Scilab Textbook Companion for Thermal Engineering by K. K. Ramalingam¹

Created by
Harish Ch
M.TECH (INTEGRATED)
Mechanical Engineering
SASTRA UNIVERSITY
College Teacher
A. P. Mohan Raj
Cross-Checked by
K. V. P. Pradeep

May 8, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermal Engineering

Author: K. K. Ramalingam

Publisher: Scitech Publications, Chennai

Edition: 1

Year: 2009

ISBN: 9788183711982

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Gas power cycles	7
7	Performance of IC engines	45
8	Steam Nozzles and Turbines	72
9	Air compressors	7 9
10	Refrigeration and air conditioning	98

List of Scilab Codes

Exa 1.1	The pressures	7
Exa 1.2	Compression ratio	8
Exa 1.3	Air standard efficiency	9
Exa 1.4	Air standard efficiency	9
Exa 1.5	Mean effective pressure	10
Exa 1.6	Compression ratio	11
Exa 1.7	Ideal power	12
Exa 1.8	Mean effective pressure	13
Exa 1.10	Maximum theoretical power	13
Exa 1.11	Efficiencies for cut off ratio	14
Exa 1.12	Air standard efficiency	15
Exa 1.13	Efficiency	15
Exa 1.14	Compression ratio	16
Exa 1.15	Pressure	17
Exa 1.16	Thermal efficiency	18
Exa 1.17	Air standard efficiency	19
Exa 1.18	Mean effective pressure	19
Exa 1.19	Compression ratio	20
Exa 1.20	Loss in efficiency	21
Exa 1.21	Compression ratio	22
Exa 1.22	Air standard efficiency	22
Exa 1.23	Cut off ratio	23
Exa 1.24	Work done	24
Exa 1.25	Cycle efficiency	25
Exa 1.26	Air standard efficiency	27
Exa 1.27	Ideal thermal efficiency	28
Exa 1.28	Temperature	29
Exa 1.29	Pressure ratio	30

Exa 1.30	Thermal efficiency	31
Exa 1.31	Power developed	32
Exa 1.32	Maximum temperature	3
Exa 1.33	Air fuel ratio	34
Exa 1.34	Net power	5
Exa 1.35	Maximum power	6
Exa 1.36		37
Exa 1.37	Mass of air	8
Exa 1.38	Overall efficiency	9
Exa 1.39		0
Exa 1.40		2
Exa 1.41		3
Exa 7.1		5
Exa 7.2		6
Exa 7.3		6
Exa 7.4		7
Exa 7.5		8
Exa 7.6		18
Exa 7.7	Average piston speed	9
Exa 7.8		9
Exa 7.9	· ·	0
Exa 7.10		1
Exa 7.11		1
Exa 7.12		3
Exa 7.13		4
Exa 7.14		5
Exa 7.15		5
Exa 7.16	· · · · · · · · · · · · · · · · · · ·	6
Exa 7.17		7
Exa 7.18		8
Exa 7.19		69
Exa 7.20		60
Exa 7.21		1
Exa 7.22	· · · · · · · · · · · · · · · · · · ·	- 52
Exa 7.23		3
Exa 7.24	1	i 34
Exa 7.25		66
Exa 7 26		7

Exa 7.27	Percentage of heat carried away by exhaust gases
Exa 7.28	Increase in brake power of engine due to supercharging
Exa 8.1	Final velocity of steam
Exa 8.2	Mass of steam discharged
Exa 8.3	Throat area
Exa 8.4	Final exit velocity of steam
Exa 8.5	Velocity of steam at the throat
Exa 9.1	Isothermal compression
Exa 9.2	Size of the cylinder
Exa 9.3	Indicated power
Exa 9.4	Mass of air delivered per minute
Exa 9.5	Temperature
Exa 9.6	Isentropic compression
Exa 9.7	Work done by air during suction
Exa 9.8	Work done on air during delivery
Exa 9.9	Power required
Exa 9.10	Work done by compressor
Exa 9.11	Volume of free air
Exa 9.12	Power of the compressor
Exa 9.13	Percentage saving in work
Exa 9.14	Work required
Exa 9.15	Power required to drive compressor
Exa 9.16	Mass of water
Exa 9.17	Volume ratio of LP to HP cylinders
Exa 9.18	Ratio of cylinder diameters
Exa 9.19	Number of stages
Exa 9.20	Intermediate pressures
Exa 9.21	Heat rejected
Exa 9.22	Ratio of cylinder volumes
Exa 10.1	Power rating
Exa 10.2	Refrigeration capacity
Exa 10.3	COP of a heat pump
Exa 10.4	Time taken to achieve cooling
Exa 10.5	Theoretical COP
Exa 10.6	Capacity of refrigerator
Exa 10.7	Theoretical COP
Exa 10.8	Ice produced

Chapter 1

Gas power cycles

Scilab code Exa 1.1 The pressures

```
1 clc
2 clear
3 //Input data
4 V1=0.5; // Initial Volume before the commencement of
      compression in m<sup>3</sup>
5 P1=1; // Initial pressure before the commencement of
      compression in bar
6 T1=300; // Initial temperature in K
7 P2=12; // Final pressure at the end of compression
      stroke in bar
8 Q=220; // Heat added during the constant volume
      process in kJ
9 r=1.4; // Isentropic constant for air
10 R=0.287; // Characteristic Gas constant in kJ/kg K
11 Cv=0.718; // Specific heat of mixture in kJ/kg K
12
13 // Calculations
14 r1=(P2/P1)^(1/r);//Compression ratio
15 T2=T1*(r1)^(r-1); // Final temperature after the end
      of compression stroke in K
16 V2=(P1*T2*V1)/(P2*T1);//Final volume after the end
```

```
of compression stroke in m<sup>3</sup>
17 m = (P1*10^5*V1)/(R*T1*1000); //Mass of air flowing in
  T3=(Q/(m*Cv))+T2;//Temperature after constant volume
18
        heat addition in K
19 P3=(P2*T3)/T2;//Pressure after constant volume heat
       addition in K
20 V3=V2; //Volume at 3
21 P4=P3*(1/r1)^(r);//Pressure after isentropic
       expansion in bar
22 V4=V1; //Volume after isentropic expansion in m<sup>3</sup>
23 T4=T3*(1/r1)^(r-1); //Temperature at the end of
       isentropic expansion in K
24
25 //Output
26 printf('(a)The pressures at 1 is \%3.0 \, \text{fbar} \, \text{n} (b)
       Pressure at 2 is \%3.0 fbar\n (c) Pressure at 3 is
       \%3.2 \, \text{fbar} \setminus n \, (d) \, \text{Pressure at 4 is } \%3.2 \, \text{fbar} \setminus n \, (e)
       Temperature at 1 is \%3.1 \text{ fK} \setminus n (f) Temperature at 2
       is \%3.1\,\mathrm{fK}\n (g) Temperature at 3 is \%3.0\,\mathrm{fK}\n (h)
       Temperature at 4 is %3.0fK\n (i) Volume at 1 is %3
       .0 \, \text{fm}^3 \, \text{n} (j) Volume at 2 is \%3.5 \, \text{fm}^3 \, \text{n} (k) Volume
       at 3 is \%3.5 \,\mathrm{fm}^3 \, (1) Volume at 4 is \%3.0 \,\mathrm{fm}^3, P1
       , P2 , P3 , P4 , T1 , T2 , T3 , T4 , V1 , V2 , V3 , V4 )
```

Scilab code Exa 1.2 Compression ratio

```
1 clc
2 clear
3 //Input data
4 r1=6; //Initial compression ratio
5 r2=7; //Final compression ratio
6 r=1.4; //Isentropic coefficient of air
7
8 //Calculations
```

```
9 nr1=(1-(1/r1)^(r-1))*100;//Otto cycle efficiency
    when compression ratio is 6 in percentage
10 nr2=(1-(1/r2)^(r-1))*100;//Otto cycle efficiency
    when compression ratio is 7 in percentage
11 n=nr2-nr1;//Increase in efficiency in percentage
12
13 //Output
14 printf('The increase in efficiency due to change in
    compression ratio from 6 to 7 is %3.1 fpercent',n)
```

Scilab code Exa 1.3 Air standard efficiency

```
1 clc
2 clear
3 //Input data
4 T1=315; // Temperature at the beginning of isentropic
      compression in K
5 T2=600; // Temperature at the end of isentropic
      compression in K
6 r=1.4; // Isentropic constant of air
8 // Calculations
9 r1=(T2/T1)^(1/(r-1));//Compression ratio
10 n=(1-(1/r1^{(r-1)}))*100; //Efficiency of Otto cycle in
       percent
11
12 //Output
13 printf('(a) The compression ratio is \%3.2 \text{ f} \setminus \text{n} (b)
      Efficiency of the Otto cycle is %3.1f percent',r1
      ,n)
```

Scilab code Exa 1.4 Air standard efficiency

```
1 clc
2 clear
3 //Input data
4 D=0.1; //Diameter of the cylinder in m
5 L=0.15; //Stroke length in m
6 Vc=0.295*10^-3; // Clearance volume in m^3
7 r=1.4; // Isentropic constant of air
9 // Calculations
10 Vs = (3.14/4) * (D^2*L); //Swept volume in m^3
11 r1=(Vc+Vs)/Vc;//Compression ratio
12 n = (1 - (1/r1)^{(r-1)}) *100; //Otto cycle efficiency in
      percentage
13
14 //Output
15 printf ('The air standard efficiency of air is %3.2 f
      percent',n)
```

Scilab code Exa 1.5 Mean effective pressure

```
14 // Calculations
15 Rc=Ru/M; // Characteristic gas constant in kJ/kg K
16 Cp=Rc+Cv; // Specific heat at constant pressure in kJ/
      kg K
17 r=Cp/Cv; // Isentropic gas constant
18 r1=(P2/P1)^(1/r);//Compression ratio
19 na=(1-(1/r1)^(r-1))*100; // Air standard efficiency in
       percentage
20 T2=T1*(P2/P1)^{((r-1)/r)};//Temperature at the end of
      isentropic compression process in K
21 T3=(P3/P2)*T2;//Temperature at the end of constant
      volume heat addition in K
22 Q=m*Cv*(T3-T2); //Heat supplied in kJ/kg
23 V1=(m*Rc*T1*1000)/(P1*10^5);//Initial volume before
      compression in m<sup>3</sup>
24 V2=V1/r1;//Volume at the end of compression stroke
      in m<sup>3</sup>
25 Vs=V1-V2; //Stroke volume in m<sup>3</sup>
26 MEP=(W/Vs)/100;//Mean effective pressure in bar
27
28 //Output
29 printf('(a) Compression ratio is \%3.2 \text{ f} \setminus \text{n} (b) The air
      standard efficiency is \%3.1f percent\n (c) Mean
      effective pressure is \%3.2f bar',r1,na,MEP)
```

Scilab code Exa 1.6 Compression ratio

```
bar
8 Q=210; //Heat added during constant heat process in
9 r=1.4; // Isentropic constant of air
10
11 // Calculations
12 r1=(P2/P1)^(1/r);//Compression ratio
13 V2=V1/r1; // Clearance volume in m<sup>3</sup>
14 C=(V2/(V1-V2))*100; // Percentage clearance in percent
15 na=(1-(1/r1)^(r-1))*100; // Air standard efficiency in
       percent
16 W=Q*(na/100);//Work done per cycle in kJ
17
18 //Output
19 printf('(a) Clearance volume as percentage of stroke
      volume is \%3.2 f percent\n (b) Compression ratio is
       \%3.2 \text{ f} \setminus \text{n} (c) Air standard efficiency is \%3.1 \text{ f}
      percent\n (d) Work done per cycle is %3.2 f kJ', C,
      r1, na, W)
```

Scilab code Exa 1.7 Ideal power

```
1 clc
2 clear
3 //Input data
4 r=5.5;//Compression ratio of an engine working on the otto cycle
5 Q=250;//Heat supplied during constant volume in kJ
6 N=500;//Engine operating speed in rpm
7 r1=1.4;//Isentropic ratio
8
9 //Calculations
10 n=(1-(1/r)^(r1-1))*100;//Otto cycle efficiency in percent
11 W=Q*(n/100);//Work done per cycle in kJ
```

Scilab code Exa 1.8 Mean effective pressure

```
1 clc
2 clear
3 //Input data
4 V1=0.53; //Volume of cylinder of an engine working on
       Otto cycle in m<sup>3</sup>
5 V2=0.1; // Clearance volume in m<sup>3</sup>
6 Q=210; // Heat supplied during constant volume in kJ
7 r=1.4; // Isentropic ratio
9 // Calculations
10 r1=V1/V2; // Compression ratio
11 n = (1 - (1/r1)^{(r-1)})*100; //Otto cycle efficiency in
      percentage
12 W=Q*(n/100); //Work done per cycle in kJ
13 P=W/((V1-V2)*100);//Mean effective pressure in bar
14
15 //Output data
16 printf ('Mean effective pressure is %3.3f bar',P)
```

Scilab code Exa 1.10 Maximum theoretical power

```
1 clc
2 clear
3 //Input data
```

```
4 T3=1500; //Upper temperature limit of a otto cycle in
    K
5 T1=300; //Lower temperature limit in K
6 a=0.4; //Rate of flow of air through the cycle in kg/
    min
7 Cv=0.718; //
8
9 //Calculations
10 T2=(T1*T3)^(1/2); //Temperature at point 2 in K
11 T4=T2; //Temperature at point 4 in K
12 W=Cv*((T3-T2)-(T4-T1)); //Work done per cycle in kJ/
    kg
13 P=W*(a/60); //Maximum power developed by the engine
    in kW
14
15 //Output
16 printf('Maximum power developed by the engine is %3
    .3 f kW',P)
```

Scilab code Exa 1.11 Efficiencies for cut off ratio

```
Thermal efficiency of the diesel cycle for cut
off ratio 1.50

13 n3=(1-((1/rc^(r-1)*(p3^r-1)/(r*(p3-1)))))*100;//
Thermal efficiency of the diesel cycle for cut
off ratio 2.00

14
15 //Output
16 printf('(a)Thermal efficiency when cut off ratio is
1.25 is %3.2f percent\n (b)Thermal efficiency
when cut off ratio is 1.50 is %3.0f percent\n (c)
Thermal efficiency when cut off ratio is 2.00 is
%3.1f percent\n',n1,n2,n3)
```

Scilab code Exa 1.12 Air standard efficiency

```
clc
clear
r=15;//Compression ratio of a diesel engine
Q=5;//Heat supplied upto 5 percent of the stroke
r1=1.4;//Isentropic ratio

//Calculations
p=1+(Q/100)*(r-1);//Cut off ratio
n=(1-((1/r^(r1-1)*(p^r1-1)/(r1*(p-1)))))*100;//
Efficiency of diesel cycle in percent

//Output
printf('Air standard efficiency of the diesel cycle is %3.2f percent',n)
```

Scilab code Exa 1.13 Efficiency

1 clc

```
2 clear
3 //Input data
4 r=17; //Compression ratio of a diesel engine
5 e=13.5; //Expansion ratio
6 r1=1.4; //Isentropic ratio
7
8 //Calculations
9 p=r/e; //Cut off ratio
10 n=(1-((1/r^(r1-1)*(p^r1-1)/(r1*(p-1)))))*100; //Air standard efficiency in percent
11
12 //Output
13 printf('Air standard efficiency is %3.1f percent',n)
```

Scilab code Exa 1.14 Compression ratio

```
1 clc
2 clear
3 //Input data
4 T1=300; // Temperature at the beggining of compression
       stroke in K
5 T2=873; //Temperature at the end of compression
      stroke in K
6 T3=2173; // Temperature at the beggining of expansion
      stroke in K
7 T4=1123; // Temperature at the end of expansion stroke
       in K
8 r1=1.4; // Isentropic ratio
10 // Calculations
11 r = (T2/T1)^{(1/(r1-1))}; // Compression ratio
12 rho=T3/T2;//Cut off ratio
13 n=(1-((1/r1)*((T4-T1)/(T3-T2))))*100; // Efficiency of
       diesel cycle in percent
14
```

```
15 //Output data
16 printf('(a) Compression ratio is %3.2 f \n (b) Cut off
    ratio is %3.2 f \n (c) Ideal efficiency of the
    diesel cycle is %3.2 f percent',r,rho,n)
```

