ResNet

History of CNN families

圖來源: 李春煌 FasterRCNN講義 https://youtu.be/2i9CcmJp2yl

Going deeper and deeper...

ResNet

Bottleneck block

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Practice

6.4. Build my own ResNet.ipynb

Basic block


```
class BasicBlock(nn.Module):
  expansion = 1
  def __init__(self, inplanes, planes, stride=1, downsample=None,)
    super(BasicBlock, self).__init__()
    self.conv1=conv3x3(inplanes,planes,stride)
    self.bn1=nn.BatchNorm2d(planes)
    self.relu=nn.ReLU(inplace=True)
    self.conv2=conv3x3(planes,planes)
    self.bn2=nn.BatchNorm2d(planes)
    self.downsample=downsample
    self.stride=stride
    if(stride!=1 or inplanes!=planes*self.expansion):
      self.downsample=nn.Sequential(
        nn.Conv2d(inplanes,planes*self.expansion,kernel_size=1,str
        nn.BatchNorm2d(planes*self.expansion),
```

```
def forward(self, x):
  residual = x
  out = self.conv1(x)
  out = self.bn1(out)
  out = self.relu(out)
  out = self.conv2(out)
  out = self.bn2(out)
  # Downsample:feature Map size/2 ||
  if (self.downsample is not None):
    residual = self.downsample(x)
  print("out= ", out.shape, "residua
  out+=residual
  out=self.relu(out)
  return out
```

Add batch normalization after convolution

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

$$y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta$$

- The mean and standard-deviation are calculated per-dimension over the mini-batches.
- By default, the elements of γ are set to 1 and the elements of β are set to 0.

batch normalization helps NN training

https://medium.com/ching-i/batch-normalization-%E4%BB%8B%E7%B4%B9-135a24928f12

My ResNet

```
class MyResNet(nn.Module):
 def __init__(self, block, layers, num_classes=2):
    super(MyResNet, self).__init__()
    self.inplanes = 64
    self.dilation = 1
    self.conv1=nn.Conv2d(3,self.inplanes,kernel_size
    self.maxpool=nn.MaxPool2d(kernel size=3,stride=2
    self.layer1=self._make_layer(block,64,layers[0])
    self.layer2=self. make layer(block,128,layers[1]
    self.avgpool=nn.AdaptiveAvgPool2d((1,1))
    self.fc=nn.Linear(128*block.expansion,num_classe
    self.linear=nn.Linear(128*block.expansion,num_cl
```

```
def _make_layer(self, block, planes, b
    layers=[]
    layers.append(block(self.inplanes,pl
    self.inplanes=planes*block.expansion

    for i in range(1,blocks):
        layers.append(block(self.inplanes,
        return nn.Sequential(*layers)
def forward(self, x):
```

```
def forward(self, x):
    x=self.conv1(x)
    x=self.maxpool(x)
    x=self.layer1(x)
    x=self.layer2(x)
    x=self.avgpool(x)
    x=torch.flatten(x, 1)
    x=self.fc(x)
    return x
```

