Precalculus Angle sum formulas memorization

Todor Milev

2019

$\sin(\alpha + \beta), \cos(\alpha + \beta)$ via $\sin \alpha, \sin \beta, \cos \alpha, \cos \beta$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$

$$= |QD| + |CQ|$$

$$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \frac{|OD|}{|OC|} = |OD|$$

$$\cos(\alpha + \beta) = \frac{|OD|}{|OC|} = |OD|$$

$$= |OA| - |DA|$$

$$= \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$|QD| = |BA| \qquad | \Box DABQ \\ = \sin \alpha |OB| \qquad \triangle OAB \\ = \sin \alpha \cos \beta |OC| | \triangle OBC \\ = \sin \alpha \cos \beta \\ |CQ| = \cos \alpha |CB| \qquad | \triangle CQB \\ = \cos \alpha \sin \beta |OC| | \triangle OBC \\ = \cos \alpha \sin \beta \\ |OA| = \cos \alpha |OB| \qquad | \triangle OAB \\ = \cos \alpha \cos \beta |OC| | \triangle OBC \\ = \cos \alpha \cos \beta \\ |DA| = |QB| \qquad | \Box DABQ \\ = \sin \alpha |CB| \qquad | \triangle CQB \\ = \sin \alpha \sin \beta |OC| | \triangle OBC \\ = \sin \alpha \sin \beta$$

Trig Functions of Sums and Differences of Angles

Theorem

```
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta

\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta

\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta

\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta
```

- We gave a geometric proof of the sum formulas when the two angles are acute and their sum is less than $\pi = 90^{\circ}$.
- The theorem holds for all angles α, β without any restrictions.
- This can be shown by combining the preceding proof with identities such as $\cos\left(\frac{\pi}{2} \alpha\right) = \sin \alpha$, $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin \alpha$.
- There is a theoretically more advanced (but algebraically simpler) proof using Euler's formula (to be studied later/in another course).
- The difference formulas are a consequence of the sum formulas and the fact that sin is an odd function and cos is even.

Trig Functions of Differences of Angles

Example

Prove the identities $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ from the (already demonstrated) identities $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $sin(\alpha - \beta) = sin(\alpha + (-\beta))$ cos is even, $= \sin \alpha \cos(-\beta) + \cos \alpha \sin(-\beta)$ sin is odd = $\sin \alpha \cos \beta - \cos \alpha \sin \beta$ $cos(\alpha - \beta) = cos(\alpha + (-\beta))$ cos is even, $= \cos \alpha \cos(-\beta) - \sin \alpha \sin(-\beta)$ sin is odd $= \cos \alpha \cos \beta + \cos \alpha \sin \beta$