Gas-Liq-Solids Three-laws-Thermo

Haotian Fu

University of Michigan-Shanghai Jiao Tong University Joint Institute

October 29, 2021

Outline

- 1 States of Matter
 - Gas, Liquid, and Solid
- 2 Practical Functions
 - Blocks
 - Figures and Tables
 - Graphs
- 3 Conclusions
 - As for States of Matter

Outline

- 1 States of Matter
 - Gas, Liquid, and Solid
- 2 Practical Functions
 - Blocks
 - Figures and Tables
 - Graphs
- 3 Conclusions
 - As for States of Matter

General Notice

■ unit: Kelvin(K) & $J \cdot K^{-1} \cdot mol^{-1}$

General Notice

■ unit: Kelvin(K) & $J \cdot K^{-1} \cdot mol^{-1}$

■ status: SATP & STP

General Notice

■ unit: Kelvin(K) & $J \cdot K^{-1} \cdot mol^{-1}$

status: SATP & STP

■ formula transformation: molartity & density

Gas

$$pV = nRT$$

How to understand ideal gas equation?

Gas

$$pV = nRT$$

How to understand ideal gas equation?

empirical law?

Gas

$$pV = nRT$$

How to understand ideal gas equation?

empirical law?

$$v_{\rm rms} = \sqrt{3RT/M}$$

Why do we study kinetic molecular theory?

Gas

$$pV = nRT$$

How to understand ideal gas equation?

empirical law?

$$v_{\rm rms} = \sqrt{3RT/M}$$

Why do we study kinetic molecular theory?

Graham's law of effusion?

Understanding from A New Point of View

Here we will discuss the **ideal gas equation** from a new point of view, *i.e.*, **kinetic molecular theory**(KMT).

Understanding from A New Point of View

First we should get aware of the **prerequisite** of KMT.

¹Sun, Ting, CHEM2100J-FA21-Ch5-6, pp. 35.

Understanding from A New Point of View

First we should get aware of the **prerequisite** of KMT. Recall what has been taught in lectures.

- 1. A gas is in continuous random motion
- 2. Gas molecules are infinitesimally small
- 3. They move in straight lines until collision
- Gas molecules do not influence one another except during collisions
- The collisions are elastic

Prerequisites of KMT shown in slides¹

¹Sun, Ting, CHEM2100J-FA21-Ch5-6, pp. 35.

Understanding from A New Point of View

Now we conclude

A gas is in continuous random motion and evenly distributed throughout the container. Irregular molecular movement does not do work.

Understanding from A New Point of View

Now we conclude

- A gas is in continuous random motion and evenly distributed throughout the container. Irregular molecular movement does not do work.
- Substances of the same chemical properties have the same particle size, shape and functions.

Understanding from A New Point of View

Now we conclude

- A gas is in continuous random motion and evenly distributed throughout the container. Irregular molecular movement does not do work.
- Substances of the same chemical properties have the same particle size, shape and functions.
- Gas molecules are infinitesimally small and they move in straight lines until collision.

Understanding from A New Point of View

Now we conclude

- A gas is in continuous random motion and evenly distributed throughout the container. Irregular molecular movement does not do work.
- Substances of the same chemical properties have the same particle size, shape and functions.
- Gas molecules are infinitesimally small and they move in straight lines until collision.
- Gas molecules do not influence one another except during collisions.

Understanding from A New Point of View

Now we conclude

- A gas is in continuous random motion and evenly distributed throughout the container. Irregular molecular movement does not do work.
- Substances of the same chemical properties have the same particle size, shape and functions.
- Gas molecules are infinitesimally small and they move in straight lines until collision.
- Gas molecules do not influence one another except during collisions.
- The collisions are elastic.

000000

Liquid

Outline

- 1 States of Matter
 - Gas, Liquid, and Solid
- 2 Practical Functions
 - Blocks
 - Figures and Tables
 - Graphs
- 3 Conclusions
 - As for States of Matter

An example of blocks

example

This is an example of block.

An example of blocks

example

This is an example of block.

This is another block.

Examples of figures and tables

Figure: An example of figure

Examples of Graphs

$$A \stackrel{f}{\rightleftharpoons} B$$

Outline

- 1 States of Matter
 - Gas, Liquid, and Solid
- 2 Practical Functions
 - Blocks
 - Figures and Tables
 - Graphs
- 3 Conclusions
 - As for States of Matter

Remarks

■ You can never be too careful about UNITS.

As for States of Matter

Remarks

- You can never be too careful about UNITS.
- Smoot's Legacy http://alum.mit.edu/news/AlumniNews/Archive/smoots_legacy.

As for States of Matter

Remarks

- You can never be too careful about UNITS.
- Smoot's Legacy http://alum.mit.edu/news/AlumniNews/Archive/smoots_legacy.
- Smoot Salute! http://web.mit.edu/spotlight/smoot-salute.