Mapping grid

Core Questions

25

Question	Mark	Content	Outcome	Band
1	1	Recall character of alkenes	H9	2–3
2	1	Recall the processes in the formation of the polymers	H9	3-4
3	1	Identify the processes in a redox reaction	H7	4–5
4	1	Recall function of lead-acid battery	Н7	2-3
5	1	Predict atomic basis of radioactivity	Н6	4–5
6	1	Assess use of radioisotopes in medicine	H4	3–4
7	1	Relate hydronium ion concentration to acidity	Н9	4–5
8	1	Recall definition of Bronsted-Lowry theory	Н8	2–3
9	1	Identify basis of definition of weak acid	H8	3–4
10	1	Recall experimental steps in esterification reaction	Н9	2–3
11	1	Interpret graphical information with respect to equilibrium reaction	H14	4–6
12	1	Recall the application of atomic absorption spectroscopy	НЗ	2–4
13	1	Recall test for anions in solution	Н8	2–4
14	1	Recall differences between oxygen and ozone	Н7	3–4
15	1	Identify structural feature of ozone destroying molecules	Н4	3–4
16 a i	1	Write equation for reaction of ethylene and water	Н9	3–4
16 a ii	1	Give experimental conditions for reaction of ethylene with water	Н9	2–3
16 b i	3	Write structures of monomers and the name of their polymers	Н9	2-4
16 b ii	2	Recall features of addition polymerisation reactions	Н9	3–4
16 b iii	1	Name intermolecular forces in polymer	Н9	3-4
16 c i	1	Define the term 'biopolymer'	H9	2-3
16 c ii	1	State major chemical component of biomass	Н9	2-3
16 d	4	Assess ethanol as an alternative fuel	Н3	3–4

Chemistry HSC 2006

Question	M	Content	Outcome	Band
17 a i	1	Interpret Table of Standard Potentials	Н7	4–5
17 a ii	2	Write oxidation and reduction half reactions	H7	4–6
17 a iii	1	Write balanced cell reaction	H7	4–5
17 b i	5	Sketch and label silver oxide 'button' cell	Н3	34
17 b ii	2	Write cell reaction for 'button' cell	H7	4–5
18 a	1	Write balanced equation	H10	3–4
18 b	1	Calculate moles present in solution	H10	2–4
18 c	2	Calculate moles remaining after reaction	H10	2–4
18 d	1	Calculate moles of acid reacted	H10	3–4
18 e	2	Calculate initial mass from neutralisation data	H10	4–5
18 f	1	Calculate percentage composition	H10	3–4
19 a	2	Predict reaction from data	H14	5–6
19 b	2	Interpret equilibrium data	H14	5–6
19 c	2	State effect of reaction conditions on equilibrium	Н8	4–5
19 d	2	Suggest manipulation of equilibrium to increase product	Н8	4–5
20 a i	2	Recall Bronsted-Lowry definition	H8	2–3
20 a ii	2	State behaviour of species in terms of Bronsted-Lowry definition	Н8	3–4
20 b i	2	Compare concentrations of acids	H7	3–4
20 b ii	2	Compare strengths of acids	H7	3–4
20 b iii	2	Compare hydrogen concentrations in acid solutions	H7	3–5
21 a	2	Write formula and note bonding types	Н6	3-4
21 b	2	Explain importance of ozone layer to human health	Н4	3–4
22 a	2	Select suitable test for water pollution	H11	4–5
22 b i	1	Interpret data on cation testing	H11	56
22 b ii	2	Write chemical equations	H10	4–5
23 a i	1	Write equilibrium expression	H13	3–4
23 a ii	3	Calculate value of equilibrium constant	H10	3–4
23 b i	1	Recall detail of Contact Process	Н8	2–3
23 b ii	1	Write equation for combustion of sulfur	H10	3–4

Question	Mark	Content	Outcome	Band
23 b iii	3	Recall conditions that maximise yield in Contact Process	Н8	2–3
23 b iv	2	Write equation for sulfuric acid acting as an oxidising agent	Н7	3–4
23 b v	3	Specify safety precautions in transport and storage of concentrated sulfuric acid	H4	2–3
23 c i	3	Calculate gas production in stage of Solvay Process	H10	5–6
23 c ii	2	Recall issues with waste from Solvay Process	Н4	3–4
23 d i	3	Describe detail of saponification experiment	Н9	2-3
23 d ii	2	Recall features of surfactants	H9	3–4
23 d iii	1	Recall environmental concern related to use of washing powders and detergents	Н4	2–3
24 a i	2	Recall process associated with electrolytic cell	Н7	3–4
24 a ii	3	Note factors affecting electrolytic reactions	H7	3-4
24 a iii	1	Describe contribution of a scientist to electrochemistry	H2	2–3
24 b i	3	Recall characteristics of solubility of gases	Н8	3–4
24 b ii	3	Outline experiment on rate of corrosion	H11	4–5
24 c i	4	Detail mechanism of corrosion of iron	Н8	5–6
24 c ii	1	Recall effect of pH on corrosion	Н8	3–4
24 c iii	4	Explain how iron can be protected from corrosion by zinc coating	НЗ	4–5
24 c iv	1	Explain observation of corrosion in deep ocean	Н3	3–4
24 d	3	Explain wooden ship restoration processes	Н3	3-4
25 a i	3	Explain structural differences in carbohydrates	Н9	4–5
25 a ii	2	Relate properties of polymers to structure	Н9	3–4
25 b	2	Explain trends in fatty acid melting points	H8	3–4
25 c i	2	Write general formula and note functional groups in amino acids	Н9	3–4
25 c ii	2	Explain meaning of protein denaturation	Н9	3–4
25 d i	2	Describe function of ATP	Н9	3–4
25 d ii	1	Locate cell respiration in cellular organelle	H8	2-3

