# Heart Disease

### **Group Members**

- MUHAMMAD TALLAH QURESHI 160996
  - AHSAN AHMAD 160980
  - Muhammad Hassaan Khan 170947

### Introduction

#### Disease:

We work through baiyese

#### Libraries:

- Pandas
- Seaborn
- Urllib
- Pgmpy

#### Use of Library:

Pandas:

Pandas is used to read out data set from format that is suitable for our model.

Seaborn:

Seaborn is used to visualise our data.

Urllib:

Urllib is used to open urls which help us feed our data set to the model.

Pgmpy:

Pgmpy allows us to work with graphical data.

Graph:

We use the heat graph which help visualise our data.

### Data set

 Our dataset is saved in .CSV format. We will be using Python for this task and will use pandas, numpy, seaborn,
 . This model will help us do our prediction for Heart patients

## Program



```
153.000000
      56.000000
                   1.000000
                               3.000000
                                         130.000000
                                                    241.000000
                                                                   0.000000
                                                                              1.000000
                                                                                                      0.000000
                                                                                                                  0.800000
                                                                                                                              2.000000
                                                                                                                                          0.000000
75%
      61.000000
                   1.000000
                               4.000000
                                        140.000000 275.000000
                                                                   0.000000
                                                                              2.000000
                                                                                        166.000000
                                                                                                      1.000000
                                                                                                                  1.600000
                                                                                                                              2.000000
                                                                                                                                          2.000000
      77.000000
                   1.000000
                                        200.000000 564.000000
                                                                   1.000000
                                                                              2.000000
                                                                                        202.000000
                                                                                                      1.000000
                                                                                                                  6.200000
                                                                                                                              3.000000
                                                                                                                                          4.000000
max
                               4.000000
```

In [34]: pairwise\_correlation = data.corr()

In [35]: pairwise\_correlation

Out[35]:

|        | Α         | В         | С         | D         | E         | F         | G         | н         | 1         | J         | K         | RESULT    |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Α      | 1.000000  | -0.097542 | 0.104139  | 0.284946  | 0.208950  | 0.118530  | 0.148868  | -0.393806 | 0.091661  | 0.203805  | 0.161770  | 0.222853  |
| В      | -0.097542 | 1.000000  | 0.010084  | -0.064456 | -0.199915 | 0.047862  | 0.021647  | -0.048663 | 0.146201  | 0.102173  | 0.037533  | 0.224469  |
| С      | 0.104139  | 0.010084  | 1.000000  | -0.036077 | 0.072319  | -0.039975 | 0.067505  | -0.334422 | 0.384060  | 0.202277  | 0.152050  | 0.407075  |
| D      | 0.284946  | -0.064456 | -0.036077 | 1.000000  | 0.130120  | 0.175340  | 0.146560  | -0.045351 | 0.064762  | 0.189171  | 0.117382  | 0.157754  |
| E      | 0.208950  | -0.199915 | 0.072319  | 0.130120  | 1.000000  | 0.009841  | 0.171043  | -0.003432 | 0.061310  | 0.046564  | -0.004062 | 0.070909  |
| F      | 0.118530  | 0.047862  | -0.039975 | 0.175340  | 0.009841  | 1.000000  | 0.069564  | -0.007854 | 0.025665  | 0.005747  | 0.059894  | 0.059186  |
| G      | 0.148868  | 0.021647  | 0.067505  | 0.146560  | 0.171043  | 0.069564  | 1.000000  | -0.083389 | 0.084867  | 0.114133  | 0.133946  | 0.183696  |
| н      | -0.393806 | -0.048663 | -0.334422 | -0.045351 | -0.003432 | -0.007854 | -0.083389 | 1.000000  | -0.378103 | -0.343085 | -0.385601 | -0.415040 |
| 1      | 0.091661  | 0.146201  | 0.384060  | 0.064762  | 0.061310  | 0.025665  | 0.084867  | -0.378103 | 1.000000  | 0.288223  | 0.257748  | 0.397057  |
| J      | 0.203805  | 0.102173  | 0.202277  | 0.189171  | 0.046564  | 0.005747  | 0.114133  | -0.343085 | 0.288223  | 1.000000  | 0.577537  | 0.504092  |
| к      | 0.161770  | 0.037533  | 0.152050  | 0.117382  | -0.004062 | 0.059894  | 0.133946  | -0.385601 | 0.257748  | 0.577537  | 1.000000  | 0.377957  |
| RESULT | 0.222853  | 0.224469  | 0.407075  | 0.157754  | 0.070909  | 0.059186  | 0.183696  | -0.415040 | 0.397057  | 0.504092  | 0.377957  | 1.000000  |

In [36]: sns.heatmap(pairwise\_correlation, xticklabels='auto', yticklabels='auto')

Out[36]: <AxesSubplot:>



Eliminating: B: 100% 2/2 [00:00<00:00, 401.06it/s]

| RESULT    | phi(RESULT) |
|-----------|-------------|
| RESULT(0) | 0.5387      |
| RESULT(1) | 0.1824      |
| RESULT(2) | 0.1196      |
| RESULT(3) | 0.1161      |
| RESULT(4) | 0.0433      |

# Output Graph

