Incomplete Information and Investment Inaction

Kansas City Fed Research Dept. Brown Bag: August 27, 2025

Jonathan J Adams¹, Cheng Chen², Min Fang³, Takahiro Hattori⁴, Eugenio Rojas³

¹FRB Kansas City*; ²Clemson University; ³University of Florida; ⁴University of Tokyo

*The views in this paper are solely the authors' responsibility and should not reflect the views of the Federal Reserve Bank of Kansas City or the Board of Governors of the Federal Reserve System.

• Two standard frictions distort firms' investment decisions:

• Two standard frictions distort firms' investment decisions:

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - ullet Leads to inaction. Many investment zeros in the data (> 20% annually!)

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - Leads to inaction. Many investment zeros in the data (> 20% annually!)
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma, 2023)

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - Leads to inaction. Many investment zeros in the data (> 20% annually!)
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma, 2023)

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - Leads to inaction. Many investment zeros in the data (> 20% annually!)
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma, 2023)
- Information frictions

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - ullet Leads to inaction. Many investment zeros in the data (> 20% annually!)
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma, 2023)
- Information frictions
 - Firms do not forecast as if they have Full Information Rational Expectations (FIRE); leads to predictable errors

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - ullet Leads to inaction. Many investment zeros in the data (> 20% annually!)
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma, 2023)
- Information frictions
 - Firms do not forecast as if they have Full Information Rational Expectations (FIRE); leads to predictable errors
 - Firms' forecast errors are serially correlated, predictable; firm-level data imply this lowers aggregate productivity (Chen et al 2023)

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - ullet Leads to inaction. Many investment zeros in the data (> 20% annually!)
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma, 2023)
- Information frictions
 - Firms do not forecast as if they have Full Information Rational Expectations (FIRE); leads to predictable errors
 - Firms' forecast errors are serially correlated, predictable; firm-level data imply this lowers aggregate productivity (Chen et al 2023)

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - ullet Leads to inaction. Many investment zeros in the data (> 20% annually!)
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma, 2023)
- Information frictions
 - Firms do not forecast as if they have Full Information Rational Expectations (FIRE); leads to predictable errors
 - Firms' forecast errors are serially correlated, predictable; firm-level data imply this lowers aggregate productivity (Chen et al 2023)
- Both frictions are important, but studied individually. Do they interact?

• Tension in the heterogeneous firms literature: are investment frictions large or small?

• Tension in the heterogeneous firms literature: are investment frictions large or small?

- Tension in the heterogeneous firms literature: are investment frictions large or small?
- Micro-evidence: small?

- Tension in the heterogeneous firms literature: are investment frictions large or small?
- Micro-evidence: small?
 - Usually modeled with fixed costs instead of reversibility

- Tension in the heterogeneous firms literature: are investment frictions large or small?
- Micro-evidence: small?
 - Usually modeled with fixed costs instead of reversibility
 - Small fixed costs (on average) deliver realistic inaction

- Tension in the heterogeneous firms literature: are investment frictions large or small?
- Micro-evidence: small?
 - Usually modeled with fixed costs instead of reversibility
 - Small fixed costs (on average) deliver realistic inaction
- Macro-evidence: large?

- Tension in the heterogeneous firms literature: are investment frictions large or small?
- Micro-evidence: small?
 - Usually modeled with fixed costs instead of reversibility
 - Small fixed costs (on average) deliver realistic inaction
- Macro-evidence: large?
 - Firm-level investment is relatively inelastic to macro shocks

- Tension in the heterogeneous firms literature: are investment frictions large or small?
- Micro-evidence: small?
 - Usually modeled with fixed costs instead of reversibility
 - Small fixed costs (on average) deliver realistic inaction
- Macro-evidence: large?
 - Firm-level investment is relatively inelastic to macro shocks
 - ... requires very large fixed costs to explain! (House, 2014; Koby and Wolf, 2020)

- Tension in the heterogeneous firms literature: are investment frictions large or small?
- Micro-evidence: small?
 - Usually modeled with fixed costs instead of reversibility
 - Small fixed costs (on average) deliver realistic inaction
- Macro-evidence: large?
 - Firm-level investment is relatively inelastic to macro shocks
 - ... requires very large fixed costs to explain! (House, 2014; Koby and Wolf, 2020)

- Tension in the heterogeneous firms literature: are investment frictions large or small?
- Micro-evidence: small?
 - Usually modeled with fixed costs instead of reversibility
 - Small fixed costs (on average) deliver realistic inaction
- Macro-evidence: large?
 - Firm-level investment is relatively inelastic to macro shocks
 - ... requires very large fixed costs to explain! (House, 2014; Koby and Wolf, 2020)
- Several lines of active research trying to resolve this tension, e.g. production networks (Winberry and vom Lehn 2025)

1. Model of Heterogeneous Firms & Information Frictions:

- 1. Model of Heterogeneous Firms & Information Frictions:
 - Heterogeneous firms make irreversible investment decisions

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

- 1. Model of Heterogeneous Firms & Information Frictions:
 - Heterogeneous firms make irreversible investment decisions
 - Firms observe noisy signals of their productivity, only revealed with a delay
- 2. Theoretical & Quantitative Analysis:

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

ullet Tractable, parsimonious model \Longrightarrow realistic investment dynamics.

