Relações de Ordem

20/10/2009 e 22/10/2009

Definições

Seja (S, \leq) um conjunto PO e $m, M \in S$.

- a) mé um mínimo de $S\iff (\forall s\in S)\,[\,m\leq s\,]$
- b) M é um máximo de $S \iff (\forall s \in S) \, [\, s \leq M \,]$

Exemplos

Em cada caso, verifique se existe um máximo e também se existe um mínimo nos seguintes conjuntos PO. Justifique suas respostas.

a) $(\mathbb{N},\leq)\,,\,(\mathbb{Z},\leq)$ e $(\mathbb{R},\leq)\,,$ onde \leq é a ordem usual dos números.

Em (\mathbb{N}, \leq) , o mínimo

, pois

e o máximo

, pois

Em (\mathbb{Z}, \leq) , o mínimo

, pois

e o máximo

, pois

Em (\mathbb{R}, \leq) , o mínimo

, pois

e o máximo

, pois

c)
$$(\mathbb{P}(\{a,b,c\}),\subseteq)$$

Em $\left(\mathbb{P}\left(\left\{\,a,b,c\right\}\right),\subseteq\right)$ o máximo

e o mínimo

pois,

d) Faça o diagrama de Hasse do conjunto PO $(\{1,2,4,5,10,12,20,25\},|)$ e verifique se existe máximo e também mínimo neste conjunto.

e) Faça o diagrama de Hasse do conjunto PO $(\{2,4,5,10,12,20,25,100\},|)$ e verifique se existe máximo e também mínimo neste conjunto.

f) Faça o diagrama de Hasse do conjunto PO $(\{2,4,5,10,12,20,25\},|)$ e verifique se existe máximo e também mínimo neste conjunto.

Definições

Seja (S, \leq) um conjunto PO e $m, M \in S$.

- a) m é um elemento minimal de $S \iff (\not\exists s \in S) [s \neq m \land s \leq m]$
- b) M é um $elemento\ maximal\ de\ S\ \Longleftrightarrow\ (\not\exists\, s\in S)\,[\,s\neq M\land M\leq s\,]$

Exemplos

- a) Em cada um dos exemplos anteriores, determine os elementos maximais e os elementos minimais, caso existam.
- b) Considere o conjunto PO (S,\leq) , cujo diagrama de Hasse é dado ao lado.

Determine os elementos maximais e os elementos minimais de (S, \leq) .

Proposição: Seja (S, \leq) , um conjunto PO.

- a) Se (S, \leq) possui um mínimo, então ele é único.
- b) Se (S, \leq) possui um máximo, então ele é único.
- d) Se (S, \leq) é um conjunto PO, $S \neq \emptyset$ e finito, então existe pelo menos um elemento minimal e um elemento maximal em S.

Em particular, se além das hipóteses acima temos também que S é uma cadeia, então S possui máximo e mínimo.

Definições

Seja (S, \leq) um conjunto PO e $T \subseteq S$.

- a) $m \in S$ é cota inferior de $T \iff (\forall t \in T) [m \le t]$
- b) $M \in S$ é cota superior de $T \iff (\forall t \in T) [t \leq M]$
- c) $m \in S$ é infimo de $T \iff (\forall m^* \text{cota inferior de T}) [m^* \leq m]$ Notação: $m = \inf(T)$.
- d) $M \in S$ é supremo de $T \Longleftrightarrow (\forall M^* \text{cota superior de T}) [M \leq M^*]$ Notação: $M = \sup(T)$.

Observações:

Usando a notação das definições acima, quando o conjunto T possui apenas dois elementos, digamos, $T=\{a,b\}$, costumamos notar:

$$inf\left(T\right)=inf\left(\left\{a,b\right\}\right)=a\wedge b$$
 e $sup\left(T\right)=sup\left(\left\{a,b\right\}\right)=a\vee b.$

Exemplos:

a) No conjunto PO $(\mathbb{N}^*,)$, onde $ $ é a relação de divisibilidade, determine as cotas inferiores
dos conjuntos dados e também as cotas superiores. Verifique se os conjuntos possuem supremo ou
ínfimo e, em caso afirmativo, determíne-os.

i)
$$\{12\}$$
 ii) $\{12, 20\}$

b) Se
$$X$$
 é um conjunto qualquer, no conjunto PO $(\mathbb{P}(X), \subseteq)$, temos $A \cap B = \inf\{A, B\}$ e $A \cup B = \sup\{A, B\}$, onde A e B são subconjuntos de X . Justifique.

Proposição: Seja (S,\leq), um conjunto PO e $T\subseteq S.$

- a) $\inf\left(T\right),$ caso exista, é único.
- b) $sup\left(T\right)$, caso exista, é único.

Definição: Seja ($S,\leq)\,,$ um conjunto PO.

(S,\leq) é um reticulado \Longleftrightarrow $(\forall a,b\in S)\left[\{a,b\}$ possui supremo e ínfimo]

 $\Longleftrightarrow (\forall a,b \in S) \left[a \vee b \neq a \wedge b \text{ existem} \right]$