CRITÉRIOS DE IRREDUTIBILIDADE

Buscamos por critérios para decidir quando um polinômio em $\mathbb{Q}[x]$ é irredutível. Nosso ponto de partida é:

Teorema 1.1 (Lema de Gauss). Um polinômio em $\mathbb{Z}[x]$ de grau ≥ 1 é irredutível em $\mathbb{Z}[x]$ se e somente se é primitivo e é irredutível em $\mathbb{Q}[x]$.

Para aplicações é mais útil a versão seguinte, que você deve mostrar como um exercício.

Corolário 1.2. Seja $f \in \mathbb{Z}[x]$ de grau ≥ 1 . Se não é possível decompor f como um produto de polinômios ambos de grau ≥ 1 em $\mathbb{Z}[x]$, então f é irredutível em $\mathbb{Q}[x]$.

Existem maneiras indiretas para produzir polinômios irredutíveis sobre os inteiros. Estudaremos aqui duas delas: redução módulo um primo p e o critério de Eisenstein.

REDUÇÃO MÓDULO p

Seja p um primo fixado. Dado um polinômio $f = \alpha_r x^r + \dots + \alpha_1 x + \alpha_0 \in \mathbb{Z}[x]$, seja $\overline{f} := \overline{\alpha}_r x^r + \dots + \overline{\alpha}_1 x + \overline{\alpha}_0 \in \mathbb{Z}_p[x]$ o polinômio cujos coeficientes são dados pelas classes residuais dos coeficientes de f. Temos então uma função $\phi \colon \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ dada por $\phi(f) = \overline{f}$ que satisfaz as seguintes propriedades:

- $\varphi(1) = \overline{1}$
- $\varphi(f+g) = \overline{f+g} = \overline{f} + \overline{g} = \varphi(f+g)$
- $\varphi(f \cdot g) = \overline{f \cdot g} = \overline{f} \cdot \overline{g} = \varphi(f \cdot g)$

(verifique como exercício). Em outras palavras, φ é um homomorfismo de anéis.

Suponha que f = gh em $\mathbb{Z}[x]$. Então $\overline{f} = \overline{gh}$ em $\mathbb{Z}_p[x]$, o que sugere o seguinte critério:

"Se f é irredutível em
$$\mathbb{Z}_p[x]$$
, então f é irredutível em $\mathbb{Z}[x]$."

Isso seria útil, pois é mais simples testar se polinômios são irredutíveis módulo $\mathfrak{p}\colon \mathbb{Z}_{\mathfrak{p}}$ é um corpo, e é finito. Parece uma boa idéia. Glup.

Exemplo 1.3. Seja $f = 3x^2 + x$. Então f = x(3x + 1) é redutível em $\mathbb{Z}[x]$; porém, para p = 3, temos $\overline{f} = x \cdot \overline{1}$, que é irredutível em $\mathbb{Z}_3[x]$.

No exemplo, o problema é que um dos fatores se tornou *invertível* em $\mathbb{Z}_p[x]$. A boa notícia é que esse método funciona desde que a redução módulo p não diminua o grau do polinômio.

Proposição 1.4. Seja $f \in \mathbb{Z}[x]$ um polinômio de grau $n \geq 1$. Seja p um número primo tal que \overline{f} também tenha grau n em $\mathbb{Z}_p[x]$. Se \overline{f} é irredutível em $\mathbb{Z}_p[x]$, então f não se escreve como produto de polinômios de grau ≥ 1 em $\mathbb{Z}[x]$. Em particular, f é irredutível em $\mathbb{Q}[x]$.

Demonstração. Assuma, por contradição, que f=gh com $g,h\in\mathbb{Z}[x]$ ambos não constantes. Escreva

$$f = a_n x^n + \cdots + a_0,$$
 $g = b_r x^r + \cdots + b_0,$ $h = c_s x^s + \cdots + c_0$

com $a_n \neq 0$, $b_r \neq 0$, $c_s \neq 0$, $r \geq 1$, $s \geq 1$ e r+s=n. Por hipótese, $\overline{a}_n \neq \overline{0}$ em \mathbb{Z}_p ; como $\overline{a}_n = \overline{b}_r \cdot \overline{c}_s$ e \mathbb{Z}_p é um domínio, temos que $\overline{b}_r \neq \overline{0}$ e $\overline{c}_s \neq \overline{0}$ e logo tanto \overline{g} como \overline{h} tem grau ≥ 1 . Como $\overline{f} = \overline{g} \cdot \overline{h}$, temos uma contradição com a hipótese da irredutibilidade de \overline{f} . \square

Para aplicar este critério, devemos encontrar um primo para o qual seja fácil decidir a irredutibilidade. Na prática isso é raro, mas não impossível.

