#### Aula 05 - Árvores

1001524 – Aprendizado de Máquina I 2023/1 - Turmas A, B e C Prof. Dr. Murilo Naldi

### Agradecimentos

- Parte do material utilizado nesta aula foi cedido pelos professores André Carvalho, Ricardo Campello, Diego Silva e Alan Valejo
- Parte do material utilizado nesta aula foi disponibilizado por M. Kumar no endereço:
  - www-users.cs.umn.edu/~kumar/dmbook/index.php
- Agradecimentos a Intel Software e a Intel IA Academy pelo material disponibilizado e recursos didáticos

#### **Aulas Anteriores**

- Visualização e estatísticas de resumo
- Pré-processamento
- Classificação e Validação de resultados

#### Conteúdo

- Resumo
  - Usando Árvores de Decisão
  - Gerando um modelo
    - Medida de Impureza
    - Tipos de atributos
    - Poda
  - Relação com Regras de Decisão

# Árvores de Decisão (ADs)

- São algoritmos de classificação e tomada de decisão que utilizam a estratégia de divisão e conquista:
  - Divide problemas difíceis em problemas mais simples
  - Problema complexo é decomposto em subproblemas menores
  - Estratégia é aplicada recursivamente a cada subproblema

# Árvores de Decisão (ADs)

- Uma das técnicas mais utilizadas
  - Eficaz, eficiente e produz modelos interpretáveis
- Árvore é composta por:
  - Nó raiz
    - Nenhuma aresta de entrada e n ≥ 0 arestas de saída
  - Nós intermediários
    - 1 aresta de entrada e n > 1 arestas de saída
  - Nós folhas (terminais)
    - 1 aresta de entrada e nenhuma aresta de saída

# Exemplo simples



# Outro exemplo

a OR b

| a b | a v b |
|-----|-------|
| 0 0 | 0     |
| 0 1 | 1     |
| 1 0 | 1     |
| 1 1 | 1     |



#### Exercícios

- Encontrar árvore de decisão para:
  - AAND b
  - A XOR b
  - (a AND b) OR (b AND c)

#### Atributos de decisão

| ld | Ē      | Estado     | Salário | Calote |
|----|--------|------------|---------|--------|
|    | Credor | Civil      |         |        |
| 1  | Sim    | Solteiro   | 125K    | Não    |
| 2  | Não    | Casado     | 100K    | Não    |
| 3  | Não    | Solteiro   | 70K     | Não    |
| 4  | Sim    | Casado     | 120K    | Não    |
| 5  | Não    | Divorciado | 95K     | Sim    |
| 6  | Não    | Casado     | 60K     | Não    |
| 7  | Sim    | Divorciado | 220K    | Não    |
| 8  | Não    | Solteiro   | 85K     | Sim    |
| 9  | Não    | Casado     | 75K     | Não    |
| 10 | Não    | Solteiro   | 90K     | Sim    |



Atributos de Decisão

**Dados de Treinamento** 

Modelo: Árvore de Decisão

### Outro exemplo

| ld | É      | Estado     | Salário | Calote |
|----|--------|------------|---------|--------|
|    | Credor | Civil      |         |        |
| 1  | Sim    | Solteiro   | 125K    | Não    |
| 2  | Não    | Casado     | 100K    | Não    |
| 3  | Não    | Solteiro   | 70K     | Não    |
| 4  | Sim    | Casado     | 120K    | Não    |
| 5  | Não    | Divorciado | 95K     | Sim    |
| 6  | Não    | Casado     | 60K     | Não    |
| 7  | Sim    | Divorciado | 220K    | Não    |
| 8  | Não    | Solteiro   | 85K     | Sim    |
| 9  | Não    | Casado     | 75K     | Não    |
| 10 | Não    | Solteiro   | 90K     | Sim    |



Diferentes árvores podem ser ajustadas para os mesmos dados!

## Aplicar Modelo

Conjunto de Treinamento

| ID | Atrib.1 | Atrib.2 | Atrib.3 | Classe |
|----|---------|---------|---------|--------|
| 1  | Sim     | Grande  | 125K    | Não    |
| 2  | Não     | Médio   | 100K    | Não    |
| 3  | Não     | Pequeno | 70K     | Não    |
| 4  | Sim     | Médio   | 120K    | Não    |
| 5  | Não     | Grande  | 95K     | Sim    |
| 6  | Não     | Médio   | 60K     | Não    |
| 7  | Sim     | Grande  | 220K    | Não    |
| 8  | Não     | Pequeno | 85K     | Sim    |
| 9  | Não     | Médio   | 75K     | Não    |
| 10 | Não     | Pequeno | 90K     | Sim    |

Conjunto de Teste

| ID | Atrib.1 | Atrib.2 | Atrib.3 | Classe |
|----|---------|---------|---------|--------|
| 11 | Não     | Pequeno | 55K     | ?      |
| 12 | Sim     | Médio   | 80K     | ?      |
| 13 | Sim     | Grande  | 110K    | ?      |
| 14 | Não     | Pequeno | 95K     | ?      |
| 15 | Não     | Grande  | 67K     | ?      |











