

Computer Networks I

Error Detection (Cyclic Redundancy Check)

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Error Detection

☐One of the most powerful error-detecting codes

- ☐ Two equivalent ways of presenting CRC:
 - □ Modulo 2 arithmetic
 - □ Polynomials

One of the most powerful error-detecting codes

- Modulo 2 arithmetic:
 - Uses binary addition with no carries
 - Based on exclusive-OR (XOR) operation

- Given a block of bits, the transmitter generates a frame check sequence (FCS), such that
 - The resulting frame is exactly divisible by some predetermined number
- Receiver divides the incoming frame by that number
 - If there is no remainder, assume there is no error

One of the most powerful error-detecting codes

Polynomials:

- Represent bit-strings as polynomials
- 110001 can be represented as $x^5 + x^4 + 1$

$$D(X) = X^{9} + X^{7} + X^{3} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) \rightarrow X^{5} + X^{4} + X^{2} + 1$$

$$P(X) \rightarrow X^{5} + X^{4} + X^{2} + 1$$

$$P(X) \rightarrow X^{5} + X^{4} + X^{2} + 1$$

$$P(X) \rightarrow X^{5} + X^{4} + X^{2} + 1$$

$$P(X) \rightarrow X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$P(X) = X^{5} + X^{4} + X^{2} + 1$$

$$X^{5} + X^{5} + X^{5} + X^{5}$$

$$X^{5} + X^{5} + X^{4} + X^{2} + 1$$

$$X^{5} + X^{5} + X^{5} + X^{5}$$

$$X^{6} + X^{5} + X^{4} + X^{2} + 1$$

$$X^{6} + X^{5} + X^{4} + X^{2} + 1$$

$$X^{6} + X^{5} + X^{4} + X^{2} + 1$$

$$X^{6} + X^{5} + X^{4} + X^{4} + X^{2} + 1$$

$$X^{6} + X^{5} + X^{4} + X^{4} + X^{2} + 1$$

$$X^{6} + X^{5} + X^{4} +$$

Name	Binary	Application
CRC-8	100000111	ATM header
CRC-10	11000110101	ATM AAL
CRC-16	1000100000100001	HDLC
CRC-32	100000100110000010001110110110111	LANs

SFD = Start of frame delimiter

DA = Destination address

SA = Source address

FCS = Frame check sequence

Summary

- □Cyclic redundancy check
 - ☐ Modulo 2 arithmetic
 - □Polynomials