SUMÁRIO

1	Regressão na análise de variância	2
	1.1 Polinômio Ortogonal	2
	1.1.1 Constraste Polinomial	5
	1.1.2 Regressão por polinômio ortogonal	6
2	Tabelas	10

REGRESSÃO NA ANÁLISE DE VARIÂNCIA

Os tratamentos são denominados quantitativos quando podem ser ordenados segundo um critério quantitativos, por exemplo:

- Determinar a melhor temperatura (0, 10, 20°C) para quebra de dormência das sementes de uma espécie.
- Avaliar o efeito de diferentes doses de um remédio na concentração de histamina no sangue;
- Avaliar o efeito da adição de água no resistência de um bloco de concreto

Se os tratamentos em estudo no experimento forem quantitativos deve-se utilizar a análise de regressão quando a ANOVA rejeita a hipótese nula.

A regressão é uma técnica de análise que utiliza a relação entre duas ou mais variáveis quantitativas para determinar um modelo matemático de forma que o efeito de uma possa ser previsto por meio de outra variável. Na análise de experimentos, em geral utiliza-se modelos polinomais. Qualquer modelo de regressão linear e não linear pode ser utilizado.

1.1 POLINÔMIO ORTOGONAL

Os modelos de regressão polinomial de grau p, podem ser representado por:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + ... + \beta_p X^p$$

A variável X, ou variável independente, é uma variável não aleatória corresponde aos tratamentos e a variável Y, ou variável dependente, que é a variável resposta. Quando os níveis do tratamento são equidistantes e com igual numero de repetições pode-se utilizar polinômios ortogonais para ajustar o modelo de regressão.

Considerando que os níveis *X* do tratamento são equidistantes, temos

$$X_1 = X_1$$
; $X_2 = X_1 + q$; $X_3 = X_1 + 2q$; ...; $X_p = X_1 + (p-1)q$;

Assim, o modelo de regressão polinomial pode ser escrito como:

$$Y = B_0 + B_1 P_1(X) + B_2 P_2(X) + ... + B_p P_p(X)$$

em que $P_k(X) = c_1X_1 + c_2X_2 + ... + c_nX_n$ é um polinômio ortogonal de ordem k = 1, 2,, p que deve atender as seguintes restrições:

- $P_0(X) = 1$
- $\bullet \sum_{i=1}^{I} P_k(X_i) = 0$

•
$$\sum_{i=1}^{I} P_k(X_i) = 0$$
 $P'_k(X_i) = 0$ para $k \neq k'$

Os valores dos coeficientes de $P_k(X)$, podem ser obtidos da seguinte forma:

$$C_{i1} = \lambda_1 z_i \text{ em que } z_i = \frac{(X_i - \overline{X})}{q}$$

$$C_{i2} = \lambda_2 \left(z_i^2 - \frac{I^2 - 1}{12} \right)$$

$$C_{i3} = \lambda_3 \left(z_i^3 - \frac{3I^2 - 7}{20} z_i \right)$$

$$C_{i4} = \lambda_4 \left(z_i^4 - \frac{3I^2 - 13}{14} z_i^2 + \frac{3(I^2 - 1)(I^2 - 9)}{560} \right)$$

$$C_{i5} = \lambda_5 \left(z_i^5 - \frac{5(I^2 - 7)}{18} z_i^3 + \frac{15I^4 - 230I^2 + 407}{1008} z_i \right)$$

em que

- Os valores dos λ_i são escolhidos de forma que os C_{ii} tenham o menor valor inteiro possível
- $\overline{X} = \frac{\sum\limits_{i=1}^{I} X_i}{I} = \frac{IX_1 + \sum\limits_{i=1}^{I-1} iq}{I}$ é a média dos niveis do tratamentos
- q é a amplitude entre os níveis
- I é quantidade de níveis do tratamento

