- (1a) Find $2\overline{u}$
- (1b) Find $2\overline{v}$
- (1c) Find $2\overline{u} + 2\overline{v}$
- (1d) Find $2(\overline{u} + \overline{v})$
- (1e) What have you just demonstrated?

α 1	•	0 1	D1	•	100
Calcul	us	& I	Pny	sics	102

Name:

- (2) Let A(0,1), B(3,0), C(4,4) and D(1,5)
- (2a) Sketch CD and CB
- (2b) Find the components of $\overline{\text{CD}}$ and $\overline{\text{CB}}$
- (2c) Find the cross product $\overline{\text{CD}}$ x $\overline{\text{CB}}$
- (2d) Find m∠BCD using the cross product
- (2e) Find the area of $\triangle ABC$ using the cross product

(3) Let
$$\overline{u} = <1",2",3">$$
, $\overline{v} = <0",-2",5">$, $\overline{w} = <1",1",0">$

- (3a) Find $\overline{v} \times \overline{w}$
- (3b) Find \overline{u} (\overline{v} x \overline{w})
- (3c) Find $|\overline{v} \times \overline{w}|$
- (3d) What are the units of $|\overline{v} \times \overline{w}|$ and why?
- (3e) What are the units of \overline{u} (\overline{v} x \overline{w}) and why?

Vectors in R³ **Torque**

Confirm the following Lemma. (4)

The area of a triangle with vertices (x_0, y_0) , (x_1, y_1) , (x_2, y_2) is given by:

$$A = \frac{1}{2} \sum_{i=0}^{2} (x_i y_{i+1} - y_i x_{i+1})$$

$$A = \frac{1}{2} \sum_{i=0}^{2} (x_i y_{i+1} - y_i x_{i+1})$$

$$i=0$$

$$A = \frac{1}{2} [(x_0 y_1 - y_0 x_1) + (x_1 y_2 - y_1 x_2) + (x_2 y_0 - y_2 x_0)]$$

- Construct $\triangle ABC$ such that A(1, 2), B(4, 3) and C(0, 0) (4a)
- Use the distance formula to find the length of each side of \triangle ABC. (4b)
- Apply Heron's Formula to find the area of $\triangle ABC$. (4c)

~ 1			•	T. 1	•	
Cal	cul	11 C	Kτ	Ph	ysics	1112
-ui	Cut	uo		1 IV.	<i>y</i> 0 <i>i</i> C 0	102

Name:

- (4d) Now try the Lemma and see if you get the same area.
- (4e) Find $\overline{CA} \times \overline{CB}$
- (4f) How are the calculations in steps (4d) & (4e) related?
- (4g) Does the order of the vector cross product make a difference?

(5) Show that the following Theorem is based on triangulation and vector cross products!

Given the vertices of an n-sided polygon, (x_0, y_0) , (x_1, y_1) , (x_2, y_2) , ..., x_{n-1} , y_{n-1} , the area A is given by:

$$A = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - y_i x_{i+1})$$

Note: when i+1 = n, replace i+1 with 0.

This theorem is also known as the Surveyor's Formula. Surveyors use this formula to calculate the area of oddly shaped polygonal plots of land quickly and accurately.

- (5a) Construct the pentagon ABCDE such that A(5,2), B(6, 4), C(4, 5), D(1, 4) and E(2, 2).
- (5b) Apply the Surveyor's Formula to finding the area of the pentagon.

~ 1			•	T. 1	•	
Cal	cul	11 C	Kτ	Ph	ysics	1112
-ui	Cut	uo		1 IV.	<i>y</i> 0 <i>i</i> C 0	102

Name:

- $(5c) \quad \frac{\text{Find the following vector cross products.}}{\text{OA} \text{ x } \overline{\text{OB}} \text{ , } \overline{\text{OB}} \text{ x } \overline{\text{OC}} \text{ , } \overline{\text{OC}} \text{ x } \overline{\text{OD}} \text{ , } \overline{\text{OD}} \text{ x } \overline{\text{OE}} \text{ , } \overline{\text{OE}} \text{ x } \overline{\text{OA}}$
- (5d) Find the sum of all these vector cross products.

- (5e) What does this vector sum have to do with the Surveyor's Formula.
- (5f) Some of the vector cross products contain negative components. Why is this significant?
- (5g) Research the Shoelace Algorithm online. Recalculate the area of the pentagon using this algorithm. Is this different from the Surveyor's Formula?

Vectors in R³ Torque

(6) Let $\overline{L} = \overline{r} \times \overline{p}$ represent angular momentum. Let \overline{r} be the position vector for a particle's circular path measured from the axis of rotation. Let $\overline{p} = m \overline{v}$ be the linear momentum vector which is

tangential to the trajectory. Let the torque $\overline{T} = \frac{d\overline{L}}{dt}$.

 $\lceil \overline{r} \rceil$ = meters, $\lceil m \rceil$ = kilograms, $\lceil t \rceil$ = seconds

(6a) Show that the torque $\overline{T} = \overline{r} \times \overline{F}$ by applying the product rule of differentiation.

- (6b) Given that $\overline{r} = <\sin(t)$, $\cos(t)$, 1 > and m=2, find $\overline{p}(t)$.
- (6c) Given that $\overline{r} = <\sin(t)$, $\cos(t)$, 1 > and m=2, find $\overline{L}(t)$.
- (6d) Given that $\overline{r} = <\sin(t)$, $\cos(t)$, 1 > and m=2, find $\overline{T}(t)$.

(6e) Given that $\overline{r} = \langle \sin(t), \cos(t), 1 \rangle$ and m=2,

find
$$\overline{p}$$
 (t), \overline{L} (t) and \overline{T} (t) when $t = \frac{\pi}{2}$.

Vectors in R³ Torque

(6f) Given that $\overline{r} = <\sin(t)$, $\cos(t)$, 1> and m=2, find $p(\frac{\pi}{2})$, $L(\frac{\pi}{2})$ and $T(\frac{\pi}{2})$, the magnitudes of \overline{p} (t), \overline{L} (t) and \overline{T} (t) when $t = \frac{\pi}{2}$ (include units).

Teacher lectures based on Larson's Calculus 3rd ed. ©1986

 $12.2 = Vectors in \Re^3$

12.4 =Cross Product