Chapitre 14 : Formes bilinéaires symétriques et formes quadratiques

I Définition

Soit \mathbb{K} un corps de caractéristique différente de 2. (au programme : $\mathbb{K} = \mathbb{R}$ uniquement) Soit E un \mathbb{K} -espace vectoriel.

• On appelle forme bilinéaire symétrique sur E (abréviation fbs) toute application $\varphi: E \times E \to \mathbb{K}$ telle que :

 φ est linéaire à droite

 φ est symétrique, c'est-à-dire $\forall (x, y) \in E^2, \varphi(x, y) = \varphi(y, x)$

• On appelle forme quadratique (abréviation fq) associée à une forme bilinéaire symétrique φ l'application $Q_{\varphi}: E \to \mathbb{K}$ (c'est la restriction de φ à la $\vec{x} \mapsto Q(\vec{x}) = \varphi(\vec{x}, \vec{x})$

diagonale de $E \times E$)

• Relation importante:

Théorème:

Soit φ une forme bilinéaire symétrique sur E, Q la forme quadratique associée.

On a, pour tous $x, y \in E$:

(1)
$$Q(x+y) = Q(x) + Q(y) + 2\varphi(x, y)$$

(2) Pour tout
$$\lambda \in \mathbb{K}$$
, $Q(\lambda x) = \lambda^2 Q(x)$

(3)
$$\varphi(x,y) = \frac{1}{2}(Q(x+y) - Q(y) - Q(x)) = \frac{1}{4}(Q(x+y) - Q(x-y))$$

(Formules de polarisation)

Démonstration :...

• Caractérisation intrinsèque des formes quadratiques :

Problème:

Soit $Q: E \to \mathbb{K}$. Comment voir si Q est une forme quadratique?

Le plus simple est de parachuter une fbs φ telle que $\forall x \in E, \varphi(x,x) = Q(x)$

Exemple:

Soit $l \in E^*$ une forme linéaire sur E.

Alors $l^2: E \to \mathbb{K}$ est une forme quadratique. $\vec{v} \mapsto l(\vec{v})^2$

En effet, posons $\varphi(u, v) = l(u) \times l(v)$

Alors φ est une fbs, et la forme quadratique associée à φ est bien l^2 .

Théorème:

(1) Pour toute forme quadratique $Q: E \to \mathbb{K}$, il existe une unique fbs $\varphi: E \times E \to \mathbb{K}$ telle que Q est la forme quadratique associée à φ .

 φ est définie par $\forall x, y \in E, \varphi(x, y) = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$

(2) Une application $Q: E \to \mathbb{K}$ est une forme quadratique si et seulement si l'application $x, y \mapsto \frac{Q(x+y) - Q(x) - Q(y)}{2}$ est bilinéaire et $\forall x \in E, Q(2x) = 4Q(x)$

Démonstration:

(1) A déjà été vu dans le théorème précédent.

Pour (2):

Si Q est une forme quadratique, associée à φ , on a pour tous $x, y \in E$:

$$\frac{Q(x+y) - Q(x) - Q(y)}{2} = \varphi(x,y)$$

Qui est bilinéaire, et $\forall x \in E, Q(2x) = \varphi(2x, 2x) = 4\varphi(x, x) = 4Q(x)$

Inversement:

Si
$$\alpha: E^2 \to \mathbb{R}$$
 est bilinéaire, et si $\forall x \in E, Q(2x) = 4Q(x)$,
$$(x,y) \mapsto \frac{Q(x+y) - Q(x) - Q(y)}{2}$$

alors α est aussi symétrique, donc c'est une fbs, et pour tout $x \in E$,

$$\alpha(x,x) = \frac{Q(2x) - Q(x) - Q(x)}{2} = Q(x)$$

Donc Q est la forme quadratique associée à α .

Définition:

La correspondance qui à φ fbs associe Q_{φ} forme quadratique est bijective; on dit que Q_{φ} est la forme quadratique associée à φ et que φ est la forme polaire (abr. fp) de Q_{φ}

II En dimension finie: matrices

• Définition :

Soit $\mathfrak{B} = (V_1,...V_n)$ une base d'un espace vectoriel E de dimension finie, et $\varphi : E^2 \to \mathbb{K}$ une fbs. On appelle matrice de φ dans \mathfrak{B} la matrice $\max_{\mathfrak{B}}(\varphi) = (\varphi(V_i,V_j))_{\substack{i \in [1,n] \\ j \in [1,n]}} \in S_n(\mathbb{K})$.

Remarque

Si φ est un produit scalaire ($\mathbb{K} = \mathbb{R}$), $\max_{\mathfrak{B}}(\varphi)$ s'appelle la matrice de Gram de $(V_1,...V_n)$.

On appelle matrice d'une forme quadratique Q dans $\mathfrak B$ la matrice de la forme polaire de Q dans $\mathfrak B$.

Attention:

Il ne faut pas confondre : matrice de fbs/fq et matrice d'application linéaire.

Pour écrire la matrice d'une fq, on doit d'abord expliciter la forme polaire.

• Caractérisation :

Théorème:

On note $\mathfrak{B} = (e_1, ... e_n)$ une base de E.

(1) Soit $\varphi: E^2 \to \mathbb{K}$ une fbs, et $A \in M_n(\mathbb{K})$. Alors:

On a $A = \text{mat}_{\mathfrak{B}}(\varphi)$ si et seulement si pour tout $x = \sum_{j=1}^{n} x_j e_j$, $y = \sum_{j=1}^{n} y_j e_j$ de E,

$$\varphi(x,y) = {}^{t}XAY$$
 (où on a identifié $M_{1,1}(\mathbb{K})$ et \mathbb{K}), où $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

(2) Soit $Q: E \to \mathbb{K}$ une forme quadratique, et $A \in M_n(\mathbb{K})$.

Alors $A = \text{mat}_{\mathfrak{B}}(Q)$ si et seulement si A est symétrique et pour tout $x = \sum_{j=1}^{n} x_j e_j$ de E,

$$Q(x) = {}^{t}XAX.$$

Démonstration:

Les conditions sont déjà nécessaires :

(1) Pour tous
$$x = \sum_{j=1}^{n} x_{j} e_{j}$$
, $y = \sum_{j=1}^{n} y_{j} e_{j}$ de E , on a :

$$\varphi(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \varphi(e_i, e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \varphi(e_i, e_j) y_j = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i A_{i,j} y_j = {}^{t}XAY$$

(2) si $A = \text{mat}_{\mathfrak{D}}(Q)$, alors A est bien symétrique, et pour tout $x = \sum_{j=1}^{n} x_{j} e_{j}$ de E, on a :

 $Q(x) = \varphi(x, x) = {}^{t}XAX$ où φ est la forme polaire de Q.

Les conditions sont suffisantes :

(1) pour
$$i, j \in [1, n]$$
, on a : $\varphi(e_i, e_j) = (0, ... 1, ... 0) A \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \end{pmatrix} = A_{i,j}$

Donc $mat_{\mathfrak{B}}(\varphi) = A$

(2) On suppose que *A* est symétrique et que $\forall x \in E, Q(x) = {}^{t}XAX$ Soit φ la forme polaire de *Q*. Pour $x \in E$, on a :

$$\varphi(x,y) = \frac{Q(x+y) - Q(x) - Q(y)}{2}
= \frac{1}{2} ({}^{t}(X+Y)A(X+Y) - {}^{t}XAX - {}^{t}YAY)
= \frac{1}{2} ({}^{t}XAY + {}^{t}YAX)$$

Or, ${}^{t}A = A$, donc ${}^{t}({}^{t}YAX) = {}^{t}X{}^{t}AY = {}^{t}XAY$

De plus, ${}^{t}YAX \in M_{1}(\mathbb{K})$ donc est symétrique.

Donc ${}^{t}YAX = {}^{t}XAY$

C'est-à-dire $\varphi(x, y) = {}^{t}XAY$

Et donc d'après (1), $A = \text{mat}_{\mathfrak{B}}(\varphi) = \text{mat}_{\mathfrak{B}}(Q)$

• Autre caractérisation des formes quadratiques (en dimension finie)

Théorème:

Une application $Q: E \to \mathbb{K}$ est une forme quadratique si et seulement si son expression dans une base $(e_1,...e_n)$ de E est de la forme :

$$Q\left(\sum_{i=1}^{n} x_{i} e_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} x_{i} x_{j}$$

Autrement dit, Q s'exprime par un polynôme homogène de degré 2 en les coordonnées Homogène : Un polynôme P – éventuellement à plusieurs indéterminées – de degré deg P = d est dit homogène lorsque $\forall \lambda \in \mathbb{K}, P(\lambda X) = \lambda^d P(X)$.

Démonstration:

Découle du théorème précédent.

• Structure:

Théorème:

Soit E un \mathbb{K} -ev de dimension n, on fixe \mathfrak{B} une base de E.

