2024後期

均衡分析と数理最適化

交通ネットワークの均衡モデル

経済研究所 大澤 実

osawa.minoru.4z@kyoto-u.ac.jp

目的

混雑ゲーム(交通ネットワーク均衡モデル)について詳細に学ぶ.特に,最 適化理論の応用としての側面に注目する.

講義の底本

● 土木学会『交通ネットワークの均衡分析』

混雑ゲーム (Congestion Game)

- 一般的な多数の OD (origin-destination) ペアを持つ混雑ゲームを考える.
 - ゾーン集合 \mathcal{Z} , **ODペア**の集合は $\mathcal{W} \equiv \mathcal{Z} \times \mathcal{Z}$
- 各OD交通需要 (rs) に属する主体数)を $q^{rs}>0$ とする $(rs\in\mathcal{W})$.
- ノード集合 \mathcal{N} ,リンク集合 \mathcal{A} を持つ道路ネットワークを考える. 一般性を失うことなく $\mathcal{Z}\subset\mathcal{N}$ を仮定する.
- ODペアrsの主体が選択できる経路の集合(戦略集合)を \mathcal{R}^{rs} で表す.経路 $k \in \mathcal{R}^{rs}$ は使用するリンクの集合 $\mathcal{A}_k^{rs} \subset \mathcal{A}$ で特定できる. 巡回経路がないと仮定している.また実ネットワークで経路の全列挙は困難であり,考慮する経路集合を事前に限定する作業が行われる.
- 経路 $k \in \mathcal{R}^{rs}$ を利用する主体数を $x_k^{rs} \ge 0$ で表す. $\sum_k x_k^{rs} = q^{rs}$

混雑ゲーム (Congestion Game)

• **経路フロー** $(x^{rs} \mid rs \in \mathcal{W})$ が定まると**リンクフロー**が定まる. 具体的には,リンク $a \in \mathcal{A}$ の交通量を y_a として

$$y_a = \sum_{rs \in \mathcal{W}} \sum_{k \in \mathcal{R}^{rs}: a \in \mathcal{A}_k^{rs}} x_k^{rs}$$

• または, OD ペア rs の経路 k がリンク a を使用するとき $\mathsf{1}$,それ以外では $\mathsf{0}$ となる変数 $\delta^{rs}_{a,k}$ を導入すれば(以下でも同様の変数 δ を用いる)

$$y_a(x) = \sum_{rs \in \mathcal{W}} \sum_{k \in \mathcal{R}^{rs}} \delta_{a,k}^{rs} x_k^{rs}$$

混雑ゲーム (Congestion Game)

- リンク $a \in A$ の通過コストは,aの利用者数が y_a のとき $t_a(y_a)$. リンクコスト関数 t_a は微分可能で単調増加関数であると仮定する.
 - \bullet リンク間相互作用がある場合: $t_a=t_a(x)$
- 交通費用が加法的なら経路 k の交通費用は

$$c_k^{rs}(x) = \sum_{a \in \mathcal{A}} \delta_{a,k}^{rs} t_a(y_a(x))$$

• $\delta_{a,k}^{rs}$ をまとめた $|\mathcal{R}^{rs}| \times |\mathcal{A}|$ 次元の**リンク・経路接続行列** (link-path incidence matrix) を $\Delta^{rs} = [\delta_{a,k}^{rs}]$, $t(y) = (t_a(y))_{a \in \mathcal{A}}$ として

$$c^{rs}(x) = \Delta^{rs}t(y(x))$$

Nash均衡条件

経路選択の Nash 均衡条件は,x > 0 に加えて次の通り.

$$\begin{cases} x_k^{rs} \left(c_k^{rs}(x) - u^{rs} \right) = 0 \\ c_k^{rs}(x) - u^{rs} \ge 0, x_k^{rs} \ge 0 \end{cases} \quad \forall k \in \mathbb{R}^{rs}, \forall rs \in \mathcal{W}$$

$$\sum_{k \in \mathbb{R}^{rs}} x_k^{rs} = q^{rs} \quad \forall rs \in \mathcal{W}$$

2つ目の等式制約は,形式的に次の相補性条件に置き換えられる.

$$\begin{cases} u^{rs} \left(\sum_{k \in \mathcal{R}^{rs}} x_k^{rs} - q^{rs} \right) = 0 \\ \sum_{k \in \mathcal{R}^{rs}} x_k^{rs} - q^{rs} \ge 0, u^{rs} \ge 0 \end{cases} \quad \forall rs \in \mathcal{W}$$

非線形相補性問題による表現

次のようにXとF(X)を定義する.

