

Числено диференциране

Постановка на задачата

Нека функцията y = f(x) е дефинирана в интервала [a,b] и притежава производни от даден ред. Ако е известна таблица от стойностите $y_i = f(x_i)$ на функцията в точките (възлите) $x_0, x_1, x_2, ..., x_n \in [a,b]$, методите на численото диференциране позволяват да се намерят приближената стойност на производната y'(x) = f'(x) в зададена точка x, стойността на втората производна и т.н. Особено важен момент при численото диференциране на някои функции е възможната неустойчивост на задачата, т.е. малки грешки в изходните данни да водят до големи грешки в резултата, а понякога и до т.н. "взрив на грешката". Такъв случай се получава когато производните силно растат, което се познава например по големите стойности на крайните разлики. В последния пример е илюстриран такъв тип функция и е показано как може да се реши проблемът с неустойчивостта.

По-надолу ще разглеждаме само случая на равноотстоящи възли в дадения интервал [a,b], за които $x_{i+1} = x_i + h$, където h е стъпката между възлите. Таблицата ше има вида:

x_i	x_0	x_1	 x_i	 x_n
y_i	У0	<i>y</i> ₁	 y_i	 y_n

Формула за числено диференциране, основана на интерполационния полином на Нютон за интерполиране напред:

(1)

$$y'(t) \approx \frac{1}{h} \left(\Delta y_0 + \frac{2t-1}{2!} \Delta^2 y_0 + \frac{3t^2-6t+2}{3!} \Delta^3 y_0 + \frac{4t^3-18t^2+22t-6}{4!} \Delta^4 y_0 + \dots \right),$$

(2)
$$y''(t) \approx \frac{1}{h^2} \left(\Delta^2 y_0 + (t-1)\Delta^3 y_0 + \frac{6t^2 - 18t + 11}{12} \Delta^4 y_0 + \dots \right),$$

Тук $t = \frac{x - x_0}{h}$, а $\Delta^k y_0$ е крайната разлика от k-ти ред в точката x_0 .

В частност при $x = x_0$ имаме t = 0, откъдето получаваме

(3)
$$y_0' \approx \frac{1}{h} \left(\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \dots \right),$$

(4)
$$y_0'' \approx \frac{1}{h^2} \left(\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \dots \right).$$

П) Формула за числено диференциране, основана на интерполационния полином на Нютон за интерполиране назад:

(5)
$$t = \frac{x - x_n}{h}, \quad y'(t) \approx \frac{1}{h} \left(\Delta y_{n-1} + \frac{2t+1}{2!} \Delta^2 y_{n-2} + \frac{3t^2 + 6t + 2}{3!} \Delta^3 y_{n-3} + \dots \right)$$

(6)
$$y''(t) \approx \frac{1}{h^2} \left(\Delta^2 y_{n-2} + (t+1)\Delta^3 y_{n-3} + \frac{6t^2 + 18t + 11}{12} \Delta^4 y_{n-4} + \dots \right)$$

В частност при $x=x_n$ имаме t=0, откъдето получаваме

(7)
$$y'_n \approx \frac{1}{h} \left(\Delta y_{n-1} + \frac{1}{2} \Delta^2 y_{n-2} + \frac{1}{3} \Delta^3 y_{n-3} + \frac{1}{4} \Delta^4 y_{n-4} + \dots \right)$$

(8)
$$y_n'' \approx \frac{1}{h^2} \left(\Delta^2 y_{n-2} + \Delta^3 y_{n-3} + \frac{11}{12} \Delta^4 y_{n-4} + \dots \right).$$

Забележка. Формулите (1) - (8) дават възможност за ефективно пресмятане на на производните, защото предлагат постериорна оценка на грешката. Последното означава, че добавянето на всяко следващо събираемо в дясната част на формулите води до уточняване на търсената стойност. Затова изчисленията се прекратяват, когато поредното събираемо стане по модул по-малко от точността на данните (т.н. неотстранима грешка).

