Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao February 13, 2023

What we have seen last week

- · Dirichlet's approximation theorem.
- Higher Diophantine equations
- Modular arithmetic
- Modular dynamic
 - Additive dynamic
 - Multiplicative dynamic
 - Euler's totient φ
 - Euler-Fermat theorem

Today's topics

- Primality testing
- Modular exponential
- Primitive roots
- Discrete logarithm
- Some cryptography

Question

Given a positive integer N, determine whether N is a prime number.

- Test each 1 < x < N. If none of them divides N, then N is prime.
- (Trial division method) Just test $1 < x \le \sqrt{N}$.

$$x \mid N$$
 $N = xy$ saying $y \in y$
 $x^2 \subseteq xy = N$

Definition 14.1 (Fermat's primality testing)

If you can find an integer 1 < x < N such that

$$x^{N-1} \not\equiv 1 \pmod{N}$$
.

Then N cannot be prime (by Fermat's little theorem, $\ref{eq:sigma}$). Such an integer x is called a **Fermat witness** for the compositeness of N.

Note that, even N is composite, it is still possible that

$$\mathbf{x}^{N-1} \equiv 1 \pmod{N}$$
.

If this is the case, we say x is a **Fermat liar**.

```
To dispreve N is prime, we only need one Fernut witness.

• Divisors are Fernut witness: d|N \Rightarrow g(d(dN) \neq 1) \Rightarrow d not invertible

d|N \Rightarrow d|N \Rightarrow
```

At first glance, it does not make the primality testing any easier:

- We need to compute an exponential, which seems not easy.
- There are Fermat liars. Hence, applying the testing to only one integer 1 < x < N maybe not enough. (Clearly, if x is not coprime to N, then it is a Fermat witness, but it is possible that all integers that are coprime to N are Fermat liars. Such a composite N is called a Carmicheal numbers.)

for which. Fernat ultiness = divisors so are rape.

At first glance, it does not make the primality testing any easier:

- We need to compute an exponential, which seems not easy.
- There are Fermat liars. Hence, applying the testing to only one integer 1 < x < N maybe not enough. (Clearly, if x is not coprime to N, then it is a Fermat witness, but it is possible that all integers that are coprime to N are Fermat liars. Such a composite N is called a Carmicheal numbers.)

But it is in fact way faster than the trial division method, which has time complexity $O(\sqrt{N})$. While the Fermat's primality testing has time complexity $O(K \cdot \log(N))$ (K is the number of X you used in the testing).

Theorem 14.2

If there is a Fermat witness in $\Phi(N)$ for the compositeness of N, then at least half of the numbers in $\Phi(N)$ are Fermat witnesses.

Proof. Let a be a Fermat witness. If there is no Fermat liar, we are done. Otherwise, if there is a Fermat liar b, then $ab \pmod{N}$ is a Fermat witness:

$$(ab)^{N-1} = a^{N-1}b^{N-1} \equiv a^{N-1} \not\equiv 1 \pmod{N}.$$

Moreover, since $a \in \Phi(N)$, $a \pmod{M}$ is invertible. Hence, we get a injective map from Fermat liars to Fermat witnesses in $\Phi(N)$. Consequently, at least half of $\Phi(N)$ are Fermat witnesses.

So if we know the composite N is not a Carmicheal number**, then the chance for it to pass K Fermat's primality testing is less than $(\frac{1}{2})^K$. So we don't need many K in general.

The time complexity $O(\log N)$ for exponential computation can be achieved by binary exponentiation algorithms.

^{**}We don't know N a priori. But we can take the distribution of Carmicheal numbers into account. For instance, there are only 8220777 Carmicheal numbers under 10²⁰.

Question (Modular exponential)

Fix the modulus m and the base b, effectively compute the natural representative of b^{x} modulo m.