# Árvores e Regras

- Cada percurso da raiz a um nó folha representa uma regra de classificação
- Cada nó folha
  - Está associado a uma classe
  - Corresponde a uma região do domínio dos atributos
  - Hiper-retângulo
    - Interseção de hiper-retângulos é um conjunto vazio
    - União é o espaço total

# Árvores e Regras



# **Arvores e Regras**



Regras: disjunções de conjunções lógicas

1. Se  $A \le a_1 E B \le b_2$ Então Classe = Vermelha 2. Se A >  $a_1 E B \le b_3$ Então Classe = Azul OU

Exercício: complete as regras!

### Espaço de Hipóteses

- Uma árvore de decisão específica ou o conjunto de regras correspondente representa uma hipótese no espaço de hipóteses para a função de classificação a ser aproximada
- Qualquer realização particular de um modelo é uma hipótese!



## Aprender Modelo

Conjunto de Treinamento

| ID | Atrib.1 | Atrib.2 | Atrib.3 | Classe |
|----|---------|---------|---------|--------|
| 1  | Sim     | Grande  | 125K    | Não    |
| 2  | Não     | Médio   | 100K    | Não    |
| 3  | Não     | Pequeno | 70K     | Não    |
| 4  | Sim     | Médio   | 120K    | Não    |
| 5  | Não     | Grande  | 95K     | Sim    |
| 6  | Não     | Médio   | 60K     | Não    |
| 7  | Sim     | Grande  | 220K    | Não    |
| 8  | Não     | Pequeno | 85K     | Sim    |
| 9  | Não     | Médio   | 75K     | Não    |
| 10 | Não     | Pequeno | 90K     | Sim    |



Conjunto de Teste

| ID | Atrib.1 | Atrib.2 | Atrib.3 | Classe |
|----|---------|---------|---------|--------|
| 11 | Não     | Pequeno | 55K     | ?      |
| 12 | Sim     | Médio   | 80K     | ?      |
| 13 | Sim     | Grande  | 110K    | ?      |
| 14 | Não     | Pequeno | 95K     | ?      |
| 15 | Não     | Grande  | 67K     | ?      |



### Indução de ADs

- Existem vários algoritmos
  - Hunt's Concept Learning System
    - Um dos primeiros
    - Base de vários algoritmos atuais
  - ID3, C4.5, J4.8, C5.0
  - CART, Random-Forest

\_ ...

- Seja D<sub>t</sub> o conjunto de objetos que atingem o nó t (não classificados), o algoritmo de Hunt será:
  - Passo 1. Se todos os objetos de  $D_t$  pertencem à mesma classe  $c_t$ , então t é um nó folha rotulado como  $c_t$
  - Passo 2. Se D<sub>t</sub> contém objetos que pertencem a mais de uma classe, então t deve ser um nó interno
    - Passo 2.1. O nó deve conter uma condição de teste sobre algum valor dos atributos que não foi selecionado acima na árvore
    - Passo 2.2. Um nó filho é criado para cada saída da condição de teste (valor do atributo) e os objetos em D<sub>t</sub> são distribuídos neles
    - Passo 2.3. O algoritmo é aplicado recursivamente para cada nó filho

| ld | Crédito | Estado     | Renda | Deve |
|----|---------|------------|-------|------|
|    |         | Civil      |       |      |
| 1  | Sim     | Solteiro   | 125K  | Não  |
| 2  | Não     | Casado     | 100K  | Não  |
| 3  | Não     | Solteiro   | 70K   | Não  |
| 4  | Sim     | Casado     | 120K  | Não  |
| 5  | Não     | Divorciado | 95K   | Sim  |
| 6  | Não     | Casado     | 60K   | Não  |
| 7  | Sim     | Divorciado | 220K  | Não  |
| 8  | Não     | Solteiro   | 85K   | Sim  |
| 9  | Não     | Casado     | 75K   | Não  |
| 10 | Não     | Solteiro   | 90K   | Sim  |



| ld | Crédito | Estado     | Renda | Deve |
|----|---------|------------|-------|------|
|    |         | Civil      |       |      |
| 1  | Sim     | Solteiro   | 125K  | Não  |
| 2  | Não     | Casado     | 100K  | Não  |
| 3  | Não     | Solteiro   | 70K   | Não  |
| 4  | Sim     | Casado     | 120K  | Não  |
| 5  | Não     | Divorciado | 95K   | Sim  |
| 6  | Não     | Casado     | 60K   | Não  |
| 7  | Sim     | Divorciado | 220K  | Não  |
| 8  | Não     | Solteiro   | 85K   | Sim  |
| 9  | Não     | Casado     | 75K   | Não  |
| 10 | Não     | Solteiro   | 90K   | Sim  |



