

## ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу

«Data Science»

Слушатель: Ющенко Борис Евгеньевич

## Этапы работы

#### Аналитическая часть:

- Постановка задачи
- > Подбор методов обучения

#### Практическая часть:

- 🍃 Разведочный анализ, предобработка данных
- > Разработка, обучение и тестирование моделей
- > Нейронная сеть для рекомендации соотношения матрица-наполнитель
- > Разработка приложения на фреймфорке Flask

## Задачи исследования:

разработка моделей прогнозирования

- ✓ модуля упругости при растяжении
- ✓ прочности при растяжении
- ✓ соотношения матрица-наполнитель.

Задача регрессии в машинном обучении – предсказание одного параметра (Y) по известному параметру X, где X — набор параметров, характеризующих наблюдение.

#### Методы машинного обучения:

- ❖ Линейная регрессия (Linear Regression)
- ❖ Метод ближайших соседей (KNeighborsRegressor)
- Гребневая регрессия (Ridge)
- Стохастический градиентный спуск (SGD)
- ❖ Градиентный бустинг (Gradient Boosting)
- ❖ Метод опорных векторов для регрессии (SVR)
- XGBRegressor
- ❖ Дерево принятия решений (Decision Tree Regressor)



Нейронная сеть

X\_bp = pd.read\_excel('initial\_detaset/X\_bp.xlxx', index\_col=0)
X\_bp\_head()

|   | Соотношение<br>матрица-<br>наполнитель | Плотность,<br>кп/м3 | модуль<br>упругости,<br>ГПв | Количество<br>отвердителя,<br>м.% | Содержание<br>эпоксидных<br>групп,%_2 | Температура<br>вспышки, С_2 | Поверхностная<br>плотность, гім2 | Модуль<br>упругости при<br>растяжении,<br>ГПа | Прочность<br>при<br>растяжении,<br>МПа | Потребление<br>смолы, г/м2 |
|---|----------------------------------------|---------------------|-----------------------------|-----------------------------------|---------------------------------------|-----------------------------|----------------------------------|-----------------------------------------------|----------------------------------------|----------------------------|
| 0 | 1.857143                               | 2030.0              | 738.736842                  | 30.00                             | 22.267857                             | 100.000000                  | 210:0                            | 70.0                                          | 3000.0                                 | 220.0                      |
| 1 | 1.857143                               | 2030.0              | 738.736842                  | 50,00                             | 23,750000                             | 284.615385                  | 210,0                            | 70.0                                          | 3000.0                                 | 220.0                      |
| 2 | 1.857143                               | 2030.0              | 738.736842                  | 49.90                             | 33.000000                             | 284.615385                  | 210.0                            | 70.0                                          | 3000.0                                 | 220.0                      |
| 3 | 1.857143                               | 2030.0              | 738.736542                  | 129.00                            | 21.250000                             | 300.000000                  | 210,0                            | 70.0                                          | 3000.0                                 | 220.0                      |
| 4 | 2.771331                               | 2030.0              | 753.000000                  | 111.80                            | 22.267657                             | 284.615385                  | 210.0                            | 70.0                                          | 3000.0                                 | 220.0                      |

|   | Угол нашивки, град | Шаг нашивки | Плотность нашивки |
|---|--------------------|-------------|-------------------|
| 0 | 0                  | 4.0         | 57.0              |
| 1 | 0                  | 4.0         | 60.0              |
| 2 | 0                  | 4.0         | 70.0              |
| 3 | 0                  | 5.0         | 47.0              |
| 4 | 0                  | 5.0         | 57.0              |

