Vectors

Learning Outcomes:

At the end of this chapter, students will be enable to

- Define vector product of two vectors and, interpret vector product geometrically.
- Solve the problems using properties of vector product.
- Apply vector product in plane trigonometry and geometry.

Product of Vectos

Vector product of two vectors

There are two types of vector products: Scalar (dot) product and vector (cross) product. We have already discussed about scalr (dot) product in grade-XI. Here, we discuss only about vector (cross) product of two vectors.

Vector (or cross) product:-

Let \overrightarrow{a} , \overrightarrow{b} be two non-zero non-parallel vectors. Then the vector product \overrightarrow{a} × \overrightarrow{b} , in that order, is defined as a vector whose magnitude is $|\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$, where θ is the angle between \overrightarrow{a} and \overrightarrow{b} and whose direction is perpendicular to the plane of \overrightarrow{a} and \overrightarrow{b} in such a way that \overrightarrow{a} , \overrightarrow{b} and this direction constitute a right handed system.

In other words, $\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \hat{\eta}$ form a right handed system.

The right handed system means if we rotate vector \overrightarrow{a} in to the vector \overrightarrow{b} , then $\mathring{\eta}$ will point in the direction perpendicular to the plane of \overrightarrow{a} and \overrightarrow{b} in which a right handed screw will move if it is turned in the same manner.

Note- 1: If one of \overrightarrow{a} or \overrightarrow{b} or both is $\overrightarrow{0}$, then θ is not defined as $\overrightarrow{0}$ has no direction and so $\mathring{\eta}$ is not defined. In this case, we define $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$.

Note 2: If \overrightarrow{a} and \overrightarrow{b} are collinear i.e. if $\theta = 0$ or π , then the direction of $\mathring{\eta}$ is not well defined. So, in this case also we define $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$.

Note 3: $\overrightarrow{a} \times \overrightarrow{b}$ is read as \overrightarrow{a} cross \overrightarrow{b} and is called cross product. Since the resulting quantity is a vector, it is known as a vector product.

Geometrical Interpretation of Vector Product of Two Vectors

Let \overrightarrow{a} , \overrightarrow{b} be two non-zero, non-parallel vectors represented by \overrightarrow{OA} and \overrightarrow{OB} respectively and let θ be the angle between them, complete the parallelogram OACB and draw BL \perp OA at L.

In
$$\triangle$$
 OBL, $\sin \theta = \frac{BL}{OB}$

$$\Rightarrow$$
 BL = OB $\sin\theta = |\overrightarrow{a}| \sin\theta$

Now.

$$\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin\theta \mathring{\eta}$$

$$=$$
 (OA) (BL) $\mathring{\eta}$

= (Base × height)
$$\mathring{\eta}$$

- = (Area of parallelogram OACB) $\hat{\eta}$
- Vector area of the parallelogram OACB,

In other words $\overrightarrow{a} \times \overrightarrow{b}$ represents the vector area of the parallelogram having adjacent sides along \overrightarrow{a} and \overrightarrow{b} .

Thus, area of parallelogram OACB = $|\overrightarrow{a} \times \overrightarrow{b}|$

Also.

Area of $\triangle OAB = \frac{1}{2}$ area of parallelogram OACB

$$= \quad \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} |\overrightarrow{OA} \times \overrightarrow{OB}|.$$

Note: By the term vector area of a plane figure we mean that a vector of magnitude equal to the area of the figure and direction normal to the plane of the figure in the sense of right handed rotation.

Note:

$$\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \, \hat{\eta}$$

Taking modulus on both sides,

$$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \hat{\eta}|$$

$$\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| |\sin \theta| |\widehat{\eta}| \quad [Since, |xy| = |x| |y|]$$

$$\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta .1$$

$$\Rightarrow \sin\theta = \frac{|\overrightarrow{a} \times \overrightarrow{b}|}{|\overrightarrow{a}| \times |\overrightarrow{b}|}$$

Cross product in component form

Let $\overrightarrow{a} = (a_1, a_2, a_3) = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}$ and $\overrightarrow{b} = (b_1, b_2, b_3) = b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k}$ be any two vectors. Then, their cross product $\overrightarrow{a} \times \overrightarrow{b}$ is defined as

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2) \hat{1} + (a_3b_1 - a_1b_3) \hat{j} + (a_1b_2 - a_2b_1) \hat{k}$$
$$= (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

Note: We define the cross product of three dimensional vectors only.

Properties of vector product

Property- I:- Vector product is not commutative in general i.e. if \overrightarrow{a} and \overrightarrow{b} are any two vectors, then $\overrightarrow{a} \times \overrightarrow{b} = -(\overrightarrow{b} \times \overrightarrow{a})$.

Property-II: If \overrightarrow{a} , and \overrightarrow{b} are two vectors represented by \overrightarrow{OA} and \overrightarrow{OB} and let θ be the angle between them. Then $\overrightarrow{ma} \times \overrightarrow{b} = \overrightarrow{m}(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \times \overrightarrow{mb}$

Property -III: If
$$\overrightarrow{a}$$
, \overrightarrow{b} are two vectors and m,n are scalars, then $\overrightarrow{ma} \times \overrightarrow{nb} = mn(\overrightarrow{a} \times \overrightarrow{b})$

Property-III: Distributivity of vectors product over vector addition:

Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be any three vectors. Then

i)
$$\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$$
 (Left Distributivity)

ii)
$$(\overrightarrow{b} + \overrightarrow{c}) \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{a}$$
 (Right Distributivity)

Property IV: The vector product of two non-zero vectors is zero vector iff they are parallel (collinear) i.e. $\overrightarrow{a} \times \overrightarrow{b} = 0 \Leftrightarrow \overrightarrow{a} \parallel \overrightarrow{b}, \overrightarrow{a}, \overrightarrow{b}$ are non-zero vectors.

Note -1: It follows from the above property that $\overrightarrow{a} \times \overrightarrow{a} = 0$ for every non-zero vector \overrightarrow{a} which in turn implies that $(\overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0)$ Proof:

For
$$\hat{i}$$
 and \hat{i} , $\theta = 0$

We have,

$$\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$$

$$\Rightarrow \hat{i} \times \hat{i} = |\hat{i}| |\hat{i}| \sin 0$$

$$\Rightarrow \hat{i} \times \hat{i} = 1.1.0$$

 $\Rightarrow \hat{i} \times \hat{i} = 0$. Similarly other.

