Arda Contet BATI 21302578 See-2

CS-464 Machine Learning HW#1

Question 1-1

Mochne 1 Mochne 2

$$655$$
 - 230 5 = 295

 $135F$ + 900 F = 1035

$$P(M_1|S) = P(M, \Omega S) = #Success m M_1$$

$$P(S) = #All games = \frac{65}{1830} = \frac{65}{295}$$

$$#All games = \frac{295}{1330} = \frac{65}{295}$$

Q-1-2

$$P(S|M_1, Me) = \frac{40}{100}$$
 $P(S|M_1, Friend) = \frac{25}{100}$
 $M_1, I \text{ on more likely to un}$
 $P(S|M_2, Me) = \frac{212}{1040}$
 $P(S|M_2, Friend) = \frac{18}{90}$
 $M_1, I \text{ on more likely to un}$
 $M_2, I \text{ on more likely to un}$

Q1-3

Total Unu = 295
$$P(SIMe) = \frac{252}{1040} \simeq 0.221$$
Total Losus = W35
$$P(SIFrad) = \frac{43}{190} \simeq 0.226 / more likely$$
to un

Q. 2-1

$$(= \{b \neq b \land r \neq 1\}, b = \{1, 2, 3, 4, 5\}, r = \{2, 3, 4, 5, 6\} \text{ for this cose}$$

$$p(b=1, r=3|C) = p(b=1|C) p(r=3|C) = \frac{1}{\binom{5}{1}} \cdot \frac{1}{\binom{5}{1}} = \frac{1}{25}$$
Consistent Independence

$$D = \{b + r = unn\}, P(b = 3, r = 5 \mid D) = \frac{1 \text{ cose}}{\#D's \text{ possibilistins}} = \frac{1}{18}$$

 $b + r = unn \text{ hos } {b \choose 1}{3 \choose 1} = 18 \text{ possibilities}$

\$ 2-3

- Info C creates conditional independence between the events
$$P(b=1, r=3 \mid C) = P(b=1|C) P(r=3|C)$$

The D hods to conditional dependent between the events
$$P(b=3, c=51D) \neq P(b=31D)$$
. $P(c=51D)$

$$\frac{1}{18} \neq \frac{1}{6} \cdot \frac{1}{6}$$

Question 3

$$P(\lambda \mid x = \{x_1, ..., x_n\}) \propto P(x = \{x_1, ..., x_n \mid \lambda\}) P(\lambda)$$

$$\lambda^{new} = \operatorname{orgmox} \left(P(x = \{x_1, ..., x_n \mid \lambda\}) P(\lambda) \right)$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2}$$

$$\lambda^{new} = \operatorname{orgmox} \left(\frac{n}{1 + x_1!} \right) \cdot \frac{\lambda^{x_1} e^{\lambda}}{\sqrt{2\pi \beta^2}} = \frac{\lambda^2}{2\beta^2} = \frac{\lambda^2}{2\beta^2}$$

Questras 4-1

The documentar $\sum_{k} P(y=y_k) \prod_{j=1}^{V} P(x_j \mid y=y_k)^{tw_{j,j}} = P(D_i)$ $P(D_i)$ is the probability of ith mail. It is a positive constant so it

Closes it effect our organise (...) expresses. $\left(\text{organise}(F(x)) = \text{organise}(\frac{F(x)}{A}) \right)$

4.2 The prentages of span and voled mosts are both 50%.
Therefore, the dotoset is very boloneed.

The volume were reported in the command undow os:

Number of errors in prediction: 130

Accuracy of prediction: 0.5 -> 50%

- The dotoset contoms many zeros. Their corresponding MLE estimates cause overfitting of the classifier. Log(0) = - or terms completely dominate the sum. Therefore, all the situations are ties between homispom, we always set the decision to non-spam in case of ties. So the classifier always predicts non-spam mail

4.4

Prediction errors = 7, Accuracy = 0.9731;

Addrtime smoothing prevented Log(0) =- or coses and yielded a much more occurate result.

