

Synchrotron Radiation

Synchrotron Radiation

For a relativistic particle, the total radiated power (S&E 8.1) is

$$P = \frac{1}{6\pi\epsilon_0} \frac{e^2 a^2}{c^3} \gamma^4$$

$$\approx \frac{1}{6\pi\epsilon_0} \frac{e^2 c}{\rho^2} \gamma^4 = \frac{1}{6\pi\epsilon_0} \frac{e^2 c}{\rho^2} \left(\frac{E}{m_0 c^2}\right)^4$$
For a fixed energy and geometry, power goes as the inverse fourth power of the mass!

For a fixed energy and geometry, power goes as the

$$o = \frac{m\gamma c}{eB} \longrightarrow F$$

$$\rho = \frac{m\gamma c}{eB} \longrightarrow P = \frac{e^4}{6\pi\epsilon_0} \frac{B^2}{m_0^2 c} \gamma^2$$
$$= \frac{e^4 c}{6\pi\epsilon_0 m^4 c^5} B^2 E^2$$

Effects of Synchrotron Radiation

Two competing effects

Quantum effects related to the statistics of the photons

$$N_p = \dot{N}\tau \quad \to \quad \sigma_{\Delta E} = \sqrt{\dot{N}\tau_{\Delta E} \left\langle u^2 \right\rangle}$$
 Number of photons per period Rate of photon emission Average photon energy

0.2

0.1

The power spectrum of radiation is

$$\frac{dP}{d\omega} = \frac{P}{\omega_c} S\left(\frac{\omega}{\omega_c}\right); \quad \omega_c \neq \frac{3\gamma^3}{2} \frac{c}{\rho}$$

$$\omega_c \neq \frac{3\gamma^3}{2} \frac{c}{\rho}$$

$$\dot{n} = \frac{dN}{du}$$

$$\int_{x}^{\infty} K_{5/3}(u) du$$

 $\frac{dP}{d\omega}d\omega = \dot{n}\hbar\omega du; \quad d\omega = \frac{du}{\hbar}$

$$d\omega = \frac{au}{\hbar}$$

$$\rightarrow \frac{dP}{d\omega} \frac{1}{\hbar} = \dot{n}\hbar\omega$$

"critical energy"

Calculate the photon rate per unit energy

$$\rightarrow \dot{n}(u) = \frac{1}{\hbar\omega} \frac{dP}{d\omega} = \frac{P}{(\hbar\omega)(\hbar\omega)} S\left(\frac{u}{u_c}\right)$$

$$= \frac{P}{uu_c} S\left(\frac{u}{u_c}\right)$$

$$u_c \equiv \hbar \omega_c$$

The total rate is:

$$\dot{N} = \int_0^\infty \dot{n}(u)du = \frac{15\sqrt{3}}{8} \frac{P}{u_c}$$

The mean photon energy is then

$$\langle u \rangle = \frac{P}{\dot{N}} = \frac{8}{15\sqrt{3}} u_c$$

The mean square of the photon energy is

$$\langle u^2 \rangle = \frac{1}{\dot{N}} \int_0^\infty u^2 \dot{n}(u) du = \frac{P}{\dot{N}} \int_0^\infty \frac{u}{u_c} S\left(\frac{u}{u_c}\right) du$$
$$= \frac{11}{27} u_c^2$$

The energy lost per turn is

$$U_{s} = \oint P dt = \frac{e^{2} c \gamma^{4}}{6\pi \epsilon_{0}} \oint \frac{1}{\rho^{2}} \left(\frac{dt}{ds}\right) ds$$
$$= \frac{e^{2} \gamma^{4}}{6\pi \epsilon_{0}} \oint \frac{1}{\rho^{2}} ds$$

It's important to remember that ρ is *not* the curvature of the accelerator as a whole, but rather the curvature of individual magnets.

