REQUIREMENT ANALYSIS TECHNOLOGY STACK

Date	18 June 2025
Team ID	LTVIP2025TMID
Project Name	Visualizing Housing Market Trends: An Analysis of Sales Prices and Features Using Tableau
Maximum Marks	4 marks

Technical Architecture Overview:

The technical architecture for the housing market sales dataset follows a structured and modular approach. First, **data is collected** from various sources such as property listings, transaction histories, and user inputs, which include home prices, features (like number of rooms, size, location), and user preferences. This data is then **pre-processed** to remove missing values, correct inconsistencies, and standardize terms like location names and property types. The next step involves **filtering**, allowing users to explore the data based on factors such as location, price range, number of bedrooms, or home type.

Once the data is cleaned and filtered, **calculations** are applied to derive useful metrics like average home price per location, price trends, and demand scores. These insights are then visualized in a **dashboard**, using bar charts for high-selling areas, line charts for market trends, heatmaps for price distribution, and pie charts to show buyer preferences. Finally, **storyboards or reports** are generated with personalized recommendations, neighbourhood insights, and summary reports for stakeholders like buyers, sellers, or real estate analysts. This architecture ensures clarity, interactivity, and value from raw data to end-user insight.

Components and Technologies:

S. No	Components	Description	Technology
1	User interface	Fronted dashboard for housing trends and sales analytics	Tableau public/ Tableau server
2	Application logic-1	ETL pipelines for housing data preprocessing	Python (pandas, NumPy)

3	Application logic-2	Trend detection and price	Python (starts models
		prediction analysis	/scikit-learn)
4	Application logic-3	Dashboard generation and	Tableau desktop /Tableau
		KPI reporting	prep
5	Database	Structured housing records	PostgreSQL/MySQL
		storage	
6	Cloud database	Cloud-based scalable storage	Amazon RDS/Google Big
			Query
7	File storage	Raw CSV files and renovation	AWS S3/Google cloud
		records archive	storage
8	External API-1	External data sources like	REST APIs (Zillow, realtor
		real estate APIs	API)
9	External API-2	Scraping additional market	Beautiful soup /Scrapy
		listing	
10	Machine learning	House price predictions,	Scikit-learn/ XG Boost
	model	renovation impact scoring	
11	Infrastructure (server)	Housing data processing and	AWS EC2/Google cloud
		visualization	run/local server

Application Characteristics:

S. No	Characteristics	Description	Technology used
1	Open-Source	Frameworks used for data	Python, pandas, scikit-
	Frameworks	processing and ML	learn, flask
2	Security implementations	Data access control	OAuth 2.0, HTTPS, IAM
		encryption	(AWS/GCP) Firewall
3	Scalable architecture	Cloud-based, modular	Microservices, Docker,
		ETL and visualization	Kubernetes
4	Performance	Optimized ETL jobs and	Redis Cache, CDN,
		caching of insights	Efficient SQL queries