Scilab code Exa 1.15 Pressure

```
1 clc
2 clear
3 //Input data
4 r=18; // Compression ratio of diesel cycle
5 Q=2000; //Heat added in kJ/kg
6 T1=300; //Lowest temperature in the cycle in K
7 p1=1; //Lowest pressure in the cycle in bar
8 Cp=1; // Specific heat of air at constant pressure in
      kJ/kg K
9 Cv=0.714; // Specific heat of air at constant volume
      in kJ/kg K
10
11 // Calculations
12 r1=Cp/Cv;//Isentropic ratio
13 v1 = ((1 - Cv) * T1) / (p1 * 10^5); / Initial volume at point 1
       in the graph in m<sup>3</sup>/kg
14 v2=v1/r; //Volume at point 2 in m^3/kg
15 p2=p1*(v1/v2)^(r1); //Pressure at point 2 in bar
16 T2=T1*(v1/v2)^(r1-1);//Temperature at point 2 in K
17 T3=(Q/Cp)+T2; // Temperature at point 3 in K
18 v3=v2*(T3/T2);//Volume at point 3 in K
19 v4=v1; //Since Constant volume heat rejection in m<sup>3</sup>/
      kg
20 T4=T3/(v4/v3)^{(r1-1)}; // Temperature at point 4 in K
      for isentropic expansion
21 p4=p1*(T4/T1); // Pressure at point 4 in bar
22
23 //Output
```

Scilab code Exa 1.16 Thermal efficiency

```
1 clc
2 clear
3 //Input data
4 r=16; // Compression ratio for the air standard diesel
       cycle
5 Q1=2200; // Heat added in kJ/kg
6 T4=1500; // Temperature at the end of isentropic
      expansion in K
7 T1=310; //Lowest temperature in the cycle in K
8 m=0.3; // Air flow rate in kg/sec
9 Cv=0.714; // Specific heat at constant volume in kJ/kg
      K
10
11 // Calculations
12 Q2=Cv*(T4-T1); //Heat rejected in kJ/kg
13 n=((Q1-Q2)/Q1)*100; // Efficiency in percent
14 P=m*(Q1-Q2);//Power developed in kW
15
16 // Output
17 printf('(a) Thermal efficiency is \%3.2 f percent\n (b)
     Power developed is %3.0 f kW',n,P)
```

Scilab code Exa 1.17 Air standard efficiency

```
1 clc
2 clear
3 //Input data
4 T1=303; // Temperature at the beginning of compression
       in K
5 T2=823; // Temperature at the end of compression in K
6 T3=3123; // Temperature at the end of heat addition in
  T4=1723; // Temperature at the end of isentropic
      expansion in K
8 r=1.4; // Isentropic ratio
10 // Calculations
11 n=(1-((T4-T1)/(r*(T3-T2))))*100; // Efficiency of the
      cycle in percent
12
13 //Output
14 printf ('Air standard efficiency of the cycle is %3.1
      f percent',n)
```

Scilab code Exa 1.18 Mean effective pressure

```
1 clc
2 clear
3 //Input data
4 r=15; //Compression Ratio of a diesel engine
5 P1=1; //Operating Pressure of a diesel engine in bar
6 r1=1.4; //Isentropic constant
7 V1=15; //Volume at the start of compression stroke in m^3
8 V3=1.8; //Volume at the end of constant Pressure heat addition in m^3
9 V4=V1; //Volume at the end of Isentropic expansion
```

```
stroke in m<sup>3</sup>
10 V2=1; // Volume at the end of isentropic compression
      stroke in m<sup>3</sup>
11 Vs=V1-V2; //Swept volume in m<sup>3</sup>
12
13 // Calculations
14 P2=P1*(r)^r1; // Pressure at the end of Isentropic
      compression of air
15 P3=P2; // Pressure at the end of constant pressure
      heat addition in bar
16 P4=P3*(V3/V4)^r1; // Pressure at the end of Isentropic
       expansion stroke in bar
17 Pm = (V2/Vs) * (P2 * ((V3/V2) - 1) + (P3 * (V3/V2) - P4 * (V4/V2)))/(
      r1-1)-(P2-P1*(V1/V2))/(r1-1));/Mean effective
      pressure in bar
18
19 //Output
20 printf ('Mean effective pressure of the cycle is \%3.2
      f bar', Pm)
```

Scilab code Exa 1.19 Compression ratio

```
1 clc
2 clear
3 //Input data
4 P1=1.5; //Pressure at the 7/8th stroke of compression in bar
5 P2=16; //Pressure at the 1/8th stroke of compression in bar
6 n=1.4; //Polytropic index
7 c=8; //Cutoff occurs at 8% of the stroke in percentage
8
9 //Calculations
10 R1=(P2/P1)^(1/n); //Ratio of volumes
```

Scilab code Exa 1.20 Loss in efficiency

```
1 clc
2 clear
3 //Input data
4 r=16; // Compression ratio of diesel engine
5 r1=1.4; // Isentropic ratio
6
7 // Calculations
8 rho1=1+(r-1)*(6/100); // Cutoff ratio at 6\% of stroke
9 rho2=1+(r-1)*(9/100); //Cutoff ratio at 9\% of stroke
10 n1=(1-(1/r^{(r1-1)})*(1/r1)*(rho1^r1-1)/(rho1-1))*100;
     // Efficiency of the cycle at 6% of the stroke in
      percent
11 n2=(1-(1/r^{(r1-1)})*(1/r1)*(rho2^{r1-1})/(rho2-1))*100;
     // Efficiency of the cycle at 9% of the stroke in
      percent
12 L=n1-n2; //The loss in efficiency in percent
13
14 //Output
15 printf ('The loss in efficiency is %3.2f percent',L)
```

Scilab code Exa 1.21 Compression ratio

```
1 clc
2 clear
3 //Input data
4 P1=1.03; // Pressure at the beginning of compression
      stroke in bar
5 T1=303; // Initial temperature in K
6 P2=40; //Maximum pressure in the cycle in bar
7 Q=550; //The heat supplied during the cycle in kJ/kg
8 r=1.4; // Isentropic compression ratio
9 Cp=1.004; // Specific heat at constant pressure in kJ/
      kg K
10
11 // Calculations
12 r1=(P2/P1)^(1/r);//Compression ratio
13 T2=(P2/P1)^{(r-1)/r}*T1;//Temperature at the end of
      compression stroke in K
14 T3=(Q/Cp)+T2; // Temperature at the end of heat
      addition in K
15 rho=T3/T2;//Cut off ratio
16 n = (1-(1/r1^{(r-1)})*(1/r)*(rho^{r-1})/(rho^{-1}))*100; //Air
       standard efficiency in percentage
17
18 //Output\n
19 printf('(a) Compression ratio is \%3.2 \text{ f} \setminus \text{n} (b)
      Temperature at the end of compression is \%3.1 f K
      n (c) Temperature at the end of comstant pressure
      heat addition is %3.0 f K \n (d) Air standard
      efficiency is %3.2f percent',r1,T2,T3,n)
```

Scilab code Exa 1.22 Air standard efficiency

```
1 clc
2 clear
3 //Input data
4 r=12; // Compression ratio of an oil engine, working
     on the combustion cycle
5 r1=1.4; // Isentropic ratio
6 P1=1; // Pressure at the
7 P3=35; // Pressure at the end of constant volume heat
      addition in bar
9 // Calculations
10 rho=1+(1/10)*(r-1);//Cut off ratio at 1/10th of the
      stroke
11 P2=P1*(r)^r1; // Pressure at the end of isentropic
      compression in bar
12 a=P3/P2; // Pressure ratio
13 n=(1-(1/r^{(r_1-1)})*(a*rho^{r_1-1})/((a-1)+(r_1*a*(rho-1)))
     ))*100; // Air standard efficiency in percent
14
15 //Output
16 printf ('The air standard efficiency of an oil engine
       working on the combustion cycle is \%3.2f percent
      ',n)
```

Scilab code Exa 1.23 Cut off ratio

```
1 clc
2 clear
3 //Input data
4 P1=1; //Pressure at the beginning of compression
        stroke of an oil engine working on a air standard
        dual cycle in bar
5 T1=303; //Temperature at the beginning of compression
        stroke in K
6 P3=40; //The maximum pressure reached in bar
```

```
7 T4=1673; //Maximum temperature reached in K
8 P4=P3; // Pressure at the start of constant pressure
      heat addition in bar
9 Cp=1.004; // Specific heat at constant pressure in kJ/
10 Cv=0.717; // Specific heat at constant volume in kJ/kg
11 r1=10; // Compression ratio
12
13 // Calculations
14 r=Cp/Cv;//Isentropic ratio
15 T2=T1*r1^(r-1); // Temperature at the end of
      compression stroke in K
16 P2=P1*r1^r; // Pressure at the end of compression
      stroke in bar
17 T3=T2*(P3/P2); // Temperature at the end of constant
      volume heat addition in K
18 rho=T4/T3;//Cut off ratio
19
20 //Output
21 printf('(a) Temperature at the end of constant volume
       heat addition is \%3.1f K\n (b) Cut off ratio is
     \%3.3 \, f', T3, rho)
```

Scilab code Exa 1.24 Work done

```
7 T4=1573; // Temperature at the end of constant volume
      heat addition in K
8 r=9.5; // Compression ratio
9 Cp=1.004; // Specific heat of air at constant pressure
10 Cv=0.717; // Specific heat of air at constant volume
11
12 // Calculations
13 r1=Cp/Cv;//Isentropic ratio
14 T2=T1*r^{(r1-1)}; // Temperature at the end of
      compression stroke in K
15 P2=P1*r^r1; // Pressure at the end of compression
      stroke in bar
16
  T3=T2*(P3/P2); // Temperature at the end of constant
      volume heat addition in K
17 rho=T4/T3; //Cut off ratio
18 T5=T4*(rho/r)^(r1-1);//Temperature at the end of
      expansion stroke in K
19 Qs=Cv*(T3-T2)+Cp*(T4-T3); // Heat supplied per kg in
20 Qr=Cv*(T5-T1); //Heat rejected per kg in kJ
21 W=Qs-Qr; //Work done per kg of air in kJ
22 n=(W/Qs)*100; // Efficiency of the air standard dual
      cycle in percent
23
24 //Output
25 printf('(a) The work done per kg of air is \%3.1 \text{ f kJ} \setminus \text{n}
       (b) Cycle efficiency is %3.2f percent', W,n)
```

Scilab code Exa 1.25 Cycle efficiency

```
1 clc
2 clear
3 //Input data
4 r=10.5;//Compression ratio
5 P3=65;//Maximum pressure in bar
```

```
6 P4=P3; // Pressure at the end of constant volume heat
      addition in bar
7 qs=1650; //Heat supplied in kJ/kg
8 P1=1; // Pressure at the beginning of compression
      stroke in bar
9 T1=368; // Temperature at the beginning of compression
       stroke in K
10 Cp=1.004; // Specific heat of air at constant pressure
      in kJ/kg K
11 Cv=0.717; // Specific heat of air at constant volume
     in kJ/kg K
12
13 // Calculations
14 r1=Cp/Cv;//Compression ratio
15 P2=P1*r^r1; // Pressure at the end of compression
      stroke in bar
16 T2=T1*r^(r1-1); // Temperature at the end of
      compression stroke in K
17 T3=T2*(P3/P2); // Temperature at the end of constant
     volume heat addition in K
18 qv=Cv*(T3-T2); //Heat supplied at constant volume in
     kJ/kg
  qp=qs-qv;//Heat supplied at constant pressure in kJ/
19
     kg
20 T4=(qp/Cp)+T3; //Temperature at the end of constant
     volume heat addition in K
21 rho=T4/T3;//Cut off ratio
22 T5=T4*(rho/r)^(r1-1); //Temperature at the end of
      expansion stroke in K
23 P5=P4*(rho/r)^r1;//Pressure at the end of expansion
      stroke in K
24 q=Cv*(T5-T1); //Heat rejected in kJ/kg
25 n=((qs-q)/qs)*100;//Efficiency of the cycle in
     percent
26
27 //Output
28 printf('(a) Pressure at the end of compression stroke
       is \%3.1 f bar\n (b) Temperature at the end of
```

compression stroke is $\%3.1\,\mathrm{f}$ K\n (c) Temperature at the end of constant volume heat addition is $\%3.1\,\mathrm{f}$ K\n (d) Temperature at the end of constant pressure heat addition is $\%3.2\,\mathrm{f}$ K\n (e) Temperature at the end of expansion stroke is $\%3.2\,\mathrm{f}$ K\n (e) Pressure at the end of expansion stroke is $\%3.2\,\mathrm{f}$ bar\n (f) Efficiency of the cycle is $\%3.2\,\mathrm{f}$ percent',P2,T2,T3,T4,T5,P5,n)

Scilab code Exa 1.26 Air standard efficiency

```
1 clc
2 clear
3 //Input data
4 r=8.5; // Compression ratio
5 e=5.5; //Expansion ratio
6 P1=1; // Pressure at the beginning of compression
      stroke in bar
  T1=313; // Temperature at the beginning of compression
       stroke in K
8 n=1.3; // polytropic constant
9 Cp=1.004; // Specific heat of air at constant pressure
       in kJ/kg K
10 Cv=0.717; // Specific heat of air at constant volume
     in kJ/kg K
11
12 // Calculations
13 rho=r/e;//Cut off ratio
14 T2=T1*r^{(n-1)}; // Temperature at the end of
      compression stroke in K
15 T3=(2*Cv*T2)/(2*Cv-Cp*rho+1); // Temperature at the
     end of constant volume heat addition in K
16 T4=rho*T3; // Temperature at the end of constant
      pressure heat addition in K
17 a=T3/T2; // Pressure ratio i.e., P3/P2
```

```
18 n1=(1-(1/r^(n-1))*(a*rho^n-1)/((a-1)+(n*a*(rho-1))))
          *100;//Air standard efficiency in percent
19
20 //Output
21 printf('The air standard efficiency is %3.2f percent ',n1)
```

Scilab code Exa 1.27 Ideal thermal efficiency

```
1 clc
2 clear
3 //Input data
4 P1=1; // Initial pressure in a compression engine
      working on a dual combustion engine in bar
5 T1=300; // Initial Temperature in K
6 P2=25; // Pressure at the end of compression stroke in
      bar
7 Q=400; //Heat supplied per kg of air during constant
      volume heating in kJ/kg
8 P5=2.6; // Pressure at the end of isentropic expansion
      in bar
9 Cp=1.005; // Specific heat of air at constant pressure
      in kJ/kg K
10 Cv=0.715; // Specific heat of air at constant volume
     in kJ/kg K
11
12 // Calculations
13 r=Cp/Cv; // Isentropic index
14 r1=(P2/P1)^(1/r);//Compression ratio
15 T2=T1*(r1)^(r-1); //Temperature at the end of
      compression stroke in K
16 T3=(Q/Cv)+T2;//Temperature at the end of constant
      volume heat addition in K
17 a=T3/T2; // Pressure ratio
18 P3=a*P2; // Pressure ratio at the end of constant
```

```
volume heat addition in bar

19 P4=P3; // Pressure at the end of constant pressure heat addition in bar

20 x=(P5/P4)^(1/r); // Ratio of volume at the end of constant pressure heat addition to the volume at the end of isentropic expansion

21 rho=x*(r1); // Cut off ratio

22 n=(1-(1/r1^(r-1))*(a*rho^r-1)/((a-1)+(r*a*(rho-1))))
    *100; // Air standard efficiency in percent of a dual combustion engine

23

24 // Output

25 printf('The ideal thermal efficiency is %3.1f percent',n)
```

