Feature selection

LING 572

Fei Xia

Week 4: 1/26/2010

Creating attribute-value table

	f ₁	f_2	 f _K	у
X_1				
X_2				

- Choose features:
 - Define feature templates
 - Instantiate the feature templates
 - Dimensionality reduction: feature selection
- Feature weighting
 - The weight for f_k: the whole column
 - The weight for f_k in d_i: a cell

An example: text classification task

- Define feature templates:
 - One template only: word
- Instantiate the feature templates
 - All the words appeared in the training (and test) data
- Dimensionality reduction: feature selection
 - Remove stop words
- Feature weighting
 - Feature value: term frequency (tf), or tf-idf

Outline

- Dimensionality reduction
- Some scoring functions **
- Chi-square score and Chi-square test
- Hw4

In this lecture, we will use "term" and "feature" interchangeably.

Dimensionality reduction (DR)

Dimensionality reduction (DR)

What is DR?

- Given a feature set r, create a new set r', s.t.
 - r' is much smaller than r, and
 - the classification performance does not suffer too much.

Why DR?

- ML algorithms do not scale well.
- DR can reduce overfitting.

Types of DR

 r is the original feature set, r' is the one after DR.

- Local DR vs. Global DR
 - Global DR: r' is the same for every category
 - Local DR: a different r' for each category
- Term extraction vs. term selection

Term selection vs. extraction

- Term selection: r' is a subset of r
 - Wrapping methods: score terms by training and evaluating classifiers.
 - → expensive and classifier-dependent
 - Filtering methods
- Term extraction: terms in r' are obtained by combinations or transformation of r terms.
 - Term clustering:
 - Latent semantic indexing (LSI)

Term selection by filtering

- Main idea: scoring terms according to predetermined numerical functions that measure the "importance" of the terms.
- It is fast and classifier-independent.
- Scoring functions:
 - Information Gain
 - Mutual information
 - chi square
 - **—** ...

Quick summary so far

- DR: to reduce the number of features
 - Local DR vs. global DR
 - Term extraction vs. term selection
- Term extraction
 - Term clustering:
 - Latent semantic indexing (LSI)
- Term selection
 - Wrapping method
 - Filtering method: different functions

Some scoring functions

Basic distributions (treating features as binary)

Probability distributions on the event space of documents:

```
P(t_k): The % of docs where t_k occurs P(\bar{t_k}), P(c_i), P(\bar{c_i})
```

$$P(t_k, c_i)$$
, $P(t_k, \bar{c_i})$, $P(\bar{t_k}, c_i)$, $P(\bar{t_k}, \bar{c_i})$. $P(t_k|c_i)$, $P(t_k|\bar{c_i})$, $P(\bar{t_k}|c_i)$, $P(\bar{t_k}|\bar{c_i})$.

Calculating basic distributions

	$\bar{c_i}$	c_i
$oxed{ar{t_k}}$	а	b
t_k	С	d

$$P(t_k, c_i) = d/N$$

 $P(t_k) = (c + d)/N, P(c_i) = (b + d)/N$
 $P(t_k|c_i) = d/(b + d)$
where $N = a + b + c + d$

Term selection functions

 Intuition: for a category c_i, the most valuable terms are those that are distributed most <u>differently</u> in the sets of possible and negative examples of c_i.

Term selection functions

Document frequency: the num of docs in which t_k occurs

Pointwise mutual information:

$$MI(t_k, c_i) = log \frac{P(t_k, c_i)}{P(c_i)P(t_k)}$$

Information gain:
$$IG(t_k, c_i) = P(t_k, c_i) \log \frac{P(t_k, c_i)}{P(c_i)P(t_k)} + P(\bar{t_k}, c_i) \log \frac{P(\bar{t_k}, c_i)}{P(c_i)P(\bar{t_k})}$$

Information gain

 IG(Y|X): We must transmit Y. How many bits on average would it save us if both ends of the line knew X?

Definition:

$$IG(Y, X) = H(Y) - H(Y|X)$$

Information gain**

$$\sum_{i} IG(t_{k}, c_{i})$$

$$= \sum_{c \in C} \sum_{t \in \{t_{k}, \bar{t}_{k}\}} P(t, c) \log \frac{P(t, c)}{P(c)P(t)}$$

$$= \sum_{c \in C} \sum_{t} P(t, c) \log P(c|t)$$

$$- \sum_{c} \sum_{t} P(t, c) \log P(c)$$

$$= -H(C|T) - \sum_{c} ((\log P(c)) \sum_{t} P(t, c))$$

$$= -H(C|T) + H(C) = IG(C|T)$$

More term selection functions**

GSS coefficient:

$$GSS(t_k, c_i) = P(t_k, c_i)P(\bar{t_k}, \bar{c_i}) - P(t_k, \bar{c_i})P(\bar{t_k}, c_i)$$

NGL coefficient: N is the total number of docs $NGL(t_k,c_i) = \frac{\sqrt{N} \ GSS(t_k,c_i)}{\sqrt{P(t_k)P(\bar{t_k})P(c_i)P(\bar{c_i})}}$

Chi-square: (one of the definitions)

$$\chi^2(t_k, c_i) = NGL(t_k, c_i)^2 = \frac{(ad - bc)^2 N}{(a+b)(a+c)(b+d)(c+d)}$$

More term selection functions**

Relevancy score:

$$RS(t_k, c_i) = log \frac{P(t_k|c_i) + d}{P(\bar{t_k}|\bar{c_i}) + d}$$

Odds Ratio:

$$OR(t_k, c_i) = \frac{P(t_k|c_i)P(\bar{t_k}|\bar{c_i})}{P(\bar{t_k}|c_i)P(t_k|\bar{c_i})}$$

Global DR

For local DR, calculate f(t_k, c_i).

