Cryptography Lecture 4

Arkady Yerukhimovich

September 9, 2024

Outline

1 Lecture 3 Review

2 Pseudorandom Generator (PRG) (Ch. 3.3.1)

③ Proofs by Reduction(Ch. 3.3.2)

Lecture 3 Review

- Limitations of OTP and perfect secrecy
- Proof techniques
- Defining computationally-secure encryption

Outline

Lecture 3 Review

2 Pseudorandom Generator (PRG) (Ch. 3.3.1)

3 Proofs by Reduction(Ch. 3.3.2)

Constructing Private-Key Encryption for Long Messages

- Recall that we encrypted by computing $\operatorname{Enc}_k(m) = m \oplus k$
- But, if |k| < |m|, this is not secure

Key Idea

What if we had a way to stretch key k into something longer that still looked random?

Construct a deterministic function $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ such that:

Construct a deterministic function $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ such that:

• $\ell(n) > n$ (Expansion)

Construct a deterministic function

 $G:\{0,1\}^n \rightarrow \{0,1\}^{\ell(n)}$ such that:

- $\ell(n) > n$ (Expansion)
- G(s) "looks random" for a random seed s (Pseudorandomness)

Construct a deterministic function

$$G:\{0,1\}^n \rightarrow \{0,1\}^{\ell(n)}$$
 such that:

- $\ell(n) > n$ (Expansion)
- G(s) "looks random" for a random seed s (Pseudorandomness)

Observations:

• G(s) is actually (statistically) far from random. Consider $G:\{0,1\}^n \to \{0,1\}^{n+1}$, then G(s) can only possibly output at most one half of possible output values

$$S = \{0,1\}^n$$
 $(i \cdot n - bib) \rightarrow net - bit$
 $= 2^n$ 2^{n+1} $n+1 - bit$ strings

Construct a deterministic function

 $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ such that:

- $\ell(n) > n$ (Expansion)
- G(s) "looks random" for a random seed s (Pseudorandomness)

Observations:

- G(s) is actually (statistically) far from random. Consider $G:\{0,1\}^n \to \{0,1\}^{n+1}$, then G(s) can only possibly output at most one half of possible output values
- G(s) cannot "look random" to someone who knows s

Construct a deterministic function

 $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ such that:

- $\ell(n) > n$ (Expansion)
- G(s) "looks random" for a random seed s (Pseudorandomness)

Observations:

- G(s) is actually (statistically) far from random. Consider $G:\{0,1\}^n \to \{0,1\}^{n+1}$, then G(s) can only possibly output at most one half of possible output values
- G(s) cannot "look random" to someone who knows s
- G(s) is only required to look random to someone who knows nothing about s i.e., s is uniformly random

Let $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a deterministic poly-time function.

Arkady Yerukhimovich

Let $G:\{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a deterministic poly-time function.

$PRG_{D,G}(n)$

• The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $r \leftarrow \{0,1\}^{\ell(n)}$ – (random) if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes r=G(s) – (PRG) He gives r to \mathcal{D} .

Let $G:\{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a deterministic poly-time function.

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $r \leftarrow \{0,1\}^{\ell(n)}$ – (random) if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes r=G(s) – (PRG) He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'

Let $G:\{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a deterministic poly-time function.

$PRG_{\mathcal{D},G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $r \leftarrow \{0,1\}^{\ell(n)} - (\text{random})$ if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes $r=G(s)-(\mathsf{PRG})$ He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Let $G:\{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a deterministic poly-time function.

$PRG_{\mathcal{D},G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $r \leftarrow \{0,1\}^{\ell(n)}$ – (random) if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes r=G(s) – (PRG) He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Definition: G is a secure PRG if:

•
$$\ell(n) > n$$

Let $G:\{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a deterministic poly-time function.

$PRG_{\mathcal{D},G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $r \leftarrow \{0,1\}^{\ell(n)} - (\text{random})$ if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes $r=G(s)-(\mathsf{PRG})$ He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Definition: G is a secure PRG if:

- $\ell(n) > n$
- ullet For all PPT distinguishers \mathcal{D} , it holds that

$$\Pr[PRG_{\mathcal{D},G}(n)=1] \leq 1/2 + \operatorname{negl}(n)$$

Let $G:\{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a deterministic poly-time function.