L'ensemble des formes quadratiques de E est un sous-espace vectoriel de \mathbb{K}^E , noté $\operatorname{Quad}(E)$

L'ensemble des *fbs* de E est un sous-espace de $\mathbb{K}^{E \times E}$, noté BS(E)

Et les applications suivantes sont des isomorphismes :

$$\varphi \in BS(E) \mapsto Q_{\varphi} \in Quad(E)$$
 où $\forall x \in E, Q_{\varphi}(x) = \varphi(x, x)$

 $Q \in \text{Quad}(E) \mapsto \varphi \in \text{BS}(E)$ où φ est la forme polaire de Q.

$$\varphi \in \mathrm{BS}(E) \mapsto \mathrm{mat}_{\mathfrak{D}}(\varphi) \in S_n(\mathbb{K})$$

$$Q \in \operatorname{Quad}(E) \mapsto \operatorname{mat}_{\mathfrak{B}}(Q) \in S_n(\mathbb{K})$$

En particulier,
$$\dim_{\mathbb{K}}(\text{Quad}(E)) = \frac{n(n+1)}{2} = \dim_{\mathbb{K}}(\text{BS}(E))$$

• Changement de bases, matrices congruentes :

Théorème:

Soit $\varphi: E^2 \to \mathbb{K}$ une fbs, \mathfrak{B} , \mathfrak{B} ' deux bases de E.

On note $A = \operatorname{mat}_{\mathfrak{R}}(\varphi)$, $A' = \operatorname{mat}_{\mathfrak{R}'}(\varphi)$, $P \in GL_n(\mathbb{K})$ la matrice de passage de \mathfrak{B} à \mathfrak{B}' .

Alors
$$A' = {}^{t}PAP$$

Définition:

Deux matrices symétriques A, A' sont dites congruentes lorsqu'il existe $P \in GL_n(\mathbb{K})$ tel que $A' = {}^tPAP$

La congruence des matrices symétriques est une relation d'équivalence.

Ainsi, deux matrices sont congruentes si et seulement si elles représentent la même *fbs* dans deux bases différentes.

Démonstration (du théorème):

Pour tous $x, y \in E$, on a $\varphi(x, y) = {}^t XAY$, où X, Y sont les matrices colonnes de x, y dans \mathfrak{B} . La matrice colonne X' de x dans \mathfrak{B}' est donnée par X = PX', celle Y' de y par Y = PY'.

Ainsi, on a:

$$\varphi(x,y) = {}^{t}(PX')A(PY') = {}^{t}X'({}^{t}PAP)Y'$$

Comme c'est valable pour tous $x, y \in E$, on a bien ${}^{t}PAP = \max_{sy}(\varphi)$

• Rang des fbs et des fq:

Définition:

On appelle rang d'une fbs/fg le rang de sa matrice dans une base quelconque.

Le rang est indépendant de la base car deux matrices congruentes sont équivalentes donc ont même rang.

Définition:

Une *fbs/fq* de rang *n* est dite non dégénérée.

III Cas des réels : positivité

• Définition :

Soit $Q: E \to \mathbb{R}$ une forme quadratique sur le \mathbb{R} -ev E.

Q est dite positive lorsque $\forall x \in E, Q(x) \ge 0$

Et définie–positive lorsque $\forall x \in E \setminus \{0\}, Q(x) > 0$

On définit de même une forme quadratique négative ou définie négative.

Une *fbs* sera dite positive, définie–positive, négative, définie–négative lorsque la forme quadratique associée l'est.

Attention:

Une *fbs* est rarement une fonction positive. En fait, elle est positive si et seulement si elle est nulle.

Théorème:

Inégalité de Cauchy-Schwarz pour une fbs positive :

Si
$$\varphi: E^2 \to \mathbb{R}$$
 est une fbs positive, alors $\forall x, y \in E, |\varphi(x, y)| \le \sqrt{\varphi(x, x)\varphi(y, y)}$

Complément :

Soit φ une *fbs* positive. Alors $N = \{x \in E, \varphi(x, x) = 0\}$ est un sous-espace vectoriel de E, et il y a égalité de Cauchy-Schwarz si et seulement si N contient une combinaison linéaire non triviale de x et y.

Démonstration:

Soient $x, y \in E$. Pour tout $t \in \mathbb{R}$, on a:

$$0 \le \varphi(x+ty, x+ty) = \varphi(x, x) + 2t\varphi(x, y) + t^2\varphi(y, y)$$

Donc le polynôme $P: t \mapsto \varphi(x, x) + 2t\varphi(x, y) + t^2\varphi(y, y)$, de degré ≤ 2 , est à valeurs positives. Deux cas :

Soit
$$\varphi(y, y) > 0$$
, et $\frac{\Delta}{4} = \varphi(x, y)^2 - \varphi(x, x)\varphi(y, y) \le 0$

Soit $\varphi(y,y) = 0$, et donc deg $P \le 1$, soit $\varphi(x,y) = 0$

Et dans les deux cas l'inégalité est vérifiée.

Pour le complément :

Déjà, $0 \in N$ donc N est non vide.

Pour tous $x \in N, \lambda \in \mathbb{R}$, on a $\lambda x \in N$

Enfin, pour tous $x, y \in N$, on a d'après l'inégalité de Cauchy–Schwarz, $\varphi(x, y) = 0$

Et donc $\varphi(x+y,x+y)=0$

Montrons maintenant l'équivalence :

Supposons qu'il y a égalité de Cauchy–Schwarz pour $x, y \in E$.

Si $\varphi(y,y) = 0$, alors y est une combinaison linéaire non triviale qui est dans N.

Sinon, le polynôme $P = \varphi(x, x) + 2X\varphi(x, y) + X^2\varphi(y, y)$ de degré 2 admet au moins une racine réelle t, puisqu'il a un discriminant nul. On a alors $\varphi(x, x) + 2t\varphi(x, y) + t^2\varphi(y, y) = 0$, soit $\varphi(x+ty, x+ty) = 0$ donc $x+ty \in N$ et $(1,t) \neq (0,0)$

Réciproquement, supposons qu'il existe $(\lambda, \mu) \in \mathbb{R}^2 \setminus \{(0,0)\}$ tel que $\lambda x + \mu y \in N$

Si $\lambda = 0$, alors $\mu \neq 0$ donc comme N est un espace vectoriel, $y \in N$, et on a $|\varphi(x,y)| \le \sqrt{\varphi(x,x)\varphi(y,y)} = 0$, c'est-à-dire $|\varphi(x,y)| = \sqrt{\varphi(x,x)\varphi(y,y)}$ (=0)

Sinon, comme *N* est un espace vectoriel, $x + ty \in N$, où $t = \frac{\mu}{\lambda}$.

Ainsi,
$$\varphi(x+ty,x+ty) = \varphi(x,x) + 2t\varphi(x,y) + t^2\varphi(y,y) = 0$$

Donc soit $\varphi(y,y) = 0$ et on a bien l'égalité, soit $4\varphi(x,y)^2 - 4\varphi(x,x)\varphi(y,y) \ge 0$, c'est-à-dire $|\varphi(x,y)| \ge \sqrt{\varphi(x,x)\varphi(y,y)}$ et donc $|\varphi(x,y)| = \sqrt{\varphi(x,x)\varphi(y,y)}$ puisque l'autre inégalité était déjà vraie d'après le théorème.

• Signature d'une forme quadratique réelle en dimension finie (Hors programme) Soit $Q: E \to \mathbb{R}$ une forme quadratique.

On appelle indice de positivité p de Q la dimension maximale d'un sous-espace F de E tel que $Q_{/F}$ est définie-positive,

Et indice de négativité q de Q la dimension maximale d'un sous-espace F de E tel que Q_{IF} est définie-négative.

La signature est alors le couple (p,q)

Exemple:

 $Q: \mathbb{R}^2 \to \mathbb{R}$ est une forme quadratique, de signature (1,1): $(x,y) \mapsto xy$

$$\begin{array}{c|c}
R \uparrow \\
- & + \\
+ & -
\end{array}$$

On peut montrer que rg(Q) = p + q (plus tard, page 10)

IV Représentation des formes bilinéaires symétriques et des formes quadratiques dans un espace euclidien

Ici, E désigne un espace vectoriel euclidien.

• Préambule : exemples de formes quadratiques :

Soit $u \in L_{\mathbb{R}}(E)$.

Les applications $E \to \mathbb{R}$ et $E \to \mathbb{R}$ sont des formes quadratiques. $x \mapsto \|u(x)\|^2$ $x \mapsto \langle x, u(x) \rangle$

La forme polaire de $x \mapsto \|u(x)\|^2$ est en effet $\varphi \colon E^2 \to \mathbb{R}$, qui est bien une $(x,x) \mapsto \langle u(x), u(y) \rangle$

fbs.

La forme polaire de $x \mapsto \langle x, u(x) \rangle$ est

$$\varphi: \frac{1}{2}(\langle x, u(y) \rangle + \langle x, u^*(y) \rangle) = \frac{1}{2}(\langle x, u(y) \rangle + \langle y, u(x) \rangle)$$

• Théorème de représentation des formes quadratiques dans un espace euclidien :

Théorème :

Pour toute fbs $\varphi: E^2 \to \mathbb{R}$, il existe un unique endomorphisme $u \in L_{\mathbb{R}}(E)$ tel que $\forall (x,y) \in E^2, \varphi(x,y) = \langle x, u(y) \rangle$.

