1ere Sciences BIOF

EXERCICES AVEC SOLUTIONS FONCTIONS - Généralités

Exercice 1 : Déterminer l'ensemble de définition des fonctions suivantes définie par

1)
$$f(x) = 3x^2 - x + 1$$
. 2) $f(x) = \frac{x^3}{2x - 4}$.

3)
$$f(x) = \frac{2x^4}{x^2 - 4}$$
. 4) $f(x) = \frac{7x - 1}{x^3 - 2x}$

5)
$$f(x) = \sqrt{-3x+6}$$
. 6) $f(x) = \frac{x-5}{2x^2-5x-3}$

7)
$$f(x) = \sqrt{x^2 - 3x + 2}$$
. 8) $f(x) = \sqrt{\frac{-3x + 9}{x + 1}}$

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2+x+3}}$$
. 10) $f(x) = \frac{|x-5|}{x^2+1}$.

11)
$$f(x) = \frac{\sqrt{|x|}}{x}$$
. 12) $f(x) = \frac{\sqrt{x+2}}{x-1}$

13)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$
.

14)
$$f(x) = \frac{x}{|2x-4|-|x-1|}$$
. 15) $f(x) = \frac{2\sin x}{2\cos x - 1}$.

16)
$$f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$$

17)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$

18)
$$f(x) = \frac{|x-4|-|x-1|}{x^2+2|x|-3}$$

19)
$$f(x) = \sqrt{2x-1} + \sqrt{3-5x}$$
.

Solutions

1)
$$f(x) = 3x^2 - x + 1$$

f Est une fonction polynôme donc Un réel a toujours une image. Donc $D_f=\mathbb{R}$

2)
$$f(x) = \frac{x^3}{2x-4}$$

Pour les fonctions du type fractions rationnelles, l'ensemble de définition est l'ensemble des nombres pour lesquels le dénominateur est non nul.

$$D_f = \left\{ x \in \mathbb{R} / 2x - 4 \neq 0 \right\}$$

$$2x-4=0$$
 ssi $x=\frac{4}{2}=2$ Donc $D_f=\mathbb{R}-\{2\}$

On dira aussi que 2est une valeur interdite pour la fonction f

prof: atmani najib

3)
$$f(x) = \frac{2x^4}{x^2 - 4}$$
.

$$D_f = \left\{ x \in \mathbb{R} / x^2 - 4 \neq 0 \right\}$$

$$x^2 - 4 = 0 \text{ ssi } x^2 - 2^2 = 0 \text{ ssi } (x - 2)(x + 2) = 0$$

$$\text{ssi } x - 2 = 0 \text{ ou } x + 2 = 0 \text{ ssi } x = 2 \text{ ou } x = -2$$

$$\text{donc } D_f = \mathbb{R} - \{-2; 2\}$$

4)
$$f(x) = \frac{7x-1}{x^3-2x}$$
.

$$D_{f} = \left\{ x \in \mathbb{R} / x^{3} - 2x \neq 0 \right\}$$

$$x^{3} - 2x = 0 \text{ ssi } x(x^{2} - 2) = 0 \text{ ssi } x = 0 \text{ ou}$$

$$x^{2} - 2 = 0 \text{ ssi } x = 0 \text{ ou } x^{2} = 2$$

$$\text{ssi } x = 0 \text{ ou } x = \sqrt{2} \text{ ou } x = -\sqrt{2}$$

$$\text{donc } D_{f} = \mathbb{R} - \left\{ -\sqrt{2}; 0; \sqrt{2} \right\}$$

5)
$$f(x) = \sqrt{-3x+6}$$
.

Pour les fonctions du type racine carrée, l'ensemble de définition est l'ensemble des nombres pour lesquels l'intérieur de la racine est positif

$$D_f = \{x \in \mathbb{R} / -3x + 6 \ge 0\}$$

$$-3x + 6 \ge 0 \text{ SSi } x \le 2 \text{ SSi } x \le \frac{-6}{-3} \text{ SSi } -3x \ge -6$$

Donc
$$D_f =]-\infty; 2]$$

6)
$$f(x) = \frac{x-5}{2x^2 - 5x - 3}$$
.
 $D_f = \left\{ x \in \mathbb{R} / 2x^2 - 5x - 3 \neq 0 \right\}$

$$D_f = \{ x \in \mathbb{R} / 2x^2 - 5x - 3 \neq 0 \}$$

$$2x^2-5x-3=0$$
 $a=2$ et $b=-5$ et $c=-3$

$$\Delta = b^2 - 4ac = (-5)^2 - 4 \times 2 \times (-3) = 25 + 24 = 49 = (7)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \quad \text{et} \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_1 = \frac{-(-5) + \sqrt{49}}{2 \times 2} = \frac{7+5}{4} = \frac{12}{4} = 3$$
 et

$$x_2 = \frac{(-5) - \sqrt{49}}{2 \times 2} = \frac{5 - 7}{4} = \frac{-2}{4} = -\frac{1}{2}$$

Donc
$$D_f = \mathbb{R} - \left\{ -\frac{1}{2}; 3 \right\}$$

7)
$$f(x) = \sqrt{2x^2 - 3x + 1}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 - 3x + 1 \ge 0 \right\} \text{ soit } \Delta \text{ son}$$

discriminant

$$\Delta = b^{2} - 4ac = (-3)^{2} - 4 \times 2 \times 1 = 9 - 8 = 1 > 0$$

$$x_{1} = \frac{-(-3) + \sqrt{1}}{2 \times 2} = \frac{4}{4} = 1 \quad \text{et} \quad x_{2} = \frac{-(-3) - \sqrt{1}}{2 \times 2} = \frac{2}{4} = \frac{1}{2}$$

$$\boxed{\begin{array}{c|cccc} x & -\infty & 1/2 & 1 & +\infty \\ P(x) & + & 0 & - & 0 & + \end{array}}$$

Donc
$$D_f = \left[-\infty, \frac{1}{2} \right] \cup \left[1, +\infty \right[$$

8)
$$f(x) = \sqrt{\frac{-9x+3}{x+1}}$$
.
 $D_f = \left\{ x \in \mathbb{R} / \frac{-9x+3}{x+1} \ge 0 \text{ et } x + 1 \ne 0 \right\}$
 $-9x+3=0 \text{ ssi } x = \frac{1}{3} \text{ ssi } -9x = -3$
 $x+1=0 \text{ ssi } x = -1$

x	$-\infty$	-1		$\frac{1}{3}$	$+\infty$
-9x + 3	+		+	þ	-
x+1	_	0	+		+
$\frac{-9x+3}{x+1}$	_		+	Ó	_

Donc
$$D_f = \left[-1, \frac{1}{3} \right]$$

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2 + x + 3}}$$

$$D_f = \left\{ x \in \mathbb{R} / -2x^2 + x + 3 > 0 \right\}$$

$$-2x^2 + x + 3 = 0$$
 $a = -2$ et $b = 1$ et $c = 3$

$$\Delta = b^2 - 4ac = (1)^2 - 4 \times (-2) \times 3 = 1 + 24 = 25 = (5)^2 > 0$$

Donc on a deux racines

$$x_1 = \frac{-1+5}{2 \times (-2)} = \frac{4}{-4} = -1$$
 et $x_2 = \frac{-1-5}{2 \times (-2)} = \frac{-6}{-4} = \frac{3}{2}$

Donc
$$D_f = \left[-1, \frac{3}{2} \right]$$

10) $f(x) = \frac{|x-5|}{x^2+1}$. $D_f = \left\{ x \in \mathbb{R} / x^2 + 1 \neq 0 \right\}$

$$x^{2}+1$$

 $x^2 + 1 = 0$ ssi $x^2 = -1$

Cette équation n'admet pas de solution dans \mathbb{R}

prof: atmani najib

Donc $D_f = \mathbb{R}$

11)
$$f(x) = \frac{\sqrt{|x|}}{x}.$$

$$f(x) \in \mathbb{R} \text{ ssi } \sqrt{|x|} \in \mathbb{R} \text{ et } x \neq 0$$

Or on sait que $|x| \ge 0$ pour tout $x \in \mathbb{R}$

Donc $f(x) \in \mathbb{R}$ ssi $x \neq 0$

 $\operatorname{Donc} D_f = \mathbb{R} - \{0\} = \mathbb{R}^*$

12)
$$f(x) = \frac{\sqrt{x+2}}{x-1}$$
. $D_f = \{x \in \mathbb{R} / x + 2 \ge 0 \text{ et } x - 1 \ne 0\}$

$$D_f = \{ x \in \mathbb{R} / x \ge -2etx \ne 1 \}$$

$$D_f = \begin{bmatrix} -2, 1 \end{bmatrix} \cup \begin{bmatrix} 1, +\infty \end{bmatrix}$$

13)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$

$$D_{f} = \{x \in \mathbb{R} / -x \ge 0etx \ne 0\}$$

$$D_f = \{ x \in \mathbb{R} / x \le 0 etx \ne 0 \}$$

$$D_f =]-\infty, 0[$$

14)
$$f(x) = \frac{x}{|2x-4|-|x-1|}$$
.

$$D_f = \{ x \in \mathbb{R} / |2x - 4| - |x - 1| \neq 0 \}$$

$$|2x-4|-|x-1|=0$$
 ssi $|2x-4|=|x-1|$

ssi
$$2x-4=x-1$$
 ou $2x-4=-(x-1)$

ssi
$$2x-x=4-1$$
 ou $2x-4=-x+1$

ssi
$$x = 3$$
 ou $2x + x = 4 + 1$

ssi
$$x = 3$$
 ou $3x = 5$ ssi $x = 3$ ou $x = \frac{5}{3}$

$$Donc: D_f = \mathbb{R} - \left\{ \frac{5}{3}; 3 \right\}$$

15)
$$f(x) = \frac{2\sin x}{2\cos x - 1}$$
. $D_f = \{x \in \mathbb{R} / 2\cos x - 1 \neq 0\}$

$$2\cos x - 1 = 0$$
 ssi $\cos x = \frac{1}{2}$

$$\cos x = \frac{1}{2} \operatorname{SSi} \cos x = \cos\left(\frac{\pi}{3}\right)$$

$$x = \frac{\pi}{3} + 2k\pi$$
 ou $x = -\frac{\pi}{3} + 2k\pi$ où $k \in \mathbb{Z}$

Donc:
$$D_f = \mathbb{R} - \left\{ -\frac{\pi}{3} + 2k\pi; \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

16)
$$f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$$

$$D_f = \left\{ x \in \mathbb{R} / \frac{-2x^2 + 2x + 13}{x^2 - x - 6} \ge 0 e t x^2 - x - 6 \ne 0 \right\}$$

- On détermine les racines du trinôme $-2x^2 + 2x + 13$:

Le discriminant est $\Delta' = 2^2 - 4 \times (-2) \times 13 = 108$ et ses racines sont :

$$x_1 = \frac{-2 - \sqrt{108}}{2 \times (-2)} = \frac{1 + 3\sqrt{3}}{2}$$
 et $x_2 = \frac{-2 + \sqrt{108}}{2 \times (-2)} = \frac{1 - 3\sqrt{3}}{2}$

