Learning to represent text with Word2Vec

Atul Dhingra February 19, 2018

Fat Cat Fab Lab

- How similar are these sentences ?

- How similar are these sentences ?
 - s1: Monday, Monday!

- How similar are these sentences ?
 - s1: Monday, Monday!
 - s2: Today is a Monday

- How similar are these sentences ?
 - s1: Monday, Monday!
 - s2: Today is a Monday
 - s3: Today is a Tuesday

- How similar are these sentences ?
 - s1: Monday, Monday!
 - s2: Today is a Monday
 - s3: Today is a Tuesday
 - s4: Is today a Monday

- How similar are these sentences ?
 - s1: Monday, Monday!
 - s2: Today is a Monday
 - s3: Today is a Tuesday
 - s4: Is today a Monday
- First order of business: Find a good representation of the text

- A good feature representation makes learning easier

Predict the labels

- A good feature representation makes learning easier

A Toy Problem

```
197
       11000101
128
   -10000000
30
   - 00011110
   - 01001000
133
   -10000101
109 + 01101101
213 + 11010101
84 + 01010100
 3 - 00000011
200 ? 11001000
68
   ? 01000100
```

Possible representation for integers

- A good feature representation makes learning easier

A Toy Problem

```
197
        1000001
128
        10000000
30
    - 000111110
        01001000
133
    - 10000101
    + 01101101
109
213
   + 11010101
84 + 01010100
200
        11001000
68
        01000100
```

Good representation makes learning easier. In other words, the choice of features can have a significant impact on learning

$$bit_2$$
 AND $bit_6 = +$

- A good feature representation makes learning easier
- Lose information, but smartly when learning a lower dimensional representation for the data

- A good feature representation makes learning easier
- Lose information, but smartly when learning a lower dimensional representation for the data
- A "good" representation space depends on the problem at hand

- A good feature representation makes learning easier
- Lose information, but smartly when learning a lower dimensional representation for the data
- A "good" representation space depends on the problem at hand
 - For a image classification task of predicting dog/cat class, images that belong to same class should be closer together in the learned space

- A good feature representation makes learning easier
- Lose information, but smartly when learning a lower dimensional representation for the data
- A "good" representation space depends on the problem at hand
 - For a image classification task of predicting dog/cat class, images that belong to same class should be closer together in the learned space
 - Cat images should cluster together, and away from the dog-image cluster in the learned space

- A good feature representation makes learning easier
- Lose information, but smartly when learning a lower dimensional representation for the data
- A "good" representation space depends on the problem at hand
 - For a image classification task of predicting dog/cat class, images that belong to same class should be closer together in the learned space
 - Cat images should cluster together, and away from the dog-image cluster in the learned space
 - For NLP tasks a good representation such that the semantic meaning is stored in context of words

- A good feature representation makes learning easier
- Lose information, but smartly when learning a lower dimensional representation for the data
- A "good" representation space depends on the problem at hand
 - For a image classification task of predicting dog/cat class, images that belong to same class should be closer together in the learned space
 - Cat images should cluster together, and away from the dog-image cluster in the learned space
 - For NLP tasks a good representation such that the semantic meaning is stored in context of words
 - For predicting word similar to a given word, the representation space should be such that similar words cluster together

- Define a vocabulary V of words with all words from corpus

- Define a vocabulary V of words with all words from corpus
 - V = [a, aaron, , monday, zulu, UNK] $\in R^{10,000}$

- Define a vocabulary V of words with all words from corpus
 - V = [a, aaron,, monday, zulu, UNK] \in $R^{10,000}$
 - To represent "Apple" that exist at index 25 in *V*, "Orange" that exist at index 5500 etc.

- Define a vocabulary V of words with all words from corpus
 - V = [a, aaron,, monday, zulu, UNK] $\in R^{10,000}$
 - To represent "Apple" that exist at index 25 in *V*, "Orange" that exist at index 5500 etc.

