We can now expand on our earlier search problem model:

We will begin our discussion of heuristic searches by discussing best-first search. This is uninformed, but will lead us naturally into heuristics.

Uniform-Cost Search (UCS)

- uninformed generalization of BFS to weighted graphs
- expands based on contours of uniform cost and shape
- we goal check on expansion and not generation or our solution may be suboptimal
- ullet we expand according to the function $g(n) := \cos t$ of actions from initial state to node n

Properties:

- 1. complete? YES
- 2. optimal? YES
- 3. time? $O(b^{ceil(C*/E)})$
- 4. space? $O(b^{ceil(C*/E)})$

where E = minimal action cost & $C^* = optimal$ solution cost

Unfortunately, this algorithm tends to wander a bit; we want a smarter algorithm!

Greedy Search

- a modified UFS based on an estimate of the distance to the goal state h(n)
- h is an <u>admissible</u> function $\equiv h(G) = 0$
- h is a <u>consistent</u> function $\equiv h(n) \leq$ actual cost This is stricter than the admissible requirement, but is hard to avoid in practice.

Properties:

- 1. complete? NO (for example: A —1— B —2— C)
- 2. optimal? NO
- 3. time? $O(b^m)$
- 4. space? $O(b^m)$

Let's compare our two algorithms:

UCS: g(n): actual cost to get to n from initial state

- optimal
- \bullet conservative
- slow

Greedy: h(n) estimate of cost to get to final state from n

- non-optimal
- aggressive
- fast

Neither of these has all the properties we want; can we get the best properties of both? It turns out YES: we just have to add them directly!

f(n) = g(n) + h(n) estimates the total cost & is admissible (provided h(n) is admissible) This leads us to a very important algorithm:

A^* Search

- UCS based on f(n) = g(n) + h(n)
- forms contours which slim approaching goal
- prunes nodes outside contours
- $\bullet\,$ we can prove that this algorithm is optimal:

Let's discuss the choice of heuristic: can we find a good heuristic for every problem?

h(n) = 0 works for every problem, but this makes the algorithm UCS!

Therefore, we want the maximum <u>admissible</u> heuristic for a given problem.

We will now consider a concrete example: 8 PUZZLE

We have two heuristics we would like to consider:

 $h_1(n) = \#$ pieces out of place

 $h_2(n) = \text{Manhattan Distance} \equiv \text{horizontal} + \text{vertical distance}$

 $h_2(n) \le h_1(n)$ for all n, so we say h_2 dominates h_1

Clearly h_2 is the better choice, but how much better can it really be?

We use two properties to evaluate search A* search algorithms

- 1. effective branching factor $(b^*) := avg$ branches per node
- 2. node count $(N) = 1 + (b^*)^0 + (b^*)^2 + \ldots + (b^*)^d$

d	IDS	$A^*(h_1)$	$A^*(h_2)$
4	$N = 112; b^* = 2.35$	$N = 13; b^* = 1.48$	$N = 12; b^* = 1.45$
6	$N = 680; b^* = 2.87$	$N = 20; b^* = 1.34$	$N = 18; b^* = 1.30$
8	$N = 6384; b^* = 2.73$	$N = 39; b^* = 1.33$	$N = 25; b^* 1.24$
10	$N=47{,}127$	N = 93	N = 39
12	N = 3.644.035	N=227	N = 73

Clearly, A^* is much more efficient, and h2 is much more efficient than h1; how do we formally evaluate this?

time cost = $O(b^{\Delta})$, for absolute error $\Delta = h(n) - h^*$

 \implies hypothetical min $O(h^{\epsilon})$, for fractional error $\epsilon = (h*-h)/h^*$ is the