(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年8 月11 日 (11.08.2005)

PCT

(10) 国際公開番号 WO 2005/074068 A1

(51) 国際特許分類⁷: **H01M 14/00**, H01L 31/04

(21) 国際出願番号: PCT/JP2005/001641

(22) 国際出願日: 2005年1月28日(28.01.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2004-022840 2004 年1 月30 日 (30.01.2004) JP 特願2004-058734 2004 年3 月3 日 (03.03.2004) JP 特願2004-158976 2004 年5 月28 日 (28.05.2004) JP

- (71) 出願人 (米国を除く全ての指定国について): 帝人 デュポンフィルム株式会社 (TEIJIN DUPONT FILMS JAPAN LIMITED) [JP/JP]; 〒1000011 東京都千代田区 内幸町二丁目1番1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 久保 耕司(KUBO, Koji) [JP/JP]; 〒5030123 岐阜県安八郡安八町南條1357 帝人デュポンフィルム株式会社内 Gifu (JP). 廣瀬 千晴 (HIROSE, Chiharu) [JP/JP]; 〒8797107 大分県大野郡三重町上田原 1 4 5 6 Oita (JP).

- (74) 代理人: 三原 秀子 (MIHARA, Hideko); 〒1000011 東京都千代田区内幸町二丁目1番1号 株式会社帝人知的財産センター内 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: LAMINATED FILM FOR DYE-SENSITIZED SOLAR CELL, ELECTRODE FOR DYE-SENSITIZED SOLAR CELL AND PROCESS FOR PRODUCING THE SAME

- (54) 発明の名称: 色素増感型太陽電池用積層フィルム ならびに色素増感型太陽電池用電極およびその製造方法
- (57) **Abstract:** An electrode for dye-sensitized solar cell excelling in adhesion between transparent conductive layer and porous semiconductor layer and exhibiting high photovoltaic performance can be provided by the use of a laminated film for dye-sensitized solar cell comprising a polyester film and, superimposed on one major surface thereof, a transparent conductive layer, characterized in that the transparent conductive layer has a surface tension of ≥40 mN/m.
- (57)要約:ポリエステルフィルムおよびその片面に設けられた透明導電層からなり、透明導電層の表面張力が40mN/m以上であることを特徴とする、色素増感型太陽電池用積層フィルムにより、透明導電層と多孔質半導体層との密着性に優れ、光発電性能の高い色素増感太陽電池用電極を提供する。

明細書

色素増感型太陽電池用積層フィルム ならびに 色素増感型太陽電池用電極およびその製造方法

5

15

20

技術分野

本発明は色素増感型太陽電池用積層フィルムならびに色素増感型太陽電池用電極およびその製造方法に関する。

10 背景技術

色素増感型太陽電池は、色素増感半導体微粒子を用いた光電変換素子が提案(ネイチャー(Nature)第353巻、第737~740ページ、(1991年))されて以来、シリコン系太陽電池に替る新たな太陽電池として注目されている。特に、支持体としてプラスチックフィルムを用いた色素増感型太陽電池は、柔軟化や軽量化が可能であり、数多くの検討がなされてきた。

発明の開示

プラスチックフィルムを支持体として用いた色素増感型太陽電池の場合、透明 導電層のうえへの多孔質半導体層の形成が難しく、透明導電層と多孔質半導体層 との良好な密着性を確保することが難しい。良好な密着性を確保しないと、太陽 電池としての光発電性能が低下する。

本発明は、透明導電層と多孔質半導体層との密着性に優れ、光発電性能の高い 色素増感太陽電池を作成することができる、色素増感型太陽電池用積層フィルム および色素増感型太陽電池用電極を提供することを目的とする。

25 さらに本発明は、透明導電層と多孔質半導体層との密着性に優れる色素増感型 太陽電池用電極の製造方法を提供することを目的とする。

すなわち本発明は、ポリエステルフィルムおよびその片面に設けられた透明導 電層からなり、透明導電層の表面張力が40mN/m以上であることを特徴とす

る、色素増感型太陽電池用積層フィルムである。

本発明はまた、上記色素増感型太陽電池用積層フィルムおよびその透明導電層のうえに設けられた多孔質半導体層からなる色素増感型太陽電池用電極である。

本発明はさらに、200℃で10分間処理したときのフィルムの長手方向と幅方向における熱収縮率の差の絶対値が0.8%以下であるポリエステルフィルムの片面に透明導電層を形成し、そのうえに金属酸化物を $170\sim250$ ℃で焼き付けることにより多孔質半導体層を形成することを特徴とする、色素増感型太陽電池用電極の製造方法である。

以下、本発明を詳細に説明する。

10

15

20

5

<ポリエステルフィルム>

<ポリエステル>

本発明において、ポリエステルフィルムを構成するポリエステルは、芳香族二塩基酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とから合成される線状飽和ポリエステルである。

かかるポリエステルの具体例として、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリエチレン・スポリ(1、4ーシクロへキシレンジメチレンテレフタレート)、ポリエチレンー2、6ーナフタレートを例示することができる。なかでも、ポリエチレンテレフタレート、ポリエチレンー2、6ーナフタレートが力学的物性や光学物性等のバランスが良いので好ましい。特にポリエチレンー2、6ーナフタレートは、機械的強度が強く、熱収縮率が小さく、加熱時のオリゴマー発生量の少ないことから最も好ましい。

ポリエステルは、ホモポリマーでもコポリマーでもよく、ホモポリマーが好ま 25 しい。ポリエステルがコポリマーである場合、共重合成分は、全ジカルボン酸成 分または全ジオール成分あたり3モル%以下の割合であることが好ましい。

共重合成分を用いる場合、ジカルボン酸成分としては、フタル酸、2,6-ナ フタレンジカルボン酸といった芳香族ジカルボン酸;アジピン酸、アゼライン酸

、セバシン酸、1, 10 - \overline{r} \overline{n} \overline{r} \overline{r}

ポリエステルは公知の方法で製造することができる。例えば、ジカルボン酸とジオールとを反応させて直接低重合度ポリエステルを得る方法で製造することができる。また、ジカルボン酸の低級アルキルエステルとジオールとをエステル交換触媒でエステル交換反応させ、引き続き、重合触媒の存在下で重合反応を行いポリエステルを得る方法で製造することができる。この際、エステル交換反応触媒としては、例えば、ナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを用いることができる。重合触媒としては、例えば、三酸化アンチモン、五酸化アンチモン、二酸化ゲルマニウム、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネート、蓚酸チタニルアンモニウム、蓚酸チタニルカリウム、チタントリスアセチルアセトネートを用いることができる。

エステル交換反応させ、引き続き重合反応を行う場合には、重合反応前にエステル交換触媒を失活させるためにリン化合物を添加することが好ましい。このリン化合物としては、例えばトリメチルホスフェート、トリエチルホスフェート、トリーnーブチルホスフェート、正リン酸を用いることができる。

ポリエステルの固有粘度は、好ましくは 0.40d1/g以上、さらに好ましくは $0.40\sim0.90d1/g$ である。 0.40d1/g 未満では工程切断が多発することがあり、 0.9d1/g を超えると溶融押出しが困難になり、重合時間が長く不経済であり好ましくない。

25 本発明におけるポリエステルフィルムは、実質的に粒子を含有しないことが好ましい。粒子を含有していると高透明性が損なわれたり、表面が粗面化し透明導電層の加工が困難になることがある。

<紫外線吸収剤>

5

20

本発明におけるポリエステルフィルムは、紫外線吸収剤を含有することが好ましい。紫外線吸収剤としては、好ましくは下記式(I)で表わされる化合物を用る。

$$Y^{1} \xrightarrow{N} O \xrightarrow{R^{11}} \overset{N}{\bigvee} Y^{2}$$

$$\cdots (I)$$

(式中、 R^{11} は2価の芳香族炭化水素残基、 Y^1 、 Y^2 は炭素数 $1\sim10$ のアルキル、炭素 数 $1\sim3$ のアルコキシ、ハロゲン、炭素数 $2\sim4$ のアシルである。)

紫外線吸収剤の含有量は、ポリエステルフィルムのポリエステル100重量% あたり、好ましくは0.1~5重量%、さらに好ましくは0.2~3重量%である。0.1%未満であると波長370nmの光線透過率を十分に下げることができず、5重量%を超えると波長400nmの光線透過率が十分に高められないため好ましくない。

紫外線吸収剤は、例えば、ポリエステルの重合工程で添加する方法、フィルム 製膜前の溶融工程でポリエステルポリマーに練込む方法、フィルムに含浸させる 方法、でポリエステルフィルムに含有させることができる。なかでも、フィルム 製膜前の溶融工程でポリエステルポリマーに練込む方法が好ましい。この方法を 用いるとポリエステルの重合度の低下を防止することができる。紫外線吸収剤の ポリエステルポリマーへの練込みは、例えば、化合物粉体の直接添加法、マスタ ーバッチ法により行うことができる。

< 光学特性>

15

20

本発明におけるポリエステルフィルムは、波長370nmにおける光線透過率が好ましくは3%以下、さらに好ましくは2%以下であり、かつ波長400nmにおける光線透過率が好ましくは70%以上、さらに好ましくは75%以上である。波長370nmにおける光線透過率が3%を超えると紫外線遮蔽効果が不十分となり色素増感型太陽電池を作成した場合に経時による光発電効率の低下がみられ好ましくない。波長400nmにおける光線透過率が70%未満であると光発電に寄与する可視光量が低下するために十分な光発電効率を得られなくなり好ましくない。

本発明におけるポリエステルフィルムのヘーズは、より効率良く光発電を行う 10 ために、好ましくは 1.5%以下、さらに好ましくは 1.0%以下、特に好ましくは 0.5%以下である。

<熱収縮率>

5

15

本発明におけるポリエステルフィルムは、200℃で10分処理したときのフィルムの長手方向と幅方向における熱収縮率の差の絶対値が、好ましくは0.8%以下、さらに好ましくは0.5%以下、特に好ましくは0.3%以下である。熱収縮率の差の絶対値が0.8%を越えると積層フィルムの透明導電層と、そのうえの多孔質半導体との密着性が悪化し、色素増感型太陽電池を作成したときに十分な光発電性能が得られなくなり好ましくない。

本発明におけるポリエステルフィルムは、200℃で10分間処理したときの20 フィルムの長手方向の熱収縮率が、好ましくは0~0.5%、さらに好ましくは0~0.3%である。長手方向の熱収縮率が0.5%を超えると熱処理によって積層フィルムのポリエステルフィルムと透明導電層との密着が低下するため、または透明導電層とそのうえの多孔質半導体層との密着が低下するため、好ましくない。

