

#### Laurea Magistrale in Ingegneria Elettronica Anno Accademico 2018/2019

#### Sistemi Elettronici a basso consumo

prof. Maurizio Zamboni, prof. Mariagrazia Graziano



#### Relazione Laboratori

Raffaele Tuzzo 263722

Giulio Pecoraro 266391

Luigi Massari 265396

#### Contents

| 1        | Lab            | orator  | rio 1:                                                 |            |
|----------|----------------|---------|--------------------------------------------------------|------------|
|          | Pov            | ver Est | timation: probabilistic techniques                     | 1          |
|          | 1.1            | Proba   | bility and Activity Calculation: Simple Logic Gates    | 1          |
|          | 1.2            | Proba   | bility and Activity Calculation: Half and full adder   | 3          |
|          | 1.3            | RCA     | synthesis and power analysis                           | 5          |
|          | 1.4            | A sim   | ple MUX: glitch generation and propagation             | 8          |
|          | 1.5            | Proba   | bility and Activity Calculation: Syncronous Counter    | 9          |
| <b>2</b> | Lab            | orator  | rio 2:                                                 |            |
|          | $\mathbf{FSI}$ | M Stat  | e Assignment and VHDL Synthesis                        | 13         |
|          | 2.1            | FSM     | State Assignment                                       | 13         |
|          | 2.2            | VHDI    | Synthesis                                              | 14         |
| 3        | Lab            | orator  | rio 3:                                                 |            |
|          | $\mathbf{Clo}$ | ck gat  | ing, pipelining and parallelizing                      | <b>2</b> 1 |
|          | 3.1            | A first | t approach to clock gating                             | 21         |
| 4        | Lab            | orator  | rio 4:                                                 |            |
|          | Bus            | s Enco  | ding                                                   | 24         |
|          | 4.1            | Simul   | ation                                                  | 24         |
|          |                | 4.1.1   | Non-encoded                                            | 24         |
|          |                | 4.1.2   | Bus-invert technique, Transition based technique, Gray |            |
|          |                |         | technique                                              | 26         |
|          |                | 4.1.3   | T0 techinque                                           | 31         |
|          |                | 4.1.4   | Confronto tra le tecniche                              | 32         |

| 4.2 | Synthesis    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 3   | 2  |
|-----|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|----|
| 1.4 | O VIIIIIODIO | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | - 0 | ,, |

#### 1. Laboratorio 1:

# Power Estimation: probabilistic techniques

## 1.1 Probability and Activity Calculation: Simple Logic Gates

Durante la prima parte dell'esercitazione è stata calcolata la probabilità di avere '1' logico in uscita di alcuni gate elementari, con la relativa Switching Activity.



Figure 1.1: Probabilità e Switching Activity stimati manualmente

La probabilità di '1' logico è stata stimata semplicemente andando a valutare il rapporto fra il numero di possibili combinazioni con '1' logico diviso il numero di combinazioni totali. Invece per il calcolo della Switching Activity è stata utilizzata la formula vista a lezione:

$$A = P_1 P_0 + P_1 P_0 = 2P_1 (1 - P_1)$$

Dove  $P_1$  e  $P_0$  sono le probabilità di avere '1' e '0' logici in uscita dalla mia

porta.

In seguito, tramite il programma *ModelSim* è stato analizzato il numero di toogle delle varie porte utilizzando un testbench sviluppato appositamente dai docenti. Si è andato a variare il numero di colpi di clock, come richiesto dalla traccia ed in seguito si sono comparati i valori ottenuti dalla simulazione con ciò che si era calcolato manualmente.

Tramite appositi comandi di Modelsim (**-power report**), sono stati stilati dei report relativi ad una stima delle commutazioni delle varie porte, della quale se ne riporta un esempio in Figura 1.2. Questi report consentono di stimare l'attività delle porte come verrà descritto in seguito.

| Pow | er Report |    | Node             | TC    | Тi | Time At |
|-----|-----------|----|------------------|-------|----|---------|
| 1   | Time At   | 0  | Time At X        |       |    |         |
|     |           |    |                  |       |    |         |
|     |           |    | /tbprob/clk      | 20000 | 0  | 5000000 |
| ps  | 5000000   | ps | 0 ps             |       |    |         |
|     |           |    | /tbprob/reset    | 1     | 0  | 1000    |
| ps  | 9999000   | ps | 0 ps             |       |    |         |
|     |           |    | /tbprob/ld       | 1     | 0  | 2000    |
| ps  | 9998000   | ps | 0 ps             |       |    |         |
|     |           |    | /tbprob/dout(15) | 4924  | 0  | 4929000 |
| ps  | 5071000   | ps | 0 ps             |       |    |         |
|     |           |    | /tbprob/dout(14) | 4923  | 0  | 4928500 |
| ps  | 5071500   | ps | 0 ps             |       |    |         |
|     |           |    | /tbprob/dout(13) | 4922  | 0  | 4928000 |
| ps  | 5072000   | ps | 0 ps             |       |    |         |
|     |           |    | /tbprob/dout(12) | 4922  | 0  | 4928000 |
| ps  | 5072000   | DS | 0 ps             |       |    |         |

Figure 1.2: Probabilità e Switching Activity stimati manualmente

Si riportano nella tabella 1.1, i risultati ottenuti dalle varie simulazioni.

| Tc(CK) | Tc(INV) | Tc(AND) | Tc(OR) | Tc(XOR) |
|--------|---------|---------|--------|---------|
| 20     | 1       | ?       | 4      | 4       |
| 200    | 43      | 40      | 42     | 44      |
| 2000   | 533     | 418     | 352    | 470     |
| 20000  | 4916    | 3606    | 3784   | 4876    |

Table 1.1: Risultati simulazione

Dai seguenti valori è facile ricavare i valori di Switching Activity simualte, in quanto si possono stimare da:

$$A = \frac{Tc(PORT)}{T_{CLK}}$$

Come ci si aspettava, essendo la Switching Activity il numero di toogle avvenuti in un periodo, i valori delle simulazioni vengono molto simili ai

valori calcolati analiticamente. Aumentando il tempo di simulazione, i valori di Switching Activity diventano sempre più precisi, arrivando ad avere un errore tra 0.01-0.5.

## 1.2 Probability and Activity Calculation: Half and full adder

Per prima cosa sono state calcolate le probabilità di avere un '1' logico sull'uscita sia dell'half adder e sia del full adder e le probabilità di avere un '1' logico come carry out degli stessi blocchi. Una volta eseguiti questi calcoli sono state calcolate anche le corrispettive switching activity.



Figure 1.3: Probabilità e Switching Activity stimati manualmente

La probabilità di '1' logico è stata stimata semplicemente andando a valutare il rapporto fra il numero di possibili combinazioni con '1' logico diviso il numero di combinazioni totali. Invece per il calcolo della Switching Activity è stata utilizzata la formula vista a lezione:

$$A = P_1 P_0 + P_1 P_0 = 2P_1 (1 - P_1)$$

 $\alpha$  Dove  $P_1$ e  $P_0$ sono le probabilità di avere '1' e '0' logici in uscita dalla mia porta.

In seguito, si sono calcolate sempre manualmente le probabilità di uscita con le rispettive switching activity del Ripple carry adder, valutando la probabilità per ogni singolo Half adder come riportato in figura. Per questo calcolo iniziale gli ingressi sono stati considerati scorrelati ed equiprobabili.



Figure 1.4: Probabilità e Switching Activity stimati manualmente con ingressi equiprobabili

Nel secondo caso, invece, gli ingressi sono stati considerati sempre scorrelati ma con probabilità diverse, infatti si ha che:

$$P(A =' 1') = 0.4eP(B =' 1') = 0.6$$

I risultati ottenuti risultano uguali ai precedenti, per quanto riguarda la probabilità dell'uscita e del carry out. In seguito, tramite il programma ModelSim è stato simulato il Ripple carry adder (giusto?) utilizzando un testbench sviluppato appositamente dai docenti. Il testbench è stato costruito appositamente per assegnare ritardi diversi al bit di somma, DRCAS, e al bit di carry, DRCAC. Inoltre per garantire una simulazione generale si è utilizzato l'LFSR per generare ingressi randomici. Per una corretta visualizzazione dei risultati si è impostata una risoluzione di 1ps. Dopo aver visualizzato il power report, come fatto già in precedenza, si sono comparati i valori ottenuti dalla simulazione con ciò che si era calcolato manualmente, seguendo lo stesso ragionamento del punto precedente.



