

SEQUENCE LISTING

<110> Philip E. Thorpe
Rolf A. Brekken

<120> ANTIBODY CONJUGATE METHODS FOR SELECTIVELY INHIBITING VEGF

<130> 4001.002585

<140> UNKNOWN

<141> 2000-04-28

<150> 60/131,432

<151> 1999-04-28

<160> 44

<170> PatentIn Ver. 2.0

<210> 1

<211> 2149

<212> DNA

<213> Homo sapiens

<400> 1

cagctgactc aggcaaggctc catgctgaac ggtcacacag agaggaaaca ataaatctca 60
gtctactatgc aataaatatc tcaagttta acgaagaaaa acatcattgc agtcaaataa 120
aaaattttaa aatttttagaa caaagctaac aaatggctag ttttctatga ttcttcctca 180
aacgccttct ttgaggggaa aagagtcaaa caaacaagca gtttacctg aaataaagaa 240
ctagtttag aggtcagaag aaaggagcaa gtttgcgag aggcacggaa ggagtgtgct 300
ggcagttacaa tgacagttt ctttcctt gcttcctcg ctgcattct gactcacata 360
gggtgcagca atcagcgccg aagtccagaa aacagtggaa gaagatataa ccggattcaa 420
catgggcaat gtgcctacac tttcattttt ccagaacacg atggcaactg tcgtgagagt 480
acgacagacc agtacaacac aaacgcctcg cagagatgt ctccacacgt ggaaccggat 540
ttctcttccc agaaacctca acatctggaa catgtatgg aaaattatac tcagtggctg 600
caaaaacttg agaattacat tttggaaaac atgaagtccg agatggccca gatacagcag 660
aatgcagttc agaaccacac ggctaccatg ctggagatag gaaccagcct cctctctcag 720
actgcagagc agaccagaaa gctgacatgt gttgagaccc aggtactaaa tcaaacttct 780
cgacttgaga tacagctgct ggagaattca ttatccacct acaagctaga gaagcaactt 840
cttcaacaga caaatgaaat cttgaagatc catgaaaaaaaa acagtttatt agaacataaa 900
atcttagaaa tggaaaggaaa acacaaggaa gagttggaca cttaaagga agagaaagag 960
aaccttcaag gcttggttac tcgtcaaaata tatataatcc aggagctgaa aaagcaatta 1020
aacagagcta ccaccaacaa cagtgcctt cagaagcagc aactggagct gatggacaca 1080
gtccacaacc ttgtcaatct ttgcactaaa gaaggtgtt tactaaaggg agaaaaaaga 1140
gaggaagaga aaccatttag agactgtgca gatgtatatac aagctggtt taataaaagt 1200
ggaatctaca ctatttatata taataatatg ccagaaccca aaaaggtgtt ttgcaatatg 1260
gatgtcaatg ggggagggtt gactgtataa caacatctg aagatggaa tctagatttc 1320
caaagaggct ggaaggata taaaatgggt tttggaaatc cttccgggtga atattggctg 1380
ggaatgagt ttattttgc cattaccagt cagaggcagt acatgctaag aattgagttt 1440
atggactggg aaggaaaccg agcctattca cagtatgaca gattccacat aggaaatgaa 1500
aagcaaaact ataggttgta tttaaaaggt cacactggaa cagcaggaaa acagagcagc 1560
ctgatcttac acgggtctga tttcagact aaagatgtg ataatgacaa ctgtatgtc 1620
aatgtgcc tcatgttaac aggaggatgg tggttgtatg cttgtggccc ctccaatcta 1680
aatgaaatgt tctatactgc gggacaaaac catggaaaac tgaatggat aaagtggcac 1740
tacttcaag gcccaggtt ctccttacgt tccacaacta tggatgttgc accttttagat 1800
tttggaaagc gcaatgtcag aagcgattat gaaagcaaca aagaaatccg gagaagctgc 1860
caggtgagaa actgtttgaa aacttcagaa gcaaacaata ttgtctccct tccagcaata 1920

agtggtagtt atgtgaagtc accaagggttc ttgaccgtga atctggagcc gtttgagttc 1980
acaagagtct ctacttgggg tgacagtgc cacgtggctc gactatagaa aactccactg 2040
actgtcgggc tttaaaaagg gaagaaaactg ctgagcttgc tgtgcttcaa actactactg 2100
gaccttattt tggaactatg gtagccagat gataaatatg gttaatttc 2149

