## PRACTICE 7

2. We consider the weighted graph G with 12 vertices and 18 edges whose incidence map f is defined as follows:

$$f(e_1) = \{v_1, v_2\}, \quad f(e_2) = \{v_1, v_3\}, \quad f(e_3) = \{v_1, v_4\}, \quad f(e_4) = \{v_1, v_5\}, \quad f(e_5) = \{v_5, v_6\},$$

$$f(e_6) = \{v_4, v_6\}, \quad f(e_7) = \{v_4, v_7\}, \quad f(e_8) = \{v_4, v_8\}, \quad f(e_9) = \{v_3, v_7\}, \quad f(e_{10}) = \{v_3, v_8\},$$

$$f(e_{11}) = \{v_2, v_8\}, \quad f(e_{12}) = \{v_8, v_9\}, \quad f(e_{13}) = \{v_7, v_{10}\}, \quad f(e_{14}) = \{v_7, v_{11}\},$$

$$f(e_{15}) = \{v_6, v_{11}\}, \quad f(e_{16}) = \{v_{11}, v_{12}\}, \quad f(e_{17}) = \{v_{10}, v_{12}\}, \quad f(e_{18}) = \{v_9, v_{12}\}$$

and whose weight's vector is the following one:

v = (0.25, 0.36, 0.28, 0.25, 0.51, 0.63, 0.74, 0.81, 0.32, 0.32, 0.43, 0.51, 0.51, 0.32, 0.33, 0.45, 0.21, 0.4).

(the *i*th component of this vector represents the weight of the edge  $e_i$ )

Compute a shortest path (or path with minimum weight) between the vertices 1 and 12.

## **SOLUTION**

