CATEGORICAL EMBEDDINGS AND LINEARIZATIONS

By

JEAN MARIE McDILL

A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1971

To Bill

and

to Kathleen,

for her birthday

ACKNOWLEDGMENTS

The author would like to thank the Chairman of her Supervisory Committee, Dr. G. E. Strecker, for his thoughtful encouragement and many helpful suggestions in preparation of this paper over the obstacles of distance and time. She would also like to thank Dr. Z. R. Pop-Stojanovic, Dr. T. O. Moore (who introduced her to topology), Dr. B. V. Hearsey, Dr. D. A. Drake and Dr. Max H. Kele for serving on her Supervisory Committee, as well as A. R. Bednarek and W. E. Clark, who, at various times, have served on the committee.

With gratitude the author wishes to acknowledge the encouragement and unyielding support she has received from her husband. She would also like to thank the other members of her family who have aided her work on this dissertation: Mr. and Mrs. P. S. Willmore, Mr. and Mrs. J. R. Hutchinson and Kathleen, her daughter, for whom this undertaking has lasted a lifetime.

The author is also very much indebted to Mrs. Karen Walker for typing this paper.

TABLE OF CONTENTS

				Page
ACKN	OWLE	DGMEN	TS	iii
LIST	OF	CONCR	ETE CATEGORIES	vi
ABST	RACT			vii
INTR	ODUC	TION.		1
CHAP	TERS	:		
	1.	PREL	IMINARIES	8
		1.1	Products and Limits	8
		1.2	Special Categories	11
		1.3	Special Morphisms in General Categories	12
		1.4	Epireflections	15
		1.5	Concrete Embeddings	17
	2.	SOUR	CES	22
		2.1	Sources in General Categories	22
		2.2	Sources in Concrete Categories	28
		2.3	m _{-Sources}	29
	3.	EMBE	DDINGS INTO PRODUCTS	37
		3.1	Embedding Theorems	37
		3.2	$oldsymbol{arepsilon} \mid \mathfrak{M} \mid$ -Embeddable Objects	46
		3.3	$\emph{M} ext{-} ext{Coseparating Classes.}$	54
		3.4	lpha-Regular and $lpha$ -Compact Objects	61
	4.	LINE	ARIZATIONS	74
		4.1	Coordinate Immutors and Permutors	74
		4.2	M-Linearizations	78

TABLE OF CONTENTS (Continued)

	Page
4.3 Universal M-Linearizations	91
BIBLIOGRAPHY	98
BIOGRAPHICAL SKETCH	99

LIST OF CONCRETE CATEGORIES

Ab The category of Abelian groups and group homomorphisms AbMon The category of Abelian monoids and monoid homomorphisms CabMon The category of cancellative Abelian monoids and monoid homomorphisms CompT2 The category of compact Hausdorff spaces and continuous functions The category of all completely regular T_1 spaces and CompRegT, continuous functions Field The category of all fields and field homomorphisms Grp The category of all groups and group homomorphisms The category of all Hausdorff spaces and continuous functions Haus Ind The category of all indiscrete spaces and continuous functions Mon The category of all monoids and monoid homomorphisms POS . The category of all partially ordered sets and orderpreserving functions RComp The category of all realcompact spaces and continuous functions Set The category of all sets and functions The category of all semigroups and semigroup homomorphisms Sgp The category of all topological spaces and continuous Top functions

The category of all T, spaces and continuous functions

Top,

Abstract of Dissertation Presented to the Graduate Council of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

CATEGORICAL EMBEDDINGS AND LINEARIZATIONS

Ву

Jean Marie McDill

August, 1971

Chairman: Dr. G. E. Strecker Major Department: Mathematics

A recent definition for embedding morphisms in concrete categories is examined. Several types of sources are defined for which the source morphisms in the aggregate exhibit the character of single morphisms with 'embedding-like' properties. A theorem giving accessary and sufficient conditions for embedding an object into a categorical product of objects is proven for a variety of 'embedding-like' morphisms. The concept of embeddable objects is examined, and a definition is developed for &-regular and &-compact objects in concrete categories. In consequence, several characterization theorems for epireflective subcategories and epireflective hulls, which previously had been proven only for certain categories of topological spaces, are extended to a variety of "reasonable" concrete categories.

Baayen's generalizations of de Groot's results, on the existence of universal linearizations for monoids of endomorphisms

on completely regular T_1 -spaces, are extended. For every isomorphism-closed, left-cancellative class \mathcal{M} of morphisms in a category with countable products, every endomorphism on an object in the category is shown to be a restriction, relative to \mathcal{M} , of a coordinate-immuting endomorphism on a power of an object in the category. Under the same conditions, an automorphism in the category is shown to be the restriction of a coordinate-permuting automorphism. Furthermore, simultaneous \mathcal{M} -linearizations are shown to exist for certain monoids of endomorphisms on objects in the category, and universal \mathcal{M} -linearizations are shown to exist for every endomorphism in certain subcategories of the category.

INTRODUCTION

The "mathematical-man-in-the-street," when asked what he would consider an embedding morphism to be in any concrete category, would probably reply, if he replied at all, that it would have to be injective on the underlying sets and would have to preserve the structure of the embedded object: i.e., it would have to be an actual subsystem embedding. It has been somewhat difficult to find a categorical definition for a morphism that does just that. types of morphisms have been defined which act as subsystem embeddings in some categories but are too weak or too strong in other categories. Monomorphisms in algebraic categories usually act as embeddings, but they are not embeddings in the topological sense in Top; extremal monomorphisms are precisely the topological embeddings in Top, but they are too restrictive in Haus where they are homeomorphisms onto closed subspaces, and consequently both sections and regular monomorphisms are too restrictive in Haus. Within the last year, Herrlich and Strecker [7] developed the definition for concrete embeddings in a concrete category, which they found to be precisely the topological embeddings in Top and Haus and to be precisely the monomorphisms in algebraic categories (1.2.2). In Chapter 1, §1.5, we shall begin to examine the concept of concrete embeddings: in Chapter 3, we shall begin to exploit it. Several new results will be proved in §1.5. We will find that concrete embeddings are always injective on the underlying sets, and that concrete embeddings tend to have stable hereditary properties: i.e., that concrete embeddings in many subcategories tend to be concrete embeddings in the larger category, and conversely.

Frequently, when dealing with concrete embeddings, we restrict our attention to concrete categories (\mathcal{C} , \mathcal{U}) in which the faithful functor $\mathcal{U}:\mathcal{C}\to \underline{\mathsf{Set}}$ preserves products or monomorphisms. This restriction is fairly weak; in most ordinary concrete categories, the functor \mathcal{U} has a left-adjoint and hence preserves all limits (and hence all monomorphisms too).

In Chapter 2, we will develop the notion of sources. A source in a category $\mathfrak C$ is a $\mathfrak C$ -object X together with a family of $\mathfrak C$ -morphisms having X as their common domain. A categorical product ($\pi_{\mathfrak L_1},\pi_1$) is an example of a source which, in fact, exhibits a iel "mono-like" property; i.e., if f and g are morphisms in the category such that $\pi_1 \cdot f = \pi_1 \cdot g$ for each iel, then f = g. We call a source, whose morphisms acting in concert exhibit the property of a single monomorphism, a mono source. Herrlich and Strecker [7] have developed definitions for mono sources and extremal mono sources. In Chapter 2, we shall define several new types of sources (called, collectively, $\mathfrak M$ -sources) whose morphisms in the aggregate exhibit the properties of special types of "embedding-like" morphisms ($\mathfrak M$ -morphisms).

In topology, a long-established method for producing mappings into topological products has been by use of families of morphisms into the coordinate spaces. Tychonoff's well-known result, that for any infinite cardinal number k, a completely regular T_1 space X of weight \leq k can be topologically embedded into the topological product $[0,1]^k$ of unit intervals, made use of the family C[X,[0,1]] of all continuous functions from X into the unit interval [0,1].

His result stimulated several mathematicians to investigate this general procedure for topologically embedding a space into a product of spaces. In 1956, Mrówka [13] published a theorem giving necessary and sufficient conditions for a function to be a topological embedding of a space into a topological power of another space. More recently [16], he expanded this result to include embeddings of a space into products of other spaces, as well as characterizing topological embeddings onto closed subspaces of products of Hausdorff spaces. From our vantage point in category theory, we can see that these theorems concerned sources: that certain conditions on the source (X, ¾) where ¾ is a family of continuous maps from the space X into coordinate spaces of a topological product are necessary and sufficient to guarantee the existence of a homeomorphism from X onto a subspace of the product. In Chapter 3, we will prove a similar embedding theorem for categories (3.1.1) for a variety of "embedding-type" morphisms.

In 1958, Engelking and Mrówka [3] began to develop the concepts of E-regular and E-compact spaces in response to two intriguing questions: (1) for a given space E, when can a space X be topologically embedded into some topological power of E? (When is X an E-completely regular space?), and (2) for a given Hausdorff space E, when is a space X homeomorphic to a closed subspace of some topological power of E? (When is X an E-compact space?) Later Herrlich [4] expanded these investigations to include the concepts &-regular (respectively, &-compact) spaces for collections & of spaces (respectively, Hausdorff spaces), initiating the use of a category-theoretic approach.

In §3.2, we shall characterize objects which are "embeddable" in products of other objects. In particular for a concrete category (\mathcal{C},\mathcal{U}) with a subcategory \mathcal{E} , we will define a \mathcal{C} -object X to be \mathcal{E} -regular in \mathcal{C} (respectively, \mathcal{E} -compact in \mathcal{C}) provided that there exists a concrete embedding (respectively, an extremal concrete embedding) from X into the object part of a product of \mathcal{E} -objects. For the first time, the concepts of \mathcal{E} -regular and \mathcal{E} -compact objects can be applied to categories other than Top or Haus.

The most interesting applications of these concepts will be in the realm of epireflective subcategories. Recall that a subcategory X there exists a pair (r_{A}, X_{A}) , called the O(-epireflection of X,where X_{α} is an α -object and $Y_{\alpha}: X \to X_{\alpha}$ is an epimorphism with a maximal extension property for α . (In this paper, we will say that r_{A} is "O(-extendable" provided that for every morphism $g:X \to A$ for some $\mathcal{O}(-\text{object A}, \text{ there exists a morphism } g^* : X_{\bullet} \rightarrow A \text{ such that } g^* \cdot r_{\bullet} = g.)$ Herrlich and Strecker [8] have characterized epireflective subcategories in the following fashion: in a complete, well-powered and cowellpowered category 🕻 , with a full, replete subcategory 🗷 , 🔗 is epireflective in ${\mathcal C}$ if and only if it is closed under the formation of extremal subobjects and products in ${\cal C}$. This theorem gives us a large array of epireflective subcategories. The actual construction of the epireflection can be quite difficult. Usually the construction takes one of two forms: (1) "factoring out" the elements in the object with undesirable characteristics, e.g., the Abelianization of a group G by factoring

out the commutator subgroup G_{c} of G (a: $G \rightarrow G/G_{c}$), or the Hausdorffication of a topological space X by finding the appropriate equivalence relation R so that X/R is a Hausdorff space with the "universal" mapping property, or (2) constructing a "larger" object with the desired structure and finding an epimorphism from the object to the "larger" object, as in the Stone-Cech construction, $\beta:X \rightarrow \beta X$, which gives a CompT_2 -epireflection for a Hausdorff space X and which gives a topological embedding, as well, when X is a completely regular T, space, or as in the construction of the Grothendieck group K(M) for an Abelian monoid, $k:M \to K(M)$, for which k will be an injection, as well, when M is a cancellative Abelian monoid. It has always been interesting to note that in certain cases, the second method described above results in epireflections that are actual subsystem embeddings. Both methods of constructing epireflections have been used for both topological and algebraic categories; yet, until now, there has been no general categorical way to differentiate between these two methods and to determine for what objects in the category the epireflection epimorphism will be an actual subsystem embedding. For the category Haus, Herrlich and Van der Slot [10] were able to show that a full, replete subcategory \mathfrak{A} is epireflective if and only if for every O(-regular object X in Haus there exists an epimorphism r:X - A to some lpha-object A such that r is an lpha-extendable topological embedding. In §2.4, we will extend this result to one for "reasonable" concrete categories, and hence will be able to add a new characterization for epireflective subcategories in those categories. Furthermore, we will extend several other theorems (which Herrlich [5] proved for the

category $\underline{\text{Haus}}$) which will characterize $\mathcal{O}(\text{-regular} \text{ and } \mathcal{O}(\text{-regular})$ objects in "reasonable" concrete categories.

Tychonoff's embedding result, mentioned above, gave rise to another area of investigation. De Groot [2] proved that for a given infinite cardinal number k, there exists a monoid F of endomorphisms on $[0,1]^k$ which "universally linearizes" any monoid S of at most k endomorphisms on any completely regular T_1 space X of weight $\leq k$. Baayen [1] generalized this result to obtain several theorems in categorical terms, restricting his considerations to monomorphisms for general categories and topological embeddings for \underline{Top} , which he had to consider separately.

In Chapter 4, we will extend and update Baayen's theorems, but, in particular, we will change the emphasis of the investigation. We will not be searching for universal objects in categories as Baayen did; instead we will obtain quite general categorical linearization theorems for endomorphisms (and automorphisms) on objects in a category. Considering categories in which only certain products are required to exist, we will find that endomorphisms are actually restrictions of morphisms of an almost trivial-seeming linear character (i.e., morphisms that essentially act only on the coordinates of a power of an object, serving to "switch or collapse" these coordinates).

We will find that in categories with countable products, every endomorphism in the category can be 'linearized', i.e., extended to a coordinate immuting morphism (4.2.10), and that any automorphism can be considered as the 'restriction' of a coordinate permuting automorphism on a power. Furthermore, we will find that certain monoids of

endomorphisms, as well as groups of automorphisms, on an object in the category can be simultaneously linearized (4.2.4). And finally, we will find that for certain subcategories in a category with infinite products, universal linearizations may exist for every endomorphism in the subcategory (4.3.2).

PRELIMINARIES

The purpose of this chapter is to list most of the basic definitions and theorems that will be used in the following chapters. Proofs will be included only for new results, which will be found in \$1.5. Terms from category theory not specifically defined here can be found in [7], as well as the proofs for those theorems and examples that are stated here without proof or reference. Algebraic terms can be found in [12]; topological terms can be found in [11].

§1.1 Products and Limits

DEFINITION 1.1.1 A <u>family</u> $(A_{\underline{i}})_{\underline{i}\in I}$ <u>indexed by</u> I is a function A with domain I. For each $\underline{i}\in I$, $A(\underline{i})$ is usually written $A_{\underline{i}}$. Occasionally when I is unimportant or understood, the family $(A_{\underline{i}})_{\underline{i}\in I}$ is written $(A_{\underline{i}})$.

DEFINITION 1.1.2 Let ${\cal C}$ be a category. A <u>product in ${\cal C}$ </u> of a set-indexed family $({\bf A_i})_{i\in I}$ of ${\cal C}$ -objects is a pair (usually denoted by) (${\bf I}$ ${\bf A_i}$, $({\bf \pi_i})_{i\in I}$) satisfying the following three properties:

- (1) $\prod_{i \in I} A_i$ is a **C**-object
- (2) for each jel, $\pi_j: \prod_{i \in I} A_i \to A_j$ is a \mathcal{C} -morphism (called the projection from $\prod_{i \in I} A_i \xrightarrow{to} A_j$).
- (3) for each pair $(C,(f_i)_{i\in I})$, where C is a C-object and for each $j \in I$, $f_j : C \to A_j$ is a C-morphism, there exists a unique induced C-morphism (usually denoted by) $(f_i) : C \to \prod_{i \in I} A_i$ such that for each $j \in I$, the triangle

commutes.

For notational convenience we may sometimes write $(\Pi A_1, \pi_1)$ for the product. Also when A_1 = B for each isI, the product $(\Pi A_1, \pi_1)$ is usually written (B^I, π_1) and is called the I'th power of B in ${\mathfrak C}$. A category ${\mathfrak C}$ is said to have products provided that for every set I, each family of ${\mathfrak C}$ -objects indexed by I has a product in ${\mathfrak C}$. The following categories have products: Set, Grp, Top, Haus, Top, CompT2, CompRegT1, Mon, Sgp.

THEOREM 1.1.3 (Iteration of Products) Let $(K_i)_{i \in I}$ be a pairwise disjoint set-indexed family of sets. Suppose that for each $i \in I$, $(P^i, (\pi^i_k)_{k \in K_i})$ is the product of a set-indexed family $(X_k)_{k \in K_i}$ of C-objects and that (P, π_i) is the product of the family $(P^i)_{i \in I}$. Then $(P, (\pi^i_k, \pi_i)_{i \in I, k \in K_i})$ is the product of $(X_k)_{k \in \bigvee_{I} K_i}$ up to a natural isomorphism.

PROPOSITION 1.1.4. If $(\Pi A_1, \pi_1)$ and $(\Pi B_1, \rho_1)$ are products of the families $(A_1)_{i \in I}$ and $(B_1)_{i \in I}$, respectively, and if for each $i \in I$ there is a morphism $A_1 \xrightarrow{+} B_1$, then there exists a unique morphism (usually denoted by Πf_1) which makes the diagram

commute for each jEI.

DEFINITION 1.1.5. The morphism Πf_i of Proposition 1.1.4 is called the <u>product of the morphisms</u> $(f_i)_{i \in I}$.

Products are just a special type of limit which will be defined next.

DEFINITION 1.1.6. Let I and ${\mathcal C}$ be categories and let ${\mathbb D}: I \to {\mathcal C}$ be a functor.

(1) Then a pair $(L,(f_i)_{i\in Ob(I)})$ is called a <u>natural source</u> for D in C provided that L is a C-object, and for each $i\in Ob(I)$, $f_i:L\to D_i$ is a C-morphism, and for all $i,j\in Ob(I)$ and I-morphisms $m:i\to j$, the triangle

commutes.

(2) A natural source $(L,f_1)_{i\in Ob(I)}$ for D in $\mathcal C$ is called a limit for D in $\mathcal C$ provided that if $(\hat L,(\hat f_1)_{i\in Ob(I)})$ is any other natural source for D in $\mathcal C$, then there is a unique morphism $h:\hat L\to L$ such that for each jeOb(I), the triangle

commutes.

Some well-known examples of limits are: products, terminal objects, equalizers, pullbacks, and intersections.

DEFINITION 1.1.7. A category ${\cal C}$ is said to be <u>complete</u> provided that for every small category I (i.e., where Ob(I) is a set), every functor D:I \rightarrow ${\cal C}$ has a limit.

(The categories <u>Set</u>, <u>Grp</u>, <u>Mon</u>, <u>Top</u>, <u>Haus</u> and $\underline{\text{CompT}_2}$ are examples of complete categories.)

§1.2 Special Categories

DEFINITION 1.2.1. A category ${\cal C}$ is said to be well-powered provided that every ${\cal C}$ -object has a representative class of subobjects which is a set.

Dual notion: cowell-powered

The categories Set, Grp, Top, Mon, Haus and CompT $_2$ are well-powered and cowell-powered.

DEFINITION 1.2.2

(1) A concrete category is a pair (\mathcal{C} , \mathcal{U}) where \mathcal{C} is a category and $\mathcal{U}:\mathcal{C}\to \operatorname{Set}$ is a faithful functor.

- (2) A concrete category ($\mathcal{O}(,U)$) is called <u>algebraic</u> provided that it satisfies the following three conditions:
 - (a) O(has coequalizers.
 - (b) U has a left-adjoint.
 - (c) U preserves and reflects regular epimorphisms.

Examples of concrete categories include <u>Set</u>, <u>Grp</u>, <u>Top</u>, <u>Haus</u>, <u>POS</u>, <u>Field</u> and <u>Mon</u>. <u>Top</u>, <u>Haus</u>, <u>POS</u> and <u>Field</u> are not algebraic categories; however, <u>Set</u>, <u>Grp</u>, <u>Mon</u> and <u>CompT</u> are algebraic.

§1.3 Special Morphisms in General Categories

DEFINITION 1.3.1. Let & be a category.

(1) A C -morphism m is called a strong morphism provided that whenever $m \cdot k = g \cdot e$ for some C -morphisms k and g and some C-epimorphism e, there exists a morphism k such that the diagram

commutes.

- (2) A \mathcal{C} -morphism m is called a strong monomorphism when it is both a strong morphism and a monomorphism.
- (3) A \mathbb{C} -morphism f is called an extremal morphism provided that whenever f = g·e, where g is a \mathbb{C} -morphism and e is a \mathbb{C} -epimorphism, e must be a \mathbb{C} -isomorphism.
 - (4) A C -morphism is called an extremal monomorphism provided

that it is both an extremal morphism and a monomorphism.

PROPOSITION 1.3.2. Let C be a category.

- (a) The product of strong (mono) morphisms is a strong (mono) morphism.
- (b) If f and g are strong (mono)morphisms and f·g is a morphism, then f·g is a strong (mono) morphism.

Thus we say that the class of strong morphisms (respectively, strong monomorphisms) is closed under products in \mathcal{C} (1.3.2(a)) and closed under composition in \mathcal{C} (1.3.2(b)). In general, this is not true for the class of extremal morphisms in \mathcal{C} or for the class of extremal monomorphisms in \mathcal{C} .

Extremal monomorphisms are particularly interesting. The following definitions and propositions will give us sufficient conditions for which the class of extremal monomorphisms is closed under products and composition.