| ld | Crédito | Estado     | Renda | Deve |
|----|---------|------------|-------|------|
|    |         | Civil      |       |      |
| 1  | Sim     | Solteiro   | 125K  | Não  |
| 2  | Não     | Casado     | 100K  | Não  |
| 3  | Não     | Solteiro   | 70K   | Não  |
| 4  | Sim     | Casado     | 120K  | Não  |
| 5  | Não     | Divorciado | 95K   | Sim  |
| 6  | Não     | Casado     | 60K   | Não  |
| 7  | Sim     | Divorciado | 220K  | Não  |
| 8  | Não     | Solteiro   | 85K   | Sim  |
| 9  | Não     | Casado     | 75K   | Não  |
| 10 | Não     | Solteiro   | 90K   | Sim  |



 $Dt = \{3,5,8,10\}$ 



 $Dt = \{1,4,7\}$ 

Dt = {2,3,5,6,8,9,10}

Não

Não

Casado

 $Dt = \{2,6,9\}$ 







- Problema: o algoritmo rudimentar apresentado anteriormente garantidamente funciona apenas se:
  - Houver ao menos um objeto para cada combinação possível dos valores dos atributos preditores; e
  - Havendo mais de um, devem pertencer todos à mesma classe

- Solução (dada que essas hipóteses são muito restritivas):
  - Se D<sub>t</sub> for vazio para um determinado nó t, rotular o nó com a classe majoritária dos objetos do nó pai
  - Se D<sub>t</sub> for composto de objetos pertencentes a classes distintas em um dado nó t e não há mais atributos disponíveis, rotular o nó com a classe majoritária desses objetos

### Critério de Parada



#### Critério de Parada

- Chamada recursiva pode ser finalizada:
  - Quando todos os dados do nó atual possuem o mesmo rótulo
  - Quando os dados do nó atual ainda possuem rótulos de classes diferentes, porém possuem os "mesmos valores" (categóricos) para todos os atributos preditores
    - o que significa que todos os atributos já terão sido incluídos no caminho a partir da raiz, não havendo mais atributos disponíveis

### Decisões importantes

- Decisões importantes a serem consideradas durante a indução:
  - Como dividir os objetos?
    - Como escolher o atributo de divisão?
    - Qual a melhor divisão para aquele atributo?
  - Quando parar de dividir os objetos?

### Condição de Teste

- Depende do tipo do atributo
  - Binário
  - Nominal
  - Ordinal
  - Contínuo
- Depende do número de divisões
  - 2 divisões
  - Mais que 2 divisões

#### **Atributos Binários**

- Teste mais simples
  - Apenas dois possíveis resultados



#### **Atributos Nominais**

- Pode assumir mais que dois valores
- Duas formas de condição de teste
  - Usar tantos ramos quantos forem os possíveis valores do atributo
  - Unir valores em cada ramo
    - disjunção lógica

### Exemplo





#### **Atributos Ordinais**

- Duas alternativas
  - Usar tantos ramos quantos forem os possíveis valores do atributo
  - Unir valores em cada ramo
    - sem violar relação de ordem

### Refrigerante

{Pequeno, Médio} {Grande, Gigante}

- Consultas sobre intervalos:  $x < A_i < y$ 
  - Usar estratégia de discretização
- Condição de teste pode ser expressa por:
  - Comparação:  $A_i < x$ 
    - Escolher valor x de A<sub>i</sub> que gera melhor divisão
      - -Ponto de referência



- Peso
  {50Kg, 70Kg} {70Kg, 80Kg} > 80Kg
- Consultas sobre Intervalos:  $x < A_i < y$ 
  - Vantagem:
    - Com a discretização, o atributo pode ser manipulado pelo algoritmo como um atributo nominal qualquer
      - não requer modificações no algoritmo de indução de ADs
  - Desvantagens:
    - Tenta esgotar a capacidade de divisão do atributo
    - Tende a gerar muitos ramos desnecessários na árvore
      - antes que parte dos objetos do nó da árvore em questão possam ser melhor pré-classificados por outro atributo
- Qual o número ideal de intervalos...???

41

- Qual seria uma boa discretização supervisionada dos dados abaixo para cada atributo?
  - Quantos intervalos são necessários para obter o máximo grau possível de pureza de classe(s) dentro de cada intervalo ?



