Introduction to Solid State Physics (C. Kittel)

Chapter 1

Contents

Periodic Array of Atoms

Lattice Translation Vectors

Basis and the Crystal Structure

Primitive Lattice Cell

Fundamental Types of Lattices

Two-Dimensional Lattice Types

Three-Dimensional Lattice Types

Index Systems for Crystal Planes

Simple Crystal Structures

Sodium Chloride Structure

Cesium Chloride Structure

Hexagonal Close-Packed Structure (hcp)

Diamond Structure

Cubic Zinc Sulfide Structure

Direct Imaging of Atomic Structure

Nonideal Crystal Structures

Random Stacking and Polytypism

Crystal Structure Data

Periodic Array of Atoms

a_{2} a_{1} a_{2} a_{2} a_{3} a_{2} a_{3} a_{3} a_{3} a_{3} a_{3} a_{4} a_{3}

Crystal = Lattice + Basis

not all lattice points

 a_1, a_2, a_3 : lattice basis vectors

Lattice cell volume

$$\nabla_c = |\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3| ,$$

Wigner-Seitz cell

"primitive"

Lattice translation vectors

$$\mathbf{r}' = \dot{\mathbf{r}} + u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2 + u_3 \mathbf{a}_3$$
. u_1, u_2, u_3 are arbitrary integers.

Position of basis

$$\mathbf{r}_j = x_j \mathbf{a}_1 + y_j \mathbf{a}_2 + z_j \mathbf{a}_3 \cdot 0 \le x_j, y_j, z_j \le 1$$

Bravais lattice

Fundamental Types of Lattices

Symmetries: translation, mirror (reflection), rotation, inversion

Rotational symmetries in crystals: 1, 2, 3, 4, 6-fold symmetric

5-fold, 10-fold quasi-symmetric

→ quasi-crystals (some metal alloys)

Fundamental Types of Lattices

5-fold, 10-fold quasi-symmetric

→ quasi-crystals (some metal alloys)

Penrose 2D tiling

electron diffraction (TEM) from $Al_{86}Mn_{14}$ alloy (1984) k-space

TEM from graphene quasicrystal (2018)

R-space

Fundamental Types of Lattices

Fundamental types of lattices: 5 in 2D (14 in 3D)

Fundamental Types of Lattices

Fundamental types of lattices: 14 in 3D

Table 1 The 14 lattice types in three dimensions

System	Number of lattices	Restrictions on conventional cell axes and angles					
Triclinic	1	$a_1 \neq a_2 \neq a_3$ $\alpha \neq \beta \neq \gamma$					
Monoclinic	2	$a_1 \neq a_2 \neq a_3$ $\alpha = \gamma = 90^{\circ} \neq \beta$					
Orthorhombic	4	$a_1 \neq a_2 \neq a_3$ $\alpha = \beta = \gamma = 90^{\circ}$					
Tetragonal	2	$a_1 = a_2 \neq a_3$ $\alpha = \beta = \gamma = 90^{\circ}$					
Cubic	3	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 90^\circ$					
Trigonal	1	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma < 120^\circ, \neq 90$					
Hexagonal	1	$a_1 = a_2 \neq a_3$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$					

3 Cubic types of Lattices

Conventional unit cell

Primitive unit cell

Wigner-Seitz cell

cubic with same size with a lattice point at the center

$$\mathbf{a}_{\mathrm{I}} = \frac{1}{2} a(-\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}})$$

$$\mathbf{a}_2 = \frac{1}{2} a(\mathbf{\hat{x}} - \mathbf{\hat{y}} + \mathbf{\hat{z}}) \; ;$$

$$\mathbf{a}_3 = \frac{1}{2} a(\hat{\mathbf{x}} + \hat{\mathbf{y}} - \hat{\mathbf{z}})$$

"truncated octahedron"

$$\mathbf{a}_1 = \frac{1}{2}a(\hat{\mathbf{y}} + \hat{\mathbf{z}})$$

$$\mathbf{a}_2 = \frac{1}{2}a(\hat{\mathbf{x}} + \hat{\mathbf{z}})$$

$$\mathbf{a}_3 = \frac{1}{2} a(\hat{\mathbf{x}} + \hat{\mathbf{y}})$$

"rhombic dodecahedron"

