Московский физико-технический институт

# Лабораторная работа 1.4.8 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ АКУСТИЧЕСКОГО РЕЗОНАНСА

Отчёт студента группы Б02-303 Долговой Екатерины

# Лабораторная работа 1.4.8

### Измерение модуля Юнга методом акустического резонанса

**Цель работы:** исследовать явление акустического резонанса в тонком стержне; измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров; измерить модули Юнга различных материалов.

**В работе используются:** генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, набор стержней из различных материалов.

### Теоретические сведения

Основной характеристикой упругих свойств твёрдого тела является его модуль Юнга E. Он связан с такими величинами, как механическое напряжение  $\sigma$  и относительное удлинение  $\varepsilon$  формулой

$$\sigma = E\varepsilon. \tag{1}$$

Если с помощью кратковременного воздействия в некотором элементе твёрдого тела создать малую деформацию, она будет далее распространяться в среде в форме волны, которую называют **акустической** или **звуковой**, являющейся *продольной*. Распространение акустических волн обеспечивается за счёт упругости и инерции среды, поэтому скорость рапространения такой волны u в среде с плотностью  $\rho$  будет определяться таким соотношением:

$$u = \sqrt{\frac{E}{\rho}}. (2)$$

Рассмотрим стержень постоянного круглого сечения, радиус R которого много меньше его длины L. С точки зрения распространения волн стержень можно считать тонким, если длина  $\lambda$  звуковых волн в нём велика по сравнению с его радиусом:  $\lambda \gg R$ . Если стержень также не зажат с боковых сторон, то легально использовать формулу (1).

#### Уравнение волны в тонком стержне

Разобьем недеформированный стержень на тонкие диски толщиной  $\Delta x$ . Пусть плоскость среды, находящаяся исходно в точке x, сместилась к моменту t на расстояние  $\xi(x,t)$ . Тогда слой, занимавший исходно отрезок  $[x,x+\Delta x]$ , изменил свой продольный размер на величину  $\Delta \xi = \xi(x+\Delta x,t) - \xi(x,t)$ . Пользуясь малостью  $\Delta x$  и определением производной, получим  $\Delta \xi = \frac{\partial \xi}{\partial x} \Delta x$ . Таким образом, относительное удлинение стрежня равно



Рис. 1: Силы, действующие на элемент стержня при продольных колебаниях

$$\varepsilon = \frac{\partial \xi}{\partial x}.\tag{3}$$

Тогда из уравнения (1)

$$\sigma = E \frac{\partial \xi}{\partial x}.\tag{4}$$

Напряжения, действующие на стенки рассматриваемого элемента в сечениях x и  $x+\Delta x$ , будут различными. Из-за этого возникнет результирующая возвращающая сила, стремящаяся вернуть элемент стержня в исходное состояние.

$$\Delta F = S\sigma(x + \Delta x) - S\sigma(x) = S\frac{\partial \sigma}{\partial x}\Delta x = \frac{\partial^2 \varepsilon}{\partial x^2} ES\Delta x. \tag{5}$$

Эта сила вызовет ускорение движения элемента стержня массой  $\Delta m = \rho S \Delta x$  вдоль оси x:

$$\frac{\partial^2 \varepsilon}{\partial t^2} \rho S \Delta x = \frac{\partial^2 \varepsilon}{\partial x^2} E S \Delta x.$$

Применив (2), найдем волновое уравнение:

$$\frac{\partial^2 \varepsilon}{\partial t^2} = u^2 \frac{\partial^2 \varepsilon}{\partial x^2}.\tag{6}$$

#### Бегущие акустические волны. Скорость волны

Произвольная функция вида  $\xi(x,t) = \phi(x-ut)$  является решением волнового уравнения (6). Это можно проверить, подставив X = x - ut в уравнение (6). Общее решение уравнения (6) можно записать в форме

$$\xi(x,t) = \phi_1(x - ut) + \phi_2(x + ut). \tag{7}$$

#### Собственные колебания стержня. Стоячие волны

В случае гармонического возбуждения колебаний с частотой f продольная волна в тонком стержне может быть представлена в виде суперпозиции двух бегущих навстречу гармонических волн

$$\xi(x,t) = A_1 \sin(\omega t - kx + \varphi_1) + A_2 \sin(\omega t + kx + \varphi_2), \tag{8}$$

где  $\omega=2\pi f$  — циклическая частота,  $k=\frac{2\pi}{\lambda}$  — волновое число (пространственная частота волны).

