MATH 4370/7370 - Linear Algebra and Matrix Analysis

Quick review of 2nd year linear algebra

Julien Arino

Fall 2025

OUTLINE OF THESE SLIDES

Part 1: Some notation and basic stuff

Part 2: Vector spaces

Part 3: Finite-dimensional vector spaces

Part 4: Linear maps

Part 5: Eigenvalues, eigenvectors and invariant subspaces

Part 6: Inner product spaces

Part 7: Operators on inner product spaces

Part 8: Operators on complex vector spaces

Source of the material

The material in these slides is mostly derived from [?]

Some notation and basic stuff

Sets and elements

Logic

Sets and elements

Logic

Sets and elements

Definition 2.1 (Set)

A set X is a collection of elements.

We write $x \in X$ or $x \notin X$ to indicate that the element x belongs to the set X or does not belong to the set X, respectively.

Definition 2.2 (Subset)

Let X be a set. The set S is a subset of X, which is denoted $S \subset X$ or $S \subseteq X$, if all its elements belong to X. S is a proper subset of X if it is a subset of X and not equal to X; we then write $S \subsetneq X$.

Smith reserves \subset for \subsetneq . I learned \subset for not specified (proper or not) and \subsetneq for proper. So beware!

p. 4 - Sets and elements

Quantifiers

- A shorthand notation for "for all elements x belonging to X" is $\forall x \in X$. For example, if $X = \mathbb{R}$, the field of real numbers, then $\forall x \in \mathbb{R}$ means "for all real numbers x".
- ▶ A shorthand notation for "there exists an element x in the set X" is $\exists x \in X$.
- ▶ Sometimes we write $\exists ! x \in X$ for "there exists a unique x in X".
- ∀ and ∃ are quantifiers.

Intersection and union of sets

Let X and Y be two sets.

Definition 2.3 (Intersection)

The intersection of X and Y, $X \cap Y$, is the set of elements that belong to X and to Y

$$X \cap Y = \{x : x \in X \text{ and } x \in Y\}$$

Definition 2.4 (Union)

The union of X and Y, $X \cup Y$, is the set of elements that belong to X or to Y

$$X \cup Y = \{x : x \in X \text{ or } x \in Y\}$$

Use of the expression "and/or" is *strictly* forbidden in this course! "Or but not and" (a.k.a. xor, exclusive or) is $(X \cup Y) \setminus (X \cap Y)$.

Sets and elements

Logic

A few notions of logic

In a logical sense, a **proposition** is an assertion (or statement) whose truth value (true or false) can be asserted. For example, a theorem is a proposition that has been shown to be true. "The sky is blue" is also a proposition. Let A be a proposition. We generally write

Α

to mean that A is true, and

not A

to mean that A is false. We also write $\neg A$. **not** A is the **negation** of A.

A few notions of logic (cont.)

Let A, B be propositions. Then

- $ightharpoonup A \Rightarrow B$ (read A implies B) means that whenever A is true, then so is B.
- ▶ $A \Leftrightarrow B$, also denoted A if and only if B (A iff B for short), means that $A \Rightarrow B$ and $B \Rightarrow A$. We also say that A and B are equivalent.

Let A and B be propositions. Then

$$(A \Rightarrow B) \Leftrightarrow (\mathbf{not} \ B \Rightarrow \mathbf{not} \ A)$$

This is useful for proving some results.

Necessary and/or sufficient conditions

Suppose we want to establish whether a given statement P is true, depending on the truth value of a statement H. Then we say that

- ► H is a necessary condition if $P \Rightarrow H$. (It is necessary that H be true for P to be true; so whenever P is true, so is H).
- → H is a sufficient condition if H ⇒ P.

 (It suffices for H to be true for P to also be true).
- ▶ H is a necessary and sufficient condition if $H \Leftrightarrow P$, i.e., H and P are equivalent.

Playing with quantifiers

For the quantifiers \forall (for all) and \exists (there exists),

 \exists is the negation of \forall

Therefore, for example, the contrapositive of

$$\forall x \in X, \exists y \in Y$$

is

$$\exists x \in X, \forall y \in Y$$

This is also regularly used in proofs.

Vector spaces

Fields

Definition of vector spaces

Example – Space \mathbb{F}^n

Example – Complex numbers

Subspaces

Fields

Definition of vector spaces

Example – Space \mathbb{F}^n

Example – Complex numbers

Subspace:

Operations

Definition 2.5 (Operations – Addition and multiplication)

An operation on a set V is a mapping that associates an element of the set V to every pair of its elements

- ▶ The result of the addition of a and b is the sum a + b of a and b
- ▶ The result of the multiplication of a and b is the product ab (or $a \cdot b$) of a and b

Field

Definition 2.6 (Field)

A field is a set \mathbb{F} together with two (binary) operations, addition and multiplication, which are required to satisfy the following field axioms, where $a, b, c \in \mathbb{F}$:

- Associativity of addition and multiplication: a + (b + c) = (a + b) + c and a(bc) = (ab)c
- **Commutativity** of addition and multiplication: a + b = b + a and ab = ba
- ▶ Additive and multiplicative identity: $\exists 0, 1 \in \mathbb{F}$, $0 \neq 1$, s.t. a+0=a and a1=a
- ▶ Additive inverses: $\forall a \in \mathbb{F}, \exists -a \in \mathbb{F} \text{ s.t. } a + (-a) = 0$
- ▶ Multiplicative inverses: $\forall a \neq 0 \in \mathbb{F}, \exists a^{-1} \in \mathbb{F} \text{ s.t. } aa^{-1} = 1$
- **Distributivity** (of multiplication over addition): a(b+c) = (ab) + (ac)

p. 13 - Fields

Notation

- ightharpoonup Both $\mathbb R$ and $\mathbb C$ are fields.
- ightharpoonup From now on, \mathbb{F} refers to \mathbb{R} or \mathbb{C} .
- ightharpoonup Some results are specific to \mathbb{R} xor \mathbb{C} , in which case we specify the relevant field.
- ▶ If we use \mathbb{F} , we mean the result applies to both \mathbb{R} and \mathbb{C} .

Fields

Definition of vector spaces

Example – Space \mathbb{F}^n

Example - Complex numbers

Subspaces

Addition and Scalar multiplication

Definition 2.7 (Addition and scalar multiplication on a set)

- An addition on a set V is a function that assigns an element $\mathbf{u} + \mathbf{v} \in V$ to each pair of elements $\mathbf{u}, \mathbf{v} \in V$
- A scalar multiplication on a set V is a function that assigns an element $\lambda \mathbf{v}$ to each $\lambda \in \mathbb{F}$ and each $\mathbf{v} \in V$

Vector space

Definition 2.8 (Vector space)

A vector space (over \mathbb{F}) is a set V along with an addition on V and a scalar multiplication on V such that the following properties (axioms) hold

1.
$$\forall \mathbf{u}, \mathbf{v} \in V$$
, $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ [commutativity]

2.
$$\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$$
 and $\forall a, b \in \mathbb{F}$, $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ and $(ab)\mathbf{v} = a(b\mathbf{v})$ [associativity]

3.
$$\exists \mathbf{0}_V \in V \text{ s.t. } \forall \mathbf{v} \in V, \mathbf{v} + \mathbf{0}_V = \mathbf{v}$$
 [additive identity]

4.
$$\forall \mathbf{v} \in V$$
, $\exists \mathbf{w} \in V$ s.t. $\mathbf{v} + \mathbf{w} = \mathbf{0}_V$ [additive inverse]

5.
$$\forall \mathbf{v} \in V$$
, $1\mathbf{v} = \mathbf{v}$ [multiplicative identity]

6.
$$\forall a, b \in \mathbb{F}$$
 and $\forall u, v \in V$, $a(u + v) = au + av$ and $(a + b)v = av + bv$ [distributivity]

Results

Theorem 2.9 (Uniqueness of the additive identity)

A vector space V has a unique additive identity $\mathbf{0}_V \in V$

Theorem 2.10 (Existence and uniqueness of additive inverse)

Let V be a vector space. Then each $\mathbf{v} \in V$ has a unique additive inverse, denoted $-\mathbf{v}$

We also define $\mathbf{v} - \mathbf{w}$ as $\mathbf{v} + (-\mathbf{w})$.

Theorem 2.11

- $ightharpoonup \forall \mathbf{v} \in V, \ 0_{\mathbb{F}}\mathbf{v} = \mathbf{0}_{V}.$
- $ightharpoonup \forall a \in \mathbb{F}, \ a\mathbf{0}_V = \mathbf{0}_V.$
- $ightharpoonup \forall \mathbf{v} \in V$, $(-1)\mathbf{v} = -\mathbf{v}$.

p. 17 - Definition of vector spaces

Vector space

Definition 2.12 (Vector space)

A vector space (over \mathbb{F}) is a set V along with an addition on V and a scalar multiplication on V such that the following properties (axioms) hold

1.
$$\forall \mathbf{u}, \mathbf{v} \in V$$
, $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

2.
$$\forall u, v, w \in V$$
, $(u + v) + w = u + (v + w)$

3.
$$\exists ! \mathbf{0}_V \in V \text{ s.t. } \forall \mathbf{v} \in V, \mathbf{v} + \mathbf{0}_V = \mathbf{v}$$

4.
$$\forall \mathbf{v} \in V$$
, $\exists ! - \mathbf{v} \in V$ s.t. $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}_V$

5.
$$\forall a \in \mathbb{F}$$
 and $\forall \mathbf{u}, \mathbf{v} \in V$, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$

6.
$$\forall a, b \in \mathbb{F}$$
 and $\forall \mathbf{u} \in V$, $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

7.
$$\forall a, b \in \mathbb{F}$$
, $(ab)\mathbf{v} = a(b\mathbf{v})$

8.
$$\forall \mathbf{v} \in V$$
, $1\mathbf{v} = \mathbf{v}$

Definition of vector spaces

[additive inverse]

[distributivity of
$$+$$
 over \cdot]

Fields

Definition of vector spaces

Example – Space \mathbb{F}^n

Example – Complex numbers

Subspaces

 \mathbb{F}^n is a vector space

Typically called *Euclidean space* when $\mathbb{F}=\mathbb{R}.$

Definition 2.13

Let $0 \neq n \in \mathbb{N}$. An *n*-tuple is an ordered collection of *n* elements,

$$(x_1,\ldots,x_n)$$

Definition 2.14

Let $0 \neq n \in \mathbb{N}$. \mathbb{F}^n is the set of all *n*-tuples of elements of \mathbb{F} :

$$\mathbb{F}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{F} \text{ for } j = 1, \dots, n\}$$

- ▶ Often write $x = (x_1, ..., x_n)$ for short.
- ▶ For a given $j \in \{1, ..., n\}$, x_i is the jth coordinate of x.
- ▶ Think of \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n that you saw in whatever flavour of Linear Algebra 1 you took.

