

Service Cancellation Predictor

Team info

ID	Name
20201700185	بسمة احمد سيد حنفي
20201700861	منة الله محمد عبد البديع احمد
20201700928	نورالهدى أشرف عبدالحليم عبدالوهاب
20201700950	هاجر خالد عبد المنعم على مصطفى
20201700927	نور الهدى أحمد مصطفى كامل
20201700942	نورهان عادل عبد الراضي زكى
20201700943	نورهان محمد ابراهیم انور

Preprocessing

we use:

from matplotlib. Figure import Figure

import matplotlib. pyplot as plt

To show the plot and the Figure

import seaborn as sns

Seaborn based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

Sns.countplot (for each independent variables, dependent variables "churn", data=our data set, ax= "Axes object to draw the plot onto")

Put all the plots in function so we can call it where we want

Data Cleaning

To do that we have 4 steps

*** create a function to take our data to do cleaning and return it after cleaning

**First step:

```
import numpy as np
from sklearn import preprocessing as pp
#change datatype of columns and convert the categorical to numeric
def cleaning (data):
   label encoder=pp.LabelEncoder()
   data['Partner']= label encoder.fit transform(data['Partner'])
   data["gender"]= label_encoder.fit_transform(data['gender'])
   data["Dependents"]= label encoder.fit transform(data['Dependents'])
   data["InternetService"]= label_encoder.fit_transform(data['InternetService'])
   data["OnlineSecurity"]= label encoder.fit transform(data['OnlineSecurity'])
   data["Churn"]= label encoder.fit transform(data['Churn'])
   data["MultipleLines"]= label encoder.fit transform(data['MultipleLines'])
   data["OnlineSecurity"]= label encoder.fit transform(data['OnlineSecurity'])
   data["OnlineBackup"]= label encoder.fit transform(data['OnlineBackup'])
   data["DeviceProtection"]= label encoder.fit transform(data['DeviceProtection'])
   data["TechSupport"]= label_encoder.fit_transform(data['TechSupport'])
   data["StreamingTV"]= label encoder.fit transform(data['StreamingTV'])
   data["StreamingMovies"]= label encoder.fit transform(data['StreamingMovies']])
   data["InternetService"]= label encoder.fit transform(data['InternetService'])
   data["Contract"]= label encoder.fit transform(data['Contract'])
   data["PaymentMethod"]= label encoder.fit transform(data['PaymentMethod'])
   data["PaperlessBilling"]= label encoder.fit transform(data['PaperlessBilling'])
```

We change our data to numeric by use (label_Encoder : to change yes &no &... To 0 & 1&...)&(fit_transform : to change strings to numeric by alphabetical order)

**Second step:

#convert the empty cells to nan , changing data type and fill all nan values by using the mean of the column

```
data["TotalCharges"] = data["TotalCharges"].replace(" " , np.nan)
data["TotalCharges"]=data["TotalCharges"].astype('float64')
data["TotalCharges"]=data["TotalCharges"].fillna(value= data["TotalCharges"].mean())
```

- We have an empty cells in Totalcharges column so we handling that by turn empty cells to Null and replace Null to the mean of data[TotalCharges]
- We change data type of column form object to float64 to be numeric

**Third step: "Data Scalling"

```
#normalization of data

data_scaler= pp.MinMaxScaler(feature_range=(0 , 1))
   TotalCharges_array=data[["TotalCharges"]]
   TotalCharges = data_scaler.fit_transform(TotalCharges_array)
   data["TotalCharges"] = TotalCharges

MonthlyCharges_array=data[["MonthlyCharges"]]
   MonthlyCharges = data_scaler.fit_transform(MonthlyCharges_array)
   data["MonthlyCharges"] = MonthlyCharges

tenure_array=data[["tenure"]]
   tenure = data_scaler.fit_transform(tenure_array)
   data["tenure"] = tenure
```

- We have 3 columns (TotalCharges, MonthlyCharges, Tenure) numeric but its very height and different so that we need to normalize this column to predict correct
 - We make min &max range to numbers between (0,1) by using MinMaxScaler and put it in data_scaler
 - Puting data of column in array in order to have the appliity to make scaling
 - Makeing scaling in array and fit it by fit_tranform and put it in object
 - Put that object after make scaling in its column in data

**Forth step:

```
#drop the unwanted features

data = data.drop('gender', axis=1)
 data = data.drop('PhoneService', axis=1)
 data = data.drop('MultipleLines', axis=1)

print ('inforamtion: ')
 print (data.info())
 print ('description: ')
 print (data.describe())

return data
```

- After cleaning and pre-processing we will drop unwanted features that doesn't affect when we predict (gender ,Phone Service ,Multiple lines)
- print information to see our data types and number of Nulls
- print data description to see our first 5 rows information to see data after cleaning and number of rows and columns.

