MTH211A: Theory of Statistics

Quiz 4

Name: Roll number: Total marks: 6+5-11 4+6 = 10 Time: 25 minutes Q.1 Based on a random sample X of size one from $Cauchy(\theta, 1)$ distribution, find the shortest length 5% confidence interval for θ . $x \sim Cauchy (\theta, 1)$ distribution. Then $f_x(x) = \frac{1}{\pi(1+(x-\theta)^2)}$; $x \in \mathbb{R}$. Define $T(x_3\theta) = x - \theta$ as the pivot. Clearly, $T(x,\theta) \sim Cauchy(0,1)$ distribution, i.e., $f_{T}(t) = \frac{1}{x(1+t^2)}$; Let c_1, c_2 be such that $\int_{-\pi}^{\pi} \frac{1}{(1+t^2)} dt = 0.05.$ Then $P(c_1 < T(x;\theta) < c_2) = 0.05$ $\Rightarrow P(c_1 < X-\theta < c_2) = P(X-c_2 < \theta < X-c_1) = 0.05.$ $\left(\begin{array}{c} x-c_2 \\ \end{array}, \begin{array}{c} x-c_1 \end{array}\right)$ is a 5% confidence interval. Length of the interval, $U(x) - L(x) = C_2 - C_1$ is loweset if (i) $\frac{1}{\sqrt{1+c_1^2}} = \frac{1}{\sqrt{1+c_2^2}} \iff c_1^2 = c_2^2$ (ii) $c_1 < mode of f_T(t) < c_2$; and mode $f_T(t)$ is 0. Further, from (*) we get: $\int \frac{dt}{\pi (1+t^2)} = \frac{tan't}{\pi} = 0.05$ \Rightarrow 2 tan^T $c_2 = \overline{\Lambda} \times 0.05 \Rightarrow$ tan^T $c_2 = \overline{\Lambda} \times 0.05$ \Rightarrow $C_2 = \tan\left(\frac{\overline{\lambda}}{2} \times 0.05\right)$

Thus, $\left(\chi - \tan\left(\frac{\pi}{2} \times 0.05\right), \chi + \tan\left(\frac{\pi}{2} \times 0.05\right)\right)$ is the shortest length C.I.

Q.2 The lifetime of an electric bulb, denoted as X, is assumed to follow an exponential distribution with parameter λ . However, in practice, the lifetime is rounded to the nearest number of hours. Given a data point indicating that a bulb's lifetime is y_0 hours (where y_0 is a positive integer greater than 0), find the maximum likelihood estimate for λ .

Let y denote the random variable indicating integer valued lifetime (in newest hows).

PMF of Y:
$$P(Y=0) = \int_{0}^{0.5} \lambda e^{\lambda x} dx = \begin{bmatrix} -\lambda e^{\lambda x} \end{bmatrix}_{0}^{\sqrt{2}} = 1 - e^{\lambda x}$$

$$P(Y=y) = \int_{0}^{1} \lambda e^{\lambda x} dx = \begin{bmatrix} -\lambda e^{\lambda x} \end{bmatrix}_{0}^{\sqrt{2}} = 1 - e^{\lambda x}$$

$$P(Y=y) = \int_{0}^{1} \lambda e^{\lambda x} dx = \begin{bmatrix} -\lambda e^{\lambda x} \end{bmatrix}_{0}^{\sqrt{2}} = e^{\lambda x}$$

$$= e^{\lambda x} \begin{bmatrix} e^{\lambda x} - e^{\lambda x} \end{bmatrix}$$

$$= e^{\lambda y} \begin{bmatrix} e^{\lambda x} - e^{\lambda x} \end{bmatrix}$$

$$= e^{\lambda y} \begin{bmatrix} e^{\lambda x} - e^{\lambda x} \end{bmatrix}$$

$$= e^{\lambda y} \begin{bmatrix} e^{\lambda x} - e^{\lambda x} \end{bmatrix}$$

for y = 1,2,...

Log Likelihood of A given yo >0:

$$\ell(n) = - \gamma y_0 - \frac{\lambda}{2} + \log(e^{\lambda} - 1)$$

 $\frac{\partial L(\lambda)}{\partial \lambda} = -y_0 - \frac{1}{2} + \frac{e^{\lambda}}{(e^{\lambda} - 1)} \Rightarrow$

First orden condition (Foc) gives

$$\frac{e^{\lambda}}{e^{\lambda}-1} = (y_0+y_2)$$

$$c_0, say$$

$$\Rightarrow$$
 $e^{\lambda} = \frac{c_0}{c_{-1}}$

critical point.

Second order condition:

Second order
$$\frac{(e^{\lambda}-1)e^{\lambda}-e^{\lambda}e^{\lambda}}{\frac{(e^{\lambda}-1)^{2}}{\frac{(e^{\lambda}-1)^{2}}} = \frac{(e^{\lambda}-1)^{2}}{\frac{(e^{\lambda}-1$$

:.
$$\hat{\gamma}_{MLE} = \log \frac{C_0}{C_0 - 1}$$

$$= \log \left(\frac{y_0 + 1/2}{y_0 - 1/2} \right).$$