5.1. Taylorův polynom

Motivace: Chceme nahradit komplikovanou funkci polynomem s co největší přesností. Lze aplikovat napřiklad při přibližném řešení diferenciálních rovnic, nebo při integrování. Používá se i v informatice při reprezentaci funkci na počítači, nebo na kalkulačce.

Definice. Nechť f je reálná funkce, $a \in \mathbf{R}$ a existuje vlastní n-tá derivace f v bodě a. Pak polynom

$$T_n^{f,a}(x) = f(a) + f'(a)(x-a) + \ldots + \frac{1}{n!}f^{(n)}(a)(x-a)^n$$

nazýváme Taylorovým polynomem řadu n funkce f v bodě a.

Poznámky: a) pro stupeň Taylorova polynomu platí st $T_n^{f,a} \leq n$.

b) $(T_n^{f,a})'(x) = T_{n-1}^{f',a}(x)$.

Věta T 5.1 (o nejlepší aproximaci Taylorovým polynomem). Nechť $a \in \mathbf{R}$, $f^{(n)}(a) \in \mathbf{R}$ a P je polynom stupně nejvýše n. Pak

$$\lim_{x \to a} \frac{f(x) - P(x)}{(x - a)^n} = 0 \Leftrightarrow P = T_n^{f,a}.$$

Lemma. Nechť Q je polynom, $a \in \mathbf{R}$, st $Q \leq n$ a $\lim_{x \to a} \frac{Q(x)}{(x-a)^n} = 0$. Pak $Q \equiv 0$.

Věta T 5.2 (Taylor). Nechť funkce f má vlastní (n+1)-ní derivaci v intervalu [a,x], a nechť φ je spojitá funkce v [a,x] a má vlastní derivaci v (a,x), která je v každém bodě tohoto intervalu různá od nuly. Pak existuje $\xi \in (a,x)$ tak, že

$$f(x) - T_n^{f,a}(x) = \frac{1}{n!} \frac{\varphi(x) - \varphi(a)}{\varphi'(\xi)} f^{(n+1)}(\xi) (x - \xi)^n.$$

Důsledek: (Lagrangeův tvar zbytku). Specielně existuje $\xi_1 \in (a, x)$ tak, že

$$f(x) - T_n^{f,a}(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_1)(x-a)^{n+1}.$$

Důsledek: (Cauchyův tvar zbytku). Specielně existuje $\xi_2 \in (a,x)$ tak, že

$$f(x) - T_n^{f,a}(x) = \frac{1}{n!} f^{(n+1)}(\xi_2) (x - \xi_2)^n (x - a).$$

Přiklad: Spočtěte $e^{0,1}$ s chybou menší než 10^{-5} .

Konec 1. přednášky 20.2.

5.2. Symbol o a Taylorovy řady elementárních funkcí

Taylorovy řady elementárních funkcí: Platí

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad \sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}, \quad \cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$
$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n}, \quad \arctan x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1} \text{ a } (1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^{n}.$$

Definice. Nechť f,g jsou funkce a $a \in \mathbf{R}^*$. Řekneme, že funkce f je v bodě a malé o od g, jestliže platí

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

Píšeme f(x) = o(q(x)) pro $x \to a$.

Teoretické přiklady: a) Taylorova věta nám řiká, že $\sin x = x - \frac{x^3}{6} + o(x^3)$.

b) Nechť $k, l \in \mathbf{N}$. Dokažte, že pro $x \to 0$ platí

$$(i) \ x^k o(x^l) = o(x^{k+l}), \quad (ii) \ o(x^k) o(x^l) = o(x^{k+l}), \quad (iii) \ o(x^k + o(x^l)) = o(x^k) \ \text{pro} \ k < l.$$

Přiklady: a) $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

b) Nalezněte $a, b \in \mathbf{R}$ tak, aby limita existovala vlastní limita $\lim_{x\to 0} \frac{\sin(x)e^x - ax - bx^2}{x^3}$ a tuto limitu spočtěte.

c) Nalezněte $T_3^{f,0}(x)$ pro $f(x) = e^{\sin x}$.

5.3 Mocninné řady

Definice. Nechť $x_0 \in \mathbf{R}$ a $a_n \in \mathbf{R}$ pro $n \in \mathbf{N}_0$. Řadu funkcí $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ nazýváme mocninnou řadou s koeficienty a_n o středu x_0 .

Definice. Poloměrem konvergence mocninné řady $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ nazveme

$$R = \sup \left\{ r \in [0, \infty) : \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ konverguje pro všechna } x \in (x_0 - r, x_0 + r) \right\}.$$

Přiklady: a) $\sum_{n=0}^{\infty} x^n (=\frac{1}{1-x})$ je mocninná řada se středem v 0 a poloměrem konvergence R=1. b) $\sum_{n=0}^{\infty} \frac{x^n}{n!} (=e^x)$ je mocninná řada se středem v 0 a poloměrem konvergence $R=\infty$.

