FEATURES

• 131,072 words × 8 bit organization

Access time: 150 ns (MAX.)

• Low power consumption:

Operating: 192.5 mW (MAX.) Standby: 550 μW (MAX.)

• Programmable CE/OE/OE

Static operation

TTL compatible I/O

Three-state outputs

• Single +5 V power supply

• Packages:

28-pin, 600-mil DIP 28-pin, 450-mil SOP

Mask ROM specific pinout

DESCRIPTION

The LH531000B is a mask-programmable ROM organized as $131,072 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

SHARP 1

LH531000B CMOS 1M MROM

Figure 2. LH531000B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A ₀ - A ₁₆	Address input	
D ₀ - D ₇	Data output	
CE/OE/OE	Chip Enable input or Output Enable input	1

SIGNAL	PIN NAME	NOTE
V_{CC}	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active level of $\overline{\text{CE}}/\overline{\text{OE}}/\overline{\text{OE}}$ is mask-programmable.

TRUTH TABLE

PIN 20	CE	OE/OE	MODE	D ₀ - D ₇	SUPPLY CURRENT
CE type	L	_	Selected	Dout	Operating (Icc)
CE type	Н	_	Non selected	High-Z	Standby (I _{SB})
OE type	_	H/L	Selected Dout		Operating (I _{CC})
OE type	_	L/H	Non selected	High-Z	Operating (ICC)

CMOS 1M MROM LH531000B

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Supply voltage	Vcc	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to V _{CC} +0.3	V
Output voltage	Vout	-0.3 to V _{CC} +0.3	V
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS ($T_A = 0 \text{ to } +70^{\circ}\text{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	Vcc	4.5	5.0	5.5	V

DC CHARACTERISTICS (V_{CC} = 5 V \pm 10%, T_A = 0 to \pm 70°C)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input 'Low' voltage	V _{IL}		-0.3		0.8	V	
Input 'High' voltage	V _{IH}		2.2		V _{CC} + 0.3	V	
Output 'Low' voltage	VoL	I _{OL} = 2.0 mA			0.4	V	
Output 'High' voltage	V _{OH}	Іон = -400 μА	2.4			V	
Input leakage current	I _{LI}	$V_{IN} = 0 V \text{ to } V_{CC}$			10	μΑ	
Output leakage current	I _{LO}	$V_{OUT} = 0 V \text{ to } V_{CC}$			10	μΑ	1
Operating current	I _{CC1}	t _{RC} = 150 ns			35	A	2
	I _{CC2}	$t_{RC} = 1 \mu s$			25	mA	
	I _{CC3}	t _{RC} = 150 ns			30	mA	3
	I _{CC4}	t _{RC} = 1 μs			20	IIIA	3
Standby current	I _{SB1}	CE = V _{IH}			2	mA	
Standby Current	I _{SB2}	CE = V _{CC} - 0.2 V			100	μΑ	
Input capacitance	C _{IN}	f = 1 MHz			10	pF	
Output capacitance	C _{OUT}	$T_A = 25^{\circ}C$			10	pF	

NOTES:

1. $\overline{CE}/\overline{OE} = V_{IH}$, $OE = V_{IL}$

2. $V_{IN} = V_{IH}$ or V_{IL} , $\overline{CE} = V_{IL}$, outputs open

3. V_{IN} = (V_{CC} - 0.2 V) or 0.2 V. \overline{CE} = 0.2 V, outputs open

AC CHARACTERISTICS (Vcc = 5 V \pm 10%, TA = 0 to \pm 70°C)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	t _{RC}	150			ns	
Address access time	t _{AA}			150	ns	
Chip enable access time	tACE			150	ns	
Output enable time	t _{OE}			70	ns	
Output hold time	t _{OH}	5			ns	
CE to output in High-Z	t _{CHZ}			70	ns	1
OE to output in High-Z	t _{OHZ}			70	ns	"

NOTE

1. This is the time required for the output to become high-impedance.

LH531000B CMOS 1M MROM

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	1TTL +100 pF

Figure 3. Timing Diagram

4 SHARP

CMOS 1M MROM LH531000B

PACKAGE DIAGRAMS

28-pin, 600-mil DIP

28-pin, 450-mil SOP

LH531000B CMOS 1M MROM

ORDERING INFORMATION

6 SHARP

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.