Probabilità total	Probabilità totale in una PMF		$p_X(x) = \sum_{m=1}^{ M } \mathbb{P}(E_m) p_{X E_m}(x), \bigcup_{i=1}^m E_i = \Omega \land (E_i \cap E_j = \emptyset, \forall i \neq j \in \{1,, m\})$								
Probabilità Condizionata			$p_X(x)p_{Y X}(y x) = p_{X,Y}(x,y) = p_Y(y)p_{X Y}(x y) \text{ cond } fisso \Rightarrow p_{X Y}(x y) \text{ è legge } di \text{ prob}$								
Probabilità var indipendenti			$p_{X X}(y x) = p_{X,Y}(x,y) - p_{X,Y}(x y) = p_{X,Y}(x y) - p_{X,Y}(x y) = p_{X$								
Regola della Catena			$p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y X}(y x)p_{Z X,Y}(z x,y)$								
Linearità della M	Iedia							·			
Media Condizion	ata 1 var	E	$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ $\mathbb{E}[X] = \sum_{m=1}^{ M } \mathbb{P}(E_m) \sum_{x \in \mathcal{X}} x p_{X E_m}(x E_m) = \sum_{m=1}^{ M } \mathbb{P}(E_m)\mathbb{E}[X E_m]$								
Media Condizionata 2 var			$\mathbb{E}[X] - \sum_{m=1}^{\mathbb{E}[X]} \mathbb{E}[E[X]] - \sum_{m=1}^{\mathbb{E}[X]} \mathbb{E}[X] = \sum_{y \in \mathcal{Y}} p_Y(y) \sum_{x \in \mathcal{X}} g(x,y) p_{X Y}(X Y) = \sum_{y \in \mathcal{Y}} \mathbb{E}[g(X,Y) Y] p_Y(y) = \mathbb{E}[\mathbb{E}[g(X,Y) Y]]$								
Media di funzion	i	E	$\mathbb{E}\left[g(x)\right] = \sum_{x \in \mathcal{X}} g(x) p_X(x)$								
Quantità importa			$X_{rms}^2 = \mathbb{E}\left[X^2\right] = \sum_{x \in \mathcal{X}} x^2 p_X(x)$ $\sigma_X^2 = \mathbb{E}\left[\left(X - \mu_X\right)^2\right] = X_{rms}^2 - \mu_X^2$								
Quantità importa		C	$R_{X,Y} = \mathbb{E}[XY] COV[X,Y] = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = R_{X,Y} - \mu_X \mu_Y$ $COV(X,Y) = \rho_{X,Y} \sigma_X \sigma_Y, \rho \in [-1,1] p_{X,Y}(x,y) = p_X(x)p_Y(y) \Rightarrow COV(X,Y) = 0$								
Combinazione lin	neare 2 var						$X + b^2 \sigma_Y^2 + 2a$	bCOV(X, Y)	Y)		
Disuguaglianza d	i Chebyshev	X	$>0, \mathbb{P}\left\{\right.$	$[X - \mu_X]$	$ x \leq k\sigma$	r_X	$\geq 1 - \frac{1}{k^2}$				
PMF Congiunta	⇒ marginali						$p \in \mathcal{Y} p_{X,Y}(x,y)$				
Funzione gen Momenti $M_X(s)$			$M_X(s) = \mathbb{E}[e^{sX}] \qquad M_X(0) = 1 \qquad \frac{d^r}{ds^r} M_X(s) _{s=0} = \mathbb{E}[X^r] $ $Z = aX + bY, M_Z(s) = M_X^a(s) M_Y^b(s)$								
Proprietà prob c	ondizionata	da			nente i	ndip		=X+Y, p		$z x) = p_Y(z-x)$	
Nome			PMF				$\mu \sigma^2$			Proprietà	
Uniforme discreta	$\mathcal{X} = \{1, \dots, N\}$	}	p(k) =	$=\frac{1}{N}$			$\mu = \frac{N+1}{2}$	$\sigma^2 = \frac{N^2 - 1}{12}$			
Bernoulli $\mathcal{X} = \{0\}$	Bernoulli $\mathcal{X} = \{0, 1\}$		$p(k) = \begin{cases} 1 - p, & k \\ p, & k \end{cases}$			0 1	$\mu = \frac{N+1}{2} \qquad \sigma^2 = \frac{N^2 - 1}{12}$ $\mu = p \qquad \sigma^2 = p(1-p)$ $\mu = np \qquad \sigma^2 = p(1-p)$				
Binomiale $X \sim \mathcal{B}(n, p)$ $\mathcal{X} = \{0, 1, \dots, n\}$							1 nn(1-n)				