DEFINITION 1.3.3. Let ${\cal C}$ be a category, ${\cal M}$ be a class of monomorphisms closed under composition with isomorphisms, and ${\cal L}$ be a class of epimorphisms closed under composition with isomorphisms.

- (1) Let f be a morphism in \mathbb{C} . A factorization $f = m \cdot e$ where e and m are morphisms in \mathbb{C} is called an $(\mathcal{L}, \mathcal{M})$ <u>factorization</u> of f provided that $e \in \mathcal{L}$ and $m \in \mathcal{M}$.
- (2) An $(\mathcal{I},\mathcal{M})$ factorization of f, f = m·e, is said to be unique provided that whenever f = $\hat{m} \cdot \hat{e}$ is another $(\mathcal{L},\mathcal{M})$ factorization of f, there is an isomorphism h such that the diagram

commutes.

- (3) A category C is called an (\mathcal{L}, m) category provided that \mathcal{L} and m are closed under composition and every morphism in C has a unique (\mathcal{L}, m) factorization.
- (4) A category ${\cal C}$ is said to have the (1, ${\cal M}$) diagonalization property provided that for every commutative square in ${\cal C}$

with es $\boldsymbol{\mathcal{L}}$ and me $\boldsymbol{\mathcal{M}}$ there exists a morphism k which makes the diagram

PROPOSITION 1.3.4. Every (\pmb{L} , \pmb{m}) category has the (\pmb{L} , \pmb{m}) diagonalization property.

THEOREM 1.3.5. Every complete, well-powered category ${\cal C}$ is an (epi, extremal mono) category. Furthermore the class of extremal monomorphisms in ${\cal C}$ is closed under products.

§1.4 Epireflections

DEFINITION 1.4.1. Let ${\mathcal C}$ be a category and let ${\mathcal O}$ be a subcategory of ${\mathcal C}$.

- (1) $\mathfrak{C}($ is a <u>full subcategory</u> of \mathfrak{C} provided that whenever $f: A \to B$ is a \mathfrak{C} -morphism, and A and B are $\mathfrak{C}($ -objects, it follows that f is an $\mathfrak{C}($ -morphism.
- (2) α is a replete subcategory of α provided that whenever $\alpha \in A \to B$ is an $\alpha \in A$ -isomorphism and $\alpha \in A$ -object, it follows that $\alpha \in A$ is an $\alpha \in A$ -object.

DEFINITION 1.4.2. Let ${\mathfrak C}$ be a category and let ${\mathfrak K}$ be a subcategory of ${\mathfrak C}$.

(1) A morphism $f:X \to Y$ is called $\mathfrak{S}(-\underline{extendable})$ provided that for each $\mathfrak{S}(-object\ A$ and each morphism $g:X \to A$ there exists a morphism $g:Y \to A$ such that the diagram

commutes.

- (2) Let X be a C-object. The pair (r_{α}, X_{α}) is called an $C(-epireflection \ for \ X$ provided that X_{α} is an C(-object) and $r_{\alpha}: X \to X_{\alpha}$ is an C(-extendable) epimorphism.
- (3) \mathfrak{C} is called an epireflective subcategory of \mathfrak{C} provided that for every \mathfrak{C} -object X, there exists an \mathfrak{C} -epireflection for X.

THEOREM 1.4.3 (Characterization of Epireflective Subcategories) (Herrlich and Strecker [8]). Let $\mathcal C$ be a complete, well-powered and cowell-powered category and let $\mathcal C$ be a full, replete subcategory of $\mathcal C$. Then the following statements are equivalent:

- (a) $\mathcal{O}_{\mathcal{C}}$ is an epireflective subcategory of \mathcal{C} .

PROPOSITION 1.4.4. Let ${\mathfrak C}$ be a complete, well-powered and cowell-powered category and let ${\mathfrak K}$ be any full, replete subcategory of ${\mathfrak C}$. Then there exists a smallest epireflective subcategory ${\mathfrak C}({\mathfrak K})$ of ${\mathfrak C}$ which contains ${\mathfrak K}$.

DEFINITION 1.4.5. Let $\mathcal C$ be a category and let $\mathcal C$ be a subcategory of $\mathcal C$. The epireflective hull $\mathcal C(\mathcal C)$ of $\mathcal C$ (if it exists) is the smallest epireflective subcategory of $\mathcal C$, containing $\mathcal C$.

THEOREM 1.4.6 (Characterization of Epireflective Hulls) (Herrlich [6]). Let ${\mathfrak C}$ be a complete, well-powered and cowell-powered category and let ${\mathfrak K}$ be any full, replete subcategory of ${\mathfrak C}$. Let X be a ${\mathfrak C}$ -object. Then the following statements are equivalent:

- (a) X is a C(O1)-object
- (b) X is an extremal subobject of a product of &C-objects
- (c) Each & -extendable epimorphism is {X}-extendable

- (d) Each Ct-extendable epimorphism f:X → Y is an isomorphism
- (e) Each ${\cal O}($ -extendable morphism $f:X \to Y$ is an extremal monomorphism.

§1.5 Concrete Embeddings

In this section, we will define concrete embeddings and will determine a few of their properties.

DEFINITION 1.5.1. Let (C, U) be a concrete category.

(1) A morphism $f:X \to Y$ is called a <u>concrete embedding</u> provided that it is a monomorphism and whenever there is a morphism $g:Z \to Y$ for which there exists a function $h: \mathcal{U}(Z) \to \mathcal{U}(X)$ such that the diagram

commutes, there exists a morphism $\overline{h}:Z\to X$ such that $\mathfrak{U}(\overline{h})=h$.

(2) A morphism f:X → Y is called an extremal (respectively strong) concrete embedding provided that it is both a concrete embedding and an extremal (strong) morphism.

PROPOSITION 1.5.2. Let $(\mathcal{C},\mathcal{U})$ be a concrete category.

(1) The class of all concrete embeddings in ${\mathcal C}$ is closed under composition.

(2) If U preserves monomorphisms, the class of all concrete embeddings in C is closed under products, intersections and pullbacks.

PROPOSITION 1.5.3. Let (C, U) be a concrete category that is complete and well-powered for which a preserves monomorphisms. Then every extremal monomorphism is a concrete embedding, hence an extremal concrete embedding.

COROLLARY 1.5.4. Let (C, \mathcal{U}) be a concrete category that is complete and well-powered for waich U preserves monomorphisms. Then (C,U) is an (epi, extremal concrete embedding) category.

In some concrete categories, monomorphisms are not always injective on the underlying sets. We next show that concrete embeddings do have the desired property of injectivity.

PROPOSITION 1.5.5. Let $(\mathcal{C}, \mathcal{U})$ be a concrete category. Then every concrete embedding in ${\tt C}$ must be injective on the underlying sets. PROOF: Suppose that f:X - Y is a concrete embedding, and hence a monomorphism (1.5.1), but that U(f) is not injective on the underlying sets. Then there must exist a, be U(X), a \neq b such that U(f)(a) = U(f)(b).

Define
$$h_a \colon \mathcal{U}(X) \to \mathcal{U}(X)$$
 such that $h_a(x) = \begin{cases} a \text{ for } x=a, \ x=b \\ x \text{ for all } x \in X, \text{ for which } a \neq x \neq b \end{cases}$ and define $h_b \colon \mathcal{U}(X) \to \mathcal{U}(X)$ such that $h_b(x) = \begin{cases} b \text{ for } x=a, \ x=b \\ x \text{ for all } x \in X, \text{ for which } a \neq x \neq b \end{cases}$

and define
$$h_b: \mathcal{U}(X) \rightarrow \mathcal{U}(X)$$
 such that $h_b(x) = \begin{cases} b \text{ for } x=a, \ x=b \\ x \text{ for all } x \in X \\ \text{for which } a \neq x \neq b \end{cases}$

Then both h_a and h_b make the diagram

commute. Thus since f is a concrete embedding, there must exist $\overline{h}_a: X \to X$ such that $U(\overline{h}_a) = h_a$ and $\overline{h}_b: X \to X$ such that $U(\overline{h}_b) = h_b$ (1.5.1). But U is a faithful functor; hence it reflects commutative triangles. Thus $f \cdot \overline{h}_a = f = f \cdot \overline{h}_b$, so $\overline{h}_a = \overline{h}_b$ since f is a monomorphism. But this implies that $h_a = h_b - a$ contradiction.

It is known ([7]) that concrete embeddings in <u>Top</u> are precisely the topological embeddings, and that concrete embeddings in algebraic categories are precisely the monomorphisms. We will show that these results can be used to characterize concrete embeddings in many additional categories.

PROPOSITION 1.5.6. Let $(\mathcal{C},\mathcal{U})$ be a concrete category, let $\mathcal{O}(\mathcal{C})$ be any full subcategory of \mathcal{C} and let $f:X \to Y$ be an $\mathcal{O}(-morphism)$. If f is a concrete embedding in \mathcal{C} , then it is a concrete embedding in $\mathcal{C}(\mathcal{C})$.

PROOF: Let $f:X \to Y$ be a concrete embedding in $\mathcal C$. Then it is injective on the underlying sets (1.5.5), hence it is a monomorphism in $\mathcal C$. Let $g:Z \to Y$ be an $\mathcal C$ 1-morphism such that for some function $h: \mathcal U(Z) \to \mathcal U(X)$, $\mathcal U(f) \cdot h = \mathcal U(g)$. But g is also a $\mathcal C$ -morphism and f is a concrete embedding in $\mathcal C$; hence, there exists a $\mathcal C$ -morphism

 $\overline{h}:Z\to X$ such that $\mathfrak{U}(\overline{h})=h$. (1.5.1). Since \mathfrak{K} is full, $\overline{h}:Z\to X$ is also an \mathfrak{K} -morphism.

PROPOSITION 1.5.7. Let $\mathcal C$ be an algebraic category, let $\mathcal K$ be any subcategory of $\mathcal C$, and let $f:A \to B$ be an $\mathcal K$ -morphism. Then if f is a concrete embedding in $\mathcal K$, it is a concrete embedding in $\mathcal K$. Furthermore if $\mathcal K$ is a full subcategory of $\mathcal K$, then f is a concrete embedding in $\mathcal K$. PROOF: Suppose f is a concrete embedding in $\mathcal K$. Then it is injective on the underlying sets (1.5.5), and consequently it is a monomorphism in $\mathcal K$, thus a concrete embedding in $\mathcal K$.

The remainder of the proof follows directly from Proposition 1.5.6.

PROPOSITION 1.5.8. Let (\mathcal{C},\mathcal{U}) be a concrete category that is complete and well-powered and for which \mathcal{U} preserves epimorphisms and monomorphisms. Let \mathcal{C} be a full, subcategory of \mathcal{C} that is closed under the formation of extremal subobjects in \mathcal{C} , and let $f:A \to B$ be an \mathcal{C} -morphism. Then the following statements are equivalent:

- (a) f is a concrete embedding in C.
- (b) f is a concrete embedding in OL.

PROOF: (a) \Rightarrow (b): The proof follows directly from Proposition 1.5.6, since \Re is a full subcategory of \Im .

 $\underline{(b)} = \underline{(a)}$: Suppose f is a concrete embedding in \mathfrak{R} . Then, since \mathbb{C} is a complete well-powered category, there exists a unique (epi, extremal mono) factorization of f, f = m·e (1.3.5). Let L denote the domain of m.

By hypothesis, $\mathcal U$ preserves epimorphisms; thus $\mathcal U(e):\mathcal U(A)\to \mathcal U(L)$ is surjective. But $\mathcal U(f)$ is injective (1.5.5); so that $\mathcal U(e)$ must be injective; hence bijective. Consequently there is a function $h\colon \mathcal U(L)\to \mathcal U(A) \text{ such that } \mathcal U(e)\cdot h=1_{\mathcal U(L)} \text{ and } h\cdot \mathcal U(e)=1_{\mathcal U(A)}.$ Thus $\mathcal U(f)\cdot h=\mathcal U(m)$.

But (L,m) is an extremal subobject of B which is an \mathfrak{R} -object. Hence by hypothesis, L is an \mathfrak{R} -object, so m is an \mathfrak{R} -morphism. Thus since f is a concrete embedding in \mathfrak{R} , there exists an $\overline{h}:L\to A$ such that $\mathfrak{U}(\overline{h})=h$. Thus $\overline{h}\cdot e:A\to A$ and $\mathfrak{U}(\overline{h}\cdot e)=h\cdot \mathfrak{U}(e)=1_{\mathfrak{U}(A)}=\mathfrak{U}(1_A)$. Hence since \mathfrak{U} is faithful, $\overline{h}\cdot e=1_A$. Thus e is a section (and an epimorphism); hence it is an isomorphism. Thus f is an extremal monomorphism in \mathfrak{C} (1.3.1); hence it is a concrete embedding in \mathfrak{C} (1.5.3).

COROLLARY 1.5.9. In any full, hereditary subcategory α of α of the concrete embeddings are precisely the topological embeddings. PROOF: The epimorphisms in α are precisely the surjective continuous functions.

2. SOURCES

In this chapter we will investigate the action of sources;
a source being an object in a category together with a family of
morphisms having the object as a common domain. We will see that in
several special cases the morphisms of a source will act together to
exhibit certain "mono-like" properties—properties which may not belong
to any of the morphisms individually. The definitions and initial results on
mono sources and extremal mono sources were developed by Herrlich and
Strecker [7].

§2.1 Sources in General Categories

DEFINITION 2.1.1. Let ${\bf C}$ be a category.

- (1) The pair $(A,(f_i)_{i\in I})$ is called a <u>source</u> provided that A is a C-object and $(f_i)_{i\in I}$ is a family of C-morphisms, each with domain A. Note that for notational convenience, we will usually write (A,f_i) for a source when the indexing class I is understood or unimportant.
- (2) A source (A, f_1) is called a <u>mono</u> <u>source</u> provided that for any pair of C-morphisms h and k such that $f_1 \cdot h = f_1 \cdot k$ for all icI, it follows that h = k; i.e., provided that the family $(f_i)_{i \in I}$ is simultaneously left-cancellable.
- (3) A source (A,f₁) is called an extremal source provided that for each source (B,g₁) and each C-epimorphism e:A \rightarrow B such that for each i, the diagram

commutes, e must be an isomorphism.

- (4) A source (A,f $_1$) is called an <u>extremal mono source</u> provided that it is both an extremal source and a mono source.
- (5) A source (A,f₁) is called a strong source provided that for each source (B,g₁) and C-morphisms e and k, where e is a C-epimorphism and $g_1 \cdot e = f_1 \cdot k$ for each iel, there exists a C-morphism h such that the diagram

commutes for each isI.

(6) A source (A,f $_i$) is called a strong mono source provided that it is a strong source and a mono source.

In the following paragraphs we will examine some fundamental examples of these sources. First, however, we shall determine their relative strengths.

PROPOSITION 2.1.2. Let ${\mathfrak C}$ be a category and let (A,f_i) be a source in ${\mathfrak C}$. Then each of the following statements implies the statement below it.

- (a) (A,f_i) is a strong mono source (resp., strong source).
- (b) (A, f_i) is an extremal mono source (resp., extremal source).
 - (c) (A,f,) is a mono source (resp., source).

PROOF: (a) \rightarrow (b): Let (A,f_i) be a strong source in ${\bf C}$. Suppose there exists a family $({\bf g_i})_{i\in I}$ of morphisms in ${\bf C}$ and an epimorphism ${\bf e}$ in ${\bf C}$ such that ${\bf f_i}={\bf g_i}\cdot{\bf e}$ for all iEI. Then for all iEI, ${\bf f_i}\cdot{\bf l_A}={\bf g_i}\cdot{\bf e}$. Therefore, by Definition 2.1.1, there exists a morphism ${\bf h}:{\bf Q}\to{\bf A}$ such that the diagram

commutes for each ial. Hence he = 1_A , so that e is both a section and an epimorphism. Thus e is an isomorphism.

(b) ⇒(c): Clear from Definition 2.1.1.

PROPOSITION 2.1.3. Let I and ${\bf C}$ be categories and let D:I \rightarrow ${\bf C}$ be a functor. If (L, $\hat{\kappa}_1$) is a limit of D, then it is a strong mono source.

PROOF: By the definition of limit (1.1.6), (L, ℓ_1) is a natural source for D; i.e., for each I-morphism $m: i \to j$, $D(m) \cdot \ell_1 = \ell_j$. Let X be a \mathbb{C} -object and let f and $g: X \to L$ be \mathbb{C} -morphisms such that $\ell_i \cdot f = \ell_i \cdot g$ for each $i \in Ob(I)$. Then $D(m) \cdot (\ell_i \cdot f) = (D(m) \cdot \ell_i) \cdot f = \ell_j \cdot f$ for each I-morphism $m: i \to j$. Hence $(X, (\ell_i \cdot f)_{i \in Ob(I)})$ is a natural source for D. But (L, ℓ_i) is a limit for D, thus there exists a <u>unique</u> morphism $h: X \to L$, such that $\ell_i \cdot f = \ell_i \cdot h$ for all $i \in Ob(I)$. Therefore f = h = g, and consequently (L, ℓ_i) is a mono source (2.1.1).

Suppose that (B,g_i) is a source and k and e are C-morphisms where e is an epimorphism such that for each $i \in Ob(I)$ $g_i \cdot e = \ell_i \cdot k$. Then for each I-morphism $m: i \to j$, $D(m) \cdot g_i \cdot e = D(m) \cdot \ell_i \cdot k = \ell_j \cdot k = g_j \cdot e$, since (L,ℓ_i) is a natural source for D. However since e is an epimorphism, $D(m) \cdot g_i = g_j \cdot Thus$ (B,g_i) is a natural source for D. By Definition 2.1.1, there exists a unique morphism $k: B \to L$ such that $\ell_i \cdot k = g_i$ for each $i \in Ob(I)$. Hence, since (L,ℓ_i) is a mono source, the diagram

commutes for each $i \in Ob(I)$. Thus (L, ℓ, l) is a strong mono source (2.1.1).

It is well known that products, equalizers, terminal objects and pullbacks are special types of limits; hence they are examples of strong mono sources, and consequently they are examples of extremal mono sources. The following corollary provided the motivation for Proposition 2.1.3.

COROLLARY 2.1.4 (Herrlich and Strecker [7]). Let I and $\mathfrak C$ be categories and let D:I $\to \mathfrak C$ be a functor. If (L, ℓ_1) is a limit of D, then it is an extremal mono source.

PROOF: Propositions 2.1.3 and 2.1.2.

PROPOSITION 2.1.5. Let ${\bf C}$ be a category with pushouts. A source (A,f $_i$) in ${\bf C}$ is an extremal mono source in ${\bf C}$ if and only if it is a strong mono source in ${\bf C}$.

PROOF: By Proposition 2.1.3, we need only show that if (A,f_1) is an extremal mono source, then it is a strong mono source. Suppose that e is an epimorphism and for each iel, the diagram

commutes. Let

be the pushout of e and k. Then for each icI, there exists a morphism $h_i:P\to C_i$ such that $f_i=h_i\cdot q$. But since pushouts preserve epimorphisms, q is an epimorphism; hence q is an isomorphism, since (A,f_i) is an extremal mono source.

Then $q^{-1} \cdot p: B \to A$ and for each $i \in I$, $f_i \cdot q^{-1} \cdot p \cdot e = h_i \cdot q \cdot q^{-1} \cdot e$ = $g_i \cdot e = f_i \cdot k$ so that since e is an epimorphism and (A, f_i) is a mono source, the diagram

commutes for each icI.

The following proposition was proved for extremal sources by Herrlich and Strecker [7].

PROPOSITION 2.1.6. Let ${\mathfrak C}$ be a category with coequalizers. Then each extremal source (resp., strong source) in ${\mathfrak C}$ is an extremal mono source (resp., strong mono source) in ${\mathfrak C}$.

PROOF: Let (A, f_i) be an extremal source (resp., strong source) in ${\bf C}$, and let p and q be ${\bf C}$ -morphisms such that $f_i \cdot p = f_i \cdot q$ for each is ${\bf I}$. Let (k,K) be a coequalizer for p and q. Then k is an epimorphism, and for every f_i , such that $f_i \cdot p = f_i \cdot q$, there exists a unique morphism $g_i \cdot K \to C_i$ such that the diagram

commutes. Since (A,f_1) is an extremal source (resp., a strong source, hence an extremal source by Proposition 2.1.2), k must be an isomorphism (2.1.1). Hence p=q; so (A,f_4) is a mono source.

PROPOSITION 2.1.7. Let ${\tt C}$ be a finitely cocomplete category and let $({\tt A},{\tt f}_i)$ be a source in ${\tt C}$. The following statements are equivalent.

- (a) (A,f_i) is a strong source
- (b) (A,f;) is a strong mono source
- (c) (A,f,) is an extremal source
- (d) (A,f_i) is an extremal mono source.

PROOF: Since $\mathbb C$ is finitely cocomplete, it has coequalizers and pushouts. Thus

(a) \Rightarrow (b) and (c) \Rightarrow (d) (2.1.6) and (d) \Rightarrow (b) (2.1.5). Also it is

clear that (b) \Rightarrow (a) and (d) \Rightarrow (c) (2.1.1) and (b) \Rightarrow (d) (2.1.2).

§2.2 Sources in Concrete Categories

DEFINITION 2.2.1. Let (e, u) be a concrete category.

(1) A source (A, f_1) is called a <u>concrete embedding source</u> provided that it is a mono source and for every source (B, g_1) for which there exists a function h: $\mathcal{U}(B) + \mathcal{U}(A)$ such that the diagram

commutes for each icI, there exists a morphism $\overline{h}\colon B\to A$ such that $\mathfrak{U}(\overline{h})=h$.

