Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

<u>Pierre Jolivet</u>, F. Hecht, F. Nataf, C. Prud'homme

Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

4th workshop on FreeFem++

December 12nd, 2013

A short introduction to DDM

Consider the linear system: $Au = f \in \mathbb{R}^n$.

A short introduction to DDM

Consider the linear system: $Au = f \in \mathbb{R}^n$. Given a decomposition of [1; n], $(\mathcal{N}_1, \mathcal{N}_2)$, define:

- the restriction operator R_i from [1; n] into \mathcal{N}_i ,
- R_i^T as the extension by 0 from \mathcal{N}_i into [1; n].

A short introduction to DDM

Consider the linear system: $Au = f \in \mathbb{R}^n$. Given a decomposition of [1; n], $(\mathcal{N}_1, \mathcal{N}_2)$, define:

- the restriction operator R_i from [1; n] into \mathcal{N}_i ,
- R_i^T as the extension by 0 from \mathcal{N}_i into [1; n].

Then solve concurrently:

$$u_1^{m+1} = u_1^m + A_{11}^{-1}R_1(f - Au^m)$$
 $u_2^{m+1} = u_2^m + A_{22}^{-1}R_2(f - Au^m)$

where $u_i = R_i u$ and $A_{ij} := R_i A R_j^T$.

A short introduction II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i.$$

A short introduction II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i.$$

Then,
$$u^{m+1} = \sum_{i=1}^{N} R_i^T D_i u_i^{m+1}$$
.

A short introduction II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i.$$

Then,
$$u^{m+1} = \sum_{i=1}^{N} R_i^T D_i u_i^{m+1}$$
. $M^{-1} = \sum_{i=1}^{N} R_i^T D_i A_{ii}^{-1} R_i$.

$$M^{-1} = \sum_{i=1}^{N} R_i^T D_i A_{ii}^{-1} R_i$$

Contributions and goals

Based on algebraic results with the p. of u., we propose:

- 1 a reformulation of the global matrix-vector product eliminating the need of a global ordering,
- 2 a construction of a so-called "coarse operator" to enhance a simple preconditioner.

We are interested in the solution of various SPD systems, independently of:

- the discretization order,
- the contrast in the coefficients,
- the number of subdomains.

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

 $Au \implies$ efficient global matrix-vector product

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

$$Au = \sum_{i=1}^{N} AR_{j}^{\mathsf{T}} D_{j} R_{j} u$$

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

$$R_i A u = \sum_{i=1}^N R_i A R_j^T D_j R_j u$$

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

$$R_i A u = \sum_{j=1}^N R_i A R_j^T D_j R_j u = \sum_{j \in \overline{\mathcal{O}}_i} A_{ij} D_j R_j u$$

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

$$R_{i}Au = \sum_{j=1}^{N} R_{i}AR_{j}^{T}D_{j}R_{j}u = \sum_{j\in\overline{\mathcal{O}_{i}}} A_{ij}D_{j}R_{j}u$$
$$= \sum_{j\in\overline{\mathcal{O}_{i}}} R_{i}R_{j}^{T}A_{jj}D_{j}R_{j}u \quad \text{local unknowns on } \Omega_{j}$$

- reuse of the operators from the preconditioner, A_{ii} .

 \mathcal{O}_i are the neighbors of Ω_i , $\overline{\mathcal{O}_i} = \mathcal{O}_i \cup \{i\}$.

Limitations of one-level methods

One-level methods don't require exchange of global information.

This hampers numerical scalability of such preconditioners.

Two-level preconditioners I

A common technique in the field of DDM, MG, deflation: introduce an auxiliary "coarse" problem.

Let Z be a rectangular matrix. Define

$$E := Z^T A Z$$
.

Z has $\mathcal{O}(N)$ columns, hence E is much smaller than A.

Two-level preconditioners I

A common technique in the field of DDM, MG, deflation: introduce an auxiliary "coarse" problem.

Let Z be a rectangular matrix. Define

$$E := Z^T A Z$$
.

Z has $\mathcal{O}(N)$ columns, hence E is much smaller than A. Enrich the original preconditioner, e.g. additively

$$P^{-1} = M^{-1} + ZE^{-1}Z^{T},$$

c.f. (Tang et al. 2009).

Two-level preconditioners II

The construction of Z and the assembly of E are challenging.

Let each domain compute concurrently ν_i vectors $\left\{\Lambda_{i_j}\right\}_{j=1}^{\nu_i}$. Define local dense rectangular matrices:

$$W_i = \begin{bmatrix} D_i \Lambda_{i_1} & D_i \Lambda_{i_2} & \cdots & D_i \Lambda_{i_{\nu_i}} \end{bmatrix}.$$

Then, define the global deflation matrix as:

$$Z = \begin{bmatrix} R_1^T W_1 & R_2^T W_2 & \cdots & R_N^T W_N \end{bmatrix}$$

Generalized eigenvalue problems

For theoretical justification of Z, see (Spillane et al. 2011). Solved by ARPACK concurrently:

$$A_i^N \Lambda_j = \lambda_j D_i R_{i,0}^T R_{i,0} A_i^N D_i \Lambda_j$$

where

- A_i^N is the local unassembled matrix,
- $R_{i,0}$ is the restriction from Ω_i to $\Omega_i \cap \left(\bigcup_{j \in \mathcal{O}_i} \Omega_j\right)$.

How to compute $ZE^{-1}Z^Tu \in \mathbb{R}^n$?

How to compute

$$Z^T u \in \mathbb{R}^n$$
 ?

operations & MPI_Gather

How to compute $E^{-1}Z^Tu \in \mathbb{R}^n$?

operations & MPI_Gather + linear solve

operations & MPI_Gather + linear solve + MPI_Scatter & operations

operations & MPI_Gather + linear solve + MPI_Scatter & operations

Communication pattern \implies global reduction at the coarse level.

Distribution of the coarse operator

How can one solve $E^{-1}z = c \in \mathbb{R}^m$?

Some constraints:

- 1 E cannot be centralized on a single MPI process,
- 2 E cannot be distributed on all MPI processes,
- 3 the solution must be computed <u>fast</u> and reliably.

Distribution of the coarse operator

How can one solve $E^{-1}z = c \in \mathbb{R}^m$?

Some constraints:

- 1 E cannot be centralized on a single MPI process,
- 2 E cannot be distributed on all MPI processes,
- 3 the solution must be computed fast and reliably.

⇒ use a direct solver with a distributed matrix on few master processes (number chosen at runtime).

Assembly for Schwarz methods

Recalling $E = ZAZ^T$, it can be proven that the block (i, j)

$$E_{ij} = W_i^T A_{ij} W_j$$

= $W_i^T R_i R_j^T A_{jj} W_j$

- **1** compute locally $T_i = A_{ii} W_i$ (csrmm),
- 2 send to each neighbor, $S_j = R_j R_i^T T_i$,
- 3 receive from each neighbor $U_j = R_i R_j^T T_j$,
- 4 compute locally $E_{i,i} = W_i^T T_i$ (gemm),
- **5** compute locally $E_{i,j} = W_i^T U_j$ (gemm).

Note:

- steps 2 and 3 overlap with step 4,
- if $j \notin \mathcal{O}_i$, $R_i R_i^T = 0$.

Example of heterogeneous coefficients

2D geometry

3D geometry

Machine used for scaling runs

Curie Thin Nodes

- 5,040 compute nodes.
- 2 eight-core Intel Sandy Bridge@2.7 GHz per node.
- IB QDR full fat tree.
- 1.7 PFLOPs peak performance.

Strong scaling (linear elasticity)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.

Strong scaling (linear elasticity)

Factorization Deflation vectors Coarse operator Krylov method

Weak scaling (scalar diffusion equation)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.

Weak scaling (scalar diffusion equation)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.

Distributed global matrix

Because there is overlap, the A_{ii} can be used to assemble A.

Local to global mapping \implies distribution of the global matrix à la PETSc (split row-wise).

The mapping is computed via a double-sweep algorithm.

Comparison

Comparing performance of setup and solution phases between our solver against purely algebraic (+ near null space) solvers:

- GASM one-level domain decomposition method (ANL),
- Hypre BoomerAMG algebraic multigrid (LLNL),
- GAMG algebraic multrigrid (ANL/LBL).

Solution of a linear system I

Homogeneous 3D Poisson equation discretized by \mathbb{P}_1 FE solved on 2,048 MPI processes, 111M d.o.f.

Solution of a linear system II

Heterogeneous 3D linear elasticity equation discretized by \mathbb{P}_2 FE solved as 2.048 MDL was access 127M d a.f.

Final words

Limitations:

- scaling of the coarse operator in 3D beyond 10k subdomains,
- deflation vectors need elementary matrices to be computed.

Summary:

- scalable framework for building two-level preconditioners for both Schwarz or substructuring methods (FETI-1),
- easily interfacable (FEM, FVM) without a global ordering.

Outlooks:

- adaptive (re)construction/recycling of the coarse operator,
- nonlinear and saddle point problems.

Final words

Limitations:

- scaling of the coarse operator in 3D beyond 10k subdomains,
- deflation vectors need elementary matrices to be computed.

Summary:

- scalable framework for building two-level preconditioners for both Schwarz or substructuring methods (FETI-1),
- easily interfacable (FEM, FVM) without a global ordering.

Outlooks:

- adaptive (re)construction/recycling of the coarse operator,
- nonlinear and saddle point problems.

Thank you!

- Spillane, N., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl (2011). "A robust two-level domain decomposition preconditioner for systems of PDEs". In: *Comptes Rendus Mathematique* 349.23, pp. 1255–1259.
- Tang, J., R. Nabben, C. Vuik, and Y. Erlangga (2009). "Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods". In: *Journal of Scientific Computing* 39.3, pp. 340–370.

Solvers parameters

- Schwarz GenEO: $\nu_i = 20$, overlap = 1 (geometric).
- PETSc GASM: overlap = 10 (algebraic).
- Hypre BoomerAMG: HMIS coarsening, extended "classical" interpolation, no CF-relaxation, 2 levels of aggressive coarsening.
- PETSc GAMG: 1 smoothing step, -mg_levels_ksp_type richardson -mg_levels_pc_type sor.

OpenMPI bindings for hybrid runs:
--bind-to-socket --bycore.

Distribution of the coarse operator

Distribution of E when built with N=16 using 4 masters. On the right, the number of values per master is roughly the same if the values below the diagonal are dropped (symmetric coarse operator).

Timings for assembling the coarse operator

3D

N	$N \mid P$		$\dim(E)$		$ \mathcal{O}_i $ (average)		Memory o	cost of " E^{-1} "	Time	
256	4		5120		11.5		$38~\mathrm{MB}$		$2.78\mathrm{s}$	
512	6		10240		12.4		78 MB		$3.35\mathrm{s}$	
1024	8	8	20480	22528	13.0	12.0	156 MB	93 MB	$4.42\mathrm{s}$	$11.25\mathrm{s}$
2048	12	12	40960	40960	13.8	12.9	332 MB	138 MB	$6.91\mathrm{s}$	$5.68\mathrm{s}$
4096	18	22	73728	73728	14.2	13.7	$434~\mathrm{MB}$	172 MB	$10.75\mathrm{s}$	$8.04\mathrm{s}$
8192	64	48	131072	131072	14.7	14.6	$420~\mathrm{MB}$	$241~\mathrm{MB}$	$19.92\mathrm{s}$	$17.30\mathrm{s}$

2D

$N \mid P$		$\dim(E)$		$ \mathcal{O}_i $ (average)		Memory c	ost of " E^{-1} "	Time		
256	2		5376		5.5		$21~\mathrm{MB}$		$9.39\mathrm{s}$	
512	4		10240		5.6		32 MB		$9.96\mathrm{s}$	
1024	10	8	20480	24576	5.7	5.5	$65~\mathrm{MB}$	57 MB	$9.92\mathrm{s}$	$10.14\mathrm{s}$
2048	14	12	38912	40960	5.8	5.7	$94~\mathrm{MB}$	83 MB	$10.05\mathrm{s}$	$6.20\mathrm{s}$
4096	22	18	81920	73728	5.9	5.8	99 MB	73 MB	$10.87\mathrm{s}$	$5.10\mathrm{s}$
8192	36	36	163840	122880	5.9	5.8	$152~\mathrm{MB}$	118 MB	$13.27\mathrm{s}$	$6.96\mathrm{s}$

