離散数学 演習課題レポート3

細川 夏風

2024年11月13日

1 問1

(1). この命題について、n=1, n=2 のとき $-1\in\mathbb{Z}, 1\in\mathbb{Z}$ であるため、この場合にいおいてはこの命題は真である。以下の命題について、 $(F(n+1))^2-F(n+2)F(n)=(-1)^n$ について、この命題における命題関数を P(n) としたとき、 $P(n)\to P^+(n)$ であることを証明するればよい.P(k) となるようなk を任意にとったとき、 $(F(k+1)^2)-F(k+2)F(k)=(-1)^k$ となる.帰納法より $P^+(k)$ について、 $F((k+1)+2)^2-F((k+1)+2)F(k+1)=(-1)^{k+1}$.この式について、F(k+3)=F(k+2)+F(k+1)を利用すると、

$$F(k+2)^{2} - F(k-3)F(k+1) = F(k+2)^{2} - (F(k+1) + F(k+2))F(k+1)$$

$$= F(k+2)^{2} - F(k+1)^{2} - F(k+2)F(k+1)$$

$$= (F(k+1)^{2} - F(k+2)F(k))$$

$$= -((-1)^{k})$$

$$= F(k+2)^{2} - F(k+3)F(k+1) = (-1)^{k+1}$$
(1)

という等式が導ける.よって、この命題は真である。

- (2). (a) $\exists k(3^n-1=2k)$ このとき、 $k\in\mathbb{Z}$ という命題について帰納法を用いて証明せよ.
 - (b) n=1 のとき、 $3^1-1=2$ である.そのため、n=1 は 2 の倍数である $k\in\mathbb{Z}$ となるような k を任意にとったとき、 3^k-1 が 2 の倍数であると仮定したとき、 $\exists l(3^k-1=2l)$ となる整数 l をとる. k+1 について考える,

$$3^{k+1} - 1 = 3 \times 3^{k} - 1$$

$$= 3(2l+1) - 1$$

$$= 6l + 2$$

$$= 2(3l+1)$$
(2)

3l+1 は整数であるから、 $3^{k+1}-1$ は 2 の倍数である.よって、すべての自然数 n に対して、 3^n-1 は 2 の倍数である.

2 問 2

(1). (a) 全単射であるには全射であるかつ単射であるため、以下の論理式で表せる. $\forall y\exists x(f(x)=y)$ のとき、 $y'\in\mathbb{Z}_+$ を任意に取る. $\exists x(f(x)=y')$ のとき、y' について場合分けを行う.y'=2k' 満

たす正の整数 k' を取れる.x'=k' とおくこのとき f(x')=k(f)=2k'=y'y' が奇数のとき、y'2k'+1 を満たすような 0 以上の整数 k' を取れる.f(x')=-2x'+1=2k'+1 という式になる.このとき x'=-k' という式に変形可能であるため、このとき f(x')=f(-k')=y' という式が成り立つ.以上より、f は全射である.

- i. $f(x_1') = f(x_2')$ を満たすっ整数 $x_1' = x_2'$ を任意にとる.
 - A. $x_1'>0$ かつ $x_2'>0$ のとき、 $f(x_1')=2x_1'$ かつ $f(x_2')=2x_2'$ で $f(x_2')$ より、 $2x_1'=2x_2'$ で あるから $x_1'=x_2'$.
 - B. このとき $x_1'>0$ かつ $x_2'\leq 0$ のとき $f(x_1')=2x_1',\ f(x_2')=-2x_2'+1$ このとき、 $f(x_1')$ は偶数で $f(x_2')$ は奇数であり、 $f(x_1')=f(x_2')$ と矛盾する.
 - C. このとき $x_1' \leq 0$ かつ $x_2' > 0$ のとき $f(x_1') = -2x_1' + 1$ 、 $f(x_2') = 2x_2'$ このとき、 $f(x_1')$ は奇数で $f(x_2')$ は偶数であり、 $f(x_1') = f(x_2')$ と矛盾する.
 - D. $x_1' \le 0$ かつ $x_2' \le 0$ のとき、 $f(x_1') = -2x_1' + 1$ かつ $f(x_2') = -2x_2' + 1$ で $f(x_1') = f(x_2')$ より、 $-2x_1' + 1 = -2x_2' + 1$ であるから $x_1' = x_2'$.

以上より単射である.

よって全単射である.

- (2). 否定命題、 $\exists A\exists B(A\subset B\land \bar{A}\subset B)$ を証明する . B=U とすると、A が \emptyset のとき、 $A\subset B$ かつ $\bar{A}\subset B$ となる . よって、 $\exists A\exists B(A\subset B\land \bar{A}\subset B)$ が成り立つ .
- (3). (a) $x \in \mathbb{R}$ について、 $P(x) = x^2 3x + 2 = 0$ となる実数 x は存在するという命題について証明しなさい .
 - (b) $x' \in \mathbb{R}$ となる x' をとる命題の式について変形すると (x-1)(x-2)=0 であるため、x'=1 のときに 0 の積となりこの命題が成り立つ.また、x=2 のときにも 0 の積であるため、命題が成り立つことがわかる.命題を満たす x' の値が存在するため、命題は真である.
- (4). (a) 任意の実数 x と任意の実数 y について $Q(x,y): x>y\to x^2>y^2$ という命題が成り立つかについて証明しなさい.
 - (b) この命題について偽であると仮定した場合、否定命題は $x'\in\mathbb{R}$ と $y'\in\mathbb{R}$ となる x' と y' とる $\exists x'\exists y'(x'>y'\wedge(x')^2\leq (y')^2)$ となる.x'=2、y'=-2 について否定命題を満たすため、この順命題である $Q(x,y):x>y\to x^2>y^2$ は偽である.

3 問3

(1). 証明: 問題文の定義 2 よりと集合 B について、論理式は

$$(\forall z(z \in B \to z \le 24)) \land (\forall t(\forall z(z \in B \to z \le t) \to 24 \le t))$$
. ただし、 $z, t \in \mathbb{R}$

この式について

$$\forall z (z \notin B \rightarrow z > 24)$$

という論理式の部分に注目して考える.このとき、z の値については z>24 になる.そのため $z\leq24$ 常に成り立つことがわかる.

$$\forall t (\forall z (z \in B \to z \le t) \to 24 \le t)$$

という論理式の部分に注目したとき、 $t \in \mathbb{R}$ となるような t' を取る.

$$\forall z (z \in B \to z \le t') \to 24 \le t')$$

この命題について背理法を用いる.

$$\exists z (z \notin B \land 24 > t')$$

このとき、 $a\leq 24$ これについて不等式について、 $a\leq 24, a\geq t', 24>t'$ という不等式が成り立つ.この不等式は成り立たないより、この命題は偽である.背理法からは $\forall z(z\in B\to z\leq t')\to 24\leq t')$ という命題は真である.よってこれらの命題より 24 は上限である.