Graphic Lasso: Possible Accuracy for Multi-Layer Model

Jiaxin Hu

January 8, 2021

1 Discussion about Identifiability

Suppose we have a dataset with p variables and K categories. In multi-layer model, we assume the rank of decomposition r is known, and the precision matrices are of form

$$\Omega^k = \Theta_0 + \sum_{l=1}^r u_{lk} \Theta_l, \quad \text{for} \quad k = 1, ..., K.$$
 (1)

The identifiability problem for $\{\Theta_0, \Theta_1, ..., \Theta_r, \mathbf{u}_1, ..., \mathbf{u}_r\}$ is actually an identifiability problem for tensor decomposition.

Let $\mathcal{Y} \in \mathbb{R}^{p \times p \times K}$ denote the collection of K networks, where $\mathcal{Y}[,,k] = \Omega^k, k \in [K]$. Let $\mathcal{C} \in \mathbb{R}^{p \times p \times (r+1)}$ denote the collection of "core" networks, where $\mathcal{C}[,,1] = \sqrt{K}\Theta_0$, $\mathcal{C}[,,l] = \Theta_{l-1}, l = 2, ..., (r+1)$. Let $\mathbf{U} \in \mathbb{R}^{K \times (r+1)} = (\mathbf{u}_0, \mathbf{u}_1, ..., \mathbf{u}_r)$ denote the factor matrix, where $\mathbf{u}_0 = \mathbf{1}_K/\sqrt{K}$. Rewrite the model (1) in tensor form.

$$\mathcal{Y} = \mathcal{C} \times_3 \mathbf{U}. \tag{2}$$

Therefore, the identifiability problem for $\{\Theta_l, \mathbf{u}_l\}$ becomes the identifiability problem for $\{\mathcal{C}, \mathbf{U}\}$. Before we discuss the identifiable condition case by case, we first assume \mathcal{C} is full rank on mode 3.

1. No sparsity constrain on U.

Proposition 1. The decomposition C and U are identifiable if U is an orthonormal matrix, i.e., $U^TU = I_{r+1}$.

Proof. Let Unfold(\cdot) denote the unfold representation of a tensor on mode 3. The model (2) is equal to

$$Unfold(\mathcal{Y}) = UUnfold(\mathcal{C}).$$

By matrix SVD, we have $\operatorname{Unfold}(\mathcal{Y}) = \tilde{U}\Sigma V^T$, where \tilde{U} is an orthonormal matrix. The SVD decomposition is unique up to orthogonal rotation (ignore row permutation).

Note that $\mathbf{u}_0 = \mathbf{1}_K/\sqrt{K}$. There always has a unique orthonormal matrix \mathbf{R} such that the first column of $\tilde{\mathbf{U}}\mathbf{R}$ is equal to $\mathbf{1}_K/\sqrt{K}$. Let $\mathbf{U} = \tilde{\mathbf{U}}\mathbf{R}$ and $\mathrm{Unfold}(\mathcal{C}) = \mathbf{R}^T \Sigma \mathbf{V}$. Then, \mathbf{U} and \mathcal{C} are identifiable.

2. Membership constrain on U. (Without intercept Θ_0)

If U is a membership matrix, we are clustering K categories into r groups. Then, the model (1) becomes

$$\Omega^k = \Theta_{i_k}, \quad \text{for} \quad k = 1, ..., K,$$

where $i_k \in [r]$ is the group for the k-th category. Then, let $C \in \mathbb{R}^{p \times p \times r}$, where $C[, l] = \Theta_l, l = 1, ..., r$, and $U \in \mathbb{R}^{K \times r} = (\mathbf{u}_1, ..., \mathbf{u}_r)$.

Proposition 2. The decomposition C and U are identifiable up to permutation if U is a membership matrix, i.e., in each row of U there is only 1 copy of 1 and massive 0.

Proof. If U is a membership matrix, the model (2) is a special case of tensor block model. By Proposition 1 in Wang, the matrix U is identifiable if C is irreducible on mode 3. In our case, we assume C is full rank on mode 3, and thus $\{U, C\}$ are identifiable.

Remark 1. The sparsity of Θ_l won't affect the identifiability in these two cases under the assumption that \mathcal{C} is full rank on mode 3. In no sparsity constrain case, we only need the full rankness of Unfold(\mathcal{C}), and the sparsity on the first and second mode of \mathcal{C} does not affect the rank of Unfold(\mathcal{C}). In membership constrain, we only need the mode 3 irreducibility of \mathcal{C} .

Remark 2. The two cases above are two extreme cases. Intermediate cases include the fuzzy clustering, where $\sum_{l=1}^{r} u_{lk} = 1, k \in [K]$, and the sparsity constrain for the column, where $|\mathbf{u}_l|_0 < a, l \in [r]$.

2 A simple extension

Let $Q^k(\Omega) = \operatorname{tr}(S^k\Omega) - \log |\Omega|$. Assume the rank of decomposition r is known. Consider the constrained optimization problem

$$\min_{\mathcal{C}} \sum_{k=1}^{K} \left[Q^{k}(\Omega^{k}) \right]$$

$$s.t. \quad \Omega^{k} = \Theta_{0} + \sum_{l=1}^{r} u_{lk} \Theta_{l}, \quad \text{for} \quad k = 1, ..., K,$$

$$\|\Theta_{l}\|_{0} \leq b, \quad \text{for} \quad l = 1, ..., r,$$

$$\|\Theta_{0}\|_{0} \leq b_{0},$$

with more identifiability conditions,

where a, b, b_0 are fixed positive constants, $|\cdot|_0$ refers to the vector L_0 norm, and $||\cdot||_0$ refers to the matrix L_0 norm. For simplicity, let $\hat{\mathcal{C}} = \{\hat{\Theta}_0, \hat{\Theta}_1, ..., \hat{\Theta}_r, \hat{\mathbf{u}}_1,, \hat{\mathbf{u}}_r\}$ denote the estimation, and $\hat{\Omega}^k = \hat{\Theta}_0 + \sum_{l=1}^r \hat{u}_{lk} \hat{\Theta}_l$ for k = 1, ..., K.

For true precision matrices Ω^k , let $T^k = \{(j,j') | \omega_{j,j'}^k \neq 0\}$ and $q^k = |T^k|$. Assume $0 < \tau_1 < \phi_{\min}(\Omega^k) \leq \phi_{\max}(\Omega^k) < \tau_2, k = 1, ..., K$, for some positive constant τ_1, τ_2 . This condition can be transferred as some conditions for $\{\Theta_l, \mathbf{u}_l\}$. I will specify the conditions later.

Theorem 2.1. Suppose two assumptions hold. Let $\{\Omega^k\}$ denote the true precision matrices. For the estimation \hat{C} such that $\sum_{k=1}^K \left[Q^k(\hat{\Omega}^k)\right] \leq \sum_{k=1}^K \left[Q^k(\Omega^k)\right]$ and satisfies the constrains, the following accuracy bound holds with probability tending to 1.

$$\sum_{k=1}^K \left\| \hat{\Omega}^k - \Omega^k \right\|_F \le C K \left(C_1(b_0 + rb) \left(\frac{\log p}{n} \right)^{1/2} + C_2 \left(\frac{p \log p}{n} \right)^{1/2} \right),$$

where n is the sample size for each category, and C, C_1, C_2 are positive constants independent with p, n.

Proof. Let Ω^k denote the true precision matrices for k=1,...,K. Consider the estimation $\hat{\mathcal{C}}$ such that $\sum_{k=1}^K \left[Q^k(\hat{\Omega}^k)\right] \leq \sum_{k=1}^K \left[Q^k(\Omega^k)\right]$. Let $\Delta^k = \hat{\Omega}^k - \Omega^k$. For a matrix M, let M_T denote the matrix M with all elements outside the index set T replaced by 0, and $\tilde{M} = \text{vec}(M)$ be the vectorization of M. Define the function

$$G(\left\{\Delta^{k}\right\}) = \sum_{k=1}^{K} \operatorname{tr}(S(\Omega^{k} + \Delta^{k})) - \operatorname{tr}(\Omega^{k}) - \log|\Omega^{k} + \Delta^{k}| + \log|\Omega^{k}| = I_{1} + I_{2}, \tag{3}$$

where

$$I_{1} = \sum_{k=1}^{K} \operatorname{tr}((S^{k} - \Sigma^{k})\Delta^{k}), \quad I_{2} = \sum_{k=1}^{K} (\tilde{\Delta}^{k})^{T} \int_{0}^{1} (1 - v)(\Omega^{k} + v\Delta^{k})^{-1} \otimes (\Omega^{k} + v\Delta^{k})^{-1} dv \tilde{\Delta}^{k}.$$

With probability tending to 1, we have

$$|I_1| \leq C_1 \left(\frac{\log p}{n}\right)^{1/2} \sum_{k=1}^K \left(|\Delta_{T^k}^k|_1 + |\Delta_{T^{k,c}}^k|_1\right) + C_2 \left(\frac{p\log p}{n}\right)^{1/2} \sum_{k=1}^K \left\|\Delta^k\right\|_F, \quad I_2 \geq \frac{1}{4\tau_2^2} \sum_{k=1}^K \left\|\Delta^k\right\|_F^2.$$

Note that $|\Delta_{T^k}^k|_1 \leq \sqrt{q^k} \|\Delta^k\|_F$. Then, we only need to deal with $|\Delta_{T^{k,c}}^k|_1$. Rewrite the term, we have

$$|\Delta_{T^{k,c}}^{k}|_{1} = |\hat{\Theta}_{0,T^{k,c}} + \hat{u}_{1k}\hat{\Theta}_{1,T^{k,c}} + \dots + \hat{u}_{rk}\hat{\Theta}_{r,T^{k,c}}|_{1} \le (b_{0} + rb) \left\|\Delta^{k}\right\|_{\max} \le (b_{0} + rb) \left\|\Delta^{k}\right\|_{F}.$$

To let the equation (3) smaller than 0, we have

$$I_2 \le -I_1 \le |I_1|.$$
 (4)

Plugging the upper bound of $|I_1|$ and the lower bound of I_2 into the inequality (4), we have

$$\frac{1}{4\tau_2^2} \sum_{k=1}^K \left\| \Delta^k \right\|_F^2 \le C_1 \left(\frac{\log p}{n} \right)^{1/2} \sum_{k=1}^K \left(\sqrt{q^k} \left\| \Delta^k \right\|_F + (b_0 + rb) \left\| \Delta^k \right\|_F \right) + C_2 \left(\frac{p \log p}{n} \right)^{1/2} \sum_{k=1}^K \left\| \Delta^k \right\|_F.$$

By Cauchy Schwartz inequality, we know that $\sum_{k=1}^{K} \|\Delta^k\|_F^2 \ge \frac{1}{K} (\sum_{k=1}^{K} \|\Delta^k\|_F)^2$. Also, note that $q^k \le (b_0 + rb), k = 1, ...K$. Dividing by $\sum_{k=1}^{K} \|\Delta^k\|_F$ on both sides of the inequality, we obtain the accuracy rate

$$\sum_{k=1}^{K} \left\| \Delta^{k} \right\|_{F} = \sum_{k=1}^{K} \left\| \hat{\Omega}^{k} - \Omega^{k} \right\|_{F} \le 4\tau_{2}^{2} K \left(C_{1}(b_{0} + rb) \left(\frac{\log p}{n} \right)^{1/2} + C_{2} \left(\frac{p \log p}{n} \right)^{1/2} \right). \tag{5}$$

Remark 3. The accuracy (5) holds when q^k are fixed. Otherwise, the accuracy is of order $\mathcal{O}_p\left[q\left\{\frac{\log p}{n}\right\}^{1/2}\right]$.

Remark 4. This proof does not utilize the special structure of Ω^k . We can go through the proof with the constrain $|\Omega^k| < s$.

Remark 5. Both accuracy results of our constrained estimator and penalized estimator are of order $F(p,q) \left(\frac{\log p}{n}\right)^{1/2}$, where $F(p,q) = (p+q)^{1/2}$ for penalized estimator and $F(p,q) = (p+q^2)^{1/2}$ with $q = b_0 + rb$ in our estimator. In case of growing (p,n) and fixed q, the two estimators share the same accuracy rate.

However, the condition is different. Penalized estimator uses L1, whereas ours uses L0. Please summarize the comparison in a 2-by-2-by-2 table.

two ground truths: L1 vs. L0

two fitting techniques: L1 vs. L0

two appraoches: penalized vs. constrained.

3 Next

- Think about the identifiability of the intermediate cases (spare matrix factorization).
- Think about the proof which utilizes the special structure of the Ω^k .