(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特期2001-343706

(P2001-343706A)

(43)公開日 平成13年12月14日(2001.12.14)

	· —			
(51) Int.Cl. ⁷	識別記号	FI	Ť	-73-1*(参考)
G03B 21/14		G03B 21/14	Α	2H088
G02B 27/28		G 0 2 B 27/28	Z	2H091
G03B 21/00		G 0 3 B 21/00	E	2H099
G09F 9/00	360	G 0 9 F 9/00	360Z	5 C 0 6 0
H01L 33/00		H01L 33/00	L	5 F 0 4 1
110 11 11,11		未請求 請求項の数11 OL	(全 15 頁)	最終頁に続く
(21)出顧番号 (22)出顧日	特膜2000-163345(P2000-163345) 平成12年5月31日(2000.5.31)	(71)出願人 000002185 ソニー株式会社 東京都品川区北品川 6 丁目 7 番35号 (72)発明者 菅野 靖之 東京都品川区北品川 6 丁目 7 番35号 ソニ 一株式会社内 (74)代理人 100067736		
		弁理士 小池	晃 (外2	名)

最終頁に続く

(54) 【発明の名称】 映像表示装置

(57)【要約】

【課題】 複数の光源からの出射光を均一に且つ効率的 にライトバルブに入射させる。

【解決手段】 光源ユニット11として、光源としての 発光ダイオード16と結合レンズ17とからなる光源部 10を複数配設する。とれら各光源部10から出射した 光をコンデンサレンズ18及びインテグレータ12を介 してライトバルブ15に入射させる。

【特許請求の範囲】

【請求項1】 半導体発光素子又は白色光ランプからな る光源と、この光源から出射された光を略平行光とする 結合光学素子とからなる光源部を複数備え、上記結合光 学素子を透過した各光源部からの光を照明系全体の光軸 上で所定の焦点位置に集光して出射する光源ユニット

上記光源ユニットの焦点位置に配設され、当該光源ユニ ットから出射した光の面内光強度分布を均一化するイン テグレータと、

上記インテグレータにより面内光強度分布が均一化され た光が照射される略長方形状のライトバルブとを備えて いることを特徴とする映像表示装置。

【請求項2】 上記光源ユニットは、コンデンサレンズ を備え、

上記複数の光源部は、上記光源ユニット内で平面状に配 設されており、

上記各光源部からの光は、上記コンデンサレンズによっ て所定の焦点位置に集光されることを特徴とする請求項 1記載の映像表示装置。

₩20 ・・・(式2) $S \leq (L_1 \times \theta_1 / NA_c) \times (L_2 \times \theta_2 / NA_c)$

【請求項5】 上記複数の光源部は、上記焦点位置を中 心とする半球上に配設されており、

これにより、上記複数の光源部からの光が上記焦点位置 に集光されることを特徴とする請求項1記載の映像表示 装置。

【請求項6】 上記光源部から上記焦点位置までの距離 をしとし、上記照明系全体の光軸から上記各光源部の光 軸までの最大距離をHとしたときに、

上記光源ユニットは、以下の式3に示す関係を満足して 30 設計されていることを特徴とする請求項4記載の映像表 示装置。

【数3】

• • • (式3) Ж |H/L| < 0.27 $S \leq (L_1 \times \theta_1 \times L/H) \times (L_2 \times \theta_2 \times L/H)$ ・・・ (式4)

【請求項8】 上記光源は、発光ダイオード又はレーザ ダイオードからなることを特徴とする請求項1記載の映 像表示装置。

【請求項9】 上記光源ユニットは、上記光源から出射 される光を一方向に反射する反射鏡を備えていることを 40 に関する。 特徴とする請求項1記載の映像表示装置。

【請求項10】 上記光源ユニットにおける上記複数の 光源部からなる発光領域は、上記ライトバルブの平面形 状と略相似する形状とされていることを特徴とする請求 項1記載の映像表示装置。

【請求項11】 上記光源ユニットと上記インテグレー タとの間、上記インテグレータの内部、又は上記インテ グレータと上記ライトバルブとの間のうちの少なくとも いずれかの位置に、偏光変換素子を備えていることを特 徴とする請求項 1 記載の映像表示装置。

*【請求項3】 上記コンデンサレンズの焦点距離をしと し、上記照明系全体の光軸から上記各光源部の光軸まで の最大距離をHとしたときに、

上記光源ユニットは、以下の式1に示す関係を満足して 設計されていることを特徴とする請求項2記載の映像表 示装置。

【数1】

【数2】

••• (式1) |H/L| < 0.27

【請求項4】 上記ライトバルブに照射される光が上記 10 照明系全体の光軸となす角度における当該ライトバルブ の短辺方向の最大値を $heta_1$ 、長辺方向の最大値を $heta_2$ と し、上記ライトバルブの短辺方向の長さをL1、長辺方 向の長さをし、とし、上記コンデンサレンズの実効開□ 数をNA、としたときに、

上記光源ユニットは、上記複数の光源部からなる発光領 域の面積Sが以下の式2に示す関係を満足するように設 計されていることを特徴とする請求項2記載の映像表示 装置。

※【請求項7】 上記ライトバルブに照射される光が上記 照明系全体の光軸となす角度における当該ライトバルブ の短辺方向の最大値を $heta_1$ 、長辺方向の最大値を $heta_2$ と し、上記ライトバルブの短辺方向の長さをL1、長辺方 向の長さをし、とするとともに、

上記光源部からの上記焦点位置までの距離をLとし、上 記照明系全体の光軸から上記各光源部の光軸までの最大 距離をHとしたときに、

上記光源ユニットは、上記複数の光源部からなる発光領 域の面積 S が以下の式 4 に示す関係を満足するように設 計されていることを特徴とする請求項5記載の映像表示 装置。

