Fundamentals

Mathematical Background

▶ The *floor* of X is the largest integer $\leq X$

▶ The *ceiling* of X is the smallest integer $\ge X$

The *logarithm* of *X* to base *Y* is the value *Z* that satisfies the equation $\log_{V} X = Z$, $X = Y^{Z}$

Probabilities

- ▶ A *probability* is a number between 0 and 1
- ▶ If something will never occur, it has a probability of 0
- ▶ If something always occurs, it has a probability of 1
- ightharpoonup If there are N equally likely events, each one has a probability

of
$$\frac{1}{N}$$

Summations

- A *summation* is a compact way to express the sum of a series of values
- ▶ The sum of the numbers from 1 to 7 would be written as:

$$\sum_{i=1}^{7} i$$

There are closed forms for many summations

Analysis of Algorithms

- Investigation of an algorithm's efficiency with respect to:
 - Running time: how fast an algorithm runs
 - Memory space: extra space the algorithm requires
 - \triangleright Efficiency: a function of input size n
- Comparison of two or more algorithms that solve the same problem
- Independent of the computer because a faster computer does not make an algorithm more efficient
- Independent of initializations because those may be done faster

Space Complexity

- The amount of space needed for an algorithm to complete its task
- Algorithms are classified as either in place or needing extra space
 - Depends on whether the algorithm moves data around within its current storage or copies information to a new space while it's working
- Use of extra space can be critical in software designed for small embedded systems

In-place Algorithm

- Transforms a data structure using a small, constant amount of extra storage space.
- The input is usually overwritten by the output as the algorithm executes.
- ▶ For example, to reverse an array of *n* items

```
function reverse(a[0..n])
  allocate b[0..n]
  for i from 0 to n
     b[n - i] = a[i]
  return b
```

```
function reverse-in-place(a[0..n])
  for i from 0 to floor(n/2)
    swap(a[i], a[n-i])
```

Measuring Running time

- Time is not merely CPU clock cycles, we want to study algorithms independent of implementations, platforms, and hardware.
- We measure *time* by "the number of operations as a function of an algorithm's *input size*."

Input Size

- For a given problem, we characterize the input size, n, appropriately:
 - Sorting: the number of items to be sorted
 - *Graphs*: the number of vertices and/or edges
 - Numerical: the number of bits needed to represent a number
- The choice of an input size greatly depends on the *basic operation*, the most important operation that contributes the most to the total running time.

What to Count

- Comparisons
 - Equal, greater, not equal, ...

- Arithmetic
 - Additions
 - > add, subtract, increment, decrement
 - Multiplications
 - multiply, divide, modulus, remainder

Measuring Running time

Compute the number of times the basic operation is executed, C(n)

- Estimate running time: $T(n) \approx c_{op}C(n)$
 - c_{op} : execution time of a basic operation on a particular computer

- ▶ Order of growth within a constant multiple as $n\rightarrow\infty$
- Answers questions of type:
 - How much faster will algorithm run on computer that is twice as fast?
 - How much longer does it take to solve problem of double input size?

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^1$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0{\cdot}10^7$	10^{12}	10^{18}		

https://www.wolframalpha.com/input/?i=N%5E2

▶ Assume MHz machine: 10⁶ operations/second

Minute	Hour	Day	Month	Year
10^8 ops	10 ⁹ ops	10^{11} ops	$10^{12} \mathrm{~ops}$	$10^{13} \mathrm{~ops}$

▶ Clearly, any algorithm requiring more than 10¹⁴ operations is impractical

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	<i>n</i> !
10 10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶	3.3 6.6 10 13 17 20	10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6}	$3.3 \cdot 10^{1}$ $6.6 \cdot 10^{2}$ $1.0 \cdot 10^{4}$ $1.3 \cdot 10^{5}$ $1.7 \cdot 10^{6}$ $2.0 \cdot 10^{7}$	$ \begin{array}{r} 10^{2} \\ 10^{4} \\ 10^{6} \\ \hline 10^{8} \\ 10^{10} \\ 10^{12} \end{array} $	$ \begin{array}{c} 10^{3} \\ 10^{6} \\ \hline 10^{9} \\ 10^{12} \\ \hline 10^{15} \\ 10^{18} \end{array} $	10^{3} $1.3 \cdot 10^{30}$	3.6·10 ⁶ 9.3·10 ¹⁵⁷

< day

< month

> year

Empirical Analysis of Time Efficiency

Select a specific (typical) sample of inputs

- Use physical unit of time (e.g., milliseconds)
- Count actual number of basic operation's executions

Analyze the empirical data

Empirical Analysis of Time Efficiency

Typical scatterplots: (a) logarithmic; (b) linear; (c) one of the convex functions

Algorithm's Efficiencies

- Running time depends on
 - An input size
 - ▶ The specifics of a particular input
 - The algorithm itself

Cases to Consider

Best Case

- The least amount of work done for any input set
- $C_{best}(n)$ minimum over inputs of size n.

