

GSM QuecFOTA Application Note

GSM/GPRS Module Series

Rev. GSM_QuecFOTA_Application_Note_V3.2

Date: 2015-11-18

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236 Mail: info@quectel.com

Or our local office, for more information, please visit:

http://www.quectel.com/support/salesupport.aspx

For technical support, to report documentation errors, please visit:

http://www.quectel.com/support/techsupport.aspx

Or Email: Support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THIS INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THIS CONTENTS ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2015. All rights reserved.

About the Document

History

Revision	Date	Author	Description
3.0	2012-11-29	Bob DENG	Initial
3.1	2015-05-08	Bob DENG	Added applicable modules
3.2	2015-11-18	Ablaze LU	Added the function that download the APP bin file and download the bin file to the specified address.

Contents

Ab	bout the Document	
Со	ontents	3
Fig	gure Index	4
Ta	able Index	5
1	Introduction	6
2	Overview of QuecFOTA	7
_	2.1. QuecFOTA Release	
	2.2. Package Downloading	
	2.3. QuecFOTA Upgrade	
3	QuecFOTA Upgrade Process	11
	3.1. QuecFOTA Sync	11
	3.2. QuecFOTA Packet	12
	3.3. Failure and Error Code	14
4	Appendix A Reference	
5	Appendix B Definition of QuecFOTA	
	5.1. Format of Packet	17
	5.2. Command List	
	5.3. Description of Command Field	
	5.3.1. CMD_DL_BEGIN	
	5.3.2. CMD_DL_BEGIN_RSP	
	5.3.3. CMD_DL_SET_ADDR	
	5.3.4. CMD_DL_SET_ADDR_RSP	
	5.3.5. CMD_DL_DATA	
	5.3.6. CMD_DL_DATA_RSP	
	5.3.7. CMD_DL_END	
	5.3.8. CMD_DL_END_RSP	
	5.3.9. CMD_RUN_GSMSW	
	5.3.10. CMD_RUN_GSMSW_RSP	
	5.4. Definition List	25
6	Appendix C CRC-16 Algorithms	26
	6.1. CRC-16-CCITT Coding Table	
	6.2. Calculate the CRC Value	
	6.3. Example	27
7		
	7.1. The Format of Packet Tool	
	7.2. QuecFOTA Package Tool	29

Figure Index

FIGURE 1: QUECFOTA OVERVIEW	7
FIGURE 2: PACKAGE DOWNLOAD PROCEDURE	8
FIGURE 3: QUECFOTA UPGRADE DATA ROAD MAP	8
FIGURE 4: QUECFOTA UPGRADE FLOW CHART	9
FIGURE 5: QUECFOTA SYNC FRAMEWORK	11
FIGURE 6: QUECFOTA SYNC SEQUENCE	12
FIGURE 7: QUECFOTA UPGRADE SEQUENCE	13
FIGURE 8: QUECFOTA UPGRADE ERROR HANDLE FLOW CHART	15
FIGURE 9: QUECFOTA PACKAGE FORMAT	28
FIGURE 10: OUECEOTA PACKAGE TOOL	20

Table Index

TABLE 1 : TERMS AND ABBREVIATIONS	16
TABLE 2: THE FORMAT OF PACKET	17
TABLE 3: COMMAND LIST	17
TABLE 4: STATUS VALUE	25

1 Introduction

QuecFOTA provides a solution to update module's firmware by MCU via UART with Quectel protocol. This document describes the procedure of updating.

This document is applicable to Quectel M10, M80, M85, M95, M72, M66 and GC10 modules.

2 Overview of QuecFOTA

The QuecFOTA update procedure can be shown as the following Figure 1.

Figure 1: QuecFOTA Overview

2.1. QuecFOTA Release

When you need to update the module's firmware, please send the requirements and software version to Quectel via your provider. Quectel will provide you with the new firmware.

If you want to check the completeness and correctness of the new firmware before upgrade, you may need to package the new firmware by some algorithms. Also Quectel provides you with md5 checksum file and QuceFOTA package tool. About QuceFOTA package tool, you can refer to *Appendix D*.

