«Символьные вычисления в MatLab» 07 ноября 2011 г.

- 1. С клавиатуры вводится строка, содержащая запись функции f(x), точка x_0 и две положительных величины a и ε . С использованием символьных вычислений разложите функцию f(x) в ряд Тейлора около точки x_0 так, чтобы на отрезке $[x_0 a, x_0 + a]$ функция приближалась им равномерно с точностью ε .
- 2. С клавиатуры вводится строка, содержащая запись функции f(x), границы отрезка [a,b] и положительная величина ε . С использованием символьных вычислений разложите функцию f(x) в ряд Фурье на отрезке [a,b] так, чтобы на этом отрезке функция приближалась им с точностью ε в метрике пространства $L_2[a,b]$.
- 3. Итерационный метод Ньютона поиска корней функции f(x) заключается в пересчете по следующей рекуррентной формуле: $x_{n+1} = x_n f(x_n)/f'(x_n)$. Можно убедиться, что это соотношение вычисляет x_{n+1} как корень касательной, проведенной к графику f(x) в точке x_n . Напишите функцию, которая принимает на вход начальное приближение x_0 и строку S, содержащую формулу f(x), и методом Ньютона ищет корень.

Производную в точке x_n следует находить посредством символьного дифференцирования.

- 4. Задано дифференциальное уравнение dx/dt = f(t)/g(x) (функции f и g вводятся с клавиатуры). Посредством символьного интегрирования найти общее решение x(t) этого уравнения.
- 5. Задано дифференциальное уравнение $dx/dt = f(t) \cdot g(x)$ (функции f и g вводятся с клавиатуры). Посредством символьного интегрирования найти общее решение x(t) этого уравнения. Найти частное решение, удовлетворяющее условию $x(t_0) = x_0$ (величины t_0 и x_0 также вводятся с клавиатуры).
- 6. Задано дифференциальное уравнение dx/dt = f(x) ($x = (x_1, x_2)'$ двумерный вектор; функция f(x) вводится с клавиатуры). С использованием символьных вычислений найти точки равновесия этого уравнения и исследовать их по первому приближению.
- 7. С клавиатуры вводится формула g(x) и границы отрезка [a,b]. Найти такую линейную функцию l(x) = Ax + B и множитель L, что разность f(x) = L(g(x) l(x)) принимает

нулевые значения на концах отрезка
$$[a,b]$$
 и что $\int\limits_a^b f(x)dx=1.$

Рассматривая полученную функцию как функцию распределения некоторой случайной величины (считая, что f(x)=0 при $x\notin [a,b]$), найдите математическое ожидание и дисперсию этой случайной величины.