Peso < 60 Kg

Não Sim

- Comparações: A<sub>i</sub> < x</li>
  - Atributo não é removido do conjunto de candidatos à divisão
  - Pode gerar ramos mais profundos (regras mais complexas)
    - requer modificações no algoritmo básico de indução, em especial no que diz respeito à interrupção ou poda da árvore (p. ex. algo. C4.5)

Peso < 60 Kg

Não

Sim

- Em contrapartida:
  - escolha do atributo e do valor de comparação é "por demanda"
  - árvore mais flexível -> maior poder de discriminação
- escolha do atributo e do valor de comparação é muito mais simples
  - 1 ponto de discretização -> no. fixo de intervalos = 2
  - tendência a minimizar a largura da árvore

#### Peso < 60 Kg







### Medidas para Escolha de Atributo

- Existem várias medidas para determinar a melhor forma de dividir os objetos
- Medidas de impureza
  - Definidas em termos da distribuição de classes dos dados antes e após a divisão
  - Baseadas na ideia que:
    - A melhor partição é aquela em que todos os dados são divididos em grupos com uma mesma classe
    - Quanto mais balanceadas as classes, pior 45

## Medidas para Escolha de Atributo



- Medidas diferentes geram partições diferentes dos dados
- Exemplos de medidas de impureza:
  - Entropia
  - Gini
  - Erro de classificação
  - Qui-quadrado

- Supor que D possui antes da divisão:
  - 10 exemplos da classe 0 (C0: 10)
  - 10 exemplos da classe 1 (C1: 10)



- Abordagem gulosa
  - Prefere nós com distribuição mais homogênea (pura) de classes
  - Necessário uma medida de (im)pureza

C0: 5

C1: 5

C0: 9

C1: 1

Muito heterogênea

Alto grau de impureza

Muito homogênea

Baixo grau de impureza

Entropia(t) = 
$$-\sum_{i=1}^{c} p(i \mid t) \log_2 p(i \mid t)$$

Gini\_Index
$$(t) = 1 - \sum_{i=1}^{\infty} [p(i \mid t)]^2$$

Erro\_Class 
$$(t) = 1 - \max_{i \in \{1,...,c\}} [p(i | t)]$$

#### onde:

p(i|t) = fração de dados pertencente à classe i em um nó t c = número de classes

$$0 \log_2 0 = 0$$

# Comparação: Duas Classes



### Comparação

- Valor máximo:
  - Entropia: (log<sub>2</sub> c)
  - Gini e Erro de classificação: (1 1/c)
  - Quando os dados estão igualmente distribuídos entre todas as classes
    - Informação menos interessante (menos informação)
- Valor mínimo: 0 (para todos)
  - Quando os dados pertencem a uma classe
    - Informação mais interessante

 Calcular a medida de impureza Gini para os dados abaixo:

Gini\_Index(t) = 
$$1 - \sum_{i=1}^{c} [p(i | t)]^2$$

| C1     | 0 |
|--------|---|
| C2     | 6 |
| Gini=? |   |

| C1  | 1        |
|-----|----------|
| Gin | 5<br>i=? |

| Gin | 4<br>i-2 |
|-----|----------|
| C1  | 2        |

| C1  | 3   |
|-----|-----|
| C2  | 3   |
| Gin | i=? |

P(C1) = 
$$0/6 = 0$$
 P(C2) =  $6/6 = 1$   
Gini =  $1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$   
P(C1) =  $1/6$  P(C2) =  $5/6$   
Gini =  $1 - (1/6)^2 - (5/6)^2 = 0.278$   
P(C1) =  $2/6$  P(C2) =  $4/6$   
Gini =  $1 - (2/6)^2 - (4/6)^2 = 0.444$   
P(C1) =  $3/6$  P(C2) =  $3/6$   
Gini =  $1 - (3/6)^2 - (3/6)^2 = 0.500$ 

| Gini=? |   |
|--------|---|
| C2     | 6 |
| C1     | 0 |

| Gin | i=? |
|-----|-----|
| C2  | 5   |
| C1  | 1   |

|     | C1 | 2   |
|-----|----|-----|
|     | C2 | 4   |
| Gin |    | i=? |

| C1        | 3 |
|-----------|---|
| C2        | 3 |
| Gini=? 54 |   |

#### Exercícios

 Fazer os mesmos cálculos para as medidas de entropia e classificação

Entropia(t) = 
$$-\sum_{i=1}^{\infty} p(i \mid t) \log_2 p(i \mid t)$$

Erro\_Class 
$$(t) = 1 - \max_{i \in \{1,...,c\}} [p(i | t)]$$

| C1 | 0  |
|----|----|
| C2 | 6  |
| E= | =? |

| C1      | 0 |
|---------|---|
| C2      | 6 |
| Class=? |   |

| C1  | 1 |
|-----|---|
| C2  | 5 |
| E=? |   |

| C2      | 5 |
|---------|---|
| Class=? |   |

| C1 | 2  |
|----|----|
| C2 | 4  |
| E= | =? |

| C1   | 2   |
|------|-----|
| C2   | 4   |
| Clas | s=? |

| C1 | 3  |
|----|----|
| C2 | 3  |
| E= | =? |

| C1   | 3                 |
|------|-------------------|
| C2   | 3                 |
| Clas | s=? <sup>55</sup> |

- Usadas para avaliar a qualidade de cada condição de teste candidata
  - Compara-se o grau de impureza antes e após a divisão
  - Quanto maior a diferença, melhor o atributo
- Exemplos:
  - Ganho de Informação: usada, por exemplo, pelo algoritmo ID3
  - Média Ponderada de Gini: usada, por exemplo, pelo algoritmo CART

