

حل تمرین مبانی منطق جدید

حل تمرین مبانی منطق جدید

عامر آمیخته دانشگاه تربیت مدرس amer.amikhteh@modares.ac.ir

> صفحهی محصول: logiccircle.ir/?p=22763

> > ۳۱ خرداد ۱۴۰۲ نسخه ۱۵

فهرست مطالب

ت	ت تمرینها	فهرسد
ج	ت جداول	فهرسد
١	المتار	پیشگ
۲	ساختار نحوى منطق گزارهها	اول
ب	سیستم استنتاج طبیعی منطق گزارهها (S_N)	۱ س
۴ ۶	S_N زبان صوری S_N زبان صوری S_N دستگاه استنتاجی S_N دستگاه استنتاجی S_N	
۶. ۶.	سیستم اصل موضوعی (S_A) و سیستم نموداری (S_T) منطق گزارهها (S_T)	
99	۱۰ سیستم نموداری منطق گزارهها (S) در	دوم
۶۸	اختار معنايي منطق گزارهها	س ۳
81		
99 99	۲۰ جدول ارزش گزارههای مرکب	
	.٣ راستگو، متناقض، ممکنالصدق	
٧۵		
	عبر معلی و تاییا معلی	
۸۱	انظریه منطق گزارهها	۴ ف
٨١	را عربی سطق فراردهای (صحت)	
٨٢		_

۸٧	ساختار نحوى منطق محمولات	سوم ،	
۱۰۶	تم استنتاج طبیعی منطق محمولات (P_N) زبان صوری P_N	1.0 7.0 7.0 7.0 6.0 6.0 9.0	
١٨٨	ساختار معنایی و فرانظریه منطق محمولات	چهارم	
19	تار معنایی منطق محمولات تعبیر Lp	1.V 7.V 7.V 6.V 6.V 9.V	

فهرست تمرينها

۴																								مه	ترج	: ۱۲	•	صفحه	مرين	1	٠١,
۵																						فت	سا-	يد س	قواء	:17	۴.	صفحه	نمرين	۲ ،	۲.۱
۶																					(ئىير	عانة	نه ج	نموة	: ٢1	1	صفحه	نمرين	۲	. Y
٧																								يه .	توج	: ٢١	١,	صفحه	نمرين	*	٠.١
۱۲																									-				نمرین		
49																							- 4		4	,			نمرین		
44																									-		- 6		دين. نمرين		
47																					ن	ثبات							رين نمرين		
۵٠																			٨	- 111	-								ریں نمرین		
۵۳																		•			l				•				ریں نمرین		
۶.																A									•				رین نمرین		
94															•														ریں نمرین		
۶۸																		•				- 4			•				ریں نمرین		
99													(ر دو	ر صا	ال	ک ر							_					رین نمرین		
٧٢														•															ریں نمرین		
٧۴										•																			ریں نمرین		
٧۵									1	Ļ) .	`	ļ						,	تىا									ریں نمرین		
٧٧												1																	ریں نمرین		
۸١	. '			. •																		•	_						ریں نمرین		
۸۲			4	ì				Ţ				/													-				۰ رین نمرین		
۸۲					7																				-				۰ رین نمرین		
۸٣						`	Ò																		-				سرین نمرین		
۸۴			١.																						-				مرین نمرین		
19			١.																		-			•	•				۰ رین نمرین		
91				d	ļ			١.																	-				سرین نمرین		
94																									-				سرین نمرین		
94		7																							•				سرین نمرین		
90			ļ		•																				•				سرین نمرین		
91																									•				سرین نمرین		
• 1																									•				سریں نمرین		
٠۵																									•				سریں نمرین		
٠,۶																	•			·	•	نشہ	حا		•				سریں نمادی		

ث	نها	ِست تمري	فهر
---	-----	----------	-----

۱ • ۷																نشين	جاز	نمونه .	:١	٠٢	سفحه	تمرين م	۵.۰۱
١٠٨																		توجيه	:١	٠٢	سفحه	تمرين م	11.0
۱۱۳																		اثبات	:١	٠٧	سفحه	تمرین م	17.0
119																							
178																		اثبات	:١	٠٩	سفحه	تمرین م	14.0
141																اثبات	و	ترجمه	:١	١.	سفحه	تمرین م	10.0
149																		اثبات	:١	۱۲	سفحه	تمرین ه	18.0
101																نشين	جاة	نمونه	:١	۱۵	سفحه	تمرين م	۱۷.۵
۱۵۳																		ترجمه	:١	۱۸	سفحه	تمرین م	11.0
104																		اثبات	:1	۲۱	سفحه	تمرين ح	19.0
۱۵۵																		اثبات	:1	71	سفحه	تمرين م	۵.۰ ۲
184																اثبات	و	ترجمه	: 1	71	سفحه	تمرين ص	71.0
١٧٠																						تمرين م	
1 / 9																		اثبات	:\	٣٣	سفحه	تمرین م	7.9
191																مدل	در	صدق	:١	٣9	سفحه	تمرين م	1.
193																مدل	در	صدق	:١	٣9	سفحه	تمرين م	7.7
194															÷	مدل	در	صدق	:1	۴,	سفحه	تمرين م	۳.۷
190									•	•				4	Ą	ں . ا	قض	مثال نا	:١	40	سفحه	تمرين م	4.
۲۰۵										•		·				ں ، ،	قض	مثال نا	:١	۴۸	سفحه	تمرين م	۵.۷
7 • 9	•										A	Į				صحت	يه	فراقض	:١	۵۴	سفحه	تمرين م	1.1
711												•		ŀ		تماميت	يه	فراقض	:١	۵۸	سفحه	تمرين م	۲.۸
717								•).					تماميت	يه ا	فراقض	:١	۵٩	سفحه	تمرين م	٣.٨
717											_		_	_		تماميت	مه	في اقضه	: 1	۶۷	ر فحه	تم. د. و	4.1

فهرست جداول

																		۵.۱						
۶.																				Ļ	إعد	_ قو	α	1.7
۶١																					إعد	, _ قو	β	۲. ۲
98																/		۵.۵) ن ر ر	تم	دی	ئتنام	J	۱.۵
١																		۶.۵	رین رین	تم	ص می	فتنام	IJ	۲.۵
																		٧.۵						
147								•				À	,				1	0.0	رين	تم	ەي	فتنام	J	۴.۵
188									•		•	•	•	b	·		7	۱.۵	رين	تم	ەي	فتنام	J	۵.۵
189															•		•				اعد	_ قو	γ	۱.۶
189											۹										أعد	_ _ قو	$\stackrel{'}{\delta}$	۲.۶
1 1 9																				_	اعد	، ق	α	٣.۶

پیش گفتار

کتاب حاضر حل تمرین کتاب «مبانی منطق جدید» از انتشارات سمت نوشته ی استاد عزیزم، دکتر لطف الله نبوی است. نسخه ای که من از آن استفاده می کنم چاپ یازدهم در تابستان ۱۳۹۶ است.

- ١. اين كتاب تنها به صورت الكترونيكي در وبسايت حلقه منطق انتشار يافته است.
- ۲. در صورتی که این کتاب را به طور مستقیم از وبسایت حلقه منطق خریداری نکرده اید لطفاً
 کتاب را از طریق logiccircle.ir/?p=22763 خریداری کنید.
 - (آ) در فرآیند خرید می توانید کد تخفیف ۴۰ درصدی CGY7HN2Q را وارد کنید.
- (ب) شما با این کار علاوه بر اینکه از مولف حمایت و او را تشویق میکنید تا در آینده کارهای بهتری ارائه دهد، از آپدیتهای (نگارشهای) بعدی کتاب نیز می توانید بهرهمند شوید.

حق انتشار تمام نسخههای این کتاب محفوظ است.

- ۳. با توجه به تجربیات جدیدتر، نسخههای جدیدتر و بهتر نیز ارائه خواهد شد.
- ۴. تعداد ستارههای بزرگ قرمز در ابتدای تمرین و ستارههای کوچک در داخل تمرین به ترتیب
 به معنای درجه اهمیت و سختی هستند.
 - ۵. آپدیت در کانال حلقه منطق در تلگرام اطلاع رسانی می شود.
- 9. لطفاً دوستانی که با مورادی روبرو می شوند که به نظرشان اشتباه است یا پیشنهادی برای بهتر شدن کتاب دارند، ترجیحاً از طریق تلگرام با آیدی Amer_Amikhteh یا از طریق ایمیل amer.amikhteh@modares.ac.ir

عامر آمیخته تابستان ۱۴۰۰ بخش اول ساختار نحوی منطق گزارهها

فصل ١

(S_N) سیستم استنتاج طبیعی منطق گزارهها

S_N زبان صوری ۱.۱

تمرین ۱.۱: ترجمه صفحه ۳

اگر دو گزاره «باران می بارد» و «برف می بارد» به ترتیب با «R» و «S» نشان داده شود، جملات زیر را از زبان طبیعی به زبان صوری منطق گزارهها ترجمه کنید.

- ۱. یا باران میبارد یا برف نمیبارد.
- ۲. برف میبارد ولی باران نمیبارد.
 - ۳. باران و برف باهم نمی بارند.
- ۴. چنین نیست که اگر باران ببارد برف نیز ببارد.
 - ۵. اگر و تنها اگر باران ببارد برف نمیبارد.
 - ۶. نه باران می بارد و نه برف.
 - * ۷. تنها اگر باران ببارد برف نمیبارد.
 - * ۸. برف نمی بارد، مگر اینکه باران ببارد.
- ۹. اگر باران نمی بارد، چنین نیست که هم برف و هم باران ببارد.
 - ۱۰. یا هم باران و هم برف میبارد یا نه باران و نه برف.

پاسخ تمرین ۱.۱

$$\sim (S \wedge R)$$
 . T $\sim S \wedge \sim R$. A

$$\sim R \supset \sim (S \land R) . \mathbf{q}$$

$$S \wedge {\sim} R$$
 . Y

$$R \equiv \sim S.\Delta$$

$$R \lor \sim S . \lor \sim (R \supset S) . \lor$$

$$\sim$$

$$\sim S \vee R$$
 يا $S \supset R$. ۸

$$\sim S \supset R . V$$

$$(R \wedge S) \vee (\sim R \wedge \sim S)$$
. $\land \bullet$

صفحه ۱۴

تمرین ۲.۱: قواعد ساخت

كدام يك از اين عبارات فرمولند. دلايل خود را بيان كنيد.

$$(P \lor Q \lor R)$$
 .

$$((P \lor \sim (Q)) \equiv R) \cdot \Upsilon$$

$$((P\supset Q)\supset ((R\supset P)\supset (R\supset Q)))$$
.

$$(P \wedge (P \equiv Q)) \supset R \wedge Q)$$
.

$$((P \lor Q) \supset ((P \supset R) \supset ((Q \supset R) \supset R)))$$
.

پاسخ تمرین ۲.۱

در تعریف فرمولها با هر تقریری که باشد، اساس کار این است که ابهامی وجود نداشته باشد.

- ($P \lor Q) \lor R$) این مورد طبق تعریف یک فرمول نیست. بلکه عبارتهای ($P \lor Q) \lor R$) و $P \lor Q$ فرمول هستند. البته از آنجا که ادات $P \lor Q$ فرمول هستند. البته از آنجا که دات $P \lor Q$ این مورد را فرمول در نظر می گیرند. معادل هستند. برای همین در بعضی تقریرهای دیگر این مورد را فرمول در نظر می گیرند. اما توجه کنید که در آن صورت در قسمت قواعد ساخت حتماً باید درباره ی این قرارداد توضیح داده شود.
 - .۲. فرمول نیست. مشکل عبارت $\sim(Q)$ است.
 - ٣. فرمول است. دليل:

$$(\operatorname{FR}_1)$$
 و R فرمول هستند. R فرمول هستند.

$$(\operatorname{FR}_3)$$
 و $(R\supset Q)$ فرمول هستند. $(R\supset Q)$ ، $(P\supset Q)$ (ب)

$$(\mathrm{FR}_3)$$
 و در نتیجه کل عبارت فرمول هستند. $(R\supset P)\supset (R\supset Q))$ (ج)

۴. فرمول نیست. تعداد پرانتزهای راست و چپ یکسان نیست.

(دليل به عهده خواننده)

۵. فرمول است.

S_N دستگاه استنتاجی ۲.۱

صفحه ۲۱

تمرین ۳.۱: نمونه جانشین

معین کنید هر کدام از استدلالهای گروه دوم، نمونه جانشین کدام یک از استدلالهای گروه اول هستند.

$$P\supset Q\vdash \sim Q\supset \sim P$$
 (آ (اصل) گروه اول

$$P \lor Q, P \vdash \sim Q$$
 (ب

$$P \vdash P \supset Q$$
 (7)

$$P \vdash P \lor Q$$
 (ء

$$P\supset (Q\supset R), P\supset Q\vdash P\supset R$$
 (o

$$P \wedge Q \vdash P$$
 (9

$$P \vdash Q \supset P$$
 (j

$$P\supset (Q\wedge R)\vdash \sim (Q\wedge R)\supset \sim P$$
 (7

$$P \lor (Q \land \sim P), P \vdash \sim (Q \land \sim P)$$
 ط

$$Q \vdash Q \supset P$$
 (s

$$P dash P ee (Q \equiv R)$$
 . ۱ گروه دوم (نمونه جانشین)

$$(P\supset Q)\wedge (R\supset S)\vdash P\supset Q$$
 .Y

$$(P \vee R) \supset (Q \wedge R) \vdash \sim (Q \wedge R) \supset \sim (P \vee R)$$
.*

$$P\supset (Q\supset R), R\supset {\sim} P\vdash R\supset {\sim} Q$$
 .
 *

$$P\supset Q\vdash Q\supset (P\supset Q)\ . \triangle$$

$$P \vee (Q \wedge {\sim} R), P \vdash {\sim} (Q \wedge {\sim} R)$$
 .9

$$P\supset Q\vdash (P\supset Q)\supset (P\supset Q)\ . \mathsf{V}$$

$$P\supset (Q\supset R), P\supset Q\vdash (P\supset R)\supset R$$
.

$$P\supset (P\supset Q), P\supset P\vdash P\supset Q$$
 .

$$P \equiv Q \vdash (P \equiv Q) \lor (R \land S)$$
 .1.

پاسخ تمرین ۳.۱

(٢)

تمرین ۴.۱: توجیه

استدلالهای زیر و براهین آنها مفروض است، توجیه مناسب هریک از سطرهای براهین مزبور را بنویسید.

$$\begin{array}{l} \mathbf{1} - P \\ \mathbf{Y} - \sim \sim Q \\ & \therefore (P \wedge Q) \vee \sim Q \end{array} \tag{1}$$

$$\mathbf{Y} - Q$$

$$\mathbf{f}_{-} P \wedge Q$$

$$\mathbf{d}_{-} (P \wedge Q) \vee \sim Q$$

$$\mathbf{1}\text{-}P\equiv Q$$

$${f Y}-R$$

$$\mathbf{T}\text{-}(R\vee S)\supset (T\wedge U)$$

$$\mathbf{f}_- \ U \supset Q$$
$$\therefore P$$

$$\Delta$$
- $R \vee S$

$$\mathbf{\hat{r}}_{-} T \wedge U$$

$${
m V-}~U$$

$$\Lambda$$
- Q

$$q - P$$

$$\begin{array}{c}
\mathbf{N} - \sim (P \supset Q) \\
\mathbf{Y} - (P \supset Q) \lor (R \equiv S)
\\
\therefore R \equiv S \\
\mathbf{Y} - P \supset Q
\\
\mathbf{Y} - \sim (R \equiv S)
\\
\mathbf{\Delta} - (P \supset Q) \land \sim (P \supset Q)
\\
\mathbf{P} - \sim \sim (R \equiv S)
\\
\mathbf{V} - R \equiv S
\\
\mathbf{A} - (R \equiv S) \land \sim (P \supset Q)
\\
\mathbf{N} - R \equiv S
\\
\mathbf{N} - R \equiv S
\\
\mathbf{N} - R \equiv S
\end{array}$$

- پاسخ تمرین ۴.۱

(1.
$$1-$$
 oālob $Y-$ oālob $Y-$ (y) (

صفحه ۲۴

🛨 🖈 تمرین ۵.۱: اثبات

استدلالهای زیر را ثابت کنید.

 $P \wedge Q \vdash Q \wedge P$ ١. جابهجايي: ۲. شرکتپذیری: $P \wedge (Q \wedge R) \vdash (P \wedge Q) \wedge R$ $P \vdash P \land P$ * ۳. تکرار: قياس شرطي: $P\supset Q, Q\supset R\vdash P\supset R$ ۵. نقض مضاعف: $P \vdash \sim \sim P$ وفع تالى: $P \supset Q, \sim Q \vdash \sim P$ $(P\supset Q)\land (Q\supset P)\vdash P\equiv Q$ ٧. تعادل: $P \equiv Q \vdash (P \supset Q) \land (Q \supset P)$ ٨. تعادل: $P \lor Q \vdash Q \lor P$ ٩. جابهجایی:

 $(P \wedge Q) \supset R \vdash P \supset (Q \supset R)$:۱۰ صدور:

 $P \supset (Q \supset R) \vdash (P \land Q) \supset R$: مدور:

 $P\supset Q\vdash \sim Q\supset \sim P$: عکس:

$\sim Q \supset \sim P \vdash P \supset Q$	۱۳. عکس:
$P \lor Q, \sim P \vdash Q$	* ۱۴. قياس انفصالي:
$(P\supset Q)\land (R\supset S), P\lor R\vdash Q\lor S$	۱۵. ذوالوجهين مثبت:
$P \wedge (Q \vee R) \vdash (P \wedge Q) \vee (P \wedge R)$	۱۶. پخشپذیری:
$(P \land Q) \lor (P \land R) \vdash P \land (Q \lor R)$	۱۷. پخشپذیری:
$P \vee (Q \wedge R) \vdash (P \vee Q) \wedge (P \vee R)$	۱۸. پخشپذیری:
$(P \vee Q) \wedge (P \vee R) \vdash P \vee (Q \wedge R)$	۱۹. پخشپذیری:
$P\supset Q\vdash \sim\!\!P\lor Q$	* ۲۰. استلزام:
$\sim P \lor Q \vdash P \supset Q$	* ۲۱. استلزام:
$\sim (P \wedge Q) \vdash \sim P \vee \sim Q$	* ۲۲. دمورگان:
$\sim P \lor \sim Q \vdash \sim (P \land Q)$	۲۳. دمورگان:
$\sim (P \lor Q) \vdash \sim P \land \sim Q$	۲۴. دمورگان:
$\sim P \land \sim Q \vdash \sim (P \lor Q)$	* ۲۵. دمورگان:
$P \vee (Q \vee R) \vdash (P \vee Q) \vee R$	۲۶. شرکتپذیری:
$(P \vee Q) \vee R \vdash P \vee (Q \vee R)$	۲۷. شرکتپذیری:
$(P\supset Q) \land (R\supset S), \sim Q \lor \sim S \vdash \sim P \lor \sim R$	۲۸. ذوالوجهين منفى:
$P \equiv Q \vdash (P \land Q) \lor (\sim P \land \sim Q)$	* ۲۹. تعادل:
$(P \land Q) \lor (\sim P \land \sim Q) \vdash P \equiv Q$	۳۰. تعادل:

پاسخ تمرین ۵.۱

روش (الگوريتم) اثبات با قواعد اصلى

به طور خلاصه در اثبات هر استدلال، اول از خود میپرسیم «چه میخواهیم؟»، سپس از خود میپرسیم «چه داریم؟». در هر مرحله به ترتیب گامهای زیر را انجام میدهیم:

۵.۱	تم ب	راهنماي	: 1. '	حدول ١
. ,	(7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	رادسو	. , .	, 0,500,

			ω. 1	ىمرين	سمای	۱۰ د راه	دول ۱	ج		3.7	
ح≡	م≡	ح⊂	م⊂	\sim ح	\sim p	ح∨	م\		م	N	
								√	√	4	1
								\checkmark	\checkmark	7	۲
									\checkmark	3	٣
		\checkmark	\checkmark							6	۴
					\checkmark				\checkmark	4	۵
		\checkmark			\checkmark				\checkmark	6	9
	\checkmark	\checkmark						\checkmark		8	٧
\checkmark			\checkmark						\checkmark	8	٨
						\checkmark	\checkmark			6	٩
		\checkmark	\checkmark						\checkmark	7	١.
		\checkmark	\checkmark					\checkmark		7	11
		\checkmark	\checkmark		\checkmark				\checkmark	7	١٢
		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	8	١٣
				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	11	14
		\checkmark				\checkmark	\checkmark	\checkmark		11	۱۵
						\checkmark	\checkmark	\checkmark	\checkmark	10	18
						\checkmark	\checkmark	\checkmark	\checkmark	12	١٧
						\checkmark	\checkmark	\checkmark	\checkmark	12	١٨
						\checkmark	\checkmark	\checkmark	\checkmark	13	19
		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	11	۲.
			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	12	۲۱
				\checkmark	\checkmark		\checkmark		\checkmark	14	77
					\checkmark	\checkmark		\checkmark	\checkmark	13	۲۳
					\checkmark		\checkmark		\checkmark	10	74
				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	14	70
						\checkmark	\checkmark			12	79
						\checkmark	\checkmark			12	77
		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	17	71
\checkmark			\checkmark	✓	\checkmark		\checkmark		✓	17	79
	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	22	٣٠

۱. تعیین هدف: پیدا می کنیم که چه می خواهیم. یعنی هدف را آنچه که قرار است اثبات کنیم قرار می دهیم و توجه ی اصلی را بر روی آن می گذاریم. هدف اصلی همان نتیجه ی استدلال است. اما احتمالاً هدفهای فرعی هم خواهیم داشت. هدفهای فرعی هم فواهیم داشت. هدفهای فرعی همدف های قبل از هدف اصلی هستند که برای رسیدن به هدف اصلی مورد نیاز است. مثلاً در اثبات استدلال $Q \supset P, Q \vdash P \land (Q \lor R)$ هدف اصلی اثبات فرمول مثلاً در اثبات استدلال $Q \lor Q \lor R$ است. چرا که برای بدست آوردن فرمول عطفی نیاز داریم مولفههای آن را داشته باشیم.

A است. اگر A

- یک جملهنشانه بود؛
- (آ) به گام بعدی میرویم.
- () اگر همه ی گامهای بعدی انجام شدند و به عبارت دیگر قابل انجام نیستند، مجبوریم از «برهان خلف» استفاده کنیم. به این صورت که $A \sim C$ افرض کنید و هدف را پیدا کردن دو فرمول مثل A و $A \sim C$ قرار دهید. در نتیجه با توجه با قاعده های معرفی نقض، حذف نقض و معرفی عطف A اثبات می شود.

نکته: استفاده از برهان خلف در موراد کمی الزامی است. پس تا نیاز نبود از آن استفاده نکنید. وگرنه معمولاً مراحل اثبات طولانی تر و سخت تر خواهد شد.

- فرمول $B\supset C$ بود؛ با توجه به قاعده ی معرفی شرط، B را فرض کنید و هدف را اثبات C قرار دهید.
- فرمول $B \wedge C$ بود؛ با توجه به قاعده ی معرفی عطف، هدف را اثبات کردن فرمولهای $B \cap C$ فرمولهای $B \in C$ قرار دهید.
- فرمول $B \equiv C$ بود؛ با توجه به قاعده ی معرفی دوشرطی یک بار B را فرض کنید و هدف را اثبات C قرار دهید. و یک بار نیز برعکس عمل کنید.
 - فرمول $B \lor C$ بود؛
- (آ) اگر یکی از فرمولهای B و C در سطرهای قبل عیناً (به عنوان یک فرمول و نه بخشی از فرمول) وجود داشت. تنها با قاعده ی معرفی فصل A اثبات می شود.
- (ب) اگر یک فرمول فصلی دیگر مانند $B' \lor C'$ در سطرهای قبلی بود. با توجه به قاعده ی حذف فصل، یک بار B' را فرض کنید و هدف را اثبات A قرار دهید. و یک بار نیز C' را فرض کنید و هدف را اثبات A قرار دهید.
 - (ج) در غیر این صورت مجبوریم از برهان خلف استفاده کنیم.
- ۳. اجرای طرح (تاکتیک): در این گام باید امکانات خود را برای رسیدن به هدف بسنجیم.

بنابراین تازه به سطرهای قبل (از جمله مقدمات) نگاه میکنیم تا ببینیم که چگونه از آنها به بهترین شکل استفاده کنیم. برای این کار از قواعد حذف استفاده میکنیم.

$1-P\wedge Q$	مقدمه
$\therefore Q \wedge P$	(1)
Y-P	۱، (ح∧)
r-Q	۱، (ح∧)
$\mathbf{f}_{-} Q \wedge P$	۲،۳، (م/)

$$1-P \wedge (Q \wedge R)$$
 مقدمه (Y) $(P \wedge Q) \wedge R$ (Y) $(Y-P)$ $((\wedge \zeta), 1)$ $(Y-Q \wedge R)$ $((\wedge \zeta), 1)$ $(Y-Q)$ $((\wedge \zeta), 1)$ $(Y-Q)$ $((\wedge \zeta), Y-Q)$ $((\wedge \zeta), Y-Q)$

$$P$$
 مقدمه (۳) $P \wedge P$ (۳) $P \wedge P$ مقدمه $P \wedge P$

1-P	مقدمه
$\therefore \sim \sim P$	(Δ)
→ Y - ~P	ف
$r P \wedge \sim P$	۱،۲، (م/)
۴ - ~~P	$(\sim_{\!$

$$1-P\supset Q$$
 مقدمه $Y-\sim Q$ مقدمه مقدمه مقدمه $\sim P$ (۶) $\sim P$ (۶) $\sim P$ $\sim P$ ($\sim P$ ($\sim P$) $\sim P$

$$1-(P\supset Q)\wedge(Q\supset P)$$
 مقدمه $P\equiv Q$ (V) $P=Q$ ($P=Q$ (

$$1-P\equiv Q$$
 مقدمه
$$(P\supset Q)\wedge (Q\supset P)$$
 (Λ)

$$Y-P$$

$$Y-Q$$

$$Y-P\supset Q$$

$$(S=0) \cdot Y \cdot Y$$

$$(S=0) \cdot Y \cdot Y \cdot Y$$

$$(S=0) \cdot Y \cdot Y \cdot Y \cdot Y$$

$$(S=0) \cdot Y \cdot Y \cdot Y \cdot Y \cdot Y \cdot Y$$

$$1-P\vee Q$$
 $Q\vee P$
 $Q\vee P$

$$I - (P \wedge Q) \supset R$$

$$\therefore P \supset (Q \supset R)$$

$$Y - P$$

$$\Rightarrow Y - Q$$

$$\forall - P \wedge Q$$

$$\Delta - R$$

$$\Rightarrow P - Q \supset R$$

$$Y - Q \supset R$$

$$\Rightarrow P \rightarrow R$$

$$\Rightarrow P - Q \supset R$$

$$\Rightarrow P$$

$1-P\supset (Q\supset R)$	مقدمه
$\therefore (P \land Q) \supset R$	(11)
$rac{}{ ho}$ Y- $P \wedge Q$	ف
Y - P	۲، (ح∧)
$Y_{-}Q\supset R$	۱،۳، (ح⊂)
Δ - Q	۲، (ح∧)
9-R	۵،۴ (ح⊂)
$V-(P \wedge Q) \supset R$	۲-۶، (م⊂)

$$1-\sim Q\supset \sim P$$
 $\therefore P\supset Q$
 (17)
 $Y-P$
 \vdots
 $Y-\sim Q$
 $Y-\sim Q$
 $Y-\sim P$
 $Y-\sim Q$
 $Y-\sim$

$1-P \lor Q$	مقدمه
$r-\sim P$	مقدمه
$\therefore Q$	(14)
→ ٣– <i>P</i>	ف
r +- ~Q	ف
$ \Delta - P \wedge \sim P$	۲،۳، (م/)
$9-\sim\sim Q$	$(\sim_{ ho})$ ، ۵-۴
V- Q	$(\sim_{m{ au}})$ ، $m{arphi}$
$\rightarrow \Lambda - Q$	ف
$\mathbf{q} - Q \wedge \sim P$	۲،۸، (م/)
$1 \cdot - Q$	۹، (ح۸)
11-Q	۱ ،۳-۷ ،۸-۹ ، (ح۷)

$$1-(P\supset Q)\wedge(R\supset S)$$
 مقدمه $Y-P\vee R$ مقدمه $Q\vee S$ (10) $Y-P$ $Y-P$

$1 - P \wedge (Q \vee R)$	مقدمه
$\therefore (P \land Q) \lor (P \land R)$	(19)
Y-P	۱، (ح۸)
$\mathbf{r}_{-} \ Q \lor R$	۱، (ح۸)
$rac{}{ ho}$ $rac{}{ ho}$ Q	ف
$\Delta - P \wedge Q$	۲،۲، (م/)
$\mathbf{r} - (P \wedge Q) \vee (P \wedge R)$	۵، (م∨)
\overrightarrow{V} - R	ف
Λ - $P \wedge R$	۷،۷، (م/)
$\P - (P \wedge Q) \vee (P \wedge R)$	۸، (م/۷)
	۲،۴-۴،۳ (ح ^۷) (ح ^۷)

$$1-P\supset Q$$
 $\therefore \sim P\vee Q$
 $(\Upsilon \cdot)$
 $\Upsilon - \sim (\sim P\vee Q)$
 $\Rightarrow \Upsilon - P$
 $\Rightarrow Q$
 $\Rightarrow (\Upsilon \cdot)$
 $\Rightarrow \Upsilon - P$
 $\Rightarrow Q$
 $\Rightarrow (\nabla \cdot)$
 $\Rightarrow (\nabla \cdot$

 $\mathbf{q} - P \wedge Q$

 $1 \cdot - Q$

11-Q

 $NY-P\supset Q$

۲،۸، (م/)

۹، (ح۸)

۲-۱۱، (م)

۱ ،۲-۷،۸-۲ ، (ح۷)

$1 - \sim (P \wedge Q)$	مقدمه
$\therefore \sim P \lor \sim Q$	(77)
\longrightarrow Y - \sim (\sim P \vee \sim Q)	ف
	ف
$\downarrow \downarrow \uparrow \uparrow Q$	ف
$ a P \wedge Q$	۴،۳ (م/)
$ \mathfrak{S}_{-}(P \wedge Q) \wedge \sim (P \wedge Q)$	۱،۵، (م/)
$V - \sim Q$	۶-۴) ،۶-۴
$\land \neg \sim P \lor \sim Q$	۷، (م∨)
$ \qquad \qquad \P - (\sim P \vee \sim Q) \wedge \sim (\sim P \vee \sim Q) $	۲ ،۸ ، (م/)
\ \• - ~P	$(\sim$ ام \sim) ، $4-$ ۳
$11-\sim P\vee\sim Q$	۱۰ (م۷)
	$Q)$ (م \wedge) (۱۱،۲
	$(\sim$ ۱۲-۲، رم \sim
$NF \sim P \lor \sim Q$	$(\sim_{ extsf{-}})$ ، ۱۳
$1 - \sim P \lor \sim Q$	مقدمه
	V.200.
$\therefore \sim (P \land Q)$	(77)
$\therefore \sim (P \land Q)$ $\longrightarrow \mathbf{Y} - P \land Q$	(۲۳) ف
$r-P \wedge Q$ $r-P$	(۲۳) ف ۲، (ح∧)
$rac{1}{\sqrt{1-Q}} $ Y – $P \wedge Q$	(۲۳) ف
$ \begin{array}{c} $	(۲۳) ف ۲، (ح∧) ۲، (ح∧) ف
$ \begin{array}{c} $	(۳۳) ف ۲، (ح∧) ۲، (ح∧)
$ \begin{array}{c} $	(۲۳) ف ۲، (ح∧) ۲، (ح∧) ف
$ \begin{array}{c} $	(۲۳) ف ۲، (ح∧) ۲، (ح∧) ف ۵.۳ ۵.۳ ف
$ \begin{array}{c} $	(۳۳) ف ۲، (ح∧) ۲، (ح∧) ف ۳،۵، (م∧) ف ف ن
$ \begin{array}{c} $	(۳۳) ۲، (ح∧) ۲، (ح∧) ن ۳،۵، (م∧) ن ن ۴،۷، (م∧) ن ۸-۹، (م∼)
$ \begin{array}{c} $	(۳۳) ۲، (ح∧) ۲، (ح∧) ۳،۵، (م∧) ف ۵. ۳،۵، (م∧) ۸-۹، (م∧)
$ \begin{array}{c} $	(۳۳) ۲، (ح∧) ۲، (ح∧) ن ۳،۵، (م∧) ن ن ۴،۷، (م∧) ن ۸-۹، (م∼)

$1 - \sim (P \vee Q)$	مقدمه
$\therefore \sim P \land \sim Q$	(74)
→ Y - P	ف
$r-P \lor Q$	۲، (م∨)
$ \mathbf{f}_{-}(P \vee Q) \wedge \sim (P \vee Q) $	
$\Delta = \sim P$	۲-۲، (م~)
$\mathcal{G} = \mathcal{F} - Q$	1
	ف ع (۱/۵)
$V-P\vee Q$	۶، (م/)
$ \land \neg (P \lor Q) \land \neg (P \lor Q) $	
$q \sim Q$	$(\sim_{oldsymbol{\wedge}})$ ، ۸–۶
$1 \cdot - \sim P \wedge \sim Q$	(م/)، ۹،۵
$1 - \sim P \wedge \sim Q$	مقدمه
$\therefore \sim (P \lor Q)$	(۲۵)
$Y \sim P$	$(\wedge_{\mathcal{T}})$ ، ۱
$r-\sim Q$	۱، (ح۸)
\longrightarrow \mathbf{f} – $P \lor Q$	ف
$\rightarrow \Delta - P$	ف
	۲،۵، (م/)
$ \begin{array}{c c} $	'
	ف
$\wedge \Lambda - \sim P$	ف سر , , , ,
$-Q \wedge \sim Q$	۳،۷، (م/)
\ \• - ~~P	$(\sim$ ، (م \sim) ، ۹ $-$ ۸
11-P	$(\sim_{ extsf{-}})$ ، ۱ ،
	۱۱،۲ (م/)
$\Gamma = P \land \sim P$ (\	۱۲-۷،۶-۵،۴) (ح/
$NY_{-} \sim (P \vee Q)$	۱۳-۴، (م
•	1

۹، (م۷)

۱۰ (م

$$1-P\vee(Q\vee R)$$
 مقدمه (Y)
 $\therefore (P\vee Q)\vee R$ (Y)
 $Y-P$
 $Y-P$
 $Y-P\vee Q$ $(\vee P)$
 $Y-P\vee Q$ Y
 $Y-P\vee Q$
 $Y-P\vee Q\vee R$ $Y-P\vee Q\vee R$

 $\overline{\mathsf{NY-}P\lor(Q\lor R)}$ (\lor_{C}) $\mathsf{NN-A.A-Y.N}$

 $\mathbf{N} - Q \vee R$

 $N-P \lor (Q \lor R)$

$$1-(P\supset Q) \wedge (R\supset S)$$
 مقلمه $Y-\sim Q \vee \sim S$ مقدمه $\therefore \sim P \vee \sim R$ $(Y \wedge)$ $Y-P\supset Q$ $(\wedge \gamma) \cdot 1$ $Y-R\supset S$ $(\wedge \gamma) \cdot 1$ $Y-R\supset S$ $(\wedge \gamma) \cdot 1$ $Y-R \supset S$ $(\wedge \gamma) \cdot 1$ $Y-S \supset S$ $(\wedge \gamma) \cdot 1$

$$\begin{array}{l} 1-P\equiv Q\\ \therefore (P\wedge Q)\vee(\sim P\wedge\sim Q)\\ (\forall q)\\ \\ Y^-\sim [(P\wedge Q)\vee(\sim P\wedge\sim Q)]\\ \\ \vdots\\ Y^-P\\ Y^-Q\\ () -P\wedge Q\\ () -(P\wedge Q)\vee(\sim P\wedge\sim Q)\\ \\ Y^-(P\wedge Q)\vee(\sim P\wedge\sim Q)\\ \\ Y^-(P\wedge Q)\vee(\sim P\wedge\sim Q)] \wedge\sim [(P\wedge Q)\vee(\sim P\wedge\sim Q)]\\ \\ (\wedge p)\cdot (P\wedge Q)\vee(\sim P\wedge\sim Q)\\ \\ (\wedge p$$

$$P = Q \qquad (r)$$

$$Q \qquad$$

تمرین ۶.۱: توجیه

استدلالهای زیر و براهین آنها مفروضند. توجیه هر یک از سطرهای براهین مزبور را بنویسید.

(1)

$$\mathsf{V-}(P \land Q) \supset [P \supset (R \land S)]$$

 $\mathbf{Y}_{-}\left(P\wedge Q\right)\wedge T$

 $\therefore R \vee S$

 $\mathbf{r}\text{-}\ P \wedge Q$

 $\mathbf{f}_{-}P\supset (R\wedge S)$

۵- P

 \mathbf{F} - $R \wedge S$

 ${\it V-R}$

 $\mathsf{A}\text{-}\ R \vee S$

$$1-(P\vee Q)\supset (R\wedge S)$$

 ${\bf Y}_- \sim R$

 $\therefore \sim Q \tag{Y}$

 Υ - $\sim R \vee \sim S$

 $\mathbf{Y}_{-} \sim (R \wedge S)$

 $\Delta - \sim (P \vee Q)$

 $\mathbf{\hat{r}}_{-} \sim P \wedge \sim Q$

 $V-\sim Q$

1- P

 $\therefore Q \supset P \tag{\ref{thm:posterior}}$

 $\mathbf{Y} - P \vee {\sim} Q$

 Υ - $\sim Q \vee P$

 \mathbf{Y} - $Q\supset P$

(4)

(۵)

$$1-P\supset (Q\supset R)$$

$$\mathbf{Y} - R \supset {\sim} R$$

$$\Upsilon$$
- $(S\supset P) \land (T\supset Q)$

$$\therefore S \supset \sim T$$

 $\mathbf{f}_{-}(P \wedge Q) \supset R$

$$\Delta - \sim R \vee \sim R$$

$$\Delta - \sim R \vee \sim R$$

$$\mathbf{\hat{r}}_{-} \sim R$$

$$V_- \sim (P \wedge Q)$$

$$\Lambda - \sim P \vee \sim Q$$

$$\mathbf{q}_- \sim S \vee \sim T$$

$$1 \cdot - S \supset \sim T$$

$$1-P\supset (Q\supset R)$$

$$Y-P\supset (S\supset T)$$

$$\Upsilon$$
- $P \wedge (Q \vee S)$

$$\mathbf{r}_{-} \sim R$$

$$\Delta$$
- $(P \wedge Q) \supset R$

$$\mathfrak{S}_{-}\left(P\wedge S\right)\supset T$$

$$V-(P \wedge Q) \vee (P \wedge S)$$

$$\operatorname{A-}[(P \wedge Q) \supset R] \wedge [(P \wedge S) \supset T]$$

$$\mathbf{q}$$
 – $R \vee T$

$$1 - T$$

$$\begin{array}{l} \mathbf{1}-P \wedge (Q \vee R) \\ \mathbf{Y}-(P \wedge R) \supset \sim (S \vee T) \\ \mathbf{Y}-(\sim S \vee \sim T) \supset \sim (P \wedge Q) \\ \therefore S \equiv T \\ \mathbf{Y}-(P \wedge R) \supset (\sim S \wedge \sim T) \\ \mathbf{0}-\sim (S \wedge T) \supset \sim (P \wedge Q) \\ \mathbf{9}-(P \wedge Q) \supset (S \wedge T) \\ \mathbf{V}-[(P \wedge Q) \supset (S \wedge T)] \wedge [(P \wedge R) \supset (\sim S \wedge \sim T)] \\ \mathbf{\Lambda}-(P \wedge Q) \vee (P \wedge R) \\ \mathbf{q}-(S \wedge T) \vee (\sim S \wedge \sim T) \\ \mathbf{1}\cdot -S \equiv T \\ \mathbf{1}\cdot P \supset Q \\ \mathbf{Y}-P \supset R \\ \therefore P \supset (Q \wedge R) \\ \mathbf{Y}-(P \supset Q) \wedge (P \supset R) \\ \mathbf{Y}-(\sim P \vee Q) \wedge (\sim P \vee R) \\ \mathbf{0}-P \supset (Q \wedge R) \\ \mathbf{1}\cdot P \supset Q \\ \mathbf{Y}-P \vee (\sim \sim R \wedge \sim \sim Q) \\ \mathbf{Y}-P \vee (\sim \sim R \wedge \sim \sim Q) \\ \mathbf{Y}-S \supset \sim R \\ \mathbf{Y}-\sim (P \wedge Q) \\ \therefore \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{q}-\sim S \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{\Lambda}-\sim \sim R \\ \mathbf{1}\cdot \sim S \vee Q \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{1}\cdot \sim S \vee \sim Q \\ \mathbf{1}\cdot \sim S \vee Q \\ \mathbf{1}\cdot \sim$$

$$\begin{array}{l}
\mathbf{1} - P \lor (\sim Q \lor P) \\
\mathbf{7} - Q \lor (\sim P \lor Q) \\
\therefore (P \supset Q) \land (Q \supset P)
\end{array} (4)$$

$$\begin{array}{l}
\mathbf{7} - (\sim Q \lor P) \lor P \\
\mathbf{7} - \sim Q \lor (P \lor P)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{6} - \sim Q \lor P \\
\mathbf{7} - Q \supset P
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - (\sim P \lor Q) \lor Q \\
\mathbf{6} - \sim P \lor (Q \lor Q)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - \sim P \lor Q \\
\mathbf{1} - (P \supset Q) \land (Q \supset P)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{1} - (P \lor Q) \lor (R \land S) \\
\mathbf{7} - (\sim P \land S) \land \sim (\sim P \land Q)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - \sim P \land [S \land \sim (\sim P \land Q)]
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - \sim P \land [S \land \sim (\sim P \land Q)]
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - \sim P \land [S \land \sim (\sim P \land Q)]
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - \sim P \land [Q \lor (R \land S)]
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - Q \lor (R \land S)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - Q \lor (R \land S)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - Q \lor (R \land S)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - Q \lor (R \land S)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - Q \lor (R \land S)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - Q \lor R
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - Q \lor R
\end{aligned}$$

$$\begin{array}{l}
\mathbf{7} - \sim P \land (Q \lor R)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{1} - (\sim P \land Q) \lor (\sim P \land R)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{1} - \sim (\sim P \land Q) \land (\sim P \land S)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{1} - \sim (\sim P \land Q) \land (\sim P \land S)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{1} - \sim (\sim P \land Q)
\end{aligned}$$

$$\begin{array}{l}
\mathbf{1} - \sim (\sim P \land Q)
\end{aligned}$$

پاسخ تمرین ۶.۱

1.
$$1$$
 – مقدمه
 Y – Y (ح \wedge)
 Y – Y – Y (ح \wedge)
 Y – Y –

صفحه ۳۱

🛨 ★

استدلالهای زیر را ثابت کنید.

$$P \supset (Q \supset \sim R) \vdash P \supset (R \supset Q)$$

$$P\supset \sim (Q\supset R), (S\wedge Q)\supset R, S\vdash \sim P$$

$$S\supset T, S\vee T\vdash T \tag{.}$$

$$P\supset Q, R\supset Q\vdash (P\vee R)\supset Q \qquad . \mathbf{f}$$

$$[(P \land Q) \supset R] \land [\sim S \supset (Q \land \sim R)] \vdash P \supset S \qquad . \triangle$$

$$P\supset (Q\supset R), Q\supset (R\supset S)\vdash P\supset (Q\supset S) \tag{9}$$

پاسخ تمرین ۷.۱

برای استدلالهای این تمرین برهانهای متنوعی وجود دارد. من آن برهان با طول کمتر را ترجیح دادم. در زیر طول برهانی که پیدا کردم را آوردم. تلاش کنید برهانهای با طول کمتر ارائه دهید.