Worst Case

- The most amount of work done for any input set
- $C_{worst}(n)$ maximum over inputs of size n.

Average Case

- The amount of work done averaged over all of the possible input sets
- $C_{avg}(n)$ "average" over inputs of size n.

Average Case

- Number of times the basic operation will be executed on typical input
- NOT the average of worst and best case
- Determining the average case:
 - Find the number of input set classes m
 - Find the probability that the input will be from each of these classes p_i
 - Find the amount of work done for each class t_i
- The average case is given by:

$$A(n) = \sum_{i=1}^{m} p_i * t_i$$

Types of formulas

Exact formula

e.g.,
$$C(n) = \frac{n(n-1)}{2}$$

 Formula indicating order of growth with specific multiplicative constant

e.g.,
$$C(n) \approx 0.5 n^2$$

Formula indicating order of growth with unknown multiplicative constant

e.g.,
$$C(n) \approx cn^2$$

Asymptotic Notations

- A way of comparing functions that ignores constant factors and small input sizes
- ▶ $t(n) \in O(g(n))$: function t(n) grows <u>no faster</u> than g(n)
- ▶ $t(n) \in \Theta(g(n))$: function t(n) grows <u>at same rate</u> as g(n)
- ▶ $t(n) \in \Omega(g(n))$: function t(n) grows at least as fast as g(n)

Big-oh

• function t(n) grows <u>no faster</u> than g(n)

Big-oh notation: $t(n) \in O(g(n))$

Big-omega

• function t(n) grows at least as fast as g(n)

Big-omega notation: $t(n) \in \Omega(g(n))$

Big-theta

• function t(n) grows <u>at same rate</u> as g(n)

Big-theta notation: $t(n) \in \Theta(g(n))$

 $t(n) \in \Theta(g(n)) \land t(n) \in O(g(n)) \rightarrow t(n) \in \Omega(g(n))$

Asymptotic Properties

Reflexivity:

- $f(n) \in O(f(n))$
- $f(n) \in \Theta(f(n))$
- $f(n) \in \Omega(f(n))$

Transitivity:

- $f(n) \in O(g(n)) \land g(n) \in O(h(n)) \to f(n) \in O(h(n))$
- $f(n) \in \Theta(g(n)) \land g(n) \in \Theta(h(n)) \to f(n) \in \Theta(h(n))$
- $f(n) \in \Omega(g(n)) \land g(n) \in \Omega(h(n)) \to f(n) \in \Omega(h(n))$

Asymptotic Properties

- Symmetry:
 - $f(n) \in \Theta(g(n))$ iff $g(n) \in \Theta(f(n))$

- Transpose Symmetry:
 - $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$

Growth Composition

- Theorem:
 - ▶ If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$,
 - ▶ then $t_1(n) + t_2(n) \in O(\max(g_1(n), g_2(n)))$

- If an algorithm runs in two or more stages, we're only interested in the most expensive stage
- these assertions are true for Θ and Ω

Using Limits

```
\lim_{n\to\infty} (\frac{t(n)}{g(n)}) = \begin{cases} 0 & \text{order of growth of } t(n) < \text{order of growth of } g(n) \\ t(n) \in O(g(n)) \end{cases}
c > 0 \text{ order of growth of } t(n) = \text{order of growth of } g(n) \\ t(n) \in O(g(n)) \end{cases}
\infty & \text{order of growth of } t(n) > \text{ order of growth of } g(n) \\ t(n) \in O(g(n)) \end{cases}
```

All logarithmic functions $log_a n$ belong to the same class

$$log_a n \in \theta(\log n), for all a$$

All polynomials of the same degree k belong to the same class:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_0 \in \theta(n^k)$$

Exponentials a^n have different orders of growth for different a's

$$\log n < n^{\alpha} (\alpha > 0) < a^{n} < n! < n^{n}$$

L'Hôpital's Rule

If the derivatives t', g' exist, then

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}=\lim_{n\to\infty}\frac{t'(n)}{g'(n)}$$

CALCULUS

DERIVATIVES AND LIMITS

DERIVATIVE DEFINITION

$$\frac{d}{dx}\big(f(x)\big)=f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

BASIC PROPERTIES

$$\begin{aligned} \left(cf(x)\right)' &= c\left(f'(x)\right) \\ \left(f(x) \pm g(x)\right)' &= f'(x) \pm g'(x) \\ \frac{d}{dx}(c) &= 0 \end{aligned}$$

MEAN VALUE THEOREM

If f is differentiable on the interval (a, b) and continuous at the end points there exists a c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

