Classical Dynamics – Problem Sheet 3

to be discussed in tutorial the week of 14 October

- 1. A particle of mass m moves in three dimensions under the action of a conservative force that is obtained from a potential: $\underline{F} = -\underline{\nabla}V$.
 - (a) Define the kinetic and potential energy for this particle and prove that the total energy is conserved.
 - (b) Show that only one of the two forces

$$(1) \quad \underline{F} = zx\underline{e}_x + yz\underline{e}_y + z^2\underline{e}_z$$

$$(2) \quad \underline{F} \quad = \quad yz^2\underline{e}_x + xz^2\underline{e}_y + 2xyz\underline{e}_z$$

is conservative and find a potential for it.

- (c) Define the torque and angular momentum for a particle moving in three dimensions. Suppose the particle is acted on by the force (1) above. Compute the torque \underline{N} . Why is this result obvious from the form of \underline{F} ? If at time t=0 the particle is located at $\underline{r}(0)=2\underline{e}_x+2\underline{e}_y$ with velocity $\underline{\dot{r}}(0)=2\underline{e}_x+3\underline{e}_y$, find the angular momentum at all times. Consider a particle moving in a straight line given by $\underline{r}=\underline{v}t+\underline{r}(0)$ where \underline{v} and $\underline{r}(0)$ are constant vectors. Show that both momentum and angular momentum are conserved.
- 2. Consider a particle moving in three-dimensions with no force. Show that, after reducing to just the $r = |\underline{r}|$ variable, the conservation of energy equation

$$E = \frac{m}{2}\dot{r}^2 + \frac{l^2}{2mr^2}$$

has straight lines as solutions. What do the solutions l = 0 correspond to?

- 3. Consider a simple harmonic oscillator given by a particle of mass m moving in a potential $V = (k/2)r^2$, with k a positive constant and $r \equiv |\underline{r}|$.
 - (a) Find the force $\underline{F} = -\nabla V$ acting on the particle.
 - (b) Show that the general solution to Newton's second law of motion can be written in the form $\underline{r}(t) = \underline{a}\cos\omega t + \underline{b}\sin\omega t$, with $\omega = \sqrt{k/m}$.
 - (c) For the general solution $\underline{r}(t)$, calculate the angular momentum \underline{J} and the total energy E of the particle as a function of time. You should find that both \underline{J} and E are in fact time-independent; explain from the properties of the force \underline{F} why this is so.
- 4. This is rocket science. Consider a rocket of mass M(t) at time t moving in a straight line which ejects its fuel at a constant rate and at a constant speed, u, relative to the rocket (think about the signs!).
 - (a) In a small time interval Δt the rocket ejects $|\Delta M|$ of fuel and gains in velocity by Δv . Use the conservation of momentum for the rocket and fuel system as a whole to show that:

$$\Delta v = -u \frac{\Delta M}{M}$$

You may neglect any terms of the form $\Delta M \Delta v$.

(b) By promoting this equation to a differential equation (i.e. let $\Delta \to d$) show by integrating it that the velocity of the rocket satisfies:

$$v(t) = -u \ln \frac{M(t)}{M(0)}$$

1