2.2. Package Downloading

The typical downloading procedure is shown as below:

Figure 2: Package Download Procedure

- Connection will be established by MCU between Quectel's module and server.
- The packed file will be downloaded from server via TCP/UDP, HTTP or FTP.
- The firmware will be stored in external memory of MCU.
- MCU check the completeness and correctness of the package file with checksum and version in the package file.

2.3. QuecFOTA Upgrade

In this step, MCU will transfer the new firmware from the external memory to the flash of module. Figure 3 is the data roadmap of the QuecFOTA Upgrade. Please refer to chapter 3 for the detailed QuecFOTA Upgrade process.

Figure 3: QuecFOTA Upgrade Data Road Map

The following figure is the overview of QuecFOTA Upgrade.

Figure 4: QuecFOTA Upgrade Flow Chart

NOTE

When the upgrade is aborted, the MCU needs to perform note1. The abnormal status refers to chapter 3.3.

The update process shall follow these sequences:

- MCU sets upgrade flag
- MCU sends Sync Word.
- Power on the module and keep the PWRKEY in a low during the upgrading process.
- Module is in updating process after receiving the Sync Word sent by MCU.
- Data exchange ends once the firmware downloading has been completed.
- Module Run with new firmware.
- MCU checks the module software version.
- If the software version is right, MCU clear the upgrade flag.
- Normal power on module.

3 QuecFOTA Upgrade Process

The update process includes two steps: QuecFOTA Sync and QuecFOTA Packet. To update the firmware, MCU must synchronize with module and let the module enter command mode. This step is named as QuecFOTA Sync. Then MCU packets the new firmware and sends the packet to the module. This step is named as QuecFOTA Packet.

3.1. QuecFOTA Sync

As Figure 5 shows, the new firmware is stored in the flash of MCU. MCU updates the module's firmware based on the download protocol via the module's UART.

The UART parameters should be configured as bellow:

Baud rate: 115200

Data bit: 8Stop bit: 1

Parity bite: NoneFlow control: Disabled

Figure 5: QuecFOTA Sync Framework

The following figure is QuecFOTA Sync sequence. Firstly, MCU will continuously send SYNC_WORD1 to the module via UART at interval of 20ms. And then powers on the module. With these SYNC_WORD signals, the MCU and module will get synchronized. MCU should discard the unexpected data (such as 0xB6 etc.) sent by module. When the module returns SYNC_WORD_RSP1, MCU sends SYNC_WORD2 and the module responds with SYNC_WORD_RSP2. The baud rate of the interface should be set as 115200. After that, the module will enter into "Command Mode". If the module cannot receive the "synchronous sequence" or finish synchronous negotiation, the module will run the firmware that has been stored in the module.

Figure 6: QuecFOTA Sync Sequence

3.2. QuecFOTA Packet

After the module enters into the "Command mode", MCU will packet the new firmware and download the new firmware into the module. QuecFOTA Packet is generated by MCU and the data frame should follow the package type and format. The Annex A is QuecFOTA packet's detailed definition.

In the "Command mode", the MCU can send packets to upgrade the firmware. If MCU does not send any commands, the module will be in the "Command mode" all the time. The Figure 9 is QuecFOTA Upgrade Sequence.

Figure 7: QuecFOTA Upgrade Sequence

Firstly, MCU sends CMD_DL_BEGIN to module and then module returns the CMD_DL_BEGIN_RSP.

Secondly, MCU sends CMD_DL_SET_ADDR to module to specify the download address and then module returns the CMD_DL_SET_ADDR_RSP.

Thirdly, MCU packs the firmware data (including sequence number and data block) into a data packet,

and then sends the data packet to the module. The sequence number starts from 0. After the module receives the data packet and writes it to flash successfully, it will return CMD_DL_DATA_RSP (Status=0). Then MCU can send the next data packet.

If the module returns CMD_DL_DATA_RSP (Status=1 or Status=4), which indicates the module fails to write the data to flash, MCU must resend the data packet.

If the module returns CMD_DL_DATA_RSP (Status=2), which means some error happens to flash, the MCU must power on the module and re-upgrade the firmware.

MCU must read and send the data block of the application software in turn. The length of the other data block must be aligned in even-type, except the last data block.

After MCU sends all firmware data packet, it needs to send CMD_DL_END to module, which means the firmware downloading is finished. The module will return CMD_DL_END_RSP and exit from download mode.