$PRG_{\mathcal{D},G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $r \leftarrow \{0,1\}^{\ell(n)} - (\text{random})$ if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes $r=G(s)-(\mathsf{PRG})$ He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Definition: G is a secure PRG if:

- $\ell(n) > n$
- ullet For all PPT distinguishers \mathcal{D} , it holds that

$$\Pr[PRG_{\mathcal{D},G}(n)=1] \leq 1/2 + \operatorname{negl}(n)$$

7/16

 \mathcal{D} cannot distinguish between G(s) and $r \leftarrow \{0,1\}^{\ell(n)}$

Example: Is the following G a secure PRG?

$$G(s) = s|| \oplus_{i=1,\ldots,n} s_i$$

Example: Is the following G a secure PRG?

$$G(s) = s|| \oplus_{i=1,\ldots,n} s_i$$

Expansion: Output of G(s) has n+1 > n bits.

Example: Is the following G a secure PRG?

$$G(s)=s||\oplus_{i=1,\ldots,n} s_i$$

Expansion: Output of G(s) has n+1 > n bits.

Pseudorandomness:

• Including s as part of the output is ok. Since \mathcal{D} is not given s, this look random to him.

Example: Is the following G a secure PRG?

$$G(s)=s||\oplus_{i=1,\ldots,n} s_i$$

Expansion: Output of G(s) has n+1 > n bits.

- Including s as part of the output is ok. Since \mathcal{D} is not given s, this look random to him.
- However, given s, \mathcal{D} can check whether the last bit of his challenge $r_{n+1} = \bigoplus_{i=1,\dots,n} s_i$, output 1 (PRG) if it does, and 0 (random) if not.

Example: Is the following G a secure PRG?

$$G(s)=s||\oplus_{i=1,\ldots,n} s_i$$

Expansion: Output of G(s) has n+1 > n bits.

- Including s as part of the output is ok. Since \mathcal{D} is not given s, this look random to him.
- However, given s, \mathcal{D} can check whether the last bit of his challenge $r_{n+1} = \bigoplus_{i=1,...,n} s_i$, output 1 (PRG) if it does, and 0 (random) if not.
 - If r = G(s), then $r_{n+1} = \bigoplus_{i=1,...,n} s_i$ with probability

Example: Is the following G a secure PRG?

$$G(s)=s||\oplus_{i=1,\ldots,n} s_i$$

Expansion: Output of G(s) has n+1 > n bits.

- Including s as part of the output is ok. Since \mathcal{D} is not given s, this look random to him.
- However, given s, \mathcal{D} can check whether the last bit of his challenge $r_{n+1} = \bigoplus_{i=1,...,n} s_i$, output 1 (PRG) if it does, and 0 (random) if not.
 - If r = G(s), then $r_{n+1} = \bigoplus_{i=1,...,n} s_i$ with probability 1

Example: Is the following G a secure PRG?

$$G(s)=s||\oplus_{i=1,\ldots,n} s_i$$

Expansion: Output of G(s) has n+1 > n bits.

- Including s as part of the output is ok. Since \mathcal{D} is not given s, this look random to him.
- However, given s, \mathcal{D} can check whether the last bit of his challenge $r_{n+1} = \bigoplus_{i=1,...,n} s_i$, output 1 (PRG) if it does, and 0 (random) if not.
 - If r = G(s), then $r_{n+1} = \bigoplus_{i=1,...,n} s_i$ with probability 1
 - If $r \leftarrow \{0,1\}^{n+1}$, then $r_{n+1} = \bigoplus_{i=1,...,n} s_i$ with probability

Example: Is the following G a secure PRG?

$$G(s)=s||\oplus_{i=1,\ldots,n} s_i$$

Expansion: Output of G(s) has n+1 > n bits.

- Including s as part of the output is ok. Since \mathcal{D} is not given s, this look random to him.
- However, given s, \mathcal{D} can check whether the last bit of his challenge $r_{n+1} = \bigoplus_{i=1,...,n} s_i$, output 1 (PRG) if it does, and 0 (random) if not.
 - If r = G(s), then $r_{n+1} = \bigoplus_{i=1,...,n} s_i$ with probability 1
 - If $r \leftarrow \{0,1\}^{n+1}$, then $r_{n+1} = \bigoplus_{i=1,...,n} s_i$ with probability 1/2

Example: Is the following G a secure PRG?

$$G(s)=s||\oplus_{i=1,\ldots,n} s_i$$

Expansion: Output of G(s) has n+1 > n bits.

