	Задача <i>Часть 1</i> Сгенерировать выборку случайных чисел размером 100 и 1000 для двух распределений – экспоненциального и нормального. Для созданных выборок сделать следующее: 1. Посчитать выборочное среднее и дисперсию, сравнить с математическим ожиданием соответствующих распределений; 2. Посчитать 0.5 и 0.99 квантили, сравнить с соответствующими теоретическими значениями; 3. Построить гистограмму распределения;
	4. Построить функцию распределения случайной величины на основе выборки (на одном графике показать функции распределения, полученные из выборок разного размера и теоретическую); 5. Построить плотность распределения случайной величины на основе выборки (на одном графике показать плотности распределения, полученные из выборок разного размера и теоретическую). В итоге проанализировать зависимость точности аппроксимации от количества экспериментов "Часть 2" Стенерировать три выборки размера 100, 1000 и 10000 для случайных расстояний между двумя точками, равномерно распределенные в прямоугольнике со сторонами 10 и 30. Получить среднее значение расстояния между точками, построить функцию распределения вероятностей и плотности вероятностей случайных расстояний. Показать разницу между соответствующими функциями на одном графике Ход работы
In [1]	Подключаем библиотеки numpy и matplotlib. Для отображения функции нормального распределения понадобится функция erf из библиотеки scipy. Также добавляем модуль IPython.display.Markdown для автоматического заполнения ячеек таблиц в Markdown:
In [2]	Часть 1 В этой части будем работать с выборками из 100 и 1000 элементов. Введём переменные: A = 100 B = 1000 Нормальное распределение — $\mathcal{N}_n(\mu, \sigma^2)$
	Укажем параметры распределения: mean = 0 stdDeviation = 1 Coздаём выборки с нормальным распределением: normal1 = np.random.normal(mean, stdDeviation, size=A)
In [5]	normal2 = np.random.normal(mean, stdDeviation, size=B) Вычисляем выборочное среднее и дисперсию для обеих выборок: nMean1 = np.mean(normal1) nVar1 = np.var(normal2) nMean2 = np.mean(normal2) nVar2 = np.var(normal2)
In [6]	print(f"For normal1 we get\nMean={nMean1}, Variance={nVar1}\n") print(f"For normal2 we get\nMean={nMean2}, Variance={nVar2}\n") For normal1 we get Mean=-0.049959675919511726, Variance=0.7939112154600594 For normal2 we get Mean=-0.05853446108989718, Variance=0.9511700276836639
In [7]	\$Normal\ distribution\ \mathcal{{N}_n(\mu, \sigma^2)\$ Quantity Description n={:d} n={:d} Theoretical value :
Out[7]	Quantity Description n=100 n=1000 Theoretical value $\mu(X_n) \text{Mean of } X_n \text{-0.049960} \text{-0.058534} \mu = 0.000$ $D[X_n] \text{Variance of } X_n 0.793911 0.951170 \sigma^2 = 1.000$
In [8]	Посчитаем квантили уровней 0.5 и 0.99 для созданных выборок. nQuantile11 = np.quantile(normal1, 0.5) nQuantile12 = np.quantile(normal1, 0.99) nQuantile21 = np.quantile(normal2, 0.5) nQuantile22 = np.quantile(normal2, 0.99)
In [9]	print(f"For normal1 we get\n0.5-quantile={nQuantile=1}, 0.99-quantile=2\n") print(f"For normal2 we get\n0.5-quantile={nQuantile=2}\n") For normal1 we get 0.5-quantile=-0.04410936194294199, 0.99-quantile=1.8866925506733059 For normal2 we get 0.5-quantile=-0.08692911829630912, 0.99-quantile=2.2219060359729337 Резюмируем полученные результаты:
	Quantile Description n=100 n=1000 Theoretical value $x_{0.5}$ 0.5-quantile of X_n -0.044109 -0.086929 $x_{0.5} = 0.000$ $x_{0.99}$ 0.99-quantile of X_n 1.886693 2.221906 $x_{0.99} = 2.326$
In [11]	Построим гистограммы для созданных выборок: fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12.5, 4)) plt.setp((ax1, ax2), xlabel="quantity", ylabel="frequency") l = 10 ax1.hist(normal1, bins=50,color="#6134eb") ax1.set_title("Normal distibution of set of %d elements" % A) ax1.set_xlim(-1, 1)
