

Algorithmic Theory of WQOs

S. Schmitz

joint work with D. Figueira, S. Figueira, S. Haddad, and Ph. Schnoebelen

LSV, ENS Cachan & CNRS

Ker-Lann, November 27, 2012

- $\qquad \qquad \text{over } \mathbb{Q}_{\geqslant 0} \times \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- ► Eloise plays (x_j, y_j) s.t. $\forall 0 \le i < j, x_i > x_j$ or $y_i > x_j$

- ► Can Eloise win, i.e. play indefinitely?
- ▶ If no, how long can she last?

- $\qquad \qquad \text{over } \mathbb{Q}_{\geqslant 0} \times \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- ► Eloise plays (x_j, y_j) s.t. $\forall 0 \le i < j, x_i > x_j$ or $y_i > x_j$

- ► Can Eloise win, i.e. play indefinitely?
- ▶ If no, how long can she last?

- over $\mathbb{Q}_{\geqslant 0} \times \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- ► Eloise plays (x_j, y_j) s.t. $\forall 0 \le i < j, x_i > x_j$ or $y_i > x_j$

- ► Can Eloise win, i.e. play indefinitely?
- ▶ If no, how long can she last?

If
$$(x_0, y_0) \neq (0, 0)$$
, then choosing $(x_j, y_j) = (\frac{x_0}{2^j}, \frac{y_0}{2^j})$ wins.

- over $\mathbb{N} \times \mathbb{N}$
- given initially (x_0, y_0)
- ► Eloise plays (x_j, y_j) s.t. $\forall 0 \le i < j, x_i > x_j$ or $y_i > x_j$

- ► Can Eloise win, i.e. play indefinitely?
- ▶ If no, how long can she last?

Assume there exists an infinite sequence $(x_i, y_i)_i$ of moves over \mathbb{N}^2 . Consider the pairs of indices i < j: color (i,j)

purple if
$$x_i > x_j$$
 but $y_i \leq y_j$,

red if
$$x_i > x_j$$
 and $y_i > y_j$,

orange if
$$y_i > y_j$$
 but $x_i \leq x_j$.

$$(3,4)$$
 $(5,2)$ $(2,3)$...

By the infinite Ramsey Theorem, there exists an infinite monochromatic subset of indices. In all cases, it implies the existence of an infinite decreasing sequence in \mathbb{N} , a contradiction.

- over $\mathbb{N} \times \mathbb{N}$
- given initially (x_0, y_0)
- ► Eloise plays (x_j, y_j) s.t. $\forall 0 \le i < j, x_i > x_j$ or $y_i > x_j$

- ► Can Eloise win, i.e. play indefinitely?
- If no, how long can she last?

- if $(x_0, y_0) = (0, 0)$, 0 turns
- otherwise, an arbitrary number of turns N: if $x_0 > 0$:

$$(x_0,y_0), (0,N-1), (0,N-2), \dots, (0,1), (0,0)$$

Well Quasi Orderings

Definition (wqo)

A wqo is a quasi-order (A, \leq) s.t.

$$\forall \mathbf{x} = x_0, x_1, x_2, \ldots \in A^{\omega}, \exists i_1 < i_2, x_{i_1} \leqslant x_{i_2}.$$

Well Quasi Orderings

Definition (wqo)

A wqo is a quasi-order (A, \leq) s.t.

$$\forall \mathbf{x} = x_0, x_1, x_2, ... \in A^{\omega}, \exists i_1 < i_2, x_{i_1} \leqslant x_{i_2}.$$

Example (Basic wqos)

- ► (N, ≤),
- $(\{0,1,...,k\}, \leq)$ for any $k \in \mathbb{N}$,
- $(\Gamma_p, =)$ for any finite set Γ_p with p elements.

DICKSON'S LEMMA

Lemma

If (A_1, \leq_{A_1}) and (A_2, \leq_{A_2}) are two wqos, then $(A_1 \times A_2, \leq_{\times})$ is a wqo, where \leq_{\times} is the product ordering:

$$\langle a_1, a_2 \rangle \leqslant_{\times} \langle b_1, b_2 \rangle \stackrel{\text{def}}{\Leftrightarrow} a_1 \leqslant_{A_1} b_1 \wedge a_2 \leqslant_{A_2} b_2$$
.

