

We adopt the convention that the bottom left of a sheared square inherits the label of the original square.

Clearly, the right edge of new α is given to the new $Tr(\alpha)$. What about the upper edge?

 $T_{u}(\alpha) = T_{u} \circ T_{r}^{-1}(\alpha)$

Algorithm for factoring elements of SL₂(Z).

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$

Reall

$$\mathcal{R} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \quad \mathcal{S} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathcal{S}^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathcal{S}^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

We want to multiply a sequence of R, S, Δ S^{-1} to the left of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ until we get to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Consider what each of the matrices do to
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

R: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & -d \\ a & b \end{pmatrix}$

S: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & a & b \end{pmatrix}$

Consider the first column $\begin{pmatrix} a \\ c \end{pmatrix}$ Can we bring it to the form $\begin{pmatrix} a' \\ c \end{pmatrix}$?

Special (size : If $c = na$

In general : $c = na + r$ of $c = ac$

In general : $c = na + r$ of $c = ac$

A division again.

Now that we've brought the first column to the form
$$\begin{pmatrix} a' \\ 0 \end{pmatrix}$$
, the matrix looks like $\begin{pmatrix} a' \\ 0 \end{pmatrix}$ $\begin{pmatrix} a' \\$

Understanding the action of $M = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ on n-origanis

 $b_{\pi_{u}(l)}$ $a_{\pi_{v}\circ\pi_{u}(l)}$ $a_{\pi_{v}\circ\pi_{u}(l)}$

Note that each square becomes two squares. If the original square is labelled i, then we will label the reviling two squares as a; & b;.

Clearly, one permutation is easy to determine. $\frac{2\pi}{2\pi} \left(\frac{2\pi}{2\pi} \left(\frac{1}{2} \right) \right) = \alpha_i$

What about $\widetilde{\pi}_r(a_i)$?
From the picture, we can tell

$$\prod_{r} (\alpha_{i}) = \bigcap_{\pi_{r} \circ \pi_{u}(i)}$$

The task of determining The is an exercise