- On détermine les racines du trinôme $x^2 - x - 6$: Le discriminant est Δ = (-1) 2 - 4 x (-6) x 1 =25 et ses racines sont :

$$x_1' = \frac{-(-1) - \sqrt{25}}{2 \times 1} = \frac{1 - 5}{2} = -2$$
 et
 $x_2' = \frac{-(-1) + \sqrt{25}}{2 \times 1} = \frac{1 + 5}{2} = 3$

- On obtient le tableau de signe :

х	-∞	$\frac{1-3\sqrt{3}}{2}$		-2	3	1-	+3√3 2	+∞
$-2x^2 + 2x + 13$	-	φ	+		+	+	φ	-
$x^2 - x - 6$	+		+	0	-) +		+
$\frac{-2x^2 + 2x + 13}{x^2 - x - 6}$	-	0	+		-	+	0	-

17)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$

$$D_f = \left\{ x \in \mathbb{R} / x^2 + \left(2\sqrt{3} - \sqrt{2}\right)x - 2\sqrt{6} \ge 0 \right\}$$

$$\Delta = b^2 - 4ac = (2\sqrt{3} + \sqrt{2})^2 - 4 \times 1 \times 2\sqrt{6}$$

$$\Delta = 12 - 4\sqrt{6} + 2 + 8\sqrt{6} = 14 + 4\sqrt{6}$$

$$14 + 4\sqrt{6} = 14 + 2 \times 2\sqrt{3} \times \sqrt{2} = \left(2\sqrt{3}\right)^2 + 2 \times 2\sqrt{3} \times \sqrt{2} + \left(\sqrt{2}\right)^2$$

$$14 + 4\sqrt{6} = (2\sqrt{3} + \sqrt{2})^2$$

On a $\Delta = 14 + 4\sqrt{6} > 0$ donc

$$x_1 = \frac{-2\sqrt{3} + \sqrt{2} + \sqrt{14 + 4\sqrt{6}}}{2 \times 1} = \frac{-2\sqrt{3} + \sqrt{2} + \left|2\sqrt{3} + \sqrt{2}\right|}{2 \times 1}$$

et
$$x_2 = \frac{-2\sqrt{3} + \sqrt{2} - \left| 2\sqrt{3} + \sqrt{2} \right|}{2 \times 1}$$

$$x_1 = \frac{-2\sqrt{3} + \sqrt{2} + 2\sqrt{3} + \sqrt{2}}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$
 et

$$x_2 = \frac{-2\sqrt{3} + \sqrt{2} - 2\sqrt{3} - \sqrt{2}}{2 \times 1} = \frac{-4\sqrt{3}}{2} = -2\sqrt{3}$$

X	-∞	-2√3	$\sqrt{2}$	+∞
$x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}$	+	0	- 0	+

On a donc : $D_f = \left[-\infty; -2\sqrt{3} \right] \cup \left[\sqrt{2}; +\infty \right]$

18)
$$f(x) = \frac{|x-4|-|x-1|}{x^2+2|x|-3}$$

$$D_f = \left\{ x \in \mathbb{R} / x^2 + 2|x| - 3 \neq 0 \right\}$$

 $|x^2+2|x|-3=0 \Leftrightarrow |x|^2+2|x|-3=0$ on pose |x|=X

donc l'équation devient :
$$X^2 + 2X - 3 = 0$$

Le discriminant est $\Delta = 2^2 - 4 \times 1 \times (-3) = 16$ et ses solutions sont :

$$X_1 = \frac{-2 - \sqrt{16}}{2 \times 1} = -3$$
 et $X_2 = \frac{-2 + \sqrt{16}}{2 \times 1} = 1$

Donc on a : |x| = -3 et |x| = 1

|x| = -3 n'a pas de solution

 $|x|=1 \Leftrightarrow x=1 \text{ ou } x=-1 \text{ donc } D_f=\mathbb{R}-\{-1;1\}$

19)
$$f(x) = \sqrt{2x-1} + \sqrt{3-5x}$$
.

$$D_f = \{x \in \mathbb{R} / 2x - 1 \ge 0et3 - 5x \ge 0\}$$

$$D_f = \left\{ x \in \mathbb{R} / x \ge \frac{1}{2} etx \le \frac{3}{5} \right\}$$

Donc
$$D_f = \left[\frac{1}{2}, \frac{3}{5}\right]$$

Exercice 2 : Etudier la parité des fonctions suivantes définie par : 1) $f(x) = 3x^2 - 5$.

$$f(x) = \frac{3}{x}$$

3)
$$f(x) = \frac{x^2 - 1}{x}$$
. 2) $f(x) = x^2 + \frac{1}{x}$.

3)
$$f(x) = \frac{|x|}{x^2 - 1}$$
. 4) $f(x) = \sqrt{1 - x^2}$

5)
$$f(x) = \frac{2x^3}{x^2 + 5}$$
. 6) $f(x) = |x| - \sqrt{2x^2 + 4}$.

7)
$$f(x) = \frac{\sqrt{x}}{2}$$
. 8) $f(x) = \frac{x}{x-2}$

Solutions:

1) Soit f une fonction tq: $f(x) = 3x^2 - 5$

Donc $D_f = \mathbb{R} \operatorname{car} f$ est une fonction polynôme

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = 3(-x)^2 - 5 = 3x^2 - 5$$
$$f(-x) = f(x)$$

Donc f est une fonction paire,

2)
$$f(x) = \frac{3}{x}$$

on a $g(x) \in \mathbb{R}$ ssi $x \neq 0$
donc $D_f = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = \frac{3}{-x} = -\frac{3}{x}$$
$$f(-x) = -f(x)$$

Donc f est une fonction impaire,

3)
$$f(x) = 2x^3 + x^2$$

h est une fonction polynôme donc Un réel a toujours une image. Donc $D_{\scriptscriptstyle f}=\mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$
- $f(-x) = 2(-x)^3 + (-x)^2 = -2x^3 + x^2$

$$f(-x) = -(2x^3 - x^2) \neq -f(x)$$

Donc f est une fonction ni paire ni impaire,

3)
$$f(x) = \frac{x^2 - 1}{x}$$

on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_f = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = \frac{(-x)^2 - 1}{-x} = -\frac{x^2 - 1}{x}$$

$$f\left(-x\right) = -f\left(x\right)$$

Donc f est une fonction impaire,

- 4) $f(x) = x^2 + \frac{1}{x}$ on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_f = \mathbb{R}^*$
- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = (-x)^2 + \frac{1}{-x} = x^2 - \frac{1}{x} = \left(-x^2 + \frac{1}{x}\right)$$

$$f(-x) \neq -f(x)$$

Donc f est une fonction ni paire ni impaire,

- 5) $f(x) = \frac{|x|}{x^2 1}$ on a $f(x) \in \mathbb{R}$ ssi $x^2 1 \neq 0$ $x^2 - 1 = 0$ ssi $x^2 = 1$ ssi x = 1 ou x = -1donc $D_f = \mathbb{R} - \{-1; 1\}$
- Pour tout réel x, si $x \in \mathbb{R} \{-1;1\}$, alors $-x \in \mathbb{R} \{-1;1\}$

$$f(-x) = \frac{|-x|}{(-x)^2 - 1} = \frac{|x|}{x^2 - 1}$$
$$f(-x) = f(x)$$

Donc f est une fonction paire

6)
$$f(x) = \sqrt{1-x^2}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 1 - x^2 \ge 0 \right\}$$

$$1-x^2 = 0$$
 ssi $x^2 = 1$ ssi $x = 1$ ou $x = -1$

prof: atmani najib

$$\begin{array}{c|ccccc} x & -\infty & -1 & 1 & +\infty \\ \hline 1-x^2 & - & 0 & + & 0 & - \end{array}$$

Donc $D_f = [-1,1]$

- Pour tout réel x, si $x \in [-1,1]$, alors $-x \in [-1,1]$

$$f(-x) = \sqrt{1 - (-x)^2} = \sqrt{1 - x^2}$$

$$f\left(-x\right) = f\left(x\right)$$

Donc f est une fonction paire

7)
$$f(x) = \frac{2x^3}{x^2 + 5}$$
.

$$D_f = \left\{ x \in \mathbb{R} / x^2 + 5 \neq 0 \right\}$$

 $x^2 + 5 = 0$ ssi $x^2 = -5$ pas de solutions Donc $D_f = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = \frac{2(-x)^3}{(-x)^2 + 5} = \frac{-2x^3}{x^2 + 5}$$

$$f(-x) = -f(x)$$

Donc f est une fonction impaire

8) $f(x) = |x| - \sqrt{2x^2 + 4}$.

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 + 4 \ge 0 \right\}$$

Or on sait que $2x^2 \ge 0$ Pour tout réel x, donc $2x^2 + 4 \ge 0 + 4$ donc $2x^2 + 4 \ge 4 \ge 0$

Donc $D_f = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = |-x| - \sqrt{2(-x)^2 + 4} = |x| - \sqrt{2x^2 + 4}$$

$$f(-x) = f(x)$$

Donc f est une fonction paire

9)
$$f(x) = \frac{\sqrt{x}}{2}$$
. $D_f = \{x \in \mathbb{R} / x \ge 0\}$ Donc

$$D_f = \mathbb{R}^+ = [0; +\infty[$$

On a $2 \in \mathbb{R}^+$ mais $-2 \notin \mathbb{R}^+$ Donc f est une fonction ni paire ni impaire

8)
$$f(x) = \frac{x}{x-2}$$

on a $f(x) \in \mathbb{R}$ ssi $x-2 \neq 0$ ssi $x \neq 2$

Donc $D_f = \mathbb{R} - \{2\}$

on a
$$-2 \in D_f$$
 mais $-(-2) = 2 \notin D_f$

Donc D_f n'est pas symétrique par rapport a ODonc f est une fonction ni paire ni impaire **Exercice 3:** Soit la fonction définie par :

 $5f(x) + f(-x) = 2x^3 - 3x$ Pour tout réel x

1)montrer que f est une fonction impaire

2)donner une expression de f(x) Pour tout réel x

Solution: soit $x \in \mathbb{R}$

On a $5f(x) + f(-x) = 2x^3 - 3x$ (1)

Pour tout réel x

On remplaçant x par -x on trouve :

$$5f(-x) + f(x) = 2(-x)^3 - 3(-x)$$

Donc: $5 f(-x) + f(x) = -2x^3 + 3x$ (2)

