# PT 练习 3.5.1: 基本 VLAN 配置

## 拓扑图



## 地址表

| 设备  | 接口      | IP 地址        | 子网掩码          | 默认网关        |
|-----|---------|--------------|---------------|-------------|
| S1  | VLAN 99 | 172.17.99.11 | 255.255.255.0 | 不适用         |
| S2  | VLAN 99 | 172.17.99.12 | 255.255.255.0 | 不适用         |
| S3  | VLAN 99 | 172.17.99.13 | 255.255.255.0 | 不适用         |
| PC1 | 网卡      | 172.17.10.21 | 255.255.255.0 | 172.17.10.1 |
| PC2 | 网卡      | 172.17.20.22 | 255.255.255.0 | 172.17.20.1 |
| PC3 | 网卡      | 172.17.30.23 | 255.255.255.0 | 172.17.30.1 |
| PC4 | 网卡      | 172.17.10.24 | 255.255.255.0 | 172.17.10.1 |
| PC5 | 网卡      | 172.17.20.25 | 255.255.255.0 | 172.17.20.1 |
| PC6 | 网卡      | 172.17.30.26 | 255.255.255.0 | 172.17.30.1 |

## 端口分配(交换机2和3)

| 端口            | 分配                          | 网络             |
|---------------|-----------------------------|----------------|
| Fa0/1 - 0/5   | VLAN 99 – Management&Native | 172.17.99.0/24 |
| Fa0/6 - 0/10  | VLAN 30 – Guest(Default)    | 172.17.30.0/24 |
| Fa0/11 - 0/17 | VLAN 10 – Faculty/Staff     | 172.17.10.0/24 |
| Fa0/18 - 0/24 | VLAN 20 – Students          | 172.17.20.0/24 |

## 学习目标

- 执行交换机上的基本配置任务
- 创建 VLAN
- 分配交换机端口到 VLAN
- 添加、移动和更改端口
- 检验 VLAN 配置
- 对交换机间连接启用中继
- 检验中继配置
- 保存 VLAN 配置

## 任务 1: 执行基本交换机配置

执行基本交换机配置。Packet Tracer 只对交换机主机名评分。

- 配置交换机主机名。
- 禁用 DNS 查找。
- 将执行模式口令配置为 class。
- 为控制台连接配置口令 cisco。
- 为 vty 连接配置口令 cisco。

## 任务 2: 配置并激活以太网接口

使用地址表中的 IP 地址和默认网关配置六台 PC 的以太网接口。

注意:现在 PC1 的 IP 地址会标记为错误。稍后您将更改 PC1 的 IP 地址。

## 任务 3: 在交换机上配置 VLAN

## 步骤 1. 在交换机 S1 上创建 VLAN。

在全局配置模式下使用 **vlan** *vlan-id* 命令将 VLAN 添加到交换机 S1。本练习需要配置四个 VLAN。创建 VLAN 之后,您将处于 vlan 配置模式,在该模式下可以使用 **vlan** *name* 命令为 VLAN 指定名称。

- S1(config)#vlan 99
- S1(config-vlan)#name Management&Native
- S1(config-vlan)#exit
- S1(config)#vlan 10
- S1(config-vlan)#name Faculty/Staff

```
S1(config-vlan)#exit
S1(config)#vlan 20
S1(config-vlan)#name Students
S1(config-vlan)#exit
S1(config)#vlan 30
S1(config-vlan)#name Guest(Default)
S1(config-vlan)#exit
```

## 步骤 2. 检验在 S1 上创建的 VLAN。

使用 show vlan brief 命令检验 VLAN 是否已成功创建。

## S1#show vlan brief

| VLAN                 | Name                                                    | Status                               | Ports                                                                                                                                                                                                    |
|----------------------|---------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | default                                                 | active                               | Fa0/1, Fa0/2, Fa0/4, Fa0/5<br>Fa0/6, Fa0/7, Fa0/8, Fa0/9<br>Fa0/10, Fa0/11, Fa0/12, Fa0/13<br>Fa0/14, Fa0/15, Fa0/16, Fa0/17<br>Fa0/18, Fa0/19, Fa0/20, Fa0/21<br>Fa0/22, Fa0/23, Fa0/24, Gi0/1<br>Gi0/2 |
| 10<br>20<br>30<br>99 | Faculty/Staff Students Guest(Default) Management&Native | active<br>active<br>active<br>active |                                                                                                                                                                                                          |

#### 步骤 3. 在交换机 S2 和 S3 上配置并命名 VLAN。

使用步骤 1 中的命令在 S2 和 S3 上创建并命名 VLAN 10、20、30 和 99。使用 show vlan brief 命令检验 配置是否正确。

目前哪些端口被分配到您所创建的四个 VLAN 中?

