

RESEARCH MEMORANDUM

THE EFFECTS OF OPERATING PROPELLERS ON THE LONGITUDINAL CHARACTERISTICS AT HIGH SUBSONIC SPEEDS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10

By Fred B. Sutton and Fred A. Demele

Ames Aeronautical Laboratory
Moffett Field, Calif.

CLASSIFICATION CANCELLED

LIDRARY COPY

theright care Rea als Date 12414,55
RH-20-94
in 14 - 1-1-16-) 1-6 See

- JAN 13 1954 Yaeronahtidah kandan

LANGLEY AEROHAUTICAL LABORATORY
LIBRARY, NACA
LANGLEY FIELD, VIRGINIA

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 763 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

January 7, 1954

NACA RM A53J23

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THE EFFECTS OF OPERATING PROPELLERS ON THE LONGITUDINAL CHARACTERISTICS AT HIGH SUBSONIC SPEEDS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10

By Fred B. Sutton and Fred A. Demele

SUMMARY

An investigation has been conducted at high subsonic speeds to determine the effects of operating propellers on the longitudinal characteristics of a four-engine tractor airplane configuration having a 40° swept wing with an aspect ratio of 10. Wind-tunnel tests were conducted through ranges of angles of attack and propeller thrust coefficients at Mach numbers from 0.60 to 0.90 at Reynolds numbers of 1,000,000 and 2,000,000. The effects of varying propeller blade angle, tail incidence, and vertical height of the horizontal tail were investigated.

The over-all effects of operating propellers on the longitudinal characteristics were not large when compared to the effects of propeller operation at low speed. Compared to the model with the propellers off, operation of the propellers at constant thrust coefficients generally decreased the static longitudinal stability. Increasing the propeller thrust coefficient at a constant Mach number increased both the static longitudinal stability and the trimmed lift coefficient. Operation of the propellers at constant thrust coefficient increased the wing lift-curve slope but had little effect on the variation of lift-curve slope with Mach number. Operation of the propellers had little effect on the Mach number for longitudinal force divergence at a constant lift coefficient but resulted in a decrease in the rate of change of longitudinal force coefficient with Mach number at supercritical speeds. This effect increased with increasing propeller thrust coefficient and with increasing lift coefficient.

A method of predicting the effects of propeller normal force on the pitching-moment characteristics of the configuration is presented. Comparisons with measured effects indicate that the accuracy of the method is good.

Raising the horizontal tail had little effect on the longitudinal stability with the propellers removed but was destabilizing with the propellers operating.

For an assumed airplane, operating at the power required for level flight at an altitude of 40,000 feet, calculations indicate only a small change in the stable variation of tail incidence for trim with Mach number compared to the propellers-off condition.

INTRODUCTION

The potentialities of turbine-propeller propulsion systems are well recognized, particularly with regard to the take-off and range capabilities of multiengine airplanes. The combination of a turbine-propeller propulsion system and an airframe configuration utilizing a sweptback wing of high aspect ratio should make possible the achievement of long-range flight at relatively high subsonic speeds. This propulsive system could utilize supersonic propellers with high disc loadings. It is not believed that the effects of these propellers on the longitudinal characteristics of swept wings can be adequately predicted, either by existing theoretical methods or by available experimental data.

An investigation has been made in the Ames 12-foot pressure wind tunnel to determine the longitudinal characteristics of a representative multiengine airplane configuration with sweptback wings of high aspect ratio. The investigation was made with and without operating supersonic propellers. The power-off longitudinal characteristics of several combinations of the components of this configuration have been presented in references 1 to 4. The characteristics of the propeller are reported in reference 5. The results of a low-speed investigation to determine the effects of operating propellers on the longitudinal characteristics are presented in reference 6. The present report is concerned with the effects of operating propellers on the longitudinal characteristics of the configuration at high subsonic speeds. Tests were conducted over a Mach number range of 0.60 to 0.90 at Reynolds numbers of 1,000,000 and 2,000,000. If the model is assumed to be 1/12 scale, the power conditions simulated at most test Mach numbers varied from windmilling to 5000 horsepower per engine at an altitude of 40,000 feet or to 20,000 horsepower per engine at sea level.

NOTATION

Aev	upflow angle, average angle of local flow at the 0.7 propeller radius and at the horizontal center line of the propeller plane, measured with respect to the thrust axis in a plane parallel to the plane of symmetry
a	mean-line designation, fraction of chord over which the design load is uniform
a ^t	normal acceleration
<u>p</u>	wing semispan perpendicular to the plane of symmetry
ъ:	propeller blade width
$c_{\mathtt{L}}$	lift coefficient, lift qS
$\mathbf{c_{L_t}}$	tail lift coefficient, tail lift qSt
Cm	pitching-moment coefficient referred to the center of gravity, pitching moment qSc (See fig. 1(a).)
$C_{\mathbf{N}}$	propeller normal-force coefficient, $\frac{N}{qS}$
$\mathbf{c}_{\mathbf{P}}$	power coefficient, $\frac{P}{\rho n^3 D^5}$
$c_{\mathbf{T}}$	thrust coefficient per propeller, $\frac{T}{\rho n^2 D^4}$
$c_{\mathbf{X}}$	longitudinal force coefficient, $\frac{X}{qS}$
c	local wing chord parallel to the plane of symmetry
c ^t	local wing chord normal to the reference sweep line (See table I.)

- \bar{c} wing mean aerodynamic chord, $\frac{\int_{0}^{b/2} c^2 dy}{\int_{0}^{b/2} c} c dy$ c_{li} wing-section design lift coefficient
- c.g. center-of-gravity location (See fig. 1(a).)
- g acceleration due to gravity
- D propeller diameter
- h maximum thickness of propeller blade section
- hp horsepower per engine
- it incidence of the horizontal tail with respect to the wingroot chord
- J propeller advance ratio, $\frac{V}{nD}$
- tail length, distance between the quarter points of the mean aerodynamic chords of the wing and of the horizontal tail measured parallel to the plane of symmetry
- M free-stream Mach number
- N normal force per propeller
- n propeller rotational speed
- n' normal acceleration factor, $\frac{a'}{g}$
- P shaft power per motor
- q free-stream dynamic pressure, $\frac{1}{2} \rho V^2$
- R Reynolds number, based on the wing mean aerodynamic chord
- R^t propeller-tip radius
- r propeller-blade-section radius

ន	area of semispan wing
s_{t}	area of semispan tail
T	thrust per propeller parallel to the stream
T _C	thrust coefficient per propeller, $\frac{T}{\rho V^2 D^2}$
t	wing section maximum thickness
v	free-stream velocity
W	weight of assumed full-scale airplane
X	longitudinal force, parallel to stream and positive in a dragwise direction
У	lateral distance from the plane of symmetry
α	angle of attack of the wing chord at the plane of symmetry referred to herein as the wing-root chord
α_{t}	angle of attack of the tail
β	propeller blade angle measured at 0.70 tip radius
βŧ	propeller-blade-section angle
€	effective downwash angle
η	propeller or propulsive efficiency, $\frac{C_{\mathrm{T}}}{C_{\mathrm{P}}}$
ρ	mass density of air
φ	angle of local wing chord relative to the wing-root chord, positive for washin, measured in planes parallel to the plane of symmetry
$\eta_{t}\left(\frac{q_{t}}{q}\right)$	tail efficiency factor (ratio of the lift-curve slope of the horizontal tail when mounted on the fuselage in the flow field of the wing to the lift-curve slope of the isolated horizontal tail)

$$\frac{\partial C_m}{\partial i_t}$$
 tail effectiveness parameter, measured for a given angle of attack

Subscripts

av average

w wing

t tail

MODEL AND APPARATUS

The semispan model represented the right-hand side of a hypothetical four-engine airplane. Figures 1(a) through 1(d) and table I present dimensions and details of the model. Figure 2 shows the model mounted in the wind tunnel. The selection of the geometric properties and the details of the construction of the wing, nacelles, fences, tail, and fuselage have been discussed in references 1, 2, and 3. The three-bladed supersonic propeller, designated NACA 1.167-(0)(03)-058 and having right-hand rotation, was specifically designed for the subject investigation and is described in detail in reference 5. Figure 3 presents the propeller plan-form and blade-form curves.

The power to drive the propellers was supplied by a variable-speed induction motor in each nacelle. Each motor had a normal rating of 75 horsepower at 18,000 revolutions per minute. The propellers were driven through gears at a rotational speed 1.5 times that of the motors. The shaft power delivered to the propellers was determined by measuring the input power to the motors and applying corrections for the motor and gearbox losses. Motor rotational speed was measured by means of an electronic tachometer on each motor.

TESTS

Test Conditions

The longitudinal characteristics of the model were investigated over a Mach number range of 0.60 to 0.90 at Reynolds numbers of 1,000,000 and 2,000,000. At each Mach number, tests were made with propeller blade angles of 41° and 51° through an angle-of-attack range of 2° to 10°. At each angle of attack, the propeller rotational speed was varied from windmilling to the maximum obtainable, being limited by either maximum motor speed or maximum motor power. Measurements of the static pressures on the wind-tunnel walls during the tests at a Mach number of 0.90

indicated the possibility of partial choking of the wind tunnel. It is believed that the force and moment data shown at this Mach number are partially affected by this phenomenon.

Tests were made at tail heights of 0 b/2 and 0.10 b/2 above the fuselage center line. Tail incidences of -2° , -4° , and -6° were investigated at the 0 b/2 tail position.

Propeller Calibration

The propeller was calibrated on a specially constructed calibration nacelle which allowed the characteristics of the propeller, in the presence of the spinner and the nacelle forebody to be ascertained. Reference 5 presents the details of the calibration procedure and the results of the calibration. Propeller normal-force characteristics were determined as part of the propeller calibration and are presented herein.

REDUCTION OF DATA

Thrust Coefficient

The model thrust coefficient, $T_{\rm C}$, used herein is the average for the two propellers, and is obtained from the results of the propeller calibration (ref. 5). Advance ratios were computed for each of the propellers, and the corresponding thrust coefficients were obtained from the calibration results at a comparable Mach number, Reynolds number, average propeller upflow angle (ref. 7), and propeller blade angle. Typical variations of thrust coefficient with advance ratio for one propeller (ref. 5) are shown in figure 4.

Adjustment to the advance ratios of the propellers operating on the model was necessary since propeller blade angles could be duplicated only to within ±0.15° between the propeller calibration and the present test. In addition, it is probable that differences in the effective propeller blade angles between the model and the calibration nacelle existed because of slightly dissimilar radial distribution of upflow in the plane of the propeller (ref. 7). The adjustment used was based on the observed differences in windmilling advance ratios between propeller operation on the model and on the calibration nacelle at comparable geometric propeller blade angles and test conditions. It was assumed that thrust as well as power was approximately equal at the windmilling advance ratios for the two operations and that the small blade-angle difference did not affect the rate of change of thrust coefficient with advance ratio. Advance ratios measured for the propellers operating on

the model were adjusted by the difference between the windmilling advance ratios measured for the propeller operating on the model and on the calibration nacelle. Thrust coefficients for the powered model were then obtained from the calibration results at these adjusted advance ratios. These effects were generally small and changed the propeller thrust coefficient by only 0.002 at the higher Mach numbers and the larger thrust coefficients.

Force and Moment Data

The basic data obtained at various thrust coefficients at constant angle of attack were reduced to conventional form and are presented as lift coefficient as a function of angle of attack, and longitudinal force coefficient and pitching-moment coefficient as functions of lift coefficient. These variations with angle of attack and lift coefficient were obtained by cross plotting the basic data for a lift-coefficient and thrust-coefficient relationship corresponding to an assumed full-scale power condition (fig. 5) and for constant thrust coefficient.

Corrections

The data have been corrected for constriction effects due to the presence of the tunnel walls, for tunnel-wall interference originating from lift on the wing, and for longitudinal force tares caused by aero-dynamic forces on the exposed portion of the turntable upon which the model was mounted.

The effects of wind-tunnel-wall constraint on the propeller slipstreams were evaluated by the method of references 8 and 9 and were found to be negligible. The dynamic pressure was corrected for constriction effects due to the presence of the tunnel walls by the method of reference 10. These corrections and the corresponding corrections to the Mach number are listed in the following table:

Corrected	Uncorrected	qCorrected
Mach number	Mach number	q _{Uncorrected}
0.60 .70 .80 .83 .86	0.598 .695 .793 .821 .848 .883	1.006 1.009 1.011 1.013 1.014 1.022

Corrections for the effects of tunnel-wall interference originating from the lift on the wing were calculated by the method of reference 11. The corrections to the angle of attack and to the longitudinal force coefficient showed insignificant variations with Mach number. The corrections added to the data were as follows:

$$\Delta \alpha = 0.38 \text{ C}_{L}$$

$$\Delta C_{X} = 0.0059 \text{ C}_{L}^{2}$$

The correction to the pitching-moment coefficient had significant variations with Mach number. The following corrections were added to the pitching-moment coefficients:

$$\Delta C_{m} = K_{1} C_{\text{Ltail off}} \quad \text{(Tail off)}$$

$$\Delta C_{m} = K_{1} C_{\text{Ltail off}} - \left[\left(K_{2} C_{\text{Ltail off}} - \Delta \alpha \right) \frac{\partial C_{m}}{\partial i_{t}} \right] \quad \text{(Tail on)}$$

The values of K_1 and K_2 for each Mach number were calculated by the method of reference 11 and are given in the following table:

М	K ₁	K2				
0.60	0.0048	0.77				
.70	.0057	.79				
.80	.0069	.81				
.83	.0073	.82				
.86	.0078	.83				

The correction constants for the tunnel-wall interference effects were computed for propeller-off conditions since the effects of propeller slipstream on wing lift and tail effectiveness were small over the Mach number range of the investigation. However, the lift coefficients used to determine the actual corrections were total values reflecting all the propeller effects. Results of the propeller calibration indicated the effects of propeller direct forces to be negligible.

Since the turntable upon which the model was mounted was directly connected to the balance system, a tare correction to longitudinal force was necessary. This correction was determined by multiplying the

longitudinal force on the turntable, as determined from tests with the model removed from the wind tunnel, by the fraction of the turntable area not covered by the model fuselage. The following corrections were subtracted from the measured longitudinal force coefficients:

М	$^{\mathrm{C}}_{\mathrm{X}_{\mathrm{tare}}}$
0.60 .70 .80 .86	0.0025 .0026 .0028 .0030 .0032

No attempt has been made to evaluate tares due to interference between the model and the turntable or to compensate for the tunnel-floor boundary layer which, at the turntable, had a displacement thickness of onehalf inch.

RESULTS AND DISCUSSION

An index to the basic data is presented in table II. The basic data are tabulated in tables III through XI, and the coefficients of lift, longitudinal force, and pitching moment are plotted in conventional form for constant values of thrust coefficient in figures 6 to 14. Figures 15 through 31 present, for selected conditions, the effects of propeller operation, Mach number, tail height, Reynolds number, and propeller blade angle on the longitudinal characteristics of the model.

Effects of Operating Propellers on the Longitudinal Characteristics

The longitudinal characteristics of the model, with and without operating propellers, are presented in figures 6 through 14. In general, the effects of the operating propellers were not large compared to the propeller effects at low speed shown in reference 6. Compared to the model without propellers, operation of the propellers at constant thrust coefficients generally increased the lift-curve slopes and decreased the static longitudinal stability. The term "static longitudinal stability," as used herein, refers to the slopes of the curves of pitching-moment coefficient as a function of lift coefficient. Decreases in stability are indicated by reductions in the negative slopes of the curves. Generally, the trim lift coefficients increased with increasing thrust coefficient but at any constant thrust coefficient they decreased with increasing Mach number. There was no large effect of operating propellers on the variation of longitudinal force coefficient with lift

coefficient at lift coefficients less than about 0.40 or 0.50. It is believed that the erratic variations shown in some of the longitudinal force data at a Mach number of 0.90 are due, at least in part, to the choking phenomenon previously mentioned.

The variations of the longitudinal characteristics with Mach number are presented in figures 15, 16, and 17. These variations are shown at lift coefficients of 0.20 and 0.40 for the model with the propellers off and with the propellers operating at several constant values of thrust coefficient.

Operation of the propellers increased the lift-curve slopes (fig. 15) but, in general, had only small effects on the variation of lift-curve slope with Mach number. At a lift coefficient of 0.40, operating the propellers at a thrust coefficient of 0.03 increased the Mach number for lift divergence from approximately 0.83 to approximately 0.86.

Figure 16 shows the variation with Mach number of the increment of longitudinal force coefficient above its value at a Mach number of 0.70 for several different values of propeller thrust coefficient and with propellers removed. It was anticipated that the Mach number of longitudinal force divergence would be decreased as a result of the increased velocity behind the operating propellers. However, this effect did not occur, and the Mach number for drag divergence was little affected by operation of the propellers. At supercritical speeds, the drag rise with increasing Mach number was reduced considerably with increase in propeller thrust coefficient. This reduction was due, in part, to increases in the wing lift-curve slope with the propellers operating. Thus, the same lift coefficient can be obtained at a lower angle of attack and this fact tended to reduce the shock-induced losses over the outer portion of the wing span. It is also thought that some of the effect stemmed from increases in the effective Reynolds numbers of the wing sections immersed in the propeller slipstreams. It is doubtful that a favorable Reynolds number phenomenon would prevail at full-scale Reynolds numbers.

The effects of Mach number on the slopes of the pitching-moment curves are presented in figure 17 at lift coefficients of 0.20 and 0.40 for the model with the propellers off and with the propellers operating at several constant values of thrust coefficient. The effects of Mach number were generally greater with the propellers operating than with the propellers off. In general, the static longitudinal stability decreased slightly with Mach number when the tail was on and increased slightly when the tail was off up to a Mach number of approximately 0.82. At higher speeds, changes in stability due to Mach number were inconsistent and more pronounced.