Note-2:
$$\hat{i} \times \hat{j} = \hat{j} \times \hat{k} = \hat{k} \times \hat{i} = 1$$

Proof:

For
$$\hat{i}$$
 and \hat{j} , $\theta = 90^0$

We have,

$$\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$$

$$\Rightarrow \stackrel{\wedge}{i} \times \stackrel{\wedge}{j} = |\stackrel{\wedge}{i}| |\stackrel{\wedge}{j}| \sin 90^{0}$$

$$\Rightarrow \hat{i} \times \hat{j} = 1.1.1$$

$$\Rightarrow \hat{i} \times \hat{j} = 1$$
. Similarly other.

Note-3: Vector product of orthogonal (orthonormal also) triad of unit vectors \hat{i} , \hat{j} , \hat{k} is given by

$$\stackrel{\wedge}{i} \times \stackrel{\wedge}{j} = \stackrel{\wedge}{k}, \stackrel{\wedge}{j} \times \stackrel{\wedge}{k} = \stackrel{\wedge}{i}, \stackrel{\wedge}{k} \times \stackrel{\wedge}{i} = \stackrel{\wedge}{j}$$

$$\hat{j} \times \hat{i} = -\hat{k}, \hat{k} \times \hat{j} = -\hat{i}, \hat{i} \times \hat{k} = -\hat{j}$$

Vectors Normal/Perpendiculr/Orthogonal to the plane of two given vectors

Let \overrightarrow{a} , \overrightarrow{b} be two non-zero, non-parallel vectors.

The vector product $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to both \overrightarrow{a} and \overrightarrow{b} .

Also, let θ be the angle between \overrightarrow{a} and \overrightarrow{b} then $\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \mathring{\eta}$

Where, $\overset{\wedge}{\eta}$ is a unit vector perpendicular of the plane of \overrightarrow{a} and \overrightarrow{b} such that \overrightarrow{a} , \overrightarrow{b} , $\overset{\wedge}{\eta}$ from a right-handed system.

$$\therefore \quad (\overrightarrow{a} \times \overrightarrow{b}) = |\overrightarrow{a} \times \overrightarrow{b}| \, \mathring{\eta}$$

$$\Rightarrow \quad \mathring{\eta} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{a} \times \overrightarrow{b}|}$$

Thus, $\frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{a} \times \overrightarrow{b}|}$ is a unit vector perpendicular to the plane of \overrightarrow{a} and \overrightarrow{b} .

Note 1: $-\frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{a} \times \overrightarrow{b}|}$ is also a unit vector perpendicular to the plane of \overrightarrow{a} and \overrightarrow{b} .

Note-2: Vector of magnitude 'k' normal to the plane \overrightarrow{a} and \overrightarrow{b} is given by

$$\pm \frac{k (\overrightarrow{a} \times \overrightarrow{b})}{|\overrightarrow{a} \times \overrightarrow{b}|}$$

Note-3: Prove that the vector product $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to both \overrightarrow{a} and \overrightarrow{b} .

Proof: Let $\overrightarrow{a} = (a_1, a_2, a_3)$ and $\overrightarrow{b} = (b_1, b_2, b_3)$ Then $\overrightarrow{a} \times \overrightarrow{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1)$

Now, $(\overrightarrow{a} \times \overrightarrow{b})$. $\overrightarrow{a} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1).(a_1,a_2,a_3)$

$$= (a_2b_3 - a_3b_2)a_1 + (a_3b_1 - a_1b_3).a_2 + (a_1b_2 - a_2b_1)a_3$$

 $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to \overrightarrow{a} .

Similarly, $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to \overrightarrow{b} .

Note-4: Expression for $sin\theta$

$$\overrightarrow{a}.\overrightarrow{b} = a_1b_1 + a_2b_2 + a_3b_3 = ab \cos\theta.$$

Where θ is the angle between \overrightarrow{a} and \overrightarrow{b} .

Now, $(\overrightarrow{a} \times \overrightarrow{b})^2 = (\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{a} \times \overrightarrow{b})$

$$= (a_2 b_3 - a_3 b_2)^2 + (a_3 b_1 - a_1 b_3)^2 + (a_1 b_2 - a_2 b_1)^2$$

$$= (a_1^2 + a_2^2 + a_3^2)(a_1^2 + a_2^2 + a_3^2) - (a_1 b_1 + a_2 b_2 + a_3 b_3)^2$$

$$=$$
 $a^2 b^2 - (\overrightarrow{a} \cdot \overrightarrow{b})^2$

$$\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 - |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 \cos^2 \theta.$$

$$= |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 (1 - \cos^2 \theta)$$

$$= |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 \sin^2 \theta$$

$$\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin\theta$$

$$\Rightarrow \sin\theta = \frac{|\overrightarrow{a} \times \overrightarrow{b}|}{|\overrightarrow{a}| \times |\overrightarrow{b}|}$$

Note- 1: The area of a parallelogram with adjacent sides \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

Note- 2: The area of a trainagle with adjacent sides \vec{a} and \vec{b} is $\frac{1}{2} |\vec{a} \times \vec{b}|$.

Note-3: The area of a triangle ABC is $\frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BA}|$ or $\frac{1}{2} |\overrightarrow{CB} \times \overrightarrow{CA}|$

Note -4: The area of a parallelogram with diagonals \vec{d}_1 and \vec{d}_2 is $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$

Note-5: The area of a plane quadrilateral ABCD is $\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$. Whene AC and BD are its diagonals.

i.e. Area of quadrilateral ABCD = $\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$

Examples 1: If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are the position vector of vertices A,B,C of a triangle ABC, Show that the area of triangle ABC is $\frac{1}{2} | \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} |$. Also, deduce the condition for points \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} to be a collinear,

Solution:- We have, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$

Area of
$$\triangle$$
 ABC = $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{BC}|$
= $\frac{1}{2} |(\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{b})|$
= $\frac{1}{2} |\overrightarrow{b} \times \overrightarrow{c} - \overrightarrow{b} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{a} \times \overrightarrow{b})|$
= $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}|$

If the points, A, B,C are collinear, then

Area of \triangle ABC = 0

$$\Rightarrow \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} \times \overrightarrow{a}| = 0$$

$$\Rightarrow |\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}| = 0$$

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = 0$$

which is the required condition of collinearity of three points $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$.

