

1/18/00
Price, Heneveld, Cooper, DeWitt & Litton
695 Kenmoor, S.E.
Post Office Box 2567
Grand Rapids, Michigan 49501-2567

JULY 4, 1999
U.S. PTO
1/18/00

Assistant Commissioner For Patents
Box Patent Application
Washington, D.C. 20231

Sir:

Enclosed for filing are the following patent application papers:

Docket No. : DP-302096

Inventors : Scott A. Deyoe, and Tuan A. Hoang

Title : SPEECH RECOGNITION WITH USER SPECIFIC
ADAPTIVE VOICE FEEDBACK

Address all correspondence to:

Jimmy L. Funke
Delphi Delco Legal Staff
Mail Code A107
Post Office Box 9005
Kokomo, Indiana 46904

Telephone No. : 313/974-1317

Sincerely,

Kevin T. Grzelak

Kevin T. Grzelak
Registration No. 35 169

January 14, 2000

Enclosures

I hereby certify that this document is being deposited with the United States Postal Service as Express Mail Post Office to Addressee addressed to Box Patent Application, Assistant Commissioner for Patents, Washington, D.C. 20231 on January 14, 2000.

Express Mail Label No. **EL346169434US**

Signature Carrie S. Scholtens
Carrie S. Scholtens

**SPEECH RECOGNITION WITH USER SPECIFIC ADAPTIVE VOICE
FEEDBACK**

This application is a continuation-in-part of U.S. Patent
5 Application Serial No. TBD (Docket No. DP-301962) filed January 10, 2000,
entitled "SPEECH RECOGNITION WITH ADAPTIVE VOICE
FEEDBACK" to Scott A. Deyoe, Tuan A. Hoang and Shishong Huang.

Background of the Invention

10 The present invention is directed to speech recognition, and more specifically to providing user specific adaptive voice feedback in a multi-level speech recognition driven system.

As is well known to one of ordinary skill in the art, speech recognition is a field in computer science that deals with designing computer
15 systems that can recognize spoken words. A number of speech recognition systems are currently available (e.g., products are offered by IBM, Dragon Systems, Lernout & Hauspie and Philips). Traditionally, speech recognition systems have only been used in a few specialized situations due to their cost and limited functionality. For example, such systems have been implemented
20 when a user was unable to use a keyboard to enter data because the user's hands were disabled. Instead of typing commands, the user spoke into a microphone. However, as the cost of these systems has continued to decrease and the performance of these systems has continued to increase, speech recognition systems are being used in a wider variety of applications (as an
25 alternative to keyboards or other user interfaces). For example, speech actuated control systems have been implemented in motor vehicles to control various accessories within the motor vehicles.

A typical speech recognition system, that is implemented in a
motor vehicle, includes voice processing circuitry and memory for storing
30 data representing command words (that are employed to control various vehicle accessories). In a typical system, a microprocessor is utilized to

compare the user provided data (i.e., voice input) to stored speech models to determine if a word match has occurred and provide a corresponding control output signal in such an event. The microprocessor has also normally controlled a plurality of motor vehicle accessories, e.g., a cellular telephone and a radio. Such systems have advantageously allowed a driver of the motor vehicle to maintain vigilance while driving the vehicle.

5 Some speech recognition systems also recognize (by utilizing voice recognition technology) a specific user. However, most current speech recognition systems require a user to learn unique wording and dialogs for 10 successful operation of the system. Many of these systems have very long voice dialog prompts to direct a user such that the dialog can progress. Further, the help function of most of these systems has required the user to 15 request assistance via a voice command, such as "Help" or "What can I say?" at which point the user is then provided with an available word or dialog option. These systems have typically been inflexible and not readily adaptable as the ability of the user of the system changed.

As such, a speech recognition system that adapts to a specific user by providing assistance automatically and only as needed is desirable.

20 Summary of the Invention

The present invention is directed to a technique for providing user specific adaptive voice feedback in a multi-level speech recognition driven system. Initially, the system detects whether a user of the system has provided a voice input. If a voice input is detected, the system then 25 determines whether the voice input is associated with a specific user that is recognized by the system. If the user has not provided a voice input for a predetermined user specific time period, the system provides adaptive voice feedback to the user. When the system receives or detects a voice input from the user, the system determines whether the input is recognized. If the input 30 is recognized by the system, the speech selectable task that corresponds to the input is performed. In another embodiment, when the user has failed to

respond for a user specific set number of the predetermined user specific time periods, at a given level, the system is deactivated.

