

Bluetooth, Bluetooth Low Energy, IEEE 802.15.4(Zigbee) and IEEE 802.15.6 Comparison

05 May 2014

Personal Area Network (PAN) Technologies

IEEE 802.15.6??????

Data Rate

PAN Standard	Classic/EDR Bluetooth	Bluetooth Low Energy	Zigbee
Radio Frequency	2.4 GHz	2.4 GHz	2.4 GHz 850/915 MHz
Data Rate	1-3 Mbps	1 Mbps	250Kbps@2.4GHz
Nodes	7 in slave modes	>65535	65535
Security	E0 for encryption	128b AES	128b AES
Latency (from a non connected State)	~100ms	~4 ms	~10 ms
Regulation	Worldwide	Worldwide	Worldwide
Certification Body	Bluetooth SIG	Bluetooth SIG	Zigbee Alliance
Network Topology	Scatternet	Star	Mesh
Peak Current Consumption in RX mode	>20mA	14mA (nRF8001)	18mA (CC2520)
Primary User Cases	Mobile phones, gaming, headsets, stereo audio streaming, automotive, PCs, consumer electronics	Mobile phones, gaming, PCs, watches, fitness, healthcare, consumer electronics	Building & home automation, AMI/Smart Energy, Fixed Local industrial

WiFi can be a Personal Area Network device?

No

WiFi is:

- the brand name for products using the IEEE 802.11 family of standards
- commonly used for "wireless local area network" (WLAN)

More technical reason:

Peak power Consumption is 120mA in RX mode (GainSpan GS1011 datasheet)

Which is your User Case?

Other requirements?

Coverage Security (AAA, encryption) Power Consumption Proprietary/ Interoperable Fitness and Healthcare in Wireless Body Area

Bluetooth and Bluetooth Low Energy

IEEE 802.15.4(Zigbee)

IEEE 802.15.6

HISTORY

	1999	Version 1.0 of the Bluetooth specification
	2004	Core Version 2.0 + EDR (New Physical layer up to 3Mbps)
	2007	Core Version 2.1 (Add Simple Pairing)
	2009	Core Version 3.0 (High Speed enables applications to use 802.11 MAC/PHY through addition of Generic Alternate MAC/PHP)
	2011	Core Version 4.0 (Introduce Low Energy which enables new applications for healthcare, sport, fitness, home entertainment)
_	2013	Core Version 4.1 (Coexistence management with LTE, flexible reconnection timeout intervals)

What is Classic/EDR Bluetooth(1)

- A cable replacement technology
- Operates in the unlicensed ISM band at 2.4 GHz
- Frequency Hopping scheme (1600 hops/sec)
- 1-3 Mb/s symbol rate
- Single chip radio + baseband

What is Classic/EDR Bluetooth(2)

Classic/EDR Bluetooth supports:

- Synchronous voice
- Asynchronous data channels.

An asynchronous data can support up to 2.3Mbps (using 3Mbps symbol rate).

With Adaptive Frequency Hopping (AFH), only interference-free channel are used.

TX output power up to 10dBm (more than 30m.)

Network Topology in Classic/EDR Bluetooth

- One Master and up to 7 active slaves
- Master controls communication
- No slave-to-slave communication
- Master has to ensure not to "starve" slaves

Star S₁ S₂ S₃

Continuously poll the slaves.
In ACL connection a slave can be sent to sniff mode

How much energy does traditional Bluetooth use?

- Traditional Bluetooth is connection oriented. When a device is connected, a link is maintained, even if there is no data flowing.
- Sniff modes allow devices to be sent to sleep (~100uA for 1 attempt every 1.28s-pan1315)
- Peak receive current is typically around 25mA

What is Bluetooth Low Energy?

- Bluetooth low energy is a short range radio technology
 - Different to Bluetooth classic (BR/EDR)
 - Optimized for ultra low power
 - Enable coin cell battery use cases
 - <15mA peak current
 - Tens of uA average current
- A short packets: up to 39bytes payload
- Simple state machine and Single protocol

Physical Layer

- 2.4 GHz ISM band
- 1Mbps GFSK
- 40 Channels on 2 MHz spacing

Physical Channels

Two types of channels

Physical Channels

Advertising channels avoid 802.11

VERY LOW LATENCY CONNECTIONS

How long does a battery last with BLE basic transactions?

- Calculate energy per transaction
 - Assuming an active (Tx/Rx) period of 1.5ms, 3ms in standby state, each transaction takes an average of 8mA for the 4.5ms, 36uAs=10nAh
- How long could a sensor last on a battery?
 - An example battery: CR2032, 3V, 220mAh, <<0.2\$
 - 220mAh/10nAh=22M transactions
 - Suppose this sensor sends a report every 1minute = 1440/day
 - For just the BLE transactions, this is 15,000 days, or > 40 years
 - This far exceeds the life of the battery and/or the product

Capacity: 220mAh Diameter: 20mm Height 3.2mm Weight: 3.2g The scanner passively listens to and reports to the host the adverting devices in that area.

