- 1. Prove vector identity $\nabla \times \nabla \phi = 0$.
- 2. Prove vector identity $\nabla \times \nabla \times \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) \nabla^2 \mathbf{A}$.
- 3. For the vector field $\mathbf{A} = -\frac{y}{x^2+y^2}\hat{i} + \frac{x}{x^2+y^2}\hat{j}$ find $\nabla \cdot \mathbf{A}$ and $\nabla \times \mathbf{A}$. Identify the nature of vector field. [Ans0,0 except at the origin]
- 4. Find constants a, b, c so that $\mathbf{V} = (x + 2y + az)\mathbf{i} + (bx 3y z)\mathbf{j} + (4x + cy + 2z)\mathbf{k}$ is irrotational. [Ans.a = 4, b = 2, c = -1]
- 5. For the problem stated above show that **V** can be expressed as the gradient of a scalar function i.e. $\mathbf{V} = \nabla \phi(x,y,z)$. Identify $\phi(x,y,z)$ if $\phi(0,0,0) = 0$. $[Ans.\phi = \frac{x^2}{2} 3\frac{y^2}{2} + z^2 + 2xy + 4xz yz]$
 - 6. If $\mathbf{A} = 2x^2\mathbf{i} 3yz\mathbf{j} + xz^2\mathbf{k}$ and $\phi = 2z x^3y$, find $\mathbf{A} \cdot \nabla \phi$ and $\mathbf{A} \times \nabla \phi$ at the point(1,-1,1). [Ans.5,7 $\mathbf{i} \mathbf{j} 11\mathbf{k}$]
 - 7. Find $\phi(r)$ such that $\nabla \phi = \frac{\mathbf{r}}{r^5}$ and $\phi(1) = 0$. $[Ans. \frac{1}{3}(1 \frac{1}{r^3})]$
- 8. If $\mathbf{F} = (2x+y)\mathbf{i} + (3y-x)\mathbf{j}$, evaluate $\int_{\mathcal{C}} \mathbf{F} . d\mathbf{r}$ where \mathcal{C} is the curve in the xy plane consisting of the straight lines from (0,0) to (2,0) and then to $(3,2).[Ans.\ 11]$
- 9. If $\mathbf{F} = (5xy 6x^2)\mathbf{i} + (2y 4x)\mathbf{j}$, evaluate $\int_{\mathcal{C}} \mathbf{F} d\mathbf{r}$ where \mathcal{C} is the curve in the xy plane, $y = x^3$ from the point (1,1) to (2,8) [Ans.35]
- 10. If $\mathbf{A} = (y 2x)\mathbf{i} + (3x + 2y)\mathbf{j}$, compute the circulation of \mathbf{A} about a circle \mathcal{C} in the xy plane with center at the origin and radius 2, if \mathcal{C} is traversed in the positive direction. $[Ans.8\pi]$
- 11. (a) If $\mathbf{A} = (4xy 3x^2z^2)\mathbf{i} + 2x^2\mathbf{j} 2x^3z\mathbf{k}$, prove that $\int_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{r}$ is independent of the curve \mathcal{C} joining two given points. (b) Show that there is a differentiable function ϕ such that $\mathbf{A} = \nabla \phi$ and find it. $[Ans.(b)\phi = 2x^2y - x^3z^2 + constant]$
- 12. Evaluate $\int \int_S \mathbf{r.n} dS$ over: (a) the surface S of the unit cube bounded by the coordinate planes x=1,y=1,z=1; (b) the surface of a sphere of radius a with center at (0,0,0). $[Ans.(a)3 (b)4\pi a^3]$
- 13. If $\mathbf{F} = (2x^2 3z)\mathbf{i} 2xy\mathbf{j} 4x\mathbf{k}$, evaluate (a) $\int \int_V \int \nabla \cdot \mathbf{F} dV$ and (b) $\int \int_V \int \nabla \times \mathbf{F} dV$, where V is the closed region bounded by the planes x = 0, y = 0, z = 0 and $2x + 2y + z = 4.[Ans.(a)\frac{8}{3}(b)\frac{8}{3}(\mathbf{j} \mathbf{k})]$
- 14. For the vector field $\mathbf{A} = -\frac{1}{2}By\mathbf{i} + \frac{1}{2}Bx\mathbf{j}$ verify Stoke's theorem $\int_S \int (\nabla \times \mathbf{A}) \cdot \hat{n} dS = \oint \mathbf{A} \cdot d\mathbf{l}$ for a circular disk of radius R in xy-plane. [Ans.Both sides $\pi R^2 B$]
- 15. For the vector field $\mathbf{F} = 4xz\mathbf{i} y^2\mathbf{j} + yz\mathbf{k}$ verify divergence theorem $\int \int_V \nabla \cdot \mathbf{F} dV = \int_S \int \mathbf{F} \cdot \mathbf{n} dS$, where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [Ans.Both sides $\frac{3}{2}$]