- 1. Exam 1 grades, qs 1d full marks to all, qs 2 reduction gets full marks if introduction of new literals is mentioned.
- 2. Exactly-1 3SAT solution using 4 dummy literals

given φ , for each clause $(x \lor y \lor z)$, create 4 literals only for this clause, a,b,c,d, and replace the original clause with:

$$(\sim x \lor a \lor b) \land (b \lor y \lor c) \land (c \lor d \lor \sim z)$$

R(~x, a, b)	R(b, y, c)	R(c, d, ~z)
(1, a, b)	(b, 0, c)	(c, d, 1)
(1, a, b)	(b, 0, c)	(c, d, 0)
(1, a, b)	(b, 1, c)	(c, d, 1)
(1, a, b)	(b, 1, c)	(c, d, 0)
(0, a, b)	(b, 0, c)	(c, d, 1)
(0, a, b)	(b, 0, c)	(c, d, 0)
(0, a, b)	(b, 1, c)	(c, d, 1)
(0, a, b)	(b, 1, c)	(c, d, 0)

3. Why Each co-NP-complete problem is the complement of an NP-complete problem, e.g. why TAUT \leq_{p} 3UNSAT but TAUT \leq_{p} ? 3SAT

Proof: Consider $L \in \text{coNP-Complete}$, i.e. L is in coNP and any language in coNP, suppose language A, reduces to L. Now consider L-complement \in NP (by definition), then A-complement can be reduced to L-complement by the same reduction function as was used for $A \le L$.

explanation:

$$\forall x \quad x \in A \text{ iff} \qquad f(x) \in L$$

also means
 $\forall x \quad x \notin A \text{ iff} \qquad f(x) \notin L$
 $\forall x \quad x \in A\text{-complement} \text{ iff} \qquad f(x) \in L\text{-complement}$

But what about A-complement? Does it not reduce to L as well?

```
A ≤<sub>p</sub> L
```

 $a \in A \rightarrow f(a)$, s.t. Machine outputs 1 iff $a \in A$

 $a' \in A$ -complement $\rightarrow f(a')$, s.t. Machine 0 iff $a' \in A$ -complement

TAUT ≤ 3UNSAT: On input φ: output ∼φ

reduction function: negation

TAUT-complement ≤ 3UNSAT

TAUT-complement \leq 3SAT (the same reduction function will work as for TAUT \leq 3UNSAT)

4. If EXP \neq NEXP then P \neq NP (padding technique)

To prove that if P = NP then EXP = NEXP

- Consider L ∈ NTIME(2^{n^c}) <2 to the power n to the power c> that can be decided on NTM, M.
- 2. Now consider the language $L_{pad} = \{ \langle x, 1^{|x|^{n_c}} \rangle \mid x \in L \}$
- 3. Since $L \in NEXP$, $L_{pad} \in NP$, because padding the input changes the relation between input length and computation time.
- 4. Since P = NP, $L_{pad} \in P$.
- 5. But then $L \in EXP$.
- 6. Therefore, EXP = NEXP

5. equalities between complexity classes "scale up"