

Big Data Introducción - Map Reduce

Texto base: Dr. Juan Esquivel Rodríguez

Profesor: Dr. Luis Alexánder Calvo Valverde

Objetivo General del Curso

Entender y aplicar técnicas de análisis de grandes cantidades de datos para la resolución de problemas concretos a través de tecnologías de manipulación, extracción y sintetización estadística.

Objetivos específicos

- Aplicar bibliotecas para la transformación de datos a gran escala para poder sintetizar el conocimiento para futuro análisis.
- Aplicar técnicas de análisis de datos para extraer patrones que mejoren el entendimiento de un problema concreto.
- Aplicar técnicas para aprendizaje automatizado de patrones, basado en datos existentes, para mejorar la certeza de la solución aplicada a problemas concretos.

Contenidos

- Introducción a procesamiento a gran escala
- Fuentes y repositorios de datos
- Procesamiento de fuentes (data frames)
- Procesamiento de atributos
- Organización de datos procesados
- Análisis de datos a gran escala
- Uso de modelos de aprendizaje automático a gran escala

Evaluación

- Proyecto Final 30%
 - Uso de conjunto de datos abiertos o empresa
 - O Realizar extracción, transformación y carga
 - Adecuado para predicción (clasificación preferiblemente)
- Tareas 60%
 - Orientación primariamente programada (Apache Spark y Python)
- Participación en clase 10%
 - O Basado en lecturas asignadas cada semana

Procesamiento de datos a gran escala

- Actualmente es sencillo acumular datos organizacionales
 - O Nuevas características de un sistema pueden llevar a explosión exponencial
- Costos de almacenamiento en la nube son bajos
- Rendimiento se puede afectar orgánicamente
 - O E.g. Dos años de transacciones de clientes pueden degradar significativamente
- No es factible almacenar todos los datos en una máquina física
 - Particionamiento es una necesidad
 - Punto donde empezamos a considerar el problema de "Big Data"

Las cinco "V"s del **Big Data**:

Lectura y transformación a gran escala

- Fuentes grandes de datos requieren "elementos de software" que permitan:
 - O Leer en forma distribuida
 - Procesar en segmentos (e.g. batches y micro batches)
 - O Almacenar de manera distribuida
- ETL
 - o Extract
 - Transform
 - o Load

ETL

- Extract
 - Se enfoca en la lectura
 - Fuentes típicas incluyen bases de datos relacionales, NoSQL, archivos planos (e.g. CSV, columnares)
- Transform
 - Crear datos más complejos
 - Ajustar de acuerdo a formato de salida
- Load
 - O Cargar en la fuente donde serán consumidos
 - Fuentes pueden ser análogas a las de extracción

Frameworks ETL

- Clave para cualquier científico de datos
 - O No se puede crear modelos sin datos de entrenamiento!
- Se basan en simplificar algoritmia de procesamiento a operaciones de un sola registro (e.g. fila)
 - O Operación sobre un registro es independiente a cualquier otro registro
 - El diseño debe usar fuertemente transformaciones (map) y agregaciones (reduce)
 para resolver los problemas
- Map Reduce
 - O Idea seminal que potenció el desarrollo tecnológico de Google Search
 - O Base conceptual de frameworks actuales, como Apache Spark

MapReduce

- Tecnología desarrollada en Google para procesar distribuidamente
 - Paper publicado en 2004
- Ejemplo clásico: frecuencia de palabras
 - O Corpus de millones de libros de texto
 - O Queremos contar la frecuencia de cada palabra a través de todos los libros
 - Algoritmo fuerza bruta:

```
func count(words []string) {
  var counts map[string]int

  for _, word:=range words {
    counts[word] += 1
  }
  printSorted(counts)
}
```


Based on Functional Programming

Map = apply operation to all elements

$$f(x) = y$$

Reduce = summarize operation on elements

by University of California San Diego

Problemática de implementación

- Por qué no una implementación "tradicional" en una sola máquina?
 - O Si el orden magnitud de archivos es en millones, la memoria se convierte en el cuello de botella
 - Tal vez no es necesario tener todos los datos en memoria pero hace más lento el procesamiento
- Múltiples núcleos de procesamiento
 - O Por ejemplo, dividir entre 10 núcleos
 - O Cada núcleo toma 1/10 de los archivos
 - O Genera conteos parciales y devuelve a un controlador
 - El controlador integra los resultados

Tolerancia a fallos

- Al repetir este proceso con 1000 máquinas, un solo controlador colapsaría.
- Podemos agregar una jerarquía de controladores, por ejemplo:
 - O Cada 10 máquinas envían a un controlador intermedio
 - O Cada controlador intermedio envía a un controlador mayor
- Para poder escalar este tipo de arquitectura debe utilizarse un número alto de unidades de procesamiento
 - O El fallo de una sola máquina, por sí sola, no es alta por una gran cantidad de meses, en la práctica
 - Cuando existen miles de máquinas la probabilidad es bastante alta

Tolerancia a fallos

- Error que una sola máquina falle: ϵ =0.001
- Probabilidad que 10 máquinas ejecuten el proceso sin tener errores
 - o $(1-\epsilon)^{10}=0.999^{10}=0.9900448802$
 - O En 99% de las ejecuciones no debería existir errores en las máquinas
- Para 1000 máquinas
 - o $(1-\epsilon)^{1000}=0.999^{1000}=0.3676954248$
 - O Todos los núcleos son exitosos únicamente 37% de las veces
- El modelado debe incorporar tolerancia a fallos integralmente
 - Replicar entradas (e.g. 3 copias)
 - O Distribuir trabajo entre máquinas no relacionadas entre sí
 - Utilizar checksums
 - o Etc.

