Use of Direct Numerical Simulations for Studies on Magnetohydrodynamics

Andrés Cathey

The University of Edinburgh

April 7, 2017

Overview

Direct Numerical Simulations (DNS)

Foundations

Method

Why Pseudo-Spectral?

Magnetohydrodynamics with DNS

Framework

Magnetic Prandtl Number

DNS at Work

Non-unity Magnetic Prandtl Number Results

Conclusions

Overview

Direct Numerical Simulations (DNS)

Foundations

Method

Why Pseudo-Spectral?

Magnetohydrodynamics with DNS

Framework

Magnetic Prandtl Number

DNS at Work

Non-unity Magnetic Prandtl Number

Results

Conclusions

Direct Numerical Simulations (DNS) Foundations

Subsection of Computational Fluid Dynamics.

- Subsection of Computational Fluid Dynamics.
- Navier-Stokes equation for an incompressible fluid $(\nabla \cdot \mathbf{U} = 0)$:

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{U} + \mathbf{F}$$
 (1)

Foundations

- Subsection of Computational Fluid Dynamics.
- Navier-Stokes equation for an incompressible fluid $(\nabla \cdot \mathbf{U} = 0)$:

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{U} + \mathbf{F}$$
 (1)

Reynolds number:

$$Re = \frac{\text{inertial forces}}{\text{viscous forces}} = \frac{uL}{\nu}$$
 (2)

- Subsection of Computational Fluid Dynamics.
- Navier-Stokes equation for an incompressible fluid $(\nabla \cdot \mathbf{U} = 0)$:

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{U} + \mathbf{F}$$
 (1)

Reynolds number:

$$Re = \frac{\text{inertial forces}}{\text{viscous forces}} = \frac{uL}{\nu}$$
 (2)

► Non-linear term allows energy transfer from large to and from small scales.

Foundations

▶ Pioneered by Orszag and Patterson (1972) and Rogallo (1981).

Direct Numerical Simulations (DNS) Foundations

▶ Pioneered by Orszag and Patterson (1972) and Rogallo (1981).

▶ Pseudo-spectral method.

- ▶ Pioneered by Orszag and Patterson (1972) and Rogallo (1981).
- Pseudo-spectral method.
- High computational cost.

- ▶ Pioneered by Orszag and Patterson (1972) and Rogallo (1981).
- Pseudo-spectral method.
- High computational cost.
 - ▶ N^3 grid points in a cubical domain with sides of length $L=2\pi$.

- Pioneered by Orszag and Patterson (1972) and Rogallo (1981).
- Pseudo-spectral method.
- High computational cost.
 - ▶ N^3 grid points in a cubical domain with sides of length $L = 2\pi$.
 - ► Can be related to the Reynolds number (Landau and Liftshitz, 1959).

- ▶ Pioneered by Orszag and Patterson (1972) and Rogallo (1981).
- Pseudo-spectral method.
- High computational cost.
 - ▶ N^3 grid points in a cubical domain with sides of length $L = 2\pi$.
 - ► Can be related to the Reynolds number (Landau and Liftshitz, 1959).
 - ▶ Has to represent large-scales.

- Pioneered by Orszag and Patterson (1972) and Rogallo (1981).
- Pseudo-spectral method.
- High computational cost.
 - ▶ N^3 grid points in a cubical domain with sides of length $L = 2\pi$.
 - Can be related to the Reynolds number (Landau and Liftshitz, 1959).
 - Has to represent large-scales.
 - Grid spacing Δx small enough to resolve dissipative scales.

Start with a reformulated Navier Stokes equation in Fourier space.

$$\left(\frac{\partial}{\partial t} - \nu \nabla^2\right) u_{\alpha}(\mathbf{k}, t) = M_{\alpha\beta\gamma}(\mathbf{k}) \left[\sum_{\mathbf{j}+\mathbf{l}=\mathbf{k}} u_{\beta}(\mathbf{j}, t) u_{\gamma}(\mathbf{l}, t) \right]$$
(3)

A discretisation in time and wavenumber is needed to obtain a numerical solution.

$$k_{\alpha} = \frac{2\pi}{L} n_{\alpha} \qquad n_{\alpha} = 0, 1, \dots, N-1$$
 (4)

Non-linear term:

$$A_{\beta\gamma}(\mathbf{k},t) = \sum_{\mathbf{j}+\mathbf{l}=\mathbf{k}} u_{\beta}(\mathbf{j},t) u_{\gamma}(\mathbf{l},t)$$
 (5)

The non-linear term is computationally costly. The convolution theorem can help with that.

1. Perform Fast Fourier Transform (FFT) on velocity fields $(u_{\alpha}(\mathbf{x},t))$.

The non-linear term is computationally costly. The convolution theorem can help with that.

