

数字逻辑与处理器基础实验

2024夏·绪论

王锐、张超

2024年6月29日

- 1.综合实验要求
 - 1.1实验内容
 - 1.2外设控制
 - 1.3性能分析
- 2.时间节点
 - 2.1答疑时间
 - 2.2现场验收时间
 - 2.3实验报告提交时间
- 3.评分规则
 - 3.1现场验收评分
 - 3.2实验报告评分
 - 3.3"龙芯杯"相关评分
- 4.总结

- 1.综合实验要求
 - 1.1实验内容
 - 1.2外设控制
 - 1.3性能分析
- 2.时间节点
 - 2.1答疑时间
 - 2.2现场验收时间
 - 2.3实验报告提交时间
- 3.评分规则
 - 3.1现场验收评分
 - 3.2实验报告评分
 - 3.3"龙芯杯"相关评分
- 4.总结

1.1实验内容

- 夏季学期1-3周, 占32学时, 以下内容二选一完成即可
- (1)将春季学期理论课上设计的MIPS处理器改进为流水线结构,并利用此处理器和理论课汇编语言大作业中的任意一种算法,完成排序任务。
 - 要点:
 - 外设的设计
 - 流水线中冒险和数据关联问题
 - 测试验证和性能分析
- (2)使用数字逻辑电路求解排序问题(任选算法),针对硬件实现的特点进行优化,并和在单周期MIPS处理器上求解同一问题作比较。(起评分70分)
 - 要点:
 - 对两种实现方式进行比较:资源消耗、求解时间、实现灵活性等

1.1实验内容-设计要求

- 设计一个 5 级流水线的 MIPS 处理器, 建议采用如下方法解决竞争问题:
 - a)采用完全的 forwarding 电路解决数据关联问题。
 - b)对于 Load-use 类竞争采取阻塞一个周期+Forwarding 的方法解决
 - c)对于分支指令在 EX 阶段判断(提前判断也可以),在 分支发生时刻取消 ID 和IF 阶段的两条指令。
 - d)对于 J 类指令在 ID 阶段判断, 并取消 IF 阶段指令。

• 指令集

- 空指令: nop (0x0000000,即sll \$0,\$0,0)
- 存储访问指令: lw, sw, lui
- 算术指令:add, addu, sub, subu, addi, addiu
- 逻辑指令:and, or, xor, nor, andi, sll, srl, sra, slt, sltu, sltiu
- 分支和跳转指令: beq, blez, bgtz, bltz 和 j、jal、jr、jalr
- 其他指令可以根据情况自行添加。

1.综合实验要求

1.1实验内容-测试数据

- 测试数据
 - 测试数据格式参照理论课汇编作业要求
 - 测试数据长度应不小于20个正整数
- 测试数据的输入和输出
 - 基本要求
 - 写在汇编指令文件中或者对RAM进行initial初始化
 - 将排序结果,由小到大,以16进制的形式显示到数码管
 - 每个数据保持1秒, 41A8, 3AF2(合理利用小数点表示16进制)
 - 提高要求
 - 使用UART串口输入数据,数据分隔方式自定
 - 将排序结果,由小到大,用UART串口输出,保持4N个byte分别代表N个正整数(000041A8,00003AF2)
 - 注意大小端变化, 便于阅读
- 现场验收有可能会要求临时修改部分数值

输入文件 "a.in" 为小端的二进制文件, 其内容为 $4 \times (N+1)$ 个 byte,其中最开始的4 byte为正整数N(N <= 1000),N为 待排序数据个数。接下来 4N 个 byte分别 为N个正整数(每个正整数占据4 byte, 且皆小于 2^{16})

1.2外设控制-存储

- 地址空间
 - 哈弗结构: 指令地址空间和数据地址空间是分离的
 - 指令存储器采用ROM实现
 - 数据地址空间包括数据存储器、外设等
 - 数据存储器采用RAM实现, 其地址分配如下表

地址范围(字节地址)	功能		
0x00000000~0x000007FF	数据存储器		
0x40000010	七段数码管		
0x40000018~20	UART (选做)		

1.2外设控制-七段数码管

- 外设寄存器读写,控制数码管
- 合理利用小数点显示十六进制数

地址范围 (字节地址)	功 能	描述
0x40000010	七	Obit: CA
	段	1bit: CB
	数	
	码	7bit: DP
	管	8bit: ANO
		9bit: AN1
		10bit: AN2
		11bit: AN3

