

Sean Fabrega and Isabel Silverman AIT-Deep Learning 2022

Our Goal

- Fruit recognition for checkout machines
- * Reduce packaging and waste for labels
- * Aid visually impaired in selecting produce

Datasets

- "Fruit-Recognition"
 - × 15 classes
 - × 44460 images
- × 320 x 258 pixels

- "Fruit-360"
- × 131 classes
- × 90483 images
- × 100 x 100 pixels

Previous Solutions

"Classify 15 Fruits with Tensorflow"

- Kagge.com, by user Datalira
- Compares 27 pre-trained models using 'Fruit-Recognition' dataset

"Fruit recognition from images using deep learning" 2018

- By Horea Muresan and Mihai Oltean
- Convolutional neural network with 11 layers using TensorFlow and Keras

Layer type	Dimensions	Output
Convolutional	5 x 5 x 4	16
Max pooling	2 x 2 — Stride: 2	-
Convolutional	5 x 5 x 16	32
Max pooling	2 x 2 — Stride: 2	-
Convolutional	5 x 5 x 32	64
Max pooling	2 x 2 — Stride: 2	-
Convolutional	5 x 5 x 64	128
Max pooling	2 x 2 — Stride: 2	-
Fully connected	5 x 5 x 128	1024
Fully connected	1024	256
Softmax	256	131

Proposed Method

InceptionV3

- * +Global_Avg_Pooling
- + Dense output layer with softmax activation
- \times Batch size = 1000
- × Parameters:
 - w/'Fruit-Recognition'
 - Trainable: 30,735
 - Total: 21,833,319
 - o w/ 'Fruit-360'
 - Trainable: 69,666
 - Total: 21,872,450

DenseNet201

- +Global_Avg_Pooling
- + Dense output layer with softmax activation
- \times Batch size = 1000
- × Parameters:
 - w/'Fruit-Recognition'
 - Trainable: 28,815
 - Total: 18,350,799
 - w/'Fruit-360'
 - Trainable:
 - Total:

DENSENET 201 MODEL EVALUATION Accuracy: 0.9614

DENSENET 201 MODEL EVALUATION ON FRUIT 360 DATA Accuracy: 0.9683

INCEPTION V3 MODEL EVALUATION ON FRUIT REC DATA Accuracy: 0.893

INCEPTION V3 MODEL EVALUATION ON FRUIT 360 DATA Accuracy:

Bibliography

Mureșan, Horea & Oltean, Mihai. (2018). Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica. 10. 26-42. 10.2478/ausi-2018-0002.

Databeru. "Classify 15 Fruits with TensorFlow (Acc: 99,6%)." Kaggle, Kaggle, 10 Aug. 2021, www.kaggle.com/databeru/classify-15-fruits-with-tensorflow-acc-99-6.

