PHYSICS 601

Homework Assignment 2

1. Fermat's Principle: If the velocity of u of light is given by the continuous function u = u(y), the actual light path connecting (x_1, y_1) and (x_2, y_2) in a plane is the one which extremizes the time integral

$$I = \int_{x_1, y_1}^{x_2, y_2} \frac{ds}{u(y)}$$

- (a) Derive Snell's Law from Fermat's Principle: Prove that $\frac{\sin \phi}{u}$ is a constant, where ϕ is the angle between the tangent of the light path and a vertical line at that point.
- (b) Suppose that light travels in the x-y plane in such a way that its speed is proportional to y. Prove that the light rays emitted from any point are circles with their centers on the x-axis.
- 2. The Lagrangian density \tilde{L} which generates a given set of Euler-Lagrange equations is not unique. Prove this result by showing that adding a divergence to \tilde{L} does not alter the Euler-Lagrange equations. Specifically let

$$ilde{L} \; = \; ilde{L} \; \left(x_k \; , \; w_j \; , \; rac{\partial w_j}{\partial x_k} \;
ight) \; ; \; ilde{L}' = \; ilde{L} \; + \; \sum_k rac{\partial \; f_k}{\partial x_k} \; ,$$

where $f_k = f_k(w_j)$, and $j = 1, \dots, m$; $k = 1, \dots, n$. Then show that \tilde{L}' and \tilde{L} lead to the same Euler-Lagrange equations.

3. Show that, if $\psi(x)$ and $\overline{\psi}(x)$ are taken as two independent functions, the Lagrangian density $(\overline{\psi} = \psi^*)$ and $\psi = \partial \psi / \partial t$

$$ilde{L} \; = rac{\hbar^2}{2m}
abla \psi \cdot
abla ar{\psi} + \; V \; \psi ar{\psi} - \; rac{i \; \hbar}{2} (ar{\psi} \dot{\psi} - \; \psi ar{\psi})$$

leads to the time-dependent Schroedinger equation

$$H \psi = \left(-\frac{\hbar^2}{2m} \nabla^2 + V \right) \psi = i \, \hbar \frac{\partial \psi}{\partial t}$$

and the complex conjugate of this equation.