

High-Dimensional Sparse Linear Bandits

Botao Hao, Tor Lattimore, Mengdi Wang

Contribution

- A fresh view on sparse linear bandits in the high-dimensional regime.
- A $\Theta(n^{2/3})$ minimax optimal regret bound when the feature vectors admit a well-conditioned exploration distribution.
- Provide an example where carefully balancing the trade-off between information and regret is necessary.

Problem Setting

Model:

At each round t, the agent chooses an action $A_t \in \mathcal{A} \subseteq \mathbb{R}^d$ (finite, fixed action set) and receives a reward:

$$Y_t = \langle A_t, \theta^* \rangle + \eta_t, \ t \in [n],$$

where $\|\theta^*\|_0 = s \ll d$ and η_t is sub-Gaussian noise.

Interested in high-dimensional regime: d > n.

Hardness result:

Unfortunately, there exists a $\Omega(\sqrt{dsn})$ minimax lower bound in general. Minimax bounds do not tell the whole story!

• Why?

A crude maximisation over all environments hides much of the rich structure of linear bandits with sparsity.

What we want to tell:

Derive a sharp $\Omega(\operatorname{poly}(s)n^{2/3})$ lower bound in high-dimensional regime under the condition that "the feature vectors admit a well-conditioned exploration distribution".

Related Work

Comparisons with existing results on regret upper bounds and lower bounds for sparse linear/contextual bandits. Here, K is the number of arms and τ is a problem-dependent parameter that may have a complicated form and vary across different literature.

	Regret upper bound	Assumptions
Abbasi-Yadkori et al. [2012]	$O(\sqrt{sdn})$	none
Bastani and Bayati [2020]	$O(au K s^2 (\log(n))^2)$	linear contextual bandit
Wang et al. [2018]	$O(au K s^3 \log(n))$	with i.i.d context, margin
		condition, compatibility
		condition over an optimal
		action set
Kim and Paik [2019]	$O(\tau s \sqrt{n})$	linear contextual bandit with
		i.i.d context, compatibility
		condition, non-standard
		noise assumption
Lattimore et al. [2015]	$O(s\sqrt{n})$	action set is hypercube
This paper	$O(C_{\min}^{-2/3} s^{2/3} n^{2/3})$	action set spans \mathbb{R}^d
	Regret lower bound	
Multi-task bandits	$\Omega(\sqrt{sdn})$	N.A.
This paper	$\Omega(C_{\min}^{-1/3}s^{1/3}n^{2/3})$	N.A.

Minimax Lower Bound

Definition. Let $\mathcal{P}(\mathcal{A})$ be the space of probability measures over \mathcal{A} and we define

$$C_{\min}(\mathcal{A}) = \sup_{\mu \in \mathcal{P}(\mathcal{A})} \sigma_{\min}\Big(\mathbb{E}_{A \sim \mu}\big[AA^{\top}\big]\Big),$$

where $\sigma_{\min}(\cdot)$ is the minimum eigenvalue of a square matrix.

Remark.

• When $C_{\min}(\mathcal{A})$ is independent of d, n, we say "feature vectors admit a well-conditioned exploration distribution". Sampling uniformly from the corners of each set shows that $C_{\min}(\mathcal{A}) \geq 1$ for the former and $C_{\min}(\mathcal{A}) \geq 1/d$ for the latter.

Theorem (Minimax Lower Bound). For any policy π , there exists s-sparse parameter $\theta \in \mathbb{R}^d$ and an action set \mathcal{A} where $C_{\min}(\mathcal{A})$ is independent of d, n such that

$$R_{ heta}(n) \gtrsim \min\left(C_{\min}^{-rac{1}{3}}(\mathcal{A})s^{rac{1}{3}}n^{rac{2}{3}},\sqrt{dn}
ight),$$

where \geq hides universal constants only.

Remark.

- When $d > n^{1/3}s^{2/3}$ the bound is $\Omega(n^{2/3})$, which is independent of the dimension.
- When $d \leq n^{1/3} s^{2/3}$, we recover the standard $\Omega(\sqrt{sdn})$ dimension-dependent lower bound up to a \sqrt{s} -factor, even though feature vectors admit a well-conditioned exploration distribution.

Matching Upper Bound

Theorem. Assume the action set A spans \mathbb{R}^d . The regret upper bound of explore-the-sparsity-then-commit (ESTC) algorithm satisfies

$$R_{ heta}(n) \lesssim C_{\min}^{-rac{2}{3}}(\mathcal{A})s^{rac{2}{3}}n^{rac{2}{3}}.$$

Algorithm.

