

# Global United Technology Services Co., Ltd.

Report No.: GTS201810000081F02

# FCC Report (Bluetooth)

**Applicant:** Shenzhen hutianmei Technology Co., Ltd

Address of Applicant: 32 Building, The third Industrial Park, HoutingShajing, Baoan

District, Shenzhen, China

Manufacturer/Factory: Shenzhen Hutianmei Technology Co., LTD

**Address of** 32 Building, The Third Industrial Park, Houting, Shajing,

Manufacturer/Factory: Baoan District, Shenzhen, China

**Equipment Under Test (EUT)** 

Product Name: TWS wireless earbuds

Model No.: E6

FCC ID: 2AKRC-E6

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: September 01, 2018

**Date of Test:** September 01, 2018 – September 20, 2018

Date of report issued: September 20, 2018

Test Result: PASS \*

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 2 Version

| Version No. | Date               | Description |
|-------------|--------------------|-------------|
| 00          | September 20, 2018 | Original    |
|             |                    |             |
|             |                    |             |
|             |                    |             |
|             |                    |             |

| Prepared By: | Jamelly          | Date: | September 20, 2018 |
|--------------|------------------|-------|--------------------|
|              | Project Engineer |       |                    |
| Check By:    | Reviewer         | Date: | September 20, 2018 |



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | COV   | 'ER PAGE                       | 1    |
| 2 | VER   | SION                           | 2    |
| 3 | CON   | ITENTS                         | 3    |
| 4 | TES   | T SUMMARY                      | 4    |
| 5 |       | IERAL INFORMATION              |      |
| Ŭ | 5.1   | GENERAL DESCRIPTION OF EUT     |      |
|   | 5.2   | TEST MODE                      |      |
|   | 5.3   | DESCRIPTION OF SUPPORT UNITS   | 7    |
|   | 5.4   | TEST FACILITY                  |      |
|   | 5.5   | TEST LOCATION                  |      |
|   | 5.6   | ADDITIONAL INSTRUCTIONS        | 8    |
| 6 | TES   | T INSTRUMENTS LIST             | 9    |
| 7 | TES   | T RESULTS AND MEASUREMENT DATA | 11   |
|   | 7.1   | ANTENNA REQUIREMENT            | 11   |
|   | 7.2   | CONDUCTED EMISSIONS            |      |
|   | 7.3   | CONDUCTED OUTPUT POWER         |      |
|   | 7.4   | CHANNEL BANDWIDTH              |      |
|   | 7.5   | POWER SPECTRAL DENSITY         |      |
|   | 7.6   | BAND EDGES                     |      |
|   | 7.6.1 |                                |      |
|   | 7.6.2 |                                |      |
|   | 7.7   | SPURIOUS EMISSION              |      |
|   | 7.7.1 | Conductor Emerican             |      |
|   | 7.7.2 | Padiated Emission Method       | 26   |
| 8 | TES   | T SETUP PHOTO                  | 34   |
| 9 | EUT   | CONSTRUCTIONAL DETAILS         | 35   |



# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Output Power           | 15.247 (b)(3)     | Pass   |
| Channel Bandwidth                | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

# **Measurement Uncertainty**

| Test Item                                                                                             | Frequency Range | Measurement Uncertainty | Notes |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------|-------------------------|-------|--|--|
| Radiated Emission                                                                                     | 9kHz ~ 30MHz    | ± 4.34dB                | (1)   |  |  |
| Radiated Emission                                                                                     | 30MHz ~ 1000MHz | ± 4.24dB                | (1)   |  |  |
| Radiated Emission                                                                                     | 1GHz ~ 26.5GHz  | ± 4.68dB                | (1)   |  |  |
| AC Power Line Conducted<br>Emission                                                                   | 0.15MHz ~ 30MHz | ± 3.45dB                | (1)   |  |  |
| Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%. |                 |                         |       |  |  |



# **5** General Information

# 5.1 General Description of EUT

| Product Name:        | TWS wireless earbuds |
|----------------------|----------------------|
| Model No.:           | E6                   |
| Serial No.:          | 201818               |
| Test sample(s) ID:   | GTS201810000081-1    |
| Sample(s) Status     | Engineer sample      |
| Hardware:            | E6-MB-V01            |
| Software:            | E6-1524-V01          |
| Operation Frequency: | 2402MHz-2480MHz      |
| Channel Numbers:     | 40                   |
| Channel Separation:  | 2MHz                 |
| Modulation Type:     | GFSK                 |
| Antenna Type:        | Internal Antenna     |
| Antenna Gain:        | 0.0dBi               |
| Power Supply:        | DC 3.7V              |



