The group G is isomorphic to the group labelled by [72, 16] in the Small Groups library. Ordinary character table of $G \cong C2 \times ((C2 \times C2) : C9)$:

	1a 2a	2b $2c$	9a	18a	9b	18b	3a	6a	6b	6c	9c	18c	9d	18d	3b	6d	6e	6f	9e	18e	9f	18f
χ_1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1 - 1	1 -1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_3	1 - 1	1 -1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	1	-1	1	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	1	-1	1	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)
χ_4	1 - 1	1 -1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	1	-1	1	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	1	-1	1	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$
χ_5	1 - 1	1 -1	$-E(9)^2 - E(9)^5$	$E(9)^2 + E(9)^5$	$E(9)^{7}$	$-E(9)^{7}$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(9)^{5}$	$-E(9)^5$	$E(9)^{4}$	$-E(9)^4$	E(3)	-E(3)	E(3)	-E(3)	$E(9)^{2}$	$-E(9)^2$	$-E(9)^4 - E(9)^7$	$E(9)^4 + E(9)^7$
χ_6	1 -1	1 -1	$-E(9)^4 - E(9)^7$	$E(9)^4 + E(9)^7$	$E(9)^{2}$	$-E(9)^2$	E(3)	-E(3)	E(3)	-E(3)	$E(9)^{4}$	$-E(9)^4$	$E(9)^{5}$	$-E(9)^5$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(9)^{7}$	$-E(9)^{7}$	$-E(9)^2 - E(9)^5$	$E(9)^2 + E(9)^5$
χ_7	1 -1	1 -1	$E(9)^{7}$	$-E(9)^{7}$	$E(9)^{5}$	$-E(9)^5$	E(3)	-E(3)	E(3)	-E(3)	$-E(9)^4 - E(9)^7$	$E(9)^4 + E(9)^7$	$-E(9)^2 - E(9)^5$	$E(9)^2 + E(9)^5$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(9)^{4}$	$-E(9)^4$	$E(9)^{2}$	$-E(9)^2$
χ_8	1 -1	1 -1	$E(9)^{5}$	$-E(9)^5$	$-E(9)^4 - E(9)^7$	$E(9)^4 + E(9)^7$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(9)^{2}$	$-E(9)^2$	$E(9)^{7}$	$-E(9)^{7}$	E(3)	-E(3)	E(3)	-E(3)	$-E(9)^2 - E(9)^5$	$E(9)^2 + E(9)^5$	$E(9)^{4}$	$-E(9)^4$
χ_9	1 -1	1 -1	$E(9)^{4}$	$-E(9)^4$	$-E(9)^2 - E(9)^5$	$E(9)^2 + E(9)^5$	E(3)	-E(3)	E(3)	-E(3)	$E(9)^{7}$	$-E(9)^{7}$	$E(9)^{2}$	$-E(9)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$-E(9)^4 - E(9)^7$	$E(9)^4 + E(9)^7$	$E(9)^{5}$	$-E(9)^5$
χ_{10}	1 -1	1 -1	$E(9)^{2}$	$-E(9)^2$	$E(9)^4$	$-E(9)^4$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$-E(9)^2 - E(9)^5$	$E(9)^2 + E(9)^5$	$-E(9)^4 - E(9)^7$	$E(9)^4 + E(9)^7$	E(3)	-E(3)	E(3)	-E(3)	$E(9)^{5}$	$-E(9)^5$	$E(9)^{7}$	$-E(9)^{7}$
χ_{11}	1 1	1 1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)
χ_{12}	1 1	1 1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	1	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	1	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$
χ_{13}	1 1	1 1	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(9)^{7}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^{5}$	$E(9)^4$	$E(9)^{4}$	E(3)	E(3)	E(3)	E(3)	$E(9)^{2}$	$E(9)^{2}$	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$
χ_{14}	1 1	1 1	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	$E(9)^{2}$	E(3)	E(3)	E(3)	E(3)	$E(9)^4$	$E(9)^4$	$E(9)^{5}$	$E(9)^{5}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(9)^{7}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$
χ_{15}	1 1	1 1	$E(9)^{7}$	$E(9)^{7}$	$E(9)^{5}$	$E(9)^{5}$	E(3)	E(3)	E(3)	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(9)^{4}$	$E(9)^4$	$E(9)^{2}$	$E(9)^2$
χ_{16}	1 1	1 1	$E(9)^{5}$	$E(9)^{5}$	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(9)^{2}$	$E(9)^{2}$	$E(9)^{7}$	$E(9)^{7}$	E(3)	E(3)	E(3)	E(3)	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	$E(9)^4$	$E(9)^4$
χ_{17}	1 1	1 1	$E(9)^{4}$	$E(9)^4$	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	E(3)	E(3)	E(3)	E(3)	$E(9)^{7}$	$E(9)^{7}$	$E(9)^{2}$	$E(9)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	$E(9)^{5}$
χ_{18}	1 1	1 1	$E(9)^{2}$	$E(9)^{2}$	$E(9)^4$	$E(9)^4$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	E(3)	E(3)	E(3)	E(3)	$E(9)^{5}$	$E(9)^{5}$	$E(9)^{7}$	$E(9)^{7}$
χ_{19}	3 1	-1 -3	0	0	0	0	3	1	-1	-3	0	0	0	0	3	1	-1	-3	0	0	0	0
χ_{20}	3 -1	-1 3	0	0	0	0	3	-1	-1	3	0	0	0	0	3	-1	-1	3	0	0	0	0
χ_{21}	3 1	-1 -3	0	0	0	0	$3 * E(3)^2$		$-E(3)^2$	$-3*E(3)^2$	0	0	0	0	3 * E(3)	E(3)	-E(3)	-3 * E(3)	0	0	0	0
χ_{22}	3 1	-1 -3	0	0	0	0	3 * E(3)	E(3)	-E(3)	-3 * E(3)	0	0	0	0	$3 * E(3)^2$	$E(3)^{2}$	$-E(3)^{2}$	$-3 * E(3)^2$	0	0	0	0
χ_{23}	3 -1	-1 3	0	0	0	0	$3*E(3)^2$	$-E(3)^2$	$-E(3)^{2}$	$3 * E(3)^2$	0	0	0	0	3 * E(3)	-E(3)	-E(3)	3 * E(3)	0	0	0	0
\ \V_{24}	3 - 1	-1 3	0	0	0	0	3 * E(3)	-E(3)	-E(3)	3 * E(3)	0	0	0	0	$3 * E(3)^2$	$-E(3)^{2}$	$-E(3)^{2}$	$3 * E(3)^2$	0	0	0	0

