Matroids And their Graphs

o.mcdonnell4@nuigalway.ie

16 January 2018

Definition 0.1. If M is a matroid, then is there exists a bijection from the ground set of M_i to the ground set of M_j , such that a set is independent in the first matroid if and only if it is independent in the second matroid, then M_i and M_j are said to be isomorphic

Excercise: 2.4

Let E be a set, $\{1, 2, 3\}$ then

i) Show there are exactly eight non-isomorphic matroids on E. Along with the corresponding Graph of each matroid

Solution:

 $\{\emptyset\}$

 $\left\{ \left\{ \emptyset\right\} ,\left\{ 1\right\} \right\} \cong\left\{ \left\{ \emptyset\right\} ,\left\{ 2\right\} \right\} \cong\left\{ \left\{ \emptyset\right\} ,\left\{ 3\right\} \right\}$

 $\left\{ \left\{ \emptyset\right\},\left\{ 1\right\},\left\{ 2\right\},\left\{ 1,2\right\} \right\} \cong \left\{ \left\{ \emptyset\right\},\left\{ 1\right\},\left\{ 3\right\},\left\{ 1,3\right\} \right\} \cong \left\{ \left\{ \emptyset\right\},\left\{ 2\right\},\left\{ 3\right\},\left\{ 2,3\right\} \right\}$

 $\{\{\emptyset\}, \{1\}, \{2\}\}$

$$\left\{ \left\{ \emptyset \right\}, \left\{ 1 \right\}, \left\{ 2 \right\}, \left\{ 3 \right\}, \left\{ 1, 2 \right\}, \left\{ 2, 3 \right\} \right\}$$

$$\left\{ \left\{ \emptyset\right\} ,\left\{ 1\right\} ,\left\{ 2\right\} ,\left\{ 3\right\} ,\left\{ 1,2\right\} ,\left\{ 1,3\right\} ,\left\{ 2,3\right\} \right\}$$

$$\left\{ \left\{ \emptyset\right\} ,\left\{ 1\right\} ,\left\{ 2\right\} ,\left\{ 3\right\} ,\left\{ 1,2\right\} ,\left\{ 1,3\right\} ,\left\{ 2,3\right\} ,\left\{ 1,2,3\right\} \right\}$$

