GENG 8010-Part 2 - Elements of Applied Linear Algebra

Mehrdad Saif (C)

University of Windsor

Winter 2023

<ロト <部ト <きト <きト = 1 990

GENG 8010-Part 2 - Applied Linear Algebra

Winter 2023

GENG 8010-Part 2 - Applied Linear Algebra

Vector space

Definitions

Introduction & axiomatic definitions— II

Definition (Field)– A field consists of a set \mathscr{F} of elements called scalars. "+" and "," are defined and satisfy the following axioms:

- "+" and "." are commutative
- $\forall \alpha, \beta, \gamma \in \mathscr{F} \ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \ \text{and} \ (\alpha.\beta).\gamma = \alpha.(\beta.\gamma)$ "+" and "." are associative.
- "." is distributive wrt "+"
- **5** $\exists 0 \in \mathscr{F} \ni \alpha + 0 = \alpha$ and $\exists 1 \in \mathscr{F} \ni 1.\alpha = \alpha \forall \alpha \in \mathscr{F}$
- **6** $\forall \alpha \in \mathscr{F} \ \exists \ \beta \in \mathscr{F} \ni \alpha + \beta = 0$ β : additive inverse
- \emptyset $\forall \alpha \in \mathscr{F}$ other than $\alpha = 0$ $\exists \beta \in \mathscr{F} \ni \alpha.\beta = 1$ β : multiplicative inverse

Introduction & axiomatic definitions— I

Here we shall specify the collection of objects that form the center of our study.

Vector space Definitions

Set: The collection of objects or elements.

real numbers Fields that are considered < complex numbers rational functions

Winter 2023

Vector space Definitions

Introduction & axiomatic definitions- III

Example– Is $\{0,1\}$ a field?

Ans.: No since it violates 1,6.

But let us define:

1+1=0+0=0; 0.1=0.0=0; 1+0=1; 1.1=1 then $\{0,1\}$ is a field. It is called the field of binary numbers.

Example—The set of all real numbers define a field called \Re .

Example—The set of all complex numbers define a complex field \mathbb{C}

Definition (Ring) A set that satisfies all the axioms in the previous definition except (7) is called a Commutative Ring with multiplicative identity.

Introduction & axiomatic definitions- IV

Example—The set of all integers is not a field but is a ring.

Definition (Vector Space)-a vector space over a field \mathscr{F} is defined by $(\mathscr{X},\mathscr{F})$ which consists of a set \mathscr{X} of elements called vectors defined over a field \mathscr{F} and two operation of vector addition and scalar multiplication such that the following axioms are satisfied:

- $\mathbf{0} \ \forall \mathbf{x}_1, \text{ and } \mathbf{x}_2 \in \mathscr{X} \ \exists \ \mathbf{x}_3 = \mathbf{x}_1 + \mathbf{x}_2 \in \mathscr{X}.$
- $\Diamond \forall x_1$, and $x_2 \in \mathscr{X} \ x_1 + x_2 = x_2 + x_1$ "+" is commutative
- **3** $\forall x_1, x_2, \text{ and } x_3 \in \mathcal{X} (x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$ "+" is associative.
- $0 \exists 0 \in \mathscr{X} \ni 0 + x = x \ \forall x \in \mathscr{X}$
- **1** $\forall \alpha \in \mathscr{F}$ and $\mathbf{x} \in \mathscr{X} \exists \mathbf{\bar{x}} = \alpha \mathbf{x} \in \mathscr{X}$ called scalar product.
- $\mathbf{O} \ \forall \alpha, \beta \in \mathscr{F} \ \text{and} \ \mathbf{x} \in \mathscr{X} \ \alpha.(\beta.\mathbf{x}) = (\alpha.\beta).\mathbf{x} \ \text{scalar multiplication is}$ associative.

Mehrdad Saif © (UWindsor) GENG 8010-Part 2 - Applied Linear Algebra

Introduction & axiomatic definitions- VI

Example– Given \mathscr{F} , let

$$\boldsymbol{x}_i = \begin{bmatrix} x_{1i} \\ x_{2i} \\ \vdots \\ x_{ni} \end{bmatrix}$$

If we define the usual operations

$$\mathbf{x}_{i} + \mathbf{x}_{j} = \begin{bmatrix} x_{1i} + x_{1j} \\ x_{2i} + x_{2j} \\ \vdots \\ x_{ni} + x_{nj} \end{bmatrix} \quad \text{and} \quad \alpha.\mathbf{x}_{i} = \begin{bmatrix} \alpha.x_{1i} \\ \alpha.x_{2i} \\ \vdots \\ \alpha.x_{ni} \end{bmatrix}$$

Introduction & axiomatic definitions- V

- \bullet $\forall \alpha \in \mathscr{F}$ and $\mathbf{x}_1, \mathbf{x}_2 \in \mathscr{X} \alpha.(\mathbf{x}_1 + \mathbf{x}_2) = \alpha.\mathbf{x}_1 + \alpha.\mathbf{x}_2$ scalar multiplication is distributive
- \bullet $\forall \alpha, \beta \in \mathscr{F}$ and $\mathbf{x} \in \mathscr{X} (\alpha + \beta)\mathbf{x} = (\alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x} \text{ scalar multiplication})$ is distributive wrt scalar addition.
- $\mathbf{0} \ \forall \mathbf{x} \in \mathscr{X} \ \exists 1 \in \mathscr{F} \ni 1.\mathbf{x} = \mathbf{x}$

Example—A field can form a vector space over itself, e.g., (\Re, \Re) , and (\mathbb{C},\mathbb{C}) which are the real and complex vector spaces respectively.

Example—How about

- **●** (ℜ, ℂ)
- ② (C. 光)

GENG 8010-Part 2 - Applied Linear Algebra

Vector space Definitions

Introduction & axiomatic definitions- VII

Then $\mathscr{F}^n, \mathscr{F}$ is an n-dimensional vector space. (\Re^n, \Re) and $(\mathbb{C}^n, \mathbb{C})$ are the n-dimensional real and complex vector spaces respectively.

Definition-Subspace of a vector space

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y} \subset \mathcal{X}$. Then $(\mathcal{Y}, \mathcal{F})$ is a **subspace** of $(\mathcal{X}, \mathcal{F})$ if under the same operations of $(\mathcal{X}, \mathcal{F})$, \mathcal{Y} itself form a vector space over \mathscr{F} .

Definitions

Introduction & axiomatic definitions- IX

Introduction & axiomatic definitions- VIII

Example– (\Re^n, \Re) is a subspace of (\mathbb{C}^n, \Re) .

Since "+", and "." of vectors are defined for $(\mathcal{X}, \mathcal{F})$, they satisfy 2,3,7-10. To check 1,4-6 and have them satisfied, we will require the following instead.

Alternate subspace definition

A set $\mathscr{Y} \subset \mathscr{X}$ is a subspace of $(\mathscr{X}, \mathscr{F})$ if

$$\forall \mathbf{y}_1, \mathbf{y}_2 \in \mathscr{Y} \text{ and } \alpha_1, \alpha_2 \in \mathscr{F}, \quad \alpha_1 \mathbf{y}_1 + \alpha_2 \mathbf{y}_2 \in \mathscr{Y}$$

Example– Consider (\Re^2, \Re) .

Any line that passes through the origin is a subspace of (\Re^2, \Re) , e.g. $\begin{bmatrix} x_1 \\ \alpha x_1 \end{bmatrix}$

GENG 8010-Part 2 - Applied Linear Algebra

Winter 2023

GENG 8010-Part 2 - Applied Linear Algebra

Winter 2023