I-configuration cisco

1-Gateway parameters (Live)

VPN gateway device: Cisco ISR 3845

VPN Gateway device IP (or public ip) :41.191.70.9

Encryption Domain/ Network/ Host (or subnetip): 10.177.64.58 and 10.177.64.131

Local/remote TCP Ports: HTTPS (443)

2 -Tunnel Properties

- Phase 1:

Exchange Mode:Main Encryption Schema: ikev1

Authentication Method :PRESHARED (via sms ou appel)

Encryption: AES-256

Hash: SHA-1

Diffie-Hellman Group :5 Lifetime (Seconds) :36000

- Phase 2:

Encryption: AES-256

Hash: SHA-1

Perfect Forward Secrecy (or pfs): YES

Diffie-Hellman Group :5 Lifetime (Seconds) :24000

II- ubuntu 20 configuration public ip: 160.154.66.19

subnet ip: 192.168.2.110 and 192.168.2.121

installation et configuration de strongswan

strongSwan is an open-source, cross-platform, full-featured and widely-used IPsec-based VPN (Virtual Private Network) implementation that runs on Linux, FreeBSD, OS X, Windows, Android, and iOS. It is primarily a keying daemon that supports the Internet Key Exchange protocols (IKEv1 and IKEv2) to establish security associations (SA) between two peers.

This article describes how to set up a site-to-site IPSec VPN gateways using strongSwan on Ubuntu and Debian servers. By site-to-site we mean each security gateway has a sub-net behind it. Besides, the peers will authenticate each other using a pre-shared key (PSK).

Step 1: Enabling Kernel Packet Forwarding

1. First, you need to configure the kernel to enable packet forwarding by adding the appropriate system variables in /etc/sysctl.conf configuration file on both security gateways.

#- sudo nano /etc/sysctl.com

Look for the following lines and uncomment them and set their values as shown (read comments in the file for more information).

```
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1
net.ipv4.conf.all.accept_redirects = 0
net.ipv4.conf.all.send_redirects = 0
```

2. Next, load the new settings by running the following command.

#- sudo sysctl -p

```
test@ubuntu-VirtualBox:~$ sudo sysctl -p
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1
net.ipv4.conf.all.accept_redirects = 0
net.ipv4.conf.all.send_redirects = 0
test@ubuntu-VirtualBox:~$
```

3. If you have a UFW firewall service enabled, you need to add the following rules to the /etc/ufw/before.rules configuration file just before the filter rules in either security gate

#-sudo ip route pour voir les routes au niveau de mes adresses

```
test@ubuntu-VirtualBox:~$ sudo ip route

default via 160.154.66.17 dev enp0s3 proto static metric 100

default via 192.168.2.1 dev enp0s8 proto static metric 101

160.154.66.16/29 dev enp0s3 proto kernel scope link src 160.154.66.19 metric 100

169.254.0.0/16 dev enp0s3 scope link metric 1000

192.168.2.0/24 dev enp0s8 proto kernel scope link src 192.168.2.110 metric 101

test@ubuntu-VirtualBox:~$
```

nb : ici on va utiliser notre carte qui se trouve au niveau du dev (c'est notre passerelle de l'ip public de ubuntu que nous avons communiquer)

Donc on va utiliser la carte enp0s3

#- sudo nano /etc/ufw/before.rules

avant la ligne ligne *règle ajouter:

*nat

-A POSTROUTING -s 10.177.64.131/32 -o enp0s3 -m policy --pol ipsec --dir out -j ACCEPT

-A POSTROUTING -s 10.177.64.131/32 -o enp0s3 -j MASQUERADE

COMMIT

*mangle

-A FORWARD --match policy --pol ipsec --dir in -s 10.177.64.131/32 -o enp0s3 -p tcp -m tcp --tcp-flags SYN,RST SYN -m tcpmss --mss 1361:1536 -j TCPMSS --set-mss 1360

COMMIT

```
*nat
-A POSTROUTING -s 10.177.64.131/32 -o enp0s3 -m poltcy --pol ipsec --dir out -j ACCEPT
-A POSTROUTING -s 10.177.64.131/32 -o enp0s3 -j MASQUERADE

COMMIT

*mangle
--A FORMARD --match policy --pol ipsec --dir in -s 10.177.64.131/32 -o enp0s3 -p tcp -m tcp --tcp-flags SYN,RST SYN -m tcpmss --mss 1361:1536 -j TCPMSS --set-mss 1360

COMMIT

#-nat

#
```

nb: n'oubliez pas de remplacer enps03 par le nom de votre carte reseau

Après la ligne des *règles , ajouter cette ligne :

