CHAP.3 – LA PHOTOSYNTHESE LES PIGMENTS PHOTOSYNTHETIQUES

- LES CHLOROPHYLLES
- 2. LES CAROTENOIDES
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES
- 5. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE
- 6. NOTION DE RENDEMENT QUANTIQUE

© Biologie et Multimédia - R. Prat

1. LES CHLOROPHYLLES

- 1.1. Structure
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 2.1. Les carotènes
- 2.2. Les xanthophylles
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES

- 1. LES CHLOROPHYLLES
- 1.1. Structure
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 2.1. Les carotènes
- 2.2. Les xanthophylles
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES

Distribution of Chlorophylls among Photosynthetic Organisms

	Pigment Chlorophyll				
Organism	a	b	c	d	e
Higher plants, ferns and mosses Algae	+	+		****	-
Chlorophyta Chrysophyta	+	+		_	_
Xanthophyceae Chrysophyceae	++	_	_	_	4 .
Bacillariophyceae	4	_	± +	_	_
Euglenophyta Pyrrophyta	+	+			annous
Cryptophyceae	- {-	_	+	_	
Dinophyceae	+	•~	+		-
Phaeophyta	+	_	+		_
Rhodophyta	+		_	+	~
Cyanophyta	+	_		_	_
	Bacterio- chlorophyll		Chlorobium Chlorophylls		
	a	ь		650	660
Bacteria Thio- and Athiorhodaceae	+ 0	r +			
Chlorobacteriaceae	+	_		+ 0	r +

- 1. LES CHLOROPHYLLES
- 1.1. Structure
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 2.1. Les carotènes
- 2.2. Les xanthophylles
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES

Absorption de la lumière

©1999 Addison Wesley Longman, Inc.

Lumière visible : 380 à 750 nm

Les différents pigments n'absorbent pas la lumière de la même façon.

L'énergie absorbée par les pigments accessoires (chlorophylle b, caroténoïdes et xantophylles) est transmise à la chlorophylle a.

- 1. LES CHLOROPHYLLES
- 1.1. Structure
- 1.2. Distribution
- 1.3. Propriétés spectrales

2. LES CAROTENOIDES

- 2.1. Les carotènes
- 2.2. Les xanthophylles
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES

LES CAROTENOÏDES

- Famille des **terpènes**Monomère = isoprène 5 C
 Nombre total de C = 40 => **tétraterpènes**
 - Les carotènes

2 sous-familles:

Les xanthophylles

Les différents pigments n'absorbent pas la lumière de la même façon.

L'énergie absorbée par les pigments accessoires (chlorophylle b, caroténoïdes et xantophylles) est transmise à la chlorophylle a.

- 1. LES CHLOROPHYLLES
- 1.1. Structure
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 2.1. Les carotènes
- 2.2. Les xanthophylles
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES

Exemples de tétraterpénoïdes : carotènes et leurs dérivés oxygénés.

- 1. LES CHLOROPHYLLES
- 1.1. Structure
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 2.1. Les carotènes
- 2.2. Les xanthophylles
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES

Exemples de tétraterpénoïdes : carotènes et leurs dérivés oxygénés.

- 1. LES CHLOROPHYLLES
- 1.1. Structure
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 2.1. Les carotènes
- 2.2. Les xanthophylles
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES

Les différents pigments n'absorbent pas la lumière de la même façon.

L'énergie absorbée par les pigments accessoires (chlorophylle b, caroténoïdes et xantophylles) est transmise à la chlorophylle a.

- 1. LES CHLOROPHYLLES
- 1.1. Structure
- 1.2. Distribution
- 1.3. Propriétés spectrales
- 2. LES CAROTENOIDES
- 2.1. Les carotènes
- 2.2. Les xanthophylles
- 3. LES PHYCOBILINES
- 4. PIGMENTS ACTIFS PIGMENTS ACCESSOIRES

© Biologie et Multimédia - R. Prat

LES CHROMOPROTEINES CAROTENOIDIENNES

	COMPLEX 1	COMPLEX 2
Protéine	+	+
ß-carotène	+++	(+)
Lutéine	(+)	+++

LES BILIPROTEINES

Phycobiline + Protéine

LES CHROMOPROTEINES CHLOROPHYLLIENNES

Chlorophylle + Protéine = Holochrome

Les pigments actifs

- Chlorophylle a
- Bactériochlorophylles

Les pigments accessoires

- Chlorophylle b
- Carotènes
- Xanthophylles
- Phycobilines

5. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 5.1. Capture de l'énergie
- 5.2. Migration de l'énergie
- 5.2.1. Par fluorescence
- 5.2.2. Par résonance
- 5.2.3. Par conversion
- 6. NOTION DE RENDEMENT QUANTIQUE

1. Définition d'un quantum d'énergie

quantum d'énergie q = h
$$\nu$$
 = h $\frac{c}{\lambda}$

h = constante de Planck = 6,6.10⁻³⁴ joules c = vitesse de la lumière = 30 000 km s⁻¹

2. Définition d'un einstein d'énergie

1 einstein = E = N q = N h <u>c</u> λ

1 einstein = 1 mole de photons

N = nombre d'Avogadro = 6,02.10²³

• en lumière rouge

E = N h c =
$$\frac{6,02.10^{23} \times 6,6.10^{-34} \times 3.10^{5}}{\lambda}$$
 680.10⁻¹² x 4,18
en km \rightarrow 1 cal = 4,18 joules
E = 0,0042.10⁶ cal
E ≈ 42 Kcal

en lumière bleue

E = N h
$$\underline{c}$$
 = $6.02.10^{23} \times 6.6.10^{-34} \times 3.10^{5}$
 λ 430.10⁻¹² x 4.18
en km \Box \Rightarrow 1 cal = 4.18 joules
E = 0.066.10⁶ cal
E \approx 66 Kcal

La lumière bleue est beaucoup plus riche en énergie que la lumière rouge.

La capture de l'énergie lumineuse

5. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 5.1. Capture de l'énergie
- 5.2. Migration de l'énergie
- 5.2.1. Par fluorescence
- 5.2.2. Par résonance
- 5.2.3. Par conversion
- 6. NOTION DE RENDEMENT QUANTIQUE

MIGRATION DE L'ENERGIE LUMINEUSE

FLUORESCENCE

- RESONANCE

CONVERSION = une réaction nédox

5. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 5.1. Capture de l'énergie
- 5.2. Migration de l'énergie
- 5.2.1. Par fluorescence
- 5.2.2. Par résonance
- 5.2.3. Par conversion
- 6. NOTION DE RENDEMENT QUANTIQUE

MIGRATION DE L'ENERGIE LUMINEUSE

FLUORESCENCE

- RESONANCE

CONVERSION = une réaction nédox

5. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 5.1. Capture de l'énergie
- 5.2. Migration de l'énergie
- 5.2.1. Par fluorescence
- 5.2.2. Par résonance
- 5.2.3. Par conversion
- 6. NOTION DE RENDEMENT QUANTIQUE

MIGRATION DE L'ENERGIE LUMINEUSE

FLUORESCENCE

RESONANCE árurgie libérée sert à activer un Akotorécaptur voisin pe CONVERSION = une réaction nédox

Migration de l'énergie lumineuse

5. CAPTURE ET MIGRATION DE L'ENERGIE LUMINEUSE

- 5.1. Capture de l'énergie
- 5.2. Migration de l'énergie
- 5.2.1. Par fluorescence
- 5.2.2. Par résonance
- 5.2.3. Par conversion
- 6. NOTION DE RENDEMENT QUANTIQUE

RENDEMENT QUANTIQUE

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

6 CO2 ≈ 112 Kcal

Énergie nécessaire pour incorporer 6 molécules de CO₂ dans une molécule de glucose

or énergie d'une mole de photons :

- si hU bleue ≈ 65 Kcal
- si hU rouge ≈ 42 Kcal

donc en théorie :

112 Kcal ≈ 2 moles de photons bleus ≈ 3 moles de photons rouges

en réalité:

Il faut en moyenne 12 à 13 moles de photons

