

Allocation responses to nitrogen addition depend on photosynthetic demand and nitrogen acquisition strategy

Elizabeth Waring and Nick Smith
Texas Tech University
@LizzWaring

Nitrogen Fertilization Does Not Increase Leaf-Level Carbon Assimilation

Elizabeth Waring and Nick Smith
Texas Tech University
@LizzWaring

Increased Temperatures

Global mean surface air temperature

- Increased Temperatures
- Sea Level Rise

Caused by increased CO₂

Projected Atmospheric Greenhouse Gas Concentrations

 Plants only way to decrease global CO₂

Terrestrial N inputs increasing

Terrestrial N inputs increasing

Terrestrial N inputs increasing

• Example: China and USA

Modified from X Zhang et al. (2015)

Biomass increases due to fertilization

- From LeBauer and Treseder (2008)
- Metanalysis of 126 studies

Modifiied from LeBauer and Treseder. Ecology (2008) Table 1

Leaf N increases with soil N

- Firn et al (2019)
- Global set of 27 sites

Treatments

Nitrogen and Carbon Assimilation

- First step of Calvin-Benson Cycle catalyzed by Rubisco
- Strong relationship
- Link carbon and nitrogen metabolism

Redrawn from Reich et al. (1997) in Chapin 2011

Soil N supply paradigm

Soil N → Leaf N → Photosynthesis

↓
Biomass

Not so sure about that....

FIGURE 3. Net photosynthesis (Ps) and dark respiration (Rs) in 1969 for current shoots of Douglas-fir trees treated April 1968.

Not necessarily doing more photosynthesis though

Hypothesis

• Smith et al 2019

 Photosynthesis optimized by environment not nitrogen

 Predictions for photosynthesis without N

How I am approaching N availability issue whole plant research

Greenhouse

- Four light treatments
- Four N fertilization treatments
- Two species
 - Cotton
 - Soybean

Greenhouse

- Four light treatments
- Four N fertilization treatments
- Two species
 - Cotton
 - Soybean

Greenhouse

- Li6800
- Biomass
- Area
- Elemental analysis

Soil N → Biomass

Soil N → Biomass

Change in Biomass with fertilizer

Soil N→Leaf N

100% increase

Soil N→Leaf N

Soil N→Leaf N⊖Photosynthetic capacity

Soil N→Leaf N⇔ Photosynthetic capacity

Hypothesis

Soil N→Leaf Area

Conclusion

Summary

- Soil N effect
 - Increase in leaf N
 - Increase in leaf area
 - No change in photosynthetic capacity
 - FERTILIZATION DOES NOT INCREASE LEAF-LEVEL PHOTOSYNTHESIS

- N fertilization increase Leaf N
- Light increase photosynthesis
- Photosynthesis drives N demand, not other way around

- N fertilization increase Leaf N
- Light increase photosynthesis
- Photosynthesis drives N demand, not other way around

Undergraduate involvement

• Undergraduate Researchers:

- Josh Gutierrez
- Jorge Ochea
- Austin Cooper
- Mahum Haque
- Angel Barron
- Leah Ortiz
- Kobe Young
- Dave Baychoo
- Zachary Bailey