(2) A source (A,f₁) is called a <u>strong concrete embedding source</u> (respectively, an <u>extremal concrete embedding source</u>) provided that it is both a concrete embedding source and a strong (resp., extremal) source.

The properties of concrete embedding sources will be examined in subsequent sections within the generalized framework of M-sources.

§2.3 M-Sources

Now that we have defined several distinct types of sources, we will find it convenient to introduce some unifying notation.

DEFINITION 2.3.1. Let ${\mathfrak C}$ be a category and let ${\mathfrak M}$ be any class of morphisms in ${\mathfrak C}$.

- (1) A ${\mathfrak C}$ -morphism f will be called an ${\mathfrak M}$ -morphism in ${\mathfrak C}$ provided that fe ${\mathfrak M}$.
- (2) \mathcal{M} will be called <u>isomorphism-closed</u> in \mathcal{C} provided that for any \mathcal{M} -morphism m and any \mathcal{C} -isomorphisms e and e', such that the compositions $m \cdot e$ and $e' \cdot m$ are defined in \mathcal{C} , $m \cdot e$ and $e' \cdot m$ must be \mathcal{M} -morphisms, and \mathcal{M} must contain all of the isomorphisms in \mathcal{C} .
 - (3) M will be called <u>left-cancellative</u> in **C** provided that

whenever $p \cdot q \epsilon \ \text{M}$ for ${\mathcal C}$ -morphisms p and q, q must be an $\text{\emph{m--}morphism.}$

(4) A pair (X,f) will be called an $\mathcal{M}-\underline{\text{subobject of}}$ Y provided that X and Y are $\mathcal{C}-\text{objects}$ and f:X \rightarrow Y is an $\mathcal{M}-\text{morphism}$.

For certain classes \mathcal{M} of morphisms in \mathcal{C} , we have previously defined sources whose morphisms in the aggregate exhibit properties similar to the properties of individual \mathcal{M} -morphisms. These sources, as listed below in Table 2.3.2, will be called " \mathcal{M} -sources." We will refer to Table 2.3.2 frequently throughout the remainder of the paper. Note that each class of morphisms listed in Table 2.3.2 is isomorphism-closed in \mathcal{C} .

TABLE 2.3.2. Let ${\mathfrak C}$ be a category. [Let (${\mathfrak C}$, ${\mathfrak U}$) be a concrete category.]

<u>m</u>	m-morphism	M-subobject	M-source
the class of all morphisms in C	morphism	weak subobject	source
the class of all monomorphisms in ${\bf c}$	monomorphism	subobject	mono source
the class of all extremal morphisms in ${\bf C}$	extremal morphism	extremal weak subobject	extremal source
the class of all extremal mono-morphisms in &	extremal monomorphism	extremal subobject	extremal mono source
the class of all strong morphisms in $\boldsymbol{\mathcal{C}}$	strong mor- phism		strong source
the class of all strong mono- morphisms in &	strong monomorphism	strong subobject	strong mono source

TABLE 2.3.2 (Continued)

m	M-morphism	M-subobject	m-source
the class of all concrete embeddings in ${\cal C}$	concrete embedding	concrete embedded subobject	concrete embedding source
the class of all extremal concrete embeddings in ${\mathfrak C}$	extremal concrete embedding	extremal concrete embedded subobject	extremal concrete embedding source
the class of all strong concrete embeddings in C	strong con- crete embed- ding	strong concrete embedded sub- object	strong con- crete embedding source

PROPOSITION 2.3.3 (Singleton \mathcal{M} -Sources). Let \mathcal{C} be a category. [Let $(\mathcal{C},\mathcal{U})$ be a concrete category.] Let \mathcal{M} be a class of morphisms in \mathcal{C} listed in Table 2.3.2, and let $f:A \to B$ be a morphism in \mathcal{C} . Then the following statements are equivalent.

- (a) (A,f) is an M-source
- (b) f:A → B is an M-morphism
- (c) (A,f) is an M-subobject of B

PROOF: $(b) \leftrightarrow (c)$: Apply Definition 2.3.1.

(a) \rightleftharpoons (b): Apply Definitions 2.1.1 and 1.3.1 when $\mathfrak C$ is any category and Definitions 2.2.1 and 1.5.1 when $(\mathfrak C, \mathcal U)$ is a concrete category. For example: (A,f) is a concrete embedding source provided that for every source (B,g), for which there exists a function h: $\mathcal U(B) \to \mathcal U(A)$ such that $\mathcal U(f) \cdot h = \mathcal U(g)$, there must exist a morphism $\overline{h}: A \to B$ such that $\mathcal U(\overline{h}) = h$ (2.2.1). This condition holds if and only if f is a concrete embedding (1.5.1).

Thus, from the above result we can see that several of the propositions on M-sources in §2.1 will automatically yield results on M-morphisms; e.g., every strong morphism is an extremal morphism (2.1.2); in categories with pushouts, every extremal monomorphism is a strong monomorphism (2.1.5); and in categories with coequalizers, every strong (resp., extremal) morphism is a strong (resp., extremal) monomorphism (2.1.6).

PROPOSITION 2.3.4 (Enlargement of \mathcal{M} -Sources). Let \mathcal{C} be a category. [Let (\mathcal{C} , \mathcal{U}) be a concrete category.] Let \mathcal{M} be a class of morphisms in \mathcal{C} listed in Table 2.3.2, (\mathcal{A} , \mathcal{A}_i) be a source and (\mathcal{A}_k) \mathcal{A}_k be a family of morphisms in \mathcal{C} with domain \mathcal{A} , having (\mathcal{A}_i) \mathcal{A}_i as a subfamily. Then if (\mathcal{A} , \mathcal{A}_i) is an \mathcal{M} -source, so is (\mathcal{A} , \mathcal{A}_k). PROOF: Clearly (\mathcal{A} , \mathcal{A}_k) is a source.

- (a) <u>mono</u>: Let p and q be ${\bf C}$ -morphisms such that ${\bf f_k}$ p = ${\bf f_k}$ q for all keK. Then ${\bf f_i}$ p = ${\bf f_i}$ q for all ieI, so that since (A,f_i) is a mono source, p = q. Consequently (A,f_k) is a mono source.
- (b) extremal: Suppose $(g_k)_{k \in K}$ is a family of $\mathfrak E$ -morphisms and e is an epimorphism in $\mathfrak C$ such that $f_k = g_k$ e for all $k \in K$. Then $f_i = g_i$ e for all $i \in I$, so that since (A, f_i) is an extremal source, e is an isomorphism (2.1.1). Hence (A, f_k) is an extremal source.
- (c) strong: Suppose (B,g_k) is a source, e is an epimorphism and r is a morphism such that $g_k \cdot e = f_k \cdot r$ for all keK. Then $g_i \cdot e = f_i \cdot r$ for all iel. Thus, since (A,f_i) is a strong source, there exists $h: B \to A$ such that the diagram

commutes for all isI. Hence $r = h \cdot e$. Now $f_k \cdot h \cdot e = g_k \cdot e$ for all keK. But e is an epimorphism, hence $f_k \cdot h = g_k$ for all keK. Thus (A, f_k) is a strong source.

- (d) <u>concrete embedding</u>: Suppose (B,g_k) is a source for which there exists a function $h\colon \mathcal{U}(B) \to \mathcal{U}(A)$ such that $\mathcal{U}(f_k) \cdot h = \mathcal{U}(g_k)$ for all keK. Then $\mathcal{U}(f_1) \cdot h = \mathcal{U}(g_1)$ for all ieI. Hence, since (A,f_1) is a concrete embedding source, there exists $\overline{h}\colon B \to A$ such that $\mathcal{U}(\overline{h}) = h$ (2.2.1), and consequently (A,f_k) is a concrete embedding source.
- (e) The remainder of the proof follows directly from parts
 (a), (b), (c), and (d).

PROPOSITION 2.3.5 (Left-Cancellation of \mathcal{M} -Sources). Let \mathcal{C} be a category. [Let $(\mathcal{C},\mathcal{U})$ be a concrete category.] And let \mathcal{M} be any class of morphisms in \mathcal{C} listed in Table 2.3.2. Let (A,f_i) be a source in \mathcal{C} for which there exist families $(h_i)_{i\in I}$ and $(g_i)_{i\in I}$ of morphisms in \mathcal{C} such that $f_i = h_i \cdot g_i$ for all icI. Then if (A,f_i) is an \mathcal{M} -source, so is (A,g_i) .

PROOF: Clearly (A,g,) is a source in C.

(a) mono: Let p and q be \mathcal{E} -morphism such that $g_i \cdot p = g_i \cdot q$. Then $f_i \cdot p = h_i \cdot g_i \cdot p = h_i \cdot g_i \cdot q = f_i \cdot q$. Since (A, f_i) is a mono source, p = q; thus (A, g_i) a mono source (2.1.1).

- (b) extremal: Let $(r_i)_{i\in I}$ be a family of ${\mathfrak C}$ -morphisms and let e be an epimorphism such that ${\mathfrak g}_i=r_i$ e for all icI. Then $f_i=h_i\cdot r_i$ e for all icI. Since (A,f_i) is an extremal source, e is an isomorphism; thus $(A,{\mathfrak g}_i)$ is an extremal source (2.1.1).
- (c) strong: Suppose (B,r_1) is a source in C, e is an epimorphism in C and k is a morphism in C such that $r_1 \cdot e = g_1 \cdot k$ for all is I. Then $h_1 \cdot r_1 \cdot e = h_1 \cdot g_1 \cdot k = f_1 \cdot k$. Since (A,f_1) is a strong source, there exists $p:B \rightarrow A$ such that the diagram

commutes for all ieI (2.1.1); hence $p \cdot e = k$ and $r_i \cdot e = g_i \cdot (p \cdot e)$. However, e is an epimorphism, so $r_i = g_i \cdot p$ for all ieI. Thus (A, g_i) is a strong source.

(d) concrete embedding: Suppose (B, r_1) is a source in $\mathfrak C$ for which there exists a function $h\colon \mathcal U(B) \to \mathcal U(A)$ such that $\mathcal U(g_1) \cdot h = \mathcal U(r_1)$ for all is I. Since $f_1 = h_1 \cdot g_1$ for all is I and functors preserve composition, $\mathcal U(f_1) \cdot h = \mathcal U(h_1 \cdot g_1) \cdot h = \mathcal U(h_1) \cdot \mathcal U(g_1) \cdot h = \mathcal U(h_1) \cdot \mathcal U(r_1) = \mathcal U(h_1 \cdot r_1)$ for all is I. And because (A, f_1) is a concrete embedding source, there exists a morphism $h: B \to A$ such that $\mathcal U(h) = h$ (2.2.1) and, consequently, (A, g_1) is a concrete embedding source.

(e) The remainder of the proof follows directly from parts(a), (b), (c) and (d).

COROLLARY 2.3.6. Let \mathcal{M} be any class of \mathfrak{C} -morphisms listed in Table 2.3.2. Then \mathcal{M} is left-cancellative in \mathfrak{C} .

PROOF: Suppose p and q are morphisms in \mathfrak{C} , such that p·q is an \mathcal{M} -morphism. Then (A,p·q) is an \mathcal{M} -source (2.3.3) and consequently (A,q) is an \mathcal{M} -source (2.3.5). Thus q is an \mathcal{M} -morphism (2.3.3).

PROPOSITION 2.3.7. Let $\mathcal C$ be a category [($\mathcal C$, $\mathcal U$) be a concrete category] and let $\mathcal M$ be any class of $\mathcal C$ -morphisms listed in Table 2.3.2. Then $\mathcal M$ contains all of the sections in $\mathcal C$.

PROOF: (a) mono: Clear.

(b) strong: We will show that every section is a strong monomorphism. Let s be a section. Suppose that k and g are morphisms and e is an epimorphism such that $s \cdot k = g \cdot e$. Now there exists a morphism \hat{s} such that $\hat{s} \cdot s = 1$. Thus $s \cdot \hat{s} \cdot g \cdot e = s \cdot \hat{s} \cdot s \cdot k = g \cdot e$, so that since e is an epimorphism and s is a monomorphism, the diagram

commutes.

(c) <u>extremal</u>: Every section is a strong monomorphism, hence an extremal monomorphism (2.1.2). Thus every section is extremal.

(d) concrete embedding: We will show that each section is a concrete embedding. Suppose that $s:A \to B$ is a section, $g:C \to B$ is a morphism and $h: \mathcal{U}(C) \to \mathcal{U}(A)$ is a function such that $\mathcal{U}(s) \cdot h = \mathcal{U}(g)$. Now there is a morphism \hat{s} such that $\hat{s} \cdot s = 1_A$. Thus $h = \mathcal{U}(\hat{s}) \cdot \mathcal{U}(s) \cdot h = \mathcal{U}(\hat{s}) \cdot \mathcal{U}(g) = \mathcal{U}(\hat{s} \cdot g)$. Thus s is a concrete embedding.

The remainder of the proof follows directly from parts (a), (b), (c) and (d).

3. EMBEDDINGS INTO PRODUCTS

In this chapter we shall investigate the characteristics of categorical 'embeddings into products,' and prove an embedding theorem, which interrelates \mathcal{M} -sources and the existence of \mathcal{M} -morphisms from the object part of the source into the product of codomains of the source morphisms. We shall examine the concept of 'embeddable objects,' arriving at generalized definitions for \mathcal{M} -regular and \mathcal{M} -compact objects. These definitions will enable us to prove characterization theorems for epireflective subcategories and epireflective hulls in certain concrete categories.

§3.1 Embedding Theorems

Herrlich and Strecker [7] proved the portions of the following embedding theorem that deal with mono sources and extremal mono sources. Their work provided the motivation for the following generalized result.

THEOREM 3.1.1 (The Embedding Theorem). Let $\mathcal C$ be a category. [Let $(\mathcal C,\mathcal U)$ be a concrete category such that $\mathcal U$ preserves monomorphisms and products.] Let $\mathcal M$ be a class of $\mathcal C$ -morphisms listed in Table 2.3.2, and let $(X,f_{\underline i})$ be a set-indexed source, with each $f_{\underline i}$ having codomain $E_{\underline i}$, such that a product $(\Pi E_{\underline i},\pi_{\underline i})$ of the codomains exists in $\mathcal C$. Then the unique induced morphism $(f_{\underline i}) \times \mathbb R = \mathbb R$ is an $\mathbb M$ -morphism if and only if $(X,f_{\underline i})$ is an $\mathbb M$ -source.

PROOF: (a) mono: Suppose that p and q are any ${\cal C}$ -morphisms such that $f_i \cdot p = f_i \cdot q$ for all is I. Then $\pi_i \cdot \langle f_i \rangle \cdot p = \pi_i \cdot \langle f_i \rangle \cdot q$ for each is I.

But $(\Pi E_i, \pi_i)$ is a mono source (2.1.3 and 2.1.2), thus $(f_i) p = (f_i) q$. Consequently, (X, f_i) is a mono source if and only if (f_i) is a monomorphism (2.1.1).

- (b) extremal: Suppose that $\langle f_i \rangle$ is an extremal morphism and that (B,g_i) is a source in C for which there is an epimorphism e in C such that $f_i = g_i \cdot e$ for each $i \in I$. By the definition of product (1.1.2), there exists a unique morphism $\langle g_i \rangle : B \to \Pi E_i$ such that $\pi_i \langle g_i \rangle = g_i$ for each $i \in I$. Then $\pi_i \langle f_i \rangle = f_i = g_i \cdot e = \pi_i \langle g_i \rangle \cdot e$. Since $(\Pi E_i, \pi_i)$ is a mono source (2.1.3), $\langle f_i \rangle = \langle g_i \rangle \cdot e$. And because $\langle f_i \rangle$ is an extremal morphism, e must be an isomorphism (1.3.1); consequently, (X, f_i) is an extremal source (2.1.1). Conversely, suppose that (X, f_i) is an extremal source and that $g \cdot e = \langle f_i \rangle$ is a factorization of $\langle f_i \rangle$ for which e is an epimorphism. Let Y denote the codomain of e. Then $(Y, \pi_i \cdot g)$ is a source and $f_i = \pi_i \cdot \langle f_i \rangle = (\pi_i \cdot g) \cdot e$ for each $i \in I$. Since (A, f_i) is an extremal source, e must be an isomorphism. Hence $\langle f_i \rangle$ must be an extremal morphism (1.3.1).
- (c) strong: Suppose (B,g_1) is any source in ${\cal C}$ and e is any epimorphism in ${\cal C}$ and k is any morphism in ${\cal C}$ such that $f_1 \cdot k = g_1 \cdot e$ for each is I. Then there exists a unique morphism $(g_1) \cdot B \to IE_1$ such that $\pi_1 \cdot (g_1) = g_1$ for each is I. If (X,f_1) is a strong source, there exists a morphism $h: B \to X$ such that the inner portion of the diagram

commutes for all ieI; i.e., $k = h \cdot e$ and $f_1 \cdot h = g_1$ for all ieI. Hence $\pi_1 \cdot \langle f_1 \rangle \cdot h = \pi_1 \cdot \langle g_1 \rangle$ for each ieI. Therefore, since $(\Pi E_1, \pi_1)$ is a mono source, $\langle f_1 \rangle \cdot h = \langle g_1 \rangle \cdot h$. Hence the outer portion of the diagram above commutes, which implies that $\langle f_1 \rangle$ is a strong morphism (1.3.1). Conversely, suppose that $\langle f_1 \rangle$ is a strong morphism. Then there exists a morphism $h: B \to X$ such that the outer portion of the diagram commutes; i.e., $k = h \cdot e$ and $\langle f_1 \rangle \cdot h = \langle g_1 \rangle \cdot Clearly f_1 \cdot h = \pi_1 \cdot \langle f_1 \rangle \cdot h = \pi_1 \cdot \langle g \rangle = g_1$ for each ieI, so that the inner portion of the diagram commutes for each ieI. Hence (X, f_1) is a strong source (2.1.1).

- (d) concrete embedding: From part (a), (X, f_1) is a mono source if and only if $\langle f_1 \rangle$ is a monomorphism. Suppose that (B, g_1) is any source in C for which there exists a function $h: U(B) \to U(X)$ such that $U(f_1) \cdot h = U(g_1)$ for each is L. Then by the definition of product (1.1.2), there exists a unique morphism $\langle g_1 \rangle : B \to IIE_1$ such that $\pi_1 \cdot \langle g_1 \rangle = g_1$ for all is L. By hypothesis, L preserves products; hence $(U(IIE_1), U(\pi_1))$ is a product in Set, hence a mono source in Set (2.1.3). Thus $U(\pi_1) \cdot U(\langle f_1 \rangle) \cdot h = U(\pi_1 \cdot \langle f_1 \rangle) \cdot h = U(f_1) \cdot h = U(g_1) = U(\pi_1 \cdot \langle g_1 \rangle) = U(\pi_1) \cdot U(\langle g_1 \rangle)$ for all is L if and only if $U(\langle f_1 \rangle) \cdot h = U(\langle g_1 \rangle)$. Consequently (X, f_1) is a concrete embedding source if and only if $\langle f_1 \rangle$ is a concrete embedding (2.2.1 and 1.5.1).
- (e) The remainder of the proof follows directly from parts(a), (b), (c), and (d).

There are many applications for this theorem since the category ${\mathcal C}$ is quite unrestricted. A few of the examples are listed as corollaries.

COROLLARY 3.1.2. Let A be any set with at least two elements.

Then for any set S, there exists an injection into some power of A. PROOF: Let a and b be distinct elements of A, and let $\frac{1}{3}$ be the set of all functions from S to A. Then (S, $\frac{1}{3}$) is a mono source in <u>Set</u>. To see this, suppose that p and q are distinct functions from some set X into S. Then for some xeX, p(x) \neq q(x). Define $\overline{f}:S \rightarrow A$ by

 $\overline{f}(s) = \begin{cases} a \text{ if } s = p(x) \\ b \text{ if } s \neq p(x) \end{cases}. \text{ Then } \overline{f} \cdot p \neq \overline{f} \cdot q. \text{ Since } \underline{\text{Set}} \text{ has products,} \end{cases}$ $\text{the power } (A^{3}, \pi_{\underline{f}}) \text{ exists in } \underline{\text{Set}}. \text{ Let } \langle f_{\underline{i}} \rangle : S \to A^{3} \text{ be the unique}$ induced function. By Theorem 3.1.1, since (S, 3) is a mono source, $\langle f_{\underline{i}} \rangle \text{ is an injection.}$

COROLLARY 3.1.3. A continuous map f from a topological space X into a topological product ΠE_i of spaces $(E_i)_{i \in I}$ is a topological embedding if and only if $(X, \pi_i \cdot f)$ is an extremal mono source in $\underline{\text{Top}}$, where $\pi_i \colon \Pi E_i \to E_i$ are the projection maps.

PROOF: f is a topological embedding if and only if f is an extremal monomorphism in $\underline{\text{Top}}$ ([9]). Since the topological product together with the projection mappings form a categorical product in $\underline{\text{Top}}$, f is an extremal monomorphism in $\underline{\text{Top}}$ if and only if $(X,\pi_{\underline{1}}\cdot f)$ is an extremal mono source in $\underline{\text{Top}}$ (3.1.1).

