Модульна контрольна робота 2 з чисельного аналізу

Півень Денис ОМ-3 $\label{eq: Bapiaht 2}$ Варіант 2

1 Модифікований метод Ейлера

1.1 Опис методу

Нехай дана задача Коші для рівняння першого порядку:

$$\frac{dy}{dx} = f(x, y),$$

$$y_{|_{x=x_0}} = y_0,$$

де функція f визначена на деякії області $D \subset \mathbb{R}^2$. Розв'язок знаходиться в інтервалі $(x_0, b]$. На цьому інтервалі введемо вузли: $x_0 < x_1 < \dots < x_n \leq b$. Наближенний розв'язок у вузлах x_i , який позначимо через y_i , визначається формулою:

$$y_i = y_{i-1} + (x_i - x_{i-1})f(x_{i-1}, y_{i-1}), \quad i = 1, 2, 3, \dots, n.$$

Ці формули зводяться на випадок систем звичайних диференціальних рівнянь.

1.2 Розв'язання

Умова задачі:

На відрізку $x \in [0, 1.2]$ з кроком h = 0.1 розв'язати рівняння модифікованим методом Ейлера:

$$y' = \frac{x}{y} + 0.5 \cdot y$$

$$y(0) = 1$$

n	x{n}	Approximation	f(x,y)	dy	y{n+1}
	*{117	Аррголіпацоп	1(A,y)	uy	у\птт
0	0	1	0.5	0.0549	1.0549
1	0.1	1.0549	0.5948	0.0638	1.1187
2	0.2	1.1187	0.6788	0.0717	1.1904
3	0.3000	1.1904	0.7520	0.0785	1.2689
4	0.4	1.2689	0.8152	0.0844	1.3533
5	0.5	1.3533	0.8695	0.0894	1.4426
6	0.6	1.4426	0.9159	0.0937	1.5363
7	0.7	1.5363	0.9556	0.0973	1.6337
8	0.8000	1.6337	0.9897	0.1005	1.7342
9	0.9000	1.7342	1.0190	0.1032	1.8374
10	1.0000	1.8374	1.0443	0.1056	1.9429
11	1.1000	1.9429	1.0662	0.1076	2.0505
12	1.2	2.0505			

2 Метод Рунге — Кутти 2-го порядку

2.1 Опис методу

Розглянемо задачу Коші для системи диференціальних рівнянь довільного порядку, що записується у векторній формі як

$$\mathbf{y}' = \mathbf{f}(x, \mathbf{y}), \qquad \mathbf{y}(x_0) = \mathbf{y}_0$$

Тоді значення невідомої функції в точці x_{n+1} обчислюється відносно значення в попередній точці x_n за формулою:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{h}{2}(\mathbf{k}_1 + \mathbf{k}_2),$$
$$x_{n+1} = x_n + h$$

де h — крок інтегрування, а коефіцієнти k_n розраховуються таким чином:

$$k_1 = \mathbf{f}(x_n, \mathbf{y}_n) \,,$$

$$k_2 = \mathbf{f}\left(x_n + \frac{h}{2}, \mathbf{y}_n + \frac{h}{2}\mathbf{k}_1\right),$$

Це метод 2-го порядку, тобто похибка на кожному кроці становить $O(h^3)$, а сумарна похибка на кінцевому інтервалі інтегрування є величиною $O(h^2)$.

2.2 Розв'язання

Умова задачі:

За допомогою метода Рунге-Кутта 2-го порядку точності побудувати таблицю значень функції y(x) на відрізку $x \in [0,1]$ з кроком h=0.1.

$$y' = \sqrt{x} + \sqrt{y}$$

$$y(0) = 0$$

На кожному кроці знаходимо коефіцієнти k_n , обчислюємо значення функції y_{n+1} у наступній точці x_{n+1} :

n	x{n}	y{n}	k1	k2	y{n+1}
0	0	0	0	0.0224	0.0267
1	0.1	0.0267	0.0480	0.0612	0.0885
2	0.2	0.0885	0.0745	0.0855	0.1742
3	0.3000	0.1742	0.0965	0.1063	0.2807
4	0.4	0.2807	0.1162	0.1253	0.4062
5	0.5	0.4062	0.1344	0.1430	0.5492
6	0.6	0.5492	0.1516	0.1597	0.7090
7	0.7	0.7090	0.1679	0.1757	0.8848
8	0.8000	0.8848	0.1835	0.1910	1.0758
9	0.9000	1.0758	0.1986	0.2059	1.2818
10	1.0000	1.2818			

3 Модифікований метод Ейлера-Коші

3.1 Опис методу

Нехай дана задача Коші для рівняння першого порядку:

$$\frac{dy}{dx} = f(x, y),$$
$$y_{|_{x=x_0}} = y_0,$$

де функція f визначена на деякії області $D \subset \mathbb{R}^2$. Розв'язок знаходиться в інтервалі $(x_0, b]$. На цьому інтервалі введемо вузли: $x_0 < x_1 < \dots < x_n \le b$. Наближенний розв'язок у вузлах x_i , який позначимо через y_i , визначається формулою:

$$\hat{y}_i = y_{i-1} + (x_i - x_{i-1})f(x_{i-1}, y_{i-1}), \quad i = 1, 2, 3, \dots, n.$$

Підвищити точність і стійкість обчислення рішення можна за допомогою неявного методу Ейлера такого вигляду.

$$y_i = y_{i-1} + (x_i - x_{i-1}) \frac{f(x_{i-1}, y_{i-1}) + f(x_i, \hat{y}_i)}{2}, \quad i = 1, 2, 3, \dots, n.$$

Для підвищення точності коригувальну ітерацію можна повторити, підставляючи $\hat{y_i} = y_i$.

Модифікований метод Ейлера-Коші з перерахунком має другий порядок точності, однак для його реалізації необхідно як мінімум двічі обчислювати f(x,y). Метод Ейлера з перерахунком є різновидом методів Рунге-Кутта (предиктор-коректор).

3.2 Розв'язання

Умова задачі:

На відрізку $x \in [0, 1.2]$ з кроком h = 0.1 розв'язати рівняння модифікованим методом Ейлера: За допомогою модифікованого методу Ейлера-Коші побудувати таблицю значень функції y(x) на відрізку $x \in [0.1, 1]$ з кроком h = 0.1

$$y' = 0.4 \cdot y + 0.002 \cdot x \cdot (1 - 0.2 \cdot x)$$
$$y(0.1) = 1.0408$$

n	x{n}	Approximation	f(x,y)	dy	y{n+1}
0	0.1	1.0408	0.4	0.0400	1.0808
1	0.2	1.0808	0.4	0.0400	1.1208
2	0.3000	1.1208	0.4	0.0400	1.1608
3	0.4	1.1608	0.4	0.0400	1.2008
4	0.5	1.2008	0.4	0.0400	1.2408
5	0.6	1.2408	0.4	0.0400	1.2808
6	0.7	1.2808	0.4	0.0400	1.3208
7	0.8000	1.3208	0.4	0.0400	1.3608
8	0.9000	1.3608	0.4	0.0400	1.4008
9	1.0000	1.4008			