$\Delta\theta = \frac{\Delta s}{\rho} \to \oint \frac{ds}{\rho} = 2\pi$

So if an accelerator is built using magnets of a fixed radius ρ_0 , then the energy lost per turn is

$$U_s = \frac{e^2 \gamma^4}{6\pi \epsilon_0} \oint \frac{1}{\rho^2} ds = \frac{e^2 \gamma^4}{3\epsilon_0 \rho_0}$$

For electrons

$$U_{s}[MeV] = .0885 \frac{E^{4}[GeV]}{\rho_{0}[m]}$$

$$u_{c} = \hbar \omega_{c} = \frac{3\gamma^{3}\hbar}{2} \frac{c}{\rho_{0}}$$

$$u_{c}[keV] = 2.218 \frac{E^{3}[GeV]}{\rho_{0}[m]}$$

$$N_{s} = \dot{N}\tau = \frac{15\sqrt{3}}{8} \frac{P}{u_{c}}\tau = \frac{15\sqrt{3}}{8} \frac{U_{s}}{u_{c}}$$

$$= .1296 E[GeV]$$

For CESR

$$E = 5.29 \text{ GeV}$$

$$\rho_0 = 98 \text{ m}$$

$$U_s = .71 \text{ MeV}$$

$$\langle u \rangle = \frac{8}{15\sqrt{3}} u_c = .98 \text{ keV}$$

$$\sqrt{\langle u^2 \rangle} = \sqrt{\frac{11}{27}} u_c = 2.0 \text{ keV}$$

$$N_s = 721$$

photons/turn

Small Amplitude Longitudinal Motion

$$\varepsilon = \varepsilon_0 \sin(2\pi v_s n + \delta)$$
$$\Delta t = \beta_L \varepsilon_0 \cos(2\pi v_s n + \delta)$$

$$\frac{1}{\beta_L} (\Delta t)^2 + \beta_L \varepsilon^2 = \epsilon_L = \text{ constant w/o radiation}$$

$$\frac{1}{\beta_L^2} (\Delta t)^2 + \varepsilon^2 = \varepsilon_0^2 \quad \text{amplitude of energy oscillation}$$

If we radiate a photon of energy u, then

$$\varepsilon_{0,new}^{2} = \frac{1}{\beta_{L}^{2}} (\Delta t)^{2} + (\varepsilon - u)^{2}$$

$$= \frac{1}{\beta_{L}^{2}} (\Delta t)^{2} + \varepsilon^{2} - 2\varepsilon u + u^{2}$$

$$= \varepsilon_{0}^{2} - 2\varepsilon u + u^{2}$$

$$\to \Delta \varepsilon_{0}^{2} = -2\varepsilon u + u^{2}$$

$$\to \frac{d\varepsilon_{0}^{2}}{dt} = -2\varepsilon \dot{N} \langle u \rangle + \dot{N} \langle u^{2} \rangle$$

$$\left\langle \frac{d\varepsilon_0^2}{dt} \right\rangle = \frac{1}{\tau_s} \oint \frac{d\varepsilon_0^2}{dt} dt$$

$$= -\frac{2}{\tau_s} \oint \langle \varepsilon P \rangle dt + \frac{1}{\tau_s} \oint \dot{N} \langle u^2 \rangle dt$$
damping term
Heating term

Evaluate integral in damping term

$$\oint \langle \varepsilon P \rangle dt = \frac{1}{c} \oint \left(1 + \frac{x}{\rho} \right) \langle \varepsilon P \rangle ds$$

$$\approx \frac{1}{c} \oint \left(1 + D \frac{\varepsilon}{\rho E_s} \right) \langle \varepsilon P \rangle ds$$

$$\text{use } x = D \frac{\Delta p}{\rho} \approx D \frac{\varepsilon}{E_s}$$

$$DE_s = D = \frac{p}{p} \approx D = \frac{s}{E}$$

Recall

$$P = \frac{e^4 c}{6\pi\epsilon_0 m^4 c^5} B^2 E^2$$

$$P(\varepsilon) = P_s \left(1 + 2 \frac{1}{B_0} \frac{dB}{dE} + 2 \frac{1}{E_s} \varepsilon \right)$$

