Лекция 10

Бинарные отношения и их графы. Отношения эквивалентности

План:

- 1. Задание бинарного отношения таблицей, двудольным графом, перечислением пар. Формальное определение бинарных отношений $(R \subseteq A \times B)$.
- 2. Некоторые свойства
 - функциональность
 - тотальность
 - инъективность
 - рефлексивность
 - транзитивность
 - симметричность
- 3. Отношения эквивалентности. Примеры:
 - Рациональные числа
 - Равные и подобные треугольники
 - Равенство булевых функций
 - Неопределённые интегралы
- 4. Т.: Классы эквивалентности не пересекаются или совпадают.
- 5. Следствие: отношения эквивалентности взаимно однозначно соответствуют разбиениям множества на подмножества.
- 6. Пример использования в комбинаторике: подсчёт числа k-элементных подмножеств сводится к подсчёту числа классов эквивалентности на наборах: $(x_1, x_2, \ldots, x_k) \sim (y_1, y_2, \ldots, y_k) \iff \{x_1, x_2, \ldots, x_k\} = \{y_1, y_2, \ldots, y_k\}.$

- 7. Теоретико-множественные операции с отношениями. Операция обращения. Описание с помощью булевых матриц.
- 8. Композиция отношений. Связь с базами данных

10.1 Описания и определение бинарных отношений

Начнём с примера, который иллюстрирует что такое бинарное отношение. Представьте, что состоялась контрольная, которую писало три человека, и её результаты приведены в таблице ниже:

Ученик	1	2	3	4	5
Маша	+	_	+	_	_
Алина	+	_	_	_	+
Джон	_	_	+	_	+

Рис. 10.1. задание бинарного отношения таблицей

Считается, что каждый ученик, либо решил задачу, либо нет. Если школьник A решил задачу x, то они находятся в отношении «решил задачу». Формально, построенная нами таблица — это 0-1-матрица

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Результаты контрольной можно было бы также описать с помощью двудольного графа (рис. 10.2).

Пожалуй, проще всего было задать отношение «решил задачу» просто перечислив все пары из школьников и задач:

Этот способ и лежит в основе формального определения бинарного отношения. Формально *бинарное отношение* R между множествами A и B—это некоторое подмножество их декартова произведения:

$$R \subseteq A \times B$$
.

Если $(a,b) \in R$, говорят, что элемент a находится в отношении R с элементом b.

Рис. 10.2. Задание бинарного отношения двудольным графом

Выше мы привели различные способы описания бинарного отношения: перечислением пар, таблицей (матрицей), двудольным графом. Переход от одного способа описания к другому бывает полезен на практике; вернёмся к примеру из лекции о паросочетаниях. Представьте, что A—множество процессоров, а B—множество задач. Множество пар (a,b) задаёт отношение R—выполнимости задачи b на процессоре a. Задача состоит в выборе подмножества $f \subseteq R$, такого что в единицу времени решается максимальное число задач, при этом каждый процессор решает не более одной задачи. На языке двудольных графов это означает, что требуется найти максимальное паросочетание. В случае, если получилось задействовать все процессоры, на языке функций означает, что найденное отношение f—инъекция, а если при этом задействованы и все задачи, то f—биекция.

10.2 Примеры и свойства

В последнем примере предыдущего раздела мы упомянули, что функция — частный случай бинарного отношения. Если быть точнее, то формальное определение функции и даётся через бинарное отношение.

Определение 4. Бинарное отношение $f \subseteq X \times Y$ называется **функциональным** или **функцией**, если из $(x, y) \in f$ и $(x, y') \in f$ следует, что y = y'.

В случае функций факт $(x,y) \in f$ обозначают через f(x) = y.

Пусть $R \subseteq X \times Y$ В случае, если $\forall x \in X \exists y \in Y : (x,y) \in R$, отношение R называется *(левым-)тотальным*. Тотальное и функциональное отношение $f \subseteq X \times Y$ является всюду определённой (тотальной) функцией или отображением.