These and other features, advantages and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims and appended drawings.

Brief Description of the Drawings

The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:

10 Fig. 1 is a block diagram of a speech recognition system used in a motor vehicle;

Figs. 2A-2C are a flow diagram of an adaptive voice feedback routine, according to an embodiment of the present invention;

15 Fig. 3 is an exemplary dialog tree that can be implemented with an adaptive voice feedback system, according to an embodiment of the present invention; and

Figs. 4A-4C are a flow diagram of an adaptive voice feedback routine, according to another embodiment of the present invention.

20 Description of the Preferred Embodiments

Fig. 1 is a block diagram of a speech recognition system 100 (implemented within a motor vehicle) that provides adaptive voice feedback, according to an embodiment of the present invention. System 100 includes a processor 102 coupled to a motor vehicle accessory 124 and a display 120. 25 Processor 102 controls motor vehicle accessory 124, at least in part, as dictated by voice input supplied by a user of system 100. Processor 102 also supplies various information to display 120, to allow a user of the motor vehicle to better utilize system 100. In this context, the term processor may include a general purpose processor, a microcontroller (i.e., an execution unit 30 with memory, etc., integrated within a single integrated circuit) or a digital signal processor (DSP). Processor 102 is also coupled to a memory

subsystem 104. Memory subsystem 104 includes an application appropriate amount of main memory (volatile and non-volatile).

An audio input device 118 (e.g., a microphone) is coupled to a filter/amplifier module 116. Filter/amplifier module 116 filters and amplifies the voice input provided by the user through audio input device 118. Filter amplifier module 116 is also coupled to an analog-to-digital (A/D) converter 114. A/D converter 114 digitizes the voice input from the user and supplies the digitized voice to processor 102 (which causes the voice input to be compared to system recognized commands).

Processor 102 executes various routines in determining whether the voice input corresponds to a system recognized command. Processor 102 also causes an appropriate voice output to be provided to the user (ultimately through an audio output device 112). The synthesized voice output is provided by the processor 102 to a digital-to-analog (D/A) converter 108. D/A converter 108 is coupled to a filter/amplifier section 110, which amplifies and filters the analog voice output. The amplified and filtered voice output is then provided to audio output device 112 (e.g., a speaker). While only one motor vehicle accessory module 124 is shown, it is contemplated that any number of accessories, typically provided in a motor vehicle (e.g., a cellular telephone or a radio), can be implemented.

Processor 102 may execute a routine or may be coupled to an adaptable module 126 (which can include artificial intelligence (AI) code, fuzzy logic, a neural network or any other such appropriate technology) that can identify the specific dialogs a specific user has mastered and those dialogs that require additional assistance. This enables the system to adjust the timing in which assistance, in the form of adaptive voice feedback, is provided to a specific user and is further discussed in conjunction with Figs. 4A-4C.

Figs. 2A-2C are a flow diagram of an adaptive voice feedback routine 200, according to an embodiment of the present invention. In the embodiment of Figs. 2A-2C, routine 200 determines whether a voice input, provided by a user, corresponds to, for example, a command. Routine 200 does not identify specific users. In step 202, the multi-level speech

recognition driven system is activated. A user may activate the system, for example, through a voice command or by physically asserting a switch. From step 202, control transfers to step 204. In step 204, a first level variable "pass1", which tracks the number of times that a first level idle timer has expired, is initialized. From step 204, control transfers to step 206. In step 206, routine 200 determines whether a voice input has been detected. If so, control transfers from step 206 to step 216. If not, control transfers from step 206 to step 208. In step 208, routine 200 determines whether a first level idle timer has expired. If the first level idle timer has not expired in step 208, control transfers to step 206. If the first level idle timer has expired, control transfers from step 208 to step 210. In step 210, routine 200 causes the "pass1" variable to be incremented and resets the first level idle timer.

From step 210, control transfers to step 212. In step 212, routine 200 determines whether the "pass1" variable has exceeded a set value (in this case, three). One of ordinary skill in the art will appreciate that the decision threshold for the "pass1" variable can be adjusted, as desired. If the "pass1" variable is less than or equal to three, control transfers from step 212 to step 214. In step 214, routine 200 provides a first level adaptive voice feedback. This allows a user to determine which command should be spoken at that time. From step 214, control transfers to step 206. In step 212 if the "pass1" variable has exceeded the set value, control transfers to step 248. In step 248, routine 200 causes the speech recognition system to be deactivated. From step 248, control transfers to step 250 where the routine 200 ends.