Example

 (\mathbb{N}^k, \leq) using the product ordering

well quasi orderings (wqo) generic tools for termination arguments

but also beyond termination: complexity bounds

contents **WQO** Algorithms

Length Function Theorems A Quick Survey

A RICH THEORY

- multiple equivalent definitions
- algebraic constructions

A Rich Theory

- multiple equivalent definitions: (A, \leq) wqo iff
 - ightharpoonup \leqslant is well-founded and has no infinite antichains,
 - every linearization of ≤ is well-founded,
 - \triangleright \leq has the Ascending Chain Condition,
 - if $\mathbf{x} = x_0 x_1 \cdots \in A^{\omega}$, then there exists an infinite sequence $i_0 < i_1 < \cdots$ with $x_{i_0} \leqslant x_{i_1} \leqslant \cdots$,
 - ▶ etc.
- algebraic constructions

A RICH THEORY

- multiple equivalent definitions
- algebraic constructions
 - cartesian products (Dickson's Lemma),
 - finite sequences (Higman's Lemma),
 - disjoint sums,
 - finite sets,
 - finite trees (Kruskal's Tree Theorem),
 - graphs with minors (Robertson and Seymour's Theorem), etc.

HIGMAN'S LEMMA

Lemma

If (A, \leq) is a wqo, then (A^*, \leq_*) is a wqo where \leq_* is the subword embedding ordering:

$$a_1 \cdots a_m \leqslant_* b_1 \cdots b_n \stackrel{\text{def}}{\Leftrightarrow} \begin{cases} \exists 1 \leqslant i_1 < \cdots < i_m \leqslant n, \\ \bigwedge_{j=1}^m a_j \leqslant_A b_{i_j}. \end{cases}$$

Example

aba ≤ * baaacabbab

WQOs for Termination

BAD SEQUENCES

- $\mathbf{x} = x_0, x_1, \dots$ in A^{∞} is a good sequence if $\exists i_1 < i_2, x_{i_1} \leqslant x_{i_2}$,
- a bad sequence otherwise,
- if (A, \leq) is a wqo: every bad sequence is finite

MONOTONIC COUNTER SYSTEMS

► A run of M

$$(\ell_0,0,1,4) \to (\ell_1,1,1,4) \to (\ell_2,1,0,4) \to (\ell_3,1,0,0)$$

- ▶ ordering configurations: $(\ell_1,0,0,0) \le (\ell_1,0,1,2)$ but $(\ell_1,0,0,0) \not \le (\ell_2,0,1,2)$
- ▶ a wqo as a product of wqos: $(Loc,=) \times (\mathbb{N}^3, \leq_{\times})$

MONOTONIC COUNTER SYSTEMS

▶ A run of M:

$$(\ell_0, 0, 1, 4) \rightarrow (\ell_1, 1, 1, 4) \rightarrow (\ell_2, 1, 0, 4) \rightarrow (\ell_3, 1, 0, 0)$$

- ▶ ordering configurations: $(\ell_1,0,0,0) \le (\ell_1,0,1,2)$ but $(\ell_1,0,0,0) \not \le (\ell_2,0,1,2)$
- ▶ a wqo as a product of wqos: $(Loc,=) \times (\mathbb{N}^3, \leq_{\times})$

MONOTONIC COUNTER SYSTEMS

c₁ 1

2 1

C3 [2

► A run of M:

$$(\ell_0,0,1,4) \to (\ell_1,1,1,4) \to (\ell_2,1,0,4) \to (\ell_3,1,0,0)$$

- ▶ ordering configurations: $(\ell_1,0,0,0) \le (\ell_1,0,1,2)$ but $(\ell_1,0,0,0) \not \le (\ell_2,0,1,2)$
- ▶ a wqo as a product of wqos: $(Loc,=) \times (\mathbb{N}^3, \leq_{\times})$

MONOTONIC COUNTER SYSTEMS

▶ A run of M:

$$(\ell_0, 0, 1, 4) \rightarrow (\ell_1, 1, 1, 4) \rightarrow (\ell_2, 1, 0, 4) \rightarrow (\ell_3, 1, 0, 0)$$

