Capacidad de los canales. Relación con la tasa de información **TEORIA DE MUESTREO O DE NYQUIST**

Estudia la cantidad de información que es posible enviar a través de un canal de comunicaciones sin ruido (canal ideal) y de ancho de banda finito de valor Δf

Cuando se utilizan señales binarias es:

Vtmax=2 Δf [bps]

donde Δf = ancho de banda de la señal

Cuando se utilizan señales multinivel es:

 $Vt^{M}max = 2 \Delta f log_{2} n [bps]$ donde n= número de niveles de la señal

Vt^Mmax = Vtmax log₂ n [bps]

De estas expresiones surge el concepto de capacidad de un canal

C = Vtmax [bps]

Capacidad de los canales. Relación con la tasa de información RUIDO: Características de aditividad

Relación
$$\frac{Se\tilde{n}al}{Ruido} = \frac{S}{N} = \frac{PotenciaSe\,\tilde{n}al}{PotenciaRu\,ido}$$

Cuantifica la medida en que la señal útil supera el ruido

Relación señal Ruido

Relación
$$\frac{S}{N}$$
 [dB] = 10 log $\frac{S}{N}$

Capacidad de los canales. Relación con la tasa de información

FACTOR DE RUIDO

Canales de comunicación y dispositivos eléctricos conocidos como Amplificadores están caracterizados por un parámetro denominado Factor Ruido.

F = Relación S/N entrada Relación S/N salida

Capacidad de los canales. Relación con la tasa de información

FACTOR DE RUIDO

$$F = \frac{S1/N1}{S2/N2}$$

donde
$$S2 = S1 * G$$

$$F = \frac{S1/N1}{S1G/N2}$$

Simplificando

$$F = \frac{N2}{GxN1}$$

Relación que depende exclusivamente de la ganancia y del ruido propio del canal y del ruido que puede añadir el amplificador

SEÑALES DIGITALES

En las señales digitales no se emplea como parámetro de medición la relación señal ruido en su lugar se usa el BER (Bit Error Rate) <a>! Tasa de Errores

Capacidad de los canales. Relación con la tasa de información TEORIA DE SHANNON-HARTLEY

$$C = Vt_{max} log_2 n_{max} [bps]$$

Nmax= Sera el maximo valor que posiblite la relacion

con
$$n_{\text{max}} = (1 + \frac{S}{N})^{1/2}$$
 y $Vt_{\text{max}} = 2\Delta f$

$$C = 2\Delta f \log_2 n_{max}$$
 [bps]

C =
$$2\Delta f \log_2 (1 + \frac{S}{N})^{1/2} [bps]$$

C = $\Delta f \log_2 (1 + \frac{S}{N}) [bps]$

Simplificando

$$C = \Delta f \log_2 (1 + \frac{S}{N}) [bps]$$

Donde:

 Δf = Ancho de banda del canal de comunicaciones

S = Potencia media de la señal continua transmitida por el canal

N = Potencia media del Ruido Gaussiano

Ejercicio Nro. 1

Teniendo en cuenta que en un canal telefónico el valor de la relación S/N típico es de 30 dB, FCI=300Hz, FCS=3300Hz. ¿Cuál es el límite superior de la tasa de transmisión de datos confiable?.

La tasa transmisión de datos confiables = ?

$$C = \Delta f \log_2 (1+S/N)$$
 [bps]

$$S/N [dB] = 10 log S/N$$

$$30 = 10 \log S/N$$

$$\Delta f = FCS - FCI = 3300Hz - 300 Hz = 3000 Hz$$

$$C = \Delta f \log_2 (1+S/N)$$
 [bps]

$$C=3000 \log_2 (1+1000) = 29,9 \text{ Kbps}$$

Ejercicio Nro. 2

Calcular la relación señal a ruido (S/N) expresada en dB para los siguientes casos:

```
a. \Delta f = 3000 \text{ Hz}, C = 10.000 \text{ bps}.
b. \Delta f = 10 \text{ KHz}, C = 10.000 \text{ bps}.
c. \Delta f = 1 \text{ KHz}, C = 10 \text{ Kbps}.
```

Graficar la variación de S/N (expresada en dB) en función del ancho de banda Δf (expresada en Hz). Extraer conclusiones.

```
a) C = \Delta f \log_2 (1+S/N) [bps]

10.000 = 3.000 \log_2 (1+S/N)

10/3 = \log_2 (1+S/N)

S/N = 2^{10/3} - 1 = 10,07 - 1 = 9,07 veces

S/N [dB] = 10 \log S/N

S/N = 10 \log 9,07 = 9,57 dB
```

Ejercicio Nro. 2 S/N[dB] c) $C = \Delta f \log_2 (1+S/N)$ [bps] $10.000 = 1.000 \log_2 (1+S/N)$ 30 $10 = \log_2 (1 + S/N)$ C=cte=10 Kbps $S/N = 2^{10} - 1 = 1024 - 1 = 1023$ veces 9,57 S/N [dB] = 10 log S/NAB [KHz] $S/N = 10 \log 1023$ 0 S/N = 30 dB10 3

Conclusión a medida que aumenta AB disminuye la relación señal ruido.

