

| n) for the first range, same partis | 11100000, 00xx xxxx<br>224,0,0,0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| for the second range, same part is  | 11100000,01000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| for the third range, some port is   | 1110000x , xx ··· ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| to: 1 of third range the tail is    | 110 000  0111 1111   Indude   110 000  1000   1001 1111   1111 1111   1111 1111   1111 1111   1111 1111   1111 1111   1111   1111 1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   1111   111 |
|                                     | 1110 001 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Destination addless | interface. |  |  |
|---------------------|------------|--|--|
| 01/0,0,0,445        | 0          |  |  |
| 24.64.0.0/16        | ſ          |  |  |
| 14.00.0.017         | ۲          |  |  |
| 25.128.0.0/9        | 3          |  |  |
| Otherwise           | 3          |  |  |

| Destination addless   | interface. |
|-----------------------|------------|
| opoo , oo             | 0          |
| 1110 0000 . p(00 poso | ſ          |
| 1110000.              | ۲          |
| ((1000) .             | 3          |
| Othernise             | 3          |

```
(b) 200. 14J. 81. 81 & 2JI. 192. 0. 0 = 200, 128. 0. 0

& 2JI. 2JI. 0. 0 = 200, 14J. 0. 0

& 2JI. 128. 0. 0 = 200, 128. 0. 0 > match > long et

GO to interface 3

22J. 12J. 0. 0 = 22J. 64. 0. 0

& 2JI. 2JI. 0. 0 = 22J. 64. 0. 0

& 2JI. 2JI. 0. 0 = 2JJ. 64. 0. 0

& 2JI. 2JI. 0. 0 = 2JJ. 64. 0. 0 > match > longest

& 2JI. 128. 0. 0 = 2JJ. 0. 0. 0

GO to interface 2
```

```
0.0,20,205 & PII. (1.80,000
                                                    D. B. SKI, 27.5
                              G. O. TK, TK
                                                    777, 18, 0, 0
                              274.0.0.0
                                                = 24.0.00 match
                          0.0 & 12 &
                                                   25.128.0.0 > match -> longert
                                                  op to interface 3
                                                                                 0000000
                                                                                 00111111
                  v 48
                               \Box
                                                                                 0100 0000
             96 ~ 127
                               깇
                                                                                 0011111
             128
                    191
                                                                                 0110 0000
                 V
                               3
                                                                                 ווווווס
                 S
            177
                     222
                                                                                 1000 0000
6000 0000
                  v 48
                                        282 = 26 = 64
                                                                                 1111 119
                               \Box
111 11,000
              bt u 97
01000000
                                                                               (1100 9000
                                        5^{6-3} = 5^{1} = 35
21011111
O11100000
                                        5_{83} + 5_{85} = 5_{1} + 5_{1} = 3 \times 5_{1} = 3 \times 35 = 34
             96 ~ 191
                                                                                 HIC Con
                               7
101111101
11,000000
             127 N 722
                                        28-2 = 26 = 64
                               3
11,111111
                                                    | 1000 000 ~ 1111 1111
                                  7g-7 = P4
                                                    1900 00000 ~ [qi] | | | |
        128 ~ 191
                                  28-3=32
                                                   1110 0000 N 111/1 1111
        214 4
                           7
                                  2)=128
         0 ~ 127
                          3
                                                    0000 0000 ~ all 1111
                                                                  26=64
                                             Subnet 1: 60
          subnet 1
                                                                  27 = 128
                                             Subnet 2: 90
          subnet 2
                                             Subnet 3: 12
                                                                 24 = 16
         subnet 3
          total [] address = 252-24 = 28 = 25h
```

Q٩

Qo

Qn

| subjet 1 : | 223.1.17.128/26 | 10;11 1111<br>10;11 1111 |
|------------|-----------------|--------------------------|
| subned 2 : | 22/1.17.0/25    | 000 0000                 |
| Subnet 3:  | 223.1.17.192/28 | 11/00/1111               |

| Qu | Destination address    | inter-lace |
|----|------------------------|------------|
|    | 200, 23, 16, 0/21      | Ð          |
|    | 200 ، 24 ، 24 ، 0 / 24 | 1          |
|    | ७० . ५ . ५ . ० / ५।    | ۷          |
|    | <del>Othor</del> wise  | ٤          |

Pis

| Destination addless | interface. |
|---------------------|------------|
| 01/0,0,0,445        | 0          |
| 24.64.0.0/16        | ſ          |
| ٢/ ٥.٥.٥ يلا        | 2          |
| 25.05.8K1.2CC       | 3          |
| Otherwise           | 3          |

P14 (1) 128, 119, 40, 128/26 has a IP address 128, 119, 40, 129

(2)  $2^2 = 4$  2 bits is required for dividing. 128:119.40.64 /26  $64 \Rightarrow 01,0000000$ 

```
Pis subject A: 250 2^{\frac{1}{2}}=25b total interface subject B: 120 2^{\frac{1}{2}}=12b 2^{\frac{1}{2}-25}=29=512 subject C: 120 2^{\frac{1}{2}}=12b needed interface subject D: 2 2^{\frac{1}{2}}=2 20+290+4=494 subject F: 2 2^{\frac{1}{2}}=2 subject F: 2 2^{\frac{1}{2}}=2
```

Subnet A : 214.97.254/24 B : 214.97.255.0/25-214.97.255.0/29 C : 214.97.255.128/25 D : 214.97.255.0/31 0000 0010 E : 214.97.25.2/31

0000 0 10;0 F: 24,97,25,4/31

(b)



for R1

|                 | interface        |
|-----------------|------------------|
| 14.97,274/24    | Sulonet A        |
| 214,97.27.4/31  | F                |
| 214.97.133.0/31 | $\triangleright$ |

for R2

|                  | interface |  |
|------------------|-----------|--|
| 214.97, 255.0/25 | subnet B  |  |
| 214.97,255.0/31  | D         |  |
| 214.97.25.2/31   | E         |  |

for RS

|                   | interface |
|-------------------|-----------|
| 214.97,275.128/25 | Sulonet C |
| 114,97,255,4/31   | F         |
| 214,57,275,2/31   | È         |

|       |          | , y        | 3     | W      | V      | u        | t .        | 1 |
|-------|----------|------------|-------|--------|--------|----------|------------|---|
| step. | SPT      | Digs, p(g) | D(8)  | Aw, pw | Du, pu | Dus. pw  | Pet P (to) |   |
| 0     | ×        | b,×        | x, 8  | 6 .×   | (3.x)  | <i>∞</i> | 00         |   |
| 1     | ΧV       | (b',x)     | x. J  | 6.7    |        | 6, V     | 7,٧        |   |
| ፲     | XVY      |            | 8,×   | (bx)   |        | 6,0      | 7, υ       |   |
| 3     | xvyW     |            | 8.x   |        |        | (b,v)    | 7,V        |   |
| 4     | rywu     |            | κ, β  |        |        |          | (7, V)     |   |
| Ţ     | xvy wut  |            | (K.X) |        |        |          |            |   |
| 6     | xyw ut ? |            |       |        |        |          |            |   |

X > y : b X > 8 : 8 X > W : b X -> V : 3 X -> U : b X -> U : 1

Co Ps

Cr P3

x y z v v

8 11 10 9 2