Activité 8.1 - L'explosion du port de Beyrouth

Objectifs:

- Faire un bilan de matière à partir d'une équation de réaction fournie.
- Utiliser la relation entre le volume et le volume molaire $V = n \times V_m$.

Contexte: Le 4 août 2020, une terrible explosion a fait voler en éclats le port de Beyrouth, blessant plus de 6 500 personnes et causant 190 décès. La cause, découverte récemment, indique qu'un incendie se serait déclaré dans un entrepôt de nitrate d'ammonium.

→ Comment expliquer l'ampleur de l'explosion dans ce hangar?

1

Le stockage

Document 1 - Description du stockage à Beyrouth

Le conseil supérieur de la défense indique qu'un incendie s'est déclaré dans un hangar de $50\,000\,\mathrm{m}^3$ dans lequel étaient stockés $2\,750\times10^3\,\mathrm{kg}$ de nitrate d'ammonium de formule brute $\mathrm{NH_4NO_3}$.

Document 2 - Tableau descriptif des espèces chimiques

Espèce chimique	Nitrate d'ammonium	diazote	dioxygène	eau
Formule brute	NH_4NO_3	N_2	O_2	$\mathrm{H}_2\mathrm{O}$
Propriétés physico- chimiques	Solide à 20 °C. (poudre). Légè- rement nocif.	Gazeux à 20 °C. Gaz incolore inerte présent dans l'air.	Gazeux à 20 °C. Gaz incolore oxydant présent dans l'air. Com- burant.	Liquide à 20 °C. Amphotère.

Données :

$$-M(C) = 12.0 \,\mathrm{g \cdot mol^{-1}}$$

$$-M(O) = 16.0 \,\mathrm{g \cdot mol^{-1}}$$

$$-M(N) = 14.0 \text{ g} \cdot \text{mol}^{-1}$$

$$-M(H) = 1.0 \,\mathrm{g \cdot mol^{-1}}$$

1 — Donner le nom et la formule brute de l'espèce chimique entreposée dans le port de Beyrouth responsable de l'explosion.

C'est le nitrate d'ammonium NH₄NO₃.

2 — Après avoir converti la masse de cette espèce chimique en gramme, calculer sa masse molaire notée $M(\mathrm{NH_4NO_3})$.

$$m(NH_4NO_3) = 2.75 \times 10^9 \,\mathrm{g}$$

$$M(NH_4NO_3) = 2M(N) + 4M(H) + 3M(O)$$

= $(2 \times 14,0 + 4 \times 1,0 + 3 \times 16,0)g \cdot mol^{-1}$
= $80,0 g \cdot mol^{-1}$

Document 3 - calcul de quantité de matière (solide et gaz)

La relation utilisée pour calculer la quantité de matière dépend de l'état physique de l'espèce chimique.

Espèces chimique à l'état solide

$$n=\frac{m}{M}$$

- n la quantité de matière en mol
- m la masse en g
- M la masse molaire en $g \cdot \text{mol}^{-1}$

masse molaire atomique des entités chimiques $V_m = 24.0 \,\mathrm{L\cdot mol^{-1}}$ (à 20 °C et sous pression qui composent la molécule.

Espèce chimique à l'état gazeux

$$n = \frac{V}{V_m}$$

- n la quantité de matière en mol
- V le volume en L
- V_m le volume molaire en L·mol⁻¹

La masse molaire se calcule en additionnant les Le volume molaire d'un gaz est une constante atmosphérique).

3 – En déduire, à l'aide du document 1 et 3, la quantité de matière n_1 de nitrate d'ammonium entreposée dans le hangar.

$$n_1 = \frac{m(\text{NH}_4\text{NO}_3)}{M(\text{NH}_4\text{NO}_3)}$$
$$= \frac{2,75 \times 10^9 \text{ g}}{80,0 \text{ g} \cdot \text{mol}^{-1}}$$
$$= 3,44 \times 10^7 \text{ mol}$$

La réaction produite par l'incendie 2

Document 4 - Rappels sur la réaction chimique

On réalise une transformation chimique lorsqu'on mélange des espèces chimiques et que de nouvelles espèces chimiques apparaissent.

Pour modéliser une transformation chimique on écrit une réaction chimique entre entités chimiques.

équation de la transformation chimie produite lors de l'incendie dans le hangar à 300 °C:

Les espèces chimiques qui sont transformées au cours de la réaction chimique sont les **réactifs**. Les réactifs sont à gauche dans la réaction.

Les espèces chimiques qui sont produites au cours de la réaction chimique sont les **produits**. Les produits sont à droite dans la réaction.

