La condizione

$$v(\neg P) = 1 - v(P)$$

significa che:

- se v(P) = 0, cioè v assegna a P il valore di verità falso, allora $v(\neg P) = 1 v(P) = 1 0 = 1$, cioè v assegna a $\neg P$ il valore v
- se v(P) = 1, cioè v assegna a P il valore di verità vero, allora $v(\neg P) = 1 v(P) = 1 1 = 0$, cioè v assegna a $\neg P$ il valore falso.

Si tratta della descrizione della tavola di verità della negazione:

$$\begin{array}{c|c} P & \neg P \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

La condizione

$$v(P \wedge Q) = \min(v(P), v(Q))$$

significa che:

- se almeno uno tra v(P) e v(Q) è 0, cioè v assegna ad almeno una tra P e Q il valore di verità falso, allora $v(P \land Q) = \min(v(P), v(Q)) = 0$, cioè v assegna a $P \land Q$ il valore di verità falso;
- se v(P) = v(Q) = 1, cioè v assegna sia a P sia a Q il valore di verità vero, allora $v(P \land Q) = \min(v(P), v(Q)) = \min(1, 1) = 1$, cioè v assegna a $P \land Q$ il valore di verità vero.

Si tratta della descrizione della tavola di verità della congiunzione:

Р	Q	$P \wedge Q$
0	0	0
1	0	0
0	1	0
1	1	1

Interpretazioni e valutazioni

Un'interpretazione è una funzione

$$i: L \rightarrow \{0,1\}$$

Una valutazione di verità è una funzione

$$v: Prop(L) \rightarrow \{0,1\}$$

Quindi la restrizione di *v* alle formule atomiche definisce un'interpretazione:

$$v_{|_L}:L\to\{0,1\}$$

Interpretazioni e valutazioni

Viceversa, l'interpretazione i si può estendere **in modo unico** a una valutazione $i^*: Prop(L) \to \{0,1\}$ per induzione sull'altezza delle formule, ponendo

$$i^*(\neg P) = 1 - i^*(P)$$

 $i^*(P \lor Q) = \max(i^*(P), i^*(Q))$
 $i^*(P \land Q) = \min(i^*(P), i^*(Q))$
 $i^*(P \to Q) = \max(1 - i^*(P), i^*(Q))$
 $i^*(P \leftrightarrow Q) = 1 - |i^*(P) - i^*(Q)|$

Osservazione. Data l'interpretazione $i:L\to\{0,1\}$ e una formula P, il valore $i^*(P)$ non dipende dai valori che i assume su tutto L, ma solo dai valori che i assume sulle lettere proposizionali che occorrono in P. In altre parole: se $i,j:L\to\{0,1\}$ sono due interpretazioni tali che i(A)=j(A) per ogni lettera proposizionale A che occorre in P, allora $i^*(P)=j^*(P)$.

Sia $L=\{A,B,C,D,E\}$, e sia $i:L \rightarrow \{0,1\}$ un'interpretazione. Sia

$$P: A \wedge \neg B \rightarrow \neg D$$

Il valore che i assume su C e su E non ha alcuna influenza sul valore di $i^*(P)$: se $j:L\to\{0,1\}$ è tale che

$$j(A) = i(A), \quad j(B) = i(B), \quad j(D) = i(D)$$

allora
$$j^*(P) = i^*(P)$$

Sia
$$i(A) = 1, i(B) = 0$$
, sia

$$P:(A\wedge\neg B)\vee\neg A$$

e si voglia calcolare $i^*(P)$. L'albero sintattico di P è

Il calcolo di $i^*(P)$ utilizza il valore di i^* sulle sottoformule principali di P; iterativamente ci si riconduce ai valori di i sulle lettere che occorrono in P, cioè sulle etichette delle foglie dell'albero sintattico di P.

$$\begin{array}{lcl} i^*((A \wedge \neg B) \vee \neg A) & = & \max(i^*(A \wedge \neg B), i^*(\neg A)) = \\ & = & \max(\min(i^*(A), i^*(\neg B)), 1 - i^*(A)) = \\ & = & \max(\min(i(A), 1 - i^*(B)), 1 - i(A)) = \\ & = & \max(\min(i(A), 1 - i(B)), 1 - i(A)) = \\ & = & \max(\min(1, 1 - 0), 1 - 1) = \\ & = & 1 \end{array}$$

I valori ottenuti durante il calcolo sono i seguenti:

Calcolare $i^*(P)$ corrisponde dunque a calcolare una riga della tavola di verità di P: la riga che contiene i valori che i assume sulle lettere che occorrono in P.

