evantai - Soluție

Problema se rezolvă prin programare dinamică. Fie **B**(i,j) numărul de subșiruri evantai care au elementele din secvența [i,j] a șirului **A** și <u>folosesc</u> elementele **A**_i și **A**_i. O recurență imediată (care este practic pasul inițial din soluția finală) este următoarea:

$$B(i,j) = 1 + suma B(k,1) cu i < k, 1 < j şi $A_i + A_j > A_k + A_1$$$

Implementarea acestei soluții obține aproximativ 30% din teste și are complexitatea $O(N^4)$. Pentru a optimiza ideea vom folosi o structură de date 2D ce ne permite aflarea sumei de pe o porțiune dreptunghiulară în timp sub-liniar. Ideea reiese din următorul pseudo-cod:

```
pentru fiecare i de la N la 1
*pentru fiecare j de la i+1 la N
   B(i,j) = 1 + query(j-1, A<sub>i</sub>+A<sub>j</sub>-1)
*reactualizează informația în structura de date;
```

Prin operația **query** aflăm **suma B**(**k**,**1**) cu **i**<**k**, **l**<**j** și $\mathbf{A_i}$ + $\mathbf{A_j}$ > $\mathbf{A_k}$ + $\mathbf{A_1}$. Implementarea operațiilor **query** se poate poate realiza utilizând o structură de date denumită <u>arbori indexați binar</u> care suportă interogări de forma aceasta. Complexitatea totală va fi **O**($\mathbf{N^2}$ *log(\mathbf{N})*log(\mathbf{max})) unde \mathbf{max} reprezintă valoarea maximă din șirul \mathbf{A} .

Există soluții de complexitate $O(N^2*max)$ și $O(N^3*log(N))$ care obțin punctaje parțiale.