| Operation Frequency each of channel |                             |    |           |         |           |         |           |
|-------------------------------------|-----------------------------|----|-----------|---------|-----------|---------|-----------|
| Channel                             | Channel Frequency Channel F |    | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                   | 2402MHz                     | 11 | 2422MHz   | 21      | 2442MHz   | 31      | 2462MHz   |
| 2                                   | 2404MHz                     | 12 | 2424MHz   | 22      | 2444MHz   | 32      | 2464MHz   |
| •                                   | • ‡                         |    | • !       | • !     | · i       |         |           |
| 9                                   | 2418MHz                     | 19 | 2438MHz   | 29      | 2458MHz   | 39      | 2478MHz   |
| 10                                  | 2420MHz                     | 20 | 2440MHz   | 30      | 2460MHz   | 40      | 2480MHz   |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2442MHz   |
| The Highest channel | 2480MHz   |



#### 5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

### 5.3 Description of Support Units

| Manufacturer | Description       | Model | Serial Number |
|--------------|-------------------|-------|---------------|
| UGREEN       | Adapter           | CD112 | 20358         |
| Lenovo       | Notebook computer | E470C | PF-10FB5C     |

### 5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

#### • Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

#### 5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960



#### 5.6 Additional Instructions

**EUT Software Settings:** 

|      | Special software is used.                                            |
|------|----------------------------------------------------------------------|
| Mode | The software provided by client to enable the EUT under transmission |
|      | condition continuously at specific channel frequencies individually. |

| Power level setup in software |                                  |                    |  |  |  |
|-------------------------------|----------------------------------|--------------------|--|--|--|
| Test Software Name            | Airoha AB152x(verC)LAB Test Tool |                    |  |  |  |
| Mode                          | Channel Frequency (MHz) Soft Set |                    |  |  |  |
| GFSK                          | CH01                             |                    |  |  |  |
|                               | CH21                             | TX level : default |  |  |  |
|                               | CH40                             | 2480               |  |  |  |

Run Software





# 6 Test Instruments list

| Radi | Radiated Emission:                     |                                |                             |                  |                        |                            |  |  |
|------|----------------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|--|--|
| Item | Test Equipment                         | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | GTS250           | July. 03 2015          | July. 02 2020              |  |  |
| 2    | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |  |
| 3    | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                       | GTS203           | June. 27 2018          | June. 26 2019              |  |  |
| 4    | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | GTS214           | June. 27 2018          | June. 26 2019              |  |  |
| 5    | Double -ridged waveguide<br>horn       | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | GTS208           | June. 27 2018          | June. 26 2019              |  |  |
| 6    | Horn Antenna                           | ETS-LINDGREN                   | 3160                        | GTS217           | June. 27 2018          | June. 26 2019              |  |  |
| 7    | EMI Test Software                      | AUDIX                          | E3                          | N/A              | N/A                    | N/A                        |  |  |
| 8    | Coaxial Cable                          | GTS                            | N/A                         | GTS213           | June. 27 2018          | June. 26 2019              |  |  |
| 9    | Coaxial Cable                          | GTS                            | N/A                         | GTS211           | June. 27 2018          | June. 26 2019              |  |  |
| 10   | Coaxial cable                          | GTS                            | N/A                         | GTS210           | June. 27 2018          | June. 26 2019              |  |  |
| 11   | Coaxial Cable                          | GTS                            | N/A                         | GTS212           | June. 27 2018          | June. 26 2019              |  |  |
| 12   | Amplifier(100kHz-3GHz)                 | HP                             | 8347A                       | GTS204           | June. 27 2018          | June. 26 2019              |  |  |
| 13   | Amplifier(2GHz-20GHz)                  | HP                             | 84722A                      | GTS206           | June. 27 2018          | June. 26 2019              |  |  |
| 14   | Amplifier (18-26GHz)                   | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June. 27 2018          | June. 26 2019              |  |  |
| 15   | Band filter                            | Amindeon                       | 82346                       | GTS219           | June. 27 2018          | June. 26 2019              |  |  |
| 16   | Power Meter                            | Anritsu                        | ML2495A                     | GTS540           | June. 27 2018          | June. 26 2019              |  |  |
| 17   | Power Sensor                           | Anritsu                        | MA2411B                     | GTS541           | June. 27 2018          | June. 26 2019              |  |  |
| 18   | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                      | GTS575           | June. 27 2018          | June. 26 2019              |  |  |
| 19   | Splitter                               | Agilent                        | 11636B                      | GTS237           | June. 27 2018          | June. 26 2019              |  |  |
| 20   | Loop Antenna                           | ZHINAN                         | ZN30900A                    | GTS534           | June. 27 2018          | June. 26 2019              |  |  |

