

LE 4 – IBIS – Datenbanken

Relationenmodell, funktionale Abhängigkeiten und Normalisierung

Prof. Dr. Markus Grüne, FB03, Wirtschaftsinformatik

Lernziel / Fragen

- Was sind Relationen?
- Wie wird ein ER-Modell in ein Relationenmodell übersetzt?
- Was ist ein "gutes" Datenmodell?
- Wiederholungen, wo notwendig

Modellierung mit ER-Diagrammen bzw. EER-Diagrammen.

Relationen

- Eine relationale Datenbank ist eine Sammlung von Relationen, die als Tabellen dargestellt werden.
- Im Sinne der konzeptuellen Modellierung werden Entitäten und (fast alle) Beziehungen in Tabellen (als Relationen) dargestellt.
- Die Spalten (Columns) der Tabelle bezeichnen die Attribute der Relation. Die Zeilen (Rows) heißen auch Datensätze oder Einträge.

	Titel	Nachname	Vorname	Gebdatum	SchulEintritt	Stufe
1	Dr.	Schmidt	Erika	1949-07-01	1974-08-01	StudienDirektorin
2	NULL	Schön	Helmut	1944-01-07	1971-03-01	StudienDirektor
3	NULL	Gliensmann	Jürgen	1964-06-06	1989-05-01	Studienrat
4	NULL	Derwall	Jupp	1954-03-02	1980-06-01	OberStudienrat
-	NULL	Nerz	Ottilie	1958-05-06	1986-05-06	OberStudienrat
6	NULL	Lukas	Laura	1975-01-09	2000-08-17	Studienrätin
7	NULL	Meier	Horst	1955-04-04	1985-07-04	Oberstudienrat
8	NULL	Müller	Gerd	1971-02-02	2000-09-14	Studienrat
9	Dr.	Bauer	Renate	1961-05-01	1987-04-02	Oberstudienrätin
10	NULL	Hummel	Heinz	1965-02-02	1990-01-01	Studienrat

Relation "lehrer" als Tabelle

Commer

Relationen

- Eine Relation besitzt
 - Einen Namen
 - Zeilen (Tupel)
 - Attribute mit Domänen (Wertebereich) und jeweils einem Namen

Wertebereiche

NOT Column Name Datatype Default Value Flags INTEGER ₽Nr 0 UNSIGNED Wertebereiche Titel CHAR(5) NULL BINARY Nachname CHAR(20) können auch Vorname CHAR(20) BINARY ASCII **NULL-Werte** DATE Gebdatum 0000-00-00 🔣 DATE SchulEintritt 0000-00-00 erlauben Stufe CHAR(20) BINARY ASCII

ZEROFILL

UNICODE

UNICODE

UNICODE

UNICODE

Wertebereiche – Transact-SQL Datentypen

Exact Numeric	Approximate Numeric	Character	Date/Time	Binary	Other
tinyint	float	char	date	binary	cursor
smallint	real	varchar	time	varbinary	hierarchyid
int		text	datetime	image	sql_variant
bigint		nchar	datetime2		table
bit		nvarchar	smalldatetime		timestamp
decimal/numeric		ntext	datetimeoffset		uniqueidentifier
numeric					xml
money					geography
smallmoney					geometry

Quelle: Microsoft, 2017

Datentyp-Konvertierung

- Implizite Konvertierung
 - Kompatible Datentypen werden automatisch umgeformt
- Explizite Konvertierung
 - Mittels Funktion
 - CAST / TRY CAST
 - CONVERT / TRY_CONVERT
 - PARSE / TRY_PARSE
 - STR

• ..

Quelle: Microsoft, 2017

Definition "Relation" - formal

 $A_1,...,A_n$ seien Attribute mit den Domänen D_i =dom (A_i) . $R(A_1,...,A_n) \subseteq D_1 \times D_2 \times ... \times D_n$ ist eine Relation vom Grad n. Ein Tupel aus R hat dann die Form $(r_1,...,r_n) \in R$ mit $r_i \in D_i$.

Eine Relation ist demnach eine (unechte) Teilmenge des kartesischen Produkts der Domänen der Attribute.

