- Welcome to PS+DSA Module
- Manisha Pawar
- braduated from MSIT Delhi (IT departement)
- Percoding (DSA Instructor + content creator)
- 2+ years of teaching Experience
- -> Programming constructs
- -) Problem solving (efficient)
- Q.1 (ount of jactors

24 - 1,2,3,4, 6, 8,12,24

10 -> 1,2,5,10

N, jactors: 1 to N

N = 10

int rount factors (int m) {

int count = 0;

dor (int i=1; i = N; i++) }

1 (0 = = i - 10) fi

lli is jactor of N

[Co con + ++;

3

return nunt;

1 -) 1 2 3 4 5 6 7 8 9 16

Count = yx x y

its: N

3

Exerction time

-> value of N

Assume

108 iteration per second

-> system configuration

N	itm ations (N)	ti me	10° its
108	108	1 Sec	lits.
109	109	10 800	109 itr.
10	10	10 Sec	
	1	= 317	years

1 its
$$-\frac{1}{10^8}$$
 sec
10' its $-\frac{1}{10^8} \times 10^8$
= 10' sec

om provisation

$$i * j = N$$
 (both i and j are factors of N)
 $j = \frac{N}{i}$ (both i and N li are factors of N)

r _V =	= 2 4		N =	00
i	N	1	ì	<u>N</u>
آ 1	2 4	î	1	100
2	12	1= j <= W	2	50
3	8	1 < = 12	ч	25
ч	6		5	20
6	Ч		10	10
8	3		20	5
12	2		25	Ч
			50	2
24	1		100	I .

Observations a) all the factor of n are prent in the 1st part.

b) we are in 1st part till $i = 5\pi$.

int nount Jactors (int N) }

Vis \approx 3

int count = 0;

los (int i= i) i <= JN ; i++) }

1

if $(N') \cdot i = = 0$) $\frac{3}{2}$ if $(i = = N/i)^{\frac{3}{2}}$ count ++;

generally are factors

count += 2;

3

 $\sqrt{u} = 2$

5

3

return count;

iterations - IN

N	iter (TN)	time
10,8	109	10500

In iterations

0.3 hiven an Array, reperse it.

Ou Reverse part of con array.

$$S = 2$$
 $A = \begin{cases} 10, 14, 40, 50, 25, 64, 36, 373 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$
 $e = 5$

roid overse Part (int I)A, ints, inte) ?

3

0-5 Viven an array, rotate it from last to first k times.

houghe, a mason constraints: (i) don't use exten a reary

A = 10 20 30 40 50 60 C = 3 C =

A = 19 30 14 16 18 17 38 K=9

i) reverse entire accord

(ii) reverse the diest k elements

(iii) rev. the remaining elements

k = 4

void rotate (int[]A, int k)?

int n= A-length;

reverse Part (A, O, n-1);

reverse Part (A, O, K-1);

reverse Part (A, K, n-1);

A = 10 20 30 40 19 50 60

0 1 2 3 4 5 6

19 50 60 10 20 30 40

0 1 2 3 4 5 6

19 50 60 10 20 30 40

rourse Part (A, O, n-1);

Thurse Part (A, O, N-1);

Thurse Part (A, N, N-1);

Thurse Part (A, K, N-1);

The part of the

What if K > N

A = 10 20 30 40 50

K = 12

$$N = 5$$
 $N = 6$
 $N = 6$
 $N = 3$
 $K = 12$

void rotate (int[]A, int k)?

int n=A-length;

K=K·1·N;

rourse Part (A, O, n-1);

rourse Part (A, O, K-1);

rourse Part (A, K, n-1);

logba

b power what is equals to a

logba = C

b = a

109264 = 6

log2 8 = 3

log10 10000 = 4

logs 81 = 4

× × ×

i) $N=2^{k}$

K = 1092 N

(ii) log b b = N

Problem sodving and DSA

- Time complexity
- Arrays: Prefix sum, subarrays, sliding window, 20 matrices.
- Bit manipulation
- Hashing
- Recursion
- Sorting
- Searthing
- 2 pointer technique
- Strings
- Linked list
- Trees, BST, heaps
- Dynamic Programming
- Wraphs

52 classes

$$\log_2 32 = 5$$