Geometrica $X \sim$	$\mathcal{G}(p)$ $\mathcal{X} = \mathbb{N}$		$p(k) = (1 - p)^{k - 1}p$				$\mu = \frac{1}{p} \sigma^2 = \frac{1-p}{p^2}$				
Poisson $X \sim \mathcal{P}(X)$	$\mathcal{X} = \mathbb{N}_0$		$p(k) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad \lambda > 0)$			$\mu = \lambda \sigma^2 = \lambda$ X_2			$X_1 \sim P(\lambda_1), X_2 \sim P(\lambda_2)$ $Y = aX_1 + bX_2 \sim P(a\lambda_1 + b\lambda_2)$		
Nome		PD	PDF			$\mu \sigma^2$ CI		CD	F		
Uniforme continua $\mathcal{X} = [a, b]$	Uniforme continua $X \sim \mathcal{U}(a, b)$ $\mathcal{X} = [a, b]$		$(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & \text{else} \end{cases}$				$ \mu = \frac{a+b}{2} \qquad \sigma^2 = F(a) $ $ \frac{(b-a)^2}{12} $		F(x)	$ (x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x \ge b \end{cases} $	
Esponenziale $X \in \mathcal{X} = \mathbb{R}_0^+$	$\sim \mathcal{E}(\lambda)$	f(x)	$f(x) = \lambda e^{-\lambda x} u(x)$ $\lambda > 0$						$x) = (1 - e^{-\lambda x})u(x)$		
Laplaciana $X \sim \mathcal{X} = \mathbb{R}$	$\mathcal{L}(\lambda)$	f(x)	$f(x) = \frac{\lambda}{2}e^{-\lambda x }$ $\lambda > 0$				$\mu = 0 \sigma^2 = \frac{2}{\lambda^2} \qquad F$		F(x)	$F(x) = \begin{cases} \frac{1}{2}e^{\lambda x}, & x \le 0\\ 1 - \frac{1}{2}e^{-\lambda x}, & x \ge 0 \end{cases}$	
Cauchy $X \sim \mathcal{C}(a,b)$ $\mathcal{X} = \mathbb{R}$			$f(x) = \frac{1}{\pi b} \frac{1}{1 + \left(\frac{x-a}{b}\right)^2}$				$\sigma^2 = \text{non definita}$ $Sym_{[-H,H]} = a$		$F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x-a}{b}\right)$		
Rayleigh $X \sim \mathcal{R}(\beta)$ $\mathcal{X} = \mathbb{R}_0^+$		f(x)	$f(x) = \frac{x}{\beta^2} e^{-\frac{x^2}{2\beta^2}} u(x) \beta$) β>	> 0	$\mu = \beta \sqrt{\frac{\pi}{2}}$ $\sigma^2 = \frac{4-\pi}{2}\beta^2$		$F\left(x\right) = 1 - e^{-\frac{x^2}{2\beta^2}}$		
Nome PDF			$\mu \sigma^2 CDF$			Propriet		à			
Gaussiana $X_0 \sim \mathcal{N}(0, 1)$ $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ $f_X(x) = \frac{1}{\sqrt{2\pi\sigma_X^2}} e^{-\frac{(x-\mu_X)^2}{2\sigma_X^2}} \qquad \mu = \mu$ $\sigma^2 = \sigma$			$\mu = \mu$ $\sigma^2 = \sigma^2$	$F_X(x) = 1 - Q(x)$ $Q(x) = \mathbb{P}(X_0 \ge x)$		$X \sim \mathcal{N}(\mu_X, \sigma_X^2) \Rightarrow X = \sigma_X X_0 + \mu_X$ $X \sim \mathcal{N}(\mu_X, \sigma_X^2) \Rightarrow \mathbb{P}(X \ge x) = Q\left(\frac{x - \mu_x}{\sigma_x}\right)$ $Q(-x) = 1 - Q(x)$ $\rho_{1,2} = 0 \leftrightarrow f_{X_1, X_2}(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2)$ marginali \iff congiunta					
Y = g(X), g contin	Y = g(X), g continua e iniettiva (invertibile))	PDF			I		CDF	
crescente				,	$f_Y(y) = \frac{f_x(g^{-1}(y))}{ g'(g^{-1}(y)) }$					$F_Y(y) = F_x(g^{-1}(y))$	
descrescente				$f_Y(y) = \frac{f_x(g^{-1}(y))}{ g'(g^{-1}(y)) }$			$F_Y(y) = 1 - F_x(g^{-1}(y))$				