Tavole di verità e valutazioni

Quindi, per calcolare la tavola di verità di una formula *P*:

- Si costruisce l'albero sintattico di P, ciò che permette anche di verificare che P è una proposizione ben formata.
- ② Si considera il minimo linguaggio L tale che $P \in Prop(L)$: L è l'insieme delle lettere che occorrono in P.
- **3** Si considerano tutte le interpretazioni $i: L \to \{0,1\}$, cioè tutte le combinazioni di valori di verità degli elementi di L. Tali interpretazioni sono in numero di $2^{\sharp(L)}$; ogni interpretazione costituisce una riga della tavola di verità.
- Si estende ognuna di tali interpretazioni a una valutazione di verità i^* sulle sottoformule di P, seguendo la struttura dell'albero sintattico, fino a ottenere il valore $i^*(P)$.

•
$$P: (A \land \neg B) \lor \neg A$$

•
$$L = \{A, B\}$$

0

$$\begin{array}{c|c}
(A \land \neg B) \lor \neg A \\
\hline
A \land \neg B & A \\
\hline
B & B
\end{array}$$

•

Α	В	$\neg B$	$A \wedge \neg B$	$\neg A$	Ρ
0	0	1 0 1	0	1	1
0	1	0	0	1	1
1	0	1	1	0	1
1	1	0	0	0	0

Definizioni

Sia $P \in Prop(L)$.

• Se $i^*(P) = 1$, si dice che P è *vera* nell'interpretazione i, o che i soddisfa P, o che i è un modello di P. Si denota

$$i \models P$$

- Se esiste almeno un'interpretazione i tale che i ⊨ P (cioè se esiste almeno una riga della tavola di verità in cui il valore di verità di P è 1), si dice che P è soddisfacibile, o consistente.
- Se non esiste alcuna interpretazione i tale che i ⊨ P (cioè se in tutte le righe della tavola di verità il valore di verità di P è 0), si dice che P è insoddisfacibile, o inconsistente, o una contraddizione.
- Se per ogni interpretazione i si ha che $i \models P$ (cioè se in tutte le righe della tavola di verità il valore di verità di P è 1), si dice che P è valida, o una tautologia. Si denota

Definizioni

Le definizioni precedenti si estendono a *insiemi* di formule: Sia $\Gamma \subseteq Prop(L)$.

• Se $i \models P$ per ogni $P \in \Gamma$, si dice che i è un modello di Γ , o che i soddisfa Γ . Si denota

$$i \models \Gamma$$

- Se esiste almeno un'interpretazione i tale che $i \models \Gamma$, si dice che Γ è soddisfacibile, o consistente.
- Se non esiste alcuna interpretazione i tale che $i \models \Gamma$, si dice che Γ è insoddisfacibile, o inconsistente.
- Se per ogni interpretazione i si ha che $i \models \Gamma$, si dice che Γ è *valido*. Si denota

Osservazioni

```
Sia \Gamma \subseteq Prop(L).
```

• Γ è valido se e solo se ogni $P \in \Gamma$ è una tautologia. Infatti:

```
\models Γ sse per ogni interpretazione i si ha i \models Γ sse per ogni interpretazione i e ogni P \in Γ si ha i \models P sse per ogni P \in Γ si ha \models P
```

- Se Γ è soddisfacibile, allora ogni $P \in \Gamma$ è soddisfacibile. Infatti, se i è tale che $i \models \Gamma$, per ogni $P \in \Gamma$ si ha $i \models P$.
- Il viceversa non è vero: se ogni P ∈ Γ è soddisfacibile, non è detto che Γ sia soddisfacibile.

```
Controesempio: \Gamma = \{A, \neg A\}
```

Osservazioni

• Se $\Gamma = \{P_1, \dots, P_n\}$ è un insieme *finito*, allora per ogni interpretazione *i* si ha che:

$$i \models \Gamma$$
 sse $i \models P_1 \land P_2 \land \ldots \land P_n$

Infatti:

$$i \models \Gamma$$
 sse $i \models P_1 \in i \models P_2 \in ... \in i \models P_n$
sse $i \models P_1 \land ... \land P_n$

Quindi Γ è soddisfacibile/insoddisfacibile/valido se e solo se la congiunzione $P_1 \wedge \ldots \wedge P_n$ è soddisfacibile/insoddisfacibile/valida.

