QUANTIFIER EQUIVANTACES

THXPANY THXPAN

$\neg \forall x P$	$(x) \vdash$	$\exists x$	$\neg P$	(x)
	_			

1	$\neg \forall x P(x)$	premise

2	$\neg \exists x \neg P(x)$	assumption
---	-----------------------------	------------

x_0

$$\neg P(x_0)$$
 assumption

$$\exists x \neg P(x) \qquad \exists x i 4$$

$$\perp$$
 $\neg e 5, 2$

$$P(x_0)$$
 PBC 4-6

$$\forall x P(x) \qquad \forall x \text{ i } 3-7$$

$$\perp$$
 $\neg e 8, 1$

10
$$\exists x \neg P(x)$$
 PBC 2-9

$$\neg \forall x \phi \vdash \exists x \neg \phi$$

1		$\neg \forall x \phi$	premise	SPAA
2		$\neg \exists x \neg \phi$	assumption -	7/11/
3	x_0			assennystron
4		$\neg \phi[x_0/x]$	assumption	
5		$\exists x \neg \phi$	$\exists x \mathrm{i} 4$	
6		_	$\neg e 5, 2$	
7		$\phi[x_0/x]$	PBC 4-6	
8		$\forall x \phi$	$\forall x \mathrm{i} 3 - 7$	
9		Т	¬e 8,1	

RAA - Reductio ad absurdum

$$\exists x \neg \phi \vdash \neg \forall x \phi$$

1		$\exists x \neg \phi$	assumption	150
2		$\forall x \phi$	assumption	
3	x_0			
4		$\neg \phi[x_0/x]$	assumption	
5		$\phi[x_0/x]$	$\forall x \in 2$	
6			$\neg e 5, 4$	
7		上	$\exists x \mathbf{e} 1, 3{-}6$	
8		$\neg \forall x \phi$	$\neg i 2-7$	

oi we have - HX \$ H Jx7\$

$\forall x \phi \land \psi \vdash \forall x (\phi \land \psi)$

```
(\forall x \, \phi) \wedge \psi
                                              _{
m premise}
2
                      \forall x \, \phi \qquad \land \mathbf{e}_1 \, \mathbf{1}
3
                      \psi
                                                  \wedge e_2 1
4
              x_0
5
                      \phi[x_0/x] \quad \forall x \in 2
                     \phi[x_0/x] \wedge \psi \qquad \wedge i \ 5, 3
6
7
                      (\phi \wedge \psi)[x_0/x] identical to 6, since x not free in \psi
8
                      \forall x (\phi \wedge \psi) \quad \forall x i 4-7
```

1		$\forall x (\phi \wedge \psi)$	premise
2	x_0		
3		$(\phi \wedge \psi)[x_0/x]$	$\forall x \neq 1$
4		$\phi[x_0/x] \wedge \psi$	identical to 3, since x not free in ψ
5		$oldsymbol{\psi}$	$\wedge \mathbf{e_2}$ 3
6		$\phi[x_0/x]$	$\wedge \mathbf{e}_1$ 3

7 $\forall x \phi \qquad \forall x \, \mathbf{i} \, 2 - 6$

8 $(\forall x \phi) \land \psi \land i 7, 5$

Not rugonion 14 Correct 150ROUS (1. Xx\$ NY 1: $\forall x (\phi \wedge \psi)$ premise 2 x_0 $(\phi \wedge \psi)[x_0/x] \quad \forall x \in 1$ $\phi[x_0/x] \wedge \psi$ identical to 3, since x not free in ψ 5 $\wedge e_2$ 3 6 $\phi[x_0/x]$ $\wedge e_1 \ 3$ $\forall x i 2-6$ $\forall x \, \phi$

$$(\exists x \, \phi) \vee (\exists x \, \psi) \vdash \exists x \, (\phi \vee \psi)$$

