

HNDIT1032 Computer and Network Systems

Week 1- Introduction to Computer

Course Aims

 To develop the fundamental skills required in installation, configuration, maintenance, troubleshooting and management of computers and communication between computers

Course Details

Course Code	HNDIT1032
Course Title	Computer and Network System
Semester	1
Course Status	Compulsory, GPA
Number of Credits	3
Hours	Lecture= 30 Hours Practical=30 Hours
Mode of Delivery	Lectures, Discussion, Presentation,

Assessment Summary

Assessment Method	Weightage
On-line quizzes and tutorials	20%
Assignments	20%
Final Examination	60%
Total	100%

Learning Outcomes(LO)

- After successful completion of this course the student should be able to:
 - LO1: describe how information and data are represented inside a computer system
 - LO2: assemble, disassemble and troubleshoot hardware related errors on a PC
 - LO3: install various operating systems, configure, maintain and troubleshoot.
 - LO4: identify the benefits of a networked environment and work in a networked environment

What is a computer?

 A computer is an electronic device, operating under the control of instructions stored in its own memory

Data and Information

- Data:
 - collected row facts
 - Cannot be used for decision making
 Ex: Student Name, Exam marks, exam status
- Information:
 - Processed data
 - Can be used to decision making
 - Ex: Students name in alphabetical order.
 - Students who have passed the exam.

Data and Information...

DATA

2 Medium Sodas \$1.49 each
1 Small Turkey Sub \$3.49 each
1 Caesar Salad \$4.49 each
1 Bag of Chips \$0.99 each
3 Cookies \$0.39 each
Amount Received \$20.00

PROCESSES

- Computes each item's total price by multiplying the quantity ordered by the item price (i.e., 2 * 1.49 = 2.98).
- Organizes data.
- Sums all item total prices to determine order total due from customer (13.12).
- Calculates change due to customer by subtracting the order total from amount received (20.00 - 13.12 = 6.88).

INFORMATION

Arrow Deli 10 Park Street Maple River, DE 20393 (734) 555-2939

QTY ITEM TOTAL Medium Sodas 2.98 Small Turkey Sub 3.49 Caesar Salad 4.49 Bag of Chips 0.99 Cookies 1.17 3 Total Due 13.12 Amount Received 20.00 Change 6.88 Thank You!

annanananan .

Data in Computing System

- Usually the computing systems are complex devices, dealing with a vast array of information categories
- The computing systems store, present, and help us modify:
 - Text
 - Audio
 - Images and graphics
 - Video

Forms of Data Representation

- The data can be represented in one or two ways
 - Analog
 - Digital

History of Computers

- Calculating Machines
- Napier's Bones
- Slide Rule
- Pascal's Adding and Subtraction Machine
- Leibniz's Multiplication and Dividing Machine
- Punch Card System

History of Computers...

ABACUS

Napier's Bones

Slide Rule

Pascal's Machine

Leibniz's Machine

		11	п		Ü	H	ß		1		D				*	H																					
			ı					1		el	ï		1	ı		۲		3	Ĕ.																		
1111	**	11		**	ú	9	ı	1	è	ø	ij	P	ı	1	H	!!	n	H		93	33	•	21	11	11	H	ш	u	2	2	44	0.3	-	16	O	U	100
m	m	ii	ú	ij	ö	ï	ï	ű	ij	0	ū	Ü	ũ	ij	Ü	r	ö	n	0	ï	Ü	īī	ï	ö	ij	Ħ	ü	n	Ü	ü	ü	11	ij,	ij	ij	ũ	1))
102	22	22	22	29	17	1	2:	n	9	93	ı	tz	17	12	22	11	B	123	13	32	13	22	22	71	23	1	20	(4)	(1)	02	22	23	22	::	22		222
1111	111	23	11	3.5	12	22	81	1	a	4	1	1	11	91	e j	11	n	91	11	11	11	13	51	17	31	1	ů,	111	1	22	111	2.2	22	,;	2.0	**	111
	***				ú		"	ń	•	ě,	ı	11	i	**	11	4	ø	m	n	**	ù	**	11	n	'n	11	1	œ,	60		•	**	11	54	4	**	
1111	111	33	53	1	1	11	31	ij	×	i	1	11	1	,	ij	101	111	'n	111	**	51	11	11	91	91	11	'n	199	6	33	33	31	33	55	51	12	111
451	181	1	"			1	11	11	8	ú	0	68	61	5 5	**	11			115	**	61	4.4	51	**	1	111	m	i	111	111	*	**	**	11	**	"	***
121	1	22	11	17	17	"	n	ı	2	n	u	įi.	11	21	11	'n	110	'n	111	"	71	12	21	23	9)	m	in	m	ø	in	111	21	93	93	1		,,,
im		**	*	11	ij	u	1	1	10	1	u	1	1	11	u	u	11	m	100	**	*	11		11	41	m	00	(1)	111	m	***	**	**	**	**	11	
1991			10	11	,,	11	u	1		11	1	1	Ü	**	11	11			,,	11	11	**	92	**	1	,		111	111	111	111	51		.,	.,	11	***
2741	2.5	40	25	52		9			n	180	100	**	410	2.9			A.101		27	**	**	**	40	99	189	190	100		-		•	***	**	**	**	2.5	***

Punch Card System

Generations of Computers

- First Generation (Vacuum Tubes)
- Second Generation(Transistors)
- Third Generation(Integrated Circuit)
- Fourth Generation(Microprocessors)
- Fifth Generation(Artificial Intelligence)

First Generation (1940 to 1956) Using Vacuum Tubes

- Hardware Technology The first generation of computers used vacuum tubes for circuitry and magnetic drums for memory.
- Software Technology- The instructions were written in machine language.
- Computing Characteristics The computation time was in milliseconds.
- Physical Appearance- These computers were enormous in size and required a large room for installation.
- Application-Scientific application
- Example- Universal Automatic Computer (UNIVAC), Electronic Numerical Integrator And Calculator (ENIAC)

First Generation (1940 to 1956) Using Vacuum Tubes...

