SEMI-SUPERVISED CLASSIFICATION WITH

GRAPH CONVOLUTIONAL NETWORKS

김지완

Contents

- 1. Background
 - Laplacian, Degree, Adjacency Matrix
 - Why Convolution ? Convolution on Graphs
- 2. Introduction
 - How Do We Convolution ? Graph Fourier Transform (GFT)
- 3. Fast Approximate Convolutions on Graphs
- 4. Semi-Supervised Node Classification
- 5. Experiments
- 6. Implementation

Laplacian, Degree, Adjacency Matrix

 v_8 Adjacency Matrix : A[i, j] = 1 if v_i is adjacent to v_j

Degree Matrix : D = Diag(degree(v 1, ..., v n)

Laplacian Matrix : L = D - A

Degree Matrix

 $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

Adjacency Matrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Laplacian Matrix

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

Why Convolution ? - Layer applicable to Graph Structure

2. No Fixed Node Ordering -3. Arbitrary Neighbor size

→ 2. Capturing Locality

Naive Approach : MLP is not Working !

Why Convolution ? - Convolution in CNN

Locality

Transition Equivariance

Generalize Convolution of CNN to Apply on Graph!

Why Convolution ? - Convolution in Image vs Graph

As Image is Fixed-Grid, Applying Convolution is Easy.

There are 2 ways in applying Convolution on Graph

- 1. Apply Directly to Graph Structure Spatial Filtering
- 2. Change Graph Structure and Apply Spectral Filtering

Why Convolution ? - Spatial vs Spectral Convolution

Spatial Filtering
Intuitively Applicable
Calculation is Simple

Before GCN(2017), Spatial Filtering is Unstable and Hard to Learning

Spectral Filtering
Well-Defined Theory in Signal Processing

Computational Cost is Expensive

Why Convolution ? - What is Spectral ?

After Failing at Spatial Convolution, Try Spectral Convolution

Spectral Filtering

Change Graph Structure to apply Convolution Easy

-> Change Domain From Spatial to Some Other ..

Fourier Transform : Time Domain -> Frequency Domain -> Filtering Frequency Easy

-> Fittering Frequency Easy

 ${\tt Graph \ Fourier \ Transform : Spatial \ Domain \ {\tt -> \ Some \ Other \ Domain}}$

-> Node Similarity (Hidden Relationship) Easy

Changing Domain (Space) is related to Spectral Theory

Semi-Supervised Learning

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\text{reg}}, with \ \mathcal{L}_{\text{reg}} = \sum_{i,j} A_{ij} ||f(X_i) - f(X_j)||^2 = f(X)^T L f(X)$$

Supervised Loss With Small Labeled Dataset + Regularization Loss Connected Nodes by Edge is Likely to share Same Label

Edges Could Contain More Additional Information!

Two Contribution

- 1. Simple, Well-Behaved Layer-Wise Propagation Rule Can Directly Apply on Graphs
- 2. Fast and Scalable
- -> First Order Approximation of Spectral Graph Convolution Stable + Fast Learning is Possible

How Do We Convolution ?

$$F(u) = \langle f, e^{2\pi j u t} \rangle = \int f(t) e^{-2\pi j u t} dt$$

$$f(t) = \int F(u) e^{2\pi j u t} du$$

$$\Delta(f) = -\frac{\partial^2 f}{\partial t^2}, Laplace Operator$$

$$\Delta(e^{2\pi j u t}) = -(2\pi u)^2 e^{2\pi j u t}$$

$$\Delta f = \lambda f$$

Idea: Want to Know Divergence of Gradient (Diffusion) -> Laplace Operator

Laplace Operator : Operator on Function Space

 $e^{2\pi j u t}$ is EigenFunction(EigenVector) of Laplace Operator

Fourier Transform = Projecting Function To Other Function Space = Representing Function With EigenFunction of Laplace Operator

How Do We Convolution ?

In Signal Processing,

Want to Know Divergence of Gradient (Diffusion) -> Laplace Operator

In Graph,

Want to Know Similarity Between Nodes -> Which Operator ?

Laplacian Quadratic Form:
$$f(X)^T \Delta f(X) = \sum_{i=1}^{n} A_{ij} ||f(X_i) - f(X_j)||^2$$

Laplacian Quadratic Form
The Smaller. The Similar the Connected Nodes

Derivative of Laplacian Quadratic Form is Laplacian Matrix (Discrete Laplace Operator) !

