Principles of Communications

Weiyao Lin Shanghai Jiao Tong University

Chapter 5: Signal Space Representation

Textbook: Chapter 8.1

Signal Space Concepts

- The key to analyzing and understanding the performance of digital transmission is the realization that
 - signals used in communications can be expressed and visualized graphically

 Thus, we need to understand signal space concepts as applied to digital communications

Traditional Bandpass Signal Representations

- Baseband signals are the message signal generated at the source
- Passband signals (also called bandpass signals) refer to the signals after modulating with a carrier. The bandwidth of these signals are usually small compared to the carrier frequency f_c
- Passband signals can be represented in three forms
 - ✓ Magnitude and Phase representation
 - ✓ Quadrature representation
 - Complex Envelop representation

Magnitude and Phase Representation

$$s(t) = a(t) \cos \left[2\pi f_c t + \theta(t)\right]$$

Where a(t) is the magnitude of s(t) and $\theta(t)$ is the phase of s(t)

Quadrature or I/Q Representation

$$s(t) = x(t)\cos(2\pi f_{\mathcal{O}}t) - y(t)\sin(2\pi f_{\mathcal{O}}t)$$

where x(t) and y(t) are real-valued baseband signals called the in-phase and quadrature components of s(t).

Signal space is a more convenient way than I/Q representation to study modulation scheme

Vectors and Space

- Consider an n-dimensional space with unity basis vectors {e₁, e₂, ..., e_n} (think of the x-y-z axis in a coordinate system)
- Any vector a in the space can be written as

$$\mathbf{a} = \sum_{i=1}^{n} a_i \mathbf{e}_i \quad \mathbf{a} = (a_1, a_2, \dots, a_n)$$

 $n \triangleq$ Dimension = Minimum number of vectors that is necessary and sufficient for representation of any vector in space

Definitions:

- Inner Product $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$
- a and b are Orthogonal if $a \cdot b = 0$

$$\|\mathbf{a}\| = \sqrt{\langle \mathbf{a}, \mathbf{a} \rangle} = \sqrt{\sum_{i=1}^{n} a_i^2} = \text{Norm of } \mathbf{a}$$

 A set of vectors are orthonormal if they are mutually orthogonal and all have unity norm

Basis Vectors

- The set of basis vectors {e₁, e₂, ..., e_n} of a space are chosen such that:
 - Should be complete or span the vector space: any vector a can be expressed as a linear combination of these vectors.
 - Each basis vector should be orthogonal to all others

$$\mathbf{e}_i \cdot \mathbf{e}_j = 0, \ \forall i \neq j$$

- Each basis vector should be normalized: $||e_i|| = 1$, $\forall i$
- A set of basis vectors satisfying these properties is also said to be a complete orthonormal basis
- In an n-dim space, we can have at most n basis vectors

Signal Space

- Basic Idea: If a signal can be represented by n-tuple, then it can be treated in much the same way as a n-dim vector.
- Let $\phi_1(t)$, $\phi_2(t)$,...., $\phi_n(t)$ be n signals
- Consider a signal x(t) and suppose that

$$x(t) = \sum_{i=1}^{n} \phi_i(t)$$

If every signal can be written as above ⇒
 {φ₁(t),...,φ_n(t)} ~ basis functions and we have a
 n-dim signal space

Orthonormal Basis

• Signal set $\{\phi_k(t)\}^n$ is an **orthogonal** set if

$$\int_{-\infty}^{\infty} \phi_j(t) \phi_k(t) dt = \begin{cases} 0 & j \neq k \\ c_j & j = k \end{cases}$$

- If $cj\equiv 1 \ \forall_j \Rightarrow \ \{\phi_k(t)\}\$ is an **orthonormal** set.
- In this case,

$$x_k = \int_{-\infty}^{\infty} x(t)\phi_k(t)dt$$

$$x(t) = \sum_{i=1}^{n} x_i \phi_i(t)$$

$$\mathbf{x} = (x_1, x_2, ..., x_n)$$

Key Property

Given the set of the orthonormal basis

$$\{\phi_1(t),\ldots,\phi_n(t)\}$$

Let x(t) and y(t) be represented as

$$x(t) = \sum_{i=1}^{n} x_i \phi_i(t)$$
, $y(t) = \sum_{i=1}^{n} y_i \phi_i(t)$

with
$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$
, $\mathbf{y} = (y_1, y_2, \dots, y_n)$