【数4】

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高い色再現能力を有 し、静止画像又は動画像を投射するための映像表示装置

[0002]

【従来の技術】従来から、光源から出射される光を用い ることにより静止画像又は動画像をスクリーン上に投射 して表示する、いわゆる投射型の映像表示装置が実用化 されている。

【0003】従来から広く用いられている投射型の映像 表示装置は、図13に示すように、回転放物面形状の反 射面を有する反射板100と、反射板100の焦点位置 に配設された光源101と、インテグレータ102と、

50 赤色分離ミラー103Rと、緑色分離ミラー103G

と、反射ミラー103Bと、立方体形状の色合成プリズ ム104とを備えている。

【0004】映像表示装置は、赤色分離ミラー103R によって反射された赤色光を、色合成プリズム104に おける所定の面104Rに入射させる反射ミラー105 Rと、青色分離ミラー103Bによって反射された青色 光を、色合成プリズム104における面104Rと平行 な他の面104Bに入射させる反射ミラー105Bとを 備えている。また、色合成プリズム104は、緑色分離 ミラー103Gによって反射された緑色光が、色合成プ 10 リズム104における面104R及び面104Bと直交 する面104Gに入射されるように配設されている。さ らに、緑色分離ミラー103Gと反射ミラー103Bと の間、及び反射ミラー103Bと反射ミラー105Bと の間には、それぞれ光路長調整用レンズ106,107 が配設されている。

【0005】映像表示装置は、さらに、反射ミラー10 5Rと合成プリズムの面104Rとの間に配設された赤 色用ライトバルブ108Rと、反射ミラー105Rと赤 色用ライトバルブ108Rとの間に配設された赤色用レ 20 ンズ109Rと、緑色分離ミラー103Gと色合成プリ ズム104の面104Gとの間に配設された緑色用ライ トバルブ108Gと、緑色分離ミラー103Gと緑色用 ライトバルブ108Gとの間に配設された緑色用レンズ 109Gと、反射ミラー105Bと色合成プリズム10 4の面104Bとの間に配設された青色用ライトバルブ 108Bと、反射ミラー105Bと青色用ライトバルブ 108Bとの間に配設された青色用レンズ109Bとを 備えている。

【0006】また、映像表示装置は、色合成プリズム1 04における面104Gと平行な面に対向するように配 設されたプロジェクタレンズ110を備えている。

【0007】以上のように構成された従来の映像表示装 置では、光源101として、キセノンランプ又はメタル ハライドランプ等の白色光ランプが用いられている。光 源101から出射された光は、反射板100によって反 射され、さらに、図示しないカットフィルタによって紫 外線及び赤外線が取り除かれ、インテグレータ102を 介して赤色分離ミラー103Rに入射する。赤色分離ミ ラー103Rに入射した光のうちの赤色の光は、この赤 40 色分離ミラー103R及び反射ミラー105Rで反射さ れ、赤色用レンズ109R及び赤色用ライトバルブ10 8 Rを透過して色合成プリズム104に入射される。赤 色分離ミラー103Rに入射した光のうちの赤色以外の 色は、赤色分離ミラー103Rを透過して、緑色分離ミ ラー103Gに入射される。

【0008】緑色分離ミラー103Gに入射した光のう ちの緑色の光は、緑色分離ミラー103Gで反射され、 緑色用レンズ109及び緑色用ライトバルブ108Gを 介して色合成プリズム104に入射される。緑色分離ミ 50 光が生じる。光源から出射された光に軸外光が生じてい

ラー103Gに入射した光のうちの緑色以外の色は、緑 色分離ミラー103Gを透過して、光路長調整用レンズ 106を介して反射ミラー103Bに入射される。

【0009】反射ミラー103Bに入射した光、すなわ ち青色の光は、反射ミラー103Bで反射され、光路長 調整用レンズ107を透過して、さらに反射ミラー10 5Bで反射された後に、青色用レンズ109B及び青色 用ライトバルブ108Bを介して色合成プリズム104 に入射される。

【0010】色合成プリズム104に入射した各色の光 は、色合成プリズム104によって色合成され、プロジ ェクタレンズ110を介して透過型又は反射型のスクリ ーンに投影される。

[0011]

【発明が解決しようとする課題】ところで、上述した従 来の映像表示装置では、1種類の光源101により単独 で用いられているために、この光源101から出射され る光に含まれる波長に偏りがみられ、色分離ミラー10 3R, 103G、及び反射ミラー103Bで分離された 3原色の光量比をバランスよく得ることが困難であり、 色の再現性を向上させることが困難であった。また、従 来の映像表示装置で用いられている白色光ランプは、輝 度調整を髙精度に図ることが困難であるとともに、一定 の輝度で点灯していることから、赤色、緑色、青色の各 色を独立して輝度調整することが困難であるといった問 題があった。

【0012】また、従来の映像表示装置においては、光 源101として用いられている白色光ランプから出射さ れる光束の断面形状が円形である。一方、光が照射され るライトバルブ108R, 108G, 108Bは、通 常、長方形形状である。したがって、ライトバルブ10 8R, 108G, 108Bに均一に光を入射させるため には、各ライトバルブに入射される光束の直径を、各ラ イトバルブの対角線の長さよりも大きくしていた。この ため、光源101から出射された光の照射効率が低いと いう問題があった。

【0013】そこで、光源に複数種のランプを用いた り、3原色のそれぞれに発光ダイオードやレーザダイオ ード等の半導体発光素子を複数用いた映像表示装置が提 案されている。

[0014]図14に、CRT (Cathode-Ray Tube)の 蛍光体、発光ダイオードを用いた映像表示装置、及びN TSC (National Television System Committee) 方式 による色再現範囲を表したXY色度図を示す。発光ダイ オードを光源として用いた場合、その色再現範囲は、C RTの蛍光体や、NTSC方式による色再現範囲に比べ て広いことが分かる。

