Cyclistic Case Study

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for May 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
May21 <- read_csv("C:/Users/theby/Documents/202105-divvy-tripdata.csv")
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

View(May21)

[1] 531633

13

```
colnames (May21)
   [1] "ride id"
                              "rideable_type"
                                                    "started at"
   [4] "ended at"
                                                    "start_station_id"
                              "start station name"
##
   [7] "end station name"
                                                    "start_lat'
                              "end station id"
## [10] "start lng"
                              "end lat"
                                                    "end lng"
## [13] "member_casual"
nrow(May21)
```

```
## [1] 531633
```

```
dim(May21)
```

```
head(May21)
```

```
## # A tibble: 6 × 13
##
                     ridea…¹ started at
                                                                         start...2 start...3
     ride id
                                                   ended at
##
     <chr>
                     <chr>
                             <dttm>
                                                    <dttm>
                                                                         <chr>>
                                                                                  <chr>
## 1 C809ED75D6160... electr... 2021-05-30 11:58:15 2021-05-30 12:10:39 <NA>
                                                                                  <NA>
## 2 DD59FDCE0ACAC... electr... 2021-05-30 11:29:14 2021-05-30 12:14:09 <NA>
                                                                                  <NA>
## 3 0AB83CB88C43E... electr... 2021-05-30 14:24:01 2021-05-30 14:25:13 <NA>
                                                                                  <NA>
## 4 7881AC6D39110... electr... 2021-05-30 14:25:51 2021-05-30 14:41:04 <NA>
## 5 853FA701B4582... electr... 2021-05-30 18:15:39 2021-05-30 18:22:32 <NA>
                                                                                  <NA>
## 6 F5E63DFD96B2A... electr... 2021-05-30 11:33:41 2021-05-30 11:57:17 <NA>
                                                                                  <NA>
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
## #
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
## #
       member_casual <chr>, and abbreviated variable names ¹rideable_type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

```
tail(May21)
```

```
## # A tibble: 6 × 13
##
   ride id ridea...¹ started at
                                                                         start...2 start...3
                                                    ended at
##
                     <chr> <dttm>
                                                    <dttm>
## 1 D0B8E59E2B3C4... electr... 2021-05-02 17:48:17 2021-05-02 17:52:19 Blacks... 13398
## 2 EF56D7D1D612A... electr... 2021-05-20 16:32:14 2021-05-20 16:35:39 Blacks... 13398
## 3 745191CB9F21D... classi... 2021-05-29 16:40:37 2021-05-29 17:22:37 Sherid... TA1307...
## 4 428575BAA5356... electr.. 2021-05-31 14:24:54 2021-05-31 14:31:38 Sherid... TA1307...
## 5 FC8A4A7AB7249... electr... 2021-05-25 16:01:33 2021-05-25 16:07:37 Sherid... TA1307...
## 6 E873B8AA3EE84... docked... 2021-05-12 12:22:14 2021-05-12 12:30:27 Sherid... TA1307...
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## # start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member_casual <chr>, and abbreviated variable names <sup>1</sup>rideable_type,
## #
       <sup>2</sup>start_station_name, <sup>3</sup>start_station_id
```

summary(May21)

