Vectori 6

Spații vectoriale 6.1

- P 1. Verificați care dintre următoarele sisteme de vectori din spațiul standard \mathbb{R}^4 sunt liniar dependente. În caz de dependență, determinați o relație de dependență liniară între vectorii sistemului.
- a) $S_a = {\overline{v}_1 = (1, 0, 2, -1), \overline{v}_2 = (0, 1, 1, 2), \overline{v}_3 = (2, -1, 3, -4)}.$
- b) $S_b = \{ \overline{v}_1 = (1, 1, 1, 1), \overline{v}_2 = (1, 1, -1, -1), \overline{v}_3 = (1, -1, 1, -1), \overline{v}_4 = (1, -1, -1, 1) \}.$
- c) $S_c = {\overline{v}_1 = (0, 1, 2, 3), \overline{v}_2 = (1, 3, 5, 7), \overline{v}_3 = (2, -1, -4, -7), \overline{v}_4 = (-3, 1, 5, 9)}.$
- P 2. Verificați că sistemul de vectori B este o bază în spațiul liniar considerat și determinați coordonatele vectorului v în raport cu baza B:
- a) $B_a = (v_1 = (1, 1, 1, 1), v_2 = (1, 1, -1, -1), v_3 = (1, -1, 1, -1), v_4 = (1, -1, -1, 1)) \subseteq \mathbb{R}^4, v = (1, 2, 1, 1).$
- b) $B_b = (v_1 = (1, 1, 0, 1), v_2 = (2, 1, 3, 1), v_3 = (1, 1, 0, 0), v_4 = (0, 1, -1, -1)) \subseteq \mathbb{R}^4, v = (0, 0, 0, 1).$
- c) $B_c = (v_1 = (1, 2, -1, -2), v_2 = (2, 3, 0, -1), v_3 = (1, 2, 1, 4), v_4 = (1, 3, -1, 0)) \subseteq \mathbb{R}^4, v = (7, 14, -1, 2).$ d) $B_d = (v_1 = (1, 1, 1), v_2 = (1, 1, 2), v_3 = (1, 2, 3)) \subseteq \mathbb{R}^3, v = (6, 2, -7).$
- e) $B_e = (v_1 = (2, 1, -3), v_2 = (3, 2, 5), v_3 = (1, -1, 1)) \subseteq \mathbb{R}^3, v = (6, 9, 14).$

Spații euclidiene. Produs scalar. Produs vectorial. Produs mixt

- **P** 3. Fie E un spațiu liniar euclidian, iar $u, v, w \in E$.
- a) Arătați că următoarele afirmații sunt echivalente:
- i) $u \perp v$.
- ii) ||u + v|| = ||u v||.
- iii) $||u + v||^2 = ||u||^2 + ||v||^2$.
- b) Arătați că dacă $u \perp (v w)$ și $v \perp (w u)$, atunci $w \perp (u v)$.
- c) Arătați că ||u|| = ||v|| dacă și numai dacă $(u+v) \perp (u-v)$.
- d) Stabiliţi identităţile:
- $$\begin{split} &\text{i)} \ \|u+v\|^2 + \|u-v\|^2 = 2(\|u\|^2 + \|v\|^2). \\ &\text{ii)} \ u \cdot v = \frac{1}{2}(\|u\|^2 + \|v\|^2 \|u-v\|^2). \end{split}$$
- e) Arătați că dacă $S = \{u_1, \ldots, u_k\}$ este un sistem ortogonal de vectori, atunci

$$\left\| \sum_{i=1}^{k} u_i \right\|^2 = \sum_{i=1}^{k} \|u_i\|^2.$$

P 4. Fie \mathbb{R}^2 spaţiul liniar euclidian 2-dimensional standard. Determinaţi unghiul orientat $\widehat{u_1,u_2}$ dintre vectorii $u_1=0$ $(1,\sqrt{3})$ și $u_2=(\sqrt{3},1)$.

Toţi vectorii din problemele următoare sunt în spaţiul liniar euclidian 3-dimensional E_3 cu baza canonică $B_c = \{\vec{i}, \vec{j}, \vec{k}\}$.