Addition in \mathbb{F}^n

Definition 2.15 (Addition in \mathbb{F}^n)

Let
$$x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{F}^n$$
. Then

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$

Property 2.16 (Commutativity of addition in \mathbb{F}^n)

Let $x, y \in \mathbb{F}^n$, then

$$x + y = y + x$$

0 and additive inverse in \mathbb{F}^n

Definition 2.17 (0)

0 denotes the *n*-tuple whose coordinates are all 0,

$$0=(0,\ldots,0)$$

If any ambiguity arises, will write $0_{\mathbb{F}^n}$

Definition 2.18 (Additive inverse)

Let $x \in \mathbb{F}^n$. The additive inverse of x is $-x \in \mathbb{F}^n$ s.t.

$$x + (-x) = 0$$

If
$$x = (x_1, ..., x_n)$$
, then $-x = (-x_1, ..., -x_n)$

p. 22 – Example – Space
$$\mathbb{F}^n$$

Scalar multiplication in \mathbb{F}^n

Definition 2.19 (Scalar multiplication)

The product of $\lambda \in \mathbb{F}$ and $x \in \mathbb{F}^n$ is

$$\lambda x = \lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$

Fields

Definition of vector spaces

Example – Space \mathbb{F}^n

Example – Complex numbers

Subspaces

Complex numbers

Definition 2.20 (Complex numbers)

A complex number is an ordered pair (a, b), where $a, b \in \mathbb{R}$. Usually written a + ib or a + bi, where $i^2 = -1$

The set of all complex numbers is denoted \mathbb{C} ,

$$\mathbb{C} = \{a + ib : a, b \in \mathbb{R}\}$$

Definition 2.21 (Addition and multiplication on \mathbb{C})

Letting a+ib and $c+id\in\mathbb{C}$, addition on \mathbb{C} is defined by

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

and multiplication on $\ensuremath{\mathbb{C}}$ is defined by

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc)$$

Latter equality easy to obtain using regular multiplication and $i^2 = -1$

Properties

$$\forall \alpha, \beta, \gamma \in \mathbb{C}$$
,

$$ightharpoonup \alpha + \beta = \beta + \alpha \text{ and } \alpha\beta = \beta\alpha$$

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \text{ and } (\alpha\beta)\gamma = \alpha(\beta\gamma)$$

$$ightharpoonup \gamma + 0 = \gamma$$
 and $\gamma 1 = \gamma$

$$\forall \alpha \in \mathbb{C}, \ \exists \beta \in \mathbb{C} \ \text{unique s.t.} \ \alpha + \beta = \mathbf{0}$$

$$\forall \alpha \neq 0 \in \mathbb{C}, \ \exists \beta \in \mathbb{C} \ \text{unique s.t.} \ \alpha \beta = 1$$

Thus \mathbb{C} is a field.

[commutativity]
[associativity]
[identities]

[additive inverse]

[multiplicative inverse]

[distributivity]

Additive & multiplicative inverse, subtraction, division

Definition 2.22

Let $\alpha, \beta \in \mathbb{C}$

- $ightharpoonup -\alpha$ is the additive inverse of α , i.e., the unique number in $\mathbb C$ s.t. $\alpha+(-\alpha)=0$
- ► Subtraction on C:

$$\beta - \alpha = \beta + (-\alpha)$$

▶ For $\alpha \neq 0$, $1/\alpha$ is the multiplicative inverse of α , i.e., the unique number in $\mathbb C$ s.t.

$$\alpha(1/\alpha) = 1$$

▶ Division on ℂ:

$$\beta/\alpha = \beta(1/\alpha)$$

Definition 2.23 (Real and imaginary parts)

Let z = a + ib. Then Re z = a is real part and Im z = b is imaginary part of z

If ambiguous, write $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$

Definition 2.24 (Conjugate and Modulus)

Let $z = a + ib \in \mathbb{C}$. Then

Complex conjugate of z is

$$\bar{z} = \operatorname{Re} z - i(\operatorname{Im} z) = a - ib$$

► Modulus (or absolute value) of z is

$$|z| = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = \sqrt{a^2 + b^2} \ge 0$$

Properties of complex numbers

Let $w, z \in \mathbb{C}$, then

$$ightharpoonup z + \bar{z} = 2 \operatorname{Re} z$$

$$ightharpoonup z - \bar{z} = 2i \text{Im } z$$

$$ightharpoonup z\bar{z} = |z|^2$$

$$\overline{w+z} = \overline{w} + \overline{z}$$
 and $\overline{wz} = \overline{w}\overline{z}$

$$ightharpoonup $\overline{z} = z$$$

$$ightharpoonup |\operatorname{Re} z| \le |z|$$
 and $|\operatorname{Im} z| \le |z|$

$$|\bar{z}| = |z|$$

$$|wz| = |w||z|$$

▶
$$|w + z| \le |w| + |z|$$

[triangle inequality]

Fields

Definition of vector spaces

Example – Space \mathbb{F}^n

Example – Complex numbers

Subspaces

Subspace

Definition 2.25 (Subspace)

Let V be a vector space over \mathbb{F} . Let $U\subseteq V$ be a subset of V. Then U is a subspace of V if U is a vector space over \mathbb{F} for the same operations of addition and scalar multiplication as V

Theorem 2.26 (Conditions for a subspace)

 $U \subseteq V$ is a subspace of $V \iff U$ satisfies the following three conditions:

- $r\subseteq v$ is a subspace of $v\iff v$ satisfies the following three conditions
- $oldsymbol{0}_V \in U$ [additive identity]
- $\forall \mathbf{u}, \mathbf{v} \in U, \ \mathbf{u} + \mathbf{v} \in U$ [closed under addition]
- ▶ $\forall u \in U, \forall a \in \mathbb{F}, au \in U$ [closed under scalar multiplication]

The smallest possible subspace of V is $\{\mathbf{0}_V\}$, the largest is V.

Sums of subspaces

Definition 2.27 (Sum of subsets)

Let V be a vector space and U_1, \ldots, U_m be subsets of V. The sum of U_1, \ldots, U_m is

$$U_1 + \cdots + U_m = \{\mathbf{u}_1 + \cdots + \mathbf{u}_m : \mathbf{u}_1 \in U_1, \dots, \mathbf{u}_m \in U_m\}$$

Theorem 2.28

Let V be a vector space and U_1, \ldots, U_m be subspaces of V. Then $U_1 + \cdots + U_m$ is the smallest subspace of V containing U_1, \ldots, U_m

p. 31 – Subspace

Direct sums

Definition 2.29 (Direct sum)

Suppose U_1, \ldots, U_m are subspaces of a vector space V. The sum $U_1 + \cdots + U_m$ is a direct sum and is then written $U_1 \oplus \cdots \oplus U_m$ if each element of $U_1 + \cdots + U_m$ can be written in only one way as a sum $\mathbf{u}_1 + \cdots + \mathbf{u}_m$, where each $\mathbf{u}_j \in U_j$

Theorem 2.30 (Condition for a direct sum)

Suppose U_1, \ldots, U_m are subspaces of a vector space V. Then $U_1 + \cdots + U_m$ is a direct sum \iff the only way to write $\mathbf{0}$ as a sum $\mathbf{u}_1 + \cdots + \mathbf{u}_m$, where each $\mathbf{u}_j \in U_j$, is by taking each \mathbf{u}_j equal to $\mathbf{0}_V$

Theorem 2.31 (Direct sum of two subspaces)

Let U,W be subspaces of a vector space V. Then U+W is a direct sum \iff $U\cap W=\{\mathbf{0}_V\}$

Finite-dimensional vector spaces

Span and Linear independence

Bases

Dimension

Span and Linear independence

Bases

Dimension

Definition 2.32 (Linear combination)

A linear combination of a list $\mathbf{v}_1, \dots, \mathbf{v}_m$ of vectors in V is a vector

$$a_1\mathbf{v}_1+\cdots+a_m\mathbf{v}_m,$$

where $a_1, \ldots, a_m \in \mathbb{F}$

Definition 2.33 (Span)

The set of all linear combinations of a list of vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ is the span of $\mathbf{v}_1, \dots, \mathbf{v}_m$,

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_m)=\{a_1\mathbf{v}_1+\cdots+a_m\mathbf{v}_m:a_1,\ldots,a_m\in\mathbb{F}\}$$

The span of the empty list () is $\{\mathbf{0}_V\}$

Finite/infinite-dimensional vector spaces

Theorem 2.34

The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list

Definition 2.35 (List of vectors spanning a space)

If $span(\mathbf{v}_1, \dots, \mathbf{v}_m) = V$, we say $\mathbf{v}_1, \dots, \mathbf{v}_m$ spans V

Definition 2.36 (Finite-dimensional vector space)

A vector space V is finite-dimensional if some list of vectors in it spans V

Definition 2.37 (Infinite-dimensional vector space)

A vector space V is **infinite-dimensional** if it is not finite-dimensional

Linear (in)dependence

Definition 2.38 (Linear independence/Linear dependence)

A list $\mathbf{v}_1, \dots, \mathbf{v}_m$ of vectors in a vector space V is linearly independent if

$$(a_1\mathbf{v}_1+\cdots+a_m\mathbf{v}_m=0)\Leftrightarrow (a_1=\cdots=a_m=0),$$

where $a_1, \ldots, a_m \in \mathbb{F}$. A list of vectors is **linearly dependent** if it is not linearly independent.

The empty list () is assumed to be linearly independent

Lemma 2.39 (Linear dependence)

Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be a linearly dependent list in a vector space V. Then there exists $j \in \{1, 2, \dots, m\}$ s.t.

- 1. $\mathbf{v}_j \in \mathsf{span}(\mathbf{v}_1, \dots, \mathbf{v}_{j-1})$
- 2. if the jth term is removed from $\mathbf{v}_1, \dots, \mathbf{v}_m$, the span of the remaining list equals $\operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_m)$

Theorem 2.40

Let V be a finite-dimensional vector space. Then the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors

Theorem 2.41 (Subspace of a finite-dimensional vector space)

Every subspace of a finite-dimensional vector space is finite-dimensional

Span and Linear independence

Bases

Dimension

Basis

Definition 2.42 (Basis)

Let V be a vector space. A basis of V is a list of vectors in V that is both linearly independent and spanning

Theorem 2.43 (Criterion for a basis)

A list $\mathbf{v}_1, \dots, \mathbf{v}_m$ of vectors in a vector space V is a basis of V iff $\forall \mathbf{v} \in V$, v can be written uniquely in the form

$$\mathbf{v}=a_1\mathbf{v}_1+\cdots+a_m\mathbf{v}_m,$$

where $a_1, \ldots, a_m \in \mathbb{F}$

p. 38 - Base

Theorem 2.44 (All spanning lists contain a basis)

Every spanning list in a vector space can be reduced to a basis of the vector space

Theorem 2.45 (Basis of finite-dimensional vector space)

Every finite-dimensional vector space has a basis

Theorem 2.46 (Extension to a basis)

Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space

Theorem 2.47

Let V be a finite-dimensional vector space and $U \subset V$ be a subspace of V. Then $\exists W \subset V$ subspace of V s.t. $V = U \oplus W$

Span and Linear independence

Bases

Dimension

Theorem 2.48 (Bases of a finite-dim. space have equal length)

Any two bases of a finite-dimensional vector space have the same length

Definition 2.49 (Dimension)

The dimension dim V of a finite-dimensional vector space V is the length of any basis of the vector space

Theorem 2.50 (Dimension of a subspace)

Let V be a finite-dimensional vector space and $U \subset V$ be a subspace of V. Then $\dim U \leq \dim V$

Theorem 2.51

Let V be a finite-dimensional vector space. Then every linearly independent list of vectors in V with length $\dim V$ is a basis of V

Theorem 2.52

Let V be a finite-dimensional vector space. Then every spanning list of vectors in V with length $\dim V$ is a basis of V

Theorem 2.53 (Dimension of a sum of subspaces)

Let U_1 , U_2 be subspaces of a finite-dimensional vector space V. Then

$$\dim (U_1 + U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$

Linear maps

Vector space of linear maps

Null spaces and Ranges

Matrices

Invertibility and Isomorphic vector spaces

Products and quotients of vector spaces

Duality

Vector space of linear maps

Null spaces and Range

Matrices

Invertibility and Isomorphic vector spaces

Products and quotients of vector spaces

Duality

Definition 2.54 (Linear map/transformation)

Let V, W be vector spaces. A linear map (or linear transformation) from V to W is a function $T: V \to W$ that has the following properties:

- 1. Additivity $\forall \mathbf{u}, \mathbf{v} \in V$, $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$.
- 2. Homogeneity $\forall \lambda \in \mathbb{F}$, $\forall \mathbf{v} \in V$, $T(\lambda \mathbf{v}) = \lambda T(\mathbf{v})$.

Often, parentheses are omitted, $T(\mathbf{u})$ is written $T\mathbf{u}$

The set of all linear maps from V to W is denoted $\mathcal{L}(V, W)$

Theorem 2.55 (Linear maps and basis of domain)

Let V,W be two vector spaces and $\mathbf{v}_1,\ldots,\mathbf{v}_n$ be a basis of V. Let $\mathbf{w}_1,\ldots,\mathbf{w}_n\in W$.

Then there exists a unique linear map $T: V \to W$ s.t.

$$\forall j=1,\ldots,n, \qquad T\mathbf{v}_j=\mathbf{w}_j$$

Definition 2.56 (Addition & Scalar multiplication)

Let V, W be vector spaces, $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. The sum S + T and product λT are the linear maps from V to W defined, $\forall \mathbf{v} \in V$, by

$$(S+T)(\mathbf{v}) = S\mathbf{v} + T\mathbf{v} \text{ and } (\lambda T)(\mathbf{v}) = \lambda (T\mathbf{v}).$$

Theorem 2.57 (Linear maps are vector spaces)

Let V, W be vector spaces. Equipped with addition and scalar multiplication as just defined, $\mathcal{L}(V, W)$ is a vector space.

Product of linear maps

Definition 2.58 (Product of linear maps)

Let U, V, W be vector spaces, $T \in \mathcal{L}(U, V), S \in \mathcal{L}(V, W)$. The **product** $ST \in \mathcal{L}(U, W)$ is defined for $\mathbf{u} \in U$ by

$$(ST)(\mathbf{u}) = S(T\mathbf{u}).$$

This means that the product of linear maps is the composition $S \circ T$, although because of the linearity, we often omit the \circ composition sign.

. 46 - Vector space of linear maps

Properties of products of linear maps

Theorem 2.59

1. Associativity If V, V_2, V_3, W vector spaces, $T_1 \in \mathcal{L}(V, V_2), T_2 \in \mathcal{L}(V_2, V_3), T_3 \in \mathcal{L}(V_3, W)$, then

$$(T_1T_2)T_3 = T_1(T_2T_3)$$

2. Identity V, W vector spaces. Then for $T \in \mathcal{L}(V, W)$,

$$TI_V = I_W T = T$$

3. Distributivity U, V, W vector spaces, $T, T_1, T_2 \in \mathcal{L}(U, V), S, S_1, S_2 \in \mathcal{L}(V, W)$, then

$$(S_1 + S_2)T = S_1T + S_2T$$
 and $S(T_1 + T_2) = ST_1 + ST_2$

Theorem 2.60 (Linear maps take 0 to 0)

Let V, W be vector spaces, $T \in \mathcal{L}(V, W)$. Then

$$T(\mathbf{0}_V) = \mathbf{0}_W.$$

Vector space of linear maps

Null spaces and Ranges

Matrices

Invertibility and Isomorphic vector spaces

Products and quotients of vector spaces

Duality

Definition 2.61 (Null space)

Let V, W be finite-dimensional vector spaces and $T \in \mathcal{L}(V, W)$. The **null space** null T (or **kernel** ker T) of T is the subet of V consisting of those vectors that T maps to $\mathbf{0}_W$:

$$\mathsf{null}\, \mathcal{T} = \{ \mathbf{v} \in \mathcal{V}; \, \mathcal{T}\mathbf{v} = \mathbf{0}_{\mathcal{W}} \}$$
 .

Theorem 2.62 (Null space is a subspace)

Let V,W be finite-dimensional vector spaces and $T \in \mathcal{L}(V,W)$. Then $\mathsf{null}\,T$ is a subspace of V

Definition 2.63 (Injectivity)

A function $T: V \to W$ is **injective** (or **one-to-one**) if

$$T\mathbf{u} = T\mathbf{v} \Rightarrow \mathbf{u} = \mathbf{v}.$$

We can also use the contrapositive: T injective if $\mathbf{u} \neq \mathbf{v} \Rightarrow T\mathbf{u} \neq T\mathbf{v}$.

Theorem 2.64 (Linking injectivity and null space)

Let V, W be finite-dimensional vector spaces, $T \in \mathcal{L}(V, W)$. Then

$$T injective \Leftrightarrow \mathsf{null}\, T = \{\mathbf{0}_V\}$$

Definition 2.65 (Range)

Let V, W be finite-dimensional vector spaces, $T: V \to W$ a function. The range (or image) of T is the subset of W defined by

range
$$T = \{ T\mathbf{v}; \mathbf{v} \in V \}.$$

When talking about the image, we write Im T.

Theorem 2.66 (Range is a subspace)

Let V, W be finite-dimensional vector spaces, $T \in \mathcal{L}(V, W)$. Then range T is a subspace of W.

Definition 2.67 (Surjectivity)

A function $T: V \to W$ is surjective (or onto) if

$$range T = W$$

Theorem 2.68 (Fundamental theorem of linear maps)

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\dim \operatorname{range} T < \infty$ and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

Theorem 2.69 (Linear map onto a smaller space is not injective)

Let V, W be finite-dimensional vector spaces such that dim $V > \dim W$. Then $\nexists T \in \mathcal{L}(V, W)$ that is injective

Theorem 2.70 (Linear map onto a larger space is not surjective)

Let V, W be finite-dimensional vector spaces such that dim $V < \dim W$. Then $\nexists T \in \mathcal{L}(V, W)$ that is surjective

Do as exercises...

Theorem 2.71

A homogeneous system of linear equations with more variables than equations has nonzero solutions.

Theorem 2.72

A nonhomogeneous system of linear equations with more equations than variables has no solution for some choice of the constant terms

Vector space of linear maps

Null spaces and Range

Matrices

Invertibility and Isomorphic vector spaces

Products and quotients of vector spaces

Duality

Definition 2.73 (Matrix)

An m-by-n or $m \times n$ matrix is a rectangular array of elements of $\mathbb F$ with m rows and n columns,

$$A = [a_{ij}] = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Remember that we always list indices as "row,column" We denote $\mathcal{M}_{mn}(\mathbb{F})$ the set of $m \times n$ matrices with entries in \mathbb{F}

Definition 2.74 (Matrix of a linear map)

Let V, W be finite-dimensional vector spaces, v_1, \ldots, v_n a basis of V and w_1, \ldots, w_m a basis of W. The matrix of T with respect to these bases is the matrix $M(T) \in \mathcal{M}_{mn}$ with entries a_{ik} defined by

$$Tv_k = a_{1k}w_1 + \cdots + a_{mk}w_m$$

for $1 \le l \le n$. If the bases are not clear from the context, then write

$$M(T,(v_1,\ldots,v_n),(w_1,\ldots,w_m))$$

I will often write M_T rather than M(T).

Most definitions are assumed known

Theorem 2.75 (Matrix of sums of linear maps)

Suppose
$$S, T \in \mathcal{L}(V, W)$$
. Then $M(S + T) = M(S) + M(T)$

Theorem 2.76 (Matrix of a scalar times a linear map)

Suppose
$$T \in \mathcal{L}(V, W)$$
, $\lambda \in \mathbb{F}$. Then $M(\lambda T) = \lambda M(T)$

Theorem 2.77 (Dimension of \mathcal{M}_{mn})

 $\dim \mathbb{F}^{mn} = mn$

Theorem 2.78 (Matrix of products of linear maps)

Suppose
$$T \in \mathcal{L}(U, V), S \in \mathcal{L}(V, W)$$
. Then $M(ST) = M(S)M(T)$

Theorem 2.79

Let $A \in \mathcal{M}_{mn}$, $C \in \mathcal{M}_{np}$. Then

$$(AC)_{jk} = A_{j \bullet} C_{\bullet k}, \qquad 1 \le j \le m, 1 \le k \le p$$

and

$$(AC)_{\bullet k} = AC_{\bullet k}, \qquad 1 \le k \le p$$

Theorem 2.80

Let $A \in \mathcal{M}_{mn}$, $c = (c_1, \ldots, c_n)^T \in \mathcal{M}_{n1}$. Then

$$Ac = c_1A_{\bullet 1} + \cdots + c_nA_{\bullet n}$$

Change of basis

Definition 2.81 (Change of basis matrix)

 $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $\mathcal{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ bases of vector space V The change of basis matrix $P_{\mathcal{C} \leftarrow \mathcal{B}} \in \mathcal{M}_n$,

$$P_{\mathcal{C}\leftarrow\mathcal{B}}=[[\mathbf{u}_1]_{\mathcal{C}}\cdots[\mathbf{u}_n]_{\mathcal{C}}]$$

has columns the coordinate vectors $[\mathbf{u}_1]_{\mathcal{C}}, \dots, [\mathbf{u}_n]_{\mathcal{C}}$ of the vectors in \mathcal{B} w.r.t. \mathcal{C}

Theorem 2.82

 $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $\mathcal{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ bases of vector space V and $P_{\mathcal{C} \leftarrow \mathcal{B}}$ a change of basis matrix from \mathcal{B} to \mathcal{C}

- 1. $\forall \mathbf{x} \in V$, $P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$
- 2. $P_{\mathcal{C} \leftarrow \mathcal{B}}$ s.t. $\forall \mathbf{x} \in V$, $P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$ is unique
- 3. $P_{\mathcal{C} \leftarrow \mathcal{B}}$ invertible and $P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1} = P_{\mathcal{B} \leftarrow \mathcal{C}}$

Row-reduction method for changing bases

Theorem 2.83

 $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $\mathcal{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ bases of vector space V. Let \mathcal{E} be any basis for V,

$$B = [[\mathbf{u}_1]_{\mathcal{E}}, \dots, [\mathbf{u}_n]_{\mathcal{E}}] \text{ and } C = [[\mathbf{v}_1]_{\mathcal{E}}, \dots, [\mathbf{v}_n]_{\mathcal{E}}]$$

and let [C|B] be the augmented matrix constructed using C and B. Then

$$RREF([C|B]) = [I|P_{C \leftarrow B}]$$

If working in \mathbb{R}^n , this is quite useful with \mathcal{E} the standard basis of \mathbb{R}^n (it does not matter if $\mathcal{B} = \mathcal{E}$)

More on changing bases

Theorem 2.84 (NSC for two matrices representing the same linear map)

Let $A, B \in \mathcal{M}_{mn}$, V and W be n and m dimensional vector spaces, respectively. Then A and B represent the same linear transformation $T \in \mathcal{L}(V, W)$ relative to perhaps different bases of V and $W \iff \exists P \in \mathcal{M}_m$, $Q \in \mathcal{M}_n$ nonsingular and such that

$$A = PBQ^{-1}$$

Vector space of linear maps

Null spaces and Range

Matrices

Invertibility and Isomorphic vector spaces

Products and quotients of vector spaces

Duality

Definition 2.85 (Inverse/Invertibility)

 $T \in \mathcal{L}(V, W)$ is invertible if $\exists S \in \mathcal{L}(W, V)$ s.t. $ST = I_V$ and $TS = I_W$. Such a map is the inverse of T

Theorem 2.86 (Uniqueness of inverse)

An invertible linear map $T \in \mathcal{L}(V,W)$ has a unique inverse denoted T^{-1}

Theorem 2.87 (NSC for invertibility)

 $T \in \mathcal{L}(V, W)$ invertible \Leftrightarrow (T injective and surjective)

Definition 2.88 (Isomorphism/Isomorphic spaces)

 $T \in \mathcal{L}(V, W)$ is an **isomorphism** if it invertible. Two vector spaces are **isomorphic** if there exists an isomorphism from one to the other