<210> 2
<211> 498
<212> PRT
<213> Homo sapiens

<400> 2
Met Thr Val Phe Leu Ser Phe Ala Phe Leu Ala Ala Ile Leu Thr His
1 5 10 15

Ile Gly Cys Ser Asn Gln Arg Arg Ser Pro Glu Asn Ser Gly Arg Arg
20 25 30

Tyr Asn Arg Ile Gln His Gly Gln Cys Ala Tyr Thr Phe Ile Leu Pro
35 40 45

Glu His Asp Gly Asn Cys Arg Glu Ser Thr Thr Asp Gln Tyr Asn Thr
50 55 60

Asn Ala Leu Gln Arg Asp Ala Pro His Val Glu Pro Asp Phe Ser Ser
65 70 75 80

Gln Lys Leu Gln His Leu Glu His Val Met Glu Asn Tyr Thr Gln Trp
85 90 95

Leu Gln Lys Leu Glu Asn Tyr Ile Val Glu Asn Met Lys Ser Glu Met
100 105 110

Ala Gln Ile Gln Gln Asn Ala Val Gln Asn His Thr Ala Thr Met Leu
115 120 125

Glu Ile Gly Thr Ser Leu Leu Ser Gln Thr Ala Glu Gln Thr Arg Lys
130 135 140

Leu Thr Asp Val Glu Thr Gln Val Leu Asn Gln Thr Ser Arg Leu Glu
145 150 155 160

Ile Gln Leu Leu Glu Asn Ser Leu Ser Thr Tyr Lys Leu Glu Lys Gln
165 170 175

Leu Leu Gln Gln Thr Asn Glu Ile Leu Lys Ile His Glu Lys Asn Ser
180 185 190

Leu Leu Glu His Lys Ile Leu Glu Met Glu Gly Lys His Lys Glu Glu
195 200 205

Leu Asp Thr Leu Lys Glu Glu Lys Glu Asn Leu Gln Gly Leu Val Thr
210 215 220

Arg Gln Thr Tyr Ile Ile Gln Glu Leu Glu Lys Gln Leu Asn Arg Ala
225 230 235 240

Thr	Thr	Asn	Asn	Ser	Val	Leu	Gln	Gln	Gln	Leu	Glu	Leu	Met	Asp	
					245					250			255		
Thr	Val	His	Asn	Leu	Val	Asn	Leu	Cys	Thr	Lys	Glu	Gly	Val	Leu	Leu
					260			265			270				
Lys	Gly	Gly	Lys	Arg	Glu	Glu	Glu	Lys	Pro	Phe	Arg	Asp	Cys	Ala	Asp
					275			280			285				
Val	Tyr	Gln	Ala	Gly	Phe	Asn	Lys	Ser	Gly	Ile	Tyr	Thr	Ile	Tyr	Ile
					290			295			300				
Asn	Asn	Met	Pro	Glu	Pro	Lys	Lys	Val	Phe	Cys	Asn	Met	Asp	Val	Asn
					305			310		315			320		
Gly	Gly	Gly	Trp	Thr	Val	Ile	Gln	His	Arg	Glu	Asp	Gly	Ser	Leu	Asp
					325			330			335				
Phe	Gln	Arg	Gly	Trp	Lys	Glu	Tyr	Lys	Met	Gly	Phe	Gly	Asn	Pro	Ser
					340			345			350				
Gly	Glu	Tyr	Trp	Leu	Gly	Asn	Glu	Phe	Ile	Phe	Ala	Ile	Thr	Ser	Gln
					355			360			365				
Arg	Gln	Tyr	Met	Leu	Arg	Ile	Glu	Leu	Met	Asp	Trp	Glu	Gly	Asn	Arg
					370			375			380				
Ala	Tyr	Ser	Gln	Tyr	Asp	Arg	Phe	His	Ile	Gly	Asn	Glu	Lys	Gln	Asn
					385			390		395			400		
Tyr	Arg	Leu	Tyr	Leu	Lys	Gly	His	Thr	Gly	Thr	Ala	Gly	Lys	Gln	Ser
					405			410			415				
Ser	Leu	Ile	Leu	His	Gly	Ala	Asp	Phe	Ser	Thr	Lys	Asp	Ala	Asp	Asn
					420			425			430				
Asp	Asn	Cys	Met	Cys	Lys	Cys	Ala	Leu	Met	Leu	Thr	Gly	Gly	Trp	Trp
					435			440			445				
Phe	Asp	Ala	Cys	Gly	Pro	Ser	Asn	Leu	Asn	Gly	Met	Phe	Tyr	Thr	Ala
					450			455			460				
Gly	Gln	Asn	His	Gly	Lys	Leu	Asn	Gly	Ile	Lys	Trp	His	Tyr	Phe	Lys
					465			470		475			480		
Gly	Pro	Ser	Tyr	Ser	Leu	Arg	Ser	Thr	Thr	Met	Met	Ile	Arg	Pro	Leu
					485			490			495				
Asp	Phe														

<210> 3
<211> 2269
<212> DNA
<213> Homo sapiens

<400> 3

tgggttggtg tttatctcct cccagcctg agggagggaa caacactgta ggatctgggg 60
agagaggaac aaaggaccgt gaaagctgct ctgtaaaagc tgacacagcc ctcccaagtg 120
agcaggactg ttctccac tgcaatctga cagttactg catgcctgga gagaacacag 180
cagtaaaaac caggtttgct actggaaaaa gagaaaagag aagacttca ttgacggacc 240
cagccatggc agcgtacg ccctgcgtt cagacggcag cagctcgga ctctggacgt 300
gttggccc tcaagttgc taagctgctg gtttattact gaagaaagaa tgtggcagat 360
tgttttctt actctgagct gtgatcttgc cttggccgca gcctataaca actttcgaa 420
gagcatggac agcataggaa agaagcaata tcagtcacag catgggtcct gcagctacac 480
tttcctcctg ccagagatgg acaactgcgc ctcttcctcc agccctacg tgtccaatgc 540
tgtgcagagg gacgcgcgc tcgaatacga tgactcggtg cagaggctgc aagtgcgtgaa 600
gaacatcatg gaaaacaaca ctcagtggct aatgaagctt gagaattata tccaggacaa 660
catgaagaaa gaaatggtag agatacagca gaatgcagta cagaaccaga cggctgtgat 720
gatagaaaata gggacaaaacc tggtaacca aacagctgag caaacgcggg agttaactga 780
tgtggaaagcc caagtattaa atcagaccac gagacttcaa cttcagctct tggAACACTC 840
cctctcgaca aacaattgg aaaaacagat tttggaccag accagtgaaa taaaacaaatt 900
gcaagataag aacagttcc tagaaaagaa ggtgctagct atggaagaca agcacatcat 960
ccaaactacag tcaataaaaag aagagaaaaga tcagctacag gtgttagtat ccaagcaaaa 1020
ttccatcatt gaagaacttag aaaaaaaaaat agtgaactgac acggtaata attcagttct 1080
tcaaaagcag caacatgatc tcatggagac agttaataac ttactgacta tgatgtccac 1140
atcaaactca gctaaggacc ccactgttgc taaaagaagaa caaatcagct tcagagactg 1200
tgctgaagta ttcaaatcag gacacaccac aaatggcatc tacacgtta cattccctaa 1260
ttctacagaa gagatcaagg cctactgtga catgaagct ggaggaggcg ggtggacaat 1320
tattcagcga cgtgaggatg gcagcgttga tttcagagg acttggaaag aatataaagt 1380
gggatttggg aacccttcag gagaatattt gctggaaat gagttttttt cgcaactgac 1440
taatcagcaa cgctatgtgc taaaatacga cttaaagac tgggaaggaa atgaggctta 1500
ctcattgtat gaacatttct atctctcaag tgaagaactc aattatacga ttacaccttaa 1560
aggacttaca gggacagccg gaaaaataag cagcatcagc caaccaggaa atgatttttag 1620
cacaaggat ggagacaacg acaaattgtat ttgcaaattgt tcacaaatgc taacaggagg 1680
ctgggtgtt gatgcatgtg gtcctccaa cttgaacggg atgtactatc cacagaggca 1740
gaacacaaat aagttcaacg gcattaaatg gtactactgg aaaggctcag gctattcgct 1800
caaggccaca accatgatga tccgaccacg agattctaa acatccagt ccacctgagg 1860
aactgtctcg aactatttc aaagacttac gcccagtgc ctgaaaagtc cggctgcgc 1920
ctgtgtctc ttccaccaca gagggcgtgt gtcgggtgt gacgggaccc acatgctcca 1980
gattagagcc tggtaaacttt atcaattttt cttgcacatc ttaacggacc aaagcaagac 2040
cctaaacatc cataattgtg attagacaga acacatgc aaagatgaac ccgaggctga 2100
gaatcagact gacagtttac agacgctgct gtcacaacca agaatgttat gtgcaagttt 2160
atcagtaaat aactggaaaa cagaacacatt atgttataca atacagatca tcttggaaact 2220
gcattcttct gggactgtt tatacactgt gtaaatacccc atatgtcct 2269