-A ufw-before-forward --match policy --pol ipsec --dir in --proto esp -s 10.177.64.131/32 -j ACCEPT -A ufw-before-forward --match policy --pol ipsec --dir out --proto esp -d 10.177.64.131/32 -j ACCEPT

```
*filter
:ufw-before-input - [0:0]
:ufw-before-output - [0:0]
:ufw-before-forward - [0:0]
:ufw-before-forward - [0:0]
:ufw-not-local - [0:0]
# End required lines
#ajouter par moi
-A ufw-before-forward --match policy --pol ipsec --dir in --proto esp -s 10.177.64.131/32 -j ACCEPT
-A ufw-before-forward --match policy --pol ipsec --dir out --proto esp -d 10.177.64.131/32 -j ACCEPT
```

- **4.** Once firewall rules have been added, then apply the new changes by restarting **UFW** as shown.
- # sudo ufw disable
- # sudo ufw enable

Step 2: Installing strongSwan in Debian and Ubuntu

5. Update your package cache on both security gateways and install the **strongswan** package using the <u>APT package manager</u>.

- #-sudo apt update
- #-sudo apt install strongswan
- **6.** Once the installation is complete, the installer script will start the **strongswan** service and enable it to automatically start at system boot. You can check its status and whether it is enabled using the following command.
- #~ sudo systemctl status strongswan.service #~ sudo systemctl is-enabled strongswan.service

Step 3: Configuring Security Gateways

7. Next, you need to configure the security gateways using the /etc/ipsec.conf configuration file.

#~ sudo cp /etc/ipsec.conf /etc/ipsec.conf.orig

#~sudo nano /etc/ipsec.conf

config setup charondebug="all" uniqueids=yes strictcrlpolicy=no

conn cerco-to-moov authby=secret left=%defaultroute leftid=160.154.66.19 leftsubnet=192.168.2.110/32 right=41.191.70.9 rightid=41.191.70.9 rightsubnet=10.177.64.131/32 ike=aes256-sha1-modp1536! esp=aes256-sha1-modp1536 keyingtries=%forever leftauth=psk rightauth=psk keyexchange=ikev1 ikelifetime=36000s lifetime=24000s

dpddelay=60s dpdtimeout=120s dpdaction=restart auto=add type=tunnel aggressive=no

conn second_address also=cerco-to-moov rightsubnet=10.177.64.58/32

```
config setup
    charondebug="all"
    uniqueids=yes
    strictcripolicy=no

conn cerco-to-noov
    authby-secret
    left=xid=faultroute
    leftid=160.154.66.19
    leftsubnet=192.168.2.110/32
    right=41.191.70.9
    right=41.191.70.9
    rightsubnet=10.177.64.131/32
    ike=ses256-shal-nodp1536!
    esp=ses256-shal-nodp1536
    keyingtries=#forever
    leftauth=psk
    rightauth=psk
    rightauth=psk
    rightauth=psk
    iketietime=36000s
    lifetime=2400s
    dpddelay=69s
    dpddtneout=120s
    dpdaction=restart
    auto-add
    type=tunnel
    aggressiv=no

conn second_address
    also=cerco-to-noov
    rightsubnet=10.177.64.58/32
```

Voici la signification de chaque paramètre de configuration :

- config setup spécifie les informations de configuration générales pour IPSec qui s'appliquent à toutes les connexions.
- charondebug définit combien de sortie de débogage Charon doit être enregistrée.
- uniqueids spécifie si un identifiant de participant particulier doit rester unique.
- conn prodgateway-to-devgateway définit le nom de la connexion.
- type définit le type de connexion.
- auto comment gérer la connexion lorsque IPSec est démarré ou redémarré.
- keyexchange définit la version du protocole IKE à utiliser.
- · authby définit comment les pairs doivent s'authentifier.
- left définit l'adresse IP de l'interface de réseau public du participant de gauche.
- leftsubnet indique le sous-réseau privé derrière le participant de gauche.
- right spécifie l'adresse IP de l'interface de réseau public du participant droit.
- rightsubnet indique le sous-réseau privé derrière le participant de gauche.
- ike définit une liste d'algorithmes de cryptage/authentification IKE/ISAKMP SA à utiliser. Vous pouvez ajouter une liste séparée par des virgules.
- esp définit une liste d'algorithmes de cryptage/authentification ESP à utiliser pour la connexion. Vous pouvez ajouter une liste séparée par des virgules.
- · agressif indique s'il faut utiliser le mode agressif ou principal.
- keyingtries indique le nombre de tentatives à effectuer pour négocier une connexion.
- ikelifetime indique combien de temps le canal de saisie d'une connexion doit durer avant d'être renégocié.
- durée de vie définit combien de temps une instance particulière d'une connexion doit durer, de la négociation réussie à l'expiration.
- dpddelay spécifie l'intervalle de temps avec lequel les messages R_U_THERE/échanges d'INFORMATION sont envoyés à l'homologue.
- dpdtimeout spécifie l'intervalle de temporisation, après lequel toutes les connexions à un pair sont supprimées en cas d'inactivité.
- dpdaction définit comment utiliser le protocole Dead Peer Detection (DPD) pour gérer la connexion.