- ▶ ordering configurations: $(\ell_1,0,0,0) \le (\ell_1,0,1,2)$ but $(\ell_1,0,0,0) \not \le (\ell_2,0,1,2)$
- ▶ a wqo as a product of wqos: $(Loc,=) \times (\mathbb{N}^3, \leq_{\times})$

MONOTONIC COUNTER SYSTEMS

c₁ 1

-2 [0

з 0

► A run of M:

$$(\ell_0,0,1,4) \to (\ell_1,1,1,4) \to (\ell_2,1,0,4) \to (\ell_3,1,0,0)$$

- ▶ ordering configurations: $(\ell_1,0,0,0) \le (\ell_1,0,1,2)$ but $(\ell_1,0,0,0) \not \le (\ell_2,0,1,2)$
- ▶ a wqo as a product of wqos: $(Loc,=) \times (\mathbb{N}^3, \leq_{\times})$

MONOTONIC COUNTER SYSTEMS

 c_1 1

c₂ [0]

C3 [(

► A run of M:

$$(\ell_0,0,1,4) \to (\ell_1,1,1,4) \to (\ell_2,1,0,4) \to (\ell_3,1,0,0)$$

- ▶ ordering configurations: $(\ell_1,0,0,0) \le (\ell_1,0,1,2)$ but $(\ell_1,0,0,0) \not \le (\ell_2,0,1,2)$
- ▶ a wqo as a product of wqos: $(Loc,=) \times (\mathbb{N}^3, \leq_{\times})$

MONOTONIC COUNTER SYSTEMS

- ▶ ordering configurations: $(\ell_1, 0, 0, 0) \leq (\ell_1, 0, 1, 2)$ but $(\ell_1, 0, 0, 0) \leq (\ell_2, 0, 1, 2)$
- ▶ a wqo as a product of wqos: $(Loc,=) \times (\mathbb{N}^3, \leq_{\times})$
- ▶ compatibility between configurations: if $c \le d$ and $c \to c'$, then $\exists d' \ge c'$, $d \to d'$

DECIDING WHETHER A MCS TERMINATES

input a MCS and an initial configuration c_0 in $Loc \times \mathbb{N}^k$

question are all the runs starting from c_0 finite?

- termination is semi-decidable: explore all runs
- non-termination is semi-decidable: finite witness

DECIDING WHETHER A MCS TERMINATES

input a MCS and an initial configuration c_0 in $Loc \times \mathbb{N}^k$

question are all the runs starting from c_0 finite?

- termination is semi-decidable: explore all runs
- non-termination is semi-decidable: finite witness

DECIDING WHETHER A MCS TERMINATES

input a MCS and an initial configuration c_0 in $Loc \times \mathbb{N}^k$

question are all the runs starting from c_0 finite?

- termination is semi-decidable: explore all runs
- non-termination is semi-decidable: finite witness

DECIDING WHETHER A MCS TERMINATES

input a MCS and an initial configuration c_0 in $Loc imes \mathbb{N}^k$

question are all the runs starting from c_0 finite?

- termination is semi-decidable: explore all runs
- non-termination is semi-decidable: finite witness

From Termination to Complexity

- wqos for termination: bad sequences are finite
- but how long can they be?

```
SIMPLE (a,b)
c \leftarrow 1
while a > 0 \land b > 0
\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle
or
\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle
end
```

- ▶ in any run, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leq_{\times})$ is a wqo: all the runs are finite
- ► How long can SIMPLE run?

```
\begin{array}{c} \text{SIMPLE } (\mathfrak{a}, \mathfrak{b}) \\ \mathfrak{c} \longleftarrow 1 \\ \text{while } \mathfrak{a} > 0 \wedge \mathfrak{b} > 0 \\ \qquad \langle \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \rangle \longleftarrow \langle \mathfrak{a} - 1, \mathfrak{b}, 2\mathfrak{c} \rangle \\ \text{or} \\ \qquad \langle \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \rangle \longleftarrow \langle 2\mathfrak{c}, \mathfrak{b} - 1, 1 \rangle \\ \text{end} \end{array}
```

- ▶ in any run, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leq_{\times})$ is a wqo: all the runs are finite
- ▶ How long can SIMPLE run?


```
\begin{array}{c} \text{SIMPLE } (a,b) \\ c \longleftarrow 1 \\ \text{while } a > 0 \wedge b > 0 \\ & \langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle \\ \text{or} \\ & \langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle \\ \text{end} \end{array}
```