COROLLARY 3.1.4. A continuous map f from a Hausdorff space X into a topological product of Hausdorff spaces, $\Pi E_{\underline{i}}$, is a homeomorphism onto a closed subset of the product if and only if $(X,\pi_{\underline{i}}\cdot f)$ is an extremal mono source in Haus (where $\pi_{\underline{i}}:\Pi E_{\underline{i}} \to E_{\underline{i}}$ are the projection maps).

PROOF: Extremal monomorphisms in <u>Haus</u> are exactly the topological embeddings onto closed subsets ([9]). Since a topological product

together with the projection mappings is the categorical product in <u>Haus</u>, we have, by Theorem 3.1.1, that f is an extremal monomorphism if and only if (X, π, \cdot, f) is an extremal mono source in <u>Haus</u>.

COROLLARY 3.1.5. Let ($\mathcal C$, $\mathcal U$) be a complete, well-powered concrete category for which $\mathcal U$ preserves monomorphisms and products. Let (A,f_i) be a set-indexed source in $\mathcal C$. Then (A,f_i) is an extremal mono source in $\mathcal C$ if and only if it is an extremal concrete embedding source in $\mathcal C$.

PROOF: ${\mathfrak C}$ is a complete category. Hence $(A,A\overset{f_i}{\to}^i E_i)$ being a setindexed source, implies that the product $(\Pi E_i,\pi_i)$ exists in ${\mathfrak C}$. If (A,f_i) is an extremal mono source, the induced morphism $(f_i):A\to\Pi E_i$ is an extremal monomorphism (3.1.1) and, consequently, (f_i) is an extremal concrete embedding (1.5.3). Thus (A,f_i) is an extremal concrete embedding source. Conversely, by definition, every extremal concrete embedding source is an extremal mono source (2.2.1).

A study of extensions naturally goes hand in hand with the study of embeddings.

DEFINITION 3.1.6. Let ${\bf C}$ be a category, ${\bf M}$ be any isomorphism-closed class of ${\bf C}$ -morphisms, ${\bf E}$ be a subcategory of ${\bf C}$, and ${\bf X}$ be a ${\bf C}$ -object.

- (1) The pair (γ, Y) is called an \mathcal{M} -extension of X in \mathfrak{E} provided that Y is an \mathfrak{E} -object, (X, γ) is an \mathcal{M} -subobject of Y and γ is an epimorphism.
- (2) Let (X,f_i) be a source with codomains in $\boldsymbol{\xi}$ (i.e., for each isI, the codomain E_i of f_i is an $\boldsymbol{\xi}$ -object). (X,f_i) is called an

 \mathfrak{M} -nonextendable source with respect to \mathfrak{E} provided that for any \mathfrak{M} -extension (γ,Y) of X in \mathfrak{C} with the property--for each isI, there exists a morphism $f_i^*:Y\to E_i$ for which the diagram

commutes--y must be an isomorphism (i.e., there must exist no proper ${\mathfrak M}$ -extension of X in ${\mathfrak C}$ with this property).

In particular, if a source (X,f_1) contains all the morphisms from X to $\mathfrak E$ -objects, then (X,f_1) is an $\mathfrak M$ -nonextendable source with respect to $\mathfrak E$ if and only if there exists no proper $\mathfrak M$ -extension (w,W) for X in $\mathfrak C$ for which w is $\mathfrak E$ -extendable (1.4.2).

Note that every class of \mathcal{M} -morphisms listed in Table 2.3.2 is isomorphism-closed in \mathcal{C} . For convenience, when \mathcal{M} is the class of all \mathcal{C} -morphisms, we will use the prefix 'weak' to replace ' \mathcal{M} ' in Definition 3.1.6. Hence we can use the term 'weak-extension' to denote an \mathcal{M} -extension when \mathcal{M} is the class of all morphisms in \mathcal{C} .

The definition for a weak-nonextendable source (X,f_1) with respect to $\mathcal E$ (3.1.6) corresponds to Mrówka's [16] definition for the class $\{f_1 : i \in I\}$ to be an ' $\mathcal E$ -nonextendable class for X.'

PROPOSITION 3.1.7. Let $\mathcal C$ be a category, $\mathcal E$ be a subcategory of $\mathcal C$, and $(\mathrm X, \mathrm f_1)$ be a source with codomains in $\mathcal E$. Then $(\mathrm X, \mathrm f_1)$ is a weak-nonextendable source with respect to $\mathcal E$ if and only if $(\mathrm X, \mathrm f_1)$ is

an extremal source.

PROOF: Suppose (X,f_1) is a weak-nonextendable source with respect to $\mathcal E$. Suppose that (Y,g_1) is a source in $\mathcal C$ such that for some epimorphism $e:X\to Y$, the diagram

commutes for each $i \in I$. Then (e,Y) is a weak-extension; hence e must be an isomorphism (3.1.6). Consequently (X,f₁) is an extremal source (2.1.1).

Conversely, let (X,f_1) be an extremal source. Suppose there exists a weak-extension (γ,Y) such that, for each isI, there exists a morphism g_1 for which $f_1=g_1\cdot\gamma$. But γ is an epimorphism (3.1.6) and (X,f_1) is an extremal source; hence γ must be an isomorphism (2.1.1). Thus (X,f_4) is a weak-nonextendable source with respect to $\mathcal E$.

Corollary 3.1.3 gives us a way to determine whether a continuous map from a topological space into a topological product of spaces is a topological embedding. And Corollary 3.1.4 gives us a way to determine whether a continuous map from a Hausdorff space into a product of Hausdorff spaces is a homeomorphism onto a closed subspace of the product. Yet these methods are not as convenient as we might wish. Mrowka's Embedding Theorem yields a topological characterization of these results. Parts of this theorem follow directly from Theorems 3.1.1 and 3.1.7.

THEOREM 3.1.8 (Mrowka's Embedding Theorem [16]). Let

 $\mathfrak{F}=\{f_{\mathbf{i}}:i\in I\}$ be a set of functions with $f_{\mathbf{i}}:X\to E_{\mathbf{i}}$ where X and $E_{\mathbf{i}}$, for each $i\in I$, are topological spaces. Let h be the set function from X into the topological product $\Pi E_{\mathbf{i}}$ such that $\pi_{\mathbf{i}}\cdot h=f_{\mathbf{i}}$ for each $i\in I$. We have

- (a) h is continuous if and only if each f_i is continuous.
- (b) h is injective if and only if the set $\ensuremath{\mathfrak{F}}$ satisfies the following condition:
- Cl. for every p, qEX such that p \neq q, there is an $f_{\mbox{$\bf i$}}$ E $\mbox{$\bf i$}$ with $f_{\mbox{$\bf i$}}(p)$ \neq $f_{\mbox{$\bf i$}}(q)$.
- (c) h is a topological embedding if and only if h is continuous and injective and the set ∃ satisfies the following condition:
- C2. for every closed subset A of X and for every peX \setminus A, there exists a finite system f_{i_1},\dots,f_{i_n} of functions from \exists such that (f_{i_1},\dots,f_{i_n}) (p) f cl($f_{i_1},\dots,f_{i_n})$ (where c1 stands for closure in $\prod_{1 \leq i_1 \leq i_2 \leq i_1 \leq i_2 \leq i_2$
- (d) Assume that the spaces E_i are all Hausdorff and assume that h is a topological embedding. h[X] is closed in ΠE_i if and only if the set F_i satisfies the following condition:
- C3. there is no proper weak extension (γ, Y) of X such that every function $f_1 \epsilon$ 3 admits a continuous extension such that the diagram

PROOF: Parts (a) and (b) are well-known results. Note that the topological product with the Tychonoff product topology is a product in $\underline{\text{Top}}$. Hence each f_i is a $\underline{\text{Top}}$ -morphism, i.e., continuous, if and only if h is a $\underline{\text{Top}}$ -morphism. Also h is injective if and only if it is a $\underline{\text{Set}}$ -monomorphism, which by Theorem 3.1.1 is true if and only if condition Cl is fulfilled in $\underline{\text{Set}}$. (Let p, $q \in X$ such that $p \neq q$ and let $g_p, g_q: \{y\} \to X$ be defined so that $g_p(y) = p$ and $g_q(y) = q$. Thus (X, f_i) is a mono source in $\underline{\text{Set}}$ if and only if Cl holds.)

- (c) The reader is referred to Mrowka's proof [16].
- (d) Assume that the spaces E_1 are all Hausdorff and h is a topological embedding. Then h[X] is a Hausdorff space, so X is also a Hausdorff space and consequently, h is a concrete embedding. Let $\mathcal E$ be the full subcategory of Haus having $\{E_1:i\in I\}$ as its class of objects. Then C3 merely states that (X,f_1) is a weak-nonextendable source with respect to $\mathcal E$. Thus by Proposition 3.1.7, C3 holds if and only if (X,f_1) is an extremal source in Haus, which by Theorem 3.1.1 is true if and only if h is an extremal morphism in Haus; i.e., if and only if h is an extremal monomorphism in Haus (2.1.6); i.e., if and only if h[X] is closed.

COROLLARY 3.1.9. Under the same hypothesis as Theorem 3.1.8, the following statements hold:

- (a) (X,f_1) is a mono source in \underline{Top} if and only if (X,f_1) is a source in \underline{Top} such that C1 holds.
- (b) (X,f_1) is a concrete embedding source in \underline{Top} if and only if (X,f_1) is a mono source in \underline{Top} such that C2 holds.

- PROOF: (a) (X,f_1) is a mono source in <u>Top</u> if and only if h is a monomorphism (3.1.1) which holds if and only if (X,f_1) is a source for which C1 holds (3.1.8).
- (b) (X,f_1) is a concrete embedding source in $\underline{\text{Top}}$ if and only if h is a concrete embedding in $\underline{\text{Top}}$ (3.1.1) [but concrete embeddings are precisely the topological embeddings ([7])], which holds if and only if (X,f_4) is a source for which condition C2 holds (3.1.8).

§3.2 & | m-Embeddable Objects

Mrowka [15] defined an E-completely regular space to be a topological space that is homeomorphic to a subspace of some topological power $\mathbf{E}^{\mathbf{m}}$ of the space E. For a Hausdorff space E, he defined an E-compact space to be a space that is homeomorphic to a closed subspace of some topological power E^m of E. For a given full subcategory & of the category Top (respectively, Haus), Herrlich [6] defined an & -regular space (respectively, an \mathcal{E} -compact space) to be any object in the epireflective hull of $\mathcal E$ in Top (respectively, Haus). First we shall directly generalize Mrowka's definition in three ways: to arbitrary categories C (rather than Top or Haus); to arbitrary subcategories E of C (rather than subcategories with a single object E); and to arbitrary M-morphisms, for various classes M of C-morphisms (rather than topological embeddings) into the object parts of products of $\boldsymbol{\xi}$ -objects. In later sections, §3.3 and §3.4, on epireflective subcategories, we will see that our definitions coincide with Herrlich's definitions in the categories Top and Haus.

DEFINITION 3.2.1. Let ${\cal C}$ be a category, ${\cal E}$ be a subcategory of ${\cal C}$,

and ${\mathfrak M}$ be any class of ${\mathfrak C}$ -morphisms that is isomorphism-closed in ${\mathfrak C}$.

- (1) A $\mathfrak C$ -object X is called $\mathfrak E \mid \mathfrak M \underline{\mathrm{embeddable}}$ in $\mathfrak C$ provided that there exists a set-indexed family $(\mathtt E_i)_{i\in I}$ of $\mathfrak E$ -objects whose product $(\Pi\mathtt E_i,\pi_i)$ exists in $\mathfrak C$ and for which there exists an $\mathfrak M$ -morphism $f:X\to\Pi\mathtt E_i$.
- (2) When $\mathcal E$ has a single object E, the term $\mathbb E[\mathcal M-\underline{\mathrm{embeddable}}\ \underline{\mathrm{in}}$ $\mathcal E$ will be used interchangeably with $\mathcal E[\mathcal M-\underline{\mathrm{embeddable}}\ \underline{\mathrm{in}}$.
- (3) Let (ξ, \mathbf{u}) be a concrete category. Whenever \mathcal{M} is the class of all concrete embeddings in \mathcal{C} , the term \mathcal{E} -regular in \mathcal{C} will be used interchangeably with the term \mathcal{E} $|\mathcal{M}$ -embeddable in \mathcal{C} . Whenever \mathcal{M} is the class of all extremal concrete embeddings in \mathcal{C} , the term \mathcal{E} -compact in \mathcal{C} will be used interchangeably with the term \mathcal{E} $|\mathcal{M}$ -embeddable in \mathcal{C} .

Note that since the concrete embeddings in <u>Top</u> are precisely the topological embeddings, our definition for an E-regular space in <u>Top</u> coincides with Mrówka's definition for an E-completely regular space. Also our definition for a Hausdorff space to be E-compact in <u>Haus</u> coincides with Mrówka's definition of E-compactness, since the extremal concrete embeddings in <u>Haus</u> are homeomorphisms onto closed subspaces of Hausdorff spaces (1.5.3).

The study of topological spaces has provided the motivation for these definitions. Clearly, however, by Corollary 3.1.2, for any set A with at least two points, every set S is A-regular in <u>Set</u>. In order to illustrate the generality of these concepts, we will construct an algebraic example. Let <u>AbMon</u> be the category of all Abelian monoids and

monoid homomorphisms. Then Ab, the category of all Abelian groups and group homomorphisms, is a full subcategory of AbMon. The following proposition is a well-known result, although it may not be immediately recognizable in our new terminology.

PROPOSITION 3.2.2. An Abelian monoid is \underline{Ab} -regular in \underline{AbMon} if and only if it is cancellative.

PROOF: Suppose M is \underline{Ab} -regular in \underline{AbMon} , then there exists a family $(A_1)_{1\in I}$ of Abelian groups and a concrete embedding morphism $f:M\to \Pi A_1$. Suppose a,b,meM and m+a = m+b. Then f(m+a)=f(m+b) so that since f is a monoid homomorphism f(m)*f(a)=f(m)*f(b). Thus f(a)=f(b), since $(\Pi A_1,*)$ is a group. Hence a=b, since f is injective on the underlying sets f(n). Consequently M is cancellative.

Conversely, let M be a cancellative monoid. We will define a relation R on pairs (x,y) where $x,y\in M$ in the following manner: (x,y)R(x',y') iff x+y'=y+x'. It is straightforward to show that R is an equivalence relation. Let \widehat{R} be the set of all equivalence classes (\widehat{x},y) , and let * be the operation of componentwise addition of pairs, which is well-defined by the definition of R. Since M is cancellative and Abelian, it is easy to show that $(\widehat{R},*)$ is an Abelian group, where $(\widehat{O_M},\widehat{O_M})=\{(x,x):x\in M\}$ is the identity element and the inverse of any element (\widehat{x},y) is the element (\widehat{y},x) . Define $h:M\to \widehat{R}$ by $h(x)=(\widehat{O_M},x)$. Since $h(x+y)=(\widehat{O_M},x+y)=(\widehat{O_M},x)*(\widehat{O_M},y)$ = h(x)*h(y), h is a homomorphism. Let $z\in Ker(h)$. Then $h(z)=(\widehat{O_M},z)=(\widehat{O_M},\widehat{O_M})$. Thus $(O_M,z)R(O_M,O_M)$. Hence $O_M+O_M=z+O_M$; so $z=O_M$. Consequently h is injective. Thus h is a monomorphism in \underline{Mon} ,

which is an algebraic category having <u>AbMon</u> as a full subcategory; hence h is a concrete embedding in <u>Mon</u>, and a concrete embedding in <u>AbMon</u> (1.5.6). Consequently M is Ab-regular.

THEOREM 3.2.3. Let ${\mathfrak C}$ be a category with products. [Let $({\mathfrak C},{\mathfrak U})$ be a concrete category with products such that ${\mathfrak U}$ preserves monomorphisms and products.] Let ${\mathfrak E}$ be a subcategory of ${\mathfrak C}$, let ${\mathfrak M}$ be a class of ${\mathfrak C}$ -morphisms from Table 2.3.2, and let ${\mathfrak X}$ be a ${\mathfrak C}$ -object.

Then X is $\mathcal{E} \mid \pi$ -embeddable in \mathcal{C} if and only if there exists a $\underline{\text{set}}$ \mathcal{E}_{X} contained in $\text{Ob}(\mathcal{E})$ such that (X, $\bigcup_{\text{E}\varepsilon}\mathcal{E}_{\text{X}}$ home (X,E)) is an

 \mathcal{M} -source in \mathcal{C} .

PROOF: Let X be $\mathcal{E}|\mathcal{M}$ -embeddable in \mathcal{C} . Then there exists a set-indexed family $(\mathbb{E}_i)_{i\in I}$ of \mathcal{E} -objects such that there exists an \mathcal{M} -morphism $f: X \to \mathbb{H}_i$ (3.2.1). By the Embedding Theorem (3.1.1), $(X, \pi_i \cdot f)$ is an \mathcal{M} -source. Since an \mathcal{M} -source can be enlarged (2.3.4), $(X, \bigcup_{i\in I} \text{hom }_{\mathcal{E}}(X, \mathbb{E}_i))$ is an \mathcal{M} -source. Conversely, let \mathcal{E}_X be a <u>set</u> contained in $\text{Ob}(\mathcal{E})$ such that

 $(X, \bigcup_{E \in \mathcal{E}_X} hom_{\mathbf{e}}(X, E)) \text{ is an } \mathcal{M}\text{-source. By hypothesis,} \\ \mathcal{C} \text{ has products. Hence the product} \\ (\Pi E hom_{\mathbf{e}}(X, E), \pi_g^E, \pi_E) \text{ exists in } \mathcal{C} \text{ (by } \\ E \in \mathcal{E}_X \\ \text{the Iteration of Products Theorem (1.1.3)).} \\ hom_{\mathbf{e}}(X, E) \\ hom_{\mathbf{e}}(X, E) \\ \text{be the unique induced} \\ \text{morphism such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \\ (X, E) \\ \text{morphism such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{morphism} \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{ such that } \pi_g^E, \pi_{E^*} \cdot g > = g \text{ for all} \\ \text{ such that } \pi_g^E$

 $g \in \bigcup_{E \in \mathcal{E}_X} hom e^{(X,E)}$. Thus g > is an

 \mathfrak{M} -morphism (3.1.1), so that X is $\mathfrak{E}[\mathfrak{M}$ -embeddable in \mathfrak{C} .

COROLLARY 3.2.4. Let $(\mathfrak{C}, \mathcal{U})$ be a concrete category with products such that \mathcal{U} preserves monomorphisms and products. Let \mathcal{E} be a full subcategory of \mathcal{C} and let X be a \mathcal{C} -object.

Then X is $\boldsymbol{\xi}$ -regular (respectively, $\boldsymbol{\xi}$ -compact) in $\boldsymbol{\xi}$ if and only if there exists a <u>set</u> $\boldsymbol{\xi}_X$ contained in $Ob(\boldsymbol{\xi})$ such that $(X,\bigcup_{E\in \boldsymbol{\xi}_X} hom_{\boldsymbol{\xi}}(X,E))$ is a concrete (respectively, extremal concrete) embedding source in $\boldsymbol{\xi}$.

COROLLARY 3.2.5 (Mrówka [16]). A topological space X is E-regular if and only if the following two conditions are satisfied:

Cl! for every p,qeX, p≠q, there is a continuous function $f:X \to E \text{ with } f(p) \neq f(q).$

C2: for every closed subset A of X and every peX \setminus A, there is a finite number n and a continuous function $f': X \to E^{n}$ such that $f'(p) \notin \overline{f'[A]}$.

PROOF: Let $\mathfrak{Z}=\hom_{\mathfrak{C}}(X,E)$. By Corollary 3.1.9, (X,\mathfrak{Z}) is a concrete embedding source if and only if conditions Cl' and C2' (which are precisely Cl and C2 of Theorem 3.1.8 stated for $E_i=E$ for all iel) hold. By the Embedding Theorem (3.1.1), the induced morphism $<f>:X \to E^{\mathfrak{Z}}$ is a concrete embedding morphism (hence X is E-regular (3.2.1)) if and only if (X,\mathfrak{Z}) is a concrete embedding source.

There are many well-known corollaries to the above theorem. Topological examples have been collected by Mrowka [13] and [16] and Herrlich [4]. Many of these corollaries had been established as separate theorems long before the development of a unifying theory.

Several of these well-known results are listed below as examples and are stated without proof.

EXAMPLE 3.2.6 (Tychonoff). A topological space is a completely regular T_1 -space if and only if it is [0,1]-regular in \underline{Top} . A Hausdorff space is compact if and only if it is [0,1]-compact in \underline{Haus} .

EXAMPLE 3.2.7 (Mrowka [14]). A topological space is a completely regular T_1 -space if and only if it is (0,1)-regular in \underline{Top} . A Hausdorff space is realcompact if and only if it is (0,1)-compact in \underline{Haus} .

EXAMPLE 3.2.8 (Alexandroff). Let F be the T_0 -space with two points $\{a,b\}$ in which the only proper closed set is $\{a\}$. A topological space is a T_0 -space if and only if it is F-regular in \underline{Top} .

EXAMPLE 3.2.9. Let W be the two-point indiscrete space. A topological space is indiscrete if and only if it is W-regular in Top.

Recall that a topological space is said to be zero dimensional provided that it has a base of closed-and-open sets.

EXAMPLE 3.2.10 (Alexandroff). Let D be the discrete space with two points. A topological space is a zero-dimensional T_0 -space if and only if it is D-regular in \underline{Top} . A zero-dimensional Hausdorff space is compact if and only if it is D-compact in \underline{Haus} .

