

UFTM- Universidade Federal do Triângulo mineiro DEPARTAMENTO DE ENGENHARIA QUÍMICA

INTRODUÇÃO

LITERATURA BASE: CAPÍTULO 1: SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. INTRODUÇÃO À TERMODINÂMICA DA ENGENHARIA QUÍMICA. RIO DE JANEIRO: LTC, 2007.

PROF. RICARDO PIRES

SISTEMAS TERMODINÂMICOS

- ➡SISTEMA (VOLUME DE CONTROLE): IDENTIFICA O OBJETO DA ANÁLISE
- **■**VIZINHANÇA: TUDO O QUE É EXTERNO AO SISTEMA.

►FRONTEIRA:

SUPERFÍCIE REAL OU IMAGINÁRIA QUE SEPARA O SISTEMA DE SUA VIZINHANÇA.
PODE ESTAR EM MOVIMENTO OU REPOUSO.

DEVE SER DEFINIDA CUIDADOSAMENTE ANTES DE SE PROCEDER A QUALQUER ANÁLISE TERMODINÂMICA.

SUA DEFINIÇÃO É ARBITRÁRIA E DEVER SER FEITA PELA CONVENIÊNCIA DA ANÁLISE A SER FEITA.

TIPOS DE SISTEMAS

• SISTEMA FECHADO QUANTIDADE FIXA DE MATÉRIA. MASSA NÃO ENTRA, NEM SAI.

• SISTEMA ISOLADO NÃO PERMITE PASSAGEM DE ENERGIA.

· SISTEMA ADIABÁTICO NÃO PERMITE PASSAGEM DE CALOR.

CONCEITO DE VOLUME DE CONTROLE E TIPOS DE SISTEMAS

CLASSIFICAÇÃO DO ESTADO DE UM SISTEMA

- ► ESTADO ESTACIONÁRIO OU PERMANENTE → OS VALORES DE TODAS AS VARIÁVEIS NO PROCESSO (T, P, V, VAZÕES, ETC) NÃO VARIAM COM O TEMPO.
- ► ESTADO TRANSIENTE OU NÃO-ESTACIONÁRIO → QUALQUER
 VARIÁVEL DO PROCESSO MUDA COM O TEMPO.

Equilíbrio é o estado termodinâmico caracterizado por um valor uniforme (o mesmo por todo o sistema) e estacionário (não varia com o tempo) das variáveis termodinâmicas.

EXEMPLO

ENFOQUES: MACRO E MICROSCÓPICO

MICROSCÓPICO - tratamento que leva em conta a estrutura da matéria. É chamada de termodinâmica ESTATÍSTICA. O objetivo é caracterizar por meios estatísticos o comportamento médio das partículas e relacioná-lo com o comportamento macroscópico do sistema.

MACROSCÓPICO - trata do comportamento global, inteiro do sistema. Nenhum modelo de estrutura molecular, atômica ou subatômica é utilizado diretamente. Este tratamento é o aplicado na TERMODINÂMICA CLÁSSICA. O sistema é tratado como um continuo.

ESTADO - condição do sistema, como descrito por suas propriedades.

Para substâncias puras o estado pode ser caracterizado por propriedades macroscópicas como P, T e V.

Cada propriedade da substância apresenta um valor em determinado estado e somente um determinado valor e essas propriedades têm o mesmo valor para um dado estado.

O <u>estado</u>, se caracteriza pelos valores de P, T, V e composição química (em caso de misturas), fica determinado independentemente de como se chegou a esses valores, ou seja, a <u>independentemente</u> do <u>caminho</u> percorrido para atingir esses valores.

FASES. Uma dada massa de água, por exemplo, pode existir sob várias formas (sólida, líquida e vapor).

Uma fase é uma região homogênea da matéria. Ex: um gás ou uma mistura de gases, um líquido ou uma solução líquida e um sólido cristalino.

Quando mais de uma fase coexistem, estas se separam entre si por meio de interfaces que são fronteiras entre as fases.

Uma fase pode existir a várias pressões e temperaturas ou, usando a terminologia da termodinâmica, em vários estados.

PROPRIEDADES EXTENSIVAS E INTENSIVAS

EXTENSIVAS - Seu valor para o sistema inteiro é a soma dos valores das partes em que o sistema for subdividido. Dependem do tamanho e extensão do sistema. Seus valores podem variar com o tempo. Exemplo: massa, energia, volume.

INTENSIVAS - Não são aditivas, como no caso anterior. Seus valores não dependem do tamanho e extensão do sistema. Podem variar de um lugar para outro dentro do sistema em qualquer momento. Exemplo: temperatura, pressão, calor específico.

