

closure property: Union intersection. complement concertenction. stor

Theorem

If A is regular, so is A*

Idea

Proof.

Let $N = (\Sigma, K, \Delta, S, F)$ be a NFA accepting A. Construct $N' = (\Sigma, K', \Delta', S', F')$ as follows. K' = KUSS' F' = FUSS' $\Delta' = \Delta USS', e, SDUSS(q, e, S) : 9EF$ N' accept A^* Theorem

If A and B are vogular. So is AUB.

Proof

finite automata: language recognizer

language generator: grammar

regular language -> regular grammar regular expression

Orithmetic $(2+3)\times 5$ regular expression $(aub)^*a$ R $L(R) = (sasus b)^* \circ sas$ $= (we sa.b)^* \circ we ends with a)$ R decribes LUR) Definition

The regular expression over an alphabet Z are defined inductively. Basis

1.
$$\phi$$
 is a regular expression,
 $\Box(\phi) = \phi$

2. any symbol
$$\alpha \in \Sigma$$
 is a regular expression
$$L(\alpha) = S\alpha$$

$$>0 \qquad \Rightarrow 0$$

Induction

3. If R₁ and R₂ are regular expression, so is
$$(R_1 U R_2)$$

 $L(R_1 U R_2) = L(R_1) U L(R_2)$

4. "
$$L(R_1R_2) = L(R_1) \circ L(R_2)$$

S. If R is a regular expression, so is
$$(R^*)$$

$$L(R^*) = (L(R))^*$$

$$\left(\left((a^*)^{\perp} \right) \right) \left((b^*)^{\alpha} \right)$$
 a^*bvb^*a

Precedence: star > concatenation > union

Example

Swesa, by: w starts with a and ends with b?

a (aub)*b

SWESO, 11 = W has at least two occurrence of 0)

(001) 0 (001) 0 (001)

Theorem

A language is regular iff it is decribed by some regular expression. Idea

 $R_{i}\bar{E} \implies N_{i}\bar{A}$ $(abva)^{*}$ a: xo a xo b: xo b xo abva: e xo a xo e xo b xo abva: e xo a xo e xo b xo $(abva)^{*}$ e xo a xo e xo b xo

NFA => regular expression Elimination of states

Given a NFA N,

- 1. Convert N into an equivalent NFA N' such that
 - a) N' has no are entering its initial state
 - 5) N' has only one final state, and there is no arc leaving this final state.
- 2. eliminate, one by one, all the states except the initial state and the tinal state.

Let $N = (K, \Sigma, \Delta, S, \overline{F})$ be a NFA. WLOG, assume that

- 1 K=591,92, ..., 9n3, S=9n-1, F=59n7
- 2. (P, a, 9n-1) & for any pek, a E EUSe)
- 3, (9n, a, P) & & for any pek, a E EU(e)

Subproblem

for every injection, for every $k \in [0, n]$, define $L_{ij}^{k} = \int w \in \mathbb{Z}^{*}$: w drives N from 9i to 9j without passing any intermediate state having index greater than k.

$$\frac{9}{1}$$
 $\frac{9}{9}$

$$L_{43} = 15$$
, $a5$, acs ces .

Goal

$$L(N) = L_{(n-1)n}^{n-2}$$

Base case k=0if $i \neq j$, $L^{\circ} = \{a: (9i, a, 9i) \in \Delta\}$

Rij is easy to stain

Recurrence
$$k \ge 1$$

$$L_{ij}^{k} = L_{ij}^{k-1} U L_{ik}^{k-1} (L_{kk})^{k-1} L_{kj}^{k-1}$$

$$R_{ij}^{k} = R_{ij}^{k-1} U R_{ik}^{k-1} (R_{kk})^{k-1} R_{kj}^{k-1}$$

