- > #Лабораторная работа 2 (Вариант 10)
 - #Мартинович Андрей Александрович
 - #гр. 353503
- > #Задание 4. Разложите функцию в ряд Фурье по многочленам Лежандра и Чебышёва на промежутке [1, 1].
- $f := 4 \cdot \sin^3(2 \cdot x)$:

our function := plot(f(x), x = -1 ...1, discont = true, legend = f)

 $4\sin(2x)^3$

with(orthopoly)

$$[G, H, L, P, T, U]$$
 (1)

> #По многочлену Лежандра

> for *n* from 0 to 11 do $c[n] := \frac{\int_{-1}^{1} f \cdot P(n, x) dx}{\int_{-1}^{1} P(n, x)^{2} dx}$; end do

$$c_0 := 0$$

$$c_0 := 0$$

$$c_1 := 2\sin(2)^2\cos(2) + 4\cos(2) + \frac{\sin(2)^3}{3} + 2\sin(2)$$

$$c_2 \coloneqq 0$$

$$c_3 := \frac{49\sin(2)^2\cos(2)}{18} + \frac{266\cos(2)}{9} + \frac{77\sin(2)}{9} + \frac{469\sin(2)^3}{108}$$

$$c_4 := 0$$

$$c_5 \coloneqq \begin{array}{cc} \frac{6215\sin(2)}{24} & \frac{6721\cos(2)}{12} + \frac{209\sin(2)^2\cos(2)}{24} + \frac{715\sin(2)^3}{144} \end{array}$$

$$c_{6} \coloneqq 0$$

$$c_{7} \coloneqq -\frac{8395 \sin(2)^{2} \cos(2)}{864} - \frac{123305 \sin(2)^{2}}{5184} + \frac{2499805 \sin(2)}{216} + \frac{681785 \cos(2)}{27}$$

$$c_{9} \coloneqq \frac{1216361 \sin(2)^{2} \cos(2)}{31104} + \frac{24758995 \sin(2)^{3}}{186624} - \frac{27957486065 \sin(2)}{31104}$$

$$-\frac{30540881599 \cos(2)}{15552}$$

$$c_{10} \coloneqq 0$$

$$c_{11} \coloneqq -\frac{149468881 \sin(2)^{2} \cos(2)}{373248} - \frac{3081363659 \sin(2)^{3}}{2239488} + \frac{19795216570943 \sin(2)}{186624}$$

$$+ \frac{21626467593307 \cos(2)}{93312}$$

$$= \frac{1}{2} \text{ lejandra graf} \coloneqq \text{plot}(\text{add}(c[n] \cdot P(n, x), n = 0..7), x = -1..1, \text{color} = \text{green}) :$$

$$\Rightarrow f1 \coloneqq \text{plot}(f + 0.1, x = -1..1, \text{linestyle} = \text{dash, color} = \text{red}) :$$

$$\Rightarrow f2 \coloneqq \text{plot}(f - 0.1, x = -1..1, \text{linestyle} = \text{dash, color} = \text{red}) :$$

$$\Rightarrow \text{plots}[\text{display}]([f1, f2, \text{lejandra graf, our function}])$$

$$\Rightarrow \text{plots}[\text{display}]([f1, f2, \text{mmin, our function}]$$

$$\Rightarrow \text{plots}[\text{display}](f1, f2, \text{mmin, our function}]$$

$$\Rightarrow \text{MNOKEM SANCTUTE, STO KOFQA n} = 6 \text{ фУНКЦИЯ ОТКЛОПЯЕТСЯ БОЛЬШЕ ЧЕМ НА 0, }$$

$$1(Jescandp)$$

> #По многочлену Чебышёва

> for
$$n$$
 from 0 to 11 do $c[n] := \frac{\displaystyle \int_{-1}^{1} \frac{f \cdot T(n,x)}{\operatorname{sqrt} \left(1-x^{2}\right)} \, \mathrm{d}x}{\displaystyle \int_{-1}^{1} \frac{T(n,x)^{2}}{\operatorname{sqrt} \left(1-x^{2}\right)} \, \mathrm{d}x}; \, \mathrm{end} \, \mathrm{do}}$