Question	Mark	Content	Outcome	Band
25 e i	3	Name major muscle proteins	H8	2–3
25 e ii	1	Recall structural difference between muscle types	Н8	3–4
25 e iii	3	Discuss fuels used in muscle	H7	5–6
25 e iv	3	Relate lactic acid accumulation to muscle function	Н7	4–5
25 e v	1	Give IUPAC name of lactic acid	Н9	3–4
26 a	2	Recall method of preparation of canvas for painting	H1	2–3
26 b i	3	Explain flame tests for metals	Н6	45
26 b ii	3	Relate atomic spectra to art conservation	Н3	4–5
26 c	3	Discuss Bohr's model of the atom	Н6	5–6
26 d	3	Relate X-rays to art conservation	Н3	4-5
26 e i	4	Describe electronegativity of elements to position in Periodic Table	Н6	3–5
26 e ii	2	Discuss factors that influence ionisation energy of atoms	Н6	5–6
26 f i	2	Compare electron configuration of transition elements with main element Groups	Н6	3-4
26 f ii	3	Relate properties of transition elements to electron structure	Н6	4–5
27 a i	4	Describe use of electrophoretic techniques in identification of amino acids	Н3	3–4
27 a ii	2	Describe forensic use of DNA in identifying relationships between individuals	НЗ	3–4
27 a iii	2	Examine ethical issues related to maintenance of DNA banks	H4	3–4
27 b	5	Describe structure of DNA	Н9	2–4
27 c i	3	Describe meaning of term 'monosaccharide'	H9	2-3
27 c ii	1	Recall structure of sucrose	Н9	2–3
27 d	5	Describe function of parts of mass spectrometer	H4	3–4
27 e	3	Describe use of spectroscopy in forensic science	Н3	3–5

Marking guidelines

Section I - Part A

1	R	2	Δ	3	Δ	4	C
		_	Λ.	3	А		
5	D	6	В	7	D	8	Α
9	В	10	В	11	C	8 12	D
13	C	14	Α	15	В		

Section I - Part B

Question 16a(i)

Suggested answer

$$C_2H_4 + H_2O \longrightarrow CH_3CH_2OH$$

Marking guidelines

Criteria	Marks
correct balanced equation	1

Question 16a(ii)

27

Suggested answer

Phosphoric acid catalyst, temperature 300°C

Marking guidelines

Criteria	Marks
correct conditions for reaction (accept catalyst and heat)	1

Question 16b(i)

Suggested answer

H ₂ CH ₂	
n ₂ Cn ₂	polyethylene
H ₂ CHCl	polyvinylchloride (or PVC)
C(C ₆ H ₆)H	polystyrene
	H₂CHCI

Marking guidelines

Criteria	Marks
• correct structure of monomer and name of polymer (1 mark each)	3 total

Chemistry HSC 2006

Question 16b(i

Suggested answer

The polymer forms by monomers bonding together without the loss of any atoms.

Marking guidelines

Criteria	Marks
• monomers bond	1
no loss of any atoms when bonds are formed	1

Question 16b(iii)

Suggested answer

Dispersion forces

Marking guidelines

Criteria	Marks
dispersion (or Van der Waal forces)	1

Question 16c(i)

Suggested answer

Biopolymers are polymers that are totally, or in large part, made by living organisms.

Marking guidelines

Criteria	Marks
polymers totally or largely made by living organisms	1

Question 16c(ii)

Suggested answer

Cellulose

Criteria	Marks
• cellulose	1

Ouestion 16d

Suggested answer

Advantages – a renewable resource; potential to reduce greenhouse gas emissions

Disadvantages – large areas of agricultural land required to grow suitable crops; disposal of waste products from fermentation processes

Marking guidelines

Criteria	Marks
Advantage – renewable resource	1
Advantage – potential reduction of greenhouse gases	1
Disadvantage – crops for production require large area of agricultural land	1
Disadvantage – disposal of fermentation waste products	1

Question 17a(i)

Suggested answer

Any TWO of Mg, Al, Zn, Fe, Ni, Sn or Pb

Marking guidelines

Criteria	Marks
• any TWO of Mg, Al, Zn, Fe, Ni, Sn or Pb	1

Question 17a(ii)

Suggested answer

e.g.

