STUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS IN LP PROBLEMS:

APPLICATION TO RENEWABLE ENERGY GRIDS WITH HYDROGEN STORAGE

Gabor Riccardi

with Bianca Urso and Stefano Gualandi , University of Pavia (UniPv)

28 February 2025

Part I

MOTIVATION

The Problem

The Problem (it's a big one)

The Problem (it's a big one)

The Problem (it's a big one)

Figure. CO2 Emissions from the IPCC Report ¹

¹IPCC, 2023: Climate Change 2023: Synthesis Report. Available at: https://www.ipcc.ch/report/ar6/syr/ GABOR RICCARDI STRUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS

ENERGY GRID TRANSITION

One of the challenges of transitioning to a fully renewable energy grid comes from two Ducks:

ENERGY GRID TRANSITION

One of the challenges of transitioning to a fully renewable energy grid comes from two Ducks:

ENERGY GRID TRANSITION

One of the challenges of transitioning to a fully renewable energy grid comes from two Ducks:

Figure. Comparison of Daily Solar Power Generation, Energy Demand, and Net Energy Demand in Italy.²

²The Demand, and Solar Power data is taken from the Ninja Dataset at: https://www.renewables.ninja/downloads GABOR RICCARDI STRUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS

Figure. Comparison of Daily Solar Power Generation, Energy Demand, and Net Energy Demand in Italy.²

²The Demand, and Solar Power data is taken from the Ninja Dataset at: https://www.renewables.ninja/downloads GABOR RICCARDI STRUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS

Figure. Comparison of Daily Solar Power Generation, Energy Demand, and Net Energy Demand in Italy.²

²The Demand, and Solar Power data is taken from the Ninja Dataset at: https://www.renewables.ninja/downloads GABOR RICCARDI STRUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS

Figure. Comparison of Daily Solar Power Generation, Energy Demand, and Net Energy Demand in Italy.²

²The Demand, and Solar Power data is taken from the Ninja Dataset at: https://www.renewables.ninja/downloads GABOR RICCARDI STRUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS

DUCK TWO

Figure. Comparison of Yearly Solar Power Generation, Energy Demand, and Net Energy Demand in Italy.

DUCK TWO

Figure. Comparison of Yearly Solar Power Generation, Energy Demand, and Net Energy Demand in Italy.

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$

$$s.t. \quad 0 \le \mathbf{x} \le \mathbf{x}^{max}$$

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$

$$s.t. \quad 0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon $\mathcal{T} = \{1, 2, \dots, T_{max}\}$:

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t.
$$0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon $\mathcal{T} = \{1, 2, \dots, T_{\text{max}}\}$:

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t.
$$0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon $\mathcal{T} = \{1, 2, \dots, T_{\text{max}}\}$:

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

x rapresents variables corresponding to the componenents expansion in the grid:

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t.
$$0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon $\mathcal{T} = \{1, 2, \dots, T_{\text{max}}\}$:

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

 \boldsymbol{x} rapresents variables corresponding to the componenents expansion in the grid:

 $x_i^{(p)}, \ x_i^{(w)} \ x_i^{(h)}$: wind turbines, photovotaic panels and hydrogen storage capacity expansion

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t. $0 < \mathbf{x} < \mathbf{x}^{max}$

Where, given the set of timesteps in the time horizon $\mathcal{T} = \{1, 2, \dots, T_{\text{max}}\}$:

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

x rapresents variables corresponding to the componenents expansion in the grid:

 $x_i^{(p)}$, $x_i^{(w)}$ $x_i^{(h)}$: wind turbines, photovotaic panels and hydrogen storage capacity expansion $y_l^{(e)}$, $y_l^{(h)}$: transmittion line and hydrogen pypes maximum capacity

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t. $0 < \mathbf{x} < \mathbf{x}^{max}$

Where, given the set of timesteps in the time horizon $\mathcal{T} = \{1, 2, \dots, T_{\text{max}}\}$:

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

x rapresents variables corresponding to the componenents expansion in the grid:

