Chapter 7 Memory

In this chapter

- Memory technologies
- Memory design
 - Memory cell
 - Memory chip internal organization
- Memory communication protocols
- Data storage schemes
- UMA vs. NUMA system architectures

Memory organization

- Number of addresses by word size
 - E.g., 1K × 8
 - E.g., 512×16
- Memory capacity
 - Gigabyte -1024 megabytes
 - Terabyte -1024 gigabytes
- Advertised vs. Actual capacity on hard drive.
 - Decimal capacity / 1,073,741,824 = Binary GB capacity
 Decimal capacity / 1,099,511,627,776 = Binary TB capacity
 - Windows will show a 500 GB drive as 465 GB

	<u>Address</u>	<u>Data</u>
Decimal	Binary (10 bits)	8-bit Content
0	0000000000	00010001
1	0000000001	10000111
2	0000000010	00111100
3	000000011	11000000
	•••	
1023	11111111111	10000001

(a) 1K × 8 Memory

Fig 7.1

<u>Address</u>		<u>Data</u>
Decimal	Binary (9 bits)	16-bit Content
0	000000000	0001000100010001
1	00000001	1000011111100001
2	00000010	0011110000001100
3	000000011	1100000011010100
511	111111111	1000000111001011

(b) 512 × 16 Memory

Memory Technologies

- Non-Volatile
 - Memory Cell retains 0 or 1 indefinitely
 - Word accessible
 - ROM
 - PROM
 - EEPROM
 - Can be written limited number ($\sim 100,000$) of times
 - Older technologies EPROM
 - Applications: boot loader, LUT, firmware
 - Block accessible (as secondary memory storage)
 - Magnetic disk
 - Flash memory (EEPROM based)
- Volatile
 - Each memory cell retains 0 or 1 as long as powered
 - Word accessible only
 - SRAM
 - DRAM
 - SDRAM (DDR, DDR2, DRR3, etc.) as modern DRAM

RAM cells

- SRAM
 - Hardware
 - 6 transistors
 - Retains data while powered
 - fast
- DRAM
 - Hardware
 - One transistor
 - One small capacitor
 - Much smaller than SRAM cell
 - Cheaper per bit
 - Slow

(a) An SRAM Cell

(b) A DRAM Cell

е	Action
0	a and b are disconnected (ellectrically isolated)
1	a and b are connected

(c) NMOS Transistor

Figure 7.2

Organization and Access

- 2D Organization (cell array)
 - Rectangular as the die
 - Requires fewer total number of wires
- Read/Write Operation
 - 1. Frist select a row
 - Also called row activation
 - 2. Then select one or more cells from activated row to either read or write
- Burst access
 - Access multiple cells in specific order typically from a single row
 - Cells form a block of data (e.g., 32B)
- Page access
 - Access many cells from one or more rows
 - Cells form a large block of data (e.g., 4KB)

(a) One-dimensional organization

32 X 32 X 1

(b) Two-dimensional organization (shown for read)

Figure 7.3

Multi-bank

- Allows seamless access
 - Cells read/written may belong to different banks
- Can overlap operations
 - Activating a row in one bank while read/writing cells from already activated row in another bank

Figure 7.5

Memory Interface

- Requires address lines (address bus)
 - Address for DRAM is provided in two cycles
- Requires control lines (control bus)
 - Indicating enabling, reading, and writing
- Requires data lines (data bus)
 - Bi-directional data bus
 - Separate input and output data lines

SDRAM (Synchronous DRAM)

- Interface signals form memory command
- Synchronous

 operation makes
 design of computers
 easier, cheaper
- Today SDRAM technologies are used for main memory

SRAM Cell Model

- Real RAM cells cannot be simulated with logic simulation tools
- It can be modeled with SR latch and tri-state buffers to mimic similar behavior
- Resister converts
 Hi-Z output to 0

Figure 7.8

Memory Design

- Memory chip
 - Internal organization
 - Single or multi-banked
 - Bi-directional data bus
 - Access protocol defines signal timing
- Memory module
 - Wider data bus than memory chip
- Memory unit
 - Wider address bus than memory module

Memory Chip

- Requires two decoders
 - Row decoder activates a row
 - Column decoder selects one or more cells
- Input and output tristated buffers to implement bidirectional data bus

Memory Module

- Also called memory card
- 32- or 64-bit data bus
 - Wider if ECC
- For building memory unit(s) as main memory

Memory Unit

- Maps logical memory space to physical memory space
- Different mapping options
 - High-order interleaving
 - Low-order interleaving (later)
 - Hybrid
 - E.g., NUMA architectures

(a) Logical View

High-order Interleaving Example

Memory Access

- Follows specific communication protocol and signal timing
- Memory Cycle
 - 1. Starts when address decoding begins
 - 2. Waits to activate a row and select cell(s)
 - 3. Completes read or write operation
 - 4. Ends cycle
- Timing parameters
 - Access time
 - Read: From start until data appears on data bus
 - Write: From start until data is written to memory cells
 - Transfer time
 - Time to transfer data to/from memory
- Memory latency
 - Access time + transfer time

SRAM

SDRAM

- Concurrent memory operations
- Read Protocol:
 - 1. Issue burst size
 - 2. Issue row address
 - 3. Wait for row to activate (fixed number of clock cycles)
 - 4. Issue column address
 - 5. Repeat step 4 as needed
 - Timing depends on burst size
 - 6. Data placed on data bus, one per clock cycle, seamlessly

DDR SDRAM

- Operation similar to SDRAM
- Data placed on data bus on rising as well as falling clock edges
 - Two data items per clock cycle
 - Doubling the bandwidth of SDRAM
 - Doubling number of data bytes per second

Data Interleaving

- High-Order Interleaving
 - Data for consecutive memory addresses are stored in the same memory module/unit
 - Advantage:
 - Divides memory space into two or more disjoint sub-spaces
 - Each sub-space may be accessed by a separate processor
- Low-Order (fine) Interleaving
 - Data for consecutive memory address are stored in different memory modules/units
 - Advantage:
 - Increases memory bandwidth

DDR2 SDRAM

- Read/write from two banks at the same time
 - Fine interleaving memory banks
- Doubling bandwidth of DDR SDRAM
 - Requires higher data transfer rate

Multi-Channel

- Organize data bus into two or more independent channels
 - Separate burst access in each channel
- Larger bursts to deliver same amount of data
 - More efficient channels
 - More continuous delivery of data
 - Better performance
 - E.g., for real-time processing
 - Application
 - Better performing embedded systems

(b) Dual Channel

Multi-Processor Memory Architecture

- Uniform memory access (UMA)
 - Memory latency about the same (uniform)
 - Good for small systems
 - E.g., multi-core processor system
- Non-uniform memory access (NUMA)
 - Memory latencies vary (non-uniform)
 - Small when accessing local memory
 - Long when accessing remote memory
 - Average latency < UMA
 - Better for multithreaded programs
 - Each threads mostly accesses its local memory
 - Only shared data (if any) accessed remotely
 - E.g., consider producer-consumer application
 - Nodes can be multi-core

