Data Structure Tutorial 1

1. Which of the follo a) A parentheses bala c) Compiler Syntax A	01 0	s of stack? b) Tracking of d) All of the mentione		at run	time	
2. Which data structua) Stack	are is required for Bread b) Array	dth First Traversal on a c) Queue	a graph? d) Tree			
3. In which data strumiddle?	icture, elements can be	inserted or deleted at	/from both the en	ds but not	in the	
a) Queue	b) Circular queue	c) Dequeue	d) Priority	y queue		
4. What data structuralgorithm?	re would you mostly lik	kely see in a non recurs	sive implementati	on of a rec	ursive	
0	b) Stack	c) Queue	d) Tree			
5. Which of the folloa) Reversing a string c) Implementation of		application of stack? b) Evaluation d) Job scheduling	of postfix	c expr	ession	
6. In linked list implementation of a queue, which of these pointers will change during an insertion						
into a NONEMPTY a) Only front pointer	queue? b) Only rear point	er c) Both front	and rear pointer	d) No	ne	
	condition for a que b) REAR is null			-	ation?	
	xpression, operator suc b) Prefix Expression		on d) None c	of the ment	ioned	
Doubly Linked List(a) Complexity of Ins b) SLL uses lesser m	sertion and Deletion at l nemory per node than D nrching power than SLI	known position is O(n) DLL		·	and and	
10. What is the value a) Something between c) Something between		b) Somethi	ing between between 15 and 1	5 and .00	-5	
11. What is the time a) O(logn)	complexity of enqueue b) O(nlogn)	operation? c) O(n) d) O(1))			
effect on the time co list (Assuming stack a) O(1) for insertion c) O(n) for insertion	is to be implemented to implexity of the push and is implemented efficient and O(n) for deletion and O(1) for deletion accessing data stored in	nd pop operations of the ntly)? b) O(1) for insection d) O(n) for insection discourse.	he stack implement sertion and O(1) for sertion and O(n) for	nted using l or deletion or deletion	linked	

a) the running time of	the reason for using a "circular queue" instead of a regular one? In g time of enqueue() is improved. In a series all the elements more efficiently. In a series of a regular one? In a series of enqueue() is improved. In a series of enqueue() is im					
15. The stack data type a) remove the top elements c) look at the top elements	ent b) ins	ense that you cannot: ert at the top nove the bottom eleme	nt			
16. A priority queue can efficiently implemented using which of the following data structures? Assume that the number of insert and peek (operation to see the current highest priority item) and extraction (remove the highest priority item) operations are almost same. a) Array b) Linked List c) Heap Data Structures d) None of the above						
following operation tal	=		inter is maintained, which of the d) Both a) and c)			
18. Which one of the following is an application of Queue Data Structure?a) When a resource is shared among multiple consumers.b) When data is transferred asynchronously (data not necessarily received at same rate as sent) between two processesc) Load Balancingd) All of the above						
19. Here is an infix expression: $8 + 2*(6*4-15)$. Suppose that we are using the usual stack algorithm to convert the expression from infix to postfix notation. What is the maximum number of symbols that will appear on the stack at one time during the conversion of this expression? a) 1 b) 2 c) 3 d) 4						
20. The postfix form o a) AB+ CD*E – FG /* c) AB + CD* E – *F *	*	- B)*(C*D- E)*F / G is b) AB + CD* E – F * d) AB + CDE * – * F	**G /			
21. The prefix form of a) -/*^ACBDE	A-B/ (C * D ^ E) is b) -ABCD*^DE	? c) -A/B*C^DE	d) -A/BC*^DE			
22. Consider the usual algorithm for determining whether a sequence of parentheses is balanced. The maximum number of parentheses that appear on the stack at any time when the algorithm analyzes: $(()(())(()))$ are:						
a) 1 b) 2	c) 3	d) 4 or more				
23. Consider a small circular linked list. How to detect the presence of cycles in this list effectively?a) Keep one node as head and traverse another temp node till the end to check if its 'next points to head.b) Have fast and slow pointers with the fast pointer advancing two nodes at a time and slow pointer advancing by one node at a time.c) Cannot determine, you have to pre-define if the list contains cycles.d) None of the mentioned						
24. Minimum number	of queues to implen	nent stack is				