Pseudorandomness:

- Including s as part of the output is ok. Since \mathcal{D} is not given s, this look random to him.
- However, given s, \mathcal{D} can check whether the last bit of his challenge $r_{n+1} = \bigoplus_{i=1,\dots,n} s_i$, output 1 (PRG) if it does, and 0 (random) if not.
 - If r = G(s), then $r_{n+1} = \bigoplus_{i=1,...,n} s_i$ with probability 1
 - If $r \leftarrow \{0,1\}^{n+1}$, then $r_{n+1} = \bigoplus_{i=1,...,n} s_i$ with probability 1/2
- So, \mathcal{D} will always output 1 when given G(s) and output 0 with probability 1/2 when given r.

$$Pr[\mathcal{D} \text{ WINS}] = Pr[b=1] * 1 + Pr[b=0] * 1/2 = 3/4 > 1/2$$

Arkady Yerukhimovich Cryptography September 9, 2024 8 / 16

PRG+OTP Encryption

• $\operatorname{Gen}(1^n)$: $k \leftarrow \{0,1\}^n$

PRG+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ (for $m \in \{0, 1\}^{\ell(n)}$)

PRG+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ (for $m \in \{0, 1\}^{\ell(n)}$)
- Dec(k, c): $m = G(k) \oplus c$

PRG+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ (for $m \in \{0, 1\}^{\ell(n)}$)
- Dec(k, c): $m = G(k) \oplus c$

Intuition:

- A PRG stretches a short one-time pad into a longer one-time pad
- Can now encrypt messages longer than key
- Only get computational security due to the use of a PRG

PRG+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ (for $m \in \{0, 1\}^{\ell(n)}$)
- Dec(k, c): $m = G(k) \oplus c$

Intuition:

- A PRG stretches a short one-time pad into a longer one-time pad
- Can now encrypt messages longer than key
- Only get computational security due to the use of a PRG

Next Step

Prove Security!

Outline

Lecture 3 Review

- 2 Pseudorandom Generator (PRG) (Ch. 3.3.1)
- 3 Proofs by Reduction(Ch. 3.3.2)

How Do We Prove Security

Goal: Prove that encryption scheme $\Pi = (Gen, Enc, Dec)$ is secure

How Do We Prove Security

Goal: Prove that encryption scheme $\Pi = (Gen, Enc, Dec)$ is secure

- Most of the time, cannot prove this directly
- We can't even prove that computationally secure encryption exists (or even that $\mathcal{P} \neq \mathcal{NP}$)

How Do We Prove Security

Goal: Prove that encryption scheme $\Pi = (Gen, Enc, Dec)$ is secure

- Most of the time, cannot prove this directly
- We can't even prove that computationally secure encryption exists (or even that $\mathcal{P} \neq \mathcal{NP}$)

Instead, we rely on security assumptions

- Factoring is hard
- G is a secure PRG

How Do We Prove Security

Goal: Prove that encryption scheme $\Pi = (Gen, Enc, Dec)$ is secure

- Most of the time, cannot prove this directly
- We can't even prove that computationally secure encryption exists (or even that $\mathcal{P} \neq \mathcal{NP}$)

Instead, we rely on security assumptions

- Factoring is hard
- G is a secure PRG

A security proof shows that Π is secure if the assumption is true

• We say we show a *reduction* from the security of Π to the assumption.

Recall that, for any events A and B:

$$(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A)$$

Recall that, for any events A and B:

$$(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A)$$

ullet Want to prove that assumption X implies construction Π is secure

Recall that, for any events A and B:

$$(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A)$$

- Want to prove that assumption X implies construction Π is secure
- ullet Instead, we prove that if Π is insecure, then assumption X is false

Recall that, for any events A and B:

$$(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A)$$

- ullet Want to prove that assumption X implies construction Π is secure
- ullet Instead, we prove that if Π is insecure, then assumption X is false
- Essentially, this is a proof by contradiction.

