Assignments

- Undergrads: Dept and CMES scholarship deadline this Friday
- Turn in in-class Assignment
- Wednesday in MLIB again
- Time to Work on Probability Assignment (#8) today, due Wednesday
- Read Chapter 3 and 4 notes in Canvas (Chapter 5 also available)
- Read text: Text Chapter 3.1-3.6, Chapter 4
- Will discuss Assignment #10 on Wednesday

Empirical vs. Parametric Distributions

Parameteric distributions:

- Theoretical approach to define populations with known properties
- Can be defined by a function with couple parameters and assumption that population composed of random events

Random Continuous Variable x

- f(x) probability density function (PDF) for a random continuous variable x
- f(x)dx incremental contribution to total probability

Cumulative Density Function of Continuous Variable

- F(X)- total probability below a threshhold
- F(0) = 50%
- F(.66) = 75%

$$F(X) = \Pr\{x \le X\} = \int_{-\infty}^{X} f(x) dx$$

- X(F) quantile function- value of random variable corresponding to particular cumulative probability
- X(75%) = 0.66

Gaussian Parametric Distribution

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$F(X) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{X} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) dx$$

- Two parameters define Gaussian distribution: μ and σ
- Nothing magic or "normal" about the Gaussian distribution- it is a mathematical construct

Using parametric distributions

- Generate an empirical cumulative probability (CDF)
- Use dfittool to see if there is a good match between the empirical CDF and a particular parametric distribution
- Use the parameters from that parametric distribution to estimate the probabilities of values above below a threshhold or extreme events

Lake Level

 Fit using sample mean and sample estimate of population std dev

Gaussian fit to the annual level of the Great Salt Lake in terms of a histogram (top) and cumulative distribution (middle) and cumulative distribution using the dfittool.

Run dfittool

- Select the "lev" data for a cumulative prob distribution
- Select the "normal" fit and apply

Alta-Collins Temperature

PDF and CDF of Alta-Collins hourly temperature data with Gaussian fit.

• Mean: -5.1

Variance: 34.8

In dfittool: Clear out lev and bring in "cln" for density plot

Using normspec: normal density plot

- 68.3% between -1 and 1
- 95.% between -2 and 2
- 2.3% of time variable explained by Gaussian distribution >
 2 std dev of mean

Using norminv: quantile function

- norminv([0.05,0.95],2,5)
- 90% of total variance between -6.2243 10.2243
- normspec([-6.2243,10.2243],2,5)

Geometric Distribution

- Estimating how likely rare events can happen by chance
- Pr{0.01}- probability of a 1 in 100 year event
- geocdf(x,0.01)- probability for the next event to happen in 1, 10, 30, 100, 200, 300 years
- 63% chance in next 100 years
- 12% chance not until 200 years
- This is nothing "rea", just one of many assumptions

Lareau and Horel (2012)

Calendar month of largest mean synoptic-scale ascent (color shading). The monthly mean storm-track centers are shown for reference.

Klamath River, northern CA

http://water.weather.gov/ahps2/hydrograph.php?wfo=eka&gage=kl

mc1

Flood Categories (in feet)

Major Flood Stage:	46
Moderate Flood Stage:	42
Flood Stage:	38
Action Stage:	30

Historic Crests

- (1) 61.29 ft on 12/23/1964
- (2) 47.12 ft on 12/31/2005
- (3) 43.80 ft on 01/01/1997
- (4) 41.64 ft on 02/10/2017 (P)
- (5) 40.52 ft on 12/29/2005

Show More Historic Crests

(P): Preliminary values subject to further review.

Recent Crests

- (1) 41.64 ft on 02/10/2017 (P)
- (2) 25.51 ft on 03/10/2014
- (3) 30.83 ft on 12/02/2012
- (4) 32.33 ft on 03/31/2012
- (5) 25.82 ft on 12/29/2010

Klamath River Streamflow

Analyzing "flow" variable

Klamath River Streamflow

Weibull parametric fit

Klamath streamflow

Hypothesis Testing

- Alta temperature:
- Empirically: probability of temperature less than -15C is low
- Empirical estimates:
 - Mean= -5.1C
 - Std dev = 5.9C
- What are chances of getting temp of -20C IF this was a population of random numbers with that mean and std dev?

Null hypothesis

- Null hypothesis: Temp of -20C does not differ significantly from mean of -5.1C
- 95% of time, random value would be within -16 and 6C
- So 5% of time, random value would be outside this range
- REJECT the null hypothesis accepting a 5% risk that we are rejecting the null hypothesis incorrectly
- If null hypothesis: Temp of -15C does not differ significantly from mean of -5.1C
- CANNOT reject the null hypothesis since 95% of the time the value could be within -16 and 6C

Warning

Don't use language such as:

the results are significant at the 5% level

You can only state:

 Null hypothesis is rejected as too unlikely to be true with a risk of 5%

Collins: Confidence Intervals

Annual Precip in Utah

What 3 yr periods have experienced droughts?