Top W Scares 0.4339 0.2749 0.2455 0.2235 0.2137 0.1907 0.1576 0.1550 0.1355 0.1338
Top W: Indras 4 8 55 15 7 20 45 131 132 98

Features are removed one-by-one from the bost information are.

The resulting occuracy is given as a plat-

Question 5.1 The estimated parameters are shown in the command undow. Estimated overages and variances are given separately in two tobles.

Questron 5.2

The confusion motives were created in two separate coses. In the first case from and test data were used in order. In the second case from and test data were sugged.

The tobles are gruen as fallows

Cose 2: Tobles 5 to 8, same os about

Questron 3 Continued:

$$\lambda^{nuv} = \operatorname{organiz} \left(\frac{1}{i-1} \frac{\lambda^{xi}}{xi!} \right) \cdot \frac{e^{\lambda n}}{\sqrt{2\pi \beta^2}} e^{-\frac{\lambda^2}{2\beta^2}}$$

$$\left(\log \frac{1}{\lambda^2} - \ln \left(\sqrt{2n\beta^2} \right) + \ln \left(\lambda \right) \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \ln \left(x_i \right) \right)$$

$$\left(\frac{d}{d\lambda} - n - \frac{1}{2\beta^2} + \frac{1}$$

```
function main(Q4trainFeatures, Q4testFeatures, Q4trainLabels,
 Q4testLabels, Q5trainfeatures, Q5testFeatrues )
% ***** QUESTION 4-3 ************
trainData = dlmread(Q4trainFeatures);
testData = dlmread(Q4testFeatures);
trainLabels = dlmread(Q4trainLabels,' ');
testLabels = dlmread(Q4testLabels,' ');
hamWordsSum = sum(trainData((trainLabels == 0),:),1);
spamWordsSum = sum(trainData((trainLabels > 0)),1);
hamWordsTotal = sum(sum(trainData((trainLabels == 0),:)));
spamWordsTotal = sum(sum(trainData((trainLabels > 0))));
Likelihood ham = hamWordsSum/hamWordsTotal;
Likelihood_spam = spamWordsSum/spamWordsTotal;
PriorHam = sum((trainLabels == 0))./size(trainLabels,1);
PriorSpam = sum((trainLabels > 0))./size(trainLabels,1);
logR = log2(Likelihood_ham);
logR2 = log2(Likelihood_spam);
for i = 1:260
    P3_{resultHam(i,1:2500)} = testData(1,:).*logR;
    P3 resultSpam(i,1:2500) = testData(i,:).*logR2;
end
P3_resultHam(isnan(P3_resultHam)) = 0;
P3_resultSpam(isnan(P3_resultSpam)) = 0;
P3_resultHam = sum(P3_resultHam,2) + log2(PriorHam);
P3_resultSpam = sum(P3_resultSpam,2) + log2(PriorSpam);
predictedClass(P3_resultHam == P3_resultSpam) = 0;
predictedClass(P3_resultHam > P3_resultSpam) = 0;
predictedClass(P3 resultHam < P3 resultSpam) = 1;</pre>
realClass(1:130) = 0;
realClass(131:260) = 1;
errorT = realClass - predictedClass;
error = abs(realClass - predictedClass);
noErrors1 = sum(error);
disp('****** The code ends - Result displays begin here! ******');
fprintf('\n');
disp('******* QUESTION 4-3 *******');
fprintf('\n');
```

```
fprintf('Number of errors in the prediction of test data is: %.0f
 \n', noErrors1);
accuracy1 = 1 - noErrors1/size(predictedClass,2);
fprintf('Accuracy in the prediction of test data is: %.2f \n',
 accuracy1);
fprintf('In percentage, accuracy = %.2f', accuracy1*100);
disp(' %');
fprintf('\n');
% ***** QUESTION 4-4 *************
alpha = 1;
hamWordsSum = sum(trainData((trainLabels == 0),:),1);
spamWordsSum = sum(trainData(trainLabels > 0,:),1);
totalWordHam = sum(sum(trainData((trainLabels == 0),:)));
