Logika dla Informatyków (zaawansowana) Lista zadań nr 14

Punkty Stałe

Niech (standardowo) $\mathbb{N}^{<\omega}$ oznacza zbiór wszystkich ciągów skończonych o wyrazach naturalnych i niech $F\subseteq \mathbb{N}^{<\omega}$ będzie zbiorem wygrywających (dla nas) pozycji końcowych. W F-grze na $\mathbb{N}^{<\omega}$ bierze udział dwóch graczy: parzysty (nasz przeciwnik) i nieparzysty (my). Aktualną pozycją w grze jest zawsze ciąg $\mathbf{w}\in \mathbb{N}^{<\omega}$. Jeśli długość \mathbf{w} jest parzysta, to gracz parzysty wybiera liczbę $n\in \mathbb{N}$ i zmienia aktualną pozycję na $\mathbf{w}n$ (gdzie przez $\mathbf{w}n$ rozumiemy ciąg \mathbf{w} wydłużony o nowy element n). Podobnie, jeśli długość \mathbf{w} jest nieparzysta to gracz nieparzysty wybiera liczbę $n\in \mathbb{N}$ i zmienia aktualną pozycję na $\mathbf{w}n$. Początkową pozycją jest ciąg pusty. Gra kończy się (naszym zwycięstwem), gdy aktualna pozycja jest ciągiem ze zbioru F.

Zdefiniujmy $W\subseteq \mathbb{N}^{<\omega}$ jako najmniejszy (w sensie inkluzji) zbiór mający następujące własności:

- $F \subseteq W$:
- Jeśli w ma długość nieparzystą i istnieje takie $n \in \mathbb{N}$ że $\mathbf{w} n \in W$ to również $\mathbf{w} \in W$;
- Jeśli w ma długość parzystą i dla każdego $n \in \mathbb{N}$ ciąg $\mathbf{w}n \in W$ to również $\mathbf{w} \in W$.

Zadanie 1. Jaki jest intuicyjny sens zbioru W? Co to znaczy "najmniejszy taki zbiór"? I czemu taki najmniejszy zbiór ma niby istnieć?

Zdefiniujmy funkcję h, przyporządkowującą każdemu elementowi W liczbę porządkową, następująco:

- Jeśli $\mathbf{w} \in F$ to $h(\mathbf{w}) = 0$.
- Jeśli $\mathbf{w} \in W$ ma długość nieparzysta to $h(\mathbf{w}) = min\{h(\mathbf{w}n) : \mathbf{w}n \in W\}.$
- Jeśli $\mathbf{w} \in W$ ma długość parzystą to $h(\mathbf{w}) = min\{\gamma : \forall n \in \mathbb{N} \ \gamma > h(\mathbf{w}n)\}.$

Zadanie 2. Jaki jest intuicyjny sens funkcji h? Pokaż że (dla ustalonego F) istnieje dokładnie jedna funkcja h spełniająca powyższe warunki.

Zadanie 3. Znajdź taki zbiór F dla którego $h(\varepsilon) = \omega$.

Zadanie 4: [2 pkt] Znajdź taki zbiór F dla którego $h(\varepsilon) = \omega * \omega$.

Zadanie 5. Pokaż, że ciąg $\{A_{\alpha}\}_{{\alpha}<{\beta}}$, który pojawił się w dowodzie twierdzenia o punkcie stałym, jest rzeczywiście monotoniczny, to znaczy jeśli ${\alpha}'<{\alpha}$ to $A_{{\alpha}'}< A_{\alpha}$.

Zadanie 6. Na wykładzie rozważano scenariusz, w którym mamy:

• pewna sygnature relacyjna Σ oraz unarny symbol relacyjny $Y \notin \Sigma$;

- $\bullet\,$ strukturę relacyjną M nad $\Sigma,$ ze zbiorem elementów M;
- formułę logiki pierwszego rzędu $\psi(Y,x)$ z jedną zmienną wolną x nad sygnaturą Σ \cup $\{Y\}.$

Formuła ψ w naturalny sposób definiuje funkcję $F_{\psi}: \mathcal{P}(M) \to \mathcal{P}(M)$. Dokładnej mówiąc: $F_{\psi}(Y) = \{x \in M: [\mathbb{M},Y] \models \psi(Y,x)\}$. Pokaż, że jeśli Y występuje pozytywnie w ψ to funkcja F_{ψ} jest monotoniczna.

Unifikacja

Zadanie 7. Rozwiąż zadanie 631 z MdZ.

Zadanie 8. Rozwiąż zadanie 632 z MdZ.

Zadanie 9. Rozwiąż zadanie 633 z MdZ.

Zadanie 10. Rozwiąż zadanie 634 z MdZ.

Zadanie 11. Pokaż, że algorytm z wykładu oblicza najbardziej ogólny unifikator dwóch zadanych termów.

Zadanie 12. Pokaż, że gdy dodamy łączny i przemienny symbol + do algebry termów, to istnieją takie pary termów, dla których nie istnieje najbardziej ogólny unifikator.

Zadanie 13* [2 pkt] Pokaż, że jeśli istnieje wielomianowy algorytmu dla problemu unifikacji w algebrze termów z dodanym łącznym i przemiennym symbolem + to istnieje wielomianowy algorytmu dla problemu trzykolorowania grafu.