МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"Московский государственный технический университет радиотехники, электроники и автоматики"

МГТУ МИРЭА

Институт кибернетики

Кафедра высшей математики

Шпаргалка

По дисциплине

«Функциональный анализ»

Выполнили:

Студенты групп КМБ-13

Снесаревский В.П.

Исаева Д.В.

Сорокина Л.В.

Голубев М.А.

Смирнов К.В.

Тихонова Н.А.

Гусева С.А.

1 уссы С.л

Свинцова А.А.

Еременко A.P.

Анохина О.А.

Великанова А.М.

Шишкова П.О.

Гордеева Н.В.

Преподаватель:

Плаченов A.Б.

Содержание

Летрі	ичес	кие пространства
.1 O)пред	еление и примеры метрических пространств
1.	.1.1	Подробно проверить аксиомы метрики:
		алгебре и аналитической геометрии
1.	.1.3	Пусть $x(t) \ge 0$ непрерывна на $[a,b]$ и $\int\limits_{a}^{b} x(t) \mathrm{d}t = 0$ Доказать, что $x(t) \equiv 0$
		на $[a,b]$
1.	.1.4	Мн-во X состоит из элементов $x = (x_1x_n)$ таких, что $\sum_{k=1}^{\infty} x_k < \infty$.
		$\rho(x,y) = \sum_{k=1}^{\infty} x_i - y_i $. Доказать, что это метрическое пространство, или l_1
		(а также пр-во с Манхэттанской метрикой). 4
1.	.1.5	Пусть множество X состоит из сходящияхся последовательностей. Дока-
_		зать, что $\rho(x,y) = \sup x_i - y_i $ — метрика
	.1.6	
	.1.7	
1.	.1.8	Можно ли на прямой $(-\infty < x < \infty)$ ввести метрику по формуле $\rho(x,y) = \arctan x-y $?
2 C	1	
		мость. Замкнутые и открытые множества
	.2.1	Может ли счетное пересечение открытых множеств не быть открытым?
	.2.2	Может ли счетное объединение замкнутых множеств не быть замкнутым?
1.	.2.3	Показать, что любой открытый шар $S(a,r)$ в метрическом пространстве X
		является открытым множеством, а множество точек таких, что $\rho(a,x) \leq r$
1	0.4	(замкнутый шар) — замкнутым множеством
1.	.2.4	Обозначим A' множество всех предельных точек заданного множества A .
		Построить на прямой $\mathbb R$ такое множество A , чтобы множество $A'' = (A')'$
	~ ~	было непустым, а множество A''' — пустым
	.2.5	Доказать, что множество A' замкнуто, каково бы ни было множество A
	.2.6	Доказать, что $[M]$ - замкнутое множество
1.	.2.7	Доказать, что существуют множества ни замкнутые, ни открытые и от-
	2.0	крытые и замкнутые одновременно
	.2.8	
	.2.9	$[M \circ M] = /[M] \circ [M] \setminus M$
	.2.10	Доказать включение $[M\cap N]\subset ([M]\cap [N]).$ Можно ли заменить \subset на $=?$.
	.2.11	Следует ли из $[M] \subset [N]$ вложенность $M \subset N$?
	.2.12	
1.	.2.13	Пусть M — множество всех точек $x(x_1, \ldots, x_n, \ldots)$ пространства l_2 , у кото-
	0.4.4	рых все координаты положительны. Будет ли указанное множество открыто
1.	.2.14	Пусть вещественная функция $f(x)$ определена и непрерывна на всей чис-
	0.17	ловой оси. Доказать, что множество G точек, где $f(x) < 1$ открыто
	.2.15	
	.2.16	Доказать, что $\mathbb{C}[a,b]$ сепарабельно
	.2.17	
		ые метрические пространства
	.3.1	
1.	.3.2	