MapReduce - En detalle

- Base de MapReduce
 - Modelo de programación para procesar y generar grandes conjuntos de datos.
 - Todo el procesamiento se basa en expresar los datos en pares llave/valor.
- Se debe definir dos tipos de funciones
 - O Función de mapeo: de los pares originales a una representación intermedia
 - O Función de reducción: une todas las llaves en una sola entrada
- Existe una fase oculta a los usuarios que ordena los datos (shuffle)
 - O Si se tienen R máquinas se asignan datos intermedios a nodos
 - Selección basada en índice de nodo = hash(llave) % R
- En la práctica una gran cantidad de problemas SI se pueden modelar
- MapReduce incluía un ambiente de ejecución encargado de muchas de estas tareas

MapReduce - Conteo de palabras

```
map(String key, String[] value):
    // key: document name
    // value: document contents
    for each word in value:
        EmitIntermediate(w, "1")
```

```
reduce(String key, Iterator values):
   // key: a word
   // values: a list of counts
   int result = 0;
   for each v in values:
     result += ParseInt(v);
   Emit(AsString(result));
```


Ambiente ejecución MapReduce

Limitaciones MapReduce

- Los problemas deben expresarse como una colección de elementos llave/valor
 - O Si no se puede expresar de esta forma, no se puede resolver
- Problemas con algoritmos iterativos
 - O La premisa de independencia entre registros lo impide
- Desarrollar en MapReduce es complejo
 - O Tema para futura clase!

Apache Spark

- Proyecto desarrollado en UC Berkeley y ahora mantenido por Apache Foundation
- Posee integraciones e implementaciones en las plataformas primarias de computación en la nube
 - o AWS
 - o GCP
 - O Azure
- Basado en una abstracción llamada Resilient Distributed Dataset (RDD)
 - O Colección de elementos que pueden ser almacenados a lo largo de múltiples nodos
- Spark permite el uso de múltiples fuentes de datos
- La tarea primaria de un programador es diseñar las operaciones sucesivas para transformar el RDD de su forma original a la salida deseada

Spark en Docker

- Configuración de un ambiente Spark puede ser complejo
- Docker es un framework para manejo de contenedores
 - O En el repositorio del curso hay 2 Dockerfile(s) que se usarán
- El objetivo del curso NO es aprender Docker
 - Es posible usar un ambiente local, sin embargo, nuestra recomendación es usar
 Docker
 - O Máquinas virtuales han dado resultados menos satisfactorios en complejidad de configuración

Docker - Comandos iniciales

- docker run -dp 80:80 docker/getting-started
- docker image Is
- docker container ls
- docker ps -a
- docker container stop <container>
- docker container rm <container>
- docker image prune

Ejemplo básico de lectura en Spark

- Herramientas requeridas:
 - Docker Desktop
 - O Git: Código en Github
 - O Pueden descargar Github Desktop o bien herramienta de línea de comandos
- https://github.com/juanmlesquivel/bigdataclass/tree/main/basic
- docker build --tag bigdata .
- docker run -i -t bigdata /bin/bash

Ejemplo transacciones

- Muestra versiones sencillas de diferentes operaciones
 - Lectura
 - Transformación
 - Agregación
 - O Unión
- https://github.com/juanmlesquivel/bigdataclass/tree/main/transactions

Ejercicio práctico

- Tomar la salida del ejemplo de transacciones y ajustar por el tipo de cambio
 - Archivo de tipo de cambios en repositorio
- Se puede asumir que los valores en la tabla de transacciones están en dólares y deben ser ajustados al tipo de cambio de los dos clientes (uno en Colones otro en Euros)
- La salida del programa modificado debe contener una columna con los valores monetarios ajustados

pytest

- Framework para pruebas unitarias en Python
- Objetivo ejemplificado
 - Tenemos una función unir(una_lista, otra_lista)
 - O Queremos revisar que unir([1, 2], [3. 4]) devuelva una lista del 1 al 4
 - O En código esto sería revisar que [1, 2, 3, 4] == unir([1, 2], [3, 4])
- Las pruebas unitarias estándar tienen 3 fases
 - o Preparación
 - O Ejecución de código bajo prueba
 - Revisión de aserción
- Deben ser
 - Confiables
 - Mantenibles
 - Fácil de leer

Referencias

- Schutt, R; O'Neill C. Doing Data Science Straight Talk from the Frontline.
 O'Reilly Media. 2013 (Capítulo 14)
- Dean, J; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters.
 - https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