- ▶ in any run, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leq_{\times})$ is a wqo: all the runs are finite
- ▶ How long can SIMPLE run?

```
\begin{array}{c} \text{SIMPLE } (a,b) \\ c \longleftarrow 1 \\ \text{while } a > 0 \wedge b > 0 \\ & \langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle \\ \text{or} \\ & \langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle \\ \text{end} \end{array}
```

- ▶ in any run, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leq_{\times})$ is a wqo: all the runs are finite
- ▶ How long can SIMPLE run?

A Computation of Simple(2,3)

SIMPLE (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$	$\langle 2, 3, 2^{0} \rangle$	0
while $a > 0 \land b > 0$	\2,3,2 /	
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$		
or		
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$		
end		

A Computation of Simple(2,3)

SIMPLE (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$	$\langle 2, 3, 2^{0} \rangle$	0
while $a > 0 \land b > 0$	$\langle 1,3,2^1 \rangle$	1
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	\1,3,2 /	_
or		
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$		
end		

SIMPLE (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$	$\langle 2, 3, 2^{0} \rangle$	0
while $a > 0 \land b > 0$	$\langle 1,3,2^1 \rangle$	1
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 2^2, 2, 2^0 \rangle$	2
or	\2 ,2,2 /	2
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$		
end		

SIMPLE (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$		
while $a > 0 \land b > 0$:	:
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 2^2, 2, 2^0 \rangle$	2
or	:	:
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$	$\langle 1, 2, 2^{2^2-1} \rangle$	
end	$\langle 1, 2, 2^{2^{-1}} \rangle$	$2+2^2-1$

SIMPLE (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$		
while $a > 0 \land b > 0$:	:
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 1, 2, 2^{2^2-1} \rangle$	$2+2^2-1$
or	$\langle 2^{2^2}, 1, 1 \rangle$	$2+2^{2}$
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$	(, , , ,	·
end		l

SIMPLE (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$	•	
while $a > 0 \land b > 0$:	•
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 2^{2^2}, 1, 1 \rangle$	$2+2^{2}$
or	•	•
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$:	:
end	$\langle 1,1,2^{2^{2^{2}}-1}\rangle$	$2+2^2+2^{2^2}-1$

SIMPLE (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$		
while $a > 0 \land b > 0$:	:
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 1, 1, 2^{2^{2^2}-1} \rangle$	$2+2^2+2^{2^2}-1$
or		$2+2^2+2^{2^2}$
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$	(0,1,2-)	2+2-+2-
end		

SIMPLE (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$		
while $a > 0 \land b > 0$:	:
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$(0,1,2^{2^{2^2}})$	$2+2^2+2^{2^2}$
or	,	l
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$		
end		

- non-elementary complexity
- derive (matching) upper bounds for termination arguments based on $(\mathbb{N}^2, \leqslant_{\times})$ being a wqo

▶ bound the length of bad sequences over (A, \leq)

- bound the length of bad sequences over (A, \leqslant)
- recall our game: choose any N, and consider the bad sequence (3,3),(3,2),(3,1),(3,0),(2,N),(2,N-1),...

- bound the length of bad sequences over $(A, \leqslant; |.|_A)$
- ▶ associate a norm function $|.|_A : A \to \mathbb{N}$ to each wgo (A, \leq)
- assume $|.|_A$ is proper $\stackrel{\text{def}}{\Leftrightarrow}$ for all $\mathfrak n$

$$A_{< n} \stackrel{\text{def}}{=} \{x \in A \mid |x|_A < n\} \text{ is finite}$$

Example (Normed wgos)

$$|\mathbf{k}|_{\mathbb{N}} \stackrel{\text{def}}{=} \mathbf{k} \qquad |\alpha_{\mathbf{i}}|_{\Gamma_{\mathbf{p}}} \stackrel{\text{def}}{=} \mathbf{0} \qquad |\langle \alpha, \mathbf{b} \rangle|_{A \times B} \stackrel{\text{def}}{=} \max(|\alpha|_{A}, |\mathbf{b}|_{B})$$

