Matematisk statistik - repetition

Li i formelblad. Förväntad kunskap.

Viktigt att kunna.

!! Mycket viktig att kunna. En "hint" om förekomst på tenta har förekommit.

Exempel finns i de kompletta anteckningarna.

Inför tentor

Vanligast uppgifter på tentor

Kommer troligtvis:

- Transformationer: $P(X \le x), X \in N(m, \sigma)$
- Variabeltransformationer: $Y = X^2$, $F_Y(x) = ?$, E(Y) = ?
- ML-skattningar
- Konfidensintervall / normalapproximationer av binomialfördelnignar
- Regression med y = a + bx eller $y = ae^{bx}$

Kommer antagligen:

- Minimum och maximum av *n* stokastiska variabler
- ullet Förklaringsgraden R^2

Viktiga begrepp

Dessa står det mer om antingen i detta dokument eller i de kompletta anteckningarna.

- Väntevärde
- Varians
- Standardavvikelse
- Koppling mellan fördelningsfunktion och täthetsfunktion

Kapitel 1

Terminologi

Resultatet av ett statistiskt försök kallas för ett **utfall** (outcome).

Mängden av alla tänkbara utfall kallas **utfallsrummet** (sample space) och betecknas med Ω .

En delmängd av utfallsrummet kallas för **händelse** (event).

Mängdlära

Den tomma mängden betecknas ∅.

 $A \subseteq B$ betecknar att A är en **delmängd** till B. Det vill säga att alla element i A finns i B. $x \in A$ betecknar att x finns i A.

|A| betecknar **kardinaliteten** hos A, det vill säga antalet element.

 $A \cap B$ betecknar **snittet** av A och B. Det vill säga alla element som finns i både A och B. För **oberoende** händelser gäller att $P(A \cap B) = P(A) * P(B)$.

 $A \cup B$ betecknar **unionen** av A och B. Det vill säga alla element som finns i antingen A eller B. Sannolikheten för unionen av två händelser: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

 $A \setminus B$ betecknar mängden $a \in A | a \notin B$. Det vill säga alla element i A som inte finns i B, "A inte B".

u betecknar universalmängden. I den finns alla element i sammanhanget.

 A^c eller $u \setminus A$ betecknar **komplementet** till A. Det vill säga alla element som inte finns i A.

Den klassiska sannolikhetsdefinitionen

Notera att sannolikheten för varje utfall måste vara samma för att definitionen ska fungera.

Kombinatorik

Antal sätt att ordna element

	Utan hänsyn till ordningen (kombinationer)	Med hänsyn till ordningen (permutationer)
Utan återäggning	$\binom{n}{k} = rac{n}{k!(n-k)!}$	$_{n}P_{r}=P(n,r)=rac{n!}{(n-r)!}$
Med återläggning	$\binom{n+k-1}{k}$	n^r

! Stickprov (sample)

Med återläggning (sample with replacement)

Här används binomialfördelningen.

För beroende händelser:

$$p^x(1-p)^{n-x}$$

För oberoende händelser:

$$p^x(1-p)^{n-x}\binom{n}{x}$$

Utan återläggning (sample without replacement)

Kallas även för stickprov utan återläggning.

$$\frac{\text{gynnsamma utfall}}{\text{m}_{\ddot{o}}\text{jliga fall}} = \frac{\binom{A}{\text{tagna ur A}}\binom{B}{\text{tagna ur B}}...}{\binom{A+B+...}{\text{tagna}}}$$

Detta gäller även då vi har flera grupper, exempelvis A, B och C. Notera att summan av de tagna i täljaren måste vara lika med de tagna i nämnaren.

Betingad sannolikhet (Bayes sats)

Om B_1,\ldots,B_n är en partition av Ω och $P(B_i)
eq 0, orall i$ gäller för varje händelse A att

$$P(B_j \mid A) = \frac{P(B_j) * P(A \mid B_j)}{P(A)} = \frac{P(B_j) * P(A \mid B_j)}{\sum_{i=1}^{n} P(B_i) * P(A \mid B_i)}$$

Kapitel 2

Fördelningsfunktion (probability function)

$$F_X(x) = P(X \le x)$$

Notera att $F_X($ \circ $\mathbf{vre}\ \mathbf{gr}_{\ddot{a}}\mathbf{ns})=1.$

Median

För en exponentialfördelning gäller följande:

$$egin{aligned} F_X(x_{0.50}) &= 1 - e^{-\lambda x_{0.50}} = 0.50 \ e^{-\lambda x_{0.50}} &= 0.50 \Rightarrow \ -\lambda x_{0.50} &= ln(0.50) \Rightarrow \ x_{0.50} &= -rac{1}{\lambda} ln(0.50) = rac{ln(2)}{\lambda} \end{aligned}$$

Väntevärde / genomsnitt (mean)

$$\left\{egin{array}{ll} _{\mu}=E(X)=\sum_{x}xp_{X}(x) & ext{om kontinuerlig} \ _{\mu}=E(X)=\int_{-\infty}^{\infty}xf_{X}(x)dx & ext{om diskret} \end{array}
ight.$$

Varians

$$V(X) = \sigma^2 = E((X - m)^2) = E(X^2) - (E(X))^2$$

Anmärkning: alltid större än 0.