Data after Cleaning

Data	columns (total 17	columns):	
#	Column	Non-Null Count	Dtype
0	SeniorCitizen	7043 non-null	int64
1	Partner	7043 non-null	int32
2	Dependents	7043 non-null	int32
3	tenure	7043 non-null	float64
4	InternetService	7043 non-null	int64
5	OnlineSecurity	7043 non-null	int64
6	OnlineBackup	7043 non-null	int32
7	DeviceProtection	7043 non-null	int32
8	TechSupport	7043 non-null	int32
9	StreamingTV	7043 non-null	int32
10	StreamingMovies	7043 non-null	int32
11	Contract	7043 non-null	int32
12	PaperlessBilling	7043 non-null	int32
13	PaymentMethod	7043 non-null	int32
14	MonthlyCharges	7043 non-null	float64
15	TotalCharges	7043 non-null	float64
16	Churn	7043 non-null	int32
dtypes: float64(3), int32(11), int64(3)			

Algorithms

Logistic Regression

For train data:

- We import from sklearn. linear model import LogisticRegression.
- We made function to train data take two parameters x_train and y_train and return LR (object of LogisticRegression class).

```
def trainRegression ( x_train , y_train ):
```

For module implementation:

We import statsmodels.api as sm to print the result summary.

```
# module implementation :
logit_model = sm.Logit( y_train , x_train )
result = logit_model.fit()
print(result.summary2())
```

```
Results: Logit
Model:
                     Logit
Dependent Variable:
                                                        4743.8587
                    Churn
                                      AIC:
                     2022-05-21 11:46 BIC:
                                                       4850.0439
Date:
No. Observations:
                     5634
                                      Log-Likelihood:
                                                        -2355.9
Df Model:
                    15
                                      LL-Null:
                                                        -3249.5
Df Residuals:
                     5618
                                      LLR p-value:
                                                       0.0000
                     1.0000
Converged:
                                      Scale:
                                                        1.0000
No. Iterations:
                    8.0000
                 Coef. Std.Err.
                                           P>|z| [0.025 0.975]
SeniorCitizen
                0.3217
                          0.0935 3.4390 0.0006 0.1383 0.5050
Partner
                 -0.0456
                         0.0859
                                  -0.5302 0.5960 -0.2140
                                                           0.1229
Partner
Dependents
                -0.1843
                          0.0982
                                   -1.8763 0.0606 -0.3769
                -4.5932
                          0.4183 -10.9803 0.0000 -5.4131 -3.7733
tenure
InternetService -0.0486
                          0.0586
                                  -0.8287 0.4073 -0.1634
                                                          0.0663
OnlineSecurity
                                  -6.4104 0.0000 -0.3803 -0.2022
                -0.2913
                          0.0454
OnlineBackup
                -0.1842
                          0.0420
                                  -4.3804 0.0000 -0.2666 -0.1018
DeviceProtection -0.0965
                          0.0434
                                  -2.2241 0.0261 -0.1815 -0.0115
TechSupport -0.3361
                          0.0464
                                  -7.2443 0.0000 -0.4271 -0.2452
StreamingTV 0.0178
StreamingMovies 0.0234
                                   0.3906 0.6961 -0.0715
                          0.0456
                                                           0.1072
                          0.0454
                                   0.5146 0.6068 -0.0656
                                                           0.1123
Contract
                -0.7802
                          0.0859
                                  -9.0780 0.0000 -0.9486 -0.6117
PaperlessBilling 0.3443
                          0.0800
                                   4.3049 0.0000 0.1875
                                                           0.5010
                                   -1.7619 0.0781 -0.1201
PaymentMethod -0.0569
                          0.0323
                                                           0.0064
MonthlyCharges
                 1.2856
                          0.1726
                                    7.4467 0.0000 0.9473
                                                           1.6240
TotalCharges
                                    6.4555 0.0000
```


LR = LogisticRegression()

- we use from sklearn. metrics import accuracy_score to calculate accuracy.
- We use fit() function to train data.

#train_data

```
LR.fit(x_train , y_train)

prediction= LR.predict(x_train)

ac_logisticregression=accuracy_score(y_train,prediction)

print("LogisticRegression train accuracy: ",ac_logisticregression)
```

**Logistic Regression train accuracy: 0.8004969826056088

For data scatter:

• Scatter train between Total Charges and churn:

• And in the end, we return LR (object of LogisticRegression class).

