Introduction Block-diagram State Space representation Diffence equations Impulse response and convolution Z-transform Observability and controlabilty

Lecture 4 - Discrete Time Systems - Representations

Pieter Appeltans

July 9, 2015

Outline

- Introduction
- 2 Block-diagram
- State Space representation
- 4 Diffence equations
- 5 Impulse response and convolution
- 6 Z-transform
- Observability and controlabilty

Introduction
Block-diagram
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlability

Discrete Time Signal

Definition

Discrete-time signals is defined only at discrete instants of time. The value (amplityde) can be either continu or discrete. x[k] is the value of a signal at the moment t=kT

Example

Discrete Time Systme

Sampling

The sampeling of a continious-time signal replaces the original continuous signal by a sequence of values at discrete time points.

Discrete Time System

Definition

A linear time-invariant (LTI) discrete time system processes an input vector u[k] to an output vector y[k].

Introduction
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlability

Discrete Time System

How to represent a discrete time?

- Block-diagram
- State space representation
- Difference/differential equation
- Impulse response
- Transferfunctions

Outline

- Introduction
- 2 Block-diagram
- 3 State Space representation
- 4 Diffence equations
- 5 Impulse response and convolution
- 6 Z-transform
- Observability and controlability

Block diagram

Definition

A block diagram is a visual representation of a system. All LTI's (Linear Time Invariant) systems can be constructed using 3 building blocks (memory element, summation element and multiplication element). Note that every memory element corresponds to one state variable.

Building blocks

Constant Multiplier

Delay element

Example: compond interes

- \bullet u[k]:The deposits and withdrawals from the bank account
- x[k]:The current saldo on bank account(before deposit and interest)
- y[k]: The acquired interest of that year
- x[k+1]: The saldo on the next year = current saldo + interest + deposits - withdrawals

Bad block diagrams

Delay-free loops

The issue is that this leads to an implicit connection. y[k] depends on y[k], which is not yet known You can easily rewrite this in an allowd shape $y[k] = u[k] + 3y[k] \iff y[k] = -\frac{1}{2}u[k]$

Bad block diagrams

Connecting two outputs without using a sum

The issue is that this can lead to inconsistencies. According to this block diagram the output of the systems S1 and S2 are equal.

Outline

- Introduction
- 2 Block-diagram
- State Space representation
- 4 Diffence equations
- 5 Impulse response and convolution
- 6 Z-transform
- Observability and controlabilty

State space representation

Definition

State space representation:

$$x[k+1] = Ax[k] + Bu[k]$$
$$y[k] = Cx[k] + Du[k]$$

This state space representation is specific to LTI systems:

- Linear: its easy to see these systems are linear
- Time-invariant: the matrices A,B,C,D do not depend on time, if it were to be a time-variant system the matrices would be replaced by A[k], B[k], C[k] and D[k].

From block diagram to state space

State space representation

- Let the output of the memory elements be $x_i[k]$.
- ② So the input of the memory elements are $x_i[k+1]$
- Trace back to retrieve equations for $x_i[k+1]$ and $y_i[k]$

This results in:

$$x[k+1] = u[k] + 1.05x[k]$$

 $y[k] = 0.05x[k]$

From state space to block diagram

Example

$$x[k+1] = Ax[k] + Bu[k]$$

$$y[k] = Cx[k] + Du[k]$$
 with $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 3 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}, C = \begin{bmatrix} 5 & 1 & 0 \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 \end{bmatrix}$

From state space to block diagram

- First add a delay element for every state $x_i[k]$
- ② Determine the input for every state x[k+1] from the matrixes A and B, as a combination of the states $x_i[k]$ and inputs u[k]3 Determine the outputs y[k] in the same way with the matrixes C
- and D

From state space to block diagram

Different state space representations

State space representation is not unique

Take the following system, which connects u[k] to y[k]:

$$x[k+1] = Ax[k] + Bu[k]$$
$$y[k] = Cx[k] + Du[k]$$

Now take a non-singular square matrix T and the following system. The relation between u[k] and y[k] will be the same.

$$Tx[k+1] = TAT^{-1}Tx[k] + TBu[k]$$
$$y[k] = CT^{-1}Tx[k] + Du[k]$$

With x' = Tx, $A' = TAT^{-1}$, B' = TB, $C' = CT^{-1}$ and D' = D, we have found a different state space representation for this system.