| Gene | General used equipment:            |              |           |                  |                        |                            |  |
|------|------------------------------------|--------------|-----------|------------------|------------------------|----------------------------|--|
| Item | Test Equipment                     | Manufacturer | Model No. | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1    | Humidity/<br>Temperature Indicator | KTJ          | TA328     | GTS243           | June. 27 2018          | June. 26 2019              |  |
| 2    | Barometer                          | ChangChun    | DYM3      | GTS255           | June. 27 2018          | June. 26 2019              |  |



| Conduc | Conducted Emission          |                             |                      |                  |                        |                            |  |
|--------|-----------------------------|-----------------------------|----------------------|------------------|------------------------|----------------------------|--|
| Item   | Test Equipment              | Manufacturer                | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1      | Shielding Room              | ZhongYu Electron            | 7.3(L)x3.1(W)x2.9(H) | GTS252           | May.16 2014            | May.15 2019                |  |
| 2      | EMI Test Receiver           | R&S                         | ESCI 7               | GTS552           | June. 27 2018          | June. 26 2019              |  |
| 3      | Coaxial Switch              | ANRITSU CORP                | MP59B                | GTS225           | June. 27 2018          | June. 26 2019              |  |
| 4      | Artificial Mains<br>Network | SCHWARZBECK<br>MESS         | NSLK8127             | GTS226           | June. 27 2018          | June. 26 2019              |  |
| 5      | Coaxial Cable               | GTS                         | N/A                  | GTS227           | N/A                    | N/A                        |  |
| 6      | EMI Test Software           | AUDIX                       | E3                   | N/A              | N/A                    | N/A                        |  |
| 7      | Thermo meter                | KTJ                         | TA328                | GTS233           | June. 27 2018          | June. 26 2019              |  |
| 8      | Absorbing clamp             | Elektronik-<br>Feinmechanik | MDS21                | GTS229           | June. 27 2018          | June. 26 2019              |  |

| RF C | RF Conducted Test:                                   |              |                  |            |                        |                            |  |
|------|------------------------------------------------------|--------------|------------------|------------|------------------------|----------------------------|--|
| Item | Test Equipment                                       | Manufacturer | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1    | MXA Signal Analyzer                                  | Agilent      | N9020A           | GTS566     | June. 27 2018          | June. 26 2019              |  |
| 2    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 27 2018          | June. 26 2019              |  |
| 3    | Spectrum Analyzer                                    | Agilent      | E4440A           | GTS533     | June. 27 2018          | June. 26 2019              |  |
| 4    | MXG vector Signal<br>Generator                       | Agilent      | N5182A           | GTS567     | June. 27 2018          | June. 26 2019              |  |
| 5    | ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | GTS568     | June. 27 2018          | June. 26 2019              |  |
| 6    | USB RF Power<br>Sensor                               | DARE         | RPR3006W         | GTS569     | June. 27 2018          | June. 26 2019              |  |
| 7    | RF Switch Box                                        | Shongyi      | RFSW3003328      | GTS571     | June. 27 2018          | June. 26 2019              |  |
| 8    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 27 2018          | June. 26 2019              |  |
| 9    | Programmable<br>Constant Temp &<br>Humi Test Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | June. 27 2018          | June. 26 2019              |  |

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# 7 Test results and Measurement Data

# 7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The antenna is Internal antenna, the best case gain of the antenna is 0.0dBi





# 7.2 Conducted Emissions

| FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| RBW=9KHz, VBW=30KHz, Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | weep time=auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| F (MIL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Frequency range (MHZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56 to 46*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| AUX Equipment E.U.T  Test table/Insulation plane  Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63 10:2009 on conducted measurement.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ANSI C63.10:2013  150KHz to 30MHz  Class B  RBW=9KHz, VBW=30KHz, Standard S | ANSI C63.10:2013  150KHz to 30MHz  Class B  RBW=9KHz, VBW=30KHz, Sweep time=auto  Frequency range (MHz)  O.15-0.5  O.5-5  5-30  * Decreases with the logarithm of the frequency.  Reference Plane  LISN  AC power power and power |  |



#### Measurement data

Line:

EUT: TWS wireless earbuds Probe: L1

Model: Power Source: AC120V/60Hz

Mode:BLE modeTest by:JasonTemp./Hum.(%H):26 ℃/60%RH



| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1       | 0.1940  | 20.29            | 9.99              | 30.28            | 63.86 | -33.58 | QP       |
| 2       | 0.1940  | 14.99            | 9.99              | 24.98            | 53.86 | -28.88 | AVG      |
| 3       | 0.4820  | 18.32            | 10.05             | 28.37            | 56.30 | -27.93 | QP       |
| 4       | 0.4820  | 12.85            | 10.05             | 22.90            | 46.30 | -23.40 | AVG      |
| 5       | 0.7300  | 25.09            | 9.96              | 35.05            | 56.00 | -20.95 | QP       |
| 6 *     | 0.7300  | 17.05            | 9.96              | 27.01            | 46.00 | -18.99 | AVG      |
| 7       | 2.0780  | 22.22            | 9.82              | 32.04            | 56.00 | -23.96 | QP       |
| 8       | 2.0780  | 11.69            | 9.82              | 21.51            | 46.00 | -24.49 | AVG      |
| 9       | 6.0460  | 20.43            | 9.74              | 30.17            | 60.00 | -29.83 | QP       |
| 10      | 6.0460  | 10.49            | 9.74              | 20.23            | 50.00 | -29.77 | AVG      |
| 11      | 15.7580 | 25.99            | 9.82              | 35.81            | 60.00 | -24.19 | QP       |
| 12      | 15.7580 | 15.33            | 9.82              | 25.15            | 50.00 | -24.85 | AVG      |
|         |         |                  |                   |                  |       |        |          |



#### Neutral:

EUT: TWS wireless earbuds Probe: N

Model: E6 Power Source: AC120V/60Hz

Mode: BLE mode Test by: Jason

**Temp./Hum.(%H)**: 26°C/60%RH



| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1       | 0.1860  | 19.90            | 10.19             | 30.09            | 64.21 | -34.12 | QP       |
| 2       | 0.1860  | 14.77            | 10.19             | 24.96            | 54.21 | -29.25 | AVG      |
| 3       | 0.7380  | 19.40            | 10.12             | 29.52            | 56.00 | -26.48 | QP       |
| 4 *     | 0.7380  | 13.22            | 10.12             | 23.34            | 46.00 | -22.66 | AVG      |
| 5       | 1.0900  | 16.98            | 10.01             | 26.99            | 56.00 | -29.01 | QP       |
| 6       | 1.0900  | 11.89            | 10.01             | 21.90            | 46.00 | -24.10 | AVG      |
| 7       | 2.0540  | 15.79            | 10.00             | 25.79            | 56.00 | -30.21 | QP       |
| 8       | 2.0540  | 7.58             | 10.00             | 17.58            | 46.00 | -28.42 | AVG      |
| 9       | 5.8940  | 16.78            | 9.95              | 26.73            | 60.00 | -33.27 | QP       |
| 10      | 5.8940  | 6.60             | 9.95              | 16.55            | 50.00 | -33.45 | AVG      |
| 11      | 16.1780 | 23.04            | 10.01             | 33.05            | 60.00 | -26.95 | QP       |
| 12      | 16.1780 | 12.11            | 10.01             | 22.12            | 50.00 | -27.88 | AVG      |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct factor
- 4. Correct factor = LISN Factor + Cable Loss
- 5. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.



# 7.3 Conducted Output Power



#### **Measurement Data**

| Test channel | Peak Output Power (dBm) | Limit(dBm) | Result |
|--------------|-------------------------|------------|--------|
| Lowest       | 0.21                    |            |        |
| Middle       | -0.21                   | 30.00      | Pass   |
| Highest      | -0.44                   |            |        |

Page 15 of 37



# Test plot as follows:



Date: 19.SEP.2018 09:27:18

#### Lowest channel



Date: 19.SEP.2018 09:29:29

#### Middle channel



Date: 19.SEP.2018 09:29:49

Highest channel



# 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                    |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05              |  |  |
| Limit:            | >500KHz                                                               |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |  |
| Test mode:        | Refer to section 5.2 for details                                      |  |  |
| Test results:     | Pass                                                                  |  |  |

#### **Measurement Data**

| Test channel | Channel Bandwidth<br>(MHz) | Limit(KHz) | Result |
|--------------|----------------------------|------------|--------|
| Lowest       | 0.702                      |            |        |
| Middle       | 0.696                      | >500       | Pass   |
| Highest      | 0.696                      |            |        |

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102



# Test plot as follows:



Date: 19.SEP.2018 09:42:07

#### Lowest channel



Date: 19.SEP.2018 09:34:14

### Middle channel



Date: 19.SEP.2018 09:31:55

Highest channel



# 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05              |  |
| Limit:            | 8dBm/3kHz                                                             |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |
| Test mode:        | Refer to section 5.2 for details                                      |  |
| Test results:     | Pass                                                                  |  |

#### **Measurement Data**

| Test channel | Power Spectral Density<br>(dBm/3KHz) | Limit(dBm/3kHz) | Result |
|--------------|--------------------------------------|-----------------|--------|
| Lowest       | -13.50                               |                 |        |
| Middle       | -14.86                               | 8.00            | Pass   |
| Highest      | -14.62                               |                 |        |



