Finite Elements: examples 2

Colin Cotter

February 24, 2017

1. Consider the variational problem with bilinear form

$$a(u,v) = \int_0^1 (u'v' + u'v + uv) dx,$$

corresponding to the differential equation

$$-u'' + u' + u = f.$$

Prove that $a(\cdot, \cdot)$ is continuous and coercive on a C^0 finite element space V defined on [0, 1], equipped with the H^1 inner product.

- 2. For the differential equation -u'' + ku' + u = f, formulate a C^0 finite element discretisation with bilinear form a(u, v). Find a value for k such that a(v, v) = 0 but $v \neq 0$ for some $v \in V$.
- 3. Let $a(\cdot,\cdot)$ be the inner product for a finite element space U. For $F \in U'$, show that the following two statements are equivalent:
 - (a) $u \in U$ satisfies $a(u, v) = F(v) \ \forall v \in U$.
 - (b) u uniquely minimises $\frac{1}{2}a(v,v) F(v)$ over $v \in U$.

Use this to conclude that the Poisson and Helmholtz finite element discretisations can be formulated as minimisation problems. .

4. Let

$$a(u,v) = \int_0^1 (u'v' + u'v + uv) dx.$$

Let V be a C^0 finite element space on [0,1] and let \mathring{V} be the subspace of functions that vanish at x=0 and x=1. Prove that

$$a(v,v) = \int_0^1 ((v')^2 + v^2) dx := ||v||_{H^1}^2, \quad \forall v \in \mathring{V}.$$

Hence conclude that the bilinear form is coercive on \mathring{V} .

5. (a) For $f \in L^2(\Omega)$, $\sigma \in C^1(\Omega)$, find a finite element formulation of the problem

$$-\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\sigma(x) \frac{\partial u}{\partial x_i} \right) = f, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega.$$

- (b) If there exist 0 < a < b such that $a < \sigma(x) < b$ for all $x \in \Omega$, show continuity and coercive for your formulation with respect to the H^1 norm.
- 6. Find a C^0 finite element formulation for the Poisson equation

$$-\nabla^2 u = f, \quad u = g \text{ on } \partial\Omega,$$

for a function g which is C^2 and whose restriction to $\partial\Omega$ is in $L^2(\partial\Omega)$. Derive conditions under the discretisation has a unique solution.

7. Find a C^0 finite element formulation for the Poisson equation

$$-\nabla^2 u = f, \quad u + \frac{\partial u}{\partial n} = r \text{ on } \partial \Omega,$$

for a function r defined on $\partial\Omega$. Derive conditions under which this discretisation has a unique solution.

1