ただしEは $|\mathcal{W}| \times |\cup_{rs \in \mathcal{W}} \mathcal{R}^{rs}|$ 次元の経路・ODペア接続行列.

$$X \equiv \begin{bmatrix} x \\ u \end{bmatrix}, F(X) \equiv \begin{bmatrix} \mathbf{0} & -E^{\top} \\ E & \mathbf{0} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} + \begin{bmatrix} c(x) \\ -q \end{bmatrix}$$
$$E = \begin{bmatrix} -\frac{1}{2} - \frac{1}{2} \end{bmatrix} \quad (例: 20D, 3/5 経路)$$

このとき、均衡状態は次の非線形相補性問題の解である.

Find $X \geq \mathbf{0}$ such that $\langle F(X), X \rangle = 0$.

変分不等式問題による表現

均衡状態は次の変分不等式問題でもある.

Find $X \geq \mathbf{0}$ such that $\langle F(X), Y - X \rangle \geq 0$ for all $Y \geq \mathbf{0}$.

$$X=(\bar{x},\bar{u}),\,Y=(x,u)$$
として要素を明示すると、 $\langle\cdot,\cdot\rangle$ の部分は

$$\sum_{rs} \langle c^{rs}(x) - u^{rs} \mathbf{1}^{rs}, x^{rs} - \bar{x}^{rs} \rangle$$

$$+ \sum_{rs} \left(\sum_{k \in \mathcal{R}^{rs}} x_k^{rs} - q^{rs} \right) (u^{rs} - \bar{u}^{rs})$$

ただし $\mathbf{1}^{rs}$ は $|\mathcal{R}^{rs}|$ 次元の1ベクトル.

変分不等式問題による表現:主問題

$$S_{P0} \equiv \left\{ x \ge \mathbf{0} \mid \sum_{k \in \mathcal{R}^{rs}} x_k^{rs} - q^{rs} = 0, \ \forall k \in \mathcal{R}^{rs}, \forall rs \in \mathcal{W} \right\}$$

とすると、〈・、・〉の部分は

$$\sum_{rs} \sum_{k} \left(c_k^{rs} (\bar{x}) - u^{rs} \right) \left(x_k^{rs} - \bar{x}_k^{rs} \right)$$

$$= \sum_{k} \sum_{rs} c_k^{rs} (x) \left(x_k^{rs} - \bar{x}_k^{rs} \right)$$

変分不等式問題による表現:主問題

よって問題は数量変数 (quantity variable) による次の VIP と等価:

Find $\bar{x} \in \mathcal{S}_{P0}$ such that $\langle c(\bar{x}), x - \bar{x} \rangle \geq 0$ for all $x \in \mathcal{S}_{P0}$.

この VIP は,**リンクフロー** $y=(y_a)_{a\in\mathcal{A}}$ のみで表現できる.実際,

$$\langle c(x), x \rangle = \sum_{rs,k} c_k^{rs} x_k^{rs} = \sum_{rs,k} \sum_{a} (\delta_{a,k}^{rs} t_a) x_k^{rs}$$
$$= \sum_{a} t_a \sum_{rs,k} \delta_{a,k}^{rs} x_k^{rs} = \sum_{a} t_a y_a = \langle t(x), y \rangle$$

リンク変数のみのVIP

まとめると、次のリンクフローに関する VIP に帰着される:

Find $\bar{y} \in \mathcal{S}_{P}$ such that $\langle t(\bar{y}), y - \bar{y} \rangle \geq 0$ for all $y \in \mathcal{S}_{P}$

$$S_{P} \equiv \left\{ y \geq \mathbf{0} \middle| \begin{array}{l} y_{a} = \sum_{rs} \sum_{k} \delta_{a,k}^{rs} x_{k}^{rs} & \forall a \\ \sum_{rs} x_{k}^{rs} - q^{rs} = 0 & \forall k, \forall rs \end{array} \right\}$$

これを**主問題** (primal problem) と呼ぶ.

