Motivation

Scaling Multilingual Representations beyond 100 Languages

joint work with the NLLB team Meta Al Research

NAACL - MIA workshop July 16 2022

Motivation

.

LASER3

Reimers and Gurevych

Gurevych xsim

Evaluation

_

Creole

Berber

African

Multimodali

SpeechLASER

Open source

Conclusion

Context and Motivation

• 7 151 living languages

Motivation

I ASER3

LASER3

Reimers and

Gurevych xsim

Evaluation

Creole

Berber

Africar

Multimodali

Mining

Open source

Conclusion

Context and Motivation

- 7 151 living languages
- 40% are endangered

Motivation

I ASERS

Reimers and Gurevych

Evaluation

Evaluatio

Creole

Berher

Africa

Multimodality SpeechLASER

Open source

Conclusion

Context and Motivation

- 7 151 living languages
- 40% are endangered
- 23 languages account for half the population
- 200 languages \Rightarrow 88%
- \approx 4 000 with developed writing system

Motivation

I ASERS

Reimers and Gurevych

Evaluatio

Evaluatio

Creole

Berher

Africa

Multimodalit SpeechLASER

Open source

Conclusion

Context and Motivation

- 7 151 living languages
- 40% are endangered
- 23 languages account for half the population
- 200 languages \Rightarrow 88%
- ≈ 4 000 with developed writing system
- Multilingual approaches:
 ≈ 130 languages

Motivation

I ACEDS

Reimers and Gurevych

Evaluatio

Creole

Berber African

Multimodality SpeechLASER

Open source

Conclusio

Context and Motivation

- 7 151 living languages
- 40% are endangered
- 23 languages account for half the population
- 200 languages \Rightarrow 88%
- \approx 4 000 with developed writing system
- Multilingual approaches:
 ≈ 130 languages

Native speakers

⇒ How can we scale well beyond 100 languages?

Evaluatio

Lvaidatio

Furone

Dankan

Africar

Multimodalit SpeechLASER

Open source

Conclusion

Multilingual Sentence Embeddings

- Sentences with similar meaning are close (paraphrases)
- Independently of the language they are written in

Motivation Embeddings

LASER?

Reimers and

Gurevych

Evaluation

Creole

Berber African

Multimodalit SpeechLASER

Open source

Conclusion

Multilingual Sentence Embeddings

- Sentences with similar meaning are close (paraphrases)
- Independently of the language they are written in

Popular approaches

- LASER, Artexe and Schwenk, arXiv Dec'18, TACL'19
- mBART, Liu et al, arXiv'20
- XLM-R, Conneau et al, ACL'20
- LaBSE, Feng et al, arXiv'20
- . . .

Evaluatio

_

Creole

Berber African

Multimodali

SpeechLASER Mining

Open source

Conclusion

Massively Multilingual Models

- NMT, sentence representations, . . .
- Low-resource languages benefit from high-resource ones
 - e.g. Nepali/Hindi or Icelandic/German
- But accounting for the huge size difference is tricky
- Can new low-resource languages be efficiently learned

Onen source

Conclusion

Massively Multilingual Models

- NMT, sentence representations, . . .
- Low-resource languages benefit from high-resource ones
 - e.g. Nepali/Hindi or Icelandic/German
- But accounting for the huge size difference is tricky
- Can new low-resource languages be efficiently learned
- ⇒ Curse of multilinguality

Motivation Embeddings

LASER3

Reimers and Gurevych

XSIIII

Evaluatio

Creole Berber

African Multimodal

SpeechLASER Mining

Open source

Conclusion

Massively Multilingual Models

- NMT, sentence representations, . . .
- Low-resource languages benefit from high-resource ones
 - e.g. Nepali/Hindi or Icelandic/German
- But accounting for the huge size difference is tricky
- Can new low-resource languages be efficiently learned
- ⇒ Curse of multilinguality
 - Do we expect gains combining "unrelated languages"?
 - does Wolof benefit of Indonesian or Italian?
 - does Assamese benefit of Arabic or Albanian?

