Série 5

Exercice 1. (Formule intégrale de Schwarz). Soit f analytique dans $D(0, 1 + \epsilon)$ pour un certain $\epsilon > 0$.

(1) Montrer que

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it}}{e^{it} - z} f(e^{it}) dt, \qquad z \in D(0, 1) ;$$

(2) Montrer que pour tout $z \in D(0,1)$

$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) \frac{1 + e^{it}\bar{z}}{1 - e^{it}\bar{z}} dt \; ;$$

(3) En déduire la formule intégrale de Schwarz

$$f(z) = i \text{Im} f(0) + \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \text{Re} f(e^{it}) dt, \qquad z \in D(0, 1);$$

(4) Montrer que pour tout $z \in D(0,1)$,

$$f(z) - f(0) = \frac{1}{2\pi} \int_0^{2\pi} \frac{2z}{e^{it} - z} \operatorname{Re} f(e^{it}) dt,$$
$$\frac{f^{(n)}(z)}{n!} = \frac{1}{2\pi} \int_0^{2\pi} \frac{2e^{it}}{(e^{it} - z)^{n+1}} \operatorname{Re} f(e^{it}) dt,$$
$$\operatorname{Re} f(z) = \frac{1 - |z|^2}{2\pi} \int_0^{2\pi} \frac{\operatorname{Re} f(e^{it})}{|e^{it} - z|^2} dt.$$

Exercice 2. (Inégalité de Harnack)

(1) Montrer que pour tout $t \in [0, 2\pi]$ et $z \in D(0, 1)$ on a

$$(1-|z|)^2 < |e^{it}-z|^2 < (1+|z|)^2.$$

(2) Soit f analytique dans $D(0, 1+\epsilon)$ pour un certain $\epsilon > 0$ et t.q. $Ref(e^{it}) \ge 0$ pour tout $t \in [0, 2\pi]$. Montrer que

$$\frac{1-|z|}{1+|z|} \text{Re} f(0) \le \text{Re} f(z) \le \frac{1+|z|}{1-|z|} \text{Re} f(0) , \qquad \forall z \in D(0,1).$$

Exercice 3. Soit $\{a_m\}_{m\in\mathbb{N}}\subset\mathbb{C}$ et soit $f(z)=a_0+\sum_{l=1}^\infty a_lz^l$ analytique dans $D(0,1+\epsilon)$ pour un certain $\epsilon>0$ t.q. $\mathrm{Re}f(e^{it})\geq 0$ pour tout $t\in[0,2\pi]$. Montrer que

$$|a_l| \le 2\operatorname{Re}(a_0) \quad \forall \ l \ge 1.$$

Exercice 4. (Théorème fondamental de l'algèbre) Soit p un polynôme non constant. En étudiant le comportement de

$$\int_{|z|=R} \frac{1}{zp(z)} dz$$

quand $R \to \infty$, déduire qu'il existe un point z_* t.q. $p(z_*) = 0$.

Exercice 5.

- (1) Montrer qu'une fonction entière $f: \mathbb{C} \to \mathbb{C}$ telle que $\frac{|f(z)|}{(1+|z|^n)}$ est borné est nécessairement un polynôme de degré $\leq n$.
- (2) Montrer qu'une fonction entière $f: \mathbb{C} \to \mathbb{C}$ telle que $f(z) \neq 0$ pour tout $z \in \mathbb{C}$ et telle qu'il existe B, C > 0 pour lesquels $|f(z)| \leq e^{B|z|+C}$, est nécessairement de la forme $f(z) = e^{\alpha z + \beta}$, pour certains $\alpha, \beta \in \mathbb{C}$.

Exercice 6. Trouver une fonction holomorphe $f:\mathbb{C}\setminus\mathbb{R}_-\to\mathbb{C}$ bornée et non constante.

Exercice 7. Soit $U \subset \mathbb{C}$ un domaine (ouvert connexe) tel que $\mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\} \subset U$. Soit $f: U \to \mathbb{C}$ une fonction holomorphe t.q. $f(e^{it})e^{it/2} \in \mathbb{R}$ pour tout $t \in [0, 2\pi]$. Montrer que $f \equiv 0$ sur U.