Instruction Manual for the Ray de novo genome assembler software

Sébastien Boisvert February 23, 2011

Sébastien Boisvert, François Laviolette & Jacques Corbeil.

Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies.

Journal of Computational Biology (Mary Ann Liebert, Inc. publishers, New York, U.S.A.).

November 2010, Volume 17, Issue 11, Pages 1519-1533.

doi:10.1089/cmb.2009.0238

http://dx.doi.org/doi:10.1089/cmb.2009.0238

Contents

1	Installation			
	1.1	Compilation flags		
	1.2	Compilation with the configure script		
	1.3	Compilation with the makefile.alternate		
2	Inp	uts		
3	Parameters			
	3.1	k-mer length with -k		
	3.2	Output prefix with -o		
	3.3	Single-end reads with -s		
	3.4	Paired-end reads and mate-pair reads with -p		
	3.5	Paired-end reads and mate-pair reads with -i (interleaved se-		
		quences)		
4	Output			
	4.1	Contiguous sequences		
	4.2	Paired-end and mate-pair libraries		
	4.3	Coverage distribution		
	4.4	Messages		
5	Exa	ample :		
	5.1	Bacterial genome with paired-end and mate-pair short reads		

1 Installation

1.1 Compilation flags

For processors requiring addresses aligned on 8 bytes, you must add the following compilation flag.

-DALIGN_ADDRESSES

1.2 Compilation with the configure script

```
./configure --prefix=/software/ray-x.y.z
make
sudo make install
ls -l /software/ray-x.y.z/bin/Ray
```

1.3 Compilation with the makefile.alternate

make -f makefile.alternate
ls -l code/Ray

2 Inputs

The input files for Ray contain sequences. The files must be formatted in one of the supported formats.

Table 1: File formats compatible with the Ray de novo genome assembler soft-

ware			
Format	Obligatory extension		
Fasta format	.fasta		
Fasta format, compressed with GNU zip (gzip)	.fasta.gz		
Fasta format, compressed with bzip2	.fasta.bz2		
Fastq format	.fastq		
Fastq format, compressed with GNU zip (gzip)	.fastq $.$ gz		
Fastq format, compressed with bzip2	.fastq $.$ bz 2		
Standard flowgram format	.sff		

3 Parameters

3.1 k-mer length with -k

Ray builds a distributed catalog of all occurring k-mers in the reads and their reverse-complement. k must be greater or equal to 15 and lower or equal to 32.

3.2 Output prefix with -o

Output files are named according to the prefix provided by the option -o.

3.3 Single-end reads with -s

-s <sequencesFile>

3.4 Paired-end reads and mate-pair reads with -p

-p <leftSequencesFile> <rightSequencesFile> [<averageFragmentLength> <standardDeviation>]

Example for paired-end reads (the ends of DNA fragments):

```
-p s_200_1.fastq s_200_2.fastq
```

Example for mate-pair reads (owing to circularization and ligation, the order must be reverse):

```
-p s_20000_2.fastq s_20000_1.fastq
```

3.5 Paired-end reads and mate-pair reads with -i (inter-leaved sequences)

-i <sequencesFile [<averageFragmentLength> <standardDeviation>]

In the interleaved file (example is for a fasta file):

```
>200_1_1234/1
ATCGATCGATCGACTCAGACACGTACG
>200_1_1234/2
ACTGACGACGTACGACGTCATGCAACT
```

For mate-pair reads, the order must be reverse.

4 Output

4.1 Contiguous sequences

OutputPrefix.fasta contains contiguous sequences.

4.2 Paired-end and mate-pair libraries

OutputPrefix.LibraryLibraryNumber.txt contains the distribution of distances for paired-end and mate-pair libraries. One file per library.

4.3 Coverage distribution

OuputPrefix.CoverageDistribution.txt contains the k-mer coverage distribution.

4.4 Messages

OuputPrefix.ReceivedMessages.txt contains a matrix. It contains the number of received messages for each MPI rank. (MPI communication matrix; rows=destinations, columns=sources)

5 Example

5.1 Bacterial genome with paired-end and mate-pair short reads

The command:

```
mpirun -np 32 ~/Ray/trunk/code/Ray \
-p /home/boiseb01/nuccore/Large-Ecoli/200_1.fastq \
    /home/boiseb01/nuccore/Large-Ecoli/200_2.fastq \
-p /home/boiseb01/nuccore/Large-Ecoli/1000_1.fastq \
    /home/boiseb01/nuccore/Large-Ecoli/1000_2.fastq \
-p /home/boiseb01/nuccore/Large-Ecoli/4000_1.fastq \
    /home/boiseb01/nuccore/Large-Ecoli/4000_2.fastq \
-p /home/boiseb01/nuccore/Large-Ecoli/10000_1.fastq \
    /home/boiseb01/nuccore/Large-Ecoli/10000_1.fastq \
    /bome/boiseb01/nuccore/Large-Ecoli/10000_2.fastq \
-o BacterialGenome | tee RayLog
```