Fiscal Policy and the US Economy

Dario Caldara

Federal Reserve Board

ECON 597 - Georgetown University

REFERENCE LIST (I)

- Mountford A., and Uhlig H., 2009. "What are the effects of fiscal policy shocks?," *Journal of Applied Econometrics*, vol. 24(6), pages 960-992.
- Blanchard O., and Perotti R. 2002. "An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output," *The Quarterly Journal of Economics*, vol. 117(4), pages 1329-1368.
- Romer C. D., and Romer D. H., 2010. "The Macroeconomic Effects of Tax Changes: Estimates Based on a New Measure of Fiscal Shocks," *American Economic Review*, vol. 100(3), pages 763-801.
- Ramey V. A., 2011. "Identifying Government Spending Shocks: It's all in the Timing," *The Quarterly Journal of Economics*, vol. 126(1), pages 1-50.

REFERENCE LIST (II)

- Mertens K., and Ravn M. O., 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, vol. 103(4), pages 1212-1247.
- Caldara D., and Kamps C., 2017. "The Analytics of SVARs: A
 Unified Framework to Measure Fiscal Multipliers," Review of
 Economic Studies, vol. 84(3), pages 1015-1040.

Research on other advanced and emerging economies:

- Ilzetzki, E., Mendoza, E. G., and Vegh, C. A., 2013. "How big (small?) are fiscal multipliers?," *Journal of Monetary Economics*, vol. 60(2), pages 239-254.
- **Guajardo J., Leigh D., and Pescatori, A.** 2014. "Expansionary Austerity? International Evidence," *Journal of the European Economic Association*, vol. 12(4), pages 949-968.

OVERVIEW OF THE LITERATURE

- Structural VARs have been extensively used to estimate the effects of shocks in government spending and taxes.
- Estimates of tax and spending multipliers vary substantially across studies and no consensus has been reached about their sign and size.
- Limited ability of this literature to provide guidance for theoretical modelling and for policy making.

CALDARA & KAMPS (2017)

- In this paper, we make two contributions:
 - 1. We develop an analytical framework to study the identification of fiscal shocks in SVARs.
 - 2. We provide new estimates of fiscal multipliers based on a novel identification strategy.
- Focus on identification because the importance of other factors (e.g. model specification) in accounting for the disagreement is limited.

Caldara & Kamps (2008); Chahrour & al. (2012)

CALDARA & KAMPS (2017): FIRST CONTRIBUTION

- First contibution: We develop a novel analytical framework to study the identification of fiscal shocks in SVARs.
- Main idea: Identification of policy shocks amounts to specifying a policy rule to separate the endogenous response of policy from exogenous policy shock.
- We construct an analytical relationship between the parameters of the policy rules and the fiscal multipliers.

CALDARA & KAMPS (2017): FIRST CONTRIBUTION

- We apply the analytical framework to study:
 - 1. How the specification of the policy rule affects the estimation of fiscal multipliers.
 - 2. What are the assumptions on the fiscal rules implied by the identification schemes used in the literature.

• We find that:

- 1. Small changes in the fiscal rules can induce large changes in fiscal multipliers.
- 2. Existing schemes imply very different assumptions on the fiscal rules. The observed differences in fiscal rules account for the bulk of the discrepancy across studies.

CALDARA & KAMPS (2017): SECOND CONTRIBUTION

- Second contribution: We provide new estimates of the fiscal rules and, by implication, of the fiscal multipliers.
- Main idea: We use non-fiscal shocks (e.g. technology shocks), as instruments to identify the parameters of the fiscal rules.
- We find that:
 - 1. Systematic response of taxes to output positive and large.
 - 2. Systematic response of government spending to output mildly negative.
 - 3. Spending and tax multipliers are positive, with spending multiplier being larger.

SVAR MODEL

• Structural VAR:

$$B_0 y_t = B_1 y_{t-1} + \dots + B_p y_{t-p} + w_t$$

• Reduced form VAR:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$

• Relationship between reduced form residuals and structural shocks:

$$B_0u_t=w_t$$

THE FISCAL POLICY RULE

- Assume the following partition of w_t : $[w_{pol,t}, w_{np,t}]$.
- First equation of the SVAR is the policy equation:

$$B_{0,1}y_t = B_{1,1}y_{t-1} + \cdots + B_{p,1}y_{t-p} + w_{pol,t}$$

• We can rewrite the policy equation in the form of a policy rule:

$$y_{pol,t} = y'_{np,t}\psi_0 + \sum_{i=1}^{p} y'_{t-i}\psi_i + \omega_p w_{pol,t}, \text{ for } 1 \le t \le T.$$

