FICHE RESULTATS PUBLICATION THEMA AVEC BILAN

1) Calibration / Etat initial du parc

Parc initial par période de construction

Figure 1: Parc initial par période de construction

Figure 2: Parc initial par période de construction et par branche

Parc initial par énergie de chauffage

Figure 3: Parc initial par énergie de chauffage

Figure 4: Parc initial par énergie de chauffage et par branche

Comparaison avec le parc du CEREN

Figure 5: Comparaison avec le parc CEREN par branche

Figure 6: Comparaison avec le parc CEREN par énergie de chauffage

Comparaison avec les consommations du CEREN

Figure 7: Comparaison avec les consommations totales du CEREN par énergie en 2010

Figure 8: Comparaison avec les consommations totales du CEREN par énergie

Figure 9: Comparaison avec les consommations par usage et énergie du CEREN en 2010

Figure 10: Comparaison avec les consommations de chauffage du CEREN

Figure 11: Comparaison avec les consommations d'ECS du CEREN

Figure 12: Comparaison avec les consommations de cuisson du CEREN

Figure 13: Comparaison avec les consommations de Climatisation du CEREN

Figure 14: Comparaison avec les consommations spécifiques du CEREN

Figure 15: Comparaison avec les consommations des autres usages thermiques du CEREN

Figure 16: Comparaison avec les consommations hors chauffage et ECS du CEREN

Figure 17: Comparaison avec les consommations par branche du CEREN en $2010\,$

Consommations initiales

Figure 18: Consommations par branche 2010

Figure 19: Consommations par usage 2010

Performance initiale du parc par étiquette

Figure 20: Parts surfaces par étiquette

2) Paramètres

prix des énergies

Figure 21: Evolution du parc

3) Evolution du parc (Surfaces)

Ensemble du Parc

Figure 22: Evolution du parc

Table 1: Evolution du parc (surfaces en millions de m²)

	Période	2010	2015	2020	2025	2030	2040	2050
S0 Nopol	Parc < 2009	911	903	890	877	865	841	818
S0 Nopol	Parc > 2009	10	63	112	152	194	268	345
S0 Nopol	Total	921	965	1,002	1,030	1,059	1,109	1,163
S1 AME	Parc < 2009	911	903	890	877	865	841	819
S1 AME	Parc > 2009	10	63	112	152	194	268	345
S1 AME	Total	921	965	1,002	1,030	1,059	1,109	1,164
S2 AMS	Parc < 2009	911	903	890	877	865	841	818
S2 AMS	Parc > 2009	10	63	112	148	186	251	319
S2 AMS	Total	921	965	1,002	1,026	1,051	1,092	1,138
S3 AMS1	Parc < 2009	911	903	890	877	865	841	818
S3 AMS1	Parc > 2009	10	63	112	148	186	251	319
S3 AMS1	Total	921	965	1,002	1,026	1,051	1,092	1,138
S4 AMS1 GJ	Parc < 2009	911	903	890	877	865	841	819
S4 AMS1 GJ	Parc > 2009	10	63	112	148	186	251	319
S4 AMS1 GJ	Total	921	965	1,002	1,026	1,051	1,092	1,138
S5 AMS2	Parc < 2009	911	903	890	877	865	841	819
S5 AMS2	Parc > 2009	10	63	112	148	186	251	319
S5 AMS2	Total	921	965	1,002	1,026	1,051	1,092	1,138
S6 AMS2 GJ	Parc < 2009	911	903	890	877	865	841	819
S6 AMS2 GJ	Parc > 2009	10	63	112	148	186	251	319
S6 AMS2 GJ	Total	921	965	1,002	1,026	1,051	1,092	1,138

	Période	2010	2015	2020	2025	2030	2040	2050
S7 AMS1 Dec0	Parc < 2009	911	903	890	877	865	841	818
S7 AMS1 Dec0	Parc > 2009	10	63	112	148	186	251	319
S7 AMS1 Dec0	Total	921	965	1,002	1,026	1,051	1,092	1,138
S8 AMS2 Dec0	Parc < 2009	911	903	890	877	865	841	818
S8 AMS2 Dec0	Parc > 2009	10	63	112	148	186	251	319
S8 AMS2 Dec0	Total	921	965	1,002	1,026	1,051	1,092	1,138

Parc par énergie de chauffage

Figure 23: Evolution du parc par énergie de chauffage

Parc par branche

Figure 24: Evolution du parc par branche

Construction neuve

Table 2: Construction neuve par période en Mm² (pour DGEC)

			2009-	2016-	2021-	2031-	2041-
	Type_pa	rc BRANCHE	2015	2020	2030	2040	2050
S0 Nopol	N	Total	63	49	82	73	78
S1 AME	N	Total	63	49	82	73	78
S2 AMS	N	Total	63	49	74	65	69
S3 AMS1	N	Total	63	49	74	65	69
S4 AMS1 GJ	N	Total	63	49	74	65	69
S5 AMS2	N	Total	63	49	74	65	69
S6 AMS2 GJ	N	Total	63	49	74	65	69
S7 AMS1	N	Total	63	49	74	65	69
$\mathbf{Dec0}$							
S8 AMS2	N	Total	63	49	74	65	69
$\mathrm{Dec}0$							

