### ALGORITHM ANALYSIS

Will

#### PREVIOUSLY ON DS&A

- Discussed what this course was about
- Review on Python
- Brief discussion on peak finding
  - Algorithm on sequnces





#### PEAK FINDING

- Two-dimensional version
  - A is a 2D peak iff a>=b, a>=d, a>=c and a>=e
  - 20 is a peak
  - Greedy ascent algorithm
    - Going to the direction where the element is bigger
    - Complexity:  $O(n^2)$  if m = n

| 14 | 4  | 13 | <b>—12</b>        |    |
|----|----|----|-------------------|----|
| 1. | 5  | 9  | 11                | 17 |
| 10 | б- | 17 | <del>19&gt;</del> | 20 |



#### PEAK FINDING

- Attempt #2
  - Pick middle column j = m/2
  - Find global maximum on column j at (i, j)
  - Compare (i, j-1), (i, j), (i, j+1)
  - Pick left columns if (i, j-1) > (i, j)
  - Similarly for the right
  - (i, j) is a 2D peak if neither condition holds -> why?
  - Solve the new problem with half the number of columns
  - When you have a single column
    - find global maximum and you are done



#### PEAK FINDING

- Attempt #2
  - Complexity?
  - If T(n, m) denotes work required to solve problems With n rows and m columns

T(n,m) = T(n, m/2) + O(n) - global maximum on mT(n,m) = O(n) + O(n) ... log m times

= O(n log m)

= O(n log n) if m = n

| 10  | 8  | 10 | 10 |  |  |
|-----|----|----|----|--|--|
| 14  | 13 | 12 | 11 |  |  |
| 15  | 9  | 11 | 21 |  |  |
| 16  | 17 | 19 | 20 |  |  |
| A . |    |    |    |  |  |

| 10 | 10 |
|----|----|
| 12 | 11 |
| 11 | 21 |
| 19 | 20 |
|    |    |

go with



pick this column 17 global max for this column pick this column 19 global max for this column

### THIS LECTURE

- Object-Oriented Design
  - Goals
  - Principles
  - Patterns
- Asymptotic Analysis

#### OBJECT-ORIENTED DESIGN

- Why object-oriented?
- The complexity of software systems grow
- Maintaining code becomes difficult
- Solution?
- Raise the level of abstraction
- In design and implementation
- Assembly -> procedure-oriented -> object-oriented
- And of course model-oriented (or sometimes model-driven)

#### OBJECT-ORIENTED DESIGN

- Goals for software
  - Robustness: the ability to handle unexpected inputs
    - Recover gracefully from errors
    - Life-critical applications
  - Adaptability: the ability to evolve over time to changing conditions
    - How easy is it to make changes to your software?
    - Can your software be ported to another platform?
      - i.e. using a different programming language?
  - Reusabiility: the ability to reuse some parts of your software
    - How modular is your software?
    - Good software is often re-used
      - Good: efficient, long MTTE, safe, robust

#### **OBJECT-ORIENTED DESIGN**

- Object-Oriented Principles
  - Modularity: how organized are the components of your software
    - "modules" in Python: closely related classes (with their functions)
    - Robustness: it is easier to test and debug separate components
    - Adaptability: isolation of concerns
    - Reusability: modules can be reused when related need arises in other contexts
  - Abstraction: most fundamental concepts of a complicated system
    - Abstract Data Types (ADT): mathematical model of a data structure
      - What each operations do, not how they do it
      - Public interface
  - Encapsulation: internal details of implementations not revealed
    - Only public interfaces
    - Robustness and adaptability: easy to test, easy to change

#### DESIGN PATTERNS

- Algorithm
  - Recursion
  - Amortisation
  - Divide-and-conquer
  - Prune and search (decrease-and-conquer)
  - Brute force
  - Dynamic programming
  - Greedy methods
- Software engineering
  - Iterator
  - Adapter
  - Position
  - Composition
  - Template methods
  - Factory

# MEASURING THE QUALITY OF ALGORITHMS

- Data structure: systematic way of organising and accessing data
- Algorithm: Al-Khwarzmi /al-kha-raz-mi/
  - "father of algebra" with his book "The compendious Book on Calculation by Completion & Balancing"
  - Linear & quadratic equation solving: some of the first algorithms
- This course: design of "good" data structures and algorithms
- What's "good"? how do we measure?

