Листок 10

Доп. задачи из книг "Сборник задач по математическому анализу". Том 2. Кудрявцев Л. Д., Кутасов А. Д., Чехлов В. И., Шабунин М. И. ФИЗМАТЛИТ, 2003 год ([1]); "Математический анализ в задачах и упражнениях". Том 1. Виноградова И. А., Олехник С. Н., Садовничий В. А. МЦНМО, 2017 год ([2]).

Обратите внимание, что [1] – это второй том.

- 1. Найдите интегралы, пользуясь таблицей и линейностью неопределенного интеграла, а также, если нужно, линейными заменами:
- a) $\int \frac{\sqrt{4+x^2}+2\sqrt{4-x^2}}{\sqrt{16-x^4}} dx$; **6**) $\int 2^{2x} e^x dx$; B) $\int \sin^2 \frac{x}{2} dx$; **r**) $\int \operatorname{ctg}^2 x dx$; **д**) $\int \frac{dx}{2x^2-5x+7}$; **e**) $\int \frac{dx}{\sqrt{x-x^2}}$. См. с. 14 – с. 15, №2, №8, [1]; №6.1 – №6.48, [2].
- 2. Пользуясь методом подведения под знак дифференциала и методом замены переменных, найдите интегралы:
- а) $\int \frac{x+3}{\sqrt{4x^2+4x+3}} dx$; б) $\int \sqrt{x-x^2} dx$; в) $\int \frac{dx}{x\sqrt{3+7x^2}}$; г) $\int \left(\frac{x}{x^5+2}\right)^4 dx$; д) $\int \frac{x^2+1}{x^4+1} dx$; е) $\int \frac{dx}{1+\sqrt[3]{x+1}}$; ж) $\int e^{2x^2+2x-1} (2x+1) dx$; з) $\int \frac{dx}{e^x+\sqrt{e^x}}$; и) $\int \frac{dx}{x \ln x \ln \ln x}$; к) $\int \sqrt{\sin x} \cos^5 x dx$; л) $\int \frac{\ln(\arccos x)}{\sqrt{1-x^2}\arccos x} dx$; См. с. 15 с. 16, №10, №11, №13 №16, [1]; №6.49 №6.103, [2].
 - 3. Пользуясь формулой интегрирования по частям, найдите интегралы:
- a) $\int x \sin^2 x dx$; б) $\int \arctan x dx$; в) $\int \frac{\arcsin x}{x^2} dx$; г) $\int \cos(\ln x) dx$; д) $\int \frac{x^2}{(1+x^2)^2} dx$.
- См. с. 16 c. 17, №17 №<math>24, [1]; 6.104 6.125, [2].
 - 4. Используя разные методы, найдите интегралы:
- a) $\int \ln^4 x dx$; 6) $\int \sin^6 x dx$; B) $\int \frac{dx}{\sin^5 x}$; Γ) $\int e^{\sqrt{x}} dx$;
- д) $\int \frac{x^2 e^x}{(x+2)^2} dx$; **e**) $\int \left(\frac{\ln x}{x}\right)^3 dx$; **ж**) $\int \ln^2(x+\sqrt{1+x^2}) dx$.
- Cm. c. 18, $N_{2}26$, $N_{2}27$, [1]; 6.126 6.155, [2].

Домашнее задание 10 (задачи берутся из [1], начиная со стр. 14)

- 1. Найдите интегралы, пользуясь таблицей и линейностью неопределенного интеграла: N_{2} (7, 9, 13), N_{2} (3, 5), N_{2} (2).
- 2. Пользуясь методом подведения под знак дифференциала и методом замены переменных, найдите интегралы: $\mathbb{N} 10$ (3), $\mathbb{N} 11$ (1, 6, 8), $\mathbb{N} 12$ (6), $\mathbb{N} 13$ (1, 6) $\mathbb{N} 14$ (3), $N_{2}15$ (5, 15), $N_{2}16$ (2, 6).
- 3. Пользуясь формулой интегрирования по частям, найдите интегралы: №19 (3, 6), $N_{2}20$ (7), $N_{2}21$ (1), $N_{2}24$ (1, 3).
- 4. Используя разные методы, найдите интегралы: №24 (2, 16), №26 (4), №27 (3, 5), №28 (3).