۹ (۵)	٧ (٤)	۸ (٣)	V (Y)	٧ (١)
17(1.)	٧ (٩)	۶ (۸)	A (V)	٧ (۶)
٧(١۵)	1.(14)	1.(14)	11(17)	1.(11)
1 • (7 •)	10(19)	۸(۱۸)	17(17)	٧(١۶)
19 (70)	17(74)	14 (74)	14(77)	17(71)

$$1-P\supset (Q\wedge\sim R)$$
 مقدمه $P\supset (R\supset Q)$ (1) $P\supset (R\supset Q)$ (2) $P\supset (R\supset Q)$ (2) $P\supset (P)$ $P\supset (P)$ $P\supset (P\supset Q)$ (2) $P\supset (P\supset Q)$ (2) $P\supset (P\supset Q)$ (2) $P\supset (P\supset Q)$

$1-S\supset T$	مقدمه
$Y-S \vee T$	مقدمه
T	(٣)
→ ٣ - S	ف
۴ - T	۱،۳، (ح⊂)
\rightarrow Δ $ T$	ف
$\mathcal{F}_{-} T \wedge T$	۵، (تک)
V-T	۶، (تک)
Λ - T	۷٫۳-۳٬۲ (ح۷)

$$\begin{array}{lll} \text{N-}\left[(P \wedge Q) \supset R\right] \wedge \left[\sim S \supset (Q \wedge \sim R)\right] & \text{ adlabel} \\ \therefore P \supset S & \text{(a)} \\ \text{Y-}\left(P \wedge Q\right) \supset R & \text{(b)} \\ \text{Y-}\left(P \wedge Q\right) \supset R & \text{(b)} \\ \text{Y-}\left(P \cap Q \supset R\right) & \text{(b)} \\ \text{Y-}\left(P \cap Q \cap R\right) & \text{(b)} \\ \text{Y-}\left(P \cap Q \cap R\right) & \text{(b)} \\ \text{Y-}\left(P \cap Q \cap R\right) & \text{(c)} \\ \text{Y-}\left(P \cap Q \cap R\right) & \text{(c)} \\ \text{Y-}\left(P \cap Q \cap R\right) & \text{(c)} \\ \text{Y-}\left(P \cap S \cap R\right) & \text{(d)} \\ \text{Y-}\left(P \cap R\right) & \text{(d)}$$

$1-P\supset (Q\supset R)$	مقدمه
\mathbf{Y} - $Q\supset (R\supset S)$	مقدمه
$\therefore P\supset (Q\supset S)$	(۶)
$\mathbf{Y}\text{-}\ P\supset [Q\supset (Q\wedge R)]$	۱، (جذ)
$\mathbf{Y}_{-}(P \wedge Q) \supset (Q \wedge R)$	۳، (صد)
Δ - $(Q \wedge R) \supset S$	۲، (صد)
$\mathbf{\hat{r}}_{-}\left(P\wedge Q\right)\supset S$	۵،۴، (ق.ش)
$V-P\supset (Q\supset S)$	۶، (صد)

$$1 - \sim P \vee [(Q \supset R) \wedge (S \supset R)]$$
 مقدمه $1 - P \wedge (Q \vee S)$ مقدمه $1 - P \wedge (Q \vee S)$ مقدمه $1 - P \wedge (Q \vee S)$ $1 - P \wedge (\nabla C)$ $1 -$

$1-P\vee (Q\wedge R)$	مقدمه
\mathbf{Y} - $P\supset R$	مقدمه
$\therefore R$	(٩)
→ ٣ - P	ف
۴ – R	۲،۳، (ح⊂)
\rightarrow Δ $-Q \wedge R$	ف
9-R	۵، (ح∧)
V-R	(۷-۵،۴-۳،۱

$$N-(P \lor Q) \supset (R \supset S)$$
 مقدمه $Y-(\sim S \lor T) \supset (P \land R)$ مقدمه $\therefore S$ (1.) $Y-[(P \lor Q) \land R] \supset S$ (1.) $Y-[(P \lor Q) \land R] \supset S$ ($0 \to S \lor T$ ($0 \to S \lor T$))

$$1-P\supset Q$$
 مقدمه $Y-Q\supset [(R\supset \sim\sim R)\supset S]$ مقدمه $P\supset S$ (11) $P\supset S$ (11) $P\subset R$ $P\subset R$

$$N-(P\vee Q)\supset R$$
 مقدمه $Y-S\supset (T\wedge U)$ مقدمه (Y) مقدمه (Y) (Y) مقدمه (Y) (Y)

$1 - P \lor (R \land S)$	مقدمه
$Y_{-}\left(P\supset T\right)\wedge\left(T\supset T\right)$	مقدمه (S)
$\therefore S$	(14)
→ ٣ - P	ف
$ \mathbf{f}_{-}P\supset T $	۲، (ح∧)
۵- T	۴،۳، (ح⊂)
$ \mathbf{\hat{r}} - T \supset S $	۲، (ح∧)
V - S	۵،۶، (ح⊂)
$\rightarrow \Lambda - R \wedge S$	ف
qS	۸، (ح∧)
1 · - S	۱ ،۳-۷،۸-۹ ، (ح۷)

$$1-(P\supset Q)\wedge(R\supset S)$$
 مقدمه (14) $(P\wedge R)\supset(Q\wedge S)$ (14) $($

$1-P\supset R$	مقدمه
$\therefore (R \land P) \equiv P$	(19)
$rac{1}{r} rac{1}{r} - R \wedge P$	ف
Y - P	۲، (ح∧)
→ ۴ - P	ف
∆ − <i>R</i>	۱،۴، (ح⊂)
$\mathbf{\hat{r}}$ – $R \wedge P$	۴،۵، (م/)
$V-(R\wedge P)\equiv P$	۶−۴،۳−۲ (م≡)

$1-(P\vee Q)\supset (R\wedge S)$	مقدمه
$\mathbf{Y}_{-} \sim P \supset (T \supset \sim T)$	مقدمه
$rac{r}{\sim}R$	مقدمه
$T \sim T$	(۱۷)
→ ۴ - P	ف
$\Delta - P \vee Q$	۴، (م۷)
$\mathbf{\hat{r}}$ – $R \wedge S$	۱،۵، (ح⊂)
V- R	۶، (ح∧)
$\land - R \land \sim R$	۷،۳، (م/)
$-\sim P$	$(\sim_{ ho})$ ،۸-۴
$\bigvee T \supset \sim T$	۲،۹، (ح⊂)
$N - \sim T \vee \sim T$	۱۰ (اس)
$NY-\sim T$	۱۱، (تک)

$1-(P\supset Q)\wedge(R\supset S)$	مقدمه
Y – $(Q \lor S) \supset T$	مقدمه
$ au \sim T$	مقدمه
$\therefore \sim (P \vee R)$	(۱۸)
$rac{}{ ho}$ $f F-P ee R$	ف
$\Delta - Q \vee S$	۱،۴، (ذ.م)
9- T	۲،۵، (ح⊂)
$V-T\wedge \sim T$	۶،۳) ،۶،۳
Λ - \sim $(P \vee R)$	۷-۲، (مٍ∼)

$1-(P\vee Q)\supset (R\wedge S)$	مقدمه
\mathbf{Y} - $(R \vee T) \supset (\sim U \wedge W)$	مقدمه
Υ - $(U \lor V) \supset (P \land Z)$	مقدمه
$\therefore \sim U$	(19)
\rightarrow \mathbf{f} – U	ف
$\Delta - U \vee V$	۴، (م۷)
$\mathcal{F}_{-}P\wedge Z$	۵،۳(ح⊂)
V- P	۶، (ح∧)
$\land - P \lor Q$	۷، (م۷)
$\mathbf{q} - R \wedge S$	۱،۸، (ح⊂)
١• − <i>R</i>	۹، (ح۸)
$N-R \vee T$	۱۰ (م۷)
$17 \sim U \wedge W$	۱۱،۲ (ح⊂)
$17-\sim U$	۱۲، (ح۸)
1 $ ^{\prime }$ $ ^{\prime }$ U $\wedge \sim U$	۱۳،۴ ، (م/)
$10 - \sim U$	۱۴-۴، (م
	'
$V - P \lor (Q \supset R)$	مقدمه
\mathbf{Y} - $[Q\supset (Q\wedge R)]\supset (S\vee Q)$	مقدمه (T
Υ - $(S\supset P)\wedge (T\supset U)$	مقدمه
$\therefore P \lor U$	(٢٠)
→ ۴ - P	ف
$\Delta - P \vee U$	۴، (م۷)
$\rightarrow \mathcal{F} - Q \supset R$	ٔ ف
$V-(Q\supset R)\supset (S\vee T)$	۲، (جذ)
$A-S \lor T$	۷،۶ (ح⊂)
$\mathbf{q} - P \vee U$	۸،۳ (ذ.م)
) , 9-\6, 6-4, 1

$$N-(P\supset \sim Q) \wedge (R\supset S)$$
 مقدمه $Y-(\sim Q\supset T) \wedge (S\supset \sim U)$ مقدمه $Y-(T\supset \sim V) \wedge (\sim U\supset W)$ مقدمه $Y-(T\supset \sim V) \wedge (\sim U\supset W)$ مقدمه مقدمه $Y-P\wedge R$ مقدمه $Y-P\wedge R$ ($Y+P\wedge R$) مقدمه $Y-P\wedge R$ في $Y-P\wedge R$ في $Y-P\wedge R$ في $Y-P\wedge R$ (غ.ن) $Y-P\wedge R$ (غ.ن)

$$N-(P\supset Q)\wedge(R\supset S)$$
 مقدمه $Y-(Q\vee S)\supset\{[T\supset(T\vee U)]\supset(P\wedge R)\}$ مقدمه $P\equiv R$ (YY)

 $P\equiv R$ (YY)

 $P=T$
 $P=T\vee U$ ($P=T\vee U$ (

	- > 7
$I_{-}[P\supset \sim(\sim Q\wedge\sim R)]\wedge[S\supset \sim(Q$	$\vee R)$ مقدمه
\mathbf{Y} - $(\sim T\supset P) \wedge (\sim U\supset S)$	مقدمه
Υ - $(T\supset Q)\wedge (U\supset R)$	مقدمه
$\therefore Q \equiv R$	(22)
$_{ ightharpoonup}$ $rak{r}_{-}\sim Q \lor \sim R$	ف
$\Delta - \sim T \vee \sim U$	۴،۳، (ذ.ن)
$m{arphi} P ee S$	۵،۳، (ذ.م)
$\forall -(\sim Q \land \sim R) \lor \sim (Q \lor R)$	۱،۶، (ذ.م)
	۷، (دم)
$ q \sim (Q \vee R) $	۸، (تک)
	۴−۹، (م⊂)
$NL \sim (\sim Q \vee \sim R) \vee \sim (Q \vee R)$	۱۰ (اس)
$NY- (\sim \sim Q \land \sim \sim R) \lor (\sim Q \land \sim R)$	۱۱، (دم)
NY - $(Q \wedge R) \vee (\sim Q \wedge \sim R)$	۱۲، (ن.م)
$NF-Q\equiv R$	۱۳ ، (تع)

 $1 - (P \vee Q) \supset (R \supset S)$ مقدمه $Y - [R \supset (R \land S)] \supset T$ مقدمه $au_- T \supset [(\sim U \lor \sim \sim U) \supset (P \land U)]$ مقدمه $\therefore P \equiv T$ (۲۴) ف ۴، (دم) $\Delta - \sim \sim U \wedge \sim \sim U$ $\overline{\mathbf{9}_{-} \sim \sim (\sim U \vee \sim \sim U)}$ ۰۵-۴) ،۵-۴ (\sim_{7}) ، 9 $V - \sim U \vee \sim \sim U$ $A-(R\supset S)\supset T$ ۲، (جذ) →**4**- P ف ۹، (م/) $Y - P \lor Q$ ۱۰،۱، (حر) $N-R\supset S$ ۱۱،۸ (ح 17-T1 r - Tف ۱۴- $(\sim\!\!U\vee\sim\sim\!\!U)\supset (P\wedge U)$ (ح \subset) ، ۱۳،۳ ۱۴،۷ (حر) $\operatorname{Va-}P\wedge U$ ۱۵، (ح۸) 19-P۱۶−۱۳٬۱۲−۹ (م≡) $V - P \equiv T$

$1-(P\supset Q)\wedge (P)$	$R\supset S)$ مقدمه
\mathbf{Y} - $P \vee R$	مقدمه
Υ - $(P\supset \sim S) \land$	$(R\supset \sim Q)$ مقدمه
$\mathbf{f}_{-}\left(Q\wedge\sim S\right)\supset C$	مقدمه T
Δ - $S \supset (Q \lor U)$	مقدمه
$T \vee U$	(۵۲)
\mathbf{F} - $Q \vee S$	١،٢، (ذ.م)
$V - \sim S \vee \sim Q$	۲،۳، (ذ.م)
$\rightarrow \Lambda - \sim S$	ف
q – $S \vee Q$	۶، (جا)
$1 \cdot - Q$	۸،۸، (ق.۱)
$11-Q \wedge \sim S$	۸،۱۰(م/)
NY-T	۱۱،۴ (ح⊂)
1 Υ $ T$ \vee U	۱۲، (م/)
→ 14-~Q	ف
10-S	۱۴،۶ (ق.ا)
$19-Q \lor U$	۵،۵۱، (ح⊂)
V-U	۱۶،۱۴ (ق.۱)
$ullet$ Λ $T ee U$	۱۷، (م/۷)
$19-T \lor U$	۷۰۸-۱۴،۱۳-۸،۷ (ح۷)

تمرین ۸.۱: ترجمه و اثبات _______ صفحه ۳۳

استدلالهای زیر را اولاً به زبان منطق گزارهها نمادگذاری کنید و ثانیاً آنها را با قواعد استنتاج اثبات کنید.

- ۱. اگر پلیس قاتل را به زودی دستگیر نکند مردم ناراضی میشوند. اگر مردم ناراضی شوند رئیس پلیس استعفا میدهد. رئیس پلیس استعفا نمیدهد، پس پلیس قاتل را به زودی دستگیر میکند.
- ۲. اگر تقاضا ثابت بماند و قیمتها تنزل کند، میزان معاملات زیاد میشود. اگر تنزل قیمتها افزایش میزان معاملات را موجب شود؛ آنگاه میتوان نرخها را ثابت نگه داشت.
 داشت. تقاضا ثابت میماند، پس میتوان نرخها را ثابت نگه داشت.
- ۳. اگر به موقع به رئیس جمهور یا وزیر دفاع اطلاع رسیده باشد اعلامیه صادر شده و جلسه هیأت دولت تشکیل گردیده است. اگر اعلامیه صادر شده باشد، رادیو آن را به

اطلاع مردم رسانده است. رادیو اعلامیه را به اطلاع مردم نرسانده است، پس به موقع به رئیس جمهور اطلاع نرسیده است.

- ۴. اگر امضای پیکاسو در پای این پرده نقاشی ساختگی نباشد، پرده قیمتی است. چنین نیست که یا امضای پیکاسو در پای این پرده ساختگی است یا شیفتگان پردههای نفیس دنبال آن نیستند. اگر این پرده کار پیکاسو نباشد، شیفتگان پردههای نفیس دنبال آن نیستند. پس این پرده قیمتی است و کار پیکاسو است.
- ۵. یا سازمان بیمه تقاضای شرکت مهتاب را رد نکرده یا شرکت مهتاب غیرمعتبر بوده و کالا غیراستاندارد است. اگر شرکت مهتاب وجهی را که مورد تقاضای بیمه است، نداشته و کالا غیراستاندارد باشد، پیشنهاد شرکت مهتاب قابل اعتنا نیست. پس اگر شرکت مهتاب وجه مورد تقاضای بیمه را نداشته و سازمان بیمه تقاضای شرکت مهتاب را رد کرده باشد، پیشنهاد شرکت مهتاب قابل اعتنا نیست.

پاسخ تمرین ۸.۱

$1-\sim P\supset Q$	مقدمه
\mathbf{Y} – $Q\supset R$	مقدمه
$r \sim R$	مقدمه
$\therefore P$	(1)
$rac{q}{\sqrt{Q}}$	۳،۲، (ر.ت)
$\Delta - \sim \sim P$	۴،۱، (ر.ت)
9-P	۵، (ح∽)

$1-(P\wedge Q)\supset R$	مقدمه
Y - $(Q\supset R)\supset S$	مقدمه
Y - P	مقدمه
$\therefore S$	(٢)
$\mathbf{f}_{-} P \supset (Q \supset R)$	۱، (صد)
$\Delta - Q \supset R$	۳،۴، (ح⊂)
9-S	۲،۵، (ح⊂)

$1-(P\vee Q)\supset (R\wedge S)$	مقدمه
\mathbf{Y} – $R\supset T$	مقدمه
Υ - \sim T	مقدمه
$\therefore \sim P$	(٣)
$\mathbf{Y}_{-} \sim R$	۲،۲، (ر.ت)
$\Delta - \sim R \vee \sim S$	۴، (م/)
$\mathbf{r} \sim (R \wedge S)$	۵، (دم)
$V \sim (P \vee Q)$	۶،۱، (ر.ت)
Λ - \sim $P \wedge \sim Q$	۷، (دم)
$q - \sim P$	$(\wedge_{\!$

 $\mathbf{1-} \sim \!\! P \supset Q$ مقدمه $\mathbf{Y} - \sim (P \vee \sim R)$ مقدمه $\mathbf{r}_{-} \sim S \supset \sim R$ مقدمه $\therefore Q \wedge S$ (4) ۲، (دم) $\mathbf{Y}_{-} \sim P \wedge \sim \sim R$ ۴، (ح۸) $\Delta - \sim P$ ۴، (ح۸) 9- ~~R ۱،۵، (حر) V-Q۶،۳ (ر.ت) Λ - \sim \sim S**4**- S $\operatorname{V-}Q\wedge S$ ۷،۹، (م/)

$1 - \sim P \vee (Q \wedge R)$	مقدمه
Y - $(S \wedge R) \supset T$	مقدمه
$\therefore (S \land P) \supset T$	(۵)
$\mathbf{r}_{-} (\sim P \vee Q) \wedge (\sim P \vee R)$	۱، (پخ)
$\mathbf{Y}_{-} \sim P \vee R$	۳، (ح∧)
$\Delta - P \supset R$	۴، (اس)
$\mathcal{G}_{-}(R \wedge S) \supset T$	۲، (جا)
$V-R\supset (S\supset T)$	۶، (صد)
Λ - $P \supset (S \supset T)$	۷،۵، (ق.ش)
$\mathbf{q}_{-}(P \wedge S) \supset T$	۸، (صد)
$(S \wedge P) \supset T$	۹، (جا)

صفحه ۳۳

🛨 تمرین ۹.۱: ترجمه و اثبات 🛨

استدلالهای زیر را پس از نمادگذاری اثبات کنید. (مثالهای فلسفی و ریاضی)

- 1. احکام اخلاقی یا بیانگر ادعاهای صادقند یا بیانگر احساساتند. اگر احکام اخلاقی بیانگر ادعاهای صادق باشند، در آن صورت مفهوم «باید» یا مفهومی ناشی از تجربه حسی است یا مفهوم عینی غیرتجربی است. مفهوم «باید» مفهومی ناشی از تجربه حسی نیست. مفهوم «باید» مفهوم عینی غیرتجربی نیست، پس احکام اخلاقی اگرچه بیانگر احساساتند.
- ۲. اگر و فقط اگر وجود به تنهایی اصیل باشد، ملاک تشخیص، وجود خاص اشیاست و قول به اصلین نیز صحیح نیست. بنابراین، اگر وجود به تنهایی اصیل باشد در آن صورت اگر حرکت جوهری برقرار باشد، آنگاه ملاک تشخیص، وجود خاص اشیاست.
- ۳. واقعیتی مستقل از ذهن موجود است. اگر واقعیتی مستقل از ذهن موجود باشد، این واقعیت منشاء انتزاع دو مفهوم وجود و ماهیت است. اگر این واقعیت منشاء انتزاع دو مفهوم وجود و ماهیت باشد در آن صورت اگر هیچکدام از وجود و ماهیت اصیل نباشد، واقعیتی مستقل از ذهن موجود نیست. اگر ماهیت اصیل باشد، ماهیات مصداق واحد خارجی ندارند و حمل مصداقی (حمل شایع) معتبر نیست. حمل مصداقی معتبر است. بنابراین وجود اصیل است و ماهیت اعتباری است (اصیل نیست).
- ۴. اگر عدد x کوچکتر از y و عدد y کوچکتر از z باشد، x کوچکتر از z است. اگر عدد x مساوی y و عدد y کوچکتر از z باشد، x کوچکتر یا مساوی y است. عدد y کوچکتر از z است. بنابراین عدد x کوچکتر از عدد z است.

0. در مثلث ABC، اگر ضلع a و b باهم مساوی باشند، زوایای A و B نیز مساویند. اگر ضلع a کوچکتر از a باشد، زاویه a کوچکتر از a است. اگر ضلع a کوچکتر از یا مساوی زاویه a باشد، زاویه a کوچکتر از زاویه a نیست. اگر ضلع a کوچکتر از ضلع a است. ضلع a نباشد، آنگاه یا ضلع a و a باهم مساویند یا ضلع a کوچکتر از ضلع a است. پس اگر زاویه a کوچکتر از زاویه a باشد، ضلع a کوچکتر از ضلع a خواهد بود.

پاسخ تمرین ۹.۱

$1-P \lor Q$	مقدمه
$Y-P\supset (R\vee S)$	مقدمه
$rac{r}{\sim}R$	مقدمه
$\mathbf{Y}_{-} \sim S$	مقدمه
$\therefore \sim P \land Q$	(1)
$\Delta - \sim R \wedge \sim S$	۴،۳، (م/)
9 – \sim $(R \vee S)$	۵، (دم)
$V \sim P$	۶،۲ (ر.ت)
A-Q	۷،۱، (ق.۱)
$\mathbf{q} \sim P \wedge Q$	۸،۷ (م/)

$$1-P \equiv (Q \land \sim R)$$
 مقدمه
$$P \supset (S \supset Q)$$
 (Y)
$$P \supset (S \supset Q)$$

$$P \rightarrow Y - P$$

$$P \rightarrow Y - S$$

$$P \rightarrow Y - Q \land \sim R$$
 ($S \supset Q$) ($S \supset Q$)

1- P	مقدمه
Y - $P\supset Q$	مقدمه
Υ - $Q\supset [(\sim R \land \sim S)\supset \sim$	مقدمه $[P]$
$\mathbf{f}_{-} S \supset (\sim T \land \sim U)$	مقدمه
Δ - U	مقدمه
$\therefore R \land \sim S$	(٣)
$\mathcal{G}_{-}Q$	۱،۲، (ح⊂)
$V-(\sim R \land \sim S) \supset \sim P$	۶،۳٪ (ح⊂)
Λ - \sim \sim P	۱، (ن.م)
$\mathbf{q} \sim (\sim R \wedge \sim S)$	۸،۷، (ر.ت)
$1 \cdot - \sim \sim R \lor \sim \sim S$	۹، (دم)
$N-T \lor U$	۵، (م∨)
$\operatorname{Y}_{-} \sim \sim (T \lor U)$	۱۱، (ن.م)
$V^{\mu} \sim (\sim T \wedge \sim U)$	۱۲، (دم)
$14-\sim S$	۱۳،۴، (ر.ت)
$10-R \vee S$	۱۰ (ن.م)
$19-S \vee R$	۱۰، (جا)
NV-R	۱۶،۱۴ (ق.ا)
$1A-R \wedge \sim S$	۱۷،۱۴ (م/)
	·

 $1-(P\wedge Q)\supset R$ مقدمه $Y-(S\wedge Q)\supset R$ مقدمه Υ - $P \vee S$ مقدمه r-Qمقدمه $\therefore R$ (4) ۴،۳، (م/) Δ - $(P \vee S) \wedge Q$ ۵، (پخ) $\mathcal{F}_{-}(P \wedge Q) \vee (S \wedge Q)$ $\operatorname{V-}\left[(P\wedge Q)\supset R\right]\wedge\left[(S\wedge Q)\supset R\right]\left(\wedge_{\mathbf{f}}\right)\text{, I. I}$ ۷،۶ (ذ.م) $\mathbf{A}\text{-}\ R\vee R$ ۸، (تک) \mathbf{q} - R

$$1-P\supset Q$$
 مقدمه $T-R\supset S$ مقدمه مقدمه $T-(S\vee Q)\supset \sim T$ مقدمه مقدمه مقدمه مقدمه مقدمه $T-(S\vee Q)\supset \sim T$ مقدمه مقدمه مقدمه مقدمه مثدمه $T\supset U$ (۵) $T\supset U$ (۵)

🛨 تمرین ۱۰.۱: اثبات

قضیههای زیر را اثبات کنید.

 $(I): \vdash P \supset P$ ١. قانون هماني: $\vdash P \lor (P \supset Q)$ ٠٢ $(EFQ): \vdash (P \land \sim P) \supset Q$ ٣. از تناقض: $\vdash \sim P \lor (Q \supset P)$ ٠۴ $(PRL)(Dum): \vdash (P \supset Q) \lor (Q \supset P)$ ۵. يارادوكس فصلى: $\vdash (P \supset Q) \lor (Q \supset R)$ ۶.

$$\vdash (P \supset Q) \lor (Q \supset R) \tag{.9}$$

$$\vdash (P \supset Q) \lor (\sim P \supset R) \tag{.} \mathsf{V}$$

$$\vdash P \equiv [P \lor (P \land Q)] \qquad \qquad . \mathsf{A}$$

$$\vdash P \equiv [P \land (P \lor Q)] \tag{9}$$

$$\vdash \sim [(P \supset \sim P) \land (\sim P \supset P)]$$
 .1.

$$(P)$$
: $\vdash [(P\supset Q)\supset P]\supset P$: اصل پیرس: ۱۱ *

$$\vdash (P \supset Q) \supset [(P \land R) \supset (Q \land R)] \qquad .17$$

$$\vdash (P \supset Q) \supset [(R \lor P) \supset (Q \lor R)] \qquad .17$$

$$\vdash (P \supset Q) \supset [\sim (Q \land R) \supset \sim (R \land P)] \qquad .17$$

$$\vdash [(P \lor Q) \supset R] \supset \{[(R \lor S) \supset T] \supset (P \supset T)\} \qquad .10$$

پاسخ تمرین ۱۰.۱

$$P \equiv [P \land (P \lor Q)] \qquad (4)$$

$$P = \begin{bmatrix} P \land (P \lor Q) \\ Y - P \lor Q \\ Y - P \land (P \lor Q) \\ \hline Y - P \land (P \lor Q) \\ \hline \Delta - P \\ \hline P - P \equiv [P \land (P \lor Q)] \qquad (\triangle - Y, Y - Y)$$

فصل ۲

سیستم اصل موضوعی (S_A) و سیستم نموداری (S_T) منطق گزارهها

(S) سیستم نموداری منطق گزارهها (S)

جدول ۱.۲: α قواعد

(~):	$\sim\sim\varphi$	(^):	$\varphi \wedge \psi$	(∼∨):	$\sim (\varphi \lor \psi)$	(~ ⊃):	$\sim (\varphi \supset \psi)$
	φ		φ		$\sim \varphi$		arphi
			ψ		$\sim \psi$		$\sim \psi$

نکته ۱.۲

- ۱. همیشه α قواعد را قبل از β قواعد بکار ببرید. یعنی تا میتوانید شاخههای کمتری تولید کنید.
 - ۲. تلاش كنيد برهانهاى كوتاهترى پيدا كنيد.
 - $(ilde{l})$ در بسیاری از موارد شما نیازی به استفاده از قاعدهی (\sim) ندارید.
- (ب) به عنوان مثال در قواعدی مانند (۸) نیاز نیست که حتماً از هر دو نتیجه استفاده کنید.

جدول β : ۲.۲ قواعد

صفحه ۴۵

تمرین ۱.۲: اثبات

درستی یا نادرستی استدلالهای زیر را با روش نموداری اثبات کنید.

- 1. $(P \land Q) \supset S \vdash P \supset (Q \supset S)$
- 2. $(Q \wedge R) \supset P, \sim Q, \sim R \vdash \sim P$
- 3. $\sim (P \wedge Q), R \equiv P \vdash \sim R$
- 4. $(P \supset Q) \supset (R \supset S), \sim Q \lor \sim S \vdash P \lor \sim R$
- 5. $P \supset (R \lor S), (R \land S) \supset Q \vdash P \supset Q$

پاسخ تمرین ۱.۲

برای اثبات نادرستی، پیدا کردن یک گذر باز کافی است. اما ما به دلیل راهنما بودن این کتاب، تمام گذرهای باز را رسم کردهایم و سطرهای توجیه را نیز آوردهایم.

$$(1) \qquad (P \wedge Q) \supset S \vdash_{S_T} P \supset (Q \supset S)$$

1.
$$(P \land Q) \supset S \checkmark$$
 premiss
2. $\sim (P \supset (Q \supset S)) \checkmark$ negated conclusion
3. P 2, $(\sim \supset)$
4. $\sim (Q \supset S) \checkmark$ 2, $(\sim \supset)$
5. Q 4, $(\sim \supset)$
6. $\sim S$ 4, $(\sim \supset)$
7. $\sim (P \land Q) \checkmark S$ 1, (\supset)
8. $\sim P \sim Q \otimes \qquad 7, (\sim \land)$
 $\otimes \otimes \otimes \qquad 6$
3 5
(2) $(Q \land R) \supset P, \sim Q, \sim R \nvdash_{S_T} \sim P$
1. $(Q \land R) \supset P \checkmark \qquad \text{premiss}$
2. $\sim Q \qquad \text{premiss}$
3. $\sim R \qquad \text{premiss}$
4. $\sim \sim P \checkmark \qquad \text{negated conclusion}$
5. $P \qquad 4, (\sim)$
6. $\sim (Q \land R) \checkmark P \qquad 1, (\supset)$
7. $\sim Q \sim R \qquad 6, (\sim \land)$
(3) $\sim (P \land Q), R \equiv P \nvdash_{S_T} \sim R$

صفحه ۴۶

تمرین ۲.۲: اثبات

قضیههای زیر را به روش نموداری اثبات کنید.

- 1. $\vdash [P \supset (Q \land R)] \supset (P \supset R)$
- $2. \ \vdash [(P \supset Q) \land {\sim} Q] \supset {\sim} P$
- 3. $\vdash ([(P \supset Q) \land (R \supset S)] \land (P \lor R)) \supset (Q \lor S)$

پاسخ تمرین ۲.۲

	1. $\sim \left((P \supset (Q \land R)) \supset (P \supset P \supset (Q \land R)) \right)$ 2. $P \supset (Q \land R) \checkmark$ 3. $\sim (P \supset R) \checkmark$ 4. P 5. $\sim R$ 6. $\sim P Q \land R \checkmark$ 7. $\otimes R$ 4 \otimes 5	$R)) \checkmark \qquad \text{negated conclusion} \\ 1, (\sim \supset) \\ 1, (\sim \supset) \\ 3, (\sim \supset) \\ 3, (\sim \supset) \\ 2, (\supset) \\ 6, (\land) $
	1. $\sim \left(((P \supset Q) \land \sim Q) \supset \sim (P \supset Q) \land \sim Q \checkmark \right)$ 2. $(P \supset Q) \land \sim Q \checkmark$ 3. $\sim \sim P$ 4. $P \supset Q \checkmark$ 5. $\sim Q$ 6. $\sim P Q$ $\otimes \otimes$ \otimes \otimes \otimes \otimes	$P) \checkmark \qquad \text{negated conclusion} \\ 1, (\sim \supset) \\ 1, (\sim \supset) \\ 2, (\land) \\ 2, (\land) \\ 4, (\supset)$
1. 2. 3. 4. 5. 6. 7. 8. 9.	$(P \supset Q) \land (R \subseteq P \lor R \lor P \supset Q \lor R \supset S \lor P \supset Q$	$ \begin{array}{ccc} \checkmark & & 1, (\sim \supset) \\ \supset S) \checkmark & & 2, (\land) \\ \checkmark & & 2, (\land) \\ \checkmark & & 4, (\land) \end{array} $
10). ~P	Q $6, (\supset)$
11 12		

بخش دوم ساختار معنایی و فرانظریه منطق گزارهها

ختار معنایی منطق گزارهها

L_S قواعد معناشناسی

صفحه ۵۳

★ تمرین ۱.۳: ارزش نامتعین ـ

اگر R گزاره صادق و S گزاره کاذب باشد، اما ارزش P و Q نامشخص باشد، ارزش هریک از گزارههای مرکب زیر را تعیین کنید.

- 1. $(P \land Q) \land (\sim R \lor S)$ 2. $(Q \supset R) \supset (R \supset S)$
- $3. \quad (\sim\!P\vee Q)\vee (P\vee \sim\!Q) \qquad \qquad 4. \quad [P\vee (Q\vee S)]\wedge \sim [(P\vee Q)\vee S]$
- 5. $(P \supset Q) \supset ([P \supset (Q \supset R)] \supset (P \supset R))$
- 6. $[P \lor (Q \land R)] \land \sim [(P \lor Q) \land (P \lor R)]$
- 7. $(P \supset Q) \supset ([P \supset (Q \supset S)] \supset (P \supset S))$
- 8. $[P \land (Q \lor S)] \lor \sim [(P \land Q) \lor (P \land S)]$
- 9. $(R \supset P) \supset ([R \supset (P \supset Q)] \supset (R \supset Q))$
- 10. $(P \supset S) \supset ([P \supset (S \supset Q)] \supset (P \supset Q))$

پاسخ تمرین ۱.۳

$$I(R) = 1 \qquad I(S) = 0$$

1.
$$V_I((P \land Q) \land (\sim R \lor S)) = (? \land ?) \land (\sim 1 \lor 0) = ? \land (0 \lor 0) = ? \land 0 = 0$$

2.
$$V_I((Q \supset R) \supset (R \supset S)) = (? \supset 1) \supset (1 \supset 0) = 1 \supset 0 = 0$$

3.
$$V_I((\sim P \lor Q) \lor (P \lor \sim Q)) =$$

$$\begin{cases} (\sim 1 \lor?) \lor (1 \lor \sim?) = (0 \lor?) \lor 1 = 1 \\ (\sim 0 \lor?) \lor (0 \lor \sim?) = (1 \lor?) \lor (0 \lor?) = 1 \lor? = 1 \end{cases} = 1$$

- 4. $V_I([P \lor (Q \lor S)] \land \sim [(P \lor Q) \lor S]) = [x \lor (y \lor 0)] \land \sim [(x \lor y) \lor 0] = (x \lor y) \land \sim (x \lor y) = \begin{cases} 1 \land \sim 1 = 1 \land 0 = 0 \\ 0 \land \sim 0 = 0 \land 1 = 0 \end{cases} = 0$
- 5. $V_I((P \supset Q) \supset ([P \supset (Q \supset R)] \supset (P \supset R))) = (? \supset ?) \supset ([? \supset (? \supset 1)] \supset (? \supset 1)) = ? \supset (? \supset 1) = ? \supset 1 = 1$
- 6. $V_I([P \lor (Q \land R)] \land \sim [(P \lor Q) \land (P \lor R)]) = [x \lor (y \land 1)] \land \sim [(x \lor y) \land (x \lor 1)] = (x \lor y) \land \sim [(x \lor y) \land 1] = (x \lor y) \land \sim (x \lor y) = 0$
- 7. $V_I((P \supset Q) \supset ([P \supset (Q \supset S)] \supset (P \supset S))) = (x \supset y) \supset ([x \supset (y \supset 0)] \supset (x \supset 0)) = (x \supset y) \supset [(x \supset \sim y) \supset \sim x] =$ $\begin{cases} (1 \supset y) \supset [(1 \supset \sim y) \supset \sim 1] = y \supset (\sim y \supset 0) = y \supset y = 1 \\ (0 \supset y) \supset [(0 \supset \sim y) \supset \sim 0] = 1 \supset (1 \supset 1) = 1 \supset 1 = 1 \end{cases} = 1$
- 8. $V_I([P \land (Q \lor S)] \lor \sim [(P \land Q) \lor (P \land S)]) = [x \land (y \lor 0)] \lor \sim [(x \land y) \lor (x \land 0)] = (x \land y) \lor \sim [(x \land y) \lor 0] = (x \land y) \lor \sim (x \land y) = 1$
- 9. $V_I((R \supset P) \supset ([R \supset (P \supset Q)] \supset (R \supset Q))) = (1 \supset x) \supset ([1 \supset (x \supset y)] \supset (1 \supset y)) = x \supset [(x \supset y) \supset y] =$ $\begin{cases} 1 \supset [(1 \supset y) \supset y] = y \supset y = 1 \\ 0 \supset [(0 \supset y) \supset y] = 1 \end{cases} = 1$
- 10. $V_I((P \supset S) \supset ([P \supset (S \supset Q)] \supset (P \supset Q))) = (x \supset 0) \supset ([x \supset (0 \supset y)] \supset (x \supset y)) = \sim x \supset [(x \supset 1) \supset (x \supset y)] = \sim x \supset [1 \supset (x \supset y)] = \sim x \supset (x \supset y) = \begin{cases} \sim 1 \supset (1 \supset y) = 0 \supset (x \supset y) = 1 \\ \sim 0 \supset (0 \supset y) = 1 \supset 1 = 1 \end{cases}$

۲.۳ جدول ارزش گزارههای مرکب

٣.٣ راستگو، متناقض، ممكن الصدق

صفحه ۵۶

🛨 تمرين ٢.٣: راستگو، متناقض، ممكن الصدق

با استفاده از جدول ارزش تعیین کنید کدام یک از فرمولهای زیر راستگو، کدام متناقض و كدام ممكن الصدق است.

- 1. $P \supset \sim P$
- 3. $P \supset (P \supset P)$
- 5. $P \supset (P \land P)$
- 7. $(\sim P \land Q) \land (Q \supset P)$
- 9. $[(P \supset Q) \supset P] \supset P$
- 10. $(P \supset Q) \supset [\sim (Q \land R) \supset \sim (R \land P)]$

2. $(P \supset \sim P) \land (\sim P \supset P)$

- 4. $(P \supset P) \supset P$
- 6. $(P \wedge Q) \supset P$
- 8. $[(P \supset Q) \supset Q] \supset Q$

پاسخ تمرین ۲.۳

یک روش دیگر برای تعیین نوع فرمول استفاده از روش ساده کردن به روش نحوی است. ازین جهت در ادامه، فرمول ساده شده که همارز فرمول مورد نظر هست را نیز خواهم آورد. و در روش تماماً نحوى، راستگوها اثبات پذيرند، متناقضها، نقيضشان اثبات پذير است (فرض آن به تناقض منجر میشود) و ممكن الصدق ها نه خودشان و نه نقیضشان اثبات پذیر

$$P\supset \sim P$$
 . ممكن الصدق

$$\dashv\vdash \sim P \lor \sim P \dashv\vdash \sim P$$

$$(P\supset \sim P) \wedge (\sim P\supset P)$$
 . The formula of the following space of the

$$(P\supset P)\supset P$$
 ممکنالصدق .*
$$+ \sim (\sim P\vee P)\vee P + (\sim \sim P\wedge \sim P)\vee P + P$$

$$[(P\supset Q)\supset Q]\supset Q$$

٨. ممكن الصدق

$$\dashv \vdash \sim [\sim (\sim P \lor Q) \lor Q] \lor Q \dashv \vdash [\sim \sim (\sim P \lor Q) \land \sim Q] \lor Q \\ \dashv \vdash [(\sim P \lor Q) \land \sim Q] \lor Q \dashv \vdash [(\sim P \lor Q) \lor Q] \land (\sim Q \lor Q) \\ \dashv \vdash (\sim P \lor Q) \lor Q \dashv \vdash \sim P \lor Q$$

P	Q	$P \supset Q$	$(P\supset Q)\supset Q$	$[(P\supset Q)\supset Q]\supset Q$	$P\supset Q$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	1	1	1	1
0	0	1	0	1	1

$$[(P \supset Q) \supset P] \supset P$$

۹. راستگو

$$\dashv \vdash \sim [\sim (\sim P \lor Q) \lor P] \lor P \dashv \vdash [\sim \sim (\sim P \lor Q) \land \sim P] \lor P \\ \dashv \vdash [(\sim P \lor Q) \land \sim P] \lor P \dashv \vdash [(\sim P \lor Q) \lor P] \land (\sim P \lor P) \\ \dashv \vdash (\sim P \lor Q) \lor P \dashv \vdash (\sim P \lor P) \lor Q \dashv \vdash \sim P \lor P$$

$$(P \supset Q) \supset [\sim (Q \land R) \supset \sim (R \land P)]$$

۱۰. راستگو

صفحه ۵۶

🛨 🛧 تمرین ۳.۳: همارزی

با استفاده از جدول ارزش تعیین کنید بین کدام یک از فرمولهای زیر همارزی برقرار است.

1. *P*

- 2. $\sim P \vee Q$
- 3. $\sim P \supset (P \land Q)$
- 4. $P \equiv Q$

5. $P \wedge (Q \supset P)$

- 6. $P \supset Q$
- 7. $P \equiv (Q \equiv P)$

8. $\sim (P \land \sim Q)$

9. $P \wedge (P \supset Q)$

10. $(P \wedge Q) \vee (\sim P \wedge \sim Q)$

قرارداد ۱.۳ از این به بعد برای سادگی در نوشتار با توجه به ویژگیهای جابهجایی و شرکت پذیری عطف و فصل، پرانتزهای داخلی این فرمولها را حذف میکنیم. برای بیان دقیق تر می توان تعریف بازگشتی زیر را به زبان صوری اضافه کرد:

$$\varphi_1 \star \cdots \star \varphi_n \stackrel{\mathrm{df}}{=} (\varphi_1 \star \varphi_2) \star \cdots \star \varphi_n; \qquad \star \in \{\land, \lor\}$$

پاسخ تمرین ۳.۳

برای پیدا کردن فرمولهای همارز این تمرین ۳ روش وجود دارد:

- ۱. روش استاندارد: ابتدا جدول ارزش همهی فرمولها را در یک جدول رسم میکنیم و سپس فرمولهایی که در همهی سطرها باهم همارزش هستند را به عنوان فرمولهای همارز باهم معرفی میکنیم.
- ۲. روش نحوی ساده کردن: فرمولها را با قواعد استنتاج به سلیقهی خود ساده کنید. به عنوان مثال می توانید همه ی فرمولها را به فرم زیر تبدیل کنید:

$$(\varphi_{11} \vee \cdots \vee \varphi_{1n}) \wedge \cdots \wedge (\varphi_{m1} \vee \cdots \vee \varphi_{mn})$$

به طوری که هر کدام از φ_{ij} ها یا یک جملهنشانه هستند یا نقیض یک جمله نشانه. یا اینکه فرمولها را به فرمولهایی با اداتها و اتمهای کمتر (پیچیدگی کمتر) ساده کنید.