Отношение $R\subseteq X\times Y$ является **инъективным**, если из $(x,y)\in R$ и $(x',y)\in R$ следует, что x=x'.

Отношение $R\subseteq X\times Y$ является $\pmb{copzekmushbm}$, если $\forall y\in Y\exists x\in X:(x,y)\in R.$

Тотальные инъективные отношения задают инъекции, тотальные сюръективные— сюръекции, тотальные инъективные и сюръективные— биекции.

$$(\leqslant) = \{(x,y) \mid x \leqslant y\}.$$

Читатель может быть недовольным, что мы задали отношение (\leq), используя его же внутри; мы сделали это лишь для наглядности. Формально это множество можно было бы описать и с помощью декартовой плоскости: в него входят все точки лежащие на прямой y=x и все точки выше этой прямой.

Мы будем использовать устоявшееся *обозначение* xRy, равносильное $(x,y) \in R$; вы к нему уже хорошо привыкли: запись $x \leqslant y$ означает ни что иное, как $x,y \in (\leqslant)$.

В случае, когда $R \subseteq A \times A$, говорят, что отношение R задано на множестве A. Сосредоточимся на свойствах таких отношений.

Определение 5. Отношение $R \subseteq A \times A$

- *рефлексивно*, если $\forall a \in A : aRa;$
- *симметрично*, если $\forall a, b \in A : aRb \Rightarrow bRa$;
- *транзитивно*, если $\forall a, b, c \in A : (aRb) \land (bRc) \Rightarrow aRc$.

Пример 18. Проверим эти свойства для отношения (\leqslant) на множестве \mathbb{R} . Отношение (\leqslant) рефлексивно: действительно, для любого числа a справедливо $a \leqslant a$. Отношение (\leqslant) не симметрично: действительно, $1 \leqslant 2$, но $2 \nleq 1$. Отношение (\leqslant) транзитивно: какие бы три числа a, b и c мы не взяли, получим, что если $a \leqslant b$ и $b \leqslant c$, то $a \leqslant c$.

Упражнение 6. Проверьте каждое свойства для отношений $(>), (=), (\neq)$ на множестве \mathbb{R} .

10.3 Отношения эквивалентности

Определение 6. Рефлексивное, симметричное и транзитивное отношение называют *отношением эквивалентности*.

Сделав упражнение 18 вы установили, что среди отношений $(\leqslant), (>), (=), (\neq)$ отношением эквивалентности является только равенство. Отсюда и следует смысл этого понятия: отношения эквивалентности определяют какие объекты считаются одинаковыми, а какие нет.

Пример 19. Определим отношение \sim на множестве $\mathbb{Z} \times \mathbb{N}_1$ следующим образом: $(z,n) \sim (z',n')$, если и только если $\frac{z}{n} = \frac{z'}{n'}$. Если читатель не сообразил, что за отношение мы построили, то сообщим, что мы построили отношение равенства на множестве обыкновенных дробей. Оставляем читателю проверить, что это отношение рефлексивно, симметрично и транзитивно; самостоятельную проверку мы оставляем и для последующих примеров.

Пример 20. Следующий пример отношения эквивалентности — отношение равенства треугольников на плоскости. До середины XX века вместо слова «равенство» в учебниках по геометрии использовали термин «конгруэнтность».

Пример 21. Приведём ещё один пример отношения эквивалентности из геометрии: отношение подобия треугольников.

Пример 22. Перейдём теперь к математическому анализу. Напомним, что первообразной функции f, называется такая функция F, что F'(x) = f(x) для всех $x \in \text{Dom}(f)$. Отношение быть первообразной одной и той же функции f является отношением эквивалентности. Кстати, из курса анализа известно, что любые две первообразные одной и той же функции, отличаются друг от друга на константу.

Пример 23. Отношение равенств на булевых функциях, введённое нами на первой лекции, является отношением эквивалентности.