28

Oxidation half reaction Reduction half reaction $\begin{array}{cccc} Mg & \longrightarrow & Mg^{2+} + 2e \\ 2H^{+} + 2e & \longrightarrow & H_{2} \end{array}$

Marking guidelines

Criteria	Marks
oxidation half reaction appropriate to metal chosen	1
• reduction half reaction $2H^+ + 2e \longrightarrow H_2$	1

Question 17a(iii)

Suggested answer

e.g. Redox cell reaction Mg + 2H⁺ \longrightarrow Mg²⁺ + H₂

Marking guidelines

Criteria	Marks
correct combination of half cell reactions to overall redox cell reaction (depending on metal chosen)	1

Chemistry HSC 2006

Question 17b(i) Suggested answer

Marking guidelines

Criteria	Marks
correct schematic sketch of cell	1
correct labelling of electrodes and electrolyte (1 mark each)	3 total
correct labelling of terminals	1

Question 17b(ii) Suggested answer

$$Zn(s) + Ag_2O(s)$$
 . \longrightarrow $ZnO(s) + 2Ag(s)$

Marking guidelines

Criteria	Marks
• correct formula of reactants and products	1
balanced equation	1

Question 18a

Suggested answer

$$CaCO_3 + 2HC1 \longrightarrow CaCl_2 + H_2O + CO_2$$

Criteria	Marks
correct balanced equation	1

Question 18b

Suggested answer

1000 mL has 1 mole NaOH, thus 11.2 mL has $((11.2/1000) \times 1)$ moles = 1.12 \times 10⁻² moles

Marking guidelines

Criteria	Marks
correct working and result	1

Question 18c

Suggested answer

Since the mole ratio for reaction NaOH with HCl is 1:1, the amount of HCl reacted is 1.12×10^{-2} moles.

Thus, amount of HCl in beaker after reaction with shell, and before dilution to 25 mL, is $(25/10) \times 1.12 \times 10^{-2} = 2.8 \times 10^{-2}$ moles.

Marking guidelines

Criteria	Marks
• correct calculation of amount of HCl reacted	1
correct result for undiluted acid	1

Question 18d

Suggested answer

Original amount HCl reacted, 10 mL of 5 molL⁻¹, is $(10/1000) \times 50 = 0.05$ moles Thus amount reacted with shell = 0.05 - 0.028 = 0.022 or 2.2×10^{-2} moles

Marking guidelines

Criteria	Marks
correct calculation of moles reacted with shell	1

Ouestion 18e

Suggested answer

From equation in (a), 1 mole CaCO₃ reacts with 2 moles of HCl, thus number of moles of CaCO₃ reacting with HCl is 0.022/2 or 0.011 moles.

1 mole of CaCO₃ has mass of 100 g, thus 0.011 moles has a mass of $0.011 \times 100 = 1.10$ g.

Marking guidelines

Criteria	Marks
correct calculation of number of moles CaCO ₃ reacting	1
correct conversion of moles to mass	1

Chemistry HSC 2006

Question 18f

Suggested answer

(mass of CaCO₃/mass of shell) $\times 100\% = (1.10/1.306) \times 100\% = 84.2\%$

Marking guidelines

Criteria	Marks
correct calculation of percentage mass	1

Question 19a

Suggested answer

From information given, at constant pressure, an increase in temperature causes the equilibrium yield of product to decrease, i.e. the equilibrium system is changing in favour of the reactants. According to Le Chatelier's Principle, if reaction is exothermic, equilibrium will change to reduce the temperature, i.e. in backward direction reducing the yield of product.

Marking guidelines

Criteria	Marks
• reaction is exothermic	1
• increase in temperature causes the equilibrium yield of product to decrease	1

Question 19b

Suggested answer

From information given, at constant temperature, the percentage of product in the equilibrium vessel increases, i.e. the equilibrium system is changing in the favour of the product. According to Le Chatelier's Principle, the equilibrium system reacts to the change by decreasing its volume, i.e. in forward direction in favour of the product. Since 2 moles of gaseous reactants produces 1 mole of gaseous product, volume is reduced by the reaction going in the forward direction.

Criteria	Marks
volume decreases	1
• at constant temperature, the percentage of product in the equilibrium vessel increases – since 2 moles of gaseous reactants produces 1 mole of gaseous product, the system is reacting to the change by decreasing its volume	1

Question 19c

Suggested answer

Low temperature; High pressure

Marking guidelines

Criteria	Marks
• low temperature	1
high pressure	1

Question 19d

Suggested answer

According to Le Chatelier's Principle if an equilibrium is disturbed it will change to minimise the disturbance. To move the reaction to the right, i.e. to increase product, EITHER the concentration of reactants could be increased OR the concentration of product decreased by removing it from the equilibrium system.

Marking guidelines

- Criteria	Marks
• statement of Le Chatelier's Principle	1
EITHER increase concentration of reactants OR decrease concentration of product	1

Question 20a(i)

Suggested answer

An acid is a substance, that in solution, tends to donate protons, and a base is a substance that tends to accept protons.

