I claim:

5

 A method for controlling the electrical system of a marine propulsion system, comprising the steps of:

providing an engine as a source of motive power for said marine propulsion system;

providing an electrical energy providing device connected in torque transmitting relation with said engine;

monitoring an operating characteristic associated with the operating speed of
the internal combustion engine;

comparing said operating characteristic to a preselected magnitude; deactivating the electrical energy providing device as a function of the relative magnitude of the monitored operating characteristic and the preselected magnitude; and

providing a propulsion control unit which is connected in electrical communication with said electrical energy providing device.

2. The method of claim 1, wherein:

said electrical energy providing device is connected in torque transmitting
relation with said engine by a belt and pulley arrangement.

3. The method of claim 1, wherein:

said electrical energy providing device is an alternator.

4, The method of claim 1, wherein:

said operating characteristic is an acceleration value associated with said engine.

5. The method of claim 1, further comprising:

providing an electrical battery;

measuring a characteristic of said battery;

5 comparing said battery characteristic to a predetermined minimum threshold magnitude; and

disabling said deactivating step if said battery characteristic is less than said, predetermined minimum threshold magnitude.

10 6. The method of claim 4, wherein:

said acceleration value is the acceleration of the crankshaft of said engine measured over at least one complete revolution of said crankshaft.

7. The method of claim 6, wherein:

1.5

25

said acceleration value is the radial acceleration of the crankshaft of said engine measured over more than one complete revolution of said crankshaft.

8. The method of claim 1, further comprising:

providing a trimming mechanism by which the operator of said marine
vessel is able to affect the horizontal attitude of said marine vessel; and
providing a signal which is representative of the operating status of the
trimming mechanism.

9. The method of claim 8, further comprising

comparing said operating status of said trimming mechanism to a preselected operating status; and deactivating said electrical energy providing device as a function of the operating status of said trimming mechanism and said preselected status and the preselected operating status.

5 10. A method for controlling the electrical system of a marine propulsion system, comprising the steps of:

providing an engine as a source of motive power for said marine propulsion system;

providing an electrical energy providing device connected in torque transmitting relation with said engine;

providing a propulsion control unit which is connected in electrical communication with said electrical energy providing device;

monitoring an operating characteristic associated with the operating speed of the internal combustion engine; and

comparing said operating characteristic to a preselected magnitude; deactivating the electrical energy providing device as a function of the relative magnitude of the operating characteristic and the preselected magnitude.

11. The method of claim 10, wherein:

said electrical energy providing device is connected in torque transmitting relation with said engine by a belt and pulley arrangement.

12. The method of claim 10, wherein:

said electrical energy providing device is an alternator.

25

10

15

20

13. The method of claim 9, wherein:

said operating characteristic is an acceleration value associated with said engine.

14. The method of claim 13, wherein:

5

15

20

25

said acceleration value is the acceleration of the crankshaft of said engine measured over at least one complete revolution of said crankshaft.

15. The method of claim 10, further comprising:

providing an electrical battery;

10 measuring a characteristic of said battery;

comparing said battery characteristic to a predetermined minimum threshold magnitude; and

disabling said deactivating step if said battery characteristic is less than said, predetermined minimum threshold magnitude.

16. A method for controlling the alternator of a marine propulsion system, comprising the steps of:

providing an engine as a source of motive power for said marine propulsion system;

providing an electrical energy providing device connected in torque transmitting relation with said engine;

monitoring an operating characteristic associated with the operating speed of the internal combustion engine;

providing a trimming mechanism by which the operator of said marine vessel is able to affect the horizontal attitude of said marine vessel;

providing a signal which represents the operating status of the trimming mechanism;

comparing said operating status of said trimming mechanism to a preselected operating status;

deactivating the electrical energy providing device as a function of the operating status of said trimming mechanism and said preselected operating status; providing a propulsion control unit which is connected in electrical communication with said electrical energy providing device.

17. The method of claim 16, further comprising:

comparing said operating characteristic to a preselected magnitude; and deactivating said electrical energy providing device as a function of the operating characteristic and the preselected magnitude.

18. The method of claim 16, wherein:

5

10

said electrical energy providing device is connected in torque transmitting relation with said engine by a belt and pulley arrangement.

19. The method of claim 18, wherein:

said electrical energy providing device is an alternator.

20 20. The method of claim 19, wherein:

said operating characteristic is an acceleration value associated with said engine.

21. The method of claim 16, wherein:

25 said acceleration value is an acceleration value of the crankshaft of said engine.

22. The method of claim 16, wherein:

said acceleration value is the acceleration of the crankshaft of said engine measured over at least one complete revolution of said crankshaft.

5 23. The method of claim 16, further comprising:

providing an electrical battery;

measuring a characteristic of said battery;

comparing said battery characteristic to a predetermined minimum threshold magnitude; and

disabling said deactivating step if said battery characteristic is less than said, predetermined minimum threshold magnitude.