Parametricity and syntactic logical relations in System F

Łukasz Czajka

April 19, 2022

Abstract

We give a simple syntactic proof of a parametricity theorem for the polymorphic lambda calculus. As an application, we prove confluence and normalisation. We also indicate how to use this parametricity result to derive Wadler-style "free theorems".

1 Introduction

Reynolds [5] proved the parametricity theorem for the polymorphic lambda calculus, which essentially states that every term in System F satisfies a suitable notion of logical relation. Most presentations of the parametricity theorem are formulated semantically — they refer to specific classes of models [5, 8, 4, 9]. We provide a syntactic treatment of the parametricity theorem. In fact, our treatment can also be seen as implicitly referring to a specific kind of semantics constructed from the term model. The parametricity theorem may then be seen as a soundness theorem for this implicit semantics.

The syntactic treatment allows us to use the parametricity theorem to derive what we call an admissibility theorem: a generalised version of Girard's method of candidates. This theorem may in turn be used to give simple proofs of, e.g., confluence and strong normalisation of $\beta\eta$ -reduction in System F.

In the context of the simply typed lambda calculus, logical relations were introduced by Statman [7]. The notion of syntactic logical relations for the simply typed lambda calculus is well-established [1, Section 3.3], and in fact already appeared in [7]. We extend the notion of syntactic logical relations to System F. From this point of view, the fundamental theorem for syntactic logical relations (see e.g. [1, Theorem 3.3.12]) corresponds to the parametricity theorem in our treatment. In the simply typed setting, the fundamental theorem may be used to show confluence and weak normalisation of $\beta\eta$ -reduction.

The parametricity theorem has been used by Wadler [8] to derive "free theorems" from the types of terms in System F. In [8] these theorems refer to equality in frame models. The syntactic version of the parametricity theorem allows us to derive such free theorems with $\beta\eta$ -equality instead.

Gallier [2] provides a generalisation of Girard's reducibility cadidates very similar to our syntactic logical relations. Our Parametricity Theorem 3.7 is analogous to [2, Lemma 7.9] and our Admissibility Theorem 4.5 to [2, Theorem 10.1]. Gallier uses generalised candidates of reducibility to show confluence and strong normalisation of well-typed System F terms [2, Lemma 10.2]. He considers only unary relations and does not use his method to derive free theorems. The present note may be seen as a small generalisation and a streamlined presentation of the results of [2].

2 Polymorphic lambda calculus

In this section, we define an orthodox Church-style version of System F. See e.g. [6, Chapter 11] or [3, Chapter 11]. We assume familiarity with core notions of lambda calculi such as substitution and α -conversion.

Definition 2.1. Types \mathcal{T} are given by

$$\mathcal{T} ::= \mathcal{V} \mid \mathcal{T} \to \mathcal{T} \mid \forall \alpha. \mathcal{T}$$

where V is an infinite set of type variables.

We define $FTV(\tau)$ – the set of free type variables of the type τ – in an obvious way by induction on τ . A type τ is closed if $FTV(\tau) = \emptyset$.

Definition 2.2. We assume given an infinite set Vars of variables, each paired with a unique type, denoted $x : \tau$.

The set of *terms* consists of all expressions s such that $s:\sigma$ can be inferred for some type σ by the following clauses:

- $x : \sigma$ for $(x : \sigma) \in \text{Vars}$,
- $\lambda x : \sigma . s : \sigma \to \tau \text{ if } (x : \sigma) \in \text{Vars and } s : \tau$
- $\Lambda \alpha.s : \forall \alpha.\sigma \text{ if } s : \sigma \text{ and } \alpha \text{ does not occur free in the type of a free variable of } s$,
- $st: \tau \text{ if } s: \sigma \to \tau \text{ and } t: \sigma$,
- $s\tau : \sigma[\tau/\alpha]$ if $s : \forall \alpha.\sigma$ and τ is a type.

The set of free variables of a preterm t, denoted FV(t), is defined in the expected way. Analogously, we define the set FTV(t) of type variables occurring free in t (we include the occurrences in the types of free variables). We denote an occurrence of a variable x of type τ by x^{τ} , e.g. $\lambda x : \tau \to \sigma. x^{\tau \to \sigma} y^{\tau}$. When clear or irrelevant, we omit the type annotations, denoting the above term by $\lambda x.xy$. Type substitution is defined in the expected way except that it needs to change the types of variables. Formally, a type substitution changes the types associated to variables in Vars. The set of terms of type τ is denoted by \mathbb{T}_{τ} .

Note that we present terms in orthodox Church-style, i.e., instead of using contexts each variable has a globally fixed type associated to it.

Lemma 2.3 (Substitution lemma). 1. If $s: \tau$ and $x: \sigma$ and $t: \sigma$ then $s[t/x]: \tau$.

2. If $t : \sigma$ then $t[\tau/\alpha] : \sigma[\tau/\alpha]$.

Proof. Induction on the typing derivation.

Lemma 2.4 (Generation lemma). If $t : \sigma$ then one of the following holds.

- $t \equiv x$ is a variable with $(x : \sigma) \in \text{Vars}$.
- $t \equiv \lambda x : \tau_1.s \text{ and } \sigma = \tau_1 \rightarrow \tau_2 \text{ and } s : \tau_2.$
- $t \equiv \Lambda \alpha.s$ and $\sigma = \forall \alpha.\tau$ and $s : \tau$ and α does not occur free in the type of a free variable of s.

- $t \equiv t_1 t_2$ and $t_1 : \tau \to \sigma$ and $t_2 : \tau$ and $FTV(\tau) \subseteq FTV(t)$.
- $t \equiv s\tau$ and $\sigma = \rho[\tau/\alpha]$ and $s : \forall \alpha.\rho$.

Proof. By analysing the derivation $t:\sigma$.

3 Parametricity and logical relations

Definition 3.1. A relation R on $\mathbb{T}_{\tau_1} \times \ldots \times \mathbb{T}_{\tau_n}$ has $type\ (\tau_1, \ldots, \tau_n)$. For a family Rel of n-ary relations, by $Rel_{\tau_1, \ldots, \tau_n}$ we denote the relations in Rel of type (τ_1, \ldots, τ_n) .

Given R of type $(\sigma_1, \ldots, \sigma_n)$ and S of type (τ_1, \ldots, τ_n) , we define the relation $R \to S$ of type $(\sigma_1 \to \tau_1, \ldots, \sigma_n \to \tau_n)$ by:

• $(R \to S)(t_1, \ldots, t_n)$ iff for all s_1, \ldots, s_n with $R(s_1, \ldots, s_n)$ we have $S(t_1 s_1, \ldots, t_n s_n)$.

Given τ_1, \ldots, τ_n and a family \mathcal{F} of *n*-ary relations, we define $\forall \mathcal{F}$ of type $(\forall \alpha \tau_1, \ldots, \forall \alpha \tau_n)$ by:

• $(\forall \mathcal{F})(t_1,\ldots,t_n)$ iff for all types σ_1,\ldots,σ_n and all $R \in \mathcal{F}$ of type $(\tau_1[\sigma_1/\alpha],\ldots,\tau_n[\sigma_n/\alpha])$ we have $R(t_1\sigma_1,\ldots,t_n\sigma_n)$.

