Project 1 - Real Estate

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
```

Project Task: Week 1

Data Import and Preparation:

- 1. Import data.
- 2. Figure out the primary key and look for the requirement of indexing.
- 3. Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicit
- ly the reason for the treatment chosen for each variable.

Exploratory Data Analysis (EDA):

4. Perform debt analysis. You may take the following steps:

1. Import Data

```
In [2]: df train = pd.read csv('p1train.csv')
In [3]: | df test = pd.read csv('p1test.csv')
In [4]: |df_train.columns
Out[4]: Index(['UID', 'BLOCKID', 'SUMLEVEL', 'COUNTYID', 'STATEID', 'state',
                'state_ab', 'city', 'place', 'type', 'primary', 'zip_code', 'area_code',
               'lat', 'lng', 'ALand', 'AWater', 'pop', 'male pop', 'female pop',
                'rent mean', 'rent median', 'rent stdev', 'rent sample weight',
                'rent samples', 'rent gt 10', 'rent gt 15', 'rent gt 20', 'rent gt 25',
                'rent gt 30', 'rent gt 35', 'rent gt 40', 'rent gt 50',
                'universe samples', 'used samples', 'hi mean', 'hi median', 'hi stdev',
                'hi sample weight', 'hi samples', 'family mean', 'family median',
                'family stdev', 'family_sample_weight', 'family_samples',
                'hc mortgage mean', 'hc mortgage median', 'hc mortgage stdev',
                'hc mortgage sample weight', 'hc mortgage samples', 'hc mean',
                'hc median', 'hc stdev', 'hc samples', 'hc sample weight',
                'home equity second mortgage', 'second mortgage', 'home equity', 'debt',
                'second mortgage cdf', 'home equity cdf', 'debt cdf', 'hs degree',
                'hs degree male', 'hs degree female', 'male age mean',
                'male_age_median', 'male_age_stdev', 'male age sample weight'.
                'male age samples', 'female age mean', 'female age median',
                'female age stdev', 'female age sample weight', 'female age samples',
                'pct own', 'married', 'married snp', 'separated', 'divorced'],
              dtvpe='object')
```

