

Dynamic Airline Scheduling

Teun Druijf October 24, 2019

Universiteit Utrecht

Agenda

Introduction

Dynamic Airline Scheduling

Model

Case study

Future research

Paper

This presentation is based on:

Hai Jiang & Cynthia Barnhart. "Dynamic airline scheduling". In: *Transportation Science* 43.3 (2009), pp. 336–354.

Recent trends in Flight schedules

$\rightarrow\,$ Hub and Spoke

Figure 1: Point-to-Point and Hub-and-Spoke Networks [2]

Recent trends in Flight schedules

 \rightarrow Depeaking / Debanking

Figure 2: Banked Schedule [1]

Recent trends in Flight schedules

→ Depeaking / Debanking

Figure 3: Depeaked Schedule [1]

Two types of dynamic scheduling:

 $\rightarrow \ \mathsf{Refleeting}$

Two types of dynamic scheduling:

- $\rightarrow \ \mathsf{Refleeting}$
- $\to \ \mathsf{Retiming}$

Two types of dynamic scheduling:

- \rightarrow Reflecting
- $\to \ \mathsf{Retiming}$

Constraints:

ightarrow Rescheduling must happen within time window

Two types of dynamic scheduling:

- \rightarrow Reflecting
- $\to \ \mathsf{Retiming}$

Constraints:

- → Rescheduling must happen within *time window*
- \rightarrow Reflecting must happen within fleet family

Two types of dynamic scheduling:

- \rightarrow Reflecting
- $\to \ \mathsf{Retiming}$

Constraints:

- ightarrow Rescheduling must happen within time window
- → Refleeting must happen within *fleet family*
- \rightarrow Service guarantee to booked passengers.

Two types of dynamic scheduling:

- → Refleeting
- ightarrow Retiming

Constraints:

- ightarrow Rescheduling must happen within time window
- → Refleeting must happen within *fleet family*
- \rightarrow Service guarantee to booked passengers.
- → Number of aircraft of each type at each airport must remain the same at begin and end of the day compared to original schedule.

Refleeting

Definition (Fleet family)

Set of crew-compatible aircraft types for which a pilot qualified to fly one type in the family is qualified to fly all other types in that family.

Reflecting

Definition (Fleet family)

Set of crew-compatible aircraft types for which a pilot qualified to fly one type in the family is qualified to fly all other types in that family.

Definition (Refleeting)

Changing the used aircraft type for a flight leg within a *fleet family*.

Retiming

Figure 4: Retiming flightlegs [1]

Dynamic scheduling synergy

 $\textbf{Figure 5:} \ \, \mathsf{Example \ synergy} \ [1]$

Definition (Recapture rate (b_p^r))

To which extend do passengers have a preference for some exact itinerary between an origin-destination pare.

Definition (Recapture rate (b_p^r))

To which extend do passengers have a preference for some exact itinerary between an origin-destination pare.

Definition (Market)

Set of itineraries between origin-destination pair. Perfect recapture between all itineraries within this set, no recapture between itineraries within set and itineraries out of the market.

Definition (Recapture rate (b_p^r))

To which extend do passengers have a preference for some exact itinerary between an origin-destination pare.

Definition (Market)

Set of itineraries between origin-destination pair. Perfect recapture between all itineraries within this set, no recapture between itineraries within set and itineraries out of the market.

Definition (Passenger group)

Set of passengers and a market with average fare.

Solve following (simplified) ILP for maximum revenue. Decision variable:

 x_{mr} : passengers assigned to itinerary $r \in R(m)$ in market $m \in M$

Solve following (simplified) ILP for maximum revenue. Decision variable:

 x_{mr} : passengers assigned to itinerary $r \in R(m)$ in market $m \in M$

$$\begin{aligned} \max \sum_{m \in M} \mathsf{fare}_m \sum_{r \in R(m)} x_{mr} \\ \mathsf{s.t.} \sum_{r \in R(m)} x_{mr} \leq \mathsf{Demand}_m \\ \sum_{m \in M} \sum_{r \in R(m)} \delta_{mr}^I x_{mr} \leq \mathsf{SEAT}_I \end{aligned}$$

Solve following (simplified) ILP for maximum revenue. Decision variable:

 x_{mr} : passengers assigned to itinerary $r \in R(m)$ in market $m \in M$

$$\max \sum_{m \in M} \mathsf{fare}_m \sum_{r \in R(m)} x_{mr}$$
s.t.
$$\sum_{r \in R(m)} x_{mr} \le \mathsf{Demand}_m$$

$$\sum_{m \in M} \sum_{r \in R(m)} \delta_{mr}^I x_{mr} \le \mathsf{SEAT}_I$$

Remarks

- Aircraft use is constant
- Assumes perfect forecasting

Important changes:

 $\rightarrow\,$ Add retiming using flight copies.