#### EXPERIMENTAL STUDIES

- Observe running time of an algorithm
  - Executing on various test inputs
  - Record the time spent during each execution
  - Doing it in Python
  - Problems?

```
from time import time
start_time = time()  # record the starting time
run algorithm
end_time = time()  # record the ending time
elapsed = end_time - start_time  # compute the elapsed time
```

#### EXPERIMENTAL STUDIES

- Observe running time of an algorithm
  - Doing it in Python
  - Problems?
    - Input may not be the worst case
    - Algorithm may not scale
    - Time() may be affected by other processes sharing the CPU
    - What about clock()?

```
from time import time
start_time = time()  # record the starting time
run algorithm
end_time = time()  # record the ending time
elapsed = end_time - start_time  # compute the elapsed time
```

### EXPERIMENTAL STUDIES

Observe running time of an algorithm



# CHALLENGES OF EXPERIMENTAL STUDIES

- Directly comparing two algorithms are difficult
  - Same hardware and software
  - Same CPU activities
- Only on a limited set of test inputs
  - Is this input the worst case?
    - Easy to determine for an input of size 8
    - What about the input of size 1,000,000?
  - Does the algorithm scale when the input is very large?
    - E.g. 1,000,000,000?
- An algorithm must be fully implemented in order to execute
  - Time consuming
    - What if our design in inefficient?
  - C vs. Python?

## MOVING BEYOND EXPERIMENTAL ANALYSIS

- Approach to analyse the efficiency of algorithms
  - Allows us to evaluate the relative efficiency of any two algorithms
  - Is performed by studying a high-level description of the algorithm without implementing it
  - Takes into account all possible inputs







#### COUNTING PRIMITIVE OPERATIONS

- Often correspond to low-level instructions with an execution time that is constant
  - Assignment
  - Determine the object with an identifier
  - Arichmetic operation: +,-,\*,/, etc.
  - Comparing two numbers
  - Accessing an element of a python list by index
  - Calling a function
    - Excluding what's inside the function
  - Returning from a function

# FOCUSING ON THE WORST CASE INPUT

- An algorithm runs in different time for different input
- We are interested in the worst case
  - Mhh
    - Some applications are time sensitive
    - Upper bound
    - Easier than analysing average



# SEVEN FUNCTIONS WE NEED FOR ALGORITHM ANALYSIS

- Constant functions
  - f(n) = c
- Logarithm functions
  - $f(n) = \log_b n$  for some constant b > 1
  - $x = \log_b n$  if and only if  $b^x = n$
  - most common base for the logarithm function: 2
- Linear functions
  - f(n) = n
- The N-log-N functions
  - $f(n) = n \log n$

# SEVEN FUNCTIONS WE NEED FOR ALGORITHM ANALYSIS

- Quadratic functions
  - $f(n) = n^2$
  - Typically happens for nested loops
- Cubic functions
  - $f(n) = n^3$
  - Typically happens for nested loops
- Exponential functions
  - $f(n) = b^n$  for some constant b > 0
  - Geometric summation

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1}$$

$$1 + 2 + 4 + 8 + \dots + 2^{n-1} = 2^{n} - 1$$

### GROWTH RATES OF FUNCTIONS

| constant | logarithm | linear | n-log-n    | quadratic | cubic | exponential |
|----------|-----------|--------|------------|-----------|-------|-------------|
| 1        | $\log n$  | n      | $n \log n$ | $n^2$     | $n^3$ | $a^n$       |



#### ASYMPTOTIC ANALYSIS

- Growth rate of the running time as a function of the input size n
  - Grows proportionally to n
- Mathematical notation that disregard constant factors
  - Size of input n -> values correspond to the main factor that determines the growth rate in terms of n
- Finding the largest element of a Python list
  - Complexity: c\*n for some constant c (c=?)

```
def find_max(data):
"""Return the maximum element from a nonempty Python list."""
biggest = data[0]  # The initial value to beat
for val in data:  # For each value:
if val > biggest  # if it is greater than the best so far,
biggest = val  # we have found a new best (so far)
return biggest  # When loop ends, biggest is the max
```

• Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) if there is a real constant c>0 and an integer constant  $n_0 >= 1$  such that

$$f(n) \le c \ g(n)$$
, for  $n \ge n_0$ 

• y=x vs. y=x<sup>2</sup>



- Function: 8n + 5 is O(n)
- Find a constant c > 0 and an integer constant  $n_0 \ge 1$ 
  - $8n+5 \le cn$  for every  $n \ge n_0$
  - c = 9 and  $n_0 = 5$
- Big-O: f(x) is "less than or equal to" another function g(n) up to a constant factor and in the asymptotic sense as n grows towards infinity
- f(n) = O(g(n))
- "f(n) is O(g(n))"

