Формули и дефиниции

Александър Гуров

8 януари 2023 г.

1 Обикновени графи

<u>Def:</u> Γ pad $G = (V, E), E \subseteq \{X \subseteq V : |X| = 2\}$

Празен граф: $E = \emptyset$

Тривиален граф: |V|=1

 $\mathbf{\underline{Def:}}$ Ако $\exists e=(u,v)\in E,$ то и и v са съседи

Ако $e_1 \cap e_2 = \varnothing$, то e_1 и e_2 са инцидентни

 $\mathbf{Def:}N(u) = \{v \in V | u$ и v са съседи $\}$

 $\underline{\mathbf{Def:}}N[u] = N(u) \cup \{u\}$

 $\mathbf{Def:} \mathcal{J}(u) = \{e \in E | e \text{ е инцидентно с } u\}$

Степен на връх: $d(u) = |\mathcal{J}(u)|$

 $\Delta(G) = \max\{d(u)|u \in V\}$

 $\delta(G) = \min\{d(u)|u \in V\}$

Максимална степен на връх $\Delta(u) \leq n-1$

<u>Лема 1:</u> $\sum_{u \in V} d(u) = 2m$

 ${\bf \underline{ Лема~2}}$ - the handshake lemma:

 $\forall G(V,E)$ с поне 2 върха, $\exists u,v \in V, u \neq v: d(u) = d(v)$

G е **k-регулярен**, ако $\forall u \in V : d(u) = k$

G е **пълен граф**, ако има всички възможни ребра при даденото множеството върхове

 K_n е пълен граф на n върха, и е (n-1)-регулярен

 K_n има точно $\binom{n}{2}$ ребра

Подграф на G, $un\partial yuupan$ от E', е G'(U,E'), където $E'\subseteq E$, $U=\{u\in V|\exists e\in E', \exists x\in V: e=(u,x)\}$

Подграф на G, undyuupan от U, е G'(U,E'), където $U\subseteq V$, $E'=\{e\in E|\exists u,v\in U:e=(u,v)\}$

Клика е подмножество от V, между чиито всеки два върха има ребро. К-клика е клика с к-върха.

Антилика е подмножество от V, между чиито никои два върха няма ребро

- $\omega(G)$ Кликово число е мощността на максималната клика в G
- $\alpha(G)$ Число на независимост е мощността на максималната антиклика в G

 $ar{G}(V,E')$ е допълнението на G, където $E'=\{(u,v)|u,v\in V,u\neq v\}\setminus E$ $\omega(G)=\alpha(ar{G})$

Теорема 1: Нека G(V,E) има поне 6 върха. В G има поне 3-клика или 3-антиклика

2 Неориентирани мултиграфи