Dependence of field

$$\frac{dB}{dx} = B' \longrightarrow \frac{dB}{dE} = \frac{dB}{dx} \frac{dx}{dE}$$
$$= \kappa (B\rho) = \frac{\kappa (B\rho)D}{E_s}$$

$$\longrightarrow P(\varepsilon) = P_s \left(1 + \frac{2\varepsilon}{E_s} (\kappa \rho D + 1) \right)$$

Putting it all together...

$$\oint \langle \varepsilon P \rangle dt = \frac{1}{c} \oint \left\langle \varepsilon P_s \left(1 + \frac{\varepsilon}{E_s} \frac{D}{\rho} \right) \left(1 + \frac{2\varepsilon}{E_s} (\kappa \rho D + 1) \right) \right\rangle ds$$

$$= \frac{1}{c} \oint \left\langle P_s \left(\varepsilon + \frac{\varepsilon^2}{E_s} \left(2 + 2\kappa \rho D + \frac{D}{\rho} \right) + \varepsilon^3 \frac{2D(\kappa \rho D + 1)}{E_s \rho} \right) \right\rangle ds$$

$$= \frac{1}{c} \frac{\varepsilon_0^2}{2E_s} \oint P_s \left(2 + 2\kappa \rho D + \frac{D}{\rho} \right) ds$$

$$= \frac{\varepsilon_0^2 U_s}{E_s} + \frac{\varepsilon_0^2}{2E_s} \frac{1}{c} \oint P_s \left(2\kappa \rho D + \frac{D}{\rho} \right) ds$$

$$= \frac{\varepsilon_0^2 U_s}{E_s} + \frac{\varepsilon_0^2 U_s}{2E_s} \mathcal{D}$$

$$= \frac{\varepsilon_0^2 U_s}{2E_s} (2 + \mathcal{D})$$

$$= \frac{\varepsilon_0^2 U_s}{2E_s} (2 + \mathcal{D})$$

use
$$\varepsilon = \varepsilon_0 \sin(2\pi v_s n + \delta)$$

$$\rightarrow \langle \varepsilon \rangle = \langle \varepsilon^3 \rangle = 0$$

$$\langle \varepsilon^2 \rangle = \frac{\varepsilon_0^2}{2}$$

note
$$\frac{1}{c} \oint P_s ds = \frac{1}{c} (\text{const}) \oint \frac{1}{\rho^2} ds$$

 $= U_s$
 $\frac{1}{c} \oint P_s \left(2\kappa \rho D + \frac{D}{\rho} \right) ds = \frac{1}{c} (\text{const}) \oint \frac{1}{\rho^2} \left(2\kappa \rho D + \frac{D}{\rho} \right) ds$
 $= U_s \mathcal{D}$
where $\mathcal{D} \equiv \frac{\oint \frac{1}{\rho^2} \left(2\kappa \rho D + \frac{D}{\rho} \right) ds}{\oint \frac{1}{\rho^2} ds}$

Going way back to our original equation (p. 7)

$$\left\langle \frac{d\varepsilon_0^2}{dt} \right\rangle = -\frac{2}{\tau_s} \oint \langle \varepsilon P \rangle dt + \frac{1}{\tau_s} \oint \dot{N} \langle u^2 \rangle dt$$

$$= \frac{\varepsilon_0^2 U_s}{\tau_s E_s} (2 + \mathcal{D}) + \frac{1}{\tau_s} \oint \dot{N} \langle u^2 \rangle dt$$

$$\text{damping} \qquad \text{heating}$$

$$\varepsilon_0^2(t) = \varepsilon_0^2(0)e^{-t/\tau_{\varepsilon^2}} + \varepsilon_0^2(\infty)e^{-t/\tau_{\varepsilon}^2} \left(1 - e^{-t/\tau_{\varepsilon^2}}\right)$$

where
$$\frac{1}{\tau_{\varepsilon^2}} = \frac{U_s}{\tau_s E_s} (2 + \mathcal{D})$$

$$\varepsilon_0^2(\infty) = \frac{\tau_{\varepsilon^2}}{\tau_s} \oint \dot{N} \langle u^2 \rangle dt$$