Let S be an n-ary relation on terms. A relation R of type (τ_1, \ldots, τ_n) is closed under S-compatible head β -expansion if the following properties hold:

- if $R(u^1[w_1^1/x]w_2^1 \dots w_k^1, \dots, u^n[w_1^n/x]w_2^n \dots w_k^n)$ and for all $i = 1, \dots, k$ either all w_i^j are types or $S(w_i^1, \dots, w_i^n)$, then $R((\lambda x.u^1)w_1^1 \dots w_k^1, \dots, (\lambda x.u^n)w_1^n \dots w_k^n)$;
- if $R(u^1[\tau/\alpha]w_1^1 \dots w_k^1, \dots, u^n[\tau/\alpha]w_1^n \dots w_k^n)$ and for all $i = 1, \dots, k$ either all w_i^j are types or $S(w_i^1, \dots, w_i^n)$, then $R((\Lambda \alpha. u^1)\tau w_1^1 \dots w_k^1, \dots, (\Lambda \alpha. u^n)\tau w_1^n \dots w_k^n)$.

A relation is closed under head β -expansion if it is closed under S-compatible head β -expansion for any relation S. Given a family Rel of n-ary relations, a relation is closed under Rel-compatible head β -expansion if it is closed under S-compatible head β -expansion for every $S \in \text{Rel}$.

A family Rel of n-ary relations is a family of logical relations if it satisfies the following:

- 1. each $R \in \text{Rel}_{\tau_1, \dots, \tau_n}$ is closed under Rel-compatible head β -expansion;
- 2. $Rel_{\alpha,...,\alpha} \neq \emptyset$ for each type variable α ;
- 3. if $R \in \text{Rel}_{\sigma_1, \dots, \sigma_n}$ and $S \in \text{Rel}_{\tau_1, \dots, \tau_n}$ then $R \to S \in \text{Rel}_{\sigma_1 \to \tau_1, \dots, \sigma_n \to \tau_n}$;
- 4. if $\mathcal{F} \subseteq \text{Rel and } \mathcal{F}_{\tau_1, \dots, \tau_n} \neq \emptyset \text{ then } \forall \mathcal{F} \in \text{Rel}_{\forall \alpha \tau_1, \dots, \forall \alpha \tau_n}$.

For the rest of this section, we fix a family of logical relations Rel.

Definition 3.2. An *n*-mapping ω is a mapping from type variables to *n*-tuples of types. The mapping ω extends in an obvious way to a mapping from types to *n*-tuples of types. We set $\omega_i = \pi_i \circ \omega$, i.e., $\omega_i(\tau)$ is the *i*-th component of the tuple $\omega(\tau)$. A mapping ξ on type variables is ω -compatible if $\xi(\alpha) \in \text{Rel}_{\omega_1(\alpha),\ldots,\omega_n(\alpha)}$.

For each type σ , each n-mapping ω , and each ω -compatible ξ , we define the n-ary relation $\mathcal{R}^{\xi,\omega}_{\sigma}$ by induction on σ :

- $\mathcal{R}_{\alpha}^{\xi,\omega} = \xi(\alpha)$ for a type variable α ,
- $\mathcal{R}_{\sigma \to \tau}^{\xi,\omega}(t_1,\ldots,t_n)$ iff $t_i:\omega_i(\sigma \to \tau)$ and for all s_1,\ldots,s_n such that $\mathcal{R}_{\sigma}^{\xi,\omega}(s_1,\ldots,s_n)$ we have $\mathcal{R}_{\tau}^{\xi,\omega}(t_1s_1,\ldots,t_ns_n)$,
- $\mathcal{R}^{\xi,\omega}_{\forall \alpha\sigma}(t_1,\ldots,t_n)$ iff $t_i:\omega_i(\forall \alpha\sigma)$ and for all types τ_1,\ldots,τ_n and every $R\in \text{Rel}_{\tau'_1,\ldots,\tau'_n}$ we have $\mathcal{R}^{\xi',\omega'}_{\sigma}(t_1\tau'_1,\ldots,t_n\tau'_n)$ where $\tau'_i=\omega_i(\tau_i)$ and $\xi'=\xi[R/\alpha]$ and $\omega'=\omega[(\tau'_1,\ldots,\tau'_n)/\alpha]$.

Note that if $\mathcal{R}^{\xi,\omega}_{\sigma}(t_1,\ldots,t_n)$ then $t_i:\omega_i(\sigma)$.

Lemma 3.3. If ω is an n-mapping and ξ is ω -compatible, then $\mathcal{R}^{\xi,\omega}_{\tau} \in \text{Rel}_{\omega_1(\tau),\dots,\omega_n(\tau)}$.

Proof. Induction on τ , using the properties of a family of logical relations.

Lemma 3.4. If ω is an n-mapping and ξ is ω -compatible and $\omega_i(\alpha) = \alpha$, then $\mathcal{R}^{\xi,\omega}_{\sigma[\tau/\alpha]} = \mathcal{R}^{\xi',\omega'}_{\sigma}$ where $\xi' = \xi[\mathcal{R}^{\xi,\omega}_{\tau}/\alpha]$ and $\omega' = \omega[(\omega_1(\tau),\ldots,\omega_n(\tau))/\alpha]$.

Proof. Induction on σ .

Definition 3.5. A replacement is a function $\delta = \gamma \circ \omega$ satisfying:

- 1. ω is a type substitution,
- 2. γ is a term substitution such that $\gamma(x^{\tau}):\omega(\tau)$ for every variable x.

For τ a type, we use $\delta(\tau)$ to denote $\omega(\tau)$. We use the notation $\delta[t/x] = \gamma[t/x] \circ \omega$. Note that if $t : \tau$ then $\delta(t) : \delta(\tau)$.

Lemma 3.6. If $t : \sigma$ and $\delta_i = \gamma_i \circ \omega_i$ for i = 1, ..., n are replacements such that $\mathcal{R}^{\xi, \omega}_{\tau}(\delta_1(x), ..., \delta_n(x))$ for $x^{\tau} \in \mathrm{FV}(t)$, then $\mathcal{R}^{\xi, \omega}_{\sigma}(\delta_1(t), ..., \delta_n(t))$.

Proof. Induction on t. If t = x then this follows from the assumption.

If $t = t_1t_2$ then $t_1 : \tau \to \sigma$ and $t_2 : \tau$. By the inductive hypothesis $\mathcal{R}^{\xi,\omega}_{\tau\to\sigma}(\delta_1(t_1),\ldots,\delta_n(t_1))$ and $\mathcal{R}^{\xi,\omega}_{\tau}(\delta_1(t_2),\ldots,\delta_n(t_2))$. By the definition of $\mathcal{R}^{\xi,\omega}_{\tau\to\sigma}$ we have $\mathcal{R}^{\xi,\omega}_{\sigma}(\delta_1(t_1t_2),\ldots,\delta_n(t_1t_2))$, i.e., $\mathcal{R}^{\xi,\omega}_{\sigma}(\delta_1(t_1),\ldots,\delta_n(t_1))$.

If $t = \lambda x : \sigma_1.u$ then $u : \sigma_2$ and $\sigma = \sigma_1 \to \sigma_2$. Let s_1, \ldots, s_n be such that $\mathcal{R}_{\sigma_1}^{\xi,\omega}(s_1, \ldots, s_n)$. Let $\delta_i' = \delta_i[s_i/x]$ for $i = 1, \ldots, n$. This is well-defined, because $s_i : \omega_i(\sigma_1)$ for $i = 1, \ldots, n$. Also, δ_i' still satisfy the assumption of the theorem. Hence, by the inductive hypothesis $\mathcal{R}_{\sigma_2}^{\xi,\omega}(\delta_1'(u), \ldots, \delta_n'(u))$. We have $\delta_i(\lambda x : \sigma_1.u)s_i \to_{h\beta} \delta_i(u)[s_i/x] = \delta_i'(u)$ (assuming x is chosen fresh). Since $\mathcal{R}_{\sigma_1}^{\xi,\omega}(s_1, \ldots, s_n)$, by Lemma 3.3 and property 1 of a family of logical relations we obtain $\mathcal{R}_{\sigma_2}^{\xi,\omega}(\delta_1(t)s_1, \ldots, \delta_n(t)s_n)$. This proves $\mathcal{R}_{\sigma}^{\xi,\omega}(\delta_1(t), \ldots, \delta_n(t))$.

