- 1 \rightarrow Qual è la definizione di azione sinistra? \rightarrow Dato un gruppo G e un insieme X definisco azione di X su G un'applicazione $A:G\times X\rightarrow X$ che soddisfa:
 - 1. $A(e, x) = x \ \forall x \in X$
 - 2. $A(g, A(h, x)) = A(gh, x) \ \forall g, h \in G, \ \forall x \in X$

Dico che G AGISCE SU $X, G \cap X$

- 3 \rightarrow Fornisci un esempio di azione su uno spazio vettoriale $V \rightarrow \dot{\mathbf{E}}$ sufficiente prendere $A: G \times V \rightarrow V: (f, v) \mapsto f(v)$
- 3.01 \rightarrow Illustra come S_X agisce su $X \rightarrow$ L'azione è $g \cdot x := g(x)$
- $4 \rightarrow$ Enuncia il lemma di caratterizzazione delle azioni di gruppo come morfismi nel gruppo simmetrico \rightarrow Data un'azione $A: G \times X \rightarrow X: (g,x) \mapsto g \cdot x$, posso definire un morfismo $\alpha: G \rightarrow S_X$ ponendo $\alpha(g)$ la funzione $X \rightarrow X: x \mapsto A(g,x)$. (Cioè quindi $\alpha(g)(x) := A(g,x)$) (da dimostrare che α è ben definita).

Viceversa, dato $\alpha: G \to S_X$ morfismo, posso definire un'azione A come segue: $A(g,x) := \alpha(g)(x)$ (da dimostrare che è un'azione)

- 5 \rightarrow Qual è la definizione di insieme G-invariante? \rightarrow Se $G \curvearrowright X$, un sottoinsieme $Y \subseteq X$ è invariante quando $g \cdot y = y \ \forall y \in Y$
- 6 \rightarrow Quali invarianti puoi trovare per SO(3) $\curvearrowright \mathbb{R}^3$? \rightarrow Le sfere sono G-invarianti
- $7\rightarrow$ Come si comportano i sottogruppi di un gruppo che agisce su un insieme? \rightarrow Agiscono anche loro sullo stesso inseme con la restrizione dell'azione
- 8 \rightarrow Qual è la definizione di G-ORBITA di $x \in X$? $\rightarrow \dot{E}$ $Gx = \{g \cdot x \forall g \in G\}$
- 9 \rightarrow La collezione delle orbite di un'azione come si rapporta all'insieme su cui agisce l'azione? \rightarrow Data $G \curvearrowright X$, le sue orbite formano una partizione di X
- $10 \rightarrow$ Essere in nella sessa orbita è c1:: una relazione d'equivalenza \rightarrow clz
- 11 \rightarrow Qual è la definizione di X/G? $\rightarrow X/G := X/\sim$, con \sim relazione di equivalenza su X di appartenenza alla stessa orbita.
- 12 \rightarrow Qual è la definizione di STABILIZZATORE di $x \in X$? $\rightarrow \grave{E} G_x := \{g \in G \mid g \cdot x = x\}$
- 13 \rightarrow Come sono in relazione gli stabilizzatori di due elementi sulla stessa orbita? \rightarrow Se x e y sono sulla stessa orbita, allora G_x e G_y sono coniugati.
- 14 \rightarrow Qual è la definizione di azione transitiva? $\rightarrow G \curvearrowright X$ è TRANSITIVA quando $\forall x,y \in X \; \exists g \in G: \; g \cdot x = y \; \text{(cioè ho un'unica orbita, } Gx = X)$
- 15 \rightarrow $SO(3) \curvearrowright S^2$ è c1::transitiva \rightarrow clz
- 16 \rightarrow Qual è la definizione di spazio omogeneo? \rightarrow Data $G \curvearrowright X$ azione, se è transitiva dico che X è uno SPAZIO OMOGENEO per G
- 17 \rightarrow Esibisci un'azione di un gruppo sul quoziente per un sottogruppo \rightarrow In generale: se $H \leq G, X := G/H$ ho che $G \curvearrowright G/H : q \cdot aH := qaH$
- 18 \rightarrow Qual è la definizione di un G-INSIEME? \rightarrow è un insieme X su cui agisce G
- 19 $\rightarrow G/H$ è sempre c1:: omogeneo \rightarrow clz
- 20 Chi è lo stabilizzatore di un $x \in G/H$? È in generale un coniugato di H
- 21 \rightarrow Qual è la definizione di funzione equivariante? \rightarrow È una $f: X \rightarrow Y$ due G-insiemi t.c. $f(g \cdot x) = g \cdot f(x)$