Scilab code Exa 1.28 Temperature

```
1 clc
2 clear
3 //Input data
4 P1=1; // Initial pressure of an enfine working on a
      dual combustion cycle in bar
5 T1=318; // Initial temperature before compression in K
6 r1=14; // Compression ratio
7 r=1.4; // Isentropic index
8 a=2; // Pressure ratio in the compression process
9 rho=2;//Cut off ratio
10
11 // Calculations
12 T2=T1*r1^(r-1); // Temperature at the end of
      compression stroke in K
13 T3=T2*a; // Temperature at the end of constant volume
     heat addition in K
14 T4=rho*T3; // Temperature at the end of constant
      pressure heat addition in K
```

```
15 T5=T4*(rho/r1)^(r-1);//Temperature at the end of
    isentropic compression in K
16 n=(1-((T5-T1)/(r*(T4-T3)+(T3-T2))))*100;//Efficiency
    of an engine working on a dual combustion cycle
    in percent
17
18 //Output
19 printf('(a)Temperature at the end of compression
    stroke is %3.0 f K\n (b)Temperature at the end of
    constant volume heat addition is %3.0 f K\n (c)
    Temperature at the end of constant pressure heat
    addition is %3.0 f K\n (d)Temperature at the end
    of isentropic expansion process is %3.0 f K\n (e)
    Efficiency of the cycle is %3.2 f percent', T2, T3,
    T4, T5, n)
```

Scilab code Exa 1.29 Pressure ratio

```
1 clc
2 clear
3 //Input data
4 r=15; // Compression ratio
5 Vs=0.01; //Stroke volume in m<sup>3</sup>
6 P1=1; // Initial pressure in bar
7 T1=310; // Initial temperature in K
8 P3=65; // Pressure in constant pressure heat addition
      stroke in bar
9 Cp=1; // Specific heat of air at constant pressure in
      kJ/kg K
10 Cv=0.714; // Specific heat of air at constant volume
      in kJ/kg K
11 R=287; // Molar gas constant
12
13 // Calculations
14 r1=Cp/Cv; // Isentropic index
```

```
15 P2=P1*(r)^r1;//Pressure at the end of compression
      stroke in bar
16 a=P3/P2; // Pressure ratio
17 rho=1+((5/100)*(r-1))
18 V2=Vs/(r-1); //Volume at the end of compression
      stroke in m<sup>3</sup>
19 V1=Vs+V2; // Initial volume in m<sup>3</sup>
20 m=P1*10^5*V1/(R*T1);//Mass of air contained in the
      cylinder in kg
  T2=T1*r^(r1-1); // Temperature at the end of
21
      compression stroke in K
22 a=P3/P2;//Pressure ratio
23 T3=T2*a; // Temperature at the end of constant volume
      heat addition in K
24 T4=T3*rho; // Temperature at the end of constant
      pressure heat addition in K
  T5=T4/(r/rho)^{(r1-1)}; // Temperature at the end of
25
      isentropic expansion in K
26 Qs=(Cv*(T3-T2)+Cp*(T4-T3))*m;//Heat supplied in kJ
27 Qr=m*Cv*(T5-T1);//Heat rejected in kJ
28 W=Qs-Qr; //Work done per cycle in kJ
29 n=(W/Qs)*100; // Efficiency of the cycle in percent
30 Mep=(W/Vs)/100;//Mean effective pressure in bar
31
32 // Output
33 printf('(1) Pressure ratio is \%3.3 \text{ f} \setminus \text{n} (2) Cut off
      ratio is \%3.2 \text{ f} \setminus \text{n} (3) Heat supplied per cycle is \%3
      .0 f kJ\n (4) Heat rejected per cycle is \%3.2 f kJ\n
       (5) Work done per cycle is \%3.2 \,\mathrm{f} kJ\n (6) Thermal
      efficiency of the cycle is \%3.0 \,\mathrm{f} percent\n (7)
      Mass of air contained in the cylinder is \%3.4 f kg
      \n (8) Mean effective pressure is \%3.2f bar',a,rho
      ,Qs,Qr,W,n,m,Mep)
```

Scilab code Exa 1.30 Thermal efficiency

```
1 clc
2 clear
3 //Input data
4 P1=1; // Initial pressure of air received by gas
      turbine plant in bar
5 T1=310; // Initial tamperature in K
6 P2=5.5; // Pressure at the end of compression in bar
7 r=1.4; //isentropic index
9 // Calculations
10 rp=P2/P1;//pressure ratio
11 n=(1-(1/rp)^{((r-1)/r)})*100; //Thermal efficiency of
      the turbine in percent
12
13 //Output data
14 printf ('Thermal efficiency of the turbine unit is \%3
      .2 f percent',n)
```

Scilab code Exa 1.31 Power developed

```
// Calculations
// Calculations
T2=T1*(P2/P1)^((r-1)/r); // Temperature at the end of process 1-2 in K

T4=T3*(P4/P3)^((r-1)/r); // Temperature at the end of process 3-4 in K

Wt=Cp*(T3-T4); // Work done by the turbine in kJ/kg
Wc=Cp*(T2-T1); // Work required by the compressor in kJ/kg
W=Wt-Wc; // Net work done by the turbine in kJ/kg
P=1*W; // Power developed by the turbine assembly per kg per second in kW

// Output
printf('Power developed by the turbine assembly per kg of air supplied per second is %3.2 f kW', P)
```

Scilab code Exa 1.32 Maximum temperature

```
1 clc
2 clear
3 //Input data
4 P1=1; //The pressure of air entering the compressor
     of a gas turbine plant operating on Brayton cycle
      in bar
5 T1=293; // Initial temperature in K
6 r=6.5; // Pressure ratio of the cycle
7 r1=1.4; // Isentropic ratio
9 // Calculations
10 T2=T1*(r)^((r1-1)/r1); //Temperature at the end of
      compression in K
11 T4=2.3*(T2-T1)/0.708;//Temperature at point 4 in K
12 T3=T4*(r)^((r1-1)/r1);//Maximum temperature in K
13 n=(1-((T4-T1)/(T3-T2)))*100; //Turbine plant
      efficiency in percent
```

Scilab code Exa 1.33 Air fuel ratio

```
1 clc
2 clear
3 //Input data
4 P1=1; // Pressure in an oil gas turbine installation
     in bar
5 T1=298; // Initial Temperature in K
6 P2=4; // Pressure after compression in bar
7 CV=42100; // Calorific value of oil in kJ/kg
8 T3=813; //The temperature reached after compression
      in K
9 m=1.2; // Air flow rate in kg/s
10 Cp=1.05; // Specific heat of air at constant pressure
     in kJ/kg K
11 r=1.4; // Isentropic ratio
12
13 // Calculations
14 r1=P2/P1; // Pressure ratio
15 T2=(r1)^{((r-1)/r)*T1}; // Temperature at the end of
      compression stroke in K
  T4=T3/(r1)^{(r-1)/r}; // Temperature at the end of
      isentropic expansion in K
17 Wt=m*Cp*(T3-T4); //Work done by the turbine in kJ/s
      or kW
  Wc=m*Cp*(T2-T1);//Work to be supplied to the
      compressor in kJ/s or kW
19 Wn=Wt-Wc; //Net work done by the turbine unit in kW
20 qs=m*Cp*(T3-T2);//Heat supplied by the oil in kJ/s
```

```
21 M=qs/CV; //Mass of fuel burnt per second in kg/s
22 a=m/M; // Air fuel ratio
23
24 // Output
25 printf('(a) The net power output of the installation
    is %3.2 f kW\n (b) Air fuel ratio is %3.1 f', Wn, a)
```

Scilab code Exa 1.34 Net power

```
1 clc
2 clear
3 //Input data
4 T1=300; //Minimum temperature of the plant containing
       a two stage compressor with perfect intercooling
       and a single stage turbine in K
5 T5=1100; //Maximum temperature of the plant in K
6 P1=1; // Initial Pressure in bar
7 P5=15; // Final pressure in bar
8 Cp=1.05; // Specific heat of air in kJ/kg K
9 r=1.4; // Isentropic ratio
10 P6=P1; // Pressure at 6 in bar
11
12 // Calculations
13 P3=(P1*P5)^(1/2); //The intermediate pressure for
      cooling in bar
14 P2=P3; // Pressure at point 2 in bar
15 T2=T1*(P2/P1)^{((r-1)/r)};//Temperature at the end of
      process 1-2
16 T3=T1; // Intermediate temperature in K
17 T4=1.473*T3; // Temperature at point 4 in K
18 T6=T5/(P5/P6)^{(r-1)/r}; //Temperature at point 6 in
     k
19 Wt=Cp*(T5-T6); //Work done by the turbine per kg of
      air in kJ/s
20 Wc=Cp*(T4-T3)+Cp*(T2-T1);//Work done by the
```

```
compressor per kg of air in kJ/s
21 Wn=Wt-Wc;//Net work done in kJ/s
22 Pn=Wn;//Net power developed in kW
23
24 //Output
25 printf('The net power of the plant per kg of air/s is %3.2 f kW', Pn)
```

Scilab code Exa 1.35 Maximum power

```
1 clc
2 clear
3 //Input data
4 P1=1; // Initial Pressure of a gas turbine power plant
      in bar
5 P2=8; // Final pressure in bar
6 T1=300; // Initial temperature in K
7 T5=850; // Temperature of air expanded in the turbine
     in K
8 m=1.8; //Mass of air circulated per second in kg
9 Cp=1.05; // Specific heat of air at constant pressure
     in kJ/kg K
10 r=1.4; // Ratio of specific heat
11
12 // Calculations
13 P4=(P1*P2)^(0.5); // Pressure for maximum power output
       in bar
14 P3=P2; // Pressure after the constant pressure process
      in bar
15 T3=T5; //For reheating condition Temperature in K
16 T2=T1*(P2/P1)^{((r-1)/r)};//Temperature at the end of
      constant entropy process in K
17 T4=T3/((P3/P4)^{((r-1)/r)}); // Temperature after the
      process 3-4 in K
18 T6=T4; // Temperature at the end of process 5-6 in K
```

Scilab code Exa 1.36 Mass of fluid

```
1 clc
2 clear
3 //Input data
4 P1=1.5; // Pressure at the inlet of the low pressure
     compressor in bar
  T1=300; // Temperature at the inlet of the low
     pressure compressor in K
6 P5=9; //Maximum pressure in bar
7 T5=1000; //Maximum temperature in K
8 P=400; //Net power developed by the turbine in kW
9 Cp=1.0; // Specific heat of air at constant pressure
     in kJ/kg K
10 r=1.4; // Ratio of specific heat
11
12 // Calculations
13 P8=P1; //For perfect intercooling and perfect
     reheating in bar
14 P4=P5; //For perfect intercooling and perfect
     reheating in bar
15 P2=(P1*P4)^0.5; // Pressure at the end of Isentropic
      compression in LP compressor in bar
16 P6=P2; // Pressure at the end of process 5-6 in bar
```

```
17 T2=T1*(P2/P1)^{((r-1)/r)};//Temperature at the end of
      isentropic compression in K
18 T3=T1; //For perfect intercooling in K
19 T4=T2; //For perfect intercooling in K
20 T6=T5/(P5/P6)^{(r-1)/r};//Temperature at the end of
      process 5-6 in K
21 T7=T5; // Temperature in K
22 T8=T6; // Temperature in K
23 Wt=Cp*((T5-T6)+(T7-T8)); //Work done by the turbine
      in kg/s
24 Wc=Cp*((T2-T1)+(T4-T3)); //Work absorbed by the
      compressor in kJ/s
25 Wn=Wt-Wc; //Net work output in kJ/s
26 m=P/Wn;//Mass of fluid flow per second in kg/s
27 qs=m*Cp*((T5-T4)+(T7-T6)); //Heat supplied from the
      external source in kJ/s
28
29 // Output
30 printf('(a) Mass of fluid to be circulated in the
      turbine is \%3.3 \text{ f kg/s/n} (b) The amount of heat
      supplied per second from the external source is
      \%3.1 \, \text{f kJ/s}, m, qs)
```

Scilab code Exa 1.37 Mass of air

```
9 r=1.4; // Isentropic ratio
10
11 // Calculations
12 T2=T1*a^{((r-1)/r)}; // Temperature after the isentropic
       compression stroke in K
13 T4=T3/a^{((r-1)/r)}; // Temperature after the isentropic
       expansion process in K
14 Wt=Cp*(T3-T4); //Work done by the turbine per kg of
      air per second in kJ
15 Wc=Cp*(T2-T1); //Work absorbed by the compressor per
      kg of air per second in kJ
16 Wn=Wt-Wc; //Net work output in kJ/s
17 m=P/Wn; //Mass of fluid circulated per second in kg/s
18 Q=m*Cp*(T3-T2); // Heat supplied by the heating
      chamber in kJ/s
19
20 //Output
21 printf('(a) Mass of air circulating in the
      installation is \%3.2 f \text{ kg/s/n} (b) Heat supplied by
      the heating chamber is \%3.1 \, \text{f kJ/s',m,Q}
```

Scilab code Exa 1.38 Overall efficiency

```
clear
clear
//Input data
a=6;//Pressure ratio of a gas turbine plant
T1=293;//Inlet temperature of air in K
T3=923;//Maximum temperature of the cycle in K
P=2000;//Power developed in the cycle in kW
nc=85;//Efficiency of the compressor in percentage
nt=85;//Efficiency of the turbine in percentage
Cp=1;//Specific heat of gas at constant pressure in kJ/kg K
Cv=0.714;//Specific heat of gas at constant volume
```

```
in kJ/kg K
12
13 // Calculations
14 r=Cp/Cv; // Ratio of specific heats
15 T2a=a^{(r-1)/r}*T1; // Temperature at 2' in K
16 T2=((T2a-T1)/(nc/100))+T1;//Temperature at point 2
      in K
17 T4a=T3/a^{((r-1)/r)}; // Temperature at the point 4' in
  T4=T3-((T3-T4a)*(nt/100)); //Temperature at the point
      4 in K
19 Wt=Cp*(T3-T4); //Work done by the turbine per kg of
      air in kJ
20 Wc=Cp*(T2-T1); //Work done by the compressor per kg
      of air in kJ
  Wn=Wt-Wc; // Net work output of the turbine per kg of
      air in kJ
22 qA=Cp*(T3-T2);//Heat supplied per kg of air in kJ
23 n=(Wn/qA)*100; // Overall efficiency of the turbine
      plant in percentage
24 m=P/Wn; //Mass of air circulated per second in kg
25
26 //Output
27 printf('(1) Overall efficiency of the turbine is \%3.0
      f percentage\n (2) Mass of air circulated by the
      turbine is %3.2 f kg',n,m)
```

Scilab code Exa 1.39 Isentropic efficiency

```
1 clc
2 clear
3 //Input data
4 T1=293; //Initial temperature of a gas turbine plant
    in K
5 P1=1; //Initial pressure in bar
```

```
6 P2=4.5; // Pressure after the compression in bar
7 nc=80; // Isentropic efficiency of a compressor in
      percentage
8 T3=923; // Temperature of the gas whose properties may
      be assumed to resemble with those of air in the
      combustion chamber in K
9 deltaP=0.1; // Pressure drop in a combustion chamber
      in bar
10 nt=20; //Thermal efficiency of the plant in
      percentage
11 r=1.4; // Isentropic index
12 P4=1; // Pressure at point 4 in bar
13
14 // Calculations
15 P3=P2-deltaP;//Pressure at point 3 in bar
16 T21=T1*(P2/P1)^((r-1)/r); // Temperature after the
      compression process in K
  T2=(T21-T1)/(nc/100)+T1;//Temperature at the point 2
17
18 T41=T3/(P3/P4)^{((r-1)/r)}; // Temperature at the end of
       expansion process in K
19 Ac=T2-T1; //Work done by the compressor per kg of air
      per specific heat at constant pressure Ac=Wc/Cp
20 At=T3; //Work done by the turbine per kg of air per
      specific heat at constant pressure At=Wt/Cp
21 An=At-Ac; //Net work done per kg of air
22 Bs=T3-T2; //Heat supplied per kg of air per specific
     heat at constant pressure Bs=qs/Cp;qs=heat
      supplied
23 T4=An-((nt/100)*Bs);//Temperature at point 4 in K
24 \text{ nT} = ((T3-T4)/(T3-T41))*100; //Isentropic efficiency of
      the turbine in percentage
25
26 //Output
27 printf ('The isentropic efficiency of the turbine is
     \%3.2 f percent', nT)
```