Prove that the points A, B and C with position vectors \overrightarrow{a} , \overrightarrow{b} are \overrightarrow{c} respectively are collinear if and only if $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{0}$

Solution:

The point A, B and C are collinear

$$\Leftrightarrow$$
 \overrightarrow{AB} and \overrightarrow{BC} are parallel vectors.

$$\Leftrightarrow \overrightarrow{AB} \times \overrightarrow{BC} = \overrightarrow{0}$$

$$\Leftrightarrow (\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{b}) = \overrightarrow{0}$$

$$\Leftrightarrow (\overrightarrow{b} - \overrightarrow{a}) \times \overrightarrow{c} - (\overrightarrow{b} - \overrightarrow{a}) \times \overrightarrow{b} = 0$$

$$\Leftrightarrow (\overrightarrow{b} \times \overrightarrow{c} - \overrightarrow{a} \times \overrightarrow{c}) - (\overrightarrow{b} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{b}) = 0$$

$$\Leftrightarrow (\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) - (0 - \overrightarrow{a} \times \overrightarrow{b}) = 0 (\because -(\overrightarrow{a} \times \overrightarrow{c}) = \overrightarrow{c} \times \overrightarrow{a})$$

$$\Leftrightarrow \overrightarrow{a} \times b + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{0}$$

For any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , show that $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{c} + \overrightarrow{c}) + \overrightarrow{c} \times (\overrightarrow{$ $(\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{0}$

Solution:

$$\text{L.H.S} = \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{b})$$

$$= \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{b}$$
 [Distribuive law]

$$= \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c} - \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c} - \overrightarrow{b} \times \overrightarrow{c}$$

$$=$$
 $\overrightarrow{0}$

If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, then prove that $\overrightarrow{a} \times \overrightarrow{b} = 0$ $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$

Solution:

Given
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{a} \times (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{0}$$
 [Taking cross-production with \overrightarrow{a}]

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{0}$$
 [Using distributive law]

$$\Rightarrow \overrightarrow{0} + \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{a} \dots (i)$$

Similarly,
$$\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$$
(ii)

(i) and (ii) gives the result

If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are the non-zero vectors prove that: $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a}$ $\times \stackrel{\rightarrow}{c}$ Solution:-

Let $\overrightarrow{a} = (a_1, a_2, a_3)$, $\overrightarrow{b} = (b_1, b_2, b_3)$ and $\overrightarrow{c} = (c_1, c_2, c_3)$ be three non-zero

$$\overrightarrow{b} + \overrightarrow{c} = (b_1, b_2, b_3) + (c_1, c_2, c_3)$$

Now,

$$\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$$

$$= \left| \begin{array}{cc|c} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right| + \left| \begin{array}{cc|c} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{array} \right| = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} \text{ Proved}$$

Application of Cross Product in Geometrical Problem

Sine Law:-

In a triangle ABC, prove by vectors method that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

Solution

Let
$$\overrightarrow{BC} = \overrightarrow{a}$$
, $\overrightarrow{CA} = \overrightarrow{b}$ and $\overrightarrow{AB} = \overrightarrow{c}$.

Then
$$|\overrightarrow{a}| = a$$
, $|\overrightarrow{b}| = b$, $|\overrightarrow{c}| = c$

We have,

$$\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{BA}$$

$$\Rightarrow \overrightarrow{a} + \overrightarrow{b} = -\overrightarrow{c}$$

$$\Rightarrow \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{o}$$

$$\Rightarrow \overrightarrow{a} \times (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{0} + \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{c} \times \overrightarrow{a} \dots (i)$$

Again,

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{b} \times (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{b} \times \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{b} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{0}$$

$$\Rightarrow -(\overrightarrow{a} \times \overrightarrow{b}) + \overrightarrow{0} + \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$$
(ii)

From (i) and (ii)

$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$$

$$\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{b} \times \overrightarrow{c}| = |\overrightarrow{c} \times \overrightarrow{a}|$$

$$\Rightarrow$$
 ab $\sin (\pi - C) = bc \sin (\pi - A) = ca \sin (\pi - B)$

$$\Rightarrow$$
 ab sinC = bc sinA = ca sin B

$$\Rightarrow \frac{ab \sin C}{abc} = \frac{bc \sin A}{abc} = \frac{ca \sin B}{abc}$$

$$\Rightarrow \frac{\sin C}{c} = \frac{\sin A}{a} = \frac{\sin B}{b}$$

$$\Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

- 2. Prove by vector method that
 - (i) $\sin(A B) = \sin A \cos B \cos A \sin B$
 - (ii) $\sin (A + B) = \sin A \cos B + \cos A \sin B$

Soltion:-

(i) Let XOX' and YOY' be the mutually perpendicular lines taken as axes, and let \rightarrow XOQ = A, \rightarrow XOP = B

So,
$$\rightarrow$$
POQ = A – B.

Let,
$$OP = r_1$$
, and $OQ = r_2$

Now, co-ordinates of P and Q are

 $(r_1 \cos B, r_1, \sin B)$ and $(r_2 \cos A, r_2 \sin A)$

Then,
$$\overrightarrow{OP} = (r_1 \cos B, r_1, \sin B, 0)$$

and
$$\overrightarrow{OQ} = (r_2 \cos A, r_2 \sin A, 0)$$

$$\overrightarrow{OP} \times \overrightarrow{OQ} = \left| \begin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ r_1 cosB & r_1 sinB & 0 \\ r_2 cosA & r_2 sinA & 0 \end{array} \right| = (0, 0, r_1, r_2 sinA cosB - r_1 r_2 cosA sinB)$$

$$\Rightarrow |\overrightarrow{OP} \times \overrightarrow{OQ}| = r_1 r_2 (\sin A \cos B - \cos A \sin B)$$

We have,

$$\sin(A - B) = \frac{|\overrightarrow{OP} \times \overrightarrow{OQ}|}{OP.OQ} = \frac{r_1 r_2 (\sin A \cos B - \cos A \sin B)}{r_1 r_2}$$

$$\therefore$$
 $\sin(A - B) = \sin A \cos B - \cos A \sin B$

Let XOX' and YOY' be two mutually perpendicular lines taken as axes and \rightarrow ii) XOP = A, $\rightarrow X'OQ = B$, the $\rightarrow POQ = \pi - (A + B)$

Let
$$OP = r_1$$
, and $OQ = r_2$

Now co-ordinates of P and Q are $(r_1 \cos A, r_1, \sin A)$ and $(-r_2 \cos B, r_2 \sin B)$ respectively.

