Week 5

???

5.1 Prime Factorizations

1/30:

- Midterm next Monday.
 - There's a list of topics on Canvas.
 - Don't worry about quadratic fields (or any of the other examples in Chapter 7 of Dummit and Foote (2004)). These are interesting, but will be saved for the absolute end of the course.
 - After the midterm, Nori will start on modules.
 - We've been talking about fields, which are contained in EDs, which are contained in PIDs. There probably will not be anything on EDs. Use the weakest definition for ED (the ones in class and the book differ). Which is this??
 - PIDs are contained in UFDs, which are contained in integral domains, which are contained in commutative rings.
- PIDs are nice! gcd(a, b) can be computed without factoring a, b. Review page 2 of Chapter 8, as referenced in a previous class.
- In PIDs, you can factor a = qb + r, but q, r may not be specific; in EDs, these q, r are unique.
 - Is this correct??
- Theorem: R is a UFD implies R[X] is a UFD.
- Corollary: R is a UFD implies $R[X_1, \ldots, X_n]$ is a UFD.

Proof. Use induction. \Box

- Corollary: R[X] is a field implies R is a PID implies $R[X_1, \ldots, X_n]$ is a UFD.
 - Something about \mathbb{Z} , F[[X]] where F is a field??
- Example: What are the irreducibles of $\mathbb{Z}[X]$?
 - Prime numbers.
 - Let $g \in \mathbb{Q}[X]$. Assume g is monic. Then $g(X) = X^d + a_1 X^{d-1} + \cdots + a_d$ for all $a_i \in \mathbb{Q}$. There exists $n \in \mathbb{N}$ such that $ng(X) \in \mathbb{Z}[X]$. Let n be the least natural number for which this is true. It follows by our hypothesis that n is the smallest such n that the coefficients of ng are relatively prime. Conclusion: ng(X) is irreducible in $\mathbb{Z}[X]$.
- Takeaway: There are two types of irreducibles (those from \mathbb{Z} and the new ones).

- This statement has a clear parallel for every UFD.
- Let R be a UFD, and let $\mathcal{P}(R) \subset R \setminus \{0\}$ be such that...
 - (i) Every $\pi \in \mathcal{P}(R)$ is irreducible.
 - (ii) For all $\alpha \in \mathbb{R} \setminus \{0\}$, α irreducible, there exists a unique $\pi \in \mathcal{P}(R)$ such that $(\alpha) = (\pi)$.
- Statement (*): Every nonzero element $\alpha \in R$ is uniquely expressible as

$$\alpha = u \prod_{\pi \in \mathcal{P}(R)} \pi^{k(\pi)}$$

where $u \in R^{\times}$ and for all π , $k(\pi) \in \mathbb{Z}_{>0}$ and $|\{\pi \in \mathcal{P}(R) \mid k(\pi) > 0\}|$ is finite.

Proof. R is a UFD implies (*).

• Conversely, if $\mathcal{P}(R)$ is a subset of an integral domain R such that (*) holds, then R is a UFD.

Proof. Note that $\pi \in \mathcal{P}(R)$ implies π is irreducible.

Argument for something?? Let $\pi = ab$. Suppose $a = \pi^{m_0} \pi^{m_1} \cdots \pi_h^{m_h} u$ and $b = \pi^{n_0} \pi_1^{n_1} \cdots \pi_h^{n_h}$. Then $\pi = ab = \pi^{m_0 + n_0} \pi^{m_1 + n_1} \cdots$. But then because of unique factorization, we cannot have $\pi_1^{x_1} \cdots \pi_h^{x_h}$. \square

• Content (of $f \in R[X]$): The greatest common divisor of the coefficients of a nonzero $f = a_0 + a_1X + a_2X^2 \cdots$ in R[X]. Denoted by c(f). Given by

$$c(f) = \gcd(a_0, a_1, a_2, \dots)$$

- Let $c(f) = \prod_{\pi \in \mathcal{P}(R)} \pi^{k(\pi)}$.
- Gauss lemma: $f,g \in R[X]$ both nonzero implies that c(fg) = c(f)c(g).

Proof. It suffices to prove the case where c(f) = c(g) = 1.