Solving state space equation

$$x[k+1] = Ax[k] + Bu[k]$$

$$y[k] = Cx[k] + Du[k]$$

We express $x[1], x[2], \ldots$ in function of x[0]:

$$x[1] = Ax[0] + Bu[0]$$

 $x[2] = Ax[1] + Bu[1] = A^2x[0] + ABu[0] + Bu[1]$
:

$$x[k] = A^{k}x[0] + \sum_{i=0}^{k-1} A^{k-1-i}Bu[i]$$

Solving state space equation

The output is y[k]:

$$y[k] = \begin{cases} Cx[0] + Du[0] & \text{if } k = 0\\ CA^{k}x[0] + \sum_{i=0}^{k-1} CA^{k-1-i}Bu[i] + Du[k] & \text{if } k > 0 \end{cases}$$

Outline

- Introduction
- 2 Block-diagram
- 3 State Space representation
- 4 Diffence equations
- 5 Impulse response and convolution
- 6 Z-transform
- Observability and controlability

Diffence equations

Definition

Similar to differential equations, but for discrete time.

General form:
$$\sum_{i=0}^{n} a_i y[k+i] = \sum_{i=0}^{n} b_i u[k+i]$$

With n the order of the system.

Solution in 2 parts

- 4 Homogenous: solution from input zero
- 2 Particular: solution derived as a response from the input

Homogenous difference equations

Definition

General form:
$$\sum_{i=0}^{n} a_i y[k+i] = 0$$

Example

$$y[k+1] - ay[k] = 0$$

 $y[k+1] = ay[k]$
 $y[1] = ay[0]$
 $y[2] = ay[1] = a^2y[0]$
 \vdots
 $y[n] = a^ny[0]$

Homogenous difference equations

solution

- Expected form of solution: r^k
- Substitution of the expected solution in the difference equation: $\sum_{i=0}^{n} a_i r^{k+i} = 0$
- Division by r^k leads to the characteristic equation: $\sum_{i=0}^{n} a_i r^i = 0$
- Solutions of the characteristic equation: r_1, r_2, r_3, \ldots
- Homogenous solution to the difference equation:

$$y[k] = c_1 r_1^k + c_2 r_2^k + c_3 r_3^k + \dots = \sum_{i=1}^n c_i r_i^k$$

Evariste Galois

Figure: variste Galois (25/10/1811 31/5/1832) was a French mathematician born in Bourg-la-Reine. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals.

Galois Theory

Galois theory provides a answer to the question why there is no formula for the roots of a fifth (or higher) degree polynomial equation in terms of the coefficients of the polynomial, using only the usual algebraic operations (addition, subtraction, multiplication, division) and application of radicals (square roots, cube roots, etc). It also explains why it is possible to solve equations of degree four or lower in the above manner, and why their solutions take the form that they do. Further.

Example

Homogeneous recurrence relations:

$$y[k+2] - 5y[k+1] + 6y[k] = 0$$

- Initial value: y[0] = 1, y[1] = 1
- Characteristic polynomial: $r^2 5r + 6 = 0$
- Roots: 2 and 3
- General solution: $c_1 2^k + c_2 3^k$
- Using the intital values:

$$\begin{cases} 1 = c_1 + c_2 \\ 1 = 2c_1 + 3c_2 \end{cases}$$
$$\begin{cases} 2 = c_1 \\ -1 = c_2 \end{cases}$$

• Result: $y[k] = 2^{k+1} - 3^k$

Example: Fibonacci sequence

Figure: Leonardo Bonacci (c. 1170 c. 1250)known as Fibonacci was an Italian mathematician, considered to be "the most talented Western mathematician of the Middle Ages".

Figure: Fibonacci sequence

Example: Fibonacci sequence

Example

Homogeneous recurrence relations:

$$y[k+2] = y[k+1] + y[k]$$

• Initial value: y[0] = 1, y[1] = 1

• Characteristic polynomial: $r^2 - r - 1 = 0$

• Roots: $\frac{1+\sqrt{5}}{2}$, $\frac{1-\sqrt{5}}{2}$

• General solution: $y[k] = c_1(\frac{1+\sqrt{5}}{2}) + c_2(\frac{1-\sqrt{5}}{2})$

Intital values:

$$\begin{cases} c_1 + c_2 = 1\\ c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2} = 1 \end{cases}$$
$$\begin{cases} c_1 = \frac{5 + \sqrt{5}}{10}\\ c_2 = \frac{5 - \sqrt{5}}{10} \end{cases}$$

• Result: $y[k] = (\frac{5+\sqrt{5}}{10})(\frac{1+\sqrt{5}}{2})^k + (\frac{5-\sqrt{5}}{10})(\frac{1-\sqrt{5}}{2})^k$

Multiple roots and Complex roots

Multiple roots

For a multiple root r_i with multiplicity m add $r_i^k, kr_i^k, \dots, k^{m-1}r_i^k$

Complex roots

Complex roots will result in oscillating behavior. If the difference equations and starting conditions are both real the complex roots can only be present in conjugate pairs, the constants will also be in conjugate pairs.

