Algebraic Geometry

Jubayer Ibn Hamid

1 Terminology

The affine space of field k is denoted by \mathbb{A}^n_k which is the Cartesian n-product of k. Let $f \in k[x_1, ..., x_n]$ be a polynomial. Then, V(f) is the set of zeros of f and is called the hypersurface defined by f. If S is a set of polynomials from $k[x_1, ..., x_n]$, then $V(S) := \{p \in \mathbb{A}^n_k | f(p) = 0, \forall f \in S\}$. One can check that $V(S) = \bigcap_{f \in S} V(f)$. When $S = \{f_1, ..., f_r\}$, we write V(S) as $V(f_1, ..., f_r)$.

A subset $X \subseteq \mathbb{A}^n_k$ is called an affine algebraic set if X = V(S) for some set S of polynomials in $k[x_1, ..., x_n]$. One can easily show that if I is the ideal in $k[x_1, ..., x_n]$ generated by polynomials in S, then V(S) = V(I).

For a subset $X \subseteq \mathbb{A}_k^n$, consider the ideal in $k[x_1, ..., x_n]$ generated by polynomials that vanish on X. This ideal is called the ideal of X, denoted by I(X).

2 Hilbert Basis Theorem

Definition 1. A ring R is called Noetherian if every ideal in R is finitely generated.

Fields and Principal Ideal Domains (PIDs) are Noetherian rings.

Theorem 1. (Hilbert Basis Theorem) If R is a Noetherian ring, then $R[x_1,...,x_n]$ is a Noetherian Ring.

Proof. We know $R[x_1,...,x_n] \cong R[x_1,...,x_{n-1}][x_n]$. So, if we can prove that R Noetherian implies R[x] is Noetherian, by induction we will have proven that $R[x_1,...,x_n]$ is also Noetherian.

Suppose R is Noetherian. Let I be an ideal in R[x]. Let J denote the set of leading coefficients of polynomials in I. Then, given I is an ideal, J is an ideal in R. Since R is Noetherian, we can write that J is generated by the leading coefficients of $f_1, ..., f_r \in I$. Suppose $N \in \mathbb{Z}$ such that N is greater than the degrees of all polynomials $f_1, ..., f_r$. Then, for any $m \leq N$, we define J_m to be the ideal in R generated by the leading coefficients of all polynomials f in I such that $deg(f) \leq m$. Once again, since J_m is an ideal in R, we can say that J_m is generated by the finite set of polynomials, $\{f_{mj}\}$, such that each polynomial's degree is less than or equal to m. Finally, define I' be the ideal generated by polynomials $\{f_{jm}\}$ and f_i .

We claim I' = I. Suppose not i.e suppose there exists elements in I that are not in I'. Let g be the minimal element such that $g \in I$, $g \notin I'$.

Case 1: deg(g) > N. Then, there exists polynomials Q_i such that $\sum_i Q_i f_i$ has the same leading term as g. Therefore, $deg(g - \sum_i Q_i f_i) < deg(g)$. Clearly, $g - \sum_i Q_i f_i$ is in I'. But since g is the minimal element and $deg(g - \sum_i Q_i f_i) < deg(g)$, therefore $g - \sum_i Q_i f_i \in I'$, which implies $g \in I'$.

Case 2: $m := deg(g) \leq N$. Then, there exists polynomials Q_j such that $\sum_j Q_j f_{mj}$ and g have the same leading term. Using a similar argument, we get that $g \in I'$.

Theorem 2. An algebraic set is the intersection of a finite number of hypersurfaces.

Proof. Let V(I) be an algebraic set. We prove that I is finitely generated since that implies $V(I) = V(f_1, ..., f_r) = \bigcap_{i=1}^r V(f_i)$. Given k is a field, k is a Noetherian ring and by the Hilbert Basis Theorem, k[x] is also Noetherian. Therefore, the ideal I in k[x] is finitely generated. \square

Corollary 3. $k[x_1,...,x_n]$ is a Noetherian ring for any field k.

Proof. Follows from the Hilbert Basis Theorem.