Пусть концы стержня не закреплены. Тогда напряжения в них должны равняться нулю. Положим координаты торцов равными x=0 и x=L. Тогда, используя связь напряжения и деформации (4), запишем граничные условия для свободных (незакреплённых) концов стержня:

$$\sigma(0) = 0 \to \frac{\partial \xi}{\partial x}\Big|_{x=0}, \quad \sigma(L) = 0 \to \frac{\partial \xi}{\partial x}\Big|_{x=L}.$$
 (9)

Запишем первое граничное условие для (8):

$$-kA_1\cos(\omega t + \varphi_1) + kA_2\cos(\omega t + \varphi_2) = 0.$$

Полученное уравнение будет верно для любого t при двух условиях:

$$A_1 = A_2, \tag{10}$$

$$\varphi_1 = \varphi_2. \tag{11}$$

Если концы стержня закрепить ( $\xi|_{x=0}=\xi|_{x=L}=0$ , то фазы падающей и отраженной волн будут отличаться на  $\pi$ .

Колебания следующего вида называют гармоническими стоячими волнами:

$$\xi(x,t) = 2A\cos(kx)\sin(\omega t + \varphi). \tag{12}$$

Используя второе граничное условие, получим  $sin\ kL=0$ , что будет верно при  $k_nL=\pi n$ , где  $n\in\mathbb{N}$ .

Допустимые значения частот (собственные частоты):

$$f_n = \frac{uk_n}{2\pi} = n\frac{u}{2L}, n \in \mathbb{N}.$$

При совпадении внешней частоты с  $f_n$  в стержне возникнет *акустический резонанс*.



Рис. 2: Собственные продольные колебания стержня с незакреплёнными концами

Точки с максимальной амплитудой называются пучностями, с нулевой — узлами.

# Экспериментальная установка



Рис. 3: Схема установки: 1 — генератор звуковой частоты, 2 — частотомер, 3 — осциллограф, 4 — электромагнит-возбудитель, 5 — образец, 6 — электромагнитприёмник, 7 — усилитель звуковой частоты, 8 — блок питания усилителя, 9, 11 — стойки крепления электромагнитов, 10 — стойка крепления образца, 12 — направляющая

Схема экспериментальной установки приведена на рис. 3. Исследуемый стержень 5 размещается на стойке 10. Возбуждение и приём колебаний в стержне осуществляются электромагнитными преобразователями 4 и 6, расположенными рядом с торцами стержня. Крепления 9, 11 электромагнитов дают возможность регулировать их расположение по высоте, а также перемещать вправо-влево по столу 12.

Электромагнит 4 служит для возбуждения упругих механических продольных колебаний в стержне. На него с генератора звуковой частоты 1 подаётся сигнал синусоидальной формы. Рядом с другим торцом стержня находится аналогичный электромагнитный датчик 6, который служит для преобразования механических колебаний в электрические.

Изменяя частоту генератора и наблюдая за амплитудой сигнала с регистрирующего датчика, можно определить частоту акустического резонанса в стержне.

# Ход работы

- 1. Познакомимся с основными органами управления электронного осциллографа. Проведем предварительную настройку осциллографа и звукового генератора.
- 2. Раздвинем датчики и поместите между ними исследуемый стержень на подставку 10. Проделаем опыт сначала с медным стержнем длиной  $l = (600, 0 \pm 0, 5)$  мм.
- 3. Разместим электромагниты напротив торцов стержня так, чтобы можно было производить иземерения.
- 4. Предварительно определим диапазон частот генератора, в котором целесообразно искать резонансы: первый резонанс для меди составляет примерно 3080 Гц.
- 5. Медленно перестраивая звуковой генератор вблизи расчетной частоты, найдем первый резонанс.
- 6. Определим значение первой резонансной частоты: 3218,9 Гц. Результат запишем в таблицу 1. По нескольким измерениям можно увидеть, что флуктуации величины не превышают 0,1 Гц, тогда  $\sigma_f^{\text{случ}} \to 0 \Rightarrow \sigma_f \approx \sigma_f^{\text{приб}} = 0,3$  Гц (берем утроенный последний неизменный разряд).
- 7. Получим резонансы на частотах, соответствующих следующим (кратным) гармоникам. Результаты также занесем в таблицу 1.