Theorem 2.89 (NSC for isomorphicity)

Let V, W be finite-dimensional vector spaces over \mathbb{F} . Then

V and W are $isomorphic \Leftrightarrow \dim V = \dim W$

Theorem 2.90

Let v_1, \ldots, v_n be a basis of V and w_1, \ldots, w_m be a basis of W. Then M is an isomorphism between \mathcal{M}_{mn} and $\mathcal{L}(V, W)$

Theorem 2.91 (Dimension of $\mathcal{L}(V, W)$)

Let V, W be finite-dimensional vector spaces. Then $\mathcal{L}(V, W)$ is finite-dimensional and

 $\dim \mathcal{L}(V, W) = \dim V \dim W$

Definition 2.92 (Matrix of a vector)

Let V be a finite-dimensional vector space, $v \in V$ and v_1, \ldots, v_n a basis of V. The matrix of v with respect to the basis v_1, \ldots, v_n is the $n \times 1$ matrix

$$M(v) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

where $c_1, \ldots, c_n \in \mathbb{F}$ are s.t.

$$v = c_1 v_1 + \cdots + c_n v_n$$

Theorem 2.93

Let V, W be finite-dimensional vector spaces, v_1, \ldots, v_n a basis of V, w_1, \ldots, w_m a basis of W and $T \in \mathcal{L}(V, W)$. For $k \in \{1, \ldots, n\}$, $M(T)_{\bullet k} = M(Tv_k)$

Theorem 2.94 (Linear maps act like matrix multiplication)

Let V, W be finite-dimensional vector spaces, v_1, \ldots, v_n a basis of V, w_1, \ldots, w_m a basis of $W, T \in \mathcal{L}(V, W)$ and $v \in V$. Then

$$M(Tv) = M(T)M(v)$$

Operator/Endomorphism

Definition 2.95 (Operator/Endomorphism)

Let V be a vector space. A linear map $\mathcal{L}(V,V)$ is an **operator** (or an **endomorphism**). $\mathcal{L}(V) = \mathcal{L}(V,V)$ denotes the set of all operators on V

Theorem 2.96 (Injectivity equiv. to surjectivity in finite-dim.)

Let V be a finite-dimensional vector space, $T \in \mathcal{L}(V)$. TFAE:

- 1. T invertible
- 2. T injective
- 3. T surjective

Rank of an operator/endomorphism

Proposition 2.97 (Rank)

Let $T \in \mathcal{L}(V)$ with V finite-dimensional. Then there exists bases $\mathcal{B}_U = \{u_1, \ldots, u_n\}$ and $\mathcal{B}_V = \{v_1, \ldots, v_n\}$ for V such that the matrix M_T of T can be written as the block matrix

$$M_{\mathcal{T}} = \begin{pmatrix} \operatorname{diag}(1, \dots, 1) & \mathbf{0}_{k, n-k} \\ \mathbf{0}_{n-k, k} & \mathbf{0}_{n-k, n-k} \end{pmatrix}$$

for some $k \in \mathbb{N}$ called the rank of T, with k = rank(T) = dim(range T).

- Invertibility and Isomorphic vector spaces

Definition 2.98 (Row and column rank)

Let $A \in \mathcal{M}_{mn}(\mathbb{F})$ be a matrix

- ▶ The row rank of A is the dimension of the span of the rows of A in $\mathcal{M}_{1n}(\mathbb{F})$
- ▶ The column rank of A is the dimension of the span of the columns of A in $\mathcal{M}_{m1}(\mathbb{F})$

Row and column ranks are the dimensions of the row and column spaces of Definition 2.102.

Theorem 2.99 (dim range T equals column rank of M(T))

Let V, W be finite-dimensional vector spaces, $T \in \mathcal{L}(V, W)$. Then dim range T equals the column rank of M(T)

Theorem 2.100 (Row rank equals column rank)

Let $A \in \mathcal{M}_{mn}$. Then the row rank of A equals the column rank of A

Definition 2.101 (Rank)

Let $A \in \mathcal{M}_{mn}(\mathbb{F})$. The rank of A is the column (or row, by Theorem 2.100) rank of A

Row space and column space of a matrix

Definition 2.102 (Row and column spaces)

Let $A \in \mathcal{M}_{mn}$. The subspaces of \mathbb{R}^n and \mathbb{R}^m spanned by the row and column vectors of A are the row space and column space of A, respectively.

Definition 2.103 (Null space/kernel)

Let $A \in \mathcal{M}_{mn}$. The null space (or kernel) of A is the solution space of the homogeneous system $A\mathbf{x} = \mathbf{0}$.

This makes explicit the already seen definition in the special case of a matrix. As previously seen, the null space is a subspace of \mathbb{R}^n .

Definition 2.104 (Nullity)

The dimension of the null space of $A \in \mathcal{M}_{mn}$ is called the nullity of A.

Theorem 2.105

Let $A \in \mathcal{M}_{mn}$. Then

- 1. $\operatorname{rank}(A) = \operatorname{rank}(A^T)$
- 2. rank(A) + nullity(A) = n
- 3. $\operatorname{rank}(A) \leq \min(m, n)$

Theorem 2.106 (Consistency)

Consider the linear system $A\mathbf{x} = \mathbf{b}$, with $A \in \mathcal{M}_{mn}$. TFAE:

- \triangleright $A\mathbf{x} = \mathbf{b}$ is consistent
- ightharpoonup **b** \in column space of A
- ightharpoonup A and $[A|\mathbf{b}]$ have the same rank

Proposition 2.107

Let $A \in \mathcal{M}_{mn}$ be in row-echelon form. Then

- ▶ The row vectors $(\in \mathbb{R}^n)$ with leading ones form a basis for the row space of A.
- ▶ The column vectors $(\in \mathbb{R}^m)$ with leading ones form a basis for the column space of A.

Vector space of linear maps

Null spaces and Range

Matrices

Invertibility and Isomorphic vector spaces

Products and quotients of vector spaces

Duality

Definition 2.108 (Product of vector spaces)

Let V_1,\ldots,V_m be vector spaces over $\mathbb F.$ The product $V_1 imes \cdots imes V_m$ is

$$V_1 \times \cdots \times V_m = \{(\mathbf{v}_1, \dots, \mathbf{v}_m); \mathbf{v}_1 \in V_1, \dots, \mathbf{v}_m \in V_m\}$$

Theorem 2.109 (Products of vector spaces are vector spaces)

Let V_1, \ldots, V_m be vector spaces over \mathbb{F} . Define

$$ightharpoonup$$
 addition on $V_1 \times \cdots \times V_m$ by

$$(\mathbf{u}_1,\ldots,\mathbf{u}_m)+(\mathbf{v}_1,\ldots,\mathbf{v}_m)=(\mathbf{u}_1+\mathbf{v}_1,\ldots,\mathbf{u}_m+\mathbf{v}_m)$$

$$ightharpoonup$$
 scalar multiplication on $V_1 \times \cdots \times V_m$ by

$$\lambda(\mathbf{v}_1,\ldots,\mathbf{v}_m)=(\lambda\mathbf{v}_1,\ldots,\lambda\mathbf{v}_m)$$

With these operations, $V_1 \times \cdots \times V_m$ is a vector space over \mathbb{F}

Theorem 2.110 (Dimension of product space)

Let V_1, \ldots, V_m be finite-dimensional vector spaces. Then

$$\dim(V_1 \times \cdots \times V_m) = \dim V_1 + \cdots + \dim V_m < \infty$$

Theorem 2.111 (Product spaces and direct sums)

Let $U_1, \ldots, U_m \subset V$ be subspaces of V. Let

$$\Gamma: \quad U_1 \times \cdots \times U_m \to U_1 + \cdots + U_m$$
$$(\mathbf{u}_1, \dots, \mathbf{u}_m) \mapsto \mathbf{u}_1 + \cdots + \mathbf{u}_m$$

Then

$$U_1 + \cdots + U_m$$
 direct sum $\Leftrightarrow \Gamma$ injective

Theorem 2.112 (NSC for direct sum)

Let V be a finite-dimensional vector space, U_1, \ldots, U_m subspaces of V. Then

$$U_1 \oplus \cdots \oplus U_m \Leftrightarrow \dim(U_1 + \cdots + U_m) = \dim U_1 + \cdots + \dim U_m$$

Definition 2.113 ($\mathbf{v} + U$)

Let V be a vector space, U a subspace of V and $\mathbf{v} \in V$. Then $\mathbf{v} + U$ is the subset of V defined by

$$\mathbf{v} + U = {\mathbf{v} + \mathbf{u}; \mathbf{u} \in U}$$

Definition 2.114 (Affine subset/Parallel affine subset)

Let V be a vector space

- An affine subset of V is a subset of V of the form $\mathbf{v} + U$ for some $\mathbf{v} \in V$ and some subspace U of V
- ightharpoonup For $\mathbf{v} \in V$ and U subspace of V, the affine subset $\mathbf{v} + U$ is parallel to U

Definition 2.115 (Quotient space)

Let V be a vector space, U a subspace of V. The quotient space V/U is the set of all affine subsets of V parallel to U, i.e.,

$$V/U = \{\mathbf{v} + U; \mathbf{v} \in V\}$$

Theorem 2.116 (2 affine subsets # to U are equal or disjoint)

Let V be a vector space, U subspace of V and $v, w \in V$. TFAE

- 1. $\mathbf{v} \mathbf{w} \in U$
- 2. v + U = w + U
- 3. $(\mathbf{v} + U) \cap (\mathbf{w} + U) \neq \emptyset$

Definition 2.117 (Addition and scalar multiplication on V/U)

Let V be a vector space, U subspace of V. Then addition and scalar multiplication on V/U are defined for $\mathbf{v}, \mathbf{w} \in V$ and $\lambda \in \mathbb{F}$ by

$$(\mathbf{v}+U)+(\mathbf{w}+U)=(\mathbf{v}+\mathbf{w})+U$$

and

$$\lambda(\mathbf{v}+U)=(\lambda\mathbf{v})+U$$

Theorem 2.118 (Quotient space is a vector space)

Let V be a vector space and U subspace of V. Equipped with addition and scalar multiplication as above, V/U is a vector space

Definition 2.119 (Quotient map)

Let V be a vector space, U subspace of V. The quotient map π is the linear map $\pi \in \mathcal{L}(V, V/U)$ defined by

$$\pi(\mathbf{v}) = \mathbf{v} + U$$

for $\mathbf{v} \in V$

Theorem 2.120 (Dimension of quotient space)

Let V be a finite-dimensional vector space and U subspace of V. Then

$$\dim V/U = \dim V - \dim U$$

Definition 2.121 (\tilde{T})

Let V,W be vector spaces, $T\in\mathcal{L}(V,W)$. Define \tilde{T} by

$$ilde{\mathcal{T}}: V/(\operatorname{null} \mathcal{T}) \to W$$
 $ilde{\mathcal{T}}(\mathbf{v} + \operatorname{null} \mathcal{T}) = \mathcal{T}\mathbf{v}$

Theorem 2.122 (Null space and range of \tilde{T})

Let V, W be vector spaces, $T \in \mathcal{L}(V, W)$. Then

- 1. $\tilde{T} \in \mathcal{L}(V/\text{null }T,W)$
- 2. T injective
- 3. range $\tilde{T} = \text{range } T$
- 4. V/null T isomorphic to range T

Vector space of linear maps

Null spaces and Ranges

Matrices

Invertibility and Isomorphic vector spaces

Products and quotients of vector spaces

Duality

Definition 2.123 (Linear functional/form)

A linear functional (or linear form) on a vector space V is a linear map in $\mathcal{L}(V,\mathbb{F})$