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- ullet Tractable, parsimonious model \Longrightarrow realistic investment dynamics.
- Noisier information reduces investment elasticity to shocks, increases aggregate capital & misallocation

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- ullet Tractable, parsimonious model \Longrightarrow realistic investment dynamics.
- Noisier information reduces investment elasticity to shocks, increases aggregate capital & misallocation
- Frictions interact: noise *shrinks* inaction region (firms are *more* willing to invest)

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- Tractable, parsimonious model \implies realistic investment dynamics.
- Noisier information reduces investment elasticity to shocks, increases aggregate capital & misallocation
- Frictions interact: noise shrinks inaction region (firms are more willing to invest)

3. Empirical Analysis:

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- Tractable, parsimonious model \implies realistic investment dynamics.
- Noisier information reduces investment elasticity to shocks, increases aggregate capital & misallocation
- Frictions interact: noise shrinks inaction region (firms are more willing to invest)

3. Empirical Analysis:

• Test predictions using Japanese administrative data

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- Tractable, parsimonious model \implies realistic investment dynamics.
- Noisier information reduces investment elasticity to shocks, increases aggregate capital & misallocation
- Frictions interact: noise shrinks inaction region (firms are more willing to invest)

3. Empirical Analysis:

- Test predictions using Japanese administrative data
- Firms with worse information behave as predicted by model

Theory

Firms' Problem

- Atomistic firms face simple investment problem
- Produce using capital K and stochastic productivity A by

$$F(A,K) = A^{1-\alpha}K^{\alpha}$$

• Log productivity a follows a random walk:

$$da = \sigma_a dW^a$$

Firms' Problem

- Atomistic firms face simple investment problem
- Produce using capital K and stochastic productivity A by

$$F(A,K)=A^{1-\alpha}K^{\alpha}$$

• Log productivity *a* follows a random walk:

$$da = \sigma_a dW^a$$

• Investment *I* is irreversible. Conditional on investing, profits are

$$\pi = A^{1-\alpha}K^{\alpha} - \psi I$$

• The law of motion for capital is

$$dK = I - \delta K dt$$

Firms' Behavior: Investment Inaction Region

 Optimal behavior: inaction above some level of capital, o/w invest to the boundary

Firms' Behavior: Investment Inaction Region

- Optimal behavior: inaction above some level of capital, o/w invest to the boundary
- Within the inaction region, HJB is

$$rV(K,A) = A^{1-\alpha}K^{\alpha} - \delta KV_K(K,A) + \frac{\sigma_a^2A^2}{2}V_{AA}(K,A)$$

Firms' Behavior: Investment Inaction Region

- Optimal behavior: inaction above some level of capital, o/w invest to the boundary
- Within the inaction region, HJB is

$$rV(K,A) = A^{1-\alpha}K^{\alpha} - \delta KV_K(K,A) + \frac{\sigma_a^2A^2}{2}V_{AA}(K,A)$$

• This is the *full information* HJB. Even with incomplete info., the (unobserved) firm value still follows this PDE

Firms' Behavior: Investment Inaction Region

- Optimal behavior: inaction above some level of capital, o/w invest to the boundary
- Within the inaction region, HJB is

$$rV(K,A) = A^{1-\alpha}K^{\alpha} - \delta KV_K(K,A) + \frac{\sigma_a^2A^2}{2}V_{AA}(K,A)$$

- This is the *full information* HJB. Even with incomplete info., the (unobserved) firm value still follows this PDE
- Effect of incomplete information? It determines the inaction region

 \bullet Firms only observe log productivity a with delay τ

- ullet Firms only observe log productivity a with delay au
- Immediately, they receive noisy signal s:

$$s = a + n$$
 $dn = \sigma_n dW^n$

- ullet Firms only observe log productivity a with delay au
- Immediately, they receive noisy signal s:

$$s = a + n$$
 $dn = \sigma_n dW^n$

• Noise process dW^n is independent of productivity process dW^a ; info set $\Omega(t)$ is:

$$\Omega(t) = \{a(j-\tau), s(j) : j \le t\}$$

- ullet Firms only observe log productivity a with delay au
- Immediately, they receive noisy signal s:

$$s = a + n$$
 $dn = \sigma_n dW^n$

• Noise process dW^n is independent of productivity process dW^a ; info set $\Omega(t)$ is:

$$\Omega(t) = \{a(j-\tau), s(j) : j \le t\}$$

• Relevant state variables: log capital k and nowcast $\hat{a} \equiv \mathbb{E}[a|\Omega]$

