

WHAT IS CLAIMED IS:

1 1. A wireless communication receiver comprising:
2 an antenna array comprising an antenna which provides signals for each of
3 successive sets of pilot data;
4 a joint searcher and channel estimator which essentially concurrently considers
5 the plural signals for the respective successive sets of pilot data for determining both a
6 time of arrival and channel coefficient.

1 2. The apparatus of claim 1, wherein the time of arrival and the channel
2 coefficient are essentially concurrently determined by the joint searcher and channel
3 estimator.

1 3. The apparatus of claim 1, further comprising a detector which utilizes the
2 channel coefficient and the time of arrival to provide a symbol estimate.

1 4. The apparatus of claim 1, wherein the wireless communication receiver is a
2 mobile terminal.

1 5. The apparatus of claim 1, wherein the wireless communication receiver is a
2 network node.

1 6. The apparatus of claim 1, wherein each of the sets of pilot data is represented
2 by a pilot set index, and wherein the joint searcher and channel estimator comprises:
3 an antenna signal matrix in which a complex value indicative of the signal
4 received in a sampling window is stored as a function of a sampling window time index
5 and the pilot set index;
6 a correlator which uses the antenna signal matrix to generate a correlator output;
7 a correlator output analyzer which uses the correlator output to generate the time
8 of arrival and the channel coefficient.

1 7. The apparatus of claim 6, wherein in performing the calculation the correlator
2 considers a dimensional receptivity vector formed from the antenna signal matrix with
3 respect to a sampling window time index for the plural sets of pilot data, the

4 dimensional receptivity vector having a frequency related to a difference between phase
 5 components of complex values of the dimensional receptivity vector, there being plural
 6 possible frequencies for the dimensional receptivity vector, the plural possible
 7 frequencies being represented by a frequency index; and

8 wherein for each combination of plural possible frequencies and plural time
 9 indexes, the correlator calculates:

10 $Y(n,t) = \text{FFT}(n, X(:,t))$

11 wherein t is the sampling window time index;

12 $X(:,t)$ is the complex antenna matrix; and

13 n is the frequency index.

1 8. The apparatus of claim 7, wherein for each combination of plural possible
 2 frequencies and plural time indexes, the correlator calculates:

3 $Y(n,t) = \sum C_j * \text{FFT}(n, X(:,t)), j = 1, K$

4 wherein C_j is a coding sequence symbol value j and K is a length of the coding
 5 sequence.

1 9. The apparatus of 7, wherein each of the plural possible frequencies
 2 corresponds to a doppler shift.

1 10. The apparatus of 9, wherein the correlator output comprises $Y(n,t)$, and
 2 wherein the analyzer determines a maximum absolute value $|Y(n,t)|_{\max}$, wherein the
 3 analyzer uses a sampling window time index t_{\max} at which $|Y(n,t)|_{\max}$ occurs to
 4 determine the time of arrival of an arriving wavefront; and wherein the analyzer uses
 5 the a frequency index n_{\max} at which $|Y(n,t)|_{\max}$ to determine the doppler shift.

1 11. The apparatus of 7, wherein the correlator output comprises $Y(n,t)$, and
 2 wherein the analyzer determines a maximum absolute value $|Y(n,t)|_{\max}$, wherein the
 3 analyzer obtains an amplitude for an arriving wavefront by dividing $|Y(n,t)|_{\max}$ by a
 4 number of sets of pilot data in the series.

1 12. The apparatus of claim 1, wherein each of the sets of pilot data is
 2 represented by a pilot set index, and wherein the joint searcher and channel estimator
 3 comprises:

4 an antenna signal matrix in which a complex value indicative of the signal
5 received in a sampling window is stored as a function of a sampling window time index
6 and the pilot set index;

7 a parametric estimator which uses complex values in the antenna matrix to
8 generate a parametric output estimation vector

9 an analyzer which uses the parametric output estimation vector to generate the
10 time of arrival and the channel coefficient.

1 13. The apparatus of claim 12, wherein each frequency parameter in the
2 parameter estimation vector corresponds to a possible doppler shift.

1 14. The apparatus of claim 12, wherein the parametric output estimation vector
2 has a sampling window time index and wherein the analyzer uses absolute values of
3 elements of the parametric output estimation vector to determine the time of arrival and
4 doppler shift of an arriving wavefront.

1 15. The apparatus of claim 14, wherein the parametric output estimation vector
2 has a sampling window time index and a frequency index; and wherein for an element
3 of the parametric output estimation vector having a sufficiently high absolute value the
4 analyzer uses the sampling window time index for an element of the parametric output
5 estimation vector having a sufficiently high absolute value to determine the time of
6 arrival of the arriving wavefront.

