IWAHORI SATAKE EQUIVALENCE

Contents

1. Iwahori Satake equivalence	1
1.1. General outline of argument	1
2. Recollection of Iwahori Whittaker category	1
2.1. Definition of Iwahori whittaker category	1
2.2. Whittaker filtration	3
3. Exactness of spherical action	5
Appendix A. Properties of averaging functor	8
References	9

1. IWAHORI SATAKE EQUIVALENCE

1.1. General outline of argument.

- (1) $\operatorname{Shv}_{c,(I_u,\chi^*\mathcal{L}_{\psi})}^{\heartsuit}(\operatorname{Gr}_G)$ is highest weight and semisimple.
- (2) We identify the map Corollary 2.2 defined by [Bez+19a] as the inclusion map of adolescent Whittaker categories, [Ras16].
- (3) The exactness of such functors is thus a consequence [FR22, Thm. 7.2], of which utilizes the results of [BBM21].
- (4) Applying the Casselman-Shalika formula.

We will prove

Theorem 1.1.

$$\operatorname{Shv}_{c,L^+G}(\operatorname{Gr},e) \xrightarrow{\simeq} \operatorname{Shv}_{c,(I_u,\chi^*\mathcal{L}_n)}(\operatorname{Gr},e)$$

2. RECOLLECTION OF IWAHORI WHITTAKER CATEGORY

2.1. **Definition of Iwahori whittaker category.** In this section we recall the Iwahori-Whittaker category. The stratification is affine, in particular; this makes its highest weight structure clear, see Corollary 2.1.

Let $\lambda \in X_*$.

$$X_{\lambda} := I \cdot \varpi^{\lambda} L^{+} G, \quad i_{\lambda} : X_{\lambda} \hookrightarrow Gr$$

The standard and costandard objects

$$\Delta^{\mathrm{IW}}_{\lambda}(e) := \pi_0(i_{\lambda})_! e_{X_{\lambda}}[\dim X_{\lambda}], \quad \nabla^{\mathrm{IW}}_{\lambda} := \pi_0(i_{\lambda})_* e_{X_{\lambda}}[\dim X_{\lambda}]$$

Date: May 2, 2024.

Lemma 2.1. Let $\pi: \mathbb{A}^1_k \to \mathbb{A}^1_k$ be the map $x \mapsto x^p - x$, the Galois covering with Galois group \mathbb{F}_p . Since l is invertible in coefficient e,

$$\pi_* e_{\mathbb{A}^1_k} \simeq \bigoplus_{\psi: \mathbb{F}_p \to e^\times} \mathcal{L}_\psi$$

We fix a nontrivial morphism $\psi: \mathbb{F}_p \to e^{\times}$, hence \mathcal{L}_{ψ} . The local system satisfies

$$R\Gamma_c(\mathbb{A}^1_k, \mathcal{L}_{\psi}) \simeq R\Gamma(\mathbb{A}^1_k, \mathcal{L}_{\psi}) \simeq 0$$

Remark 2.1. The $\mathcal{L}_{\psi,1}$ character sheaf we have defined previously coincides with this.

Definition 2.1. Let χ denote the composite

$$I_{u,1} \simeq^{\operatorname{ad}\check{\rho}(\varpi)} I_u \to N \to N/[N,N] \to \prod_{\alpha \in \Delta^+} \mathbb{G}_a \xrightarrow{\Sigma} \mathbb{G}_a$$

Definition 2.1. Let

$$\operatorname{Shv}_{c,(I_u,\chi^*\mathcal{L}_{\psi})}(\operatorname{Gr},e)$$

be the ∞ -category $(I_u, \chi^* \mathcal{L}_{\psi})$ equivariant sheaves. We call this the Iwahori-Whittaker category.

Lemma 2.2. This is a full subcategory $Shv_c(Gr, e)$ which induces a t-structure on the Iwahori-Whittaker category.

Proof. Should be similar to [Ans+24, Ch.6].