$$r_{i} = Re^{j\phi} r_{i+1} = Re^{-j\phi}$$

$$c_{i} = R_{0}e^{j\phi_{0}} c_{i+1} = R_{0}e^{-j\phi_{0}}$$

$$c_{i}r_{i}^{k} + c_{i+1}r_{i+1}^{k} = R_{0}Re^{jk\phi+j\phi_{0}} + R_{0}Re^{-(jk\phi+j\phi_{0})}$$

This can be converted into a cosine and sine using Eulers formula:

$$y[k] = R_0 R(\cos(k\phi + \phi_0) + \sin(k\phi + \phi_0)) + R_0 R(\cos(k\phi + \phi_0) - \sin(k\phi + \phi_0))$$

= $2R_0 R(\cos(k\phi + \phi_0))$

Eulers formula

Theorem

$$e^{j\phi} = \cos(\phi) + \sin(\phi)j$$

Proof.

Using power series:

$$e^{\phi j} = 1 + jx - \frac{x^2}{2!} - \frac{jx^3}{3!} + \frac{x^4}{4!} + \frac{jx^5}{5!} + \dots$$

$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right) + \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots\right)j$$

$$= \cos(\phi) + \sin(\phi j)$$

Non-homogeneous difference equations

Definition

$$\sum_{i=0}^{n} a_{i} y[k+i] = \sum_{i=0}^{n} b_{i} u[k+i]$$

A linear combination of inputs results in the same linear combination of the outputs resulting from each input individually.

Solution

The equation can thus be solved for each input individually and the results added together afterwards.

The resulting particular solutions can then be added to the general form of the homogenous solution.

Particular solutions to difference equations

Input $u[k]$	Suggested solution $y[k]$
k	$\alpha_1 \mathbf{k} + \alpha_0$
k ⁿ	$\sum_{i=0}^{n} \alpha_{i} k^{i}$
a ^k	αa^k
k ⁿ a ^k	$\left(\sum_{i=0}^{n}\alpha_{i}k^{i}\right)a^{k}$
$cos(k\phi)$	$lpha cos(k\phi+\phi_0)$
$a^k cos(k\phi)$	$\alpha a^k \cos(k\phi + \phi_0)$
$k^n a^k cos(k\phi)$	$(\sum_{i=0}^{n} \alpha_i k^i \alpha a^k \cos(k\phi + \phi_0))$

Example

Example

- Difference equation : $y[k+2] 5y[k+1] + 6y[k] = (-1)^k$
- Initial value: $y[1] = \frac{1}{4}, y[0] = \frac{1}{12}$
- Homogeneous difference equation: y[k+2] 5y[k+1] + 6y[k] = 0
- Characteristic polynomial: $r^2 5r + 6 = 0$
- Homogeneous solution: $y_{hom}[k] = c_1 2^k + c_2 3^k$
- Particular solution: $y_{par}[k] = \alpha(-1)^k$
- Substitution: $\alpha(-1)^{k+2} 5\alpha(-1)^{k+1} + 6\alpha(-1)^k = (-1)^k$
- $\alpha = \frac{1}{12}$
- General solution: $y[k] = c_1 2^k + c_2 3^k + \frac{1}{12} (-1)^k$
- Using the initial values: $c_1 = -\frac{1}{3}, c_2 = \frac{1}{3}$ Result: $y[k] = -\frac{1}{3}2^k + \frac{1}{3}3^k + \frac{1}{12}(-1)^k$

Outline

- Introduction
- 2 Block-diagram
- State Space representation
- 4 Diffence equations
- 5 Impulse response and convolution
- 6 Z-transform
- Observability and controlabilty

Impulse responses

Definition

$$\delta[k] = \begin{cases} 1 & \text{if if } k = 0 \\ 0 & \text{otherwise} \end{cases}$$

Theorem

You can decompose any signal in a sum of impulse response:

$$f[k] = \sum_{i=-\infty}^{i=\infty} \delta[k-i]f[i] = \delta[k] * f[k]$$

Convolution

Definition

$$w[k] = u[k] * v[k] = \sum_{i=-\infty}^{\infty} u[i]v[k-i]$$

Solve

- Flip v[i] around vertical axis(v[-i]).
- ② Slide to the right over k steps(v[k-i]).
- 3 Multiply u[i] and v[k-i]
- Sum all the vaules.

Convolution theorem (DT)

Theorem

$$y[k] = u[k] * h[k]$$

Proof.

$$\delta[k] \to h[k]
\delta[k+i] \to h[k+i]
u[k] = \sum_{i=-\infty}^{i=\infty} \delta[k-i]u[i] \to \sum_{i=-\infty}^{i=\infty} h[k-i]u[i]
u[k] \to u[k] * h[k] = y[k]$$

Impulse response

Definition

The impulse response of a dynamic system is its output when presented with a brief input signal, called an impulse.