My ResNet

```
MyResNet(
  (conv1): Conv2d(3, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1))
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (avgpool): AdaptiveAvgPool2d(output size=(1, 1))
  (fc): Linear(in_features=128, out_features=2, bias=True)
  (linear): Linear(in features=128, out features=2, bias=True)
```

```
MyResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
                    out1=model.conv1(imageTensor.to(device))
                     print(out1.shape)
                    torch.Size([1, 64, 112, 112])
              [15]: out2=model.maxpool(out1)
                     print(out2.shape)
                    torch.Size([1, 64, 56, 56])
```

```
(layer1): Sequential(
  (0): BasicBlock(
       (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
       (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
       (relu): ReLU(inplace=True)
       (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
       (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
)
```

```
[16]: out3=model.layer1(out2)

out= torch.Size([1, 64, 56, 56]) residual= torch.Size([1, 64, 56, 56])
```

```
(layer2): Sequential(
  (0): BasicBlock(
        (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
            (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        )
}
```

```
[17]: out4 = model.layer2(out3)

out= torch.Size([1, 128, 28, 28]) residual= torch.Size([1, 128, 28, 28])
```

```
(avgpool): AdaptiveAvgPool2d(output size=(1, 1))
(fc): Linear(in features=128, out features=2, bias=True)
(linear): Linear(in features=128, out features=2, bias=True)
             [18]: out5= model.avgpool(out4)
                   print(out5.shape)
                   torch.Size([1, 128, 1, 1])
                   out6=torch.flatten(out5,1)
             [19]:
                   print(out6.shape)
                   torch.Size([1, 128])
                   out7 = model.fc(out6)
             [20]:
                   print(out7)
                   tensor([[-0.0661, -0.1440]], device
```

Practice – Load pre-trained ResNet

```
In [2]: import torchvision
    model = torchvision.models.resnet18(pretrained=True)

Downloading: "https://download.pytorch.org/models/resnet18-5c106cde.pth" t
    HBox(children=(FloatProgress(value=0.0, max=46827520.0), HTML(value='')))
```

ResNet

```
ResNet(
  (conv1): Conv2d(3, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
```

ResNet

```
(layer2): Sequential(
 (0): BasicBlock(
    (conv1): Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (downsample): Sequential(
     (0): Conv2d(64, 128, kernel size=(1, 1), stride=(2, 2), bias=False)
     (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (1): BasicBlock(
    (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
```

Why deep?

With same number of parameters, deep is better

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4	Why?	
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	→1 X 3772	22.5
7 X 2k	17.1	→1 X 4634	22.6
		1 X 16k	22.1

deep + thin

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Reason 1 – Modularization

Deep → Modularization → Less training data?

Reference: 李弘毅 ML Lecture 11 https://youtu.be/XsC9byQkUH8

Universality theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Yes, shallow network can represent any function.

However, using deep structure is more effective.

Reason 2: End-to-end learning

Reason 3 - Easier to handle complex task

MNIST Very similar input, different output dog System System 1-st hidden Very different input, similar output System System train 2-nd hidden 3-rd hidden

What does CNN learn?

Find input images that make the kth filter activate more

Input images that make the kth filter activate more

The output of the k-th filter is a 11 x 11 matrix.

Degree of the activation of the k-th filter: $a^k = \sum_{i=1}^{11} \sum_{j=1}^{11} a_{ij}^k$

 $x^* = arg \max_{x} a^k$ (gradient ascent)

MNIST images input 25 3x3 Convolution filters **Max Pooling** 50 3x3 Convolution filters 50 x 11 x 11 **Max Pooling** For each filter

Input images that make the first 14 filters activate most

Input images that make the nodes in fully connected layer activate more

Find an image maximizing the output of neuron:

 $x^* = arg \max_{x} a^j$

Input images that make the first 9 nodes in the fully connected layer activate the most

Each figure corresponds to a neuron

Input images that make the output nodes activate more

input $x^* = arg \max y^i$ Can we see digits? Convolution Max Pooling Convolution Max Pooling flatten Deep Neural Networks are Easily Fooled https://www.youtube.com/watch?v=M2lebCN9Ht4

Input images that make the 9 output classes activate the most

Input images that make the output nodes activate more

$$x^* = arg \max_{x} \left(y^i - \sum_{i,j} |x_{ij}| \right)$$

Over all

Force x_{ij} = 0, i.e., force most pixels to NO INK (as only small part of the image has ink)

Practice – What does CNN learn?

Run "6.5 GradCAM.ipynb"

Use GradCAM to visualize focused area

Use GradCAM to visualize focused area

Class manually assigned

349:bighorn(大角羊)

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 121:帝王堡

Ref: 1071346 吳挺維 (2021)