PRODUCT RULE

$$\left(f(x)g(x)\right)'=f(x)'g(x)+f(x)g(x)'$$

QUOTIENT RULE

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^{\sharp}}$$

POWER RULE

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

CHAIN RULE

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

COMMON DERIVATIVES

DOMMON DERIVATIVES

$$\frac{d}{dx}(x) = 1$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(f)$$

$$\frac{d}{dx}(a^x) = a^x \ln(a)$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}, x > 0$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

$$\frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln(a)}$$

LIMIT EVALUATION METHOD - FACTOR AND CANCEL

$$\lim_{x \to -3} \frac{x^2 - x - 12}{x^2 + 3x} = \lim_{x \to -3} \frac{(x+3)(x-4)}{x(x+3)} = \lim_{x \to -3} \frac{(x-4)}{x} = \frac{7}{3}$$

L'HOPITAL'S RULE

If
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\pm \infty}{\pm \infty}$ then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$

EEWeb.com **Electrical Engineering Community**

- - Engineering Community Personal Profiles and Resumes

- Professional Networking
- Community Blogs and Projects
- Find Jobs and Events

CHAIN RULE AND OTHER EXAMPLES

$$\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1}f'(x)$$

$$\frac{d}{dx}(e^{f(x)}) = f'(x)e^{f(x)}$$

$$\frac{d}{dx}(\ln[f(x)]) = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}(\sin[f(x)]) = f'(x)\cos[f(x)]$$

$$\frac{d}{dx}(\cos[f(x)]) = -f'(x)\sin[f(x)]$$

$$\frac{d}{dx}(\tan[f(x)]) = f'(x)\sec^2[f(x)]$$

$$\frac{d}{dx}(\sec[f(x)]) = f'(x)\sec[f(x)]\tan[f(x)]$$

$$\frac{d}{dx}(\tan^{-1}[f(x)]) = \frac{f'(x)}{1 + [f(x)]^2}$$

$$\frac{d}{dx}(f(x)^{g(x)}) = f(x)^{g(x)}\left(\frac{g(x)f'(x)}{f(x)} + \ln(f(x))g'(x)\right)$$

PROPERTIES OF LIMITS

These properties require that the limit of f(x) and g(x) exist

$$\lim_{x\to a} [cf(x)] = c \lim_{x\to a} f(x)$$

$$\lim_{x\to a} [f(x) \pm g(x)] = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to a} \frac{f(x)}{\lim g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x\to 0} [f(x)]^n = \left[\lim_{x\to 0} f(x)\right]^n$$

LIMIT EVALUATIONS AT +-00

$$\begin{split} &\lim_{x\to\infty} e^x = \infty \text{ and } \lim_{x\to-\infty} e^x = 0 \\ &\lim_{x\to\infty} \ln(x) = \infty \text{ and } \lim_{x\to0^+} \ln(x) = -\infty \end{split}$$

If
$$r > 0$$
 then $\lim_{x \to \infty} \frac{c}{x^r} = 0$

If
$$r > 0$$
 & x^r is real for $x < 0$ then $\lim_{x \to -\infty} \frac{c}{x^r} = 0$

$$\lim_{r \to \infty} x^r = \infty \text{ for even } r$$

$$\lim_{x\to\infty} x^r = \infty \ \& \lim_{x\to -\infty} x^r = -\infty \ \text{ for odd } r$$

Stirling's Formula

$$n! \approx \sqrt{2\pi n} \times (\frac{n}{e})^n$$

Basic Efficiency Classes

Class	Name	Comments	
1	constant	Short of best-case efficiencies, very few reasonable examples can be given since an algorithm's running time typically goes to infinity when its input size grows infinitely large.	
log n	logarithmic	Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 5.5). Note that a logarithmic algorithm cannot take into account all its input (or even a fixed fraction of it): any algorithm that does so will have at least linear running time.	
n	linear	Algorithms that scan a list of size n (e.g., sequential search) belong to this class.	
$n \log n$	"n-log-n"	Many divide-and-conquer algorithms (see Chapter 4) including mergesort and quicksort in the average case fall into this category.	
n^2	quadratic	Typically, characterizes efficiency of algorithms with two embedded loops (see the next section). Elementary sorting algorithms and certain operations on <i>n</i> -by- <i>n</i> matrices are standard examples.	
n^3	cubic	Typically, characterizes efficiency of algorithms with three embedded loops (see the next section). Several nontrivial algorithms from linear algebra fall into this class.	
2^n	exponential	Typical for algorithms that generate all subsets of an <i>n</i> -element set. Often, the term "exponential" is used in a broader sense to include this and larger orders of growth as well.	
n!	factorial	Typical for algorithms that generate all permutations of an <i>n</i> -element set.	