 $x_i^{(p)}$, $x_i^{(w)}$ $x_i^{(h)}$: wind turbines, photovotaic panels and hydrogen storage capacity expansion $y_l^{(e)}$, $y_l^{(h)}$: transmittion line and hydrogen pypes maximum capacity $x_i^{(e \to h)}$, $x_i^{(h \to e)}$: electrolyzers and power cells capacity

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t. $0 < \mathbf{x} < \mathbf{x}^{max}$

Where, given the set of timesteps in the time horizon $\mathcal{T} = \{1, 2, \dots, T_{\text{max}}\}$:

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

x rapresents variables corresponding to the componenents expansion in the grid:

 $x_i^{(p)}$, $x_i^{(w)}$ $x_i^{(h)}$: wind turbines, photovotaic panels and hydrogen storage capacity expansion $y_l^{(e)}$, $y_l^{(h)}$: transmittion line and hydrogen pypes maximum capacity $x_i^{(e \to h)}$, $x_i^{(h \to e)}$: electrolyzers and power cells capacity $x_i^{(h)}$: hydrogen storage capacity.

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t.
$$0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon \mathcal{T} :

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

z rapresents variables corresponding to the componenents expansion in the grid:

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t.
$$0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon \mathcal{T} :

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

z rapresents variables corresponding to the componenents expansion in the grid:

 $z_{i\omega t}^{(h \to e)}, z_{i\omega t}^{(e \to h)}$: conversion from hydrogen to electricity and viceversa.

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t.
$$0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon \mathcal{T} :

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

z rapresents variables corresponding to the componenents expansion in the grid:

- $z_{i\omega t}^{(h o e)}, z_{i\omega t}^{(e o h)}$: conversion from hydrogen to electricity and viceversa.
- $z_{l\omega t}^{(h)}, z_{l\omega t}^{(e)}$: flow of hydrogen and power through lines.

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t.
$$0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon \mathcal{T} :

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

z rapresents variables corresponding to the componenents expansion in the grid:

 $z_{i\omega t}^{(h \to e)}, z_{i\omega t}^{(e \to h)}$: conversion from hydrogen to electricity and viceversa.

 $z_{l\omega t}^{(h)}, z_{l\omega t}^{(e)}$: flow of hydrogen and power through lines.

z_{ist}: stored hydrogen capacity

$$\min_{\mathbf{x}} \quad c'\mathbf{x} + \mathbb{E}_{\omega} \left[\mathcal{V}(\mathbf{x}, \omega) \right]$$
s.t.
$$0 \le \mathbf{x} \le \mathbf{x}^{max}$$

Where, given the set of timesteps in the time horizon $\mathcal{T} = \{1, 2, \dots, T_{\text{max}}\}$:

$$\mathcal{V}(\mathbf{x},\omega) = \min_{z \in \mathcal{Z}(\mathbf{x})} \sum_{t \in \mathcal{T}} \left(\sum_{i \in \mathcal{N}} \left(c_i^{(h \to e)} z_{i\omega t}^{(h \to e)} + c_i^{(e \to h)} z_{i\omega t}^{(e \to h)} \right) + \sum_{l \in \mathcal{L}_H} c_l^{(h)} |z_{l\omega t}^{(h)}| + \sum_{l \in \mathcal{L}_P} c_l^{(e)} |z_{l\omega t}^{(e)}| \right),$$

 $\mathcal{Z}(x)$: is the set of feasible soluzions to the Economic Dispatch problem: satisfying power and hydrogen flow conservation constraints at each node, and magnitude constraints.

► Stocasticity requires high number of scenarios.

- ► Stocasticity requires high number of scenarios.
- ▶ Daily Duck requires high time resolution (minutes/hours)

- ► Stocasticity requires high number of scenarios.
- ► Daily Duck requires high time resolution (minutes/hours)
- ► Yearly Duck requires long Time Horizon (years).