Document 5 - Faire un bilan de matière

L'équation de la réaction est comme une recette de cuisine :

$$2NH_4NO_{3 (s)} \rightarrow 2N_{2 (g)} + O_{2 (g)} + 4H_2O_{(l)}$$

Si je mélange deux NH₄NO₃, il se forme deux N₂, un O₂ et quatre H₂O.

Si je mélange 4 NH_4NO_3 , il se forme 4 N_2 , 2 O_2 et 8 H_2O .

Si je mélange 6 NH₄NO₃, il se forme 6 N₂, 3 O₂ et 12 H₂O.

Si je mélange 2,4 mol de NH₄NO₃, il se forme 2,4 mol N₂, 1,2 mol O₂ et

 $4.8 \,\mathrm{mol}\,\mathrm{H}_2\mathrm{O}$.

Données:

$$-1 \text{ m}^3 = 10^3 \text{ L}$$

$$-1 \text{ K} = 1 + 273 \,^{\circ}\text{C}$$

4 — Réécrire l'équation de la réaction produite lors de l'incendie. À partir du document 5, nommer les réactifs et les produits de cette réaction chimique. En vous aidant du document 2, indiquer si ces espèces sont dangereuses.

Réactifs : nitrate d'ammonium (légèrement nocif) ; Produits : diazote, dioxygène et eau (sans dangers)

La chaleur apportée par l'incendie a permis à la réaction de se produire. Compléter la première ligne « avant l'incendie » et la deuxième ligne « après l'incendie », du tableau ci-dessous, en vous aidant du document 5

Équation de la réaction	$2 \text{ NH}_4 \text{NO}_3 \text{ (s)}$	2 N _{2 (g)}	$+$ $\mathrm{O_{2~(g)}}$ -	$+$ 4 $\mathrm{H_{2}O}_{\mathrm{(l)}}$
État du système	Quantités de matières (mol)			
Avant l'incendie	$n_1 = 3,44 \times 10^7$	$n(N_2) = 0$	$n(\mathcal{O}_2) = 0$	$n(\mathrm{H_2O}) = 0$
Après l'incendie	$n_{f,1}=0$	$n_f(N_2) = n_1$	$n_f(O_2) = \frac{1}{2}n_1$ $n_f(H_2O) = 2n_1$	

5 — En utilisant le document 3 et le tableau ci-dessus, calculer (dans les conditions normales), le volume de diazote $V(N_2)$, de dioxygène $V(O_2)$ et de vapeur d'eau $V(H_2O)$ produit.

On multiplie la quantité de matière par le volume molaire pour trouver le volume occupé par chaque gaz :

$$V(N_2) = n(N_2) \times V_m = 3.44 \times 10^7 \,\text{mol} \times 24.0 \,\text{L} \cdot \text{mol}^{-1} = 8.25 \times 10^8 \,\text{L}$$

$$V(O_2) = n(O_2) \times V_m = 1.71 \times 10^7 \,\text{mol} \times 24.0 \,\text{L} \cdot \text{mol}^{-1} = 4.13 \times 10^8 \,\text{L}$$

$$V(H_2O) = n(H_2O) \times V_m = 6.88 \times 10^7 \,\text{mol} \times 24.0 \,\text{L} \cdot \text{mol}^{-1} = 1.65 \times 10^9 \,\text{L}$$

6 — Soit n la quantité de matière produite totale avec $n = n_f(N_2) + n_f(O_2) + n_f(H_2O)$ et V le volume totale $V = V(N_2) + V(O_2) + V(H_2O)$. Calculer n et V.

$$n = n_1 + \frac{1}{2}n_1 + 2n_1 = \frac{7}{2}n_1 = 1,20 \times 10^8 \,\text{mol}$$

 $V = 2,89 \times 10^9 \,\text{L}$

7 — Conclure sur la valeur de V par rapport à celle du hangar

Le volume du hangar est de $50\,000\,\mathrm{m}^3 = 5{,}00\times10^7\,\mathrm{L}$, soit un volume 58 fois plus petit que le volume de gaz libéré.

8 - Pour les plus rapides. La relation des gaz parfait est la suivante :

$$PV = nRT$$

avec $R=8,31\,\mathrm{Pa\cdot m^3\cdot mol^{-1}\cdot K^{-1}},\;n$ la quantité totale de gaz et ici $V=5\times10^4\,\mathrm{m^3}$ représente le volume du hangar.

Sachant que la température dans le hangar était de 873 K après la réaction, calculer la pression produite par la réaction.

La comparer avec la pression atmosphérique $P_{\text{atm}}=100\,\text{kPa}$ et la pression dans un pneu de vélo $P_{\text{pneu}}=300\,\text{kPa}$.

