Tentti 28.04.2008

1. Kappaleen pisteessä on oheisen jännityselementin mukainen jännitystila. Kirjoita vastaava jännitysmatriisi ja laske sen pääinvariantit. Osoita, että $\sigma_{II}=6$ MPa ja laske sitä vastaava pääsuunta. **5 p**

2. Putkea rasittavat normaalivoima N=-250~kN ja vääntömomentti T=12~kNm. Putken ulkohalkaisija on 300 mm ja seinämän paksuus 8 mm. Määritä putken seinämän suurin vertailujännitys lujuushypoteesien MLJH ja VVEH mukaisesti. **5 p**

3. Piirrä Smithin väsymislujuuspiirros teräkselle, jonka myötöraja $R_{eL}=800$ MPa, tykytyslujuus $\sigma_T=600$ MPa ja vaihtolujuus $\sigma_W=400$ MPa. Piirroksessa riittää esittää positiivisten keskijännitysten puoli, mutta sekä ylä- että alareuna on laadittava. Määritä piirroksen avulla toiminta-arvojen $(\sigma_m,\sigma_a)=(200,100)$ MPa varmuusluku, kun σ_m ja σ_a kasvavat samassa suhteessa. Mittakerroin m=0,8 ja pinnan laadun kerroin $\kappa_\sigma=0,9$. Lovivaikutusta ei ole.

Opiskelijan nimi:	
-------------------	--

4. Ovatko seuraavat väittämät oikein vai väärin? Merkitse vastaus rastilla (x) ruutuun. Oikeasta vastauksesta saa +1 pistettä, väärästä vastauksesta –1 pistettä ja vastaamatta jättämisestä 0 pistettä. Palauta vastauksesi tällä paperilla! **max 8 p min 0 p**

Väittämä	Oikein	Väärin
Pääjännitys on sen suunnan leikkausjännitys, jossa normaalijännitys on nolla.		
Jos pääjännitykset ovat erisuuria, ne esiintyvät toisiaan vastaan kohtisuorissa suunnissa.		
Yleistetyn Hooken lain mukaan normaalijännityksestä σ_z aiheutuvat muodonmuutoskomponentit ovat ϵ_x , ϵ_y ja ϵ_z .		
Kimmoenergiatiheyden yksikkö voi olla kJ.		
Maksimipääjännityshypoteesi (MPJH) sopii parhaiten sitkeiden materiaalien myötämisen tarkasteluun.		
Vakiovääristymisenergiahypoteesin (VVEH) mukaan laskettu vertailujännitys ei ole koskaan maksimileikkausjännityshypoteesin (MLJH) mukaan laskettua vertailujännitystä suurempi.		
Vaihtolujuus tarkoittaa suurinta mahdollista jännitysamplitudia, jonka materiaali kestää väsymättä, kun keskijännitys on nolla.		
Goodmanin (Haighin) väsymislujuuspiirroksessa esitetään suurin mahdollinen ylempi rajajännitys keskijännityksen funktiona.		