Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores Licenciatura em Engenharia Informática e de Computadores

Computação Gráfica

 $1^{\rm a}$ Chamada, Semestre de Inverno de 06/07, 17 de Janeiro de 2007 - 18h30m $\bf Duração:$ Repetição de testes - 1h30m; Teste global - 2h30m

_	No:						Non	ne:																					
	Cotações																												
	1.1	1.2	1.3	2.1	2.2	2.3	2.4	2.5	3.1	3.2	3.3	3.4	4.1	4.2	5.1	5.2	5.3	5.4	5.5	6.1	6.2	6.3	6.4	6.5	6.6	6.7	7.1	7.2	8.1
T1	1	1	1	1.5	1	1.5	2	2	2	1	1	1	2	2															
T2															1	1	1.5	1.5	1	1	1	1.5	2	1.5	1.5	1.5	2	2	
Ex		1					1.5	1.5	1.5		1		1.5	1.5			1.5	1.5		1		1		1		1.5	1.5		1.5

Seja sucinto nas respostas. A capacidade de síntese também é avaliada.

1. Algoritmos e rasterização

- 1.1. Indique quais as razões, no seu entender, que levaram à substituição dos sistemas vectoriais pelos sistemas *raster*.
- 1.2. Indique o princípio de funcionamento do algoritmo Bresenham para rasterização de linhas.
- 1.3. Que característica da equação do círculo é explorada no algoritmo MidPoint de rasterização de círculos? Justifique.

2. Transformações geométricas

Figura 1: Dois paralelipípedos em VRML

- 2.1. Observe a figura 1 e diga qual dos troços de código (1 ou 2) produz o resultado visível. Justifique.
- 2.2. Porque motivo é que a composição de transformações pode ser realizada à custa da multiplicação de matrizes?
- 2.3. Imagine que tem uma figura que representa um texto. O que é necessário fazer para colocar esse texto em itálico? Justifique.
- 2.4. Observe a forma geométrica da figura 2(a).
 - i. Represente na grelha da figura 2(b) a sua nova forma admitindo que foi realizada a transformação de escala S(2,3). Justifique.
 - ii. A transformação realizada é de corpo rígido?
- 2.5. Dada a seguinte composição de transformações geométricas T(0,0.5). $R(90^0)$. S(0.25,0.1) no espaço 2D, apresente a matriz final a aplicar aos pontos. Justifique.

```
DEF Rect Transform{
Transform{
  translation 0 0.5 0
                                            translation 0 0.5 0
  rotation 0 0 1 1.57
                                            rotation 0 0 1 1.57
  children
                                            children
  DEF Rect Shape {
                                             Shape {
    geometry Box { size 0.5 0.1 0.5 }
                                              geometry Box { size 0.5 0.1 0.5 }
    appearance Appearance
                                              appearance Appearance
                                               material Material { }}
      material Material { }}
                                            }
}
                                         }
Transform{
                                          Transform{
  translation 0.5 0 0
                                            translation 0.5 0 0
  rotation 0 0 1 -0.78
                                            rotation 0 0 1 -0.78
  children USE Rect
                                            children USE Rect
                                         }
```

Código 1: Versão A

Código 2: Versão B

Figura 2: Forma geométrica com escala de S(2,3)

3. Projecção

- 3.1. Indique, justificando, qual a forma do volume de visualização de uma projecção perspectiva e de uma projecção paralela, caracterizando cada uma das projecções.
- 3.2. Relacione o conceito de ponto de fuga com projecção.
- 3.3. Numa projecção paralela, é necessário considerar o DOP e o VPN. Relacione esta afirmação com este tipo de projecção.
- 3.4. Indique quais os parâmetros necessários para caracterizar uma projecção perspectiva.

4. Modelação hierárquica

- 4.1. Apresente o grafo de cena que descreve a cena apresentada na figura 3, utilizando o protótipo Roda apresentado no código 3.
- 4.2. Implemente, em VRML, o grafo de cena da alínea anterior. Não é necessário definir as características de appearance dos nós.

Figura 3: Modelação hierárquica de um carro

```
PROTO Roda []{
   Transform {
    rotation 1 0 0 1.5708
    children Shape {
        geometry Cylinder { height 0.2 radius 0.2 }
        appearance Appearance { material Material { diffuseColor 1.0 0.1 0.1 } }
    }
}
```

Código 3: Proto a utilizar

5. **Cor**

- 5.1. Porque razão se diz que o modelo CMY é subtractivo? Justifique.
- 5.2. De que forma é que a utilização de paletes pode reduzir a dimensão de um ficheiro de imagem? Justifique.
- 5.3. Na figura 4 estão representados um projector, uma tela e um filtro. Qual deverá ser a cor da tela para que o utilizador veja a cor azul? Justifique.

Figura 4: Combinação de cores

- 5.4. Em conversa com um pintor, cheguei à conclusão que para ele as cores primárias eram o vermelho, o azul e o amarelo. No entanto, os sistemas aditivos utilizam o vermelho, o verde e o azul como cores primarias. Comente esta diferença, justificando.
- 5.5. Comente a frase: "Duas pessoas sem problemas de visão interpretam sempre as cores de maneira igual. Ou seja, o que é vermelho vivo para uma também o será para a outra.".

6. Iluminação

- 6.1. A cor aumenta o realismo dos objectos. No entanto, apenas esta componente não é suficiente. Porquê? Apresente um exemplo.
- 6.2. A mesma cor atribuída a dois materiais distintos pode resultar numa sensação visual diferente. Porquê?
- 6.3. Numa fonte de luz pontual, quais as componentes que é necessário definir?
- 6.4. O que se entende por Depth Cueing? Como pode ser modelado na equação de Phong?
- 6.5. O modelo de iluminação de Phong considera dois tipos de reflexão da luz pelas superfícies. Que tipos de reflexão são esses e quais são os parâmetros necessários para o cálculo dos respectivos termos.
- 6.6. Porque razão é necessário, no algoritmo de *ray-tracing*, optimizar a detecção de intersecções? Qual a técnica mais usada?

Figura 5: Raios principais e secundários

6.7. Observe a figura 5, onde está representada uma cena onde é aplicado o algoritmo de *ray-tracing*. Indique algumas das razões para que na árvore de recursão respectiva não estejam representados todos os raios.

7. Modelação geométrica

Figura 6: Polígono côncavo

- 7.1. Apresente uma decomposição do polígono da figura 6 em sub-polígonos convexos, utilizando a técnica BSP, com a respectiva árvore.
- 7.2. Indique a diferença entre as estruturas de dados quadtree e octree.

8. Java3D

8.1. Qual a razão para a existência de áreas de activação em *Java3D*, nomeadamente nos Behaviours? Justifique.

Carlos Guedes, Jorge Silva e Nuno Datia.