- 22 \rightarrow Quando due insiemi sono ISOMORFI come G-insiemi? \rightarrow Quando esiste una funzione biunivoca ed equivariante tra loro
- 23 \rightarrow Enuncia il lemma di caratterizzazione degli spazi omogenei $\rightarrow G \curvearrowright X$ transitiva, preso $x_0 \in X$ e posto $H := G_{x_0}$ allora $X \cong G/H$ come G-insieme
- 24 \rightarrow La classe dei G-insiemi è una \rightarrow Categoria, G-insiemi con Obj(G -ins.) = {X insiemi con una fissata G-azione} e $\forall X, Y$ G-ins.: Mor(X, Y) = { $f: X \rightarrow Y$ equivarianti}
- 25 \rightarrow Enuncia che relazione collega lo stabilizzatore di un elemento con la sua orbita \rightarrow $Gx \cong G/G_x$ come G-ins.
- 26 \rightarrow Qual è la definizione di punto fisso di un'azione? \rightarrow se $G \curvearrowright X$, un PUNTO FISSO dell'azione è un $x \in X$ t.c $g \cdot x = x \forall g \in G$
- 27 $\rightarrow x$ è un punto fisso \Leftrightarrow c1:: $G_x = G \rightarrow \text{clz}$
- 28 \rightarrow Qual è la definizione di azione fedele? \rightarrow Posto $\alpha: G \rightarrow S_X$ il morfismo associato a $G \curvearrowright X$, dico che l'azione è FEDELE quando α è iniettivo
- 29 \rightarrow Data un'azione $\alpha: G \rightarrow S_X$ generica, costruisci un'azione fedele. \rightarrow Dato che α è un morfismo, $\exists ! \beta: G/\operatorname{Ker}(\alpha) \rightarrow S_X$ iniettivo, che induce quindi un'azione fedele.
- 30 \rightarrow Enuncia una caratterizzazione di azione fedele \rightarrow $G \land X$ è fedele $\Leftrightarrow \forall g \in G \land e \exists x \in X : g \cdot x \neq x$
- 31 \rightarrow È $GL(V) \curvearrowright \mathbb{P}(V)$ effettiva? \rightarrow No perché $f := x \rightarrow \lambda x$ è t.c. $f \neq id_V$ e $\alpha(f) = id_V$
- 32 \rightarrow Se $G \curvearrowright X$ qual è la definizione di punto io di un $g \in G$? $\rightarrow G \curvearrowright X$, dico che $x \in X$ è PUNTO FISSO di $g \in G$ quando $g \cdot x = x$.
- 33 \rightarrow Qual è la definizione di azione libera? $\rightarrow G \curvearrowright X$ è LIBERA quando $\forall g \in G, g \neq e$ vale che g non ha punti fissi
- 34 Enuncia una caratterizzazione di azione fedele $G \curvearrowright X$ è LIBERA $\Leftrightarrow \forall g \in G \setminus e, \forall x \in X: g \cdot x \neq x$
- 35 \rightarrow Qual è la definizione di sistema di rappresentanti? \rightarrow X insieme, \sim relazione di equivalenza su X, dico SISTEMA DI RAPPRESENTANTI un insieme $S \subseteq X$ t.c. $\pi_{|S|} : S \rightarrow X/\sim$ (proiezione canonica) è biettiva.
- 36 \rightarrow Enuncia l'equazione delle orbite $\rightarrow X, G$ finiti, $G \curvearrowright X$, sia $S = x_1, ..., x_k$ un sistema di rappresentanti per la relazione "essere nella stessa orbita", allora $\#X = \sum_{i=1}^k \#G/\#G_{x_i}$
- 37 Enuncia cosa è l'azione per traslazione È l'azione $G \curvearrowright G: g \cdot x := gx$
- 38 \rightarrow Enuncia qual è l'azione per moltiplicazione a destra. \rightarrow È l'azione $G \curvearrowright G : g \cdot x := xg^{-1}$
- 39 \rightarrow Qual è la definizione di azione destra? \rightarrow È una funzione $X \times G \rightarrow X : (x, g) \mapsto x \cdot g$ che verifica $x \cdot e = x$; $(x \cdot g_1) \cdot g_2 = x \cdot (g_1 g_2)$
- 40 \rightarrow Come posso passare da un'azione destra ad un'azione sinistra (o viceversa?) \rightarrow Se $B: X \times G \rightarrow X$ è un'azione destra, allora $A: G \times X \rightarrow X: A(g,x) := B(x,g^{-1})$ è un'azione sinistra
- 41 \rightarrow Enuncia qual è l'azione di $G \curvearrowright G$ per coniugio \rightarrow È l'azione $G \curvearrowright G: g \cdot x := gxg^{-1}$

- 42 \rightarrow Qual è la definizione di automorfismo interno? \rightarrow È un morfismo della forma: dato inn_q: $G \rightarrow G$: $x \mapsto gxg^{-1}$ per un certo $g \in G$
- 43 \rightarrow Qual è il morfismo associato all'azione $G \curvearrowright G$ per coniugio? \rightarrow È $\alpha: G \rightarrow S_G: \alpha(g) = \text{inn}_g$
- 44 \rightarrow È l'azione per coniugio $G \curvearrowright G$ libera? \rightarrow No: $\operatorname{inn}_g(e) = e \forall g, e \text{ è un punto fisso dell'azione}$
- 45 \rightarrow Qual è la definizione di X^G se $G \cap X$? $\rightarrow X^G := \text{Fix}_G(X) := \{x \in X \mid \forall g : g \cdot x = x\}$
- $46 \rightarrow \text{Se } G \curvearrowright G$ per coniugio, chi è $\text{Fix}_G(G)$? $\rightarrow \text{Fix}_G(G) = Z(G)$ il centro di G
- 47 \rightarrow Se $G \curvearrowright G$ per coniugio, chi è G_x ? $\rightarrow G_x = Z_G(x)$ il centralizzante di x
- 48 \rightarrow Enuncia l'EQUAZIONE DELLE CLASSI \rightarrow È $|G| = |Z(G)| + \sum_{i=1}^{m} [G: Z_G(x_i)]$ se $x_1, ..., x_k$ è un sistema di rappresentanti della relazione delle orbite, con $x_1, ..., x_m \notin Z(G)$
- 49 Qual è la definizione di p-gruppo? È un gruppo G con $o(G) = p^{\alpha}$, p primo e $\alpha \in \mathbb{N}^{>0}$
- 50 \rightarrow Com'è il centralizzante di un p gruppo? \rightarrow È banale, $Z(G) = \{1\}$
- 51 \rightarrow Puoi estendere un'azione su un insieme al suo insieme delle parti? \rightarrow Sì, è facile vedere che se $G \curvearrowright X$, allora si ha anche che $G \curvearrowright \mathcal{P}(X)$: $g \cdot E := \{g \cdot x \mid x \in E\} (= \alpha(g)(E))$
- 52 \rightarrow Come puoi far agire un gruppo G sull'insieme dei suoi sottogruppi? \rightarrow Sapendo che $G \curvearrowright \mathcal{P}(G)$ per coniugio, ho che $\mathcal{S}(G) := \{\text{sottogruppi di}G\}$ è un insieme invariante. Allora posso restringere l'azione sopra $g \cdot H := gHg^{-1}$
- 53 \rightarrow Presa l'azione $G \curvearrowright S(G)$ per coniugio, e $H \in S(G)$, chi è G_H ? \rightarrow È il NORMALIZZANTE di H in G
- 54 \rightarrow Presa l'azione $G \curvearrowright S(G)$ per coniugio dai una caratterizzazione dell'orbita di $H < G \rightarrow GH = \{\text{coniugati di } H\}, |GH| = |G|/|G_H| = \#\text{CONIUGATI DI } H = |G|/N_G(H)$
- 55 \rightarrow che relazione c'è tra un sottogruppo H < G e il suo normalizzante? $\rightarrow H \triangleleft N_G(H)$ e $H \triangleleft G \Leftrightarrow N_G(H) = G$
- 56 \rightarrow Come puoi descrivere euristicamente il normalizzante di un sottogruppo H < G? \rightarrow È il "più grande sottogruppo di G in cui H è normale", cioè se H' < G, $H \subseteq H', H \triangleleft H' \Rightarrow H' \subseteq N_G(H)$
- 57 \rightarrow Che rapporto c'è tra il centro di un elemento $x \in G$ ed il normalizzante del suo gruppo generato? \rightarrow Vale in generale $Z_G(x) \subseteq N_G(\langle x \rangle)$, non vale in generale l'uguaglianza
- 58 \rightarrow Enuncia il teorema di Cayley nel contesto delle azioni \rightarrow Ogni gruppo ha un'azione fedele su un qualche insieme
- 59 \rightarrow Esibisci un Gruppo che non possiede sottogruppi di un determinato ordine che divide l'ordine del gruppo $\rightarrow G = A_4$ nonn possiede sottogruppi di ordine 6
- 60 \rightarrow Qual è l'ordine di un generico elemento di un gruppo ciclico? \rightarrow Se $G = \langle g \rangle$, o(G) = n, allora $o(g^s) = \frac{n}{(n,s)}$