4

Motivating Example

- How similar are these sentences ?
 - s1: Monday, Monday!
 - s2: Today is a Monday
 - s3: Today is a Tuesday
 - s4: Is today a Monday

- Define a vocabulary(vocab $\in R^5$) for the given task

- Define a vocabulary(vocab $\in R^5$) for the given task vocab \sim [Monday, Tuesday, is, a, today]

- Define a vocabulary(vocab $\in R^5$) for the given task vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0]

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1]
```

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1] s3: Today is a Tuesday \sim [0, 1, 1, 1, 1]
```

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1] s3: Today is a Tuesday \sim [0, 1, 1, 1, 1]
```

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1] s3: Today is a Tuesday \sim [0, 1, 1, 1, 1]
```

- Similarity between sentences: Cosine distance
 - dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1] s3: Today is a Tuesday \sim [0, 1, 1, 1, 1]
```

- Similarity between sentences: Cosine distance
 - dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5
 - dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1

- Define a vocabulary(vocab $\in R^5$) for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1] s3: Today is a Tuesday \sim [0, 1, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = \mathbf{0.25}$$

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1] s3: Today is a Tuesday \sim [0, 1, 1, 1, 1]
```

- Similarity between sentences: Cosine distance

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = 0.25$$

- Leads to data sparsity, therefore need more data

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1] s3: Today is a Tuesday \sim [0, 1, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = 0.25$$

- Leads to data sparsity, therefore need more data
- Does not capture the context

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
vocab \sim [Monday, Tuesday, is, a, today] s1: Monday, Monday! \sim [1, 0, 0, 0, 0] s2: Today is a Monday \sim [1, 0, 1, 1, 1] s3: Today is a Tuesday \sim [0, 1, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = 0.25$$

- Leads to data sparsity, therefore need more data
- Does not capture the context
 - Barack Obama said that George bush is a bad man
 - George Bush said that Barack Obama is a bad man

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
      vocab \sim
      [Monday, Tuesday, is, a, today]

      s1: Monday, Monday! \sim
      [1, 0, 0, 0, 0]

      s2: Today is a Monday \sim
      [1, 0, 1, 1, 1]

      s3: Today is a Tuesday \sim
      [0, 1, 1, 1, 1]

      s4: Is today a Monday \sim
      [1, 0, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = \mathbf{0.25}$$

- Leads to data sparsity, therefore need more data
- Does not capture the context

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
      vocab \sim
      [Monday, Tuesday, is, a, today]

      s1: Monday, Monday! \sim
      [1, 0, 0, 0, 0]

      s2: Today is a Monday \sim
      [1, 0, 1, 1, 1]

      s3: Today is a Tuesday \sim
      [0, 1, 1, 1, 1]

      s4: Is today a Monday \sim
      [1, 0, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = \mathbf{0.25}$$

-
$$dist(s2, s4) = dist([1, 0, 1, 1, 1], [1, 0, 1, 1, 1]) = \mathbf{0}$$

- Leads to data sparsity, therefore need more data
- Does not capture the context

- Define a vocabulary(vocab $\in R^5$) for the given task

```
      vocab \sim
      [Monday, Tuesday, is, a, today]

      s1: Monday, Monday! \sim
      [1, 0, 0, 0, 0]

      s2: Today is a Monday \sim
      [1, 0, 1, 1, 1]

      s3: Today is a Tuesday \sim
      [0, 1, 1, 1, 1]

      s4: Is today a Monday \sim
      [1, 0, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = 0.25$$

-
$$dist(s2, s4) = dist([1, 0, 1, 1, 1], [1, 0, 1, 1, 1]) = \mathbf{0}$$

- Leads to data sparsity, therefore need more data
- Does not capture the context
- More frequent words should have more effect

- Define a vocabulary(vocab $\in R^5$) for the given task

```
      vocab \sim
      [Monday, Tuesday, is, a, today]

      s1: Monday, Monday! \sim
      [1, 0, 0, 0, 0]

      s2: Today is a Monday \sim
      [1, 0, 1, 1, 1]

      s3: Today is a Tuesday \sim
      [0, 1, 1, 1, 1]

      s4: Is today a Monday \sim
      [1, 0, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = 0.25$$