De plus, u est autoadjoint, et u et φ ont même matrice dans toute base orthonormée de z.

Définition:

u s'appelle l'endomorphisme symétrique associé à φ .

Attention:

Si \mathfrak{B} n'est pas orthonormale, on n'a pas en général $\mathrm{mat}_{\mathfrak{B}}(u) = \mathrm{mat}_{\mathfrak{B}}(\varphi)$.

En effet, par exemple $\max_{\mathfrak{B}}(\varphi)$ est toujours symétrique par définition de φ , alors que $\max_{\mathfrak{B}}(u)$ ne l'est pas toujours.

Théorème:

Pour toute forme quadratique $Q: E \to \mathbb{R}$, il existe un unique endomorphisme symétrique u tel que $\forall x \in E, Q(x) = \langle x, u(x) \rangle$

De plus, la forme polaire de Q est alors $(x, y) \mapsto \langle x, u(y) \rangle$

Q et *u* ont même matrice dans toute base orthonormée.

Attention:

Si on n'impose pas à u d'être symétrique, il n'y a plus unicité, puisque alors pour un endomorphisme antisymétrique v (c'est-à-dire tel que $v^*=-v$) quelconque, on aura $\forall x \in E, \langle x, v(x) \rangle = 0$ et donc si on trouve une solution u, alors u+v est aussi solution, différente si $v \neq 0$.

Démonstration des théorèmes :

(1) Unicité de u:

Si u et u' sont deux solutions, alors v = u - u' vérifie :

 $\forall (x,y) \in E^2, \langle x,v(y)\rangle = 0$ soit $\forall y \in E, \langle v(y),v(y)\rangle = 0$ et donc v = 0.

Existence, caractérisation...:

Soit $\mathfrak{B} = (e_1, ..., e_n)$ une base orthonormée de E, et $u \in L_{\mathbb{R}}(E)$ tel que $\max_{\mathfrak{R}}(u) = \max_{\mathfrak{R}}(\varphi)$

Alors:

- La matrice de *u* est symétrique en base orthonormée, donc *u* est autoadjoint.
- u et φ ont même matrice dans \mathfrak{B} (!)
- Pour tout $x = \sum_{j=1}^{n} x_{j} e_{j} \in E$, $y = \sum_{j=1}^{n} y_{j} e_{j} \in E$, on a:

$$< x, u(y) > = \sum_{i=1}^{n} \sum_{i=1}^{n} x_i y_i < e_i, u(e_j) >$$

Or, comme $(e_1,...e_n)$ est orthonormale, $\langle e_i, u(e_j) \rangle$ est le coefficient de coordonnées (i,j) de $A = \max_{\mathfrak{D}}(u)$, et ce pour tout $(i,j) \in [1,n]^2$.

Comme $A = \text{mat}_{\mathfrak{D}}(\varphi)$, on a donc $\forall (i, j) \in [[1, n]]^2, \langle e_i, u(e_j) \rangle = \varphi(e_i, e_j)$

Donc
$$\langle x, u(y) \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_i \varphi(e_i, e_j) = \varphi(x, y)$$

- u et φ ont même matrice dans toute base orthonormale :

Soit $\mathfrak{B}' = (e'_1, \dots e'_n)$ une base orthonormée de E.

Alors la matrice de u dans \mathfrak{B} ' est $A' = (\underbrace{\langle e'_i, u(e'_j) \rangle}_{=\varphi(e'_i, e'_i)})_{i,j=1..n}$ car \mathfrak{B} ' est orthonormale.

Donc $\operatorname{mat}_{\mathfrak{B}'}(u) = \operatorname{mat}_{\mathfrak{B}'}(\varphi)$.

(2) Existence, propriétés :

Soit φ la forme polaire de Q, u l'unique endomorphisme donné par le théorème précédent tel que $\forall (x, y) \in E^2$, $\varphi(x, y) = \langle x, u(y) \rangle$

Ainsi, u est autoadjoint, et u et φ ont même matrice dans toute base orthonormale, donc c'est pareil pour Q et φ .

Unicité:

Si u, u' sont deux endomorphismes *autoadjoints* tels que $\forall x \in E, \langle x, u(x) \rangle = \langle x, u'(x) \rangle$ Alors $v = u - u^*$ est autoadjoint, et $\forall x \in E, \langle x, v(x) \rangle = 0$

Donc
$$\forall x, y \in E, \langle x + y, v(x + y) \rangle = 0 = \underbrace{\langle x, v(x) \rangle}_{=0} + \langle x, v(y) \rangle + \langle y, v(x) \rangle + \underbrace{\langle y, v(y) \rangle}_{=0}$$

Soit
$$\forall x, y \in E, \langle x, v(y) \rangle = \langle -v(x), y \rangle$$

On reconnaît donc $v^* = -v$. Mais $v^* = v$. Donc v = 0

« Ménage à 4 » :

Dans un espace euclidien, on dispose:

- Des endomorphismes autoadjoints
- Des matrices symétriques
- Des formes bilinéaires symétriques
- Des formes quadratiques.

Qui constituent des R-espaces vectoriels isomorphes.

Les espaces $S(E) = \{u \in L_{\mathbb{R}}(E), u^* = u\}$, $S_n(\mathbb{R})$, Quad(E), BS(E) où E est un espace de dimension n sur \mathbb{R} sont naturellement isomorphes :

$$S(E) \to S_n(\mathbb{R})$$
 où \mathfrak{B}_0 est une base orthonormée quelconque fixée. $u \mapsto \operatorname{mat}_{\mathfrak{B}_0}(u)$

$$BS(E) \to Quad(E)$$
$$\varphi \leftrightarrow Q_{\varphi}$$

$$S(E) \rightarrow Quad(E)$$

 $\pi \mapsto (x \in E \mapsto \langle x, \pi(x) \rangle)$

$$S(E) \to BS(E)$$

$$\pi \mapsto ((x,y) \in E^2 \mapsto \langle x, \pi(y) \rangle)$$

Exemple:

Soit
$$Q: \mathbb{R}^3 \to \mathbb{R}$$
 (on munit \mathbb{R}^3 du produit scalaire naturel) $(x,y,z) \mapsto x^2 + 2y^2 - z^2 + 4xy + yz - zx$

On veut la matrice de Q dans la base canonique, l'endomorphisme autoadjoint de \mathbb{R}^3 associé à Q.

- Pour la matrice :

On a
$$\frac{1}{2} \frac{\partial Q}{\partial x} = x + 2y - \frac{1}{2}z$$
, $\frac{1}{2} \frac{\partial Q}{\partial y} = 2x + 2y + \frac{1}{2}z$, $\frac{1}{2} \frac{\partial Q}{\partial z} = -\frac{1}{2}x + \frac{1}{2}y - z$.

Ainsi, la matrice
$$A = \begin{pmatrix} 1 & 2 & -1/2 \\ 2 & 2 & 1/2 \\ -1/2 & 1/2 & -1 \end{pmatrix}$$
 est la matrice du système de formes linéaires

$$\left(\frac{1}{2}\frac{\partial Q}{\partial x}, \frac{1}{2}\frac{\partial Q}{\partial y}, \frac{1}{2}\frac{\partial Q}{\partial z}\right).$$

- Endomorphisme associé à O:

Alors
$$\pi:(x,y,z)\in\mathbb{R}^3\mapsto(x',y',z')$$

Où
$$x' = \frac{1}{2} \frac{\partial Q}{\partial x}(x, y, z), \ y' = \frac{1}{2} \frac{\partial Q}{\partial y}(x, y, z), \ z' = \frac{1}{2} \frac{\partial Q}{\partial z}(x, y, z).$$

En effet, on a $\max_{\text{cano}}(\pi) = A$, et comme la base canonique est orthonormale, il suffit de montrer que $A = \max_{\text{cano}}(Q)$.

Pour cela, on a la proposition:

Proposition:

On fixe $\mathfrak{B} = (\vec{e}_1, ... \vec{e}_n)$ une base d'un \mathbb{R} -espace vectoriel E de dimension finie n.

Soit Q une forme quadratique sur E, φ sa forme polaire.

Ainsi, Q peut être vu comme fonction de n variables réelles :

Pour
$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i \in E$$
, on peut écrire Q sous la forme $Q(\vec{x}) = Q(x_1, ..., x_n)$.

Alors pour tous
$$i, j \in [1, n], \varphi(\vec{e}_i, \vec{e}_j) = \frac{1}{2} \frac{\partial Q}{\partial x_i} (\vec{e}_j)$$

En effet:

Déjà, la quantité existe bien car on a vu que Q s'écrivait sous forme polynomiale en les coordonnées, disons sous la forme $Q(x_1,...x_n) = \sum_{k=1}^n \sum_{l=1}^n a_{k,l} x_k x_l$ où les $a_{k,l}$ sont des réels, donc Q est de classe C^{∞} .

