PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

UE19CS203 – STATISTICS FOR DATA SCIENCE

Unit-2 - Random Variables

QB SOLVED

Chebyshev's inequality

1. Chebyshev's inequality (Section 2.4) states that for any random variable X with mean μ and variance σ^2 , and for any positive number k, $P(|X - \mu| \ge k\sigma) \le 1/k^2$. Let X $\sim N(\mu, \sigma^2)$. Compute $P(|X - \mu| \ge k\sigma)$ for the values k = 1, 2, and 3. Are the actual probabilities close to the Chebyshev bound of $1/k^2$, or are they much smaller?

[Text Book Exercise – Section 4.5 – Q. No. 26 – Pg. No. 256]

Solution

Case: 1

Consider, k = 1

About 98% of population is in the interval, $\mu \pm \sigma$

Using Chebyshev's Inequality $P(|X - \mu_X| > k_{\sigma_X}) \le \frac{1}{k^2}$

$$P(|X - \mu_X| > \sigma) = 1 - 0.68$$

= 0.32
 $\leq \frac{1}{k^2} = \frac{1}{1^2}$
= 1

Case: 2

Consider, k = 2

About 95% of population is in the interval, $\mu \pm 2\sigma$

Using Chebyshev's Inequality $P(|X - \mu_X| > k_{\sigma_X}) \le \frac{1}{k^2}$

$$P(|X - \mu_X| > 2\sigma) = 1 - 0.95$$
$$= 0.05$$

$$\leq \frac{1}{k^2} = \frac{1}{2^2} = \frac{1}{4}$$
$$= 0.25$$

Case: 3

Consider, k = 2

About 99.7% of population is in the interval, $\mu \pm 3\sigma$

Using Chebyshev's Inequality $P(|X - \mu_X| > k_{\sigma_X}) \le \frac{1}{k^2}$

$$P(|X - \mu_X| > 2\sigma) = 1 - 0.997$$

$$= 0.003$$

$$\leq \frac{1}{k^2} = \frac{1}{3^2} = \frac{1}{9}$$

$$= 0.111$$

k	$P(X-\mu_X >k_{\sigma_X})$	$\frac{1}{k^2}$
1	0.32	1
2	0.05	0.25
3	0.003	0.111

The actual probabilities are much smaller than the Chebyshev bounds.