$$c_{0} := 0$$

$$c_{1} := \frac{\displaystyle 2 \left(\int_{-1}^{1} \frac{4 \sin(2x)^{3} x}{\sqrt{x^{2}+1}} \, \mathrm{d}x \right)}{\pi} \, \mathrm{d}x}{c_{2} := 0}$$

$$c_{3} := \frac{\displaystyle 2 \left(\int_{-1}^{1} \frac{4 \sin(2x)^{3} \left(4x^{3} - 3x\right)}{\sqrt{x^{2}+1}} \, \mathrm{d}x \right)}{\pi} \, \mathrm{d}x}$$

$$c_{4} := 0$$

$$c_{5} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(16 x^{5} - 20 x^{3} + 5 x\right)}{\sqrt{-x^{2} + 1}} dx \right)}{\pi} dx}{c_{6} := 0}$$

$$c_{7} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(64 x^{7} - 112 x^{5} + 56 x^{3} - 7 x\right)}{\sqrt{-x^{2} + 1}} dx \right)}{\pi} dx}{c_{8} := 0}$$

$$c_{9} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(256 x^{9} - 576 x^{7} + 432 x^{5} - 120 x^{3} + 9 x\right)}{\sqrt{-x^{2} + 1}} dx \right)}{\pi} dx}{c_{10} := 0}$$

$$c_{11} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(1024 x^{11} - 2816 x^{9} + 2816 x^{7} - 1232 x^{5} + 220 x^{3} - 11 x\right)}{\pi} dx \right)}{\pi} dx}{c_{11} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(1024 x^{11} - 2816 x^{9} + 2816 x^{7} - 1232 x^{5} + 220 x^{3} - 11 x\right)}{\pi} dx \right)}{\pi} dx}$$

$$c_{11} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(1024 x^{11} - 2816 x^{9} + 2816 x^{7} - 1232 x^{5} + 220 x^{3} - 11 x\right)}{\pi} dx \right)}{\pi} dx}{c_{12} := c_{11} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(1024 x^{11} - 2816 x^{9} + 2816 x^{7} - 1232 x^{5} + 220 x^{3} - 11 x\right)}{\pi} dx}{c_{12} := c_{11} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(1024 x^{11} - 2816 x^{9} + 2816 x^{7} - 1232 x^{5} + 220 x^{3} - 11 x\right)}{\pi} dx}{c_{13} := c_{12} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(1024 x^{11} - 2816 x^{9} + 2816 x^{7} - 1232 x^{5} + 220 x^{3} - 11 x\right)}{\pi} dx}{c_{13} := c_{12} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(1024 x^{11} - 2816 x^{9} + 2816 x^{7} - 1232 x^{5} + 220 x^{3} - 11 x\right)}{\pi} dx}{c_{13} := c_{14} := \frac{2 \left(\int_{-1}^{1} \frac{4 \sin(2 x)^{3} \left(1024 x^{11} - 2816 x^{9} + 2816 x^{7} - 1232 x^{5} + 220 x^{3} - 11 x\right)}{\pi} dx}{c_{14} := c_{14} := c_{14$$

plots[display](f1, f2, cheb_graf, our_function)

 $nmin := plot(add(c[n] \cdot T(n, x), n = 1..6), x = 1..1, color = blue):$

#можем заметить, что когда n = 10 функция отклоняется больше чем на 0, 1 (**Чебышев**)

#Тригонометрический ряд Фурье

>
$$bn := simplify(int(f \cdot sin(Pi \cdot m \cdot x), x = 1..1)) assuming m :: posint$$

$$bn := \frac{6 m (-1)^m \pi \left(\pi^2 sin(2) m^2 + \frac{\pi^2 sin(6) m^2}{3} + \frac{36 sin(2) + \frac{4 sin(6)}{3}}{3}\right)}{\pi^4 m^4 + 40 \pi^2 m^2 + 144}$$
(4)

