Lecture 4: Relations and Digraphs

Xiaoxing Ma

Nanjing University xxm@nju.edu.cn

October 14, 2014

Acknowledgement: These Beamer slides are totally based on the textbook *Discrete Mathematical Structures*, by B. Kolman, R. C. Busby and S. C. Ross, and Prof. Daoxu Chen's PowerPoint slides.

At the Last Class

- Basics of Combinatorics
 - Permutations
 - Combinations
 - Pigeonhole principles
- Some Techniques for Analysis
 - Elements of probability
 - Recurrence relations

Overview

- Relations and Digraphs
 - Product sets and partitions
 - Binary relations and their digraphic form
 - Paths in relations
 - Representing relations
 - Properties of relations
- Equivalence Relation
 - Equivalence relations and partitions
 - Equivalence relations and equivalence classes

为"关系"建立数学模型

可以将"大学在籍"看成某个个 人与某个大学之间的关系。我 们能够如何描述这个关系呢?

Ordered Pair and Cartesian Product

Cartesian Product

For any sets A, B

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

is called the **Cartesian Product** of *A* and *B*.

Ordered Pair and Cartesian Product

Cartesian Product

For any sets A, B

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

is called the **Cartesian Product** of A and B.

Example

$$\{1,2,3\} \times \{a,b\} = \{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}$$

Ordered Pair and Cartesian Product

Cartesian Product

For any sets A, B

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

is called the **Cartesian Product** of A and B.

Example

$$\{1,2,3\} \times \{a,b\} = \{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}$$

For finite A, B, $|A \times B| = |A| \times |B|$

Generalized Cartesian Product

Cartesian product of *m* nonempty sets:

$$A_1 \times A_2 \times \cdots A_m = \{(a_1, a_2, \dots, a_m) | a_i \in A_i, i = 1, 2..., m\}$$

Generalized Cartesian Product

Cartesian product of *m* nonempty sets:

$$A_1 \times A_2 \times \cdots A_m = \{(a_1, a_2, \dots, a_m) | a_i \in A_i, i = 1, 2..., m\}$$

Example (Describing the attributes of objects)

A computer program can be characterized by 3 attributes:

```
\begin{aligned} \mathsf{Language} &= \{\mathsf{C}(c), \mathsf{Java}(j), \mathsf{Fortran}(f), \mathsf{Pascal}(p), \mathsf{Lisp}(l)\} \\ \mathsf{Memory} &= \{2 \ \mathsf{meg}(2), 4 \ \mathsf{meg}(4), 8 \ \mathsf{meg}(8)\} \\ \mathsf{OS} &= \{\mathsf{UNIX}(u), \mathsf{Windows}(w), \mathsf{Linux}(l)\} \end{aligned}
```

Then, any object in Language \times Memory \times OS can be assigned to a specific program to characterized it.

Properties of Cartesian Product

- $A \times \emptyset = \emptyset \times A = \emptyset$
- $A \times B = B \times A \Leftrightarrow A = B \vee A = \emptyset \vee B = \emptyset$ Proof:

 - \Rightarrow If $A \neq B$ and $A \neq \emptyset$, we can prove that $B = \emptyset$ by contradiction.

Assume that $B \neq \emptyset$, since $A \neq B$, let $a \in A$, but $a \notin B$; let b be any element in B (may be in A or not), then $(a, b) \in A \times B$, but $(a, b) \notin B \times A$, contradiction.

Properties of Cartesian Product

For any set A, B and C

$$A \times (B \cup C) = \{(x, y) | x \in A, y \in B \text{ or } y \in C\}$$

$$= \{(x, y) | x \in A, y \in B \text{ or } x \in A, y \in C\}$$

$$= \{(x, y) | (x, y) \in A \times B \text{ or } (x, y) \in A \times C\}$$

$$= (A \times B) \cup (A \times C)$$

Easy to see:

$$A\times (B\cap C)=(A\times B)\cap (A\times C)$$

Relation as a Set

Let A and B be nonempty sets. A **relation** R **from** A **to** B is a subset of $A \times B$.