Strong scaling (linear elasticity)

	N	Factorization	Deflation	Solution	#it.	Total	#d.o.f.	
	1 024	$177.86\mathrm{s}$	$264.03\mathrm{s}$	$77.41\mathrm{s}$	28	$530.56\mathrm{s}$		
3D	2048	$62.69\mathrm{s}$	$97.29\mathrm{s}$	$20.39\mathrm{s}$	23	$186.04\mathrm{s}$	$293.98 \cdot 10^{6}$	
3D	4096	$19.64\mathrm{s}$	$35.70\mathrm{s}$	$9.73\mathrm{s}$	20	$73.12\mathrm{s}$	293.98 · 10°	
	8192	$6.33\mathrm{s}$	$22.08\mathrm{s}$	$6.05\mathrm{s}$	27	$51.76\mathrm{s}$		
	1024	$37.01\mathrm{s}$	$131.76\mathrm{s}$	$34.29\mathrm{s}$	28	$213.20\mathrm{s}$		
2D	2048	$17.55\mathrm{s}$	$53.83\mathrm{s}$	$17.52\mathrm{s}$	28	$95.10\mathrm{s}$	$2.14 \cdot 10^{9}$	
21)	4096	$6.90\mathrm{s}$	$27.07\mathrm{s}$	$8.64\mathrm{s}$	23	$47.71\mathrm{s}$	2.14 · 10	
	8192	$2.01\mathrm{s}$	$20.78\mathrm{s}$	$4.79\mathrm{s}$	23	$34.54\mathrm{s}$		

Weak scaling (scalar diffusion equation)

	N	Factorization	Deflation	Solution	#it.	Total	#d.o.f.
	256	$64.24\mathrm{s}$	$117.74\mathrm{s}$	$15.81\mathrm{s}$	13	$200.57\mathrm{s}$	$74.62\cdot 10^6$
	512	$63.97\mathrm{s}$	$112.17\mathrm{s}$	$19.93\mathrm{s}$	18	$199.41\mathrm{s}$	$144.70 \cdot 10^6$
3D	1024	$63.22\mathrm{s}$	$118.58\mathrm{s}$	$16.18\mathrm{s}$	14	$202.40\mathrm{s}$	$288.80 \cdot 10^{6}$
3D	2048	$59.43\mathrm{s}$	$117.59\mathrm{s}$	$21.34\mathrm{s}$	17	$205.26\mathrm{s}$	$578.01 \cdot 10^{6}$
	4096	$58.14\mathrm{s}$	$110.68\mathrm{s}$	$27.89\mathrm{s}$	20	$207.47\mathrm{s}$	$1.15 \cdot 10^{9}$
	8192	$54.96\mathrm{s}$	$116.64\mathrm{s}$	$23.64\mathrm{s}$	17	$215.15\mathrm{s}$	$2.31 \cdot 10^{9}$
	256	29.40 s	$111.35\mathrm{s}$	$25.71\mathrm{s}$	29	$175.85\mathrm{s}$	$695.96 \cdot 10^{6}$
	512	$29.60\mathrm{s}$	$111.52\mathrm{s}$	$27.99\mathrm{s}$	28	$179.07\mathrm{s}$	$1.39 \cdot 10^{9}$
2D	1024	$29.43\mathrm{s}$	$112.18\mathrm{s}$	$33.63\mathrm{s}$	28	$185.16\mathrm{s}$	$2.79 \cdot 10^{9}$
21)	2048	$29.18\mathrm{s}$	$112.23\mathrm{s}$	$33.74\mathrm{s}$	28	$185.20\mathrm{s}$	$5.58 \cdot 10^{9}$
	4096	$29.80\mathrm{s}$	$113.69\mathrm{s}$	$31.02\mathrm{s}$	26	$185.38\mathrm{s}$	$11.19 \cdot 10^9$
	8192	$29.83\mathrm{s}$	$113.81\mathrm{s}$	$30.67\mathrm{s}$	25	$187.57\mathrm{s}$	$22.31 \cdot 10^{9}$