Definition 2.124 (Dual space)

The dual space V^* of V is the vector space $V^* = \mathcal{L}(V, \mathbb{F})$ of linear functionals on V

Theorem 2.125 (dim $V^* = \dim V$)

Suppose V is a finite-dimensional vector space. Then dim $V^* = \dim V < \infty$

Definition 2.126 (Dual basis)

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is a basis of the vector space V, then the **dual basis** of $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is the list $\varphi_1, \ldots, \varphi_n$ of elements of V^* , where for $j = 1, \ldots, n$, φ_j is the linear functional on V s.t.

$$\varphi_j(\mathbf{v}_k) = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$

Theorem 2.127 (Dual basis is a basis of the dual space)

Suppose V is a finite-dimensional vector space. Then the dual basis of a basis of V is a basis of V^*

Definition 2.128 (Dual map)

Let V, W be vector spaces, $T \in \mathcal{L}(V, W)$. The dual map of T is the linear map $T^* \in \mathcal{L}(W^*, V^*)$ defined by $T^*(\varphi) = \varphi \circ T$ for $\varphi \in W^*$

Property 2.129 (Algebraic properties of dual maps)

Let U, V, W be vector spaces

- $(S+T)^* = S^* + T^* \text{ for all } S, T \in \mathcal{L}(V,W)$
- $(\lambda T)^* = \lambda T^*$ for all $\lambda \in \mathbb{F}$ and all $T \in \mathcal{L}(V, W)$
- $ightharpoonup (ST)^* = T^*S^*$ for all $T \in \mathcal{L}(U,V)$ and all $S \in \mathcal{L}(V,W)$

Definition 2.130 (Annihilator)

Let V be a vector space, $U \subseteq V$. The annihilator U^0 of U is defined by

$$U^0 = \{ \boldsymbol{\varphi} \in V^\star : \forall \mathbf{u} \in U, \quad \boldsymbol{\varphi}(\mathbf{u}) = 0_{\mathbb{F}} \}$$

Theorem 2.131 (The annihilator is a subspace)

Let V be a vector space and $U \subseteq V$. Then the annihilator U^0 is a subspace of V^*

Theorem 2.132 (Dimension of the annihilator)

Let V be a finite-dimensional vector space, $U \subseteq V$ a subspace of V. Then

$$\dim U + \dim U^0 = \dim V$$

Theorem 2.133 (Null space of T^*)

Let V, W be finite-dimensional vector spaces, $T \in \mathcal{L}(V, W)$. Then

- 1. $\operatorname{null} T^* = (\operatorname{range} T)^0$
- 2. $\dim \operatorname{null} T^* = \dim \operatorname{null} T + \dim W \dim V$

Theorem 2.134 (T surjective $\Leftrightarrow T^*$ injective)

Let V, W be finite-dimensional vector spaces, $T \in \mathcal{L}(V, W)$. Then

T surjective $\Leftrightarrow T^*$ injective

Theorem 2.135 (Range of T^*)

Let V, W be finite-dimensional vector spaces, $T \in \mathcal{L}(V, W)$. Then

- 1. $\dim \operatorname{range} T^* = \dim \operatorname{range} T$
- 2. range $T^* = (\text{null } T)^0$

Theorem 2.136 (T injective $\Leftrightarrow T^*$ surjective)

Let V, W be finite-dimensional vector spaces, $T \in \mathcal{L}(V, W)$. Then

T injective $\Leftrightarrow T^*$ surjective

Theorem 2.137 (Matrix of T^* is transpose of matrix of T)

Let V, W be vector spaces, $T \in \mathcal{L}(V, W)$. Then $M(T^*) = M(T)^T$, where T denotes the transpose

Eigenvalues, eigenvectors and invariant subspaces

Invariant subspaces

Eigenvectors and upper-triangular matrices

Eigenspaces and diagonal matrices

Invariant subspaces

Eigenvectors and upper-triangular matrices

Eigenspaces and diagonal matrices

Definition 2.138 (Invariant subspace)

Let V be a vector space, $T \in \mathcal{L}(V)$. A subspace U of V is invariant under T if

$$\mathbf{u} \in U \Rightarrow T\mathbf{u} \in U$$

In other words, U invariant under T if $T|_{U} \in \mathcal{L}(U)$ [see Definition 2.144]

Definition 2.139 (Eigenvalue)

Let V be a vector space, $T \in \mathcal{L}(V)$. A scalar $\lambda \in \mathbb{F}$ is an eigenvalue of T if

$$\exists \mathbf{v} \in V, v \neq \mathbf{0}_V, \text{ s.t. } T(\mathbf{v}) = \lambda \mathbf{v}.$$

I use the notation $T(\mathbf{v})$ instead of $T\mathbf{v}$ to emphasise that $T \in \mathcal{L}(V)$.

Theorem 2.140 (Conditions equivalent to being an eigenvalue)

Let V be a finite-dimensional vector space, $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Denote $I_{\mathcal{L}(V)}$ the identity operator, $I_{\mathcal{L}(V)} \in \mathcal{L}(V)$ s.t. $\forall \mathbf{v} \in V$, $I_{\mathcal{L}(V)}\mathbf{v} = \mathbf{v}$. TFAE:

- 1. λ eigenvalue of T
- 2. $T \lambda I_{\mathcal{L}(V)}$ not injective
- 3. $T \lambda I_{\mathcal{L}(V)}$ not surjective
- 4. $T \lambda I_{\mathcal{L}(V)}$ not invertible

Definition 2.141 (Eigenvector)

Let V be a vector space, $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$ be an eigenvalue of T. A vector $\mathbf{v} \in V$ is an **eigenvector** of T corresponding to λ if $\mathbf{v} \neq 0$ and $T(\mathbf{v}) = \lambda \mathbf{v}$

Theorem 2.142 (Linearly independent eigenvectors)

Let V be a vector space, $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T with corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_m$. Then $\mathbf{v}_1, \ldots, \mathbf{v}_m$ linearly independent

Theorem 2.143 (Number of eigenvalues)

Let V be a finite-dimensional vector space, $T \in \mathcal{L}(V)$. Then T has at most dim V distinct eigenvalues

Definition 2.144 (Restriction and quotient operators)

Let V be a vector space, $T \in \mathcal{L}(V)$ and U a subspace of V invariant under T (Def. 2.138)

▶ The restriction operator $T|_U \in \mathcal{L}(U)$ is defined by

$$T|_U = T\mathbf{u}, \quad \mathbf{u} \in U$$

▶ The quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by

$$(T/U)(\mathbf{v}+U)=T\mathbf{v}+U, \quad \mathbf{v}\in V$$

For the quotient space $\mathcal{L}(V/U)$, see Definition 2.138 and the results that follow

Invariant subspaces

Eigenvectors and upper-triangular matrices

Eigenspaces and diagonal matrices

Definition 2.145

Let V be a vector space, $T \in \mathcal{L}(V)$, $m \in \mathbb{N} \setminus \{0\}$

$$T^m = \underbrace{T \cdots T}_{m \text{ times}}$$

$$ightharpoonup T^0 = I$$
, the identity operator on V

▶ If
$$T$$
 invertible with inverse T^{-1} , then $T^{-m} = (T^{-1})^m$

Definition 2.146

Let V be a vector space, $T\in\mathcal{L}(V)$ and $p\in\mathcal{P}(\mathbb{F})$ be the polynomial

 $p(T) = a_0 I + a_1 T + \cdots + a_m T^m$

$$p(z) = a_0 + a_1 z + \cdots + a_m z^m, \quad z \in \mathbb{F}$$

Then p(T) is the operator on $\mathcal{L}(V)$ defined by

where I is the identity operator

Definition 2.147 (Product of polynomials)

Let $p,q\in\mathcal{P}(\mathbb{F})$, then $pq\in\mathcal{P}(\mathbb{F})$ is the polynomial

$$(pq)(z) = p(z)q(z), \quad z \in \mathbb{F}$$

Theorem 2.148 (Multiplicative properties)

Let $p, q \in \mathcal{P}(\mathbb{F})$, V a vector space and $T \in \mathcal{L}(V)$. Then

- 1. (pq)(T) = p(T)q(T)
- 2. p(T)q(T) = q(T)p(T)

Theorem 2.149 (Operators on complex v.s. have an eigenvalue)

Let V be a vector space over $\mathbb C$ with dim $V=n<\infty$. Assume $T\in\mathcal L(V)$. Then V has an eigenvalue

Definition 2.150 (Matrix of an operator)

Let $T \in \mathcal{L}(V)$, where V is a finite-dimensional vector space, let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be a basis of V. The matrix of T with respect to the basis is the $n \times n$ matrix

$$M(T) = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

with entries a_{ik} defined by

$$Tv_k = a_{1k}\mathbf{v}_1 + \cdots + a_{nk}\mathbf{v}_n$$

If basis is not clear from the context, write $M(T, (\mathbf{v}_1, \dots, \mathbf{v}_n))$

Definition 2.151 (Diagonal of a matrix)

Let $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{F})$ be a square matrix. The **diagonal** of A consists of the entries a_{ii} , i = 1, ..., n

Definition 2.152 (Upper-triangular matrix)

Let $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{F})$ be a square matrix. The matrix A is upper-triangular if all entries below the diagonal are 0, i.e.,

$$a_{ii} = 0$$
, $\forall i, j$ such that $i > j$

Theorem 2.153 (Conditions for an upper-triangular matrix)

Let V be a finite-dimensional vector space, $T \in \mathcal{L}(V)$ and $\mathbf{v}_1, \dots, \mathbf{v}_n$ a basis of V. TFAE:

- 1. M(T) with respect to $\mathbf{v}_1, \dots, \mathbf{v}_n$ is upper-triangular
- 2. $Tv_j \in \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_j), \forall j = 1, \ldots, n$
- 3. span($\mathbf{v}_1, \dots, \mathbf{v}_j$) invariant under T, $\forall j = 1, \dots, n$

Theorem 2.154 (Every operator over \mathbb{C} has an UT matrix)

Let V be a finite-dimensional vector space over \mathbb{C} , $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V

Theorem 2.155 (Determination of invertibility from UT matrix)

Let V be finite-dimensional vector space. Assume that $T \in \mathcal{L}(V)$ has an upper-triangular matrix with respect to some basis of V. Then

$$T \text{ invertible } \Leftrightarrow \forall i = 1, \dots, n, \quad a_{ii} \neq 0$$

Theorem 2.156 (Determination of eigenvalues from UT matrix)

Let V be finite-dimensional vector space. Assume that $T \in \mathcal{L}(V)$ has an upper-triangular matrix with respect to some basis of V. Then

$$\lambda$$
 eigenvalue of $T \Leftrightarrow \lambda \in \{a_{ii}, i=1,\ldots,n\}$

Invariant subspaces

Eigenvectors and upper-triangular matrices

Eigenspaces and diagonal matrices

Definition 2.157 (Diagonal matrix)

Let $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{F})$ be a square matrix. A is a diagonal matrix if all entries of A are zero except possibly on the diagonal, i.e.,

$$\forall i, j, i \neq j, \quad a_{ij} = 0.$$

Definition 2.158 (Eigenspace)

Let V be a vector space, $T \in \mathcal{L}(V)$, $\lambda \in \mathbb{F}$. The eigenspace $E(\lambda, T)$ of T corresponding to λ is defined by

$$E(\lambda, T) = \text{null}(T - \lambda I).$$

Thus λ eigenvalue of $T \Leftrightarrow E(\lambda, T) \neq \{\mathbf{0}_V\}$.