Интуитивно ясно, что если отношение $\sim \subseteq A \times A$ — отношение эквивалентности, то все элементы множества A можно разбить на подмножества попарно эквивалентных между собой объектов. В одинаковые подмножества попадают дроби, задающие одно и то же рациональное число, равные или подобные треугольники (в зависимости от отношения), а также первообразные одинаковых функций.

Эта интуиция отражает основную теорему об отношениях эквивалентности. Чтобы её сформулировать, формализуем сначала понятие класса эквивалентности. Пусть $\sim \subseteq A \times A$ — отношение эквивалентности. Определим **класс эквивалентности** [a] как множество всех таких элементов множества A, которые эквивалентны элементу a:

$$[a] = \{x \mid x \in A, x \sim a\}.$$

Теорема 7. Классы эквивалентности [a] и [b] (по отношению эквивалентности \sim) либо не пересекаются , либо совпадают. Множество A разбивается в объединение классов эквивалентности.

Доказательство. Ясно, что

$$A = \bigcup_{a \in A} [a],$$

поскольку каждый класс [a] содержит элемент a в силу рефлексивности. Докажем теперь первую часть теоремы от противного.

Допустим $x \in [a] \cap [b]$ и $[a] \neq [b]$. Раз $x \in [a]$ и $x \in [b]$, то $x \sim a$ и $x \sim b$. В силу симметричности получаем, что $a \sim x$, а по транзитивности получаем, что

 $^{^{1}}$ Напомним, что множества A и B не пересекаются, если $A \cap B = \emptyset$.

 $a \sim b$, раз $a \sim x \sim b$ (эта запись значит « $a \sim x$ и $x \sim b$ »). Значит $a \in [b]$ и из симметричности и транзитивности получаем, что каждый элемент y из класса [a] также принадлежит классу [b]:

$$y \in [a] \Rightarrow y \sim a \Rightarrow a \sim y \Rightarrow b \sim a \sim y \Rightarrow b \sim y \Rightarrow y \sim b.$$

То есть мы показали, что $[a] \subseteq [b]$. Симметричные рассуждения показывают, что $[b] \subseteq [a]$, а значит классы [a] и [b] совпадают, если пересекаются.

Эта теорема объясняет, что отношение эквивалентности разбивает множество A на подмножества. Формализуем это утверждение. Cemeŭcmeom (множеств) называется множества, элементами которого являются множество.

Определение 7. *Разбиением* множества A на подмножества называется семейство $\mathcal{F} \subseteq 2^A$, для которого справедливы следующие условия

- $\varnothing \notin \mathcal{F}$;
- $\bullet \ \ A = \bigcup_{B \in \mathcal{F}} B;$
- $\forall B, B' \in \mathcal{F} : B \neq B' \Rightarrow B \cap B' = \emptyset$.

То есть, разбиение множества A—это семейство непустых попарно непересекающихся его подмножеств, дающих в объединении A. Множества $B \in \mathcal{F}$ называют **блоками** разбиения \mathcal{F} .

Итак, классы эквивалентности образуют разбиение множества A. С другой стороны, каждому разбиению множества A соответствует отношение эквивалентности «элементы принадлежат одному блоку разбиения». Формально разбиению $\mathcal F$ ставится в соответствие отношение

$$\sim_{\mathcal{F}} = \{(x, y) \mid \exists B \in \mathcal{F} : x, y \in B\}.$$

Следствие 3. Между разбиениями множества A и бинарными отношениями на A есть биекция, которая ставит в соответствие разбиению \mathcal{F} отношение эквивалентности $\sim_{\mathcal{F}}$, классы которого являются блоками разбиения \mathcal{F} .

Доказательство следствия оставим читателю в качестве упражнения.