	ax2.ist(normal2, bins=60, color="ea834el") ax2.set_xlin(-1, 1) print("") Normal distribution of set of 100 elements Normal distribution of set of 100 elements 0 0 0 0 0 0 0 0 0 0 0 0 0
	2- 1- 10- 10- 10- 10- 10- 10- 10- 10- 10-
In [12]	Требуется изобразить следующие функции нормального распределения: теоретическую, для выборки из 100 элементов и выборки из 1000 элементов. Теоретическая функция нормального распределения имеет вид $\Phi\bigg(\frac{x-\mu}{\sigma}\bigg) = \frac{1}{2}\bigg\{1 + erf\bigg(\frac{1}{\sqrt{2}}\frac{x-\mu}{\sigma}\bigg)\bigg\}$ def nCDF(t): $\mathbf{return}~(1+\mathbf{erf}(\mathbf{t}/(2^{**}0.5)))^*0.5$
	<pre>InTheoreticDomain = np.linspace(-1, 1, A) nTheoreticCDFY = nCDF((nTheoreticDomain - mean)/stdDeviation) normal1CopyX = np.copy(normal1) normal2CopyX = np.copy(normal2) normal1CopyX.sort() normal2CopyX.sort() normal1CopyY = np.arange(0, 1, 1/A)</pre>
	<pre>normal2CopyY = np.arange(0, 1, 1/B) asymptoteY = np.ones(A) plt.figure(dpi=100) plt.title("Normal CDF comparison") plt.plot(nTheoreticDomain, asymptoteY, color="#adadad", linestyle="dashed", linewidth=1) plt.plot(nTheoreticDomain, nTheoreticCDFY, color="#cbf542", label="Theoretic result") plt.plot(normal1CopyX, normal1CopyX, color="#6134eb", label=f"Set of {A} with normal dist.")</pre>
	<pre>plt.plot(normal2CopyX, normal2CopyY, color="#a834eb", label=f"Set of (B) with normal dist.") plt.xlim(-1, 1) plt.ylim(0, 1.05) plt.xlabel("x") plt.ylabel("Probability of X < x") plt.legend() plt.show() print()</pre>
	Normal CDF comparison 1.0 0.8 - × × v o 0.6 - 0.4 - 1.0 - 1
	Тheoretic result — Set of 100 with normal dist. — Set of 1000
In [16]	Также изобразим графики функций плотностей вероятности. Теоретическая функция плотности вероятности имеет вид $\Pi(\mu,\sigma,x) = \frac{d\Phi(\tau)}{d\tau} \bigg _{\tau = \frac{x-u}{\sigma}} = \frac{1}{\sigma\sqrt{2\pi}} exp \bigg\{ - \bigg(\frac{x-\mu}{\sqrt{2}\sigma}\bigg)^2 \bigg\}$ def nPDF(mean, stdDeviation, domain): $z = ((\text{domain - mean}) / \text{stdDeviation})^* 2$ $u = 1/(\text{stdDeviation} * (2 * \text{np.pi})^* * 0.5)$ return u * np.exp(-0.5*z)
In [17]	nTheoreticPDFY = nPDF(mean, stdDeviation, nTheoreticDomain) plt.figure(dpi=100) plt.title("Exponential PDF comparison") normal1PDFY, bins, patches = plt.hist(normal1, bins=50, density=True, alpha=0) normal1PDFX = (bins[:-1] + bins[1:])/2 normal2PDFX = (bins[:-1] + bins[1:])/2 normal2PDFX = (bins[:-1] + bins[1:])/2 normal2PDFX = (bins[:-1] + bins[1:])/2 plt.plct(nTheoreticPDMY = color="WebFe42" label="Theoretic recult")
	<pre>plt.plot(nTheoreticDomain, nTheoreticPDFY, color="#cbf542", label="Theretic result") plt.plot(normal1PDFX, normal1PDFY, color="#6134eb", label=f"Set of {A} with normal dist.") plt.plot(normal2PDFX, normal2PDFY, color="#a834eb", label=f"Set of {B} with normal dist.") plt.xlim(-1, 1) plt.xlabel("x") plt.ylabel("p(x)") plt.legend() plt.show()</pre>
	Exponential PDF comparison O.7 - Theretic result — Set of 100 with normal dist. — Set of 1000 with normal dist. — Set of 1000 with normal dist.
	$0.5 - \frac{1}{2}$ 0.4 - 0.3 - 0.2 -
	0.1 - 0.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 х Эти же действия произведём и над экспоненциальным рапределением.
	Экспоненциальное распределение — $\mathcal{E}_n(\lambda)$ рагамеter = 1 scale = 1/parameter Создадим выборки с экспоненциальным распределением: exp1 = np.random.exponential(scale, size=A)
In [20]	exp2 = np.random.exponential(scale, size=B) Вычислим выборочное среднее и дисперсию для обеих выборок:
In [21]	print(f"For exp1 we get\nMean={eMean1}, Variance={eVar1}\n") print(f"For exp2 we get\nMean={eMean2}, Variance={eVar2}\n") For exp1 we get Mean=1.0360622223901867, Variance=1.1176026552154537 For exp2 we get Mean=0.9840603253895269, Variance=0.9596268787020658