Let X be a security assumption (e.g., G is a PRG), and Π be a construction (e.g., of encryption) we want to prove secure:

ullet Assume there exists a PPT adversary \mathcal{A}_c breaking Π

- Assume there exists a PPT adversary A_c breaking Π
- Construct another adversary A_r that solves X using A_c

- Assume there exists a PPT adversary A_c breaking Π
- Construct another adversary A_r that solves X using A_c
 - A_r is given an instance of X to solve

- Assume there exists a PPT adversary A_c breaking Π
- Construct another adversary A_r that solves X using A_c
 - A_r is given an instance of X to solve
 - A_r simulates an instance of Π to A_c based on X

- Assume there exists a PPT adversary A_c breaking Π
- Construct another adversary A_r that solves X using A_c
 - A_r is given an instance of X to solve
 - \mathcal{A}_r simulates an instance of Π to \mathcal{A}_c based on X
 - \mathcal{A}_c thinks it's attacking a real instance of Π , so by assumption, it succeeds

- Assume there exists a PPT adversary A_c breaking Π
- Construct another adversary A_r that solves X using A_c
 - A_r is given an instance of X to solve
 - A_r simulates an instance of Π to A_c based on X
 - \mathcal{A}_c thinks it's attacking a real instance of Π , so by assumption, it succeeds
 - If A_c succeeds in breaking the simulated Π , A_r uses this to solves X

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{\ell(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n)=1$ (i.e., \mathcal{D} wins) if b'=b

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

• G' expands from n bits to n+1 bits

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n)=1$ (i.e., \mathcal{D} wins) if b'=b

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

- G' expands from n bits to n+1 bits
- Assume there exists PPT A_c that breaks G' Pr[$PRG_{A_C,G'}(n) = 1$] > 1/2 + 1/poly(n). Construct A_r that breaks G:

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{D,G}(n) = 1$ (i.e., D wins) if b' = b

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

- G' expands from n bits to n+1 bits
- Assume there exists PPT A_c that breaks G' Pr[$PRG_{A_C,G'}(n) = 1$] > 1/2 + 1/poly(n). Construct A_r that breaks G:
 - A_r gets $r \in \{0,1\}^{n+2}$ as its challenge

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{D,G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{D,G}(n) = 1$ (i.e., D wins) if b' = b

- G' expands from n bits to n+1 bits
- Assume there exists PPT \mathcal{A}_c that breaks G' $\Pr[PRG_{\mathcal{A}_c,G'}(n)=1]>1/2+1/\operatorname{poly}(n)$. Construct \mathcal{A}_r that breaks G:
 - A_r gets $r \in \{0,1\}^{n+2}$ as its challenge
 - A_r computes $r' = r_{1,...,n+1}$ and gives this as the challenge to A_c

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{D,G}(n) = 1$ (i.e., D wins) if b' = b

- G' expands from n bits to n+1 bits
- Assume there exists PPT \mathcal{A}_c that breaks G' $\Pr[PRG_{\mathcal{A}_c,G'}(n)=1]>1/2+1/\operatorname{poly}(n)$. Construct \mathcal{A}_r that breaks G:
 - A_r gets $r \in \{0,1\}^{n+2}$ as its challenge
 - A_r computes $r' = r_{1,...,n+1}$ and gives this as the challenge to A_c
 - ullet \mathcal{A}_c outputs its guess b' and \mathcal{A}_r outputs this as its guess

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to D.
- On input r, the distinguisher D outputs a guess b'
 - $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

- G' expands from n bits to n+1 bits
- Assume there exists PPT \mathcal{A}_c that breaks G' $\Pr[PRG_{\mathcal{A}_c,G'}(n)=1]>1/2+1/\operatorname{poly}(n)$. Construct \mathcal{A}_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{n+2}$ as its challenge
 - A_r computes $r' = r_{1,...,n+1}$ and gives this as the challenge to A_c
 - ullet \mathcal{A}_c outputs its guess b' and \mathcal{A}_r outputs this as its guess
- Analysis:
 - If b=0, then $r \leftarrow \{0,1\}^{n+2}$ so $r' \leftarrow \{0,1\}^{n+1}$ (same as b=0 for \mathcal{A}_c)

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
 - $PRG_{D,G}(n) = 1$ (i.e., D wins) if b' = b