III) Формули за числено диференциране по точкови шаблони при равноотстоящи възли:

	№	Шаблон	Формула за числено диференциране	Локална грешка		
	1.	x_i, x_{i+1}	$y_i' \approx \frac{y_{i+1} - y_i}{h}$	$\frac{h}{2!}M_2 = O(h), \qquad M_2 = \max_{x_i \le \xi \le x_{i+1}} f''(\xi) $		
	2.	x_{i-1}, x_i	$y_i' \approx \frac{y_i - y_{i-1}}{h}$	$\frac{h}{2!}M_2 = O(h), \qquad M_2 = \max_{x_{i-1} \le \xi \le x_i} f''(\xi) $		
(9)	3.	x_i, x_{i+1}, x_{i+2}	$y_i' \approx \frac{-3y_i + 4y_{i+1} - y_{i+2}}{2h}$	$\frac{2h^2}{3}M_3 = O(h^2), M_3 = \max_{x_{i-1} \le \xi \le x_i + 1} f'''(\xi) $		
	4.	x_{i-2}, x_{i-1}, x_i	$y_i' \approx \frac{y_{i-2} - 4y_{i-1} + 3y_i}{2h}$	$\frac{2h^2}{3}M_3 = O(h^2), M_3 = \max_{x_{i-1} \le \xi \le x_i + 1} f'''(\xi) $		

5.	x_{i-1}, x_i, x_{i+1}	$y_i' \approx \frac{y_{i+1} - y_{i-1}}{2h}$	$\frac{h^2}{3}M_3 = O(h^2), M_3 = \max_{x_{i-1} \le \xi \le x_i + 1} f'''(\xi) $
6.	x_{i-1}, x_i, x_{i+1}		$\frac{h^2}{12}M_4 = O(h^2), M_4 = \max_{x_{i-1} \le \xi \le x_i + 1} \left f^{IV}(\xi) \right $

Пример 1. Стойностите на функцията $y = f(x) = \ln(x^2)$ в интервала [2,3] са зададени в първите две колонки на таблица 1. Да се пресметнат приближените стойности на първите производни в точките $x_0 = 2$, $x_1 = 2.1$, $\xi = 2.04$, $x_{10} = 3$.

Решение:

Пресмятаме последователно крайните разлики Δy_i , $\Delta^2 y_i$, ..., които нанасяме към таблица 1. За стъпката h по x имаме $h = x_{i+1} - x_i = 0,1$.

Таблица 1 $\Delta^4 y_i$ $\Delta^3 y_i$ $\Delta^2 y_i$ $\Delta^5 y_i$ Δy_i x_i y_i 2,0 1,38629 0,09758 -0,00454 -0,00005 0,00001 0,00040 0.09304 -0,00414 0.00035 -0,00004 0,00000 2,1 1,48387 2,2 1,57691 0,08890 -0,00378 0,00031 -0,00004 0,00001 2,3 1,66582 0,08512 -0,00348 0,00027 -0,00003 0.00000 0,00024 -0,00003 1,75094 0.08164 -0,00320 0,00001 2,4 2,5 -0,00296 1,83258 0,07844 0,00022 -0,00002 0,00000 -0,00275 0,07548 0,00019 -0,00002 2,6 1,91102 2,7 1,98650 0.07274 -0,00255 0,00017 2,8 2,05924 0,07018 -0.002382,9 2,12942 0,06780 10 3,0 2,19722

При $x_0 = 2$ като заместим във формула (3) получаваме

$$y_0' \approx \frac{1}{0.1} \left(0.09758 - \frac{1}{2} (-0.00454) + \frac{1}{3} 0.00040 - \frac{1}{4} (-0.00005) + \dots \right) \approx 0.99998$$
.

Тук очевидно членът, съдържащ $\Delta^5 y_i$ (и следващите го) е много малък и може да се пренебрегне. Точната стойност в този пример е известна, тя е $y'(x) = (\ln(x^2))' = \frac{2x}{x^2} = \frac{2}{x}$, т.е. $f'(2) = \frac{2}{2} = 1$. Следователно получената приближена стойност $y_0' \approx 0,99998$ има абсолютна грешка 0,00002.

Аналогично за другата точка $x_1 = 2,1$ по същата формула, но като използваме втория ред на таблицата, намираме:

$$y_1' \approx \frac{1}{0.1} \left(0.09304 - \frac{1}{2} (-0.00414) + \frac{1}{3} 0.00035 - \frac{1}{4} (-0.00004) + \dots \right) \approx 0.95236$$
.

