

#### 概述

TM1651 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集成 有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优良,质量可靠。 主要应用于电磁炉、微波炉及小家电产品的显示屏驱动。采用SOP16/DIP16的封装形式。

#### 特性说明

- · 采用功率CMOS 工艺
- 显示模式(7字段×4 位),支持共阳数码管输出
- 键扫描(7×1bit),增强型抗干扰按键识别电路
- 辉度调节电路(占空比 8 级可调)
- 串行接口(CLK, DIO)
- 振荡方式: 内置RC 振荡(450KHz+5%)
- 内置上电复位电路
- 内置自动消隐电路
- 封装形式: DIP16/SOP16

# 三、管脚定义:



图1 管脚定义



# 四、管脚功能定义:

| 符号          | 管脚名称        | 管脚号  | 说明                                                                   |  |  |  |
|-------------|-------------|------|----------------------------------------------------------------------|--|--|--|
| DIO         | 数据输入/<br>输出 | 14   | 串行数据输入/输出,输入数据在 CLK 的低电平变化,在 CLK 的高电平被传输,每传输一个字节芯片内部都将在第九个时钟产生一个 ACK |  |  |  |
| CLK         | 时钟输入        | 15   | 在上升沿输入/输出数据                                                          |  |  |  |
| K1          | 键扫数据输 入     | 16   | 输入该脚的数据在显示周期结束后被锁存                                                   |  |  |  |
| SEG1~SEG7   | 输出(段)       | 2-8  | 段输出(也用作键扫描), N 管开漏输出                                                 |  |  |  |
| GRIG4~GRIG1 | 输出(位)       | 9-12 | 位输出,P管开漏输出                                                           |  |  |  |
| VDD         | 逻辑电源        | 13   | 接电源正                                                                 |  |  |  |
| VSS         | 逻辑地         | 1    | 接系统地                                                                 |  |  |  |

### 五、显示寄存器地址

该寄存器存储通过串行接口从外部器件传送到TM1651 的数据,地址00H-03H共4个字节单元,分别与芯片SEG 和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

| SEG1 | SEG2 | SEG3 | SEG4 | SEG5      | SEG6  | SEG7  | X     |       |
|------|------|------|------|-----------|-------|-------|-------|-------|
| XX   | HL(们 | 氐四位  | )    | Х         | xHU(青 |       |       |       |
| В0   | B1   | B2   | В3   | B4        | В5    | В6    | В7    |       |
|      | 00   | HL   |      |           | 00    | HU    |       | GRID1 |
|      | 01   | HL   |      |           | 01    | GRID2 |       |       |
|      | 02   | HL   |      | O2HU GRII |       |       | GRID3 |       |
|      | 03   | HL   |      |           | 03    | HU    |       | GRID4 |



### 六、键扫描和键扫数据寄存器

键扫矩阵为 7×1bit, 如下所示:



在有按键按下时,读键数据如下:

|   |            | SEG1/KS1  | SEG2/KS2  | SEG3/KS3  | SEG4/KS4  | SEG5/KS5  | SEG6/KS6  | SEG7/KS7  |
|---|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| ŀ | <b>K</b> 1 | 1110_1111 | 0110_1111 | 1010_1111 | 0010_1111 | 1100_1111 | 0100_1111 | 1000_1111 |

注意: 在无按键按下时,读键数据为: 1111\_1111,低位在前,高位在后。

#### 七、指令说明

指令用来设置显示模式和LED 驱动器的状态。

在CLK下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同的 指令。

| В7 | В6 | 指令       |
|----|----|----------|
| 0  | 1  | 数据命令设置   |
| 1  | 0  | 显示控制命令设置 |
| 1  | 1  | 地址命令设置   |

# 7.1 数据命令设置:

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

| MS | В    |    |     |    |    | I  | LSB |        |           |
|----|------|----|-----|----|----|----|-----|--------|-----------|
| В7 | 7 В6 | B5 | B4  | В3 | B2 | B1 | В0  | 功能     | 说明        |
| 0  | 1    |    |     |    |    | 0  | 0   | 数据读写模式 | 写数据到显示寄存器 |
| 0  | 1    |    |     |    |    | 1  | 0   | 设置     | 读键扫数据     |
| 0  | 1    | 无关 | :项, |    | 0  |    |     | 地址增加模式 | 自动地址增加    |
| 0  | 1    | 埻  | į 0 |    | 1  |    |     | 设置     | 固定地址      |
| 0  | 1    |    |     | 0  |    |    |     | 测试模式设置 | 普通模式      |
| 0  | 1    |    |     | 1  |    |    |     | (内部使用) | 测试模式      |

# 7.2 地址命令设设置:

| MSI | 3  |     |    | LSB |    |    |    |      |
|-----|----|-----|----|-----|----|----|----|------|
| В7  | В6 | В5  | B4 | В3  | B2 | B1 | В0 | 显示地址 |
| 1   | 1  |     |    | 0   | 0  | 0  | 0  | 00H  |
| 1   | 1  | 无关  | 项, | 0   | 0  | 0  | 1  | 01H  |
| 1   | 1  | 填 0 |    | 0   | 0  | 1  | 0  | 02H  |
| 1   | 1  |     |    | 0   | 0  | 1  | 1  | 03H  |



该指令用来设置显示寄存器的地址;如果地址设为0C4H 或更高,数据被忽略,直到有效地址被设定;上电时,地址默认设为00H。

#### 7.3 显示控制:

| MSB |    |    |    |    |    | ]  | LSB |         |               |
|-----|----|----|----|----|----|----|-----|---------|---------------|
| В7  | В6 | B5 | B4 | В3 | B2 | B1 | В0  | 功能      | 说明            |
| 1   | 0  |    |    |    | 0  | 0  | 0   |         | 设置脉冲宽度为 1/16  |
| 1   | 0  |    |    |    | 0  | 0  | 1   |         | 设置脉冲宽度为 2/16  |
| 1   | 0  |    |    |    | 0  | 1  | 0   |         | 设置脉冲宽度为 4/16  |
| 1   | 0  |    |    |    | 0  | 1  | 1   | 灰度设置    | 设置脉冲宽度为 10/16 |
| 1   | 0  | 无关 | 项, |    | 1  | 0  | 0   | <b></b> | 设置脉冲宽度为 11/16 |
| 1   | 0  | 填  | 0  |    | 1  | 0  | 1   |         | 设置脉冲宽度为 12/16 |
| 1   | 0  |    |    |    | 1  | 1  | 0   |         | 设置脉冲宽度为 13/16 |
| 1   | 0  |    |    |    | 1  | 1  | 1   |         | 设置脉冲宽度为 14/16 |
| 1   | 0  |    |    | 0  |    |    |     | 显示开关设置  | 显示关           |
| 1   | 0  |    |    | 1  |    |    |     | 业小月大以且  | 显示开           |

#### 八、串行数据传输格式

微处理器的数据通过两线总线接口和 TM1651 通信,在输入数据时当 CLK 是高电平时,DI0 上的信号必须保持不变;只有 CLK 上的时钟信号为低电平时,DI0 上的信号才能改变。数据输入的开始条件是 CLK 为高电平时,DI0 由高变低;结束条件是 CLK 为高时,DI0 由低电平变为高电平。

TM1651 的数据传输带有应答信号 ACK, 当传输数据正确时, 会在第八个时钟的下降沿, 芯片内部会产生一个应答信号 ACK 将 DIO 管脚拉低, 在第九个时钟的上升沿释放 DIO 口线。

#### 指令数据传输过程如下图(读按键数据时序):



Command: 读按键指令.