Conclusion

Massively Multilingual Models

- NMT, sentence representations, ...
- Low-resource languages benefit from high-resource ones
 - e.g. Nepali/Hindi or Icelandic/German
- But accounting for the huge size difference is tricky
- Can new low-resource languages be efficiently learned
- ⇒ Curse of multilinguality
- Do we expect gains combining "unrelated languages"?
 - does Wolof benefit of Indonesian or Italian?
 - does Assamese benefit of Arabic or Albanian?
- Some low-resource languages are rather isolated (Quechua, Inuit, . . .)

Motivation Embeddings

LASER3

Reimers and Gurevych

Evaluation

Europo

Creole

African

Multimodalii SpeechLASER

Mining

Open source

Conclusion

Massively Multilingual Models

Switch to training multiple models

- Train models by groups of similar languages
- Ideally, each group contains a high-resource language
- ⇒ How can we make sure that these individual models are mutually compatible?
 - e.g. an African and Turkic language

Motivation Embeddings

LASER3

Reimers and

Gurevych xsim

Evaluation

_

Europe

Berher

African

Multimodalii

SpeechLASER

Milling

Open source

Conclusion

Massively Multilingual Models

Substantial improved LASER sentence embeddings

Motivation Embeddings

LASER3

Reimers and Gurevych

Evaluatio

E.....

Creole

Africar

Multimodali

Mining

Open source

Conclusion

Massively Multilingual Models

Substantial improved LASER sentence embeddings

No Language Left Behind (NLLB)

- Single NMT system to translate among 200 languages
- Outperforms previous state-of-the-art by more than 40%

LASER3

Teacher-Student

Reimers and Gurevych

Evaluatio

Lvaidatio

Creole

Berber Africar

Multimodalit SpeechLASER

Mining

Open source

Conclusion

Teacher-Student Training

Idea

- Do not train new models from scratch (for new languages)
- Extend existing embedding space to more languages

Motivation Embeddings

LASER3

Teacher-Student

Gurevych xsim

Evaluatio

Lvaiuatio

Creole

Berber African

Multimodali SpeechLASER

Mining

Open source

Conclusion

Teacher-Student Training

Idea

- Do not train new models from scratch (for new languages)
- Extend existing embedding space to more languages

Advantages

- Likely, less resources are needed
- Can be combined with masked LM training

Motivation

LASER3

Reimers and Gurevych

Continue la

Evaluatio

Europe

D. I

Berber

Multimodali SpeechLASER

Mining

Open source

Conclusion

Using Multiple Students

- Multiple students using the same teacher
- ⇒ The students are mutually compatible
 - Each student can be separately optimized (architecture, capacity, vocabulary, convergence, ...)

Motivation

LASER3

Teacher-Stude

Reimers and Gurevych

Gurevyo

Evaluation

Lvaidati

Europe

Berber

Berber African

SpeechLASER
Mining

Open source

Conclusion

Comparison with Reimers and Gurevych

Reimers and Gurevych, Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation, EMNLP'20

	Reimers & Gurevych	LASER3
Teacher	SBERT (eng)	LASER (93 langs)
Student	single	multiple
Architecture	same	lang. specific
Initialization	XLM-R	random
Criterion	MSE	cosine
Train. data	xx-eng bitexts only	xx-eng bitexts
		eng-eng mono.
		eng-spa bitexts

 Unfortunately, we were not able to make a fair experimental comparison

Motivation Embeddings

LASER3

Reimers and Gurevych

xsim

Evaluatio

Lvaluatio

Berber

Africar

Multimodalit SpeechLASER

Mining

Open source

Conclusion

Evaluation of Multilinguality

Scaling multilingual models

- We may find training data in >1000 languages (e.g. bible)
- But high-quality evaluation data is more limited
 - Tatoeba is very noisy and unbalanced

Motivation Embeddings

Teacher-Stu

eacher-Stude dimers and arevych

xsim

Evaluation

Lvaluatio

Creole

Berber

Africar

SpeechLASER

Open source

Conclusion

Evaluation of Multilinguality

Scaling multilingual models

- We may find training data in >1000 languages (e.g. bible)
- But high-quality evaluation data is more limited
 - Tatoeba is very noisy and unbalanced

