ラス

FSR - Klousurensammlung

Prof. Dr.-Ing. J. Vollmer

Hochschule für

Angewandte Wissenschaften Hamburg

Department für Informations- und Elektrotechnik

Name: notzek

Vorname: Alexander

Matr.-Nr.: 1897403

Klausur: Grundlagen der Nachrichtentechnik (E4)

vom 27. Januar 2010

Lösungen ohne Herleitungen und die korrekte Angabe der Einheiten erhalten nur eine verringerte Punktzahl. Reine Ja/Nein Antworten erhalten Null Punkte.

	Punkte in Unteraufgaben	Erreichte Punkte	Maximal (+ ZP)
Aufgabe 1	3+8+3+3(+4)	J+8+3+3(+1)	17(+4)
Aufgabe 2	6+4+4(+4)	6+1+4(+2)	14(+4)
Aufgabe 3	6+3+9+3(+45)	6+3+9+3 (+4)	21(+5)
Aufgabe 4	5+15(+2+4)	5+12(+1+4)	20(+6)
Aufgabe 5	2+6+6+4(+5)	2+5+6+2(+3)	18(+5)
Bewertung:	Summe:	96	90(+23)

Kleine Formelsammlung:

Schwach gedämp	fte Leitung, Länge I	Leitung, allgemeine Gleichungen	
$\gamma = \frac{R'}{2\sqrt{L'/C'}} + j\omega\sqrt{L'}$		$Z_{w} = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} \qquad \begin{array}{c} \gamma = 0 \\ = 0 \end{array}$	$\sqrt{(R'+j\omega L')(G'+j\omega C')}$ $x+j\beta$
$\beta = \frac{\Delta \phi}{1} = \frac{2\pi}{\lambda} = \omega \sqrt{L'C}$	$k = v_{ph}/c_0$	Lösung DGL: $U(z) = U_{h0} \cdot e^{-\gamma z} + U_{r0} \cdot e^{\gamma z}$	
$1 \lambda_{L}$	$c_0 \approx 3 \cdot 10^8 \text{ m/s}$	Fourier-Transformation	
$Z_2 + Z_w \cdot \tanh(\gamma l)$ $\sqrt{r} = R'$		$x(t)e^{j2\pi f_0t} \leftrightarrow X(f-f_0)$	
$Z_{\rm E} = Z_{\rm W} \frac{1}{Z_2 \cdot \tanh(\gamma l) + 1}$	$ Z_{w} = \sqrt{\frac{L'}{C'}} \cdot e^{-j\frac{R'}{\omega L^{2}}} $	$x(t-t_0) \leftrightarrow X(f)e^{-j2\pi ft_0}$	$\delta(t-t_o) \leftrightarrow e^{-j2\pi f t_o}$
Rauschen und Rauschzahl		Informationstheorie, diskrete Nachrichten- quellen mit N verschiedenen Zeichen	
$F = \frac{SNR_{Eingang}}{SNR_{Ausgang}}$	Rauschmaß NF = 10 log ₁₀ (F) dB	Informationsgehal I _x = -ld(p Entropie, mittlerer li	o _x) [Bit] nformationsgehalt
Verfügbare Rausch	leistung (thermisch)	$H = -\sum_{n=1}^{N} p_n \cdot Id(p_n)$	[Bit pro Zeichen]
$P_N = 1$	$c \cdot B \cdot T$	Mittlere Anzahl von Bits zur Codierung	
Boltzmannkonstante k: B: Bandbreite in Hertz, T	= 1,38 10 ⁻²³ Watt s / K : Temperatur in Kelvin	$\overline{N} = \sum_{n=1}^{N} p_n \cdot \text{Codelänge}(n)$ [Bit pro Zeichen]	
$\cos(x)\cdot\cos(y) = [\cos$	rie und Euler $(x+y)+\cos(x-y)]/2$	Maximale Entropie $H_{max} = Id(N)$	Redundanz R = H _{max} H
$\cos(x) = (\epsilon$	$e^{jx} + e^{-jx})/2$	[Bit pro Zeichen]	[Bit pro Zeichen]

\$3 / WS	Semester	Fech	Dozent
FSR	- Klausur	ensamm	lune

Aufgabe 1 Huffman Codierung (17+4 Punkte)

Von einer Nachrichtenquelle ist der Zeichensatz und die Zeichenwahrscheinlichkeiten pi bekannt.

