João Vilor Fermender Dias

#Resisão: Recurão e Intução

(2) Rosen 4.3.3:

@f(n+1) = f(n) +2

 $11 = \int_{(1)+2}^{(1)+2} \frac{4+2}{2+2-4} = \int_{(2)}^{(2)} \frac{6+2}{2} \frac{8+2}{8} = \int_{(3)}^{(4)} \frac{8+2$ 1(5)=1(4)+2. (4) = f(3)+ 2 11 = f(2)+2

(B) f(m+1) = 3 f(m)

(2)=3/(1)=3.22

@ f(m+1) = 2nf(m)

((5)= 2~ ((4) = 2~(2~(2~(2~2))) 1(3) = 2n(2n(2n2))

(3)= 2 × {(2)=2x(2x2)

(2)=ZN (11)=ZNZ

tilibra

22 h 14 17/01/25

 $l(5) = f(4) + 3 l(3) = 2 + 3 \cdot (5) = 17$ $l(4) = f(3) + 3 l(2) = 5 + 3 \cdot (-1) = 2$ $l(3) = f(2) + 3 f(3) = -1 + 3 \cdot (2) = 5$ $l(2) = f(3) + 3 f(3) = 2 + 3 \cdot (-1) = -1$ l(4) = 2 l(6) = -1

a Plant	= 1(m-1)	m	0	1	2	3	4	5	
@ f(n+1)	12(m)	(m)	-4	2	1/2	-4	1/8.	5	

$$I(5) = \int (3) |f(4)| = (-4)/(4/8) = -32$$

$$I(4) = I(2) / I(3) = \frac{(-4)}{(-4)} = \frac{1}{8}$$

$$I(3) = I(1) / I(2) = \frac{2}{(-1/2)} = -4$$

$$I(2) = I(0)/I(1) = -\frac{1}{2}$$

$$I(3) = \frac{2}{(-1/2)} = \frac{1}{2}$$

Plo)=-1

tillbra

(2)

a an = 6m	- a, az a a a o	A(x+1) = 6 + A(x)
		The second secon
(b) am = 2m+1	3 5 7 9 11	B(0) = 1 B(x+1) = 2+ B(x)
Qam=10"		
(4)31	101 102 103 104 105	$\begin{cases} C(0) = 1 \\ C(x+1) = 10C(z) \end{cases}$
@an=5	a1 a2 a3 a4 a5	[D(0)=5
	a1 a2 a3 a4 a5 5 5 5 5	(D(x+1) = D(x)
3 Rosen 4.3	. 35	
- W = x + y;	=0 wl=m+1; lx]=mj	ly1=1
w= y+2		
# Livipão	& Gongelista	
Cap 5, Exercits	1, Reg. (249)	
Vi Contraction		
	A Land	

Divisão e Conquista landos, Cap 5, Ex. 1, Kg. 246) def get_mean_by_index_query (size): right a = right b = size-1 while (night a > left-b) or (night-b > left-b): mean-value a = (left-a + right-a) 1/2 elem-a = A (mean-value-a) mean value - b = (left b + right b) 1/2 min-offset = min (mean-value-a-left-a, min-offset = 1 if min-offset == 0 else min-offset left a += min-offset left_b += min_ offset return min (A(left-a), B(left & b)) Cormen, Cap 9, Ex. 9.3-8, Rg. 223 a resolução desta questão é basicamente a anterior, quenos trocando as chamadas as funções A() eB(), por acerso aos vetores A[]e B[], que poderiam ser passados como parâmetro da função. tilibra