Figure 25: Evolution du parc (en % du parc de l'année n-1) par branche

4) Evolution des consommations

Evolution des consommmations sur l'ensemble du parc

Table 3: Bilan des consommations en tWh EF

scenario	usage	2010	2015	2020	2030	2040	2050
S0 Nopol	Chauffage	109.6	104.8	97.9	84.2	72.3	67.0
S1 AME	Chauffage	109.6	104.8	91.9	72.4	55.7	47.7
S2 AMS	Chauffage	109.6	104.7	91.3	65.5	44.7	34.0
S3 AMS1	Chauffage	109.6	104.7	91.7	67.9	47.3	36.2
S4 AMS1 GJ	Chauffage	109.6	104.7	92.3	74.1	56.4	45.4
S5 AMS2	Chauffage	109.6	104.7	91.6	68.0	48.0	37.4
S6 AMS2 GJ	Chauffage	109.6	104.7	92.3	73.8	57.1	46.4
S7 AMS1 Dec0	Chauffage	109.6	104.7	91.7	68.5	47.0	34.8
S8 AMS2 Dec0	Chauffage	109.6	104.7	91.5	66.9	45.3	32.2
S0 Nopol	AU_ther	51.1	52.8	53.8	54.4	56.0	58.1
S1 AME	AU_ther	51.2	53.1	54.2	55.0	56.8	58.8
S2 AMS	AU_ther	51.0	52.3	52.4	48.1	42.0	39.5
S3 AMS1	AU_ther	51.0	52.3	52.4	48.1	42.0	39.5
S4 AMS1 GJ	AU_ther	51.0	52.3	52.4	48.2	42.1	39.5
S5 AMS2	AU_ther	51.0	52.3	52.4	48.2	42.0	39.5
S6 AMS2 GJ	AU_ther	51.0	52.3	52.4	48.2	42.0	39.5
S7 AMS1 Dec0	AU_ther	51.0	52.3	52.4	48.2	42.0	39.5
S8 AMS2 Dec0	AU_ther	51.0	52.3	52.4	48.2	42.0	39.5
S0 Nopol	$Elec_spe$	57.6	59.5	60.4	62.0	62.5	63.0
S1 AME	$Elec_spe$	57.6	59.5	60.1	61.4	61.7	62.0
S2 AMS	$Elec_spe$	57.6	59.5	58.8	48.5	42.5	39.9
S3 AMS1	$Elec_spe$	57.6	59.5	58.7	48.3	42.1	39.5
S4 AMS1 GJ	$Elec_spe$	57.6	59.5	58.7	48.3	42.0	39.3
S5 AMS2	$Elec_spe$	57.6	59.5	58.8	48.5	42.6	40.1
S6 AMS2 GJ	$Elec_spe$	57.6	59.5	58.8	48.6	42.5	39.9
S7 AMS1 Dec0	$Elec_spe$	57.6	59.5	58.7	48.3	42.2	39.7
S8 AMS2 Dec0	$Elec_spe$	57.6	59.5	58.8	48.5	42.5	40.0
S0 Nopol	Clim	5.5	5.9	6.1	6.0	6.2	6.4
S1 AME	Clim	5.5	5.9	6.0	5.9	6.1	6.3
S2 AMS	Clim	5.5	5.9	6.0	5.9	6.0	6.1
S3 AMS1	Clim	5.5	5.9	6.0	5.9	6.0	6.1
S4 AMS1 GJ	Clim	5.5	5.9	6.0	5.9	6.0	6.1
S5 AMS2	Clim	5.5	5.9	6.0	5.9	6.0	6.1
S6 AMS2 GJ	Clim	5.5	5.9	6.0	5.9	6.0	6.1
S7 AMS1 Dec0	Clim	5.5	5.9	6.0	5.9	6.0	6.1
S8 AMS2 Dec0	Clim	5.5	5.9	6.0	5.9	6.0	6.1
S0 Nopol	$Total_RT$	173.2	169.9	163.0	147.9	136.2	131.3
S1 AME	$Total_RT$	173.2	169.8	156.6	135.3	118.5	110.4
S2 AMS	$Total_RT$	173.1	169.4	153.5	116.2	86.8	73.3
S3 AMS1	$Total_RT$	173.1	169.4	153.8	118.3	88.9	75.1
S4 AMS1 GJ	$Total_RT$	173.1	169.4	154.5	124.6	98.1	84.2
S5 AMS2	$Total_RT$	173.1	169.4	153.9	118.7	90.2	77.0
S6 AMS2 GJ	$Total_RT$	173.1	169.4	154.6	124.6	99.2	85.8
S7 AMS1 Dec0	$Total_RT$	173.1	169.4	153.9	118.9	88.8	73.8
S8 AMS2 Dec0	$Total_RT$	173.1	169.4	153.8	117.6	87.4	71.6
S0 Nopol	Total	223.9	223.0	218.2	206.6	197.0	194.5

scenario	usage	2010	2015	2020	2030	2040	2050
S1 AME	Total	223.9	223.3	212.2	194.8	180.3	174.8
S2 AMS	Total	223.7	222.4	208.5	168.1	135.2	119.5
S3 AMS1	Total	223.7	222.4	208.9	170.2	137.4	121.3
S4 AMS1 GJ	Total	223.7	222.4	209.6	176.5	146.5	130.4
S5 AMS2	Total	223.7	222.4	208.9	170.5	138.6	123.2
S6 AMS2 GJ	Total	223.7	222.4	209.6	176.5	147.7	132.0
S7 AMS1 Dec0	Total	223.7	222.4	208.9	170.8	137.2	120.0
$\rm S8~AMS2~Dec0$	Total	223.7	222.4	208.8	169.5	135.9	117.8