- 61 \rightarrow Quanti generatori ha un gruppo ciclico $G = \langle g \rangle$ $o(G) = n? \rightarrow$ Sono tanti quanto i naturali $\leq n$ che non dividono n, cioè $\varphi(n)$
- 62 Caratterizza i sottogruppi di ordine d|n di un gruppo ciclico $G \to \text{Sono gli } H < G$ t.c. $H = \langle g^{n/d} \rangle$, questo esiste ed unico $\Leftrightarrow d|n$
- 63 \rightarrow Enuncia la FORMULA DI GAUSS $\rightarrow \sum_{d:d|n} \varphi(d) = n$
- 64 \rightarrow Dai una condizione sui sottogruppi di un gruppo G sufficiente affinché esso sia ciclico $\rightarrow G$ gruppo, o(G) = n, se $\forall d | n$ esiste al più un sottogruppo di ordine d, allora G è ciclico
- 65 \rightarrow Dai la definizione di G^d e una condizione su di ess affinché il gruppo G sia ciclico $\rightarrow G^d = \{x \in G \mid x^d = 1\}$. Se $\forall d \mid n : |G^d| \leq d \Rightarrow G$ è ciclico.
- 66 \rightarrow Dai delle condizioni sufficienti per trovare dei sottogruppi di un gruppo abeliano $\rightarrow G$ gruppo $abeliano, o(G) = n, d|n \Rightarrow \exists H \leq G : o(H) = d$
- 67 \rightarrow Cosa puoi dire dei sottogruppi di gruppi ciclici e abeliani? \rightarrow
 - 1. G abeliano $\Rightarrow \forall d | n \exists$ un sottogruppo di G di ordine n
 - 2. G ciclico $\Rightarrow \forall d | n \exists$ un sottogruppo di G di ordine n
- 68 \rightarrow Enuncia il teorema di Sylow \rightarrow Dato un gruppo finito G, posto $o(G) = p^{\alpha}m$, p primo, $p \nmid m$, allora
 - 1. \exists un *p*-sylow in G
 - 2. se $H \leq G$ è un p-sottogruppo $\Rightarrow H$ è contenuto in un p-sylow
 - 3. tutti i p-sylow sono coniugati
 - 4. Detto $n_p = \#\{p \text{sylow}\} \implies n_p = [G : N_G(P)], \text{ con } P \text{ un } p\text{-sylow}.$
 - 5. $n_p \equiv 1 \mod p \in n_p \mid n$
- 69 \rightarrow Enuncia il lemma che ti permette di trovare dei p-sylow di un sottogruppo $\rightarrow G$ gruppo finito, H sottogruppo e Pp-sylow $\Rightarrow \exists x \in G : xPx^{-1} \cap H$ è un p-sylow di H
- 70 \rightarrow Dati P, H < G, come può agire $P \times H$ su G? Di' chi è lo stabilizzatore di un elemento $\rightarrow P \times H \curvearrowright G$: $(a, h) \cdot x = axh^{-1}$, e inoltre $(P \times H)_x \cong (x^{-1}Px) \cap H$ tramite f: f(a, h) = h e $f^{-1}(h) = (x^{-1}Px, h)$
- 71 \rightarrow Enunciai il corollario del lemma sui p-sylow dei sottogruppi $\rightarrow H \leq G, G$ ha un p-sylow \Rightarrow anche H ha un p-sylow
- 72 \rightarrow Dai un'idea di quale sia la strategia per dimostrare il teorema di Sylow \rightarrow Eseguo due passi:
 - 1. trovo una classe di gruppi con un p-sylow banale, cioè $GL(n, F_p)$, p primo e $F_p = \mathbb{Z}/p$
 - 2. esibisco un morfismo iniettivo in $GL(n, F_p)$ per un qualsiasi gruppo finito
- 73 \rightarrow Qual è la cardinalità di $GL(n, F_p)$ con p primo e $F_p = \mathbb{Z}/p? \rightarrow \grave{E} \prod_{i=0}^{n-1} (p^n p^i)$
- 74 \rightarrow Enuncia una caratterizzazione dei gruppi di ordine un quadrato di un primo $\rightarrow G$ gruppo, $Z(G) \neq \{1\}$, $\#G = p^2$, p primo $\Rightarrow G \cong C_{p^2}$ oppure $G \cong C_p \times C_p$