Exemplo 1.5.

- (1) Seja $f = x^2 1892 \in \mathbb{Z}[x]$. Para p = 2, temos $\overline{f} = x^2$ que é redutível em $\mathbb{Z}_2[x]$ e logo o critério da Proposição 1.4 não nos fornece nenhuma informação; por outro lado, para p = 3, temos $\overline{f} = x^2 \overline{2}$ que é irredutível em $\mathbb{Z}_3[x]$ pois este é um polinômio de grau 2 que não possui raízes em \mathbb{Z}_3 , como você pode facilmente verificar. Assim, f não se escreve como produto de polinômios não constantes em $\mathbb{Z}[x]$ e, sendo f primitivo, concluímos que f é irredutível em $\mathbb{Z}[x]$.
- (2) Considere $f = 8x^3 + 50x^2 + 512x + 1529$. A Proposição 1.4 não se aplica diretamente para p = 2. Para p = 3, temos $\bar{f} = \bar{2}x^3 + \bar{2}x^2 + \bar{2}x + \bar{2}$ que possui uma raiz em \mathbb{Z}_3 . Logo \bar{f} é redutível em $\mathbb{Z}_3[x]$ e nada podemos concluir a partir da Proposição 1.4. Para p = 5, temos $\bar{f} = \bar{3}x^3 + \bar{2}x \bar{1}$. Este é um polinômio de grau 3 que não possui raízes em \mathbb{Z}_5 (verifique!) e logo é irredutível em $\mathbb{Z}_5[x]$. Sendo primitivo

possui raízes em \mathbb{Z}_5 (verifique!) e logo é irredutível em $\mathbb{Z}_5[x]$. Sendo primitivo, segue da Proposição 1.4 que f é irredutível em $\mathbb{Z}[x]$ (e logo em $\mathbb{Q}[x]$, pelo Lema de Gauss).

- (3) Há casos extremos em que o critério *nunca* funciona! Exemplos não são lá fáceis de se encontrar. Eis um deles: tome $f = x^4 10x^2 + 1$. Então:
 - (a) f é irredutível em $\mathbb{Z}[x]$.
 - (b) \bar{f} é redutível em $\mathbb{Z}_p[x]$ para todo primo p.

Para provar o item (a), observe que f não possui raízes em \mathbb{Q} e em seguida mostre que não é possível fatorar f como produto de dois polinômios de grau 2. Já o item (b) requer outras idéias...

O CRITÉRIO DE EISENSTEIN

Teorema 1.6 (Eisenstein). Seja $f = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ um polinômio de grau $n \geq 1$. Se $p \notin um$ número primo tal que

- $p \nmid a_n$;
- p | $a_i \ para \ i = 0, 1, ..., n-1;$
- $p^2 \nmid a_0$

Então f não se escreve como produto de polinômios de grau ≥ 1 em $\mathbb{Z}[x]$. Em particular, f é irredutível em $\mathbb{Q}[x]$.

Demonstração. Suponha $f = gh \operatorname{com} g, h \in \mathbb{Z}[x]$, digamos

$$f = a_n x^n + \dots + a_0, \qquad g = b_r x^r + \dots + b_0, \qquad h = c_s x^s + \dots + c_0$$

com b_r , c_s ambos não nulos. Como o primo p divide $a_0 = b_0 \cdot c_0$, temos que p divide b_0 ou p divide c_0 mas não ambos, pois supomos $p^2 \nmid a_0$. Trocando g e h caso necessário, podemos assumir

$$(*) \hspace{3.1em} p \mid b_0 \quad \mathrm{e} \quad p \nmid c_0.$$

Agora:

- p divide $a_1 = b_0c_1 + b_1c_0$ e logo de (*) segue-se que p | b_1 .
- p divide $a_2 = b_0c_2 + b_1c_1 + b_2c_0$ e como p | b_1 , segue de (*) que p | b_2 .
- Assim prosseguindo, concluímos que $p \mid b_i$ para cada i = 0, 1, ..., n 1.