Figure 26: Evolution des consommations totales

Table 4: Evolution des consommations

scenario	usage	2015-20	2015-25	2015-30	2015-35	2015-50
S0 Nopol	Chauffage	-6.6 %	-13.5 %	-19.6 %	-25.6 %	-36 %
S1 AME	Chauffage	-12.3 %	-21.5 %	-30.9 %	-39.5 %	-54.5 %
S2 AMS	Chauffage	-12.8 %	-25.1 %	-37.4 %	-48.1 %	-67.6 %
S3 AMS1	Chauffage	-12.4 %	-23.6 %	-35.2 %	-45.7 %	-65.4 %
S4 AMS1 GJ	Chauffage	-11.8 %	-20.8 %	-29.2 %	-37.8 %	-56.6 %
S5 AMS2	Chauffage	-12.4 $\%$	-23.6 %	-35.1 %	-45.2~%	-64.2 %
S6 AMS2 GJ	Chauffage	-11.8 %	-21 %	-29.5 %	-37.6 %	-55.6 %
S7 AMS1 Dec0	Chauffage	-12.4 $\%$	-23.2 %	-34.6 %	-45.4 %	-66.8 %
S8 AMS2 Dec0	Chauffage	-12.5 %	-24%	-36.1 %	-47 %	-69.2 %
S0 Nopol	AU_ther	1.9~%	1.9 %	3~%	4.2~%	10.1 %
S1 AME	AU_ther	2.1~%	2.4~%	3.6~%	4.9~%	10.7~%
S2 AMS	AU_ther	0.2~%	-4.5 %	-8 %	-14.4 %	-24.6 %
S3 AMS1	AU_ther	0.2~%	-4.5 %	-8 %	-14.4 %	-24.5 %
S4 AMS1 GJ	AU_ther	0.2~%	-4.4 %	-7.9 %	-14.3 %	-24.5 %
S5 AMS2	AU_ther	0.2~%	-4.5 %	-8 %	-14.4 %	-24.5 %
S6 AMS2 GJ	AU_ther	0.2~%	-4.5 %	-7.9 %	-14.3 %	-24.5 %
S7 AMS1 Dec0	AU_ther	0.2~%	-4.5 %	-8 %	-14.4 $\%$	-24.6 %
S8 AMS2 Dec0	AU_ther	0.2~%	-4.5 %	-8 %	-14.4 $\%$	-24.6 %
S0 Nopol	$Elec_spe$	1.5~%	2.7~%	4.3~%	4.7~%	5.9~%
S1 AME	$Elec_spe$	1 %	2~%	3.3~%	3.5~%	4.3~%
S2 AMS	$Elec_spe$	-1.2 %	-9.9 %	-18.4 %	-24.4 %	-32.9 %
S3 AMS1	$Elec_spe$	-1.3 %	-10.2 $\%$	-18.8 %	-25 %	-33.6 %
S4 AMS1 GJ	$Elec_spe$	-1.2 %	-10.1 %	-18.7 %	-24.9 %	-33.9 %
S5 AMS2	$Elec_spe$	-1.2 %	-9.9 %	-18.4 %	-24.4 %	-32.6 %
S6 AMS2 GJ	$Elec_spe$	-1.1 %	-9.8 %	-18.3 %	-24.3 %	-32.8 %
S7 AMS1 Dec0	$Elec_spe$	-1.3 %	-10.2 %	-18.8 %	-24.9 %	-33.3 %
S8 AMS2 Dec0	$Elec_spe$	-1.2 %	-9.9 %	-18.4 %	-24.4 %	-32.8 %
S0 Nopol	Clim	2.4~%	0.3~%	0.8~%	1.1~%	7.7~%
S1 AME	Clim	2.2~%	-0.1 %	0.2~%	0.3~%	6.5~%
S2 AMS	Clim	2.2~%	-0.5 %	-0.5 %	-0.8 %	3.7~%
S3 AMS1	Clim	2.2~%	-0.5 %	-0.5 %	-0.8 %	3.7~%
S4 AMS1 GJ	Clim	2.2~%	-0.5 %	-0.5 %	-0.8 %	3.7~%
S5 AMS2	Clim	2.2~%	-0.5 %	-0.5 %	-0.8 %	3.7 %
S6 AMS2 GJ	Clim	2.2~%	-0.5 %	-0.5 %	-0.8 %	3.7~%
S7 AMS1 Dec0	Clim	2.2~%	-0.5 %	-0.5 %	-0.8 %	3.7~%
S8 AMS2 Dec0	Clim	2.2~%	-0.5 %	-0.5 %	-0.9 %	3.7~%
S0 Nopol	$Total_RT$	-4.1 %	-8.9 %	-12.9 %	-16.7~%	-22.7 %
S1 AME	$Total_RT$	-7.8 %	-14.3 %	-20.3 %	-25.8 %	-35 %
S2 AMS	$Total_RT$	-9.4 %	-20.6 %	-31.4 %	-41.1 %	-56.7 %
S3 AMS1	$Total_RT$	-9.2 %	-19.8 %	-30.2 %	-39.8 %	-55.7 %
S4 AMS1 GJ	$Total_RT$	-8.8 %	-18 %	-26.4 %	-34.8 %	-50.3 %
S5 AMS2	$Total_RT$	-9.2 %	-19.7 %	-30 %	-39.3 %	-54.6 %
S6 AMS2 GJ	$Total_RT$	-8.7 %	-18 %	-26.4 %	-34.5 %	-49.3 %
S7 AMS1 Dec0	$Total_RT$	-9.2 %	-19.5 %	-29.8 %	-39.6 %	-56.4 %
S8 AMS2 Dec0	$Total_RT$	-9.2 %	-20 %	-30.6 %	-40.4 %	-57.7 %
S0 Nopol	Total	-2.2 %	-5.1 %	-7.4 %	-9.8 %	-12.8 %
S1 AME	Total	-4.9 %	-9 %	-12.7 %	-16.4 %	-21.7 %
S2 AMS	Total	-6.2 %	-15.5 %	-24.4 %	-32.6 %	-46.3 %
S3 AMS1	Total	-6.1 %	-14.9 %	-23.5 %	-31.6 %	-45.5 %
S4 AMS1 GJ	Total	-5.8 %	-13.6 %	-20.6 %	-27.8 %	-41.4 %
S5 AMS2	Total	-6.1 %	-14.8 %	-23.3 %	-31.2 %	-44.6 %