In step 206, if voice input is detected, control transfers to step 216. In step 216, routine 200 determines whether the voice input is a recognized command. If so, control transfers from step 216 to step 218 (see Fig. 2B). If not, control transfers from step 216 to step 248. One of ordinary skill in the art will appreciate that if the voice input is not recognized, control can alternatively be transferred to step 214 (where first level adaptive voice feedback is provided). In step 218, a second level variable "pass2", which tracks the number of times that a second level idle timer has expired, is initialized. From step 218, control transfers to step 220. In step 220, if voice

input is not detected, control transfers to step 224. In step 224, routine 200 determines whether the second level idle timer has expired. If the second level idle timer has not expired, control transfers from step 224 to step 220. If the second level idle timer has expired, control transfers from step 224 to step 226.

In step 226, routine 200 causes the "pass2" variable to be incremented and resets the second level idle timer. In step 228, routine 200 determines whether the "pass2" variable has exceeded a set value (in this case, three). One of ordinary skill in the art will appreciate that the decision threshold for the "pass2" variable can be adjusted, as desired. If the "pass2" variable has exceeded the set value, control transfers from step 228 to step 248. If the "pass2" variable has not exceeded the set value, control transfers from step 228 to step 230. In step 230, routine 200 provides an appropriate second level adaptive voice feedback. This allows a user to determine which command should be spoken at that time. From step 230, control transfers to step 220. In step 220, if voice input is detected, control transfers to step 232. In step 232, routine 200 determines whether the voice input is recognized. If so, control transfers from step 232 to step 234 (see Fig. 2C). If not, control transfers from step 232 to step 248. One of ordinary skill in the art will appreciate that, if the voice input is not recognized, control can alternatively be transferred to step 230 (where second level adaptive voice feedback is provided).

In step 234, a third level variable "pass3", which tracks the number of times that a third level idle timer has expired, is initialized. From step 234, control transfers to step 236. In step 236, routine 200 determines whether voice input is detected. If so, control transfers to step 246. If not, control transfers from step 236 to step 238. In step 238, routine 200 determines whether the third level idle timer has expired. If the third level idle timer has not expired in step 238, control transfers to step 236. If the third level idle timer has expired, control transfers from step 238 to step 240. In step 240, routine 200 causes the "pass3" variable to be incremented and resets the third level idle timer.

From step 240, control transfers to step 242. In step 242, routine 200 determines whether the "pass3" variable has exceeded a set value (in this case, three). One of ordinary skill in the art will appreciate that the decision threshold for the "pass3" (as well as "pass1" and "pass2") variable 5 can be adjusted, as desired. If the "pass3" variable is less than or equal to three, control transfers from step 242 to step 244. In step 244, routine 200 provides an appropriate third level adaptive voice feedback. This allows a user to determine which command should be spoken at that time. From step 244, control transfers to step 236. In step 242 if the "pass3" variable has 10 exceeded the set value, control transfers to step 248. In step 248, routine 200 causes the speech recognition system to be deactivated. From step 248, control transfers to step 250 where the routine 200 ends.

In step 246, routine 200 determines whether the voice input is 15 recognized. If so, control transfers from step 246 to step 252. If not, control transfers from step 246 to step 248. One of ordinary skill in the art will appreciate that, if the voice input is not recognized control can alternatively be transferred to step 244 (where third level adaptive voice feedback is provided). In step 252, routine 200 causes the voice selected task to be ran. From step 252, control transfers to step 250 where routine 200 20 ends. Thus, a system has been described, which provides adaptive voice feedback when appropriate. This can be determined at each level by setting a level dependent idle timer to a particular value. Alternatively, the idle timer can be dialog branch dependent. As mentioned above, the number of times in which the idle timer is allowed to expire at a given level is also adjustable. 25 As such, a system according to the present invention provides adaptive voice feedback that is appropriate for the experience level of the user. For example, if a user is inexperienced, the system will provide voice feedback at each level. However, if a user is experienced, the user can provide continuous voice input to the system and the system will not provide voice 30 feedback to the user.

This allows a novice user to begin immediately using the speech recognition system without having to first study a user's guide. By

monitoring the time since a voice input was last received (to determine whether to activate the adaptive voice feedback), the system can be advantageously used with a wide range of users with different experience levels. As discussed above, the system provides a context sensitive voice 5 prompt, as required, to continue the voice dialog. A user may wait for adaptive voice feedback to complete the user's selection or the user may 'barge-in' with a desired command or use a word such as 'yes' or 'select' to indicate a desired option. While a three level dialog has been described, one of ordinary skill in the art will readily appreciate that the present invention 10 can be implemented with systems that employ a different number of levels.