The energy then decays in a time

$$\tau_{\varepsilon} = 2\tau_{\varepsilon^{2}}$$

$$\frac{1}{\tau_{\varepsilon}} = \frac{U_{s}}{2\tau_{\varepsilon}E_{s}} (2 + \mathcal{D})$$

In a separated function lattice, there is no bend in the quads, so $K \neq 0 \rightarrow \rho \rightarrow \infty$ Further assume uniform dipole field ($\rho = \rho_0$)

$$\mathcal{D} = \frac{\oint \frac{1}{\rho^2} \left(2\kappa \rho D + \frac{D}{\rho} \right) ds}{\oint \frac{1}{\rho^2} ds} = \frac{\frac{1}{\rho_0^2} \oint \frac{D}{\rho_0} ds}{\frac{1}{\rho_0} \oint \frac{1}{\rho_0} ds} = \frac{\frac{1}{\rho_0^2} (C\alpha)}{\frac{1}{\rho_0} (2\pi)}$$
$$= \frac{C\alpha}{2\pi \rho_0} \ll 1$$

$$\frac{1}{\tau_{\varepsilon}} \approx \frac{U_{s}}{\tau_{s} E_{s}}$$

 $\frac{1}{\tau_{\varepsilon}} \approx \frac{U_s}{\tau_s E_s}$ probably the answer you would have guessed without doing any calculations.

Equilibrium energy spread will be

$$\sigma_{\varepsilon}^{2} = \left\langle \varepsilon_{0}^{2}(\infty) \right\rangle = \frac{1}{2} \varepsilon_{0}^{2}(\infty)$$
$$= \frac{\tau_{\varepsilon}}{4\tau_{\varepsilon}} \oint \left\langle \dot{N}u^{2} \right\rangle dt$$

Use
$$\dot{N} = \frac{15\sqrt{3}}{8} \frac{P}{u_c}$$
, $\langle u^2 \rangle = \frac{11}{27} u_c^2$, $u_c = \frac{3}{2} \frac{\hbar \gamma^3}{\rho} c$

$$\longrightarrow \oint \langle \dot{N}u^2 \rangle = \frac{55}{16\sqrt{3}} \frac{e^2 \hbar c \gamma^7}{6\pi \epsilon_0} \oint \frac{1}{\rho^3} ds$$

Effects of synchrotron radiation

- Damping in both planes
- Heating in bend plane

Behavior of beams

We're going to derive two important results

1. Robinson's Theorem

$$\frac{1}{\tau_{\varepsilon}} + \frac{1}{\tau_{x}} + \frac{1}{\tau_{y}} = \frac{2U_{s}}{E_{s}\tau_{s}}$$

transverse damping times

For a separated function lattice

$$\tau_{x} = \tau_{y}$$

$$\tau_{\varepsilon} = \frac{E_{s}\tau_{s}}{U_{s}} \to \tau_{x} = \tau_{y} = 2\tau_{\varepsilon} = \frac{2E_{s}\tau_{s}}{U_{s}}$$

2. The equilibrium horizontal emittance

$$\sigma_{x}=\sqrt{\dot{N}\tau_{x}}\frac{\sqrt{\left\langle u^{2}\right\rangle }}{E_{s}}\langle D\rangle_{\text{N}}$$
 photons emitted in a damping period Mean dispersion

Here we go...