读外设寄存器

1.综合实验要求

1.2外设控制-七段数码管软件编程

- 不使用译码器等模块完成数字显示
- 软件操作提示:
 - ① 将测试数据导入RAM
 - ② 完成排序算法

对数字2, g到a查表可以得到1011011, AN0=1, 其他为0。因此向0x4000010地址写入0x015B即可。

可以利用人眼视觉暂留效应,使用软件延时,每位显示1ms,轮流显示各位数字

使用软件延时,1秒后,切换下一个数字,由小到大显示排序结果,16位正整数,可省略0000的显示。

Bit	11	10	9	8	7	6	5	4	3	2	1	0
对应管脚	AN3	AN2	AN1	AN0	dp	g	f	е	d	С	b	а
值	0	0	0	1	0	1	0	1	1	0	1	1

1.2外设控制-UART串口

• 选做内容,参考春季实验三

地址范围	功能	备注
0x40000018	串口发送数据UART_TXD	串口发送数据寄存器,只有低8bit有效;对该地址的写操作将触发新的UART发送
0x4000001C	串口接收数据UART_RXD	串口接收数据寄存器,只有低8bit有效
0x4000020	串口状态、控制UART_CON	2bit:发送状态,每当UART_TXD中的数据发送完毕后该比特置'1',当执行对该地址的读操作后,将自动清零3bit:接收状态,每当UART_RXD中已经接收到一个完整的字节时该比特置'1',当执行对该地址的读操作后,将自动清零4bit:模块状态,0-发送模块处于空闲状态,1-发送模块处于发送状态

1.3性能分析-验证及CPI

- 使用MARS等仿真器确定完成选定排序算法所执行的指令总数N,通过Verilog代码仿真确定完成算法所消耗的时钟周期数C,计算平均执行一条指令所需要的时钟周期数CPI=C/N,并根据时钟频率计算平均每秒执行指令数目
- 指令数统计方法
 - (1)对一个可执行的汇编程序首先进行**编译**,在执行界面选择 Tools菜单栏,选择Instruction counter

1.3性能分析-验证及CPI

- 指令数统计方法
 - (2)点击"Connect to MIPS",如果看到的指令数不是零,可以 先reset,然后执行汇编程序,指令数会随着程序执行变换,支 持设置断点,读出 Instruction so far就是程序运行到指定位置的 执行的指令数,或者直接到程序运行结束,统计总指令数。

1.3性能分析-调试及最高工作频率

- 时钟频率:流水线主频以时序报告中的implement时序分析为准,你的设计很可能不能正常工作在100MHz的时钟频率下,注意对输入时钟进行分频或者利用锁相环IP,使时钟频率接近但不超过最高工作频率。
- 软件调试:可以先在MIPS的软件仿真器中进行简单仿真, 初期也可以利用软件仿真器将汇编代码转换为机器码, 我们的指令兼容于标准MIPS32指令集
- 设计时应当考虑LUT、寄存器等资源消耗情况,并对流水线和单周期(多周期)的资源消耗对比进行分析,但资源消耗情况不是对设计进行评分的主要因素

- 1.综合实验要求
 - 1.1实验内容
 - 1.2外设控制
 - 1.3性能分析
- 2.时间节点
 - 2.1答疑时间
 - 2.2现场验收时间
 - 2.3实验报告提交时间
- 3.评分规则
 - 3.1现场验收评分
 - 3.2实验报告评分
 - 3.3"龙芯杯"相关评分
- 4.总结

2.1答疑时间

- 课堂1 (王锐)
 - 7月3日, 5日, 10日, 12日
 - 夏季学期第一周第二周,周三周五
 - 下午1:30-3:05
 - 主楼916机房
- 课堂2 (张超)
 - 7月2日, 4日, 9日, 11日
 - 夏季学期第一周第二周,周二周四
 - 下午1:30-3:05
 - 主楼916机房

2.2现场验收时间

- 课堂1 (王锐)
 - 7月17日, 18日, 19日
 - 夏季学期第三周,周三到周五
 - 下午1:30-5:00
 - 主楼916机房
- 课堂2(张超)
 - 7月17日, 18日, 19日
 - 夏季学期第三周,周三到周五
 - 上午8:30-12:00
 - 主楼916机房
- 线上验收(暂定7月19日19:00)
- 延迟验收(暂定9月2日14:00, 需预先锁定代码)
- 补验收时间另行通知, 扣30%的验收分数