FLORES

- FLORES-101: ≈1000 sentences in 101 languages
- N-way parallel, sampled from Wikipedia
- NLLB: extension to 204 languages:
 - mostly low-resource languages
 - freely available
- Recently extended to speech (FLEURS-101)

Motivation Embeddings

LASER3

Teacher-Stu Reimers and Gurevych

xsim

Evaluatio

Creole

Africa

Multimodalit SpeechLASER

Mining

Conclusion

Evaluation of Multilinguality

Bitext mining

- Final goal: improve MT performance
- ullet Costly: train encoder, mine bitexts, train SMT ightarrow BLEU

Evaluation of Multilinguality

Bitext mining

- Final goal: improve MT performance
- Costly: train encoder, mine bitexts, train SMT → BLEU

Proxy: multilingual similarity search xsim

- Given a parallel test data (FLORES)
- Search translation with highest margin score

$$score(x, y) = \frac{cos(x, y)}{\sum_{z \in NN_k(x)} \frac{cos(x, z)}{2k} + \sum_{v \in NN_k(y)} \frac{cos(y, v)}{2k}}$$

- xsim: error rate of wrongly matched sentences in FLORES
- Easy to use open-source implementation

Motivation Embeddings

LASER3

eacher-Stud eimers and urevych

Evaluatio

Creole Berber African

Multimodality SpeechLASER Mining

Open source

Conclusion

Evaluation of LASER3

Methology

- Trained LASER3 models for 148 languages
- Transformers perform better than BiLSTM
- Select best model based on xsim on FLORES dev
- Mine bitexts against 21.5 billion English sentences
- Train NMT systems
- Compare BLEU on "human" versus "human + mined"

Motivation

LASER3

Reimers and Gurevych

xsim

Evaluation

Lvaidatio

Creole

Berber

Multimodal

SpeechLASER Mining

Open source

Conclusion

Evaluation of LASER3

Improving the original LASER

Originial LASER performed badly on several languages

- Retrained models: avrg xsim 61→0.9%
 - Burmese: $93\rightarrow0.9\%$, Irish $92\rightarrow0.8\%$
 - on-pair with LaBSE

LASER3

Reimers and Gurevych

Evaluation

Creole Berber

Berber African

SpeechLASER

Open source

Conclusion

Lang.	bitexts	BLEU	$\mathtt{xsim}~\%$	Monol.	Mined	BLEU
Acehnese	39.2k	0	2.4	2.2M	1.4M	10.3
Buginese	21.8k	0	1.6	0.7M	717k	4.2
Cebuano	1.1M	34.4	0.1	23.6M	8.1M	39.0
Indonesian	11M	-	0.1	-	-	-
Javanese	86k	11.1	0.1	27.2M	8.5M	31.2
Malay	2.3M	34.4	0.0	640M	40.5M	41.4
Pangasinan	327k	15.6	0.7	3.9M	1.9M	18.5
Sundanese	32.3k	1.5	0.6	8.2M	6.1M	28.5
Tagalog	1.3M	40.2	0.1	89M	33M	43.8
Warray	331k	26.5	0.2	26.9M	4.9M	36.5

Motivation

LASER3

Reimers and Gurevych

Evaluation

Europe

Berber African

SpeechLASER
Mining

Open source

Conclusio

Lang.	bitexts	BLEU	xsim %	Monol.	Mined	BLEU
Acehnese	39.2k	0	2.4	2.2M	1.4M	10.3
Buginese	21.8k	0	1.6	0.7M	717k	4.2
Cebuano	1.1M	34.4	0.1	23.6M	8.1M	39.0
Indonesian	11M	-	0.1	-	-	-
Javanese	86k	11.1	0.1	27.2M	8.5M	31.2
Malay	2.3M	34.4	0.0	640M	40.5M	41.4
Pangasinan	327k	15.6	0.7	3.9M	1.9M	18.5
Sundanese	32.3k	1.5	0.6	8.2M	6.1M	28.5
Tagalog	1.3M	40.2	0.1	89M	33M	43.8
Warray	331k	26.5	0.2	26.9M	4.9M	36.5

- Very low xsim error rates for most languages despite <100k bitexts for some languages
- ⇒ Training a language specific encoder seems to be beneficial