Marking guidelines

Criteria	Marks
acid is a proton donor	1
base is a proton acceptor	1

Chemistry HSC 2006

Question 20a(ii)

Suggested answer

In the first reaction, HCO_3^- is acting as a base as it accepts H^+ to form H_2CO_3 ; in the second reaction, HCO_3^- is acting as an acid as it donated a proton to form CO_3^{2-} .

Marking guidelines

Criteria	Marks
HCO ₃ is acting as a base as it accepts H ⁺ to form H ₂ CO ₃	1
HCO ₃ is acting as an acid as it donated a proton to form CO ₃ ²	1

Question 20b(i)

Suggested answer

The concentration of an acid refers to the amount of solute in a volume of solution, thus hydrochloric acid is less concentrated.

Marking guidelines

Criteria	Marks
hydrochloric acid is less concentrated	1
concentration of an acid refers to the amount of solute in a volume of solution	1

Question 20b(ii)

Suggested answer

The strength of an acid refers to the degree of ionisation on dissociation in solution. Ethanoic is less ionised in solution and thus is the weaker acid.

Marking guidelines

	Criteria	Marks
•	ethanoic acid is the weaker acid	1
•	strength of an acid refers to the degree of ionisation on dissociation in solution	1

Question 20b(iii)

Suggested answer

Since the pH, which is a measure of hydrogen ion concentration, of each acid is the same, the hydrogen ion concentration in solution must be the same.

Criteria	Marks
• the hydrogen ion concentration of each acid in solution is the same	1
• the pH, which is a measure of hydrogen ion concentration, is the same	1

Question 21a

Suggested answer

O₃; covalent and co-ordinate covalent bonds

Marking guidelines

Criteria	Marks
• O ₃	1
covalent and co-ordinate covalent bonds	1

Question 21b

Suggested answer

Ozone in the stratosphere absorbs much of the harmful UV rays from the sun. The UV rays absorbed can cause problems such as skin cancer and eye cataracts.

Marking guidelines

Criteria	Marks
ozone absorbs much of the harmful UV rays from the sun	1
UV rays absorbed can cause problems such as skin cancer and eye cataracts	1

Ouestion 22a

 $\frac{3}{2}$

Suggested answer

The main problems expected from sewage discharge would be disease-causing microorganisms and oxygen-demanding wastes. Thus water suspected to be contaminated by sewage would be tested for coliform bacteria counts and for biochemical oxygen demand (BOD). Both these indicators would have increased values compared to clean water.

Marking guidelines

Criteria	Marks
water suspected to be contaminated by sewage would be tested for coliform bacteria counts and for biochemical oxygen demand	1
increased values compared to clean water	1

Question 22b(i)

Suggested answer

Pb²⁺ (white precipitate with HCl) and Cu²⁺ (blue precipitate with OH which dissolves in NH₃)

Marking guidelines

Criteria	Marks
• Pb ²⁺ and Cu ²⁺	1

Chemistry HSC 2006

Question 22b(i., Suggested answer

$$Pb^{2+} + SO_4^{2-} \longrightarrow PbSO_4$$

$$Cu^{2+} + 2OH^{-} \longrightarrow Cu(OH)_2$$

Marking guidelines

			Criteria	Marks
•	Pb ²⁺ + SO ₄ ²⁻	→	·	1
•	Cu ²⁺ + 2OH		Cu(OH) ₂	1

Section II

Question 23 - Industrial Chemistry

Question 23a(i)

Suggested answer

$$Kp = p(N_2O_4)/p^2(NO_2)$$

Marking guidelines

Criteria	Marks	
• correct answer	1	

Question 23a(ii)

Suggested answer

Change in pressure of $N_2O_4 = 0.54$ atm -0.51 atm =0.03 atm Change in pressure of $NO_2 = -(0.03$ atm $N_2O_4)(2$ mol $NO_2/1$ mol $N_2O_4) = -0.06$ atm Thus, equilibrium pressure of $NO_2 = 0.56$ atm +(-0.06 atm) =0.50 atm Now, $Kp = p(N_2O_4)/p^2(NO_2) = 0.54/(0.50)^2 = 2.2$

Marking guidelines

Criteria	Marks
correct calculation of change in pressure that occurs at equilibrium	1
correct calculation of equilibrium pressure of NO ₂	1
correct calculation of Kp	1

Question 23b(i)

Suggested answer

The process is called the Contact process because SO_2 and O_2 gases must come in contact with a catalyst.

Marking guidelines

Criteria	Marks
correct answer	1

Question 23b(ii)

Suggested answer

$$S(s) + O_2(g) \longrightarrow SO_2(g)$$

Marking guidelines

Criteria	Marks
• correct equation	1

Question 23b(iii)

Suggested answer

Moderate temperatures (400–500°C)

Catalyst - vanadium(v) oxide

Pressures of 1-2 atm

Marking guidelines

Criteria	Marks
• moderate temperatures (400–500°C)	1
catalyst – vanadium(v) oxide	1
• pressures of 1–2 atm	1

Question 23b(iv)

Suggested answer

Sulfuric acid can be used to oxidise copper to copper ions.

$$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$$

Marking guidelines

Criteria	Marks
correct equation	1
correct balancing of equation	1

Chemistry HSC 2006

Question 23b(v)

Suggested answer

Concentrated (98%) sulfuric acid can be safely stored or transported in steel containers. Care must be taken to avoid contamination of the acid with water, because water could set off a vigorous reaction between acid and a steel container.