totalWordSpam= sum(sum(trainData(trainLabels > 0,:)));
Likelihood_ham = (hamWordsSum + alpha)/(totalWordHam +
 alpha*size(trainData,1));
Likelihood_spam = (spamWordsSum + alpha)/(totalWordSpam +
 alpha*size(trainData,1));
logR = log(Likelihood ham);
logR2 = log(Likelihood_spam);
for i = 1:260
    resultHam(i,1:2500) = testData(i,:).*logR;
    resultSpam(i,1:2500) = testData(i,:).*logR2;
end
resultHam(isnan(resultHam)) = 0;
resultSpam(isnan(resultSpam)) = 0;
resultHam = sum(resultHam, 2) + log2(PriorHam);
resultSpam = sum(resultSpam,2) + log2(PriorSpam);
predictedClass(resultHam == resultSpam) = 0;
predictedClass(resultHam > resultSpam) = 0;
predictedClass(resultHam < resultSpam) = 1;</pre>
realClass(1:130) = 0;
realClass(131:260) = 1;
errorT = realClass - predictedClass;
error = abs(realClass - predictedClass);
noErrors2 = sum(error);
accuracy2 = 1 - noErrors2/size(predictedClass,2);
fprintf('\n');
disp('****** QUESTION 4-4 *******);
fprintf('\n');
```

```
fprintf('Number of errors in the prediction of test data is: %.2f
\n', noErrors2);
fprintf('Accuracy in the prediction of test data is: %.4f \n',
accuracy2);
fprintf('\n');
% ***** OUESTION 4-5 ************
ham = trainData((trainLabels == 0),:);
N10 = sum(ham > 0); %N10 %contains word t and class = 0
N00 = 350 - N10; %N00 %doesn't contain word t and class = 0
spam = trainData((trainLabels > 0),:);
N11 = sum(spam > 0); %N11 %contains word t and class = 1
N01 = 350 - N11; %N01 %doesn't contain word t and class = 1
N = 700;
M(1,:) = (N11/N).*log2((N*N11)./((N11+N10).*(N11+N01)));
M(2,:) = (N01/N).*log2((N*N01)./((N01+N00).*(N11+N01)));
M(3,:) = (N10/N).*log2((N*N10)./((N11+N10).*(N10+N00)));
M(4,:) = (N00/N).*log2((N*N00)./((N00+N01).*(N00+N10)));
M = sum(M);
M(isnan(M)) = 0;
[sortedM,sortingIndices] = sort(M,'descend');
top10Values = sortedM(1:10);
top10Indices = sortingIndices(1:10);
fprintf('\n');
disp('****** QUESTION 4-5 *******);
fprintf('\n');
fprintf('Top 10 values:');
disp(top10Values);
fprintf('Top 10s indices:');
disp(top10Indices);
% ***** OUESTION 4-6 ************
PriorHam = sum((trainLabels == 0))./size(trainLabels,1);
PriorSpam = sum((trainLabels > 0))./size(trainLabels,1);
spam = trainData(351:700,1:2500);
spam = spam > 0;
N 11 = sum(spam);
N_01 = 350 - N_11;
```

```
ham = trainData(1:350,1:2500);
ham = ham > 0;
N_10 = sum(ham);
N 00 = 350 - N 10 ;
N = 700;
Mutual_Info= (N_11)/N.*log2((N*N_11)./((N_11+N_10).*(N_11+N_01))) ...
+ (N 01/N).*log2((N*N 01)./((N 01+N 00).*(N 11+N 01))) ...
+ (N_10/N).*log2((N*N_10)./((N_10+N_11).*(N_10+N_00))) ...
+ (N_00/N).*log2((N*N_00)./((N_00+N_01).*(N_00+N_10)));
Mutual_Info(isnan(Mutual_Info))=0;
[sorted_Mutual_Info, sorted_indices]=sort(Mutual_Info, 'descend');
trainData(701,:)=sorted_Mutual_Info;
trainData=sortrows(trainData', 701);
trainData(:,701) = [];
testData(261,:)=sorted Mutual Info;
testData=sortrows(testData',261);
testData(:,261) = [];
realClass(1:130) = 0;
realClass(131:260) = 1;
trainData = trainData';
testData = testData';
alpha = 1;
for i=1:2499
    trainData(:,1)=[];
    testData(:,1)=[];
    hamWordsSum = sum(trainData(1:350,1:end));
    spamWordsSum = sum(trainData(351:700,1:end));
