ECCYOCTOBER 11-17 VIRTUAL

LIRA: Learnable, Imperceptible Backdoor Attack

Khoa D. Doan, Yingjie Lao, Weijie Zhao, Ping Li BAIDU RESEARCH

Machine Learning Models in Practice

Backdoor Attacks

Model

Prediction: **STOP** Prediction: **GO**

This is a paramount security concern in the model building supply chain, as the increasing complexity of machine learning models has promoted training outsourcing and machine learning as a service (MLaaS).

Backdoor Attacks

Trained Model

Input Data

Prediction

Adversarial Attacks

Adversarial Attack influences the model prediction by deliberately crafting input data in the inference phase.

How is the backdoor injected?

Consider a classification task

$$f_{ heta}: \mathcal{X}
ightarrow \mathcal{C}$$

$$\mathcal{S} = \{(x_i, y_i) : x_i \in \mathcal{X}, y_i \in \mathcal{C}\}$$

Generate the trigger:

$$T_{\mathcal{E}}: \mathcal{X}
ightarrow \mathcal{X}$$

$$\hat{\mathcal{S}} = \mathcal{S} \cup \{(T(x_i), \eta(y_i))\}_i$$

Inject the backdoor:

$$f(x) = y, f(T(x)) = \eta(y)$$

or $\min_{ heta} E_{(x_i,y_i) \in \hat{\mathcal{S}}} \, \mathcal{L}(f_{ heta}(x_i,y_i))$

The "fixed" trigger/transformation function

Limitation: The transformation function is predetermined

- Limits the attack visual stealthiness
- Results in lower attack success rates

LIRA: Learnable, Imperceptible BackdooR Attack

Solve the constrained optimization problem:

$$rg\min_{ heta} \sum_{i=1}^{N} \underbrace{lpha \mathcal{L}(f_{ heta}(x_i), y_i)}_{ ext{clean data objective}} + \underbrace{eta \mathcal{L}igl(f_{ heta}igl(\mathcal{T}_{\xi \cdot (heta)}(x_i)igr), \eta(y_i)igr)}_{ ext{clean data objective}}$$
 $s.\ t.\ (1)\ \xi^{\cdot} = rg\min_{\xi} \sum_{i=1}^{N} \mathcal{L}(f_{ heta}(\mathcal{T}_{\xi}(x_i)), \eta(y_i))$

$$(2)\,d(T(x),x)\leq\epsilon$$

The trigger function can be defined as:

$$T_{\xi}(x) = x + g_{\xi}(x), \, ||g_{\xi}(x)||_{\infty} \leq \epsilon$$

LIRA Learning Algorithm

LIRA's learning process is separated in 2 stages.

- Stage I: both f and T are trained (**trigger generation**).
- Stage II: only f is trained while T is fixed (backdoor injection).

Algorithm 1 LIRA Backdoor Attack Algorithm

```
Input:
```

- (1) training samples $S = \{(x_i, y_i), i = 1, ..., N\}$
- (2) number of iterations for training the classifier k
- (3) number of trials m
- (4) number of fine-tuning iterations n
- (5) learning rate to train the classifier γ_f
- (6) learning rate to train the transformation function γ_T
- (7) batch size b
- (8) LIRA parameters α and β

Output:

21: until i = n

- (1) learned parameters of transformation function ξ^*
- (2) learned parameters of poisoned classifier θ^*

```
1: Initialize \theta and \xi.
 2: // Stage I: Update both f and T.
  3: \hat{\xi} \leftarrow \xi, i \leftarrow 0
  4: repeat
              i \leftarrow 0
               repeat
 7:
                      Sample minibatch (x, y) from S
                      \hat{\theta} \leftarrow \theta_j^i - \gamma_f \nabla_{\theta_j^i} (\alpha \mathcal{L}(f_{\theta_j^i}(x), y) +
                                    \beta \mathcal{L}(f_{\theta_i^i}(T_{\hat{\xi}}(x)), \eta(y)))
                     \hat{\xi} \leftarrow \hat{\xi} - \gamma_T \nabla_{\hat{\xi}} \mathcal{L}(f_{\hat{\theta}}(T_{\hat{\xi}}(x)), \eta(y))
                     \theta_{j+1}^i \leftarrow \theta_j^i - \gamma_f \nabla_{\theta_j^i} (\alpha \mathcal{L}(f_{\theta_j^i}(x), y) +
                                      \beta \mathcal{L}(f_{\theta^i}(T_{\xi}(x)), \eta(y)))
                     j \leftarrow j + 1
              until j = k
              \mathcal{E} \leftarrow \mathcal{E}, i \leftarrow i+1
14: until i = m
15: // Stage II: Fine-tuning f.
16: i \leftarrow 0, \theta_0 \leftarrow \theta_k^m
17: repeat
              Sample minibatch (x, y) from S
              \theta_{i+1} \leftarrow \theta_i - \gamma_f \nabla_{\theta_i} (\alpha \mathcal{L}(f_{\theta_i}(x), y) +
                                 \beta \mathcal{L}(f_{\theta_s}(T_{\varepsilon}(x)), \eta(y)))
              i \leftarrow i + 1
```


Images	Patched	Blended	ReFool	WaNet	LIRA
Backdoor	8.7	1.4	2.3	38.6	60.8 40.0
Clean Both	6.1 7.4	10.1 5.7	13.1 7.7	17.4 28.0	50.4

Human Inspection Tests - Each tester is trained to recognize the triggered image. Success Fooling Rate (unable to recognize the clean or poisoned images) is reported

Conclusions:

- LIRA has significantly higher success fooling rates.
- LIRA's stealthiness causes increasing confusion between the testers.

Experiment: Attack Performance

Dataset	Wa	Net	LIRA		
Dataset	Clean	Attack	Clean	Attack	
MNIST	0.99	0.99	0.99	1.00	
CIFAR10	0.94	0.99	0.94	1.00	
GTSRB	0.99	0.98	0.99	1.00	
T-ImageNet	0.57	0.99	0.58	1.00	

Dataset	Wa	Net	LIRA		
Dataset	Clean	Attack	Clean	Attack	
MNIST	0.99	0.95	0.99	0.99	
CIFAR10	0.94	0.93	0.94	0.94	
GTSRB	0.99	0.98	0.99	1.00	
T-ImageNet	0.58	0.58	0.58	0.59	

All-to-One Attack $\eta(y) = 0 \, orall y$

All-to-One Attack
$$\eta(y) = (y+1)\% |\mathcal{C}|$$

2.5 Clean WaNet LIRA 2 O MNIST CIFAR10 GTSRB T-IMAGENET

Neural Cleanse-Offline Defense Pass defense if Anomaly Index ≤ 2

GradCam Visualization

Experiment: Machine Defenses

STRIP-Online Detection

Pass defense if poisoned images have similar entropies to clean images.

Thank You!

Contact

Khoa D. Doan

Email: khoadoan106@gmail.com