Then,
$$\overrightarrow{OP} = (r_1, \cos A, r_1, \sin A, 0)$$

And
$$\overrightarrow{OQ} = (-r_2 \cos B, r_2 \sin B, 0)$$

$$\overrightarrow{OP} \times \overrightarrow{OQ} = \left| \begin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ r_1 cos A & r_1 sin A & 0 \\ r_2 cos B & r_2 sin B & 0 \end{array} \right| = (0, 0, r_1 r_2 sin A cos B + r_1 r_2 cos A sin B)$$

$$\Rightarrow |\overrightarrow{OP} \times \overrightarrow{OQ}| = r_1 r_2 (\sin A \cos B + \cos A \sin B)$$

We have,

$$\sin\{\pi - (A + B)\} = \frac{|\overrightarrow{OP} \times \overrightarrow{OQ}|}{OP.OQ}$$

$$\Rightarrow \sin(A + B) = \frac{r_1 r_2 (\sin A \cos B + \cos A \sin B)}{r_1 r_2}$$

$$\therefore \sin(A + B) = \sin A \cos B + \cos A \sin B$$

Worked out Examples

Example-1: If $\overrightarrow{a} = 3\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} - 2\overrightarrow{j} + 4\overrightarrow{k}$ are two vectors then find

- $\overrightarrow{a} \times \overrightarrow{b}$ (ii) unit vector perpendicular to \overrightarrow{a} and \overrightarrow{b}
- (iii) sine of an angle between \overrightarrow{a} and \overrightarrow{b}

Solution:

Given,
$$\overrightarrow{a} = 3\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$$
 and $\overrightarrow{b} = 2\overrightarrow{i} - 2\overrightarrow{j} + 4\overrightarrow{k}$

$$i) \qquad \overrightarrow{a} \times \overrightarrow{b} = \left| \begin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 1 & 2 \\ 2 & -2 & 4 \end{array} \right| = \overrightarrow{i} \left| \begin{array}{ccc} 1 & -2 \\ -2 & 4 \end{array} \right| - \overrightarrow{j} \left| \begin{array}{ccc} 3 & 2 \\ 2 & 4 \end{array} \right| + \overrightarrow{k} \left| \begin{array}{ccc} 3 & 1 \\ 2 & -2 \end{array} \right|$$

$$= 8\overrightarrow{i} - 8\overrightarrow{j} - 8\overrightarrow{j}$$

(ii)
$$|\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{(8)^2 + (-8)^2 + (-8)^2} = 8\sqrt{3}$$

We have,

Unit vector perpendicular to \overrightarrow{a} and $\overrightarrow{b} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{\overrightarrow{a} \times \overrightarrow{b}}$

$$= \frac{8\overrightarrow{i} - 8\overrightarrow{j} - 8\overrightarrow{k}}{8\sqrt{3}} = \frac{1}{\sqrt{3}} (\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k})$$

let θ be angle between \overrightarrow{a} and \overrightarrow{b} . iii)

Then
$$\sin\theta = \frac{|\overrightarrow{a} \times \overrightarrow{b}|}{a b} = \frac{8 \sqrt{3}}{\sqrt{(3)^2 + (1)^2 + (2)^2} \sqrt{(2)^2 + (-2)^2 + (4)^2}}$$

$$= \frac{8\sqrt{3}}{\sqrt{14}\sqrt{24}} = \frac{2}{\sqrt{7}}$$

Exampl-2: Find the area of the triangle determined by the

(i) Vectors:
$$3\overrightarrow{i} + 4\overrightarrow{j} + \overrightarrow{k}$$
 and $-5\overrightarrow{i} + 7\overrightarrow{j}$

Solution:

(i) Let
$$\overrightarrow{a} = 3\overrightarrow{i} + 4\overrightarrow{j} + \overrightarrow{k}$$
 and $\overrightarrow{b} = -5\overrightarrow{i} + 7\overrightarrow{j}$

Now.

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 4 & 1 \\ -5 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 4 & 1 & | \overrightarrow{i} - | & 3 & 1 & | \overrightarrow{j} + | & 3 & 4 & | \overrightarrow{k} \end{vmatrix}$$

$$=$$
 $-7\overrightarrow{i} + 5\overrightarrow{j} + 41\overrightarrow{k}$

And
$$|\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{(-7)^2 + 5^2 + 41^2} = \sqrt{1755}$$

We have,

Area of a triangle determined by \overrightarrow{a} and $\overrightarrow{b} = \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} \sqrt{1755} = 20.95 \text{ sq. unit}$

Let p(1,2,3), Q (3, 4, 5) and R (1, 4, 7) be three vertices of $\triangle PQR$ and O be the origin. Then, $\overrightarrow{OP} = (1, 2, 3)$, $\overrightarrow{OQ} = (3,4,5)$, $\overrightarrow{OR} = (1, 4, 7)$

Now,
$$\overrightarrow{OQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (3, 4, 5) - (1, 2, 3) = (2, 2, 2)$$

and
$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = (1, 4, 7) - (1, 2, 3) = (0, 2, 4)$$

Now,

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 2 & 2 \\ 0 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 2 & 2 & | \overrightarrow{i} - | & 2 & 2 & | \overrightarrow{j} + | & 2 & 2 & | \overrightarrow{k} \end{vmatrix}$$

$$= \overrightarrow{4i} - 8\overrightarrow{j} + 4\overrightarrow{k} = (4, -8, 4)$$

and
$$|\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{4^2 \ 7(-8)^2 + 4^2} = \sqrt{96} = 4\sqrt{6}$$

We have.

Area of
$$\triangle PQR = \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}| = \frac{1}{2} 4\sqrt{6} = 2\sqrt{6}$$
 sq. unit

Example-5: If $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $c = \overrightarrow{j} - \overrightarrow{k}$ are given vectors then find a vector \overrightarrow{b} satisfying the equation $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$

Solution:

Let
$$\overrightarrow{b} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$
. Then

$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \Rightarrow \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = \overrightarrow{j} - \overrightarrow{k}$$

$$\Rightarrow$$
 $(z-y)\overrightarrow{i} - (z-x)\overrightarrow{j} + (y-x)\overrightarrow{k} = \overrightarrow{j} - \overrightarrow{k}$

Equating,

$$z - y = 0$$
, $-(z - x) = 1$, $y - x = -1$

$$\Rightarrow$$
 $y = z, x - z = 1, x - y = 1$

$$\Rightarrow$$
 $x-z=1$, $x-y=1$ [These two equation are equivalent to $y=z$]

$$\Rightarrow$$
 z = x - 1 and y = x - 1(i)

Also.

$$\overrightarrow{a}$$
. $\overrightarrow{b} = 3 \Rightarrow (\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k})$. $(\overrightarrow{x} + \overrightarrow{y} + \overrightarrow{z} + \overrightarrow{k}) = 3$

$$\Rightarrow$$
 $x + y + z = 3 \Rightarrow x + x - 1 + x - 1 = 3 [uning (i)]$

$$\Rightarrow$$
 $3x = 5 \Rightarrow x = \frac{5}{3}$

From (i)
$$y = x - 1 \Rightarrow y = \frac{5}{3} - 1 = \frac{2}{3}$$

Also,
$$y = z \Rightarrow z = \frac{2}{3}$$

Hence,
$$\overrightarrow{b} = \frac{5}{3}\overrightarrow{i} + \frac{2}{3}\overrightarrow{j} + \frac{2}{3}\overrightarrow{k}$$

Exercise

- 1. Define a vector product of two vectors. Interprect it geometrically. Find a unit vector perpendicular to the plane of $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$, $\overrightarrow{b} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$. Also compute the sine of the angle between them.
- 2. Find the unit vectors perpendicular to the given vectors.