- ► Stocasticity requires high number of scenarios.
- ▶ Daily Duck requires high time resolution (minutes/hours)
- ► Yearly Duck requires long Time Horizon (years).
- ► This makes the problem very large to solve

- ► Stocasticity requires high number of scenarios.
- Daily Duck requires high time resolution (minutes/hours)
- Yearly Duck requires long Time Horizon (years).
- ► This makes the problem very large to solve
- ▶ and it cannot be easily simplified by making timesteps longer or with a shorter Time Horizon.

CHALLENGES OF ENERGY GRID PLANNING

- ► Stocasticity requires high number of scenarios.
- ▶ Daily Duck requires high time resolution (minutes/hours)
- Yearly Duck requires long Time Horizon (years).
- ► This makes the problem very large to solve
- ▶ and it cannot be easily simplified by making timesteps longer or with a shorter Time Horizon.
- ▶ Objective: Having as few time steps as possible, while capturing intra-day and seasonal variability

Figure. Energy Demand over a year.

Figure. Energy Demand over a year with highlighted periods.

Figure. Energy Demand over a year with highlighted periods.

Figure. Energy Demand over a year with highlighted periods.

Selecting the length of the time steps corresponds to picking a partition $\mathcal P$ of the original time horizon $\mathcal T$:

$$\mathcal{T} = \{1, 2, 3, \dots, T_{\text{max}}\}$$

$$\downarrow \text{ aggregate time horizon}$$

$$\mathcal{P} = \Big\{\{1, \dots, t_1\}, \dots, \{t_{k-1}, \dots, T_{\text{max}}\}\Big\}$$

Selecting the length of the time steps corresponds to picking a partition $\mathcal P$ of the original time horizon $\mathcal T$:

$$\mathcal{T} = \{1, 2, 3, \dots, T_{\text{max}}\}$$

$$\downarrow \text{ aggregate time horizon}$$

$$\mathcal{P} = \left\{\{1, \dots, t_1\}, \dots, \{t_{k-1}, \dots, T_{\text{max}}\}\right\}$$

For each time partition \mathcal{P} we can define the corresponding Capacity Expansion Problem CEP. For example if $\{1,2\} \in \mathcal{P}$:

$$\begin{array}{ccc}
\text{CEP}_{\mathcal{T}} & \xrightarrow{\text{aggregation}} \text{CEP}_{\mathcal{P}} \\
z_1^{(e \to h)}, z_2^{(e \to h)} & \xrightarrow{z_{\{1,2\}}^{(e \to h)}}
\end{array}$$

QUESTIONS

- 1) In what relationships are the Capacity Expansion Problems of different partitions?
- 2) When can we obtain a solution of $CEP_{\mathcal{T}}$ given a solution of the aggregated problem $CEP_{\mathcal{P}}$?
- 3) Can we effectively iterate over finer time partitions to obtain a solution of $CEP_{\mathcal{T}}$?

$$E_{i\omega t_1}^{(e)} x^{(p)} + W_{i\omega t_1}^{(e)} x^{(w)} - z_{t_1}^{(e \to h)} + z_{t_1}^{(h \to e)} + z_{jt_1}^{(e)} = L_{i\omega t_1}^{(e)}$$

$$E_{i\omega t_1}^{(e)} x^{(p)} + W_{i\omega t_1}^{(e)} x^{(w)} - z_{t_1}^{(e \to h)} + z_{t_1}^{(h \to e)} + z_{jt_1}^{(e)} = L_{i\omega t_1}^{(e)}$$

$$E_{i\omega t_2}^{(e)} x^{(p)} + W_{i\omega t_2}^{(e)} x^{(w)} - z_{t_2}^{(e \to h)} + z_{t_2}^{(h \to e)} + z_{lt_2}^{(e)} = L_{i\omega t_2}^{(e)}$$

$$E_{i\omega t_1}^{(e)} x^{(p)} + W_{i\omega t_1}^{(e)} x^{(w)} - z_{t_1}^{(e \to h)} + z_{t_1}^{(h \to e)} + z_{jt_1}^{(e)} = L_{i\omega t_1}^{(e)}$$