For global DR, calculate one of the following:

Sum:
$$f_{sum}(t_k) = \sum_{i=1}^{|C|} f(t_k, c_i)$$

Average:
$$f_{avg}(t_k) = \sum_{i=1}^{|C|} f(t_k, c_i) P(c_i)$$

Max:
$$f_{max}(t_k) = \max_{i=1}^{|C|} f(t_k, c_i)$$

|C| is the number of classes

Which function works the best?

- It depends on
 - Classifiers
 - Data

— ...

According to (Yang and Pedersen 1997):

$$\{OR, NGL, GSS\} > \{\chi^2_{max}, IG_{sum}\}$$

> $\{\#_{avg}\} >> \{MI\}$

Feature weighting

Alternative feature values

- Binary features: 0 or 1.
- Term frequency (TF): the number of times that t_k appears in d_i.
- Inversed document frequency (IDF): log |D| /d_k, where d_k is the number of documents that contain t_k.
- TFIDF = TF * IDF
- Normalized TFIDF: $w_{ik} = \frac{tfidf(d_i,t_k)}{Z}$

Feature weights

Feature weight ∈ {0,1}: same as DR

- Feature weight ∈ R: iterative approach:
 - Ex: MaxEnt

→ Feature selection is a special case of feature weighting.

Summary so far

Curse of dimensionality → dimensionality reduction (DR)

DR:

- Term extraction
- Term selection
 - Wrapping method
 - Filtering method: different functions

Summary (cont)

Functions:

- Document frequency
- Mutual information
- Information gain
- Gain ratio
- Chi square

— . . .

Chi square

Chi square

- An example: is gender a good feature for predicting footwear preference?
 - A: gender
 - B: footwear preference
- Bivariate tabular analysis:
 - Is there a relationship between two random variables A and B in the data?
 - How strong is the relationship?
 - What is the direction of the relationship?

Raw frequencies

	sandal	sneaker	Leather shoe	boots	others
male	6	17	13	9	5
female	13	5	7	16	9

Feature: male/female

Classes: {sandal, sneaker,}

Two distributions

Observed distribution (O):

	Sandal	Sneaker	Leather	Boot	Others
Male	6	17	13	9	5
Female	13	5	7	16	9

Expected distribution (E):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male						50
Female						50
Total	19	22	20	25	14	100

Two distributions

Observed distribution (O):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male	6	17	13	9	5	50
Female	13	5	7	16	9	50
Total	19	22	20	25	14	100

Expected distribution (E):

	Sandal	Sneaker	Leather	Boot	Others	Total
Male	9.5	11	10	12.5	7	50
Female	9.5	11	10	12.5	7	50
Total	19	22	20	25	14	100

Chi square

Expected value =
 row total * column total / table total

•
$$\chi^2 = \sum_{ij} (O_{ij} - E_{ij})^2 / E_{ij}$$

•
$$\chi^2 = (6-9.5)^2/9.5 + (17-11)^2/11 + \dots$$

= 14.026

Calculating χ^2

Fill out a contingency table of the observed values → O

Compute the row totals and column totals

 Calculate expected value for each cell assuming no association → E

Compute chi square: (O-E)²/E

When r=2 and c=2

	$ar{c_i}$	$\mid c_i \mid$	total
$ar{t_k}$	а	b	a+b
t_k	С	d	c+d
total	a+c	b+d	N

	$ar{c_i}$	c_i	total
$ar{t_k}$	$\frac{(a+c)(a+b)}{N}$	$\frac{(b+d)(a+b)}{N}$	a+b
t_k	$\frac{(a+c)(c+d)}{N}$	$\frac{(b+d)(c+d)}{N}$	c+d
total	a+c	b+d	N

$$\chi^{2} = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^{2}}{E_{i,j}} = \frac{(ad - bc)^{2}N}{(a+b)(a+c)(b+d)(c+d)}_{34}$$

χ^2 test

Basic idea

 Null hypothesis (the tested hypothesis): no relation exists between two random variables.

• Calculate the probability of having the observation with that χ^2 value, assuming the hypothesis is true.

 If the probability is too small, reject the hypothesis.

Requirements

 The events are assumed to be independent and have the same distribution.

The outcomes of each event must be mutually exclusive.

- At least 5 observations per cell.
- Collect raw frequencies, not percentages

Degree of freedom

Degree of freedom df = (r – 1) (c – 1)
 r: # of rows c: # of columns

• In this Ex: df=(2-1)(5-1)=4

χ^2 distribution table

	0.10	0.05	0.025	0.01	0.001
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458

df=4 and 14.026 > 13.277

- **→**p<0.01
- → there is a significant relation

χ^2 to P Calculator

http://faculty.vassar.edu/lowry/tabs.html#csq

Steps of χ^2 test

- Select significance level p₀
- Calculate χ²
- Compute the degree of freedom
 df = (r-1)(c-1)
- Calculate p given χ^2 value (or get the χ^2_0 for p_0)
- if $p < p_0$ (or if $\chi^2 > \chi^2_0$) then reject the null hypothesis.

Summary of χ^2 test

A very common method for significant test

- Many good tutorials online
 - Ex: http://en.wikipedia.org/wiki/Chi-square_distribution

Hw4

Hw4

Q1-Q3: kNN

Q4: chi-square for feature selection

Q5-Q6: The effect of feature selection on kNN

Q7: Conclusion

Q1-Q3: kNN

The choice of k

- The choice of similarity function:
 - Euclidean distance: choose the smallest ones
 - Cosine function: choose the largest ones

Binary vs. real-valued features

Q4-Q6

- Rank features by chi-square scores
- Remove non-relevant features from the vector files

- Run kNN using the newly processed data
- Compare the results with or without feature selection.