Lemma 2.1. The orbit X'_{λ} supports an $(I_u, \chi^* \mathcal{L}^k_{\psi,1})$ equivariant local system if and only if $\lambda \in X_*(T)_{++}$.

Proof. We follow the proof of [Bez+19a, Lemma 3.3.].

Let us recall the definition of highest weight category,

Definition 2.2. [Ric16] Let \mathcal{A} be a k-linear ordinary category. \mathcal{A} is highest weight if the following conditions holds. Let $\mathcal{S} := \pi_0 \operatorname{Irr} \mathcal{A}$ be the set of isomorphism class of irreducible objects in \mathcal{A} , which is equipped with a partial order \leq .

- (1) For any $s \in \mathcal{S}$, $\{t \in \mathcal{S} : t \leq s\}$ is finite.
- (2) For each $s \in \mathcal{S}$, we have $\text{Hom}_{\mathcal{A}}(L_s, L_s) = k$.
- (3) For an $s \in \mathcal{S}$, and ideal $\mathcal{S}' \subset \mathcal{I}$ such that $s \in \mathcal{S}$ is maximal, $\Delta_s \to L_s$ is a projective cover \cdots

Lemma 2.2. Assume k is a field of characteristic 0. Then the i-th cohomology stalks of $IC_{\lambda}^{\mathcal{IW}}(k)$ vanish unless $i \equiv 0 \mod \dim(X'_{\lambda})$.

Proof. Observe first that obviously $\overline{X'_{\lambda}} \subset \operatorname{Gr}_{G,\leq \lambda}$. Choose a preimage w of the Iwahori-Weyl group corresponding to this Schubert cell, we get a smooth morphism $p \colon \operatorname{Fl}_{G,\leq w} \to \operatorname{Gr}_{G,\leq \lambda}$. Choose a reduced expression $\dot{w} = s_1 \dots s_r \omega$. We have the Demazure-Bott-Samuelson resolution $\pi \colon \operatorname{Dem}_{G,\dot{w}} \to \operatorname{Fl}_{G,\leq w}$ whose geometric fibers admit stratifications into affine spaces, see also [Zhu17, Section 1.4.2]. Note that the parity property on stalks may be checked after pulling back to $p^{-1}(\overline{X'_{\lambda}})$. Then by the decomposition theorem this occurs as a direct summand of $R\pi_*\operatorname{IC}$, where $\operatorname{IC} = j_*\pi^*p^*\operatorname{IC}^{\mathcal{IW}}_{\lambda}(k)|_{X'_{\lambda}}[\dim \operatorname{Dem}_{G,\dot{w}}]$, where $j \colon \pi^{-1}p^{-1}(X'_{\lambda}) \to \pi^{-1}p^{-1}(\overline{X'_{\lambda}})$ is the open inclusion. This gives the claim.

Corollary 2.1. The category $\operatorname{Shv}_{c,(I_u,\mathcal{L}_{\psi})}^{\heartsuit}(\operatorname{Gr},e)$ is a highest weight category with weight poset $(X_{*,++},\leq)$.

Proof. Since each stratum is affine, this follows as discussed in [BGS96].

2.2. Whittaker filtration. Here we briefly recall [Ras16, Ch.2], where one constructs the rth adolescent Whittaker category.

Definition 2.3. Let

$$\begin{array}{cccc}
\mathcal{P}_{u,r} & \longrightarrow & I_r & \longrightarrow & L^+G \\
\downarrow & & \downarrow & & \downarrow & \downarrow \\
L^rN & \longrightarrow & L^rB & \longrightarrow & L^rG
\end{array}$$

and define

$$I_{u,r} := \operatorname{ad} - (r\check{\rho}(\varpi))(\mathcal{P}_{u,r})$$

Example 2.1. In case $G = GL_2$, $\check{\rho} = \frac{1}{2}(1, -1)$. Thus,

$$I_{u,n} = \begin{pmatrix} 1 + \varpi \mathcal{O} & \varpi^{-n} \mathcal{O} \\ \varpi^{2n} \mathcal{O} & 1 + \varpi \mathcal{O} \end{pmatrix}$$

We will only be interested in the case r = 0, giving $I_{u,0} \simeq L^+G$, and when r = 1, where it is the conjugate of the unipotent radical of Iwahori

In [AB09], $(I_{u,1}, \chi^* \mathcal{L}_{\psi})$ -equivariant sheaves are called the baby Whittaker category.