3 Cubic types of Lattices

The primitive translation vectors of the bcc lattice (Fig. 12) are

$$\mathbf{a}_{1} = \frac{1}{2} a(-\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}}) \; ; \quad \mathbf{a}_{2} = \frac{1}{2} a(\hat{\mathbf{x}} - \hat{\mathbf{y}} + \hat{\mathbf{z}}) \; ; \quad \mathbf{a}_{3} = \frac{1}{2} a(\hat{\mathbf{x}} + \hat{\mathbf{y}} - \hat{\mathbf{z}}) \; ,$$

$$V = |\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3| = \frac{1}{2} a^3$$

The primitive translation vectors of the fcc lattice of Fig. 14 are

$$\mathbf{a}_1 = \frac{1}{2} a(\hat{\mathbf{y}} + \hat{\mathbf{z}}) \; ; \quad \mathbf{a}_2 = \frac{1}{2} a(\hat{\mathbf{x}} + \hat{\mathbf{z}}) \; ; \quad \mathbf{a}_3 = \frac{1}{2} a(\hat{\mathbf{x}} + \hat{\mathbf{y}}) \; .$$

$$V = |\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3| = \frac{1}{4} a^3$$

3 Cubic types of Lattices

Table 2 Characteristics of cubic lattices^a

ELECTION OF THE PARTY OF THE PA	4.8 8 8 8 8 8 8 8 8	THE RESIDENCE TO SERVICE STATES			
	Simple	Body-centered	Face-centered		
在1995年中,1995年中国共和国共和国的 20 00年中,1995年中	THE SERVE				
Volume, conventional cell	a^3	a^3	a^3		
Lattice points per cell	1	2	4		
Volume, primitive cell	a^3	$\frac{1}{2}a^{3}$	$\frac{1}{4}a^{3}$		
Lattice points per unit volume	$1/a^3$	$2/a^{3}$	$4/a^3$		
Number of nearest neighbors	6	8	1.2		
Nearest-neighbor distance	a	$3^{1/2} a/2 = 0.866a$	$a/2^{1/2} = 0.707a$		
Number of second neighbors	12	6	6		
Second neighbor distance	$2^{1/2}a$	a	a		
Packing fraction ^a	$\frac{1}{6}\pi$	$\frac{1}{8}\pi\sqrt{3}$	$\frac{1}{6}\pi\sqrt{2}$		
	=0.524	=0.680	=0.740		

Homework: Check all by yourself!

[&]quot;The packing fraction is the maximum proportion of the available volume that can be filled with hard spheres.

Simple Crystal Structures

diamond structure (C, Si, Ge)

ZnS structure (SiC, ZnS,GaAs, GaP...): III-V compound semiconductors

Quiz: For each structure,

- (i) Lattice structure?
- (ii) # of basis atoms?

Index Systems for Crystal Planes: Miller Index

- Find the intercepts on the axes in terms of the lattice constants a₁, a₂, a₃.
 The axes may be those of a primitive or nonprimitive cell.
- Take the reciprocals of these numbers and then reduce to three integers having the same ratio, usually the smallest three integers. The result, enclosed in parentheses (hkl), is called the index of the plane.

Simple Crystal Structures

Homework: For each structure,

- **Lattice structure? (i)**
- # of basis atoms? (ii)

NaCl structure

CsCl structure

hcp structure

simple hexagonal

	MARK BUILDING	William Tolking	The same of the same of	THE REAL PROPERTY.
Cl	000;	$\frac{1}{2}\frac{1}{2}0$;	$\frac{1}{2}0_2^1$;	0^{11}_{22}
Na:	$\frac{111}{222}$;	00^{1}_{2} ;	$0^{1}_{2}0$;	$\frac{1}{2}00$.

