

Dynamic prediction modelling in hand disorders after stroke using a latent class multivariate mixed model

Eleni-Rosalina Andrinopoulou, Ruud Selles, Rinske Nijland, Carel Meskers, Gerard Ridders, Gert Kwakkel, Dimitris Rizopoulos

International Society for Clinical Biostatistics, 14-18 July, 2019

Clinical Application

Clinical Application: Motivation

Data set collected Amsterdam

→ Patients measured after a stroke

Outcome of interest:

The Action Research Arm Test (ARAT) is a measure used by physical therapists and other health care professionals to assess upper extremity performance

Clinical Application: Data Details

Number of patients:

Mean age at stroke:

450

65

Gender:

Follow-up visits:

Clinical Application: Data Details (cont'd)

Clinical Application: Data Details (cont'd)

Clinical Application: Research Question

Guide clinical decision making \rightarrow use **complete** biomarker information.

Can we utilize all available longitudinal measurements to predict the future ARAT measurements?

GemsTracker

Statistical Analysis

Statistical Analysis: Data Characteristics

Special feature should be taken into account in longitudinal data

- → Correlation between measurements obtained from the same patients
- → Biological variation of the outcome
- → Unbalanced datasets

Mixed-effects models

Let y_i represent the repeated measurements of an outcome for the *i*-th patient, $i = 1, \ldots, n$

$$y_i(t) = x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \epsilon_i(t),$$

$$b_i \sim N(0, D),$$

$$\epsilon_i(t) \sim N(0, \sigma_i^2),$$

where

- $\diamond x_i^{\top}(t)\beta$ denotes the fixed part
- $\diamond z_i^{\top}(t)b_i$ denotes the random part

Statistical Analysis: Challenges

Sub-populations (1) Time-dependent covariates (2)

Statistical Analysis: Sub-populations Challenge (1)

Statistical Analysis: Sub-populations

Challenge (1)

Latent class models

$$y_i(t|c_i = \mathbf{g}) = x_i^{\top}(t)\beta_{\mathbf{g}} + z_i^{\top}(t)b_{i\mathbf{g}} + \epsilon_i(t),$$
$$b_{i\mathbf{g}} \sim N(0, D_{\mathbf{g}}),$$
$$\epsilon_i(t) \sim N(0, \sigma_i^2),$$
$$Pr(c_i = \mathbf{g}) \sim Dirichlet(A_c),$$

where

- $\diamond x_i^{\top}(t)\beta$ denotes the fixed part
- $\diamond z_i^{\top}(t)b_i$ denotes the random part
- \diamond g indicates the class

Statistical Analysis: Time-dependent

Statistical Analysis: Time-dependent (cont'd) Challenge (2)

Statistical Analysis: Time-dependent (cont'd) Challenge (2)

Statistical Analysis: Time-dependent (cont'd)

Challenge (2)

Multivariate model (k longitudinal outcomes)

$$h_k[E\{y_{ki}(t \mid c_i = g)|b_{kig}\}] = x_{ki}^{\top}(t)\beta_{kg} + z_{ki}^{\top}(t)b_{kig},$$

 $b_{ig} = (b_{i1g}^{\top}, \dots, b_{iKg}^{\top}) \sim N(0, D_g),$

- $\diamond x_{k,i}^{\top}(t)\beta_{k,a}$ denots the fixed part
- $\diamond z_{ki}^{\top}(t)b_{kia}$ denots the random part
- $\diamond h_k(.)$ denotes the link function and g indicates the class

Statistical Analysis: Model Specification - ARAT

Fixed Effects

Nonlinear time in days (with 3 knots)

Shoulder abduction

Finger extension

Recombinant tissue plasminogen activator (medication)

Neglect (lack of awareness of the recovering side)

Random Effects

Nonlinear time in days (with 3 knots)

2 classes

Fixed Effects

Nonlinear time in days (with 3 knots)

Random Effects

Nonlinear time in days (with 3 knots)

2 classes

Statistical Analysis: Results Check the fitting of the model

Prediction

Prediction: ARAT data set

Using the proposed multivariate latent class mixed model

Prediction: Results

Prediction: Performance

Assess the performance of the proposed model \rightarrow Important

- ♦ Univariate mixed model (1 class)
- Multivariate mixed model (2 classes)

Assess the performance of the proposed model:

→ Different methods and metrics exist (e.g. Mean absolute error)

→ Proper scoring rules

♦ Compare the predictive distribution of the outcome with the observed value

Logarithmic scoring rule

$$LR = \log[f_{y_{pred}}(y_{obs})],$$

where $f_{y_{nred}}$ is the predictive density at the observed values

→ Proper scoring rules

 Compare the predictive distribution of the outcome with the observed value

Continuous ranked probability score

$$CRPS = \int [P_{y_{pred}}(x) - P_{y_{obs}}(x)]^2 dx,$$

where $P_{y_{nred}}$ and $P_{y_{obs}}$ are the cumulative disctribution function of the prediction and the observation respectively

→ Cross-validation

- we split the data into 10 parts
- ⋄ use 9 for fitting and 1 for predicting

predicting data: use 1 observation to predict the rest

Erasmus MC

Logarithmic scoring rule

Erasmus MC

Continuous ranked probability score

Conclusion

Latent class multivariate mixed model

Future work

- ♦ More classes
- ♦ Extra outcomes
- Proper scoring rules

Thank you for your attention!