Alors pour $i, j \in [1, n]$, on a :

$$\varphi(\vec{e}_i, \vec{e}_j) = \frac{1}{2} (Q(\vec{e}_i + \vec{e}_j) - Q(\vec{e}_j) - Q(\vec{e}_j))$$

Et
$$Q(\vec{e}_i + \vec{e}_j) = a_{i,j} + a_{j,i} + a_{i,i} + a_{j,j}$$
, $Q(\vec{e}_i) = a_{i,i}$, $Q(\vec{e}_j) = a_{j,j}$

Et donc $\varphi(\vec{e}_i, \vec{e}_i) = \frac{1}{2}(a_{i,i} + a_{i,i})$

D'autre part,
$$\forall \vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i \in E, \frac{\partial Q}{\partial x_i}(\vec{x}) = \sum_{k=1}^{n} \sum_{l=1}^{n} a_{k,l} \frac{\partial (x_k x_l)}{\partial x_i} = \sum_{k=1}^{n} a_{k,i} x_k + \sum_{l=1}^{n} a_{l,l} x_l + 2a_{i,l} x_i$$

Soit
$$\frac{\partial Q}{\partial x_i}(\vec{e}_j) = \begin{cases} a_{j,i} + a_{i,j} & \text{si } x \neq i \\ 2a_{i,i} & \text{si } j = i \end{cases} = a_{i,j} + a_{j,i}$$

Et donc on a bien $\varphi(\vec{e}_i, \vec{e}_j) = \frac{1}{2} \frac{\partial Q}{\partial x_i} (\vec{e}_j)$.

Ainsi, pour reprendre l'exemple, la matrice de Q dans la base canonique est bien la matrice introduite.

• Réduction des fbs et fq en base orthonormale.

Théorème:

(1) Pour toute fbs $\varphi: E^2 \to \mathbb{R}$, il existe une base orthonormée $(e_1, ... e_n)$ de E et des réels

$$\lambda_1,...\lambda_n$$
 tels que $\forall x = \sum_{i=1}^n x_i e_i \in E, \forall y \sum_{i=1}^n y_i e_i \in E, \varphi(x,y) = \sum_{i=1}^n \lambda_i x_i y_i$.

 $(e_1,...e_n)$ est une base de vecteurs propres de l'endomorphisme autoadjoint associé à φ , et $\lambda_1,...\lambda_n$ sont les valeurs propres associées à ces vecteurs.

(2) Pour toute forme quadratique $Q: E \to \mathbb{R}$, il existe une base orthonormée $(e_1, ... e_n)$

de
$$E$$
 et des réels $\lambda_1,...\lambda_n$ tels que $\forall x = \sum_{i=1}^n x_i e_i \in E, Q(x) = \sum_{i=1}^n \lambda_i x_i^2$

 $(e_1,...e_n)$ est une base de vecteurs propres de l'endomorphisme autoadjoint associé à Q, et $\lambda_1,...\lambda_n$ sont les valeurs propres associées à ces vecteurs.

Démonstration:

Soit π l'endomorphisme associé à φ (resp. Q).

D'après le théorème spectral, il existe une base $\mathfrak{B} = (e_1, ... e_n)$ de vecteurs propres de π telle que la matrice de π dans \mathfrak{B} soit diagonale.

Disons
$$\max_{\mathfrak{B}}(\pi) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 où λ_i est la valeur propre associée à e_i .

Comme
$$\mathfrak{B}$$
 est orthonormale, on a $\operatorname{mat}_{\mathfrak{B}}(\varphi) = \operatorname{mat}_{\mathfrak{B}}(\pi) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ (resp. pour Q)

Donc pour
$$x = \sum_{i=1}^{n} x_i e_i \in E$$
, $y = \sum_{i=1}^{n} y_i e_i \in E$,

$$\varphi(x,y) = {}^{t}X \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} Y = \sum_{i=1}^{n} \lambda_{i} x_{i} y_{i} \text{ et } Q(x) = {}^{t}X \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} X = \sum_{i=1}^{n} \lambda_{i} x_{i}^{2}$$

Définition:

Les espaces propres de π , endomorphisme autoadjoint associé à φ/Q sont appelés les directions principales de φ/Q .

Exemple: moment d'inertie:

Soit S un solide de \mathbb{R}^3 , $\rho(M)$ la densité volumique, $\mu(S) = \iiint \rho(M) dM > 0$ la masse du solide.

Soit
$$O \in \mathbb{R}^3$$
. Pour $\vec{v} \in \mathbb{R}^3$, on pose $Q_O(\vec{v}) = \iiint_{M \in S} \rho(M) < \overrightarrow{OM}, \vec{v} >^2 dM$

Alors Q_0 est une forme quadratique, de forme polaire

$$\varphi_O(\vec{v}, \vec{w}) = \iiint_{M \in S} \rho(M) < \overrightarrow{OM}, \vec{v} > < \overrightarrow{OM}, \vec{w} > dM$$

D'après le théorème de réduction des fq et fbs en base orthonormale, il existe une base

orthonormée
$$(e_1,e_2,e_3)$$
 de \mathbb{R}^3 et des réels $\lambda_1,\lambda_2,\lambda_3$ tels que $\max_{(e_1,e_2,e_3)} \varphi_0 = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$

C'est-à-dire
$$Q_0(x_1e_1 + x_2e_2 + x_3e_3) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 e_3^2$$

Donc
$$\iiint_{M \in S} \rho(M) < \overrightarrow{OM}, e_i > < \overrightarrow{OM}, e_j > dM = \begin{cases} \lambda_i \text{ si } i = j \\ 0 \text{ sinon} \end{cases}$$

• Hors programme : interprétation de la signature :

Théorème:

Soit Q une forme quadratique de signature (p,q) et π l'endomorphisme associé à Q.

Alors p est le nombre de valeurs propres >0 de π , et q le nombre de valeurs propres <0 de π .

Remarque : on en tire alors que $rg(Q) = rg(\pi) = p + q$

Démonstration :

On note p' le nombre de valeurs propres strictement positives de π , q' le nombre de valeurs propres strictement négatives, et m la multiplicité de 0 comme valeur propre de π .

D'après le théorème spectral, il existe alors une base orthonormée de valeurs propres de

$$\pi$$
 , telle que $\mathrm{mat}_{\mathfrak{B}}\pi=\left(egin{array}{cccc} \lambda_{_{p}} & & & & & \\ & \ddots & & & & \\ & & \lambda_{_{p}} & & & \\ & & & \lambda_{_{p}} & & & \\ & & & & \mu_{_{q}} & & \\ & & & & \mu_{_{q}} & & \\ & & & & & \ddots \end{array}\right)$

On pose $F = \text{Vect}(e_1, ..., e_{p'})$

Alors pour tout
$$x = \sum_{i=1}^{p'} x_i e_i \in F \setminus \{0\}$$
, on a $Q(x) = \sum_{i=1}^{p'} \lambda_i x_i^2 > 0$

Donc $Q_{/F}$ est définie-positive.

De même, $Q_{/G}$ où $G = \text{Vect}(e_{p'+1},...e_{p'+q'})$ est définie-négative.

Donc déjà $p \ge p'$, $q \ge q'$

On a $F^{\perp} = \text{Vect}(e_{p'+1},...e_n)$.

Soit H un sous-espace de E de dimension p tel que $Q_{/H}$ soit définie-positive.

Alors $H \cap F^{\perp} = \{0\}$.

En effet, pour
$$z = \sum_{i=p'+1}^{n} z_i e_i \in F^{\perp}$$
, on a $Q(z) = \sum_{i=1}^{q'} \mu_i z_{p'+i}^2 \le 0$

Donc si $z \in H \cap F^{\perp}$, alors z = 0.

Donc dim $H \le \dim F = p'$, c'est-à-dire $p \le p'$

De même, $q \le q'$, puis p = p', q = q'.

Exercice:

Soient Q, Q' deux formes quadratiques sur E.

Alors il existe $u \in GL_{\mathbb{R}}(E)$ tel que $Q = Q' \circ u$ si et seulement si Q et Q' ont même signature.

Démonstration:

S'il existe $u \in GL_{\mathbb{R}}(E)$ tel que $Q = Q' \circ u$, alors $Q_{/F}$ est définie-positive si et seulement si $Q'_{/u(F)}$ l'est, et F, u(F) ont même dimension. Idem pour définie-négative.

Donc la signature est la même.

Réciproquement, supposons que \mathcal{Q} et \mathcal{Q} ' ont la même signature (p,q) .

Alors il existe deux bases orthonormales $\mathfrak{B} = (e_1, ... e_n)$ et $\mathfrak{B}' = (e'_1, ... e'_n)$ telles que :

$$\operatorname{mat}_{\mathfrak{B}}(Q) = \begin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_p & & & \\ & & & \mu_1 & & \\ & & & & \mu_q & \\ & & & & & \ddots \end{pmatrix} \text{ et } \operatorname{mat}_{\mathfrak{B}'}(Q') = \begin{pmatrix} \lambda'_1 & & & & & \\ & \ddots & & & & \\ & & & \lambda'_p & & & \\ & & & & \mu'_1 & & \\ & & & & & \mu'_q & \\ & & & & & & \ddots \end{pmatrix}$$

Où $\forall i \in [1, p], \lambda_i > 0, \lambda'_i > 0$ et $\forall i \in [1, q], \mu_i < 0, \mu'_i < 0$.