Scilab code Exa 1.40 Overall efficiency

```
1 clc
2 clear
3 //Input data
4 P1=1; // Pressure of air received by the gas turbine
      plant in bar
5 T1=300; // Initial Temperature in K
6 P2=5; // Pressure of air after compression in bar
7 T3=850; // Temperature of air after the compression in
8 nc=80; // Efficiency of the compressor in percent
9 nt=85; // Efficiency of the turbine in percent
10 r=1.4; // Isentropic index of gas
11 P3=P2; //Since 2-3 is constant pressure process in
     bar
12 P41=1; // Pressure at the point 41 in bar
13 Cp=1.05; // Specific heat of the gas at constant
      pressure in kJ/kg K
14
15 // Calculations
16 T21=T1*(P2/P1)^((r-1)/r); // Temperature at the point
      21 on the curve in K
17 T2=(T21-T1)/(nc/100)+T1;//Temperature at the point 2
      in K
18 T41=T3/(P3/P41)^{((r-1)/r)}; // Temperature at the point
      41 in K
19 T4=T3-((nt/100)*(T3-T41)); //Temperature of gas at
      the point 4 in K
20 Wt=Cp*(T3-T4); //work done by the turbine in kJ/kg of
21 Wc=Cp*(T2-T1); //Work done by the compressor in kJ/kg
       of air
22 Wn=Wt-Wc; //Net work done by the plant in kJ
```

Scilab code Exa 1.41 Overall efficiency

```
1 clc
2 clear
3 //Input data
4 P1=1; // Initial pressure of a gas turbine plant in
     bar
5 T1=310; // Initial temperature in K
6 P2=4; // Pressure of air after compressing in a rotary
       compressor in bar
7 P3=P2; // Constant pressure process
8 P41=P1; // Since 1-41 is a constant pressure process
      in bar
9 T3=900; // Temperature of air at the point 3 in
      constant process in K
10 nc=80; // Efficiency of the compressor in percentage
11 nt=85; // Efficiency of the turbine in percentage
12 E=70; // Effectiveness of the plant in percentage
13 r=1.4; // Isentropic index
14 Cp=1; // Specific heat of air at constant pressure in
     kJ/kg K
15
16 // Calculations
17 T21=T1*(P2/P1)^((r-1)/r); // Temperature at the point
      21 in the temperature versus entropy graph in K
18 T2=T1+((T21-T1)/(nc/100)); // Temperature of air after
       the compression process in K
19 T41=T3/((P3/P41)^{((r-1)/r)}); //Temperature at the
```

```
point 41 after the isentropic expansion process
20 T4=T3-((T3-T41)*(nt/100)); // Temperature at the point
      4 in K
21 Wt=Cp*(T3-T4); //Work done by the turbine in kJ
22 Wc=Cp*(T2-T1);//Work done by the compressor in kJ
23 Wn=Wt-Wc; //Net work done in kJ
24 qs=Cp*(T3-T2); // Heat supplied in kJ
25 qa=Cp*(T4-T2);//Heat available in the exhaust gases
     in kJ
26 H=qa*(E/100); // Actual heat recovered from the
     exhaust gases in the heat exchanger in kJ
27
  Hs=qs-(H); // Heat supplied by the combustion chamber
     in kJ
28 nt=(Wn/Hs)*100;//Thermal efficiency of the gas
      turbine plant with heat exchanger in percent
29
30 //Output
31 printf ('The overall efficiency of the plant is \%3.1f
       percent', nt)
```

Chapter 7

Performance of IC engines

Scilab code Exa 7.1 Brake torque

```
1 clc
2 clear
3 //Input data
4 N=1500; //Engine speed in rpm
5 p=110;//Load on brakes in kg
6 L=900; //Length of brake arm in mm
7 g=9.81; // Gravitational force in N/m<sup>2</sup>
8 pi=3.14; // Mathematical constant
9
10 // Calculations
11 T = ((p*g)*(L/1000)); //Braking torque in Nm
12 P = ((T/1000) * ((2*3.14*N)/60)); //Power available at
      the brakes of the engine in kW
13
14 // Output
15 printf('(a) Brake torque is %3.1 f Nm \n (b) Power
      available at the brakes of the engine is \%3.2 f kW
      ',T,P)
```

Scilab code Exa 7.2 Power available at brakes

```
1 clc
2 clear
3 //Input data
4 N=700; // Engine speed in rpm
5 D=0.6; // Diameter of brake drum in m
6 d=0.05; // Diameter of rope in m
7 W=35; //Dead load on the brake drum in kg
8 S=4.5; //Spring balance reading in kg
9 g=9.81; // Gravitational constant in N/m<sup>2</sup>
10 pi=3.14; // Mathematical constant
11
12 // Calculations
13 P = (((W-S)*g*pi*(D+d))/1000)*(N/60); //Power in kW
14
15 //Output
16 printf(' The power available at the brakes is %3.3 f
     kW',P)
```

Scilab code Exa 7.3 Brake thermal efficiency

```
1 clc
2 clear
3 //Input data
4 W=950; //Load on hydraulic dynamometer in N
5 C=7500; //Dynamometer constant
6 f=10.5; //Fuel used per hour in kg
7 h=50000; // Calorific value of fuel in kJ/kg
8 N=400; //Engine speed in rpm
9
10 // Calculations
11 P=(W*N)/C; //Power available at the brakes in kW
12 H=P*60; // Heat equivalent of power at brakes in kJ/min
```

```
13 Hf=(f*h)/60;//Heat supplied by fuel per minute in kJ
    /min
14 n=(H/Hf)*100;//Brake thermal efficiency in
        percentage
15
16 //Output
17 printf(' Brake thermal efficiency of the engine is
        %3.2 f percent',n)
```

Scilab code Exa 7.4 Specific fuel consumption

```
1 clc
2 clear
3 //Input data
4 n1=50.5; // Air standard efficiency in percentage
5 n2=50; //Brake thermal efficiency in percentage
6 N=3000; //Engine speed in rpm
7 H=10500; // Heating value of fuel in kcal/kg
8 T=7.2; //Torque developed in kgf*m
9 B=6.3; //Bore diameter in cm
10 S=0.095; // stroke in m
11
12 // Calculations
13 nbt=(n1/100)*(n2/100);//Brake thermal efficiency in
      percentage
14 B1=(2*(22/7)*N*T)/4500;//Brake horse power in kW
15 B2=B1/4; //Brake horse power per cylinder in kW
16 Bsf=(4500*60)/(H*427*nbt);//Brake specific fuel
      consumption in kg/BHP hr
17 bmep=(B2*4500)/(S*(3.14*B^2/4)*(N/2));//Brake mean
      effective pressure in kgf/cm<sup>2</sup>
18
19 // Output
20 printf('(a) Specific fuel consumption is \%3.3 f kg/BHP
       hr\n (b)Brake mean effective pressure is \%3.3 f
```

Scilab code Exa 7.5 Mechanical efficiency

```
1 clc
2 clear
3 //Input data
4 W=30; //The net dynamometer load in kg
5 R=0.5; // Radius in m
6 N=2400; //Speed in rpm
7 FHP=6.5; //Engine power in hp
9 // Calculations
10 BHP=(2*3.14*R*N*W)/4500;//Brake horse power in kW
11 IHP=BHP+FHP; // Indicated horse power in kW
12 nm=(BHP/IHP)*100; // Mechanical efficiency in
      percentage
13
14 //Output
15 printf ('Mechanical efficiency of the engine is \%3.2 f
       percent', nm)
```

Scilab code Exa 7.6 IHP

```
1 clc
2 clear
3 //Input data
4 d=25;//Diameter of cylinder in cm
5 1=0.4;//Stroke of piston in m
6 N=200;//Speed in rpm
7 m=10;//Misfires per minute
8 M=6.2;//Mean effective pressure in kgf/cm^2
9 nm=0.8;//Mechanical efficiency in percent
```

Scilab code Exa 7.7 Average piston speed

```
1 clc
2 clear
3 //Input data
4 I=5; //Indicated power developed by single cylinder
     of 2 stroke petrol engine
5 M=6.5; //Mean effective pressure in bar
6 d=0.1; //Diameter of piston in m
7
8 // Calculations
9 A=(3.14*d^2)/4; //Area of the cylinder
10 LN=(I*1000*60)/(M*10^5*A);//Product of length of
     stroke and engine speed
11 S=2*LN; // Average piston speed in m/s
12
13 //Output
14 printf('The average piston speed is %3.2 f m/s',S)
```

Scilab code Exa 7.8 Dimensions of cylinder

```
1 clc
2 clear
3 //Input data
4 P=60; //Power developed by oil engine in kW
5 M=6.5; //Mean effective pressure in kgf/cm<sup>2</sup>
6 N=85; // Number of explosions per minute
7 r=1.75; // Ratio of stroke to bore diameter
8 nm=0.8; // Mechanical efficiency
9
10 // Calculations
11 I=P/nm; //Indicated horse power
12 d = ((I*100*4*4500)/(M*r*3.14*N))^(1/3);//Bore
      diameter in cm
13 l=r*d; //Stroke length in cm
14
15 // Output
16 printf('(a) Diameter of the bore is \%3.2 \text{ f cm } \setminus \text{n} (b)
      Stroke length of the piston is %3.2 f cm',d,1)
```

Scilab code Exa 7.9 Bore and stroke of piston

```
clc
clear
//Input data
I=45;//Power developed by two cylinder internal
    combustion engine operating on two stroke
    principle
N=1100;//Speed in rpm
M=6;//Mean effective pressure in kgf/cm^2
r=1.3;//Ratio of stroke to the bore
nc=2;//Number of cylinders
// Calculations
d=((I*4500*4)/(M*(r/100)*3.14*N*nc))^(1/3);//
Diameter of the bore in cm
```

```
12 l=1.3*d;//Stroke length in cm
13
14 //Output
15 printf('(a)The bore diameter of the cylinder is %3.2
    f cm\n (b)Stroke length of the piston is %3.2 f cm
    ',d,l)
```

Scilab code Exa 7.10 Volumetric efficiency

```
1 clc
2 clear
3 //Input data
4 d=6; // Diameter of the bore in cm
5 1=9; //Length of the stroke in cm
6 m=0.00025; // Mass of charge admitted in each suction
      stroke
7 R=29.27; //Gas constant Kgfm/kg K
8 p=1; //Normal pressure in kgf/cm<sup>2</sup>
9 T=273; // Temperature in K
10
11 // Calculations
12 V=(m*R*T)*10^6/(p*10^4); //Volume of charge admitted
      in each cycle in m<sup>3</sup>
13 Vs = (3.14*d^2*1)/4; //Swept volume of the cylinder
14 nv=(V/Vs)*100;//Volumetric efficiency in percentage
15
16 // Output
17 printf ('The volumetric efficiency is %3.1f percent',
      nv)
```

Scilab code Exa 7.11 Volumetric efficiency

1 clc

```
2 clear
3 //Input data
4 d=0.12; // Diameter of the bore in m
5 1=0.13; //Length of stroke in m
6 N=2500; //Speed of the engine in rpm
7 d1=0.06; //Diameter of the orifice in m
8 Cd=0.70; // Discharge coefficient of orifice
9 hw=33;//Heat causing air flow through orifice in cm
      of water
10 p=760; //Barometric reading in mm of Hg
11 T1=298; // Ambient temperature in degree K
12 p1=1.013; // Pressure of air at the end of suction in
13 T2=22; // Temperature of air at the end of suction in
      degree C
14 R=0.287; // Universal gas constant
15 n=6; //Number of cylinders in the engine
16 n1=1250; //Number of strokes per minute for a four
      stroke engine operating at 2500 rpm
17
18 // Calculations
19 V=(3.14*d^2*1)/4; //Swept volume of piston in m<sup>3</sup>
20 Ao=(3.14*d1^2)/4; // Area of the orifice in m<sup>2</sup>
21 rho=p1*10^5/((R*T1)*1000);//Density of air at 1.013
      bar and 22 degrees C
22 \text{ Va}=840*\text{Cd}*\text{Ao}*(\text{hw/rho})^{(1/2)};//\text{Volume of air passing}
      through the orifice in m<sup>3</sup>/min
23 V1=8.734/n; // Actual volume of air per cylinder in m
      ^3/\min
24 As=V1/n1; // Air supplied per cycle per cylinder in m
25
  nv=(As/V)*100; // Volumetric efficiency of the engine
      in percentage
26
27 // Output
28 printf ('The volumetric efficiency of the engine is
      \%3.2 f percent', nv)
```

Scilab code Exa 7.12 Air standard efficiency

```
1 clc
2 clear
3 //Input data
4 d=0.15; // Diameter of the piston in m
5 l=0.19; //Length of the stroke in m
6 V=0.00091; // Clearance volume in m<sup>3</sup>
7 N=250; //Speed of the engine in rpm
8 M=6.5; //Indicated mean effective pressure in bar
9 c=6.3; //Gas consumption in m<sup>3</sup>/hr
10 H=16000; // Calorific value of the has in kJ/m<sup>3</sup>
11 r1=1.4; // Polytropic index
12
13 // Calculations
14 Vs = (3.14*d^2*1)/4; //Swept volume in m^3
15 Vt=Vs+V; // Total cylinder volume in m<sup>3</sup>
16 r=Vt/V; // Compression ratio
17 na=(1-(1/r^{(r1-1))})*100; // Air standard efficiency in
       percent
18 A = (3.14*d^2)/4; // Area of the bore in m
19 I = (M*10^5*1*A*N)/(1000*60); //Indicated power in kW
20 Hs=(c*H)/(60*60); // Heat supplied per second
21 nt=(I/Hs)*100; //Indicated thermal efficiency in
      percent
22
23 //Output
24 printf('(a)The air standard efficiency is \%3.1f
      percent\n (b) Indicated power is \%3.3 \text{ f kW} \setminus n (c)
      Indicated thermal efficiency is %3.1f percent', na
      , I , nt)
```

Scilab code Exa 7.13 Diameter of venturi

```
1 clc
2 clear
3 //Input data
4 ma=6; // Air supplied per minute by a single jet
      carburetor in kg/min
5 mf=0.44; //Mass flow rate of petrol in kg/min
6 s=0.74; // Specific gravity of petrol in kg/m<sup>3</sup>
7 p1=1; // Initial pressure of air in bar
8 T1=300; // Initial temperature of air in K
9 Ci=1.35; // Isentropic coefficient of air
10 V=90; //Speed of air in the venturi in m/s
11 Vc=0.85; // Velocity coefficient of the venturi in m/s
12 Cf=0.66; // Coefficient of discharge for the jet
13 Cp=1005; // Coefficient of pressure in J/kg K
14 n=1.35; // Isentropic coefficient of air
15 R=0.281; // Real gas constant in Nm/kg K
16 rhof=740; // Density of fuel in mm of Hg
17
18 // Calculations
19 p2=(1-((V/Vc)^{2})/(2*T1*Cp)))^{(n)/(n-1)};//Pressure
       at the venturi in bar
20 V1=((R*T1)/(p1*10^5))*1000;//Initial volume in m^3/
21 V2=V1*((p1/p2)^(0.741)); //Final volume in m^3/kg
22 A2=((ma*V2)/(V*60))*10^4;//Throat area of venturi in
       cm^2
23 d=((A2*4)/3.14)^(0.5);//Diameter of venturi in cm
24 deltaPa=1-p2; // Pressure drop causing air flow in bar
25 deltaPf=0.8*deltaPa; // Pressure drop causing fuel
      flow in bar
26 \text{ Af} = (\text{mf}/60) * (10^4) / ((\text{Cf}) * (2*\text{rhof} * \text{deltaPf} * 10^5)^(1/2))
      ;//Area through which fuel flows in cm<sup>2</sup>
  df = ((Af*(4/3.14))^(1/2))*10; //Diameter of fuel jet
27
      in mm
28
29 printf('(a)The diameter of the venturi of the
```

venturi if the air speed is 90 m/s is %3.2 f cm\n (b) The diameter of the jet if the pressure drop at the jet is 0.8 times the pressure drop at the venturi is %3.4 f mm',d,df)