> $Sm := k \rightarrow sum(bn \cdot sin(\pi \cdot m \cdot x), m = 1..k)$

$$Sm := k \mapsto \sum_{m=1}^{k} bn \cdot \sin(\pi \cdot m \cdot x)$$
 (5)

fur := plot(Sm(3000), x = 1..1, discont = true, color = green):

plots[display]([f1, f2, fur, our_function]);

> minFur := plot(Sm(79), x = 1..1, discont = true, color = green):> $plots[display](f1, f2, minFur, our_function, view = [0.9..1, 5..5])$

 $4\sin(2x)^3$

(6)

> StF := plot(St, x = 1..1, color = green) :> $plots[display](f1, f2, StF, our_function)$

St := convert(taylor(f, x = 0, 15), polynom)

$$St := 32 x^3 - 64 x^5 + \frac{832}{15} x^7 - \frac{5248}{189} x^9 + \frac{42944}{4725} x^{11} - \frac{9344}{4455} x^{13}$$
 (7)

StF := plot(St, x = -1 ...1, color = blue):

> $plots[display](f1, f2, StF, our_function) # npu x = 0..15 (Тейлор)$

restart

- $f := \arccos(x) + 3:$
- > $our_function1 := plot(f, x = 1..1, legend = f)$

> #По многочлену Лежандра > with(orthopoly)

$$[G, H, L, P, T, U]$$
 (8)

> for *n* from 0 to 11 do $c[n] := \frac{\int_{1}^{1} f \cdot P(n, x) dx}{\int_{1}^{1} P(n, x)^{2} dx}$; end do

$$c_0 \coloneqq 3 + \frac{\pi}{2}$$

$$c_1 \coloneqq \frac{3\pi}{8}$$

$$c_2 \coloneqq 0$$

$$c_3 \coloneqq \frac{7\pi}{128}$$

$$c_4 \coloneqq 0$$

$$c_5 \coloneqq \frac{11\pi}{512}$$

$$c_6 \coloneqq 0$$

$$c_7 \coloneqq \frac{375\pi}{32768}$$

$$c_8 \coloneqq 0$$

```
c_9 := -\frac{931 \,\pi}{131072}
                                           c_{10} \coloneqq 0
                                      c_{11} := -\frac{10143 \,\pi}{2097152}
                                                                                                         (9)
lejandra\_graf1 := plot(add(c[n] \cdot P(n, x), n = 0..9), x = -1..1, color = green) :
 f1 := plot(f + 0.1, x = -1..1, linestyle = dash, color = red):
 f2 := plot(f - 0.1, x = -1..1, linestyle = dash, color = red):
plots[display]([f1, f2, lejandra_graf1, our_function1])
                       0.5
                                                                          0.5
                                                 arccos(x) + 3
 nmin1 := plot(add(c[n] \cdot P(n, x), n = 0..8), x = 1..1, color = blue):
plots[display](f1, f2, nmin1, our\_function1, view = [0.9.1, 3.4])
#можем заметить, что когда n = 8 функция отклоняется больше чем на 0,
     1(Лежандр)
```


 $c_7 := \frac{4}{49 \, \pi}$

 $c_8 \coloneqq 0$

> #По многочлену Че<mark>бышёва</mark>

> for n from 0 to 10 do $c[n] := \frac{\displaystyle \int_{-1}^{1} \frac{f \cdot T(n,x)}{\operatorname{sqrt}(1-x^2)} \, \mathrm{d}x}{\displaystyle \int_{-1}^{1} \frac{T(n,x)^2}{\operatorname{sqrt}(1-x^2)} \, \mathrm{d}x}$; end do $c_0 := \frac{\displaystyle \frac{1}{2} \, \frac{\pi^2 + 3 \, \pi}{\pi}}{\pi}$ $c_1 := \frac{4}{\pi}$ $c_2 := 0$ $c_3 := \frac{4}{9 \, \pi}$ $c_4 := 0$ $c_5 := \frac{4}{25 \, \pi}$ $c_6 := 0$

$$c_9 := -\frac{4}{81 \pi}$$

$$c_{10} := 0$$
(10)