```
In [5]: df test.columns
Out[5]: Index(['UID', 'BLOCKID', 'SUMLEVEL', 'COUNTYID', 'STATEID', 'state',
                'state ab', 'city', 'place', 'type', 'primary', 'zip code', 'area code',
               'lat', 'lng', 'ALand', 'AWater', 'pop', 'male pop', 'female pop',
               'rent mean', 'rent median', 'rent stdev', 'rent sample weight',
                'rent samples', 'rent gt 10', 'rent gt 15', 'rent gt 20', 'rent gt 25',
                'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50',
                'universe samples', 'used samples', 'hi mean', 'hi median', 'hi stdev',
                'hi sample weight', 'hi samples', 'family mean', 'family median',
                'family stdev', 'family sample weight', 'family samples',
                'hc mortgage mean', 'hc mortgage median', 'hc mortgage stdev',
                'hc mortgage sample weight', 'hc mortgage samples', 'hc mean',
                'hc median', 'hc stdev', 'hc samples', 'hc sample weight',
                'home equity second mortgage', 'second mortgage', 'home equity', 'debt',
                'second mortgage cdf', 'home equity cdf', 'debt cdf', 'hs degree',
                'hs degree male', 'hs degree female', 'male age mean',
                'male age median', 'male age stdev', 'male age sample weight',
                'male age samples', 'female age mean', 'female age median',
               'female age stdev', 'female age sample weight', 'female age samples',
               'pct own', 'married', 'married snp', 'separated', 'divorced'],
              dtvpe='object')
In [6]: len(df train)
Out[6]: 27321
In [7]: len(df test)
Out[7]: 11709
```

In [8]: df_train.head()

Out[8]:

	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	 female_age_mean	female_age_median
0	267822	NaN	140	53	36	New York	NY	Hamilton	Hamilton	City	 44.48629	45.33333
1	246444	NaN	140	141	18	Indiana	IN	South Bend	Roseland	City	 36.48391	37.58333
2	245683	NaN	140	63	18	Indiana	IN	Danville	Danville	City	 42.15810	42.83333
3	279653	NaN	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	 47.77526	50.58333
4	247218	NaN	140	161	20	Kansas	KS	Manhattan	Manhattan City	City	 24.17693	21.58333

5 rows × 80 columns

In [9]: df_test.head()

Out[9]:

•		UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	 female_age_mean	female_age_n
	0	255504	NaN	140	163	26	Michigan	MI	Detroit	Dearborn Heights City	CDP	 34.78682	33
	1	252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City	City	 44.23451	46
	2	276314	NaN	140	15	42	Pennsylvania	PA	Pine City	Millerton	Borough	 41.62426	44
	3	248614	NaN	140	231	21	Kentucky	KY	Monticello	Monticello City	City	 44.81200	48
	4	286865	NaN	140	355	48	Texas	TX	Corpus Christi	Edroy	Town	 40.66618	42

5 rows × 80 columns

In [10]: df_train.describe()

Out[10]:

	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	zip_code	area_code	lat	Ing	ALand
count	27321.000000	0.0	27321.0	27321.000000	27321.000000	27321.000000	27321.000000	27321.000000	27321.000000	2.732100e+04
mean	257331.996303	NaN	140.0	85.646426	28.271806	50081.999524	596.507668	37.508813	-91.288394	1.295106e+08
std	21343.859725	NaN	0.0	98.333097	16.392846	29558.115660	232.497482	5.588268	16.343816	1.275531e+09
min	220342.000000	NaN	140.0	1.000000	1.000000	602.000000	201.000000	17.929085	-165.453872	4.113400e+04
25%	238816.000000	NaN	140.0	29.000000	13.000000	26554.000000	405.000000	33.899064	-97.816067	1.799408e+06
50%	257220.000000	NaN	140.0	63.000000	28.000000	47715.000000	614.000000	38.755183	-86.554374	4.866940e+06
75%	275818.000000	NaN	140.0	109.000000	42.000000	77093.000000	801.000000	41.380606	-79.782503	3.359820e+07
max	294334.000000	NaN	140.0	840.000000	72.000000	99925.000000	989.000000	67.074017	-65.379332	1.039510e+11

8 rows × 74 columns

In [11]: df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27321 entries, 0 to 27320
Data columns (total 80 columns):

# 	Column	Non-Null Count	Dtype
0	UID	27321 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	27321 non-null	int64
3	COUNTYID	27321 non-null	int64
4	STATEID	27321 non-null	int64
5	state	27321 non-null	object
6	state_ab	27321 non-null	object
7	city	27321 non-null	object
8	place	27321 non-null	object
9	type	27321 non-null	object
10	primary	27321 non-null	object
11	zip_code	27321 non-null	int64
12	area_code	27321 non-null	int64
13	lat	27321 non-null	float64
14	lng	27321 non-null	float64
15	ALand	27321 non-null	float64
16	AWater	27321 non-null	int64
17	pop	27321 non-null	int64
18	male_pop	27321 non-null	int64
19	female_pop	27321 non-null	int64
20	rent_mean	27007 non-null	float64
21	rent_median	27007 non-null	float64
22	rent_stdev	27007 non-null	float64
23	rent_sample_weight	27007 non-null	float64
24	rent_samples	27007 non-null	float64
25	rent_gt_10	27007 non-null	float64
26	rent_gt_15	27007 non-null	float64
27	rent_gt_20	27007 non-null	float64
28	rent_gt_25	27007 non-null	float64
29	rent_gt_30	27007 non-null	float64
30	rent_gt_35	27007 non-null	float64
31	rent_gt_40	27007 non-null	float64
32	rent_gt_50	27007 non-null	float64
33	universe_samples	27321 non-null	int64
34	used_samples	27321 non-null	int64
35	hi_mean	27053 non-null	float64

36	hi_median	27053	non-null	float64
37	hi_stdev	27053	non-null	float64
38	hi_sample_weight	27053	non-null	float64
39	hi_samples	27053	non-null	float64
40	family_mean	27023	non-null	float64
41	<pre>family_median</pre>	27023	non-null	float64
42	<pre>family_stdev</pre>	27023	non-null	float64
43	family_sample_weight	27023	non-null	float64
44	family_samples	27023	non-null	float64
45	hc_mortgage_mean	26748	non-null	float64
46	hc_mortgage_median	26748	non-null	float64
47	hc_mortgage_stdev	26748	non-null	float64
48	<pre>hc_mortgage_sample_weight</pre>	26748	non-null	float64
49	hc_mortgage_samples	26748	non-null	float64
50	hc_mean	26721	non-null	float64
51	hc_median	26721	non-null	float64
52	hc_stdev	26721	non-null	float64
53	hc_samples	26721	non-null	float64
54	hc_sample_weight	26721	non-null	float64
55	home_equity_second_mortgage	26864	non-null	float64
56	second_mortgage	26864	non-null	float64
57	home_equity	26864	non-null	float64
58	debt	26864	non-null	float64
59	second_mortgage_cdf	26864	non-null	float64
60	home_equity_cdf	26864	non-null	float64
61	debt_cdf	26864	non-null	float64
62	hs_degree	27131	non-null	float64
63	hs_degree_male	27121	non-null	float64
64	hs_degree_female	27098	non-null	float64
65	male_age_mean	27132	non-null	float64
66	male_age_median	27132	non-null	float64
67	male_age_stdev	27132	non-null	float64
68	male_age_sample_weight	27132	non-null	float64
69	male_age_samples	27132	non-null	float64
70	female_age_mean	27115	non-null	float64
71	female_age_median	27115	non-null	float64
72	female_age_stdev	27115	non-null	float64
73	female_age_sample_weight	27115	non-null	float64
74	female_age_samples		non-null	float64
75	pct_own		non-null	float64
76	married		non-null	float64
77	married_snp		non-null	float64

78 separated 27130 non-null float64 79 divorced 27130 non-null float64

dtypes: float64(62), int64(12), object(6)

memory usage: 16.7+ MB

In [12]: df_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11709 entries, 0 to 11708
Data columns (total 80 columns):

# 	Column	Non-Null Count	Dtype
0	UID	11709 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	11709 non-null	int64
3	COUNTYID	11709 non-null	int64
4	STATEID	11709 non-null	int64
5	state	11709 non-null	object
6	state_ab	11709 non-null	object
7	city	11709 non-null	object
8	place	11709 non-null	object
9	type	11709 non-null	object
10	primary	11709 non-null	object
11	zip_code	11709 non-null	int64
12	area_code	11709 non-null	int64
13	lat	11709 non-null	float64
14	lng	11709 non-null	float64
15	ALand	11709 non-null	int64
16	AWater	11709 non-null	int64
17	pop	11709 non-null	
18	male_pop	11709 non-null	
19	female_pop	11709 non-null	
20	rent_mean	11561 non-null	float64
21	rent_median	11561 non-null	float64
22	rent_stdev	11561 non-null	float64
23	rent_sample_weight	11561 non-null	float64
24	rent_samples	11561 non-null	float64
25	rent_gt_10	11560 non-null	float64
26	rent_gt_15	11560 non-null	float64
27	rent_gt_20	11560 non-null	float64
28	rent_gt_25	11560 non-null	float64
29	rent_gt_30	11560 non-null	float64
30	rent_gt_35	11560 non-null	float64
31	rent_gt_40	11560 non-null	
32	rent_gt_50	11560 non-null	
33	universe_samples	11709 non-null	
34	used_samples	11709 non-null	
35	hi_mean	11587 non-null	float64

36	hi_median		non-null	float64
37	hi_stdev		non-null	float64
38	hi_sample_weight		non-null	float64
39	hi_samples		non-null	float64
40	family_mean	11573	non-null	float64
41	<pre>family_median</pre>	11573	non-null	float64
42	<pre>family_stdev</pre>	11573	non-null	float64
43	<pre>family_sample_weight</pre>	11573	non-null	float64
44	<pre>family_samples</pre>	11573	non-null	float64
45	hc_mortgage_mean	11441	non-null	float64
46	hc_mortgage_median	11441	non-null	float64
47	<pre>hc_mortgage_stdev</pre>	11441	non-null	float64
48	<pre>hc_mortgage_sample_weight</pre>	11441	non-null	float64
49	<pre>hc_mortgage_samples</pre>	11441	non-null	float64
50	hc_mean	11419	non-null	float64
51	hc_median	11419	non-null	float64
52	hc_stdev	11419	non-null	float64
53	hc_samples	11419	non-null	float64
54	hc_sample_weight	11419	non-null	float64
55	home_equity_second_mortgage	11489	non-null	float64
56	second_mortgage	11489	non-null	float64
57	home_equity	11489	non-null	float64
58	debt	11489	non-null	float64
59	second_mortgage_cdf	11489	non-null	float64
60	home_equity_cdf	11489	non-null	float64
61	debt_cdf	11489	non-null	float64
62	hs_degree	11624	non-null	float64
63	hs_degree_male	11620	non-null	float64
64	hs_degree_female	11604	non-null	float64
65	male_age_mean	11625	non-null	float64
66	male_age_median	11625	non-null	float64
67	male_age_stdev	11625	non-null	float64
68	male_age_sample_weight	11625	non-null	float64
69	male_age_samples	11625	non-null	float64
70	female_age_mean	11613	non-null	float64
71	female_age_median	11613	non-null	float64
72	female_age_stdev	11613	non-null	float64
73	female_age_sample_weight	11613	non-null	float64
74	female_age_samples	11613	non-null	float64
75	pct_own	11587	non-null	float64
76	married	11625	non-null	float64
77	married_snp	11625	non-null	float64
	- -			

