

Update on integral and elemental cross sections with GSI2021 data

Riccardo Ridolfi

5 October 2022 - Physics meeting

400 MeV/u ¹⁶O beam on 5mm Carbon target

With available data total integrated and angle differential cross section are achievable (no kinetic energy)

$$\Delta \sigma(Z) = \int_{E_{\min}}^{E_{\max}} \int_{0}^{\theta_{\max}} \left(\frac{\partial^{2} \sigma}{\partial \theta \partial E_{\min}} \right) d\theta dE_{\min} = \frac{Y(Z)}{N_{\min} \cdot N_{\text{TG}} \cdot \varepsilon(Z)}$$

$$\frac{d\sigma}{d\theta}(Z) = \frac{Y(Z,\theta)}{N_{\text{prim}} \cdot N_{\text{TG}} \cdot \Delta\theta \cdot \varepsilon(Z,\theta)}$$

400 MeV/u ¹⁶O beam on 5mm Carbon target

With available data **total integrated** and angle differential cross section are achievable (no kinetic energy)

$$\Delta \sigma(Z) = \int_{E_{\min}}^{E_{\max}} \int_{0}^{\theta_{\max}} \left(\frac{\partial^{2} \sigma}{\partial \theta \partial E_{\min}} \right) d\theta dE_{\min} = \frac{Y(Z)}{N_{\text{prim}} \cdot N_{\text{TG}} \cdot \varepsilon(Z)}$$

Align FOOT detectors and estimate **angular acceptance**

Extract fragment yields from TW

Calculate MC efficiencies for fragments

400 MeV/u ¹⁶O beam on 5mm Carbon target

With available data total integrated and **angle differential** cross section are achievable (no kinetic energy)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}(Z) = \frac{Y(Z,\theta)}{N_{\mathrm{prim}} \cdot N_{\mathrm{TG}} \cdot \Delta\theta \cdot \varepsilon(Z,\theta)}$$

Align FOOT detectors and estimate angular acceptance

Extract fragment yields from TW

Calculate MC efficiencies for fragments

400 MeV/u ¹⁶0 beam on 5mm Carbon target

Run	Trigger type	Target	Events
4305	MB	C	162102
4500	MD	C	102102
4306	${ m MB}$	\mathbf{C}	577096
4307	MB	\mathbf{C}	513370
4308	Frag + MB	\mathbf{C}	510169
4309	Frag + MB	\mathbf{C}	531812
4310	Frag + MB	\mathbf{C}	1012099
4313	${ m MB}$	no	57133

400 MeV/u ¹⁶0 beam on 5mm Carbon target

In this analysis VTX is not included, MSD is on track

Fragmentation out of target will be estimated with no target runs

MC analysis

MC analysis

Cross section measurement MB (4305-6-7)

Cross section measurement FRAG (4308-9-10)

Background subtraction

Starting coordinate of primary daughters

Background subtraction (4313)

$$\Delta\sigma(Z) = \frac{1}{N_{\rm TG} \cdot \varepsilon(Z)} \left(\frac{Y^{\rm sig}(Z)}{N_{\rm prim}^{\rm sig}(Z)} - \frac{Y^{\rm bkg}(Z)}{N_{\rm prim}^{\rm bkg}(Z)} \right)$$

MC analysis

Results

Results

Thanks for your attention!