Lengoaiak, Konputazioa eta Sistema Adimendunak

2. gaia: Lengoaiak – 0,9 puntu – Soluzioa – Bilboko IITUE 2013-10-30

1 A^* zenbagarria da eta 2^{A^*} zenbaezina da (0,325 puntu)

1.1. (0,025 puntu) Har dezagun $A = \{a,b,c\}$ alfabetoa. A^* -ko hitzak zenbatuz joateko era egokia zein den zehaztu. Horretarako, bbb hitzera arteko hitz denak orden egokian eman (bbb hitza ere eman).

 $[\varepsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, \dots]$

1.2. (0,300 puntu) Har dezagun edozein A alfabeto. Kontraesanaren teknika erabiliz, 2^{A^*} zenbaezina dela frogatu.

2 Lengoaien definizioa (0,575 puntu)

Har dezagun $A = \{a, b, c\}$ alfabetoa:

2.1. (0,025 puntu) Luzera bikoitia eta a eta c sinboloak kopuru berean dituzten hitzez osatutako L_1 lengoaiaren definizio formala eman. Adibidez, aacbbacbcb, aacc, ε , bbbb eta cbbabb hitzak L_1 lengoaiakoak dira baina cba, aa eta aaa ez dira L_1 lengoaiakoak.

$$L_1 = \{ w \mid w \in A^* \land |w| \bmod 2 = 0 \land |w|_a = |w|_c \}$$

2.2. (0,025 puntu) Hutsak ez diren eta a-rik eta c-rik ez duten hitzez osatutako L_2 lengoaiaren definizio formala eman. Adibidez, b, bb eta bbb L_2 lengoaiakoak dira baina ε , abba, cccc eta abb ez dira L_2 lengoaiakoak.

$$L_2 = \{ w \mid w \in A^* \land |w| \ge 1 \land |w|_a = 0 \land |w|_c = 0 \}$$

Beste aukera bat:

$$L_2 = \{ w \mid w \in A^* \land |w| \ge 1 \land \neg \exists u, v(u \in A^* \land v \in A^* \land (w = uav \lor w = ucv)) \}$$

Beste aukera bat:

$$L_2 = \{ w \mid w \in A^* \land |w| > 1 \land |w| = |w|_b \}$$

2.3. $(0,025 \text{ puntu}) \varepsilon$ ez eta A alfabetoaren gainean definitutako beste hitz denez osatutako L_3 lengoaiaren definizio formala eman.

$$L_3 = \{ w \mid w \in A^* \land w \neq \varepsilon \}$$

Beste aukera bat:

$$L_3 = A^* \setminus \{\varepsilon\}$$

Beste aukera bat:

$$L_3 = \{ w \mid w \in A^* \land |w| \ge 1 \}$$

2.4. (0,100 puntu) a, b eta c sinboloak kopuru berean agertzeaz gain, a denak ezkerraldean, b denak erdian eta c denak eskuinaldean dituzten hitzez osatutako L_4 lengoaiaren definizio formala eman. Adibidez, ε , abc, aabbcc eta aaabbbccc L4 lengoaiakoak dira baina bbaacc, aaa eta bbabc ez dira L4 lengoaiakoak.

$$L_4 = \{ w \mid w \in A^* \land \exists k (k \ge 0 \land w = a^k b^k c^k) \}$$

Beste aukera bat:

$$L_4 = \{ w \mid w \in A^* \land \exists u, v, x (u \in A^* \land v \in A^* \land x \in A^* \land |u| = |u|_a \land |v| = |v|_b \land |x| = |x|_c \land |u| = |v| = |x| \land w = uvx \} \}$$

Beste aukera bat:

$$L_4 = \{ w \mid w \in A^* \land \quad |w|_a = |w|_b = |w|_c \land \\ \forall k (1 \le k \le (|w| \text{ div } 3) \to w(k) = a) \land \\ \forall k ((|w| \text{ div } 3) + 1 \le k \le 2 * (|w| \text{ div } 3) \to w(k) = b) \land \\ \forall k ((2 * (|w| \text{ div } 3)) + 1 \le k \le |w| \to w(k) = c) \}$$

Beste aukera bat:

$$L_4 = \{ w \mid w \in A^* \land \\ \exists k(k \geq 0 \land |w| = 3 * k \land \\ \forall j (1 \leq j \leq k \rightarrow w(j) = a \land w(k+j) = b \land w((2 * k) + j) = c)) \}$$
 este aukera bat laguntzaile bezala H lengoaia definituz:

Beste aukera bat laguntzaile bezala H lengoaia definituz:

$$H = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land w = uacv) \}$$
$$L_5 = \overline{H}$$

2.5. (0.100 puntu) ac azpikatea ez duten hitzez osatutako L_5 lengoaiaren definizio formala eman. Adibidez, ε , baaabece, abcaaabeebeb eta abca hitzak L_5 lengoaiakoak dira baina ac, abcaece eta aaebeaee ez dira L_5 lengoaiakoak.

$$L_5 = \{ w \mid w \in A^* \land \neg \exists u, v(u \in A^* \land v \in A^* \land w = uacv) \}$$

Beste aukera bat:

$$L_5 = \{ w \mid w \in A^* \land \forall k ((1 \le k \le |w| - 1 \land w(k) = a) \to w(k+1) \ne c) \}$$

2.6. (0,100 puntu) Hutsak ez diren eta lehenengo eta azkeneko sinboloak desberdinak dituzten hitzez osatutako L_6 lengoaiaren definizio formala eman. Adibidez, ac, bcca eta bcaccc hitzak L_6 lengoaiakoak dira. Bestalde, ε , a, abbca eta cc hitzak ez dira L_6 lengoaiakoak.

$$L_6 = \{ w \mid w \in A^* \land |w| \neq 0 \land w(1) \neq w(|w|) \}$$

Beste aukera bat:

$$L_6 = \{ w \mid w \in A^* \land \exists \alpha, \beta, u(\alpha \in A \land \beta \in A \land u \in A^* \land \alpha \neq \beta \land w = \alpha u\beta) \}$$

2.7. (0,075 puntu) Hutsak ez izateaz gain, lehenengo eta azkeneko sinboloak desberdinak dituzten eta ac azpikatea ez duten hitzez osatutako L_7 lengoaiaren definizio formala eman. Adibidez, ab, bcc, bcca eta cccbcb hitzak L_7 lengoaiakoak dira baina babb, cbbcc, ε eta bac ez dira L_7 lengoaiakoak.

$$L_7 = L_5 \cap L_6$$

Beste aukera bat:

$$L_7 = \{ w \mid w \in A^* \land \exists \alpha, \beta, u(\alpha \in A \land \beta \in A \land u \in A^* \land \alpha \neq \beta \land w = \alpha u\beta) \land \neg \exists v, x(v \in A^* \land x \in A^* \land w = vacx) \}$$

2.8. (0,075 puntu) Hutsak ez izanda, a-rik eta c-rik ez edukitzea edo lehenengo eta azkeneko sinboloak desberdinak izatea betetzen duten hitzez osatutako L_8 lengoaiaren definizio formala eman. Adibidez, ε , bbb, accbcc, cb eta ccaaa hitzak L_8 lengoaiakoak dira baina a, acbbca, abba eta aaa ez dira L_8 lengoaiakoak.

$$L_8 = L_2 \cup L_6$$

Beste aukera bat:

$$L_8 = \{ w \mid w \in A^* \land ((|w| \ge 1 \land |w|_a = 0 \land |w|_c = 0) \lor (\neg \exists v, x(v \in A^* \land x \in A^* \land w = vacx))) \}$$

2.9. (0,050 puntu) Baldin badaude, L_1 lengoaiakoak izanda L_2 -koak ere badiren bi hitz eta L_2 -koak bai baina L_1 -ekoak ez diren bi hitz eman.

 L_1 -ekoak izanda L_2 -koak ere badiren bi hitz: bb eta bbbb L_2 -koak badiren baina L_1 -ekoak ez diren bi hitz: b eta bbb