上爾 4 大 00 和 00 1.收入投机型口八可以 1/1 AN

#### 步骤 4. 在 S2 和 S3 上将交换机端口分配给 VLAN。

请参考端口分配表。在接口配置模式下使用 **switchport access vlan** *vlan-id* 命令将端口分配给 VLAN。Packet Tracer 将只对每个范围中的第一个接口(PC 所连接的接口)进行评分。一般情况下,您可以使用 **interface** range 命令,但 Packet Tracer 不支持该命令。

```
S2(config)#interface fastEthernet0/6
S2(config-if)#switchport access vlan 30
S2(config-if)#interface fastEthernet0/11
S2(config-if)#switchport access vlan 10
S2(config-if)#interface fastEthernet0/18
S2(config-if)#switchport access vlan 20
S2(config-if)#end
S2#copy running-config startup-config
Destination filename [startup-config]? [enter]
Building configuration...
[OK]
```

注意: 现在 Fa0/11 接入 VLAN 的配置是错误的。您将在稍后的练习中更正该错误。

在 S3 上重复相同的命令。

#### 步骤 5. 确定已添加的端口。

在 S2 上使用 show vlan id vlan-number 命令查看哪些端口已分配给 VLAN 10。

注意: show vlan name vlan-name 可显示相同的输出。

您也可以使用 show interfaces switchport 命令查看 VLAN 分配信息。

#### 步骤 6. 分配管理 VLAN。

管理 VLAN 是您配置用于访问交换机管理功能的 VLAN。如果您没有特别指明使用其它 VLAN,那么 VLAN 1 将作为管理 VLAN。您需要为管理 VLAN 分配 IP 地址和子网掩码。交换机可通过 HTTP、Telnet、SSH 或 SNMP 进行管理。因为 Cisco 交换机的出厂配置将 VLAN 1 作为默认 VLAN,所以将 VLAN 1 用作管理 VLAN 不是明智的选择。您肯定不愿意连接到交换机的任何用户都默认连接到管理 VLAN。在本实验前面的部分中,我们已经将管理 VLAN 配置为 VLAN 99。

在接口配置模式下,使用 ip address 命令为交换机分配管理 IP 地址。

- S1(config)#interface vlan 99
- S1(config-if)#ip address 172.17.99.11 255.255.255.0
- S1(config-if)#no shutdown
- S2(config)#interface vlan 99
- S2(config-if)#ip address 172.17.99.12 255.255.255.0
- S2(config-if)#no shutdown
- S3(config)#interface vlan 99
- S3(config-if)#ip address 172.17.99.13 255.255.255.0
- S3(config-if)#no shutdown

分配管理地址后,交换机之间便可通过 IP 通信,此外任何主机只要连接到已分配给 VLAN 99 的端口,这些主机便能连接到交换机。因为 VLAN 99 配置为管理 VLAN,所以任何分配到该 VLAN 的端口都应视为管理端口,并且应该对这些端口实施安全保护,控制可以连接到这些端口的设备。

#### 步骤 7. 为所有交换机上的中继端口配置中继和本征 VLAN。

中继是交换机之间的连接,它允许交换机交换所有 VLAN 的信息。默认情况下,中继端口属于所有 VLAN,而接入端口则仅属于一个 VLAN。如果交换机同时支持 ISL 和 802.1Q VLAN 封装,则中继必须指定使用哪种方法。因为 2960 交换机仅支持 802.1Q 中继,所以在本练习中并未指定需要使用哪种方法。

本征 VLAN 分配给 802.1Q 中继端口。在拓扑中,本征 VLAN 是 VLAN 99。802.1Q 中继端口支持来自多个 VLAN 的流量(已标记流量),也支持来源不是 VLAN 的流量(无标记流量)。802.1Q 中继端口会将无标记流量发送到本征 VLAN。产生无标记流量的计算机连接到配置有本征 VLAN 的交换机端口。在有关本征 VLAN 的 IEEE 802.1Q 规范中,其中一项的作用便是维护向下兼容传统 LAN 方案中常见无标记流量的能力。对于本练习而言,本征 VLAN 的作用是充当中继链路两端的通用标识符。最佳做法是使用 VLAN 1 以外的 VLAN 作为本征 VLAN。