The basic idea of binary exponentiation algorithms is:

- 1. Write the exponent in binary digits: $\bigotimes = \sum_{i=0}^{n-1} a_i 2^i$
- 2. Then we have

$$b^{x} = b^{\sum_{i=0}^{n-1} a_{i} 2^{i}} = \prod_{i=0}^{n-1} (b^{2^{i}}) \frac{a_{i}}{a_{i}}$$

3. The natural representative of b^{2^i} can be computed by iterating squares:

$$b \longmapsto b^2 \longmapsto (b^2)^2 = b^{2^2} \longmapsto \cdots \longmapsto (b^{2^{i-1}})^2 = b^{2^i}$$

$$n \text{ times}$$

Example 14.3

Apply Fermat's primality testing to 91 with the base 2.

We first write the exponent 91 - 1 = 90 into binary digits: $90 = 2^6 + 2^4 + 2^3 + 2$.

We can compute natural representatives of $2^{2^{i}}$ as follows:

Then we have

$$2^{90} = 2^{2^6} \cdot 2^{2^4} \cdot 2^{2^3} \cdot 2^{2^6} \cdot 2^2 \equiv 6 \cdot 6 \cdot 6 = 24 \pmod{91}$$

So 2 witness 91 being a composite.

Some remarks for binary exponentiation algorithms:

- We do not need natural representatives of b^{2^i} . Instead, using minimal representatives^{††} maybe more effective.
- The dynamic of $(\cdot)^2 \pmod{m}$ will eventually fall in a circle since \mathbb{Z}/m is finite. So we only need a finite step to generating all the natural representatives of b^{2^i} .
- We still need to do the multiplication of *n* congruence classes, but we may do it in a clever way (such as: pairing a square).

^{††}The *minimal representative* of a congruence class α (modulo m) is the representative a of α such that $-\frac{m}{2} < a \leq \frac{m}{2}$.

Corollary 14.4 (Of Euler-Fermat, ??)

```
Let m be a modulus and a \in \Phi(m). Then for any integers b, c such that b \equiv c \pmod{\varphi(m)}, we have a^b \equiv a^c \pmod{m}. a^b \equiv a^c \pmod{m}.
```

N.B. It is NOT TRUE that
$$b \equiv c \pmod{m} \Rightarrow a^b \equiv a^c \pmod{m}$$
 even given $a \in \Phi(m)$. E.g. $2 \in \Phi(7)$. $10 \equiv 3 \pmod{7}$ but $2^{10} \not\equiv 2^3 \pmod{7}$.

The corollary ?? relates the additive dynamics on $\mathbb{Z}/\varphi(m)$ and the multiplicative dynamics on $\Phi(m)$:

$$\exp_{a \pmod{m}} : \mathbb{Z}/\varphi(m) \longrightarrow \Phi(m)$$

$$\overline{x} \longmapsto a^{x} \pmod{m}.$$

Moreover, this map is a *homomorphism* from the abelian group $(\mathbb{Z}/\varphi(m), +, \mathbf{0})$ to the abelian group $(\Phi(m), \cdot, 1)$.

addition
$$\rightarrow$$
 multiplication \overline{T}

The corollary ?? relates the additive dynamics on $\mathbb{Z}/\varphi(m)$ and the multiplicative dynamics on $\Phi(m)$:

$$\exp_{\boldsymbol{a} \pmod{\boldsymbol{m}}} \colon \mathbb{Z}/\varphi(\boldsymbol{m}) \longrightarrow \Phi(\boldsymbol{m})$$
$$\overline{\boldsymbol{x}} \longmapsto \boldsymbol{a}^{\boldsymbol{x}} \pmod{\boldsymbol{m}}.$$

Moreover, this map is a *homomorphism* from the abelian group $(\mathbb{Z}/\varphi(m), +, \mathbf{0})$ to the abelian group $(\Phi(m), \cdot, 1)$.

But it may not be bijective! E.g. Let 14 be the modulus and consider the base 9. Then $\Phi(14) = \{1, 3, 5, 9, 11, 13\}$ and hence, $\varphi(14) = 6$. However, although [1]₆ and [4]₆ are different classes in $\mathbb{Z}/\varphi(14)$, 9¹ and 9⁴ have the same natural representative in $\Phi(14)$.

expanden is bijective!