1 16. A method of operating a wireless communication receiver comprising:
2 obtaining from an antenna element signals for each of successive sets of pilot
3 data;

4 concurrently using the signals for each of successive sets of pilot data for
5 determining both a time of arrival and channel coefficient.

1 17. The method of claim 16, wherein the time of arrival and the channel
2 coefficient are essentially concurrently determined by the joint searcher and channel
3 estimator.

1 18. The method of claim 16, further comprising applying the channel coefficient
2 and time of arrival to a detector to obtain a symbol estimate.

1 19. The method of claim 16, wherein the step of concurrently using the plural
2 signals for determining both the time of arrival and the channel coefficient is performed
3 by a joint searcher and channel estimator situated in a mobile terminal.

1 20. The method of claim 16, wherein the step of concurrently using the plural
2 signals for determining both the time of arrival and the channel coefficient is performed
3 by a joint searcher and channel estimator situated in a network node.

1 21. The method of claim 16, wherein each of the sets of pilot data is represented
2 by a pilot set index, wherein the step of concurrently using the plural signals for
3 determining both the time of arrival and the channel coefficient is performed by a joint
4 searcher and channel estimator, and further comprising the steps of the joint searcher
5 and channel estimator:

6 storing a complex value indicative of the signal received in a sampling window
7 an antenna signal matrix as a function of a sampling window time index and the pilot
8 set index;

9 performing a Fast Fourier Transformation (FFT) calculation to generate a
10 correlator output;

11 using the correlator output to generate the time of arrival and the channel
12 coefficient.

1 22. The method of claim 21, wherein in performing the calculation the
2 correlator considers

3 a dimensional receptivity vector formed from the antenna signal matrix with
4 respect to a sampling window time index for the plural sets of pilot data, the
5 dimensional receptivity vector having a frequency related to a difference between phase
6 components of complex values of the dimensional receptivity vector, there being plural
7 possible frequencies for the dimensional receptivity vector, the plural possible
8 frequencies being represented by a frequency index; and

9 wherein for each combination of plural possible doppler frequencies and plural
10 time indexes, the correlator calculates:

11
$$Y(n,t) = FFT(n, X(:,t))$$

12 wherein t is the sampling window time index;

13 $X(:,t)$ is the complex antenna matrix; and

14 n is the doppler frequency index.

1 23. The method of claim 22, wherein for each combination of plural possible
 2 frequencies and plural time indexes, the method comprises evaluating the following
 3 expression:

$$4 \quad Y(n,t) = \sum C_j * FFT(n,X(:,t)), j = 1, K$$

5 6 wherein C_j is a coding sequence symbol value j and K is the length of the coding
 sequence.

1 24. The method of claim 22, wherein the correlator output comprises $Y(n,t)$, and
 2 further comprising determining a maximum absolute value $|Y(n,t)|_{max}$.

1 25. The method of 24, further comprising:

2 3 using a sampling window time index t_{max} at which $|Y(n,t)|_{max}$ occurs to
 determine the time of arrival of an arriving wavefront; and

4 5 using the doppler frequency index n_{max} at which $|Y(n,t)|_{max}$ to determine the
 doppler shift direction.

1 26. The method of 24, further comprising obtaining an amplitude for the
 2 arriving wavefront by dividing $|Y(n,t)|_{max}$ by a number of sets of pilot data in the series.

1 27. The method of claim 16, wherein each of the sets of pilot data is represented
 2 by a pilot set index, and wherein the method further comprises:

3 4 storing, in an antenna signal matrix, a complex value indicative of the signal
 received in a sampling window as a function of a sampling window time index and the
 5 pilot set index;

6 7 forming a parametric estimate using complex values in the antenna matrix and
 generating a parametric output estimation vector ;

8 9 using the parametric output estimation vector to generate the time of arrival and
 the channel coefficient.

1 28. The method of claim 27, wherein each frequency parameter corresponds to a
 2 possible doppler shift frequency.

1 29. The method of claim 27, wherein the parametric output estimation vector
 2 has a sampling window time index and further comprising using absolute values of

3 elements of the parametric output estimation vector to determine the time of arrival and
4 doppler shift frequency of the arriving wavefront.

1 30. The method of claim 29, wherein the parametric output estimation vector
2 has a sampling window time index and a direction index; and wherein for an element of
3 the parametric output estimation vector having a sufficiently high absolute value, the
4 method further comprises using the sampling window time index for an element of the
5 parametric output estimation vector having a sufficiently high absolute value to
6 determine the time of arrival of the arriving wavefront.