25 <表面粗さ・厚み>

本発明におけるポリエステルフィルムの 3 次元中心線平均粗さは、両面ともに好ましくは 0.001~0.02 μ m、さらに好ましくは 0.001~0.015 μ m、特に好ましくは 0.001~0.010 μ mである。そして、少

なくとも片面の 3 次元中心線平均粗さが、好ましくは $0.001\sim0.005$ μ m、さらに好ましくは $0.0005\sim0.004$ μ mである。そして、ポリエステルフィルムの厚みは、好ましくは $1.0\sim500$ μ m、さらに好ましくは $2.0\sim400$ μ m、特に好ましくは $5.0\sim300$ μ mである。この範囲であると、透明導電層の加工をしやすいため好ましい。

<ポリエステルフィルムの製造方法>

上記特性を備えるポリエステルフィルムは、例えば下記の方法で製造することができる。なお、ガラス転位温度をTgと略記する。

本発明におけるポリエステルフィルムは、ポリエステルをフィルム状に溶融押 10 出し、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムを $Tg\sim (Tg+60)$ $\mathbb C$ で長手方向に1回もしくは2回以上、合計の倍率が3倍~6倍になるよう延伸し、その後 $Tg\sim (Tg+60)$ $\mathbb C$ で幅方向に倍率3~5倍になるように延伸し、必要に応じてさらに180 $\mathbb C$ ~255 $\mathbb C$ で1~60秒間熱処理を行うことにより得ることができる。

15 特に、ポリエステルフィルムの長手方向と幅方向における熱収縮率の差、および長手方向の熱収縮を十分に小さくするために、熱処理工程で縦方向に収縮させるか、フィルムを懸垂状態で弛緩熱処理するとよい。熱処理工程で縦方向に収縮させる方法は特開平57-57628号公報に記載されておりこの方法を用いることができる。また、フィルムを懸垂状態で弛緩熱処理する方法は特開平1-2
20 75031号公報に記載されておりこの方法を用いることができる。

<透明導電層>

5

25

透明導電層としては、導電性の金属酸化物、例えばフッ素ドープ酸化スズ、インジウムースズ複合酸化物(ITO)を用いることができる。また、金属の薄膜、例えば白金、金、銀、銅、アルミニウムを用いることもできる。また、炭素材料を用いることができる。

透明導電層は1種で用いてもよく、2種以上を積層して用いてもよく、複合化 して用いてもよい。なかでもインジウムースズ複合酸化物(ITO)は、光線透

過率が高く低抵抗であるため特に好ましい。

5

15

20

透明導電層の表面張力は40mN/m以上、好ましくは65mN/m以上である。表面張力が40mN/m未満であると透明導電層と多孔質半導体の密着性が劣る。なお、表面張力が65mN/m以上であると水性塗液の塗布による多孔質半導体層の形成が容易になり好ましい。透明導電層の表面張力は、完全水系塗剤の塗布が容易となる75mN/m程度が実用上の上限となる。

透明導電層の表面抵抗の範囲は、好ましくは 100Ω / \square 以下、さらに好ましくは 40Ω / \square 以下である。 100Ω / \square を超えると電池内部抵抗が大きくなりすぎて、光発電効率が低下するため好ましくない。

10 透明導電層の厚みは、好ましくは100~500nmである。100nm未満では十分に表面抵抗値を低くすることができず、500nmを超えると光線透過率が低下するとともに透明導電層がわれやすくなり好ましくない。

上記の表面張力は、下記のいずれかの方法で透明導電層の表面を活性化することにより得ることができる。すなわち、酸性またはアルカリ性溶液で処理して活性化する方法、紫外線または電子線を照射して活性化する方法、コロナ処理またはプラズマ処理を施して活性化する方法、である。なかでも、コロナ処理またはプラズマ処理により表面を活性化する方法、特にプラズマ処理により表面を活性化する方法は、高い表面張力が得られるため好ましい。プラズマ処理により透明導電層表面を活性化する場合、例えば次の条件をとればよい。すなわち、常圧プラズマ表面処理装置を用いて、不活性気体または不活性気体と酸素との混合気体の1~200L/分の気流下、0.1~10m/分にて透明導電層表面にプラズマ処理を施せばよい。不活性気体としては例えば窒素を用いることができる。

<易接着層>

25 本発明の積層フィルムにおいては、ポリエステルフィルムとそのうえの透明導電層との密着性を向上させるために、ポリエステルフィルムと透明導電層との間には、易接着層があることが好ましい。易接着層の厚みは、好ましくは10~20nm、さらに好ましくは20~150nmである。易接着層の厚みが10n

7

m未満であると密着性を向上させる効果が乏しく、200nmを超えると易接着層の凝集破壊が発生しやすくなり密着性が低下することがあり好ましくない。

易接着層は、ポリエステルフィルムの製造過程で塗工により設けることが好ましい。この塗工は、配向結晶化が完了する前のポリエステルフィルムに対して行なうことが好ましい。なお、結晶配向が完了する前のポリエステルフィルムは、未延伸フィルム、未延伸フィルムを縦方向または横方向のいずれか一方向に配向させた一軸延伸フィルム、縦方向および横方向の二方向に低倍率延伸して配向させた二軸延伸フィルム(最終的に縦方向また横方向に再延伸して配向結晶化を完了する前の二軸延伸フィルム)を含む。なかでも、未延伸フィルムまたは一軸延伸フィルムに、易接着層の組成物の水性塗液を塗布し、そのまま縦延伸および/または横延伸を行ない二軸延伸フィルムを得て、これに熱固定を施すことが好ましい。

易接着層は、ポリエステルフィルムと透明導電層の双方に優れた接着性を示す 材料から構成されることが好ましい。材料として具体的には、例えばポリエステ ル樹脂、アクリル樹脂、ウレタンアクリル樹脂、シリコンアクリル樹脂、メラミ ン樹脂、ポリシロキサン樹脂を例示することができる。これらの樹脂は単独で用 いてもよく、2種以上を混合物として用いてもよい。

<ハードコート層>

5

10

15

20

25

本発明の積層フィルムにおいては、ポリエステルフィルムとそのうえの透明導電層との密着性を向上し、特に密着の耐久性を向上させるために、易接着層と透明導電層との間にはハードコート層があることが好ましい。ハードコート層は、易接着層を設けたポリエステルフィルムのうえにハードコートの構成材を塗工して硬化させることにより設けるとよい。ハードコート層の構成材としては、易接着層および透明導電層の双方に密着性を示すものを用いることができる。例えば樹脂と無機粒子との混合物を用いることができる。樹脂としては、例えばアクリル系樹脂、ウレタン系樹脂、シリコン系樹脂、UV硬化系樹脂、エポキシ系樹脂を用いることができる。無機粒子としては、例えばアルミナ、シリカ、マイカを

8

用いることができる。なお、ハードコート層の厚みは、好ましくは $0.01\sim2$ $0~\mu$ m、さらに好ましくは $1\sim10~\mu$ m である。

<反射防止層>

5 本発明の積層フィルムにおいては、光線透過率を上げて光発電効率を高めるために、透明導電層とは反対側の面に反射防止層を有することが好ましい。

この反射防止層は、ポリエステルフィルムの屈折率とは異なる屈折率を有する素材の層を単層で形成するか多層で形成することより設けることができる。単層の反射防止層の場合は、基材フィルムよりも小さな屈折率を有する素材を使用するとよい。多層の反射防止層の場合は、積層フィルムと隣接する層の素材としてポリエステルフィルムよりも大さな屈折率Nを有する素材を用い、そのうえに積層する層の素材としてNより小さな屈折率N、を有する素材を選択することが好ましい。

反射防止層を構成する素材としては、上記屈折率の関係を満足する有機材料お 15 よび/または無機材料を用いることができる。例えば CaF_2 , MgF_2 , $NaAl_F_4$, SiO_2 , ThF_4 , ZrO_2 , Nd_2O_3 , SnO_2 , TiO_2 , CeO_2 , ZnS, In_2O_3 といった誘電体を例示することができる。

反射防止層を積層する方法としては、例えば、ドライコーティング法、ウェットコーティング法を用いることができる。ドライコーティング法としては、例え ば、真空蒸着法、スパッタリング法、CVD法、イオンプレーテイング法を用いることができる。ウェットコーティング法としては、例えばグラビア方式、リバース方式、ダイ方式を用いることができる。

さらに、反射防止層の積層に先立って、反射防止層を設ける面に、コロナ放電 処理、プラズマ処理、スパッタエッチング処理、電子線照射処理、紫外線照射処 理、プライマ処理、易接着処理などの前処理を施してもよい。

<多孔質半導体層>

25

本発明の色素増感型太陽電池用電極は、上述の色素増感型太陽電池用積層フィ

ルムおよびその透明導電層のうえに設けられた多孔質半導体層からなる。多孔質 半導体層は、金属酸化物を透明導電層のうえに170~250℃で焼き付けるこ とにより形成する。金属酸化物はn型半導体として多孔質半導体層を構成する。 なお、これらの酸化物の複数を複合させた材料を用いてもよい。

本発明においては、多孔質半導体層を形成するために、ポリエステルフィルムの一方の面に形成されている透明導電層のうえに、金属酸化物を170~250℃で焼き付けることにより多孔質半導体層を形成する。このとき、ポリエステルフィルムとしては、好ましくは200℃で10分間処理したときのフィルムの長手方向と幅方向における熱収縮率の差の絶対値が0.8%以下であるポリエステルフィルムを用いる。

金属酸化物としては、酸化チタン(TiO_2)、酸化亜鉛(ZnO)および酸化スズ(SnO_2)からなる群から選ばれる少なくとも1種の金属酸化物を用いることが好ましい。

焼付けは、半導体微粒子同士の電子的接触の強化と、透明導電層との密着性の向上のために行なわれる。焼付けの条件は、好ましくは170~250℃で1~120分間、さらに好ましくは180~230℃で3~90分間、特に好ましくは190~220℃で5~60分間ある。この焼付けを行うことで、ポリエステルフィルムの加熱による変形を防ぎながら多孔質半導体層の抵抗上昇を小さくすることができる。焼付けの温度が170℃未満であると半導体微粒子の電子的接20 触が十分強化できず色素増感型太陽電池を作成した場合に光発電効率が低下する。250℃を越えるとポリエステルフィルムの加熱による変形が著しくなり、透明導電層と多孔質半導体層の密着力が低下する。

