Points équidistants de deux droites

Partie I

Soit $\mathcal D$ une droite de l'espace géométrique passant par un point A et dirigée par un vecteur $\vec u$. Soit M un point de l'espace et H son projeté orthogonal sur $\mathcal D$.

- 1. Montrer que pour tout point N de la droite \mathcal{D} , on a $MN \ge MH$ avec égalité ssi N = H.
- 2. On appelle distance du point M à la droite \mathcal{D} le réel : $d(M, \mathcal{D}) = MH$.

Montrer que
$$d(M, \mathcal{D}) = \frac{\left\|\overrightarrow{AM} \wedge \overrightarrow{u}\right\|}{\left\|\overrightarrow{u}\right\|}$$
.

3. Déterminer la distance du point $M \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$ à la droite $\mathcal{D} : \begin{cases} x+y+z=1 \\ 2x-y-z=-1 \end{cases}$.

Partie II

Soit $\mathcal D$ et $\mathcal D'$ deux droites non coplanaires dirigées par des vecteurs unitaires $\vec u$ et $\vec v$. On étudie Σ l'ensemble des points M équidistants de $\mathcal D$ et de $\mathcal D'$ i.e. tels que $d(M,\mathcal D)=d(M,\mathcal D')$.

On note:

- Δ la perpendiculaire commune,
- H et H' les points de concours de Δ avec les droites \mathcal{D} et \mathcal{D}' ,
- O le milieu du segment [HH'].
- 1. On note $\theta \in]0,\pi[$ l'écart angulaire entre les vecteurs \vec{u} et \vec{v} .

1.a Montrer que
$$\|\vec{u} + \vec{v}\| = 2\cos\frac{\theta}{2}$$
 et $\|\vec{u} - \vec{v}\| = 2\sin\frac{\theta}{2}$.

$$\text{1.b} \qquad \text{On pose } \ \vec{i} = \frac{\vec{u} + \vec{v}}{\|\vec{u} + \vec{v}\|}, \ \vec{j} = \frac{\vec{u} - \vec{v}}{\|\vec{u} - \vec{v}\|} \ \text{et} \ \vec{k} = \vec{i} \wedge \vec{j} \ .$$

Montrer que $\mathcal{R} = (O; \vec{i}, \vec{j}, \vec{k})$ est un repère orthonormé direct de l'espace. Désormais l'espace sera supposé muni de ce repère.

1.c Observer que
$$\vec{u} = \cos\frac{\theta}{2}\vec{i} + \sin\frac{\theta}{2}\vec{j}$$
, $\vec{v} = \cos\frac{\theta}{2}\vec{i} - \sin\frac{\theta}{2}\vec{j}$.

- 1.d Montrer qu'il existe $a \in \mathbb{R}^*$ tel que $\overrightarrow{OH} = a\overrightarrow{k}$ et $\overrightarrow{OH'} = -a\overrightarrow{k}$.
- 2. Soit M un point de coordonnées x, y, z.
- 2.a Exprimer $d(M, \mathcal{D})$ et $d(M, \mathcal{D}')$ en fonction de x, y, z, a et θ .
- 2.b Former une équation cartésienne de l'ensemble Σ .
- 3. Pour $h \in \mathbb{R}$, on note Π_h le plan d'équation z = h.

 On munit ce plan du repère $(\Omega_h, \vec{i}, \vec{j})$ où Ω_h est le point d'intersection de Π_h et de (Oz).
- 3.a A quelle condition un point M de coordonnées x,y de Π_h appartient—il à Σ ?
- 3.b Préciser la nature de la courbe intersection de Σ avec Π_h .
- 4. Pour $\varphi \in \mathbb{R}$, on pose $\vec{u}_{\varphi} = \cos \varphi \vec{i} + \sin \varphi \vec{j}$ et on considère Π'_{φ} le plan dont $(O; \vec{u}_{\varphi}, \vec{k})$ est un repère.
- 4.a A quelle condition un point M de coordonnées t,z de Π'_a appartient-il à Σ ?
- 4.b Préciser la nature de la courbe intersection de Σ avec Π'_{ω} .