| -                                    | .0          | - 1         | 2           | 3           | 4           |
|--------------------------------------|-------------|-------------|-------------|-------------|-------------|
| Соотношение матрица-наполнитель      | 1.857143    | 1,857143    | 1,857143    | 1.857143    | 2.771331    |
| Плотность, кг/м3                     | 2030.000000 | 2030.000000 | 2030.000000 | 2030.000000 | 2030.000000 |
| Модуль упругости, ГПа                | 738.736842  | 738.736842  | 738.736842  | 738.736842  | 753.000000  |
| Количество отвердителя, м.%          | 30.000000   | 50.000000   | 49.900000   | 129,000000  | 111.860000  |
| Содержание эпоксидных групп, %       | 22,267857   | 23,750000   | 33.000000   | 21.250000   | 22.267857   |
| Температура вспышки, С               | 100.000000  | 284,615385  | 284.615385  | 300.000000  | 284.615385  |
| Поверхностная плотность, г/м2        | 210.000000  | 210.000000  | 210.000000  | 210,000000  | 210.000000  |
| Модуль упругости при растяжении, ГПа | 70.000000   | 70.000000   | 70.000000   | 70.000000   | 70.000000   |
| Прочность при растяжении, МПа        | 3000.000000 | 3000.000000 | 3000.000000 | 3000.000000 | 3000.000000 |
| Потребление смолы, г/м2              | 220.000000  | 220.000000  | 220.000000  | 220,000000  | 220.000000  |
| Угол нашивки, град                   | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    |
| Шаг нашивки                          | 4.000000    | 4,000000    | 4.000000    | 5.000000    | 5.000000    |
| Плотность нашивки                    | 57.000000   | 60.000000   | 70.000000   | 47.000000   | 57.000000   |

| data | .info()                              |                |         |
|------|--------------------------------------|----------------|---------|
| ccla | ss 'pandas.core.frame.DataFrame'>    |                |         |
| Int6 | 4Index: 1023 entries, 0 to 1022      |                |         |
| Data | columns (total 13 columns):          |                |         |
| *    | Column                               | Non-Null Count | Dtype   |
|      | *****                                | **********     |         |
| 0    | Соотношение матрица-наполнитель      | 1023 non-null  | float64 |
| 1    | Плотность, кг/м3                     | 1023 non-null  | float64 |
| 2    | Модуль упругости, ГПа                | 1023 non-null  | float64 |
| 3    | Количество отвердителя, м.%          | 1023 non-null  | float64 |
| 4    | Содержание эпоксидных групп, %       | 1023 non-null  | float64 |
| 5    | Температура вспышки, С               | 1023 non-null  | float64 |
| 6    | Поверхностная плотность, г/м2        | 1023 non-null  | float64 |
| 7    | Модуль упругости при растяжении, ГПа | 1023 non-null  | float64 |
| 8    | Прочность при растяжении, МПа        | 1023 non-null  | float64 |
| 9    | Потребление смолы, г/м2              | 1023 non-null  | float64 |
| 10   | Угол нашивки, град                   | 1023 non-null  | int64   |
| 11   | Шаг нашивки                          | 1023 non-null  | float64 |
| 12   | Плотность нашивки                    | 1023 non-null  | float64 |
| dtyp | es: float64(12), int64(1)            |                |         |
| memo | ry usage: 111.9 KB                   |                |         |