Věta L 5.3 (výpočet poloměru konvergence). Nechť $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ je mocninná řada a $R \in [0,\infty]$ její poloměr konvergence. Pak platí

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

Navíc pro všechna x s $|x-x_0| > R$ řada $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ diverguje a pro všechna x s $|x-x_0| < R$ řada konverguje absolutně.

Poznámka: Pokud dokonce existuje $\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}$, pak $R=\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}$.

Přiklady: a) $\sum_{n=0}^{\infty} (-1)^{2n+1} x^{2n+1} = \arctan x$ má poloměr konvergence R=1.

b) $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$ má poloměr konvergence $R = \infty$. Konec 2. přednášky 21.2.

Lemma. Nechť $x \in \mathbf{R}$. Pak $\forall n \in \mathbf{N}, \, \forall \delta > 0$ a $\forall h \in (-\delta, \delta)$ platí

$$\left| (x+h)^n - x^n - nhx^{n-1} \right| \le \frac{h^2}{\delta^2} (|x| + \delta)^n.$$

Věta L 5.4 (o derivaci mocninné řady). Nechť $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Pak $\sum_{n=1}^{\infty} n a_n (x-x_0)^{n-1}$ je také mocninná řada se stejným středem a poloměrem konvergence. Navíc pro $x\in (x_0-R,x_0+R)$ ($\mathbf R$ pro $R=\infty$) platí

$$\left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right)' = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}.$$

Příklad: Pro všechna $x \in (-1,1)$ platí $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$. Platí to i pro $x = \pm 1$?

Věta T 5.5 (Abelova). Nechť $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Nechť navíc $\sum_{n=0}^{\infty} a_n R^n$ konverguje. Pak platí

$$\sum_{n=0}^{\infty} a_n R^n = \lim_{r \to R^-} \sum_{n=0}^{\infty} a_n r^n.$$

Konec 3. přednášky 27.2.

6. Primitivní funkce

Motivace: Obsah, objem, délka křivky, obsah povrchu ...

6.1. Základní vlastnosti

Definice. Nechť je funkce f definována na otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k funkci f, pokud pro každé $x \in I$ existuje F'(x) a F'(x) = f(x). Množinu všech primitivních funkcí k f na I značime $\int f(x) dx$.

Věta L 6.1 (o jednoznačnosti primitivní funkce až na konstantu). Nechť F a G jsou primitivní funkce k f na otevřeném intervalu I. Pak existuje $c \in \mathbf{R}$ tak, že F(x) = G(x) + c pro všechna $x \in I$.

Poznámka: 1. Značíme $\int x \, dx = \frac{x^2}{2} + C$, nebo $\int x \, dx \stackrel{C}{=} \frac{x^2}{2}$.

- 2. Nechť F je primitivní kf. Pak \tilde{F} je spojitá.
- 3. Funkce sgnx nemá na $\mathbf R$ primitivní funkci.
- 4. Funkce $F(x) = x^2 \sin(\frac{1}{x})$ pro $x \neq 0$ a F(0) = 0 je diferencovatelná na \mathbf{R} , ale její derivace není spojitá na \mathbf{R} .

Věta T 6.2 (o vztahu spojitosti a existence primitivní funkce). Nechť I je otevřený interval a f je spojitá funkce na I. Pak f má ma I primitivní funkci.

Věta L 6.3 (linearita primitivní funkce). Nechť f má primitivní funkci F a g má primitivní funkci G na otevřeném intervalu I a nechť $\alpha, \beta \in \mathbf{R}$. Pak $\alpha f + \beta g$ má na I primitivní funkci $\alpha F + \beta G$.

Tabulkové integrály:

$$\int x^n dx \stackrel{C}{=} \frac{x^n}{n+1} \text{ na } \mathbf{R} \text{ pro } n \in \mathbf{N} \text{ a na } (-\infty,0) \text{ a } (0,\infty) \text{ pro } n \in \mathbf{Z} \setminus \{-1\}$$

$$\int \frac{1}{x} dx \stackrel{C}{=} \log |x| \text{ na } (-\infty,0) \text{ a na } (0,\infty), \quad \int e^x dx \stackrel{C}{=} e^x \text{ pro } x \in \mathbf{R}$$

$$\int \sin x dx \stackrel{C}{=} -\cos x \text{ pro } x \in \mathbf{R}, \quad \int \cos x dx \stackrel{C}{=} \sin x \text{ pro } x \in \mathbf{R}$$

$$\int \frac{1}{\cos^2 x} dx \stackrel{C}{=} \tan x \text{ pro } x \in (-\frac{\pi}{2}, \frac{\pi}{2}) + k\pi, \ k \in \mathbf{Z}$$

$$\int \frac{-1}{\sin^2 x} dx \stackrel{C}{=} \cot x \text{ pro } x \in (0,\pi) + k\pi, \ k \in \mathbf{Z}$$

$$\int \frac{1}{1+x^2} dx \stackrel{C}{=} \arctan x \text{ pro } x \in \mathbf{R}$$

$$\int \frac{1}{\sqrt{1-x^2}} dx \stackrel{C}{=} \arctan x \text{ pro } x \in (-1,1), \quad \int \frac{-1}{\sqrt{1-x^2}} dx \stackrel{C}{=} \arccos x \text{ pro } x \in (-1,1)$$

Příklad: Spočtěte $\int |x| dx$ na **R**.