# Módulo 3 - Paradigma: Programação Dirâmica	
Tardes, Cap 6, Ex. 7, Rg 3187319	1
- Concerto do algoritmo: percone de 1 a m mantendo	o úndico
i e o valor P(i) do monor P(i) encontrado até o i ver	ificado.
Guarga Guarda também a diferença entre o P(i) atual	e o me
mer P(i) encontrado até então se for maior que a ul	ima A
P(i) anterior, atualiza o i de retorno. Chiando atua	tisan
a diferença, atualiza o i e j de retormo.	
as 보이지는 1 10일(100m) 전에 보이지는 전에 보고 하고 있다면 되어 있었다면 되었다면 되었다면 되었다면 보이지 않는데 되었다면 되었다면 되었다면 되었다면 되었다면 되었다.	
def cet best pain report DP(P):	ation of
i = i = min i = min dill = 0	3
i = j = min i = mix diff = 0	
of PLRITTIME 1	-
101 Project T	4
if dell's mark dill:	U. J.
max aff = diff	
i= min-i	4-2-2
)) = K	
Treturn 1'# there was no way To make more	u derin 1
the [not days'	0 9.
return f by buy on (1+1), rell on (g+1)	
	- (1)

tilibra

Tandos, Cap 6, Ex. 13, Rig. 324
O que precisamos encontras é um ciclo tal que a seguencial
day has seen an rein maior and 1 Enter Town on the day
das hazões nis seja maior que 1. Então teremos um ciclo de
oportunidado se: rayaz razas razas 1.
Um dos algoritmos usados para se encontras ciclos ne
gativos é o algoritmo de Bellman-Tord-Moore, mas para
isso, recia necessário considerarmos um somatório de pero
que, ao final, deveria ser menor que O. Desse modo pare
que a problema em questão se enquadre nos parame
parâmetros do algoritmo, podemos fazer a operação de logarit
as dois lada da ea são de modo a a sicha de ade
aos dois lados da equação, de modo que o ciclo de pode oportunidade será encontrado se: log (na, ar) + log (acas) + ··· +
las (a))
() 22)
O algoritmo de Bellmon-Ford-Moore arregura a existêncie
de ciclo megativo caro, após m-1 iterações, ainda haja atuali
zações mos pesos. Para isso, definisemos que todos os pesos em ques
tão serão - log(riz). Assim, caro o algoritmo encontre lum ciclo negativo, podemos afirmas que la um ciclo de oportunid
cielo negativo, podemos afirmas que la um ciclo de oportunid
de, visto que seu somatorio rerá menor que O.
zihox 1
-

as color

(Tubo C. - NP e Intratabilidado Computacional)

Torder Cap. 8, Ex. 1. Rg. 505

1. Sum. O problema de Interval Scheduling é um problema de cobertura, onde precisamos encontros um conjunto de intervalos mão sobrepostos de tamanho pelo menos K. Oproblema de vertex correr também é um problema de cobertura, onde preciramos encontra um conjunto de vertices que cubra Todos as avertas.

To manipularmon o Interval Scheduling de tal forma que cada uma das tarefas reja representada por um vertice, e façamos com que todas as anesta tarefas em horáxios sobrepostos tenham anestas entre si, podemos transformar o problema de interval sche-duling em um problema de Independent Set. E esse problema, por sua res, é redusirel para Vertex Cover, assim torrando o problema de Interval Scheduling redutivel para Vertex Corer.

2. Desconhecido. Iro se dá pois o problema de Independent Set é um problema NP-Completo, Já o problema de Intered Scheduling e' rum problema polinomial. Por uso, não podemos afirmos que Lordependent Set é radutivel para Interval Schaduling Jardos, Cap. 8, Ex. 3, Rig 505-506

3 O problema Efficient Recruiting (ER) é um problema de coleca-tura, onde precisamos ercontras em conjunto de Correlheiros(C) que cubra todas as áreas de Exporte (E). Def De forma simi-los, no problema de Set Cores precisamos encontras um Conjunto de Conjuntos (C) que cubrom todos os Elementos (E). (tilibra)

(22/01/25)

23845

Sendo assim, podemnos reduzir o problema de ER para o problema de Set Coros Cover, tornamdo o n n ER NP-Completo. tilibra

12 95