Marking guidelines

Criteria	Marks
• can be safely stored or transported in steel containers	1
avoid contamination of the acid with water	1
water could set off a vigorous reaction between acid and a steel container	1

Question 23c(i)

Suggested answer

The equation for the reaction of carbon dioxide in the production of sodium hydrogen carbonate is:

$$NaC1 + CO_2 + NH_3 + H_2O$$
 \longrightarrow $NaHCO_3 + NH_4C1$

From equation, 1 mole CO₂ produces 1 mole NaHCO₃

or 24.5 L of CO₂ produces 84 g of NaHCO₃ thus amount required to produce 10^6 g (1 tonne) is $(24.5/84) \times 10^6 = 2.9 \times 10^5$ L

Marking guidelines

Criteria	Marks
• correct equation	1
• 24.5 L of CO ₂ produces 84 g of NaHCO ₃	1
correct calculation of amount of CO ₂ required	1

Question 23c(ii)

Suggested answer

The major issue is the disposal of the calcium chloride waste. Evaporation to dryness and disposal in a suitable burial site is an acceptable method of disposal.

Marking guidelines

Criteria	Marks
calcium chloride waste	1
evaporation to dryness and disposal in a suitable burial site	1

Question 23d(i)

Suggested answer

There are three main steps in a saponification reaction:

- Place the oil and alkali solution in a large beaker and heat for 30-60 minutes
- Add salt to precipitate the soap
- Filter and wash the soap

Marking guidelines

Criteria	Marks
one mark for each correct step	3

Ouestion 23d(ii)

Suggested answer

Surfactants are 'surface active' because they are able to alter the surface properties of water. Surfactants lower the surface tension of water so the water is more readily able to 'solubilise' oil or dirt particles and so move them off skin or fabric.

Marking guidelines

Criteria	Marks
alter surface properties/ lower surface tension of water	1
'solubilise' oil or dirt particles so they can be removed from surfaces	1

Question 23d(iii)

Suggested answer

Phosphate pollution from 'builders' normally present in washing powders and detergents.

Marking guidelines

Criteria	Marks
phosphate pollution.	1

Question 24 - Shipwrecks, Corrosion and Conservation

Question 24a(i)

Suggested answer

Oxidation occurs at the anode (the positive electrode in an electrolytic cell), and reduction occurs at the cathode (the negative electrode in an electrolytic cell).

Marking guidelines

Criteria	Marks
oxidation occurs at the anode (the positive electrode in an electrolytic cell)	1
• reduction occurs at the cathode (the negative electrode in an electrolytic cell)	1

Chemistry HSC 2006

Question 24a(i. Suggested answer

The nature of the electrolyte.

The nature of the electrodes.

The concentration of ions present.

Marking guidelines

Criteria	Marks
the nature of the electrolyte	1
the nature of the electrodes	1
the concentration of ions present	1

Question 24a(iii)

Suggested answer

Michael Faraday's work related to determining the amount of substance produced relative to the quantity of electricity passed through an electrolytic cell.

Marking guidelines

Criteria	Marks
amount of substance produced relative to the quantity of electricity passed through an electrolytic.cell	1

Question 24b(i)

Suggested answer

The solubility of a gas changes as follows:

- decreased temperature increases solubility
- increased pressure increases solubility
- increased salinity decreases solubility

Marking guidelines

Criteria	Marks
• decreased temperature increases solubility	1
increased pressure increases solubility	1
increased salinity decreases solubility	1

Question 24b(ii)

Suggested answer

Make up solutions of various salinities, e.g. fresh water, sea water and dilutions of sea water with fresh water.

Place steel nails in each of the test solutions.

Qualitatively/visually observe the amount of rust forming over extended periods of time and record and report results appropriately.

Marking guidelines

Criteria	Marks
 make up solutions of various salinities 	1
place steel nails in each of the test solutions	1
 qualitatively/visually observe the amount of rust forming over extended periods of time 	1

Ouestion 24c(i)

Suggested answer

Iron and steel rust in the presence of oxygen and moisture. It is a galvanic process where iron(II) ions are formed by oxidation of iron, and hydroxide ions are formed by the reduction of oxygen in the presence of water. The products of the redox process result in the formation of iron(II) hydroxide; the iron(III) oxide (rust) is then formed from the oxidation of the hydroxide.

Marking guidelines

Criteria	Marks
iron and steel rust in the presence of oxygen and moisture	1
 a galvanic process where iron(II) ions are formed by oxidation of iron, and hydroxide ions are formed by the reduction of oxygen in the presence of water 	1
the products of the redox process result in the formation of iron(II) hydroxide	. 1
• the iron(III) oxide (rust) is then formed from the oxidation of the hydroxide	1

Question 24c(ii)

Suggested answer

Galvanic corrosion occurs more rapidly in slightly acidic solutions.

