Practice for Solving First Order Linear ODEs

Why?

In the exercises, feel free to leave answer as a definite integral if a closed form solution cannot be found. If you can find a closed form solution, you should give that.

Exercise 1 Solve y' + xy = x.

Exercise 2 Solve $y' + 6y = e^x$.

Exercise 3 Solve $y' + 4y = x^2 e^{-4x}$.

Exercise 4 Solve $y' - 3y = xe^x$.

Exercise 5 Solve $y' + 3y = e^{4x} - e^{-2x}$ with y(0) = -3.

Exercise 6 Solve y' - 2y = x + 4.

Exercise 7 Solve $xy' + 4y = x^2 - \frac{1}{x^2}$.

Exercise 8 Solve xy' - 3y = x - 2 with y(1) = 3.

Exercise 9 Solve $y' - 4y = \cos(3t)$.

Exercise 10 Solve $y' + 3x^2y = x^2$.

Exercise 11 Solve $y' + 3x^2y = \sin(x) e^{-x^3}$, with y(0) = 1.

Exercise 12 Solve $y' + \cos(x)y = \cos(x)$.

Exercise 13 Solve the IVP $4ty' + y = 24\sqrt{t}$; y(10000) = 100.

Learning outcomes:

Exercise 14 Solve the IVP $(t^2 + 1)y' - 2ty = t^2 + 1$; y(1) = 0.

Exercise 15 Solve
$$\frac{1}{x^2+1}y' + xy = 3$$
, with $y(0) = 0$.

Exercise 16 Solve
$$y' + 2\sin(2x)y = 2\sin(2x), y(\pi/2) = 3.$$

Exercise 17 Consider the initial value problem

$$5y' - 3y = e^{-2t}$$
 $y(0) = a$

for an undetermined value a. Solve the problem and determine the dependence on the value of a. How does the value of the solution as $t \to \infty$ depend on the value of a?

Exercise 18 Find an expression for the general solution to $y' + 3y = \sin(t^2)$ with y(0) = 2. Simplfy your answer as much as possible.