➤ Then the inner product of x and y is

$$\mathbf{x} \cdot \mathbf{y} = \int_{-\infty}^{\infty} x(t)y(t)dt$$

Proof

$$\int_{-\infty}^{\infty} x(t)y(t)dt = \int_{-\infty}^{\infty} \left[\sum_{i=1}^{n} x_{i}\phi_{i}(t) \right] \left[\sum_{j=1}^{n} y_{j}\phi_{j}(t) \right] dt$$

$$= \sum_{k=1}^{n} x_{k}y_{k} \triangleq \mathbf{x} \cdot \mathbf{y}$$
Since
$$\int_{-\infty}^{\infty} \phi_{i}(t)\phi_{j}(t)dt = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

$$\triangleright E_x = \text{Energy of } \mathbf{x(t)} = \int_{-\infty}^{\infty} x^2(t) dt$$

$$E_x = \mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|^2$$

Basis Functions for a Signal Set

Consider a set of M signals (M-ary symbol) $\{s_i(t), i=1,2,...,M\}$ with finite energy. That is

$$\int_{-\infty}^{\infty} s_i^2(t)dt < \infty$$

 Then, we can express each of these waveforms as weighted linear combination of orthonormal signals

$$s_i(t) = \sum_{j=1}^{N} s_{ij}\phi_j(t)$$
 for $i = 1, ..., M$

where $N \le M$ is the dimension of the signal space and $\{\phi_j(t)\}_1^N$ are called the orthonormal basis functions

Example 1

Consider the following signal set:

Example 1 (Cont'd)

By inspection, the signals can be expressed in terms of the following two basis functions:

$$s_1(t) = 1 \cdot \phi_1(t) + 1 \cdot \phi_2(t)$$
 $s_3(t) = -1 \cdot \phi_1(t) + 1 \cdot \phi_2(t)$
 $s_2(t) = 1 \cdot \phi_1(t) - 1 \cdot \phi_2(t)$ $s_4(t) = -1 \cdot \phi_1(t) - 1 \cdot \phi_2(t)$

- Not that the basis is orthogonal $\int_{-\infty}^{\infty} \phi_1(t)\phi_2(t)dt = 0$
- Also note that each these functions have unit energy

$$\int_{-\infty}^{\infty} |\phi_1(t)|^2 dt = \int_{-\infty}^{\infty} |\phi_2(t)|^2 dt = 1$$

We say that they form an orthogonormal basis

Example 1 (Cont'd)

Constellation diagram:

- A representation of a digital modulation scheme in the signal space
- Axes are labeled with φ₁(t)
 and φ₂(t)
- Possible signals are plotted as points, called constellation points

Example 2

Suppose our signal set can be represented in the following form

$$s(t) = \pm \sqrt{\frac{2}{T}} \cos(2\pi f_c t) \pm \sqrt{\frac{2}{T}} \sin(2\pi f_c t)$$

with $t \in [0,T)$ and $f_cT >> 1$

We can choose the basis functions as follows

$$\phi_1(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_c t) \qquad \phi_2(t) = \sqrt{\frac{2}{T}}\sin(2\pi f_c t)$$
$$t \in [0, T)$$

Example 2 (Cont'd)

Since

$$\int_{0}^{T} \phi_{1}(t)\phi_{2}(t)dt = \int_{0}^{T} \sqrt{\frac{2}{T}} \cos(2\pi f_{c}t) \cdot \sqrt{\frac{2}{T}} \sin(2\pi f_{c}t)dt$$

$$= \frac{2}{T} \int_{0}^{T} \frac{1}{2} [\sin(0) + \sin(4\pi f_{c}t)]dt$$

$$= \frac{-1}{4\pi f_{c}T} [\cos(4\pi f_{c}t)]_{0}^{T} \approx 0, \text{ for } f_{c}T >> 1$$

and

$$\int_0^T |\phi_1(t)|^2 dt = \int_0^T |\phi_2(t)|^2 dt = \frac{2}{T} \int_0^T \frac{1}{2} [1 + \cos(4\pi f_c t)] dt \approx 1$$

 The basis functions are thus orthogonal and they are also normalized

Example 2 (Cont'd)

- These basis functions are quite common and can describe various modulation schemes
- Example 2 is QPSK modulation. Its constellation diagram is identical to Example 1

Notes on Signal Space

- Two entirely different signal sets can have the same geometric representation.
- The underlying geometry will determine the performance and the receiver structure for a signal set
- In previous examples, we were able to guess the correct basic functions
- In general, is there any method which allows us to find a complete orthonormal basis for an arbitrary singal set?
 - Gram-Schmidt Orthogonalization (GSO) Procedure

