina com 11} \}.$ $\mathbf{ER}(\mathcal{L}_{30}) : ((0 \cup 1)(0 \cup 1)(0 \cup 1))^* (0 \cup 1)11.$

• NFA que reconhece a linguagem \mathcal{L}_{30} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- Função τ de transições:

au	0	1
s_0	$\{s_1, s_4\}$	$\overline{\{s_1,s_4\}}$
s_1	Ø	$\{s_2\}$
s_2	Ø	$\{s_3\}$
s_3	Ø	Ø
s_4	$\{s_5\}$	$\{s_5\}$
s_5	$\{s_0\}$	$\{s_0\}$

• DFA que reconhece a linguagem \mathcal{L}_{30} :

 $\mathcal{L}_{31} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ não contém a subcadeia } 00 \text{ ou a subcadeia } 11\}.$

 $\mathcal{L}_{32} = \{w \in \Sigma^* = \{0,1\}^* \mid \text{ todo par de 0's adjacentes ocorre antes de qualquer par de 1's adjacentes}\}.$

 $\mathcal{L}_{33} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ não começa com } 00 \text{ e não termina com } 11 \}.$

 $\mathbf{ER}(\mathcal{L}_{33}) : \varepsilon \cup 0 \cup 1 \cup 01 \cup (1 \cup 01)(0 \cup 1^{+}0)(0 \cup 1(0 \cup 1^{+}0))^{*}(\varepsilon \cup 1).$

• NFA que reconhece a linguagem \mathcal{L}_{33} :

• Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1\}$.

au	0	1
s_0	$\{s_1\}$	$\{s_2\}$
s_1	Ø	$\{s_2\}$
s_2	$\{s_4, s_6\}$	$\{s_3\}$
s_3	$\{s_4\}$	$\{s_3\}$
s_4	$\{s_4, s_6\}$	$\{s_5, s_8\}$
s_5	$\{s_6\}$	$\{s_7\}$
s_6	$\{s_4, s_6\}$	$\{s_5, s_8\}$
s_7	$\{s_6\}$	$\{s_7\}$
s_8	Ø	Ø

• DFA que reconhece a linguagem \mathcal{L}_{33} :

$$\mathcal{L}_{34} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não contém pares de 1's consecutivos} \}.$$

$$\mathbf{ER}(\mathcal{L}_{34}) : (0 \cup 10)^* (1 \cup \varepsilon).$$

• NFA que reconhece a linguagem \mathcal{L}_{34} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_2\}$.
- \bullet Função τ de transições:

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0, s_2\} & \{s_1\} \\ s_1 & \{s_0, s_2\} & \varnothing \\ s_2 & \varnothing & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{34} :

$$\mathcal{L}_{35} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ termina com } 0 \text{ ou com } 11 \}.$$

 $\mathbf{ER}(\mathcal{L}_{35}) : (0 \cup 1)^* (0 \cup 11).$

• NFA que reconhece a linguagem \mathcal{L}_{35} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_3\}$.
- Função τ de transições:

au	0	1
$\overline{s_0}$	${s_0, s_1, s_2, s_3}$	$\{s_0, s_1, s_3, s_4\}$
s_1	$\{s_2\}$	Ø
s_2	Ø	Ø
s_3	Ø	$\{s_4\}$
s_4	Ø	$\{s_5\}$
s_5	Ø	Ø

• DFA que reconhece a linguagem \mathcal{L}_{35} :

 $\mathcal{L}_{36} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém quantidade par de 0's seguida de quantidade împar de 1's}\}.$ $\mathcal{L}_{37} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ começa com 0, contém exatamente dois 1's e termina com 00}\}.$ $\mathbf{ER}(\mathcal{L}_{37}) : 0^+ 10^* 100^+.$

• NFA que reconhece a linguagem \mathcal{L}_{37} :

• Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0, s_1\} & \varnothing \\ s_1 & \varnothing & \{s_2\} \\ s_2 & \{s_2\} & \{s_3\} \\ s_3 & \{s_4\} & \varnothing \\ s_4 & \{s_4, s_5\} & \varnothing \\ s_5 & \varnothing & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{37} :

$$\mathcal{L}_{38} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0u1 \text{ ou } w = 1u0, \text{ com } u \in \Sigma^* \}.$$

$$\mathcal{L}_{39} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ contém um número ímpar de ocorrências de 01} \}.$$

