Assignment-3

Name: K Naga Sai Krishna

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

```
from google.colab import files
uploaded = files.upload()
```

Browse... penguins_size.csv

penguins_size.csv(application/vnd.ms-excel) - 13519 bytes, last modified: n/a - 100% done Saving penguins_size.csv to penguins_size.csv

```
import io
df = pd.read_csv(io.BytesIO(uploaded['penguins_size.csv']))
```

df.head()

₽		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
	0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE
	1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE
	2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE
	3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
	4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE

[7] df.shape

(344, 7)

[8] df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	342 non-null	float64
3	culmen_depth_mm	342 non-null	float64
4	flipper_length_mm	342 non-null	float64
5	body_mass_g	342 non-null	float64
6	sex	334 non-null	object

dtypes: float64(4), object(3)

memory usage: 18.9+ KB

Droping the columns that have NaN in 1 to 5 Columns

df.dropna(subset=df.columns[:6],inplace=True)

[10] df.shape

(342, 7)

Univariate Analysis

[18] sns.histplot(df,x='flipper_length_mm',hue='species').set(title='Flipper Length in all species');

sns.histplot(df,x='culmen_length_mm',hue='species').set(title='Bill length in Culmen (mm)')

[20] sns.histplot(df,x='culmen_depth_mm',hue='species').set(title='Bill Depth in Culmen (mm)')

[Text(0.5, 1.0, 'Bill Depth in Culmen (mm)')]

[21] sns.histplot(df,x='body_mass_g',hue='species').set(title='Body Mass in all species')

[Text(0.5, 1.0, 'Body Mass in all species')]

[25] sns.countplot(y='island',data=df,hue='species').set(title='Island based on Species')

[Text(0.5, 1.0, 'Island based on Species')]

Island based on Species

- sns.countplot(y='island',data=df,hue='sex').set(title='Island based on Sex')
- [> [Text(0.5, 1.0, 'Island based on Sex')]

Island based on Sex

Bivariate Analysis

[76] sns.scatterplot(data=df,x='culmen_length_mm',y='culmen_depth_mm',hue='species')

<Axes: xlabel='culmen_length_mm', ylabel='culmen_depth_mm'>

sns.boxplot(data=df, x='species', y='culmen_depth_mm')

C→ <Axes: xlabel='species', ylabel='culmen_depth_mm'>

sns.boxplot(data=df, x='species', y='culmen_length_mm')

C <Axes: xlabel='species', ylabel='culmen_length_mm'>

[35] sns.scatterplot(data=df,x='culmen_length_mm',y='body_mass_g',hue='species')

<Axes: xlabel='culmen_length_mm', ylabel='body_mass_g'>

Multivariate Analysis

sns.pairplot(df,hue='species',palette='husl',markers=['o','s','D']);

Descriptive Statistics

/ [30] df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	333.000000	333.000000	333.000000	333.000000
mean	43.992793	17.164865	200.966967	4207.057057
std	5.468668	1.969235	14.015765	805.215802
min	32.100000	13.100000	172.000000	2700.000000
25%	39.500000	15.600000	190.000000	3550.000000
50%	44.500000	17.300000	197.000000	4050.000000
75%	48.600000	18.700000	213.000000	4775.000000
max	59.600000	21.500000	231.000000	6300.000000

/ [14] df['species'].value_counts()

Adelie 151 Gentoo 123 Chinstrap 68

Name: species, dtype: int64

adelie_sp = df[df['species']=='Adelie']
adelie_sp.describe()

₽		culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
	count	151.000000	151.000000	151.000000	151.000000
	mean	38.791391	18.346358	189.953642	3700.662252
	std	2.663405	1.216650	6.539457	458.566126
	min	32.100000	15.500000	172.000000	2850.000000
	25%	36.750000	17.500000	186.000000	3350.000000
	50%	38.800000	18.400000	190.000000	3700.000000
	75%	40.750000	19.000000	195.000000	4000.000000
	max	46.000000	21.500000	210.000000	4775.000000

gentoo_sp = df[df['species']=='Gentoo']
gentoo_sp.describe()

₽ culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g count 123.000000 123.000000 123.000000 123.000000 47.504878 14.982114 217.186992 5076.016260 mean 0.981220 std 3.081857 6.484976 504.116237 3950.000000 min 40.900000 13.100000 203.000000 25% 45.300000 14.200000 212.000000 4700.000000 50% 47.300000 15.000000 216.000000 5000.000000 15.700000 49.550000 221.000000 5500.000000 75% 59.600000 17.300000 6300.000000 231.000000 max

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	68.000000	68.000000	68.000000	68.000000
mean	48.833824	18.420588	195.823529	3733.088235
std	3.339256	1.135395	7.131894	384.335081
min	40.900000	16.400000	178.000000	2700.000000
25%	46.350000	17.500000	191.000000	3487.500000
50%	49.550000	18.450000	196.000000	3700.000000
75%	51.075000	19.400000	201.000000	3950.000000
max	58.000000	20.800000	212.000000	4800.000000

Handling missing values

```
[22] df['sex'].unique()
     array(['MALE', 'FEMALE', nan, '.'], dtype=object)
[23] df.loc[df['sex']=='.',['sex']] = np.nan
     df.dropna(subset=['sex'],inplace=True)
[24] df['sex'].unique()
     array(['MALE', 'FEMALE'], dtype=object)
[68] df.isnull().sum()
     species
                          0
     island
                          0
     culmen_length_mm
     culmen_depth_mm
     flipper_length_mm
     body_mass_g
                          0
     sex
     dtype: int64
```

Checking for Outliers by ploting

[41] sns.boxplot(df.culmen_depth_mm)

<Axes: >

sns.boxplot(df.culmen_length_mm)

C→ <Axes: >

[43] sns.boxplot(df.flipper_length_mm)

[44] sns.boxplot(df.body_mass_g)

No outliers were found

Corelation with target column

[51] df.corr()

<ipython-input-51-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in df.corr()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
culmen_length_mm	1.000000	-0.228626	0.653096	0.589451
culmen_depth_mm	-0.228626	1.000000	-0.577792	-0.472016
flipper_length_mm	0.653096	-0.577792	1.000000	0.872979
body_mass_g	0.589451	-0.472016	0.872979	1.000000

df.corr()['species']

Label Encoding

```
[53] from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
```

```
[54] df.sex = le.fit_transform(df.sex)
    df.species = le.fit_transform(df.species)
    df.island = le.fit_transform(df.island)
```

[55] df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	0	2	39.1	18.7	181.0	3750.0	1
1	0	2	39.5	17.4	186.0	3800.0	0
2	0	2	40.3	18.0	195.0	3250.0	0
4	0	2	36.7	19.3	193.0	3450.0	0
5	0	2	39.3	20.6	190.0	3650.0	1

Splitting

```
[60] X = df.drop('species', axis=1)
y = df['species']
```

Scaling

```
[56] from sklearn.preprocessing import MinMaxScaler
scale =MinMaxScaler()
```

```
[59] X_scaled= pd.DataFrame(scale.fit_transform(X),columns =X.columns)
    X_scaled.head()
```

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0
1	1.0	0.269091	0.511905	0.237288	0.305556	0.0
2	1.0	0.298182	0.583333	0.389831	0.152778	0.0
3	1.0	0.167273	0.738095	0.355932	0.208333	0.0
4	1.0	0.261818	0.892857	0.305085	0.263889	1.0

S Train Test Split and Checking the sizes

```
[66] from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_scaled,y,test_size=0.2,random_state=42)
```

```
X_train shape= (266, 6)
X_test shape= (67, 6)
y_train shape= (266,)
y_test shape= (67,)
```