Figure 1.5: Power report

(cosa noto?) e bisogna mettere le waveforms?

¡- ATTENZIONE Si è poi simulato il caso in cui i due ritardi riguardanti il bit di somma e il bit di carry fossero uguali, e anche per questo è stato visualizzato il power report.



Figure 1.6: Power report con ritardi uguali

Da un analisi e confronto tra i risultati ottenuti manualmente e quelli ottenuti con le simulazioni, si nota come questi coincidano dato che avendo uguali ritardi, non riesco a simulare la presenza di eventuali glitch.

In seguito si è calcolata la switching activity totale dei due sommatori, utilizzanso la seguente formula:

$$A = \sum_{i=1}^{N-1} A(S_i)$$

What is the overhead computation of the second adder? <- cioè?

Come ultima cosa è stato simulato il secondo testbench che ci è stato fornito, dove si simulava sempre un Ripple carry adder, ma questa volta in maniera puramente combinatoria. Analizzando i risultati, si può concludere come non avendo un segnale di temporizzazione, lavoro alla massima velocità ma ho la presenza di glitch.

#### 1.3 RCA synthesis and power analysis

Nella seguente sezione dell'esercitazione è stata analizzata la potenza del sommatore RCA già analizzato in precedenza, tramite il software *Synopsys*. Dopo aver analizzato ed elaborato i file che descrivono la struttura dell'RCA, il tutto è stato sintetizzato e sono stati raccolti i vari report relativi alla

potenza. Un primo report di potenza, riportato in Figura 1.7, descrive i contributi di potenza relativi alle 8 istanze dei Full-Adder che compongono il somamtore RCA.

| Design                                             | Wire Load Model                                                                                                                   |        | Librar  | У         |         |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------|---------|
| RCA                                                | 5K_hvrat                                                                                                                          | io_1_1 | Nangat  | eOpenCell | Library |
| Power-spec<br>Voltag<br>Capaci<br>Time U<br>Dynami | rating Voltage = 1.1 iffic unit information e Units = 1V tance Units = 1.00000 nits = 1ns c Power Units = 1uW e Power Units = 1nW | Off    | ed from | V,C,T uni | ts)     |
|                                                    |                                                                                                                                   |        | witch   | Int       | Leak    |
| Total<br>Hierarchy<br>Power %                      |                                                                                                                                   |        |         | Power     |         |
| RCA                                                |                                                                                                                                   |        |         | 16.743    |         |
| 27.437 100<br>FAI_8 (F<br>3.121 11.                | A_1)                                                                                                                              |        | 0.848   | 2.154     | 119.291 |
| FAI_7 (F<br>3.562 13.                              | A_2)<br>0                                                                                                                         |        | 1.293   |           |         |
| FAI_6 (F<br>3.642 13.<br>FAI 5 (F                  | 3<br>(A 4)                                                                                                                        |        | 1.332   |           |         |
| 3.618 13.<br>FAI_4 (F<br>3.498 12.                 | A 5)                                                                                                                              |        | 1.278   | 2.101     | 119.294 |
| FAI_3 (F<br>3.471 12.                              | A_6)<br>7                                                                                                                         |        | 1.263   |           |         |
| FAI_2 (F<br>3.351 12.<br>FAI_1 (F<br>3.175 11.     | A_0)                                                                                                                              |        | 1.229   |           |         |
| 1                                                  |                                                                                                                                   |        |         |           |         |

Figure 1.7: Power report

Come ci si aspettava, i contributi dei vari Full Adder sono tutti simili tra di loro, ad eccezione dell'istanza  $FAI_{-}8$ : il motivo consiste nel fatto che il Carry Out dell'ultimo Full Adder non è connesso a nessun altra porta, dunque il carico da pilotare è decisamente minore.

Diventa ora interessante andare ad analizzare la singola istanza, per andare a valutare l'origine dei singoli contributi di potenza. Tramite il comando current\_instance FAI\_1 si va ad analizzare l'istanza relativa al primo Full Adder. Viene riportato il report in Figura 1.8.

Come ci si aspettava i valori di potenza risultano assolutamente identici al report trovato in precendenza e riportato in Figura 1.7. Il passo successivo è comprendere come avvenga la stima della potenza dinamica (switching power) dei singoli nodi del FA, dato che la potenza interna e quella di leak-

| a 11                     |       | Cell     | Driven Net | Tot Dynamic   |
|--------------------------|-------|----------|------------|---------------|
| Cell                     |       | Internal | Switching  | Power         |
| Leakage<br>Cell<br>Power | Attrs | Power    | Power      | (% Cell/Tot)  |
|                          |       |          |            |               |
| U1<br>36.0111            |       | 0.8205   | 0.0512     | 0.872 (94%)   |
| U4                       |       | 0.5889   | 0.5488     | 1.138 (52%)   |
| 36.1637<br>U3<br>32.5747 |       | 0.3374   | 0.1749     | 0.512 (66%)   |
| U2<br>14.2499            |       | 0.1377   | 0.3964     | 0.534 (26%)   |
| Totals (4                |       | 1.884u   | W 1.171uW  | 3.056uW (62%) |

Figure 1.8: Power report

age dipendono solo dal gate e non dal circuito. Si utilizza a questo scopo il comando report\_power -net -verbose e si riporta il report risultante in Figura 1.9. Si può notare come la potenza dinamica consumata dal nodo di uscita

|       |                                                                                                                                    |    | -   |          |        |        |           |   |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------|----|-----|----------|--------|--------|-----------|---|--|--|--|
|       | <ul> <li>a - Switching activity information annotated on net</li> <li>d - Default switching activity information on net</li> </ul> |    |     |          |        |        |           |   |  |  |  |
|       |                                                                                                                                    |    |     | Total    | Static | Togale | Switching |   |  |  |  |
| Net   |                                                                                                                                    |    |     | Net Load |        |        | _         |   |  |  |  |
| Attrs |                                                                                                                                    |    |     |          |        |        |           |   |  |  |  |
|       |                                                                                                                                    |    |     |          |        |        |           | _ |  |  |  |
|       |                                                                                                                                    |    |     |          |        |        |           |   |  |  |  |
| n1    |                                                                                                                                    |    |     | 4.694    | 0.493  | 0.1932 | 0.5488    |   |  |  |  |
| Co    |                                                                                                                                    |    |     | 4.554    | 0.512  | 0.1439 | 0.3964    |   |  |  |  |
| n2    |                                                                                                                                    |    |     | 2.010    | 0.488  | 0.1439 | 0.1749    |   |  |  |  |
| S     |                                                                                                                                    |    |     | 0.310    | 0.507  | 0.2735 | 0.0512    |   |  |  |  |
|       |                                                                                                                                    |    |     |          |        |        |           | - |  |  |  |
|       |                                                                                                                                    |    |     |          |        |        |           |   |  |  |  |
| Total | . (4                                                                                                                               | ne | ts) |          |        |        | 1.1714 uW |   |  |  |  |
|       |                                                                                                                                    |    |     |          |        |        |           |   |  |  |  |

Figure 1.9: Power report

S sia praticamente nulla, in quanto essa non deve pilotare alcun carico, a meno della potenza che il software considera per le varie capacità parassite. Con questa analisi, il software si preoccupa anche di fare un'analisi probabilistica delle varie attività dei nodi. Dal report si può notare come siano assolutamenti concordi con i valori teorici trovati in precedenza.