(1)+ (2) donne: 6(f(-x)+f(x))=0 donc:

$$f(-x) + f(x) = 0$$

donc: $f(-x) = -f(x) \quad \forall x \in \mathbb{R}$

Donc *f* est une fonction impaire

2)on a:
$$5f(x) + f(-x) = 2x^3 - 3x$$

Et puisque f est une fonction impaire donc :

$$5f(x) - f(x) = 2x^3 - 3x$$

$$4f(x) = 2x^3 - 3x \Leftrightarrow f(x) = \frac{1}{2}x^3 - \frac{3}{4}$$

Exercice 4 : Soit la fonction définie par :

$$f(x) = \frac{|x|+1}{2|x|-3}$$
 et (C_f) la courbe de f Dans le

repère $(0; \vec{i}; \vec{j})$ orthonormé

Montrer que (C_f) symétrique par rapport à l'axe des ordonnée

Solution :
$$D_f = \{x \in \mathbb{R} / 2 |x| - 3 \neq 0\} = \{x \in \mathbb{R} / |x| \neq \frac{3}{2}\}$$

Donc:
$$D_f = \mathbb{R} - \left\{ -\frac{3}{2}; \frac{3}{2} \right\}$$

Il suffit de montrer que f est une fonction paire

- Pour tout réel x, si $x \in \mathbb{R} - \left\{-\frac{3}{2}, \frac{3}{2}\right\}$ alors

$$-x \in \mathbb{R} - \left\{ -\frac{3}{2}; \frac{3}{2} \right\}$$

$$-f(-x) = \frac{|-x|+1}{2|-x|-3} = \frac{|x|+1}{2|x|-3} = f(x)$$

Donc f est une fonction paire

Par suite $la(C_f)$ symétrique par rapport à l'axe des ordonnée

Exercice 5 : étudier les variations des fonctions

définies par : 1)
$$f(x) = 7x - 5$$
 2) $g(x) = \frac{2}{x}$

2)
$$g(x) = \frac{2}{x}$$

prof: atmani najib

Solution :1) *f* est une fonction polynôme donc $D_{\scriptscriptstyle f} = \mathbb{R}$

Soit $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 \prec x_2$

Donc $7x_1 \prec 7x_2$ car $7 \succ 0$

Donc $7x_1 - 5 \prec 7x_2 - 5$

Alors $f(x_1) \prec f(x_2)$ d'où f que est strictement croissante sur $\mathbb R$

2) Soit g une fonction tq : $g(x) = \frac{2}{x}$

$$g(x) \in \mathbb{R} \text{ ssi } x \neq 0 \text{ Donc } D_g = \mathbb{R} - \{0\} = \mathbb{R}^*$$

a)Soit
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$ tq $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} \succ \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} \succ \frac{2}{x_2}$ car $2 \succ 0$

Alors $f(x_1) > f(x_2)$ d'où f que est strictement décroissante sur $[0;+\infty[$

b)Soit $x_1 \in]-\infty;0]$ et $x_2 \in]-\infty;0]$ tq $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} > \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} > \frac{2}{x_2}$ car $2 > 0$

Alors $f(x_1) > f(x_2)$ d'où f que est strictement décroissante sur $]-\infty;0]$

b)tableau de variation :

Exercice 6 : étudier les variations de la fonction

définie par: $f(x) = 3x^2 + 2$

Solution: $D_f = \mathbb{R}$

soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 \neq x_2$

$$T(x_1; x_2) = 3(x_1 + x_2)$$

a)Soit $x_1 \in [0; +\infty[$ et $x_2 \in [0; +\infty[$

Donc $x_1 \ge 0$ et $x_2 \ge 0$ Donc $x_1 + x_2 \ge 0$

Donc $3(x_1 + x_2) \ge 0$ car 3 > 0

Donc $T(x_1; x_2) = 3(x_1 + x_2) \ge 0$

d'où f que est croissante sur $[0; +\infty[$

b)Soit $x_1 \in]-\infty;0]$ et $x_2 \in]-\infty;0]$

Donc $x_1 \le 0$ et $x_2 \le 0$ Donc $x_1 + x_2 \le 0$

Donc $3(x_1 + x_2) \le 0$ car 3 > 0

Donc $T(x_1; x_2) = 3(x_1 + x_2) \le 0$

d'où f que est décroissante sur $]-\infty;0]$

b) $\underline{\text{résum\'e}}$: tableau de variation :

$$f(0) = 3 \times 0^2 + 2 = 2$$

\boldsymbol{x}	$-\infty$ 0 $+\infty$
f(x)	

Exercice 7 : étudier les variations de la fonction

définie par : $g(x) = \frac{x}{x+1}$

Solution: $g(x) = \frac{x}{x+1}$ on a $g(x) \in \mathbb{R}$ ssi

 $x+1 \neq 0$ SSi $x \neq -1$

Donc $D_{\sigma} = \mathbb{R} - \{-1\}$

soient $x_1 \in D_g$ et $x_2 \in D_g$ tq $x_1 \neq x_2$ on a:

$$T(x_1; x_2) = \frac{g(x_1) - g(x_2)}{x_1 - x_2}$$

$$g(x_1) - g(x_2) = \frac{x_1}{x_1 + 1} - \frac{x_2}{x_2 + 1} = \frac{x_1(x_2 + 1) - x_2(x_1 + 1)}{(x_1 + 1)(x_2 + 1)}$$

$$T(x_1; x_2) = \frac{x_1 - x_2}{(x_1 + 1)(x_2 + 1)} \times \frac{1}{x_1 - x_2} = \frac{1}{(x_1 + 1)(x_2 + 1)}$$

a)sur $I =]-\infty; -1[$

Soit $x_1 \in]-\infty; -1[$ et $x_2 \in]-\infty; -1[$ $x_1 \neq x_2$

 $\mbox{Donc} \quad x_{\scriptscriptstyle 1} \prec -1 \quad \mbox{et} \quad x_{\scriptscriptstyle 2} \prec -1 \quad \mbox{Donc} \quad x_{\scriptscriptstyle 1} + 1 \prec 0 \quad \mbox{et}$

 $x_2 + 1 < 0$ Donc $(x_1 + 1)(x_2 + 1) > 0$

Donc $T(x_1; x_2) = \frac{1}{(x_1+1)(x_2+1)} > 0$ sur

$$I =]-\infty; -1[$$

d'où g que est strictement croissante sur $I =]-\infty; -1[$

b)sur
$$J =]-1; +\infty[$$

Soit $x_1 \in]-1; +\infty[$ et $x_2 \in]-1; +\infty[$ $x_1 \neq x_2$

Donc $x_1 \succ -1$ et $x_2 \succ -1$ Donc $x_1 + 1 \succ 0$

et $x_2 + 1 > 0$ Donc $(x_1 + 1)(x_2 + 1) > 0$

Donc $T(x_1; x_2) = \frac{1}{(x_1+1)(x_2+1)} > 0$

 $\operatorname{sur} J =]-1; +\infty[$

d'où g que est strictement croissante sur

 $J =]-1; +\infty[$ tableau de variation :

x	$-\infty$ –	$1 + \infty$
f(x)	1	1

Exercice 8 : Soit f une fonction :tq : $f(x) = x + \frac{1}{x}$

1)Déterminer D_f et étudier la parité de f

2)Calculer Le taux d'accroissement $T(x_1; x_2)$ de f entre x_1 et x_2 deux éléments de D_x

 $tq x_1 \neq x_2$

3)Étudier les variations de f sur I =]0;1] puis sur $J = [1; +\infty[$

4)En déduire les variations de f sur D_f

5)Dresser le tableau de variations de f sur D_{f}

Réponses : 1) on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ Donc

 $D_f = \mathbb{R} - \{0\} = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = -x + \frac{1}{-x} = -x - \frac{1}{x} = -\left(x + \frac{1}{x}\right)$$

 $f\left(-x\right) = -f\left(x\right)$

Donc f est une fonction impaire,

2)
$$f(x_1) - f(x_2) = \left(x_1 + \frac{1}{x_1}\right) - \left(x_2 + \frac{1}{x_2}\right) = x_1 + \frac{1}{x_1} - x_2 - \frac{1}{x_2}$$

$$= \frac{x_1^2 \times x_2 + x_2 - x_2^2 \times x_1 - x_1}{x_1 \times x_2} = \frac{x_1 \times x_2 (x_1 - x_2) + x_2 - x_1}{x_1 \times x_2}$$

$$=\frac{\left(x_1-x_2\right)\left(x_1\times x_2-1\right)}{x_1\times x_2}$$

$$T(x_1; x_2) = \frac{(x_1 - x_2)(x_1 \times x_2 - 1)}{x_1 \times x_2} \times \frac{1}{x_1 - x_2} = \frac{x_1 \times x_2 - 1}{x_1 \times x_2}$$

a)sur I =]0;1] Soit $x_1 \in]0;1]$ et $x_2 \in]0;1]$

Donc $0 \prec x_1 \leq 1$ et $0 \prec x_2 \leq 1$ $x_2 + 1 \prec 0$

Donc $0 \prec x_1 x_2 \le 1$ et $x_1 \ne x_2$ Donc $x_1 x_2 - 1 \prec 0$

et on a $0 < x_1 x_2$ Donc $T(x_1; x_2) = \frac{x_1 \times x_2 - 1}{x_1 \times x_2} < 0$

d'où f que est strictement décroissante sur I = [0;1]

b)sur $J = [1; +\infty[$ Soit $x_1 \in [1; +\infty[$ et $x_2 \in [1; +\infty[$

Donc $x_1 \ge 1$ et $x_2 \ge 1$ Donc $x_1 x_2 \ge 1$ et

 $x_1 \neq x_2$ Donc $x_1 x_2 \succ 1$ Donc $x_1 x_2 - 1 \succ 0$

et on a
$$0 \prec x_1 x_2$$
 Donc $T(x_1; x_2) = \frac{x_1 \times x_2 - 1}{x_1 \times x_2} \succ 0$
d'où f que est strictement croissante sur $J = [1; +\infty[$

3) f est impaire et le symétrique de I = [0;1] est l'intervalle I' = [-1;0] et le symétrique de

$$J = [1; +\infty[$$
 est l'intervalle $J' =]-\infty; -1]$

Donc : f est strictement décroissante sur I Donc f est strictement décroissante sur I' f est strictement croissante sur J Donc f est strictement croissante sur J'

5) le tableau de variations de f sur D_{f}

$$f\left(x\right) = 1 + \frac{1}{1} = 2$$

x	$-\infty$ -1	0	$1 + \infty$
Variations $\operatorname{de} f(x)$	-2		

$$f(-1) = -1 - \frac{1}{1} = -2$$

Exercice 9 : étudier les variations des fonctions

définies par: 1)
$$k(x) = \frac{6}{x}$$
 2) $f(x) = x^2$ et

$$g(x) = -\frac{1}{2}x^2$$
 et $h(x) = -\frac{1}{2}x^2 + 5$

Réponses:

1)soit la fonction définie $\sup[0; +\infty[$ par :

On sait que la fonction $v: x \to \frac{1}{x}$ est

décroissante sur $[0;+\infty]$ et puisque 6 > 0 donc la fonction k = 6v est aussi décroissante sur $[0;+\infty[$

2)
$$f(x) = x^2$$
 et $g(x) = -\frac{1}{2}x^2$ $D_f = D_g = \mathbb{R}$

On a $a = -\frac{1}{2} < 0$ Donc alors les fonctions f et g

ont des variation opposées sur ℝ g et h ont les mêmes variations sur $\mathbb R$

Exercice 10 : Les fonction f et g définies respectivement par:

$$f(x) = \sqrt{\frac{x-1}{x+3}}$$
 et $g(x) = \frac{\sqrt{x-1}}{\sqrt{x+3}}$

Sont-elles égales ?

Réponse :

Déterminons leur ensemble de définition :

Pour f , on doit avoir : $\frac{x-1}{x+3} \ge 0$ et $x-1 \ne 0$ donc

ce qui donne $D_f =]-\infty; -3[\cup [1; +\infty[$

Pour g, on doit avoir $x-1 \ge 0$ et $x+3 \ge 0$ ce qui donne $D_g = [1; +\infty]$

On a donc $D_f \neq D_g$. Les fonctions ne sont donc pas égales. On écrit : $f \neq g$

On remarquera cependant que sur $[1;+\infty]$ on a f (x) = g(x)

Exercice 11: Soit f et g les fonctions numériques tel que: f(x) = x+1 et

$$g(x) = x^2 + x + 2$$

Comparer les fonctions f et q

Solution: $D_f = D_o = \mathbb{R}$

$$g(x)-f(x) = x^2 + x + 2 - (x+1) = x^2 + 1 \succ 0$$

 $\forall x \in \mathbb{R}$

Donc: $f(x) \prec g(x) \quad \forall x \in \mathbb{R} \text{ donc } f \prec g$

Exercice 12: Soit f et g les fonctions

numériques tel que: f(x) = x et $g(x) = \frac{1}{x}$

Comparer les fonctions f et q

Exercice 13: Soient les deux

fonctions: $f(x) = \frac{3x^2 + 1}{\sqrt{x^2}}$ et $g(x) = \frac{1 + 3x^2}{|x|}$

Comparer les fonctions f et g

Solution:

- on a $f(x) \in \mathbb{R}$ ssi $\sqrt{x^2} \in \mathbb{R}$ et $x \neq 0$ or on sait que $x^2 \ge 0$ donc $\sqrt{x^2} \in \mathbb{R}$ pour tout $x \in \mathbb{R}$

alors $f(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_f = \mathbb{R}^*$

- on a $g(x) \in \mathbb{R}$ ssi $|x| \neq 0$ ssi $x \neq 0$

donc $D_g = \mathbb{R}^*$

alors $D_f = D_g = \mathbb{R}^*$

on sait que $\sqrt{x^2} = |x|$ et $3x^2 + 1 = 1 + 3x^2$ donc

f(x)=g(x)

donc finalement on a trouvé que : $D_f = D_g = \mathbb{R}^*$

et f(x)=g(x)Donc: f=g.

Exercice 14: Soient les deux

fonctions: $h(x) = \frac{x^2 - x}{x}$ et t(x) = x - 1

Comparer les fonctions f et g

Solution:

- on a $h(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_h = \mathbb{R}^*$

- on a t(x) est un polynôme donc $D_t = \mathbb{R}$ donc $f \neq g$

Exercice 15: Soit f la fonction numérique tel

que:
$$f(x) = \frac{(3x+1)(2-x)}{4x^2-1}$$

Etudier le signe de le fonction f

Solution : $4x^2 - 1 \neq 0 \Leftrightarrow x \neq -\frac{1}{2}$ et $x \neq \frac{1}{2}$

Donc: $D_{I} = \mathbb{R} - \left\{ -\frac{1}{2}, \frac{1}{2} \right\}$

x	$-\infty$ $=$	<u>-1</u>	$\frac{-1}{3}$	$\frac{1}{2}$	2	+∞
3x+1	_	_	0 +	+		+
2-x	+	+	+	+	0	-
2x-1	_	_	_	0 +		+
2x+1	- () +	+	+		+
$\frac{(3x+1)(2-x)}{4x^2-1}$	_	+	0 -	+	0	_

$$f(x) \ge 0 \quad \text{ssi } x \in \left] -\frac{1}{2}; -\frac{1}{3} \right] \cup \left[\frac{1}{2}; 2 \right] \text{ donc } f \ge 0$$

$$\forall x \in \left[-\frac{1}{2}; -\frac{1}{3} \right] \cup \left[\frac{1}{2}; 2 \right]$$

$$f(x) \le 0$$
 ssi $x \in \left[-\infty; -\frac{1}{2} \right] \cup \left[-\frac{1}{3}; \frac{1}{2} \right] \cup \left[2; +\infty \right[$

Exercice 16: Soit f une fonction numérique définie sur \mathbb{R} par : $f(x) = -x^2 + x$

prof: atmani najib

Démontrer que f est majorée sur $\mathbb R$.

Solution : On met la fonction sous la forme canonique :

$$f(x) = -x^2 + x = -(x^2 - x) = -\left(\left(x - \frac{1}{2}\right)^2 - \frac{1}{4}\right) = -\left(x - \frac{1}{2}\right)^2 + \frac{1}{4}$$

On a:
$$-\left(x-\frac{1}{2}\right)^2 \le 0$$
 donc $-\left(x-\frac{1}{2}\right)^2 + \frac{1}{4} \le \frac{1}{4}$

donc:
$$f(x) \le \frac{1}{4} \quad \forall x \in \mathbb{R}$$

La fonction f est donc majorée sur \mathbb{R} par $M = \frac{1}{4}$

Exercice 17: Montrer que la fonction g définie sur \mathbb{R} par $g(x) = 4\sin x - 3$ est Bornée.

Solution :On a $\forall x \in \mathbb{R} -1 \le \sin x \le 1$ donc $-4 \le 4 \sin x \le 4$

donc $-4-3 \le 4\sin x - 3 \le 4-3$

donc $-7 \le g(x) \le 1$ g est donc bornée sur \mathbb{R} .

Exercice 18: Soit f une fonction numérique

$$tq: f(x) = \frac{1}{x^2 + 1}$$

1)Déterminer D_f

2) Démontrer que f est majorée sur $\ensuremath{\mathbb{R}}$.

3) Démontrer que f est minorée sur \mathbb{R} . Conclure **Solution :**1) $D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\}$

 $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$ pas de solution dans \mathbb{R} donc $D_f = \mathbb{R}$

2) On a $\forall x \in \mathbb{R}$ $x^2 \ge 0$ donc $x^2 + 1 \ge 0 + 1$

Donc
$$x^2 + 1 \ge 1$$
 donc $\frac{1}{x^2 + 1} \le 1$

donc $f(x) \le 1$ par suite f est donc majorée sur \mathbb{R} par M = 1

2) On a $\forall x \in \mathbb{R}$ $x^2 \ge 0$ donc $x^2 + 1 \ge 0 + 1$

Donc $x^2 + 1 \ge 1$ donc $x^2 + 1 \ge 0$

Donc: $0 \prec f(x)$

par suite f est donc minorée sur \mathbb{R} par m=0 conclusion : $0 \le f(x) \le 1 \quad \forall x \in \mathbb{R}$

f est donc bornée sur $\mathbb R$.

Exercice 19: Soit f une fonction numérique

tq:
$$f(x) = \frac{2x^2 + 7x + 7}{x^2 + 3x + 3}$$

1)Déterminer D_f

2) Démontrer que f est minorée par 1.

3) Démontrer que f est majorée par $\frac{7}{3}$.Conclure

Solution :1) $D_f = \{x \in \mathbb{R} / x^2 + 3x + 3 \neq 0\}$

 $\Delta = -3 \prec 0$ pas de solution dans \mathbb{R} donc $D_f = \mathbb{R}$ 2) soit $\forall x \in \mathbb{R}$

$$f(x)-1 = \frac{2x^2+7x+7}{x^2+3x+3} - 1 = \frac{2x^2+7x+7-1(x^2+3x+3)}{x^2+3x+3} = \frac{x^2+4x+4}{x^2+3x+3}$$

$$f(x)-1 = \frac{(x+2)^2}{x^2+3x+3}$$
 or $x^2+3x+3 > 0$ car $\Delta = -3 < 0$

(signe de a=1)

Et on a : $(x+2)^2 \ge 0$ donc $f(x) \ge 1$ $\forall x \in \mathbb{R}$

f est donc minorée sur \mathbb{R} par m=1

2) soit $\forall x \in \mathbb{R}$

$$f(x) - \frac{7}{3} = \frac{2x^2 + 7x + 7}{x^2 + 3x + 3} - \frac{7}{3} = \frac{-x^2}{3(x^2 + 3x + 3)} \le 0$$

par suite f est majorée par $\frac{7}{3}$.

conclusion: $1 < f(x) \le \frac{7}{3} \quad \forall x \in \mathbb{R}$

f est donc bornée sur $\ensuremath{\mathbb{R}}$.

Exercice 20: Soit f une fonction numérique

$$tq: f(x) = \frac{x-1}{x^2 + x + m} \quad avec \quad m \in \mathbb{R}$$

1) déterminer les valeurs de m pour que $D_f = \mathbb{R}$

2) Soit g la fonction numérique tq : $g(x) = \frac{1}{x+2}$

déterminer les valeurs de m pour que

$$\forall x \in \{-2,1\} \text{ on a} : f(x) = g(x)$$

Solution:

1)
$$D_f = \mathbb{R} \iff \forall x \in \mathbb{R} : x^2 + x + m \neq 0$$

$$x^{2} + x + m \neq 0$$
 ssi $\Delta = b^{2} - 4ac = 1 - 4m < 0$

Ssi
$$m > \frac{1}{4}$$

2)
$$f(x) = g(x) \forall x \in \{-2,1\} \Leftrightarrow$$

$$\frac{x-1}{x^2+x+m} = \frac{1}{x+2}$$

$$\Leftrightarrow$$
 $(x-1)(x+2) = x^2 + x + m \Leftrightarrow$

$$x^2 + x - 2 = x^2 + x + m$$

$$f(x) = g(x) \forall x \in \{-2, 1\} \Leftrightarrow -2 = m$$

Exercice 21: Soit f une fonction numérique tq:

$$f(x) = 5x^2 + 3$$

Montrer que f admet un minimum absolue sur $\ensuremath{\mathbb{R}}$ que l'on déterminera

 $\mathbf{Solution}: D_f = \mathbb{R}$

prof : atmani najib

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$ Donc $5x^2 \ge 0$ car 5 > 0

Par suite $5x^2 + 3 \ge 3$ et on a f(0) = 3

Donc pour tout $x \in \mathbb{R}$ $f(x) \ge f(0)$

d'où f(0)=3 est un minimum absolue de f sur $\mathbb R$

Exercice 22: Soit g une fonction numérique tq: $g(x) = -4x^2 + 1$

Montrer que g admet un maximum absolue sur \mathbb{R} que l'on déterminera

Solution: $D_g = \mathbb{R}$

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$ Donc $-4x^2 \le 0$ car -4 < 0

Par suite $-4x^2 + 1 \le 1$ et on a g(0) = 1

Donc pour tout $x \in \mathbb{R}$ $g(x) \le g(0)$

d'où $g\left(0\right) = 1$ est un maximum absolue de g sur \mathbb{R}

Exercice 23: Soit f une fonction numérique tq : $f(x) = -4x^2 + 4x + 5$

1°a) montrer que $f(x) = 6 - (2x - 1)^2$ pour tout $x \in \mathbb{R}$

b) montrer que $f(x) \le 6$ pour tout $x \in \mathbb{R}$

2° calculer : $f\left(\frac{1}{2}\right)$ et en déduire les extrémums

de f sur \mathbb{R}

Réponses: 1°a) on a $D_f = \mathbb{R}$

$$6 - (2x - 1)^2 = 6 - (4x^2 - 4x + 1)$$

$$=6-4x^2+4x-1=-4x^2+4x+5$$

Donc: $f(x) = 6 - (2x - 1)^2$

b) Donc pour tout $x \in \mathbb{R}$ on a $(2x-1)^2 \ge 0$

Par suite $-(2x-1)^2 \le 0$ donc $6-(2x-1)^2 \le 6$

Donc pour tout $x \in \mathbb{R}$ $f(x) \le 6$

2° on a
$$f\left(\frac{1}{2}\right) = 6 - \left(2 \times \frac{1}{2} - 1\right)^2 = 6 - \left(1 - 1\right)^2 = 6$$

on a pour tout $x \in \mathbb{R}$ $6-(2x-1)^2 \le 6$ alors

$$f(x) \le f\left(\frac{1}{2}\right)$$

Donc $f\left(\frac{1}{2}\right) = 6$ est un maximum de f sur \mathbb{R}

Exercice 24: Du tableau de variation

х	-5	-2	2	5
f(x)	5 /	0,5	2	-2

Déduire les extrémums de f

Solution:

Du tableau de variation on a :

Le nombre 2 est une valeur maximale de f au point $x_0 = 2$

Le nombre 0.5 est une valeur Minimale de f au point $x_0 = -2$

Exercice 25 : Soit f une fonction numérique tq : $f(x) = -x^2 + 4x - 3$

Montrer que 1 est le maximum absolu de f sur $\,\mathbb{R}\,$

Solution : $D_f = \mathbb{R}$

Montrons donc que : $f(x) \le 1$ et que l'équation

$$f(x)=1$$
 admet une solution dans \mathbb{R}

$$f(x)-1=-x^2+4x-3-1=-x^2+4x-4$$

$$f(x)-1 = -(x^2-4x+4) = -(x-2)^2 \le 0$$

Donc $f(x) \le 1 \ \forall x \in \mathbb{R}$ et on a :

$$f(x)=1 \Leftrightarrow f(x)-1=0 \Leftrightarrow -(x-2)^2=0 \Leftrightarrow x=2$$

Donc 'équation f(x)=1 admet une solution dans \mathbb{R}

Et on a : f(2)=1 donc : $f(x) \le f(2) \forall x \in \mathbb{R}$

que f(2)=1 est le maximum absolue de f sur $\mathbb R$

Exercice 26: Soit f une fonction numérique tq:

$$f(x) = \frac{2x^2 + 3}{x^2 + 1}$$

- 1)Déterminer D_f
- 2) a) Démontrer que f est majorée par 3.
- b) est ce que 3 est une valeur maximale de f?
- 3) a) Démontrer que f est minorée par 2.
- b) est ce que 2 est une valeur minimale de f. ?

Solution:

1)
$$D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\}$$

 $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$ pas de solution dans \mathbb{R} donc $D_f = \mathbb{R}$

2) a)soit $\forall x \in \mathbb{R}$

$$f(x)-3 = \frac{2x^2+3}{x^2+1}-3 = \frac{2x^2+3-3(x^2+1)}{x^2+1} = \frac{2x^2+3-3x^2-3}{x^2+1}$$

Donc $f(x)-3=\frac{-x^2}{x^2+1} \le 0$ par suite $f(x) \le 3 \quad \forall x \in \mathbb{R}$

f est donc majorée sur \mathbb{R} par M=3

b) on remarque que : f(0)=3

donc $f(x) \le f(0) \quad \forall x \in \mathbb{R}$

Donc 3 est une valeur maximale de f

2) a)soit $\forall x \in \mathbb{R}$

$$f(x)-2=\frac{2x^2+3}{x^2+1}-2=\frac{2x^2+3-2(x^2+1)}{x^2+1}=\frac{2x^2+3-2x^2-2}{x^2+1}$$

Donc $f(x)-2=\frac{1}{x^2+1} > 0$ par suite:

 $0 \prec f(x) \quad \forall x \in \mathbb{R}$

par suite f est donc minorée sur \mathbb{R} par m=2

b) on remarque que : $f(x) \succ 2 \ \forall x \in \mathbb{R}$

2 n'est pas donc une valeur minimale de f conclusion : $2 \prec f(x) \le 3 \quad \forall x \in \mathbb{R}$

f est donc bornée sur $\mathbb R$.

Exercice 27: Soit f une fonction numérique

définie sur]1;+ ∞ [par : $f(x) = \frac{\sqrt{x+1} - \sqrt{2}}{x-1}$

1)étudier le signe de f

2) a)Démontrer que f est majorée par $\frac{\sqrt{2}}{4}$.

b) est ce que $\frac{\sqrt{2}}{4}$ est une valeur maximale de f?

Solution :1) soit $x \in]1; +\infty[$

$$f(x) = \frac{\sqrt{x+1} - \sqrt{2}}{x-1} = \frac{\left(\sqrt{x+1} - \sqrt{2}\right)\left(\sqrt{x+1} + \sqrt{2}\right)}{\left(x-1\right)\left(\sqrt{x+1} + \sqrt{2}\right)}$$

$$f(x) = \frac{x+1-2}{(x-1)(\sqrt{x+1}+\sqrt{2})} = \frac{x-1}{(x-1)(\sqrt{x+1}+\sqrt{2})}$$

$$f\left(x\right) = \frac{1}{\sqrt{x+1} + \sqrt{2}} \succ 0$$

Donc f(x) > 0 si $x \in]1; +\infty[$

2) a) $x \in]1; +\infty[$ montrons que $f(x) \le \frac{\sqrt{2}}{4}$

soit $x \in]1; +\infty[$ donc $x \succ 1$ cad $x+1 \succ 2$

donc $\sqrt{x+1} \succ \sqrt{2}$ donc $\sqrt{x+1} + \sqrt{2} \succ 2\sqrt{2}$

donc $\frac{1}{\sqrt{x+1}+\sqrt{2}} \prec \frac{1}{2\sqrt{2}}$

donc $f(x) < \frac{\sqrt{2}}{4} \forall x \in]1; +\infty[$

f est donc majorée sur \mathbb{R} par M=3

conclusion: $2 \prec f(x) \leq 3 \quad \forall x \in \mathbb{R}$

b) on remarque que : f(0)=3

donc $f(x) \le f(0) \quad \forall x \in \mathbb{R}$

Donc 3 est une valeur maximale de f

f est donc bornée sur]1; + ∞ [par $\frac{\sqrt{2}}{\sqrt{2}}$

b) puisque
$$f(x) \neq \frac{\sqrt{2}}{4} \forall x \in]1; +\infty[$$

$$\frac{\sqrt{2}}{4}$$
 N'est pas une valeur maximale de f

Exercice 28: Soit f une fonction numérique

définie sur]1;+ ∞ [par : $f(x) = \frac{\sqrt{x-2}}{\sqrt{x+2}}$

- 1))Déterminer D_f
- 2) Démontrer que −1 est la valeur minimal de f
- 3) Démontrer que f est majorée par 1 et est-ce que 1 est une valeur maximale de f?

Solution:1)

$$D_{f} = \left\{ x \in \mathbb{R} / \sqrt{x} + 2 \neq 0 e t x \ge 0 \right\} = \left\{ x \in \mathbb{R} / \sqrt{x} \neq -2 e t x \ge 0 \right\}$$
$$D_{f} = \left[0; +\infty \right[$$

2) Montrons donc que : $f(x) \ge -1$ et que

l'équation f(x) = -1 admet une solution dans \mathbb{R}^+

$$f(x)-(-1) = f(x)+1 = \frac{\sqrt{x}-2}{\sqrt{x}+2}+1 = \frac{2\sqrt{x}}{\sqrt{x}+2} \ge 0$$

Donc $f(x) \ge -1 \ \forall x \in \mathbb{R}^+$ et on a :

$$f(x) = -1 \Leftrightarrow f(x) + 1 = 0 \Leftrightarrow \frac{2\sqrt{x}}{\sqrt{x} + 2} = 0 \Leftrightarrow x = 0$$

Donc l'équation f(x) = -1 admet une solution dans \mathbb{R}^+

Et on a: f(0) = -1 donc: $f(x) \ge f(0) \forall x \in \mathbb{R}$

Ont dit que f(0) = -1 est le minimum absolue de f sur \mathbb{R}^+

3) soit
$$x \in \mathbb{R}^+$$
 $f(x)-1 = \frac{\sqrt{x-2}}{\sqrt{x+2}} - 1 = \frac{-4}{\sqrt{x+2}} < 0$

Donc $f(x) \prec 1 \quad \forall x \in \mathbb{R}^+$

Donc f est donc majorée sur \mathbb{R}^+ par M=1Et puisque f(x)=1 n'admet pas de solution dans \mathbb{R}^+

Donc 1 n'est pas une valeur maximale de f

f est donc bornée sur]1;+ ∞ [par $\frac{\sqrt{2}}{4}$

b) puisque
$$f(x) \neq \frac{\sqrt{2}}{4} \forall x \in]1; +\infty[$$

 $\frac{\sqrt{2}}{4}$ n'est pas une valeur maximale de f

Exercice 28 : Soit f une fonction numérique tel que: $f(x) = x^2 - 2x + 3$

- 1)a) Démontrer que f est minorée.
- b) est ce que f admet une valeur minimale?
- 2) Démontrer que f est non majorée.

Solution: $D_f = \mathbb{R}$

1)a)
$$f(x) = x^2 - 2x + 3 = (x^2 - 2x + 1) + 2 = (x - 1)^2 + 2$$

Donc
$$f(x)-2=(x-1)^2 \ge 0$$

donc: $f(x) \ge 2 \ \forall x \in \mathbb{R}$ donc que f est minorée par 2

et on a : f(1) = 2 donc : $f(x) \ge f(1) \forall x \in \mathbb{R}$

Donc f admet une valeur minimale c'est 2

2) Démontrons que f est non majorée.

Supposons f majorée donc : $\exists M \in \mathbb{R} : f(x) \leq M$

 $\forall x \in \mathbb{R}$

$$\Leftrightarrow \forall x \in \mathbb{R} : (x-1)^2 + 2 \le M$$

$$\Leftrightarrow \forall x \in \mathbb{R} : (x-1)^2 \le M-2$$

$$\Leftrightarrow \forall x \in \mathbb{R} : \sqrt{(x-1)^2} \le \sqrt{M-2}$$
 (on peut toujours supposer $M \ge 2$

$$\Leftrightarrow \forall x \in \mathbb{R} : |x-1| \le \sqrt{M-2}$$

Donc on a: $-\sqrt{M-2} \le x-1 \le \sqrt{M-2} \quad \forall x \in \mathbb{R}$ Donc on a: $-\sqrt{M-2}+1 \le x \le \sqrt{M-2}+1 \quad \forall x \in \mathbb{R}$ absurde

Donc f est non majorée

Exercice 29 : Soit f une fonction numérique $tq: f(x) = 2x^2 - 4x - 2$

étudier les variations de f et dresser le tableau de variation et tracer la dans le repére $(O; \vec{i}; \vec{j})$

la courbe (C_f) de f

Solution : on a f est une fonction polynôme donc $D_f = \mathbb{R}$

On a a = 2 et b = -4 et c = -2

$$(f(x)=ax^2+bx+c)$$

Donc
$$-\frac{b}{2a} = \frac{4}{2 \times 2} = 1$$
 et $(f(1) = 2 - 4 - 2 = -4)$

Pour tout réel $x \in \mathbb{R}$ on peut écrire sous la forme:

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = 2(x-1)^2 - 4$$

Soit W (1;-4) Donc dans le repére $(0;\vec{i};\vec{j})$ I

a courbe (C_f) c'est une parabole de sommet W (1;-4) et d'axe de symétrie la droite x=1

Tableau de variations de f

On a a=2>0 donc:

$$W(1;-4)$$

Exercice 30 : Soit g une fonction numérique

tq:
$$g(x) = -\frac{1}{2}x^2 + 2x + 1$$

étudier les variations de g et dresser le tableau de variation et tracer la dans le repére $\left(O\,;\vec{i}\,;\vec{j}\,\right)$

la courbe $\left(C_{_{g}}\right)$ de g

Solution :
$$g(x) = -\frac{1}{2}x^2 + 2x + 1$$

on a g est une fonction polynôme donc $D_g = \mathbb{R}$

On a
$$a = -\frac{1}{2}$$
 et $b = 2$ et $c = 1(g(x) = ax^2 + bx + c)$

Donc
$$-\frac{b}{2a} = 2$$
 et $\beta = -\frac{\Delta}{4a} = -\frac{4+2}{-2} = 3$

Donc pour tout réel $x \in \mathbb{R}$ on peut écrire sous la

forme:
$$g(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = -\frac{1}{2}(x-2)^2 + 3$$

 $\left(g(2) = -\frac{1}{2}(2-2) + 3 = 3\right)$

Soit
$$W$$
 (2;3) Donc dans le repére $\left(0; \vec{i}; \vec{j}\right)$ la courbe $\left(C_{g}\right)$ c'est une parabole de sommet W (2;3) et d'axe de symétrie la droite $x=2$

Tableau de variations de f

On a $a = -\frac{1}{2} < 0$ donc :

x	$-\infty \ 2 + \infty$
f(x)	³

Exercice 31 Soit f une fonction numérique tq :

$$f\left(x\right) = \frac{2x+1}{x-1}$$

étudier les variations de f et dresser le tableau de variation et tracer la dans le repére $\left(O\,;\vec{i}\,;\vec{j}\,\right)$

la courbe (C_f) de f

Solution:

on a $f(x) \in \mathbb{R}$ ssi $x-1 \neq 0$ ssi $x \neq 1$

Donc
$$D_f = \mathbb{R} - \{1\}$$
 $\Delta = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -2 - 1 = -3 < 0$

• <u>Donc le tableau de variations de</u> $x \longrightarrow \frac{2x+1}{x-1}$

x	$-\infty$	$1 + \infty$
f(x)	_	

Représentation graphique

 (C_f) est l'hyperbole de centre W(1;2) et d'asymptotes les droites d'équations respectives x=1 et y=2

-2	1-	0	1	2	3	4
1	$\frac{1}{2}$	-1		5	$\frac{7}{2}$	3

Exercice 32 : Soit f une fonction numérique tq :

$$g(x) = \frac{-x}{x-2}$$
 étudier les variations de g et

dresser le tableau de variation et tracer la dans le repére $\left(O;\vec{i};\vec{j}\right)$ la courbe $\left(C_{g}\right)$ de g

Solution :on a $g(x) \in \mathbb{R}$ ssi $x-2 \neq 0$ ssi $x \neq 2$ Donc $D_g = \mathbb{R} - \{2\}$

$$\Delta = \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix} = 2 \succ 0$$

• Donc le tableau de variations

x	$-\infty$ 2	$2 + \infty$
f(x)	1	1

• Représentation graphique

d'asymptotes les droites d'équations respectives x=2 et y=-1

-1	0	1	2	3	4	5
-1/3	0	1		-3	-2	-5/3

 (C_f) est l'hyperbole de centre W(2;-1) et

Exercice 33 : Soit f une fonction numérique

définie par : $f(x) = \frac{1}{4}x^3$

1) Déterminer D_f

2)étudier les variations de f et dresser le tableau de variation

3) tracer la dans le repére $(O; \vec{i}; \vec{j})$ la courbe (C_f) de f

Solutions: 1) $D_f = x \in \mathbb{R}$

2) soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 < x_2$

Donc: $x_1^3 < x_2^3$ Donc: $\frac{1}{4}x_1^3 < \frac{1}{4}x_2^3$

Donc: $f(x_1) < f(x_2)$

Donc f est strictement croissante

Tableau de variation

Х	-3	-2	-1	0	1	2	3
f(x)	6.5	-2	-1/4	0	1/4	2	6.5

Exercice 34 : Soit f une fonction numérique

définie par : $f(x) = \sqrt{x+2}$

- 1) Déterminer D_f
- 2)étudier les variations de f et dresser le tableau de variation
- 3)tracer la dans le repére $(O; \vec{i}; \vec{j})$ la courbe (C_f) de f

Solutions: 1)

$$D_f = \{x \in \mathbb{R} / x + 2 \ge 0\} = \{x \in \mathbb{R} / x \ge -2\} = [-2, +\infty[$$
2) soient $x_1 \in [-2, +\infty[$ et $x_2 \in [-2, +\infty[$ tq $x_1 < x_2$

Donc: $x_1 + 2 < x_2 + 2$ Donc: $\sqrt{x_1 + 2} < \sqrt{x_2 + 2}$

 $Donc: f(x_1) < f(x_2)$

Donc f est strictement croissante

Tableau de variation :

	х	-2	-1	0	2	7
-	f(x)	0	1	$\sqrt{2}$	2	3

prof: atmani najib

Exercice 35: Soit les fonctions f et g

tel que :
$$f(x) = x^2 - 2x + 3$$
 et $g(x) = 2x + 1$

Déterminer : $g \circ f$ et $f \circ g$

Solution :on a: $D_f = \mathbb{R}$ et $D_g = \mathbb{R}$ donc

$$D_{g \circ f} = \mathbb{R}$$
 et $D_{f \circ g} = \mathbb{R}$

$$(g \circ f)(x) = g(f(x)) = g(x^2 - 2x + 3) = 2(x^2 - 2x + 3) + 1$$

$$(g \circ f)(x) = 2x^2 - 4x + 7$$

$$(f \circ g)(x) = f(g(x)) = f(2x+1) = (2x+1)^2 - 2(2x+1) + 3$$

$$(f \circ g)(x) = 4x^2 + 4x + 1 - 4x - 2 + 3 = 4x^2 + 2$$

Exercice 36: Soit les fonctions f et g définies

par:
$$f(x) = 3x + 4$$
 et $g(x) = \frac{1}{x+1}$

- 1) Déterminer $D_{g \circ f}$
- 2) déterminer : $(g \circ f)(x)$

Solution: 1) $D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in D_f etf(x) \in D_g \right\}$

On a $D_f = \mathbb{R}$ et $D_g = \mathbb{R} - \{-1\}$ donc

$$D_{g \circ f} = \left\{ x \in \mathbb{R} \, / \, x \in \mathbb{R} etf(x) \neq -1 \right\}$$

$$f(x) = -1 \Leftrightarrow 3x + 4 = -1 \Leftrightarrow 3x = -5 \Leftrightarrow -\frac{5}{3} = x$$

$$\operatorname{donc}: D_{g \circ f} = \mathbb{R} - \left\{ -\frac{5}{3} \right\}$$

2)on a: $D_f = \mathbb{R}$ et $D_g = \mathbb{R} - \{-1\}$

$$et D_{g \circ f} = \mathbb{R} - \left\{ -\frac{5}{3} \right\}$$

$$(g \circ f)(x) = g(f(x)) = g(3x+4) = \frac{1}{3x+4+1}$$

$$(g \circ f)(x) = \frac{1}{3x+5}$$

Exercice 37: Soit les fonctions f et g définies

par:
$$g(x) = \frac{x}{x+2}$$
 et $f(x) = \frac{x+3}{x+1}$

On pose : $h(x) = (g \circ f)(x)$

- 1) Déterminer D_h 2) déterminer : h(x)
- 3) Soit la fonctions k définie par : $k(x) = \frac{x+3}{3x+5}$

Les fonctions h et k sont-elles égales ?

Solution : 1)on a : $D_f = \mathbb{R} - \{-1\}$ et

$$D_{g} = \mathbb{R} - \{-2\}$$

$$D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in D_f etf(x) \in D_g \right\}$$

$$D_{g \circ f} = \left\{ x \in \mathbb{R} / x \neq -1etf(x) \neq -2 \right\}$$

$$f(x) = -2 \Leftrightarrow \frac{x+3}{x+1} = -2$$

$$\Leftrightarrow$$
 $-2(x+1) = x+3 \Leftrightarrow -3x = 5 \Leftrightarrow x = -\frac{5}{3}$

donc:
$$D_{g \circ f} = \mathbb{R} - \left\{ -\frac{5}{3}; -1 \right\}$$

$$h(x) = (g \circ f)(x) = g(f(x)) = g\left(\frac{x+3}{x+1}\right)$$

$$h(x) = \frac{\frac{x+3}{x+1}}{\frac{x+3}{x+1}+2} = \frac{\frac{x+3}{x+1}}{\frac{x+3+2x+2}{x+1}} = \frac{\frac{x+3}{x+1}}{\frac{3x+5}{x+1}} = \frac{x+3}{3x+5}$$

Donc:
$$h(x) = \frac{x+3}{3x+5}$$

3)Les fonctions h et k ne sont pas égales car ils n'ont pas le même ensemble de définition :

$$D_h = \mathbb{R} - \left\{ -\frac{5}{3}; -1 \right\}$$
 et $D_k = \mathbb{R} - \left\{ -\frac{5}{3} \right\}$

Exercice 38 : exprimer les fonctions suivantes à l'aide de fonctions élémentaires :

1)
$$h_1(x) = \frac{1}{3x-1}$$
 2) $h_2(x) = \sqrt{x+3}$

3)
$$h_3(x) = 3\sqrt{x} + 4$$

Solution : 1)
$$h_1(x) = \frac{1}{3x-1}$$
 on a : $h_1(x) = (g \circ f)(x)$

avec
$$f(x) = 3x - 1$$
 et $g(x) = \frac{1}{x}$

2)
$$h_2(x) = \sqrt{x+3}$$
 on a: $h_2(x) = (g \circ f)(x)$

avec
$$f(x) = x + 3$$
 et $g(x) = \sqrt{x}$

3)
$$h_3(x) = 3\sqrt{x} + 4$$
 on a: $h_3(x) = (g \circ f)(x)$

avec
$$f(x) = \sqrt{x}$$
 et $g(x) = 3x + 4$

Exercice 39 : Soit f la fonction f définie sur

un intervalle $[0; +\infty[$ tel que : $f(x) = -5x^2 + 7$

Décomposer la fonction f en fonctions élémentaire et étudier les variations de f **Solution**:

$$v(x) = -5x + 7$$
 et $u(x) = x^2$

La fonctions $f = v \circ u$

La fonction u est croissante sur $[0; +\infty[$ et

$$u(x) = x^2 \in [0; +\infty[$$
 et v est décroissante sur

 $[0;+\infty[$ Donc d'après le théorème des fonctions composées, $f = v \circ u$ est décroissante sur

$$[0;+\infty[$$

prof: atmani najib

Exercice 40 : Soit la fonction h définie sur $]-\infty;1]$ par $h(x)=\sqrt{1-x}$

- 1) Décomposer h en deux fonctions élémentaires.
- 2) Déterminer les variations de h.

Solution :1) La fonction h se décompose de cette façon $h = g \circ f$

on a alors :
$$f(x) = 1 - x$$
 et $g(x) = \sqrt{x}$

- 2) On sait que:
- ⇒ f est décroissante sur]-∞;1]
- \Rightarrow g est croissante sur $f(]-\infty;1])=[0;+\infty[$

Donc La fonction h décroissante sur $]-\infty;1]$ On a alors le tableau de variation suivant

Exercice 41 :1) Quelle est la période des fonctions suivantes :

- a) $f: x \rightarrow \sin(4x-1)$ b) $g: x \rightarrow \cos(5x)$
- 2) Trouver une fonction de période $T = \frac{3}{4}$

Solution :1)a)
$$T = \frac{2\pi}{a} = \frac{2\pi}{4} = \frac{\pi}{2}$$
 1)b) $T = \frac{2\pi}{5}$

2)Une fonction est. $h: x \to \cos(\frac{8\pi}{3}x)$

Exercice 42 :Soit f une fonction numérique définie sur \mathbb{R} et périodique de période T=2

tel que : $f(x) = 2x - x^2 \quad \forall x \in [0;2]$

1)Tracer la représentation graphique de la fonction sur $\left[-2;8\right]$ dans un repére $\left(0;\vec{i};\vec{j}\right)$

2) calculer: f(4.1); f(-3.5); f(265.11)

3) donner l'expression de : $f(x) = 2x - x^2$ sur

les intervalles : $I_k = [2k; 2(k+1)] k \in \mathbb{Z}$

Solution: dans l'intervalle $I_0 = [0;2[$

on a f est une fonction polynôme donc $D_f = \mathbb{R}$

On a a=-1 et b=2 et c=0

$$(f(x) = ax^2 + bx + c)$$

Donc
$$-\frac{b}{2a} = -\frac{-2}{2 \times (-1)} = 1$$
 et $(f(1) = 2 - 1 = 1)$

Donc la courbe (C_f) c'est une portion parabole de sommet A(1;1) et d'axe de symétrie la droite x=1

Pour Tracer la représentation graphique de la fonction sur [-2;8] il suffit de Tracer la représentation graphique de la fonction sur $I_0 = [0;2[$

et utiliser les translation $2k\vec{i}$ avec $k \in \mathbb{Z}$ 2) calculer :

$$f(4.1) = f(2+2.1) = f(2.1) = f(2+0.1) = f(0.1)$$

$$f(4.1) = 2(0.1) - (0.1)^2 = 0.19$$

$$f(-3.5) = f(-4+0.5) = f(0.5)$$

$$f(-3.5) = 2(0.5) - (0.5)^2 = 0.75$$

$$f(265.11) = f(2 \times 132 + 1.11) = f(1.11)$$

$$f(1.11) = 2(1.11) - (1.11)^2 \approx 0.98$$

3) l'expression de : $f(x) = 2x - x^2$ sur les

intervalles : $I_k = \lceil 2k; 2(k+1) \rceil$ $k \in \mathbb{Z}$

$$x \in I_k = \lceil 2k; 2(k+1) \rceil \iff 2k \le x \prec 2(k+1)$$

$$x \in I_k \Leftrightarrow 0 \le x - 2k \prec 2 \Leftrightarrow f(x - 2k) = f(x)$$

$$x \in I_k \Leftrightarrow f(x) = 2(x-2k) - (x-2k)^2$$
 avec

$$k \le \frac{x}{2} < k+1 \text{ cad } k = E\left(\frac{x}{2}\right)$$

Exercice 43 : Soit la courbe (C_f) représentative de f telle que $f(x) = x^3 - 4x^2 + 3$ et la droite (D) d'équation y = -x - 3

1- Résoudre graphiquement l'équation f(x) = 3

puis l'inéquation $f(x) \prec 3$.

- 2- Résoudre graphiquement l'équation f(x) = 0puis l'inéquation $f(x) \ge 0$
- 3- Résoudre graphiquement l'équation f(x) = -x 3 puis l'inéquation $f(x) \le -x 3$

Réponses : 1) f(x) = 3 La solution est l'ensemble des antécédents de $3: S = \{0; 4\}$

2- f(x) = 0 La solution est l'ensemble des antécédents de 0 : $S = \{a;1;b\}$ Avec $-1 \prec a \prec -0.5$ et $3.5 \prec b \prec 4$

$$f(x) \ge 0$$
 $S = [a;1] \cup [b;+\infty[$

3- f(x) = -x - 3 La solution l'ensemble des abscisses des points d'intersection de (C_f) et de D : y = -x - 3 donc $S = \{-1; 2; 3\}$

$$f(x) \le -x - 3$$
 $S =]-\infty; -1] \cup [2;3]$

Exercice 44: Soient f et g les deux fonctions définies sur R par: $f(x) = x^2 - 3x - 4$ et g(x) = 3x + 12

- 1) Tracer Les courbes (C_f) et (C_g)
- 2) Résoudre graphiquement et algébriquement l'équation f(x) = g(x)
- 3) Résoudre graphiquement et algébriquement l'inéquation $f(x) \ge g(x)$

4) Trouver les points d'intersection de la courbe (C_f) avec les axes du repére

Réponses : 1) Les courbes représentatives (C_f) (en rouge) et (C_g) (en bleu) sont données dans le repére ci-dessous

2) a) résolution graphique de l'équation f(x) = g(x)

Il suffit de chercher les abscisses des points d'intersection des courbes (C_f) et (C_g)

On a donc x = -2 et x = 8 donc $S = \{-2, 8\}$ b) résolution algébrique de l'équation f(x) = g(x)f(x) = g(x) ssi $x^2 - 3x - 4 = 3x + 12$ ssi

$$x^{2}-6x-16=0$$

 $a=1$ et $b=-6$ et $c=-16$

$$\Delta = b^2 - 4ac = (-6)^2 - 4 \times 1 \times (-16) = 36 + 64 = 100 = (10)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

$$x_1 = \frac{-(-6) + \sqrt{100}}{2 \times 1} = \frac{6 + 10}{2} = \frac{16}{2} = 8$$
 et
$$x_2 = \frac{-(-6) - \sqrt{100}}{2 \times 1} = \frac{6 - 10}{2} = \frac{-4}{2} = -2$$

donc $S = \{-2, 8\}$

3) a) résolution graphique de l'inéquation $f(x) \succ g(x)$

La courbe (C_f) est au-dessus de (C_g) si $x \in]-\infty; -2[\cup]8; +\infty[$

prof: atmani najib

Donc
$$S =]-\infty; -2[\cup]8; +\infty[$$

b) résolution algébrique de l'inéquation $f(x) \succ g(x)$

$$f(x) \succ g(x)$$
 ssi $x^2 - 3x - 4 \succ 3x + 12$ ssi $x^2 - 6x - 16 \succ 0$

Les racines sont : $x_1 = 8$ et $x_2 = -2$

x	$-\infty$	-2	3	3	$+\infty$
$x^2-6x-16$	+	þ	- (}	+

Donc
$$S =]-\infty; -2[\cup]8; +\infty[$$

5) a) Intersection de la courbe $\left(C_{f}\right)$ avec l'axe des abscisses

Les points d'intersection C et D de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l'équation f(x) = 0

$$f(x) = 0 \text{ ssi } x^2 - 3x - 4 = 0$$

$$a = 1 \text{ et } b = -3 \text{ et } c = -4$$

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times (-4) = 9 + 16 = 25 = (5)^2 > 0$$

$$x_1 = \frac{-(-3) + \sqrt{25}}{2 \times 1} = \frac{3+5}{2} = \frac{8}{2} = 4 \text{ et } x_2 = \frac{-(-3) - \sqrt{25}}{2 \times 1} = \frac{-2}{2} = -1$$

donc les points d'intersection de la courbe $\left(C_{f}\right)$ avec l'axe des abscisses sont :

$$C(-1;0)$$
 et $D(4;0)$

b) Intersection de la courbe $\left(C_{f}\right)$ avec l'axe des ordonnées

le point d'intersection de la courbe (C_f) avec l'axe des ordonnées a une abscisse nulle et on a $f(0)=0^2-3\times0-4=-4$

donc le point d'intersection de la courbe $\left(C_{f}\right)$ avec l'axe des ordonnées est : $E\left(-4;0\right)$

Exercice 45: Soient f et g les deux fonctions définies sur R par : $f(x) = -x^2 - 2x + 3$ et

$$g(x) = \frac{x-1}{x+2}$$
 et (C_f) et (C_g) Les courbes représentatives de f et g

1) dresser le Tableau de variations de f et de g 2) a)Trouver les points d'intersection de la courbe (C_f) avec l'axes des abscisses

b)Trouver le point d'intersection de la courbe (C_g) avec l' axes des abscisses

3) Tracer Les courbes représentatives (C_f) (C_{g}) dans le même repère

4) a)Résoudre graphiquement l'équation f(x) = g(x)

b)Résoudre graphiquement l'inéquation $f(x) \ge g(x)$

Réponses : 1)a) $f(x) = -x^2 - 2x + 3$ on a f est une fonction polynôme donc $D_f = \mathbb{R}$ On a a = -1 et b = -2 et c = 3 $(f(x) = ax^2 + bx + c)$

Donc
$$-\frac{b}{2a} = -\frac{-2}{2 \times (-1)} = -1$$
 et $(f(-1) = 4)$

Donc la courbe (C_{f}) c'est une parabole de sommet A(-1;4)

et d'axe de symétrie la droite x = -1Donc le tableau de variations de f

x	$-\infty$ -1 $+\infty$
f(x)	

1)b)
$$g(x) = \frac{x-1}{x+2}$$
 on a $g(x) \in \mathbb{R}$ ssi $x+2 \neq 0$

ssi $x \neq -2$ Donc $D_g = \mathbb{R} - \{-2\}$

$$\Delta = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 2 + 1 = 3 \succ 0$$

 (C_{φ}) est l'hyperbole de centre W(-2;1) et d'asymptotes les droites d'équations respectives x = -2 et y = 1

Donc le tableau de variations de g

x	$-\infty$ –	$2 + \infty$
g(x)	1	1

2)a) Intersection de la

courbe (C_f) avec l'axe des abscisses

Les points d'intersection C et D de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l'équation f(x) = 0

$$f(x) = 0$$
 ssi $-x^2 - 2x + 3 = 0$

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times 3 \times (-1) = 4 + 11 = 16 > 0$$

$$x_2 = \frac{-(-2) - \sqrt{16}}{2 \times (-1)} = 1$$
 donc les points d'intersection

de la courbe (C_f) avec l'axe des abscisses sont :

$$A(-3;0)$$
 et $B(1;0)$

b) Intersection de la courbe $\left(C_{g}\right)$ avec l'axe des abscisses

$$g(x) = 0$$
 ssi $\Leftrightarrow \frac{x-1}{x+2} = 0 \Leftrightarrow x-1 = 0 \Leftrightarrow x = 1$

le point d'intersection de la courbe $\left(C_{g}\right)$ avec

l'axe des abscisses est : C(1;0)

3)Représentation graphique

Les courbes représentatives (C_f) (en rouge) et $\left(C_{g}
ight)$ (en bleu) sont données dans le repére cidessous

4) a) résolution graphique de l'équation f(x) = g(x)

Il suffit de chercher les abscisses des points d'intersection des courbes (C_f) et (C_g)

On a donc x=1 donc $S=\{1\}$

4)b) résolution graphique de l'inéquation $f(x) \ge g(x)$

La courbe (C_f) est au-dessus de (C_g) si $x \in [-2;1]$

Donc S = [-2;1]

Exercice 46 : Soit f une fonction numérique tq :

$$f(x) = \sqrt{x + \sqrt{x}} - \sqrt{x}$$

- 1)Déterminer D_f
- 2) Démontrer que f est minorée.
- 3) Démontrer que f est majorée par $\frac{1}{2}$ Conclure

Solution :1)
$$D_f = \{x \in \mathbb{R} / x \ge 0\} = \mathbb{R}^+$$

2) soit
$$x \in \mathbb{R}^+$$
 on a $x + \sqrt{x} \ge x$

Donc:
$$\sqrt{x+\sqrt{x}} \ge \sqrt{x}$$
 donc

$$f\left(x\right) = \sqrt{x + \sqrt{x}} - \sqrt{x} \ge 0$$

f est donc minorée sur \mathbb{R}^+ par m=0

2) soit $x \in \mathbb{R}^+$

$$f(x) = \sqrt{x + \sqrt{x}} - \sqrt{x} = \frac{\left(\sqrt{x + \sqrt{x}} - \sqrt{x}\right)\left(\sqrt{x + \sqrt{x}} + \sqrt{x}\right)}{\left(\sqrt{x + \sqrt{x}} + \sqrt{x}\right)} \ge 0$$

$$f(x) = \frac{x + \sqrt{x} - x}{\left(\sqrt{x + \sqrt{x}} + \sqrt{x}\right)} = \frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{\frac{x + \sqrt{x}}{x}} + 1\right)} = \frac{1}{\left(\sqrt{1 + \frac{1}{\sqrt{x}}} + 1\right)}$$

Si
$$x \in \mathbb{R}^{+}$$
: $\frac{1}{\sqrt{x}} > 0$ donc $1 + \frac{1}{\sqrt{x}} > 1$

donc
$$\sqrt{1+\frac{1}{\sqrt{x}}} > 1$$
 donc $\sqrt{1+\frac{1}{\sqrt{x}}} + 1 > 2$

donc
$$\frac{1}{\left(\sqrt{1+\frac{1}{\sqrt{x}}}+1\right)} < \frac{1}{2}$$
 donc $f(x) < \frac{1}{2}$

et on a :
$$f(0) = 0 \prec \frac{1}{2}$$
 donc $\forall x \in \mathbb{R}^+$ $f(x) \prec \frac{1}{2}$

par suite f est majorée par $\frac{1}{2}$.

conclusion:
$$0 < f(x) < \frac{1}{2} \quad \forall x \in \mathbb{R}^+$$

f est donc bornée sur \mathbb{R}^+ .

Exercice 47 : Soit f une fonction numérique tq :

$$f(x) = x^2 + 2x\sqrt{x} + x - 4$$

- 1) Démontrer que f admet une valeur minimale
- 3) Démontrer que f n'est pas majorée

Solution : 1)
$$D_f = \{x \in \mathbb{R} / x \ge 0\} = \mathbb{R}^+$$

soit $x \in \mathbb{R}^+$

$$f(x) = x^2 + 2x\sqrt{x} + x - 4 = x^2 + 2x\sqrt{x} + (\sqrt{x})^2 - 4$$

$$f(x) = (x + \sqrt{x})^2 - 4$$
 donc

$$f(x) + 4 = (x + \sqrt{x})^2 \ge 0$$

donc $f(x)+4 \ge 0$ donc $f(x) \ge -4$

et on a :
$$f(0) = -4$$
 donc $f(x) \ge f(0)$

donc f(0) = -4 est une valeur minimale de f au point $x_0 = 0$

2) Démontrons que f est non majorée.

Supposons f majorée donc : $\exists M \in \mathbb{R} : f(x) \leq M$

 $\forall x \in \mathbb{R}^+$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : (x + \sqrt{x})^2 - 4 \le M$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : (x + \sqrt{x})^2 \le M + 4$$

 $\Leftrightarrow \forall x \in \mathbb{R}^+ : x + \sqrt{x} \le \sqrt{M+4}$ (on peut toujours supposer $M \ge 0$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : \left(\sqrt{x}\right)^2 + 2 \times \frac{1}{2}\sqrt{x} + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 \le \sqrt{M+4}$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : \left(\sqrt{x} + \frac{1}{2}\right)^2 \le \sqrt{M+4} + \frac{1}{4}$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : \sqrt{x} \le \sqrt{\sqrt{M+4} + \frac{1}{4} - \frac{1}{2}}$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : x \le \left(\sqrt{\sqrt{M+4} + \frac{1}{4}} - \frac{1}{2}\right)^2 \text{Absurde}$$

Donc f est non majorée

Exercice 48: Soient f et g et h les trois fonctions définies par:

$$f(x) = \frac{6x^2 + 8x + 11}{(x-1)^2}$$
 et $g(x) = \frac{2x+3}{x-1}$ et $h(x) = x^2 + 2$

- 1)a) Etudier les variations de g et de $\ h$
- b)étudier le signe de la fonction *g*
- 2)montrer que : $\forall x \in \mathbb{R} \{1\} : f(x) = (h \circ g)(x)$
- 3) Etudier les variations de f dans les intervalles :

$$]1;+\infty[; \left[-\frac{3}{2};1\right[;]-\infty;-\frac{3}{2}]$$

Réponses :1)a)
$$g(x) = \frac{2x+3}{x-1}$$

on a
$$g(x) \in \mathbb{R}$$
 ssi $x-1 \neq 0$ ssi $x \neq 1$

Donc
$$D_g = \mathbb{R} - \{1\}$$
 $\Delta = \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = -5 < 0$

 $\left(C_{g}\right)$ est l'hyperbole de centre $W\left(1;2\right)$ et d'asymptotes les droites d'équations respectives x=1 et y=2

Donc le tableau de variations de g

x	$-\infty$]	l +∞
g(x)	/	1

1 Jajon a n est une tonction polynôme donc $D_h = \mathbb{R}$

Donc le tableau de variations de h

x	$-\infty$ 0 $+\infty$
h(x)	

b)étudions le signe de la fonction $g \, \text{sur}_{\mathbb{R}} - \{1\}$

x	$-\infty = \frac{1}{2}$	· <u>3</u> 2	1	$+\infty$
2x + 3	- (+		+
x-1		_	þ	+
$\frac{2x+3}{x-1}$	+ (-		+

$$D_{g \circ f} = \left\{ x \in \mathbb{R} \, / \, x \in D_f etf(x) \in D_g \right\}$$

2)montrons que:
$$\forall x \in \mathbb{R} - \{1\} : f(x) = (h \circ g)(x)$$

$$(h \circ g)(x) = h(g(x)) = h\left(\frac{2x+3}{x-1}\right)$$

$$(h \circ g)(x) = \left(\frac{2x+3}{x-1}\right)^2 + 2 = \frac{4x^2 + 12x + 9 + 2x^2 - 4x + 2}{(x-1)^2}$$

$$(h \circ g)(x) = \frac{6x^2 + 8x + 11}{(x-1)^2}$$

Donc
$$\forall x \in \mathbb{R} - \{1\} : f(x) = (h \circ g)(x)$$

3) Etude des variations de f dans les intervalles :

a) sur
$$\left[-\infty; -\frac{3}{2}\right]$$
:

On a
$$\forall x \in \mathbb{R} - \{1\} : f(x) = (h \circ g)(x)$$

Puisque g est décroissante sur
$$\left]-\infty; -\frac{3}{2}\right]$$
 et

$$\forall x \in \left] -\infty; -\frac{3}{2} \right] : g(x) \in \left[0; +\infty\right[\text{ et h est croissante} \right]$$

sur
$$[0;+\infty[$$
 alors $f=h\circ g$ est décroissante sur $\left]-\infty;-\frac{3}{2}\right]$

b) sur
$$\left[-\frac{3}{2};1\right]$$

Puisque g est décroissante sur $\left[-\frac{3}{2};1\right]$ et

$$\forall x \in \left[-\frac{3}{2}; 1 \right[: g(x) \in \left] -\infty; 0 \right] \text{ et h est décroissante}$$
 sur $\left[-\infty; 0 \right]$ alors $f = h \circ g$ est croissante sur $\left[-\frac{3}{2}; 1 \right[$

c) sur
$$]1;+\infty[$$
:

Puisque g est décroissante sur $]1;+\infty[$ et $\forall x\in]1;+\infty[$ $g(x)\in]0;+\infty[$ et h est croissante sur $]0;+\infty[$ alors $f=h\circ g$ est décroissante sur $]1;+\infty[$

Donc le tableau de variations de f :

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et

exercices

Que l'on devient un mathématicien

Prof: Atmani najib