- > $cheb_graf1 := plot(add(c[n] \cdot T(n, x), n = 0..7), x = -1..1, color = green)$:
- > plots[display](f1,f2, cheb_graf1, our_function1)

nmin1 := plot(add(c[n]·T(n,x), n = 0 ..6), x = 1 ..1, color = blue):
 plots[display](f1, f2, nmin1, our_function1, view = [0.9 ..1, 3 ..4])
 #можем заметить, что когда n = 6 функция отклоняется больше чем на 0, 1 (Чебышев)

#Тригонометрический ряд Фурье

 $\rightarrow a0 := simplify(int(f, x = 1..1))$

$$a0 \coloneqq 6 + \pi \tag{11}$$

(12)

> $an := simplify(int(f \cdot cos(Pi \cdot nn \cdot x), x = 1..1))$ assuming nn :: posintan := 0

> $bn := simplify(int(f \cdot sin(Pi \cdot nn \cdot x), x = 1..1))$ assuming nn :: posint

$$bn := \int_{-1}^{1} (\arccos(x) + 3) \sin(\pi nn x) dx$$
 (13)

> $Sm := k \rightarrow \frac{a\theta}{2} + sum(bn \cdot \sin(\pi \cdot nn \cdot x), nn = 1..k)$

$$Sm := k \mapsto \frac{a\theta}{2} + \left(\sum_{nn=1}^{k} bn \cdot \sin(\pi \cdot nn \cdot x)\right)$$
 (14)

> fur := plot(Sm(25), x = 1..1, discont = true):

> plots[display](f1, f2, fur, our_function1)

тут можно взять промежуток поменьше, например от -0.75 до 0.75 и показать что он будет внутри f+0.1 и f - 0.1()

> #Ряд Тейлора

plots[display](f1, f2, StF, our_function1)

>
$$St := convert(taylor(f, x = 0, 64), polynom)$$

 $St := 3 + \frac{1}{2} \pi$ $x = \frac{1}{6} x^3 = \frac{3}{40} x^5 = \frac{5}{112} x^7 = \frac{63}{2816} x^{11} = \frac{34461632205}{11269994184704} x^{41}$ (15)
$$\frac{116680311}{30064771072} x^{35} = \frac{2268783825}{635655159808} x^{37} = \frac{1472719325}{446676598784} x^{39} = \frac{35}{1152} x^9$$

$$\frac{100180065}{23622320128} x^{33} = \frac{231}{13312} x^{13} = \frac{143}{10240} x^{15} = \frac{6435}{557056} x^{17} = \frac{12155}{1245184} x^{19}$$

$$\frac{46189}{5505024} x^{21} = \frac{88179}{12058624} x^{23} = \frac{676039}{104857600} x^{25} = \frac{1300075}{226492416} x^{27}$$

$$\frac{5014575}{973078528} x^{29} = \frac{9694845}{2080374784} x^{31} = \frac{67282234305}{23639499997184} x^{43} = \frac{17534158031}{6597069766656} x^{45}$$

$$\frac{514589420475}{206708186021888} x^{47} = \frac{8061900920775}{3448068464705536} x^{49} = \frac{5267108601573}{2392537302040576} x^{51}$$

$$\frac{61989816618513}{29836347531329536} x^{53} = \frac{121683714103007}{61924494876344320} x^{55} = \frac{956086325095055}{513410357520236544} x^{57}$$

$$\frac{1879204156221315}{1062849512059437056} x^{59} = \frac{7391536347803839}{4395513236313604096} x^{61}$$

$$\frac{2077805148460987}{1297036692682702848} x^{63}$$

$$\Rightarrow StF := plot(St, x = 1 ..1, color = green) :$$

- > minStF := plot(minT, x = 1..1, color = blue):
- > plots[display](f1, f2, minStF, our function1, view = [0.999...1, 3...3.2])