Synchrotron radiation

Energy lost along trajectory, so radiated power will reduce momentum along flight path

$$\frac{d\vec{p}}{dt} \approx -\frac{P}{c}\hat{\theta}$$

If we assume that the RF system restores the energy lost each turn, then

Energy lost along the path $\rightarrow \Delta y = \Delta y' = 0$ Energy restored along nominal path \hat{s} \rightarrow "adiabatic damping"

Recall

$$y = a\sqrt{\beta}\cos(\psi(s) + \delta)$$

$$y' = -\frac{a}{\sqrt{\beta}}\left(\alpha\cos(\psi(s) + \delta) + \sin(\psi(s) + \delta)\right)$$

$$y' = \frac{p_y}{p} \to y' + \Delta y' = \frac{p_y}{p + \Delta p} \approx \left(1 - \frac{\Delta p}{p}\right)$$

$$\frac{\Delta y'}{dn} = -y'\frac{\Delta p}{p} = -y'\frac{\Delta E}{E} = -y'\frac{U_s}{E_s}$$

$$a^{2} = \gamma y^{2} + 2\alpha yy' + \beta y'^{2}$$

$$\frac{da^{2}}{dy'} = 2\alpha y + 2\beta y'$$

$$\frac{d(a^{2})}{dn} = -2(\alpha y + \beta y')y'\left(\frac{U_{s}}{E_{s}}\right)$$

$$= -\frac{2U_{s}}{E_{s}}(\alpha yy' + \beta y'^{2})$$

$$= -\frac{2U_{s}}{E_{s}}a^{2}\left(-\left(\alpha^{2}C^{2} + \alpha SC\right) + \left(\alpha^{2}C^{2} + 2\alpha SC + S^{2}\right)\right)$$

$$= -\frac{2U_{s}}{E_{s}}a^{2}\left(\alpha SC + S^{2}\right)$$

$$= -\frac{2U_{s}}{E_{s}}a^{2}\left(\frac{\alpha}{s}\sin\left(2\left(\psi(s) + \delta\right)\right) + \sin^{2}\left(\psi(s) + \delta\right)\right)$$

As we average this over many turns, we must average over all phase angles

$$\left\langle \sin\left(2\left(\psi(s)+\delta\right)\right)\right\rangle = 0$$

$$\left\langle \sin^2\left(\psi(s)+\delta\right)\right\rangle = \frac{1}{2}$$

$$\left\langle \frac{d(a^2)}{dn}\right\rangle = -\frac{2U_s}{E_s}a^2\left(\frac{1}{2}\right) = -a^2\frac{U_s}{E_s}$$

$$\frac{d(a^2)}{dt} = \left\langle \frac{d(a^2)}{dn}\right\rangle \left(\frac{dn}{dt}\right)$$

$$= -a^2\frac{U_s}{\tau_s E_s}$$

Calculating beam size

$$y = a\sqrt{\beta}\cos(\psi + \delta) \rightarrow \langle y^2 \rangle = \beta \frac{a^2}{2}$$

$$\Rightarrow \frac{d\sigma_y^2}{dt} = \frac{\beta}{2} \frac{da^2}{dt} = -\sigma_y^2 \frac{U_s}{\tau_s E_s}$$

$$\Rightarrow \frac{d\sigma_y^2}{dt} = 2\sigma_y \frac{d\sigma}{dt}$$

$$\Rightarrow \frac{d\sigma}{dt} = -\sigma_y \frac{U_s}{2\tau_s E_s} = -\frac{\sigma_y}{\tau_y}$$

$$\Rightarrow \tau_y = 2\tau_s \frac{E_s}{U_s} = 2\tau_\varepsilon$$

Note, in the absence of any heating terms or emittance exchange, this will damp to a very small value. This is why electron machines typically have flat beams. Allowing it to get too small can cause problems (discussed shortly)

