

Ficha de proposta de projeto

Nome do Aluno: Eder Renato da Silva Cardoso Casar

Polo: Bom Jesus da Lapa

Data: 26/04/2025

Título do Projeto

Ohmímetro Digital com Identificação Automática de Códigos de Cores para Resistores da Série E24 com BitDogLab

Objetivo Geral

Desenvolver um sistema embarcado capaz de medir resistências elétricas desconhecidas utilizando um divisor de tensão e o conversor analógico-digital (ADC) da BitDogLab, corrigir os valores para a série padrão E24 e exibir a resistência medida, juntamente com a correspondente codificação de cores padrão de resistores, no display OLED SSD1306.

Descrição Funcional

O sistema desenvolvido é um ohmímetro digital que utiliza a BitDogLab com o microcontrolador Raspberry Pi Pico para medir resistores desconhecidos, calcular o valor aproximado dentro da série E24 de resistências padronizadas, e exibir tanto o valor numérico da resistência quanto o código de cores correspondente em um display OLED.

Etapas de funcionamento:

1. Inicialização do Hardware

- Inicializa o barramento I2C para comunicação com o display OLED SSD1306.
- Configura o ADC interno do Raspberry Pi Pico para leitura da tensão no pino 28 (GPIO 28).
- Prepara o display OLED apagando a tela e desenhando as áreas da interface gráfica (linhas e caixas).

2. Leitura da Tensão

- O resistor desconhecido é conectado em um divisor de tensão junto com um resistor conhecido de $10k\Omega$.
- O sistema realiza 500 amostragens consecutivas da tensão analógica (entrada ADC) para reduzir o ruído e calcular uma média da leitura.
- Essa média é usada para maior precisão na medição da resistência.

3. Cálculo da Resistência

 A resistência do resistor desconhecido (R_x) é calculada usando a fórmula do divisor de tensão:

$$R_x = R_{conhecido} \cdot \frac{V_ADC}{V_{REF} - V_{ADC}}$$

4. Correção para Série E24

- O valor encontrado para o resistor pode ser qualquer valor real.
- O sistema então aproxima o valor para o mais próximo da série E24 de resistores comerciais, facilitando a identificação prática e garantindo maior compatibilidade com componentes reais.

5. Determinação do Código de Cores

- O valor corrigido (E24) é analisado para extrair:
- Primeira casa decimal.
- Segunda casa decimal.
- Multiplicador.
- Com base nesses valores, o sistema seleciona as cores padrão de resistores usando um array de strings.

6. Atualização do Display

- A tela é atualizada a cada ciclo (~700ms), exibindo:
- Nome do sistema ("Ohmímetro").
- Valor médio lido do ADC.
- Valor da resistência calculada.
- Código de cores correspondente (primeira, segunda casa e multiplicador).
- Fixação do "ouro" como quarta faixa (tolerância).

Modos de Operação

Este sistema trabalha em um único modo de operação contínuo, com as seguintes características:

- Modo de Medição Contínua:
- O sistema lê e calcula a resistência indefinidamente enquanto está energizado.
- Atualiza o display com novos valores periodicamente (a cada 700ms).
- Ideal para testes rápidos de múltiplos resistores em sequência.

Uso dos Periféricos da BitDogLab

O display OLED é utilizado como principal interface de visualização do sistema.

Ele exibe informações importantes durante a operação, como:

- O valor lido pelo ADC.
- O valor da resistência medida.
- A representação das cores correspondentes ao resistor medido, seguindo o padrão de código de cores.

Além disso, o display apresenta animações simples, como a limpeza da tela e o desenho de molduras, para melhorar a estética e a organização das informações. Essas atualizações são feitas continuamente a cada nova leitura, garantindo que o usuário tenha um feedback visual claro e imediato dos resultados.

Links para acesso ao código e ao vídeo.

Link do Repositório

Link do Vídeo