Fig. 3 is an exemplary dialog tree 300 that further illustrates the functioning of the adaptive voice feedback feature, according to an embodiment of the present invention. At entry point 302 a user activates the speech driven system by speaking the keyword "start". An experienced user 15 that already knows the functions that the user wants performed can then speak the commands in successive order. For example, an experienced user might speak the command string "A, A1, A1C" or "A, A2". On the other hand, an inexperienced user may hesitate after speaking the keyword "start", at which point the system supplies the first level commands "A, B or C" 20 (corresponding to entry points 304, 306 and 308, respectively), after a predetermined time period. If an inexperienced user speaks the command "A" and then hesitates, the system supplies the second level commands "A1, A2 or A3" (corresponding to entry points 310, 312 and 314, respectively), after a predetermined time period. At that point, if an inexperienced user 25 speaks the command "A1" and then hesitates, the system supplies the third level commands "A1A, A1B, A1C or A1D" (corresponding to entry points 316, 318, 320 and 322, respectively), after a predetermined time period.

Thus, if at any level a user is unsure of the next command, after an appropriate period, the system supplies an appropriate voice feedback 30 with a list of commands necessary to continue. Thus, an inexperienced user can learn the system dialog while using the system. A user may receive a prompt after each spoken command because of the hesitation in thinking of the

next word. On the other hand, an experienced user can immediately say all the words in a command and not receive a prompt. As another example, a driver of a motor vehicle attempting to utilize a radio within the motor vehicle may use the command "radio" to activate the radio. At that point, the driver 5 may, for example, have the option of saying "AM", "FM", "tune", "mute", "balance" or "scan". If the driver provides the voice command "tune", the driver may have the option of tuning "up" or "down". Alternatively, the driver may enter a radio channel using a command string, such as, "Radio, FM, Channel, 101.1."

10 Figs. 4A-4C are a flow diagram of a user specific adaptive voice feedback routine 400, according to another embodiment of the present invention. In the embodiment of Figs. 4A-4C, routine 400 identifies a specific user from a voice input, as well as determining if the voice input corresponds to a particular system recognized input (e.g., command). In step 15 402, the multi-level speech recognition driven system is activated. While this example is directed to a speech activated system, one of ordinary skill in the art will appreciate that the techniques described herein can readily be applied to a switch activated system. In a switch activated system, the switch is typically monitored by an input of processor 102. From step 402, control transfers to step 404. In step 404, a first level variable "pass1", which tracks 20 the number of times that a user specific first level idle timer has expired, is initialized. From step 404, control transfers to step 406. In step 406, routine 400 determines whether a specific user is recognized by the speech recognition system. In a speech activated system, the voice input provided by 25 a user, to activate the system, is compared (using commercially available voice recognition technology) to a plurality of established user voice patterns, if any.

The established user voice patterns are utilized in recognizing a specific user. If the specific user is recognized by the system, control 30 transfers from step 406 to step 408. In step 408, a user profile that corresponds to the specific user is selected. The specific user profile establishes a predetermined user specific time period for a given level or

dialog branch. The specific user profile also establishes a maximum loop count (a user specific set number that corresponds to the predetermined user specific time periods that are allowed to expire at a given level or dialog branch, before the system is deactivated).

5 In one embodiment, the predetermined user specific time period and the maximum loop count are adjusted by the system as the ability of the specific user changes. For example, as a specific user of the system becomes more familiar with the system these values are decreased. One of skill in the art will appreciate that the values can be adjusted, as desired. This can be
10 readily accomplished by utilizing artificial intelligence code, fuzzy logic, neural networks or other such adaptable networks, well known to one of ordinary skill in the art, that track the ability of each user. From step 408, control then transfers to step 412.

If the specific user is not recognized by the system (e.g., a new
15 user) in step 406, control transfers to step 410 where a default user profile is established. Thereafter, a profile for that new user is stored within the system such that when that user utilizes the system again, the profile for that specific user is selected. One of ordinary skill in the art will readily appreciate that the number of such new users that can be added to the system is only limited
20 by the system resources (e.g., volatile and non-volatile memory, processing power, etc.). From step 410, control transfers to step 412. In step 412, routine 400 determines whether a voice input has been detected. One of skill in the art will appreciate that if the system is not voice activated, the determination of the specific user would occur after a voice input (e.g., a
25 spoken command) is received.