- S1(config)#interface fa0/1
- S1(config-if)#switchport mode trunk
- S1(config-if)#switchport trunk native vlan 99
- S1(config-if)#interface fa0/2
- S1(config-if)#switchport mode trunk
- S1(config-if)#switchport trunk native vlan 99
- S1(config-if)#end
- S2(config)#interface fa0/1
- S2(config-if)#switchport mode trunk

 $\begin{tabular}{ll} $\tt S2(config-if)\#switchport trunk native vlan 99 \\ &\tt S2(config-if)\#end \end{tabular}$ 

#### S3(config)#interface fa0/2

- S3(config-if)#switchport mode trunk
- S3(config-if)#switchport trunk native vlan 99
- S3(config-if)#**end**

使用 show interface trunk 命令检验中继的配置情况。

#### S1#show interface trunk

| Port<br>Fa0/1<br>Fa0/2 | Mode<br>on<br>on                  | Encapsulation<br>802.1q<br>802.1q                      | Status<br>trunking<br>trunking | Native vlan<br>99<br>99 |
|------------------------|-----------------------------------|--------------------------------------------------------|--------------------------------|-------------------------|
| Port<br>Fa0/1<br>Fa0/2 | Vlans allowed<br>1-1005<br>1-1005 | d on trunk                                             |                                |                         |
| Port<br>Fa0/1<br>Fa0/2 | 1,10,20,30,99                     | d and active in<br>9,1002,1003,100<br>9,1002,1003,100  | 4,1005                         | main                    |
| Port<br>Fa0/1<br>Fa0/2 | 1,10,20,30,99                     | nning tree forwa<br>9,1002,1003,100<br>9,1002,1003,100 | 4,1005                         | nd not pruned           |

## 步骤 8. 检验交换机之间是否能够通信。

从 S1 ping S2 和 S3 的管理地址。

#### S1#ping 172.17.99.12

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.17.99.12, timeout is 2 seconds: ..!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/9 ms

#### S1#ping 172.17.99.13

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.17.99.13, timeout is 2 seconds: ..!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 1/1/1 ms

## 步骤 9. 从 PC2 ping 其它主机。

从主机 PC2 ping 主机 PC1 (172.17.10.21)。ping 是否成功?\_\_\_\_\_\_

从主机 PC2 ping 交换机 VLAN 99 IP 地址 172.17.99.12。ping 是否成功? \_\_\_\_\_\_

因为这些主机处于不同的子网中,而且在不同的 VLAN 内,所以如果没有第 3 层设备提供各个子网之间的路由,这些主机将无法通信。

从主机 PC2 ping 主机 PC5。ping 是否成功? \_\_\_\_\_\_

因为 PC2 与 PC5 在相同的 VLAN 以及相同的子网中, 所以能够 ping 通。

## 步骤 10. 将 PC1 移到与 PC2 相同的 VLAN 中。

连接到 PC2 的端口 (S2 Fa0/18) 已分配到 VLAN 20, 而连接到 PC1 的端口 (S2 Fa0/11) 已分配到 VLAN 10。将 S2 Fa0/11 端口重新分配到 VLAN 20。要更改端口所属的 VLAN, 无需将端口先从原有的 VLAN 中删除。为端口重新分配新的 VLAN 之后,该端口将自动从以前的 VLAN 中删除。

## S2#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
S2(config)#interface fastethernet 0/11
S2(config-if)#switchport access vlan 20
S2(config-if)#end

从主机 PC2 ping 主机 PC1。ping 是否成功? \_\_\_\_\_\_

## 步骤 11. 更改 PC1 的 IP 地址和网络。

| 将 PC1 的 IP 地址更改为 172.17.20.21。 | 子网掩码和默认网关可以保留不变。 | 使用新分配的 IP 地址再次从 |
|--------------------------------|------------------|-----------------|
| 主机 PC2 ping 主机 PC1。            |                  |                 |

| ping 是否成功? |  |
|------------|--|
| 为什么这次会成功?  |  |