Расслоения и геометрический смысл некоторых обозначений в HOTT

Сергей Максименко

Лаборатория Топологии, Институт математики НАН Украины

18 марта, 2017

#kievfprog 2017.1, Институт математики НАН Украины, 18-19 марта, 2017

Homotopy Type Theory

Univalent Foundations of Mathematics

Цель доклада - пояснить

- что такое расслоение
- что такое сечение расслоения
- что функции (отображения) являются сечениями тривиальных расслоений
- почему в НОТТ следующие символы имеют одинаковый смысл

$$\prod_{(x:A)} B \equiv A \to B, \qquad \sum_{(x:A)} B \equiv A \times B.$$

Отображение

Пусть X, Y — два множества. Отображение (или функция) $f: X \to Y$ это «правило», согласно которому каждому $x \in X$ ставится в соответствие единственный элемент из Y, обозначаемый f(x).

График отображения

Отображения (функции) можно мыслить как специальные подмножества декартовых произведений – *графики*.

Если $f:X\to Y$ — отображение, то его график это следующее подмножество в $X\times Y$:

$$\Gamma_f = \{(x, f(x)) \mid x \in X\}.$$

Ключевое свойство графика: $\Gamma_f = \{(x, f(x)) \mid x \in X\}$: он пересекает каждое множество вида $x \times Y$ в единственной точке.

Рассмотрим отображение

$$p: X \times Y \to X,$$
 $p(x, y) = x.$

Оно называется проекция на X.

Теперь исходное отображение $f:X\to Y$ можно мыслить как отображение «обратное» к проекции p:

$$F: X \to X \times Y,$$
 $F(x) = (x, f(x)),$

в том смысле, что

$$p \circ F(x) = p(x, f(x)) = x$$

или, что

$$p \circ F = \mathrm{id}_X$$
.

Тривиальное расслоение (trivial fibration)

Проекцию

$$p: X \times Y \to X,$$
 $p(x,y) = x.$

также называют тривиальным расслоением над X со слоем Y.

Цилиндр

Рассмотрим отображение $p:S^1 imes [0,1] o S^1$ цилиндра в окружность:

Это также тривиальное расслоение

Лист Мёбиуса

Рассмотрим отображение $p:M o S^1$ листа Мёбиуса в окружность:

«<u>Локально</u>» это отображение «<u>похоже</u>» на проекцию из прямого произведения $[0,1] \times [0,1] \to [0,1]$, но лист Мёбиуса топологически не изоморфен цилиндру.

Локально тривиальное расслоение

Отображение $p:X\to Y$ называют локально тривиальным расслоением (localy trivial fibration) со слоем F, если у каждой точки $x\in X$ существует окрестность U такая, что отображение

$$p:p^{-1}(U)\to U$$

«устроено» как тривиальное расслоение.

Сечения расслоений

Сечение расслоения (section) это аналог функции.

Пусть $p:X\to Y$ — (локально тривиальное) расслоение со слоем F. Отображение $s:Y\to X$ называется сечением p, если

$$p \circ s(y) = y$$

для всех $y \in Y$, т.е.

$$p \circ s = \mathrm{id}_Y : Y \xrightarrow{s} X \xrightarrow{p} Y.$$

Сечение $s:Y\to X$ отображает каждую точку $x\in X$ в ее слой $p^{-1}(x)$. В частности, образ сечения пересекает каждый слой в единственной точке.

Не каждое расслоение обладает «непрерывными» сечениями:

Возникновение новой науки, направления, или «поднаправления», часто связано с желанием

сделать «похожие» рассуждения «одинаковыми»,

т.е. выработать язык на котором «похожие» доказательства (рассуждения) и конструкции из разных наук окажутся частными случаями одного рассуждения или конструкции.

Так было с теорией групп, топологией, теорией категорий, теорией типов, etc.

Гомотопическая теория типов возникла из желания объединить как минимум: логику, теорию множеств, теорию категорий, теорию гомотопий и программирование.

Теория	Логика	Теория	Теория
типов		множеств	гомотопий
Α	предложение	множество	пространство
a : A	доказательство А	элемент множества	точка
B(x)	предикат	семейство множеств	расслоение
0, 1	\perp (false), \top (true)	Ø, {Ø}	∅, базисная точка ∗
A + B	$A \vee B$	$A \sqcup B$	несвязное объединение <i>А</i> ⊔ <i>В</i>
		несвязное объединение	или <i>букет А∨В</i>
Произведения и расслоения			
$A \times B$	$A \wedge B$	декартово произведение	топологическое произведение
$\sum_{(x:A)} B$	$\exists_{x:A}B$	$\cup_{x\in A}B=A\times B$	объединение слоев
$\sum_{(x:A)} B(x)$	$\exists_{x:A}B(x)$	$\cup_{x\in A}B(x)$	тотальное пространство
Функции и сечения			
$A \rightarrow B$	$A \Rightarrow B$	множество функций	пространство функций
$\prod_{(x:A)} B$	$\forall_{x:A}B$	пространство сечений тривиального расслоения $A o A imes B$	
$\prod_{(x:A)} B(x)$	$\forall_{x:A}B(x)$	пространство сечений расслоения $A o \cup_{x\in A} B(x)$	

Термы типа $\prod_{(x:A)} B$ — это способы каждому x:A поставить в соответствие терм из B. Другими словами $s:\prod_{(x:A)} B$ это сечение тривиального расслоения $s:A\to A\times B$. Это также можно интерпретировать (сокращенно обозначать) как функцию $s:A\to B$, [H, Appendix A.1.2]. Поэтому оба символа

$$A \to B :\equiv \prod_{(x:A)} B$$

обозначают пространство функций из A в B.

Термы типа $\prod_{(x:A)} B(x)$ — это способ каждому x:A поставить в соответствие терм из типа B(x), зависящего от x. Другими словами $s:\prod_{(x:A)} B(x)$ это сечение нетривиального расслоения над A со слоем B(x) над точкой x.

Термы типа $\sum_{(x:A)} B$ — это способ выбора для некоторого терма

a:A некоторого терма b:B. Другими словами, это выбор точки $(x,b)\in A\times B$. Поэтому $\sum\limits_{(x:A)}B$ можно интерпретировать

(сокращенно обозначать) как прямое произведение $A \times B$, [Appendix A.1.3]:

$$A \times B :\equiv \sum_{(x:A)} B$$

Более общо, термы типа $\sum\limits_{(x:A)} B(x)$ — это способ выбора для

некоторого терма a:A некоторого терма b:B(a) из типа B(a) зависящего от a. Другими словами, это выбор <u>одной</u> точки в слое над a:A тотального пространства некоторого расслоения $B(x) \to A$ над A. Поэтому $\sum\limits_{(x:A)} B(x)$ можно интерпретировать

(сокращенно обозначать) как тотальное пространство расслоения B(x) o A над A.

Если символ \sum интерпретировать как объединение (сумма множеств), то

$$\sum_{(x:A)} B(x) = \cup_{a:A} B(x)$$

это объединение слоев по всем точкам из A. Т.е. опять таки это тотальное пространство расслоения B(x).