Horizontal Plane

Things in the horizontal plane are a bit more complicated because position depends on the energy

betatron motion
$$x = x_{\beta} + D \frac{\epsilon}{E_{s}}$$

$$x_{\beta} = a\sqrt{\beta} \cos(\psi(s) + \delta) \equiv a\sqrt{b}C$$

$$x' = x'_{\beta} + D' \frac{\epsilon}{E_{s}}$$
 where
$$x'_{\beta} = -\frac{a}{\sqrt{\beta}} (\alpha \cos(\psi(s) + \delta) + \sin(\psi(s) + \delta)) \equiv -\frac{a}{\sqrt{\beta}} (\alpha C + S)$$

Now since the radiated photon changes the energy, but not the position or the angle, the betatron orbit must be modified; that is

$$\Delta x = \left[\left(x_{\beta} + \Delta x_{\beta} \right) + D \frac{\left(\varepsilon - u \right)}{E_{s}} \right] - \left[x_{\beta} + D \frac{\varepsilon}{E_{s}} \right]$$

$$= \Delta x_{\beta} - D \frac{u}{E_{s}} = 0$$

$$\Delta x_{\beta} = D \frac{u}{E_{s}}$$

$$\Delta x' = \Delta x'_{\beta} - D' \frac{u}{E_{s}} = 0$$

$$\Delta x'_{\beta} = D' \frac{u}{E_{s}}$$

Going back to the motion in phase space

$$a^{2} = \gamma x_{\beta}^{2} + 2\alpha x_{\beta} x_{\beta}' + \beta x_{\beta}'^{2}$$

$$\Delta a^{2} = \gamma \left(x_{\beta} + \frac{u}{E_{s}} D \right)^{2} + 2\alpha \left(x_{\beta} + \frac{u}{E_{s}} D \right) \left(x_{\beta}' + \frac{u}{E_{s}} D' \right) + \beta \left(x_{\beta}' + \frac{u}{E_{s}} D' \right)^{2}$$

$$- \left(\gamma x_{\beta}^{2} + 2\alpha x_{\beta} x_{\beta}' + \beta x_{\beta}'^{2} \right)$$

$$= 2 \frac{u}{E_{s}} \left[\alpha \left(D' x_{\beta} + D x_{\beta}' \right) + \gamma x_{\beta} D + \beta x_{\beta}' D' \right]$$

$$+ \left(\frac{u}{E_{s}} \right)^{2} \left[\gamma D^{2} + 2\alpha D D' + \beta D^{2} \right]$$

$$+ \dot{N} \left(\frac{u}{E_{s}} \right)^{2} \mathcal{H}$$

$$+ \dot{N} \left(\frac{u}{E_{s}} \right)^{2} \mathcal{H}$$

Averaging over one turn

$$\left\langle \frac{da^{2}}{dt} \right\rangle = \frac{1}{\tau_{s}} \oint \frac{da^{2}}{dt} dt$$

$$\Delta a^{2} = \frac{2}{\tau_{s}E_{s}} \oint P\left[\alpha\left(D'x_{\beta} + Dx'_{\beta}\right) + \gamma x_{\beta}D + \beta x'_{\beta}D'\right] dt$$

$$+ \frac{1}{\tau_{s}E_{s}} \oint \dot{N}u^{2} \mathcal{H} dt \qquad \text{Average over all and phases particle and phases}$$

$$= \frac{2}{\tau_{s}E_{s}} \oint \left\langle P\left[\alpha\left(D'x_{\beta} + Dx'_{\beta}\right) + \gamma x_{\beta}D + \beta x'_{\beta}D'\right]\right\rangle dt$$

$$+ \frac{1}{\tau_{s}E_{s}} \oint \left\langle \dot{N}u^{2}\right\rangle \mathcal{H} dt$$

$$\text{use } dl = \left(1 + \frac{x}{\rho}\right) ds; \quad c = \frac{dl}{dt}$$

$$\longrightarrow A = \frac{1}{c} \oint \left\langle \left(1 + \frac{x}{\rho}\right) P\left[\alpha\left(D'x_{\beta} + Dx'_{\beta}\right) + \gamma x_{\beta}D + \beta x'_{\beta}D'\right]\right\rangle ds$$