```
78 separated 11625 non-null float64
79 divorced 11625 non-null float64
```

dtypes: float64(61), int64(13), object(6)

memory usage: 7.1+ MB

2. Figure out the primary key and look for the requirement of indexing

```
In [13]: df_train.set_index(keys=['UID'],inplace=True)
    df_test.set_index(keys=['UID'],inplace=True)
```

In [14]: df_train.head()

Out[14]:

	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	 female_age_mean	female_age_n
U	ID											
26782	22 NaN	140	53	36	New York	NY	Hamilton	Hamilton	City	tract	 44.48629	45
2464	14 NaN	140	141	18	Indiana	IN	South Bend	Roseland	City	tract	 36.48391	37
2456	NaN	140	63	18	Indiana	IN	Danville	Danville	City	tract	 42.15810	42
2796	53 NaN	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	tract	 47.77526	50
2472	18 NaN	140	161	20	Kansas	KS	Manhattan	Manhattan City	City	tract	 24.17693	21

5 rows × 79 columns

4

In [15]: df_test.head()

Out[15]:

	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	 female_age_mean	female _.
UID												
255504	NaN	140	163	26	Michigan	MI	Detroit	Dearborn Heights City	CDP	tract	 34.78682	
252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City	City	tract	 44.23451	
276314	NaN	140	15	42	Pennsylvania	PA	Pine City	Millerton	Borough	tract	 41.62426	
248614	NaN	140	231	21	Kentucky	KY	Monticello	Monticello City	City	tract	 44.81200	
286865	NaN	140	355	48	Texas	TX	Corpus Christi	Edroy	Town	tract	 40.66618	
5 rows × 79 columns												

3. Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

```
In [16]: missing_list_train = df_train.isnull().sum() * 100/len(df_train)
```

In [19]: missing_values_df_train[missing_values_df_train['Percentage of Missing Values'] > 0][:10]

Out[19]:

Percentage of Missing Values

100.000000
2.196113
2.196113
2.196113
2.196113
2.196113
2.097288
2.097288
2.097288
2.097288

```
In [20]: missing_list_test = df_test.isnull().sum() *100/len(df_train)
```

```
In [21]: missing_values_df_test = pd.DataFrame(missing_list_test,columns=['Percentage of Missing Values'])
```

In [22]: missing_values_df_test.sort_values(by='Percentage of Missing Values',inplace=True,ascending=False)

In [23]: missing_values_df_test[missing_values_df_test['Percentage of Missing Values']>0][:10]

Out[23]:

Percentage of Missing Values

BLOCKID	42.857143
hc_samples	1.061455
hc_mean	1.061455
hc_median	1.061455
hc_stdev	1.061455
hc_sample_weight	1.061455
hc_mortgage_mean	0.980930
hc_mortgage_stdev	0.980930
hc_mortgage_sample_weight	0.980930
hc_mortgage_samples	0.980930

```
In [24]: df_train.drop(columns=['BLOCKID','SUMLEVEL'],inplace=True)
# BLOCKID can be dropped, since it has 100% missing Values
# SUMLEVEL can be dropped, since it does not have any predictive power and no variance
```

```
In [25]: df_test.drop(columns=['BLOCKID','SUMLEVEL'],inplace=True)
# BLOCKID can be dropped, since it has 43% missing Values
# SUMLEVEL can be dropped, since it does not have any predictive power and no variance
```

```
In [26]: # Imputing the missing values in other columns with mean
missing_train_cols = []
for col in df_train.columns:
    if df_train[col].isna().sum() != 0:
        missing_train_cols.append(col)
print(missing_train_cols)
```

['rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median', 'family_stdev', 'family_sample_weight', 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_sample s', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt', 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_median', 'male_age_stdev', 'male_age_sample_weight', 'male_age_sample s', 'female_age_mean', 'female_age_median', 'female_age_stdev', 'female_age_sample_weight', 'female_age_samples', 'p ct_own', 'married', 'married_snp', 'separated', 'divorced']

```
In [27]: missing_test_cols = []
for col in df_test.columns:
    if df_test[col].isna().sum() != 0:
        missing_test_cols.append(col)
print(missing_test_cols)
```

['rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_g t_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median', 'family_stdev', 'family_sample_weight', 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_sample s', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt', 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_median', 'male_age_stdev', 'male_age_sample_weight', 'male_age_samples', 'p ct own', 'married', 'married snp', 'separated', 'divorced']

```
In [28]: for col in df_train.columns:
    if col in (missing_train_cols):
        df_train[col].replace(np.nan, df_train[col].mean(),inplace=True)
```

```
In [29]: for col in df_test.columns:
    if col in (missing_test_cols):
        df_test[col].replace(np.nan, df_test[col].mean(),inplace=True)
In [30]: df_train.isnull().sum().sum()
Out[30]: 0
In [31]: df_test.isnull().sum().sum()
Out[31]: 0
```

Exploratory Data Analysis (EDA):

4.Perform debt analysis. You may take the following steps:

- a) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest a nd percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent
- b) Use the following bad debt equation: Bad Debt = P (Second Mortgage n Home Equity Loan) Bad Debt = second_m ortgage + home_equity home_equity_second_mortgage
- c) Create pie charts to show overall debt and bad debt
- d) Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities
- e) Create a collated income distribution chart for family income, house hold income, and remaining income
- a) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent

```
In [32]: from pandasql import sqldf
In [33]: |q1 = "select place,pct own, second mortgage, lat, lng from df train where pct own > 0.10 and second mortgage < 0.5 order
In [34]: pysqldf = lambda q: sqldf(q, globals())
In [35]:
         df train location mort pct = pysqldf(q1)
In [36]: | df_train_location mort pct.head()
Out[36]:
                     place pct_own second_mortgage
                                                         lat
                                                                   Ing
              Worcester City
                           0.20247
                                            0.43363 42.254262 -71.800347
                Harbor Hills
                           0.15618
                                            0.31818 40.751809 -73.853582
                Glen Burnie
                           0.22380
                                            0.30212 39.127273 -76.635265
           3 Egypt Lake-leto
                           0.11618
                                            0.28972 28.029063 -82.495395
                Lincolnwood
                           0.14228
                                            0.28899 41.967289 -87.652434
         import plotly.express as px
In [37]:
In [38]: import plotly.graph objects as go
In [39]: | fig = go.Figure(data=go.Scattergeo(
              lat = df train location mort pct['lat'],
              lon = df train location mort pct['lng']),
```

```
In [40]: fig.update layout(
             geo=dict(
                 scope = 'north america',
                 showland = True,
                 landcolor = "rgb(212, 212, 212)",
                 subunitcolor = "rgb(255, 255, 255)",
                 countrycolor = "rgb(255, 255, 255)",
                 showlakes = True,
                 lakecolor = "rgb(255, 255, 255)",
                 showsubunits = True,
                 showcountries = True,
                 resolution = 50,
                 projection = dict(
                     type = 'conic conformal',
                     rotation lon = -100
                 ),
                 lonaxis = dict(
                     showgrid = True,
                     gridwidth = 0.5,
                     range = [-140.0, -55.0],
                     dtick = 5
                 lataxis = dict(
                     showgrid = True,
                     gridwidth = 0.5,
                     range = [20.0, 60.0],
                     dtick = 5
             ),
             title = 'Top 2500 locations with second mortgage is the highest and percent ownership is above 10 percent')
         fig.show()
```

Top 2500 locations with second mortgage is the highest and percent ownership is above 10 percent

b) Use the following bad debt equation: Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage

In [41]: | df_train['bad_debt'] = df_train['second_mortgage']+df_train['home_equity']-df_train['home_equity_second_mortgage']

c) Create pie charts to show overall debt and bad debt

```
In [42]: df_train['bins'] = pd.cut(df_train['bad_debt'],bins=[0,0.10,1],labels=['less than 50%','50-100%'])
In [43]: df_train.groupby(['bins']).size().plot(kind='pie',subplots=True,startangle=90,autopct='%1.1f%%')
    plt.axis('equal')
    plt.title('Overall Debt and Bad Debt')
    plt.show()
```

Overall Debt and Bad Debt

d) Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities

```
In [44]: cols = []
         df train.columns
Out[44]: Index(['COUNTYID', 'STATEID', 'state', 'state ab', 'city', 'place', 'type',
                 'primary', 'zip code', 'area_code', 'lat', 'lng', 'ALand', 'AWater',
                 'pop', 'male pop', 'female pop', 'rent mean', 'rent median',
                 'rent stdev', 'rent sample weight', 'rent samples', 'rent gt 10',
                 'rent gt 15', 'rent gt 20', 'rent gt 25', 'rent gt 30', 'rent gt 35',
                 'rent gt 40', 'rent gt 50', 'universe samples', 'used samples',
                 'hi mean', 'hi median', 'hi stdev', 'hi sample weight', 'hi samples',
                 'family mean', 'family median', 'family stdev', 'family sample weight',
                 'family samples', 'hc mortgage mean', 'hc mortgage median',
                 'hc mortgage stdev', 'hc mortgage sample weight', 'hc mortgage samples',
                 'hc mean', 'hc median', 'hc stdev', 'hc samples', 'hc sample weight',
                 'home equity second mortgage', 'second mortgage', 'home equity', 'debt',
                 'second mortgage cdf', 'home equity cdf', 'debt cdf', 'hs degree',
                 'hs degree male', 'hs degree female', 'male age mean',
                 'male age median', 'male age stdev', 'male age sample weight',
                 'male age samples', 'female age mean', 'female age median',
                 'female age stdev', 'female age sample weight', 'female age samples',
                 'pct own', 'married', 'married snp', 'separated', 'divorced',
                 'bad debt', 'bins'],
               dtvpe='object')
In [45]: | cols = ['second mortgage', 'home equity', 'debt', 'bad dept']
         df box hamilton = df train.loc[df train.city == 'Hamilton']
         df box manhattan = df train.loc[df train.city == 'Manhattan']
         df box city = pd.concat([df box hamilton,df box manhattan])
```

In [46]: df_box_city.head()

Out[46]:

•	COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code	area_code	 female_age_stdev	female_age_sa
UID												
267822	53	36	New York	NY	Hamilton	Hamilton	City	tract	13346	315	 22.51276	
263797	21	34	New Jersey	NJ	Hamilton	Yardville	City	tract	8610	609	 24.05831	
270979	17	39	Ohio	ОН	Hamilton	Hamilton City	Village	tract	45015	513	 22.66500	
259028	95	28	Mississippi	MS	Hamilton	Hamilton	CDP	tract	39746	662	 22.79602	
270984	17	39	Ohio	ОН	Hamilton	New Miami	Village	tract	45013	513	 24.55724	
5 rows >	< 79 columns	3										
4												>

```
In [47]: plt.figure(figsize=(10,5))
sns.boxplot(data=df_box_city,x='second_mortgage',y='city',width=0.5,palette='Set3')
plt.show()
```



```
In [48]: plt.figure(figsize=(10,5))
sns.boxplot(data=df_box_city,x='home_equity',y='city',width=0.5,palette='Set3')
plt.show()
```



```
In [49]: plt.figure(figsize=(10,5))
sns.boxplot(data=df_box_city,x='debt',y='city',width=0.5,palette='Set3')
plt.show()
```



```
In [50]: plt.figure(figsize=(10,5))
sns.boxplot(data=df_box_city,x='bad_debt',y='city',width=0.5,palette='Set3')
plt.show()
```


Manhattan has higher metrices compared to Hamilton

e) Create a collated income distribution chart for family income, house hold income, and remaining income

```
In [51]: sns.distplot(df_train['hi_mean'])
    plt.title('Household Income Distribution Chart')
    plt.show()
```

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).


```
In [52]: sns.distplot(df_train['family_mean'])
    plt.title('Family Income Distribution Chart')
    plt.show()
```

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).


