Department of Mathematical Sciences, Kannur University Bridge Course -Linear Algebra Problem Sheet 1

1 Problems

- 1. Vector Space Identification: For each of the following, determine whether the given set V forms a vector space over the specified field F with the defined operations.
 - (a) $V = \{A \in M_{2\times 2}(\mathbb{R}) \mid \det(A) \neq 0\}$ (all 2×2 invertible matrices with real entries)
 - (b) $V = P_n(\mathbb{R})$ (all polynomials with real coefficients of degree exactly n, where $n \ge 1$)
 - (c) $V = \{(x, y, z) \in \mathbb{R}^3 \mid y = 2x \text{ and } z = 3x\}$ (the set of vectors in \mathbb{R}^3 that lie on the line passing through the origin defined by y = 2x and z = 3x)
- 2. Statement P: $\forall v \in V, \exists v' \in V \text{ such that } v + v' = \theta.$
 - Statement Q: $\exists v' \in V \text{ such that } \forall v \in V, v + v' = \theta.$

Is statement P and Q are equivalent?

- 3. Prove the following
 - (a) Additive inverse is unique.
 - (b) Scalar zero times any vector is zero vector. $(0 * v = \theta)$
 - (c) Zero vector is unique.
 - (d) Scalar times the zero vector is Zero vector. $(\alpha * \theta = \theta)$
 - (e) (-1) * v = v'
 - (f) V + V = 2V.
 - (g) $\alpha v = \theta$ if and only if $\alpha = 0$ or $v = \theta$.

— End of Problem Sheet —