If a voice input is detected, control transfers from step 412 to step 422. If not, control transfers from step 412 to step 414. In step 414, routine 400 determines whether a user specific first level idle timer has expired. If the first level idle timer has not expired in step 414, control
30 transfers to step 412. If the first level idle timer has expired, control transfers from step 414 to step 416. In step 416, routine 400 causes the "pass1"

variable to be incremented and resets the first level idle timer. As discussed above, the value of the first level idle timer is user specific.

From step 416, control transfers to step 418. In step 418, routine 400 determines whether the "pass1" variable is less than a maximum

- 5 loop count (i.e., a user specific set number that indicates the number of times that a predetermined user specific time period has expired). As discussed above, the decision threshold for the "pass1" variable is user specific and is adjusted by the adaptable module 126 or a routine running on processor 102. If the "pass1" variable is less than the maximum loop count, control transfers
- 10 from step 418 to step 420. In step 420, routine 400 provides a first level adaptive voice feedback. This allows a user to determine which command should be spoken at that time. From step 420, control transfers to step 412. In step 418 if the "pass1" variable has exceeded the maximum loop count, control transfers to step 454. In step 454, routine 400 causes the speech
- 15 recognition system to be deactivated. From step 454, control transfers to step 456 where routine 400 ends.

In step 412, if voice input is detected, control transfers to step 422. In step 422, routine 400 determines whether the voice input is recognized. If so, control transfers from step 422 to step 424 (see Fig. 4B).

- 20 If not, control transfers from step 422 to step 420 (where first level adaptive voice feedback is provided). One of ordinary skill in the art will appreciate that if the voice input is not recognized, control can alternatively be transferred to step 454. In step 424, a second level variable "pass2", which tracks the number of times that a user specific second level idle timer has
- 25 expired, is initialized. From step 424, control transfers to step 426. In step 426, if voice input is not detected, control transfers to step 428. In step 428, routine 400 determines whether the second level idle timer has expired. If the second level idle timer has not expired, control transfers from step 428 to step 426. If the second level idle timer has expired, control transfers from step
- 30 428 to step 430.

In step 430, routine 400 causes the "pass2" variable to be incremented and resets the second level idle timer. From step 430, control

then transfers to step 432. In step 432, routine 400 determines whether the "pass2" variable is less than a maximum loop count (i.e., a user specific set number that indicates the number of times that a predetermined user specific time period has expired). As discussed above, the decision threshold for the 5 "pass2" variable is user specific and is adjusted by the system as determined by adaptable module 126 or a routine running on processor 102. If the "pass2" variable is not less than the maximum loop count, control transfers from step 432 to step 454. If the "pass2" variable is less than the maximum loop count, control transfers from step 432 to step 434.

10 In step 434, routine 400 provides an appropriate second level adaptive voice feedback. This allows a user to determine which command should be spoken at that time. From step 434, control transfers to step 426. In step 426, if voice input is detected, control transfers to step 436. In step 15 436, routine 400 determines whether the voice input is recognized. If so, control transfers from step 436 to step 438 (see Fig. 4C). If not, control transfers from step 436 to step 434 (where second level adaptive voice feedback is provided). One of ordinary skill in the art will appreciate that, if the voice input is not recognized, control can alternatively be transferred to step 454.

20 In step 438, a third level variable "pass3", which tracks the number of times that a user specific third level idle timer has expired, is initialized. From step 438, control transfers to step 440. In step 440, routine 400 determines whether voice input is detected. If so, control transfers to step 450. If not, control transfers from step 440 to step 442. In step 25 442, routine 400 determines whether the third level idle timer has expired. If the third level idle timer has not expired in step 442, control transfers to step 440. If the third level idle timer has expired, control transfers from step 442 to step 444. In step 444, routine 400 causes the "pass3" variable to be incremented and resets the third level idle timer.

30 From step 444, control transfers to step 446. In step 446, routine 400 determines whether the "pass3" variable has exceeded a maximum loop count. As discussed above, the decision threshold for the

“pass3” (as well as “pass1” and “pass2”) variable is adjusted as the experience level of each specific user changes. If the “pass3” variable is less than the maximum loop count, control transfers from step 446 to step 448. In step 448, routine 400 provides an appropriate third level adaptive voice feedback. This allows a user to determine which command should be spoken at that time. From step 448, control transfers to step 440. In step 446 if the “pass3” variable is not less than the maximum loop count, control transfers to step 454. In step 454, routine 400 causes the speech recognition system to be deactivated. From step 454, control transfers to step 456 where the routine 10 400 ends

In step 450, routine 400 determines whether the voice input is recognized. If so, control transfers from step 450 to step 452. If not, control transfers from step 450 to step 448 (where third level adaptive voice feedback is provided). One of ordinary skill in the art will appreciate that, if 15 the voice input is not recognized, control can alternatively be transferred to step 454. In step 452, routine 400 causes the voice selected task to be ran. From step 452, control transfers to step 456 where routine 400 ends.