1	$(\exists x \phi) \vee (\exists x \psi)$			premise
2	$\exists x \phi$		$\exists x \psi$	assumpt.
3	$x_0 \phi[x_0/x]$	x_0	$\psi[x_0/x]$	assumpt.
4	$\phi[x_0/x] \vee \psi[x_0/x]$		$\phi[x_0/x] \vee \psi[x_0/x]$	∨i 3
5	$(\phi \vee \psi)[x_0/x]$		$(\phi \vee \psi)[x_0/x]$	identical
6	$\exists x (\phi \lor \psi)$		$\exists x (\phi \lor \psi)$	$\exists x i 5$
7	$\exists x (\phi \lor \psi)$		$\exists x (\phi \lor \psi)$	$\exists x \in 2, 3-6$
8	$\exists x (\phi \lor \psi)$			\vee e 1, 2-7

1
$$\exists x \, (\phi \lor \psi)$$
 premise
2 $x_0 \quad (\phi \lor \psi)[x_0/x]$ assumption
3 $\phi[x_0/x] \lor \psi[x_0/x]$ identical
4 $\phi[x_0/x]$ $\psi[x_0/x]$ assumption
5 $\exists x \, \phi$ $\exists x \, \psi$ $\exists x \, i \, 4$
6 $\exists x \, \phi \lor \exists x \, \psi$ $\forall i \, 5$
7 $\exists x \, \phi \lor \exists x \, \psi$ $\lor e \, 3, 4-6$

 $\exists x \in 1, 2-7$

 $\exists x \, \phi \vee \exists x \, \psi$

8

```
\exists x \, \exists y \, \phi
1
                                           premise
2
                  (\exists y \, \phi)[x_0/x]
                                           assumption
          x_0
3
                                           identical, since x, y different variables
                  \exists y (\phi[x_0/x])
                 \phi[x_0/x][y_0/y]
4
                                           assumption
          y_0
                  \phi[y_0/y][x_0/x]
\mathbf{5}
                                           identical, since x, y, x_0, y_0 different variables
                  \exists x \, \phi[y_0/y]
6
                                          \not\exists x i 5 
                                         yi 6
7
                  \exists y \, \exists x \, \phi
8
                  \exists y \, \exists x \, \phi
                                           \exists y \, e3, \, 4-7
```

 $\exists x \, \text{e1}, \, 2-8$

9

 $\exists y \, \exists x \, \phi$

Theorem 2.13 Let ϕ and ψ be formulas of predicate logic. Then we have the following equivalences:

- 1. (a) $\neg \forall x \phi \dashv \vdash \exists x \neg \phi$
 - (b) $\neg \exists x \phi \dashv \vdash \forall x \neg \phi$.
- 2. Assuming that x is not free in ψ :
 - (a) $\forall x \phi \wedge \psi + \forall x (\phi \wedge \psi)^3$
 - (b) $\forall x \phi \lor \psi \dashv \vdash \forall x (\phi \lor \psi)$
 - (c) $\exists x \phi \land \psi \dashv \vdash \exists x (\phi \land \psi)$
 - (d) $\exists x \phi \lor \psi \dashv \vdash \exists x (\phi \lor \psi)$
 - (e) $\forall x (\psi \rightarrow \phi) \dashv \vdash \psi \rightarrow \forall x \phi$
 - (f) $\exists x (\phi \rightarrow \psi) \dashv \vdash \forall x \phi \rightarrow \psi$
 - (g) $\forall x (\phi \rightarrow \psi) \dashv \exists x \phi \rightarrow \psi$
 - (h) $\exists x (\psi \to \phi) \dashv \vdash \psi \to \exists x \phi$.
- 3. (a) $\forall x \phi \land \forall x \psi \dashv \vdash \forall x (\phi \land \psi)$
 - (b) $\exists x \phi \lor \exists x \psi \dashv \vdash \exists x (\phi \lor \psi)$.
- 4. (a) $\forall x \forall y \phi \dashv \vdash \forall y \forall x \phi$
 - (b) $\exists x \, \exists y \, \phi \, \dashv \vdash \exists y \, \exists x \, \phi$.

³ Remember that $\forall x \phi \land \psi$ is implicitly bracketed as $(\forall x \phi) \land \psi$, by virtue of the binding priorities.