Machine Learning from Data

Lecture 24: Spring 2021

Today's Lecture

- Support Vector Machines (SVMs)
 - Why is fattest hyperplane better?
 - Non-separable Data

RECAP: The Optimal Hyperplane

The Optimal Hyperplane

The fattest hyperplane that separates the data tolerates most measurement error

- 1. Can we efficiently find the fattest separator?
- 2. Is fatter better than thin?

The Algorithm

Quadratic Programming:

$$\underset{b,\mathbf{w}}{\text{minimize}} \quad \frac{1}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$ for n = 1, ..., N.

Support vectors: the data points that sit on the cushion. Using only support vectors, the classifier does not change.

PLA depends on the (random) order of data

Link to Regularization

optimal hyperplane regularization

 $\begin{array}{ccc}
\text{minimize} & \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} \\
\mathbf{w}
\end{array}$ $\begin{array}{ccc}
\text{minimize} & E_{\mathrm{in}}(\mathbf{w})
\end{array}$

subject to: $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1$ for n = 1, ..., N. subject to: $\mathbf{w}^{\mathsf{T}}\mathbf{w} \le C$.

	optimal hyperplane	regularization	
minimize	$\mathbf{w}^{\mathrm{T}}\mathbf{w}$	$E_{ m in}$	
subject to	$E_{\rm in} = 0$	$\mathbf{w}^{\mathrm{T}}\mathbf{w} \leq C$	

The optimal hyperplane performs 'automatic' regularization.

Evidence that Larger Margin is Better

- (1) Experimental: larger margin gives lower E_{out} ; bias drops a little and var a lot.
- (2) Bound for d_{VC} can be less than d+1 fat hyperplanes generalize better.
- (3) E_{cv} bound does not explicitly depend on d.

Larger Margin is better Converte a separable data set (N=20)

(numerate a separable data set (N=20)

(numerate a separable data set (N=20)

(N hope = Sox Conthock Conthock

Larger Margin is Better

Generate a random separable data set (N = 20)

Select 50,000 random separating hyperplanes h

Compute E_{out} and $\rho(h)/\rho(SVM)$

Average over several thousands of random data sets

Bigger margin is generally better Biggest is not best.

Data other than support vectors can have role in fine-tuning

Optimal DRandom

Bias and Variance

Fat Hyperplanes Shatter Fewer Points

Fat Hyperplanes Shatter Fewer Points

Lower drc (r) = [R²] + 1

(inthition) | hyperplane. Ein & Gont, du & Mtl dre & min (dt), [R] ti)

sindependent of himshrions. > r = shop

Aimshrions. > r = shop

man margin (fattest) hyperplane estimati 8) ter (fattest hyperplane) # of Support Vulous

K100/.

Perception: dvc = dHhypuplane Bias J Valiance II (-: Gont) Optimal 1) Enperimentally 2) $dvc \leq min(d)(R/v2))+1 Ein-r Gout$ $3) <math>Ecv \leq #9885$ (4) Algorithm: AP

PLA Ecr $\leq R^2$ NY optimal

Non-Separable Data

,

nonlinear transform

SOFT MARGIN OPTIMAL HYPERPLANE min I w w S. t. yn (whytb) >1/

mont/ penalty 3n70 Optimization: -3 min 1 ww + (23π ω, b, 3 2 (w/2, 1h)>1-3 ~ s.t. yn (w/2, 1h)>1-3 ~ Soft Margin Optimal hyperplane Regularization. Variables: N, b, 7

Regularization -> penalty (complinity)
Soft Margin -> Size of margin (robustness). C - Regularization parameter. Small C -> more robustness -> more regularized

large C -> less 11, C-3 2 (Perconering the
hourd margin).

Non-Separable Data

Kobsonus VS In-sample

$$C = 1$$

C = 500

$$\underset{b,\mathbf{w},\boldsymbol{\xi}}{\text{minimize}} \qquad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + C\sum_{n=1}^{N} \xi_{n}$$

subject to:
$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1 - \xi_n$$

$$\xi_n \ge 0$$

for
$$n = 1, \ldots, N$$

Soft Margin SVM With Separable Data

minimize
$$\frac{1}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w} + C\sum_{n=1}^{N} \xi_{n}$$
 subject to:
$$y_{n}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b) \geq 1 - \xi_{n}$$

$$\xi_n \ge 0$$

for $n = 1, \ldots, N$

Choice of C is IMPORTANT

(b) in sum (continue)

(cont

Nonlinear Transform and SVM

 Φ_3 + pseudoinverse algorithm

- 1. Φ_3 has almost $2\times$ the parameters of Φ_2
- 2. Φ_3 -SVM does not display significant overfitting compared to Φ_3 -regression
- 3. #support vectors did not double
- 4. Can go to higher dimensions if #support vectors stays small or margin stays large

		pseudo	inverse regression	SVM	
		linear	nonlinear (ϕ)	linear	nonlinear (ϕ)
overfitti	ing	little	lots	tiny	ok
bounda	ry	linear	complex	linear	complex

Going to Even Higher Dimension

In higher dimension, can control overfitting with # support vectors or margin ρ

What about:

Efficiency?

Infinitely many dimensions?

Thanks!