集中講義 応用数学特論Ⅱ

担当: 盧 暁南 (山梨大学)

Day 4 誤り訂正符号

担当:盧 暁南(山梨大学)

xnlu@yamanashi.ac.jp

2021年8月30日

本日の内容 -

本日は誤り訂正符号の基礎(線形符号、ハミング符号、シンドローム復号、完全符号、MDS符号)について紹介する.

0 記号・用語

- Ω : アルファベット (alphabet)
- C: 符号 (code), すなわち, Ω上の文字列 (ベクトル) の集合のこと
- **x**, **y**, **u**, **v**, **w** (小文字太字): ベクトル;符号語 (codeword), すなわち,符号 C の要素のこと
- 𝑢_q: 位数 q の有限体
- \mathbb{F}_q^n : 長さ n の \mathbb{F}_q ベクトル全体の集合; n 次元 \mathbb{F}_q ベクトル空間
- $\langle \mathbf{u}, \mathbf{v} \rangle$: ベクトル \mathbf{u}, \mathbf{v} の内積 $(\mathbf{u}, \mathbf{v} \in \mathbb{F}_q^n$ のとき)
- *I_k*: *k* × *k* の単位行列
- H[⊤]: 行列 H の転置

1 符号における基本概念

定義 1.1. 符号語 $\mathbf{x}=(x_1,\ldots,x_n), \mathbf{y}=(y_1,\ldots,y_n)$ に対応する位置の異なる文字の数はハミング距離 (Hamming distance) といい,次式で定義される.

$$d_H(\mathbf{x}, \mathbf{y}) = \#\{i : x_i \neq y_i, 1 \le i \le n\}.$$

定義 1.2. 符号 $\mathcal C$ において、任意の 2 つの符号語間のハミング距離の最小値は $\mathcal C$ の最小ハミング距離 (minimum Hamming distance) といい、次式で定義される.

$$d_{\mathcal{C}} = \min\{d_H(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in \mathcal{C}\}.$$

注 1.3. 符号長n, 符号語数M, 最小ハミング距離dの符号は(n,M,d)符号と表記する.

2 線形符号

定義 2.1. 以下の条件が満たされるとき, $\mathcal{C} \subseteq \mathbb{F}_q^n$ は線形符号 (linear code) という.

- $\mathbf{v}, \mathbf{u} \in \mathcal{C}$ に対して $\mathbf{v} + \mathbf{u} \in \mathcal{C}$.

定義 **2.2.** 符号語 $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$ において、 \mathbf{x} に非ゼロ成分の数はそのハミング重み (Hamming wight) といい、次式で定義される.

担当: 盧 暁南 (山梨大学)

$$wt(\mathbf{x}) = \#\{i : x_i \neq 0, 1 \leq i \leq n\}.$$

また、符号 C において、非ゼロ符号語の最小重みは C の最小重み (minimum weight) という.

命題 2.3. 線形符号の最小距離は最小重みに等しい.

定理 2.4. \mathbb{F}_q 上の符号長 n の線形符号は \mathbb{F}_q^n の線形部分空間であり、符号語数は $|\mathcal{C}|=q^k$ の形である.

注 **2.5.** \mathbb{F}_q 上で符号長 n,線形部分空間の次元 k,最小距離 d の線形符号は $[n,k,d]_q$ 符号と表記する.また,最小距離 d が不明の場合, $[n,k]_q$ 符号と書く.

定義 **2.6.** 線形部分空間の次元が k のとき,[n,k] 線形符号 C から互いに線形独立な k 個の符号語 (行ベクトル) を取り出し,これを $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k$ とする.このとき,

$$G = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_k \end{bmatrix}$$

を C の生成行列 (generator matrix) という.

注 2.7. $[n,k]_q$ 符号の生成行列 G は標準形

$$G = \begin{bmatrix} I_k & A \end{bmatrix}$$

で与えられる.

命題 2.8. 生成行列 G において符号 C は次式で生成される.

$$\mathcal{C} = \{\mathbf{x}G : \mathbf{x} \in \mathbb{F}_q^k\}.$$

命題 2.9. 符号 C の最小距離を d=2e+1 とする.このとき,d 文字以内の誤りを検出でき,e 文字以内の誤りを正確に訂正できる.なお,e 文字の誤りを正確に訂正できる符号を e 誤り訂正符号といい,e を誤り訂正能力という.

定義 **2.10.** \mathbb{F}_q 上の線形符号 \mathcal{C} において、次に定義される \mathcal{C}^{\perp} は \mathcal{C} の双対符号 (dual code) という.

$$\mathcal{C}^{\perp} = \{ \mathbf{w} : \langle \mathbf{w}, \mathbf{v} \rangle = 0 \text{ for all } \mathbf{v} \in \mathcal{C} \}.$$

命題 **2.11.** $[n,k]_q$ 符号 \mathcal{C} の双対符号 \mathcal{C}^\perp は $[n,n-k]_q$ 符号である.

定理 2.12. 生成行列 $\begin{bmatrix} I_k & A \end{bmatrix}$ を持つ線形符号 $\mathcal C$ において, $\begin{bmatrix} -A^ op & I_{n-k} \end{bmatrix}$ はその双対符号 $\mathcal C^\perp$ の生成行列である

定義 2.13. 線形符号 \mathcal{C} において、 $\mathcal{C} \subseteq \mathcal{C}^{\perp}$ であるとき、 \mathcal{C} は自己直交 (self-orthogonal) という. また、 $\mathcal{C} = \mathcal{C}^{\perp}$ であるとき、 \mathcal{C} は自己双対 (self-dual) という.

定義 2.14. 線形符号 \mathcal{C} において、双対符号 \mathcal{C}^{\perp} の生成行列を \mathcal{C} のパリティ検査行列 (parity check matrix) という. すなわち、 $GH^{\top} = O$.

定義 2.15. 行列 H を線形符号 C のパリティ検査行列とする. ベクトル $\mathbf{v} \in \mathbb{F}_q^n$ において $S(\mathbf{v}) = H\mathbf{v}^\top$ は \mathbf{v} のシンドローム (syndrome) という.

3 ハミング符号と有限射影幾何

定義 3.1. $[n,k]_a$ 符号 \mathcal{C} とベクトル $\mathbf{w} \in \mathbb{F}_a^n$ において,

$$C + \mathbf{w} = \{ \mathbf{x} + \mathbf{w} : \mathbf{x} \in C \}.$$

はCのコセット (coset) という.

命題 3.2. (1) $\mathbf{w} \in \mathbb{F}_q^n$ に対して $|\mathcal{C}| = |\mathcal{C} + \mathbf{w}|$.

- (2) $\mathbf{w}, \mathbf{u} \in \mathbb{F}_q^n$ に対して $\mathcal{C} + \mathbf{w} = \mathcal{C} + \mathbf{u}$ または $(\mathcal{C} + \mathbf{w}) \cap (\mathcal{C} + \mathbf{u}) = \emptyset$ が成り立つ.
- (3) 下式が満たされる, 互いに異なるベクトル $\mathbf{w}_0, \ldots, \mathbf{w}_{q^{n-k}-1}$ が存在する.

$$\mathbb{F}_q^n = \bigcup_{i=0}^{q^{n-k}-1} (\mathcal{C} + \mathbf{w}_i)$$

命題 3.3. 行列 H を線形符号 C のパリティ検査行列とする. $\mathbf{v},\mathbf{w}\in\mathbb{F}_q^n$ において, $S(\mathbf{v})=S(\mathbf{w})\iff\mathbf{v}$ と \mathbf{w} が C の同じコセットに属する.

定義 3.4. \mathbb{F}_2 でゼロベクトルを除く長さ m のすべての可能なパターンを列ベクトルとする m 行 2^m-1 列のパリティ検査行列 H で定義される符号は**ハミング符号** (Hamming code) という.このとき,ハミング符号長は 2^m-1 であり,次元は 2^m-m-1 である.

命題 3.5. ハミング符号はすべての単一誤りを訂正できる.

定義 3.6. ベクトル $\mathbf{v}_1, \mathbf{v}_1, \dots, \mathbf{v}_n$ を有限射影幾何 $\mathrm{PG}(m-1, \mathbb{F}_q)$ の点 $(\mathbb{F}_q^m$ のベクトル) とする.このとき, $\mathbf{v}_1, \mathbf{v}_1, \dots, \mathbf{v}_n$ を列ベクトルとする $m \times n$ のパリティ検査行列 H で定義される符号は q 元ハミング符号という.このとき,ハミング符号長は $n = \frac{q^m-1}{q-1}$ であり,次元は $\frac{q^m-1}{q-1} - m$ であり,最小距離は 3 である.

4 完全符号·MDS符号

定理 4.1 (球充填限界式). 最小重み 2t+1 の符号 $\mathcal{C} \subseteq \mathbb{F}_q^n$ において下式が成り立つ.

$$|\mathcal{C}| \le \frac{q^n}{\sum_{t=0}^t \binom{n}{t} (q-1)^s}.$$
 (1)

担当: 盧 暁南 (山梨大学)

定義 4.2. 球充填限界式 (1) の等号が成り立つ符号は完全符号 (perfect code) と呼ぶ.

定理 4.3 (Singlton の上界式). $(n,q^k,d)_q$ 符号において下式が成り立つ.

$$d \le n - k + 1. \tag{2}$$

定義 **4.4.** Singlton の上界式 (2) の等号が成り立つ符号は *MDS* 符号 (Maximum Distance Separable code) と呼ぶ.

予想 4.5 (MDS 予想). $[n, k, n-k+1]_q$ MDS 符号に対して $n \leq q+1$ が成り立つ.

レポート課題

課題 1. 線形符号 $\mathcal{C} \subseteq \mathbb{F}_2^4$ は次の生成行列 G で定義される.

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- (1) C のすべての符号語を列挙せよ.
- (2) C において、上記の G と異なる生成行列を 1 つ求めよ.
- (3) C の双対符号 C^{\perp} のすべての符号語を列挙せよ.
- (4) C^{\perp} の生成行列を 1 つ求めよ. (ヒント:定理 2.12 を利用して良い.)
- (5) C^{\perp} は自己直交であるかどうかを答えよ.また、その理由を簡単に述べよ.

課題 2. (1) 符号長 15 のハミング符号のパリティ検査行列を求めよ.

(2) (1) のパリティ検査行列を用いてベクトル (111001101101101) と (001100110011010) をそれぞれ復号 せよ.

担当: 盧 暁南 (山梨大学)

レポート提出期限:9月6日(月) 23:59まで

参考文献

- [1] S. T. Dougherty. Combinatorics and Finite Geometry. Springer, 2020.
- [2] W. C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge University Press, 2003.
- [3] A. Slinko. Algebra for Applications: Cryptography, Secret Sharing, Error-Correcting, Fingerprinting, Compression. Springer, 2020.
- [4] 藤原良 and 神保雅一. 符号と暗号の数理. 共立出版, 1993.