Remark 2.2. The natural h fits in the following diagram commute

Proposition 2.1. We have the following adjunction: $U \hookrightarrow V$, be an inclusion of subgroups,

, which is a adjunct triplet. We also have

$$\operatorname{Av}_{!}\mathcal{F} = a_{!}(\mathcal{L} \boxtimes \mathcal{F})[\dim], \quad \operatorname{Av}_{*}\mathcal{F} = a_{*}(\mathcal{L} \boxtimes \mathcal{F})[\dim]$$

 \mathcal{L} is a character on V, and \mathcal{L}^{\vee} is the dual character on V, such that $\mathcal{L} \otimes \mathcal{L}^{\vee} \simeq e_V$. [Milton: this statement is incomplete, but will be modified, [AR15, A.2]]

Proof. Consider the following diagram

By the projection formula, and as \mathcal{L} is a character sheaf on V, we have that

$$p_{2*}p_1^*\mathcal{L} \simeq e_X$$

Then we have the following adjunctions:

$$\operatorname{Shv}_c(X,e) \xrightarrow{\stackrel{a_!}{\longleftarrow}} \operatorname{Shv}_{c,V}(V \times X,e)$$

$$\downarrow^{\operatorname{fgt} \bigwedge \operatorname{Av}_*[\dim]} \quad p_1^* \mathcal{L} \otimes (-) \bigwedge \downarrow p_1^* \mathcal{L}^{\vee} \otimes (-)$$

$$\operatorname{Shv}_{c,(V,\mathcal{L})}(X,e) \xrightarrow{\longleftarrow} \operatorname{Shv}_{c,(V,\mathcal{L})}(V \times X,e)$$

The top and bottom adjunctions are equivalences as V is affine.

We will now consider the following composition

Av_! is the left adjoint of the forgetful functor, as defined in Proposition 2.1. Here $d = 2 \langle \check{\rho}, \rho \rangle$. The appearance of this d would be explained in Proposition 3.1.

Remark 2.3. Note that we will consider the following more general situation: whenever we have two subgroups with characters $\{K_i, \psi_i\}_{i=1}^2$ of L^+G such that $\psi_1\Big|_{K_1 \cap K_2} = \psi_2\Big|_{K_1 \cap K_2}$. We define the composite

$$\operatorname{Sh}_{c,(K_1\cap K_2,\mathcal{L}_{\psi})}(\operatorname{Gr}_G,e)$$

$$\operatorname{Shv}_{c,(K_1,\psi)}(\operatorname{Gr},e)$$

$$\operatorname{Shv}_{c,(K_2,\psi_2)}(\operatorname{Gr},e)$$

as $Av_{!}^{\psi_{2}}$, provided all the functors in diagram are well-defined.

Corollary 2.2. The composite

$$Av_!^{\psi}[d]: \operatorname{Shv}_{c,G(\mathcal{O})}(\operatorname{Gr}_G, e) \to \operatorname{Shv}_{c,(I_{u,1},\chi^*\mathcal{L}_{\psi})}(\operatorname{Gr}_G, e) \simeq \operatorname{Shv}_{c,(I_u,\chi^*\mathcal{L}_{\psi})}(\operatorname{Gr}_G, e)$$

coincides with the construction of [Bez+19b].

$$\mathcal{A} \mapsto \Delta_{\varsigma}^{IW} \star \mathcal{A}$$

Proof. Note that $\mathrm{ad}\check{\rho}(\varpi)$ is equivalent to $\mathrm{ad}\varsigma$. Indeed, ς is chosen such that $\alpha \in \Delta$, $\langle \varsigma, \alpha \rangle = 1$. On the other hand, if $\alpha \in \Delta$, then $s_{\check{\alpha}}(\check{\rho}) = \check{\rho} - \check{\alpha}$. By definition, $s_{\check{\alpha}}(\check{\rho}) = \check{\rho} - \langle \check{\rho}, \alpha \rangle \check{\alpha}$, thus $\langle \check{\rho}, \alpha \rangle = 1$.