Impulse response

$$h[k] = \begin{cases} 0 & \text{if } k < 0 \\ D & \text{if } k = 0 \\ CA^{k-1}B & \text{if } k > 0 \end{cases}$$

Introduction
Block-diagram
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlability

Examples of Dirac-deltas

Popping balloons for acoustic measurements

Example: Leontief model of a planned economy

- Won the nobel prize in 1973
- A simple model that assigns values to different sectors
- For simplicity we choose a planned economy. But today governments all over the world are using similar models to model their economy.

Example: Leontief model of a planned economy

Leontief divided the economy in sectors who buy from eachother. The optimal production of some sector this month depends on the demand (external and internal) of the following month. So the system is non causal.

$$x[k-1] = Ax[k] + Bu[k]$$
$$y[k] = lx[k]$$

Outline

- Introduction
- 2 Block-diagram
- State Space representation
- 4 Diffence equations
- 5 Impulse response and convolution
- 6 Z-transform
- Observability and controlability

Z-transform

Definition

- Discrete equivalent to the Laplace-transform
- Converts time dependent descriptions of systems to the time-independent Z-domain.
- Simplifies many calculations:
 - Convolution theorem convolution becomes multiplication
 - Linear difference equations become simple algebraic expressions
 - . . .

Z-transform

2 forms

 Bilateral: Requires knowledge of x for all values of k, including negative values Can be used for non-causal systems

$$X(z) = \sum_{k=-\infty}^{\infty} x[k]z^{-k}$$

• Unilateral: Only requires knowledge of x for positive values of k Can only be used for causal systems without loss of information $X(z) = \sum_{k=0}^{\infty} x[k]z^{-k}$

Z-transform

Example

$$x[k] = \begin{cases} 1 & -1 & 0 & 2 & 4 \\ & & \uparrow & \end{cases}$$

$$X(z) = \sum_{k=-3}^{1} x[k]z^{-k} = z^3 - z^2 + 2 + 4z^{-1}$$

Introduction
Block-diagram
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlability

Properties Unilateral Z-transform

Propery	Time Domain	Z-domain
Linearity	$af_1[n] + bf_2[n] + \dots$	$aF_1(Z) + bF_2(Z) + \dots$
Right Shift(m>0)	f[k-m]	$z^{-m}F(Z)$
Left Shif (m>0)	f[k+m]	$z^{m}\left(F(z)-\sum_{i=0}^{m-1}f[i]z^{-i}\right)$
Convolution	f[k] * g[k]	F(z)G(z)
Multiplication by a^k	$a^k f[k]$	$F(a^{-1}z)$
Summation in time	$\sum_{i=0}^{k} f[i]$	$\frac{z}{z-1}F(Z)$
Differentation in z	$k^m f[k]$	$\left(-z\frac{d}{d}\right)^m F(z)$
Periodic Sequence	f[k] = f[k+N]	$F(z) = \frac{z^{N}}{z^{N-1}} \sum_{k=0}^{N-1} f[k]z^{-1}$
Initial Value	f[0]	$\lim_{ z \to\infty}F(z)$
Final value	$f[\infty]$	$\lim_{z\to 1}(z-1)F(z)$

List of common Z-transform pairs

$\delta[k]$	1
$\delta[k-m]$	z^{-m}
1	$\frac{z}{(z-1)}$
a^k	$\frac{z}{(z-a)}$
ka^k	$\frac{az}{(z-a)^2}$
k^2a^k	$\frac{az(z+a)}{(z-a)^3}$
k^3a^k	$\frac{az(z^2+4az+a^2)}{(z-a)^4}$
k^4a^k	$\frac{az(z^3+11az^2+11a^2z+a^3)}{(z-a)^5}$
k^5a^k	$\frac{az(z^4+26az^3+66a^2z^2+26a^3z+a^4)}{(z-a)^6}$
$\frac{(k+1)(k+2)(k+m)a^k}{m!}$	$\frac{z^{m+1}}{(z-a)^{m+1}}$

List of common Z-transform pairs

$a^k \sin k\omega T$	$\frac{az\sin\omega T}{z^2 - 2az\cos\omega T + a^2}$
$a^k \cos k\omega T$	$\frac{z(z-a\cos\omega T)}{z^2-2az\cos\omega T+a^2}$
$\cos(k\omega T + \theta)$	$\frac{z(z\cos\theta-\cos(\omega T-\theta))}{z^2-2az\cos\omega T+1}$
$ka^k \sin k\omega T$	$\frac{z(z-a)(z+a)a\sin\omega T}{(z^2-2az\cos\omega T+a^2)^2}$
$ka^k\cos k\omega T$	$\frac{az(z^2\cos\omega T - 2az + a^2\cos\omega T)}{(z^2 - 2az\cos\omega T + a^2)^2}$
$a^k \sinh k\omega T$	$\frac{az\sinh\omega T}{z^2 - 2az\cosh\omega T + a^2}$
$a^k \cosh k\omega T$	$\frac{z(z-a\cosh\omega T)}{z^2-2az\cosh\omega T+a^2}$
$\frac{a^k}{k!}$	$e^{rac{lpha}{z}}$
$\frac{n!}{(n-k)!k!}a^kb^{n-k}$	$\frac{(bz+a)^n}{z^n}$
$\frac{1}{k}$	$\ln\left(\frac{z}{z-1}\right)$
$\frac{k(k-1)(k-2)(k-m+1)}{m!}$	$\frac{z}{(z-1)^{m+1}}$

Region of convergence

Z-transform not unique

Two different signals could have the same Z-transfor over a different region of convergence.

Definition

The region of convergence is the set of complex numbers z for which: $\sum_{k=0}^{\infty} |x[k]z^{-k}| < \infty$

$$k=-\infty$$

 We will look at convergence separately for positive and negative k, splitting the convergence criterion in 2:

$$k < 0 : |x[k]| \le M_- R_-^k$$

 $k \ge 0 : |x[k]| \le M_+ R_+^k$

• Using $z = re^{i\theta}$ with R+ as small as possible and R- as large as possible we get:

$$\sum_{k=-\infty}^{\infty} |x[k]z^{-k}| = \sum_{k=-\infty}^{\infty} |x[k]| r^{-k}$$

$$= \sum_{k=1}^{\infty} |x[-k]| r^{k} + \sum_{k=0}^{\infty} |x[k]| r^{-k}$$

$$\leq M_{-} \sum_{k=1}^{\infty} (R_{-}^{-1}r)^{k} + M_{+} \sum_{k=0}^{\infty} (R_{+}r^{-1})^{k}$$

Region of convergence

The sums are finite if $R_-^{-1}r < 1$ and $R_+r^{-1} < 1$ Region of convergence: $R_+ < R_-$ R+_i R-: Ring R-_i R+: No ROC Causal system, for negative k: $x[k] = 0 \Rightarrow R_- = +\infty$ cannot contain any poles of the system ROC of a stable system always contains the unit circle.

Introduction
Block-diagram
State Space representation
Diffence equations
mpulse response and convolution
Z-transform
Observability and controlability

Inverse Z-transform

Inverse Z-transform

- Split the function up in partial fractions
- ② Use the table to transform each partial fraction individually to the t-domain

Partial fraction decomposition

- Factorizing the denominator
- ② If all poles(zeros of the denominator) have multiplicity 1:

$$F(z) = \frac{\sum_{i=0}^{n} b_i z^i}{a_n(z - p_1)(z - p_2) \dots (z - p_n)}$$
$$= \alpha_0 + \alpha_1 \left(\frac{z}{z - p_1}\right) + \dots + \alpha_n \left(\frac{z}{z - p_n}\right)$$

The coefficients can be calculated by:

$$\alpha_0 = F(0)$$
 $\alpha_i = \left[\frac{z-p_i}{z}F(z)\right]_{z=p_i}$

Inverse Z-transform

Partial fraction decomposition

4 If there are poles with multiplicity higher than 1:

$$F(z) = \frac{\sum_{i=0}^{n} b_i z^i}{a_n(z - p_1)^{n_1} (z - p_2)^{n_2} \dots}$$

$$= \alpha_0 + \alpha_1 \left(\frac{z}{z - p_1}\right) + \alpha_2 \left(\frac{z}{z - p_1}\right)^2 + \dots + \alpha_{n_1} \left(\frac{z}{z - p_1}\right)^{n_1}$$

$$+ \beta_1 \left(\frac{z}{z - p_2}\right) + \beta_2 \left(\frac{z}{z - p_2}\right)^2 + \dots + \beta_{n_2} \left(\frac{z}{z - p_2}\right)^{n_2}$$

Where the highest coefficient for each pole can be calculated by:

$$\alpha_0 = F(0) \ \alpha_1 = \left[\left(\frac{z - p_1}{z} \right)^{n_1} F(z) \right]_{z = p_1} \beta_1 = \left[\left(\frac{z - p_2}{z} \right)^{n_2} F(z) \right]_{z = p_2}$$

Introduction
Block-diagram
State Space representation
Diffence equations
mpulse response and convolution
Z-transform
Observability and controlability

Inverse Z-transform

Partial fraction decomposition

• Any remaining coefficients can be found by evaluating the equation for a number of values of z.

