Mission Design Capstone

By: Michael Blunt, Ben Deaton, and Max Freedman

Introduction

7 years at PSA

Intended Major: Computer Science

7 years at PSA

Intended Major: Biological Science

7 years at PSA

4 years in MD

Intended Major: Engineering

Michael - History

- My Experiences with Mission Design
 - Sent project to ISS.
 - CAD and two programming languages.
 - Project management/leadership skills.
 - Organization and structured development.
 - Controlled testing and statistical analysis.
 - Technical documentation and reports.
 - Improved performance in standardized tests.
- Competitions I've Participated in
 - InSPIRESS (3 Years)
 - DETECTS (1 Year)
 - COMPUTER (1 Year)

10th

11th

11th

12th

10th Grade - Design Lead - 1st **10th Grade** - Chief Engineer - NR

11th Grade - Chief Engineer - 1st

11th Grade - Team Lead - 1st 12th Grade - Team Lead - 2nd

Ben - History

- My Experiences with Mission Design
 - Statistical research and analytics
 - The testing process and data collection
 - How to design and produce an professional experiment proposal
 - How to engage a community and introduce complex topics
- Competitions I've Participated in
 - InSPIRESS (3 Years)
 - DETECTS (1 Year)
 - COMPUTER (1 Year)

10th

11th

11th

12th

10th Grade - ACE Team - 1st

10th Grade - Test/Program Group - NR

11th Grade - Design Team - 1st

11th Grade - Experiment Group - 1st

12th Grade - Ace Lead - 2nd

- My Experiences with Mission Design
 - CAD, MATLAB
 - Integrated Product Team (IPT) experience
 - How to research bleeding edge/obscure topics
 - Real world mathematics applications
- Competitions I've Participated in
 - InSPIRESS (4 Years)
 - DETECTS (1 Year)
 - COMPUTER (1 Year)

Max - History

9th

10th

11th

12th

9th Grade - Design Team - 2nd 10th Grade - Team Lead - 2nd 10th Grade - Team Lead - NR 11th Grade - Team Lead - 2nd

11th Grade - Design Lead - DETECTS - 1st

12th Grade - Chief Engineer - 2nd

Requirements:

Understand different engineering and design requirements.

Solutions:

- Identifying needed equipment.
- Applying understanding of requirements during design process.

Ramifications:

- Technical documentation.
- Real world engineering ramifications.
- Technical communication to large audiences.
- Verification of requirements to boards.

Project Requirements Functional Requirements Be under 10 ka Deploy Volume when stowed: 44 cm Take Measurements x 24 cm x 28 cm Collect Data Survive environment Provide Power No harm to main spacecraft Send Data Access to the data delivery House Payload system **Environmental Requirements Science Requirements** Withstand 462°C Complete Science Traceability Matrix Withstand sulfuric acid

Withstand high atmospheric

Withstand winds 700 km/h

pressure (up to 91 bar)

Complete Instrument

• Complete Support Equipment

Requirements

Requirements

Michael Ben Max

Why this is important

- Understanding requirements is a critical aspect of any project based career field.
- Cybersecurity professionals must know how to operate within preset limitations, else risk damaging other systems.

Why this is important

- When conducting research, it is important to understand technical standards and documentation procedures
- Better understanding of equipment and limitations will help experiments to be conducted efficiently

Why this is important

- The engineering world operates within a multitude of different requirements of varying complexities.
- Better understanding of the relationship between requirements and possible final products

Requirements:

- Select a science objective for your payload.

Solutions:

- Create Potential Science Objectives.
- Create weighted figures of merit.
- Research proposed objectives.
- Use trade studies to evaluate.

Ramifications:

- Research skills.
- Team-based communication skills.
- Standardized evaluations.

					250 20		
FOM	Weight	Material Reflectivity		Contar	RED 2B ninants parison	Fiber Optic Radioactivity	
		Raw	Weighted	Raw	Weighted	Raw	Weighted
Interest of Team	9	3	27	9	81	3	27
Measurement Method	9	9	81	9	81	3	27
Likelihood of success	9	3	27	9	81	3	27
Sensor Complexity	3	3	9	9	27	3	9
Sensor Resolution	3	3	9	9	27	3	9
Scientific Ramifications	1	3	3	3	3	3	3
Justifiability	9	1	9	3	27	3	27
Public Comprehension	1	3	3	3	3	1	1
Public Interest	1	3	3	1	1	1	1
TOTAL			171		311		131

Michael Ben I Max

Why this is important

- Being able to compare data in a quantitative manner and effectively communicate your reasoning is essential to project management.
- Communicating the pros and cons of options using weighted FOMs is common in technical fields.