scenario	usage	2015-20	2015-25	2015-30	2015-35	2015-50
S6 AMS2 GJ	Total	-5.7 %	-13.5 $\%$	-20.6 %	-27.6 %	-40.6 %
S7 AMS1 Dec0	Total	-6.1 %	-14.7 %	-23.2 %	-31.4 $\%$	-46 %
S8 AMS2 Dec0	Total	-6.1 %	-15 %	-23.8 %	-32.1 %	-47 %

Consommations par usage, énergie et type de parc (neuf/ancien)

Comparaison avec la cible \mathbf{AMS}

5) Parts de marchés des systèmes et des énergies de chauffage (Surfaces) Part de marché des énergies dans le neuf (flux)

Figure 27: Part des surfaces neuves construites par énergie

Figure 28: Part des surfaces neuves construites par système

Changements de système dans l'existant (flux)

Figure 29: Part des changements de système existant par système installé

Parts de marché dans le stock total

Figure 30: Part des systèmes sur l'ensemble du parc en 2010

Figure 31: Part des systèmes sur l'ensemble du parc

6) Evolution des parts de marché des énergies dans les consommations Evolution du mix sur l'ensemble du parc et l'ensemble des usages (Consommations)

Figure 32: Part de marché des énergies dans les consommations des usages thermiques (ensemble du parc)

Evolution du mix pour le chauffage sur le parc neuf et le parc existant (Consommations)

Figure 33: Parts de marché des énergies dans les consommations de chauffage du parc neuf

Figure 34: Parts de marché des énergies dans les consommations de chauffage du parc existant

 ${
m PM}$ des systèmes dans les consommations et consommations ${
m PAC/Joule}$ (A COMPLETER)

7) Evolution des consommations et besoins unitaires, performance énergétique Besoins de chauffage du parc total

Table 5: Evolution des besoins unitaires de chauffage du parc total (indice)

	usage	2015	2020	2025	2030	2050
S0 Nopol	Chauffage	1	0.94	0.89	0.84	0.69
S1 AME	Chauffage	1	0.89	0.82	0.75	0.56
S2 AMS	Chauffage	1	0.88	0.79	0.71	0.49
S3 AMS1	Chauffage	1	0.88	0.79	0.71	0.47
S4 AMS1 GJ	Chauffage	1	0.89	0.81	0.74	0.49
S5 AMS2	Chauffage	1	0.89	0.80	0.72	0.50
S6 AMS2 GJ	Chauffage	1	0.89	0.82	0.75	0.52
S7 AMS1 Dec0	Chauffage	1	0.88	0.79	0.71	0.48
S8 AMS2 Dec0	Chauffage	1	0.88	0.80	0.72	0.48

Table 6: Besoins unitaires de chauffage du parc total

	2015	2020	2025	2030	2035	2050
S0 Nopol	97	92	87	82	78	67
S1 AME	97	86	79	73	67	55
S2 AMS	97	86	77	69	63	47
S3 AMS1	97	86	77	69	62	45
S4 AMS1 GJ	97	86	78	72	65	47
S5 AMS2	97	86	78	70	64	49
S6 AMS2 GJ	97	86	79	73	67	51
S7 AMS1 Dec0	97	86	77	69	62	46
S8 AMS2 Dec0	97	86	78	70	63	46