Let π be irreducible (hence prime). Consider the canonical surjection $R \to R/(\pi)$. It gives rise to a ring homomorphism $\varphi: R[X] \to R/(\pi)[X]$ defined by

$$\varphi(a_0 + a_1X + \dots + a_dX^d) = \bar{a}_0 + \bar{a}_1X + \dots + \bar{a}_dX^d$$

Notationally, if $a_i \in R$, then \bar{a}_i is the image of a_i in $R/(\pi)$ under the canonical surjection.

c(f)=1 implies that there exists i such that $a_i\neq 0$. Therefore, $\varphi(f)\neq 0$. Similarly, c(g)=1 implies that $\varphi(g)\neq 0$. It follows that $\varphi(fg)=\varphi(f)\varphi(g)$. Since $R/(\pi)$ is an integral domain and thus contains no zero divisors, we know that $\varphi(fg)=\varphi(f)\varphi(g)\neq 0$. It follows that $\pi\nmid c(fg)$. This is true for all irreducible $\pi\in R$. Indeed, it follows that c(fg)=1.

- This proof can be done by brute force without quotient rings, and elegantly with quotient rings. Dummit and Foote (2004) does both and we should check this out. The above is Nori's cover of just the latter, elegant argument.
- Let K be the fraction field of R. We know that K[X] is a PID (hence a UFD, etc.). The primes are the irreducible monic polynomials. Let $g = a_0 + a_1 X + \cdots + a_{d-1} X^{d-1} + X^d \in K[X]$ be monic. Then there exists a nonzero $\alpha \in R$ such that $R[X] \subset K[X]$. It follows that $a_i = \alpha_i/\beta_i$ for some $\alpha_i, \beta_i \in R$ with $\beta_i \neq 0$ since $K = \operatorname{Frac} R$.
- Claim 1: There exists a unique $\beta \in R$, $\beta = \prod_{\pi \in \mathcal{P}(R)} \pi^{k(\pi)}$, such that $\beta g \in R[X]$ and $c(\beta g) = 1$.

Proof. Denote βg by \tilde{g} . Then the claim is that $\tilde{g} \in R[X]$ has content 1. Thus,

$$\frac{\tilde{g}}{\ell(\tilde{g})} = g$$

• Claim 2: $g \mapsto \tilde{g}$ is a monic polynomial in K[X]. Then $\tilde{g} \in R[X]$ with content 1 and

$$\widetilde{qh} = \widetilde{q} \cdot \widetilde{h}$$

Proof. Use the Gauss lemma.

- Statement (*) holds as a result.
- $\mathcal{P}(R[X]) = \mathcal{P}(R) \sqcup \{\tilde{g} \mid g \in K[X] \text{ is monic and irreducible}\}.$
- Claim 3: (*) holds for $\mathcal{P}(R[X])$.

Proof. Scratch: Let $f \in R[X]$ be nonzero. Then $f/\ell(f) \in K[X]$ for each g_i monic and irreducible.

$$\widetilde{\frac{f}{\ell(f)}} = \tilde{g}_1^{k_1} \cdots \tilde{g}_r^{k_r}. \text{ We have } f, \tilde{g}_1^{k_1} \cdots \tilde{g}_r^{k_r} \in R[X]. \ f = \beta(\tilde{g}_1^{k_1} \cdots \tilde{g}_r^{k_r}). \ \beta \in R.$$

• Two remaining lectures on rings: Factoring polynomials in $\mathbb{Z}[X]$ and $\mathbb{R}[X]$.

5.2 Office Hours (Nori)

- Problem 4.1?
 - See picture.
- Lecture 2.2: "We need bijectivity because continuous functions don't necessarily have continuous inverses?"
 - We can use " $f: R_1 \to R_2$ is a ring homomorphism plus bijection" as the definition of isomorphism.
 - An equivalent definition is, "there exists a ring homomorphism $g: R_2 \to R_1$ such that $g \circ f = \mathrm{id}_{R_1}$ and $f \circ g = \mathrm{id}_{R_2}$."
 - Even though the first is simpler, the reason people use the second is because in some contexts, there is a difference between the definitions (such as with homeomorphisms, whose inverses need to be continuous [think proper]).
- Lecture 2.2: We have only defined the finite sum of ideals, not an infinite sum, right?
 - We defined an infinite sum, too.
 - In particular, $\sum_{i \in I} M_i = \bigcup_{F \subset IF \text{ is finite}}$.
 - Note that in a more general sense, you can have infinitely generated ideals. For example, infinite
 polynomials.
- Lecture 2.2: $IJ = I \cap J$ conditions.
 - $-IJ \subset I \cap J$ in commutative rings.
 - Counterexample: $R = \mathbb{Z}$ and I = (d) and J = (d). Then $IJ = (d^2) \neq (d) = I \cap J$.
 - Equality is meaningful.
- To what extent are we covering Chapter 9, and to what extent will reading it help my understanding of the course content?