If $t = s\rho$ then $s : \forall \alpha \tau$ and $\sigma = \tau[\rho/\alpha]$. By the inductive hypothesis $\mathcal{R}^{\xi,\omega}_{\forall \alpha\tau}(\delta_1(s),\ldots,\delta_n(s))$. By Lemma 3.3 we have $\mathcal{R}^{\xi,\omega}_{\rho} \in \text{Rel}_{\omega_1(\rho),\ldots,\omega_n(\rho)}$, so $\mathcal{R}^{\xi',\omega'}_{\tau}(\delta_1(t),\ldots,\delta_n(t))$ by definition, where $\xi' = \xi[\mathcal{R}^{\xi,\omega}_{\rho}/\alpha]$ and $\omega' = \omega[(\omega_1(\rho),\ldots,\omega_n(\rho))/\alpha]$. By Lemma 3.4 (assuming α chosen fresh) we obtain $\mathcal{R}^{\xi,\omega}_{\tau[\rho/\alpha]}(\delta_1(t),\ldots,\delta_n(t))$, i.e., $\mathcal{R}^{\xi,\omega}_{\sigma}(\delta_1(t),\ldots,\delta_n(t))$.

If $t = \Lambda \alpha.s$ then $s : \tau$ and $\sigma = \forall \alpha \sigma'$. Let ρ_1, \ldots, ρ_n be types and let $R \in \text{Rel}_{\omega_1(\rho_1), \ldots, \omega_n(\rho_n)}$. Let $\rho'_i = \omega_i(\rho_i)$ and $\xi' = \xi[R/\alpha]$ and $\omega' = \omega[(\rho'_1, \ldots, \rho'_n)/\alpha]$. Let $\delta'_i = \gamma_i \circ \omega'_i$. Assuming α is chosen fresh, δ'_i is still a replacement, and $\mathcal{R}^{\xi', \omega'}_{\tau}(\delta'_1(x), \ldots, \delta'_n(x))$ for $x^{\tau} \in \text{FV}(s)$. Hence by the inductive hypothesis $\mathcal{R}^{\xi', \omega'}_{\sigma'}(\delta'_1(s), \ldots, \delta'_n(s))$. Since $\delta_i(t)\rho'_i \to_{h\beta} \delta'_i(s)$, by Lemma 3.3 and property 1 of a family of logical relations we obtain $\mathcal{R}^{\xi', \omega'}_{\sigma'}(\delta_1(t)\rho_1, \ldots, \delta_n(t)\rho_n)$. This shows $\mathcal{R}^{\xi, \omega}_{\sigma}(\delta_1(t), \ldots, \delta_n(t))$.

The parametricity theorem is a specialisation of the above lemma. We set $\mathcal{R}^{\xi}_{\tau} = \mathcal{R}^{\xi,id}_{\tau}$ where $id(\alpha) = (\alpha, \dots, \alpha)$ for any type variable α .

Theorem 3.7 (Parametricity theorem). Let Rel be a family of logical relations and ξ a mapping such that $\xi(\alpha) \in \text{Rel}_{\alpha,...,\alpha}$ for each type variable α . If $t : \tau$ and for all $x^{\sigma} \in \text{FV}(t)$ we have $\mathcal{R}^{\xi}_{\sigma}(x,...,x)$, then $\mathcal{R}^{\xi}_{\tau}(t,...,t)$ and $\mathcal{R}^{\xi}_{\tau} \in \text{Rel}_{\tau,...,\tau}$.

Proof. We have $\mathcal{R}^{\xi}_{\tau}(t,\ldots,t)$ by Lemma 3.6. Also $\mathcal{R}^{\xi}_{\tau}\in \text{Rel}$ by Lemma 3.3.

4 Candidates

The parametricity theorem allows us to generalise Girard's method of candidates.

Definition 4.1. Let R be an n-ary relation on terms. A tuple $(xu_1^1 \dots u_m^1, \dots, xu_1^n \dots u_m^n)$ is R-neutral if for every $i = 1, \dots, m$ either all u_i^j are types or $R(u_i^1, \dots, u_i^n)$. For unary relations, we identify 1-tuples with their elements and talk about R-neutral terms.

An n-ary relation R is admissible if it satisfies the following:

- 1. R is closed under R-compatible head β -expansion;
- 2. $R(t_1, \ldots, t_n)$ for every R-neutral tuple (t_1, \ldots, t_n) ;
- 3. if $R(t_1x, \ldots, t_nx)$ and $x \notin FV(t_1, \ldots, t_n)$ then $R(t_1, \ldots, t_n)$;
- 4. if $R(t_1\alpha, \ldots, t_n\alpha)$ and $\alpha \notin FTV(t_1, \ldots, t_n)$ then $R(t_1, \ldots, t_n)$.

We will show that if R is admissible then R(t, ..., t) holds for every term t. For this purpose, we define R-candidates and show that the family of all R-candidates is a family of logical relations.

Definition 4.2. A relation S of type (τ_1, \ldots, τ_n) is an R-candidate if:

- 1. $S \subseteq R$;
- 2. S is closed under R-compatible head β -expansion;
- 3. $S(t_1,\ldots,t_n)$ for every R-neutral tuple $(t_1,\ldots,t_n)\in\mathbb{T}_{\tau_1}\times\ldots\times\mathbb{T}_{\tau_n}$.

Lemma 4.3. Let R be admissible and let $R_{\tau_1,...,\tau_n} = R \cap (\mathbb{T}_{\tau_1} \times ... \times \mathbb{T}_{\tau_n})$. Then $R_{\tau_1,...,\tau_n}$ is an R-candidate of type $(\tau_1,...,\tau_n)$.

Proof. Follows directly from definitions.

Lemma 4.4. If R is admissible then the family $Cand^R$ of all R-candidates is a family of logical relations.

Proof. If S is an R-candidate then it is closed under R-compatible head β -expansion. Hence, for any $S' \in \text{Cand}^R$, the relation S is closed under S'-compatible head β -expansion, because $S' \subseteq R$. Thus S is closed under Cand^R-compatible head β -expansion.

By Lemma 4.3 we have $Cand_{\alpha,...,\alpha}^R \neq \emptyset$.

Let $S_1 \in \operatorname{Cand}_{\sigma_1,\ldots,\sigma_n}^R$ and $S_2 \in \operatorname{Cand}_{\tau_1,\ldots,\tau_n}^R$. We need to show $S_1 \to S_2 \in \operatorname{Cand}_{\sigma_1 \to \tau_1,\ldots,\sigma_n \to \tau_n}^R$. We check the properties of an R-candidate.