	1.3.3	Пусть последовательность $\{x_n(t)\}$ сходится к непрерывной на $[a,b]$ функ-	
		ции $x(t)$ в смысле метрики $\rho(x,y)\sqrt{\int\limits_a^b [x(t)-y(t)]^2}\mathrm{d}t$. Показать на примере,	
		что такая сходимость не влечет сходимости в метрике $\mathbb{C}[a,b]$	9
	1.3.4		10
	1.3.5	Показать полноту метрического пространства	10
	1.3.6	Будет ли метрическое пространство, состоящее из точек прямой ($-\infty <$	
		$x<+\infty$) с метрикой $\rho(x,y)= \arctan x-\arctan y $, полным?	11
	1.3.7	Будет ли метрическое пространство, состоящее из точек прямой $(-\infty <$	
		$x<+\infty$) с метрикой $\rho(x,y)=\mathrm{arctg} x-y ,$ полным?	11
	1.3.8		11
	1.3.9	Дано: \mathbb{Q} со стандартной метрикой $\rho = x - y $. Доказать, что $x_n = (1 + \frac{1}{n})^n$ является фундаментальной, но не имеет предела	11
	1.3.10		11
1.4	Попол	пнение метрических пространств	12
	1.4.1		12
	1.4.2		12
	1.4.3	Показать, что функция $f(x) = x \cdot \chi(x)$ интегрируема по Лебегу на $[0,1]$ и	
		ее интеграл равен $\frac{1}{2}$	12
1.5	Отобр	ражения метрических пространств	13
	1.5.1	Непрерывны ли функционалы на $\mathbb{C}[a,b]$	13
	1.5.2	Непрерывны ли на пространстве $\mathbb{D}_1[a,b]$ функционалы	14
	1.5.3	Непрерывны ли функции $f(x) = \rho(x, A) = \inf_{y \in A} \rho(x, y)$ и $g(x) = \varphi(x, A) =$	
		$\sup \rho(x,y)$, где A — множество в метрическом пространстве X ?	14
	1.5.4	$y \in A$	14
	1.5.5	Отображение F на \mathbb{R}_+ переводит т. x в $1+\frac{1}{x}$. Будет ли оно сжимающим в метрическом пр-ве X со стандартной метрикой $\rho= x-y $?	14
	1 5 6	m	
	1.5.6	Рассмотрим систему $y_i = \sum_{j=1}^n a_{ij} x_j + b_i$ как операторное уравнение в \mathbb{E}^n .	
		Показать, что оператор A , задаваемый правой частью, будет сжимающим,	
		если $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2 < 1$	15
1.0	1.5.7		16
1.6		актные метрические пространства	16
	1.6.1		16
	1.6.2	Показать, что множество функций из $\mathbb{C}[a,b]$, выделяемое неравенством	1.0
		$\max_{t \in [a,b]} x(t) \le 1$, замкнуто, но не компактно	16
	1.6.3	Доказать, что компактное пространство ограничено	16
	1.6.4	При каких a,b множество $\{x_n(t)=t^n\}$ компактно в пространстве $\mathbb{C}[a,b]$? .	16
П	<u>v</u>		17
		е нормированные пространства и линейные операторы	$\frac{17}{17}$
2.1		вные определения	17 17
	2.1.1	Доказать бесконечномерность пространства $\mathbb{C}_{L_2}[a,b]$	1 (
	2.1.2	Множество M в линейном пространстве X называется выпуклым, если	
		оно вместе с любыми своими точками x, y содержит все точки $z = \alpha x + \beta y$	
		такие, что $\alpha \ge 0, \beta \ge 0, \alpha + \beta = 1$ (отрезок, концами которого являются x и y). Покажите, что любой шар в линейном нормированном пространстве	
		— выпуклое множество	17
	2.1.3	— выпуклое множество	17
			- 1

	2.1.4	$B=e_{1},e_{2},,e_{n}$ - базис n-мерного линейного пр-ва $X.$ Каждый элемент	
		имеет единственное разложение $x = \sum_{i=1}^{n} \alpha_i e_i$. Доказать, что формулы $\ x\ _I =$	
		$\max_{1 \le j \le n} \alpha_j $ и $ x _{II} = \sum_{j=1}^n \alpha_j $ определяют нормы в этом пр-ве	17
	2.1.5	Доказать, что нормы $ x _I = \max_{1 \le j \le n} a_j $ и $ x _{II} = \sum_{j=1}^n a_j $ эквивалентны	18
2.2	Линей	ные операторы	19
	2.2.1		19
	2.2.2		19
	2.2.3		19
	2.2.4		19
	2.2.5		19
	2.2.6	Найти норму оператора A , действующего на каждый элемент $x=x(t)$ в	
		пространстве $\mathbb{C}[1,2]$ по формуле $Ax=t^2\cdot x$	19
	2.2.7	Найти норму оператора A , действующего на каждый элемент $x=x(t)$	
		в пространстве $\mathbb{C}[0,1]$ по формуле $Ax = \int\limits_0^1 \mathcal{K}(t,s)x(s)\mathrm{d}s,$ если ядро этого	
		оператора имеет вид $\mathcal{K}(t,s)=t\cdot s$	19
	2.2.8		19
	2.2.9	Доказать линейность и найти норму функционала, действующего на эле-	
		менты $x = (x_1x_n)$ пространства l_2	19
	2.2.10	Доказать линейность и оценить норму функционала $f(x) = \int_{0}^{\frac{\pi}{2}} x(t) dt$	
		$\int\limits_{1}^{1}x(t)\mathrm{d}t$ в пространстве $\mathbb{C}[0,1]$	20
	2 2 11	2	20

1 Метрические пространства

- 1.1 Определение и примеры метрических пространств
- 1.1.1 Подробно проверить аксиомы метрики:

1.1.2 Сформулировать определение подпространства \mathbb{E}^n , принятое в линейной алгебре и аналитической геометрии

Подпространство \mathbb{E}^n — подмножество $X \subset \mathbb{E}^n$ такое, что $\forall x, y \in X, \alpha, \beta \in \mathbb{R} : \alpha x + \beta y \in X$

1.1.3 Пусть $x(t) \geq 0$ непрерывна на [a,b] и $\int\limits_a^b x(t)\mathrm{d}t = 0$ Доказать, что $x(t) \equiv 0$ на [a,b]

Пусть $x(t)\not\equiv 0$. Тогда $\int\limits_a^b x(t){\rm d}t=|x(t)|(b-a)=0$ $|x(t)|>0, b-a\not\equiv 0$ — противоречие

1.1.4 Мн-во X состоит из элементов $x=(x_1...x_n...)$ таких, что $\sum_{k=1}^{\infty}|x_k|<\infty$. $\rho(x,y)=\sum_{k=1}^{\infty}|x_i-y_i|$. Доказать, что это метрическое пространство, или l_1 (а также пр-во с Манхэттанской метрикой).

Неотрицательность и симметричность очевидны.

Неравенство треугольника: $\sum_{k=1}^{\infty}|x_i-z_i|\leq \sum_{k=1}^{\infty}|x_i-y_i|+\sum_{k=1}^{\infty}|y_i-z_i|$

Так как все эти ряды сходятся (по св-вам сх-ся рядов, их сумма и разность - тоже сходящиеся ряды), мы можем перейти к покомпонентному неравенству.

$$|x_i - z_i| \le |x_i - y_i| + |y_i - z_i|$$

А дальше наш любимый приём. $|x_i - y_i| = a, |y_i - z_i| = b$ $|a + b| \le |a| + |b|$ - а это уже аксиома.

1.1.5 Пусть множество X состоит из сходящияхся последовательностей. Доказать, что $\rho(x,y) = \sup |x_i - y_i|$ — метрика

1.
$$x=y \Leftrightarrow \rho(x,y)=0$$
 — очевидно $(x=y \Leftrightarrow x_i=y_i \forall i)$

2.
$$\rho(x,y) = \rho(y,x)$$
 — очевидно

3. $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$ $\forall i \quad |x_i-z_i| \leq |x_y-y_i| + |y_i-z_i| \leq \sup|x_i-z_i| \leq |x_y-y_i| + \sup|y_i-z_i| = \rho(x,y) + \rho(y,z)$ Если выполняется для любого i, выполняется и для $\sup|x_i-z_i| = \rho(x,z)$ — метрика доказана

4

1.1.6

1.1.7

- 1.1.8 Можно ли на прямой $(-\infty < x < \infty)$ ввести метрику по формуле $\rho(x,y) = \operatorname{arctg} |x-y|$?
 - 1. $\operatorname{arctg}|x-y| \ge 0$ очевидно
 - 2. $\rho(x,y) = \rho(y,x)$ очевидно
 - 3. $\rho(x,y) = 0 \Rightarrow \arctan|x-y| = 0 \Rightarrow |x-y| = 0 \Rightarrow x = y$ $x = y \Rightarrow |x-y| = 0 \Rightarrow \arctan|x-y| = 0 \Rightarrow \rho(x,y) = 0$
 - 4. $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$ $\operatorname{arctg}|x-z| \leq \operatorname{arctg}|x-y| + \operatorname{arctg}|y-z|$. Возьмем $x-y=a,y-z=b \Rightarrow x-z=a+b,a \geq 0,b \geq 0$ $\operatorname{arctg}|a+b| \leq \operatorname{arctg}|a| + \operatorname{arctg}|b|$ $|a+b| \leq \operatorname{tg}(\operatorname{arctg}|a| + \operatorname{arctg}|b|)$ $a+b \leq \frac{a+b}{1-ab}$ $(1-ab)(a+b) \leq a+b \Rightarrow -ab(a+b) \leq 0$ очевидно, т.к. $ab \geq 0$

1.2 Сходимость. Замкнутые и открытые множества

1.2.1 Может ли счетное пересечение открытых множеств не быть открытым?

Рассмотрим множества $M_n=(a-\frac{1}{n},b+\frac{1}{n}), n\in\mathbb{N}$ и их пересечение $M=\cap M_n$ Зная, что $\lim_{n\to\infty}a+\frac{1}{n}=a$, получим, что $\forall \varepsilon>0$ $\exists\,N>0: \forall n>N$ $|a-(a-\frac{1}{n})|=\frac{1}{n}<\varepsilon$ То есть не существует окрестности точки a, целиком лежащей в M — множество не открытое. Также, проведя аналогичные рассуждения для b, получим, что M=[a,b]

1.2.2 Может ли счетное объединение замкнутых множеств не быть замкнутым?