Standardavvikelse

$$\sigma = \sqrt{V(X)}$$

Anmärkning: alltid positiv.

Kapitel 3

Diskreta fördelningar

För diskreta fördelningar betecknas vanligtvis täthetsfunktionen $f_X(x)$ och för kontinuerliga $p_X(x)$.

Binomialfördelningen

Fördelningen används då vi har n oberoende försök och sannolikheten för att lyckas P(lyckas) = p är konstant. $X \in Bin(n, p)$.

$$f_X(x) = inom{n}{x} p^x (1-p)^{n-x}, x=0,1,\ldots,n$$
 $E(X) = np$ $V(X) = npq = np(1-p)$

Poissionfördelningen

Fördelningen för sannolikheten under ett intervall, exempelvis tid. $X \in Po(m)$.

$$f_X(x) = e^{-m} * rac{m^x}{x!} \ E(X) = m \ V(X) = m$$

Där m är medelvärdet per intervalls-enhet. Exempelvis fyra samtal per minut. Notera att väntevärdet och variansen har samma värde.

$$X_1 \in Po(m_1) \ X_2 \in Po(m_2) \ X_1 + X_2 \in Po(m_1 + m_2)$$

Kontinuerliga fördelningar

Den likformiga fördelningen

Det är samma chans att få alla tal. Exempelvis har en tärning en likformig fördelning där varje uppstättning ögon har $\frac{1}{6}$ chans att slås.

$$P_X^k = rac{1}{n} \ F_X(x) = \sum_{k \leq x} P_X(k)$$

Exponentialfördelningen

Används vanligtvis för väntetider. Exempelvis "tiden till första bilen kör förbi". Aldrig negativa värden på x. λ står för intensiteten / händelse per tidsenhet.

$$f_X(x) = \lambda e^{-\lambda x} \ F_X(x) = \int_0^x \lambda e^{-\lambda y} dy = 1 - \lambda e^{-\lambda x}, x \geq 0$$

Normalfördelningen

Normalfördelningen är den vanligaste fördelningen. Exempelvis medelvärdet av många mätningar, så som "längden av 18-åringar".

Anmärkning: $\Phi(-x) = 1 - \Phi(x)$

Standardiserad normalfördelning (standardized normal distribution)

Anta att m = 0, $\sigma = 1$, det vill säga x tillhör normalfördelningen mellan 0 och 1.

$$\Phi(x)=f_X(x)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}$$

$$\Phi(y)=\int_{-\infty}^yrac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}dx$$

Notera termen $\frac{1}{\sqrt{2\pi}}$, denna kallas normeringskonstant då den får integralens värde att bli ett (krav per definition). För $\Phi(x)$ finns ingen enkel funktion.

Kapitel 4

Kovarians

$$C(X,Y) = Cov(X,Y) = E(X \ast Y) - E(X) \ast E(Y)$$

Korrelation

$$\rho = \frac{C(X,Y)}{\sigma_X * \sigma_Y}$$

Där C(X,Y) är kovariansen / samvariationen av X och Y. Notera att ρ inte har någon sort eller enhet, det är enbart en konstant. Notera också att ρ alltid är i intervallet $-1 \le \rho \le 1$.

Då ρ är ± 1 är korrelationen exakt. Är $\rho > 0$ talar man om en positiv korrelation. Om ρ är 0 är värdena helt oberoende. Är $\rho < 0$ talar man om en negativ korrelation.

Kapitel 5

!! Transformationer

Speciellt transformationer av normalfördelningar är av intresse. (Exempelvis $X \in N(179,7)$).