- 75 \rightarrow Enuncia una condizione sufficiente su un gruppo affinché esso sia abeliano che va a guardare $G/Z(G) \rightarrow G$ finit. G/Z(G) ciclico $\Rightarrow G$ abeliano
- 76 \rightarrow Esibisci il morfismo iniettivo da $S_n \hookrightarrow GL(n, F_p) \rightarrow \dot{E}$ il morfismo che manda $\sigma \mapsto \varphi(\sigma) := (e_{\sigma(1)}|...|e_{\sigma(n)})$ cioè che manda un morfismo nella matrice identità con le colonne permutate.
- 77 \rightarrow Descrivi il funtore dalla categoria degli insiemi alla categoria degli spazi vettoriali su un campo fissato \rightarrow È una mappa della forma $\mathbf{Set} \xrightarrow{\alpha} \mathbf{Vec}(F) : \mathrm{Mor}_{\mathbf{Set}}(X,Y) = \{f : X \rightarrow Y\} \xrightarrow{\alpha} \{f^* : F^Y \rightarrow F^X\} = \mathrm{Mor}_{\mathbf{Set}}(\alpha(X), \alpha(Y)) : f \mapsto f^*, \text{ con } f^* : F^Y \rightarrow F^X : u \mapsto u \circ f$ È un funtore controvariante
- $78 \rightarrow$ Descrivi il processo di linearizzazione di un'azione \rightarrow ???
- 79 \rightarrow Qual è la definizione di *F*-ALGEBRA ? \rightarrow È un anello *A* che è anche un *F*-spazio vettoriale, con la stessa struttura additiva e t.c. $\forall a, b \in A \forall \lambda \in F : \lambda(ab) = a(\lambda b) = (\lambda a)b$
- 80 \rightarrow Esibisci una F-algebra facile \rightarrow Dati X insieme e F campo, F^X è un'F-algebra commutativa con unità $1: X \rightarrow F: x \mapsto 1 \in F$
- 81 Dato un p-gruppo, esibisci dei suoi sottogruppi $\#G = p^{\alpha}$, p primo $\Rightarrow \forall i = 0, ..., \alpha \exists H < G : \#H = p^i$
- 82 \rightarrow Enuncia il lemma che caratterizza il prodotto NH di due sottogruppi N, H < G, data la funzione $f: N \times H \rightarrow G, \ f(n,h) := nh \rightarrow$
 - 1. $\operatorname{Im}(f) = NH$
 - 2. $nh \in \text{Im}(f) \in f^{-1}(nh) = \{(nx, x^{-1}h) \mid x \in N \cap H\}$
 - 3. $|NH| = |N||H|/|N \cap H|$
 - 4. $N \triangleleft G \Rightarrow NH \triangleleft G$
 - 5. $N, H \triangleleft G \Rightarrow NH \triangleleft G$
 - 6. Se $N, H \triangleleft G \Rightarrow [N, H] \subseteq N \cap H$
 - 7. Se $H, N \triangleleft G, N \cap H = \{1\} \Rightarrow NG \cong N \times H$
- 83 \rightarrow Enuncia la proposizione sull'equivalenza tra il prodotto diretto interno ed esterno $\rightarrow H, G \lhd G, N \cap H = \{1\}, NH = G \Rightarrow N \cong N \times H.$ D'altro lato, se pongo $N \times H =: K$ ho: $\bar{N} := N \times \{1\} \lhd K$, $\bar{H} := \{1\} \times H \lhd K$ sono tali che $\bar{N} \cap \bar{H} = \{(1,1)\}eK = \bar{N}\bar{H}$
- 84 \rightarrow Enuncia il lemma di caratterizzazione del prodotto di un numero finito arbitrario di gruppi $\rightarrow G$ gruppo, $N_1, ..., N_k \triangleleft G$ tali che $N_i \cap (N_1 \cdot ... \cdot \hat{N}_i \cdot ... \cdot N_k) = \{1\} \Rightarrow f : N_i \times ... \times N_k \rightarrow N_1 \cdot ... \cdot N_k : (n_1, ..., n_k) \rightarrow n_1 \cdot ... \cdot n_k$ è un isomorfismo
- 85 \rightarrow Enuncia il teorema di Cauchy per gruppi \rightarrow G gruppo finito, p primo t.c. $p|o(G) \Rightarrow$ G contiene un elemento di ordine p
- 86 \rightarrow Enuncia il teorema di caratterizzazione dei gruppi con p-sylow unici $\rightarrow G$ gruppo finito, $o(G) = p_1^{\alpha_1}...p_k^{\alpha_k}$, p_i primi, se tutti i p-sylow sono unici \Rightarrow posti $P_1,...,P_k$ gli unici p-sylow ho che $G \cong P_1 \times ... \times P_k$
- 87 \rightarrow Cosa puoi dire su n_p se il p-sylow è normale? \rightarrow Ho che $P \triangleleft G \Leftrightarrow n_p = 1$
- $\bullet~88 \rightarrow$ Enuncia la proposizione di caratterizzazione dei gruppi con ordine un prodotto di

- primi $\to G$ gruppo con o(G) = pq, p, q primi, $p < q \in p \nmid q-1 \implies G \cong C_p \times C_q (\cong C_{pq})$
- 89 \rightarrow Illustra la ostruzione del prodotto semidiretto interno di gruppi \rightarrow Dati un gruppo G, $N \triangleleft H$ ed un sottogruppo H di G, tali che G = NH, $N \cap H = \{e\}$ ho che $f: N \times H \rightarrow G$ è biunivoca. Se $h \in H$ allora inn_h è un automorfismo che preserva N, dunque è anche un automorfismo di N, che indico con $\varepsilon_h: N \rightarrow N$, $\varepsilon_h(n) = hnh^{-1}$. Otengo dunque che $f(n_1, h_1) \cdot f(n_2, h_2) = f(n_1 \varepsilon_{h_1}(n_2), h_1 h_2)$. Questo significa che dato un il morfismo ϵ è possibile calcolare il prodotto di G e ricostruire questo gruppo a partire da N ed H. (very bad flashcard)
- 90 \rightarrow Enuncia il teorema sul prodotto semidiretto esterno \rightarrow Dati N ed H gruppi e $\theta: H \rightarrow \operatorname{Aut} N: h \rightarrow \theta_h$ un morfismo. Definiamo su $N \times H$ il prodotto \bullet_{θ} mediante la formula

$$(n_1, h_1) \bullet_{\theta} (n_2, h_2) := (n_1 \theta_{h_1}(n_2), h_1 h_2)$$

- . Vale quindi che
 - 1. $G:=(N\times H, ullet_{\theta})$ è un gruppo, indicato con $N\rtimes_{\theta}H,$ chiamato PRODOTTO SEMIDIRETTO di N ed H
 - 2. Le mappe

$$\alpha: N \to G, \ \alpha(n) = (n, e), \quad \beta: H \to G, \ \beta(h) = (e, h)$$

sono morfismi iniettivi di gruppi.

- 3. $\bar{N}:=\alpha(N)=N\times\{e\}$ è un sottogruppo normale di G, mentre $\bar{H}:=\{e\}\times H$ è un sottogruppo di G
- 4. $G = \bar{N}\bar{H}$. Infine il morfismo ε coincide con θ a meno di α e β , ossia se $n \in N$ e $h \in H$, $\bar{n} := \alpha(n)$, $\bar{h} := \beta(h)$ allora

$$\varepsilon_{\bar{h}}(\bar{n}) = \bar{h} \bullet_{\theta} \bar{n} \bullet_{\theta} h^{-1} = \alpha \circ \theta_{h}(n)$$

(very very bad flashcard)

- 91 \rightarrow Enuncia la proposizione sul rapporto tra il prodotto interno ed il prodotto semidiretto di gruppi \rightarrow Dato un gruppo G, $H \leq G$, $N \triangleleft G$, definito $\epsilon : H \rightarrow \text{Aut} : h \mapsto$ $(\epsilon_h : N \rightarrow N : n \mapsto \epsilon_h(n) = hnh^{-1})$, se G = NH e $H \cap N = \{e\}$ allora $G \cong N \rtimes_{\epsilon} H$
- 92 \rightarrow Se in un prodotto semidiretto ho due morfismi coniugati cosa succede? \rightarrow Dati N ed H gruppi, θ , θ' : $H \rightarrow$ Aut N morfismi. Se esiste $\alpha \in$ Aut N tale che