Scilab code Exa 7.14 Fuel supplied

```
1 clc
2 clear
3 //Input data
4 r=14; //The compression ratio of a diesel engine
5 Vc=1; // Clearance volume in m<sup>3</sup>
6 c=0.08; //Fuel supply cut off point
7 nr=0.55; // Relative efficiency
8 H=10000; // Calorific value of fuel in kcal/kg
9 r1=1.4; //Ratio of specific heat of air
10 Vs=13; //Stroke volume in m<sup>3</sup>
11
12 // Calculations
13 rho=Vc+(c*Vs);//Cut off ratio
14 na=1-(1*(rho^r1-1)/((r^(r1-1)*r1)*(rho-1)));//Air
      standard efficiency of diesel cycle in percent
15 In=(na*nr); // Indicated thermal efficiency in percent
16 H1=(4500*60)/(In*427);//Heat in fuel supplied/1HP hr
17 W=H1/10^4; //Weight of fuel required/1HP hr
18
19 //Output
20 printf ('The weight of fuel required per 1HP hr is %3
      .4 f kg', W)
```

Scilab code Exa 7.15 Fuel to be injected

```
1 clc
```

```
2 clear
3 //Input data
4 P=120; //Power developed by a six cykinder four
      stroke diesel engine
5 N=2400; //Speed in rpm
6 f=0.2; //Brake specific fuel consumption in kg/kWh
7 s=0.85; // Specific gravity of fuel
9 // Calculations
10 F=f*P; // Fuel consumed per hour in kg
11 F1=F/6; // Fuel consumed per cylinder in kg/h
12 n=(N*60)/2; //Number of cycles per hour
13 F2=(F1/n)*10^3; //Fuel consumption per cycle in gm
14 V=F2/s; //Volume of fuel to be injected per cycle in
     cc
15
16 //Output
17 printf ('The quantity kof fuel to be injected per
      cycle per cylinder is %3.4 f cc', V)
```

Scilab code Exa 7.16 Diameter of orifice

```
clear
//Input data
P=20;//Power developed by a four stroke diesel
    engine per cylinder in kW

N=2000;//Operating speed of the diesel engine in rpm
s=0.25;//Specific fuel consumption in kh/kW
p1=180;//Pressure of fuel injected in bar
d=25;//Distance travelled by crank in degrees
p2=38;//Pressure in the combustion chamber in bar
Cd=0.85;//Coefficient of velocity
A=30;//API in degrees
```

```
// Calculations
// Calculations
T=d/(360*(N/60)); // Duration of fuel injection in s
SG=(141.5/(131.5+A))*10^3; // Specific gravity of fuel
V=Cd*(2*(p1-p2)*10^5/SG)^(1/2); // Velocity of fuel
injection in m/s
Vf=(s/60)*P/((N/2)*SG); // Volume of fuel injected per
cycle in m^3/cycle
Na=Vf/(V*T); // Nozzle orifice area in m^2
d=(((4*Na)/3.14)^(1/2))*10^3; // Diameter of the
orifice of the fuel injector in mm
// Output
printf('The diameter of the orifice is %3.4 f mm',d)
```

Scilab code Exa 7.17 Total orifice area

```
1 clc
2 clear
3 //Input data
4 P=200; //Power developed by a six cylinder diesel
      engine in kW
5 N=2000; // Operating speed of the engine in rpm
6 bs=0.2; //The brake specific fuel consumption in kg/
     kWh
7 p1=35; //The pressure of air in the cylinder at the
      beginning of injection in bar
8 p2=55; //Maximum cylinder pressure in bar
9 p3=180; // Initial injection pressure in bar
10 p4=520; //Maximum pressure at the injector in bar
11 Cd=0.75; // Coefficient of discharge
12 S=850; // Specific gravity of fuel
13 p5=1; // Atmospheric pressure in bar
14 a=16; //The crank angle over which injection takes
      place in degrees
15
```

```
16 // Calculations
17 Po=P/6; //Power output per cylinder in kW
18 F=(Po*bs)/60; // Fuel consumed per cylinder in kg/min
19 Fi=F/(N/2); //Fuel injected per cycle in kg
20 T=a/(360*(N/60)); //Duration of injection in s
21 deltaP1=p3-p1; // Pressure difference at the beginning
       of injection in bar
22 deltaP2=p4-p2;//Pressure difference at the end of
      injection in bar
  avP=(deltaP1+deltaP2)/2;//Average pressure
      difference in bar
V = Cd * (2*(avP*10^5)/S)^(1/2); // Velocity of injection
      of fuel jet in m/s
25 Vo=Fi/S; //Volume of fuel injected per cycle in m<sup>3</sup>/
      cycle
26 A=(Vo/(V*T))*10^6; //Area of fuel orifices in mm^2
27
28 //Output
29 printf ('The total orifice area required per injector
       if the injection takes place over 16 degree
      crank angle is %3.4 f mm<sup>2</sup>, A)
```

Scilab code Exa 7.18 Indicated power

```
1 clc
2 clear
3 //Input data
4 A=450; //Area of indicator diagram in mm^2
5 l=60; //Length of indicator diagram in mm
6 s=1.1; //Spring number in bar/mm
7 d=0.1; //Diameter of piston in m
8 L=0.13; //Length of stroke in m
9 N=400; //Operating speed of the engine in rpm
10
11 //Calculations
```

Scilab code Exa 7.19 BHP

```
1 clc
2 clear
3 //Input data
4 d=25; // Diameter of the bore in cm
5 1=0.4; //Stroke length in m
6 N=300; // Operating speed of the engine in rpm
7 n=120; //Number of explosions per minute
8 pm=6.7; //Mean effective pressure in kgf/cm<sup>2</sup>
9 Tnet=90; //Net brake load in kg
10 R=0.75; //Radius of brake drum in m
11 f=0.22; //Fuel supplied per minute in m<sup>3</sup>
12 C=4500; // Calorific value of fuel in kcal/m<sup>3</sup>
13
14 // Calculations
15 BHP=(2*3.14*R*N*Tnet)/4500;//Brake horse power in kW
16 A=(3.14*d^2)/4; // Area of the cylinder in cm<sup>2</sup>
17 IHP=(pm*1*A*n)/4500;//Indicated horse power in kW
18 H=f*C; //Heat supplied by fuel per minute in kcal
19 nt1=((IHP*C)/(990*427))*100;//Thermal efficiency on
      IHP basis in percent
20 nt2=((BHP*C)/(990*427))*100; //Thermal efficiency on
```

```
BHP basis in percent

21
22 //Output
23 printf('(a)The brake horse power is %3.2 f kW\n (b)
    Indicated horse power is %3.3 f kW\n (c)Thermal
    efficiency on IHP basis is %3.2 f percent\n (d)
    Thermal efficiency on BHP basis is %3.2 f percent'
    ,BHP,IHP,nt1,nt2)
```

Scilab code Exa 7.20 IHP

```
1 clc
2 clear
3 //Input data
4 D=0.6; //Brake wheel diameter of a constant speed
      compression ignition engine operating on four
      stroke cycle in m
5 t=0.01; //Thickness of brake band in m
6 N=500;//Operating speed of the engine in rpm
7 W=20; //Load on brake band in kgf
8 S=3; // Spring balance reading in kgf
9 1=6.25; //Length of indicator diagram in cm
10 A=4.35; // Area of indicator diagram in cm<sup>2</sup>
11 Sn=11; //Spring number in kgf/cm<sup>2</sup>/cm
12 d=10; // Diameter of the bore in cm
13 L=0.13; //Length of the stroke in m
14 F=0.23; // Specific fuel consumption in kg/BHP hr
15 CV=10000; // Heating value of fuel in kcal/kg
16
17 // Calculations
18 BHP=(3.14*(D+t)*N*(W-S))/4500; //Brake horse power in
19 MEP=(A*Sn)/1;//Mean effective pressure in kgf/cm<sup>2</sup>
20 Ar=(3.14*d^2)/4; //Area of the cylinder in cm<sup>2</sup>
21 np=N/2; //Number of explosions per minute
```

```
22 IHP=(MEP*L*Ar*np)/4500;//Indicated horse power in kW
23 nm=(BHP/IHP)*100; // Mechanical efficiency in
      percentage
24 Wf=F*BHP; //Fuel consumption per hr in kg/hr
25 nt=((IHP*4500*60)/(Wf*CV*427))*100;//Indicated
      thermal efficiency in percentage
26 nb=((BHP*4500*60)/(Wf*CV*427))*100;//Brake thermal
      efficiency in kW
27
28 //Output
29 printf('(a)The brake horse power is \%3.2 f kW\n (b)
     Indicated horse power is %3.3 f kW\n (c) Mechanical
       efficiency is %3.1f percent\n (d) Indicated
     thermal efficiency is %3.0f percent\n (e)Brake
     thermal efficiency is %3.1f percent', BHP, IHP, nm,
     nt, nb)
```

Scilab code Exa 7.21 Indicated thermal efficiency

```
1 clc
2 clear
3 //Input data
4 N=1200; // Operating speed of a four cylinder engine
      in rpm
  BHP=25.3; //The brake horse power when all 4
      cylinders are operating in kW
6 T=10.5; //The average torque when one cylinder was
      cut out in mkgf
  CV=10000; // Calorific value of the fuel used in kcal/
     kg
8 f=0.25; //The amount of petrol used in engine per BHP
      hour
9 J=427; //
10
11 // Calculations
```

Scilab code Exa 7.22 IHP

```
1 clc
2 clear
3 //Input data
4 B=32; //Brake horse power in kW with all cylinders
      working
5 B1=21.6; //BHP with number 1 cylinder cut out in kW
6 B2=22.3; //BHP with number 2 cylinder cut out in kW
7 B3=22.5; //BHP with number 3 cylinder cut out in kW
8 B4=23; //BHP with number 4 cylinder cut out in kW
10 // Calculations
11 I1=B-B1; // Indicated horse power of number 1 cylinder
      in kW
12 I2=B-B2; //IHP of number 2 cylinder in kW
13 I3=B-B3; //IHP of number 3 cylinder in kW
14 I4=B-B4; //IHP of number 4 cylinder in kW
15 I=I1+I2+I3+I4; // Total IHP of the engine in kW
```

Scilab code Exa 7.23 Compression ratio

```
1 clc
2 clear
3 //Input data
4 r=15; //The air fuel ratio by weight
5 CV=45000; // Calorific value of fuel in kJ/kg
6 nm=85; // Mechanical efficiency of 4 stroke 4 cylinder
       engine in percent
7 na=53; // Air standard efficiency of the engine in
      percent
8 nr=65; // Relative efficiency of the engine in percent
9 nv=80; // Volumetric efficiency of the engine in
      percent
10 r1=1.3; // Stroke to bore ratio
11 p1=1; // Suction pressure in bar
12 T=303; // Suction temperature in K
13 S=3000; //The operating speed of the engine in rpm
14 P=75; //Power at brakes in kW
15 r2=1.4; //Ratio of specific heats for air
16 R1=0.287; // Characteristic gas constant for air fuel
      mixture in kJ/kg K
17
18 // Calculations
19 R=(1/(1-(na/100)))^(1/(r2-1)); //Compression ratio of
       the engine
20 nti = ((na/100) * (nr/100)) * 100; //The indicated thermal
      efficiency in percent
21 Pi=P/(nm/100);//Indicated power in kW
```

```
22 F=Pi/((nti*CV)/100);//Fuel per second injected in kg
      /sec
23 B=F/P; //Brake specific fuel consumption in kg/kWsec
24 A=1+r; //Mass of fuel mixture entering the engine foe
       every one kg of fuel in kg
25 m=A*F; //Mass of air fuel mixture per second in kg
26 \text{ V} = (m*R1*T)/(p1*10^5/1000); //Volume of air fuel
      mixture supplied to the engine per sec
27 Vs=V/(nv/100);//Swept volume per second in m<sup>3</sup>/sec
28 d=((Vs*2*60*4)/(S*3.14*r1*4))^(1/3)*1000;//Diameter
      of the bore in mm
29 L=r1*d; //Stroke length in mm
30
31 // Output
32 printf('(a) Compression ratio is \%3.1 \,\mathrm{f} \, \ln \,(b)
      Indicated thermal efficiency is \%3.1f percent\n (
      c) Brake specific fuel consumption is \%3.7 f kg/kW
      sec\n (d) Bore diameter of the engine is \%3.1 f mm\
      n (e) Stroke length of the engine is %3.1 f mm', R,
      nti,B,d,L)
```

Scilab code Exa 7.24 Heat balance

```
clear
clear
//Input data
d=0.3;//Diameter of the bore in m
L=0.45;//Stroke length in m
N=220;//Operating speed of the engine in rpm
T=3600;//Duration of trial in sec
F=7;//Fuel consumption in kg per minute
CV=45000;//Calorific value of fuel in kJ/kg
A=320;//Area of indicator diagram in mm^2
1=60;//Length of indicator diagram in mm
S=1.1;//Spring index in bar/mm
```

```
13 W=130; //Net load on brakes in kg
14 D=1.65; //Diameter of brake drum in m
15 W1=500; // Total weight of jacket cooling water in kg
16 t=40; //Temperature rise of jacket cooling water in
      degrees celsius
17 t1=300; // Temperature of exhaust gases in degrees
      celsius
18 ma=300; // Air consumption in kg
19 sg=1.004; // Specific heat of exhaust gas in kJ/kgK
20 sw=4.185; // Specific heat of water in kJ/kgK
21 t2=25; //Room temperature in degrees celsius
22 \text{ g=9.81;} // \text{gravity}
23
24 // Calculations
25 P = (W*g*3.14*D*N)/(1000*60); //Power available at
      brakes in kW
26 pm=(A*S)/1;//Mean effective pressure in bar
27 I = (pm*10^5*L*((3.14*d^2)/4)*N)/(1000*2*60); //
      Indicated power developed in kW
28 nm=(P/I)*100; // Mechanical efficiency in percent
29 nt=(P/((F/T)*CV))*100;//Brake thermal efficiency in
      percent
30 ni=(I/((F/T)*CV))*100; //Indicated thermal efficiency
       in percent
31 Hs=F*CV; // Heat supplied on one hour basis
32 Hp=P*T; //Heat equivalent of brake power in kJ
33 Hf=I-P; //Heat lost in friction in kJ
34 Hc=W1*t*sw; //Heat carried away by cooling water in
35 He=(ma+F)*(t1-t2)*sg; //Heat carried away by exhaust
      gas in kJ
36 Hu=Hs-(He+Hf+Hc+He); // Heat unaccounted in kJ
37 nb=(He/Hs)*100; //Heat equivalent of power at brakes
     in percent
38 nf=(Hf/Hs)*100;//Heat lost in friction in percent
39 nw=(Hc/Hs)*100; //Heat removed by jacket water in
      percent
40 ne=(He/Hs)*100; // Heat carried away by exhaust gases
```