Thus, an alternative system has been described, which provides user specific adaptive voice feedback, when appropriate. Adaptable module 20 126 or a routine running on processor 102 functions to change a user specific idle timer, that is either level or dialog branch dependent. As mentioned above, adaptable module 126 or a routine running on processor 102 also functions to change the number of times in which the user specific idle timer is allowed to expire. This can be level or dialog branch dependent. As such, 25 a system according to the present invention provides adaptive voice feedback that is presented at an appropriate time for a specific user. When a specific user advances in knowledge of the system, the system adjusts the idle timers for that user. In this manner, the time frame in which voice feedback is provided is customized for each recognized user. While a three level dialog 30 has been described, one of ordinary skill in the art will readily appreciate that this embodiment of the present invention can be implemented with systems that employ a different number of levels.

The above description is considered that of the preferred embodiments only. Modification of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.

5

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
71000
71001
71002
71003
71004
71005
71006
71007
71008
71009
71010
71011
71012
71013
71014
71015
71016
71017
71018
71019
71020
71021
71022
71023
71024
71025
71026
71027
71028
71029
71030
71031
71032
71033
71034
71035
71036
71037
71038
71039
71040
71041
71042
71043
71044
71045
71046
71047
71048
71049
71050
71051
71052
71053
71054
71055
71056
71057
71058
71059
71060
71061
71062
71063
71064
71065
71066
71067
71068
71069
71070
71071
71072
71073
71074
71075
71076
71077
71078
71079
71080
71081
71082
71083
71084
71085
71086
71087
71088
71089
71090
71091
71092
71093
71094
71095
71096
71097
71098
71099
71100
71101
71102
71103
71104
71105
71106
71107
71108
71109
71110
71111
71112
71113
71114
71115
71116
71117
71118
71119
71120
71121
71122
71123
71124
71125
71126
71127
71128
71129
71130
71131
71132
71133
71134
71135
71136
71137
71138
71139
71140
71141
71142
71143
71144
71145
71146
71147
71148
71149
71150
71151
71152
71153
71154
71155
71156
71157
71158
71159
71160
71161
71162
71163
71164
71165
71166
71167
71168
71169
71170
71171
71172
71173
71174
71175
71176
71177
71178
71179
71180
71181
71182
71183
71184
71185
71186
71187
71188
71189
71190
71191
71192
71193
71194
71195
71196
71197
71198
71199
71200
71201
71202
71203
71204
71205
71206
71207
71208
71209
71210
71211
71212
71213
71214
71215
71216
71217
71218
71219
71220
71221
71222
71223
71224
71225
71226
71227
71228
71229
71230
71231
71232
71233
71234
71235
71236
71237
71238
71239
71240
71241
71242
71243
71244
71245
71246
71247
71248
71249
71250
71251
71252
71253
71254
71255
71256
71257
71258
71259
71260
71261
71262
71263
71264
71265
71266
71267
71268
71269
71270
71271
71272
71273
71274
71275
71276
71277
71278
71279
71280
71281
71282
71283
71284
71285
71286
71287
71288
71289
71290
71291
71292
71293
71294
71295
71296
71297
71298
71299
71300
71301
71302
71303
71304
71305
71306
71307
71308
71309
71310
71311
71312
71313
71314
71315
71316
71317
71318
71319
71320
71321
71322
71323
71324
71325
71326
71327
71328
71329
71330
71331
71332
71333
71334
71335
71336
71337
71338
71339
71340
71341
71342
71343
71344
71345
71346
71347
71348
71349
71350
71351
7

Claims

1. A method for providing user specific adaptive voice feedback in a multi-level speech recognition driven system, comprising the steps of:

detecting whether a user of the speech recognition driven system has
5 provided a voice input;

determining whether a voice input is associated with a specific user that is recognized by the speech recognition driven system;

providing adaptive voice feedback to the user when the user has not provided a voice input for a predetermined user specific time period;

10 determining whether the voice input provided by the user is recognized by the speech recognition driven system; and

performing a speech selectable task when the voice input provided by the user corresponds to a speech selectable task that is recognized by the speech recognition driven system.