Theorem 2.159 (Sum of eigenspaces is a direct sum)

Let V be a finite-dimensional vector space, $T \in \mathcal{L}(V)$. Assume $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T. Then

$$E(\lambda_1, T) + \cdots + E(\lambda_m, T)$$

is a direct sum and

$$\dim E(\lambda_1, T) + \cdots + \dim E(\lambda_m, T) \leq \dim V$$

Definition 2.160 (Diagonalisable operator)

Let V be a vector space, $T \in \mathcal{L}(V)$. T is diagonalisable if T has a diagonal matrix with respect to some basis of V.

Theorem 2.161 (Conditions equivalent to diagonalisability)

Let V be a finite-dimensional vector space, $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be distinct eigenvalues of T. TFAE:

- 1. T diagonalisable
- 2. V has a basis consisting of eigenvectors of T
- 3. $\exists U_1, \ldots, U_n$ 1-dimensional subspaces of V invariant under T s.t.

$$V = U_1 \oplus \cdots \oplus U_n$$

- 4. $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$
- 5. dim $V = \dim E(\lambda_1, T) + \cdots + \dim E(\lambda_m, T)$

Theorem 2.162 (Sufficient condition for diagonalisability)

Let V be a vector space, $T \in \mathcal{L}(V)$. If T has dim V distinct eigenvalues, then T diagonalisable

Inner product spaces

Inner products and norms

Orthonormal bases

Orthogonal complements & Minimisation problems

p. 105 -

Inner products and norms

Orthonormal bases

Orthogonal complements & Minimisation problems

Definition 2.163 (Inner product)

Let V be a vector space over \mathbb{F} . An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ having the following properties, $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall \lambda \in \mathbb{F}$,

$$ightharpoonup \langle \mathbf{v}, \mathbf{v} \rangle \geq 0$$
 [positivity]

$$\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}_{V}$$
 [definiteness]

$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$
 [additivity in first slot]

$$ho$$
 $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$ [conjugate symmetry]

Definition 2.164 (Inner product space)

An inner product space is a vector space V along with an inner product on V

Theorem 2.165 (Basic properties of inner product)

Let V be an inner product space over \mathbb{F} . Then

- 1. For each fixed $\mathbf{u} \in V$, the function $\mathbf{v} \mapsto \langle \mathbf{v}, \mathbf{u} \rangle$ is a linear map from V to \mathbb{F}
- 2. $\forall \mathbf{u} \in V, \langle \mathbf{0}_V, \mathbf{u} \rangle = 0$
- 3. $\forall \mathbf{u} \in V, \langle \mathbf{u}, \mathbf{0}_V \rangle = 0$
- 4. $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
- 5. $\forall \mathbf{u}, \mathbf{v} \in V \text{ and } \forall \lambda \in \mathbb{F}, \langle \mathbf{u}, \lambda \mathbf{v} \rangle = \overline{\lambda} \langle \mathbf{u}, \mathbf{v} \rangle$

Definition 2.166 (Norm)

Let V be an inner product space over \mathbb{F} . For $\mathbf{v} \in V$, the norm of v is defined by

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v}
angle}$$

Theorem 2.167 (Basic properties of the norm)

Let V be an inner product space, $\mathbf{v} \in V$. Then

- 1. $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = 0$
- 2. $\forall \lambda \in \mathbb{F}$, $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$

Definition 2.168 (Orthogonality)

Let V be an inner product space over \mathbb{F} . Two vectors $\mathbf{u}, \mathbf{v} \in V$ are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. We sometimes denote $\mathbf{u} \perp \mathbf{v}$

Theorem 2.169 (0 and orthogonality)

Let V be an inner product space over \mathbb{F} . Then

- 1. $\mathbf{0}_V$ is orthogonal to every vector in V
- 2. $\mathbf{0}_V$ is the only vector in V that is orthogonal to itself

Theorem 2.170 (Pythagorean theorem)

Let V be an inner product space, $\mathbf{u}, \mathbf{v} \in V$ s.t. $\mathbf{u} \perp \mathbf{v}$. Then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

Theorem 2.171 (An orthogonal decomposition)

Let V be an inner product space, $\mathbf{u}, \mathbf{v} \in V$ with $\mathbf{v} \neq 0$. Let

$$c = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \ (\in \mathbb{F}) \ and \ \mathbf{w} = \mathbf{u} - \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \mathbf{v} \ (\in V).$$

Then

$$\langle \mathbf{w}, \mathbf{v} \rangle = 0 \ and \ \mathbf{u} = c\mathbf{v} + \mathbf{w}.$$

Theorem 2.172 (Cauchy-Schwarz inequality)

Let V be an inner product space, $\mathbf{u}, \mathbf{v} \in V$. Then

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|$$

with
$$|\langle \mathbf{u}, \mathbf{v} \rangle| = \|\mathbf{u}\| \|\mathbf{v}\| \Leftrightarrow \mathbf{u} = k\mathbf{v}$$
 for some $0 \neq k \in \mathbb{F}$.

Theorem 2.173 (Triangle inequality)

Let V be an inner product space, $\mathbf{u}, \mathbf{v} \in V$. Then

$$\|u + v\| \le \|u\| + \|v\|$$

with
$$\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\| + \|\mathbf{v}\| \Leftrightarrow \mathbf{u} = k\mathbf{v}$$
 for some $0 \le k \in \mathbb{R}$.

Theorem 2.174 (Parallelogram equality)

Let V be an inner product space, $\mathbf{u}, \mathbf{v} \in V$. Then

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2).$$

Inner products and norm

Orthonormal bases

Orthogonal complements & Minimisation problems

Definition 2.175 (Orthonormal list)

A list of vectors is orthonormal if each vector in the list has norm 1 and is orthogonal to all other vectors in the list, i.e., the list $\mathbf{e}_1, \dots, \mathbf{e}_m$ of vectors in the inner product space V is orthonormal if

$$\langle \mathbf{e}_j, \mathbf{e}_k \rangle = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

Theorem 2.176 (Norm of an orthonormal linear combination)

Let $\mathbf{e}_1, \dots, \mathbf{e}_m$ be an orthonormal list of vectors in an inner product space V. Then

$$||a_1\mathbf{e}_1 + \cdots + a_m\mathbf{e}_m||^2 = |a_1|^2 + \cdots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbb{F}$.

Theorem 2.177 (Orthonormal lists are LI)

Let $\mathbf{e}_1, \dots, \mathbf{e}_m$ be an orthonormal list of vectors in an inner product space V. Then $\mathbf{e}_1, \dots, \mathbf{e}_m$ is linearly independent

Definition 2.178 (Orthonormal basis)

An orthonormal basis of an inner product space V is an orthonormal list of vectors in V that is also a basis of V

Theorem 2.179 (Orthonormal list & orthonormal basis)

Let $\mathbf{e}_1, \dots, \mathbf{e}_m$ be an orthonormal list of vectors in an inner product space V. If $\dim V = m$, then $\mathbf{e}_1, \dots, \mathbf{e}_m$ orthonormal basis of V.

Theorem 2.180 (Vector as LC of orthonormal basis)

Let $\mathbf{e}_1,\ldots,\mathbf{e}_n$ be an orthonormal basis of the inner product space V, $\mathbf{v}\in V$. Then

$$\mathbf{v} = \langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 + \dots + \langle \mathbf{v}, \mathbf{e}_n \rangle \mathbf{e}_n$$

and

$$\|\mathbf{v}\|^2 = |\langle \mathbf{v}, \mathbf{e}_1 \rangle|^2 + \cdots + |\langle \mathbf{v}, \mathbf{e}_n \rangle|^2$$

Theorem 2.181 (Gram-Schmidt procedure)

Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be a linearly independent list of vectors in an inner product space V. Let

$$\mathbf{e}_1 = rac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$

For j = 2, ..., m, define e_i inductively by

$$\mathbf{e}_j = rac{\mathbf{v}_j - \langle \mathbf{v}_j, \mathbf{e}_1
angle \mathbf{e}_1 - \dots - \langle \mathbf{v}_j, \mathbf{e}_{j-1}
angle \mathbf{e}_{j-1}}{\|\mathbf{v}_i - \langle \mathbf{v}_i, \mathbf{e}_1
angle \mathbf{e}_1 - \dots - \langle \mathbf{v}_i, \mathbf{e}_{i-1}
angle \mathbf{e}_{j-1}\|}$$

Then e_1, \ldots, e_m is an orthonormal list of vectors in V such that

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_j)=\operatorname{span}(\mathbf{e}_1,\ldots,\mathbf{e}_j), \quad j=1,\ldots,m$$

Theorem 2.182 (Existence of orthonormal basis)

Let V be a finite-dimensional inner product space. Then V has an orthonormal basis

Theorem 2.183 (Extending orthonormal list to basis)

Let V be a finite-dimensional inner product space. Then every orthonormal list of vectors in V can be extended to an orthonormal basis of V

Theorem 2.184 (UT matrix wrt orthonormal basis)

Let V be a finite-dimensional inner product space, $T \in \mathcal{L}(V)$. If T has an upper-triangular matrix with respect to some basis of V, then T has an upper-triangular matrix with respect to some orthonormal basis of V

Theorem 2.185 (Schur's Theorem)

Suppose V is a finite-dimensional complex vector space, $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some orthonormal basis of V

Theorem 2.186 (Riesz representation Theorem)

Let V be a finite-dimensional inner product space, $\varphi \in \mathcal{L}(V, \mathbb{F})$ a linear functional on V. Then $\exists \mathbf{u} \in V$ unique s.t.

$$\forall \mathbf{v} \in V, \quad \varphi(\mathbf{v}) = \langle \mathbf{v}, \mathbf{u} \rangle.$$

Inner products and norms

Orthonormal bases

Orthogonal complements & Minimisation problems

Definition 2.187 (Orthogonal complement)

Let V be an inner product space, $U \subset V$. The orthogonal complement U^{\perp} of U is the set

$$U^{\perp} = \{ \mathbf{v} \in V : \forall \mathbf{u} \in U, \quad \langle \mathbf{v}, \mathbf{u} \rangle = 0 \}$$

Property 2.188 (Basic properties of orthogonal complement)

- 1. If $U \subset V$, then U^{\perp} subspace of V
- 2. $\{\mathbf{0}_{V}\}^{\perp} = V$
- 3. $V^{\perp} = \{ \mathbf{0}_{V} \}$
- 4. If $U \subset V$, then $U \cap U^{\perp} \subset \{0\}$
- 5. If $U \subset W \subset V$, then $W^{\perp} \subset U^{\perp}$

Theorem 2.189 (Direct sum U and U^{\perp})

Let U be a finite-dimensional subspace of V, inner product space. Then

$$V = U \oplus U^{\perp}$$

Theorem 2.190 (Dimension of U^{\perp})

Let V be a finite-dimensional inner product space, U subspace of V . Then $\dim U^\perp = \dim V - \dim U$

Theorem 2.191 (Orth. complement of orth. complement)

Let U be a finite-dimensional subspace of the inner product space V. Then

$$\left(U^{\perp}\right)^{\perp}=U$$

Definition 2.192 (Orthogonal projection P_U)

Let V be an inner product space, U a finite-dimensional subspace of V. The **orthogonal projection** of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined by

$$P_{II}\mathbf{v}=\mathbf{u}$$
,

where $\mathbf{v} \in V$ is written $\mathbf{v} = \mathbf{u} + \mathbf{w}$, with $\mathbf{u} \in U$ and $\mathbf{w} \in U^{\perp}$

Property 2.193 (Properties of the orthogonal projection P_U)

Let V be an inner product space, U a finite-dimensional subspace of V, $v \in V$. Then