Besoin de chauffage du parc neuf/ancien

Table 7: Evolution des besoins unitaires de chauffage du parc existant et du parc neuf

	Type_parc_MEDPRO	2015					
	-J FF	2015	2020	2025	2030	2035	2050
S0 Nopol	E	97	95	93	90	88	82
S0 Nopol	N	22	22	22	22	22	22
S1 AME	${f E}$	97	90	85	80	76	66
S1 AME	N	21	21	21	21	21	20
S2 AMS	${f E}$	97	89	82	76	70	56
S2 AMS	N	21	21	20	20	19	17
S3 AMS1	E	97	89	82	75	69	54
S3 AMS1	N	21	21	20	20	19	16
S4 AMS1 GJ	E	97	89	84	78	73	56
S4 AMS1 GJ	N	21	21	20	20	19	17
S5 AMS2	E	97	89	83	77	72	58
S5 AMS2	N	21	21	20	20	19	17

	${\bf Type_parc_MEDPRO}$	2015	2020	2025	2030	2035	2050
S6 AMS2 GJ	E	97	90	85	80	75	61
S6 AMS2 GJ	N	21	21	21	20	20	17
S7 AMS1 Dec0	\mathbf{E}	97	89	82	75	69	55
S7 AMS1 Dec0	N	21	21	20	20	19	17
S8 AMS2 Dec0	\mathbf{E}	97	89	83	76	71	55
S8 AMS2 Dec0	N	21	21	20	20	19	17

Consommations unitaires et rendements pour le chauffage

Table 8: Consommations unitaires en kWh par m^2 d'énergie finale pour l'ensemble du parc et pour le chauffage uniquement

	2009	2010	2015	2020	2030	2035	2050
S0 Nopol	121	119	109	98	80	72	58
$\mathbf{S1} \mathbf{AME}$	121	119	109	92	68	59	41
S2 AMS	121	119	108	91	62	51	30
S3 AMS1	121	119	108	91	65	53	32
S4 AMS1 GJ	121	119	108	92	71	61	40
S5 AMS2	121	119	108	91	65	54	33
S6 AMS2 GJ	121	119	108	92	70	61	41
S7 AMS1 Dec0	121	119	108	92	65	53	31
S8 AMS2 Dec0	121	119	108	91	64	52	28

Table 9: Consommations unitaires en kWh par m^2 d'énergie finale pour le parc neuf/existant et pour le chauffage uniquement

	Type_parc	2009	2010	2015	2020	2030	2035	2050
S0 Nopol	E	152	149	140	131	111	103	88
S0 Nopol	N	NA	52	51	42	38	36	36
$\mathbf{S1} \ \mathbf{AME}$	\mathbf{E}	152	149	140	123	99	88	68
$\mathbf{S1} \ \mathbf{AME}$	N	NA	52	48	37	31	29	28
S2 AMS	\mathbf{E}	152	149	140	123	94	82	57
S2 AMS	N	NA	52	48	37	30	28	23
S3 AMS1	\mathbf{E}	152	149	140	123	92	79	50
S3 AMS1	N	NA	52	49	37	30	27	21
S4 AMS1 GJ	E	152	149	140	123	97	84	55
S4 AMS1 GJ	N	NA	52	49	37	30	28	22
S5 AMS2	${ m E}$	152	149	140	123	96	84	59
S5 AMS2	N	NA	52	48	37	30	28	24
S6 AMS2 GJ	E	152	149	140	124	100	89	63
S6 AMS2 GJ	N	NA	52	48	37	31	29	25
S7 AMS1 Dec0	${ m E}$	152	149	140	123	93	79	53
S7 AMS1 Dec0	N	NA	52	49	37	30	27	22
S8 AMS2 Dec0	${ m E}$	152	149	140	123	95	83	58
S8 AMS2 Dec0	N	NA	52	48	37	30	28	24

Table 10: Evolution du rendement moyen des systèmes de chauffage du parc existant et du parc neuf

	Type_parc_MEDPRO	2015	2020	2030	2035	2050
S0 Nopol	E	0.89	0.94	1.0	1.1	1.2
S0 Nopol	N	NA	1.01	1.0	1.0	1.0
S1 AME	E	0.89	0.94	1.1	1.2	1.4
S1 AME	N	NA	1.00	1.0	1.1	1.1
S2 AMS	\mathbf{E}	0.89	0.94	1.1	1.2	1.6
S2 AMS	N	NA	1.04	1.1	1.1	1.2
S3 AMS1	\mathbf{E}	0.89	0.93	1.1	1.2	1.4
S3 AMS1	N	NA	1.03	1.1	1.1	1.2
S4 AMS1 GJ	\mathbf{E}	0.89	0.93	1.0	1.1	1.2
S4 AMS1 GJ	N	NA	1.01	1.0	1.0	1.0
S5 AMS2	\mathbf{E}	0.89	0.94	1.1	1.2	1.5
S5 AMS2	N	NA	1.03	1.1	1.1	1.1
S6 AMS2 GJ	\mathbf{E}	0.89	0.94	1.0	1.1	1.3
S6 AMS2 GJ	N	NA	1.02	1.0	1.0	1.0
S7 AMS1 Dec0	\mathbf{E}	0.89	0.93	1.1	1.2	1.5
S7 AMS1 Dec0	N	NA	1.03	1.1	1.1	1.2
S8 AMS2 Dec0	E	0.89	0.94	1.1	1.2	1.7
S8 AMS2 Dec0	N	NA	1.03	1.1	1.1	1.2