Рассмотрим отрезок [a, b] и возьмем внутри него отрезок $[a_0, b_0]$.

Будем расширять этот отрезок, добавляя получившийся отрезок в объединение: $[a_0,b_0]\subset [a_1,b_1], a_1=a_0-\varepsilon_1, b_1=b_0+\varepsilon_1, \varepsilon_1>0$ Продолжаем расширять отрезок, на каждом шаге уменьшая ε : $0<\varepsilon_{n+1}<\varepsilon_n$

В итоге получим множество отрезков, вложенных друг в друга, но не содержащих исходный отрезок [a,b]. Точки a и b будут предельными точками множества, не принадлежащими ему, т.е. множество — не замкнутое

1.2.3 Показать, что любой открытый шар S(a,r) в метрическом пространстве X является открытым множеством, а множество точек таких, что $\rho(a,x) \leq r$ (замкнутый шар) — замкнутым множеством

Рассмотрим произвольную точку x внутри шара, т.е. $\rho(x,a) < r$. Очевидно, что найдется такая точка у, что $\rho(x,a) < \rho(y,a) < r$. То есть найдется открытый шар радиуса $\rho(x,y)$ с центром в точке x, содержащий только точки шара S. Отсюда получим, что шар — открытое множество Рассмотрим внешность замкнутого шара $(\rho(a,x) > r)$. Проведя аналогичные рассуждения, получим, что это — открытое множество. Т.к. дополнение открытого множества замкнуто, замкнутый шар — замкнутое множество

1.2.4 Обозначим A' множество всех предельных точек заданного множества A. Построить на прямой $\mathbb R$ такое множество A, чтобы множество A'' = (A')' было непустым, а множество A''' - пустым

Точка называется **предельной** для множества, если любая ее выколотая окрестность имеет с этим множеством непустое пересечение.

Поскольку по условию $A''' = \emptyset$, все точки множества A'' - изолированные (существует выколотая окрестность, не содержащая точек множества).

Мысль по теме. $A = \left\{ \frac{1}{n} + \frac{1}{m} \right\}, A' = \left\{ \frac{1}{n} \right\}, A'' = \emptyset$

1.2.5 Доказать, что множество A' замкнуто, каково бы ни было множество A

Пусть A — открытое множество. Предположим, что A' — тоже открытое. По определению объединение множества с множеством его предельных точек замкнутое. Но $A \cup A'$ — открытое, т.к. по предположению оба множества — открытые. Противоречие, A' — замкнутое Пусть A — замкнутое, т.е. $A' \subset A$ или $A \cap A' = A' \Rightarrow A'$ — замкнутое

1.2.6 Доказать, что [M] - замкнутое множество

[M]-объединение самого множества и множества его предельных точек. Множество замкнутое, если все его предельные точки ему самому и принадлежат. Очевидно.

1.2.7 Доказать, что существуют множества ни замкнутые, ни открытые и открытые и замкнутые одновременно

- 1. Рассмотрим [a,b). Оно не является открытым, т.к. любая окрестность точки a содержит точки, не принадлежащие множеству. Но при этом оно не является замкнутым, т.к. существуют последовательности, стремящиеся к b, т.е. b предельная точка, не принадлежащая множеству
- 2. Рассмотрим множество Ø. Оно не имеет элементов, т.е. множно сказать, что любой его элемент входит в него со своей окрестностью. Также множно сказать, что ему принадлежат все его предельные точки, т.е. множество и открытое, и замкнутое

1.2.8

1.2.9

1.2.10 Доказать включение $[M \cap N] \subset ([M] \cap [N])$. Можно ли заменить \subset на =?

Множеству $[M\cap N]$ (1) принадлежат все предельные точки множества $M\cap N$ Множеству $([M]\cap [N])$ (2) принадлежат все предельные точки, принадлежащие одновременно множеству M и множеству $N\Rightarrow$ Множество (2) не меньше множества (1) Так как предельные точки пересечения являются предельными каждого из множеств, множно сказать, что $[M\cap N]=([M]\cap [N])$

1.2.11 Следует ли из $[M] \subset [N]$ вложенность $M \subset N$?

Рассмотрим частный случай [M] = [N], M — замкнутое, N — открытое. Существуют точки из [M] = [N], принадлежащие M, но не принадлежащие N, т.е. $M \not\subset N$

1.2.12

1.2.13 Пусть M — множество всех точек $x(x_1, \ldots, x_n, \ldots)$ пространства l_2 , у которых все координаты положительны. Будет ли указанное множество открыто?

