Содержание

1	Эксперимент	2
2	Эксперимент	3
3	Эксперимент	4
4	Эксперимент 4.1 Часть 4.2 Часть	5 5
5	Эксперимент	6
6	Часть	6
7	Часть	6

Все ниже перечисленные реакции относятся к типу реакций замещения. В ходе данных реакций к металлы Br, Na, K замещаются металлами более реакционным металлами Ag, Pl.

$$NaCl|KBr|KI + AgNO_3 \rightarrow AgCl|Br|I\downarrow + NaNO_3$$
 (1.1)

$$2NaCl|2KBr|2KI + Pb(NO_3)_2 \rightarrow PbCl_2|Br_2|I_2 \downarrow + 2KNO_3 \tag{1.2}$$

В образоващейся смеси соли $PbCl_2|Br_2|I_2 \wedge AgCl|Br|I$ являются нерастворимыми, поэтому они выпадут в виде осадка.

Compound	Color	Transparency
$\cdot AgCl$	Светло серый → белоснежный	Непрозрачный
$\cdot AgBr$	Бело-желтовытый	Непрозрачный
$\cdot AgI$	Желтый	Непрозрачный
$\cdot PbCl_2$	Белый	Непрозрачный
$\cdot PbBr_2$	Бледно-желтый	Непрозрачный
$\cdot PbI_2$	Желтый	Непрозрачный

Рис. 1. AgCl, AgI, AgBr

Рис. 2. $PbCl_2, PbBr_2, PbI_2$

Правило Бертоли в каждой реакции можно найти такое соединение которое не растоворяется в воде тогда все реакции сотоятся:

$$ZnCl2 + Na_2S \rightarrow ZnS + 2NaCl$$
 (2.1)

$$CuSO4 + Na_2S \to CuS + Na2SO4 \tag{2.2}$$

$$Pb(NO3)2 + Na_2S \rightarrow PbS + 2NaNO3 \tag{2.3}$$

$$MnCl2 + Na_2S \rightarrow MnS + 2NaCl$$
 (2.4)

Все выше перечисленные реакции называются реакциями замещения. Прибавим соляную кислоту:

$$ZnS + Na_2S + 2HCl \rightarrow ZnS + 2NaCl + H_2 \tag{2.5}$$

$$CuSO_4 + 2Na_2S + 2HCl \rightarrow CuCl_2 + 2NaCl + Na_2SO_4$$
 (2.6)

$$Pb(NO_3)_2 + 2Na_2S + 6HCl \rightarrow PbCl_2 + 2NaCl + 2Na_2SO_4$$
 (2.7)

$$MnCl_2 + 2Na_2S + 2HCl \rightarrow MnS + 2NaCl + Na_2S$$
(2.8)

4.1. Часть

$$NH_4Cl + NaOH \rightarrow NaCl + H_2O + NH_3 \uparrow$$
 (4.1)

Классический пример реакции нейтрализации, кислота реагирует с основанием в результае образуется раствор соли. Аммиак являющийся основанием, испаряется в следствии чего лакмусовая бумага меняет свой цвет. В моем случае окарс сответстовал $pH \approx 6-7$.

4.2. Часть

$$NH_4Cl \xrightarrow{Heat} NH_3 \uparrow +HCl \uparrow$$
 (4.2)

Реакция эндотермическая, но в резульмтате хлорид амония разлогается на летучие газы $NH_3 \wedge HCl$.

Рис. 3. Степень pH

6. Часть

$$CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$$
(6.1)

$$CoCl_2 + 2NaOH \rightarrow Co(OH)2 + 2NaCl$$
 (6.2)

Это реакции осаждения в ходе котрой образовалось растоворимое вещество. Поэтому растоворы данных рекций прозрачны.

(a) $Cu(OH)_2 + Na_2SO_4$

(b) $Co(OH)_2 + 2NaCl$

Рис. 4. Реакции первого этапа с $CoCl_2 \wedge CuSO_4$

Соединяем с раствором аммиака.

$$CoCl_2 + 2NaOH + 2NH_3 \rightarrow Co(OH)_2 \downarrow + 2NaCl + 2NH_4Cl$$
(6.3)

$$Cu(OH)_2 + Na_2SO_4 + 4NH_3 \rightarrow Cu(NH_3)_4 + H_2O + Na_2O + SO_4$$
 (6.4)

7. Часть

Часть№ 7

Ex_5/Cu_2.jpg

(a) $Cu(OH)_2 + Na_2SO_4$

(b) $Co(OH)_2 + 2NaCl$

Рис. 5. Реакции первого этапа с $CoCl_2 \wedge CuSO_4$