Source Coding - Creating Shannon Codes

Information Theory Lab 6

Objective

Understand Shannon coding by implementing an application in C for creating Shannon codes.

Theoretical notions

See lecture notes for details on the Shannon coding algorithm.

As a quick remainder, check the Shannon coding example from Wikipedia

i	Ρi	li	$\sum_{n=0}^{i-1} p_n$	Previous value in binary	Codeword for a _i
1	0.36	2	0.0	0.0000	00
2	0.18	3	0.36	0.0101	010
3	0.18	3	0.54	0.1000	100
4	0.12	4	0.72	0.1011	1011
5	0.09	4	0.84	0.1101	1101
6	0.07	4	0.93	0.1110	1110

Figure 1: Shannon coding example

Exercises

2. Write a C program that creates a Shannon code from an input data file. The program shall be called as follows:

ShannonCode.exe input.txt code.dat

- The arguments are:
 - input.txt: the input file, from which the code is created
 - code.dat: the output file containing the Shannon code created (known as the "codebook" file). It shall contain a vector of 256 elements of the CODE32BIT structure type also used in the previous laboratories.
- The program will follow the following steps:
 - Declare a vector with 256 elements of the CODE32BIT structure type
 - Read the input file and compute the probabilities of every character, just like it was done in lab L02 (copy that code)
 - Do Shannon coding:
 - * Sort the probabilities vector in descending order
 - * Create the cumulative probabilities vector
 - * Compute the length of each codeword, len
 - * For every cumulative value, find the first len bits of its binary value and store them in the codeword
 - Display the codewords for all characters
 - Save the codeword vector to the output file
- 3. Check the displayed codewords. Is it an instantaneous code or not?

Final questions

- 1. TBD
- 2. TBD