Effects of the Operating Propellers on the Longitudinal Stability

The factors which determine the static longitudinal stability of a propeller-driven airplane are the stability with the propellers removed, the direct propeller forces normal to and along the thrust axis, and the effects of the propeller slipstream on the flow on the wing and at the horizontal tail. Figures 18 and 19 show for several Mach numbers these various effects of the operating propellers on tail-on and tail-off static longitudinal stability at zero thrust, at a comparatively high constant thrust coefficient, and at the conditions of constant horsepower shown in figure 5. The data presented were obtained by adding pitching-moment increments, referred to the center of gravity, due to propeller thrust and normal force (from the propeller calibration data) to the propellers-off pitching-moment data. This total was then subtracted from the power-on pitching moments to ascertain approximately the slipstream effects. For both constant thrust and constant power, the various effects of the operating propellers on the pitching-moment characteristics of the model were small. For the center-of-gravity position shown on figure 1(a), normal force and thrust of the propellers were generally destabilizing. The effects of the propeller slipstream on the wing were generally destabilizing while their effects on the tail were generally stabilizing.

Figure 20 presents, for a Mach number of 0.80 and a constant thrust coefficient of 0.04, a comparison of the predicted and measured variations with angle of attack of the incremental pitching-moment coefficient due to propeller normal force. The measured variations of increments of pitching-moment coefficient with angle of attack due to propeller thrust and propeller slipstream on the wing and tail are also shown. The effect of propeller normal force on the pitching moment was calculated by the method presented in the Appendix. The predicted pitching-moment increments due to the propeller normal force are in good agreement with the measured effects. The small discrepancy at the lower angles of attack is believed due to lift stemming from the asymmetry of the nacelle forebody. The theoretical computations did not account for any lift contribution due to the nacelle forebody.

The effects of propeller slipstream on the pitching-moment characteristics of the wing and tail could not be predicted to any acceptable degree of accuracy with existing methods. It is believed that the combination of the effects of wing sweepback, of viscous separation, of propeller slipstream rotation, and of wing-nacelle interference makes the estimation of slipstream effects on the pitching-moment characteristics of the wing and tail virtually impossible for the present model.

Figure 21 shows the variation with Mach number of the various effects of the operating propellers on the pitching-moment-curve

slopes $\Delta(dC_m/dC_L)$. The data are presented for a representative lift coefficient for level flight (C_L = 0.40) and for constant thrust coefficient and constant simulated horsepower. The effects of slipstream on the horizontal tail were assumed to be the differences between tailon and tail-off slipstream effects. The effect of propeller normal force varied with Mach number at constant horsepower because of the relationship of thrust coefficient and lift coefficient used in calculating the conditions (fig. 5). The variations of the effects of the propeller slipstream with Mach number were small, generally amounting to a change in pitching-moment-curve slope of less than ±0.05.

Effects of the Operating Propellers on the Stability Contribution of the Horizontal Tail

The horizontal-tail contribution to stability is a function of the downwash factor 1 - $(\partial \varepsilon/\partial \alpha)$, the tail-efficiency factor $\eta_{\pm}(q_{\pm}/q)$,

and the ratio $\frac{\left(dC_{\rm Lt}/d\alpha_{\rm t}\right)_{\rm isolated\ tail}}{\left(dC_{\rm L}/d\alpha\right)_{\rm tail\ off}}$. Calculations were made using

the method of reference 12 to evaluate the effective downwash characteristics and the tail efficiency factor with and without operating propellers. The force data presented in figures 6 through 9 and the isolated tail-force data presented in reference 3 were used for the computations of effective downwash angle ϵ , $\eta_{t}(q_{t}/q)$, and the ratio

 $\frac{(dc_{L_t}/d\alpha_t)_{isolated\ tail}}{(dc_L/d\alpha)_{tail\ off}}$ and the results are shown for several Mach num-

bers in figures 22, 23, and 24 as functions of angle of attack. It was assumed for the computation of downwash angle ε and tail-efficiency factor $\eta_{\rm t}(q_{\rm t}/q)$ that the Mach number at the tail was the same as the free-stream Mach number. The effect of the propellers on downwash amounted to a change in downwash angle of 0.5° or less. At high angles of attack the effect of the operating propellers on the factors $\eta_{\rm t}(q_{\rm t}/q)$

and $\frac{(dC_{L_t}/d\alpha_t)_{isolated\ tail}}{(dC_L/d\alpha)_{tail\ off}}$ was sizable, however, these effects are

compensating and their over-all effect on tail effectiveness was small.

The variations with Mach number of the tail-effectiveness parameter, $\partial C_m/\partial i_t$, the isolated tail lift-curve slope, and the various factors affecting the stability contribution of the tail are shown in figures 25, 26, and 27 for a representative level flight, high-speed altitude ($\alpha=4^{\circ}$). The effects of Mach number on $\partial C_m/\partial i_t$ were small with and without the

-

operating propellers. For the selected condition, operation of the propellers had little effect on the variations of the factors $1 - (\partial \varepsilon / \partial \alpha)$,

$$\eta_t(q_t/q)$$
, and $\frac{(dC_{Lt}/d\alpha_t)_{isolated\ tail}}{(dC_L/d\alpha)_{tail\ off}}$ with Mach number.

The effects of horizontal-tail height on the pitching-moment-curve slopes of the model with and without operating propellers are shown in figure 28 for several Mach numbers. Raising the horizontal tail increased the static longitudinal stability slightly with the propellers off at Mach numbers less than 0.90, but was destabilizing over the Mach number range of the investigation with the propellers operating.

Propulsive Characteristics

Figure 29 presents for an upflow angle of approximately 0° and a Mach number of 0.80, a comparison of the characteristics of the isolated propeller (ref. 5) with the propulsive characteristics of the model. Also shown is a comparison of the variations with Mach number of the efficiency of the isolated propeller and the propulsive efficiency of the model at a constant thrust coefficient of 0.04.

The propulsive characteristics include the lift due to the propeller slipstream (ref. 13) and the effects of the operating propellers on longitudinal force characteristics previously discussed. The propeller is credited with these effects by calculating the effective thrust coefficients and propulsive efficiencies of the model as follows:

$$C_{\text{Teffective}} = - (s/4p^2) J^2 \left(C_{\text{Xprops on}} - C_{\text{Xprops off}} \right)_{\text{const. } C_{\text{Lprops on}}}$$

and propulsive efficiency

$$\eta = \frac{c_{\underline{Teffective}} J}{c_{\underline{p}}}$$

Figure 29 indicates that the effective thrust coefficients for the conditions selected for the comparison were greater than the thrust coefficients measured for the isolated propeller, and that the corresponding propulsive efficiencies, consequently, exceeded the efficiencies indicated for the isolated propeller. Generally, the propulsive efficiency increased with increasing Mach number while the efficiency of the isolated propellers decreased slightly. This effect is

believed to be associated with the decrease in the rate of change of longitudinal force coefficient with Mach number indicated in figure 16.

In computing propulsive efficiencies, no distinction was made between the effects of propeller slipstream and the effects of propeller direct forces. However, for the range of Mach numbers and propeller thrust coefficients of the subject investigation, the effects of propeller direct forces on lift were negligible.

Longitudinal Characteristics of an Assumed Airplane

Figure 30 presents a summation of the longitudinal characteristics, as calculated from the results of the subject investigation, of an assumed airplane operating with the power required for level flight at an altitude of 40,000 feet. These characteristics are presented as functions of Mach number or normal-acceleration factor. The lift coefficients shown are computed values based on a wing loading of 65 pounds per square foot and the assumed airplane altitude.

The effects of propeller operation at the power for level flight on the static longitudinal stability of the airplane were small (fig. 28). Compared to propellers-off stability a maximum decrease in pitching-moment-curve slope of 0.04 was indicated at a Mach number of 0.70. Only a small change was indicated in the stable variation of tail incidence for trim with Mach number between the conditions of propellers off and propellers operating at the power required for level flight. At constant Mach number, the variation of tail incidence for trim with normal acceleration was not greatly affected by the operation of the propellers at the power required for level flight.

Effects of Reynolds Number and Propeller Blade Angle

Lift-curve slopes, pitching-moment-curve slopes, and longitudinal force coefficients for the model at a lift coefficient of 0.40, with and without operating propellers, are presented in figure 31 for Reynolds numbers of 1,000,000 and 2,000,000 at Mach numbers of 0.70, 0.80, and 0.90. These slopes and coefficients are also presented for propeller blade angles of 41° and 51° at Mach numbers of 0.70 and 0.80. The effects of varying Reynolds number and propeller blade angle on the lift-curve slopes and pitching-moment-curve slopes were negligible at Mach numbers of 0.70 and 0.80. Appreciable Reynolds number effects were evident on these slopes at a Mach number of 0.90. However, it is believed that the data for this Mach number were affected by the partial choking previously mentioned.

Longitudinal force coefficients were only slightly affected by changes of Reynolds number and of propeller blade angle at a Mach number of 0.70 and 0.80. At a Mach number of 0.90, increasing the Reynolds number from 1,000,000 to 2,000,000 resulted in sizable decreases in longitudinal force coefficient.

CONCLUSIONS

An investigation has been made of the effects of operating propellers upon the longitudinal characteristics of a four-engine tractor airplane configuration employing a wing with 40° of sweepback and an aspect ratio of 10. The Mach number range of the investigation was 0.60 to 0.90. The following conclusions were indicated:

- 1. The over-all effects of operating propellers on the longitudinal characteristics at high subsonic speeds were not large when compared to the effects of operating propellers at low speeds. The propellers operating at constant thrust coefficients generally resulted in a reduction in the longitudinal stability. Increasing the propeller thrust coefficient while maintaining a constant Mach number increased both the longitudinal stability and the trimmed lift coefficient.
- 2. Operation of the propellers at constant thrust coefficient increased the wing lift-curve slope but had little effect on the variation of lift-curve slope with Mach number.
- 3. Operation of the propellers had little effect on the Mach number for longitudinal force divergence at a constant lift coefficient but resulted in a decrease in the rate of change of longitudinal force coefficient with Mach number at supercritical speeds. This effect increased with increasing propeller thrust coefficient and with increasing lift coefficient.
- 4. It was possible to predict the effects of propeller normal force on the longitudinal stability of the model with good accuracy. However, the propeller slipstream effects on the wing and horizontal tail could not be predicted with existing methods to any acceptable degree of accuracy.
- 5. Raising the horizontal tail had little effect on the longitudinal stability with the propellers removed but was destabilizing with the propellers operating.
- 6. For an assumed airplane, operating at the power required for level flight at an altitude of 40,000 feet, calculations indicate only

a small change in the stable variation of tail incidence for trim with either Mach number or normal acceleration compared to the propellers-off condition.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 23, 1953

APPENDIX

CALCULATION OF PROPELLER NORMAL FORCE

Isolation of propeller effects on the longitudinal stability of an airplane requires either a knowledge of the normal-force characteristics of the propeller or a suitable method of calculating those characteristics. The method used herein for predicting propeller normal force is presented in this Appendix in addition to experimental normal-force data obtained with the calibration nacelle reported in reference 5.

Presented in figure 32 is propeller normal-force coefficient as a function of upflow angle at 0.7 propeller radius for the NACA 1.167-(0)(03)-058 three-blade propeller used in this investigation. Shown in figure 33 for a representative blade angle and Mach number at an upflow angle of 5° is a comparison of the experimental and theoretical variation of normal-force-curve slope with thrust coefficient. It may be noted that the agreement between the theoretical and experimental slopes is good, the theoretical values being approximately 95 percent of the experimental normal-force-curve slopes.

The method used in calculating propeller normal force, which was proposed by Messrs. Vernon L. Rogallo and John L. McCloud III of the Ames Aeronautical Laboratory, is based on the relationship of the propeller normal force to the oscillating torque-producing components of force on the blades as they operate in the nonuniform flow field. This can be expressed as follows:

$$C_{N} = \frac{l_{\downarrow}}{\pi J^{2}} \sum_{X=X_{c}}^{X=1.0} \left(C_{f_{1}} \cos \omega_{f_{1}} \right)_{X}$$

where

 C_N normal-force coefficient, $\frac{\mu_N}{q\pi D^2}$

D propeller diameter, ft

J advance ratio, $\frac{V}{nD}$

 c_{f_1} amplitude of $1 \times P$ variation of torque-force coefficient

N normal force, measured perpendicular to thrust axis, lb

X radial location of blade section, $\frac{r}{R!}$

Xs spinner radius, fraction of tip radius

 ω_{f_1} phase angle of 1 x P variation of torque force

If it is assumed that there are no odd-order variations of torque force above the fundamental, the product $(c_{f_1} \cos \omega_{f_1})$ can be found by the following relationship:

$$(c_{f_1} \cos \omega f_1)_x = 1/2 \left(c_{f_{\Omega=90}} - c_{f_{\Omega=270}}\right)_x$$

where

angular position about the thrust axis, measured counterclockwise from the upper vertical position as seen from the front, deg

The torque force coefficient can be calculated by its relationship to the thrust coefficient, that is,

$$c_f = c_t \tan (\varphi + \gamma)$$

The formula for computing the thrust coefficient is the same as given in reference 14, except that \(\psi\) is replaced by \(\pm A\) and is as follows:

$$c_{t_{\Omega=90}, 2700} = K\pi^{S} X^{S} \frac{\alpha_{1}}{57.3} \frac{\cot \varphi - \tan \gamma}{\left(\cot \varphi + \frac{\alpha_{1}}{57.3}\right)^{2}} \left(1 \pm \frac{V^{t} \sin A}{mDX}\right)^{2}$$

where

- A upflow angle, angle of local flow at 0.7 propeller radius and at the horizontal center line of the propeller, measured with respect to the thrust axis in a plane parallel to the plane of symmetry, deg
- ct section thrust coefficient, $\frac{\text{thrust}}{\rho n^2 D^4}$
- K Goldstein correction factor for finite number of blades
- r radius to blade section, ft
- R' propeller radius, ft

- ai propeller induced angle of inflow, deg
- y tan-1 blade-section drag blade-section lift
- φ φ + α₁, deg
- $\phi_{O} = \tan^{-1} \left(\frac{V^{i} \cos A}{\pi n D X \pm V^{i} \sin A} \right)$
- V' local velocity, ft/sec

and where both + and - signs are indicated, the + is for $\Omega = 90^{\circ}$, and the - is for $\Omega = 270^{\circ}$.

REFERENCES

- 1. Tinling, Bruce E., and Lopez, Armando E.: The Effects of Nacelles and of Extended Split Flaps on the Longitudinal Characteristics of a Wing-Fuselage-Tail Combination Having a Wing With 40° of Sweepback and an Aspect Ratio of 10. NACA RM A53D06, 1953.
- Edwards, George G., Tinling, Bruce E., and Ackerman, Arthur C.: The Longitudinal Characteristics at Mach Numbers up to 0.92 of a Cambered and Twisted Wing Having 40° of Sweepback and an Aspect Ratio of 10. NACA RM A52F18, 1952.
- 3. Tinling, Bruce E.: The Longitudinal Characteristics at Mach Numbers up to 0.9 of a Wing-Fuselage-Tail Combination Having a Wing With 40° of Sweepback and an Aspect Ratio of 10. NACA RM A52119, 1952.
- 4. Boltz, Frederick W., and Shibata, Harry H.: Pressure Distribution at Mach Numbers up to 0.90 on a Cambered and Twisted Wing Having 40° of Sweepback and an Aspect Ratio of 10, Including the Effects of Fences. NACA RM A52K20, 1953.
- 5. Demele, Fred A., and Otey, William R.: Investigation of the NACA 1.167-(0)(03)-058 and the NACA 1.167-(0)(05)-058 Three-Blade Propellers at Forward Mach Numbers to 0.92 Including Effects of Thrust-Axis Inclination. NACA RM A53F16, 1953.
- 6. Edwards, George G., Buell, Donald A., and Dickson, Jerald K.: The Results of Wind-Tunnel Tests at Low Speeds of a Four-Engine Propeller-Driven Airplane Configuration Having a Wing With 40° of Sweepback and an Aspect Ratio of 10. NACA RM A53128, 1953.
- 7. Lopez, Armando E., and Dickson, Jerald K.: The Effects of Compressibility on the Upwash at the Propeller Planes of a Four-Engine Tractor Airplane Configuration Having a Wing With 40° of Sweepback and an Aspect Ratio of 10. NACA RM A53A30a, 1953.
- 8. Glauert, H.: The Elements of Aerofoil and Airscrew Theory.
 MacMillan Company, 1943, pp. 222-226.
- 9. Young, A. D.: Note on the Application of the Linear Perturbation Theory to Determine the Effect of Compressibility on the Wind Tunnel Constraint on a Propeller. R.A.E. TN No. Aero. 1539 (British), Nov. 1944.
- 10. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, With Consideration of the Effect of Compressibility. NACA Rep. 995, 1950. (Formerly NACA RM A7B28)

- 11. Sivells, James C., and Salmi, Rachel M.: Jet-Boundary Corrections for Complete and Semispan Swept Wings in Closed Circular Wind Tunnels. NACA TN 2454, 1951.
- 12. Johnson, Ben H., Jr., and Rollins, Francis W.: Investigation of a Thin Wing of Aspect Ratio 4 in the Ames 12-Foot Pressure Wind Tunnel. V Static Longitudinal Stability and Control Throughout the Subsonic Speed Range of a Semispan Model of a Supersonic Airplane. NACA RM A9101, 1949.
- 13. Betz, A.: Considerations on Propeller Efficiency. NACA TM 481, 1928.
- 14. Roberts, John C., and Yaggy, Paul F.: A Survey of the Flow at the Plane of the Propeller of a Twin-Engine Airplane. NACA TN 2192, 1950.

