04/27/2016

Speeding up NN

Voronoi diagrams

- Let P be a point set. The <u>voronoi cell</u> of $w \in P$ is $Vorw = \{p \in \mathbb{R}^d : |pw| \le |pv| \ \forall v \in P\}$.
- The Voronoi diagram of P is the set of all P's voronoi cells.
- Size (e.g. # of vertices) $\in \mathcal{O}(n^{\lceil \frac{d}{2} \rceil})$.. but often in practice is in $\mathcal{O}(n)$.
- Point location: Given query point v, find the point w for which $v \in Vorw$.
- 2D: $\mathcal{O}(n \log n)$ time to compute V.d. and a trapezoidal map for point location. $\mathcal{O}(\log n)$ query time.
- dD: Use binary space partition tree (BSP tree) for point location.
- 1-NN only! What about k-NN?
- order-k voronoi diagram has a cell for each possible combination of k-NN.
- In 2D, size $\in \mathcal{O}(k^2n)$.

k-d Trees

- Decision trees for NN search. Differences:
 - No entropy. Split dimension w/greatest variance or width (max-min).
 - Each internal node stores a sample point.

- Given query point q, find a sample point p such that $|qp| \le (1+\epsilon)|qs|$ where s is the closest point.
- The algorithm maintains:
 - Nearest neighbor found so far (or k nearest)
 - Heap of unexplored subtrees, keyed by distance from q.


```
\begin{array}{l} Q \leftarrow \text{ heap containing root node of tree} \\ r \leftarrow \infty \\ \text{while } Q \text{ has a cell closer to } q \text{ than } \frac{r}{1+\epsilon} \colon \\ C \leftarrow removeMin(Q) \\ p \leftarrow C's \text{ sample point} \\ r \leftarrow \min\{r, |qp|\} \\ C', C'' \leftarrow \text{ child cells of } C \\ insert(Q, C') \\ insert(Q, C'') \\ \text{return point that determined } r \end{array}
```


- For k-NN, replacing "r" w/a max-heap holding the k nearest neighbors.
- Works w/any L_p -norm for $p \in [1, \infty]$.
- Software:
 - ANN (David Mount, and Sunil Aryan, U. Maryland)
 - FLANN (Marius Muja and David Lowe, U. British Columbia)
 - GeRaF (Georgios Samaras, U. Athens)