Beispiel

```
Lehrer ⊆ tinyint × nvarchar(50) × nvarchar(50) × date × date × nvarchar(50)

(1, "Dr.", "Schmidt",..., "Studiendirektorin") ∈ Lehrer ↔

(1, "Dr.", "Schmidt",..., "Studiendirektorin") ∈ tinyint × nvarchar(50) × nvarchar(50)
× nvarchar(50) × date × date × nvarchar(50)
```

Das relationale Modell – Elemente

Element- klasse	Name	Deutscher Begriff
Relationale Objekte	Domain	Wertebereich
	Relation	Tabelle
	Degree	Ausdehnungsgrad der Tabelle
	Attribut	Spalte
	Tupel	Datensatz, Rekord
	Candidate Key	Eindeutiger (möglicher) Schlüssel
	Primary Key	Hauptschlüssel
	Alternate Key	Alternativschlüssel
	Foreign Key	Fremdschlüssel

Element- klasse	Name	Deutscher Begriff
Relationale Integritäts- regeln	Entity-Integrität	
	Referenzielle Integrität	
Relationale Operationen	Restriction	Zeilenselektion / Selektion
	Projection	Spaltenselektion / Projektion
	Product	Kartesisches Produkt
	Union	Vereinigung
	Intersection	Schnittmenge
	Difference	Differenz
	Join	Verbund / Verbindung
	Divsion	Division

In Anlehnung an: Sauer, H. (1998): Relationale Datenbanken – Theorie und Praxis, 4. Aufl., Bonn, Addison-Wesley-Longman, S.29-30.

Schlüssel (Keys) – Schlüsselkandidat / Kandidatenschl.

- Ein Attribut oder eine Kombination von Attributen, die ein Tupel einer Relation eindeutig identifiziert heißt Schlüsselkandidat bzw.
 Kandidatenschlüssel.
- Ein Schlüsselkandidat ist "minimal", d.h. durch Entfernen eines Attributs geht die Schlüsseleigenschaft verloren.
- Ein Schlüsselkandidat erhält die Rolle des Primärschlüssels (s. folgende Folie).

Achtung: Es kann mehrere Schlüsselkandidaten für eine Relation geben!

Schlüssel (Keys) - Primärschlüssel

- Jede Relation besitzt genau einen Primärschlüssel.
- Der Primärschlüssel erlaubt es, ein Tupel der Relation eindeutig zu identifizieren.
- Der Primärschlüssel wird definiert, indem ein Kandidatenschlüssel zum Primärschlüssel erklärt wird oder indem ein neues Attribut speziell für diesen Zweck der Relation hinzugefügt wird.
- Primärschlüssel dürfen keine NULL-Werte enthalten.
- Primärschlüssel können auch aus mehreren Attributen zusammengesetzt sein.

Beispiel für einen Primärschlüssel

Der Primärschlüssel der folgenden Relation ist durch das Schlüsselsymbol markiert. Da es sich um den Schlüssel handelt, darf dieser nicht "NULL" sein.

Einfügeanomalie (Wiederholung)

PersID	Name	Geb.Dat	Wohnort	AbtNr	Abtname	AbtLtr
1	Theo Retisch	12.3.1986	Wetzlar	1	Vertrieb	Schmitt
2	Heinz Ellmann	23.6.1976	Limburg	1	Vertrieb	Schmitt
3	Wendy Lador	11.11.1995	Koblenz	2	Service	Werner
				3	Entwicklung	Wolf
4	Justin Time	23.2.1987	Gießen	1	Vertrieb	Schmidt
5	Kenny Ned	3.9.1977	Marburg	3	Entwicklung	Wolf

Änderungsanomalie

PersID	Name	Geb.Dat	Wohnort	AbtNr	Abtname	AbtLtr
1	Theo Retisch	12.3.1986	Wetzlar	1	Vertrieb	Schmitt
2	Heinz Ellmann	23.6.1976	Limburg	1	Vertrieb	-schmitt Geck
3	Wendy Lador	11.11.1995	Koblenz	2	Service	Werner

Löschanomalie

PersID	Name	Geb.Dat	Wohnort	AbtNr	Abtname	AbtLtr
1	Theo Retisch	12.3.1986	Wetzlar	1	Vertrieb	Schmitt
2	Heinz Ellmann	23.6.1976	Limburg	1	Vertrieb	Schmitt
3	wenay Lador	11.11.1995	Kopienz	Z	Service	werner
					der	bassiert mi Service- teilung?

Anomalien / Defekte

Einfügedefekt (Einfügeanomalie)

- Beim Anlegen einer neuen Abteilung stehen noch keine Mitarbeiter zur Verfügung.
- Was machen Sie, wenn Sie einen Mitarbeiter ohne Abteilung erfassen müssen?
 Änderungsdefekt (Änderungsanomalie)
- Beim Ändern eines Abteilungsleiters müssen viele Mitarbeiter geändert werden!
 Löschdefekt (Löschanomalie)
- Wird ein Mitarbeiter einer Abteilung mit nur diesem einen Mitarbeiter gelöscht, so verschwindet die Abteilung mit!