REWRITING THE FISCAL RULE

• For given (A, Σ) , I can express the rule as follows:

$$u_{pol,t} = \psi_0 u_{np,t} + \omega_p w_{p,t}, \text{ for } 1 \leq t \leq T.$$

- Reduced-form residuals u_t embed information about lags of y_t
- Lagged structural coefficients that enter in the rule can be recovered using the relationship $A_i = B_0^{-1}B_i$.
- Hence, the vector of contemporaneous elasticities ψ_0 is all we need to know to characterize the systematic component of policy.

UNDERSTANDING IDENTIFICATION

- Knowledge of ψ_0 implies identification of $w_{pol,t}$.
- Knowledge of $w_{pol,t}$ implies identification of ψ_0 !
- Intuition in two steps:
 - 1. Use $w_{pol,t}$ to estimate

$$u_{np,t} = \xi_0 u_{pol,t} + \Omega_{np} w_{np,t}$$

2. Use $w_{np,t}$ to instrument $u_{np,t}$ in the policy rule:

$$u_{pol,t} = \psi_0 u_{np,t} + \omega_{pol} w_{pol,t}.$$

 This mapping shows that we can use our framework to study any identification scheme.

A SIMPLE FISCAL RULE

 For ease of exposition and to build intuition, our analysis concentrates on a simple rule in which the fiscal variable can respond contemporaneously only to output:

$$u_{pol,t} = \psi_{gdp}^{pol} u_{gdp,t} + \omega_{pol} w_{pol,t}, \quad \text{for } 1 \le t \le T$$

- We will see that this simple rule is also empirically relevant.
- Under this simple rule, we can derive a closed-form expression for the fiscal multiplier:

$$M_0(\psi_{gdp}^{pol},\Sigma) \equiv \frac{L_0(A_0,A_+)_{gdp,pol}}{\omega_{pol}} = \frac{\sigma_{pol,gdp} - \psi_{gdp}^{pol}\sigma_{gdp}^2}{(\psi_{gdp}^{pol}\sigma_{gdp})^2 + \sigma_{pol}^2 - 2\psi_{gdp}^p\sigma_{pol,gdp}^2}.$$

ESTIMATION

- Estimation: five-variable and four-lag VAR in
 - ► GDP
 - Tax Revenue, Government Spending,
 - ► CPI and 3-month T-bill rate.
- Robustness:
 - ► News series of tax shocks Leeper et al (2013)
 - News series of spending shocks Ramey (2011)
- Sample: 1950:II 2006:IV
- Bayesian estimation

IMPACT FISCAL MULTIPLIERS

A ROADMAP OF THE SVAR LITERATURE

- Structural VAR identification schemes as restrictions on the fiscal rule parameters:
 - Cholesky decomposition
 - ▶ Blanchard-Perotti
 - Penalty function approach
 - Proxy SVAR

BLANCHARD & PEROTTI (2002)

- Impose exact restrictions directly on the parameters of the fiscal rule.
- Restrictions based on public finance estimates of fiscal rules.
- Output elasticity of tax revenue:

$$\psi_{gdp}^{tr} = \sum_{i} \psi_{gdp}^{tr_i} \frac{tr_i}{tr},$$

Item	<i>tr_i/tr</i> (%)	$\psi_{tb_i}^{tr_i}$	$\psi_{gdp}^{tb_i}$	$\psi_{gdp}^{tr_i} = psi_{tb_i}^{tr_i} * \psi_{gdp}^{tb_i}$
Personal Income	45.0%	1.72	1.00	1.72
Social Insurance	28.5%	0.78	1.00	0.78
Corporate Income	17.5%	0.80	4.20	3.36
Indirect Taxes	9.0%	1.06	1.00	1.06
$\psi_{gdp}^{tr} = 1.70$				

• Output elasticity of spending: $\psi_{gdp}^g = 0.00$.

BLANCHARD PEROTTI: DYNAMIC MULTIPLIERS

Penalty Function Identification

- Penalty function identification: (sequentially) identify shocks that maximize the impulse responses of some target variables over a pre-specified horizon.
- Mountford and Uhlig (2009) proceeds in two steps:
 - Business cycle shock: maximize positive response of output and taxes.
 - 2. Fiscal shock: maximize positive response of fiscal variable.
 - 3. Intuition (1): the bulk of business cycle fluctuations are unrelated to fiscal shocks.
 - 4. Intuition (2): Business cycle shock pins down the coefficients of the fiscal rule.

