Arbeitsunterlagen zu FOS Elektrotechnik, Technische Informatik, Mechatronik Themenfeld 12.1

Gleichstromnetzanalyse

Brühlwiesenschule, Hofheim

Thomas Maul

V 0.1.0 - im Aufbau Stand: 23. Oktober 2025

Für eigene Teile gilt:

Arbeitsunterlagen zu FOS Elektrotechnik, Technische Informatik, Mechatronik Themenfeld 12.1

Gleichstromnetzanalyse

Brühlwiesenschule, Hofheim

Thomas Maul

V 0.1.0 - im Aufbau Stand: 23. Oktober 2025

Für eigene Teile gilt:

Themenfeld 12.1 - Gleichstromnetzanalyse

Inhalt

Zweipoltheorie (Pflicht)

Überlagerungsverfahren nach Helmholtz (Pflicht)

Pflicht-Themen, die noch offen sind

Dreieck <-> Stern-Umwandlung (Pflicht)

Pflicht-Themen, die noch offen sind

Zweipole

In der Schaltung unten sollen die Widerstände R₃ bis R₅ als ein virtuelles Bauteil dargestellt werden.

Werte für Berechnung

$$egin{aligned} R_1 &= 10\Omega \ R_2 &= 20\Omega \ R_3 &= 30\Omega \ R_4 &= 40\Omega \ R_5 &= 50\Omega \ U_{q1} &= 5\,V, \ U_{q2} &= 12\,V \end{aligned}$$

Zweipole

Berechnung des Ersatzwiderstands

$$R_{45} = R4 + R5 \quad (1)$$
 $R_{45} = 40\Omega + 50\Omega$
(2)
 $R_{45} = 90\Omega \quad (3)$
 $\frac{1}{R_{3||45}} = \frac{1}{R_3} + \frac{1}{R_45}$
(4)
 $\frac{1}{R_{3||45}} = \frac{1}{30\Omega} + \frac{1}{90\Omega}$
(5)
 $R_{3||45} = 22, 5\Omega \quad (6)$

Abbildung: Berechnung des Erstatwiderstands

Übungen zu Zweipole I

Berechnen Sie jeweils den Ersatzwiderstand zwischen den Klemmen C und D zur Schaltung unten.

a
$$R1 = R2 = 220\Omega R3 = R5 = 230\Omega R4 = 470\Omega$$

b
$$R1 = R2 = R3 = R5 = 230\Omega R4 = 470\Omega$$

c
$$R1 = R2 = R4 = R5 = 230\Omega R3 = 470\Omega$$

Abbildung: Schaltung zu Übung Ersatzzweipol - Teil 1

Ubungen zu Zweipole II

Berechnen Sie jeweils den Ersatzwiderstand zwischen den Klemmen C und D zur Schaltung unten.

a
$$R1 = R2 = 220\Omega R3 = R5 = 230\Omega R4 = 470\Omega$$

b
$$R1 = R2 = R3 = R5 = 230\Omega R4 = 470\Omega$$

c
$$R1 = R2 = R4 = R5 = 230\Omega R3 = 470\Omega$$

Abbildung: Schaltung zu Übung Ersatzzweipol - Teil 2

Helmholtz

Zweipoltheorie (Pflicht)

Überlagerungsverfahren nach Helmholtz (Pflicht) Nur Quelle U1 aktiv Nur Quelle U2 aktiv

Dreieck <-> Stern-Umwandlung (Pflicht)

Pflicht-Themen, die noch offen sind

Zwei Spannungsquellen U1 und U2

Abbildung: Zwei Quellen aktiv

 $R1 = 10\Omega$, $R2 = 20\Omega$, $R3 = 30\Omega$, $R4 = 40\Omega$, $R5 = 50\Omega$

Zweipole

Nur Quelle U1 aktiv

Abbildung: Nur Quelle 1 aktiv

 $R1 = 10\Omega$, $R2 = 20\Omega$, $R3 = 30\Omega$, $R4 = 40\Omega$, $R5 = 50\Omega$

$$U_{2'} = I_2 * R_2 ||R_3||R_4 + R_5 (7)$$

$$U_{2'} = I_2 * \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}$$
 (8)

 I_2 ist nicht bekannt.