- 1. Perform Fast Fourier Transform (FFT) on velocity fields $(u_{\alpha}(\mathbf{x},t))$.
- 2. Convolve the transformed fields.

$$A_{\beta\gamma}(\mathbf{x},t) = u_{\beta}(\mathbf{x},t)u_{\gamma}(\mathbf{x},t) \tag{6}$$

The non-linear term is computationally costly. The convolution theorem can help with that.

- 1. Perform Fast Fourier Transform (FFT) on velocity fields $(u_{\alpha}(\mathbf{x},t))$.
- 2. Convolve the transformed fields.

$$A_{\beta\gamma}(\mathbf{x},t) = u_{\beta}(\mathbf{x},t)u_{\gamma}(\mathbf{x},t) \tag{6}$$

3. Transform $A_{\beta\gamma}(\mathbf{x},t)$ to $A_{\beta\gamma}(\mathbf{k},t)$ to obtain the l.h.s term in the solenoidal Navier Stokes equation.

The non-linear term is computationally costly. The convolution theorem can help with that.

- 1. Perform Fast Fourier Transform (FFT) on velocity fields $(u_{\alpha}(\mathbf{x},t))$.
- 2. Convolve the transformed fields.

$$A_{\beta\gamma}(\mathbf{x},t) = u_{\beta}(\mathbf{x},t)u_{\gamma}(\mathbf{x},t) \tag{6}$$

- 3. Transform $A_{\beta\gamma}(\mathbf{x},t)$ to $A_{\beta\gamma}(\mathbf{k},t)$ to obtain the l.h.s term in the solenoidal Navier Stokes equation.
- 4. Use a suitable finite-differences method for evolving the velocity field in time [1].

Why Pseudo-Spectral?

So... Why pseudo-spectral?

Why Pseudo-Spectral?

So... Why pseudo-spectral? Performing FFT can be a costly endeavor. ($N \log_2 N$)

Why Pseudo-Spectral?

So... Why pseudo-spectral? Performing FFT can be a costly endeavor. ($N \log_2 N$)

Decrease in computational cost!

Why Pseudo-Spectral?

So... Why pseudo-spectral? Performing FFT can be a costly endeavor. ($N \log_2 N$)

Decrease in computational cost!

Arithmetic operations required for calculating the non-linear term:

▶ Before FFT: O(N⁶).

Why Pseudo-Spectral?

So... Why pseudo-spectral? Performing FFT can be a costly endeavor. ($N \log_2 N$)

Decrease in computational cost!

Arithmetic operations required for calculating the non-linear term:

- ▶ Before FFT: $\mathcal{O}(N^6)$.
- ▶ After FFT: $\mathcal{O}(N^3 \log_2 N)$.

Why Pseudo-Spectral?

Why Pseudo-Spectral?

Considerations for DNS code [2]:

► Time-stepping strategy.

Why Pseudo-Spectral?

- ► Time-stepping strategy.
- Aliasing errors.

Why Pseudo-Spectral?

- ► Time-stepping strategy.
- Aliasing errors.
- Implementation of parallelisation.

Why Pseudo-Spectral?

- Time-stepping strategy.
- Aliasing errors.
- Implementation of parallelisation.
- Benchmarking.

Overview

Direct Numerical Simulations (DNS)

Foundations

Method

Why Pseudo-Spectral?

Magnetohydrodynamics with DNS

Framework

Magnetic Prandtl Number

DNS at Work

Non-unity Magnetic Prandtl Number

Results

Conclusions

Magnetohydrodynamics with DNS

Framework

Magnetohydrodynamics (MHD) study electrically conducting fluids.

Magnetohydrodynamics (MHD) study electrically conducting fluids.

Equations of fluid motion are obtained by combining Navier Stokes equations with Maxwell's equations.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla P + \frac{1}{\rho} (\nabla \times \mathbf{b}) \times \mathbf{b} + \nu \nabla^2 \mathbf{u} + \mathbf{f}_u$$
 (7)

$$\frac{\partial \mathbf{b}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{b} = (\mathbf{b} \cdot \nabla)\mathbf{u} + \eta \nabla^2 \mathbf{b} + \mathbf{f}_b$$
 (8)

Magnetohydrodynamics (MHD) study electrically conducting fluids.

Equations of fluid motion are obtained by combining Navier Stokes equations with Maxwell's equations.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla P + \frac{1}{\rho} (\nabla \times \mathbf{b}) \times \mathbf{b} + \nu \nabla^2 \mathbf{u} + \mathbf{f}_u$$
 (7)

$$\frac{\partial \mathbf{b}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{b} = (\mathbf{b} \cdot \nabla)\mathbf{u} + \eta \nabla^2 \mathbf{b} + \mathbf{f}_b$$
 (8)

$$Re_{m} = \frac{uL}{\nu}$$

$$Re_{m} = \frac{uL}{\eta}$$
 (9)

Magnetohydrodynamics with DNS

Magnetic Prandtl Number

$$Re = rac{ ext{inertial forces}}{ ext{viscous forces}} = rac{u\,L}{
u} \qquad Re_M = rac{ ext{inertial forces}}{ ext{diffusive forces}} = rac{u\,L}{\eta}$$

Magnetohydrodynamics with DNS

Magnetic Prandtl Number

$$Re = rac{ ext{inertial forces}}{ ext{viscous forces}} = rac{u\,L}{
u} \qquad Re_M = rac{ ext{inertial forces}}{ ext{diffusive forces}} = rac{u\,L}{\eta}$$

$$Pr_{M} = \frac{Re_{M}}{Re} = \frac{\nu}{\eta} \tag{10}$$

$$Re = rac{ ext{inertial forces}}{ ext{viscous forces}} = rac{u\,L}{
u} \qquad Re_M = rac{ ext{inertial forces}}{ ext{diffusive forces}} = rac{u\,L}{\eta}$$

$$Pr_{M} = \frac{Re_{M}}{Re} = \frac{\nu}{\eta} \tag{10}$$

 $Pr_m < 1$ when most energy is dissipated through the magnetic channel.

 $Pr_m > 1$ when most energy is dissipated through the kinetic (viscous) channel.

Magnetohydrodynamics with DNS

Magnetic Prandtl Number

Figure: Map of "typical" objects in the plane (Re, Re_M) . Yellow dashed lines are Pr_M isolines. [3].

Overview

Direct Numerical Simulations (DNS)

Foundations

Method

Why Pseudo-Spectral?

Magnetohydrodynamics with DNS

Framework

Magnetic Prandtl Number

DNS at Work

Non-unity Magnetic Prandtl Number Results

Conclusions

Non-unity Magnetic Prandtl Number

A well known research on non-unity magnetic Prandtl numbers is:

G. Sahoo, P. Perlekar, and R. Pandit, "Systematics of the magnetic-prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence".

Non-unity Magnetic Prandtl Number

A well known research on non-unity magnetic Prandtl numbers is:

G. Sahoo, P. Perlekar, and R. Pandit, "Systematics of the magnetic-prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence".

Range of achieved Magnetic Prandtl Numbers: [0.01:10].

Non-unity Magnetic Prandtl Number

Sahoo et. al. use a DNS method with:

► Time-stepping strategy is the Adams-Bashforth scheme.

Non-unity Magnetic Prandtl Number

Sahoo et. al. use a DNS method with:

- ► Time-stepping strategy is the Adams-Bashforth scheme.
- ▶ N = 512 and N = 1024.

Non-unity Magnetic Prandtl Number

Sahoo et. al. use a DNS method with:

- ► Time-stepping strategy is the Adams-Bashforth scheme.
- N = 512 and N = 1024.
- Study decaying and statistically steady turbulence.

Non-unity Magnetic Prandtl Number

Sahoo et. al. use a DNS method with:

- ► Time-stepping strategy is the Adams-Bashforth scheme.
- N = 512 and N = 1024.
- Study decaying and statistically steady turbulence.
- ▶ 2/3—rule as a dealiasing method.

Non-unity Magnetic Prandtl Number

► Time-stepping strategy is the Adams-Bashforth scheme.

Non-unity Magnetic Prandtl Number

- ► Time-stepping strategy is the Adams-Bashforth scheme.
- ightharpoonup N = 512 and N = 1024.

Non-unity Magnetic Prandtl Number

- ► Time-stepping strategy is the Adams-Bashforth scheme.
- N = 512 and N = 1024.
- Study decaying and statistically steady turbulence.

Non-unity Magnetic Prandtl Number

- ► Time-stepping strategy is the Adams-Bashforth scheme.
- N = 512 and N = 1024.
- Study decaying and statistically steady turbulence.
- ▶ 2/3—rule as a dealiasing method.

Results

Study decaying simulations with varying magnetic Prandtl Number.

Study decaying simulations with varying magnetic Prandtl Number.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla P + \frac{1}{\rho} (\nabla \times \mathbf{b}) \times \mathbf{b} + \nu \nabla^2 \mathbf{u} + \mathbf{f}_u \quad (11)$$

$$\frac{\partial \mathbf{b}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{b} = (\mathbf{b} \cdot \nabla)\mathbf{u} + \eta \nabla^2 \mathbf{b} + \mathbf{f}_b$$
 (12)

$$\mathbf{f}_u = \mathbf{0} \qquad \qquad \mathbf{f}_b = \mathbf{0} \tag{13}$$

Runs (f-h) have higher Reynolds numbers compared to their (a-e) equivalents.