```
In [53]: sns.distplot(df_train['family_mean']-df_train['hi_mean'])
    plt.title('Remaining Income Distribution Chart')
    plt.show()
```

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

Income Distribution has Normal Distribution

Project Task: Week 2

Exploratory Data Analysis (EDA):

- 1. Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):
 - a) Use pop and ALand variables to create a new field called population density
 - b) Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age
 - c) Visualize the findings using appropriate chart type
- 2. Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.
 - a) Analyze the married, separated, and divorced population for these population brackets
 - b) Visualize using appropriate chart type
- 3. Please detail your observations for rent as a percentage of income at an overall level, and for different states.
- 4. Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.
- 1. Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

C:\Users\Vinosh\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

C:\Users\Vinosh\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).


```
In [55]: fig,(ax1,ax2)=plt.subplots(2,1)
    sns.distplot(df_train['male_age_mean'],ax=ax1)
    sns.distplot(df_train['female_age_mean'],ax=ax2)
    plt.subplots_adjust(wspace=0.8,hspace=0.8)
    plt.show()
```

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

C:\Users\Vinosh\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

a) Use pop and ALand variables to create a new field called population density

```
In [56]: df_train['pop_density'] = df_train['pop']/df_train['ALand']
```

```
In [58]: sns.distplot(df_train['pop_density'])
    plt.title('Population Density')
    plt.show()
```

C:\Users\Vinosh\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

b) Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age

UID					
267822	44.00000	45.33333	2612	2618	44.666665
246444	32.00000	37.58333	1349	1284	34.791665
245683	40.83333	42.83333	3643	3238	41.833330
279653	48.91667	50.58333	1141	1559	49.750000
247218	22.41667	21.58333	2586	3051	22.000000

c) Visualize the findings using appropriate chart type

```
In [62]: sns.distplot(df_train['age_median'])
    plt.title('Median Age Distribution')
    plt.show()
```

C:\Users\Vinosh\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).


```
In [63]: sns.boxplot(df_train['age_median'])
    plt.title('Population Density')
    plt.show()
```

C:\Users\Vinosh\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning:

Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data `, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

2. Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.

```
In [64]: df_train['pop'].describe()
Out[64]: count
                    27321.000000
                     4316.032685
          mean
                     2169.226173
          std
          min
                        0.000000
          25%
                     2885.000000
          50%
                     4042.000000
          75%
                     5430.000000
                    53812.000000
          max
          Name: pop, dtype: float64
In [65]: | df train['pop bins'] = pd.cut(df train['pop'], bins=5, labels=['very low', 'low', 'medium', 'high', 'very high'])
In [66]: df_train[['pop','pop_bins']]
Out[66]:
                  pop
                         pop_bins
              UID
                   5230
           267822
                          very low
                   2633
           246444
                          very low
           245683
                   6881
                          very low
           279653
                   2700
                          very low
           247218
                    5637
                          very low
                   1847
           279212
                          very low
           277856
                   4155
                          very low
           233000
                   2829
                          very low
           287425 11542
                              low
           265371
                   3726
                          very low
          27321 rows × 2 columns
```

Out[68]:

married separated divorced

_	pop_bins			
	very low	27058	27058	27058
	low	246	246	246
	medium	9	9	9
	high	7	7	7
	very high	1	1	1

```
In [69]: df_train.groupby(by='pop_bins')[['married','separated','divorced']].agg(['mean','median'])
```

Out[69]:

	married		separated		divorced	
	mean	median	mean	median	mean	median
pop_bins						
very low	0.507548	0.524680	0.019126	0.013650	0.100504	0.096020
low	0.584894	0.593135	0.015833	0.011195	0.075348	0.070045
medium	0.655737	0.618710	0.005003	0.004120	0.065927	0.064890
high	0.503359	0.335660	0.008141	0.002500	0.039030	0.010320
very high	0.734740	0.734740	0.004050	0.004050	0.030360	0.030360

- 1. Very high population group has more married people and less percantage of separated and divorced couples
- 2. In very low population groups, there are more divorced people
- b) Visualize using appropriate chart type

```
In [70]: plt.figure(figsize=(10,5))
    pop_bin_married = df_train.groupby(by='pop_bins')[['married','separated','divorced']].agg('mean')
    pop_bin_married.plot(figsize=(20,8))
    plt.legend(loc='best')
    plt.show()
```

<Figure size 1000x500 with 0 Axes>

3. Please detail your observations for rent as a percentage of income at an overall level, and for different states.

```
In [71]: rent_state_mean = df_train.groupby(by='state')['rent_mean'].agg(['mean'])
rent_state_mean.head()
```

Out[71]:

mean

state

Alabama 774.004927

Alaska 1185.763570

Arizona 1097.753511

Arkansas 720.918575

California 1471.133857

```
In [72]: income_state_mean = df_train.groupby(by='state')['family_mean'].agg(['mean'])
income_state_mean.head()
```

Out[72]:

mean

state

Alabama 67030.064213

Alaska 92136.545109

Arizona 73328.238798

Arkansas 64765.377850

California 87655.470820

```
In [73]: rent_perc_of_income = rent_state_mean['mean']/income_state_mean['mean']
         rent_perc_of_income.head(10)
Out[73]: state
         Alabama
                                 0.011547
         Alaska
                                 0.012870
         Arizona
                                 0.014970
         Arkansas
                                 0.011131
         California
                                 0.016783
         Colorado
                                 0.013529
         Connecticut
                                 0.012637
         Delaware
                                 0.012929
         District of Columbia
                                 0.013198
         Florida
                                 0.015772
         Name: mean, dtype: float64
In [74]: sum(df_train['rent_mean'])/sum(df_train['family_mean'])
Out[74]: 0.013358170721473864
```

4. Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

```
In [75]: df train.columns
Out[75]: Index(['COUNTYID', 'STATEID', 'state', 'state ab', 'city', 'place', 'type',
                 'primary', 'zip code', 'area code', 'lat', 'lng', 'ALand', 'AWater',
                 'pop', 'male pop', 'female pop', 'rent mean', 'rent median',
                 'rent stdev', 'rent sample weight', 'rent samples', 'rent gt 10',
                 'rent gt 15', 'rent gt 20', 'rent gt 25', 'rent gt 30', 'rent gt 35',
                 'rent gt 40', 'rent gt 50', 'universe samples', 'used samples',
                 'hi mean', 'hi median', 'hi stdev', 'hi sample weight', 'hi samples',
                 'family mean', 'family median', 'family stdev', 'family sample weight',
                 'family samples', 'hc mortgage mean', 'hc mortgage median',
                 'hc mortgage stdev', 'hc mortgage_sample_weight', 'hc_mortgage_samples',
                 'hc mean', 'hc median', 'hc stdev', 'hc samples', 'hc sample weight',
                 'home equity second mortgage', 'second mortgage', 'home equity', 'debt',
                 'second mortgage cdf', 'home equity cdf', 'debt cdf', 'hs degree',
                 'hs degree male', 'hs degree female', 'male age mean',
                 'male age median', 'male age stdev', 'male age sample weight',
                 'male age samples', 'female age mean', 'female age median',
                 'female age stdev', 'female age sample weight', 'female age samples',
                 'pct own', 'married', 'married snp', 'separated', 'divorced',
                 'bad debt', 'bins', 'pop density', 'age median', 'pop bins'],
               dtvpe='object')
In [76]: cor = df train[['COUNTYID','STATEID','zip code','pop','family mean','second mortgage','home equity','debt',
                          'hs degree', 'age median', 'pct own', 'married', 'separated', 'divorced']].corr()
```