Exercício. Identifique as propriedades intensivas e as extensivas:

Pressão, Temperatura, Capacidade Calorífica, Entalpia, Massa Especifica.

PROCESSOS E EQUILÍBRIO.

PROCESSO - mudança de estado devido à variação de uma ou mais propriedades.

EQUILÍBRIOS

Quando se iniciou a quantificação da temperatura permitiu estabelecer o que hoje chamamos de equilíbrio térmico de um sistema.

Verificou-se que quando corpos quentes eram postos em contato com corpos frios, o mais quente esfriava-se e o mais frio aquecia-se, de forma que chegava-se a um estado final onde os corpos nos davam a mesma sensação térmica (de terem o mesmo nível de aquecimento) quando, então, não se percebia mais nenhuma mudança, ou seja, quando se atingia o que hoje chamamos de equilíbrio térmico.

Equilíbrios

Quando temos um sistema em equilíbrio podemos dizer que as propriedades do sistema são as propriedades das substâncias ou substância que o compõe. Isso implica necessariamente que o valor da propriedade vale para todo o sistema.

Quando um sistema está em equilíbrio em relação a todas as possíveis mudanças de estado, diz-se que o sistema está em equilíbrio termodinâmico.

A Lei Zero Da Termodinâmica.

Quando dois corpos têm igualdade de temperatura com um terceiro corpo, eles estão em equilíbrio térmico entre si → lei zero da termodinâmica.

Para medir a temperatura de um corpo coloca-se um termômetro em contato com esse corpo e espera-se algum tempo até que não se observe a variação do nível do mercúrio. Nesse instante dizemos que a temperatura do corpo é o valor determinado na escala do termômetro. Com base em que princípio nós podemos dizer que a temperatura do mercúrio é a mesma temperatura do corpo?

DIMENSÕES E UNIDADES

grandeza	nome da unidade	símbolo da unidade	símbolo da dimensão
comprimento	metro	m	L
massa	kilograma	kg	M
$_{ m tempo}$	$\operatorname{segundo}$	\mathbf{s}	T
temperatura	kelvin	K	θ

factor	prefixo	símbolo	factor	prefixo	símbolo
10^{18}	exa-	E	10^{-18}	ato-	a
10^{15}	peta-	P	10^{-15}	femto-	f
10^{12}	tera-	${ m T}$	10^{-12}	pico-	p
10^{9}	giga-	G	10^{-9}	nano-	n
10^{6}	mega-	${\bf M}$	10^{-6}	micro-	μ
10^{3}	kilo-	k	10^{-3}	mili-	\mathbf{m}
10^{2}	hecto-	h	10^{-2}	centi-	$^{\mathrm{c}}$
10^{1}	deca-	da	10^{-1}	deci-	d

Medidas de COMPRIMENTO

Unidade	Símbolo	Equivalência
metro (SIU)	m	= 1 m
Bohr	a ₀ , b	~ 5,29177 x 10 ⁻¹¹ m
Ångström	Å	$= 10^{-10} \text{ m}$
Mícron	μm	$= \mu \text{ m} = 10^{-6} \text{ m}$
unidade x	X	~ 1,002 x 10 ⁻¹³ m
polegada	pol(")	$= 2,54 \times 10^{-2} \text{ m}$
pé	pé(')	= 12 pol = 0.3048 m
jarda	jd	= 3 pés = 0.9144 m
milha	mi	= 1760 jd = 1609,344 m
milha náutica	m.n.	= 1852 m = 6076,1 pés
milha geográfica	m.g.	= 1855 m = 6087,15 pés
unidade astronómica	UA	$= 1,49600 \times 10^{11} \text{ m}$
parsec	pc	~ 3,085 68 x 10 ¹⁶ m
ano-luz	a.l.	~ 9,460 730 472 580 8 x 10 ¹⁵ m
segundo-luz	s.l.	= 2,997 924 58 x 10 ⁸ m

Medidas de MASSA

Unidade	Símbolo	Equivalência
quilograma	kg	= 1 kg
massa do eletron	$m_{\rm e}$	~ 9,109 39 x 10 ⁻³¹ kg
dalton (massa atômica)	Da, u.m.a.	~ 1,660 540 x 10 ⁻²⁷ kg
gamma	Y	= 1 dalton
tonelada (métrica)	t	$=10^3 \text{ kg}$
libra (avoirdupois)	lb	= 0,453 592 37 kg
onça (avoirdupois)	OZ	~ 28,3495 g
onça (troy)	oz (troy)	~ 31,1035 g
grão	gr	= 64,798 91 mg

