# Performances des mécanismes de sécurité du framework 6TiSCH

Défense de mémoire

Rémy Decocq

Faculté des Sciences Université de Mons





# Outline

- 1 Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- 3 Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- 4 Conclusion

# Contexte

#### Équipements de l'Industrial IoT :

- Limités en ressources : mémoire, CPU, stockage, radio
- Limités en capacité énergétique (batteries)

## Caractéristiques des Wireless Sensors Networks :

- Multipath fading et interférences
- Forte densité de noeuds déployés de façon imprécise
- Transmissions multi-hops
- Changements dans la topologie
- Phénomène de *clock drifting* entre horloges



FIGURE 1 – Architecture type d'un WSN où 6TiSCH est déployable

Méthode NPEB et expérimentations

# 6TiSCH

Groupe de travail IETF IPv6 over the TSCH mode of IEEE802.15.4e

Standardisation de la pile 6TiSCH complète pour :

- Communications IPv6 → interopérabilité avec Internet
- Intégration du mode TSCH décrit par l'amendement IEEE802.15.4e
- Encadrer sécurité du réseau et joining phase

# Outline

- 1 Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- 3 Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- 4 Conclusion

FIGURE 2 - Pile réseau 6TiSCH

Introduction

田

田

FIGURE 3 – Pile réseau 6TiSCH

# Principes fondamentaux de TSCH

#### Combinaison de :

- **I** TDMA  $\rightarrow$  multiplexage en temps (timeslot)
- **2** FDMA  $\rightarrow$  multiplexage en fréquences (*channelOffset*)

Une communication entre noeuds voisins est caractérisée par un couple (timeslot, channelOffset) où

- 1 timeslot donne le moment de la communication
- channelOffset donne la fréquence à laquelle elle a lieu

Les noeuds communiquant possèdent et partagent cette information → communications déterministes sur base d'un *schedule* 





FIGURE 4 – Matrice des communications



FIGURE 5 - Noeuds communiquant

$$f_{eff} = HoppSeq[f \mod n_{ch}]$$
 où  $f = ASN + channelOffset$ 



FIGURE 6 – Effet de sauts de fréquence d'un cycle à l'autre de slotframe

# La joining phase



## Outline

- 1 Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- 3 Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- 4 Conclusion

Principes de la méthode NPEB



品

# Impact de sécurité sur la joining phase

# Performances de la méthode NPEB

# Conclusion



Q&A