As before

$$P = \frac{e^4}{6\pi\epsilon_0} \frac{B^2}{m_0^2 c} \gamma^2$$

$$\frac{dP}{dB} = 2\frac{P}{B_0}$$

$$P(x_\beta) = P_s \left(1 + \frac{2}{B_0} \frac{dB}{dx} x_\beta\right)$$

$$= P_s \left(1 + \frac{2}{B_0} \kappa \rho x_\beta\right)$$

$$A = \frac{1}{c} \oint \left\langle \left(1 + \frac{x}{\rho} \right) P_s \left(1 + 2\kappa \rho x_\beta \right) \left[\alpha \left(D' x_\beta + D x'_\beta \right) + \gamma x_\beta D + \beta x'_\beta D' \right] \right\rangle ds$$

Same procedure as p. 9

$$= \frac{a^2}{2c} \oint P_s \frac{D}{\rho} (1 + 2\kappa \rho) ds = \frac{a^2 U_s}{2} \mathcal{D}; \text{ where } \mathcal{D} \equiv \frac{\oint \frac{1}{\rho^2} \left(2\kappa \rho D + \frac{D}{\rho} \right) ds}{\oint \frac{1}{\rho^2} ds}$$

Going back...
$$\frac{da^2}{dt} = \frac{2}{\tau_s E_s} A + \frac{1}{\tau_s E_s} \oint \langle \dot{N}u^2 \rangle \mathcal{H} dt$$
$$= \frac{a^2 U_s}{\tau_s E_s} \mathcal{D} + \frac{1}{\tau_s E_s} \oint \langle \dot{N}u^2 \rangle \mathcal{H} dt$$

But remember, we still have the adiabatic damping term from re-acceleration, SO

$$\frac{da^2}{dt} = (...) - a^2 \frac{U_s}{\tau_s E_s}$$

$$= -\frac{a^2 U_s}{\tau_s E_s} (1 - \mathcal{D}) + \frac{1}{\tau_s E_s} \oint \langle \dot{N} u^2 \rangle \mathcal{H} dt$$

$$a^2(t) = a^2(0)e^{-t/\tau} + a^2(\infty) (1 - e^{-t/\tau})$$

$$\frac{1}{\tau} = -\frac{a^2 U_s}{\tau_s E_s} (1 - \mathcal{D})$$

As before...

$$\sigma_x \propto \sqrt{a^2}$$

$$\tau_x = 2\tau$$

$$\frac{1}{\tau_x} = \frac{U_s}{2\tau_s E_s} (1 - \mathcal{D})$$

Robinson's Theorem

$$\frac{1}{\tau_{\varepsilon}} + \frac{1}{\tau_{x}} + \frac{1}{\tau_{y}} = \frac{U_{s}}{2\tau_{s}E_{s}}(2 + \mathcal{D})$$

$$+ \frac{U_{s}}{2\tau_{s}E_{s}}(1 - \mathcal{D}) \quad \text{for } \mathcal{D} << 1$$

$$+ \frac{U_{s}}{2\tau_{s}E_{s}}$$

$$+ \frac{U_{s}}{2\tau_{s}E_{s}}$$

$$= \frac{2U_{s}}{\tau_{s}E_{s}}$$

for
$$\mathcal{D} << 1$$

 $\tau_x \approx \tau_y \approx 2\tau_\varepsilon$

$$\sigma_{x}^{2}(\infty) = \langle x_{\infty}^{2} \rangle = \frac{1}{2}\beta a^{2}$$

$$= \frac{\tau_{x}\beta}{4E_{s}^{2}\tau_{s}} \oint \langle \dot{N}u^{2} \rangle \mathcal{H} dt$$

$$= \frac{\beta}{2U_{s}E_{s}(1-\mathcal{D})} \oint \langle \dot{N}u^{2} \rangle \mathcal{H} dt$$