| № гармоники n | f, Гц   |
|---------------|---------|
| 1             | 3218,9  |
| 2             | 6435,3  |
| 3             | 9648,4  |
| 4             | 12824,5 |
| 5             | 16057,9 |
| 6             | 19280,3 |
| 7             | 22458,7 |
| Тоблицо       | 1       |

Таблица 1

8. Определим плотность  $\rho_{\rm M}$  материала стержня. Для этого взвесим на весах, измерим штангенциркулем длину и микрометром диаметр небольшого образца цилиндрической формы, изготовленного из исследуемого материала. Результаты занесем в таблицу 2.

| № опыта | т, г   | l, mm | d, mm | $\rho, \frac{\kappa \Gamma}{M^3}$ |
|---------|--------|-------|-------|-----------------------------------|
| 1       | 29,457 | 29,8  | 11,93 | 8843                              |
| 2       | 29,116 | 29,9  | 11,82 | 8874                              |
| 3       | 40,363 | 40,0  | 12,03 | 8878                              |
| 4       | 30,119 | 30,1  | 11,93 | 8952                              |
| 5       | 41,370 | 41,6  | 11,95 | 8867                              |
| 6       | 39,393 | 39,9  | 11,91 | 8862                              |
| 7       | 40,994 | 40,0  | 12,10 | 8913                              |

Таблица 2

$$\begin{split} \bar{\rho_{_{\rm M}}} &= 8884 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \varepsilon_{\rho_{_{\rm M}}}^{\rm kocb} &= \sqrt{(\varepsilon_m)^2 + (2\varepsilon_d)^2 + (\varepsilon_l)^2} = 0,003 \to \sigma_{\rho_{_{\rm M}}}^{\rm kocb} = \varepsilon_{\rho_{_{\rm M}}}^{\rm kocb} \bar{\rho_{_{\rm M}}} = 27 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \sigma_{\rho_{_{\rm M}}}^{\rm chyq} &= \sqrt{\frac{1}{6 \cdot 7} \sum_i (\bar{\rho_{_{\rm M}}} - \rho_{_{{\rm M}_i}})^2} = 14 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \sigma_{\rho_{_{\rm M}}} &= \sqrt{(\sigma_{\rho_{_{\rm M}}}^{\rm kocb})^2 + (\sigma_{\rho_{_{\rm M}}}^{\rm chyq})^2} = 30 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \end{split}$$

Окончательный результат:

$$\rho_{\rm M} = (8880 \pm 30) \, \frac{{
m K}\Gamma}{{
m M}^3}$$

Видим, что наше значение попадает в диапазон табличных  $8800-8900 \frac{\mathrm{Kr}}{\mathrm{M}^3}$ .

- 9. Определим среднее значение диаметра исследуемого стержня 2R=d=11,95 мм, измерив его штангенциркулем в нескольких местах (см. таблицу 2). Возьмем минимальную  $\lambda=\frac{2}{7}L=17,1$  см, соответствующую седьмой гармонике. Отношение  $\frac{R}{\lambda}=\frac{d}{2\lambda}=0,03\ll 1$ , т.е. приблизить стержень моделью тонкого стержня вполне справдливо.
- 10. Повторим опыты 2-10 для стального и дюралюминиевого стержней:
  - а) Для стали:

Первый резонанс ищем в районе 4170 Гц: находим его на значениях 4129,3 Гц. Результат запишем в таблицу 3. По нескольким измерениям можно увидеть, что флуктуации величины не превышают 0,1 Гц, тогда  $\sigma_f^{\text{случ}} \to 0 \Rightarrow \sigma_f \approx \sigma_f^{\text{приб}} = 0,3$  Гц (берем утроенный последний неизменный разряд). Получим резонансы на частотах, соответствующих следующим (кратным) гармоникам. Результаты запишем в таблицу 3.

| № гармоники n | f, Гц   |
|---------------|---------|
| 1             | 4129,3  |
| 2             | 8301,3  |
| 3             | 12418,1 |
| 4             | 16556,2 |
| 5             | 20664,3 |
| 6             | 24829,1 |
| 7             | 29094,8 |