# Test plot as follows:



Date: 19.SEP.2018 09:46:28

#### Lowest channel



Date: 19.SEP.2018 09:49:50

#### Middle channel



Date: 19.SEP.2018 09:50:21

Highest channel



# 7.6 Band edges

# 7.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05                                                                                                                                                                                                                                                                                                                                |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |
| Test setup:       | ·                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |

#### Test plot as follows:





### 7.6.2 Radiated Emission Method

| Test Requirement:            | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |                   |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------|--|--|
| Test Method:                 | ANSI C63.10:20                                                                                                                                                                                                                                                                                       | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                   |  |  |
| Test Frequency Range:        | All of the restrict 2390MHz, 2483                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              | and's (2310MHz to |  |  |
| Test site:                   | Measurement D                                                                                                                                                                                                                                                                                        | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |                   |  |  |
| Receiver setup:              | Frequency                                                                                                                                                                                                                                                                                            | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RBW          | VBW          | Value             |  |  |
|                              | Ab 2112 4 O L I =                                                                                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1MHz         | 3MHz         | Peak              |  |  |
|                              | Above 1GHz                                                                                                                                                                                                                                                                                           | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1MHz         | 3MHz         | Average           |  |  |
| Limit:                       | Freque                                                                                                                                                                                                                                                                                               | ency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit (dBuV/ | m @3m)       | Value             |  |  |
|                              |                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.00        |              | Average           |  |  |
|                              | Above 1                                                                                                                                                                                                                                                                                              | GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74.0         | 0            | Peak              |  |  |
|                              | Tum Table                                                                                                                                                                                                                                                                                            | EUT+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1m         | Antenna-Am > | er <sub>+</sub> · |  |  |
| Test Procedure:              | the ground a determine the 2. The EUT was antenna, whistower.  3. The antenna ground to deshorizontal and measuremer.  4. For each sussand then the and the rota the maximum.  5. The test-recesspecified Base.  6. If the emission the limit specified by the EUT was have 10dB meak or aver sheet. | <ol> <li>The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.</li> <li>The radiation measurements are performed in X, Y, Z axis positioning.</li> </ol> |              |              |                   |  |  |
| Test Instruments:            | Refer to section                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | и.           |                   |  |  |
| Test instruments: Test mode: | Refer to section                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |                   |  |  |
|                              |                                                                                                                                                                                                                                                                                                      | 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >            |              |                   |  |  |
| Test results:                | Pass                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |                   |  |  |

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102



Test channel: Lowest

#### Peak value:

| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct<br>factor<br>(dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
|--------------------|----------------------|-----------------------------|-------------------|------------------------|--------------------|--------------|
| 2310.00            | 53.47                | -15.12                      | 38.35             | 74.00                  | -35.65             | Horizontal   |
| 2390.00            | 55.14                | -15.05                      | 40.09             | 74.00                  | -33.91             | Horizontal   |
| 2310.00            | 54.01                | -15.12                      | 38.89             | 74.00                  | -35.11             | Vertical     |
| 2390.00            | 54.89                | -15.05                      | 39.84             | 74.00                  | -34.16             | Vertical     |

# Average value:

| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct<br>factor<br>(dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
|--------------------|----------------------|-----------------------------|-------------------|------------------------|--------------------|--------------|
| 2310.00            | 45.23                | -15.12                      | 30.11             | 54.00                  | -23.89             | Horizontal   |
| 2390.00            | 43.67                | -15.05                      | 28.62             | 54.00                  | -25.38             | Horizontal   |
| 2310.00            | 44.18                | -15.12                      | 29.06             | 54.00                  | -24.94             | Vertical     |
| 2390.00            | 44.56                | -15.05                      | 29.51             | 54.00                  | -24.49             | Vertical     |

Test channel: Highest

#### Peak value:

| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct<br>factor<br>(dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
|--------------------|----------------------|-----------------------------|-------------------|------------------------|--------------------|--------------|
| 2483.50            | 73.21                | -14.68                      | 58.53             | 74.00                  | -15.47             | Horizontal   |
| 2500.00            | 55.05                | -14.60                      | 40.45             | 74.00                  | -33.55             | Horizontal   |
| 2483.50            | 71.71                | -14.68                      | 57.03             | 74.00                  | -16.97             | Vertical     |
| 2500.00            | 54.36                | -14.60                      | 39.76             | 74.00                  | -34.24             | Vertical     |

### Average value:

| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct<br>factor<br>(dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
|--------------------|----------------------|-----------------------------|-------------------|------------------------|--------------------|--------------|
| 2483.50            | 54.26                | -14.68                      | 39.58             | 54.00                  | -14.42             | Horizontal   |
| 2500.00            | 45.49                | -14.60                      | 30.89             | 54.00                  | -23.11             | Horizontal   |
| 2483.50            | 53.37                | -14.68                      | 38.69             | 54.00                  | -15.31             | Vertical     |
| 2500.00            | 44.58                | -14.60                      | 29.98             | 54.00                  | -24.02             | Vertical     |

#### Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Correct factor= Antenna Factor + Cable Loss Preamplifier Factor



# 7.7 Spurious Emission

# 7.7.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

# Test plot as follows:

Lowest channel



Date: 19.SEP.2018 09:54:18

# 30MHz~25GHz

Middle channel



30MHz~25GHz

# Highest channel



30MHz~25GHz



# 7.7.2 Radiated Emission Method

| Test Requirement:                          | FCC Part15 C Section 15.209                                                                                                                                                                                                                                    |                  |               |         |         |          |                          |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|---------|---------|----------|--------------------------|--|
| Test Method:                               | ANSI C63.10:2013                                                                                                                                                                                                                                               | ANSI C63.10:2013 |               |         |         |          |                          |  |
| Test Frequency Range:                      | 9kHz to 25GHz                                                                                                                                                                                                                                                  |                  |               |         |         |          |                          |  |
| Test site:                                 | Measurement Distance: 3m                                                                                                                                                                                                                                       |                  |               |         |         |          |                          |  |
| Receiver setup:                            | Frequency                                                                                                                                                                                                                                                      | De               | etector       | RBV     | V VE    | 3W       | Value                    |  |
|                                            | 9KHz-150KHz Qu                                                                                                                                                                                                                                                 |                  | asi-peak      | 200H    | lz 600  | )Hz      | Quasi-peak               |  |
|                                            | 150KHz-30MHz                                                                                                                                                                                                                                                   | Qua              | asi-peak      | 9KH     | z 30ł   | ΚHz      | Quasi-peak               |  |
|                                            | 30MHz-1GHz                                                                                                                                                                                                                                                     | Qua              | asi-peak      | 100K    | Hz 300  | KHz      | Quasi-peak               |  |
|                                            | Above 1GHz                                                                                                                                                                                                                                                     |                  | Peak          | 1MH     | lz 3N   | lHz      | Peak                     |  |
|                                            | Above TOTIZ                                                                                                                                                                                                                                                    |                  | Peak          | 1MH     | lz 10   | Hz       | Average                  |  |
| Limit:                                     | Frequency                                                                                                                                                                                                                                                      |                  | Limit         | `       | m @3m)  |          | Remark                   |  |
| (Field strength of the fundamental signal) | 2400MHz-2483.5                                                                                                                                                                                                                                                 | MHz              | 94.00         |         |         |          | Average Value Peak Value |  |
| Limit:<br>(Spurious Emissions)             | Frequency                                                                                                                                                                                                                                                      |                  | Limit (uV/m)  |         | Value   |          | Measurement<br>Distance  |  |
|                                            | 0.009MHz-0.490M                                                                                                                                                                                                                                                | lHz              | z 2400/F(KHz) |         | Hz) QP  |          | 300m                     |  |
|                                            | 0.490MHz-1.705M                                                                                                                                                                                                                                                | lHz              | 24000/F(I     | KHz) QP |         |          | 300m                     |  |
|                                            | 1.705MHz-30MH                                                                                                                                                                                                                                                  | lz               | 30            |         | QP      |          | 30m                      |  |
|                                            | 30MHz-88MHz                                                                                                                                                                                                                                                    |                  | 100           |         | QP      |          |                          |  |
|                                            | 88MHz-216MHz                                                                                                                                                                                                                                                   | <u>z</u>         | 150           |         | QP      |          |                          |  |
|                                            | 216MHz-960MH                                                                                                                                                                                                                                                   | Z                | 200           |         | QP      |          | 3m                       |  |
|                                            | 960MHz-1GHz                                                                                                                                                                                                                                                    |                  | 500           |         | QP      |          | 5111                     |  |
|                                            | Above 1GHz                                                                                                                                                                                                                                                     |                  | 500           |         | Average | <b>:</b> |                          |  |
|                                            | Above 1GHz 5000 Peak                                                                                                                                                                                                                                           |                  |               |         |         |          |                          |  |
| Limit:<br>(band edge)                      | Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation. |                  |               |         |         |          |                          |  |



Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102



|                   | horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                                                                                                                                                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                     |
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                            |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |

#### Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

#### **Measurement Data**

#### ■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



#### ■ Below 1GHz

#### **Horizontal:**

EUT: TWS wireless earbuds Polarziation: Horizontal

Model: E6 Power Source: AC120V/60Hz

Mode: BLE mode Test by: Jason

**Temp./Hum.(%H):** 26 °C/60%RH



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 39.7146  | 49.20            | -33.15            | 16.05            | 40.00  | -23.95 | QP       |
| 2   | *   | 58.8185  | 55.80            | -35.17            | 20.63            | 40.00  | -19.37 | QP       |
| 3   |     | 93.1132  | 53.64            | -38.99            | 14.65            | 43.50  | -28.85 | QP       |
| 4   |     | 148.4410 | 50.51            | -34.72            | 15.79            | 43.50  | -27.71 | QP       |
| 5   |     | 160.9089 | 47.61            | -34.85            | 12.76            | 43.50  | -30.74 | QP       |
| 6   |     | 724.2611 | 47.27            | -26.03            | 21.24            | 46.00  | -24.76 | QP       |
|     |     |          |                  |                   |                  |        |        |          |



#### Vertical:

EUT: TWS wireless earbuds Polarziation: Vertical

Model: E6 Power Source: AC120V/60Hz

Mode: BLE mode Test by: Jason

**Temp./Hum.(%H)**: 26 °C/60%RH



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 39.1616  | 49.37            | -33.16            | 16.21            | 40.00  | -23.79 | QP       |
| 2   | *   | 48.1626  | 54.12            | -34.05            | 20.07            | 40.00  | -19.93 | QP       |
| 3   |     | 71.5806  | 53.65            | -37.67            | 15.98            | 40.00  | -24.02 | QP       |
| 4   |     | 94.7601  | 56.55            | -38.89            | 17.66            | 43.50  | -25.84 | QP       |
| 5   |     | 119.8556 | 53.55            | -36.51            | 17.04            | 43.50  | -26.46 | QP       |
| 6   |     | 420.5803 | 48.53            | -31.87            | 16.66            | 46.00  | -29.34 | QP       |
|     |     |          |                  |                   |                  |        |        |          |



#### ■ Above 1GHz

Test channel:

| Peak value:        |                      |                       | •                 |                        |                       |              |
|--------------------|----------------------|-----------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct factor (dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 58.16                | -7.43                 | 50.73             | 74.00                  | -23.27                | Vertical     |
| 7206.00            | 57.59                | -2.42                 | 55.17             | 74.00                  | -18.83                | Vertical     |
| 9608.00            | 57.38                | -2.38                 | 55.00             | 74.00                  | -19.00                | Vertical     |
| 12010.00           | *                    |                       |                   | 74.00                  |                       | Vertical     |
| 14412.00           | *                    |                       |                   | 74.00                  |                       | Vertical     |
| 4804.00            | 64.23                | -7.43                 | 56.80             | 74.00                  | -17.20                | Horizontal   |
| 7206.00            | 58.43                | -2.42                 | 56.01             | 74.00                  | -17.99                | Horizontal   |
| 9608.00            | 57.11                | -2.38                 | 54.73             | 74.00                  | -19.27                | Horizontal   |
| 12010.00           | *                    |                       |                   | 74.00                  |                       | Horizontal   |
| 14412.00           | *                    |                       |                   | 74.00                  |                       | Horizontal   |

Lowest

Average value:

| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct factor (dB/m) | Level (dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|----------------------|-----------------------|----------------|------------------------|-----------------------|--------------|
| 4804.00            | 48.73                | -7.43                 | 41.30          | 54.00                  | -12.70                | Vertical     |
| 7206.00            | 47.30                | -2.42                 | 44.88          | 54.00                  | -9.12                 | Vertical     |
| 9608.00            | 47.23                | -2.38                 | 44.85          | 54.00                  | -9.15                 | Vertical     |
| 12010.00           | *                    |                       |                | 54.00                  |                       | Vertical     |
| 14412.00           | *                    |                       |                | 54.00                  |                       | Vertical     |
| 4804.00            | 49.56                | -7.43                 | 42.13          | 54.00                  | -11.87                | Horizontal   |
| 7206.00            | 48.78                | -2.42                 | 46.36          | 54.00                  | -7.64                 | Horizontal   |
| 9608.00            | 46.34                | -2.38                 | 30.99          | 54.00                  | -10.04                | Horizontal   |
| 12010.00           | *                    |                       |                | 54.00                  |                       | Horizontal   |
| 14412.00           | *                    |                       |                | 54.00                  |                       | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level +Correct factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 31 of 37



Test channel:

Report No.: GTS201810000081F02

Horizontal

Horizontal

74.00

74.00

| Peak value:        |                      |                          |                   |                        |                       |              |
|--------------------|----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct factor<br>(dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 58.60                | -7.49                    | 51.11             | 74.00                  | -22.89                | Vertical     |
| 7326.00            | 57.39                | -2.40                    | 54.99             | 74.00                  | -19.01                | Vertical     |
| 9768.00            | 58.68                | -2.38                    | 55.30             | 74.00                  | -17.70                | Vertical     |
| 12210.00           | *                    |                          |                   | 74.00                  |                       | Vertical     |
| 14652.00           | *                    |                          |                   | 74.00                  |                       | Vertical     |
| 4884.00            | 63.04                | -7.49                    | 55.55             | 74.00                  | -18.45                | Horizontal   |
| 7326.00            | 58.64                | -2.40                    | 56.24             | 74.00                  | -17.76                | Horizontal   |
| 9768.00            | 57.29                | -2.38                    | 54.91             | 74.00                  | -19.09                | Horizontal   |