$$E_{i\omega t_2}^{(e)} x^{(p)} + W_{i\omega t_2}^{(e)} x^{(w)} - z_{t_2}^{(e \to h)} + z_{t_2}^{(h \to e)} + z_{lt_2}^{(e)} = L_{i\omega t_2}^{(e)}$$

$$(E_{i\omega t_1}^{(e)} + E_{i\omega t_2}^{(e)})x^{(p)} + (W_{i\omega t_1}^{(e)} + W_{i\omega t_2}^{(e)})x^{(w)} - z_{\{t_1,t_2\}}^{(e \to h)} + z_{\{t_1,t_2\}}^{(h \to e)} + z_{l\{t_1,t_2\}}^{(e)} = L_{i\omega\{t_1,t_2\}}^{(e)}$$

$$E_{i\omega t_{1}}^{(e)}x^{(p)} + W_{i\omega t_{1}}^{(e)}x^{(w)} - z_{t_{1}}^{(e \to h)} + z_{t_{1}}^{(h \to e)} + z_{jt_{1}}^{(e)} = L_{i\omega t_{1}}^{(e)}$$

$$\neq$$

$$E_{i\omega t_{2}}^{(e)}x^{(p)} + W_{i\omega t_{2}}^{(e)}x^{(w)} - z_{t_{2}}^{(e \to h)} + z_{t_{2}}^{(h \to e)} + z_{lt_{2}}^{(e)} = L_{i\omega t_{2}}^{(e)}$$

$$(E_{i\omega t_{1}}^{(e)} + E_{i\omega t_{2}}^{(e)})x^{(p)} + (W_{i\omega t_{1}}^{(e)} + W_{i\omega t_{2}}^{(e)})x^{(w)} - z_{\{t_{1},t_{2}\}}^{(e \to h)} + z_{\{t_{1},t_{2}\}}^{(h \to e)} + z_{l\{t_{1},t_{2}\}}^{(e)} = L_{i\omega\{t_{1},t_{2}\}}^{(e)}$$

$$E_{i\omega t_{1}}^{(e)}x^{(p)} + W_{i\omega t_{1}}^{(e)}x^{(w)} - z_{t_{1}}^{(e \to h)} + z_{t_{1}}^{(h \to e)} + z_{jt_{1}}^{(e)} = L_{i\omega t_{1}}^{(e)}$$

$$\neq$$

$$E_{i\omega t_{2}}^{(e)}x^{(p)} + W_{i\omega t_{2}}^{(e)}x^{(w)} - z_{t_{2}}^{(e \to h)} + z_{t_{2}}^{(h \to e)} + z_{lt_{2}}^{(e)} = L_{i\omega t_{2}}^{(e)}$$

$$(E_{i\omega t_{1}}^{(e)} + E_{i\omega t_{2}}^{(e)})x^{(p)} + (W_{i\omega t_{1}}^{(e)} + W_{i\omega t_{2}}^{(e)})x^{(w)} - z_{\{t_{1},t_{2}\}}^{(e \to h)} + z_{\{t_{1},t_{2}\}}^{(h \to e)} + z_{l\{t_{1},t_{2}\}}^{(e)} = L_{i\omega\{t_{1},t_{2}\}}^{(e)}$$

$$E_{i\omega t_{1}}^{(e)}x^{(p)} + W_{i\omega t_{1}}^{(e)}x^{(w)} - z_{t_{1}}^{(e \to h)} + z_{t_{1}}^{(h \to e)} + z_{jt_{1}}^{(e)} = L_{i\omega t_{1}}^{(e)}$$

$$\neq \qquad \qquad =$$

$$E_{i\omega t_{2}}^{(e)}x^{(p)} + W_{i\omega t_{2}}^{(e)}x^{(w)} - z_{t_{2}}^{(e \to h)} + z_{t_{2}}^{(h \to e)} + z_{lt_{2}}^{(e)} = L_{i\omega t_{2}}^{(e)}$$