- 1. $P_U \in \mathcal{L}(V)$
- 2. $\forall \mathbf{u} \in U$, $P_{U}\mathbf{u} = \mathbf{u}$
- 3. $\forall \mathbf{w} \in U^{\perp}$. $P_{U}\mathbf{w} = \mathbf{0}_{V}$
- 4. range $P_U = U$
- 5. $\operatorname{null} P_U = U^{\perp}$
- 6. $\mathbf{v} P_U \mathbf{v} \in U^{\perp}$
- 7. $P_{11}^{2} = P_{11}$
- 8. $||P_{II}\mathbf{v}|| < ||\mathbf{v}||$
- 9. for every orthonormal basis e_1, \ldots, e_m of U,

 $P_{II}\mathbf{v} = \langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 + \cdots + \langle \mathbf{v}, \mathbf{e}_m \rangle \mathbf{e}_m$

Theorem 2.194 (Minimising distance to a subspace)

Let V be an inner product space, U a finite-dimensional subspace of V, $\mathbf{v} \in V$, $u \in U$. Then

$$\|\mathbf{v} - P_U \mathbf{v}\| \le \|\mathbf{v} - \mathbf{u}\|$$

with equality if and only if $\mathbf{u} = P_U \mathbf{v}$

Operators on inner product spaces

Self-adjoint and normal operators

Spectral theorems

Positive (semidefinite) operators & Isometries

Polar and Singular value decompositions

Self-adjoint and normal operators

Spectral theorems

Positive (semidefinite) operators & Isometries

Polar and Singular value decompositions

Definition 2.195 (Adjoint)

Let V, W be finite-dimensional inner product spaces over \mathbb{F} , $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^* : W \to V$ such that

$$\forall \mathbf{v} \in V, \forall \mathbf{w} \in W, \quad \langle T\mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, T^*\mathbf{w} \rangle$$

Theorem 2.196 (Adjoint is a linear map)

Let V, W be finite-dimensional inner product spaces over \mathbb{F} , $T \in \mathcal{L}(V, W)$. Then

$$T^{\star} \in \mathcal{L}(W, V)$$

Property 2.197 (Properties of the adjoint)

Let V, W be finite-dimensional inner product spaces over \mathbb{F} . Then

- 1. $\forall S, T \in \mathcal{L}(V, W), (S + T)^* = S^* + T^*$
- 2. $\forall T \in \mathcal{L}(V, W), \forall \lambda \in \mathbb{F}, (\lambda T)^* = \overline{\lambda} T^*$
- 3. $\forall T \in \mathcal{L}(V, W), (T^*)^* = T$
- 4. $I^* = I$ if I is the identity operator on V
- 5. Let U be an inner product space over \mathbb{F} , then $\forall T \in \mathcal{L}(V, W)$ and $\forall S \in \mathcal{L}(W, U)$, $(ST)^* = T^*S^*$

Theorem 2.198 (Null space and range of T^*)

Let V, W be finite-dimensional inner product spaces over \mathbb{F} , $T \in \mathcal{L}(V, W)$. Then

- 1. $\operatorname{null} T^* = (\operatorname{range} T)^{\perp}$
- 2. range $T^* = (\text{null } T)^{\perp}$
- 3. $\operatorname{null} T = (\operatorname{range} T^*)^{\perp}$
- 4. $rangeT = (null T^*)^{\perp}$

Definition 2.199 (Conjugate transpose)

Let $M \in \mathcal{M}_{mn}(\mathbb{F})$, $M = [m_{ij}]$. The conjugate transpose of M, often denoted M^* , is the matrix

$$M^{\star} = [\overline{m_{jj}}] \in \mathcal{M}_{nm}$$

i.e, the matrix obtained by transposing M then taking the (complex) conjugate of each entry

Theorem 2.200 (Matrix of T^*)

Let V, W be finite-dimensional inner product spaces over \mathbb{F} , $T \in \mathcal{L}(V, W)$. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ and $\mathbf{f}_1, \dots, \mathbf{f}_m$ be orthonormal bases of V and W, respectively. Then

$$M(T^{\star},(\mathbf{f}_1,\ldots,\mathbf{f}_m),(\mathbf{e}_1,\ldots,\mathbf{e}_n))$$

is the conjugate transpose of

$$M(T,(\mathbf{e}_1,\ldots,\mathbf{e}_n),(\mathbf{f}_1,\ldots,\mathbf{f}_m))$$

Definition 2.201 (Self-adjoint operator)

Let V be an inner product space over \mathbb{F} , $T \in \mathcal{L}(V)$. T is self-adjoint (or Hermitian):

$$T = T^*$$

In other words, $T \in \mathcal{L}(V)$ self-adjoint \iff

$$\forall \mathbf{v}, \mathbf{w} \in V, \quad \langle T\mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, T\mathbf{w} \rangle$$

Theorem 2.202 (Eigenvalues of self-adjoint operators are real)

Let V be an inner product space over \mathbb{F} , $T \in \mathcal{L}(V)$. Then all eigenvalues of T are real

Theorem 2.203

Let V be a complex inner product space, $T \in \mathcal{L}(V)$. Then

$$(\forall \mathbf{v} \in V, \langle T\mathbf{v}, \mathbf{v} \rangle = 0) \Rightarrow T = \mathbf{0}$$

Theorem 2 204

Let V be a complex inner product space, $T \in \mathcal{L}(V)$. Then

$$(T \text{ self-adjoint}) \Leftrightarrow (\forall \mathbf{v} \in V, \langle T\mathbf{v}, \mathbf{v} \rangle \in \mathbb{R})$$

Theorem 2.205

Let V be an inner product space, $T \in \mathcal{L}(V)$ self-adjoint. Then

$$(\forall \mathbf{v} \in V, \langle T\mathbf{v}, \mathbf{v} \rangle = 0) \Rightarrow T = 0$$

Definition 2.206 (Normal operator)

Let V be an inner product space, $T \in \mathcal{L}(V)$. T is normal if

$$TT^* = T^*T$$

In words, T is normal if it commutes with its adjoint

Theorem 2.207 (T normal $\Leftrightarrow ||T\mathbf{v}|| = ||T^*\mathbf{v}||$)

Let V be an inner product space, $T \in \mathcal{L}(V)$. Then

$$T \ normal \Leftrightarrow (\forall \mathbf{v} \in V, \|T\mathbf{v}\| = \|T^*\mathbf{v}\|)$$

Theorem 2.208 (T normal and T^* have same eigenvectors)

Let V be an inner product space, $T \in \mathcal{L}(V)$ a normal operator. Then

$$(\lambda, \mathbf{v})$$
 eigenpair of $T \Leftrightarrow (\overline{\lambda}, \mathbf{v})$ eigenpair of T^*

Theorem 2.209 (Orthogonal eigenvectors for normal operators)

Let V be an inner product space, $T \in \mathcal{L}(V)$ a normal operator. If $(\lambda_1, \mathbf{v}_1)$ and $(\lambda_2, \mathbf{v}_2)$ eigenpairs of T with $\lambda_1 \neq \lambda_2$, then $\mathbf{v}_1 \perp \mathbf{v}_2$.

Theorem 2.210

Let V be an inner product space, $T \in \mathcal{L}(V)$ self-adjoint and $b, c \in \mathbb{R}$ s.t. $b^2 < 4c$. Then $T^2 + bT + cl$ invertible

Theorem 2.211 (Self-adjoint operators have eigenvalues)

Let $V \neq \{0\}$ and $T \in \mathcal{L}(V)$ be self-adjoint. Then T has an eigenvalue

Theorem 2.212 (Self-adjoint operators & invariant subspaces)

Let V be an inner product space, $T \in \mathcal{L}(V)$ be self-adjoint and U be a subspace of V invariant under T. Then

- 1. U^{\perp} invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ self-adjoint

Self-adjoint and normal operators

Spectral theorems

Positive (semidefinite) operators & Isometries

Polar and Singular value decompositions

Theorem 2.213 (Complex spectral theorem)

Let V be an inner product space over $\mathbb{F} = \mathbb{C}$, $T \in \mathcal{L}(V)$. TFAE:

- 1. T normal
- 2. V has an orthonormal basis consisting of eigenvectors of T
- 3. T has a diagonal matrix with respect to some orthonormal basis of V

Theorem 2.214 (Real spectral theorem)

Let V be an inner product space over $\mathbb{F} = \mathbb{R}$, $T \in \mathcal{L}(V)$. TFAE:

- 1. T self-adjoint
- 2. V has an orthonormal basis consisting of eigenvectors of T
- 3. T has a diagonal matrix with respect to some orthonormal basis of V

Self-adjoint and normal operators

Spectral theorems

Positive (semidefinite) operators & Isometries

Polar and Singular value decompositions

Definition 2.215 (Positive (semidefinite) operator)

Let V be an inner product space. An operator $T \in \mathcal{L}(V)$ is **positive** (or **positive** semidefinite) if T is self-adjoint and

$$\forall \mathbf{v} \in V, \quad \langle T\mathbf{v}, \mathbf{v} \rangle \geq 0$$

Definition 2.216 (Square root operator)

Let V be an inner product space. An operator $R \in \mathcal{L}(V)$ is a square root of an operator $T \in \mathcal{L}(V)$ if

$$R^2 = T$$

Theorem 2.217 (Characterisation of positive operators)

Let $T \in \mathcal{L}(V)$, where V is an inner product space. TFAE:

- 1. T positive semidefinite
- 2. T self-adjoint and all eigenvalues of T are nonnegative
- 3. T has a positive semidefinite square root
- 4. T has a self-adjoint square root
- 5. $\exists R \in \mathcal{L}(V)$ s.t. $T = R^*R$

Theorem 2.218 (Uniqueness of positive semidefinite square root)

Let $T \in \mathcal{L}(V)$ be a positive semidefinite operator on an inner product space V. Then T has a unique positive semidefinite square root

Definition 2.219 (Isometry)

Let V be an inner product space. $S \in \mathcal{L}(V)$ is an isometry if

$$\forall \mathbf{v} \in V, \quad \|S\mathbf{v}\| = \|\mathbf{v}\|$$

Theorem 2.220 (Characterisation of isometries)

Let V be an inner product space, $S \in \mathcal{L}(V)$. TFAE:

- 1. S isometry
- 2. $\forall \mathbf{u}, \mathbf{v} \in V$, $\langle S\mathbf{u}, S\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$
- 3. $\forall \mathbf{e}_1, \dots, \mathbf{e}_n \in V$ orthonormal list, $S\mathbf{e}_1, \dots, S\mathbf{e}_n$ orthonormal
- 4. $\exists \mathbf{e}_1, \dots, \mathbf{e}_n$ orthonormal basis of V s.t. $S\mathbf{e}_1, \dots, S\mathbf{e}_n$ orthonormal
- 5. S*S = I
- 6. $SS^* = I$
- 7. S^* isometry
- 8. S invertible and $S^{-1} = S^*$

Theorem 2.221 (Isometries when $\mathbb{F} = \mathbb{C}$)

Let V be a complex inner product space, $S \in \mathcal{L}(V)$. TFAE:

- 1. S isometry
- 2. \exists orthonormal basis of V consisting of eigenvectors of S with corresponding eigenvalues all having modulus 1

Self-adjoint and normal operators

Spectral theorems

Positive (semidefinite) operators & Isometries

Polar and Singular value decompositions

Let T be a positive semidefinite operator, then denote \sqrt{T} the unique positive semidefinite square root of T

Theorem 2.222 (Polar decomposition)

Let V be an inner product space, $T \in \mathcal{L}(V)$. Then there exists an isometry $S \in \mathcal{L}(V)$ s.t.

$$T = S\sqrt{T^*T}$$

Definition 2.223 (Singular values)

Let V be an inner product space, $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ repeated dim $E(\lambda, \sqrt{T^*T})$ times. All are nonnegative

Theorem 2.224 (Singular value decomposition – SVD)

