UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea

Numărul legitimației de bancă ______

Numele _____

Prenumele tatălui ______

Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1

VARIANTA A

1. Să se rezolve inecuația 3x-1 < 2x+2. (6 pct.)

a)
$$(1,4)$$
; b) $(-1,1)$; c) $(2,\infty)$; d) $(5,11)$; e) $(10,\infty)$; f) $(-\infty,3)$.

2. Să se rezolve ecuația $\log_2(x+1) = 3$. (6 pct.)

a)
$$x = 4$$
; b) $x = 2$; c) $x = 1$; d) $x = 5$; e) $x = 6$; f) $x = 7$.

3. Suma soluțiilor reale ale ecuației $\sqrt{2x+1} = x-1$ este: (6 pct.)

4. Multimea soluțiilor ecuației $x^2 + 4x + 3 = 0$ este: (6 pct.)

a)
$$\{2, 4\}$$
; b) $\{-2, 1\}$; c) $\{-3, -1\}$; d) $\{-4, 0\}$; e) $\{0, 1\}$; f) $\{-2, 3\}$.

5. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x$. Să se calculeze f'(1). (6 pct.)

6. Să se calculeze determinantul 0 2 3 . (6 pct.)

a) 4; b) 2; c)
$$-11$$
; d) -3 ; e) -2 ; f) 9.

7. Să se calculeze suma soluțiilor reale ale ecuației $x^3 + 2x^2 - 3x = 0$. (6 pct.)

a)
$$-3$$
; b) -1 ; c) 3; d) 4; e) 2; f) -2 .

8. Să se rezolve sistemul $\begin{cases} 2x - y = 7 \\ x + 2y = 6 \end{cases}$ (6 pct.)

a)
$$x = 4, y = 1$$
; b) $x = 1, y = 4$; c) $x = 2, y = 4$; d) $x = 1, y = 3$; e) $x = 2, y = 3$; f) $x = 2, y = 2$.

9. Multimea soluțiilor inecuației $x^2 - 3x \le 0$ este: (6 pct.)

a)
$$(3,\infty)$$
; b) $[0,3]$; c) $[-1,3]$; d) $[1,\infty)$; e) $[2,\infty)$; f) $(-3,3)$.

10. Să se determine
$$a \in \mathbb{R}$$
 astfel încât sistemul
$$\begin{cases} ax - y + z = 0 \\ 2x + y - z = 0 \end{cases}$$
 să aibă și soluții nenule. (6 pct.)
$$x + y + 2z = 0$$

a)
$$a = -5$$
; b) $a = 5$; c) $a = 1$; d) $a = -2$; e) $a = 4$; f) $a = -4$.

Să se determine x ∈ R astfel încât numerele x, 8, 3x+2 să fie (în această ordine) în progresie aritmetică.
 (6 pct.)

a)
$$\frac{2}{5}$$
; b) $\frac{3}{4}$; c) $\frac{5}{2}$; d) $\frac{1}{3}$; e) $\frac{7}{2}$; f) $\frac{1}{6}$.

12. Să se rezolve ecuația $3^{2x-1} = 27$. (6 pct.)

a)
$$x = 4$$
; b) $x = 0$; c) $x = -1$; d) $x = 1$; e) $x = 2$; f) $x = -2$.

13. Să se determine abscisa punctului de extrem local al funcției $f:(0,\infty)\to\mathbb{R}$, $f(x)=x^2-\ln x$. (6 pct.)

a)
$$x = \sqrt{2}$$
; b) $x = \frac{e}{2}$; c) $x = 2$; d) $x = 3$; e) $x = 1$; f) $x = \frac{\sqrt{2}}{2}$.

14. Să se calculeze integrala $\int_{0}^{1} xe^{x} dx$. (6 pct.)

a)
$$\frac{e}{3}$$
; b) 3-e; c) 1; d) $\frac{e}{2}$; e) e; f) e-1.

15. Fie polinoamele $f, g \in \mathbb{R}[X]$, $f = (X-1)^{2017} + (X-3)^{2016} + X^2 + X + 1$ și $g = X^2 - 4X + 4$. Să se determine restul împărțirii polinomului f la polinomul g. (6 pet.)

a)
$$6X+1$$
; b) $X-1$; c) $6X-3$; d) $2X+1$; e) $2X-3$; f) $X+1$.