```
In [1]: #step 1:Import The Libraries
        import pandas as pd
        import matplotlib
        from matplotlib import pyplot as plt
        import numpy as np
        import seaborn as sns
        import warnings
        warnings.filterwarnings('ignore')
        #step 2: Import the dataset
        data=pd.read csv('heart.csv')
        data
        #In this dataset columns are:
        #age
        #sex
        #cp(chest pain) of 4 types:
        #a value 0: typical angina
        #b value 1: atypical angina
        #c value 2: non-anginal pain
        #d value3: asymptomatic
        #trestbps:resting blood pressure
        #chol: serum cholestoral in mg/dl
        #fbs: fasting blood sugar>120mg/dl (true=1,false=0)
        #restecg: resting electrocardiographic results
        #1 value 0: normal
        #2 value 1: having ST-T wave abnormality(T wave inversions and ST elevation or depression of >0.05mV)
        #3 value 2: showing probable or define left ventricular hypertrophy by esters criteria
        #thalach: maximum heart rate achieved
        #exang: exercise induced angina(True=1,False=0)
        #oldpeak: ST depression induced by exercise relative to rest
        #slope: the slope of the peak exercise ST segment
        #1 value 1: upsloping
```

```
#2 value 2:flat
#3 value 3:downsloping

#ca:number of major vessels(0-3) colored by flurosopy
#thal:3=normal,
# 6=fixed defect,
# 7=reversable defect.

#target:0=less chance of heart attack
# 1=more chance of heart attack
```

Out[1]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	1
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	0
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	0
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	1
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	0

1025 rows × 14 columns

Out[2]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

Out[3]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	1
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	0
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	0
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	1
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	0

In [4]: #step 5: Find shape of our dataset(number of rows and number of columns)
data.shape

Out[4]: (1025, 14)

```
In [5]: print("number of rows",data.shape[0])
        print("number of columns",data.shape[1])
        number of rows 1025
        number of columns 14
In [6]: #step 6: Get information about our dataset like total no. of rows, total no. of columns, datatypes of each column and mem
        #requirement
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1025 entries, 0 to 1024
        Data columns (total 14 columns):
                       Non-Null Count Dtype
             Column
                       1025 non-null
                                       int64
             age
                       1025 non-null
         1
             sex
                                       int64
                       1025 non-null
                                       int64
             ср
             trestbps 1025 non-null
                                       int64
         3
             chol
                       1025 non-null
                                       int64
                                       int64
         5
             fbs
                       1025 non-null
                       1025 non-null
                                       int64
             restecg
             thalach
                       1025 non-null
                                       int64
                                       int64
                       1025 non-null
             exang
             oldpeak
                       1025 non-null
                                       float64
             slope
                       1025 non-null
                                       int64
                       1025 non-null
         11 ca
                                       int64
         12 thal
                       1025 non-null
                                       int64
         13 target
                       1025 non-null
                                       int64
        dtypes: float64(1), int64(13)
        memory usage: 112.2 KB
```

```
In [7]: #step 7: check the null values in the dataset
         data.isnull().sum()
 Out[7]: age
                     0
                     0
         sex
                     0
         ср
         trestbps
                     0
         chol
         fbs
                     0
         restecg
                     0
         thalach
                     0
         exang
                     0
         oldpeak
                     0
         slope
                     0
         ca
                     0
         thal
                     0
         target
         dtype: int64
 In [8]: #step 8: check for duplicate data and drop them
         data_dup=data.duplicated().any()
         print(data dup)
         True
 In [9]: data=data.drop_duplicates()
In [10]: data.shape
Out[10]: (302, 14)
```

localhost:8888/notebooks/Heart disease.ipynb

Out[11]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
count	302.00000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000
mean	54.42053	0.682119	0.963576	131.602649	246.500000	0.149007	0.526490	149.569536	0.327815	1.043046	1.397351	0.718
std	9.04797	0.466426	1.032044	17.563394	51.753489	0.356686	0.526027	22.903527	0.470196	1.161452	0.616274	1.006
min	29.00000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.0000
25%	48.00000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.250000	0.000000	0.000000	1.000000	0.0000
50%	55.50000	1.000000	1.000000	130.000000	240.500000	0.000000	1.000000	152.500000	0.000000	0.800000	1.000000	0.0000
75%	61.00000	1.000000	2.000000	140.000000	274.750000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000000	1.0000
max	77.00000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000000	4.0000

localhost:8888/notebooks/Heart disease.ipynb

In [12]: #step 10: draw correlation matrix
data.corr()