$$\theta_h' = \alpha \circ \theta_h \circ \alpha^{-1}$$

allora l'applicazione

$$F: N \rtimes_{\theta} \to N \rtimes_{\theta'} H, \ F(n,h) := (\alpha(n),h)$$

è un isomorfismo $N \rtimes_{\theta} H \cong N \rtimes_{\theta'} H$

- 93 \rightarrow Qual è la definizione di sottogruppo caratteristico? \rightarrow È un sottogruppo tale che per ogni $\alpha \in \operatorname{Aut} G$ vale $\alpha(H) = H$
- 94 \rightarrow Esibisci due sottogruppi caratteristici sempre presenti in un gruppo \rightarrow Il centro Z(G) ed il sottogruppo dei commutatori, [G,G]
- 95 \rightarrow Un p-sylow di G è normale se e solo se c1::è unico se e solo se c1::è caratteristico \rightarrow clz
- 96 \rightarrow Enuncia la proposizione che caratterizza i quozienti abeliani \rightarrow Dato G gruppo, il sottogruppo dei commutatori [G,G] è caratteristico. Inoltre se $N \triangleleft G$ allora G/N è abeliano se e solo se $[G,G]\subseteq N$
- 97 \rightarrow Qual è la definizione di CATENA NORMALE in un gruppo G? Cosa sono i fattori della catena? \rightarrow È una successione di sottogruppi

$$G = G_0 \supset G_1 \supset \dots \supset G_i \supset G_{i+1} \supset \dots$$

tale che $g_{i+1} \triangleleft G_i$ per ogni i e $G_n = \{1\}$ per qualche n. I fattori della catena sono G_i/G_{i+1}

- 98 \rightarrow Qual è la definizione di catena dei derivati? \rightarrow È la catena $D^0G := G$, $D^{i+1}G := [D^iG, D^iG]$, tale che $G = D^0G \supset D^1G \supset ... \supset D^iG \supset D^{i+1}G \supset ...$
- 99 \rightarrow Un gruppo abeliano finito è semplice se e solo se \rightarrow È ciclico di ordine finito. ciao
- 99.1 \rightarrow Un gruppo G è risolubile se e solo se \rightarrow esiste un numero n tale che $D^nG = \{e\}$.
- 99.2 \rightarrow Dato un gruppo finito G, allora sono equivalenti le condizioni:
 - 1. c1::G è risolubile
 - 2. c2::Esiste una catena normale con fattori ciclici di ordine primo $\rightarrow\! {\rm clz}$
- 100 \rightarrow Cos'è la caratteristica di un anello? \rightarrow Preso un anello A esiste sempre un morfismo $\phi: \mathbb{Z} \rightarrow A: n \mapsto \phi(n) = n \cdot 1_A$. Essendo \mathbb{Z} un PID, il nucleo di ϕ sarà principale, cioè esiste un n t.c. ker $\phi = (n)$. Questo n è la CARATTERISTICA dell'anello A.
- 101 \rightarrow Come si comporta il prodotto in un campo di caratteristica n? \rightarrow preso $m \in \mathbb{Z}$ e $x \in K^*$, $m \cdot x = 0$ sse n | m con $n = \operatorname{car} K$
- 102 Qual è la definizione di campo primo? È il campo generato dall'immagine di $\phi: n \mapsto n \cdot 1_A$
- 103 \rightarrow Qual è la definizione di estensione di campi? \rightarrow È un morfismo di anelli $i:F\rightarrow E$ dove E,F sono campi. Si verifica che è automaticamente iniettiva.
- 104 \rightarrow Se E/F è un'estensione di campi, E è c1:: uno spazio vettoriale su $F \rightarrow$ clz
- 105 \rightarrow Dato un campo F, cos'è una F-algebra? \rightarrow È un anello A con una "moltiplicazione per scalare" $F \times A \rightarrow A$ che rende A uno spazio vettoriale su F; inoltre deve valere che

$$\lambda(ab) = a(\lambda b) = (\lambda a)b$$

• 106 \rightarrow Qual è la definizione di grado di un'estensione $E/F? \rightarrow \dot{E}$ il numero $[E:F] = \dim_F E$, dimensione come spazio vettoriale.

- 107 \rightarrow Qual è la definizione di estensione finita? \rightarrow È un'estensione E/F per la quale $[E:F]<\infty$
- 108→ Quando la mappa che manda un polinomio nella funzione indotta dal polinomio è iniettiva? → Quando il campo è infinito
- 109 \rightarrow Data un'estensione di campi E/F, qual è la definizione di campo intermedio? \rightarrow È un campo K tale che $F \subseteq K \subseteq E$
- 110 \rightarrow Qual è la definizione di campo generato da $S\subseteq E$? \rightarrow È l'intersezione di tutti i campi intermedi che contengono S
- 111 \rightarrow Qual è la definizione di sistema di generatori di un'estensione $E/F? \rightarrow \grave{E}$ un insieme $S \subseteq E$ tale che E = F(S)
- 112 \rightarrow Qual è la definizione di estensione finitamente generata? \rightarrow È un'estensione E/F per cui esiste un insieme finito S tale che E=F(S)
- 113 \rightarrow Qual è la definizione di estensione semplice? \rightarrow È un'estensione generata da un solo elemento
- 114 \rightarrow Se E/F e F/K sono estensioni finite, allora $[E:K]=?\rightarrow=[E:F]\cdot [F:K]$
- 115 \rightarrow Come costruisco un'estensione che contenga una radice di un polinomio irriducibile? \rightarrow F campo, f irriducibile, allora la composizione $F \hookrightarrow F[X] \rightarrow K := F[X]/(f)$ è un'estensione di grado $[K:F] = \deg f$. Se π è la proiezione canonica, allora $\gamma := \pi(X) \in K$ è una radice di f, e $K = F(\gamma)$
- 116 \rightarrow Enuncia il procedimento di Kronecker \rightarrow Sia F un campo e f un polinomio di grado $d \geq 1$. Allora c'è un'estensione finita di F in cui f possiede una radice. (Si prende la proposizione che richiede che f sia un polinomio irriducibile e la si applica ad un fattore irriducibile di f)
- 117 \rightarrow Qual è la definizione di numero algebrico di un'estensione? \rightarrow Data E/F dico che $\alpha \in E$ è ALGEBRICO su F se esiste un polinomio $p(X) \in F[X]$ tale che $p(x) \not\equiv 0, p(\alpha) = 0$. Un elemento non algebrico è TRASCENDENTE
- 118 \rightarrow Data E/F estensione, qual è la definizione di polinomio minimo di $\alpha \in E? \rightarrow$ È il "generatore monico dell'ideale ker v_{α} ", cioè un polinomio monico che divide ogni polinomio che ha soluzione α . Si indica con $m_{\alpha,F}$, o m_{α}
- 119 \rightarrow Enuncia la proposizione sulla relazione tra F[x]/(f) e $F(\alpha)$ dove E/F estensione $f = m_{\alpha}$ e α algebrico \rightarrow Data E/F un'estensione, α algebrico e $f = m_{\alpha}$ polinomio minimo. Allora la valutazione induce un isomorfismo

$$\varphi_{\alpha}: F[X]/(f) \xrightarrow{\cong} F(\alpha) \quad \varphi_{\alpha}(g+(f)) = g(\alpha).$$