 $\begin{array}{l} \textbf{Matrice di covarianza } \mathbf{K_x:} \ \overline{\overline{\mathbf{K}}}_{\mathbf{x}} \coloneqq E\left[\left(\overline{X} - \overline{\mu}_x\right)\left(\overline{X} - \overline{\mu}_x\right)^T\right] = \begin{pmatrix} \sigma_1^2 & \sigma_1\sigma_2\rho_{1,2} \\ \sigma_1\sigma_2\rho_{1,2} & \sigma_2^2 \end{pmatrix} \\ \textbf{Proprietà della Matrice di covarianza } \mathbf{K_x} \end{array}$

$$|\mathbf{K}_{\mathbf{x}}| = \sigma_1^2 \sigma_2^2 \left(1 - \rho_{1,2}^2\right) \ge 0$$

$$\rho_{1,2} \neq \pm 1 \implies \mathbf{K_x^{-1}} = \frac{1}{\sigma_1^2 \sigma_2^2 (1 - \rho_{1,2}^2)} \begin{pmatrix} \sigma_2^2 & -\sigma_1 \sigma_2 \rho_{1,2} \\ -\sigma_1 \sigma_2 \rho_{1,2} & \sigma_1^2 \end{pmatrix}$$

$$z = [z_1, z_2]^T \in \mathbb{R}^{2 \times 1} \implies \overline{z}^T \overline{\overline{K_x^{-1}}} \overline{z} \ge 0$$

$$\begin{aligned} |\mathbf{K}_{\mathbf{x}}| &= \sigma_{1}^{2} \sigma_{2}^{2} \left(1 - \rho_{1,2}^{2}\right) \geq 0 \\ \rho_{1,2} &\neq \pm 1 \implies \mathbf{K}_{\mathbf{x}}^{-1} = \frac{1}{\sigma_{1}^{2} \sigma_{2}^{2} \left(1 - \rho_{1,2}^{2}\right)} \begin{pmatrix} \sigma_{2}^{2} & -\sigma_{1} \sigma_{2} \rho_{1,2} \\ -\sigma_{1} \sigma_{2} \rho_{1,2} & \sigma_{1}^{2} \end{pmatrix} \\ z &= \left[z_{1}, z_{2}\right]^{T} \in \mathbb{R}^{2 \times 1} \implies \overline{z}^{T} \overline{K_{x}^{-1}} \overline{z} \geq 0 \\ f_{X}(\mathbf{x}) &= \frac{1}{2\pi |\mathbf{K}_{X}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{X})^{T} \mathbf{K}_{X}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{X})\right] = f_{X_{1}, X_{2}}(x_{1}, x_{2}) = \frac{1}{2\pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2} (1 - \rho_{1,2}^{2})}} \exp\left[-\frac{\sigma_{2}^{2} (x_{1} - \mu_{1})^{2} + \sigma_{1}^{2} (x_{2} - \mu_{2})^{2} - 2\rho_{1,2} (x_{1} - \mu_{1})(x_{2} - \mu_{2})}{2\sigma_{1}^{2} \sigma_{2}^{2} (1 - \rho_{1,2}^{2})}\right] \end{aligned}$$

Derivata del Prodotto	$\frac{d}{dx}f(x) \cdot g(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
Derivata del Rapporto	$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)\cdot g(x) - f(x)\cdot g'(x)}{[g(x)^2]}$
Regola della catena	$\frac{d}{dx}f[g(x)] = f'[g(x)] \cdot g'(x)$
Integrazione generale	$\int f[g(x)] \cdot g'(x) dx = F[g(x)] + c$
Integrazione per parti	$\int f(x) \cdot g(x) dx = F(x) g(x) - \int F(x) \cdot g'(x) dx$
Funzione Gamma Γ	$\int_0^{+\infty} t^{x-1} e^{-at} dt = a^{-x} \Gamma(x) \qquad \Gamma(x) := \int_0^{+\infty} t^{x-1} e^{-t} dt \qquad \Gamma(n) = (n-1)!, n \in \mathbb{N}$
Sommatoria primi n numeri	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$
Serie geometrica	$\sum_{i \in \mathbb{N}_0} p^i = \frac{1}{1-p}, p < 1 \qquad \sum_{i=0}^{n-1} p^i = \frac{1-p^n}{1-p}$ $0 \le p < 1, \sum_{n=1}^{+\infty} np^{n-1} = \frac{1}{(1-p)^2} \sum_{n=1}^{\infty} n^2 q^{n-1} = \frac{1}{(1-q)^2} + \frac{2q}{(1-q)^3}$
	$0 \le p < 1, \sum_{n=1}^{+\infty} np^{n-1} = \frac{1}{(1-p)^2} \sum_{n=1}^{\infty} n^2 q^{n-1} = \frac{1}{(1-q)^2} + \frac{2q}{(1-q)^3}$

Funzione	Derivata	Integrale
x^n	nx^{n-1}	$\frac{x^{n+1}}{n+1} + c, n \neq -1$
$\frac{1}{x}$	$-x^{-2}$	$\ln(x) + c$
e^x	e^x	$e^x + c$
a^x	$a^x \ln(a)$	$a^x \log_a(e) + c$
$\cos(x)$	$-\sin(x)$	$\sin(x) + c$
$\sin(x)$	$\cos(x)$	$-\cos(x) + c$
$\frac{1}{1+x^2}$	$-\frac{2x}{(1-x^2)^2}$	$\arctan(x) + c$

Definizione informazione	$i(A) = \log\left(\frac{1}{\mathbb{P}(A)}\right) = -\log\left(\mathbb{P}(A)\right)$
Definizione entropia	$H(X) = \mathbb{E}[i(X)] = \sum_{x \in \mathcal{X}} p_X(x) \log \left(\frac{1}{p_X(x)}\right)$
Entropia Bernoulli	$H(p) = H_2(p) = H(p, 1-p) = p \log\left(\frac{1}{p}\right) + (1-p) \log\left(\frac{1}{1-p}\right) =$
	$-p\log(p) - (1-p)\log(1-p) \qquad \frac{d}{dp}H(p) = \log\left(\frac{1-p}{p}\right)$
Entropia uniforme discreta	$H\left(X\right) = \log\left(\left \mathcal{X}\right \right), \mathcal{X}$ uniforme discreta
Disuguaglianza di Jensen	$g\left(x\right)$ differenziabile nei punti dell'alfabeto \mathcal{X} e convessa $\Rightarrow \mathbb{E}[g\left(X\right)] \geq g\left(\mathbb{E}[X]\right)$, $g\left(x\right)$ differenziabile nei punti dell'alfabeto \mathcal{X} e concava $\Rightarrow \mathbb{E}[g\left(X\right)] \leq g\left(\mathbb{E}[X]\right)$
Limite superiore Entropia	$H(X) \le \log(\mathcal{X})$
Divergenza KL (Kullback-Leibler)	$ p(x), q(x) \text{ pmf su } \mathcal{X}, D(p q) = \sum_{x \in \mathcal{X}} p(x) \log\left(\frac{p(x)}{q(x)}\right) = \mathbb{E}_{p(x)} \left[\log\left(\frac{p(x)}{q(x)}\right)\right], $ $ D(p q) \ge 0 \qquad \forall p, q, D(p q) = 0 \iff p = q $
Disuguaglianza di Kraft	$\sum_{x \in \mathcal{X}} 2^{-l(x)} \le 1 \iff \text{il codice è a prefisso, } l(x) \text{ lunghezza codice associato a } x$
Lunghezza di Shannon	$l(x) = \left\lceil \log\left(\frac{1}{p_X(x_i)}\right) \right\rceil$, esiste almeno un codice istantaneo con le lunghezze di Shannon. Inoltre $H(X) \leq L = \mathbb{E}_X[l(X)]$
Entropia coppie variabili	$H\left(X,Y\right) = H\left(X\right) + H\left(Y X\right) = H\left(Y\right) + H\left(X Y\right), \ 0 \le H\left(X Y\right) \le H\left(X\right), \forall Y, \text{ con } H\left(X Y\right) = H\left(X\right) \iff X,Y \text{ indipendenti e } H\left(X Y\right) = 0 \iff X = g\left(Y\right)$
Probabilità totale Entropia	$H(X Y) = \sum_{y \in \mathcal{Y}} \mathbb{P}(Y = y) H(X Y = y)$
Mutua informazione	$ I(X;Y) = H(X) - H(X Y) = H(Y) - H(Y X) = \mathbb{E}\left[\frac{p_{X,Y}(x,y)}{p_X(x)p_Y(y)}\right] = D(p_{X,Y}(x,y) p_X(x)p_y(y)), \qquad I(X;Y) = 0 \iff p_{X,Y}(x,y) = p_X(x)p_Y(y) $
Entropia vettore aleatorio	$H(X^n) = H(X_1, \dots, X_n) = H(X_1) + H(X_2 X_1) + \dots + H(X_n X_{n-1}, X_{n-2}, \dots, X_1)$
Tasso entropico	$H_{\infty}(X) = \lim_{n \to \infty} \frac{H(\overline{\mathbf{X}}^n)}{n} = \lim_{n \to \infty} H(X_n X_{n-1}, X_{n-2}, \dots, X_1)$
Sorgenti Markoviane	$p_{X(n) X(n-1),,X(1)}(x_n x_{n-1},,x_1) = p_{X(n) X(n-1)}(x_n x_{n-1})$
Matrice di transizione	dato $\mathcal{X} = \{1, \dots, m\}, \overline{\overline{P}} \in \mathcal{M}_{m \times m}$ tale che $\forall i, j \in \mathcal{X} : p_{i \to j}$ è la probabilità di andare dallo stato i allo stato j
Vettore di probabilità degli stati a tempo n	$\overline{x}(n_o + n) = (p_{X(n_0 + n)}(1), \dots, p_{X(n_0 + n)}(m)) = (\overline{\overline{P^T}})^n \overline{x}(n_0)$
Condizione di stazionarità	\overline{x} è distribuzione stazionaria (indipendente da $n) \iff \overline{\overline{P^T}}\overline{x} = \overline{x}$
Distribuzione stazionaria grafo NON orientato	$\overline{x} = \left(\frac{w_1}{2w}, \dots, \frac{w_m}{2w}\right), w_i = \text{somma pesi archi uscenti da } S_i \in w \text{ somma pesi tutti gli archi.}$
Tasso entropico Markov	$H_{\infty}(X) = \sum_{i=1}^{m} \overline{x}_{i} \sum_{j=1}^{m} p_{i \to j} \log \left(\frac{1}{p_{i \to j}}\right) = \sum_{i=1}^{m} \overline{x}_{i} H\left(S_{i}\right), \text{ dove } H\left(S_{i}\right) \text{ è l'incertezza di uscire dallo stato } i$

Tipo inferenza	Cose note	Regola decisione/Stimatore
Decisione Bayesiana	$ \begin{cases} \{H_i\}_{i=1}^M \text{ disgiunte} \\ \forall i \in \{1, \dots, M\} : \mathbb{P}\{H_i\} \\ \forall i \in \{1, \dots, M\} : \mathbb{P}\{X^n = x^n H_i\} \\ \overline{\overline{C}} \in \mathcal{M}_{m \times m} : c_{i,j} \text{ costo se decido } i \text{ ma è} \\ \text{vera l'ipotesi } H_j \end{cases} $	$ \mathcal{R} = \sum_{i=1}^{M} \sum_{j=1}^{M} C_{i,j} \mathbb{P} \{ D(X^n) = i, H = H_j \} D(x^n) = i \iff \mathbb{P} \{ X^n = x^n, H_i \} > \mathbb{P} \{ X^n = x^n, H_j \} \forall j \neq i $ $L(x^n) = \frac{\mathbb{P} \{ X^n = x^n H_1 \}}{\mathbb{P} \{ X^n = x^n H_2 \}} \underset{H_2}{\overset{H_1}{\gtrless}} \frac{\mathbb{P} \{ H_2 \}}{\mathbb{P} \{ H_1 \}} \text{ con 2 ipotesi} $
Decisione non Bayesiana (Neyman- Pearson)	H_0 stato normale, $H_1 = \overline{H_0}$ stato alterato $\forall i \in \{0,1\} : \mathbb{P}\{X^n = x^n H_i\}$ Errore di tipo I: $P\{D(X^n) = 1 H_0\}$ Potenza del test: $P\{D(X^n) = 1 H_1\}$	$L(x^n) = \frac{\mathbb{P}\{X^n = x^n H_1\}}{\mathbb{P}\{X^n = x^n H_0\}} \underset{H_0}{\overset{H_1}{\geqslant}} \eta$ $\alpha = \mathbb{P}\{L(x^n) > \eta H_0\}$ $1 - \beta = \mathbb{P}\{L(x^n) > \eta H_1\}$
Stima Bayesiana parametro continuo	$f_{\Theta X^n}(\theta x^n) = \frac{f_{\Theta}(\theta)p_{X^n \Theta}(x^n \theta)}{p_{X^n}(x^n)}$ $p_{X^n}(x^n) = \int f_{\Theta}(\theta)p_{X^n \Theta}(x^n \theta)d\theta$ $\mathcal{R} = E\left[C\left(\hat{\Theta}\left(X^n\right) - \Theta\right)\right] =$ $E_{x^n}\left[E\left[C\left(\hat{\Theta}\left(X^n\right) - \Theta\right) \middle X^n\right]\right]$	$\hat{\theta}_{opt}(x^n) = \arg\min\int C(\hat{\theta}(x^n) - \theta) f_{\Theta X^n}(\theta x^n) d\theta$ $C(x) = x^2 \Rightarrow \hat{\theta}_{mmse}(x^n) = \int \theta f_{\Theta X^n}(\theta x^n) d\theta = \mathbb{E}[\Theta X^n = x^n]$ $C(x) = \Pi(\frac{x}{\epsilon}) = \begin{cases} 1, & x < \frac{\epsilon}{2} \\ 0, & else \end{cases} \Rightarrow \hat{\theta}_{map}(x^n) = \arg\max f_{\Theta X^n}(\theta x^n)$
Stima non Bayesiana	$f_{X^n}(x^n;\theta)$	$\hat{\theta}_{ML}(x^n) = \arg\max\log(f_{X^n}(x^n;\theta))$

NOTA: APPLICARE IL LOGARITMO NATURALE NON CAMBIA IL VERSO DELLA DISEQUAZIONE, FORTEMENTE CONSIGLIATI IN TUTTI GLI STIMATORI.

Bias/unbias	$\hat{\Theta}$ unbiased/corretto $\iff \mathbb{E}[\hat{\Theta}(X^n) \Theta=\theta]=\theta$
unbias/correto asintotico	$\hat{\Theta}$ unbiased/corretto as intoticamente $\iff \lim_{n \to \infty} (\mathbb{E}[\hat{\Theta}(X^n) \Theta = \theta]) = \theta$
Consistenza in probabilità	$\lim_{n \to \infty} \mathbb{P}\left\{ \left \hat{\Theta}\left(X^{n}\right) - \Theta \right > \epsilon \right\} = 0, \forall \epsilon > 0$
Consistenza in media quadratica	$\hat{\Theta}$ consistente in media quadratica $\iff \lim_{n \to \infty} (\overline{e}^2) = 0, \ \overline{e}^2 = \mathbb{E}[(\hat{\Theta}(X^n) - \Theta)^2]$ se $\hat{\Theta}$ è unbiased $\overline{e}^2 = Var(\hat{\Theta}(X^n))$
Informazione di Fisher	$I_n = \mathbb{E}\left[\left(\frac{d \log(f_{X^n}(x^n;\theta))}{d\theta}\right)^2\right] = -\mathbb{E}\left[\frac{d^2 \log(f_{X^n}(x^n;\theta))}{d^2\theta}\right]$
Limite CR	$Var[\hat{\Theta}(X^n)] \ge \frac{1}{I_n(\theta)} \text{ con } \hat{\Theta}(X^n) \text{ efficiente se vale '='}$

NOTA: Se in uno stimatore vale che:

- $C(\cdot) \ge 0$ e convessa (\cup)
- $f_{\Theta|X^n}(\theta|x^n)$ è simmetrica rispetto a $\mathbb{E}[\Theta|X^n=x^n]$
- $f_{X^n}(x^n;\theta)$ è unimodale

Allora tutti gli stimatori che ottimizzano $C(\cdot)$ coincidono con $\mathbb{E}[\Theta|X^n]$ e, quindi equivalenti a $\hat{\Theta}_{mmse}(X^n) = \hat{\Theta}_{map}(X^n)$. **NOTA:**

- Convessa = \cup
- Concava = \cap

Nome	Entropia H	Stimatori/Likelihood dato X^n con n realizzazioni (x_i) iid	Inform. Fisher I _n
Uniforme discreta $\mathcal{X} = \{1, \dots, m\}$	$H = \ln\left(\mathcal{X} \right) = \ln\left(m\right)$	Stimare il parametro $m \implies \hat{m} = \max\{x_1, \dots, x_n\}$	
Uniforme continua $X \sim \mathcal{U}(a,b)$ $\mathcal{X} = [a,b]$	$H = \log\left(b - a\right)$	Stimare il parametro a o $b \implies$ $\hat{a} = \min\{x_1, \dots, x_n\}$ $\hat{b} = \max\{x_1, \dots, x_n\}$	
Bernoulli $\mathcal{X} = \{0, 1\}$	$H = -\log(1-p) + p\log\left(\frac{1-p}{p}\right)$	Stimare il parametro $p \implies \Lambda(p) = \log(p) \sum_{i=1}^{n} x_i + \log(1-p) \sum_{i=1}^{n} (1-x_i)$	$I_n = \frac{1}{p(1-p)}$
Binomiale $X \sim \mathcal{B}(n, p)$ $\mathcal{X} = \{0, 1, \dots, n\}$		Stimare il parametro $p \implies \Lambda(p) = \sum_{i=1}^{m} \log \binom{n}{x_i} + \log(p) \sum_{i=1}^{m} x_i + \log(1-p) \sum_{i=1}^{m} (n-x_i)$	$I_n = \frac{n}{p(1-p)}$
Geometrica $X \sim \mathcal{G}(p)$ $\mathcal{X} = \mathbb{N}$	$H = -\log(p) - \frac{1-p}{p}\log(1-p)$	Stimare il parametro $p \Longrightarrow \Lambda(p) = n \log(p) + \log(1-p) \sum_{i=1}^{n} (x_i - 1)$	$I_n = \frac{1}{p^2(1-p)}$
Poisson $X \sim \mathcal{P}(\lambda)$ $\mathcal{X} = \mathbb{N}_0$		Stimare il parametro $\lambda \Longrightarrow \Lambda(\lambda) = \ln(\lambda) \sum_{i=1}^{n} x_i - n\lambda - \sum_{i=1}^{n} \ln(x_i!)$	$I_n = \frac{1}{\lambda}$
Esponenziale $X \sim \mathcal{E}(\lambda)$ $\mathcal{X} = \mathbb{R}_0^+$	$H = 1 - \ln\left(\lambda\right)$	Stimare il parametro $\lambda \Longrightarrow \Lambda(\lambda) = n \ln(\lambda) - \lambda \sum_{i=1}^{n} x_i$	$I_n = \frac{1}{\lambda^2}$
Laplaciana $X \sim \mathcal{L}(\lambda)$ $\mathcal{X} = \mathbb{R}$	$H = 1 + \ln\left(\frac{2}{\lambda}\right)$	Stimare il parametro $\lambda \Longrightarrow \Lambda(\lambda) = n \ln(\lambda) - n \ln(2) - \lambda \sum_{i=1}^{n} x_i $	$I_n = \frac{1}{\lambda^2}$
Cauchy $X \sim \mathcal{C}(a, b)$ $\mathcal{X} = \mathbb{R}$	$H = \log\left(4\pi b\right)$	Stimare i parametri a e $b \Longrightarrow \Lambda(a;b) = -n\log(b\pi) - \sum_{i=1}^{n}\log\left(1 + \left(\frac{x_i - a}{b}\right)^2\right)$	$I_n = \frac{1}{2b^2}$
Rayleigh $X \sim \mathcal{R}(\beta)$ $\mathcal{X} = \mathbb{R}_0^+$	$H = 1 + \ln\left(\frac{\beta}{\sqrt{2}}\right) + \frac{\gamma}{2}$ $\gamma \approx 0.5772$	Stimare il parametro $\beta \Longrightarrow \Lambda(\beta) = -2n \ln(\beta) + \sum_{i=1}^{n} \ln(x_i) - \frac{1}{2\beta^2} \sum_{i=1}^{n} x_i^2$	$I_n = \frac{2}{\beta^2}$
Gaussiana $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$	$H = \frac{1}{2} \left(1 + \ln \left(2\sigma_X^2 \pi \right) \right)$	Stimare i parametri μ_X e $\sigma_X^2 \Longrightarrow \Lambda(\mu_X; \sigma_X^2) = -\frac{n}{2} \ln\left(2\pi\sigma_X^2\right) - \frac{1}{2\sigma_X^2} \sum_{i=1}^n \left(x_i - \mu_X\right)^2$	$I_n^{\mu_X} = \frac{1}{\sigma_X^2}$ $I_n^{\sigma_X^2} = \frac{1}{2\sigma_X^2}$