- G' expands from n bits to n+1 bits
- Assume there exists PPT \mathcal{A}_c that breaks G' $\Pr[PRG_{\mathcal{A}_{\mathcal{C}},G'}(n)=1]>1/2+1/\operatorname{poly}(n)$. Construct \mathcal{A}_r that breaks G:
 - A_r gets $r \in \{0,1\}^{n+2}$ as its challenge
 - A_r computes $r' = r_{1,...,n+1}$ and gives this as the challenge to A_c
 - ullet \mathcal{A}_c outputs its guess b' and \mathcal{A}_r outputs this as its guess
- Analysis:
 - If b=0, then $r \leftarrow \{0,1\}^{n+2}$ so $r' \leftarrow \{0,1\}^{n+1}$ (same as b=0 for \mathcal{A}_c)
 - If b=1, then r=G(s), so r'=G'(s) (same as b=1 for \mathcal{A}_c)

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to D.
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

- G' expands from n bits to n+1 bits
- Assume there exists PPT \mathcal{A}_c that breaks G' $\Pr[PRG_{\mathcal{A}_c,G'}(n)=1]>1/2+1/\operatorname{poly}(n)$. Construct \mathcal{A}_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{n+2}$ as its challenge
 - A_r computes $r' = r_{1,...,n+1}$ and gives this as the challenge to A_c
 - ullet \mathcal{A}_c outputs its guess b' and \mathcal{A}_r outputs this as its guess
- Analysis:
 - If b=0, then $r \leftarrow \{0,1\}^{n+2}$ so $r' \leftarrow \{0,1\}^{n+1}$ (same as b=0 for \mathcal{A}_c)
 - If b=1, then r=G(s), so r'=G'(s) (same as b=1 for \mathcal{A}_c)
 - If A_c outputs b=b', then A_r outputs b=b'

Assumption: $G: \{0,1\}^n \to \{0,1\}^{n+2}$ is PRG Goal: Prove that $G' = G(s)_{1,\dots,n+1}$ is a PRG Proof:

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to D.
- On input r, the distinguisher D outputs a guess b'
 - $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

- G' expands from n bits to n+1 bits
- Assume there exists PPT \mathcal{A}_c that breaks G' $\Pr[PRG_{\mathcal{A}_{\mathcal{C}},G'}(n)=1]>1/2+1/\operatorname{poly}(n)$. Construct \mathcal{A}_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{n+2}$ as its challenge
 - A_r computes $r' = r_{1,...,n+1}$ and gives this as the challenge to A_c
 - ullet \mathcal{A}_c outputs its guess b' and \mathcal{A}_r outputs this as its guess
- Analysis:
 - If b=0, then $r \leftarrow \{0,1\}^{n+2}$ so $r' \leftarrow \{0,1\}^{n+1}$ (same as b=0 for \mathcal{A}_c)
 - If b=1, then r=G(s), so r'=G'(s) (same as b=1 for \mathcal{A}_c)
 - If A_c outputs b=b', then A_r outputs b=b'
 - Since $\Pr[PRG_{\mathcal{A}_C,G'}(n)=1]>1/2+1/\operatorname{poly}(n)$, we get that $\Pr[PRG_{\mathcal{A}_r,G}(n)=1]>1/2+1/\operatorname{poly}(n)$

 Construction only uses G as a black-box, does not look at how G works.

- Construction only uses G as a black-box, does not look at how G works.
 - So, construction must work starting from any PRG G (even a really "weird" one)

- Construction only uses G as a black-box, does not look at how G works.
 - So, construction must work starting from any PRG G (even a really "weird" one)
 - Common way of proving a construction insecure is to find such a weird G for which reduction fails.

- Construction only uses G as a black-box, does not look at how G works.
 - So, construction must work starting from any PRG G (even a really "weird" one)
 - Common way of proving a construction insecure is to find such a weird *G* for which reduction fails.
- Reduction (A_r) only uses A_c as a black-box, does not look at how A_c works

Ac works

for any PRG G G' in a secure PRG

- Construction only uses G as a black-box, does not look at how G works.
 - So, construction must work starting from any PRG G (even a really "weird" one)
 - Common way of proving a construction insecure is to find such a weird *G* for which reduction fails.
- Reduction (A_r) only uses A_c as a black-box, does not look at how A_c works

Fully Black-Box Reductions

- Such reductions are called fully black-box
- (Almost) all reductions in cryptography are fully black-box