 ۳. روش حذف کردن: جمله نشانهای که بیشترین استفاده در فرمولها دارد را با دادن ارزش به دو فرمول تبدیل میکنیم. اگر به ساده کردن بیشتر نیاز داشتیم، فرآیند را تکرار میکنیم.

روش سوم حداقل در این تمرین و بسیاری موارد دیگر از همه سادهتر و سریعتر است. ازین جهت از روش سوم استفاده می کنیم:

بنابراین همارزی فرمولهای مزبور به صورت زیر خواهد بود:

$$\langle \{1,3,5\}, \{2,6,8\}, \{4,10\}, \{7\}, \{9\} \rangle$$

از طرفی دیگر برای هر گروه میتوان فرمولهای سادهی زیر را به عنوان نماینده معرفی کرد:

$$\langle P, P \supset Q, P \equiv Q, Q, P \land Q \rangle$$

۴.۳ توابع ارزش

صفحه ۵۸

تمرین ۴.۳: توابع ارزش

با توجه به جدول زیر که جدول توابع ارزش دارای دو جملهنشانه است، برای هر کدام از توابع f_1, \dots, f_{16} یک فرمول بسازید.

φ	ψ	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
																	0
1	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

پاسخ تمرین ۴.۳

پیدا کردن کردن فرمولهای متناسب با توابع ارزش را اصطلاحاً نمادگذاری مینامند. به عنوان مثال میخواهیم تابع ارزش f_4 را نمادگذاری کنیم. به روش زیر عمل میکنیم:

1. دقیقاً سطرهایی که تابع مورد نظر صادق است را در نظر میگیریم. یعنی:

$$f_4(1,1) = 1, \qquad f_4(1,0) = 1$$

- ۲. برای هر ضابطه یک فرمول معرفی میکنیم. به این صورت که
- (آ) برای مولفه ی اول جمله نشانه P و برای مولفه دوم جمله نشانه Q را قرار می دهیم.
- (ب) برای مولفههایی که ارزش 1 دارند خود جملهنشانه و برای مولفههایی که ارزش 0 دارند، نقیض آن جمله نشانه را قرار می دهیم.
 - (ج) جمله نشانه ها و نقیض جمله نشانه های بدست آمده را باهم عطف کنیم.

بنابراین فرمولهای $P \wedge Q$ و $P \wedge Q$ را خواهیم داشت.

- ۳. فرمولهای بدست آمده را باهم فصل میکنیم. پس فرمول متناظر با f_4 فرمول $(P \wedge Q) \vee (P \wedge \sim Q)$ است.
- ۴. در نهایت در صورت تمایل می توانیم فرمول را ساده نیز کنیم. پس فرمول ساده شده ی تابع f_4 فرمول P است.

حالا نمادگذاری های اولیه و ساده شدهی این ۱۶ تابع را خواهم آورد:

۵.۳ اعتبار معنایی و نتیجه معنایی

صفحه ۶۰

★ تمرین ۵.۳: اعتبار و عدم اعتبار

با استفاده از جدول ارزش، اعتبار یا عدم اعتبار استدلالهای زیر را مشخص کنید.

- $1.\ P\supset Q, Q\supset P\vdash P\vee Q$
- 2. $P \supset Q, P \lor Q \vdash Q$
- 3. $P \supset (Q \supset R), P \supset Q \vdash P \supset R$
- 4. $(P \supset Q) \land (P \supset R), P \vdash Q \lor R$
- 5. $P \supset (Q \land R) \vdash \sim (Q \land R) \supset P$

- 6. $(P \lor Q) \supset (P \land Q), P \land Q \vdash P \lor Q$
- 7. $P \supset (Q \lor R), P \supset \sim Q \vdash P \lor R$
- 8. $(P \lor Q) \supset (P \land Q), \sim (P \lor Q) \vdash \sim (P \land Q)$
- 9. $P \lor (Q \land \sim P), P \vdash \sim (Q \land \sim P)$
- 10. $(P \supset Q) \land (R \supset S), \sim S \lor \sim Q \vdash \sim R \lor \sim P$

پاسخ تمرین ۵.۳

روش استاندارد حل این تمرین به این صورت است که ابتدا جدولهای ارزش همهی فرمولهای استدلال مورد نظر را در یک جدول رسم میکنیم، سپس جدول را بررسی میکنیم. اگر در همهی سطرهایی که همهی مقدمات ارزش 1 داشتند نتیجه هم ارزش 1 را داشت (یعنی نتیجه صدق مقدمات را حفظ کرد) استدلال مورد نظر را معتبر و در غیراینصورت نامعتبر اعلام میکنیم.

اما اگر بر روی سیستم استنتاج طبیعی مسلط هستید می توانید از روش سریع تر نحوی هم استفاده کنید. به این صورت که اگر توانستید استدلال را اثبات کنید، آن را معتبر و در غیراینصورت آن را نامعتبر اعلام می کنید.

2,3,4,6,8,9,10

۱. استدلالهای معتبر:

1,5,7

۲. استدلالهای نامعتبر:

برای نمونه جدولهای ارزش موردهای ۱، ۲ و ۵ را رسم میکنیم.

P	Q	$P \supset Q$	$Q\supset P$	$P \vee Q$	P	Q	$P\supset Q$	$P \vee Q$	Q
1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	1	0	0	1	0
0	1	1	0	1	0	1	1	1	1
0	0	1	1	0	0	0	1	0	0

P	Q	R	$Q \wedge R$	$P\supset (Q\wedge R)$	$\sim (Q \wedge R)$	$\sim (Q \wedge R) \supset P$
1	1	1	1	1	0	1
1	1	0	0	0	1	1
1	0	1	0	0	1	1
1	0	0	0	0	1	1
0	1	1	1	1	0	1
0	1	0	0	1	1	0
0	0	1	0	1	1	0
0	0	0	0	1	1	0

۶.۳ نشان دادن عدم اعتبار

صفحه ۶۲

🛨 تمرين ٤.٣: مثال نقض

عدم اعتبار استدلالهای زیر را با روش اسناد ارزشها و با ارائه حداقل یک تعبیر نشان دهید.

- 1. $P \supset (Q \supset R), Q, \sim R \not\models P$
- 2. $P \supset (Q \lor R), R \supset (S \land T), \sim S \not\models P \supset T$
- 3. $P \supset (Q \supset R), Q \supset (\sim R \supset S), (R \lor S) \supset T \not\models P \supset T$
- 4. $(P \lor Q) \supset R, R \supset (Q \lor S), P \supset (\sim T \supset Q), (T \supset P) \supset \sim S \not\models Q \equiv R$
- 5. $P \equiv Q, Q \equiv (R \wedge S), R \equiv (P \vee T), P \vee T \not\models P \wedge T$
- 6. $P \equiv (Q \supset R), Q \equiv (\sim P \land \sim R), R \equiv (P \lor \sim Q), Q \not\models P \lor R$
- *7. $(P\supset Q)\land (R\supset S), P\lor R, (Q\lor S)\supset (T\land U), T\supset (U\supset V), V\supset (P\supset W)\not\models W$
 - 8. $P \lor (Q \land R), (P \lor Q) \supset (S \equiv \sim T), (S \supset \sim T) \supset (T \land \sim U), (U \supset V) \land (V \supset T), (Q \supset R) \supset V \not\models V$
- 9. $P \equiv (Q \equiv \sim R), Q \supset (\sim R \lor \sim S), [R \supset (Q \lor \sim T)] \land (P \supset Q), [U \supset (S \land T)] \land (T \supset \sim V), [(Q \land R) \supset \sim U] \land [U \supset (Q \lor R)], (Q \lor V) \land \sim V \not\models \sim U \land \sim V$
- 10. $P \equiv (Q \lor R), Q \equiv (S \supset R), R \equiv (S \equiv \sim T), S \equiv (T \supset U), T \equiv (U \equiv S), U \lor \sim P \not\models P \equiv U$

پاسخ تمرین ۶.۳

با توجه به توضیحات صفحه ۶۱ کتاب، هر کدام از موارد این تمرین را به عنوان یک دستگاه معادلات در ریاضیات در نظر بگیرید. نکته ی اصلی این است که ابتدا سراغ معادلاتی خواهیم رفت که مجهول و حالات کمتری داشته باشند. به عنوان مثال

۱. معادلهی زیر یک مجهولی با یک حالت (جواب) است:

$$V_I(\sim P) = 1, \qquad I(P) \in \{0\}$$

۲. معادلهی زیر یک معادلهی دو مجهولی با یک حالت است:

$$V_I(P \vee Q) = 0, \qquad \langle I(P), I(Q) \rangle \in \{\langle 0, 0 \rangle\}$$

۳. معادلهی زیر دو مجهولی با سه حالت است:

$$V_I(P \vee Q) = 1, \qquad \langle I(P), I(Q) \rangle \in \{\langle 1, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 1 \rangle\}$$

و بنابراین تا میتوانیم شاخهها و حالتهای کمتری تولید میکنیم. من به عنوان نمونه مورد جالب ۷ را انتخاب کردم و روند حل مسئله را توضیح خواهم داد. در ادامه فرض من این است که میخواهیم همهی تعبیرهای عدم اعتبار استدلال مورد نظر را پیدا کنیم.

- ا. به W در نتیجه ارزش 0 اسناد می دهیم.
- ۲. با توجه به ارزش W مقدمات را به صورت زیر ساده می کنیم:

 $\langle P \supset Q, R \supset S, P \lor R, Q \supset (T \land U), S \supset (T \land U), (T \land U) \supset V, V \supset \sim P \rangle$

۳. حالا میبینیم که هیچ معادلهای با یک جواب (حالت) یا دو جواب (حالت) نداریم.
 پس به سراغ معادلات با سه جواب (حالت) میرویم. پس گزارههای زیر را در نظر میگیریم:

$$\langle P \supset Q, R \supset S, P \lor R, V \supset \sim P \rangle$$

۴. حالا جمله نشانه ای که بیشترین تکرار را در این معادلات دو مجهولی دارد را انتخاب کرده و دو حالت آن را بررسی میکنیم. بنابراین یک بار مسئله را وقتی که I(P)=1 باشد. باشد حل کرده و بار دیگر وقتی که I(P)=0 باشد.

$$I(P) = 1 (\tilde{\mathbf{1}})$$

۵. مرحله ۲. را با توجه به ارزش
$$P$$
 به صورت زیر ساده می کنیم:

$$\langle Q,R\supset S,Q\supset (T\wedge U),S\supset (T\wedge U),(T\wedge U)\supset V,{\sim}V\rangle$$

$$I(Q) = 1, I(V) = 0$$
 :پس:

٧. مجدداً ساده ميكنيم:

$$\langle R \supset S, T \land U, S \supset (T \land U), \sim (T \land U) \rangle$$

۸. میبینیم که به تناقض رسیدهایم. بنابراین P نباید صادق باشد. البته اگر در مرحله ۲. دقت بیشتر میکردیم متوجه می شدیم که P باید کاذب باشد. چرا که استدلال زیر را داریم:

$$P\supset Q, Q\supset (T\wedge U), (T\wedge U)\supset V, V\supset \sim P\vdash \sim P$$

اما از آنجا که شاید دیدن چنین موارد کمی زمانبر باشد، خواننده می تواند همین روش حلی که در حال گفتنش هستیم را دنبال کند و اگر شاخهای به بن بست (تناقض) رسید، آن شاخه را نادیده بگیرد.

$$I(P) = 0 \tag{\cdot}$$

۵. مرحله ۲. را با توجه به ارزش P به صورت زیر ساده می کنیم:

$$\langle R \supset S, R, Q \supset (T \land U), S \supset (T \land U), (T \land U) \supset V \rangle$$

$$I(R)=1$$
 :پس

٧. مجدداً ساده مي كنيم:

$$\langle S, Q \supset (T \wedge U), S \supset (T \wedge U), (T \wedge U) \supset V \rangle$$

$$I(S)=1$$
 :پس

٩. مجدداً ساده ميكنيم:

$$\langle Q \supset (T \land U), T \land U, (T \land U) \supset V \rangle$$

$$I(T) = I(U) = 1$$
 :پس:

١١. مجدداً ساده ميكنيم:

 $\langle V \rangle$

است. پس I(V)=1 و ارزش Q دلخواه است.

بنابراین پاسخ مورد ۷ ارزشهای زیر است:

P	Q	R	S	T	U	V	W
0	1	1	1	1	1	1	0
0	0	1	1	1	1	1	0

نکته ای که می توان در فرآیند حل مورد ۷ اضافه کرد این است که از آنجا که در مرحله ۲. گزاره های T و لا در همه جا به صورت عطفی آمده اند، می توان آن را یک گزاره مثل A در نظر گرفت و در نتیجه مرحله ۲. را با فرض A به صورت زیر ساده کرد و فرآیند را با سرعت بیشتری ادامه داد:

$$\langle P\supset Q,R\supset S,P\vee R,Q\supset A,S\supset A,A\supset V,V\supset \sim P\rangle$$

اما پاسخ نهایی همهی موارد:

	P	Q	R	S	T	U	V	W
1.	0	1	0					
2.	1	1	0	0	0			
3.	1	0	0	0	0			
4.	0	0	1	1	1			
5.	1	1	1	1	0			
	0	0	1	0	1			
6.	0	1	0					
7.	0	1	1	1	1	1	1	0
	0	0	1	1	1	1	1	0
8.	1	1	0	0	1	0	0	
9.	1	1	0	1	1	1	0	
10.	0	0	0	1	1	1		

فصل ۴

فرانظریه منطق گزارهها

۱.۲ فراقضیه بهنجاری (صحت)

 $\Sigma \vdash_{\mathbf{S_N}} \varphi \implies \Sigma \vDash_{\mathbf{S_N}} \varphi$

صفحه ۷۱

تمرين ١.۴: فراقضيه صحت

اثبات کنید که اگر در سطر n+1 ام یک برهان از قواعد «ح \wedge »، «م \wedge »، «ح \equiv » و «م \equiv » استفاده شود، استدلالهای متناظر سطر مزبور معتبرند.

پاسخ تمرین ۱.۴

(ح \wedge) در قاعده معرفی عطف فرمول $\psi \wedge \psi$ سطری از برهان n سطری مبتنی بر مجموعه فرمولهای Γ است و در سطر n+1 ام، فرمول φ یا فرمول ψ مبتنی بر Γ بدست می آید. بنابراین یک $m \leq n$ وجود دارد به طوری که:

سطر ابتناء	شماره سطر	سطر برهان	استدلال متناظر
Γ	m	$\varphi \wedge \psi$	$\Gamma \vdash \varphi \land \psi$
Γ	n+1	$\mid arphi \mid$	$\Gamma \vdash \varphi$
Γ	n+1	$\mid \psi \mid$	$\Gamma \vdash \psi$

 $\Gamma \models_{\mathbf{S_N}} \varphi \wedge \psi$ معتبر است. یعنی: m معتبر است. یعنی: $\varphi \wedge \psi$ را نیز صدق بنابراین هر تعبیری که همهی اعضای Γ را صدق پذیر کند، خود $\varphi \wedge \psi$ را نیز صدق

پذیر میکند. یعنی:

$$\forall I: \quad \forall \chi \in \Gamma \vDash_I \chi \Longrightarrow \vDash_I \varphi \land \psi$$

فرض کنید که تابع تعبیر I تمام اعضای Γ را صدق پذیر می کند. یعنی: $\chi \in \Gamma \models_I \chi$ را صدق پذیر می کند. یعنی: $\varphi \land \psi$ را نیز صدق پذیر می کند. یعنی: $\varphi \land \psi$ بنابراین استدال متناظر با فرمول های φ و ψ را نیز صدق پذیر می کند. یعنی: $\varphi \models_I \varphi$. بنابراین استدال متناظر با سطر I+1 ام معتبر است. یعنی:

 $\forall I: \qquad \forall \chi \in \Gamma \vDash_I \chi \Longrightarrow \vDash_I \varphi$ $\forall I: \qquad \forall \chi \in \Gamma \vDash_I \chi \Longrightarrow \vDash_I \psi$

۲.۴ فراقضیه تمامیت

$$\Sigma \vDash_{\mathbf{S_N}} \varphi \implies \Sigma \vdash_{\mathbf{S_N}} \varphi$$

صفحه ۷۴

تمرین ۲.۴: فراقضیه تمامیت

لم کالمر را برای $\psi \wedge \theta$ در حالتی که « ψ کاذب و θ صادق» و « ψ و θ هر دو کاذب» باشد اثبات کنید.

پاسخ تمرین ۲.۴

در هر دو حالت φ کاذب خواهد بود و با توجه به فرض استقراء داریم:

$$V_i, \cdots, V_j \vdash \sim \psi$$

و با كاربرد قواعد استنتاج داريم:

$$V_i, \cdots, V_j \vdash \sim \psi \lor \sim \theta$$
 $(\lor \phi)$

$$V_i, \cdots, V_j \vdash \sim (\psi \land \theta)$$
 (دم)

 $V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \sim \varphi$:و در نتیجه

صفحه ۷۵

تمرین ۳.۴: فراقضیه تمامیت

لم كالمر را براى $\psi = \psi \lor \theta$ و در بقيه حالات (ب، ج و د) اثبات كنيد.

پاسخ تمرین ۳.۴

ب) در حالتی که ψ صادق و θ کاذب باشد، φ صادق خواهد بود و با توجه به فرض استقراء داریم:

$$V_i, \cdots, V_j \vdash \psi$$

و با كاربرد قواعد استنتاج داريم:

$$V_i, \cdots, V_j \vdash \psi \lor \theta$$
 $(\lor \rho)$

 $V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \varphi$

و در نتیجه:

ج) در حالتی که ψ کاذب و θ صادق باشد، φ صادق خواهد بود و با توجه به فرض استقراء داریم:

$$V_k, \cdots, V_l \vdash \theta$$

و با كاربرد قواعد استنتاج داريم:

$$V_k, \cdots, V_l \vdash \psi \lor \theta$$
 ($\lor \phi$)

 $V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \varphi$

و در نتیجه:

د) در حالتی که ψ کاذب و θ کاذب باشد، φ کاذب خواهد بود و با توجه به فرض استقراء داریم:

$$V_i, \cdots, V_j \vdash \sim \psi$$

 $V_k, \cdots, V_l \vdash \sim \theta$

و با كاربرد قواعد استنتاج داريم:

$$V_i, \dots, V_j, V_k, \dots, V_l \vdash \sim \psi \land \sim \theta$$
 ($\land \phi$)

$$V_i,\cdots,V_j,V_k,\cdots,V_l \vdash \sim (\psi \lor \theta)$$
 (دم)

 $V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \sim \varphi$:و در نتیجه

صفحه ۷۵

تمرین ۴.۴: فراقضیه تمامیت

لم كالمر را براى $\theta = \psi \supset \theta$ و در بقيه حالات اثبات كنيد.

پاسخ تمرین ۴.۴

آ) در حالتی که ψ صادق و θ صادق باشد، φ صادق خواهد بود و با توجه به فرض استقراء داریم:

$$V_k, \cdots, V_l \vdash \theta$$

و با كاربرد قواعد استنتاج داريم:

$$V_k, \cdots, V_l \vdash \sim \psi \lor \theta$$
 ($\lor \phi$)

$$V_k, \cdots, V_l \vdash \psi \supset \theta$$
 (اسی)

 $V_i, \dots, V_j, V_k, \dots, V_l \vdash \varphi$ و در نتیجه:

ب) در حالتی که ψ صادق و θ کاذب باشد، φ کاذب خواهد بود و با توجه به فرض استقراء داریم:

$$V_i, \dots, V_j \vdash \psi$$

 $V_k, \dots, V_l \vdash \sim \theta$

و با كاربرد قواعد استنتاج داريم:

$$V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \psi \land \sim \theta$$
 $(\land \phi)$

$$V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \sim \sim \psi \land \sim \theta$$
 (ن.ع)

$$V_i,\cdots,V_j,V_k,\cdots,V_l \vdash \sim (\sim \psi \lor \theta)$$
 (دم)

$$V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \sim (\psi \supset \theta)$$
 (اس)

 $V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \sim \varphi$:و در نتیجه

- ج) در حالتی که ψ کاذب و θ صادق باشد، همان فرآیند آ) را خواهیم داشت.
- د) در حالتی که ψ کاذب و θ کاذب باشد، φ صادق خواهد بود و با توجه به فرض استقراء داریم:

$$V_i, \cdots, V_j \vdash \sim \psi$$

و با كاربرد قواعد استنتاج داريم:

$$V_i, \cdots, V_j \vdash \sim \psi \lor \theta$$
 $(\lor \varphi)$

$$V_i, \cdots, V_j \vdash \psi \supset \theta$$
 (اس)

 $V_i, \dots, V_i, V_k, \dots, V_l \vdash \varphi$:و در نتیجه

صفحه ۷۵

تمرین ۵.۴: فراقضیه تمامیت

لم كالمر را براى $\theta \equiv \psi \equiv \varphi$ و در بقيه حالات اثبات كنيد.

پاسخ تمرین ۵.۴

آ) در حالتی که ψ صادق و θ صادق باشد، φ صادق خواهد بود و با توجه به فرض استقراء داریم:

$$V_i, \dots, V_j \vdash \psi$$

 $V_k, \dots, V_l \vdash \theta$

و با كاربرد قواعد استنتاج داريم:

$$V_i, \dots, V_j, V_k, \dots, V_l \vdash \psi \land \theta$$
 $(\land \phi)$

$$V_i, \dots, V_j, V_k, \dots, V_l \vdash (\psi \land \theta) \lor (\sim \psi \land \sim \theta)$$
 ($\lor \phi$)

$$V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \psi \equiv \theta$$
 (تع)

 $V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \varphi$:و در نتیجه

ب) در حالتی که ψ صادق و θ کاذب باشد، φ کاذب خواهد بود و با توجه به فرض استقراء داریم:

$$V_i, \dots, V_j \vdash \psi$$

 $V_k, \dots, V_l \vdash \sim \theta$

و با كاربرد قواعد استنتاج داريم:

$$V_i, \dots, V_j, V_k, \dots, V_l \vdash \sim \psi \lor \sim \theta$$
 $(\lor \phi)$

$$V_i, \dots, V_j, V_k, \dots, V_l \vdash \psi \lor \theta$$
 $(\lor \phi)$

$$V_i, \cdots, V_j, V_k, \cdots, V_l \vdash (\sim \psi \lor \sim \theta) \land (\psi \lor \theta)$$
 ($\land \phi$)

$$V_i,\cdots,V_j,V_k,\cdots,V_l \vdash (\sim \psi \lor \sim \theta) \land (\sim \sim \psi \lor \sim \sim \theta)$$
 (ن.ع)

$$V_i,\cdots,V_j,V_k,\cdots,V_l \vdash \sim (\psi \land \theta) \land \sim (\sim \psi \land \sim \theta)$$
 (دم)

$$V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \sim [(\psi \land \theta) \lor (\sim \psi \land \sim \theta)]$$
 (دم)

$$V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \sim (\psi \equiv \theta)$$
 (قع)

$$V_i, \cdots, V_j, V_k, \cdots, V_l \vdash \sim \varphi$$
 :و در نتیجه

- ج) در حالتی که ψ کاذب و θ صادق باشد، همان فرآیند ب) را خواهیم داشت، تنها با این تفاوت که جای ψ و θ را تغییر دهید.
- د) در حالتی که ψ کاذب و θ کاذب باشد، φ صادق خواهد بود و با توجه به فرض استقراء داریم:

$$V_i, \cdots, V_j \vdash \sim \psi$$

 $V_k, \cdots, V_l \vdash \sim \theta$

و با كاربرد قواعد استنتاج داريم:

$$V_i, \dots, V_j, V_k, \dots, V_l \vdash \sim \psi \land \sim \theta$$
 $(\land \phi)$

$$V_i, \dots, V_j, V_k, \dots, V_l \vdash (\psi \land \theta) \lor (\sim \psi \land \sim \theta)$$
 ($\lor \phi$)

$$V_i, \dots, V_j, V_k, \dots, V_l \vdash \psi \equiv \theta$$
 (ق

 $V_i, \dots, V_j, V_k, \dots, V_l \vdash \varphi$:و در نتیجه

بخش سوم ساختار نحوی منطق محمولات

فصل ۵

سیستم استنتاج طبیعی منطق محمولات (P_N)

P_N زبان صوری 1.0

صفحه ۸۳

تمرين ١.۵: قواعد ساخت

در عبارات زیر اولاً فرمولها را از غیر فرمولها تفکیک کنید (با ذکر دلیل) و ثانیاً در فرمولها، گزارهها (جملهها) را از توابع گزارهای (توابع جملهای) متمایز سازید:

1. $(\forall x)Lzx$

2. $(Fy) \wedge (Gx)$

3. $Fx \wedge Ga$

4. $(\exists x Fx \land Gx)$

5. $(\forall y)(Fy)$

- 6. $(\exists x)(\forall y)Fx$
- 7. $(\exists x)(\forall x)(Fx \supset \sim Gx)$
- 8. $(\exists x)Px \equiv (\exists x)Gx$
- 9. $(\exists G)[(\forall x)Gx \supset (\forall y)Fy]$
- 10. $(\forall x)(\forall y)[Axy \equiv (\exists z)(Gy \supset Fxyz)]$

پاسخ تمرین ۱.۵

ا. فرمول است. طبق (FR_4) ، Lzx ، (FR_4) یک فرمول است. طبق فرمول است. فرمول است.

فردنمای z در فرمول $Z(\forall x)$ یک متغیر آزاد است. پس این فرمول یک تابع گزارهای است.

۲. فرمول نیست. چرا که فرمولهای اتمی نباید داخل پرانتز باشند.

- ۳. طبق (FR_4) و (FR_3) یک فرمول است. فردنمای x در فرمول مزبور یک متغیر آزاد است. پس این فرمول نیز یک گزاره نیست.
 - ۴. فرمول نیست. $\exists x$ باید داخل پرانتز قرار میگرفت. توجه کنید که:
- (آ) پرانتزهای خارجی دلبخواهی است. هم می تواند باشند و هم نباشند. گرچه طبق قرارداد و برای سادگی توصیه می شود که پرانتزهای خارجی (اولین و آخرین پرانتز فرمول) حذف شوند.
- رب) در بعضی تقریرهای متداول دیگر برای سادگی عبارتهای x و x را داخل x ربانتز قرار نمی دهند. به عنوان مثال به جای x x x مینویسند x
 - ۵. فرمول نیست. چرا که فرمول اتمی Fy داخل پرانتز قرار گرفته است.
- 9. فرمول نیست. چون فرمول Fx که دامنه سور $(\forall y)$ است، شامل موردی (مورد آزادی) از متغیر y نیست. به عبارتی سور تهی مجاز نیست.
- توجه کنید که در بعضی از تقریرهای غیرمتداول سور تهی مجاز است. البته در آن صورت دستگاه استنتاجی نیاز به یک اصلاح کوچک دارد که موضوع بحث ما نیست.
- ۷. فرمول نیست. مشکل چینش $(\exists x)(\forall x)$ است. فرمول $(\exists x)(\forall x)$ شامل سوری برحست x است.
- به عبارتی سورهای متوالی نباید با یک متغیر نوشته شوند. بالخص زمانی که یکی کلی و دیگری جزئی باشد. چرا که عبارت را کاملاً مبهم میکند.
- موضعی که کمول نیست. جمله نشانه ها محمولهای صفر موضعی Px فرمول نیست. محسوب می شوند.
- 9. فرمول نیست. مشکل عبارت $(\exists G)$ است. در منطق مرتبه اول که موضوع بحث است، سورها فقط بر روی متغیرهای فردی (محمولهای متغیر درجه صفر) می نشینند. به علاوه فقط فردنماهای متغیر (مثل x) داریم و نه محمولهای متغیر (مثل x). اساساً سور برای ثابتها بی معنا نیز هست.
- ۱۰. یک گزاره است. طبق (FR_4) عبارتهای Gy, Axy و Gy, FR_4 فرمول هستند. پس عبارت مزبور به ترتیب با (FR_5) , (FR_5) , (FR_5) , (FR_5) و (FR_5) یک فرمول است. به علاوه همه ی متغیرها پایبند هستند.

۲.۵ ترجمه از زبان طبیعی به زبان صوری منطق محمولات

گرچه تمرینهای اول سادهتر هستند اما از آنجا که گامهای آغازین برای درک ترجمه در زبان منطق محمولات هستند، آنها را بسیار جدی بگیرید و حتماً قدم به قدم جلو بروید. در ترجمه منطق محمولات تا قبل از اینکه بر روی بحث مسلط شوید و مهارت کافی را پیدا

کنید، به ترتیب مراحل زیر را طی کنید:

قدم اول عبارت مورد نظر را چندین بار با دقت خوانده و در مورد معنای آن تامل کنید. تلاش کنید که بفهید عبارت دقیقاً چه چیزی قرار است بگوید. درک عبارت قدم اساسی است.

قدم دوم تلاش کنید بخش گزارهای عبارت را تشخیص دهید. یعنی ابتدا عبارت را در زبان منطق گزارهها ترجمه کنید. توجه به تمایز بین «گزاره» و «تابع گزارهای» بسیار کمک کننده است.

قدم سوم پس از اینکه جمله ها را تشخیص دادید، هر جمله را به صورت مجزا در زبان محمولات ترجمه کنید.

قدم چهارم در نهایت پس از ترجمه، فرمول را بخوانید و ببینید که آیا درست ترجمه کردید یا خیر. توجه کنید که معمولاً ترجمه از «زبان صوری» به «زبان طبیعی» سادهتر است. ۲

نکته ۱.۵ (دربارهی ابهام ذاتی زبان طبیعی) توجه کنید که زبان طبیعی پر از ابهام و پیچیدگیهای فراوان است. ظاهر جمله اهمیت ندارد. آنچه مهم است معنای جمله است. به عنوان مثال گاهی چیزی معنای «هر چیز» و گاهی معنای «بعضی چیزها» را می دهد و قاعده ی کلی وجود ندارد.

در واقع در حالت سخت گیرانه، جملهها در زبان طبیعی معمولاً یک گزاره منحصر به فرد را متعین نمیکنند. بسیار اهمیت دارد که گویندهی سخن قصد بیان چه گزارهای را از جملهی بیان شده دارد. بنابراین جایی که به گویندهی سخن دسترسی نداریم بسیار متداول و کاملاً طبیعی است که در تفسیر جملات اختلاف ایجاد می شود و در بسیاری موارد نظر نهایی وجود ندارد. میزان این اختلاف بسته به ساختار و محتوای جمله متفاوت است.

قرارداد ۱.۵ اسامی خاص و محمولها را به ترتیبی که در عبارت مورد نظر ظاهر می شوند، نمادگذاری میکنیم. به عنوان مثال جمله ی «افلاطون فیلسوف است و ابن سینا منطق دان است» را با $Aa \wedge Bb$ نشان می دهیم.

هدف تمرینهای این قسمت مشخص است. هدف کسب مهارت در ترجمهی منطق محمولات بدون اینهمانی است. برای کسب این مهارت، مراحل زیر طی می شوند:

مرحلهی اول گزارههای شخصی

مرحلهی دوم محمولهای یک موضعی - گزارههای اتمی و نقیض اتمی

مرحلهی سوم محمولهای یک موضعی - گزارههای مولکولی

مرحلهی چهارم محمولهای چندموضعی

مرحلهی پنجم سورهای مقید

۲ به طور کلی، ترجمه از زبان غیرمادری به زبان مادری سادهتر است.

- تمرین ۲.۵: ترجمه

صفحه ۸۸

گزارههای شخصی زیر را به زبان منطق محمولات ترجمه کنید.

- ١. سقراط و ارسطو و افلاطون فيلسوفند.
 - ۲. شهر قم بین تهران و اصفهان است.
- ۳. اگر عدد دو کوچکتر از ده و عدد ده کوچکتر از پانزده باشد، عدد دو کوچکتر از پانزده خواهد بو د.
 - ۴. اگر علی به پاریس برود و از پاریس دیدن کند، برج ایفل را خواهد دید.
- ۵. اگر حسن بلندتر از حسین و حسین بلندتر از محسن باشد، حسن بلندتر از محسن خواهد بود.
- اگر بنفش بودن این گل موجب زیبایی آن باشد، زیبایی آن موجب خوشبو بودن آن نخواهد بود.
- ۷. اگر خواجه نصیر طوسی منطقی و ریاضیدان یا ابن سینا منطقی و فیلسوف باشد، کانت فیلسوف یا فیزیکدان و دکارت ریاضیدان خواهد بود.
- ۸. تنها اگر عدد دو دوازده بر شش قایل قسمت باشد بر دو و سه نیز قابل قسمت خواهد بود.
- ۹. اگر ناصر خانه خود را به من بفروشد از او قدردانی میکنم، و مغازه خود را به او خواهم فروخت.
- * ۱۰. فقط و فقط وقتی کتاب گلستان را به حسن میدهم که وی کتاب بوستان را به من بدهد، مگر اینکه کتاب گلستان را از من خریداری کند.

پاسخ تمرین ۲.۵

در این تمرین تمایز اسم خاص و اسم عام و همچنین ساختار داخلی جملههای بدون سور را درک میکنید. در مرحلهی اول که اثری از سورها نیست در واقع دقیقاً همان روش ترجمه در زبان منطق گزارهها را اتخاذ کنید.

- 1. $(Aa \wedge Ab) \wedge Ac$
- 2. Aabc
- 3. $(Aab \wedge Abc) \supset Aac$
- 4. $(Aab \wedge Bab) \supset Bac$
- 5. $(Aab \wedge Abc) \supset Aac$
- 6. $(Aa \supset Ba) \supset \sim (Ba \supset Ca)$
- 7. $[(Aa \wedge Ba) \vee (Ab \wedge Cb)] \supset [(Cc \vee Dc) \wedge Bc]$

8. $(Aab \wedge Aac) \supset Aad$

9. $Aaab \supset (Bba \wedge Cbba)$

10. $Aabc \equiv (Acda \vee Bcba)$

صفحه ۸۸

🛨 🛨 تمرین ۳.۵: ترجمه

گزارههای زیر را با استفاده از محمولهای یک موضعی به زبان منطق محمولات ترجمه کنید:

- ۱. مارها همگی سمی نیستند.
 - ۲. تنها مدیران منشی دارند.
- * ٣. برخى داروها خطرناكند فقط اگر زياد مصرف شوند.
- * ۴. هیچ کتابی مفید نیست مگر اینکه محققانه نوشته شود.
- ۵. تنها میوهها و سبزیها هم ویتامیندار و هم خوشمزهاند.
 - هر گردی گردو نیست.
 - ۷. آن را که خبر شد خبری باز نیامد.
 - ۸. مگسی را که تو پرواز دهی شاهین است.
 - ٩. كار هر بز نيست خرمن كوفتن.
 - ۱۰. پرتو نیکان نگرید هر که بنیادش بد است.

پاسخ تمرین ۳.۵

در مرحلهی دوم ساده ترین جمله های شامل سور بررسی می شوند. مراحل بعدی در واقع فقط ساختارهای پیچیده تر را مورد توجه قرار می دهند. بنابراین بسیار اهمیت دارد که این مثال های ساده کاملاً درک شوند. من برای درک بهتر مطلب، ابتدا فرم استاندارد (منطقی) جمله را بیان می کنم. توجه کنید که اصل مطلب برمی گردد به اینکه شما بتوانید فرم استاندارد عبارت ها را دریابید.

 $\sim (\forall x)(Ax \supset Bx)$

۱. اینطور نیست که هر ماری سمی باشد.

 $(\forall x)(Bx \supset Ax)$

۲. هر منشی داری مدیر است.

 $(\exists x)[Ax \land (Cx \supset Bx)]$

٣. برخي داروها اگر زياد مصرف شوند، خطرناكند.

۴. هر کتابی یا مفید نیست یا محققانه نوشته شده است.

 $(\forall x)[(Ax \land Bx) \supset Cx]$... هر کتاب مفیدی، محققانه نوشته شده است.

 $(\forall x)[(Cx \land Dx) \supset (Ax \lor Bx)]$. هر ویتامین دار خوشمزهای، میوه یا سبزی است.

این گونه جملهها را به دو صورت زیر میتوان تحلیل کرد.

 $\sim (\forall x)(Ax\supset Bx)$ آ) اینطور نیست که هر گردی گردو باشد.

 $(\exists x)(Ax \land \sim Bx)$ (ب) بعضی گردها گردو نیستند.

صورت اول ترجیح دارد و معقول تر است. ما نیز این صورت اول را در نظر میگیریم. البته توجه کنید که هر دو ترجمه معادل هستند. 0

 $(\forall x)(Ax\supset \sim Bx)$.۷. هیچ خبرداری، خبر نمی دهد.

 $\sim (\forall x)(Ax\supset Bx)$. اینطور نیست که هر بز کارش خرمن کوفتن باشد.

 $(\forall x)[(Bx\wedge Cx)\supset$ هیچ کسی که بنیادش بد باشد، پرتوی نیکان را نمیگیرد. در که بنیادش بد باشد، پرتوی نیکان را نمیگیرد. $\sim Ax$

🛨 تمرین ۴.۵: ترجمه

عبارات زیر را با استفاده از سه تابع گزارهای زیر به زبان منطق محمولات ترجمه کنید:

Ax = اسب است. •

Bx = xنجيب است. • $x \bullet$

Cx = x خوب تربیت شده است.

۱. بعضی اسبها نجیب هستند و خوب تربیت شدهاند.

٢. بعضى اسبها نجيبند اگر خوب تربيت شوند.

٣. هر اسبى نجيب است كه خوب تربيت شده باشد.

۴. بعضى اسبها نجيبند فقط اگر خوب تربيت شوند.

۵. هر اسبی که نجیب است، خوب تربیت شده است.

هر اسبی خوب تربیت شده است اگر نجیب است.

اما نه الزاماً در همهی منطقها. به عنوان مثال در منطق شهودی.

- ۷. اسبهای نجیب خوب تربیت شدهاند.
- * ٨. فقط اسبهاى خوب تربيت شده، نجيبند.
- ٩. تنها اسبهای نجیب خوب تربیت شدهاند.
- ١٠. اگر هر اسبي خوب تربيت شده باشد نجيب است.

پاسخ تمرین ۴.۵

- 1. $(\exists x)[Ax \land (Bx \land Cx)]$
- 3. $(\forall x)[(Ax \land Cx) \supset Bx]$
- 5. $(\forall x)[Ax \supset (Bx \supset Cx)]$
- 7. $(\forall x)[(Ax \land Bx) \supset Cx]$
- 9. $(\forall x)[Ax \supset (Cx \supset Bx)]$
- 2. $(\exists x)[Ax \land (Cx \supset Bx)]$
- 4. $(\exists x)[Ax \land (Bx \supset Cx)]$
- 6. $(\forall x)[Ax \supset (Bx \supset Cx)]$
- 8. $(\forall x)[(Ax \land Bx) \supset Cx]$
- 10. $(\forall x)[Ax \supset (Cx \supset Bx)]$

مورد (۵) به دو صورت می تواند فهمیده شود:

 $(\forall x)[(Ax \land Cx) \supset Bx]$

١. هر اسب نجيب، خوب تربيت شده است.

 $(\forall x)[Ax\supset (Cx\supset Bx)]$. هر اسبی اگر نجیب باشد، خوب تربیت شده است.

هر دو ترجمه درست هستند. توجه کنید که با توجه به قاعدهی صدور معادلند. به نظر میرسد که ترجمه ی اول ترجیح داشته باشد.

مورد (٣) نيز هم مى تواند «هر اسبى كه خوب تربيت شده باشد، نجيب است.» و هم مى تواند «هر اسبى اگر خوب تربيت شده باشد، نجيب است.» تفسير شود.

مورد (۸) می تواند بسته به فهمی که از جمله داریم، یک مورد اخلافی محسوب شود. در کتاب به صورت زیر فهمیده شده است:

 $(\forall x)[Bx\supset (Ax\wedge Cx)]$

هر نجیبی، اسب خوب تربیت شده است.

نظر من این است که از آنجا که جمله در واقع دارد در مورد ویژگیهای اسب صحبت میکند تفسیر قبلی ترجیح دارد. ۶

صفحه ۸۹

🛨 ★ 太 تمرین ۵.۵: ترجمه

عبارات زیر را با استفاده از توابع گزارهای جدول ۱.۵ به زبان منطق محمولات ترجمه کنید:

⁹اینجا در واقع یکی از مواردی است که اهمیت قصد گوینده را نشان میدهد. شاید اگر این مورد به صورت گفتاری بیان میشد با توجه به لحن گوینده راحت تر می توانستیم تشخیص دهیم که موضوع جمله «نجیب» است یا «اسب نجیب».

Fx	=	xرسیده است.	Ex	=	xزرد است.	Dx	=	xليمو است.
					x خوشبخت است.			
Lx	=	x کارمند است.	Kx	=	آینده دارد. x	Jx	=	x شغل است.
			Nx	=	x موفق خواهد بود.	Mx	=	x کمکار است.

جدول ۱.۵: لغتنامهي تمرين ۵.۵

- اگر تمامی لیموها زرد باشند، آنگاه بعضی لیموها رسیدهاند.
 - ۲. اگر تمامی لیموها زرد باشند، رسیدهاند.
- ۳. تمامی لیموهای رسیده اگر زرد باشند، بعضی چیزهای زرد رسیدهاند.
- ** ۴. اگر تمامی لیموها زرد باشند، آنگاه اگر هر لیموی زردی رسیده باشد، آنها رسیدهاند.
- ۵. اگر هر مخترعی خوشبخت باشد و تنها مهندسان مخترع باشند، آنگاه اگر مخترعی وجود داشته باشد، بعضی مهندسان خوشبختند.
 - * ۶. اگر مخترعی وجود داشته باشد و تنها مهندسان مخترع باشند، وی مهندس است.
- ٧. اگر تمامی مخترعان مهندس باشند، آنگاه اگر تمامی مهندسان خوشبخت باشند، آنها خوشبختند.
- ۸. اگر هر شغلی آیندهای داشته باشد و هیچ کارمندی کمکار نباشد، بعضی کارمندان موفق خواهند بود.
- ۹. اگر تمامی کارمندان کمکار باشند و بعضی شغلها آیندهای نداشته باشد، بعضی کارمندان موفق نخواهند بود.
- ۱۰. اگر تمامی کارمندان کمکار باشند، آنگاه اگر بعضی شغلها آیندهای نداشته باشد، آنها موفق نخواهند بود.

پاسخ تمرین ۵.۵

در مرحلهی سوم در سطح منطق حملی یعنی منطق محمولات یک موضعی، عبارتهای پیچیده بررسی می شوند. این تمرین یک مقدمه (پیشنیاز) خوب برای ورود به مبحث ترجمه در منطق محمولات چند موضعی است.

به طور کلی در این تمرین دو مسئله وجود دارد:

موقعیت اگر در بعضی موارد لفظ «اگر» در مکان استاندارد خود قرار ندارد و باید جابه جا شود.

به مکان جدیدی که «اگر» را منتقل میکنیم، دقت کنید.

مرجع ضمیر گاهی پیدا کردن مرجع ضمیر در جمله کار سادهای نیست. اما تنها پس از پیدا کردن مرجع ضمیر میتوانید موقعیت ادات گزارهای و سورها را تشخصی دهید.

در ادامه من هر گزارهی اتمی را در داخل یک box قرار می دهم.

١. اگر تمامي ليموها زرد باشند، آنگاه بعضي ليموها رسيدهاند.

 $(\forall x)(Dx \supset Ex) \supset (\exists x)(Dx \land Fx)$

۲. تمامی لیموها اگر زرد باشند رسیدهاند.