Scilab code Exa 7.25 BHP

```
1 clc
2 clear
3 //Input data
4 d=25; //The bore diameter of a single cylinder 4
      stroke engine in cm
5 1=0.38; //Stroke length in m
6 t=3600; // Duration of test in sec
7 r=19710; // Total number of revolutions
8 F=6.25; // Fuel oil used in kg
9 A=5.7; // Area of indicator diagram in cm<sup>2</sup>
10 L=7.6; //Length of indicator diagram in cm
11 S=8.35; //Spring number in kgf/cm<sup>3</sup>
12 P=63.5; //Net load on brake drum in kg
13 R=1.2; // Radius of brake drum in m
14 Ww=5.7; //Rate of coolant flow in kg/min
15 deltaT=44; // Temperature rise of coolant in degrees
      celsius
16 T1=15.5; // Atmospheric temperature in degrees celsius
17 As=30; // Air supplied per kg of fuel
18 CV=10600; // Calorific value of fuel in kcal/kg
19 Te=390; //Exhaust gas temperature in degrees celsius
20 sm=0.25; //Mean specific heat of exhaust gas
```

```
21
22 // Calculations
23 Hs=(F*CV)/60; //Heat supplied by fuel per minute in
      kcal
24 pm=(A*S)/L;//Mean effective pressure in kgf/cm^2
25 I = (pm*1*(3.14*d^2)*r)/(4*60*2*4500); //Indicated
      horse power in kW
26 B=(P*R*2*3.14*r)/(4500*60);//Brake horse power in kW
27 Hei=(I*4500)/427; //Heat equivalent of IHP/min in
      kcal
28 Heb=(B*4500)/427; //Heat equivalent of BHP/min in
29 Hf=Hei-Heb; //Heat in friction per minute in kcal
30 Hc=Ww*deltaT; // Heat carried away by coolant in kcal
31 We=(F+(As*F))/60;//Weight of exhaust gases per
      minute
32 He=We*(Te-T1)*sm;//Heat carried away by exhaust
      gases in kcal
33
34 //Output
35 printf('(a) Indicated horse power is \%3.2 \,\mathrm{f} \,\mathrm{kcal} \,\mathrm{n} (b)
      Brake horse power developed is %3.2 f kcal\n (c)
      Heat equivalent of friction is \%3.1f kcal', I,B,Hf
      )
```

Scilab code Exa 7.26 Percentage of heat carried away by exhaust gas

```
1 clc
2 clear
3 //Input
4 F=10; // Quantity of fuel supplied during the trial of
        a diesel engine in kg/hr
5 CV=42500; // Calorific value of fuel in kJ/kg
6 r=20; // Air fuel ratio
7 T=20; // Ambient temperature in degrees celsius
```

```
8 mw=585; //Water circulated through the gas
      calorimeter in litres/hr
9 T1=35; // Temperature rise of water through the
      calorimeter in degrees celsius
10 T2=95; // Temperature of gases at exit from the
      calorimeter in degrees celsius
11 se=1.05; // Specific heat of exhaust gases in kJ/kgK
12 sw=4.186; // Specific heat of water in kJ/kgK
13
14 // Calculations
15 M=(F/60)*(r+1); //Mass of exhaust gases formed per
     minute
16 H = ((mw/60)*sw*T1) + (M*se*(T2-T)); //Heat carried away
     by the exhaust gases per minute in kJ/min
17 Hs=(F/60)*CV; //Heat supplied by fuel per minute in
     kJ/min
18 nh=(H/Hs)*100; // Percentage of heat carried away by
      the exhaust gas
19
20 //Output
21 printf ('Percentage of heat carried away by exhaust
      gas is %3.2f percent',nh)
```

Scilab code Exa 7.27 Percentage of heat carried away by exhaust gases

```
1 clc
2 clear
3 //Input data
4 F=11; //Fuel used per hour observed during the trial
    of a single cylinder four stroke diesel engine in
        kg
5 mc=85; //Carbon present in the fuel in percent
6 mh=14; //Hydrogen present in the fuel in percent
7 mn=1; //Non combustibles present in the fuel in
        percent
```

- 8 CV=50000; // Calorific value of fuel in kJ/kg
- 9 Vc=8.5; // Percentage of carbon dioxide present in exhaust gas by Volumetric analysis
- 10 Vo=10; //Oxygen present in exhaust gases in percent
- 11 Vn=81.5; // Nitrogen present in exhaust gases in percent
- 12 Te=400; // Temperature of exhaust gases in degrees celsius
- 13 se=1.05; // Specific heat of exhaust gas in kJ/kg
- 14 Pp=0.030; // Partial pressure of steam in the exhaust in bar
- 15 Ta=20; // Ambient temperature in degrees celsius
- 16 hs=2545.6; //Enthalpy of saturated steam in kJ/kg
- 17 Tsa=24.1; // Saturation temperature from graph in degrees celcius
- 18 Cp=2.1; // Specific heat in kJ/kg K
- 19 hst=3335; //Enthalpy of super heated steam in kJ/kg 20
- 21 // Calculations
- 22 Ma=(Vn*mc)/(33*Vc);//Mass of air supplied per kg of fuel in kg
- 23 Me=Ma+1; // Mass of exhaust gases formed per kg of fuel in kg
- 24 me=(Me*F)/60;//Mass of exhaust gases formed per minute in kg
- 25 ms=F*(mh/100);//Mass of steam formed per kg of fuel in kg
- 26 ms1=(ms*F)/60;//Mass of steam formed per minute in kg
- 27 mde=me-ms1;//Mass of dry exhaust gases formed per minute in kg
- 28 H=mde*se*(Te-Ta); // Heat carried away by the dry exhaust gases per minute in kJ/min
- 29 Es=hs+(Cp*(Te-Tsa)); // Enthalpy of superheated steam in kJ/kg
- 30 He=ms1*hst;//Heat carried away by steam in the exhaust gases in kJ/min
- 31 Hl=H+He; // Total heat lost through dry exhaust gases

```
and steam in kJ/min

32 Hf=(F/60)*CV;//Heat supplied by fuel per minute in kJ/min

33 nh=(H1/Hf)*100;//Percentage of heat carried away by exhaust gases

34 //Output

36 printf('Percentage of heat carried away by exhaust gases is %3.1 f percent',nh)
```

Scilab code Exa 7.28 Increase in brake power of engine due to supercharging

```
1 clc
2 clear
3 //Input data
4 C=0.0033; //The capacity of a four stroke engine of
      compression ignition type
5 I=13; // Average indicated power developed in kW/m<sup>3</sup>
6 N=3500; // Operating speed of the engine
7 nv=80; // Volumetric efficiency in percentage
8 p1=1.013; // Initial pressure in bar
9 T1=298; // Initial temperature in K
10 r=1.75; // Pressure ratio of the engine
11 ni=75; //The isentropic efficiency in percentage
12 nm=80; //mechanical efficiency in percentage
13 r1=1.4; // Polytropic index
14
15 // Calculations
16 Vs = (N/2) *C; //Swept volume in m^3/min
17 Vi=Vs*(nv/100);//Unsupercharged engine inducted
     volume in m<sup>3</sup>/min
18 Pb=p1*r; //Blower delivery pressure in bar
19 T2s=((r)^{(r1-1)/r1})*T1;//Final temperature in K
20 T2=((T2s-T1)/(ni/100))+T1;//Blower delivery
```

```
temperature in K
21 Ve=((Pb*Vs)*T1)/(T2*p1); // Equivalent volume at 1.013
       bar and 298K in m<sup>3</sup>/min
  Vin=Ve-Vi; // Increase in inducted volume of air in m
22
      ^3/\min
23 Pin=Vin*I; // Increase in indicated power due to extra
       air inducted in kW
24 Pinp = ((Pb-p1)*Vs*100)/60; //Increase in indicated
     power due to increase in induction pressure in kW
25 Pt=Pin+Pinp; // Total increase in indicated power in
     kW
26 nb=Pt*(nm/100); // Total increase in brake power
      efficiency in kW
  ma=(Pb*Vs*100)/(60*0.287*T2);//Mass of air delivered
      by the blower in kg/s
  Wb=ma*1.005*(T2-T1); //Work input to air by blower in
      kW
  Pb1=Wb/(nv/100); //Power required to drive the blower
       in kW
30 Pb2=nb-Pb1; //Net increase in brake power in kW
31
32 // Output
```

33 printf ('The net increase in brake power is \%3.2 f kW'

,Pb2)

Chapter 8

Steam Nozzles and Turbines

Scilab code Exa 8.1 Final velocity of steam

```
1 clc
2 clear
3 //Input data
4 P1=12; // Pressure of Dry saturated steam entering a
     steam nozzle in bar
5 P2=1.5; // Discharge pressure of Dry saturated steam
     in bar
6 f=0.95; // Dryness fraction of the discharged steam
7 1=12; // Heat drop lost in friction in percentage
8 hg1=2784.8; // Specific enthalpy of steam at 12 bar
     from steam tables in kJ/kg
9 hg2=2582.3; // Specific enthalpy of 0.95 dry steam at
      1.5 bar from steam tables in kJ/kg
10
11 // Calculations
12 hd=hg1-hg2; //Heat drop in kJ/kg
13 V1=44.72*(hd)^(0.5);//Velocity of steam at discharge
      from the nozzle in m/s
14 n=1-(1/100); //Nozzle coefficient when 12 percent
     heat drop is lost in friction
15 V2=44.72*(n*hd)^(0.5); // Velocity of steam in m/s
```

Scilab code Exa 8.2 Mass of steam discharged

```
1 clc
2 clear
3 //Input data
4 P1=12; // Initial pressure of dry saturated steam
      expanded in a nozzle in bar
5 P2=0.95; // Final pressure of dry saturated steam
      expanded in a nozzle in bar
6 f=10; // Frictional loss in the nozzle of the total
      heat drop in percentage
7 d=12; //Exit diameter of the nozzle in mm
8 hd=437.1; //Heat drop in kJ/kg from steam tables
9 q=0.859; // Dryness fraction of steam at discharge
      pressure
10 vg=1.777; // Specific volume of dry saturated steam at
       0.95 bar
11
12 // Calculations
13 n=1-(f/100); // Nozzle coefficient from moiller chart
14 V2=44.72*(n*hd)^(0.5); // Velocity of steam at nozzle
      exit in m/s
15 A = (3.14/4) * (0.012)^(2); //Area of the nozzle at the
      exit in mm<sup>2</sup>
16 m = ((A*V2)/(q*vg))*3600; //Mass of steam discharged
      through the nozzle per hour in kg/hour
17
```

Scilab code Exa 8.3 Throat area

```
1 clc
2 clear
3 //Input data
4 P1=12; // Inlet pressure of steam nozzle in bar
5 T1=250; // Inlet temperature of steam nozzle in
      degrees celcius
6 P2=2; // Final pressure of the steam nozzle in bar
7 n=1.3; // Polytropic constant for superheated steam
8 St=6.831; //For isentropic expansion, entropy remains
       constant in kJ/kg
9 h1=2935.4//Enthalpy of steam at P1 from steam table
     in kJ/kg
10 ht=2860; //Enthalpy of steam at pt in kJ/kg
11 vt=0.325; // Specific volume of steam at the throat
      conditions in m<sup>3</sup>/kg
12 m=0.2; // Mass of steam discharged through the nozzle
     in kg/hour
13 q=0.947; //The dryness fraction of steam at exit from
       steam tables
14 hg=2589.6; //Enthalpy of steam at exit in kJ/kg
15 vs=0.8854; //Specific volume of saturated steam in m
      ^3/kg
16
17 // Calculations
18 pt=(P2/(n+1))^(n/(n-1))*P1;//Critical pressure ratio
      i.e., Throat pressure in bar
19 Vt = (2*1000*(h1-ht))^(0.5); // Velocity of steam at
     throat in m/s
```

Scilab code Exa 8.4 Final exit velocity of steam

```
1 clc
2 clear
3 //Input data
4 P1=10; // Pressure of steam in bar
5 f=0.9; //Dryness fraction of steam
6 At=350; // Throat area in mm<sup>2</sup>
7 Pb=1.4; //Back pressure in bar
8 h1=2574.8; //Enthalpy of steam at nozzle inlet from
      steam tables in kJ/kg
9 ft=0.87; //Dryness fraction of steam at throat
      pressure
10 fe=0.81; // Dryness fraction of steam at exit pressure
11 ht=2481; //Enthalpy of steam at throat pressure at ft
       in kJ/kg
12 vt=0.285; // Specific volume of steam at throat in m
      ^3/\mathrm{kg}
13 he=2266.2; //Enthalpy of steam at exit conditions in
      kJ/kg
14 ve=1.001; // Specific volume of steam at exit
      conditions in m<sup>3</sup>/kg
```

```
15
16 // Calculations
17 Pt=0.582*P1;//Steam pressure at the throat in bar
18 hd=h1-ht; //Enthalpy drop upto the throat in kJ/kg
19 Vt=44.7*(hd)^(0.5);//Velocity of steam at the throat
       in m/s
20 hde=h1-he; //Enthalpy drop from nozzle entrance to
      exit in kJ/kg
21 Ve=44.7*(hde)^(0.5); //Velocity of steam at nozzle
      exit in m/s
22 Ae=(At*Vt*ve)/(Ve*vt);//Exit area of nozzle from the
       mass rate of flow equation in mm<sup>2</sup>
23
24 // Output
25 printf('(a) Final exit velocity of steam is \%3.1 f m/s
      \n (b) Cross sectional area of the nozzle at exit
      for maximum discharge is %3.0 f mm<sup>2</sup>', Ve, Ae)
```

Scilab code Exa 8.5 Velocity of steam at the throat

```
clear
clear
//Input data
P1=7; //Inlet pressure of a convergent divergent
steam nozzle in bar
T1=275; //Inlet temperature of the nozzle in degrees
celcius
P2=1; // Discharge pressure of steam in bar
1=60; // Length of diverging portion of the nozzle in
mm
dt=6; // Diameter of the throat in mm
f1=10; // Percent of total available enthalpy drop
lost in friction in the diverging portion in
percentage
h1=3006.9; // Enthalpy of steam at 7bar pressure and
```

```
275 degrees celcius in kJ/kg
11 ht=2865.9; //Enthalpy at the throat from Moiller
      chart in kJ/kg
12 he=2616.7; //Enthalpy at the exit from moiller chart
     in kJ/kg
13 vt=0.555; // Specific volume of steam at throat in m
      ^3/\mathrm{kg}
14 Tt=202.8; // Temperature of steam at throat in degrees
       celcius from moiller chart
15 ve=1.65; //Volume of steam at exit in m<sup>3</sup>/kg
16
17 // Calculations
18 Pt=0.546*P1; //The throat pressure for maximum
      discharge in bar
19 hd=h1-ht; //Enthalpy drop upto throat in kJ/kg
20 Vt=44.7*(hd)^(0.5);//Velocity of steam at throat in
     m/s
21 hid=h1-he; // Total isentropic drop from 7 bar, 275
      degrees celcius to 1 bar in kJ/kg
22 hda=(1-(f1/100))*(hid);//Actual heat drop in kJ/kg
23 Ve=44.7*(hda)^(0.5); // Velocity at exit in m/s
24 At = (3.14/4)*(6/1000)^(2); //Throat area of the nozzle
       in m^2
25 m=(At*Vt)/vt;//Mass flow rate at nozzle throat in kg
26 Ae=((m*ve)/Ve)*10^4; //Exit area of the nozzle in cm
27 \text{ de} = (((Ae*4)/3.14)^{(0.5)})*10; //Diameter of the nozzle
       at exit in mm
28 alpha=atand((de-dt)/(2*60));//Half of the cone angle
       of the nozzle in degrees
29 alpha1=2*alpha; //Cone angle of the nozzle in degrees
30
31 //Output
32 printf('(a) Velocity of steam at throat is %3.0 f m/s
     n (b) Temperature of steam at the throat is \%3.1f
      degrees celcius \n (c) Cone angle of the divergent
      portion is %3.3 f degrees', Vt, Tt, alpha1)
```