$$(E_{i\omega t_{1}}^{(e)} + E_{i\omega t_{2}}^{(e)})x^{(p)} + (W_{i\omega t_{1}}^{(e)} + W_{i\omega t_{2}}^{(e)})x^{(w)} - z_{\{t_{1}, t_{2}\}}^{(e \to h)} + z_{\{t_{1}, t_{2}\}}^{(h \to e)} + z_{l\{t_{1}, t_{2}\}}^{(e)} = L_{i\omega \{t_{1}, t_{2}\}}^{(e)}$$

$$E_{i\omega t_{1}}^{(e)}x^{(p)} + W_{i\omega t_{1}}^{(e)}x^{(w)} - z_{t_{1}}^{(e \to h)} + z_{t_{1}}^{(h \to e)} + z_{it_{1}}^{(e)} = L_{i\omega t_{1}}^{(e)}$$

$$\neq \qquad \qquad = \qquad \qquad =$$

$$E_{i\omega t_{1}}^{(e)}x^{(p)} + W_{i\omega t_{1}}^{(e)}x^{(w)} - z_{t_{1}}^{(e \to h)} + z_{t_{1}}^{(h \to e)} + z_{it_{1}}^{(e)} = L_{i\omega t_{1}}^{(e)}$$

$$\neq \qquad \qquad = \qquad \qquad =$$

$$E_{i\omega t_{1}}^{(e)}x^{(p)} + W_{i\omega t_{1}}^{(e)}x^{(w)} - z_{t_{1}}^{(e \to h)} + z_{t_{1}}^{(h \to e)} + z_{it_{1}}^{(e)} = L_{i\omega t_{1}}^{(e)}$$

$$\neq \qquad \qquad = \qquad \qquad =$$

(1) IN WHAT RELATIONSHIPS ARE THE CAPACITY EXPANSION PROBLEMS FO DIFFERENT PARTITIONS?

Observation 1

Row aggregations are always relaxations of the original problem.

³Where by relaxation we mean that there is a cost preserving map from the feasible solution set of the original problem and the feasible solution set of the relaxed problem.

GABOR RICCARDI

STRUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS

(1) IN WHAT RELATIONSHIPS ARE THE CAPACITY EXPANSION PROBLEMS FO DIFFERENT PARTITIONS?

Observation 1

Row aggregations are always relaxations of the original problem.

Observation 2

Column aggregation are relaxations³ if the non-zero rows of the of the aggregated columns are equal.

³Where by relaxation we mean that there is a cost preserving map from the feasible solution set of the original problem and the feasible solution set of the relaxed problem.

GABOR RICCARDI

STRUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS

(1) IN WHAT RELATIONSHIPS ARE THE CAPACITY EXPANSION PROBLEMS FO DIFFERENT PARTITIONS?

Observation 1

Row aggregations are always relaxations of the original problem.

Observation 2

Column aggregation are relaxations³ if the non-zero rows of the of the aggregated columns are equal.

Thus given a sequence of finer time partitions $\mathcal{P}_1 \leq \mathcal{P}_2 \leq \ldots \leq \mathcal{P}_n = \mathcal{T}$ we obtain tighter and tigher relaxations $CEP_{\mathcal{P}_i}$ whose optimal cost is eventually equal to the optimal cost of $CEP_{\mathcal{T}}$.

³Where by relaxation we mean that there is a cost preserving map from the feasible solution set of the original problem and the feasible solution set of the relaxed problem.