Рассмотрим такую точку x, координаты которой образуют бесконечно убывающую последовательность (при этом они все положительны, т.е. стремятся к нулю сверху). Для этой точки нельзя подобрать открытый шар, целиком лежащий в множестве, т.к. какое бы ε мы не взяли, найдется такой $x_i < \varepsilon$. То есть множество не является открытым

1.2.14 Пусть вещественная функция f(x) определена и непрерывна на всей числовой оси. Доказать, что множество G точек, где f(x) < 1 открыто

Условие непрерывности $\forall \varepsilon > 0 \; \exists \delta > 0: \quad |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$ Если $\forall x \; f(x) \geq 1$, то $G = \varnothing$ — открытое и замкнутое одновременно

Если $\forall x \ f(x) < 1$, то $G = \mathbb{R}$ — открытое по определению

Иначе рассмотрим произвольную точку x такую, что f(x) < 1. Возьмем $\varepsilon = 1 - f(x)$ (модуль не обязателен, т.к. f(x) < 1). Из условия непрерывности найдется такое δ , что $|y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon$. Очевидно, что δ -окрестность точки x принадлежит G. Поскольку это выполняется для любой произвольной точки из множества, оно открыто

1.2.15

1.2.16 Доказать, что $\mathbb{C}[a,b]$ сепарабельно

Мн-во $M \subset X$ всюду плотно, если замыкание - это всё X. ([M] = X)

Множество сепарабельно, если в нём есть счётное всюду плотное мн-во.

Множество всех многочленов Р с действительными коэффициентами счётно. И оно является подмножеством $\mathbb{C}[a,b]$

Далее, по теореме Вейерштрасса: Если функция f(x) непрерывна на сегменте [a,b], то существует последовательность многочленов $P_n(x)$ равномерно на сегменте [a,b] сходящаяся к f(x) т. е. для любого $\varepsilon>0$ найдется многочлен $P_n(x)$ с номером n зависящим от ε такой, что $|P_n(x)-f(x)|<\varepsilon$

сразу для всех х из сегмента [a, b]

Иными словами, непрерывную на сегменте функцию можно равномерно на этом сегменте приблизить многочленом с наперед заданной точностью ε .

Множество функций f(x) (т.е всё мн-во) является замыканием для Р

1.2.17

1.3 Полные метрические пространства

1.3.1

1.3.2

Пусть последовательность $\{x_n(t)\}$ сходится к непрерывной на [a,b] функции 1.3.3 x(t) в смысле метрики $\rho(x,y)\sqrt{\int\limits_a^b [x(t)-y(t)]^2\mathrm{d}t}$. Показать на примере, что такая сходимость не влечет сходимости в метрике $\mathbb{C}[a,b]$

Рассмотрим последовательность функций $x_n(t)$, задаваемых следующим образом:

$$\begin{cases} x_n(a) = 1\\ x_n(t) = 0, \frac{1}{n} \le t \le b \end{cases}$$

 $\begin{cases} x_n(a) = 1 \\ x_n(t) = 0, \frac{1}{n} \leq t \leq b \end{cases}$ На участке от a до $\frac{1}{n}$ функция представляет собой прямую Видно, что при $\lim_{n \to \infty} \int\limits_a^b x_n(t) \mathrm{d}t = 0$ (равно как и предел интеграла от квадрата функции)

В метрике $\mathbb{C}[a,b]$, где расстояние задается как $\rho(x,y)\max_{t\in[a,b]}|x(t)-y(t)|$, расстояние от каждой из $x_n(t)$ до x(t) равно 1, т.е. последовательность не сходится к этой функции

1.3.4

1.3.5 Показать полноту метрического пространства

1.3.6 Будет ли метрическое пространство, состоящее из точек прямой $(-\infty < x < +\infty)$ с метрикой $\rho(x,y) = |\arctan y|$, полным?

 $| \operatorname{arctg} x_n - \operatorname{arctg} x_m | < \varepsilon, \quad \varphi_n = \operatorname{arctg} x_n, \quad |\varphi_n - \varphi_m| < \varepsilon$ — последовательность фундаментальна в \mathbb{E}^1

По критерию Коши $\varphi_n \to \varphi$. Предположим, что $x_n \to x$. Если $\varphi = \arctan x$, то $\varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Но если $\varphi_n \to \frac{\pi}{2}$, то предела нет, т.е. пространство неполное

1.3.7 Будет ли метрическое пространство, состоящее из точек прямой $(-\infty < x < +\infty)$ с метрикой $\rho(x,y) = \arctan|x-y|$, полным?

Рассмотрим фундаментальную последовательность x_n , т.е. $\arctan |x_n - x_m| < \varepsilon$ $|x_n - x_m| < \operatorname{tg} \varepsilon$ — последовательность фундаментальна в \mathbb{E}^1

По критерию Коши существует предел: $|x_n - x| \to 0 \Rightarrow \arctan |x_n - x| \to 0$ — последовательность имеет предел в заданной метрике, пространство полное

1.3.8

1.3.9 Дано: $\mathbb Q$ со стандартной метрикой $\rho = |x-y|$. Доказать, что $x_n = (1+\frac{1}{n})^n$ является фундаментальной, но не имеет предела.