Нека сега вземем точката $\xi = 2,04$. Тя се намира в началото на интервала, близо до $x_0 = 2$ и е най-естествено да приложим общата формула (1). Изчисляваме отклонението от началото $t = (\xi - x_0)/h = (2,04-2)/0,1 = 0,4$. Тогава

$$y'(\xi) = y'(t) = y'(0,4) \approx \frac{1}{0,1} \left(0.09758 + \frac{2.0,4-1}{2} (-0.00454) + \dots \right) \approx 0.98040.$$

За първата производна в точката $x_{10} = 3$ прилагаме формула (7):

$$y_{10}' \approx \frac{1}{0.1} \left(0.06780 + \frac{1}{2} (-0.00238) + \frac{1}{3} 0.00017 + \frac{1}{4} (-0.00002) + \dots \right) \approx 0.66667 \, .$$

Забележка. Точните стойности на производната $y'(x) = \ln(x^2)' = \frac{2}{x}$ в дадените точки, взети с пет знака точност са съответно: y'(2,1) = 0,95238, y'(3) = 0,66667, y'(2,04) = 0,98039.

Пример 2. С помощта на данните от таблица 1 да се пресметне приближената стойност на втората производна в точката $x_0 = 2$.

Решение:

От формулата (4) имаме:

$$y_0'' \approx \frac{1}{0.01} \left(-0.00454 - 0.00040 + \frac{11}{12} \left(-0.00005 \right) + \dots \right) \approx 0.4986$$
.

Пример 3. В първите две колонки на таблица 2 са дадени стойностите на функция, получени по експериментален път. Да се пресметнат приближените стойности на производните в точките x_i .

Решение:

Имаме интервал [1; 1,4] и стъпка h = 0,05. В точката $x_0 = 1$ изчисляваме производната по формулата за ляв триточков шаблон — (9.3), а в точката $x_8 = 1,4$ - по формулата за десен триточков шаблон — (9.4). Във вътрешните точки на интервала е удобно да се използва централната разлика от формула (9.5). Резултатите са дадени в последната колонка на таблицата. Тъй като данните са с точност 0,0001, а h = 0,05, то използваните от нас формули с локална грешка $O(h^2)$ в случая дават грешка от порядъка на 0,0025. Това означава, че последният знак в

стойностите на производната може да се очаква, че не е значещ. Тъй като не знаем точната формула на функцията, а следователно не можем да преценим доколко теоретичната грешка е реална, единственият признак за достоверност на резултата е плавната промяна на стойностите за y_i' , i = 0,...,8, разбира се, ако допускаме непрекъснатост на производната.

Таблица 2

			Тиолиц
i	x_i	y_i	Приближения за y_i'
0	1,00	-0,2475	-0,0353
1	1,05	-0,2490	-0,0229
2	1,10	-0,2498	-0,0104
3	1,15	-0,2500	0,0021
4	1,20	-0,2496	0,0146
5	1,25	-0,2485	0,0270
6	1,30	-0,2469	0,0394
7	1,35	-0,2446	0,0517
8	1,40	-0,2417	0,0639

Пример 4. Да се пресметнат приближените стойности на производната на функцията $y = \cos(8x)$ в точките $x_0 = 0$ и $x_1 = 0.1$.

Решение:

В този пример се срещаме със случай, показващ неустойчивостта на численото диференциране. Функцията има безброй много производни и изглежда не би трябвало да има проблеми. Нека изберем например интервала [0; 0,5] и го разделим на пет подинтервала със стъпка h = 0,1. Пресмятаме таблицата на крайните разлики – таблица 3. Забелязваме, че стойностите на $\Delta^k y_i$ не намаляват както в предишните примери (сравнете!).

