

Contents

The Beginning of an Idea

01

02

03

04

Feature Introduction

Password, Timer, Calculator

Work Assignment

Team Roles

Feature Video

Video Demonstration

Hardware Structure

Feature Introduction

Password Function

Input via 8051 Keypad

Function Selection

Function Selection via Keypad

Timer

Countdown Initiation via Keypad Input

Calculator Functions:

• "F" key: Addition (+) •"E" key: Subtraction (-)

•"D" key: Multiplication (*)

Calculator

•"C" key: Division (/)

Return to

Function

Selection

Return to Function Selection for Reevaluation

Password & Function Selection

```
void main(void) {
    while (1) {
                                            //show th
        keyboard();
        display2Num();
                                           //if pass
        if (c == 1) {
            pass();
              for (hold = 0; hold < 100; hold++)</pre>
                display2Num();
          jump:
void pass(void) {
                                   //if the codes ar
    if (N1 == 4 && N2 == 3 && N3 == 2 && N4 == 1) {
        N1 = S:
        N2 = 5:
        N3 = v;
        N4 = f:
```


Function Demonstration

Password Correct

Password Incorrect

Timer

Function "0" - Timer Overview

Operation Flow: Pressing the N4 key selects Function 0 (Timer), triggering the keyboard() subroutine for time input (e.g., "0300" for 3 minutes), then activates the count_down_timer() subroutine to execute the countdown in MM:SS format with real-time display updates until completion.

```
case 0:
    c = 0;
    //count = 0;
    while(1){
      keyboard();
      display2Num();
      if(c == 1)
        count down timer()
      if(timecheck == 1) {
        N4 = 0x00:
        goto jump;
      break;
    break:
```

```
void count down timer(void){
   while (1) {
   if(N1 > 0) {
     while (Nl > 0) {
     N1--:
     Delay ms(1);
     display2Num();
   } else if(N2 > 0) {
     N2--;
     N1 = 9;
     display2Num();
   } else if(N3 > 0) {
     N3--:
     N2 = 9:
     N1 = 9:
     display2Num();
   } else if(N4 > 0) {
     N3 = 9:
     N2 = 9;
     N1 = 9:
     //display2Num();
   if(N1 == 0 && N2 == 0 && N3 == 0 && N4 == 0)
     timecheck += 1:
     break;
```

Function Demonstration

Countdown Function

Calculator

Function "1" Calculator Overview

Operation Flow: Pressing the N4 key selects Function 1 (Calculator), invoking the multiplier() subroutine for dual number input (e.g., "5" and "3"), then pressing N4 again enables operation selection via "F" (addition), "E" (subtraction), "D" (multiplication), or "C" (division), with the computed result passed to the counter() subroutine for final output display.

```
case 1:
    N1 = 0x00:
    N2 = 0 \times 000:
    N3 = 0x00:
    N4 = 0 \times 00:
    while(1){
      multiplier();
       if(calculate check == 1
         N4 = 0x00:
         display2Num();
         goto jump;
       break:
    break:
case 2:
```

```
break;
N1=N2=N3=N4=0:
                                     //Promp
display2Num();
while(1){
                                     //this
c = 0:
keyboard();
b = N1+N2*10+N3*100+N4*1000;
display2Num();
operand2 = b;
if(b/1000 != 0)
  break:
N1=N2=N3=N4=0:
                                     //Prompt
display2Num();
while (1) {
                                     //to de
  int key = read4x4();
  if (kev != -1) {
    // Check if keypress is not registered
    if (!keypress) {
      //count = c = 0;
      N4 = decodekev[kev];
      casechose = N4:
      //display2Num();
      switch (casechose) {
        case 15://+
            result = operand1 + operand2;
            counter();
             break:
        case 14://-
```

Function Demonstration

Addition Function

Division Function

Work Assignment

	Project
Jingze He	The project begins with topic conceptualization to define system specifications (password/timer/calculator) and hardware selection (8051 MCU, 4x4 keypad, 7-segment display). Next, 7-segment display programming implements digit encoding (0-9) and multiplexed output, while keypad programming develops row-column scanning with debounce logic. The integration phase combines subsystems with rigorous I/O testing. For core functionalities, countdown programming adds MM:SS timing with alarm triggers, and calculator programming handles arithmetic operations (+, -, *, /) including divide-by-zero checks. Finally, report compilation documents all design stages with schematics, flowcharts, and validation data.
Chiajui Lee	The project begins with topic conceptualization to define objectives and scope, followed by LCD research to understand its interface protocols and control methods. Next, LCD countdown programming implements a timer function with real-time display updates, while LCD calculator programming develops arithmetic operations (+, -, *, /) with result output. The integration phase combines all modules, ensuring seamless interaction between hardware and software. Finally, report writing documents the entire development process, including design choices, code snippets, test results, and conclusions.