Ainsi, pour
$$x = \sum_{i=1}^{n} x_i e_i \in E$$
, $Q(x) = \sum_{i=1}^{p} \lambda_i x_i^2 + \sum_{i=1}^{q} \mu_i x_{p+i}^2$

Soit u l'automorphisme de E tel que $\forall i \in [1, n], u(e_i) = k_i e'_i$ où $k_i \neq 0$ est fixé après.

Alors pour tout
$$x = \sum_{i=1}^{n} x_{i} e_{i} \in E$$
, $(Q' \circ u)(x) = Q' \left(\sum_{i=1}^{n} x_{i} k_{i} e'_{i}\right) = \sum_{i=1}^{p} x_{i}^{2} k_{i}^{2} \lambda'_{i} + \sum_{i=1}^{q} x_{i+p}^{2} k_{i+p}^{2} \mu'_{i}$

Pour tout $i \in [1, p]$, λ'_i et λ_i ont même signe, et pareil pour μ_i , μ'_i quand $i \in [1, q]$.

Ainsi, on peut poser
$$k_i = \begin{cases} \sqrt{\frac{\lambda_i}{\lambda'_i}} & \text{si } i = 1..p \\ \sqrt{\frac{\mu_i}{\mu'_i}} & \text{si } i = p+1..p+q \\ 1 & \text{si } i > p+q \end{cases}$$

Et on aura bien par construction $Q' \circ u = Q$.

V Application des fq et fbs aux endomorphismes autoadjoints

• Définition:

Soit $u \in L_{\mathbb{R}}(E)$ un endomorphisme autoadjoint.

On dit que u est positif, négatif, défini-positif, défini-négatif lorsque $\forall x \in E \setminus \{0\}, \langle x, u(x) \rangle \ge 0 / \le 0 / > 0$

• Caractérisation:

Théorème:

Soit *u* un endomorphisme autoadjoint.

- (1) Alors u est positif si et seulement si $\operatorname{sp}(u) \subset \mathbb{R}_+$.
- (2) Les assertions suivantes sont équivalentes :
- u est défini-positif
- $\operatorname{sp}(u) \subset \mathbb{R}^*_{\perp}$
- *u* est positif et inversible.

Démonstration :

On utilise le théorème spectral :

Supposons que u est positif. Soit $\lambda \in \operatorname{sp}(u)$ et $\vec{v} \in E \setminus \{0\}$ un vecteur propre associé à λ .

Alors
$$\lambda \|\vec{v}\|^2 = \langle \vec{v}, \lambda \vec{v} \rangle \geq 0$$
. Donc comme $\|\vec{v}\|^2 \geq 0$, $\lambda \geq 0$

Réciproquement, supposons que $sp(u) \subset \mathbb{R}_+$.

D'après le théorème spectral, il existe une base orthonormée $(e_1,...e_n)$ de vecteurs propres de u. On note, pour $i \in [1,n]$, $\lambda_i \in \mathbb{R}_+$ la valeur propre associée à e_i .

Alors, pour
$$x = \sum_{i=1}^{n} x_i e_i \in E$$
, on a : $u(x) = \sum_{i=1}^{n} x_i \lambda_i e_i$

Et donc $\langle x, u(x) \rangle = \sum_{i=1}^{n} \lambda_i x_i^2$ car la base est orthonormée.

Donc comme les λ_i sont positifs, on a bien $\langle x, u(x) \rangle \geq 0$.

Pour les équivalences :

Si u est défini-positif, alors pour toute valeur propre λ de u, on a en notant \vec{v} un vecteur propre associé à λ : $\lambda \|\vec{v}\|^2 = \langle \vec{v}, \lambda \vec{v} \rangle = \langle \vec{v}, u(\vec{v}) \rangle > 0$, et donc $\lambda > 0$.

Si $\operatorname{sp}(u) \subset \mathbb{R}_+^*$, alors d'après le point précédent u est positive, et comme $0 \notin \operatorname{sp}(u)$, u est inversible.

Enfin, si u est positive et inversible, alors ses valeurs propres sont positives, et comme elles sont non nulles (car u est inversible) elles sont strictement positives.

En reprenant le point précédent, on a alors pour $x \in E \setminus \{0\}$, $\langle x, u(x) \rangle = \sum_{i=1}^{n} \lambda_i x_i^2 > 0$.

Remarque :

En général, la restriction d'un endomorphisme symétrique u à un sous-espace F n'est pas un endomorphisme de F; la condition nécessaire et suffisante pour qu'il en soit un est que $u(F) \subset F$.

Par contre, la restriction d'une forme quadratique Q à un sous-espace F de E est encore une forme quadratique; plus précisément, si la forme polaire de Q est φ , alors la forme polaire de $Q_{/F}$ est $\varphi_{/F^2}$ qui est toujours une fbs.

• Exemples, propositions importants :

(1) Exercice:

Soit Q une forme quadratique, π l'endomorphisme autoadjoint associé à Q.

Pour tout sous-espace F de E, l'endomorphisme de F associé à $Q_{/F}$ est $p_F \circ \pi_{/F}$, où p_F est le projecteur orthogonal sur F.

Démonstration:

Déjà, $p_F \circ \pi_{/F} \in L(F)$

Pour $x, y \in F$, on a:

$$< x, p_F \circ \pi_{/F}(y) > = < x, p_F \circ \pi(y) > = < p_F(x), \pi(y) > \text{ car } p_F^* = p_F$$

= $< x, \pi(y) > = < y, \pi(x) > \text{ car } \pi^* = \pi$
= $< y, p_F \circ \pi_{/F}(x) > \text{ car } x \in F \text{ et } \pi_{/F} \in L(F)$

Ensuite, pour $x \in F$, $Q_{/F}(x) = Q(x) = < x, \pi(x) > = < x, p_F \circ \pi_{/F}(x) > = < x, p_F \circ \pi_$

(2) Racine carrée d'un endomorphisme autoadjoint positif :

Montrer que pour tout $\pi \in S(E)$ positif, il existe un endomorphisme autoadjoint s positif, tel que $\pi = s \circ s$.

Ou, matriciellement : si $M \in S_n(\mathbb{R})$ est symétrique positive,

(c'est-à-dire $\forall X \in M_{n,1}(\mathbb{R}), {}^{t}XMX \ge 0$ ou $\operatorname{sp}(M) \subset \mathbb{R}_{+}$)

Alors il existe S symétrique positive telle que $S^2 = M$

De plus, s (resp. S) est unique.

Démonstration:

Soit $\pi \in L_{\mathbb{R}}(E)$ un endomorphisme autoadjoint positif.

D'après le théorème spectral, il existe une base orthonormée $(e_1,...e_n)$ de vecteurs propres de π . On note, pour $i \in [1,n]$, $\lambda_i \ge 0$ la valeur propre associée à e_i .

Soit *s* l'endomorphisme de *E* tel que $\forall i \in [1, n], s(e_i) = \sqrt{\lambda_i} e_i$. Alors *s* est autoadjoint car diagonal en base orthonormée, et positif car $\forall i \in [1, n], \sqrt{\lambda_i} \ge 0$.

On a de plus $s \circ s = \pi$

Unicité:

Supposons qu'un endomorphisme autoadjoint positif s vérifie $s \circ s = \pi$.

Soient $\lambda_1,...\lambda_n$ les valeurs propres distinctes de π .

Alors $E = \bigoplus_{i=1}^{p} E_{\lambda_i}(\pi)$, et la somme est orthogonale.

Comme $s \circ s = \pi$, s et π commutent.

Donc s laisse stable les $E_{\lambda_i}(\pi), i \in [1, p]$.

Ainsi, pour $i \in [1, p]$, $s_{/E_{\lambda}(\pi)} = s_i$ est encore autoadjoint positif (car $sp(s_i) \subset sp(s)$)

Soit μ une valeur propre de s_i , $\vec{v} \in E_{\lambda}(\pi)$ associé à μ .

Alors
$$s_i(\vec{v}) = \mu . \vec{v}$$
, donc $\pi(\vec{v}) = \mu^2 \vec{v}$

Et donc $\mu^2 = \lambda_i$. Comme $\mu \ge 0$, on a alors $\mu = \sqrt{\lambda_i}$

Ainsi, s_i a une valeur propre $\sqrt{\lambda_i}$. Comme de plus s_i est diagonalisable, on a $s_i = \sqrt{\lambda_i} \operatorname{Id}_{E_{\lambda_i}(\pi)}$, d'où l'unicité de s_i , puis de s.