- Just the result that F[X] is a PID (implies UFD).
- All we need from Chapter 8 for the midterm is ED implies PID, all we need from Chapter 9 for the midterm is PID implies UFD.
- Main examples of PIDs are \mathbb{Z} , F[X], and F[[X]].
- Have we done anything outside Chapters 7-9, or if I understand them, am I good to go?
 - The Euclidean algorithm for monic polynomials may not be in Chapter 8.
- Lecture 3.1: Everything from creating \mathbb{C} from \mathbb{R} , down.
 - We use monic polynomials just so that we can apply the Euclidean algorithm (EA).
 - We want to find ring homomorphisms $\varphi : R[X] \to A$ such that $\varphi(X^2 + 1) = 0$. How do I get hold of a φ and an A? There's exactly one way to do it. We use the universal property of a polynomial ring.
 - We want $X^2 + 1 \in \ker \psi$, so we define $R[X]/(X^2 + 1)$.
 - $-R[X]/(X^2+1)$ generalizes the construction of the complex numbers. Creating a new ring in which $X^2+1=0$ has a solution.
 - Suppose R is a ring such that $f(X) \in R[X]$ doesn't have a solution. Then it does have a solution in R[X]/(f(X)).
 - We recover \mathbb{C} as a special case of this more general construction, specifically the case where $f(X) = X^2 + 1$.
- Lecture 3.2: Do I have it right that the only nontrivial ideals of \mathbb{Q} are the diadic numbers, $\mathbb{Z}_{(2)}$, and (2^n) ? Why is this? What about the triadics, for instance?
 - In $\mathbb{Z}_{(2)}$, the only ideals are of the form (2^n) for some n.
- Lecture 3.2: What is the significance of the final theorem?
 - That all rings with the D-to-units property bear a certain similarity to the ring of fractions.
- Section 7.5: Difference between the rational functions and the field of rational functions?
- Lecture 4.1: What all is going on with $F[[X^{1/2^n}]]$?
 - The idea is the irreducible elements of one ring can become reducible in the context of other rings. This is just a specific example; note how X is the only irreducible element in the first ring, but it reduces to $X = (X^{1/2})^2$ in the next ring, and so on.
- Lecture 4.3: Speech for PIDs over UFDs?
- Lecture 4.3: $R \setminus \{0\}$ or R is an integral domain.
 - Takeaway: You don't need to factor a, b to get their gcd; indeed, you can just find a single generator of (a, b).
- Lecture 4.3: Products of commutative diagrams?
- Lecture 5.1: What is the weakest definition for an ED?
 - The book teaches the weakest one.
 - We're only interested in Euclidean domains with positive norms.
- Lecture 5.1: Uniqueness condition in the Euclidean algorithm.
- Lecture 5.1: The thing about \mathbb{Z} and F[[X]].

- These are the only rings we've talked about that are PIDs. Gaussian integers are, too, but we haven't proved that yet.

- Lecture 5.1: Argument for something is this part of the proof of the converse statement?
- Lecture 5.1: Correct notation?
- What is the set $\mathbb{Z}[X,Y,Z,W]_{XW-YZ}$ in Q4.6b?
 - Like R_f .
- What is the purpose of the commutative diagram in Q4.7?
- \bullet Where does d come into play in Q4.10?
 - We're gonna prove that the cardinality of the set is less than or equal to d. About the number of roots of a polynomial of a certain degree, like how $X^3 + \cdots$ can't have more then 3 roots. The most relevant property is that \mathbb{R} is an integral domain.