N19 - A0101

TED (15) – 1002 (REVISION — 2015)

Reg. No		
Signature		

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

ENGINEERING MATHEMATICS - I

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. Prove that $\cos^2 A \sin^2 A = 2 \cos^2 A 1$.
 - 2. Write the expression for sin 3A.
 - 3. Prove that in any triangle ABC, $abc = 4R\Delta$.
 - 4. If $y = x \sin x$, Find $\frac{dy}{dx}$
 - 5. Find the velocity and acceleration at time 't' of a particle moving according to $s = 2t^3 3t^2 + 1.$ (5×2 = 10)

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Express $4 \cos x + 3 \sin x$ in the form $R \sin(x + \alpha)$ where α is acute.
 - 2. Prove that $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{8}$.
 - 3. Prove that $(a b)\cos\frac{c}{2} = c \sin\frac{A-B}{2}$.
 - 4. Differentiate sin x by the method of first principles.
 - 5. Find $\frac{dy}{dx}$ if $(x^2 + y^2)^2 = xy$.
 - 6. Find the equation to the tangent and normal to the curve $y = 3x^2 + x 2$ at (1, 2).
 - 7. Prove that $\sin A + \sin(120^\circ + A) + \sin(240^\circ + A) = 0$. (5×6 = 30)

PART — C

Marks

(Maximum marks: 60) (Answer one full question from each unit. Each full question carries 15 marks.) UNIT - I (a) Prove that $\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = 2 \csc \theta$. 5 (b) If θ is acute and $\sin \theta = 0.4$, find the value of $\sec \theta + \tan \theta$. 5 (c) If $A + B = 45^\circ$, show that $(1 + \tan A)(1 + \tan B) = 2$. 5 OR IV (a) Prove that $\frac{1+\cos\theta}{\sin\theta} = \frac{\sin\theta}{1-\cos\theta}$. 5 (b) If $\sin A = \frac{4}{5}$, $\sin B = \frac{12}{13}$; A, B are acute, find $\sin (A + B)$ and $\cos (A - B)$. 5 The horizontal distance between two towers is 60m and the angle of depression of the first tower as seen from the second which is in 150m height is 30°. 5 Find the height of the first tower. Unit — II V (a) Prove that $\frac{\sin 3A}{\sin A} - \frac{\cos 3A}{\cos A} = 2$. 5 (b) Prove that $\tan A + \cot A = 2\csc 2A$. 5 (c) Show that $\frac{\sin 2A}{1+\cos 2A} = \tan A$ and deduce the value of tan 15°. 5 (a) Prove that $\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A$ 5 (b) Prove that $\sin A + \sin 3A + \sin 5A + \sin 7A = 4 \cos A \cos 2A \sin 4A$ 5 (c) Solve \triangle ABC, given a = 4cm, b = 5cm and c = 7cm. 5 UNIT - III (a) Evaluate $\lim_{x\to 4} \frac{x^4 - 256}{x^3 - 64}$. 5 (b) If $x = a (\theta - \sin \theta)$; $y = a(1 - \cos \theta)$, show that $\frac{dy}{dx} = \cot \frac{\theta}{2}$ 5 (c) If y = A cos px + B sin px, (A, B, p are constants), Show that $\frac{d^2y}{dx^2}$ is proportional to y. 5

OR

			IVIAIKS
VIII	(a)	Evaluate (i) $\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$ (ii) $\lim_{x \to -1} \frac{x^3 + 1}{x + 1}$	(3+3=6)
	(b)	Find $\frac{dy}{dx}$ if $y = (x^2 + x + 1)^7 \sin^2 x$.	. 4
	(c)	If $y = Ae^{nx} + Be^{-nx}$ (A, B are constants), Show that $\frac{d^2y}{dx^2} - n^2y = 0$.	5
		Unit — IV	
IX	(a)	A particle is projected vertically upwards and its height 'h' and time 't' are connected by $h = 60t - t^2$. Find the greatest height attained.	e 5
	(b)	A balloon is spherical in shape. Gas is escaping from it at the rate of 10c How fast is the surface area shrinking when the radius is 15cm.	c/sec.
	(c)	The deflection of a beam is $S = 2x^3 - 9x^2 + 12x$. Find the maximum defl	ection. 5
		OR	
X	(a)	Find the velocity and acceleration of a particle at $t = 3$ seconds whose distinction is given by $S = 3t^3 - t^2 + 9t + 1$.	splacement 5
	(b)	A spherical balloon is inflated by pumping 25cc of gas per second. Find to at which the radius of the balloon is increasing when the radius is 15cm.	he rate
	(c)	Find the maximum value of $2x^3 - 3x^2 - 36x + 10$.	5