 $(\forall x)[Dx\supset (Ex\supset Fx)]$

۳. اگر تمامی لیموهای رسیده زرد باشند، ابعضی چیزهای زرد رسیدهاند.

 $(\forall x)[(Dx \land Fx) \supset Ex] \supset (\exists x)(Ex \land Fx)$

۴. تمامی لیموها اگر زرد باشند، آنگاه اگر هر لیموی زردی رسیده باشد، آنها رسیدهاند.

 $(\forall x) \Big(Dx \supset [Ex \supset ((\forall y)[(Dy \land Ey) \supset Fy] \supset Fx)] \Big)$

۵. اگر هر مخترعی خوشبخت باشد و هر مخترعی مهندس باشد، آنگاه اگر مخترعی و جود داشته باشد، بعضی مهندسان خوشبختند.

 $[(\forall x)(Gx\supset Hx)\land (\forall x)(Gx\supset Ix)]\supset [(\exists x)Gx\supset (\exists x)(Ix\land Hx)]$

هر مخترعی اگر وجود داشته باشد و هر مخترع مهندس باشد، مهندس است.

 $(\forall x)([Gx \land (\forall y)(Gy \supset Iy)] \supset Ix)$

۲. اتمامی مخترعان اگر مهندس باشند، آنگاه اگر تمامی مهندسان خوشبخت باشند، آن مخترعان خوشبختند.

 $(\forall x)[Gx\supset (Ix\supset [(\forall y)(Iy\supset Hy)\supset Hx])]$

$$[(\forall x)(Jx\supset Kx)\land (\forall x)(Lx\supset \sim My)]\supset (\exists x)(Lx\land Nx)$$

$$[(\forall x)(Lx\supset Mx)\land (\exists x)(Jx\land \sim Kx)]\supset (\exists x)(Lx\land \sim Nx)$$

تمامی کارمندان اگر کمکار باشند، آنگاه اگر بعضی شغلها آیندهای نداشته باشد، آنها موفق نخواهند بود.

 $(\forall x)[Lx\supset (Mx\supset [(\exists y)(Jy\wedge \sim Ky)\supset \sim Nx])]$

صفحه ۹۲

🛨 تمرین ۶.۵: ترجمه

با استفاده از جدول ۲.۵ هر یک از فرمولهای زیر را از زبان صوری به زبان طبیعی ترجمه کنید:

- 1. $(\forall x)[(Ax \land Axx) \supset Aax]$
- 2. $(\forall x)\{Bx\supset (\forall x)[(By\wedge Bxy)\supset Cxy]\}$
- 3. $(\exists x)[Ax \land (\forall y)(Cy \supset Dxy)]$
- 4. $(\forall x)[Ax \supset (\exists y)(Cy \land Dxy)]$
- 5. $\sim (\forall x)[Ax \supset (\forall y)(Cy \supset Dxy)]$
- 6. $(\exists x)[Cx \land (\forall y)(Ay \supset Dyx)]$
- 7. $(\exists x)(\exists y)[Ax \land (Cy \land \sim Dxy)]$
- 8. $(\forall x)[Dx \supset \sim (\exists y)(Ey \land Exy)]$
- 9. $(\forall x)[Ax \supset (\forall y)(Fxy \supset Aayx)]$
- 10. $(\forall x)[Fx \supset (\forall y)(Gy \supset Gxy)]$
- 11. $(\forall x)\{[(Hx \vee Ix) \wedge Jx] \supset (\forall y)[(Ay \wedge Ky) \supset Hxy]\}$

- 12. $(\forall x)\{[Ax \land \sim (\exists y)(Ay \land Iyx)]Lx\}$
- 13. $(\forall x)\{Ax \supset [(\forall y)(\forall z)(Az \supset Bxyz) \supset (\exists y)(Ay \land Jxy)]\}$
- 14. $(\forall x)\{[Ax \land (\exists y)(My \land Ny \land Kxy)] \supset (Ox \supset A'x)\}$
- 15. $(\forall x)(\forall y)[(Ax \land Ay \land Dy \land Lyx) \supset (\forall z)(Az \land Mzx \land \sim Dz \land Hyz)]$
- 16. $(\forall x)[(B'x \wedge C') \supset (\forall y)(B'y \wedge C'y \wedge Nyx)]$
- 17. $(\forall x)(\forall y)[(B'x \land B'y \land Oxy) \supset (\exists z)(B'z \land Czxy)]$
- 18. $(\forall x)(\forall y)[(D'x \land D'y \land Oxy) \supset (\exists z)(D'z \land Czxy)]$
- 19. $(\forall x)[D'x \supset (\exists y)(\exists z)(D'y \land D'z \land Oyz \land Cxyz)]$
- *20. $(\forall x)(\forall y)(\forall z)[(D'x \wedge D'y \wedge B' \wedge Dzxy) \supset (\exists x')(\exists y')(\exists z')(D'x' \wedge D'y' \wedge B'z'Dz'x'y' \wedge Nz'z)]$

پاسخ تمرین ۶.۵

در مرحلهی چهارم ابتدا ترجمه از زبان صوری به زبان طبیعی که سادهتر است، انجام می شود. در ترجمه به زبان طبیعی تلاش کنید که عبارت شما کمترین ابهام را داشته باشد و تا حدی که ساختار زبان فارسی اجازه می دهد و متداول است، عبارت را ساده تر بیان کنید.

- هر کسی که به خود کمک کند، خدا به او کمک میکند.
 - ۲. هر دیوانه هر دیوانهای را ببیند از او خوشش می آید.

ديوانه چو ديوانه ببيند خوشش آيد.

- ۳. بعضی انسانها را همیشه می توان فریب داد.
- هر کسی را گاهی اوقات میتوان فریب داد.
- ۵. همهی انسانها را همیشه نمی توان فریب داد.
 - ۶. گاهی هر کسی را میتوان فریب داد.
- ۷. گاهی بعضی انسانها را نمیتوان فریب داد.
 - ۸. هیچ دانایی در شهری غریبه نیست.
- ٩. هر كسى هر چيزى كه لايقش باشد، خدا به او مى دهد.

چدول ۲.۵: لغتنامهی تمرین *۶.۵*

a	=	خدا			
Ax	=	x انسان است.	Axy	=	به y کمک میکند.
Bx	=	x ديوانه است.	Bxy	=	<i>y،x</i> را میبیند.
Cx	=	x زمان است.	Cxy	=	از y خوشش می آید. x
Dx	=	x داناست.	Dxy	=	را در y می توان فریب داد.
Ex	=	x شهر است.	Exy	Ŧ	در y غریب است. x
Fx	=	آهنرباست x	Fxy		y لايق y است.
Gx	=	xآهن است.	Gxy	7	را میکشد. y ، x
Hx	=	x گاو است.	Hxy	=	از y بهتر است.
Ix	=	خر است. x	Ixy	=	به y حسادت میکند.
Jx	=	باربر است. x	Jxy	=	را از خود ناراضی میکند. y ، x
Kx	=	مردم آزار است. x	Kxy	=	در y منزل دارد.
Lx	=	x بیهنر است.	Lxy		x دشمن y است.
Mx	=	xخانه است.	Mxy	=	x دوست y است.
Nx	=	x شیشهای است.	Nxy	=	از y بزرگتر است. x
Ox	=	x سنگ اندازست.	Oxy	=	از y متمایز است.
A'x	=	x متضور است.	Axyz	=	را به z می دهد. y ، x
B'x	E	x عدد است.	Bxyz	=	را به z وعده می y ، x
C'x	\equiv	x اول است.	Cxyz	=	z بین y و z است.
D'x	=	x نقطه است.	Dxyz	=	و z است. y فاصله بین y

- ۱۰. هر آهنربایی هر آهنی را میکشد.
- ۱۱. هر گاو و خر باربری از هر انسان مردم آزاری بهتر است.

گاوان و خران باربردار به زآدمیان مردم آزار

- ۱۲. هر کسی که به کسی حسادت نمیکند، بیهنر است.
- ۱۳. هر کسی اگر به همه چیز را به هر کسی وعده دهد، بعضی انسانها را می آزارد.
- ۱۴. هر کسی که در خانهای شیشهای منزل دارد، اگر سنگ اندازد، متضرر می شود.
 - ۱۵. هر دشمن دانای هر انسانی بهتر از هر دوست نادان هر انسانی است.

دشمن دانا به از نادان دوست

- ۱۶. برای هر عدد اولی، یک عدد اول بزرگتری وجود دارد. ۸
 - ۱۷. بین هر دو عدد متمایز عددی وجود دارد.
 - ۱۸. بین هر دو نقطهی متمایزی نقطهای وجود دارد.
 - ۱۹. هر دو نقطهای بین دو نقطهی متمایز قرار دارد.
- ۲۰. برای هر فاصلهی بین هر دو نقطهای، فاصلهای بزرگتر از آن وجود دارد که بین دو نقطهای قرار دارد.

🛨 🛨 تمرین ۷.۵: ترجمه

با توجه به توابع گزارهای جدول ۳.۵، هر یک از عبارات زیر را به زبان منطق محمولات ترجمه کنید:

- ۱. هر دانشجویی که بزرگتر از حسن باشد از حسین نیز بزرگتر است.
 - ۲. هر کسی از کسی متنفر است..
 - ۳. افراد لال هیچ سخنی نمیگویند.

^در منطق کلاسیک در اصطلاح شناسی تخصصی، (∃) سور جزئی و نه سور وجودی نام دارد. معادل تقریبی سور جزئی در زبان طبیعی لفظ (بعضی) اما برای سور وجودی لفظ (وجود دارد که) است. به عبارتی وجودی که در منطق کلاسیک قابل بیان است، یک وجود انتزاعی است و نه یک وجود عینی. به همین دلیل اکیداً توصیه می شود جایی که موضوع موارد عینی است از لفظ بعضی استفاده کنید. اما در ریاضیات که همهی امور انتزاعی هستند به راحتی می توانید از لفظ وجود نیز استفاده کنید.

- ۴. هرکس که در هر کاری موفق باشد مورد حسد همه واقع می شود.
- ۵. به ازای هر دو عدد متمایز از یکدیگر عددی هست که بین آن دو قرار میگیرد.
 - هیچکس همه انسانها را دوست ندارد.
 - ۷. بعضی ها هیچکس را دوست ندارند.
 - ۸. اگر کسی هیچ کس را دوست نداشته باشد، خود را نیز دوست ندارد.
 - ٩. هر كسى همه انسانها را دوست داشته باشد، همه او را دوست دارند.
 - * ۱۰. هر کس کسی را دوست دارد که هر کسی او را دوست ندارد.
 - ۱۱. هر کس کالایی از مغازهای میخرد.
 - ۱۲. مغازهای هست که هر کس کالایی از آن را می خرد.
 - * ۱۳. بعضى اشخاص همه كالاها را از يك مغازه مي خرند.
 - ۱۴. هیچ کس از همه مغازهها تمامی کالاها را نمی خرد.
 - 10. هیچ کس تمامی کالاها را از یک مغازه نمی خرد.
 - ۱۶. تمامی دانشجویان در هر امتحانی بعضی مسائل را حل میکنند.
 - ۱۷. تنها دانشجویان هر مسألهای را در بعضی امتحانات حل میکنند.
 - ۱۸. دانشجویی که تمامی مسائل بعضی از امتحانات را حل کند وجود ندارد.
 - ۱۹. هر کسی که مسألهای را در امتحانی حل کند، دانشجو است.
- ۲۰. دانشجویانی که تمامی مسائل را در بعضی امتحانات حل میکنند، تمامی مسائل را در تمامی امتحانات حل میکنند.

پاسخ تمرین ۷.۵

گرچه این تمرین پیچیده ترین جملات را مورد بررسی قرار داده است، اما اگر تمرینهای قبل به خوبی درک شده باشند، این تمرین بسیار ساده خواهد بود. قلق کار این است که ترجمه را مرحله به مرحله به صورتی که خواهم آورد، انجام دهید. در این صورت اگر این مطلب رعایت شود، این تمرین حرف تازهای ندارد.

 $(\forall x)[(Dx \land ...$ از حسین بزرگتر است. $(\forall x)[(Dx \land ...$ از $(\forall x)[(Dx \land Mxa) \supset Mxb]$

ر بن ۷.۵	ختنامەي تم	۵.۳: ل	جدول
----------	------------	--------	------

, in the second of the second					
Mxy	=	x بزرگتر از y است.	Dx	=	x دانشجو است.
Mxy	=	از y متنفر است. x	Ax	=	x انسان است.
Cx	=	x سخن است.	Lx	=	x لال است.
Kx	=	x کار است.	Gxy	=	را میگوید. y ، x
Hxy	=	به y حسد میورزد. x	Mxy	=	در y موفق است. x
Mxy	=	از y متمایز است.	Ax	=	x عدد است.
Dxy	=	را دوست دارد. $y `x$	Bxyz	=	بین y و z است. x
Mx	=	x مغازه است.	Cx	=	x كالا است.
Ex	=	امتحان است. x	Kxyz	=	را از z میخرد. y ، x
Hxy	=	را حل میکند. $y \cdot x$	Mxy	=	x مسألهای از y است.

$$(\forall x)[Ax\supset .$$
 از کسی متنفر است. $[Ax\supset (\exists y)[Ay\land Mxy)]$.۲

- $(\forall x)[(Ax \land .$ مورد حسد همه واقع می شود. $(\forall x)[(Ax \land .$ مورد حسد همه واقع می شود. $(\forall x)([Ax \land (\forall y)(Ky \supset Mxy)] \supset (\forall y)(Ay \supset Hyx))$
- $(\forall x)(\forall y)[(Ax \land Ay \land Mxy) \supset x$ قرار دارد. و قرار دارد. و قرار دارد. ($\forall x)(\forall y)[(Ax \land Ay \land Mxy) \supset (\exists z)(Az \land Bzxy)]$
 - - $(\exists x)(Ax \land ...$ دوست ندارد. x) هیچ کس را دوست ندارد. $(\exists x)[Ax \land (\forall y)(Ay \supset \sim Dxy)]$
 - $(\forall x)[Ax\supset (x)$ درا دوست ندارد. $x\supset x$ هیچ کس را دوست ندارد. $(\forall x)[Ax\supset ((\forall y)(Ay\supset \sim Dxy)\supset \sim Dxx])$

```
(\forall x)[Ax\supset (...] همه (\forall x)[Ax\supset (...] همه (\forall x)[Ax\supset (...]
(\forall x)(Ax \supset [(\forall y)(Ay \supset Dxy) \supset (\forall y)(Ay \supset Dyx)])
 (\forall x)(Ax\supset x) کسی را دوست دارد که هر کسی او را دوست ندارد.
                                                                                                        .1.
 (\forall x)[Ax\supset(\exists y)(Ay\wedge.) را دوست دارد و هر کسی y را دوست ندارد. (\forall x)[Ax\supset(\exists y)(Ay\wedge.)]
 (\forall x)(Ax \supset (\exists y)[Ay \land Dxy \land \sim (\forall z)(Az \supset Dzy)])
                    (\forall x)(Ax \supset x) کالایی از مغازهای می خرد.
                                                                                                         .11
                     (\forall x)[Ax \supset (\exists y)(\exists z)(Cy \land Mz \land Kxyz)]
                   (\exists x)(Mx \land .) هر کس کالایی از x می خرد.
                                                                                                        .17
                   (\exists x)[Mx \land (\forall y)(Ay \supset x)]کالایی از x میخرد.
                   (\exists x)(Mx \land (\forall y)[Ay \supset (\exists z)(Cz \land Kyzx)])
              (\exists x)(Ax \land ...) همهی کالاها را از یک مغازه می خرد
                                                                                                        .15
              (\exists x)[Ax \land (\exists y)(My \land ...) \land (\exists y)[Ax \land (\exists y)(My \land ...)]
              (\exists x)(Ax \land (\exists y)[My \land (\forall z)(Cz \supset Kxzy)])
               (\forall x)(Ax \supset ...) از همه مغازه ها تمامی کالاها را نمی خرد.
                                                                                                        .14
           (\forall x)[Ax\supset \sim (\forall y)(My\supset x)] از y تمامی کالاها را می خرد.
           (\forall x)(Ax \supset \sim (\forall y)[My \supset (\forall z)(Cz \supset Kxzy)])
           (\forall x)(Ax \supset x) تمامی کالاها را از یک مغازه نمی خرد.
                                                                                                        .10
            (\forall x)[Ax \supset \sim (\exists y)(My \land .)می خود کالاها را از y می خود (\exists y)(My \land .)
           (\forall x)(Ax\supset\sim(\exists y)[My\land(\forall z)(Cz\supset Kxzy)])
          (\forall x)(Dx \supset x) در هر امتحانی بعضی مسائل را حل می
                                                                                                        .19
          (\forall x)[Dx\supset(\forall y)(Ey\supset x)]در (\forall x)[Dx\supset(\forall y)(Ey\supset x)]
          (\forall x)(Dx \supset (\forall y)[Ey \supset (\exists z)(Mzy \land Hxz)])
       (\forall x)(.کند.) هر مسئلهای را در بعضی امتحانات حل می کند.) x \supset Dx
                                                                                                        .17
       (\forall x)[(\exists y)(Ey \land .هر مسئلهای را در y حل میکند. (\forall x)[(\exists y)(Ey \land .)]
                     (\forall x)((\exists y)[Ey \land (\forall z)(Mzy \supset Hxz)] \supset Dx)
```

صفحه ۹۶

تمرین ۸.۵: تر**ج**مه

عبارات تمرین ۷.۵ را با سور مقید و ذکر عالم سخن به زبان منطق محمولات ترجمه کنید.

پاسخ تمرین ۸.۵

در مرحلهی پنجم به ساده کردن فرمولها، جایی که موضوع بحث فقط اشیای خاصی هستند، می پردازد. مثلاً در علم حساب همه ی اشیاء عدد هستند، پس نیازی نداریم هر دفعه محمول x عدد است.» ذکر شود.

 $(\forall x)(Mxa\supset Mxb)$. ۱ عالم سخن: دانشجوها

 $(\forall x)(\exists y)Mxy$ عالم سخن: انسانها

۳. عالم سخن: انسانهای لال و سخنها

۴. عالم سخن: انسانها و كارها

 $(\forall x)(\forall y)(Mxy\supset (\exists z)Bzxy)$ عالم سخن: اعداد .۵

 $(\forall x) \sim (\forall y) Dxy$ انسانها عالم سخن: انسانها

 $(\exists x)(\forall y)\sim Dxy$ عالم سخن: انسانها ($\forall x)[(\forall y)\sim Dxy\supset\sim Dxx]$ عالم سخن: انسانها ($\forall x)[(\forall y)Dxy\supset(\forall y)Dyx]$ عالم سخن: انسانها ($\forall x)[(\forall y)Dxy\supset(\forall y)Dyx]$ همان فرمول عالم سخن در موارد ۱۱ تا ۱۵: انسانها، کالاها و مغازهها همان فرمول عالم سخن در موارد ۱۲ تا ۱۵: دانشجویان، امتحانها و مسئلهها همان فرمول همان فرمول دور عالم سخن: انسانها، امتحانها و مسئلهها همان فرمول همان فرمول دور عالم سخن: انسانها، امتحانها و مسئلهها همان فرمول

P_N دستگاه استنتاجی ۳.۵

تمرین ۹.۵: نمونه جانشین ______

برای هر کدام از فرمولهای φ_{α} در گروه اول، در صورتی که α مساوی x باشد، نمونه درستی از φ_{β} در گروه دوم بیابید.

 $arphi_{lpha}=arphi_{x}$ $ext{$\varphi_{\alpha}=\varphi_{x}$}$ $ext{$Fx\vee Gy.$ Y}$ $ext{$Fx\vee Gx.$ N}$ $ext{$(\forall y)(Fx\supset Gy).$ Y}$ $ext{$Fx\supset (\exists y)Gy.$ Y}$ $ext{$Fx\supset (\exists y)(Gx\wedge Hy).$ \varnothing}$ $ext{$Ix\supset Ixy.$ Y}$

 φ_{β} (نمونه درست) جگروه دوم (نمونه درست) φ_{β} $(\forall y)(Fy \supset Gy)$ φ $Fa \lor Gy$ ($Fa \lor Gy$ ($Fa \land Gx$ (\Rightarrow $Fy \lor Gy$ (\Rightarrow $Fx \supset (\exists y)Gy$ (\Rightarrow $Fy \supset (\exists y)Gy$ ($\forall y)(Fa \supset Gy)$ ($\forall y)(Fa \supset Gy)$ ($\forall y)(Fz \supset Gy)$ ($\forall y)(Fz \supset Gy)$ ($\forall y)(Gz \land Hy)$ (($\forall x)Fx \supset (\exists y)(Gz \land Hy)$ ((

$$Iy\supset Iyy$$
 (ن $(\forall x)(Fx\supset Gy)$ (م $Ia\supset Iab($ س

پاسخ تمرین ۹.۵

برای چک کردن سریعتر نمونه درستها، ابتدا ساختار گزارهای توجه کنید.

صفحه ۱۰۲

تمرین ۱۰.۵: نمونه جانشین

در صورتی که g=y باشد، تعیین کنید هر کدام از فرمولهای $arphi_{eta}$ در گروه دوم، نمونه درست کدام یک از فرمولهای $arphi_lpha$ در گروه اول است.

• گروه اول (اصل)

$$Fx(\mathbf{v})$$

$$Fa$$
 (\tilde{l}

$$Fx \wedge Gx$$
 (د

$$Fx \vee (\exists x)(Gx \supset Hx)$$
 (9

$$Fx \wedge Gz$$
 (o

$$Fx\supset (\exists y)(Gy\wedge Hx)$$
 (7

$$Fx \vee (\exists y)(Gc \wedge Hy)$$
 (5

$$Fx\supset (\exists y)(Gy\wedge Hy)$$
 (3)

$$Fz \vee (\exists x)(Gx \supset Hz)$$
 ط

$$Fx\supset (\exists y)(Gy\wedge Hz)$$
 (\circlearrowleft

$$Fz \vee (\exists x)(Gx \supset Hy)$$

$$Fy \lor (\exists x)(Gx \supset Hy)$$
 (م

$$(\forall x) Fyxz$$
($\forall x$

 $\varphi_{\beta} = \varphi_{y}$

 φ_{α}

$$Fx \wedge Gy$$
 . Υ

$$Fy$$
.

$$Fy \lor (\exists x)(Gx \supset Hy)$$
.

$$Fy \wedge Gy$$
. $^{\circ}$

$$Fy\supset (\exists y)(Gy\wedge Hy)$$
.9

$$Fy \vee (\exists y)(Gc \wedge Hy) \cdot \Delta$$

$$(\forall x) Fyxz$$
 . \lor

پاسخ تمرین ۱۰.۵

۴. ط)، ک)، م)

۳. د)

۲. ه)

۱. ب)، ج)

٧. ن)، س)

۶. ی)

۵. ز)

صفحه ۱۰۲

★ تمرین ۱۱.۵: توجیه

خطاها و اشتباهاتی را که در براهین زیر واقع شده بیابید و علت خطا را توضیح دهید.

$$\mathsf{N}$$
 – $(\forall x)(\exists y)(Fx\equiv Gy)$ مقدمه

$$\therefore (\exists y)(\forall x)(Fx \equiv Gy) \tag{1}$$

$$\Upsilon_{-}(\exists y)(Fx \equiv Gy)$$
 ($\forall \zeta$) ۱

$$_{
ightharpoonup}$$
 \mathbf{r}_{-} $Fx \equiv Gy$

$$\mathbf{f}_{-}(\forall x)(Fx\equiv Gy)$$
 ($\forall \phi$) ، $\mathbf{f}_{-}(\forall x)$

$$\Delta_{-}(\exists y)(\forall x)(Fx\equiv Gy)$$
 (غ)، ۴

$$\overline{\mathbf{F}_{-}\left(\exists y\right)(\forall x)(Fx}\equiv Gy)$$
 ($\exists G$) نگ-۲،۲

$$1-(\forall x)(\exists y)(Fx\supset Gy)$$
 مقدمه

$$\therefore (\exists y)(\forall x)(Fx \supset Gy) \tag{Y}$$

$$\Upsilon_{-}(\exists y)(Fx\supset Gy)$$
 $(\forall y)$

$$_{
ightharpoonup}$$
ف $r_{-}Fx\supset Gx$

$$\mathfrak{F}_{-}(\forall x)(Fx\supset Gx)$$
 $(\forall x)$

$$\Delta_{-}(\exists y)(\forall x)(Fx\supset Gy)$$
 (ع) (ج) ۴

$$\overline{\mathbf{9}_{-}(\exists y)(\forall x)(Fx}\supset Gy)$$
 ($\exists \tau$) ،۵-۳،۲

$$1 - (\forall x)(\exists y)(Fx \equiv Gy)$$
 مقدمه

$$\therefore (\exists y)(\forall x)(Fx \equiv Gy) \tag{1}$$

$$\mathsf{Y}_- (\exists y) (Fx \equiv Gy)$$
 $(\forall z) \cdot \mathsf{Y}$

$$_{
ightharpoonup}$$
۲- $Fx \equiv Gy$

$$\mathbf{r}_{-}(\forall x)(Fx\equiv Gy)$$
 ($\forall r$) ($\forall r$)

$$\Delta_{-}(\exists y)(\forall x)(Fx \equiv Gy)$$
 ($\exists \phi$) ، ۴

$$\overline{\mathbf{F}_{-}(\exists y)(\forall x)(Fx}\equiv Gy)$$
 ($\exists G$)، ۵-۳،۲

$$1 - (\forall y)(\exists x)(Fx \lor Gy)$$
 مقدمه $(\forall y)(Fx \lor Gy)$ $(\forall y)(Fx \lor Gy)$ $(\forall z) \land 1$ $(\forall z) \land 2$ $(\forall z) \land 3$ $(\forall z) \land 4$ $(\forall z) \land 4$ $(\forall z) \land 5$ $(\forall z) \land 5$

$$1 - (\exists x)(\forall y)[(Fx \wedge Gx) \supset Hy]$$
 مقدمه $(\forall x)[(Fx \wedge Gx) \supset Hx]$ (*)
$$1 - (\exists x)[(Fx \wedge Gx) \supset Hx]$$

$$2 - (\forall y)[(Fz \wedge Gz) \supset Hy]$$

$$2 - (Fz \wedge Gz) \supset Hy$$

$$2 - (\exists x)[(Fx \wedge Gz) \supset Hy]$$

$$2 - (\forall y)(\exists x)[(Fx \wedge Gy) \supset Hy]$$

$$2 - (\forall y)(\exists x)[(Fx \wedge Gy) \supset Hy]$$

$$3 - (\forall y)(\exists x)[(Fx \wedge Gy) \supset Hy]$$

$$4 - (\exists x)(\forall y)[(Fx \wedge Gy) \supset Hy]$$

$$4 - (\exists x)(\forall y)[(Fx \wedge Gx) \supset Hy]$$

$$4 - (\exists x)(\forall y)[(Fx \wedge Gx) \supset Hy]$$

$$4 - (\exists x)(\forall y)[(Fx \wedge Gx) \supset Hy]$$

$$4 - (\exists x)(\forall y)[(Fx \wedge Gx) \supset Hy]$$

$$1 - (\exists x)(\exists y)[(Fx \lor Gy) \land Hy]$$
 مقدمه $(\forall x)(\forall y)(Fy \lor Gx)$ (f)
 $T - (\exists y)[(Fx \lor Gy) \land Hy]$
 $T - (Fx \lor Gx) \land Hx$
 $T - Fx \lor Gx$
 $T - Fx$

```
1 - (\forall x)(\forall y)(Axy \supset \sim By)
                                                  مقدمه
 Y - (\forall x)(\forall y)(\sim Cx \supset Axy)
                                                  مقدمه
     \therefore (\forall x)[(\exists y)By \supset Cx]
                                                   (1.)
→٣− Bz
                                            ۱، (ح)
 \mathbf{Y}_{-}(\forall y)(Axz \supset \sim By)
                                              ۴، (ح
 \Delta - Axz \supset \sim Bz
                                          ۵،۳ (ر.ت)
 \mathbf{r} \sim Axz
 V_{-}(\forall y)(\sim Cx \supset Axy)
                                             ۲، (ح∀)
                                             ۷، (∀۲)
 A - \sim Cx \supset Axz
 q - Cx
                                          ۸،۶ (ر.ت)
  A \cdot -Bz \supset Cx
                                         ۳−۹، (م⊂)
                                           ۱۰، (م∃)
 (\exists y)By \supset Cx
 \mathsf{NY}_-(\forall x)[(\exists y)By\supset Cx]
                                           ۱۱، (م
```

پاسخ تمرین ۱۱.۵

تا قبل از اینکه مسلط شوید، برای اینکه اشتباه نکنید میتوانید برای هر مورد ابتدا بر روی چکنویس مصداق φ_{β} ، α , φ_{α} و β را بنویسید. سپس شرایط را از صفحه ۹۷ چک کنید.

۱. سطر x: x در سطر x آزاد است.

۲. سطر x: x در سطر x آزاد است.

سطر α : α در سطر α آزاد نیست.

سطر x: در سطر x آزاد است. (شرط x حذف جزئی)

۳. سطر y:y جانشین همه ی موارد x در سطر y نشده است.

سطو x: x در سطو x: x آزاد است.

سطر x: x در دامنه ی سور آزاد است.

سطر φ : سطر x جانشین y در فرمول y در سطر x شده است.

۴. سطر ۵: هم z در فرمول Gz در سطر ۴ جانشین تمام موارد y نشده است و هم y در فرمول Hy در سطر ۴ جانشین تمام موارد y نشده است.

۵. سطر y:y در سطر y آزاد است.

و. سطر $\alpha:x$ در سطر ۴ آزاد است. (شرط ۲ حذف جزئی) سطر ۵: x در سطر ۲ آزاد است. (شرط ٣ حذف جزئي) (شرط ۲ حذف جزئي) سطر x: x در سطر α آزاد است. (شرط ۳ معرفی کلی) سطر v: x در سطر v آزاد است. ۷. سطر ۵: سطر ۳ نمونه درست دامنهی سور سطر ۱ نیست. (شرط عمومي) (شرط ۲ حذف جزئی) سطر ۸: x در سطر ۷ آزاد است. سطر A: X در سطر A آزاد است. (شرط ٣ حذف جزئي) (شرط عمومي) ۸. سطر ۴: سطر ۳ نمونه درست دامنهی سور نیست. ۹. سطر v: x در سطرهای v: x و ۶ آزاد است. (شرط ۲ و ۳ حذف جزئی) سطر ۱۰: قاعده معرفی جزئی در بخشی از فرمول به کار رفته است. (شرط عمومي) ۱۰. سطر ۴: نمونه درست دامنهی سور سطر ۱ نیست. سطر ۶: قاعدهی گزارهای به کار رفته، قاعده رفع تالی نیست. بر روی سطر ۳ به کار بردن قاعدهی نقض مضاعف جا افتاده است. ۱۴ سطر ۹: قاعدهی گزارهای به کار رفته، قاعده رفع تالی نیست. بر روی سطر ۳ به کار بردن قاعدهی حذف نقض جا افتاده است. ۱۵ سطر ۱۱: قاعده معرفی جزئی در بخشی از فرمول به کار رفته است.

صفحه ۱۰۷

★ تمرین ۱۲.۵: اثبات

استدلالهای زیر را بدون استفاده از قواعد فرعی P_N اثبات کنید.

- 1. $(\forall x)(Ax \supset Bx), \sim Bd \vdash \sim Ad$
- 2. $(\forall x)(Cx\supset Dx), (\forall x)(Ex\supset \sim Dx) \vdash (\forall x)(Ex\supset \sim Cx)$
- 3. $(\forall x)(Fx \supset \sim Gx), (\exists x)(Hx \land Gx) \vdash (\exists x)(Hx \land \sim Fx)$
- *4. $(\forall x)(Ax \supset Bx), (\exists x)(Ax \land \sim Bx) \vdash (\forall x)(Bx \supset Ax)$
 - 5. $(\forall x)(Kx \supset Lx), (\forall x)[(Kx \land Lx) \supset Mx] \vdash (\forall x)(Kx \supset Mx)$
 - 6. $(\forall x)(Ax \supset Cx), (\forall x)(Bx \supset Cx) \vdash (\forall x)[(Ax \lor Bx) \supset Cx]$

۱۴ البته استنتاج درست است.

۱۵ البته استنتاج درست است.

- 7. $(\forall x)(Ax \supset Bx), (\exists x)(Ax \lor Bx) \vdash (\exists x)Bx$
- 8. $(\forall x)[Ox\supset (Ex\supset Hx)], (\forall x)[Hx\supset (Nx\wedge Mx)]\vdash (\forall x)[Ox\supset (Ex\supset Nx)]$
- 9. $(\forall x)[(Ax \lor Bx) \supset (Cx \land Dx)], (\forall x)[(Cx \lor Dx) \supset (Ax \land Bx)] \vdash (\forall x)(Ax \equiv Cx)$
- 10. $(\forall x)[(Bx\supset Cx)\land (Dx\supset Ex)], (\forall x)[(Cx\lor Ex)\supset ([Fx\supset (Gx\supset Fx)]\supset (Bx\land Dx))]\vdash (\forall x)(Bx\equiv Dx)$

پاسخ تمرین ۱۲.۵

در اثبات به نكات زير توجه كنيد:

- تا جایی که میتوانید متغیرها را تغییر ندهید.
- استفاده از قاعده حذف کلی را نسبت به بقیهی قواعد اصلی سورها تا میتوانید به تعویق بندازید.

$$1-(\forall x)(Ax\supset Bx)$$
 مقدمه $1-(\forall x)(Ax\supset Bx)$ مقدمه مقدمه مقدمه $\therefore \sim Bd$ (۱) $1-(\forall x)$ $1-(\forall x)$

$$1-(\forall x)(Cx\supset Dx)$$
 مقدمه $Y-(\forall x)(Ex\supset\sim Dx)$ مقدمه مقدمه $\therefore (\forall x)(Ex\supset\sim Cx)$ (۲) $Y-Cx\supset Dx$ ($\forall z)$ $Y-Cx\supset Dx$ ($\forall z)$ $Y-Cx\supset Dx$ ($\forall z)$ $Y-Cx\supset Cx$ ($\forall z)$ $Y-Cx\subset Cx$ Y

$1-(\forall x)(Fx\supset \sim Gx)$	مقدمه
$\mathbf{Y}_{-}(\exists x)(Hx\wedge Gx)$	مقدمه
$\therefore (\exists x)(Hx \land \sim Fx)$	(٣)
$rac{}{ ho}$ r – $Hx \wedge Gx$	ف
$\mathbf{Y} - Fx \supset \sim Gx$	۱، (ح∀)
$\Delta - Hx$	۳، (ح∧)
9-Gx	۳، (ح∧)
$V - \sim \sim Gx$	۶، (ن.م)
$\Lambda - \sim Fx$	۷،۴، (ر.ت)
$\mathbf{q} - Hx \wedge \sim Fx$	۵،۸، (م/)
$ \cdot - (\exists x)(Hx \land \sim Fx)$	۹، (م∃)
$\Box \cap (\exists x)(Hx \land \sim Fx)$	۲،۳-۲، (ح∃)
	_

 $1-(\forall x)(Ax\supset Bx)$ مقدمه $Y - (\exists x)(Ax \land \sim Bx)$ مقدمه $\therefore (\forall x)(Bx \supset Ax)$ (4) $\rightarrow \mathbf{r} - Ax \wedge \sim Bx$ ف $f \leftarrow \sim (\forall x)(Bx \supset Ax)$ ۱، (ح∀) $\Delta - Ax \supset Bx$ ۳، (ح۸) \mathbf{r} - Ax۳، (ح∕) $V - \sim Bx$ ۵،۶، (ح⊂) A-Bx۱،۸،۷ (م∕) $\mathbf{q} - Bx \wedge \sim Bx$ $1 \cdot - \sim (\forall x)(Bx \supset Ax)$ ۱~۹) ، ۹-۴ ۱۱، (ح~) $(\forall x)(Bx\supset Ax)$ $\overline{\mathsf{NY}_-(\forall x)(Bx\supset Ax)}$ ۲،۳-۱۱، (ح∃)

 $1-(\forall x)(Kx\supset Lx)$ مقدمه Y - $(\forall x)[(Kx \wedge Lx) \supset Mx]$ مقدمه $\therefore (\forall x)(Kx \supset Mx)$ (۵) $(\forall \forall)$ ، (\mathbf{r} - $Kx\supset Lx$ ۲، (ح∀) $\mathbf{f}_{-}(Kx \wedge Lx) \supset Mx$ $\Delta - Kx \supset (Kx \wedge Lx)$ ۳، (جذ) ۵،۴ (ق.ش) $9-Kx\supset Mx$ ۶، (م∀) $V-(\forall x)(Kx\supset Mx)$ $1 - (\forall x)(Ax \supset Cx)$ مقدمه $Y - (\forall x)(Bx \supset Cx)$ مقدمه $\therefore (\forall x)[(Ax \vee Bx) \supset Cx]$ (9) ۱، (ح∀) Υ - $Ax \supset Cx$ ۲، (ح∀) $\mathbf{f}_{-} Bx \supset Cx$

 $ightarrow \delta$ - $Ax \lor Bx$ ho- $(Ax \supset Cx) \land (Bx \supset Cx) \land (\
ho$ ho- $(Ax \supset Cx) \land (Bx \supset Cx) \land (\
ho$ ho- $Cx \lor Cx$ ho- Cx ho- $(Cx) \land (\
ho$ ho- $(Ax \lor Bx) \supset Cx$ ho- $(Ax \lor Bx) \supset Cx$

 $(\forall x)[(Ax \lor Bx) \supset Cx]$ ($\forall x$) ا

$1-(\forall x)(Ax\supset Bx)$	مقدمه
$\mathbf{Y}_{-}(\exists x)(Ax\vee Bx)$	مقدمه
$\therefore (\exists x)Bx$	(V)
\rightarrow Υ - $Ax \vee Bx$	ف
$\mathbf{f} - Ax \supset Bx$	۱، (ح∀)
$\rightarrow \Delta - Ax$	ف
$\int \mathbf{P} - \mathbf{B} \mathbf{x}$	۴،۵، (ح⊂)
$rac{1}{rac}}}}}}} } } } } } } } } } } } } } } } $	ف
$A - Bx \wedge Bx$	۷، (تک)
$ \mathbf{q} - Bx $	۸، (تک)
1 • - Bx	۷۰۶−۵٬۳ (ح∨)
$11 - (\exists x)Bx$	۰۱، (م
\Box $Y - (\exists x)Bx$	۲،۳-۱۱، (ح∃)

 $(\forall x)[Ox \supset (Ex \supset Hx)]$ مقدمه $Y - (\forall x)[Hx \supset (Nx \land Mx)]$ مقدمه $\therefore (\forall x)[Ox\supset (Ex\supset Nx)]$ (٨) ۱، (ح∀) Υ - $Ox \supset (Ex \supset Hx)$ ۲، (ح∀) $\mathbf{f}_{-} Hx \supset (Nx \wedge Mx)$ $\rightarrow \Delta - Hx$ ۵،۴(ح⊂) $9-Nx\wedge Mx$ ۶، (ح∕) V-Nx۵−۷، (م⊂) $\Lambda - Hx \supset Nx$ $\mathbf{q} - (Ox \wedge Ex) \supset Hx$ ۳، (صد) $(Ox \wedge Ex) \supset Nx$ ۹،۸، (ق.ش) $N - Ox \supset (Ex \supset Nx)$ ۱۰ (صد) $\mathsf{NY}_- (\forall x) [Ox \supset (Ex \supset Nx)]$ $(\forall x) (\mathsf{NY}_-) (\mathsf$

 $1 - (\forall x)[(Ax \lor Bx) \supset (Cx \land Dx)]$ مقدمه $Y_{-}(\forall x)[(Cx \vee Dx) \supset (Ax \wedge Bx)]$ مقدمه $\therefore (\forall x)(Ax \equiv Cx)$ (٩) ۱، (ح∀) $\mathbf{r}_{-}(Ax \vee Bx) \supset (Cx \wedge Dx)$ ۲، (ح∀) $\mathbf{Y}_{-}(Cx \vee Dx) \supset (Ax \wedge Bx)$ $\rightarrow \Delta - Ax$ ۵، (م∨) $\mathbf{\hat{r}}_{-}Ax\vee Bx$ ۶٬۳ (ح⊂) $V-Cx\wedge Dx$ ۷، (ح۸) Λ - Cx \rightarrow 4 - Cx۹، (م۷) $\mathbf{L} - Cx \vee Dx$ ۱۰،۴، (ح⊂) $11-Ax \wedge Bx$ ۱۱، (ح/) 17- Ax ۵-۸،۹-۲۱ (ع=) $\mathbf{17} - Ax \equiv Cx$ ۱۲، (م $\mathbf{VF}_{-}(\forall x)(Ax \equiv Cx)$

$(\forall x)[(Bx\supset Cx)\land (Dx\supset Ex)]$	مقدمه
Y - $(\forall x)[(Cx \lor Ex) \supset ([Fx \supset (Gx \supset Fx)] \supset (Bx \land Fx)]$	Dx))] مقدمه
$\therefore (\forall x)(Bx \equiv Dx)$	(1.)
$\mathbf{r}_{-}\left(Bx\supset Cx\right)\wedge\left(Dx\supset Ex\right)$	۱، (ح∀)
$\mathbf{f}_{-}\left(Cx\vee Ex\right)\supset\left(\left[Fx\supset\left(Gx\supset Fx\right)\right]\supset\left(Bx\wedge Dx\right)\right)$	۲، (ح∀)
$ ightharpoonup \Delta - Bx \vee Dx$	ف
$\mathbf{\hat{r}}$ – $Cx \vee Ex$	۵،۳ (ذ.م)
$V_{-}\left[Fx\supset (Gx\supset Fx)\right]\supset (Bx\wedge Dx)$	۶،۴، (ح⊂)
$\rightarrow \Lambda - Fx$	ف
$ \mathbf{q} - \sim Gx \vee Fx$	۸، (م∨)
$V \cdot -Gx \supset Fx$	۹، (اس)
$N-Fx\supset (Gx\supset Fx)$	۸-۱۱ (م
$NY - Bx \wedge Dx$	۱۱،۷ (ح⊂)
$rac{}{}$ NT - $(Bx \lor Dx) \supset (Bx \land Dx)$	۵–۱۲۰ (م)
$NF_{-} \sim (Bx \vee Dx) \vee (Bx \wedge Dx)$	۱۳، (اس)
$Na_{-}\left(Bx\wedge Dx\right)\vee \sim \left(Bx\vee Dx\right)$	۱۴، (جا)
$NS_{-}\left(Bx\wedge Dx\right)\vee\left(\sim\!Bx\wedge\sim\!Dx\right)$	۱۵، (دم)
$NV-Bx \equiv Dx$	۱۶، (تع)
NA - $(\forall x)(Bx \equiv Dx)$	۱۷، (م

صفحه ۱۰۸

🛨 🛨 تمرین ۱۳.۵: اثبات

استدلالهای زیر (قواعد فرعی (P_N) را بر مبنای قواعد اصلی (P_N) اثبات کنید.