• The algorithm find\_max() for computing the maximum element of a list of n numbers, runs in  $\mathcal{O}(n)$  time

```
def find_max(data):
    """Return the maximum element from a nonempty Python list."""
    biggest = data[0]  # The initial value to beat
    for val in data:  # For each value:
    if val > biggest  # if it is greater than the best so far,
        biggest = val  # we have found a new best (so far)
    return biggest  # When loop ends, biggest is the max
```

- We can ignore constant factors and lower-order terms when talking about asymptotic complexity
- $5n^4 + 3n^3 + 2n^2 + 4n^1$  is  $O(n^4)$ 
  - $5n^4 + 3n^3 + 2n^2 + 4n^1 \le (5+3+2+4)n^4 = cn^4$
- If f(n) is a polynomial degree d
  - $f(n) = a0 + a_1 n + \dots + a_n n^d$
  - $a_d > 0$ , then f(n) is  $O(n^d)$
- Characterising functions in simplest terms
  - $f(n) = 4n^3 + 3n^2$  is  $O(n^5)$  or  $O(n^4)$
  - It is more accurate to say  $f(n) = O(n^3)$

#### BIG-OMEGA AND BIG-THETA

- Big-Omega
  - Big Omega is "greater than or equal to"
    - Normally referred to as the "upper bound"
  - f(n) is  $\Omega(g(n))$  if there is a real constant c>0 and an integer constant  $n_0 >= 1$   $f(n) \ge c g(n)$ , for  $n \ge n_0$
- Big-Theta
  - Two function grow at the same rate
  - f(n) is  $\theta(g(n))$ , if f(n) is O(g(n)) and f(n) is  $\Omega(g(n))$ .
  - If there are real constants c'>0 and c''>0, and an integer constant  $n_0>=1$   $c'g(n) \le f(n) \le c''g(n)$ , for  $n \ge n_0$

#### COMPARATIVE ANALYSIS

Two algorithms

• A: O(n)

• B:  $O(n^2)$ 

• Which one is better?

| n   | $\log n$ | n   | $n \log n$ | $n^2$   | $n^3$         | $2^n$                  |
|-----|----------|-----|------------|---------|---------------|------------------------|
| 8   | 3        | 8   | 24         | 64      | 512           | 256                    |
| 16  | 4        | 16  | 64         | 256     | 4,096         | 65,536                 |
| 32  | 5        | 32  | 160        | 1,024   | 32,768        | 4,294,967,296          |
| 64  | 6        | 64  | 384        | 4,096   | 262, 144      | $1.84 \times 10^{19}$  |
| 128 | 7        | 128 | 896        | 16,384  | 2,097,152     | $3.40 \times 10^{38}$  |
| 256 | 8        | 256 | 2,048      | 65,536  | 16,777,216    | $1.15 \times 10^{77}$  |
| 512 | 9        | 512 | 4,608      | 262,144 | 134, 217, 728 | $1.34 \times 10^{154}$ |

• Does it matter if A is 10000n and B is  $n^2$ ?

| Running   | Maximum Problem Size (n) |          |           |  |  |
|-----------|--------------------------|----------|-----------|--|--|
| Time (µs) | 1 second                 | 1 minute | 1 hour    |  |  |
| 400n      | 2,500                    | 150,000  | 9,000,000 |  |  |
| $2n^2$    | 707                      | 5,477    | 42,426    |  |  |
| $2^n$     | 19                       | 25       | 31        |  |  |

#### COMPARATIVE ANALYSIS

- But what about  $10^{100}n$  vs  $n\log n$  ?
  - We'd prefer  $n \log n$
  - Mhhs
  - 10<sup>100</sup> is believed to be the upper bound on the number of atoms in the observable universe
- What is a "efficient" algorithm?
  - $O(n \log n)$
  - $O(n^2)$
- Exponential running times?
  - Bad
  - Very bad
  - You're likely to lose your job bad
  - The famous "grain on chess board" problem

#### EXAMPLES

```
def find_max(data):
                                                              """ Return the maximum element from a nonempty Python list."""
List: arr
                                                              biggest = data[0]
                                                                                            # The initial value to beat
                                                              for val in data:
                                                                                            # For each value:

    Constant time operations on list

                                                               if val > biggest
                                                                                            # if it is greater than the best so far,
     • len(arr): 0(1)
                                                                 biggest = val
                                                                                            # we have found a new best (so far)
                                                              return biggest
                                                                                            # When loop ends, biggest is the max

    Access an element with index arr[] : υ(1)
```