Таблица 3

x_i	$y_i = \cos(8x_i)$	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0,0	1,00000	-0,30329	-0,42261	0,44032	-0,01074
0,1	0,69671	-0,72591	0,01771	0,42958	-0,27132
0,2	-0,02920	-0,70819	0,44729	0,15826	
0,3	-0,73739	-0,26090	0,60555		
0,4	-0,99829	0,34465			
0,5	-0,65364				

Като използваме първия ред крайни разлики от таблица 3 и формула (3) при $x_0 = 0$ получаваме:

$$y_0' \approx \frac{1}{0.1} \left(-0.30329 - \frac{1}{2} \left(-0.42261 \right) + \frac{1}{3} 0.44032 - \frac{1}{4} \left(-0.01074 \right) \right) \approx$$

$$\approx \frac{1}{0.1} \left(-0.30329 + 0.21131 + 0.14678 + 0.00269 \right) \approx \frac{1}{0.1} 0.05748 \approx 0.5748.$$

Този резултат обаче **съществено се отличава от верния**. Наистина производната $y'(x) = -8\sin(8x)$ при x = 0 е y'(0) = 0. Така реалната грешка на численото диференциране $\varepsilon = |y'(0) - y'_0| = |0 - 0.5748| = 0.5748 \approx 0.6$ е много голяма и очевидно не се дължи на закръгляването, което е от порядъка на 10^{-5} .

Аналогичен е резултатът и в точката $x_1 = 0.1$. С данните за крайните разлики от втория ред на таблица 3 и формула (3) изчисляваме:

$$y_1' \approx \frac{1}{0,1} \left(-0.72591 - \frac{1}{2} 0.01771 + \frac{1}{3} 0.42958 - \frac{1}{4} (-0.27132) \right) \approx -5.23738.$$

Точната стойност е: $y'(0,1) = -5{,}73885$. Грешката и в този случай е много голяма — $0{,}50147$.

Забележка. За експериментални данни, за които не знаем формулата на функцията, един критерий за неустойчивост е наличието на големи и ненамаляващистойности на крайните разлики. За решаване на проблема и намиране на удовлетворителни приближени стойности на производните на неустойчиви задачи може да се използва много малка стъпка h. Опитайте да приложите това предписание като изберете h=0,0001 и изчислите y'_0 . Съществуват някои специални методи за намаляване на грешките, като например, методът на Рунге-Ромберг, който ще бъде разгледан в следващия параграф.

Пример 5. Като се използват формули за числено диференциране с грешка $O(h^2)$ да се попълнят празните полета в таблицата:

х	0,1	0,2	0,3	0,4	0,5
y	-4		1	11	20
y'	35				
y''					

Решение:

За да изчислим стойността y(0,2) ще използваме формула (9-3.) за y'(0,1):

$$y_i' \approx \frac{-3y_i + 4y_{i+1} - y_{i+2}}{2h} \Rightarrow y'(0,1) \approx \frac{-3y(0,1) + 4y(0,2) - y(0,3)}{2h} \Rightarrow y(0,2) = \frac{2hy'(0,1) + 3y(0,1) + y(0,3)}{4} = \frac{2.0,1.35 + 3(-4) + 1}{4} = -1.$$

Тогава пак от формули (9) намираме:

$$y'(0,2) = \frac{y(0,3) - y(0,1)}{2h} = \frac{1+4}{2.0,1} = 25; \quad y'(0,3) = \frac{y(0,4) - y(0,4)}{2h} = \frac{11+1}{2.0,1} = 60;$$
$$y'(0,4) = \frac{y(0,5) - y(0,3)}{2h} = \frac{20-1}{2.0,1} = 95;$$
$$y'(0,5) = \frac{y(0,3) - 4y(0,4) + y(0,5)}{2h} = \frac{1-44+60}{2.0,1} = 85;$$

За вторите производни съответно имаме:

$$y''(0,2) = \frac{y(0,3) - 2y(0,2) + y(0,1)}{h^2} = \frac{1 - 2(-1) - 4}{0,01} = -100;$$

$$y''(0,3) = \frac{y(0,4) - 2y(0,3) + y(0,2)}{h^2} = \frac{11 - 2.1 + (-1)}{0,01} = 800;$$

$$y''(0,4) = \frac{y(0,5) - 2y(0,4) + y(0,3)}{h^2} = \frac{20 - 2.11 + 1}{0.01} = -100.$$

Автор: Снежана Гочева-Илиева, snow@pu.acad.bg