Inverse Z-transform

F(z)	f[k]
1	$\delta[k]$
$\frac{z}{z-a}$	a ^k
$\frac{z^{m+1}}{(z-a)^{m+1}}$	$\frac{(k+1)(k+2)+(k+m)a^k}{m!}$

Inverse Z-transform

Example

$$F(z) = \frac{z^3 + 2z^2 + z + 1}{z^3 - z^2 - 8z + 12}$$

- The denominator has a zero in 2 (m=2) and -3
- Partial fraction decomposition:

$$\alpha_0 + \alpha_1 \left(\frac{z}{z-2}\right) + \alpha_2 \left(\frac{z}{z-2}\right)^2 + \beta_1 \left(\frac{z}{z+3}\right)$$

Example

• By evaluating the function for z=1:

$$\frac{5}{4} = \alpha_0 - \alpha_1 + \alpha_2 + \beta/4$$

 $\alpha_1 = -9/50$

- Result : $F(z) = \frac{1}{12} \frac{9}{50} \frac{z}{z-2} + \frac{19}{20} \frac{z^2}{(z-2)^2} + \frac{11}{75} \frac{z}{z+3}$
- Inverse Z-transform:

$$f[k] = \delta[k]/12 + 2^k k_{\frac{19}{20}} + 2^k \frac{77}{100} + (-3)^k \frac{11}{75}$$

Inverse Z-transform

Another technique for calculating the inverse Z-transform is direct division.

The numerator of the transfer function is divided by the denominator via long division.

Teller
$$z^3 + 2z^2 + z + 1$$

$$\underline{z^3 - z^2 - 8z + 12}$$

$$3z^2 + 9z - 11$$

$$\underline{3z^2 - 3z - 24 + 36z^{-1}}$$

$$12z + 13 - 36z^{-1}$$

$$\underline{12z - 12 - 96z^{-1} + 144z^{-2}}$$

$$25 + 60z^{-1} - 144z^{-2}$$
 ...

$$\frac{z^3 - z^2 - 8z + 12}{1 + 3z^{-1} + 12z^{-2} + 25z^{-3} + \dots = \sum_{k=0}^{\infty} f[k]z^{-k} }$$

A system is described by a difference equation of the following form:

$$\sum_{i=0}^{n} a_{i} y[k+i] = \sum_{i=0}^{n} b_{i} u[k+i]$$

After the Z-transform:

$$a_0Y(z) + \sum_{i=1}^n a_i z^i \left[Y(z) - \sum_{j=0}^{i-1} y[j] z^{-j} \right] = b_0U(z) + \sum_{j=1}^n b_j z_j \left[U(z) - \sum_{j=0}^{i-1} u[j] z^{-j} \right]$$

Rearranged:

$$Y(z) = \frac{\sum_{i=1}^{n} b_{i} z^{i}}{\sum_{i=1}^{n} a_{i} z^{i}} U(z) - \frac{\sum_{i=1}^{n} b_{i} z^{i} \left[\sum_{j=0}^{i-1} u[j] z^{-j}\right] - \sum_{i=1}^{n} a_{i} z^{i} \left[\sum_{j=0}^{i-1} y[j] z^{-j}\right]}{\sum_{i=1}^{n} a_{i} z^{i}}$$

Well apply the following transformation of the double summations:

$$\sum_{i=1}^{n} b_{i} z^{i} \sum_{j=0}^{i-1} u[j] z^{-j} = \sum_{s=1}^{n} \sum_{j=0}^{n-s} b_{s+j} u[j] z^{s}$$

The final simplified result is:

$$Y(z) = \frac{\sum_{i=1}^{n} b_{i} z^{i}}{\sum_{j=1}^{n} a_{i} z^{i}} U(z) + \frac{\sum_{s=1}^{n} \left(\sum_{j=0}^{n-s} a_{s+j} y[j] - \sum_{j=0}^{n-s} b_{s+j} u[j]\right) z^{s}}{\sum_{i=1}^{n} a_{i} z^{i}}$$

With this result it is easy to find the resulting output from a given input or vice-versa given a difference equation.

Right-hand fraction = output resulting from starting conditions: will vanish with time = transient behavior

Left-hand fraction = output resulting from input: will remain = steady state response.