Evaluation

Lvaiuatio

Creole

Berber African

SpeechLASER
Mining

Open source

Conclusion

Lang.	bitexts	BLEU	xsim %	Monol.	Mined	BLEU
Acehnese	39.2k	0	2.4	2.2M	1.4M	10.3
Buginese	21.8k	0	1.6	0.7M	717k	4.2
Cebuano	1.1M	34.4	0.1	23.6M	8.1M	39.0
Indonesian	11M	-	0.1	-	-	-
Javanese	86k	11.1	0.1	27.2M	8.5M	31.2
Malay	2.3M	34.4	0.0	640M	40.5M	41.4
Pangasinan	327k	15.6	0.7	3.9M	1.9M	18.5
Sundanese	32.3k	1.5	0.6	8.2M	6.1M	28.5
Tagalog	1.3M	40.2	0.1	89M	33M	43.8
Warray	331k	26.5	0.2	26.9M	4.9M	36.5

- Large amounts of monolingual data
- ⇒ Optimal conditions for mining

LASER3

Reimers and Gurevych

Evaluation

Lvaluatio

Creole

Berber African

SpeechLASER Mining

Open sourc

Conclusion

Malayo-Polynesian Languages

Lang.	bitexts	BLEU	xsim %	Monol.	Mined	BLEU
Acehnese	39.2k	0	2.4	2.2M	1.4M	10.3
Buginese	21.8k	0	1.6	0.7M	717k	4.2
Cebuano	1.1M	34.4	0.1	23.6M	8.1M	39.0
Indonesian	11M	-	0.1	-	-	-
Javanese	86k	11.1	0.1	27.2M	8.5M	31.2
Malay	2.3M	34.4	0.0	640M	40.5M	41.4
Pangasinan	327k	15.6	0.7	3.9M	1.9M	18.5
Sundanese	32.3k	1.5	0.6	8.2M	6.1M	28.5
Tagalog	1.3M	40.2	0.1	89M	33M	43.8
Warray	331k	26.5	0.2	26.9M	4.9M	36.5

• BLEU gain >20: Javanese and Sundanese

Multimodalit
SpeechLASER
Mining

Open source

Conclusion

Lang.	bitexts	BLEU	xsim %	Monol.	Mined	BLEU
Acehnese	39.2k	0	2.4	2.2M	1.4M	10.3
Buginese	21.8k	0	1.6	0.7M	717k	4.2
Cebuano	1.1M	34.4	0.1	23.6M	8.1M	39.0
Indonesian	11M	-	0.1	-	-	-
Javanese	86k	11.1	0.1	27.2M	8.5M	31.2
Malay	2.3M	34.4	0.0	640M	40.5M	41.4
Pangasinan	327k	15.6	0.7	3.9M	1.9M	18.5
Sundanese	32.3k	1.5	0.6	8.2M	6.1M	28.5
Tagalog	1.3M	40.2	0.1	89M	33M	43.8
Warray	331k	26.5	0.2	26.9M	4.9M	36.5

- BLEU gain >20: Javanese and Sundanese
- High resource languages also improve

Evaluatio

Europe

Creole

African Multimoda

SpeechLASER Mining

Open source

Conclusion

European Minority Languages

Lang.	fao	fur	lij	lim	lmo	ltz	srd	szl	vec	ydd
Addtl. Lang	deu	ita	ita	nld	ita	deu	ita	pol	ita	deu
Bitexts [k] BLEU xsim [%]	6.6	6.3	2.2	5.4	1.3	9.8	1.4	6.4	1.2	6.2
	0	0	0	0	0	0	0	0	0	0
	2.57	0.1	0.2	16.1	1.09	0.59	0.1	0.69	2.77	0.1
Monolingual Mined BLEU	1.2M 1.6M 10.6			15M 2.0M 5.5	61M 4.1M 20.7	123M 5.5M 37.0		2.5M 1.0M 18.9	12M 2.5M 17.8	12M 3.3M 30.1

- Pairing low-resource with similar high-resource language is very effective
- BLEU > 20: Faroese, Lombard and Sardinian
- BLEU > 30: Luxemburgish and Yiddish