Consommations unitaires pour tous les usages

Table 11: Consommations unitaires en kWh par $\rm m^2$ d'énergie primaire pour l'ensemble du parc et l'ensemble des usages

	2015	2020	2030	2035	2050
S0 Nopol	400	384	355	343	319
$\mathbf{S1} \ \mathbf{AME}$	401	377	343	330	302
S2 AMS	405	380	311	281	228
S3 AMS1	405	379	309	278	222
S4 AMS1 GJ	405	380	313	282	225
S5 AMS2	405	380	312	283	230
S6 AMS2 GJ	405	381	316	287	233
S7 AMS1 Dec0	405	379	309	278	225
S8 AMS2 Dec0	405	380	311	282	229

Figure 35: Conso unitaire initiale

Figure 36: Conso unitaire 2050

8) Nombre de Rénovations et Investissements

Part du parc rénové

Table 12: Part du parc rénové (cumul)

	GESTE_DGEC	2010	2015	2020	2025	2030	2035	2040	2045	2050
S0 Nopol	Rénovation faible	0	0.03	0.05	0.07	0.10	0.12	0.14	0.16	0.18
S0 Nopol	Rénovation moyenne	0	0.01	0.02	0.04	0.05	0.06	0.07	0.08	0.09
S0 Nopol	Rénovation importante	0	0.00	0.01	0.01	0.01	0.02	0.02	0.02	0.03
S1 AME	Rénovation faible	0	0.03	0.05	0.07	0.10	0.12	0.15	0.17	0.19
S1 AME	Rénovation moyenne	0	0.01	0.05	0.09	0.13	0.16	0.18	0.20	0.24
S1 AME	Rénovation importante	0	0.00	0.01	0.02	0.02	0.03	0.03	0.04	0.06
S2 AMS	Rénovation faible	0	0.03	0.05	0.08	0.10	0.13	0.16	0.19	0.21
S2 AMS	Rénovation moyenne	0	0.01	0.06	0.12	0.17	0.22	0.26	0.30	0.36
S2 AMS	Rénovation importante	0	0.00	0.01	0.02	0.04	0.06	0.07	0.09	0.12
S3 AMS1	Rénovation faible	0	0.03	0.05	0.08	0.11	0.14	0.18	0.21	0.24
S3 AMS1	Rénovation moyenne	0	0.01	0.06	0.12	0.18	0.22	0.27	0.32	0.37
S3 AMS1	Rénovation importante	0	0.00	0.01	0.02	0.04	0.06	0.08	0.10	0.13
$egin{array}{c} { m S4~AMS1} \\ { m GJ} \end{array}$	Rénovation faible	0	0.03	0.05	0.08	0.10	0.14	0.17	0.20	0.22
S4 AMS1 GJ	Rénovation moyenne	0	0.01	0.06	0.12	0.17	0.21	0.26	0.30	0.36
S4 AMS1 GJ	Rénovation importante	0	0.00	0.01	0.02	0.03	0.04	0.06	0.08	0.11
S5 AMS2	Rénovation faible	0	0.03	0.05	0.08	0.10	0.13	0.16	0.18	0.20
S5 AMS2	Rénovation moyenne	0	0.01	0.06	0.12	0.17	0.21	0.25	0.29	0.35
S5 AMS2	Rénovation importante	0	0.00	0.01	0.02	0.03	0.05	0.07	0.08	0.11
$egin{array}{c} ext{S6 AMS2} \\ ext{GJ} \end{array}$	Rénovation faible	0	0.03	0.05	0.07	0.10	0.12	0.15	0.17	0.19
S6 AMS2 GJ	Rénovation moyenne	0	0.01	0.06	0.11	0.16	0.20	0.24	0.28	0.34
S6 AMS2 GJ	Rénovation importante	0	0.00	0.01	0.02	0.02	0.04	0.06	0.07	0.10
$\begin{array}{c} \text{S7 AMS1} \\ \text{Dec0} \end{array}$	Rénovation faible	0	0.03	0.05	0.08	0.11	0.14	0.17	0.20	0.22
S7 AMS1 Dec0	Rénovation moyenne	0	0.01	0.06	0.12	0.17	0.22	0.27	0.31	0.37

