

Homework II

Exercise 1 20 Points

The unit steps responses of two systems A and B are recorded and reported in the files $\mathtt{HW2_ex1_dataA.txt}$ and $\mathtt{HW2_ex1_dataB.txt}$, respectively. In each file, the first column gives the time vector t and the second column gives the output response y.

It is required to:

- 1. Load the data in Matlab/Octave and plot the two responses.
- 2. Estimate the transfer functions for the system A and B.
- 3. Compare your estimated systems with the ones provided in the data.

Solution 1

1. Plotando os gráficos:

2. • Observando o gráfico do sistema A, concluímos que o mesmo é um sistema de primeira ordem. Portanto, $G_a(s) = \frac{k}{s+a}$.

Para calcularmos a, fazemos que $T_s=\frac{4}{a}$, onde T_s corresponde ao Tempo de estabilização, que é o tempo quando o sistema atinge 98% do valor final. Como o valor final é 10.7486, então o tempo quando seu valor for 10.5336 será o T_s . Olhando pelos dados fornecidos, temos então que 16.8319 = $\frac{4}{a} \longrightarrow a = 0.2376$.

Já o K, podemos calcular a partir do valor final, onde $V_{\rm f}=\frac{K}{a}$. Como o Valor Final é 10.7486, teremos que

$$K = 0.2376 * 10.7486 \longrightarrow K = 2.5543$$

Sendo assim,
$$G_a(s) = \frac{K}{s+a} \longrightarrow G_a(s) = \frac{2.5543}{s+0.2376}$$

• Já no sistema B, podemos identificá-lo como um sistema de segunda ordem. Portanto, $G_b(s)=\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$, onde ω_n é a

frequência natural do sistema e ζ é taxa de amortecimento. Para

calcular o
$$\zeta$$
, utilizamos a seguinte relação: $\zeta = \frac{-\ln\left(\frac{\%OS}{100}\right)}{\sqrt{\ln^2\left(\frac{\%OS}{100}\right) + \pi^2}}$

onde %OS é a porcentagem de overshoot, que é quanto foi ultrapassado o valor final do sistema. Essa porcentagem é calculada através da razão $\%OS = \frac{C_{\max} - C_{\text{final}}}{C_{\text{final}}} *100$. Com isso, temos que $\zeta = 0.1498$. Para calcularmos o ω_n , utilizamos o Tempo de pico, que nada mais é do que o tempo no qual o valor máximo foi alcançado. Conseguimos identificar que o valor máximo foi 1.6165 e, verificando na tabela de dados, seu tempo de pico será 0.9695. En-

verificando na tabela de dados, seu tempo de pico sera 0.9095. Então, através da relação
$$\omega_n=\frac{\pi}{T_p\sqrt{1-\zeta}}$$
 achamos que $\omega_n=3.2774$. Com isso, chegamos que $G_b(s)=\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$ \longrightarrow
$$G_b(s)=\frac{10.7415}{s^2+0.9822s+10.7415}$$

Com isso, chegamos que
$$G_b(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$G_b(s) = \frac{10.7415}{s^2 + 0.9822s + 10.7415}$$

3. Gráficos comparativos:


```
%% Exercise 1
Clear all; clc;
[Xa,Ya] = textread('HW2_ex1_dataA.txt','%fu%f');
[Xb,Yb] = textread('HW2_ex1_dataB.txt','^{\prime}_{f}_{\downarrow}'f');
%% 1.1
figure(1);
plot(Xa,Ya)
grid on
title('Sistema_A')
figure(2);
plot(Xb,Yb)
grid on
title('Sistema⊔B')
%% 1.3
a = 4/Xa(86)
k = a*Ya(196)
numa = [k]
dena = [ 1 a]
Ga = tf(numa,dena)
figure (3)
step(Ga); hold on;
plot(Xa,Ya,'color','r')
grid on;
legend('Estimativa⊔A','Sistema⊔A','Location','southeast')
OS = (\max(Yb) - Yb(127)) / Yb(127) *100
```

```
damp = -log(OS/100)/sqrt((log(OS/100)^2)+pi^2)
wn = pi/(Xb(11)*sqrt(1-damp^2))
numb = [ wn^2 ]
denb = [ 1 2*damp*wn wn^2]
Gb = tf(numb, denb)
figure(4)
step(Gb); hold on;
plot(Xb,Yb,'color','r')
legend('EstimativauA','SistemauA','Location','southeast')
```

Exercise 2 25 Points

Find the transfer function, T(s) = C(s)/R(s), for the system in Figure (1), using the following methods:

- 1. Block diagram reduction.
- 2. Matlab/Octave. Use the following transfer functions:

$$G1(s) = \frac{1}{(s+7)}, \quad G2(s) = \frac{1}{(s^2 + 2s + 3)},$$

$$G3(s) = \frac{1}{(s+4)}, \quad G4(s) = \frac{1}{s},$$

$$G5(s) = \frac{5}{(s+7)}, \quad G6(s) = \frac{1}{(s^2 + 5s + 10)},$$

$$G7(s) = \frac{3}{(s+2)}, \quad G8(s) = \frac{1}{(s+6)}.$$

Hint: Use the append and connect commands in Matlab/Octave Control System Toolbox/Package.

Figura 1: Block diagram for Exercise 2.

Solution 2

1. Após utilizar as propriedades de soma e concatenação de blocos chegamos no bloco com a função de transferência

$$G(s) = \frac{G_1(s)G_5(s)}{1 + G_1(s)[[G_2(s) + G_5(s)G_3(s)[G_4(s) + G_6(s)G_7(s)]] + G_8(s)G_5(s)]}$$

```
2.
             s = tf('s');
             G1 = 1/(s+7); G2 = 1/(s^2+2*s+3);
             G3 = 1/(s+4); G4 = 1/s;
             G5 = 5/(s+7); G6 = 1/(s^2+5*s+10);
             G7 = 3/(s+2); G8 = 1/(s+6);
             Gm = (G1*G5)/(1+G1*(G2+G3*G5*(G4+G6*G7)+G5*G8))
             Sum1 = sumblk('b_{\sqcup} = _{\sqcup} r_{\sqcup} - _{\sqcup} a_{\sqcup} - _{\sqcup} d');
             Sum2 = sumblk('d_{\sqcup} = _{\sqcup} f_{\sqcup} + _{\sqcup} g');
             Sum3 = sumblk('h_{\sqcup} = \coprod i_{\sqcup} + \coprod j');
             G1.u = 'b'; G1.y = 'e';
             G2.u = 'e'; G2.y = 'f';
             G3.u = 'h'; G3.y = 'g';
             G4.u = 'c'; G4.y = 'i';
             G5.u = 'e'; G5.y = 'c';
             G6.u = 'c'; G6.y = 'k';
             G7.u = 'k'; G7.y = 'j';
             G8.u = 'c'; G8.y = 'a';
             Ss = connect (G1, G2, G3, G4, G5, G6, G7, G8, Sum1, Sum2,
                  Sum3, 'r', 'c');
              [num, den] = ss2tf(Ss.A,Ss.B,Ss.C,Ss.D);
```

```
Gs = tf(num,den)
figure(1)
step(Gs,'r',Gm,'b'); grid on;
legend('Simulado','Manual');
```


- P.S 1: Simulado refere-se ao calculado no MATLAB, enquanto manual refere-se ao feito por diagrama de blocos.
- P.S 2: O gráfico do simulado não aparece visível pois a linha do manual está sobrepondo totalmente ela. Contudo, através do MATLAB, pode ser verificado a semelhança entra as funções de transferência.
- P.S 3: Os valores concretos das funções de transferência foram omitidos devido ao seu tamanho exageradamente grande. Contudo, as variáveis Gs e Gm indicam as funções de transferência feita no MATLAB e através do diagrama de blocos, respectivamente.

Exercise 3 20 Points

The system in state space given in (1) represents the forward path of a unity feedback system.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -4 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \mathbf{x}$$

$$(1)$$

Constructing the Routh table in Matlab/Octave, use the Routh-Hurwitz criterion to determine if the closed loop is stable.

Solution 3

Exercise 4 35 Points

For a system with the state and output equations given in (2):

$$\dot{x}(t) = x^{2}(t) - u(t)x(t) - 2u(t)$$

$$y(t) = x^{3}(t) + u^{3}(t)$$
(2)

- 1. Calculate the state and output equilibrium points when $u(t) = u_{eq} = 1$.
- 2. Define the linearised system around the equilibrium points and analise the stability of the system.
- 3. Compare the linearised and nonlinear system responses $\delta y(t)$ for an input $\delta u(t) = A\cos(2t)$, whit A = 0.1 applied at t = 0.
- 4. Extra (5 points): Investigate how the responses differ when the input amplitude assumes the values [0.05, 0.15, 0.2].
- 5. Extra (5 points): Calculate the error between linearised and nonlinear system in point (3) and point (4). Comment your findings.

Hint: Use the command ode45 to simulate the nonlinear system.