nb : pour plus d'info sur la commande ipsec : #~ man ipsec.com

Étape 4 : Configuration de PSK pour l'authentification d'égal à égal

Ajoutez le **PSK** générer et qui vous a été envoyé dans le fichier **/etc/ipsec.secrets** sur les deux passerelles.

#~sudo nano /etc/ipsec.secrets
structure :
ubuntu_public cisco_public : PSK "key"

```
# which knows the public part
160.154.66.19 41.191.70.9 : PSK "#M6CwBpeNACeRc0ci10Jr25@n2021&PsTvPSKHtkgc0"
```

Redémarrez le programme IPSec et vérifiez son état pour afficher les connexions.

#~ sudo ipsec restart

#~sudo ipsec up 'ajouter le nom de la connection configurer dans ipsec.conf'

```
Stopping strongSwan IPsec...
Starting strongSwan IPsec...
Starting strongSwan S.6.2 IPsec [starter]...
starting starting
```

La connection à bien été établie

#~ sudo ipsec statusall (vérifie le statut de toute vos connections up)

```
Istalubantu-Virtualion:-5 sudo (psec statusal)

Status of IKE charon daemon (strongSwan 5.6.2, Linux 5.4.0-91-generic, x86_64):

uptime: 2 funites, since Dec 03 12:375-54 2021

malloc: sbrk 3276800, mmap 532480, used 1420250, free 1856544

worker threads: 11 of 16 idle, 5/0/0/0 working, job queue: 0/0/0/0, scheduled: 3

loaded plugins: charon test-vectors unbound ldap pkcsli typ mae: rc2 sha2 sha1 nd4 nd5 mgf1 random nonce x509 revocation constraints acert pubkey pkcs1 pkcs7 pkcs8 pkcs12 ppp dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcsli typ mae: rc2 sha2 sha1 nd4 nd5 mgf1 random nonce x509 revocation constraints acert pubkey pkcs1 pkcs7 pkcs8 pkcs12 ppp dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcsli typ mae: rc2 sha2 sha1 nd4 nd5 mgf1 random nonce x509 revocation constraints acert pubkey pkcs pkcs7 pkcs8 pkcs12 ppp dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcsli typ mae: rc2 sha2 sha1 nd4 nd5 mgf1 random nonce x509 revocation constraints acert pubkey pkcs pkcs7 pkcs8 pkcs12 ppp dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcsli typ mae: rc2 sha2 sha1 nd4 nd5 mgf1 random nonce x509 revocation constraints acert pubkey pkcs1 pkcs7 pkcs8 pkcs12 ppp dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcs1 pkcs2 pkcs2 ppd dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcs2 pkcs2 ppd dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcs2 pkcs2 ppd dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcs2 pkcs2 ppd dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcs2 pkcs2 ppd dnskey sshkey dnscert

loaded plugins: charon test-vectors unbound ldap pkcs2 p
```

Nb : dans SA_CHILD vous voyez que les deux addresse privée sont connectées

#~ sudo ipsec status

```
test@ubuntu-VirtualBox:~$ sudo ipsec status
Security Associations (1 up, 0 connecting):
cerco-to-moov[1]: ESTABLISHED 5 minutes ago, 160.154.66.19[160.154.66.19]...41.191.70.9[41.191.70.9]
cerco-to-moov{1}: INSTALLED, TUNNEL, reqid 1, ESP SPIs: cfa0f02f_i f948027e_o
cerco-to-moov{1}: 192.16<u>8</u>.2.110/32 === 10.177.64.131/32
```

Vérifions que les sous-réseaux communiquent :

#~ telnet -b 192.168.2.110 10.177.64.131 443

-b permet de spécifier l'adresse source

```
test@ubuntu-VirtualBox:~$ telnet -b 192.168.2.110 10.177.64.131 443
Trying 10.177.64.131...
Connected to 10.177.64.131.
Escape character is '^]'.
```

liens utile: https://www.tecmint.com/setup-ipsec-vpn-with-strongswan-on-debian-ubuntu/
https://www.tecmint.com/setup-ipsec-vpn-with-strongswan-on-debian-ubuntu/
https://docs.netgate.com/pfsense/en/latest/troubleshooting/ipsec.html