Semantic Matching in App Search

Juchao Zhuo, Zeqian Huang, Yunfeng Liu, Zhanhui Kang, Xun Cao, Mingzhi Li, Long Jin

WSDM Feb 4, 2015

Outline

- ✓ Overview
- ✓ Challenge in App Search
- ✓ Semantic Matching
 - Matching with Topic
 - Matching with Tag
 - Learning to rank
- ✓ Applications and Evaluations
- ✓ Conclusion

Overview

- ✓ With the rapid growth of smartphones, app market has become a significant mobile internet portal. As an important function in app market, app search gains lots of attentions.
- ✓ Miss-match is the critical challenge in app search. Semantic matching is a key technology to reduce miss-match.
- ✓ In this talk, we will describe a semantic matching platform , which mines topics and tags in big data to enrich query and app representations, and implements learning to rank.
- ✓ The semantic matching platform is used by "Myapp" app market, one of the top three android app markets in China.

App Search Application in Tencent

✓ MyApp

- An android app market with a peak distribution of over 100 millions in one day of 2014
- App search engine contributes more than 40% to mobile app new-downloads
- Rapid growth: available apps from 0.3 million to
 1.2 million within one year
- Long Tail: apps which were downloaded over a million times accounted for less than 0.1%

Objectives of App Search

- ✓ App search objectives
 - Facilitate the app market, users and developers
- ✓ App search metrics
 - Downloads / QV(Query views) / UV(User views)
 - CTR(Click-Through-Rate) / ROP(Rate of Penetration)
 - NDCG (Normalized Discounted Cumulative Gain)

User habits in App Search

✓ Two kinds of queries in app search

	Ratio of Query Number	Ratio of QV Number
Precise Search	88%	75%
Fuzzy Search	12%	25%

- ✓ Precise Search
 - Search by app name, mostly prompted by the search box
- √ Fuzzy Search
 - Non-Name, always colloquial expression
 - Content/Category/Function related
 - User-habit of web search is brought to app search on mobile
 - e.g.
 - "微信里的游戏"(game in wechat)

 - "音乐软件"(music application)
 "报时间的软件"(application that reminds time)

Challenge in App Search

- ✓ Miss-match
 - Long tail challenge is more obvious in app search than that in web search.
 - Data shortage: app data is much less than web data
 - Text shortage: app name and desc. is the only text annotation for app
 - Miss-match occurs when user and developer use different terms to describe the same semantic, traditional term matching can not fix it.

e.g.

Semantic Matching Methodology

- ✓ How to describe "Semantic "?
 - Term + Topic + Tag
- Enrich query and app representations by topic and tag
- ✓ Perform query-app matching with the representations
- ✓ Hybrid Ranking Model: LTR

Matching with Topic

- ✓ Topic Model
 - Using Layered LDA(Latent Dirichlet Allocation) model
 - MPI based parallel computing framework
 - Topic probability distribution over term space: P(word|topic)

- Assign million apps to 1000+ topics
- Doc probability distribution over topic space: P(topic|doc)

Matching with Topic

- ✓ Query inference with topic
 - Each query is regarded as a document
 - Challenge:short text has not enough information to inference
 - Solution: Expanding query with collection of click apps
- ✓ Topic matching
 - Map query and documents in the topic space
 - Query Vq and documents V_d are both represented with probability distributions over topics
 - ullet Calculate topic match score between Vq and $\mathit{V_d}$

Matching with Tag

- ✓ Limitation of Topic Matching
 - Text corpora of app documents is not large enough to support large topic number.
 - Significant difference may still exist between apps in the same topic.
 - Long tail queries lack statistical click data to expand, even after topic matching, many tail queries are still unknown.

Matching with Tag

- More fine-grained semantics can be described by tag.
- Most app stores assemble tags on human editorial curation.
- Our system can monitor the app ecosystem in real time, and automatically extract tags and assign them to apps from multi-source data.

Tag Mining

- ✓ Multi-source Data
 - reading the web data
 - web-based question-answering
 - user grouping from behavior logs

Data Cleaning

DATA

Tag extraction from web data

- ✓ Data from web
 - Structured data

- Unsructured text
 - using template to extraction

Tag from question-answering

 Using web-based question-answering to perform completion of missing tag-app pairs.

Tag from user behavior logs

- Users Profile
 - gender, age, location, ...
- Users Behavior
 - search, download, install, ...

Based on user-behavior data and natural representation by tag

Tag Denoising

Using machine learning technology to calculate confidence

Tag statistic

- ✓ Denoising data
 - Over 97% pairs filtered: Treasures are hidden among the sands

- ✓ Statistic data
 - Over 90K tags mined
 - Covers 83% of apps

Top	100K	apps	have	8.53	tags	in	average
. 00	10011	appo	11010	0.00	ugu		avorago

Sources	Tags
Web Data	81626
Question-answering Data	8620
User Group	1218
Total	91464

Denoising				
Original tag-app pairs	38515130			
Filtered tag-app pairs	37677471 (97.83%)			
Valid tag-app pairs	837659 (2.17%)			

Matching query with tag

✓ Using template to map query to tags

- ✓ Using click data to calculate confidence of template
 - \bullet P(Template) = 2/3

Learning to Rank

- Challenge of Ranking
 - Relevance calculated by different matching model are incomparable
 - the example data is imbalanced (e.g. colloquial query less than normal)
 - Most of the features are nonlinear
- ✓ Using LambdaMart to rank
 - LambdaMART combines MART and LambdaRank to solve the supervised learning problem
 - Mart(Multiple Additive Regression Trees) is a gradient boosting tree model
 - Label training data partitioned by query
 - Maximizing NDCG by learning relevance score through MART

Learning to Rank Application

- ✓ LambdaMART of Combine Ranking
 - 50+ different features
 - 300,000+ pairwise traning data
 - 3000+ test samples
- ✓ Offline Experiment measurement

NDCG of baseline	NDCG of LambdaMART	Improvement vs baseline
0.8733	0.9553	9.4%

- ✓ Online A/B Test measurement
 - CTR promoted by 6%↑

Semantic Matching Metrics

- ✓ Online A/B Test measurement
 - CTR diff. on query samples
 - •9.7% querys & 26.9% query views
 - •CTR promoted by 6%~8%↑

CTR
Semantic Matching vs. Term Matching

App Search with Semantic Matching

App Indexing

- ✓ Besides apps, all digital content inside apps can be offered
- ✓ Using LambdaMart to rank with different digital content
- ✓ ROP(Rate of Penetration) of App indexing version speed-up 32.3%↑

Semantic Matching Application Example

✓ Deeper understanding colloquial form of query

Conclusion

- ✓ From Term matching to Semantic matching
 - Richer representation of semantic
- ✓ Methodology of Enriching infomation
 - Use the web search technology to detect the relationship of app data
- ✓ What is the next direction of mobile search
 - More input mode: voice, photograph, two-dimension code
 - Search engine should become more intelligent
- ✓ Stay tuned for 2015!

Acknowledgement

- ✓ Joint work with many brilliant colleagues from several departments of Tencent
- Many constructive inputs are from Yue Wu and Xing Yao

