

Overview

- Motivations and problems
- Holland's Schema Theorem
 - Derivation, Implications, Refinements
- Dynamical Systems & Markov Chain Models
- Statistical Mechanics
- Reductionist Techniques
- Techniques for Continuous Spaces
- No Free Lunch?

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Theory

Why Bother with Theory?

- Might provide performance guarantees
 - Convergence to the global optimum can be guaranteed providing certain conditions hold
- Might aid better algorithm design
 - Increased understanding can be gained about operator interplay etc.
- Mathematical Models of EAs also inform theoretical biologists
- Because you never know

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Problems with Theory?

- EAs are vast, complex dynamical systems with many degrees of freedom
- The type of problems for which they do well, are precisely those it is hard to model
- The degree of randomness involved means
 - stochastic analysis techniques must be used
 - Results tend to describe average behaviour
- After 100 years of work in theoretical biology, they are still using fairly crude models of very simple systems

Holland's Schema Theorem

- A schema (pl. schemata) is a string in a ternary alphabet (0,1 # = "don't care") representing a hyperplane within the solution space.
 - E.g. 0001# #1# #0#, ##1##0## etc
- Two values can be used to describe schemata,
 - the *Order* (number of defined positions) = 6,2
 - the *Defining Length* length of sub-string between outmost defined positions = 9, 3

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Schemata

- - Simpler to analyse the effect of evolutionary operators of schemata then on individuals

 - Need to show how
 operator increase fitness of the schemata
 Or disrupts the fitness of schemata in population
- Implicit parallelism
 - a schema represents many possible individuals Manipulating one schema affects many individuals

 - Computationally efficient
 - Often cited as on of the performance advantages of EA mechanism

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Schema Fitnesses

- The true "fitness" of a schema H is taken by averaging over all possible values in the "don't care" positions, but this is effectively sampled by the population, giving an estimated fitness
- With Fitness Proportionate Selection P_s (instance of H) = $n(H,t) * f(H,t) / (< f > * <math>\mu$) therefore proportion in next parent pool is: m'(H,t+1) = m(H,t) * f(H,t) / <f>

<f>: mean population fitness

Schema Disruption II

 The probability that bit-wise mutation with probability P_m will NOT disrupt the schemata is simply the probability that mutation does NOT occur in any of the defining positions,

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

$$P_{\text{survive}} \text{ (mutation)} = (1 - Pm)o^{(H)}$$
$$= 1 - o(H) * P_m + terms \text{ in } P_m^2 + \dots$$

 For low mutation rates, this survival probability under mutation approximates to 1 - o(h)* P_m
 o(h): Order of Schema h

Schema Disruption I

- One Point Crossover selects a crossover point at random from the I-1 possible points
- For a schema with defining length d the random point will fall inside the schema with probability = d(H) / (I-1).
- If recombination is applied with probability P_c the survival probability is $1.0 P_c *d(H)/(I-1)$

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

The Schema Theorem

 Put together, the proportion of a schema H in successive generations varies as:

$$m(H,t+1) \ge m(H,t) \cdot \frac{f(H)}{\langle f \rangle} \cdot \left[1 - \left(p_c \cdot \frac{d(H)}{l-1}\right)\right] \cdot \left[1 - p_m \cdot o(H)\right].$$

• Condition for schema to increase its representation is:

$$\frac{f(H)}{< f >} > \left[1 - \left(p_c \cdot \frac{d(H)}{l-1}\right)\right] \cdot \left[1 - p_m \cdot o(H)\right]$$

 Inequality is due to convergence affecting crossover disruption, exact versions have been developed A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Theory

Implications 1: Operator Bias

- One Point Crossover
 - less likely to disrupt schemata which have short defining lengths relative to their order, as it will tend to keep together adjacent genes
 - this is an example of Positional Bias
- Uniform Crossover
 - No positional bias since choices independent
 - BUT is far more likely to pick 50% of the bits from each parent, less likely to pick (say) 90% from one
 - this is called Distributional Bias
- Mutation
 - also shows Distributional Bias, but not Positional

II.

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Operator Biases ctd

- Operator Bias has been extensively studied by Eschelman and Schaffer (empirically) and theoretically by Spears & DeJong.
- Results emphasise the importance of utilising all available problem specific knowledge when choosing a representation and operators for a new problem

Implications 2:The Building Block Hypothesis

- Closely related to the Schema Theorem is the "Building Block Hypothesis" (Goldberg 1989)
- This suggests that Genetic Algorithms work by discovering and exploiting "building blocks" - groups of closely interacting genes - and then successively combining these (via crossover) to produce successively larger building blocks until the problem is solved.
- Has motivated study of *Deceptive* problems
 - Based on the notion that the lower order schemata within a partition lead the search in the opposite direction to the global optimum
 - If interested look up Walsh functions

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Theory

Criticisms of the Schema Theorem

- It presents an inequality that does not take into account the constructive effects of crossover and mutation
 - Exact versions have been derived
 - Have links to Price's theorem in biology
- Because the mean population fitness, and the estimated fitness of a schema will vary from generation to generation, it says *nothing* about gen. t+2 etc.
- "Royal Road" problems constructed to be GA-easy based on schema theorem turned out to be better solved by random mutation hill-climbers
- BUT it remains a useful conceptual tool and has historical importance

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Theories

- Many others exist
 - Landscape Metrics
 - Markow Chains
 - Vose's Dynamical Systems Model
 - Statistical Mechanics Analysis
 - Reductionist Approaches
- Read the book…

Other Landscape Metrics

- · As well as epistasis and deception, several other features of search landscapes have been proposed as providing explanations as to what sort of problems will prove hard for GAs
 - fitness-distance correlation
 - number of peaks present in the landscape
 - the existence of plateaus
 - all these imply a neighbourhood structure to the search space.
- It must be emphasised that these only hold for one operator

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

Markov Chain Analysis

- · A system is called a Markov Chain if
 - It can exist only in one of a finite number of states
 - So can be described by a variable X^t
 - The probability of being in any state at time t+1 depends only on the state at time t.
- Frequently these probabilities can be defined in a transition matrix, and the theory of stochastic processes allows us to reason using them.
- Has been used to provide convergence proofs
- Can be used with F and M to create exact probabilistic models for binary coded Gas, but these are huge

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

No Free Lunch Theorems

- IN LAYMAN'S TERMS,
 - Averaged over all problems
 - For any performance metric related to number of distinct points seen
 - All non-revisiting black-box algorithms will display the same performance
- Implications
 - New black box algorithm is good for one problem => probably poor for another
 - Makes sense not to use "black-box algorithms"
- . Lots of ongoing work showing counterexamples

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing

No Free Lunch

- - Black box uses no problem instance or specific knowledge
 - Nonrevisiting means in a generate and test scenario the same point is not used twice
 - EAs revisit but avoid this by keeping a history and excluding children already seen
- Implications
 - If you make an algorithm that appears to be the best for solving some class of problems then it pays for it by not being very good for another class.
 - For a given problem can avoid the NFL problem by building in problem-specific knowledge