Conseguenza logica

Siano

$$\Gamma \subseteq Prop(L), \qquad Q \in Prop(L)$$

Si dice che Γ ha come conseguenza logica Q (o che Q è conseguenza logica di Γ) se

per ogni interpretazione i tale che $i \models \Gamma$ si ha anche che $i \models Q$. Si denota allora

$$\Gamma \models Q$$

• Se $\Gamma = \{P_1, \dots, P_n\}$ è un insieme *finito*, anziché scrivere $\Gamma \models Q$, cioè $\{P_1, \dots, P_n\} \models Q$, si scrive talvolta

$$P_1,\ldots,P_n\models Q$$

Osservazione.

$$P_1, \ldots, P_n \models Q$$
 se e solo se $\models P_1 \wedge \ldots \wedge P_n \rightarrow Q$

- \bullet P è una tautologia se e solo se $\neg P$ è insoddisfacibile
- ② P è soddisfacibile se e solo se $\neg P$ non è una tautologia
- **3** $\Gamma \models Q$ se e solo se $\Gamma \cup \{\neg Q\}$ è insoddisfacibile

Dim.

1.

```
P è una tautologia sse per ogni interpretazione i si ha i \models P sse per ogni interpretazione i si ha i^*(P) = 1 sse per ogni interpretazione i si ha i^*(\neg P) = 0 sse \neg P è insoddisfacibile
```

2.

```
P è soddisfacibile sse per qualche interpretazione i si ha i \models P sse per qualche interpretazione i si ha i^*(P) = 1 sse per qualche interpretazione i si ha i^*(\neg P) = 0 sse \neg P non è una tautologia
```

3. Si assuma $\Gamma \models Q$, al fine di dimostrare che $\Gamma \cup \{\neg Q\}$ è insoddisfacibile.

Si deve dunque provare che non esiste alcuna interpretazione i tale che $i \models \Gamma \cup \{\neg Q\}$, cioè tale che $i \models P$ per ogni $P \in \Gamma \cup \{\neg Q\}$. Infatti, se $i \models P$ per ogni $P \in \Gamma$, dall'ipotesi segue che $i \models Q$; in particolare, $i \not\models \neg Q$.

Viceversa, si assuma che $\Gamma \cup \{\neg Q\}$ è insoddisfacibile, al fine di dimostrare che $\Gamma \models Q$.

Sia allora i una qualunque interpretazione tale che $i \models \Gamma$, al fine di dimostrare che $i \models Q$.

Poiché $i \models \neg Q$ contraddirebbe l'ipotesi, segue $i \models Q$.

Nel caso in cui $\Gamma = \{P_1, P_2, \dots, P_n\}$ sia un insieme *finito*, la proprietà 3 ammette una dimostrazione più elementare:

```
\begin{array}{ll} \Gamma \models Q & \text{sse} & \models P_1 \wedge \ldots \wedge P_n \to Q \\ & \text{sse} & \neg (P_1 \wedge \ldots \wedge P_n \to Q) \text{ è insoddisfacibile} \\ & \text{sse} & P_1 \wedge \ldots \wedge P_n \wedge \neg Q \text{ è insoddisfacibile} \\ & \text{sse} & \Gamma \cup \{\neg Q\} \text{ è insoddisfacibile} \end{array}
```

Equivalenza logica

Le formule $P,Q \in Prop(L)$ sono logicamente equivalenti se per ogni interpretazione i si ha

$$i \models P$$
 se e solo se $i \models Q$

In tal caso, si denota

$$P \equiv Q$$

Sono condizioni equivalenti:

- P ≡ Q
- $\bullet \models P \leftrightarrow Q$
- $P \models Q \in Q \models P$
- $i^*(P) = i^*(Q)$ per ogni interpretazione i

Osservazione. È possibile verificare relazioni quali

$$P_1, P_2, \dots, P_n \models P$$
 oppure $P \equiv Q$

utilizzando le tavole di verità.

Non è possibile invece utilizzare le tavole di verità per verificare se

$$\Gamma \models P$$

quando Γ è un insieme infinito.

Per verificare se

$$A \lor (B \to C) \models A \land B$$

si può costruire la tavola di verità

Α	В	С	$B \rightarrow C$	$A \lor (B \to C)$	$A \wedge B$
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	1	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	0	1	1
1	1	1	1	1	1

Si osserva che per esempio l'interpretazione i tale che i(A)=i(B)=i(C)=0, corrispondente alla prima riga, è tale che $i^*(A\vee(B\to C))=1$, ma $i^*(A\wedge B)=0$. Pertanto

$$A \lor (B \to C) \not\models A \land B$$