<210> 4

<211> 496

<212> PRT

<213> Homo sapiens

"

<400> 4

Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala

1

5

10

15

Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys

20

25

30

Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro

35

40

45

Glu Met Asp Asn Cys Arg Ser Ser Ser Pro Tyr Val Ser Asn Ala

50

55

60

Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu
 65 70 75 80

Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys
 85 90 95

Leu Glu Asn Tyr Ile Gln Asp Asn Met Lys Lys Glu Met Val Glu Ile
 100 105 110

Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Ile Glu Ile Gly
 115 120 125

Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp
 130 135 140

Val Glu Ala Gln Val Leu Asn Gln Thr Thr Arg Leu Glu Leu Gln Leu
 145 150 155 160

Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Ile Leu Asp
 165 170 175

Gln Thr Ser Glu Ile Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu
 180 185 190

Lys Lys Val Leu Ala Met Glu Asp Lys His Ile Ile Gln Leu Gln Ser
 195 200 205

Ile Lys Glu Glu Lys Asp Gln Leu Gln Val Leu Val Ser Lys Gln Asn
 210 215 220

Ser Ile Ile Glu Glu Leu Glu Lys Ile Val Thr Ala Thr Val Asn
 225 230 235 240

Asn Ser Val Leu Gln Lys Gln His Asp Leu Met Glu Thr Val Asn
 245 250 255

Asn Leu Leu Thr Met Met Ser Thr Ser Asn Ser Ala Lys Asp Pro Thr
 260 265 270

Val Ala Lys Glu Glu Gln Ile Ser Phe Arg Asp Cys Ala Glu Val Phe
 275 280 285

Lys Ser Gly His Thr Thr Asn Gly Ile Tyr Thr Leu Thr Phe Pro Asn
 290 295 300

Ser Thr Glu Glu Ile Lys Ala Tyr Cys Asp Met Glu Ala Gly Gly
 305 310 315 320

Gly Trp Thr Ile Ile Gln Arg Arg Glu Asp Gly Ser Val Asp Phe Gln
 325 330 335

Arg Thr Trp Lys Glu Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu
 340 345 350

Tyr Trp Leu Gly Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg

355

360

365

Tyr Val Leu Lys Ile His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr
 370 375 380

Ser Leu Tyr Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg
 385 390 395 400

Ile His Leu Lys Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile
 405 410 415

Ser Gln Pro Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys
 420 425 430

Cys Ile Cys Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp Phe Asp
 435 440 445

Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln
 450 455 460

Asn Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr Trp Lys Gly Ser
 465 470 475 480

Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile Arg Pro Ala Asp Phe
 485 490 495

<210> 5

<211> 495

<212> PRT

<213> Homo sapiens

<400> 5

Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala
 1 5 10 15

Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys
 20 25 30

Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro
 35 40 45

Glu Met Asp Asn Cys Arg Ser Ser Ser Pro Tyr Val Ser Asn Ala
 50 55 60

Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Phe Ser Ser Gln Lys Leu
 65 70 75 80

Gln His Leu Glu His Val Met Glu Asn Tyr Thr Gln Trp Leu Gln Lys
 85 90 95

Leu Glu Asn Tyr Ile Val Glu Asn Met Lys Ser Glu Met Ala Gln Ile
 100 105 110

Gln Gln Asn Ala Val Gln Asn His Thr Ala Thr Met Leu Glu Ile Gly
 115 120 125

Thr Ser Leu Leu Ser Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp
 130 135 140

Val Glu Thr Gln Val Leu Asn Gln Thr Ser Arg Leu Glu Ile Gln Leu
 145 150 155 160

Leu Glu Asn Ser Leu Ser Thr Tyr Lys Leu Glu Lys Gln Leu Leu Gln
 165 170 175

Gln Thr Asn Glu Ile Leu Lys Ile His Glu Lys Asn Ser Leu Leu Glu
 180 185 190

His Lys Ile Leu Glu Met Glu Gly Lys His Lys Glu Glu Leu Asp Thr
 195 200 205

Leu Lys Glu Glu Lys Glu Asn Leu Gln Gly Leu Val Thr Arg Gln Thr
 210 215 220

Tyr Ile Ile Gln Glu Leu Glu Lys Gln Leu Asn Arg Ala Thr Thr Asn
 225 230 235 240

Asn Ser Val Leu Gln Lys Gln Leu Glu Leu Met Asp Thr Val His
 245 250 255

Asn Leu Val Asn Leu Ser Thr Lys Glu Gly Val Leu Leu Lys Gly Gly
 260 265 270

Lys Arg Glu Glu Lys Pro Phe Arg Asp Cys Ala Asp Val Tyr Gln
 275 280 285

Ala Gly Phe Asn Lys Ser Gly Ile Tyr Thr Ile Tyr Ile Asn Asn Met
 290 295 300

Pro Glu Pro Lys Lys Val Phe Cys Asn Met Asp Val Asn Gly Gly
 305 310 315 320

Trp Thr Val Ile Gln His Arg Glu Asp Gly Ser Leu Asp Phe Gln Arg
 325 330 335

Gly Trp Lys Glu Tyr Lys Met Gly Phe Gly Asn Pro Ser Gly Glu Tyr
 340 345 350

Trp Leu Gly Asn Glu Phe Ile Phe Ala Ile Thr Ser Gln Arg Gln Tyr
 355 360 365

Met Leu Arg Ile Glu Leu Met Asp Trp Glu Gly Asn Arg Ala Tyr Ser
 370 375 380

Gln Tyr Asp Arg Phe His Ile Gly Asn Glu Lys Gln Asn Tyr Arg Leu
 385 390 395 400

Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu Ile
 405 410 415

Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn Asn Cys
 420 425 430

Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp Phe Asp Ala
435 440 445

Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr Ala Gly Gln Asn
450 455 460

His Gly Lys Leu Asn Gly Ile Lys Trp His Tyr Phe Lys Gly Pro Ser
465 470 475 480

Tyr Ser Leu Arg Ser Thr Thr Met Met Ile Arg Pro Leu Asp Phe
485 490 495

<210> 6

<211> 381

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SYNTHETIC
OLIGONUCLEOTIDE

<400> 6

aagcttcagg tgcaactgca ggagtctgga cctgagctgg taaaggcctgg ggcttcagtg 60
aagatgtcct gcaaggcttc tggatacaca ttcaactagct atgttttcca ctgggtgaag 120
cagaaacctg ggcaggcct tgagtggatt ggatatatta atccttacaa tgatgttact 180
aagtacaatg agaagttcaa aggcaaggcc acactgactt cagacaaaatc ctccagcaca 240
gcctacatgg agctcagcag cctgaccctt gaggactctg cggtctattt ctgtgcaagc 300
tactacggta gtatgtacgg atactatgtt atggacgact ggggccaagg gaccacggtc 360
accgtttcct ctggcggtgg c 381

<210> 7

<211> 127

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 7

Lys Leu Gln Val Gln Leu Gln Glu Ser Gly Pro Glu Leu Val Lys Pro
1 5 10 15

Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr
20 25 30

Ser Tyr Val Phe His Trp Val Lys Gln Lys Pro Gly Gln Gly Leu Glu
35 40 45

Trp Ile Gly Tyr Ile Asn Pro Tyr Asn Asp Val Thr Lys Tyr Asn Glu
50 55 60

Lys Phe Lys Gly Lys Ala Thr Leu Thr Ser Asp Lys Ser Ser Ser Thr
65 70 75 80

Ala Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
85 90 95

Tyr Cys Ala Ser Tyr Tyr Gly Ser Ser Tyr Gly Tyr Tyr Ala Met Asp
100 105 110

Asp Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly
115 120 125

<210> 8

<211> 347

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SYNTHETIC
OLIGONUCLEOTIDE

<400> 8

gacatccagc tgacgcagtc tccagcatcc ctgagtgtgt cagcaggaga gaaggtca 60
atgagctgca agtccagtca gagtctgtta aacagtggaa atcaaaagaa ctacttggcc 120
tggtatcagc agaaaaccagg gcagcctcct aaactgttga tccacggggc atccactagg 180
gaatctgggg tccctgatcg cttcacagggc agtggatctg gaaccgattt cactcttacc 240
atcagcagtg tgcaggctga agacctggca gtttattact gtcagaatga ttatagttat 300
cctctcacgt tcggtgctgg caccaagctg gaactgaaac gtctaga 347

<210> 9

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 9

Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Ala Gly
1 5 10 15

Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Gly Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile His Gly Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Thr Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn
85 90 95

Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu

100

105

110

Lys Arg Leu
115

<210> 10
<211> 26
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 10
Ala Pro Met Ala Glu Gly Gly Gln Asn His His Glu Val Val Lys
1 5 10 15

Phe Met Asp Val Tyr Gln Arg Ser Tyr Cys
20 25

<210> 11
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 11
Ala Pro Met Ala Glu Gly Glu Gln Lys Pro Arg Glu Val Val Lys Phe
1 5 10 15

Met Asp Val Tyr Lys Arg Ser Tyr Cys
20 25

<210> 12
<211> 573
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
OLIGONUCLEOTIDE

<220>
<221> CDS
<222> (1) .. (573)

<400> 12
atg cat cac cat cac cat act cat cag gac ttt cag cca gtg 48
Met His His His His His His Thr His Gln Asp Phe Gln Pro Val
1 5 10 15

