Taller 3 - Primera parte Estadística Bayesiana

Fecha de entrega: 19 de noviembre hasta mediodía

- 1. Suponga que $x_1, \dots x_n$ es una muestra aleatoria de una distribución normal con media 0 y precisión θ . La hipótesis nula es: $H_0: \theta = \theta_0$ mientras que $H_1: \theta \neq \theta_0$.
 - a) Encuentre la forma del factor de Bayes para probar H_0 vs. H_1 . Suponga que distribución a priori para θ gamma (α,β) .
 - b) Si $\theta_0 = 4$, n = 5, $\sum x_i^2 = 4$, $\alpha = 8$ y $\beta = 2$ calcule el factor de Bayes y concluya.
- 2. La teoría predice que el punto de fusión de una sustancia particular bajo presión atmosférica es 4.01. El procedimiento para la medición de este punto de fusión es bastante imprecisa, debido a la alta presión. De hecho se sabe que una observación $X \sim N(\theta,1)$. Se realizan cinco experimentos independientes y se obtuvieron las siguientes medidas de puntos de fusión: 4.9, 5.6, 5.1, 4.6 y 3.6. La probabilidad a priori de que $\theta = 4.01$ es 0.5. Para los otros valores se tiene que $p(\theta) \sim N(4.01,1)$. Concluya sobre la evidencia que proporcionan los datos.
- 3. Sea X_1, \dots, X_n variables aleatorias i.i.d. de una distribución normal con media 0 y varianza desconocida θ .
 - a) Encuentre la distribución a priori de Jeffreys para θ
 - b) Suponga que se observa $x_1 = 2.75$, $x_2 = 1.78$, $x_3 = 0.36$, $x_4 = -1.64$, $x_5 = 0.17$ y $x_6 = -2.03$. Escriba la distribución posterior utilizando la distribución a priori de Jeffreys de la parte a). Especifique exactamente esta distribución y establezca el valor de sus parámetros.
- 4. Si $X_i | \theta \sim \text{Maxwell}(\theta)$, entonces:

$$f(x_i|\theta) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \theta^{\frac{3}{2}} x_i^2 \exp\left[-\frac{\theta x_i^2}{2}\right], \quad x_i > 0$$

Encuentre la distribución a priori de Jeffreys para θ . Se tiene $\mathrm{E}(X_i|\theta)=2\sqrt{\frac{2}{\pi\theta}}$ y $\mathrm{V}(X_i|\theta)=\frac{3\pi-8}{\pi\theta}$.

5. Realice un proceso de elicitación sobre un parámetro de proporción. Realice un ajuste de esta distribución elicitada a una distribución Beta y determine los valores de los parámetros α y β elicitados utilizando un optimizador. Explique claramente cómo realizó el proceso de elicitación (tipo de preguntas que realizó al experto, método de elicitación que utilizó, información que proporcionó al experto, etc.).

1