- ullet Firms only observe log productivity a with delay au
- Immediately, they receive noisy signal s:

$$s = a + n$$
 $dn = \sigma_n dW^n$

• Noise process dW^n is independent of productivity process dW^a ; info set $\Omega(t)$ is:

$$\Omega(t) = \{a(j-\tau), s(j) : j \le t\}$$

- ullet Relevant state variables: log capital k and nowcast $\hat{a} \equiv \mathbb{E}[a|\Omega]$
- â follows a random walk with the same properties as a

▶ Nowcast Behavior

• We work with normalized capital $x \equiv k - a$ as in Stokey (2008) \Longrightarrow renormalize value function as $V(e^x)$

- We work with normalized capital $x \equiv k a$ as in Stokey (2008) \Longrightarrow renormalize value function as $V(e^x)$
- Optimal behavior is characterized by a threshold for *expected* normalized capital \hat{x} : if $\hat{x} \equiv \mathbb{E}[x|\Omega] < \hat{b}$, then invest until $\hat{x} = \hat{b}$

- We work with normalized capital $x \equiv k a$ as in Stokey (2008) \Longrightarrow renormalize value function as $V(e^x)$
- Optimal behavior is characterized by a threshold for *expected* normalized capital \hat{x} : if $\hat{x} \equiv \mathbb{E}[x|\Omega] < \hat{b}$, then invest until $\hat{x} = \hat{b}$
- ullet Firm maximizes expected value function $\hat{V}(e^{\hat{x}}) = \mathbb{E}[V(e^{x})|e^{\hat{x}}]$

- We work with normalized capital $x \equiv k a$ as in Stokey (2008) \Longrightarrow renormalize value function as $V(e^x)$
- Optimal behavior is characterized by a threshold for *expected* normalized capital \hat{x} : if $\hat{x} \equiv \mathbb{E}[x|\Omega] < \hat{b}$, then invest until $\hat{x} = \hat{b}$
- ullet Firm maximizes expected value function $\hat{V}(e^{\hat{x}}) = \mathbb{E}[V(e^{x})|e^{\hat{x}}]$
- We show that the optimum is characterized by usual value-matching and super contact conditions, except applied to \hat{V} :

$$\hat{V}'(e^{\hat{b}}) = \psi$$
 $\lim_{e^{\hat{x}} \to \infty} \hat{V}'(e^{\hat{x}}) = 0$ $\hat{V}''(e^{\hat{b}}) = 0$ $\lim_{e^{\hat{x}} \to \infty} \hat{V}''(e^{\hat{x}}) = 0$

• Productivity follows a random walk $da = \sigma_a dW_a$

- Productivity follows a random walk $da = \sigma_a dW_a$
- Expected productivity follows a similar random walk $d\hat{a} = \sigma_2 dW_{\hat{a}}$

- Productivity follows a random walk $da = \sigma_a dW_a$
- Expected productivity follows a similar random walk $d\hat{a} = \sigma_a dW_{\hat{a}}$
- Expected norm. capital $\hat{x} = k \hat{a}$ follows $d\hat{x} = -\delta dt \sigma_a dW_{\hat{a}}$ above the barrier \hat{b}

- Productivity follows a random walk $da = \sigma_a dW_a$
- Expected productivity follows a similar random walk $d\hat{a} = \sigma_a dW_{\hat{a}}$
- Expected norm. capital $\hat{x} = k \hat{a}$ follows $d\hat{x} = -\delta dt \sigma_a dW_{\hat{a}}$ above the barrier \hat{b}
- Actual norm. capital x follows $x = k a = \hat{x} + \hat{a} a$

Micro-Level Implications 1: Reduced Inaction

1. Information friction increases the incentive to invest

$$\hat{b} = b^{FI} + \frac{\alpha^2}{2(1-\alpha)} \underbrace{\frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}}_{Var[u]}$$

- Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- Contrasts with traditional uncertainty channel: $\sigma_a \uparrow \Longrightarrow b^{FI} \downarrow$
- Why? An Oi-Hartman-Abel effect:
 - ullet MPK is convex in log productivity. Firms: risk-loving on normalized capital x
 - ullet Friction acts as a mean preserving spread on x

Micro-Level Implications 2: Attenuated Shocks

2. Information friction reduces elasticity of forecasts to productivity shocks

$$rac{d}{d a_{t-h}} \mathbb{E}[a_t | \Omega_t] = egin{cases} \gamma & 0 \leq h < au \ 1 & h \geq au \end{cases}$$

where

$$\gamma \equiv \frac{\sigma_a^2}{\sigma_a^2 + \sigma_n^2} < 1$$

Testable predictions for later: worse information associated with

- Lower inaction rate, conditional on firm size
- Lower sensitivity of investment to productivity shocks

ullet Firms exit at rate η , enter at the boundary (with $\hat{a} \sim \mathit{N}(0, arsigma)$) Entry/exit details