Zeichen	В	D	Е	R	Т
$\mathbf{p_i}$	0,20	0,10	0,45	0,15	0,10

Geben Sie im Folgenden immer die Einheiten mit an.

- (a) Berechnen Sie den mittleren Informationsgehalt H des Zeichensatzes. (3 Punkte)
- Bestimmen Sie einen Satz von Huffman Codes für den Zeichensatz. Zeichnen Sie einen Codebaum und geben Sie für alle Zeichen den Code explizit an. (8 Punkte)
- Kodieren Sie das Wort "ERDBEERBEET" mit ihrem Code. Geben Sie die resultierende Bitfolge an. (3 Punkte)
- d) Decodieren Sie die Bitfolge "01101001110110101" mit ihrem Code. Achtung: Je nach Code können am Ende noch Bits übrig sein. Ignorieren Sie diese Restbits. (3 Punkte)
- egree 2Example: Betrachten Sie folgenden Code für den Zeichensatz $\{A, B, C, D\}$: $\{A \rightarrow 00, B \rightarrow 01, C \rightarrow 10, D \rightarrow 110\}$ (Schreibweise $x \rightarrow y$ bedeutet: y ist der Code für Symbol x). Kann der Code ein Huffmancode sein oder nicht? Begründen Sie ihre Antwort. (4 Punkte)

Aufgabe 2 Übertragungssystem (14+4 Punkte)

Ein Tiefpass-Signal $u_{_G}(t)$ von 1 MHz Bandbreite wird über das obige System übertragen. Die Ein- und Ausgangsimpedanzen der Teilsysteme sind jeweils 75Ω . Die Temperatur des gesamten Systems beträgt $T=290\, Kelvin$. Die effektive Signalspannung von $u_{_A}(t)$ beträgt $1\mu V$ und $u_{_G}(t)$ ist, bis auf das thermische Rauschen, fehlerfrei. Das Tiefpassfilter wird, bis auf die Dämpfung im Durchlassbereich von 1 dB und der Grenzfrequenz $f_{_g}=1 MHz$, als ideal betrachtet.

- -b) Bestimmen Sie die Eingangsleistung des Verstärkers. (4 Punkte)
- o) Wie groß ist das SNR des Signals $u_{A}\left(t\right)$ in dB? (4 Punkte)
- d) Zusatzaufgabe: Welchen Grund kann es für das Filter geben, da doch u_G(t) schon ein entsprechendes Tiefpass-Signal ist? Denken Sie dabei an reale Teilsysteme. (4 Punkte) Diese Aufgabe ist unabhängig von den vorherigen Unterpunkten lösbar.

\$5 / WS	Semester	Fach	Jozeni
FSR	Klausur	ensomir	lung

Aufgabe 3: Leitung (21+5 Punkte)

An eine schwach gedämpften Leitung ($R'\ll\omega L'$) der Länge 1=30 Meter wurde ein Sinussignal der Frequenz f=1MHz angelegt. Für diese Frequenz ist der Abschlussimpedanz Z_2 gleich dem Wellenwiderstand Z_w . Die Messung ergibt für die Spitzenwerte der Spannungen $\hat{U}_1=1$ V und $\hat{U}_2=0.96$ V. Die Phasenverschiebung zwischen $u_1(t)$ und $u_2(t)$ beträgt 60 Grad. Der Betrag des Wellenwiderstandes ist $|Z_w|=50\,\Omega$.

Geben Sie immer die Einheiten der Ergebnisse an.

- a) Berechnen Sie den Dämpfungsbelag α' und den Phasenbelag ist β . Achten Sie auf die Einheiten. (6 Punkte)
- b) Bestimmen Sie die Ausbreitungsgeschwindigkeit v_{ph} . (3 Punkte)
- $^{\circ}$ C) Bestimmen Sie die Leitungsbeläge R $^{\prime}$, L $^{\prime}$ und C $^{\prime}$. Vernachlässigen Sie dabei die Phase von Z_{w} . (9 Punkte)
- d) Berechnen Sie den Phasenwinkel φ des Wellenwiderstandes (3 Punkte)

Zusatzaufgabe, allgemeine Frage zu schwach gedämpften Leitungen:

e) Erklären Sie, wie man aus dem Amplituden- und/oder Phasengang einer schwach gedämpften Leitung die Verzögerungszeit bestimmen kann. Eine Skizze könnte hilfreich sein. (*Punkte)

Aufgabe 4 Modulation (20+6 Punkte)

Betrachten Sie das Übertragungssystem. Das zu übertragene Tiefpasssignal a(t) hat die Bandbreite $f_A \ll f_T$, die Trägerfrequenz ist $f_T = \omega_T/(2\pi) = 2\,\mathrm{GHz}$ und $K = 10^{-4}$.