【0015】しかしながら、複数の光源により出射され た光には、光線に角度がつくために、光軸外からの軸外

ると、ライトバルブへ光を均一に照射することが困難であるとともに、ライトバルブの外側にも照射されてしまうことから光の照射効率も低くなってしまうという問題があった

【0016】本発明は、上述した従来の実情に鑑みて提案されたものであり、複数種の白色光ランプ、又は色純度の良好な半導体発光素子を複数用いる場合に、光源からの出射光をライトバルブに対して均一に入射させることが可能であるとともに、光源からの出射光を効率的にライトバルブに入射されることが可能な映像表示装置を 10 提供することを目的とする。

[0017]

【課題を解決するための手段】本発明に係る映像表示装置は、光源ユニットと、インテグレータと、ライトバルブとを備える。光源ユニットは、半導体発光素子又は白色光ランプからなる光源と、この光源から出射された光を略平行光とする結合光学素子とからなる光源部を複数備え、上記結合光学素子を透過した各光源部からの光を照明系全体の光軸上で所定の焦点位置に集光して出射する。インテグレータは、上記光源ユニットの焦点位置に20配設され、当該光源ユニットから出射した光の面内光強度分布を均一化する。ライトバルブは、略長方形状とされ、上記インテグレータにより面内光強度分布が均一化された光が照射される。

【0018】以上のように構成された本発明に係る映像表示装置は、複数の光源部から出射した光を集光してライトバルブに入射していることから、必要に応じて光源部の数を増やして光量の増大を図ることが容易である。また、複数の光源部からの光が照明系全体の光軸上で所定の焦点位置に集光され、この焦点位置にインテグレータが配設されていることにより、ライトバルブへ光を均一に照射することが可能であるとともに、光源部からの出射光を効率的にライトバルブに入射することが可能となる。

[0019]

【発明の実施の形態】以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、以下では、本発明を適用した映像表示装置の一構成例として、図1に示すような映像表示装置1について説明する。

【0020】映像表示装置1は、図1に示すように、立 40 方体形状のダイクロイックプリズム2と、このダイクロイックプリズム2の一つの面2Gに対向するように配設された緑色用照明光学系3Gと、ダイクロイックプリズム2における面2Gと直交する他の面2Rに対向するように配設された赤色用照明光学系3Rと、ダイクロイックプリズム2における面2Rと平行な他の面2Bに対向するように配設された青色用照明光学系3Bとを備えている。

【 $0\ 0\ 2\ 1$ 】また、映像表示装置1は、ダイクロイック - タ $1\ 2$ は、第1のフライアイレンズ $1\ 9$ 及び第2のフプリズム2 における面2 Gと平行な面に対向するように 50 ライアイレンズ $2\ 0$ により構成されている。第1のフラ

配設されてなるプロジェクタレンズ4を備えている。プロジェクタレンズ4は、後述するように、各照明光学系3G,3R,3Bから出射された光がダイクロイックプリズム2により色合成され、この色合成された光が入射されて、図示しない透過型又は反射型のスクリーン上に静止画像又は動画像などの映像を投影する機能を有している。なお、プロジェクタレンズ4は、従来から広く用いられている他の映像表示装置と同様の構成とすればよいため、以下での詳細な説明を省略する。

[0022] 映像表示装置1は、以上のように構成されており、赤色、緑色、青色の各色の光が、それぞれ、赤色用照明光学系3R、緑色用照明光学系3G、青色用照明光学系3Bにより出射されるとともに、それぞれ独立してダイクロイックプリズム2に入射される。そして、これら各色の光は、ダイクロイックプリズム2によって色合成された後に、プロジェクタレンズ4に入射される。映像表示装置1においては、このように、各色の光が独立した照明光学系により出射されていることから、各色の色再現性や輝度を独立して高精度に調整することが可能とされている。

[0023] つぎに、以下では、上述した赤色用照明光学系3R、緑色用照明光学系3G、青色用照明光学系3Bについて、詳細に説明する。なお、これら赤色用照明光学系3R、緑色用照明光学系3G、青色用照明光学系3Bは、それぞれ略々同等の構成として差し支えがないため、以下では代表して、照明光学系3として説明する。

[0024] 照明光学系3は、図2に示すように、複数の光源部10を備え、各光源部10からの光を照明系全体の光軸上で所定の位置に集光する光源ユニット11と、この光源ユニット11の焦点位置に配設されたインテグレータ12と、第1のコンデンサレンズ13と、第2のコンデンサレンズ14と、ライトバルブ15とを備えている。そして、照明光学系3は、ライトバルブ15が映像表示装置1のダイクロイックプリズム2に対向する位置となるように配設される。

[0025]光源部10は、光源としての発光ダイオード16と、この発光ダイオード16から出射された光を略平行光とする結合レンズ17とにより構成されている。光源ユニット11においては、発光ダイオード16及び結合レンズ17により構成される光源部10が、平面状に複数配設されている。また、光源ユニット11は、各光源部10からの光を照明系全体の光軸上で所定の位置に集光するコンデンサレンズ18を備えている。[0026]インテグレータ12は、光源ユニット11におけるコンデンサレンズ18の焦点位置に配設されており、この光源ユニット11から出射した光の面内光強度分布均一化する機能を有している。また、インテグレータ12は、第1のフライアイレンズ19及び第2のフライアイレンズ20により構成されている。第1のフラ

イアイレンズ19及び第2のフライアイレンズ20は、 互いに共役な位置に配設され、テレセントリック光学系 を構成している。

【0027】第1のコンデンサレンズ13及び第2のコ ンデンサレンズ14は、インテグレータ12を透過した 光を集束して、ライトバルブ15に入射する機能を有し ている。

