# The arccosine function (F1: arccos(x))

The arccosine function is the **inverse** of the cosine function. It returns the angle whose cosine is a given number. Arccosine indicates the angle whose cosine is x. The arccosine of x is defined as the inverse cosine function of x when  $-1 \le x \le 1$ .

When the cosine of y is equal to x:  $\cos y = x$ . Then the arccosine of x is equal to the inverse cosine function of x, which is equal to y:  $\arccos x = \cos^{-1} x = y$ 

In Figure,

$$\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \longrightarrow \cos^{-1}\left(\frac{\text{adjacent}}{\text{hypotenuse}}\right) = \theta$$



## **Graph of arccosine**

The curve in the graph is the arccosine function. Notice that for any x between -1 and +1 it returns a single value between 0 and  $+\pi$  radians.



#### Values of arccosine functions

| x           | -1            | $-\sqrt{3}/2$ | $-\sqrt{2}/2$ | -1/2          | 0   | 1/2 | $\sqrt{2}/2$ | $\sqrt{3}/2$ | 1   |
|-------------|---------------|---------------|---------------|---------------|-----|-----|--------------|--------------|-----|
| $\arcsin x$ | $-90^{\circ}$ | $-60^{\circ}$ | $-45^{\circ}$ | $-30^{\circ}$ | 0°  | 30° | 45°          | 60°          | 90° |
| $\arccos x$ | 180°          | 150°          | 135°          | 120°          | 90° | 60° | 45°          | <b>30</b> °  | 0°  |

### **Domain and Range**

|   | - ·      |                     |            |                  |                   |                                   |  |  |  |  |  |  |
|---|----------|---------------------|------------|------------------|-------------------|-----------------------------------|--|--|--|--|--|--|
|   | Name     | me Usual Definition |            | Domain           | Range of usual    | Range of usual principal          |  |  |  |  |  |  |
|   |          | notation            |            | of x for         | principal value   | value                             |  |  |  |  |  |  |
|   |          |                     |            | real result      | (radians)         | (degrees)                         |  |  |  |  |  |  |
| a | rccosine | y =                 | x = cos(y) | $-1 \le x \le 1$ | $0 \le y \le \pi$ | $0^{\circ} \le y \le 180^{\circ}$ |  |  |  |  |  |  |
|   |          | arccos(x)           |            |                  |                   |                                   |  |  |  |  |  |  |

### **Application of the function**

Arccosine function are unique function and useful when trying to determine the remaining two angles of right triangle.