Autovalores e Autovetores

Marcelo Dreux

Lembrete

Seja um sistema linear homogêneo Ax = 0. Esse sistema pode ser:

SPD – solução trivial

$$Ax = 0 \Rightarrow A^{-1}Ax = A^{-1}0 \Rightarrow x = 0$$

Quando há A^{-1} , $det(A) \neq 0$, só há solução trivial.

• SPI – solução trivial + outras soluções det(A) = 0

Autovalores e Autovetores

Seja $T: V \to V$ uma TL. Dizemos que $v \in V$ é <u>autovetor</u> associado ao <u>autovalor</u> λ se $T(v) = \lambda v$. O conjunto de autovalores de T é chamado de espectro de T.

Obs:

i) λ pode ser nulo, mas v não pode;

Observações

ii) Se $v \in Nuc(T)$ é não nulo então é autovetor associado ao autovalor $\lambda = 0$, pois T(v) = 0 v = 0;

iii) O autovetor associado a um autovalor não é único. Se v é autovetor e $k \neq 0$ então w = kv, também é autovetor.

$$T(w) = T(kv) = kT(v) = k\lambda v = \lambda w$$

Cálculo dos Autovalores e Autovetores

$$T(v) = \lambda v$$

$$T(v) - \lambda v = 0$$

$$T(v) - \lambda I(v) = 0$$

$$(T - \lambda I)v = 0 \quad \text{com } v \neq 0$$

Como v é elemento não nulo do $Nuc(T-\lambda I)$ implica em $\det(T-\lambda I)=0$, para haver solução diferente da trivial.

Polinômio Característico e Autoespaço

Polinômio característico:

Dada a TL $T: \mathbb{R}^n \to \mathbb{R}^n$ define-se o polinômio característico $p(\lambda) = \det(T - \lambda I)$. A solução de $\det(T - \lambda I) = 0$ possui n raízes, que são os autovalores.

Autoespaço:

Autoespaço de T associado ao autovalor λ é o $Nuc(T-\lambda I)$, ou seja $T-\lambda I=0$

Dada T(x,y) = (-3x + 4y, -x + 2y), calcular os autovalores e autoespaços associados.

Achar os autovalores e autoespaços associados à transformação

$$T = \begin{pmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

Polinômio característico no \mathbb{R}^2

$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = 0$$
$$(a - \lambda)(d - \lambda) - bc = 0$$
$$ad - \lambda(a + d) + \lambda^2 - bc = 0$$
$$\lambda^2 - (a + d)\lambda + ad - bc = 0$$

Polinômio característico no \mathbb{R}^2

$$\lambda^2 - (a+d)\lambda + ad - bc = 0$$

$$p(\lambda) = \lambda^2 - Tr(T)\lambda + \det(T)$$

Obs:
$$Tr(T) = \lambda_1 + \lambda_2$$

 $det(T) = \lambda_1 \cdot \lambda_2$

Polinômio característico no \mathbb{R}^3

$$p(\lambda) = a \lambda^3 + b \lambda^2 + c \lambda + d$$

$$a = -1$$

$$b = Tr(T) = \lambda_1 + \lambda_2 + \lambda_3$$

$$c = -(\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3)$$

$$d = \det(T) = \lambda_1 \cdot \lambda_2 \cdot \lambda_3$$

Propriedades

i) Se λ_1 e λ_2 são autovalores distintos de uma TL T então $\{v_1, v_2\}$ são autovetores LI, associados a λ_1 e λ_2 , respectivamente;

ii) Se λ_i é um autovalor de multiplicidade k então é possível encontrar <u>no máximo</u> k autovetores LI associados a λ_i ;

Propriedades

iii) Se v_1 e v_2 são autovetores LI de T associados ao mesmo autovalor λ_i então qualquer CL de v_1 e v_2 também é autovetor associado ao mesmo λ_i ;

iv) Se um autovalor λ tem k tem autovetores LI então sua multiplicidade é no mínimo k;

Propriedades

v) Se T é uma TL de $\mathbb{R}^n \to \mathbb{R}^n$ então a soma das multiplicidades de todos os autovalores de T (reais e complexos) é igual a n;

vi) Se λ é um autovalor associado a T então λ^k é autovalor de T^k associado ao mesmo autovetor.

$$T(v) = \lambda v$$

$$T^{2}(v) = T(T(v)) = T(\lambda v) = \lambda \lambda v = \lambda^{2} v$$

Achar os autovalores e autoespaços associados à transformação $T \colon \mathbb{R}^2 \to \mathbb{R}^2$

$$T(x,y) = (x+y,y)$$

Achar os autovalores e autoespaços associados à transformação $T: \mathbb{R}^3 \to \mathbb{R}^3$ T(x,y,z) = (x,y,3z)

Achar os autovalores e autoespaços associados à transformação $T\colon \mathbb{R}^3 \to \mathbb{R}^3$

$$T(x, y, z) = (y + z, 2y + 2z, 3z)$$

Sabendo que o espectro de $T = \{-2, 1, 1, -1\}$, calcular o autoespaço associado ao autovalor 1.

$$T = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$