

Reducing false positives in F_{ST} outlier tests with OutFLANK

Katie E. Lotterhos^{1,2} Michael C. Whitlock¹

¹University of British Columbia ²Wake Forest University

Question:

What is the genomic basis of local adaptation in heterogeneous environments?

N Cold

S Warm

F_{ST} measures how different allele frequencies are between populations

$$F_{ST} = \frac{var(p)}{\bar{p}(1-\bar{p})}$$

F_{ST} measures how different allele frequencies are between populations

Non-adapted locus

F_{ST} measures how different allele frequencies are between populations

Problem:

How to separate the effects of selection from effects of an unknown demographic history?

The good news:

The genome is filled with approximately neutral genes

The bad news:

We don't know which genes are neutral, or precisely how they behave

Lewontin-Krakauer Test

Difficulty: LK assumed sampled populations are equally independent of each other

True: Island Model

Not True: Isolation by distance

How sensitive are F_{ST} outlier tests to demographic history?

LandSHARC:

Landscape Simulator for Haploid Alleles in Realistic Climates

 F_{ST} distributions: neutral loci

IM
Island Model
(at equilibrium)

IBD
Isolation by distance
(at equilibrium)

1R
Expansion from one refuge (non-equilibrium)

2RExpansion from two refugia (non-equilibrium)

Lotterhos and Whitlock (2014) Mol. Ecol

False Positive Rates

(False Positive Neutral)/(Total Neutral)

Want: 1/1000

The bad news:

A false positive rate of 1% is still too high

Error rates depend on neutral parameterization

The good news:

OutFLANK

...doesn't rely on having a neutral set

Let's revisit the Lewontin-Krakauer test

Finding neutral mean F_{ST} and appropriate df for χ^2

P-value vs. q-value

- The p-value in OutFLANK is calculated from the fit of the chi-square distribution
- Because there are 1000's of SNPs in the dataset, we need to correct for multiple tests
- OutFLANK controls for False Discovery Rate (FDR) with q-values using the method of Storey and Tibsharani (2003)

$$FDR = \frac{Number\ of\ false\ positives}{Total\ number\ of\ positive\ tests}$$

• q < 0.05 means that 5% of positive results are expected to be false positives

How well does OutFLANK work?

Comparison to current methods

Does the new method have power?

(True positive)/(Total number under Selection)

Caution

- Power of OutFLANK increases when more populations are sampled and more individuals per population are sampled
- OutFLANK also needs a large number of loci (>1000 SNPs, see discussion in manuscript)

No. individuals per population	5 populations	10 populations	20 populations	40 populations
5	0	.09	.52	.84
10	.10	.56	.82	.94
20	.37	.75	.90	.95
40	.55	.81	.94	.97

Steps to running OutFLANK

- Prepare a dataframe for the OutFLANK() function
 - From a formatted SNP dataset using MakeDiploidFSTMat()
 - (From your own data using functions provided with the package (see Section "For Advanced Users"))
- 2. Check for SNPs of low sample size or that have F_{ST} values differentially affected by sample size correction
- 3. Run OutFLANK
- 4. Plot results

The OutFLANK() function

- FstDataFrame
- LeftTrimFraction=0.05
- **RightTrimFraction**=0.05
- **Hmin**=0.1 (loci with low H_e do not follow chi-square assumption)
- NumberOfSamples (Number of populations)
- qthreshold=0.05 (desired false discovery rate)

Hints

- qthreshold is used to call outliers.
 The trim points must be located within any potential outliers. If qthreshold is set too high,
 OutFLANK will return an error.
- The algorithm may fail if RightTrimFraction is set too high
- Use the plotting function to check the fit of the inferred distribution to the right tail
- OutFLANK will not fit the left tail of the F_{ST} distribution well

Fst without sample size correction

Other questions

- Can I use OutFLANK on pool-seq data? Not Recommended
- Does pool-seq data fit a chi-square distribution (the big assumption of the method)?
 - We understand how sampling variance from finite populations and finite individuals per population affect the variance of the Fst distribution, and we know it still fits a chi square for the cases we've simulated.
 - However, we are uncertain how the random sampling of chromosomes for pool-seq data would affect the Fst distribution.
 - Other issues arise because we are not using a sample size correction in outflank (so we assume loci have roughly equal sample sizes), and if individuals contribute unequally to pools then this could be a huge violation of this assumption.
- So, in short, if you wanted to do it I would suggest the following steps:
 - 1) Use the haploid Fst estimator that comes with the distribution instead of the default in preparing the matrix for the outflank function
 - 2) Show that your Fst distribution fits the chi-square output by outflank
 - 3) Do some simulations that show that outflank performs well for your study system and sampling design

Questions

 What if some populations have fewer individuals than others? THAT'S OK – only a problem if some *loci* have lower sample sizes

Notes based on student questions

- Confusion about q_threshold and the qvalue used for decision making
- a need to illustrated how increasing
 q_threshold can make small changes in the
 tail and the resulting q-values of the outliers
- a need to plot p-value histograms and q-q plots