```
Notation: For whole number n
               n! = n(n-1)(n-2)...2.1
               5! = 5.4.3.2.1 = 120
   by def:
               0! = 1
               6! = 6.5.4.3.2.1 = 720
    Notice:
               n! = n(n-1)!
               n! = nPn
               7! = number of 7-digit PIN's
                 with no repeating digits
                      using only digits 1,2,...,7.
Division principle.
    Idea: Count the number of structures
          (PINS, pizzas, ice cream cones, olympic podiums
       -> Some times, when using the multiplication
          principle (decisions, options) we count
          the number of ways to construct something
          but we really only want to count the
         final construction.
        - If each construction has the same
           number of ways, m, to construct it,
           then we can count them all, but
           then divide by m.
 Ex: How many ways can you choose a committee
Construct: - 24.3 = 12 But each construction can be
                         done 2 ways: Answer 12 = 6
```


	Notation: the number of subsets
	of size m from a set
	of size n (like {1,, n})
1.0	is $\frac{h(n-1)(n-2)\cdots(n-m+1)}{m(m-1)(m-2)\cdots 1} = \frac{nPm}{m!}$
Def:	
	m-combinations.
	Shorthand: $\frac{nP_m}{n!} = \binom{n}{m} = nC_m = \frac{n}{n} = \frac{n}{n} = \frac{n}{n}$
	Det:
	Handy: multiply on top and bottom by (n-m)!
	to get $nPm(n-m)! = n!$
	m!(n-m)! $m!(n-m)!$
	Summary: For U = {1,2,, n}; Then:
<	The number of subsets of size m
	= the number of m-combinations of n
- $/$ $ $	= n choose m
4	= n Cm
	$=\binom{n}{m}$
$ \wedge$	$= \underline{n(n-1)\cdots(n-m+1)}$
<	m(m-1)1
	$= nP_m$
_	m!
	$=\frac{h!}{1+\frac{h!}{2}}$
	m!(n-m)!