

Design and Optimization of Mobile Aggregation Architectures

Ioannis Papapanagiotou, PhD (Yanni)

Computer & Information Technology
Purdue University

http://people.engr.ncsu.edu/ipapapa/Purdue/PurdueCIT.pdf

Who am I?

- Dual Major PhD in North Carolina State University
 - Computer Engineering
 - Operations Research
- IBM (3 years)
 - Emerging Technology Institute:
 - In house incubator team reporting directly to the CTO and VP
 - TJ Watson Research Center:
 - IT & Wireless convergence group
- NCSU (3 years RA & TA)
 - Taught Engineering, Networking and Simulation courses
 - Research funded by IBM, Cisco Systems, Time Warner Cable
- Appointments with
 - University of Patras
 - Technical Chamber of Greece
 - VTT Technical Institute in Finland
- Fellowships:
 - IBM PhD Fellow
 - Academy of Athens PhD Fellow

What I do

- Current work
 - Server side NoSQL/JSON solution for end-stores
 - Working with front-end caches and databases
- Research Interests:
 - Data analytics in wireless networks
 - Byte level deduplication
 - Performance analysis & simulations
 - Elasticity in Cloud Computing
- Experience with E-Learning technologies:
 - Synchronous (e.g. virtual meeting rooms) and Asynchronous (e.g. video recordings) types of assisting.
 - Emulation of computer networking labs through virtualization.
- Publication Record
 - –5 Peer-Reviewed journals
 - 12 Conference proceedings
 - -8 Submitted patents
 - –3 Book chapters
 - -121 Citations
- More info: http://people.engr.ncsu.edu/ipapapa

Motivation

Smartphones

Need For Speed

Wireless Service Providers have to transfer this traffic to the Internet!

Introduction

- Operating System fingerprinting algorithm based on data mining principles
 - -Compared Smartphones vs Laptops.
- Analyzed IP lease traffic behavior
 - -Proposed novel IP lease policy that improves address space utilization sixfold and without increasing the overhead.
- Analyzed Web traffic behavior and object caching
 - -Demonstrated that a 10MB browser cache can save on average ~5%.
 - Showed the importance of storing policies in proxy caches.
- Designed a "Hybrid" Byte Redundancy Elimination
 - Provides more savings, with less memory space and is x3 faster.
 - Added QoS in redundancy elimination.

Presentation Outline

Smartphones
vs
Laptops:
A Traffic Study

Byte Redundancy Elimination Design of Aggregation Architectures

Future Work
@
Purdue

Section 1

Smartphones vs Laptops: A traffic study

Trace Collection

Trace Type	IBM Research	NCSU Centennial
Dates (2012)	Feb 29 – Mar 25	Jan 15 – Feb 15
Client MAC address	2980	8726
Available IP address	4096 (8 * /23)	2048 (/21)
DHCP Leases	12h	15 min
TCP/UDP Bytes	2.5TB	4.9TB
Software Used	Hacked	Bro IDS 2.0

Device Identification

- We found correlation between the fields of the DHCP Request header and the OS
 - 1. Host-Name
 - 2. Vendor-Name
 - 3. Parameter-Request-List
 - 4. Organization Unique Identifier (OUI)
 - 5. Options parameter sequence
- Developed a data mining algorithm that quantifies the correlation

Classification Outcome

		IBM Research NCSU Centennial			
Device	OS	#	%	#	%
Laptop	All	2176	73.02	3970	45.50
	Windows	1787	59.92	2819	32.31
	Mac OS X	385	12.92	1131	12.96
	Linux	4	0.13	20	0.23
Smartphone	All	735	23.66	4489	51.44
	iPhone/iPad/iPod	577	19.36	3069	35.17
	Android	126	4.24	1336	15.29
	BlackBerry	31	1.04	84	0.96
	Windows Mobile	1	0.03	2	0.02
Other	All	69	2.32	267	3.06
	Cisco VoIP	9	0.32	-	-
	Unidentified	60	2.01	267	3.06
All		2980	100	8726	100

Wrote a trace-driven simulator to evaluate different lease policies:

- a) Static Policies: Fixed lease of 15 min, 30 min or 12 hours (most common case).
- b) Exponential Adaptation: Allocates a short lease to client once it arrives, and doubles the lease time every time the client renews the lease [GaTech IMC 2007]
- c) Differential Lease: Allocates different lease values based on device:

Trace	iOS	Android	RIM	Windows	MAC
Corporate	1000	2000	2000	4000	4000
Educational	500	1000	1000	2000	2000

Simulation Results

- Differential lease policy performs well:
 - Achieves low address space utilization (comparable to short lease time)
 - Reasonable number of broadcasts (compared to short lease times)
 - -Reasonable server load

Web Traffic: Response Code

- An HTTP Response code indicates the "status" of the object in the server.
- 304 Not Modified: validate the client's cached copy on the browser cache.
 - Windows and Mac OS X generate more than smartphones.
- 206 Partial Content: used for large objects that must be chunked.
 - iOS generate way more than any other OS.

Web Traffic: Proxy Cache Advantages & Metrics

- Web proxy caches are used to improve the performance of the Web.
 - Reduce network bandwidth
 - Reduce web server load
 - Improve response time
- Request Hit Rate: The percentage of all requests that can be satisfied by searching the cache for a copy of the requested object.
- Byte Hit Rate: The percentage of all data that is directly transferred from the cache, rather than the origin server.

