Group 1 Modeling

Puja Ammineni & Sam Kalkman

Purpose & Dataset Information

- Purpose: predicting a diagnosis of breast cancer based on medical imaging data.
- Response variable: Diagnosis
 - o Classes: Benign, Malignant
- Sample Size: 569
- Number of categorical predictors: 0
- Number of continuous predictors; 30

Purpose & Dataset Information - cont.

- Predictors can be understood in two ways: feature type and statistic type
- There are 10 feature types relating the nucleus of cells obtained by flattening these cells against a slide.
 - o radius, perimeter, area, compactness, smoothness, concavity, concavity points, symmetry, fractal dimension, and texture.
- There are 3 statistics types for feature type: mean, extreme (large), and standard error.
 - These types are notated as 1, 2 and 3 respectively (ex. radius1 is mean and radius2 is extreme)

Pre Processing Steps

- See if we need to add dummy variables
- Check for missing variables
- Correlated predictor removal
- Box-Cox Transformation
- PC Analysis
- Center and Scale Transformations
- Spatial Sign for Outliers Transformation
- Data Splitting&Resampling

Dummy Variables

With no categorical variables, there is no need to add dummy variables for analysis

Missing Variables

• Our data set does not have any missing variables, imputation is not necessary

Deleting Predictors - Near Zero Variance

 With no categorical predictors, we do not need to check for near zero variance predictors

Deleting Predictors - Correlation

- There are a number of highly correlated variables
- This makes sense: some of the predictors are the different statistics for the same feature type.

Deleting Predictors - Correlation

- We are checking for highly correlated predictors at the 0.85 level
- Predictors concavity1, concave_points1, compactness1, concavepoints3, concavity3, perimeter3, radius3, perimeter1, area3, radius1, perimeter2, area2, and texture1 were all removed (13 in total, bringing our number of predictors down to 17)
- This means that perimeter is not a feature used in our model anymore. All other features are still covered by at least one predictor.

Deleting Predictors - Correlation - Before and After

Before: After:

Box-Cox Transformation

- We have a number of variables that are not roughly symmetric
- A majority of these variables are right skewed
- Box-Cox transformation can help

Box-Cox Transformation

- We have many rightly skewed predictors
- The only roughly symmetric predictors are Smoothness1, Texture3, and Smoothness3 which will not have Box-Cox applied

Predictor	Skewness	Interpretation
Area1	1.6370654	Highly Right-Skewed
Smoothness1	0.4539207	Approximately Symmetric
Symmetry1	0.7217877	Moderately Right-Skewed
Fractal_Dimension1	1.2976191	Highly Right-Skewed
Radius2	3.0723468	Highly Right-Skewed
Texture2	1.6377733	Highly Right-Skewed
Smoothness2	2.3022616	Highly Right-Skewed
Compactness2	1.8922032	Highly Right-Skewed
Concavity2	5.0835502	Highly Right-Skewed
Concave_Points2	1.4370701	Highly Right-Skewed
Symmetry2	2.1835728	Highly Right-Skewed
Fractal_Dimension2	3.9033041	Highly Right-Skewed
Texture3	0.495697	Approximately Symmetric
Smoothness3	0.4132383	Approximately Symmetric
Compactness3	1.4657948	Highly Right-Skewed
Symmetry3	1.4263764	Highly Right-Skewed
Fractal_Dimension3	1.6538237	Highly Right-Skewed

Box-Cox Transformation - Before and After Histograms

Box-Cox Transformation - Before and After Skewness Tables

Before: After:

Predictor	Skewness	Interpretation	Predictor	Skewness	Interpretation
Area1	1.6370654	Highly Right-Skewed	Area1	0.011372	Approximately Symmetric
Smoothness1	0.4539207	Approximately Symmetric	Smoothness1	0.4539207	Approximately Symmetric
Symmetry1	0.7217877	Moderately Right-Skewed	Symmetry1	0.0017377	Approximately Symmetric
Fractal_Dimension1	1.2976191	Highly Right-Skewed	Fractal_Dimension1	0.1506466	Approximately Symmetric
Radius2	3.0723468	Highly Right-Skewed	Radius2	0.0271761	Approximately Symmetric
Texture2	1.6377733	Highly Right-Skewed	Texture2	0.0290368	Approximately Symmetric
Smoothness2	2.3022616	Highly Right-Skewed	Smoothness2	-0.024012	Approximately Symmetric
Compactness2	1.8922032	Highly Right-Skewed	Compactness2	-0.0040198	Approximately Symmetric
Concavity2	5.0835502	Highly Right-Skewed	Concavity2	0.265713	Approximately Symmetric
Concave_Points2	1.4370701	Highly Right-Skewed	Concave_Points2	0.0960942	Approximately Symmetric
Symmetry2	2.1835728	Highly Right-Skewed	Symmetry2	0.0549106	Approximately Symmetric
Fractal_Dimension2	3.9033041	Highly Right-Skewed	Fractal_Dimension2	0.0121915	Approximately Symmetric
Texture3	0.495697	Approximately Symmetric	Texture3	0.495697	Approximately Symmetric
Smoothness3	0.4132383	Approximately Symmetric	Smoothness3	0.4132383	Approximately Symmetric
Compactness3	1.4657948	Highly Right-Skewed	Compactness3	-0.2206758	Approximately Symmetric
Symmetry3	1.4263764	Highly Right-Skewed	Symmetry3	-0.056549	Approximately Symmetric
Fractal_Dimension3	1.6538237	Highly Right-Skewed	`Fractal_Dimension3	0.0470535	Approximately Symmetric