2. The method of claim 1, further including the steps of:

tracking the number of times in which the user has failed to respond for the predetermined user specific time period at a given level; and

5 deactivating the speech recognition driven system when the user has failed to respond for a user specific set number of the predetermined user specific time periods at the given level.

3. The method of claim 2, wherein if a voice input is not associated with a specific user the predetermined user specific time period and the user specific set number of the predetermined user specific time periods are set to default values.

4. The method of claim 2, wherein the speech recognition system utilizes voice recognition technology in determining whether a voice input is associated with a specific user.

5. The method of claim 4, wherein the predetermined user specific time period and the user specific set number of the predetermined user specific time periods are adjusted by the speech recognition driven system as the ability of a specific user changes.

6. The method of claim 5, wherein a neural network is utilized to adjust the predetermined user specific time period and the user specific set number of the predetermined user specific time periods when the ability of a specific user changes.

7. The method of claim 5, wherein fuzzy logic is utilized to adjust the predetermined user specific time period and the user specific set number of the predetermined user specific time periods when the ability of a specific user changes.

8. The method of claim 1, further including the step of: deactivating the speech recognition driven system when the voice input from the user is not recognized by the speech recognition driven system.

9. The method of claim 1, wherein the adaptive voice feedback provided to the user is level dependent.

10. The method of claim 1, further including the step of: activating the speech recognition driven system.

11. The method of claim 10, wherein the speech recognition driven system is switch activated.

12. The method of claim 10, wherein the speech recognition driven system is voice activated.

13. The method of claim 2, wherein the predetermined user specific time period and the user specific set number of predetermined user specific time periods are level dependent.

14. The method of claim 2, wherein the predetermined user specific time period and the user specific set number of predetermined user specific time periods are dialog branch dependent.

15. The method of claim 1, wherein the speech selectable task is performed by a motor vehicle accessory.

16. A multi-level speech recognition driven system for providing user specific adaptive voice feedback, comprising:

a memory subsystem for storing information;

a processor coupled to the memory subsystem;

5 an audio input device coupled to the processor, the input device receiving a voice input from a user;

an audio output device coupled to the processor, the output device providing adaptive voice feedback to the user; and

10 speech recognition code for causing the processor to perform the steps of:

detecting whether a user of the speech recognition driven system has provided a voice input;

15 determining whether a voice input is associated with a specific user that is recognized by the speech recognition driven system;

providing adaptive voice feedback to the user when the user has not provided a voice input for a predetermined user specific time period;

determining whether the voice input provided by the user is recognized by the speech recognition driven system; and

20

performing a speech selectable task when the voice input provided by the user corresponds to a speech selectable task that is recognized by the speech recognition driven system.

17. The system of claim 16, wherein the speech recognition code causes the processor to perform the additional steps of:

tracking the number of times in which the user has failed to respond for the predetermined user specific time period at a given level; and

5 deactivating the speech recognition driven system when the user has failed to respond for a user specific set number of the predetermined user specific time periods at the given level.

18. The system of claim 17, wherein if a voice input is not associated with a specific user the predetermined user specific time period and the user specific set number of the predetermined user specific time periods are set to default values.

19. The system of claim 17, wherein the speech recognition system utilizes voice recognition technology in determining whether a voice input is associated with a specific user.

20. The system of claim 19, wherein the predetermined user specific time period and the user specific set number of the predetermined user specific time periods are adjusted by the speech recognition driven system as the ability of a specific user changes.

21. The system of claim 20, wherein a neural network is utilized to adjust the predetermined user specific time period and the user specific set number of the predetermined user specific time periods when the ability of a specific user changes.

22. The system of claim 20, wherein fuzzy logic is utilized to adjust the predetermined user specific time period and the user specific set number of the predetermined user specific time periods when the ability of a specific user changes.

23. The system of claim 16, wherein the speech recognition code causes the processor to perform the additional step of:

deactivating the speech recognition driven system when the voice input from the user is not recognized by the speech recognition driven system.

24. The system of claim 16, wherein the adaptive voice feedback provided to the user is level dependent.

25. The system of claim 16, wherein the speech recognition code causes the processor to perform the additional step of:

activating the speech recognition driven system.

26. The system of claim 25, wherein the speech recognition driven system is switch activated.

27. The system of claim 25, wherein the speech recognition driven system is voice activated.

28. The system of claim 17, wherein the predetermined user specific time period and the user specific set number of the predetermined user specific time periods are level dependent.