Решение. Эта последовательность стремится к e, которое не лежит в этом пространстве, оно иррациональное.

На всякий случай, фундаментальность:

Последовательность называется фундаментальной, если $\lim_{m \to \infty} \rho(x_m, x_n) = 0$

$$(1+\frac{1}{n})^n - (1+\frac{1}{m})^m)$$

При стремлении к бесконечности все дроби в биномиальном разложении уйдут в 0, а разность единиц тоже 0.

1.3.10

1.4 Пополнение метрических пространств

1.4.1

1.4.2

1.4.3 Показать, что функция $f(x)=x\cdot \chi(x)$ интегрируема по Лебегу на [0,1] и ее интеграл равен $\frac{1}{2}$

Рассмотрим функцию $\chi(x)=\begin{cases} 0, x\in\mathbb{Q}\\ 1, x\not\in\mathbb{Q} \end{cases}$ По свойству 1 интеграла Лебега он сохраняет значение при изменении значения функции на множестве меры нуль (счетном). Заменив во всех рациональных числах $x\cdot\chi(x)$ на x, получим $x\cdot\chi(x)\to x$ на всем отрезке. От этой функции существует интеграл Римана, а значит, и интеграл Лебега, причем они равны $\int\limits_0^1 x \mathrm{d}x = \frac{1}{2}$

1.5 Отображения метрических пространств

1.5.1 Непрерывны ли функционалы на $\mathbb{C}[a,b]$

Непрерывны ли на пространстве $\mathbb{D}_1[a,b]$ функционалы

- \bullet f(x) = x(a)
- $f(x) = \int_{a}^{b} \sqrt{1 + [x'(x)]^2} dt$
- **1.5.3** Непрерывны ли функции $f(x) = \rho(x, A) = \inf_{y \in A} \rho(x, y)$ и $g(x) = \varphi(x, A) = \sup_{y \in A} \rho(x, y)$, где A — множество в метрическом пространстве X?

f(x): Пусть $x, x_1 \in X, y \in A$. Тогда $f(x) \le \rho(x, y) \le \rho(x, x_1) + \rho(x_1, y)$ Перейдя к точной нижней грани справа, получим $f(x) < f(x_1) + \rho(x, x_1) \Rightarrow$ $\Rightarrow f(x) - f(x_1) \le \rho(x, x_1).$

Проведя аналогичные действия для $f(x_1)$, получим $|f(x)-f(x_1)| \le \rho(x,x_1)$, из чего и следует непрерывность

1.5.4

Отображение F на \mathbb{R}_+ переводит т. x в $1+\frac{1}{x}$. Будет ли оно сжимающим в 1.5.5метрическом пр-ве X со стандартной метрикой $\rho = |x - y|$?

Чтобы отображение было сжимающим - A - отображение (X, ρ_x) в себя. Должно выполняться нер-во $\rho(A(x),A(y)) \leq q\rho(x,y), \ 0 < q < 1, \ A(z) = z$ - неподвижная точка. Итак, проверяем $\rho(F(x), F(y)) \le q\rho(x, y)$.

$$|(x+\frac{1}{x})-(y+\frac{1}{x})| = |(x-y+\frac{y-x}{xx})| = |x-y||1-\frac{1}{xx}|$$

 $|(x+\frac{1}{x})-(y+\frac{1}{y})|=|(x-y+\frac{y-x}{xy})|=|x-y||1-\frac{1}{xy}|$ первый сомножитель - как раз наша метрика, возвращаемся к проверяемому неравенству, а вот второй, который должен быть в роли q, отнюдь не константа, он зависит от ху. Это не сжимающее отображение

1.5.6 Рассмотрим систему $y_i = \sum\limits_{j=1}^n a_{ij} x_j + b_i$ как операторное уравнение в \mathbb{E}^n . Показать, что оператор A, задаваемый правой частью, будет сжимающим, если $\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_{ij}^2 < 1$

1.5.7

1.6 Компактные метрические пространства

1.6.1

1.6.2 Показать, что множество функций из $\mathbb{C}[a,b]$, выделяемое неравенством $\max_{t \in [a,b]} |x(t)| \le 1$, замкнуто, но не компактно

Множество замкнуто, т.к. $\forall t \in [a,b] \ |f(x)| \leq 1$ — единичный шар Если взять функцию такую, что $x(b)=1, x(b-\delta)=-1, \ \delta \to 0$, то равностепенная непрервыность не соблюдается, множество некомпактно

1.6.3 Доказать, что компактное пространство ограничено

Пусть X — компактное пространство. Предположим, что оно неограничено. Выделим в нем неограниченную последовательность $\{x_k\}$ и ее фундаментальную подпоследовательность $\{x_{k_n}\}$. По определению $\forall \varepsilon > 0 \quad \exists \, N > 0 : \quad \forall m, n > N \, |x_{k_n} - x_{k_m}| < \varepsilon$ — подпоследовательность ограничена.