Center and Scale Transformations

- It use useful to apply center and scale transformations before PCA so that predictors with a greater magnitude have similar influence on principal components to those with a smaller magnitude.
- Spatial Sign Transformation requires Center and Scale, each transformation was applied before our Spatial Sign Transformation.
- Each remaining predictor was centered and scaled

Spatial SIgn for Outliers Transformation

 All of our predictors still have outliers, we will run spatial sign transformation on all predictors

Spatial SIgn for Outliers Transformation - Before and After

Data splitting/Resampling

- We will split the data 80-20 stratified random sample since we have a smaller dataset and our distribution of the response variable is not uniform.
- We also may do 10-fold with 5 repeats cross validation for cross validation

Distribution of Diagnosis

Dataset After Preprocessing

- Number of Predictors: 30 for data with correlated predictors, 17 predictors for data that removed highly correlated predictors
- Sample Size: 569 total; 456 in the training set and 113 in the testing set

Modeling

- We have a dataset with highly correlated predictors and one with those predictors removed. All pre-processing steps are applied to both.
- We will be building classification models:
- Logistic, LDA, PLSDA, Penalized Model, QDA, RDA, MDA, Neural Network, FDA, SVM, KNN, Naive Bayes
- Our classification statistic of choice is ROC-AUC because we have an unbalanced binary outcome variable.
- Logistic Regression, LDA, QDA, RDA, MDA, FDA, and KNN models used our uncorrelated data
- PLSDA, Penalized Model, Neural Network, SVMDA, and Naive Bayes models used the correlated data

Logistic

```
Seneralized Linear Model

456 samples
17 predictor
2 classes: 'B', 'M'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 411, 410, 411, 410, 410, 410, ...
Resampling results:

ROC Sens Spec
0.9812982 0.970665 0.9482353
```

LDA

Linear Discriminant Analysis

456 samples

17 predictor

2 classes: 'B', 'M'

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 410, 410, 411, 410, 411, 410, ...

Resampling results:

ROC Sens Spec 0.988738 0.9915517 0.8882353

PLSDA

ncomp ROC Sens Spec 13 0.9941220 0.9965271 0.8952941 ROC was used to select the optimal model using the largest value. The final value used for the model was ncomp = 13.

Penalized Model

```
alpha lambda ROC Sens Spec
0.1 0.03111111 0.9940597 0.9950739 0.9270588

ROC was used to select the optimal model using the largest value.
The final values used for the model were alpha = 0.1 and lambda = 0.03111111.
```


QDA

Quadratic Discriminant Analysis

456 samples

17 predictor

2 classes: 'B', 'M'

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 410, 410, 410, 410, 411, 410, ...

Resampling results:

ROC Sens Spec 0.9846769 0.954064 0.9317647

RDA

gamma lambda ROC Sens Spec 0.1111111 0.8888889 0.9918111 0.9964778 0.8682353

ROC was used to select the optimal model using the largest value.

The final values used for the model were gamma = 0.1111111 and lambda = 0.8888889.

MDA

subclasses ROC Sens Spec

1 0.9888293 0.9908867 0.8764706

ROC was used to select the optimal model using the largest value.

The final value used for the model was subclasses = 1.

Neural Network

size decay ROC Sens Spec

3 1.0 0.9943524 0.9951232 0.9517647

ROC was used to select the optimal model using the largest value.

The final values used for the model were size = 3 and decay = 1.

FDA

degree nprune ROC Sens Spec

1 13 0.9889728 0.9818473 0.9047059

ROC was used to select the optimal model using the largest value.

The final values used for the model were degree = 1 and nprune = 13.

SVMDA

C	ROC	Sens	Spec
4.0000	0.9959418	0.980443	3 0.9552941

Tuning parameter 'sigma' was held constant at a value of 0.007675455 ROC was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.007675455 and C = 4.

KNN

k ROC Sens Spec 16 0.9863315 0.9839409 0.8447059

ROC was used to select the optimal model using the largest value.

Naive Bayes

ROC Sens Spec 0.9845538 0.9441872 0.9223529

Tuning parameter 'fL' was held constant at a value of 2

Tuning parameter 'usekernel'

was held constant at a value of TRUE

Tuning parameter 'adjust' was held constant at
a value of TRUE

Model Summary Table - Linear

Model	Best Tuning Parameters	ROC-AUC
Logistic Regression	-	0.9812
LDA	-	0.9887
PLSDA	Ncomp = 13	0.9933
Penalized Models	Alpha = 0.1, lambda = 0.031	0.9941

Model Summary Table - Non-Linear

Model	Tuning Parameters	ROC-AUC	
QDA	-	0.9847	
RDA	Gamma = 0.11, Lambda = 0.88	0.9918	
MDA	Subclasses = 1	0.9888	
Neural Network	Size = 3, Decay = 1	0.9943	
FDA	Degree = 1, nprune = 13	0.9889	
SVMDA	Sigma = 0.007675, C = 4	0.9959	
KNN	k = 16	0.9863	
Naive Bayes	fL = 2, useKernel = TRUE, Adjust =TRUE	0.9846	

Best Models

 Although it was close, our two best models are the Neural Network with an ROC of 0.9943 and an SVM model with a ROC of 0.9959

ROC-AUC: 1 (yes 1) for SVM

ROC-AUC: 0.9997 for NN

Confusion Matrix for SVM

	Reference			
		Benign	Malignant	
Prediction	Benign	70	0	
	Malignant	1	42	

Most Important Predictors

Questions?