GABOR RICCARDI

STRUCTURE-PRESERVING CONSTRAINTS AGGREGATIONS

Definition 2.1

Given an LP, a row and column aggregation with respect to partitions σ, δ is said to be structure-preserving if $f: [n] \to [\tilde{n}]$

Definition 2.1

Given an LP, a row and column aggregation with respect to partitions σ, δ is said to be structure-preserving if $f: [n] \to [\tilde{n}]$, given by

 $f: c \mapsto C$ where C is the element in δ such that $c \in C$,

Definition 2.1

Given an LP, a row and column aggregation with respect to partitions σ, δ is said to be structure-preserving if $f: [n] \to [\tilde{n}]$, given by

$$f: c \mapsto C$$
 where C is the element in δ such that $c \in C$,

is such that for each $R \in \sigma_{>1}$ and all $r \in R$:

$$f|_{\text{supp}(A_r)}: \text{supp}(A_r) \to \text{supp}(\tilde{A}_R)$$

is a bijection, and

Definition 2.1

Given an LP, a row and column aggregation with respect to partitions σ, δ is said to be structure-preserving if $f: [n] \to [\tilde{n}]$, given by

$$f: c \mapsto C$$
 where C is the element in δ such that $c \in C$,

is such that for each $R \in \sigma_{>1}$ and all $r \in R$:

$$f|_{\text{supp}(A_r)}: \text{supp}(A_r) \to \text{supp}(\tilde{A}_R)$$

is a bijection, and

$$A_{r,c} = \tilde{A}_{R,f(c)}$$
 for all $c \in \text{supp}(A_r)_{>1}$.

Given a solution \tilde{x} of the aggregated problem $CEP_{\mathcal{P}}$, we want to extend it to a solution x of $CEP_{\mathcal{T}}$. What is a good candidate solution? We keep unaggregated variables the same, that is:

$$x_i^{(h)} := \tilde{x}_i^{(h)}, \ x_i^{(p)} := \tilde{x}_i^{(p)}, \ x_i^{(p)} := \tilde{x}_i^{(p)}$$

Given a solution \tilde{x} of the aggregated problem $CEP_{\mathcal{P}}$, we want to extend it to a solution x of $CEP_{\mathcal{T}}$. How do we define unaggregated variables? Remember that:

$$\sum_{t \in \{1,\dots,t_1\}} z_t^{(h \to e)} = z_{\{1,\dots,t_1\}}^{(h \to e)}$$

Given a solution \tilde{x} of the aggregated problem $CEP_{\mathcal{P}}$, we want to extend it to a solution x of $CEP_{\mathcal{T}}$. How do we define unaggregated variables? Remember that:

$$\sum_{t \in \{1, \dots, t_1\}} z_t^{(h \to e)} = z_{\{1, \dots, t_1\}}^{(h \to e)}$$

So we define for all $t \in \{t, \dots, t_1\}$:

$$z_t^{(h \to e)} = \rho_t z_{\{1,...,t_1\}}^{(h \to e)}$$

Given a solution \tilde{x} of the aggregated problem $CEP_{\mathcal{P}}$, we want to extend it to a solution x of $CEP_{\mathcal{T}}$. How do we define unaggregated variables? Remember that:

$$\sum_{t \in \{1,\dots,t_1\}} z_t^{(h \to e)} = z_{\{1,\dots,t_1\}}^{(h \to e)}$$

So we define for all $t \in \{t, ..., t_1\}$:

$$z_t^{(h \to e)} = \rho_t z_{\{1, \dots, t_1\}}^{(h \to e)}$$

Where ρ_t corresponds to $\frac{\text{Net power at time t}}{\text{Total Net power at interval}\{1,...,t_1\}}$.

Given a solution \tilde{x} of the aggregated problem $CEP_{\mathcal{P}}$, we want to extend it to a solution x of $CEP_{\mathcal{T}}$. How do we define unaggregated variables? Remember that:

$$\sum_{t \in \{1,\dots,t_1\}} z_t^{(h \to e)} = z_{\{1,\dots,t_1\}}^{(h \to e)}$$

So we define for all $t \in \{t, ..., t_1\}$:

$$z_t^{(h \to e)} = \rho_t z_{\{1, \dots, t_1\}}^{(h \to e)}$$

Where ρ_t corresponds to $\frac{\text{Net power at time t}}{\text{Total Net power at interval}\{1,...,t_1\}}$.

