Disadvantages of SRS

- Can't guarantee coverage of particular subpopulations. Comparison of regions (see stratification)
- Low-probability outcomes hard to measure (see stratification)
- Expensive (see multi-stage)

Stratification - How does over sampling affect inference?

FRAME			
Income		Stratum 1	Stratum 2
10, 10, 10,		10, 10, 10,	3, 3, 3, (low)
9, 9, 9,	STRATIFY SAMPLE TO	9, 9, 9,	2, 2, 2, (low)
8, 8, 8,	ENSURE POOR	8, 8, 8,	1, 1, 1 (low)
7, 7, 7,	ARE REPRESENTED	7, 7, 7,	
6, 6, 6,		6, 6, 6,	
5, 5, 5,		5, 5, 5,	
4, 4, 4,		4, 4, 4,	
3, 3, 3, (low)			
2, 2, 2, (low)		P=3/21	P=3/9
1, 1, 1 (low)		W=7	W=3

Choose 3 obs from each stratum. (why?) Low income stratum has 3 in 9 chance, high income 3 in 21.

Therefore, we need to give smaller weights to low-income draws so that weighted sample estimates will reflect characteristics of the population.

Sample weight example (We'll look at stratification example later)

Nepal Living Standard Survey (NLSS)

weights_example.do

Help File

Comment (Stata weights example)

Variance and standard deviation of the distribution of y

$$Var(y) = \frac{1}{(n-1)} \sum_{i=1}^{n} (y_i - \overline{y})^2, \quad Stnd.Dev. = \sqrt{\frac{1}{(n-1)}} \sum_{i=1}^{n} (y_i - \overline{y})^2$$

(Variance &) Standard error of the mean of y, Assuming SRS

$$Var(\overline{y}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} (y_i - \overline{y}), \quad SE(\overline{y}) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (y_i - \overline{y})}$$

Stratification - an algebraic statement regarding precision.

Let
$$\hat{\sigma}_h^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (y_{i,h} - \overline{y}_h)^2$$
, or the sample

variance of y in stratum h. Discuss the terms.

Stratification - precision (cont.)

Because each sample is an independent, random draw within each stratum, the variance of \overline{y} for the full sample can be expressed as ...

$$\hat{\sigma}_{SS}^2 = \frac{1}{n} \sum_{h=1}^{H} \omega_h \hat{\sigma}_h^2 ,$$

where SS abreviates 'stratified sample', n is the sample size, H is the number of strata, and ω_h is the proportion of the sample in stratum h (n_h/n) .

Or, in words, the sample variance of \overline{y} is the weighted average of the variance in each stratum.

Stratification - precision (cont.)

With some algebraic manipulation of terms, $\hat{\sigma}_{SS}^2$ can be written in terms of $\hat{\sigma}_{SRS}^2$ (i.e. the variance of \overline{y} if y_i had been drawn following a Simple Random Sample).

$$\hat{\sigma}_{SS}^2 = \hat{\sigma}_{SRS}^2 - \frac{1}{n} \sum_{h=1}^{H} \omega_h (\overline{y}_h - \overline{y})^2$$

Discuss terms, note that result \Rightarrow $\hat{\sigma}_{SS}^2 < \hat{\sigma}_{SRS}^2$.

Or, in words, stratifying the sample can improve the precision (reduce the variance) of the estimator.

Stratification - implications (cont.)

$$\hat{\sigma}_{SS}^2 = \hat{\sigma}_{SRS}^2 - \frac{1}{n} \sum_{h=1}^{H} \omega_h (\overline{y}_h - \overline{y})^2$$

=> Precision is increased as

... heterogeneity across strata 1.

Or in other words the more \overline{y}_h differs from \overline{y} .

... homogeneity within strata 1.

Decreased variance within each stratum $(\hat{\sigma}_h^2)$ reduces the sum of the strata variances, or reduces $\hat{\sigma}_{SS}^2$.

Caveats: ω_h and relative magnitudes in practice.

Comment: N or n?

How precisely parameters are estimated is determined by sample not population size

Stratification - Illustration of increased precision

Overhead Slides to provide some intuition

$$\hat{\sigma}_{SS}^2 < \hat{\sigma}_{SRS}^2$$