Halftone (II)

Dr. Xiqun Lu

College of Computer Science

Zhejiang University

- Threshold Dithering
- Random Modulation
- Ordered Dithering [1, Bayer, 1973]
 - Cluster dot screen
 - Disperse dot screen
- Error Diffusion [2, Floyd and Steinberg, 1975]

- Threshold Dithering
- Random Modulation
- Ordered Dithering [1, Bayer, 1973]
 - Cluster dot screen
 - Disperse dot screen
- Error Diffusion [2, Floyd and Steinberg, 1975]

Ordered Dithering [1]

- Ordered dithering is *a point process* that produces output by comparing a single continuous-tone input value to a deterministic **periodic array of thresholds** (**dither matrix**) [4].
- For example, a 2×2 dither matrix D_2 : $D_2 = \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}$
- The dither matrix can be converted to a "threshold matrix" or "screen" using the following operation.

$$T(i, j) = 255 \times \frac{D(i, j) + 0.5}{N^2}$$

• The ordered dithering algorithm is applied via thresholding. *X* is an original grayscale image.

$$b(i, j) = \begin{cases} 255 & \text{if } X(i, j) > T(i, j) \\ 0 & \text{otherwise} \end{cases}$$

Example for Ordered Dithering

Uniform Texture

Fig.1 (a) Original grayscale image

(b) Halftone image dithered with D₂

Dither Matrix

- The size of the matrix and the arrangement of the values have an important effect on the dither process.
- Two common dither matrix patterns: **clustered** pattern and **dispersed** pattern.
 - Clustered pattern: if the consecutive thresholds are located in spatial proximity, then it is called a "clustered pattern".
 - Dispersed pattern: the thresholds are uniformly distributed in the matrix.

Two 8×8 Dither Matrix Patterns

62	57	48	36	37	49	58	63
56	47	35	21	22	38	50	59
46	34	20	10	11	23	39	51
33	19	9	3	0	4	12	24
32	18	8	2	1	5	13	25
45	31	17	7	6	14	26	40
55	44	30	16	15	27	41	52
61	54	43	29	28	42	53	60
(a)							

0	32	8	40	2	34	10	42
1						58	
12	44	4	36	14	46	6	38
60	28	52	20	62	30	54	22
3	35	11	43	1	33	9	41
51	19	59	27	49	17	57	25
15	47	7	39	13	45	5	37
63	31	55	23	61	29	53	21
	(b)						

Fig.2 Examples for two dither matrix patterns (a)

Clustered pattern (b) Dispersed pattern

Properties of Clustered Pattern

- Relatively visible texture
- Relatively poor detail rendition
- Uniform texture across entire grayscale.
- Robust performance with non-ideal output devices

Dispersed Dithering

• Bayer's optimal dither matrix [1, Bayer, 1973]

$$D_{2n} = \begin{bmatrix} 4 \times D_n(i,j) & 4 \times D_n(i,j) + 2 \\ 4 \times D_n(i,j) + 3 & 4 \times D_n(i,j) + 1 \end{bmatrix}$$

• 4×4 and 8×8 Bayer's optimal dither matrixes

0	8	2	10
12	4	14	6
3	11	1	9
15	7	13	5

							~~
							42
48	16	56	24	50	18	58	26
12	44	4	36	14	46	6	38
60	28	52	20	62	30	54	22
3	35	11	43	1	33	9	41
51	19	59	27	49	17	57	25
15	47	7	39	13	45	5	37
63	31	55	23	61	29	53	21

Fig.3 Bayer' optimal dither matrix

Example for Dispersed Dithering with 8×8 Bayer's Optimal Dither Matrix

Fig. 4(a) Original grayscale image (b) Halftone image dithered with 8×8 Bayer's optimal dither matrix

Properties of Dispersed Dithering

- Within any region containing K dots, the K thresholds should be distributed as uniformly as possible.
- Textures used to represent individual gray levels have low visibility.
- Improved detail rendition.
- Transitions between textures corresponding to different gray levels may be more visible.
- Not robust to non-ideal output devices

- Threshold Dithering
- Random Modulation
- Ordered Dithering [1, Bayer, 1973]
 - Cluster dot screen
 - Disperse dot screen
- Error Diffusion [2, Floyd and Steinberg, 1975]

- Threshold Dithering
- Random Modulation
- Ordered Dithering [1, Bayer, 1973]
 - Cluster dot screen
 - Disperse dot screen
- Error Diffusion [2, Floyd and Steinberg, 1975]

Error Diffusion Halftoning [2]

- Quantizes each pixel using a **neighborhood** operation, rather than a simple pointwise operation.
- Moves through image in a scan curve, quantizing the result, and "*pushing*" the error forward.
- Can produce better quality images than is possible with screens.

• Variations: which neighbor pixels are affected?

Filter View of Error Diffusion

Equations:

$$u_{m,n} = x_{m,n} - \sum_{(k,l)\in R} h_{k,l} e_{m-k,n-l}$$

$$b_{m,n} = Q(u_{m,n}) = \begin{cases} \lambda & u_{m,n} \ge \lambda / 2 \\ 0 & u_{m,n} < \lambda / 2 \end{cases}$$

$$e_{m,n} = b_{m,n} - u_{m,n} = Q(u_{m,n}) - u_{m,n}$$

Parameters:

- \blacktriangle Threshold is typically $\lambda/2 = 127$.
- \blacktriangle $h_{k,l}$ are typically chosen to be positive and sum to 1.

Error Diffusion Algorithm

- 1.Initialize $u_{m,n}$ with $x_{m,n}$, $e_{m,n}$ and $b_{m,n}$ with zeros.
- 2.For each pixel in the image (in scan curve)
 - (a) Compute

$$b_{m,n} = Q(u_{m,n}) = \begin{cases} \lambda & u_{m,n} \ge \lambda/2 \\ 0 & u_{m,n} < \lambda/2 \end{cases}$$

(b) **Diffuse** $e_{m,n}$ forward, such as the following scheme (Floyd-Steinberg filter)

• 3. Display the binary image $b_{m,n}$.

Variation: Filter

		*	7	5		
3	5	7	5	3		
1	3	5	3	1		
(a)						

		*	8	4	
2	4	8	4	2	
1	2	4	2	1	
(b)					

Fig.5 Variation: filter (a) Jarvis filter (48) (b) Stucki filter (42)

Examples for Different Error Diffusion Filters

Fig.6 (a) Original grayscale image "Plane" (b) (c) (d) halftone images generated by Floyd-Steinberg, Jarvis and Stucki filters.

References

- [1] B. E. Bayer, "An optimum method for two-level rendition of continuous-tone pictures," in Proceedings of the IEEE International Conference on Communication, pp. 11-26, 1973.
- [2] R. Floyd and L. Steinberg, "An adaptive algorithm for spatial grey scale," Society for Information Display Symposium, Digest of Technical Papers, pp.36-37, 1975.

Thank You!

Dr. Xigun Lu xqlu@zju.edu.cn