Let V be an inner product space. Assume $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then $\exists \mathbf{e}_1, \dots, \mathbf{e}_n$ and $\mathbf{f}_1, \dots, \mathbf{f}_n$ orthonormal bases of V s.t.

$$\forall \mathbf{v} \in V, \quad T\mathbf{v} = s_1 \langle v, \mathbf{e}_1 \rangle \mathbf{f}_1 + \cdots + s_n \langle \mathbf{v}, \mathbf{e}_n \rangle \mathbf{f}_n$$

Theorem 2.225 (SV without square root)

Let V be an inner product space. The singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ repeated dim $E(\lambda, T^*T)$ times

Operators on complex vector spaces

Generalised eigenvectors & Nilpotent operators

Decomposition of an operator

Characteristic and minimal polynomials

Jordan form

Generalised eigenvectors & Nilpotent operators

Decomposition of an operator

Characteristic and minimal polynomials

Jordan form

Theorem 2.226 (Sequence of increasing null spaces)

Let V be a finite-dimensional vector space over \mathbb{F} , $T \in \mathcal{L}(V)$. Then

$$\{0\} = \operatorname{null} T^0 \subset \operatorname{null} T^1 \subset \cdots \subset \operatorname{null} T^k \subset \operatorname{null} T^{k+1} \subset \cdots$$

Theorem 2.227 (Equality in sequence of null spaces)

Let V be a finite-dimensional vector space over \mathbb{F} , $T \in \mathcal{L}(V)$. Assume $m \in \mathbb{N} \setminus \{0\}$ is s.t.

$$\operatorname{null} T^m = \operatorname{null} T^{m+1}$$

Then

$$\forall k \in \mathbb{N}, \quad \mathsf{null}\, T^{m+k} = \mathsf{null}\, T^m$$

Theorem 2.228 (Null spaces stop growing)

Let V be a finite-dimensional vector space over $\mathbb F$ with dim $V=n,\ T\in\mathcal L(V)$. Then

$$\forall k \in \mathbb{N}, \quad \text{null } T^{n+k} = \text{null } T^n$$

Theorem 2.229 (
$$V = \text{null } T^{\dim V} \oplus \text{range } T^{\dim V}$$
)

Let V be a finite-dimensional vector space over $\mathbb F$ with dim $V=n,\ T\in\mathcal L(V)$. Then

$$V = \mathsf{null}\,T^n \oplus \mathsf{range}\,T^n$$

Definition 2.230 (Generalised eigenvector)

Let V be a finite-dimensional vector space over \mathbb{F} , $T \in \mathcal{L}(V)$, $\lambda \in \mathbb{F}$ an eigenvalue of T. $\mathbf{v} \in V$ is a **generalised eigenvector** of T corresponding to λ if $\mathbf{v} \neq 0$ and

$$\exists j \in \mathbb{N} \setminus \{0\}, \quad (T - \lambda I)^j \mathbf{v} = \mathbf{0}_V$$

Definition 2.231 (Generalised eigenspace)

Let $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The generalised eigenspace $G(\lambda, T)$ of T corresponding to λ is the set of all generalised eigenvectors of T corresponding to λ together with the $\mathbf{0}_V$ vector

Theorem 2.232 (Description of generalised eigenspaces)

Let $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then

$$G(\lambda, T) = \text{null}(T - \lambda I)^{\text{dim } V}$$

Theorem 2.233 (LI generalised eigenvectors)

Let $T \in \mathcal{L}(V)$. Assume $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T, $\mathbf{v}_1, \ldots, \mathbf{v}_m$ corresponding generalised eigenvectors. Then $\mathbf{v}_1, \ldots, \mathbf{v}_m$ linearly independent.

Definition 2.234 (Nilpotent operator)

An operator is **nilpotent** if $\exists k \in \mathbb{N}$ s.t. $T^k = 0$

Theorem 2.235 (A loose upper bound on power required)

Let $N \in \mathcal{L}(V)$ be nilpotent. Then

$$N^{\dim V} = 0$$

Theorem 2.236 (Matrix of a nilpotent operator)

Let $N \in \mathcal{L}(V)$ be nilpotent. Then there exists a basis of V with respect to which M(N) is strictly upper triangular, i.e.,

$$M(N) = [m_{ij}]$$
 is s.t. $m_{ij} = 0$ if $i \ge j$

Generalised eigenvectors & Nilpotent operators

Decomposition of an operator

Characteristic and minimal polynomials

Jordan form

Theorem 2.237 (& range of p(T) invariant under T)

Let $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then p(T) and range p(T) invariant under T

Theorem 2.238 (Description of operators when $\mathbb{F}=\mathbb{C}$)

Suppose V complex vector space, $T \in \mathcal{L}(V)$. Assume $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T. Then

- 1. $V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T)$
- 2. each $G(\lambda_i, T)$ invariant under T
- 3. $\forall j = 1, ..., m, (T \lambda_j I)|_{G(\lambda_i, T)}$ nilpotent

Theorem 2.239 (Basis of generalised eigenvectors)

Let V be a complex vector space and $T \in \mathcal{L}(V)$. Then there exists a basis of V consisting of generalised eigenvectors of T

Definition 2.240 (Multiplicity of an eigenvalue)

Let $T \in \mathcal{L}(V)$. The (algebraic) multiplicity of an eigenvalue λ of T is

- ightharpoonup dim $G(\lambda, T)$
- $ightharpoonup \dim (T \lambda I))^{\dim V}$

Theorem 2.241 (\sum multiplicities = dim V)

Let V be a complex vector space, $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_n$ be distinct eigenvalues of T with multiplicities d_1, \ldots, d_n . Then

$$\sum_{k=1}^n d_k = \dim V$$

Definition 2.242 (Block diagonal matrix)

Let A_1, \ldots, A_m be square matrices (not necessarily of the same size). A **block matrix** is a matrix of the form

$$A = \begin{pmatrix} A_1 & & & 0 \\ & A_2 & & \\ & & \ddots & \\ 0 & & & A_m \end{pmatrix}$$

We also write

$$A = diag(A_1, \ldots, A_m)$$

You will also see (not in this book)

$$A = A_1 \oplus \cdots \oplus A_m$$

Theorem 2.243 (Block diagonal matrix with UT blocks)

Let V be a complex vector space, $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T with multiplicities d_1, \ldots, d_m . Then there exists a basis of V s.t. T has a block diagonal matrix

$$diag(A_1,\ldots,A_m)$$

with each A_i a $d_i \times d_j$ upper-triangular matrix of the form

$$A_j = \begin{pmatrix} \lambda_j & & * \\ & \ddots & \\ 0 & & \lambda_j \end{pmatrix}$$

Theorem 2.244 (Identity plus nilpotent has square root)

Let $N \in \mathcal{L}(V)$ be nilpotent. Then I + N has a square root

Theorem 2.245 (T invertible has square root when $\mathbb{F}=\mathbb{C}$)

Let V be a complex vector space, $T \in \mathcal{L}(V)$ invertible. Then T has a square root

Generalised eigenvectors & Nilpotent operators

Decomposition of an operator

Characteristic and minimal polynomials

Jordan form

Definition 2.246 (Characteristic polynomial)

Let V be a complex vector space, $T \in \mathcal{L}(V)$, $\lambda_1, \ldots, \lambda_m$ the distinct eigenvalues of T with multiplicities d_1, \ldots, d_m . The **characteristic polynomial** of T is

$$(z-\lambda_1)^{d_1}\cdots(z-\lambda_m)^{d_m}$$

Theorem 2.247 (Degree and zeros of char. polyn.)

V a complex vector space, $T \in \mathcal{L}(V)$. Then

- 1. the characteristic polynomial of T has degree dim V
- 2. zeros of the characteristic polynomial of T are the eigenvalues of T

Theorem 2.248 (Cayley-Hamilton)

Let V be a complex vector space, $T \in \mathcal{L}(V)$. Let q be the characteristic polynomial of T. Then q(T) = 0

Definition 2.249 (Monic polynomial)

A monic polynomial is a polynomial with highest degree coefficient equal to 1

Theorem 2.250 (Minimal polynomial)

Let $T \in \mathcal{L}(V)$. Then there exists a unique monic polynomial p of smallest degree s.t. p(T) = 0

Definition 2.251 (Minimal polynomial)

Let $T \in \mathcal{L}(V)$. The minimal polynomial of T is the unique monic polynomial p of smallest degree s.t. p(T) = 0

Theorem 2.252

Let $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then $q(T) = 0 \Leftrightarrow q$ polynomial multiple of the minimal polynomial of T

Theorem 2.253 (Char. polyn. is multiple of min. polyn.)

Assume V vector space over $\mathbb{F}=\mathbb{C}$, $T\in\mathcal{L}(V)$. Then the characteristic polynomial of T is a polynomial multiple of the minimal polynomial of T

Theorem 2.254 (Eigenvalues are zeros of min. polyn.)

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial of T are precisely the eigenvalues of T

Generalised eigenvectors & Nilpotent operators

Decomposition of an operator

Characteristic and minimal polynomials

Jordan form

Theorem 2.255 (Basis corresponding to nilpotent operator)

Let $N \in \mathcal{L}(V)$ be nilpotent. Then $\exists \mathbf{v}_1, \dots, \mathbf{v}_n \in V$ and $m_1, \dots, m_n \in \mathbb{N}$ s.t.

- 1. $N^{m_1}\mathbf{v}_1, \dots, N\mathbf{v}_1, \mathbf{v}_1, N^{m_n}\mathbf{v}_n, \dots, N\mathbf{v}_n, \mathbf{v}_n$ is a basis of V
- 2. $N^{m_1+1}\mathbf{v}_1 = \cdots = N^{m_n+1}\mathbf{v}_n = 0$

Definition 2.256 (Jordan basis)

Let $T \in \mathcal{L}(V)$. A Jordan basis for T is a basis of V s.t. with respect to this basis, T has a block diagonal matrix

$$diag(A_1, \ldots, A_p)$$

where each A_i is an upper-triangular matrix of the form

$$A_j = egin{pmatrix} \lambda_j & 1 & & 0 \ & \ddots & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda_j \end{pmatrix}$$

Theorem 2.257 (Jordan form)

Let V be a complex vector space. If $T \in \mathcal{L}(V)$, then \exists a Jordan basis for T

An algorithm for finding the Jordan form

An algorithm to compute the Jordan canonical form of an $n \times n$ matrix A [MM82].

- 1. Compute the eigenvalues of A. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of A with multiplicities n_1, \ldots, n_m , respectively.
- 2. Compute n_1 linearly independent generalized eigenvectors of A associated with λ_1 as follows. Compute

$$(A-\lambda_1 E_n)^i$$

for $i=1,2,\ldots$ until the rank of $(A-\lambda_1E_n)^k$ is equal to the rank of $(A-\lambda_1E_n)^{k+1}$. Find a generalized eigenvector of rank k, say u. Define $u_i=(A-\lambda_1E_n)^{k-1}u$, for $i=1,\ldots,k$. If $k=n_1$, proceed to step 3. If $k< n_1$, find another linearly independent generalized eigenvector with rank k. If this is not possible, try k-1, and so forth, until n_1 linearly independent generalized eigenvectors are determined. Note that if $\rho(A-\lambda_1E_n)=r$, then there are totally (n-r) chains of generalized eigenvectors associated with λ_1 .

3. Repeat step 2 for $\lambda_2, \ldots, \lambda_m$.

- 1. Let u_1, \ldots, u_k, \ldots be the new basis. Observe that Thus in the new basis, A has the desired representation
- 2. The similarity transformation which yields $J = Q^{-1}AQ$ is given by $Q = [u_1, \ldots, u_k, \ldots].$

References I

R.K Miller and A.N. Michel, Ordinary differential equations, Academic Press, 1982.