(3) Décomposition polaire

Soit $A \in GL_n(\mathbb{R})$. Alors il existe $S \in S_n^+(\mathbb{R})$ et $Q \in O_n(\mathbb{R})$ tels que A = SQ.

($S_n^+(\mathbb{R})$: ensemble des matrices symétriques positives ; $S_n^{++}(\mathbb{R})$: définies—positives ; idem avec —)

De plus, (S,Q) est unique.

Si $A \in M_n(\mathbb{R})$, il y a existence de la décomposition mais pas unicité.

Démonstration:

Si
$$A = SQ$$
 où $S \in S_n^+(\mathbb{R})$ et $Q \in O_n(\mathbb{R})$, alors:

$$A^t A = SQ^t Q^t S = S^2$$

De plus, A^tA est symétrique positive :

Déjà,
$$A^t A$$
 est symétrique, et pour $X \in M_{n,1}(\mathbb{R})$, on a ${}^t X A^t A X = \|{}^t A X\|^2 \ge 0$

Donc S est défini de façon unique d'après le point précédent (c'est la racine carrée de A^tA). Comme $A \in GL_n(\mathbb{R})$, on a ainsi $S \in GL_n(\mathbb{R})$.

Et donc $Q = S^{-1}A$, d'où aussi l'unicité de Q.

Existence:

On prend pour S l'unique racine carrée symétrique positive de A^tA .

Alors S est inversible car A l'est, et on peut poser $Q = S^{-1}A$.

On a donc
$${}^{t}QQ = {}^{t}A{}^{t}S^{-1}S^{-1}A = {}^{t}A(S^{2})^{-1}A = {}^{t}A(A^{t}A)^{-1}A = I_{n}$$
.

Donc
$$Q \in O_n(R)$$
, et $A = SQ$

Si maintenant $A \in M_n(\mathbb{R})$ n'est pas nécessairement inversible :

Soit $(A_p)_{p\in\mathbb{N}}$ une suite de $GL_n(\mathbb{R})$ tendant vers A (il en existe car $GL_n(\mathbb{R})$ est dense dans $M_n(\mathbb{R})$).

Pour tout $p \in \mathbb{N}$, on peut écrire $A_p = S_p Q_p$ où S_p est symétrique positive, et $Q_p \in O_n(\mathbb{R})$.

Comme $O_n(\mathbb{R})$ est compact, on peut extraire de $(Q_p)_{p\in\mathbb{N}}$ une suite $(Q_{\varphi(p)})_{p\in\mathbb{N}}$ qui converge, disons vers $R\in O_n(\mathbb{R})$

Mais alors $S_{\varphi(p)} = A_{\varphi(p)}^{\ \ t} Q_{\varphi(p)}$, qui tend vers $S = A^t R$.

Comme R est inversible, A=SR, et S est symétrique positive car l'ensemble $S_n^+(\mathbb{R})$ est un fermé de $M_n(\mathbb{R})$.

En effet, $S_n(\mathbb{R})$ est le noyau de $\alpha: M \mapsto {}^t M - M$, qui est une application continue, donc $S_n(\mathbb{R})$ est fermé.

Et si on pose pour $X \in M_{n,1}(\mathbb{R})$, $\beta_X(M) = {}^t X M X$, on a

$$S_n^+(\mathbb{R}) = S_n(\mathbb{R}) \cap \bigcap_{X \in M_{n,1}(\mathbb{R})} \beta_X^{-1}([0; +\infty[) = \alpha^{-1}\{0\}) \cap \bigcap_{X \in M_{n,1}(\mathbb{R})} \beta_X^{-1}([0; +\infty[)$$

Qui est donc une intersection de fermés donc un fermé.

Donc $S \in S_n^+(\mathbb{R})$ ce qui montre le résultat.

Version complexe:

Toute matrice $M \in GL_n(\mathbb{C})$ s'écrit de manière unique M = HU où H est hermitienne positive (à valeurs propres réelles positives) et U est unitaire.

Or, toute matrice unitaire s'écrit
$$U = P \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} P^{-1}$$
 où $\forall j \in [1, n], |\lambda_j| = 1$

Pour tout $j \in [1, n]$, on prend alors $\theta_i \in \mathbb{R}$ tel que $\lambda_i = e^{i \cdot \theta_j}$

Et on pose
$$H' = P \begin{pmatrix} \theta_1 & & \\ & \ddots & \\ & & \theta_n \end{pmatrix} P^{-1}$$
.

Ainsi, H' est hermitienne, et $e^{iH'} = U$

Donc $M = He^{iH'}$, où H, H' sont hermitiennes et H définie positive.

(C'est la généralisation de $z = \rho e^{i\theta}$ pour $z \in \mathbb{C}^*$)

(4) Description variationnelle des valeurs propres de $A \in S_n(\mathbb{R})$ ou $u \in S(E)$.

Soit *u* un endomorphisme symétrique de *E* de valeurs propres $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$

Alors:

$$- \lambda_1 = \min_{\|x\|=1} < x, u(x) > , \ \lambda_n = \max_{\|x\|=1} < x, u(x) > .$$

- Soit \mathfrak{F}_k l'ensemble des sous-espaces de dimension k de E, Σ la sphère unité.

On a alors
$$\lambda_k = \min_{F \in \mathfrak{F}_k} \left(\max_{x \in \Sigma \cap F} \langle x, u(x) \rangle \right) = \max_{F \in \mathfrak{F}_{n+1-k}} \left(\min_{x \in \Sigma \cap F} \langle x, u(x) \rangle \right)$$

Démonstration :

- Soit $(e_1,...e_n)$ une base orthonormée de vecteurs propres de u telle que

$$\forall i \in [1, n], u(e_i) = \lambda_i e_i$$

Soit
$$x = \sum_{i=1}^{n} x_i e_i \in E$$
. On a:

$$< x, u(x) > = < \sum_{i=1}^{n} x_{i} e_{i}, \sum_{j=1}^{n} x_{j} \lambda_{j} e_{j} > = \sum_{i=1}^{n} \overline{x}_{i} < e_{i}, \sum_{j=1}^{n} x_{j} \lambda_{j} e_{j} > = \sum_{i=1}^{n} |x_{i}|^{2} \lambda_{i}$$

Donc
$$\lambda_1 \|x\|^2 \leq \sum_{i=1}^n |x_i|^2 \lambda_i \leq \lambda_n \|x\|^2$$
,

et les valeurs minimale et maximale sont atteintes en e_1 et e_n .

- Soit $(e_1,...e_n)$ une base orthonormée de vecteurs propres de u telle que $\forall i \in [\![1,n]\!], u(e_i) = \lambda_i e_i$

On pose
$$G_k = \text{Vect}(e_1, ..., e_k) \in \mathfrak{F}_k$$
, $H_k = \text{Vect}(e_k, ..., e_n) \in \mathfrak{F}_{n+1-k}$

Alors
$$\max_{x \in \Sigma \cap G_k} \langle x, u(x) \rangle = \lambda_k$$
.

En effet, pour
$$x \in \Sigma \cap G_k$$
, disons $x = \sum_{i=1}^k x_i e_i$, on a:

$$\langle x, u(x) \rangle = \sum_{i=1}^{k} |x_i|^2 \lambda_i \le \lambda_k ||x||^2 = \lambda_k$$
, et atteint pour $x = e_k$.

Ainsi, on a déjà
$$\lambda_k \ge \min_{F \in \mathfrak{F}_k} \left(\max_{x \in \Sigma \cap F} \langle x, u(x) \rangle \right)$$

Et de même,
$$\min_{x \in \Sigma \cap H_k} \langle x, u(x) \rangle = \lambda_k$$
, et $\max_{F \in \mathfrak{F}_{n+1-k}} \left(\min_{x \in \Sigma \cap F} \langle x, u(x) \rangle \right) \geq \lambda_k$

Soit alors
$$F \in \mathcal{F}_k$$
. Alors $F \cap H_k \neq \{0\}$ car dim H_k + dim $F = n + 1 > n$.

Alors, pour
$$x \in F \cap H_k \cap \Sigma$$
, on a $\langle x, u(x) \rangle \ge \min_{x \in \Sigma \cap H_k} \langle x, u(x) \rangle = \lambda_k$

Et donc
$$\max_{x \in \Sigma \cap F} \langle x, u(x) \rangle \ge \lambda_k$$
, d'où l'égalité.

On fait la même chose pour $F \in \mathcal{F}_{n+1-k}$

VI Interprétation du théorème de réduction des fg dans un espace euclidien en termes de réduction simultanée (hors programme)

• Soit Q une fq (ou φ une fbs) quelconque sur E:

Une base $(V_1,...V_n)$ de E est dite orthogonale pour la forme quadratique Q (ou pour la fbs φ) lorsque la matrice de $Q(\varphi)$ dans $(V_1,...V_n)$ est diagonale.