Отношения эквивалентности полезны и в математике и в программировании. Если вы реализуете на C++ класс рациональных чисел через обыкновенные дроби, элементы множества $\mathbb{Z} \times \mathbb{N}_1$, то пары (1,2) и (2,4) задают одно и то же число: 1/2=2/4; значит, на самом деле вам нужно либо реализовать рациональные числа, перейдя к классам эквивалентности по описанному отношению, и, например, каждый раз хранить в классе несократимую дробь, либо реализовать операцию равенства через проверку на эквивалентность.

В случае математики, отношения эквивалентности позволяют определить многие понятия и использовать основную теорему для доказательства соответствующих свойств. Так, неопределённый интеграл $\int f(x)dx$ формально является классом эквивалентности, потому и пишут

$$\int f(x)dx = F(x) + c.$$

В качестве применения основной теоремы введём отношение достижимости на множестве вершин неориентированного графа G. Вершина u достижима из v, если в G есть путь из v в u. Проверьте, что это отношение является отношением эквивалентности. Какие же у него классы? Подмножество $U \subseteq V(G)$ является классом эквивалентности по отношению достижимости, если для любой пары вершин $u, v \in U$ вершина u достижима из v и кроме того, нет других вершин в $V \setminus U$, достижимых из некоторой вершины $u \in U$. Таким образом, индуцированный подграф G[U] является компонентой связности в графе G! Итак, мы доказали давно обещанный факт, который вытекает из основной теоремы об отношениях эквивалентности (теоремы G).

Теорема 8. Компоненты связности (простого неориентированного) графа либо не содержат общих вершин, либо совпадают. Любой граф является объединением своих компонент связности.

Приведём ещё один пример отношения эквивалентности, с которым мы уже сталкивались в комбинаторике.

Пример 24. Зафиксируем множество $[n] = \{1, 2, ..., n\}$ и число k и обозначим через A множество слов длины k над алфавитом [n]. Введём следующее бинарное отношение: слова $x_1x_2...x_k$ и $y_1y_2...y_k$ находятся в отношение \sim тогда и только тогда, когда множества $\{x_1, x_2, ..., x_k\}$ и $\{y_1, y_2, ..., y_k\}$ совпадают:

$$x_1 x_2 \dots x_k \sim y_1 y_2 \dots y_k \iff \{x_1, x_2, \dots, x_k\} = \{y_1, y_2, \dots, y_k\}.$$

Это отношение является отношением эквивалентности и его классами являются подмножества k-элементные подмножества множества [n]. Мы фактически использовали это отношение в примере 16 для вывода формулы для чисел сочетания. Основной факт, который мы использовали: все классы эквивалентности имеют одинаковый размер k!. Отсюда следует, что количество классов равно $\frac{|A|}{k!}$.

10.4 Операции с бинарными отношениями

Поскольку бинарные отношения формально являются множествами, к ним применимы все теоретико-множественные операции. Обратим внимание, что операции удобно вычислять, в случае, если бинарные отношения заданы матрицами: если $R = P \cap Q$, то $xRy \iff (xPy) \wedge (xQy)$, то есть для вычисления матрицы отношения R нужно взять поэлементную конъюнкцию матриц отношений P и Q. Здесь мы использовали уже хорошо изученную нами связь между алгеброй множеств и алгеброй логики.

Бдительный читатель уже сообразил, что бинарные отношения ничем не отличаются от бинарных предикатов: предикат R(x,y)=1 тогда и только тогда, когда выполняется отношение xRy. Как всегда, в разных ветвях математики возникают разные определения и обозначения для эквивалентных объектов, и эти расхождения со временем изжить очень тяжело.

Помимо теоретико-множественных операций, изучим ряд естественных операций для бинарных отношений.

Операция обращения (транспонирования)

Обратным отношением к отношению $R \subseteq A \times B$ называют отношение

$$R^{-1} = \{(y, x) \mid xRy\} \subseteq B \times A.$$

Операция обращения отношений известна также как операция транспонирования, поскольку в случае отношений между конечными множествами, обратное отношение задаётся транспонированной матрицей исходного.