Устремив $m \to \infty$, получим, что исходная последовательность тоже ограничена, что противоречит предположению, т.е. множество X — ограниченное

1.6.4 При каких a, b множество $\{x_n(t) = t^n\}$ компактно в пространстве $\mathbb{C}[a, b]$?

По теореме Арцела, для компактности необходимо доказать равномерную ограниченность и равностепенную непрерывность.

Ограниченность имеет место при $t \in [-1, 1]$: M = 1

Липшицевость, а следовательно, и равностепенная непрерывность имеет место при |t|<1 То есть множество компактно при $a,b\in(-1,1)$

2 Линейные нормированные пространства и линейные операторы

- 2.1 Основные определения
- 2.1.1 Доказать бесконечномерность пространства $\mathbb{C}_{L_2}[a,b]$
- 2.1.2 Множество M в линейном пространстве X называется выпуклым, если оно вместе с любыми своими точками x,y содержит все точки $z=\alpha x+\beta y$ такие, что $\alpha\geq 0, \beta\geq 0, \alpha+\beta=1$ (отрезок, концами которого являются x и y). Покажите, что любой шар в линейном нормированном пространстве выпуклое множество

Шар $S_r^{x_0}$ — множество точек x таких, что $\rho(x_0,x) \leq r$

Частный случай при $x_0=0$: $||x||\leq r$. Поскольку при параллельном переносе расстояния сохраняются $(\rho(x+z,y+z)=\rho(x,y))$, будем рассматривать именно этот случай (**прим**. Говорить это не обязательно. Просто берем как данность, что центр шара — в нуле)

Возьмем точки $x, y \in Q$ и точку $z = \alpha x + \beta y$. $||z|| = ||\alpha x + \beta y|| = \alpha ||x|| + \beta ||y|| \le (\alpha + \beta)r \le r$ (т.к. $\alpha + \beta = 1$). То есть $z \in S_r$, множество выпуклое.

2.1.3

2.1.4 $B=e_1,e_2,...,e_n$ - базис n-мерного линейного пр-ва X. Каждый элемент имеет единственное разложение $x=\sum\limits_{i=1}^n\alpha_ie_i$. Доказать, что формулы $\|x\|_I=\max\limits_{1\leq j\leq n}|\alpha_j|$ и $\|x\|_{II}=\sum\limits_{i=1}^n|\alpha_j|$ определяют нормы в этом пр-ве

Для этого нам надо проверить аксиомы нормы.

$$\|x\| \geq 0$$
 и, если $\|x\| = 0$, то $x = \overline{o}$

Неотрицательность очевидна, там везде модули.

Если норма равна 0, т.е сумма коэффициентов равна 0, то это нулевой вектор — единственный, который раскладывается по базису с нулевым координатами 2) $\|\lambda \cdot x\| = |\lambda| \|x\|$

$$x = \sum_{i=1}^{n} \lambda \alpha_i e_i$$

$$\|\lambda x\|_I = \max_{1 \le j \le n} |\lambda \alpha_j|$$

$$\|\lambda x\|_{II} = \sum_{j=1}^{n} |\lambda \alpha_j|$$

Модуль произведения равен произведению модулей, поэтому λ - константу мы можем преспокойненько вынести и из максимума, и из суммы.

$$3)||x+y|| \le ||x|| + ||y||$$

При сложении векторов, разложенных по базису склаываются их коэффициенты.

$$x + y = \alpha_1 e_1 + \alpha_2 e_1 + \alpha_1 e_2 + \alpha_2 e_2 + \dots = (\alpha_1 + \alpha_2)e_1 + \dots$$

 $\max_{1\leq j,i\leq n}|\alpha_j+\alpha_i|\leq \max_{1\leq j\leq n}|\alpha_j|+\max_{1\leq i\leq n}|\alpha_i|$ Модуль суммы меньше суммы модулей, это очевидно.

$$\sum_{j,i=1}^{n} |\alpha_j + \alpha_i| = \sum_{j=1}^{n} |\alpha_j| + \sum_{j=1}^{n} |\alpha_i|$$

Аналогично и здесь можно перейти к покомпонентному неравенству.