EXAMPLE 3.2.11 (Mrowka [13]). Let V be a topological space with three points {a,b,c} such that {a} is the only proper non-empty open subset. Every topological space is V-regular in Top.

Let us now consider another result of Mrowka's. Let L_m denote a space with m-elements and the finite complement topology. Let $\underline{\text{Top}}_1$ denote the category of T_1 -spaces and continuous maps. By Proposition 1.5.8, any $\underline{\text{Top}}_1$ -morphism $f:A \to B$ is a concrete embedding in $\underline{\text{Top}}_1$ if and only if it is a concrete embedding in $\underline{\text{Top}}_1$.

EXAMPLE 3.2.12 (Mrówka [13]). There exists no T_1 -space X such that every T_1 -space is X-regular in \underline{Top}_1 . However $\pounds = \{L_m : m \text{ is a cardinal}\}$ is a class of T_1 -spaces such that every T_1 -space of cardinality m can be topologically embedded into the topological power $(L_m)^m$.

Note that there exists no T_1 -space X, such that every T_1 -space is X-regular in Top_1 , or X-regular in Top, although by Example 3.2.11, every topological space is Y-regular in Top. Clearly, Y is not a T_1 -space. Also we have seen that every T_1 -space is X-regular in Top_1 . This example illustrates the necessity for our generalized definition. Trivially, of course, in a category C, every C-object is $C \mid \mathcal{M}$ -embeddable in C if the class \mathcal{M} of morphisms in C contains the identity morphisms.

The remainder of this section will be used to reformulate a topological result of Mrówka [16] into category-theoretic terms. Recall that for a category ${\bf C}$ and ${\bf C}$ -object E, the contravariant hom functor of ${\bf C}$ with respect to E is the functor hom ${\bf C}$ -, E): ${\bf C}$ \rightarrow Set defined so that hom ${\bf C}$ (-,E)(X) = hom ${\bf C}$ (X,E) for every ${\bf C}$ -object X, and hom ${\bf C}$ (-,E)(ϕ) = ${\bf C}$ of or each ${\bf C}$ -morphism ϕ .

DEFINITION 3.2.13. Let $\mathcal C$ be a category and let $\mathcal M$ be an isomorphism-closed class of $\mathcal C$ -morphisms. Let $\mathcal E$ and $\mathcal X$ be $\mathcal C$ -objects. Then a pair $(\operatorname{X}^*, \phi_{\operatorname{X}})$ is called an $\mathcal E \mid \mathcal M$ -transformation of $\mathcal X$ provided that the following conditions are satisfied:

K1: X^* is an $E \mid \mathcal{M}$ -embeddable \mathcal{C} -object.

K2: $\phi_X: X \to X^*$ is an epimorphism in ${\bf C}$ such that $hom_{{\bf C}}(-,E)\phi_X: hom_{{\bf C}}(X^*,E) \to hom_{{\bf C}}(X,E)$ is bijective.

THEOREM 3.2.14 (The Identification Theorem). Let ${\bf C}$ be a category with products [Let (${\bf C}$, ${\bf U}$) be a concrete category with products where ${\bf U}$ preserves monomorphisms and products.], let ${\bf M}$ be a class of ${\bf C}$ -morphisms from Table 2.3.2 and let ${\bf C}$ have the (epi, ${\bf M}$) factorization property. Let E be a ${\bf C}$ -object.

Then for any ${\mathfrak C}$ -object X there exists an E $|{\mathfrak M}$ -transformation (X * , $\phi_{\rm X})$ of X.

PROOF: Let X be a ${\mathfrak C}$ -object. By hypothesis, the product hom ${\mathfrak C}(X,E)$ (E , $\pi_{\mathfrak C}$) exists in ${\mathfrak C}$. Let the unique induced morphism be hom ${\mathfrak C}(X,E)$. By hypothesis, < f > = $p \cdot \phi_X$ where p is an ${\mathfrak M}$ -morphism and ϕ_X is an epimorphism (1.3.3). Let X^* denote the codomain of ϕ_X . Then X^* is clearly E ${\mathfrak M}$ -embeddable in ${\mathfrak C}$ (3.2.1) and hom ${\mathfrak C}(-,E)(\phi_X)$ is injective since ϕ_X is an epimorphism. For every fehom ${\mathfrak C}(X,E)$, the diagram X^*

commutes; hence $\pi_{\mathbf{f}}^{\, \cdot \, p}$ \in hom $\mathbf{e}^{\, (X^{\, *}, E)}$ and $\mathbf{f} = \pi_{\mathbf{f}}^{\, \cdot \, p \cdot \, \phi_X} = \mathrm{hom}_{\mathbf{e}^{\, (-, E)}(\phi_X)}(\pi_{\mathbf{f}}^{\, \cdot \, p}).$ Therefore $\mathrm{hom}_{\mathbf{e}^{\, (-, E)}(\phi_X)}$ is surjective.

COROLLARY 3.2.15 (Mrówka [16]). For all topological spaces X and E, there exists an E-regular space X^* and a continuous surjective map $\phi: X \to X^*$ such that $\hom_{\underline{\text{Top}}}(_,E)(\phi): \hom_{\underline{\text{Top}}}(X^*,E) \to \hom_{\underline{\text{Top}}}(X,E)$ is bijective.

PROOF: <u>Top</u> has the unique (epi, extremal concrete embedding) factorization property (1.3.5).

§3.3 M -Coseparating Classes

In this section we will show that in a category with products, an object E in the category, with the property that every other object is E|mono-embeddable, must be a coseparator for the category. Recall that a \mathbb{C} -object C is called a coseparator for \mathbb{C} provided that for any two distinct \mathbb{C} -morphisms p and q:A \rightarrow B, there exists a \mathbb{C} -morphism x:B \rightarrow C such that x·p \neq x·q. We shall first prove a proposition relating coseparators and mono sources, which we will use to develop the definition of a more general concept, namely an \mathbb{M} -coseparating class for a category. Then we shall see that in a category \mathbb{C} with products, a class \mathbb{E} of \mathbb{C} -objects is an \mathbb{M} -coseparating class for \mathbb{C} if and only if every \mathbb{C} -object is $\mathbb{E}|\mathbb{M}$ -embeddable in \mathbb{C} .

PROPOSITION 3.3.1 (Herrlich and Strecker [7]). Let $\mathbb C$ be a category. A $\mathbb C$ -object $\mathbb C$ is a coseparator for $\mathbb C$ if and only if for each $\mathbb C$ -object $\mathbb A$, the source $(A, hom_{\mathbb C}(A, \mathbb C))$ is a mono source. PROOF: Let $\mathbb A$ be any $\mathbb C$ -object and let $\mathbb P$ and $\mathbb P$ be any distinct $\mathbb C$ -morphisms having the same domain and having codomain $\mathbb A$. $(A, hom_{\mathbb C}(A, \mathbb C))$ is a mono source if and only if there exists $f \in hom_{\mathbb C}(A, \mathbb C)$ such that $f \cdot \mathbb P \neq f \cdot \mathbb Q$, which will happen for all such $\mathbb C$ -objects $\mathbb A$ if and only if $\mathbb C$ is a coseparator for $\mathbb C$.

Consequently, we know, for example, that any set with at least two points is a coseparator for <u>Set</u> (3.1.2). Herrlich and Strecker [7] and others have collected many examples of coseparators in categories.

Baayen [1] defined a universal object in a category ${\cal C}$ to be a ${\cal C}$ -object U with the property that for every ${\cal C}$ -object A, there exists a monomorphism m:A \rightarrow U . Clearly then for every ${\cal C}$ -object A, (A,hom $_{\cal C}$ (A, U)) must be a mono source (2.3.3); hence U is a coseparator for ${\cal C}$. Baayen lists many examples of universal objects in categories.

DEFINITION 3.3.2. Let $\mathcal C$ be a category, let $\mathcal M$ be a class of $\mathcal C$ -morphisms from Table 2.3.2, and let $\mathcal A$ be a subcategory of $\mathcal C$.

- (1) Let $\mathcal E$ be a subclass of the class of all $\mathcal E$ -objects in $\mathcal E$. $\mathcal E$ is called an $\mathcal M$ -coseparating class for $\mathcal E$ 0 provided that for each $\mathcal M$ -object A, there exists a set $\mathcal E_A$ contained in $\mathcal E$ such that (A, $\bigcup_{E\in\mathcal E_A} \log_{\mathcal E}(A,E)$) is an $\mathcal M$ -source in $\mathcal E$.
- (2) A C-object E is called an M-coseparator for OI provided that (E) is an M-coseparating class for OI.

From Proposition 3.3.1, it is clear that what we now call a mono-coseparator for ${\bf C}$ is exactly a coseparator for ${\bf C}$ by the usual definition. Note that for every category ${\bf C}$, the class ${\bf Ob}({\bf C})$ of all ${\bf C}$ -objects forms an ${\bf M}$ -coseparating class for ${\bf C}$, since any class ${\bf M}$ from Table 2.3.2 contains all the isomorphisms in ${\bf C}$.

Propositions 2.1.2 and 3.1.5 state the relative strengths of \mathcal{M} -sources for the various classes \mathcal{M} of \mathcal{C} -morphisms from Table 2.3.2; hence they also imply the relative strengths of \mathcal{M} -coseparating classes for \mathcal{C} for different classes \mathcal{M} . Therefore it is clear that every strong mono-coseparating class is an extremal mono-coseparating class, which in turn is a mono-coseparating class (2.1.2). Similarly for

complete well-powered concrete categories (${\tt C}$, ${\tt U}$) for which ${\tt U}$ preserves monomorphisms and products, every extremal mono-coseparating class for ${\tt C}$ is a concrete embedding-coseparating class for ${\tt C}$, hence an extremal concrete embedding-coseparating class for ${\tt C}$ (3.1.5).

The following theorem is the desired result which relates $\mathcal{E} \mid \mathcal{M}$ -embeddable objects and \mathcal{M} -coseparating classes. It follows immediately from Theorem 3.2.3 and the above definitions.

THEOREM 3.3.3. Let ${\mathfrak C}$ be a category with products. [Let $({\mathfrak C},{\mathfrak U})$ be a concrete category with products such that ${\mathfrak U}$ preserves monomorphisms and products.] Let ${\mathfrak M}$ be a class of ${\mathfrak C}$ -morphisms listed in Table 2.3.2, and let ${\mathfrak K}$ and ${\mathfrak E}$ be subcategories of ${\mathfrak C}$.

Then the following statements are equivalent:

- (a) $Ob(\mathcal{E})$ is an \mathcal{M} -coseparating class for $\mathcal{O}(.)$
- (b) For each $\operatorname{\mathscr{C}}$ -object A, there exists a $\operatorname{\underline{set}}$ $\operatorname{\mathfrak{C}}_A$ contained in Ob($\operatorname{\mathscr{E}}$) such that the unique induced morphism A $\overset{\rightarrow}{\to}$ $\operatorname{\mathbb{R}}$ $\operatorname{\underline{E}}^{hom}$ (A,E) is an $\operatorname{\mathscr{W}}$ -morphism in $\operatorname{\mathscr{C}}$.
- (c) For each $\mathfrak A$ -object A, there exists a <u>set</u> $\mathfrak E_A$ contained in $\mathsf{Ob}(\mathfrak E)$ for which there is a morphism f such that (A,f) is an $\mathcal M$ -subobject of some product of powers of objects in $\mathfrak E_A$.
- (d) Each OC-object A is & M-embeddable in &.

 COROLLARY 3.3.4 (Herrlich and Strecker [7]). Let & be a category with products and let C be a C-object. Then the following statements are equivalent:
- (a) C is a mono-coseparator (respectively, extremal mono-coseparator) for ${\bf C}$.
- (b) For each ${\mathfrak C}$ -object A, the unique induced morphism hom $_{\mathfrak C}$ (A,C) A \to C is a monomorphism (respectively, an extremal monomorphism).

(c) For each ${\mathfrak C}$ -object A, there is a morphism f such that (A,f) is a subobject (respectively, an extremal subobject) of some power of ${\mathfrak C}$.

PROOF: A C-object C is a mono-(respectively, an extremal mono-) coseparator for C if and only if $\{C\}$ is a mono-(respectively, an extremal mono-) coseparating class for C; hence the result follows from Theorem 3.3.3.

Recall that by Mrowka's result on T_1 -spaces (3.2.12), \underline{Top}_1 has no concrete embedding-coseparator in \underline{Top}_1 ; however \underline{Top}_1 has a proper concrete embedding-coseparating class in \underline{Top}_1 , namely $\boldsymbol{\mathcal{L}}$, the class of all topological spaces with the finite complement topology. Note that in \underline{Top} , the space V with three elements {a,b,c}, for which {a} is the only proper open set, is a concrete embedding coseparator for \underline{Top} (3.2.11) and when \underline{Top}_1 is considered as a subcategory of \underline{Top} , V is a concrete embedding-coseparator for \underline{Top}_1 .

DEFINITION 3.3.5. Let $\mathfrak E$ be a category, let $\mathfrak M$ be a class of $\mathfrak E$ -morphisms that is isomorphism-closed in $\mathfrak E$, and let $\mathfrak E$ be any subcategory of $\mathfrak C$. $\mathfrak C(\mathfrak E \mid \mathfrak M)$ will be used to denote the full subcategory of $\mathfrak E$ whose objects are precisely the $\mathfrak E \mid \mathfrak M$ -embeddable $\mathfrak C$ -objects.

Clearly then Theorem 3.3.3 says that for any category ${\bf C}$ (respectively, concrete category $({\bf C}, {\bf U})$ such that ${\bf U}$ preserves monomorphisms and products) which has products, for any class ${\bf M}$ of ${\bf C}$ -morphisms listed in Table 2.3.2, and for any subcategory ${\bf E}$ of ${\bf C}$, the class ${\bf Ob}({\bf E})$ is an ${\bf M}$ -coseparating class for ${\bf C}({\bf E}|{\bf M})$.

DEFINITION 3.3.6. Let ${\mathfrak C}$ be a category and let ${\mathfrak A}$ be a full subcategory of ${\mathfrak C}$.

- (1) Then ${\cal C}{\cal C}{\cal C}$ will be used to denote the full subcategory of ${\cal C}$ whose objects are the object part of products of ${\cal C}{\cal C}$ -objects that exist in ${\cal C}$.
- (2) Let $\mathcal M$ be any class of $\mathcal C$ -morphisms that is isomorphism-closed in $\mathcal C$. $\mathcal M\mathcal M$ will be used to denote the full subcategory of $\mathcal C$ whose objects are the object parts of $\mathcal M$ -subobjects of $\mathcal K$ -objects.
- (3) When $\mathfrak{S}($ has a single object A, $\mathfrak{S}A$ will be used interchangeably with $\mathfrak{S}\mathfrak{S}($, and $\mathfrak{M}A$ will be used interchangeably with $\mathfrak{M}\mathfrak{S}($.

Then by definition of an $\mathbb{E}|m$ -embeddable object in a category \mathbb{C} (3.2.1), the full subcategory $\mathbb{C}(\mathbb{E}|m)$ is precisely the full subcategory $m p \mathcal{E}$.

The following theorem was proved, for the class of monomorphisms in a category ${\cal G}$, by Herrlich and Strecker [7].

THEOREM 3.3.7. Let ${\mathfrak C}$ be any category with products. Let ${\mathfrak M}$ be any class of ${\mathfrak C}$ -morphisms that is isomorphism-closed in ${\mathfrak C}$ and closed under composition and products, and let ${\mathfrak N}$ and ${\mathfrak S}$ be any full subcategories of ${\mathfrak C}$.

- (a) PPC1 = PC1.
- (b) mmol = mol.
- (c) PM M is a full subcategory of MPM.
- (c) \mathcal{MOM} is the smallest full subcategory of C containing C and closed under the formation of C -subobjects in C and products in C.
 - (e) MPO(is a full subcategory of MPB if and only if CX

is a full subcategory of MPB.

- (b) By hypothesis, the composition of ${\mathfrak M}$ -morphisms is an ${\mathfrak M}$ -morphism; hence ${\mathfrak M}{\mathfrak M}{\mathfrak G}={\mathfrak M}{\mathfrak G}{\mathfrak G}$.
- (c) Let X be a \$PM\$\epsilon\$ -object. Then X = \$\pi_{i \in I} Y_i\$ for a product \$(\Pi_{1}, \pi_{1})\$ of some family \$(Y_i)_{i \in I}\$ of \$M\$\epsilon\$ -objects, and hence for each is I, there exists an \$\epsilon\$ -object \$A_i\$ and an \$M\$-morphism \$m_i\$: \$Y_i + A_i\$. Let \$(\Pi A_i, p_i)\$ be the product of the family \$A_i\$, and let \$f\$ be the unique induced morphism that makes the diagram

commute for each isI. Then f is the product of the family $(\mathbf{m_i})_{i \in \mathbf{I}}$ of \mathcal{M} -morphisms (1.1.4). Consequently f is an \mathcal{M} -morphism since \mathcal{M} is closed under products. Hence X is an \mathcal{MPR} -object.

- (d) By part (c), PMPOl is a subcategory of MPPOl, and by (a), MPPOl = MPOl. Also by part (b), MMPOl = MPOl. So MPOl is closed under the formation of M-subobjects and products. Clearly any full subcategory containing Ol and closed under the formation of M-subobjects and products must contain MPOl.
- (e) Suppose that \Re is a full subcategory of MPB . Then MPB is closed under the formation of products and \Re -subobjects

(by part (d)) and hence MOON is a full subcategory of MPB.

Recall that for a subcategory α of α , α denotes the epireflective hull of α in α (1.4.5).

COROLLARY 3.3.8. Let $\mathcal C$ be a complete category that is well-powered and cowell-powered, let $\mathcal M$ be the class of extremal monomorphisms in $\mathcal C$ and let $\mathcal C$ be a full replete subcategory of $\mathcal C$. Then $\mathcal C$ ($\mathcal C$ extremal mono) = $\mathcal M\mathcal P\mathcal M$ = $\mathcal C$ ($\mathcal M$); i.e., the objects in the epireflective hull of $\mathcal C$ 0 are precisely the $\mathcal C$ 1 $\mathcal M$ -embeddable objects in $\mathcal C$.

PROOF: By Theorem 1.3.5, \mathcal{M} is closed under products and composition. Thus by Theorem 3.3.7 \mathcal{MPR} is the smallest full subcategory of \mathcal{C} containing \mathcal{C} (and closed under products and extremal subobjects; hence \mathcal{MPR} is the smallest epireflective subcategory of \mathcal{C} containing \mathcal{C} ((1.4.3). Thus \mathcal{C} (\mathcal{C} () = \mathcal{MPR} = \mathcal{C} (\mathcal{C} () extremal mono), (1.4.4 and 3.3.5).

Although the following results are simply specializations of Corollary 3.3.8 we will use them frequently throughout the remainder of this chapter.

COROLLARY 3.3.9. Let \mathfrak{A} be any full replete subcategory of $\underline{\text{Top}}$. Then in $\underline{\text{Top}}$, $\underline{\text{Top}}$ (\mathfrak{A} |extremal mono) = $\underline{\text{Top}}$ (\mathfrak{A} (extremal concrete embedding) = $\underline{\text{Top}}$ (\mathfrak{A} (concrete embedding) = $\underline{\text{Top}}$ (\mathfrak{A} (); i.e., the \mathfrak{A} (-compact spaces in $\underline{\text{Top}}$ are precisely the \mathfrak{A} (-regular spaces in $\underline{\text{Top}}$, and these are precisely those spaces in the epireflective hull of \mathfrak{A} in $\underline{\text{Top}}$. PROOF: $\underline{\text{Top}}$ is complete, well-powered and cowell-powered. Also, the extremal monomorphisms in $\underline{\text{Top}}$ are precisely the concrete embeddings in $\underline{\text{Top}}$ ([7]).

COROLLARY 3.3.10. In <u>Haus</u>, let Older be any full, replete subcategory of <u>Haus</u>. Then <u>Haus</u> (Older) extremal concrete embedding)

= <u>Haus</u> (Older) extremal mono) = <u>Haus</u> (Older), i.e., the Older) compact spaces in <u>Haus</u> are precisely those spaces in the epireflective hull of Older) in Haus.

Furthermore <u>Haus</u> (\mathfrak{A} |concrete embedding) = <u>Top</u> (\mathfrak{A}), i.e., the \mathfrak{A} -regular spaces in <u>Haus</u> are precisely those spaces in the epireflective hull of \mathfrak{A} in <u>Top</u>.

PROOF: <u>Haus</u> is complete, well-powered and cowell-powered, and it is a full, hereditary subcategory of <u>Top</u>. Also the extremal concrete embeddings in <u>Haus</u> are precisely the extremal monomorphisms in <u>Haus</u> (1.5.3) and the concrete embeddings in <u>Haus</u> are concrete embeddings in <u>Top</u> (1.5.9).

§3.4 Ol-Regular and Ol-Compact Objects

CONVENTION 3.4.1.

Throughout the remainder of this chapter, all subcategories will be assumed to be both full and replete.