 $\sim (\forall x)Fx \vdash (\exists x) \sim Fx$: . i نقض سور: . $\land x \Rightarrow (\exists y) \sim (Fy \lor Gy) \vdash \sim (\forall y)(Fy \lor Gy)$: . $\land x \Rightarrow (\exists y) \sim (Fx \equiv (\exists y)Gy] \vdash (\exists x)[Fx \equiv (\exists y)Gy]$: . $\land x \Rightarrow (\exists x)(\forall y)Fxy \vdash \sim (\forall x) \sim (\forall y)Fxy$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\forall x) \sim (Gx \supset Fx)$: . $\land x \Rightarrow (\forall x) \sim (\exists x)(Gx \supset Fx) \vdash (\forall x) \sim (Gx \supset Fx)$: . $\land x \Rightarrow (\forall x) \sim (\exists y)(Fx \lor Gy) \vdash \sim (\exists x)(\exists y)(Fx \lor Gy)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\forall x) \sim (Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\forall x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\forall x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\forall x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\forall x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\forall x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\forall x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx) \vdash (\exists x)(Gx \supset Fx)$: . $\land x \Rightarrow (\exists x)(Gx \supset Fx)$

 $(\exists x)(\exists y)(Fx \equiv Gy) \vdash (\exists y)(\exists x)(Fx \equiv Gy)$: بیخش سور: $(\forall x)(Fx \land Gx) \vdash (\forall x)Fx \land Gx$: بیخش سور: $(\forall x)(Fx \equiv Gx) \land (\forall x)(Ax \lor Bx)$: بیخش سور: $(\exists x)(Fx \lor Gx) \vdash (\exists x)Fx \lor (\exists x)Gx$: بیخش سور: $(\exists x)(Fx \lor Gx) \vdash (\exists x)Fx \lor (\exists x)Gx$: بیخش سور: $(\exists x)(\exists y)Fxy \lor (\exists x)(\forall y)Gxy \vdash (\exists x)[(\exists y)Fxy \lor (\forall y)Gxy]$: ۱۲

پاسخ تمرین ۱۳.۵

در مورد (۲) توجه کنید که راه حل زیر اشتباه است:

$$1 - (\exists y) \sim (Fy \lor Gy)$$
 مقدمه $\therefore \sim (\forall y)(Fy \lor Gy)$ (۲)

 $T - (\forall y)(Fy \lor Gy)$
 $T - (\forall y)(Fy \lor Gy)$
 $T - \sim (Fy \lor Gy)$
 $T - \sim (Fy \lor Gy)$
 $T - \sim (Fy \lor Gy) \land \sim (Fy \lor Gy)$
 $T - \sim (\forall y)(Fy \lor Gy) \land \sim (Fy \lor Gy)$
 $T - \sim (\forall y)(Fy \lor Gy) \land \sim (\forall y)(Fy \lor Gy)$
 $T - \sim (\forall y)(Fy \lor Gy) \land \sim (\forall y)(Fy \lor Gy) \land \sim (\forall y)(Fy \lor Gy)$

 \perp (تابت) یا که در سطر ۵، متغیر y آزاد است. اگر ما در زبان ادات صفر موضعی (گزارهی ثابت) که نماینده ی تناقض ها است را به همراه قواعد معرفی و حذف \perp داشتیم، در سطر ۶ به مشکل برنمی خوردیم. اما در تقریر کتاب ما باید از تناقض در سطر ۵ به تناقضی برسیم که متغیر y در آن آزاد نباشد.

روش اول

$N (\exists y) {\sim} (Fy \lor Gy)$	مقدمه
$\therefore \sim (\forall y)(Fy \vee Gy)$	(٢)
$ ightharpoonup \mathbf{Y}_{-} (\forall y) (Fy \lor Gy)$	ف
$rac{}{}_{r} r \sim (Fy \vee Gy)$	ف
$ \mathbf{f}_{-} Fy \vee Gy$	۲، (ح∀)
$ _{\vdash} \Delta_{-} \sim (P \wedge \sim P)$	ف
$ \mathcal{F}_{-} (Fy \vee Gy) \wedge \sim (Fy \vee Gy)$	۴،۳، (م/)
$V \sim \sim (P \wedge \sim P)$	$(\sim_{ ho})$ ،۶-۵
$A-P \wedge \sim P$	$(\sim_{f extsf{V}})$ ، ۷
	۱ ،۳−۸، (ح∃
	۲-۹، (م

روش دوم

$$1 - (\exists y) \sim (Fy \lor Gy)$$
 $\therefore \sim (\forall y)(Fy \lor Gy)$
 $\therefore \sim (\forall y)(Fy \lor Gy)$
 $\Rightarrow \Upsilon - (\forall y)(Fy \lor Gy)$
 $\Rightarrow \Upsilon - \sim (Fy \lor Gy)$
 $\Rightarrow (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\Rightarrow (\forall y)(Fy \lor Gy))$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$
 $\Rightarrow (\Rightarrow (\forall y)(Fy \lor Gy) \land (\forall y)(Fy \lor Gy)$

مطلبی که گفته شد مشابهاً برای موارد (۴) و (۶) نیز برقرار است. توصیه می شود از روش اول استفاده شود که کلی تر است.

$1 - (\forall x)(\forall y)Fxy$	مقدمه
$\therefore (\forall y)(\forall x)Fxy$	(V)
$Y (\forall y) Fxy$	۱، (ح∀)
r-Fxy	۲، (ح∀)
$\mathbf{f}_{-}(\forall y)Fxy$	۳، (م∀)
$\Delta - (\forall y)(\forall x)Fxy$	۴، (م∀)

 $1 - (\exists x)(Fx \lor Gx)$ مقدمه $\therefore (\exists x) Fx \lor (\exists x) Gx$ (11) \rightarrow Y - $Fx \vee Gx$ ف →**۲**- Fx ۳، (م∃) $\mathbf{Y}_{-}(\exists x)Fx$ ۴، (م/) $\Delta - (\exists x) Fx \vee (\exists x) Gx$ \rightarrow 9 - Gxف ۶، (م∃) $V-(\exists x)Gx$ Λ - $(\exists x)Fx \vee (\exists x)Gx$ ۷، (م $\overline{\mathbf{q}}_{-}(\exists x)Fx\vee(\exists x)Gx$ (\vee) \land -9 \cdot δ - \wedge \cdot \bullet $\overline{ \cdot \cdot - (\exists x) Fx \vee (\exists x) Gx }$ ۱،۲−۱، (ح∃)

صفحه ۱۰۹

تمرین ۱۴.۵: اثبات

با استفاده از قواعد اصلى و فرعى استنتاج، استدلالهاى زير را اثبات كنيد.

- 1. $(\forall x)(Nx \supset Ox) \vdash (\forall x)(Mx \supset [(\forall y)(My \supset Ny) \supset Ox])$
- ** 2. $(\forall x)(\exists y)(Ex \lor Fy) \vdash (\forall x)Ex \lor (\exists y)Fy$
 - 3. $(\exists x)Ax \supset (\forall y)(By \supset Cy), (\exists x)Dx \supset (\exists y)By \vdash (\exists x)(Ax \land Dx) \supset (\exists y)Cy$
 - 4. $(\exists x)Hx \lor (\exists y)Ky, (\forall x)(Hx \supset Kx) \vdash (\exists y)Ky$
 - 5. $(\forall x)(Ix \supset \sim Gx) \vdash (\forall x)(Gx \supset Ix) \supset (\forall y)(Gy \supset Hy)$
 - 6. $(\forall x)(Bx \supset [(\forall y)(Ay \supset By) \supset Cx]), (\forall x)(Cx \supset [(\forall y)(Ay \supset Dy) \supset Ex]) \vdash (\forall y)[Ay \supset (By \land Dy)] \supset (\forall x)(Bx \supset Ex)$
 - 7. $(\exists x)[Ax \land (\forall y)(By \supset Cy)], (\forall x)(Ax \supset [(\exists y)(Dy \land Cy) \supset Ex]) \vdash (\exists y)(Dy \land By) \supset (\exists x)Ex$
- *8. $(\forall x)(Ax \supset [(\exists y)By \supset Cx]), (\forall x)(Cx \supset [(\exists y)Dy \supset Ex]) \vdash (\exists x)(BxAx) \supset [(\forall y)(Fy \supset Dy) \supset (\forall z)(Az \supset Ez)]$
- ** 9. $(\forall x)(\exists y)(Gx \land Hy) \vdash (\forall x)Gx \land (\exists y)Hy$

- *** 10. $(\forall x)(\exists y)(Kx \land Ly) \vdash (\exists y)(\forall x)(Kx \land Ly)$
 - 11. $(\exists x)(\forall y)[(\exists z)Ayz \supset Ayx], (\forall y)(\exists z)Ayz \vdash (\exists x)(\forall y)Ayx$
 - 12. $(\forall x)(Cax \supset Dxb), (\exists x)Dxb \supset (\exists y)Dby \vdash (\exists x)Cax \supset (\exists y)Dby$
 - *13. $(\forall x)[(\exists y)Byx \supset (\forall z)Bxz] \vdash (\forall y)(\forall z)(Byz \supset Bzy)$
 - 14. $(\exists x)[Hx \land (\forall y)(Iy \supset Nxy)] \vdash (\forall x)(Hx \supset Ix) \supset (\exists y)(Iy \land Nyy)$
 - 15. $(\forall x)[Ex \supset (\forall y)(Fy \supset Gxy)], (\exists x)[Ex \land (\exists y) \sim Gxy] \vdash (\exists x) \sim Fx$
 - 16. $(\forall x)[Mx \supset (\forall y)(Ny \supset Oxy)], (\forall x)[Bx \supset (\forall y)(Oxy \supset Cy)] \vdash (\exists x)(Mx \land Bx) \supset (\forall y)(Ny \supset Cy)$
 - *17. $(\forall x)(Kx \supset [(\exists y)Lxy \supset (\exists z)Lzx]), (\forall x)[(\exists z)Lzx \supset Lxx], \sim (\exists x)Lxx$ $\vdash (\forall x)[Kx \supset (\forall y) \sim Lxy]$
 - *18. $(\forall x)[(Bx \land \sim Ox) \supset (\exists y)(Exy \land Hy)], (\exists x)[Nx \land Bx \land (\forall y)(Exy \supset Ny)], (\forall x)(Nx \supset \sim Ox) \vdash (\exists x)(Nx \land Hx)$
- ** 19. $(\forall x)(Ax \supset Bx), (\forall x)[(Cx \land Bx) \supset Dx], (\forall x)(\exists y)(Cy \land Eyx), (\forall x)(\forall y)[(Eyx \land Dy) \supset Dx] \vdash (\forall x)[(\forall y)(Eyx \supset Ay) \supset Dx]$
- ** 20. $(\forall x)[(Bx \land (\exists y)[Cy \land Dyx \land (\exists z)(Ez \land Fxz)]) \supset (\exists x')Gxx'x],$ $(\forall x)(\forall y)(Hxy \supset Dyx), (\forall x)(\forall y)(Fxy \supset Fyx), (\forall x)(Ix \supset Ex) \vdash$ $(\forall x)[Bx \supset ([(\exists y)(Cy \land Hxy) \land (\exists z)(Iz \land Fzx)] \supset (\exists y')(\exists x')Gxx'y')]$

پاسخ تمرین ۱۴.۵

$1 - (\exists x)Ax \supset (\forall y)(By \supset C)$	(y) مقدمه
$Y\left(\exists x\right)Dx\supset(\exists y)By$	مقدمه
$\therefore (\exists x)(Ax \land Dx) \supset (\exists y)$	(r)
$rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{$	ف
$\rightarrow \mathbf{f} - Ax \wedge Dx$	ف
$\Delta - Ax$	۴، (ح۸)
$ \mathbf{\hat{y}} - Dx $	۴، (ح∧)
$ \mathbf{V} - (\exists x) Ax $	۵، (م∃)
$\bigwedge - (\forall y)(By \supset Cy)$	۱،۷،۱ (ح⊂)
$ \mathbf{q} - (\exists x) Dx $	۶، (م∃)
$ V - (\exists y) By$	۹،۲ (ح⊂)
\parallel_{\rightarrow} N-By	ف
$ $) Y – $By\supset Cy$	$(\forall \forall)$ ، (
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	۱۱،۱۱، (ح⊂)
$ $ $NF_{-}(\exists y)Cy$	۱۳، (م∃)
	۱۱،۱۰ ٔ ۱۴۰، (ح∃)
$19-(\exists y)Cy$	۳،۴-۱۵، (ح∃)
NV - $(\exists x)(Ax \wedge Dx) \supset (\exists y)$	Cy (م \subset) ، ۱۶-۳
$1 - (\exists x) Hx \lor (\exists y) Ky$	مقدمه
$\mathbf{Y}_{-}(\forall x)(Hx\supset Kx)$	مقدمه
$\therefore (\exists y)Ky$	(4)
\vdash Υ - $(\exists x)Hx$	ف
$rac{1}{rac}}}}}}} } } } } } } } } } } } } } } } $	ف
$ a Hx \supset Kx$	\forall ، $(\neg \forall)$
9- Kx	۵،۴، (ح⊂)
$ V (\exists y) K y$	۶، (م∃)
Λ - $(\exists y)Ky$	۳،۴−۷، (ح∃)
$\rightarrow \mathbf{q} - (\exists y)Ky$	ف
$ \land - (\exists y) Ky \wedge (\exists y) Ky $	۹، (تک)
$N - (\exists y) K y$	۱۰ (ح۸)
\Box \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	۱ ،۳-۸،۴-۱ ۱

```
1 - (\forall x)(Ix \supset \sim Gx)
                                                                               مقدمه
            \therefore (\forall x)(Gx\supset Ix)\supset (\forall y)(Gy\supset Hy)
                                                                                  (0)
       \forall \mathsf{Y} - (\forall x)(Gx \supset Ix)
                                                                           ۲، (∀∀)
        \Upsilon- Gx \supset Ix
        \mathbf{f}_{-}Ix \supset \sim Gx
                                                                           ۱، (ح∀)
                                                                      ۴،۳، (ق.ش)
        \Delta - Gx \supset \sim Gx
        \mathbf{\hat{r}}_{-} \sim Gx \vee \sim Gx
                                                                           ۵، (اس)
        V - \sim Gx
                                                                           ۶، (تک)
                                                                            ۷، (م
        \Lambda- \sim Gx \vee Hx
        9-Gx\supset Hx
                                                                            ۸، (اس)
                                                                            ۹، (م
        (\forall y)(Gy\supset Hy)
        ۱۱- (\forall x)(Gx\supset Ix)\supset (\forall y)(Gy\supset Hy) (ام) ۱۱- ۲
  1 - (\forall x)(Bx \supset [(\forall y)(Ay \supset By) \supset Cx])
                                                                                     مقدمه
  Y - (\forall x)(Cx \supset [(\forall y)(Ay \supset Dy) \supset Ex])
                                                                                     مقدمه
      \therefore (\forall y)[Ay \supset (By \land Dy)] \supset (\forall x)(Bx \supset Ex)
                                                                                        (9)
\rightarrow \Upsilon - (\forall y)[Ay \supset (By \land Dy)]
                                                                                          ف
→۴- Bx
                                                                                          ف
 \Delta - Bx \supset [(\forall y)(Ay \supset By) \supset Cx]
                                                                                 ۱، (∀۲)
                                                                              ۹،۵، (ح⊂)
 \mathfrak{S}_{-}(\forall y)(Ay\supset By)\supset Cx
                                                                                 ۲، (∀)
 V - Cx \supset [(\forall y)(Ay \supset Dy) \supset Ex]
 A_{-}(\forall y)(Ay\supset By)\supset [(\forall y)(Ay\supset Dy)\supset Ex]
                                                                            ۷،۶ (ق.ش)
  \P - [(\forall y)(Ay \supset By) \land (\forall y)(Ay \supset Dy)] \supset Ex
                                                                               ۸، (صد)
  (\forall y)[(Ay \supset By) \land (Ay \supset Dy)] \supset Ex
                                                                              ۹، (پ.س)
  (\forall y)[(\sim Ay \vee By) \wedge (\sim Ay \vee Dy)] \supset Ex
                                                                               ۱۰ (اس)
  Y - (\forall y)[\sim Ay \lor (By \land Dy)] \supset Ex
                                                                                ۱۱، (پخ)
  \mathsf{NT}_-(\forall y)[Ay\supset (By\wedge Dy)]\supset Ex
                                                                               ۱۲، (اس)
  14-Ex
                                                                           ۳،۱۳ (رح⊂)
                                                                           ۴-۱۴، (م⊂)
  A - Bx \supset Ex
                                                                                ۱۵، (م
  19-(\forall x)(Bx\supset Ex)
  \overline{\text{NV-}(\forall y)[Ay\supset \overline{(By}\wedge Dy)]}\supset (\forall x)(Bx\supset Ex) (ه) ۱۶-۳
```

$V_{-}(\exists x)[Ax \wedge (\forall y)(By \supset Cy)]$	مقدمه
Y - $(\forall x)(Ax\supset [(\exists y)(Dy\wedge Cy)\supset E)$	x]) مقدمه
$\therefore (\exists y)(Dy \land By) \supset (\exists x)Ex$	(V)
$\vdash \neg \Upsilon - (\exists y)(Dy \land By)$	ف
$rac{1}{1} \rightarrow \mathbf{f} - Dy \wedge By$	ف
$\Big \Big _{\Gamma} \Delta - Ax \wedge (\forall y)(By \supset Cy)\Big $	ف
$ \mathfrak{F}_{-} Ax \supset [(\exists y)(Dy \wedge Cy) \supset Ex]$	۲، (ح∀)
V Ax	۵، (ح۸)
	۷،۶، (ح⊂
4- Dy	۴، (ح∧)
$ $ $ \cdot - By $	۴، (ح∧)
$ N- (\forall y)(By \supset Cy)$	۵، (ح۸)
$ $ NY- $By\supset Cy$	۱۱، (ح∀)
	٠١،٢١، (-
$ NF - Dy \wedge Cy $	۱۳،۹ ، (م
$ \wedge \Delta_{-} (\exists y) (Dy \wedge Cy) $	۱۲، (م
19 - Ex	۱۵،۸ (ح
$ $ $\forall - (\exists x) Ex$	۱۶، (م
	۱،۵۰۷۱، ۵
$\Box \Box $	۳،۴–۸۱،
$ \qquad \qquad$	۳-۱۹، (م

N – $(orall x)(Ax\supset [(\exists y)By\supset Cx])$	مقدمه
$ extsf{Y}_{-}\left(orall x ight)(Cx\supset \left[(\exists y)Dy\supset Ex ight] ight)$	مقدمه
$\therefore (\exists x)(Bx \land Fx) \supset [(\forall y)(Fy \supset Dy) \supset (\forall z)(Az \supset Ez)$	z)] (A)
$rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$	۔ ف
$rac{}{}_{\longleftarrow}$ \mathbf{f}_{-} $(\forall y)(Fy\supset Dy)$	ف
$ _{rac{}} \Delta - Az $	ف
$\left \cdot \right \stackrel{\circ}{\mapsto} \mathbf{\hat{r}}_{-} Bx \wedge Fx$	ف
$ $ $\forall -Az \supset [(\exists y)By \supset Cz]$	۰ (ح∀)
$ \hspace{.05cm} $	۷،۵، (ح⊂)
$\left \begin{array}{c} \left \right \right \left \begin{array}{c} A - Bx \end{array} \right $	۶، (ح∕)
$ $ $\land \bullet = (\exists y)By$	۹، (م∃)
$\begin{vmatrix} $	۱۰،۸ (ح⊂)
$ig ig ig $ 17- $Cz\supset [(\exists y)Dy\supset Ez]$	۲، (ح∀)
$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $	۱۲،۱۱ (ح⊂)
$ \left \begin{array}{c} (\exists g) \exists g \exists \exists z \\ 1 \mathbf{f} - Fx \end{array} \right $	9، (ح∕)
$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $	۴، (ح∀)
$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $	۱۵،۱۴، (ح⊂)
$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $	۱۶، (م∃)
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	۱۷٬۱۳ (ح⊂)
	۱۸-۶،۳ (ح∃)
$\begin{array}{c c} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	۵-۱۹، (م⊂)
$ \begin{array}{c c} & \text{YI-} (\forall z) Ez \\ & \text{YI-} (\forall z) (Az \supset Ez) \end{array} $	۰۲، (م∀)
	۲۱-۴، (م⊂)
$(\forall z)(Az \supset Ez)$ $\forall \forall \neg (\exists x)(Bx \land Fx) \supset [(\forall y)(Fy \supset Dy) \supset (\forall z)(Az \supset Ez)$,
$(\forall x)(Dx \land Tx) \supset [(\forall y)(Ty \supset Dy) \supset (\forall x)(Ax \supset Dx)$	刀 (つ(/・・・・・

$ \begin{array}{c} 1 - (\forall x)(\exists y)(Gx \wedge Hy) \\ $	مقدمه (۹) (۱، (ح \forall) ف \forall ، (ح \land) \forall ، (م \vdash) (م \vdash) (م \land)	
$ \begin{array}{c} $	۲٬۳–۷، (ح∃)	
· • / •	۸، (ح∕)	
$\mathbf{q}_{-}(\exists y)Hy$	۸، (ح∖) ۸، (ح∧)	
$ \begin{array}{l} & \text{N} - Gx \\ & \text{N} - (\forall x)Gx \end{array} $	۰۱۰ (م∀)	
· /	1	
$ \mathbf{NY-} (\exists y)(Gy \land Hy) $ $ \mathbf{N-} (\forall x)(\exists y)(Kx \land Ly) $ $ \mathbf{Y-} (\exists y)(Kx \land Ly) $ $ \mathbf{Y-} Kx \land Ly $ $ \mathbf{Y-} (\exists y)Ly $ $ \mathbf{Y-} Kx \land (\exists y)Ly $ $ \mathbf{Y-} Kx \land (\exists y)Ly $	0 1 1 (0 ↑) 0	
\rightarrow 1 1 $ Ly$	ف	
$V - Kx \wedge Ly$	۱۱،۹، (م/)	
$ VT(\forall x)(Kx \wedge Ly) $	۱۲، (م∀)	
$ 14 - (\exists y)(\forall x)(Kx \wedge Ly) $	۱۳ ، (م ا	
$ \begin{array}{c c} & & \\$	'	
(0)()(0)		

 $(\exists x)(\forall y)[(\exists z)Ayz \supset Ayx]$ مقدمه $Y-(\forall y)(\exists z)Ayz$ مقدمه $\therefore (\exists x)(\forall y)Ayx$ (11) $rac{}{r} \Upsilon - (\forall y)[(\exists z)Ayz \supset Ayx]$ $\mathbf{f}_{-}(\exists z)Ayz\supset Ayx$ ۳، (ح∀) Δ - $(\exists z)Ayz$ ۲، (ح∀) ۲،۵، (ح⊂) 9- Ayx ۶، (م $V-(\forall y)Ayx$ Λ - $(\exists x)(\forall y)Ayx$ ۷، (م∃) ۱،۳-۸، (ح∃) $\overline{\mathbf{q}_-(\exists x)(\forall y)Ayx}$

 $1-(\forall x)(Cax\supset Dxb)$ مقدمه $Y - (\exists x) Dxb \supset (\exists y) Dby$ مقدمه $\therefore (\exists x) Cax \supset (\exists y) Dby$ (11) $\rightarrow \Upsilon - (\exists x) Cax$ →**۴**- Cax ۱، (ح∀) Δ - $Cax \supset Dxb$ ۲،۵، (ح⊂) 9-Dxb۶، (م∃) $V-(\exists x)Dxb$ ۲،۷، (ح⊂) Λ - $(\exists y)Dby$ ۳،۴-۸، (ح∃) $\mathbf{q}_{-}(\exists y)Dby$ $\overline{\mathsf{N} \cdot - (\exists x) Cax \supset (\exists y) Dby}$ (ج)، ۹-۳

```
(\forall x)[(\exists y)Byx\supset (\forall z)Bxz]
                                                         مقدمه
             \therefore (\forall y)(\forall z)(Byz \supset Bzy)
                                                         (17)
         → Y - Byx
                                                      ۲، (م∃)
         \Upsilon- (\exists y)Byx
                                                     ۱، (ح∀)
         \mathbf{Y}_{-}(\exists y)Byx\supset (\forall z)Bxz
         \Delta - (\forall z) Bxz
                                                 ۳،۴، (ح⊂)
                                                     ۵، (ح∀)
         9- Bxy
                                                 ۲-۶، (م⊂)
         V-Byx\supset Bxy
                                                      ۷، (م∀)
         \Lambda- (\forall z)(Byz \supset Bzy)
                                                      ۸، (م
         \mathbf{q} - (\forall y)(\forall z)(Byz \supset Bzy)
 (\exists x)[Hx \land (\forall y)(Iy \supset Nxy)]
                                                                   مقدمه
    \therefore (\forall x)(Hx \supset Ix) \supset (\exists y)(Iy \land Nyy)
                                                                   (14)
\rightarrow Y - (\forall x)(Hx \supset Ix)
\rightarrow \Upsilon - Hx \wedge (\forall y)(Iy \supset Nxy)
                                                               ۲، (ح∀)
 \mathbf{Y} - Hx \supset Ix
                                                               ۳، (ح۸)
 \Delta - Hx
                                                           ۲،۵، (ح⊂)
9-Ix
                                                               ۳، (ح۸)
 V_-(\forall y)(Iy \supset Nxy)
                                                               ۷، (ح∀)
A-Ix\supset Nxx
                                                            (\supset \sim) ،۸،۶
 A-Nxx
                                                            ۹،۶، (م∧)
 \mathbf{V} - Ix \wedge Nxx
                                                              ۱۰ (م∃)
 11 - (\exists y)(Iy \land Nyy)
 \overline{\mathsf{NY}_-(\exists y)(Iy\wedge Nyy)}
                                                       ۱ ،۳-۱۱ ، (ح∃)
```

```
1-(\forall x)[Ex\supset (\forall y)(Fy\supset Gxy)] مقدمه
 Y - (\exists x)[Ex \wedge (\exists y) \sim Gxy]
                                                          مقدمه
     \therefore (\exists x) \sim Fx
                                                           (10)
\rightarrow \Upsilon - Ex \wedge (\exists y) \sim Gxy
                                                     ۳، (ح۸)
 ۴- Ex
                                                   ۱، (ح∀)
 \Delta - Ex \supset (\forall y)(Fy \supset Gxy)
                                               ۵،۴ (ح⊂)
 \mathbf{\mathcal{F}}_{-}(\forall y)(Fy\supset Gxy)
 V-(\exists y)\sim Gxy
                                                    (\wedge_{\sigma}) ، (\sigma)
\rightarrow \Lambda - \sim Gxy
                                                   (\forall 	au) ، (
 9 - Fy \supset Gxy
 1 \cdot - \sim Fy
                                                 ۹،۸، (ر.ت)
 11 - (\exists x) \sim Fx
                                                    ۱۰، (م∃)
  Y - (\exists x) \sim Fx
                                        ۱۱-۸،۷ (ح∃)
                                           ۲،۳-۲۱، (ح∃)
  \overline{\mathbf{VY}_{-}(\exists x)} \sim Fx
```

(-)	~ 1)
$I_{-}(\forall x)(Kx\supset [(\exists y)Lxy\supset (\exists z)$	Lzx]) مقدمه
$\mathbf{Y}_{-}(\forall x)[(\exists z)Lzx\supset Lxx]$	مقدمه
Υ - \sim ($\exists x$) Lxx	مقدمه
$\therefore (\forall x)[Kx\supset (\forall y)\sim Lxy]$	(۱۷)
$rac{r}{r}$ 4 - Kx	ف
	۱، (ح∀)
$ orange for (\exists y) Lxy \supset (\exists z) Lzx orange$	۵،۴ (ح⊂)
$V-(\exists z)Lzx\supset Lxx$	۲، (ح∀)
\land \vdash $(\exists y)Lxy \supset Lxx$	۷،۶، (ق.ش)
$- (\forall x) \sim Lxx$	۳، (ن.س)
$\sim Lxx$	۹، (ح∀)
	۱۰،۸ (ر.ت)
	۱۱، (ن.س)
$\overline{ Nr\text{-} Kx\supset (\forall y)} \sim Lxy$	۲-۱۲، (م)
$NF_{-}(\forall x)[Kx\supset (\forall y)\sim Lxy]$	۱۳، (م

$(\forall x)[(Bx \land \sim Ox) \supset (\exists y)(Exy)]$	$\wedge Hu$)] 40150
$Y - (\exists x)[Nx \wedge Bx \wedge (\forall y)(Exy \supset R)]$	- / -
$\mathbf{r} = (\exists x)[Nx \land Dx \land (Vy)(Dxy)] r$ $\mathbf{r} = (\forall x)(Nx \supset \sim Ox)$	مقدمه
, , ,	
$\therefore (\exists x)(Nx \land Hx)$	(١٨)
	ف عد ۸ /
$\Delta - Nx \wedge Bx$	۴، (ح∧)
$\mathbf{\hat{r}}$ – Nx	۵، (ح۸)
$V-Nx\supset \sim Ox$	۳، (ح∀)
Λ - $\sim Ox$	۷،۶، (ح⊂)
A-Bx	۵، (ح∧)
$\mathbf{N} - Bx \wedge \sim Ox$	۸،۹، (م/)
$ N - (Bx \land \sim Ox) \supset (\exists y)(Exy \land B) $	$(\forall y)$ ($\forall y$) ، ۱
$NY (\exists y) (Exy \land Hy)$	۱۱،۱۰ (ح)
$\rightarrow 1 \Upsilon - Exy \wedge Hy$	ف
\parallel 14- Exy	۱۳، (ح۸)
$ $ \\ \Delta (\forall y)(Exy \igtrigon Ny)	۴، (ح۸)
\parallel ۱۶– $Exy\supset Ny$	۱۵، (ح∀)
$ $ $N_{-} Ny$	۱۶٬۱۴ (ح⊂)
$ \wedge Hy$	۱۳، (ح۸)
	۱۸،۱۷ (م/)
$ Y \cdot - (\exists x)(Nx \wedge Hx)$	۱۹، (م∃) ٰ
	-) ، ۲۰-۱۳،۱۲
	ر ۲۱-۴،۲ (حE)
() () () () () ()	`

N – $(\forall x)(Ax\supset Bx)$	مقدمه
$Y_{-}(\forall x)[(Cx \land Bx) \supset Dx]$	مقدمه
$\mathbf{r}_{-}(\forall x)(\exists y)(Cy \land Eyx)$	مقدمه
$\mathfrak{F}_{-}(\forall x)(\forall y)[(Eyx \wedge Dy) \supset L$	[x]مقدمه
$(\forall x)[(\forall y)(Eyx\supset Ay)\supset$	
$\rightarrow \Delta - (\forall y)(Eyx \supset Ay)$	ف ٔ
$\mathbf{r} = (\exists y)(Cy \land Eyx)$	٣، (ح∀)
$V - Cy \wedge Eyx$	ف
$\bigwedge - Eyx$	۷، (ح∧)
$ \begin{vmatrix} A & Eyx \\ A - Eyx \supset Ay \end{vmatrix} $	۵، (ح∀)
$\begin{vmatrix} -Dyx & J & 11y \\ -Ay & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	۹،۸ (ح⊂)
	۱، (ح∀)
$ 11 - Ay \supset By$	_
\parallel 1 Y - By	۱۱،۱۰ (ح)
$ $ $ $ $ $ $ $ $ $ $ $ $ $	۷، (ح∧)
$ NF_{-} Cy \wedge By$	۱۳،۱۲ (م/)
$ \wedge \Delta_{-} (Cy \wedge By) \supset Dy$	۲، (ح∀)
$ N \mathbf{r} - D \mathbf{y} $	۱۵٬۱۴ (حر)
$ V - Eyx \wedge Dy$	۱۶،۸ (م/)
$ NA_{-}(Eyx \land Dy) \supset Dx $	۴، (ح∀)
$\ \mathbf{q} - Dx \ $	۱۸،۱۷ (حر)
	۲۰۶−۱۹ (ح∃)
	_
YI – $(\forall y)(Eyx\supset Ay)\supset Dx$	۵-۰۲، (م⊂)
$YY(\forall x)[(\forall y)(Eyx\supset Ay)\supset$	Dx] (م \forall)، ۲۱

```
(\forall x)[(Bx \land (\exists y)[Cy \land Dyx \land (\exists z)(Ez \land Fxz)]) \supset (\exists x')Gxx'x]
 \mathsf{Y}_-(\forall x)(\forall y)(Hxy\supset Dyx)
                                                                                                       مقدمه
\Upsilon- (\forall x)(\forall y)(Fxy \supset Fyx)
                                                                                                       مقدمه
\mathbf{Y}_{-}(\forall x)(Ix\supset Ex)
                                                                                                       مقدمه
     \therefore (\forall x)[Bx \supset ([(\exists y)(Cy \land Hxy) \land (\exists z)(Iz \land Fzx)] \supset (\exists y')(\exists x')Gxx'y')] \quad (\land \bullet)
\rightarrow \Delta - Bx
\mathcal{S}_{-}(\exists y)(Cy \land Hxy) \land (\exists z)(Iz \land Fzx)
V_{-}(\exists y)(Cy \land Hxy)
                                                                                                   (\wedge \gamma) ،۶
A-Cy \wedge Hxy
                                                                                                   (\forall \gamma) ، ۲
 A - Hxy \supset Dyx
                                                                                                  ۸، (ح۸)
 \mathbf{N} - Hxy
                                                                                             ۹،۱۰ (ح⊂)
 11 - Dyx
                                                                                                  (\wedge_{\mathcal{T}}) ، \Lambda
 17-Cy
                                                                                            (۱۲،۱۱ (م/)
 Y - Cy \wedge Dyx
                                                                                                  (\wedge_{7}) ،۶
 \mathsf{NF}_{-}(\exists z)(Iz \wedge Fzx)
 \Delta - Iz \wedge Fzx
                                                                                                 (\wedge_{\mathcal{T}}) ، ۱۵
 19-Iz
                                                                                                   ۴، (ح/٧)
 V-Iz\supset Ez
                                                                                           ۱۷٬۱۶ (ح⊂)
 1A-Ez
                                                                                                (۱۵ (ح/۱)
 19-Fzx
                                                                                                   ۳، (ح∀)
 Y - Fzx \supset Fxz
                                                                                           ۲۰٬۱۹ (ح⊂)
 YI-Fxz
                                                                                            ۱۱،۱۸ (م/)
 YY-Ez\wedge Fxz
                                                                                                  ۲۲، (م∃)
YY-(\exists z)(Ez \wedge Fxz)
 YY_{-}(\exists z)(Ez \wedge Fxz)
                                                                                      ۱۵،۱۴ - ۲۳، (ح∃)
                                                                                            ۲۴،۱۳ (م/)
\Upsilon \Delta - (Cy \wedge Dyx) \wedge (\exists z)(Ez \wedge Fxz)
\forall \mathcal{F}_{-}(\exists y)[(Cy \land Dyx) \land (\exists z)(Ez \land Fxz)]
                                                                                                  ۵۲، (م∃)
                                                                                          ۲۶−۸٬۷ (ح∃)
\forall V - (\exists y)[(Cy \land Dyx) \land (\exists z)(Ez \land Fxz)]
                                                                                              (۸م) ،۲۷،۵
\forall \Lambda - Bx \wedge (\exists y)[(Cy \wedge Dyx) \wedge (\exists z)(Ez \wedge Fxz)]
                                                                                                   (\forall \forall) ، ۱
\Upsilon \P - (Bx \wedge (\exists y)[Cy \wedge Dyx \wedge (\exists z)(Ez \wedge Fxz)]) \supset (\exists x')Gxx'x
                                                                                           ۲۹،۲۸، (ح)
\Upsilon \cdot - (\exists x') Gxx'x
                                                                                                  ۰۳، (م∃)
\Upsilon V - (\exists y')(\exists x')Gxx'y'
\Upsilon \Upsilon - (\forall x)[Bx \supset ([(\exists y)(Cy \land Hxy) \land (\exists z)(Iz \land Fzx)] \supset (\exists y')(\exists x')Gxx'y')] \ (\forall \varphi)
```

صفحه ۱۱۰

★ تمرین ۱۵.۵: ترجمه و اثبات

با توجه به توابع گزارهای جدول ۴.۵، اولاً استدلالهای زیر را به زبان صوری منطق محمولات ترجمه کنید، ثانیاً درستی هر یک از آنها را اثبات کنید.

- 1. بعضی اشکال، سه ضلعی نیستند. هر مثلثی سه ضلعی است. پس بعضی اشکال مثلث نیستند.
- ۲. هر سیارهای جسم کروی است. بعضی سیارات منیر نیستند. پس بعضی اجسام کروی منیر نیستند.
- ۳. هیچ ایرانی چینی نیست. هر اصفهانی ایرانی است. بعضی آسیاییها چینی هستند. پس بعضی غیراصفهانیها آسیایی هستند.
- ۴. مارهای کبرا و مارهای زنگی در صورتی که عصبانی باشند یا بترسند نیش میزنند. پس مار کبرا اگر بترسد نیش میزند.
 - * ۵. هر مثلثی شکل است. پس هر کس مثلثی بکشد، شکلی کشیده است.
- * 6. طوطی پرنده است. پس هر کسی که تمامی پرندگان را دوست داشته باشد، طوطی را نیز دوست دارد.
- ** ۷. پدران و مادران بچهها را دوست دارند. رضا پدری است که حسن را دوست ندارد. مریم مادر است. هیچ مادری سارا دوست ندارد. پس هیچکدام از حسن و سارا بچهها نستند.
- ** ۸. هر کسی که به خود اعتماد نکند هیچکس به وی اعتماد نمیکند. هیچکس کسی را که مورد اعتمادش نباشد استخدام نمیکند. پس کسی که به هیچکس اعتماد نکند، هیچکس او را استخدام نمیکند.
- ** ۹. هر که حتی یک اسلحه بیپروانه به فردی بفروشد مجرم است. هر تفنگی که دست امیر باشد، احمد یا حسن به او فروخته است. پس اگر تفنگ موجود در دست امیر اسلحه بیپروانه باشد، آنگاه اگر احمد هیچ چیزی را به امیر نفروخته باشد، حسن مجرم است.
 - * ۱۰. اسب حیوان است. پس سر اسب سر حیوان است.

پاسخ تمرین ۱۵.۵

جدول ۴.۵: لغتنامهي تمرين ۱۵.۵

		<u> </u>			
Bx	=	x سەضلعى است.	Ax	=	x شکل است.
Dx	=	x سیاره است.	Cx	=	x مثلث است.
Fx	=	x کروی است.	Ex	=	x جسم است.
Hx	=	ایرانی است. x	Gx	=	x منیر است.
Jx	=	اصفهانی است. x	Ix	=	<u>x چینی است.</u>
Lx	=	x مار کبرا است.	Kx	=	xآسیایی است.
Nx	=	عصبانی است. x	Mx	= (x مار زنگی است.
Ax	=	نیش میزند. x	Dx	F	<i>x</i> مىترسد.
Cx	=	x شکل است.	Bx	=	x مثلث است.
Exy	=	را میکشد. y ، x	Dx	=	انسان است. x
Gx	=	پرنده است. x	Fx		x طوطی است.
Ixy	=	را دوست دارد. y را دوست	Hx	=	x انسان است.
Kx	=	x مادر است.	Jx	_	پدر است. x
Mxy	=	را دوست دارد. y ، x	Lx		بچه است. x
b	=	حسن	a	=	رضا
d	=	سارا	c	=	مريم
Oxy	=	به y اعتماد میکند.	Nx	=	انسان است. x
Bx	=	x اسلحه است.	Axy	=	را استدخدام میکند. y ر
Dx	=	x مجرم است.	Cx	=	x پروانه است.
Fxy	=	x دارای y است.	Ex	=	x تفنگ است.
a		امير	Gxyz	=	را به z فروخته است. y ، x
c	=	حسن	b	=	احمد
Hx	=	x حيوان است.	Ax	=	x اسب است.
			Bx	=	x سر y است.

$1 - (\exists x)(Ax \land \sim Bx)$	مقدمه
Y - $(\forall x)(Cx\supset Bx)$	مقدمه
$\therefore (\exists x)(Ax \land \sim Cx)$	(1)
$rac{\rightarrow}{\bf r}$ $Ax \wedge {\sim} Bx$	ف
- $+$ $ Ax$	۲، (ح∧)
$\Delta - \sim Bx$	۲، (ح∧)
$\oint -Cx \supset Bx$	۲، (ح∀)
$V - \sim Cx$	۶،۵، (ر.ت)
$\land -Ax \land \sim Cx$	۷،۴، (م/)
	۸، (م∃)
	۱ ،۳−۹، (ح∃)

 $1 - (\forall x)[Dx \supset (Ex \land Fx)]$ مقدمه $Y-(\exists x)(Dx \wedge \sim Gx)$ مقدمه $\therefore (\exists x)(Ex \land Fx \land \sim Gx)$ (٢) $\rightarrow \Upsilon - Dx \wedge \sim Gx$ $(\wedge \gamma)$ ، $(\neg \gamma \wedge)$ \mathbf{r} Dx $(\wedge$ رح) $\Delta - \sim Gx$ ۱، (ح∀) $9-Dx\supset (Ex\wedge Fx)$ ۶،۴، (ح⊂) $V-Ex\wedge Fx$ ۵،۷، (م/۱) Λ - $Ex \wedge Fx \wedge \sim Gx$ $\mathbf{q} - (\exists x)(Ex \wedge Fx \wedge \sim Gx)$ ۸، (م∃) $\overline{\mathsf{N} \cdot - (\exists x)(Ex \wedge Fx \wedge \sim Gx)}$ (خ G) (خ G) ، ۹-۳،۲

N - $(\forall x)(Hx\supset \sim Ix)$	مقدمه
$Y (\forall x) (Jx \supset Hx)$	مقدمه
Υ - $(\exists x)(Kx \wedge Ix)$	مقدمه
$(\exists x)(\sim Jx \land Kx)$	(٣)
$\rightarrow \mathbf{f} - Kx \wedge Ix$	ف
$\begin{array}{c} A - Hx \rightarrow Ax \\ \Delta - Hx \supset \sim Ix \end{array}$	۱، (ح∀)
$9-Jx\supset Hx$	۲، (ح∀)
	۰۶،۵ ۶،۵، (ق.ش)
$\forall -Jx \supset \sim Ix$	
λ - Ix	۴، (ح∧)
\mathbf{q} – Kx	۴، (ح۸)
$\land \cdot - \sim Ix$	۸، (ن.م)
$11 - \sim Jx$	۱۰،۷ (ر.ت)
$17 - \sim Jx \wedge Kx$	۱۱،۹، (م/)
$ \Upsilon (\exists x) (\sim Jx \wedge Kx)$	۱۲، (م∃)
$IF_{-}(\exists x)(\sim Jx \land Kx)$	۳،۴-۳۱، (ح∃)
, , ,	C
$(\forall x)((Lx \lor Mx) \supset [(Nx)]$	$\vee Dx)\supset Ax])$ مقدمه
$\therefore (\forall x)[Lx \supset (Dx \supset Ax)]$, <u>*</u> ,
\rightarrow Y- Lx	ُ ` ف
→ ٣ - Dx	ف
$\mathbf{f}_{-}\left(Lx\vee Mx\right)\supset \left[\left(Nx\vee Dx\right)\right]$	
, , ,	Ax (\lor) (\lor) (\lor) (\lor) (\lor)
$\Delta - Lx \vee Mx$	1
$\mathbf{\hat{r}}_{-}(Nx\vee Dx)\supset Ax$	۵،۴، (ح⊂)
$V-Nx \vee Dx$	٣، (م٧)
Λ - Ax	۷،۶ (ح⊂)
$-Dx \supset Ax$	۳–۸، (م⊂)
$1 \cdot - Lx \supset (Dx \supset Ax)$	۲ – ۹ ، (م⊂)
$N-(\forall x)[Lx\supset (Dx\supset Ax)]$	۱۰ (م

```
1-(\forall x)(Bx\supset Cx)
                                                                                                مقدمه
     \therefore (\forall x)(Dx \supset [(\exists y)(By \land Exy) \supset (\exists y)(Cy \land Exy)])
                                                                                                  (۵)
\rightarrow \mathsf{Y} - Dx \wedge (\exists y)(By \wedge Exy)
                                                                                            ۲، (ح/)
\Upsilon- (\exists y)(By \land Exy)
+\mathbf{f} - By \wedge Exy
                                                                                           ۴، (ح۸)
\Delta- By
                                                                                           ۴، (ح۸)
9-Exy
                                                                                            ۱، (ح∀)
V-By\supset Cy
                                                                                       ۵،۷، (ح⊂)
\Lambda- Cy
                                                                                         (\wedge \rho) ،۸،۶
\mathbf{q} - Cy \wedge Exy
                                                                                             ۹، (م∃)
(\exists y)(Cy \land Exy)
                                                                                  ۳،۴-۱۱ (ح∃)
 (\exists y)(Cy \land Exy)
                                                                                   ۲−۱۱، (م⊂)
 \mathsf{NY}- [Dx \wedge (\exists y)(By \wedge Exy) \supset (\exists y)(Cy \wedge Exy)]
                                                                                         ۱۲، (صد)
 \mathsf{NT} - Dx \supset [(\exists y)(By \land Exy) \supset (\exists y)(Cy \land Exy)]
 ۱۴- (\forall x)(Dx\supset [(\exists y)(By\wedge Exy)\supset (\exists y)(Cy\wedge Exy)]) (\forall \gamma) ، ۱۳
  1 - (\forall x)(Fx \supset Gx)
                                                                                              مقدمه
       \therefore (\forall x)([Hx \land (\forall y)(Gy \supset Ixy)] \supset (\forall y)(Fy \supset Ixy))
                                                                                             (۶)
 \rightarrow Y - Hx \wedge (\forall y)(Gy \supset Ixy)
                                                                                         ۱، (ح/۷)
  \Upsilon- Fy \supset Gy
  \mathbf{Y}_{-}(\forall y)(Gy\supset Ixy)
                                                                                         ۲، (ح۸)
                                                                                         ۴، (ح∀)
  \Delta- Gy \supset Ixy
  9 - Fy \supset Ixy
                                                                                   ۵،۳ (ق.ش)
                                                                                         ۶، (م∀)
  V-(\forall y)(Fy\supset Ixy)
                                                                                     ٧-٧، (م⊂)
  \mathsf{A}_{-}\left[Hx \wedge (\forall y)(Gy \supset Ixy)\right] \supset (\forall y)(Fy \supset Ixy)
  \mathbf{q}_- (\forall x)([Hx \wedge (\forall y)(Gy \supset Ixy)] \supset (\forall y)(Fy \supset Ixy)) (\forall \phi) \land
```

$1 - (\forall x)[(Jx \lor Kx) \supset (\forall y)(Ly \supset Mxy)]$	· -
Y I a A Mah	
Y – $Ja \wedge \sim Mab$	مقدمه
au– Kc	مقدمه
$\mathbf{Y}_{-}(\forall x)(Kx\supset \sim Mxd)$	مقدمه
$\therefore \sim Lb \land \sim Ld$	(V)
$\Delta_{-}(Ja\vee Ka)\supset (\forall y)(Ly\supset May)$	$(abla \forall)$ ، (
9- Ja	۲، (ح۸)
$V_{-}(\forall y)(Ly\supset May)$	۷،۵ (ح
$oldsymbol{\wedge}$ – $Lb\supset Mab$	۹، (ح∀)
$q \sim \!\! Mab$	۲، (ح۸)
$ ho ho \sim Lb$	۹،۸، (ر.ب
$N-Kc \supset \sim Mcd$	۴، (ح∀)
$Y - \sim Mcd$	۳،۱۱، (-
$Nr_{-}\left(Jc \lor Kc\right) \supset (\forall y)(Ly \supset Mcy)$	۱، (ح∀)
NF - $Ja \lor Kc$	۳، (م۷)
$\land \lozenge (\forall y)(Ly \supset Mcy)$ $(\supset_{\mathcal{C}})$	14.14
$19-Ld\supset Mcd$	۱۵، (ح
$V - \sim Ld$ (ر.ت)),18,17
$\wedge \wedge - \sim Lb \wedge \sim Ld$ $(\wedge \wedge \wedge)$	۰۱۷،۱۰

$N - (\forall x)[(Nx \land \sim Oxx) \supset (\forall y)(Ny \supset \sim Oyx)]$	مقدمه
$\mathbf{Y}_{-}(\forall x)(Nx\supset(\forall y)[(Ny\wedge\sim Oxy)\supset\sim Axy])$	مقدمه
$\therefore (\forall x)([Nx \land (\forall y)(Ny \supset \sim Oxy)] \supset (\forall y)(Ny \supset \sim A$	(yx)) (A)
\rightarrow Υ - $Nx \wedge (\forall y)(Ny \supset \sim Oxy)$	ف
	ف ۳ (۵۰)
$\mid \mid \Delta_{-} (\forall y)(Ny \supset \sim Oxy)$	۳، (ح۸)
$ \mathbf{\hat{r}} - Nx \supset \sim Oxx$	۵، (ح∀)
V-Nx	٣، (ح∧)
$ \Lambda \sim Oxx$	۷،۶، (ح⊂)
$ \mathbf{q} - Nx \wedge \sim Oxx $	۱۸۰۷ (م∕)
	$(\forall \forall)$ ، (
$ $ $N-(\forall y)(Ny\supset \sim Oyx)$	۱۰،۹ (حر)
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$(\forall \forall)$ (۱۱، (م
$ $ $ $ $ $ $ $ $ $ $ $ $ $	۱۲،۴ (ح⊂)
$ NY - Nx \wedge \sim Oyx$	۱۳،۷ (م/)
$ \land \triangle - (Nx \supset (\forall y)[(Ny \land \sim Oxy) \supset \sim Axy] $	۲، (ح∀)
$ NS_{-}(\forall y)[(Ny \land \sim Oxy) \supset \sim Axy $	۱۵،۴ (ح⊂)
$ V - (Nx \wedge \sim Oyx) \supset \sim Ayx$	۱۶ (ح∀)
$ \wedge \wedge - \sim Ayx$	۱۷٬۱۴ (حر)
$\sqrt{Ny \supset \sim Ayx}$	۲−۱۸، (م⊂)
$\forall \cdot - (\forall y)(Ny \supset \sim Ayx)$	۱۹، (م)
	۳-۲۰ (م⊂)
$YY- (\forall x) ([Nx \land (\forall y)(Ny \supset \sim Oxy)] \supset (\forall y)(Ny \supset \sim Ay))$	(xy) ($\forall \gamma$) ($\forall \gamma$)
() (() () () () () () () () (

```
1 - (\forall x)[(\exists y)(\exists z)(Bz \land \sim Cz \land Gxzy)] \supset Dx]
                                                                                                         مقدمه
 Y_-(\forall x)[(Ex \land Fax) \supset (Gbxa \lor Gcxa)]
                                                                                                          مقدمه
     \therefore (\exists x)(Ex \land Fax \land Bx \land \sim Cx) \supset [(\forall x) \sim Gbxa \supset Dc]
                                                                                                            (9)
\rightarrow \Upsilon- (\exists x)(Ex \wedge Fax \wedge Bx \wedge \sim Cx)
                                                                                                              ف
\rightarrow \mathbf{Y}_{-} (\forall x) \sim Gbxa
                                                                                                              ف
\rightarrow \Delta - Ex \wedge Fax \wedge Bx \wedge \sim Cx
                                                                                                              ف
                                                                                                     ۲، (∀∀)
 \mathcal{F}_{-}(Ex \wedge Fax) \supset (Gbxa \vee Gcxa)
                                                                                                     ۵، (ح۸)
 V-Ex \wedge Fax
                                                                                                 (رح⊂) ،۷،۶
 A-Gbxa \vee Gcxa
                                                                                                     ۱، (∀۲)
 \P - (\exists y)(\exists z)(Bz \land \sim Cz \land Gczy) \supset Dc
                                                                                                     ۵، (ح۸)
 \mathbb{N} - Bx \wedge \sim Cx
                                                                                                     ۴، (ح)
 11 - \sim Gbxa
 NY-Gcxa
                                                                                                ۱۱،۸، (ق.۱)
                                                                                              ۱۱۲،۱۰ (م۸)
 Y - Bx \wedge \sim Cx \wedge Gcxa
 \mathsf{NF}_{-}(\exists y)(\exists z)(Bz \land \sim Cz \land Gczy)
                                                                                                    ۱۳، (م∃)
                                                                                               ۱۴،۹ (ح⊂)
 10-Dc
                                                                                            ۳،۵-۵، (ح
 19-Dc
                                                                                               ۴-۱۶، (م⊂)
 V - (\forall x) \sim Gbxa \supset Dc
 \mathsf{NA}– (\exists x)(Ex \land Fax \land Bx \land \sim Cx) \supset [(\forall x) \sim Gbxa \supset Dc] ( \supset_{\mathbf{f}} ) ، \mathsf{NV}– \mathsf{Y}
            1-(\forall x)(Ax\supset Hx)
                                                                                             مقدمه
                \therefore (\forall x)[(\exists y)(Ay \land Bxy) \supset (\exists y)(Hy \land Bxy)]
                                                                                              (1 \cdot)
          \rightarrow \mathsf{Y} - (\exists y)(Ay \wedge Bxy)
                                                                                                  ف
           \rightarrow \Upsilon - Ay \wedge Bxy
                                                                                                  ف
                                                                                         ۱، (∀۲)
            f - Ay \supset Hy
                                                                                        ۳، (ح۸)
           \Delta- Ay
                                                                                     ۹،۵، (ح⊂)
           9- Hy
           V-Bxy
                                                                                        ۳، (ح/)
                                                                                      ۷،۶، (م∖)
           A - Hy \wedge Bxy
           \mathbf{q}_{-}(\exists y)(Hy \wedge Bxy)
                                                                                          ۸، (م∃)
                                                                                 ۲،۲−۹، (ح∃)
            (\exists y)(Hy \land Bxy)
            \overline{ (\exists y)(Ay \wedge Bxy)} \supset (\exists y)(Hy \wedge Bxy)
                                                                                   ۳-۱۰ (م)
            \mathsf{NY}_-(\forall x)[(\exists y)(Ay \land Bxy) \supset (\exists y)(Hy \land Bxy)](\forall \gamma) \mathsf{NY}_-(\forall x)
```

 P_N قضیه در ۴.۵. قضیه در

P_N قضیه در ۴.۵

صفحه ۱۱۲

تمرین ۱۶.۵: اثبات

قضیههای زیر را اثبات کنید.

1. (UI):
$$\vdash (\forall x)Fx \supset Fa$$

2.
$$\vdash (\forall x)Fx \lor (\exists x) \sim Fx$$

3.
$$\vdash (\forall x)[Fx \supset (\exists y)Fy]$$

4.
$$\vdash (\forall x)(Fx \lor \sim Fx)$$

5.
$$\vdash (\forall x)Fx \supset (\forall y)Fy$$

6. (UC):
$$\vdash (\forall y)[(\forall x)Fx \supset Fy]$$

*7.
$$\vdash (\exists y)[Fy \supset (\forall x)Fx]$$

8.
$$\vdash (\forall x)(\forall z)Fxz \supset (\forall y)(\forall z)Fyz$$

9.
$$\vdash (\forall y)[(\forall x)(\exists z)Gxz \supset (\exists z)Gyz]$$

10.
$$\vdash (\forall x)(Fx \supset Gx) \supset (\forall x)[(\exists y)(Fy \land Hxy) \supset (\exists y)(Gy \land Hxy)]$$

پاسخ تمرین ۱۶.۵

$$\therefore (\forall x)Fx\supset Fa$$
 (۱) مقدمه $\mathbf{Y}-Fa$ ($\forall x)Fx$ ($\forall x)Fx$ ($\forall x)Fx$ ($\forall x)$ (

۱۵۱ قضیه در P_N قضیه در ۴.۵

```
\therefore (\forall x)(Fx \supset Gx) \supset (\forall x)[(\exists y)(Fy \land Hxy) \supset (\exists y)(Gy \land Hxy)]
\rightarrow 1 - (\forall x)(Fx \supset Gx)
     \forall \mathsf{T} - (\exists y)(Fy \land Hxy)
      \mathbf{r} - Fy \wedge Hxy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ۳، (ح/۱)
         \mathbf{r}- Fy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ۱، (ح/۷)
       \Delta- Fy \supset Gy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ۹،۵، (ح⊂)
       9-Gy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ۳، (ح/۱)
       V-Hxy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (مم) ،۷،۶
       \Lambda- Gy \wedge Hxy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ۸، (م∃)
       \mathbf{q}_{-}(\exists y)(Gy \wedge Hxy)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ۲،۲−۹، (ح∃)
          (\exists y)(Gy \land Hxy)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ۲ - ۱ ، (م⊂)
       N-(\exists y)(Fy \land Hxy) \supset (\exists y)(Gy \land Hxy)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ۱۱، (م
       Y - (\forall x)[(\exists y)(Fy \land Hxy) \supset (\exists y)(Gy \land Hxy)]

    \mathsf{NY-} (\forall x)(Fx\supset Gx)\supset (\forall x)[(\exists y)(Fy\wedge Hxy)\supset (\exists y)(Gy\wedge Hxy)] \ ( \ \mathsf{NY-} \ \mathsf
```

P_N قاعده معرفی قضیه در 0.0

تمرین ۱۷.۵: نمونه جانشین

برای هر یک از فرمولهای گروه اول نمونه جانشینی در فرمولهای گروه دوم بیابید.

• گروه اول (اصل)

$$(\exists x)(Ax\supset Gx) \text{ .Y } (\forall x)(Ax\supset \sim Gx) \text{ . N}$$

$$(\exists x)(P\supset Fx) \text{ .Y } (\forall x)Ax\supset (\exists x)Ax \text{ .Y }$$

$$(\forall x)(Fxa\supset Fba) \text{ . } \Delta$$

• گروه دوم (نمونه جانشين)

$$(\forall x)[(Bx \lor Hx) \supset \sim Hxa] \hookrightarrow (\exists x)[(\forall z)Gza \supset (\forall y)Gyx]$$

$$(\forall x)[(\forall z)(Fzxa \equiv Gaxa) \supset (\forall z)(Fzba \equiv Gaba)]$$

$$(\forall x)(\exists y)(Fxy \lor Gya) \supset (\exists x)(\exists y)(Fxy \lor Gya)$$

$$(\exists x)[(\forall y)Fyx \supset (\exists z)Gxz]$$

$$(\exists x)[(\exists y)Gya \supset Fx]$$

$$(\exists x)(Bx \supset Cx)$$

$$(\forall x)Fxab \supset (\exists x)Fxab$$

$$(\exists x)(Bx \supset Cx)$$

۱۵۳ .۶.۵ و اینهمانی P_N .۶.۵

پاسخ تمرین ۱۷.۵

 $(1. \, \psi)$ ۲. $(3. \, \psi)$ ۲. $(3. \, \psi)$ ۲. $(3. \, \psi)$ $(4. \, \psi)$ $(4. \, \psi)$ $(5. \, \psi)$

و اینهمانی P_N و اینهمانی

🛨 ★

عبارات زیر را از زبان طبیعی به زبان صوری L_P ترجمه کنید:

۱. حداقل یک شیء وجود دارد.

۲. دقیقاً یک شیء وجود دارد.

۳. خدا وجود دارد.

۴. ابن سینا همان سعدی نیست.

۵. هیچ نویسندهای غیر از سعدی گلستان را ننوشته است.

۶. تنها حسن و حسين به كتابخانه رفتهاند.

** ۷. سعدی بهترین نویسنده ایرانی است.

* ۸. نویسنده شاهنامه ایرانی است.

۹. دقیقاً یک نویسندهی گلستان وجود دارد.

** ۱۰. بزرگترین اقیانوس در شرق ژاپن قرار دارد.

پاسخ تمرین ۱۸.۵

$$(\exists x)x = x \tag{1}$$

$$(\exists x)(\exists y)[x = y \land (\forall z)(z = y \lor z = x)]$$

$$a \neq b$$
 . *

۵. هیچ نویسندهی نااینهمان با سعدی، گلستان را ننوشته است.

$$(\forall x)[(Ax \land x \neq a) \supset \sim Bxb]$$

هر کسی که به کتابخانه رفته است، یا حسن است یا حسین.

$$(\forall x)[Ax\supset (x=a\vee x=b)]$$

۷. سعدی نویسنده ی ایرانی است. و سعدی از هر نویسنده ی ایرانی دیگر، نویسنده ی بهتری ایرانی است. x:Cxy

$$Aa \wedge Ba \wedge (\forall x)[(x \neq a \wedge Ax \wedge Bx) \supset Cax]$$

۸. یگانه نویسندهی شاهنامه ایرانی است.

$$(\exists x)[Axa \land (\forall y)(Aya \supset y = x) \land Bx]$$

$$(\exists x)[Ax \land (\forall y)(Ay \supset x = y)]$$

۱۰. اقیانوسی در شرق ژاپن وجود دارد که از هر اقیانوس دیگری بزرگتر است.

$$(\exists x)(Ax \land Bxa \land (\forall y)[(Ax \land y \neq x) \supset Cxy])$$

صفحه ۱۲۱

★ تمرین ۱۹.۵: اثبات

٠٩

استدلالهای زیر را تنها با استفاده از قواعد اصلی ثابت کنید. وقواعد فرعی (P_N)

- 1. $Fa, \sim Fb \vdash a \neq b$
- 2. $a = b, b = c \vdash a = c$

3. $a = b \vdash b = a$

پاسخ تمرین ۱۹.۵

1-Fa	مقدمه
Y – $\sim \!\! Fb$	مقدمه
$\therefore a \neq b$	(1)
$rac{r}{r} - a = b$	ف
$\mathbf{r}_{-}Fb$	۱ ،۳، (ح=)
Δ - $Fb \wedge \sim Fb$	۲،۲، (م/)
$\mathbf{\hat{r}} - a \neq b$	$(\sim_{\!$

$$1-a=b$$
 مقدمه $7-b=c$ مقدمه مقدمه $\therefore a=c$ (۳) $7-a=c$

$$1-a=b$$
 مقدمه $b=a$ (۳) $1-b=b$ (= a) a

صفحه ۱۲۱

تمرین ۲۰.۵: اثبات

استدلالهای زیر را ثابت کنید.

- 1. $a = b \vdash Fa \equiv Fb$
- 2. $c = d \vdash (b = c) \equiv (b = d)$
- 3. $(\exists x)(x \neq a \land Fx) \vdash (\exists x)Fx \land [Fa \supset (\exists x)(\exists y)(x \neq y \land Fx \land Fy)]$
- 4. $(\exists x)(Hx \land Gx), (\forall x)[Gx \supset (x = a \lor x = b)] \vdash Ha \lor Hb$
- 5. $(\exists x)(Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y] \land Ix) \vdash (\forall x)[(Gx \land Hx) \supset Ix]$
- 6. $(\forall x)(Fx \supset (\forall y)[(Fy \land Hxy) \supset Gxy]), (\exists x)(Fx \land (\forall y)[(Fy \land x \neq y) \supset Hxy]) \vdash (\exists x)(Fx \land (\forall y)[(Fy \land x \neq y) \supset Gxy])$

- 7. $(\exists x)Gx \wedge (\forall x)(\forall y)[(Gx \wedge Gy) \supset x = y] \vdash (\exists x)[Gx \wedge (\forall y)(Gy \supset x = y)]$
- 8. $(\forall x)(\forall y)(\forall z)(x = y \lor x = z \lor z = y), (\exists x)(\exists y)(x \neq y) \vdash (\exists x)(\exists y)[x \neq y \land (\forall z)(z = x \lor z = y)]$
- ** 9. $(\exists x)[Gx \land (\forall y)(Gy \supset x = y)] \vdash (\exists x)Gx \land (\forall x)(\forall y)[(Gx \land Gy) \supset x = y]$
- *** 10. $(\exists x)(\exists y)[x \neq y \land (\forall z)(z = x \lor z = y)] \vdash (\forall x)(\forall y)(\forall z)(x = y \lor x = z \lor y = z) \land (\exists x)(\exists y)(x \neq y)$

پاسخ تمرین ۲۰.۵

$$1-a=b$$
 $\therefore Fa \equiv Fb$
 $1 - a = b$
 $\therefore Fa \equiv Fb$
 $1 - a = b$
 $2 - a = a = a$
 $3 - a = a$
 $4 - a = a$
 $5 - a = a = a$
 $5 - a = a = a$
 $1 - a = a$
 $1 - a = a$
 $2 - a = a$
 $3 - a = a$
 $4 - a = a$
 $4 - a = a$
 $5 - a =$

$$1-c=d$$
 مقدمه (۲)
$$(b=c)\equiv (b=d)$$
 (۲)
$$7-b=c$$
 $(z=b)$ ($z=b=d$ ($z=b=d$))

۱۵۷ و اینهمانی P_N .۶.۵ و اینهمانی

$$\begin{array}{c} \text{N-} (\exists x)(x \neq a \land Fx) \\ \therefore (\exists x)Fx \land [Fa \supset (\exists x)(\exists y)(x \neq y \land Fx \land Fy)] \end{array} \\ \text{N-} x \neq a \land Fx \\ \text{Y-} Fx \\ \text{Y-} Fx \\ \text{Y-} (\exists x)Fx \\ \text{Y-} (\exists x)Fx \\ \text{Y-} (\exists x)Fx \\ \text{Y-} (\exists y)(x \neq y \land Fx \land Fy) \\ \text{Y-} (\exists y)(x \neq y \land Fx \land Fy) \\ \text{Y-} (\exists x)(\exists y)(x \neq y \land Fx \land Fy) \\ \text{Y-} (\exists x)(\exists y)(x \neq y \land Fx \land Fy) \\ \text{Y-} (\exists x)(\exists y)(x \neq y \land Fx \land Fy) \\ \text{Y-} (\exists x)Fx \land [Fa \supset (\exists x)(\exists y)(x \neq y \land Fx \land Fy)] \\ \text{N-} (\exists x)Fx \land [Fa \supset (\exists x)(\exists y)(x \neq y \land Fx \land Fy)] \\ \text{Y-} (\exists x)(Hx \land Gx) \\ \text{Y-} (\forall x)[Gx \supset (x = a \lor x = b)] \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Hx \land Gx \\ \text{Y-} Gx \supset (x = a \lor x = b) \\ \text{Y-} Gx$$

$$1 - (\exists x)(Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y] \land Ix)$$
 مقدمه $\therefore (\forall x)[(Gx \land Hx) \supset Ix]$ (a)

 $\exists Y - Gx \land Hx$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y] \land Ix$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y]$
 $\exists Y - Gx \land Hx \land (\forall y)[(Gy \land Hy) \rightarrow x = y$

امانی P_N .۶.۵ و اینهمانی

ì		
	۱– $(orall x)(Fx\supset (orall y)[(Fy\wedge Hxy)\supset Gxy])$ مقدمه	
	$ extsf{Y-}(\exists x)(Fx \wedge (\forall y)[(Fy \wedge x eq y) \supset Hxy])$ مقدمه	
	$\therefore (\exists x)(Fx \wedge (\forall y)[(Fy \wedge x \neq y) \supset Gxy]) \tag{9}$	
	ightarrow $ au$	
	$r_{-}Fx$ (ح/) (م	
	$\int_{-\infty}^{\infty} \Delta - Fy \wedge x \neq y$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$V-(\forall y)[(Fy \land Hxy) \supset Gxy] \qquad (\supset)$	
	$\begin{vmatrix} (1y)(Huy) \supset Guy \\ \mathbf{q} - (\forall y)[(Fy \land x \neq y) \supset Hxy] \end{vmatrix} \qquad (\land \varphi)$	
	$ \begin{array}{c} (1 \ g \wedge (x \neq y) \supset \Pi x g \\ (1) - H x y \end{array} $	
	NY - Fy	
	$ \begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$	
	$ \begin{array}{c} 1 - 1 \text{ if } 1 \text$	
	$ (\neg y) \cap Hxy) \supset Gxy (\neg y) \cap Hxy \cap Gxy $	
	()/[()	
	$NV - Fx \wedge (\forall y)[(Fy \wedge Hxy) \supset Gxy] \qquad (\land \rho) \land NP \land NP$	
	$[\land \land (\exists x)(Fx \land (\forall y)[(Fy \land Hxy) \supset Gxy]) \qquad (\exists r) \land \lor \lor $	
	۱۹- $(\exists x)(Fx \wedge (\forall y)[(Fy \wedge Hxy) \supset Gxy])$ ($\exists \neg$) ۱۷-۳،۱	
I		

$$1 - (\exists x)Gx \wedge (\forall x)(\forall y)[(Gx \wedge Gy) \supset x = y]$$
 مقدمه $\therefore (\exists x)[Gx \wedge (\forall y)(Gy \supset x = y)]$ (V)

 $1 - (\exists x)Gx$ $(\land c) \land 1$
 $1 - (\exists x)Gx$ $(\land c) \land 1$
 $1 - (\exists x)Gx$ $(\land c) \land 1$
 $1 - (\forall x)(\forall y)[(Gx \wedge Gy) \supset x = y]$ $(\land c) \land 1$
 $1 - (\forall x)(\forall y)[(Gx \wedge Gy) \supset x = y]$ $(\land c) \land 1$
 $1 - (\exists x)[Gx \wedge Gy) \supset x = y$ $(\forall c) \land 1$
 $1 - (\exists x)[Gx \wedge (\forall y)(Gy \supset x = y)]$ $(\land c) \land 1$
 $1 - (\exists x)[Gx \wedge (\forall y)(Gy \supset x = y)]$ $(\land c) \land 1$
 $1 - (\exists x)[Gx \wedge (\forall y)(Gy \supset x = y)]$ $(\exists c) \land 1$
 $1 - (\exists x)[Gx \wedge (\forall y)(Gy \supset x = y)]$ $(\exists c) \land 1$
 $1 - (\exists x)[Gx \wedge (\forall y)(Gy \supset x = y)]$ $(\exists c) \land 1$

$$1 - (\forall x)(\forall y)(\forall z)(x = y \lor x = z \lor z = y)$$
 $1 - (\exists x)(\exists y)(x \neq y)$
 $1 - (\exists x)(\exists y)(x \neq y)$
 $1 - (\exists x)(\exists y)(x \neq y)$
 $2 - (\exists x)(\exists y)[x \neq y \land (\forall z)(z = x \lor z = y)]$
 $2 - (\forall y)(x \neq y)$
 $3 - (\forall y)(\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall y)(\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = y \lor x = z \lor z = y)$
 $3 - (\forall z)(x = x \lor x = y)$
 $3 - (\forall z)(x = x \lor x = y)$
 $3 - (\forall z)(x = x \lor x = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$
 $3 - (\exists z)(x = x \lor z = y)$

ا۱۶۸ P_N و اینهمانی P_N .۶.۵

N – $(\exists x)[Gx \land (\forall y)(Gy \supset x = y)]$	مقدمه	
$\therefore (\exists x)Gx \wedge (\forall x)(\forall y)[(Gx \wedge Gy) \supset x = y]$	(٩)	
$_{ ightharpoonup}$ Y – $Gz \wedge (orall y)(Gy \supset z=y)$	ف	
$m{arkappa}_{-} Gz$	۲، (ح∧)	
$\mathbf{f}_{-}(\exists x)Gx$	۲، (م∃)	
$lacktriangle \Delta (orall y) (Gy \supset z = y)$	۲، (ح∧)	
$_{\sqcap}$ 9- $Gx \wedge Gy$	ف	
$V - Gy \supset z = y$	۵، (ح∀)	
	۵، (ح∀)	
$ \mathbf{q} - Gx$	۶، (ح∕)	
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	۶، (ح∕)	
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	۸،۹، (ح⊂)	
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	۱۰،۷ (ح⊂)	
$ \mathbf{1r}_{-} x = z $	۱۱، (تق=)	
$ NF_{-} x = y $	۱۳٬۱۲ (تع=)	
	۶-۱۴، (م⊂)	
$NF_{-}(\forall y)[(Gx \land Gy) \supset x = y]$	۱۵، (م	
$IV_{-} (\forall x)(\forall y)[(Gx \land Gy) \supset x = y]$	۱۶، (م	
	۱۶،۴ (م/)	
	۱،۲-۸۱، (حE)	

. (7)(7) (7) (8) (8) (8)	
$1 - (\exists x)(\exists y)[x \neq y \land (\forall z)(z = x \lor z = y)]$	مقدمه (/) (٦) (٦)
$\therefore (\forall x)(\forall y)(\forall z)(x = y \lor x = z \lor y = z) \land (\forall x)(x = y)(x = z)$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	<u>ف</u>
	ف ۳ (۸۸)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	۳، (ح∧) ۳. (~^)
$ \begin{vmatrix} \mathbf{\Delta} - (\forall z)(z = x' \lor z = y') \\ \mathbf{\hat{\gamma}} - z = x' \lor z = y' \end{vmatrix} $	۳، (ح∧) ۵، (ح∀)
$ \begin{vmatrix} \mathbf{v} - \mathbf{z} - \mathbf{x} & \forall \ \mathbf{z} - \mathbf{y} \\ \mathbf{v} - \mathbf{x} = \mathbf{x}' \lor \mathbf{x} = \mathbf{y}' \end{vmatrix} $	۵، (ح∀)
$ \begin{vmatrix} \mathbf{v} - x - x & \forall \ x - y \\ \mathbf{A} - y = x' \lor y = y' \end{vmatrix} $	۵، (ح∀)
$ \begin{vmatrix} \mathbf{A} - y - x & \forall \ y - y \\ \mathbf{A} - z = x' \end{vmatrix} $	ن . (ع ^۱) ف
$\bigvee_{1 \leftarrow y} x - z - x$ $1 \leftarrow y = z \lor y = y'$	۸،۸، (ح=)
$ \begin{vmatrix} & & & & & & & & & & & & & & & & & & $	۷،۷، (ح=)
$\left \left \right _{\Gamma} N T_{-} y = z \right $	ن کی کی ا
	۱۲، (م۷)
$\left \left \right \right _{\overrightarrow{P}} NF_{-} y = y'$	ٔ ف
$ N \Delta - x = z \lor x = y$	۱۱،۱۲،۱۱) (ح=)
$ NS- x = y \lor x = z$	۱۵، (جا)
$ $ IV- $x=y \lor x=z \lor y=z$	۱۶ (م۷)
	۱۲،۱۳ - ۱۲،۱۳ - ۱۲،۱۷ (ح
$ NA_{-} z = y' $	ف
$ \cdot \cdot Y - y = x' \lor y = z$	۱۹،۷ (ح=)
$ \text{YI-} \ x = x' \lor x = z$	۸،۹۱، (ح=)
$\left \left \left \right \right ight $	ف
$ YY - x = y \lor x = z$	(۲،۲۲، (ح=)
$ \underbrace{ \forall Y - x = y \lor x = z \lor y = z }_{} $	۲۳، (م/٧)
$\left \left \right \right \stackrel{Y}{\mapsto} Y D - y = z$	ف (۱/۱)
	(م۷، (م۷)
	۲۲،۲۲–۲۵،۲۴–۲۲، (ح ^{۷)} ۹،۶–۱۹،۱۸–۲۷، (ح ^{۷)}
$ \begin{array}{c c} & \forall \texttt{A-} \ x = y \lor x = z \lor y = z \\ & \forall \texttt{A-} \ (\forall x)(\forall y)(\forall z)(x = y \lor x = z \lor y = z) \end{array} $	۱۲۰ (م ^۷) (م ^۷)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	۲۹، (مE) ۲۹، (مE)
$\frac{(\forall x)(\forall y)(\forall z)(x=y \lor x=z \lor y=z) \land (\exists x)}{\forall Y - (\forall x)(\forall y)(\forall z)(x=y \lor x=z \lor y=z) \land (\exists x)}$	'
$ \begin{array}{c c} \hline $	

جدول ۵.۵: لغتنامهي تمرين ۲۱.۵

a		ملاصدرا، على، پرفسور عبدالسلام، ابن سينا
b	=	اسفار، پدر احمد، پرفسور حسابی، شیخ اشراق
c	=	صدرالمتألهين، ملاصدرا
Ax	=	نسان است. ، x برنده جایزه نوبل است. x فیزیکدان مسلمان است. ، x برنده جایزه نوبل است.
Bx	=	آفریقایی است. x
Cx	=	x نویسنده است.
Cxy	=	ممکن است در مسابقه دور از y تندتر بدود. x
Dx	=	بی سواد است. ، x موسس مکتب فلسفی در ایران است. x
Ix	=	ایرانی است. x
Mxy	=	xمؤلف y است.

صفحه ۱۲۱

★ تمرین ۲۱.۵: ترجمه و اثبات

با توجه به توابع گزارهای و نمادهای معرفی شده در جدول ۵.۵ اولاً استدلالهای زیر را به زبان L_P ترجمه و ثانیاً درستی هر یک از آنها را اثبات کنید.

- ۱. ملاصدرا مؤلف اسفار است. ملاصدرا همان صدرالمتألهین است. صدرالمتألهین ایرانی است. پس یک ایرانی مؤلف اسفار است.
- ۲. علی نویسنده است. هیچ نویسندهای بیسواد نیست. پدر احمد بیسواد است، پس علی پدر احمد نیست.
- * ۳. حداکثر یک فیزیکدان مسلمان برنده ی جایزه ی نوبل وجود دارد. پرفسور عبدالسلام فیزیکدانی مسلمان و برنده ی جایزه ی نوبل است. از دیگر فیزیکدانهای مسلمان پرفسور حسابی است. پس پرفسور حسابی برنده ی جایزه ی نوبل نیست.
- 4. تنها ابن سینا، شیخ اشراق و ملاصدرا مؤسس مکتب فلسفی در ایران بودهاند. هر یک از آنها صاحب کتابی در منطق نیز هستند، پس هرکس مؤسس مکتب فلسفی در ایران بوده، صاحب کتابی در منطق است.
- ** ۵. فردی که ممکن است تندروترین دونده باشد آفریقایی است. پس هر فردی که آفریقایی نیست، ممکن است در مسابقه دو به وسیلهی فرد دیگری پشت سر گذاشته شود.

پاسخ تمرین ۲۱.۵

۱– Mab	مقدمه
Y-a=c	مقدمه
۳- Ic	مقدمه
$\therefore (\exists x)(Ix \land Mxb)$	(1.)
$\mathbf{f}_{-} M c b$	۱،۲، (ح=)
Δ - $Ic \wedge Mcb$	۴،۳، (م/)
$\mathbf{\hat{r}}_{-}(\exists x)(Ix \wedge Mxb)$	۵، (م∃)

1-Caمقدمه $Y-(\forall x)(Cx\supset \sim Dx)$ مقدمه **Y**- Db مقدمه $\therefore a \neq b$ (٢) γ ، (ح \forall) \mathbf{f} - $Ca\supset\sim Da$ ۱،۴، (ح⊂) $\Delta - \sim Da$ ۳،۵، (ن=) $\mathbf{r} - b \neq a$ $\mathbf{V}\text{-}\ a\neq b$ ۶، (تق=) اینهمانی P_N .۶.۵ و اینهمانی

$I(\forall x)(\forall y)((Ax\wedge Ay)\supset [(Bx\wedge By)]$	مقدمه $(x=y]$ مقدمه
$Y-Aa\wedge Ba$	مقدمه
$\mathbf{r}_{-} \ b \neq a \wedge Ab$	مقدمه
$\therefore \sim Bb$	(٣)
\mathbf{Y} - Aa	۲، (ح∧)
$\Delta - (Aa \wedge Ab) \supset [(Ba \wedge Bb) \supset a = b]$	$(eg \forall)$ ، (
\mathcal{S} – Ab	۳، (ح∧)
V – $Aa \wedge Ab$	۶،۴، (م/)
$A-(Ba \wedge Bb) \supset a = b$	۵،۷، (ح⊂)
$\mathbf{q} - b \neq a$	۳، (ح∧)
$N - a \neq b$	۹، (تق=)
$N-\sim (Ba\wedge Bb)$	۱۰،۸ (ر.ت)
$Y - \sim Ba \lor \sim Bb$	۱۱، (دم)
VBa	۲، (ح۸)
۱۴ - ~~Ba	۱۳ ، (ن.م)
$\Delta \sim Bb$	۱۴،۱۲ (ق.ا)

۱۶۷ و اینهمانی P_N .۶.۵

$N_{-}(\forall x)([Ax \land (\forall y)(Ay \supset Cxy)] \supset Bx)$	مقدمه
$\therefore (\forall x)([Ax \land (\forall y)(Ay \supset Cxy)] \supset Bx)$ $\therefore (\forall x)[(Ax \land \sim Bx) \supset (\exists y)(Ay \land y \neq x \land \sim Cx)$	
, , , , , , , , , , , , , , , , , , , ,	~ / -
\nearrow Υ - $Ax \land \sim Bx$	ف ۲ (۱۸)
r-Ax	۲، (ح۸)
$\mathbf{f}_{-} \sim Bx$	۲، (ح∧)
	۱، (ح∀)
	۵، (صد)
$V_{-}(\forall y)(Ay\supset Cxy)\supset Bx$	۶،۳٪ (ح⊂)
	۷،۴، (ر.ت)
$\P - (\exists y) \sim (Ay \supset Cxy)$	۸، (ن.س)
$rac{1}{1} \cdot - \sim (Ay \supset Cxy)$	ف
$ N - \sim (\sim Ay \vee Cxy)$	۱۰ (اس)
$ $ $Y - \sim Ay \land \sim Cxy$	۱۱، (دم)
$ $ 1 " $-\sim\sim Ay$	۱۲، (ح۸)
$ $ $NF_{-} Ay$	۱۳ ، (ح~)
	۱۲، (ح۸)
$ N F_{-} y \neq x $	(ن=) ۱۴،۳
$ V - Ay \wedge y \neq x $	۱۶،۱۴ (م۸
$ \land Ay \land y \neq x \land \sim Cxy $	۱۷،۱۵ (م
	۱۸، (م∃)
	۹،۱۹–۱۰،۹
$\forall 1 - (Ax \land \sim Bx) \supset (\exists y)(Ay \land y \neq x \land \sim Cxy)$	۲-۲۰ (م
$YY - (\forall x)[(Ax \land \sim Bx) \supset (\exists y)(Ay \land y \neq x \land \sim Cxy)]$	۲۱، (م) [(ر

مورد آخر البته ترجمه ی دقیقی نیست. گرچه با توجه به توابع گزارهای داده شده و اینکه استدلال باید درست باشد، این چنین ترجمه کردهایم. مشکل ترجمه ی عبارت زیر است: Dx = x ممکن است x در مسابقه دو به وسیله ی فرد دیگری پشت سر گذاشته شود. برای ترجمه ی دقیق ابتدا به سراغ منطق موجهات رفته و فرمول ϕ را که به صورت «ممکن است که ϕ » خوانده می شود را به زبان صوریمان اضافه می کنیم. سپس توابع گزاره ی زیر را نیز در نظر می گیریم:

است.

حالا استدلال باید به صورت زیر ترجمه شود:

$$(\forall x)[(Ax \land \Diamond Fx) \supset Bx] \vdash (\forall x)[(Ax \land \sim Bx) \supset \Diamond Gx]$$

حالا باید Fx و Gx را تحلیل کنیم. برای این کار توابع گزارهای زیر را در نظر میگیریم: در مسابقه دو از y تندتر می دود. xHxyدر مسابقه دو به وسیلهx پشت سر گذاشته می شود. xIxyبنابراین خواهیم داشت:

$$Fx = (\forall y)(Ay \supset Hxy)$$
 $Gx = (\exists y)(Ay \land y \neq x \land Ixy)$

توجه کنید که:

ممكن است x تندروترين دونده باشد. $(\forall y)(Ay \supset \Diamond Hxy)$ $(\exists y)(Ay \land y \neq x \land \Diamond Ixy)$

اما اگر می شد این چنین ترجمه کنیم، آن موقع می توانستیم با جایگزینی H'xy و I'xy به

جای $\langle Hxy \rangle$ و $\langle Ixy \rangle$ از منطق موجهات گذر کنیم. با توجه به اینکه میخواهیم تلاش کنیم تا استدلال درست باشد، میتوانیم رابطهی بین $\langle H \rangle$ Ixy = Hyx بیان کنیم و قرار دهیم: $(\forall x)(\forall y)(Hxy \equiv Iyx)$ و را با فرمول توجه کنید که گزاره ی $(\forall x)(\forall y)(\sim Hxy\supset Iyx)$ کاذب است. چرا که اگر x تندتر از y ندود، احتمال دارد که همپای y بدود و در نتیجه نمیتوان گفت که الزماً y را پشت سر y

بنابراین استدلال مزبور را میتوان به صورت زیر ترجمه کرد:

$$(\forall x)([Ax \land \Diamond(\forall y)(Ay \supset Hxy)] \supset Bx)$$
$$\therefore (\forall x)[(Ax \land \sim Bx) \supset \Diamond(\exists y)(Ay \land y \neq x \land Hyx)]$$

حالا حتى اگر ادات ◊ را نيز از استدلال فوق حذف كنيم، همچنان استدلال نادرست خواهد بو د. چرا که گزارهی $P = (\forall x)(\forall y)(\sim Hxy \supset Hyx)$ کاذب است. در آخر می توان گفت که اگر P به عنوان مقدمه به استدلال افزوده شود، استدلال مزبور در منطق موجهات محمولی (سیستم QT_2) اثبات پذیر است.

فصل ۶

سیستم اصل موضوعی (P_A) و سیستم نموداری (P_T) منطق محمولات

(P_T) سیستم نموداری منطق محمولات سیستم

جدول
$$\gamma: 1.9$$
 قواعد $(\forall): (\forall \alpha) \varphi_{\alpha} \quad (\sim \exists): \sim (\exists \alpha) \varphi_{\alpha}$ $\qquad \qquad |$ $\qquad \qquad \qquad |$ $\qquad \qquad \varphi_{\beta} \qquad \qquad \sim \varphi_{\beta}$

نکته ۱.۶ اولویت استفاده از قواعد به صورت زیر است:

$$(1.7 \, \text{Josephine})$$

$$(7.5 _{-}$$
 قواعد δ . γ

$$\gamma$$
 . γ . γ

$$(7.7)$$
 واعد $= \beta$. ۴

صفحه ۱۳۲

🛨 تمرین ۱.۶: اثبات

استدلالهای تمرین ۱۲.۵ و ۱۳۰۵ صفحات ۱۱۳ و ۱۱۹ کتاب را با روش نموداری اثبات کنید.

پاسخ تمرین ۱.۶

(1)
$$(\forall x)(Ax \supset Bx), \sim Bd \vdash_{P_T} \sim Ad$$

- 1. $(\forall x)(Ax \supset Bx) \checkmark$ premiss
- 2. $\sim Bd$ premiss
- 3. $\sim \sim Ad$ Neg Con
- $Ad \supset Bd \qquad 1, (\forall)$
- 5. $\sim \stackrel{\checkmark}{Ad} \stackrel{\checkmark}{Bd} \qquad 4, (\sim \supset)$ $\underset{3}{\otimes} \qquad \underset{2}{\otimes}$
- (2) $(\forall x)(Cx \supset Dx), (\forall x)(Ex \supset \sim Dx) \vdash_{P_T} (\forall x)(Ex \supset \sim Cx)$

1.
$$(\forall x)(Cx \supset Dx) \checkmark$$
 premiss
2. $(\forall x)(Ex \supset \sim Dx) \checkmark$ premiss
3. $\sim (\forall x)(Ex \supset \sim Cx) \checkmark$ Neg Con
4. $\sim (Ex \supset \sim Cx) \checkmark$ 3, $(\sim \forall)$
5. Ex 4, $(\sim \supset)$
6. $\sim \sim Cx$ 4, $(\sim \supset)$
7. $Cx \supset Dx \checkmark$ 1, (\forall)
8. $Ex \supset \sim Dx \checkmark$ 2, (\forall)
9. $\sim Cx$ Dx 7, (\supset)
10. $\otimes \sim Ex \sim Dx$ 8, (\supset)
6 $\otimes \otimes \otimes$
5 9
(3) $(\forall x)(Fx \supset \sim Gx), (\exists x)(Hx \land Gx) \vdash_{P_T} (\exists x)(Hx \land \sim Fx)$
1. $(\forall x)(Fx \supset \sim Gx) \checkmark$ premiss
2. $(\exists x)(Hx \land Gx) \checkmark$ premiss
3. $\sim (\exists x)(Hx \land Gx) \checkmark$ premiss
3. $\sim (\exists x)(Hx \land Gx) \checkmark$ premiss
3. $\sim (\exists x)(Hx \land \sim Fx) \checkmark$ Neg Con
4. $Hx \land Gx \checkmark$ 2, (\exists)
5. Hx 4, (\land)
6. Gx 4, (\land)
7. $Fx \supset \sim Gx \checkmark$ 1, (\forall)
8. $\sim (Hx \land \sim Fx) \checkmark$ 3, $(\sim \exists)$
9. $\sim Fx$ $\sim Gx$ 7, (\supset)
10. $\sim Hx$ $\sim \sim Fx \otimes \otimes$ 8, $(\sim \land)$
 $\otimes \otimes \otimes$ 6
5 9

```
1.
                                        (\forall x)(Ax\supset Bx) \checkmark
                                                                                   premiss
                           2.
                                       (\exists x)(Ax \land \sim Bx) \checkmark
                                                                                   premiss
                                                                                   2, (\exists)
                                            Ax \wedge \sim Bx \checkmark
                           3.
                                                                                   3, (\wedge)
                                                     Ax
                           4.
                                                   \sim Bx
                           5.
                                                                                   3, (\wedge)
                                             Ax \supset Bx \checkmark
                                                                                   1, (\forall)
                           6.
                           7.
                                                                                   6, (\supset)
                                             \sim Ax
                                                            Bx
                                                \underset{4}{\otimes}
                                                             \otimes
             (\forall x)(Kx\supset Lx),(\forall x)[(Kx\wedge Lx)\supset Mx]\vdash_{P_T} (\forall x)(Kx\supset Mx)
(5)
               1.
                                   (\forall x)(Kx\supset Lx) \checkmark
                                                                                           premiss
                2.
                            (\forall x)[(Kx \wedge Lx) \supset Mx] \checkmark
                                                                                           premiss
                                \sim (\forall x)(Kx \supset Mx) \checkmark
                3.
                                                                                           Neg Con
                                    \sim (Kx \supset Mx) \checkmark
                                                                                           3, (\sim \forall)
                4.
                5.
                                                Kx
                                                                                           4, (\sim \supset)
                                              \sim Mx
                6.
                                                                                           4, (\sim \supset)
                                        Kx \supset Lx \checkmark
                                                                                           1, (\forall)
                7.
                                 (Kx \wedge Lx) \supset Mx \checkmark
                                                                                           2, (\forall)
                8.
                              \sim Kx
                                                                                           7, (\supset)
               9.
                                                                 Lx
                                          \sim (Kx \wedge Lx) \checkmark
                10.
                                                                           Mx
                                                                                           8, (\supset)
                                 \otimes
                                                                                           10, (\sim \land)
                11.
                                            \sim Kx
                                                           \sim Lx
                                                                             \otimes
                                                             \underset{9}{\otimes}
                                               \underset{5}{\otimes}
               (\forall x)(Ax\supset Cx), (\forall x)(Bx\supset Cx)\vdash_{P_T} (\forall x)[(Ax\vee Bx)\supset Cx]
 (6)
```

(7)
$$(\forall x)(Ax \supset Bx), (\exists x)(Ax \lor Bx) \vdash_{P_T} (\exists x)Bx$$

- 1. $(\forall x)(Ax \supset Bx) \checkmark$ premiss
- 2. $(\exists x)(Ax \lor Bx) \checkmark$ premiss
- 3. $\sim (\exists x) Bx \checkmark$ Neg Con 4. $Ax \lor Bx \checkmark$ 2, (\exists)
- 5. $Ax \lor Bx \lor$ 2, (\exists) $Ax \supset Bx \checkmark$ 1, (\forall)
- 6. $\sim Bx$ 3, $(\sim \exists)$
- 7. Ax Bx 4, (\vee)
- (8) $(\forall x)[Ox \supset (Ex \supset Hx)], (\forall x)[Hx \supset (Nx \land Mx)]$ $\vdash_{P_T} (\forall x)[Ox \supset (Ex \supset Nx)]$

```
1.
                                    (\forall x)[Ox\supset (Ex\supset Hx)]
                                                                                           premiss
                    2.
                                    (\forall x)[Hx\supset (Nx\wedge Mx)]
                                                                                            premiss
                                   \sim (\forall x)[Ox \supset (Ex \supset Nx)] \checkmark
                    3.
                                                                                           Neg Con
                                      \sim [Ox \supset (Ex \supset Nx)] \checkmark
                                                                                            3, (\sim \forall)
                    4.
                    5.
                                                        Ox
                                                                                            4, (\sim \supset)
                                             \sim (Ex \supset Nx) \checkmark
                                                                                            4, (\sim \supset)
                    6.
                    7.
                                                        Ex
                                                                                           6, (\sim \supset)
                    8.
                                                      \sim Nx
                                                                                           6, (\sim \supset)
                    9.
                                         Ox \supset (Ex \supset Hx) \checkmark
                                                                                            1, (\forall)
                                         Hx \supset (Nx \wedge Mx) \checkmark
                    10.
                                                                                            2, (\forall)
                                                             Nx \wedge Mx \checkmark
                                         \sim Hx
                   11.
                                                                                           10, (\supset)
                    12.
                               \sim Ox
                                             Ex \supset Hx \checkmark
                                                                                           9, ()
                    13.
                                             \sim Ex
                                                           Hx
                                                                                            12, (\supset)
                                  \otimes
                    14.
                                                            \otimes
                                                                     Nx
                                                                                            11, (\land)
                                                \otimes
                                                7
                                                            11
                                                                      \otimes
    (9)
                 (\forall x)[(Ax \lor Bx) \supset (Cx \land Dx)], (\forall x)[(Cx \lor Dx) \supset (Ax \land Bx)]
                  \vdash_{P_T} (\forall x)(Ax \equiv Cx)
                          (\forall x)[(Ax \lor Bx) \supset (Cx \land Dx)] \checkmark
1.
                                                                                                       premiss
2.
                          (\forall x)[(Cx \vee Dx) \supset (Ax \wedge Bx)] \checkmark
                                                                                                       premiss
3.
                                     \sim (\forall x)(Ax \equiv Cx) \checkmark
                                                                                                       Neg Con
4.
                                         \sim (Ax \equiv Cx) \checkmark
                                                                                                       3, (\sim \forall)
                               (Ax \vee Bx) \supset (Cx \wedge Dx) \checkmark
                                                                                                       1, (\forall)
5.
6.
                               (Cx \lor Dx) \supset (Ax \land Bx) \checkmark
                                                                                                       2, (\forall)
7.
                          Ax
                                                                                                       4, (\sim \equiv)
                                                                           \sim Ax
8.
                         \sim Cx
                                                                             Cx
                                                                                                       4, (\sim \equiv)
9. \sim (Ax \vee Bx) \checkmark Cx \wedge Dx \checkmark \sim (Cx \vee Dx) \checkmark Ax \wedge Bx \checkmark 5, (\supset); 6, (\supset)
10.
            \sim Ax
                                       Cx
                                                               \sim Cx
                                                                                          Ax
                                                                                                       9_{\sim\vee}; 8_{\wedge}; 9_{\sim\vee}; 9_{\wedge}
               \otimes
                                                                 \otimes
                                        \otimes
                                                                                           \otimes
```

```
(10)
                        (\forall x)[(Bx\supset Cx)\land (Dx\supset Ex)],
                        (\forall x)[(Cx \vee Ex) \supset ([Fx \supset (Gx \supset Fx)] \supset (Bx \wedge Dx))]
                         \vdash_{P_T} (\forall x)(Bx \equiv Dx)
                         (\forall x)[(Bx\supset Cx)\land (Dx\supset Ex)]
                                                                                                             premiss
2. (\forall x)[(Cx \lor Ex) \supset ([Fx \supset (Gx \supset Fx)] \supset (Bx \land Dx))] \checkmark
                                                                                                             premiss
3.
                                    \sim (\forall x)(Bx \equiv Dx) \checkmark
                                                                                                             Neg Con
4.
                                        \sim (Bx \equiv Dx) \checkmark
                                                                                                             3, (\sim \forall)
5.
                              (Bx\supset Cx)\wedge (Dx\supset Ex)
                                                                                                             1, (\forall)
                                                                                                             5, (\wedge)
6.
                                           Bx \supset Cx \checkmark
7.
                                           Dx \supset Ex \checkmark
                                                                                                             5, (\wedge)
                                                                                                             2, (\forall)
            (Cx \lor Ex) \supset ([Fx \supset (Gx \supset Fx)] \supset (Bx \land Dx))
8.
                 \sim (Cx \vee Ex) \checkmark [Fx \supset (Gx \supset Fx)] \supset (Bx \wedge Dx) \checkmark 8, (\supset)
9.
10.
                                        \sim [Fx \supset (Gx \supset Fx)] \checkmark Bx \land Dx \checkmark
                                                                                                             9, (\supset)
11.
                                                                                          Bx
                                                                                                             10_{\sim \supset}; 10_{\land}
                                               \sim (Gx \supset Fx) \checkmark
                                                                                          Dx
12.
                                                                                                             10_{\sim \supset}; 10_{\land}
13.
                                                        \sim Fx
                                                                                  \sim Dx \sim Bx
                                                                                                             12_{\sim \supset}; 4_{\sim \equiv}
                                                                                                             9, (\sim \vee)
14.
                          \sim Cx
                                                          \otimes
                                                                                     \otimes
                                                                                                \otimes
                                                                                     12
                                                          11
                                                                                                             9, (\sim \vee)
15.
                          \sim Ex
16.
                    \sim Bx
                                                                                                             6, (\supset)
                                   \otimes
                                   14
17.
              \sim Dx
                           Ex
                                                                                                             7, (\supset)
                            \otimes
                            15
            Bx Dx
                                                                                                             4, (\sim \equiv)
18.
             \otimes
             16
                     17
                                                 \sim (\forall x) Fx \vdash_{P_T} (\exists x) \sim Fx
                                    (1)
```

- 1. $\sim (\forall x)Fx$ premiss 2. $\sim (\exists x)\sim Fx \checkmark$ Neg Con 3. $\sim Fx$ 1, $(\sim \forall)$ 4. $\sim \sim Fx$ 2, $(\sim \exists)$
- $(2) \qquad (\exists x) \sim (Fy \vee Gy) \vdash_{P_T} \sim (\forall y)(Fy \vee Gy)$
 - 1. $(\exists x) \sim (Fy \lor Gy) \checkmark$ premiss 2. $\sim \sim (\forall y)(Fy \lor Gy) \checkmark$ Neg Con
 - 3. $(\forall y)(Fy \vee Gy) \checkmark$ 2, (\sim)
 - 4. $\sim (Fy \vee Gy)$ 1, (\exists)
 - 5. $Fy \vee Gy \qquad \qquad 3, \ (\forall)$
- (3) $\sim (\forall x) \sim [Fx \equiv (\exists y)Gy] \vdash (\exists x)[Fx \equiv (\exists y)Gy]$
 - 1. $\sim (\forall x) \sim [Fx \equiv (\exists y)Gy] \checkmark$ premiss
 - 2. $\sim (\exists x)[Fx \equiv (\exists y)Gy] \checkmark$ Neg Con
 - 3. $\sim \sim [Fx \equiv (\exists y)Gy]$ 1, $(\sim \forall)$
 - 4. $\sim [Fx \equiv (\exists y)Gy]$ 2, $(\sim \exists)$
 - (4) $(\exists x)(\forall y)Fxy \vdash_{P_T} \sim (\forall x) \sim (\forall y)Fxy$
 - 1. $(\exists x)(\forall y)Fxy \checkmark$ premiss
 - 2. $\sim \sim (\forall x) \sim (\forall y) Fxy \checkmark$ Neg Con
 - 3. $(\forall x) \sim (\forall y) Fxy \checkmark$ 2, (\sim)
 - 4. $(\forall y)Fxy$ 1, (\exists)
 - 5. $\sim (\forall y) Fxy$ 3, $(\sim \forall)$
 - (5) $\sim (\exists x)(Gx \supset Fx) \vdash_{P_T} (\forall x) \sim (Gx \supset Fx)$

```
1. \sim (\exists x)(Gx \supset Fx) \checkmark premiss

2. \sim (\forall x) \sim (Gx \supset Fx) \checkmark Neg Con

3. \sim \sim (Gx \supset Fx) 2, (\sim \forall)

4. \sim (Gx \supset Fx) 1, (\exists)
```

(6) $(\forall x) \sim (\exists y) (Fx \vee Gy) \vdash_{P_T} \sim (\exists x) (\exists y) (Fx \vee Gy)$

1.
$$(\forall x) \sim (\exists y) (Fx \vee Gy) \checkmark$$
 premiss
2. $\sim \sim (\exists x) (\exists y) (Fx \vee Gy) \checkmark$ Neg Con
3. $(\exists x) (\exists y) (Fx \vee Gy) \checkmark$ 2, (\sim)
4. $(\exists y) (Fx \vee Gy)$ 3, (\exists)
5. $\sim (\exists y) (Fx \vee Gy)$ 1, (\forall)

(7) $(\forall x)(\forall y)Fxy \vdash_{P_T} (\forall y)(\forall x)Fxy$

1.
$$(\forall x)(\forall y)Fxy \checkmark$$
 premiss
2. $\sim(\forall y)(\forall x)Fxy \checkmark$ Neg Con
3. $\sim(\forall x)Fxy \checkmark$ 2, $(\sim\forall)$
4. $\sim Fxy$ 3, $(\sim\forall)$
5. $(\forall y)Fxy \checkmark$ 1, (\forall)
6. Fxy 5, (\forall)

(8)
$$(\exists x)(\exists y)(Fx \equiv Gy) \vdash_{P_T} (\exists y)(\exists x)(Fx \equiv Gy)$$

1.
$$(\exists x)(\exists y)(Fx \equiv Gy) \checkmark$$
 premiss
2. $\sim (\exists y)(\exists x)(Fx \equiv Gy) \checkmark$ Neg Con
3. $\sim (\exists x)(Fx \equiv Gy) \checkmark$ 2, $(\sim \exists)$
4. $\sim (Fx \equiv Gy)$ 3, $(\sim \exists)$
5. $(\exists y)(Fx \equiv Gy) \checkmark$ 1, (\forall)
6. $Fx \equiv Gy$ 5, (\forall)

$$(9) \qquad (\forall x)(Fx \wedge Gx) \vdash_{P_T} (\forall x)Fx \wedge Gx$$

```
1.
                                    (\forall x)(Fx \wedge Gx) \checkmark
                                                                                    premiss
                                   \sim [(\forall x)Fx \wedge Gx] \checkmark
                  2.
                                                                                    Neg Con
                             \sim (\forall x) Fx \checkmark
                                                         \sim Gx \checkmark
                                                                                    2, (\sim \land)
                  3.
                  4.
                                    \sim Fx
                                                     Fx \wedge Gx \checkmark
                                                                                    3, (\sim \forall); 1, (\forall)
                              Fx \wedge Gx \checkmark
                                                             Gx
                                                                                    1, (\forall); 4, (\land)
                  5.
                                                                                    5, (\wedge)
                  6.
                                      Fx
                                                               \otimes
                                                               3
                                       \otimes
                                       4
               (\forall x)(Fx \equiv Gx) \wedge (\forall x)(Ax \vee Bx) \vdash_{P_T} (\forall x)[(Fx \equiv Gx) \wedge (Ax \vee Bx)]
(10)
                         (\forall x)(Fx \equiv Gx) \wedge (\forall x)(Ax \vee Bx) \checkmark
             1.
                                                                                                   premiss
             2.
                          \sim (\forall x)[(Fx \equiv Gx) \land (Ax \lor Bx)] \checkmark
                                                                                                   Neg Con
             3.
                                         (\forall x)(Fx \equiv Gx) \checkmark
                                                                                                   1, (\wedge)
             4.
                                         (\forall x)(Ax \vee Bx) \checkmark
                                                                                                   1, (\wedge)
                                 \sim [(Fx \equiv Gx) \wedge (Ax \vee Bx)]
                                                                                                   2, (\sim \forall)
             5.
                                              Fx \equiv Gx \checkmark
             6.
                                                                                                   3, (\forall)
                                               Ax \vee Bx \checkmark
                                                                                                   4, (\forall)
             7.
                                                                                                   5, (\sim \land)
             8.
                               \sim (Fx \equiv Gx)
                                                            \sim (Ax \vee Bx)
                                         \otimes
                                      (\exists x)(Fx \lor Gx) \vdash_{P_T} (\exists x)Fx \lor (\exists x)Gx
                      (11)
                                          (\exists x)(Fx \vee Gx) \checkmark
                         1.
                         2.
                                     \sim [(\exists x)Fx \vee (\exists x)Gx] \checkmark
                                                                                         2, (\sim \vee)
                         3.
                                                \sim (\exists x) Fx \checkmark
                         4.
                                                \sim (\exists x)Gx \checkmark
                                                                                         2, (\sim \vee)
                                                Fx \vee Gx \checkmark
                         5.
                                                                                         1, (\exists)
                                                      \sim Fx
                         6.
                                                                                         3, (\sim \exists)
                         7.
                                                      \sim Gx
                                                                                         4, (\sim \exists)
                         8.
                                                  Fx
                                                             Gx
                                                                                         5, (\vee)
                                                   \otimes
                                                              \otimes
   (12)
                  (\exists x)(\exists y)Fxy \vee (\exists x)(\forall y)Gxy \vdash_{P_T} (\exists x)[(\exists y)Fxy \vee (\forall y)Gxy]
```

1.
$$(\exists x)(\exists y)Fxy \lor (\exists x)(\forall y)Gxy \checkmark$$
 premiss
2. $\sim (\exists x)[(\exists y)Fxy \lor (\forall y)Gxy] \checkmark$ Neg Con
3. $(\exists x)(\exists y)Fxy \checkmark$ $(\exists x)(\forall y)Gxy \checkmark$ 1, (\lor)
4. $(\exists y)Fxy$ $(\forall y)Gxy$ 3, (\exists)
5. $\sim [(\exists y)Fxy \lor (\forall y)Gxy] \checkmark \sim [(\exists y)Fxy \lor (\forall y)Gxy] \checkmark$ 2, $(\sim \exists)$
6. $\sim (\exists y)Fxy$ $\sim (\forall y)Gxy$ 5, $(\sim \lor)$; 5, $(\sim \land)$

جدول
$$\alpha: \mathfrak{P}.\mathfrak{S} = \mathfrak{S}$$
 جدول $\alpha: \mathfrak{P}.\mathfrak{S} = \mathfrak{S}$ جدول $\alpha: \mathfrak{S} = \mathfrak{S}$ $\alpha: \mathfrak{S} = \mathfrak{$

تمرین ۲.۶: اثبات

استدلالهای تمرین ۱۹.۵ و ۲۰.۵ صفحات ۱۵۴ و ۱۵۵ کتاب را با روش نموداری اثبات کنید.

پاسخ تمرین ۲.۶

(1)
$$Fa, \sim Fb \vdash_{\underline{P}_T} a \neq b$$

- 1. Fa premiss
- 2. $\sim Fb \checkmark$ premiss
- 3. $\sim a \neq b \checkmark$ Neg Con
- 4. a=b 3, (\sim)
- 5. $\sim Fa$ 2, (=)

4

(2)
$$a = b, b = c \vdash_{\underline{P}_T} a = c$$

- 1. $a=b \checkmark$ premiss
- 2. $b=c \checkmark$ premiss
- 3. $\sim a \neq c$ Neg Con
- 4. a 1,2, (=) \otimes 3

$$(3) a = b \vdash_{\underline{P}_T} b = a$$

- 1. $a=b \checkmark$ premiss
- 2. $\sim b \neq a \checkmark$ Neg Con
- 3. $\sim b=b$ 1,2, (=) \otimes 3

$$(1) a = b \vdash_{\underline{P}_T} Fa \equiv Fb$$

- 1. $a=b \checkmark$ premiss
- 2. $\sim (Fa \equiv Fb) \checkmark$ Neg Con
- 3. $\sim (Fb \equiv Fb) \checkmark 1,2, (=)$
- 4. $Fb Fb 3, (\sim \equiv)$
- 5. $\sim Fb \sim Fb$ \otimes \otimes \otimes \otimes \otimes \otimes \otimes
- (2) $c = d \vdash_{\underline{P}_T} (b = c) \equiv (b = d)$

```
1.
                                          c=d
                                                                             premiss
                            \sim [(b=c) \equiv (b=d)] \checkmark
                  2.
                                                                            Neg Con
                            \sim \! [(b=d) \equiv (b=d)] \checkmark
                  3.
                                                                             1,2, (=)
                  4.
                                     b=d
                                                     b=c
                                                                             3, (\sim \equiv)
                                                                             3, (\sim \equiv)
                  5.
                                    \sim b=d
                                                   \sim b=d
                                       \otimes
                                     (\exists x)(x \neq a \land Fx) \vdash_{P_T} (\exists x)Fx
                      (3a)
                    1.
                               (\exists x)(x \neq a \land Fx) \checkmark
                                                                          premiss
                    2.
                                      \sim (\exists x) Fx \checkmark
                                                                          Neg Con
                    3.
                                            \sim Fx
                                                                          2, (\sim \exists)
                                    x \neq a \land Fx \checkmark
                    4.
                                                                          1, (\exists)
                                                                          4, (\wedge)
                                              Fx
                    5.
                                               \otimes
               (\exists x)(x \neq a \land Fx) \vdash_{PT} Fa \supset (\exists x)(\exists y)(x \neq y \land Fx \land Fy)
(3b)
    1.
                               (\exists x)(x \neq a \land Fx) \checkmark
                                                                                          premiss
               \sim [Fa \supset (\exists x)(\exists y)(x \neq y \land Fx \land Fy)] \checkmark
    2.
                                                                                          Neg Con
    3.
                                                                                          2, (\sim \supset)
                     \sim (\exists x)(\exists y)(x \neq y \land Fx \land Fy) \checkmark
                                                                                          2, (\sim \supset)
    4.
                                    x \neq a \land Fx \checkmark
                                                                                           1, (\exists)
    5.
                                            x \neq a
                                                                                           5, (\wedge)
    6.
                                                                                          5, (\wedge)
    7.
                            \sim (x \neq a \land Fx \land Fa) \checkmark
                                                                                           4, (\sim \exists)^2
    8.
    9.
                              \sim x \neq a \quad \sim (Fx \wedge Fa) \checkmark
                                                                                          8, (\sim \vee)
    10.
                                                  \sim Fx
                                                                \sim Fa
                                                                                          9, (\sim \land)
                                                                  \otimes
(4)
            (\exists x)(Hx \land Gx), (\forall x)[Gx \supset (x = a \lor x = b)] \vdash_{P_T} Ha \lor Hb
```

```
1.
                                      (\exists x)(Hx \wedge Gx) \checkmark
                                                                                      premiss
                           (\forall x)[Gx\supset (x=a\vee x=b)] \checkmark
                2.
                                                                                      premiss
                                        \sim (Ha \vee Hb) \checkmark
                3.
                                                                                      Neg Con
                                           Hx \wedge Gx \checkmark
                                                                                      1, (\exists)
                4.
                                                \sim Ha
                                                                                      3, (\sim \vee)
                5.
                                                \sim Hb
                                                                                      3, (\sim \vee)
                6.
                7.
                                                 Hx
                                                                                      4, (\wedge)
                8.
                                                  Gx
                                                                                      4, (\wedge)
                9.
                                  Gx \supset (x=a \lor x=b) \checkmark
                                                                                      2, (\forall)
                10.
                                      \sim Gx
                                                   x=a \lor x=b \checkmark
                                                                                      9, ()
                11.
                                                x=a
                                                                                      10, (\vee)
                                        \otimes
                                                                  x=b
                12.
                                               Ha
                                                          \otimes
                                                                                      7,11, (=)
                                                                                      7,11, (=)
                 13.
                                                                     Hb
                                                                      \otimes
(5) (\exists x) (Gx \land Hx \land (\forall y) [(Gy \land Hy) \supset x = y] \land Ix) \vdash_{\underline{P}_T} (\forall x) [(Gx \land Hx) \supset Ix]
            (\exists x)(Gx \land Hx \land (\forall y)[(Gy \land Hy) \supset x = y] \land Ix) \checkmark
1.
                                                                                                        premiss
2.
                                \sim (\forall x)[(Gx \land Hx) \supset Ix] \checkmark
                                                                                                        Neg Con
3.
                Gx \wedge Hx \wedge (\forall y)[(Gy \wedge Hy) \supset x = y] \wedge Ix \checkmark
                                                                                                        1, (\exists)
                                              Gx \wedge Hx
 4.
                                                                                                        3, (\wedge)
                          (\forall y)[(Gy \land Hy) \supset x = y] \land Ix \checkmark
                                                                                                        3, (\land)
 5.
                               (\forall y)[(Gy \land Hy) \supset x = y] \checkmark
                                                                                                        5, (\land)
 6.
                                                 Ix \checkmark
 7.
                                                                                                        5, (\wedge)
                                   \sim [(Gy \wedge Hy) \supset Iy] \checkmark
8.
                                                                                                        2, (\exists)
9.
                                              Gy \wedge Hy
                                                                                                        8, (\sim \supset)
                                                  \sim Iy
                                                                                                        8, (\sim \supset)
10.
                                    (Gy \land Hy) \supset x=y \checkmark
                                                                                                        6, (\forall)
11.
                                 \sim (Gy \wedge Hy)
 12.
                                                          x=y
                                                                                                        11, (\supset)
                                                                                                        7,12, (=)
 13.
                                         \otimes
                                                              Iy
                                                               \otimes
                                                               10
```

```
(6)
                                 (\forall x)(Fx\supset (\forall y)[(Fy\wedge Hxy)\supset Gxy])
                                  (\exists x)(Fx \land (\forall y)[(Fy \land x \neq y) \supset Hxy])
                                  \therefore_{P_T} (\exists x) (Fx \land (\forall y) [(Fy \land x \neq y) \supset Gxy])
     (\forall x)(Fx\supset (\forall y)[(Fy\wedge Hxy)\supset Gxy])
                                                                                                                premiss
2. (\exists x)(Fx \land (\forall y)[(Fy \land x \neq y) \supset Hxy]) \checkmark
                                                                                                                premiss
3. \sim (\exists x)(Fx \land (\forall y)[(Fy \land x \neq y) \supset Gxy]) \checkmark
                                                                                                                Neg Con
            Fx \wedge (\forall y)[(Fy \wedge x \neq y) \supset Hxy] \checkmark
                                                                                                                2, (\exists)
4.
5.
                                                                                                                4, (\wedge)
                 (\forall y)[(Fy \land x \neq y) \supset Hxy] \checkmark
                                                                                                                4, (\wedge)
6.
7.
            Fx \supset (\forall y)[(Fy \land Hxy) \supset Gxy] \checkmark
                                                                                                                1, (\forall)
         \sim (Fx \wedge (\forall y)[(Fy \wedge x \neq y) \supset Gxy]) \checkmark
                                                                                                                3, (\sim \exists)
                      \sim Fx \ (\forall y)[(Fy \land Hxy) \supset Gxy] \checkmark
9.
                                                                                                                7, (\supset)
                                     \sim Fx \sim (\forall y)[(Fy \land x \neq y) \supset Gxy] \checkmark
10.
                                                                                                                8, (\sim \land)
                         \otimes
11.
                                                    \sim [(Fy \land x \neq y) \supset Gxy] \checkmark
                                                                                                                10, (\sim \forall)
12.
                                                               Fy \land x \neq y \checkmark
                                                                                                                11, (\sim \supset)
13.
                                                                      \sim Gxy
                                                                                                                11, (\sim \supset)
14.
                                                                         Fy
                                                                                                                12, (\land)
15.
                                                       (Fy \land x \neq y) \supset Hxy \checkmark
                                                                                                                6, (\forall)
16.
                                                                                      Hxy
                                                \sim (Fy \land x \neq y)
                                                                                                                15, (\supset)
17.
                                                                      (Fy \wedge Hxy) \supset Gxy \checkmark 9, (\forall)
18.
                                                                 \sim (Fy \wedge Hxy) \checkmark Gxy
                                                                                                                17, (\supset)
19.
                                                                     \sim Fy \sim Hxy
                                                                                                                18, (\sim \land)
                                                                                                   \otimes
                                                                                    16
                                                                       14
                                     (\exists x)Gx \wedge (\forall x)(\forall y)[(Gx \wedge Gy) \supset x = y]
                       (7)
                                      \therefore_{\underline{P}_T} (\exists x) [Gx \wedge (\forall y) (Gy \supset x = y)]
```

1.
$$(\exists x)Gx \land (\forall x)(\forall y)[(Gx \land Gy) \supset x = y] \checkmark$$
 premiss
2. $\sim (\exists x)[Gx \land (\forall y)(Gy \supset x = y)] \checkmark$ Neg Con
3. $(\exists x)Gx \checkmark$ 1, (\land)
4. $(\forall x)(\forall y)[(Gx \land Gy) \supset x = y] \checkmark$ 1, (\land)
5. Gx 3, (\exists)
6. $\sim [Gx \land (\forall y)(Gy \supset x = y)] \checkmark$ 2, $(\sim \exists)$
7. $\sim Gx \sim (\forall y)(Gy \supset x = y) \checkmark$ 6, $(\sim \land)$
8. $\otimes \sim (Gy \supset x = y) \checkmark$ 7, $(\sim \forall)$
9. $^{5} (Gx \land Gy) \supset x = y \checkmark$ 4, $(\forall)^{2}$
10. Gy 8, $(\sim \land)$
11. $x \neq y$ 8, $(\sim \land)$
12. $\sim (Gx \land Gy) \checkmark x = y$ 9, (\supset)
13. $\sim Gx \sim Gy \otimes 11$
5 10
(8) $(\forall x)(\forall y)(\forall z)(x = y \lor x = z \lor z = y), (\exists x)(\exists y)(x \neq y)$
 $\vdash_{\underline{P_T}} (\exists x)(\exists y)[x \neq y \land (\forall z)(z = x \lor z = y)]$

```
(\forall x)(\forall y)(\forall z)(x=y \lor x=z \lor z=y) \checkmark
      1.
                                                                                                      premiss
      2.
                                      (\exists x)(\exists y)(x \neq y) \checkmark
                                                                                                      premiss
                 \sim (\exists x)(\exists y)[x \neq y \land (\forall z)(z = x \lor z = y)] \checkmark
                                                                                                      Neg Con
      3.
                                                                                                      (\exists)^2
                                                  x \neq y
      4.
                                                                                                      3, (\sim \exists)^2
                         \sim [x \neq y \land (\forall z)(z = x \lor z = y)] \checkmark
      5.
                                \sim x \neq y \quad \sim (\forall z)(z = x \lor z = y) \checkmark
      6.
                                                                                                      5, (\sim \land)
                                                       \sim (z=x \vee z=y) \checkmark
                                                                                                      6, (\sim \forall)
      7.
                                                                                                      7, (\sim \vee)
      8.
                                                               z \neq x \checkmark
                                                                                                      7, (\sim \lor)
                                                                 z \neq y
      9.
                                                                                                      1, (\forall)^3
                                                    x=y \lor x=z \lor z=y \checkmark
      10.
      11.
                                                                     x=z \lor z=y \checkmark
                                                                                                      10, (\vee)
      12.
                                                                                                      11, (\vee)
                                                                   x=z
      13.
                                                                     z \neq z
                                                                                                      8,12, (=)
                                                                                       \otimes
                                                                        \otimes
                                 (\exists x)[Gx \land (\forall y)(Gy \supset x = y)] \vdash_{P_T} (\exists x)Gx
                  (9a)
                 1.
                             (\exists x)[Gx \land (\forall y)(Gy \supset x=y)] \checkmark
                                                                                           premiss
                 2.
                                             \sim (\exists x)Gx \checkmark
                                                                                           Neg Con
                                 Gx \wedge (\forall y)(Gy \supset x=y) \checkmark
                 3.
                                                                                           1, (\exists)
                                                     Gx
                                                                                           3, (\wedge)
                 4.
                                                    \sim Gx
                                                                                            2, (\sim \exists)
                 5.
                                                      \otimes
               (\exists x)[Gx \wedge (\forall y)(Gy \supset x = y)] \vdash_{\underline{P}T} (\forall x)(\forall y)[(Gx \wedge Gy) \supset x = y]
(9b)
```

```
1.
        (\exists x)(\exists y)[x \neq y \land (\forall z)(z=x \lor z=y)] \checkmark
                                                                              premiss
2.
         \sim (\forall x)(\forall y)(\forall z)(x=y \lor x=z \lor y=z) \checkmark
                                                                              Neg Con
                x \neq y \land (\forall z)(z=x \lor z=y) \checkmark
3.
                                                                              1, (\exists)
4.
                                   x \neq y
                                                                              3, (\wedge)
                        (\forall z)(z=x \lor z=y) \checkmark
                                                                              3, (\wedge)
5.
                  \sim (x'=y' \lor x'=z \lor y'=z) \checkmark
                                                                              2, (\sim \forall)^3
6.
7.
                                x' \neq y' \checkmark
                                                                              6, (\sim \land)
                         \sim (x'=z \vee y'=z) \checkmark
8.
                                                                              6, (\sim \land)
                                x' \neq z \checkmark
9.
                                                                              8, (\sim \land)
10.
                                y' \neq z \checkmark
                                                                              8, (\sim \land)
                                                                              5, (\forall)
11.
                            z=x \lor z=y \checkmark
12.
                           x'=x \lor x'=y \checkmark
                                                                              5, (\forall)
13.
                           y'=x \lor y'=y \checkmark
                                                                              5, (\forall)
14.
                                                                              11, (\vee)
           z=x
                                                         z=y
15.
        x' \neq x \checkmark
                                                          x' \neq y
                                                                              9,14, (=)
16.x' = x
                  x'=y
                                               x'=x
                                                                   x'=y 12, (\vee)
17. \otimes y'=x y'=y \checkmark y'=x \checkmark y'=y \checkmark \otimes
                                                                              13, (\vee)
                                                         y'=z
18. ^{15} y' \neq x x'=y'
                                         x'=y'
                                                                              =_{10,14}; =_{16,17}; =_{16,17}; =_{14,17}
                                                            \otimes
                     (\exists x)(\exists y)[x \neq y \land (\forall z)(z = x \lor z = y)] \vdash_{P_T} (\exists x)(\exists y)(x \neq y)
    (10b)
                        (\exists x)(\exists y)[x \neq y \land (\forall z)(z=x \lor z=y)] \checkmark
             1.
                                                                                               premiss
             2.
                                      \sim (\exists x)(\exists y)(x \neq y) \checkmark
                                                                                               Neg Con
                                x \neq y \land (\forall z)(z=x \lor z=y) \checkmark
             3.
                                                                                               1, (\exists)
                                                                                               3, (\wedge)
             4.
                                                  x \neq y
                                               \sim (x \neq y)
                                                                                               2, (\sim \exists)^2
             5.
                                                      \otimes
```

بخش چهارم ساختار معنایی و فرانظریه منطق محمولات

فصل ٧

ساختار معنايي منطق محمولات

$m L_P$ تعبير ۱.۷

$$I=\langle D,V\rangle$$

- ۱. کی مجموعه غیرتهی است. D
- ۲. V یک تابع به صورت زیر است:

$$\{arphi_0\mid$$
 . حمله نشانه است. $\{arphi_0\}
ightarrow \{0,1\}$ $\{eta\mid$. ست. یا متغیر فردی است. $\{eta\}
ightarrow D$ یک نماد فردی (ثابت یا متغیر فردی) است. $\{arphi_n\mid$ یک محمول نشانه ی $\{arphi_n\mid$ موضعی است. $\{arphi_n\}
ightarrow \{A\mid A\subseteq D^n\}$

۲.۷ صدق در یک تعبیر

$$\models_I \subseteq \{\varphi \mid \text{...} \varphi \} \times \{0,1\}$$
 $\models_I \varphi \iff \langle \varphi, 1 \rangle \in \models_I$

${ m L_P}$ قواعد معناشناسی ${ m T.V}$

$$(RS_{1}) \qquad \qquad \models_{I} \varphi_{0} \Longleftrightarrow V(\varphi_{0}) = 1$$

$$(RS_{2}) \qquad \qquad \models_{I} \varphi\beta_{1} \cdots \beta_{n} \Longleftrightarrow \langle V(\beta_{1}), \cdots, V(\beta_{n}) \rangle \in V(\varphi_{n})$$

$$(RS_{3}) \qquad \qquad \models_{I} \sim \varphi \Longleftrightarrow \not\models_{I} \varphi$$

$$(RS_{4}) \qquad \qquad \models_{I} \varphi \wedge \psi \Longleftrightarrow \models_{I} \varphi \& \models_{I} \psi$$

$$(RS_{5}) \qquad \qquad \models_{I} \varphi \vee \psi \Longleftrightarrow \models_{I} \varphi \text{ or } \models_{I} \psi$$

$$(RS_{6}) \qquad \qquad \models_{I} \varphi \supset \psi \Longleftrightarrow \not\models_{I} \varphi \text{ or } \models_{I} \psi$$

$$(RS_{7}) \qquad \qquad \models_{I} \varphi \equiv \psi \Longleftrightarrow (\models_{I} \varphi \& \models_{I} \psi) \text{ or } (\not\models_{I} \varphi \& \not\models_{I} \psi)$$

$$(RS_{8}) \qquad \qquad \models_{I} (\forall \alpha) \varphi_{\alpha} \Longleftrightarrow \forall o \in D (V(\beta) = o \Longrightarrow \models_{I} \varphi_{\beta})$$

$$(RS_{9}) \qquad \qquad \models_{I} (\exists \alpha) \varphi_{\alpha} \Longleftrightarrow \exists o \in D (V(\beta) = o \& \models_{I} \varphi_{\beta})$$

صفحه ۱۳۹

🛨 🛨 تمرین ۱.۷: صدق در مدل

تعبير زير مفروض است:

$$I = \langle D, V \rangle \qquad D = \{o_1, o_2, o_3, o_4\}$$

$$V(a) = o_1, \ V(b) = o_2, \ V(c) = o_3, \ V(d) = o_4$$

$$V(F) = \{o_1, o_2\} \qquad V(B) = \{o_3, o_4\}$$

$$V(D) = \{\langle o_1, o_1 \rangle, \langle o_2, o_2 \rangle, \langle o_3, o_3 \rangle, \langle o_1, o_4 \rangle, \langle o_2, o_3 \rangle, \langle o_3, o_1 \rangle, \langle o_4, o_1 \rangle\}$$

تعبير با زبان طبيعي:

- على هستند. و على هستند. مين، احمد و على هستند. o_1 تا o_2
- به ترتیب مجموعه ی پدران و فرزندان هستند. V(B) و V(F) . ۲
- ۳. V(D) مجموعهی زوجهای مرتبی است که عضو اول آن، عضو دومش را دوست دارد.

کدام یک از فرمولهای زیر در تعبیر مزبور صادق و کدام کاذب است؟

1. Ba

 $2. \quad (\forall x) Dxx$

3. $\sim Dad \vee \sim Fd$

4. $\sim (\exists x) Bx$

5. $(\forall x) Dax$

6. $(\exists x)(\forall y)[(Fx \land By) \supset Dxy]$

- 7. $(\forall x)(\forall y)[(Fx \land By) \supset Dyx]$
- 8. $(\forall x)(\forall y)(\forall z)[(Dxy \land Dyz) \supset Dxz]$

پاسخ تمرین ۱.۷

۱. کاذب است.

$$\models_I Ba \iff V(a) \in V(B) \iff o_1 \in \{o_3, o_4\}$$

۲. کاذب است.

$$\models_{I} (\forall x) Dxx \iff \forall o \in D (V(x) = o \Longrightarrow \models_{I} Dxx)$$

$$\iff \forall o \in D [V(x) = o \Longrightarrow \langle V(x), V(x) \rangle \in V(D)]$$

$$\iff \forall o \in D, \langle o, o \rangle \in V(D)$$

$$\iff \{\langle o_{1}, o_{1} \rangle, \langle o_{2}, o_{2} \rangle, \langle o_{3}, o_{3} \rangle, \langle o_{4}, o_{4} \rangle\} \subseteq V(D)$$

٣. صادق است.

$$\models_{I} \sim Dad \lor \sim Fd \iff \models_{I} \sim Dad \text{ or } \models_{I} \sim Fd$$

$$\iff \not\models_{I} Dad \text{ or } \not\models_{I} Fd$$

$$\iff \langle o_{1}, o_{4} \rangle \notin V(D) \text{ or } o_{4} \notin V(F)$$

۴. کاذب است.

$$\models_{I} \sim (\exists x) Bx \iff \not\models_{I} (\exists x) Bx$$

$$\iff \forall o \in D \ [V(x) = o \implies \not\models_{I} Bx]$$

$$\iff \forall o \in D \ [V(x) = o \implies V(x) \notin V(B)]$$

$$\iff \forall o \in D, o \notin V(B)$$

$$\iff V(B) = \emptyset$$

۵. کاذب است.

$$\models_{I} (\forall x) Dax \iff \forall o \in D \ [V(x) = o \implies \models_{I} Dax]$$

$$\iff \forall o \in D \ [V(x) = o \implies \langle V(a), V(x) \rangle \in V(D)]$$

$$\iff \forall o \in D, \langle o_{1}, o \rangle \in V(D)$$

$$\iff \{\langle o_{1}, o \rangle \mid o \in D\} \subseteq V(D)$$

۶. صادق است.

$$\models_{I} (\exists x)(\forall y)[(Fx \land By) \supset Dxy]$$

$$\iff \exists o \in D, \forall p \in D \ (o \notin V(F) \text{ or } p \notin V(B) \text{ or } \langle o, p \rangle \in V(D))$$

$$\iff \forall p \in D \ (o_{3} \notin V(F) \text{ or } p \notin V(B) \text{ or } \langle o_{3}, p \rangle \in V(D))$$

۷. کاذب است.

$$\models_{I} (\forall x)(\forall y)[(Fx \land By) \supset Dyx]
\iff \forall o \in D, \forall p \in D \ (o \notin V(F) \ \text{or} \ p \notin V(B) \ \text{or} \ \langle p, o \rangle \in V(D))
\iff \forall p \in D \ (p \notin V(B) \ \text{or} \ \langle p, o_{1} \rangle \in V(D)) \&
\forall p \in D \ (p \notin V(B) \ \text{or} \ \langle p, o_{2} \rangle \in V(D))
\iff \langle o_{3}, o_{1} \rangle \in V(D) \& \langle o_{4}, o_{1} \rangle \in V(D) \&
\langle o_{3}, o_{2} \rangle \in V(D) \& \langle o_{4}, o_{2} \rangle \in V(D)$$

۸. کاذب است.

$$\begin{split} &\models_I (\forall x)(\forall y)(\forall z)[(Dxy \wedge Dyz) \supset Dxz] \\ &\iff \forall o \in D, \forall p \in D, \forall q \in D \\ &(\langle o, p \rangle \notin V(D) \text{ or } \langle p, q \rangle \notin V(D) \text{ or } \langle o, q \rangle \in V(D)) \end{split}$$

$$\langle o_4, o_1 \rangle \in V(D) \ \& \ \langle o_1, o_3 \rangle \in V(D) \ \& \ \langle o_4, o_3 \rangle \notin V(D)$$
 مثال نقض:

صفحه ۱۳۹

تمرین ۲.۷: صدق در مدل

تعبير زير مفروض است:

$$\begin{split} I = & \langle D, V \rangle & D = \{o_1, o_2, o_3\} \\ V(a) = & o_1 & V(b) = o_2 & V(c) = o_3 \\ V(M) = & \{o_2, o_3\} & V(D) = \{\langle o_1, o_2 \rangle, \langle o_3, o_2 \rangle, \langle o_2, o_2 \rangle, \langle o_2, o_1 \rangle\} \end{split}$$

- ۱. فرمولی بسازید که در تعبیر I کاذب باشد.
- ۲. فرمولی با علامت نقض بسازید که در تعبیر I صادق باشد.
- I. فرمولی با یک سور کلی بسازید که در تعبیر I صادق باشد.
- ۴. فرمولی با یک سور وجودی بسازید که در تعبیر I کاذب باشد.

