Étude asymptotique des anneaux filtrés

LACOURCELLE Hélie & LE LOUEDEC Mathieu & SAIDI Youssef & YAO Huaizhen & YE Xiaowei, sous la direction de FINSKI Siahrei

École Polytechnique

07/05/2025

Structure de la présentation

Introduction

Stratégie de la preuve

Outil principal : Clôture Intégrale

Étape I : Théorème de Mori-Nagata

Étape II : Réduire aux filtrations principales

Remerciement

Introduction

Définition

Soit A un anneau commutatif, une filtration sur A est une application $f:A\to\mathbb{R}\cup\{+\infty\}$ telle que

- $f(x+y) \ge \min(f(x), f(y))$ pour tout $x, y \in A$;
- $f(xy) \ge f(x) + f(y)$ pour tout $x, y \in A$.

Exemple: ordre d'annulation en 0

$$\operatorname{ord}_0(f) = n \iff f(z) = z^n \tilde{f}(z), \tilde{f}(0) \neq 0.$$

Définition

Une valuation est une filtration v positive telle que v(xy) = v(x) + v(y).

Introduction 3 / 19

Exemples

Exemple

 \blacktriangleright La filtration induite par un idéal I de A:

$$f_I(x) := \max\{n \in \mathbb{N} \cup \{+\infty\} : x \in I^n\}.$$

- f, g filtrations $\implies \min(f, g)$ filtration.
- $A = \mathbb{C}[X,Y]$. Pour un polynôme $P \in A$, on l'écrit en suite formelle

$$P(t, e^t) = \sum_{i \geqslant 0} a_i(P)t^i.$$

v(P) := l'indice minimal i telle que $a_i(P) \neq 0$.

• v_1, v_2 valuations, $\min(v_1, v_2)$ n'est pas une valuation en général.

Introduction 4 / 19

Fonction de Samuel

Définition

Pour une filtration f, on a la fonction de Samuel

$$f^{\text{hom}} := \lim_{n \to \infty} \frac{f(x^n)}{n}.$$

bien définie (Lemme de Fekete) et homogène $(f(x^n) = nf(x))$.

Conjecture (P. Samuel)

Soit A un anneau Noethérien et I un idéal de A, alors

$$f_I^{\text{hom}}(x) \in \mathbb{Q}, \forall x \in A.$$

Réponse : Oui! Rees en 1956 et Nagata en 1957.

Introduction 5 / 19

Théorème de Rees

Théorème (Rees 1956)

Soient A un anneau noethérien et f une filtration noethérienne sur A. Alors il existe $r \in \mathbb{N}, e_1, \cdots, e_r \in \mathbb{Z}$ et les valuations V_1, \cdots, V_r à valeur dans \mathbb{Z} , tels que

$$f^{\text{hom}}(x) = \min_{1 \le i \le r} \left(\frac{V_i}{e_i} \right).$$

Corollaire (Conjecture de Samuel)

 $f_I^{\text{hom}}(x)$ est donc bien rationnel $\forall x \in A$.

Introduction 6 / 19

Noethérienité !

Définition (Anneau Noethérien)

A est dit **Noethérien** si tout idéal de A est de type fini, ou de manière équivalente, toute suite croissante d'idéaux de A est stationnaire.

Exemple

- A Noethérien $\implies A[X]$ Noethérien (Théorème de base de Hilbert)
- ▶ l'anneau des fonctions analytiques sur ℝ n'est pas Noethérien

Introduction 7 / 19

Aspect Géométrique : dualité d'Isbell

idéal de
$$\mathbb{C}[X_1,\cdots,X_n]\longleftrightarrow$$
 l'ensemble algébrique
$$I\longleftrightarrow V(I):=\{z\in\mathbb{C}^n: \forall f\in I, f(z)=0\}$$
 idéal premier \longleftrightarrow espace irréductible suite croissante d'idéaux \longleftrightarrow suite décroissante d'ensembles algébriques Noethérienité \longleftrightarrow "Théorème des fermés emboîtés"

Introduction 8 / 19

Filtation Noethérienne

Définition

Soit f une filtration sur A. On définit

$$G(f) = \{ \sum_{n=p}^{q} x_n X^n : p, q \in \mathbb{Z}, \text{ et } f(x_n) \geqslant n \text{ pour } n = p, \dots, q \},$$

On dit que f est une filtration **Noethérienne** si G(f) est Noethérien.

Lemme

Soient A un anneau Noethérien et I un idéal de A, alors f_I est Noethérienne.

Introduction 9 / 19

Stratégie de la preuve

- ▶ Outil principal : clôture intégrale
- ▶ Pour plus de simplicité, on se restreint sur le cas d'un anneau intègre
- Étape I : théorème de Mori-Nagata
- Étape II : se ramener au cas d'une filtration induite par un idéal, lui même réduit au cas d'un idéal principal

Clôture Intégrale d'une filtration

Définition (Outil principal : Clôture Intégrale)

On définit la clôture intégrale de f, notée f^* , comme suivant

$$f^*(x) = \max\{m : \exists a_1, \dots, a_n \in A, f(a_i) \ge im, \sum_{i=1}^n a_i x^{n-i} + x^n = 0\}$$

Proposition

f* est une filtration

Lemme

$$\lfloor f(x) \rfloor \leqslant f^*(x) = \lfloor f^{\text{hom}}(x) \rfloor.$$

Étape I : Théorème de Mori-Nagata

Théorème

Soit A un anneau intègre noethérien, soit k son corps des fractions. Alors il existe une famille de valuation sur k à valeur entière $v: k \to \mathbb{Z} \cup \{\infty\}$

- ▶ Si $x \in A \setminus \{0\}$, alors $v(x) \neq 0$ seulement pour un nombre fini de v parmis ces applications;
- Si $x \in k$ alors x est entier sur A si et seulement si $v(x) \ge 0$ pour toutes ces applications.