3. Exactness of spherical action

Definition 3.1. We say that a sheaf $\operatorname{Shv}_c(\operatorname{Gr}_G, k)$ is partially integrable if it admits a filtration such that each filtered piece admits the structure of a \mathcal{P} -equivariant sheaf, where \mathcal{P} is the preimage of a parabolic P^- strictly bigger than B^- under the reduction map $L^+G \to G$

Lemma 3.1. Let $\operatorname{Av}_{!,\mathring{l},\chi^*\mathcal{L}_{\psi,1}}$ denote the left adjoint to the inclusion $\operatorname{Shv}_{c,(\mathring{l},\chi^*\mathcal{L}_{\psi,1}^k)}(\operatorname{Gr}_G,k) \subset \operatorname{Shv}_c(\operatorname{Gr}_G,k)$. Then the image under $\operatorname{Av}_{!,\mathring{l},\chi^*\mathcal{L}_{\psi,1}}$ of any partially integrable object vanishes.

Proof. Let A be partially integrable, we want to check that $\operatorname{Av}_{\hat{I},\chi^*\mathcal{L}_{\psi,1}}(A) = 0$. By definition, we may assume that A is \mathcal{P} -equivariant where \mathcal{P} is the preimage of a parabolic P^- strictly bigger than B^- under the reduction map $L^+G \to G$. Let G^1 denote the first congruence

subgroup of G. In this case $G^1 \backslash \operatorname{Gr}_G$ admits an action of G and we can form the category $\operatorname{Shv}_{c,N,\chi'^*\mathcal{L}_{\psi,1}}(G^1 \backslash \operatorname{Gr}_G)$ as those sheaves \mathcal{F} on $G^1 \backslash \operatorname{Gr}_G$ such that $a^*\mathcal{F} \cong \chi'^*\mathcal{L}_{\psi,1} \boxtimes \mathcal{F}$ where $a \colon N \times G^1 \backslash \operatorname{Gr}_G \to \operatorname{Gr}_G$ is the action map and χ' is the composite $N \to N/[N,N] \cong \prod_{\alpha \in \Delta^+} \mathbb{G}_a \xrightarrow{\sum} \mathbb{G}_a$. We have a similar averaging functor $\operatorname{Av}_{!,N,\chi'^*\mathcal{L}_{\psi,1}} \colon \operatorname{Shv}_c(G^1 \backslash \operatorname{Gr}_G) \to \operatorname{Shv}_{c,N,\chi'^*\mathcal{L}_{\psi,1}}(G^1 \backslash \operatorname{Gr}_G)$. Note that by assumption A comes from pullback from a P^- -equivariant sheaf A' on $G^1 \backslash \operatorname{Gr}_G$ and it suffices to check that $\operatorname{Av}_{!,N,\chi'^*(\mathcal{L}_{\psi,1})}(A') = 0$. This follows from the fact that the !-pushforward of $\chi'^*\mathcal{L}_{\psi,1}$ under $N \to G \to G/P^-$ vanishes. Todo: to see this, consider the following diagram

Definition 3.1. The category of I^- -monodromic sheaves is the essential image of the functor $\operatorname{Shv}(I \setminus \operatorname{Gr}_G) \to \operatorname{Shv}(Gr_G)$.

Lemma 3.2. Any I^- -monodromic sheaf (bounded complex thereof) that is supported on $Gr_{G,\leq\varsigma}-Gr_{G,\varsigma}$ is partially integrable.