In the preceding section we found that for every subcategory ${\mathfrak A}$ of ${\operatorname{Top}}$, the ${\mathfrak A}$ -regular spaces in ${\operatorname{Top}}$ are precisely the spaces in the epireflective hull of ${\mathfrak A}$ in ${\operatorname{Top}}$ (3.3.9). Furthermore, we discovered that for each subcategory ${\mathfrak A}$ of ${\operatorname{Haus}}$, the ${\mathfrak A}$ -compact spaces in ${\operatorname{Haus}}$ are precisely those spaces in the epireflective hull of ${\mathfrak A}$ in ${\operatorname{Haus}}$ (3.3.10). Note that when ${\mathfrak A}$ is a subcategory of ${\operatorname{Haus}}$, the ${\mathfrak A}$ -regular spaces in ${\operatorname{Haus}}$ by our definition are all those Hausdorff spaces which are ${\mathfrak A}$ -regular in ${\operatorname{Top}}$, since concrete embeddings in ${\operatorname{Haus}}$ are concrete

embeddings in <u>Top</u> (1.5.9). Thus our definitions for <code>CT-regular</code> and <code>C(-compact objects coincide with Herrlich's definitions in <u>Top</u> and <u>Haus</u> (\$3.2). Epireflective subcategories have been studied extensively.

Recall that in a complete, well-powered and cowell-powered category

<code>C</code>, a subcategory <code>C()</code> of <code>C()</code> is epireflective if and only if it is closed under the formation of products and extremal subobjects (1.4.3).

Consequently, there are many examples of epireflective subcategories:

<u>Haus</u>, <u>Top</u>, <u>CompRegT</u>₁ and <u>Ind</u> are epireflective in <u>Top</u>; <u>CompT</u>₂,

<u>RComp</u> (i.e., realcompact), <u>CompRegT</u>₁ are epireflective in <u>Haus</u>; <u>Ab</u> is epireflective in <u>Grp</u>, etc.</code>

Recall that an epireflective subcategory $\mathfrak A$ of a category $\mathfrak C$ has the property that for every $\mathfrak C$ -object X, there exists an $\mathfrak A$ -epireflection $(\mathbf r_{\mathfrak A}^{}, \mathbf x_{\mathfrak A}^{})$ in $\mathfrak C$, where $\mathbf x_{\mathfrak A}^{}$ is an $\mathfrak A$ -object and $\mathbf r_{\mathfrak A}^{}: \mathbf x \to \mathbf x_{\mathfrak A}^{}$ is an $\mathfrak A$ -extendable epimorphism (1.4.2).

One of the motivating examples in the study of epireflective subcategories was the construction of the Stone-Čech compactification for completely regular T_1 -spaces. Let X be a Hausdorff space and let $\exists = C(X,[0,1])$. Then the product $([0,1]^{\frac{3}{2}},\pi_{\frac{1}{2}})$ exists in Haus, and in \underline{CompT}_2 (by the Tychonoff Theorem). Let the unique induced morphism be $\langle f \rangle : X \rightarrow [0,1]^{\frac{3}{2}}$. Let $\langle f \rangle = m \cdot \beta$ be the unique (epi, extremal mono) factorization (1.3.5), and let βX be the codomain of β . Since \underline{Haus} has the unique (epi, extremal mono) factorization property and since every compact space is homeomorphic to a closed subspace of the product of unit intervals (3.2.6), $(\beta,\beta X)$ can be shown to be a \underline{CompT}_2 -epireflection of X. Also if X is completely regular, β is a topological embedding (3.2.6).

Clearly for $\underline{\text{CompT}}_2$ -regular spaces, which are the completely regular spaces in $\underline{\text{Haus}}$, there exist topological embeddings into compact \mathtt{T}_2 -spaces, which are 'universal' in the sense of being $\underline{\text{CompT}}_2$ -extendable. Herrlich and Van der Slot [10] proved a very useful result relating epireflective subcategories $\mathfrak{C}($ in $\underline{\text{Haus}}$ and the existence of $\mathfrak{C}($ -epireflections $(\mathtt{r}_{\mathfrak{C}(}, \mathsf{X}_{\mathfrak{C}(}))$ for $\mathfrak{C}($ -regular spaces, for which $\mathtt{r}_{\mathfrak{C}(}$ is a topological embedding. The following theorem is a generalization of their result to include concrete categories other than $\underline{\text{Haus}}$. This generalization and the ones following it came about because of the development of the definition for concrete embeddings.

THEOREM 3.4.2. Let $(\mathcal{C},\mathcal{U})$ be a concrete category, which is complete, well-powered and for which \mathcal{U} preserves monomorphisms. If $\mathcal{C}_{\!\!\!\!U}$ is a subcategory of \mathcal{C} , then each of the following statements implies the statement below it.

- (a) Of is epireflective in C .
- (b) Each \mathcal{C}'_k -regular object has a concrete embedding-extension (w,W) in \mathcal{C}'_k for which w is \mathcal{C}'_k -extendable.
- (c) $\mathcal{C}($ is closed under the formation of products and extremal concrete embedded subobjects.
- (d) Θl is closed under the formation of products and extremal subobjects.

Furthermore if ${\mathfrak C}$ is cowell-powered, then the statements above, (a) through (d), are equivalent.

PROOF: (c) \Rightarrow (d): The extremal monomorphisms in ${\mathcal C}$ are precisely the extremal concrete embeddings in ${\mathcal C}$ (1.5.3).

commutes. Let $\langle g_i \rangle : X_{\mathfrak{S}_i} \to \Pi A_i$ be the unique induced morphism such that $\pi_i \cdot \langle g_i \rangle = g_i$. Then $\pi_i \cdot f = g_i \cdot r_{\mathfrak{S}_i} = \pi_i \cdot \langle g_i \rangle \cdot r_{\mathfrak{S}_i}$ for all isI; since products are mono sources, $f = \langle g_i \rangle \cdot r_{\mathfrak{S}_i}$. Thus $r_{\mathfrak{S}_i}$ is a concrete embedding, since f is (2.3.5, 2.3.3).

commutes. Let $<\pi_{1}^{*}>:\mathbb{W}\to\Pi\mathbb{A}_{1}$ be the unique induced morphism such that $\pi_{j}<\pi_{1}^{*}>=\pi_{j}^{*}$ for each jɛl. Then $\pi_{j}\cdot\mathbb{1}_{\Pi\mathbb{A}_{1}}=\pi_{j}^{*}\cdot\mathbb{W}=\pi_{j}^{*}<\pi_{1}^{*}>\cdot\mathbb{W}$ for each jɛl. Consequently, since products are mono sources, $\mathbb{1}_{\Pi\mathbb{A}_{1}}=<\pi_{1}^{*}>\cdot\mathbb{W}$. Thus \mathbb{W} is a section, as well as an epimorphism, hence an isomorphism. By hypothesis, \mathcal{O}_{k} is replete, and thus $\Pi\mathbb{A}_{1}$ is an \mathcal{O}_{k} -object. Also \mathcal{O}_{k} is full; so that π_{1} is an \mathcal{O}_{k} -morphism for each iɛl.

Furthermore, if $\mathcal C$ is cowell-powered, the Characterization Theorem for Epireflective Subcategories (1.4.3) can be applied so that (d) \Rightarrow (a).

Herrlich [5] has collected many examples in $\underline{\text{Haus}}$ which illustrate the conclusions of this theorem. We will examine an algebraic example.

EXAMPLE 3.4.3. Let <u>AbMon</u> be the category of Abelian monoids and monoid homomorphisms. Then <u>Ab</u>, the category of Abelian groups and group homomorphisms, is an epireflective subcategory of <u>AbMon</u>.

Let M be any Abelian monoid. We will now construct an $\underline{\mathsf{Ab}}$ epireflection for M, using a method outlined by Lang [12], for the construction of the Grothendieck group K(M). Let $F_{ab}(UM)$ be the free Abelian group generated by U(M), the underlying set for M. For each xeM, let [x] be the generator of $F_{ab}(UM)$ corresponding to x. Clearly we have an injective function $f:M \to F_{ab}(uM)$ defined by f(x) = [x] for each $x \in M$. Let $B = \{[x+y] - [x] - [y] : x, y \in M\}$ and let be the subgroup of $F_{ab}(u, M)$ generated by B. Let $\phi: F_{ab}(UM) \to F_{ab}(UM)/\langle B \rangle$ be the canonical homomorphism. $\phi \cdot f: M \to K(M)$ is a monoid homomorphism. Clearly it is an epimorphism. From the 'universal' property for free Abelian groups, it follows that $\phi \cdot f$ is Ab-extendable. Thus $(\phi \cdot f, K(M))$ is the desired Ab-epireflection for M. Let us suppose M is Ab-regular (i.e., cancellative (3.2.2)). Then there exists a set-indexed family $(A_i)_{i \in I}$ of Abelian groups, whose product is $(\Pi A_1, \pi_1)$, and there is a concrete embedding $g:M \to \Pi A_1$. But ΠA_1 is an Abelian group and ϕ f is \underline{Ab} -extendable. Thus there exists a monoid homomorphism $g^*: K(M) \rightarrow \Pi A_i$ such that $g^* \cdot \phi \cdot f = g$. Consequently, $\phi \cdot f$ is a concrete embedding since g is (2.3.5).

Recall that $\mathcal{C}(\mathcal{C}(|\mathsf{concrete}|\mathsf{embedding}))$ is the full subcategory of $\mathcal C$ whose objects are the $\mathfrak M$ -regular objects in $\mathcal C$.

THEOREM 3.4.4. Let (\mathcal{C} , \mathcal{U}) be a concrete category that is complete, well-powered and for which \mathcal{U} preserves monomorphisms. Let \mathcal{C} and \mathcal{C} be epireflective subcategories of \mathcal{C} such that \mathcal{C} \mathcal{C} \mathcal{C} (\mathcal{C} concrete embedding) and let \mathcal{C} be a \mathcal{C} -object. If $(\mathbf{r}_{c_{\zeta}}, \mathbf{x}_{c_{\zeta}})$ is the \mathcal{C} -epireflection of \mathcal{C} and $(\mathbf{r}_{c_{\zeta}}, \mathbf{x}_{s_{\zeta}})$ is the \mathcal{C} -epireflection of \mathcal{C} , then there exists a concrete embedding $\mathbf{e}: \mathbf{x}_{s_{\zeta}} \to \mathbf{x}_{s_{\zeta}}$ which is an \mathcal{C} -extendable epimorphism such that the diagram

commutes.

PROOF: By hypothesis, X_{∞} is a $\mathfrak S$ -object, since it is an $\mathfrak C$ -object. Thus, since r_{∞} is $\mathfrak S$ -extendable (1.4.2), there exists a morphism $e: X_{\infty} \to X_{\mathfrak C}$ such that $r_{\mathfrak C} = e \cdot r_{\mathfrak C}$. But by hypothesis, X_{∞} is $\mathfrak C$ -regular. Hence by Theorem 3.4.2, there exists a concrete embedding-extension $(\gamma, Y_{\mathfrak C})$ in $\mathfrak C$ t for which $\gamma: X_{\mathfrak C} \to Y_{\mathfrak C}$ is $\mathfrak C$ -extendable. But $r_{\mathfrak C}$ is $\mathfrak C$ -extendable and $\gamma \cdot r_{\mathfrak C} : X \to Y_{\mathfrak C}$; hence there exists a morphism $\alpha: X_{\mathfrak C} \to Y_{\mathfrak C}$ such that the exterior portion of the diagram

commutes; i.e., $\gamma \cdot r_{\odot} = \alpha \cdot r_{\odot}$. Thus $\gamma \cdot r_{\odot} = \alpha \cdot e \cdot r_{\odot}$ since $r_{\odot} = e \cdot r_{\odot}$. Now $\gamma = \alpha \cdot e$ since r_{\odot} is a G-epireflection, hence an epimorphism. Thus e is a concrete embedding because γ is a concrete embedding (2.3.5). Note that e is an epimorphism because r_{\odot} is one (Duals of (2.3.5 and 2.3.3)).

To show that e is \mathcal{O}_{-} extendable, suppose that there exists a morphism $f: X_{\mathcal{O}_{+}} \to A$ for some \mathcal{O}_{-} object A. Since γ is \mathcal{O}_{-} extendable, there exists a morphism $g^*: Y_{\mathcal{O}_{+}} \to A$ such that $g^* \cdot \gamma = g$; however, $\gamma = \alpha \cdot e$, so that $g^* \cdot \alpha \cdot e = g$. Consequently, we can conclude that e is \mathcal{O}_{-} extendable (1.4.2).

Once again, the preceding theorem was proved for the category Haus by Herrlich [6], who has exhibited several examples. For instance, the category $\underline{\text{CompT}}_2$ is a full subcategory of $\underline{\text{RComp}}$, which is a full subcategory of $\underline{\text{CompT}}_2$ -regular spaces in Haus. For a given Hausdorff space X, there exists a $\underline{\text{CompT}}_2$ -epireflection ($\beta_{\text{C}},\beta_{\text{C}}\text{X}$) and a $\underline{\text{RComp}}$ -epireflection ($\beta_{\text{R}},\beta_{\text{R}}\text{X}$). Then by the conclusion of Theorem 3.4.4, $\beta_{\text{R}}\text{X}$ can be densely embedded in $\beta_{\text{C}}\text{X}$. And if X is completely regular, X can be embedded in $\beta_{\text{R}}\text{X}$ (3.4.2).

Now let us look at our algebraic example. \underline{Ab} and \underline{CAbMon} , the full subcategory of \underline{AbMon} whose objects are the cancellative Abelian monoids, are epireflective subcategories of \underline{AbMon} . In fact the objects of \underline{CAbMon} are precisely the \underline{Ab} -regular objects in \underline{AbMon} (3.2.2). And \underline{Ab} is a full subcategory of \underline{CAbMon} . Then for any Abelian monoid M, there exists an \underline{Ab} -epireflection (β_A , β_A M) and an \underline{CAbMon} -epireflection (β_C , β_C M) of M. From Theorem 3.4.4, there exists an embedding epimorphism $e:\beta_C$ M $\rightarrow \beta_A$ M. Note that β_A M is K(M), the Grothendieck group (3.4.3).

The following theorem was proved by Herrlich [5] for the category $\underline{\text{Haus}}$.

THEOREM 3.4.5. Let $(\mathcal{C},\mathcal{U})$ be a concrete category that is complete, well-powered and cowell-powered, for which \mathcal{U} preserves monomorphisms. If $\mathcal{C}($ is a subcategory of \mathcal{C} , then the following statements are equivalent:

- (a) X is an ∅ -regular object in €.
- (b) There exists an ${\mathcal O}{}$ -compact object Y and a concrete embedding morphism $f: X \to Y$.

- (c) There exists a concrete embedding-extension (w,W) for X where W is \mathcal{A} -compact.
- (d) Each C_i^* -extendable morphism $f:X \to Y$ is a concrete embedding. PROOF: We will show that (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (b).

(b) ⇒ (c): Suppose Y is an \mathfrak{A} -compact object for which there exists a concrete embedding $f:X \to Y$. By definition of \mathfrak{A} -compact, there exists a product $(\Pi A_{\underline{i}}, \pi_{\underline{i}})$ of \mathfrak{A} -objects and an extremal concrete embedding $m:Y \to \Pi A_{\underline{i}}$. Now there exists an (epi, extremal concrete embedding) factorization of f, $f = t \cdot w$ (1.3.5, 1.5.3)

Let W denote the codomain of w. Then W is &C-compact, since the composition, m·t, of extremal monomorphisms is an extremal monomorphism in a complete, well-powered category (1.3.5) and m·t is a concrete embedding, since m and t are (1.5.2). Also w is a concrete embedding, because f is. Thus since w is an epimorphism and a concrete embedding, (w,W) is the required extension.

 $\underline{(c)} \Rightarrow (a): \text{ Suppose } (w,W) \text{ is an $\mathfrak{O}(-c)$ compact concrete embedding-extension of } X. \text{ Then since } W \text{ is } \mathfrak{O}(-c), \text{ there exists a product } (\Pi A_{\underline{1}},\pi_{\underline{1}}) \text{ and an extremal concrete embedding } m:W \to \Pi A_{\underline{1}}. \text{ Also the epimorphism } w:X \to W \text{ is a concrete embedding since } (w,W) \text{ is a concrete embedding extension. Hence } m\cdot w:X \to \Pi A_{\underline{1}} \text{ is a concrete embedding } (1.5.2), so X \text{ is } \mathcal{O}(-\text{regular}).$

commutes for each is I (1.4.2). Let the unique induced morphism be $\{h_i\}:Y \to \Pi A_i$, such that $\pi_i \cdot \{h_i\} = h_i$ for each is I. But $\pi_i \cdot \{m\} = h_i \cdot \{f\}$; hence $\pi_i \cdot \{m\} = \pi_i \cdot \{h\} > \{f\}$ for each is I. Thus $m = \{h_i\} \cdot \{f\}$, since products are mono sources. Thus f is a concrete embedding since m is.

The following theorem has been proved by Herrlich [5] and others for the category <u>Haus</u>. Parts (a), (b), (c), (d) and (e) stem from the Characterization Theorem for Epireflective Hulls (1.4.6),

given by Herrlich in [6]. Once again our area of discovery lies in the interplay of CI-regular and CI-compact objects in categories other than Haus.

THEOREM 3.4.6. Let $(\mathfrak{C}, \mathcal{U})$ be a concrete category that is complete, well-powered and cowell-powered, for which \mathcal{U} preserves monomorphisms. If \mathcal{O} is a subcategory of \mathcal{C} , then the following statements are equivalent:

- (a) X is in the epireflective hull of Ot.
- (b) X is & -compact.
- (c) Each & -extendable epimorphism is {X}-extendable.
- (d) Each ${\mathcal O}({\mathbf C})$ -extendable epimorphism $f:X \to Y$ is an isomorphism.
- (e) Each $\mathcal{O}($ -extendable morphism $f:X \to Y$ is an extremal concrete embedding.
- (f) X is \mathcal{C}_{X} -regular and for all \mathcal{C}_{X} -regular objects Y, for which there exists an \mathcal{C}_{X} -extendable concrete embedding $f:X \to Y$, f must be an extremal concrete embedding.
- (g) X is $\mathcal{O}(-\text{regular})$ and for each $\mathcal{O}(-\text{regular})$ concrete embedding-extension (w,W) of X such that w is $\mathcal{O}(-\text{extendable})$, w must be an isomorphism.

 $\underline{\text{(f)}} \stackrel{\Rightarrow \text{(b)}}{=} \text{(Suppose X is } \mathcal{M}\text{-regular.} \quad \text{Then there exists a}$ product $(\Pi A_{\underline{i}}, \pi_{\underline{i}})$ of $\mathcal{M}\text{-objects}$ and a concrete embedding $f: X \to \Pi A_{\underline{i}}$.

Let $\mathcal{C}(\mathcal{O}())$ be the epireflective hull of $\mathcal{O}($ (1.4.4) and let $(\mathbf{r_e}, \mathbf{x_e})$ be the $\mathcal{C}(\mathcal{O}())$ -epireflection of X. But $\mathcal{C}(\mathcal{O}())$ is $\mathcal{C}(\mathcal{O}())$ -extremal concrete embedding) (3.3.8) and consequently $\mathbf{x_e}$ is $\mathcal{O}(-\text{compact})$, hence $\mathcal{O}(-\text{regular})$. Note that $\mathbf{r_e}$ is $\mathcal{C}(\mathcal{O}())$ -extendable, thus $\mathcal{O}(-\text{extendable})$; and for each ieI, $\pi_i \cdot \mathbf{f}: \mathbf{X} \to \mathbf{A_i}$ is a morphism into an $\mathcal{O}(-\text{object})$. For each ieI, there exists a morphism $\mathbf{g_i}: \mathbf{X_e} \to \mathbf{A_i}$ such that the diagram

commutes (1.4.2). Let the unique product induced morphism be $\{g_i^*: X_e \to \Pi A_i^*\}$. Thus $\pi_i \cdot f = g_i \cdot r_e = \pi_i \cdot \langle g_i^* \rangle \cdot r_e$ for each is I. And $f = \langle g_i^* \rangle \cdot r_e$, since products are mono sources. Thus r_e is a concrete embedding, since f is. And consequently by (f), r_e is an extremal concrete embedding. Hence X is \emptyset 1-compact (2.3.1).

(b) and (d) \Rightarrow (g): Since X is \mathfrak{A} -compact, it must be \mathfrak{A} -regular. Let (w,W) be an \mathfrak{A} -regular concrete embedding-extension of X for which w is \mathfrak{A} -extendable. Then by (d), w is an isomorphism.

 $(g) \Rightarrow (f)$: By (g), X is C-regular. Suppose Y is an C-regular object for which there exists an C-extendable concrete embedding $f:X \to Y$. Let $f = h \cdot w$ be the (epi, extremal concrete embedding) factorization of f (1.3.5, 1.5.3). Then w is a concrete embedding, since f is. Let W denote the codomain of w. Then W is C-regular (2.3.1). Let $t:X \to A$ be a morphism to some C-object A. Then since f

is α -extendable there exists a morphism $k:Y \to A$ so that the diagram

commutes. Then $k \cdot h \colon W \to A$ is a morphism such that $(k \cdot h) \cdot w = t$. Hence w is $\operatorname{CT-extendable}$, and (w,W) is an $\operatorname{CT-extendable}$, and (w,W) is an isomorphism, and consequently f is an extremal concrete embedding.

4. LINEARIZATIONS

In this chapter, we will introduce the concept of \mathcal{M} -linearizations of an endomorphism in a category and will show that for each endomorphism in a category \mathcal{C} with countable products, there exists an \mathcal{M} -linearization of that endomorphism for several classes \mathcal{M} of \mathcal{C} -morphisms. We shall show further that by weakening the product condition on \mathcal{C} , we can still find \mathcal{M} -linearizations for certain endomorphisms in the category. Also, we will generalize de Groot's result [2] on the existence of 'universal linearizations' for completely regular spaces X of a weight \leq k for some infinite cardinal number k and monoids M of at most k endomorphisms on X. This will become a category—theoretic result which will extend the generalizations of Baayen [1] on this same subject.