|                                      | count  | mean        | std        | min         | 25%         | 50%         | 75%         | max         |
|--------------------------------------|--------|-------------|------------|-------------|-------------|-------------|-------------|-------------|
| Соотношение матрица-наполнитель      | 1023.0 | 2.930366    | 0.913222   | 0.389403    | 2.317887    | 2.906878    | 3.552660    | 5.591742    |
| Плотность, кг/м3                     | 1023.0 | 1975.734888 | 73.729231  | 1731.764635 | 1924.155467 | 1977.621657 | 2021.374375 | 2207.773481 |
| Модуль упругости, ГПа                | 1023.0 | 739.923233  | 330.231581 | 2.436909    | 500.047452  | 739.664328  | 961.812526  | 1911.536477 |
| Количество отвердителя, м.%          | 1023.0 | 110,570769  | 28.295911  | 17.740275   | 92.443497   | 110.564840  | 129.730366  | 198.953207  |
| Содержание эпоксидных групп, %       | 1023.0 | 22.244390   | 2.406301   | 14.254985   | 20.608034   | 22.230744   | 23,961934   | 33.000000   |
| Температура вспышки, С               | 1023.0 | 285.882151  | 40.943260  | 100.000000  | 259.066528  | 285.896812  | 313.002106  | 413.273418  |
| Поверхностная плотность, г/м2        | 1023.0 | 482.731833  | 281.314690 | 0.603740    | 266.816645  | 451,864365  | 693,225017  | 1399.542362 |
| Модуль упругости при растяжении, ГПа | 1023.0 | 73.328571   | 3.118983   | 64.054061   | 71.245018   | 73.268805   | 75.356612   | 82.682051   |
| Прочность при растяжении, МПа        | 1023.0 | 2466.922843 | 485.628006 | 1036.856605 | 2135.850448 | 2459 524526 | 2767 193119 | 3848.436732 |
| Потребление смолы, г/м2              | 1023.0 | 218.423144  | 59.735931  | 33.803026   | 179.627520  | 219.198882  | 257,481724  | 414,590628  |
| Угол нашивки, град                   | 1023.0 | 44.252199   | 45.015793  | 0.000000    | 0.000000    | 0.000000    | 90.000000   | 90.000000   |
| Шаг нашивки                          | 1023.0 | 6.899222    | 2.563467   | 0.000000    | 5.080033    | 6.916144    | 8.586293    | 14.440522   |
| Плотность нашивки                    | 1023.0 | 57,153929   | 12.350969  | 0.000000    | 49.799212   | 57.341920   | 64.944961   | 103.988901  |
|                                      |        |             |            |             |             |             |             |             |

| Соотношение матрица-наполнитель | , 0                                                        |
|---------------------------------|------------------------------------------------------------|
| Плотность, кг/м3                | 0                                                          |
| Модуль упругости, ГПа           | 0                                                          |
| Количество отвердителя, м.%     | 0                                                          |
| Содержание эпоксидных групп, %  | 0                                                          |
| Температура вспышки, С          | 9                                                          |
| Поверхностная плотность, г/м2   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1, FNa 0<br>0<br>0<br>0 |
| Модуль упругости при растяжении | , ГПа 0                                                    |
| Прочность при растяжении, МПа   | 0                                                          |
| Потребление смолы, г/м2         | 0                                                          |
| Угол нашивки, град              | 0                                                          |
| Шаг нашивки                     | 9                                                          |
| Плотность нашивки               |                                                            |
| dtype: int64                    |                                                            |

# Проанализируем количество дубликатов.

data.duplicated().sum()

#### Объединение датасета

- ✓ На входе дано 2 датасета
- ✓ Объединение выполнено по индексу, тип объединения – INNER
- ✓ Удалено 17 строк
- ✓ Объединенный датасет получил 1023 строки, 13 столбцов

#### Разведочный анализ

- >практически все столбцы имеют тип данных "float64", кроме столбца "Угол нашивки" "int64"
- пропущенных значений и дубликатов нет, чистка не требуется





- Построены гистограммы распределения точек, вероятностные графики и диаграммы размаха так называемые «ящики с усами»
- Распределение подавляющего большинства параметров является нормальным или близким к нему (кроме параметра «Угол нашивки», принимающего лишь 2 значения)
- Диаграммы «Ящик с усами» показали, что у всех признаков имеются выбросы



❖По представленным рисункам попарного сравнения признаков также выявлено наличие выбросов

 ❖Корреляционная матрица какихлибо четких зависимостей зависимости между параметрами не выявила