I ASERS

Reimers and Gurevych

Evaluati

Furone

Creole

Berber African

Multimodalit

Mining SpeechLASER

Open source

Conclusion

Creole Languages

Lang.	hat	kea	pap	sag	tpi
Addtl. Lang	fra	por	spa por	lin	eng
Bitexts BLEU xsim [%]	334 20.2 1.19	6 0 1.19	5 0 0.1	282 4.8 8.6	458 14.7 0.2
Monolingual Mined BLEU	14M 8.0M 29.2	227k 656k 4.9	28M 7.3M 40.9	645k 1.9M 5.3	1.7M 1.2M 16.1

Papiemento: mono=28M → BLEU=40.9

• Tok Pisin: mono= $1.7M \rightarrow BLEU=16.1$

Kabuverdianu: mono<300k → BLEU=4.9

LASER3

Reimers and Gurevych

Evaluat

Creole Berber

African

SpeechLASER

Open source

Conclusion

Creole Languages

Lang.	hat	kea	pap	sag	tpi
Addtl. Lang	fra	por	spa por	lin	eng
Bitexts BLEU xsim [%]	334 20.2 1.19	6 0 1.19	5 0 0.1	282 4.8 8.6	458 14.7 0.2
Monolingual Mined BLEU	14M 8.0M 29.2	227k 656k 4.9	28M 7.3M 40.9	645k 1.9M 5.3	1.7M 1.2M 16.1

- Papiemento: mono=28M → BLEU=40.9
- Tok Pisin: mono=1.7M \rightarrow BLEU=16.1
- Kabuverdianu: mono<300k → BLEU=4.9
- ⇒ The amount of monolingual data is crucial

LASER

Reimers and Gurevych

Evaluation

Creole
Berber

Multimodality SpeechLASER

Mining

Open source

Conclusion

Berber Languages (14M speakers)

Lang.	Kabyle	Tifinagh	Tifinagh	Tamazight
Script	Latin	Latin	Tifinagh	Tifinagh
bitexts BLEU xsim [%]	72k	10.2k	4k	6.2k
	1.2	0	0	0
	0.99	24.11	35.57	3.66
Monolingual	3.4M	23k	5k	59k
Mined	3.1M	240k	-	111k
BLEU	6.2	1.2	-	3.8

- Extremely limited resources, except Kabyle
- Kabyle: some mined bitexts and BLEU>6
- ullet Tamazight: very modest BLEU score of pprox 4
- Tifinagh: insufficient monolingual data

Motivation Embeddings

LASER3

Reimers and Gurevych

Evalua

Furone

Creole Berber

African African

SpeechLASER

Mining

Open source

Conclusion

Berber Languages (14M speakers)

Lang.	Kabyle	Tifinagh	Tifinagh	Tamazight
Script	Latin	Latin	Tifinagh	Tifinagh
bitexts BLEU xsim [%]	72k	10.2k	4k	6.2k
	1.2	0	0	0
	0.99	24.11	35.57	3.66
Monolingual	3.4M	23k	5k	59k
Mined	3.1M	240k	-	111k
BLEU	6.2	1.2	-	3.8

- Extremely limited resources, except Kabyle
- Kabyle: some mined bitexts and BLEU>6
- Tamazight: very modest BLEU score of ≈ 4
- Tifinagh: insufficient monolingual data
- ⇒ Typical examples of very low-resource languages for which it is very hard to collect written material

Evaluatio

Creole

African

Airican

Multimodality
SpeechLASER
Mining

Open source

Conclu

African Languages

- 1.2 billion people, estimated 2000 languages
- Existing systems support only few African languages

• LaBSE: 14 (+4)

Google translate: 22

- We trained encoders for 55 languages, 48 are low resource
- Specific encoder for languages with Ge'ez script: Amharic and Tigrinya
- Average over 44 languages: BLEU 11.0
 ightarrow 14.8 with mined data

Challenges

 It seems very difficult to crawl textual resources for several languages

LASER:

Reimers and Gurevych

Evaluation

_-----

Europe

Berber

African

Multimodality SpeechLASER

Mining

Open source

Conclusion

Massively Multilingual NMT

Impact of mined bitexts (chrF++)

- Substantial gains in chrF++ when adding mined data
 - very low-resource xx/eng: +12.5 chrF++
 - very low-resource eng/xx: +4.7 chrF++
- ⇒ Mined data is crucial for very low-resource languages

Motivation

LASER3

Reimers and Gurevych

Evaluatio

_

Creole

African

Multimodality

SpeechLASER

Open source

Conclusion

Going Multimodal

What about other modalities?