Inoltre $[F(\alpha):F]=\deg f=:d$ e $\{1,\alpha,...,\alpha^{d-1}\}$ è una base di $F(\alpha)$ su F

- 120 \rightarrow Per descrivere $F(\alpha)$ bisogna per forza utilizzare le funzioni razionali? \rightarrow No è sufficiente valutare i polinomi in quanto $F(\alpha) = \operatorname{im} \varphi_{\alpha} = v_{\alpha}(F[X])$
- 121 \rightarrow Data un'estensione E/F, e $\alpha \in E$, allora α è algebrico se e solo se \rightarrow $[F(\alpha):F]<\infty$
- 122 \rightarrow Qual è la definizione di estensione algebrica \rightarrow è un'estensione in cui ogni elemento è algebrico

- 123 Come vengono caratterizzate le estensioni finite? Le estensioni finite sono quelle algebriche e finitamente generate o equivalentemente quelle generate da un numero finito di elementi algebrici
- 124 \rightarrow Qual è la definizione di campo algebricamente chiuso? \rightarrow è un campo per cui ogni polinomio non costante su di esso ammette una radice
- 125 \rightarrow Qual è la definizione di chiusura algebrica di un campo $K? \rightarrow$ è un'estensione algebrica L/K con L algebricamente chiuso
- 126 → Enuncia il teorema di Steinitz → Ogni campo ammette una chiusura algebrica
- 127 \rightarrow Enuncia il lemma sugli elementi algebrici di una chiusura algebrica $\rightarrow K$ campo, L/K estensione con L algebricamente chiuso, allora $\overline{K}^L = \{\alpha \in L : \alpha \text{ è algebrico su } K\}$ è un campo intermedio algebricamente chiuso, inoltre \overline{K}^L/K è algebrica.
- 128 \rightarrow Dato un morfismo di campi $\sigma: K \rightarrow L$, e un polinomio $f = \sum a_i x^i$, cosa indica $f^{\sigma}? \rightarrow f^{\sigma} = \sum \sigma(a_i)x^i$
- 129 \rightarrow Dato $\sigma: K \rightarrow L$ un morfismo di campi, presi $K' = K(\alpha)$ un'estensione semplice algebrica, e f il polinomio minimo di α , allora:
 - 1. c1::se $\sigma': K' \to L$ è un morfismo che estende σ , allora $\sigma'(\alpha)$ è una radice di f^{σ}
 - 2. c2::se $\beta \in l$ è una radice di f^{σ} , allora esiste uno ed un solo morfismo $\sigma' : K \to L$ che estende σ e tale che $\sigma'(\alpha) = \beta$
 - 3. c3::Le possibili estensioni di σ a K' sono al più $\deg f = [K':K]$
- 130 \rightarrow Enuncia il teorema sulla caratterizzazione delle estensioni algebricamente chiuse \rightarrow Sia K'/K un'estensione algebrica e sia L un campo algebricamente chiuso. Sia $\sigma: K \rightarrow L$ un morfismo. Allora esiste sempre un morfismo $\sigma': K' \rightarrow L$ che estende σ . Se K' è algebricamente chiuso e $L/\sigma(K)$ è algebrica, allora ogni estensione è un isomorfismo $K' \cong L$
- 131→ Un'estensione algebrica di un campo **finito o numerabile**→ è ancora **numerabile**
- 132 \rightarrow Qual è la definizione di numeri algebrici e trascendenti? \rightarrow I NUMERI ALGEBRICI sono gli elementi della chiusura algebrica di \mathbb{Q} , cioè $\overline{\mathbb{Q}}^{\mathbb{C}}$. I NUMERI TRASCENDENTI sono gli elementi di $\mathbb{C} \setminus \overline{\mathbb{Q}}^{\mathbb{C}}$
- 133 \rightarrow Data un'estensione E/F e due campi intermedi, K ed L, qual è la definizione del campo composto? \rightarrow È il campo $KL := \bigcap_{\substack{M \subseteq L \text{ sottocampo} \\ K \cup L \subseteq M}} M$. È il più piccolo sottocampo

di E che contiene L e K.

• 134 \rightarrow Cosa vuol dire che un polinomio $f \in F[X]$ si spezza su un'estensione E/F? \rightarrow CHe è possibile scriverlo come prodotto di fattori lineari:

$$f(X) = c \cdot (X - \alpha_1)...(X - \alpha_n) \quad \alpha_i \in E$$

- 135 \rightarrow Qual è la definizione di campo di spezzamento di un polinomio \rightarrow Un'estensione E/F è un CAMPO DI SPEZZAMENTO di f su F se f si spezza su E e se f non si spezza su nessun campo intermedio.
- 136 \rightarrow Come si caratterizzano i campi di spezzamento? \rightarrow E è di spezzamento di f se e solo se f si spezza su E ed E è generato dalle radici di f: $E = F(\alpha_1, ..., \alpha_n)$
- 137 \rightarrow Esiste sempre il campo di spezzamento di un polinomio non costante? \rightarrow Sì, dato $f \in F[X]$, deg f =: d, esiste E/F di spezzamento per f, con $[E : F] \leq d!$. Se f è irriducibile, allora d|[E : F]
- 138 \rightarrow Cosa succede se ho due campi di spezzamento dello stesso polinomio $f \in F[X] \rightarrow$ Se ho due campi di spezzamento E/F, E'/F, allora per ogni morfismo F-lineare $\eta : E \rightarrow \bar{E}'$ si ha $\eta(E) = E'$. Da questo scende che il campo di spezzamento di un polinomio è unico a meno di isomorfismo
- 139 \rightarrow Qual è la definizione di estensione NORMALE? \rightarrow È un'estensione algebrica E/F per cui ogni polinomio irriducibile a coefficienti in F che ha una radice in E si spezza su E.
- 140 \rightarrow Un'estensione algebrica E/F è normale sse per ogni $\alpha \in E \rightarrow$ il polinomio minimo $m_{\alpha,F}$ si spezza su E.
- 141 \rightarrow Enuncia il teorema di caratterizzazione delle estensioni finite normali \rightarrow Data un'estensione E/F finita, le seguenti condizioni sono equivalenti:
 - 1. Ogni morfismo F-lineare $\eta: E \to \bar{E}$ ha immagine contenuta in E
 - 2. L'estensione E/F è normale
 - 3. E/F è il campo di spezzamento di un polinomio $f \in F[X]$.
- 142 Se ho una catena di campi $K \subseteq L \subseteq M$, come si comporta la normalità? Se M/K è normale, allora anche M/L lo è
- 143 \rightarrow Qual è la definizione di polinomio SEPARABILE? \rightarrow Un polinomio a coefficienti in un campo F è separabile se non ha radici multiple in nessuna estensione di F
- 144 \rightarrow Qual è la definizione di ELEMENTO SEPARABILE? \rightarrow Data un'estensione algebrica E/F e $\alpha \in E$, diciamo che α è un elemento separabile su F se $m_{\alpha,F}$ è un polinomio separabile
- 145 \rightarrow Qual è la definizione di ESTENSIONE SEPARABILE? \rightarrow È un'estensione E/F in cui ogni elemento di E è separabile
- 146 \rightarrow Se $f \in F[X]$ è irriducibile e non separabile, allora $\rightarrow f' \equiv 0$
- 147 \rightarrow Qual è la definizione di CAMPO PERFETTO? \rightarrow È un campo per cui le tutte le sue estensioni algebriche sono separabili
- 148→ Cosa succede ai polinomi sui campi di caratteristica zero? → Se F è un campo, ogni polinomio irriducibile in F[X] è separabile, quindi ogni estensione algebrica di F è separabile. Dunque ogni campo di caratteristica zero è perfetto
- 149 \rightarrow Enuncia il teorema sui campi finiti
 - 1. c1::Un campo finito di caratteristica p ha ordine p^n