1. Given an action set A, the algorithm first solves the following optimization problem to find the most informative design:

$$\pi_e = \max_{\mu \in \mathcal{P}(\mathcal{A})} \sigma_{\min} \left(\int_{x \in \mathcal{A}} x x^{\top} d\mu(x) \right).$$

- 2. Independently pulls arms following π_e by n_1 rounds and collects samples as $\{(A_1, y_1), \ldots, (A_{n_1}, y_{n_1})\}$. Then the algorithm calculates the lasso estimator $\hat{\theta}_{n_1}$.
- 3. Executes the greedy action $A_t = \operatorname{argmax}_{x \in \mathcal{A}} \langle x, \hat{\theta}_{n_1} \rangle$ for the remaining $n n_1$ rounds.

Experiments

We compare ESTC (our algorithm) with LinUCB and doubly-robust (DR) lasso bandits on a linear contextual bandits: action set from $N(0_N, V)$, where N is the number of arms, $V_{ii} = 1$ and $V_{ik} = \rho^2$ for every $i \neq k$. Larger ρ favorable to DR-lasso.

Proof Hints

- Hard problem instance.
- 1. Construct a low regret action set S (sparse) and an informative action set H (half of the hypercube) as follows:

$$S = \left\{ x \in \mathbb{R}^d \middle| x_j \in \{-1, 0, 1\} \text{ for } j \in [d-1], ||x||_1 = s - 1, x_d = 0 \right\},$$

$$\mathcal{H} = \left\{ x \in \mathbb{R}^d \middle| x_j \in \{-1, 1\} \text{ for } j \in [d-1], x_d = 1 \right\}.$$

2. <u>Original bandit</u> $\theta = (\underbrace{\varepsilon, \dots, \varepsilon}_{0}, 0, \dots, 0, -1)$, for some small $\varepsilon > 0$.

Remark: sampling from the corner of \mathcal{H} provides more information to infer θ than from \mathcal{S} but leads to high regret due to the last coordinate -1.

3. Alternative bandit $\hat{\theta}$. We denote a set \mathcal{S}' as

$$S' = \left\{ x \in \mathbb{R}^d \middle| x_j \in \{-1, 0, 1\} \text{ for } j \in \{s, s + 1, \dots, d - 1\}, \right.$$
$$x_j = 0 \text{ for } j = \{1, \dots, s - 1, d\}, ||x||_1 = s - 1 \right\}.$$

and $\tilde{x} = \operatorname{argmin}_{x \in \mathcal{S}'} \mathbb{E}_{\theta}[\sum_{t=1}^{n} \langle A_t, x \rangle^2]$. Construct the alternative bandit $\tilde{\theta}$ as $\tilde{\theta} = \theta + 2\varepsilon \tilde{x}$.

Key steps: calculating the KL divergence.

Define $T_n(\mathcal{H}) = \sum_{t=1}^n \mathbb{I}(A_t \in \mathcal{H})$. The KL divergence between \mathbb{P}_{θ} and $\mathbb{P}_{\tilde{\theta}}$ is upper bounded by

$$\mathsf{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\tilde{\theta}}\right) \leq 2\varepsilon^{2} \left(\underbrace{n(s-1)^{2}/d}_{I_{1}} + \underbrace{\kappa^{2}(s-1)\mathbb{E}_{\theta}[T_{n}(\mathcal{H})]}_{I_{2}} \right).$$

Remark. I_1 is the contribution from actions in the low-regret action set S, while I_2 is due to actions in H. The fact that actions in S are not very informative is captured by the presence of the dimension in the denominator of the first term.

Conclusion

- **Summary.** In this paper, we show that $\Theta(n^{2/3})$ is the optimal rate in the high-dimensional regime when a suitable exploratory distribution exists.
- Future direction. It is unclear how the regret lower bound depends on $C_{\min}(\mathcal{A})$ in the data-rich regime and if $C_{\min}(\mathcal{A})$ is the best quantity to describe the shape of action set \mathcal{A} .

Reference

- [1]. Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conversions and application to sparse stochastic bandits. [2]. Hamsa Bastani and Mohsen Bayati. Online decision making with high-dimensional covariates.
- [3]. Gi-Soo Kim and Myunghee Cho Paik. Doubly-robust lasso bandit.
- [4]. Tor Lattimore, Koby Crammer, and Csaba Szepesvari. Linear multi-resource allocation with semi-bandit feedback.