Math 230B Lecture Notes

Lance Remigio

January 23, 2025

Week 1

1.1 Lecture 1

1.1.1 Topics

- The derivative
- Continuity and Differentiability
- Differentiability Rules

Definition (Differentiability). (*) Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$, $c \in I$. We say f is differentiable at c if

 $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$

exists (that is, it equals a real number).

(*) In this case, the quantity $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ is called the derivative of f at c and is denoted by

$$f'(c), \frac{df}{dx}(c), \frac{df}{dx}\Big|_{x=c}$$

(*) If $f: I \to \mathbb{R}$ is differentiable at every point $c \in I$, we say f is differentiable (on I).

Remark. The following are equivalent characterizations of the differentiability:

$$\begin{split} f'(c) &= L \Longleftrightarrow \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L \\ &\iff \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{such that if} \; 0 < |x - c| < \delta \; \text{then} \; \left| \frac{f(x) - f(c)}{x - c} - L \right| < \varepsilon \\ &\iff \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{such that if} \; 0 < |h| < \delta \; \text{then} \; \left| \frac{f(c + h) - f(c)}{h} - L \right| < \varepsilon \\ &\iff \lim_{h \to 0} \frac{f(c + h) - f(c)}{h} = L \end{split}$$