- 1. Let $(S_1 \to S_2)(t_1, \ldots, t_n)$. Let $x \notin FV(t_1, \ldots, t_n)$. Because (x, \ldots, x) is R-neutral, $S_1(x, \ldots, x)$. Then $S_2(t_1x, \ldots, t_nx)$, so $R(t_1x, \ldots, t_nx)$. Thus $R(t_1, \ldots, t_n)$, because R is admissible.
- 2. $S_1 \to S_2$ is closed under R-compatible head β -expansion because S_2 is and $S_1 \subseteq R$.
- 3. Let $(t_1, \ldots, t_n) \in \mathbb{T}_{\sigma_1 \to \tau_1} \times \ldots \times \mathbb{T}_{\sigma_n \to \tau_n}$ be R-neutral. Assume $S_1(s_1, \ldots, s_n)$. Because $S_1 \in \text{Cand}^R$, we have $R(s_1, \ldots, s_n)$. Hence $(t_1s_1, \ldots, t_ns_n) \in \mathbb{T}_{\tau_1} \times \ldots \times \mathbb{T}_{\tau_n}$ is R-neutral. So $S_2(t_1s_1, \ldots, t_ns_n)$. This proves $(S_1 \to S_2)(t_1, \ldots, t_n)$.

Let $\mathcal{F} \subseteq \mathtt{Cand}^R$ with $\mathcal{F}_{\tau_1,\dots,\tau_n} \neq \emptyset$. We need to show $\forall \mathcal{F} \in \mathtt{Cand}^R_{\forall \alpha\tau_1,\dots,\forall \alpha\tau_n}$. We check the properties of an R-candidate.

1. Let $(\forall \mathcal{F})(t_1, \ldots, t_n)$. Let $S \in \mathcal{F}_{\tau_1, \ldots, \tau_n}$. We have $S(t_1\alpha, \ldots, t_n\alpha)$ for α fresh, so $R(t_1\alpha, \ldots, t_n\alpha)$. Thus $R(t_1, \ldots, t_n)$, because R is admissible.

- 2. $\forall \mathcal{F}$ is closed under R-compatible head β -expansion because each $S \in \mathcal{F}$ is.
- 3. Let $(t_1, \ldots, t_n) \in \mathbb{T}_{\forall \alpha \tau_1} \times \ldots \times \mathbb{T}_{\forall \alpha \tau_n}$ be R-neutral. Then $(t_1 \sigma_1, \ldots, t_n \sigma_n) \in \mathbb{T}_{\tau_1[\sigma_1/\alpha]} \times \ldots \times \mathbb{T}_{\tau_n[\sigma_n/\alpha]}$ is R-neutral. So $S(t_1 \sigma_1, \ldots, t_n \sigma_n)$ for all $S \in \mathcal{F}$ of type $(\tau_1[\sigma_1/\alpha], \ldots, \tau_n[\sigma_n/\alpha])$. This proves $(\forall \mathcal{F})(t_1, \ldots, t_n)$.

Theorem 4.5 (Admissibility theorem). If R is admissible, then R(t, ..., t) for any term t.

Proof. Assume $t:\tau$. By Lemma 4.4 the family Cand^R is a family of logical relations. Let $\xi(\alpha)=R_{\alpha,\ldots,\alpha}$ for a type variable α . We have $\xi(\alpha)\in\operatorname{Cand}^R_{\alpha,\ldots,\alpha}$ by Lemma 4.3. For every $x^\sigma\in\operatorname{FV}(t)$ the tuple (x,\ldots,x) is R-neutral, so $S(x,\ldots,x)$ for every $S\in\operatorname{Cand}^R_{\sigma,\ldots,\sigma}$. By Lemma 3.3 we have $\mathcal{R}^\xi_\sigma\in\operatorname{Cand}^R_{\sigma,\ldots,\sigma}$. Thus $\mathcal{R}^\xi_\sigma(x,\ldots,x)$. Therefore, by the parametricity theorem $(t,\ldots,t)\in\mathcal{R}^\xi_\tau\in\operatorname{Cand}^R$. Since $\mathcal{R}^\xi_\tau\subseteq R$ by property 1 of R-candidates, $R(t,\ldots,t)$.

5 Applications

5.1 Confluence

Let $\operatorname{Con}_{\beta\eta}$ be the set of all terms whose all subterms are $\beta\eta$ -confluent, i.e., $t \in \operatorname{Con}_{\beta\eta}$ iff for every subterm t' of t and all t_1, t_2 such that $t' \to_{\beta\eta}^* t_i$ (i = 1, 2) there exists s with $t_i \to_{\beta\eta}^* s$ (i = 1, 2). By the admissibility theorem, to prove $\beta\eta$ -confluence of System F it suffices to show that $\operatorname{Con}_{\beta\eta}$ is admissible. The proof essentially reduces to the following lemma.

Lemma 5.1. If $t \to_{h\beta} t_1$ and $t \to_{\beta\eta} t_2$ then there is s with $t_1 \to_{\beta\eta}^* s$ and $t_2 \to_{h\beta}^= s$.

Proof. We have $t = (\lambda x.u)w_1 \dots w_n$ and $t_1 = u[w_1/x]w_2 \dots w_n$ $(n \ge 1)$. If the $\beta\eta$ -reduction $t \to_{\beta\eta} t_2$ occurs inside one of u, w_1, \dots, w_n then the claim is obvious. Otherwise, either the reduction $t \to_{\beta\eta} t_2$ is the head β -reduction and $t_2 = t_1$, or u = u'x with $x \notin FV(u')$ and $t_2 = u'w_1 \dots w_n$. In the second case, however, also $u[w_1/x] = u'w_1$, so we may take $s = t_1 = t_2$.

Lemma 5.2. Con_{$\beta\eta$} is admissible.

Proof. We check the properties from Definition 4.1.

- 1. It follows from Lemma 5.1 that $\operatorname{Con}_{\beta\eta}$ is closed under $\operatorname{Con}_{\beta\eta}$ -compatible head β -expansion. Indeed, assume $t_0 = u[w_1/x]w_2 \dots w_n \in \operatorname{Con}_{\beta\eta}$ and $t'_0 = (\lambda x.u)w_1 \dots w_n \to_{h\beta} t_0$ with $w_i \in \operatorname{Con}_{\beta\eta}$ for $i = 1, \dots, n$. Let t' be a subterm of t'_0 . If t' is a subterm of w_i for some $i = 1, \dots, n$, then $t' \in \operatorname{Con}_{\beta\eta}$ and in particular t' is $\beta\eta$ -confluent. If t' is a subterm of $\lambda x.u$ then $t' \in \operatorname{Con}_{\beta\eta}$ because $u \in \operatorname{Con}_{\beta\eta}$. Otherwise, there is a subterm t of t_0 such that that $t' \to_{h\beta} t$. Assume $t' \to_{\beta\eta}^* t'_i$ (i = 1, 2). By Lemma 5.1 there are t_1, t_2 such that $t \to_{\beta\eta}^* t_i$ and $t'_i \to_{h\beta}^= t_i$ (i = 1, 2). Since $t \in \operatorname{Con}_{\beta\eta}$, there is s with $t'_i \to_{h\beta}^= t_i \to_{\beta\eta}^* s$ (i = 1, 2).
- 2. If $xu_1 \ldots u_n$ is $Con_{\beta\eta}$ -neutral then each u_i is either a type or $u_i \in Con_{\beta\eta}$. So $xu_1 \ldots u_n \in Con_{\beta\eta}$.

- 3. If $tx \in Con_{\beta\eta}$ then $t \in Con_{\beta\eta}$ because t is a subterm of tx.
- 4. If $t\alpha \in \operatorname{Con}_{\beta\eta}$ then $t \in \operatorname{Con}_{\beta\eta}$ because t is a subterm of $t\alpha$.