(i)
$$\overrightarrow{i} + 3\overrightarrow{j} - 4\overrightarrow{k}$$
 and $2\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$

(ii)
$$4\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}$$
 and $5\overrightarrow{i} + \overrightarrow{j} - 4\overrightarrow{k}$

(iii)
$$2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}$$
 and $\overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$

Find the area of the triangle determined by the following vectors. 3.

(i)
$$3\overrightarrow{i} + 4\overrightarrow{j}$$
 and $-5\overrightarrow{i} + 7\overrightarrow{j}$

(ii)
$$-2\overrightarrow{i} - 5\overrightarrow{k}$$
 and $-10\overrightarrow{i} - 7\overrightarrow{j} + 4\overrightarrow{k}$

4. Find the area oif the parallelogram determined by the following vectors.

(i)
$$\overrightarrow{i} + \overrightarrow{j} - 3\overrightarrow{k}$$
 and $-\overrightarrow{i} - 2\overrightarrow{j} - 3\overrightarrow{k}$

(ii)
$$\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$$
 and $3\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$

Find the area of the parallelogram having the diagonals $4\vec{i} - \vec{j} - 3\vec{k}$ and $-2\vec{i}$ 5. $+\overrightarrow{i}-2\overrightarrow{k}$

6. If
$$\overrightarrow{a} = 6\overrightarrow{i} + 3\overrightarrow{j} - 5\overrightarrow{k}$$
 and $\overrightarrow{b} = \overrightarrow{i} - 4\overrightarrow{j} + 2\overrightarrow{k}$,

Show that
$$\overrightarrow{a} \times \overrightarrow{b}$$
 is perpendicular to \overrightarrow{a} [Hint: Show $(\overrightarrow{a} \times \overrightarrow{b})$. $\overrightarrow{a} = 0$]

7. If
$$|\overrightarrow{a}| = 2$$
, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 8$, find $|\overrightarrow{a}| \cdot |\overrightarrow{b}| = 8$.

[Hint: First the
$$\sin\theta$$
 using $\sin\theta = \frac{|\overrightarrow{a} \times \overrightarrow{b}|}{|\overrightarrow{a}| |\overrightarrow{b}|}$, then $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}|$ as $\theta = |\overrightarrow{a}| |\overrightarrow{b}|$ $\sqrt{1 - \sin^2\theta}$]

Let $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j}$, $\overrightarrow{b} = 3\overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{c} = 7\overrightarrow{i} - \overrightarrow{k}$. Find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{c} . $\overrightarrow{d} = 1$

[Hint: Let $\overrightarrow{a} = \lambda (\overrightarrow{a} \times \overrightarrow{b})$, find λ using $\overrightarrow{c} \cdot \overrightarrow{d} = 1$]

Answer:

1.
$$\frac{1}{\sqrt{3}}$$
 $(-\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}), \frac{\sqrt{3}}{2}$

2. (i)
$$\frac{1}{\sqrt{75}}$$
 (1, -7, -5) (ii) $\frac{1}{\sqrt{1182}}$ (5, -3, 14) (iii) $\frac{1}{\sqrt{35}}$ (-5,3,-1)

3. (i) 20.5 sq. unit (ii)
$$\frac{1}{2} \sqrt{165}$$
 sq. unit

4. (i)
$$\sqrt{118}$$
 sq. unit (ii) $8\sqrt{3}$ sq. unit

8.
$$\frac{1}{4}(\overrightarrow{i} + \overrightarrow{j} + 3\overrightarrow{k})$$

Product of Three Vectors

1. Introduction

Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors. Consider the product $(\overrightarrow{a}.\overrightarrow{b})$ \overrightarrow{c} . Since $\overrightarrow{a}.\overrightarrow{b}$ is a scalar quantity and the dot product is defined between two vector quantity ($\stackrel{\rightarrow}{a}$ \overrightarrow{b}). \overrightarrow{c} is not meaningful. But $(\overrightarrow{a} \times \overrightarrow{b})$. \overrightarrow{c} is meaningful and scalar quantity. This product in known as the scalar triple product of \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} . The product $(\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}) \times \stackrel{\rightarrow}{c}$ is also meaningful and vector triple product of $\stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}, \stackrel{\rightarrow}{c}$.

Scalar Triple Product

Definition: Let $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} be three vector. Then the scalar $\overrightarrow{a}.(\overrightarrow{b}\times\overrightarrow{c})$ is called the scalar triple product of \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} and is denoted by $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$. Thus, $[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$. Similarly, $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$, $(\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a}$ and $(\overrightarrow{c} \times \overrightarrow{a})$. b are scalar triple products.

Geometrical Interpretation

Let, \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors. Comsider a parallelopriped having coterminous edges OA, OB and OC such that $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ and $\overrightarrow{OC} = c$. The direction of perpendicular to the plance of \overrightarrow{b} and \overrightarrow{c} .

Let θ be the angle between \overrightarrow{a} and $\overrightarrow{b} \times \overrightarrow{c}$. If $\mathring{\eta}$ is a unit vector along $\overrightarrow{b} \times \overrightarrow{c}$, then θ is also the angle between $\mathring{\eta}$ and \vec{a} .

Now, $[\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c}]$

- $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{a} \cdot (Area \text{ of parallelogram OBDC}) \mathring{\eta}$
- (Area of parallelogram OBDC) $(\stackrel{\rightarrow}{a}.\mathring{\eta})$
- (Area of parallelogram OBDC) ($|\vec{a}| \cos\theta$) [:: $|\hat{\eta}| = 1$]
- Area of parallelogram OBDC) (OL) [:: OC $\cos\theta = OL$]
- (Area o the base of the parallelopied) × height
- Volume of the parallelepiped with conterminous edges \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c}

Thus, the scalar triple product [a, b, c] represents the volume of the parallelepiped whose co-terminuous edges \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} form a right handed system of vectors.