	Сравним полученные величины: md(""" \$Normal\ distribution\ \mathcal{{E}}_n(\lambda)\$ Quantity Meaning n={:d} n={:d} Theoretical value
Out[22]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
In [23]	Bычислим квантили порядка 0.5 и 0.99 для созданных выборок: eQuantile11 = np.quantile(exp1, 0.5) eQuantile21 = np.quantile(exp1, 0.99) eQuantile21 = np.quantile(exp2, 0.5) eQuantile22 = np.quantile(exp2, 0.99)
In [24]	: print(f"For exp1 we get\n0.5-quantile={eQuantile1}, 0.99-quantile={eQuantile2}\n") print(f"For exp2 we get\n0.5-quantile={eQuantile2}\n") For exp1 we get 0.5-quantile=0.7428797137960215, 0.99-quantile=4.107451846236341 For exp2 we get 0.5-quantile=0.6655139607955662, 0.99-quantile=4.40358519995013 Сравним полученные результаты:
	Quantity Meaning n=100 n=1000 Theoretical value $y_{0.5}$ 0.5-quantile of Y_n 0.742880 4.107452 $y_{0.5} = \ln(2) \cdot \lambda^{-1} = 0.693$ $y_{0.99}$ 0.99-quantile of Y_n 0.665514 0.665514 $y_{0.99} = \ln(100) \cdot \lambda^{-1} = 4.605$
In [26]	Изобразим гистограммы полученных выборок: fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12.5, 4)) plt.setp((ax1, ax2), xlabel="quantity", ylabel="frequency") ax1.hist(exp1, bins=50, color="#78bf3d") ax1.set_title("Exponential distibution of set of %d elements" % A) ax1.set_xlim(0, 1) ax2.hist(exp2, bins=50, color="#c73085")
	ax2.set_title("Exponential distibution of set of %d elements" % B) ax2.set_xlim(0, 1) print() Exponential distibution of set of 100 elements Exponential distibution of set of 100 elements 140 120
	100 - 100 -
	На одном графике покажем функции экспоненциального распределения: теоретическую и для выборок из 100 и 1000 элементов. Теоретическая функция экспоненциального распределения выражается как
In [27]	$C(\lambda,x)=1-e^{-\lambda x}$ $\text{eTheoreticCDFY}=1 - \text{np.exp(-parameter * eTheoreticDomain)}$ $\exp(\text{copy}(\text{exp1}) \\ \exp(\text{copy}(\text{exp2}) \\ \exp(\text{copy}(\text{exp2}))$ $\exp(\text{copy}(\text{exp2}) \\ \exp(\text{copy}(\text{exp2}))$
	exp2CopyX.sort() exp1CopyY = np.arange(0, 1, 1/A) exp2CopyY = np.arange(0, 1, 1/B) plt.figure(dpi=100) plt.title("Exponential CDF comparison") plt.plot(eTheoreticDomain, eTheoreticCDFY, color="#3060c7", label="Theretic result") plt.plot(eTheoreticDomain, asymptoteY, color="#adadad", linestyle="dashed", linewidth=1)
	plt.plot(exp1CopyX, exp1CopyY, color="#78bf3d", label=f"Set of {A} with exp. dist.") plt.plot(exp2CopyX, exp2CopyY, color="#c73085", label=f"Set of {A} with exp. dist.") plt.xlim(0, 1) plt.ylim(0, 1.05) plt.xlabel("y") plt.ylabel("Probability of Y < y") plt.legend() plt.show() print()
	Exponential CDF comparison 1.0 0.8- >
	0.6 - 2
	Построим графики функций плотности вероятности. Функция плотности вероятности экпоненциального распределения вычисляется по формуле $\Lambda(\lambda,x)=\frac{\partial C}{\partial x}(\lambda,x)=\lambda e^{-\lambda x}$
In [30]	eTheoreticPDFY = parameter * np.exp(-parameter * eTheoreticDomain) plt.figure(dpi=100) plt.title("Exponential PDF comparison") exp1PDFY, bins, patches = plt.hist(exp1, bins=50, density=True, alpha=0) exp1PDFX = (bins[:-1] + bins[1:])/2 exp2PDFY, bins, patches = plt.hist(exp2, bins=50, density=True, alpha=0) PX
	<pre>exp2PDFY, bins, patches = pit.nist(exp2, bins=50, density=True, alpha=0) exp2PDFX = (bins[:-1] + bins[i:])/2 plt.plot(eTheoreticDomain, eTheoreticPDFY, color="#3060c7", label="Theretic result") plt.plot(exp1PDFX, exp1PDFY, color="#78bf3d", label=f"set of {A} with exp. dist.") plt.plot(exp2PDFY, color="#c73085", label=f"set of {B} with exp. dist.") plt.xlim(0, 1) plt.xlim(0, 1) plt.xlabel("y") plt.ylabel("P(y)")</pre>