Marking guidelines

Criteria	Marks
occurs more rapidly in slightly acidic solutions	1

Chemistry HSC 2006

Question 24c(iii)

Suggested answer

Galvanising means the covering of the iron surface with a thin layer of a more reactive metal such as zinc. Instead of the iron(II) ions combining with hydroxide ions to start the formation of rust, zinc ions (formed by a galvanic reaction with iron(II) ions) preferentially react with the hydroxide ions to form zinc hydroxide (some of which is converted to zinc carbonate). These zinc compounds form an impervious layer over any exposed iron.

$$Zn + Fe^{2+}$$
 \longrightarrow $Zn^{2+} + Fe$

Marking guidelines

Criteria	Marks
 instead of the iron(II) ions combining with hydroxide ions to start the formation of rust, zinc ions preferentially react 	1
• the zinc ions react with hydroxide ions to form zinc hydroxide	1
the zinc compounds form an impervious layer over any exposed iron	1
$Zn + Fe^{2+} \longrightarrow Zn^{2+} + Fe$	1

Question 24c(iv)

Suggested answer

Certain anaerobic bacteria can create conditions that cause corrosion in deep ocean water.

Marking guidelines

Criteria	Marks
 anaerobic bacteria can create conditions that cause corrosion in deep ocean water 	1

Question 24d

Suggested answer

The extensive washing with fresh water removes salt from the wood. If salts were not washed out, crystals of salt would form as the wood dries out. These growing crystals would crack the wood.

Criteria	Marks
extensive washing with fresh water removes salt from the wood	1
if not washed crystals of salt would form as the wood dries out	1
growing crystals would crack the wood	1

Question 25 – The Biochemistry of Movement Question 25a(i)

Suggested answer

Glucose and galactose are six carbon sugars while fructose is a five carbon sugar. The difference between glucose and galactose is the orientation of the hydroxyl group on one of the carbon atoms.

Marking guidelines

Criteria	Marks
glucose and galactose are six carbon sugars	1
fructose is a five carbon sugar	1
• difference between glucose and galactose is the orientation of the hydroxyl group on one of the carbon atoms	1

Question 25a(ii)

Suggested answer

The glucose linkages are different in the two polymers resulting in a different orientation of those glucose molecules.

Marking guidelines

Criteria	Marks
glucose linkages are different	1
different orientation of the glucose molecules	1

Question 25b

Suggested answer

These three fats have an increasing number of carbon atoms and thus increased molar mass and increased intermolecular attraction. Increased intermolecular attraction is the prime reason for increasing melting point.

Marking guidelines

Criteria	Marks
increasing number of carbon atoms and thus increased molar mass and increased intermolecular attraction	1
increased intermolecular attraction results in increased melting points	1

Chemistry HSC 2006

Question 25c(i,

Suggested answer

General formula of amino acids is $H_2NCH(R)COOH$, where R is a carbon-containing side chain. The functional groups are the amine group (H_2N) and the carboxyl group (COOH).

Marking guidelines

Criteria	Marks
general formula of amino acids is H ₂ NCH(R)COOH	1
functional groups are the amine group (H ₂ N) and the carboxyl group (COOH)	1

Question 25c(ii)

Suggested answer

Functional proteins have a complex three dimensional shape. If this three dimensional shape is destroyed (by heating) the protein no longer will function as it should and is described as having been denatured.

Marking guidelines

Criteria	Marks
• functional proteins have a complex three dimensional shape	1
if the three dimensional shape is destroyed (by heating) the protein no longer will be functional and is described as having been denatured	1

Question 25d(i)

Suggested answer

In cellular respiration the energy produced by the oxidation of carbon compounds is stored as ATP. The energy stored in ATP can then be released to provide energy for various aspects of cellular function.

Criteria	Marks
 in cellular respiration the energy produced by the oxidation of carbon compounds is stored as ATP 	1
energy stored in ATP can then be released to provide energy for various aspects of cellular function	1

Question 25d(ii) Suggested answer

Mitochondrion.

Marking guidelines

Criteria	Marks
mitochondrion	1

Ouestion 25e(i)

Suggested answer

Myosin, actin, tropomysin and troponin. These proteins contribute to the structure of the thick and thin filaments in skeletal muscle.

Marking guidelines

Criteria	Marks
myosin, actin, tropomysin and troponin	2
the structure of the thick and thin filaments in skeletal muscle	1

Question 25e(ii)

Suggested answer

The Type 1 muscle cells contain fewer contractile filaments than do Type 2 cells.

Marking guidelines

Criteria	Marks
fewer contractile filaments in Type 1 cells	1

Question 25e(iii)

Suggested answer

In long distance endurance running most of the energy required comes from the aerobic metabolism of carbohydrates, fats and protein. During an endurance run, as the demand for oxygen for aerobic respiration rises, anaerobic respiration is required to support the extra requirement for energy. The muscles of athletes that compete in short sprint events use anaerobic respiration because it provides high levels of energy at a rapid rate.

Marking guidelines

Criteria	Marks
 in long distance running most of the energy required is from the aerobic metabolism of carbohydrates, fats and protein 	1
• in an endurance run, as the demand for oxygen for aerobic respiration rises, anaerobic respiration is required to supply energy	1
• in short sprint events use anaerobic respiration because it provides high levels of energy at a rapid rate	1

Chemistry HSC 2006

Ouestion 25e(iv)

Suggested answer

In muscle cells, during bursts of extra hard work, amount of oxygen available to the muscle is insufficient and lactic acid is produced as the product of anaerobic respiration. The muscles accumulate what is known as oxygen debt by producing lactic acid from glucose. The accumulated lactic acid causes the sensation of muscle fatigue.

Marking guidelines

Criteria	Marks
 amount of oxygen available to the muscle is insufficient and lactic acid is produced as the product of anaerobic respiration 	1
muscles accumulate what is known as oxygen debt by producing lactic acid	1
accumulated lactic acid causes the sensation of muscle fatigue	1

Ouestion 25e(v)

Suggested answer

2-hydroxypropanoic acid.

Marking guidelines

Criteria	Marks
2-hydroxypropanoic acid	1

Question 26 - The Chemistry of Art

Ouestion 26a

Suggested answer

Canvas is generally unsuitable for painting on directly since it is too rough and adsorbent. It is prepared for painting with layers of ground or priming.

Criteria	Marks
canvas is rough and adsorbent	1
prepared for painting with layers of ground or priming	1

Question 26b(i)

Suggested answer

The distinctive colours of some metal ions can be used to identify their presence in compounds using a flame test. When excited in a flame an electron jumps to a higher energy level. It then falls back to a lower energy state emitting a photon of radiation that is exactly equal to the difference in energy between the two levels in the atom. For some of these emissions the energy released is in the visible spectrum and so can be seen as visible light.

Marking guidelines

Criteria	Marks
when excited an electron can jump to a higher energy level	1
electron falls back to lower energy state emitting a photon of radiation	1
if energy released is in the visible spectrum it can be seen as visible light	1

Question 26b(ii)

Suggested answer

A line absorption spectrum results when light is passed through a substance in the vapour phase with the resulting spectrum observed as a pattern of dark lines across a continuous spectrum. These spectra are used to identify different components of pigments, media and varnishes. Knowledge of the pigments, media and varnishes in a painting allow conservators to decide which products and techniques will be used in the restoration or conservation of a painting.

Marking guidelines

Criteria	Marks
 line absorption spectrum results when light is passed through a substance in the vapour phase and the resulting spectrum is observed as a pattern of dark lines across a continuous spectrum 	1
 spectra are used to identify different components of pigments, media and varnishes 	1
allow conservators decide which products and techniques will be used in the restoration or conservation of a painting	1

Chemistry HSC 2006

Ouestion 26c

Suggested answer

Bohr proposed, when studying the line spectrum of hydrogen, that in a hydrogen atom the electron moves around the nucleus in orbits without radiating energy. Only orbits of certain energy are allowed. Electrons can jump from one orbital to another by absorbing or emitting energy of a particular quantum amount. Bohr's model was limited in that it could not successfully explain the atomic spectra of elements other than hydrogen.

Marking guidelines

Criteria	Marks
Bohr proposed that in a hydrogen atom the electron moves around the nucleus in orbits without radiating energy	1
 only orbits of certain energy are allowed and electrons can jump from one orbital to another by absorbing or emitting energy of a particular quantum amount 	1
Bohr's model was limited in that it could not successfully explain the atomic spectra of elements other than hydrogen	1

Question 26d

Suggested answer

X-ray diffraction is used in the chemistry of art. The diffraction pattern of X-rays seen from a painting is analysed for identification by comparison with patterns of known pigments. The information gained about pigments in a painting can be used for conservation or restoration of the artwork being studied.

Criteria	Marks
• the diffraction pattern of X-rays seen from a painting is analysed	1
X-rays patterns seen from a painting is used for identification by comparison with patterns of known pigments	1
information gained about pigments in a painting can be used for conservation or restoration	1

Question 26e(i)

Suggested answer

Electronegativity of an atom is a measure of its ability to attract electrons to itself. As you move from left to right across a Period, the trend in electronegativity is to increase; down a Group the electronegativity tends to decrease.

Marking guidelines

Criteria	Marks
electronegativity of an atom is a measure of its ability to attract electrons to itself	1
electronegativity increases from left to right across a Period	1
down a Group the electronegativity tends to decrease	1

Question 26e(ii)

Suggested answer

Ionisation energy is influenced by the increasing number of protons (positive charge) in the nucleus as you go from left to right across a Period in the Periodic Table. As you go down a Group the ionisation energy is influenced by the distance of the outer electrons from the nucleus and the number of electron shells shielding outer electrons.

Marking guidelines

Criteria	Marks
influenced by the increasing number of protons (positive charge) in the nucleus as you go from left to right across a Period	1
• down a Group the ionisation energy is influenced by the distance of the outer electrons from the nucleus	1
• down a Group the ionisation energy is influenced by the number of electron shells shielding outer electrons	1

Ouestion 26f(i)

Suggested answer

The transition elements have electron configurations that include the filling of d-block orbitals. The other elements in the main groups of the Periodic Table have either empty or filled d-block orbitals.