PENALTY FUNCTION: DYNAMIC MULTIPLIERS

PROXY SVAR IDENTIFICATION

• Observe proxy $m_{pol,t}$ for the unobserved $w_{pol,t}$:

$$\mathbb{E}[m_{pol,t}w'_{pol,t}] = \gamma,$$

$$\mathbb{E}[m_{pol,t}w'_{np,t}] = 0.$$

- Use proxy to identify fiscal rule coefficients in two steps.
 - 1. Use $m_{pol,t}$ to estimate

$$u_{np,t} = \xi_0 u_{pol,t} + \tilde{w}_{np,t}$$

where
$$\tilde{w}_{np,t} = \Omega_{np} w_{np,t}$$

2. Use $\tilde{w}_{np,t}$ to instrument $u_{np,t}$ in the policy rule:

$$u_{pol,t} = \psi_0 u_{np,t} + \omega_{pol} w_{pol,t}.$$

• We use proxy for tax shocks.

Romer & Romer (2009); Mertens & Ravn (2013)

ROMER AND ROMER (2010) NARRATIVE ANALYSIS

Example of Endogenous Tax Change

EXHIBIT 1—NARRATIVE ANALYSIS OF A COUNTERCYCLICAL TAX CHANGE

Tax Reduction Act of 1975

Signed: 3/29/75

Change in Liabilities (excluding retroactive changes):

1975:II —\$45.3 billion (Endogenous; Countercyclical) 1975:III +\$32.5 billion (Endogenous; Countercyclical)

Change in Liabilities (including retroactive changes):

1975:II —\$58.1 billion (Endogenous; Countercyclical) 1975:III +\$45.3 billion (Endogenous; Countercyclical)

Present Value:

1975:III —\$13.32 billion (Endogenous; Countercyclical)

ROMER AND ROMER (2010) NARRATIVE ANALYSIS

Example of Exogenous Tax Change

EXHIBIT 2—NARRATIVE ANALYSIS OF A LONG-RUN TAX CHANGE

Revenue Act of 1964

Signed: 2/26/64

Change in Liabilities (excluding retroactive changes):

1964:II — \$8.4 billion (Exogenous; Long-run) 1965:I — \$4.5 billion (Exogenous; Long-run)

Change in Liabilities (including retroactive changes):

 1964:II
 -\$16.8 billion
 (Exogenous; Long-run)

 1964:III
 +\$8.4 billion
 (Exogenous; Long-run)

 1965:I
 -\$4.5 billion
 (Exogenous; Long-run)

Present Value:

1964:I —\$12.72 billion (Exogenous; Long-run)

ROMER AND ROMER (2010) NARRATIVE ANALYSIS

All Exogenous Tax Change

PROXY SVAR: DYNAMIC MULTIPLIERS

DYNAMIC MULTIPLIERS: SUMMARY

ESTIMATED GENERAL FISCAL RULES

Table: Contemporaneous Elasticities in the Fiscal Policy Rules (General Rules)

	Blanchard-Perotti	Penalty Function	Proxy SVAR
(A.) Tax Rule			
$\psi^{tr}_{0,gdp}$	1.70	3.24	3.58
		[3.04 3.45]	[3.22 3.98]
$\psi^{tr}_{0,\pi}$	1.25	0.48	2.41
		[0.23 0.74]	[1.95 2.91]
$\psi^{tr}_{0,r}$	0.00	-0.42	-0.01
		[-0.65 -0.20]	[-0.42 0.39]
$\psi^{tr}_{0,g}$	-0.14	0.01	-0.29
-70	[-0.17 -0.10]	[-0.15 0.18]	[-0.50 -0.09]
(B.) Government Spending Rule			
$\psi^{\mathrm{g}}_{0,\mathrm{gdp}}$	0.00	0.55	
		[0.44 0.66]	
$\psi^{\mathcal{S}}_{0,\pi}$	-0.50	0.41	
		[0.30 0.52]	
$\psi^{\mathcal{S}}_{0,r}$	0.00	-0.36	
- 0,		[-0.45 -0.26]	
$\psi^{g}_{0,tr}$	0.00	0.00	

PROXY SVAR WITH NON-FISCAL PROXIES

- Same proxy SVAR methodology described previously...
- but we use non-fiscal proxies to directly estimate coefficients of the fiscal rules.
- Intuition: non-fiscal shocks move variables for reason unrelated to discretionary changes in fiscal policy.
- We use proxies for technology shocks, oil shocks, and monetary policy shocks.

Fernald (2012); Hamilton (2003); Romer & Romer (2004)

PROXY SVAR WITH NON-FISCAL PROXIES

• Observe proxy $m_{np,t}$ for the unobserved $w_{np,t}$:

$$\mathbb{E}[m_{np,t}w'_{np,t}] = \Gamma_{np},$$

$$\mathbb{E}[m_{np,t}w'_{pol,t}] = 0.$$

- Use proxy to identify fiscal rule coefficients in ONE step.
- Use $m_{np,t}$ to instrument $u_{np,t}$ in the policy rule:

$$u_{pol,t} = \psi_0 u_{np,t} + \omega_{pol} w_{pol,t}.$$

• In addition, we can use $\tilde{w}_{pol,t} = \omega_{pol} w_{pol,t}$ as instrument to estimate.

$$u_{np,t} = \xi_0 u_{pol,t} + \tilde{w}_{np,t}$$

and recover the effects of policy variables on non-policy variables.

Relevance and Exogeneity of $m_{np,t}$

Table 2: PREDICTABILITY REGRESSIONS

(A.) Relevance of Non-Fiscal Proxies			
	u_{gdp}	u_{π}	u_r
m_{tfp} (Utilization-Adjusted Productivity)	0.10	0.00	
	[0.01]	[0.01]	
m _{oil} (Oil Shocks)	-0.01	0.01	
	[0.01]	[0.01]	
m_r (Monetary Policy Shocks)			0.79
			[0.07]
F-statistic	26.27	2.46	120.52
(B.) Exogeneity of Non-Fiscal Proxies			
	m_{tfp}	m_{oil}	m_r
m _{tax} (Narrative Tax Shocks)	-2.06	0.93	-0.04
	[1.53]	[2.22]	[0.31]
m _q (Military Spending Shocks)	-0.23	0.38	0.04
A TOTAL CONTROL CONTROL	[0.21]	[0.31]	[0.04]
F-statistic	1.44	0.85	0.54

PROXY SVAR WITH NON-FISCAL PROXIES

Table: Contemporaneous Elasticities in the Fiscal Policy Rules (Proxy SVAR Identification with Non-Fiscal Proxies)

	General Rule	Simple Rule
(A.) Tax Rule		
$\psi^{tr}_{0,gdp}$	2.18	2.43
	[1.96 2.41]	[2.21 2.66]
$\psi^{tr}_{0,\pi}$	1.06	
	[0.09 2.10]	
$\psi^{tr}_{0,r}$	0.56	
	[0.39 0.73]	
$\psi^{tr}_{0,8}$	-0.23	
***************************************	[-0.46 -0.02]	
(B.) Government Spending Rule		
$\psi^{g}_{0,gdp}$	-0.13	-0.15
	[-0.28 0.01]	[-0.27 -0.03]
$\psi_{0,\pi}^{\mathcal{S}}$	-0.75	
, 0,1	[-1.62 -0.08]	
ψ_{0r}^{g}	0.01	
, 0,,	[-0.09 0.13]	
$\psi^{S}_{0,r}$ $\psi^{S}_{0,tr}$	0.00	
. 0,6.		

PROXY SVAR WITH NON-FISCAL INSTRUMENTS: DYNAMIC MULTIPLIERS

ROBUSTNESS OF PROXY SVAR WITH NON-FISCAL PROXIES

- Specification of the reduced-form model:
 - Add measures of fiscal news.
 - Alternative detrending of the data.
- Alternative definition of fiscal multipliers.
- Alternative identification within fiscal policy block.

FISCAL FORESIGHT

DETRENDING OF DATA

ALTERNATIVE DEFINITION OF MULTIPLIERS

IDENTIFICATION WITHIN POLICY BLOCK

CONCLUSIONS

- 1. We derived an analytical framework to compare fiscal multipliers implied by commonly used identification schemes.
- 2. Key to this framework is the relationship between fiscal rules and fiscal shocks.
- 3. Commonly used identification schemes imply different fiscal rules and consequently different fiscal multipliers.
- 4. We provide new estimates for fiscal rules based on proxy SVARs.
- 5. We find that spending multiplier are larger than tax multiplier.