	print() Exponential PDF comparison 1.75 -
	1.25 - \$\hat{2} \
	0.50 - 0.25 - 0.00 = 0.00 =
	Вывод Как видим из полученных графиков, с ростом количества экспериментов поточечно нивелируется абсолютная погрешность измерений, то есть $\Delta(\tilde{x}_n) \to 0 \text{ при } n \to +\infty,$ где n — число экспериментов. Стремление абсолютной (а значит, и относительной) погрешности к нулю означает приближение экспериментальных данных к теоретическим, что и наблюдается на построенных графиках. Кроме того, последовательность функций плотности вероятности поточечно стремится к своему теоретическому значению гораздо быстрее, чем функция распределения.
In [31]	Часть 2 По заданию на прямоугольнике $\mathbb{L} \subset \mathbb{R}^2$ со сторонами H=10, W=30 равномерно распределены пары $q_1, q_2, \cdots, q_n \in \mathbb{R}^2 \times \mathbb{R}^2$ ($n=100,1000,10000$) точек. Равномерное распределение точек означет равномерное распределение расстояний между ними. Именно поэтому будем работать с выборкой расстояний между точками, абстрагируясь от расположения точек. Введём необходимые переменные и вычислим диагональ прямоугольника. A, B, C = 100, 1000, 10000 H, W = 10, 30
In [32]	diagonal = (H**2 + W**2)**0.5 Создадим выборки расстояний и вычислим их среднее значение: distancesA = np.random.uniform(0, diagonal, A) distancesB = np.random.uniform(0, diagonal, B) distancesC = np.random.uniform(0, diagonal, C) averageA = np.average(distancesA)
In [33] Out[33]	averageB = np.average(distancesB) averageC = np.average(distancesC) md(""" Quantity \$\$D_{{1000}}\$\$ \$\$D_{{10000}}\$\$ \$\$D_{{10000}}\$\$ S\$Avg(D_n)\$\$ {:6f} {:6f} """.format(averageA, averageB, averageC))
In [34]	$Avg(D_n)$ 16.232075 15.782640 15.649312 Построим фукнции распределения для трёх выборок. distancesDomainA = np.linspace(0, diagonal, A) distancesDomainB = np.linspace(0, diagonal, B)
	<pre>distancesDomainE = np.linspace(0, diagonal, B) distancesACopy = np.copy(distancesA) distancesBCopy = np.copy(distancesB) distancesCCopy = np.copy(distancesC) distancesACopy.sort() distancesBCopy.sort() distancesCCopy.sort() distancesACopy.sort()</pre>
In [35]	distancesAY = np.arange(0, 1, 1/A) distancesBY = np.arange(0, 1, 1/B) distancesCY = np.arange(0, 1, 1/C) plt.figure(dpi=100) plt.title("Distances CDF comparison") plt.plot(distancesACopy, distancesAY, color="#edc13b", label=f"Set of {A}") plt.plot(distancesBCopy, distancesBY, color="#sbeda0", label=f"Set of {B}") plt.plot(distancesCCopy, distancesCCopy, distance
	<pre>plt.xlim(0, diagonal) plt.ylim(0, 1) plt.xlabel("distance") plt.ylabel("frequency") plt.legend() plt.show() print()</pre>
	Distances CDF comparison 1.0 Set of 100 — Set of 1000 — Set of 10000 — Set of 100000
	Jacobs.
	0.2 -
In 「20°	0.2 — — — — — — — — — — — — — — — — — — —
In [36]	0.2 — — — — — — — — — — — — — — — — — — —
In [36]	### ##################################
In [36]	District
In [36]	### Distance #### Distance ####################################

Результаты

В процессе выполнения этапа 2 индивидуальнго задания были изучены способы построения функции распределения и плотности вероятности для выборок с нормальным, экспоненциальным и равномерным распределением. Была проанализирована зависимость точности приближения от количества экспериментов.

Индивиуальное задание

Выполнил студент 2 курса учебной группы НММ-02-22

Мулин Иван

Цели

Этап № 2. Методы оценки статических характеристик, связанных с распределением пользователей на плоскости

1. Научиться строить функции распределения и плотности вероятности конкретной выборки с заданным распределением и изучать их.

2. Научиться анализировать статистические характеристики, связанные с распределением пользователей на плоскости.