主問題に対する等価最適化問題

主問題は次の最適化問題と等価である.

$$\min_{y \in \mathcal{S}_{P}} Z_{P}(y) = \sum_{a \in \mathcal{A}} \int_{0}^{y_{a}} t_{a}(\omega) d\omega$$

等価性はこの問題が**凸計画問題**であることによる.

- \bullet S_{P} の制約は全て線形制約からなるため,凸集合である.
- ullet 目的関数はリンクフローyについて狭義凸である. Z_{P} の Hesse 行列は

$$\nabla^2 Z_{\mathrm{P}}(y) = \operatorname{diag}\left[(t'_a(y_a))_{a \in \mathcal{A}} \right]$$

であるが、これは $t'_a(\cdot) > 0$ の仮定から正定値.

復習 ポテンシャル関数の存在条件

定理 閉凸な集合 $S \subset \mathbb{R}^n$ を考える. S を含む開集合 S' で定義されたベクトル値関数 $F:S' \to \mathbb{R}^n$ がスカラー値関数 $f:S' \to \mathbb{R}$ によって $\nabla f = F$ を満足するための必要十分条件は次が成立することである.

$$\frac{\partial F_i}{\partial x_j}(x) = \frac{\partial F_j}{\partial x_i}(x) \quad \forall i, j, \forall x \in \mathcal{S}'.$$

外部性の対称性を意味する:戦略jを採用する主体数の増加が戦略iの利得に与える影響は,その逆と一致する.

Quiz リンク間の干渉がないならば混雑ゲームの利得関数がこの条件を満足することを確認せよ.

解の一意性

 Z_P がy について狭義凸よりy は一意に定まるが,**経路フロー**x **は一意とは 限らない**.

例 OD ペア集合が $\mathcal{W} = \{13, 23\}$,需要は $q^{rs} = 2q$, $q^{23} = q$. $1 \to 3$ のリンクコスト関数は 2t(y),それ以外は t(y).

変分不等式問題による表現

均衡状態は次の変分不等式問題であった.

Find
$$X \geq \mathbf{0}$$
 such that $(F(X), Y - X) \geq 0$ for all $X \geq \mathbf{0}$.

$$\star = \sum_{rs} \sum_{k} \left(c_k^{rs}(x) - u^{rs} \right) \left(x_k^{rs} - \bar{x}_k^{rs} \right)$$

$$+ \sum_{rs} \left(\sum_{k} x_k^{rs} - q^{rs} \right) (u^{rs} - \bar{u}^{rs})$$

ここまでの議論では価格変数 (price variable) u を消去した.数量変数 x のみを消去した問題を考えることができる.これを双対問題と呼ぶ.

変分不等式問題による表現:双対問題

$$S_{D0} \equiv \left\{ x \geq \mathbf{0} \mid c_k^{rs}(x) \geq u^{rs}, \ \forall k \in \mathcal{R}^{rs}, \forall rs \in \mathcal{W} \right\}$$

とする.もとの問題の解 $X=(\bar{x},\bar{u})$ は明らかに $X\in\mathcal{S}_{\mathrm{D}0}$ を満足するから,実行可能領域を $\mathcal{S}_{\mathrm{D}0}$ に制限してもよい.

ある解 $(\bar{x}, \bar{u}) \in \mathcal{S}_{D0}$ を考え,x に \bar{x} を代入すると

$$\star \Big|_{x=\bar{x}} = \sum_{rs} \Big(\sum_{k} \bar{x}_{k}^{rs} - q^{rs} \Big) (u^{rs} - \bar{u}^{rs})$$

$$= \underbrace{\langle E\bar{x}, u - \bar{u} \rangle}_{\star_{1}} - \underbrace{\langle q^{*}, u - \bar{u} \rangle}_{\star_{2}} \ge 0$$

ところで $S_{\mathrm{D}0}$ 上では

$$\sum_{rs} \sum_{k} \bar{x}_{k}^{rs} c_{k}^{rs}(x) \ge \sum_{rs} \sum_{k} \bar{x}_{k}^{rs} u^{rs}$$

