LPS1001 Datasheet

Programmable Current Limit Switch IC

1 July 2019 e-mail: leolsi@leolsi.com

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. LEOLSI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. LeoLSI disclaims all liability arising from this information and its use. Use of LeoLSI devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless LeoLSI from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any LeoLSI intellectual property rights.

GENERAL DESCRIPTION

The LPS1001 IC is programmable current limit Switch IC for power management. This switch IC limits the current to prevent damage due to excessive load. Switch fabricated with an advanced submicron CMOS process that provides low power dissipation, low on resistance, and low leakage currents. This switch IC can adjust current limit level from 50mA to 400mA. They also got a thermal shutdown function will automatically turn off the channel temperature exceeds 160°C. The off-leakage current is only 90nA at room temperature.

APPLICATIONS_____

Power distribution system Industrial equipment Memory test

FEATURE

3.3V logic-compatible input (V_{IH}=1.0V, V_{II} =0.4V)

Single supply operation: 5V

Analog signal frequency: DC-to-10KHz

Low on-resistance: 0.1Ω (@typ)

Wide range analog input from 0.8V to 4.7V Current on analog input: 50mA to 400mA Thermal shutdown temperature: 160°C

Single-channel switch control

Switching control using CMOS interface command

Reverse Current Block 16-pin FC-BGA package

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENTS_____

PIN MAPPING TABLE	5
PIN DESCRIPTIONS	5
ABSOLUTE MAXIMUM RATINGS	6
ELECTRICAL CHARACTERISTICS	6
TIMING CHARACTERISTICS	8
Power up and Operating Sequence	9
SW On/Off Timing Diagram	10
Current Limit Operating and CLS flag Timing Diagram	10
Switch On/Off Timing Diagram	오류! 책갈피가 정의되어 있지 않습니다.
TEST RESULTS	11
FUNCTIONAL DESCRIPTION	12
Protection from Excessive Current	12
- Current Limiting and Flag	12
- Thermal Shutdown and Flag	12
PACKAGE INFORMATION	13
APPLICATION EXAMPLE	14
IC and Package Information	오류! 책갈피가 정의되어 있지 않습니다.
REVISION HISTORY	15
DOCUMEN INFORMATION	4.5

Programmable Current Limit Switch IC

LIST OF FIGURES	
Figure 1. Operating Timing Diagram.	
Figure 2. SW ON/OFF Timing Diagram	10
Figure 3. Current Limit Operating and CLS flag Timing Diagram	10
Figure 4. Test Results.	11
Figure 5. Package Information.	13
LIST OF TABLES	
Table 1 Supported Threshold Values for Current Limiting	12

PIN MAPPING TABLE

	1	2	3	4	_
A	EN	PROG	OTP_EN	READ	A
В	CLS1	TRIM[0]	TRIM[2]	vss	В
С	CLS2	TRIM[1]	TRIM[3]	VDD	С
D	IN	TSD_OUT	CLS_OUT	OUT	D
	1	2	3	4	_

PIN DESCRIPTIONS_____

PIN NAME	I/O	Descriptions	
CLS1	I	Over current limit level select 1	
CLS2	I	Over current limit level select 2	
READ	I	OTP read enable	
PROG	I	OTP write enable	
OTP_EN	I	OTP enable	
EN	I	Switch enable (ON)	
TRIM[3:0]	I	Over current limit level trimming	
TSD_OUT	0	Thermal shutdown flag	
CLS_OUT	0	Over current limit flag	
IN	I	Analog switch input	
OUT	0	Analog switch output	
VDD	PWR	Analog power (OTP power)	
VSS	GND	Analog ground	

I: input PWR: power O: output GND: ground

ABSOLUTE MAXIMUM RATINGS

(All Voltages Referenced to GND, Unless Otherwise Noted.)

VDD (for Analog Switch)	0.3V to +6V	Operating ter
Voltage at any pin	0.3V to +6V	Storage temp
Continuous current into any terminal	450mA	Junction tem
Peak current into analog switch I/O	600mA	ESD protection
(current pulse with 1ms and 10% duty	cycle)	•

Operating temperature range-40°C to +125°C Storage temperature range-55°C to +125°C Junction temperature....+160°C ESD protection on all pins (HBM, MM)....≥ TBD

Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at those or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS_____

VDD=5.0V, VSS=0V, and TA = +25°C, unless otherwise noted.

PARAMETER		0)/410.6:	COMPITION	VALUE			
		SYMBOL CONDITION -		MIN	TYP	MAX	UNIT
POWER SU	JPPLIES						
Analog Sup	pply Voltage	VDD		4.5	5	5.5	V
Analog Gro	und Voltage	VSS			0		V
ANALOG S	SWITCH					•	
Input Signa	I Range	V _{AIN}	VSS=0V,	0.8		4.5	V
Channel Or	n Current	I _{ON_CL}	VDD=5V, V _{AIN} =3.3V	50		400	mA
Switch On-	resistance	R _{ON}	I _{CH_ON} =10mA, V _{AIN} =3.3V		0.02	0.5	Ω
	Source Off Leakage Current	I _{S_OFF}	VDD=5V, V _{AIN} =0V, V _{AOUT} =0V		1	50	nA
Leakage Current	Channel ON Leakage Current	I _{CH_ON}	VDD=5V, V _{AIN} =3.3V, V _{AOUT} =3.3V		16	50	nA
	Channel OFF Leakage Current	I _{CH_OFF}	VDD=5V, V _{AIN} =3.3V, V _{AOUT} =0V		13	50	nA
Thermal Sh	utdown Temperature	T _{ST}	Guaranteed by design.		+160		°C
Thermal Sh	utdown Hysteresis	T _{SH}	Cannot be guaranteed by testing.		20		°C
Reverse Blo	ocking Current	I _{RC}	VDD=5V, V _{AIN} =0V, V _{AOUT} =3.3V, V _{AOUT} =4.5V		-56	-300	uA

ELECTRICAL CHARACTERISTICS (Continued)

VDD=5.0V, VSS=0V, and TA = +25°C, unless otherwise noted.