```
In [77]: plt.figure(figsize=(20,10))
sns.heatmap(cor,annot = True,cmap = 'coolwarm')
plt.show()
```


- 1. High positive correaltion is noticed between pop, male_pop and female_pop
- 2. High positive correaltion is noticed between rent mean, hi mean, family mean, hc mean

Project Task: Week 3

Data Pre-processing:

- 1. The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables. 2. Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data. Following are the list of latent variables:
- · Highschool graduation rates
- · Median population age
- Second mortgage statistics
- Percent own
- Bad debt expense

In [78]:

from sklearn.decomposition import FactorAnalysis
from factor_analyzer import FactorAnalyzer

```
In [79]: fa = FactorAnalyzer(n_factors=5)
    fa.fit_transform(df_train.select_dtypes(exclude=('object','category')))
    fa.loadings_
```

```
Out[79]: array([[-1.12589165e-01, 1.95646462e-02, -2.39331065e-02,
                 -6.27632576e-02, 4.23474724e-021,
                [-1.10186762e-01, 1.33506215e-02, 2.79651247e-02,
                 -1.49825858e-01, 1.10838804e-01],
                [-8.28678641e-02, 5.16372369e-02, -1.36451867e-01,
                 -4.98918626e-02. -1.04024839e-01].
                [ 1.80961146e-02, 1.92013750e-02, 5.81329804e-03,
                  2.64842729e-02, -6.12442488e-03],
                [ 9.02324755e-02, -9.72544268e-02, -6.54601264e-02,
                 -1.33145893e-01, -1.48594590e-01],
                [-1.07335681e-02, -4.12376813e-02, 1.45853484e-01,
                  8.80433491e-03, 1.08227567e-01],
                [-4.28796974e-02, -2.09780212e-02, 3.66726851e-02,
                 -9.45597345e-02, 5.91380498e-02],
                [-2.44243072e-03, -1.53245405e-02, -2.68300788e-03,
                 -4.52473004e-02, 2.37240637e-02],
                [ 7.92164316e-02, 9.57453295e-01, -8.71151617e-02,
                 -6.59924038e-03, -3.97273194e-02],
                [7.39808195e-02, 9.18750503e-01, -1.08834837e-01,
                 -2.79371589e-02, -3.93153647e-02],
                [ 8.06598893e-02, 9.47839216e-01, -6.08006502e-02,
                  1.53627080e-02, -3.86977273e-02],
                [7.70052110e-01, 9.84675423e-03, -3.71249731e-02,
                  1.14949033e-01, -1.23784685e-01],
                [7.18615877e-01, 6.24980466e-03, -4.59787397e-02,
                  1.09109686e-01, -1.35301910e-01],
                [ 7.07647243e-01, 2.46625402e-02, -1.00860864e-02,
                  1.04472486e-01, 7.72381241e-02],
                [-1.34545492e-01, 3.36809296e-01, -4.87894961e-01,
                 -4.15446193e-02, 3.17608528e-01],
                [ 2.31079707e-01, 4.37729793e-01, -6.40209212e-01,
                 -2.52311017e-02, 3.47216227e-01],
                [-4.52068114e-02, 3.51263837e-02, 3.07537011e-02,
                  4.44793494e-01, -1.63273406e-01],
                [-2.50717029e-02, 1.70166793e-02, 4.57227084e-02,
                  6.76083841e-01, -1.55256749e-01],
                [-3.90694436e-02, -1.67460874e-02, 8.13962691e-02,
                  8.36389104e-01, -9.18259801e-02],
                [-5.14161948e-02, -3.57207133e-02, 1.10795166e-01,
                  9.25123723e-01, -4.44866476e-021,
                [-6.08589985e-02, -4.41860613e-02, 1.35794025e-01,
```

```
9.53019910e-01, -2.21548664e-02],
[-4.57771160e-02, -5.25526117e-02, 1.41019874e-01,
  9.32702625e-01. -5.86526030e-071.
[-4.19486038e-02, -5.90387634e-02, 1.28851786e-01,
  8.87316685e-01, 1.05894282e-02],
[-2.47894634e-02, -7.29670549e-02, 9.41510484e-02,
 7.79023672e-01. 2.95352803e-021.
[ 2.12258447e-01, 4.65992339e-01, -6.14495943e-01,
 -2.47660016e-02, 3.66644520e-01],
[ 2.33057238e-01, 4.47057843e-01, -6.28263418e-01,
-2.71547710e-02, 3.43419607e-01],
[ 7.85157086e-01, 4.91249255e-02, 1.44540484e-01,
-2.05217626e-01, -1.54523360e-01],
[7.10324884e-01, 4.99730438e-02, 1.32239991e-01,
 -2.19171864e-01, -2.10505572e-01],
[ 8.61780938e-01, 4.35044832e-02, 1.65839096e-01,
 -1.19850813e-01. 3.16733557e-02].
[-2.23443273e-01, 8.46259553e-01, -4.61177211e-02,
  6.88599244e-02, 2.27742316e-01],
[ 1.43837555e-01, 9.53197411e-01, 2.27887433e-02,
 -4.57890463e-02, 1.00796445e-01],
[ 8.30286472e-01, 3.42026001e-02, 1.61105999e-01,
 -2.04570321e-01, -7.48710515e-02],
[ 7.94476569e-01, 2.83818596e-02, 1.51219547e-01,
 -2.07681490e-01, -9.12497107e-02],
[ 8.11481647e-01, 4.32314892e-02, 1.43645559e-01,
 -1.07778260e-01, 5.79540142e-02],
[-3.37741906e-01, 8.64927620e-01, 3.58933696e-02,
  9.07183945e-02, 4.46327252e-02],
[ 5.03572666e-02, 9.35515342e-01, 1.51475401e-01,
 -2.51501271e-02, -9.34471599e-02],
[ 9.78242236e-01, -3.31490281e-02, -1.05261173e-01,
  4.50364233e-02, 7.37362022e-02],
[ 9.59137188e-01, -3.90023001e-02, -1.20630339e-01,
  4.52591414e-02, 6.64877229e-02],
[ 8.14087168e-01, 2.23057306e-03, 7.66518502e-02,
  2.02747427e-02, 1.27634817e-01],
[-4.15354001e-01, 7.18339595e-01, 3.40068079e-01,
 -7.18402753e-02, -2.77950528e-01],
[ 7.64912732e-02, 7.24900618e-01, 2.74193199e-01,
 -4.83952665e-02, -3.52988266e-01],
[ 9.10390865e-01, -5.36541210e-02, -4.68641894e-02,
```