After MCU finished the downloading process, it needs to inform the module to run the new firmware by sending CMD_RUN_GSMSW to module. Then module will return CMD_RUN_GSMSW_RSP and run the firmware.

NOTE

If MCU fails to receive the response message from module in 3 seconds after sending a command package, the MCU should resend that command package. If MCU does not receive the right response message from the module after sending the same command package for 3 times, the MCU must power off the module and restart the upgrade procedure.

3.3. Failure and Error Code

Possible reasons for firmware updating failure in the QuecFOTA Upgrade Process are as below:

- Power supply is interrupted
- PWRKEY is released during the upgrading process

In these cases, the firmware update process is interrupted and the module's firmware is invalid. Meanwhile, the module cannot work normally. MCU must restart to upgrade the new firmware and go to the note1 in the Figure 6 QuecFOTA Upgrade Flow Chart.

- Data packet transfer error
- Flash data writing error

If the data or flash error occurred during the upgrading process, MCU must perform error handling process according to the status values. The following figure is the detailed QuecFOTA Upgrade Error Handle Flow Chart.

Please refer to chapter 5.4 for the status value.

Figure 8: QuecFOTA Upgrade Error Handle Flow Chart

4 Appendix A Reference

Table 1: Terms and Abbreviations

Abbreviation	Description
FOTA	Firmware Over-the-Air
FW	Firmware
Ext.	External

5 Appendix B Definition of QuecFOTA

5.1. Format of Packet

Table 2: The Format of Packet

Head	Туре	Length	Data	CRC16	
1 byte (0xAA)	2 byte	2 byte	N byte	2 byte	

The value of "length" means the length of the data field, which does not include the length of CRC16 whose length is two bytes. The checksum range consists of "Type" field, "Data Length" field and "Data" field.

NOTE

CRC16 Polynomial: CRC-16-CCITT x16 + x12 + x5 + 1.

5.2. Command List

Table 3: Command List

Туре	Cmdid	Description	Direction
CMD_DL_BEGIN	0x0001	Begin to download	MCU to Module
CMD_DL_BEGIN_RSP	0x0002	Response to beginning downloading	Module to MCU
CMD_DL_SET_ADDR	0x0012	Set the download address	MCU to Module
CMD_DL_SET_ADDR_RSP	0x0013	Response to set the download address	Module to MCU
CMD_DL_DATA	0x0003	Download data	MCU to Module
CMD_DL_DATA_RSP	0x0004	Response to data downloading	Module to MCU
CMD_DL_END	0x0005	End Downloading	MCU to Module

CMD_DL_END _RSP	0x0006	Response to data downloading ends	Module to MCU
CMD_RUN _GSMSW	0x0007	Require to run application software	MCU to Module
CMD_RUN_GSMSW_RSP	0x0008	Response to running application software	Module to MCU

5.3. Description of Command Field

5.3.1. CMD_DL_BEGIN

The length of the data field is defined by the data length field. The content of the data field is defined as below:

Content	Bytes	Description
Application software version data	4	Reserve

Example:

Application software version is 1, and the data packet of the command CMD_DL_BEGIN is shown as below:

0xAA 0x00 0x01 0x00 0x04 x00 0x00 0x00 0x01 0xXX 0xXX

Content	Description
0xAA	Packet head
0x00 0x01	CMD_DL_BEGIN command ID
0x00 0x04	Data length
0x00 0x00 0x00 0x01	Application software version data. Recommend using the default value
0xXX 0xXX	CRC16 value

5.3.2. CMD_DL_BEGIN_RSP

The length of the data field is defined by the data length field. The content of the data field is defined as below:

Content	Bytes	Description	
Status	2	Refer to the definition list	
MTU	2	The maximum length of command package that module can receive	

NOTES

- 1. Status means whether the module receives the download request.
- 2. MTU means the maximum length of command package that the module received at a time (the length value consists packer head field, command ID field, length field, data field and CRC field).

Example:

The following is the data package of CMD_DL_BEGIN_RSP. Its status is 0 and MTU is 8224byptes (8K+32).

