

Annasaheb Dange College of Engineering and Technology (ADCET), Ashta

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur, Approved By AICTE, New Delhi & Govt. of Maharashtra, Accredited by NAAC 'A++' Grade, Bangalore

Department of CSE (IOT and Cyber Security including Blockchain Technology)

Class: SY B.Tech Sem VI

AY: 2023-2024

Course: Information Theory for Cyber Security (Laboratory)

Couse Code: 1ICPC210

Experiment No. 2

Title: Implement Symmetric cipher technique using c/c++/python.

- Caesar cipher

Objectives:

- 1. Understanding Symmetric Cryptography
- **2.** Understanding Symmetric Cipher Techniques
- **3.** Implementing Symmetric Cipher Algorithms
- **4.** Understanding Encryption and Decryption Processes

Symmetric Cryptography:

Symmetric Cipher Model – Key Terms

- 1. Plaintext Original message or Data that is input to the algorithm.
- 2. Encryption Algorithm The algorithm that generates text by performing substitution or permutation.
- 3. Secret Key Key that decides substitution and transformation that is to be applied to the algorithm.
- 4. Ciphertext The substituted or permuted message which is produced by inputting plaintext and key to algorithm.
- 5. Decryption Algorithm –The algorithm takes ciphertext and key as input and generates plaintext.
- 6. For secure communication using encryption following requirements must be satisfied:
- 7. Strong encryption algorithm Given the algorithm and one or more ciphertexts attacker can neither decrypt the ciphertext nor find key.
- 8. The key must be exchanged in secret manner by communicating entities.

Annasaheb Dange College of Engineering and Technology (ADCET), Ashta

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur, Approved By AICTE, New Delhi & Govt. of Maharashtra, Accredited by NAAC 'A++' Grade, Bangalore

Department of CSE (IOT and Cyber Security including Blockchain Technology)

Symmetric Encryption Model:

Symmetric Encryption Scheme:

- 1. Input is, Message P and the encryption key K Algorithm forms the Ciphertext C denoted as C=E(K,P).
- 2. The receiver has key K. P = D(K,C)

Annasaheb Dange College of Engineering and Technology (ADCET), Ashta

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur, Approved By AICTE, New Delhi & Govt. of Maharashtra, Accredited by NAAC 'A++' Grade, Bangalore

Department of CSE (IOT and Cyber Security including Blockchain Technology)

Three dimensions specify characteristics of Cryptographic systems:

- 1. The form of operations used for converting plaintext to ciphertext
- 2. The number of key used
- 3. The method used to process plaintext block cipher, stream cipher

Block cipher - Input is divided into blocks. For a block of elements at a particular time instance, output generated is also a block of elements. Stream cipher – Elements of input are processed in continuous manner, one element at a time and one element at a time is produced as output.

Substitution Technique:

- 1. Each letter of the plaintext is replaced by other letter or by number or by symbol.
- 2. Plaintext is bit sequence, ciphertext is also bit sequence

Annasaheb Dange College of Engineering and Technology (ADCET), Ashta

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur, Approved By AICTE, New Delhi & Govt. of Maharashtra, Accredited by NAAC 'A++' Grade, Bangalore

Department of CSE (IOT and Cyber Security including Blockchain Technology)

a	b	С	d	e	f	g	h	i	j	k	ı	m
0	1	2	3	4	5	6	7	8	9	10	11	12
_									· · · · · · · · · · · · · · · · · · ·	T.,	l.,	1_
n	0	р	q	r	S	t	u	V	w	X	У	Z
	_	_				_			-	+	+	_
13				17 eword i	18	19	20 3 plac	21 ces ahe	22 ead in	23	24 habet	25
13	Eac	h lette					3 plac	ces ahe		the alp		
	Eac	h lette	er in the			ced by	3 plac	ces ahe	ead in	the alp	habet	
	Eac Pla	h lette intext	er in the	e word i		ced by	3 plac	ces ahe	ead in	the alp	habet	. 24
	Eac Pla	h lette intext	er in the	e word i	is replac	2 ced by 15 3	3 plac	es ahe	ead in 11 3 3	the alp	habet 0 3	. 24 3
	Eac Pla	h lette intext	er in the	e word i	is replac	ced by	3 plac	ces ahe	ead in 11 3 3	the alp	habet 0 3	3

$$C = E(3, P)$$

=(p + 3) mod 26
General form,
 $C = E(K,P) = (P+K) \mod 26 P = D(K,C) = (C-K) \mod 26$

Annasaheb Dange College of Engineering and Technology (ADCET), Ashta

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur, Approved By AICTE, New Delhi & Govt. of Maharashtra, Accredited by NAAC 'A++' Grade, Bangalore

Department of CSE (IOT and Cyber Security including Blockchain Technology)

Caesar Cipher Implementation:

```
// A C++ program to illustrate Caesar Cipher Technique
#include <iostream>
using namespace std;
// This function receives text and shift and
// returns the encrypted text
string encrypt(string text, int s)
  string result = "";
  // traverse text
  for (int i = 0; i < \text{text.length}(); i++) {
     // apply transformation to each character
     // Encrypt Uppercase letters
     if (isupper(text[i]))
       result += char(int(text[i] + s - 65) % 26 + 65);
     // Encrypt Lowercase letters
       result += char(int(text[i] + s - 97) % 26 + 97);
  // Return the resulting string
  return result;
}
// Driver program to test the above function
int main()
  string text = "ATTACKATONCE";
  int s = 4;
  cout << "Text : " << text;
  cout << "\nShift: " << s;
  cout << "\nCipher: " << encrypt(text, s);</pre>
  return 0;
}
```

Output:

Text: ATTACKATONCE

Annasaheb Dange College of Engineering and Technology (ADCET), Ashta

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur, Approved By AICTE, New Delhi & Govt. of Maharashtra, Accredited by NAAC 'A++' Grade, Bangalore

Department of CSE (IOT and Cyber Security including Blockchain Technology)

Shift: 4

Cipher: EXXEGOEXSRGI