また,解 (\bar{x},\bar{u}) では, $\bar{u}^{rs} < c_k^{rs}(\bar{x})$ なら $\bar{x}_k^{rs} = 0$ なので

$$\sum_{rs} \sum_{k} \bar{x}_k^{rs} c_k^{rs} (\bar{x}) = \sum_{rs} \sum_{k} \bar{x}_k^{rs} \bar{u}^{rs}$$

あわせると

$$\sum_{rs} \sum_{k} \bar{x}_{k}^{rs} (c_{k}^{rs}(x) - c_{k}^{rs}(\bar{x})) \ge \sum_{rs} \sum_{k} \bar{x}_{k}^{rs} (u^{rs} - \bar{u}^{rs})$$

解なら $\star_1 + \star_2 \ge 0$. $\star_3 \ge \star_1$ なので、解なら $\star_3 + \star_2 \ge 0$.

領域を $S_{\mathrm{D}0}$ に限定したとき,次の変分不等式問題に帰着する(\Rightarrow):

Find $(\bar{x}, \bar{u}) \in \mathcal{S}_{\mathrm{D}0}$ such that

$$\langle \bar{x}, c(x) - c(\bar{x}) \rangle - \langle q, u - \bar{u} \rangle \ge 0$$
 for all $(x, u) \in \mathcal{S}_{D0}$.

更に、 $\langle x, c(x) \rangle = \langle y, t(y) \rangle$ から、次の変分不等式問題に帰着される:

Find $(\bar{y}, \bar{u}) \in \mathcal{S}_{\mathrm{D}1}$ such that

$$\langle \bar{y}, t(y) - t(\bar{y}) \rangle - \langle q, u - \bar{u} \rangle \ge 0$$
 for all $(y, u) \in \mathcal{S}_{D1}$.

ただし, S_{D} は $S_{\mathrm{D}0}$ を(y,u) について表現し直した領域で,

$$S_{D1} \equiv \left\{ y \ge \mathbf{0} \, \middle| \, \sum_{a} \delta_{a,k}^{rs} t_a(y_a) \ge u^{rs}, \, \forall k, \forall rs \right\}$$

リンク・経路接続行列 $\Delta = [\cdots; \Delta^{rs}; \cdots]$ を使えば

$$S_{D1} = \{ y \geq \mathbf{0} \mid \Delta t(y) \geq u \otimes \mathbf{1} \}$$

 t_a の逆関数を y_a とすれば,次の変分不等式問題と等価:

Find $(\bar{\tau}, \bar{u}) \in \mathcal{S}_{\mathrm{D}}$ such that

$$\langle y(\bar{\tau}), \tau - \bar{\tau} \rangle - \langle q, u - \bar{u} \rangle \ge 0 \text{ for all } (\tau, u) \in \mathcal{S}_{D}.$$

$$S_{D} = \{(\tau, u) \geq \mathbf{0} \mid \Delta \tau \geq u \otimes \mathbf{1}, \tau \geq t(\mathbf{0})\}\$$

この問題は,価格変数である各リンクのコスト $\tau = (\tau_a)_{a \in \mathcal{A}}$ と経路コストu のみを未知変数とする問題である.これを**双対問題**と呼ぶ.

この問題のベクトル場も積分可能であるから,ポテンシャルが存在する.

双対問題に対する等価最適化問題

双対問題は次の最適化問題と等価である.

$$\max_{(\tau,u)\in\mathcal{S}_{D}} Z_{D}(\tau,u) = \sum_{rs\in\mathcal{W}} q^{rs} u^{rs} - \sum_{a\in\mathcal{A}} \int_{t_{a}(0)}^{\tau_{a}} y_{a}(\omega) d\omega$$

ただしここでは y_a は t_a の逆関数.この問題は主問題に対応する最適化問題の双対問題になっている.

復習 Slater 制約想定を満足するならば,主問題と双対問題の最適解で目的関数値は一致(**強双対性定理**).混雑ゲームは Slater 制約想定を満足するので $Z_{\mathrm{P}}(\bar{y}) = Z_{\mathrm{D}}(\bar{\tau}, \bar{u})$.

混雑ゲームにおける双対性

あるリンクaを取り出したとき,均衡状態ならば(強双対性)

$$\int_0^{\bar{y}_a} t_a(\omega) d\omega = \bar{\tau}_a \bar{y}_a - \int_{t_a(0)}^{\bar{\tau}_a} y_a(\nu) d\nu$$

均衡状態でないなら($t_a(y_a) > \bar{\tau}_a$ なら)右辺 > 左辺(**弱双対性**)

混雑ゲームにおける社会最適問題

主問題と対応する,総交通費用を最小化する意味での社会最適問題は以下で与えられる:

(UE)
$$\min_{y \in \mathcal{S}_{\mathrm{P}}} Z_{\mathrm{P}}(y) = \sum_{a \in \mathcal{A}} \int_{0}^{y_{a}} t_{a}(\omega) d\omega$$

(SO)
$$\min_{y \in \mathcal{S}_{P}} W(y) = \sum_{a \in \mathcal{A}} t_{a}(y_{a})y_{a}$$

これらの問題を比較してみよう.

Quiz 社会最適問題が凸計画問題となる十分条件を挙げよ.

最適混雑料金(Pigou税)

ここで、

$$\frac{\partial Z_{P}(y)}{\partial y_{a}} = t_{a}(y_{a}), \quad \frac{\partial W(y)}{\partial y_{a}} = t_{a}(y_{a}) + t'_{a}(y_{a})y_{a}$$

異なる部分は,リンクaの交通量が増加した場合にリンクaの利用者が追加的に要する限界的な総費用である.

 \Rightarrow リンク a に**混雑料金** (congestion toll) $p_a(y_a) = t'_a(y_a)y_a$ を課した もとでの均衡状態は社会最適状態と一致する.

混雑ゲームの数値解法

混雑ゲームに対する Frank-Wolfe 法では、混雑ゲームの構造的特徴によって部分問題を効率的に解くことができる.

復習 Frank-Wolfe 法(逐次線形計画法)

Frank-Wolfe 法は,凸計画問題に対して有効な許容方向降下法の古典的なアルゴリズムである. x^k において目的関数を線形近似した問題を解き d^k を決定する.

$$y^k \leftarrow \underset{y \in S}{\operatorname{arg\,min}} \langle \nabla f(x^k), y \rangle$$
 [補助問題 (auxiliary problem)] $d^k \leftarrow y^k - x^k$

- 各点において目的関数の線形近似を最小化する点の方向へ移動する.
- Sを表現する制約関数が全て線形なら補助問題は線形最適化問題.
- Frank-Wolfe 法はこの線形最適化問題が高速に解けるなら非常に有効. 混雑ゲームはこれに当てはまる.

混雑ゲームに対する Frank-Wolfe 法の補助問題

混雑ゲームに対する FW 法の補助問題は $abla Z_{\mathrm{P}}(y^k) = [t_a(y_a^k)]_{a \in \mathcal{A}}$ より

$$\min_{y \in S_{\mathbf{P}}} \sum_{a \in \mathcal{A}} t_a(\mathbf{y}_a^k) y_a$$

ただし S_{P} は

$$S_{P} \equiv \left\{ y \geq \mathbf{0} \middle| \begin{array}{l} y_{a} = \sum_{rs} \sum_{k} \delta_{a,k}^{rs} x_{k}^{rs} & \forall a \\ \sum_{rs} x_{k}^{rs} - q^{rs} = 0 & \forall k, \forall rs \end{array} \right\}$$

混雑ゲームに対する Frank-Wolfe 法の補助問題

混雑ゲームに対する FW 法の補助問題は $\nabla Z_{\mathrm{P}}(y) = [t_a(y_a)]_{a \in \mathcal{A}}$ より

$$\min_{y \in S_{\mathbf{P}}} \sum_{a \in \mathcal{A}} t_a(\mathbf{y}_a^k) y_a$$

この問題は**線形計画問題**であり,もともと効率的に解くことができる.

しかも,実は**最短経路探索問題**になっていることがわかる.

 \Rightarrow 最短経路探索アルゴリズムを,現在の実行可能解 y^k のもとでのリンクコストを持つネットワークに適用すればよい!