#### Medida de Ganho



Soma ponderada pela proporção de objetos em cada um dos k nós filhos

onde:

I(v<sub>t</sub>): mede o grau de impureza do nó filho v<sub>t</sub>

N(v<sub>t</sub>): no. de objetos do nó filho vt

N: no. de objetos do nó original (v<sub>pai</sub>)

 Quando a medida de impureza é Entropia, Δ mede o Ganho de Informação (Δ<sub>info</sub>)

#### Medida de Ganho

$$\Delta = I(v_{pai}) - \sum_{t=1}^{k} \frac{N(v_t)}{N} I(v_t)$$

- Note que o primeiro termo será constante para todos os atributos e, portanto, pode ser omitido para comparar os Δs associados a cada atributo
- Isso é feito no critério da média ponderada de Gini

#### Média Ponderada de Gini

 Quando um nó é dividido em k filhos, a qualidade da divisão é definida por:

$$Gini_{divisão} = \sum_{t=1}^{k} \frac{N(v_t)}{N} Gini(v_t) \implies \text{Quanto menor melhor}$$

#### onde:

N(vt): no. de objetos do nó filho vt

N: no. de objetos do nó original (pai)

### Divisão de Atributos Binários



|     | Nó 1   | Nó 2  |
|-----|--------|-------|
| C1  | 4      | 2     |
| C2  | 3      | 3     |
| Gir | ni_d = | 0.486 |

$$Gini_{divisão} = (7/12)x0.49 + (5/12)x0.48$$
  
= 0.486





|     | Nó 1   | Nó 2  |
|-----|--------|-------|
| C1  | 1      | 5     |
| C2  | 4      | 2     |
| Giı | ni_d = | 0.375 |

$$Gini_{divisão} = (exercício)$$
  
= 0.375

### Divisão de Atributos Nominais

- Duas alternativas
  - Divisão binária (k = 2):
    - requer busca pela melhor binarização
    - custo computacional adicional
  - Divisão múltipla (k > 2):
    - Tende a produzir partições mais puras
    - Porém, tende a privilegiar atributos com muitos valores...



### Exercício

 Definir a melhor divisão considerando divisão binária e divisão múltipla para:

|                   | Tip                  | o de Cari | Ό |  |  |  |  |  |  |  |  |
|-------------------|----------------------|-----------|---|--|--|--|--|--|--|--|--|
|                   | Família Esporte Luxo |           |   |  |  |  |  |  |  |  |  |
| C1                | 1                    | 2         | 1 |  |  |  |  |  |  |  |  |
| C2                | 4                    | 1         | 1 |  |  |  |  |  |  |  |  |
| Gini <sub>d</sub> |                      |           |   |  |  |  |  |  |  |  |  |

|                   | Tipo de         | e Carro   |
|-------------------|-----------------|-----------|
|                   | {Esporte, Luxo} | {Família} |
| C1                | 3               | 1         |
| C2                | 2               | 4         |
| Gini <sub>d</sub> | ?1              |           |

|    | Tipo de   | Carro              |  |
|----|-----------|--------------------|--|
|    | {Esporte} | {Família,<br>Luxo} |  |
| C1 | 2         | 2                  |  |
| C2 |           |                    |  |
|    | ??        |                    |  |

| ld Crédito | Estado   | Renda | Deve |
|------------|----------|-------|------|
|            | Civil    |       |      |
| 1 Sim      | Solteiro | 125K  | Não  |
| 2 Não      | Casado   | 100K  | Não  |
| 3 Não      | Solteiro | 70K   | Não  |
| 4 Sim      | Casado   | 120K  | Não  |
| 5 Não      | Divorced | 95K   | Sim  |
| 6 Não      | Casado   | 60K   | Não  |
| 7 Sim      | Divorced | 220K  | Não  |
| 8 Não      | Solteiro | 85K   | Sim  |
| 9 Não      | Casado   | 75K   | Não  |
| 10 Não     | Solteiro | 90K   | Sim  |



- Por comparação
  - Vários candidatos
     para ponto de referência
    - No. possíveis divisões = no. valores distintos

Não

- Cada valor candidato x possui uma matriz de contagens associada a ele
  - Contagens das classes em cada uma das duas partições (A<sub>i</sub> ≤ x e A<sub>i</sub> > x)



Renda > x

Não

- Força Bruta
  - Método mais simples
  - Testar todos os valores **x** presentes nos dados para o atributo
    - Para cada  $\mathbf{x}$ , calcular sua medida de ganho  $(\Delta_{info} \, ou \, Gini_d)$  usando as matrizes de contagens das partições resultantes
  - Computacionalmente ineficiente:
  - $O(N^2)$
  - Trabalho repetitivo