## Предобработка данных

- ▶Для подсчета выбросов используем методы трех сигм и межквартильного интервала
- Визуализируем попарное сравнение методов (красными точками показаны выбросы, найденные этими методами).
- ▶Количество выбросов по методу трех сигм: 24
- ▶Количество выбросов по методу межквартильного интервала: 93

```
# Проведем статистические тесты на нормальность распределения данных для каждого столбца в датасете с использованием тестов Пирсс
result_data = pd.DataFrame(columns=['pearson p-value', 'shapiro p-value'])
# Итерируем по столбцам в DataFrame
for column in data.columns:
    # Тест по Пирсону
    _, pearson_p_value = normaltest(data[column])
    # Тест по Шапиро-Уилку
    , shapiro p value = shapiro(data[column])
    # Записываем p-value в таблицу
    result data.loc[column] = [round(pearson p value, 6), round(shapiro p value, 6)]
# Выбодим результат
print(result_data)
                                      pearson p-value
                                                       shapiro p-value
                                                               0.086759
Соотношение матрица-наполнитель
                                             0.064087
Плотность, кг/м3
                                             0.350121
                                                               0.094850
Модуль упругости, ГПа
                                             0.019018
                                                               0.006075
Количество отвердителя, м.%
                                             0.072428
                                                               0.025072
Содержание эпоксидных групп, %
                                             0.064916
                                                               0.237023
Температура вспышки, С
                                             0.084906
                                                               0.085307
Поверхностная плотность, г/м2
                                             0.000000
                                                               0.000000
Модуль упругости при растяжении, ГПа
                                             0.040235
                                                               0.023090
                                             0.237467
Прочность при растяжении, МПа
                                                               0.078110
Потребление смолы, г/м2
                                             0.012970
                                                               0.015642
Угол нашивки, град
                                             0.000000
                                                               0.000000
Шаг нашивки
                                             0.638223
                                                               0.349185
                                             0.376078
                                                               0.052167
Плотность нашивки
```



- ✓ После удаления выбросов проведены статистические тесты Пирсона и Шапиро-Уилка на нормальность распределения данных для каждого столбца
- ✓ Как видим, в двух столбцах «Поверхностная плотность» и «Угол нашивки» распределение вообще не соответствует нормальному.

- ✓ Далее был построен график распределения плотности ядра, для оценки необходимости нормализации
- ✓ Данные находятся в разных диапазонах, необходима нормализация данных
- ✓ Использовался «масштабатор» MinMaxScaler для приведения в диапазон от 0 до 1.





|                           | MSE_train | MSE_test | MAE_train | MAE_test | R2_train | R2_test |
|---------------------------|-----------|----------|-----------|----------|----------|---------|
| LinearRegression          | 0.0369    | 0.0379   | 0.1532    | 0.1605   | -0.0185  | -0.0193 |
| KNeighborsRegressor       | 0.0364    | 0.0380   | 0.1518    | 0.1620   | -0.0060  | -0.0233 |
| SGDRegressor              | 0.0421    | 0.0386   | 0.1632    | 0.1625   | -0.1696  | -0.0378 |
| GradientBoostingRegressor | 0.0364    | 0.0376   | 0.1524    | 0.1600   | -0.0025  | -0.0123 |
| SVR                       | 0.0365    | 0.0371   | 0.1525    | 0.1589   | -0.0059  | 0.0025  |
| RandomForestRegressor     | 0.0362    | 0.0380   | 0.1516    | 0.1606   | 0.0013   | -0.0221 |
| XGBRegressor              | 0.0379    | 0.0400   | 0.1543    | 0.1641   | -0.0435  | -0.0773 |
| Ridge                     | 0.0366    | 0.0375   | 0.1526    | 0.1598   | -0.0092  | -0.0088 |
| DecisionTreeRegressor     | 0.0410    | 0.0406   | 0.1598    | 0.1659   | -0.1330  | -0.0918 |