For test data:

We made function to test data take three parameters x_test, y_test and LR
 (object of LogisticRegression class made fit () for the data) .

```
def testRegression( LR, x_test , y_test ):
```

• We use predict () function to predict the target then calculate the accuracy.

```
#predict the data :
pre = LR.predict(x_test)
#calculate the accuracy :
ac_logisticregression=accuracy_score(y_test,pre)
print("LogisticRegression test accuracy: ",ac_logisticregression)
```

For module implementation:

We use from sklearn. metrics import roc_curve to calculate the logistic curve.

```
#model evaluation :
yy = y test.squeeze()
roc = roc auc score(y test, pre)
pre = pre.reshape(1, -1)
fpr , tpr , holds = roc_curve(yy, LR.predict_proba(x_test)[:,1])
plt.Figure()
plt.plot(fpr , tpr , label = 'Logistic Regression' % roc)
plt.plot([0,1], [0,1], 'r--')
plt.xlim([0.0 , 1.0])
plt.ylim([0.0,1.05])
plt.xlabel('false positive rate')
plt.ylabel('true positive rate')
plt.title("Reciver operating characteristic")
plt.legend(loc = 'lower right')
plt.savefig('Log ROC')
plt.show()
```


We use import matplotlib. Pyplot as plt

**Logistic Regression test accuracy: 0.801277501774308

And in the end, we return LR (object of LogisticRegression class).

For predict data:

We made function to predict data take two parameter data (1D array) and LR.
 def predictRegression(LR, data):

```
xtest1=data
xtest1 = xtest1.reshape(1, -1)
ytest1=LR.predict(xtest1)
e = "yes"
if ytest1 == 0:
    e = "no"
print('Logistic Regression predicted Churn is ' + str(int(ytest1[0])) + " for "+ e )
```

We convert the 1D array to 2D array using reshape () function.

We use:

from sklearn.svm import SVC

from sklearn. metrics import classification_report

for example → svm_test_report:

Report:				
	precision	recall	f1-score	support
0	0.92	0.98	0.95	1066
1	0.93	0.73	0.81	343
accuracy			0.92	1409
macro avg	0.92	0.85	0.88	1409
weighted avg	0.92	0.92	0.92	1409

from matplotlib import pyplot as plt

from sklearn. metrics import plot_confusion_matrix

for confusion_matrix:

from sklearn. metrics import accuracy_score

To show accuracy.

For function train:

doing an object form svc so it can be used for train data.

$$SV = SVC(kernel='rbf', gamma=1.00)$$

- Doing fitting for x_train, y_train by using function fit()
- Doing predict by using function predict(x_train)
- calculate accuracy

SVM Accuracy for train: 0.8757543485977991.

```
SV.fit(x_train , y_train)
prediction= SV.predict(x_train)
ac_svm=accuracy_score(y_train,prediction)
print("SVM train accuracy: ",ac_svm)
```

And in the end, we return SV (object of SVC class).

For data scatter:

Scatter train between Total Charges and churn:

```
x = np.random.normal(0.261309, 0.261366, 1000) #(mean, standard deviation, dots)

y = np.random.normal(0.265370, 0.441561, 1000) #(mean, standard deviation, dots)
```


For function test:

- We made function to test data take three parameters x_test,
 y_test and SV (object of SVC class made fit () for the data).
- We use predict () function to predict the target then calculate the accuracy.

```
y_pre = SV.predict(x_test)
ac_svm=accuracy_score(y_test,y_pre)
print("SVM test accuracy: ",ac_svm)
```

SVM Accuracy for test: 0.7665010645848119.

And in the end of the test function, we return SV(object of SVC class).

For data scatter:

Scatter test between Total Charges and churn:

```
x = np.random.normal(0.261309, 0.261366, 1000) #(mean, standard deviation, dots)
y = np.random.normal(0.265370, 0.441561, 1000) #(mean, standard deviation, dots)
```


For function predict:

```
def predictSvm( SV , data):
    #Predict of churn value

    xtest1=data
    xtest1 = xtest1.reshape(1, -1)
    ytest1=SV.predict(xtest1)
    e = "yes"
    if ytest1 == 0:
        e = "no"
    print('SVM predicted Churn is ' + str(int(ytest1[0])) + " for "+ e )
```

Data variable is the input from the user and reshape it then doing predict and SV (an object of SVC) that made fit () for the data in train function

We convert the 1D array to 2D array using reshape() function.