TABLE I.- GEOMETRIC PROPERTIES OF THE MODEL

Wing
wing
Reference sweep line: Locus of the quarter-chord points of sections inclined 40° to the plane of symmetry
Aspect ratio (full-span wing)
Tip NACA OOLL, a=0.8 (modified) Cl;=0.4
Area (semispan model)
Nacelles
Frontal area (each)
Diameter
Horizontal Tail
Reference sweep line: Locus of quarter-chord points of sections inclined 400 to the plane of symmetry
Aspect ratio (full-span tail)

TABLE I.- GEOMETRIC PROPERTIES OF THE MODEL - Concluded

Horizontal Tail (Continued)	
Mean aerodynamic chord	
Fuselage	
Fineness ratio	
Distance from nose, in.	Radius, in.
o	0
1.27 2.54	1.04
5.08	1.57 2.35
10.16	3.36
20.31	14.1414
30.47	4.90
39.44	5.00
50.00	5.00
60.00	5.00
70.00 76.00	5.00 4.96
82.00	4.83
88.00	4.61
94.00	4.27
100.00	3.77
106.00	3.03
126.00	0

Table	Figure	Tail height	it, deg	β, deg	R, million	M, range
III	6	0 <u>p</u> l0	-2	51	1	0.70 to 0.90
IV	7	0 <u>5</u>	-}+	51.	1	0.70 to 0.90
V	8	o <u>b</u>	-6	51	1	0.70 to 0.90
VI	9	tail off		51	1	0.70 to 0.90
VII	10	0.10 ½	-4	51	1	0.70 to 0.90
VIII	11	o <u>b</u>	_4	51	2	0.70 to 0.90
IX	12	tail off		51	2	0.70 to 0.90
x	13	0 <u>b</u>	-4	41	2	0.60 to 0.80
XI	14	tail off		妇	2	0.60 to 0.80

TABLE III.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0 b/2, 1t = -2°, $\beta = 51^{\circ}$, R = 1,000,000

(a) M = 0.70, 0.80, 0.83

			M, 0.70							X, 0.80	1			≥ 0.83							
•	σ _Ľ	O _X	O _R	No.	Jav	ÇŠ.	α	G,	o ^X	C ²⁸	2 _{egy}	‡et	Œ _{S7}	-	Ct.	° ⊼	C _m	Legy	Jer	Op.	
*2.04	0.128	0.0216	-0.023				*2.04	0.170	0.0870	-0.0290	::::			42,04	0.173	0.0961	-0.01.09	255			
2.01	347	-0110	~03 ¹ 3	-0.003	2-178	0.041	2.04	107	.0217	0307 0097	-0.00	2.72 2.33	0.199	2.04	1160	.0297	0398	400-0-	2.745 2.750	0.80	
2.03	113	-0199	-0176	-009	2.35 2.323	193	2.04	27	20091	0907	me	9.300	1230	8,04	-1.60	.0091	7196	-net	8.31	3	
2.03	710		-0176	.040 .076	137	93.58	2.04	1844	0029	0300	100	2.139	1589	2.04	139	0026	~.0065	296	2.119	3	
2.03	7,0	0296	0013	.076	1.944	-600	2.04	-155	0346	0045	-040	1.964	.994	5.07	-159	QI38	000	.049	1.917	.*	
3.07 3.07	20000000	*0835	0405	008	2.771	:::	3.06	.273 .271	-00733 -0063	01	- 60%	0.700		3.08	.957	.0909	- 01010	- 003	R.TRÉ	::	
3-06	43	-0144	999	onn.	2.309	.034	3-07 3-01 3-01	.gn	-CD96	- 0'00'	207	0.749 0.549	191	3.08	.060	.0206	0330	003	2.		
3.06	272	-003L	-0341	-04A	9.509 2.509	.415	3.07	.272	.0098	- 0307	وعم	2.35	37	3.06	-963	-0118	- 0363	-018	2.325	.3	
3.06	-878	0001 0008	000	-040.	2.123 1.945	35.5	3.07	-813 -276	005	- 0314	25 B S	2.179	No.	3.08	.086	0006 0124	0305	.013	2,125	3	
*	.376	.cole						.390	ORTY	-2000		21714		4,11	.408	-0306				[."	
1.09	. 50	-0266	- 0311 - 0680	~008	2.77		1.10	365	-0.110	0777	004	P.743		133	100	.043	050 060 060	003	3.7 kg		
4.09	-554	-OLEO	073	.011	2.32	盂	4.30 4.11	303	.000k	0769	.007 .018	2.70	.187	4.11	102	00.0	0007	.000	2.504	و. ا	
4.10	·5	-00 ¹ 9	- 476	.025	2.325	100	111	365 363 363	.00.36	-0331	-018	2.352	349	1111	668	0343 0042 0145	-2516	.000	2.309	1	
1.10	SSUCE	-,000	-000	-012	2.128	66	113	.390	009T	.055 .053 .063	.047	2,153 1,905	.20	4,33 4,30	.41	- 00 Mg	-0156 -0156 -0170	.034	2.135	1.3	
		agets.									'								1.930	. 3	
7.18 7.18	6	.0000	0169 0168	003	2.774		뇄	197 198 197	.033A	0112 0191	004	2.748	200	갦	.208	.0199	0702	-008	9.710		
5.12	-03	-000	0T20	.020	2.70	-287	3.14	197	.0279	-0797	-007	2.160	.183	3.14	-51	-0324	0783	.008	2.707	.2	
3.12	1.00	0076	0635	043	2,339	- Au3	بدو	.501	.0050	0721	.019	2.566	.306 .508	2.37	.790 -786	-0929	0749	-050	2.33	.3	
샖	SEESE	- 96)	0789	071	1.97	660	纽	513	- 2016	- 2669	.009	1.900	603	111111	33	-0133 -0008	- 017.9 - 0698	.034	2.140 1.911	3	
%.15	美田原教	egeo.	0992				35755	-207 -600	.okles	100g	:	-,			.991	.0549	-0908				
6-15		.03%0	888	001	2.776		6.17	-500	-040	0950 0950 0908	003 -000	2.756	-,-,-	6.17	-606	42359 0778 0119	0989 0980 0859	-,003	1.75		
جده	•쪼인	.000c	- 2000	-013	2,506	-125	674	-604	-0376 -0856	-,0930	-000	9.70 9.50	16a 960 506	6.17	-612	OHIO.	~-0960	.009	2.735	-11	
6.16	- Sh	.0006	-,0797	.027	2.151	- 25	6.17	.as	.0160	-,0871	4080	2.369 7.157	-300	6.17	-816 658	490	0000	- 001	2.72	-3	
113 113 113 113 113 113 113 113 113 113	770	- 0005	-0750	477	1.978	665	6.27	.fen	.0079	0056	.046	2.001	.600	£££££	.63	.0036	-0012	.00	談	2	
7.1B	666	.0003 .0009 .0000	1840				27.18	-650 -650	-0505 -0606	-1175				87.38	.66o	-0690	0999			۱	
1-11	-040	-0404	-1106	000	2.(0)		7.20 7.20	- 690	-0606	- 1019	-,504	2.764	7 -45	1.10	.602	.orsk	0972	004	LIP		
湿	.668	0807	1018	.006	8.33	435	7.20	-TOE	-0325 -0329	1019	700.	2.71 2.314	-164 -367	7.19	.009	-0489	- 0945 - 0945	-009	2.75	-8	
7.35	.672 .680	.0008	0963	360. 440.	2.106	変	T-20	.706	9330	0995	-033	2,163	.510	7.50	**************************************	.000	- 0907	.036	9.596 9.396 9.147	•51	
7.39	680	0013	~-0925	.056	1-963	.667	7-80	-723	.0e44	0970	46	2.004	.601	7.20	709	184589 184589	0690	8	1.963	-5	
0.97	100	-0714	-1470	-,	===		8.19	-780	-0103	~.391B		:		8.19	117 110 110	-0874	-3133				
8.00	74	.0906 .0108	- 1275	-,000	2.73	.012	8.20	756 766	.0793 .0790	- 1020	004	实	301	8,90	172	.0000	4975	400-	2.75	- 30	
8.20	72	.0330	-1119	-086	L338	-125	8.01	.170	.06e7	-1007	.090	2.307	.368	8.41	767	0737	0995 0919	.080	と近		
8.61	.764	-0805	-1069	AAQ.	2.327	203	8.21	100	0.53	0991	90	2.163	-27	8.21	776	-0631	- 0973	957	2140	2	
E.OIL	-115	.0013	-3098	.079	1.963	.66)	8.30	.T06		0997	-047	2,009	,406	8.21	.786	.0740	09T1	-017	1.970	-25	
9.21	199	.0718 .059 .039 .0398 .0398	-1995	~003	8-17/3	:::	9.00	.178 805.	7000	-1171	004	2,750	:::	9.20	-1174	.3096 .3397	-1144			::	
9.30	.005	020	-,1271	-ma	2,732	.00	2.48	.828	0990	- 2113	-506	2.73	.908	9.22	200	1033	1000	00	9.707 9.746	q	
9.00	.833	.0100	-,3508	201	2.338	쏫	9.23		0900	-305	-018	8-579	•372	9.23	800 800 800 800 800 800 800 800 800 800	-0978	2068	-080	2.35	3	
9-45	1988年	-0398	-7170	-044	2.135	32	9-25	.839 .839	-0760	-3111	.033	2.170	-516	9.23	.848	-0000	1044		2720	76	
9.43				2079	1.970	-669	9-23		.0666	113	.046	2.001	.6m	9-43	2571	one.	~1046	-047	1.902	5	
10.00	盤	Open Open Open	- 1679	001	2.013	:::	10.01	.006 Açû,	7670	-714	004	- Tak	~~~	10.22	Ang	1341	1777 1976	-,005	2.502	::	
10.23	.004	Ober !	-3377	-015	2.73		20.63	863	-1176	-2308	-006	2.79A 2.780	ano.	10.43	260	1359	1268	.005	2.00		
0.0	.096	-OTEN	-3274	-007	2.325	190	10.23		Joge	-3541	.018	2.302	·315	10.45	多路台	J106	- 1907	-010	8.50	3	
10.24	-906	-06m8	-3720	.014	2.133	*201	10.54	.896	7097	-1150	-000	2263	.531 .604	10.23	.803	1101	-1277	*0.Z	2.15%	-5	
0.27	-500	-0750	3070	.055	1.910	-60	10.44	-903	-093	-,1174	-045	2470	.604	10.04	-508	2036	1334	.016	1.997	. 7	

TABLE III. - LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0 b/2, $1_t = -2^\circ$, $\beta = 51^\circ$, R = 1,000,000 - Concluded

(b) M = 0.86, 0.90

\$\begin{align*} 2.05 0.186 0.086 -0.0166 -0.025 0.733 -0.007 0.035 0.0136 -0.025 0.073 0.025 0.036 0.036 0.036 0.037 0.025 0.036 0.036 0.037 0.026 0.036 0.038 0.0				H, 0.8	5			М, 0.90						
2.05	۵.	O.L.	O _X	G _p	TRET.	Arr,	OF REF		0,	OX.	ů,	Tear.	Jaw,	Cpay.
2.05	4	0.184	0.0086	0.0186				- 05	0.165	0.03/8	ഹന്ദ്രജ്			l
2.06 170 .0096 -0.06 .009 2.00 .000 .000 .000 .000 .000 .000	1.05	-176	.0393			9.753		2.05	198	.0495	055	0.005	2.721	
2.06 170 .0096 -0.06 .009 2.00 .000 .000 .000 .000 .000 .000	9.04	.173	.000	0300	.000	2.713	0.209	9.05	129	,098m	-,0416	-009	2.486	0.238
8.06 170 -0000 -0000 071 1900 1900 1900 1900 1900 1900 1	2.04	.170	.0096	-016	.093	9.070	.400	2.05	167	.0806	=:0°10	-018	2.130	-351
***3.06		.171	~.0007	0063	-035	8-061	.498	R.05	126		-,021		9.037	- 12
3.08 .997 .0097 .0097 .009 2.795 .000 2.795 .009 2.795 .009 3.797 .0097	5-04	740	00.00	-,0003	-017	1.097	.20	L				-037	1,000	-4092
3.06 301 0095 -0957 0.19 3.13 4951 3.09 397 0.097 -0.973 0.17 2.77 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3	3.08	-303						13.00		-0443			9.796	
1.06 301 0021 -0095	1.00		.0007	0177		2.715		3.09	303	0370	- 06 10	.000	8.457	-135
3.06 391 -0050 -0051 -0050 496 1991 250 309 300 0077 -	1.08	.301	.0015	0307	.010	9.133	.493	3,09	30	1000	- 0513	.017	2.251	.323
**************************************	3.00	.305	10000		-036	2.061	.500	3.09	.305	.0170	-,0766		2.02	- 57
1.18 .lpd .cpd .cpd 2.986 .009 1.918 .010		.304	00ftg		-046	1.910	-263	3.09	•313		0407	,030	1,409	,479
1.18 .lpd .cpd .cpd 2.986 .009 1.918 .010	4.11	-430	-0379	0793				4.10	- 365	-0757	-,0546	" "		555
1.18 .lpd .cpd .cpd 2.986 .009 1.918 .010	4-18	-412	.0390	0731		9.747		1,11	- 33	.0000	- 050	- 007		
\$\frac{1}{2}\$ \$\frac{1}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\fra		Los	.030a	-,000	-763	2.503	LAN	1.11	104	.033	-0760	010	2.5	373
5.13	1.19		.0006	-0771	.016	2.00	. 100	4.11	.412	.0243	0733	.047	8.069	. 2
5.15	4.12	494	0006	03A1	.046	1.983	569	4,18		,015		.036	1,493	. 165
5.15	85.1h	.200	,049A	-,0730				25,18	,455	,0668	-,0666			
5.15	3.15	.716	10786	0090		2.770		5,13	- 176	-0611	0931	~00*		
5.15 .093 .0040 .0060 .006 .006 .006 .0070	5.15	.718	0496	-,029	-009	2,510	.20	3,13	1413	-000	0000	-011		1,557
5.15 .093 .0040 .0060 .006 .006 .006 .0070	ولبد	-293	-0303	0115		1.17	.416	7.1		-0900 A366	- (05%)	-015		1.55
*** *** *** *** *** *** *** *** *** **	5.15	533	.0135	07	.046	1.900	763	5.17	505			.035	1.02	193
6.17 - 296	*6.16	.71	.0610	0005					.539	-cT96	079			
0.17 607 6077 6087 6087 6087 608 2086 217 57 57 57 5 5 5 5 7 5 5 5 5 7 5 5 5 5	6.17	596	.0667	0994	004	2,760		6,15	447	L ATTEC	0036	00k		
5.17 .560 .0817 .0877 .085 1.037 .770 5.16 .581 .0847 .0757 .0755 1.051 1.721 .722 .735 1.051 1.051 1.722 .735 1.051 1.051 1.724 .735 1.051 1.05	6.17	.401	.0968	0900		0.518	.239	6.17	,361	.cros	0931	-911	B. MIL	173
5.17 .560 .0817 .0877 .085 1.037 .770 5.16 .581 .0847 .0757 .0755 1.051 1.721 .722 .735 1.051 1.051 1.722 .735 1.051 1.051 1.724 .735 1.051 1.05	6.17		10171	-,0017	-024	8.966	.417	6,16	,200	0.37	- 0940	+090	R-938	1
1.17	5.17 5.17	-600	-0305	0077				6.16	.203	0 07	097	.036	1,091	203
7.19 669 .0784 -0890 .079 .089 .088 .888 .888 .711 .0750 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .07		, Kiro	-0617					7.16						١
7.19 669 .0784 -0890 .079 .089 .088 .888 .888 .711 .0750 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .0757 .0750 .07	1:10	670	-0043	0007					-630	1011	106	004	2.762	
7.19	T.18	.Ma	.07%	0990	-010	2.510	+833	7.17	-636		100	-001	2.439	.871
7.19	7.10	.600	.0646	090.9	ALC:	2.36	AGA	7.15	617	,0798	+.107	a091	2.029	1 70
8,19	7.19	F 450	-0037	0909	.037	2,078	. 26	7-18	1 99	.0731	- 101	.000	R-035	1
8,80		,030			1007	1,940	+3/9				1		7,560	
8.10	0.19	.105	-0991	1191						.1169	157			
8.10	5,20	1.25	1030	1010	004	9.100				1064	- 3103	001		- 0=0
8,11 .776 .687 .1881 .077 9.088 .197 .771 8.80 1.977 .771 8.80 .778 .078 .1881 .088 .199 .889 8.897 .88 8.11 .779 .088 .1881 .0881 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .088 .1881 .0881 .1881 .0881 .1881 .0881 .1881 .0881 .1881 .0881 .1881 .0881 .1881 .0881 .1881 .1881 .0881 .1881 .1881 .0881 .1881 .1881 .0881 .1881 .1881 .1881 .0881 .18		140	1991		.009	0.07	1	8.10				.000	2.542	, km
**************************************	8.11	170	OTA S	1003	-077	800.0	- 731		.730	-0978	195	.000	8-055	100
9.58	8.11	.77	.000	1007	.010		.771		71	.0880	- 1961	035	1,939	.10
9.58	49.20	.768	.1919	1421				7,19	.746	.1413	-,365			
9.58	9.00	193	.1253	-,1818		8.791		9.20	190	11403	-143	-005	2.16	1 - 23
10.01		-614		1110	,009	2.730	- 944	9.41	107	1300	-140	3	2,409	1 1
10.01	9,49	1 -007	1004	1165	-05	R-8 (0	1 2	3-47	1.22	110	1 1 1 1 1 1 1 1	7000	9.00	100
10.01	9.43	.010	.0987	1135	.017	1,968	.710		.ani	1110	-112	.00	1,960	. 20
77. (99.4) 110. (791 1001. (80. (29.4) 150. (20.4) 110. (991 (201. (20.21	.am	.1476	1748				10.21	.and	.1673	1961			
77. (99.4) 110. (791 1001. (80. (29.4) 150. (20.4) 110. (991 (201. (10.00	- ani	1199	1365		2.016			.031	1635	174	005		
	10.83	-860	,1103	11003	.mi	9,206	.878	10.23	.86	.1604	110	-011	R-459	PI
	10.44	.89e	1334	1270	-007	9.975	- 31	10,23	,076	150	166	.000	2.273	1 1
TOTAL (2002) 17002 -17071 HUN TIZES 1700 SPEC 1007 17071 1707 12000 170		.901	1 1120	- 1833	1 22	1.07	200	10.5	100	1 1 1 1 1 1	160	.00	1.000	317
	TOTAL	.903	,4109	,1417	,,,,,,,	1.9/8	.,,,,,,		,423	.2,390	-207	-4,0	,000	٠,٨
												_	,NAC	سري

