Exercice 1.

On raisonne modulo 5. Pour cela, on utilise un tableau de congruences :

$x \equiv \dots [5]$	0	1	2	3	4
$x^2 \equiv \dots [5]$	0	1	4	4	1
$3x \equiv \dots [5]$	0	3	1	4	2

$$x^2 \equiv 3x \ [5] \iff x \equiv 0 \ [5] \quad \text{ou} \quad x \equiv 3 \ [5].$$

Conclusion:
$$x \equiv 0 \ [5]$$
 ou $x \equiv 3 \ [5]$

Exercice 2.

1. a.
$$9^2 - (-4) = 85$$
 et $85 = 5 \times 17$ donc $9^2 - (-4) \equiv 0$ [17] soit $9^2 \equiv -4$ [17]

b. On a
$$9^4 = (9^2)^2$$
. Or $9^2 \equiv -4$ [17] donc $9^4 \equiv -1$ [17].
Ainsi $9^8 = (9^4)^2$ donc : $9^8 \equiv 1$ [17]

2. On a
$$2015 = 17 \times 118 + 9$$
 donc $2015 \equiv 9$ [17] puis $2015^{2015} \equiv 9^{2015}$ [17]. $2015 = 8 \times 251 + 7$ donc $9^{2015} = (9^8)^{251} \times 9^7$. Or $9^8 \equiv 1$ [17] d'où $(9^8)^{251} \equiv 1$ [17] et par suite $9^{2015} \equiv 9^7$ [17]. Enfin $9^7 = 9^4 \times 9^2 \times 9 \equiv -1 \times (-4) \times 9$ [17] soit $9^7 \equiv 2$ [17]. On en déduit donc que $2015^{2015} - 2 \equiv 0$ [17] ce qui prouve que $2015^{2015} - 2$ est divisible par 17.

Exercice 3.

1.
$$A_0 = 14 = 7 \times 2$$
 donc A_0 est divisible par 7.

2.
$$6 \equiv -1$$
 [7] donc pour tout entier naturel n , $6^n \equiv (-1)^n$ [7]. De même $13 \equiv -1$ [7] donc $13^{n+1} \equiv (-1)^{n+1}$ [7].

Par addition :
$$A_n \equiv (-1)^n + (-1)^{n+1}$$
 [7].

Or pour tout entier naturel
$$n$$
, $(-1)^n + (-1)^{n+1} = (-1)^n (1 + (-1)) = 0$.

Par conséquent, pour tout $n \in \mathbb{N}$, $A_n \equiv 0$ [7] ce qui justifie que A_n est divisible par 7.

Exercice 4.

- 1. On suppose que $(a;b;c) \in \mathbb{Z}^3$ est solution de (E) on a donc $a^2+b^2-8c=6$. On raisonne modulo $8:8c\equiv 0$ [0] d'où $a^2+b^2\equiv 6$ [8]
- 2. a. Voici le tableau complété :

$n \equiv \dots [8]$	0	1	2	3	4	5	6	7
$n^2 \equiv \dots [8]$	0	1	4	1	0	1	4	1

b. On constate que les restes possibles pour pour un carré modulo 8 sont 0, 1 et 4. Pour déterminer les restes possibles de $a^2 + b^2$ modulo 8, faisons un tableau à double entrée :

	0	1	4
0	0	1	4
1	1	2	5
4	4	5	0

Ainsi les restes possibles dans la division euclidienne de $a^2 + b^2$ par 8 sont donc 0, 1, 2, 4 et 5.

c. D'après la question 1, on devait avoir $a^2 + b^2 \equiv 6$ [8] ce qui induirait que le reste dans la division euclidienne de $a^2 + b^2$ par 8 serait 6 ce qui est en contradiction avec la question précédente : l'équation initiale n'a donc pas de solution entière.

Exercice 5.

1. a.
$$7^2 = 49 \equiv -1$$
 [10] donc $7^4 \equiv (-1)^4$ [10] soit $7^4 \equiv 1$ [10]

b. Les restes dans la division euclidienne de n par 4 sont 0, 1, 2 et 3.

• Si
$$r = 0$$
 on a $n = 4k$ avec $k \in \mathbb{N}$ et $7^n = 7^{4k} = (7^4)^k$.
Or $7^4 \equiv 1$ [10] donc $(7^4)^k \equiv 1$ [10] et dans ce cas $7^n \equiv 1$ [10].

• Si
$$r = 1$$
 on a $n = 4k + 1$ avec $k \in \mathbb{N}$ et $7^{4k+1} = 7^{4k} \times 7$.
Or $7^{4k} \equiv 1$ [10] donc $7^{4k+1} \equiv 7$ [10] et dans ce cas $7^n \equiv 7$ [10].

• Si
$$r = 2$$
 on a $n = 4k + 2$ avec $k \in \mathbb{N}$ et $7^{4k+2} = 7^{4k} \times 7^2$.
Or $7^2 \equiv 9$ [10] donc $7^{4k+2} \equiv 9$ [10] et dans ce cas $7^n \equiv 9$ [10].

• Si
$$r = 3$$
 on a $n = 4k + 3$ avec $k \in \mathbb{N}$ et $7^{4k+3} = 7^{4k} \times 7^3$.
Or $7^{4k+3} \equiv 3$ [10] donc $7^{4k+3} \equiv 3$ [10] et dans ce cas $7^n \equiv 3$ [10].

2. • Si m est pair alors il existe un entier naturel p tel que m=2p. $7^m=7^{2p}$ et $7^{2p}=(7^2)^p$. Or $7^2\equiv 1$ [4] d'où $7^m\equiv 1$ [4].

• Si
$$m$$
 est impair alors il existe un entier naturel p tel que $m=2p+1$. $7^m=7^{2p}\times 7$ donc $7^m\equiv 3$ [4].

- **3.** Le nombre B est de la forme 7^C avec $C = 7^7$ donc B est le produit de C nombres impairs (tous égaux à 7) donc B est impair.
- **4.** On a $A=7^{7^B}$. Comme B est impair, d'après la question 2, le reste de 7^B modulo 4 est 3 et donc, d'après la question 1, $7^{7^B}\equiv 3[10]$.

Or,
$$7^{7^B} = 7^{7^{7^7}} = A$$
 donc $A \equiv 3$ [10] ce qui prouve que le chiffre des unités de A est 3.