- bound the length of controlled bad sequences over $(A, \leqslant ; |.|_A)$
- fix a control function $g: \mathbb{N} \to \mathbb{N}$ (strictly increasing)
- $\mathbf{x} = x_0, x_1, \dots$ over A is (q, n)-controlled iff

$$\forall i, |x_i|_A < g^i(n)$$

- bound the length of controlled bad sequences over $(A, \leqslant : |.|_A)$
- fix a control function $g: \mathbb{N} \to \mathbb{N}$
- $\mathbf{x} = x_0, x_1, \dots$ over A is (\mathbf{q}, \mathbf{n}) -controlled iff

$$\forall i, |x_i|_A < g^i(n)$$

Example
$$(SIMPLE(2,3))$$

$$A = \mathbb{N}^2$$
, $n = 4$, $q(x) = 2x$

- bound the length of controlled bad sequences over $(A, \leqslant ; |.|_A)$
- for fixed A, q, n, there are finitely many bad (q,n)-controlled sequences over A
- maximal length function

$$L_{A,q}(n)$$

- for $(\Gamma_p,=;|.|_{\Gamma_p})$:
- for $(\mathbb{N}, \leq; |.|_{\mathbb{N}})$:

- for $(\Gamma_p,=;|.|_{\Gamma_n})$: Pigeonhole principle: $L_{\Gamma_n,q}(n)=p$

- for $(\Gamma_p,=;|.|_{\Gamma_n})$: Pigeonhole principle: $L_{\Gamma_n,q}(n)=p$
- for $(\mathbb{N}, \leq; |.|_{\mathbb{N}})$:

Bound $L_{A,g}$ by some functions for various A. Example

• for
$$(\Gamma_p,=;|.|_{\Gamma_p})$$
: $L_{\Gamma_p,g}(\mathfrak{n})=\mathfrak{p}$

• for
$$(\mathbb{N}, \leqslant; |.|_{\mathbb{N}})$$
: $L_{\mathbb{N},g}(\mathfrak{n}) = \mathfrak{n}$:

$$n-1, n-2, ..., 1, 0$$

recall SIMPLE: not every length function is that 'small'...

Bound $L_{A,g}$ by some functions for various A. Example

• for
$$(\Gamma_p,=;|.|_{\Gamma_p})$$
: $L_{\Gamma_p,g}(\mathfrak{n})=\mathfrak{p}$

• for $(\mathbb{N}, \leqslant; |.|_{\mathbb{N}})$: $L_{\mathbb{N},g}(\mathfrak{n}) = \mathfrak{n}$:

$$n-1, n-2, ..., 1, 0$$

▶ recall SIMPLE: not every length function is that 'small'...

- for $(\mathbb{N}^k, \leqslant; |.|_{\mathbb{N}^k})$: let \mathfrak{g} be in FF_{γ} for $\gamma \geqslant 1$, then $L_{\mathbb{N}^k,q}(n)$ is bounded by a function in $FF_{\nu+k}$
- ▶ for $(\Gamma_p^*, \leq_*; |.|_{\Gamma_p^*})$: let g be primitive-recursive and $p \geqslant 2$, then $L_{\Gamma_n^*,g}(n)$ is bounded by a function in $\mathbf{F}\mathbf{F}_{\alpha,p-1}$
- \blacktriangleright more on FF_{α} soon...

Using the Length Function

Example (MCS Termination)

- control function g(n) = n + 1 in FF_1
- any run of length $L_{Loc \times \mathbb{N}^k,g}(\mathfrak{n}_0) + 1$ is good
- new algorithm for termination: try to find such a run
- complexity in F_{k+2} when k is fixed, F_{ω} when not

BEYOND ELEMENTARY

BEYOND ELEMENTARY

FAST-GROWING FUNCTIONS

(Löb and Wainer, 1970)

$$F_0(x) \stackrel{\text{def}}{=} x + 1$$
, $F_{\alpha+1}(x) \stackrel{\text{def}}{=} F_{\alpha}^x(x)$, $F_{\lambda} \stackrel{\text{def}}{=} F_{\lambda_x}(x)$.

where λ_x is the xth element of a fundamental sequence $(\lambda_x)_x$ for the limit ordinal λ