Content	Description
0xAA	Packet head
0x00 0x02	CMD_DL_BEGIN_RSP command ID
0x00 0x04	Data length
0x00 0x00	Status value, please refer "5.4 Definition list"
0x20 0x20	MTU is 8224 in decimal
0xXX 0xXX	CRC16 value

5.3.3. CMD_DL_SET_ADDR

The length of the data field is defined by the data length field. The content of the data field is defined as below:

Content	Bytes	Description
Set the download address	4	0x10000000: Download core bin file 0x20000000: Download app bin file 0x00xxxxxxx: Download the bin file to the specified address

Example:

The following is the data package of the command CMD_DL_SET_ADDR which means downloading the core bin file.

0xAA 0x00 0x12 0x00 0x04 x10 0x00 0x00 0x00 0xXX 0xXX

Content	Description
0xAA	Packet head
0x00 0x12	CMD_DL_SET_ADDR command ID
0x00 0x04	Data length
0x00 0x00 0x00 0x00	0x10000000: Download core bin file 0x20000000: Download app bin file 0x00xxxxxxx: Download the bin file to the specified address
0xXX 0xXX	CRC16 value

5.3.4. CMD_DL_SET_ADDR_RSP

The length of the data field is defined by the data length field. The content of the data field is defined as below:

Content	Bytes	Description
Status	2	Refer to the definition list

Example:

The following is the data package of CMD_DL_SET_ADDR_RSP. Its status is 0. 0xAA 0x00 0x13 0x00 0x02 0x00 0x00 0xXX 0xXX

Content	Description
0xAA	Packet head
0x00 0x13	CMD_DL_SET_ADDR_RSP command ID
0x00 0x02	Data length
0x00 0x00	Status value, please refer to chapter 5.4
0xXX 0xXX	CRC16 value

5.3.5. CMD_DL_DATA

The length of the data field is defined by the data length field. The content of the data field is defined as below:

Content	Bytes	Description
Sequence Number	4	The sequence number of Module's data package and begins from 0.
Module Data	N-4 bytes	Module data; N is the data length of the command packet.

Example:

The following is the data package of the command CMD_DL_DATA which means Sequence number is 244 and the length of module data is 1024bytes.

0xAA 0x00 0x03 0x04 0x04 0x00 0x00 0x00 0xF4 0xXX 0xXX 0xXX... (1024 bytes) 0xXX 0xXX

Content	Description	
0xAA	packet head	
0x00 0x03	CMD_DL_DATA command ID	
0x04 0x04	Data length 1028 bytes. Note lengths include "Sequence number"4 bytes.	
0x00 0x00 0x00 0xF4	Sequence number 244	
0xXX 0xXX 0xXX(1024 bytes)	1024 bytes data	
0xXX 0xXX	CRC16 value	

NOTES

- 1. Sequence number: 0x00 0x00 0x00 0xF4.
- 2. Module Data: 0xXX 0xXX 0xXX... (1024 bytes).
- 3. Module data Length = (Len) N (Sequence number Length) 4.
- 4. Module data requires two-byte alignment.
- 5. If it is not a two-byte alignment, fill 0xff.6. The total length of packet head filed, command ID filed, length filed, sequence number filed, data filed and CRC16 field does not exceed the MTU.

5.3.6. CMD_DL_DATA_RSP

The length of the data field is defined by the data length field. The content of the data field is defined as below:

Content	Bytes	Description
Status	2	Refer to definition list
Next sequence number	4	

Example:

The data package of CMD_DL_DATA_RSP is shown as below. Its status is 0 and the next sequence number is 245.

Content	Description	
0xAA	Packet head	
0x00 0x04	CMD_DL_DATA_RSP command ID	
0x00 0x06	Data length	
0x00 0x00	Status value, please refer to chapter 5.4	
0x00 0x00 0x00 0xF5	Next sequence number	
0xXX 0xXX	CRC16 value	
0x00 0x00 0x00 0xF5	Next sequence number	

5.3.7. CMD_DL_END

The command does not have data field. The length of data field is 0.