【0028】照明光学系3において、発光ダイオード1 6から出射された光は、結合レンズ17によって略平行 光とされる。発光ダイオード16は、面光源であるた め、光軸外からの軸外光が生じている。結合レンズ17 を透過した光は、コンデンサレンズ18により屈折し、 インテグレータ12に入射する。インテグレータ12で は、軸外光が光軸となす角度の分布を一様にし、面内光 強度分布を均一化する。そして、インテグレータ12を 透過した光は、第1のコンデンサレンズ13に入射す

【0029】照明光学系3において、第1のコンデンサ レンズ13と第2のコンデンサレンズ14とは、互いに 共役な位置に配設されており、テレセントリック光学系 20 を構成している。そして、第1のコンデンサレンズ13 及び第2のコンデンサレンズ14を透過して収束された 光は、ライトバルブ15に入射する。

【0030】照明光学系3は、以上のように構成されて おり、赤色用照明光学系3R、緑色用照明光学系3B、 青色用照明光学系3Gがそれぞれ、照明光学系3と略々 同等な構成とされている。ただし、赤色用照明光学系3 R、緑色用照明光学系3B、青色用照明光学系3Bにお いては、それぞれ、赤色、緑色、青色の各色をダイクロ イックプリズム2に入射するように構成されている。具 30 体的には、例えば、光源としての発光ダイオード16 が、それぞれについて、赤色、緑色、青色の各色を発光 するように構成されている。或いは、例えば、照明光学 系3に各種フィルタを備え、発光ダイオード16から出 射される光をフィルタを用いて、赤色、緑色、青色に波 長変換するとしてもよい。

【0031】映像表示装置1においては、赤色用照明光 学系3R、緑色用照明光学系3G、青色用照明光学系3 Bにそれぞれライトバルブ15が備えられている。そし された赤色、緑色、青色の光は、各ライトバルブ15に よって空間的に変調され、それぞれダイクロイックブリ ズム2に入射する。ダイクロイックプリズム2に入射し た赤色、緑色、青色の光は、ダイクロイックミラー2に よって色合成され、プロジェクタレンズ4を介してスク リーンへ投影される。

【0032】以上のように構成された本発明に係る映像 表示装置1は、複数の光源部10から出射した光を集光 してライトバルブ15に入射していることから、必要に 応じて光源部10の数を増やして光量の増大を図ること 50 上げるために好適な、発光ダイオード16と各レンズと

が容易である。また、複数の光源部10からの光が照明 系全体の光軸上で所定の焦点位置に集光され、この焦点 位置にインテグレータ12が配設されていることによ り、ライトバルブ15へ光を均一に照射することが可能 であるとともに、光源部10からの出射光を効率的にラ イトバルブ15に入射することが可能となる。

【0033】なお、本発明に係る映像表示装置1におい て、光源部10における光源としては、発光ダイオード 16の他に、レーザダイオードなどのような各種の半導 10 体発光素子を用いてもよいし、メタルハライドランプ等 の放電灯やハロゲンランプなどのような白色光ランプを 用いてもよい。白色光ランプを光源として用いた場合に は、各種フィルタを用いることにより、赤色、緑色、青 色に波長変換し、これら各色の光をそれぞれダイクロイ ックプリズム2に照射すればよい。

【0034】また、各種フィルタを用いるとせずに、発 光ダイオード16によって直接、赤色、緑色、青色の各 色を発光するとする場合において、赤色用の半導体発光 素子としては、例えば、GaAlAs、GaAsP、A 1GaPAs等のような、GaP系、GaAs系、或い はA1As系化合物半導体を用いることができる。ま た、緑色用の半導体発光素子としては、例えば、InG aN、AlinGaN等のような、GaN系、又はZn Se系化合物半導体を用いることができる。さらに、青 色用の半導体発光素子としては、例えば、InGaN、 AlInGaN等のような、GaN系、ZnSe系、或 いはSiC系化合物半導体を用いることができる。

【0035】また、本発明に係る映像表示装置1におい て、光源部10における光源としての発光ダイオード1 6には、図3に示すように、出射する光を一方向に反射 する反射鏡(リフレクタ)21を備えるとしてもよい。 これにより、発光ダイオード16から出射する光の利用 効率が向上し、明るい映像を低出力で表示することが可 能となる。なお、このように、光源に反射鏡21を備え ることによって、十分な集光性を得ることができる場合 には、結合レンズ17を備えずに光源部10を構成して もよい。

【0036】さらに、本発明に係る映像表示装置1にお いては、結合レンズ17の代わりに、光源から出射され て、各照明光学甲斐3におけるライトバルブ15に照射 40 た光をそれぞれ集光する機能を有する各種の結合光学素 子を用いてもよい。また、映像表示装置1において、コ ンデンサレンズを用いて光を屈折させているが、各コン デンサレンズの代わりに、回折作用を有するフレネルレ ンズを用いても同様の効果を得ることができる。

> 【0037】以下では、本発明に係る映像表示装置1に ついて、発光ダイオード16と各レンズとの配設位置に 関する望ましい幾何学的関係について説明する。

> 【0038】まず、発光ダイオード16からの出射光を 均一にするとともに、ライトバルブ15への照射効率を

の幾何学的関係について、図4を参照しながら説明す る。とこでは、ライトバルブ15の短辺方向について述 べる。以下の説明中で用いる添字「1」はライトバルブ 15の短辺方向を示し、添字「2」はライトバルブ15 の長辺方向を示す。

9

[0039] 発光ダイオード16の長さをr₁、結合レ ンズ17の実効焦点距離をfͺͼͽ、結合レンズ17の実 効開口数をNA、ヒ。。とすると、発光ダイオード16の光 *