TABLE IV.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPIANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0 b/2, it = -4°, $\beta = 51^{\circ}$, R = 1,000,000

(a)) м	=	0.70,	0.80,	0.83
-----	-----	---	-------	-------	------

			H, 0.70				<u> </u>			E, 0.60							W. O.83			
æ	CF	c,x	•	Topy	I _{RT,s}	OPRY.	*	C _L	_G z	QE .	Zcav	I _{ev}	Open	•	C _L	Çz.	O _R	T-ex	Jar	C.
2.03 2.03 2.03 2.03 2.03 2.03	おきにはなる	0.0216 .0248 .0137 .0007 -0133	0.04%	3 E B 3 5	2.770 2.530 2.530 2.056 1.965	SH43	2.05 2.05 2.05 2.05 2.05	출목취취취취	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	360.0 360.0	00 4 8 8 9 8 8 8 8	2,770 2,742 2,270 9,085 1,996	0.203	2.04 2.04 2.04 2.04 2.04 2.04	144443 14443	0,0869 -0871 -0812 -0817 -0806	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	6.58 6.55 6.58 6.55 6.58 6.55 6.58 6.58	2.7% 2.7% 2.3% 2.3% 2.3% 1.9%	10.0
1.06 3.06 3.06 1.06 3.06 3.06	新数数数数数	.0000 .0011 .0001 0009 0297	.0099 .0071 .0269 .0290 .0269	- 000 - 000 - 000 - 000	2.777 2.704 2.976 2.069 1.931	\$ 8 8 8 E	3.06 3.06 3.06 3.06 3.05	有数数数数	198888 198888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	48484	8.777 8.737 2.291 2.095 8.005	红 短 短 双	3.07 3.07 3.07 3.07 3.07	***	E 8 8 8 8 8	5887588 58968 58968	19999	2.75 2.76 2.76 2.161 1.970	13000
4.09 4.09 4.09 4.09 4.09	3333335	.0257 .0270 .0368 .0066 0308 025	.000, 007 .001 .000, .010,	009 .009 .027 .044	2.771 2.790 2.295 2.099 1.997	9 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	339339	598855	.070 .080 .0211 .0217 .070 .070 .070	- 000 - 000	-004 -008 -008 -008 -006	2.760 2.735 2.867 2.109 2.006	,209 ,109 ,533	*.19 *.11 *.11 *.11	* # # # # # # # # # #	1985 1985 1985 1985 1985 1985 1985 1985	88888	28 B B B	2,745 2,76 2,361 2,112 1,571	1000
12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	转锋	.0854 .0891 .0195 .0050 0069 0187	- 655 - 655	008 .010 .029 .049	2.767 2.734 2.565 8.091 1.926	2 5 A 8	713 713 713 713 714 714 714	新国教育 第2	48 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 1000 - 1000 - 1000 - 1000	58 58 6	2.763 2.72 2.971 2.124 2.000	201 139 500 567	**************************************	24845	.0408 .0436 .0400 .0400 .0400 .0400	305586 56586	99999	2.743 2.565 2.357 2.119 1.577	Achter.
6.14 6.14 6.14 6.15 6.15	美利斯 人名法	.0903 .0533 .0665 .0096 0024	0960 0960 0900 0210 0113	66.68 66.68	2,773 2,587 9,990 8,093 1,933	20 × 80 × 80 × 80 × 80 × 80 × 80 × 80 ×	6.16 6.16 6.17 6.17	主教教教教	25 E E E E E E E E E E E E E E E E E E E	8627638 8627638	000 000 000 000 000 000 000 000 000 00	E 550 3 8	988 190 201 201	6.16 6.17 6.11 6.11 6.11	P\$33 33	989999	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	96888	2.751 9.555 2.365 2.130 1.551	2727
1.17 1.27 1.27 1.29 1.20 1.20 1.20	\$\$\$\$\$\$.0570 .0593 .0059 .0059 .0059	000 000 000 000 000 000 000 000 000	9 5 9 5 8	2.779 2.565 2.279 2.009 1.535	388	7.18 7.18 7.19 7.19 7.19	台灣意意		- 65 65 65 65 65 65 65 65 65 65 65 65 65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	上級	300 305 517 518	7.15 7.18 7.18 7.19 7.19	255558	100 00 00 00 00 00 00 00 00 00 00 00 00	100 00 00 00 00 00 00 00 00 00 00 00 00	33888	2.764 2.576 2.309 2.347 2.007	Section 1
5,19 6,29 6,20 6,20 6,20	वेदेवतिहे	.0406 .0406 .0406 .0406 .0172	-0979 -0718 -0718 -0758 -0968	8998999	2.703 2.771 2.309 2.301 1.945	.236 .198 .998 .677	8.19 8.20 8.20 8.21 8.21	हें हों हैं हो है	9.00 00 00 00 00 00 00 00 00 00 00 00 00	0477 0566 0595 0505 060	58888	2.700 2.700 2.700 2.700 2.700	.908 .419 .560	8.20 8.20 8.20 8.20 8.20 8.21	24 24 25 BS	689989	188888	19888	8.776 8.774 8.304 9.131 8.018	Catalan.
9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	自動物	.0663. .0956 .0956 .0430 .0938	- 0509 - 0509 - 0519 - 0417	988	を対象の方	955 675 676	9.10 9.80 9.81 9.80 9.88 9.98	是實施的	.000 .000 .000 .000 .000 .000 .000 .00	- 0509 - 0509 - 0509 - 0509 - 0509	86888	2.75 2.75 2.719 2.719 2.708	知知	9.19 9.20 9.21 9.22 9.22 9.22	を発音を記さ		0488 0568 0575 0589 0899	\$8888.	2.158 2.377 2.377 2.036	177.50
0.00 0.00 0.00 0.00 0.00	おきままま	.0985 .0981 .0101 .0677 .0967	-,0939 -,0679 -,0689 -,0725 -,0405	95928	8.506 8.734 8.854 8.059	\$ 5 TE 180	10.20 10.23 10.23 10.23 10.23	898 48	1990 1971 1981 1985 1987	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8888	2.000 2.337 2.337 2.036	.109 .516	10.19 10.23 10.23 10.23	新华村		0540 0438 0410 0549 0504	8888	2.608 2.599 2.361 2.261, 2.035	1 3 3 4 5

TABLE IV.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0 b/2, $1_{t} = -4^{\circ}$, $\beta = 51^{\circ}$, R = 1,000,000 - Concluded

(b) M = 0.86, 0.90

			м, 0,86							M* 030			
۵	c _L	СX	C_	Teny	Jax	CPay	٠	c _L	c ^x	C _{pt}	r _{ory}	Jay	Ç₽.
2.04 2.04 2.04 2.04 2.04 2.04	0,166 .190 .192 .151 .145 .170	7920.0 1820. 1920. 1920. 2000. 4900.	0.0901 .0900 .0907 .0901 .0951 .0656	-0.607	2.72T 2.510 2.316 2.316 2.010 1,881	0.200 375 577	*2,04 9.04 9.04 8.04 2,04 8.04	0,168 ,170 ,166 ,169 ,169	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0484 -,0018 -,0184 -,0903 -,0416	-0.004 .005 .017 .017	2.705 2,179 2.889 2.038 1.854	0.19
7,08 3,08 3,08 3,08 3,08 3,08 3,08	をいると言葉	.0513 .0554 .0557 .0157 .0069 0076	7000 1000 1000 1000 1000 1000 1100	005 .006 .017 .013	8.734 8.999 9.337 9.004 1.918	が出る	3.07 3.06 3.06 3.06 3.06 5.06	986. 177. 172. 206. 206.	8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0050 0050 0050 0050	.003 .005 .018 .027	2.768 2.490 2.687 2.640 1.679	.19 .36 .43
181111	.595 .595 .405 .415	.0319 .0415 .0250 .0251 .0200 .0001	,0007 -,0011 -,0133 -,0043 -,0061	- 000 000 000 004	2.741 2.771 2.367 2.084 1.914	.174 .599 .500 .776	*.89 *.99 *.31 *.31	33,55,55	. 65% . 65% . 65% . 66% . 66% . 66%	-,0036 -,0361 -,0366 -,0316 -,0316	,005 ,017	2.729 2,504 2,934 2.033 1,890	24.35
5.13 5.14 5.14 5.14 5.14	.483 .498 .503 .505	.0500 .0721 .0459 .0358 .0243	- 0318 - 0318 - 0318 - 0318 - 0319 - 0319	- 004 - 007 - 008 - 009	2.742 2.541 2.339 2.104 1.980	.196 .953 .966 .975	5.11 5.12 5.12 5.13 5.13 5.13 5.13	120 120 166 167	,0879 ,0880 ,0999 ,0866 ,0866 ,07579	-,0109 -,027 -,020 -,024 -,023 -,023	-,004 -,006 -,018 -,087	2.733 2.513 2.243 2.054 1.900	1974
6,15 6,16 6,16 6,16 6,16 6,16 71,6	· 沙州 · 河南 · 河	.054e .0573 .078 .0481 .0405	0909 0378 0956 0951 0884 0198	-004 -006 -008 -009	2.745 2.553 2.341 2.129 1.950	193 363 569	6,15 6,15 6,15 6,15 6,15	.206 .204 .203 .704 .504	.0796 ,0006 .0198 ,0615 .0507 ,0491	030 035 035 035 035	.019	2.578	1922
7.16 7.18 7.18 7.18 7.18 7.18	.649 .690 .694 .664	.009 .009 .079 .05% .079	- 0179 - 0331 - 0305 - 085 - 085	.004 .007 .008 .004	2.7万 2.7八 2.7八 2.7八 2.3八 2.3八 2.3八 2.3八	.864 .963 .999	7.15 7.16 7.16 7.17 7.17	10.88.48.48.48.48.48.48.48.48.48.48.48.48.	.0945 .1009 .0912 .0810 .0763 .0763	-,0300 -,049 -,049 -,046 -,046	.004	2,542 8,865 9,066	SAME
8.18 6,19 6,19 6,90 8,90 8,90	.60s .706 .984 .789 .710	.0961 .0004 .0047 .0075 .0075	0301 0374 0362 0363 0363	49888	2.766 2.776 2.379 2.105 1.949	.902 .901 .311 .371	6,17 8,18 8,18 8,19 8,19	693 699 710	.1256 .1800 .1186 .2054 .0988 .0939	- 070 - 077 - 077 - 070 - 061	.000	9.561 9.681	
9,19 9,90 9,91 9,91 9,91 9,92	759 759 191 300 305 317	.1196 .1218 .1177 ,1004 .0901	0549 0449 0435 0405 0369 0368	686	2,783 2,790 2,353 2,134 1,958	斯	9.18 9.19 9.20 9.20 9.20 9.20	.719 .761 .773 .770	.1360 .1395 .1396 .1395 .1361 .1151	- 075 - 066 - 063 - 063	u .mg	2,548 8,985 8.095	1,5
10.19 10.91 10.88 10.88 10.83	.003 .044 .860 .678	,1404 ,1456 ,1407 ,1275 ,1175	655 655 655 655 655 655 655 655 655 655	.005	2,759 2,775 2,368 2,146 1,980	13.5 E	19.19	.754 .811 .840 .848 .855	,1616 ,1679 ,1679 ,1543 ,1635 ,1605	- 000 - 000 - 000 - 000 - 000	-80	9.19 9.97 9.30 8.111	14. 14.

TABLE V.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR ATRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0 b/2, it = -6°, $\beta = 51^{\circ}$, R = 1,000,000

(a) M = 0.70, 0.80, 0.83

			K, 0.70							M, 0.80							N, 0.83			
Œ	Q.	c ^I	Ç#	Tc _{av}	Jaw	Cyav	4	c _L	C _X	C _m	T.	Jar	Cpay	4	C ^L	CZ.	C _m	Toay	ž _{ev}	C _{Pa}
2.03	0.118	0.0225	0.1103				2.03	0.126	0.0258	0.1134				2.03	0.133	0.0276	0,1168			
2.02 2.02	.109	.0160	.0860	-0.003	2-77-	0.203	2.03	.119	.0291	,0079	400.00-	2.745	0.283	2.03	.123 .121	.0310	-0685	-0.00*	R-153	::
2.02	.103	.0007	.1047	.007	2.37	.413	2.02	.115	.0075	.1096	.001	2.306	396	2.03	.113	.0101	.093i	.009	2.79	0.1
2.02	.100	0093	.1905	040	2.125	.960	2.02	iii	0038	.123A	.036	2.111	21	2.03	.113	.0015	1011	.033	2.154	.3
E.OE	.098	0214	.1309	.056	1.998	651	2.02	,130	00/12	.1323	-050	1.949	. 598	2.03	.115	01 <i>0</i>	.1317	033	1.972	.,
3.07	.993	.0245	.0659 .0659		: :::		3.06 3.06	100	.085A	.000 .000 .000 .000 .000	- : :	: ==		3.06	247	.0275	.0679 .0668		2 0.0	١
3.05	.213	.0076 .0177	.0000	-,000	8-777	منع	3.06	-415	.0090	,0/03	004	2.709	196	3.06	240	.0906	JU000	003 -006 -016	: <u>X</u>	7,1
3.00	.209	.008	Boso.	.085	2.55	346	3.06	.230	.0004	.9158	.081	8.319	.1% .3%	3.06	.200	00.03	.0756	.006 A16	a. 27	1
3.09	.909	0095	.0908	041	6.130	32	3.06	.030	0009	1051	.036	2.121	100	3.06	.231	.0032	.1007	.001	2.283	1
3.05	.909	000.3	.1113	.076	1.966	.652	3.06	.930	0133	.1191	.036	L965	- 59	3.06	911	- 0094	.1798	.046	1.916	.9
08	321 324	.0039 .0067	.05/5				Ł.09	37	700.17	.0675				4.20	. 364	.0907	.0700		:	. -
1.08	32,4	.0176	.0500	002	2.774	* 5.00	1.09	344	0311	.0770	-,004	2.745	160	4-10	.361	.0900	.0536	003	2.740	l - :.
	314	.0074	.0692	-001	2.579	.198 .173	4.09	31	-00005 -00000	0750	.001	2.563 2.530	360	4-10	:329	.0069 0172	-0709	.005	2.999	1
1.08	303	0072	0194	.038	2,176	-583	1,09	.3.9	.0005	.050	-036	9,196	.505	4,10	. 36e	.0068	.0817	031	2.300 2.300	.0
1.00	.506	0196	.006	.055	1.973	.533 .631	4.09	300	aii8	.0837	019	1.969	.505	4,10	365	0065	.0000	.045	1.986	3
أبير	,419	.coe60	,0445				5.18	, legg	-0319	.0474		:::		5-13	.469	.0902	.0476			
in	. 45	.0009 3000.	.0303	008	2.756	معد	7-18	122	.0333 .0867	.0909 .0474	004	2.746	- 5-2	5-13	-174	0407	.0331	-,003	9.400	- :
迅	100	.0094	.0437	190,	2.795	35	5,12 5,12	17	.0155	.0766	,001	2.336	望	2-13 3-13	470	0349	£493	.017	2.397	.11
511	.425	0083	.0500	.037	2.153	399	53	.441	.0000	.0617	036	877.5		9.13	100	.0132	-0535	.091	2.399	.3.
ŅĪ	.466	016é	.0649	.055	1.979	353 333 651	3.13	*10	0064	.0660	.048	1-986	.608	5.14	.487	.0006	-0607	.045	6-003	3
41.8	.719	.eycu	-pen,6				6.15	-777	.0407	.021.5				6.19	-224	مدوه.	.0300		152	۱
1	213	.0900	0209	001	2.759	- :	\$-15	2	-0449	0203	004	2.777		6.16	- 569 - 772	0.01	-0194	003	2.160	1::
(L)	.590	.01/0	.0206 0336	.001	2.32	7213	6,16	- 23	.0375 .0070	-0353	.007	2.000 2.063	1.12	6.14	-772	10369	C070	2006 2018	. 32	.3
	27	.0001	,0112	-037	2.100		6.16	- 113	0.00	.0101	-017	2,180	137	6,16		0220	.0369		2.202	1,0
1.14	532	0106	,0476	20%	1.985	101	6.16	517	.006	0400	.019	1.991	357	6.16	20	016	ANT1	.011	2.015	13
126	.609	.0361	.0008				7.17	.633 .653	.0366	.0216	200		{	7.16	-642	.0681	.cerre			۱
	-607	.0501	10096	001	2.751	ا قبة - ا	7-18	-07	0573	-009B	-,004	2.758	1- : 1	7.10	42	,0687	.0186	00	2.771	1 2 2
쏬	.619	.09m	,0199	.009	2.57± 2.305	.198	T.15	440	-0497	.00.57	.007	2.72 3.73	203	7,10	-923	.0615	,0941, .0343	-006 JOLT	2.291	.14
37	-627	1000	.0230	.030	2:177	1,310	7.15	661	.0305	.0061	-013	21186	100	7.10	457	0747	0300	loto	2.19	
1.41	455	px85	-D339	#355	1,990	47	7.15	1469	4903	,0327	200	%,000	100	7.38	宣教教育	.0340	.0399 40 46	031 204	2.033	.5
200	499	.Dk76	-,0098			p = 11	8.18	.666	.0749	.0435				8.30	676	00%	.000f	- DOA		١
19	.699	.0479	- 20017	001	2.769	- :.:	8,19	716	0169	,0200 AAgo,	- ,005	2-116	- :4:	6.19	.705	.0968	A 11	- 500	E. 790	- :
19	.707	.0391	,0068 0810a	200	2.355	942. 136.	8.19	.724 .731	-0690	.0303	.007 4719	2.576	,18a	8,19	-727	.0798 .0791	10313	906 8017	8.603 9.400	1.1
. 10	700	.0195	.0188	.038	9.180	135	8,80	114	-0977 -0490	.0330	2011	2.100 2.100	.50	B.EC	.731	30522	40363	551	2.199	:4
3.40	.731	.0096	*76/17	200	L999	初	8,00	134	,0412	.0375	.017	9,016	.595	8-90	.74	,0990	.0400	100	2.035	.,
1.19	1754	.066	0218				9.19	.7% 186	J966	00129	- 22	:		9.19	.731	1061	.0070			
90	-115	.06k0	-,0006	مم	2.793	.417	9.80	764	.0960 .0001	0023	005	8-107	300	9.80	161	1010	.0196	-,004	2-799 2-010	۱-;
3	-793	000	.0020		2,978	.366	9.21	197	John L	.0040	.00	2.374	.100 100	9.20	Am	.0904	497	.002 And	2,405	.1
. 01	753	-0371	.0109	.023 .036	2.103	.541	9.11	799	4700	.0257		2.170	.51	9.31	.805	.0050	.0319	.090	2,909	.3
-	ALS:	.0270	.0147	.099	2.000	.648	9.1	.005	.0629	.0001	.033	2.029	-S00	9.00	.625	.orie	.0370	.040	2.016	1.5
0.81	-8110	.0903	003	- : :	:20		10.19	ТВ	נפנג.	0807	- : .:			10.19	.751 .808	.1986	000			
0.20 0.00	.840	.0871	0003	001	2.524	236	10.21	.009	.1160 .1161	.0178 -0137	-,006	2.798	169	30.43		.1807	OPAY	005	2.613	-;
7.55	.53	.000	0009	-083	2.37		10.31	.50	-1013	,0150	.016	2.35	-319	10.22	- 087 - 897	117	_084Y	.004	8.326	.3
0.23	.84	2000	-0107	.039	8.179		10.50	677	.0957	.0230		8,199	. 22	10.00	873	777	A177	.007	2.217	1 .3
23	.877	-0499	-0153	2000	2.005	720	10.00	200	.0874	.0000	.015	2.030	· An	10.75	.00	.0999	.0306	,043	2.055	1

TABLE V.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0 b/2, it = -6°, β = 51°, R = 1,000,000 - Concluded

(b)	M	780	0.86,	0.90
-----	---	-----	-------	------

			N, 0.86							K, 0.50			
•	G,	O.E	Ç _m	TOLY	J _{E¥} .	CPRV.	a	C _L	c _X	O _m	TOWY.	³ वर	CPAT
20.1	0.148	0,0099	0.1803				8.03	0,330	0,011	0.1243			
R.03	139 130 189	.03%	.0900	-0,003	9.171 2.97 2.80		8.63 8.63	.144	.0480	0011	-0,009	:71	·
2.03	.130	.00060	.1009	.006	2.517	0.152	2.03	115	,0360	.0317	,00		0.10
2,03	.189	-0197	.1145	.001	2.201	.300	2,03	243	-0030	1098	.OD	2,325	
2.03	.100	.0031	1977	.044	2.093	.486	8.05	.141	.0197	1098	.027	2.025	.43
20.0	.186	0000	.1431	04	1,57	122	R+03	:136	-0063	.1364	.035	1,841	.46
3.07	. 101 101	.0324	,0537		- 575		3.06	.009	,0474	.1050 .0500 .0507			
3.07	.961	.0376	,0631	003	2.740		3,07	127	0103	-0500	-,005	8.727	
3.07	920	-0870	-0723	.005	729 307	-177	3.07	部	,0575	.0587	,007	9.727 9.461	19
3,07	.950	.00%	-0900	.020	2.307	-373	3.01	.001	-0300	0795	.ma	2,044	1.34
3.07	,260	.0037	1017	,034	2,081	, 199	3.07	- 463 - 468	,0201	,0257	.027	2.044	
3.07	.250	0000	3176	.034 .047	1,591	那	3.07	.268	.0110	.0999	.036	1.079	.46
4.10	民民義政策	.0170 0415	JUTOS		: 2.		4.00	317	.0307 7000.	.0797		: : :	
1,10	-370	.0410	,C138	003	2.754		4.09	- 547	-0267	.0338	009	7.7	7
4.10	. 300	.033	0329	.005	× 220	,178 .300	4.09	-347	-0416	0500	,007	8.470 8.470 8.835	-20
4.10	.303	.0051	-0687	.050	2.775 2.304 2.093	.300	h.09	37 370 370 300	.0306	10000	.00.9	2-835	35
11,	, 300	.comp	.0783 .0692	933	2.093	.538	4.10	•329	.0988	.0678	,OET	1.888	. k0
4,12	. 352	-,0004		,047	1.901	-973	4,10		-0949	,0719	-035	+-000	
5.18 5.13	.461 ,460	,0498 8620	.0963	-,003	2,119	:::	5.11 5.11	-40 -431	7980. 8780.	.0609	004	6.734	:::
	100	0440	.0996 .0960	.006	2.36	170	5.19	125	.00(0	.00.75	.000	1.00	
	179	CONT	0410	,000	2.317	198	5.10	:33	,0569	000	010	# . 470 # . Sa 4	.## .43
2.17		0300	.0513 .0553	,000	8.191	- C-0	5.10	1100	.0437	1	.00	. 000	1.0
5,14	.493	-0103	.0700	.046	1.913	,美	5.10	110	-0353	0730	.019	1.899	16
6.14	京教教 教	,0644	,ohoe				6.13	.489	.0795	.04TS			
6.15	.77	.0671	-0007	-,00h	2.751		6.13	,100 316	.OTDR	.0005	004	769	
6,15	. 200	,0776	.0313	.005	8.776	.100 300	6,13	.516	.0029	.0351	.009	1.469	22
6.15 6.16	-5	.0772	-0387	080	8.30	.300	6.14	.215	.0029	.0375	.019	2,240	. 100
6.16	-572	10363	-0433	,034	9. 介 8. 美 9. 10k	.511	6.14	255	.0748	.0349	.009	2.035	1 60
6.16	- 519	.0716 .0471 .0363 .0860	.0461	.017	Ľ 91ģ	.50A	6.14	-543	.0701	.037	.035	1.918	.19
7.16	.604	:0793	10315		: :::		7.34	.566 .568	.0919	.0309 .0147	- :-	: :::	
11.	.630	.0006	0380	004	2.753		7,15	.200	.0968	,QLA7	004	2,489	
7,17	.636	.0741	-0898	.006	8.500	385	1.15	.505 .605	.0001	.0031	.008	2.409	.3%
7-17	.638	,0689	.0350	.DED	4.357	.391	7,16	.605	-0105	BASO.	,019	8.845	1.0
7:17	.673	.0346	.0988	.015	1.03	.223	7.36	.613	-01788 -0567	.085A	,ces	2.053 1.931	200
7,15		,0438	-	.045	1.913	.503	7.16	-617		_	.034	1.951	199
8.17 8.18 8.19 8.19 8.19	.666	.0973 ,1003	:013	- 005	8-779	- : :	8,16	.638 .630	.1115	.0071	-,004	8.165	:
8 10	.699 .707	0000	.0836	-,005	A- (12	,500	8 10	(1)	1007	.0116	.006	8,109	.9
B 10	10/	,0000 ,0819	,0303	.000	200	105	8.17	7/1	0007	.0161	.019	2 250	1.15
8 10	-724	1000	40303	.032	0.10	. 105 518	8,18	.690 .694 .686	001	.0169	.006	2,259	10
 0.80	.750 .730	.0750 6430.	.0343	.033	1.979 2.127 1.995	35	8,16	,693	0997 091), 0000	.0167	,035	1.940	3
9.18	.794	,1170	,0005				9.18	.699	.1350	0136			
9.10	172	1119	.0128	005	2.767		9.18	.788	1144	0008	-,007	2.779	→ - ·
9.00	173	-1136	.0175	.006	2.707	.198	9.19	.720	-1373	,0000	.003	2.612	,16
9.00	773	JAPOT	.0895	.0001	R.331	.198	9.19	.751	,1917	.0048	.017	8+309	.35
9.01	100	.0958	0050	.033	0.131	-515	9,20	156	1178	.0074	.006	2.13	.46
9.81	200	7600 0000 0000	,0304	.00	8.331 8.191 1.917	. 25	9.80	751 156 165	1005	,0073	.035	1,974	.51
0,19	EEBEEB	1599	0300		2 2.2		30.19	.754	,1613	0877			
0.91	.001	.1468	.0101	006	8,501		70.90	191 821	.1615	0094	003	2.795 8.764	
200	-885	1364	.0191	.006	8,601	-900	10.50	.021	.1603	0079	600,	X-20*	.80
	-544	,1005	10197	.000	2.31	,400	10-81	.025	1976	0070	.017	2.91	. 7
0.20	. 977	,1885	0833	-033	2.341 2.348 1.978	530 507	10.41	.836 .836	1110	-,0086	,006	K+120	1 . 7
00,0		2139	10000	.045	1.910	1 .707	10.00	.030	.1396	00%	,034	1,991	.51

TABLE VI.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL OFF, $\beta = 51^{\circ}$, R = 1,000,000 (a) M = 0.70, 0.80, 0.83

_			N. O.TO			I				M, 0.8)						X, 0.8	L		
	c,r	C.T.	4	Tony	Jev	C₽ _{BM}	•	C.F.	°ī	C _m	T-SECT	er.	Cal	۵	OF.	CZ.	C'M	Tour	440	c.
2,04	0.169	0.0201	-0.0466				2.09	0.176	0.0831	-0.0178				2.05	0.150	0.0231	-0.0449			
2.04		.0033	-0603	-0.001	2,753	1223	2.0	368	.0066	0716	-0.004	2.74	1223		.176	.0291	0129	-0.004	2.733	
2.04	17	ani	0737	.01	2.71	0.277	2.0	366	,0013	- 0671	.001	2.623	0.117	2.05	.172	.0903	- 0550	.007	2.5	0.18
40.9	152	.00029	0593 - 0507 - 0498	.023	2.525	144	2.04	.164	.0105	- 0303	.m.	2.401	碧	8.04	.171	.0095	0928	.026	12.50	.44
40.9	.150	0009	-,0122	-037	2.525	- 236	R.04	.164	~.0030	- 0985	.000	8.370	.704	2.04	.171	-,0072	~.0162	.037	8.072	. 2
2.04	.150	00%i	0336	.078	1.970	100	8,0%	.164	0110	-,0AO7	.049	1,970	-599	2,04	.170	0167	0400	.070	1.095	. 2
3.07	.450	ALTEC, A	0431				*3.00	279	.0256	0473				3.06	.909	.0029	0467			
3.06	-275	.0036	0610	009	2.700		3.07	.271	.0271	06%	004	2.740		3.00	.206	.0299	0566	-,004	8.73 8.73	
3.05	-9.52	.036	071	.009	2.51	.005	3.07	274	-0195	-077	.005	8.772	- 50	3.08	.85	.0903	- 059	.007	8.73	.19
3.06	2.7	.0008	olen.	,029	2,520	1.30	3.07	274	.0071	0476	.001	2.391	1.33	3.08	.955	.0063	-0109	,024	9.95	. 42
3.06 3.06	.272 .273	0117	034I 0987	.04e	1.953	19 SE	3.08	.216 .217	0019	- 0991 - 0997	.72	1.079	1.22	3.08	.250	- 00.0	0408	.099	1.909	2
	,		040				94,10							4.11	,		0430		-4-5	
4.09	3	.0000 A(100)	- 0721	000	2.782		1.10	-379	.0063 .0097	040	004	2.743		1.11	-399 -397	,0297 .0338	0610	003	8.733	100
4.09	.346	,0151	- 050	.m.	2,71	,004	4.10	-377	.0993	-0176	.005	2.500	.164	4.11	395	.0237	-,0516	.007	1.TX	.19
4.09	-377	.0029	0329	.025	2.330	. 45	1,10	.300	.0099	-,0103	.090	8.334	.510	1,11	- 00	.0005	0516	,024	12,269	.10
1.09	-370	0089	0263	.041	2.144	始	1,11	302	-,0055	-,0300	,037	2.107	.233	4,11	. Ice	0006	0539	.030	2.075	-25
k.09	.358	CM03	0200	.051	1,978	.671	+.11	.386	,0120	0267	.046	1.978	.600	4.11	.407	0107	0260.	.049	1.986	1.20
5.13	,Ne	.0178	0363				1.13	.464	وبوه	0579 0677		- 55		3,14	.197 .199	7040.	OA15		2 2.2	
3.18	457	.0881	0436	002	8.761		5.13	488	-0345	-,0077	~.003	2,784	1-35	盐	,499	,0407	- 0704	001	2.7% 2.7%	1 - 5.
5.15	A11	-0161	037	.010	9.207	.006	7.13	.NOA	-DETE	0400	.006	3.73	.165	7.15	.700	.0338	0960	.007	12.70	-15
5.12 5.12	340	.0090	0261 0173	.040	2.137	.438	5.1h	.290	.0150	0311 0836		2,336 2,108	-376	5.1k 5.1k	.509	.0073	0961		2,007	
5.12 5.12	173	0190	010	.07	1.95	. #T	2.24	195 196	0061	-0197	.030 .040	1,95	.30 .60	5.14	.30	0015	090g	.098	1.93	133
6.14	.735	.0995	0397		l		*6.16	1	.0425	- martin				6.16	#199	.078£	hoës		l	
6.14	:50	.0319	0331 0562 0962	001	2.781	1	6.16	:靐	.0439	0379	003	9-749		6.16	实	.077	~.060e	003	2.199	
6.11	30	.0216	000	.011	9.787	977	6,16	. 33	-0333	0304	.006	9.507		6.16	.700	0134	0371	.006	2,50	
6.1A	. 237	.0094	0153	J007	2.35	. 496	6.36	桑	.0377	-,0236	,011	2.330	.70	6,16	34	-0299	- 0069	.025	2.272	39
6.18	낈	0015	-,0016	.043	2,126	.719	6.16	273	.0113	0155	.010	2.111	540	5.17	798 794 195 611	.0191	CEO	-040	1.946	.5
6.15	199	-,0156	-,0014	.098	1,955	.662	6.17	1596	.0049	0329	.048	1.990	- 739	6.17	.613	eiro.	0103	.049	1,946	1.77
T.36	.CT	.0561	0007				7.15	.6%	.0770	0025				7.17	435	-0679	0811			
1.15	.611	.0379	-,100	001	2.707		7.35	1004	.0777	cm65	- 00	2.777		7.38	.629	.0606	0054	- 001	19-137	I - :.
7.26	.450		033	-002	2.27	273	7,18	,668	.0494	0915	,006	2.709	.174	7,10	.005	000	0170	.007	3-20	.19
끘	-921	1750	0075	-086	2.330	. 97	7.10	•FT3	-0379	-,0116	423	2.323	.500	7.10	.661	10900	0003 0048	2040	9.957	1
134	20	-0049	,0092	400	1.951	:22	7.10	,676 ,620	.0960	-,003)	-098 2047	1.992	.600	7,19	473	.0951	0006	,010	1,978	.60
3.10	.694		0163				40.18	.690	-	- ,0091				75.18	.606	.0076	w.0099			
8,19	701	A13	-,0097	001	2.700	15.5.5	8.10	,720	40 m	0088	005	2.773	1000	8.29	.730	1000	-,0069	-,004		13.5
8.10	.104	-03TO	0006	.019	2.7	.547	8.30	.729	.000	-0016	.006	2.773	.184	8,30	787	.0784	-,0005	2007	2.565	.20
8.19	.711	.0273	.0066	.006	3.强	100	8.30	736		-0105	.000	2.13	169	5.00	113	.06%	.0066	-004	2.076	.43
1.19	.719	-0156	.mv7	.040	2.144	.574	8,90	726	.0719 .0492 .0309	.0153	.038	2.50	.546	8.90	認	.06% .09kg	.0130	.099	2.007	1
فده	· TET	.0068	.0219	-078	1.969	.663	8.20	.746	.03 0 9	egro,	,047	2,007	.185 505 546 608	8,50	.173	,0407	.crin.	.048	1.954	.60
9.19	.748	,0679	0097				-9.19	73	,0991	0079				9.19	133	-1053	000			
9.20	.768	.0630	.0060	0	2.133	1* :.:	9.20	101	.0773	.0130	002	2,164	- : : :	9,80	1.707	,1077	-0017	00A		1-:
9.80	-115	-0717	.0151	-014	1.20	266	9.20	100	4017	-0181	.009	2.25	. 190	9.51	103	.1000	.0160	-006	3.亚	-8
9.81 9.81	.त्या	.0494 8120	,0290	.027 .045	2.389	. 25	9.21	175	A113	.085A	.020	2.346	1 .33	9.81	.808 .806	.0001 .0760	.0874	-024	2.000	1.3
32	.005	.0000	4333	.03	1.500	443	9.21	190	,0610	.0060	-037	2,006	.190 .395 .717	9.25	,a3	.0716	.0333	.099	1.964	-2
0.90	104	.obje	-00 t 3				10.10	971	,1185	.0005				30.00	755	.1867	.0088			l
0.20	126	-0001	-0006	001	8,509		10.00	.177	1177	.0071	006		1	30.00	II.	.1891	.ceen	005	1.796	1::
0,99	835	.orvs	.0300	Am.	2.726	.263	10.11	.815	,1100	.0000	-005	9.795 9.600		10,51	-	,1903	,0870	.006	2.70	.23
0.38	250	-0674	.0301	.086	2.37	. 36	10.00	.019	3013	.0373	.000	2.348	.199 .409	10.51	.632	1101	.03/2	.08A	2.303	1,44
0.00	277	.070	.0901	.045	2.130		10.00	.649	.0909	.03T3	-070	9.185	1.73	10.00	.037	3003	.0331	.048	2.305	1
ರ್ಕಾ	,565	-04.76	.023	.o ,2	1.900	,678	10.00	.033	-0517	,chag	-046	2.026	.607	10.22	.850	.0070	-0313	.067	1.975	1 ,6
	1	1							1											

TABLE VI.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 10° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL OFF, $\beta = 51^{\circ}$, R = 1,000,000 - Concluded