Por hipótese $\mathfrak p$ não divide $\mathfrak a_n=\mathfrak b_r c_s$ e em particular $\mathfrak p\nmid \mathfrak b_r$; logo a única possibilidade que nos resta é r=n. Como n=r+s, vem que s=0, ou seja, $\mathfrak h$ é constante, como queríamos mostrar.

O critério de Eisenstein é uma máquina para produzir polinômios irredutíveis.

Exemplo 1.7.

- (1) Tome $f = x^4 + 5x^3 + 10x^2 + 15x + 20$. Pelo Teorema 1.6 (aplicado com o primo p = 5), f não é produto de polinômios não constantes em $\mathbb{Z}[x]$. Mais uma vez, como f é primitivo, f é irredutível em $\mathbb{Z}[x]$.
- (2) Seja $f = 6x^9 + 14x^2 + 28x + 14$. Não podemos aplicar o critério para $\mathfrak{p} = 2$; mas para $\mathfrak{p} = 7$ concluímos que f é irredutível em $\mathbb{Q}[x]$. Note que f é redutível em $\mathbb{Z}[x]$ (2 é um fator).
- (3) No critério de Eisenstein, os papéis do termo líder e do termo constante podem ser trocados. De maneira mais geral, fica para você como exercício: $um \ polinômio \ a_n x^n + \cdots + a_1 x + a_0$ é irredutível se e somente se $a_0 x^n + \cdots + a_{n-1} x + a_n$ é irredutível.
- (4) O polinômio $x^3 + 3x + 9$ é irredutível em $\mathbb{Z}[x]$ (tome a sua redução módulo 2) mas o critério de Eisenstein não se aplica aqui.

Apresentamos agora uma aplicação do critério de Eisenstein. Apesar de muito particular, é um resultado importante no estudo dos polinômios ciclotômicos e raízes da unidade.

Proposição 1.8. Seja p um número primo. Então o polinômio

$$f = x^{p-1} + x^{p-2} + \cdots + x + 1$$

 \acute{e} irredutível em $\mathbb{Q}[\mathbf{x}]$.

Demonstração. Para começar, defina g(x) = f(x+1) e repare que f é irredutível se e somente se g é irredutível: basta observar que a partir de qualquer fatoração $f = f_1f_2$ obtemos uma fatoração $g = f_1(x+1)f_2(x+1)$ e vice-versa, uma vez que f(x) = g(x-1).

Agora, como $f(x) = (x^p - 1)/(x - 1)$, segue-se da fórmula do binômio de Newton que

$$g(x) = \frac{(x+1)^p - 1}{x} = x^{p-1} + {p \choose 1}x^{p-2} + {p \choose 2}x^{p-3} + \dots + {p \choose p-2}x + {p \choose p-1}$$

e aqui nos espera uma surpresa: como p é um número primo, vale que p divide $\binom{p}{i}$ para cada $i=1,\ldots,p-1$ (este é um bom exercício!). Segue do critério de Eisenstein que g é irredutível em $\mathbb{Z}[x]$, o que termina a demonstração.

Vimos em uma das listas de exercícios que se $\mathfrak n$ é composto, então $\mathfrak f=\mathfrak x^{\mathfrak n-1}+\cdots+\mathfrak x+1$ é redutível em $\mathbb Q[\mathfrak x]$.

Exemplo 1.9. A irredutibilidade de um polinômio depende do ambiente onde ele é considerado. Acabamos de ver que $f = x^4 + x^3 + x^2 + x + 1$ é irredutível em $\mathbb{Q}[x]$; vimos em sala que f se fatora em $\mathbb{R}[x]$:

$$f = (x^2 - 2\alpha x + 1)(x^2 - 2(\alpha^2 - b^2)x + 1)$$

onde $a = \cos(2\pi/5)$ e $b = \sin(2\pi/5)$.