Der Mischer des Senders hat leider einen Fehler. Ideal wäre $s(t) = a(t) \cdot x_1 \cdot \cos(\omega_T t)$, real gilt $s(t) = a(t) \cdot [x_1 \cdot \cos(\omega_T t) + x_3 \cdot \cos(3 \cdot \omega_T t)]$. Die Konstanten sind $x_1 = 1$ und $x_3 = 0.4$. Der Mischer des Empfängers ist fehlerfrei, d.h. es gilt $u(t) = r(t) \cdot x_1 \cdot \cos(\omega_T t)$.

Die Fouriertransformierten (Spektren) der Zeitsignale werden immer mit den zugehörigen Großbuchstaben bezeichnet. Zum Beispiel: $A(f) = F\{a(t)\}$.

Zur Vereinfachung darf im folgenden das Rauschen vernachlässigt werden. Beschreiben Sie die zu skizzierenden Spektren immer in Abhängigkeit des Spektrums |A(f)|.

Alle Achsen und Signale vollständig zu beschriften.

- a) Skizzen Sie |S(f)|, beschriften Sie alle Teilspektren. (5 Punkte)
- b) Skizzen Sie |R(f)|, |U(f)| und |V(f)|, beschriften Sie alle Teilspektren. (15 Punkte)

Zusatzaufgaben:

- c) Welche Auswirkungen hat der Mischerfehler auf andere Nutzer des Funkkanals? (2 Punkte)
- Mennen Sie eine zusätzliches System, mit dem nach dem Mischer und vor dem Senden der Fehler behoben werden kann. Spezifizieren Sie das System. (4 Punkte)

Aufgabe 5 Transversalfilter als Entzerrer (18+5 Punkte)

83 / WS	Semester	Fach	Lanzent
¥66627674/6733111140		//////////////////////////////////////	dung
85	R - Klausui	rensomii	nung

Ein Datensignal $u_x(t)$ soll über einen Kanal übertragen werden. Dadurch tritt Intersymbolinterferenz (ISI) auf. Diese soll durch einen Entzerrer (Transversalfilter) verringert werden.

$$u_x(t)$$
 Kanal $u_y(t)$ Entzerrer $u_z(t)$

Das Datensignal $u_x(t)$ ist eine Summe aus zeitlich verschobenen Rechteckpulsen p(t), die mit den Datensymbolen d_k gewichteten sind:

$$u_{_{X}}\left(t\right) = \sum_{k} d_{_{k}} \cdot p\big(t - k\,T\big) \text{ mit } p\big(t\big) = \hat{p} \cdot rect\big(\big[t - 0.5\,T\big]\big/T\big), \text{ wobei } T = 1\mu s \text{ und } \hat{p} = 10\,V \text{ ist.}$$

Die Systemantwort des Kanals auf den Spannungspuls p(t) ist $h_n(t)$:

Das Transversalfilter wird beschrieben durch $u_z(t) = \sum_{m=0}^{M} c_m \cdot u_y(t - mT)$.

Die Abtastzeitpunkte nach dem Transversalfilter sind durch $t=t_{_{m}}=m\cdot T+t_{_{0}}$ definiert.

- a) Wählen Sie den Zeitnullpunkt t_0 so, dass im Augendiagramm von $\mathfrak{u}_z(t)$ eine maximale Augenhöhe auftritt. (2 Punkte)
- b) Bestimmen Sie $h_p(t_m)$ für m = 1, 2, 3. (6 Punkte)
- c) Bestimmen Sie die Koeffizienten c_k für k = 1, 2. Es gilt $c_0 = 1$. (6 Punkte)

$$\text{Verwenden Sie: } c_k = - \Bigg[\sum_{i=0}^{k-1} c_i \cdot h_p \Big(t_{k-i+1} \Big) \Bigg] \bigg/ h_p \Big(t_1 \Big)$$

- d) Erklären Sie, wie man aus dem Signal $u_z(t)$ ein Augendiagramm erzeugt. Es geht um das Prinzip und **nicht** darum, wie man ein Oszilloskop einstellt. (4 Punkte)
- e) Zusatzaufgabe: Schätzen Sie die Größenordnung der Amplitude der Intersymbolinterferenz ab, wenn die Koeffizienten c₀ bis c₃ optimal eingestellt sind. (5 Punkte)
 (Hinweis: Dieser Punkt kann unabhängig von der restlichen Aufgabe gelöst werden.)