§4.1 Coordinate Immutors and Permutors

In this section, we shall develop some of the mathematical machinery for later sections. We shall define coordinate immutors and permutors on powers of objects in a category and shall see that they are endomorphisms of an interesting linear character, in that they act only on the coordinates of a power, serving to "switch or collapse" these coordinates.

DEFINITION 4.1.1. Let ${\cal C}$ be a category, E be a ${\cal C}$ -object, S be any set for which the (Card S)'th power of E exists in ${\cal C}$, and k = Card S.

(1) Then a ${\Bbb C}$ -morphism $f: {\Bbb E}^k \to {\Bbb E}^k$ is called a <u>coordinate</u> immutor on ${\Bbb E}^k$ provided that there exists a set function $\alpha: S \to S$ such

that $\pi_{\varphi} ^*f$ = $\pi_{Q(\varphi)}$ for each $\varphi \epsilon S;$ i.e., f must be the unique induced morphism which makes the diagram

commute for each $\phi \epsilon S$.

(2) A coordinate immutor $f: E^k \to E^k$ is called a <u>coordinate</u> <u>permutor on</u> E^k provided that $\alpha: S \to S$, in the above definition, is bijective.

PROPOSITION 4.1.2. Let ${\cal O}$ be a set of coordinate immutors (respectively, coordinate permutors) on the object part E^k of some power in ${\cal C}$ of some ${\cal C}$ -object E. If the (k·Card ${\cal P}$) th power of E also exists in ${\cal C}$, then the product of the coordinate immutors (respectively, coordinate permutors) ${\cal I}$ p is a coordinate immutor ${\cal P} \in {\cal P}$ (respectively, coordinate permutor), up to a natural isomorphism, on E^k -Card ${\cal P}$.

PROOF: Without loss of generality we may assume for each pe ${\cal P}$, there exists a function $\alpha_p:k \to k$ such that $\pi_\lambda \cdot p = \pi_{\alpha_p}(\lambda)$ for each $\lambda \in k$. By hypothesis (and 1.1.3), the product $(\Pi_p \in {\cal P})_p, \overline{\pi}_p)$ is in ${\cal C}$.

Let $\delta: \Pi (E^k)_{p \in \mathcal{P}} \to \Pi E_{\lambda, p}$ be the natural isomorphism, and let $p \in \mathcal{P}$

 Π p be the unique induced morphism that makes the diagram

for each $\lambda \in k$ from the definition of coordinate immutor (respectively, commutor)] Π p is the product of the family $(p)_{p \in \mathcal{O}}$ (1.1.4). $p \in \mathcal{O}$ Define $\alpha: k \times \mathcal{O} + k \times \mathcal{O}$ by $\alpha(\lambda, p) = (\alpha_p(\lambda), p)$ for each $\lambda \in k$, $p \in \mathcal{O}$. Then $\pi_{\lambda, p} \cdot \delta \cdot (\Pi p) \cdot \delta^{-1} = (\pi_{\lambda})_p \cdot \overline{p} \cdot (\Pi p) \cdot \delta^{-1} = (\pi_{\lambda})_p \cdot p \cdot \overline{n}_p \cdot \delta^{-1}$ $= (\pi_{\alpha_p(\lambda)})_p \cdot \overline{n}_p \cdot \delta^{-1} = \pi_{\alpha((\lambda, p))}$ for each $(\lambda, p) \in k \times \mathcal{O}$; consequently $\delta \cdot \Pi p \cdot \delta^{-1}$ is a coordinate immutor on $E^{k \cdot Card\mathcal{O}}$ (respectively, a positive permutor on $E^{k \cdot Card\mathcal{O}}$ since α is bijective, if each α_p is, for $p \in \mathcal{O}$).

commute for each pe Φ . [The lower portion of the diagram commutes

PROPOSITION 4.1.3. Let $\mathfrak C$ be a category. Let ψ be a coordinate immutor (respectively, permutor) on the object part E^k of some power of a $\mathfrak C$ -object E, and let E be the object part of the product (Π A_i , π_i) of some family (A_i) iel of $\mathfrak C$ -objects. Then there exists an iel Π

isomorphism $\delta{:}{\textbf{E}^k} \to \ \pi$ (A_i^k) such that $\delta{\cdot}\psi{\cdot}\delta^{-1}$ is equal to the product isl

 $\mbox{$\Pi$}\ \phi_{i}$ of a family $(\phi_{i})_{i\in I},$ where each ϕ_{i} is a coordinate immutor $_{i\in I}$

(respectively, permutor) on $\mathbb{A}^k_{\hat{\mathbf{1}}}$ for each itl.

PROOF: Since ψ is a coordinate immutor (respectively, permutor) on E^k where $(E^k,(P_\lambda)_{\lambda\in k})$ is a power in ${\bf C}$, then without loss of generality, we may assume that there exists a set function (respectively, a bijective set function) $\alpha:k\to k$ for which $\overline{P_\lambda}\cdot\psi=\overline{P}_{\alpha(\lambda)}$.

By the Iteration of Products Theorem (1.1.3), there exists a natural isomorphism $\delta{:}\text{E}^k \to \ \mbox{\mathbb{I}}\ (\mathbb{A}^k_i).$ Consider the diagram: $i{\in}\text{I}$

For each isI, let $\phi_i: A_i^k \to A_i^k$ be the morphism that makes part I of the diagram commute for each $\lambda \epsilon k$, and let $\Pi \phi_i$ be the product of the family $(\phi_i)_{i \in I}$ (1.1.4). We need only show that $\delta \cdot \psi \cdot \delta^{-1} = \prod_{i \in I} \phi_i$. For each

 $\begin{array}{ll} \lambda \in \mathbb{R} \ \ \text{and} \ \ i \in \mathbb{I}, \quad \mathbb{P}_{\lambda, \mathbf{i}} \cdot \delta^{-1} \cdot (\mathbb{\Pi} \phi_{\mathbf{i}}) \cdot \delta = \pi_{\lambda, \mathbf{i}} \cdot (\mathbb{\Pi} \phi_{\mathbf{i}}) \cdot \delta = \pi_{\alpha(\lambda), \mathbf{i}} \cdot \delta \\ \\ &= \mathbb{P}_{\alpha(\lambda), \mathbf{i}} = \mathbb{P}_{\lambda, \mathbf{i}} \cdot \psi. \quad \text{Thus since products are mono sources (2.1.3),} \\ \delta^{-1} \cdot (\mathbb{\Pi} \phi_{\lambda}) \cdot \delta = \psi. \end{array}$

§4.2 M-Linearizations

In this section, we will show that endomorphisms in many categories ${\bf C}$ can be viewed as restrictions, of some form, of coordinate immutors on powers of objects in the category, and in similar fashion, that automorphisms often can be viewed as restrictions of coordinate permutors on powers of objects. Several theorems will be proved which establish the existence of various ${\mathcal M}$ -linearizations, for certain classes ${\mathcal M}$ of morphisms in a category ${\bf C}$ that, depending upon product properties of ${\bf C}$, may linearize a given individual endomorphism in ${\bf C}$, or simultaneously linearize a monoid of endomorphisms on a given ${\bf C}$ -object, or even universally linearize all monoids (of a certain cardinality) of endomorphisms on an object in a given subcategory of ${\bf C}$. For the most part, the results of this section will generalize results of de Groot [2] and Baayen [1], but with a considerable change in emphasis.

DEFINITION 4.2.1. Let ${\mathfrak C}$ be a category, ${\mathfrak M}$ be a class of ${\mathfrak C}$ -morphisms that is isomorphism-closed in ${\mathfrak C}$, ${\mathfrak K}$ and ${\mathfrak G}$ be subcategories of ${\mathfrak C}$, X and X be ${\mathfrak C}$ -objects and ${\phi}:X \to X$ and ${\psi}:Y \to Y$ be endomorphisms in ${\mathfrak C}$, and ${\mathfrak m}:X \to Y$ be a ${\mathfrak C}$ -morphism.

(1) The triple (m,L,ψ) is called an \mathcal{M} -lift of (X,ϕ) provided that $m:X \to L$ is an \mathcal{M} -morphism such that the diagram

commutes.

- (2) An \mathcal{M} -lift (m,L,ψ) of (X,ϕ) is called an \mathcal{M} -linearization of (X,ϕ) in $\partial \mathcal{M}$ provided that L is the object part of some power of a product of $\partial \mathcal{M}$ -objects and ψ is a coordinate immutor on L. If ψ is also a coordinate permutor on L, the triple (m,L,ψ) is called a stable \mathcal{M} -linearization of (X,ϕ) in $\partial \mathcal{M}$.
- (3) Let S be a monoid of endomorphisms on X. The triple (m,L,ψ) is called an \mathfrak{M} -lift of (X,S) provided that (m,L,ψ) is an \mathfrak{M} -lift for (X,s) for every seS.
- (4) Let S be a monoid of endomorphisms on X. The triple (m,L,ψ) is called a (stable) M-linearization of (X,S) in \mathcal{CO} provided that (m,L,ψ) is a (stable) M-linearization of (X,s) in \mathcal{CO} for every seS.

Recall that each class $\mathcal M$, of morphisms in a category $\mathcal C$, listed in Table 2.3.2, is both isomorphism-closed in $\mathcal C$ and left-cancellative in $\mathcal C$ (2.3.5).

THEOREM 4.2.2. Let ${\mathfrak C}$ be a category, k be a cardinal number, E be a ${\mathfrak C}$ -object for which the k'th power of E exists in ${\mathfrak C}$, ${\mathfrak M}$ be any class of ${\mathfrak C}$ -morphisms which is both isomorphism-closed in ${\mathfrak C}$ and

left-cancellative in $\mathfrak C$, and X be any $\mathfrak C$ -object for which there exists an $\mathfrak M$ -morphism $\xi\colon X\to E^k$. Let S be any monoid of endomorphisms on X (respectively, any group of automorphisms on X) for which the (k·Card S)'th power of E exists in $\mathfrak C$.

Then for each seS, there exists a morphism $m:X \to E^{kCardS}$ and an endomorphism $\gamma_s:E^{k\cdot CardS} \to E^{k\cdot CardS}$ such that $(m,E^{k\cdot CardS},\gamma_s)$ is an M-linearization (respectively, a stable M-linearization) of (X,s) in $\mathcal{P}E$.

Furthermore, if \mathcal{M} is contained in the class of \mathcal{C} -monomorphisms, then if s and s' are distinct elements of S, $\gamma_S \neq \gamma_{S'}$.

PROOF: By hypothesis the power ($\mathbb{T} \in \mathcal{T}_{S'}$) exists in $\mathcal{C}_{S'}$ the

PROOF: By hypothesis the power ($\Pi \to E_{\lambda,s}, \pi_{\lambda,s}$) exists in ${\bf C}$, the seS

power ($\Pi \to E_{\lambda}, \pi_{\lambda}$) exists in $\mathcal C$, and there exists an $\mathcal M$ -morphism $\xi: X \to \Pi \to E_{\lambda}$. For each seS and each $\lambda \in K$, there exists a morphism $\pi_{\lambda} \cdot \xi \cdot s : X \to E_{\lambda}, \psi$. Let m be the unique induced morphism which makes the diagram

commute for each $\lambda \epsilon k$ and $s\epsilon S$. Thus $\pi_{\lambda,s} \cdot m = \pi_{\lambda} \cdot \xi \cdot s$ for each $\lambda \epsilon k$ and $s\epsilon S$.

We wish to show that m is an \mathcal{M} -morphism. For each seS, let $p_s: \Pi E_{\lambda,s} \to \Pi E_{\lambda}$ be the unique induced morphism such that $\pi_{\lambda} \cdot p_s = \pi_{\lambda,s}$ for $\lambda \varepsilon k$. However for each $\lambda \varepsilon k$ and $s \varepsilon S$, $\pi_{\lambda,s} \cdot m = \pi_{\lambda} \cdot \xi \cdot s$ and $\pi_{\lambda} \cdot p_s \cdot m = \pi_{\lambda,s} \cdot m = \pi_{\lambda} \cdot \xi \cdot s$. Since products are mono sources, $p_s \cdot m = \xi \cdot s$ for each $s \varepsilon S$.

By hypothesis, S is a monoid; hence $1_X \in S$. Thus $p_{1_X} \cdot m = \xi \cdot 1_X = \xi$. Moreover ξ is an M-morphism and, by hypothesis, M is a left-cancellative class of ℓ -morphisms; hence m is an M-morphism.

For each yeS, define α_y :S \rightarrow S by α_y (s) = s·y for each seS. Let t be an element of S. Let γ_t be the unique induced morphism that makes the diagram

commute for each seS and $\lambda\epsilon k.$ Clearly $\gamma_{\underline{t}}$ is a coordinate immutor.

[To show that γ_t is a coordinate permutor when S is a group of automorphisms on X, we need only show that $\alpha_t\colon S\to S$, as defined above, is bijective. Clearly α_t is surjective: $t^{-1}\epsilon S$; thus for any $g\epsilon S$,

 $\alpha_t(gt^{-1}) = gt^{-1}t = g$. Suppose $\alpha_t(x) = \alpha_t(y)$ then xt = yt; hence x = y, since S is a group.]

We now will show that (m, $\mbox{ M E}_{\lambda,s},\mbox{ }\gamma_t)$ is an $\mbox{\it M-lift}$ for $\sum_{s\in S}$

(X,t); i.e., that the diagram

commutes.

For each
$$\lambda \in \mathbb{R}$$
 and $s \in \mathbb{S}$, $(\pi_{\lambda,s} \cdot \gamma_t) \cdot m = \pi_{\lambda,st} \cdot m$
$$= \pi_{\lambda} \cdot \xi \cdot s \cdot t$$

$$= (\pi_{\lambda,s} \cdot m) \cdot t.$$

And since products are mono sources, γ_t m = m·t.

Now suppose that every \mathcal{M} -morphism is a monomorphism. Let s, s'sS for which $\gamma_S = \gamma_{S'}$. Then $\gamma_S = \gamma_{S'}$, m; hence m·s = m·s'; thus s = s'.

This theorem is a generalization of one of Baayen's results [1] which he stated only in terms of topological embeddings of completely regular T_1 -spaces into powers of the real line R. The generalization to topological embedding-linearizations in $\underline{\text{Top}}$ is implicit in his work.

Corollary 4.2.3 (Baayen [1]). Let F be a monoid of continuous self-maps on a completely regular T₁-space X. Then for each fcF, there exists a topological embedding-linearization in some pair (\mathcal{R}^k , δ_f) where k = (Card F)·weight X $^{**}_{0}$ for each δ_f is a continuous linear operator in \mathcal{R}^k . Furthermore, if f, f' are distinct elements in F, then $\delta_\varepsilon \neq \delta_\varepsilon$.

PROOF: A well-known result of Tychonoff's states that every completely regular T_1 -space X can be topologically embedded into the product space $[0,1]^{\alpha}$, where α = (weight X) \mathcal{N}_0 . Of course $[0,1]^{\alpha}$ is a subspace of \mathbb{R}^{α} , so there exists a topological embedding $\xi: X \to \mathbb{R}^{\alpha}$. The class of all topological embeddings (i.e., concrete embeddings in \underline{Top}) is left-cancellative and contained in the class of monomorphisms in \underline{Top} . By Theorem 4.2.2, for each feF, there exists a topological embedding-linearization ($\mathbb{R}^{\alpha \cdot \operatorname{CardF}}$, δ_f), such that δ_f is a coordinate immutor on \mathbb{R}^k , where $k = \alpha \cdot \operatorname{CardF} = \operatorname{weight} X \cdot \mathbb{N}_0 \cdot \operatorname{CardF}$, and such that for some topological embedding $m: X \to \mathbb{R}^k$, the diagram

commutes.

There are, of course, many additional corollaries to

Theorem 4.2.2. However, we will delay listing them until we have

proved a stronger version of the theorem. The next theorem allows us to simultaneously linearize a monoid of endomorphisms on an object in a category, provided that certain products exist in the category.

THEOREM 4.2.4. Let $\mathfrak C$, $\mathfrak M$, E, X, k and ξ be as in the hypothesis of Theorem 4.2.2. Let S be any monoid of endomorphisms (respectively, group of automorphisms) on X for which all subpowers of the (k-Card S-Card S)'th power of E exist in C. Then there exists an M-morphism $m:X \to E^{k}$ -Card S-Card S and an endomorphism ϕ on E^{k} -Card S-Card S-Such that $(m, E^{k}$ -Card S-Card S, ϕ) is an M-linearization (respectively, a stable M-linearization) of (X,S) in $\mathcal O$ E.

PROOF: By Theorem 4.2.2 there exists an \mathcal{M} -morphism $m:X \to E^{k \cdot CardS}$ such that $(m, E^{k \cdot CardS}, \gamma_S)$ is an \mathcal{M} -linearization (respectively, a stable \mathcal{M} -linearization) of (X, S) in \mathcal{O} E. Thus the diagram

commutes. By hypothesis and the Iteration of Products Theorem (1.1.3), the product $(\Pi(E^{k\cdot CardS})_s, \pi_s)$ is in C and there exists a natural isomorphism $\delta\colon \Pi \to E^{k\cdot CardS} \to E^{k\cdot CardS\cdot CardS}$. Let $\Pi \to S_s \in S$ denote the $S_s \in S$

product of coordinate immutors (respectively, permutors) $(\gamma_s)_{s \in S}$. By Proposition 4.1.2, there exists $\phi = \delta \cdot \Pi \gamma_s \cdot \delta^{-1}$ which is a coordinate

immutor on $E^{k\cdot CardS\cdot CardS}$ (respectively a coordinate permutor on $E^{k\cdot CardS\cdot CardS}$).

Let <m>:X \rightarrow [(E $^{k \cdot CardS}$) $_{S}$ be the unique induced morphism for which $\pi_{s} \cdot <m> = m$ for each seS. We shall show that the diagram

commutes for each seS. π_s '<m>·s = m·s = γ_s 'm = γ_s ' π_s '<m>· = π_s ' $\pi\gamma_s$ '<m> for each seS; and, since products are mono sources, <m>·s = $\pi\gamma_s$ '<m>· Thus <m>·s = $(\delta^{-1} \cdot \phi \cdot \delta) \cdot$ <m>· so that $\delta \cdot$ <m>· s = $\phi \cdot \delta \cdot$ <m>. Also since m is an \mathcal{M} -morphism and \mathcal{M} is a class of \mathcal{C} -morphisms that is left-cancellative, <m> must be an \mathcal{M} -morphism since π_s '<m> = m. Hence (<m>, E k (CardS) 2 , ϕ) is an \mathcal{M} -linearization of (X,S) in ρ E (respectively, a stable \mathcal{M} -linearization of (X,S) on ρ E).

COROLLARY 4.2.5. Let ${\cal C}$ and ${\cal M}$ be as in the hypothesis of Theorem 4.2.4, ${\cal E}$ be a subcategory of ${\cal C}$, and X be a ${\cal C}$ -object for which there exists an ${\cal M}$ -morphism ${\cal E}$ from X into the product (${\cal M}$ E $_i$, ${\cal M}$) of a set-indexed family of ${\cal E}$ -objects. Let S be a monoid of endomorphisms on X (respectively, a group of automorphisms on X) such that all subpowers of the (CardS·CardS)'th power of (${\cal M}$ E $_i$) exist in ${\cal C}$.

Then there exists an \mathcal{M} -morphism m and an endomorphism ϕ on $(\frac{\pi}{i\in I}E_i)^{(CardS)^2} \text{ such that } (m, (\frac{\pi}{i\in I}E_i)^{(CardS)^2}, \phi) \text{ is an } \mathcal{M}\text{-linearization}$ (respectively, a stable $\mathcal{M}\text{-linearization})$ of (X,S) in \mathscr{CE} . PROOF: Let E = $\frac{\pi}{i}$, $\frac{\pi}{i}$. Then apply Theorem 4.2.4.

COROLLARY 4.2.6. Let k be any infinite cardinal number, $\mathcal E$ be a category with k-fold products, $\mathcal M$ be a class of morphisms in $\mathcal E$ that is isomorphism-closed and left-cancellative in $\mathcal E$, $\mathcal E$ be a full subcategory of $\mathcal E$, and $\mathcal X$ be a $\mathcal E$ -object. Then the following statements are equivalent:

- (a) X is & M-embeddable in C.
- (b) For any monoid S of endomorphisms on X for which Card S \leq k, there exists an \mathcal{M} -linearization of (X,S) in \mathscr{OE} .
- (c) For any endomorphism t on X, there exists an $\mathcal M$ -linearization of (X,t) in $\operatorname{\mathcal P} g$.
- (d) For any endomorphism t on X of finite order, there exists an \mathcal{M} -linearization of (X,t) in $\mathcal{P}_{\mathcal{E}}^{Z}$.
- (e) For any automorphism t on X, there exists a stable \mathcal{M} -linearization of (X,t) in \mathcal{OE} .
- (f) For any automorphism t on X of finite order, there exists an \mathcal{M} -linearization of (X,t) in \mathcal{OE} .
- (g) For any group S of automorphisms on X for which Card S $\leq k$, there exists a stable \mathcal{M} -linearization of (X,S) in \mathscr{OE} .