Steps of Hypothesis Testing

- Identify a test statistic that is appropriate to the data and question at hand
 - Computed from sample data values. 3 yr sample means
- Define a null hypothesis, H₀ to be rejected
 - 3 yr sample mean 0
- Define an alternative hypothesis, H_A
 - 3 yr sample mean < 0
- Estimate the null distribution
 - Sampling distribution of the test statistic IF the null hypothesis were true
 - Making assumptions about which parametric distribution to use (Gaussian, Weibull, etc.)
 - Use sample mean of 0 and 124 yr sd of 6.4
- Compare the observed test statistics (3-yr means) to the null distribution. Either
 - Null hypothesis is rejected as too unlikely to have been true IF the test statistic fall in an improbable region of the null distribution
 - Possibility that the test statistics has that particular value in the null distribution is small
 - normspec([-1.96*6.4,1.96*6.4],0,6.4)
 - OR
 - The null hypothesis is not rejected since the test statistic falls within the values that are relatively common to the null distribution

Caution!

- NOT rejecting the null hypothesis is not the same as saying the null hypothesis is true
 - There is insufficient evidence to reject H₀
- H₀ is rejected if the probability p of the observed test statistic is ≤ α significance or rejection level
- If odds of test statistic occurring in the null distribution less than 1 or 5%, then we may choose to reject the null hypothesis
- Rejecting the null hypothesis MAY be same as accepting alternative hypothesis BUT there
 may be many other possible alternative hypotheses
- You must define ahead of time the α significance or rejection level
 - 1% or 5%, 1 in 100 or 5 in 100 chance that you accept the risk of rejecting the null hypothesis incorrectly
 - Type 1 category error of a false rejection of the null hypothesis

Roll 1 die 10000 times

Roll 6 die 10000 times

Getting the sum or mean of 6 numbers

Central Limit Theorem

sum (or mean) of a sample (6 dice) will have a Gaussian distribution even if the original distribution (one die) does not have a Gaussian distribution, especially as the sample size increases.

$$\sigma_{\bar{x}} = \sigma / \sqrt{n}$$

 $\sigma_{\bar{x}}$ standard deviation of the sample means σ standard deviation of the original population n sample size

$$s_x = \sqrt{\frac{n-1}{n}}\sigma$$
 $\sigma_{\bar{x}} = s_x / \sqrt{n-1}$

degrees of freedom: n-1, since sample can be described by the mean (1 value) plus n-1 others

Left: normspec([-1.96*6.3,1.96*6.3],0,6.3) right: normspec([-1.96*3.7,1.96*3.7],0,3.7)

95% chance that individual year within 12.4 cm

95% chance that 3-yr mean anomaly within 7.3 cm

Less likely to have a 3-yr drought (really large 3-yr mean) than to have a single really dry year

Students' t test

$$\bullet \quad \sigma_{\overline{X}} = \frac{s_x}{\sqrt{n-1}}$$

- Estimate of population variance from sample
- T value:
- Numerator: signal

$$t = (\overline{x} - \mu)\sqrt{n-1}/s_x$$

- Denominator: noise
- At t gets larger, confidence in rejecting the null hypothesis (sample mean differs from population mean) gets higher
- T large IF:
 - Spread between sample and population means large
 - Degrees of freedom is large
 - Variability in sample is small

Using t test

- [h,p,ci,stat]= ttest(valy,0,.05,'left');
- where on input valy is the vector of values in each 3-year sample
- 0 is the mean value for the null hypothesis
- .05 is the significance level chosen (5%)
- 'left' indicates that we are assuming that we have ruled out that large positive anomalies are relevant (the other options are 'both' a two-tailed test and 'right' where we rule out large negative anomalies, i.e., look for wet periods)
- Output:
 - h is a flag, 0 means the null hypothesis can not be rejected, 1 means it can be rejected
 - p is the significance level corresponding to the t value, the smaller the number the better
 - ci is the confidence interval (low and high values for the sig level chosen)
 - stat- is an array that returns the value of the t statistic, the number of degrees of freedom, and the estimated population standard deviation

Which 3-yr samples would be considered a drought?

Left, Right, 2 Sided (both)

- Left- alternative hypothesis is drought
- Right- alternative hypothesis is flood
- 2 Sided- either drought or flood
- 2 sided tests are weaker and should be avoided
- [h,p,ci,stat]= ttest(valy,0,.05,'both')
- Sample value must be further from 0 (smaller p value) since α is smaller by 2 (2.5% in each tail)

Two Sided Test: Flood or Drought

Summary

- Research involves defining a testable hypothesis and demonstrating that any statistical test of that hypothesis meets basic standards
- Typical failings of many studies include:
- (1) ignoring serial correlation in environmental time series that reduces the estimates of the number of degrees of freedom and
- (2) ignoring spatial correlation in environmental fields that increases the number of trials that are being determined simultaneously.
 - Inflates the opportunities for the null hypothesis to be rejected falsely.
- Use common sense
- Be very conservative in estimating the degrees of freedom temporally and spatially
- Avoid attributing confidence to a desired result when similar relationships are showing up far removed from your area of interest for no obvious reason
- The best methods for testing a hypothesis rely heavily on independent evaluation using additional data not used in the original statitiscal analysis

Assignments

- Undergrads: Dept and CMES scholarship deadline this Friday
- Turn in in-class Assignment
- Wednesday in MLIB again
- Time to Work on Probability Assignment (#8) today, due Wednesday
- Read Chapter 3 and 4 notes in Canvas (Chapter 5 also available)
- Read text: Text Chapter 3.1-3.6, Chapter 4
- Will discuss Assignment #10 on Wednesday