Graph Fourier Transform = Projecting X (Feature) To Laplacian Matrix Space = Representing X With EigenVector of Laplacian Matrix

How Do We Convolution ?

$$\begin{split} L &= UAU^T \\ GFT(X) &= Representing \ X \ with \ U := [u_1, \cdots u_N] \\ &= (U^TU)^{-1}U^TX = U^TX \\ IGFT(X) &= UX \end{split}$$

How Do We Convolution ?

$$\begin{split} g_{\theta} * x &= \mathit{IGFT}(\mathit{GFT}(g_{\theta}) \cdot \mathit{GFT}(x)) \\ &= U \cdot \hat{g}_{\theta} \cdot U^{T}x \\ &= U\hat{g}_{\theta}U^{T}x \;,\; \hat{g}_{\theta} \; is \; \mathit{Arbitary Filtering Function} \\ &= \left[u_{1} \;\; u_{2} \;\; \cdots \;\; u_{N}\right] \begin{bmatrix} \theta_{11} \;\; \cdots \;\; \theta_{1N} \\ \vdots \;\; \ddots \;\; \vdots \\ \theta_{N1} \;\; \cdots \;\; \theta_{NN} \end{bmatrix} \begin{bmatrix} u_{1}^{T} \\ u_{2}^{T} \\ \vdots \\ u_{N}^{T} \end{bmatrix} x \\ &= \left[u_{1} \;\; u_{2} \;\; \cdots \;\; u_{N}\right] \begin{bmatrix} \hat{g}_{\theta}(\lambda_{0}) \;\; \cdots \;\; 0 \\ \vdots \;\; \ddots \;\; \vdots \\ 0 \;\; \cdots \;\; \hat{g}_{\theta}(\lambda_{N-1}) \end{bmatrix} \begin{bmatrix} u_{1}^{T} \\ u_{2}^{T} \\ \vdots \\ \tau \end{bmatrix} x \;,\; \hat{g}_{\theta} \; is \; \mathit{Function of } \Lambda \end{split}$$

Layer-Wise Propagation Rule

$$\mathbf{g}_{\theta} * x = \begin{bmatrix} u_1 & u_2 & \cdots & u_N \end{bmatrix} \begin{bmatrix} \widehat{g}_{\theta}(\lambda_0) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \widehat{g}_{\theta}(\lambda_{N-1}) \end{bmatrix} \begin{bmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_N^T \end{bmatrix} x , \widehat{g}_{\theta} \text{ is Function of } \Lambda$$

Problems in Computational Resource

- -> Matrix Multiplication + Eigendecomposition of L is Expensive
- 4 Tricks For Fast Approximate
- Approximate to ChebyShev Polynomial —
- 2. K = 1 Set
- 3. Parameter Reduce
- 4. Renormaliation Trick

$$H^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$$

$$\widetilde{A} = I_N + A, \widetilde{D}_{ii} = \sum A_{ij}$$

Layer-Wise Propagation Rule 1. Approximate to ChebyShev Polynomial

$$\widehat{g}_{\theta}(\Lambda) \approx \sum_{k=0}^{K} \theta_{k} T_{k}(\widetilde{\Lambda}), \widetilde{\Lambda} = \frac{2}{\lambda_{max}} \Lambda - I_{N}$$

$$2x T_{k-1}(x) - T_{k-2}(x) = T_{k}(x), T_{0}(x) = 1, T_{1}(x) = x$$

$$\begin{split} \mathbf{g}_{\theta} * x &= U \, \widehat{g}_{\theta} \, U^T x \\ &= U \sum_{k=0}^K \theta_k^T T_k(\widetilde{A}) U^T x \\ &= \sum_{k=0}^K \theta_k^T T_k(U\widetilde{A} U^T) x \, , \widetilde{L} = \frac{2}{\lambda_{max}} L - I_N \end{split} \qquad \begin{array}{ll} \text{No More Need Eigen Decomposition} \\ \text{Only Need Spatial Data, L} \\ \text{Computational Still Expensive - O(KE)} \\ \text{Non-Linear - Hard To Stack Deep Layer} \\ &= \sum_{k=0}^K \theta_k^T T_k(\widetilde{L}) x = \theta_0^T I_N x + \theta_1^T \widetilde{L} \, x + \theta_2^T (2\widetilde{L}^2 - I_N) x \, + \, \cdots \end{split}$$

