Low level Audio Features

by Nimesh Gautam

Dimensions of Types of Audio Features

- Level of abstraction
- Temporal Scope
- Musical aspect
- Signal Domain
- ML approach

LEVEL OF ABSTRACTION

- 1. HIGH LEVEL FEATURES
 - CHORDS, RHYTHM, MELODY, GENRE, ETC
- 2. MEDIUM LEVEL FEATURES
 - PITCH, NOTE ONSETS, MFCC, ETC
- 3. LOW LEVEL FEATURES

LOW LEVEL AUDIO FEATURES

- Typically Computed directly from raw audio waveform
- Simple statistical summaries of waveform

LOW LEVEL AUDIO FEATURES

- 1. Amplitude Envelope (TD)
- 2. RMS Energy (TD)
- 3. Zero- Crossing Rate (TD)
- 4. Band energy ratio (FD)
- 5. Spectral Centroid (FD)
- 6. Spectral Spread/Bandwidth (FD)
- 7. Spectral flux, etc. (FD)

Amplitude Envelope

INTRODUCTION:

- Envelope is a smooth curve outlining extremes of an oscillating signal
- Maximum amplitude among all samples in a frame

Source: Wikipedia

Amplitude Envelope

COMPUTATION

$$AE(t) = \max_{k=t,K}^{(t+1).K-1} s(k)$$

K = Frame size

s(k) = Amplitude of kth sample

Amplitude Envelope

- Onset Detection
- Music Genre classification
- Gives rough idea about loudness

RMS Energy/Power/Level

INTRODUCTION:

- Root Mean Square Energy
- Relates to perceived sound intensity
- Indicator of loudness
- Less sensitive to outliers than Amplitude Envelope

RMS Energy

COMPUTATION

K = Frame size

s(k) = Amplitude of kth sample

RMS Energy

- Indicator of loudness
- Audio segmentation
- Music Genre classification

Zero Crossing Rate

INTRODUCTION:

No of times amplitude value changes its sign.

Low Level Audio Features

Zero Crossing Rate

COMPUTATION

$$ZCR_{t} = \frac{1}{2} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K - 1} |\operatorname{sgn}(s(k)) - \operatorname{sgn}(s(k+1))|$$

n function:	c(z > 0	+1
GITTUTICUOTI.	S(K) - U	丁

$$s(k) < 0 \qquad -1$$

$$s(k) = 0$$

Zero Crossing Rate

- Recognition of percussive vs pitches sounds
- Monophonic pitch estimation
- Speech Recognition

Amplitude Envelope

RMS Energy

ZCR

Frequency Domain Low level Features

Time Domain
Plot of
Digital
Signal

Fast Fourier Transform

source(book): Music SImilarity and Retreival, Peter Knees, Markus Schedl

Band Energy Ratio

INTRODUCTION:

- Relates the energy in the lower frequency bands to the energy in higher bands.
- Measure of how dominant low frequency are

Band Energy Ratio

COMPUTATION

$$BER_t = \frac{\sum_{n=1}^{F-1} m_t(n)^2}{\sum_{n=F}^{N} m_t(n)^2}$$

F = split frequency band

mt(n) = Magnitude of signal in

frequency domain in

frequency band n

Band Energy Ratio

- Speech/ Music discrimination
- Music Genre classification

Spectral Centroid

INTRODUCTION:

- Center of gravity of the magnitude spectrum i.e.,
- Frequency band where most of the energy is concentrated
- Measure of brightness of sound

Spectral Centroid

COMPUTATION

$$SC_{t} = \frac{\sum_{n=1}^{N} m_{t}(n) \cdot n}{\sum_{n=1}^{N} m_{t}(n)}$$

mt(n) = Magnitude of signal in frequency domain in frequency band n

Spectral Centroid

- Audio Classification
- Music Classification

Spectral Flux

INTRODUCTION:

- Describes change in power spectrum between consecutive frames
- Used in onset detection, speech detector
- Describing timbre of an audio signal

Spectral Flux

COMPUTATION

$$SF_{t} = \sum_{n=1}^{N} (D_{t}(n) - D_{t-1}(n))^{2}$$

Dt = frame by frame normalized frequency distribution in frame t

Thank You

by Nimesh Gautam