```
-7.64182289e-04, 1.63870465e-011.
[ 8.73011863e-01, -5.30302292e-02, -5.89943137e-02,
 -1.58989763e-03, 1.52417542e-01],
[ 7.55087660e-01, -3.56133725e-03, 5.39542547e-02,
 4.24181451e-03, 2.58043474e-01],
[-1.23469884e-01, 6.07438127e-01, 6.33039219e-01,
 -2.14798817e-02, 2.47973916e-011,
[-3.42866892e-01, 5.59526281e-01, 5.88213008e-01,
 -2.51533511e-02, 2.18419885e-01],
[-1.60867218e-01, -1.53062636e-02, -1.57026580e-01,
 1.09243756e-01. -6.61660830e-011.
[-1.37306763e-01, -2.17250667e-02, -1.58408927e-01,
 1.25156193e-01, -6.71630803e-01],
[ 2.45096187e-01, -2.54584596e-02, -2.66691407e-02,
 9.53148453e-02, -6.42510825e-01],
[ 2.03988663e-01, 7.85172830e-02, -3.01656217e-01,
 2.28379447e-02. -6.29223339e-011.
[ 1.08926072e-01, -6.34332386e-02, -3.36565230e-02,
 -9.49480417e-02, 6.81473815e-01],
[-2.63787620e-01, -6.43280757e-03, -3.58792210e-02,
 -9.37962495e-02, 6.47817018e-01],
[-2.15717048e-01, -7.36588949e-02, 3.50113228e-01,
-1.95201590e-02, 6.36783755e-01],
[ 3.94306147e-01, 6.09565684e-02, 2.55337862e-01,
 -2.20362097e-01, -1.84248076e-01],
[ 4.07877889e-01, 6.27256516e-02, 2.23926907e-01,
 -2.10028735e-01, -1.71989219e-01],
[ 3.53156876e-01, 5.36715654e-02, 2.69603565e-01,
-2.16933216e-01, -1.80072062e-01],
[ 2.33537264e-01, -4.91732958e-02, 8.14450787e-01,
 9.36688926e-02, 3.27131934e-01],
[ 2.40298202e-01, -3.38140117e-02, 8.31496951e-01,
 7.52417503e-02, 2.46323597e-01],
[-6.71839476e-02, 6.58504524e-02, 5.86207673e-01,
 8.72955174e-02, 9.12541343e-02],
[ 5.59835552e-02, 8.17918708e-01, -1.78458350e-01,
 -1.55949439e-02, -3.34299733e-02],
[ 7.16426403e-02, 9.23428548e-01, -1.07142695e-01,
-2.78635385e-02, -4.35991115e-02],
[ 1.92496945e-01, -4.75870400e-02, 8.03173185e-01,
 1.43492708e-01, 3.33862150e-01],
[ 1.87644433e-01, -3.29941014e-02, 8.58024490e-01,
```

```
1.31329956e-01, 2.55679724e-01],
[-1.02263656e-01, 6.03984253e-02, 4.72982250e-01,
 7.36848367e-02, 1.12273907e-01],
[ 6.14776639e-02, 8.77962739e-01, -1.50410284e-01,
  2.20991026e-02, -4.17158180e-02],
[ 7.83728211e-02, 9.54508776e-01, -5.91095904e-02,
 1.64800910e-02, -4.32590995e-02],
[-3.24381953e-02, 1.11167165e-01, 7.84467411e-01,
 -4.37718523e-02, -2.80931237e-01],
[ 1.76682388e-01, 1.90494238e-01, 5.61405488e-01,
 -1.20746165e-01, -1.32570786e-01],
[-6.37386638e-02, -7.03047917e-02, -2.68934066e-01,
 1.28589791e-01, 1.88507855e-01],
[-1.56051273e-01, -7.08033934e-02, -1.45964500e-01,
 1.24253731e-01, 1.46293109e-01],
[-3.56716294e-01, -5.29910746e-02, 1.47771602e-01,
 2.87196184e-02, 1.13159575e-01],
[ 2.42173831e-01, -2.86199123e-02, -3.25958340e-02,
 1.05027813e-01, -6.55406057e-01],
[ 3.50196741e-01, -1.05016404e-02, -3.95274115e-01,
  5.92876782e-02, 2.91651780e-01],
[ 2.25671545e-01, -3.42672754e-02, 8.92876622e-01,
 1.12426812e-01, 2.67065202e-01]])
```

Project Task: Week 4

Data Modeling:

- 1. Build a linear Regression model to predict the total monthly expenditure for home mortgages loan. Please refer 'deplotment_RE.xlsx'. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location. Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage_mean.
- a) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.
- b) Run another model at State level. There are 52 states in USA.
- c) Keep below considerations while building a linear regression model. Data Modeling:
- Variables should have significant impact on predicting Monthly mortgage and owner costs

- Utilize all predictor variable to start with initial hypothesis
- R square of 60 percent and above should be achieved
- Ensure Multi-collinearity does not exist in dependent variables
- · Test if predicted variable is normally distributed
- 1. Build a linear Regression model to predict the total monthly expenditure for home mortgages loan. Please refer 'deplotment_RE.xlsx'.

 Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location.

 Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage_mean.