۵. فرمولی با یک سور وجودی و سور کلی بسازید که در تعبیر I صادق باشد.

پاسخ تمرین ۲.۷

از آنجا که فرمولهای زیادی میتوان ساخت تا خواستهی سوالات بالا را برآورده کند، این تمرین یک پاسخ یکسانی ندارد. من چندتا از فرمولهای ساده را برای ارضای شرایط خواسته شده، می آورم. فرمولهایی می آوریم که نه خود و نه نقیضشان قضیه نباشند.

- 1. $Ma, Daa, Dac, Dbc, Dca, Dcc, \sim Mb, \sim Mc$
- 2. $\sim Ma$, $\sim Daa$, $\sim Dac$, $\sim Dbc$, $\sim Dca$, $\sim Dcc$
- 3. $(\forall x)Dxb, (\forall x)(Dxx \supset Mx), (\forall x)(Dax \supset Dxx)$
- 4. $(\exists x) \sim Dxb, (\exists x)(Dxx \land \sim Mx), (\exists x)(Dax \land \sim Dxx)$
- 5. $(\exists y)(\forall x)Dxy, (\forall x)(\exists y)Dxy, (\exists y)(\forall x)(Dyx \supset Dxx)$

صفحه ۱۴۰

تمرین ۳.۷: صدق در مدل

ارزش هر یک از دو فرمول $(\forall x)(\forall y)(\exists z)Gxyz$ و $(\forall x)(\forall y)(\exists z)Gxyz$ را در تعبیر زیر بیابید:

$$D = \{$$
علیرضا , مصطفی , فاطمه , حسین , حسن $\}$ $V(G) = \{\langle o, p, q \rangle \mid \text{ ...}$ است. $\{ o \in Q \mid p, q \in Q \}$

پاسخ تمرین ۳.۷

هر دو عضوی که از D در نظر بگیریم، مجموع حرفهایشان حداقل برابر ۶ است. از طرف دیگر تعداد حرفهای «حسن» برابر T است. پس فرمول اول صادق است. مجموع حرفهای «حسن» و «حسین» بیشتر از حرفهای «علیرضا» نیست. پس فرمول دومی کاذب است.

L_P اعتبار معنایی و نتیجه معنایی در ۴.۷

$$\Sigma \vDash \varphi \iff \forall I \ (\forall \psi \in \Sigma, \vDash_I \psi \Longrightarrow \vDash_I \varphi)$$

نشان دادن عدم اعتبار استدلالها در منطق محمولات

صفحه ۱۴۵

تمرین ۴.۷: مثال نقض

عدم اعتبار استدلالهای زیر را در یک تعبیر متناهی نشان دهید:

- 1. $(\exists x)(Ax \land Bx), Ab \not\models Bb$
- 2. $(\forall x)(Cx \supset Dx), (\forall x)(Ex \supset Dx) \not\models (\forall x)(Cx \supset Ex)$
- 3. $(\exists x)(Fx \land Gx), (\exists x)(\sim Fx \land \sim Gx) \not\models (\exists x)(Gx \land \sim Fx)$
- 4. $(\forall x)[Hx \supset (Ix \supset Jx)], (\exists x)(Kx \land Ix), (\exists x)(Kx \land \sim Jx) \not\models$ $(\forall x)(Hx\supset \sim Kx)$
- 5. $(\forall x)[Lx \supset (Mx \land Nx)], (\exists x)(Ox \land Ax) \not\models (\forall x)(Lx \supset Ox)$
- 6. $(\exists x)(Cx \land Dx), (\forall x)(Cx \supset Ex), (\exists x)(Ex \land \sim Cx) \not\models (\exists x)(Ex \land Ex)$ $\sim Dx$
- 7. $(\forall x)(Fx \supset Gx), (\exists x)(Hx \land Gx), (\exists x)(Hx \land \sim Gx) \not\models (\forall x)(Fx \supset Gx)$ Hx
- *8. $(\forall x)(\forall y)[Ix \supset (Jy \lor Ky)], (\forall x)([(\forall y)Jy \lor (\forall z)Kz] \supset Lx) \not\models$ $(\exists x)(\exists y)(Ix\supset Ly)$
- *9. $(\forall x)(\exists y)(Mx \supset Ny), (\exists x)(\forall y)(Nx \supset Oy) \not\models (\forall x)Mx \supset (\forall y)Oy$
- 10. $(\forall x)(Ax \supset Bx), (\exists x)(\exists y)(Bx \land Cy) \not\models (\forall x)(Ax \supset Cx)$
- *11. $(\forall x)(\exists y)(Dx \equiv Ey) \neq (\exists x)(\forall y)(Dy \equiv Ex)$
 - 12. $(\forall x)Fx \supset [(\exists y)Gy \land (\exists z)Hz], (\exists x)(Gx \land Hx) \supset (\forall y)Iy \not\models$ $(\forall x)Fx \supset (\exists y)Iy$
- *13. $(\exists x)(\exists y)(Jx\supset Ky), (\exists x)(\forall y)(Kx\supset Ly) \not\models (\exists x)Jx\supset (\forall y)Ly$
- *14. $(\exists x)(\exists y)(Mx \supset [Ny \land (\exists z)Oz]), (\forall x)(\forall y)[(Nx \land Ox) \supset Ay] \not\models$ $(\forall x)(\exists y)(Mx\supset Ay)$
- *15. $(\forall x)(\forall y)(Bx\supset Cy), (\forall x)Cx\supset [(\exists y)(Dy\wedge Ey)\wedge (\exists z)(Dz\wedge \sim Ez)]\not\models$ $(\forall x)(Bx\supset Dx)$

پاسخ تمرین ۴.۷

پیدا کردن یک مثال نقض برای نشان دادن عدم اعتبار یک استدلال کافی است. اما من مجبورم که همهی تعبیرهای عدم اعتبار را برای شما بیاورم.

با توجه به روشی که در کتاب توضیح داده شده است، این تمرین ساده است و تنها به کمی حوصله نیاز دارد. شما می توانید در ابتدا فقط ۴ مورد اول و ۲ مورد آخر را حل کنید. اگر به سادگی توانستید موردهای ۱۴ و ۱۵ را حل کنید، پس مهارت حل این تمرین را پیدا کردید. در غیراینصورت موردهای بیشتری را حل کنید تا به مهارت کافی نزدیک شوید.

پیدا کردن تمام حالتهای عدم اعتبار استدلالهای منطق گزارهها کاری طاقت فرسا است. بنابراین من از نرم افزار تحت وب Logic calculator: Server-side Processing بنابراین من از نرم افزار تحت وب استفاده کردم.

1.
$$U=\{a\},\ Aa\wedge Ba,Aa\models Ba$$
 معتبر
$$U=\{a,b\},\ (Aa\wedge Ba)\vee (Ab\wedge Bb),Ab\not\models Bb$$
 نامعتبر
$$\frac{\text{Aa Ab Ba Bb}}{1\quad 1\quad 1\quad 0}$$

2.
$$U = \{a\}, Ca \supset Da, Ea \supset Da \not\models Ca \supset Ea$$
 Ca Da Ea 1 1 0

3.
$$U = \{a\}, \ Fa \wedge Ga, \sim Fa \wedge \sim Ga \models Ga \wedge \sim Fa$$
 معتبر
$$U = \{a,b\}, \begin{cases} (Fa \wedge Ga) \vee (Fb \wedge Gb) \\ (\sim F \wedge \sim Ga) \vee (\sim Fb \wedge \sim Gb) \\ \therefore (Ga \wedge \sim Fa) \vee (Gb \wedge \sim Fb) \end{cases}$$
 نامعتبر

4. $U = \{a\}, Ha \supset (Ia \land Ja), Ka \land Ia, Ka \land \sim Ja \models Ha \supset \sim Ka$

$$U = \{a, b\}, \begin{cases} [Ha \supset (Ia \land Ja)] \land [Hb \supset (Ib \land Jb)] \\ (Ka \land Ia) \lor (Kb \land Ib) \\ (Ka \land \sim Ja) \lor (Kb \land \sim Jb) \\ \therefore (Ha \supset \sim Ka) \land (Hb \supset \sim Kb) \end{cases}$$

На	Hb	Ia	Ib	Ja	Jb	Ka	Kb
1	1	1	0	1	0	1	1
1	1	0	1	0	1	1	1
1	0	1	1	1	0	1	1
1	0	1	0	1	0	1	1
1	0	0	1	1	0	1	1
1	0	0	1	0	1	1	1
1	0	0	1	0	0	1	1
0	1	1	1	0	1	1	1
0	1	1	0	1	0	1	1
0	1	1	0	0	1	1	1
0	1	1	0	0	0	1	1
0	1	0	1	0	1	1	1

5. $U = \{a\}, La \supset (Ma \land Na), Oa \land Aa, Oa \land \sim Ba \models La \supset Oa$

$$U = \{a, b\}, \begin{cases} [La \supset (Ma \land Na)] \land [Lb \supset (Mb \land Nb)] \\ (Oa \land Aa) \lor (Ob \land Ab) \\ (Oa \land \sim Ba) \lor (Ob \land \sim Bb) \\ \therefore (La \supset Oa) \land (Lb \supset Ob) \end{cases}$$

6.
$$U = \{a\}, Ca \land Da, Ca \supset Ea, Ea \land \sim Ca \models Ea \land \sim Da$$

$$U = \{a, b\}, \begin{cases} (Ca \land Da) \lor (Cb \land Db) \\ (Ca \supset Ea) \land (Cb \supset Eb) \\ (Ea \land \sim Ca) \lor (Eb \land \sim Cb) \\ \therefore (Ea \land \sim Da) \lor (Eb \land \sim Db) \end{cases}$$

7.
$$U=\{a\},\ Fa\supset Ga, Ha\wedge Ga, Ha\wedge \sim Ga\models Fa\supset Ha,$$
 معتبر

$$U = \{a,b\}, egin{cases} (Fa \supset Ga) \wedge (Fb \supset Gb) \\ (Ha \wedge Ga) \vee (Hb \wedge Gb) \\ (Ha \wedge \sim Ga) \vee (Hb \wedge \sim Gb) \\ \therefore (Fa \supset Ha) \wedge (Fb \supset Hb) \end{cases},$$

$$U = \{a, b, c\}, \begin{cases} (Fa \supset Ga) \land (Fb \supset Gb) \land (Fc \supset Gc) \\ (Ha \land Ga) \lor (Hb \land Gb) \lor (Hc \land Gc) \\ (Ha \land \sim Ga) \lor (Hb \land \sim Gb) \lor (Hc \land \sim Gc) \\ \therefore (Fa \supset Ha) \land (Fb \supset Hb) \land (Fc \supset Hc) \end{cases}$$

Fa	Fb	Fc	Ga	Gb	Gc	На	Hb	Hc
1	1	0	1	1	0	1	0	1
1	1	0	1	1	0	0	1	1
1	0	1	1	0	1	1	1	0
1	0	1	1	0	1	0	1	1
1	0	0	1	1	0	0	1	1
1	0	0	1	0	1	0	1	1
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	0	1
0	1	0	1	1	0	1	0	1
0	1	0	0	1	1	1	0	1
0	0	1	1	0	1	1	1	0
0	0	1	0	1	1	1	1	0

8. $U = \{a\}, Ia \supset (Ja \vee Ka), (Ja \vee Ka) \supset La \models Ia \supset La$

برای اینکه اشتباه نکنید، میتوانید فرمولهای دارای سورهای تودرتو را در چند مرحله بسط دهید. به صورتی که در هر مرحله فقط بیرونی ترین سورها را بسط دهید. به عنوان مثال این مورد را به صورت زیر بسط می دهیم:

$$U = \{a, b\}$$

$$\begin{cases} (\forall y)[Ia \supset (Jy \lor Ky)] \land (\forall y)[Ib \supset (Jy \lor Ky)] \\ ([(\forall y)Jy \lor (\forall z)Kz] \supset La) \land ([(\forall y)Jy \lor (\forall z)Kz] \supset Lb) \\ \therefore (\exists y)(Ia \supset Ly) \lor (\exists y)(Ib \supset Jy) \end{cases}$$

$$\begin{cases} [Ia \supset (Ja \lor Ka)] \land [Ia \supset (Jb \lor Kb)] \\ [Ib \supset (Ja \lor Ka)] \land [Ib \supset (Jb \lor Kb)] \\ [(Ja \land Jb) \lor (Ka \land Kb)] \supset La \\ [(Ja \land Jb) \lor (Ka \land Kb)] \supset Lb \\ \therefore (Ia \supset La) \lor (Ia \supset Lb) \lor (Ib \supset Ja) \lor (Ib \supset Jb) \end{cases}$$

9.
$$U = \{a\}, Ma \supset Na, Na \supset Oa \models Ma \supset Oa$$

$$U = \{a, b\}$$

$$\begin{cases} [(Ma \supset Na) \lor (Ma \supset Nb) \land [(Mb \supset Na) \lor (Mb \supset Nb)] \\ [(Na \supset Oa) \land (Na \supset Ob)] \lor [(Nb \supset Oa) \land (Nb \supset Ob)] \\ \therefore (Ma \land Mb) \supset (Oa \land Ob) \end{cases}$$

Ma	Mb	Na	Nb	Oa	Ob
1	1	1	0	1	0
1	1	1	0	0	1
1	1	1	0	0	0
1	1	0	1	1	0
1	1	0	1	0	1
1	1	0	1	0	0

10.
$$U = \{a\}, Aa \supset Ba, Ba \land Ca \models Aa \supset Ca$$

$$U = \{a, b\}, \begin{cases} (Aa \supset Ba) \land (Ab \supset Bb) \\ (Ba \land Ca) \lor (Ba \land Cb) \lor (Bb \land Ca) \lor (Bb \land Cb) \\ \therefore (Aa \supset Ca) \land (Ab \supset Cb) \end{cases}$$

Aa	Ab	Ba	Bb	Ca	Cb
1	1	1	1	0	1
1	0	1	1	0	1
1	0	1	0	0	1

11.
$$U = \{a\}, Da \equiv Ea \models Da \equiv Ea$$

$$U = \{a, b\}, \begin{cases} [(Da \equiv Ea) \lor (Da \equiv Eb)] \land [(Db \equiv Ea) \lor (Db \equiv Eb)] \\ \therefore [(Da \equiv Ea) \land (Db \equiv Ea)] \lor [(Da \equiv Eb) \land (Db \equiv Eb)] \end{cases}$$

12.
$$U = \{a\}, Fa \supset (Ga \land Ha), (Ga \land Ha) \supset Ia \models Fa \supset Ia$$

$$U = \{a, b\}, \begin{cases} (Fa \wedge Fb) \supset [(Ga \vee Gb) \wedge (Ha \vee Hb)] \\ [(Ga \wedge Ha) \vee (Gb \wedge Hb)] \supset (Ia \wedge Ib) \\ \therefore (Fa \wedge Fb) \supset (Ia \vee Ib) \end{cases}$$

13.
$$U = \{a\}, Ja \supset Ka, Ka \supset La \models Ja \supset La$$

$$U = \{a, b\}, \begin{cases} (Ja \supset Ka) \lor (Ja \supset Kb) \lor (Jb \supset Ka) \lor (Jb \supset Kb) \\ [(Ka \supset La) \land (Ka \supset Lb)] \lor [(Kb \supset La) \land (Kb \supset Lb)] \\ \therefore (Ja \lor Jb) \supset (La \land Lb) \end{cases}$$

Ja	Jb	Ka	Kb	La	Lb
1	1	1	0	1	0
1	1	1	0	0	1
1	1	1	0	0	0
1	1	0	1	1	0
1	1	0	1	0	1
1	1	0	1	0	0
1	0	1	0	1	0
1	0	1	0	0	1
1	0	1	0	0	0
1	0	0	1	1	0
1	0	0	1	0	1
1	0	0	1	0	0
1	0	0	0	1	0
1	0	0	0	0	1
1	0	0	0	0	0
0	1	1	0	1	0
0	1	1	0	0	1
0	1	1	0	0	0
0	1	0	1	1	0
0	1	0	1	0	1
0	1	0	1	0	0
0	1	0	0	1	0
0	1	0	0	0	1
0	1	0	0	0	0

14. $U = \{a\}, Ma \supset (Na \land Oa), (Na \land Oa) \supset Aa \models Ma \supset Aa$ $U = \{a, b\},$

$$\begin{cases} \left[\left(Ma \supset [Na \land (Oa \lor Ob)] \right) \lor \left(Ma \supset [Nb \land (Oa \lor Ob)] \right) \right] \lor \\ \left[\left(Mb \supset [Na \land (Oa \lor Ob)] \right) \lor \left(Mb \supset [Nb \land (Oa \lor Ob)] \right) \right] \\ \left[\left[(Na \land Oa) \supset Aa] \land [(Na \land Oa) \supset Ab] \right] \land \\ \left[\left[(Nb \land Ob) \supset Aa] \land [(Nb \land Ob) \supset Ab] \right] \\ \vdots \left[\left(Ma \supset Aa \right) \lor \left(Ma \supset Ab \right) \right] \land [(Mb \supset Aa) \lor \left(Mb \supset Ab \right)] \end{cases}$$

Aa	Ab	Ma	Mb	Na	Nb	Oa	Ob
0	0	1	1	1	0	0	1
0	0	1	1	0	1	1	0
0	0	1	0	1	1	0	0
0	0	1	0	1	0	0	1
0	0	1	0	1	0	0	0
0	0	1	0	0	1	1	0
0	0	1	0	0	1	0	0
0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	0
0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	0
0	0	0	1	1	0	0	1
0	0	0	1	1	0	0	0
0	0	0	1	0	1	1	0
0	0	0	1	0	1	0	0
0	0	0	1	0	0	1	1
0	0	0	1	0	0	1	0
0	0	0	1	0	0	0	1
0	0	0	1	0	0	0	0

15.
$$U = \{a\}, Ba \supset Ca, Ca \supset (Da \land Ea \land Da \land \sim Ea) \models Ba \supset Da$$

$$U = \{a, b\}, \begin{cases} (Ba \supset Ca) \land (Ba \supset Cb) \land (Bb \supset Ca) \land (Bb \supset Cb) \\ (Ca \land Cb) \supset \Big([(Da \land Ea) \lor (Db \land Eb)] \land \\ [(Da \land \sim Ea) \lor (Db \land \sim Eb)] \Big) \\ \therefore (Ba \supset Da) \land (Bb \supset Db) \end{cases}$$

$$U = \{a, b, c\}$$

$$\begin{cases} (Ba \supset Ca) \land (Ba \supset Cb) \land (Ba \supset Cc) \land (Bb \supset Ca) \land \\ (Bb \supset Cb) \land (Bb \supset Cc) \land (Bc \supset Ca) \land (Bc \supset Cb) \land (Bc \supset Cc) \\ (Ca \land Cb \land Cc) \supset \Big([(Da \land Ea) \lor (Db \land Eb) \lor (Dc \land Ec)] \land \\ [(Da \land \sim Ea) \lor (Db \land \sim Eb) \lor (Dc \land \sim Ec)] \Big) \\ \therefore (Ba \supset Da) \land (Bb \supset Db) \land (Bc \supset Dc) \end{cases}$$

Ва	Bb	Bc	Ca	Cb	Cc	Da	Db	Dc	Ea	Eb	Ec	
1	1	1	1	1	1	1	1	0	1	0	1	
1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	$0 \\ 0$	$\begin{array}{c} 1 \\ 0 \end{array}$	$0 \\ 1$	$0 \\ 1$	
1	1	1	1	1	1	1	1	0	0	1	0	
1	1	1	1	1	1	1	0	1	1	1	0	
1	1	1	1	1	1	1	ŏ	1	1	0	ŏ	
$\bar{1}$	$\bar{1}$	$\bar{1}$	1	1	1	$\bar{1}$	Ŏ	1	$\bar{0}$	ĺ	ĺ	
1	1	1	1	1	1	1	0	1	0	0	1	
1	1	1	1	1	1	0	1	1	1	1	0	
1	1	1	1	1	1	0	1	1	1	0	1	
1	1	1	1	1	1	0	1	1	0	1	0	
1 1	1 1	$\begin{array}{c} 1 \\ 0 \end{array}$	1 1	1 1	1 1	$0 \\ 1$	$\begin{array}{c} 1 \\ 0 \end{array}$	1 1	$0 \\ 1$	$0 \\ 1$	$\begin{array}{c} 1 \\ 0 \end{array}$	
1	1	0	1	1	1	1	0	1	1	0	0	
1	1	0	1	1	1	1	0	1	0	1	1	
1	1	0	1	1	1	1	0	1	0	0	1	
i 1	1	ŏ	1	1	1	0	1	1	$\tilde{1}$	$\tilde{1}$	0	
1	1	0	1	1	1	0	1	1	1	0	1	
1	1	0	1	1	1	0	1	1	0	1	0	
1	1	0	1	1	1	0	1	1	0	0	1	
1	0	1	1	1	1	1	1	0	1	0	1	
1	0	1	1	1	1	1	1	0	1	0	0	
1 1	$0 \\ 0$	1 1	1 1	1 1	1 1	1 1	1 1	0	$\begin{array}{c} 0 \\ 0 \end{array}$	1 1	$\begin{array}{c} 1 \\ 0 \end{array}$	
1	0	1	1	1	1	0	1	$0 \\ 1$	1	1	0	
1	0	1	1	1	1	0	1	1	1	0	1	
i 1	ŏ	1	1	1	1	ŏ	1	1	0	$\tilde{1}$	0	
$\bar{1}$	Ŏ	$\bar{1}$	1	1	$\bar{1}$	0	$\bar{1}$	1	Ŏ	$\bar{0}$	ĺ	
1	0	0	1	1	1	0	1	1	1	1	0	
1	0	0	1	1	1	0	1	1	1	0	1	
1	0	0	1	1	1	0	1	1	0	1	0	
1	0	0	1	1	1	0	1	1	0	0	1	
0	1	1	1	1	1	1	1	0	1	0	1	
$0 \\ 0$	1	1 1	1 1	1 1	1 1	1	1 1	$0 \\ 0$	$\begin{array}{c} 1 \\ 0 \end{array}$	$0 \\ 1$	$0 \\ 1$	
0	1 1	1	1	1	1	1 1	1	0	0	1	0	
0	1	1	1	1	1	1	0	1	1	1	0	
ő	1	1	1	1	1	1	ő	1	1	0	0	
Ŏ	1	1	1	1 1	1	1	Ŏ	1	0	ĭ	1 1	
0	1	1	1	1	1	1	0	1	0	0	1	
0	1	0	1	1	1	1	0	1	1	1	0	
0	1	0	1	1	1	1	0	1	1	0	0	
0	1	0	1	1	1	1	0	1	0	1	1 1 1	
0	1	0	1	1	1	1	0	1	0	0	1	
$0 \\ 0$	$0 \\ 0$	1 1	1 1	1 1	1 1	1 1	1	$0 \\ 0$	1 1	0	1	
0	0	1	1	1	1	1	1 1	0	0	$0 \\ 1$	$0 \\ 1$	
0	0	1	1	1	1	1	1	0	0	1	0	
,	,	_	_	_	_	-	_	,	,	_	J	

صفحه ۱۴۸

★ تمرين ۵.۷: مثال نقض

با روش اسناد ارزشها عدم اعتبار استدلالهای زیر را در یک تعبیر متناهی نشان دهید:

- 1. $(\exists x)(\exists y)(Ax \land By \land Cxy), (\forall x)([Ax \land (\exists y)(Dy \land Cxy)] \supset$ $(\exists z)(Bz \land Cxz)) \not\models (\exists x)(\exists y)(Ax \land Dy \land Cxy)$
- 2. $(\exists x)(Exa \lor Fx) \lor Fa, Eba \not\models Fa \lor Fb$
- 3. $(\forall x)[Mxa \supset (\exists y)(Cy \land Ixy)], \sim Mba \neq (\forall x)(Cx \supset \sim Ibx)$
- ** 4. $(\forall x)(\forall y)(\forall z)[(Axy \land Ayz) \supset Axz], (\forall x)(\exists y)Axy, (\forall x)Axx,$ $(\forall x)(\forall y)(Axy\supset Ayx)\not\models (\forall x)(\forall y)(Axy\supset Ayx)$
- ** 5. $(\forall x)(\forall y)(\forall z)[(Bxy \land Byz) \supset Bxz], (\forall x)Bxx, (\forall x)(\forall y)(\forall z)(Bxz \land Byz)$ $Byz \neq (\forall x)(\forall y)(Bxy \vee Byx)$

پاسخ تمرین ۵.۷

1.
$$U = \{a\}, \begin{cases} Aa \wedge Ba \wedge Caa \\ [Aa \wedge (Da \wedge Caa)] \supset (Ba \wedge Caa) \\ \therefore Da \wedge Caa \end{cases}$$

2.
$$U = \{a\}, Eaa \lor Fa \lor Fa, Eba \models Fa \lor Fb$$

 $U = \{a, b\},$

$$\begin{cases} (Eaa \vee Fa) \vee (Eba \vee Fb) \vee Fa \\ Eba \\ \therefore Fa \vee Fb \end{cases}$$

4.
$$U = \{a\}, (Aaa \land Aaa) \supset Aaa, Aaa \models Aaa \supset Aaa$$

 $U = \{a, b\},$

```
[(Aaa \wedge Aaa) \supset Aaa] \wedge [(Aaa \wedge Aab) \supset Aab] \wedge
       [(Aab \wedge Aba) \supset Aaa] \wedge [(Aab \wedge Abb) \supset Aab] \wedge
       [(Aba \wedge Aaa) \supset Aba] \wedge [(Aba \wedge Aab) \supset Abb] \wedge
       [(Aba \wedge Aaa) \supset Aba] \wedge [(Aba \wedge Aab) \supset Abb] \wedge
       [(Abb \land Aba) \supset Aba] \land [(Abb \land Abb) \supset Abb]
       (Aaa \lor Aab) \land (Aba \lor Abb)
       Aaa \wedge Abb
              \therefore (Aaa \supset Aaa) \land (Aab \supset Aba) \land (Aba \supset Aab) \land (Abb \supset Abb)
                                      این استدلال را می توان به صورت زیر ساده کرد:
      ([(Aab \land Aba) \supset Aaa] \land [(Aba \land Aab) \supset Abb]
       (Aaa \lor Aab) \land (Aba \lor Abb)
       Aaa \wedge Abb
              \therefore (Aab \supset Aba) \land (Aba \supset Aab)
                                                                Abb
                                   Aaa Aab Aba
                                                         1
5. U = \{a\}, (Baa \wedge Baa) \supset Baa, Baa, Baa \wedge Baa \models Baa \vee Baa
    U = \{a, b\},\
      \int [(Baa \wedge Baa) \supset Baa] \wedge [(Baa \wedge Bab) \supset Bab] \wedge
       [(Bab \wedge Bba) \supset Baa] \wedge [(Bab \wedge Bbb) \supset Bab] \wedge
       [(Bba \wedge Baa) \supset Bba] \wedge [(Bba \wedge Bab) \supset Bbb] \wedge
       [(Bba \wedge Baa) \supset Bba] \wedge [(Bba \wedge Bab) \supset Bbb] \wedge
       [(Bbb \wedge Bba) \supset Bba] \wedge [(Bbb \wedge Bbb) \supset Bbb]
       Baa \wedge Bbb
       [(Baa \wedge Baa) \vee (Bab \wedge Baa)] \wedge [(Baa \wedge Bba) \vee (Bab \wedge Bbb)] \wedge
       [(Bba \wedge Baa) \vee (Bbb \wedge Bab)] \wedge [(Bba \wedge Bba) \vee (Bbb \wedge Bbb)]
              \therefore (Baa \vee Baa) \wedge (Bab \vee Bba) \wedge (Bba \vee Bab) \wedge (Bbb \vee Bbb)
                    این استدلال که معتبر است را میتوان به صورت زیر ساده کرد:
```

```
[(Bab \wedge Bba) \supset Baa] \wedge [(Bba \wedge Bab) \supset Bbb]
      [(Bba \wedge Bab) \supset Bbb]
      Baa \wedge Bbb
      [Baa \lor (Bab \land Baa)] \land [(Baa \land Bba) \lor (Bab \land Bbb)]
      [(Bba \wedge Baa) \vee (Bbb \wedge Bab)] \wedge (Bba \vee Bbb)
             \therefore Baa \wedge (Bab \vee Bba) \wedge Bbb
   U = \{a, b, c\},\
 [(Baa \land Baa) \supset Baa] \land [(Baa \land Bab) \supset Bab] \land [(Baa \land Bac) \supset Bac]
 [(Bab \land Bba) \supset Baa] \land [(Bab \land Bbb) \supset Bab] \land [(Bab \land Bbc) \supset Bac]
 [(Bac \land Bca) \supset Baa] \land [(Bac \land Bcb) \supset Bab] \land [(Bac \land Bcc) \supset Bac]
 [(Bba \wedge Baa) \supset Bba] \wedge [(Bba \wedge Bab) \supset Bbb] \wedge [(Bba \wedge Bac) \supset Bbc]
 [(Bbb \land Bba) \supset Bba] \land [(Bbb \land Bbb) \supset Bbb] \land [(Bbb \land Bbc) \supset Bbc]
 [(Bbc \land Bca) \supset Bba] \land [(Bbc \land Bcb) \supset Bbb] \land [(Bbc \land Bcc) \supset Bbc]
 [(Bca \land Baa) \supset Bca] \land [(Bca \land Bab) \supset Bcb] \land [(Bca \land Bac) \supset Bcc]
 [(Bcb \land Bba) \supset Bca] \land [(Bcb \land Bbb) \supset Bcb] \land [(Bcb \land Bbc) \supset Bcc]
 [(Bcc \land Bca) \supset Bca] \land [(Bcc \land Bcb) \supset Bcb] \land [(Bcc \land Bcc) \supset Bcc]
 Baa \wedge Bbb \wedge Bcc
 (Baa \wedge Baa) \vee (Bab \wedge Bab) \vee (Bac \wedge Bac)
 (Baa \wedge Bba) \vee (Bab \wedge Bbb) \vee (Bac \wedge Bbc)
 (Baa \wedge Bca) \vee (Bab \wedge Bcb) \vee (Bac \wedge Bcc)
 (Bba \wedge Baa) \vee (Bbb \wedge Bab) \vee (Bbc \wedge Bac)
 (Bba \wedge Bba) \vee (Bbb \wedge Bbb) \vee (Bbc \wedge Bbc)
 (Bba \wedge Bca) \vee (Bbb \wedge Bcb) \vee (Bbc \wedge Bcc)
 (Bca \wedge Baa) \vee (Bcb \wedge Bab) \vee (Bcc \wedge Bac)
 (Bca \wedge Bba) \vee (Bcb \wedge Bbb) \vee (Bcc \wedge Bbc)
 (Bca \wedge Bca) \vee (Bcb \wedge Bcb) \vee (Bcc \wedge Bcc)
        \therefore (Baa \vee Baa) \wedge (Bab \vee Bba) \wedge (Bac \vee Bca) \wedge
 (Bba \lor Bab) \land (Bbb \lor Bbb) \land (Bbc \lor Bcb) \land
(Bca \vee Bac) \wedge (Bcb \vee Bbc) \wedge (Bcc \vee Bcc)
                 این استدلال که نامعتبر است را می توان به صورت زیر ساده کرد:
```

۶.۷ معناشناسی منطق محمولات و اینهمانی

$$(RS_{10}) \qquad \qquad \models_I \beta_1 = \beta_2 \iff V(\beta_1) = V(\beta_2)$$

فصل ۸

فرانظريه منطق محمولات

۱.۸ فراقضیه بهنجاری (صحت)

صفحه ۱۵۴

تمرين ١٠٨: فراقضيه صحت

گام استقراء را برای قاعده «م=» اثبات کنید.

پاسخ تمرین ۱.۸

ساختار نحوى قاعده «م \square » به صورت زیر است:

 Σ n: φ_{β}

 $\Sigma \vdash \varphi_{\beta}$

:

 Σ n+m: $(\exists \alpha)\varphi_{\alpha}$ m ·($\exists \gamma$) $\Sigma \vdash (\exists \alpha)\varphi_{\alpha}$

 $\Sigma \vdash \varphi_{\beta} \implies \Sigma \models \varphi_{\beta}$

فرض استقراء:

 $\Sigma \vdash (\exists \alpha) \varphi_{\alpha} \implies \Sigma \models (\exists \alpha) \varphi_{\alpha}$

حكم استقراء:

 $\Sigma \models \varphi_{\beta}$

n طبق فرض استقراء و سطر n:

 $\Sigma \vdash (\exists \alpha) \varphi_{\alpha}$

۲. فرض کنید:

 $\forall \psi \in \Sigma \colon \models_I \psi$

٣. فرض كنيد:

 $\models_I \varphi_\beta$

۴. طبق (۱) و (۳):

 $\exists o \in D \ (V(\beta) = o \ \& \models_I \varphi_\beta)$

۵. طبق (۴) و تعریف D:

 $\models_I (\exists \alpha) \varphi_{\alpha}$:(RS₉) و (۵) و .9 $\Sigma \models (\exists \alpha) \varphi_{\alpha}$:(P) تا (P) علیق (P) تا (P)

۲.۸ فراقضیه تمامیت

فرض کنید L یک بسط از «منطق گزارههای کلاسیک» (CL) باشد. یعنی:

$$\Sigma \vdash_{\mathbf{CL}} \varphi \implies \Sigma \vdash_{\mathbf{L}} \varphi$$

به عنوان مثال ${f L}$ می تواند «منطق محمولات مرتبه اول کلاسیک» (یعنی همین منطق معرفی شده در فصلهای ${f 0}$ و ${f 0}$ یا «منطق موجهات» باشد.

طرح کلی اثبات فراقضیه تمامیت برای ${f L}$ به صورت زیر است:

$$\Sigma \models_{\mathbf{L}} \varphi \implies \Sigma \vdash_{\mathbf{L}} \varphi$$

1. $\Sigma \not\vdash_{\mathbf{L}} \varphi$ فرض $\Sigma \cup \{\sim \varphi\} \not\vdash_{\mathbf{L}} P \wedge \sim P$ قواعد منطق گزارهها

 $\exists I, \forall \psi \in \Sigma \cup \{\sim \varphi\} \colon \models_I \psi$ لم وجود مدل

(یعنی مجموعهی $\{\sim arphi\}$ مدل دارد.)

 $4. \;\; \Sigma
ot \not\models_{\mathbf{L}} \varphi$ قواعد معنایی \mathbf{CL} و تعریف استدلال معتبر

بنابراین برای اثبات فراقضیهی تمامیت هر منطقی که شامل CL (یا به عبارتی دیگر بر مبنای CL) باشد، تنها کافی است که لم زیر ثابت شود:

لم وجود مدل: هر مجموعهی سازگار مدل دارد.

این لم دقیقاً همان «مرحله ی سوم» در صفحه ۱۵۶ کتاب است که به زبان دیگری بیان شده است:

مرحلهی سوم: هر مجموعهی برهانی سازگار، معنایی سازگار است.

$$\Sigma \not\vdash_{\mathbf{L}} P \wedge {\sim} P \implies \exists I, \forall \varphi \in \Sigma : \models_{I} \varphi$$

۱. فرض کنید که Σ یک مجموعه ی سازگار باشد.

۱. مرحلهی اول (لم استانداردسازی)

زیرمجموعهای از فرمولها مثل Δ وجود دارد به طوری که:

 $\Sigma \subseteq \Delta$ (1)

 $() \Delta$ یک مجموعه ی برهانی سازگار یر است. (منطق گزارهها)

٠۴

(خاص منطق محمولات)

$$(\neg)$$
 کامل) است. Δ یک مجموعهی (ω)

را به گونهای تعریف میکنیم که: $I=\langle D,V\rangle$ به هر جملهنشانه φ ارزش T را اسناد میدهد اگر و تنها اگر V

 $\forall \varphi \in \Delta : I(\varphi) = T$

$$\forall \varphi \in \Sigma : \models_I \varphi$$

«لم صدق» به سادگی توسط استقراء اثبات می شود و چالش فنی خاصی ندارد. اما چالش برانگیزترین مرحله ی اثبات فراقضیه تمامیت «لم استانداردسازی» است که به خلاقیت و دانش ریاضیاتی زیادی در این حوزه نیاز دارد.

این روش مشابهاً در اثبات فراقضیه تمامیت در منطق موجهات نیز به کار میرود. رجوع کنید به فصل ۴ کتاب «مبانی منطق موجهات» دکتر نبوی.

تمرين ۲.۸: فراقضيه تماميت

بر اساس

$$\varphi \in \Delta \iff \sim \varphi \notin \Delta \tag{1.A}$$

$$\varphi \in \Delta \iff \Delta \vdash \varphi \tag{Y.A}$$

ثابت کنید که

$$\varphi \lor \psi \in \Delta \iff \varphi \in \Delta \ \ \psi \in \Delta$$
 (٣.٨)

$$\varphi\supset\psi\in\Delta\iff\varphi\notin\Delta\ \ \psi\in\Delta\qquad \qquad (\mathbf{f}.\mathbf{h})$$

$$\varphi \equiv \psi \in \Delta \iff \varphi, \psi \in \Delta$$
 يا $\varphi, \psi \notin \Delta$ (۵.۸)

پاسخ تمرین ۲.۸

$$\varphi \in \Delta \xrightarrow{(\Upsilon.\Lambda)} \Delta \vdash \varphi \xrightarrow{\text{ded ded ded}} \Delta \vdash \varphi \lor \psi \xrightarrow{(\Upsilon.\Lambda)} \varphi \lor \psi \in \Delta$$

$$\psi \in \Delta \xrightarrow{(\Upsilon.\Lambda)} \Delta \vdash \psi \xrightarrow{\text{ded ded}} \Delta \vdash \varphi \lor \psi \xrightarrow{(\Upsilon.\Lambda)} \varphi \lor \psi \in \Delta$$

$$\varphi \supset \psi \in \Delta \xrightarrow{(\Upsilon.\Lambda)} \Delta \vdash \varphi \supset \psi \xrightarrow{(\Psi.\Lambda)} \Delta \vdash \sim \varphi \lor \psi$$

$$(\Psi.\Lambda) \sim \varphi \in \Delta \text{ if } \psi \in \Delta \xrightarrow{(\Upsilon.\Lambda)} \varphi \notin \Delta \text{ if } \psi \in \Delta$$

$$\begin{split} \varphi &\equiv \psi \in \Delta \xleftarrow{(\Upsilon.\Lambda)} \Delta \vdash \varphi \equiv \psi \iff \Delta \vdash (\varphi \land \psi) \lor (\sim \varphi \land \sim \psi) \\ & \xleftarrow{(\Upsilon.\Lambda)} \varphi \land \psi \in \Delta \text{ i... } \sim \varphi \land \sim \psi \in \Delta \\ & \xrightarrow{(\Upsilon.\Lambda)} \Delta \vdash \varphi \land \psi \text{ i... } \Delta \vdash \sim \varphi \land \sim \psi \\ & \xrightarrow{(\Upsilon.\Lambda)} \Delta \vdash \varphi \land \psi \text{ i... } \Delta \vdash \sim \varphi \land \sim \psi \\ & \xrightarrow{\Delta} (\Delta \vdash \psi) \text{ i... } (\Delta \vdash \sim \varphi) \Delta \vdash \sim \psi) \end{split}$$

$$(\Delta \vdash \psi)$$
 يا $(\Delta \vdash \psi)$ يا $(\Delta \vdash \psi)$ يا $(\Delta \vdash \sim \psi)$

$$(\forall \alpha)\varphi_{\alpha} \in \Delta \iff \forall \beta \colon \varphi_{\beta} \in \Delta \tag{9.1}$$

صفحه ۱۵۹

تمرین ۳.۸: فراقضیه تمامیت

ثابت كنيد كه:

$$(\exists \alpha)\varphi_{\alpha} \in \Delta \iff \exists \beta \colon \varphi_{\beta} \in \Delta \tag{V.A}$$

پاسخ تمرین ۳.۸

$$(\exists \alpha)\varphi_{\alpha} \in \Delta \overset{(1.\Lambda)}{\Longleftrightarrow} \sim (\exists \alpha)\varphi_{\alpha} \notin \Delta \overset{(3\alpha)\varphi_{\alpha}}{\Longleftrightarrow} (\forall \alpha) \sim \varphi_{\alpha} \notin \Delta$$

$$\xrightarrow{(5.\Lambda)} \exists \beta : \sim \varphi_{\beta} \notin \Delta \overset{(1.\Lambda)}{\Longleftrightarrow} \exists \beta : \varphi_{\beta} \in \Delta$$

صفحه ۱۶۷

تمرین ۴.۸: فراقضیه تمامیت

فرض استقراء را برای حالات زیر ثابت کنید:

$$\varphi=\psi\equiv\theta$$
 (o
$$\varphi=\psi\supset\theta$$
 (z)
$$\varphi=\psi\vee\theta$$
 (7)

۲.۸. فراقضیه تمامیت

پاسخ تمرین ۴.۸

$$\models_I \psi \supset \theta \iff \not\models_I \psi$$
يا $\models_I \theta \qquad (RS_6)$ بنابر فرض استقراء $\theta \in \Delta$ يا $\theta \in \Delta \qquad (f.\Lambda)$ بنابر فرض $\psi \supset \theta \in \Delta \qquad (f.\Lambda)$

Keys to Solution in The Elements of Modern Logic

Amer Amikhteh

Tarbiat Modares University amer.amikhteh@modares.ac.ir

Product Page: logiccircle.ir/?p=22763

June 21, 2023 Version 15