

Description

The VSM30P03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-30V, I_{D} =-30A
 - $R_{DS(ON)}$ <8.5m Ω @ V_{GS} =-10V
 - $R_{DS(ON)}$ <17m Ω @ V_{GS} =-4.5V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM30P03-TF	VSM30P03	TO-220F	-	-	-

Absolute Maximum Ratings (T_c=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	-30	V
Gate-Source Voltage	V _{GS}	±20	V
Drain Current-Continuous	I _D	-30	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	-21.2	А
Drain Current-Pulsed (Note 1)	I _{DM}	-120	А
Maximum Power Dissipation	P _D	40	W
Single pulse avalanche energy (Note 5)	E _{AS}	380	mJ
Derating factor		0.27	W/℃
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	A A W mJ

Thermal Characteristic

Thermal Resistance, Junction-to- Case (Note 2)	R _{eJC}	3.75	°C/W
--	------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•				•	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1.0	-1. 5	-2.0	V
Brain Carres On Otata Braintan	-	V _{GS} =-10V, I _D =-15A	-	6.7	8.5	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-15A	-	9.5	17	mΩ
Forward Transconductance	G FS	V _{DS} =-5V,I _D =-15A	-	30	-	S
Dynamic Characteristics (Note4)	•					
Input Capacitance	C _{lss}	\/ 45\/\/ 0\/	-	3736	-	PF
Output Capacitance	C _{oss}	V_{DS} =-15V, V_{GS} =0V, F=1.0MHz	-	485	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVIDZ		439	-	PF
Switching Characteristics (Note 4)	•					
Turn-on Delay Time	t _{d(on)}		-	16	-	nS
Turn-on Rise Time	t _r	V _{DD} =-15V, I _D =-15A,	-	12	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =-10V, R_{GEN} =3 Ω		46	-	nS
Turn-Off Fall Time	t _f		-	22	-	nS
Total Gate Charge	Qg		-	70.7	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =-15V,I _D =-15A,V _{GS} =-10V	-	8	-	nC
Gate-Drain Charge	Q _{gd}]		17.4	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-15A	-	-	-1.2	V

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}\text{C}$,V_{DD}=-15V,V_G=-10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics (Curves)

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 2)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

0.6

1.0

1.2

0.4

0.2

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 Power De-rating

T_J-Junction Temperature(°C)

Figure 10 ID Current Derating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance