

CLAIMS

- 1 1. A device for the trenchless replacement of in-situ pipe, comprising:
2 a mole;
3 a length of cable, said cable being engagable to said mole;
4 a cable pulling means including a cable pulling device and a cable pulling device
5 engagement means functioning to provide a mounting structure for said cable pulling device.
- 1 2. A device as described in claim 1 wherein said cable pulling device includes a cable
2 engagement mechanism that functions to pull said cable in a plurality of repeated cyclic pulling
3 strokes.
- 1 3. A device as described in claim 1 wherein said cable engagement mechanism functions to
2 engage said cable in a pulling stroke, release said cable in a recovery stroke, and engage said
3 cable in a further pulling stroke, whereby said cable pulling device conducts a repeatable cycle of
4 pulling and releasing of said cable.
- 1 4. A device as described in claim 3 wherein said cable pulling device includes at least one
2 cable engaging collet that functions to engage said cable on a said pulling stroke and to release
3 said cable on a said recovery stroke.
- 1 5. A device as described in claim 4 wherein at least one further collet is provided that
2 functions to engage said cable on said recovery stroke and release said cable on said pulling
3 stroke.
- 1 6. A device as described in claim 5 wherein said further collet is engaged within said cable
2 pulling device.

1 7. A device as described in claim 2 wherein said cable pulling device is formed with a
2 slotted cable insertion means for the sideways insertion of said cable within said cable pulling
3 device.

1 8. A device as described in claim 1 wherein said cable pulling device is a post tensioning
2 ram (PTR).

1 10. A device as described in claim 8 wherein said pipe is composed of a malleable material
2 or a fracturable material.

1 11. A device as described in claim 8 wherein said cable pulling device is used to generate a
2 pulling force up to and over 100 tons (200,000 pounds), for distances of from 2 feet to over one
3 mile; said pulling forces not being affected by cable length.

1 12. A device as described in claim 8 wherein the PTR is relatively light weight and portable
2 as a result of using high pressure hydraulics in small hydraulic cylinders.

1 13. A device as described in claim 8 where the weight to pulling force ratio of the PTR is in
2 the range of 2 pounds of weight per ton (2,000 pounds) of pulling force.

1 14. A device as in claim 12 wherein high pressure hydraulics (5,500 to 20,000 PSIG) are
2 used to give the PTR the intense pulling power it delivers.

1 15. A device as described in claim 1 wherein said cable pulling device engagement means
2 includes an annulus member including a cable passage bore formed therethrough and a cable
3 insertion slot formed through portions of said annulus member for the sideways insertion of said
4 cable within said cable passage bore of said annulus member.

1 16. A device as described in claim 15 wherein said annulus member includes a cable pulling
2 device holding means for releasably holding a portion of said cable pulling device therewithin.

1 17. A device as described in claim 1 wherein said cable pulling device engagement means
2 includes a reaction plate having an enlarged surface for disbursing a reaction force against a
3 cable pulling force generated by said cable pulling device.

1 18. A device as described in claim 17 wherein said cable pulling device engagement means
2 includes an annulus member that is releasably engagable with said cable pulling device, and
3 wherein said annulus member is mountable in relation to said reaction plate such that said
4 reaction plate disburses cable pulling forces exerted on said annulus by said cable pulling device.

1 19. A device as described in claim 18 wherein said annulus is formed with a cable mounting
2 slot, such that a side portion of said cable can be mounted into said annulus member.

1 20. A device as described in claim 1 wherein said cable pulling device engagement means
2 includes a cable pulling frame, said cable pulling frame being mountable to said reaction plate.

1 21. A device as described in claim 20 wherein said cable pulling frame includes a plurality of
2 frame members and a rotatable cable pulley being mounted to said frame members.

1 22. A device as described in claim 21 wherein said frame members are disposed to provide a
2 cable mounting gap that allows said frame to be mounted to a side of said cable.

1 23. A device as described in claim 21 wherein said frame members are disposed to provide a
2 cable engagement path in relation to said frame, such that a side portion of said cable can be
3 mounted within said cable pulling frame and around said pulley.

TOP SECRET - 19200000000

1 24. A device as described in claim 22 herein said frame includes a plurality of leg members
2 that are engaged at an inner end thereof to a base member, and said leg members are engaged at
3 an outer end thereof to further frame members that engage said pulley.

1 25. A device as described in claim 21 wherein said frame members are shaped as plates.

1 26. A device as described in claim 1 wherein said mole includes a nose portion being
2 engagable to said cable, a tapered body portion and a replacement pipe engagement portion, said
3 mole further including at least one blade, said tapered body portion acting to expand said pipe for
4 the replacement thereof with a length of replacement pipe, and said blade acting to cut pipe
5 engagement devices encountered by said mole after said pipe has been expanded by said tapered
6 body portion.

1 27. A device for the trenchless replacement of in-situ pipe, comprising:
2 a mole;
3 a length of cable, said cable being engagable to said mole;
4 a cable pulling means including a cable pulling device including a cable engagement
5 mechanism and a cable pulling device engagement means functioning to provide a mounting
6 structure for said cable pulling device;
7 said cable pulling device engagement means further including a reaction plate having an
8 enlarged surface for disbursing a reaction force against a cable pulling force generated by said
9 cable pulling device, and a cable pulling frame, said cable pulling frame being mountable to said
10 reaction plate and said cable pulling device being mountable to said cable pulling frame.

1 28. A device as described in claim 27 wherein said cable engagement mechanism functions
2 to engage said cable in a pulling stroke, release said cable in a recovery stroke, and engage said

3 cable in a further pulling stroke, whereby said cable pulling device conducts a repeatable pulling
4 and releasing cycle of said cable; said cable pulling device including at least one cable engaging
5 collet that functions to engage said cable on a said pulling stroke and to release said cable on a
6 said recovery stroke, and wherein said cable pulling device is formed with a slotted cable
7 insertion structure for the sideways insertion of said cable within said cable pulling device.

1 29. A device as described in claim 28 wherein said cable pulling frame includes a plurality of
2 frame members and a rotatable cable pulley being mounted to said frame members; and wherein
3 said frame members are disposed to provide a cable engagement path in relation to said frame,
4 such that said cable can be sideways mounted within said cable pulling frame and around said
5 pulley and into said cable pulling device.

1 30. A device as described in claim 29 wherein said mole includes a nose portion being
2 engagable to said cable, a tapered body portion and a replacement pipe engagement portion, said
3 mole further including at least one blade, said tapered body portion acting to expand said pipe for
4 the replacement thereof with a length of replacement pipe, and said blade acting to cut pipe
5 engagement devices encountered by said mole after said pipe has been expanded by said tapered
6 body portion.

1 31. A mole for use in the trenchless replacement of in-situ pipe, comprising, a nose portion
2 being engagable to a cable, a tapered body portion and a replacement pipe engagement portion,
3 said mole further including at least one blade, said tapered body portion acting to expand said in-
4 situ pipe for the replacement thereof with a length of replacement pipe, and said blade acting to
5 cut pipe engagement devices encountered by said mole after said pipe has been expanded by said
6 tapered body portion.

1 32. A mole as described in claim 31 wherein said blade includes a relatively thin portion that
2 is disposable within said tapered body portion of said mole and an expanded portion that projects
3 from said tapered body portion of said mole.

1 33. A mole as described in claim 31 wherein said blade is disposed within a slot formed in
2 said mole, and wherein a rearward edge of said blade formed with an angle of approximately 80°
3 with respect to a bottom edge of said blade, and wherein said slot is formed with a shape that
4 corresponds to said angle, such that said blade is held within said slot.

1 34. A mole as described in claim 31 wherein a threaded bore is formed within said mole, and
2 wherein a mole engagement fixture is fixedly engaged to an end of said cable, said fixture
3 including a threaded end portion that is threadably engagable with said threaded bore.

1 35. A mole as described in claim 34 wherein said fixture further includes a hex nut portion
2 integrally formed therewith and provided for the tightening of said threaded portion within said
3 threaded bore.

1 36. A mole as described in claim 31, further including a replacement pipe engagement sleeve
2 member for the engagement of said replacement pipe with said mole, said sleeve member being
3 formed with cylindrical sidewalls and an internal radially projecting wall portion having a bore
4 formed therethrough;

5 and wherein said mole is formed with a rearwardly projecting threaded portion that
6 projects through said bore, such that a threaded nut may be threadably engaged thereto to secure
7 said sleeve upon said mole;

8 said sleeve further being adapted for the thermal pressure bonding of said replacement
9 pipe thereto.

1 37. A cable pulling device engagement frame comprising:
2 an annulus member including a cable passage bore formed therethrough and a cable
3 insertion slot formed through portions of said annulus member for the sideways insertion of a
4 cable within said cable passage bore of said annulus member;

5 a reaction plate having an enlarged surface for disbursing a reaction force against a cable
6 pulling force generated through said annulus member.

1 38. A frame as described in claim 37 wherein said frame includes two cable pulling device
2 engagement devices, such that two cable pulling devices can operationally function with said
3 frame to pull two cables simultaneously.

1 39. A device as described in claim 38 wherein two annulus members function as said
2 engagement devices to engage said two cable pulling devices.

1 40. A device as described in claim 39 wherein the two annulus members are angularly
2 disposed relative to each other, such that two cable pulling devices are operationally engaged
3 therewith.

1 41. A method for the trenchless replacement of in-situ pipe, comprising the steps of:
2 exposing a first end of said pipe;
3 exposing a second end of said pipe;
4 disposing a pulling cable through said pipe between said first end and said second end;
5 engaging a mole to said cable at said first end;
6 engaging a cable pulling device to said cable at said second end; and
7 installing a reaction plate at said second end, and pulling said mole through said pipe
8 utilizing said cable pulling device.

1 42. A method as described in claim 41 wherein said second end is exposed within an
2 excavated hole, and wherein a reaction plate is disposed against a sidewall of said hole.

1 43. A method as described in claim 41, further including the installation of a cable pulling
2 device engagement frame between said reaction plate and said cable pulling device.

1 44. A method as described in claim 43 wherein said frame includes a pulley for changing the
2 direction of said cable.

1 45. A method as described in claim 42 wherein said cable pulling device is disposed within
2 said hole.

1 46. A method as described in claim 43 wherein said frame and said cable pulling device are
2 disposed within said hole.

1 47. A method as described in claim 42 wherein said hole is formed of a minimal size.

1 48. A method as described in claim 41 wherein said cable pulling device is a post tensioning
2 ram (PTR).