Devent \$5 WS Samester Fact FSR - Klausurensammlung

Klausur: (61) WS09/10 Datum: 27,01.10

Name: 10tek vorname: Alexander Matr.-Nr. 1897403

313

818

3/3

Aber nicht so kurt wie walslich = + loore Stelle am Baum

313

, , , , , ,

Aufgabe: 3

160

Aufgabe: U

515

(1)

Prof. Dr.-Ing. J. Vollmer

Hochschule für

Angewandte Wissenschaften Hamburg

Department für Informations- und Elektrotechnik

SS / WS Semester Fach Dozent 65 E 4 GN VVM FSR - Klausurensammlung 16 Name: Morie

Matr.-Nr.:_____

Anzahl der abgegebenen Blätter:_____

Klausur: Grundlagen der Nachrichtentechnik (E4)

vom 13. Juli 2009

Lösungen ohne Herleitungen und die korrekte Angabe der Einheiten erhalten nur eine verringerte Punktzahl. Reine Ja/Nein Antworten erhalten Null Punkte.

	Punkte in Unteraufgaben	Erreichte Punkte	Maximal (+ ZP)
Aufgabe 1	2+4+6+3+3 (+4)	2+4+6+2+3(+1)	18 (+4)
Aufgabe 2	6+4+4 (+4)	3+4+0(+4)	14 (+4)
Aufgabe 3	6+6+4+8 (+6)	4+6+4+6(+2)	24 (+4)
Aufgabe 4	12+6 (+6)	9+5(+5)	18 (+6)
Aufgabe 5	4+2+6+4 (+8)	4+2+6+4 (+3+2)	16 (+8)
Bewertung:	Summe:	834	90 (+26)

Kleine Formelsammlung:

100	Kleine Formeisammung.			
2	hux. Verlustfreie Leitung, Länge I		Trigonometrie und Euler	
God	$\alpha' = \frac{R'}{2\sqrt{L'/C'}}$	$v_{ph} = \frac{1}{\sqrt{L'C'}}$	$\cos(x) \cdot \cos(y) = [\cos(x) - \cos(x)]$	
	$c_0 \approx 3 \cdot 10^8 \text{ m/s}$	$k = v_{ph}/c_0$	Fourier-Tran	sformation
4	$Z_{E} = Z_{W} \frac{Z_{2} + Z_{W} \cdot \tanh(\gamma l)}{Z_{2} \cdot \tanh(\gamma l) + Z_{W}}$	$ Z_w = \sqrt{\frac{L'}{C'}}$	$x(t)e^{j2\pi f_0t} \leftrightarrow X(f-f_0)$	$e^{j2\pi f_0t} \leftrightarrow \delta(f-f_0)$

Rauschen	und	Rauschzahl
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Rauschzahl $F = \frac{SNR_{Eingang}}{SNR_{Ausgang}}$

Verfügbare Rauschleistung (thermisch)

$$P = k \cdot B \cdot T$$

Boltzmannkonstante k: = 1,38 10⁻²³ Watt·s / K B: Bandbreite in Hertz, T: Temperatur in Kelvin

Gesamtrauschzahl bei Reihenschaltung

 $F_{Gesamt} = F_1 + \frac{F_2 - 1}{v_1} + \frac{F_3 - 1}{v_1 \cdot v_2} + \dots$

Informationstheorie, diskrete Nachrichtenquellen mit N verschiedenen Zeichen

Informationsgehalt eines Zeichen x

 $I_x = -Id(p_x)$ Bit pro Zeichen

Entropie, mittlerer Informationsgehalt

 $H = -\sum_{n=1}^{N} p_n \cdot Id(p_n)$ Bit pro Zeichen

Mittlere Anzahl von Bits zur Codierung

 $\overline{N} = \sum_{n=1}^{N} p_n \cdot \text{Codelänge(n)}$ Bit pro Zeichen

Maximale Entropie $H_{max} = Id(N)$ Bit pro Zeichen

Redundanz $R = H_{max} - H$ Bit pro Zeichen