Important changes:

- \rightarrow Add retiming using flight copies.
- ightarrow Refleeting, so aircraft use no longer constant

Important changes:

- \rightarrow Add retiming using flight copies.
- \rightarrow Reflecting, so aircraft use no longer constant
- ightarrow Model is no longer deterministic

Important changes:

- \rightarrow Add retiming using flight copies.
- \rightarrow Reflecting, so aircraft use no longer constant
- ightarrow Model is no longer deterministic

Important changes:

- → Add retiming using *flight copies*.
- ightarrow Refleeting, so aircraft use no longer constant
- ightarrow Model is no longer deterministic

New decision variable:

$$f_{lk\pi} = \begin{cases} 1 & \text{fleet } \pi \in \Pi \text{ is used to fly copy } \langle I, k \rangle \text{ with } k \in \mathcal{C}(I), I \in L \\ 0 & \text{otherwise} \end{cases}$$

Objective function

Decision variables:

 $x_{mr} =$ passengers assigned to itinerary $r \in R(m)$ in market $m \in M$

$$f_{lk\pi} = egin{cases} 1 & ext{fleet } \pi \in \Pi ext{ is used to fly copy } \langle I,k
angle ext{ with } k \in \mathcal{C}(I), I \in L \ 0 & ext{otherwise} \end{cases}$$

Objective function PMM

$$\max \sum_{m \in M} \sum_{r \in R(m)} \mathsf{fare}_m x_{mr}$$

$$\max \sum_{m \in M} \sum_{r \in R(m)} \mathsf{fare}_m^F x_{mr} - \sum_{l \in L} \sum_{k \in \mathcal{C}(l)} \sum_{\pi \in \Pi} c_{lk\pi} f_{lk\pi}$$

New objective function

$$\max \sum_{m \in M} \sum_{r \in R(m)} \mathsf{fare}_m^F x_{mr} - \sum_{l \in L} \sum_{k \in \mathcal{C}(l)} \sum_{\pi \in \Pi} c_{lk\pi} f_{lk\pi}$$

 $\rightarrow\,$ Each flight leg should be covered once

$$\max \sum_{m \in M} \sum_{r \in R(m)} \mathsf{fare}_m^F x_{mr} - \sum_{l \in L} \sum_{k \in \mathcal{C}(l)} \sum_{\pi \in \Pi} c_{lk\pi} f_{lk\pi}$$

- ightarrow Each flight leg should be covered once
- ightarrow Limit the number of available seats after reschedulding

$$\max \sum_{m \in M} \sum_{r \in R(m)} \mathsf{fare}_m^F x_{mr} - \sum_{l \in L} \sum_{k \in \mathcal{C}(l)} \sum_{\pi \in \Pi} c_{lk\pi} f_{lk\pi}$$

- ightarrow Each flight leg should be covered once
- ightarrow Limit the number of available seats after reschedulding
- ightarrow Can't change used fleet compared to original schedule

$$\max \sum_{m \in M} \sum_{r \in R(m)} \mathsf{fare}_m^F x_{mr} - \sum_{l \in L} \sum_{k \in \mathcal{C}(l)} \sum_{\pi \in \Pi} c_{lk\pi} f_{lk\pi}$$

- ightarrow Each flight leg should be covered once
- ightarrow Limit the number of available seats after reschedulding
- ightarrow Can't change used fleet compared to original schedule
- ightarrow Number of departures and takeoffs per time window is limited

$$\max \sum_{m \in M} \sum_{r \in R(m)} \mathsf{fare}_m^F x_{mr} - \sum_{l \in L} \sum_{k \in \mathcal{C}(l)} \sum_{\pi \in \Pi} c_{lk\pi} f_{lk\pi}$$

- ightarrow Each flight leg should be covered once
- → Limit the number of available seats after reschedulding
- ightarrow Can't change used fleet compared to original schedule
- ightarrow Number of departures and takeoffs per time window is limited
- → Keep service guarantee

Solution Approach

Solved using computer program, programmed in C and CPLEX library.

Large American airline, banked hub-and-spoke schedule, 1000 daily legs, serving 100 destinations. One major hub is origin/destination for over 600 flight legs.

Large American airline, banked hub-and-spoke schedule, 1000 daily legs, serving 100 destinations. One major hub is origin/destination for over 600 flight legs.

1. Depeak the schedule using depeaking model [3]

Large American airline, banked hub-and-spoke schedule, 1000 daily legs, serving 100 destinations. One major hub is origin/destination for over 600 flight legs.

- 1. Depeak the schedule using depeaking model [3]
- 2. Seven flight copies are created in 30-minute interval

Large American airline, banked hub-and-spoke schedule, 1000 daily legs, serving 100 destinations. One major hub is origin/destination for over 600 flight legs.

- 1. Depeak the schedule using depeaking model [3]
- 2. Seven flight copies are created in 30-minute interval
- 3. Pick a reoptimization point Solve reoptimization model

Two forecasts:

- A Perfect information (Upper bound)
- B Based on historic data (Lower bound)

Two forecasts:

- A Perfect information (Upper bound)
- B Based on historic data (Lower bound)

Profit increase:

- A +5.3%
- B +2.6%

Two forecasts:

- A Perfect information (Upper bound)
- B Based on historic data (Lower bound)

Profit increase:

$$A +5.3\%$$

$$B + 2.6\%$$

On average annually between \$18 and \$36 million profit increase.

Two forecasts:

- A Perfect information (Upper bound)
- B Based on historic data (Lower bound)

Profit increase:

$$A +5.3\%$$

$$B + 2.6\%$$

On average annually between \$18 and \$36 million profit increase.

Synergy is between 10% and 37%.

Future research

- \rightarrow Multiple reoptimization points
- ightarrow Flexible booking

Conclusion

Dynamic Airline Scheduling

- \rightarrow Reflecting
- $\to \ \mathsf{Retiming}$

Results

 $\rightarrow~2.6\%-5.2\%$ profit increase

References

- Hai Jiang and Cynthia Barnhart. "Dynamic airline scheduling". In: *Transportation Science* 43.3 (2009), pp. 336–354.
- Jean-Paul Rodrigue, Claude Comtois, and Brian Slack. *The geography of transport systems*. Routledge, 2016.
- Hai Jiang. "Dynamic airline scheduling and robust airline schedule de-peaking". PhD thesis. Massachusetts Institute of Technology, 2006.

Slides: https://github.com/TeunDr/STT-Presentation-TD