Why this is important

- As someone who intends to pursue a career in science, identifying an objective for experiments is crucial to success in markets
- Being able to identify the positives and negatives of results or data will lead to more effective research

Why this is important

- The research processes used in science objective selection are illimitable.
- Many of the analytics tools used have function outside of the InSPIRESS program.

В	е	st	re	g	а	rd	s,	

.....

Chief Engineer EO Systems

Sigma Space, part of Hexagon US Federalhttps://hexagonusfederal.com/

4600 Forbes Blvd., Lanham, MD 20706, USA

Tel.: (301) 552-6053

Ivelin.Bakalski@hexagonusfederal.com<mailto:Ivelin.Bakalski@hexagonusfederal.com

Requirements:

- Prototype a payload that fulfills all requirements.

Solutions:

- Iterative design process.
- Modeling and Simulation.
- Physical assembly and advanced construction.

Ramifications:

- Application of our requirements understanding.
- Industry software proficiency.
- Knowledge of hardware.

Michael Ben I Max

Why this is important

- Regardless of complexity, nothing communicates an idea more concretely than a 3D model you can physically touch and inspect.
- It is important for me to understand this firsthand, as it gives me an advantage in the largely digital world of computer science.

Why this is important

- Although I had no direct insight into this process, being introduced to the topic will be helpful for future projects, such as chemical modeling
- In a world where most communication is virtual, this will help with expressing ideas and research results

Why this is important

- The iterative design process is standard practice in the engineering world.
- Being ok with change (design refinement) is key to a eudaimonic college experience.

Requirements:

Refine design based on physics and engineering analysis.

Solutions:

- Utilization of high-level mathematical formulae.
- Understanding relationship between assumptions and outcomes.
- Organized and repeatable mathematical proofs.

Ramifications:

- Applied mathematics proficiency.
- Creativity in overcoming challenges.
- Describing findings coherently to all audiences.

$$v_f^2 = v_i^2 + 2ad$$

$$v_f = v_i + at$$

Michael _I Ben _I Max

Why this is important

- "the reality check"
- Sometimes projects sound great but are too ambitious.
- My prior (failed) reality checks will help me successfully complete future projects.

Why this is important

- While an idea may seem great at first, laying out the design will often cause you to rethink. This applies to all of Science and Engineering
- Applied mathematics will always be present in STEM, Biology is no exception

Why this is important

- Applications and understanding of high level math is an essential part and requirement of the engineering world, both academically and professionally.

Our Design this Year

- Primary Science Objective: Reiner Gamma
- Secondary Science Objective:
 Electromagnetic Strength Deterioration
- Chosen concept: "Constancy"
 - Langmuir probe, HSI, magnetometer, 3D Graphene housing, Kevlar Weave
- Engineering Analysis
 - Deploys from Orbiter
 - Lands softly in Reiner Gamma
 - End of payload life after 300 hours

Industry Standard Software - MATLAB

- InSPIRESS has industry standard software present for (almost) all divisions.
 - Leadership Skype, Discord, Slack (comms)
 - Design Solid Edge (CAD)
 - ACE Social Media Stats feature (Analytics)
 - Chief Engineer ?
- Chief Engineer MATLAB
 - "A programming and numeric computing platform used by millions of engineers and scientists to analyze data, develop algorithms, and create models."
 - Many colleges and universities offer classes on MATLAB

MATLAB - Ramification to Mission Design

- Allowed for deeper engineering analysis
 - Computer accuracy and calculation speeds.
- Improved organization of engineering analysis.
 - Have reproducible scripts, documentation of math, github.
- Better data presentation over previous years.
 - MATLAB is made to not only to compute mathematics, but present computations effectively.

Requirements:

- Design and create a team identity consisting of of a name, slogan, and logo

Solutions:

- Create an identity that connects to the mission in some way
- Use inspired ideas from pop culture or scientific fun facts about the mission

Ramifications:

- Logo marketing to audiences
- Communication of an identity and idea

nwoT dnuorA tI gnirB

Oh, such a timeless flight

Elton John

Michael Ben I Max

Why this is important

- My teams used popular songs that our judges would remember nostalgically to gain an instant connection.
- Creating your content to fit the needs of your audience is crucial.
- Have you noticed the abundance of pictures?