    hamWordsTotal = sum(sum(trainData(1:350,1:end)));
    spamWordsTotal = sum(sum(trainData(351:700,1:end)));
    Likelihood_ham = (hamWordsSum + alpha)/(hamWordsTotal +
 alpha*size(trainData,1));
    Likelihood spam = (spamWordsSum + alpha)/(spamWordsTotal +
 alpha*size(trainData,1));
    resultSpam = log(PriorSpam) +
 sum(testData(:,:).*log(Likelihood_spam),2);
    resultHam = log(PriorHam) +
 sum(testData(:,:).*log(Likelihood_ham),2);
    resultHam(isnan(resultHam)) = 0;
    resultSpam(isnan(resultSpam)) = 0;
    resultHam = sum(resultHam,2);
    resultSpam = sum(resultSpam, 2);
    predictedClass(resultHam > resultSpam) = 0;
```

```
predictedClass(resultHam == resultSpam) = 0;
   predictedClass(resultHam < resultSpam) = 1;</pre>
   error = abs(realClass - predictedClass);
   noErrors = length(error(error==1));
    accuracy(i) = (260-noErrors)/260;
end
plot(1:2499,accuracy);
fprintf('\n');
disp('****** QUESTION 4-6 *******);
fprintf('\n');
disp('Plot is given.');
title('QUESTION 4-6 Removed Features vs Accuracy ')
xlabel('Number of removed features')
ylabel('Accuracy')
% ***** QUESTION 5-1 ************
fprintf('\n');
disp('****** QUESTION 5-1 ******);
fprintf('\n');
X = dlmread(Q5trainfeatures, ', ');
[class0, average, variance] = runDatasets(X, []);
Priors = [1/3 1/3 1/3]; %All 3 classes are equally likely
disp('Estimated averages of train data for different class labels.')
T1 = array2table(average, 'VariableNames',
{'Class 1', 'Class 2', 'Class 3'}, 'RowNames',
{'Feature1_Ave','Feature2_ave','Feature3_ave','Feature4_ave','Feature5_ave'});
fprintf('\n');
disp(T1);
disp('**********************************;);
fprintf('\n');
disp('Estimated variances of train data for different class labels.');
T2 = array2table(variance, 'VariableNames',
{ 'Class_1', 'Class_2', 'Class_3' }, 'RowNames',
{'Feature1 Var', 'Feature2 Var', 'Feature3 Var', 'Feature4 Var', 'Feature5 Var'});
fprintf('\n');
disp(T2);
disp('*********************************;);
fprintf('\n');
```

```
% ***** OUESTION 5-2 ************
fprintf('\n');
disp('****** QUESTION 5-2 *******);
fprintf('\n');
% DATASETS IN GIVEN ORDER
X = dlmread(Q5trainfeatures,',');
testData = dlmread(Q5testFeatrues,',');
[class1] = runDatasets(X, testData);
createTables(class1, '(Datasets in given order)');
% DATASETS SWAPPED
class2 = runDatasets(testData, X);
createTables(class2, '(Datasets swapped) ');
% ********* FUNCTIONS *********
function [class, average, variance] = runDatasets(train, test)
X = train;
testData = test;
j = 1:1500;
i = 1:5;
k = 1:3;
index(:,1) = X(j,6) == 1;
index(:,2) = X(j,6) == 2;
index(:,3) = X(j,6) == 3;
S(1,:) = sum(X(j,i).*index(:,1));
S(2,:) = sum(X(j,i).*index(:,2));
S(3,:) = sum(X(j,i).*index(:,3));
average = (1/500).*S'; %i by k, average of ith feature for kth class
ave = (1/500).*S;
V(:,1) = sum(((X(j,i)-ave(1,i)).^2).*index(:,1));
V(:,2) = sum(((X(j,i)-ave(2,i)).^2).*index(:,2));
V(:,3) = sum(((X(j,i)-ave(3,i)).^2).*index(:,3));
variance = V/500;
if (size(test) == 0)
   class = 0;
   return;
end
Priors = [1/3 1/3 1/3]; %All 3 classes are equally likely
```

```
for i = 1:5
   for k = 1:3