- find\_max() again
  - How many times do we have to update the "biggest" value?
  - Worst case: n-1
  - Random: probability that the j<sup>th</sup> element is the largest of the first j elements is 1/j.
    - Harmonic number.
  - For n elements, it is  $\ln(n) + C$ , C is Euler's constant, and therefore  $O(\log n)$

#### PREFIX AVERAGE

- Given a sequence S consisting of n numbers, compute a sequence A
  - A[j] is the average of elements  $S[0] \dots S[j]$  for  $j = 0, \dots, n-1$

$$A[j] = \frac{\sum_{i=0}^{j} S[i]}{j+1}$$

A quadratic time algorithm

```
def prefix_average1(S):

"""Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""

n = len(S)

A = [0] * n

for j in range(n):

total = 0

for i in range(j + 1):

total + S[i]

A[j] = total / (j+1)

# record the average

return A
```

#### PREFIX AVERAGE

- A quadratic time algorithm
  - len(S): O(1)
  - A=[0]\*n: O(n)
  - For loops
    - Outer loop: O(n)
    - Inner loop: 1, 2, 3, 4, ... n times:  $n(n+1)/2 = O(n^2)$

```
def prefix_average1(S):

"""Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""

n = len(S)

A = [0] * n

for j in range(n):

total = 0

for i in range(j + 1):

total + S[i]

A[j] = total / (j+1)

# record the average

return A
```

#### PREFIX AVERAGE

- A linear time algorithm
  - len(S): O(1)
  - A=[0]\*n: O(n)
  - For loop: O(n)

```
\begin{array}{lll} & \textbf{def} \; \text{prefix\_average3}(S): \\ & \text{"""Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""} \\ & \text{such that, for all j, A[j] equals average of S[0], ..., S[j]."""} \\ & \text{such that, for all j, A[j] equals average of S[0], ..., S[j]."""} \\ & \text{such that, for all j, A[j] equals average of S[0], ..., S[j]."""} \\ & \text{total equals average new list of n zeros} \\ & \text{total equals average new list of n zeros} \\ & \text{total equals average new list of n zeros} \\ & \text{total equals equals average new list of n zeros} \\ & \text{total equals average new list of n zeros} \\ & \text{total equals equals average new list of n zeros} \\ & \text{total equals equals equals equals equals equals average new list of n zeros} \\ & \text{total equals e
```

#### THREE-WAY SET DISJOINTNESS

- 3 sequences of numbers: A, B and C
  - No individual sequence contains duplicate values
  - The intersection of the three sequences is empty
  - There is no element x such that  $x \in A$ ,  $x \in B$ , and  $x \in C$
  - Complexity?

```
def disjoint1(A, B, C):
    """Return True if there is no element common to all three lists."""
for a in A:
    for b in B:
    for c in C:
        if a == b == c:
        return False  # we found a common value
    return True  # if we reach this, sets are disjoint
```

#### THREE-WAY SET DISJOINTNESS

- 3 sequences of numbers: A, B and C
  - No individual sequence contains duplicate values
  - The intersection of the three sequences is empty
  - There is no element x such that  $x \in A, x \in B, and x \in C$
  - Improved version: O(n<sup>2</sup>)

```
def disjoint2(A, B, C):
    """Return True if there is no element common to all three lists."""

for a in A:
    for b in B:
        if a == b:  # only check C if we found match from A and B

for c in C:
        if a == c  # (and thus a == b == c)
        return False  # we found a common value

return True  # if we reach this, sets are disjoint
```

#### ELEMENT UNIQUENESS

• Find if there are duplicate elements in a sequence

```
def unique1(S):
    """Return True if there are no duplicate elements in sequence S."""
for j in range(len(S)):
    for k in range(j+1, len(S)):
        if S[j] == S[k]:
        return False  # found duplicate pair
    return True  # if we reach this, elements were unique
```

#### ELEMENT UNIQUENESS

Efficiency can be improved if the sequence is sorted

```
def unique2(S):
    """Return True if there are no duplicate elements in sequence S."""
    temp = sorted(S)  # create a sorted copy of S
    for j in range(1, len(temp)):
        if S[j-1] == S[j]:
            return False  # found duplicate pair
    return True  # if we reach this, elements were unique
```

### SMALL QUIZ FOR THIS WEEK:

- Problem settings:
  - 2 players
  - 1 table
  - Infinite amount of coins
- Rule:
  - Each turn: one player places a coin on the table
    - Anywhere
  - The player that places the last coin (i.e. table if full of coins) wins
  - Coins cannot overlay with each other
- If you are to win, would you choose to:
  - Take turns first
  - Take turns second
- What's the winning strategy?

### **THANKS**

See you in the next session!