Доказать, что нормы $\|x\|_I = \max_{1 \le j \le n} |a_j|$ и $\|x\|_{II} = \sum_{j=1}^n |a_j|$ эквивалентны

 $\|x\|_I \leq \|x\|_{II}$, т.к. в сумму входит и максимальный по модулю элемент. Но при этом $\|x\|_{II} \leq n \cdot \max_{1 \leq j \leq n} |a_j|$ (равенство достигается, если все элементы равны по модулю) То есть $\|x\|_I \leq \|x\|_{II} \leq n \cdot \|x\|_I$ — нормы эквивалентны

2.2 Линейные операторы

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

- 2.2.6 Найти норму оператора A, действующего на каждый элемент x=x(t) в пространстве $\mathbb{C}[1,2]$ по формуле $Ax = t^2 \cdot x$
- 2.2.7 Найти норму оператора A, действующего на каждый элемент x=x(t) в пространстве $\mathbb{C}[0,1]$ по формуле $Ax=\int\limits_{s}^{t}\mathcal{K}(t,s)x(s)\mathrm{d}s,$ если ядро этого оператора имеет вид $\mathcal{K}(t,s) = t \cdot s$

Оператор Ax — интегральный оператор Фредгольма. Его норма вычисляется по формуле $\|A\| \le$ $\max_{t \in [0,1]} \int_{0}^{1} |\mathcal{K}(t,s)| \mathrm{d}s = \max_{t \in [0,1]} \int_{0}^{1} |ts| \mathrm{d}s$. Видно, что максимум достигается при t=1: $||A|| \leq \int_{0}^{1} s \mathrm{d}s = 1$

2.2.8

Доказать линейность и найти норму функционала, действующего на элемен-2.2.9 ты $x = (x_1...x_n...)$ пространства l_2

$$f(x) = \sum_{k=1}^{\infty} \frac{x_k}{k}$$

$$_{k=1}^{k=1}$$
 Линейность.
$$f(\alpha x + \beta y) = \sum_{k=1}^{\infty} \frac{\alpha x_k + \beta y_k}{k} = \alpha \sum_{k=1}^{\infty} \frac{x_k}{k} + \beta \sum_{k=1}^{\infty} \frac{y_k}{k}$$
 Норма.

Норма.

$$\|f(x)\|=\max\left|\sum_{k=1}^{\infty}\frac{x_k}{k}\right|$$
 По неравенству Коши-Буняковского для l_2 :

$$\left| \sum_{k=1}^{\infty} x_k y_k \right|^2 \le \left(\sum_{k=1}^{\infty} |x_k|^2 \right) \cdot \left(\sum_{k=1}^{\infty} |y_k|^2 \right)$$

$$\|f(x)\| = \max \left| \sum_{k=1}^{\infty} \frac{x_k}{k} \right| = \max \sqrt{\left(\sum_{k=1}^{\infty} |\frac{1}{k}|^2 \right)} \sqrt{\left(\sum_{k=1}^{\infty} |x_k|^2 \right)}$$

$$\left(\sum_{k=1}^{\infty} |\frac{1}{k}|^2 \right) = \frac{\pi^2}{6}$$

Правая часть -как раз метрика в l_2

Теперь нам надо посмотреть, где норма будет достигаться, но это будет отнюдь не на единичном шаре, т.к ряд 1/п вообще будет расходиться.

Равенство в неравенство Коши-Буняковского достигается, когда векторы коллинеарны Это значит, что $x_k = \lambda \cdot \frac{1}{k}$ — именно при этом условии норма достигается Из приравнивания ряда к единице выводим, что эта $\lambda = \frac{6}{\pi^2}$

2.2.10 Доказать линейность и оценить норму функционала $f(x) = \int\limits_0^{\frac{1}{2}} x(t) \mathrm{d}t - \int\limits_{\frac{1}{2}}^1 x(t) \mathrm{d}t$ в пространстве $\mathbb{C}[0,1]$

1.
$$f(\alpha x + \beta y) = \int_{0}^{\frac{1}{2}} \alpha x(t) dt + \beta y(t) - \int_{\frac{1}{2}}^{1} \alpha x(t) dt + \beta y(t) dt =$$
$$= \alpha \left(\int_{0}^{\frac{1}{2}} x(t) dt - \int_{\frac{1}{2}}^{1} x(t) dt \right) + \beta \left(\int_{0}^{\frac{1}{2}} y(t) dt - \int_{\frac{1}{2}}^{1} y(t) dt \right) = \alpha f(x) + \beta f(y)$$

2.
$$||f|| = \sup_{x \in [0,1]} |f(x)|$$

 $|f(x)| = \left| \int_{0}^{\frac{1}{2}} x(t) dt - \int_{\frac{1}{2}}^{1} x(t) dt \right| \le \left| \int_{0}^{\frac{1}{2}} x(t) dt \right| + \left| \int_{\frac{1}{2}}^{1} x(t) dt \right| \le \frac{1}{2} + \frac{1}{2} = 1$

2.2.11