Expectation Maximization and Gaussian Mixture Models

Emir Esenov

Uppsala University

2023

EM Algorithm review

- Recall the EM algorithm, an iterative process based on the "embedding principle"
- ▶ Use surrogate function $Q(\theta \,|\, \theta') = \mathbb{E}\left[\ln f(\mathbf{X} \,|\, \theta) \,|\, \mathcal{T}(\mathbf{X}), \theta'\right]$
- ightharpoonup heta is a free parameter in the likelihood function, and heta' is the parameter belonging to the underlying distribution.
- ▶ We are interested in finding

$$\widehat{\theta}_{\mathsf{MLE}} = \argmax_{\theta} \mathsf{Q}\big(\theta \,|\, \theta_{\mathit{true}}\big)$$

EM Algorithm review

- **E-Step:** Given the current state $\theta^{(k)}$, calculate $Q(\theta \mid \theta^{(k)})$.
- ► M-Step:

$$\theta^{(k+1)} = \underset{\theta}{\operatorname{arg\,max}} \, Q(\theta \,|\, \theta^{(k)}).$$

Want to converge to a good estimate

► Simple modeling assumption: data comes from Gaussian distribution

$$L(\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x_i - \mu)^2}{2\sigma^2}\right)$$

$$\Rightarrow I(\mu) = \left[\sum_{i=1}^{n} \ln\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{(x_i - \mu)^2}{2\sigma^2}\right]$$

$$\Rightarrow \frac{d}{d\mu}I(\mu) = \sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2}.$$

- Setting this equal to zero and solving for $\mu \Rightarrow \mu_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- ► Similarly, we can derive $\sigma_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu)^2$

- ➤ So, we can find MLE of the parameters in closed form for simple Gaussian distribution case
- ▶ What about more complex cases?
- Consider the case where we measure the height of a given population made up of two sub-populations where 75% are female with height distribution $\mathcal{N}(164,7.5^2)$, and 25% are male with height $\mathcal{N}(183,7.5^2)$

- Assume we observe X_1, \ldots, X_n and that each X_i is sampled from one of K mixture components
- ▶ In the example above, the mixture components are {male,female}
- Introduce a latent variable associated with each r.v. X_i , $Z_i \in \{1, \dots, K\}$ which indicates which component X_i came from

From the law of total probability, we know that the marginal probability of X_i is:

$$P(X_i = x) = \sum_{k=1}^K \underbrace{P(Z_i = k)}_{\pi_k} P(X_i = x | Z_i = k)$$

$$= \sum_{k=1}^K \pi_k P(X_i = x | Z_i = k)$$

$$= \sum_{k=1}^K \pi_k N(x; \mu_k, \sigma_k^2)$$

▶ Similarly, the joint probability of observations $X_1, ..., X_n$ is therefore:

$$P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n \sum_{k=1}^K \pi_k N(x_i; \mu_k, \sigma_k^2)$$

Now we attempt the same strategy for deriving the MLE of our GMM. Our unknown parameters are $\theta = \{\mu_1, \dots, \mu_K, \sigma_1, \dots, \sigma_K, \pi_1, \dots, \pi_K\}$, and so our likelihood is:

$$L(\theta|X_1,\ldots,X_n)=\prod_{i=1}^n\sum_{k=1}^K\pi_kN(x_i;\mu_k,\sigma_k^2)$$

And our log-likelihood is:

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \mu_k, \sigma_k^2) \right)$$

▶ If we try follow the same steps to derive the MLE of μ_k as before, we end up with the expression

$$\sum_{i=1}^{n} \frac{1}{\sum_{k=1}^{K} \pi_k N(x_i; \mu_k, \sigma_k)} \pi_k N(x_i; \mu_k, \sigma_k) \frac{(x_i - \mu_k)}{\sigma_k^2} = 0$$

- ▶ No closed form solution, we are stuck
- ▶ However, if we knew the latent variables Z_i then we could simply gather all X_i such that $Z_i = k$ which would give us a closed form solution

 \triangleright So, we want to know the latent variables Z_i . First, compute the posterior distribution

$$P(Z_i = k | X_i) = \frac{P(X_i | Z_i = k) P(Z_i = k)}{P(X_i)}$$

$$= \frac{\pi_k N(\mu_k, \sigma_k^2)}{\sum_{k=1}^K \pi_k N(\mu_k, \sigma_k^2)}$$

$$= \gamma_{Z_i}(k)$$

A vicious cycle:

- 1. If we knew the parameters, we could compute the posterior probabilities $\gamma_{Z_i}(k)$
- 2. If we knew the posteriors $\gamma_{Z_i}(k)$, we could easily compute the parameters

EM in GMM

- Solution: Expectation Maximization!
- Rewrite the former expression where we took the log-likelihood w.r.t μ_k as follows

$$\sum_{i=1}^n \gamma_{Z_i}(k) \frac{(x_i - \mu_k)}{\sigma_k^2} = 0$$

▶ Trick: even though $\gamma_{Z_i}(k)$ depends on μ_k , pretend that it doesn't and solve for μ_k in this equation to get:

$$\hat{\mu_k} = \frac{\sum_{i=1}^{n} \gamma_{z_i}(k) x_i}{\sum_{i=1}^{n} \gamma_{z_i}(k)} = \frac{1}{N_k} \sum_{i=1}^{n} \gamma_{z_i}(k) x_i,$$

where we set $N_k = \sum_{i=1}^n \gamma_{z_i}(k)$. We can think of N_k as the effective number of points assigned to component k.

EM in GMM

Similarly, if we apply a similar method to finding $\hat{\sigma}_k^2$ and $\hat{\pi}_k$, we get that:

$$\hat{\sigma_k^2} = \frac{1}{N_k} \sum_{i=1}^n \gamma_{z_i}(k) (x_i - \mu_k)^2$$

$$\hat{\pi_k} = \frac{N_k}{n}$$

EM in GMM

The EM algorithm now goes as follows:

- 1. Initialize the μ_k 's, σ_k 's and π_k 's and evaluate the log-likelihood with these parameters
- 2. **E-step** Evaluate the posterior probabilities $\gamma_{Z_i}(k)$ using the current values of the μ_k 's and σ_k 's with equation
- 3. **M-step** Estimate new parameters $\hat{\mu_k}$, $\hat{\sigma_k^2}$ and $\hat{\pi_k}$ with the current values of $\gamma_{Z_i}(k)$
- 4. Evaluate the log-likelihood, continue iterating from step 2 until convergence

GMM in action — sample model

Consider a data set $X \in \mathbb{R}^{300 \times 2}$ of 300 samples that are generated from a two-dimensional Gaussian mixture model with mixture weights $\pi_1 = 0.7$ and $\pi_2 = 0.3$ and mixture components with parameters

$$\mu_1 = \begin{bmatrix} 5 \\ 7 \end{bmatrix}, \quad \Sigma_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mu_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}.$$

Let's try to estimate these parameters from generated samples

GMM in action — sample model

GMM in action — initialization

Start off with an initial guess

$$\widehat{\pi}_1=0.5, \widehat{\pi}_2=0.5$$

$$\widehat{\mu}_1 = \begin{bmatrix} 10 \\ 10 \end{bmatrix}, \quad \widehat{\Sigma}_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad \widehat{\mu}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \widehat{\Sigma}_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

GMM in action — iteration 1

GMM in action — iteration 2

GMM in action — iteration 3

GMM in action — result

After three iterations, we end up with the following estimates for the results

$$\widehat{\pi}_1 = 0.68, \widehat{\pi}_2 = 0.32$$

$$\widehat{\mu}_1 = \begin{bmatrix} 4.9 \\ 7.3 \end{bmatrix}, \ \widehat{\Sigma}_1 = \begin{bmatrix} 1.6 & 0.8 \\ 0.8 & 1.9 \end{bmatrix}, \ \widehat{\mu}_2 = \begin{bmatrix} 1.0 \\ 2.1 \end{bmatrix}, \ \widehat{\Sigma}_2 = \begin{bmatrix} 2.2 & 0.2 \\ 0.2 & 1.1 \end{bmatrix}.$$

Compare to original distribution

$$\pi_1 = 0.7, \pi_2 = 0.3$$

$$\mu_1 = \begin{bmatrix} 5 \\ 7 \end{bmatrix}, \; \Sigma_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \; \mu_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \; \Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}.$$