Using machine learning to identify security issues in open-source libraries

Asankhaya Sharma Yaqin Zhou SourceClear

Outline

- Overview of problem space
- Unidentified security issues
- How Machine Learning can help
- Results
- WOPR Demo

Open-Source Library Growth

Projection: > 400M Libraries by 2026

Complexity of Libraries has exploded

For every 1 Java library you add to your projects, 4 others are added

For every one library you add to a Node.js project, 9 others are added

The Code Cocktail

Vulnerabilities in Open-Source Libraries

- Known Sources
 - o CVEs/NVD
 - Advisories
 - Mailing list disclosures

Security Issues are often not reported or publically mentioned

- Unidentified issues
 - Commit logs
 - Bug reports
 - Change logs
 - Pull Requests

Mining for unidentified vulnerabilities

WOPR: Tool for Reviewing Unidentified Issues

Machine Learning for Identifying Vulnerabilities

"do machine learning like the great engineer you are, not like the great machine learning expert you aren't."

Martin Zinkevich, Rules of Machine Learning: Best Practices for ML Engineering http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

System overview

ML Pipeline

Data collection

- Regular expression to filter out security-unrelated issues
 - Rule sets cover almost all possible expressions related to security issues
- Tracked 8536 projects in 6 languages
 - Tracked languages: Java, Python, Ruby, JavaScript,
 Objective C, and Go
- Ground truth datasets
 - Professional security researchers label all data, and create vulnerability reports
 - Available at SourceClear Registry

Source	# of tracked projects	
Github	5002	
JIRA	1310	
Bugzilla	2224	

Datasets

Highly imbalanced

Dataset	Size	# vulnerability_related	Imbalanced ratio
Commit	12409	1303	10.50%
GitHub bug reports	10414	612	5.88%
JIRA bug reports	11145	204	1.83%
Bugzilla bug reports	2629	1089	41.42%
Mails	4499	2721	60.48%

Commits & bug reports initial training data: Jan. 2012 - Feb. 2017 Mails initial training data: Feb. 2017 - Aug. 2017

Samples

Noisy, diverse, mixed with urls, directories, variable names...

Bug report

Features

Commits

- Commit messages
- Comments
 - Most null
- Project name
 - Might impact prediction on projects not in training data
- Name of author
 - Common names and changed names etc

Bug reports

- Title
- Description
- Comments, number of comments
- Number of attachments
- Labels
- Created date and Last edited date

Mails

- Subject
- Content
- Sender

Text feature-Word embedding

- Word embedding
 - Map words to vectors so that computers can understand
- Word2vec
 - A word embedding method that uses a shallow 2-layer neural network to learn vector representation of words based on similarity in context

First training attempts-random forest

How Random Forest works?

- Training
 - Generate a forest of binary decision trees through randomly sampling a subset of train set and fitting
- Prediction
 - Each data sample traverses
 each tree until it reaches a leaf
 - At the leaf node, each tree creates a vote, the proportion of related votes is the prediction for the data sample

First training attempts-SVM

How SVM works?

- Mapping data to a high-dimensional feature space so that data points can be categorized
- Kernel Mathematical function used for transformation
 - Linear
 - Polynomial
 - RBF (Radial basis function)

Unfortunately, these basic binary classifiers, even with best tuning parameters, failed us...

K-fold stacking

Evaluation-metrics

Precision rate

 Helps us focus on true vulnerabilities and save manual work on false positives

$$Precision = \frac{true\ positive}{true\ positive + false\ positive}$$

• Recall rate

 Indicates the coverage of existing vulnerabilities

$$Recall\ rate = \frac{true\ positive}{true\ positive + false\ negative}$$

 Probability threshold of vulnerability to control the tradeoff between two metrics

Predicted positives

Commits	Commits	Commits	True	False
(Total)	(Positive)	(Negative)	positive	positive
1000	100	900	70	35

Totally (70+35) = 105 shown to researchers

- Precision rate = 70/ (70+35) = 66.67%
- Recall rate = 70/100 = 70%
- Filtered commits: 895, 89.5%

Evaluation-test results of commits

Figure: Identification performance of our stacking approach under commits

Table: Comparison with basic classifiers under the same recall rate in commits

Classifier	Recall rate	Precision (compared classifier vs.stacking)	
Linear SVM	0.72	0.22 vs. 0.34	
Logistic Regression	0.76	0.22 vs. 0.31	
Random Forest	0.76	0.19 vs. 0.31	
Gaussian Naive Bayes	0.77	0.14 vs. 0.28	

Production observation

- The initial 3-months observation from commit watcher
 - Observation period
 - 03/2017 05/2017
 - Deployed Model
 - 12-fold stacking with probability threshold 0.75
 - Test precision 0.44 and recall rate 0.62
 - Added ~3000 new projects
 - 2070 -> 5002
 - Precision 0.83 and recall rate 0.74

Commits	Commits	Commits	True	False
(Total)	(Positive)	(Negative)	positive	positive
2268	215	2053	160	32

Production observation

- Track vulnerabilities at large scale and low cost in real time
 - Increased number of projects, e.g., for Github, 4 times more

Sources	GitHub	JIRA	Bugzilla
#Projects	10113	1310	2224

- Accelerate vulnerability identification
 - When we firstly added go projects from Github in May, by May 29, 2017*
 - 87 go artifacts created from commit watcher
 - 33 go artifacts created from Github Issues
- Current Github/Jira issues can spot vulnerabilities at the first time

Demo

Thanks!