If $a \in A, b \in B$, then "a is related to b by R" is written as:

$$(a,b) \in R$$
, or aRb

R is a relation on *A*, if $R \subseteq A \times A$

Example (Relations)

- $A = \{1, 2, 3\}$, $B = \{r, s\}$, $R = \{(1, r), (2, s), (3, r)\}$, then R is a relation from A to B.
- $A = \{1, 2, 3, 4\}, R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}$ then R is a relation on A, i.e., "not larger than".
- \mathbb{N} is the set of all natural numbers (starting from 1), defining a relation R on \mathbb{N} , such that, for any $m, n \in \mathbb{N}$, $(m, n) \in R$ if and only if m divides n. So, $R \subseteq \mathbb{N} \times \mathbb{N}$, and R contains (3,6), (5,25), (7,21), etc.

Special Binary Relations

- Empty relation on (any) set A. It is just a empty set.
- Universal relation on set A: $E_A = A \times A$
- Equality: $I_A = \{(x, x) | x \in A\}$

Domain and Range of Relations

Let $R \subseteq A \times B$, then

• The **domain** of R, Dom(R) is defined as:

$$\{x|x\in A, \text{ and exists some } y\in B, \text{ such that } xRy\}$$

• The **range** of R, Ran(R) is defined as:

$$\{y|y\in B, \text{ and exists some } x\in A, \text{ such that } xRy\}$$

Note: $Dom(R) \subseteq A$, and $Ran(R) \subseteq B$.

R-relative Set

If R is a relation from set A to B

• For any $x \in A$, R-relative set of x, R(x) is:

$$\{y|y\in B, xRy\}$$
 (this is a subset of B)

• For any $A_1 \subseteq A$, R-relative set of $R(A_1)$ is:

$$\{y|y\in B, \text{ there exists some } x\in A_1 \text{ such that } xRy\}$$

Note that:
$$R(A_1) = \bigcup_{x \in A_1} R(x)$$

Properties of *R*-relative Sets

Let R be a relation from set A to B, A_1 , A_2 be subsets of A, then

- (a) $A_1 \subseteq A_2 \Rightarrow R(A_1) \subseteq R(A_2)$
- (b) $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
- (c) $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$

Properties of *R*-relative Sets

Let R be a relation from set A to B, A_1 , A_2 be subsets of A, then

- (a) $A_1 \subseteq A_2 \Rightarrow R(A_1) \subseteq R(A_2)$
- (b) $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
- (c) $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$

Proof of (c).

for any $y \in R(A_1 \cap A_2)$, there exists some $x \in A_1 \cap A_2$ such that xRy. So, $x \in A_1 \wedge x \in A_2$. It follows that $y \in R(A_1) \wedge y \in R(A_2)$, thus $y \in R(A_1) \cap R(A_2)$.

Properties of *R*-relative Sets

Let R be a relation from set A to B, A_1 , A_2 be subsets of A, then

- (a) $A_1 \subseteq A_2 \Rightarrow R(A_1) \subseteq R(A_2)$
- (b) $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
- (c) $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$

Proof of (c).

for any $y \in R(A_1 \cap A_2)$, there exists some $x \in A_1 \cap A_2$ such that xRy. So, $x \in A_1 \wedge x \in A_2$. It follows that $y \in R(A_1) \wedge y \in R(A_2)$, thus $y \in R(A_1) \cap R(A_2)$.

Equality doesn't hold. Counterexample: considering relation " \leq " on \mathbb{Z} , $A_1 = \{0, 1, 2\}$, $A_2 = \{9, 13\}$, $R(A_1)$ is the set of all nonnegative integers, and $R(A_2)$ is the set of integers not less than 9, so, $R(A_1) \cap R(A_2) = \{9, 10, 11, 12, \cdots\}$, but $A_1 \cap A_2 = \emptyset$, which results $R(A_1 \cap A_2) = \emptyset$.

Representing Relations as Matrices

$$A = \{a_1, a_2, a_3\}, B = \{b_1, b_2, b_3, b_4\}$$

 $R = \{(a_1, b_1), (a_1, b_4), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3)\}$

$$M = \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{array} \right]$$

 $(a_i, b_j) \in R$ if and only if $m_{i,j} = 1$

Representing Relations as Digraphs

Digraph representation is used only for relations on one set.

$$A = \{1, 2, 3, 4\}$$

$$R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (4, 1)\}$$

Path in Digraph

A path of length n in R from a to b is a finite sequence $\pi: a, x_1, x_2, \cdots, x_{n-1}, b$, such that:

$$aRx_1, x_{n-1}Rb$$
, and x_iRx_{i+1} for $i = 1, \dots, n-2$

A path in R corresponds to a succession of edges in the digraph representation of the relation, which consists of n edges.