Sin

#### Cálculo Cumulativo

- Método mais eficiente: O(N log N)
- Ordenar os valores do atributo
- Para o menor valor
  - Calcular matriz de contagens
  - Calcular medida de ganho associada (Δ<sub>info</sub> ou Gini<sub>d</sub>)
- Para cada valor, a partir do menor
  - Atualizar matriz de contagens cumulativamente
  - Calcular medida de ganho associada
- Escolher a posição com medida de ganho ótima
  - Maior Δ<sub>info</sub> ou menor Gini<sub>d</sub>

Renda > x

/

Não

|                | Deve | ١   | Não Não |     | Nã  | Não Sim |    |              | Si | m      | Si    | m   | m Nã           |    | ăo Não       |              | ão Nã |              | ão      |              |           |     |     |  |
|----------------|------|-----|---------|-----|-----|---------|----|--------------|----|--------|-------|-----|----------------|----|--------------|--------------|-------|--------------|---------|--------------|-----------|-----|-----|--|
| Valores        |      |     |         |     |     |         |    |              |    | Renda  |       |     |                |    |              |              |       |              |         |              |           |     |     |  |
| ordenados      |      |     | 60      |     | 70  |         | 75 |              | 85 |        | 85 90 |     | 95             |    | 100          |              | 120   |              | 125     |              | 220       |     |     |  |
| Candidatos     | *    | 55  |         | 6   | 65  |         | 72 |              | 80 |        | 87    |     | 92 9           |    | 7 1          |              | 10 1  |              | 22      | 172          |           | 230 |     |  |
| a pto. de ref. |      | <=  | >       | <=  | >   | <=      | >  | <b>&lt;=</b> | >  | <=     | >     | <=  | >              | <= | >            | <b>&lt;=</b> | >     | <b>&lt;=</b> | >       | <b>&lt;=</b> | >         | <=  | >   |  |
|                | Sim  | 0   | 3       | 0   | 3   | 0       | 3  | 0            | 3  | 1      | 2     | 2   | 1              | 3  | 0            | 3            | 0     | 3            | 0       | 3            | 0         | 3   | 0   |  |
|                | Não  | 0   | 7       | 1   | 6   | 2       | 5  | 3            | 4  | 3      | 4     | 3   | 4              | 3  | 4            | 4            | 3     | 5            | 2       | 6            | 1         | 7   | 0   |  |
|                | Gini | 0.4 | 20      | 0.4 | 100 |         |    | 75 0.343     |    | 43 0.4 |       | 0.4 | 0.400 <u>0</u> |    | <u>0.300</u> |              | 343   | 0.3          | 375 0.4 |              | 100 0.420 |     | 420 |  |

 $<sup>^{*}</sup>$  Nota: O exemplo acima assume o uso de desigualdades estritas (< e >) no teste, por isso toma valores candidatos intermediários aos valores do atributo, ao invés desses próprios  $_{67}$ 

Primeiro Candidato: x = 55

< 55

Classe sim: 0

Classe não: 0

Gini N1 = 0

> 55

Classe sim: 3

Classe não: 7

Gini N2 = 0.420

Ginid = 0x0 + 1x0.420 = 0.420

```
Segundo Candidato: x = 65
```

Atualiza distribuição do último candidato

< 65

Classe sim: 0

Classe não: 1 (0 + 1)

Gini N1 = ?

> 65

Classe sim: 3

Classe não: 6(7-1)

Gini N2 = ?

Ginid = 0.400

#### Cálculo Cumulativo Melhorado

- Só é preciso considerar valores entre dois objetos adjacentes com classes diferentes!
  - Não Sim ou Sim Não
  - Reduz de 11 para 2 o número de pontos de referência candidatos no exemplo anterior!

|                | Deve | N   | Não Não |     | Nâ  | Não Sim |     | Si       | m     | Si      | Sim N |       | ăo | Não          |      | Não   |       | Não          |    |       |     |          |   |
|----------------|------|-----|---------|-----|-----|---------|-----|----------|-------|---------|-------|-------|----|--------------|------|-------|-------|--------------|----|-------|-----|----------|---|
| Valores        |      |     |         |     |     |         |     |          | Renda |         |       |       |    |              |      |       |       |              |    |       |     |          |   |
| ordenados      | •    |     | 60      |     | 70  | )       | 7   | 5        | 85    |         | 90    |       | 95 |              | 100  |       | 00 12 |              | 12 | 25    | 220 |          |   |
| Candidatos     |      | 55  |         | 6   | 65  |         | 2   | 8        | 0     | 8       | 87    |       | 92 |              | 97 1 |       | 10    |              | 22 | 172   |     | 230      |   |
| a pto. de ref. |      | <=  | >       | <=  | >   | <=      | >   | <=       | >     | <=      | >     | <=    | >  | <=           | >    | <=    | >     | <b>&lt;=</b> | >  | <=    | >   | <=       | > |
|                | Sim  | 0   | 3       | 0   | 3   | 0       | 3   | 0        | 3     | 1       | 2     | 2     | 1  | 3            | 0    | 3     | 0     | 3            | 0  | 3     | 0   | 3        | 0 |
|                | Não  | 0   | 7       | 1   | 6   | 2       | 5   | 3        | 4     | 3       | 4     | 3     | 4  | 3            | 4    | 4     | 3     | 5            | 2  | 6     | 1   | 7        | 0 |
|                | Gini | 0.4 | 120     | 0.4 | 100 | 0.3     | 375 | 75 0.343 |       | 343 0.4 |       | 0.400 |    | <u>0.300</u> |      | 0.343 |       | 0.375        |    | 0.400 |     | 00 0.420 |   |

