Lettre de 10. Grothendieck à L. Breen (1)

Villecun 5.2.75

Cher Breen,

... Pour tout le reste de ta lettre, elle mériterait un lecteur plus averti, aussi, pour qu'elle ne soit pas entièrement perdue au monde, je vais l'envoyer à Illusie ! J'ai néanmoins constaté, avec intérêt, ton intérêt à demi refoulé pour des 2catégories de Picard, n-catégories et autre faune de ce genre, et ton espoir que je te prouverai peut-être que ces animaux sont tout à fait indispensables pour faire des maths sérieuses dans telle circonstance. J'ai bien peur que cet espoir ne soit déçu, je crois que jusqu'à maintenant on a toujours pu d'en tirer en éludant de tels objets et l'engrenage dans lequel ils pourraient nous entraîner. Est-ce nécessairement une raison pour continuer à les éluder? Les situations où on a l'impression "d'éluder" en effet me semblent en tous cas devenir toujours plus nombreuses - et si on s'abstenait de tirer une situation complexe et chargée de mystère au clair, chaque fois qu'on ne serait pas *forcé* de le faire pour des raisons techniques provenant de la math déjà faite, - il y aurait sans doute beaucoup de parties des maths aujourd'hui reputées "sérieusses" qui n'auraient jamais été developpées (Il n'est pas dit non plus que le mode s'en trouverait plus mal...). Ton commentaire (que j'ai également entendu chez Deligne) que la classification d'objets géométriques relativement merdiques se réduit finalement à des invariants cohomologiques essentiellement "bien connus" et relativement simples n'est pas non plus convainquant; n'est ce pas négliger la différence entre la compréhension d'un objet géométrique, et la détermination de sa "classe à isomorphisme (ou équivalence) près"?

¹Ce texte a été déchiffré et transcrit par Mateo Carmona

Tu me demandes des exemples "convainquants" de 2-catégories de Picard. Voici quelques exemples, en vrac (je ne sais s'ils seraient convainquants!):

- 1) Si L est un lien (22) de centre Z sur le topos X, les gerbes liées par Z forment une 2-catégorie de Picard stricte, représentée par le complexe $R\Gamma_{X}(Z)$ tronqué en degré 2, dont les objets de cohomologie non triviaux sont les $H^i(X,Z)$, $0 \ge i \ge 2$. Les gerbes liées par L forment un pseudo-2-torseur sous le gerbe précédente, qui est un 2-torseur (i.e. non vide) si et seule si une certaine obstruction dans $H^3(X,Z)$ est nulle. Pour comprendre cette classe de notre point de vue, il y a lieu de passer aux 2-champs correspondants: le 2-champs de Picard strict des z-gerbes sur des objets variables de X, et le 2-champ des L-gerbes sur des objets variables. Ce dernier est bel et bien un 2-torseur sous le champ précédent, or la classification de ces 2-torseurs (à 2-équivalence près) se fait par le $H^3(X,Z)$, (tout comme les Z-L-gerbes peuvent être interprétées comme des torseurs sous la Z-L-champ de Picard strict des Z-torseurs, et sont classifiées par le $H^2(X,Z)$). On voit déjà, bien sûr, poindre ici l'oreille de la 3-catégorie de Picard stricte des 2-gerbes liées par Z, ou (de façon équivalente) des 2-torseurs sous le 2-champ de Picard strict des Z-L-gerbes; cette 3-catégorie de Picard stricte étant décrite par $R\Gamma_{X}(Z)$ tronqué en dimension 3, ayant comme invariants de cohomologie non triviaux les $H^i(X,Z)$ ($0 \ge i \ge 3$). Quant au 3-champ de Picard correspondant, il est décrit par une résolution injective de Z tronqué en degré 3, alors que le 2-champ de Picard précédent se décrivait en tronquant en degré 2.
- 2) Si *M* et *N* sont deux faisceaux abéliens sur *X*, les *champs de Picard* (**N.B.** 1-champs !) *d'invariants M et N* forment eux-même une 2-catégorie

3)

4)

La considération des *n*-catégories de Picard strictes (qui s'imposent à nous pas à pas dans un contexte essentiellement "commutatif")

Je ne sais si ces commentaires te "passent par dessus la tête" à ton tour, ni si elles

Bien cordialement à toi,

A. Grothendieck

P.S. Réflexion faite, j'ai quand même envie En fait, $C_n(K_{\bullet})$ est un *n*-groupoïde, i.e. une *n*-catégorie où toute Bien entendu, rien n'empêche de considérer aussi