Chapter 9

Air compressors

Scilab code Exa 9.1 Isothermal compression

```
1 clc
2 clear
3 //Input data
4 m=1; //Mass of air that has to be compressed in kg
5 P1=1; // Initial pressure of a single stage
      reciprocating air compressor in bar
6 P2=6; // Final pressure in bar
7 T1=303; // Initial temperature of air in K
8 n=1.2; // Polytropic index of air
9 R=287; //Gas constant for air in J/kg K
10 r=1.4; // Isentropic index
11
12 // Calculations
13 W1 = (m*R*T1*log(P2/P1))/1000; //Work required for
     compression in kJ/kg in Isothermal compression
     process
14 W2=((n/(n-1))*m*R*T1*((P2/P1)^((n-1)/n)-1))/1000;//
     Work required for compression in a polytropic
     compression process in kJ/kg
15 W3=((r/(r-1))*m*R*T1*((P2/P1)^((r-1)/r)-1))/1000;//
     Work required for compression in a Isentropic
```

```
compression process in kJ/kg
17 // Output
18 printf('(a) Work required in a isothermal compression
        is \%3.3 \, f \, kJ/kg \, n(b) Work required in a
       polytropic compression is \%3.3 \text{ f kJ/kg } \text{ } \text{n(c)} \text{Work}
```

required in a isentropic compression is \%3.3 f kJ/

Scilab code Exa 9.2 Size of the cylinder

kg',W1,W2,W3)

16

```
1 clc
2 clear
3 //Input data
4 Pi=60000; //Indicated power of a double acting air
     compressor in W
5 P1=1; // Initial pressure in bar
6 T1=293; // Initial temperature in K
7 n=1.2; // Polytropic index of the process
8 P2=8; // Final pressure in bar
9 N=120; //Speed at which the cylinder operates in rpm
10 S=150; // Average piston speed in m/min
11
12 // Calculations
13 L=S/(2*N); //Length of the stroke in m
14 X=(3.14*L)/4; //X=V/D^2 i.e., Volume of air before
     compression/square of the diameter in m
15 Y = ((n/(n-1))*P1*10^5*X*(((P2/P1)^((n-1)/n))-1)); //Y=
     W/D<sup>2</sup> Work done by the compressor per cycle in N/
     m
16 Nw=2*N; //Number of working strokes per minute since
     it is a double acting cylinder
17 D=(((Pi*60)/(Y*Nw))^(0.5))*1000;//Diameter of the
      cylinder in mm
18
```

Scilab code Exa 9.3 Indicated power

```
1 clc
2 clear
3 //Input data
4 D=0.15; // Diameter of a cylinder of a single acting
      reciprocating air compressor in m
5 L=0.2; //Length of the stroke in m
6 P1=1; //The pressure at which compressor sucks air in
       bar
7 P2=10; // Final pressure in bar
8 T1=298; // Initial Temperature in K
9 N=150; // Operating speed of the compressor in rpm
10 n=1.3; // Polytropic index of the process
11
12 // Calculations
13 V1 = ((3.14*D^2*L)/4); //Volume of air before
      compression in m<sup>3</sup>
14 W = ((n/(n-1))*P1*10^5*V1*((P2/P1)^((n-1)/n)-1)); //
     Work done by the compressor for a polytropic
      compression of air in Nm
15 Pi = ((W*N)/60)/1000; //Indicated power of the
      compressor in kW
16
17 //Output
18 printf ('The indicated power of the compressor is \%3
      .3 f kW', Pi)
```

Scilab code Exa 9.4 Mass of air delivered per minute

```
1 clc
2 clear
3 //Input data
4 D=0.25; // Diameter of the cylinder of a single acting
       air compressor in m
5 L=0.4; //Length of the stroke in m
6 P1=1; // Initial Pressure of the compressor in bar
7 T1=303; // Initial temperature of the compressor in K
8 P2=6; // Pressure during running in bar
9 N=250; // Operating speed of the compressor in rpm
10 R=287; //Gas constant in J/kg K
11
12 // Calculations
13 V1=(3.14*D^2*L)/4; //Volume of air before compression
       in m<sup>3</sup>
14 m=(P1*10^5*V1)/(R*T1);//Mass of air delivered by the
       compressor per stroke in kg/stroke
15 Nw=N; // Since single acting cylinder number of
      working stroke is equal to Operating speed of the
       compressor in rpm
16 ma=m*Nw; // Mass of air delivered per minute in kg/min
17
18 //Output
19 printf ('Mass of air delivered per minute is %3.2 f kg
     /\min', ma)
```

Scilab code Exa 9.5 Temperature

```
7 T1=308; // Inlet air temperature in K
8 n=1.3; // Polytropic index
9
10 // Calculations
11 T2=T1*(P2/P1)^((n-1)/n); // Temperature of air delivered by the compressor in K
12
13 // Output
14 printf('Temperature of air delivered by the compressor is %3.2 f K', T2)
```

Scilab code Exa 9.6 Isentropic compression

```
1 clc
2 clear
3 //Input data
4 P1=1; // Pressure at which air is sucked by a
     compressor in bar
5 T1=293; // Initial temperature in K
6 P2=9; // Delivery pressure after compression in bar
7 r=1.41; // Isentropic index
8 n=1.3; // Polytropic index
9
10 // Calculations
11 T21=T1*((P2/P1)^((r-1)/r)); //Temperature at the end
      of isentropic compression process in K
12 T22=T1*((P2/P1)^((n-1)/n));//Temperature at the end
      of isentropic compression process in K
13 T23=T1; // Temperature at the end of isotropic
     compression process in K (Temperature remains
     constant)
14
15 // Output
16 printf('(a) Temperature at the end of isentropic
     compression is \%3.2 f \text{ K/n} (b) Temperature at the
```

end of polytropic compression is $\%3.2\,\mathrm{f}$ K\n (c) Temperature at the end of isotropic compression is $\%3.0\,\mathrm{f}$ K', T21, T22, T23)

Scilab code Exa 9.7 Work done by air during suction

```
1 clc
2 clear
3 //Input data
4 V1=0.07; // Displacement of the piston of a single
      stage single cylinder air compressor in m<sup>3</sup>
5 P1=1; // Initial pressure in bar
6 T1=308; // Initial temperature of air in K
7 P2=8.5; // Pressure after the compression process in
8 r=1.4; // Isentropic compression
9
10 // Calculations
11 V2=V1*((P1/P2)^(1/1.4)); // Final volume of the
      cylinder in m<sup>3</sup>
12 W1=P1*10^5*V1; //Work done by air during suction in
     Nm (or) J
13 W2 = (P1 * 10^5 * V1 * (1 - (P2/P1)^((r-1)/r)))/(r-1); //Work
      done by air during compression in Nm or J
14 Wa1=P2*10^5*V2; //Work done on air during delivery in
       Nm or J
15 Wa2 = ((-W2) + Wa1 - W1) / 1000; / Net work done on air
      during the cycle in kJ
16
17 // Output
18 printf('(a) Work done by air during suction is \%3.0 f
      J\n (b) Work done on air during compression is \%3
      .0 f J\n (c) Work done on air during delivery is \%3
      .0f J\n (d) Net work done on air during the cycle
      is \%3.3 \, \text{f} \, \text{kJ}, \mbox{W1,W2,Wa1,Wa2}
```

Scilab code Exa 9.8 Work done on air during delivery

```
1 clc
2 clear
3 //Input data
4 V1=0.05; // displacement of a piston of a single
      cylinder single stage reciprocating compressor in
      m^3
5 P1=1; // pressure of air sucked in the compressor in
     bar
6 T1=300; // Initial Temperature of air in K
7 P2=7; // Pressure after the compression process in bar
9 // Calculations
10 V2=(P1*V1)/P2;//Volume after the compression in m<sup>3</sup>
11 W1=P1*10^5*V1; //Work done by air during suction in
     Nm
12 W2=P1*10^5*V1*log(V2/V1);//Work done on sir during
      isothermal compression in Nm
13 H=-W2; // Heat transferred to the cylinder walls in Nm
       or J
14 W3=P1*10^5*V1; //Work done on air during delivery in
15 Wn=W1+(-W2)-W3; //Net work done during the cycke in N
16
17 //Output
18 printf('(a)Work done by air during suction is %3.0f
     Nm\n (b) Work done on air during Isothermal
      compression is %3.0 f Nm\n (c) Heat transferred
      during this process is \%3.0 f J\n (d) Work done on
      air during delivery is %3.0 f Nm\n (e) Net work
      done during the cycle is %3.0 f Nm', W1, W2, H, W3, Wn)
```

Scilab code Exa 9.9 Power required

```
1 clc
2 clear
3 //Input data
4 m=2;//Mass of air delivered per second in kg
5 P1=1; // Initial pressure of a single stage compressor
      in bar
6 T1=293; // Initial temperature in K
7 P2=7; // Final pressure in bar
8 n=1.4; // Polytropic index
9 R=287; //Gas constant in J/kg K
10
11 // Calculations
12 W=((n/(n-1))*m*R*T1*(((P2/P1)^((n-1)/n))-1))
      /(60*1000);//Work done by compressor in kW
13
14 //Output
15 printf ('Power required to compress and deliver 2kg
      of air per minute is %3.3 f kW', W)
```

Scilab code Exa 9.10 Work done by compressor

```
9 n=1.3; // Polytropic index
10
11 // Calculations
12 Vs = (3.14*D^2*L)/4; //Stroke volume of the compressor
      in m<sup>3</sup>
13 Vc=0.05*Vs;//Clearance volume in m<sup>3</sup>
14 V1=Vs+Vc; // Initial volume of air in m<sup>3</sup>
15 V4=Vc*(P2/P1)^(1/n); //The air in the clearance
      volume expands during suction stroke in m<sup>3</sup>
16 V=V1-V4; // Effective swept volume in m<sup>3</sup>
17 W=((n/(n-1))*P1*10^5*(V1-V4)*(((P2/P1)^((n-1)/n))-1)
      );//Work done by the compressor per cycle in Nm
18
19 //Output
20 printf ('Work done by the compressor per cycle is \%3
      .1 f Nm', W)
```

Scilab code Exa 9.11 Volume of free air

```
1 clc
2 clear
3 //Input data
4 D=0.1; // Diameter of the bore of a single acting
      compressor in m
5 L=0.1; //Length of the stroke in m
6 N=400; // Operating speed of the compressor in in rpm
7 Vc=0.00008; // Clearance volume in m<sup>3</sup>
8 n=1.2; // Polytropic index
9 T1=303; // Initial temperature in K
10 Tf=293; // Final temperature in K
11 P1=0.95; // Initial pressure in bar
12 P2=8; // Final pressure in bar
13 Pf=1.013; //Free air pressure in bar
14
15 // Calculations
```

Scilab code Exa 9.12 Power of the compressor

```
1 clc
2 clear
3 //Input data
4 P1=1; // Pressure of air drawn by a two stage single
      acting reciprocating air compressor in bar
5 T1=293; // Initial temperature in K
6 P3=60; //Final pressure after the compression in bar
7 P2=10; // Pressure after compression in the LP
      cylinder in bar
8 T2=303; // Temperature after cooling in K
9 D=0.16; //Diameter of a cylinder in m
10 L=0.2; //Stroke length of the cylinder in m
11 n=1.3; // Polytropic index
12 N=300; // Operating speed of the compressor in rpm
13 R=287; //Gas constant in J/kg K
14
15 // Calculations
```

```
16 V1=(3.14*D^2*L)/4; //Volume of the LP cylinder in m^3
17 V2=(P1*V1*T2)/(T1*P2); //Volume of the HP cylinder in m^3
18 W=(n/(n-1))*(P1*10^5*V1*(((P2/P1)^((n-1)/n))-1)+(P2 *10^5*V2*(((P3/P2)^((n-1)/n))-1))); //Work done by the compressor per working cycle in N m
19 P=(W*N)/(60*1000); //Power of the compressor in kW
20
21 //Output
22 printf('Power of the compressor when it runs at 300 rpm is %3.3 f kW',P)
```

Scilab code Exa 9.13 Percentage saving in work

```
1 clc
2 clear
3 //Input data
4 P1=1; // Initial pressure in bar
5 P3=9; // Final pressure in bar
6 n=1.3; // Compression index
8 // Calculations
9 W1=(n/(n-1))*(P1*10^5*(((P3/P1)^((n-1)/n))-1));//
     Work done in compression in a single stage per
     unit volume per kg of air in N m
10 P2=(P1*P3)^(0.5); // Intercooler pressure for perfect
     intercooling in bar
11 W2=2*(n/(n-1))*(P1*10^5*(((P2/P1)^((n-1)/n))-1));
     Work done in compression in a two stage
     compressor per unit volume per kg of air in N m
12 Wc=W1-W2; //Saving in work of compression in N m
13 nw=((W1-W2)/W1)*100;//Percentage saving in work of
     compression in percentage
14
15 // Output
```

```
16 printf('Percentage saving in the work of compression of air in two stages instead of single stage is %3.2 f percent',nw)
```

Scilab code Exa 9.14 Work required

```
1 clc
2 clear
3 //Input data
4 m=1; //Mass of air to be compressed in kg
5 P1=1; // Pressure of air before compression in bar
6 T1=303; // Initial temperature in K
7 P3=25; //Final pressure of air after compression in
     bar
8 n=1.3; // Polytropic index
9 R=287; //Gas constant in J/kg K
10
11 // Calculations
12 P2=(P1*P3)^(0.5);//Intermediate pressure in the case
       of perfect intercooling in bar
13 W=2*(n/(n-1))*(m*R*T1*(((P2/P1)^((n-1)/n))-1)); //
     Work done in compression in a two stage
     compressor per unit volume per kg of air in N m
14
15 //Output data
16 printf ('Minimum work required to compress 1kg of air
       for given conditions is \%3.0 f N m', W)
```

Scilab code Exa 9.15 Power required to drive compressor

```
1 clc
2 clear
3 //Input data
```

```
4 V1=3; //Volume of air sucked in by a two stage
      compressor in m<sup>3</sup>
5 P1=1.04; // Initial pressure in bar
6 T1=298; // Initial temperature in K
7 P2=9; // Delivery pressure in bar
8 n=1.25; // Polytropic index
9
10 // Calculations
11 P2=(P1*P2)^(0.5); // Intermediate pressure for perfect
       intercooling and for minimum work of compression
       in bar
12 W=2*(n/(n-1))*(P1*10^5*V1*(((P2/P1)^((n-1)/n))-1));
     //Work done in compression in a two stage
      compressor per unit volume per kg of air in Nm
13 P=W/(60*1000);//Power required to drive the
      compressor in kW
14
15 //Output
16 printf ('The minimum power required to drive the
      compressor is %3.3 f kW',P)
```

Scilab code Exa 9.16 Mass of water

```
11 Cp=1; // Specific heat of air in kJ/kg K
12 Cw=4.2; // Specific heat of water in kJ/kg K
13 ma=1; //Mass of air in the compressor in kg
14
15 // Calculations
16 P2=(P1*P3)^(0.5); // Intercooler pressure for complete
       intercooling and for minimum work of compression
      in bar
17 T2=T1*(P2/P1)^((n-1)/n); //Temperature after the
      compression process in K
18 mw = (ma*Cp*(T2-T3))/(Cw*(Tc)); //Mass of water to
      circulate in the intercooler per kg of air in kg
19
20 //Output
21 printf ('Mass of water to circulate in the
      intercooler for abstracting heat is \%3.3 f kg', mw)
```

Scilab code Exa 9.17 Volume ratio of LP to HP cylinders

Scilab code Exa 9.18 Ratio of cylinder diameters

```
1 clc
2 clear
3 //Input data
4 P1=1; // Initial pressure of air entering a two stage
      air compressor with complete intercooling in bar
5 P3=25; // Delivery pressure of air toe the mains in
6 T1=303; // Initial temperature in K
7 n=1.35; // Compression index
9 // Calculations
10 P2=(P1*P3)^(0.5);//Inter cooler pressure for perfect
       intercooling in bar
11 R=(P2/P1)^(0.5); // Ratio of cylindrical diameters
12
13 //Output
14 printf ('The ratio of cylinder diameters for the
      efficiency of compression to be maximum is \%3.3 f'
      , R)
```