Out[12]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
age	1.000000	-0.094962	-0.063107	0.283121	0.207216	0.119492	-0.111590	-0.395235	0.093216	0.206040	-0.164124	0.302261	0.065317
sex	-0.094962	1.000000	-0.051740	-0.057647	-0.195571	0.046022	-0.060351	-0.046439	0.143460	0.098322	-0.032990	0.113060	0.211452
ср	-0.063107	-0.051740	1.000000	0.046486	-0.072682	0.096018	0.041561	0.293367	-0.392937	-0.146692	0.116854	-0.195356	-0.160370
trestbps	0.283121	-0.057647	0.046486	1.000000	0.125256	0.178125	-0.115367	-0.048023	0.068526	0.194600	-0.122873	0.099248	0.062870
chol	0.207216	-0.195571	-0.072682	0.125256	1.000000	0.011428	-0.147602	-0.005308	0.064099	0.050086	0.000417	0.086878	0.096810
fbs	0.119492	0.046022	0.096018	0.178125	0.011428	1.000000	-0.083081	-0.007169	0.024729	0.004514	-0.058654	0.144935	-0.032752
restecg	-0.111590	-0.060351	0.041561	-0.115367	-0.147602	-0.083081	1.000000	0.041210	-0.068807	-0.056251	0.090402	-0.083112	-0.010473
thalach	-0.395235	-0.046439	0.293367	-0.048023	-0.005308	-0.007169	0.041210	1.000000	-0.377411	-0.342201	0.384754	-0.228311	-0.094910
exang	0.093216	0.143460	-0.392937	0.068526	0.064099	0.024729	-0.068807	-0.377411	1.000000	0.286766	-0.256106	0.125377	0.205826
oldpeak	0.206040	0.098322	-0.146692	0.194600	0.050086	0.004514	-0.056251	-0.342201	0.286766	1.000000	-0.576314	0.236560	0.209090
slope	-0.164124	-0.032990	0.116854	-0.122873	0.000417	-0.058654	0.090402	0.384754	-0.256106	-0.576314	1.000000	-0.092236	-0.103314
са	0.302261	0.113060	-0.195356	0.099248	0.086878	0.144935	-0.083112	-0.228311	0.125377	0.236560	-0.092236	1.000000	0.160085
thal	0.065317	0.211452	-0.160370	0.062870	0.096810	-0.032752	-0.010473	-0.094910	0.205826	0.209090	-0.103314	0.160085	1.000000
target	-0.221476	-0.283609	0.432080	-0.146269	-0.081437	-0.026826	0.134874	0.419955	-0.435601	-0.429146	0.343940	-0.408992	-0.343101

In [13]: plt.figure(figsize=(20,8))
sns.heatmap(data.corr(),annot=True)

Out[13]: <AxesSubplot:>

localhost:8888/notebooks/Heart disease.ipynb

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

```
In [14]: #step 11: how many people have heart disease, and how many don't have heart disease in this dataset?
data['target'].value_counts()
```

Out[14]: 1 164 0 138

Name: target, dtype: int64

In [15]: sns.countplot(data['target'])

Out[15]: <AxesSubplot:xlabel='target', ylabel='count'>

In [16]: #step 12: find count of male and female in this dataset
data['sex'].value_counts()

Out[16]: 1 206 0 96

Name: sex, dtype: int64

```
In [17]: sns.countplot(data['sex'])
   plt.xticks([0,1],['Female','Male'])
   plt.show()
```



```
In [18]: #step 13: find gender distribution according to the target variable
    sns.countplot(x='sex',hue="target",data=data)
    plt.xticks([1,0],['Male','Female'])
    plt.legend(labels=['No_Disease','Disease'])
    plt.show()
```



```
In [20]: #step 15: check chest pain type

#cp(chest pain) of 4 types:
#a value 0: typical angina
#b value 1: atypical angina
#c value 2: non-anginal pain
#d value3: asymptomatic

sns.countplot(data['cp'])
plt.xticks([0,1,2,3],["typical angina","atypical angina","non-anginal pain","asymptomatic"])
plt.xticks(rotation=75)
plt.show()
```


In [21]: #step 16: show the chest pain distribution as per target variable
 sns.countplot(x="cp",hue="target",data=data)
 plt.legend(labels=['No_Disease','Disease'])
 plt.show()


```
In [22]: #step 17: show fasting blood sugar distribution according to target variable
    sns.countplot(x="fbs",hue="target",data=data)
    plt.legend(labels=['No_Disease','Disease'])
    plt.show()
```


In [23]: #step 18: check resting blood pressure distribution
data['trestbps'].hist()

Out[23]: <AxesSubplot:>

In [24]: #step 19: compare resting blood pressure as per sex column g=sns.FacetGrid(data,hue="sex",aspect=4) g.map(sns.kdeplot,'trestbps',shade=True) plt.legend(labels=['Male','Female'])

Out[24]: <matplotlib.legend.Legend at 0x1fc14d71480>

In [25]: #step 20: show distribution of serum cholesterol data['chol'].hist()

Out[25]: <AxesSubplot:>

localhost:8888/notebooks/Heart disease.ipynb

```
In [30]: data.hist(cont_val,figsize=(12,6))
    plt.tight_layout()
    plt.show()
```


In []:	
In []:	