提前验收有加分

需邮件提交正 当理由,如实 践.交换等

2.3实验报告提交时间

- 实验报告应在8月4日23:59前提交到网络学堂
- 报告迟交扣30%的报告分数
- 实验报告内容包括:实验目的;设计方案(原理说明及框图);算法指令;关键代码及文件清单;仿真结果及分析;综合情况(面积和时序性能);硬件调试情况;思想体会等。
- 明确写出CPI和最高工作频率计算过程及结果
- 报告以word或pdf文档方式完成,同时打包整个工程文件, 合成一个压缩文件

- 1.综合实验要求
 - 1.1实验内容
 - 1.2外设控制
 - 1.3性能分析
- 2.时间节点
 - 2.1答疑时间
 - 2.2现场验收时间
 - 2.3实验报告提交时间
- 3.评分规则
 - 3.1现场验收评分
 - 3.2实验报告评分
 - 3.3"龙芯杯"相关评分
- 4.总结

综合实验按百分制计分 (有加分项可大于100) 总分数乘以系数与春季课程成绩合并

3.1现场验收评分

• 流水线CPU方案现场验收评分表

考核项目	现场验收
流水线形式 CPU 完成实验内容	50
仅以单周期形式 CPU 完成实验内容	-25
未按要求以软件形式实现七段译码器译码	-10
未按时完成验收	-15
使用串口完成测试数据的输入和输出	+10
提前验收	+2or+1

3.1现场验收评分

• 专用电路方案现场验收评分表

考核项目	现场验收
使用专用数字电路完成实验内容	35
未按时完成验收	-10
使用串口完成测试数据的输入和输出	+10
提前验收	+2or+1

3.2实验报告评分

• 流水线CPU方案实验报告评分表

考核项目	实验报告
实验报告内容完整清晰	45-50
未正确报告处理器的最高工作频率	-5
未正确计算处理器的 CPI	-5
未按时提交报告	-15
最高时钟频率在前 20 名且报告完整	+10

流水线设计功能正确且最高时钟频率在前20名的同学将可获得10分加分,申请加分的同学请在8月4日前在网络学堂课程讨论区的流水线主频擂台帖子下回复相关信息,并在课程作业中,提交完整的可方便验证的工程实现代码和一份独立的优化设计说明,报告中没有相关文档则不加分。

3.2实验报告评分

• 专用电路方案实验报告评分表

考核项目	实验报告
实验报告内容完整清晰	30-35
未按时提交报告	-10
设计报告具有探究性且符合相关要求	+10

选择这项任务的同学,应当在"设计方法学"上多加探索,比如在并行化、内存墙、等方面进行研究,并实现验证测试,以研究论文的样式提交设计报告,报告内容详实充分,且设计方案突出数字电路特点的加**10**分。

3.3"龙芯杯"相关评分

- 根据网络学堂公告中的已报名信息确认参赛,其他同学 按时完成综合实验,若放弃参赛,应按综合实验要求完 成验收及报告,7月1日24点前发邮件告知老师。
- 评分细则见相关公告, 如有异议可邮件或微信群讨论
- 抓紧时间,希望大家取得好成绩!

- 1.综合实验要求
 - 1.1实验内容
 - 1.2外设控制
 - 1.3性能分析
- 2.时间节点
 - 2.1答疑时间
 - 2.2现场验收时间
 - 2.3实验报告提交时间
- 3.评分规则
 - 3.1现场验收评分
 - 3.2实验报告评分
 - 3.3"龙芯杯"相关评分
- 4.总结

要点总结

- 明确实验内容和时间节点
- 独立完成,避免学术不端
- 注意对比, 体会不同实现方式的优缺点
 - 软件方式实现七段数码管的译码 vs. 硬件方式实现译码
 - 单周期处理器和流水线处理器的在性能、消耗资源等方面的差异
 - 通过设计约束,在电路层面可以获得一些性能/面积上的设计空间。 比如加大晶体管尺寸,用超前进位加法器代替行波进位加法器等 方法可以牺牲面积获取性能,但是这种优化是有极限的。要拓展 设计空间,就需要在架构方面进行探索。

电路->器件->系统