Second Generation (1956 to 1963) Using Transistors

- Hardware Technology- Transistors, used magnetic tapes and magnetic disks for secondary storage.
- Software Technology Assembly language
- Computing Characteristics- computation time was in microseconds.
- Physical Appearance-The size of the computer was also reduced.
- Application-commercial production of these computers was very high
- Examples PDP-8, IBM 1401 and CDC 1604.

Second Generation (1956 to 1963) Using Transistors...

Third Generation (1964 to 1971) Using Integrated Circuits

- Hardware Technology -Integrated Circuit (IC) chips.
 multiple transistors are placed on a silicon chip.
- Software Technology-High-level languages
- Computing Characteristics-computation time was in nanoseconds
- Physical Appearance-The size of these computers was quite small
- Application-Computers became accessible to mass audience.
- Examples IBM 370, PDP 11.

Third Generation (1964 to 1971) Using Integrated Circuits...

Fourth Generation (1971 to present) Using Microprocessors

- Hardware Technology Microprocessor is a chip containing millions of transistors and components.
- Software MS-DOS and GUI based MS Windows
- Computing Characteristics-computation time is in picosecond
- Physical Appearance smaller than the computers of the previous generation
- Application Commercial purpose and personal computers
- Examples-IBM, Apple Macintosh

Fourth Generation (1971 to present) Using Microprocessors...

Fifth Generation(Present and Next) Using Artificial Intelligence

- Super Large Scale Integration
- Parallel processing
- Artificial Intelligence
- Natural Language Processing
- Speech Recognition
- virtual reality generation
- Satellite links
- Robotics

Classification of Computers

Microcomputers

- Microcomputers are
- Small
- Low-cost
- Stand-alone machines
- CPU, I/O devices, storage unit and OS
- Example-

Minicomputer

- Multi-user systems.
- High processing speed
- High storage
- Real-time applications in industries, research centers, etc.
- PDP 11, IBM (8000 series)

Mainframe Computers

- Multi-user, multi-programming and high performance computers.
- very high speed, very large storage capacity
- Large and powerful systems generally used in centralized databases.
- Examples -CDC 6600 and IBM ES000 series.

SUIATE TILL

Supercomputers

- Fastest and the most expensive machines.
- The speed measured in FLOPS (Floating point Operations Per Second).
- Trillions of calculations per second.
- Interconnecting thousands of processors that can work in parallel.
- Example- IBM Roadrunner, IBM Blue Gene, PARAM

- Home
- Education
- Science
- Industry
- Entertainment
- Banking
- Government

- At Home
 - Mostly to check mails
 - Small documentation
 - Gaming
 - Music and Video
 - To solve homework
 - Photo Printouts using Good Printers
 - Work from Home concept

- In Education
 - Schools to Universities
 - To Educate necessary skills demanded by Industries
 - To give a demo or training
 - Server the purpose of Teaching Aids
 - To convey messages using Internet

- In Science
 - To analyze large data acquired over a period of time
 - To do complex floating point arithmetic
 - Image Processing
 - Research

- In Industry
 - To develop software, mostly to automate the manual work
 - To provide necessary solution to clients' needs
 - Software is developed for the needs of networking, banking, business, retail etc

- Entertainment
 - Music Industry
 - Games
 - Movies to watch and create 200 Linux
 Machines in parallel to create visualization in Titanic, the movie
 - III^{ly} Cartoons, special effects
 - Nowadays to promote theirs productions

Banking

- To store, access and modify huge amounts of data
- Online business called e-business is becoming popular with a small amount of limitations
- Paying bills become easy and time saving
- online promotions

- Government
 - "Biometrics Attendance Monitoring"
 - Weather Forecasting and military applications
 - E- governance
 - Online payment of taxes, Insurances
 - Send Messages to virtually unreachable places at present
 - Wireless communication

Block Diagram of computer

- The computer system hardware comprises of three main components
 - Input/output (I/O) Unit,
 - Central Processing Unit (CPU),
 - Memory Unit.

Input/output Unit

- The user interacts with the computer via the I/O unit.
- The Input unit converts the data that it accepts from the user, into a form that is understandable by the computer.
- Output unit provides the output in a form that is understandable by the user
- Input devices like keyboard, trackball and mouse
- output devices are monitor and printer.

Central Processing Unit

- CPU controls, coordinates and supervises the operations of the computer.
- CPU consists of Arithmetic Logic Unit (ALU) and Control Unit (CU).
- ALU-performs all the arithmetic and logic operations on the input data.
- CU controls -checks the sequence of execution of instructions, and, controls and coordinates the overall functioning of the units of computers
- CPU also has a set of registers for temporary storage of data, instructions, addresses

Memory Unit

- Stores the data, instructions, intermediate results and output, temporarily, during the processing of data.
- The input data that is to be processed is brought into the main memory before processing.
- The output is stored in memory before being transferred to the output device.
- Main memory is primary memory of computers
- secondary memory The data, the programs and the output are stored permanently in the storage unit of the computer.
- Magnetic disks, optical disks and magnetic tapes are examples of secondary memory

Block Diagram

Created by: MUHAMMAD KAMRAN KHAN

Next Week Discussion

How to represent Data?