

# Мета уроку

Познайомити учнів з теоретичним матеріалом, що стосується перетворення подібності та властивостями подібних фігур; гомотетією, як одним із способів перетворення фігур

Формувати вміння застосовувати теоретичний матеріал до розв'язування задач на перетворення подібності; вчитися будувати гомотетичні фігури

Виховувати культуру математичних міркувань. Розвивати математичну компетентність.



#### Означення

#### Перетворенням подібності (подібність)

називається таке перетворення фігури F у фігуру  $F_1$ , унаслідок якого відстань між точками змінюється в тому самому відношенні k (k >0).



Число k називається коефіцієнтом подібності. Якщо k=1, то маємо переміщення.

Переміщення є окремим випадком подібності

$$A_1B_1=kAB$$

# Властивості перетворення подібності

- 1. Перетворення подібності переводить прямі в прямі, промені— в промені, відрізки— у відрізки.
- 2. Кожна фігура подібна сама собі з коефіцієнтом подібності k=1
- 3. Перетворення подібності зберігає кути між променями



## Гомотетія

**Гомотетією** з центром O називається таке перетворення фігури F у фігуру  $F_1$ , внаслідок якого кожна точка X фігури F переходить у точку  $X_1$  фігури  $F_1$  так, що точка  $X_1$  лежить на промені OX і  $OX_1 = k$  OX (k - фіксоване додатне число)



# Banam Amaü

#### Гомотетія є перетворенням подібності



#### Властивості гомотетії

**Гомотетія** з коефіцієнтом к є перетворення подібності з коефіцієнтом к



При гомотетії пряма переходить у паралельну їй пряму або сама в себе, відрізок — у паралельний йому відрізок, кут — у рівний йому кут.



На координатній площині гомотетія точок A(x,y) і  $B(x_1,y_1)$  задається формулами:

$$x_1 = k \cdot x$$
  $y_1 = k \cdot y$ 



# Властивості подібних фігур



Дві фігури називаються подібними, якщо вони переводяться одна в одну перетворенням подібності

- 1. Будь-яка фігура подібна сама собі:  $F \infty F$ .
- 2.  $\pi_{\kappa u,0} F_1 \propto F_2$ , mo  $F_2 \propto F_1$ .
- 3. Якщо  $F_1 \infty F_2$ , а  $F_2 \infty F_3$ , то  $F_1 \infty F_3$ .
- 4. Відношення площ подібних фігур дорівнює квадрату коефіцієнта подібності: якщо  $F \infty F_1$  з коефіцієнтом k, то  $S(F_1): S(F) = k^2$ .

### Працюємо разом

Завдання № 1 Побудуйте фігуру, яка гомотетична заданому ДАВС, прийнявши за центр гомотетії вершину А, якщо коефіцієнт гомотетії дорівнює 2 Розв'язування:

 $B_1$ 

1. Точка A — центр гомотетії і вона перейде сама в себе;

2. Відкладемо від точки А на промені АВ відрізок

$$AB_1 = 2 \cdot AB$$
;

3. Відкладемо від точки А на промені АС відрізок 4C<sub>1</sub> = 2 · AC **Завдання № 2** При гомотетії точка X переходить у точку  $X_1$  а точка N - y точку  $N_1$ . Як знайти центр гомотетії, якщо точки X,  $X_1$ , N,  $N_1$  не лежать на одні прямій?



**Завдання № 3** При гомотетії точка D переходить у точку  $D_1$ . Побудуйте центр гомотетії, якщо коефіцієнт гомотетії k=2.



Розв'язування:
На промені  $D_1D$  з
початком в точці  $D_1$ відкласти від точки Dвідрізок  $OD = D_1 D$ 

**Завдання № 4** Побудуйте фігуру, яка гомотетична чотирикутнику ABCD з коефіцієнтом гомотетії 0,5 і центром O—точкою перетину діагоналей.



#### Розв'язуваня:

Вікладемо від т.О на промені OA відрізок  $OA_1 = 0,5$  OA

Вікладемо від т.О на промені OB відрізок  $OB_1 = 0,5 \ OB$ 

Вікладемо від т.О на промені OC відрізок  $OC_1 = 0,5$  OC

Вікладемо від т.О на промені ОD відрізок  $OD_1 = 0,5 \ OD$ 



#### ДОМАШНЄ ЗАВДАННЯ

Опрацювати параграф 23 Виконати № 1006,1008,1010