Layer-Wise Propagation Rule 2. Setting K = 1

$$g_{\theta} * x = \sum_{k=0}^{K} \theta_{k}^{T} T_{k}(\overline{L}) x = \theta_{0}^{T} I_{N} x + \theta_{1}^{T} \overline{L} x + \theta_{2}^{T} (2\overline{L}^{2} - I_{N}) x + \cdots$$

$$= \theta_{0}^{T} I_{N} x + \theta_{1}^{T} \overline{L} x$$

$$= \theta_{0}^{T} I_{N} x + \theta_{1}^{T} (\frac{2}{\lambda_{max}} L - I_{N}) x, Assume \lambda_{max} \approx 2$$

$$= \theta_{0}^{T} I_{N} x - \theta_{1}^{T} D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$

By Setting K = 1, Convolution Capture 1-Step Neighborhood -> More Deep Neighborhood Infomation by Stacking Layer Deep

Time Efficiency - O(E) & Linear -> Stacking Deep Layer Possible

Layer-Wise Propagation Rule 3&4. Parameter Reduce & Renormalization Trick

$$\begin{aligned} \mathbf{g}_{\theta} * x &= \theta_0^T I_N x - \theta_1^T D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x \\ &= \theta^T \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x \end{aligned} \qquad \text{Parameter Reduce} \\ &= \theta^T \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} \right) x , \widetilde{A} = I_N + A : Self \ Loop \\ &= \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} X \Theta \end{aligned}$$

$$H^{(l+1)} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$
 By Parameter Reduce, Prevent Overfitting

By Parameter Reduce, Prevent Overfitting
By Renormalization Trick, Avoid Gradient Exploding / Vanishing

Semi-Supervised Node Classification

Two Layer GCN

$$\begin{split} Z &= f(X,A) = softmax(\widehat{A} \ ReLU \ (\widehat{A} \ XW^{(0)}) \ W^{(1)}) \\ \widehat{A} &= \ \widetilde{D}^{-\frac{1}{2}} \ \widetilde{A} \ \widetilde{D}^{-\frac{1}{2}} \end{split}$$

$$\mathcal{L} = \mathcal{L}_0 \ + \ \lambda \mathcal{L}_{\text{reg}} \ , with \ \mathcal{L}_{\text{reg}} = \ \sum A_{ij} ||f(X_i) - f(X_j)||^2 = f(X)^T L f(X) \end{split}$$

$$\mathcal{L} = -\sum_{l} \sum_{i=1}^{F} Y_{lf} ln Z_{lf}$$

Experiments

Datasets

Table 1: Dataset statistics, as reported in Yang et al. (2016).

			(5)	- 3		
Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Method	Citeseer	Cora	Pubmed	NELL	
ManiReg [3]	60.1	59.5	70.7	21.8	
SemiEmb [28]	59.6	59.0	71.1	26.7	
LP [32]	45.3	68.0	63.0	26.5	
DeepWalk [22]	43.2	67.2	65.3	58.1	
ICA [18]	69.1	75.1	73.9	23.1	
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)	
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)	
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7	

For Semi-Supervised Learning,

Train Set : 20 Samples Per Class,

Valid, Test Set : 500, 1000 Samples Each

Learing Rate : 0.01

Epoch: 200

Early Stopping : 10 Patience

Dropout : 0.1 (NELL) / 0.5 (Others)

L2 Regularization : 1e-5 (NELL) / 5e-4 (Others)

Hidden Dim : 64 (NELL) / 16 (Others)

(Upper) Mean Acc of 100 Random Node Ordering (Lower) Mean Acc of 10 Dataset split

Graph, Feature : Row-wise Normalize

Experiments

Datasets

Description		Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5)	K = 3	NK T (T) VO	69.8	79.5	74.4
Chebyshev inter (Eq. 5)	K = 2	$\sum_{k=0}^{K} T_k(\bar{L}) X \Theta_k$	69.6	81.2	73.8
1st-order model (Eq. 6)		$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)		$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)		$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
1st-order term only		$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron		$X\Theta$	46.5	55.1	71.4