ctc cac ctg gca ctg aac acc ccc ctg tct gga ggc atg cgt ggt	96
Leu His Leu Val Ala Leu Asn Thr Pro Leu Ser Gly Gly Met Arg Gly	
20 25 30	
atc cgt gga gca gat ttc cag tgc ttc cag caa gcc cga gcc gtg ggg	144
Ile Arg Gly Ala Asp Phe Gln Cys Phe Gln Gln Ala Arg Ala Val Gly	
35 40 45	
ctg tcg ggc acc ttc cgg gct ttc ctg tcc tct agg ctg cag gat ctc	192
Leu Ser Gly Thr Phe Arg Ala Phe Leu Ser Ser Arg Leu Gln Asp Leu	
50 55 60	
tat agc atc gtg cgc cgt gct gac cgg ggg tct gtg ccc atc gtc aac	240
Tyr Ser Ile Val Arg Arg Ala Asp Arg Gly Ser Val Pro Ile Val Asn	
65 70 75 80	
ctg aag gac gag gtg cta tct ccc agc tgg gac tcc ctg ttt tct ggc	288
Leu Lys Asp Glu Val Leu Ser Pro Ser Trp Asp Ser Leu Phe Ser Gly	
85 90 95	
tcc cag ggt caa ctg caa ccc ggg gcc cgc atc ttt tct ttt gac ggc	336
Ser Gln Gly Gln Leu Gln Pro Gly Ala Arg Ile Phe Ser Phe Asp Gly	
100 105 110	
aga gat gtc ctg aga cac cca gcc tgg ccg cag aag agc gta tgg cac	384
Arg Asp Val Leu Arg His Pro Ala Trp Pro Gln Lys Ser Val Trp His	
115 120 125	
ggc tcg gac ccc agt ggg cgg agg ctg atg gag agt tac tgt gag aca	432
Gly Ser Asp Pro Ser Gly Arg Arg Leu Met Glu Ser Tyr Cys Glu Thr	
130 135 140	
tgg cga act gaa act act ggg gct aca ggt cag gcc tcc tcc ctg ctg	480
Trp Arg Thr Glu Thr Thr Gly Ala Thr Gly Gln Ala Ser Ser Leu Leu	
145 150 155 160	
tca ggc agg ctc ctg gaa cag aaa gct gcg agc tgc cac aac agc tac	528
Ser Gly Arg Leu Leu Glu Gln Lys Ala Ala Ser Cys His Asn Ser Tyr	
165 170 175	
atc gtc ctg tgc att gag aat agc ttc atg acc tct ttc tcc aaa	573
Ile Val Leu Cys Ile Glu Asn Ser Phe Met Thr Ser Phe Ser Lys	
180 185 190	

<210> 13
 <211> 191
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: SYNTHETIC
 PEPTIDE

<400> 13
 Met His His His His His His Thr His Gln Asp Phe Gln Pro Val
 1 5 10 15

Leu	His	Leu	Val	Ala	Leu	Asn	Thr	Pro	Leu	Ser	Gly	Gly	Met	Arg	Gly
20													30		
Ile	Arg	Gly	Ala	Asp	Phe	Gln	Cys	Phe	Gln	Gln	Ala	Arg	Ala	Val	Gly
35												45			
Leu	Ser	Gly	Thr	Phe	Arg	Ala	Phe	Leu	Ser	Ser	Arg	Leu	Gln	Asp	Leu
50											60				
Tyr	Ser	Ile	Val	Arg	Arg	Ala	Asp	Arg	Gly	Ser	Val	Pro	Ile	Val	Asn
65											75		80		
Leu	Lys	Asp	Glu	Val	Leu	Ser	Pro	Ser	Trp	Asp	Ser	Leu	Phe	Ser	Gly
											90		95		
Ser	Gln	Gly	Gln	Leu	Gln	Pro	Gly	Ala	Arg	Ile	Phe	Ser	Phe	Asp	Gly
										105		110			
Arg	Asp	Val	Leu	Arg	His	Pro	Ala	Trp	Pro	Gln	Lys	Ser	Val	Trp	His
115											125				
Gly	Ser	Asp	Pro	Ser	Gly	Arg	Arg	Leu	Met	Glu	Ser	Tyr	Cys	Glu	Thr
130										135		140			
Trp	Arg	Thr	Glu	Thr	Thr	Gly	Ala	Thr	Gly	Gln	Ala	Ser	Ser	Leu	Leu
145										155		160			
Ser	Gly	Arg	Leu	Leu	Glu	Gln	Lys	Ala	Ala	Ser	Cys	His	Asn	Ser	Tyr
										165		170		175	
Ile	Val	Leu	Cys	Ile	Glu	Asn	Ser	Phe	Met	Thr	Ser	Phe	Ser	Lys	
										180		185		190	

<210> 14
<211> 182
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 14
His Ser His Arg Asp Phe Gln Pro Val Leu His Leu Val Ala Leu Asn
1 5 10 15

