Brian_D_Gildea_PC

781-271-0018

p.14

BP0307-US

RECEIVED CENTRALFAX CENTER

C. In the Claims:

AUG 0 7 2007

Please amend the claims as follows. The following listing of claims will replace all prior listings and versions of the claims in this application.

1. (Currently Amended) An isotopically enriched N-substituted piperazine acetic acid compound of the formula:

, or a salt thereof, comprising one or more heavy atom isotopes, wherein; X is O or S:

Y is a straight chain or branched C1-C6 alkyl group or a straight chain or branched C1-C6 alkyl ether group wherein the carbon atoms of the alkyl group or alkyl ether group each independently emprise are optionally substituted with linked hydrogen, deuterium or fluorine atoms;

each Z is independently hydrogen, deuterium, fluorine, chlorine, bromine, iodine, an amino acid side chain, a straight chain or branched C1-C6 alkyl group that may optionally contain a substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl and aryl groups each independently comprise are optionally substituted with linked hydrogen, deuterium or fluorine atoms, a straight chain or branched C1-C6 alkyl ether group that may optionally contain a substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl and aryl groups each independently comprise are optionally substituted with linked hydrogen, deuterium or fluorine atoms or a straight chain or branched C1-C6 alkoxy group that may optionally contain a substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl alkoxy and aryl groups each independently comprise are optionally substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl alkoxy and aryl groups each independently comprise are optionally substituted with linked hydrogen, deuterium or fluorine atoms.

2. (Original) The compound of claim 1, wherein the N-substituted piperazine acetic acid is isotopically enriched with two or more heavy atom isotopes.

BP0307-US

Y is a straight chain or branched C1-C6 alkyl group or a straight chain or branched C1-C6 alkyl ether group wherein the carbon atoms of the alkyl group or alkyl ether group each independently comprise are optionally substituted with linked hydrogen, deute ium or fluorine atoms;

each Z is independently hydrogen, deuterium, fluorine, chlorine, bromine, iodine, an amino acid side chain, a straight chain or branched C1-C6 alkyl group that may optionally contain a substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl and aryl groups each independently comprise are optionally substituted with linked hydrogen, deutenium or fluorine atoms, a straight chain or branched C1-C6 alkyl ether group that may optionally contain a substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl and aryl groups each independently comprise are optionally substituted with linked hydrogen, deuterium or fluorine atoms or a straight chain or branched C1-C6 alkoxy group that may optionally contain a substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl and aryl groups each independently comprise are optionally substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl and aryl groups each independently comprise are optionally substituted with linked hydrogen, deuterium or fluorine atoms.

12. (Currently Amended) The compound of claim 1 of the formula:

13. (Original) The compound of claim 12, wherein the compound is a zwitterion, mono-TFA salt, a mono-HCl salt, a bis-TFA salt or a bis-HCl salt. Brian D Gildea PC

781-271-0018

p.15

BP0307-US

- 3. (Original) The compound of claim 1, wherein the N-substituted piperazine acetic acid is isotopically enriched with three or more heavy atom isotopes.
- 4. (Original) The compound of claim 1, wherein the N-substituted piperazine acetic acid is isotopically enriched with four or more heavy atom sotopes.
- 5. (Currently Amended) The compound of claim 42, wherein the heavy atom isotopes are each independently ¹⁸O, ¹⁵N or ¹³C, but not deuterium.
- 6. (Original) The compound of claim 1, wherein each Z is independently hydrogen, fluorine, chlorine, bromine or iodine.
- 7. (Original) The compound of claim 1, wherein each Z is independently hydrogen, methyl or methoxy.
- 8. (Original) The compound of claim 1, wherein Y is methyl, ethyl, *n*-propyl, isopropyl, *n*-butyl, isobutyl, *sec*-butyl or *tert*-butyl.
- 9. (Original) The compound of claim 1, wherein X is 16O or 16O.
- 10. (Original) The compound of claim 1, wherein each nitrogen atom of the piperazine ring is independently ¹⁴N or ¹⁵N.
- 11. (Currently Amended) The compound of claim 1 of the formula:

wherein,

each C* is independently ¹²C or ¹³C; X is O or S; Brian D Gildea PC

781-271-0018

p.17

BP0307-US

- 14. (Original) The compound of claim 12, wherein each incorporated heavy atom isotope is present in at least 80 percent isotopic purity.
- 15. (Original) The compound of claim 12, wherein each incorporated heavy atom isotope is present in at least 93 percent isotopic purity.
- 16. (Original) The compound of claim 12, wherein each incorporated heavy atom isotope is present in at least 96 percent isotopic purity.
- 17. (Original) The compound of claim 1, wherein the N-substituted piperazine acetic acid is a mono-TFA salt, a mono-HCl salt, a bis-HCl salt of a bis-TFA salt.
- 18. (Original) The compound of claim 1, wherein each incorporated heavy atom isotope is present in at least 80 percent isotopic purity.
- 19. (Original) The compound of claim 1, wherein each incorporated heavy atom isotope is present in at least 93 percent isotopic purity.
- 20. (Original) The compound of claim 1, wherein each incorporated heavy atom isotope is present in at least 96 percent isotopic purity.
- 21. (Original) The compound of claim 12, wherein the compound is a carboxylate anion.
- 22. (Original) The compound of claim 1, wherein the compound is a carboxylate anion.
- 23. (New) An isotopically enriched N-substituted piperazine acetic acid compound of the formula:

Aug 07 07 05:18p

BP0307-US

or a salt thereof, wherein;

each X is O or S;

Y is a straight chain or branched C1-C6 alkyl group or a straight chain or branched C1-C6 alkyl ether group wherein the carbon atoms of the alkyl group or alkyl ether group each independently are optionally substituted with linked deuterium or fluorine atoms: and

each Z is independently hydrogen, fluorine, chlorine, bromine, iodine, an amino acid side chain or a straight chain or branched C1-C6 alkyl group that may optionally contain a substituted or unsubstituted aryl group wherein the carbon atoms of the alkyl and aryl groups each independently are optionally substituted with linked fluorine atoms;

wherein the N-substituted piperazine acetic acid is isotopically enriched with one or more ¹³C atoms and/or ¹⁵N atoms.

- 24. (New) The compound of claim 23, wherein Y is a straight chain or branched C1-C6 alkyl group and each Z is independently hydrogen, fluorine, chlorine, bromine, iodine, an amino acid side chain or a straight chain or branched C1-C6 alkyl group.
- 25. (New) An isotopically enriched N-substituted piperazine acetic acid compound of the formula:

$$Y-N$$
 Z
 Z
 Z
 Z
 X
 X

, or a salt thereof, wherein;

X is O or S;

Y is a straight chain or branched C1-C6 alkyl group or a straight chain or branched C1-C6 alkyl ether group; and

each Z is independently hydrogen, fluorine, chlorine, bromine, iodine, an amino acid side chain or a straight chain or branched C1-C6 alkyl group; and

Aug 07 07 05:18p

Brian_D_Gildea_PC

781-271-0018

p.19

BP0307-U\$

wherein the N-substituted piperazine acetic acid is isotopically enriched with one or more ¹³C atoms, ¹⁵N atoms and/or ¹⁸O atoms.

26. (New) An isotopically enriched N-substituted piperazine acetic acid compound of the formula:

or a salt thereof, wherein the N-substituted piperazine is isotopically enriched with one or more ¹³C atoms, ¹⁵N atoms and/or ¹⁸O atoms.