       NormalDist1(i,k,1:1500) = (1./
(sqrt(2*pi*variance(i,k)))).*exp(-((testData(1:1500,i) -
average(i,k)).^2)./(2*variance(i,k)));
   end
end
for k = 1:3
    logSum1(:,k,:) = log(1/3) + sum(log(NormalDist1(:,k,:)));
end
logSum1(logSum1 == -inf) = 0;
[Y,class] = max(logSum1,[],2);
end
function createTables(class, string)
    *Confusion matrice, each entry represents number of times a certain
real class - prediction combination occured
   Total_Confusion_Matrix = zeros(3,3);
   Total Confusion Matrix(1,1) = sum(class(1:500) == 1);
   Total_Confusion_Matrix(1,2) = sum(class(1:500) == 2);
   Total_Confusion_Matrix(1,3) = sum(class(1:500) == 3);
   Total_Confusion_Matrix(2,1) = sum(class(501:1000) == 1);
   Total Confusion Matrix(2,2) = sum(class(501:1000) == 2);
   Total_Confusion_Matrix(2,3) = sum(class(501:1000) == 3);
   Total\_Confusion\_Matrix(3,1) = sum(class(1001:1500) == 1);
   Total\_Confusion\_Matrix(3,2) = sum(class(1001:1500) == 2);
   Total_Confusion_Matrix(3,3) = sum(class(1001:1500) == 3);
    % Columns are predicted classes, rows are real classes
   T1 = array2table(Total Confusion Matrix, 'VariableNames',
{'Predicted_Class_1','Predicted_Class_2','Predicted_Class_3'},'RowNames',
{'Actual_Class_1', 'Actual_Class_2', 'Actual_Class_3'});
   disp(strcat(string,' confusion table including all classes.'));
   fprintf('\n');
   disp(T1);
   disp('**********************************;);
    fprintf('\n');
    %figure();
    %displayTable(T1)
   Table Class1(1,1) = sum(class(1:500) == 1);
   Table_Class1(1,2) = sum(class(1:500) \sim = 1);
   Table_Class1(2,1) = sum(class(501:1500) == 1);
   Table_Class1(2,2) = sum(class(501:1500) ~= 1);
   T2 = array2table(Table Class1, 'VariableNames',
{'Predicted_True', 'Predicted_False'},'RowNames',
{'Actual_True', 'Actual_False'});
```

```
disp(strcat(string, 'Class 1 ', ' data confusion table.'));
    fprintf('\n');
   disp(T2);
   disp('**********************************;);
   fprintf('\n');
    %figure();
    %displayTable(T2)
   Table_Class2(1,1) = sum(class(501:1000) == 2);
   Table_Class2(1,2) = sum(class(501:1000) \sim = 2);
   Table_Class2(2,1) = sum(class(1:500) == 2) + sum(class(1001:1500)
 == 2);
   Table_{Class2(2,2)} = sum(class(1:500) \sim 2) + sum(class(1001:1500))
   T3 = array2table(Table_Class2, 'VariableNames',
{'Predicted_True', 'Predicted_False'},'RowNames',
{'Actual_True', 'Actual_False'});
   disp(strcat(string,'Class 2 ', ' data confusion table.'));
    fprintf('\n');
   disp(T3);
   disp('**********************************;);
   fprintf(' \n');
    %figure();
    %displayTable(T3)
   Table_{class3(1,1)} = sum(class(1001:1500) == 3);
   Table_Class3(1,2) = sum(class(1001:1500) \sim = 3);
   Table Class3(2,1) = sum(class(1:1000) == 3);
   Table_Class3(2,2) = sum(class(1:1000) \sim= 3);
   T4 = array2table(Table_Class3, 'VariableNames',
{'Predicted_True', 'Predicted_False'},'RowNames',
{'Actual_True', 'Actual_False'});
   disp(strcat(string, 'Class 3 ',' data confusion table.'));
   fprintf('\n');
   disp(T4);
   disp('*********************************;);
   fprintf('\n');
    %figure();
    %displayTable(T4)
end
end
```