【0043】結合レンズ17を透過した光の射出瞳直径 10%【0044】

DL E D 1 は、以下に示す式7で表される。

 $D_{LED1} = 2NA_{LED} \times f_{LED} \cdot \cdot \cdot \cdot (\pounds 7)$

【0045】以上に示す式6及び式7から、以下に示す 式8を導くことができる。

 $D_{LED1} = NA_{LED} \times r_1 / \theta_{LED1} \cdot \cdot \cdot \cdot (38)$

【0047】また、第1及び第2のフライアイレンズ1 9. 20の要素レンズの個数をN₁、第1及び第2のフ ライアイレンズ19,20の実効焦点距離をfeve、第 1及び第2のフライアイレンズ19,20の実効開口数☆

 $D_{LEO1} = 2N_1 \times f_{EYE} \times NA_{EYE1} \cdot \cdot \cdot (\mathbf{I}9)$

【0049】また、第1及び第2のコンデンサレンズ1 3. 14の実効焦点距離をf_c、ライトバルブ15へ照 射される光が光軸となす角度の最大値をθινιとする と、射出瞳直径 Diesiは、以下に示す式 10 のように表 される。

[0050]

【数10】

 $D_{LKDI} = 2 f_{e} \times \theta_{LVI} \cdot \cdot \cdot \cdot (310)$

【0051】ライトバルブ15の長さをし、い」とする

 $NA_{RYRI} = L_{LVI} \times \theta_{LVI} / D_{LSDI} \cdot \cdot \cdot \cdot (\overrightarrow{A}12)$

【0055】また、以上に示す式8及び式12から、以 * [0056] 下に示す式13を導くことができる。 【数13】

 $NA_{EYE1} = \theta_{LED1} \times L_{LV1} \times \theta_{LV1} / (NA_{LED} \times r_1) \cdot \cdot \cdot (\sharp 13)$

【0057】さらに、以上に示す式13から、以下に示 **※**[0058] 【数14】 す式14を導くことができる。 ж

 $\theta_{\text{LED1}}/NA_{\text{EYE1}} = r_1/L_{\text{EY1}} \times NA_{\text{LED}}/\theta_{\text{LY1}} \cdot \cdot \cdot \cdot (£14)$

【0059】ここで、ライトバルブ15への照射条件を 考えるに際し、第2のフライアイレンズ20が重要とな る。図5に示すように、第1のフライアイレンズ19の 要素レンズ19aを透過した光のうち、対応する第2の 40 フライアイレンズ20の要素レンズ20aに入射した光 は、ライトバルブ15に照射される。しかし、第1のフ ライアイレンズ19の要素レンズ19aを透過した光の うち、隣の第2のフライアイレンズ20の要素レンズ2 0 b に入射した光は、ライトバルブ15 に照射されな

【0060】軸外光の傾き θ ι ε ο 1 と第 1 及び第 2 のフラ イアイレンズ19,20の実効開口数NA ε γ ε 1 との比 と、ライトバルブ15への照射効率との関係を図6に示 す。

【数15】

件は、以下に示す式15となる。

【0061】したがって、ライトバルブ15への照射条

 $\theta_{LED1}/NA_{BYB1} ≤ 1 · · · (式15)$ 【0063】θ,,,,,/NA,,,≤1のときは、発光ダイ オード16から出射されたすべての光がライトバルブ1 5に照射されるが、 $\theta_{LED1}/NA_{EYE1}>1$ のときは、発 光ダイオード16から出射された光のうち、ライトバル ブ15の外に照射される光が存在し、光の照射効率が低 下してしまう。

【0064】ととで、以上に示す式14及び式15か ら、以下に示す式16を導くことができる。

50 [0065]

*結合効率ηιε,は、以下に示す式5で表される。

[0040]

【数5】

 $\eta_{LED} = NA_{LED2} \cdot \cdot \cdot \cdot (\pounds 5)$

[0041] 軸外光が光軸となす角度の最大値母

」、」、は、以下に示す式6で表される。

[0042]

【数6】

 $\theta_{LED1} = r_1/(2 f_{LED}) \cdot \cdot \cdot (36)$

【数7】

Ж

★[0046]

【数8】

☆をNAεγε1とすると、射出瞳直径DLeo1は、以下に示す 式9のように表される。

[0048]

【数9】

◆と、以下の式11となる。 [0052]

【数11】

 $2 f_c \times NA_{RYEI} = L_{LVI} \cdot \cdot \cdot \cdot (\sharp 11)$ 【0053】ととで、以上に示す式10及び式11か

ら、以下に示す式12を導くことができる。

[0054]

【数12】

[0062]

【数16】

$r_1 \leq L_{LV1} \times \theta_{LV1} / NA_{LED} \cdot \cdot \cdot \cdot (\mathfrak{A}16)$

【0066】以上のようにして導かれた式16は、物体の大きさと像の大きさとの関係を示すラグランジェーへルムホルツの式に帰着する。

【0067】なお、以上の説明においては、ライトバルブ15の短辺方向について説明したが、上述した関係は、ライトバルブ15の長辺方向についても同様に成り*

*立つ。したがって、ライトバルブ15への光の照射効率 を高めるためには、長辺方向についても以下に示す式1 7を満足することが好ましい。

12

[0068]

【数17】

$r_2 \leq L_{LV2} \times \theta_{LV2} / NA_{LED} \cdot \cdot \cdot \cdot (式17)$

【0069】以上の説明より、発光ダイオード16から 10 出射された光を効率よくライトバルブ15へ照射させるためには、各発光ダイオード16の発光領域の総面積Sが、($L_{\text{Lv}_{1}} \times \theta_{\text{Lv}_{1}} / NA_{\text{Le}_{0}}$)×($L_{\text{Lv}_{2}} \times \theta_{\text{Lv}_{2}} / N$ A_{Leo})以下であることが望ましい。

【0070】一般的に、ライトバルブ15への照射光が光軸となす最大角 θ_{LV1} 及び θ_{LV2} は、例えば透過型ライトバルブでは、液晶のコントラストやプロジェクタレンズの画角等から短辺方向、長辺方向とも同様に制限される。また、反射型ライトバルブでも、 θ_{LV1} 及び θ_{LV2} は、偏光プリズムの入射角依存性等から、ライトバルブ15の短辺方向、長辺方向とも同様に制限される。そのため、 $\theta_{\text{LV1}} = \theta_{\text{LV2}}$ となる場合が多い。また、通常、実効開口数 NA_{LE0} はライトバルブ15の長辺方向、短辺方向どちらでも同じなので、 r_1 と r_2 の比は r_2 0比に一致する。

【0071】したがって、光源ユニット11における複数の発光ダイオード16からなる発光領域は、ライトバルブ15の相似形であることが好ましい。これにより、各発光ダイオード16からの光を無駄なくライトバルブ15に入射させることができ、各発光ダイオード16か 30 ちの光の利用効率を向上させることができる。

【0072】なお、映像表示装置1においては、光源ユニット11における発光領域の他に、インテグレータ12における第1及び第2のフライアイレンズ19,20の各要素レンズもライトバルブ15の相似形であることが好ましい。これにより、発光ダイオード16からの光の利用効率をさらに向上させることができる。

【0073】ととで、上述したライトバルブ15における短辺方向の長さL、い及び長辺方向の長さL、いなは、実際に映像が表示される表示部分、すなわち照明すべき表 40 示部分の短辺方向、長辺方向の長さとすることができる。しかし、実際には収差のために不均一な照明が生じやすいため、ライトバルブ15の周縁部に、光が照射されない部分が生じる虞がある。また、製造時の位置合わせや領域の大きさのマージン等を考慮すると、光が照射される照射領域は、表示部分よりも若干大きく設定されることが望ましい。

【0074】このため、映像表示装置1では、表示部分の短辺方向の長さが、ライトバルブ15の短辺方向の長さし、以下であり、表示部分長辺方向の長さが、ライ

0 トバルブ15の長辺方向の長さしい。以下であることが望ましい。

【0075】照射領域は、表示部分よりも若干大きく設定することで、光が照射されないおそれのある周縁部に実際に映像を表示することがなく、表示部分の全面に亘って照射効率を上げることができる。具体的には、収差や製造時のマージン等を考慮して、ライトバルブ15の短辺方向の長さしい。及び長辺方向の長さしいが、表示部分の短辺方向、長辺方向の長さよりもそれぞれ5%~10%程度大きくなるようにすることが望ましい。ある20 いは、位置合わせのマージンを考慮して、ライトバルブ15の短辺方向の長さしい。及び長辺方向の長さして、ライトバルブ15の短辺方向の長さして、ライトバルブ15のデバイスの外形と等しくするか、外形の短辺方向、長辺方向の長さよりもそれぞれ5%~10%程度大きくなるようにしてもよい。

[0076] 発光ダイオード4の発光領域は、例えば短辺方向の長さが r_1 、長辺方向の長さが r_2 の略矩形である。また、発光ダイオード4の発光領域が、ライトバルブ10の相似形であることが好ましい。発光ダイオード4の発光領域がライトバルブ10の相似形であると、ライトバルブ10に照射される光に無駄がなく、光の照射効率をより高めることができる。

【0077】つぎに、以下では、光源ユニット11における光源部10とコンデンサレンズ18との幾何学的関係について説明する。

[0078] 光源ユニット11におけるコンデンサレンズ18では、入射する光線の角度が同じであれば、各光線の結像位置が略々同じ位置となる。具体的には、例えば、図7(a)に示すように、光軸に対して平行(角度0)な光線がコンデンサレンズ18に入射した場合に、入射した光線は、光軸上でコンデンサレンズ18から距離上だけ離れた焦点位置に結像する。また、図7(b)に示すように、光軸に対して角度 θ で光線がコンデンサレンズ18に入射した場合であっても、入射した光線は、光軸から垂直方向に距離Yだけ離れた位置に結像する。このときの距離Yは、焦点距離Lと入射角 θ との積となる関係がある。

[0079] このため、図7(c) に示すように、コンデンサレンズ18の入射側に多数の発光ダイオード16を平面状に配設した場合に、各発光ダイオード16からの光コンデンサレンズ18に入射する位置が異なって

も、焦点位置における光束がひとつに重なる。したがっ て、映像表示装置1においては、光源ユニット11に複 数の発光ダイオード16及び結像レンズ17を平面状に 配設し、コンデンサレンズ18の焦点位置にインテグレ ータ12を配設することにより、上述で図4を用いた説 明が成立する。

【0080】ここで、図8に示すように、コンデンサレ ンズ18の焦点距離をLとし、照明系全体の光軸から各 光源部10までの距離をHとした場合について考察す

【0081】図8に示すように、光軸から距離Hの位置 にある光源部10からの光線は、コンデンサレンズ18 により集光されて、所定の角度でインテグレータ12に 入射する。このとき、インテグレータ12に入射する角 度が大きすぎると、上述したように、例えば、第1のフ ライアイレンズ19の要素レンズ19aに入射した光線 を、この要素レンズ19aと対をなす第2のフライアイ レンズ20の要素レンズ20aに入射させることができ なくなってしまう。したがって、インテグレータ12の 機能が低下し、ライトバルブ15に照射する光量が低下 20 してしまう。

【0082】インテグレータ12においては、第1のフ ライアイレンズ19の要素レンズ19aに入射した光 が、この要素レンズ19aと対をなす第2のフライアイ レンズ20の要素レンズ20aの隣の要素レンズ20b に入射してしまうような、入射光の限界角度が15°程 度とされている。したがって、映像表示装置1において は、以下に示す式18を満足することが望ましい。

[0083]

【数18】

|H/L| < 0.27・・・(式18) 【0084】すなわち、インテグレータ12に入射する 光線の角度範囲 | H/L | の値が、tan 15°、すな わちり、27未満であることが望ましい。これにより、 ライトバルブ15に照射する光量が低下してしまうこと がなく、発光ダイオード16からの光の利用効率を向上 させることができる。

【0085】ところで、以上の説明においては、光源ユ ニット11にコンデンサレンズ18を備え、複数の光源 部10を平面状に配設するとしたが、本発明はこのよう な形態に限定されるものではない。例えば、図9に示す ように、光源ユニット11にコンデンサレンズ18を備 えるとせずに、光源ユニット11の焦点位置を中心とす る半球上に複数の光源部10を配設し、との焦点位置に インテグレータ12を配設することにより、各光源部1 0からの光がインテグレータ12に入射する構成として もよい。

【0086】このとき、図10に示すように、複数の光 源部10を配設する半球の半径、すなわち、各光源部1

から各光源部10までの距離をHとすれば、図8を用い た上述の説明と同様にして、以上で示した式18を満足 することが望ましい。

【0087】また、上述の説明において、映像表示装置 1は、赤色用照明光学系3尺、緑色用照明光学系3G、 青色用照明光学系3Bの各照明光学系3にそれぞれライ トバルブ15を備えるとしたが、本発明は、このような 形態に限定されるものではない。例えば、ダイクロイッ クプリズム2により色合成された光を単板のライトバル 10 ブ15に入射させる構成としてもよい。

【0088】この場合には、図11に示すように、立方 体形状のダイクロイックプリズム2と、このダイクロイ ックプリズム2の一つの面2Gに対向するように配設さ れた緑色用光源ユニット11Gと、ダイクロイックプリ ズム2における面2Gと直交する他の面2Rに対向する ように配設された赤色用光源ユニット11Rと、ダイク ロイックプリズム2における面2Rと平行な他の面2B に対向するように配設された青色用光源ユニット11B とを備えている。ととで、赤色用光源ユニット11R、 緑色用光源ユニット11G、青色用光源ユニット11B は、それぞれ、上述した光源ユニット11に相当し、そ れぞれ、赤色、緑色、青色の光をダイクロイックプリズ ム2に入射する。

[0089]また、ダイクロイックプリズム2における 面2 Gと平行な面に対向するように配設されたインテグ レータ12と、第1及び第2のコンデンサレンズ13, 14と、ライトバルブ15と、プロジェクタレンズ4と を備えている。

【0090】図11に示す映像表示装置1では、各光源 30 ユニット11R, 11G, 11Bから出射された赤色, 青色,緑色の光は、それぞれダイクロイックプリズム2 に入射する。ダイクロイックプリズム2に入射した赤 色,青色,緑色の光は、ダイクロイックプリズム2によ って色合成される。色合成された光は、インテグレータ 12と、第1及び第2のコンデンサレンズ13, 14と を介してライトバルブ15に照射される。ライトバルブ 15に照射された光は、ライトバルブ15によって空間 的に変調される。空間的に変調された光は、ライトバル ブ15を透過し、プロジェクタレンズ4を介してスクリ 40 ーンへ投影される。

【0091】本発明に係る映像表示装置1は、以上のよ うに構成することによっても、複数の光源部10から出 射した光を集光してライトバルブ15に入射しているこ とから、必要に応じて光源部10の数を増やして光量の 増大を図ることが容易である。また、複数の光源部10 からの光が照明系全体の光軸上で所定の焦点位置に集光 され、この焦点位置にインテグレータ12が配設されて いることにより、ライトバルブ15へ光を均一に照射す ることが可能であるとともに、光源部10からの出射光 0から焦点位置までの距離をしとし、照明系全体の光軸 50 を効率的にライトバルブ15に入射することが可能とな る。

【0092】また、本発明は、偏光変換を行う映像表示 装置についても適用することが可能である。

【0093】このように偏光変換を行う映像表示装置と しては、例えば、上述した映像表示装置1において、光 源ユニット11とインテグレータ12との間、インテグ レータ12における第1のフライアイレンズ19と第2 のフライアイレンズ20との間、又はインテグレータ1 2とライトバルブ15との間のうちの少なくともいずれ かの位置に、例えば図12に示すような偏光変換素子5 10 0を備えるとすればよい。

【0094】偏光変換素子50は、図12に示すよう に、例えば、偏光ビームスプリッタ50aと、2分の1 偏光板50bとにより構成することができる。偏光変換 素子50に入射した光は、先ず、偏光ビームスプリッタ 50aに入射する。偏光ビームスプリッタ50aに入射 した光のうち、偏光方向が入射面に対して垂直なS偏光 は、偏光ビームスプリッタ50aの反射面によって反射 されて、2分の1偏光板に入射する。2分の1偏光板5 0 b に入射した光は、2分の1偏光板50 b によって、 その偏光面を回転させられる。一方、偏光ビームスプリ ッタ50aに入射した光のうち、偏光方向が入射面に対 して平行なP偏光は、偏光ビームスブリッタ50aを透 過して直進する。

【0095】映像表示装置1は、以上のような偏光変換 素子50を備えることにより偏光変換を行うと、光は2 つに分離されるので、見かけ上2倍の発光ダイオード1 6を用いたことになる。このため、上述したようにして 偏光変換を行う場合には、光源ユニット11における発 光ダイオード16の発光領域の総面積が、($L_{ exttt{Lv1}} imes heta$ $(L_{LV_1}/NA_{LED}) \times (L_{LV_2} \times \theta_{LV_2}/NA_{LED}) \otimes 1/2$ 以下であることが望ましい。