 $x \in k$ entier sur A : racine d'un polynôme unitaire. $v|_A$ est une valuation sur A.

Étape II : Réduire aux filtrations principales

Définition

Un idéal est dite principal s'il est engendré par un seul élément : I = (a).

Exemple

- ▶ Dans $\mathbb{C}[X]$, l'idéal $I := \{P \in \mathbb{C}[X] : P(0) = 0\}$ est principal engendré par P.
- ▶ Dans $\mathbb{C}[X,Y]$, l'idéal $I := \{P \in \mathbb{C}[X,Y] : P(0,0) = 0\}$ n'est pas principal.

principales 13 / 19

Filtration principale

Définition

Soient A_0 un anneau noethérien intègre. Soit

 $A=A_{0(a)}:=\{\frac{a_0}{a^n}:a_0\in A_0,n\in\mathbb{N}\}.$ Soit a un élément non-nul de $A_0.$ Soit $x\in A.$ On note

$$f_a(x) = \max\{n \in \mathbb{Z} \cup \{+\infty\}, x \in a^n A\}$$

Alors f_a est une filtration sur A et on l'appelle filtration principale.

principales 14 / 19

Le lemme clé

Lemme

Soit A_0 un anneau noethérien intègre, soit u un élément non-nul de A_0 . Soit $A=A_{0(u)}$. Notons f_u la filtration principale définie sur A par u,A_0 . Soient $V_1,...,V_k$ les valuations données par le théorème de Mori-Nagata telles que pour tout $i\in\{1,\ldots,k\},V_i(u)>0$. Alors, si $x\in A$:

- 1. $f_u^*(x) \ge n \iff \forall i, V_i(x) \ge nV_i(u)$;
- 2. $f_u^{\text{hom}}(x) = \min_{1 \le i \le k} \frac{V_i(x)}{V_i(u)}$.

principales 15 / 19

Démonstration du cas intègre et principal

Démonstration: Par définition de f_n^* :

$$f_u^*(x) \ge n \iff \exists r, \exists a_1, \dots, a_r \in A_0, x^r + a_1 x^{r-1} + \dots + a_r = 0$$

avec $f_u(a_i) \ge ni$ pour tout i. En multipliant par u^{-nr} :

$$(u^{-n}x)^r + u^{-n}a_1(u^{-n}x)^{r-1} + \dots + u^{-nr}a_r = 0$$

et donc que c'est équivalent à dire que $u^{-n}x$ est entier sur A_0^* . En effet le coefficient devant $(u^{-n}x)^i$ est a_iu^{-ni} qui est bien dans A_0 puisque $f_n(a_iu^{-ni}) \ge ni - ni \ge 0$. Ceci est équivalent à dire que $\forall i \in \{1, \ldots, k\}, V_i(u^{-n}x) \geqslant 0 \text{ ou } \forall i \in \{1, \ldots, k\}, V_i(x) \geqslant nV_i(u), \text{ ce qui}$ prouve le premier point. Réécrivons ce que nous venons de montrer sous la forme

$$f_u^*(x) = \min_{1 \le i \le k} \left\lfloor \frac{V_i(x)}{V_i(u)} \right\rfloor$$

principales 16 / 19

Démonstration

Soit $g(x) = \min_{1 \le i \le k} \frac{V_i(x)}{V_i(u)}$. Montrons par double inégalité que $g = f_u^{\text{hom}}(x)$. g est une filtration homogène et $g(x) \geqslant f_u^*(x) \geqslant f_u(x)$, donc $a(x) \geqslant f_{\rm hom}^{\rm hom}(x)$.

Pour l'autre côté, choisissons n un multiple des entiers $V_i(u)$. Alors

$$f_u^*(x^n) = \min_{1 \le i \le k} \frac{nV_i(x)}{V_i(u)}$$

car cette fraction est un entier. Donc,

$$f_u^{\text{hom}}(x^n) \geqslant f_u^*(x^n) = n \min_{1 \leqslant i \leqslant k} \frac{V_i(x)}{V_i(u)} = ng(x)$$

et comme f_u^{hom} est homogène on a $f_u^{\text{hom}}(x) \ge g(x)$, ce qui conclut.

principales 17 / 19

Lemme

- 1. $f_{i}^{*}(x) \geq n \iff \forall i, V_{i}(x) \geq nV_{i}(u)$;
- 2. $f_u^{\text{hom}}(x) = \min_{1 \le i \le k} \frac{V_i(x)}{V_i(u)}$.

Théorème (Rees 1956)

Soient A un anneau noethérien et f une filtration noethérienne sur A. Alors il existe $r \in \mathbb{N}, e_1, \dots, e_r \in \mathbb{Z}$ et les valuations V_1, \dots, V_r à valeur dans \mathbb{Z} , tels que

$$f^{\text{hom}}(x) = \min_{1 \le i \le r} \left(\frac{V_i}{e_i} \right).$$

principales 18 / 19

Remerciement et Q&A

Merci pour votre écoute!

Toutes les questions seront bienvenues!

Remerciement 19 / 19