Properties of scalar Triple Product

Property-I: If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are cyclically permuted the value of scalar triple product remains same (unaltered).

i.e.
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} = (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}$$

$$\Rightarrow \quad [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}) = [\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{b}]$$

Property-II: The change of cyclic order of vectors in scalar triple product changes the sign of the scalar triple product but not the magnitude.

i.e.
$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (\overrightarrow{a} \overrightarrow{b})$$
. $\overrightarrow{c} = -(\overrightarrow{b} \times \overrightarrow{a})$. $\overrightarrow{c} = -\{(\overrightarrow{b} \times \overrightarrow{a})\}$. $\overrightarrow{c} = -[\overrightarrow{b} \overrightarrow{a} \overrightarrow{c}]$

Property -III: In scalar triple product the positions of dot and cross can be intercharged provided that the cyclic order of the vectors remains same.

i.e.
$$(\overrightarrow{a} \times \overrightarrow{b})$$
. $\overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$

Property -IV: The scalar triple product of three vectors is zero if any two of them are equal proof:- let \overrightarrow{a} \overrightarrow{b} and \overrightarrow{c} be threrectors.

Property-V: For any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and scalar λ .

we have
$$[\lambda \overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \lambda [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$

Property VI:- The scalar triple product of their three vectors is zero if two of them are parallel or collinear.

Property-VII: If \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} and \overrightarrow{d} ar four vectors, then

$$[\overrightarrow{a} + \overrightarrow{b} \xrightarrow{c} \overrightarrow{d}] = [\overrightarrow{a} \xrightarrow{c} \overrightarrow{d}] + [\overrightarrow{b} \xrightarrow{c} \overrightarrow{d}]$$

Property-VIII: The necessary and sufficient condition for three non-zero, non-

collinear vectors
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} to be coplanar is $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$

i.e.
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are coplanner $\Leftrightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$

Scalar Triple product in terms of component (In determinant form)

Theorem:- Let $\overrightarrow{a} = a_1 \stackrel{\hat{\imath}}{i} + a_2 \stackrel{\hat{\jmath}}{j} + a_3 \stackrel{\hat{k}}{k}, \overrightarrow{b} = b_1 \stackrel{\hat{\imath}}{i} + b_2 \stackrel{\hat{\jmath}}{j} + b_3 \stackrel{\hat{k}}{k}$ and $\overrightarrow{c} = c_1 \stackrel{\hat{\imath}}{i} + c_2 \stackrel{\hat{\jmath}}{j} + c_3 \stackrel{\hat{k}}{k}$

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Proof:- We have,
$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= (a_3 b_3 - a_3 b_2) \hat{i} - (a_1, b_3 - a_3 b_1) \hat{j} + (a_1 b_2 - a_2 b_1) \hat{k}$$

Now,
$$[\vec{a} \ \vec{b} \ \vec{c}] = (\vec{a} \times \vec{b}). \vec{c} = [(a_2 \ b_3 - a_3 \ b_2)\hat{i} - (a_1 \ b_3 - a_3 \ b_1) \ \hat{j} + (a_1, b_2 - a_2 \ b_1) \ \hat{k}$$

$$[\vec{a} \ \vec{b} \ \vec{c}] = (\vec{a} \times \vec{b}). \vec{c} = [(a_2 \ b_3 - a_3 \ b_2)\hat{i} - (a_1 \ b_3 - a_3 \ b_1) \ \hat{j} + (a_1, b_2 - a_2 \ b_1) \ \hat{k}$$

$$= (a_3 b_3 - a_3 b_2) c_1 - (a_1 b_3 - a_3 b_1) c_2 + (a_1 b_2 - a_2 b_1) c_3$$

$$= \left| \begin{array}{c|cc} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right| = - \left| \begin{array}{c|cc} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \end{array} \right| = \left| \begin{array}{c|cc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array} \right|$$

Distributivity of cross product over vector Addition

Theorem: For any three vector \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$.

Worked out Examples

1. Prove that
$$\begin{bmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{bmatrix} + \begin{bmatrix} \overrightarrow{i} & \overrightarrow{k} & \overrightarrow{j} \end{bmatrix} = 0$$

$$Sol^{n} \left[\overrightarrow{i} \overrightarrow{j} \overrightarrow{k} \right] + \left[\overrightarrow{i} \overrightarrow{k} \overrightarrow{j} \right]$$

$$= \overrightarrow{i}.(\overrightarrow{j} \times \overrightarrow{k}) + \overrightarrow{i}.(\overrightarrow{k} \times \overrightarrow{j}) \qquad = \overrightarrow{i}.\overrightarrow{i} + \overrightarrow{i}.(-\overrightarrow{i})$$

$$= \overrightarrow{i} \overrightarrow{i} - \overrightarrow{i} \cdot \overrightarrow{i} = 0$$

Find $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$ when $\overrightarrow{a} = (2, -3, 4) \overrightarrow{b} = (1, 2, -1)$ and $\overrightarrow{c} = (3, -1, 2)$. Solution:-

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ -3 & -1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & -1 \\ -3 & 2 \end{vmatrix} - (-3) \begin{vmatrix} 1 & -1 \\ -3 & -1 \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ -3 & -1 \end{vmatrix} = -7$$

3) Find the volume of a parallelepiped whose sides are given by $-3\overrightarrow{i} + 7\overrightarrow{j} + 5\overrightarrow{k}$, - $5\overrightarrow{i} + 7\overrightarrow{j} - 3\overrightarrow{k}$ and $7\overrightarrow{i} - 5\overrightarrow{j} - 3\overrightarrow{k}$.

Solⁿ:

Let $\overrightarrow{a} = (-3, 7, 5)$, $\overrightarrow{b} = (-5, 7, -3)$ and $\overrightarrow{c} = (7, -5, -3)$ be three adjacent edges of a parallelopied. Then its volume is equal to $[\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c}]$

Now,
$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \begin{vmatrix} -3 & 7 & 5 \\ -5 & 7 & -3 \\ 7 & -5 & -3 \end{vmatrix}$$

= $-3 \begin{vmatrix} 7 & -3 \\ -5 & -3 \end{vmatrix} - 7 \begin{vmatrix} -5 & -3 \\ 7 & -3 \end{vmatrix} + 5 \begin{vmatrix} -5 & 7 \\ 7 & -5 \end{vmatrix} = -264$

- Required volume of the parallelepiped = $|[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]| = |-264| = 264$ cubic unit.
- Show that the vectors $\vec{a} = (-2, -2, 4) \vec{b} = (-2, 4, -2), \vec{c} = (4, -2, -2)$ are 4)

Solution: \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar iff $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$

So,
$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \begin{vmatrix} -2 & -2 & 4 \\ -2 & 4 & -2 \\ 4 & -2 & -2 \end{vmatrix} = 0$$
 (on solving)

Hence, \overrightarrow{a} b \overrightarrow{c} are coplanar.