Figure: Total (red), kinetic (green), and magnetic (blue) energy dissipation ratios for a: $Pr_M=0.1$, b: $Pr_M=0.5$, c: $Pr_M=1.0$, d: $Pr_M=5.0$, e: $Pr_M=10.0$, f: $Pr_M=1.0$, g: $Pr_M=5.0$, h: $Pr_M=10.0$ [4].

Overview

Direct Numerical Simulations (DNS)

Foundations

Method

Why Pseudo-Spectral?

Magnetohydrodynamics with DNS

Framework

Magnetic Prandtl Number

DNS at Work

Non-unity Magnetic Prandtl Number

Results

Conclusions

Conclusions

1. Direct Numerical Simulations look in a large spectral range.

Conclusions

- 1. Direct Numerical Simulations look in a large spectral range.
- 2. To avoid extremely high computational complexity $(\mathcal{O}(N^6))$, convolution theorem and FFTs can help.

Conclusions

- 1. Direct Numerical Simulations look in a large spectral range.
- 2. To avoid extremely high computational complexity $(\mathcal{O}(N^6))$, convolution theorem and FFTs can help.
- 3. Increases in computing power will allow broadening Pr_M ranges under study.

References

- [1] W. D. McComb, "The physics of fluid turbulence," Chemical Physics, 1990.
- [2] S. R. Yoffe, "Investigation of the transfer and dissipation of energy in isotropic turbulence," arXiv preprint arXiv:1306.3408, 2013.
- [3] F. Plunian, R. Stepanov, and P. Frick, "Shell models of magnetohydrodynamic turbulence," *Physics Reports*, vol. 523, no. 1, pp. 1–60, 2013.
- [4] G. Sahoo, P. Perlekar, and R. Pandit, "Systematics of the magnetic-prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence," *New Journal of Physics*, vol. 13, no. 1, p. 013036, 2011.
- [5] A. Brandenburg, "Magnetic prandtl number dependence of the kinetic-to-magnetic dissipation ratio," *The Astrophysical Journal*, vol. 791, no. 1, p. 12, 2014.

Aliasing Errors

Figure: Aliasing exemplified.

Run Information

Runs	N	ν	Pr_{M}	δt	$u_{\rm rms}$	ℓ_{I}	λ	Re_{λ}	$t_{\rm c}$	$k_{\max} \eta_{\mathrm{d}}^{u}$	$k_{\rm max} \eta_{\rm d}^b$
R1	512	10^{-4}	0.1	10^{-3}	0.34	0.65	0.18	610	9.7	0.629	2.280
R2	512	5×10^{-4}	0.5	10^{-3}	0.34	0.67	0.27	187	9.1	1.752	2.389
R3	512	10^{-3}	1	10^{-3}	0.34	0.70	0.35	121	8.1	2.772	2.444
R4	512	5×10^{-3}	5	10^{-3}	0.33	0.76	0.60	39	7.0	8.224	2.692
R5	512	10^{-2}	10	10^{-3}	0.31	0.80	0.73	23	6.5	13.267	2.836
R3B	512	10^{-3}	1	10^{-4}	1.07	0.62	0.20	210	3.1	1.175	1.052
R4B	512	5×10^{-3}	5	10^{-4}	2.32	0.63	0.24	110	1.4	1.961	0.644
R5B	512	10^{-2}	10	10^{-4}	3.21	0.63	0.26	85	1.0	2.490	0.520
R1C	1024	10^{-4}	0.01	10^{-4}	0.35	0.65	0.23	810	8.0	1.431	22.12
R2C	1024	10^{-4}	0.1	10^{-4}	1.11	0.47	0.08	890	2.9	0.472	1.690
R3C	1024	10^{-3}	1	10^{-4}	1.14	0.49	0.15	172	2.5	1.996	1.779
R4C	1024	10^{-2}	10	10^{-4}	2.37	0.51	0.24	57	1.1	5.550	1.164
R1D	512	10^{-4}	0.01	10^{-4}	1.31	0.82	0.18	2367	_	0.320	5.364
R2D	512	10^{-4}	0.1	10^{-4}	0.99	0.74	0.14	1457	-	0.334	1.145
R3D	512	10^{-3}	1	10^{-4}	1.06	0.65	0.17	239	-	1.264	1.033
R4D	512	10^{-2}	10	10^{-4}	1.04	0.67	0.23	61	-	6.505	1.129

Figure: k_{max} is the magnitude of the largest-magnitude wave vectors resolved in these DNS studies which use the 2/3 dealiasing rule; $k_{max} \approx 170.67$ and 341.33 for N = 512 and 1024, respectively [4].

Shell Models

Energy profiles with shell model

Figure: Compensated time-averaged kinetic and magnetic energy spectra for shell models at three values of Pr_M [5].