A 打怪兽(monsters)

1. 算法一

我会暴力!

暴力模拟 m 次攻击, 期望得分 4。

2. 算法二

我会 q = 0!

考虑如何求出单个 $F_{m,k}(x)$ 。二分答案 mid,考虑如何判断 $F_{m,k}(x)$ 是否 $\leq mid$ 。有性质:对于第 $x+1\sim n$ 小的 a_i ,若其值 > m+mid+1,那么它一定被减了 m次。若其值 $\leq m+mid+1$,那么它一定至少被减到 mid+1。

同时我们还要保证对于第 $1 \sim x$ 小的 a_i , 其值 $\leq mid$ 。

若设b为a从小到大排序后的数组,那么我们可以计算出最小需要的减1的次数是:

$$\sum_{i=1}^{x} \max(b_i - mid, 0) + \sum_{i=x+1}^{n} \min(b_i - mid - 1, m)$$

判断这个值是否 $\leq m \times k$ 即可。

朴素计算这个式子,时间复杂度 $O(n^2 \log m)$,期望得分 14。

若使用二分 + 前缀和计算, 时间复杂度 $O(n \log n \log m)$, 期望得分 46。

3. 算法三

我会 $t_i \neq 3$!

将所有值离散化,树状数组维护对于每个值 x, a 中 $\leq x$ 的数的数量与和。这样单次求 $F_{m,k}(x)$ 时间复杂度为 $O(\log(n+q)\log m)$,并且可以支持单点修改。总时间复杂度 $O(n\log n\log m + q\log(n+q)\log m)$,结合算法二期望得分 70。

4. 算法四

我会正解!

考虑解决 $t_i = 3$ 。 考虑将 $\sum_{i=l}^r F_{m,k}(i)$ 拆成后缀和 $\sum_{i=l}^n F_{m,k}(i) - \sum_{i=r+1}^n F_{m,k}(i)$ 。

考虑如何计算 $\sum_{i=x}^{n} F_{m,k}(i)$ 。 先求出 $y = F_{m,k}(x)$,然后考虑计算第 $x \sim n$ 小的 a_i 被减1 的次数。

设 b 为 a 从小到大排序后的数组。设 $t = \sum_{i=1}^{x-1} \max(b_i - y, 0)$,那么 $b_{1 \sim x-1}$ 被减了 t 次。

设 $s = \sum_{i=x}^n \min(b_i - y, m)$,那么 $b_{x \sim n}$ 至多被減 s 次。 所以答案就是 $\min(m \times k - t, s)$ 。 总时间复杂度 $O(n \log n \log m + q \log(n + q) \log m)$,期望得分 100 分。