Definition 14.5

Let m be a modulus. Then a **primitive root modulo** m is an element a in $\Phi(m)$ such that the dynamic of a m m consists of only one circle. Namely, any element of $\Phi(m)$ can be expressed as a power of a modulo m.

Example 14.6

3 is a primitive root modulo 14.

$$\frac{1}{2}(14) = \{1, 3, 5, 9, 11, 13\}$$

$$\frac{1}{3} \rightarrow \frac{1}{3} \rightarrow \frac{1}$$

However, primitive roots do not always exist.

Example 14.7

There is no primitive root modulo 12.

First, $\Phi(12) = \{1, 5, 7, 11\}$. For each of them, we investigate the multiplicative dynamic.

- $\ell_{12}(1) = 1$. $\alpha \rightarrow \alpha$
- $\ell_{12}(5) = 2.1 \rightarrow 5 \rightarrow 1 \ 7 \rightarrow 1 \ 7$
- $\ell_{12}(7) = 2. \mid \rightarrow 7 \rightarrow 1.55 \rightarrow 11 \rightarrow 5$
- $\ell_{12}(11) = 2. \ 1 \rightarrow 11 \rightarrow 1.55 \rightarrow 7 \rightarrow 5$

When a primitive root g modulo m exists, we have an isomorphism between abelian groups:

$$\exp_{\boldsymbol{g} \pmod{\boldsymbol{m}}} \colon \mathbb{Z}/\varphi(\boldsymbol{m}) \longrightarrow \Phi(\boldsymbol{m})$$
$$\overline{\boldsymbol{x}} \longmapsto \boldsymbol{g}^{\boldsymbol{x}} \pmod{\boldsymbol{m}}.$$

In particular, any element a of $\Phi(m)$ can be expressed as a power of g modulo m. Then exponent, which is a congruence class modulo $\varphi(m)$, is called the **discrete logarithm of** a **to the base** g **modulo** $\varphi(m)$. Notation: $\log_{q \pmod{m}}(a)$.

After Class Work

After Class Work

Pingala's algorithm on computing modular exponential b^{x} (mod m):

- 1. Write the exponent in binary digits: $x = \sum_{i=0}^{n-1} a_i 2^i$
- 2. Instead of think b^x as $\prod_{i=0}^{n-1} (b^{2^i})^{a_i}$, we think it as

$$\mathbf{b}^{X} = (((\mathbf{b}^{2} \cdot \mathbf{b}^{a_{n-2}})^{2} \cdot \mathbf{b}^{a_{n-3}})^{2} \cdots)^{2} \cdot \mathbf{b}^{a_{0}}.$$

- 3. Then the algorithm can be understood as:
 - Start with **b**;
 - In each step k, take square (modulo m) of the previous one and then multiply it with $b^{a_{n-k}}$ (namely, multiply it with b if $a_{n-k} = 1$ and do nothing if not).

After Class Work

Example 14.8

Find the natural representative of 290 modulo 91.

Exercise 14.1

Is 119 a prime number?

Terminology

Terminology

A group (G, *, e) is called a *cyclic group* if it is isomorphic to $(\mathbb{Z}/m, +, \mathbf{0})$ for some m (called its *order*). The name comes from the fact that you can arrange elements in G in a single cycle $e \mapsto g \mapsto g^2 \mapsto \cdots \mapsto g^m = e$ under the function "- * g". Such an element g is called a *primitive root* of the cyclic group G.

Terminology

A congruence class $\overline{a} \in \mathbb{Z}/m$ is a primitive root of the additive group $(\mathbb{Z}/m, +, \mathbf{0})$ if and only if a coprime to m. (by theorem ??)

An element $a \in \Phi(m)$ is a primitive root of the multiplicative group $(\Phi(m), \cdot, 1)$ if and only if a is a primitive root modulo m.