-
$$dist(s2, s4) = dist([1, 0, 1, 1, 1], [1, 0, 1, 1, 1]) = \mathbf{0}$$

- Leads to data sparsity, therefore need more data
- Does not capture the context
- More frequent words should have more effect
 - Use Bag of Words approach, where counts are used instead

- Define a vocabulary(vocab $\in R^5$) for the given task

```
      vocab \sim
      [Monday, Tuesday, is, a, today]

      s1: Monday, Monday! \sim
      [1, 0, 0, 0, 0]

      s2: Today is a Monday \sim
      [1, 0, 1, 1, 1]

      s3: Today is a Tuesday \sim
      [0, 1, 1, 1, 1]

      s4: Is today a Monday \sim
      [1, 0, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = 0.25$$

-
$$dist(s2, s4) = dist([1, 0, 1, 1, 1], [1, 0, 1, 1, 1]) = \mathbf{0}$$

- Leads to data sparsity, therefore need more data
- Does not capture the context
- More frequent words should have more effect

- e.g. s1: Monday, Monday!
$$\sim$$
 [2, 0, 0, 0, 0]

- Define a vocabulary(vocab $\in R^5$) for the given task

```
      vocab \sim
      [Monday, Tuesday, is, a, today]

      s1: Monday, Monday! \sim
      [1, 0, 0, 0, 0]

      s2: Today is a Monday \sim
      [1, 0, 1, 1, 1]

      s3: Today is a Tuesday \sim
      [0, 1, 1, 1, 1]

      s4: Is today a Monday \sim
      [1, 0, 1, 1, 1]
```

- Similarity between sentences: Cosine distance

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = 0.25$$

-
$$dist(s2, s4) = dist([1, 0, 1, 1, 1], [1, 0, 1, 1, 1]) = \mathbf{0}$$

- Leads to data sparsity, therefore need more data
- Does not capture the context
- More frequent words should have more effect

- e.g. s1: Monday, Monday!
$$\sim$$
 [2, 0, 0, 0, 0]

- Feature space grows with vocabulary size

- Define a vocabulary(vocab $\in \mathit{R}^5)$ for the given task

```
      vocab \sim
      [Monday, Tuesday, is, a, today]

      s1: Monday, Monday! \sim
      [1, 0, 0, 0, 0]

      s2: Today is a Monday \sim
      [1, 0, 1, 1, 1]

      s3: Today is a Tuesday \sim
      [0, 1, 1, 1, 1]

      s4: Is today a Monday \sim
      [1, 0, 1, 1, 1]
```

-
$$dist(s1, s2) = dist([1, 0, 0, 0, 0], [1, 0, 1, 1, 1]) = 0.5$$

-
$$dist(s1, s3) = dist([1, 0, 0, 0, 0], [0, 1, 1, 1, 1]) = 1$$

-
$$dist(s2, s3) = dist([1, 0, 1, 1, 1], [0, 1, 1, 1, 1]) = 0.25$$

-
$$dist(s2, s4) = dist([1, 0, 1, 1, 1], [1, 0, 1, 1, 1]) = \mathbf{0}$$

- Leads to data sparsity, therefore need more data
- Does not capture the context
- More frequent words should have more effect

- Feature space grows with vocabulary size
- Need to learn a low-dimensional representation: Word2Vec

- s_1 : I want a glass of **orange** <u>juice</u>

- s_1 : I want a glass of **orange** <u>juice</u>
- s₂ : I want a glass of **apple** _____

- s_1 : I want a glass of **orange** juice
- s₂ : I want a glass of **apple** _____

- s_1 : I want a glass of **orange** juice
- s_2 : I want a glass of **apple**

-
$$dist(oh_{Orange}, oh_{Apple}) = dist(oh_{Orange}, oh_{King}) = \mathbf{0}$$

- Neural network as a black box

Neural Network as a black box

Source: https://www.quantamagazine.org/new-theory-cracks-open-the-black-box-of-deep-learning-20170921/

 To classify Dog/Cat, the model must learn a space where dog and class images are far apart, inherently learning a good representation for dog and cat

 To classify Dog/Cat, the model must learn a space where dog and class images are far apart, inherently learning a good representation for dog and cat

Internal representation of a Neural Network

- To classify Dog/Cat, the model must learn a space where dog and class images are far apart, inherently learning a good representation for dog and cat
- Internal structure of a neural network is able to represent information

- To classify Dog/Cat, the model must learn a space where dog and class images are far apart, inherently learning a good representation for dog and cat
- Internal structure of a neural network is able to represent information
- Discard the output label, use the hidden layer as the representation for a dog

- Intuition: Train a neural network for an "auxiliary" task, and use the learned weights as a representation(word-vectors)

- Intuition: Train a neural network for an "auxiliary" task, and use the learned weights as a representation(word-vectors)
- Auxiliary Task: Given a specific input word, compute probability for every word in our vocabulary of being the neighbor

- Intuition: Train a neural network for an "auxiliary" task, and use the learned weights as a representation(word-vectors)
- Break the sentence into small windows(size=2), and create training set for each input word(in blue)

Generating Training Data

- Intuition: Train a neural network for an "auxiliary" task, and use the learned weights as a representation(word-vectors)
- Feed the training data as one-hot encoded vectors to the model, such that the output is probability of a word being the neighbor of target word.

Neural Network for training the auxiliary task

- Intuition: Train a neural network for an "auxiliary" task, and use the learned weights as a representation(word-vectors)
- To efficiently produce neighbor information of a word, the model must learn which words are 'similar' in context, and thus are close in the feature space embedding

- Intuition: Train a neural network for an "auxiliary" task, and use the learned weights as a representation(word-vectors)
- To efficiently produce neighbor information of a word, the model must learn which words are 'similar' in context, and thus are close in the feature space embedding

Source: Deep Learning, UD730 on Udacity

- Intuition: Train a neural network for an "auxiliary" task, and use the learned weights as a representation(word-vectors)
- To efficiently produce neighbor information of a word, the model must learn which words are 'similar' in context, and thus are close in the feature space embedding
- Discard the output layer, and use the hidden layer as the word-vector representation

Word vectors as the hidden layer

- Given an input word, predict single target word

- Given an input word, predict single target word

Single context word model

Source: David Meyer, How exactly does word2vec work?

- Given an input word, predict single target word
- $X = (x_1, x_2, x_V), Y = (y_1, y_2...y_V)$, where V is the size of vocabulary, $x_i \in X$ and $y_i \in Y$ are one-hot encoded vectors

- Given an input word, predict single target word
- $X = (x_1, x_2, x_V), Y = (y_1, y_2...y_V)$, where V is the size of vocabulary, $x_i \in X$ and $y_i \in Y$ are one-hot encoded vectors
- Hidden layer neurons can be computed by, $h = X^T.W$

- Given an input word, predict single target word
- $X = (x_1, x_2, ..., x_V), Y = (y_1, y_2...y_V)$, where V is the size of vocabulary, $x_i \in X$ and $y_i \in Y$ are one-hot encoded vectors
- Hidden layer neurons can be computed by, $h = X^T.W$
- For one-hot encoded $x_k = 1$, the above operation copies k^{th} row of W to h, i.e $h = X^T.W = W_{(k,:)} = v_{in}$, where v_{in} is the vector representation of input word

- Given an input word, predict single target word
- $X = (x_1, x_2, x_V), Y = (y_1, y_2...y_V)$, where V is the size of vocabulary, $x_i \in X$ and $y_i \in Y$ are one-hot encoded vectors
- Hidden layer neurons can be computed by, $h = X^T.W$
- For one-hot encoded $x_k = 1$, the above operation copies k^{th} row of W to h, i.e $h = X^T.W = W_{(k,:)} = v_{in}$, where v_{in} is the vector representation of input word
- Compute the output score for each word in vocabulary V, based on h, $u_j = v'_{w_j}^T.h$, where v'_{w_j} is j^{th} column in W'

- Given an input word, predict single target word
- $X = (x_1, x_2, x_V), Y = (y_1, y_2...y_V)$, where V is the size of vocabulary, $x_i \in X$ and $y_i \in Y$ are one-hot encoded vectors
- Hidden layer neurons can be computed by, $h = X^T.W$