```
ride id
                      rideable type
                                          started at
                                        Min. :2021-05-01 00:00:11.00
##
   Length:531633
                      Length:531633
                      Class :character
                                        1st Ou.:2021-05-10 17:40:50.00
##
   Class :character
   Mode :character
                      Mode :character
                                        Median :2021-05-19 07:44:31.00
##
                                        Mean :2021-05-17 19:52:32.05
##
                                         3rd Qu.:2021-05-24 19:32:22.00
##
                                        Max. :2021-05-31 23:59:16.00
##
##
      ended at
                                    start_station_name start_station_id
##
   Min. :2021-05-01 00:03:26.00
                                   Lenath:531633
                                                      Length: 531633
   1st Qu.:2021-05-10 17:57:59.00
                                   Class :character
                                                      Class :character
##
   Median :2021-05-19 07:59:43.00
                                   Mode :character Mode :character
##
   Mean :2021-05-17 20:18:34.46
##
##
   3rd Qu.:2021-05-24 19:57:20.00
   Max. :2021-06-10 22:17:11.00
##
##
   end station name end station id
                                          start lat
                                                          start lng
##
##
   Length:531633
                      Length:531633
                                        Min. :41.65 Min. :-87.78
   Class :character Class :character
                                        1st Qu.:41.88
                                                        1st Qu.:-87.66
##
##
   Mode :character Mode :character
                                        Median :41.90
                                                        Median :-87.64
##
                                         Mean :41.90
                                                        Mean :-87.64
##
                                         3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                        Max. :42.07
                                                        Max. :-87.52
##
##
      end_lat
                      end_lng
                                   member_casual
   Min. :41.56
                   Min. :-87.85
##
                                   Length: 531633
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                   Class :character
##
   Median :41.90
                   Median :-87.64
                                   Mode :character
   Mean :41.90
                   Mean :-87.64
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
  Max. :42.09
                   Max. :-87.52
##
  NA's
         : 452
                   NA's
                         :452
```

```
str(May21)
```

```
## spc_tbl_[531,633 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:531633] "C809ED75D6160B2A" "DD59FDCE0ACACAF3" "0AB83CB88C43EFC2" "7881AC6D39110C
## $ ride_id
60" ..
                       : chr [1:531633] "electric bike" "electric bike" "electric bike" ...
## $ rideable type
                       : POSIXct[1:531633], format: "2021-05-30 11:58:15" "2021-05-30 11:29:14" ...
##
   $ started at
                       : POSIXct[1:531633], format: "2021-05-30 12:10:39" "2021-05-30 12:14:09" ...
##
   $ ended at
##
   $ start station name: chr [1:531633] NA NA NA NA ...
## $ start_station_id : chr [1:531633] NA NA NA NA ...
## $ end station name : chr [1:531633] NA NA NA NA ...
## $ end station id : chr [1:531633] NA NA NA NA ...
## $ start lat
                    : num [1:531633] 41.9 41.9 41.9 41.9 ...
##
   $ start_lng
                       : num [1:531633] -87.6 -87.6 -87.7 -87.7 -87.7 ...
##
   $ end_lat
                       : num [1:531633] 41.9 41.8 41.9 41.9 41.9 ...
##
   $ end_lng
                       : num [1:531633] -87.6 -87.6 -87.7 -87.7 -87.7 ...
                      : chr [1:531633] "casual" "casual" "casual" "casual" ...
   $ member_casual
##
    - attr(*, "spec")=
##
##
    .. cols(
##
         ride_id = col_character(),
     . .
         rideable_type = col_character(),
##
     . .
         started_at = col_datetime(format = ""),
##
     . .
##
         ended_at = col_datetime(format = ""),
     . .
##
         start station name = col character(),
    . .
##
         start station id = col character(),
    . .
##
         end_station_name = col_character(),
     . .
##
         end station id = col character(),
     . .
##
         start lat = col double(),
     . .
##
         start lng = col double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
    . .
##
         member_casual = col_character()
    . .
##
    ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
May21$date <- as.Date(May21$started_at)
May21$month <- format(as.Date(May21$date), "%m")
May21$month <- month.name[as.numeric(May21$month)]
May21$day <- format(as.Date(May21$date), "%d")
May21$year <- format(as.Date(May21$date), "%Y")
May21$day_of_week <- format(as.Date(May21$date), "%A")
May21$ride_length <- difftime(May21$ended_at,May21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(May21$ride_length)
```

Recheck ride_length data type.

[1] FALSE

```
May21$ride_length <- as.numeric(as.character(May21$ride_length))
is.numeric(May21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
May21 <- na.omit(May21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
May21 <- subset(May21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 60 seconds or 1 minute.

```
May21 <- subset (May21, ride_length > 59)
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(May21$ride_length)
 ## [1] 1610.702
 median(May21$ride_length)
 ## [1] 852
 max(May21$ride_length)
 ## [1] 3235296
 min(May21$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(May21$ride_length)
 ##
       Min. 1st Qu.
                      Median
                                 Mean 3rd Qu.
                                                  Max.
 ##
                 479
                         852
                                         1571 3235296
Compare the members and casual users
 aggregate(May21$ride length ~ May21$member casual, FUN = mean)
      May21$member_casual May21$ride_length
 ##
 ## 1
                    casual
                                    2401.9037
 ## 2
                    member
                                     873.9147
 aggregate(May21$ride_length ~ May21$member_casual, FUN = median)
 ##
      {\tt May21\$ member\_ casual \ May21\$ ride\_ length}
 ## 1
                                         1195
                    casual
 ## 2
                    member
                                          647
 aggregate(May21$ride_length ~ May21$member_casual, FUN = max)
 ##
      May21$member_casual May21$ride_length
 ## 1
                    casual
                                      3235296
 ## 2
                                        88000
                    member
 aggregate(May21$ride_length ~ May21$member_casual, FUN = min)
 ##
      May21$member_casual May21$ride_length
 ## 1
                    casual
 ## 2
                    member
                                           60
Aggregate the average ride length by each day of the week for members and users.
 aggregate(May21$ride_length ~ May21$member_casual + May21$day_of_week, FUN = mean)
```

```
##
      May21$member_casual May21$day_of_week May21$ride_length
## 1
                                    Friday
                                                  2216.7228
                   casual
## 2
                   member
                                    Friday
                                                    825.1412
## 3
                                                    2357.6633
                  casual
                                    Monday
## 4
                                    Monday
                  member
                                                    845.7615
## 5
                                                    2422.3267
                   casual
                                   Saturday
## 6
                   member
                                   Saturday
                                                    979.8317
## 7
                                                    2912.5144
                  casual
                                    Sunday
## 8
                  member
                                     Sunday
                                                    1022.4243
## 9
                  casual
                                   Thursday
                                                   2032.3001
## 10
                                                    805.4960
                  member
                                  Thursday
## 11
                   casual
                                   Tuesday
                                                    1916.8186
## 12
                   member
                                    Tuesday
                                                     768.0150
## 13
                   casual
                                  Wednesday
                                                    1941.2031
## 14
                                                    817.1334
                   member
                                  Wednesday
```

Sort the days of the week in order.

```
May21$day_of_week <- ordered(May21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(May21$ride_length ~ May21$member_casual + May21$day_of_week, FUN = mean)
head(x)</pre>
```

```
##
    May21$member_casual May21$day_of_week May21$ride_length
## 1
                  casual
                                    Sunday
                                                    2912.5144
## 2
                  member
                                     Sunday
                                                    1022.4243
## 3
                  casual
                                     Monday
                                                    2357.6633
## 4
                  member
                                    Monday
                                                     845.7615
## 5
                                   Tuesday
                  casual
                                                    1916.8186
                  member
                                   Tuesday
                                                     768.0150
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
## 1 casual
                                                        2913.
                                      53565
                         1
## 2 casual
                         2
                                      28693
                                                        2358.
## 3 casual
                         3
                                      14862
                                                        1917.
## 4 casual
                         4
                                      18733
                                                        1941.
## 5 casual
                                      18401
                                                        2032.
## 6 casual
                         6
                                      24721
                                                        2217.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(May21$member_casual)
```

```
##
## casual member
## 214652 230505
```

```
table(May21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 304172 43053 97932
```

```
table(May21$day_of_week)
```

```
##
                                                           Friday
##
      Sunday
                 Monday
                          Tuesday Wednesday
                                              Thursday
                                                                    Saturday
##
       88860
                  63704
                             43139
                                       51956
                                                  48482
                                                             54359
                                                                       94657
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(May21$day_of_week,May21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                        casual 53565
## 2
          Monday
                        casual 28693
         Tuesday
## 3
                        casual 14862
## 4
       Wednesday
                        casual 18733
## 5
        Thursday
                         casual 18401
                        casual 24721
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(May21$rideable_type,May21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
                                   Freq
## 1 classic bike
                         casual 122115
## 2
      docked bike
                         casual
                                 43053
## 3 electric_bike
                         casual 49484
## 4 classic bike
                         member 182057
## 5
      docked bike
                         member
## 6 electric_bike
                         member
                                 48448
```

Plot for bike user vs bike type.

Riders and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(May21, "May21.csv")