d) Stack

c) Array

b) Binary Tree

a) Heap

a) 3 b) 4 c) 1 d) 2					
25. A normal queue, if implemented using an array of size MAX_SIZE, gets full when: a) Rear = MAX_SIZE - 1 b) Front = (rear + 1)mod MAX_SIZE c) Front = rear + 1 d) Rear = front					
26. In a circular queue, how do you increment the rear end of the queue? a) rear++ b) (rear+1) % CAPACITY c) (rear % CAPACITY)+1 d) rear					
27. Which of the following is true about linked list implementation of queue? a) In push operation, if new nodes are inserted at the beginning of linked list, then in pop operation, nodes must be removed from end. b) In push operation, if new nodes are inserted at the beginning, then in pop operation, nodes must be removed from the beginning c) In push operation, if new nodes are inserted at the end, then in pop operation, nodes must be removed from end. d) None of the mentioned					
28. What is the time complexity of searching for an element in a circular linked list? a) $O(n)$ b) $O(nlogn)$ c) $O(1)$ d) None of the mentioned					
29. Which of the following is false about a circular linked list?a) Every node has a successorb) Time complexity of inserting a new node at the head of the list is O(1)c) Time complexity for deleting the last node is O(n)d) None of the mentioned					
30. What is the time complexity of deleting from the rear end of the dequeue implemented with a singly linked list? a) $O(nlogn)$ b) $O(logn)$ c) $O(n)$ d) $O(n^2)$					
31. Assume that the operators +, -, × are left associative and $^{\land}$ is right associative. The order of precedence (from highest to lowest) is $^{\land}$, x , +, The postfix expression corresponding to the infix expression a + b× c - d $^{\land}$ e $^{\land}$ f is a) abc× + def $^{\land}$ - b) abc× + de $^{\land}$ f $^{\land}$ - c) ab + c× d - e $^{\land}$ f $^{\land}$ d) - + a× bc $^{\land}$ $^{\land}$ def					
32. Given an empty queue Q, what does it look like after the following operations? Q.enqueue(5) Q.enqueue(2) Q.dequeue() Q.enqueue(3) Q.dequeue() a) 3 b) 5 c) 9 d) none of the abov.					
33. Consider the following operation performed on a stack of size 5. Push(1); Pop(); Push(2); Push(3); Pop(); Push(4); Pop(); Pop(); Pop(); After the completion of all operation, the number of elements present in stack are:					

a) 1 b) 2 c) 3

34. Given a 5 element stack S (from top to bottom: 2, 4, 6, 8, 10), and an empty queue Q, remove the elements one-by-one from S and insert them into Q, then remove them one-by-one from Q and re-insert them into S. S now looks like (from top to bottom).

d) 4

a) 2, 4, 6, 8, 10

b) 10, 2, 4, 6, 8

c) 10, 8, 6, 4, 2

d) none of the above.

35. After performing these set of operations, what does the final list look contain?

InsertFront(10);
InsertFront(20);
InsertRear(30);
DeleteFront();
InsertRear(40);
InsertRear(10);
DeleteRear();
InsertRear(15);
display();

a) 10 30 10 15

b) 20 30 40 15

c) 20 30 40 10

d) 10 30 40 15

Solution: 1) d. 2) c. 3) c. 4) b. 5) d. 6) b. 7) a. 8) c. 9) d. 10) d. 11) d. 12) b. 13) d. 14) b. 15) d. 16) c. 17) a. 18) d. 19) d. 20) c. 21) c. 22) c. 23) b. 24) d. 25) a. 26) b. 27) a. 28) a. 29) b. 30) c. 31) a. 32) a. 33) a. 34) c. 35) d.