Таблица 3

Определим плотность  $\rho_c$  материала стержня. Для этого взвесим на весах, измерим штангенциркулем длину и микрометром диаметр небольшого образца цилиндрической формы, изготовленного из исследуемого материала. Результаты занесем в таблицу 4.

| № опыта | т, г | l, mm  | d, mm | $\rho, \frac{\kappa \Gamma}{M^3}$ |
|---------|------|--------|-------|-----------------------------------|
| 1       | 40,0 | 35,193 | 11,95 | 7845                              |
| 2       | 40,1 | 35,197 | 11,96 | 7813                              |
| 3       | 42,1 | 36,925 | 11,82 | 7993                              |
| 4       | 41,3 | 37,092 | 11,98 | 7968                              |
| 5       | 39,9 | 34,950 | 11,99 | 7758                              |
| 6       | 32,5 | 28,112 | 11,75 | 7977                              |
| 7       | 30,0 | 26,031 | 11,96 | 7724                              |
| 8       | 30,3 | 26,163 | 11,95 | 7699                              |

Таблица 4

$$\begin{split} \bar{\rho_{\rm c}} &= 7847 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \varepsilon_{\rho_{\rm c}}^{\rm kocb} &= \sqrt{(\varepsilon_m)^2 + (2\varepsilon_d)^2 + (\varepsilon_l)^2} = 0,003 \to \sigma_{\rho_{\rm c}}^{\rm kocb} = \varepsilon_{\rho_{\rm c}}^{\rm kocb} \bar{\rho_{\rm c}} = 24 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \sigma_{\rho_{\rm c}}^{\rm cnyy} &= \sqrt{\frac{1}{7 \cdot 8} \sum_i (\bar{\rho_{\rm c}} - \rho_{\rm c_i})^2} = 15 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \sigma_{\rho_{\rm c}} &= \sqrt{(\sigma_{\rho_{\rm c}}^{\rm kocb})^2 + (\sigma_{\rho_{\rm c}}^{\rm cnyy})^2} = 30 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \end{split}$$

Окончательный результат:

$$\rho_{\rm c} = (7850 \pm 30) \, \frac{{\rm K}\Gamma}{{\rm M}^3}$$

Видим, что наше значение попадает в диапазон табличных  $7700-7900~\frac{\text{кг}}{\text{м}^3}$ . Определим среднее значение диаметра исследуемого стержня 2R=d=11,92 мм, измерив его штангенциркулем в нескольких местах (см. таблицу 4). Возьмем минимальную  $\lambda=\frac{2}{7}L=17,1$  см, соответствующую седьмой гармонике. Отношение  $\frac{R}{\lambda}=\frac{d}{2\lambda}=0,03\ll 1$ , т.е. приблизить стержень моделью тонкого стержня вполне справдливо.

#### б) Для дюралюминия:

Первый резонанс ищем в районе 4290 Гц: находим его на значениях 4373,6 Гц. Результат запишем в таблицу 5. По нескольким измерениям можно увидеть, что флуктуации величины не превышают 0,1 Гц, тогда  $\sigma_f^{\text{случ}} \to 0 \Rightarrow \sigma_f \approx \sigma_f^{\text{приб}} = 0,3$  Гц (берем утроенный последний неизменный разряд). Получим резонансы на частотах, соответствующих следующим (кратным) гармоникам. Результаты запишем в таблицу 5.

| № гармоники n | f, Гц   |
|---------------|---------|
| 1             | 4373,6  |
| 2             | 8655,7  |
| 3             | 13110,8 |
| 4             | 17006,3 |
| 5             | 21258,5 |
| 6             | 25425,9 |
| 7             | 29643,6 |

Таблина 5

Определим плотность  $\rho_{\rm д}$  материала стержня. Для этого взвесим на весах, измерим штангенциркулем длину и микрометром диаметр небольшого образца цилиндрической формы, изготовленного из исследуемого материала. Результаты занесем в таблицу 6.

| № опыта | m, г   | l, mm | d, mm | $\rho, \frac{\kappa \Gamma}{M^3}$ |
|---------|--------|-------|-------|-----------------------------------|
| 1       | 9,266  | 30,7  | 11,75 | 2783                              |
| 2       | 9,489  | 29,9  | 12,05 | 2783                              |
| 3       | 12,456 | 41,3  | 11,75 | 2781                              |
| 4       | 13,239 | 40,9  | 12,15 | 2792                              |
| 5       | 8,995  | 30,0  | 11,73 | 2775                              |
| 6       | 12,189 | 41,8  | 11,84 | 2648                              |
| 7       | 12,484 | 41,4  | 11,75 | 2781                              |
| 8       | 9,198  | 30,1  | 11,86 | 2766                              |

Таблица 6

$$\begin{split} \bar{\rho_{\rm p}} &= 2761 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \varepsilon_{\rho_{\rm p}}^{\rm kocb} &= \sqrt{(\varepsilon_m)^2 + (2\varepsilon_d)^2 + (\varepsilon_l)^2} = 0,003 \to \sigma_{\rho_{\rm p}}^{\rm kocb} = \varepsilon_{\rho_{\rm p}}^{\rm kocb} \bar{\rho_{\rm c}} = 8 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \sigma_{\rho_{\rm p}}^{\rm chyq} &= \sqrt{\frac{1}{7 \cdot 8} \sum_i (\bar{\rho_{\rm c}} - \rho_{\rm c_i})^2} = 18 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \\ \sigma_{\rho_{\rm p}} &= \sqrt{(\sigma_{\rho_{\rm p}}^{\rm kocb})^2 + (\sigma_{\rho_{\rm p}}^{\rm chyq})^2} = 20 \ \frac{{\rm K}\Gamma}{{\rm M}^3} \end{split}$$

Окончательный результат:

$$\rho_{\rm M} = (2760 \pm 20) \; \frac{{
m K}\Gamma}{{
m M}^3}$$

Видим, что наше значение попадает в диапазон табличных  $2500-2800~\frac{\text{кг}}{\text{м}^3}$ . Определим среднее значение диаметра исследуемого стержня 2R=d=11,88 мм, измерив его штангенциркулем в нескольких местах (см. таблицу 6). Возьмем минимальную  $\lambda=\frac{2}{7}L=17,1$  см, соответствующую седьмой гармонике. Отношение  $\frac{R}{\lambda}=\frac{d}{2\lambda}=0,03\ll 1$ , т.е. приблизить стержень моделью тонкого стержня вполне справдливо.

11. Для стержня из дюраля проведем дополнительный опыт: перестраивая генератор, добьемся возбуждения первой гармоники  $f_1$  резонансных колебаний в стержне при «половинной» частоте генератора  $f = \frac{f_1}{2}$ . Видим «бабочку» (см. рис. 4). Она получается из-за того, что по оси ОУ отображается сигнал собственных колебаний стержня

 $f_1$ , регистрируемый с помощью датчика частотометра, а по оси ОХ — частота генератора  $f_1/2$ . Откуда отношение частот по х и у составляет 1:2.



Рис. 4: «Бабочка» на экране осциллографа

12. Определим добротность стержня как колебательной системы, измерив амплитудночастотную характеристику стального стержня A(f) вблизи первого резонанса. Построим график АЧХ. Синей пунктирной линией отмечен уровень  $A = \frac{A_{max}}{\sqrt{2}}$ .

| f, I | ЪЦ | 4128,3 | 4128,5 | 4128,7 | 4128,9 | 4129,0 | 4129,1 | 4129,2 | 4129,3 | 4129,5 | 4129,6 | 4129,7 | 4129,8 | 4129,9 | 4130,2 | 4130,4 |
|------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| A    | В  | 7,2    | 7,6    | 8,0    | 8,8    | 9,2    | 9,6    | 10,0   | 10,4   | 10,0   | 9,6    | 9,2    | 8,8    | 8,4    | 7,6    | 7,2    |



Ширина максимума функции A(f) связана с добротностью Q стержня как колебательной системы формулой

$$Q = \frac{f_1}{\Delta f},$$

где  $\Delta f$  — ширина амплитудно-частотной характеристики на уровне  $A=\frac{A_{max}}{\sqrt{2}}$ .