Abhilfe schafft die Reduzierung der Redundanzen!

Problem 1

Mitarbeiter

PersID	Name	Geb.Dat	Wohnort	Abschlüsse		AbtNr	Abtname	AbtLtr	
1	Theo Retisch	12.3.1986	Wetzlar	Fachinformatiker 2005, BSc 201 MSc 2013	I	1	Vertrieb	Schmitt	
2	Heinz Ellmann	23.6.1976	Limburg	Versicherungskaufmann 1990	h	1	Vertrieb	Schmitt	
3	Wendy Lador	11.11.1995	Koblenz	FISI 2010, BSc 2015		2	Service	Werner	
							Wie viele		
	sollen es								
	Wie sortieren wir denn sein?								
	nach Nachnamen?								

Erste Normalform

Eine Relation ist in der ersten Normalform (1NF), wenn

- sie einen Primärschlüssel besitzt,
- alle Attribute atomar sind und
- sie keine Wiederholgruppen besitzt.

Nutzen:

Abfragen werden erleichtert / ermöglicht

Korrekturen unseres Beispiels:

- Trennung von Name und Vorname
- Auslagern der Abschlüsse (Wiederholgruppe) in eigene Relation

Frankfurt University - version 2

Prof. Dr. Markus Grüne

Problem 1 – Lösung (1.NF)

Mitarbeiter

_	PersID	Nachname	Vorname	Geb.Dat	Wohnort	AbtNr	Abtname	AbtLtr
	1	Retisch	Theo	12.3.1986	Wetzlar	1	Vertrieb	Schmitt
	2	Ellmann	Heinz	23.6.1976	Limburg	1	Vertrieb	Schmitt
	3	Lador	Wendy	11.11.1995	Koblenz	2	Service	Werner

Fremdschlüssel

PersID	Abschluss	Jahr
1	Fachinformatiker	2005
1	BSc	2010
1	MSc	2013
2	Versicherungskaufmann	1990
3	FISI	2010
3	BSc	2015

<u>Abschluss</u>

Frankfurt University - version 2

Problem 2 / Zweite Normalform

<u>Projektmitarbeiter</u>

		ProjNr	ProjName	Stunden
1	Retisch	13	Intranet	33
2	Ellmann	13	Intranet	85
3	Lador	21	Webauftritt	121 Redund

Funktionale Abhängigkeiten:

- ✓ PersID → Name
- ✓ ProjNr → ProjName
- ✓ PersID, ProjNr → Stunden

Eine Relation ist in der zweiten Normalform (2NF), wenn

- sie bereits in der ersten Normalform vorliegt und
- alle Nicht-Schlüssel-Attribute vom Primärschlüssel voll funktional abhängig sind.

Nutzen:

- Jede Relation modelliert nur einen Sachverhalt
- Reduktion von Redundanz und somit Inkonsistenzen

Korrekturen unseres Beispiels:

- Auslagerung des Nachnamens
- Auslagerung des Projektnamens

Problem 2 – Lösung (2.NF)

PersID	Nichnan/e	ProjNr	rojNan e	Stunden
1	Retisch	13	Intrane	33
2	Ellmann	13	Intranet	85
3	Lador	21	Webauftritt	121
	1 110 1		- 1 110	

Fremdschlüssel Mitarbeiter

PersID	Nachname	
1	Retisch	
2	Ellmann	
3	Lador	

ProjNr	ProjName
13	Intranet
21	Webauftritt

Funktionale Abhängigkeiten:

- PersID → Name
- ProjNr → ProjName
- PersID, ProjNr → Stunden

Problem 3

Mitarbeiter

PersID	Nachname	△Q Geb.Dat	Wohnort	AbtNr	Abtname	AbtLtr
1	Retisch	12.3.1986	Wetzlar	1	Vertrieb	Schmitt
2	Ellmann	23.6.1976	Limburg	1	Vertrieb	Schmitt
3	Lador	11.11.1995	Koblenz	2	Service	Werner

Definition 2. NF: alle NSA sind vom Primärschlüssel voll funktional abhängig.

Funktionale Abhängigkeiten:

PersID → Nachname, Geb.Dat, Wohnort, AbtNr, AbtName, AbtLtr

AbtNr → AbtName, AbtLtr

Transitive Abhängigkeiten:

PersID → AbtNr → AbtName

PersID → AbtNr → AbtLtr

Dritte Normalform

Eine Relation ist in der dritten Normalform (3NF), wenn

- sie in der 2. NF ist und
- kein Nicht-Schlüssel-Attribut von einem anderen Nicht-Schlüssel-Attribut funktional abhängig ist (z.B.: transitive Abhängigkeit)

Nutzen:

 Verbliebene thematische Durchmischungen in der Relation behoben: nach der 3NF sind die Relationen des Schemas zuverlässig monothematisch.