Gram Schmidt Orthogonalization (GSO) Procedure

Suppose we are given a signal set

$$\{s_1(t),\ldots,s_M(t)\}$$

 Find the orthogonal basis functions for this signal set $\{\phi_1(t),\ldots,\phi_K(t)\}$

$$\{\phi_1(t),\ldots,\phi_K(t)\}$$

where
$$K \leq M$$

Step 1: Construct the First Basis Function

Compute the energy in signal 1:

$$E_1 = \int_{-\infty}^{\infty} s_1^2(t)dt$$

The first basis function is just a normalized version of s₁(t)

$$\phi_1(t) = \frac{1}{\sqrt{E_1}} s_1(t)$$

$$s_1(t) = s_{11}\phi_1(t) = \sqrt{E_1}\phi_1(t)$$
$$s_{11} = \int_{-\infty}^{\infty} s_1(t)\phi_1(t)dt = \sqrt{E_1}$$

Step 2: Construct the Second Basis Function

Compute correlation between signal 2 and basic function 1

$$s_{21} = \int_{-\infty}^{\infty} s_2(t)\phi_1(t)dt$$

Subtract off the correlation portion

$$g_2(t) = s_2(t) - s_{21}\phi_1(t)$$
 $g_2(t)$ is orthogonal to $\phi_1(t)$

Compute the energy in the remaining portion

$$E_{g_2} = \int_{-\infty}^{\infty} \left[g_2(t) \right]^2 dt$$

Normalize the remaining portion

$$\phi_2(t) = \frac{1}{\sqrt{E_{g_2}}} g_2(t)$$

$$s_{22} = \int_{-\infty}^{\infty} s_2(t)\phi_2(t)dt = \sqrt{E_{g_2}}$$

Step 3: Construct Successive Basis Functions

• For signal $s_k(t)$, compute $s_{ki} = \int_{-\infty}^{\infty} s_k(t) \phi_i(t) dt$

• Define
$$g_k(t) = s_k(t) - \sum_{i=1}^{k-1} s_{ki} \phi_i(t)$$

- Energy of $g_k(t)$: $E_{g_k} = \int_{-\infty}^{\infty} [g_k(t)]^2 dt$

•
$$k$$
-th basis function: $\phi_k(t) = \frac{1}{\sqrt{Eg_k}}g_k(t)$

In general

$$s_{kk} = \int_{-\infty}^{\infty} s_k(t)\phi_k(t)dt = \sqrt{E_{g_k}}$$

Summary of GSO Procedure

- 1st basis function is normalized version of the first signal
- Successive basis functions are found by removing portions of signals that are correlated to previous basis functions and normalizing the result
- This procedure is repeated until all basis functions are found
- If $g_k(t) = 0$, no new basis functions is added
- The order in which signals are considered is arbitrary

Example: GSO

 Use the Gram-Schmidt procedure to find a set orthonormal basis functions corresponding to the signals show below

- 2) Express x_1 , x_2 , and x_3 in terms of the orthonormal basis functions found in part 1)
- 3) Draw the constellation diagram for this signal set

Solution: 1)

Step 1:
$$E_1 = \int_{-\infty}^{\infty} x_1^2(t) dt = 2$$
 $\phi_1(t) = \frac{1}{\sqrt{2}} x_1(t)$ $x_{11} = \sqrt{2}$

$$x_{21} = \int_{-\infty}^{\infty} x_2(t)\phi_1(t)dt = 0$$

$$g_2(t) = x_2(t)$$
 and $E_{g_2} = 1$

$$\phi_2(t) = x_2(t)$$

$$x_{22} = 1$$

Solution: 1) (Cont'd)

• Step 3:
$$x_{31} = \int_{-\infty}^{\infty} x_3(t)\phi_1(t)dt = \sqrt{2}$$

 $x_{32} = \int_{-\infty}^{\infty} x_3(t)\phi_2(t)dt = 1$
 $g_3(t) = x_3(t) - x_{31}f_1(t) - x_{32}f_2(t) = 0$

=> No more new basis functions
Procedure completes

$$\begin{cases}
\phi_1(t) = \frac{1}{\sqrt{2}}x_1(t) \\
\phi_2(t) = x_2(t)
\end{cases}$$

Solution: 2) and 3)

• Express x_1 , x_2 , x_3 in basis functions

$$x_1(t) = \sqrt{2}\phi_1(t)$$
, $x_2(t) = \phi_2(t)$

$$x_3(t) = \sqrt{2}\phi_1(t) + \phi_2(t)$$

Constellation diagram

Exercise

Given a set of signals (8PSK modulation)

$$s_i(t) = A \cos \left(2\pi f_c t + \frac{\pi}{4}i\right)$$
$$i = 0, 1, \dots, 7 \text{ and } 0 \le t < T$$

- Find the orthonormal basis functions using Gram Schmidt procedure
- What is the dimension of the resulting signal space?
- Draw the constellation diagram of this signal set

Notes on GSO Procedure

- A signal set may have many different sets of basis functions
- A change of basis functions is essentially a rotation of the signal points around the origin.
- The order in which signal are used in the GSO procedure affect the resulting basis functions
- The choice of basis functions does not affect the performance of the modulation scheme