```
In [80]: df train.columns
Out[80]: Index(['COUNTYID', 'STATEID', 'state', 'state_ab', 'city', 'place', 'type',
                 'primary', 'zip code', 'area_code', 'lat', 'lng', 'ALand', 'AWater',
                 'pop', 'male pop', 'female pop', 'rent mean', 'rent median',
                 'rent stdev', 'rent sample weight', 'rent samples', 'rent gt 10',
                 'rent gt 15', 'rent gt 20', 'rent gt 25', 'rent gt 30', 'rent gt 35',
                 'rent gt 40', 'rent gt 50', 'universe samples', 'used samples',
                 'hi mean', 'hi median', 'hi stdev', 'hi sample weight', 'hi samples',
                 'family mean', 'family median', 'family stdev', 'family sample weight',
                 'family samples', 'hc mortgage_mean', 'hc_mortgage_median',
                 'hc mortgage stdev', 'hc mortgage sample weight', 'hc mortgage samples',
                 'hc mean', 'hc median', 'hc stdev', 'hc samples', 'hc sample weight',
                 'home_equity_second_mortgage', 'second_mortgage', 'home equity', 'debt',
                 'second mortgage cdf', 'home equity cdf', 'debt cdf', 'hs degree',
                 'hs degree male', 'hs degree female', 'male age mean',
                 'male age median', 'male age stdev', 'male age sample weight',
                 'male age samples', 'female age mean', 'female age median',
                 'female age stdev', 'female age sample weight', 'female age samples',
                 'pct own', 'married', 'married snp', 'separated', 'divorced',
                 'bad debt', 'bins', 'pop density', 'age median', 'pop bins'],
               dtvpe='object')
```

```
In [81]: df train['type'].unique()
         type_dict={'type':{'City':1,
                              'Urban':2.
                              'Town':3,
                              'CDP':4,
                              'Village':5,
                              'Borough':6}}
         df train.replace(type dict,inplace=True)
In [82]: df train['type'].unique()
Out[82]: array([1, 2, 3, 4, 5, 6], dtype=int64)
In [83]: df test.replace(type dict,inplace=True)
In [84]: df test['type'].unique()
Out[84]: array([4, 1, 6, 3, 5, 2], dtype=int64)
In [85]: | feature_cols = ['COUNTYID','STATEID','zip_code','type','pop','family_mean','second_mortgage','home_equity','debt',
                          'hs degree', 'age median', 'pct own', 'married', 'separated', 'divorced'l
In [86]: x train = df train[feature cols]
         y train = df train['hc mortgage mean']
In [87]: x test = df test[feature cols]
         y test = df test['hc mortgage mean']
In [88]: from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LinearRegression
         from sklearn.metrics import r2 score, mean absolute error, mean squared error, accuracy score
```

```
In [89]: x train.head()
Out[89]:
                   COUNTYID STATEID zip code type pop
                                                          family mean second mortgage home equity debt
                                                                                                            hs degree age median pct own ma
              UID
           267822
                          53
                                   36
                                         13346
                                                  1 5230
                                                          67994.14790
                                                                               0.02077
                                                                                           0.08919 0.52963
                                                                                                              0.89288
                                                                                                                        44.666665
                                                                                                                                  0.79046 0.5
           246444
                         141
                                   18
                                         46616
                                                  1 2633
                                                          50670.10337
                                                                               0.02222
                                                                                           0.04274 0.60855
                                                                                                              0.90487
                                                                                                                        34.791665
                                                                                                                                  0.52483 0.3
           245683
                          63
                                   18
                                                          95262.51431
                                                                               0.00000
                                                                                           0.09512 0.73484
                                                                                                                        41.833330
                                                                                                                                  0.85331 0.6
                                         46122
                                                  1 6881
                                                                                                              0.94288
           279653
                         127
                                   72
                                           927
                                                           56401.68133
                                                                               0.01086
                                                                                           0.01086 0.52714
                                                                                                              0.91500
                                                                                                                        49.750000
                                                                                                                                  0.65037 0.4
                                                  2 2700
           247218
                         161
                                   20
                                                                                                                        22.000000
                                                                                                                                  0.13046 0.1
                                         66502
                                                  1 5637
                                                          54053.42396
                                                                               0.05426
                                                                                           0.05426 0.51938
                                                                                                              1.00000
         sc = StandardScaler()
In [90]:
          x train scaled = sc.fit transform(x train)
          x test scaled = sc.fit transform(x test)
          a) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.
In [91]: linreg = LinearRegression()
         linreg.fit(x train scaled,y train)
In [92]:
Out[92]: LinearRegression()
In [93]: y pred = linreg.predict(x test scaled)
         print('overall R2 score of linear regression model',r2 score(y test,y pred))
In [94]:
          overall R2 score of linear regression model 0.7348210754610929
```

```
In [98]: for i in [20,1,45]:
             print('State ID-',i)
             x train nation = df train[df train['COUNTYID']==i][feature cols]
             v train nation = df train[df train['COUNTYID']==i]['hc mortgage mean']
             x test nation = df test[df test['COUNTYID']==i][feature cols]
             v test nation = df test[df test['COUNTYID']==i]['hc mortgage mean']
             x train scaled nation = sc.fit transform(x train nation)
             x test scaled nation = sc.fit transform(x test nation)
             linreg.fit(x train scaled nation,y train nation)
             v pred nation = linreg.predict(x test scaled nation)
             print("Overall R2 score of Linear Regression model for state,",i,":-", r2 score(y test nation,y pred nation))
             print("Overall RMSE of Linear Regression model for state,",i,":-",np.sqrt(mean squared error(y test nation,y pred
             print('\n')
         State ID- 20
         Overall R2 score of Linear Regression model for state, 20 :- 0.6046603766461809
         Overall RMSE of Linear Regression model for state, 20 :- 307.97188999314716
         State ID- 1
         Overall R2 score of Linear Regression model for state, 1 :- 0.8104382475484616
         Overall RMSE of Linear Regression model for state, 1 :- 307.82758618484354
         State ID- 45
         Overall R2 score of Linear Regression model for state, 45 :- 0.7887446497855253
         Overall RMSE of Linear Regression model for state, 45 :- 225.69615420724134
```

```
In [99]: residuals = y_test-y_pred
         residuals
Out[99]: UID
         255504
                   281.969088
         252676
                   -69.935775
         276314
                   190.761969
         248614
                  -157.290627
         286865
                    -9.887017
         238088
                   -67.541646
         242811
                   -41.578757
         250127
                  -127.427569
         241096
                  -330.820475
         287763
                   217.760642
         Name: hc_mortgage_mean, Length: 11709, dtype: float64
```

```
In [100]: plt.hist(residuals)
  plt.show()
```



```
In [101]: sns.distplot(residuals)
plt.show()
```

C:\Users\Vinosh\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

The residuals is Normally Distributed

```
In [102]: plt.scatter(residuals,y_pred)
plt.show()
```


In []: