DL 4 : Remise en route en algèbre linéaire

pour le jeudi 3 novembre

Exercice 1 (Une base de \mathbb{R}^2)

On considère les deux vecteurs $\vec{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

- **1.** Résoudre l'équation $\lambda \vec{u} + \mu \vec{v} = 0$, d'inconnues $\lambda, \mu \in \mathbb{R}$. Que peut-on en déduire sur la famille (\vec{u}, \vec{v}) ?
- **2.** Résoudre l'équation $\lambda \vec{u} + \mu \vec{v} = \binom{3}{5}$, d'inconnues $\lambda, \mu \in \mathbb{R}$.
- **3.** Pour $x, y \in \mathbb{R}$, résoudre l'équation $\lambda \vec{u} + \mu \vec{v} = \binom{x}{y}$, d'inconnues $\lambda, \mu \in \mathbb{R}$. Que peut-on en déduire sur la famille (\vec{u}, \vec{v}) ?
- **4.** Soit $P = \begin{bmatrix} \uparrow & \uparrow \\ \vec{u} & \vec{v} \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 2 & 3 \end{bmatrix}$. Montrer que P est inversible et calculer P^{-1} . Que constate-t-on?
- 5. On a représenté ci-dessous les deux vecteurs \vec{u} et \vec{v} . Graphiquement, à quoi voit-on qu'ils forment une famille libre de \mathbb{R}^2 ? une base de \mathbb{R}^2 ?

Exercice 2 ($Deux\ sous\text{-}espaces\ vectoriels\ de\ \mathbb{R}^n$ (illustration page suivante))

Soit F le sous-ensemble (un **plan**) de \mathbb{R}^3 tel que $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ tels que $x + 2y + z = 0 \right\}$.

- 1. Vérifier que F est un sous-espace vectoriel de \mathbb{R}^3 .
- **2.** Trouver une base de F.

 (on pourra appliquer l'algorithme du pivot de Gauss au « système d'équations » x + 2y + z = 0).
- 3. Soit $G = \text{Vect} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. Trouver une équation du plan G.
- **4.** Trouver une base de la droite $F \cap G$.

Exercice 3 (Ma matrice 3 × 3 préférée)

On étudie quelques propriétés de la matrice $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

1. Calcul des puissances de A

- a) Montrer que l'on a $\forall n \in \mathbb{N}, \ A^n = \begin{bmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{bmatrix}$ avec les relations : $a_{n+1} = 2b_n$ $b_{n+1} = a_n + b_n$
- b) Montrer que les suites définies par $u_n = a_n b_n$ sont géométriques. $v_n = a_n + 2b_n$
- c) Donner l'expression du terme général des suites (u_n) et (v_n) .
- **d)** Montrer que $\forall n \in \mathbb{N}, a_n = \frac{1}{3}(2u_n + v_n)$, et trouver $\lambda, \mu \in \mathbb{R}$ tels que $b_n = \lambda u_n + \mu v_n$.
- e) Conclure sur le terme général
- f) Vérifier $\forall n \in \mathbb{N}$, que : $A^n = \frac{2^n}{3}E + \frac{(-1)^n}{3}F$ pour deux matrices E et F à détailler.

2. Inversion de A

- a) Vérifier $A^2 = A + 2I_3$
- **b)** En déduire que $A_{\frac{1}{2}}(A I_3) = \frac{1}{2}(A I_3)A = I_3$.
- c) En déduire que la matrice A est inversible et donner l'expression de A^{-1} .
- ${\bf 3.}\ \ {\bf R\'eduction}\ \ {\bf Dans}\ \ {\bf cette}\ \ {\bf question},\ {\bf on}\ \ {\bf utilise}\ \ {\bf les}\ \ {\bf notations}\ \ {\bf suivantes}:$

$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \vec{v} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \vec{w} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, P = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{u} & \vec{v} & \vec{w} \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- a) Résoudre l'équation $x^2 = x + 2$, pour $x \in \mathbb{R}$. (équation tirée de 2.a))
- **b)** Montrer que $Ker(A 2I_3) = Vect(\vec{u})$.
- c) Montrer que $Ker(A + I_3) = Vect(\vec{v}, \vec{w})$.
- d) Montrer que AP = PD.

(Comme la matrice P est inversible, on a donc $A = PDP^{-1}$)