- **P 5.** Fie \vec{a} și \vec{b} doi vectori, cu $||\vec{a}|| = 3$, $||\vec{b}|| = 4$, și $\widehat{\vec{a}}, \vec{b} = \frac{2\pi}{3}$. Calculați: $\vec{a} \cdot \vec{b}, \vec{a}^2, \vec{b}^2, (\vec{a} + \vec{b})^2, (3\vec{a} 2\vec{b}) \cdot (\vec{a} + 2\vec{b}), (\vec{a} \vec{b})^2$ $(3\vec{a} + 2\vec{b})^2$.
- **P 6.** Fie \vec{a} , \vec{b} , \vec{s} i \vec{c} trei vectori astfel încât $||\vec{a}|| = 3$, $||\vec{b}|| = 5$, $||\vec{c}|| = 8$, $\vec{a} \perp \vec{b}$, $\widehat{\vec{a}}$, $\vec{c} = \widehat{\vec{b}}$, $\vec{c} = \frac{\pi}{2}$. Calculați: $(3\vec{a} 2\vec{b}) \cdot (\vec{b} + 3\vec{c})$, $(\vec{a} + \vec{b} + \vec{c})^2$, $(\vec{a} + 2\vec{b} - 3\vec{c})^2$.
- **P 7.** Fie \vec{a} , \vec{b} , și \vec{c} trei vectori unitari vectors astfel încât $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Calculați $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- **P 8.** Fie \vec{a} , \vec{b} , și \vec{c} trei vectori oarecare. Arătați că vectorul $\vec{p} = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$ este ortogonal pe vectorul \vec{a} .
- **P 9.** Fie \vec{a} și \vec{b} doi vectori, cu $||\vec{a}|| = \sqrt{3}$, $||\vec{b}|| = 1$, iar $\vec{a}, \vec{b} = \frac{\pi}{6}$. Determinați unghiul dintre vectorii $\vec{p} = \vec{a} + \vec{b}$ și $\vec{q} = \vec{a} \vec{b}$.
- **P 10.** Fie $\vec{a} = (4, -2, -4)$ și $\vec{b} = (6, -3, 2)$. Calculați: $\vec{a} \cdot \vec{b}$, $||\vec{a}||$, $||\vec{b}||$, $(2\vec{a} 3\vec{b}) \cdot (\vec{a} + 2\vec{b})$, $||\vec{a} + \vec{b}||$, $||\vec{a} \vec{b}||$.
- **P 11.** Fie $\vec{a} = (3, -6, -1)$, $\vec{b} = (1, 4, -5)$, și $\vec{c} = (3, -4, 12)$. Determinați proiecția $pr_{\vec{c}}(\vec{a} + \vec{b})$.
- P 12. Demonstrați identitatea

$$\|\vec{a} \times \vec{b}\|^2 + (\vec{a} \cdot \vec{b})^2 = \|\vec{a}\|^2 \cdot \|\vec{b}\|^2.$$

Deduceți că $\|\vec{a}\times\vec{b}\| = \|\vec{a}\|\cdot\|\vec{b}\|\cdot \sin\left(\widehat{\vec{a},\vec{b}}\right)$

- **P 13.** Fie \vec{a} și \vec{b} doi vectori, cu $||\vec{a}|| = 6$, $||\vec{b}|| = 5$, și $\widehat{\vec{a}}, \vec{b} = \frac{\pi}{6}$. Calculați $||\vec{a} \times \vec{b}||$.
- **P 14.** Fie \vec{a} și \vec{b} doi vectori ortogonali, cu $\|\vec{a}\| = 3$, $\|\vec{b}\| = 4$. Calculați $\|(\vec{a} + \vec{b}) \times (\vec{a} \vec{b})\|$ și $\|(3\vec{a} \vec{b}) \times (\vec{a} 2\vec{b})\|$.
- **P 15.** Fie \vec{a} şi \vec{b} doi vectori, cu $||\vec{a}|| = 1$, $||\vec{b}|| = 2$, şi \vec{a} , $\vec{b} = \frac{2\pi}{3}$. Calculați $(\vec{a} \times \vec{b})^2$, $((2\vec{a} + \vec{b}) \times (\vec{a} + 2\vec{b}))^2$, $((\vec{a} + 3\vec{b}) \times (3\vec{a} \vec{b}))^2$.
- **P 16.** Fie \vec{a} , \vec{b} , și \vec{c} vectori astfel încât $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Arătați că $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
- **P 17.** Fie $\vec{a} = (3, -1, -2)$ și $\vec{b} = (1, 2, -1)$. Calculați $\vec{a} \times \vec{b}$, $(2\vec{a} + \vec{b}) \times \vec{b}$, $(2\vec{a} \vec{b}) \times (2\vec{a} + \vec{b})$.
- **P 18.** Fie $\vec{a} = (2, -3, 1), \vec{b} = (-3, 1, 2), \text{ si } \vec{c} = (1, 2, 3).$ Calculați $(\vec{a} \times \vec{b}) \times \vec{c}$ și $\vec{a} \times (\vec{b} \times \vec{c})$.
- **P 19.** Demonstrați identitatea $(\vec{a} + \vec{b}) \wedge (\vec{b} + \vec{c}) \wedge (\vec{c} + \vec{a}) = \vec{a} \wedge \vec{b} \wedge \vec{c}$.
- **P 20.** Demonstrați identitatea $\vec{a} \wedge \vec{b} \wedge (\vec{c} + \alpha \vec{a} + \beta \vec{b}) = \vec{a} \wedge \vec{b} \wedge \vec{c}$, pentru orice scalari $\alpha, \beta \in \mathbb{R}$.
- **P 21.** Arătati că dacă trei vectori \vec{a} , \vec{b} , \vec{c} satisfac relatia