Exemplo 1.1: Se um experimento tiver um tratamento quantitativo com 4 níveis, podemos ajustar modelos de regressão até grau 3, assim:

$$\overline{X} = X_1 + \frac{3}{2}q$$

$$z_1 = \frac{X_1 - X_1 - \frac{3}{2}q}{q} = \frac{-3}{2}$$

$$z_2 = \frac{X_2 - X_1 - \frac{3}{2}q}{q} = \frac{-1}{2}$$

$$z_3 = \frac{X_3 - X_1 - \frac{3}{2}q}{q} = \frac{1}{2}$$

$$z_4 = \frac{X_4 - X_1 - \frac{3}{2}q}{q} = \frac{3}{2}$$

Assim
$$C_{11} = -3$$
, $C_{21} = -1$, $C_{31} = 1$ e $C_{14} = 3$

Para o polinômio do segundo grau temos:

$$C_{12} = \left(\frac{-3}{2}\right)^2 + \frac{4^2 - 1}{12} = 1$$

$$C_{22} = \left(\frac{-1}{2}\right)^2 + \frac{4^2 - 1}{12} = -1$$

$$C_{32} = \left(\frac{1}{2}\right)^2 + \frac{4^2 - 1}{12} = -1$$

$$C_{42} = \left(\frac{3}{2}\right)^2 + \frac{4^2 - 1}{12} = 1$$

Para o polinômio do terceiro grau temos

$$C_{12} = \left(\frac{-3}{2} - \frac{3 \times 4^2 - 7}{20} - \frac{3}{2}\right) = -\frac{3}{10}$$

$$C_{22} = \left(\frac{-1}{2} - \frac{3 \times 4^2 - 7}{20} - \frac{1}{2}\right) = \frac{9}{10}$$

$$C_{32} = \left(\frac{1}{2} - \frac{3 \times 4^2 - 7}{20} - \frac{1}{2}\right) = -\frac{9}{10}$$

$$C_{42} = \left(\frac{3}{2} - \frac{3 \times 4^2 - 7}{20} - \frac{3}{2}\right) = \frac{3}{10}$$

Assim, para
$$\lambda_3 = \frac{10}{3}$$
, temos $C_{13} = -1$, $C_{23} = 3$, $C_{33} = -3$ e $C_{34} = -1$

1.1.1 Constraste Polinomial

A partir dos coeficientes dos polinômios ortogonais é possível obter a estimativa de um constrastes polinomial de ordem *p*, dado por:

$$\hat{Y}_p = \sum_{i=1}^{I} C_{ip} y_i.$$

Os constrastes polinomiais, são contrastes mutuamente ortogonais, assim, para para testálos utiliza-se o teste F da análise de variância. Assim, para I tratamentos e J repetições é possível ajustar I-1 modelos de regressã.

Cada modelo de regressão uma soma de quadrado associadada a 1 grau de liberdade

$$SQReg_p = \frac{\hat{Y}_p^2}{JK}$$

em que
$$K = \sum_{i=1}^{I} C_{ip}^2$$

Exemplo 1.2: Um experimento foi realizado para estamos da temperatura sobre o tempo de vida de baterias. As taxas de carga utilizadas foram em quatro níveis: (0,5; 1,0, 1,5; 2,0) e foram utilizadas 5 repetições. O tempo de vida das baterias foi medida em termos do numero de ciclos de carga-descarga ate falhar.

Tratamento)		
	1	2	3	4	5
0,5	230,33	226,67	225,16	228,03	221,1
1,0	160,85	166,35	165,22	167,18	154,28
1,5	102,99	102,3	101,72	98,69	95,41
2,0	33,40	29,11	34,21	38,91	31,74

Aplicando a ANOVA, verifica-se que os tratamentos são significativos

FV	GL	SQ	QM	F
Tratamentos	3	102710,02	34236,67	2159,96
Resíduo	16	253,61	15,85	
Total	19	102963,63		

Para os tratamentos utilizados temos as médias

Tratamento	Média
0,5	226,26
1,0	162,78
1,5	100,22
2,0	33,47

Podemos obter os constrastes polinomiais

Tratamento	Уi.	C_{i1}	C_{i2}	C_{i3}	linear	quadrático	cúbico
0,5	1131,29	-3	1	-1	-3393,87	1131,29	-1131,29
1,0	813,88	-1	-1	3	-813,88	-813,88	2441,64
1,5	501,11	1	-1	-3	501,11	-501,11	-1503,33
2,0	167,37	3	1	1	502,11	167,37	167,37