Proof. Note that any orbit in $\operatorname{Gr}_{G,\leq\varsigma}-\operatorname{Gr}_{G,\varsigma}$ corresponds to irregular λ . It suffices to show that irreducible I^- -equivariant étale sheaves supported on a $\operatorname{Gr}_{G,\lambda}$ as above is in fact partially integrable. Such sheaves are pulled back from irreducible B^- -equivariant sheaves on $G^1\backslash\operatorname{Gr}_{G,\lambda}$. This is a G-homogenous space isomorphic to G/P^- for some parabolic P^- strictly bigger than B^- , since λ was irregular. Any such sheaf is supported on an closure of an B^- -orbit of G/P^- , however any such orbit is stable under a parabolic strictly bigger than B^- , which shows the claim.

Corollary 3.1. For any sheaf \mathcal{F} the cofiber $cofib(Av_{!,\mathring{I},\chi^*\mathcal{L}_{\psi,1}}(\mathcal{F}) \to Av_{*,\mathring{I},\chi^*\mathcal{L}_{\psi,1}}(\mathcal{F})$ vanishes after applying $Av_{!,\mathring{I},\chi^*\mathcal{L}_{\psi,1}}$.

Proof. This is immediate from Lemma 3.2 and Lemma 3.1

Lemma 3.1. Let $K_1 := I_{u,1} \cap I_1^-$, note that we have the exact sequence

$$K_1 \rightarrow I_1^- \rightarrow B^-$$

$$K_1 \to I_{u,1} \to N$$

The following diagram commutes

$$\operatorname{Shv}_{c,L^{+}G}(\operatorname{Gr}_{G},e) \xrightarrow{fgt} \operatorname{Shv}_{c,I}(\operatorname{Gr}_{G},e) \xrightarrow{Av_{*}} \operatorname{Shv}_{c,I_{1}^{-}}(\operatorname{Gr}_{G},e) \simeq \operatorname{Shv}_{c}(B^{-}\backslash (K_{1}\backslash \operatorname{Gr}))$$

$$\downarrow^{Av_{!}^{\psi}} \operatorname{Shv}(N\backslash (K_{1}\backslash \operatorname{Gr})) \simeq \operatorname{Shv}_{c,(I_{u,1},\chi)}(\operatorname{Gr},e)$$

Proof. This is [FR22, p. 4.3.0.1].

Example 3.1.

$$I_{1}^{-} = \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & \mathcal{O} \end{pmatrix}$$
$$K_{1} := I_{u,1} \cap I_{1}^{-}$$

Proposition 3.1. Φ *is t-exact.*

Proof. By Lemma 3.1, we reduce the problem of checking cohomological amplitude of each of the following composition

$$\operatorname{Shv}_{c,I}(\operatorname{Gr},e) \xrightarrow{\operatorname{Av}_*} \operatorname{Shv}_{c,I_1^-}(\operatorname{Gr},e) \xrightarrow{\operatorname{Av}_!^{\psi}} \operatorname{Shv}_{c,(I_{u,1},\chi^*\mathcal{L}_{\psi})}(\operatorname{Gr},e)$$

We show that the diagram is equivalent to

(1) $\operatorname{Shv}_{c,I}(\operatorname{Gr}, e) \xrightarrow{\operatorname{Av}_*} \operatorname{Shv}_{c,I_1^-}(\operatorname{Gr}, e) \xrightarrow{\operatorname{Av}_*^{\psi}[2 \dim N]} \operatorname{Shv}_{c,(I_{u,1},\chi^*\mathcal{L}_{\psi})}(\operatorname{Gr}, e)$

(2) Let
$$d' = \left(-2 \dim I_1^- \cdot I/I\right)$$
.

$$\operatorname{Shv}_{c,I}(\operatorname{Gr}, e) \xrightarrow{\operatorname{Av}_![d']} \operatorname{Shv}_{c,I_-}(\operatorname{Gr}, e) \xrightarrow{\operatorname{Av}_!^{\psi}} \operatorname{Shv}_{c,(I_{u,1},\chi^*\mathcal{L}_{\psi})}(\operatorname{Gr}, e)$$

- 1) follows from the result of [BBM21], in particular Theorem A.1.
- 2) follows from Lemma 3.2, and vanishing of partially integrable objects, Lemma 3.1.

