Korlátos modellellenőrzés

dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Hol tartunk most?

A korlátos modellellenőrzés alapja

- Az állapotteret nem "egyben" kezeljük
- Az útvonalak hosszát korlátozva végezzük az ellenőrzést
 - Állapottér bejárás egyszerre csak adott útvonalhossz korlátig történik: részleges ellenőrzés
 - Az útvonalhossz iteratívan növelhető
 - Egyes esetekben van "átmérője" az állapottérnek: a leghosszabb útvonal, ami bejárható
- A leghosszabb útvonal néha becsülhető
 - Intuíció a probléma méretéről
 - Worst case végrehajtási idő alapján

A korlátos modellellenőrzés alapötlete

Ellenpélda keresés a kezdőállapotból egyre hosszabb útvonalakon

Hamarabb ellenpéldát találhatunk, a teljes állapottér bejárása nélkül

Felhasználható eredmény: SAT megoldók

- SAT megoldó:
 - Adott logikai függvényhez olyan változó-értékeket
 (változó-behelyettesítést) keres, amelyekkel a függvény értéke igaz
 - Példa: $f(x_1,x_2,x_3)=x_1 \land x_2 \land \neg x_3$ függvény esetén (1,1,0) bitvektor
- NP-teljes probléma, de hatékony algoritmusok vannak
 - zChaff, MiniSAT, ...

Célkitűzés

- A probléma alkalmas leképzése logikai függvényre
 - Modell és logikai követelmény együttesen
 - Tipikusan invariáns követelmény ellenőrzésére:
 Minden állapotra előírt tulajdonság
- Cél: SAT megoldó használata ellenpélda keresésre
 - Ha a követelmény nem teljesül, a SAT megoldó által adott behelyettesítés legyen egy ellenpélda
 - Az ellenpélda használható a hibakereséshez
 - Invariáns tulajdonságok esetén jól használható módszer
 - Ha a követelmény teljesül, a SAT megoldó nem talál behelyettesítést a függvényhez

Informális bevezetés

- Hogyan képezzük az állapotteret?
 - Kiindulás a kezdőállapotból: **I(s)** karakterisztikus függvénnyel megadható
 - "Bejárás": Lehetséges továbblépések az állapotátmeneti reláció mentén
 - Állapotátmeneti reláció (hová léphetünk tovább): C_R(s,s') karakterisztikus függvénnyel
 - Ha s-ben vagyunk, $C_R(s,s')$ alkalmazása adja meg a lehetséges s' rákövetkezőket, majd s' esetén $C_R(s',s'')$ alkalmazása adja meg a lehetséges s'' rákövetkezőket ...
 - Egyszerűbb jelölés: Vesszők használata helyett felső index: $C_R(s^0,s^1)$ majd $C_R(s^1,s^2)$...
- Hogyan adjuk meg a követelményt?
 - Invariáns: Minden állapotra előírt kritérium: általánosan egy p(s) predikátum
- Az ellenpéldát kijelölő logikai függvény részei (konjunkcióval):
 - Kezdőállapotból indulunk: I(s)
 - "Lépegetünk" az állapotátmeneti reláció mentén: C_R(s,s') sorozatos alkalmazása
 - Ellenpélda (valahol p(s) nem teljesül): ¬p(s) vagylagosan a bejárt állapotokra

Ezt a függvényt igazzá tevő behelyettesítés adja az ellenpéldát!

Jelölések

- M=(S,R,L) Kripke-struktúra
- Logikai függvények:
 - I(s): kezdőállapotok n változós karakterisztikus függvénye
 - Háttér: Állapotok "kódolása" n hosszú bitvektorokkal
 - C_R(s,s'): állapotátmenetek 2n változós karakterisztikus függvénye
 - Minden egyes állapotátmenet karakterisztikus függvénye ∨ operátorral
 - path(): k hosszú útvonalak (k+1)n változós karakt. függvénye

$$\operatorname{path}(s^0, s^1, ..., s^k) = \bigwedge_{0 \leq i < k} C_R(s^i, s^{i+1})$$
 Vesszős változók helyett felső index az s állapotok kódolásában

Kezdőállapotból induló, k hosszú útvonalak karakt. függvénye

$$I(s^0) \wedge path(s^0, s^1, ..., s^k)$$

- p(s): címkézett állapotok halmazának karakterisztikus függvénye
 - Atomi kijelentésekre pl. P(s), Q(s): Az L címkézés határozza meg
 - Általánosan: Állapotváltozók alapján konstruálható