• Contraste Linear

$$\hat{Y}_1 = -3204,53$$
 $SQReg_1 = \frac{(-3204,53)^2}{5 \times 20} = 102690,13$

• Contraste Quadrático

$$\hat{Y}_2 = -16,33$$
 $SQReg_2 = \frac{(-16,33)^2}{5 \times 4} = 13,33$

• Contraste Cúbico

$$\hat{Y}_2 = -25,61$$
 $SQReg_3 = \frac{(-25,61)^2}{5 \times 20} = 6,56$

Assim, temos

FV	GL	SQ	QM	F	F_t
Tratamentos	3	102.710,02	34.236,67	2.159,96	3,23
linear	1	102.690,13	102.690,13	6.478,63	4,49
quadrático	1	13,33	13,33	0,84	4,49
cubico	1	6,56	6,56	0,41	4,49
Resíduo	16	253,61	15,85		
Total	19	102.963,63			

Por meio da ANOVA verifica-se que apenas o efeito linear é significativo

1.1.2 Regressão por polinômio ortogonal

Para estimar a equação de regressão, de acordo com o modelo determinado na ANOVA, utiliza-se

$$B_0 = \bar{y} \quad B_p = \frac{\hat{Y}_p}{JK}$$

 $Y = B_0 + B_1 P_1(X) + B_2 P_2(X) + ... + B_p P_p(X)$

O coeficiente de determinação é dado por:

$$r^2 = \frac{SQReg_p}{SQTrat}$$

Exemplo 1.3: No exemplo da bateria temos:

$$B_0 = 130,28 \quad B_1 = \frac{-3204,53}{5 \times 20} = -32,04$$

$$P_1 = \lambda_1 z_i = \lambda_1 \frac{X_i - \overline{X}}{q}$$

$$= 2\frac{X - 1,30}{0,5} = 4X - 5,2$$

$$Y = B_0 + B_1 P_1(X) = 130,28 - 32,04(4X - 5,2)$$

$$= 130,28 - 128,16X + 166,60 = 296,60 - 128,16$$

O coeficiente de determinação é dado por:

$$r^2 = \frac{102690, 13}{102710, 02} = 0,9998$$

Assim temos

$$Y = 296,60 - 128,16X$$
 $r^2 = 0,9998$

Exemplo 1.4: Um experimento avaliou o efeito de diferentes doses de hCG no peso do útero ajustados para o peso vivo em camundongas. Foram utilizadas 30 camundongas, com 22 dias de idade, em que os animais foram divididos em 6 grupos Cada grupo recebeu respectivamente 0, 10, 20, 30, 40 e 50 UI de hCG, via intra-peritoneal, no volume de 0,2mL, duas vezes ao dia, com um intervalo de 12 horas entre as aplicações, durante um dia. Aproximadamente 24 horas após a última injeção as camundongas foram individualmente pesadas e eutanasiadas em seguida foram obtidos os pesos dos úteros.

Rep	Doses										
	0	10	20	30	40	50					
1	0,52	0,99	1,28	1,37	1,27	1,02					
2	0,52	0,99	1,29	1,40	1,31	0,98					
3	0,52	0,97	1,30	1,41	1,26	1,06					
4	0,50	0,99	1,29	1,40	1,33	0,97					
5	0,48	1,02	1,28	1,43	1,33	0,98					

FV	GL	SQ	QM	F_c	F_t
Tratamento	5	2,6817	0,53634	869,73	2,62
Residuo	24	0,0148	0,00062		
Total	29	2,6965			

Como valor - p < 0.05, rejeita-se H_0 , logo podemos concluir ao nível de 5% que o peso é diferente em pelo menos uma das doses de HCg. Assim, podemos obter os constrastes polinomiais

