Convolution Neural Nets Part 1: Forward Propagation

Convolution:

Simple Convolution: $H \times W$ image with $h \times h$ filter: One matrix convolved by another matrix. Output is $H \times W$

Convolution: H×W×C image with h×h×C filter: One image with *multiple* channels convolved with a filter of equal channels. Output is H×W

Convolution: $H \times W \times C$ image with $n \times h \times h \times C$ filter: One image with multiple channels convolved with *multiple* filters of equal channels. Output $H \times W \times n$

Convolution: $N \times H \times W \times C$ image with $n \times h \times h \times C$ filter: *Multiple* images (batch/sample size) with multiple channels convolved with *multiple* filters of equal channels. Output is $N \times H \times W \times n$ def convNHWNpad(im,f):

Max-Pooling:

Simple max-pooling: H×W image with 2×2 filter, stride=2: One matrix, max is determined in 2×2 , stride = 2. Output is W/2 ×H/2.

```
def maxpoolHW(im):
    H,W = im.shape
    out = np.zeros((H//2,W//2))
    for r in range(0,H,2):
        for c in range(0,W,2):
            out[r//2,c//2] = np.max(im[r:r+2,c:c+2])
    return out
```

max-pooling: $H \times W \times C$ image with 2×2 filter, stride=2: multiple channels, max is determined in 2×2 per channel, stride = 2. Output is $W/2 \times H/2 \times C$.

```
def maxpoolHWC(im):
    H,W,C = im.shape
    out = np.zeros((H//2,W//2,C))
    for r in range(0,H,2):
        for c in range(0,W,2):
            for j in range(?):
                out[r//2,c//2,j] = np.max(im[r:r+2,c:c+2,j])
    return out
```

max-pooling: $N \times H \times W \times C$ image with 2×2 filter, stride=2: multiple channels, max is determined in 2×2 per channel, stride = 2. Output is $N \times W/2 \times H/2 \times C$.

ReLU Activation:

Simple ReLU on a H \times **W image:** blocks negative values of the image. Output is H \times W.

```
def ReLU(im):
    return (img>0)*img
```

```
ReLU on a N\times H \times W \times C image: blocks negative values of the image. Output is N \times H \times W \times C. def ReLU(im): return (img>0)*img
```

Flatten:

```
Simple flattening of \mathbf{H} \times \mathbf{W} image: Output is 1 \times HW.
```

```
def flatten(im):
    H,W = im.shape
    return img.reshape(H*W)
```

Flattening of $H \times W \times C$ image: Output is $1 \times HWC$.

```
def flatten(im):
    H,W,C = im.shape
    return img.reshape(H*W*C)
```

Simple flattening of N× $H \times W \times C$ image: Output is N × HWC.

```
def flatten(im):
    N,H,W,C = im.shape
    return img.reshape(N,H*W*C)
```

Part 2: Backward Propagation

Backprop Theory

 \mathcal{L} : loss function l: layer number (L = last layer) W^l : Weight from layer I a^l : activation function in layer I Z^l : Input to activation functions $\frac{\partial a^l}{\partial z^l} = g^l$: derivative of the activation function

$$\begin{split} \frac{\partial \mathcal{L}}{\partial W^{L-2}} &= \frac{\partial \mathcal{L}}{\partial a^L} \left(\frac{\partial a^L}{\partial Z^L} \right) \frac{\partial Z^L}{\partial a^{L-1}} \left(\frac{\partial a^{L-1}}{\partial Z^{L-1}} \right) \frac{\partial Z^{L-1}}{\partial a^{L-2}} \left(\frac{\partial a^{L-2}}{\partial Z^{L-2}} \right) \frac{\partial Z^{L-2}}{\partial W^{L-2}} \\ &= \frac{\partial \mathcal{L}}{\partial a^L} \quad (g^L) \quad W^{L-1} \quad (g^{L-1}) \quad W^{L-2} \quad (g^{L-2}) \quad a^{L-2} \\ &\Rightarrow \frac{\partial \mathcal{L}}{\partial a^l} &= \frac{\partial \mathcal{L}}{\partial a^{l+1}} (g^l) W^l, \qquad \frac{\partial \mathcal{L}}{\partial W^l} &= \frac{\partial \mathcal{L}}{\partial a^l} a^L, \qquad \frac{\partial \mathcal{L}}{\partial b^l} &= \frac{\partial \mathcal{L}}{\partial a^l} a^L \end{split}$$

Summary:

For each layer calculate the gradient of activation function g^{l+1} , then the partial derivative of the loss wrt the activation function, $\frac{\partial \mathcal{L}}{\partial a^l}$, then partial derivative of loss wrt the weights, $\frac{\partial \mathcal{L}}{\partial w^l}$.