Ser Pro Leu Ser Gly Gly Met Arg Gly Ile Arg Gly Ala Asp Phe Gln
20 25 30

Cys Phe Gln Gln Ala Arg Ala Val Gly Leu Ala Gly Thr Phe Arg Ala
35 40 45

Phe Leu Ser Ser Arg Leu Gln Asp Leu Tyr Ser Ile Val Arg Arg Ala
50 55 60

Asp Arg Ala Ala Val Pro Ile Val Asn Leu Lys Asp Glu Leu Leu Phe
65 70 75 80

Pro Ser Trp Glu Ala Leu Phe Ser Gly Ser Glu Gly Pro Leu Lys Pro
85 90 95

Gly Ala Arg Ile Phe Ser Phe Asp Gly Lys Asp Val Leu Arg His Pro
100 105 110

Thr Trp Pro Gln Lys Ser Val Trp His Gly Ser Asp Pro Asn Gly Arg
115 120 125

Arg Leu Thr Glu Ser Tyr Cys Glu Thr Trp Arg Thr Glu Ala Pro Ser
130 135 140

Ala Thr Gly Gln Ala Ser Ser Leu Leu Gly Gly Arg Leu Leu Gly Gln
145 150 155 160

Ser Ala Ala Ser Cys His His Ala Tyr Ile Val Leu Cys Ile Glu Asn
165 170 175

Ser Phe Met Thr Ala Ser
180

<210> 15

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 15

Pro Arg Phe Lys Ile Ile Gly Gly
1 5

<210> 16

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 16

Pro Arg Phe Arg Ile Ile Gly Gly
1 5

<210> 17

<211> 9

<212> PRT

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 17
Ser Ser Arg His Arg Arg Ala Leu Asp
1 5

<210> 18
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 18
Arg Lys Ser Ser Ile Ile Ile Arg Met Arg Asp Val Val Leu
1 5 10

<210> 19
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 19
Ser Ser Ser Phe Asp Lys Gly Lys Tyr Lys Lys Gly Asp Asp Ala
1 5 10 15

<210> 20
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 20
Ser Ser Ser Phe Asp Lys Gly Lys Tyr Lys Arg Gly Asp Asp Ala
1 5 10 15

<210> 21
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 21
Ile Glu Gly Arg
1

<210> 22
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 22
Ile Asp Gly Arg
1

<210> 23
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 23
Gly Gly Ser Ile Asp Gly Arg
1 5

<210> 24
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 24
Pro Leu Gly Leu Trp Ala
1 5

<210> 25
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 25
Gly Pro Gln Gly Ile Ala Gly Gln
1 5

<210> 26
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 26
Gly Pro Gln Gly Leu Leu Gly Ala
1 5

<210> 27
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 27
Gly Ile Ala Gly Gln
1 5

<210> 28
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 28
Gly Pro Leu Gly Ile Ala Gly Ile
1 5

<210> 29
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC

PEPTIDE

<400> 29
Gly Pro Glu Gly Leu Arg Val Gly
1 5

<210> 30
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 30
Tyr Gly Ala Gly Leu Gly Val Val
1 5

<210> 31
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 31
Ala Gly Leu Gly Val Val Glu Arg
1 5

<210> 32
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 32
Ala Gly Leu Gly Ile Ser Ser Thr
1 5

<210> 33
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 33
Glu Pro Gln Ala Leu Ala Met Ser
1 5

<210> 34
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 34
Gln Ala Leu Ala Met Ser Ala Ile
1 5

<210> 35
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 35
Ala Ala Tyr His Leu Val Ser Gln
1 5

<210> 36
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 36
Met Asp Ala Phe Leu Glu Ser Ser
1 5

<210> 37
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 37
Glu Ser Leu Pro Val Val Ala Val
1 5

<210> 38
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 38
Ser Ala Pro Ala Val Glu Ser Glu
1 5

<210> 39
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 39
Asp Val Ala Gln Phe Val Leu Thr
1 5

<210> 40
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 40
Val Ala Gln Phe Val Leu Thr Glu
1 5

<210> 41
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 41

Ala Gln Phe Val Leu Thr Glu Gly
1 5

<210> 42
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
PEPTIDE

<400> 42
Pro Val Gln Pro Ile Gly Pro Gln
1 5

<210> 43
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
OLIGONUCLEOTIDE

<400> 43
agaccatggg tcataactcat caggacttca a

31

<210> 44
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SYNTHETIC
OLIGONUCLEOTIDE

<400> 44
ctaccatggc tatttgaga aagaggtca

29