Si ritorna ora al circuito complessivo, salendo di livello logico e si analizzano i nodi anche in questa situazione utilizzando lo stesso comando utilizzato in

precedenza. Il report viene raffigurato in Figura 1.10.

|              | d  | -  | Default switchi | ing activity      | informat:       | ion on net     | ;                  |
|--------------|----|----|-----------------|-------------------|-----------------|----------------|--------------------|
| Net<br>Attrs |    |    |                 | Total<br>Net Load | Static<br>Prob. | Toggle<br>Rate | Switching<br>Power |
|              |    |    |                 |                   |                 |                |                    |
| n1           |    |    |                 | 4.694             | 0.493           | 0.1932         | 0.5488             |
| Co           |    |    |                 | 4.554             | 0.512           | 0.1439         | 0.3964             |
| n2           |    |    |                 | 2.010             | 0.488           | 0.1439         | 0.1749             |
| S            |    |    |                 | 0.310             | 0.507           | 0.2735         | 0.0512             |
|              |    |    |                 |                   |                 |                |                    |
|              |    |    |                 |                   |                 |                |                    |
| Total        | (4 | ne | ts)             |                   |                 |                | 1.1714 uW          |

a - Switching activity information annotated on net

Figure 1.10: Power report

## 1.4 A simple MUX: glitch generation and propagation



Figure 1.11: Power report

Durante questa sezione, viene chiesto di analizzare il comportamento di un Multiplexer, riportato in Figura 1.11, dove si assume che i ritardi delle varie porte elementari siano nulli, ad eccezione dell'Inverter che presenta un ritardo pari a 0,1 ns. Inizialmente si simula il circuito utilizzando *ModelSim* e si riportano le one in Figura 1.12. Si può notare benissimo come l'uscita Y abbia un glitch tra 1000 ps e 1100 ps, in quanto effettua una transizione



Figure 1.12: Power report

0-¿1 non voluta. Il tutto è causato dal ritardo introdotto dall'Inverter, che si può notare dal segnale 'n', che commuta al suo valore corretto dopo un ritardo di 0,1 ns, rispetto all'istante in cui cambiano tutti i restanti gate del circuito, ossia 1000 ps. Si verifica dunque un intervallo di tempo, ossia quello compreso tra 1000 ps e 1100 ps in cui la porta OR ha entrambi gli ingressi bassi e dunque produce un'uscita Y errata.

Questo produce quindi un glitch in uscita: in generale i glitch sono problematici a livello di potenza, in quanto si tratta di commutazioni spurie all'interno del mio circuito, che causano uno spreco di potenza. L'energia consumata per ogni doppia commutazione indesiderata è

$$E = C_L V_{DD}^2$$

considerando  $C_L$  come il carico che viene pilotato e  $V_{DD}$  la tensione di alimentazione alla quale si lavora.

## 1.5 Probability and Activity Calculation: Syncronous Counter

Si analizza in questa sezione un Syncronous Counter ad 1 bit, realizzato con una Half Adder e un D-FlipFlop, riportato in Figura 1.13. Il primo ingresso  $A\theta$  dell'Half Adder è l'uscita del D-FlipFlop, mentre il secondo ingresso  $B\theta$  viene collegato fisso ad 1. Si riporta il timing diagram del circuito in Figura ??. Si può dedurre dal timing, che il segnale S ha una



Figure 1.13: Power report

transizione per ogni colpo di clock, di conseguenza la sua Switching Activity sarà metà dell'attività del segnale di clock. Nel caso in cui il segnale B0 vada a 0, il valore del nodo S dipenderà esclusivamente dall'ultimo valore presente all'uscita del Flip-Flop, in quanto l'Half Adder sommerà l'ultimo valore presente nel Flip Flop con uno '0'. Quindi non si verificheranno più transizioni sul nodo S e di conseguenza neanche sul nodo  $C_{OUT}$ . In seguito



Figure 1.14: Power report

viene chiesto di analizzare la struttura presente in Figura 1.14. Questo circuito permette di ottenere un contatore sincrono ad 8 bit, utilizzando in cascata 8 celle del circuito precedente. Anche in questo si riporta, in Figura ??, il timing diagram del funzionamento del circuito. In Tabella 1.2, vengono ora riportati il numero di commutazioni di tutti i segnali di uscita ricavati in modo analitico, considerando un intervallo di tempo compreso da quando il circuito parte dal valore '00000000', fino a quando non arriva al valore '111111111'.

Il segnale CEN, rappresenta l'enable del contatore, mentre il segnale

| Signal | Number of Transitions |
|--------|-----------------------|
| Clock  | 511                   |
| S0     | 255                   |
| S1     | 127                   |
| S2     | 63                    |
| S3     | 31                    |
| S4     | 15                    |
| S5     | 7                     |
| S6     | 3                     |
| S7     | 1                     |

Table 1.2: Risultati simulazione

OWFL va ad 1 in presenza di overflow, dunque quando si supera la massima dinamica del contatore. Il segnale CEN è l'ingresso B0 del primo Half-Adder, mentre il segnale OWFL è il carry out dell'ultimo Half-Adder.

Il Segnale OWFL farà solo una transizione per ogni ciclo di conta, dunque andrà ad '1', solo quando le uscite S7-S0 andranno dal valore '111111111' al valore '000000000'. Di conseguenza avrò che la Switching Activity sarà:

$$E_{SW} = \frac{1}{2^8 - 1} =$$

Si vuole ora confrontare i risultati analitici ricavati in precedenza ed i risultati ottenuti sfruttando le simulazione di *Synopsis*. In Figura 1.15, viene riportata la simulazione ottenuta.

Viene chiesto di confrontare i valori analitici calcolati e riportati nella Tabella 1.2, con quelli derivanti da una simulazione Synopsis. Si simula il comportamento del circuito utilizzando un  $T_{CLK}=2ns$ , per un periodo pari a 260 colpi di clock. Il report risultante è presente in Figura 1.15. Andando a studiare i file di testbench riportati, si può notare come vengano introdotti dei ritardi di 0.2 ns nelle uscite dell'Half Adder: questo provoca dei glitch che si andranno a propagare lungo la rete ed avranno effetti sul segnale OWFL, che invece di andare ad '1' solo una volta a fine conteggio, andrà ad '1' per tre volte (DA VERIFICARE!!!).

Tramite il power report si può notare come, in generale, il numero di commutazioni della simulazione sia superiore a quello ottenuto analiticamente: si può notare questo fenomeno nei segnali stmp(n), ossia le uscite non sincrone dei Flip Flop, e nei segnali di Carry Out. Il tutto è dovuto ai glitch

#### 1.5. Probability and Activity Calculation: Syncronous Counter

Power Report Interval

| Power Report                            | Node | Tc | Ti Tim | e At 1 Time At | 0 Time At X |
|-----------------------------------------|------|----|--------|----------------|-------------|
| /testcount/ucounter1/a                  | 1    | 0  | 514000 | 6000           | 0           |
| /testcount/ucounter1/ck                 | 520  | 0  | 260000 | 260000         | 0           |
| /testcount/ucounter1/reset              | 1    | 0  | 2000   | 518000         | 0           |
| /testcount/ucounter1/s(7)               | 2    | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/s(6)               | 4    | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/s(5)               | 8    | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/s(4)               | 16   | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/s(3)               | 32   | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/s(2)               | 64   | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/s(1)               | 128  | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/s(0)               | 257  | 0  | 257000 | 263000         | 0           |
| /testcount/ucounter1/co                 | 16   | 0  | 2000   | 517800         | 200         |
| <pre>/testcount/ucounter1/stmp(7)</pre> | 30   | 0  | 256000 | 263600         | 400         |
| /testcount/ucounter1/stmp(6)            | 52   | 0  | 256000 | 263600         | 400         |
| /testcount/ucounter1/stmp(5)            | 88   | 0  | 256000 | 263600         | 400         |
| /testcount/ucounter1/stmp(4)            | 144  | 0  | 256000 | 263600         | 400         |
| /testcount/ucounter1/stmp(3)            | 224  | 0  | 256000 | 263600         | 400         |
| /testcount/ucounter1/stmp(2)            | 320  | 0  | 256000 | 263600         | 400         |
| /testcount/ucounter1/stmp(1)            | 385  | 0  | 256600 | 263000         | 400         |
| /testcount/ucounter1/stmp(0)            | 258  | 0  | 257000 | 262800         | 200         |
| /testcount/ucounter1/ctmp(8)            | 16   | 0  | 2000   | 517800         | 200         |
| /testcount/ucounter1/ctmp(7)            | 28   | 0  | 4000   | 515800         | 200         |
| /testcount/ucounter1/ctmp(6)            | 48   | 0  | 8000   | 511800         | 200         |
| /testcount/ucounter1/ctmp(5)            | 80   | 0  | 16000  | 503800         | 200         |
| /testcount/ucounter1/ctmp(4)            | 128  | 0  | 32000  | 487800         | 200         |
| /testcount/ucounter1/ctmp(3)            | 192  | 0  | 64000  | 455800         | 200         |
| /testcount/ucounter1/ctmp(2)            | 256  | 0  | 128000 | 391800         | 200         |
| /testcount/ucounter1/ctmp(1)            | 257  | 0  | 256800 | 263000         | 200         |
| /testcount/ucounter1/ctmp(0)            | 1    | 0  | 514000 | 6000           | 0           |
| /testcount/ucounter1/stmpsync(7)        | 2    | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/stmpsync(6)        | 4    | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/stmpsync(5)        | 8    | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/stmpsync(4)        | 16   | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/stmpsync(3)        | 32   | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/stmpsync(2)        | 64   | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/stmpsync(1)        | 128  | 0  | 256000 | 264000         | 0           |
| /testcount/ucounter1/stmpsync(0)        | 257  | 0  | 257000 | 263000         | 0           |

Figure 1.15: Power report

che si propagano interamente al contatore a causa del ritardo di 0,2 ns di ciascun Half Adder.