この多孔質半導体層は、半導体の超微粒子が焼結または融着した構造をとる。 この超微粒子の粒径は、一次粒子の平均粒径として、好ましくは5~100nm 、特に好ましくは5~50nmである。

25

半導体の超微粒子としては、粒径分布の異なる2種類以上の微粒子を混合した ものでもよい。入射光を散乱させて光捕獲率を向上させる目的で、粒径の大きな 半導体粒子を混合してもよい。この半導体粒子としては、例えば一次粒子の平均

粒径300nm程度のものを用いることができる。

5

15

20

多孔質半導体層を構成することになる半導体の超微粒子は、公知のゾルーゲル 法や気相熱分解法(2001年技術教育出版社発行,柳田祥三監修「色素増感太 陽電池の基礎と応用」または1995年技術情報協会発行「ゾルーゲル法による 薄膜コーティング技術」参照)によって調製することができる。

なお、半導体の超微粒子の分散液を調製するために、溶媒中で微粒子を化学反応の共沈生成物として析出させる方法、超音波照射や機械的粉砕によって超微粒子に粉砕して分散する方法を用いてもよい。

多孔質半導体層は、好ましくは塗布法で形成する。すなわち、好ましくは、半 10 導体の超微粒子を含む分散液を積層フィルムの透明導電層のうえに塗布し、加熱 乾燥することによって、多孔質半導体層を透明導電層のうえに固定化する。

分散媒としては、水または有機溶媒を用いる。分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸またはキレート剤を分散助剤として少量加えて分散液とするとよい。

半導体の超微粒子の分散液は、半導体微粒子が支持体1m²当り、好ましくは 0.5~5~20g/m²、さらに好ましくは5~10g/m²となる量で塗布するとよい。塗布は、これまで塗布加工に慣用されている任意の方法で行うことができる。例えば、ローラ法、ディッブ法、エアーナイフ法、ブレード法、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法を用いることができる。また、汎用機によるスピン法やスプレー法も用いることができる。凸版、オフセットおよびグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷のような湿式印刷を用いて塗布してもよい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択するとよい。

25 多孔質半導体層は、好ましくは $1 \sim 30 \mu m$ 、 さらに好ましくは $2 \sim 10 \mu m$ 、特に好ましくは $2 \sim 6 \mu m$ の厚みとなるように形成する。この範囲であれば高い透明度を得ることができる。

さらに、多孔質半導体層に対して、その超微粒子が強く吸収する光、例えば紫

外光を照射したり、マイクロ波を照射することにより、超微粒子の間の物理的接合を強める処理を行ってもよい。

10

20

5

<色素増感型太陽電池の作成>

本発明の色素増感型太陽電池用電極を用いて色素増感型太陽電池を作成するには、色素増感型太陽電池の製造に関する公知の方法を用いることができる。この 方法として例えば以下の方法を用いることができる。

15 (1)電極Aの製造

本発明の電極の多孔質半導体層に色素を吸着させる。すなわち、ルテニウムビピリジン系錯体(ルテニウム錯体)に代表される有機金属錯体色素、シアニン系色素、クマリン系色素、キサンテン系色素、ポルフィリン系色素など、可視光領域および赤外光領域の光を吸収する特性を有する色素を、アルコールやトルエンなどの溶媒に溶解させて色素溶液を作成し、この色素溶液に多孔質半導体層を浸漬するか、この色素溶液を多孔質半導体層に噴霧または塗布する。

(2)電極B(対極)の製造

本発明の積層フィルムの透明導電層側に薄い白金層をスパッタ法により形成して対極を作成する。

25 (3)電極の圧着

上記の電極Aと電極Bとを、熱圧着性のポリエチレンフィルム製フレーム型スペーサー(厚さ $20\mu m$)を挿入して重ね合わせ、スペーサー部を120 Cに加熱してこれらを圧着する。得られた構成体のエッジ部をエポキシ樹脂接着剤でシ

ールする。

(4) 電解質の注入

上記構成体のコーナー部にあらかじめ設けた電解液注入用の小孔を通して、ヨウ化リチウムとヨウ素(モル比3:2)およびスペーサーとして平均粒径20 μ mのナイロンビーズ3重量%を含む電解質水溶液を注入する。その後、内部の脱気を十分に行い、最終的に小孔をエポキシ樹脂接着剤で封じる。

本発明の色素増感型太陽電池用積層フィルムおよび色素増感型太陽電池用電極を用いて、例えば上記の方法で、色素増感型太陽電池を製造することができる。

10 実施例

次に、実施例により本発明をさらに詳細に説明する。

なお、例中の各特性値は、下記の方法により測定した。

(1) 固有粘度

固有粘度 η (d l / g) は、35 \mathbb{C} の o - クロロフェノール溶液で測定して算15 出した。

(2) フィルム厚み

マイクロメーター(アンリツ(株)製のK-402B型)を用いて、フィルムの連続製膜方向および幅方向に各々10cm間隔で測定を行い、全部で300ヶ所のフィルム厚みを測定した。得られた300ヶ所のフィルム厚みの平均値を算出してフィルム厚みとした。

(3) 熱収縮率

20

25

200℃に温度設定されたオーブンの中に無緊張状態で10分間フィルムを保持し、フィルム長手方向(MD)および幅方向(TD)について各々の加熱処理前後での寸法変化を熱収縮率として下式により算出し、長手方向(MD)と幅方向(TD)の熱収縮率を求めた。

熱収縮率%= ((L0-L)/L0)×100

ただし、LO:熱処理前の標点間距離、L:熱処理後の漂点間距離

(4) 塗布層の厚み

フィルムの小片をエポキシ樹脂(リファインテック(株)製エポマウント)中に包埋し、ReichertーJung社製Microtome 2050を用いて包埋樹脂ごと50nm厚さにスライスし、透過型電子顕微鏡(LEM-2000)にて加速電圧100KV、倍率10万倍にて観察し、塗膜層の厚みを測定した。

(5) 表面抵抗值

5

4探針式表面抵抗率測定装置(三菱化学(株)製、ロレスタGP)を用いて任意の5点を測定し、その平均値を代表値として用いた。

(6)表面張力

10 表面張力が既知である水およびヨウ化メテレンの透明導電性薄膜に対する接触 角 θ w、 θ yを、接触角計(協和界面科学社製 CA-X型)を使用して25 $\mathbb C$ 、50 % R H の条件で測定した。これらの測定値を用いて以下の様にして透明導 電性薄膜の表面張力 γ s を算出した。

透明導電性薄膜の表面張力γsは、分散性成分γsdと極性成分γspとの和
.
15 である。即ち、

$$y s = y s d + y s p \tag{3.1}$$

また、Youngの式より、

$$y s = y s w + y w \cdot c o s \theta w \qquad (3.2)$$

$$\gamma s = \gamma s y + \gamma y \cdot cos \theta y$$
 (式3)

20 ここで、 γ s w は透明導電性薄膜と水との間に働く張力、 γ s w は透明導電性 薄膜とヨウ化メチレンとの間に働く張力、 γ w は水の表面張力、 γ y はヨウ化メ チレンの表面張力である。

また、Fowkesの式より、

$$\gamma \text{ sw} = \gamma \text{ s} + \gamma \text{ w} - 2 \times (\gamma \text{ sd} \cdot \gamma \text{ wd}) \ 1/2 - 2 \times (\gamma \text{ sp} \cdot \gamma \text{ wp}) \ 1/2 \ (式 4)$$

25 γ sy = γ s + γ y - 2 × (γ sd · γ yd) 1/2 - 2 × (γ sp · γ yp) 1/2 (式 5) である。ここで、γ wdは水の表面張力の分散性成分、γ wpは水の表面張力の極性 成分、γ ydはヨウ化メテレンの表面張力の分散性成分、γ ypはヨウ化メチレンの表面張力の極性成分である。

式 $1\sim5$ の連立方程式を解くことにより、透明導電性薄膜の表層張力 γ s= γ sd + γ spを算出できる。このとき、水の表面張力 $(\gamma$ w) : 7 2. 8 m N / m、よう 化メチレンの表面張力 $(\gamma$ y) : 5 0. 5 m N / m、水の表面張力の分散性成分 $(\gamma$ wd) : 2 1. 8 m N / m、水の表面張力の極性成分 $(\gamma$ wp) : 5 1. 0 m N / m、ヨウ化メチレンの表面張力の分散性成分 $(\gamma$ yd) : 4 9. 5 m N / m、ヨウ 化メテレンの表面張力の極性成分 $(\gamma$ yp) : 1 . 3 m N / m δ 用いた。

(7) 多孔質半導体層の密着性

多孔質半導体層表面にガーゼを $50g/cm^2$ の加重で5往復し、剥離の程度を目指にて評価した。剥離が見られないものを \bigcirc 、部分的に剥離が見られるものを \triangle 、完全に剥離したものを \times とした。

(8) 光発電効率

5

10

15

25 mm²大の色素増感太陽電池を形成し、AM1.5 疑似太陽光100 mW/cm2 照射下でのI-V測定により、開放電圧、短絡電流密度、曲線因子、光発電効率を求めた。なお、測定には分光計器製CEP-2000型分光感度測定装置を用いた。

(9) I-V特性(光電流-電圧特性)

25mm²大の色素増感型太陽電池を形成し、下記の方法で光発電効率を算出した。500Wのキセノンランプ(ウシオ電気社製)に太陽光シミュレーション用補正フィルター(オリエール社製AM1.5Global)を装着し、上記の光発電装置に対し、入射光強度が100mW/cm²の模擬太陽光を、水平面に対する入射角度を様々変えて照射した。システムは屋内、気温18℃、湿度50%の雰囲気に静置した。電流電圧測定装置(ケースレー製ソースメジャーユニット238型)を用い、システムに印加するDC電圧を10mV/秒の定速でスキャンして素子の出力する光電流を計測することにより、光電流一電圧特性を測定し、光発電効率を算出した。

(10) 耐侯促進試験

サンシャインウェザーメーター (スガ試験機 (株) 性、WEL-SUN-HC L型) を使用し、JIS-K-6783に準じて、1000時間照射することに

より曝露促進試験を行った。

実施例1

(アクリルの水分散体の調製)