【0096】映像表示装置1においては、偏光変換を行 うことにより、光源ユニット11における発光領域の総 面積を半分にすることができるので、装置の小型化が可 能となるばかりでなく、半分の電力で同じ輝度が得られ るので、低消費電力の装置を構成することが可能とな

【0097】また、上述の説明においては、ライトバル ブ15として、透過型ライトバルブを想定しているが、 本発明は、このような構成に限定されるものではなく、 反射型ライトバルブを用いた構成としてもよい。

【0098】透過型ライトバルブとしては、例えば、S TN (Super Twisted Nematic)液晶表示素子、強誘電 性液晶表示素子、高分子分散型液晶表示素子などを用い ることができる。また、液晶を単純マトリックス駆動す る素子や、アクティブマトリックス駆動する素子を用い ることができる。

【0099】また、反射型ライトバルブとしては、例え ば、ガラス基板上やシリコン基板上に駆動電極又は駆動 50 【図10】同映像表示装置にコンデンサレンズを備えな

用アクティブ索子を設けて、TN(Twisted Nematic) モードの液晶、強誘電性液晶、高分子分散型液晶などを 駆動する反射型液晶表示素子を用いることができる。ま た、光導電膜を介して光を照射することで液晶に電圧を 印加する反射型液晶表示素子を用いることができる。さ らに、電界によって形状や状態が変化する構造を設けた グレーティングライトバルブ等の反射型表示素子を用い ることができる。

[0100]

【発明の効果】以上で説明したように、本発明に係る映 像表示装置は、複数の光源部から出射した光を集光して ライトバルブに入射していることから、必要に応じて光 源部の数を増やして光量の増大を図ることが容易であ る。また、複数の光源部からの光が照明系全体の光軸上 で所定の焦点位置に集光され、この焦点位置にインテグ レータが配設されていることにより、ライトバルブへ光 を均一に照射することが可能であるとともに、光源から の出射光を効率的にライトバルブに入射することが可能 となる。また、複数種の白色光ランプ又は色純度の良好 20 な半導体発光素子を複数用いて、3原色の光量比をバラ ンスよく得るとともに、輝度調整を髙精度に図ることが 可能となる。したがって、高輝度で色再現性に優れた高 性能の映像表示装置を実現することができる。

【図面の簡単な説明】

40

【図1】本発明に係る映像表示装置の一構成例を示す概 略図である。

【図2】同映像表示装置に配設される照明光学系の一構 成例を示す概略図である。

[図3] 同映像表示装置に配設される発光ダイオードの 30 一構成例を示す概略図である。

【図4】同映像表示装置の光学系の幾何学的関係を説明 する図である。

【図5】同映像表示装置におけるライトバルブへの照明 条件を説明する図である。

【図6】同映像表示装置において、 θ $_{\iota \iota \iota \iota \iota}$ / $^{
m NA}$ EVE1と、ライトバルブへの光の照射効率との関係を説明 する図である。

【図7】同映像表示装置における光源ユニットに配設さ れるコンデンサレンズの焦点位置を説明する図であり、

- (a) は光軸に平行な光が入射される場合を示し、
- (b) は光軸に対して斜めに光が入射される場合を示 し、(c)は複数の光源部とコンデンサレンズとの位置 関係を示す図である。

【図8】同映像表示装置にコンデンサレンズを備える場 合における、光源部とインテグレータとの位置関係を示 す図である。

【図9】同映像表示装置において、コンデンサレンズを 備えずに、光源部を半球上に配設した場合を説明する概 略図である。

17

い場合における、光源部とインテグレータとの位置関係 を示す図である。

【図11】本発明に係る映像表示装置の別の一構成例を 示す概略図である。

【図12】本発明に係る映像表示装置に備えられる偏光 変換素子の一構成例を示す概略図である。

【図13】従来の投射型映像表示装置を示す概略図である。

*【図14】従来の各種映像表示装置における色再現範囲 を示す図である。

【符号の説明】

1 映像表示装置、2 ダイクロイックプリズム、3 照明光学系、4 プロジェクタレンズ、10 光源部、11 光源ユニット、12 インテグレータ、15 ライトバルブ、16 発光ダイオード、17 結合レンズ、18 コンデンサレンズ

[図1]

【図2】

[図3]

[図7]

【図4】

本発明の映像表示装置の光学系の幾何学的関係を説明する図

【図5】

ライトパルプへの採用条件を説明する図

【図6】

 $\theta_{\text{ LED1}}$ とNA EYE1 との比と、ライトパルプへの光の照射効率

【図11】

【図8】

【図10】

【図12】

50a: 備光ピームスプリッタ 50b: 2分の1偏光板

個光変換案子の一構成例

【図13】

【図14】

.

フロント	・ペーシの続き
------	---------

(51) Int .Cl .7		識別記号	FI		テーマコード(参考)
H01S	5/40		H01S	5/40	5 F O 7 3
H 0 4 N	9/31		H O 4 N	9/31	C 5G435
// G02F	1/13	505	G 0 2 F	1/13	5 0 5
•	1/13357			1/1335	5 3 0

Fターム(参考) 2H088 EA14 EA15 HA13 HA28 MA04 MA05

2H091 FA05X FA14Z FA23Z FA26X FA26Z FA29Z FA41Z FA45Z

FD24 LA15 LA18 MA07 2H099 AA11 BA09 CA02 CA08 DA05

5C060 BB13 BC05 DA03 DA10 GA01

GA02 GB06 HC00 HC22 HD02 HD05 HD07 JA11 JB06

5F041 AA05 CA33 CA34 CA35 CA36

CA37 CA38 CA40 CA43 EE11

EE25 FF16

5F073 AB02 AB27 BA09 CA05 CA07

CA16 CA17 CA22 CA24

5G435 AA04 BB04 BB12 BB17 CC09

CC12 DD06 DD13 GG02 GG03

GG04 GG09 GG12 GG26 GG27