Definition 3.2. We say a morphism $f: X \to Y$ is cohomologically contractible if it is cohomologically smooth and we have $f_!f_!e \cong e$.

Lemma 3.3. The following conditions are equivalent for a cohomologically smooth morphism $f: X \to Y:$

- (1) f is cohomologically contractible.
- (2) The functor $f^!$: $Shv(Y) \to Shv(X)$ is fully faithful.
- (3) The functor $f^* \colon \operatorname{Shv}(Y) \to \operatorname{Shv}(X)$ is fully faithful.
- (4) The natural transformation $id \to f_*f^*$ is an isomorphism.

Proof. Since f is cohomologically smooth we see that item 2 is equivalent to item 3. It is clear that item 2 implies item 1, conversely by the projection formula we have $f_!f^!\mathcal{F} \cong f_!(f^!e\otimes f^*\mathcal{F}\cong f_!f^!e\otimes \mathcal{F})$, so that item 1 implies item 2. The equivalence between item 4 and item 3 is standard.

Definition 3.3. For a cohomologically smooth morphism $f: X \to Y$ we write f_{\natural} for the left adjoint of f^* . We have a natural isomorphism $f_{\natural} \cong f_{!}(f^!e \otimes -)$ and it is easy to check that similarly to $f_{!}$ the functor f_{\natural} satisfies the projection formula and base change.

Lemma 3.4. Let $f: X \to Y$ be cohomologically contractible. Then $p_{\natural}p^* \colon \operatorname{Shv}(Y) \to \operatorname{Shv}(Y)$ is an equivalence of categories with inverse p_*p^* .

Proof. For this we have to check that $p_*p^*p_\sharp p^*$ and $p_\sharp p^*p_*p^*$ are naturally isomorphic to the identity functors. This follows easily from base change and the projection formula as well as from the natural isomorphism id $\cong p_*p^*$ we have from Lemma 3.3.

Lemma 3.2. Now we study $Av_!^{I \to I_1^-}$.

(1)

$$\operatorname{Shv}_{c,I_{1}^{-}}(\operatorname{Gr},e) \xrightarrow{Av_{!}^{I \to I_{1}^{-}} \left\langle \dim(I_{1}^{-} \cdot I/I) \right\rangle} \operatorname{Shv}_{c,I}(\operatorname{Gr},e)$$

is are mutally inverse equivalences. Here we write $\langle d \rangle = [2d](d)$ for the usual shift and Tate twist.

Proof. Note that by definition we have $\operatorname{Shv}_{c,I_1^-}(\operatorname{Gr},e) \simeq \operatorname{Shv}_c(I_1^- \backslash \operatorname{Gr},e)$ as well as $\operatorname{Shv}_{c,I}(\operatorname{Gr},e) \simeq \operatorname{Shv}_c(I \backslash \operatorname{Gr},e)$. Observe that $I_1^- \backslash \operatorname{Gr} \cong I \backslash \operatorname{Gr}$. This induces an equivalence of categories $\operatorname{Shv}_c(I_1^- \backslash \operatorname{Gr}) \simeq \operatorname{Shv}_c(I \backslash \operatorname{Gr})$. Consider the map $p \colon I \backslash \operatorname{Gr} \to (I_1^- \cap I) \backslash \operatorname{Gr}$. This is a fibration with fibers $I/I_1^- \cap I$, which is an affine space. We deduce that p is cohomologically contractible. Using the identifications mentioned above we can compute that $\operatorname{Av}_1^{I \to I_1^-} \backslash \operatorname{dim}(I_1^- \cdot I/I) \rangle \cong p_{\natural} p^*$ and that $\operatorname{Av}_*^{I_1^- \to I} \cong p_* p^*$. The claim now follows from Lemma 3.4.