On calcule la pression à l'aide de la loi des gaz parfaits

$$P = \frac{nRT}{V}$$

$$= \frac{1,20 \times 10^8 \text{ mol} \times 873 \text{ K} \times 8,31 \text{ Pa} \cdot \text{m}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1}}{2,89 \times 10^9 \text{ L}}$$

$$= 1,74 \times 10^7 \text{ Pa} = 1,74 \times 10^4 \text{ kPa}$$

$$= 17400 \text{ kPa}$$

Soit une pression 58 fois plus élevée que dans un pneu atteinte en quelques secondes!

Activité 8.2 - Principe de fonctionnement d'un airbag

Objectifs:

• Étudier le fonctionnement d'un airbag

Document 1 - Utilité d'un airbag

Les airbags sont utilisés dans les voitures, pour protéger les passagers en cas de choc violent. L'airbag permettrait d'obtenir jusqu'à 25 % de personnes tuées en moins sur les routes. Pour protéger efficacement les passagers, l'airbag doit se gonfler en une fraction de seconde.

Document 2 – Accéléromètre

Un accéléromètre est un dispositif qui permet de détecter des variations de vitesse. En cas de choc la voiture passe de sa vitesse de croisière à une vitesse nulle en très peu de temps. La décélération, alors très importante, est détectée par l'accéléromètre, qui transmet un signal électrique au détonateur, ce qui déclenche une suite de réactions chimiques dont l'un des produits est le gaz servant à gonfler l'airbag. Ce processus est extrêmement rapide : il prend environ 0,1 s.

Document 3 – Réaction chimiques servant à gonfler un airbag

Le détonateur enclenche d'abord la décomposition extrêmement rapide (explosive) de l'azoture de sodium solide $NaN_{3(s)}$ en sodium solide $Na_{(s)}$ et diazote gazeux $N_{2(g)}$ selon la réaction (1) d'équation :

$$2NaN_{3(s)} \rightarrow 2Na_{(s)} + 3N_{2(g)}$$
 (1)

Le sodium, dangereux, est éliminé au fur et à mesure de sa formation par le nitrate de potassium, selon la réaction (2) d'équation :

$$10Na_{(s)} + 2KNO_{3(s)} \rightarrow K_2O_{(s)} + 5Na_2O_{(s)} + N_{2(g)}$$
(2)

Puis l'oxyde de potassium $K_2O_{(s)}$ et l'oxyde de sodium $Na_2O_{(s)}$ sont consommés à leur tour par la silice SiO_2 selon les réactions (3) et (4) d'équations :

$$K_2O_{(s)} + Na_2O_{(s)} + SiO_{2(s)} \rightarrow K_2Na_2SiO_{4(s)}$$
 (3)

$$2Na_2O_{(s)} + SiO_{2(s)} \rightarrow Na_4SiO_{4(s)}$$
(4)

Document 4 - Danger des espèces chimiques intervenant dans le gonflement d'un airbag

NaN_3	Na	N_2	KNO_3	$ m K_2O~et \ Na_2O$	SiO_2	$ K_2Na_2 $ $ SiO_4 $	Na ₄ SiO ₄
très toxique	s'enflamme au contact l'eau	inoffensif	irritant	corrosif	inoffensif	inoffensif	inoffensif

Tant que l'airbag ne s'est pas gonflé, l'azoture de sodium est inaccessible, donc sans danger. À la fin du gonflage, tous les produits restants sont inoffensifs.

1 - Donner le nom et la formule brute du gaz utilisé pour gonfler un airbag.

- 2 Préciser l'intérêt de la réaction chimique 2.
- 3 Préciser la nécessité d'utiliser la silice.
- 4 L'airbag du conducteur contient 70 L de gaz dans des conditions de températures et de pressions telles que le volume molaire est égal à $V_m = 30 \,\mathrm{L} \cdot \mathrm{mol}^{-1}$.

Calculer en moles la quantité de matière de gaz produit pour remplir l'airbag.

5 — Sachant que les équations des réaction 1 et 2 peuvent être réduite à l'équation suivante

$$10\text{NaN}_{3(s)} + 2\text{KNO}_{3(s)} \rightarrow \text{K}_2\text{O}_{(s)} + 5\text{Na}_2\text{O}_{(s)} + 16\text{N}_{2(g)}$$

En déduire la quantité de matière initiale d'azoture de sodium qu'il a fallu introduire pour obtenir les 70 L de gaz du coussin d'air.

6 — En déduire la masse de NaN₃ présente initialement dans l'airbag.