 $<sup>^{*}</sup>$  Nota: O exemplo acima assume o uso de desigualdades estritas (< e >) no teste, por isso toma valores candidatos intermediários aos valores do atributo, ao invés desses próprios  $_{71}$ 

#### Taxa de Ganho

- Medidas como Entropia e Gini favorecem atributos com muitos valores
  - podem gerar muitos subconjuntos dos dados de treinamento
  - subconjuntos menores tendem a ser mais puros
  - porém, são mais susceptíveis a se especializar nos dados de treinamento
    - preditores ruins da função de classificação para dados não vistos
    - exemplo extremo: no. do RG ou CPF para classificação de risco de crédito

#### Taxa de Ganho

- Alternativas para minimizar este problema
  - Usar apenas divisões binárias (abordagem usada pelo algoritmo CART)
  - Usar alguma punição para a quantidade de valores do atributo
    - Exemplo: Taxa de Ganho (abordagem usada pelo algoritmo C4.5)

#### Taxa de Ganho

Definida para a Entropia:

Taxa de Ganho = 
$$\frac{\Delta_{\text{info}}}{S_{\text{info}}}$$

$$S_{\text{info}} = -\sum_{t=1}^{k} p(v_t) \log_2 p(v_t)$$

onde:

k: número de divisões (valores do atributo A<sub>i</sub>)

 $p(v_t)$  = fração de objetos cujo valor do atributo  $A_i = v_t$ 

 $S_{info}$  = entropia do conjunto de objetos com relação aos valores do atributo  $A_i$ 

↑ no. objetos com valores distintos ↑ Sinfo ↓ taxa de ganho 74

#### Viés Indutivo

- Informalmente, o viés (bias) indutivo de um algoritmo é uma tendência deste em privilegiar uma ou um conjunto de hipóteses frente às demais
- Pode ser caracterizado como:
  - De restrição (ou linguagem): restringe o espaço de hipóteses
  - De busca (ou preferência): polariza a escolha dentre as possíveis realizações do modelo

- Ausência de viés restritivo em ADs significa que pode haver um ajuste perfeito aos dados de treinamento
  - Chamado de overfitting
  - Problema:
    - o conjunto de dados não for muito representativo
    - contaminado com ruído



- Partição recursiva dos dados:
  - Decisões são baseadas em conjuntos cada vez menores de objetos
  - Níveis mais profundos podem ter muito poucos objetos
    - Presença de ruído afeta cada vez mais a decisão para esses nós
    - Reduz capacidade de generalização (desempenho em objetos não vistos)

# Generalização e Overfitting







Fonte: https://mathbabe.org/2012/11/20/columbia-data-science-course-week-12-predictive-modeling-data-leakage-model-evaluation/

- Navalha de Occam (Occam's razor)
- Quanto mais simples a solução, melhor
- Explicação dos dados por uma hipótese mais complexa pode ser apenas uma coincidência
- Árvore de decisão pode ser simplificada...

## Simplificação de ADs

- Duas Abordagens:
  - Interromper a priori o crescimento da árvore
    - com base no desempenho em dados de teste
    - com base em um compromisso entre desempenho em dados de teste e complexidade do modelo
  - Podar o modelo a posteriori

### Interrupção do Crescimento

- Quando o desempenho em dados não usados no treinamento não mais melhora de forma significativa
- Muito comum
   em redes neurais,
   não se mostra a
   melhor
   abordagem
   em ADs



#### Poda da Árvore

- Elimina sub-árvores cujas existências reduzem o desempenho do modelo em dados de teste
- Demanda calcular, para cada nó, a variação no desempenho de classificação após a eliminação dos seus descendentes
- Mais eficaz que interrupção, com maior custo computacional



#### Poda da Árvore

- 1) Tomar um conjunto de dados de teste (não vistos no treinamento)
- 2) Percorrer a árvore segundo percurso pós-fixado. Para cada nó t, calcular:
  - E<sub>t</sub>: o erro de classificação dos objetos de teste que chegam até aquele nó, como se o nó fosse uma folha associada à classe da maioria
  - 2)  $S_t$ : a soma dos erros  $E_i$  de cada uma das folhas descendentes de t
  - 3)  $V_t$ : variação do erro após poda dos descendentes ( $V_t = S_t E_t$ )
- 3) Podar os descendentes daquele nó t com maior valor positivo de V<sub>t</sub>
- 4) Atualizar os valores de St e Vt para os nós ancestrais de t
- 5) Retornar ao passo 3 enquanto houver valores positivos de Vt

### Vantagens das ADs

- Rápida classificação de novos dados
- Interpretação da hipótese induzida
  - Fácil para árvores relativamente pequenas
    - ou seja, com poucas regras…
- Determina quais atributos são importantes
  - Seleção de atributos embarcada !!!
    - Pode ser estendida para também levar em conta o custo da utilização de cada atributo...