(b) M = 0.86, 0.90

			и, о.86							N, 0.90)		
•	o _L	οχ	O _M	Tagy	Jay	CPAV	4	0L	c _X	C _M	TGRY	Jay	CP _{EY}
2.06 2.05 2.05 2.05	0.196 .189 .183	0,0882 ,0305 ,0224 ,0140	-0.0439 0734 0639 0776	-0.005 -006	2.743 2.547 2.353 2.148	0,178	2,06 2,06 8,05 8,05	0.197 .198 .194 .194	0.0368 .0401 .0338 .0881	-0.0141 0849 0759 0657	-0,005 .003 .015	9.708 9.549 9.886	0.187
2.05	,180 ,181	.0038 0066	0474	,041	1,964	.560	2.05	.193 .198	.0091	- 0505	.037	1,878	168
3.00 3.00 3.00 3.00 3.00 3.00	.305 .897 .899 .301 .303 .308	.0304 .0324 .0249 .0160 .0099	0474 0707 0633 0568 0474 0417	.005 .006 .017 .089	2,750 8,557 8,360 9,168 1,975	.176 .329 .458 .239	3.06 3.06 3.09 3.09 3.09	.966 .996 .300 .306 .306 .309	,0413 ,0474 ,0382 ,0266 ,0197 ,0091	-,0478 -,0893 -,0776 -,0715 -,0665 -,0616	.005 .003 .015 .096	8.716 2.542 8.291 8.067 1.891	.196 .338 .486 .473
4,11 4,10 4,12 4,19 4,19 4,19	.406 .411 .413 .418 .488	.0371 .0384 .0311 .0219 .0108	-,0484 -,0686 -,0614 -,0798 -,0490	.004 .006 .017 .089	2.748 2.555 2.369 2.160 1.964	.184 343 478 551	911111	.373 .366 .367 .393 .400 .401	.0703 .0766 .0473 .0360 .0823 .0199	0539 0849 0734 068e 0618	-,005 ,004 ,015 ,027	9.786 2.549 2.303 2.056 1.097	.160 .333 .436 .475
5.14 5.14 5.14 5.14 5.14	500 500 500 500 500 500 500 500 500 500	,0485 ,0485 ,0318 ,0338 ,0830 ,0188	0456 0632 0547 0477 0488 0380	-004 -006 -018 -030 -048	2.754 2.560 2.355 2.159 1.982	.186 527 57	5,19 5,13 5,13 5,13 5,13	.451 .465 .463 .473 .485	.0639 .0667 .0796 .0467 .0374 .0318	- 0494 - 0684 - 0686 - 0569 - 0506	001 001 015 017	2.734 2.998 2.310 2.061 1.927	16
6.15 6.16 6.16 6.16 6.16 6.17	.562 .563 .566 .587 .593	.0668 .0689 .0968 .0476 .0373 .0876	-,0397 -,0485 -,0409 -,0361 -,0897 -,0898	004 .006 .018 .030	8.761 9.567 9.368 8.166 1.990	.107 .319 .400 .529	6,14 6.14 6.15 6.15 6.15	581 588 535 545 555 561	.0761 .0521 .0745 .0543 .0538 .0495	0433 0717 0493 0497 0374	-,004 .005 .016 .028	2.749 2.555 2.360 2.002 1.983	177 347 472
7.16 7.18 7.18 7.18 7.18	.623 .651 .650 .653 .659	.0784 .0800 .0737 .0645 .0540	0978 0315 0850 0197 0136 0138	004 .006 .017 .089	2.764 2.571 2.375 2.180 1.992	.191 373 488 -561	7.15 7.16 7.16 7.16 7.16 7.17	561 607 608 617 684	.0934 .0976 .0924 .0607 .0743	0337 0435 0380 0312 0279	004 .005 .017 .085	8.755 8.565 8.310 2.186 1.949	17
8.18 8.19 8.19 8.19 8.19 8.20	.675 .704 .716 .720 .787	.0034 .0748	0177 0137 0091 0095 .0080	.004 .007 .016 .031	9.70e 9.578 9.370 9.179 9.004	.197 364 569	8,17 8,18 8,18 8,18 8,18 8,19	.649 .676 .676 .691 .691	1161 1161 1119 1013 0976	- 0268 - 0291 - 0241 - 0195 - 0154	004 .005 .017 .085	2.767 2.566 2.324 2.130 1.956	18 35 50
9.19 9.19 9.20 9.20 9.21 9.21	.77.73 .703 .701	1,0909	.0074 .0014 .0057 .0186 .0178	005 .006 .018 .031	2.798 2.509 2.360 2.175 2.013	.195 368 498 570	9.18 9.19 9.19 9.19 9.19	.698 .721 .737 .748 .754	.1309 .1307 .1338 .1961 .1156 .1119	- 0168 - 0119 - 0016 - 0007 - 0003	-,005 ,005 ,017 ,086	2.779 2.578 2.328 2.129 1.963	.18 .36 .46
10,18 10,80 10,21 10,22 10,28	819 837 847	1354 1292 1297	,0007 ,0808 ,0866 ,0339 ,0390 ,041	.007	9.819 2.590 2.596 2.196 2.033	.908 376 488 566	10,18 10,90 10,21 10,21 10,81 10,81	,807 816	.1508	-,0006 ,007 ,0180 ,0187 ,0167	005 .006 .018 .086	8.324	.80 .37 .46 .51

TABLE VII.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0 b/2, $1_{\rm t} = -4^{\circ}$, $\beta = 51^{\circ}$, R = 2,000,000

M = 0.70, 0.80, 0.90

			H, 0.70)						N, O,B	0						H, 0.9)		
Œ	ΟL	C _X	Ca	TORT	J _{EY}	Craw	Q,	7	CZ.	G.	T _{Cav}	-	OF ar	a	G.	Cx	-	Tour	Jer.	OP,
8.03	0.133	0.0197	0.0173				2.03	0.139	0.0021	0.0444			-	2.05	0,177	0.03	0.0544	- VED	-	- 15
2.03	.100	.0010	.0296	0.001	2,763		9.03	_196	0275	.0214	-0,001	2,736		2.0	161	.0301	.0058	0.000	2.718	1::
2,03	.300	.0189	.0256	.00e	2.70	0,019	2,08	119	.0005	.0864	.001	2.632	0,111	2.04	151	Oyle	.0197	003	2.661	0.00
2,05	191	.0115	.0325		2.70	236	2,05	198	.0160	.0317	.007	2.711	-913	2,04	-123	.0006	.0189	.004	2.509	T.
2,05	.220	.0036	.0025	,021	2,570	.510	2,05	,105	.0109	-0376	:013	2.70		2.04	12	.0211	.0926	.029	2.346	25
2,05	.119	0019	-045T	.026	2,320	.490	2.05	.127	.0046	.0432	,000	2,323	.50a	2.04	727	.0105	0900	.016	2.207	.3
																				_
3.06	-233	-0903	-0213	- 2.	123		*9.06	210	,0295	-02 kg		2 2 2		3.07	.265	.000	.0144			
103	,206	4990-	-0104	om.	2,776		3,06	240	.0276	-0094	~.001,	2.70	7 4 7	3-07	211	.0110	0001	003	2.725	
3.05	.RE7	.0197	-0130	.000	2.109	-070	3.06	.241 .241	-0813	-0136	-001	2,643	.105	3-07	-270	.0307	0162	003	2.662	.0
3.07	-94	.0017	.00.93 TCSD	2000	2.722	,509	3.05 3.05	241	-0101	.0166	.007.	: 23	.215	3.07	-273	0327	0096	-004	2.518	-11
3.05	3	0001	.0292	.020	9.301	鸡	3.00	200	.0047	.0231 .0268	.021	2,318	.092 .404	3.07	(T.	0870	0010	.010	2.295 2.295	. 31
			,		-,,,,		اسرو	,		,		2,520		344	15	3,230		-	*****	. •3
80.#	.333	.0018	:.0076				*4.10	-377	.0245	.0001				4.10	.368	.org	0128			٦.
4,D6	-366	.0036	0000	001	2.776		4.09	-351	.0277	- 0006	0	2.74		1,10	389	.0005	0190	005	2.723	
1.06	331 385	20006	,0009	0	2.700	J096	4.09	.951	.0230	.0018	,mm	2.61	,103	1 4.11	300	.0467	0463	003	2.629	.0
4.08	3	.01/10	.0069	-011	3	.990	1.09	377 37	.0192	.0078	.006	2.750	.198	4,11	.309	0495 0467	0413	-004	2.533	130
- 06	.300	.0061	.0124	-060	2.45	. \$12 \$79	4.09	-37	.0130	,may	*035	2,000	297 107	4.11	2000	.0310	0346	.011	8.377	.2
₩.08	.329	.0004	.00/10	,027	2,324	.479	4.35	376	.0068	.0246	.020	2,322	.407	4-11	.391	.0396	0536	-015	2.311	-3
111	Jan 1	-09A7	-,000	1.			Be 12	Ma	conceri.					Ber 10						I
益	.431	.0066	- 0111	.001	2.176		133	.469 .468	.0201	0133	5 7			3.30	湿	.003	- 0007	004	<u>ت تا</u>	
笳	1.765	.0044	- 01/10	.000	2,106	.099	5.32	467	.0510	- 0177	.001	2.52	.106	333	ATO	.0620	-,0623	003	2.737	- :
śū.	1 2	.0175	0093	aro.	2.76	3210	7.12	.169	.0380	- 0122	.006	2,071	200	243	.176	0000	- 0013	.005	2,559	-03
SII	.461 .430	.0000	00%	.003	2.76	350	5.10	471	mae	0007	.002	2.72	.293	2.13	. 174	72	- 013 - 073	.019	2.30 2.30	.19
<u> </u>	iai	.0010	- 0035	.026	3.3	1	5,12	. 473	.0115	000	.000	2,56	. 103	77	.474	0.67	- 0423	.015	2.320	.9
						44.7								[~~			,	1447	2,520	١.,
644	· 发展	.0 005	0687				6.16 6.16	.774	.0363	~,0332				*6.3k	.700	.0737	~-0836			
6.24	, 124	0903	0293	001	9.760		6,16	-277	200	- 0369	001	200		4.1	******	.0739	-07/1	004	2.713	
6.14 6.14	-784	.0000	- 0277	-001	2.716	.070	6,16	.511	.037	0113	.00	2.65	,30t.	ا ديد 6	.76	0730 0743 0679	0748	009	2.710	.05
5.44	-27	1221	- (E)	.020	2.570 2.435	.216	6.16	-779	-0307	0593	.00€	9.76	.197	6.15	-270	0679	-0,00	.00X	2.77	-90
5	-22	.0125	0203	-099	9.425	20	6.16	か		0292	-013	2.48	فند.	615	.76	,06942	0706	.032	2.399	.3
5.14	-535	,0003	-,0105	.098	8.347	-73	6,16	.707	.00.99	0072	-001	2.334	- NO1	6.15	477	.0601	0504	,mb	2.337	.5
7.36	.690	,09NG	-,0473				97.38	-	numino.	niem.	:			B- 14		alea				1
7.36	.600	0960	0.01	-,001	1.700		7.19	.678 .676	0.00	- 0197 0185	000			7.36	-297 -517	.0099		004	9.771	
7.86	.00	0360	-,0998	-00L	2.720	.064	7.19	470	- 20	-017	.001	2,73	309	1 36	.617	.0903	05(5 0569	- 009	2.700	ī.ā
7.36	60	0270	- 0966	.000	2.771	.990	7.19	.679	.chia	0430	.006	9. 77	200	7.36	.600	-0046	-,0736		. 	<u>تق</u> ا
7.57	.629	.0214	0354	-018	173	. 1	7,19	.600	.0441 .0402	-,0100	00.0	\$ III	-893	1.36	.603	.000	- 0733	.ou	9,125	1.3
7.17	.630	.0147	-,0309	,027	2.347	310	7,19	.684	0547	0300	.000	2.37	395	7.37	.603 506	.0765	0730	.015	4.339	l ŝ
														1						l -~
919	.720	.0147	-,0624		5 5 5		6.19	.730	-0709	-0173				6.17	.679	.1060	050	* ~ -		
4.19	.716	.0446	0719	001	A.TOR		0.00	714	069	0430	- 000	2.00 2.00		8.38	.691 .690	.1105	0645	004	2.768	
8.19 8.19	.735	.0425	0.00	.000	2.703	.067	8,20	.744	.007	0110	.000	2.613	200	8.38	.690	.1065	0635	003	9.726	.05
23	.720	.0954	-,0400	.010 200	- 76	.240	8.50	.749	.000	- 0303	200	9. FG	.230	8.38	.691	.10*3	0688	.003	1.00	1
2.20	. F/3	.0508	- 0163	.005	2.348	333	8.01	126	,07f2	0312	.003	m . 460	.333	8.18	.699	.0994	0250	.000	3.475	1 2
~~	, 160		-,0-0	, ,,,,	~~~	. 731	8,81	.179	.0790	0360	.oup	8.579	.400	8.38	.697	.0997	-,0761	.015	2,364	.94
9.00	-775	0.00	-,0(65				9.20	.760	.0902					9.39	.726	3273	0196			١
9.91	798	.0766	010	001	2.799		9,21	.160	090	098	-,000	2.164		9.00	-137	.1316	-,0731	005	2,792	::
9.81	100	.0760	-,0563	-009	2.739	,08g	9.91	20	005	- 0372	.001	2.693	.104	9.30	12	.1300	- (7903	001	8.71	.a
9.82	.006	.0198	0761	.mı	2.773	243	9,00	.m3	.0007	0337		8.73	#13	9.00	.761	.1290	0099	.005	1.775	.21
9.88	-809	-0.33	030	-017	2,477	337	9,50	,200	.00cm	-0337	.00.5	9.75 2.47	끖	9.80	.766	1161	-,0699 -,0640	.coó	1.76 1.43	
9.88	.815	.0393	-,0195	.025		.476	9.22	.027	.0796	0315	.080	8.363	.408	9.00	-767	,1156	-,0663	.m5	2,373	.3
اسد	Bar I				- 1		L													1
o.en	.831. .864 .864 .869	.0846	0015		: = :		30'31	.508	.11/3	050.9				10.00	.790 .880	1555	~,0999			
0.23	-00	.0001	0033	002	2,016	000	10,90	,547	.1116	0077	008	2.00		10.51	.520	1602	0013	005	2.007	- :
0.03	Mo	-0111	0995		2_732		10.00	SER	1097	- 0379	-001	E.004	-380	10.27	887	3609	0908	000	e.TVT	A
0.03	.009	.0071	- 023	.004	2,779	-23		.860 .860	100	- 0872	.006	2.51	,010	10.01	.831	.1499	0005	005	2.203	.21
0.23	.87	.0617	0709	-000	2.32	双	10.43	, ST.	.0980	0396	610	2.35	708	10.52	.850	.1414		011		.36
						97,71		4=1+	upout		, and			******	.639	.2-24	074	,a.,	2.556	4.5

TABLE VIII. - LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL OFF, $\beta = 51^{\circ}$, R = 2,000,000 M = 0.70, 0.80, 0.90

			H, 0.70							N, 0.80				L			M, 0.90			
	ΟĽ	CX.	Cas	IC.	744	Chan	*	CL	CX	C.	TCary	a.	CFRY	G,	$c_{\rm L}$	°Z.	C.	T _{CRT}	Jay	Op.
01 01 01 04	955555	0,0179 .0209 .0145 .0091 .0048	40.04 PE - 0000 - 0000 - 0000 - 0000 - 0000	-0.003 .006 .012 .017	2.50 2.50 2.55 2.55 2.55	5 8 8 6 5 8 8 6 5 8 8 6	555555 *******	숙력하다	0.0207 ,02\2 ,0190 ,0131 ,0072	338333 338333	0.0000	14.50 E. S.	0,103 ,848 ,348 ,400	# 2 # 2 # 4 \$ \$ \$ \$ \$ \$ \$	0,208 185 185 185 185 185 185 185 185 185	0.0372 ,0363 ,0363 ,0363 ,0363 ,0363 ,0363	-0.655 -0.655 -0.655 -0.655 -0.655	-0.005 -0	2,786 9,688 8,508 8,368 8,276	0,0
88888	路路路	.0157 .0215 .0158 .0107 .0041 0019	0166 0760 0761 043	-013	2.169 2.651 2.585 2.480 2.119	25.55	*5.07 5.07 5.07 5.07 5.07 5.07	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.0811 .0846 .0818 .0136 .0098	- 55 5 -	.001 .001 .009 .015	8.550 8.550 8.511 8.550 8.515	.090. 2003 3975	7.00 7.00 7.00 7.00 7.00	20 00 00 00 00 00 00 00 00 00 00 00 00 0	0374 0409 0504 0511 0854 0818	- 0968 - 0978 - 0698 - 0766 - 0788	- 005 - 005 - 005 - 005 - 005 - 005	2.035 2.738 2.317 2.317	2.64.5.
998888	.345 .339 .340 .340 .341 .343	0837 0831 0174 0196 0061	0389 0486 0453 0408 0562	9 B B B B B	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2500	999999	365 365 365 366 366	.00% .00% .00% .01%	0463 0598 0405 0419 0577 0368	-,004 0 ,009 ,015 ,040	9,773 9,671 9,709 9,116 8,338	.088 .946 .330 .399	911111	45555	0860, 3640, 3640, 7060, 6990,	0630 0923 0897 0838 0716	004	2.743 2.665 2.765 2.765 2.466 3.505	
,12 ,11 ,11 ,12 ,12	155 156 156 156	.0035 .0036 .0036 .0036 .0037	-,0337 -,0507 -,0538 -,0905 -,0845 -,0199	002 005 011 019	2.769 2.685 2.76 2.76	138	********	\$53355	.0316 .0310 .0371 .0306 .0177 .0106	- 0790 - 046 - 046 - 0376 - 0317	- 004 - 009 - 014 - 080	8.748 8.665 2.539 8.63 8.397	.093 397 368 .05	22222	各年五五五五	85 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0563 0001 0764 0764 0761	- 605 - 605 - 605 - 605 - 605	2.T9	-
5,14 5,14 6,14 6,14 6,14	美國教教教	.0070 .0090 .0077 .0190 .0130 .0065	-,090 -,096 -,094 -,097 -,017 -,010	.008 .003 .013 .019	EGAS	134	6.16 6.36 6.36 6.36 6.36 6.36	25.75.25	.0588 .0588 .0578 .0607 .0837	0570 0605 0578 0503 0279 0805	,004 0,006 ,015 ,080	2,775 2,676 3,783 2,439 2,439	.003 831 958 109	6.15 6.15 6.15 6.15 6.15	対対が外が形	865363 865363 865363	- 0719 - 0764 - 0639 - 0535	+ 605	2.796 2.666 2.742 2.38 2.38	
. W.	633 633 635 635	.0945 .0945 .098 .0843 .0191	-,029 -,019 -,011 -,011 -,029 -,000	.008 .005 .011 .018	2.73	36.65	7.18 7.18 7.18 7.18 7.18 7.18	668 668 679 678	.0500 .0511 .0677 .0605 .0503	- 0899 - 0304 - 0878 - 0823 - 084 - 0159	004 001 009 016 001	2 A A A A A A A A A A A A A A A A A A A	.091 .846 .350	7.15 7.16 7.16 7.16 7.16	14444	.0919 .0983 .0864 .0815 .0781	-,0498 -,0530 -,0505 -,0465 -,0466 -,0399	004 005 005 005 005	2.776 2.600 2.504 2.337	
119	.700 .703 .703 .709	0317 0350 0379 0387 0304 0827	- cm/r - cos6 - cos3 - cos1 - cos5 - cos5	885 128 128 128 128 128 128 128 128 128 128	2.775 2.755 2.756	3665	8,19 8,90 8,90 8,90 8,90 8,90	.700 .732 .739 .739 .745	0670 0670 0680 0907 0907	-,0360 -,0099 -,0079 -,0038	,000 ,000 ,017 ,021	8.170 8.694 8.789 8.111 8.346	55.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	6.17 6.10 6.10 6.15 6.18 6.18	66 66 66 66 66 66 66 66 66 66 66 66 66	193	- 0500 - 0500 - 0505 - 0503 - 0603	000	2.708 2.607 3.755 2.457 2.457	
0,19 0,90 0,80 0,81 0,81	100 FEB 200 FE	.0997 .0968 .0908 .0463 .0444 .0578	-,0109, ,0041 ,0091 ,0127 ,0160	.000 .006 .007 .007	2,707 2,707 2,707	16 6 8 13 15 15 15 15 15 15 15 15 15 15 15 15 15	9.19 9.21 9.21 9.21 9.21	.743 .784 .980 .798 .801 .807	.0000 .0000 .0703 .0719	-,0084 -0175 -0187 -0174 -0805	004 .008 .010 .017 .023	9.766 9.617 9.733 9.621 8.376	.136 .826 .326	9,18 9,19 9,19 9,19 9,19 9,19	14.4.4.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	**************************************	0830 0830 0902 016 0004	.005	2.758 2.665 2.559 2.462 8.309	
1,01 1,00 1,00 1,00 1,00 1,00	,846 ,841 ,845 ,857	.0005 .0769 .0715 .0676 .0634	0007 .0105 .0257 .0307 .0334	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.000	171	*10.19 10.91 10.91 10.98 10.98	.700 .823 .888 .138 .645	.1091 .1117 .1070 .1007 .0965	-0045 -0278 -0304 -0304 -0327 -0361	004 .001 .009 .015	2.795 2.695 2.533 3.447 8.367	.113 .207 .390 .415	19,19 19,81 19,81 19,81 19,81 19,81	165 465 466 468 468	見に見る事件	-,0196 -,006 -,009 -,009 -,009 -,0071	- 005	2.576 2.576 2.576 2.578	

