Code No: R2032042 (R20)

III B. Tech II Semester Supplementary Examinations, December -2023 VLSI DESIGN

SET-1

[7M]

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks **** UNIT-I 1. a) Draw the VLSI design flow diagram and explain. [7M] **b**) Determine the pull up to pull down ratio for NMOS inverter driven by one or [7M] more pass transistor inverter. (OR) 2. With neat diagrams, explain the different steps in p-well fabrication of CMOS [7M] a) Draw the circuit diagram of CMOS inverter and explain its operation. **b**) [7M] 3. a) What is meant by sheet resistance R_s? Explain the concept of R_s applied to MOS [7M] transistors. Calculate on resistance of an inverter from V_{DD} to GND. If n- channel sheet [7M] b) resistance R_{sn} =104 Ω per square and P-channel sheet resistance R_{sp} = 3.5 × 10⁴ Ω per square. ($Z_{pu}=4:4$ and $Z_{pd}=2:2$). (OR) 4. a) What is inverter delay? How delay is calculated for multiple stages? Explain. [7M] Two nMOS inverters are cascaded to drive a capacitive load C_L=16C_g. Calculate **b**) [7M] pair delay V_{in} to V_{out} in terms of τ . UNIT-III 5. a) Draw a standard Cascode current sink circuit and explain its operation and output [7M] characteristics. Write a short note on following: (i) Body bias effect (ii) Source degeneration of [7M] b) common source amplifier. (OR) Derive the expressions for input impedance, voltage gain and output impedance 6. [7M] of common drain amplifier. Explain about single stage amplifiers with resistive load. b) [7M] **UNIT-IV** Model the static CMOS layout for the expression F = (A+B)'. 7. a) [7M] Develop a 2-input XOR gate using pass transistor logic. **b**) [7M] (OR) 8. a) Explain the following: (i) Static power dissipation (ii) Dynamic power [7M] dissipation. b) Briefly discuss about Master-Slave based edge triggered register with a neat [7M] diagram. **UNIT-V** 9. a) Draw and explain the FPGA design flow. [7M] Discuss different types of programming technologies used in an FPGA design. b) [7M] 10. a) Explain about High – k metal technology. [7M]

1 of 1

b)

Write a short note on Giga scale dilemma.