It is not required that all elements in $a, x_1, x_2, \dots, x_{n-1}, b$ are distinct.

 π_1 : a, b, e, d, c length: 4

 $\pi_1: a, b, e, d, c$ length: 4

 $\pi_2: a, b, e, a$ length: 3 (cycle)

 $\pi_1: a, b, e, d, c$ length: 4 $\pi_2: a, b, e, a$ length: 3 (cycle) $\pi_2: b, b$ length: 1 (ring)


```
aR^4c
aR^2d (a, b, d)
aR^{k+2}d (a, b, b, \cdots, d) //k+1 b's
bRb
bR^3b
```

```
\pi_1: a, b, e, d, c length: 4

\pi_2: a, b, e, a length: 3 (cycle)

\pi_2: b, b length: 1 (ring)
```


 π_1 : a, b, e, d, c length: 4 π_2 : a, b, e, a length: 3 (cycle)

 $\pi_2: b, b$ length: 1 (ring)

 aR^4c aR^2d (a,b,d) $aR^{k+2}d$ (a,b,b,\cdots,d) //k+1 b's bRb bR^3b

Generalized(connectivity)

 $xR^{\infty}y$ if there is a path of any length from x to y.

$$R^{2} = \{(a, b), (a, c), (a, d), (a, e), (b, a), (b, b), (b, c), (b, d), (b, e), (e, b), (e, c)\}$$

$$R^{3} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (b, a), (b, b), (b, c), (b, d), (b, e), (e, b), (e, e)\}$$

$$R^{\infty} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (b, a), (b, b), (b, c), (b, d), (b, e), (d, c), (e, a), (e, b), (e, c), (e, d), (e, e)\}$$

R^2 by Matrix Multiplication

If
$$R$$
 is a relation on $A = \{a_1, a_2, \dots, A_n\}$, $M_{R^2} = M_R \odot M_R$

Proof.

- Let $M_R = [m_{ij}]$, and $M_{R^2} = [n_{ij}]$.
- Let $M^* = \begin{bmatrix} m_{ij}^* \end{bmatrix} = M_R \odot M_R$, then $m_{ij}^* = 1$ if and only if for some $k(1 \le k \le n)$, $m_{ik} = 1$ and $m_{kj} = 1$.
- By definition of relation matrix, $a_i Ra_k$, $a_k Ra_i$.
- Thus $a_i R^2 a_j$, and so $n_{ij} = 1$, which means that $m_{ij}^* = 1$ if and $n_{ij} = 1$.
- So, $M_R \odot M_R = M_{R^2}$.

Rⁿ by Matrix Multiplication

For $n \ge 2$, and R a relation on a finite set A, we have $M_{R^n} = M_R \odot M_R \odot \cdots \odot M_R$ (n factors).

Proof.

Proof by induction:

Let P(n) mean that the statement holds for an integer $n \ge 2$. P(2) has been proved.

Let $M_{R^{k+1}}=[x_{ij}]$, $M_{R^k}=[y_{ij}]$, and $M_R=[m_{ij}]$. Let the node next to the last a_j is a_s , then there is a path of length k from a_i to a_s , and an edge from a_s to a_j . So $y_{is}=1$, $m_{sj}=1$, so $M_{R^k}\odot M_R[i,j]=1$. On the other hand, if $M_{R^k}\odot M_R[i,j]=1$, we have $x_{ij}=1$. So $M_{R^{k+1}}=M_{R^k}\odot M_R$, by inductive hypothesis, P(k+1).

Connectivity Relation

Connectivity relation R^{∞} on some set A is defined as:

 $\forall x,y \in A$, $(x,y) \in R^{\infty} \iff$ there is some path in R from x to y.

Note:
$$R^{\infty} = R \cup R^2 \cup R^3 \cup \dots = \bigcup_{n=1}^{\infty} R^n$$

So,

$$M_{R^{\infty}} = M_R \vee M_{R^2} \vee M_{R^3} \vee \cdots$$

= $M_R \vee (M_R)_{\odot}^2 \vee (M_R)_{\odot}^3 \vee \cdots$

Connectivity Relation

Connectivity relation R^{∞} on some set A is defined as:

 $\forall x,y \in A$, $(x,y) \in R^{\infty} \iff$ there is some path in R from x to y.