Données:

- -M(N) = 14 g/mol,
- -M(Na) = 23 g/mol,
- -M(Si) = 28.1 g/mol

- -M(O) = 16 g/mol,
- -M(K) = 39.1 g/mol,

Activité 8.3 - Principe de fonctionnement d'un éthylotest

Objectifs:

- ▶ Comprendre le principe d'un éthylotest
- Revoir les réaction d'oxydoréduction

Document 1 - Principe de l'éthylotest

L'éthylotest est constitué d'un tube en verre dans lequel on fait circuler l'air préalablement expiré dans un ballon en plastique de 1 litre. L'air expiré traverse une zone constituée de grains jaune-orangé de dichromate de potassium. Si l'haleine contient de l'alcool, le solide jaune-orangé devient vert.

Un repère situé au premier tiers de la zone de détection indique la limite légale à ne pas dépasser, qui correspond à $0.25\,\mathrm{mg}\cdot\mathrm{L}^{-1}$ d'air expiré ou $0.5\,\mathrm{g}\cdot\mathrm{L}^{-1}$ dans le sang, soit deux verres standard d'alcool

Document 2 - Dichromate de potassium

Le dichromate de potassium $K_2Cr_2O_7$ est un solide ionique constitué de cations potassium K^+ incolores et d'anions dichromate responsables de la couleur jaune-orangé.

Le dichromate est un oxydant et les ions K^+ n'interviennent pas : ils sont spectateurs.

L'anion dichromate est très toxique, cancérigène et nuit à l'environnement.

Document 3 - Rappel sur les réaction d'oxydo-réduction

Un oxydant est une espèce chimique capable d'obtenir un ou plusieurs électrons. Un réducteur est une espèce chimique capable de relâcher un ou plusieurs électrons.

Un oxydant et un réducteur forment un couple Oxydant/Réducteur, si l'on peut passer de l'un à l'autre par le gain ou la perte d'électrons. Le couple est noté Ox/Réd. \triangleright $Exemple: Zn^{2+}/Zn$.

Une réaction d'oxydoréduction a lieu quand on met en contact un oxydant et un réducteur de deux couples différents.

Elle met donc en jeu deux couples oxydant/réducteur. Par exemple avec un couple du fer : ${\rm Fe^{3+}/Fe}$; et un couple de l'oxygène : ${\rm O_2/O^{2-}}$

Le gaz O_2 va réagir avec le solide Fe, pour se transformer en ion Fe^{3+} et en ion O^{2-} , qui vont se combiner pour former de l'hématite solide Fe_2O_3 (la rouille).

$$4Fe_{(s)} + 3O_{2(g)} \rightarrow 4Fe^{3+} + 6O^{2-} \rightarrow 2Fe_2O_{3(s)}$$

Document 4 - Réaction d'oxydo-réduction dans un éthylotest

L'éthylotest exploite une réaction chimique d'oxydoréduction. L'éthanol C_2H_6O contenu dans l'air expiré par une personne alcoolisée constitue le réducteur destiné à être oxydé en acide éthanoïque $C_2H_4O_2$ par l'ion dichromate $Cr_2O_7^{2-}$ contenu dans le tube de test.

Couple Ox/Red	${ m Cr_2O_7^{2-}/Cr^{3+}}$	$\mathrm{C_2H_4O_2/C_2H_6O}$		
Couleurs	m orange/vert	${\rm incolore/incolore}$		
Demi-équation	$ ext{Cr}_2 ext{O}_7^{2-} ext{14H}^+ + 6 ext{e}^* \\ = 2 ext{ Cr}^{3+} + 7 ext{ H}_2 ext{O}$	$egin{array}{l} { m C_2H_4O_2 + 4H^+ + 4e^2} \ = { m C_2H_6O + H_2O} \end{array}$		

1 — Qui est l'oxydant dans le couple formé par l'ion dichromate et l'ion chromique $Cr_2O_7^{2-}/Cr^{3+}$? Même question pour l'éthanol et l'acide éthanoïque $C_2H_4O_2/C_2H_6O$.

Document 5 - Démarche pour établir l'équation d'une réaction d'oxydoréduction

Pour établir l'équation d'une réaction d'oxydoréduction il faut

- Identifier les deux réactifs Oxydant₁ et Réducteur₂.
- Écrire, l'une sous l'autre, les deux demi-équations en mettant les réactifs à gauche.
- Ajuster les coefficients des deux demi-équations pour obtenir le même nombre d'électrons.
- Additionner côté par côté les deux demi-équations.
- Vérifier que les charges et les éléments sont conservés, puis supprimer les électrons.
- 2 Établir l'équation de la réaction d'oxydoréduction entre l'éthanol et sous la forme Oxydant₁ + Réducteur₂ → Réducteur₁ + Oxydant₂.
 - 3 Interpréter les changements de couleurs observés lorsque l'éthylotest est positif.