|                           | $\wedge$  |          |           |          |          |         |
|---------------------------|-----------|----------|-----------|----------|----------|---------|
|                           | MSE_train | MSE_test | MAE_train | MAE_test | R2_train | R2_test |
| LinearRegression          | 0.0380    | 0.0354   | 0.1550    | 0.1515   | -0.0520  | -0.0183 |
| KNeighborsRegressor       | 0.0369    | 0.0353   | 0.1528    | 0.1513   | -0.0219  | -0.0172 |
| SGDRegressor              | 0.0369    | 0.0351   | 0.1526    | 0.1508   | -0.0204  | -0.0110 |
| GradientBoostingRegressor | 0.0368    | 0.0345   | 0.1517    | 0.1499   | -0.0171  | 0.0055  |
| SVR                       | 0.0366    | 0.0349   | 0.1514    | 0.1504   | -0.0127  | -0.0057 |
| RandomForestRegressor     | 0.0369    | 0.0351   | 0.1522    | 0.1513   | -0.0218  | -0.0109 |
| XGBRegressor              | 0.0368    | 0.0350   | 0.1521    | 0.1514   | -0.0170  | -0.0078 |
| Ridge                     | 0.0374    | 0.0351   | 0.1536    | 0.1509   | -0.0349  | -0.0094 |
| DecisionTreeRegressor     | 0.0409    | 0.0405   | 0.1604    | 0.1596   | -0.1279  | -0.1669 |

#### Обучение моделей

- Было использовано 9 методов обучения для каждого целевого параметра
- ▶ Для подбора оптимальных параметров использовался метод кроссвалидации Grid Search CV
- Использованные метрики качества обучения:
- ❖ Средняя абсолютная ошибка (Mean Absolute Error, MAE)
- ❖ Среднеквадратичная ошибка MSE (Mean Squared Error, MSE)
- ❖ Коэффициент детерминации (R2)