29. The system of claim 17, wherein the predetermined user specific time period and the user specific set number of predetermined user specific time periods are dialog branch dependent.

30. The system of claim 16, wherein the audio input device is a microphone.

31. The system of claim 16, wherein the audio output device is a speaker.

32. The system of claim 16, wherein the speech selectable task is performed by a motor vehicle accessory.

33. A multi-level speech recognition driven system for controlling motor vehicle accessories that provides user specific adaptive voice feedback, comprising:

- a memory subsystem for storing information;
- 5 a processor coupled to the memory subsystem;
- a motor vehicle accessory coupled to the processor;
- an audio input device coupled to the processor, the input device receiving a voice input from a user;
- 10 an audio output device coupled to the processor, the output device providing adaptive voice feedback to the user; and
- speech recognition code for causing the processor to perform the steps of:
 - detecting whether a user of the speech recognition driven system has provided a voice input;
 - 15 determining whether a voice input is associated with a specific user that is recognized by the speech recognition driven system;
 - providing adaptive voice feedback to the user when the user has not provided a voice input for a predetermined user specific time period;
 - 20 determining whether the voice input provided by the user is recognized by the speech recognition driven system; and
 - controlling the motor vehicle accessory according to a speech selectable task when the voice input provided by the user corresponds

25 to a speech selectable task that is recognized by the speech recognition driven system.

34. The system of claim 33, wherein the speech recognition code causes the processor to perform the additional steps of:

tracking the number of times in which the user has failed to respond for the predetermined user specific time period at a given level; and

5 deactivating the speech recognition driven system when the user has failed to respond for a user specific set number of the predetermined user specific time periods at the given level.

35. The system of claim 34, wherein if a voice input is not associated with a specific user the predetermined user specific time period and the user specific set number of the predetermined user specific time periods are set to default values.

36. The system of claim 34, wherein the speech recognition system utilizes voice recognition technology in determining whether a voice input is associated with a specific user.

37. The system of claim 36, wherein the predetermined user specific time period and the user specific set number of the predetermined user specific time periods are adjusted by the speech recognition driven system as the ability of a specific user changes.

38. The system of claim 37, wherein a neural network is utilized to adjust the predetermined user specific time period and the user specific set number of the predetermined user specific time periods when the ability of a specific user changes.

39. The system of claim 37, wherein fuzzy logic is utilized to adjust the predetermined user specific time period and the user specific set

number of the predetermined user specific time periods when the ability of a specific user changes.

40. The system of claim 33, wherein the speech recognition code causes the processor to perform the additional step of:

deactivating the speech recognition driven system when the voice input from the user is not recognized by the speech recognition driven system.

41. The system of claim 33, wherein the adaptive voice feedback provided to the user is level dependent.

42. The system of claim 33, wherein the speech recognition code causes the processor to perform the additional step of:

activating the speech recognition driven system.

43. The system of claim 42, wherein the speech recognition driven system is switch activated.

44. The system of claim 42, wherein the speech recognition driven system is voice activated.

45. The system of claim 34, wherein the predetermined user specific time period and the user specific set number of the predetermined user specific time periods are level dependent.

46. The system of claim 34, wherein the predetermined user specific time period and the user specific set number of predetermined user specific time periods are dialog branch dependent.

47. The system of claim 33, wherein the audio input device is a microphone.

48. The system of claim 33, wherein the audio output device is a speaker.

卷之三

DP-302096 (DEL01 P-333)

SPEECH RECOGNITION WITH USER SPECIFIC ADAPTIVE VOICE FEEDBACKAbstract of the Disclosure

A multi-level speech recognition driven system provides user specific adaptive voice feedback based on a specific user's level of sophistication. If a voice input is detected, the system determines whether the voice input is associated with a specific user. When a user of the system has not provided a voice input for a predetermined user specific time period the system provides an adaptive voice feedback to the user. When a voice input is detected, the system determines whether the voice input is recognized. If the recognized voice input corresponds to a speech selectable task, the corresponding speech selectable task is performed. In another embodiment, the system is deactivated when a voice input has not been received for a user specific set number of predetermined user specific time periods at a given level.

FIG. 1

ACTIVATE SPEECH
RECOGNITION SYSTEM

200

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 3

FIG. 4B

FIG. 1

FIG. 2B

FIG. 2C

FIG. 3

FIG. 4A

FIG. 4B

