TD 5 graphes: plus courts chemins

I. Exercice 1

1. Déterminer le chemin de valeur minimale allant de x0 à x9 en utilisant l'algorithme de Dijkstra

- 2. Montrer à l'aide d'un contre-exemple que cet algorithme n'est pas applicable lorsque certaines valuations sont négatives.
- 3. Appliquer l'algorithme de Bellman-Ford sur le même graphe, en ordonnant les arcs de gauche à droite et de haut en bas. Puis recommencer en ordonnant les arcs de droite à gauche et de haut en bas. Noter la différence sur le nb d'itérations si on s'arrête quand rien ne change plus.
- 4. Comment peut-on décider de l'ordre de parcours des arcs pour avoir une exécution la plus rapide possible de l'algorithme de Bellman-Ford ?

II. Exercice 2

Appliquer l'algorithme de Bellman-Ford sur le graphe suivant

III. Arbre de chemins minimaux

Soit $G = (X = \{1..8\}, U, \lambda)$ le graphe dont le dictionnaire est le suivant, valué comme indiqué :

i	1	2	3	4	5	6	7	8
$\Gamma^{+}(i)$			4567					
$\lambda(i,j), j \in \Gamma^+(i)$	1 3 4	0 2 4	2 4 1 3	1	11	1 3	0.2	0

- 1. Appliquer l'algorithme de recherche en profondeur des descendants du sommet 1 dans G. Soit H=(X,V) l'arborescence de racine 1 mise en évidence à l'issue de cette application.
- 2. Appliquer l'algorithme de Dijkstra pour calculer, pour tout i de $\{2..8\}$, la longueur λ i de tout chemin 1i-minimal de G et mettre en évidence une arborescence de chemins 1i-minimaux de G. Vérifier que H n'est pas une arborescence de chemins 1i-minimaux de G.

IV. Chaînes minimales

Soit $G = (X, U, \lambda)$ un graphe non orienté connexe, $X = \{1..n\}$, valué par $\lambda : U \to \mathbb{R}$. Une plus courte chaîne entre deux sommets i et j est appelée ij-minimale.

Vérifier que l'application de l'algorithme de Dijkstra au graphe G1=({1..8},U1) valué positivement de la figure 1, à partir du sommet 1, fournit l'arbre de chaînes 1i-minimales de la figure 2.

V. Un problème de gestion de stock

Reprendre le problème de gestion de stock énoncé lors du TD 1 et le résoudre.