Example:

The data package of the command CMD_DL_END is shown as below:

0xAA 0x00 x05 0x00 0x00 0xXX 0xXX

Content	Description
0xAA	Packet head

0x00 0x05	CMD_DL_END command ID	
0x00 0x00	Data length is 0	
0xXX 0xXX	CRC16 value	

5.3.8. CMD_DL_END_RSP

The length of the data field is defined by the data length field. The content of the data field is defined as below:

Content	Bytes	Description
Status	2	Refer to the definition list

Example:

The following is the data package of CMD_DL_END_RSP whose status is 0. 0xAA 0x00 0x06 0x00 x02 0x00 0x00 0xXX 0xXX

Content	Description
0xAA	Packet head
0x00 0x06	CMD_DL_END_RSP command ID
0x00 0x02	Data length is 2 bytes
0x00 0x00	Status value, please refer to chapter 5.4
0xXX 0xXX	CRC16 value

5.3.9. CMD_RUN_GSMSW

The command does not have data field. The length of data field is 0.

Example:

The data package of CMD_RUN_GSMSW is shown as below: 0xAA 0x00 0x07 0x00 0x00 0xXX 0xXX

Content	Description
0xAA	Packet head
0x00 0x07	CMD_RUN_GSMSW command ID
0x00 0x00	Data length is 0
0xXX 0xXX	CRC16 value

5.3.10. CMD_RUN_GSMSW_RSP

Content	Bytes	Description
Status	2	Refer to the definition list

Example:

The data package of CMD_RUN_GSMSW_RSP whose status is 3 is shown as below: 0xAA 0x00 0x08 0x00 0x02 0x00 0x03 0xXX 0xXX

Content	Description
0xAA	Packet head
0x00 0x08	CMD_RUN_GSMSW_RSP command ID
0x00 0x02	Data length is 2 bytes
0x00 0x03	Status value, please refer to chapter 5.4
0xXX 0xXX	CRC16 value

5.4. Definition List

Table 4: Status Value

Status Value	Description	Response
0	Success	
1	CRC16 error	MCU retransmits the response sequence number.
2	Flash error	MCU restarts module, and downloads the application software again.
3	Module is in download mode	
4	Data package error	MCU retransmits the response sequence number.

6 Appendix C CRC-16 Algorithms

6.1. CRC-16-CCITT Coding Table

__align (4) unsigned short CRC16_CCITT_tbl [256] = {

0x0,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,0x8108,0x9129,0xa14a,0xb16b,0xc18c, 0xd1ad,0xe1ce,0xf1ef,0x1231,0x210,0x3273,0x2252,0x52b5,0x4294,0x72f7,0x62d6,0x9339,0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff,

0xe3de,

0x2462,0x3443,0x420,0x1401,0x64e6,0x74c7,0x44a4,0x5485,0xa56a,0xb54b,0x8528,0x9509,0xe5ee,0xf5cf,0xc5ac,0xd58d,

0x3653,0x2672,0x1611,0x630,0x76d7,0x66f6,0x5695,0x46b4,0xb75b,0xa77a,0x9719,0x8738,0xf7df,0xe7fe,0xd79d,0xc7bc,

0x48c4,0x58e5,0x6886,0x78a7,0x840,0x1861,0x2802,0x3823,0xc9cc,0xd9ed,0xe98e,0xf9af,0x8948,0x 9969,0xa90a,0xb92b,

0x5af5,0x4ad4,0x7ab7,0x6a96,0x1a71,0xa50,0x3a33,0x2a12,0xdbfd,0xcbdc,0xfbbf,0xeb9e,0x9b79,0x8b58,0xbb3b,0xab1a,

0x6ca6,0x7c87,0x4ce4,0x5cc5,0x2c22,0x3c03,0xc60,0x1c41,0xedae,0xfd8f,0xcdec,0xddcd,0xad2a,0xbd0b,0x8d68,0x9d49,

0x7e97,0x6eb6,0x5ed5,0x4ef4,0x3e13,0x2e32,0x1e51,0xe70,0xff9f,0xefbe,0xdfdd,0xcffc,0xbf1b,0xaf3a,0x9f59,0x8f78,

0x9188,0x81a9,0xb1ca,0xa1eb,0xd10c,0xc12d,0xf14e,0xe16f,0x1080,0xa1,0x30c2,0x20e3,0x5004,0x4 025,0x7046,0x6067,

0x83b9,0x9398,0xa3fb,0xb3da,0xc33d,0xd31c,0xe37f,0xf35e,0x2b1,0x1290,0x22f3,0x32d2,0x4235,0x5214,0x6277,0x7256,

0xb5ea,0xa5cb,0x95a8,0x8589,0xf56e,0xe54f,0xd52c,0xc50d,0x34e2,0x24c3,0x14a0,0x481,0x7466,0x6447,0x5424,0x4405,