Corollary 5.3. System F is $\beta\eta$ -confluent.

An entirely analogous proof shows that System F is β -confluent.

5.2 Weak normalisation

Let $WN_{\beta\eta}$ be the set of all terms weakly normalising w.r.t $\beta\eta$ -reduction. By the admissibility theorem, to prove weak normalisation of $\beta\eta$ -reduction in System F it suffices to show that $WN_{\beta\eta}$ is admissible.

Lemma 5.4. $WN_{\beta\eta}$ is admissible.

Proof. We check the properties from Definition 4.1.

- 1. It is obvious that $WN_{\beta\eta}$ is closed under head β -expansion.
- 2. If $xu_1 \ldots u_n$ is $WN_{\beta\eta}$ -neutral then each u_i is either a type or $u_i \in WN_{\beta\eta}$. So $xu_1 \ldots u_n \in WN_{\beta\eta}$.
- 3. If $tx \in WN_{\beta\eta}$ then there is s in $\beta\eta$ -normal form such that $tx \to_{\beta\eta}^* s$. Thus either s = s'x and $t \to_{\beta\eta}^* s'$, or $tx \to_{\beta\eta}^* (\lambda x.t')x \to_{\beta} t' \to_{\beta\eta}^* s$, i.e., $t \to_{\beta\eta}^* \lambda x.s$, or $tx \to_{\beta\eta}^* (\lambda x.t'x)x \to_{\eta} t'x \to_{\beta\eta}^* s$, i.e., also $t \to_{\beta\eta}^* \lambda x.s$. In both cases t has a $\beta\eta$ -normal form.
- 4. The proof that $t\alpha \in WN_{\beta\eta}$ implies $t \in WN_{\beta\eta}$ is analogous to the point above.

Corollary 5.5. System F is weakly normalising w.r.t. $\beta\eta$ -reduction.

5.3 Strong normalisation

Strong normalisation is a bit more difficult than weak normalisation, but also follows relatively easily from the admissibility theorem. Let $SN_{\beta\eta}$ be the set of all terms strongly normalising w.r.t. $\beta\eta$ -reduction.

Lemma 5.6. $SN_{\beta\eta}$ is admissible.

Proof. We check the properties from Definition 4.1.

- 1. We need to show that $SN_{\beta\eta}$ is closed under $SN_{\beta\eta}$ -compatible head β -expansion. Assume $u[w_1/x]w_2 \dots w_k \in SN_{\beta\eta}$ and $w_i \in SN_{\beta\eta}$ for $i = 1, \dots, n$. Let $(\lambda x.u)w_1 \dots w_n = t_0 \to_{\beta\eta} t_1 \to_{\beta\eta} t_2 \to_{\beta\eta} \dots$ be an infinite reduction. There are three possibilities.
 - $t_i = (\lambda x.u^i)w_1^i \dots w_k^i$ for each i and there is an infinite reduction from u or one of w_1, \dots, w_k . This contradicts $u[w_1/x]w_2 \dots w_k \in SN_{\beta\eta}$ or $w_1 \in SN_{\beta\eta}$.
 - There is i with $t_i = (\lambda x.u^i)w_1^i \dots w_k^i$ and $t_{i+1} = u^i[w_1^i/x]w_2^i \dots w_k^i$, where $u \to_{\beta\eta}^* u^i$ and $w_j \to_{\beta\eta}^* w_j^i$. But then there is an infinite reduction $u[w_1/x]w_2 \dots w_k \to_{\beta\eta}^* t_{i+1} \to_{\beta\eta} t_{i+2} \to_{\beta\eta} \dots$ Contradiction.
 - There is i with $t_i = (\lambda x.u^i x)w_1^i \dots w_k^i$ and $t_{i+1} = u^i w_1^i w_2^i \dots w_k^i$, where $x \notin FV(u^i)$ and $u \to_{\beta\eta}^* u^i x$ and $w_j \to_{\beta\eta}^* w_j^i$. But then there is an infinite reduction $u[w_1/x]w_2 \dots w_k \to_{\beta\eta}^* t_{i+1} \to_{\beta\eta} t_{i+2} \to_{\beta\eta} \dots$ Contradiction.

Similarly, one shows that if $u[\tau/x]w_1 \dots w_k \in SN_{\beta\eta}$ then $(\Lambda \alpha.u)\tau w_1 \dots w_n \in SN_{\beta\eta}$.

- 2. If $xu_1 \ldots u_n$ is $SN_{\beta\eta}$ -neutral then each u_i is either a type or $u_i \in SN_{\beta\eta}$. So $xu_1 \ldots u_n \in SN_{\beta\eta}$ (an infinite reduction from $xu_1 \ldots u_n$ implies an infinite reduction from one of u_i).
- 3. If $tx \in SN_{\beta\eta}$ then $t \in SN_{\beta\eta}$ in particular.
- 4. If $t\alpha \in SN_{\beta\eta}$ then $t \in SN_{\beta\eta}$ in particular.

Corollary 5.7. System F is strongly normalising w.r.t. $\beta\eta$ -reduction.

5.4 Theorems for free

Let Relⁿ be the family of all n-ary relations closed under $\beta\eta$ -conversion, i.e., $R \in \text{Rel}^n$ iff $R(t_1, \ldots, t_n)$ and $t_i = \beta\eta \ t'_i$ for $i = 1, \ldots, n$ imply $R(t'_1, \ldots, t'_n)$ (provided t'_i has the same type as t_i for $i = 1, \ldots, n$).

Lemma 5.8. Relⁿ is a family of logical relations.

Proof. We check the conditions from Definition 3.1. Obviously, Rel^n is closed under Rel^n -compatible head β -expansion. Also $\text{Rel}_{\alpha,\dots,\alpha} \neq \emptyset$, because e.g. the full relation is closed under $\beta\eta$ -conversion. As for the remaining two points, one easily checks that the operations \rightarrow and \forall preserve the property of being closed under $\beta\eta$ -conversion.

Now we can use the parametricity theorem to prove e.g. that any polymorphic function of type $\forall \alpha.\alpha \to \alpha$ is an identity.

Lemma 5.9. If $f: \forall \alpha.\alpha \to \alpha$ is closed then $f =_{\beta\eta} \Lambda \alpha.\lambda x : \alpha.x$.

Proof. Let $x:\alpha$. By the parametricity theorem for Rel^1 we obtain $\mathcal{R}_{\forall \alpha.\alpha \to \alpha}(f)$. Consider the relation $R = \{t:\alpha \mid t =_{\beta\eta} x\}$. We have $R \in \text{Rel}^1_{\alpha}$. Let $\xi(\alpha) = R$. Then $\mathcal{R}^{\xi}_{\alpha \to \alpha}(f\alpha)$. Also $\mathcal{R}^{\xi}_{\alpha} = \xi(\alpha) = R$, so $\mathcal{R}^{\xi}_{\alpha}(x)$. Thus $\mathcal{R}^{\xi}_{\alpha}(f\alpha x)$, i.e., $f\alpha x =_{\beta\eta} x$. Hence $f =_{\eta} \Lambda \alpha.\lambda x.f\alpha x =_{\beta\eta} \Lambda \alpha.\lambda x.x$.

Similarly, we characterise the type bool = $\forall \alpha.\alpha \rightarrow \alpha \rightarrow \alpha$ as consisting of two constructors true = $\Lambda \alpha.\lambda xy.x$ and false = $\Lambda \alpha.\lambda xy.y$.