Berechnung Ersatzwiderstand II

$$U_{q1} = U_1 + U_2 (9)$$

$$U_{q1} = U_1 + U_2$$

$$U_2 = U_{q1} * \frac{R_2 ||R3||R45}{R! + R_2 ||R3||R45}$$
(10)

Einsetzen I

$$U_{2'} = U_{q1} * \frac{R_2||R3||R45}{R1 + R_2||R3||R45}$$
 (11)

$$U_{2'} = U_{q1} * \frac{\frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}}{R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_4 + R_5}}}$$
(12)

(13)

Einsetzen II

$$U_{2'} = U_{q1} * rac{R_2||R3||R45}{R1 + R_2||R3||R45}$$
 $U_{2'} = U_{q1} * rac{rac{1}{rac{1}{R_2} + rac{1}{R_3} + rac{1}{R_4 + R_5}}}{R_1 + rac{1}{rac{1}{R_2} + rac{1}{R_3} + rac{1}{R_4 + R_5}}}$

$$U_{2'} = 5V * \frac{22,5\Omega}{10\Omega + 22,5\Omega} \tag{14}$$

$$U_{2'} = 5V * 0,69 (15)$$

$$U_{2'} = 3,46V ag{16}$$

Nur Quelle U2 aktiv

Abbildung: Nur Quelle zwei aktiv

 $R1 = 10\Omega, R2 = 20\Omega, R3 = 30\Omega, R4 = 40\Omega, R5 = 50\Omega$

Quelle 2, Einsetzen I

$$U_{2''} = U_{q2} * \frac{\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}{R_4 + R_5 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}$$
(17)

(18)

Quelle 2, Einsetzen II

$$U_{2''} = U_{q2} * \frac{\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}{R_4 + R_5 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}$$
(19)

$$U_{2''} = 12 V * \frac{\frac{1}{10\Omega} + \frac{1}{20\Omega} + \frac{1}{30\Omega}}{40\Omega + 50\Omega + \frac{1}{\frac{1}{10\Omega} + \frac{1}{20\Omega} + \frac{1}{20\Omega}}}$$
(20)

$$U_{2''} = 0,24V (21)$$

Addition

Zum Abschluss werden die beiden Teilspannungen addiert.

$$U_2 = U_{2'} + U_{2''} \tag{22}$$

$$U_2 = 3,46V + 0,24V \tag{23}$$

$$U_2 = 3,7V$$
 (24)

Inhalt

Zweipoltheorie (Pflicht)

Überlagerungsverfahren nach Helmholtz (Pflicht)

Dreieck <-> Stern-Umwandlung (Pflicht)

Pflicht-Themen, die noch offen sind

Messbrücke

Dreieck <-> Stern ○●○○○

Abbildung: Messbrücke

Messbrücke

Messbrücke - Stern-Dreieck

Abbildung: Messbrücke

 $R_{AC}=R3$

Pflicht-Themen, die noch offen sind

 $R_{AB} = R6$

 $R_{BC} = R5$

Pflicht-Themen, die noch offen sind

Umwandlung Dreieck -> Stern

Umwandlung Dreieck -> Stern

$$R_A = rac{R_{AC}R_{AB}}{R_{AC} + R_{AB} + R_{BC}}$$
 $R_B = rac{R_{AB}R_{BC}}{R_{AC} + R_{AB} + R_{BC}}$ $R_C = rac{R_{AC}R_{BC}}{R_{AC} + R_{AB} + R_{BC}}$

Zweipole

Umwandlung - Stern- > Dreieck

Umwandlung - Stern- > Dreieck

Abbildung: Messbrücke

$$R_{AB} = rac{R_A R_B}{R_C} + R_A + R_B$$
 $R_{AC} = rac{R_A R_C}{R_B} + R_A + R_C$ $R_{BC} = rac{R_B R_C}{R_A} + R_B + R_C$

Messbrücke

Abbildung: Messbrücke

$$egin{aligned} R_3 &= 330\Omega \ R_4 &= 330\Omega \ R_5 &= 560\Omega \ R_6 &= 390\Omega \ U_q &= 5 \ V \end{aligned}$$

 $R_4 = R_{Mess}$ gesucht: Strom und Spannung an R_6 , R_4 und R_5

 $R_1 = 220\Omega$ $R_2 = 470\Omega$

Messbrücke

Abbildung: Messbrücke

$$R_3 = 330\Omega$$
 $R_4 = 330\Omega$ $R_5 = 560\Omega$ $R_6 = 390\Omega$ $U_q = 5 V$ $I_4 = 4,2 \ mA, \quad I_5 = 3,3 \ mA, \quad I_6 = 890 \ \mu A$

 $R_1 = 220\Omega$ $R_2 = 470\Omega$

 $U_4 = 1.4 \text{ V}, \quad U_5 = 3.6 \text{ V}, \quad U_6 = 0.35 \text{ V}$

Pflicht-Themen, die noch offen sind

Folgende Themen sind gemäß Prüfungserlass für die Prüfung 2026 Plicht, aber noch nicht ausgearbeitet.

- Knoten- und Maschengleichungen
- Kreisstromverfahren
- Knotenspannungsverfahren

Die Themen folgen demnächst hier.