Lineární algebrou proti inflaci II: tělesa, lineární prostory, lineární kombinace

Konečná tělesa V konečných tělesech \mathbb{F}_p (také se používá značení \mathbb{Z}_p) [p musí být prvočíslo!] počítáme jako v běžných celých číslech, ale výsledek vždy nakonec vezmeme $\operatorname{mod} p$, přičemž "modulit" můžeme i v průběhu: např. při zjišťování, kolik je $3 \cdot 4 + 4$ v \mathbb{F}_5 , mohu počítat buď $3 \cdot 4 + 4 = 12 + 4 = 16$ a nakonec spočítat $16 \mod 5 = 1$, nebo $3 \cdot 4 + 4 = 12 + 4 \stackrel{12 \mod 5 = 2}{=} 2 + 4 = 6 \stackrel{6 \mod 5 = 1}{=} 1$.

- 1. Doplňte tabulky násobení a sčítání
 - (a) v tělese \mathbb{F}_3

	+	0	1	2
i.	0	0	1	2
	1	1	2	0
	2	2	0	1

ii.	×	0	1	2
	0	0	0	0
	1	0	1	2
	2	0	2	1

(b) v tělese \mathbb{F}_5

i.	+	0	1	2	3	4
	0	0	1	2	3	4
	1	1	2	3	4	0
	2	2	3	4	0	1
	3	3	4	0	1	2
	4	4	0	1	2	3

ii.	×	0	1	2	3	4
	0	0	0	0	0	0
	1	0	1	2	3	4
	2	0	2	4	1	3
	3	0	3	1	4	2
	4	0	4	3	2	1

2. Napište si tabulku násobení mod 6 a zkuste přijít na to, proč "F₆" není těleso. [Neexistuje zde např. invers k prvku 2.]

Operace "-" je definována tak, že např. -4 v \mathbb{F}_5 je takové číslo a, že 4+a=0, tedy (z tabulky 1.(b).i $vidíme, \ \check{z}e)\ a=1.\ Podobně\ inverzní\ prvek\ ,, \frac{1}{4}$ "= 4^{-1} je takové číslo b, $\check{z}e\ 4\times b=1$, $tudí\check{z}\ (z\ tabulky\ 1.(b).ii$ $vidíme, \check{z}e) b = 4.$

3. Určete, čemu se rovná výraz $[(2+1)\cdot 4-4]^{-1}$

(a) počítáme-li v
$$\mathbb{F}_5$$

$$[3^{-1} = 2]$$

(b) počítáme-li v
$$\mathbb{F}_7$$

$$[1^{-1} = 1]$$

4. Vyřešte následující rovnice (soustavy) v tělese \mathbb{F}_5 (nenechte se zaskočit "jiným počítáním", postup je stejný jako třeba v \mathbb{R}):

(a)
$$3x + 4 = 2$$

= 1] (b)
$$\begin{cases} 4x + 3y + 1 = \\ x + 3 = 4y \end{cases}$$

$$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

[
$$x = 1$$
] (b) $\begin{cases} 4x + 3y + 1 = 4 \\ x + 3 = 4y \end{cases}$ [$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$] (c) $2x + 3y + 3 = 2 \begin{bmatrix} 2 + t \\ t \end{pmatrix}$; $t \in \mathbb{F}_5$]

Lineární prostory

- 5. Které z následujících množin jsou lineárními prostory nad \mathbb{R} ?
 - (a) Ø
 - (b) množina {0}
 - (c) \mathbb{Z}
 - (d) R
 - (e) \mathbb{Z}_3
 - (f) $\mathbb{C}[x]$

- (g) množina všech reálných řešení soustavy $\begin{cases} x+2y=4\\ 2x+y=1 \end{cases}$
- (h) množina všech reálných řešení soustavy $\begin{cases} x+2y=4\\ 2x+4y=8 \end{cases}$
- (i) množina všech reálných řešení soustavy $\begin{cases} x+2y=0\\ 2x+4y=0 \end{cases}$

[pouze (b), (d), (f), (i)]

Vzpomeňte si z přednášky, co znamená **lineární kombinace vektorů** (případně koukněte na slidy z přednášky 1B).

- 6. Napište vektor $\binom{1}{2} \in \mathbb{R}^2$ jako lineární kombinaci seznamu vektorů $(\binom{2}{3}, \binom{3}{5})$. $[\binom{1}{2} = -1 \cdot \binom{2}{3} + 1 \cdot \binom{3}{5}]$
- 7. Napište vektor $p(x)=x^2+3x+2$ z lineárního prostoru $\mathbb{R}[x]$ nad \mathbb{R} jako lineární kombinaci seznamu vektorů
 - (a) $(x^2; x; 1)$
 - (b) $(x^2+1;3x-1;1)$.

$$[p(x) = 1 \cdot x^2 + 3 \cdot x + 2 \cdot 1]$$

$$[p(x) = 1 \cdot (x^2 + 1) + 1 \cdot (3x - 1) + 2 \cdot 1]$$