Fortunatamente, questi glitch vengono filtrati dai Flip-FLop, in quanto il  $T_{CLK}$  è superiore al ritardo introdotto dalla rete combinatoria.

# Laboratorio 2: FSM State Assignment and VHDL Synthesis

#### 2.1 FSM State Assignment

Durante la prima parte dell'esercitazione di laboratorio, viene richiesto di implementare un circuito per sommare 6 numeri

$$s = a + b + c + d + e + f$$

utilizzando un unico sommatore, due multiplexer e un registro. Viene richiesto di valutare e minimizzare il consumo di potenza, andando a modificare la connessione degli input A-H, considerando esclusivamente l'attività della FSM e i bit di selezione del MUX S0-S3.

Il circuito completo è riportato in Figura 2.4, mentre la FSM è presente in Figura ??.

Dopo varie ottimizzazioni, si è arrivati ad avere un'attività totale pari a 8 per il multiplexer e 6 per la State transition della macchina a stati, andando a considerare che la macchina a stati e il multiplexer ricomincino le operazioni una volta terminate. Nella tabella 2.1 viene riportata la configurazione degli stati e dei bit del multiplexer scelta:



Figure 2.1: Probabilità e Switching Activity stimati manualmente

| STATI | $S_3S_2S_1S_0$ |
|-------|----------------|
| 000   | 0000           |
| 001   | 0101           |
| 011   | 0111           |
| 010   | 1110           |
| 110   | 1010           |

Table 2.1: Risultati simulazione

#### 2.2 VHDL synthesis

Il secondo punto del laboratorio prevede di sintetizzare l'FSM tramite synopsys e studiarne le caratteristiche in termini di area, potenza e timing in modo da ricercare possibili ottimizzazioni. Si è utilizzata la libreria a 45 nm, definito un segnale di clock di periodo corrispondente a 10 ns, si è verificato il corretto inserimento tramite il comando  $report\_clock$  e si è sintetizzato il circuito.

|   | clock | period   | waveform |
|---|-------|----------|----------|
| Г | CLK   | 10.00 ns | {0 5} V  |

Di seguito è riportato lo schema generato da synopsys:



Figure 2.2: Schematico del circuito sintetizzato

Dal report sull area si sono ottenute informazioni riguardanti la quantità di componenti, le connessioni, l'area relativa occupata dalla logica combinatoria, circa il doppio rispetto a quella non combinatoria e quindi dell'area totale.

| type       | number |
|------------|--------|
| ports      | 114    |
| nets       | 118    |
| cells      | 2      |
| references | 2      |

| area type        | value      |
|------------------|------------|
| combinational    | 195.244003 |
| noncombinational | 101.08003  |
| total cell       | 296.324006 |

Successivamente, dopo aver verificato la corretta codifica degli stati della FSM si è analizzato il timing del circuito, dal quale si sono ottenute importanti informazioni riguardo ai ritardi delle varie porte e allo Slack time nel caso del percorso peggiore che è di 8.03 ns, parametro che consente di ottimizzare frequenza di funzionamento del circuito, visto che la condizione necessaria è che lo slack time sia positivo. Inoltre si è eseguito il timing per i peggiori 10 percorsi e si sono ricavati i valori di slack.

| Slack (MET) | value [ns] |
|-------------|------------|
| 1           | 8.04       |
| 2           | 8.04       |
| 3           | 8.04       |
| 4           | 8.04       |
| 5           | 8.04       |
| 6           | 8.05       |
| 7           | 8.05       |
| 8           | 8.05       |
| 9           | 8.05       |
| 10          | 8.05       |

Non si evidenziano rilevanti differenze tra i diversi slack, ciò è dovuto alla simmetria dei percorsi critici che presentano la stessa struttura. Ecco come sono distribuiti i peggiori slack:



Figure 2.3: Grafico distribuzione slacks

Dunque si è analizzata la potenza dissipata sia dall'intera logica che da ogni singola cella. Il report sulla potenza distingue la potenza dissipata dinamicamente, staticamente e quella dovuta alle correnti di leakage, fornendo la percentuale rispetto alla potenza dissipata totale e analizzando il circuito a livello gerarchico. In questo modo è possibile capire quanto influiscono i diversi contributi di potenza dissipata e se necessario intervenire opportunamente per consumare meno.

| hierarchy      | switch | int    | leak      | tot    | %    |
|----------------|--------|--------|-----------|--------|------|
| m_adder        | 11.943 | 28.443 | 5.46e + 3 | 45.844 | 100  |
| datapath_adder | 10.930 | 25.532 | 5.03e + 3 | 41.495 | 90.5 |
| add_78         | 1.765  | 4.921  | 1.19e + 3 | 7.879  | 17.2 |
| fsm            | 1.012  | 2.911  | 425.171   | 4.349  | 9.5  |

Inoltre si è analizzata l'attività delle singole celle in modo da studiare i consumi di ogni singola cella. Da quest'ultimo report si è ricavato che le celle corrispondenti ai registri hanno dei consumi più elevati di potenza statica e consumano più del doppio della corrente di leakage rispetto alle altre celle del circuito.

| cell           | cell internal | driven net switching | tot dynamic [% cell/tot] | cell leakage |
|----------------|---------------|----------------------|--------------------------|--------------|
| REG[0]         | 1.0163        | 0.0584               | 1.075 (95%)              | 87.1072      |
| REG[1]         | 0.8660        | 0.1134               | 0.979 (88%)              | 81.4649      |
| REG[2]         | 0.7468        | 0.1083               | 0.855 (87%)              | 84.7325      |
| U8             | 0.0465        | 0.0297               | 7.62e-2 (61%)            | 33.6813      |
| U9             | 0.0386        | 0.1368               | 0.175 (22%)              | 31.6341      |
| U6             | 0.0375        | 0.1356               | 0.173 (22%)              | 18.0848      |
| U5             | 0.0314        | 0.0193               | 5.07e-2 (62%)            | 19.3118      |
| U4             | 0.0304        | 0.0174               | 4.77e-2 (64%)            | 17.9767      |
| U10            | 0.0285        | 0.0746               | 0.103 (28%)              | 12.9020      |
| U7             | 0.0233        | 0.1282               | 0.151 (15%)              | 15.8344      |
| U3             | 0.0190        | 0.1236               | 0.143 (13%)              | 17.0242      |
| U11            | 9.993e-3      | 0.0392               | 4.92e-2 (20%)            | 14.3532      |
| tot (12 cells) | 2.894 uW      | 984.349 nW           | 3.878 uW (75%)           | 434.107 nW   |

E' utile inoltre valutare il numero di commutazioni delle singole uscite valutando sia la capacità del carico che il tasso di commutazioni. In accordo con i risultati precedenti si denota un'attività più intensa per i registri per hanno un carico capacitivo molto più alto delle altre uscite anche se il toggle rate è praticamente equivalente per tutte le uscite e la probabilità statistica è comunque minore.