$GESTE_DGEC$	2010	2015	2020	2025	2030	2035	2040	2045	2050
Rénovation importante	0	0.00	0.01	0.02	0.03	0.06	0.08	0.10	0.12
Rénovation	0	0.03	0.05	0.08	0.10	0.13	0.16	0.19	0.21
Rénovation	0	0.01	0.06	0.12	0.17	0.22	0.26	0.31	0.37
Rénovation importante	0	0.00	0.01	0.02	0.03	0.05	0.07	0.09	0.12
	Rénovation importante Rénovation faible Rénovation moyenne Rénovation	$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$\begin{array}{cccc} & & & & & \\ R\tilde{A}@novation & & & & \\ 0 & & 0.00 \\ importante & & & \\ R\tilde{A}@novation & & & & \\ R\tilde{A}@novation & & & & \\ R\tilde{A}@novation & & & & \\ 0 & & & & & \\ R\tilde{A}@novation & & & & \\ 0 & & & & & \\ \end{array}$	Rénovation 0 0.00 0.01 importante 0 0.03 0.05 faible 0 0.01 0.06 moyenne 0 0.00 0.01 Rénovation 0 0.00 0.01	Rénovation 0 0.00 0.01 0.02 importante	Rénovation importante 0 0.00 0.01 0.02 0.03 importante Rénovation faible 0 0.03 0.05 0.08 0.10 faible Rénovation moyenne 0 0.01 0.06 0.12 0.17 formation for a factor formation for a facto	Rénovation importante 0 0.00 0.01 0.02 0.03 0.06 importante Rénovation 0 0.03 0.05 0.08 0.10 0.13 faible Rénovation 0 0.01 0.06 0.12 0.17 0.22 moyenne Rénovation 0 0.00 0.01 0.02 0.03 0.05	Rénovation 0 0.00 0.01 0.02 0.03 0.06 0.08 importante Rénovation 0 0.03 0.05 0.08 0.10 0.13 0.16 faible Rénovation 0 0.01 0.06 0.12 0.17 0.22 0.26 moyenne Rénovation 0 0.00 0.01 0.02 0.03 0.05 0.07	Rénovation importante 0 0.00 0.01 0.02 0.03 0.06 0.08 0.10 Rénovation faible 0 0.03 0.05 0.08 0.10 0.13 0.16 0.19 Rénovation moyenne 0 0.01 0.06 0.12 0.17 0.22 0.26 0.31 Rénovation moyenne 0 0.00 0.01 0.02 0.03 0.05 0.07 0.09

Table 13: Parc de l'Etat rénové annuellement (milliers de m^2)

	2010	2015	2020	2025	2030	2035	2040	2045	2050
S0 Nopol	576	532	615	617	609	693	1,088	1,046	1,077
S1 AME	576	524	2,778	2,269	2,272	2,095	2,051	1,759	2,990
S2 AMS	666	563	3,416	3,790	3,156	2,478	2,348	1,642	3,373
S3 AMS1	684	563	3,456	3,817	3,245	2,614	2,655	1,773	3,216
S4 AMS1 GJ	684	563	3,414	3,616	3,027	2,607	2,463	1,932	3,242
S5 AMS2	666	569	3,402	3,672	3,175	2,462	2,282	1,606	3,366
S6 AMS2 GJ	666	569	3,384	3,528	2,942	2,464	2,217	1,685	3,397
S7 AMS1	684	564	3,443	3,760	3,315	2,613	2,538	1,667	3,133
${ m Dec}0$									
S8 AMS2	666	570	3,405	3,712	3,244	2,524	2,440	1,706	3,357
$\mathbf{Dec0}$									

Surfaces rénovées

Investissements

Table 14: Investissements totaux (millions d'euros) et part des aides entre 2015 et 2022 (approximation du quinquennat)

scenario	investissement	pretsBonifies	aides
S0 Nopol	9,306	-0.036	0
S1 AME	14,951	-0.120	1,082
S2 AMS	16,908	3,765.118	1,605
S3 AMS1	16,769	3,772.778	1,514
S4 AMS1 GJ	16,339	3,620.666	1,484
S5 AMS2	16,659	3,695.848	1,541
S6 AMS2 GJ	16,267	3,560.440	1,504
S7 AMS1 Dec0	16,676	3,731.431	1,518
S8 AMS2 Dec0	16,717	3,711.932	1,547

Table 15: Investissements to taux (millions d'euros) et part des aides entre 2015 et $2050\,$

scenario	investissement	pretsBonifies	aides	taux_aides_moy	taux_pret_moy
S0 Nopol	43,816	-0.11	0	0.000	-2.4e-06
S1 AME	77,681	-100.46	1,082	0.014	-1.3e-03
S2 AMS	104,675	$18,\!159.37$	19,346	0.185	1.7e-01
S3 AMS1	106,632	19,438.08	18,620	0.175	1.8e-01
S4 AMS1 GJ	94,840	17,545.87	18,805	0.198	1.9e-01
S5 AMS2	97,610	$17,\!416.81$	18,554	0.190	1.8e-01
S6 AMS2 GJ	89,492	$16,\!172.86$	18,350	0.205	1.8e-01
S7 AMS1 Dec0	$106,\!505$	18,965.77	19,200	0.180	1.8e-01
S8 AMS2 Dec0	105,666	18,507.78	$19,\!106$	0.181	1.8e-01