- Many languages are rather spoken than written
- ⇒ multilingual and -modal representation

Evaluation

Europe Creole Berber African

Multimodality SpeechLASER

Mining

Open source

Conclusion

Going Multimodal

Speech LASER

- Apply teacher-student approach to speech
- ⇒ Fit fixed-size **speech** representation to LASER
 - train with transcriptions, translations or both
 - NeurIPS'21 paper:
 P.-A. Duquenne, H. Gong, H. Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining
 - Recent similar works: Data2vec, mSLAM

Motivation Embeddings

LASER

Teacher-Stud Reimers and Gurevych xsim

Evaluatio

Lvaiuatio

Europo

0 1

perper

Multimodal

Speechl ASED

Mining

Open source

Conclusion

Large-Scale Speech Mining

Speech-to-text

- SpeechLASER compatible with LASER2 encoder
- ⇒ We can mine speech against all 200 NLLB languages !
 - Mining in Librivox audio books
 - ≈20 000h of audio-text alignments
 - Data substantially boosts S2T translation

Motivation Embeddings

LASER3

Reimers and Gurevych xsim

Evaluatio

Creole Berber African

Multimodality

SpeechLASER Mining

Open sourc

Conclusion

Large-Scale Speech Mining

Speech-to-text

- SpeechLASER compatible with LASER2 encoder
- ⇒ We can mine speech against all 200 NLLB languages !
 - Mining in Librivox audio books
 - \approx 20 000h of audio-text alignments
 - Data substantially boosts S2T translation

Speech-to-speech mining

- Mine directly speech against speech
- No need to transcribe or translate
- Librivox: 1433h of mined S2S in eng, deu, fra and spa
- Enabled improved S2S translation:
 - A. Lee et al., Textless Speech-to-Speech Translation on Real Data, NAACL'22

Motivation Embeddings

LASER3

Reimers and Gurevych xsim

Evaluatio

Creole Berber African

Multimodal SpeechLASER

Open source

Conclusio

Open-Source Activities

NLLB: main entry point

- https://github.com/facebookresearch/fairseq/tree/nllb
- LID, NMT models
- scripts to reproduce data
- LASER3 teacher-student training
- stopes: data processing and large-scale mining

Evaluatio

Creole Berber African

Multimodality SpeechLASER Mining

Open source

Conclusion

Open-Source Activities

LASER github

- https://github.com/facebookresearch/LASER
- All LASER3 models
- Mined Bitexts
 - 24 African languages: link WMT'22 workshop
 - remaining languages: soon to come
- 1433h of mined speech-to-speech data in LibriVox

Motivation Embeddings

Teacher-Stud

Reimers and Gurevych

Evaluatio

Europe Creole Berber African

Multimodality SpeechLASER

Open source

Conclusion

Scaling LASER

- Moved away from the popular one-for-all approach
 - train multiple mutually language specific models
 - alternative to adapters?
- Teacher-student with multiple mutually compatible encoders seems to be very efficient
- Mined more than 1 billion new bitexts
- Enabled scaling NMT to 200 languages and boosted performance
- First successful speech-to-speech mining
- Can we use LASER3 embeddings for other multilingual tasks?

Evaluatio

_

Rorbor

African

SpeechLASER

wining

Conclusion

Conclusion

Challenges

- It is very hard to find textual resources for low-resource languages
- Does it make sense to scale translation to thousands of languages?

Open sourc

Conclusion

Conclusion

Challenges

- It is very hard to find textual resources for low-resource languages
- Does it make sense to scale translation to thousands of languages?
- Yes, but I believe that we should switch to the speech modality

Motivation

LASER:

Teacher-Stude

Gurevych

Evaluatio

Creole

Delbel

Multimodalit

SpeechLASER

Open source

Conclusion

