

AOE6936

30V Dual Asymmetric N-Channel MOSFET

General Description

- · Bottom Source Technology
- Very Low R_{DS(ON)}
- · Low Gate Charge
- High Current Capability
- RoHS and Halogen-Free Compliant

Applications

- DC/DC Converters in Computing, Servers, and POL
- Non-Isolated DC/DC Converters in Telecom and Industrial

Product Summary

 $\begin{array}{cccc} & & \underline{Q1} & \underline{Q2} \\ V_{DS} & & 30V & 30V \\ I_D \ (at \ V_{GS} = 10V) & & 55A & 85A \\ R_{DS(ON)} \ (at \ V_{GS} = 10V) & & <5m\Omega & <2m\Omega \\ R_{DS(ON)} \ (at \ V_{GS} = 4.5V) & & <8m\Omega & <3m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

DFN 5X6E

Top View **Bottom View** Top View **Bottom View** D2/S1 G2 G2 1 G1 Q1 D2/S1 7 2 S1/D2 S1/D2 D2/S1 S2 D2/S1 6 3 D1 D1 D2/S1 D1 D2/S1 D2/S1 5 4 D1 D1

Orderable Part Number Package Type		Form	Minimum Order Quantity		
AOE6936	DFN 5x6E	Tape & Reel	3000		

Absolute Maximum Ratings T_A=25°C unless otherwise noted Parameter Max Q1 Max Q2 Units Symbol Drain-Source Voltage 30 30 V_{DS} Gate-Source Voltage ±20 ±20 V V_{GS} T_C=25°C 55 85 Continuous Drain I_D Current G T_C=100°C 35 67 Α Pulsed Drain Current 120 208 $I_{\rm DM}$ Continuous Drain T_A=25°C 21 32 Α I_{DSM} Current T_A=70°C 16 25 Avalanche Current C 60 80 Α Avalanche energy L=0.01mH EAS 18 32 mJ V_{DS} Spike 10µs 36 36 ٧ V_{SPIKE} T_C=25°C 24 39 P_D W T_C=100°C Power Dissipation B 9.6 15 T_A=25°C 3.5 3.5 P_{DSM} W Power Dissipation A T_A=70°C 2.2 2.2 Junction and Storage Temperature Range -55 to 150 °C T_J, T_{STG}

Thermal Characteristics							
Parameter		Symbol	Typ Q1	Typ Q2	Max Q1	Max Q2	Units
Maximum Junction-to-Ambient A	t ≤ 10s	D	25	25	35	35	°C/W
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	50	50	65	65	°C/W
Maximum Junction-to-Case (Note)	Steady-State	$R_{\theta JC}$	4	2.4	5.2	3.2	°C/W

Note: Bottom S2, D1.

Q1 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units	
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	ID=250µA, VGS=0V	30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V			1		
DSS	Zero Gale Vollage Drain Current	T _J =55°C			5	μA	
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS, I_D}=250\mu A$	1.3	1.7	2.2	V	
		V _{GS} =10V, I _D =20A		3.5	5	mΩ	
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125°C		5	7	11152	
		V_{GS} =4.5V, I_D =20A		5.2	8	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A		57		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V	
I _S	Maximum Body-Diode Continuous Curr	ent			30	Α	
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance			1150		pF	
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		380		pF	
C_{rss}	Reverse Transfer Capacitance			55		pF	
R_g	Gate resistance	f=1MHz	0.6	1.2	2.0	Ω	
SWITCHI	NG PARAMETERS					•	
Q _g (10V)	Total Gate Charge			16	25	nC	
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =20A		7.5	15	nC	
Q_{gs}	Gate Source Charge	VGS-10V, VDS-13V, ID-20A		2.5		nC	
Q_{gd}	Gate Drain Charge			3.0		nC	
Q_{gs}	Gate Source Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =20A		2.5		nC	
Q_{gd}	Gate Drain Charge	VGS-4.5V, VDS-15V, ID-20A		3.0		nC	
t _{D(on)}	Turn-On DelayTime			6.5		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω ,		4.5		ns	
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		19		ns	
t _f	Turn-Off Fall Time			3		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs		11.5		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs		20		nC	

A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{0JA} \(\simeq 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150 $^{\circ}$ C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C.

V_{GS}(Volts) Figure 2: Transfer Characteristics (Note E)

I_D (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature (Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

Rev.2.0: July 2016 Page 3 of 10 www.aosmd.com

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Rev.2.0 : July 2016 **www.aosmd.com** Page 4 of 10

Current rating I_D (A)

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.2.0: July 2016 Page 5 of 10 www.aosmd.com

Q2 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	ID=250µA, VGS=0V	30			V
1	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V			1	μA
I _{DSS}	Zero Gate Voltage Drain Current	T _J =55°C			5	
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS,}I_{D}=250\mu A$	1.2	1.6	2.1	V
		V _{GS} =10V, I _D =20A		1.5	2	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J =125°C		2.3	3	11152
		V_{GS} =4.5V, I_D =20A		2.6	3	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A		110		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V
Is	Maximum Body-Diode Continuous Curr	ent			50	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			2270		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		650		pF
C _{rss}	Reverse Transfer Capacitance			90		pF
R_g	Gate resistance	f=1MHz	0.7	1.4	2.5	Ω
SWITCHI	NG PARAMETERS			•	•	•
$Q_g(10V)$	Total Gate Charge			31.5	50	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =20A		15	25	nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V, I _D -20A		5.5		nC
Q_{gd}	Gate Drain Charge			4.5		nC
Q_{gs}	Gate Source Charge	-V _{GS} =4.5V, V _{DS} =15V, I _D =20A		5.5		nC
Q_{gd}	Gate Drain Charge	VGS-4.5V, VDS-15V, ID-20A		4.5		nC
t _{D(on)}	Turn-On DelayTime			6.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω ,		5.5		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		27		ns
t _f	Turn-Off Fall Time	<u>]</u> _		5.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs		14.5		ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =20A, dl/dt=500A/μs		30		nC

A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{0JA} \(\simeq 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150 $^{\circ}$ C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C.

1.0E-03

1.0E-04

1.0E-05

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

6

25° C

8

10

2

1

0

2

0.0 0.2 0.8 1.0 0.4 0.6 V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

25° C

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Rev.2.0 : July 2016 **www.aosmd.com** Page 8 of 10

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.2.0: July 2016 Page 9 of 10 www.aosmd.com

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Rev.2.0 : July 2016 **www.aosmd.com** Page 10 of 10