Find the value of λ so that $\overrightarrow{a} = (2, -1, 1)$, $\overrightarrow{b} = (1, 2, -3)$ and $\overrightarrow{c} = (3, \lambda, k)$ are coplanar.

Solⁿ:

$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are coplarar iff $[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}] = 0$

Since, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c}] are coplarar $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$

$$\Rightarrow \begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & \lambda & 5 \end{vmatrix} = 0$$

$$\Rightarrow 2 \begin{vmatrix} 2 & -3 \\ \lambda & 5 \end{vmatrix} - (-1) \begin{vmatrix} 1 & -3 \\ 3 & 5 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 3 & \lambda \end{vmatrix} = 0$$

$$\Rightarrow$$
 2(10 + 3 λ) + 1 (5 + 9) + (λ - 6) = 0

$$\Rightarrow$$
 $7\lambda + 28 = 0 \Rightarrow -4$

Vector Triple Product

Definition: Let $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} be three vector. Then the vector $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ is called the vector triple product of \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} and is given by

$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a}.\overrightarrow{c})\overrightarrow{b} - (\overrightarrow{a}.\overrightarrow{b})\overrightarrow{c}$$

Geometrical Interpretatio of Vector Triple Product

If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three non-zero and non-coplanar vectors. Then the vector $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ is perpendicular to both the vectors \overrightarrow{a} and $\overrightarrow{b} \times \overrightarrow{c}$.

Then dot product of \overrightarrow{a} and $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ is zero. Similarly,

dot product of $\overrightarrow{b} \times \overrightarrow{c}$ and $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ is zero.

Example:-

20.
$$\vec{a} = \vec{l} - 2\vec{j} + \vec{k}$$
, $\vec{b} = 2\vec{l} + \vec{j} + \vec{k}$ and $\vec{c} = \vec{l} + 2\vec{j} - \vec{k}$, find $\vec{a} \times (\vec{b} \times \vec{c})$ and verify that find $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$.

Solution
$$\vec{b} \times \vec{c} = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = \vec{l} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix}$$

$$= (-1 - 2) \vec{l} - (-2 - 1) \vec{j} + (4 - 1) \vec{k} = -3 \vec{l} + 3 \vec{j} + 3 \vec{k}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \\ -3 & 3 & 3 \end{vmatrix} = \vec{l} \begin{vmatrix} -2 & 1 \\ 3 & 3 \end{vmatrix} - \vec{j} \begin{vmatrix} 1 & 1 \\ -3 & 3 \end{vmatrix} + \vec{k} \begin{vmatrix} 1 & -2 \\ -3 & 3 \end{vmatrix}$$

$$= (-6 - 3) \vec{l} - (3 + 3) \vec{j} + (3 - 6) \vec{k}$$

$$= -9 \vec{l} - 6 \vec{j} - 3 \vec{k} \qquad ... (i)$$

Again,
$$\vec{a} \cdot \vec{c} = (\vec{l} - 2\vec{j} + \vec{k}) \cdot (\vec{l} + 2\vec{j} - \vec{k}) = 1 \cdot 4 \cdot 1 = -4$$

$$\vec{a} \cdot \vec{b} = (\vec{l} - 2\vec{j} + \vec{k}) \cdot (2\vec{l} + \vec{j} + \vec{k}) = 2 \cdot 2 + 1 = 1$$

$$(\vec{a} \cdot \vec{c}) \vec{b} = (\vec{a} \cdot \vec{b}) \vec{c} = -4(2\vec{l} + \vec{l} + \vec{k}) = 1(\vec{l} + 2\vec{l} - \vec{k})$$

$$= -8\vec{l} - 4\vec{l} - 4\vec{k} \cdot \vec{l} - 2\vec{l} + \vec{k} = -9\vec{l} - 6\vec{l} - 3\vec{k}$$
Hence, $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} = (\vec{a} \cdot \vec{b}) \vec{c}$ verified

If $\vec{a} = (1, 0, 1)$, $\vec{b} = (2, 1, -1)$, and $\vec{c} = (0, 1, 3)$, show that $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$. Solution

$$\vec{a} = (1, 0, 1) = \vec{i} + \vec{k}$$

$$\vec{b} = (2, 1, -1) = 2\vec{i} + \vec{j} + \vec{k}$$

$$\vec{c} = (0, 1, 3) = \vec{j} + 3\vec{k}$$
Now, $\vec{b} \times \vec{c} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & -1 \\ 0 & 1 & 3 \end{bmatrix} = \vec{i} \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} - \vec{j} \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} + \vec{k} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$

$$= (3+1)\vec{i} - (6-0)\vec{j} + (2-0)\vec{k} = 4\vec{i} - 6\vec{j} + 2\vec{k}.$$
Again, $\vec{a} \times (\vec{b} \times \vec{c}) = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 1 \\ 4 & -6 & 2 \end{bmatrix} = \vec{i} \begin{bmatrix} 0 & 1 \\ -6 & 2 \end{bmatrix} - \vec{j} \begin{bmatrix} 1 & 1 \\ 4 & 2 \end{bmatrix} + \vec{k} \begin{bmatrix} 1 & 0 \\ 4 & -6 \end{bmatrix}$

$$= (0+6)\vec{i} - (2-4)\vec{j} + (-6-0)\vec{k}$$

$$= 6\vec{i} + 2\vec{j} - 6\vec{k} \qquad ... (i)$$

Next,
$$\vec{a} \times \vec{b} = \begin{bmatrix} \vec{7} & \vec{7} & \vec{k} \\ 1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} = \vec{7} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} - \vec{7} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} + \vec{k} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$= (0-1)\vec{i} - (-1-2)\vec{j} + (1-0)\vec{k} = -\vec{i} + 3\vec{j} + \vec{k}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = \begin{vmatrix} \vec{7} & \vec{j} & \vec{k} \\ -1 & 3 & 1 \\ 0 & 1 & 3 \end{vmatrix} = \vec{7} \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} - \vec{j} \begin{vmatrix} -1 & 1 \\ 0 & 3 \end{vmatrix} + \vec{k} \begin{vmatrix} -1 & 3 \\ 0 & 1 \end{vmatrix}$$

$$= (9-1)\vec{j} - (-3-0)\vec{j} + (-1-0)\vec{k}$$

$$= 8\vec{j} + 3\vec{j} - \vec{k}$$
 (ii)

From (i) and (ii), we get that

$$\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$$

Exercise

1. Prove that
$$\begin{bmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{bmatrix} + \begin{bmatrix} \overrightarrow{j} & \overrightarrow{k} & \overrightarrow{i} \end{bmatrix} + \begin{bmatrix} \overrightarrow{k} & \overrightarrow{i} & \overrightarrow{j} \end{bmatrix} = 3$$

2. Find
$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$
 when $\overrightarrow{a} = (2, -3, 0)$, $\overrightarrow{b} = (1, 1, -1)$ and $c = (3, 0, -1)$

3. Find the volume of parallelepiped whose co-terminom edges are represented by
$$\overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}$$
, $\overrightarrow{b} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$, $\overrightarrow{c} = 3\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$

4. Show that the triad of vectors
$$\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$$
, $\overrightarrow{b} = 3\overrightarrow{i} + 2\overrightarrow{j} + 7\overrightarrow{k}$, $\overrightarrow{c} = 5\overrightarrow{i} + 6\overrightarrow{j} + 5\overrightarrow{k}$ are coplanar.

