Transcendental Numbers

Vincent Lin

Fall 2023

Contents

1	Preliminaries	1
	1.1 Transcendental Numbers	1
2	Lindemann-Weierstrass Theorem	3
3	Gelfond-Schneider Theorem	5
4	Weak Form of Baker's Theorem	7
5	Schanuel's Conjecture	9

CONTENTS

Preliminaries

1.1 Transcendental Numbers

<u>Def</u> An <u>algebraic number</u> is a complex number that is the root of a finite nonzero polynomial in one variable with rational coefficients. A <u>transcendental number</u> is a complex number that is not algebraic.

To find some algebraic numbers, we can take a nonzero polynomial with rational coefficients and find its roots. By definition, these roots are algebraic numbers. For example, $\sqrt{2}$ is algebraic because it is a root of x^2-2 . Also, i is algebraic because it is the root of x^2+1 . All rational numbers are algebraic as well. Let $\frac{p}{q} \in \mathbb{Q}$ be rational, where $p, q \in \mathbb{Z}$ and q is nonzero. Then, it is the root of $x-\frac{p}{q}$.

What about transcendental numbers? Do they exist?

Theorem Yes, transcendental numbers exist.

Proof Consider the set of algebraic numbers. This set is countable.

Lindemann-Weierstrass Theorem

Theorem (Lindemann-Weierstrass Theorem) If $\alpha_1, \ldots, \alpha_n$ algebraic numbers that are linearly independent over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are linearly independent over the algebraic numbers. In other words, the extension field $\mathbb{Q}(e^{\alpha_1}, \ldots, e^{\alpha_n})$ has transcendence degree n over \mathbb{Q} .

$\underline{\mathbf{Proof}}$

Gelfond-Schneider Theorem

Theorem (Gelfond-Schneider Theorem) Let α and β be algebraic numbers such that $\alpha \notin \{0,1\}$ and $\beta \in \mathbb{R} \setminus \mathbb{Q}$. Then, α^{β} is transcendental.

Proof

Weak Form of Baker's Theorem

 $\underline{\textbf{Theorem}}$ (Baker's Theorem)

Schanuel's Conjecture

Index

algebraic number, 1 transcendental number, 1