Example

$$F_1(x) = 2x$$
$$F_2(x) = x \cdot 2^x$$

F₃ is non elementary F_{α} is non primitive-recursive F_{ω}^{ω} is non multiply-recursive

FAST-GROWING COMPLEXITIES

$$\begin{array}{ll} \alpha\geqslant 2: & \mathscr{F}_{\alpha}\stackrel{\mathrm{def}}{=}\bigcup_{c<\omega}\mathsf{FSpace}\big(\mathsf{F}^{c}_{\alpha}(\mathfrak{n})\big)\\ \\ \alpha\geqslant 3: & \mathbf{F}_{\alpha}\stackrel{\mathrm{def}}{=}\bigcup_{\mathfrak{p}\in\bigcup_{\beta<\alpha}\mathscr{F}_{\beta}}\mathsf{Space}\big(\mathsf{F}_{\alpha}(\mathfrak{p}(\mathfrak{n}))\big) \end{array}$$

Example

- **F**₃ complexity bounded by a tower of exponentials of elementary height,
- $\mathbf{F}_{(i)}$ Ackermannian complexity of some primitive-recursive function,

Some F_{ω} -Complete Problems

Decision of problems on

- monotonic counter systems (Finkel and Schnoebelen, 2001), e.g.
 - finite VASS containment (Mayr and Meyer, 1981; Jančar, 2001)
 - lossy counter systems termination (Schnoebelen, 2010),
- relevance logics (Urquhart, 1999),
- data logics (Demri and Lazić, 2009; Figueira and Segoufin, 2009),...

WQO Algorithms

Some F_{ω}^{ω} -Complete Problems

Decision of problems on

- ▶ lossy channel systems (Chambart and Schnoebelen, 2008),
- Post embedding problem RatEP (Chambart and Schnoebelen, 2007),
- ▶ 1-clock alternating timed automata (Lasota and Walukiewicz, 2008),
- Metric temporal logic (Ouaknine and Worrell, 2007),
- finite concurrent programs under weak (TSO/PSO) memory models (Atig et al., 2010)
- alternating register automata over ordered domains (Figueira et al., 2010),...

SUMMARY

- wqos for termination of algorithms
- length function theorems: out-of-the-box complexity upper bounds
- matching lower bounds for many problems

Course material at

http://www.lsv.ens-cachan.fr/~schmitz/teach/2012_esslli/

Perspectives

Some big challenges ahead, for instance:

- complexity of VASS reachability
- decidability of BVASS reachability

Also easier problems: internships within ANR ReacHard:

http://www.lsv.ens-cachan.fr/projects/anr-reachard

REFERENCES

Upper Bounds for Dickson's Lemma

- McAloon, K., 1984. Petri nets and large finite sets. *Theor. Comput. Sci.*, 32(1–2): 173–183. doi:10.1016/0304-3975(84)90029-X.
- Clote, P., 1986. On the finite containment problem for Petri nets. *Theor. Comput. Sci.*, 43:99–105. doi:10.1016/0304-3975(86)90169-6.
- Figueira, D., Figueira, S., Schmitz, S., and Schnoebelen, Ph., 2011. Ackermannian and primitive-recursive bounds with Dickson's Lemma. In *LICS 2011*. IEEE Press. arXiv:1007.2989[cs.LO].

Upper Bounds for Higman's Lemma

- Cichoń, E.A. and Tahhan Bittar, E., 1998. Ordinal recursive bounds for Higman's Theorem. *Theor. Comput. Sci.*, 201(1–2):63–84. doi:10.1016/S0304-3975(97)00009-1.
- Schmitz, S. and Schnoebelen, Ph., 2011. Multiply recursive upper bounds with Higman's Lemma. In *ICALP 2011* volume 6756 of *LNCS*, pages 441–452. Springer. arXiv:1103/4399[cs.LO].

Upper Bounds for Kruskal's Theorem

Weiermann, A., 1994. Complexity bounds for some finite forms of Kruskal's Theorem. J. Symb. Comput., 18(5):463–488. doi:10.1006/jsco.1994.1059.

Fast Growing Hierarchy

Löb, M. and Wainer, S., 1970. Hierarchies of number theoretic functions, I. *Arch. Math. Logic*, 13:39–51. doi:10.1007/BF01967649.