| hierarchy      | switch | int    | leak      | tot    | %    |
|----------------|--------|--------|-----------|--------|------|
| m_adder        | 11.943 | 28.443 | 5.46e + 3 | 45.844 | 100  |
| datapath_adder | 10.930 | 25.532 | 5.03e + 3 | 41.495 | 90.5 |
| add_78         | 1.765  | 4.921  | 1.19e + 3 | 7.879  | 17.2 |
| fsm            | 1.012  | 2.911  | 425.171   | 4.349  | 9.5  |

Inoltre si è analizzata l'attività delle singole celle in modo da studiare i consumi di ogni singola cella. Da quest'ultimo report si è ricavato che le celle corrispondenti ai registri hanno dei consumi più elevati di potenza statica e consumano più del doppio della corrente di leakage rispetto alle altre celle del circuito.

| net           | total net load | static prob. | toggle rate | switching power  |
|---------------|----------------|--------------|-------------|------------------|
| S[2]          | 11.104         | 0.326        | 0.0244      | 0.1641           |
| S[0]          | 9.304          | 0.228        | 0.0244      | 0.1375           |
| S[1]          | 10.166         | 0.295        | 0.0221      | 0.1360           |
| S[3]          | 9.541          | 0.186        | 0.0200      | 0.1153           |
| n21           | 10.518         | 0.088        | 0.0181      | 0.1153           |
| n5            | 6.169          | 0.814        | 0.0200      | 0.0746           |
| n6            | 3.949          | 0.772        | 0.0244      | 0.0584           |
| n8            | 4.078          | 0.706        | 0.0222      | 0.0546           |
| n25           | 3.843          | 0.500        | 0.0221      | 0.0514           |
| n28           | 6.482          | 0.772        | 0.0100      | 0.0392           |
| n27           | 1.980          | 0.706        | 0.0244      | 0.0293           |
| N8            | 1.438          | 0.098        | 0.0221      | 0.0193           |
| n7            | 1.438          | 0.0392       | 0.0200      | 0.0174           |
| tot (13 nets) |                |              |             | $1.0125~{ m uW}$ |

Si è adesso focalizzata l'attenzione sui consumi della Macchina a Stati. La FSM è caratterizzata da una leakage current di 418 nW a fronte dei 434 nW totali e anche per gli altri contributi di consumo di potenza dinamica i dati tendono ad evidenziare il ruolo preponderante del componente sul totale consumo del circuito.

|                     |           | Switching<br>Power | Tot Dynamic<br>Power<br>(% Cell/Tot) | Leakage<br>Power |  |
|---------------------|-----------|--------------------|--------------------------------------|------------------|--|
| CURRENTSTATE reg[0] |           |                    |                                      |                  |  |
| CURRENTSTATE reg[1] |           |                    |                                      |                  |  |
| CURRENTSTATE_reg[2] |           |                    |                                      |                  |  |
|                     |           |                    | 0.492 (20%)                          |                  |  |
| U6                  | 0.0989    | 0.0453             | 0.144 (69%)                          | 30.0052          |  |
| U5                  | 0.0644    | 0.0595             | 0.124 (52%)                          | 17.0430          |  |
| U7                  | 0.0384    | 0.0491             | 8.75e-02 (44%)                       | 11.6295          |  |
| U4                  |           |                    | 2.12e-02 (91%)                       |                  |  |
| U10                 | 0.0109    | 8.310e-03          | 1.92e-02 (57%)                       | 20.1295          |  |
| U9                  | 2.905e-03 | 1.593e-03          | 4.50e-03 (65%)                       | 16.3885          |  |
| U8                  | 2.689e-03 | 6.834e-03          | 9.52e-03 (28%)                       | 5.3388           |  |
| U3                  | 1.734e-03 | 3.431e-04          | 2.08e-03 (83%)                       | 18.5247          |  |
|                     |           |                    |                                      |                  |  |
| Totals (12 cells)   | 2.165u    | W 711.655nW        | 2.877uW (75%)                        | 418.753nW        |  |

Figure 2.4: Potenza dissipata dalla FSM

Dopodiché si è provato a variare la frequenza di lavoro del circuito, provando a sintetizzare il circuito in modo da lavorare alla massima frequenza di funzionamento consentita dal percorso critico. Dall'analisi sul timing si è trovato lo slack peggiore di circa 8.02 ns lavorando a 10 ns di periodo di clock. Si può allora decrementare il periodo di clock fino a 10-8.02=1.98 ns. Difatti si è scelto un periodo di clock di 2 ns.

| cell internal power | 141.4894 uW (71%)  |
|---------------------|--------------------|
| net switching power | 58.8064 uW (29%)   |
| total dynamic power | 200.2958 uW (100%) |
| cell leakage power  | $5.5273 \; uW$     |

Si nota come sia aumentata la Total Dynamic Power, questo poiché aumentando la frequenza operativa aumentano anche il numero di commutazioni interne e quindi viene dissipata maggiore potenza dinamica. Resta invece invariata la corrente di leakage che infatti dipende solo dalla tecnologia usata.

Infine è stato posto al sintetizzatore un ulteriore vincolo sulla massima potenza dinamica dissipabile a 200 uW, considerando che nell'ultimo report la potenza totale dissipata ammonta a 200.2958 uW.

| cell internal power | 140.3547 uW (70%)  |
|---------------------|--------------------|
| net switching power | 59.0397 uW (30%)   |
| total dynamic power | 199.3944 uW (100%) |
| cell leakage power  | 5.5832 uW          |

Adesso la potenza dinamica totale dissipata è di 199.3944 uW e rispetta il vincolo. Inoltre, si nota che stavolta il parametro della leakage power è leggermente variato, questo poichè stavolta per rispettare il vincolo sul consumo di potenza è stata variata la topologia del circuito usando differenti porte logiche.

## 3. Laboratorio 3: Clock gating, pipelining and parallelizing

Durante questa esperienza di laboratorio verranno analizzate una serie di tecniche per ridurre i consumi mediante l'ottimizzazione dell'architettura dei circuiti.

#### 3.1 A first approach to clock gating

Un prima tecnica utilizzata per ridurre i consumi andando a lavorare sull'architettura è il *Clock Gating*. Questa tecnica permette di "staccare" il clock ad un determinato blocco del mio circuito, quando questo non deve lavorare. Un circuito di massima è riportato in Figura 3.1.



Figure 3.1: Schema implementativo della tecnica del Clock Gating

Nella prima parte dell'esperienza viene chiesto di analizzare il file *ckgbug.vhd* che contiene la descrizione VHDL di una struttura composta da due registri in cascata, denominati L1 ed L2. La tecnica del clock gating viene applicata al secondo registro, mediante una AND tra il clock e un segnale di ENABLE. Bisogna prestare attenzione al fatto che i segnali di ingresso dei due registri (D1 e D2) siano rispettivamente *std\_logic\_vector* (7 downto 0) e *std\_logic\_vector* (0 to 7.

In una prima simulazione, si forza il segnale D1 al valore '01111111' e, attivando il segnale di ENABLE, ci si aspetterebbe che D2, al colpo di clock successivo, vada al valore '111111101' e che l'uscita di L2, denominata D3, vada al valore '01111111' al colpo di clock ancora successivo. In realtà la simulazione porta al risultato in Figura 3.2. Si può ben notare come l'uscita



Figure 3.2: Schema implementativo della tecnica del Clock Gating

D3 dopi esattamente D1 dopo un solo colpo di clock. Questo è dovuto al fatto che il clock gated arriva a L2 un "passo di simulazione" dopo L1, perchè il simulatore programma il calcolo dell'uscita AND dopo l'assegnazione del clock. Quindi accade come se l'AND avesse un ritardo interno.

La traccia suggerisce che si può risolvere questo inconveniente andando ad aggiungere un ritardo *Clock-to-Output* pari a 0.1 ps all'uscita del generico Flip-Flop. Andando a risimulare il file, si ottiene il comportamento desiderato, che viene riportato in Figura 3.3.



Figure 3.3: Schema implementativo della tecnica del Clock Gating

Infine si aggiunge un ulteriore ritardo alla porta AND pari a 0.2 ps, ossia un tempo superiore a quello Clock-to-Output inserito in precendeza. In questo modo si va a violtare il  $t_{hold}$  e dunque il circuito ritorna nella situazione precendete con un funzionamento non corretto. Il risultato della simulazione è riportato in Figura 3.4.