- ullet Firms exit at rate η , enter at the boundary (with $\hat{a} \sim \mathcal{N}(0, arsigma)$) Entry/exit details
- Distribution for \hat{x} satisfies (+ boundary conditions)

$$0 = \delta h'(\hat{x}) + \frac{\sigma_a^2}{2}h''(\hat{x}) - \eta h(\hat{x})$$

- ullet Firms exit at rate η , enter at the boundary (with $\hat{a} \sim \mathcal{N}(0, \varsigma)$) ullet Entry/exit details
- Distribution for \hat{x} satisfies (+ boundary conditions)

$$0 = \delta h'(\hat{x}) + \frac{\sigma_a^2}{2}h''(\hat{x}) - \eta h(\hat{x})$$

• ODE solution:

$$h(\hat{x}) = \rho e^{-\rho(\hat{x}-\hat{b})}, \quad \text{where} \quad \rho \equiv \frac{\delta}{\sigma_a^2} + \sqrt{\frac{\delta^2}{\sigma_a^4} + 2\frac{\eta}{\sigma_a^2}}$$

- ullet Firms exit at rate η , enter at the boundary (with $\hat{a} \sim \mathcal{N}(0, \varsigma)$) ullet Entry/exit details
- Distribution for \hat{x} satisfies (+ boundary conditions)

$$0 = \delta h'(\hat{x}) + \frac{\sigma_a^2}{2}h''(\hat{x}) - \eta h(\hat{x})$$

ODE solution:

$$h(\hat{x}) = \rho e^{-\rho(\hat{x}-\hat{b})}, \quad \text{where} \quad \rho \equiv \frac{\delta}{\sigma_a^2} + \sqrt{\frac{\delta^2}{\sigma_a^4} + 2\frac{\eta}{\sigma_a^2}}$$

• Actual $x = \hat{x} + u$ is more dispersed

Stationary Distributions: Expected & Actual Normalized Capital

• Joint distribution $f_{k,\hat{x}}(k,\hat{x})$ satisfies (+ boundary conditions)

$$0 = \frac{\sigma_a^2}{2} \partial_{\hat{x}}^2 f_{k,\hat{x}} + \delta \left(\partial_{\hat{x}} f_{k,\hat{x}} + \partial_k f_{k,\hat{x}} \right) - \eta f_{k,\hat{x}}$$

• PDE solution:

$$f_{k,\hat{x}}(k,\hat{x}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{-\mathcal{N}(\xi)}{\frac{\sigma_a^2}{2} \lambda_-(\xi) + \delta} e^{i\xi k + \lambda_-(\xi)(\hat{x} - \hat{b})} d\xi$$

where $\mathcal{N}(\xi)$ denotes the Fourier transform of $\eta\phi\left(\frac{k}{\varsigma}\right)$ and

$$\lambda_-(\xi) \equiv rac{-\delta - \sqrt{\delta^2 + 2\sigma_a^2(i\delta\xi + \eta)}}{\sigma_a^2}$$

Stationary Distribution: Capital & Expected Norm. Capital

1. Information friction increases normalized capital stock

- 1. Information friction increases normalized capital stock
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}

- 1. Information friction increases normalized capital stock
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- 2. Information friction increases capital misallocation

- 1. Information friction increases normalized capital stock
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- 2. Information friction increases capital misallocation
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ increase nowcast error variance Var[u]

- 1. Information friction increases normalized capital stock
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- 2. Information friction increases capital misallocation
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ increase nowcast error variance Var[u]
- 3. Information friction **increases** average firm volatility

- 1. Information friction increases normalized capital stock
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- 2. Information friction increases capital misallocation
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ increase nowcast error variance $\mathit{Var}[u]$
- 3. Information friction increases average firm volatility
- 4. Information friction attenuates aggregate responses to productivity shocks:

$$\widehat{IRF}_k(t) = \gamma \widehat{IRF}_k^{FI}(t)$$
 $\gamma = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_n^2}$

Aggregate Response of $\hat{x} = k - \hat{a}$ to a Productivity Shock

Distribution After Shock

Distribution Over Time

Info. Friction Attenuates Aggregate Response to Shocks

Validation with Firm-level Data

Empirical Test of Our Model

• Model generates clear firm-level predictions. Information frictions:

Empirical Test of Our Model

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to productivity shocks

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:
 - Business Outlook Survey (BOS): forecasts of sales, profits (semi-annual), investment plans (quarterly). ≈ 11 k firms per quarter

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:
 - Business Outlook Survey (BOS): forecasts of sales, profits (semi-annual), investment plans (quarterly). ≈ 11 k firms per quarter
 - ullet Financial Statements Statistics of Corporations (FSS): assets, debt, equity, types of capital, among others (quarterly). pprox 21k firms per quarter.

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:
 - Business Outlook Survey (BOS): forecasts of sales, profits (semi-annual), investment plans (quarterly). ≈ 11 k firms per quarter
 - Financial Statements Statistics of Corporations (FSS): assets, debt, equity, types of capital, among others (quarterly). ≈ 21 k firms per quarter.
 - All large firms and representative sample of small and medium-sized firms

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:
 - ullet Business Outlook Survey (BOS): forecasts of sales, profits (semi-annual), investment plans (quarterly). pprox 11k firms per quarter
 - Financial Statements Statistics of Corporations (FSS): assets, debt, equity, types of capital, among others (quarterly). ≈ 21 k firms per quarter.
 - All large firms and representative sample of small and medium-sized firms
 - Merged dataset contains firms with at least 1 billion JPY in registered capital

• Information friction: forecast error response to productivity shocks

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

• $e_{it+1} = y_{it+1} - \widehat{y_{it+1}}$ is the sales forecast error

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_{s} w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- $e_{it+1} = y_{it+1} \widehat{y_{it+1}}$ is the sales forecast error
- $w_{it} = a_{it} a_{it-1}$ is the measured (labor) productivity shock

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- $e_{it+1} = y_{it+1} \widehat{y_{it+1}}$ is the sales forecast error
- $w_{it} = a_{it} a_{it-1}$ is the measured (labor) productivity shock
- z_{it}: firm-level controls

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- $e_{it+1} = y_{it+1} \widehat{y_{it+1}}$ is the sales forecast error
- $w_{it} = a_{it} a_{it-1}$ is the measured (labor) productivity shock
- z_{it}: firm-level controls
- Industry-time, region-time, size-time fixed effects

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- $e_{it+1} = y_{it+1} \widehat{y_{it+1}}$ is the sales forecast error
- $w_{it} = a_{it} a_{it-1}$ is the measured (labor) productivity shock
- z_{it}: firm-level controls
- Industry-time, region-time, size-time fixed effects
- Positive $\xi_s \implies$ forecast underreaction

Attenuation Coefficients across Industries

• Do we observe more investment inaction for firms in industries with more severe information frictions?

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

inaction_{it} =
$$\alpha \xi_s + \Gamma z_{it} + \Lambda \gamma_s + \gamma_t + \epsilon_{it}$$

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

inaction_{it} =
$$\alpha \xi_s + \Gamma z_{it} + \Lambda \gamma_s + \gamma_t + \epsilon_{it}$$

• z_{it}: firm-level controls

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

inaction_{it} =
$$\alpha \xi_s + \Gamma z_{it} + \Lambda \gamma_s + \gamma_t + \epsilon_{it}$$

- z_{it}: firm-level controls
- γ_t : time fixed effects

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

inaction_{it} =
$$\alpha \xi_s + \Gamma z_{it} + \Lambda \gamma_s + \gamma_t + \epsilon_{it}$$

- z_{it}: firm-level controls
- γ_t : time fixed effects
- Standardize ξ_s

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

inaction_{it} =
$$\alpha \xi_s + \Gamma z_{it} + \Lambda \gamma_s + \gamma_t + \epsilon_{it}$$

- z_{it}: firm-level controls
- γ_t : time fixed effects
- Standardize ξ_s
- α is the coefficient of interest

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

inaction_{it} =
$$\alpha \xi_s + \Gamma z_{it} + \Lambda \gamma_s + \gamma_t + \epsilon_{it}$$

- z_{it}: firm-level controls
- γ_t : time fixed effects
- Standardize ξ_s
- α is the coefficient of interest
- We calibrate & simulate our model (& match ξ_s distrib.) for comparison.

	inaction = 1								
	Data							Model	
ξ_s	-0.076**	-0.079***	-0.054**	-0.069**	-0.039*	-0.051**	-0.013	-0.011	
	(0.028)	(0.026)	(0.025)	(0.026)	(0.020)	(0.021)	()	()	
$a_{i,t}$	0.039	0.059*	0.104***	0.113***	0.091**	0.099***	-0.206	-0.298	
	(0.034)	(0.031)	(0.038)	(0.033)	(0.033)	(0.032)	()	()	
$k_{i,t-1}$		-0.050***	-0.049***	-0.044***	-0.041***	-0.039***		-0.458	
		(0.009)	(0.009)	(0.007)	(800.0)	(0.007)		()	
$m_{i,t}$			-0.026	-0.045***	-0.015	-0.030**			
			(0.021)	(0.016)	(0.019)	(0.014)			
cap share $_s$				-0.549*		-0.366			
				(0.314)		(0.304)			
growth vol_s					1.016***	0.870***			
					(0.279)	(0.278)			
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
N	99027	99027	86294	86294	86294	86294	14291997	14291997	
adj. R ²	0.038	0.069	0.063	0.089	0.078	0.095	0.116	0.180	

	inaction = 1								
	Data							Model	
ξ_s	-0.076**	-0.079***	-0.054**	-0.069**	-0.039*	-0.051**	-0.013	-0.011	
	(0.028)	(0.026)	(0.025)	(0.026)	(0.020)	(0.021)	()	()	
$a_{i,t}$	0.039	0.059*	0.104***	0.113***	0.091**	0.099***	-0.206	-0.298	
	(0.034)	(0.031)	(0.038)	(0.033)	(0.033)	(0.032)	()	()	
$k_{i,t-1}$		-0.050***	-0.049***	-0.044***	-0.041***	-0.039***		-0.458	
		(0.009)	(0.009)	(0.007)	(800.0)	(0.007)		()	
$m_{i,t}$			-0.026	-0.045***	-0.015	-0.030**			
			(0.021)	(0.016)	(0.019)	(0.014)			
cap shares				-0.549*		-0.366			
				(0.314)		(0.304)			
growth vol_s					1.016***	0.870***			
					(0.279)	(0.278)			
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Ν	99027	99027	86294	86294	86294	86294	14291997	14291997	
adj. R ²	0.038	0.069	0.063	0.089	0.078	0.095	0.116	0.180	

	inaction = 1							
		Mo	Model					
ξς	-0.076**	-0.079***	-0.054**	-0.069**	-0.039*	-0.051**	-0.013	-0.011
	(0.028)	(0.026)	(0.025)	(0.026)	(0.020)	(0.021)	()	()
$a_{i,t}$	0.039	0.059*	0.104***	0.113***	0.091**	0.099***	-0.206	-0.298
	(0.034)	(0.031)	(0.038)	(0.033)	(0.033)	(0.032)	()	()
$k_{i,t-1}$		-0.050***	-0.049***	-0.044***	-0.041***	-0.039***		-0.458
		(0.009)	(0.009)	(0.007)	(800.0)	(0.007)		()
$m_{i,t}$			-0.026	-0.045***	-0.015	-0.030**		
			(0.021)	(0.016)	(0.019)	(0.014)		
cap shares				-0.549*		-0.366		
				(0.314)		(0.304)		
growth vol_s					1.016***	0.870***		
					(0.279)	(0.278)		
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ν	99027	99027	86294	86294	86294	86294	14291997	14291997
adj. R ²	0.038	0.069	0.063	0.089	0.078	0.095	0.116	0.180

1 SD in $\xi_s \Rightarrow 5.1$ p.p. (14%) less inaction

• Do we see lower investment sensitivity to productivity shocks in industries with stronger information frictions?

- Do we see lower investment sensitivity to productivity shocks in industries with stronger information frictions?
- We estimate

inaction_{it} =
$$\beta(w_{it} \times \xi_s) + \gamma w_{it} + \Gamma z_{it} + \gamma_i + \gamma_{st} + \epsilon_{it}$$

- w_{it} : productivity shock (random walk or AR(1))
- z_{it}: firm-level controls
- γ_i : firm fixed effects
- γ_{st} : industry-time fixed effects
- Standardize ξ_s

		1	Model			
$\xi_s \times w_{i,t}$	0.010**	0.011**	0.011**	0.010**	0.012	0.013
	(0.005)	(0.005)	(0.005)	(0.005)	()	()
Wit	-0.036	-0.030	-0.036	-0.029	-0.188	-0.188
	(0.031)	(0.031)	(0.032)	(0.032)	()	()
a_{it-1}	-0.028**	-0.015	-0.029**	-0.016	-0.670	-0.670
	(0.012)	(0.012)	(0.011)	(0.011)	()	()
Productivity	Rand. Walk	Rand. Walk	Auto. Reg(1)	Auto. Reg(1)	Rand. Walk	Rand. Walk
Firm FE	Υ	Υ	Υ	Υ	Υ	Υ
Time FE	Υ	Υ	Υ	Υ	Υ	Υ
Industry-Time FE	N	Υ	N	Υ	N	Υ
N	84656	84656	84313	84313	14274640	14274640
adj. R^2	0.446	0.451	0.446	0.451	0.450	0.450

	inaction = 1							
		1	Model					
$\xi_s \times w_{i,t}$	0.010**	0.011**	0.011**	0.010**	0.012	0.013		
	(0.005)	(0.005)	(0.005)	(0.005)	()	()		
Wit	-0.036	-0.030	-0.036	-0.029	-0.188	-0.188		
	(0.031)	(0.031)	(0.032)	(0.032)	()	()		
a_{it-1}	-0.028**	-0.015	-0.029**	-0.016	-0.670	-0.670		
	(0.012)	(0.012)	(0.011)	(0.011)	()	()		
Productivity	Rand. Walk	Rand. Walk	Auto. Reg(1)	Auto. Reg(1)	Rand. Walk	Rand. Walk		
Firm FE	Y	Υ	Υ	Υ	Υ	Υ		
Time FE	Y	Υ	Υ	Υ	Υ	Υ		
Industry-Time FE	N	Υ	N	Υ	N	Υ		
N	84656	84656	84313	84313	14274640	14274640		
adj. R ²	0.446	0.451	0.446	0.451	0.450	0.450		

ullet Dampened inaction responses to prod. shocks in industries with higher ξ

Conclusions

- Information and investment frictions interact in rich ways
- Parsimonious model delivers testable predictions, consistent with the data
- Information frictions are easily incorporated into continuous time inaction models (there are many applications beyond investment)
- An alternative structure for investment frictions:
 - Old paradigm: fixed costs to get inaction, + large or convex adjustment costs to get attenuation
 - New paradigm: irreversibility to get inaction, + information frictions to get attenuation
- Strong empirical evidence, and robust to many alternative specifications

Appendix

Bibliography

References

- **House, Christopher L.**, "Fixed costs and long-lived investments," *Journal of Monetary Economics*, November 2014, *68*, 86–100.
- **Kermani, Amir and Yueran Ma**, "Asset Specificity of Nonfinancial Firms," *The Quarterly Journal of Economics*, February 2023, *138* (1), 205–264.
- **Koby, Yann and Christian Wolf**, "Aggregation in heterogeneous-firm models: Theory and measurement," *Manuscript, July*, 2020.

How Do Firms Nowcast?

Lemma (1.a)

For a firm with information set $\Omega(t)$, productivity is conditionally distributed

$$a(t)|\Omega(t) \sim N\left(a(t-\tau) + \gamma\left(s(t) - s(t-\tau)\right), \nu\right)$$

where

$$\gamma \equiv \frac{\sigma_a^2}{\sigma_a^2 + \sigma_n^2} \qquad \nu \equiv \frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}$$

How Do Nowcasts Behave?

Lemma (1.b)

A firm's expected productivity $\hat{a} \equiv \mathbb{E}[a|\Omega]$ and nowcast error u follow the diffusions

$$d\hat{a} = \sigma_a dW^{\hat{a}}$$
 $du = \sigma_u dW^u$

where

$$\begin{split} dW_t^{\hat{a}} &= (1 - \gamma)dW_{t-\tau}^A + \gamma dW_t^A + \gamma \frac{\sigma_n}{\sigma_a} (dW_t^n - dW_{t-\tau}^n) \\ dW_t^u &= (1 - \gamma)\frac{\sigma_a}{\sigma_u} (dW_t^A - dW_{t-\tau}^A) + \gamma \frac{\sigma_n}{\sigma_u} (dW_t^n - dW_{t-\tau}^n) \\ \sigma_u^2 &= 2\frac{\sigma_n^2 \sigma_a^2}{\sigma_a^2 + \sigma_n^2} \end{split}$$

Boundary Solution

The critical value \hat{b} depends on: the variance of nowcast errors ν , the capital share α , the cost of investment ψ , as well as ϱ and m defined as:

$$\varrho \equiv \frac{\mu - \sqrt{\mu^2 + 2\sigma_a^2 r}}{\sigma_a^2} \qquad m \equiv \frac{1}{r + \mu\alpha - \frac{\sigma_a^2}{2}\alpha^2}$$

Lemma (3)

The critical value of expected normalized capital is

$$\hat{b} = \underbrace{\frac{1}{(1-\alpha)} \log \left(\frac{m\alpha(\alpha-\varrho)}{\psi(1-\varrho)} \right)}_{b^{FI} \text{ full info. boundary}} + \underbrace{\frac{\alpha^2 \nu}{2(1-\alpha)}}_{b^{FI} \text{ full info. boundary}}$$

Solving the Firm's Problem: Normalization

Standard approach: define normalized capital

$$X \equiv \frac{K}{A} \qquad \qquad x \equiv k - a$$

• HJB is simpler in one dimension:

$$rV(X) = X^{\alpha} - \delta X V'(X) + \frac{\sigma_a^2 X^2}{2} V''(X)$$

or in logs

$$rv(x) = e^{\alpha x} - \mu v'(x) + \frac{\sigma_a^2}{2}v''(x)$$

where
$$\mu \equiv \delta + \frac{\sigma_a^2}{2}$$

How the Boundary \hat{b} Depends on the Information Friction

 Full info option-value effect of uncertainty over *future* productivity: higher volatility
 lower capital threshold

- Full info option-value effect of uncertainty over future productivity: higher volatility
 lower capital threshold
- ... but uncertainty over *current* productivity has opposite effect: more noise $(\sigma_n \uparrow) \implies higher$ capital threshold

- Full info option-value effect of uncertainty over *future* productivity: higher volatility
 lower capital threshold
- ... but uncertainty over *current* productivity has opposite effect: more noise $(\sigma_n \uparrow) \implies higher$ capital threshold
- Noise interacts nonlinearly with the original effect!

- Full info option-value effect of uncertainty over *future* productivity: higher volatility
 lower capital threshold
- ... but uncertainty over *current* productivity has opposite effect: more noise $(\sigma_n \uparrow) \implies higher$ capital threshold
- Noise interacts nonlinearly with the original effect!

- Full info option-value effect of uncertainty over *future* productivity: higher volatility
 lower capital threshold
- ... but uncertainty over *current* productivity has opposite effect: more noise $(\sigma_n \uparrow) \implies higher$ capital threshold
- Noise interacts nonlinearly with the original effect!

▶ Back

• Firm entry/exit keeps the size distribution non-degenerate

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment
- \bullet Measure η of firms enter at every moment

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment
- ullet Measure η of firms enter at every moment
 - Enter with distribution $\hat{a} \sim N(0,\varsigma)$

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment
- ullet Measure η of firms enter at every moment
 - Enter with distribution $\hat{a} \sim N(0, \varsigma)$
 - Entering firms are as uncertain about productivity as existing firms: $a \sim N(\hat{a}, \nu)$

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment
- ullet Measure η of firms enter at every moment
 - Enter with distribution $\hat{a} \sim N(0,\varsigma)$
 - Entering firms are as uncertain about productivity as existing firms: $a \sim N(\hat{a}, \nu)$
 - ullet Their expected normalized capital \hat{x} enters at the critical value \hat{b}

Summary of the Japanese Firm-level Data

 Table 1: Sample Comparison (Quarterly)

Moments	Merged Dataset	Entire Sample (FSS)
Number of obs. (Non-missing sales)	392,158	1,260,836
Average employment	1040.582	491.6123
Average sales (million JPY)	19991.75	8541.767
Average fixed capital stock	59919.34	24842.79

Table 2: Investment Moments Using Fixed Capital at Both Frequencies

Frequency	Exit Rate	Agg. Inv. Rate	Inv. Rate Mean	Inv. Rate S.D.	Inaction Rate	Spike Rate
Quarterly	2.00%	1.23%	2.27%	6.10%	60.00%	0.90%
Semiannual	3.96%	2.64%	4.00%	8.3%	36.6%	2.45%

Model Calibration

Table 3: Parametrization of the Stylized Model

Parameter	r	α	τ	ψ	η	ς	δ	σ_{a}	σ_n^0	σ_n^{30}	$\Delta \sigma_n$
Value	1%	0.85	1	1	2%	0	1.23%	0.15	0.00	$0.75\sigma_a$	$0.025\sigma_a$

Table 4: Information Incompleteness and Investment Moments

Industry	σ_n	ξ_s	Inv. Rate Mean	Inv. Rate S.D.	Inaction Rate	Spike Rate
Full Information	0.000	0.000	2.37%	6.7%	81.0%	3.9%
Median Noise	$0.375\sigma_a$	0.018	2.29%	6.1%	79.8%	3.3%
Highest Noise	$0.75\sigma_a$	0.055	2.20%	5.53%	77.7%	2.4%

Partial Irreversibility

• If firms invest, they do so at cost $\Psi(I)$:

$$\Psi(I) = egin{cases} \psi_+ I & I \geq 0 \ \psi_- I & I < 0 \end{cases}$$

with
$$\psi_+ > \psi_- > 0$$

- Instantaneous profit is $\pi = A^{1-\alpha}K^{\alpha} \Psi(I)$
- Optimal firm behavior: for a range of capital values, firms choose to neither invest nor divest. Usual HJB in the inaction region.
- Solving the firm's problem comes down to finding the optimal choice of \hat{B}_L and \hat{B}_U

Partial Irreversibility

Lemma

Under incomplete information, the boundary conditions consist of two value-matching conditions:

$$\hat{V}'(\hat{B}_L) = \psi_+ \qquad \qquad \hat{V}'(\hat{B}_U) = \psi_-$$

and two super contact conditions:

$$\hat{V}''(\hat{B}_L) = 0$$
 $\hat{V}''(\hat{B}_U) = 0$

Partial Irreversibility

Proposition (7)

The critical values of expected normalized capital are

$$\hat{b}_L = b_L^{FI} + rac{lpha^2
u}{2(1-lpha)} \qquad \qquad \hat{b}_H = b_H^{FI} + rac{lpha^2
u}{2(1-lpha)}$$

where b_L^{FI} and b_H^{FI} denote the full information solutions such that $\nu = 0$.