Medidas de TEMPO

Unidade	Símbolo	Equivalência
segundo	S	1 s
u. a. de tempo	u.a.t.	~ 2,418 88 x 10 ⁻¹⁷ s
minuto	min	=60 s
hora	h	= 3600 s
dia	d	= 86400 s (convencionado)
semana	h	= 7 dias
mês	h	= 30 dias (convencionado)
ano	a	~ 31 556 952 s
svedberg	Sv	$= \sim 10^{-13} \text{ s}$

Medidas de TEMPERATURA TERMODINÂMICA

Unidade	Símbolo	Equivalência
Kelvin	K	= 1 K
grau Celsius	°C	= T(K) - 273,15
grau Fahrenheit	°F	= 1.8 T (°C) + 32
Rankine	R	= (5/9) K

Comprimento L

1 ft = 12 in (polegadas) =
$$12 \times 0.0254 \text{ m} = 0.3048 \text{ m}$$

$$1 \text{ milha} = 1,6093 \text{ km}$$

Área

 L^2

$$1 \text{ m}^2 = 100 \text{ cm x } 100 \text{ cm} = 10^4 \text{ cm}^2$$

$$1 \text{ ft}^2 = 0.092903 \text{ m}^2$$

$$1 \text{ in}^2 = 0,000645 \text{ m}^2$$

Volume

 L^3

$$1 \text{ m}^3 = 1000 \text{ 1}$$

$$1 \text{ m}^3 = 100 \text{ cm}^* 100 \text{ cm}^* 100 \text{ cm} = 10^6 \text{ cm}^3$$

$$11 = 1000 \text{ cm}^3$$

$$1 \text{ cm}^3 = 1 \text{ ml}$$

1 ft
3
 = 0,028373 m 3

$$1m^3 = 35,2452 \text{ ft}^3$$

Massa M;

1 lbm = 0.45359237 kg

1 kg = 2,05 lbm

1 slug = 14,594 kg

Massa específica M/L³,

 $1 \text{ lbm/ft}^3 = 16,019 \text{ kg/m}^3$

dividindo duas propriedades extensivas tem-se uma propriedade intensiva

Força F = m.a

$$1N = 1 \text{ kg} * 1 \text{ m/s}^2$$

$$1 \text{ kgf} = 1 \text{kg} * 9,806 \text{ m/s}^2 = 9,806 \text{ N}$$

$$1 \text{ lbf} = 1 \text{ (lbm)} * 32,174 \text{ (ft/s}^2) = 32,174 \text{ lbm*ft/s}^2$$

1 lbf =
$$32,174 \times 0,45359 * 0,3048 N = 4,4482216 N$$

- -Peso: força da gravidade sobre um corpo: Peso = m.g
- -Atenção: como força e massa são conceitos diferentes, um libra-força e um libra-massa são grandezas diferentes e suas unidades não se cancelam mutuamente. Quando uma equação possui as duas unidades, lbm e lbf, a constante gc deve também aparecer na equação para torná-la dimensionalmente correta.

$$F = \frac{1}{g_c} ma$$

$$g_c = 9.80665 \,\mathrm{kg} \,\mathrm{m. \,kgf}^{-1} \mathrm{s}^{-2}$$

$$g_c = 32,1740 \text{ lbm.ft.lbf}^{-1}.\text{s}^{-2}$$

TEMPERATURA

$$t^{\circ}C = T K - 273.15$$

$$t(^{\circ}F) = T(R) - 459.67$$

$$T(R) = 1.8 T K$$

$$t(^{\circ}F) = 1.8 t^{\circ}C + 32$$

 $\Delta T K = \Delta t \circ C$

Pressão. F/A

$$1 \text{ Pa} = 1 \text{ N/m}^2$$

$$1 \text{ kgf/cm}^2 = 9,806 \text{ N} * 10^4 \text{ cm}^2/\text{m}^2 = 98,06 \text{ kPa} = 0,09806 \text{ Mpa}$$

$$1 \text{ lbf/ft}^2 = 4,448215 \text{ N* } 1 \text{ ft}^2/(0,3048)^2\text{m}^2 = 47,88 \text{ Pa}$$

$$1bar = 10^5 \text{ N/m}^2 = Pa$$

$$1 \text{ atm} = 101,32 \text{ kPa}$$

1 atm = 760 mmHg

Atenção:

Pressão manométrica: diferença entre a pressão de interesse e a pressão do ambiente

Pressão barométrica: pressão do ambiente

Pressão absoluta = pressão manométrica + pressão barométrica

EXEMPLO: UM MANÔMETRO A CONTRAPESO, COM UM ÊMBOLO DE 1 CM DE DIÂMETRO É USADO PARA MEDIÇÕES PRECISAS DE PRESSÃO. EM UMA SITUAÇÃO PARTICULAR, O EQUILÍBRIO É ALCANÇADO COM UMA MASSA DE 6,14 KG (INCLUINDO PISTÃO E PLATAFORMA). SE A ACELERAÇÃO DA GRAVIDADE LOCAL É 9,82 M/S², QUAL É A PRESSÃO MANOMÉTRICA MEDIDA? SE A PRESSÃO BAROMÉTRICA É IGUAL A 748 TORR, QUAL É A PRESSÃO ABSOLUTA?

