# НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Дисциплина информатика Лабораторная работа № 2

Выполнил студент

Суджян Эдуард Эдуардович

Группа № Р3121

Преподаватель: Болдырева Елена Александровна

Санкт-Петербург

## Вариант: 94

## Оглавление

| Задание №1             | 3 |
|------------------------|---|
| Задание №2             |   |
| Задание №3             |   |
| Задание №4             |   |
| Задание №5             |   |
|                        |   |
| Дополнительное задание |   |
| Вывод                  |   |
| Список литературы      | 7 |

# **Задание №1** Построить схему декодирования классического кода Хэмминга (7;4)



#### Задание №2

Показать, исходя из выбранных вариантов сообщений (по 4 у каждого – часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.





**Задание №3** Построить схему декодирования классического кода Хэмминга (15;11)



#### Задание №4

Показать, исходя из выбранного варианта сообщений (по 1 у каждого – часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

| ALT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17        | $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_2$ $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_3$                                                                               | $\begin{array}{c} _{1}\oplus i_{5}\oplus i_{7}\oplus i_{9}\oplus i_{11};\\ _{4}\oplus i_{6}\oplus i_{7}\oplus i_{10}\oplus i_{11};\\ _{4}\oplus i_{8}\oplus i_{9}\oplus i_{10}\oplus i_{11};\\ \end{array}$ |          |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $S_1 = 0 \oplus 1 = 0$ | $s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11};$ Сипдром $(s_1; s_2; s_3; s_4)$   Конфигурация опибок   Опибочный символ |                                                                                                                                                                                                             |          |
| 21 = 0 0 10 10 10 10 10 10 1                                                          |                                                                                                                                                                         |                                                                                                                                                                                                             |          |
| S, = 0 @1 @ 0 @ 1 @ 0 @ 0 @ 0 @ 1 = 1                                                 | 0000                                                                                                                                                                    | HET                                                                                                                                                                                                         | HET      |
|                                                                                       | 0001                                                                                                                                                                    | 000 0000 1000 0000                                                                                                                                                                                          | $r_4$    |
| $S_3 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0$          | 0010                                                                                                                                                                    | 000 1000 0000 0000                                                                                                                                                                                          | $r_3$    |
| 38 = 110 10 10 10 10 10 10 10 10 1                                                    | 0011                                                                                                                                                                    | 000 0000 0000 1000                                                                                                                                                                                          | $i_8$    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                  | 0100                                                                                                                                                                    | 010 0000 0000 0000                                                                                                                                                                                          | $r_2$    |
| $S_4 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1$          | 0101                                                                                                                                                                    | 000 0000 0010 0000                                                                                                                                                                                          | $i_6$    |
|                                                                                       | 0110                                                                                                                                                                    | 000 0010 0000 0000                                                                                                                                                                                          | $i_3$    |
| S(0;1;0;1)                                                                            | 0111                                                                                                                                                                    | 000 0000 0000 0010                                                                                                                                                                                          | $i_{10}$ |
| 3(0,1,0)1)                                                                            | 1000                                                                                                                                                                    | 100 0000 0000 0000                                                                                                                                                                                          | $r_1$    |
| Omidua B is                                                                           | 1001                                                                                                                                                                    | 000 0000 0100 0000                                                                                                                                                                                          | $i_5$    |
| - Out                                                                                 | 1010                                                                                                                                                                    | 000 0100 0000 0000                                                                                                                                                                                          | $i_2$    |
|                                                                                       | 1011                                                                                                                                                                    | 000 0000 0000 0100                                                                                                                                                                                          | $i_9$    |
| Syochugas: 001010101100101                                                            | 1100                                                                                                                                                                    | 001 0000 0000 0000                                                                                                                                                                                          | $i_1$    |
| 7 17 7 7 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1                                                | 1101                                                                                                                                                                    | 000 0000 0001 0000                                                                                                                                                                                          | $i_7$    |
|                                                                                       | 1110                                                                                                                                                                    | 000 0001 0000 0000                                                                                                                                                                                          | $i_4$    |
|                                                                                       | 1111                                                                                                                                                                    | 000 0000 0000 0001                                                                                                                                                                                          | $i_{11}$ |

#### Задание №5

Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.



#### Дополнительное задание

Написать программу на любом языке программирования, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

```
from typing import Union, List
def process_errors(1: List[int]) -> Union[None, List[str]]:
   check a code for errors
   Union[None, List[str]]
   names = ["r1", "r2", "i1", "r3", "i2", "i3", "i4"]
   table = {
       "101": 4,
       '111': 6
   if not any(syndromes):
    syndromes = "".join(list(map(str, syndromes)))
   place = names[table[syndromes]]
    bit = 1[table[syndromes]]
   fixed = 1.copy()
   fixed[table[syndromes]] = (bit + 1) % 2
   fixed = "".join(list(map(str, fixed)))
   return place, bit, fixed
   _name__ == "__main__":
s = input("Enter your code:\n\n>> "[)
   name
       1 = list(map(int, s.replace(" ", "")))
       print(f"{e}\nInput must contain only integers")
       if len(1) != 7:
           print("length != 7")
          errors = process_errors(1)
           if errors is None:
              print("Correct!")
              place, bit, fixed = errors
               print(f"Error detected!\n\nPlace: {place}\nBit: {bit}\nFixed input: {fixed}")
```

#### Вывод

В ходе выполнения второй лабораторной работы по информатике я узнал, что такое помехоустойчивое кодирование, самокорректирующиеся коды и код Хэмминга. А также из каких разрядов состоят помехоустойчивые коды (информационные и проверочные) и для чего нужен синдром последовательности. Помимо этого в результате выполнения дополнительного задания я научился реализовывать проделанную в основной части лабораторной работу в виде программного кода.

### Список литературы

1. Балакшин П.В., Соснин В.В., Машина Е.А. Информатика