Figure 3.4: Schema implementativo della tecnica del Clock Gating

## 4. Laboratorio 4: Bus Encoding

Durante questa esperienza di laboratorio, viene chiesto di analizzare e di valutare alcune tecniche di bus encoding. Nella prima parte dell'esperienza viene chiesto di valutare le performance delle varie tecniche in termini di transizioni e poi ———

#### 4.1 Simulation

Durante la prima parte dell'esperienza viene chiesto di valutare, in termini di commutazioni, diverse tecniche di bus-encoding. Il tutto viene simulato grazie ad un testbench fornite e tramite i power report generati da ModelSim.

#### 4.1.1 Non-encoded

Inizialmente si è simulato il caso in cui utilizzi un bus non codificato, andando a vedere l'evoluzione dei toogle in 10000 colpi di clock in modo tale da avere un punto di riferimento nel confronto con le altre varie tecniche. All'interno del testbench da simulare sono distinti due processi:

- processo per gli indirizzi
- processo per i dati

i quali prendono come input i dati contenuti nel file *rndin.txt*, che, come sottolineato nella traccia, contiene delle stringe ad 8 bit con un a probabilità bassa di 1 logico. Questo fa già prevedere che la tecnica *Transition-Based* 

risulterà la meno performante, in quanto questa tipologia di codifica porta ad riduzione delle commutazioni, solo nel caso in cui le probabilità di '1' logico e di '0' logico siano equiprobabili. risulterà meno efficiente. Nelle Figure 4.2 e 4.1, sono riportati i *power report* rispettivamente nel caso di dati e di indirizzi.Infine, nelle Tabelle 4.1 e 4.2 si riportano le switching activity rispettivamente nel caso di indirizzi e dati.

| Time At | Time At 0 | Time At 1 | Ti | Tc    | er Report Node             |
|---------|-----------|-----------|----|-------|----------------------------|
|         | 49970000  | 50030000  | 0  | 4974  | /testbench/ABUSNORM(7)     |
|         | 50540000  | 49460000  | 0  | 5022  | /testbench/ABUSNORM(6)     |
|         | 50615100  | 49384900  | 0  | 4987  | /testbench/ABUSNORM(5)     |
|         | 50030000  | 49970000  | 0  | 4972  | /testbench/ABUSNORM(4)     |
|         | 48750000  | 51250000  | 0  | 4960  | /testbench/ABUSNORM(3)     |
|         | 50105100  | 49894900  | 0  | 4965  | /testbench/ABUSNORM(2)     |
|         | 50000000  | 50000000  | 0  | 5024  | /testbench/ABUSNORM(1)     |
|         | 50060000  | 49940000  | 0  | 5060  | /testbench/ABUSNORM(0)     |
| 10      | 49969900  | 50030000  | 0  | 4974  | /testbench/COUNTBUSNORM(7) |
| 10      | 50544900  | 49455000  | 0  | 5021  | /testbench/COUNTBUSNORM(6) |
| 10      | 50624900  | 49375000  | 0  | 4987  | /testbench/COUNTBUSNORM(5) |
| 10      | 50029900  | 49970000  | 0  | 4972  | /testbench/COUNTBUSNORM(4) |
| 10      | 48754900  | 51245000  | 0  | 4959  | /testbench/COUNTBUSNORM(3) |
| 10      | 50114900  | 49885000  | 0  | 4965  | /testbench/COUNTBUSNORM(2) |
| 10      | 50004900  | 49995000  | 0  | 5023  | /testbench/COUNTBUSNORM(1) |
| 10      | 50059900  | 49940000  | 0  | 5060  | /testbench/COUNTBUSNORM(0) |
| 10      | 49974900  | 50025000  | 0  | 4973  | /testbench/CBUSNORM(7)     |
| 10      | 50554900  | 49445000  | 0  | 5021  | /testbench/CBUSNORM(6)     |
| 10      | 50634900  | 49365000  | 0  | 4987  | /testbench/CBUSNORM(5)     |
| 10      | 50029900  | 49970000  | 0  | 4972  | /testbench/CBUSNORM(4)     |
| 10      | 48759900  | 51240000  | 0  | 4958  | /testbench/CBUSNORM(3)     |
| 10      | 50119900  | 49880000  | 0  | 4964  | /testbench/CBUSNORM(2)     |
| 10      | 50014900  | 49985000  | 0  | 5023  | /testbench/CBUSNORM(1)     |
| 10      | 50059900  | 49940000  | 0  | 5060  | /testbench/CBUSNORM(0)     |
|         | 50000000  | 50000000  | 0  | 20000 | /testbench/CK              |
|         | 99999800  | 200       | 0  | 2     | /testbench/RST             |
|         | 49970000  | 50030000  | 0  | 4974  | /testbench/A(7)            |
|         | 50540000  | 49460000  | 0  | 5022  | /testbench/A(6)            |
|         | 50615100  | 49384900  | 0  | 4987  | /testbench/A(5)            |
|         | 50030000  | 49970000  | 0  | 4972  | /testbench/A(4)            |
|         | 48750000  | 51250000  | 0  | 4960  | /testbench/A(3)            |
|         | 50105100  | 49894900  | 0  | 4965  | /testbench/A(2)            |
|         | 50000000  | 50000000  | 0  | 5024  | /testbench/A(1)            |
|         | 50060000  | 49940000  | 0  | 5060  | /testbench/A(0)            |

Figure 4.1: Power Report, tecnica no-encoding, caso 'data'

| Nodo            | $E_{SW}$ |
|-----------------|----------|
| countbusnorm(7) | 0.0097   |
| countbusnorm(6) | 0.0118   |
| countbusnorm(5) | 0.0312   |
| countbusnorm(4) | 0.0624   |
| countbusnorm(3) | 0.1249   |
| countbusnorm(2) | 0.2499   |
| countbusnorm(1) | 0.4999   |
| countbusnorm(0) | 0.9999   |

Table 4.1: Switching Activity, tecnica no-encoding, caso 'data'

#### 4.1. Simulation

| Power Report | Node                       | Tc    | Ti | Time At 1 | Time At 0 | Time At X |
|--------------|----------------------------|-------|----|-----------|-----------|-----------|
|              | /testbench/ABUSNORM(7)     | 97    | 0  | 48164900  | 51835100  | 0         |
|              | /testbench/ABUSNORM(6)     | 118   | 0  | 37760000  | 62240000  | 0         |
|              | /testbench/ABUSNORM(5)     | 312   | 0  | 49927000  | 50073000  | 0         |
|              | /testbench/ABUSNORM(4)     | 625   | 0  | 49931900  | 50068100  | 0         |
|              | /testbench/ABUSNORM(3)     | 1250  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/ABUSNORM(2)     | 2500  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/ABUSNORM(1)     | 5000  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/ABUSNORM(0)     | 10000 | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/COUNTBUSNORM(7) | 97    | 0  | 48155000  | 51844900  | 100       |
|              | /testbench/COUNTBUSNORM(6) | 118   | 0  | 37760000  | 62239900  | 100       |
|              | /testbench/COUNTBUSNORM(5) | 312   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSNORM(4) | 624   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSNORM(3) | 1249  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSNORM(2) | 2499  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSNORM(1) | 4999  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSNORM(0) | 9999  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/CBUSNORM(7)     | 97    | 0  | 48145000  | 51854900  | 100       |
|              | /testbench/CBUSNORM(6)     | 118   | 0  | 37760000  | 62239900  | 100       |
|              | /testbench/CBUSNORM(5)     | 312   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/CBUSNORM(4)     | 624   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/CBUSNORM(3)     | 1249  | 0  | 49985000  | 50014900  | 100       |
|              | /testbench/CBUSNORM(2)     | 2499  | 0  | 49985000  | 50014900  | 100       |
|              | /testbench/CBUSNORM(1)     | 4999  | 0  | 49985000  | 50014900  | 100       |
|              | /testbench/CBUSNORM(0)     | 9998  | 0  | 49990000  | 50009900  | 100       |
|              | /testbench/CK              | 20000 | 0  | 50000000  | 50000000  | 0         |
|              | /testbench/RST             | 2     | 0  | 200       | 99999800  | 0         |
|              | /testbench/A(7)            | 97    | 0  | 48164900  | 51835100  | 0         |
|              | /testbench/A(6)            | 118   | 0  | 37760000  | 62240000  | 0         |
|              | /testbench/A(5)            | 312   | 0  | 49927000  | 50073000  | 0         |
|              | /testbench/A(4)            | 625   | 0  | 49931900  | 50068100  | 0         |
|              | /testbench/A(3)            | 1250  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/A(2)            | 2500  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/A(1)            | 5000  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/A(0)            | 10000 | 0  | 50007000  | 49993000  | 0         |
|              |                            |       |    |           |           |           |