Equilibrium emittance

$$\epsilon_{x} = \frac{\sigma_{x}^{2}(\infty)}{\beta} = \frac{1}{2U_{s}E_{s}(1-\mathcal{D})} \oint \langle \dot{N}u^{2} \rangle \mathcal{H} dt$$

$$\oint \langle \dot{N}u^{2} \rangle \mathcal{H} dt = \frac{55\gamma^{3}\hbar c}{16\sqrt{3}} \left(\frac{e^{2}c\gamma^{4}}{6\pi\epsilon_{0}} \right) \oint \frac{\mathcal{H}}{\rho^{3}} dt$$

$$= \frac{55\gamma^{3}\hbar c}{16\sqrt{3}} \left[\oint \left(\frac{e^{2}c\gamma^{4}}{6\pi\epsilon_{0}} \right) \frac{1}{\rho^{2}} dt \right] \oint \frac{\mathcal{H}}{\rho^{3}} ds$$

$$= \frac{55\gamma^{3}\hbar c}{16\sqrt{3}} U_{s} \oint \frac{\mathcal{H}}{\rho^{3}} ds$$

$$= \frac{55\gamma^{3}\hbar c}{16\sqrt{3}} U_{s} \oint \frac{\mathcal{H}}{\rho^{3}} ds$$

use

$$\dot{N} = \frac{15\sqrt{3}}{8} \frac{P}{u_c}; \langle u^2 \rangle = \frac{11}{27} u_c^2; u_c = \frac{3}{2} \frac{\hbar \gamma^3 c}{\rho}$$

$$P = \frac{e^2 c \gamma^4}{6\pi \epsilon_0} \frac{1}{\rho^2}$$

$$\epsilon_{x}(\infty) = \frac{1}{2U_{s}E_{s}(1-\mathcal{D})} \oint \langle \dot{N}u^{2} \rangle dt$$

$$= \frac{1}{2U_{s}(\gamma mc^{2})(1-\mathcal{D})} \frac{55\gamma^{3}\hbar c}{16\sqrt{3}} U_{s} \oint \frac{\mathcal{H}}{\rho^{3}} ds$$

$$\oint \frac{1}{\rho^{2}} ds$$

$$=C_{q}\frac{\gamma^{2}}{(1-\mathcal{D})}\frac{\oint \frac{\mathcal{H}}{\rho^{3}}ds}{\oint \frac{1}{\rho^{2}}ds}$$

where $C_q = \frac{55}{32\sqrt{3}} \frac{\hbar}{mc} = 3.8 \times 10^{-13}$ (for electrons)

For a separated function, isomagnetic machine $\rho = \rho_0$ or $\rho = \infty \rightarrow \oint \frac{1}{\rho^2} ds = \frac{1}{\rho_0} \oint \frac{ds}{\rho} = \frac{2\pi}{\rho_0}$

$$\epsilon_{x}(\infty) = C_{q} \frac{\gamma^{2}}{2\pi\rho_{0}(1-\mathcal{D})} \oint \frac{\mathcal{H}}{\rho} ds$$

Approximate

$$\oint \frac{\mathcal{H}}{\rho} ds \sim 2\pi \langle \mathcal{H} \rangle; \text{ recall } \mathcal{H} \equiv \gamma D^2 + 2\alpha DD' + \beta D'^2$$
$$\sim 2\pi \langle \gamma D^2 \rangle \sim \left\langle \frac{D^2}{\beta} \right\rangle$$

$$\langle D \rangle \approx \alpha_c R; \quad \beta \approx \frac{R}{v_x}; \quad \alpha_c = \frac{1}{\gamma_t} \approx \frac{1}{v_x}$$

$$\longrightarrow \epsilon_x(\infty) \approx \gamma^2 \frac{C_q}{\rho_0} \left\langle \frac{D^2}{\beta} \right\rangle$$

$$\approx C_q \gamma^2 \frac{R}{\rho_0} \alpha_c^2 v_x$$

$$\approx C_q \gamma^2 \frac{R}{\rho_0} \frac{1}{v_x^3}$$