Lemma 5.10. If f: bool is closed then $f =_{\beta\eta}$ true or $f =_{\beta\eta}$ false.

Proof. By the parametricity theorem for Rel¹ we have $\mathcal{R}_{bool}(f)$. Let x, y be distinct variables of type α and let $\xi(\alpha) = \{t : \alpha \mid t =_{\beta\eta} x \lor t =_{\beta\eta} y\}$. Then $\xi(\alpha) \in \text{Rel}^1_{\alpha}$ and thus $\mathcal{R}^{\xi}_{\alpha \to \alpha \to \alpha}(f\alpha)$. Obviously, $\xi(\alpha)(x)$ and $\xi(\alpha)(y)$, so $\mathcal{R}^{\xi}_{\alpha}(f\alpha xy)$, i.e., $f\alpha xy =_{\beta\eta} x$ or $f\alpha xy =_{\beta\eta} y$. This implies $f =_{\beta\eta}$ true or $f =_{\beta\eta}$ false.

The previous two lemmas could be proved with β - instead of $\beta\eta$ -conversion, by analysing the normal forms of f, but this would depend on normalisation. The next lemma follows from the lemma above, but for illustrative purposes we give a direct proof that makes a more sophisticated use of the parametricity theorem for binary relations.

Lemma 5.11. If f: bool is closed and $g: \tau \to \sigma$ and $t_1, t_2: \tau$, then $f\sigma(gt_1)(gt_2) =_{\beta\eta} g(f\tau t_1 t_2)$

Proof. By the parametricity theorem for Rel^2 we have $\mathcal{R}_{\text{bool}}(f, f)$. Let $R = \{(s_1, s_2) \mid gs_1 =_{\beta\eta} s_2\}$. We have $R \in \text{Rel}^2_{\tau,\sigma}$ and $R(t_1, gt_1)$ and $R(t_2, gt_2)$. Let $\xi(\alpha) = R$ and $\omega(\alpha) = (\tau, \sigma)$. Then $\mathcal{R}^{\xi,\omega}_{\alpha}(f\tau t_1 t_2, f\sigma(gt_1)(gt_2))$, i.e., $g(f\tau t_1 t_2) =_{\beta\eta} f\sigma(gt_1)(gt_2)$.

Now we show that any polymorphic function into bool is constant. First, we characterise the binary $\mathcal{R}_{\mathtt{bool}}^{\xi}$.

Lemma 5.12. If $\mathcal{R}_{bool}^{\xi}(t_1, t_2)$ then $t_1 =_{\beta \eta} t_2$.

Proof. Let $R = \{(s_1, s_2) \mid s_1 =_{\beta\eta} s_2 \wedge s_1, s_2 : \alpha\}$. We have $R \in \text{Rel}_{\alpha,\alpha}^2$. Let $\xi(\alpha) = R$. Then $\mathcal{R}_{\alpha \to \alpha \to \alpha}^{\xi}(t_1\alpha, t_2\alpha)$. Since $\mathcal{R}_{\alpha}^{\xi}(x, x)$ for any variable $x : \alpha$, we obtain $\mathcal{R}_{\alpha}^{\xi}(t_1\alpha xy, t_2\alpha xy)$, i.e., $t_1\alpha xy =_{\beta\eta} t_2\alpha xy$, for $x, y \notin \text{FV}(t_1, t_2)$. This implies $t_1 =_{\beta\eta} t_2$.

Lemma 5.13. If $f : \forall \alpha.\alpha \rightarrow \text{bool}$ is closed then for all types τ_1, τ_2 and terms $t_1 : \tau_1, t_2 : \tau_2$ we have $f\tau_1t_1 =_{\beta\eta} f\tau_2t_2$.

Proof. By the parametricity theorem for Rel^2 we have $\mathcal{R}_{\forall \alpha.\alpha \to \text{bool}}(f, f)$. Let $R = \{(s_1, s_2) \mid s_1 : \tau_1, s_2 : \tau_2\}$. We have $R \in \text{Rel}^2_{\tau_1, \tau_2}$. Let $\xi(\alpha) = R$ and $\omega(\alpha) = (\tau_1, \tau_2)$. Then $\mathcal{R}^{\xi, \omega}_{\text{bool}}(f\tau_1 t_1, f\tau_2 t_2)$, because $\mathcal{R}^{\xi, \omega}_{\alpha}(t_1, t_2)$. By Lemma 5.12 we obtain $f\tau_1 t_1 = \beta \eta f\tau_2 t_2$.

Next, we consider lists, encoded impredicatively in System F.

Definition 5.14. We define List $(\tau) = \forall \alpha.(\tau \to \alpha \to \alpha) \to \alpha \to \alpha$. We use the abbreviation $[a_1, \ldots, a_n]$ for $\Lambda \alpha \lambda fx.fa_1(fa_2(\ldots(fa_nx)))$. In particular, $[] = \Lambda \alpha \lambda fx.x$. We use a :: l for $\Lambda \alpha \lambda fx.fa(l\alpha fx)$.

Lemma 5.15. If $l: \text{List}(\tau)$ is closed then $l =_{\beta\eta} [a_1, \ldots, a_n]$ for some $a_1, \ldots, a_n : \tau$.

Proof. By the parametricity theorem for Rel¹ we have $\mathcal{R}_{\text{List}(\tau)}(l)$. Given $x:\alpha$ and $f:\alpha\to\alpha\to\alpha$, define $R\in\text{Rel}_{\tau}^1$ by: R(t) iff $t:\tau$ and $t=_{\beta\eta}fa_1(fa_2(\ldots(fa_nx)))$ for some $a_1,\ldots,a_n:\tau$ (possibly n=0). Let $\xi(\alpha)=R$. Let $f:\tau\to\alpha\to\alpha$ and $x:\alpha$ be variables.

We first show $\mathcal{R}^{\xi}_{\tau \to \alpha \to \alpha}(f)$. Let $a : \tau$ and $s : \alpha$ be such that $\mathcal{R}_{\tau}(a)$ and $\mathcal{R}^{\xi}_{\alpha}(s)$. Then $s =_{\beta\eta} fa_1(\dots(fa_nx))$ for some $a_1, \dots, a_n : \tau$. Hence $fas =_{\beta\eta} fa(fa_1(\dots(fa_nx)))$. This implies $\mathcal{R}^{\xi}_{\alpha}(f)$. We also have $\mathcal{R}^{\xi}_{\alpha}(x)$. Thus $\mathcal{R}^{\xi}_{\alpha}(l\alpha fx)$. This implies our thesis.

Lemma 5.16. If ξ is ω -compatible and α is a type variable then $\mathcal{R}_{\mathtt{List}(\alpha)}^{\xi,\omega}([],[])$.

Proof. Let τ_1, τ_2 be types, $R \in \operatorname{Rel}^2_{\tau_1, \tau_2}$, let β be a fresh type variable and let $\xi' = \xi[R/\beta]$ and $\omega' = \omega[(\tau_1, \tau_2)/\beta]$. Assume $\mathcal{R}^{\xi', \omega'}_{\alpha \to \beta \to \beta}(f_1, f_2)$ and $R(a_1, a_2)$. Since $[]\tau_1 f_1 a_1 =_{\beta \eta} a_1$ and $[]\tau_2 f_2 a_2 =_{\beta \eta} a_2$, and $\mathcal{R}^{\xi', \omega'}_{\beta} = R$ is closed under $\beta \eta$ -conversion, we have $\mathcal{R}^{\xi', \omega'}_{\beta}([]\tau_1 f_1 a_1, []\tau_2 f_2 a_2)$. This implies $\mathcal{R}^{\xi, \omega}_{\operatorname{List}(\alpha)}([], [])$.