Из графика найдем  $\Delta \bar{f}=(4130,3-4128,4)$   $\Gamma \Pi=1,9$   $\Gamma \Pi.$   $\sigma_{\Delta f}=\sqrt{2}\sigma_f=0,4$   $\Gamma \Pi.$  Резонансная частота состоявляет  $f_1=(4129,3\pm0,3)$   $\Gamma \Pi.$ 

$$\bar{Q} = \frac{\bar{f}_1}{\Delta \bar{f}} = 2173$$

$$\varepsilon_Q = \sqrt{(\varepsilon_{f_1})^2 + (\varepsilon_{\Delta f})^2} = 0, 2$$

$$\sigma_Q = \varepsilon_Q \bar{Q} = 456 \approx 500$$

Окончательный результат:

$$Q = (2200 \pm 500)$$

- 13. Не делали.
- 14. Для каждого стержня построим графики зависимости частоты от номера гармоники f(n) в одной системе координат. Видим, что все точки хорошо ложатся на прямую, проходящую через начало координат.



15. По МНК найдем скорости звука u для всех трех металлов  $(f(n) = k \cdot n)$ :

$$f = \frac{u}{\frac{2L}{n}} \Rightarrow k = \frac{u}{2L}$$
$$\bar{u} = 2k\bar{L}$$

$$\sigma_u^{\text{случ}} = \bar{u}\varepsilon_k = \bar{u}\frac{\sigma_k}{k} = 2\bar{L}\sigma_k$$
$$\sigma_u^{\text{косв}} = \bar{u}\varepsilon_L$$
$$\sigma_u = \sqrt{(\sigma_u^{\text{случ}})^2 + (\sigma_u^{\text{косв}})^2}$$

|                                                     | медь | сталь | дюраль |
|-----------------------------------------------------|------|-------|--------|
| к, Гц                                               | 3211 | 4144  | 4253   |
| $\sigma_k$ , Гц                                     | 1    | 4     | 14     |
| $\bar{u}, \frac{M}{c}$                              | 3853 | 4973  | 5103   |
| $\sigma_u^{\text{случ}}, \frac{\text{м}}{\text{c}}$ | 1    | 5     | 17     |
| $\sigma_u^{\text{KOCB}}, \frac{\text{M}}{\text{c}}$ | 3    | 4     | 4      |
| $\sigma_u, \frac{M}{c}$                             | 3    | 6     | 17     |

Окончательные результаты:

$$u_{\text{M}} = (3853 \pm 3) \frac{\text{M}}{\text{c}}$$
 $u_{\text{c}} = (4973 \pm 6) \frac{\text{M}}{\text{c}}$ 
 $u_{\text{g}} = (5103 \pm 17) \frac{\text{M}}{\text{c}}$ 

16. Найдем модули Юнга для трех стержней:

$$\bar{E} = \bar{\rho}\bar{u}^2$$

$$\varepsilon_E = \sqrt{(\varepsilon_\rho)^2 + (2\varepsilon_u)^2}$$

$$\sigma_E = \bar{E}\varepsilon_E$$

| $\bar{E}$ , $\Gamma\Pi a$  | 131,8 | 194,1 | 71,9 |
|----------------------------|-------|-------|------|
| $\varepsilon_E, 10^{-3}$   | 4     | 4     | 9    |
| $\sigma_E$ , $\Gamma\Pi a$ | 0,5   | 0,8   | 0,6  |

Окончательный результат:

$$E_{\scriptscriptstyle \mathrm{M}} = (131, 8 \pm 0, 5) \ \Gamma \Pi \mathrm{a}$$
  $E_{\scriptscriptstyle \mathrm{C}} = (194, 1 \pm 0, 8) \ \Gamma \Pi \mathrm{a}$   $E_{\scriptscriptstyle \mathrm{\Pi}} = (71, 9 \pm 0, 6) \ \Gamma \Pi \mathrm{a}$ 

Видим, что значения для стали лежат в пределах табличных ( $190-210~\Gamma\Pi a$ ), аналогично значения для дюралюминия попадают в диапазон  $71-73~\Gamma\Pi a$ . Значения для меди слегка далеки от табличного интервала  $115-125~\Gamma\Pi a$ , это может быть обсуловлено наличием иных примесей в материале стержня (т.н. противокоррозионных соединений).

17. Не делали.

# Вывод

Мы исследовали явление акустического резонанса в тонком стержне, измерили скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров, нашли модули Юнга различных материалов.