 $\mathbf{ER}(\mathcal{L}_{39}) : (0 \cup 1^+0)(0 \cup 1^+0^+1^+0)^*1^+(\varepsilon \cup 0^+).$

• NFA que reconhece a linguagem \mathcal{L}_{39} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_2\} & \{s_1\} \\ s_1 & \{s_2\} & \{s_1\} \\ s_2 & \{s_2\} & \{s_4\} \\ s_3 & \{s_2\} & \{s_3\} \\ s_4 & \{s_5, s_6\} & \{s_4\} \\ s_5 & \{s_5\} & \{s_3\} \\ s_6 & \{s_6\} & \varnothing \\ \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{39} :

$$\mathcal{L}_{40} = \{ w \in \Sigma^* = \{0, 1\}^* \mid 0^n, \ n \in \mathbb{N}, e \ n \text{ \'e m\'ultiplo de 2 ou de 3} \}.$$

$$\mathcal{L}_{41} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ \'e um número binário maior que zero e múltiplo de } 3 \}.$$

$$\mathcal{L}_{42} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ \'e n\'umero bin\'ario, n\~ao negativo, divisível por 4 (sem 0's iniciais redundantes)}\}.$$

$$\mathcal{L}_{43} = \{w \in \Sigma^* = \{0,1\}^* \mid \text{ toda subcadeia de } w \text{ de comprimento 4 contém exatamente um 1} \}.$$

$$\mathcal{L}_{44} = \{ w \in \Sigma^* = \{0,1\}^* \mid |w|_0 \text{ é par } e \mid w|_1 \text{ é par.}$$

$$\mathcal{L}_{45} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \text{ é par e } |w|_1 \text{ é impar.}$$

$$\mathcal{L}_{46} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \text{ é par } e |w|_1 \text{ é divisível por } 3 \}.$$

$$\mathcal{L}_{47} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e impar e } w \text{ começa com } 1 \}.$$

$$\mathbf{ER}(\mathcal{L}_{47}) : 1((0 \cup 1)(0 \cup 1))^*.$$

• NFA que reconhece a linguagem \mathcal{L}_{47} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- Função τ de transições:

au	0	1
s_0	Ø	$\{s_1\}$
s_1	$\{s_2,s_3\}$	$\{s_4, s_5\}$
s_2	$\{s_1\}$	Ø
s_3	$\{s_1\}$	Ø
s_4	Ø	$\{s_1\}$
s_5	Ø	$\{s_1\}$

• DFA que reconhece a linguagem \mathcal{L}_{47} :

$$\mathcal{L}_{48} = \{ w \in \Sigma^* = \{0,1\}^* \mid \ w = 0u \ \mathrm{e} \ |w| \ \mathrm{\acute{e}} \ \mathrm{\acute{m}par} \ \mathrm{ou} \ w = 1u \ \mathrm{e} \ |w| \ \mathrm{\acute{e}} \ \mathrm{par}, \ \mathrm{com} \ u \in \Sigma^* \}.$$

$$\mathcal{L}_{49} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ termina com } 010 \text{ e contém } 011 \}.$$

$$\mathcal{L}_{50} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 1u1, \text{ com } u \in \Sigma^*, \text{ e } w \text{ não contém } 11 \text{ e } 000 \}.$$

$$\mathcal{L}_{51} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^{3n+5}, \ n \geqslant 0 \}.$$

 $\mathbf{ER}(\mathcal{L}_{51}) : (000)^*00000.$

• NFA que reconhece a linguagem \mathcal{L}_{51} :

- Fecho- ε do estado s_0 : $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$.
- \bullet Função τ de transições:

au	0	1
s_0	$\{s_1\}$	Ø
s_1	$\{s_2\}$	Ø
s_2	$\{s_3\}$	Ø
s_3	$\{s_4\}$	Ø
s_4	$\{s_2,s_5\}$	Ø
s_5	$\{s_3\}$	Ø

• DFA que reconhece a linguagem \mathcal{L}_{51} :