APPENDIX A. PROPERTIES OF AVERAGING FUNCTOR

In this appendix we record various properties of averaging functors.

Theorem A.1. Let $N \hookrightarrow G$ be unipotent radical of parabolic subgroup $P \hookrightarrow G$. $\psi : N \to \mathbb{G}_a$ a nondegenerate character. Let N^-, P^- be the associated opposite unipotent radical of the opposite parabolic subgroup.

(1) If
$$\mathcal{F} \in \operatorname{Shv}^b(N^-\backslash X)$$
, then

$$Av_{N,\psi,!}\mathcal{F} \simeq Av_{N,\psi,*}\mathcal{F}$$

Proof. The is from [BBM21]. This is a consequence of the cleanness property of the inclusion

$$j: N \times X \hookrightarrow G \times_{P^-} X$$

REFERENCES 9

REFERENCES

- [AB09] Arkhipov, Sergey and Bezrukavnikov, Roman. "Perverse sheaves on affine flags and Langlands dual group". In: *Israel J. Math.* 170 (2009). With an appendix by Bezrukavnikov and Ivan Mirković, pp. 135–183. ISSN: 0021-2172,1565-8511. URL: https://doi.org/10.1007/s11856-009-0024-y (cit. on p. 3).
- [Ans+24] Anschütz, Johannes et al. Gaitsgory's central functor and the Arkhipov-Bezrukavnikov equivalence in mixed characteristic. 2024. arXiv: 2311.04043 [math.NT] (cit. on p. 2).
- [AR15] Achar, Pramod N. and Riche, Simon. Modular perverse sheaves on flag varieties I: tilting and parity sheaves. 2015. arXiv: 1401.7245 [math.RT] (cit. on p. 4).
- [BBM21] Bezrukavnikov, Roman, Braverman, Alexander, and Mirkovic, Ivan. Some results about the geometric Whittaker model. 2021. arXiv: math/0210250 [math.AG] (cit. on pp. 1, 7, 8).
- [Bez+19a] Bezrukavnikov, Roman et al. "An Iwahori-Whittaker model for the Satake category". In: *J. Éc. polytech. Math.* 6 (2019), pp. 707–735. ISSN: 2429-7100,2270-518X. URL: https://doi.org/10.5802/jep.104 (cit. on pp. 1, 2).
- [Bez+19b] Bezrukavnikov, Roman et al. "An Iwahori-Whittaker model for the Satake category". In: *J. Éc. polytech. Math.* 6 (2019), pp. 707–735. ISSN: 2429-7100,2270-518X. URL: https://doi.org/10.5802/jep.104 (cit. on p. 5).
- [BGS96] Beilinson, Alexander, Ginzburg, Victor, and Soergel, Wolfgang. "Koszul Duality Patterns in Representation Theory". In: *Journal of the American Mathematical Society* 9.2 (1996), pp. 473–527. (Visited on 08/02/2024) (cit. on p. 3).
- [FR22] Faergeman, Joakim and Raskin, Sam. Non-vanishing of geometric Whittaker coefficients for reductive groups. 2022. arXiv: 2207.02955 [math.RT] (cit. on pp. 1, 7).
- [Ras16] Raskin, Sam. W-algebras and Whittaker categories. 2016. arXiv: 1611.04937 [math.RT] (cit. on pp. 1, 3).
- [Ric16] Riche, Simon. "Geometric Representation Theory in positive characteristic". In: 2016. URL: https://api.semanticscholar.org/CorpusID:54961597 (cit. on p. 2).
- [Zhu17] Zhu, Xinwen. "Affine Grassmannians and the geometric Satake in mixed characteristic". In: *Ann. of Math. (2)* 185.2 (2017), pp. 403–492. ISSN: 0003-486X,1939-8980. URL: https://doi.org/10.4007/annals.2017.185.2.2 (cit. on p. 3).