S0、S1、S2、K1 组成按键信息编码,S0、S1、S2 为 SG 的编码,K1、K2 为 K1 键的编码。读按键时,CLK 时钟频率应小于 250K,先读低位,后读高位。

#### 写 SRAM 数据地址自动加 1 模式

# LED 驱动控制专用电路

TM1651



Command1:设置数据 Command2:设置地址 Data1~N:传输显示数据 Command3:控制显示

#### 写 SRAM 数据固定地址模式:



Command1:设置数据 Command2:设置地址 Data1~N: 传输显示数据 Command3:控制显示



# 九、程序流程图

采用地址自动加一模式的程序流程图:





采用固定地址的程序设计流程图:





## 十、应用电路

电路图中所接数码管为共阳数码管:



▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1651芯片放置,加强滤波效果。

- 2、连接在DIO、CLK通讯口上下拉100pF电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V, 因此TM1651供电应选用5V。

# 十一、 电气参数:

## 极限参数 (Ta = 25℃, Vss = 0 V)

| 参数             | 符号   | 范围                    | 单位         |
|----------------|------|-----------------------|------------|
| 逻辑电源电压         | VDD  | -0.5 ∼+7.0            | V          |
| 逻辑输入电压         | VI1  | -0.5 $\sim$ VDD + 0.5 | V          |
| LED SEG 驱动灌电流  | IO1  | 50                    | mA         |
| LED GRID 驱动拉电流 | IO2  | 200                   | mA         |
| 功率损耗           | PD   | 400                   | mW         |
| 工作温度           | Topt | -40 ∼ +85             | $^{\circ}$ |
| 储存温度           | Tstg | -65 ∼+150             | $^{\circ}$ |

TM1651

# 正常工作范围(Ta = -40~+85℃, Vss = 0 V)

| 参数      | 符号  | 最小      | 典型 | 最大         | 单位 | 测试 条件 |
|---------|-----|---------|----|------------|----|-------|
| 逻辑电源电压  | VDD |         | 5  |            | V  | -     |
| 高电平输入电压 | VIH | 0.7 VDD | -  | VDD        | V  | ,     |
| 低电平输入电压 | VIL | 0       | -  | 0.3<br>VDD | V  | -     |

# 电气特性 (Ta = -40 $\sim$ +85 $^{\circ}$ C, VDD = 4.5 $\sim$ 5.5 V, Vss = 0 V

| 参数               | 符号     | 最小         | 典型   | 最大         | 单位 | 测试条件                        |
|------------------|--------|------------|------|------------|----|-----------------------------|
| GRID驱动拉电流        | loh1   | 80         | 120  | 180        | mA | GRID1~GRID4,<br>Vo = Vdd-2V |
|                  | loh2   | 80         | 140  | 200        | mA | GRID1~GRID4,<br>Vo=Vdd-3V   |
| SEG驱动灌电流         | IOL1   | 20         | 30   | 50         | mA | SEG1~SEG7<br>Vo=0.3V        |
| DOUT脚输出低电平<br>电流 | Idout  | 4          | -    | -          | mA | Vo = 0.4V, dout             |
| 输出下拉电阻           | RL     |            | 10   |            | ΚΩ | <b>K</b> 1                  |
| 输入电流             | II     | -          | -    | ±1         | μΑ | VI = VDD / VSS              |
| 高电平输入电压          | VIH    | 0.7<br>VDD | -    |            | ٧  | CLK, DIO                    |
| 低电平输入电压          | VIL    | -          | -    | 0.3<br>VDD | V  | CLK, DIO                    |
| 滞后电压             | VH     | -          | 0.35 | -          | V  | CLK, DIO                    |
| 动态电流损耗           | IDDdyn | -          | -    | 5          | mA | 无负载,显示关                     |

- 10 -

# 开关特性 (Ta = -40~+85°C, VDD = 4.5 ~ 5.5 V)

| 参数     | 符号        | 最小 | 典型  | 最大  | 单位  | 测试条件                                   |  |
|--------|-----------|----|-----|-----|-----|----------------------------------------|--|
| 振荡频率   | fosc      | -  | 450 | -   | KHz |                                        |  |
|        | tPLZ      | -  | -   | 300 | ns  | $CLK \rightarrow DIO$                  |  |
| 传输延迟时间 | tPZL      | 1  | 1   | 100 | ns  | $CL = 15pF, RL = 10K$ $\Omega$         |  |
| 上升时间   | TTZH<br>1 | -  | -   | 2   | μs  | $CL = 300p F$ $SEG1/KS1 \sim SEG7/KS7$ |  |
| 下降时间   | TTHZ      | 1  | 1   | 120 | μs  | CL = 300pF, SEGn,<br>GRIDn             |  |
| 最大时钟频率 | Fmax      | -  | -   | 500 | KHz | 占空比50%                                 |  |
| 输入电容   | CI        | -  | -   | 15  | pF  | -                                      |  |

# 时序特性 (Ta = -40 ~+85℃, VDD = 4.5 ~ 5.5 V)

| 参数     | 符号     | 最小  | 典型 | 最大 | 单位 | 测试条件      |
|--------|--------|-----|----|----|----|-----------|
| 时钟脉冲宽度 | PWCLK  | 400 | -  | -  | ns | -         |
| 数据建立时间 | tSETUP | 100 | -  | -  | ns | -         |
| 数据保持时间 | tHOLD  | 100 | -  | -  | ns | -         |
| 等待时间   | tWAIT  | 1   | -  | -  | μs | CLK↑→CLK↓ |



# 十二、IC 封装示意图:

# **SOP16:**







| SYMBOL                  | MIN/mm         | MIN/mm NOM/mm |       |  |  |
|-------------------------|----------------|---------------|-------|--|--|
| Α                       | 1              | -             | 1.75  |  |  |
| A1                      | 0.10           | 0.15          | 0.25  |  |  |
| A2                      | 1.35           | 1.45          | 1.55  |  |  |
| A3                      | 0.55           | 0.65          | 0.75  |  |  |
| b                       | 0.36           | -             | 0.51  |  |  |
| b1                      | 0.35           | 0.40          | 0.45  |  |  |
| С                       | 0.18           | ı             | 0.25  |  |  |
|                         | 0.17           | 0.20          | 0.23  |  |  |
| c1<br>D<br>E<br>E1      | 9.80           | 9.90          | 10.00 |  |  |
| E                       | 5.80           | 6.00          | 6.20  |  |  |
| E1                      | 3.80           | 3.90          | 4.00  |  |  |
| е                       | 1.22           | 1.27          | 1.32  |  |  |
| e<br>L<br>L1<br>L2<br>R | 0.45           | 0.60          | 0.80  |  |  |
| L1                      | 1.04REF        |               |       |  |  |
| L2                      | 0.25BSC        |               |       |  |  |
| R                       | 0.07           | -             | _     |  |  |
| R1                      | 0.07           | -             | _     |  |  |
| h                       | 0.30           | 0.40          | 0.50  |  |  |
| θ 1                     | 0°             | _             | 8°    |  |  |
|                         | 6°             | 8°            | 10°   |  |  |
|                         | 6°<br>5°<br>5° | 8° 7°         | 10°   |  |  |
| θ 2<br>θ 3              | <b>5</b> °     | 7°            | 9°    |  |  |
| θ 4                     | 5°             | 7°            | 9°    |  |  |

**DIP16:** 



| Symbol     | Dimensions In Millimeters |         | Dimensions In Inches |        |
|------------|---------------------------|---------|----------------------|--------|
|            | Min                       | Max     | Min                  | Max    |
| Α          | 3. 710                    | 4. 310  | 0. 146               | 0. 170 |
| <b>A</b> 1 | 0. 510                    |         | 0. 020               |        |
| A2         | 3. 200                    | 3. 600  | 0. 126               | 0. 142 |
| В          | 0. 380                    | 0. 570  | 0. 015               | 0. 022 |
| B1         | 1. 524 (BSC)              |         | 0. 060 (BSC)         |        |
| С          | 0. 204                    | 0. 360  | 0. 008               | 0. 014 |
| D          | 18. 800                   | 19. 200 | 0. 740               | 0. 756 |
| E          | 6. 200                    | 6. 600  | 0. 244               | 0. 260 |
| E1         | 7. 320                    | 7. 920  | 0. 288               | 0. 312 |
| е          | 2. 540 (BSC)              |         | 0. 100 (BSC)         |        |
| L          | 3. 000                    | 3. 600  | 0. 118               | 0. 142 |
| E2         | 8. 400                    | 9. 000  | 0. 331               | 0. 354 |

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不通知)