- For one-hot encoded $x_k = 1$, the above operation copies k^{th} row of W to h, i.e $h = X^T.W = W_{(k,:)} = v_{in}$, where v_{in} is the vector representation of input word
- Compute the output score for each word in vocabulary V, based on h, $u_j = {v'_{w_j}}^T.h$, where ${v'_{w_j}}$ is j^{th} column in W'
- Compute the posterior probability using softmax, $p(w_j|w_{in}) = y_j = \frac{\exp(u_j)}{\sum_{j'=1}^V \exp(u_j')}, \text{ where } y_j \text{ is the output of the } j^{th} \text{ unit in output layer}$

- Given an input word, predict single target word
- $X = (x_1, x_2,x_V), Y = (y_1, y_2...y_V)$, where V is the size of vocabulary, $x_i \in X$ and $y_i \in Y$ are one-hot encoded vectors
- Hidden layer neurons can be computed by, $h = X^T.W$
- For one-hot encoded $x_k = 1$, the above operation copies k^{th} row of W to h, i.e $h = X^T.W = W_{(k,:)} = v_{in}$, where v_{in} is the vector representation of input word
- Compute the output score for each word in vocabulary V, based on h, $u_j = v'_{w_j}^T.h$, where v'_{w_i} is j^{th} column in W'
- Compute the posterior probability using softmax, $p(w_j|w_{in}) = y_j = \frac{\exp(u_j)}{\sum_{j'=1}^V \exp(u_j')}, \text{ where } y_j \text{ is the output of the } j^{th} \text{ unit in output layer}$
- The training objective, therefore, is to maximize the conditional probability of observing the actual output word, given the input context word

Word2Vec

Word2Vec

- Skip-gram (SG): use a word to predict the surrounding ones in window.

Structure of a Skip-gram model

Source: Xin Rong, Word2Vec Parameter Learning Explained

Word2Vec

- Skip-gram (SG): use a word to predict the surrounding ones in window.
- Continuous Bag of Words (CBOW): use a window of word to predict the middle word

CBOW

- e.g. "The cat sat on floor" (window = 2)

Sentence Structure

One hot encoded input and output

Learning W, W' matrices

- Load all text from "Song of Ice and Fire" GoT books

- Load all text from "Song of Ice and Fire" GoT books
 - "A Clash of Kings", "A Storm of Swords", "A Song of Ice and Fire", "A Feast for Crows", "A Game of Thrones"
- Convert the book into sentences by using tokenizer used in English such as period, question mark etc

- Load all text from "Song of Ice and Fire" GoT books
 - "A Clash of Kings", "A Storm of Swords", "A Song of Ice and Fire", "A Feast for Crows", "A Game of Thrones"
- Convert the book into sentences by using tokenizer used in English such as period, question mark etc
- Clean each sentence to remove unnecessary words, punctuations, hyphens etc and split into words

- Load all text from "Song of Ice and Fire" GoT books
 - "A Clash of Kings", "A Storm of Swords", "A Song of Ice and Fire", "A Feast for Crows", "A Game of Thrones"
- Convert the book into sentences by using tokenizer used in English such as period, question mark etc
- Clean each sentence to remove unnecessary words, punctuations, hyphens etc and split into words
 - Heraldic crest by Virginia Norey.

- Load all text from "Song of Ice and Fire" GoT books
 - "A Clash of Kings", "A Storm of Swords", "A Song of Ice and Fire", "A Feast for Crows", "A Game of Thrones"
- Convert the book into sentences by using tokenizer used in English such as period, question mark etc
- Clean each sentence to remove unnecessary words, punctuations, hyphens etc and split into words
 - Heraldic crest by Virginia Norey.
 - ['Heraldic', 'crest', 'by', 'Virginia', 'Norey']

- Load all text from "Song of Ice and Fire" GoT books
 - "A Clash of Kings", "A Storm of Swords", "A Song of Ice and Fire", "A Feast for Crows", "A Game of Thrones"
- Convert the book into sentences by using tokenizer used in English such as period, question mark etc
- Clean each sentence to remove unnecessary words, punctuations, hyphens etc and split into words
 - Heraldic crest by Virginia Norey.
 - ['Heraldic', 'crest', 'by', 'Virginia', 'Norey']
- Build the vocabulary(size 17,277) using window size of 7 units, and minimum word count of 3 units

- Load all text from "Song of Ice and Fire" GoT books
 - "A Clash of Kings", "A Storm of Swords", "A Song of Ice and Fire", "A Feast for Crows", "A Game of Thrones"
- Convert the book into sentences by using tokenizer used in English such as period, question mark etc
- Clean each sentence to remove unnecessary words, punctuations, hyphens etc and split into words
 - Heraldic crest by Virginia Norey.
 - ['Heraldic', 'crest', 'by', 'Virginia', 'Norey']
- Build the vocabulary(size 17,277) using window size of 7 units, and minimum word count of 3 units
- Train a skip-gram model using gensim on the entire vocabulary to obtain a 300-dimensional feature(word)-vector

- Load all text from "Song of Ice and Fire" GoT books
 - "A Clash of Kings", "A Storm of Swords", "A Song of Ice and Fire", "A Feast for Crows", "A Game of Thrones"
- Convert the book into sentences by using tokenizer used in English such as period, question mark etc
- Clean each sentence to remove unnecessary words, punctuations, hyphens etc and split into words
 - Heraldic crest by Virginia Norey.
 - ['Heraldic', 'crest', 'by', 'Virginia', 'Norey']
- Build the vocabulary(size 17,277) using window size of 7 units, and minimum word count of 3 units
- Train a skip-gram model using gensim on the entire vocabulary to obtain a 300-dimensional feature(word)-vector
- Project the word-vectors into a 2D space for visualization

The Big Picture

Embedding of the entire vocabulary space onto 2-D using t-SNE $\,$

Word Mappings

	word	x	у
0	fawn	-4.470860	-0.406855
1	raining	2.432409	-1.825349
2	writings	-3.212095	1.967637
3	Ysilla	1.436866	-2.421560
4	Rory	-1.090941	-2.569549
5	hordes	-2.204853	2.614524
6	mustachio	-1.086925	-3.887781
7	Greyjoy	1.585396	3.667034
8	yellow	-0.813293	-5.425221
9	four	1.871287	2.557694

Similar objects cluster together

Food Items group together

Similar objects cluster together

17

Most Similar To

- thrones2vec.most_similar("Stark")

Most Similar To