Middle

Average value:

12210.00

14652.00

| Average val        | u <del>c</del> .     |                          |                   |                        |                    |              |
|--------------------|----------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct factor<br>(dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |
| 4884.00            | 50.17                | -7.49                    | 42.68             | 54.00                  | -11.32             | Vertical     |
| 7326.00            | 48.85                | -2.40                    | 46.45             | 54.00                  | -7.55              | Vertical     |
| 9768.00            | 48.26                | -2.38                    | 45.88             | 54.00                  | -8.12              | Vertical     |
| 12210.00           | *                    |                          |                   | 54.00                  |                    | Vertical     |
| 14652.00           | *                    |                          |                   | 54.00                  |                    | Vertical     |
| 4884.00            | 49.45                | -7.49                    | 41.96             | 54.00                  | -12.04             | Horizontal   |
| 7326.00            | 47.77                | -2.40                    | 45.37             | 54.00                  | -8.63              | Horizontal   |
| 9768.00            | 49.09                | -2.38                    | 46.71             | 54.00                  | -7.29              | Horizontal   |
| 12210.00           | *                    |                          |                   | 54.00                  |                    | Horizontal   |
| 14652.00           | *                    |                          |                   | 54.00                  |                    | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level +Correct factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3 . Correct factor = Antenna Factor + Cable Loss Preamplifier Factor



| Test channel: | Highest |
|---------------|---------|
|---------------|---------|

#### Peak value:

| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct<br>factor<br>(dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
|--------------------|----------------------|-----------------------------|-------------------|------------------------|--------------------|--------------|
| 4960.00            | 58.65                | -7.47                       | 51.18             | 74.00                  | -22.82             | Vertical     |
| 7440.00            | 58.74                | -2.45                       | 56.29             | 74.00                  | -17.71             | Vertical     |
| 9920.00            | 58.32                | -2.37                       | 55.95             | 74.00                  | -18.05             | Vertical     |
| 12400.00           | *                    |                             |                   | 74.00                  |                    | Vertical     |
| 14880.00           | *                    |                             |                   | 74.00                  |                    | Vertical     |
| 4960.00            | 62.31                | -7.47                       | 54.84             | 74.00                  | -19.16             | Horizontal   |
| 7440.00            | 57.65                | -2.45                       | 55.20             | 74.00                  | -18.89             | Horizontal   |
| 9920.00            | 58.12                | -2.37                       | 55.75             | 74.00                  | -18.25             | Horizontal   |
| 12400.00           | *                    |                             |                   | 74.00                  |                    | Horizontal   |
| 14880.00           | *                    |                             |                   | 74.00                  |                    | Horizontal   |

Average value:

| Frequency<br>(MHz) | Read Level<br>(dBuV) | Correct<br>factor<br>(dB/m) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
|--------------------|----------------------|-----------------------------|-------------------|------------------------|--------------------|--------------|
| 4960.00            | 48.67                | -7.47                       | 41.20             | 54.00                  | -12.80             | Vertical     |
| 7440.00            | 48.58                | -2.45                       | 46.13             | 54.00                  | -7.87              | Vertical     |
| 9920.00            | 48.17                | -2.37                       | 45.80             | 54.00                  | -8.20              | Vertical     |
| 12400.00           | *                    |                             |                   | 54.00                  |                    | Vertical     |
| 14880.00           | *                    |                             |                   | 54.00                  |                    | Vertical     |
| 4960.00            | 50.04                | -7.47                       | 42.57             | 54.00                  | -11.43             | Horizontal   |
| 7440.00            | 48.63                | -2.45                       | 46.18             | 54.00                  | -7.82              | Horizontal   |
| 9920.00            | 47.12                | -2.37                       | 44.75             | 54.00                  | -9.25              | Horizontal   |
| 12400.00           | *                    |                             |                   | 54.00                  |                    | Horizontal   |
| 14880.00           | *                    |                             |                   | 54.00                  |                    | Horizontal   |

#### Remark:

- Final Level = Receiver Read level + Correct factor
   "\*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor





# 8 Test Setup Photo

Radiated Emission









Conducted Emission



# 9 EUT Constructional Details

Reference to the test report No. GTS201810000081F01





-----End-----