 $H(z) = \frac{\sum_{i=1}^{n} b_i z_i}{\sum_{i=1}^{n} a_i z_i}$ is the transfer function of the system. This is the z transform of

h[k](the impulsresponse)

The transfer function can also be derived directly from the state space model of a system:

$$x[k+1] = Ax[k] + Bu[k]$$
$$y[k] = Cx[k] + Du[k]$$

The Z-transform gives:

$$z(X(z) - x[0]) = AX(z) + BU(z)$$
$$Y(z) = CX(z) + DU(z)$$

Rearranged to have X(z) in explicit form:

$$X(z) = (zI - A)^{-1}zx[0] + (zI - A)^{-1}BU(z)$$

$$Y(z) = C(zI - A)^{-1}zx[0] + \left[C(zI - A)^{-1}B + D\right]U(z)$$

If
$$[0] = 0$$
 and $u[k] = \gamma[k](U(z) = 1)$:
 $H(z) = C(zI - A)^{-1}B + D$
 $Y(z) = H(z)U(z)$

Z-Transform

Definition

A pole p_i of of the is system is a point int the complex z-plane where $H(p_i)=\pm\infty$ i.e. the denominator becomes zero.

$$\sum_{i=0}^{n} a_i z^i = 0$$

Definition

A zero n_i is a point where $H(n_i) = 0$ i.e. the numinator becomes zero.

$$\sum_{i=0}^{n} b_i z^i = 0$$

Link between eigenvalues and poles

Are Eigenvalues of A poles of H(z)?

- As z approaches an eigenvalue of A, $(zI A)^{-1}$ is no longer defined.
- $C(zI A)^{-1}B$ may still be defined depending on the values of C and B.

Rule 1

An Eigenvalue of A will sometimes, but not always, be a pole of H(z).

Definition

If every eigenvalue of A is also a pole of H(z) then a minimal number of internal states has been achieved.

Link between Eigenvalues and poles

Are poles of H(z) Eigenvalues of A?

$$H(z) = C(zI - A)^{-1}B + D$$

B, C and D are matrixes with properly defined values. If H(z) is undefined then $(zI - A)^{-1}$ must be the cause z must be an eigenvalue of A

Rule 2

Poles of H(z) are always eigenvalues of A

Stabiltiy

- Internal Stability
 - All possible internal states return to zero after a finite time in the absence of an input.
 - All eigenvalues of the matrix A are contained within the a circle of radius 1 around zero in the complex plane.
- BIBO-Stability (Bounded-Input Bounded-Output)
 - Every bounded input results in a bounded output
 - All poles are contained within the a circle of radius 1 around zero in the complex plane
 - BIBO-Stability follows from Internal Stability, but the inverse is not necessarily true.

Introduction
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlabilty

Can unstable systems exist?

According to the mathematical models we have discussed unstable systems need an infinite amount of energy.

What happens in the real world?

- The system enters a state in which the current linear model is no longer valid(Non linear behavior).
- Smaller unaccounted effects become more prominent
- The system malfunctions and may cause damage to itself or its surroundings.
- Something else bad happens

Introduction
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlability

Stability

Introduction
Block-diagram
State Space representation
Diffence equations
mpulse response and convolution
Z-transform
Observability and controlability

Airplane stall

- Airplanes generate lift using the Venturi effect.
- Faster moving air has a lower pressure.
- Eddy currents may be created due to a too slow airspeed or too sharp ascent.
- Turbulent airflow causes a loss of the lift generated by the Venturi effect.
- Without the necessary lift an airplane becomes an unstable system.

Introduction
Block-diagram
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlabilty

Busses and other tall vehicles have a tendency to roll when taking turns too quickly. A London bus is loaded with sandbags and must be able to lean at an angle of at least 280 while still returning all tires to the ground. Modern day car manufacturers have to pass multiple tests for stability while maneuvering

Starting from the previous result:

$$Y(z) = \frac{\sum_{i=1}^{n} b_{i}z_{i}}{\sum_{i=1}^{n} a_{i}z_{i}} U(z) + \frac{\sum_{s=1}^{n} \left(\sum_{j=0}^{n-s} a_{s+j}y[j] - \sum_{j=0}^{n-s} b_{s+j}u[j]\right)z^{s}}{\sum_{i=1}^{n} a_{i}z^{i}}$$

We wish to find the resulting output from the input:

$$u[k] = \cos(k\alpha + \theta)$$

To simplify derivation, we use:

$$u[k] = e^{j(k\alpha+\theta)}$$

With Z-transform:
$$U(z) = \frac{ze^{j\theta}}{z - e^{j\alpha}}$$

Filling in U(z) and splitting into partial fractions:

$$Y(z) = \frac{\sum_{i=1}^{n} b_{i} z_{i}}{\sum_{i=1}^{n} a_{i} z_{i}} \frac{z e^{j\theta}}{z - e^{j\alpha}} + \frac{\sum_{s=1}^{n} \left(\sum_{j=0}^{n-s} a_{s+j} y[j] - \sum_{j=0}^{n-s} b_{s+j} u[j]\right) z^{s}}{\sum_{i=1}^{n} a_{i} z^{i}}$$

$$= \frac{cz}{z - e^{j\alpha}} + \frac{d_{1}z}{z - p_{1}} + \dots + \frac{d_{n}z}{z - p_{n}} + g$$