DISCOVERING DEVICES - PASSIVE SCANNING

When in passive scanning, the Link Layer will only receive packets; it shall not send any packets.

A device may use active scanning to obtain more information about devices that may be useful to populate a user interface. Active scanning involves more link layer advertising messages.

DISCOVERING DEVICES - ACTIVE SCANNING

Garmin GPS Hiking Watch

Bluetooth technology let hikers wirelessly share tracks, waypoints, routes and geocaches with their smartphone

Nike+ basketball and training shoes

Each shoe has four pressure sensors that gather information from different parts of the foot and send it via Bluetooth wireless technology

Heart-rate Monitors

Heart rate sensors provides live heart rate to mobile training app

Pulse Oximeter Monitor

Nonin Medical Pulse Oximeter which provides clinically proven accurate SpO2 and pulse rate readings over a secure wireless connection

MacBook Air

Native integration of Bluetooth 4.0 in Windows 8 products

Bluetooth and Bluetooth Low Energy

IEEE 802.15.4(Zigbee)

IEEE 802.15.6

IEEE 802.15.4 basics

- 802.15.4 is a simple packet data protocol for lightweight wireless networks
 - Channel Access is via Carrier Sense Multiple Access with collision avoidance (CSMA/CA) and optional time slotting
 - Message acknowledgement
 - Optional beacon structure
 - Payload: up to 127bytes
 - Star, Tree or Mesh topology
 - Fully handshaked protocol for transfer reliability.

IEEE 802.15.4 defines two different device types:

- Full function device (FFD): Device, Coordinator
 - Any topology
 - Network coordinator capable
 - Talks to any other device

- Reduced function device (RFD): Device
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - Very simple implementation

IEEE 802.15.4 PHY Overview

Operating frequency bands

European band 868MHz

Data Rate 20 kHz

North America 915MHz

Data Rate 40 kHz

Ch 0

Ch. 1-10

The 2 MHz

868.3 MHz

902 MHz

928 MHz

Data Transfer Model (I)

- Data transferred from device to coordinator
 - In a beacon-enable network, a device finds the beacon to synchronize to the superframe structure. Then it uses slotted CSMA/CA to transmit its data.
 - In a non-beacon-enable network, device simply transmits its data using unslotted CSMA/CA

Communication to a coordinator

In a non beacon-enabled network

In a beacon-enabled network

Data Transfer Model (II)

- Data transferred from coordinator to device in a beacon-enabled network:
 - The coordinator indicates
 in the beacon that some
 data is pending.
 - A device periodically listens to the beacon and transmits a Data Request command using slotted CSMA/CA.
 - Then ACK, Data, and ACK follow ...

Communication from a coordinator

In a beacon-enabled network

Superframe

In a **superframe**, the network coordinator transmits superframe beacons in predetermined intervals

- Intervals as short as 15 ms or as long as 245 s
- Slotted CSMA/CA is employed
- Time between two beacons is divided into 16 equal time slots independent of the duration of the superframe
- Time slots are split into contention access period (CAP) and contention free period (CFP)

Guaranteed time slots (GTS) are concatenated contention free slots:

Allow low latency and dedicated bandwidth applications

So what is Zigbee?

- ZigBee is a specification for a high level protocol stack using small, low-power and low-cost radios. It based on IEEE 802.15.4 standard for Personal Area Network.
- ZigBee standard maintained by ZigBee Alliance
- Usually vendors of ZigBee devices use system-on-chip (SoC) solutions with integrated radio and 60-250KB of flash memory

6LoWPan: an alternative for IoT over IEEE 802.15.4

6LoWPAN offers IPv6 communications over low-power wireless devices

- Stateless 40-bytes IPv6 Header Compression down to 2 bytes
- Packet Segmentation from 1280 byte to IEEE802.15.4 max MTU (127 bytes)

More details in RFC4944

Bluetooth and Bluetooth Low Energy

IEEE 802.15.4(Zigbee)

IEEE 802.15.6

IEEE 802.15.6 Standard Released in Feb2012

The purpose is to provide an international standard for a short-range (i.e., about human body range), low power, and highly reliable wireless communication for use in close proximity to, or inside, a human body.

Data rates, typically up to 10Mbps, can be offered to satisfy an evolutionary set of entertainment and healthcare services.

IEEE 802.15.6 is the standard for Wireless Body Area Network (WBAN)

Why not use Bluetooth LE?

802.15.6 Narrowband and BTLE are designed for different use cases.

Bluetooth LE

Infrequent sending of small amounts of data via a mobile phone and/or to a web service.