C'est-à-dire si pour tous $i, j \in [1, n]$ distincts, $\varphi(V_i, V_j) = 0$ où φ est la forme polaire de Q, ou encore s'il existe des réels $a_1, ..., a_n$ tels que

$$\forall x = \sum_{i=1}^{n} x_{i} V_{i} \in E, \forall y = \sum_{i=1}^{n} y_{i} V_{i} \in E, \begin{cases} \varphi(x, y) = \sum_{i=1}^{n} x_{i} y_{i} a_{i} \\ Q(x) = \sum_{i=1}^{n} a_{i} x_{i}^{2} \end{cases}$$

(Une telle expression s'appelle une décomposition en carrés de Q)

• Cas d'un espace euclidien :

Théorème (réduction d'une fq/fbs en base orthonormée):

Soit Q une fq sur l'espace euclidien (E, <, >).

Alors il existe une base $\mathfrak{B} = (e_1, ... e_n)$ telle que :

 \mathfrak{B} est orthonormée pour le produit scalaire de E.

 \mathfrak{B} est orthogonale pour Q.

De plus, on a pour tout $(x_1,...x_n) \in \mathbb{R}^n$, $Q\left(\sum_{i=1}^n x_i e_i\right) = \sum_{i=1}^n \lambda_i x_i^2$ où λ_i est la valeur propre

de l'endomorphisme associé à Q.

Démonstration:

Résulte du paragraphe précédent.

Corollaire:

Soit E un \mathbb{R} -ev de dimension finie, Q_1, Q_2 deux formes quadratiques sur E dont l'une au moins est définie—positive.

Alors il existe une base \mathfrak{B} de E orthogonale pour Q_1 et Q_2 .

Si Q_1 est définie-positive, on peut imposer $\mathfrak B$ orthonormale pour Q_1 , c'est-à-dire :

Si $\mathfrak{B} = (e_1, ..., e_n)$, et φ_1 est la forme polaire de Q_1 , alors $\varphi_1(e_i, e_j) = \delta_{i,j}$.

Démonstration:

On suppose par exemple que Q_1 est définie-positive.

Soit φ_1 la forme polaire de Q_1 . On note $\varphi_1 = <,>$

Alors <, > est un produit scalaire sur E, et Q_2 est une forme quadratique sur l'espace euclidien (E,<,>), donc on peut appliquer le théorème à Q_2 .

Application:

Soient $A, B \in S_n(\mathbb{R})$ où A est définie-positive. Alors AB est diagonalisable.

(Et les valeurs propres de AB ont le signe de celles de B).

Démonstration:

 A^{-1} est aussi définie-positive;

On considère alors $Q_1: \mathbb{R}^n \to \mathbb{R}$ la forme quadratique de matrice A^{-1} dans la base canonique, $Q_2: \mathbb{R}^n \to \mathbb{R}$ celle de matrice B dans la base canonique.

Alors Q_1 est définie—positive, et la forme polaire φ_1 de Q_1 définit un produit scalaire sur \mathbb{R}^n . Il existe donc une base \mathfrak{B} qui sera orthonormale pour Q_1 et orthogonale pour Q_2 .

Donc
$$\operatorname{mat}_{\mathfrak{B}}(\varphi_1) = I_n$$
 et $\operatorname{mat}_{\mathfrak{B}}(Q_2) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} = D$

Si on note P la matrice de passage de la base canonique à \mathfrak{B} , on aura alors :

 $I_n = {}^t P A^{-1} P$, $D = {}^t P B P$ (formules de changement de base pour une forme quadratique)

Et donc $A^{-1} = {}^{t}P^{-1}P^{-1}$, soit $A = P^{t}P$ et $B = {}^{t}P^{-1}DP^{-1}$

D'où $AB = PDP^{-1}$.

VII Coniques dans le plan euclidien

• Equation d'une conique dans (O, \vec{i}, \vec{j}) orthonormé :

$$F(x, y) = ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$

On pose $q(x, y) = ax^2 + 2bxy + cy^2$, forme quadratique sur \mathbb{R}^2

On suppose q non nulle (sinon on a un plan), et que la conique n'est pas dégénérée (C'est-à-dire non vide, ni réduite à un point ou une (des) droites. Ainsi, elle contient une infinité de points)

Remarque:

O est centre de symétrie si et seulement si d = e = 0

• Centre de symétrie :

On cherche $\Omega(x_0, y_0)$ tel que l'équation dans $(\Omega, \vec{i}, \vec{j})$ soit de la forme

$$a'x^2 + 2b'xy + c'y^2 + f' = 0$$

Or, on voit que
$$F(x'+x_0, y'+y_0) = F(x_0, y_0) + x' \frac{\partial F}{\partial x}(x_0, y_0) + y' \frac{\partial F}{\partial y}(x_0, y_0) + q(x', y')$$

Ainsi, Ω est centre de symétrie si et seulement si $\frac{\partial F}{\partial x}(x_0, y_0) = \frac{\partial F}{\partial y}(x_0, y_0) = 0$ (lorsque la conique est non dégénérée),

C'est-à-dire si et seulement si
$$\begin{cases} 2ax_0 + 2by_0 + d = 0 \\ 2bx_0 + 2cy_0 + e = 0 \end{cases} \text{ ou } \begin{pmatrix} a & d \\ b & c \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} d \\ e \end{pmatrix}.$$

NB :
$$\begin{pmatrix} a & d \\ b & c \end{pmatrix}$$
 est la matrice de Q dans la base orthonormée (\vec{i}, \vec{j}) .

• Réduction :

Cas où q n'est pas dégénérée (c'est-à-dire de rang 2) :

Ainsi,
$$\begin{pmatrix} a & d \\ b & c \end{pmatrix} \in GL_2(\mathbb{R})$$
, et donc le système $AX = -\frac{1}{2} \begin{pmatrix} d \\ e \end{pmatrix}$ a une (unique) solution.

Donc
$$\Gamma$$
 a pour centre de symétrie $\Omega = -\frac{1}{2}A^{-1} \begin{pmatrix} d \\ e \end{pmatrix}$

Par ailleurs, il existe (e_1, e_2) dans laquelle la matrice de q est diagonale, c'est-à-dire telle que $q(\alpha e_1 + \beta e_2) = \lambda \alpha^2 + \mu \beta^2$

Alors l'équation de Γ dans le repère orthonormé (Ω, e_1, e_2) est $\lambda x^2 + \mu y^2 + F(\Omega) = 0$

En effet, dans $(\Omega, \vec{i}, \vec{j})$ l'équation est $q(x, y) + F(\Omega) = 0$

Et comme
$$q(x'e_1 + y'e_2) = \lambda x'^2 + \mu y'^2$$
, dans (Ω, e_1, e_2) c'est bien $\lambda x'^2 + \mu y'^2 + F(\Omega) = 0$

Discussion:

Si $F(\Omega) \neq 0$, alors selon les signes de λ, μ ($\lambda, \mu \neq 0$ car $\lambda \mu = \det A \neq 0$) des équations de la forme :

Soit
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, qui est une ellipse

Soit
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$
, qui est \emptyset (dégénérée)

Soit
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1$$
, qui sont des hyperboles

Si
$$F(\Omega) = 0$$
:

Soit
$$\pm \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) = 0$$
, donc $\Gamma = \{\Omega\}$ (dégénérée)

Soit
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
, qui est la réunion de deux droites (dégénérée)

Remarque:

Pour une ellipse, il faut que det $A = \lambda \mu > 0$

Pour une hyperbole, il faut que det $A = \lambda \mu < 0$

(La réciproque est vraie si la conique n'est pas dégénérée)

• Cas où q est dégénérée (c'est-à-dire pas de rang 2) :

On a ainsi $\det A = 0$

Il n'y a donc pas forcément de centre de symétrie (ou une infinité)

On diagonalise A en base orthonormée :

Il existe (e_1, e_2) base orthonormée de \mathbb{R}^2 et $\lambda \in \mathbb{R}^*$ tels que :

$$A = P \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix} P^{-1} \text{ où } P \in GL_n(\mathbb{R})$$

Ainsi,
$$q(x'e_1 + y'e_2) = \lambda x'^2$$

L'équation de Γ dans (O, e_1, e_2) s'écrit ainsi sous la forme $\lambda x^2 + d'x + e'y + f' = 0$ Discussion :

Si
$$e'=0$$
, alors l'équation devient $\lambda \left(x + \frac{d'}{2\lambda}\right)^2 = -f + \frac{d'^2}{4\lambda} = \text{cte}$

Si cte < 0, c'est l'équation de \varnothing

Si cte = 0, c'est l'équation d'une droite

Si cte > 0, c'est l'équation de deux droites parallèles.

Et dans tous les cas la conique est dégénérée.

Si
$$e' \neq 0$$
, on peut l'écrire sous la forme $\left(x + \frac{d'}{2\lambda}\right)^2 + e'' y = \text{cte où } e'' \neq 0$

Et on a ainsi l'équation d'une parabole.

Résumé:

- Si q n'est pas dégénérée, on a un centre de symétrie, et la conique sera :

Une ellipse si det A > 0 et si elle n'est pas dégénérée.

Une hyperbole si $\det A < 0$ et si elle n'est pas dégénérée.