Figure 4.2: Power Report, tecnica no-encoding, caso 'address'

| Nodo            | $E_{SW}$ |
|-----------------|----------|
| countbusnorm(7) | 0.4974   |
| countbusnorm(6) | 0.5021   |
| countbusnorm(5) | 0.4987   |
| countbusnorm(4) | 0.4972   |
| countbusnorm(3) | 0.4959   |
| countbusnorm(2) | 0.4965   |
| countbusnorm(1) | 0.5023   |
| countbusnorm(0) | 0.506    |

Table 4.2: Switching Activity, tecnica no-encoding, caso 'address'

### 4.1.2 Bus-invert technique, Transition based technique, Gray technique

La codifica del Bus-invert consiste nel verificare che il dato successivo comporti un numero di commutazioni superiori di  $\frac{N}{2}$ , dove N è il numero di

linee che compone il bus. In caso, conviene mandare il dato complementato e forzare ad '1' un bit denominato *inv*, per segnalare che il dato in arrivo è in realtà complementato. Nelle Tabelle 4.3 e 4.4, si riportano le Switching Activity rispettivamente nel caso di indirizzi e dati.

| Nodo           | $E_{SW}$ |
|----------------|----------|
| countbusinv(8) | 0.0624   |
| countbusinv(7) | 0.0527   |
| countbusinv(6) | 0.0506   |
| countbusinv(5) | 0.0312   |
| countbusinv(4) | 0        |
| countbusinv(3) | 0.0625   |
| countbusinv(2) | 0.1875   |
| countbusinv(1) | 0.4375   |
| countbusinv(0) | 0.9375   |

Table 4.3: Switching Activity, tecnica bus-invert, caso 'address'

| Nodo           | $E_{SW}$ |
|----------------|----------|
| countbusinv(8) | 0.365    |
| countbusinv(7) | 0.3576   |
| countbusinv(6) | 0.3611   |
| countbusinv(5) | 0.3617   |
| countbusinv(4) | 0.364    |
| countbusinv(3) | 0.3613   |
| countbusinv(2) | 0.3601   |
| countbusinv(1) | 0.3639   |
| countbusinv(0) | 0.3722   |

Table 4.4: Switching Activity, tecnica bus-invert, caso 'data'



Figure 4.3: Schema tecnica 'Transition Based'

Si esegue la medesima analisi per la tecnica *Transition Based*, riportata in Figura 4.3. Questa tecnica consiste nell'inviare uno '0' logico ogni qual volta la linea corrisponde alla precedente, mentre un '1' logico viene inteso come

complemento del valore precedente della linea. I risultati delle simulazioni sono riportati per il caso dati in Tabella 4.5 e per il caso indirizzi in Tabella 4.6.

| Nodo            | $E_{SW}$ |
|-----------------|----------|
| countbustran(7) | 0.5003   |
| countbustran(6) | 0.4946   |
| countbustran(5) | 0.4938   |
| countbustran(4) | 0.4997   |
| countbustran(3) | 0.5125   |
| countbustran(2) | 0.4989   |
| countbustran(1) | 0.500    |
| countbustran(0) | 0.4994   |

Table 4.5: Switching Activity, tecnica Transition-Based, caso 'data'

| Nodo            | $E_{SW}$ |
|-----------------|----------|
| countbustran(7) | 0.4816   |
| countbustran(6) | 0.3776   |
| countbustran(5) | 0.4992   |
| countbustran(4) | 0.4992   |
| countbustran(3) | 0.500    |
| countbustran(2) | 0.500    |
| countbustran(1) | 0.500    |
| countbustran(0) | 0.500    |

Table 4.6: Switching Activity, tecnica Transition-Based, caso 'address'



Figure 4.4: Schema tecnica 'Codifica di Gray'

La tecnica Codifica di Gray, riportata in Figura 4.4: questa tecnica viene sfruttata specialmente nelle trasmissioni sequenziali, come ad esempio nel caso di indirizzi, in modo tale cambio esclusivamente un solo bit alla volta. I risultati delle Switching Activity sono riportati per i dati nella Tabella 4.7 e nella Tabella 4.8 per gli indirizzi.

| Nodo            | $E_{SW}$ |
|-----------------|----------|
| countbusgray(7) | 0.4974   |
| countbusgray(6) | 0.5087   |
| countbusgray(5) | 0.4952   |
| countbusgray(4) | 0.4981   |
| countbusgray(3) | 0.4937   |
| countbusgray(2) | 0.5056   |
| countbusgray(1) | 0.4962   |
| countbusgray(0) | 0.5075   |

Table 4.7: Switching Activity, tecnica Codifica di Gray, caso 'data'

| Nodo            | $E_{SW}$ |
|-----------------|----------|
| countbusgray(7) | 0.097    |
| countbusgray(6) | 0.055    |
| countbusgray(5) | 0.194    |
| countbusgray(4) | 0.312    |
| countbusgray(3) | 0.625    |
| countbusgray(2) | 0.125    |
| countbusgray(1) | 0.250    |
| countbusgray(0) | 0.500    |

Table 4.8: Switching Activity, tecnica Transition Based, caso 'address'

#### 4.1. Simulation

Si riportano per completezza i  $Power\ Report$  delle simulazioni svolte con ModelSim. In Figura 4.5 si riporta il Report nel caso di indirizzi, mentre in Figura 4.6 il caso di dati.

| Power  | Report | Interval |
|--------|--------|----------|
| 100000 | 0000   |          |

| Power Report | Node                       | Tc    | Ti | Time At 1 | Time At 0 | Time At X |
|--------------|----------------------------|-------|----|-----------|-----------|-----------|
|              | /testbench/A(7)            | 97    | 0  | 48164900  | 51835100  | 0         |
|              | /testbench/A(6)            | 118   | 0  | 37760000  | 62240000  | 0         |
|              | /testbench/A(5)            | 312   | 0  | 49927000  | 50073000  | 0         |
|              | /testbench/A(4)            | 625   | 0  | 49931900  | 50068100  | 0         |
|              | /testbench/A(3)            | 1250  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/A(2)            | 2500  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/A(1)            | 5000  | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/A(0)            | 10000 | 0  | 50007000  | 49993000  | 0         |
|              | /testbench/COUNTBUSNORM(7) | 97    | 0  | 48155000  | 51844900  | 100       |
|              | /testbench/COUNTBUSNORM(6) | 118   | 0  | 37760000  | 62239900  | 100       |
|              | /testbench/COUNTBUSNORM(5) | 312   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSNORM(4) | 624   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSNORM(3) | 1249  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSNORM(2) | 2499  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSNORM(1) | 4999  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSNORM(0) | 9999  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSTRAN(7) | 4816  | 0  | 24080000  | 75919900  | 100       |
|              | /testbench/COUNTBUSTRAN(6) | 3776  | 0  | 18880000  | 81119900  | 100       |
|              | /testbench/COUNTBUSTRAN(5) | 4992  | 0  | 24960000  | 75039900  | 100       |
|              | /testbench/COUNTBUSTRAN(4) | 4992  | 0  | 24960000  | 75039900  | 100       |
|              | /testbench/COUNTBUSTRAN(3) | 5000  | 0  | 25000000  | 74999900  | 100       |
|              | /testbench/COUNTBUSTRAN(2) | 5000  | 0  | 25000000  | 74999900  | 100       |
|              | /testbench/COUNTBUSTRAN(1) | 5000  | 0  | 25000000  | 74999900  | 100       |
|              | /testbench/COUNTBUSTRAN(0) | 5000  | 0  | 50000000  | 49999900  | 100       |
|              | /testbench/COUNTBUSGRAY(7) | 97    | 0  | 48155000  | 51844900  | 100       |
|              | /testbench/COUNTBUSGRAY(6) | 55    | 0  | 24475000  | 75524900  | 100       |
|              | /testbench/COUNTBUSGRAY(5) | 194   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSGRAY(4) | 312   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSGRAY(3) | 625   | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSGRAY(2) | 1250  | 0  | 50000000  | 49999900  | 100       |
|              | /testbench/COUNTBUSGRAY(1) | 2500  | 0  | 50000000  | 49999900  | 100       |
|              | /testbench/COUNTBUSGRAY(0) | 5000  | 0  | 50000000  | 49999900  | 100       |
|              | /testbench/COUNTBUSINV(8)  | 624   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSINV(7)  | 527   | 0  | 50075000  | 49924900  | 100       |
|              | /testbench/COUNTBUSINV(6)  | 506   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSINV(5)  | 312   | 0  | 49920000  | 50079900  | 100       |
|              | /testbench/COUNTBUSINV(3)  | 625   | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSINV(2)  | 1875  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSINV(1)  | 4375  | 0  | 49995000  | 50004900  | 100       |
|              | /testbench/COUNTBUSINV(0)  | 9375  | 0  | 49995000  | 50004900  | 100       |