Not designed for:

- streaming or applications requiring higher data rates (>20kbps)
- applications requiring high reliability (BTLE has no FEC, operates in noisy 2.4GHz band)

802.15.6 Narrowband

Focussed on medical applications requiring short range bidirectional wireless data transfer. Typically at least one end of the wireless link is on or in the human body. It is designed to:

- provide a highly reliable wireless connection (FEC & operation in quiet MBAN band)
- support streaming

WBAN Topology and sensor location

IEEE802.15.6 Narrowband

Wearable

- Replace cables with highly reliable wireless
- One or both ends of the wireless link on the human body

Patient tethered to monitor

Patient monitored wirelessly (no cables)

Implantable

- Develop a wireless standard for implantable unified with wearable.
- Implantable currently has a band but no standard

802.15.6 Narrowband can use quiet spectrum...

2.4 - 2.5GHz ISM band

ZigBee

2.36 – 2.4GHz MBAN band

Primary users:

- Aeronautical mobile telemetry
- Radio astronomy

Secondary users:

802.15.6 enabled medical devices

(they may not cause interference to and must accept interference from primary users of these frequency band)

Medical BAN (MBAN) band in US

In September 2012 FCC included the 2360-2400 MHz band of a Medical Body Area Network (MBAN) (47 CFR part 95 Subpart E and I)

- MBANs are used for the purpose of measuring and recording physiological parameters
- Limited to transmission of data (no voice) for medical applications
- Operation by duly authorized health care professionals and prescription
- 2360-2390 MHz operation permitted indoors at hospitals subject to coordination, radio propagation, eKey/beacon, transition plans and other proposed rule elements
- 2390-2400 MHz MBAN operation permitted anywhere hospitals, home etc.

802.15.6: common MAC but 3 PHYs

Media Access Control (MAC)

PHY NB

PHY UWB

PHY HBC

Physical Layers (PHY)	Frequency band (MHz)	Data rate (kbps)
Narrowband (NB)	400,600,800,900,2360, 2400	75.9 - 971.4
Ultra-wideband (UWB)	6000 – 10600 3100 - 4800	390 - 12600
Human body communication (HBC)	21	164 -1312.5

802.15.6 Narrowband Channels

Frequency Band (MHz)	Number of Channels	Channel bandwidth	
402 – 405	10	300 kHz	 Implantable
420 – 450	12	320 kHz	
863 – 870	14	400 kHz	
902 – 928	60	400 kHz	Magrable
950 – 958	16	400 kHz	├ Wearable
2360 – 2400	39	1 MHz	
2400 – 2483.5	79	1 MHz	

Data rate will adapt to the channel condition. Higher spreading factor and/or more resilient modulation is used for poor channel condition.

UWB PHY

- The wideband PHY is based on UWB technology
- In particular impulse radio (IR-UWB) and wideband FM (FM-UWB)
 - IR-UWB is based on transmission of either a single pulse (new paradigm) or a burst of pulses (legacy) per information symbol.
 - FM-UWB combines CP-GFSK modulation with wideband FM.

Data rate: up to 12 Mbps for IR-UWB

Human Body Communication (HBC)

 The electrode in contact with the body is used for transmitting or receiving an electrical signal through the body to a device (e.g. smartphone)

e-Payment via touch screen

HBC uses 21MHz band

Exchange e-business cards via handshake

Data Rate (21MHz)		
164 kbps		
328 kbps		
656 kbps		
1.3125 Mbps		

MAC Features

- Supports Quality of Service (QoS)
- Supports MICS band communication support
- Supports Emergency Communications
- Supports hub to node as well as hub to node to node
- Strong Security
- Macroscopic and microscopic power management
- Coexistence and interference mitigation

MAC support of Priority

BAN Priority field encoding

Field value in decimal	BAN services	
0	Non-medical services	
1	Mixed medical and non-medical services	
2	General health services	
3	Highest priority medical services	

User priority mapping

Priority	User Priority	Traffic designation	Frame type
Lowest	0	Background (BK)	Data
	1	Best effort (BE)	Data
	2	Excellent effort (EE)	Data
	3	Video (VI)	Data
	4	Voice (VO)	Data
5 Medical data		Medical data or network control	Data or management
	6	High priority medical data or network control	Data or management
Highest	7	Emergency or medical event report Data	

IEEE 802.15.6: a flexible standard for Body Area Network Overcome many limitations found in IEEE 802.15.4

- Unlimited number of devices in the scheduled allocation communication: only 7 scheduled allocations in Zigbee
- Node can wake up every n superframes
- Supports Emergency Communications
- Coexistence mitigation: beacon shifting
- Interference mitigation: channel hopping

Thanks