Példa: A modell leképzése logikai függvénybe

Kezdőállapot predikátum:

$$I(x,y) = (\neg x \land \neg y)$$

Állapotátmeneti reláció:

$$C_{R}(x,y,x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \lor (\neg x \land y \land x' \land y') \lor \lor (x \land y \land \neg x' \land y') \lor \lor (x \land y \land \neg x' \land \neg y')$$

3 lépéses kibontás:

path(s⁰,s¹,s²,s³) =
=
$$C_R(x^0,y^0, x^1,y^1) \land C_R(x^1,y^1, x^2,y^2) \land C_R(x^2,y^2, x^3,y^3)$$

Példa: A modell leképzése logikai függvénybe

Kezdőállapot predikátum:

$$I(x,y) = (\neg x \land \neg y)$$

Állapotátmeneti reláció:

$$C_{R}(x,y,x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \\ \lor (\neg x \land y \land x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land \neg y')$$

3 lépéses kibontás a kezdőállapotból:

$$I(x^{0},y^{0}) \wedge path(s^{0},s^{1},s^{2},s^{3}) =$$

$$= I(x^{0},y^{0}) \wedge$$

$$C_{R}(x^{0},y^{0},x^{1},y^{1}) \wedge$$

$$C_{R}(x^{1},y^{1},x^{2},y^{2}) \wedge$$

$$C_{R}(x^{2},y^{2},x^{3},y^{3})$$

A probléma formalizálása

 Ha p(s) nem igaz valahol, akkor lesz olyan i, amire a következő függvény igaz értéket vesz fel:

$$I(s^{\scriptscriptstyle 0}) \wedge \operatorname{path}(s^{\scriptscriptstyle 0}, s^{\scriptscriptstyle 1}, ..., s^{\scriptscriptstyle i}) \wedge \neg p(s^{\scriptscriptstyle i})$$

A fenti függvény igaz értékéhez tartozó behelyettesítést tud keresni a SAT megoldó, ez lesz az ellenpélda

- Azaz az (s⁰,s¹,...,sⁱ) útvonalat meghatározó (i+1)*n változó értéket (i+1 állapot, állapotonként n bitérték) keres
- Ötlet: i=0,1,2,...-ra rendre megvizsgálni, hogy i hosszú útvonalon igaz lehet-e a következő függvény (ha igaz, akkor van ellenpélda):

$$I(s^{\scriptscriptstyle 0}) \wedge \operatorname{path}(s^{\scriptscriptstyle 0}, s^{\scriptscriptstyle 1}, ..., s^{\scriptscriptstyle i}) \wedge \neg p(s^{\scriptscriptstyle i})$$

Az algoritmus elemei

- Iteráció: i=0,1,2,... az útvonalak hosszára
- Ciklusmentes utakat vizsgálunk: Ifpath

If path
$$(s^0, s^1, ..., s^k)$$
 = path $(s^0, s^1, ..., s^k) \land \bigwedge_{0 \le i < j \le k} s^i \ne s^j$

- Megállási feltétel az iteráció során:
 - Kezdőállapotból nincs i hosszú ciklusmentes út, azaz nem lehet igaz

$$I(s^0) \wedge \text{lfpath}(s^0, s^1, ..., s^i)$$

 A "rossz" állapothoz (ahol p(s) nem igaz) nem létezik i hosszú ciklusmentes út (kezdőállapottól függetlenül), azaz nem lehet igaz

$$lfpath(s^0, s^1, ..., s^i) \land \neg p(s^i)$$

Ha megáll az iteráció, akkor p(s) mindenütt igaz

Kifejthető az

állapotváltozókkal

Az algoritmus

- Ha az eredmény True: Az invariáns igaz.
- Ha az eredmény egy (s⁰,s¹,...,sⁱ) útvonalat meghatározó (i+1)n bitérték: ez lesz az ellenpélda olyan állapot eléréséhez, ahol p(s) nem igaz

Korlátos modellellenőrzés iterációval

Összefoglalás: A BMC használata

- Invariánsok vizsgálatára hatékony
- Helyes módszer ciklusmentes utakat használva
 - Ha van ellenpélda az adott úthossz korlátig, azt megtalálja
 - Ha ellenpéldát talál, akkor az valódi ellenpélda
- Állapottér kezelés
 - SAT megoldó: Szimbolikus technika, logikai függvényeken
 - Adott úthossz korlátig részleges eredmény kapható
- Legrövidebb ellenpélda kereshető
 - Tesztgeneráláshoz használható
- Automatikus módszer
 - A korlát kijelölése lehet heurisztikus (az állapottér várt "átmérője")
- Eszközök:
 - Pl. Symbolic Analysis Laboratory (SAL): sal-bmc, sal-atg

Az Intel eredményei (hardver verifikáció)

