PRÁCTICA 1. SIMULACIÓN: CONCEPTOS BÁSICOS, SIMULACIÓN DE CIRCUITOS EN CONTINUA Y APLICACIÓN DE TEOREMAS

OBJETIVOS:

- Familiarizarse con el simulador, realizando esquemas sencillos y la simulación y análisis en continua de los mismos
- Repasar conceptos básicos de teoría de circuitos. Equivalente Thevenin y fuentes reales
- Aprender a documentar trabajos de simulación

DATOS: $V_E=10V$

 $R_1 = 1200 \Omega$

 $R_2 = 2700 \Omega$

 $R_l = 1 k\Omega$

GUIÓN:

1. Simulación de circuitos. Medida de tensiones y corrientes en circuitos de continua

a) Verificar que se cumple la Ley de tensiones de Kirchhoff ($V_E = V_1 + V_2$) y la Ley de Ohm ($V_1 = R_1 \cdot I$ y $V_2 = R_2 \cdot I$) en el circuito de la figura:

Medir las tensiones y corrientes en todos los elementos del circuito, si la fuente de tensión es ideal, y completar la siguiente tabla:

	Tensión	Corriente	Tensión	Corriente	Tensión	Corriente
	$V_E = V_{CB}$	${ m I}_{\sf E}$	$V_1 = V_{CA}$	$ m I_{R1}$	$V_2 = V_{AB}$	${ m I}_{ m R2}$
Calculada						
Simulación						

b) Repetir el apartado a) si la fuente de tensión de entrada tiene una resistencia de salida serie de 600 Ω . Comparar los valores de V_E e I_E

	Tensión V _F =V _{CB}	Corriente I _F	Tensión V ₁ =V _{CA}	Corriente I _{R1}	Tensión V ₂ =V _{AB}	Corriente I _{R2}
Calculada						. \
Simulación						

2. Equivalente Thevenin.

Calcular el equivalente Thevenin del circuito del apartado (a) en los siguientes casos (Ojo a la polaridad de las tensiones):

- c) Equivalente Thevenin entre A y B: V_{THA-B} y R_{THA-B}
- d) Equivalente Thevenin entre A y C: V_{THA-C} y R_{THA-C}
- e) Simular el circuito del apartado a) situando una resistencia de carga R_L de 1 $k\Omega$ y completar las tablas (suponer que I_{RL} entra en R_L por el terminal A):

c.1.) Entre A y B

	Tensión	Corriente	Tensión	Corriente	Tensión	Corriente
	$V_E = V_{CB}$	ΙE	$V_1 = V_{CA}$	${ m I}_{{ m R}1}$	$V_2 = V_{AB}$	${ m I}_{ m R2}$
Calculada						
Simulación						
	Tensión	Corriente				
	$V_{RL}=V_{AB}$	$ m I_{RL}$				
Calculada						
Simulación						

c.2.) Entre A y C

	Tensión	Corriente	Tensión	Corriente	Tensión	Corriente
	$V_E = V_{CB}$	${ m I}_{\sf E}$	$V_1 = V_{CA}$	${ m I}_{{\sf R}1}$	$V_2 = V_{AB}$	${ m I}_{ m R2}$
Calculada						
Simulación						
	Tensión	Corriente				_
	$V_{RL}=V_{AC}$	$ m I_{RL}$				
Calculada						
Simulación						

- f) Simular el circuito anterior para medir la corriente de cortocircuito:
 - c.1.) Entre A y B. Corriente de cortocircuito:

${ m I}_{\sf RL}$	
-------------------	--

c.2.) Entre A y C. Corriente de cortocircuito:

Tpi	
± NL	

Comprobar que R_{TH}=V_{VACIO}/I_{CORTOCIRCUITO}

g) Sustituir el circuito para los apartados anteriores por su equivalente Thevenin y verificar que no cambian los valores de tensiones y corrientes en la resistencia de carga $R_{\rm L}$.

TRABAJO PREVIO RECOMENDADO

Completar los valores calculados que se piden en las tablas.

DOCUMENTACIÓN DE LA PRÁCTICA

- 1. Completar las tablas con las medidas que se indican
- 2. Documentar la práctica, completando todos los apartados. Se sugiere realizar capturas de pantalla de los circuitos para insertar en la documentación