TABLE IX.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0 b/2, $1_{t} = -4^{\circ}$, $\beta = 41^{\circ}$, R = 2,000,000

M = 0.60, 0.70, 0.80

ж, с.60								И. 0.70								M, 0,80								
œ	CL.	CZ.	G _m	T _{Car}	Jer	CF	a	cr.	c _i	C _m	Z _{Dev}	Jer	Crew	=	O.	OX.	G.	3CEA	-Lav	CPas				
2.03 2.03 2.03 2.03 2.03	0.159 .123 .123 .121 .119	0.0174 .0880 .0155 .0048 0069	-0.0ke9 .0906 .09ko .0403 .0706	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.913 1.872 1.774 1.677 1.599	0,055 ,1k1 ,280 ,260	2.03 2.03 2.03 2.03 2.05	0.161 .127 .125 .124 .182 .180	0.0179 .0296 .0179 .0019 0013	-0.0450 .0276 .0540 .0414 .0480	-0.005 .006 .017 .008	1.940 1.866 1.787 1.719 1.639	0.067 131 1.86	2.04 2.03 2.03 2.03 2.09	0.167 .156 .154 .159 .151	0.0207 .0266 .0206 .0120 .0057	-0.0478 .0940 .0903 .0973 .0446 .0494	-0.006 -001 -013 -020	1.949 1.893 1.795 1.787 1.668	0.0				
3.05	.219 .219 .220 .220 .220	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 0953 - 00-57 - 00-57 - 00-51 - 00-58	\$ 8 E E E	1.931 1.630 1.177 1.616 1.608	.000 .250 870	3.06 3.06 3.06 3.06 3.06	.977 .928 .996 .996 .997 .999	.0087 .0041 .0160 .0074 0008 0100	0426 01.05 01.19 .0217 .0313	00A. .006 .006 .096	1.999 1.862 1.767 1.717 1.645	.069 191 191	9.55 9.55 9.55 9.55 9.55 9.55 9.55 9.55	269 245 245 246 246 247 248	.0211 .0273 .030 .0373 .0073	-,0474 ,0000 ,0144 ,0233 ,0250	00% 00% 011 000 000 000	1.947 1.937 1.831 1.763 1.689	.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
1.09 1.05 1.05 1.05	自己自己以	.0197 .0198 .0194 .0065 0070	6960° 9800° 9110° 6110° 9080°	200 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.000 1.011 1.001 1.600 1.606	.086 .137 .920 .976	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	.357 .358 .338 .338 .338	.0207 .0261 .0181 .0095 .0005	- 6969 .0090 .0130 .0169	004 .006 .016 .086	1.940 1.867 1.789 1.716 1.643	.069 .129 .120	100000000000000000000000000000000000000	.369 .356 .356 .337 .560 .363	.0290 .0290 .0361 .0178 .0017	- 0005 - 0005 - 0003 - 0059 - 0170	- 005 - 008 - 000 - 000	1,949 1,922 1,623 1,745 1,691	.0				
5.10 5.10 5.11 5.11	宣音总法 官官	.0259 .0164 .0096 0051 0156	0307 0067 0045 .0047	999	1,889 1,880 1,783 1,687 1,617	6296	777778	多有語言意義	.0853 .0853 .0809 .0393 .0099	0537 0123 0061 0099 0008	.004 .005 .015 .026 .032	1.671	.052 .195 .107	777777	135355	.0330 .0330 .0506 .0207 .0329 .0068	- 550 - 550	005	1.917 1.931 1.839 1.732 1.699	.0				
6.15 6.15 6.17 6.17 6.17	東西東京	.0090 .0090 .0010 .0013	- 0949 - 0969 - 0966 - 0909 - 0171 - 0119	003 006 006 004	1,000	.066 .130 .881	6.14 6.14 6.14 6.14 6.14	東東教育院	.0210 .0241 .0341 .0362 .0016	0600 0600 0610 0610 0167 0143	38888	1.944 1.866 1.793 1.117 1.646	.059 .150 .189 .289	616 616 617 617 617 617 617 617 617 617	元为分类形式	.0966 .0411 .0387 .0894 .0810	0370 0360 0360 0368 0273 0266	- 000 - 000 - 000 - 000 - 000	1.934 1.936 1.039 1.76 1.701					
25,44,44	15 15 15 15 15 15 15 15 15 15 15 15 15 1	自 各自 总与 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 0906 - 0960 - 0960 - 0996 - 0896	24942	1,916 1,882 1,191 1,684	.067 .130 .290	71347 71347 7177 7177 7177 7177	व्यक्ति	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	455 455 455 455 455 455 455 455 455 455	8888	100 SE	.069 233 203 246	7.19 7.19 7.19 7.19 7.19 7.18 1.18	.08 .66 .68 .69 .69	.0500 .0500 .0500 .0500 .0500	- 0899 - 0471 - 0474 - 0485 - 0809 - 0807	005 009 .009	1.900	1 9 7 7 9				
779999	.663 .693 .693 .711 .718	.0996 .0996 .0917 .0887 .0094 .0006	-0195 -0195 -0195 -0195 -0195	003 009 000 036 000	1,933 1,838 1,774 1,673	00 130 130 130	8.15 5.19 8.19 8.20 8.20 8.20	333 338	.0460 .0563 .0517 .0833	01/1 07% 070 04% 04%	-047	1,050 1,869 1,800 1,720 1,648	K E E E E E E E E E E	8.19 8.20 8.20 8.20 8.20 8.22	.700 .748 .750 .753 .754	650 660 660 660 660 660 660 660 660 660	0160 0409 0570 0598 0925	005 002 010 010	1.967 1.939 1.544 1.767 1.715					
100	のの対象を	.0101 .0174 .0357 .0350 .0350 .0351	-,0011 -,0097 -,0073 -,003 -,0463	3888E	1.00 1.00 1.00 1.60 1.60	000 200 200 200 200 200 200 200 200 200	9.10 9.81 9.86 9.80 9.80 9.80	888883	199998 19988 1998 1998 1998 1998 1998 1	-,0309 -,0309 -,033 -,0336 -,0336	-027	1.956 1.871 1.799 1.719 1.661	\$5.53 \$5.53	9.19 9.01 9.60 9.80 9.80 9.80 9.80	.748 .808 .806 .816 .817	.0566 .0585 .0900 .0646 .9773 .0100	0964 097 0574 0968 0999	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.973 1.949 1.845 1.767	.00				
Sasast	100 Sept. 100 Se	.0705 .0705 .0116 .0116	- 600 - 600 - 600 - 600 - 600 - 600	003 .009 .018 .006	1,950 1,573 1,585 1,684	.009 150 257 278	10.25 10.25 10.25 10.25	经验证的证据	.0601 .0703 .0666 .0763	-,0007 -,0608 -,0608 -,0798 -,0798 -,0708	.017	1.000 1.000 1.756 1.755 1.665	.051 .197 .197	10.19 10.22 10.23 10.23	である。 あるかの の の の の の の の の の の の の の の の の の の	.1091 .1130 .1180 .1038 .0970	0045 0433 0376 0366 0467	-,001 011 000	1.984 1.948 1.848 1.777 1.738	.0.11				

TABLE X.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATTO OF 10; TAIL OFF, $\beta=41^{\circ}$, R=2,000,000 M = 0.60, 0.70, 0.80

	ж, 0,60								и, о.то								N, 0,60								
	CT.	c,	J	Tear	Į _{EV}	OP at	tr.	cŗ.	οχ	C _M	Tour.	T _{ET} .	CP _{BA}	*	4	οχ	Q.	Lagry	$I_{\rm p,r}$	67					
2.04	0,155	0.0174	-0.0409				12.0A	0,161	0.0179	-0.0459	- 7 -			*2.0k	0.167	0.0907	-0,0k78			١.,					
2.04	153	.0907	0506	-0.003	1.066		#,O4	177	on i	-,0689	-0,005	1.0%		2,0	16	.0246	0603	-0.006	1,958	17:					
2.0	.100	.0005	-,0770	.009	1.946 1.849	0,103	2,04	13 13	-0374	0408	1001	1.034	0.040	2.04	163	0195	050	.001	1.000	0.4					
8.01	727	.0036	-,0317	.015	1.807	130	2.04	.175	.0095	0510	.015	1.707	.130	2,04	16	.0191	-,0610	aro,	1,902	173					
10,0	186	0096	- 0449	(03)	1.707	993	2.04	.154 .154	·- 00056	0519	.cas	1,691	,138 ,261	R.04	361	-,0017	-0131	02.7	1.705	1.7					
8,04	120	- 0014	0103	,031	1.696	188	2.04	153	- 0157	-0466	.639	1.618	.071	2,04	361	0070	-,0700	on.	1.611	1					
*3,06	.Bkf	.ma	0383				P3.07	,225	.0187	-,0486				19.07	.869	.0211	0474			١.,					
3.06	341	4000	0736	004	1.941		3.06	.250	.0000	0518	004	1.935		3,01	264	.0858	.061	006	1.959	12					
3.06	241	.0110	0736	.009	1.545	.001	3.06	971	.0186	- 0396	0	1.000	.033	3,07	.065 .066	, CROS	- 0749	0	1.000	١.					
3,06	510	.0010	O450	.018	1.506	끨	3.06	251	.0001	.0198 .0478 .0388	.013	1.003	919	3.07	.067 .060	.0108	0500	.000	1.909	Ι:					
3.06		-,0100	+,0575	.015	1.686		3.06	.000	007	050	.025	1.607	.001	3,07	900	.0017	0.00	.093	1.79						
3.06	240	-,000	0330	.035 .048	1,618	276	3,06	.278 .278	01/-7	0319	,009	1,607	,27¢	3.07		-,0033	- 0449	.003	1.728	:					
4.09	.339	,cher	0969				4,09	.395	-0007	- 0109 - 0179 - 0177				4,30	.360	.0834	0403			۱.,					
4.00	.33° .331	-0007	-,0959 -,044	-,003	1.54		4,09	30	40940	0 19	-,004	1.936		1,10	359 359	. COTTO	0485 0788 0461	005	1,957	۱-					
4.00	.391	.0127	-,0583	.000	1.04	-085	4.09	.543	.0011	01/77	0	1,910	•030	4,30	369	.0000	061	0	1.913	١.					
4.08	.338	.0070	0351	-077	1.704	.387	4.09	.346	-010	0377	-013	1.001	.116	4.30	-373	.0139	0489	.030	1,913	Ι.					
4,08	33	0003	0278	.034	1.591	.825	1.00	316	-,0000	- 0377	.013	1.703	198	4,10	:17	.0035	-0567	.094	1.775	Ι.					
4,09	-336	0126	-,0834	.00	1.619	STO	4,09	.300	-,0117	-,0275	*040	1,695	,195 247	1,10	376	-,0005	0349	,089	1,691	1					
1977	.kaß	,cáes	-,0907				75,28	.1435	10835	0337				5,13	,413	.0216	0990 0966			l-					
2,10	.424	.0159 .0154	090) 090)	-,003	1.941	ll	5.12	24.2566	.0035 .0067	0390	-,004	1,992		5.11	をはない	,0336	0166	-,005	1,955	l -					
5.11	.410	.0154	-,0298	4009	1.843	.083	5,10	.436	,08V7	- 0373	002	1,900	.020	3.13	. 171	.0711	CN83	0	1.906	Ι.					
5.11	.100	.0095	-,022	.013	1.797	,145	5,14	,441	,0136	-,0990	ero,	1.980 1.819	,113	3.13 3.13	ATP .	,0171	0364	.032	1,,820	(:					
3.11	- 466	- 00 1	-,0192	.004	1.606	419	5,10	.445	.0007	0006	.025	1.715	100	5.13	.163	,0079	0500	-014	1.75	١.					
5,11	- 146 149	0165	0139	-,003 -,009 -,015 -,054 -,017	1.941 1.843 1.797 1.696 1.681	.686	3.11	.448	-,0061	00A1	037	1.00	338	5.13	,485	,0036	-,0255	.050	1,664] -					
611 611 611 611 611	,508	.0875 .0880	0242				*6.14	美元的	,0270	ce61				*6.16	外 五余	,0966	-,0320 -,0419			۱-					
6.13	500		-,0276	888	1.03		6.14	.755	.0305	- 0097	-,004	1.957		6,16	. 加	,0991	-,0412	005	1.95	-					
6.13	.225	.0177	0870	,mi	1,035	,089	6.14	.925	,0085	-,0279	.001	1.03	,016	6,16	.70	.0338	- 0373	-,001	温	ı.					
6.23	,708	,0191	00.00	.017	1,736	,129	6.14	-33	, com	0210	.039	1,414	113	6.16	. 26	.0276	-,0311	.013	1,417	١.					
6.14	.515	-,0000	-,0096	.000	1.691	,209	6.14	-331	,0001	0139	.006	1.734	.106	6.16	.30	.0165	-,0275	.084	1.733	١.					
6.14	200	-,0127	00%	807	1,625	211	6.14	翼	0034	0002	.036	1,630	.243	6,16	, 50 70	,0131	0233	.050	133	١.					
7.15	力	,0890.	,0 8 06			[7.16	.611	.0305	-,0009				מנק"	.646	.0700	,0899								
2777	.757	-0323	0179	-,008	1.946		7.16	,613	·035T	0009	004	1.866		7.28	.674	0113	- 0995	-,005	1,971	l-					
7.15	.70	.0033	-,0101	-009	11.02	.078	7.16	.an	1000	0159	,005	1,566	161	7.38	676	0.73	-,0895	0	1.539	I۷					
7.15	501	.0168	-,0000	-017	1.793	.133	1.17	427	,0174	0000	.019	1.765	.161	7.19	.676	0307	0236	,012	1,530						
7.16	,6m	*0007	-,000	985	1.696	.223	7.27	600	,0123	0053	,006	1,780	190	7.19	699	.0296	- 0181	.024	1,733						
7.16	.607	0070	,0070	1017	1.797	.880	7.17	-637	,0003	.0001.	,036	1,635	.246	7.39	, 6B1	*00,00	0170	-050	1.70						
8.17	.665	.0346	-,015				*6,18	.69R	.0127	0147				*8.19	.T00	,0679	-,0160			-					
8.17	.669	.0376	-,0078	003	1.76		8.19	.700	.0111	-,0140	005	1.00		8.80	13	.05)1	-,0206	005	1.975	- ·					
8.17	89	.0290	-,0011	69	1.000 1.000 1.000 1.000	.093 110	8,19	.732	.03,76	0065	.007	1,061	.061	8.30	•T37	0590 0678	- 0069	0	1,932						
8.18	59	.0911	,0033	aps.	1,798	140	8,19	.710	OFED,	,0014	,019	1-TT	.159	8,20	137	22	-,0026	,018	1,83+	١.					
0.18	629	1000	.0308	2	1.694	.886	8,19	725	.0219	.0051	.096	1.718	193	5.00	.748	.0	.0090	, ORA	1.743						
0.10	696	000à	,D.57	-046	1,630	.277	8.19	.726	,0130	,0095	.057	1.651	24.7	8,20	150 140 140	,0151	,0068	,050	1.701	1 -					
51.6	.735 .741	.chap	0011				*9,19	12:00	.0707	-,0105		: :::		9,19	-743	.00da	-,0094			١.					
9.19	741	98	,00kg	~-005	1100		9,20	.119	.0775	-,0005	-,005	냢껆	- 2.5	9,81	.70	.0900	.0063	005	1.919	-					
9.19	12	.0369	.0256	.000	1,019	.096	9,21	*107	0709	0039	.005	1,070	.065	9,81	133	.000	,0123	-4000	1,011	1					
9,20	1120	.0980	,0169	-010	7- (00	.151	9.21	797	.0404	.0396	m9	1,777	.356	9.41	193 196 868	.0706	and.	.011							
9,50	·HO	.0171	,celc	इंडेइड	1.607	19	9,81	,500	.0001	.01,72	.096	1.724	.194	9,21	,505	.000	.0245	.083	1.17						
9.20	•	.00f8	,0091	190	1.630	.K/G	9.21	.805	-0951	,0198	.037	1.670	6	9.32	.611	.0077	,0265	1000	1.706	1 4					
10.20	. Es	.0959	.0309	- 2.5			10,m	.806	.0803	0007		7 545		10.10		.1091 .1123	0045		: :::	٠.					
18,01	,014	.0269	,0009	004	1.80		10.21	800 813	-जर्म	.0191	005	1.500		10,91	.003	112	.0039	-,006	1.909	- 1					
10.91	-83	-OATE	.and	.000	1.020	-095 -095	10.00	.513	-0715	00 31	,006	1.00	.019	10.61	.03	.1006	,0999 ,0896	-,001	1,946	1					
10.21	27	ONCE	.0316	-019	1.795		10.20	.878 .861	,0003 0225	.0296	.019	1.761	109 208	10,90	.846	.0986	.000	-61	1.000						
10,08	.870	.0990 : .091T	.0386 ,0403	365	1.642	.934 .276	10.00	.86	.0706	0525	.026	1.791	.908 .845	10.22	.646	0905	0302	800.	1,715						
0,22																									