D. 4. I. I.	7	F + (DDD)	T (CAT)
Model	k	Forecast (BDD)	Thunder (SAT)
Circuit 1	5	114	2.4
Circuit 2	7	2	0.8
Circuit 3	7	106	2
Circuit 4	11	6189	1.9
Circuit 5	11	4196	10
Circuit 6	10	2354	5.5
Circuit 7	20	2795	236
Circuit 8	28		45.6
Circuit 9	28		39.9
Circuit 10	8	2487	5
Circuit 11	8	2940	5
Circuit 12	10	5524	378
Circuit 13	37		195.1
Circuit 14	41		
Circuit 15	12		1070

Állapottér növekedés szoftverek esetén: A ciklusok

A ciklusok bejárása új állapotokat eredményez!

Vezérlési gráf (CFG) példa

Ciklus bejárással új állapotok jönnek létre

Ciklusok kezelése a modellellenőrzőkben

- Ciklusok kezelésének lehetőségei
 - Alapeset: Teljes kibontás (path enumeration)
 - Szisztematikusan új állapotok felvétele minden lehetséges ágon
 - Közelítés: Korlátozott ciklusbejárás (loop unrolling)
 - Ciklusokra egyenként lefutási korlátot adni és úgy kibontani

Szoftver modellellenőrzés

• F-SOFT (NEC):

- Hagyományos teljes kibontás (path enumeration)
- Unix rendszerprogramokra alkalmazták (pl. pppd)

• CBMC (CMU, Oxford University):

- C, SystemC támogatása
- Korlátozott ciklusbejárás (loop unrolling)
- Egyes Linux, Windows, MacOS rendszerkönyvtárak támogatása
- Integer aritmetikai műveletek leképzése:
 - Bitvektor szintű megvalósítás ("bit-flattening", "bit-blasting")
- CBMC SMT megoldóval:
 - Satisfiability Modulo Theories: Kiterjesztés különböző domének kezelésére (pl. integer aritmetika)

SATURN:

- Korlátozott ciklusbejárás: Max. 2 lefutás
- Teljes Linux kernel ellenőrizhető: Null pointer hivatkozásokra

Összefoglalás: Technikák modellellenőrzéshez

- Szimbolikus modellellenőrzés
 - ROBDD alakban kezelt karakterisztikus függvények
 - "Jól strukturált" problémák esetén hatékony
 - Pl. azonos viselkedésű résztvevők protokollokban
 - Változók sorrendezésétől is függ a méret
- Korlátos modellellenőrzés invariánsokra
 - Logikai függvények igazságának keresése (SAT eszköz)
 - Korlátos hosszúságú ellenpéldák keresése
 - Ha ad ellenpéldát, az mindenképpen érvényes
 - Ha nincs ellenpélda, az még nem végleges eredmény (lehet, hogy hosszabb ellenpélda keresése szükséges)
 - Tesztgenerálásra jól alkalmazható
- További lehetőség: Absztrakció

Összefoglalás: A modellellenőrzés jellemzői

Modellellenőrzés a tervezési folyamatban

A modellellenőrzés kedvező tulajdonságai

- Lehetséges nagy modellméretet is kezelni
 - Akár 10²⁰, de példa van 10¹⁰⁰-nál nagyobb méretre is
 - Ez a rendszermodell mérete (pl. automaták hálózata esetén)
 - Hatékony technikák: Szimbolikus, SAT alapú (korlátos), absztrakció
- Általános módszer
 - Szoftver, hardver, protokollok, ...
- Teljesen automatikus eszköz, nem szükséges tervezői intuíció, erős matematikai háttérismeret
 - Tételbizonyítás ennél bonyolultabb!
- Ellenpéldát generál, ami segít a hibák javításában

2007. évi Turing Award a modellellenőrzés kifejlesztőinek: E. M. Clarke, E. A. Emerson, J. Sifakis (1981)

A modellellenőrzés hiányosságai

- Skálázhatóság még mindig korlátos
 - Explicit állapottér bejárást alkalmaz
 - Hatékony technikák vannak ugyan erre, de nem garantált a jó skálázhatóság
- Elsősorban vezérlés-orientált alkalmazásokra
 - Komplex adatstruktúrák nagy állapotteret jelenthetnek
- Nehéz az eredményeket általánosítani
 - Ha egy protokoll helyes 2 résztvevő esetén, akkor helyes-e N résztvevő esetén?
- A követelmények formalizálása nem egyszerű
 - Temporális logika "nyelvjárások" alakultak ki különböző alkalmazási területeken
 - Példa: PSL (Property Specification Language, IEEE szabvány)