Centralt exempel

18-åringar mönstrar. Längden är normalfördelad likt $X \in N(179,6)$. Beräkna sannolikheten att en 18-åring som mönstrar är 173cm eller kortare.

$$P(X \le 173) = P(\underbrace{\frac{X - 179}{6}}_{Z} \le \frac{173 - 179}{6})) = \underbrace{P(Z \le -1)}_{N(0,1)} = 1 - P(Z \le 1) \approx 0.1587$$

Alternativt exempel

$$Y = kX^2$$

$$egin{split} F_Y(u) &= P(Y \leq u) = P(kX^2 \leq u) = \ P(X^2 \leq rac{u}{k}) = P(|X| \leq \sqrt{rac{u}{k}}) = \ P(-\sqrt{rac{u}{k}} \leq X \leq \sqrt{rac{u}{k}}) = F_X(\sqrt{rac{u}{k}}) - F_X(-\sqrt{rac{u}{k}}) \end{split}$$

Generell metod för transformationer

Gäller då invers till g(X) finns och g(X) är växande (y' = positivt).

$$Y = g(X)$$
 $F_Y(x) = P(Y \le x) = P(g(X) \le x) = P(\underbrace{g^{-1}(g(X))}_X) \le g^{-1}(x)) = F_X(g^{-1}(x))$

1 Fördelning för minimum (seriekoppling)

$$Y = min(X_1, X_2, ..., X_n)$$

 $F_Y(x) = 1 - (1 - F_X(x))^n$

1 Fördelning för maximum (maximum)

$$Z = max(X_1, X_2, \ldots, X_n) \ F_Z(x) = (F_X(x))^n$$

Kapitel 6

Normalapproximation av binomialfördelningen

Givet att $X \in Bin(n,p)$ där n är antalet försök och p är sannolikheten för ett lyckat försök gäller att om variansen $npq \geq 10$ kan binomialfördelningen skrivas om som normalfördelning likt $X \in N(np, \sqrt{npq})$.

Kapitel 7

Intensitet (Intensity)

Antalet fel per tidsenhet.

$$\lambda(t) = \mathop {lim} \limits_{h o 0} rac{P(Y \le t + h \mid Y > t)}{h} = -rac{R_Y'(t)}{R_Y(t)}$$

Funktionssannolikhet (Reliability)

$$R(t) = R(0) * e^{-\int_0^t \lambda(y) du} = R(0) e^{-\lambda t} \underbrace{=}_{ ext{ofta}} e^{-\lambda t}$$

För övrigt är R(0) sannolikheten att systemet fungerar vid början, exempelvis $p=0.98\Rightarrow R(0)=0.98, R(t)=0.98e^{-\lambda t}$.

Kapitel 11

Maximum likelihood-metoden (ML-metoden)

På tentan erfodras lösning steg för steg.

Egenskaper:

- Mindre varians än någon annan skattning.
- Asymptotiskt normalfördelad då $n \to \infty$. Det vill säga, mer och mer normalfördelad desto mer data. Lätt att räkna med.
- Att skatta en funktion. Funktionen av ML-skattningen $g(heta) \Rightarrow g(heta^*)$. Exempelvis $x^2 \Rightarrow (x^*)^2$
- Den är asymptotiskt värderiktig då $n \to \infty$. Den är inte alltid detta, men med tillräckligt högt n ger skattningen alltså väntevärdesriktighet.

Steg 1

Ställ upp likelihood-funktionen $L(\theta)$ och förenkla den så långt som möjligt.

$$L(heta) = egin{cases} p_X(x_1, heta) * p_X(x_2, heta) * \ldots * p_X(x_n, heta) & ext{om diskret} \ f_X(x_1, heta) * f_X(x_2, heta) * \ldots * f_X(x_n, heta) & ext{om kontinuerlig} \end{cases}$$

Steg 2

Beräkna logaritmen $ln(L(\theta))$.

$$(fst g)'=fg'+f'g \ (ln(fst g))'=(lnf+lng)'=rac{f'}{f}+rac{g'}{g}$$

Steg 3

Beräkna derivatan av $ln(L(\theta))$ med avseende på θ . Maximera sedan.

$$rac{d}{d heta}ln(L(heta))=0$$

Lös sedan ut θ . Detta ger ML-skattningen av θ , θ^* .

Minsta kvadrat-metoden (MK-metoden)

Minimera variansen som funktion av θ .

$$\sum (x_i - m(\theta))^2 = 0$$

Kapitel 12

!! Intervallskattning / konfidensintervall

Vanligtvis har man en gräns, en sannolikhet med vilken man vill att svaret ska stämma. Av tradition är denna *konfidensgrad* **95%**. Denna konfidensgrad anges vanligtvis i uppgiften på en tenta, annars utgår man från att det är **95%** som gäller. Notera att "bredden" / "längden" innebär att konfidensgraden täcker hela fördelningen. Därför multipleras värdet som läses ur tabellen med **2**. Se uppgift **183** och **184** för exempel.

$$egin{cases} \overline{x} \pm \lambda_{lpha/2} rac{\sigma}{\sqrt{n}} & ext{kant } \sigma, \ \overline{x} \pm t_{lpha/2} (n-1) * rac{s}{\sqrt{n}} & ext{okant } \sigma \end{cases}$$

 λ_{lpha} och t_{lpha} slås upp i formelbladet där lpha är 1- **konfidensgrad**, exempelvis $\lambda_{0.025}$ för konfidensgrad 95%.