Why this is important

- A large part of science is marketing, as research is meant to solve problems plaguing consumers who may not understand the science behind the solution
- We also need to create marketable ideas for grants!

Why this is important

- Communication of science/engineering projects is arguably the most important part of said project.
- Team identity process hits a different part of the brain.

Requirements:

Host in-person events in which we introduce our audiences to Mission Design, STEM, and Aerospace Engineering

Solutions:

- Use fun experiments to introduce
- audiences to the topics of STEM Create a poster board which we can use to explain various aspects of our mission

Ramifications:

- Communication to in-person audiences Interactive presentation skills

Michael Ben Max

Why this is important

- Communication skills are incredibly important for all, but particularly in technical field.
- Effective communication skills in the cybersecurity world help inform decision makers and stop potential breaches, and much more.

Why this is important

- Biology isn't just animals and plants, and being able to present complex topics in an easy to understand way takes lots of practice
- In college, the ability to connect audiences to the information will raise the opinions of your work

Why this is important

- Ability to communicate complex information to a non-complex audience is ever relevant.
- In the real world, those who make budgetary decisions may not have the requisite academic background to comprehend complex science.

Requirements:

- Through the use of social media platforms, introduce facts about our mission, our team, and about STEM

Solutions:

- Create social media accounts using our team identity
- Come up with and create interesting posts and videos
- Collect surveys from followers and viewers

Ramifications:

- Use of social media analytics through business accounts
- Introduction to online media marketing and coordination

Michael Ben Max

Why this is important

- Communication and understanding audiences.
- Technical content can be boring, especially for kids.
- Why not make fun videos like a scooby-doo trailer to get them interested?
- Taught me the importance of humor in communication and engagement.

Why this is important

- The world operates on virtual communication
- Online marketing is the most efficient way to introduce a product to larger audiences
- Sometimes, you can have fun while working on complicated subjects

Why this is important

- The virtual world is very quickly becoming more important than the real world communications wise.
- Importance of "stepping back" from stressful work and having fun with it.

Our ACES this Year

ACE Event: 09/08/21

- Town Hall Event
- 15 minute presentation
 - Vacuum Chamber Demonstration
 - ~450 people

ACE Event: 10/20/21

- Schoolwide Survey Raffle
- Winner earns a Chick-Fil-A lunch
 - ~350 Surveys

ACE Event: 10/31/21

- Halloween Event: 78 Surveys
- Demonstration and Surveys
 - Targeting kids and adults

ACE Event: 11/13/21

- Holiday Crafts Fair
- Oreo Moon Cookies
- STEM and INSPIRESS Presentation
 - ~250 people

Online Outreach and Surveys

- Platforms: Instagram and Youtube

- Instagram: 17 Followers, 8 posts, 1 reel

- Youtube: 1 Video

- Surveys

Collected 437 surveys from events and outreach

Michael - Tools for the Future

Future Impacts:

- Early leadership experience will allow me to perform as a more experienced leader in future situations.
- CAD and programming knowledge will be incredibly useful as a CS major.
- ISS project and standardized tests have opened doors for college and more.
- Understanding how to write and read technical documentation is key in a technical field like computer science.
- Communication skills taught in mission design have taught me effective public speaking and team management.
- There is much more, but I am out of room.

Ben - Tools for the Future

Future Impacts:

- Getting the opportunity to work on a professional grade project will allow me to get a head start in college
- Experience with data collection and analysis is great knowledge for a Biology Major
- Planning and participating outreach activities has allowed me to get more comfortable with public speaking
- Any experience with business standard technology is important for the future
- InSPIRESS and Mission Design have given me the opportunity to earn scholarships at my dream colleges
- I have much more experience with team dynamics and communication

Max - Tools for the Future

Future Impacts:

- Familiarity with a plethora of engineering ideas and concepts
- Real world resume experience in the engineering world.
- Affirmed and fostered interest in pursuing engineering both academically and professionally.
- Early proficiencies in industry standard software will assist in various academic and professional endeavors.
- Communication skills.

Thank you!