5 四つロフラスコに、界面活性剤としてラウリルスルホン酸ナトリウム3重量部およびイオン交換水181重量部を仕込み、窒素気流下にて60℃まで昇温さた。次いで重合開始剤として過硫酸アンモニウム0.5重量部および亜硝酸水素ナトリウム0.2重量部を添加した。次いでモノマーとして、メタクリル酸メチル30.1重量部、2ーイソプロペニルー2ーオキサゾリン21.9重量部、ポリエチレンオキシド(n=10)メタクリル酸39.4重量部およびアクリルアミド8.6重量部の混合物を滴下した。滴下は反応系の液温が60~70℃になるよう調整しながら行い3時間を要した。滴下終了後さらに2時間、反応系の液温を60~70℃の範囲に保持しながら攪拌を行い、反応を継続させた。次いで、冷却して固形分が35%重量のアクリルの水分散体を得た。

15 (シリカフィラーの水分散体の調製)

シリカフィラー(日産化学株式会社製 商品名スノーテックス Z L 、平均粒径 1 0 0 n m)を 0 . 2 重量%、濡れ剤としてポリオキシエチレン(n = 7)ラウリルエーテル(三洋化成株式会社製 商品名ナロアクティーN - 7 0)を 0 . 3 重量%含有するシリカフィラーの水分散体を作成した。

20 (塗剤Aの調製)

アクリルの水分散体15重量部およびシリカフィラーの水分散体85重量部を 混合して、塗剤Aを調製した。

(フィルム用のポリエステルの作成)

ナフタレンー2,6-ジカルボン酸ジメチル100重量部およびエチレングリ 25 コール60重量部を、エステル交換反応触媒として酢酸マンガン四水塩0.03 重量部を使用して、反応系の温度を150 ℃から238 ℃に徐々に昇温させなが ら120 分間エステル交換反応を行なった。途中、反応温度が170 ℃に達した 時点で三酸化アンチモン0.024 重量部を添加した。エステル交換反応の終了

後、リン酸トリメチル 0.023 重量部をリン酸トリメチルのエチレングリコール溶液として添加した。なお、リン酸トリメチルのエチレングリコール溶液は、リン酸トリメチルをエチレングリコール中で135 $\mathbb C$ で5時間、 $0.11\sim0.16$ MPaの加圧下で加熱処理して予め調製しておいた。これらを重合反応器に移し、290 $\mathbb C$ まで昇温して27 Pa以下の高真空下にて重縮合反応を行った。実質的に粒子を含有しないポリエチレン-2, 6- ナフタレンジカルボキシレートポリマー(固有粘度 0.63 d 1/g)が得られた。

(二軸延伸フィルムの作成)

5

このポリエチレン-2,6-ナフタレンジカルボキシレートポリマーを、ペレ ットの形態で170℃で6時間乾燥して押出機ホッパーに供給し、溶融温度30 10 5℃で溶融し平均目開き17μmのステンレス鋼細線フィルターで濾過して3m mのスリット状ダイを通して、表面温度60℃の回転冷却ドラム上に押出して急 冷して、未延伸フィルムを得た。この未延伸フィルムを120℃で予熱して、低 速ロールと高速ロールの間で15mm上方より850℃のIRヒーターにて加熱 して縦方向に3.2倍に延伸して、縦延伸フィルムを得た。この縦延伸フィルム 15 の片面に、予め調製しておいた塗剤Aをロールコーターで塗工して易接着層を形 成した。この際、乾燥後の易接着層の厚みが0.2μmになるように塗剤Αの塗 布量を調節した。さらに、このフィルムをテンターに供給し140℃で横方向に 3. 4倍に延伸して、さらに244℃で5秒間熱固定して、易接着層を備える二 軸延伸フィルムを得た。このフィルムは、固有粘度が0.59d1/g、厚みが 20 125μm、200℃で10分間熱処理したときの長手方向の熱収縮率が0.5 8%、幅方向の熱収縮率が0.12%、長手方向と幅方向の熱収縮率の差が0. 46%であった。

(ハードコート層の形成)

25 この易接着層を備える二軸延伸フィルムの、易接着層のうえにUV硬化性ハードコート剤(JSR製 商品名デソライトR7501)を厚さ約 5μ mになるよう塗布し、紫外線を照射して硬化させて、ハードコート層を形成した。ハードコート層を備える積層フィルムが得られた。

(透明導電層の形成)

5

上記積層フィルムのハードコート層のうえに、膜厚400nmのITOの透明 導電層を形成した。透明導電層の形成は、ITOターゲット(錫濃度は二酸化錫 換算で10重量%)を用いた直流マグネトロンスパッタリング法により行なった。 具体的には、プラズマの放電前にチャンバー内を 5×10^{-4} Paまで排気した後、チャンバー内にアルゴンと酸素の混合ガス(酸素濃度は0.5 体積%)を導入して圧力を0.3 Paとし、ITOターゲットに1000 W印加して行った。得られた透明導電層の表面抵抗値は200 0 /0 であった。

次いで、常圧プラズマ表面処理装置(積水化学工業製AP-T03-L)を用いて、窒素気流下(60L/分)、1m/分にて、透明導電層の表面にプラズマ処理を施した。プラズマ処理後の透明導電層の表面抵抗値は22Ω/□、表面張力は72.3mN/mであった。

(反射防止層の形成)

積層フィルムの他方の面(この面は透明導電層を備えない)に、厚さ75nm 配折率 $1.89のY_2O_3$ 層、その上に厚さ120nm屈折率 $2.3のTiO_2$ 層、さらにその上に厚さ90nm屈折率 $1.46のSiO_2$ 層を形成した。これらの層は反射防止層として作用する。これらの層は、おのおの高周波スパッタリング法によって形成し、いずれも真空度 1×10^{-3} Torrで、ガスとしてAr: 5 5 sccm、 O_2 : 5 sccmを流しながら形成した。この間、加熱も冷却もする 20 ことなく室温のままとした。

(多孔質半導体層の形成)

積層フィルムの透明導電層のうえに、低温形成型多孔質二酸化チタン層形成用ペースト(昭和電工製 商品名SP-200)を、バーコーターにて塗布して、大気中180℃で30分間の熱処理を行い、多孔質二酸化チタン層を形成した。この際、塗布量を調節して多孔質二酸化チタン層の厚みが5μmになるようにした。積層フィルムの透明導電層のうえに多孔質二酸化チタン層を備える、色素増感型太陽電池の電極が得られた。この電極について多孔質半導体層の密着性の評価を行ったところ、剥離はまったく見られず、評価は○であった。

(色素増感型太陽電池の作成)

この電極をルテニウム錯体(Ru535bisTBA、Solaronix製)の300 μ Mエタノール溶液中に24時間浸漬し、光作用電極表面にルテニウム錯体を吸着させた。

5 他方、積層フィルムの透明導電層のうえにスパッタリング法により P t 膜を堆積して対向電極を得た。

この電極とこの対向電極とを、熱圧着性のポリエチレンフィルム製フレーム型スペーサー(厚さ 20μ m)を介して重ね合わせ、スペーサー部を120 $\mathbb C$ に加熱して、電極と対向電極とを圧着した。そしてエッジ部をエポキシ樹脂接着剤でシールした。

さらに、電解質溶液(0.5Mのヨウ化リチウムと0.05Mのヨウ素と0.5Mのt e r t ーブチルピリジンと平均粒径 20μ mのナイロンビーズ 3 重量%とを含む 3 ーメトキシプロピオニトリル溶液)を注入してエポキシ系接着剤でシールして、色素増感型太陽電池を得た。この色素増感型太陽電池は、I ー V 特性(有効面積 25 m m 2)を評価したところ、開放電圧0.72 V、短絡電流密度6 .3 m A / c m 2 、曲線因子0.72 であり、光発電効率3.2 %であった。

実施例2、3および参考例1

10

二軸延伸フィルムの作成時に、縦延伸倍率、横延伸倍率、熱固定温度を表1の 20 ように変更した以外は実施例1と同様にして積層フィルムを得た。これを用いて 実施例1と同様にして、電極を作成し、さらに色素増感型太陽電池を作成した。 評価結果を表1に示す。

表 1

10

		実施例1	実施例 2	実施例3	参考例1
縦延伸倍率		3.2	3.0	3.5	3.4
横延伸倍率		3.4	3. 1	3.3	3. 2
熱固定温度 ℃		2 4 4	2 4 5	2 4 0	2 3 5
200℃	縦方向	0.58	0.36	0.84	1.21
10分間熱処理	横方向	0.12	0.08	0.31	0.35
における	差	0.46	0.28	0.53	0.86
熱収縮率 %					
多孔質半導体層の密着性		0	0	• 0	Δ
光発電効率 %		3.2	3.4	2.8	1.8

実施例4

実施例1と同様にして二軸延伸フィルムを作成した。その後、フィルムを懸垂 5 状態で、弛緩率0.8%、温度205℃で熱弛緩させた。200℃、10分で処理した際のフィルムの長手方向の熱収縮率は0.15%、幅方向の熱収縮率は0. .02%、長手方向と幅方向の熱収縮率の差は0.13%であった。

このフィルムのうえに、実施例1と同様にして、ハードコート層および透明導電層を形成して積層フィルムを得た。この積層フィルムのうえに多孔質半導体層を形成し、色素増感型太陽電池の電極を作成した。たお、この多孔質半導体層の形成の条件は、二酸化チタンペーストの塗布後の熱処理温度を200℃にした他は実施例1と同様である。この電極について多孔質半導体層の密着性の評価を行ったところ、剥離はまったく見られず、評価は○であった。

この電極を用いて実施例1と同様にして色素増感太陽電池を作成した。この色 15 素増感型太陽電池は、I-V特性(有効面積25mm²)を評価したところ、開放 電圧0.71V、短絡電流密度7.4mA/cm²、曲線因子0.75であり、光 発電効率3.9%であった。

実施例5,6および比較例2,3

20 プラズマ処理をかけるときに用いるガスの窒素と酸素の割合を表2のように変 更する以外は実施例1と同様にして積層フィルムを作成した。なお、比較例3に おいてはプラズマ処理を実施しなかった。さらに、実施例1と同様にして、電極

および色素増感型太陽電池を作成して、多孔質半導体層の密着性、電池の光発電 効率を評価した。結果を表 2 に示す。

表 2

		実施例4	実施例5	実施例6	比較例 2	比較例3
ガス割合	窒素	100	98	7 0	5 0	(未処
%	酸素	0	2	3 0	50	理)
表面抵抗 Ω	/ 🗆	2 2	2 1	2 1	2 1	2 0
表面張力 mN/m		72.3	68.3	42.7	38.4	32.3
密着性評価		0	0	0		×
光発電効率 %		3. 2	3.0	2.4	1.5	0.9

5

実施例7

(ポリエステルの水分散体の調製)

2,6-ナフタレンジカルボン酸ジメチル48重量部、イソフタル酸ジメチル 14重量部、5-ナトリウムスルホイソフタル酸ジメチル4重量部、エチレング 10 リコール31重量部、ジエチレングリコール2重量部を反応器に仕込み、これに テトラブトキシチタン0.05重量部を添加して窒素雰囲気下で温度を230℃ にコントロールして加熱し、生成するメタノールを留去しながらエステル交換反 応を行った。次いで反応系の温度を徐々に255℃まで上昇させ、系内を1mm Hgの減圧にして重縮合反応を行い、ポリエステルを得た。このポリエステル2 15 5重量部をテトラヒドロフラン75重量部に溶解させて溶液とした。得られた溶 液に1000回転/分の高速攪拌下で水75重量部を滴下して乳白色の分散体 を得、次いでこの分散体を20mmHgの減圧下で蒸留し、テトラヒドロフラン を留去し、固形分が25重量%のポリエステルの水分散体を得た。

(アクリルの水分散体の調整)

20 実施例1と同様にしてアクリルの水分散体を調製した。

(シリカフィラーの水分散体の調製)

実施例1と同様にしてシリカフィラーの水分散体を調製した。

(塗剤Bの調製)

ポリエステルの水分散体10重量部、アクリルの水分散体5重量部およびシリカフィラーの水分散体85重量部を混合して、塗剤Bを調製した。

(二軸延伸フィルムの作成)

下記式(A)に示す紫外線吸収剤を1重量%含有するポリエチレンテレフタレ5 ート(固有粘度 0 . 6 5 d 1 / g)を溶融して、2 0 $\mathbb C$ に維持された回転冷却ドラム上に押出して急冷して、未延伸フィルムを得た。

 $\cdots (A)$

この未延伸フィルムを、100℃で縦方向に3.4倍に延伸し、その両面に塗 10 剤 B を 10 の 10 の 10 で 10 の 10

(ハードコート層の形成)

この易接着層を備える二軸延伸フィルムの易接層のうえにUV硬化性ハードコート剤(JSR製 商品名デソライトR 7 5 0 1)を厚さ約 5 μ mになるよう塗布し紫外線を照射して硬化させてハードコート層を形成した。ハードコート層を備える積層フィルムが得られた。

(透明導電層の形成)

20

上記積層フィルムのハードコート層のうえに膜厚400nmのITOの透明導電層を形成した。透明導電層の形成は実施例1と同様にして行なった。得られた

透明導電層の表面抵抗値は15Ω/□であった。

次いで、透明導電層の表面に、実施例 1 と同様にしてプラズマ処理を施した。プラズマ処理後の透明導電層の表面抵抗値は 1 6 Ω / \square 、表面張力は 7 0 . 5 m N / m であった。

5 (反射防止層の形成)

積層フィルムの他方の面(この面は透明導電層を備えない)に、厚さ80nm 屈折率1.75の TiO_x 層、その上に厚さ70nm屈折率2.1の TiO_2 層、さらにその上に厚さ95nm屈折率1.45の SiO_2 層を形成した。これらの層は反射防止層として作用する。これらの層はおのおの高周波スパッタリング法に L よって形成し、いずれも真空度L 5 L 5 L 6 L 7 L 8 L 8 L 8 L 8 L 9 L

(多孔質半導体層の形成)

積層フィルムの透明導電層のうえに、低温形成型多孔質二酸化チタン層形成用 ペースト (昭和電工製 商品名SP-200)をバーコーターにて塗布して、大気中160℃で30分間の熱処理を行い多孔質二酸化チタン層を形成した。この際、塗布量を調整して多孔質二酸化チタン層の厚みが4μmになるようにした。積層フィルムの透明導電層のうえに多孔質二酸化チタン層を備える、色素増感型太陽電池の電極が得られた。この電極について多孔質半導体層の密着性の評価を 20 行ったところ、剥離はまったく見られず、評価は○であった。

(色素増感型太陽電池の作成)

25

この電極を用いて、実施例 1 と同様にして色素増感型太陽電池を作成した。得られた色素増感型太陽電池は、I-V 特性(有効面積 $2.5\,\mathrm{mm}^2$)を評価したところ、開放電圧 $0.68\,\mathrm{V}$ 、短絡電流密度 $5.8\,\mathrm{mA/cm}^2$ 、曲線因子 $0.69\,\mathrm{v}$ あり、光発電効率は 2.7% であった。

この色素増感太陽電池について、さらに耐侯性試験を行い、その後の I-V特性 (有効面積 $2.5\,\mathrm{m\,m^2}$) を評価したところ、開放電圧 $0..6.9\,\mathrm{V}$ 、短絡電流密度 $5..2\,\mathrm{m\,A/c\,m^2}$ 、曲線因子 $0..6.7\,\mathrm{であり}$ 、光発電効率は $2..4\,\mathrm{% \ con }$ であり、光

発電効率の低下は非常に小さいものであった。

実施例8

15

20

下記式(B)に示す紫外線吸収剤を2重量%含有するポリエチレンナフタレン 5 ジカルボキシレート(固有粘度 0.61d1/g)を溶融して、60 \mathbb{C} に維持された回転冷却ドラム上に押し出して急冷して、未延伸フィルムを得た。

この二軸延伸フィルムのうえに、実施例 7 と同様にしてハードコート層および透明導電層を設けた。得られた透明導電層の表面抵抗値は 18Ω / \Box であった。

次いで、実施例 7 で用いた常圧プラズマ表面処理装置を用いて、酸素 5 %、窒素 9 5 %の混合気体気流下(6 0 L/分)、1 m/分の速度で、透明導電層表面にプラズマ処理を行った。得られた透明導電層の表面抵抗値は $18 \Omega/\Box$ 、表面張力は 6 6 . 2 m N/mであった。

さらに、透明導電層のうえに実施例7と同様にして、反射防止層および多孔質 半導体層を形成した。積層フィルムの透明導電層のうえに多孔質二酸化チタン層 を備える、色素増感型太陽電池の電極が得られた。この電極について多孔質半導

体層の密着性の評価を行ったところ、剥離はまったくみられず、評価は〇であった。

この電極を用いて、実施例 7 と同様にして、色素増感型太陽電池を作成した。得られた色素増感型太陽電池は、I-V特性(有効面積 $2.5\,\mathrm{mm}^2$)を評価したところ、開放電圧 $0.65\,\mathrm{V}$ 、短絡電流密度 $5.4\,\mathrm{mA/cm}^2$ 、曲線因子 $0.70\,\mathrm{d}$ はであり、光発電効率は $2.5\,\mathrm{mm}^2$ であった。

この色素増感太陽電池について、さらに耐侯性試験を行い、その後のI-V特性 (有効面積 $2.5\,\mathrm{m\,m^2}$) を評価したところ、開放電圧 $0.64\,\mathrm{V}$ 、短絡電流密度 $5.2\,\mathrm{m\,A/c\,m^2}$ 、曲線因子 $0.69\,\mathrm{であり}$ 、光発電効率は $2.3\%\,\mathrm{であり}$ 、光発電効率の低下は非常に小さいものであった。

実施例9

5

10

ポリエチレンテレフタレートに含有させる紫外線吸収剤を下記式(C)に示す 化合物に変更する他は実施例7と同様にして易接着層を備える二軸延伸フィルム 15 を作成した。得られた二軸延伸フィルムの波長370nmでの光線透過率は0. 3%、400nmでの光線透過率は81.2%であった。

··· (C)

この二軸延伸フィルムのうえに、実施例 7 と同様にしてハードコート層および 20 透明導電層を設けた。透明導電層表面の表面抵抗値は $2 \ 0 \ \Omega / \Box$ であった。

次いで、実施例7で用いた常圧プラズマ表面処理装置を用いて、酸素30%、 窒素70%の混合気体気流下(60L/分)、1m/分の速度で、透明導電層表 面にプラズマ処理を行った。得られた透明導電層の表面抵抗値は21Ω/□、表 面張力は43.2mN/mであった。

25 さらに、透明導電層のうえに、実施例7と同様にして反射防止層および多孔質

半導体層を形成して電極を作成した。多孔質半導体層の密着性評価を行ったところ、剥離はまったく見られず、評価は〇であった。

この電極を用いて、実施例 7 と同様にして色素増感型太陽電池を作成した。この色素増感型太陽電池は、I-V特性(有効面積 $2.5\,\mathrm{mm}^2$)を評価したところ、開放電圧 $0.66\,\mathrm{V}$ 、短絡電流密度 $5.0\,\mathrm{mA/c\,m}^2$ 、曲線因子 $0.65\,\mathrm{cm}^2$ 、光発電効率は 2.1%であった。

この色素増感太陽電池についてさらに耐侯性試験を行い、その後のI-V特性 (有効面積 $2.5\,\mathrm{mm}^2$) を評価したところ、開放電圧 $0..66\,\mathrm{V}$ 、短絡電流密度 $4..7\,\mathrm{mA/c\,m}^2$ 、曲線因子 $0..63\,\mathrm{であり}$ 、光発電効率は $2..0\,\mathrm{%}$ であり、光発電効率の低下は非常に小さいものであった。

参考例4

5

10

15

20

ポリエチレンテレフタレートに紫外線吸収剤を配合しない他は、実施例7と同様にして色素増感型太陽電池用電極を作成した。なお、この際の二軸延伸フィルムの波長370nmでの光線透過率は84.6%、400nmでの光線透過率は87.7%であった。

この電極を用いて実施例 7 と同様にして色素増感型太陽電池を作成し、 I-V特性 (有効面積 $2.5\,\mathrm{mm}^2$) を評価したところ、開放電圧 $0..69\,\mathrm{V}$ 、短絡電流密度 $6..2\,\mathrm{mA/cm}^2$ 、曲線因子 $0..68\,\mathrm{であり}$ 、光発電効率は $2..9\%\,\mathrm{であった}$

この色素増感太陽電池について、さらに耐侯性試験を行い、その後の I-V特性 (有効面積 $2.5\,\mathrm{m\,m^2}$) を評価したところ、開放電圧 $0.63\,\mathrm{V}$ 、短絡電流密度 $2.2\,\mathrm{m\,A/c\,m^2}$ 、曲線因子 $0.58\,\mathrm{cm}$ であり、光発電効率は $0.8\,\mathrm{w}$ であった。

25 参考例 5

ポリエチレンテレフタレートに含有させる紫外線吸収剤を6重量%とする他は、実施例7と同様にして色素増感型太陽電池用電極を作成した。なお、この際の 二軸延伸フィルムの波長370nmでの光線透過率は0.1%、400nmでの

光線透過率は66.2%であった。

この電極を用いて実施例7と同様にして色素増感型太陽電池を作成した。 I - V特性(有効面積25mm²)を評価したところ、開放電圧0.62V、短絡電流密度4.1mA/cm²、曲線因子0.64であり、光発電効率は1.6%であった。

比較例6

5

15

実施例 7 において、プラズマ処理をかけるときに用いるガスの窒素と酸素の割合を50%:50%とする他は同様にして電極を作成した。なお、プラズマ処理
10 後の透明導電層の表面張力は37.8 mN/mであった。電極の多孔質半導体層の密着性を評価したところ、部分的に剥離が観察され、評価は△であった。

この電極を用いて実施例 7 と同様にして色素増感型太陽電池を作成した。 I-V や性(有効面積 $2.5\,\mathrm{m\,m^2}$)を評価したところ、開放電圧 $0...58\,\mathrm{V}$ 、短絡電流密度 $4...2\,\mathrm{m\,A/c\,m^2}$ 、曲線因子 $0...59\,\mathrm{であり}$ 、光発電効率は $1...49\,\mathrm{c}$ 低いものであった。

実施例10

(ポリエステルの水分散体の調整)

テレフタル酸ジメチル92重量部、イソフタル酸ジメチル12重量部、5一ナ 10 トリウムスルホイソフタル酸17重量部、エチレングリコール54重量部および ジエチレングリコール62重量部を反応器に仕込み、これにテトラブトキシチタ ン0.05重量部を添加して窒素雰囲気下で温度を230℃にコントロールして 加熱し、生成するメタノールを留去しながらエステル交換反応を行った。次いで 反応系の温度を徐々に255℃まで上昇させ、系内を1mmHgの減圧にして重 25 縮合反応を行い、ポリエステルを得た。このポリエステル25重量部をテトラヒ ドロフラン75重量部に溶解させて溶液とした。得られた溶液に10000回転 /分の高速攪拌下で水75重量部を滴下して乳白色の分散体を得、次いでこの分 散体を20mmHgの減圧下で蒸留し、テトラヒドロフランを留去し、固形分が

25重量%のポリエステルの水分散体を得た。

(アクリルの水分散体の調整)

5

10

25

四つロフラスコに、界面活性剤としてラウリルスルホン酸ナトリウム3重量部およびイオン交換水181重量部を仕込み、窒素気流下にて60℃まで昇温させた。次いで重合開始剤として過硫酸アンモニウム0.5重量部および亜硝酸水素ナトリウム0.2重量部を添加した。次いで、モノマーとして、メタクリル酸メチル70重量部、アクリル酸エチル25重量部およびNーメチロールアクリルアミド5重量部の混合物を滴下した。滴下は反応系の液温が60~70℃になるよう調整しながら行い3時間を要した。滴下終了後さらに2時間、反応系の液温を60~70℃の範囲に保持しながら攪拌を行い、反応を継続させた。次いで、冷却して固形分が35%重量のアクリルの水分散体を得た。

(シリカフィラーの水分散体の調製)

シリカフィラー(平均粒径:100nm)(日産化学株式会社製 商品名スノーテックスZL)を0.3重量%、濡れ剤として、ポリオキシエチレン(n=9) 15) ラウリルエーテル(花王株式会社製 商品名エマルゲン109P)を0.4重量%添加した水分散体を作成した。

(塗剤 C の調製)

上記のポリエステルの水分散体10重量部、アクリルの水分散体3重量部およびシリカフィラーの水分散体87重量部を混合して、塗剤Cを調製した。

20 . (ポリエステルの水分散体の調製)

2,6ーナフタレンジカルボン酸ジメチル66重量部、イソフタル酸ジメチル47重量部、5ーナトリウムスルホイソフタル酸ジメチル8重量部、エチレングリコール54重量部、ジエチレングリコール62重量部を反応器に仕込み、これにテトラブトキシチタン0.05重量部を添加して窒素雰囲気下で温度を230℃にコントロールして加熱し、生成するメタノールを留去しながらエステル交換反応を行った。次いで反応系の温度を徐々に255℃まで上昇させ系内を1mmHgの減圧にして重縮合反応を行い、ポリエステルを得た。このポリエステル25重量部をテトラヒドロフラン75重量部に溶解させて溶液とした。得られた溶

液に10000回転/分の高速攪拌下で水75重量部を滴下して乳白色の分散体を得、次いでこの分散体を20mmHgの減圧下で蒸留し、テトラヒドロフランを留去し、固形分が25重量%のポリエステルの水分散体を得た。

(アクリルの水分散体の調整)

5 実施例1と同様にしてアクリルの水分散体を調製した。

(シリカフィラーの水分散体の調製)

実施例1と同様にしてシリカフィラーの水分散体を調製した。

(塗剤Dの調製)

15

20

上記のポリエステルの水分散体8重量部、アクリルの水分散体7重量部および 10 シリカフィラーの水分散体85重量部を混合して、塗剤Dを調製した。

(フィルム用のポリエステルの作成)

実施例 1 と同様にして、フィルム用のポリエステルとして、ポリエチレン-2, 6- ナフタレンジカルボキシレートを製造した。このポリエチレン-2, 6- ナフタレンジカルボキシレートは、固有粘度が0. 6 2 d 1 / g τ 、実質的に粒子を含有しないポリマーであった。

(二軸延伸フィルムの作成)

このポリエチレンー2,6ーナフタレンジカルボキシレートポリマーを、ペレットの形態で170℃で6時間乾燥して押出機ホッパーに供給し、溶融温度305℃で溶融し平均目開き17 μ mのステンレス鋼細線フィルターで濾過して3mmのスリット状ダイを通して、表面温度60℃の回転冷却ドラム上で押出して急冷して未延伸フィルムを得た。

この未延伸フィルムを120℃で予熱して低速ロールと高速ロールの間で15mm上方より850℃のIRヒーターにて加熱して縦方向に3.2倍に延伸した。縦延伸フィルムが得られた。この縦延伸フィルムの片面に、塗剤Cをロールコークーで塗工して易接着層を形成した。この際、乾燥後の易接着層の厚みが 0.08μ mになるように塗剤Aの塗布量を調節した。さらに、このフィルムをテンターに供給し140℃にて横方向に3.3倍に延伸して、さらに244℃で5秒間熱固定して、易接着層を備える二軸延伸フィルムを得た。このフィルムは、固

有粘度が 0.58 d 1 / g、厚みが $125 \mu m$ 、200 %で 10 %間熱処理したときの長手方向の熱収縮率が 0.58 %、幅方向の熱収縮率が 0.12 %、長手方向と幅方向の熱収縮率の差が 0.46 %であった。

(透明導電層の形成)

5 二軸延伸フィルムの他方の面に(この面は透明導電層を備えない)に、特開昭・63-908号公報の実施例6に記載の方法で、膜厚280nmのITOからなる透明導電層を形成した。透明導電層を備える二軸延伸フィルムが得られた。この透明導電層の表面抵抗値は18Ω/□であった。

次いで、常圧プラズマ表面処理装置(積水化学工業製AP-T03-L)を用10 いて、窒素気流下(60L/分)、1m/分にて透明導電層表面にプラズマ処理を施した。プラズマ処理後の透明導電層の表面抵抗値は18Ω/□、表面張力は71.5mN/mであった。

(反射防止層の形成)

実施例1と同様にして反射防止層を形成した。

15 (多孔質半導体層の形成)

20

フィルムの透明導電層のうえに、低温形成型多孔質二酸化チタン層形成用ペースト(昭和電工製SP-200)を、バーコーターにて塗布し、大気中200℃で30分間の熱処理を行い、多孔質二酸化チタン層を形成した。この際、塗布量を調節して多孔質二酸化チタン層の厚みが 5μ mになるようにした。二軸延伸フィルムのうえに多孔質二酸化チタン層を備える、色素増感型太陽電池の電極が得られた。この電極についてか孔質半導体層の密着性の評価を行ったところ、剥離はまったくみられず評価は \bigcirc であった。

(色素増感型太陽電池の作成)

この電極用をルテニウム錯体(Ru535bisTBA、Solaronix 25 製)の300 μ Mエタノール溶液中に24時間浸漬し、光作用電極表面にルテニウム錯体を吸着させた。

他方、前記の二軸延伸フィルムの透明導電層上にスパッタリング法により Pt膜を堆積して対向電極を作成した。

この電極とこの対向電極を用いて、実施例1と同様にして色素増感型太陽電池を得た。得られた色素増感型太陽電池は、I-V特性(有効面積25mm²)を評価したところ、開放電圧0.71V、短絡電流密度7.1mA/cm²、曲線因子0.68であり、光発電効率は3.4%であった。

5

実施例11、12および参考例7

二軸延伸フィルムの作成時に、縦延伸倍率、横延伸倍率、熱固定温度を表3のように変更した以外は実施例10と同様にして二軸延伸フィルムを得た。これを用いて実施例10と同様にして電極および色素増感型太陽電池を得た。二軸延伸フィルムの縦方向、横方向の200℃で10分処理したあとの熱収縮率およびその差、多孔質半導体層の密着性、色素増感型太陽電池の光発電効率は、表3に示す通りであった。

表 3

	····	実施例10	実施例11	実施例12	参考例7
縦延伸倍率	倍	3. 2	3.0	3.3	3. 4
横延伸倍率			3.1	3. 1	3. 2
熱固定温度	$^{\circ}$	2 4 4	2 4 4	2 3 8	2 3 6
200℃ 10	縦方向	0.55	0.37	0.82	1. 17
分における熱収	横方向	0.10	0.09	0.29	0.32
縮率 %	差	0.45	0.28	0.53	0.85
多孔質半導体層の密着性		0	0	0	Δ
光発電効率	%	3. 4	3. 7	2. 7	1. 5

15

実施例13

(二軸延伸フィルムの作成)

易接着層を形成するための塗剤を塗剤Dに変更した以外は、実施例10と同様にして二軸延伸フィルムを作成した後、フィルムを懸垂状態で弛緩率0.9%、20 温度205℃で熱弛緩させた。得られた二軸延伸フィルムを200℃、10分で処理した際のフィルムの長手方向の熱収縮率は0.13%、幅方向の熱収縮率は0.03%、長手方向と幅方向の熱収縮率の差は0.10%であった。

(ハードコート層の形成)

この二軸延伸フィルムのうえに、実施例1と同様にしてハードコート層を形成 して、ハードコート層を備える積層フィルムを得た。

(透明導電層の形成)

5 積層フィルムのハードコート層のうえに、実施例1と同様にして透明導電層を設けた。得られた透明導電層の表面抵抗値は $19\Omega/\Box$ であった。

次いで、実施例 1 と同様にして透明導電層の表面にプラズマ処理を施した。プラズマ処理後の透明導電層の表面抵抗値 2 0 Ω / \square 、表面張力は 7 1 . 8 m N / m r b o o o

10 (反射防止層の形成)

積層フィルムの他方の面(この面は透明導電層を備えない)に実施例10と同様にして反射防止層を形成した。

(多孔質半導体層の形成)

二酸化チタンペーストを塗布後の熱処理温度を 2 2 0 ℃にした他は実施例 1 0 15 と同様にして多孔質半導体層を形成し、色素増感型太陽電池の電極を作成した。 密着性評価を行ったところ、剥離は全くみられず評価は○であった。

(色素増感型太陽電池の作成)

この電極を用いて実施例10と同様にして色素増感型太陽電池を作成した。得られた色素増感型太陽電池は、I-V特性(有効面積25mm²)を評価したとこ 20 ろ、開放電圧0.70V、短絡電流密度8.5mA/cm²、曲線因子0.72であり、光発電効率は4.3%であった。

実施例14、15および比較例8、9

実施例13において、多孔質半導体層の熱処理温度を表4のように変える他は 25 実施例13と同様にして電極を作成した。多孔質半導体層の密着性およびこの電 極を用いて作成した色素増感型太陽電池の光発電効率を表4に示す。

表 4

	実施例13	実施例14	実施例15	比較例8	比較例 9
多孔質半導体の 熱処理温度 ℃	220	180	2 4 0	160	2 5 5
密着性評価	0 .	0	0	0	×
光発電効率 %	4. 3	3.4	4. 0	1. 9	*

^{*} 電極の変形が著しく、電池が作成できなかった。

発明の効果

5 本発明によれば、透明導電層と多孔質半導体層との密着性に優れ、光発電性能の高い色素増感太陽電池を作成することができる、色素増感型太陽電池用積層フィルムおよび色素増感型太陽電池用電極ならびにその製造方法を提供することができる。この色素増感型太陽電池用積層フィルムおよび色素増感型太陽電池用電極を用いた太陽電池は、色素増感型太陽電池として長期間太陽光に暴露しても高い光発電効率を維持することができる。また、本発明の製造方法によれば、透明導電層と多孔質半導体層との密着性に優れる色素増感型太陽電池用電極を製造することができる。

請求の範囲

1 ポリエステルフィルムおよびその片面に設けられた透明導電層からなり、透明導電層の表面張力が40mN/m以上であることを特徴とする、色素増感型太陽電池用積層フィルム。

5

10

- 2 透明導電層の表面張力が65mN/m以上である、クレーム1記載の色素増 感型太陽電池用積層フィルム。
- 3 ポリエステルフィルムの、波長370nmでの光線透過率3%以下かつ400nmでの光線透過率が70%以上である、クレーム1記載の色素増感型太陽電池用積層フィルム。
 - 4 ポリエステルフィルムの、200℃で10分間処理したときのフィルムの長手方向と幅方向における熱収縮率の差の絶対値が0.8%以下である、クレーム1記載の色素増感型太陽電池用積層フィルム。
- 5 ポリエステルフィルムの、200℃で10分間処理したときのフィルムの長15 手方向の熱収縮率が0~0.5%である、クレーム1記載の色素増感型太陽電池 用積層フィルム。
 - 6 ポリエステルフィルムと透明導電層との間に、層厚み10~200nmの易接着層をさらに有する、クレーム1記載の色素増感型太陽電池用積層フィルム。
- 7 易接着層と透明導電層との間にハードコート層をさらに有する、クレーム 1 20 記載の色素増感型太陽電池用積層フィルム。
 - 8 積層フィルムの透明導電層とは反対側の面に反射防止層をさらに有する、クレーム1記載の色素増感型太陽電池用積層フィルム。
 - 9 クレーム1記載の色素増感型太陽電池用積層フィルムおよび、その透明導電層のうえに設けられた多孔質半導体層からなる色素増感型太陽電池用電極。
- 25 10 多孔質半導体層がチタン、酸化亜鉛および酸化スズからなる群から選ばれる少なくとも1種の金属酸化物からなる、クレーム9記載の色素増感型太陽電池 用電極。
 - 11 200℃で10分間処理したときのフィルムの長手方向と幅方向における

熱収縮率の差の絶対値が 0.8%以下であるポリエステルフィルムの片面に透明 導電層を形成し、そのうえに金属酸化物を 170~250℃で焼き付けることに より多孔質半導体層を形成することを特徴とする、色素増感型太陽電池用電極の 製造方法。

- 5 12 金属酸化物が、酸化チタン、酸化亜鉛および酸化スズからなる群から選ばれる少なくとも1種の金属酸化物である、クレーム11記載の色素増感型太陽電池用電極の製造方法。
 - 13 クレーム11記載の製造方法にて製造された色素増感型太陽電池用電極。

International application No.

PCT/JP2005/001641

		101/012	003/001011	
	CATION OF SUBJECT MATTER H01M14/00, H01L31/04			
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SE	EARCHED			
	nentation searched (classification system followed by cla H01M14/00, H01L31/04	assification symbols)		
Jitsuyo Kokai J		roku Jitsuyo Shinan Koho tsuyo Shinan Toroku Koho	1994-2005 1996-2005	
Electronic data i	oase consumed during the international search (hame of d	iata base and, where practicable, search te	rins used)	
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
A	JP 11-288745 A (Nikon Corp.) 19 October, 1999 (19.10.99), Claims 1 to 7; examples (Family: none)	,	1-13	
A	JP 2002-50413 A (Japan Gore-' 15 February, 2002 (15.02.02), Claims 1 to 7; Par. No. [0016 (Family: none)		1-13	
A	JP 57-57628 A (Teijin Ltd.), 06 April, 1982 (06.04.82), Full description (Family: none)		1-13	
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.		
"A" document of to be of par "E" earlier appli filing date	egories of cited documents: lefining the general state of the art which is not considered ticular relevance ication or patent but published on or after the international	"T" later document published after the inte date and not in conflict with the applicathe principle or theory underlying the in document of particular relevance; the considered novel or cannot be considered when the document is taken alone	ntion but cited to understand avention laimed invention cannot be	
'C' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'C' document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
priority date	priority date claimed "&" document member of the same patent family			
	al completion of the international searchil, 2005 (26.04.05)	Date of mailing of the international sear 17 May, 2005 (17.05		
	ng address of the ISA/ se Patent Office	Authorized officer		
Facsimile No.		Telephone No.		

International application No.

PCT/JP2005/001641

Citation of document, with indication, where appropriate, of the relevant passages JP 1-275031 A (Teijin Ltd.), 02 November, 1989 (02.11.89), Full description (Family: none) JP 1-259184 A (Gunze Ltd.), 16 October, 1989 (16.10.89), Claims 1 to 8; detailed explanation of the invention as a whole (Family: none) JP 8-148036 A (Nitto Denko Corp.), 07 June, 1996 (07.06.96), Claims 1 to 5 (Family: none) JP 2000-31509 A (Dainippon Printing Co., Ltd.), 28 January, 2000 (28.01.00), Claims 1 to 3; example 1 (Family: none) JP 2004-265662 A (Toyo Ink Manufacturing Co., Ltd.), 24 September, 2004 (24.09.04), Claims 1 to 9; examples (Family: none)	1-13 1-13 1-13 1-13
O2 November, 1989 (02.11.89), Full description (Family: none) JP 1-259184 A (Gunze Ltd.), 16 October, 1989 (16.10.89), Claims 1 to 8; detailed explanation of the invention as a whole (Family: none) JP 8-148036 A (Nitto Denko Corp.), O7 June, 1996 (07.06.96), Claims 1 to 5 (Family: none) JP 2000-31509 A (Dainippon Printing Co., Ltd.), 28 January, 2000 (28.01.00), Claims 1 to 3; example 1 (Family: none) JP 2004-265662 A (Toyo Ink Manufacturing Co., Ltd.), 24 September, 2004 (24.09.04), Claims 1 to 9; examples	1-13 1-13
Claims 1 to 8; detailed explanation of the invention as a whole (Family: none) JP 8-148036 A (Nitto Denko Corp.), 07 June, 1996 (07.06.96), Claims 1 to 5 (Family: none) JP 2000-31509 A (Dainippon Printing Co., Ltd.), 28 January, 2000 (28.01.00), Claims 1 to 3; example 1 (Family: none) JP 2004-265662 A (Toyo Ink Manufacturing Co., Ltd.), 24 September, 2004 (24.09.04), Claims 1 to 9; examples	1-13
07 June, 1996 (07.06.96), Claims 1 to 5 (Family: none) JP 2000-31509 A (Dainippon Printing Co., Ltd.), 28 January, 2000 (28.01.00), Claims 1 to 3; example 1 (Family: none) JP 2004-265662 A (Toyo Ink Manufacturing Co., Ltd.), 24 September, 2004 (24.09.04), Claims 1 to 9; examples	1-13
28 January, 2000 (28.01.00), Claims 1 to 3; example 1 (Family: none) JP 2004-265662 A (Toyo Ink Manufacturing Co., Ltd.), 24 September, 2004 (24.09.04), Claims 1 to 9; examples	
Co., Ltd.), 24 September, 2004 (24.09.04), Claims 1 to 9; examples	1-13
JP 2005-56627 A (Gakko Hojin Toin Gakuen), 03 March, 2005 (03.03.05), Claims 1 to 21; examples (Family: none)	1-13
JP 2002-145615 A (Japan Science and Technology Corp.), 22 May, 2002 (22.05.02), Claims 1 to 3; examples (Family: none)	1-13
JP 2004-9362 A (Teijin Dupont Film Kabushiki Kaisha), 15 January, 2004 (15.01.04), Claims 1 to 18 & WO 2003/102057 A1	1-13
JP 6-207036 A (Toyobo Co., Ltd.), 26 July, 1994 (26.07.94), Claim 1; Par. Nos. [0021] to [0023] (Family: none)	1-13
	22 May, 2002 (22.05.02), Claims 1 to 3; examples (Family: none) JP 2004-9362 A (Teijin Dupont Film Kabushiki Kaisha), 15 January, 2004 (15.01.04), Claims 1 to 18 & WO 2003/102057 A1 JP 6-207036 A (Toyobo Co., Ltd.), 26 July, 1994 (26.07.94), Claim 1; Par. Nos. [0021] to [0023]

International application No.

PCT/JP2005/001641

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. Clai	ional search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: ims Nos.: ause they relate to subject matter not required to be searched by this Authority, namely:
beca	ims Nos.: ause they relate to parts of the international application that do not comply with the prescribed requirements to such an ent that no meaningful international search can be carried out, specifically:
	ims Nos.: ause they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
	ional Searching Authority found multiple inventions in this international application, as follows:
2. As a any 3. As a	all required additional search fees were timely paid by the applicant, this international search report covers all searchable ms. all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of additional fee. only some of the required additional search fees were timely paid by the applicant, this international search report covers y those claims for which fees were paid, specifically claims Nos.:
	required additional search fees were timely paid by the applicant. Consequently, this international search report is ricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on l	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP2005/001641

Continuation of Box No.III of continuation of first sheet(2)

This International Searching Authority found multiple inventions in this international application, as follows:

In order for a group of inventions claimed in claims to satisfy the requirement of unity of invention, there must be special technical features for linking the group of inventions so as to form a single general inventive concept. In this connection, the inventions of two independent claims consisting of claims 1 and 11 recited in independent form and claims dependent therefrom are linked with each other only in relating to "a dye-sensitized solar cell comprising a polyester film and, superimposed on one major surface thereof, a transparent conductive layer". However, it is apparent that the dye-sensitized solar cell per se is publicly known as described in the below listed literature, etc., and hence being "adye-sensitized solar cell comprising a polyester film and, superimposed on one major surface thereof, a transparent conductive layer" per se cannot be a special technical feature.

Further, now, the relationship between the film (substance) of claim 1 and the production process of claim 11 will be studied. Even after thorough review of the whole description, although the production process of claim 11 is for obtaining of an electrode for dye-sensitized solar cell excelling in adhesion between transparent conductive layer and porous semiconductor layer (seen from what is described on page 10 of the description, etc.), it does not appear that the production process is for satisfying of specified conditions as a surface tension of transparent conductive layer that are specified in claim 1 (as treatment for attaining specified surface tension conditions, plasma treatment and some other means are explicitly described on page 7 of the description). From the above study, it does not appear that the invention of "production process" claimed in claim 11 is a process for producing the "substance" according to the invention of claim 1.

Consequently, among the group of inventions claimed in claims 1-13, there exist no special technical features for linking them so as to form a single general inventive concept. Therefore, it is apparent that the group of inventions claimed in claims 1-13 do not satisfy the requirement of unity of invention.

In summing up, without the need to study claims recited in dependent form, it appears that claims 1-13 cover at least two inventions.

- 1. JP 11-288745 A (Nikon Corp.), 19 October, 1999 (19.10.99)
- 2. JP 2002-50413 A (Japan Gore-Tex Inc.), 15 February, 2002 (15.02.02)
- 3. WO 2002/052654 Al (Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo), 04 July, 2002 (04.07.02)
- 4. JP 2002-280327 A (Lintec Corp.), 27 September, 2002 (27.09.02)
- 5. JP 2003-68373 A (Aisin Seiki Co., Ltd.), 07 March, 2003 (07.03.03)
- 6. JP 2003-234028 A (Konica Corp.), 22 August, 2003 (22.08.03)
- 7. JP 2003-308893 A (Bridgestone Corp.), 31 October, 2003 (31.10.03)

電話番号 03-3581-1101 内線 3477

	国際調査報告	国際出願番号	PCT/JP20	05/001641
A. 発明の	属する分野の分類(国際特許分類(IPC))			
Int. C17	. H01M 14/00, H01L 31,	/04		
	行った分野			
調査を行った	最小限資料 (国際特許分類 (IPC))		300	- 111
Int. C1	. H01M 14/00, H01L 31/	0 4		
日本国第 日本国3 日本国3	外の資料で調査を行った分野に含まれるもの実用新案公報1922-1996年公開実用新案公報1971-2005年登録実用新案公報1994-2005年実用新案登録公報1996-2005年			
国際調査で使用	用した電子データベース (データベースの名称	、調査に使用した用語	ā)	-
	ると認められる文献			,
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する	簡所の表示	関連する 請求の範囲の番号
A	JP 11-288745 A, (株式会社ニコン), 請求項1-7, 実施例など (ファミリ・	1999. 10. 19		1-13
A	JP 2002-50413 A, (ジャパンゴアテッ 2002.02.15,請求項1-7, 段落00		リーなし)	1-13
Α	JP 57-57628 A, (帝人株式会社), 1982 明細書全体 (ファミリーなし)	2. 04. 06	·	1-13
☑ C欄の続き	にも文献が列挙されている。	□ パテントフ:	ァミリーに関する別	紙を参照。
もの 「E」国際出願 以後に位 「L」優先権主 文献(E 文献 「O」口頭によ	のカテゴリー 連のある文献ではなく、一般的技術水準を示す 関目前の出願または特許であるが、国際出願日 を表されたもの E張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する 理由を付す) こる開示、使用、展示等に言及する文献 質目前で、かつ優先権の主張の基礎となる出願	「T」国際出願日又 出願と矛盾す の理解のため 「X」特に関連のあ の新規性又は 「Y」特に関連のあ 上の文献との	表された文献 は発生ではなる。 を発生ではなるのではなるのではなるのではないのではないであったとではないがながながながながながながながながながながながあったとででは、できる世界では、大きのでは、ないないは、ないないは、ないないないは、ないないは、ないないないないないない	き明の原理又は理論 指該文献のみで発明 よられるもの 経該文献と他の1以 同である組合せに
国際調査を完了	した日 26.04.2005	国際調査報告の発送	□ 17.5.2	005
日本国)名称及びあて先]特許庁(ISA/JP) 3便番号100-8915	特許庁審査官(権限 植 前	のある職員) 充 司	4X 9445

東京都千代田区霞が関三丁目4番3号

国際調査報告

- ///	HELD Lat 1 Serve A 1. or wheth	
C (続き). 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
A	JP 1-275031 A, (帝人株式会社), 1989.11.02 明細書全体 (ファミリーなし)	1-13
A	JP 1-259184 A, (グンゼ株式会社), 1989. 10. 16 請求項1-8、発明の詳細な説明全体 (ファミリーなし)	1-13
A	JP 8-148036 A, (日東電工株式会社), 1996.06.07 請求項1-5など (ファミリーなし)	1-13
A	JP 2000-31509 A, (大日本印刷株式会社), 2000.01.28 請求項1-3, 実施例1など (ファミリーなし)	1-13
P, A	JP 2004-265662 A, (東洋インキ製造株式会社), 2004. 09. 24 請求項1-9, 実施例など (ファミリーなし)	1-13
E, A	JP 2005-56627 A, (学校法人桐蔭学園), 2005. 03. 03 請求項1-21, 実施例など (ファミリーなし)	1-13
A	JP 2002-145615 A, (科学技術振興事業団), 2002.05.22 請求項1-3, 実施例など (ファミリーなし)	1-13
P, A	JP 2004-9362 A, (帝人デュポンフィルム株式会社), 2004.01.15 請求項1-18など & WO 2003/102057 A1	1-13
A	JP 6-207036 A, (東洋紡績株式会社), 1994.07.26 請求項1,段落0021,0023など (ファミリーなし)	1-13

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. 請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、
2.
3. □ 請求の範囲
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
別紙参照のこと
1. ✓ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. □ 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意
√ 追加調査手数料の納付と共に出願人から異議申立てが いった。

第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲に記載されている一群の発明が単一性の要件を満たすためには、その一群の発明を単一の一般的発明概念を形成するように連関させるため、特別の技術的特徴の存在が必要であるところ、独立形式で記載されている請求の範囲第1項、第11項に記載されている2つの独立請求項及びその従属項の発明は、「ポリエステルフィルムの片面に透明導電層を設けた色素増感型太陽電池」に関するという点でのみ連関するものであるが、色素増感型太陽電池そのものは後に列記する文献をはじめとして公知であることは明らかであり、「ポリエステルフィルムの片面に透明導電層を設けた色素増感型太陽電池」であること自体が特別な技術的特徴とはなり得ない。

さらに、ここで、請求の範囲第1項のフィルム(もの)と請求の範囲第11項の製造方法との連関について検討するに、明細書全体を精査しても、請求の範囲第11項の製造方法は、透明導電層と多孔質半導体層が密着性のよい色素増感型太陽電池用電極を得るためものではあるものの(明細書第10頁の記載などから)、請求の範囲第1項で規定する、透明導電層の表面張力として特定の条件を満たすようにするためのものであるとは認められない(特定の表面張力条件を得るための処理としては、プラズマ処理を始めいくつかの手法が明細書の第7頁において明示されている)。以上の検討から、請求の範囲第11項に記載された「製造方法」の発明は、請求の範囲第1項に記載された発明の「もの」を製造するための方法であるとも認められない。

そうすると、請求の範囲第1項-第13項に記載されている一群の発明の間には、単一の一般的発明概念を形成するように連関させるための、特別な技術的特徴は存しないこととなる。そのため、請求の範囲第1項-第13項に記載されている一群の発明が発明の単一性の要件を満たしていないことは明らかである。

してみれば、従属形式で記載された項に関しては検討するまでもなく、請求の範囲第1項 - 第13項には、少なくとも2つの発明が存在するものと認められる。

大献

- 1. JP 11-288745 A, (株式会社ニコン), 1999. 10. 19
- 2. JP 2002-50413 A, (ジャパンゴアテックス株式会社), 2002.02.15
- 3. WO 2002/052654 A1. (株式会社林原生物化学研究所). 2002. 07. 04
- 4. JP 2002-280327 A, (リンテック株式会社), 2002. 09. 27
- 5. JP 2003-68373 A, (アイシン精機株式会社), 2003.03.07
- 6. JP 2003-234028 A, (コニカ株式会社), 2003. 08. 22
- 7. JP 2003-308893 A, (株式会社ブリヂストン), 2003. 10. 31