- 2. c2::Per ogni n esiste un campo di ordine p^n
- 3. c3::Ogni campo di ordine $q=p^n$ è un campo di spezzamento del polinomio X^q-X sul campo primo
- 4. c4::Per il punto precedente, per ogni n esiste uno ed un solo campo di ordine p^n a meno di isomorfismo
- 5. c5::I campi finiti sono perfetti
- $\rightarrow clz$
- 150 \rightarrow Enuncia il teorema dell'elemento primitivo \rightarrow Un'estensione E/F finita e separabile è semplice, cioè esiste un elemento $\alpha \in E$, l'elemento primitivo, tale che $E = F(\alpha)$
- 151
—Lcampo, $f,g\in L[X],$ se f|ge
 gè separabile allora anche flo è
- 152 Data una catena di campi $K \subseteq L \subseteq M$, se M/K è separabile, allora anche M/L e L/K lo sono
- 153 \rightarrow Enuncia il teorema sui morfismi lineari su una chiusura algebrica. $\rightarrow E/F$ estensione finita e separabile, \bar{F} una chiusura algebrica di F. Allora esistono esattamente [E:F] morfismi F-lineari da E a \bar{F}
- 154 \rightarrow Qual è la definizione di GRUPPO DI GALOIS di un'estensione $E/F? \rightarrow \grave{E}$ l'insieme $\operatorname{Gal}(E/F)$ degli automorfismi di campo F-lineari di E, che è un gruppo rispetto alla composizione.
- 155 \rightarrow Qual è la definizione di estensione DI GALOIS? \rightarrow È un'estensione finita E/F normale e separabile
- 156 \to Se E/F è finita e normale, allora $\mathrm{Gal}(E/F)$ coincide con \to l'insieme dei morfismi F-lineari $E \to \bar{E}$
- 157 \rightarrow Se E/F è di Galois, allora $|\operatorname{Gal}(E/F)| = \rightarrow [E:F]$
- 158 \rightarrow Qual è la definizione di gruppo di Galois di un polinomio $f?\rightarrow$ È il gruppo di Galois del campo di spezzamento di f
- 159 \rightarrow Se $E = F(\alpha_1, ..., \alpha_n)$ e $d_i = \deg m_{\alpha_i}$, allora $|\operatorname{Gal}(E/F)| \leq \rightarrow d_1...d_n$
- 160 \rightarrow Come si comporta il gruppo di Galois rispetto all'insieme delle radici di un polinomio? \rightarrow Presi E/F estensione, $f \in F[X]$ e posto R l'insieme delle radici di f in E si ha che R è invariante per l'azione di Gal(E/F). Cioè se $\alpha \in R$ e $\sigma \in Gal(E/F)$ si ha $\sigma(\alpha) \in R$. Possiamo quindi dire che $Gal(E/F) \curvearrowright R$
- 161 \rightarrow Preso $f \in F[X]$ e posto E il campo di spezzamento di f. Se l'insieme delle radici di f in $E \ni R := \{\alpha_1, ..., \alpha_n\}$, allora:
 - 1. c1::l'azione di $\operatorname{Gal}(E/F)$ è fedele
 - 2. c2::se f è irriducibile, allora $\operatorname{Gal}(E/F)$ agisce transitivamente sulle radici di f \to clz
- $162 \rightarrow \text{Se } E = F(\alpha)/F$ è un'estensione semplice, allora
 - 1. l'azione di Gal(E/F) sull'insieme R delle radici di $m_{\alpha,F}$ è libera e transitiva

2. l'ordine del gruppo di Galois, $|\operatorname{Gal}(E/F)|$ coincide con il numero delle radici di $m_{\alpha,F}$ in E

_

- 163 \rightarrow Qual è la definizione di CAMPO FISSATO da un sottogruppo di $Gal(E/F)?\rightarrow$ è un $E^G:=\{\alpha\in E: \gamma(\alpha)=\alpha\ \forall \gamma\in G\}\ con\ G\leq Gal(E/F)$
- 164 \rightarrow Enuncia il lemma di Artin \rightarrow Data un'estensione finita E/F, allora per ogni sottogruppo $G \leq \operatorname{Gal}(E/F)$ l'estensione E/E^G è di Galois, $\operatorname{Gal}(E/E^G) = G$ e $[E:E^G] = |G|$
- 165 \rightarrow Enuncia il teorema di caratterizzazione delle estensioni di Galois \rightarrow Se E/F è un'estensione finita, allora le seguenti condizioni sono equivalenti:
 - 1. E/F è di Galois
 - 2. $|\operatorname{Gal}(E/F)| = [E : F]$
 - 3. $E^{\operatorname{Gal}(E/F)} = F$
- 166 Se $K \subseteq L \subseteq M$ sono estensioni finite e M/K è di Galois, allora anche M/L è di Galois
- 167 \rightarrow Se E/F è di Galois, $\alpha \in E$ e Gal $(E/F) \cdot \alpha = \alpha_1 = \alpha, ..., \alpha_r$, allora $m_{\alpha,F}(X) = \rightarrow (X \alpha_1)...(X \alpha_r)$
- 168 \to Cos'è la CORRISPONDENZA DI GALOIS? \to Posti $\mathscr{K}:=\{\text{campi }K \text{ tali che }F\subseteq K\subseteq E\}$ e $\mathscr{S}:=\{G\leq \operatorname{Gal}(E/F)\}$, è la coppia di funzioni

$$\begin{split} \sigma: \mathscr{K} &\to \mathscr{S} \quad \sigma(K) := \operatorname{Gal}(E/K) \\ \tau: \mathscr{S} &\to \mathscr{K} \quad \tau(G) := E^G \end{split}$$