Scilab code Exa 9.19 Number of stages

```
1 clc
2 clear
3 //Input data
4 P1=1; // Initial pressure of a multistage compression
      in bar
5 Pn1=120; // Final pressure in bar
6 r=4;//Permissible pressure ratios per stage
8 // Calculations
9 n = \log(Pn1/P1)/\log(r)
10 n1=4; //As n=3.45 say 4 stages
11 P5=Pn1; // Since number of stages is 4
12 P4=P5/(Pn1/P1)^(1/n1); //Pressure after the stage 3
      in bar
13 P3=P4/(Pn1/P1)^(1/n1); //Pressure after the stage 2
14 P2=P3/(Pn1/P1)^(1/n1); //Pressure after the stage 1
      in bar
15
16 //Output
17 printf('(a) Number of stages are \%3.0 \text{ f} \setminus n (b)
      Intermediate pressures are, P2 = \%3.2 \, f bar, P3 =
      \%3.2 \, \text{f} \, \text{bar}, \, P4 = \%3.2 \, \text{f} \, \text{bar}, \, \text{n1,P2,P3,P4}
```

Scilab code Exa 9.20 Intermediate pressures

```
9
10 // Calculations
11 W=((3*n)/(n-1))*P1*10^5*V1*(((P4/P1)^((n-1)/(3*n)))
      -1);//Work done by the compressor in kJ/min
12 P=W/(60*1000); //Power required to deliver 15 m<sup>3</sup>/min
       air in kW
13 P2=P1*(P4/P1)^(1/3);//Intermediate pressure after
      stage 1 in bar
14 P3=P2*(P4/P1)^(1/3);//Intermediate pressure after
      stage 2 in bar
15
16 //Output
17 printf('(a) Power required to deliver 15 m<sup>3</sup>/min air
      at suction condition is %3.1 f kW\n (b)
      Intermediate pressures are P2 = \%3.3 \, f bar P3 = \%3
      .3 f bar', P, P2, P3)
```

Scilab code Exa 9.21 Heat rejected

```
1 clc
2 clear
3 //Input data
4 P1=1; // Atmospheric pressure in bar
5 P4=60; // Delivery pressure in bar
6 T1=303; // Initial temperature in K
7 n=1.3; //Index of compression
8 Cp=1.005; // Specific heat of air at constant pressure
      in kJ/kg K
9 S=3; //Number of stages
10
11 // Calculations
12 P2=P1*(P4/P1)^(1/3); //Intermediate pressure in bar
13 T2=T1*(P2/P1)^((n-1)/n);//Temperature of air
      entering the intercoolers in K
14 H=Cp*(T2-T1); //Heat rejected in each intercooler in
```

```
kJ
15
16 //Output
17 printf('Amount of heat rejected in each intercooler is %3.0 f kJ', H)
```

Scilab code Exa 9.22 Ratio of cylinder volumes

```
1 clc
2 clear
3 //Input data
4 P1=1; // Pressure at the end of suction stroke in LP
      cylinder of a 3 stage single acting reciprocating
       compressor in bar
5 T1=293; // Temperature at the end of suction stroke in
      LP cylinder in K
6 V=9; //Free air delivered by the compressor in m<sup>3</sup>
7 P4=65; // Pressure delivered by the compressor in bar
8 n=1.25; // Polytropic index
9
10 // Calculations
11 P2=P1*(P4/P1)^(1/3);//Intermediate pressure after
      stage 1 in bar
12 P3=P2*(P4/P1)^(1/3);//Intermediate pressure after
      stage 2 in bar
13 V3=1; //The volume of cylinder for the third stage in
      m^3
14 V2=V3*(P3/P2);//Volume of the cylinder for second
      stage in m<sup>3</sup>
15 V1=(P2/P1)*V2;//Volume of the cylinder for first
      stage in m<sup>3</sup>
16 W = (((3*n)/(n-1))*P1*10^5*V*(((P4/P1)^((n-1)/(3*n)))
      -1))/1000;//Work done by the compressor in kJ/min
17 Pi=W/60; //Indicated power in kW
18
```

19 // Output

20 printf('(a)L.P. and I.P. compressor delivery pressure is $P2 = \%3.3\,f$ bar $P3 = \%3.2\,f$ bar\n (b)Ratio of cylinder volumes is $V1:V2:V3 = \%3.2\,f:\%3.3\,f:\%3.0\,f$ \n (c)Total indicated power is $\%3.2\,f$ kW',P2,P3,V1,V2,V3,Pi)

Chapter 10

Refrigeration and air conditioning

Scilab code Exa 10.1 Power rating

```
1 clc
2 clear
3 //Input data
4 T1=273; //The temperature of ice in K
5 T2=298; //Temperature of water at room in K
6 COP=2.1; //Cop of the plant
7 ne=90; // Overall electrochemical efficiency in
     percentage
8 w=15; // Weight of ice produced per day in tonnes
9 cw=4.187; // Specific heat of water in kJ/kg degrees
      celcius
10 Li=335; // Latent heat of ice in kJ/kg
11 mi=1; //Mass of ice produced at 0 degrees celcius
12
13 // Calculations
14 m = (w*1000)/(24*60); //Mass of ice produced in kg/min
15 h=(mi*cw*(T2-T1))+Li;//Heat extracted from 1kg of
     water at 25 degrees celcius to produce 1kg of ice
       at 0 degrees celcius in kJ/kg
```

```
16 Q=m*h;//Total heat extracted in kJ
17 W=Q/COP;//Work done by the compressor in kJ/kg
18 P=W/(60*(ne/100));//Power of compressor in kW
19
20 //Output
21 printf('Power rating of the compressor-motor unit if the cop of the plant is 2.1 is %3.1 f kW',P)
```

Scilab code Exa 10.2 Refrigeration capacity

```
1 clc
2 clear
3 //Input data
4 m=400; //Mass of fruits supplied to a cold storage in
5 T1=293; // Temperature at which fruits are stored in K
6 T2=268; // Temperature of cold storage in K
7 t=8;//The time untill which fruits are cooled in
     hours
8 hfg=105; //Latent heat of freezing in kJ/kg
9 Cf=1.25; // Specific heat of fruit
10 TR=210; //One tonne refrigeration in kJ/min
11
12 // Calculations
13 Q1=m*Cf*(T1-T2); // Sensible heat in kJ
14 Q2=m*hfg;//Latent heat of freezing in kJ
15 Q=Q1+Q2; //Heat removed from fruits in 8 hrs
16 Th=(Q1+Q2)/(t*60); // Total heat removed in one minute
       in kJ/kg
17 Rc=Th/TR; // Refrigerating capacity of the plant in TR
18
19 //Output
20 printf ('The refrigeration capacity of the plant is
     \%3.3 \, f \, TR', Rc)
```

Scilab code Exa 10.3 COP of a heat pump

```
1 clc
2 clear
3 //Input data
4 T1=300; //The maximum temperature at which carnot
      cycle operates in K
  T2=250; //The minimum temperature at which carnot
      cycle operates in K
7 // Calculations
8 COPr=T2/(T1-T2);//COP of the refrigerating machine
9 COPh=T1/(T1-T2)//COP of heat pump
10 n=((T1-T2)/T1)*100;//COP or efficiency of the heat
      engine in percentage
11
12 //Output data
13 printf('(a)COP of the machine when it is operated as
       a refrigerating machine is \%3.2 \text{ f} \setminus n (b)COP when
      it is operated as heat pump is \%3.2 f\n (c)COP or
      efficiency of the Heat engine is %3.2f percent',
      COPr, COPh, n)
```

Scilab code Exa 10.4 Time taken to achieve cooling

```
1 clc
2 clear
3 //Input data
4 m=20000;//The storage capacity of fish in a storage plant in kg
5 T1=298;//Supplied temperature of fish in K
```

```
6 T2=263; // Temperature of cold storage in which fish
      are stored in K
7 T3=268; // Freezing point of fish in K
8 Caf=2.95; // Specific heat of fish above freezing
      point in kJ/kg K
  Cbf=1.25; // Specific heat of below freezing point in
      kJ/kg K
10 W=75; //Work required by the plant in kW
11 TR=210; //One tonne refrigeration in kJ/min
12 hfg=230; //Latent heat of fish in kJ/kg
13
14 // Calculations
15 COPr=T2/(T1-T2);//COP of reversed carnot cycle
16 COPa=0.3*COPr;//Given that actual COP is 0.3 times
      of reversed COP
17 Hr = (COPa*W)*60; // Heat removed by the plant in kJ/min
18 C=Hr/TR; // Capacity of the plant in TR
19 Q1=m*Caf*(T1-T3);//Heat removed from the fish above
      freezing point in kJ
20 Q2=m*Cbf*(T3-T2);//Heat removed from fish below
      freezing point in kJ
21 Q3=m*hfg;//Total latent heat of the fish in kJ
22 Q=Q1+Q2+Q3; //Total heat removed by the plant in kJ
23 T=(Q/Hr)/60; //Time taken to achieve cooling in hrs
24
25 //Output data
26 printf('(a) Capacity of the plant is \%3.2 \text{ f TR} \setminus \text{n} (b)
      Time taken to achieve cooling is \%3.2 f hours', C, T
      )
```

Scilab code Exa 10.5 Theoretical COP

```
1 clc
2 clear
3 //Input data
```

```
4 T2=298; //Maximum temperature at which CO2 machine
     works in K
5 T1=268; //Minimum temperature at which CO2 machine
     works in K
6 sf1=-0.042; //Liquid entropy at 268 K in kJ/kg K
7 hfg1=245.3; //Latent heat of gas at 268 K in kJ/kg
8 sf2=0.251; //Liquid entropy in kJ/kg K
9 hfg2=121.4; //Latent heat of gas at 298 K in kJ/kg
10 hf1=-7.54; //Liquid enthalpy at 268 K in kJ/kg
11 hf2=81.3; //Liquid enthalpy at 298 K in kJ/kg
12 hf3=81.3; //Enthalpy at point 3 in graph in kJ/kg
13
14 // Calculations
15 s2=sf2+(hfg2/T2); //Entropy at point 2 from the graph
      in kJ/kg K
16 x1=(s2-sf1)/(hfg1/T1);//Dryness fraction at point 1
17 h1=hf1+(x1*hfg1); //Enthalpy at point 1 in kJ/kg
18 h2=hf2+hfg2; //Enthalpy at point 2 in kJ/kg
19 COP=(h1-hf3)/(h2-h1);//Coefficient of performance
     for a CO2 machine working at given temperatures
20
21 //Output data
22 printf ('Theoretical COP for a CO2 machine working at
      given temperatures is \%3.2 f', COP)
```

Scilab code Exa 10.6 Capacity of refrigerator

```
7 sf1=0.5443; //Liquid entropy at 298 K in kJ/kg K
8 sf2=1.1242; //Liquid entropy at 263 K in kJ/kg K
9 hfg1=1297.68; // Latent heat at 298 K in kJ/kg
10 hfg2=1166.94; //Latent heat at 263 K in kJ/kg
11 hf1=135.37; //Liquid enthalpy at point 1 in graph in
     kJ/kg
12 hf2=298.9; //Liquid enthalpy at point 2 in graph in
     kJ/kg
13 TR=210; //One tonne refrigeration in TR
14
15 // Calculations
16 s2=sf2+(hfg2/T2); //Entropy at point 2 in kJ/kg
17 x1=(s2-sf1)/(hfg1/T1);//Dryness fraction at point 1
18 h1=hf1+(x1*hfg1); //Enthalpy at point 1 in kJ/kg
19 h=h1-hf2; //Heat extracted of refrigerating effect
     produced per kg of refrigerant in kJ/kg
20 ht=mf*h; // Total heat extracted at a fluid flow rate
     of 5 kg/min in kJ/min
21 C=ht/TR; // Capacity of refrigerating in TR
22
23 //Output
24 printf ('The capacity of refrigerator is \%3.0 f TR', C)
```

Scilab code Exa 10.7 Theoretical COP

```
1 clc
2 clear
3 //Input data
4 T1=263; //Minimum temperature at which ammonia
    refrigerating machine works in K
5 T2=303; //Maximum temperature at which ammonia
    refrigerating machine works in K
6 x1=0.6; // Dryness fraction of ammonia during suction
    stroke
7 sf1=0.5443; //Liquid entropy at 263 K in kJ/kg K
```

```
8 hfg1=1297.68; // Latent heat at 263 K in kJ/kg
9 sf2=1.2037; //Liquid entropy at 303 K in kJ/kg K
10 hfg2=1145.8; // Latent heat at 303 K in kJ/kg
11 hf1=135.37; //Liquid enthalpy at 263 K in kJ/kg
12 hf2=323.08; //Liquid enthalpy at 303 K in kJ/kg
13
14 // Calculations
15 s1=sf1+((x1*hfg1)/T1);//Entropy at point 1 in kJ/kg
16 x2=(s1-sf2)/(hfg2/T2);//Entropy at point 2 in kJ/kg
     K
17 h1=hf1+(x1*hfg1); //Enthalpy at point 1 in kJ/kg
18 h2=hf2+(x2*hfg2); //Enthalpy at point 2 in kJ/kg
19 COP=(h1-hf2)/(h2-h1);//Theoretical COP of ammonia
      refrigerating machine
20
21 //Output
22 printf('The theoretical COP of a ammonia
      refrigerating machine working between given
     temperatures is %3.2 f', COP)
```

Scilab code Exa 10.8 Ice produced

```
1 clc
2 clear
3 //Input data
4 T1=263; //Minimum temperature at which Vapour compression refrigerator using methyl chloride operates in K
5 T2=318; //Maximum temperature at which Vapour compression refrigerator using methyl chloride operates in K
6 sf1=0.183; //Entropy of the liquid in kJ/kg K
7 hfg1=460.7; //Enthalpy of the liquid in kJ/kg 8 sf2=0.485; //Entropy of the liquid in kJ/kg K
```

```
9 hfg2=483.6; //Enthalpy of the liquid in kJ/kg
10 x2=0.95; // Dryness fraction at point 2
11 hf3=133.0; //Enthalpy of the liquid in kJ/kg
12 W=3600; //Work to be spent corresponding to 1kW/hour
13 Cw=4.187; // Specific heat of water in kJ/kg degrees
      celcius
14 mi=1; //Mass of ice produced at 0 degrees celcius
15 Li=335; // Latent heat of ice in kJ/kg
16 hf1=45.4; //Enthalpy of liquid at 263 K in kJ/kg
17 hf2=133; //Enthalpy of liquid at 318 K in kJ/kg
18
19 // Calculations
20 s2=sf2+((x2*(hfg2-hf2))/T2);//Enthalpy at point 2 in
      kJ/kg
21 \times 1 = (s2-sf1)/((hfg1-hf1)/T1); //Dryness fraction at
22 h1=hf1+(x1*hfg1); //Enthalpy at point 1 in kJ/kg
23 h2=hf2+(x2*hfg2); //Enthalpy at point 2 in kJ/kg
24 COP=(h1-hf3)/(h2-h1);//Theoretical COP
25 COPa=0.6*COP; // Actual COP which is 60 percent of
      theoretical COP
26 H=W*COPa; //Heat extracted or refrigeration effect
      produced per kW hour in kJ
27 Hw=(mi*Cw*10)+Li;//Heat extracted from water at 10
      degrees celcius for the formation of 1 kg of ice
      at 0 degrees celcius
28 I=H/Hw; //Amount of ice produced in kg/kW hr
29
30 //Output
31 printf ('The amount of ice produced is \%3.2 f kg/kW hr
      ',I)
```