```
- thrones2vec.most similar("Stark")
       ('Eddard', 0.7424380779266357),
       ('Winterfell', 0.6484879851341248),
       ('Brandon', 0.643855094909668),
       ('Lyanna', 0.6438395977020264),
       ('Robb', 0.6242259740829468),
       ('executed', 0.6220564842224121),
       ('Arryn', 0.6189972162246704),
       ('Benjen', 0.6188897490501404),
       ('direwolf', 0.6143664121627808),
       ('beheaded', 0.6046537756919861)
```

Most Similar to

- thrones2vec.most_similar("Dragons")

Most Similar to

```
- thrones2vec.most_similar("Dragons")
       ('Unburnt', 0.8507828712463379),
       ('Stormborn', 0.815880537033081),
       ('Khaleesi', 0.7907167673110962),
       ('Mother', 0.7906662225723267),
       ('khaleesi', 0.7895367741584778),
       ('Shackles', 0.7814539074897766),
       ('Breaker', 0.7562315464019775),
       ('warlocks', 0.7459860444068909),
       ('fairest', 0.7372589111328125),
       ('Grass', 0.7342460751533508)
```

- ("Stark", "Winterfell", "Martell") #Leader

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell
- ("Stark", "Winterfell", "Bolton") #Leader

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell
- ("Stark", "Winterfell", "Bolton") #Leader Stark is related to Winterfell, as Roose is related to Bolton

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell
- ("Stark", "Winterfell", "Bolton") #Leader Stark is related to Winterfell, as Roose is related to Bolton
- ("Arya", "Horseface", "Daenerys") #Nicknames

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell
- ("Stark", "Winterfell", "Bolton") #Leader Stark is related to Winterfell, as Roose is related to Bolton
- ("Arya", "Horseface", "Daenerys") #Nicknames
 Arya is related to Horseface, as Dany is related
 to Daenerys

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell
- ("Stark", "Winterfell", "Bolton") #Leader Stark is related to Winterfell, as Roose is related to Bolton
- ("Arya", "Horseface", "Daenerys") #Nicknames
 Arya is related to Horseface, as Dany is related
 to Daenerys
- ("Arya", "Nymeria", "dragons") # Mystic creatures

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell
- ("Stark", "Winterfell", "Bolton") #Leader Stark is related to Winterfell, as Roose is related to Bolton
- ("Arya", "Horseface", "Daenerys") #Nicknames
 Arya is related to Horseface, as Dany is related
 to Daenerys
- ("Arya", "Nymeria", "dragons") # Mystic creatures Arya is related to Nymeria, as Dany is related to dragons

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell
- ("Stark", "Winterfell", "Bolton") #Leader Stark is related to Winterfell, as Roose is related to Bolton
- ("Arya", "Horseface", "Daenerys") #Nicknames
 Arya is related to Horseface, as Dany is related
 to Daenerys
- ("Arya", "Nymeria", "dragons") # Mystic creatures
 Arya is related to Nymeria, as Dany is related to
 dragons
- ("Snow", "Jon", "Ellaria") # Bastards by area

- ("Stark", "Winterfell", "Martell") #Leader Stark is related to Winterfell, as Doran is related to Martell
- ("Stark", "Winterfell", "Bolton") #Leader Stark is related to Winterfell, as Roose is related to Bolton
- ("Arya", "Horseface", "Daenerys") #Nicknames
 Arya is related to Horseface, as Dany is related
 to Daenerys
- ("Arya", "Nymeria", "dragons") # Mystic creatures
 Arya is related to Nymeria, as Dany is related to
 dragons
- ("Snow", "Jon", "Ellaria") # Bastards by area Snow is related to Jon, as Sand is related to Ellaria