Ejercicio Nro. 3

Necesitamos duplicar la capacidad de transporte de información de un canal de datos cuyo ancho de banda (AB) es de 4KHz y su SNR=20dB. Sabiendo que utilizaremos el mismo canal, necesitamos saber cuántas veces debemos aumentar la potencia de señal original para lograrlo. ¿Cuál es la nueva SNR medida en dB?.

$$\Delta f = 4 \text{ KHz} - S/N = 20 \text{ dB}$$
 $S/N [dB] = 10 \log S/N$
 $20 = 10 \log S/N$
 $S/N = 100 \text{ veces}$
 $C = \Delta f \log_2 (1+S/N) [bps]$
 $C = 4000 \log_2 (1+100) = 26.632 \text{ bps}$
 $2C = 2 * 26.632 \text{ bps}$
 $2C = 53.265 \text{ bps}$

```
C = \Delta f \log_2 (1+S/N) [bps]

53.265 = 4000 \log_2 (1+S/N)

S/N = 10.198 \text{ veces}

S/N [dB] = 10 \log S/N

S/N = 10 \log 10.198

S/N = 40 dB
```

Ejercicio Nro. 4

Tenemos un canal cuyo ancho de banda (AB) es de 4KHz y su SNR=20dB. Sabiendo que por desperfectos aumenta al doble su potencia de ruido, estimar en forma porcentual la caída en la capacidad de transporte. ¿Cuál es la nueva SNR medida en dB?

```
S/N [dB] = 10 log S/N
20 = 10 \log S/N = 9,57 dB
10^2 = S/N
S/N = 100 \text{ veces}
C = \Delta f \log_2 (1+S/N) [bps]
C = 4.000 \log_2 (1+100)
C = 26.632 \text{ bps}
C = \Delta f \log_2 (1+S/N*2) [bps]
C = 4.000 \log_2 (1+50)
C = 22.689 bps
```

```
% = {(26632-22689) / 22689} * 100
% = 17,34

S/N [dB] = 10 log S/N

S/N = 10 log 50

S/N = 16,98 dB
```

Ejercicio Nro. 5

Necesitamos transmitir datos sobre un canal de comunicación en condiciones extremadamente desfavorables. Sabemos que en dicho canal la potencia de ruido duplica a la potencia de señal y que la capacidad transmisión requerida es de 64Kbps. ¿Qué sistema recomendaría? ¿Cuál sería el ancho de banda requerido? ¿Cuál es la SNR expresada en dB?.

S/N = 1/2 veces y C = 64.000 bps
S/N [dB] = 10 log S/N
S/N = 10 log 1/2
S/N = -3dB
C =
$$\Delta f \log_2 (1+S/N)$$
 [bps]
64.000 = $\Delta f \log_2 (1+1/2)$
64.000 = $\Delta f 0,585$
 $\Delta f = 109,4$ KHz

Ejercicio Nro. 6

Se mide el rendimiento de una línea telefónica (3,1 Khz de ancho de banda). Cuando la señal es 10 voltios, el ruido es de 5 milivoltios. ¿Cuál es la tasa de datos máxima soportada por esta línea telefónica?.

Observa que los datos del enunciado son amplitudes (voltios) y no potencias (watios), por tanto hay que aplicar la formula:

```
S/N [dB] = 20 log S/N
```

$$S/N = 20 \log 10/0,005$$

$$S/N = 66 dB$$

$$S/N [dB] = 10 log S/N$$

$$66 = 10 \log S/N$$

$$S/N = 3.981.071 \text{ veces}$$

 $C = \Delta f \log_2 (1+S/N)$ [bps]

 $C = 3100 \log_2 (1+3.981.071)$

C = 67.966 bps

Ejercicio Nro. 7

Suponer que en el espectro de un canal está situado entre los 3 Mhz y los 4 Mhz y que la relación señal ruido es de 24 dB. Calcular la capacidad del canal y la cantidad de niveles de señalización necesaria.

$$S/N [dB] = 10 log S/N$$

 $24 = 10 \log S/N$

S/N = 251,18 veces

 $C = \Delta f \log_2 (1+S/N)$ [bps]

 $C = 1 \log_2 (1+251,18)$

C = 7,97 Mbps

Cantidad de niveles de señalización

Caso Ideal – Sin Ruido

 $C = 2\Delta f \log_2 n [bps]$

 $7,97 = 2*1 \log_2 n$

n = 16