Table 16: Investissements cumulés par type d'investissement (milliards d'euros

	Type_Inv	2015	2020	2030	2050
S0 Nopol	Changement de systÃ"me seul	4.3881	8.2098	15.778	32.22
S0 Nopol	Geste sur le bâti	2.1658	4.2027	8.196	16.67
S0 Nopol	Geste sur le bâti et	0.0032	0.0072	0.017	0.41
	Changement de systÃ"me				
S1 AME	Changement de systÃ"me seul	4.3883	8.1221	16.047	34.70
S1 AME	Geste sur le bÃcti	2.1677	6.9660	16.716	41.98
S1 AME	Geste sur le bÃcti et	0.0032	1.2246	4.374	6.48
	Changement de systÃ"me				
S2 AMS	Changement de système seul	4.3879	8.0854	16.724	40.21
S2 AMS	Geste sur le bÃcti	2.2735	7.4695	21.168	58.14
S2 AMS	Geste sur le bÃcti et	0.0030	1.6907	6.600	11.90
	Changement de systÃ"me				
S3 AMS1	Changement de systÃ"me seul	4.3861	8.0042	16.095	38.18
S3 AMS1	Geste sur le bÃcti	2.2802	7.4797	21.664	61.59
S3 AMS1	Geste sur le bâti et	0.0030	1.7046	6.513	12.43
	Changement de systÃ"me				
S4 AMS1 GJ	Changement de systÃ"me seul	4.3866	7.9872	15.145	33.03
S4 AMS1 GJ	Geste sur le bÃcti	2.2814	7.4152	19.851	58.19
S4 AMS1 GJ	Geste sur le bâti et	0.0030	1.6785	5.575	9.20
	Changement de systÃ"me				
S5 AMS2	Changement de système seul	4.3873	8.0292	16.081	36.20
S5 AMS2	Geste sur le bÃcti	2.2777	7.4583	20.414	55.64
S5 AMS2	Geste sur le bâti et	0.0030	1.6905	6.459	11.35
	Changement de systÃ"me				
S6 AMS2 GJ	Changement de système seul	4.3877	8.0055	15.146	32.28
S6 AMS2 GJ	Geste sur le bÃcti	2.2786	7.4111	19.211	53.96
S6 AMS2 GJ	Geste sur le bÃcti et	0.0030	1.6527	5.510	8.82
	Changement de systÃ"me				
S7 AMS1 Dec0	Changement de systÃ"me seul	4.3865	8.0084	15.958	39.19
S7 AMS1 Dec0	Geste sur le bÃcti	2.2806	7.4821	21.519	60.83
S7 AMS1 Dec0	Geste sur le bÃcti et	0.0030	1.6942	6.329	12.06
	Changement de systÃ"me				
S8 AMS2 Dec0	Changement de système seul	4.3876	8.0342	16.279	39.35
S8 AMS2 Dec0	Geste sur le bâti	2.2778	7.4716	20.790	59.49

	Type_Inv	2015	2020	2030	2050
S8 AMS2 Dec0	Geste sur le bÃcti et Changement de systÃ"me	0.0030	1.6951	6.582	12.40

7) Emissions

Figure 37: Evolution des émissions pour tous les usages par énergie

Figure 38: Evolution des émissions pour le chauffage par énergie

Figure 39: Evolution des émissions par usage

Figure 40: Evolution des émissions totales

Figure 41: Evolution des émissions totales

Table 17: Evolution des émissions totales

	Evol_2015	Evol_2020	Evol_2030	Evol_2035	Evol_2050
S0 Nopol	0 %	-5.6 %	-17.1 %	-22.1 %	-29.7 %
S1 AME	0 %	-9.3 %	-24.5 %	-31.2 %	-42 %
S2 AMS	0 %	-13.5 %	-44.1 %	-62.6 %	-99.1 %
S3 AMS1	0 %	-13.5 %	-44.1 %	-62.7 %	-99.1 %
S4 AMS1 GJ	0 %	-12.5 %	-36.5 %	-52 %	-77.9 %
S5 AMS2	0 %	-13.4 %	-42.9 %	-61.1 %	-99.2 $\%$
S6 AMS2 GJ	0 %	-12.4 %	-35.6~%	-50.9 %	-77.1 %
S7 AMS1 Dec0	0 %	-12.6 %	-37 %	-47.9 %	-68.1 %
S8 AMS2 Dec0	0 %	-12.6 %	-36.9 %	-47.7 %	-67.8 %

Table 18: cumul 2015-2060 des émissions totales

scenario	V1
S0 Nopol	1,130.4
S1 AME	1,009.9
S2 AMS	522.5
S3 AMS1	522.7
S4 AMS1 GJ	682.3
S5 AMS2	531.6
S6 AMS2 GJ	693.0
S7 AMS1 Dec0	750.6
S8 AMS2 Dec0	753.5

Table 19: cumul 2015-2060 des émissions liées au chauffage

scenario	V1
S0 Nopol	690.7

scenario	V1
S1 AME	571.3
S2 AMS	351.3
S3 AMS1	351.7
S4 AMS1 GJ	474.0
S5 AMS2	360.5
S6 AMS2 GJ	484.5
S7 AMS1 Dec0	489.4
S8 AMS2 Dec0	492.1