- 169 \rightarrow Cosa vale sempre per le composizioni $\tau\sigma$ e $\sigma\tau$ della corrispondenza di Galois? \rightarrow
 - 1. Per ogni $K \in \mathcal{K}$ si ha che $K \subseteq \tau \sigma(K) = E^{Gal(E/K)}$
 - 2. Per ogni $G \in \mathcal{S}$ si ha $G = \sigma \tau(G) (= \operatorname{Gal}(E/E^G))$
- 170 \rightarrow Enuncia il teorema fondamentale della teoria di Galois, I parte \rightarrow Sia E/F un'estensione finita. Allora la corrispondenza di Galois è biunivoca (cioè σ e τ sono una l'inversa dell'altra) se e solo se E/F è di Galois
- 171 \rightarrow Enuncia il teorema fondamentale della teoria di Galois, II parte \rightarrow Sia E/F un'estensione di Galois, e sia $K \in \mathcal{K}$. Allora K/F è di Galois se e solo se $\mathrm{Gal}(E/K) \lhd$ $\mathrm{Gal}(E/F)$. In al caso

$$\operatorname{Gal}(K/F) \cong \frac{\operatorname{Gal}(E/F)}{\operatorname{Gal}(E/K)}$$

• 172 \rightarrow Qual è la definizione di ESTENSIONE RADICALE? \rightarrow È un'estensione finita per cui esiste una catena

$$F \subseteq F(\alpha_1) \subseteq F(\alpha_1, \alpha_2) \subseteq ... \subseteq F(\alpha_1, ..., \alpha_r) = E'$$

tale che per ogni i esiste $0 < m_i \in \mathbb{Z}$ tale che $\alpha_i^{m_i} \in F(\alpha_1, ..., \alpha_{i-1})$

- 173 \rightarrow Quando un'equazione polinomiale f(X) = 0, $f \in F[X]$ è risolubile per radicali? \rightarrow Quando il campo di spezzamento di f(X) su F è contenuto in E', dove E'/F è un'estensione radicale.
- 174 \rightarrow Qual è la definizione di gruppo di Galois di un'equazione polinomiale f(X) = 0? \rightarrow È il gruppo di Galois di f
- 175→ In caratteristica 0 ogni estensione radicale è contenuta in un'estensione →radicale e di Galois
- 176 \rightarrow In caratteristica 0 un'estensione di Galois, E/F, è contenuta in un'estensione radicale e di Galois se e solo se \rightarrow Gal(E/F) è un gruppo risolubile
- 177 \rightarrow Enuncia il teorema di Galois \rightarrow Siano F un campo di caratteristica $0, f \in F[X]$. Allora l'equazione f(X) = 0 si può risolvere per radicali se e solo se il suo gruppo di Galois è un gruppo risolubile.
- 178 \rightarrow Data una catena di campi $K \subseteq L \subseteq M$ una catena di campi, se M/L e L/K sono radicali, allora \rightarrow anche M/K lo è.
- 179 \rightarrow Se K'/K è radicale e v è un elemento di una delle estensioni che portano a K', allora \rightarrow anche K'(v)/K(v) è radicale
- 180 \rightarrow Se K'/K è radicale, $v_1, ..., v_n$ sono elementi di un'estensione di K', allora \rightarrow anche l'estensione $K'(v_1, ..., v_n)/K(v_1, ..., v_n)$ è radicale
- 181 \rightarrow Siano E/F un'estensione, K, L campi intermedi eKL il campo composto. Se le estensioni K/F e L/F sono radicali, \rightarrow anche KL/F lo è
- 182 Com'è l'estensione $F(\mu_n)/F$ con μ_n insieme delle radici di $X^n 1$? $\to F(\mu_n)/F$ è di Galois e $Gal(F(\mu_n)/F)$ è un gruppo abeliano
- 183 \rightarrow Enuncia il lemma sulle estensioni dei campi di caratteristica nulla che contengono n radici n-esime dell'unità. \rightarrow Siano $n \in \mathbb{Z}^{>0}$, K un campo di caratteristica nulla che contiene n radici n-esime dell'unità, K'/K un'estensione finita. Supposto che K' = K(v) con $v \in K' \setminus K$ e che $v^n \in K$, allora:
 - 1. K'/K è di Galois
 - 2. Gal(K'/K) è ciclico
- 184→ Come si comporta la risolubilità rispetto alle operazioni sui gruppi?→ I sottogruppi di gruppi risolubili sono risolubili e le immagini di gruppi risolubili mediante morfismi di gruppi sono risolubili
- 185 \rightarrow Enuncia il lemma sui generatori di $S_n \rightarrow$ Le permutazioni (12) e (12...n) generano S_n . Inoltre se p è primo, un p-ciclo qualsiasi ed una trasposizione qualsiasi generano S_p
- 186 \rightarrow Enuncia il lemma sui sottogruppi transitivi di S_p con p primo \rightarrow Preso un sottogruppo transitivo $G \leq S_p$, cioè che agisce transitivamente su $\{1, ..., p\}$, G contiene un p-ciclo
- 187 \rightarrow Enuncia il teorema della condizione sufficiente per la non solubilità per radicali \rightarrow preso $f \in \mathbb{Q}[X]$ un polinomio irriducibile di grado $p \geq 5$, p primo. Se f ha esattamente p-2 radici reali allora $Gal(f) = S_p$ ed f non è risolubile per radicali

- 188 Enuncia il teorema sulle estensioni di campi finiti Sia p un primo e siano n,m naturali. Allora
 - 1. Se E/F è un'estensione con $|F| = p^n$ e $|E| = p^m$, allora n|m
 - 2. Se n|m, allora esiste un'estensione $\mathbb{F}_{p^m}/\mathbb{F}_{p^n}$, unica a meno di isomorfismo.
- $\bullet~189 {\rightarrow}~ \mathrm{Ogni}$ estensione di campi finiti è \rightarrow di Galois
- 190 \rightarrow Se E/F è un'estensione con $|E|=p^m$ e $|F|=p^n$, p primo, e m=nr, allora $\mathrm{Gal}(E/F)\rightarrow$ è un gruppo ciclico di ordine r generato da ϕ^n dove ϕ è il morfismo di Frobenius