$$\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$$
,

atunci vectorii sunt coplanari(=liniar dependenți).

- **P 22.** Calculați $\vec{a} \wedge \vec{b} \wedge \vec{c}$ pentru vectorii $\vec{a} = (1, -1, 3), \vec{b} = (-2, 2, 1), \vec{c} = (3, -2, 5).$
- P 23. Demonstrați identitățile:
- a) $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} (\vec{b} \cdot \vec{c})\vec{a}$.
- b) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$.
- P 24. Demonstrați identitățile:
- a) $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$.
- b) $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c}).$
- c) $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \cdot (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \cdot (\vec{b} \times \vec{c}) = 0.$
- d) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{a} \wedge \vec{b} \wedge \vec{d})\vec{c} (\vec{a} \wedge \vec{b} \wedge \vec{c})\vec{d}$.
- e) $(\vec{a} \times \vec{b}) \wedge (\vec{b} \times \vec{c}) \wedge (\vec{c} \times \vec{a}) = (\vec{a} \wedge \vec{b} \wedge \vec{c})^2$.
- f) $\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d})) = (\vec{b} \cdot \vec{d})(\vec{a} \times \vec{c}) (\vec{b} \cdot \vec{c})(\vec{a} \times \vec{d}) = (\vec{a} \wedge \vec{c} \wedge \vec{d})\vec{b} (\vec{a} \cdot \vec{b})(\vec{c} \times \vec{d}).$
- g) $(\vec{a} \times \vec{b})^2 (\vec{a} \times \vec{c})^2 ((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c}))^2 = \vec{a}^2 (\vec{a} \wedge \vec{b} \wedge \vec{c})^2$.
- h) $((\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})) \wedge ((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})) \wedge ((\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})) = (\vec{a} \wedge \vec{b} \wedge \vec{c})^4$.
- i) $(\vec{a} \cdot \vec{b})(\vec{c} \times \vec{d}) + (\vec{a} \cdot \vec{c})(\vec{d} \times \vec{b}) + (\vec{a} \cdot \vec{d})(\vec{b} \times \vec{c}) = (\vec{b} \wedge \vec{c} \wedge \vec{d})\vec{a}$.
- j) $(\vec{a} \wedge \vec{b} \wedge \vec{c})(\vec{a} \wedge \vec{d} \wedge \vec{e}) = (\vec{a} \wedge \vec{b} \wedge \vec{d})(\vec{a} \wedge \vec{c} \wedge \vec{e}) (\vec{a} \wedge \vec{b} \wedge \vec{e})(\vec{a} \wedge \vec{c} \wedge \vec{d}).$

Spații afine. Raport simplu 6.3

- **P 25.** Fie $A, B \in \mathcal{A}$ două puncte, $\lambda \in \mathbb{R} \setminus \{\pm 1\}$, și $C, D \in AB$ astfel încât $(A, B|C) = \lambda = -(A, B|D)$. Dacă E este mijlocul lui (CD), arătați că $\overline{EA} = \lambda^2 \overline{EB}$.
- **P 26.** Fie $A, B, C \in \mathcal{A}$ trei puncte, şi $M \in BC$, $N \in CA$, $P \in AB$.
- a) Dacă (B, C|M) = (C, A|N) = (A, B|P), atunci
- i) $\overline{AM} + \overline{BN} + \overline{CP} = \overline{0}$.
- ii) $\frac{1}{3}M + \frac{1}{3}N + \frac{1}{3}P = \frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C$. b) Dacă A,B,C sunt afin independente, atunci
- i) $\overline{AM} + \overline{BN} + \overline{CP} = \overline{0} \Longrightarrow (B, C|M) = (C, A|N) = (A, B|P).$
- ii) $\frac{1}{3}M + \frac{1}{3}N + \frac{1}{3}P = \frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C \Longrightarrow (B, C|M) = (C, A|N) = (A, B|P).$
- **P 27.** Fie A_1, A_2, A_3, A_4 patru puncte, $B_i \in A_i A_{i+1}, i = \overline{1,4}$ mijloacele segmentelor $(A_i A_{i+1})$ (cu $A_5 = A_1$), $\lambda \in \mathbb{R}$ un număr real oarecare, și $C \in A_1A_2$, $D \in A_3A_4$ astfel încât $\overline{A_1C} = \lambda \overline{A_1A_2}$ și $\overline{A_3D} = \lambda \overline{A_3A_4}$. Arătați că
- a) $\overline{B_1B_2} = \overline{B_4B_3}$.
- b) $\overline{CD} = (1 \lambda)\overline{A_1A_3} + \lambda \overline{A_2A_4}$.
- **P 28.** Fie A, B, C trei puncte afin independente și $P \in AB, Q \in AC$. Arătați că (A, B|P) = (A, C|Q) dacă și numai dacă vectorii \overline{PQ} și \overline{BC} sunt coliniari(i.e., liniar dependenți).
- **P 29.** Fie $A, B, C \in \mathcal{A}$ puncte afin independente, M mijlocul lui (BC), $N \in AC$ și $P \in AB$ astfel încât (A, B|P) =(A, C|N). Arătați că dreptele AM, BN, și CP sunt concurente.
- ${f P}$ 30. Fie ABCDEF un patrulater complet. Arătați că mijloacele of diagonalele $AC,\ BD,\$ și EF sunt trei puncte coliniare.

6.4 Biraport

P 31. Fie a, b, c, d patru drepte, concurente într-un punct O. Dacă l este o dreaptă care nu trece prin O, și A, B, C, D sunt punctele de intersecție ale lui l cu dreptele a, b, c, d, arătați că

$$(A,B|C,D) = \frac{\sin(\widehat{AOC})}{\sin(\widehat{COB})} : \frac{\sin(\widehat{AOD})}{\sin(\widehat{DOB})} \stackrel{not}{=} \frac{\sin(\widehat{ac})}{\sin(\widehat{cb})} : \frac{\sin(\widehat{ad})}{\sin(\widehat{ab})} \stackrel{not}{=} (a,b|c,d) \,.$$

P 32. (teorema lui Steiner) Fie ΔABC un triunghi oarecare, şi $M, N \in BC$ două puncte astfel încât bisectoarele unghiurilor \widehat{BAC} și \widehat{MAN} coincid. Arătați că

$$\frac{BM \cdot BN}{CM \cdot CN} = \left(\frac{AB}{AC}\right)^2 \, .$$

P 33. Fie A, B, C, D, P, Q șase puncte oarecare pe un cerc \mathcal{C} . Arătați că

$$(PA, PB|PC, PD) = (QA, QB|QC, QD) \stackrel{not}{=} (A, B|C, D)$$

(biraportul punctelor conciclice A, B, C, D).

P 34. Fie ABCD un patrulater, şi $E \in AB \cap CD$ şi $F \in AD \cap BC(ABCDEF)$ se numeşte un patrulater complet, cu diagonalele AC, BD, şi EF). Dacă $K \in AC \cap BD$, $L \in AC \cap EF$, şi $M \in BD \cap EF$, arătaţi că

$$(A, C|K, L) = (B, D|K, M) = (E, F|L, M) = -1.$$

P 35. Fie A, B, C, D, B', C', D' puncte astfel încât A, B, C, D sunt coliniare, A, B', C', D' sunt coliniare, şi (A, B|C, D) = (A, B'|C', D'). Arătaţi că dreptele BB', CC', şi DD' sunt concurente(sau paralele).

P 36. Fie a, b, c, d, b', c', d' drepte astfel încât a, b, c, d sunt concurente, a, b', c', d' sunt concurente, şi (a, b|c, d) = (a, b'|c', d'). Arătați că punctele de intersecție $B \in b \cap b', C \in c \cap c'$, şi $D \in d \cap d'$ sunt coliniare.

P 37. (teorema lui Pappus) Fie d_1, d_2 două drepte, $A_1, B_1, C_1 \in d_1$, $A_2, B_2, C_2 \in d_2$ puncte pe cele două drepte, și $U \in B_1C_2 \cap B_2C_1$, $V \in A_1C_2 \cap A_2C_1$, $W \in A_1B_2 \cap A_2B_1$. Arătați că punctele U, V, W sunt coliniare.

P 38. (teorema lui Pascal) Fie $A_1, B_1, C_1, A_2, B_2, C_2$ şase puncte pe un cerc C, şi $U \in B_1C_2 \cap B_2C_1$, $V \in A_1C_2 \cap A_2C_1$, $W \in A_1B_2 \cap A_2B_1$. Arătați că punctele U, V, W sunt coliniare.