Web Traffic: Proxy Cache Size & Freshness

We evaluate the effectiveness based on two configurations for objects that are not fresh in cache:

- 1. Never Revalidated: The cached object is the same as the one in the server.
- 2. Always Revalidated: The cached object is different than the one in the server.

- Diminishing returns ~100GB, hence replacement policies are not relevant any more.
- Savings range from 10-25%, and Request hit rates 10-15%.

Web Traffic: Proxy Cache Storing Policies

- We evaluate the case where the cache is configured to download X% more data that the data requested by the client.
- Full download (cache pre-fetches the whole object) policy results in abusive BW demands in smartphones.
- Partial storing (cache stores only what user requested) is the optimum policy.

- A partially downloaded object is cached in its entirety if more than X% of its size has been downloaded by the client.
- 0% corresponds to the Full download policy.
- Discarding (any partially downloaded object is not cached) is more beneficial than other conditional download policies.

Web Traffic: Browser Cache Efficiency

We replay the IBM trace for each device through an additional simulated cache dedicated solely to that device:

- Current laptop browser caches are more efficient than the smartphone ones.
- A small browser cache (10MB) is sufficient to capture most of the savings in smartphones.
- A browser cache should be able to handle partially downloaded objects.

Section 2

Byte Redundancy Elimination in Wireless Networks

Proxy Caches:

- Limited savings: Partially modified objects are treated as different ones.
- Almost 60% of the Web data are uncacheable (based on RFC2616).
- From the cacheable objects, almost 70% may be referenced only once.
- Object revalidation may result in fetching the object from the server.

Byte Cache: Introduction

A Byte Cache is a system of devices that can identify redundancy at the byte level.

- Requires two middleware boxes (encoder & decoder).
- Uses Rabin fingerprinting to generate the hashes.
- Hashes are then used as indices to the content, or to break the content in chunks.

HDD	RAM
Content	<u>Hash</u>
ABCDFEFGHIJ	H(ABCD) H(BCDE) H(CDEF) H(DEFG) H(EFGH) H(FGHI) H(GHIJ)

Fingerprint size

Packet 1

srcIP: 15.2.1.1 dstIP: 150.150.1.1 Payload: ABCDEFGHIJ

Byte Caches: Issues

- Fingerprint generation is CPU intensive.
 - -Can be a bottleneck in high-bandwidth WAN links.
- Requires a lot of memory space.
 - A hash index is required per object in proxy caches vs. per 32B chunks in DRE systems
- Fingerprint generation and chunk storage may be useless for some protocols.
 - –E.g. Encrypted traffic.

Hybrid Byte Cache: Static Scheduler

Scheduler:

- Web cacheable content is forwarded to a Proxy Cache Module
- -Web uncacheable content is forwarded to an **Encoding Byte Cache** Module
- Other data are sent unprocessed

Hybrid Byte Cache: Redundancy & Savings

- Full packet traces captured in IBM (Trace A: 19GB, Trace B: 64GB)
 - Both traces consist of 80% TCP and 75% of Web traffic.

- Redundancy in DRE is better than in Proxy or Hybrid DRE
 - Note that redundancy includes the hash overhead.
 - Providers are mostly interested for Savings.
- Hybrid DRE provides more savings than Proxy or DRE.

Hybrid Byte Cache: System Performance

Memory requirement

CPU Throughput

- "Memory Overhead" indicates the amount of RAM needed to store the hashes that correspond to the content.
- Hybrid DRE requires more than half the memory compared to DRE.
- Hybrid DRE increases throughput almost 3 times compared to DRE.
 - Therefore, Hybrid DRE can be installed in faster links.

Conclusion

Summary

- Differentiated DHCP Lease policy should be implemented in wireless networks.
- A Smartphone vendor should consider adding an extra 10MB of Browser Cache:
 - ~5% of savings.
- A **100GB**, properly configured proxy cache can provide:
 - -25% of savings for smartphones.
 - -15% of savings in a wireless network.
- A Byte Cache system may provide more savings than a proxy.
- The proposed Hybrid DRE leverages the advantages of both the Proxy Cache and the Byte Cache:
 - Better savings
 - –Less CPU cycles
 - –Less memory

Future Work at Purdue University

Research Plan

Collaborations

- -IBM Research, Cisco Systems and Time Warner
- -North Carolina State University and University of Michigan
 - NSF proposals
- -European Universities

Research Areas

- Data analytics in mobile networks
- Byte level deduplication
- –Performance analysis & simulations
- -Elasticity in Cloud Computing
- Applications to the Smart Grid
- Extend Intellectual Property

Future Work #1: Dynamic Hybrid DRE

Dynamic Scheduler:

- Based on machine learning, predicts the best caching module for each traffic flow.
- Optimized to take into account the savings and system performance.
- Decreases CPU usage, benefits from parallel processing, increases savings and system failover.

Future Work #2: Quality of Service in Data Deduplication

- Users are differentiated in class categories:
 - Each class processes the flows with a different set of parameters.
- We introduce a controlling mechanism that dynamically allocates memory and space:
 - Per-class controllers monitor the performance and send messages to the central controller such that the SLAs are met.

Thank you!