Lemma 5.17. If ξ is ω -compatible, α is a type variable, $\xi(\alpha) \neq \emptyset$, and

$$\mathcal{R}_{\mathtt{List}(lpha)}^{\xi,\omega}([a_1,\ldots,a_n],[b_1,\ldots,b_m])$$

then n = m and $\mathcal{R}^{\xi,\omega}_{\alpha}(a_i, b_i)$ for every $i = 1, \ldots, n$.

Proof. Let ξ be ω -compatible and let $l_1 = [a_1, \ldots, a_n]$ and $l_2 = [b_1, \ldots, b_m]$. Assume $\omega(\alpha) = (\tau_1, \tau_2)$ and $\mathcal{R}^{\xi,\omega}_{\mathbf{List}(\alpha)}(l_1, l_2)$. We proceed by induction on n.

First assume n, m > 0. We have $\xi(\alpha) \in \text{Rel}_{\tau_1, \tau_2}^2$, so $\mathcal{R}_{(\alpha \to \alpha \to \alpha) \to \alpha}^{\xi, \omega}(l_1\tau_1, l_2\tau_2)$. By Lemma 3.6 we obtain $\mathcal{R}_{\alpha \to \alpha \to \alpha}^{\xi, \omega}(\lambda x : \tau_1.\lambda y : \tau_1.x, \lambda x : \tau_2.\lambda y : \tau_2.x)$. Let $c : \tau_1$ and $d : \tau_2$ be such that $\xi(\alpha)(c, d)$. Then $\mathcal{R}_{\alpha}^{\xi, \omega}(l_1\tau_1(\lambda xy.x)c, l_2\tau_2(\lambda xy.x)d)$. We have $l_1\tau_1(\lambda xy.x)c =_{\beta\eta} a_1$ and $l_2\tau_2(\lambda xy.x)c =_{\beta\eta} b_1$. Since $\mathcal{R}_{\alpha}^{\xi, \omega} = \xi(\alpha) \in \text{Rel}_{\tau_1, \tau_2}^2$, it is closed under $\beta\eta$ -conversion. Thus $\mathcal{R}_{\alpha}^{\xi, \omega}(a_1, b_1)$.

Let β be a fresh type variable and let $\xi' = \xi[\mathcal{R}_{\mathtt{List}(\alpha)}^{\xi,\omega}/\beta]$ and $\omega' = \omega[(\mathtt{List}(\tau_1),\mathtt{List}(\tau_2))/\beta]$. Since $\xi'(\beta) \in \mathtt{Rel}^2_{\mathtt{List}(\tau_1),\mathtt{List}(\tau_2)}$ by Lemma 3.3, ξ' is ω' -comptabile, and $\mathcal{R}_{(\alpha \to \beta \to \beta) \to \beta \to \beta}^{\xi',\omega'}(l_1\tau_1,l_2\tau_2)$. We have $\mathcal{R}^{\xi',\omega'}_{\alpha\to\beta\to\beta}(\lambda x:\tau_1.\lambda y:\text{List}(\tau_1).y,\lambda x:\tau_2.\lambda y:\text{List}(\tau_2).y)$ by Lemma 3.6. Also $\mathcal{R}^{\xi',\omega'}_{\beta}([],[])$ by Lemma 5.16 and Lemma 3.4. Hence $\mathcal{R}^{\xi',\omega'}_{\beta}(l_1\tau_1(\lambda xy.y)[],l_2\tau_2(\lambda xy.y)[])$, i.e.,

$$\mathcal{R}_{\mathtt{List}(\alpha)}^{\xi,\omega}(l_1\tau_1(\lambda xy.y)[],l_2\tau_2(\lambda xy.y)[]).$$

Because $l_1\tau_1(\lambda xy.y)[] =_{\beta\eta} [a_2,\ldots,a_n]$ and $l_2\tau_2(\lambda xy.y)[] =_{\beta\eta} [b_2,\ldots,b_m]$, and $\mathcal{R}_{\mathtt{List}(\alpha)}^{\xi,\omega}$ is closed under $\beta\eta$ -conversion, we have $\mathcal{R}_{\mathtt{List}(\alpha)}^{\xi,\omega}([a_2,\ldots,a_n],[b_2,\ldots,b_m])$. By the inductive hypothesis n=m and $\mathcal{R}_{\alpha}^{\xi,\omega}(a_i,b_i)$ for $i=2,\ldots,n$.

Now assume, e.g., n=0, i.e., $l_1=[]$. If $l_2=[]$ then we are done, so assume $l_2\neq[]$. Let β be a fresh type variable and define $R\in \operatorname{Rel}^2_{\beta,\beta}$ by $R(t_1,t_2)$ iff $t_1=_{\beta\eta}t_2$. Let $a,b:\beta$ be non- $\beta\eta$ -convertible. Let $\xi'=\xi[R/\beta]$ and $\omega'=\omega[R/\beta]$. We have $\mathcal{R}^{\xi',\omega'}_{\beta}(l_1\beta(\lambda xy.a)b,l_2\beta(\lambda xy.a)b)$, i.e., $l_1\beta(\lambda xy.a)b=_{\beta\eta}l_2\beta(\lambda xy.a)b$. But the left side is $\beta\eta$ -convertible to a, while the right side is $\beta\eta$ -convertible to b. Contradiction.

Similarly, one can prove:

Lemma 5.18. If ξ is ω -compatible, α is a type variable, and $\mathcal{R}^{\xi,\omega}_{\alpha}(a_i,b_i)$ for $i=1,\ldots,n$, then $\mathcal{R}^{\xi,\omega}_{\mathrm{List}(\alpha)}([a_1,\ldots,a_n],[b_1,\ldots,b_m])$.

Combining the last three lemmas and Lemma 3.4, we obtain:

Corollary 5.19. Assume ξ is ω -compatible and $\mathcal{R}^{\xi,\omega}_{\tau} \neq \emptyset$. Then $\mathcal{R}^{\xi,\omega}_{\mathtt{List}(\tau)}([a_1,\ldots,a_n],[b_1,\ldots,b_m])$ iff n=m and $\mathcal{R}^{\xi,\omega}_{\tau}(a_i,b_i)$ for $i=1,\ldots,n$.

Definition 5.20. We define map = $\Lambda \alpha \beta . \lambda f : \alpha \to \beta . \lambda l : \text{List}(\alpha).l(\text{List}(\beta))(\lambda xy.fx :: y).$

Lemma 5.21. map $\tau \sigma f[a_1,\ldots,a_n] =_{\beta\eta} [fa_1,\ldots,fa_n].$

Proof. By calculation. \Box

We can now show the free theorems from Wadler [8], with equality interpreted as $\beta\eta$ -conversion.

Lemma 5.22. If $r: \forall \alpha. \texttt{List}(\alpha) \to \texttt{List}(\alpha)$ is closed then for all τ_1, τ_2 and closed $f: \tau_1 \to \tau_2$ and closed $l: \texttt{List}(\tau_1)$ we have $\max \tau_1 \tau_2 f(r\tau_1 l) =_{\beta\eta} r\tau_2(\max \tau_1 \tau_2 f l)$.