Calculating the coefficient c:

$$c = \left[Y(z)^{\frac{z - e^{j\alpha}}{z}} \right]_{z = e^{j\alpha}} = \left[H(z)e^{j\theta} \right]_{z = e^{j\alpha}} = H(e^{j\alpha})e^{j\theta}$$

After the inverse Z-transform:

$$y[k] = H(e^{j\alpha})e^{j(k\alpha+\theta)} + d_1p_1^k + \dots + d_np_n^k + g\gamma[k]$$

= $|H(e^{j\alpha})|e^{j(k\alpha+\theta+\angle H(e^{j\alpha}))} + d_1p_1^k + \dots + d_np_n^k + g\gamma[k]$

Because of linearity we can ignore the imaginary component, leading to the result:

$$y[k] = \underbrace{ | H(e^{j\alpha}) | \cos(k\alpha + \theta + \angle H(e^{j\alpha}))}_{\text{staedy state}} + \underbrace{Re(d_1p_1^k + \dots + d_np_n^k + g\gamma[k])}_{\text{transient behavure}}$$

Input	Output
$cos(k\alpha + \theta)$	$\mid H(e^{j\alpha}) \mid cos(k\alpha + \theta + \angle H(e^{j\alpha}))$

Example

•
$$u[k] = cos(3k + \pi) \Rightarrow \alpha = 3$$
 $\theta = pi$

•
$$H(z) = \frac{z^2+4}{(z^2+6)(z-1)}$$

•
$$H(e^{3j}) = 0.357e^{0.055j}$$

 The resulting output has been reduced to a third in amplitude and has undergone a small phase shift.

$$y[k] = 0.357\cos(3k + \pi + 0.055)$$

Introduction
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlability

Complex Eigenvalues

As with the roots to the characteristic equation in difference equations, complex and/or negative eigenvalues for A create oscillation. $\|\lambda\| < 1$: The oscillation will decrease in magnitude: stable $\|\lambda\| > 1$: The oscillation will increase in magnitude: unstable $\|\lambda\| = 1$: The oscillation will maintain the same magnitude indefinitely: unstable The smallest achievable period is 2 times the step time, for negative real eigenvalues.

Complex Eigenvalues

Outline

- Introduction
- 2 Block-diagram
- State Space representation
- 4 Diffence equations
- 5 Impulse response and convolution
- 6 Z-transform
- Observability and controlabilty

Observability and controlabilty

Observability

A system is observable if every initial state x[0] can be determined from the observation of y[k].

The state space model without inputs gives us:

$$x[k+1] = Ax[k] y[k] = Cx[k]$$

Now we can determine a set of vector equations in x[0]

$$x[1] = Ax[0], x[2] = A^{2}x[0], \dots, x[n-1] = A^{n-1}x[0]$$

If the system has n internal states then n equations are needed:

$$y[0] = Cx[0], y[1] = Cx[1] = CAx[0], \dots, y[n-1] = CA^{n-1}x[0]$$

$$\begin{bmatrix} y[0] \\ y[1] \\ \vdots \\ y[n-1] \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \times [0]$$

Observability

The system is observable if

$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

has rank n.

Controlable

A system is controllable if it can be brought to a desired state using the inputs in a finite time.

Again we start from the state space model:

The following equations can be derived:

$$x[k+1] = Ax[k] + Bu[k]$$

$$x[1] = Ax[0] + Bu[0]$$

$$x[2] = A^{2}x[0] + ABu[0] + Bu[1]$$

$$x[3] = A^{3}x[0] + A^{2}Bu[0] + ABu[1] + Bu[2]$$

$$\vdots$$

$$x[n] = A^{n}x[0] + A^{n-1}Bu[0] + \dots + Bu[n-1]$$

Controllability

This last equation can be rewritten as:

This last equation can be rewritten as:
$$x[n] - A^n x[0] = \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix} \begin{bmatrix} u[n-1] \\ u[n-2] \\ \vdots \\ u[1] \\ u[0] \end{bmatrix}$$
 For a given

x[0] and a desired x[n] the required inputs can be found by solving this system. $\begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$ is called the controllability matrix of the system. A system is said to be controllable if the set of equations can be solved for a given x[0] and any desired x[n]. This is the case if the controllability matrix has a rank n.

Introduction
Block-diagram
Block-diagram
State Space representation
Diffence equations
Impulse response and convolution
Z-transform
Observability and controlability

Detectability and Stabilizability

Observability and controllability are important terms in control theory.

Detectability and stabilizability are also often used as weaker constraints.

A system is detectable if all unstable states are observable.

A system is stabilizable if all unstable states are controllable.

Detectability and stabilizability are also important terms in control theory.

Overview