 PROOF: (a) \Longrightarrow (b) (respectively (a) \Longrightarrow (g)): There exists a set-indexed family (E₁) $\underset{i\in \mathbb{I}}{\longrightarrow}$ of \mathscr{E} -objects for which the product ($\Pi E_1, \pi_1$) exists in

 ${\mathfrak C}$ and there is an ${\mathcal M}$ -morphism $\xi: X \to {\mathbb R} \underline{{\mathbb E}}_{\underline{{\mathbf i}}}$ (3.2.1). Let S be any monoid of endomorphisms (respectively group of automorphisms on X) for which Card $S \le k$. Then $({\text{Card }} S)^2 \le k$. Apply Corollary 4.2.5.

 $\underline{\text{(b) => (c)}} \text{ (respectively } \underline{\text{(g) => (e)}}\text{):} \text{ Let } S_T \text{ be the monoid}$ (respectively, group) generated by {t}. Then Card $S_T \leq \chi_0 \leq k$.

(a) ⇒ (d) and (e) ⇒ (f): Clear.

 $\underline{(d)} \Rightarrow \underline{(a)} \text{ (respectively } \underline{(f)} \Rightarrow \underline{(a)}) \colon \text{ The identity } 1_X \text{ has order}$ 1. Thus there exists a (stable) \mathcal{M} -linearization of $(X,1_X)$ in \mathscr{PL} . Thus there exists L, a power of \mathcal{L} -objects, and an \mathcal{M} -morphism $m: X \to L$ (4.2.1). Hence X is \mathcal{L} \mathcal{M} -embeddable.

COROLLARY 4.2.7. Let $\mathcal C$ be a category with products, let $\mathcal M$ be a class of $\mathcal C$ -morphisms that is isomorphism-closed in $\mathcal C$ and left-cancellative in $\mathcal C$. Let $\mathcal E$ be any subcategory of $\mathcal C$. Then X is $\mathcal E$ $\mathcal M$ -embeddable in $\mathcal C$ if and only if for every monoid S of endomorphisms on X (respectively, every group S of automorphisms on X), there exists an $\mathcal M$ -linearization of (X,S) (respectively, a stable $\mathcal M$ -linearization of (X,S)) in $\mathcal P\mathcal E$.

PROOF: Apply the previous corollary.

There are three areas of differences between Baayen's generalizations of de Groot's work and our generalizations. The first is primarily one of emphasis: Baayen [1] was interested in the existence of mono-universal objects in a category and universal mono-lifts for morphisms in the category (i.e., "universal morphisms"), while our emphasis is on the linear character of the resulting coordinate immutors. Secondly, we have obtained results on the existence of \mathcal{M} -linearizations for several classes \mathcal{M} of morphisms in

a category, while Baayers results were restricted to monomorphisms in general categories and topological embeddings in <u>Top</u> (which he had to consider separately). Thirdly, Baayen's results were restricted to categories with countable products; our results require only the existence of certain products in the category. Hence, for example, we can obtain the following corollary for categories with finite products.

COROLLARY 4.2.8. Let $\mathcal C$ be a category with finite products, $\mathcal M$ be any class of $\mathcal C$ -morphisms that is isomorphism-closed in $\mathcal C$ and left-cancellative in $\mathcal C$, $\mathcal E$ be a subcategory of $\mathcal C$, and $\mathcal X$ be a $\mathcal C$ -object. Then the following statements are equivalent:

- (a) X is & M -embeddable in C.
- (b) For any monoid S of endomorphisms on X for which Card S is finite, there exists an $\mathcal{M}-$ linearization of (X,S) in \mathcal{PE} .
- (c) For any endomorphism t on X of finite order, there exists an $\mathcal{M}-$ linearization of (X,t) in \mathcal{PE} .
- (d) For any automorphism g on X of finite order, there exists a stable $\mathcal M$ -linearization of (X,g) in PE .
- (e) For any group S of automorphisms on X for which Card S is finite, there exists a stable \mathcal{M} -linearization of (X,S) in \mathcal{PE} . PROOF: (a) \Rightarrow (b) (respectively, (a) \Rightarrow (e)): There exists a product (π E, π_i) of \mathcal{E} -objects and an \mathcal{M} -morphism $\xi: X \to \pi$ E₁. (Card S)² is I is finite, since Card S is finite. Apply Corollary 4.2.5 to obtain the \mathcal{M} -linearization of (X,S) in \mathcal{PE} (respectively, to obtain the stable \mathcal{M} -linearization of (X,S) in \mathcal{PE}).

 $\underline{(b)} \Rightarrow \underline{(c)} \text{ (respectively, } \underline{(e)} \Rightarrow \underline{(d)} \text{): Let } S_T \text{ be the monoid of endomorphisms on } X \text{ (respectively, group of automorphisms on } X \text{)}$ generated by $\{t\}$. Since t has finite order, Card S_T is finite; hence by (b) there exists an \mathcal{M} -linearization (respectively, a stable \mathcal{M} -linearization) (m,L,ϕ) of (X,S_T) in \mathcal{PE} . Hence (m,L,ϕ) is the desired linearization for (X,t).

(c) \Rightarrow (a) (respectively, (d) \Rightarrow (a)): The identity morphism on X has order 1. Therefore by (c) (respectively, (d)), there exists an \mathcal{M} -linearization (m,L, ϕ) of (X,l $_X$) in \mathcal{PE} , where L is a power of a product of \mathcal{E} -objects.

A much stronger result can be obtained for a category $\mathcal C$ with countable products: every endomorphism ϕ on a $\mathcal C$ -object X has a section-linearization in $\mathcal O$ X, and hence an $\mathcal H$ -linearization in $\mathcal O$ X for every class $\mathcal M$ of $\mathcal C$ -morphism from Table 2.3.2 (2.3.7).

COROLLARY 4.2.9. In a category ${\cal C}$ with countable products, every ${\cal C}$ -object X and every endomorphism t on X (respectively, every automorphism t on X) has a section-linearization of (X,t) in ${\cal C}$ X. PROOF: Let S_t be the monoid (respectively, group) generated by {t}. Card S_t \leq ${\cal N}_0$. The identity morphism $1_X: X \to X$ is an isomorphism, hence a section, and the class of all sections in ${\cal C}$ is left-cancellable and isomorphism-closed in ${\cal C}$. Thus there exists a section-linearization of (X,t) in ${\cal C}$ X (respectively, a stable section-linearization of (X,t) in ${\cal C}$ X) (4.2.6).

It is interesting to note that, in a category ${\cal C}$, with countable products and a weakly terminal class ${\cal E}$ of ${\cal C}$ -objects

(i.e., for each C -object X, hom C (X,E) $\neq \emptyset$ for some EcC), every pair (X, \emptyset), where X is a C -object and \emptyset is an endomorphism on X, has a weak-linearization in C . If a category C has an epireflective subcategory C, then C (1.4.2). Consequently if (C,C) is a concrete category that is complete and well-powered, having a full replete epireflective subcategory C (1.4.3) and for every C -object X and every endomorphism C on X, there exists a weak-linearization of (X,C) in C (3.4.3) and furthermore, if X is an C -regular space, there exists a concrete embedding-linearization of (X,C) in C (3.2.1, 4.2.6).

Let us next consider a product B×C of distinct sets B and C and a Set-monomorphism $m:X \to B\times C$ and an automorphism $f:X \to X$. We know that there exists a coordinate permutor $\psi\colon (B\times C)^\alpha \to (B\times C)^\alpha$, where α is the order of the automorphism f, such that $(m,(B\times C)^\alpha,\psi)$ is a stable mono-linearization of (X,f) in Set (4.2.6). What we will examine now is the workings of ψ on $(B\times C)^\alpha$. From the next theorem we will find that $\psi = \psi_B \times \psi_C$, the product of coordinate permutors ψ_B on B^α and ψ_C on C^α .

THEOREM 4.2.10. Let $\mathcal C$ be a category, let $\mathcal M$ be a class of $\mathcal C$ -morphisms that is isomorphism-closed in $\mathcal C$ and left-cancellative in $\mathcal C$, let $(\mathbb E_i)_{i\in I}$ be a set-indexed family of $\mathcal C$ -objects whose product $(\mathbb HE_i,\pi_i)$ exists in $\mathcal C$, and let X be any $\mathcal C$ -object for which there exists an $\mathcal M$ -morphism $\xi\colon X\to \mathbb HE_i$. If S is any monoid of endomorphisms on X (respectively, any group of automorphisms on X) such that all subpowers of the (Card S-Card S)'th power of $\mathbb HE_i$ exist in $\mathcal C$, then there exists a triple (m,L,ψ) which is an $\mathcal M$ -lift for (X,S) such that

$$\begin{split} L &= \prod_{i \in I} E^{\left(CardS\right)^{2}} \text{ and } \psi \text{ is the product of a family } \left(\phi_{i}\right)_{i \in I} \text{ of morphisms,} \\ \text{where for each icI, } \phi_{i} \text{ is a coordinate immutor (respectively, permutor)} \\ \text{on } E_{i}^{\left(CardS\right)^{2}}. \end{split}$$

PROOF: By Theorem 4.2.4, there exists an \mathcal{M} -linearization (respectively, stable \mathcal{M} -linearization) (m,($\mathbb{IE}_{\underline{i}}$)(CardS) 2 , ψ) for ($\mathbb{IE}_{\underline{i}}$,S). The remainder of the proof follows directly from Proposition 4.1.3.

§4.3 Universal M-Linearizations

In the previous section, we found that linearizations always exist for endomorphisms in categories with countable products, and that for some monoids of endomorphisms on an object in the category, as well as for some groups of automorphisms on an object in the category, we could obtain simultaneous linearizations. In this section, we will restrict our attention to categories with infinite products in order to obtain some linearizations that are universal for all endomorphisms (respectively, all automorphisms) on any object in a given subcategory.

DEFINITION 4.3.1. Let ${\cal C}$ be a category, ${\cal M}$ be a class of ${\cal C}$ -morphisms that is isomorphism-closed in ${\cal C}$, ${\cal C}{\cal C}$ be a subcategory of ${\cal C}$ and L be a ${\cal C}$ -object where $\psi:L\to L$ is an endomorphism in ${\cal C}$.

- (1) A C -object X is called an M-universal object for CX provided that for each M-object A there exists an M-morphism m:A X.
- (2) A pair (L,ψ) is called a <u>universal \mathcal{M} -lift for End</u> (\mathfrak{K}) [respectively, <u>for Aut</u> (\mathfrak{K})] provided that for each endomorphism [*espectively, each automorphism] ϕ on any \mathfrak{K} -object A, there exists an

 \mathcal{M} -morphism m:A \rightarrow L for which (m,L, ψ) is an \mathcal{M} -lift for (A, ϕ).

- (2) A universal \mathcal{M} -lift (L, ψ) for End(\mathcal{C} t) [respectively, for Aut(\mathcal{C} t)] is called a <u>universal</u> \mathcal{M} -linearization for End(\mathcal{C} t) [respectively, for Aut(\mathcal{C} t)] provided that L is the object part of a power of a product of \mathcal{C} -objects and ψ is a coordinate immutor. If ψ is a coordinate permutor on L, then (L, ψ) is called a <u>stable universal</u> \mathcal{M} -linearization for End(\mathcal{C} t) [respectively, for Aut(\mathcal{C} t)].
- (3) Let k be a cardinal number. A monoid S is called a k-M-universal monoid for $\mathcal O$ provided that card $S \leq k$ and there exists a $\mathcal C$ -object L and a monoid homomorphism $\alpha\colon S \to \text{hom }_{\mathcal C}(L,L)$ with the following property: for each monoid T with card $T \leq k$, there exists a surjective monoid homomorphism $\gamma\colon S \to T$ such that for each $\mathcal O$ -object A and for each monoid homomorphism $\beta\colon T \to \text{hom }_{\mathcal C}(A,A)$ there is some $\mathcal M$ -morphism $m\colon A \to L$, such that for each $s\in S$, the triple $(m,L,\alpha(s))$ is an $\mathcal M$ -lift of $(A,\beta\colon \gamma(s))$.

(4) Let k be a cardinal number. A group S is called a $k-\mathcal{M}$ -universal group for \mathcal{O} provided that card $S \leq k$ and there exist a \mathcal{C} -object L and a group homomorphism $\alpha:S \to \operatorname{Aut}_{\mathcal{C}}(L,L)$ (where

Aut $_{\mathfrak{C}}$ (L,L) is the group of automorphisms on L) with the following property:

for each group T with card $T \leq k$, there exists a surjective group homomorphism $\gamma:S \to T$ such that for each G(-object A and for each group homomorphism $\beta:T \to Aut_{\mathfrak{C}}(A,A)$ there is some M-morphism $m:A \to L$, such that for each seS the triple $(m,L,\alpha(s))$ is an M-lift of $(A,\beta\cdot\gamma(s))$.

THEOREM 4.3.2. Let k be an infinite cardinal number, $\mathcal C$ be a category with k-fold products, and $\mathcal M$ be any class of $\mathcal C$ -morphisms that is isomorphism-closed in $\mathcal C$ and left-cancellative in $\mathcal C$. Then if $\mathcal C$ 1 is any subcategory of $\mathcal C$ 5, the following statements are equivalent:

- (a) There exists an \mathcal{M} -universal object for \mathcal{O} in \mathcal{C} .
- (b) There exists a k-M-universal monoid for $\mathfrak{C} l$ in \mathfrak{C} .
- (c) There exists a k-M-universal group for $\mathcal O_k$ in $\mathcal C$.
- (d) There exists an universal $\mathcal M$ -linearization for End($\mathcal C($) in $\mathcal C$.
- (e) There exists a stable universal $\emph{M-}\mbox{linearization}$ for $\mbox{Aut}(\psi_i)$ in \mbox{C} .
- (f) There exists an universal \mathcal{M} -lift for $\operatorname{End}(\mathcal{C})$ in \mathcal{C} . Moreover if \mathcal{C} is closed under the formation of k-fold products in \mathcal{C} , then \mathcal{C} in statements (a) through (f) may be replaced by $\mathcal{C}(A)$. PROOF: (a) $\xrightarrow{-\triangleright}$ (b): Let S be a free monoid with k generators. Card S = $\mathbb{R} \cdot \mathcal{N}_0 = \mathbb{R}$, since k is infinite. Let K be the \mathcal{M} -universal object for $\mathcal{C}(A)$. By hypothesis, the product $(K^k, (\pi_{\lambda})_{\lambda \in \mathbb{R}})$ exists in \mathcal{C} . For each teS, define $f_{\underline{t}}: K^k \to K^k$ to be the unique induced morphism that makes the diagram

commute for each seS. Define $\alpha:S \to \hom_{\mathfrak{S}}(K^k,K^k)$ by $\alpha(t) = f_t$ for each teS. Note that for given p,qeS and for every seS, $\pi_s \cdot f_p \cdot f_q = \pi_{sp} \cdot f_q = \pi_{spq} = \pi_s \cdot f_{pq}$, and since products are mono sources (2.1.3), $\alpha(p)\alpha(q) = f_p \cdot f_q = f_{pq} = \alpha(pq)$. Also, clearly $\alpha(1) = f_1$, where $\pi_s \cdot f_1 = \pi_{s+1} = \pi_s$ for every seS; hence $\alpha(1) = 1_{K^k}$. Thus α is a monoid homomorphism.

Let T be any monoid such that Card T \leq k. By the universal mapping property for free monoids, there exists a surjective monoid homorphism $\gamma:S \to T$. For some CM-object A, let $\beta:T \to \text{hom}_{\textbf{e}}(A,A)$ be a monoid homomorphism. Since K is an \mathcal{M} -universal object for CM, there exists an \mathcal{M} -morphism $\text{m}:A \to K$. Thus for each seS, there exists a morphism $\text{m}:\beta(\gamma(s)):A \to K$. Let $q:A \to K^k$ be the unique induced morphism such that the diagram

commutes for each seS. Thus $\pi_S \cdot q = m \cdot \beta(\gamma(s))$ for each seS. T and S are monoids; hence there exist identities $e_S \epsilon S$ and $e_T \epsilon T$ and $\gamma(e_S) = e_T$. Thus $\beta(\gamma(e_S)) = \beta(e_T) = 1_A$, and $\pi_{e_S} \cdot q = m \cdot 1_A = m$. M is left-cancellative in $\mathcal C$; thus q is an M-morphism, since m is.

Now we need only to show that the diagram

commutes for each teS. For every seS, $\pi_s \cdot \alpha(t) \cdot q = \pi_s \cdot f_t \cdot q = \pi_{st} \cdot q$ = $\pi \cdot \beta(\gamma(st)) = \pi \cdot \beta(\gamma(s)) \cdot \beta(\gamma(t)) = \pi_s \cdot q \cdot \beta(\gamma(t))$. But products are mono sources (2.1.3), so $\alpha(t) \cdot q = q \cdot \beta(\gamma(t))$ for each teS. Hence $(q, K^k, \alpha(t))$ is an \mathcal{M} -lift of $(A, \beta \cdot \gamma(t))$ for each teS.

by $\beta_A(x)$ = ϕ . Then let $q_A\colon\! A\to K^k$ be the unique induced morphism that

makes the diagram

commute for each seS. Then, as before, for every seS the diagram

commutes, but $\beta_A(\gamma(s_X)) = \beta_A(x) = \phi$. Hence $(q_A, K^k, \alpha(s_X))$ is an m-lift for (A, ϕ) .

 $(d) \Rightarrow (f)$: Clear.

(a) \Rightarrow (e): The proof is analogous to the proof for (a) \Rightarrow (d). We need only check that $\alpha(t)$ as defined is a coordinate permutor for each teS. Let $\rho:S \to S$ be defined by $\rho(s) = st$. Now, since S is a group, ρ is bijective. Thus $\alpha(t)$ is a coordinate permutor (4.1.1) for each teS. Hence $(K^k, \alpha(s_X))$ is a stable universal \mathcal{M} -linearization for all

(e) → (f): Clear.

automorphisms in CI.

(f) → (a): Clear.

Finally we have de Groot's result which initiated the investigations of linearizations and universal objects in categories.

COROLLARY 4.3.3 (de Groot [2]). Let k be an infinite cardinal number, let P be the topological product $[0,1]^k$ and let F be the free monoid with k generators. Then every completely regular T_1 -space X of weight \leq k and every monoid S of endomorphisms on X admits a universal linearization in the pair (F,P) (i.e., in our terminology, there exists a k-topological embedding-monoid for the subcategory of \underline{Top} whose objects are the completely regular T_1 -spaces of weight \leq k). PROOF: By Tychonoff's result, $P = [0,1]^k$ is a universal object for all completely regular T_1 -spaces of weight \leq k. The class of all topological embeddings in \underline{Top} is precisely the class of all concrete embeddings in \underline{Top} , thus it is left-cancellative (2.3.5). Consequently Theorem 4.3.2 may be applied.

BIBLIOGRAPHY

- [1] Baayen, P. C., Universal Morphisms, Mathematical Centre Tract 9, Amsterdam, 1964.
- [2] de Groot, J., Linearization of Mappings, Proc. 1961 Prague Symposium, Prague, 1962.
- [3] Engelking, R. and Mrowka, S., On E-compact Spaces, <u>Bull.</u>

 <u>Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys.</u>, 6 (1958),

 429-436.
- [4] Herrlich, H., E-kompakte Raume, <u>Math.</u> <u>Zeitschr.</u>, 96 (1967), 228-255.
- [5] , Topologische Reflexionen und Coreflexionen, Lecture Notes in Mathematics, 78, Springer-Verlag, Berlin, 1968.
- [6] _____, Categorical Topology, <u>Gen. Topology and Its Appl.</u>, 1 (1971), 1-15.
- [7] and G. E. Strecker, <u>Category Theory</u>, Allyn and Bacon, to appear.
- [8] and , Coreflective Subcategories, <u>Trans.</u> Soc., 155 (1971).
- [9] and , Coreflective Subcategories in General Topology, to appear in Fund. Math.
- [10] and J. van der Slot, Properties Which Are Closely Related to Compactness, <u>Indag. Math.</u>, 29 (1967), 524-529.
- [11] Kelley, John L., General Topology, Van Nostrand, Princeton, N.J., 1955.
- [12] Lang, S., Algebra, Addison-Wesley, Reading, Mass., 1965.
- [13] Mrowka, S., On Universal Spaces, <u>Bull. Acad. Polon. Sci.</u>, Cl. III, 4 (1956), 479-481.
- [14] ____, A Property of the Hewitt Extension vV of Topological Spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 6 (1958), 95-96.
- [15] _____, On E-Compact Spaces II, <u>Bull. Acad. Polon. Sci.,</u> 14 (1966), 596-605.
- [16] _____, Further Results on E-compact Spaces I, <u>Acta Math.</u>, 120 (1968), 161-185.

BIOGRAPHICAL SKETCH

Jean Marie McDill was born in Trona, California and spent her childhood in various parts of the Southwest. She is married to William R. McDill, an economist, and has one daughter, Kathleen Marie.

Mrs. McDill has studied and taught mathematics at the college level, has worked as a computer programmer and has worked in semiconductor research.

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Theral O. Moore
Associate Professor of Mathematics

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Max H. Kele

Assistant Professor of History

This dissertation was submitted to the Dean of the College of Arts and Sciences and to the Graduate Council, and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

August, 1971

Dean, College of Arts and Sciences

Dean, Graduate School

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

George E. Strecker, Chairman
Assistant Professor of Mathematics

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

David A. Drake

Assistant Professor of Mathematics

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Zoran R. Pop-Stojanovic

Associate Professor of Mathematics

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Bryan V. Hearsey

Assistant Professor of Mathematics