För binomialfördelningen gäller genom normalapproximation följande:

$$p^*\pm 1.96\sqrt{rac{p^*q^*}{n}}$$

För poissionfördelningen gäller genom normalapproximation följande:

$$m^*\pm 1.96\sqrt{rac{m^*}{n}}$$

!! Centrala exempel

Binomialfördelning

Vi undersöker andelen miljöpartister (mp). Av 1000 personer är 50 mp.

$$p^* = rac{50}{1000} = 0.05$$
 $npq = 1000 * 0.05 * 0.95 = 47.5 > 10 \Rightarrow ext{norm. approx. ok!}$
 $p^* \pm 1.96 rac{\sqrt{47.5}}{1000} = p^* \pm \underbrace{1.96 \sqrt{rac{0.05 * 0.095}{1000}}}_{0.014} \Rightarrow (0.036; 0.064)$

Det vill säga att miljöpartiets röstandel kommer att ligga mellan 3.6 till 6.4 procent.

Poissonfördelningen

Till en viss telefonväxel kommer i genomsnitt 80 samtal på en 2-minutersintervall. Gör ett 95% konfidensintervall för väntevärdet av antalet samtal på två minuter.

$$80 \pm 1.97 \sqrt{\frac{80}{1}}$$

 $80 > 15 \Rightarrow \text{norm. approx. ok :-}$
 $80 \pm \underbrace{1.96 \sqrt{80}}_{17.5} \Rightarrow (62.5; 97.5)$

Svar: (62.5, 97.5).

Binomialfördelningen

"Hur många behöver man fråga för felmarginal på en viss procent?"

$$p^* \pm 1.96 \sqrt{rac{p^* q^*}{n}}$$
 $0.02 = 1.96 \sqrt{rac{p^* q^*}{n}}$
 $0.0004 = 1.96^2 rac{p^* (1-p^*)}{n}$
 $n = 2500 * 1.96^2 rac{p^* (1-p^*)}{n}$
 $n = 2500 * 1.96^2 rac{p^* (1-p^*)}{n}$

Det vill säga worst case $p^*=0.5 \Rightarrow n=2401$. Utgår man från worstcase är man alltid på den säkra sidan.

Jämför med fallet då $p^* = 0.1 \Rightarrow n = 864$. Dessa siffror avrundas uppåt (större chans).

Binomialfördelningen

En teknolog vill undersöka hur stor andel som vill köpa en viss produkt. Konstanten p är helt okänd. Hur många personer måste tillfrågas om felmarginalen $\leq 5\%$?

Lösning:

Okänt $p \Rightarrow$ worst case. $p^* = 0.5$.

$$0.05 = 1.96\sqrt{rac{p^*(1-p^*)}{n}}$$
 $0.0025 = 1.96^2 rac{p^*(1-p^*)}{n}$
 $n = rac{1.96^2}{0.0025} * 0.25 = 1.96^2 * 100 = 384$

Det vill säga att teknologen behöver fråga 384 personer.

Stickprov i par

Bit	Före	Efter	Differens
2			$z_1=y_1-x_1$
1			$z_2=y_2-x_2$
n			$z_n=y_n-x_n$

Då vi tidigare hade två stickprov (före och efter) har vi nu ett stickprov, differensen.

$$\overline{z}\pm t_{0.025}(n-1)rac{s_z}{\sqrt{n}}$$

Oberoende stickprov

$$x_1,x_2,\ldots,x_{n_1}$$
 och y_1,y_2,\ldots,y_{n_2} .

$$\overline{x}-\overline{y}\pm 1.96\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$$

Kapitel 13

Hypotestest

För normalfördelning gäller

$$\left\{egin{array}{ll} u=rac{\overline{x}-m}{\sigma/\sqrt{n}} & ext{kant } \sigma \ t=rac{\overline{x}-m}{s/\sqrt{n}} & ext{okant } \sigma \end{array}
ight.$$

För binomalfördelning gäller genom normalapproximation följande:

$$u=rac{p^*-p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}$$

För poissonfördelning gäller genom normalapproxmiation följande:

$$u=rac{\overline{x}-m_0}{\sqrt{rac{m_0}{n}}}$$

För känt σ gämförs u med $\lambda_{a/2}$. För okänt σ (eller vid normalapproximation) jämförs t med $t_{\alpha/2}(n-1)$. Här är α exempelvis 0.95 för 95%-intervall.

$$\rho = \frac{C(X,Y)}{\sigma_X * \sigma_Y}$$

Där C(X,Y) är kovariansen / samvariationen av X och Y och ρ är korrelationen. Notera att ρ inte har någon sort eller enhet, det är enbart en konstant. Notera också att ρ alltid är i intervallet $-1 \le \rho \le 1$.