TRABALHO (W)

- 1.FORÇA (F) ATUANDO AO LONGO DE UMA DISTÂNCIA (L): DW=F·DL
- 2.MODIFICAÇÃO DE VOLUME DE UM FLUIDO EXPANSÃO OU COMPRESSÃO DE UM FLUIDO NUM CILINDRO MEDIANTE MOVIMENTO

DE UM PISTÃO:

Figura 1.3: Diagrama PV

TRABALHO (W)

- TRABALHO É ENERGIA EM TRÂNSITO → NÃO É PROPRIEDADE, POIS DEPENDE DO CAMINHO (INTEGRAL DE LINHA)
- \blacktriangleright COMO W DEPENDE DO CAMINHO (NÃO É PROPRIEDADE), SEU DIFERENCIAL É INEXATO DW=W≠W₂-W₁

CONVENÇÃO DE SINAIS E NOTAÇÃO

- ► W < 0: REALIZADO PELO SISTEMA (SOBRE A VIZINHANÇA) SETA SAINDO DO SISTEMA.
 - W > 0: REALIZADO SOBRE O SISTEMA (PELA VIZINHANÇA) SETA ENTRANDO NO SISTEMA.
- \blacksquare ANALISAR SINAL DE W= P·DV^T
- ► MUITOS PROCESSOS ENVOLVEM TAXA DE REALIZAÇÃO DE TRABALHO = POTÊNCIA
- UNIDADES DE TRABALHO: SI: 1J. SISTEMA INGLÊS: 1 LBF.FT
- UNIDADES DE POTÊNCIA: SI: 1 W (WATT)= 1 J/S E 1 KW = 10³ W

SISTEMA INGLÊS: 1 BTU/H, 1 LBF.FT/H E 1HP = 746 W

$$F = P.A$$

Convenção: O trabalho será positivo se for realizado sobre o sistema e negativo se o contrário.

$$dV = dh A$$

$$dh = \frac{dV}{A}$$

Para obedecer à convenção de sinais acrescentamos o sinal negativo e chegamos ao resultado final.

ENERGIAS

$$EP=(MV^2)/2$$

• ENERGIA POTENCIAL

ENERGIAS EXTERNAS

PRINCÍPIO DA CONSERVAÇÃO DA ENERGIA MECÂNICA

$$\Delta E_{K} + \Delta E_{p} = 0$$

Sem a presença de atrito

CALOR

• CALOR = ENERGIA TRANSFERIDA PARA OU DE UM SISTEMA, UNICAMENTE POR DIFERENÇA DE TEMPERATURA.

Convenção de Sinais e Notação

O calor não é uma propriedade - depende do caminho

$$dQ = Q \neq Q_2 - Q_1$$

A integral é diferente de Q_2 - Q_1 (Não existe calor no estado 2 nem no estado 1. Calor é energia em trânsito.)

Unidades:

$$SI: Q = J;$$

Sistema Inglês: Q = Btu ou cal

Exemplo 1.5 (semelhante aos exercícios 1.15 e 1.16): Um gás está confinado no interior de um cilindro por um pistão, diâmetro de 5 in, sobre o qual encontra-se um peso. A massa do pistão e do peso juntos é de 60 lbm. A aceleração da gravidade local é 32,13 ft/s², e a pressão da atmosfera é de 30,16 inHg.

- a) Qual é a força em lbf exercida sobre o gás pela atmosfera, o pistão e o peso, considerando que não há atrito entre o pistão e o cilindro?
- De Qual a pressão (absoluta) do gás em psia?
- Se o gás no cilindro é aquecido, ele expande de forma que empurra o pistão e o peso para cima. Se o pistão e o peso são elevados 15 in, qual é o trabalho feito pelo gás em ft.lbf? Qual é a variação da energia potencial do pistão e do peso juntos?

REFERÊNCIAS

. VAN NESS, H.C.; SMITH J. M.; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química, 7a Ed. Rio de Janeiro: LTC, 2009.

. KORETSKY, M. D. **Termodinâmica para Engenharia Química**, 1^a ed. Rio de Janeiro: LTC, 2007.