计算机组成原理

第四讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心

第3章 系统总线

- 3.1 总线的基本概念
- 3.2 总线的分类
- 3.3 总线特性及性能指标
- 3.4 总线结构
- 3.5 总线控制

3.4 总线结构

一、单总线结构

单总线 (系统总线)

二、多总线结构

3.4

1. 双总线结构

2. 三总线结构

3. 三总线结构的又一形式

4. 四总线结构

3.4

三、总线结构举例

3.4

1. 传统微型机总线结构

2. VL-BUS局部总线结构

3.4

3. PCI 总线结构

3.4

4. 多层 PCI 总线结构

3.4

- 3.5 总线控制
- 一、总线判优控制
 - 1. 基本概念
 - 主设备(模块) 对总线有 控制权
 - 从设备(模块) 响应 从主设备发来的总线命令

• 总线判优控制

集中式 计数器定时查询 独立请求方式 分布式

2. 链式查询方式

3. 计数器定时查询方式

3.5

4. 独立请求方式

3.5

分布式控制

✓将总线控制逻辑分布在连接到总线的 各个部件中。

二、总线通信控制

1. 目的 解决通信双方 协调配合 问题

2. 总线传输周期

申请分配阶段 主模块申请,总线仲裁决定

寻址阶段 主模块向从模块 给出地址 和 命令

传数阶段 主模块和从模块 交换数据

结束阶段 主模块 撤消有关信息

3. 总线通信的四种方式

同步通信 由统一时标控制数据传送

异步通信 采用应答方式,没有公共时钟标准

半同步通信 同步、异步结合

. 分离式通信 充分挖掘系统总线每个瞬间的潜力

(1) 同步式数据输入

(2) 同步式数据输出

(3) 异步通信

(4) 半同步通信(同步、异步结合)

3.5

同步 发送方用系统时钟前沿发信号

接收方 用系统 时钟后沿 判断、识别

异步 允许不同速度的模块和谐工作

增加一条 "等待"响应信号 WAIT

以输入数据为例的半同步通信时序

3.5

- T_1 主模块发地址
- T_2 主模块发命令
- T_{w} 当 $\overline{\text{WAIT}}$ 为低电平时,等待一个 T
- T_{w} 当 \overline{WAIT} 为低电平时,等待一个 T
 - •
- T_3 从模块提供数据
- T_4 从模块撤销数据,主模块撤销命令

(4) 半同步通信(同步、异步结合) 3.5

上述三种通信的共同点

一个总线传输周期(以输入数据为例)

• 主模块发地址、命令 占用总线

• 从模块准备数据 不占用总线 总线空闲

• 从模块向主模块发数据 占用总线

(5) 分离式通信

充分挖掘系统总线每个瞬间的潜力

一个总线传输周期

子周期1 主模块申请占用总线,使用完后

即 放弃总线 的使用权

子周期2

从模块 申请 占用总线,将各种信

息送至总线上

主模块

分离式通信特点

- 1. 各模块有权申请占用总线
- 2. 采用同步方式通信,不等对方回答
- 3. 各模块准备数据时,不占用总线
- 4. 总线被占用时,无空闲

充分提高了总线的有效占用

第4章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

- 4.1 概 述
- 一、存储器分类
 - 1. 按存储介质分类
 - (1) 半导体存储器

TTL, MOS

易失

- (2) 磁表面存储器
 - 磁头、载磁体
- (3) 磁芯存储器
- (4) 光盘存储器

硬磁材料、环状元件

激光、磁光材料

2. 按存取方式分类

- (1) 存取时间与物理地址无关(随机访问)
 - 随机存储器 在程序的执行过程中 可 读 可 写
 - 只读存储器 在程序的执行过程中 只 读
- (2) 存取时间与物理地址有关(串行访问)
 - 顺序存取存储器 磁带
 - 直接存取存储器 磁盘

3. 按在计算机中的作用分类

4.1

Flash Memory 高速缓冲存储器 (Cache) 磁盘、磁带、光盘

二、存储器的层次结构

4.1

1. 存储器三个主要特性的关系

2. 缓存一主存层次和主存一辅存层次

4.2 主存储器

一、概述

1. 主存的基本组成

2. 主存和 CPU 的联系

3. 主存中存储单元地址的分配

高位字节 地址为字地址

低位字节 地址为字地址

字地址		字节地址			
0	0	1	2	3	
4	4	5	6	7	
8	8	9	10	11	

字地址	字节地址		
0	1	0	
2	3	2	
4	5	4	

设地址线 24 根 若字长为16位 若字长为32位

按字节寻址 2²⁴ = 16 MB

按 字 寻址

8 MW

按 字 寻址

4 MW

4. 主存的技术指标

- 4.2
- (1) 存储容量 主存存放二进制代码的总位数
- (2) 存储速度
 - 存取时间 存储器的 访问时间 读出时间 写入时间
 - 存取周期 连续两次独立的存储器操作 (读或写)所需的最小间隔时间 读周期 写周期
- (3) 存储器的带宽 位/秒

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

芯片容量	数据线 (双向)	地址线(单向)
1K×4位	4	10
16K×1位	1	14
8K×8位	8	2022/8/24 13

38

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

片选线 CS CE

读/写控制线 WE (低电平写 高电平读)

OE (允许读) WE (允许写)

存储芯片片选线的作用

用 16K×1位的存储芯片组成64K×8位的存储器

8片 8片 8片 32片 16K×1位 16K×1位 16K×1位 16K×1位

当地址为65535时,此8片的片选有效

2. 半导体存储芯片的译码驱动方式

(1) 线选法

三、随机存取存储器(RAM)

4.2

1. 静态 RAM (SRAM)

(1) 静态 RAM 基本电路

① 静态 RAM 基本电路的 读 操作

② 静态 RAM 基本电路的 写 操作