Backprop Layer:

```
def backproplayer(a_l, da_lp1, g_l, W_l):
    da_l = np.dot(da_lp1 , W_l.T) * g_l
    dW_l = np.dot(a_l.T , da_l)
    db_l = np.sum(da_l, axis=0, keepdims=True)
    return da_l, dW_l, db_l
```

Backward Softmax (L):

$$g_{\text{softmax}} = \frac{\partial a_{\text{softmax}}}{\partial Z} = 1$$

$$\frac{\partial \mathcal{L}}{\partial a^{L}} = \frac{\partial \mathcal{L}}{\partial a_{\text{softmax}}} = \delta \left(\frac{\partial a_{\text{softmax}}}{\partial Z} \right) = \delta$$

$$\frac{\partial \mathcal{L}}{\partial W^{L-1}} = \delta \left(a^{L-1} \right)$$

Backprop Layer:

da_Lm1, dW_L, db_L = backproplayer(softmax(a_Lm1,W_L,b_L), delta, 1, W_L):

Backward Sigmoid (L-1):

$$g^{L-1} = \frac{\partial a_{\text{sigmoid}}^{L-1}}{\partial Z^{L-1}} = a_{\text{sigmoid}}^{L-1} \left(1 - a_{\text{sigmoid}}^{L-1}\right)$$
$$\frac{\partial \mathcal{L}}{\partial a^{L-1}} = \frac{\partial \mathcal{L}}{\partial a^{L}} (g^{L-1}) W^{L} = \delta (g^{L-1})$$
$$\frac{\partial \mathcal{L}}{\partial W^{L-1}} = \frac{\partial \mathcal{L}}{\partial a^{L-1}} a_{\text{sigmoid}}^{L-2}$$

Backward Sigmoid (*l*):

$$g^{l} = \frac{\partial a_{\text{sigmoid}}^{l}}{\partial Z^{l}} = a_{\text{sigmoid}}^{l} (1 - a_{\text{sigmoid}}^{l})$$
$$\frac{\partial \mathcal{L}}{\partial a^{l}} = \frac{\partial \mathcal{L}}{\partial a^{l+1}} (g^{l}) W^{l+1}$$
$$\frac{\partial \mathcal{L}}{\partial W^{l}} = \frac{\partial \mathcal{L}}{\partial a^{l}} a^{l-1}$$

Backward Flatten (1):

Flattening is a re-organization of the feature maps from the previous layer (max-pooling layer). It doesn't change the values in the previous layer, i.e. $\frac{\partial a_{\text{flatten}}}{\partial Z}=1$. There are no weights connecting the previous layer to the flattened layer.

$$g^{l} = 1$$

$$\frac{\partial \mathcal{L}}{\partial a^{l}} = \frac{\partial \mathcal{L}}{\partial a^{l+1}} W^{l}$$

Simple unflattening of N× HWC image: Output is $N \times H \times W \times C$.

def unflatten(a,N,H,W,C):
 return a.reshape(N,H,W,C)

Backward Max-pool (l):

Max-pooling selects the max in a 2x2. So for the values that match the max, g=1, otherwise it is 0. There are no weights connecting the previous layer (convolution layer) to the max-pooling.

1	2	3	4	
8	7	5	6	
9	11	12	10	
10	7	13	9	
7 ^l				

8	6			
11	13			
a^l				

0	0	0	0		
1	0	0	1		
0	1	0	0		
0	0	1	0		
g^l					

$$g^{l} = \begin{cases} 1 & Z^{l} = a^{l} \\ 0 & \text{otherwise} \end{cases}$$
$$\frac{\partial \mathcal{L}}{\partial a^{l}} = \frac{\partial \mathcal{L}}{\partial a^{l+1}} W^{l+1}$$

Simple Gradient of Max-pooling: Assumes input is HxW and max pooling was 2×2 , stride = 2

```
def g_maxpool(z_l, a_mp):  #a_mp is the output of maxpooling
    g = np.repeat(a_mp,2, axis=1) #duplicate the columns
    g = np.repeat(g,2, axis=0) #duplicate the rows
    g = (g==z_l)*1. #z_l is the input to max-pooling
    return g
```

Backward Convolution:

$$\frac{dL}{da^{l}} = convolution\left(W, \frac{dL}{da^{l+1}}\right)$$

$$\frac{dL}{dW^{l}} = convolution\left(a^{l-1}, \frac{dL}{da^{l}}\right)$$

See https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Note that convolution used in convolutional NNet is not a mathematical convolution. In mathematical convolution you flip one of the inputs about its axis (in 2D you flip horizontally, then vertically, hence it's a rotation by 180 degrees).