Trivial source character table of $G \cong C2 \times ((C2 \times C2) : C9)$ at p = 3

Trivial source character table of $G \cong C2 \times ((C2 \times C2) : C9)$ at $p = 3$:							
Normalisers N_i							N_3
p-subgroups of G up to conjugacy in G		P_1			P_2		P_3
Representatives $n_j \in N_i$	1a 2	a = 2b	$2c \mid 1$	a = 2a	a = 2b	$2c \mid 1$	a 2a
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $	9 :	3 - 3	-9	0 0	0	0 (0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} \end{vmatrix} $			9	0 0	0	0 (0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 –	-9 9	-9	0 0	0	0 (0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	9 9	9 9	9	0 0	0	0 (0
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $	3 –	-1 -1	3	3 –	1 - 1	3 (0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	3	1 -1	-3	3 1	-1	$-3 \mid 0$	0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$			9	3 3	•	3 (0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 –	-3 3	-3	3 - 3	3 3	$-3 \mid 0$	0
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $			-1	1 -	1 1	-1	l –1
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	1	1 1	1	1 1	1	1 1	l 1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,7,4)(2,8,5)(3,9,6)]) \cong C3$

 $P_3 = Group([(1,7,4)(2,8,5)(3,9,6),(1,6,2,7,3,8,4,9,5)(10,11,13)(12,14,15)]) \cong C9$

 $N_1 = Group([(10,12)(11,14)(13,15),(1,6,2,7,3,8,4,9,5)(10,11,13)(12,14,15),(1,7,4)(2,8,5)(3,9,6),(10,12)(11,14),(11,14)(13,15)]) \cong C2 \times ((C2 \times C2) : C9)$

 $N_2 = Group([(10,12)(11,14)(13,15),(1,6,2,7,3,8,4,9,5)(10,11,13)(12,14,15),(1,7,4)(2,8,5)(3,9,6),(10,12)(11,14),(11,14)(13,15)]) \cong \mathbf{C2} \times ((\mathbf{C2} \times \mathbf{C2}) : \mathbf{C9})$

 $N_3 = Group([(1, 9, 8, 7, 6, 5, 4, 3, 2)(10, 11, 13)(12, 14, 15), (10, 12)(11, 14)(13, 15), (1, 7, 4)(2, 8, 5)(3, 9, 6)]) \cong C18$