

planetmath.org

Math for the people, by the people.

module

Canonical name Module

Date of creation 2013-03-22 11:49:14 Last modified on 2013-03-22 11:49:14

Owner djao (24) Last modified by djao (24)

Numerical id 11

Author djao (24) Entry type Definition Classification ${\rm msc}\ 13\text{-}00$ Classification msc 16-00Classification msc 20-00Classification msc 44A20Classification ${\rm msc}~33{\rm E}20$ Classification msc 30D15Synonym left module Synonym right module Related topic ${\bf Maximal Ideal}$ Related topic VectorSpace

Let R be a ring with identity. A *left module* M over R is a set with two binary operations, $+: M \times M \longrightarrow M$ and $\cdot: R \times M \longrightarrow M$, such that

- 1. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in M$
- 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in M$
- 3. There exists an element $\mathbf{0} \in M$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in M$
- 4. For any $\mathbf{u} \in M$, there exists an element $\mathbf{v} \in M$ such that $\mathbf{u} + \mathbf{v} = \mathbf{0}$
- 5. $a \cdot (b \cdot \mathbf{u}) = (a \cdot b) \cdot \mathbf{u}$ for all $a, b \in R$ and $\mathbf{u} \in M$
- 6. $a \cdot (\mathbf{u} + \mathbf{v}) = (a \cdot \mathbf{u}) + (a \cdot \mathbf{v})$ for all $a \in R$ and $\mathbf{u}, \mathbf{v} \in M$
- 7. $(a+b) \cdot \mathbf{u} = (a \cdot \mathbf{u}) + (b \cdot \mathbf{u})$ for all $a, b \in R$ and $\mathbf{u} \in M$

A left module M over R is called *unitary* or *unital* if $1_R \cdot \mathbf{u} = \mathbf{u}$ for all $\mathbf{u} \in M$.

A (unitary or unital) $right\ module$ is defined analogously, except that the function \cdot goes from $M\times R$ to M and the scalar multiplication operations act on the right. If R is commutative, there is an equivalence of categories between the category of left R-modules and the category of right R-modules.