		SYMBOL	CONDITION	VALUE			
PAKAI	PARAMETER SYMBOL CONDITION		MIN	TYP	MAX	UNIT	
Current Limit Ro	eaction Time	tCLRT	V _{AIN} =4.5V, CL=1μF		32	50	μs
Current Limit FI	ag Time	t _{CLFT}	V _{AIN} =4.5V, CL=1μF		282	350	μs
Switching	Turn ON Time	t _{ON}	V _{AIN} =4.5V, R _L =500Ω, CL=0.1μF		30	50	μs
Time	Turn OFF Time	t _{OFF}	V _{AIN} =4.5V, R _L =500Ω, CL=0.1μF		0.7	3	μs
	Input Off- Capacitance	C _{AIN_OFF}				500	pF
Capacitance	Output Off- Capacitance	C _{AOUT_OFF}	Guaranteed by design. Cannot be guaranteed by testing			500	pF
	Output On- Capacitance	C _{AOUT_ON}				1000	pF
Output Dischar	ge Resistance	R _{DS}			100		Ω
DIGITAL I/O							
Logic Input	Input High	V _{IH}		0.9			V
Voltage	Input Low	V _{IL}				0.4	V
Logic Input	Input High	I _{IH}		-1		1	μA
Current	Input Low	I _{IL}		-1		1	μA
POWER CONS	UMPTION						
	Static (OFF)	I _{VDD_ST_OFF}	VDD=5V, VSS= 0V, Switch OFF		0.13	0.2	mA
Analog Operating Current (VDD)	Static (ON)	I _{VDD_ST_ON}	VDD=5V, VSS= 0V, Switch ON		0.18	0.4	mA
Current (VDD)	Dynamic	I _{VDD_DYN}	VDD=5V, VSS= 0V, f _{SW} =10KHz,		0.22	0.5	mA

TIMING CHARACTERISTICS_

VDD=5.0V, VSS=0V, and TA = +25°C, unless otherwise noted.

PARAMETER	SYMBOL CONDITION	VALUE			UNIT	
		MIN	TYP	MAX		
POWER AND RESET SEQUENCE						
POR Set Time	tp		900			us
POR Read Set Time	t _{RST}		1			us
OTP Read Time	t _{ORD}		1			us

Power up and Operating Sequence

Figure 1. Operating Timing Diagram.

SW On/Off Timing Diagram

Figure 2. SW ON/OFF Timing Diagram.

Current Limit Operating and CLS flag Timing Diagram

Figure 3. Current Limit Operating and CLS flag Timing Diagram.

TEST RESULTS_____

TBD

TBD

On-resistance vs. Vain

On-resistance(room temp) vs. Vain

TBD

Current limit vs. Vain

Figure 4. Test Results.

FUNCTIONAL DESCRIPTION

Protection from Excessive Current

Current Limiting and Flag

LPS1001 supports Current Limiting to protect itself from excessive high current. If current more than the threshold flows through a switch, the switch is automatically raises turn-on resistance by internal protection circuit. The threshold is loaded from value of external PIN (CLS2, CLS1 pins). Table 1 shows supported threshold values for current limiting function.

Table 1. Current Limit Level according to setting value

	CLS2	CLS1	Current Limit Level
Switch on, Vin=3.3V, @25°C	0	0	50mA
	0	1	100mA
	1	0	200mA
	1	1	400mA

The current limit is continuous type and is automatically released when the load current decreases. Once the switch operates current limit status, the current limit flag is outputted from CLS OUT pin. (Active High) In order to initialize current limit flag, switch IC has to reset. (input LOW to HIGH at EN pin)

Thermal Shutdown and Flag

LPS1001 supports thermal shutdown to protect itself from excessive high current. If the temperature of a switch goes above the threshold (+160°C, typ.), the switch is automatically DISCONNECTED by internal thermal shutdown circuit. The threshold is set from internal Thermal Shutdown Circuit. Thermal Shutdown is the secondary protection scheme for the case that Current Limiting does not work for some reasons even though excessive high current flows. The switch turns on again after the device temperature drops by approximately 20°C (typ.).

Once the switch is disconnected by Thermal Shutdown, Thermal Shutdown flag is outputted from TSD_OUT pin and the switch does not work until the temperature goes below the threshold.

PACKAGE INFORMATION

Figure 5. Package Information.

APPLICATION EXAMPLE_____

REVISION HISTORY

Revision	Date	Description
0.0	2019-07	Initial draft

DOCUMEN INFORMATION

File name: LPS1001 Datasheet

Product code: LPS1001

Product description: Programmable Current Limit Switch IC

Document revision: 0.0 Revision date: 2019-07

Main Office

1F Jeongseong Building 414 Hyoryeong-ro, Seocho-gu, Seoul, Korea (06728)

Phone: 82-2-581-5510 Mail: leolsi@leolsi.com