Crystal	'n	Crystal	a
LiH	4.08 Å	AgBr	5.77 Å
MgO	4.20	PbS	5.92
MnO	4.43	KCl	6.29
NaCl	5.63	KBr	6.59

Atom stacking to maximize the packing fraction

→ close packing (fcc, hcp)

Binding energy depends on "coordination" number

Random Stacking and Polytypism

Simple Crystal Structures

Homework: For each structure,

- (i) Lattice structure?
- (ii) # of basis atoms?

diamond structure (C, Si, Ge)

ZnS structure (SiC, ZnS,GaAs, GaP...)
: III-V compound semiconductors

Crystal Structures of Elements

H ¹ 4K hcp 3.75 6.12			tated	given temp	peratu	t roo	m t	emper	ature	res of for th ganic C	e mo	st co	ommo										He ⁴ : hcp 3.57 5.83
Li 78K bcc 3.491	Be hcp 2.27 3.59	4228	thomb. Glamond cubic complex 3.567 5.66 (O ₂)														F HHII HHII	Ne 4 fcc 4.46					
Na 5K bcc 4.225	Mg hcp 3.21 5.21		Al Si P S CI Crystal structure												Ar 4K fcc 5.31								
K 5K bcc 5.225	Ca fcc 5.58	Sc hcp 3.31 5.27	Ti hcp 2.9 4.6	5 3) occ 3.03	Cr bcc 2.88		Mn cubic complex	Fe bc 2.8	c h	cp .51	Ni fcc 3.52		Cu fec 3.61	Zn hcp 2.66 4.95	6	Ga comple		e mond 658	As rhomb	Se hex chains	Br complex (Br ₂)	Kr 4 fcc 5.64
Rb 5K bcc 5.585	Sr fcc 6.08	Y hcp 3.65 5.73	Zr hcp 3.23 5.15) b	Nb DCC 3.30	Mo bec 3.15	11	Tc hep 2.74 4.40		p fo	Rh fcc 3.80		111	4.09		Section 1988	In tetr. 3.25 4.95		(α) mond 19	Sb rhomb.	Te bex. chains	Complex	Xe 44 fcc 6.13
Cs 5K bcc 6.045	Ba bcc 5.02	La hex. 3.77 ABAC	Hf hcp 3.19 5.09	9	a occ 0.30	W bcc 3.16	FF	Re hcp 2.76 4.46	Os hcj 2.7 4.3	4 3	-	Pt fcc 3.9	333	Au fcc 4.08	Hg	1.77	TI hcp 3.46 5.52	Pt fcc 4.9	III!	Bi rhomb.	Po sc 3.34	At	Rn
Fr LIIII LIIII	Ra 	Ac fee 5.31		Ce fcc 5.16	Pr her 3.6	7	Nd hex 3.66	KIND OF STREET	m IIIII	Sm complex	Es bo	c	Gd hep 3.63	3	b cp .60	Dy hcp 3.59	3	lo ncp 1.58	Er hcp 3.5	6 3.5	p fc 54 5.4	e ho	p 50
			1	Th tcc 5.08	Pa tet 3.9 3.2	r. 12	U comp	N lex col	P mplex	Pu complex	3.6	х.	Cm	2000 000	k MM	Cf	22.0	s []]]]]	Fm	ASSET MAN	200	220	-

Looking at atoms in real space - Microscope

in real space → microscopes

- Transmission Electron Microscope (TEM)
- Scanning Tunelling Microscope (STM)
- Atomic Force microscope (AFM)

in momentum space → diffractions

- X-ray diffraction (XRD)
- neutron scattering
- Atom scattering
- Low-energy electron diffraction (LEED)

Ex. STM

Looking at atoms - STM images

Cu (111)

SUMMARY

SUMMARY

- A lattice is an array of points related by the lattice translation operator $T = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2 + u_3 \mathbf{a}_3$, where u_1 , u_2 , u_3 are integers and \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are the crystal axes.
- To form a crystal we attach to every lattice point an identical basis composed of s atoms at the positions $\mathbf{r}_j = x_j \mathbf{a}_1 + y_j \mathbf{a}_2 + z_j \mathbf{a}_3$, with $j = 1, 2, \ldots, s$. Here x, y, z may be selected to have values between 0 and 1.
- The axes a₁, a₂, a₃ are primitive for the minimum cell volume |a₁ · a₂ × a₃| for which the crystal can be constructed from a lattice translation operator T and a basis at every lattice point.

Homework

Problems #1~3