Note:
$$R^{\infty} = R \cup R^2 \cup R^3 \cup \cdots = \bigcup_{n=1}^{\infty} R^n$$

So.

$$M_{R^{\infty}} = M_R \vee M_{R^2} \vee M_{R^3} \vee \cdots$$

= $M_R \vee (M_R)_{\odot}^2 \vee (M_R)_{\odot}^3 \vee \cdots$

if A_1 is a subset of A, what is $R^{\infty}(A_1)$?

Reflexivity

Relation R on A is

- Reflexive if for all $a \in A$, $(a, a) \in R$.
- Irreflexive if for all $a \in A$, $(a, a) \notin R$.

Let
$$A = \{1, 2, 3\}$$
, $R \subseteq A \times A$

- $\{(1,1), (1,3), (2,2), (2,1), (3,3)\}$ is reflexive
- $\{(1,2),(2,3),(3,1)\}$ is irreflexive
- $\{(1,2),(2,2),(2,3),(3,1)\}$ is neither reflexive nor irreflexive.

R is reflexive relation on A if and only if $I_A \subseteq R$.

Visualize reflexivity

$$A = \{a, b, c\}$$

$$M_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Symmetry

Relation R on A is

- **Symmetric** whenever $(a, b) \in R$, then $(b, a) \in R$.
- Antisymmetric if whenever $(a, b) \in R \land (b, a) \in R$ then a = b.
- Asymmetric if whenever $(a, b) \in R$ then $(b, a) \notin R$ (Note: neither anti- nor a-symmetry is the negative of symmetry)

Let
$$A = \{1, 2, 3\}$$
, $R \subseteq A \times A$

- $\{(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)\}$ is symmetric.
- $\{(1,2),(2,3),(2,2),(3,1)\}$ is antisymmetric.
- $\{(1,2),(2,3),(3,1)\}$ is antisymmetric and asymmetric.
- $\{(11), (2, 2)\}$ is symmetric and antisymmetric.
- ullet is symmetric and antisymmetric, and asymmetric!

R is symmetric relation on A if and only if $R^{-1} = R$

Visualized Symmetry

$$A = \{a, b, c\}$$

$$M_R = \left[egin{array}{ccc} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{array}
ight]$$

Transitivity

Relation R on A is

• Transitive whenever $(a, b) \in R$, $(b, c) \in R$ then $(a, c) \in R$.

Let
$$A = \{1, 2, 3\}$$
, $R \subseteq A \times A$

- $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3)\}$ is transitive.
- $\{(1,2),(2,3),(3,1)\}$ is not transitive.
- Both $\{(1,3)\}$ and \emptyset are transitive.

R is transitive relation on A if and only if $R^n \subseteq R$ for all $n \ge 1$.

Visualized Transitivity

$$A = \{a, b, c\}$$

$$M_R = \left[egin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}
ight]$$

Some Often Used Relations

	=	<	<		≡3	Ø	Ε
reflexivity	~	~	×	~	~	×	~
irreflexivity	×	×	~	×	×	~	×
symmetry	~	×	×	×	~	~	~
antisymmetry	~	~	~	~	×	~	×
transitivity	~	~	~	~	~	~	~

What's Wrong?

A wrong proof: if R is a symmetric and transitive relation on A, then R must be reflexive.

Proof:

For any $a, b \in A$, if $(a, b) \in R$, by the symmetry of R, $(b, a) \in R$; since R is transitive, $(a, a) \in R$. So, R is reflexive.

Equivalence Relation

Relation R on A is an **equivalence relation** if and only if it is reflexive, symmetric and transitive.

"Equility" is a special case of equivalence relation.

An example:

• $R \subseteq \mathbb{Z} \times \mathbb{Z}$, $(x,y) \in R$ if and only if $\frac{|x-y|}{3} \in \mathbb{Z}$, i.e., $x \equiv_3 y$

Partition of a Set

A **partition** of a set A, π , is a set of the nonempty subsets of A, i.e., $\pi \subseteq P(A)$, satisfying:

• For any $x \in A$, there is some $A_i \in \pi$, such that $x \in A_i$. That is,

$$\bigcup_i A_i = A$$

② for any $A_i, A_j \in \pi$, if $i \neq j$, then

$$A_i \cap A_j = \emptyset$$

Partition Generated by Equivalence

- Equivalence class: Let R is a equivalence relation on A, then given $a \in A$, R(a) is a equivalence class induced by R.
- Quotient set:

$$Q = \{R(x)|x \in A, \text{ and } R \text{ is a equivalence on } A\}$$

- Quotient set is a partition:
 - For any $a \in A$, $a \in R(a)$ (remember that R is reflexible)
 - For any $a, b \in A$ $(a, b) \in R$ if and only if R(a) = R(b), and $(a, b) \notin R$ if and only if $R(a) \cap R(b) = \emptyset$

Equivalence Induced by Partition

Given a partition of A, we can define a relation R on A as following:

- $\forall x, y \in A, (x, y) \in R$ if and only if x, y belong to a same block.
- Ex. $(x, y) \in R$, $(y, z) \in R$, $(x, z) \in R$, $(x, x) \in R$, $(u, v) \in R$, $(u, x) \notin R$, etc.

It is straightforward to prove that R is reflexive, symmetric and transitive, so, it is an equivalence relation.

Product of Equivalence

 R_1 , R_2 are equivalences defined respectively on sets X_1 and X_2 . Define relation S on $X_1 \times X_2$ as follows:

$$\langle x_1, x_2 \rangle S \langle y_1, y_2 \rangle \iff x_1 R_1 y_1 \wedge x_2 R_2 y_2$$

Then, S is also a equivalence, defined on $X_1 \times X_2$.

- Reflexivity for any $\langle x, y \rangle \in X_1 \times X_2$, since both R_1, R_2 are reflexive, $\langle x, x \rangle \in R_1$, $\langle y, y \rangle \in R_2$; so, $\langle x, y \rangle S \langle x, y \rangle$;
- Symmetry assume that $\langle x_1, x_2 \rangle S \langle y_1, y_2 \rangle$, which means that $x_1 R_1 y_1$ and $x_2 R_2 y_2$, so, $y_1 R_1 x_1$ and $y_2 R_2 x_2$, because of the symmetry of R_1 and R_2 . So, $\langle y_1, y_2 \rangle S \langle x, x \rangle$;
- Transitivity assume that $\langle x_1, x_2 \rangle S \langle y_1, y_2 \rangle$, and $\langle y_1, y_2 \rangle S \langle z_1, z_2 \rangle$, then $x_1 R_1 y_1$ and $y_1 R_1 z_1$, $x_2 R_2 y_2$ and $y_2 R_2 z_2$. Since both R_1 and R_2 are transitive, we have $x_1 R_1 z_1$ and $x_2 R_2 z_2$, so, $\langle x_1, x_2 \rangle S \langle z_1, z_2 \rangle$.

Example (An Example with Geometry)

For (x, y) and (u, v) in \mathbb{R}^2 , define:

$$(x,y) \sim (u,v) \iff x^2 + y^2 = u^2 + v^2$$

Prove that \sim defines an equivalence relation on \mathbb{R}^2 and interpret the equivalence classes geometrically.

Example (Another example, revisited)

Among any 1001 difference numbers randomly selected from the subset of natural numbers $\{1,2,...,2000\}$ must be two, x,y, satisfying $\frac{x}{y}=2^k$. (k is an integer)

Example (Another example, revisited)

Among any 1001 difference numbers randomly selected from the subset of natural numbers $\{1,2,...,2000\}$ must be two, x,y, satisfying $\frac{x}{y}=2^k$. (k is an integer)

Proof.

Create 1000 sets, each contain a unique odd integer between 1 and 2000, along with its multiplication of 2^k not greater than 2000. Prove that the set of the 1000 sets is a partition of the set $\{1, 2, \dots, 2000\}$. Note that, for any positive integer, x, y between 1 and 2000, they belong to the same set iff. $\frac{x}{y} = 2^k$. (k is an integer).

Define a relation R on $\{1, 2, 3, ..., 2000\}$: for any x, y in the set, xRy if and only if $\frac{x}{y} = 2^k$. It is easy to prove that it is an equivalence, and the associated quotient set if the partition above.

等价关系用于计数

用英语单词"hello"中的 5 个字母可以造出多少个不同的"词"?

• 可以先假设两个"I"一个是大写,一个是小写,显然可以造出5!个"词"。在这些"词"的集合上定义关系 R, aRb 当且仅当忽略大小写,a,b 完全一样。可以证明这是等价关系,我们要求的结果恰是等价类的个数。

如果是用英语单词"aardvark"代替上述例子中的"hello",结果是多少呢?

Home Assignments

To be checked

```
Ex 4.1: 16; 18; 24; 30-31, 33-40
```

The End