WSTS

- Abdulla, P.A., Čerāns, K., Jonsson, B., and Tsay, Y.K., 2000. Algorithmic analysis of programs with well quasi-ordered domains. *Inform. and Comput.*, 160(1–2): 109–127. doi:10.1006/inco.1999.2843.
- Finkel, A. and Schnoebelen, Ph., 2001. Well-structured transition systems everywhere! Theor. Comput. Sci., 256(1–2):63–92. doi:10.1016/S0304-3975(00)00102-X.

Lower Bounds

- Schnoebelen, Ph., 2010. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In *MFCS 2010*, volume 6281 of *LNCS*, pages 616–628. Springer. doi:10.1007/978-3-642-15155-2.54.
- Chambart, P. and Schnoebelen, Ph., 2008. The ordinal recursive complexity of lossy channel systems. In *LICS 2008*, pages 205–216. IEEE. doi:10.1109/LICS.2008.47.
- Haddad, S., Schmitz, S., and Schnoebelen, Ph., 2012. The ordinal-recursive complexity of timed-arc Petri nets, data nets, and other enriched nets. In *LICS 2012*, pages 355–364. IEEE. doi:10.1109/LICS.2012.46

Applications of Higman's Lemma

- Chambart, P. and Schnoebelen, Ph., 2007. Post embedding problem is not primitive recursive, with applications to channel systems. In Arvind, V. and Prasad, S., editors, *FSTTCS 2007*, volume 4855 of *LNCS*, pages 265–276. Springer. doi:10.1007/978-3-540-77050-3.22.
- Ouaknine, J.O. and Worrell, J.B., 2007. On the decidability and complexity of Metric Temporal Logic over finite words. *Logic. Meth. in Comput. Sci.*, 3(1):8. doi:10.2168/LMCS-3(1:8)2007.
- Lasota, S. and Walukiewicz, I., 2008. Alternating timed automata. *ACM Trans. Comput. Logic*, 9(2):10. doi:10.1145/1342991.1342994.
- Atig, M.F., Bouajjani, A., Burckhardt, S., and Musuvathi, M., 2010. On the verification problem for weak memory models. In *POPL 2010*, pages 7–18. ACM Press. doi:10.1145/1706299.1706303.
- Figueira, D., Hofman, P., and Lasota, S., 2010. Relating timed and register automata. In Fröschle, S. and Valencia, F., editors, *EXPRESS 2010*, volume 41 of *EPTCS*, pages 61–75. doi:10.4204/EPTCS.41.5.

Applications of Dickson's Lemma

- Demri, S., 2006. Linear-time temporal logics with Presburger constraints: An overview. *J. Appl. Non-Classical Log.*, 16(3–4):311–347. doi:10.3166/jancl.16.311-347.
- Demri, S. and Lazić, R., 2009. LTL with the freeze quantifier and register automata. ACM Trans. Comput. Logic, 10(3). doi:10.1145/1507244.1507246.
- Figueira, D. and Segoufin, L., 2009. Future-looking logics on data words and trees. In *MFCS 2009*, volume 5734 of *LNCS*, pages 331–343. Springer. doi:10.1007/978-3-642-03816-7_29.
- Gallo, G. and Mishra, B., 1994. A solution to Kronecker's Problem. *Appl. Algebr. Eng. Comm.*, 5(6):343–370.
- Jančar, P., 2011. Nonprimitive recursive complexity and undecidability for Petri net equivalences. *Theor. Comput. Sci.*, 256(1–2):23–30. 10.1016/S0304-3975(00)00100-6.
- Mayr, E.W. and Meyer, A.R., 1981. The complexity of the finite containment problem for Petri nets. *J. ACM*, 28(3):561–576. 10.1145/322261.322271.
- Podelski, A. and Rybalchenko, A., 2004. Transition invariants. In *LICS 2004*, pages 32–41. IEEE. doi:10.1109/LICS.2004.1319598.
- Revesz, P.Z., 1993. A closed-form evaluation for Datalog queries with integer (gap)-order constraints. *Theor. Comput. Sci.*, 116(1):117–149. doi:10.1016/0304-3975(93)90222-F.
- Urquhart, A., 1999. The complexity of decision procedures in relevance logic II. J. Symb. Log., 64(4):1774–1802. doi:10.2307/2586811.