#### Лучшие модели

- ✓ Метод опорных векторов (SVR) для «Модуля упругости при растяжении»
- ✓ Градиентный бустинг для «Прочности при растяжении»

```
model_1 = Sequential()
                                                                 early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=20, restore_best_weights=True)
model 1.add(Dense(X train scl mn.shape[1]))
                                                                 model 2 - Sequential()
model 1.add(Dense(16, activation='relu'))
                                                                 model 2.add(Dense(X train scl mn.shape[1]))
model 1.add(Dense(8, activation='relu'))
                                                                 model 2.add(Dense(16, activation='relu'))
model 1.add(Dense(1))
                                                                 model_2.add(Dense(8, activation='relu'))
model 1.compile(optimizer='adam', loss='mean squared error')
                                                                 model 2.add(Dense(1))
                                                                 model 2.compile(optimizer-'adam', loss-'mean_squared_error')
history 1 = model 1.fit(X train scl mn,
                                                                 history 2 - model 2.fit(X_train_scl_mm,
                        y train scl mn,
                                                                                    y train scl mn,
                        batch size=32,
                                                                                    batch size-32,
                                                                                    epochs-188,
                        epochs=100,
                                                                                    validation split-0.3,
                        validation split=0.3)
                                                                                    callbacks=[early stop])
                                                                     # Попробуем еще увеличить количество нейронов
# Попробуем увеличить количество нейронов
                                                                     model_4 = Sequential()
model 3 - Sequential()
                                                                     model_4.add(Dense(X_train_scl_mn.shape[1]))
                                                                     model_4.add(Dense(64, activation='relu'))
model 3.add(Dense(X train scl mn.shape[1]))
                                                                     model_4.add(Dense(32, activation='relu'))
model 3.add(Dense(32, activation='relu'))
                                                                     model_4.add(Dense(1, activation='linear'))
model 3.add(Dense(16, activation='relu'))
model 3.add(Dense(1))
                                                                     model_4.compile(optimizer='adam', loss='mean_squared_error')
model_3.compile(optimizer='adam', loss='mean_squared_error')
history_3 = model_3.fit(X_train_scl_mn,
                                                                     history_4 = model_4.fit(X_train_scl_mn,
                       y_train_scl_mn,
                                                                                               y_train_scl_mn,
                       batch_size-32,
                                                                                               batch size=32,
                       epochs=100,
                                                                                               epochs=100,
                                                                                               validation_split=0.3,
                       validation split=0.3,
                       callbacks=[early_stop])
                                                                                               callbacks [early_stop])
# Поменлем метод активации скрытых слоев на 'tanh'
                                                                       # Попробуем поменять оптимайзер на 'sad'
model 5 = Sequential()
                                                                      model_6 = Sequential()
model_5.add(Dense(X_train_scl_mn.shape[1]))
                                                                      model_6.add(Dense(X_train_scl_mn.shape[1]))
model_5.add(Dense(32, activation='tanh'))
                                                                      model_6.add(Dense(64, activation='tanh'))
model_5.add(Dense(16, activation='tanh'))
                                                                      model_6.add(Dense(32, activation='tanh'))
model 5.add(Dense(1))
                                                                      model_6.add(Dense(1))
model_5.compile(optimizer='adam', loss='mean_squared_error')
                                                                      model 6.compile(optimizer='sgd', loss='mean_squared_error'
history_5 = model_5.fit(X_train_scl_mn,
                                                                      history_6 = model_6.fit(X_train_scl_mn,
                         y_train_scl_mn,
                                                                                                  y_train_scl_mn,
                         batch_size=32,
                                                                                                 batch_size=32,
                         epochs=100,
                                                                                                  epochs=100.
                         validation_split=0.3,
                                                                                                 validation_split=0.3,
                         callbacks=[early_stop])
                                                                                                 callbacks=[early_stop])
                 График потерь на обучения и валидации по эпохам
                                                  Потери на обучении
 0.05
                                                        MSE test MAE train MAE test
                                             MSE train
                                                                                                                          естовые значиния
                                                                                                                          Прогнозные значения
                       Нейронная сеть 1
                                              0.032856
                                                          0.039658
                                                                       0.145539
                                                                                   0.163884
                                                                                             0.056390
                                                                                                         -0.090104
                       Нейронная сеть 2
                                              0.032987
                                                                                                         -0.066808
                                                          0.038811
                                                                       0.146960
                                                                                             0.061042 -0.027605
                       Нейронная сеть 3
                                              0.032694
                                                          0.037385
                                                                       0.144849
                                                                                   0.157800
                       Нейронная сеть 4
                                              0.032281
                                                          0.040680
                                                                       0.144856
                                                                                                         -0 118175
                       Нейронная сеть 5
                                                                       0.148250
                       Нейронная сеть 6
                                              0.034297
                                                          0.037866
                                                                      0.149332
                                                                                   0.159458 0.015004 -0.040827
```

## Написание нейронной сети

- ✓ Было обучено 6 моделей
- ✓ Лучшей моделью стал вариант № 3 со следующими параметрами: 4 слоя один входной, два скрытых по 32 и 16 нейроновс с методом активации «relu», один выходной с методом активации «linear», оптимайзер "adam".



### Разработка приложения

- ✓ Был использован фреймворк Flask
- ✓ Рассчет производится по всем трем целевым парметрам
- ✓ В случае указания чисел, выходящих за необходимые диапазоны значений или при вводе иных символов выводится ошибка с указанием строк, где указаны неверные значения
- ✓ Предусмотрена кнопка "Вернуться на главную страницу"
- ✓ Приложение было размещено на сайте: https://astravert.onrender.com/

#### Создание репозитория

✓ репозиторий создан на GitHub: <a href="https://github.com/Astravert/Composites">https://github.com/Astravert/Composites</a>

#### Заключение

- ❖Несмотря на то, что распределение данных в получившемся датасете демонстрирует близкое к нормальному, какой-либо существенной корреляции между признаками посредством стандартных методов найти не удалось
- ❖Обученные модели, полученные в исследовании, к сожалению, не продемонстрировали высокой эффективности в предсказании свойств композитов
- ❖Вероятно, при предоставлении дополнительных вводных данных, проведении консультаций с профильными экспертами удалось бы выйти на более эффективные предсказательные модели



# Спасибо 3a внимание!