```
("Jaime, Cersei, Robert")
```

Even an algorithm can tell, who doesn't belong("Jaime, Cersei, Robert")'Robert'

- Even an algorithm can tell, who doesn't belong
 ("Jaime, Cersei, Robert")
 - 'Robert'
- The Night is Dark and full of spoilers!

- Even an algorithm can tell, who doesn't belong("Jaime, Cersei, Robert")'Robert'
- The Night is Dark and full of spoilers!

 ("Robb, Jon, Arya, Sansa, Rickon, Brandon")

```
    Even an algorithm can tell, who doesn't belong
        ("Jaime, Cersei, Robert")
        - 'Robert'
    The Night is Dark and full of spoilers!
        ("Robb, Jon, Arya, Sansa, Rickon, Brandon")
        - 'Jon'
```

- Even an algorithm can tell, who doesn't belong

 ("Jaime, Cersei, Robert")

 'Robert'

 The Night is Doub and full of anciloral
- The Night is Dark and full of spoilers!
 ("Robb, Jon, Arya, Sansa, Rickon, Brandon")
 'Jon'
- Season 8 predictions!

```
- Even an algorithm can tell, who doesn't belong
  ("Jaime, Cersei, Robert")
    - 'Robert'
- The Night is Dark and full of spoilers!
  ("Robb, Jon, Arya, Sansa, Rickon, Brandon")
    - 'Jon'
- Season 8 predictions!
  ("Tyrion, Daenerys, Gendry, Bran, Jon")
    - 'Daenerys'
```

Conclusions

- Word2Vec can efficiently learn word-embeddings in a lower-dimension space such that similar words cluster together

Questions?