TABLE XI.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR AIRPLANE CONFIGURATION HAVING A WING WITH 40° OF SWEEPRACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0.10 b/2, $1_{t} = -4^{\circ}$, $\beta = 51^{\circ}$, R = 1,000,000

M = 0.70, 0.80, 0.90

и, о.то							и, с.8о								ж, 0.90							
•	CL.	cx .	Cas	TC _{EV}	i _{er}	CP ar	α	c _L	C _E	Cm	fcer	Z _M r	Cycur	4	CŁ	C _X	C _a	T _{CRV}	Jev	c _{r.,}		
2.09 2.09 2.02 2.02 2.02	0.128 .113 .109 .106 .103 .108	0.0998 -0847 -01:95 -00:99 00:77 08:37	500 500 500 500 500 500 500 500 500 500	-0.008 .008 .021 .037	2.777 2.370 2.370 2.173 1.939	0.207 -363 -729 -723	88888888888888888888888888888888888888	6.189 121 121 121 121 121 121 121 121 121 12	0.0279 .0090 .0090 .0015 0030	0.0995 .0690 .0783 .0665 .1002	-0.004 ,006 ,008 ,008 ,008	8.763 8.574 8.354 9.163 1.974	0.107 378 390	2.03 2.04 2.04 2.04 2.04 2.04	구착자라라	0.0407 -0439 -0334 -035 -0141 -0077	0.1135 .0557 .0673 .0688 .0939	-0.005 .009 .016 .085	2.719 2.721 2.270 2.030 1.594	0.17		
3.65	407 401 403 403 403	.0030 .0031 .0137 .0034 0074	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- 000 008 081 096	2.781 2.789 2.377 2.175 1.962	.195 .91 .726	3.06 3.06 3.06 5.08 3.06	456 456 450 450 450 450 450	.0005 .0007 .0007 .0005 0003	.0640 .0496 .0541 .0648 .0797 .0633	004 .006 .018 .1392	2.757 2.757 2.167 1.992	9.50 E	3.06 3.07 3.07 3.07 3.07 3.07	260 260 267 267 267	,0449, 0999, 1580, 2007, 2010,	.0176 .0290 .0770 .0700 .0300	-,007 -,007 -,019 -,017	2.732 2.733 2.245 2.071 1.913	3828		
4.05 4.45 4.45 4.45 4.45 4.45 4.45 4.45	.326 .318 .318 .318 .318	.0854 .0856 .0181 .0058 0051	.0487 .0279 .0299 .0293 .0293	008 .008 .021 .057	2.776 2.376 2.376 2.180 1.964	通知	199998	375 375 375 375 375 375 375 375 375 375	.000. 8140. 5210. 5210. 4000.	.0427 .0860 .0370 .0473 .0570	- 104 - 305 - 325 - 326 - 326	2.74 9.95 2.367 2.172 1.999	.191 .378 .486 .595	\$.05 \$.09 \$.09 \$.30 \$.30	.550 .554 .558 .568 .560	.0505 .0505 .0501 .0407 .0310	.0508 .0082 .0219 .0509 .0576 .0576	005 006 013 013 013	2,768 2,591 2,347 2,143 1,957	19 35 36 36		
111111111111111111111111111111111111111	190 A	.0859 .0809 .0097 0036 0159	.0216 (418) (516) (516) (516) (516)	000 .007 .021 .085	2.172 2.579 2.377 2.177 1.969	388	HERENT.	169	.0931 .0990 .0870 .0067 .0090	.0918 .0110 .0166 .0465 .0468	004 .007 .019 .010	2.792 2.758 2.371 2.173 2.006	1900年	5.16 5.12 5.18 5.18 5.18 5.18	李子等	.0698 .0698 .0509 .0706 .0475	.037/ .0275 .0276 .0274 .0338	89998	2,713 2,562 2,356 9,148 1,960	Skide		
313335 31335 31335 31335 3135 3135 3135	· 克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克克	.0909 .0327 .0959 .0137 .0014	25 8 9 5 5 5 6 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 008 000 088 039	2.7% 8.779 2.3数 2.1数 1.966	通過減減	6.15 6.16 6.46 6.46 6.46	53 大元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元	.0430 .0431 .0535 .0655 .0655	.0006 007 1200, 8120, 57137 0106	.004 .007 .019 .013	2.7% 2.71 2.511 2.101 2.01	126 170 144 590	6.13 6.13 6.14 6.14 6.14	斯里贝尔里克	.0799 .0822 .0743 .0698 .0906	.0825 .0068 .0179 .0809 .0808	88988	2.777 2.702 2.310 2.314 1.974	.17		
7.46	444	.0371 .0306 .0304 .0805 .0089 0033	035 035 035 035 035	001 .009 .093 .038 .036	2.705 2.775 2.354 2.184 1.998	与有效	141777	.665 .665 .669 .671	.0793 .0775 .0492 .0407 .0309 .0811	004 003 006 007 009 008	- 00% - 007 - 009 - 053	2.757 2.779 2.379 2.379 2.319	,388 ,359 ,505 ,595	7.15 7.15 7.15 7.16 7.16	E83483	.0940 .0984 .0907 .0678 .0007	.0905 .0055 .51% .0154 .0825	000	2.766 2.774 2.377 2.194 1.997	S. F. F.		
6.19 6.19 6.19 6.19 6.19	.700 .706 .711 .716 .713	.0490 .0461 .0404 .0404 .0198 .0198	- 0315 - 0855 - 0059 - 0093 - 0026 - 0114	- 1001 - 006 - 003 - 005	2.759 2.559 2.555 2.157 1.950	1955% 1955%	*6.36 6.39 6.80 6.80 6.80	.464 .765 .775 .789	6770. 6770. 8760. 6870. 6860.	009 0096 .0096 .0198 .0198 .0000	005 700, .018 .033	2.763 2.763 2.369 2.150 2.065	.196 .960 .705	8.16 8.17 8.17 8.17 8.18 8.18	自身自身合意	1199 1199 1199 1199	.0456 ,1096 .013 .015 .015	9888	2,750 2,617 2,415 2,415 8,516 2,008	.15 .84 .47		
9,90 9,80 9,81 9,91 9,91 9,81	PEEE 1886	7000. 9420. 9470. 8710. 1220.	200 B	- 2758 - 2758	5.804 2.766 2.391 8.175 1.991	.397 .393 .772 .678	9,49 9,81 9,81 9,81 9,81 9,81	.729 .772 .767 .799 .802 .804	.0986 .0963 .0882 .0796 .0704 .0689	0081 .0058 .0058 .0051 .0057 .0058	007 .007 .008 .083	2.796 2.600 2.350 2.156 2.027	.189 .367 .518 .609	9.17 9.18 9.19 9.19 9.19 9.20	344448	120	.0214 .0196 .0065 .0090 .0124 .0172	007 .003 .013 .086	2,795 2,606 2,430 2,233 2,011	200		
10.21 10.22 10.23 10.23 10.21	.810 .846 .847 .860 .879	.0938 .050e .0796 .050e .0706	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.816 2.750 2.379 2.161 1.999	83 E 8	13111111111111111111111111111111111111	医多种皮肤	.1911 .1191 .1193 .1097 .0097	00% 00% 00% 00% 00%	900	8.799 2.799 2.399 2.500 2.500	\$15.5E	10.18 10.21 10.21 10.21 10.21	新姓的	1788 1635 1789 1786 1786	.0000 .0077 .0008 .0019 0006	.003	2.199 2.623 2.433 2.433 2.433	7. S. S.		

(a) Dimensions.

Figure 1. - Geometry of the model.

(b) Wing twist and thickness-chord ratio.

Figure 1.- Continued.

(c) Nacelle details.

Figure 1.- Continued.

(d) Fence details.

Figure 1.- Concluded.

Figure 2.- Photograph of the model in the wind tunnel.

Figure 3.- Plan-form and blade-form curves for the NACA 1.167-(0)(03)-058 propeller.

Figure 4.- The variation of thrust coefficient with advance ratio for the NACA 1.167-(0)(03)-058 propeller. $A = 0^{\circ}$.

(b) $R = 2 \times 10^6$

Figure 4.- Concluded.

Figure 5.- Typical variations of lift coefficient with thrust coefficient for assumed full-scale power conditions. Altitude = 40,000 ft, $\eta_{assumed}$ = 0.65, W/S = 75 lb/sq ft.

Figure 6.- The effect of operating propellers on the longitudinal characteristics of the model. Tail height = 0 b/2, it = -2°, β = 51°, R = 1 × 10⁶.

(b) M = 0.80

Figure 6.- Continued.

(c) M = 0.83

Figure 6.- Continued.

(a) M = 0.86

Figure 6. - Continued.

(e) M = 0.90

Figure 6. - Concluded.

Figure 7.- The effect of operating propellers on the longitudinal characteristics of the model. Tail height = 0 b/2, it = -4°, β = 51°, R = 1 × 10°.

(b) M = 0.80

Figure 7.- Continued.

Figure 7.- Continued.

(d) M = 0.86

Figure 7. - Continued.

(e) M = 0.90

Figure 7.- Concluded.

Figure 8.- The effect of operating propellers on the longitudinal characteristics of the model. Tail height = 0 b/2, it = -6°, $\beta = 51^{\circ}$, $R = 1 \times 10^{\circ}$.

(a) M = 0.70

(b) M = 0.80

Figure 8.- Continued.

Figure 8.- Continued.

(d) M = 0.86

Figure 8.- Continued.

Figure 8.- Concluded.

(e) M = 0.90

Figure 9.- The effect of operating propellers on the longitudinal characteristics of the model. That off, $\beta = 51^{\circ}$, $R = 1 \times 10^{6}$.

Figure 9.- Continued.

(c) M = 0.83

Figure 9.- Continued.

(a) M = 0.86

Figure 9.- Continued.

(e) M = 0.90

Figure 9.- Concluded.

Figure 10.- The effect of operating propellers on the longitudinal characteristics of the model. Tail height = 0.10 b/2, $i_t = -4^\circ$, $\beta = 51^\circ$, $R = 1 \times 10^6$.

Figure 10.- Continued.

Figure 10.- Concluded.

Figure 11.- The effect of operating propellers on the longitudinal characteristics of the model. Tail height = 0 b/2, it = -4° , $\beta = 51^{\circ}$, $R = 2 \times 10^{6}$.

(b) M = 0.80

Figure 11. - Continued.

Figure 11. - Concluded.

Figure 12.- The effect of operating propellers on the longitudinal characteristics of the model. Tail off, $\beta=51^{\circ}$, $R=2\times10^{6}$.

Figure 12. - Continued.

(c) M = 0.90

Figure 12.- Concluded.

Figure 13.- The effect of operating propellers on the longitudinal characteristics of the model. Tail height = 0 b/2, $i_t = -4^\circ$, $\beta = 41^\circ$, $R = 2 \times 10^\circ$.

Figure 13.- Continued.

Figure 13. - Concluded.

Figure 14.- The effect of operating propellers on the longitudinal characteristics of the model. Tail off, $\beta=41^{\circ}$, $R=2\times10^{6}$.

(b) M = 0.70

Figure 14.- Continued.

(c) M = 0.80

Figure 14. - Concluded.

(a) Tail height = 0 b/2, it = -4° .

Figure 15.- The effect of Mach number at constant lift coefficient on the lift-curve slopes of the model with and without operating propellers. $\beta = 51^{\circ}$, $R = 1 \times 10^{6}$.

(b) Tail off.

Figure 15. - Concluded.

Figure 16.- The effect of Mach number at constant lift coefficient on the longitudinal force coefficient increment of the model with and without operating propellers. Tail height = 0 b/2, $i_t = -4^\circ$, $\beta = 51^\circ$, $R = 1 \times 10^6$.

(a) Tail height = 0 b/2, it = -4° .

Figure 17.- The effect of Mach number at constant lift coefficient on the pitching-moment-curve slopes of the model with and without operating propellers. $\beta = 51^{\circ}$, $R = 1 \times 10^{6}$.

(b) Tail off.

Figure 17. - Concluded.

Figure 18.- The various effects of operating propellers at constant thrust on the pitching-moment characteristics of the model. Tail height = 0 b/2, $i_t = -4^\circ$, $\beta = 51^\circ$, $R = 1 \times 10^6$.

(b) M = 0.80

Figure 18.- Continued.

TATEURICIENDER _

(c) M = 0.90

Figure 18. - Concluded.

(a) 2500 hp per engine.

Figure 19.- The various effects of operating propellers at constant simulated horsepower on the pitching-moment characteristics of the model. Tail height = 0 b/2, it = -4°, β = 51°, R = 1 × 10⁸.

(b) 5000 hp per engine.

Figure 19. - Concluded.

Figure 20.- Comparison of the measured and predicted effects of propeller normal force on increment of pitching moment and the measured effects of propeller thrust and slipstream on increment of pitching moment. M = 0.80, $T_{\rm C}$ = 0.04, tail height = 0 b/2, $i_{\rm t}$ = -4°, β = 51°, R = 1 × 10⁶.

Figure 21.- The variation with Mach number of the various effects of operating propellers on increment of pitching-moment-curve slope. $C_{\rm L}=0.40$, tail height = 0 b/2, i_t = -4°, $\beta=51^\circ$, $R=1\times10^6$.

Figure 22.- The effect of operating propellers on the variation of downwash angle with angle of attack. Tail height = 0 b/2, β = 51°, R = 1 \times 10°.

Figure 23.- The effect of operating propellers on the variation of tail-efficiency factor with angle of attack. Tail height = 0 b/2, $\beta = 51^{\circ}$, $R = 1 \times 10^{\circ}$.

Figure 24.- The effect of operating propellers on the variation with angle of attack of the ratio of isolated horizontal tail lift-curve slope to tail-off lift-curve slope. $\beta = 51^{\circ}$, $R = 1 \times 10^{6}$.

Angle of attack, a, deg

Figure 25.- The effect of Mach number on the lift-curve slope of the isolated horizontal tail. α_t = 4° , R = 2 × 10⁶.

Figure 26.- The effect of Mach number on the effectiveness of the horizontal tail with and without operating propellers. $\alpha = 4^{\circ}$, tail height = 0 b/2, $\beta = 51^{\circ}$, $R = 1 \times 10^{6}$.

Figure 27.- The variation with Mach number with and without operating propellers of the factors affecting the stability contribution of the horizontal tail. α = 4° , tail height = 0 b/2, β = 51°, R = 1 × 10°.

Figure 28.- The effect of horizontal-tail height on the pitching-moment-curve slopes of the model with and without operating propellers. $C_L = 0.40$, $i_t = -4^\circ$, $\beta = 51^\circ$, $R = 1 \times 10^6$.

Figure 29.- Comparison of propulsive characteristics with isolated propuller characteristics. $A=0^{\circ}$, $\beta=51^{\circ}$, $R=1\times10^{6}$.

Figure 30.- Summary of the aerodynamic characteristics of a hypothetical four-engine airplane in level flight at 40,000 feet. Tail height \pm 0 b/2, $\eta_{assumed}$ = 0.65, W/S = 65 lb/sq ft.

(a) Lift-curve and pitching-moment-curve slopes.

Figure 31.- The variation of the longitudinal characteristics of the model with thrust coefficient for two propeller blade angles and Reynolds numbers with and without operating propellers. $C_{\rm L}$ = 0.40, tail height = 0 b/2, i_t = -4°.

(b) Longitudinal force.

Figure 31.- Concluded.

Figure 32.- Normal-force characteristics of the NACA 1.167-(0)(03)-058 propeller. $\beta = 51^{\circ}$, R = 1 × 10 $^{\circ}$.

Figure 33.- Comparison of measured and predicted normal-force-curve slopes for the NACA 1.167-(0)(03)-058 propeller. M = 0.80, $\beta = 51^{\circ}$, $R = 1 \times 10^{6}$.

CA-Langley - 1-7-84 - 32

500

r