Korrekturen unseres Beispiels:

Auslagern der Abteilung in eigene Relation

Problem 3 – Lösung (3. NF)

Mitarbeiter

PersID	Nachname	△ Q Geb.Dat	Wohnort	AbtNr	QAbtname	QAbtLtr
1	Retisch	12.3.1986	Wetzlar	1	Vertrieh	Schmitt
2	Ellmann	23.6.1976	Limburg	1	Vertreb	Schmit
3	Lador	11.11.1995	Koblenz	2	Service	Werner

Fremdschlüssel

Abteilung

AbtNr	Abtname	AbtLtr
1	Vertrieb	Schmitt
2	Service	Werner

Definition – Funktionale Abhängigkeit

 $R(A_1,...,A_n)$ sei eine Relation sowie X und Y Teilmengen der Attributmenge $\{A_1,...,A_n\}$. Falls aus der Gleichheit der Tupel in X stets die Gleichheit der Tupel in Y folgt, so heißen X und Y funktional abhängig $(X \rightarrow Y)$.

Sprechweise: Y ist funktional abhängig von X.

Umgangssprachlich: Man wählt eine Menge von Attributen X und eine Menge von Attributen Y. Wenn ich nun zwei beliebige Tupel aus R auswähle und diese sind in den in X ausgewählten Attributen gleich, dann folgt, dass sie auch in den Attributen aus Y gleich sind!

Anders ausgedrückt: Wenn ich in einem Tupel die Attribute aus X kenne, sind die Attribute aus Y dieses Tupels festgelegt.

Definition – volle funktionale Abhängigkeit

Wenn aus X kein Attribut ohne Verlust dieser Eigenschaft entfernt werden kann, so spricht man von voller funktionaler Abhängigkeit $(X \rightarrow \cdot Y)$.

Falls $(X \rightarrow Y)$ und $(Y \rightarrow Z)$ gilt, so heißen X und Z transitiv abhängig.

Aus $X \rightarrow Y$ folgt nicht $Y \rightarrow X$

Beispiel: funktionale Abhängigkeit

Beispiel

Seien R(att₁,...,att₅) und X=(att₁,att₂) und $Y=(att_3).$

Falls für alle a, a'∈R und Teiltupel $(a_1,a_2,a_3), (a'_1,a'_2,a'_3) \in (att_1, att_2, att_3)$ von a und a' gilt

$$(a_1=a_1')\wedge(a_2=a_2') \Rightarrow (a_3)=(a_3'),$$

so gilt $X \rightarrow Y$.

Schlüssel redefiniert

 $R(A_1,...,A_n)$ sei eine Relation sowie S eine Teilmenge der Attributmenge $R=\{A_1,...,A_n\}$.

Falls S→R gilt, so heißt S ein Superschlüssel.

Offenbar gilt auch R→R (trivialer Superschlüssel).

Eine Menge S von R mit (S→•R) heißt Schlüsselkandidat. Achtung: voll fA!

Umgangssprachlich: Wenn ich bei S nichts mehr wegnehmen kann, ohne dass die volle funktionale Abhängigkeit der ganzen Relation verloren geht, ist S ein Schlüsselkandidat.

Schlüsselkandidaten sind also minimale Superschlüssel.

Weitere Normalformen

Neben den genannten Normalformen, existieren weitere Normalformen, die im betrieblichen Alltag keine oder nur sehr wenig Relevanz haben.

Eine zu starke Normalisierung von Daten führt dazu, dass die entstehenden Relationen bei der Anlage von Reports wieder umständlich durch Verbundoperationen (Joins) zusammengefügt werden müssen.

- Boyce-Codd-Normalform: keine transitiven Abhängigkeiten zwischen Schlüsselattributen
- Vierte Normalform: keine Redundanzen in funktional abhängigen Attributen / Auflösung von mehrwertigen Attributmengen

• ...

Key Takeaways

- Relationen haben Attribute. Attribute haben einen Wertebereich (Domäne).
- Der Wertebereich einer Tabelle / Relation besteht aus dem Kreuzprodukt der Domänen ihrer Attribute.
- Primär-Schlüssel erlauben es, eindeutig Datensätze in einer Tabelle zu identifizieren.
- Ein gutes Design wird durch die Normalformen gewährleistet. Die Normalformen orientieren sich an den so genannten "funktionalen Abhängigkeiten".