Họ và tên: Mã SV: Lớp: Số ĐT:

ĐÈ 1 (Viết kết quả)-(Thời gian làm bài: 45 phút)

Câu 1: Các đạo hàm riêng cấp một của hàm số $z=2x^2y^3-3xy^2$ là

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} =$$

Câu 2: Cho hàm ẩn y = f(x) xác định bởi phương trình $x^4y^5 - 7(x^2 + y^3) + 13 = 0$.

Ta có: f'(x) =

Câu 3: Cho hàm số $f(x,y)=x^3\arccos y$, tính $\frac{\partial f}{\partial x}(1,0)$ và $\frac{\partial f}{\partial y}(1,0)$. Ta có:

$$\frac{\partial f}{\partial x}(1,0) = \frac{\partial f}{\partial y}(1,0) =$$

Câu 4: Cho $f(x,y,z) = x^3y - 2xy^2 + z$ và $\vec{l} = (0,3,4), M_0(1,1,1)$. Có: $\frac{\partial f}{\partial \vec{l}}(M_0) = 0$

Câu 5: Cho hàm số $f(x,y) = x^7 y - x^{12} y^{13}$. Ta có $f^{(13)}_{x^{12} y}(x,y) =$

Câu 6: Cho hàm số $f(x,y)=\frac{x+3y}{2x-y}$ và điểm $\mathrm{M}_0(1,1)$. Khi đó $df(M_0)=$

Câu 7: Cho z=z(x,y) là hàm số ẩn xác định từ PT $3e^{xy}-y^3z^5-2=0$. Có dz(0,1)=

Câu 8: Cho $I=\iint_D x^2ydxdy, D=\ (x,y)\in\mathbb{R}^2\ /\ 0\leq x\leq 1, 0\leq y\leq 2\$. Có I=

Câu 9: Cho $I=\iint_D f(x,y)dxdy$, với $D=(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 4,\,x\leq 0,\,y\leq 0$. Xác định cận của r và φ khi thực hiện phép đổi biến sang hệ tọa độ cực. Ta có $\leq r\leq \leq \varphi\leq$

Câu 10: Đổi thứ tự lấy TP trong TP sau: $I = \int_0^2 dy \int_{3y}^6 f(x,y) dx$. Có I =

Câu 11: Tính thể tích V của vật thể giới hạn bởi các mặt: x=0,y=0,z=0,x+y=1,x+y-z=-2 Ta có V=

Câu 12: Tính tích phân $I=\int_D^\infty (y-2x)^2 dxdy$, D là hình phẳng giới hạn bởi các đường thẳng y=x,y=x+1,y=2x-1,y=2x+2. Ta có I=

Câu 13: Cho V là miền giới hạn bởi các mặt $z=x^2+y^2$, $x^2+y^2=4$ và z=0. Tính

$$I = \iiint\limits_V z dx dy dz$$
. Ta có $I =$

Câu 14: Tính
$$I=\iiint\limits_V x dx dy dz$$
 , $V=(x,y,z)\in\mathbb{R}^3 \mid x\geq 0, y\geq 0, x^2+y^2\leq z\leq 1$. Có $I=$

Câu 15: Tính
$$I=\iiint\limits_V z dx dy dz, \quad V=\ (x,y,z)\in \mathbb{R}^3 \mid x^2+y^2+z^2\leq 2y$$
 . Có $I=$

Câu 16: Tính
$$I = \oint_C (2-3y)dx + (2x+7)dy$$
, C là đường tròn $x^2 + y^2 = 4$. Có $I = C$

Câu 17: Cho
$$C$$
 là đoạn thẳng nối hai điểm $A(0,0)$ và $B(1,-1)$. Tính $I=\int\limits_C (x^3+5y)ds$. Có $I=$

Câu 18: Cho
$$I=\iint_S z^2 dS$$
 , S là phần mặt phẳng $z=3$ với $x^2+y^2\leq 9$. Có $I=$

Câu 19: Tính
$$I=\int\limits_{AB}x^2(3\sin y-5y)dx+x(x^2\cos y+5y^2)dy$$
 với cung AB là nửa trên đường tròn $x^2+y^2=1$ từ điểm $A(1,0)$ đến điểm $B(-1,0)$. Ta có $I=$

Câu 20: Tính
$$I=\oint\limits_L(e^{3x}\sin x^2+2x^2y)dx+(e^{-4y}+\cos^3y-2xy^2)dy,\ L$$
 là đường tròn $x^2+y^2=2y$. Có $I=$

Câu 21: Cho
$$I=\int\limits_{AB}(\sin y+2y^2+2x^3)dx+(x\cos y+y^5)dy,\ AB$$
 có phương trình $y=\sqrt{4-x^2}$, $A(2,0)$, $B(-2,0)$. Ta có $I=$

Câu 22 : Cho
$$D=\ (x,y)\in\mathbb{R}^2\mid x^2+y^2\geq 1,\, x^2+y^2\leq 2x,\, x\geq 0,\, y\geq 0$$
 . Tính diện tích S của miền D . Ta có $S=$

Câu 23: Cho
$$I=\int\limits_{AB}ydx-(x+1)dy+z^3dz$$
 , cung AB có phương trình
$$\begin{cases} x^2+y^2=1\\ z=3 \end{cases},$$
 $A(1,0,3)$, $B(0,1,3)$. Ta có $I=$

Câu 24: Tính
$$I=\int_S (1+4x^2+4z^2)dS$$
 với S là phần mặt paraboloid $y=1-x^2-z^2$ thỏa mãn $y\geq 0$ Ta có $I=$