0xa7db,0xb7fa,0x8799,0x97b8,0xe75f,0xf77e,0xc71d,0xd73c,0x26d3,0x36f2,0x691,0x16b0,0x6657,0x7676,0x4615,0x5634,

0xd94c,0xc96d,0xf90e,0xe92f,0x99c8,0x89e9,0xb98a,0xa9ab,0x5844,0x4865,0x7806,0x6827,0x18c0,0x8e1,0x3882,0x28a3,

0xcb7d,0xdb5c,0xeb3f,0xfb1e,0x8bf9,0x9bd8,0xabbb,0xbb9a,0x4a75,0x5a54,0x6a37,0x7a16,0xaf1,0x1ad0,0x2ab3,0x3a92,

0xfd2e,0xed0f,0xdd6c,0xcd4d,0xbdaa,0xad8b,0x9de8,0x8dc9,0x7c26,0x6c07,0x5c64,0x4c45,0x3ca2,0x2c83,0x1ce0,0xcc1,

 $0xef1f,0xff3e,0xcf5d,0xdf7c,0xaf9b,0xbfba,0x8fd9,0x9ff8,0x6e17,0x7e36,0x4e55,0x5e74,0x2e93,0x3eb2,0xed1,0x1ef0\};$

6.2. Calculate the CRC Value

```
void calculate_crc16(unsigned char*
                                      aData, unsigned short aSize, unsigned char*
                                                                                     Higher,
unsigned char* Lower)
    unsigned short i;
    unsigned short nAccum = 0;
    for (i = 0; i < aSize; i++)
        nAccum = ( nAccum << 8 ) ^ ( unsigned short )CRC16_CCITT_tbl[(( nAccum >> 8 ) ^
*aData++)&0xff];
    *Higher = (unsigned char)((nAccum>>8) & 0xff);
    *Lower = (unsigned char)((nAccum) & 0xff);
unsigned long CalculateCRC16(unsigned char*ptr, unsigned long len)
   unsigned char Higher = 0;
   unsigned char Lower = 0;
   calculate_crc16(ptr,len,&Higher,&Lower);
   return (((0x00000000 | Higher) << 8) | Lower);
```

6.3. Example

```
unsigned long new_CRC16_value = 0;
new_CRC16_value = CalculateCRC16 ((unsigned char*)pData, nLength);
if(org_CRC16_value != new_CRC16_value)
{
    //CRC checksum failed
    return -1;
}
else
{
    //CRC checksum successful
    return 0;
}
```


7 Appendix D QuecFOTA Package Tool

7.1. The Format of Packet Tool

In the process of downloading and copying, the firmware may be damaged accidentally. So before the new firmware is uploaded to your download server, it is recommended to package the new firmware as the following format with QuecFOTA Package Tool.

Figure 9: QuecFOTA Package Format

It is necessary to check the completeness and correctness of the new firmware before downloading. The Version field can be used to check the correctness of the new firmware version. The CRC16 field can be used to check the correctness and completeness of the downloaded package after downloading. The CRC16 is calculated with the CRC16 algorithm as *Appendix C*.

Content	Length (bytes)	Description	Example	
Package Head	30	Packet head	"QuectFOTAPackageV0.1\0", empty, then fill 0.	lf

CRC16	2	CRC16 checksum value	Including Version, Length and new firmware
Version	30	Version of the new firmware	M10ER01A08W32\0, If empty, then fill 0.
Length	4	Size of the new firmware	
New Firmware	Length	Entire BIN file	M10ER01A08W32.BIN

7.2. QuecFOTA Package Tool

Figure 10: QuecFOTA Package Tool

The QuecFOTA package tool has three parts:

- First part is "BIN file select". Take the M10ER01A08W32.BIN file as an example.
- Second part is "Check BIN file".
 Check whether BIN is correct or not with MD5 file. For example, select the M10ER01A08W32_MD5.DAT, then push "Check" button to check whether the M10ER01A08W32.BIN is correct or not.
- Third part is "Package file generate". Generate the QuecFOTA package file".
 First, you can type "M10ER01A08W32_package.bin", then push "Generate" button to generate the M10ER01A08W32_package.bin file with the M10ER01A08W32.BIN file.