5. Find the value of
$$\lambda$$
 if the vectors $\overrightarrow{a} = (1, -1, 1)$, $\overrightarrow{b} = (2, 1, -1)$ and $\overrightarrow{c} = (\lambda, -1, \lambda)$ are coplanar

6. If
$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$
, $\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$ then find the value of $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$.

Answers:

3. 37 5. 1 6.
$$-9\vec{i} - 6\vec{j} - 3\vec{k}$$

Multiple Choice Questions

Choose the best option.

1. A unit vector perpendicular to the plane
$$\vec{a} = 2\vec{i} - 6\vec{j} - 3\vec{k}$$
, $\vec{b} = 4\vec{i} + 3\vec{j} - \vec{k}$ is

a) $\frac{4\vec{i} + 3\vec{j} - \vec{k}}{\sqrt{26}}$ b) $\frac{2\vec{i} - 6\vec{j} - 3\vec{k}}{7}$ c) $\frac{3\vec{i} - 2\vec{j} + 6\vec{k}}{7}$ d) $\frac{2\vec{i} - 3\vec{j} - 6\vec{k}}{7}$

2. For non-zero vectors
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} , $(\overrightarrow{a} \times \overrightarrow{b})$. $\overrightarrow{c} = |\overrightarrow{a}| |\overrightarrow{b}| |\overrightarrow{c}|$ holds if

a)
$$\overrightarrow{a}$$
. $\overrightarrow{b} = 0$, \overrightarrow{b} . $\overrightarrow{c} = 0$, \overrightarrow{c} . $\overrightarrow{c} \neq 0$ (b) \overrightarrow{b} . $\overrightarrow{c} = 0$, \overrightarrow{c} . $\overrightarrow{a} = 0$, \overrightarrow{a} . $\overrightarrow{b} \neq 0$

c)
$$\overrightarrow{c}$$
, \overrightarrow{c} = 0, \overrightarrow{a} , \overrightarrow{b} = 0, \overrightarrow{b} , \overrightarrow{c} \neq 0 d) \overrightarrow{a} , \overrightarrow{b} = 0, \overrightarrow{b} , \overrightarrow{c} = 0, \overrightarrow{c} , \overrightarrow{a} = 0

[Hint:- $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = |\overrightarrow{a}| |\overrightarrow{b}| |\overrightarrow{c}|$ if the parallelepiped is rectangular. i.e. $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, $\overrightarrow{c} \cdot \overrightarrow{a}$

if \overrightarrow{a} , $\overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = 0$ then 3.

- a) \overrightarrow{a} is parallel to \overrightarrow{b}
- (b) \overrightarrow{a} is perpendicular to \overrightarrow{b}
- c) either \overrightarrow{a} or \overrightarrow{b} is a non-zero vectors (d) non of above

[Hint: \overrightarrow{a} and \overrightarrow{b} cannot be parallel and perpendicular both at the same time].

- The area of the triangle having vertices $\vec{i} 2\vec{j} + 3\vec{k}$, $-2\vec{i} + 3\vec{j} \vec{k}$, $4\vec{i} 3\vec{k}$ 4. $7\overrightarrow{j} + 7\overrightarrow{k}$ is
 - a) 36 sq. unit b) 0 sq. unit c) 39 sq. unit d) 11 sq. unit
- 5. Area of a parallelogram wgose adjacent sides are represented by the vectors $3\overrightarrow{i} - \overrightarrow{k}$ and $\overrightarrow{i} + 2\overrightarrow{j}$ is a) $\frac{\sqrt{17}}{2}$ b) $\frac{\sqrt{14}}{2}$ c) $\sqrt{41}$ d) $\frac{\sqrt{7}}{2}$
- If \overrightarrow{a} and \overrightarrow{b} are two vectors, then $(\overrightarrow{a} \times \overrightarrow{b})^2$ equals 6.

a)
$$\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{a} \\ \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{a} \\ \overrightarrow{b} \cdot \overrightarrow{b} & \overrightarrow{b} \cdot \overrightarrow{a} \end{vmatrix}$$
 b) $\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{b} \cdot \overrightarrow{a} & \overrightarrow{b} \cdot \overrightarrow{b} \end{vmatrix}$ c) $\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{b} \cdot \overrightarrow{a} \end{vmatrix}$ d) None

- The geometrical meaning of cross product of two vectors \overrightarrow{a} and \overrightarrow{b} is 7)
 - Vectors area of parallelogram whose adjacent sides are represented by a on \overrightarrow{b}
 - b) Projection of \overrightarrow{a} on \overrightarrow{b}
 - c) Projection of \overrightarrow{b} on \overrightarrow{a}
 - d) Vector area of a triangle whose two sides are represented by \overrightarrow{a} and \overrightarrow{b}
- $(\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{a} \overrightarrow{b})$ is equal to 8.

a)
$$2(\overrightarrow{b} \times \overrightarrow{a})$$
 b) $\overrightarrow{a}^2 - \overrightarrow{b}^2$ (c) $2(\overrightarrow{a} \times \overrightarrow{b})$ (d) $\overrightarrow{a}^2 + \overrightarrow{b}$

- Geometrical meaning of scalar triple product of three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is 9.
 - a) $|\vec{a}|$ (projection of \vec{b} on \vec{a} and \vec{c})

- b) $|\overrightarrow{b}|$ (projection of \overrightarrow{b} on \overrightarrow{a} and \overrightarrow{c})
- c) $|\overrightarrow{a}| |\overrightarrow{b}| |\overrightarrow{c}|$
- d) Volume of parallelepiped formed by \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .
- The condition, when the value of the scaler triple product is zero are 10.
 - When two of the vectors are equal
 - When two of the vectors are parallel
 - When the vectors are coplanar.
 - All of above

Answers

1) c 2) d 3) c 4) c 5) c 6) b 7) a 8) a 9) d 10) d

Project work

Prepare a project report using scalar triple product to find the volume of any three parallelepiped which you frequently use.