Figure 4.5: Power Report complessivo, caso 'address'

#### 4.1. Simulation

Power Report Interval

| ower Report | Node                       | Tc   | Ti | Time At 1 | Time At 0 | Time At |
|-------------|----------------------------|------|----|-----------|-----------|---------|
|             | /testbench/A(7)            | 4974 | 0  | 50030000  | 49970000  |         |
|             | /testbench/A(6)            | 5022 | 0  | 49460000  | 50540000  |         |
|             | /testbench/A(5)            | 4987 | 0  | 49384900  | 50615100  |         |
|             | /testbench/A(4)            | 4972 | 0  | 49970000  | 50030000  |         |
|             | /testbench/A(3)            | 4960 | 0  | 51250000  | 48750000  |         |
|             | /testbench/A(2)            | 4965 | 0  | 49894900  | 50105100  |         |
|             | /testbench/A(1)            | 5024 | 0  | 50000000  | 50000000  |         |
|             | /testbench/A(0)            | 5060 | 0  | 49940000  | 50060000  |         |
|             | /testbench/COUNTBUSNORM(7) | 4974 | 0  | 50030000  | 49969900  | 10      |
|             | /testbench/COUNTBUSNORM(6) | 5021 | 0  | 49455000  | 50544900  | 10      |
|             | /testbench/COUNTBUSNORM(5) | 4987 | 0  | 49375000  | 50624900  | 10      |
|             | /testbench/COUNTBUSNORM(4) | 4972 | 0  | 49970000  | 50029900  | 10      |
|             | /testbench/COUNTBUSNORM(3) | 4959 | 0  | 51245000  | 48754900  | 10      |
|             | /testbench/COUNTBUSNORM(2) | 4965 | 0  | 49885000  | 50114900  | 10      |
|             | /testbench/COUNTBUSNORM(1) | 5023 | 0  | 49995000  | 50004900  | 10      |
|             | /testbench/COUNTBUSNORM(0) | 5060 | 0  | 49940000  | 50059900  | 10      |
|             | /testbench/COUNTBUSTRAN(7) | 5003 | 0  | 49825000  | 50174900  | 10      |
|             | /testbench/COUNTBUSTRAN(6) | 4946 | 0  | 49830000  | 50169900  | 10      |
|             | /testbench/COUNTBUSTRAN(5) | 4938 | 0  | 50480000  | 49519900  | 10      |
|             | /testbench/COUNTBUSTRAN(4) | 4997 | 0  | 49585000  | 50414900  | 10      |
|             | /testbench/COUNTBUSTRAN(3) | 5125 | 0  | 49945000  | 50054900  | 1       |
|             | /testbench/COUNTBUSTRAN(2) | 4989 | 0  | 50245000  | 49754900  | 1       |
|             | /testbench/COUNTBUSTRAN(1) | 5000 | 0  | 49890000  | 50109900  | 1       |
|             | /testbench/COUNTBUSTRAN(0) | 4994 | 0  | 49540000  | 50459900  | 1       |
|             | /testbench/COUNTBUSGRAY(7) | 4974 | 0  | 50030000  | 49969900  | 1       |
|             | /testbench/COUNTBUSGRAY(6) | 5087 | 0  | 50105000  | 49894900  | 1       |
|             | /testbench/COUNTBUSGRAY(5) | 4952 | 0  | 50100000  | 49899900  | 1       |
|             | /testbench/COUNTBUSGRAY(4) | 4981 | 0  | 50505000  | 49494900  | 1       |
|             | /testbench/COUNTBUSGRAY(3) | 4937 | 0  | 49415000  | 50584900  | 10      |
|             | /testbench/COUNTBUSGRAY(2) | 5056 | 0  | 50320000  | 49679900  | 1       |
|             | /testbench/COUNTBUSGRAY(1) | 4962 | 0  | 50710000  | 49289900  | 1       |
|             | /testbench/COUNTBUSGRAY(0) | 5075 | 0  | 49715000  | 50284900  | 1       |
|             | /testbench/COUNTBUSINV(8)  | 3650 | 0  | 49260000  | 50739900  | 1       |
|             | /testbench/COUNTBUSINV(7)  | 3576 | 0  | 48810000  | 51189900  | 1       |
|             | /testbench/COUNTBUSINV(6)  | 3611 | 0  | 49595000  | 50404900  | 1       |
|             | /testbench/COUNTBUSINV(5)  | 3617 | 0  | 52235000  | 47764900  | 1       |
|             | /testbench/COUNTBUSINV(4)  | 3640 | 0  | 50190000  | 49809900  | 1       |
|             | /testbench/COUNTBUSINV(3)  | 3613 | 0  | 49685000  | 50314900  | 1       |
|             | /testbench/COUNTBUSINV(2)  | 3601 | 0  | 50405000  | 49594900  | 10      |
|             | /testbench/COUNTBUSINV(1)  | 3639 | 0  | 50295000  | 49704900  | 10      |
|             | /testbench/COUNTBUSINV(0)  | 3722 | 0  | 51500000  | 48499900  | 1       |

Figure 4.6: Power Report complessivo, caso 'data'

#### 4.1.3 T0 techinque

L'ultima tecnica richiesta è di implementare un codice per realizzare la tecnica  $T0\ Encoding$ . Nella traccia viene riportata la formula richiesta da implementare, riportata anche in Figura 4.7.

$$\left(B^{(t)}, INC^{(t)}\right) = \begin{cases} \left(B^{(t-1),1}\right) & if \quad b^{(t)} = b^{(t-1)} + 1\\ b^{(t)}, 0 \end{pmatrix} & otherwise$$

Figure 4.7: Formula implementata, tecnica 'T0'

La codifica T0 consiste nell'inserire un bit in più, denominato *INC*. Ogni volta che si va in sequenza, si forza questo segnale a '0' in modo tale che il ricevitore capisca di dover andare semplicemente in sequenza e si preoccupi lui di incrementare il dato. In caso di brach, salito o subroutine, forzo il segnale ad '1' e trasmetto sul bus il nuovo dato. Si riporta in seguito il *Codice VHDL* dell'implementazione della codifica.

#### 4.1.4 Confronto tra le tecniche

Confrontando i risultati tra le varie tecniche, si può notare come l'unica tecnica che porta ad una riduzione dei consumi nel caso dei dati, risulta essere la **Bus-Invert** con la quale si ottiene un risparmio sulle commutazioni pari a circa il 20%.

Per quanto concerne la tramissione di indirizzi, le codifiche più perfomanti risultano la **Codifica di Gray**, che porta ad un risparmio sulle commutazioni del 50%, e la **Codifica T0**, che porta ad un risparmio del XX%.

Si può notare come la tecnica che risulta meno performante è la **Transition Based**, che porta ad un incremento del 93% nel caso di dati e ad un incremento circa del 0,1% nel caso di indirizzi. Ovviamente questo è concorde con quanto ci si aspettava, in quanto, come già detto prima, questa tipologia di decofica funziona efficentemente solo nel caso in cui le probabilità di '1' e di '0' logico non risultino sbilanciate.

#### 4.2 Synthesis