Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2019 EN3BS05 Engineering Physics

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a, b, c or d.

Q.1 (M	(CQs)	should be written in full inste	ead of only a, b, c or d.		
Q.1	i.	Which of the following is not	t true for LASER?		1
		(a) Extremely intense light	(b) Perfectly monochi	romatic	
		(c) Coherent	(d) Divergent		
	ii.	The He-Ne laser emits the fol	ollowing wavelength (in Å):		1
		(a) 6943 (b) 1064	(c) 6328	(d) 1060	
iii.		In Newton's ring arranger proportional to:	ment, the diameter of	of rings formed is	1
		(a) λ (b) $\sqrt{\lambda}$	(c) $\frac{1}{\sqrt{\lambda}}$	(d) $\frac{1}{\lambda}$	
	iv.	In a grating if $(e+d) < 2\lambda$, th	en the maximum numl	ber of order will be:	1
	(a) Greater than 3		(b) Less than 2		
		(c) Equal to 0.5	(d) Less than 1 and gr	reater than 2	
	v. Compton shift $(\Delta \lambda)$ depends on:				1
		(a) Incident wavelength	(b) Angle of scattering	g	
		(c) Target Material	(d) Energy of inciden	t light	
vi.		The packing density of body	centered cube is		1
		(a) $\frac{\pi}{6}$ (b) $\frac{\sqrt{3} \pi}{8}$	(c) $\frac{\sqrt{2}\pi}{6}$	$(d) \frac{8}{\sqrt{3} \pi}$	
	vii.	The reduced mass of two objections	ects having masses m ₁	and m ₂ is:	1
		(a) Less than m_1 and m_2	(b) Greater than m ₁ and	nd m ₂ both	
		(c) Between m ₁ and m ₂	(d) None of these		
	viii.	If the external impressed	force on the system	is zero, the total	1
		momentum of the system is:			
		(a) Increases (b) Decreases	(c) Remains constant	(d) None of these	

P.T.O.

Γ3	

	ii.	Gravitational potential due to spherical shell at a point P outside the shell.	5
	iii.	Coriolis force with its application	5
Q.6	i.	A Cinema hall has a volume of $7500 \ m^3$. It is required to have reverberation time of 1.5 sec. What should be the total absorption in the hall?	3
	ii.	Explain Meissner's effect?	7
OR	iii.	Discuss Type-I and Type-II superconductors in detail?	7

Marking Scheme EN3BS05 Engineering Physics

		5 •		
Q.1	i.	Which of the following is not true for LASER? (d) Divergent		1
	ii.	The He-Ne laser emits the following wavelength (in (c) 6328	n Å):	1
	iii.	In Newton's ring arrangement, the diameter of proportional to: (b) $\sqrt{\lambda}$	of rings formed is	1
	iv.	In a grating if $(e+d) < 2\lambda$, then the maximum number of order will be: 1 (b) Less than 2		
	v.	Compton shift $(\Delta \lambda)$ depends on: (b) Angle of scattering		1
	vi.	The packing density of body centered cube is (b) $\frac{\sqrt{3}\pi}{8}$		1
	vii.	The reduced mass of two objects having masses m_1 and m_2 is: (a) Less than m_1 and m_2		
	viii.	If the external impressed force on the system momentum of the system is: (c) Remains constant	is zero, the total	1
	ix.	The walls of a hall built for music concerns should		1
	х.	(d) Absorb Sound Super conductivity phenomenon was first observed by (c) Kamerlingh Onnes		
Q.2	i.	What is the minimum number of cr^{3+} ions in the ruby? Formula 1 mark		
	ii.	Complete solution At least three difference b/w the spontaneous and standard for each	1 mark timulated processes (1 mark * 3)	3
	iii.	Relation between Einstein's coefficients Its outcomes to design a laser	4 marks 1 mark	5
OR	iv.	He-Ne laser Constructions Working Energy levels	2 marks 2 marks 1 mark	5
Q.3	i.	Double refraction Angle of polarization Angle of refraction	1 mark 1 mark 1 mark	3

	ii.	Diagram Working Why rings are circular	2 marks 3 marks 2 marks	7
OR	iii.	Diagram Expression for the intensity distribution Ratio	1 mark 4 marks 2 marks	7
Q.4	i.	De-Broglie wavelength of an electron		3
		Formula	1 mark	
		Complete solution	2 marks	
	ii.	Solve the Schrodinger equation for one dimensional	motion	7
		Boundary condition with sketch	2 marks	
		Rest	5 marks	
OR	iii.	Write short note on:		7
		(a) Packing fraction	3.5 marks	
		(b) Heisenberg Uncertainty Principle	3.5 marks	
Q.5		Write short note on any two:		
	i.	Elastic collision	2.5 marks	5
		Inelastic collision	2.5 marks	
	ii.	. Gravitational potential due to spherical shell at a point P outside the shell.		
		Diagram	1 mark	
		Rest	4 marks	
	iii.	Coriolis force	3 marks	5
		Its application	2 marks	
Q.6	i.	What should be the total absorption in the hall?		3
		Formula	1 mark	
		Rest	2 marks	
	ii.	Meissner's effect diagram	2 marks	7
		Statement	1 mark	
		Explanation	4 marks	
OR	iii.	Type-I superconductors	3.5 marks	7
		Type-II superconductors	3.5 marks	
