M74LS367AP

HEX BUS DRIVERS WITH 3-STATE OUTPUTS

PIN CONFIGURATION (TOP VIEW)

DESCRIPTION

The M74LS367AP is a semiconductor integrated circuit constaining 6 buffers with 3-state output and is provided with output control inputs $1\overline{OC}$ and $2\overline{OC}$, which are common to 4 circuits and 2 circuits, respectively.

FEATURES

- Provided with output control inputs common to 4 circuits and 2 circuits.
- High fan-out
- High breakdown input voltage
- Wide operating temperature range (T_a = -20 ~ +75°C)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

When \overline{OC} is low, high appears in the output Y if input A is high, and low appears if A is low. When \overline{OC} is high, Y is put in the high-impedance state irrespective of the status of A. For this reason, this device is most suitable for use as a bus line driver.

FUNCTION TABLE (Note 1)

ŌC	Α	Υ
L	L	L
L	н	н
н	X	Z

Note 1: X : irrelevant

Z: high-impedance

HEX BUS DRIVERS WITH 3-STATE OUTPUTS

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 \sim +75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~+7	V
Vi	Input voltage		-0.5~+15	V
Vo	Output voltage	Off-state	-0.5~+5.5	V
Topr	Operating free-air ambient temperature range		-20~+75	℃
Tstg	Storage temperature range		−65∼+150	్

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim \pm 75 ^{\circ} C$, unless otherwise noted)

	Parameter			Unit		
Symbol			Min	Тур	Max	Oint.
Vcc	Supply voltage		4.75	5	5.25	٧
Іон	High-level output current	V _{0H} ≥2.4V	0		-2.6	mA
loL Low-level output current		V _{OL} ≤0.4V	0		12	mA
	V _{OL} ≦0.5V	0		24	mA	

ELECTRICAL CHARACTERISTICS (Ta = -20~+75°C, unless otherwise noted)

		· · · · · · · · · · · · · · · · · · ·				Limits		Unit
Symbol	Parameter		Test conditions		Min	Typ ≭	Max	Unit
ViH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	
VIC	Input clamp voltage		V _{CC} =4.75V, I _{IC} =	= 18mA			-1.5	٧
Voн	High-level output voltage		$V_{CC}=4.75V, V_{I}=0.8V$ $V_{I}=2V, I_{OH}=-2.6mA$		2.4	3.1		V
			V _{CC} =4.75V	I _{OL} = 12 mA		0.25	0.4	٧
VoL	Low-level output voltage		V ₁ =0.8V	I _{OL} =24mA		0.35	0.5	٧
lozh	Off-state high-level output current		V _{CC} =5.25V, V _I (\overline{OC})=2V, $V_0=2.4V$			20	μА
lozL	Off-state low-level output current		V _{CC} =5.25V, V _I (ŌŌ)=2V, V₀=0.4V			-20	μΑ
102L	High-level input current		V _{CC} =5.25V, V _I =	2.7V			20	μΔ
lін			V _{CC} =5.25V, V _I =	10V			0.1	mΑ
·	l ōc		V _{CC} = 5.25V, V _I =	= 0.4V			-0.4	mΑ
I IL Low-level input current	Low-level input current			$V_1(\overline{OC}) = 0.4V$ $V_1 = 0.4V$			-0.4	mΔ
		A ,	V _{CC} = 5.25V	$V_1(\overline{OC}) = 2V$ $V_1 = 0.5V$			20	μΔ
los	Short-circuit output current		V _{CC} =5.25V, V _O =0V		- 40		-225	mA
Icc	Supply current		$V_{CC} = 5.25V, V_1 = 0V, V_1(\overline{OC}) = 4.5V$			14	24	mΑ

^{* :} All typical values are at V_{CC} = 5V, Ta = 25°C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $Ta = 25^{\circ}C$, unless otherwise noted)

Symbol			Limits			Unit
	Parameter	Test conditions	Min	Тур	Max	OIII
t _{PLH}	Lwo-to-high-level, high-to-low-level output propagation	C _L =45pF		7	16	ns
tehl	time, from input A to output Y	(Note 3)		10	22	ns
t _{PZH}	Output enable time to high-level	$R_L=667\Omega$, $C_L=45pF$ (Note 3)		13	35	ns
tezL	Output enable time to low-level	R _L =667Ω, C _L =45pF (Note 3)		15	40	ns
t _{PHZ}	Output disable time from high-level	$R_L=667\Omega$, $C_L=5$ pF (Note 3)		13	30	ns
t _{PLZ}	Output disable time from low-level	R _L =667Ω, C _L = 5 pF (Note 3)		16	35	ns

Note 2: All measurements should be done quickly, and not more than one output should be shorted at a time.

HEX BUS DRIVERS WITH 3-STATE OUTPUTS

Note 3: Measurement circuit

Symbol	SW 1	SW2
t pzh	Open	Closed
t PZL	Closed	Open
t PLZ	Closed	Closed
t phz	Closed	Closed

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_r = 6ns, t_f = 6ns, t_w = 500ns, V_P = 3 V_P -P, Z_O = 50 Ω
- (2) All diodes are switching diodes $(t_{rr} \le 4ns)$
- (3) C_L includes probe and jig capacitance.

TIMING DIAGRAM (Reference level = 1.3V)

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