And doing predict to data, If predict is equal 1 then churn is YES, else the churn is NO

Decision Tree

We use:

from sklearn. tree import DecisionTreeClassifier

To make an object from DecisionTreeClassifier, so it can be used for train data.

from sklearn. metrics import accuracy_score

to show accuracy of Decision Tree.

For function Train:

Doing fitting for (x_train, y_train for Training)

```
def trainDST(x_train , y_train):
    model_DecTree.fit(x_train , y_train)
    prediction= model_DecTree.predict(x_train)
    ac_id3=accuracy_score(y_train,prediction)
    print("Decision Tree train accuracy: ",ac_id3)
```

Decision Tree Accuracy for Training: 0.7825701100461484

For function Test:

Doing predict predict(x_test), and finally calculate accuracy for ytest and y_predict

Taking a model_DecTree (an object of DecisionTreeClassifier) that made fit for the data in train function.

```
def testDST( model_DecTree , x_test , y_test):
    y_predict = model_DecTree.predict(x_test)
    ac=accuracy_score(y_test,y_predict)
    print('DecisionTree Accuracy : ' , ac)
    return model_DecTree
```

Decision Tree Accuracy for Testing: 0.7821149751596878

For function Predict:

```
def predictDST(model_DecTree , data):
    xtest1=data
    xtest1 = xtest1.reshape(1, -1)
    ytest1=model_DecTree.predict(xtest1)
    e = "yes"
    if ytest1 == 0:
        e = "no"
    print('Decision Tree predicted Churn is ' + str(int(ytest1[0])) + " for "+ e )
```

Data variable is the input from the user and reshape it then doing predict

And model_DecTree (an object of DecisionTreeClassifier) that made fit () for the data in train function and predict () for data in test function.

If predict is equal 1 then churn is YES, else the churn is NO

Comparing among 3 Algorithms

Algorithm	Logistic Regression	SVM	Decision Tree
Accuracy			
train	0.8004969826056088	0.8757543485977991	0.7825701100461484
test	0.801277501774308	0.7665010645848119	0.7821149751596878

<u>GUI</u>

GUI module:

- We use import tkinter as tk for GUI.
- We use from sklearn. model_selection import train_test_split to split data.
- First, we must read file (CustomersDataset.csv), and use function (isna().sum()) to count null values in data, drop the column "customerID", and then clean the data, and then show plots

```
project=pd.read_csv("CustomersDataset.csv")
# check if there exist any nulls in data
print(project.isna().sum())
#drop customer id
data = project.drop('customerID', axis=1)
data = cleaning(data)
x = data.drop(columns = ['Churn'])
y = data[['Churn']]
plots(data = data)
```



```
customerID
                     0
gender
                     0
SeniorCitizen
                     0
Partner
                     0
Dependents
                     0
tenure
PhoneService
                     0
MultipleLines
InternetService
OnlineSecurity
OnlineBackup
DeviceProtection
TechSupport
StreamingTV
StreamingMovies
Contract
                     0
PaperlessBilling
PaymentMethod
MonthlyCharges
TotalCharges
Churn
dtype: int64
```

- x_train, x_test, y_train, y_test =train_test_split (x, y, test_size=0.2, random_state=10)
- We made function to take data from Entries to make a 1D array and return it.

• we made three IntVar () variables for every check button, set it = 0 by default, as when button selected the variable = 1 other variable = 0.

```
check_value1 = tk.IntVar()
check_value2 = tk.IntVar()
check_value3 = tk.IntVar()
check_value1.set(0)
check_value2.set(0)
check_value3.set(0)
```

• we made three functions for (train data, test data, predict state) for buttons (train, test, predict) in command attribute.

```
def TrainData():
    if check_value1.get() == 1 :
         global LR
         LR = trainRegression(x_train, y_train)
    if check_value2.get() == 1 :
         global SV
         SV = trainSvm(x_train, y_train)
    if check value3.get() == 1 :
         global DST
         DST = trainDST(x_train, y_train)
def TestData():
    if check_value1.get() == 1 :
         global LR1
         LR1 = testRegression( LR , x_test, y_test)
    if check_value2.get() == 1 :
         global SV1
         SV1 = testSvm(SV , x_test, y_test)
    if check_value3.get() == 1 :
         global DST1
         DST1 = testDST(DST , x_test, y_test)
def predict_states():
   print("Predict Algorithms:")
   d=TakeData()
   if check_value1.get()==1:
       predictRegression(LR1 , d)
   if check_value2.get()==1:
       predictSvm(SV1 , d)
   if check_value3.get()==1:
       predictDST(DST1 ,d)
```