### Vantagens das ADs

- Principais algoritmos tratam tanto atributos categóricos como atributos numéricos
- Desempenho muitas vezes comparável ou até superior a outros bons classificadores
  - depende da natureza dos dados
- Algoritmos podem ser adaptados para tratar instâncias com valores ausentes (e.g. C4.5)

### Desvantagens das ADs

- Limitação de hipótese a hiper-retângulos
  - Exceto para Árvores Oblíquas (mais complexas...)
- Baixo desempenho em problemas com muitas classes e poucos dados
  - Representatividade das regiões hiperretangulares...
- Custo computacional de indução e simplificação do modelo pode ser elevado
  - especialmente para os algoritmos mais sofisticados

## Algoritmos

- ID3 : trata atributos categóricos
  - Desenvolvido por Quinlan (1993)
  - Usa ganho de informação para a seleção
  - Faz simplificação por poda
- C4.5: sucessor do ID3 manipula qualquer atributo
  - Download em:

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

## **Outros Algoritmos**

- J4.8 : Versão Java do C4.5 implementada no software Weka
- PART : Variante do J4.8 também disponível no Weka
- C5.0: Sucessor do C4.5 comercial
- CART (Classification and Regression Trees):
   Árvores Oblíquas, ou seja, hipóteses não mais restritas a partições hiper-retangulares

# Aplicando Árvore com holdout Iris

Código import pandas as pd #Importa o método de Árvores de Decisão do Sklearn from sklearn.tree import DecisionTreeClassifier # Localização do arquivo filepath = 'data/Iris\_Data.csv' # Importando os dados data = pd.read csv(filepath) #Colocando os dados em ordem aleatória randomdata = (data.sample(n=150, replace=False)) #Aplicando hold out traindata = randomdata.iloc[:135,:] testdata = randomdata.iloc[135:,:] #Cria uma instância de classe DTC = DecisionTreeClassifier(criterion='gini', max\_features=4, max\_depth=5) #Ajusta a Árvore aos dados de treino DTC = DTC.fit(traindata.iloc[:,0:4], traindata.iloc[:,4]) #Classe real print(testdata.iloc[:,4]) #Classe predita print(DTC.predict(testdata.iloc[:,0:4]))

# Aplicando Árvore com holdout Iris

#### Saída = Classes Saída Predita 113 Iris-virginica ['Iris-virginica' 104 Iris-virginica 'Iris-virginica' 13 Iris-setosa 'Iris-setosa' 51 Iris-versicolor 'Iris-versicolor' 34 Iris-setosa 'Iris-setosa' 86 Iris-versicolor 'Iris-versicolor' 109 Iris-virginica 'Iris-virginica' 99 Iris-versicolor 'Iris-versicolor' 96 Iris-versicolor 'Iris-versicolor' 138 Iris-virginica 'Iris-virginica' 3 Iris-setosa 'Iris-setosa' 82 Iris-versicolor 'Iris-versicolor' 91 Iris-versicolor 'Iris-versicolor' 27 Iris-setosa 'Iris-setosa' 52 Iris-versicolor 'Iris-virginica']

#### Exercício

Seja o seguinte cadastro de pacientes:

| Nome  | Febre | Enjôo | Manchas  | Dores | Diagnóstico |
|-------|-------|-------|----------|-------|-------------|
| João  | sim   | sim   | pequenas | não   | doente      |
| Pedro | não   | não   | grandes  |       | saudável    |
| Maria | sim   | sim   | pequenas |       | saudável    |
| José  | sim   | não   | grandes  |       | doente      |
| Ana   | sim   | não   | pequenas |       | saudável    |
| Leila | não   | não   | grandes  |       | doente      |

#### Exercício

- Usando medida de entropia:
  - Induzir uma árvore de decisão capaz de distinguir:
    - Pacientes potencialmente saudáveis
    - Pacientes potencialmente doentes
  - Testar a árvore para novos casos
    - (Luis, não, não, pequenas, sim)
    - (Laura, sim, sim, grandes, sim)

## Exercício Computacional

- Baixar da UCI as bases de dados IRIS e GLASS
  - Induzir uma árvore de decisão
  - Dividir os dados da seguinte forma:
    - -50% para treinamento
    - -25% para teste
    - -25% para validação
  - Fazer o mesmo para outros algoritmos e comparar resultados