Method	Eigen Value Decomposition	Propagation		
Spectral GCN	$O(N^3)$	$O(N^2CF)$		
+ ChebyShev Filter	-	O(KECF)		
+ 1st-Order Model	-	O(ECF)		
+ Single Parameter	-	O(ECF)		
+ Renomalization Trick	_	O(ECF)		

Limitation And Future Works

1. Memory Requirement

Full Batch Gradient Descent

2. Directed Edges and Edges Features

Only Applicable to Undirected Graphs

3. Limiting Assumptions

Importance between Self-Connection and Neighborhood Edge

Datasets

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Type	Nodes	Edges	Classes	Features	Label rate
Citation network	3,327	4,732	6	3,703	0.036
Citation network	2,708	5,429	7	1,433	0.052
Citation network	19,717	44,338	3	500	0.003
Knowledge graph	65,755	266,144	210	5,414	0.001
	Citation network Citation network Citation network	Citation network 3,327 Citation network 2,708 Citation network 19,717	Citation network 3,327 4,732 Citation network 2,708 5,429 Citation network 19,717 44,338	Citation network 3,327 4,732 6 Citation network 2,708 5,429 7 Citation network 19,717 44,338 3	Citation network 3,327 4,732 6 3,703 Citation network 2,708 5,429 7 1,433 Citation network 19,717 44,338 3 500

Data : Citeseer Num Nodes : 3327 Num Edges : 9104 Feature Dim : 3703 Num Class : 6

Data : PubMed Num Nodes : 19717 Num Edges : 88648 Feature Dim : 500 Num Class : 3 Data : Cora Num Nodes : 2708 Num Edges : 10556 Feature Dim : 1433 Num Class : 7

Data: NELL Num Nodes: 65755 Num Edges: 251550 Feature Dim: 61278 Num Class: 186

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Train Finished : Citeseer Test Set Result : After Train loss= 1.0334 accuracy= 0.6750

Best Model Loss : 1.0238 Best Model Acc : 0.6850

Train Finished : PubMed Test Set Result : After Train loss= 0.5556 accuracy= 0.7840

Best Model Loss : 0.5458 Best Model Acc : 0.7850 Train Finished : Cora Test Set Result : After Train loss= 0.6913 accuracy= 0.8100

Best Model Loss : 0.6901 Best Model Acc : 0.8180

Train Finished : NELL Test Set Result : After Train loss= 2.9609 accuracy= 0.4910

Best Model Loss : 2.2798 Best Model Acc : 0.5710

$$H^{(l+1)} = \sigma(\widehat{A} \ H^{(l)} W^{(l)})$$

$$\widehat{A} = \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} = \widetilde{D}^{-1} \widetilde{A}$$

```
H^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})
Z = f(X, A) = softmax(\widehat{A} ReLU(\widehat{A} XW^{(0)})W^{(1)})
```

```
ass GraphConv(nn,Module) :
 def init (self, in , out ) :
     super(GraphConv, self). init ()
     self.in features - in
     self.out features - out
     self.weight = nn.Parameter(torch.FloatTensor(in . out ))
     self.bias - nn.Parameter(torch.FloatTensor(out ))
     std = 1.0 / math.sqrt(self.weight.size(1))
     self.weight.data.uniform (-std. std)
     self.bias.data.uniform (-std, std)
 def forward(self, input, adj graph) :
     output = tss.mm(input, self.weight)
     output = tss.mm(adi graph, output) + self.bias
     return output
```


In Paper, 20 Sample Per Class
Author Github Just 100 Sample Regardless of Classs - No Big Diffence

All Data 200 Epoch & Early Stop -> Citeseer / Cora / PubMed Stop Without Learning

For NELL Dataset, High Deviation in Accuracy

```
A \in R^{N \times N} Sparse Matrix with E elements nonzero X \in R^{N \times C}, W_1 \in R^{C \times H}, W_2 \in R^{H \times F} One Layer: AXW_1  O(ECH) Two Layer: AAXW_1W_2 O(ECHF)
```

 $A(AX^{(0)}W_1)W_2$, Calculationg $AX^{(0)}W_1$ is O(ECH) $AX^{(1)}W_2$, Calculationg is O(EHF)

 \rightarrow Time Complexity O(ECH + EHF)