ATIVIDADE AVALIATIVA DE EQUAÇÕES LOGARÍTMICAS

1) O conjunto das raízes da equação $\log_{10}(x^2) = (\log_{10}x)^2$ é: a) $\{1\}$
b) {1;10}
c) {1;100}
d) $\{x \in IR / x > 0\}$
e) {10;100}
2) A solução da equação $\log_3(3 - \log_2 x) = 0$, em IR, é um número: a) fracionário.
b) múltiplo de 3.
c) primo.
d) divisível por 2.
e) divisível por cinco.
3) Calcule x sabendo que $\log_2 x + \log_2 x^2 + \log_2 x^3 = 6$. a) $x = 2$.
b) $x = 4$.
c) $x = 1$.
d) $x = 3$.
e) $x = -2$.
4) Se logx representa o logaritmo decimal do número positivo x, a soma das raízes de $(logx)^2 - logx^2 = 0$ é: a) -1
b) 20
c) 101
d) 1

- 5) Equações Logarítmicas: (UFRN) Se a equação $x^2 + 8x + 2 \log(a) = 0$ possui duas raízes reais e iguais, então a é igual a:
- a) 10
- b) 10^4
- c) 10^8
- $d 10^2$
- $e)10^{6}$
- 6) (UERJ) O número, em centenas de indivíduos, de um determinado grupo de animais, $\underline{\mathbf{x}}$ dias após a liberação de um predador em seu ambiente, e expresso pela seguinte função:
- $\log_5 \sqrt[3]{5} x^4$. Após cinco dias da liberação do predador, o número de indivíduos desse grupo presentes no ambiente será igual a:
- a) 3
- b) 4
- c) 300
- d) 400
- 7) Os átomos de um elemento químico radioativo possuem uma tendência natural a se desintegrar (emitindo partículas e se transformando em outro elemento). Assim sendo, com o passar do tempo, a quantidade original desse elemento diminui. Suponhamos que certa quantidade de um elemento químico radioativo com inicialmente m₀ gramas de

massa se decomponha segundo a equação matemática $m(t) = m_0.10^{-\frac{1}{70}}$, onde m(t) é a quantidade de massa radioativa no tempo t (em anos). Usando a aproximação $\log 2 = 0.3$, determine quantos anos demorará para que esse elemento se decomponha até atingir um oitavo da massa inicial.

- 8) Qual é o tempo necessário para que um capital inicial empregado a taxa de 2% ao mês de juros compostos, que são capitalizados mensalmente, dobre de valor? (considere: $\log 1,02 = 0,0086$; $\log 2 = 0,3010$).
- 9) O pH de uma solução é definido por pH = $log(1/H^+)$ onde H^+ é a concentração de hidrogênio em íons-grama por litro de solução. Calcule o pH de uma solução tal que

$$H^+ = 1.0 \times 10^{-8}$$
.

10) O ouvido humano pode perceber uma extensa faixa de intensidades de ondas sonoras (som), desde cerca de 10^{-12} w/m² (que se toma usualmente como o limiar de audição) até cerca de 1w/m² (que provoca a sensação de dor na maioria das pessoas). Em virtude da enorme faixa de intensidades a que o ouvido é sensível usa-se uma escala logarítmicaa para descrever o nível de intensidade de uma onda sonora. O nível de intensidade G medido em decibéis (db) se define por $G = 10 \cdot \log \left(\frac{I}{10^{-12}} \right)$, onde I é a intensidade do som. Calcule nessa escala, o limiar de audição.