%

****** The code ends - Result displays begin here! ******

****** QUESTION 4-3 ******

Number of errors in the prediction of test data is: 130 Accuracy in the prediction of test data is: 0.50 In percentage, accuracy = 50.00 %

****** QUESTION 4-4 ******

Number of errors in the prediction of test data is: 7.00 Accuracy in the prediction of test data is: 0.9731

****** QUESTION 4-5 ******

Top 10 values: Columns 1 through 7

0.4339 0.2719 0.2455 0.2235 0.2137 0.1907 0.1576

Columns 8 through 10

0.1550 0.1355 0.1338

Top 10s indices: 4 8 55 15 7 20 45 131 132

98

****** OUESTION 4-6 ******

Plot is given.

****** QUESTION 5-1 ******

Estimated averages of train data for different class labels.

	Class_1	Class_2	Class_3
Feature1_Ave	15.804	22.649	9.4639
Feature2_ave	18.196	29.062	21.327
Feature3_ave	16.378	27.088	19.211
Feature4_ave	14.699	21.607	8.4899
Feature5_ave	13.574	20.395	7.2602

Estimated variances of train data for different class labels.

	Class_1	Class_2	Class_3
Feature1_Var	40.112	26.232	19.715

Feature2_Var	40.016	15.52	21.289	
Feature3_Var	46.248	25.484	29.599	
Feature4_Var	43.962	29.479	23.634	
Feature5_Var	41.377	28.104	20.735	
*******	*****	*****	**	
****** QUESTION 5	7-2 ******			
(Datasets in given	order) conf	usion tab	le including all class	es.
Predicted_Class_3	Predicte	d_Class_1	Predicted_Class_2	
Actual_Class_1	219		148	133
Actual_Class_2	9		482	9
Actual_Class_3	31		26	443
******	*****	******	**	
(Datasets in given	order)Class	1 data co	onfusion table.	
	Predicted_	True Pi	redicted_False	
Actual_True	219	28	31	
Actual_False	40	96	50	
******	*****	*****	**	
(Datasets in given	order)Class	2 data co	onfusion table.	
	Predicted_	True Pi	redicted_False	
Actual_True	482 174		18	
Actual_False	174	82	26	
******	*****	*****	**	
(Datasets in given	order)Class	3 data co	onfusion table.	
	Predicted_	True Pi	redicted_False	

Actual_True

Actual_False

(Datasets swapped) co	onfusion	table	including	all	classes.
-----------------------	----------	-------	-----------	-----	----------

Predicted_Class_3	Predicted_Class_1	Predicted_Class_2	
Actual_Class_1	219	148	133
Actual_Class_2	9	482	9
Actual_Class_3	31	26	443

(Datasets swapped)Class 1 data confusion table.

	Predicted_True	Predicted_False	
			
Actual_True	219	281	
Actual_False	40	960	

(Datasets swapped)Class 2 data confusion table.

	Predicted_True	Predicted_False		
Actual True	482	18		
Actual_False	174	826		

(Datasets swapped)Class 3 data confusion table.

	Predicted_True	Predicted_False	
Actual_True	443	57	
Actual_False	142	858	

Published with MATLAB® R2016b