Конспект лекций по алгебре

Лектор: Игорь Борисович Жуков

Оглавление

Элементы теории чисел		2
1	Делимость	2
2	Отношение эквивалентности и разбиение на классы	2
3	Сравнение по модулю	3
4	Кольцо классов вычетов	4
5	Наибольший общий делитель	6
6	Взаимно простые числа	8
7	Линейные диофантовы уравнения	Ĝ
8	Простые числа	6

Элементы теории чисел

1 Делимость

Определение. $a,b\in\mathbb{Z},a\mid b\iff \exists c\in\mathbb{Z}:b=ac$

Свойства:

- 1. $a \mid a$ рефлексивность
- 2. $a \mid b, b \mid c \implies \exists c \in \mathbb{Z} : b = ac$ транзитивность
- 3. $a \mid b, k \in \mathbb{Z} \implies ka \mid kb$
- 4. $a \mid b_1, a \mid b_2 \implies a \mid (b_1 \pm b_2)$
- 5. $\pm 1 \mid a$
- 6. a и b ассоциированны, если $a\mid b,\ b\mid a\implies a=\pm b$
- 7. a, a' и b, b' ассоциированны, тогда $a \mid b \iff a' \mid b'$
- 8. $k \neq 0, ka \mid kb \iff a \mid b$

2 Отношение эквивалентности и разбиение на классы

Определение. Отношение эквивалентности — бинарное отношение, удовлетворяющее следующим свойствам: рефлексивность, симметричность, транзитивность.

Определение. Разбиение на классы множества M — это представление M в виде $M = \bigcup_{i \in I} M_i$, где M_i — классы, I — индексное множество, $M_i \cap M_j = \emptyset$ при $i \neq j$.

Теорема. Пусть $M = \bigcup_{i \in I} M_i$ — разбиение на классы, тогда $a \sim b \iff \exists i: a,b \in M_i.$

Доказательство. рефлексивность, симметричность — очевидны транзитивность: $a \sim b, b \sim c \implies \exists i, j: a, b \in M_i$ и $b, c \in M_j$ $b \in M_i \cap M_j \iff M_i \cap M_j \neq \emptyset \implies i = j \implies a, c \in M_i \implies a \sim c$

Теорема. $\exists \sim -$ отношение эквивалентности на M. Значит \exists разбиение на классы $M = \bigcup_{i \in I} M_i$ такое, что $\forall a, b \in M: a \sim b \iff \exists i: a, b \in M_i$.

Доказательство.

$$\begin{array}{l} [a] = \{b \in M \mid a \sim b\} - \text{ класс}, \ a \in M \\ \forall a_1, a_2 \in M : [a_1] \cap [a_2] = \emptyset \text{ или } [a_1] = [a_2] \ \exists [a_1] \cap [a_2] \neq \emptyset \implies \exists x \in [a_1] \cap [a_2] \\ x \in [a_1], x \in [a_2] \implies x \sim a_1, x \sim a_2 \implies a_2 \sim a_1 \\ [a_2] \subset [a_1], c \in [a_2] \implies c \sim a_2 \implies c \sim a_1 \implies c \in [a_1] \\ [a_1] \subset [a_2], c \in [a_1] \implies c \sim a_1 \implies c \sim a_2 \implies c \in [a_2] \\ \exists \text{начит } [a_1] = [a_2] \end{array}$$

$$\begin{split} I &= \{[a] \mid a \in M\} \\ \forall \mathfrak{A}, \mathfrak{B} \in I : \mathfrak{A} \cap \mathfrak{B} &= \emptyset \\ a_1, a_2 \in \mathfrak{A} &\Longrightarrow [a_1] = \mathfrak{A} = [a_2] \implies a_2 \in [a_1] \implies a_2 \sim a_1 \\ a_1 \in \mathfrak{A}, a_2 \in \mathfrak{B} &\Longrightarrow \neg (a_1 \sim a_2), \text{ так как иначе } a_1 \in [a_2] \implies \mathfrak{B} \in \mathfrak{A} \implies \mathfrak{A} \cap \mathfrak{B} \neq \emptyset \end{split}$$

Определение. Фактор-множество по отношению эквивалентности \sim — множество I, обозначим его как M/\sim

Пример:
$$\mathbb{Z}/\sim=\{[z]\mid z\in\mathbb{Z}\}=\{[0],[1],[2],\dots\}$$

3 Сравнение по модулю

Определение. $\exists a,b,m \in \mathbb{Z}$. Говорят, что $m \mid (a-b)$.

Свойства:

- 1. $\equiv -$ рефлексивно
- $2. \equiv -$ симметрично
- 3. $\equiv -$ транзитивно
- 4. $a \equiv b, d \mid m \implies a^d \equiv b$
- 5. $a \equiv b, k \in \mathbb{Z} \implies ka \equiv kb$
- 6. $a \equiv b, k \in \mathbb{Z} \implies ka \equiv kb$
- 7. $a_1 \equiv b_1, a_2 \equiv b_2 \implies a_1 \pm a_2 \equiv b_1 \pm b_2$
- 8. $a_1 \equiv b_1, a_2 \equiv b_2 \implies a_1 a_2 \equiv b_1 b_2$

4 Кольцо классов вычетов

Определение. Множество классов вычетов по модулю m — это множество всех вычетов по модулю m.

Обозначается как $\mathbb{Z}/m\mathbb{Z} \iff \mathbb{Z}/m \iff \mathbb{Z}/\equiv m$

Теорема. $\exists m \in \mathbb{N}. \ Torda$

- 1. $\mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$
- 2. $|\mathbb{Z}/m\mathbb{Z}| = m$

Доказательство.

- 1. $a \in \mathbb{Z}$ (!) $\overline{a} = \overline{r}$, $0 \le r < m$
 - а) $a \ge 0$, $\exists r$ наименьшее число, такое что $r \ge 0$, $a \equiv r$ $r \ge m \implies r m \equiv a, r m \ge 0, r m < r$. Противоречие с выбором r. Значит r < m, тоесть r искомое.
 - b) a < 0, $a' = a \pm (-a)m = a(1 m) \ge 0$ $\overline{a} = \overline{a'} = \overline{r}$, 0 < r < m
- 2. предположим $\overline{r} = \overline{r'}, \ 0 \le r, r' < m.$ $|r' r| < m \implies m \mid (r r') \implies r' r = 0$

Следствие: Теорема о делениии с остатком — $\exists a \in \mathbb{Z}, b \in \mathbb{N} \implies \exists !q,r \in \mathbb{Z}$

- 1. $a = bq + r, \ 0 \le r < b$
- 2. $0 \le r < b$

Доказательство.

Существование:

В
$$\mathbb{Z}/b\mathbb{Z}$$
 рассмотрим $\overline{a} \in \{\overline{0}, \overline{1}, \dots, \overline{b-1}\}$, тогда если $\overline{a} = \overline{r}, \ 0 \le r < b$ $a \equiv r \iff a = bq + r, \ q \in \mathbb{Z}$

Единственность:

$$\exists a = bq + r = bq' + r', \ 0 \le r, r' < b \iff \overline{bq + r} = \overline{bq' + r'} \iff \overline{r} = \overline{r'} \iff r = r' \implies bq = bq' \implies q = q'$$

Определение. q — неполное частное при делении a на b, r — остаток при делении a на b

Определение. Операция на множестве M — бинарная операция $M \times M \to M$

На $\mathbb{Z}/m\mathbb{Z}$ определим операцию сложения и умножения по модулю m:

•
$$\overline{a} + \overline{b} = \overline{a+b}$$

$$\bullet \ \overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

Пример:

$$\overline{m=4,\mathbb{Z}}/4\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$$

Определение. $e \in M$ — нейтральный элемент относительно операции(*) на M, если $\forall a \in M$ справедливо a*e=e*a=a

Предложение. Операции сложения и умножения на $\mathbb{Z}/m\mathbb{Z}$ обладают следующими свойствами:

1.
$$A + B = B + A$$
 — коммутативность сложения

2.
$$(A + B) + C = A + (B + C)$$
 — ассоциативность сложения

3.
$$A + \overline{0} = A$$
— существование нейтрального элемента относительно сложения

4.
$$A + A' = \overline{0}$$
 — существование обратного элемента относительно сложения

5.
$$AB = BA$$
 — коммутативность умножения

6.
$$(AB)C = A(BC)$$
 — ассоциативность умножения

7.
$$A \cdot \overline{1} = A$$
 — существование нейтрального элемента относительно умножения

8.
$$A \cdot (B+C) = A \cdot B + A \cdot C$$
 — дистрибутивность умножения относительно сложения.

9.
$$(B+C) \cdot A = B \cdot A + C \cdot A$$
 — дистрибутивность сложения относительно умножения.

Определение. Кольцом называется множество M с операциями сложения и умножения, для которых выполнены аналоги свойств 1-4 и 8-9.

Определение. Кольцо коммутативное, если выполнены свойство 5.

Определение. Колько ассоциативное, если выполнено свойство 6.

Определение. Кольцо с единицей, если выполнено свойство 7.

Определение. $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = n \implies n$ — нейтральный элемент относительно сложения.

<u>Замечание:</u> Если (*) — операция на M, то существует единственный нейтральный элемент относительно (*).

Доказательство. e, e' — нейтральные элементы относительно (*), тогда e = e * e' = e'.

Предложение. В нашем курсе все кольца будут ассоциативные с единицей.

Лемма. В любом кольце $0 \cdot a = 0$.

Доказательство.
$$0 + 0 = 0 \implies (0 + 0) \cdot a = 0 \cdot a \implies 0 \cdot a + 0 \cdot a = 0 \cdot a$$

$$\exists 0 \cdot A \neq 0 \implies \exists b : b + 0 \cdot A = 0$$

$$0 = b + 0 \cdot a = b + (0 \cdot a + 0 \cdot a) = (b + 0 \cdot a) + (0 \cdot a) = 0 + (0 \cdot a) = (0 \cdot a)$$

Определение. A^* — множество обратимых элементов A.

Примеры:

- $\bullet \ \mathbb{R}^* = \mathbb{R} \setminus \{0\}$
- $\mathbb{Z}^* = \{-1, 1\}$
- $(\mathbb{Z}/4\mathbb{Z})^* = \{\overline{1}, \overline{3}\}$
- $(\mathbb{Z}/5\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Определение. Полем называется коммутативное кольцо F, такое что $F^* = F \setminus \{0\}$.

5 Наибольший общий делитель

Определение. R — коммутативное кольцо, $a, b \in R$.

Элемент d называется наибольшим общим делителем, если:

- $1. d \mid a, d \mid b$
- $2. d' \mid a, d' \mid b \implies d' \mid d$

Предложение.

1. d_1, d_2 — наибольшие общие делители, тогда d_1, d_2 — ассоциированны.

2. $\exists d_1$ — наибольший общий делитель, d_2 ассоциированн c d_1 , тогда d_2 — тоже наибольший общий делитель.

Доказательство.

- 1. По свойству 2. $d_1 \mid d_2, \ d_2 \mid d_1 \implies d_1, \ d_2$ ассоциированны.
- 2. $d_2 \mid d_1, \ d_1 \mid a, \ d_1 \mid b \implies d_2 \mid a, \ d_2 \mid b$ Пусть d_2 не наибольший, тогда $\exists d' > d_2$. $d' \mid a, \ d' \mid b \implies d' \mid d_1$ $d' \mid d_1, \ d_1 \mid d_2 \implies d' \mid d_2$ Противоречие

Предложение. $\exists a, b \in \mathbb{Z} \implies$

- 1. $\exists d \in \mathbb{Z} : a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$
- 2. npu этом d наибольший общий делитель a, b.

Доказательство.

- 1. $I = a\mathbb{Z} + b\mathbb{Z}$, заметим что $0 \in I$, так как 0a + 0b = 0. $I = \{0\} \implies I = 0\mathbb{Z}$ $I \neq \{0\} \implies c \in I \implies -c \in I$, так как $-(ax + by) = a \cdot -x + b \cdot -y$ То есть в I есть положительные числа. $d = \min\{c \mid c \in I, c > 0\}$, докажем что $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$ " \subset ": $d \in I \implies d = ax_0 + by_0, x_0, y_0 \in \mathbb{Z} \implies \forall z \in \mathbb{Z} : dz = a(x_0z) + b(y_0z) \in I$ " \supset ": $\exists c \in I, d \in \mathbb{N} \implies \exists q, r \in \mathbb{Z} : c = dq + r, 0 \le r < d$ $c = ax_1 + by_1, x_1, y_1 \in \mathbb{Z}$ $d = ax_0 + by_0, x_0, y_0 \in \mathbb{Z}$ $r = c dq = a(x_1 x_0q) + b(y_1 y_0q) \in I$ Ho $r < d \stackrel{defn(d)}{\Longrightarrow} r = 0 \implies c \in d\mathbb{Z}$
- 2. $a = a1 + b0 \in I = d\mathbb{Z} \implies d \mid a$ $b = a0 + b1 \in I = d\mathbb{Z} \implies d \mid b$ $\exists d' \mid a, d' \mid b, d = ax_0 + by_0$ $d' \mid ax_0, d' \mid by_0 \implies d' \mid d$

Следствие:

- 1. $a, b \in \mathbb{Z}$: Тогда наибольший общий делитель a, b существует.
- 2. Если d наибольший общий делитель a, b, то $\exists x, y \in \mathbb{Z} : d = ax + by$ (Линейное представление наибольшего общего делителя).

Доказательство.

- 1. Доказали в двух частях предложения.
- 2. $\exists d_0$ наибольший общий делитель a, b, то есть $d_0 = ax_0 + by_0$ d ассоцирован с $d_0 \implies d = d_0 \mathbb{Z}, z \in \mathbb{Z} \implies d = a(x_0 z) + b(y_0 z)$

Определение. $HOД(a,b) = \gcd(a,b)$ — неотрицательный наибольший общий делитель a,b.

Предложение. $\exists a_1, a_2, b \in \mathbb{Z} : a_1 \equiv a_2$ $Tor \partial a \gcd(a_1, b) = \gcd(a_2, b).$

Доказательство. (!) $\{c:c\mid a_1,c\mid b\}=\{c:c\mid a_2,c\mid b\}$ "С": $a_2-a_1=bm\implies a_2=a_1+bm$ $c\mid a_1,c\mid b\implies c\mid a_2$ "Э": $a_1-a_2=bm\implies a_1=a_2+bm$ $c\mid a_2,c\mid b\implies c\mid a_1$ $\forall x\in\{c:c\mid a_1,c\mid b\}:x\mid\gcd(a_1,b)$ $\forall x\in\{c:c\mid a_2,c\mid b\}:x\mid\gcd(a_2,b)$ $\gcd(a_1,b)=\gcd(a_2,b)$

Определение. Алгоритм Евклида $gcd(a, b) = gcd(b, a \mod b)$, если $b \neq 0$

6 Взаимно простые числа

Определение. Числа a и b называются взаимно простыми, если $\gcd(a,b)=1$.

Предложение.

- 1. $\exists a,b \in \mathbb{Z}, \ mor \partial a \ a \bot b \iff \exists m,n \in \mathbb{Z} : am+bn=1.$
- $2. \ a_1 \bot b, a_2 \bot b \implies a_1 a_2 \bot b.$
- 3. $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{Z} \ u \ \forall i, j : a_i \perp b_j \implies a_1 \ldots a_m \perp b_1 \ldots b_n$.
- $4. \ a \mid bc, \ a \perp b \implies a \mid c.$
- 5. $ax \equiv ay$, $a \perp m \implies x \equiv y$.
- 6. $gcd(a, b) = d \implies a = da', b = db', a' \perp b'.$

Доказательство.

- 1. m и n существуют согласно линейному представлению НОД. $d = \gcd(a,b), d \mid a,d \mid b \implies d \mid (am+bn) = 1 \implies d \mid 1 \implies d = 1.$
- 2. $1 = a_1 m_1 + b n_1, 1 = a_2 m_2 + b n_2 \implies 1 = a_1 a_2 (m_1 m_2) + b (a_1 m_1 n_2 + a_2 m_2 n_1 + b n_1 n_2) \implies a_1 a_2 \perp b.$
- 3. $a_1 \perp b, \ldots, a_n \perp b \implies a_1 \ldots a_n \perp b$ $a_1 \ldots a_n \perp b_1, \ldots, a_1 \ldots a_n \perp b_n \implies a_1 \ldots a_n \perp b_1 \ldots b_n$
- 4. 1 = am + bn, c = acm + bcn $a \mid acm, a \mid bcn \implies a \mid c.$
- 5. $m \mid (ax ay), a \perp m \implies m \mid (x y) \implies x \equiv y$.
- 6. $d \mid a, d \mid b \implies a = da', \ b = db' : a', b' \in \mathbb{Z}$ $d = am + bn, \ m, n \in \mathbb{Z}$ $d = 0 \implies a' = b' = 1 = da'm + db'm$ $d \neq 0 \implies 1 = a'm + b'n \implies a' \perp b'.$

7 Линейные диофантовы уравнения

Определение. Линейным диофантовым уравнением с двумя неизвестными называется уравнение вида ax + by = c, где $a, b, c \in \mathbb{Z}$.

Для решения нужно найти пару $(x,y) \in \mathbb{Z}^2: ax + by = c$. Пример: 12x + 21y = 5 — уравнение не имеет решений. Если $\gcd(a,b) \mid c$, то решение существует, иначе — нет. нужно доделать параграф

8 Простые числа

Определение. Число $p \in \mathbb{Z}$ называется простым, если $p \notin \{-1, 0, 1\}$ и все делители p - 3то ± 1 и p.

Свойства:

- 1. p простое \iff -p простое.
- 2. p простое, $a \in \mathbb{Z} \implies p|a$ или $p \bot a$.
- 3. p,q простые $\implies p,q$ ассоциированны или $p\bot q$.

 $4. p \mid ab \implies p \mid a$ или $p \mid b$.

Предложение. $\exists a \neq \pm 1$, тогда существует простое число $p:p \mid a$.

Доказательство. $a=0 \implies p=239$ $a=1 \implies a>0$ Индукция по a: a — простое $\implies p=a, p\mid a$ a — не простое, $\exists d:1 < d < a, d\mid a$ a=dd', тогда по индукционному переходу существует простое число $p:p\mid d$ $p\mid d, d\mid a \implies p\mid a$

Определение. Составное число — это число отличное от 0, и не являющееся простым.