Proposition 1

*Is such a solution x of CEP*_T *is well defined, and* $\rho_t \ge 0$ *, then it is optimal.*

GENERALIZATION TO STRUCTURE PRESERVING AGGREGATIONS

Given a solution \tilde{x} of the aggregated problem LP, we want to extend it to a solution x of LP. We keep unaggregated variables the same, that is, if $\{c\} \in \delta$, then $x_c = \tilde{x}_c$. Otherwise, for a given aggregated variable $c \in C$ in the support of the row r we search solution of the form:

$$x_c \coloneqq \rho_r \tilde{x}_{f(c)} \tag{1}$$

Then:

$$A_{r}x = A_{r,\delta=1}x_{\delta=1} + \sum_{c \in \text{supp}(A_{r})>1} A_{r,c}x_{c} = A_{r,\delta=1}x_{\delta=1} + \sum_{c \in \text{supp}(A_{r})>1} \tilde{A}_{R,f(c)}x_{c}$$
(2)

$$= A_{r,\delta=1}\tilde{x}_{\delta=1} + \rho_r \sum_{C \in \text{supp}(\tilde{A}_R)_{>1}} \tilde{A}_{R,C}\tilde{x}_C = b_r$$
(3)

Since $\sum_{C \in \text{supp}(\tilde{A}_R)_{>1}} \tilde{A}_{R,C} \tilde{x}_C = \tilde{b}_r - \tilde{A}_{R,\delta=1} \tilde{x}_{\delta=1}$, the equality holds if and only if:

$$\rho_r \coloneqq \frac{b_r - A_{r,\delta_{=1}} \tilde{x}_{\delta_{=1}}}{\tilde{b}_r - \tilde{A}_{R,\delta_{=1}} \tilde{x}_{\delta_{=1}}}.$$
(4)

GENERALIZATION TO STRUCTURE PRESERVING AGGREGATIONS

Proposition 2

Let \tilde{x} be a solution to the aggregated problem, define

$$\rho_r := \frac{b_r - A_{r,\delta_{-1}} \tilde{x}_{\delta_{-1}}}{\tilde{b}_r - \tilde{A}_{R,\delta_{-1}} \tilde{x}_{\delta_{-1}}}.$$

If $\rho_r \ge 0$ and $x \in \mathbb{R}^n$ satisfies $x_{\delta_{=1}} = \tilde{x}_{\delta_{=1}}$ and $x_c = \rho_r \tilde{x}_{f(c)}$ for all $c \in \text{supp}(A_r)_{>1}$, then x satisfies the constraints $A_r x = b_r$ and $x_{\text{supp}}(A_r) \ge 0$ of the original problem.

Whenever such a solution is well defined we refer to it as a ρ -solution.

(3) Can we effectively iterate over finer time partitions to obtain a solution to $CEP_{\mathcal{T}}$?

- 1. Impose the constraints relative to an initial time partition and solve the corresponding LP.
- 2. Select a time interval such that either $\rho_r < 0$ or the ρ -solution is not well defined and refine it into smaller sub-intervals.
- 3. Add the constraints relative to each sub-interval of the selected interval. Solve the model again but using a warm-start.
- 4. Repeat steps 2 and 3 until a specified halting condition is met.

Halting condition:

- 1. ρ_r is constant over the hypergraph associated to the aggregated problem CEP_P and and $\rho \geq 0$.
- 2. A maximum number of iterations is reached

Observation 3

If the algorithm alts before the second condition is met, then the ρ -solution is well defined and is an optimal solution for CEP $_{\mathcal{T}}$.

COMPUTATIONAL RESULTS

- ▶ 5-node network simulation
- ► Comparison of random vs heuristic-based refinement
- ► Faster convergence with structure-preserving methods

Figure. Cost over iterations of rho selection method versus random selection method

RESULTS

Figure. Hydrogen to Power Capacity over iterations

CONCLUSION

- ► Time series aggregation reduces computational costs
- Preserves structure and accuracy
- ightharpoonup The index ρ can also be interpreted as a fractional net power production index.
- ▶ Future direction: Is there always a non trivial time aggregation which induces a tight relaxation of CEP_T ?