Marking guidelines

Criteria	Marks
• transition elements have electron configurations that include the filling of d-block orbitals	1
 elements in the main groups of the Periodic Table have either empty or filled d-block orbitals 	1

Chemistry HSC 2006

Question 26f(ii)

Suggested answer

The presence of partially filled d-orbitals in transition elements accounts for:

- often more than one stable oxidation state
- magnetic properties
- compound colours of metal ions

Marking guidelines

Criteria	Marks
any two properties correct	2
any one property correct	1

Question 27 – Forensic Chemistry

Question 27a(i)

Suggested answer

Electrophoresis involves separating the amino acids by exposing them to an electrical field. Negatively charged amino acids will move toward the positive electrode and those with a positive charge toward the negative electrode. Once the amino acids are localised in the electrophoresis gel, with a reagent such as ninhydrin, the distance moved is characteristic and can be used to identify the amino acid.

Marking guidelines

Criteria	Marks
 electrophoresis involves separating the amino acids by exposing them to an electrical field 	1
negatively charged amino acids will move toward the positive electrode and those with a positive charge toward the negative electrode	1
amino acids are localised in the electrophoresis gel with a reagent such as ninhydrin	1
the distance moved is characteristic of and can be used to identify the amino acid	1

Question 27a(ii)

Suggested answer

Because of the similarity of the human species, much of the genetic material (DNA) is similar. The uniqueness of a person's DNA comes from the so called non-coding bits of their DNA. If people are related then these non-coding bits of DNA show some similarity. People who are not related have very little of their non-coding DNA in common.

Marking guidelines

Criteria	Marks
much of the genetic material (DNA) is similar – the uniqueness of a person's DNA comes from the so called non-coding bits of their DNA	1
if people are related then these non-coding bits of DNA show some similarity	1

Question 27a(iii)

Suggested answer

If data banks of DNA samples exist, analysis of the DNA could give information about a person that would be an invasion of their privacy. Routine screening of such DNA, for example, could give access to information about genetic disorders.

Marking guidelines

Criteria	Marks
analysis of the DNA could give information about a person that would be an invasion of their privacy	1
routine screening of such DNA, for example, could give access to information about genetic disorders	1

Question 27b

Suggested answer

The DNA (deoxyribonucleic acid) molecule is a polymeric chain of nucleotides. Nucleotides consist of three components – a phosphate group, a pentose sugar group and a nitrogenous base. In DNA there are four possible nitrogenous bases that may be part of a nucleotide, split into two groups, the purines and the pyrimidines. Purines are double ringed structures and consist of the bases adenine and guanine, the pyrimidines have a single ringed structure and consist of cytosine and thymine. The sugar part of the nucleotide in DNA is deoxyribose. The DNA polymeric chain of nucleotides is formed by condensation reactions.

DNA in genetic material consists of two strands of nucleic acid that interact through hydrogen bonds between opposing bases to form a double helical structure. In the structure, adenine and thymine are present in the helix opposite each other, as are cytosine and guanine. Chemistry HSC 2006

Marking guid

Criteria	Marks
DNA molecule is a polymeric chain of nucleotides	1
 nucleotides consist of three components: a phosphate group, a pentose sugar group and a nitrogenous base 	1
 purine bases are double ringed structures and consist of the bases adenine and guanine, the pyrimidine bases have a single ringed structure and consist of cytosine and thymine 	1
sugar part of the nucleotide in DNA is deoxyribose	1
 DNA genetic material consists of two strands of nucleic acid that interact through hydrogen bonds between opposing bases to form a double helical structure 	1

Question 27c(i)

Suggested answer

Monosaccharides are carbohydrates that cannot be hydrolysed into two or more simpler sugars. The features of a monsaccharide are one carbonyl group and at least two hydroxyl groups. They have the empirical fromula CH₂O.

Marking guidelines

Criteria	Marks
• they cannot be hydrolysed into two or more simpler sugars	1
they have one carbonyl group and at least two hydroxyl groups	1
empirical fromula CH ₂ O	1

Question 27c(ii)

Suggested answer

Fructose.

Marking guidelines

Criteria	Marks
• fructose	1

Suggested answer

- Atoms/molecules vaporised and ionised
 Ions collimated into a fine beam
- 3. Ions accelerated in vacuum
- 4. Ions deflected by electromagnet
- 5. Ions detected

Marking guidelines

Criteria	Marks
atoms/molecules vaporised and ionised	1
ions collimated into a fine beam	1
ions accelerated in vacuum	1
ions deflected by electromagnet	1
• ions detected	1

Question 27e Suggested answer

Spectroscopic methods permit routine and relatively simple ways of identifying inorganic and organic substances. They have been particularly useful in that the analyses can be performed on very small samples, much less than required by classical chemical analysis. An example of their use is in the monitoring of the environment and policing environmental legislation.

Criteria	Marks
 permit routine and relatively simple ways of identifying inorganic and organic substances 	1
analyses can be performed on very small samples	1
monitoring of the environment (OR other suitable example)	1