Language Processing on Quantum Hardware with DisCoPy

Bob Coecke, Giovanni de Felice, Konstantinos Meichanetzidis, Alexis Toumi

Department of Computer Science, University of Oxford.

Cambridge Quantum Computing Ltd.

September 16th, PyData Berlin

Outline

- 0. What is a diagram? From the point of view of...
 - Geometry
 - Algebra
 - Data
- 1. What can you do with it? Apply functors!
 - Natural language semantics
 - Quantum circuit evaluation
- 2. Demo time!
 - Classical simulation with jax.numpy
 - Proof-of-concept experiments with IBMQ
- The future
 - ► Towards a quantum advantage for NLP

What is a diagram? "Point and line to plane"

What is a diagram? An arrow in a monoidal category.

P. Selinger, A Survey of Graphical Languages for Monoidal Categories (arXiv:0908.3347)

What is a diagram? DisCoPy's core data structure.

```
class Ob(name)
class Ty(x_1, ..., x_n)
class Box(name, dom, cod)
class Layer(left, box, right)
class Diagram(dom, cod, boxes, offsets, layers=None)
```

```
from discopy import *
    x, y, z, w = Ty('x'), Ty('y'), Ty('z'), Ty('w')
f, g = Box('f', x, y), Box('g', z, w)
diagram = Id(x) @ g >> f @ Id(w)
sassert diagram == Diagram(
    x @ z, y @ w, boxes=[g, f], offsets=[1, 0])
sassert diagram.normal_form() == f @ g
diagram.draw()
```

What can you do with it? Apply functors!

class Functor(ob, ar, ob_factory=None, ar_factory=None)

Demo time!

https://github.com/oxford-quantum-group/discopy