Proof. By the parametricity theorem we have $\mathcal{R}_{\forall \alpha. \mathtt{List}(\alpha) \to \mathtt{List}(\alpha)}(r, r)$. By Lemma 5.15 we have $l =_{\beta\eta} [a_1, \ldots, a_n]$. Let $R \in \mathtt{Rel}_{\tau_1, \tau_2}^2$ be defined by: $R(t_1, t_2)$ iff $ft_1 =_{\beta\eta} t_2$. Let $\xi(\alpha) = R$ and $\omega(\alpha) = (\tau_1, \tau_2)$. Then $\mathcal{R}_{\mathtt{List}(\alpha) \to \mathtt{List}(\alpha)}^{\xi, \omega}(r\tau_1, r\tau_2)$. We have $R(a_i, fa_i)$, i.e., $\mathcal{R}_{\alpha}^{\xi, \omega}(a_i, fa_i)$, for $i = 1, \ldots, n$. Hence $\mathcal{R}_{\mathtt{List}(\alpha)}^{\xi, \omega}([a_1, \ldots, a_n], [fa_1, \ldots, fa_n])$ by Corollary 5.19. This implies $\mathcal{R}_{\mathtt{List}(\alpha)}^{\xi, \omega}(r\tau_1[a_1, \ldots, a_n], r\tau_2[fa_1, \ldots, fa_n])$, i.e., $\mathcal{R}_{\mathtt{List}(\alpha)}^{\xi, \omega}(r\tau_1 l, r\tau_2(\mathsf{map}\,\tau_1\,\tau_2\,f\,l))$, by Lemma 5.21 and closure under $\beta\eta$ -conversion. By Lemma 5.15 we have $r\tau_1 l =_{\beta\eta} [b_1, \ldots, b_m]$ and $r\tau_2(\mathsf{map}\,\tau_1\,\tau_2\,f\,l) =_{\beta\eta} [b'_1, \ldots, b'_k]$. Thus k = m and $b'_i = b_i$ for $i = 1, \ldots, m$, by closure under $\beta\eta$ -conversion and Corollary 5.19. So $r\tau_2(\mathsf{map}\,\tau_1\,\tau_2\,f\,l) =_{\beta\eta} [fb_1, \ldots, fb_m]$. By Lemma 5.21 this implies $\mathsf{map}\,\tau_1\,\tau_2\,f\,(r\tau_1 l) =_{\beta\eta} r\tau_2(\mathsf{map}\,\tau_1\,\tau_2\,f\,l)$.

Definition 5.23. We define $fold = \Lambda \alpha \beta. \lambda f: \alpha \to \beta \to \beta. \lambda a: \beta. \lambda l: List(\alpha). l\beta fa.$

Lemma 5.24. Let $f: \tau \to \sigma \to \sigma$ and $f': \tau' \to \sigma' \to \sigma'$ be closed. Let $r_1: \tau \to \tau'$ and $r_2: \sigma \to \sigma'$ be closed and such that for all $t_1: \tau$, $t_2: \sigma$ we have $r_2(ft_1t_2) =_{\beta\eta} f'(r_1t_1)(r_2t_2)$. Then for all $u: \sigma$ and all closed $l: \text{List}(\tau)$ we have $r_2(\text{fold}\,\tau\,\sigma\,f\,u\,l) =_{\beta\eta} \text{fold}\,\tau'\,\sigma'\,f'(r_2u)(\text{map}\,\tau\,\tau'\,r_1l)$.

Proof. By the parametricity theorem $\mathcal{R}_{\forall \alpha\beta.(\alpha\to\beta\to\beta)\to\beta\to \mathrm{List}(\alpha)\to\beta}(\mathtt{fold},\mathtt{fold})$. Let $R_1\in\mathtt{Rel}^2_{\tau,\tau'}$ be defined by: $R_1(t_1,t_2)$ iff $r_1t_1=_{\beta\eta}t_2$. Analogously, define $R_2\in\mathtt{Rel}^2_{\sigma,\sigma'}$. Let $\xi(\alpha)=R_1$ and $\omega(\alpha)=(\tau,\tau')$ and $\xi(\beta)=R_2$ and $\omega(\beta)=(\sigma,\sigma')$. Then $\mathcal{R}^{\xi,\omega}_{(\alpha\to\beta\to\beta)\to\beta\to\mathrm{List}(\alpha)\to\beta}(\mathtt{fold}\,\tau\,\sigma,\mathtt{fold}\,\tau'\,\sigma')$.

Next, we want to show that $\mathcal{R}_{\alpha\to\beta\to\beta}^{\xi,\omega}(f,f')$. This is equivalent to: for all $a:\tau, a':\tau'$ with $R_1(a,a')$ and all $b:\sigma, b':\sigma'$ with $R_2(b,b')$ we have $R_2(fab,f'a'b')$. In other words, we need to show that if $r_1a=_{\beta\eta}a'$ and $r_2b=_{\beta\eta}b'$ then $r_2(fab)=_{\beta\eta}f'a'b'$. But this follows from the assumption on r_1,r_2 .

Hence, $\mathcal{R}_{\beta \to \mathtt{List}(\alpha) \to \beta}^{\xi, \omega}(\mathtt{fold}\,\tau\,\sigma\,f, \mathtt{fold}\,\tau'\,\sigma'\,f')$. Since $R_2(u, r_2u)$, also

$$\mathcal{R}_{\mathtt{List}(\alpha) \to \beta}^{\xi, \omega}(\mathtt{fold}\,\tau\,\sigma\,f\,u, \mathtt{fold}\,\tau'\,\sigma'\,f'\,(r_2u)).$$

By Lemma 5.15 we have $l =_{\beta\eta} [a_1, \ldots, a_n]$. We have $R_1(a_i, r_1a_i)$ for $i = 1, \ldots, n$. Hence $\mathcal{R}_{\mathsf{List}(\alpha)}^{\xi,\omega}([a_1, \ldots, a_n], [r_1a_1, \ldots, r_1a_n])$. By closure under $\beta\eta$ -conversion and Lemma 5.21 we obtain $\mathcal{R}_{\mathsf{List}(\alpha)}^{\xi,\omega}(l, \mathsf{map}\,\tau\,\tau'\,r_1\,l)$.

Therefore $\mathcal{R}_{\beta}^{\xi,\omega}(\operatorname{fold} \tau \, \sigma \, f \, u \, l, \operatorname{fold} \tau' \, \sigma' \, f' \, (r_2 u) \, (\operatorname{map} \tau \, \tau' \, r_1 \, l))$. Hence

$$r_2(\operatorname{fold} \tau \, \sigma \, f \, u \, l) =_{\beta n} \operatorname{fold} \tau' \, \sigma' \, f' \, (r_2 u)(\operatorname{map} \tau \, \tau' \, r_1 l).$$

References

- [1] Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types. Perspectives in logic. Cambridge University Press, 2013.
- [2] Jean Gallier. On Girard's "Candidats de Réductibilité". Technical report, University of Pennsylvania, 1989.
- [3] J.-V. Girard, P. Taylor, and Y. Lafont. *Proofs and Types*. Cambridge University Press, 1989.
- [4] Gordon Plotkin and Martín Abadi. A logic for parametric polymorphism. In TLCA, 1993.
- [5] John C. Reynolds. Types, abstraction and parametric polymorphism. In *Information Processing* '83, 1983.
- [6] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
- [7] Richard Statman. Logical relations and the typed lambda-calculus. *Information and Control*, 65(2/3):85-97, 1985.
- [8] Philip Wadler. Theorems for free! In FPCA 1989, pages 347–359, 1989.
- [9] Philip Wadler. The Girard-Reynolds isomorphism (second edition). *Theor. Comput. Sci.*, 375(1-3):201–226, 2007.