Sinon, on peut avoir $\Gamma = \emptyset$, $\{\Omega\}$, deux droites sécantes

- Si q est dégénérée, on a une parabole lorsque la conique n'est pas dégénérée, et \emptyset , une droite ou deux droites parallèles lorsqu'elle l'est.

VIII Quadriques dans espace euclidien de dimension 3

- Zoologie:
- Ellipsoïde (E):

Equation en repère orthonormé de la forme $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Si a = b = c, on a une sphère

Si $a = b \neq c$, on a un ellipsoïde de révolution.

- Hyperboloïde :

A une nappe
$$(H_1)$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

 H_1 est connexe puisqu'elle a pour équation $\frac{z}{c} = \pm \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1}$ et $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$ peut prendre la valeur 0. H_1 est de révolution lorsque a = b

A deux nappes
$$(H_2)$$
: $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

On a
$$\frac{z}{c} = \pm \sqrt{1 + \frac{x^2}{a^2} + \frac{y^2}{a^2}}$$
, donc $\left| \frac{z}{c} \right|$ ne peut pas prendre de valeur plus petite que 1.

Donc le graphe ne sera pas connexe (2 nappes). H_2 est de révolution lorsque a = b.

- Cône (du 2nd degré) (C) :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

On a une équation réduite homogène en (x, y, z).

Remarque : si $M \in C$, alors $OM \subset C$

Lorsque a = b: cône de révolution d'axe Oz.

- Cylindre à base elliptique (CE) :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

hyperbolique (*CH*):
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

parabolique (*CP*) :
$$y^2 = 2px$$

Ce sont des équations incomplètes en z.

Ainsi, si
$$M \binom{a}{b} \in C$$
, alors $\left\{ M \binom{a}{b}, z \in \mathbb{R} \right\} \subset C$

- Paraboloïde elliptique (*PE*) :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$
.

Si a = b: paraboloïde de révolution

- Paraboloïde hyperbolique (*PH*):
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$$

(Correspond à une « selle de cheval »)

• Remarque sur les surfaces réglées :

Hors programme:

Une surface réglée est une surface Σ de \mathbb{R}^3 telle qu'en tout point $A \in \Sigma$, il existe une droite D_A vérifiant $A \in D_A \subset \Sigma$.

Exemple:

L'ellipsoïde est non réglé.

L'hyperboloïde à deux nappes est non réglé.

L'hyperboloïde à une nappe est doublement réglé :

Si on a une équation
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
,

Alors on peut l'écrire
$$\left(\frac{x}{a} - \frac{z}{c}\right)\left(\frac{x}{a} + \frac{z}{c}\right) = \left(1 - \frac{y}{b}\right)\left(1 + \frac{y}{b}\right)$$

Pour $\lambda \in \mathbb{R}$ la droite D_{λ} d'équations $\begin{cases} \frac{x}{a} - \frac{z}{c} = \lambda(1 - \frac{y}{b}) \\ 1 + \frac{y}{b} = \lambda(\frac{x}{a} + \frac{z}{c}) \end{cases}$ est incluse dans H_1 car si

$$M(x, y, z) \in D_{\lambda}$$
, on a $\frac{x^2}{a^2} - \frac{z^2}{c^2} = \left(\frac{x}{a} - \frac{z}{c}\right)\left(\frac{x}{a} + \frac{z}{c}\right) = \lambda\left(1 - \frac{y}{b}\right)\left(\frac{x}{a} + \frac{z}{c}\right) = \left(1 - \frac{y}{b}\right)\left(1 + \frac{y}{b}\right) = 1 - \frac{y^2}{b^2}$

(Les plans définissant D_{λ} ne sont pas parallèles car $\left(\frac{1}{a}, \frac{\lambda}{b}, \frac{-1}{c}\right) \wedge \left(\frac{\lambda}{a}, \frac{-1}{b}, \frac{\lambda}{c}\right) \neq \vec{0}$)

Et de même, pour tout $\lambda \in \mathbb{R}$, D'_{μ} : $\begin{cases} \frac{x}{a} - \frac{z}{c} = \mu(1 + \frac{y}{b}) \\ 1 - \frac{y}{b} = \mu(\frac{x}{a} + \frac{z}{c}) \end{cases}$ est incluse dans H_1

Enfin, pour tout $M(x, y, z) \in H_1$, il existe $\lambda, \mu \in \mathbb{R}$ tels que $M(x, y, z) \in D_{\lambda}, D'_{\mu}$

Prendre par exemple $\lambda = \frac{\frac{x}{a} - \frac{z}{c}}{1 - \frac{y}{b}}$ si $y \neq b \dots$

Paraboloïde elliptique : non réglé

Paraboloïde hyperbolique : doublement réglé :

$$D_{\lambda} : \begin{cases} \frac{x}{a} - \frac{y}{b} = \lambda \\ \frac{z}{c} = \lambda \left(\frac{x}{a} + \frac{y}{b} \right) \end{cases}$$
 est incluse dans PH

$$D'_{\mu}: \begin{cases} \frac{x}{a} + \frac{y}{b} = \mu \\ \frac{z}{c} = \mu(\frac{x}{a} - \frac{y}{b}) \end{cases} \text{ aussi.}$$

Les cylindres sont tous réglés par des droites verticales.

• Recherche de l'équation réduite d'une quadrique :

Equation générale d'une quadrique Σ dans $(O, \vec{i}, \vec{j}, \vec{k})$ orthonormé.

$$f(x, y, z) = ax^{2} + by^{2} + cz^{2} + 2dxy + 2eyz + 2fxz + gx + hy + iz + j = 0$$

On note ici encore $q(x, y, z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz$, forme quadratique sur \mathbb{R}^3 .

On suppose q non nulle, et on considère $A = \begin{pmatrix} a & d & f \\ d & b & e \\ f & e & c \end{pmatrix}$, matrice de q dans $(\vec{i}, \vec{j}, \vec{k})$.

On doit:

Réduire q en base orthonormée (diagonaliser A)

Rechercher un centre éventuel :

 Ω est centre de symétrie de la quadrique si et seulement si $\overrightarrow{\text{grad}} f(\Omega) = \vec{0}$

Comme $\overrightarrow{\text{grad}} f(x, y, z) = \overrightarrow{0}$ équivaut à $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} g \\ h \\ i \end{pmatrix}$, on voit déjà que si q est non

dégénérée, alors Σ a un unique centre de symétrie.

Pratique:

On cherche les valeurs propres de A, λ, μ, ν et une base orthonormée (e_1, e_2, e_3) de vecteurs propres.

- $1^{\text{er}} \text{ cas} : \lambda \mu \nu = \det A \neq 0$:

Il y a alors un unique centre de symétrie, Ω .

L'équation de Σ dans (Ω, e_1, e_2, e_3) est alors $\lambda x'^2 + \mu y'^2 + \nu z'^2 + f(\Omega) = 0$

On reconnaît alors l'équation de \emptyset , E, H_1 , H_2 , $\{0\}$, C selon les valeurs de λ , μ , ν , $f(\Omega)$

Si $\lambda \mu \neq 0$ et $\nu = 0$ (q est alors dégénérée)

L'équation de Σ dans (O, e_1, e_2, e_3) est alors :

$$\lambda x'^2 + \mu y'^2 + g'x' + h'y' + i'z' + j = 0$$

Ou
$$\lambda \left(x' + \frac{g'}{2\lambda} \right)^2 + \mu \left(y' + \frac{h'}{2\mu} \right)^2 + i'z' + j'' = 0$$

Si $i' \neq 0$, on a un PE si $\lambda \mu > 0$, PH si $\lambda \mu < 0$

Si i'=0, soit j''=0 et on a une droite $(\lambda \mu > 0)$ ou deux plans $(\lambda \mu < 0)$

Soit $j'' \neq 0$ et on a un CE, CH ou \emptyset .

Si
$$\lambda \neq 0$$
 et $\mu = \nu = 0$.

Alors l'équation dans (O, e_1, e_2, e_3) devient :

$$\lambda x'^2 + g'x' + h'y' + i'z' + j = 0$$
,

Soit
$$\lambda \left(x' + \frac{g'}{2\lambda} \right)^2 + h' y' + i' z' + j'' = 0$$

Si (h',i') = (0,0), on a \emptyset , un plan ou deux plans parallèles.

Si
$$(h', i') \neq (0,0)$$
:

Par changement de base orthonormée dans le plan (O, y', z'), on se ramène à :

$$h' y' + i' z' = \sqrt{h'^2 + i'^2} y''$$

Donc
$$\lambda x''^2 + \sqrt{h'^2 + i'^2} \left(y'' + \frac{j''}{\sqrt{h'^2 + i'^2}} \right) = 0$$

C'est-à-dire un cylindre à base parabolique.

- Caractérisation des quadriques de révolution :
- Si Σ est une quadrique, et si A a une valeur propre double λ non nulle, alors Σ est de révolution et son axe est orthogonal au plan propre $\ker(A \lambda I_3)$
- Si A admet 0 comme valeur propre double, alors Σ est un cylindre à base parabolique ou une quadrique dégénérée.