Tratamento	y _i .	C_{i1}	C_{i2}	C_{i3}	linear	quadrático	cúbico
0	2,54	-5	5	-5	-12,70	12,70	-12,70
10	4,96	-3	-1	7	-14,88	-4,96	34,72
20	6,44	-1	-4	4	-6,44	-25,76	25,76
30	7,01	1	-4	-4	7,01	-28,04	-28,04
40	6,5	3	-1	-7	19,50	-6,50	-45,50
50	5,01	5	5	5	25,05	25,05	25,05

• Contraste Linear

$$\hat{Y}_1 = 17,54$$
 $SQReg_1 = \frac{(17,54)^2}{5 \times 70} = 0,8790$

• Contraste Quadrático

$$\hat{Y}_2 = -27,51$$
 $SQReg_2 = \frac{(-27,51)^2}{5 \times 84} = 1,8019$

• Contraste Cúbico

$$\hat{Y}_2 = -0.71$$
 $SQReg_3 = \frac{(-0.71)^2}{5 \times 180} = 0.006$

FV	GL	SQ	QM	F_c	F_t
Tratamento	5	2,6817	0,53634	869,73	2,62
Linear	1	0,8790	0,8790	1417,74	4,26
Quadrático	1	1,8019	1,8019	2906,29	4,26
Cúbico	1	0,0006	0,0006	0,97	4,26
Desvio	2	0,0002	0,0002	0,32	3,40
Residuo	24	0,0148	0,00062		
Total	29	2,6965			

Pela ANOVA verifica-se que apenas o modelo linear e quadrático foram significativo. Como o $r^2=0,67$ modelo quadrático é maior eu o $r^2=0,33$ do modelo linear, os dados podem ser representados pelo modelo quadrático. Assim, temos:

$$B_{0} = 1,08$$

$$B_{1} = \frac{17,54}{5 \times 70} = 0,05$$

$$B_{2} = \frac{-27,51}{5 \times 84} = -0,065$$

$$z_{i} = \frac{X_{i} - \overline{X}}{q} = \frac{X - 25}{10} = 0,1X - 2,5$$

$$P_{1} = \lambda_{1}z_{i} = \lambda_{1}$$

$$= 2(0,1X - 2,5) = 0,2X - 5$$

$$P_{2} = \lambda_{2} \left(z_{i}^{2} - \frac{I^{2} - 1}{12}\right) = \frac{3}{2} \left((0,1X - 2,5)^{2} - \frac{35}{12}\right)$$

$$= 0,015X^{2} - 0,375X + 5$$

$$Y = 1,08 + 0,05(0,2X - 5) - 0,065(0,015X^{2} - 0,375X + 5)$$

$$= 1,08 + 0,01X - 0,25 - 0,001X^{2} + 0,024X - 0,325$$

$$= 0,50 + 0,06X - 0,001X^{2}$$

Pelas estimativas do modelo verifica-se:

- Se a dose de HCg for zero o peso médio será de 0,5g
- O peso maximo está em torno da 30 de HCg.
- 67% da variabilidade do peso pode ser explicado pelas doses de HCg.

TABELAS

Tabela 2.1: Coeficientes para a interpolação dos polinômios ortogonais

	7	1 2 1 4 1 5						3	<u> </u>					
ı	I =	= 3		I=4	•	I = 5					I=6			
	C_{i1}	C_{i2}	C_{i1}	C_{i2}	C_{i3}	C_{i1}	C_{i2}	C_{i3}	C_{i4}	C_{i1}	C_{i2}	C_{i3}	C_{i4}	C_{i5}
1	-1	1	-3	1	-1	-2	2	-1	1	-5	5	-5	1	-1
2	0	-2	-1	-1	3	-1	-1	2	-4	-3	-1	7	-3	5
3	1	1	1	-1	-3	0	-2	0	6	-1	-4	4	2	-10
4			3	1	1	1	-1	-2	-4	1	-4	-4	2	10
5						2	2	1	1	3	-1	-7	-3	-5
6										5	5	5	1	1
\overline{K}	2	6	20	4	20	10	14	10	70	70	84	180	28	252
_λ	1	3	2	1	10/3	1	1	5/6	35/12	2	3/2	5/3	7/12	21/10