Упражнение 7. Докажите, что отношение $R \subseteq A \times A$ симметрично тогда и только тогда, когда $R = R^{-1}$. Выразите свойство симметричности на языке матриц.

В случае, если отношение f функционально (является функцией) и обратное к нему отношение является функцией, то отношение f^{-1} реализует обратную функцию. В этом случае функция f называется **обратимой**.

Упражнение 8. Докажите, что отношение R^{-1} функционально тогда и только тогда, когда отношение R функционально и инъективно.

Напомним, что в случае функций запись f^{-1} означает полный прообраз. И эта запись осмыслена с точки зрения бинарных отношений. Любому бинарному отношению $R \subseteq A \times B$ соответствует функция $f_R : 2^A \to 2^B$, такая что для любого подмножества $X \subseteq A$ справедливо

$$f_R(X) = \{ y \mid \exists x \in X : xRy \}.$$

В случае когда R является функцией, отображение f_R возвращает образ множества X, поэтому для сокращения и пишут f(X) и даже R(X). Отображение $f_{R^{-1}}$ (для обратного к R отношения) вычисляет полный прообраз множества $Y \subseteq B$.

Операция композиции и связь с базами данных

Первым способом описания бинарных отношений, который мы изучили, были таблицы. Таблица из примера напоминает упрощённую версию таблицы базы данных: в реальной базе данных таблицы имеют много столбцов и значение в каждом из них не обязательно 0 или 1. Тем не менее, реляционные базы данных берут своё название от отношений (relations) правда произвольной арности. В общем случае, k-арное отношение определяется как подмножество декартова произведения k множеств:

$$R \subseteq A_1 \times A_2 \times \ldots \times A_k$$
.

Для простоты мы считаем операцию декартова произведения ассоциативной, и считаем, что элементы множества $A_1 \times A_2 \times \ldots \times A_k$ — это (упорядоченные) наборы или как их ещё называют **кортежи**:

$$A_1 \times A_2 \times \ldots \times A_k = \{(a_1, a_2, \ldots, a_k) \mid a_i \in A_i\}.$$

Заметим, что мы начинали изучение курса с отношений арности 1—это просто множества. В работе с базами данных важную роль играет операция композиции, которую мы определим только для бинарных отношений, но сути это не меняет:

на k-арные отношения можно смотреть как на бинарные, считая, что $R \subseteq A_1 \times B$, где $B = A_2 \times A_3 \times \ldots \times A_k$.

Перед формальным определением композиции отношений, начнём с примера и проведём его на языке графов.

В университете есть множество студентов X, распределённых по множеству факультетов Y. Это распределение задаёт отношение $P \subseteq X \times Y$. У университета также есть множество зданий Z, при этом разные факультеты проводят свои занятия в разных зданиях: факультет y находится в отношении Q со зданием z, если и только если у какой-то из групп есть занятия в здании z. Для повышения мер безопасности администрация факультета решила предоставить студентам допуск только в те здания, в которых у есть занятия у их факультета. Для этих целей, администрация изобразила отношения P и Q с помощью трёхдольного графа (рис. 10.3).

Рис. 10.3. Композиция бинарных отношений

Ясно, что студенту x_i нужно дать доступ к зданию z_j , если и только если из x_i можно добраться до z_j через какую-то вершину множества Y. Обозначим через R отношение доступа студента к зданию. Ясно, что x_2Rz_4 , потому что x_2Py_2 и y_2Qz_4 . Отношение R и будет результатом композиции отношений P и Q, которую мы готовы теперь определить формально.

$$Q \circ P = \{(x, z) \mid \exists y \in Y : xPy \land yQz\}.$$

Обратите внимание на порядок операндов композиции. Он не совпадает с порядком отношений на картинке, но совпадает с порядком операндов при композиции функций: $(f \circ g)(x) = f(g(x))$. Мы следуем данному соглашению о порядке операндов, чтобы не было недоразумений при стандартной композиции функций.