Věta T 6.4 (nutná podmínka existence primitivní funkce). Nechť f má na otevřeném intervalu I primitivní funkci. Pak f má na I Darbouxovu vlastnost, tedy pro každý interval $J \subset I$ je f(J) interval.

Konec 4. přednášky 28.2.

Věta L 6.5 (integrace per partes). Nechť I je otevřený interval a funkce f a g jsou spojité na I. Nechť F je primitivní funkce k f na I a G je primitivní funkce k g na I. Pak platí

$$\int g(x)F(x)dx = G(x)F(x) - \int G(x)f(x)dx \text{ na } I.$$

Příklad: Spočtěte $\int xe^{2x} dx$ na **R**.

Věta L 6.6 (první věta o substituci). Nechť F je primitivní funkce k f na (a,b). Nechť φ je funkce definovaná na (α,β) s hodnotami v intervalu (a,b), která má v každém bodě z (α,β) vlastní derivaci. Pak

$$\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) \ na \ (\alpha, \beta).$$

Příklad: Spočtěte $\int xe^{x^2} dx$ na **R**.

Věta L 6.7 (druhá věta o substituci). Nechť funkce φ má v každém bodě intervalu (α, β) vlastní nenulovou derivaci a $\varphi((\alpha, \beta)) = (a, b)$. Nechť funkce f je definována na intervalu (a, b) a platí

$$\int f(\varphi(t))\varphi'(t)dt = G(t) \ na \ (\alpha, \beta).$$

Pak

$$\int f(x)dx = G(\varphi^{-1}(t)) \ na \ (a,b).$$

Poznámka: Při použití druhé věty o substituci je vždy nutné ověřit, že φ je prostá a na!

Příklady: 1. Spočtěte $\int \sqrt{1-x^2} dx$ na (-1,1).

- 2. Nechť F je primitivní k f. Spočtěte $\int f(ax+b) dx$ pro $a,b \in \mathbf{R}$.
- 3. Spočtěte $\int e^x \cos x \, dx$ na **R**.
- 4. Spočtěte $\int \frac{1}{(1+x^2)^n}$ na \mathbf{R} pro $n \in \mathbf{N}$. Konec 5. přednášky 6.3.

6.2. Integrace racionálních funkcí

Definice. Racionální funkcí rozumíme podíl dvou polynomů P/Q, kde Q není nulový polynom.

Věta (základní věta algebry). Nechť $P(x) = a_n x^n + \ldots + a_1 x + a_0, \ a_j \in \mathbf{R}, \ a_n \neq 0.$ Pak existují čísla $x_1, \ldots, x_n \in \mathbf{C}$ tak, že

$$P(x) = a_n(x - x_1) \cdots (x - x_n), \ x \in \mathbf{R}.$$

Lemma (o komplexních kořenech polynomu) Nechť P je polynom s reálnými koeficienty a $z \in \mathbf{C}$ je kořen P násobnosti $k \in \mathbf{N}$. Pak i \overline{z} je kořen násobnosti k.

Věta T 6.8 (o rozkladu na parciální zlomky). Nechť P a Q jsou polynomy s reálnými koeficienty takové, že

- (i) stupeň P je ostře menší než stupeň Q
- (ii) $Q(x) = a_n(x x_1)^{p_1} \cdots (x x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$
- (iii) $a_n, x_1, \ldots, x_k, \alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l \in \mathbf{R}, \ a_n \neq 0,$
- $(iv) p_1, \ldots, p_k, q_1, \ldots, q_l \in \mathbf{N},$
- (v) žádné dva z mnohočlenů $x-x_1,\ldots,x-x_k,x^2+\alpha_1x+\beta_1,\ldots,x^2+\alpha_lx+\beta_l$ nemají společný kořen.
- (vi) mnohočleny $x^2 + \alpha_1 x + \beta_1, \dots, x^2 + \alpha_l x + \beta_l$ nemají reálný kořen.

 $Pak \ existuji \ jednoznačně \ určená \ čísla \ A^i_j \in \mathbf{R}, \ i \in \{1,\dots,k\}, \ j \in \{1,\dots,p_i\} \ a \ B^i_j, \ C^i_j \in \mathbf{R}, \ i \in \{1,\dots,k\}, \ j \in \{1,\dots,p_i\}$ $\{1,\ldots,l\},\ j\in\{1,\ldots,q_i\}\ taková,\ \check{z}e\ platí$

$$\begin{split} \frac{P(x)}{Q(x)} &= \frac{A_1^1}{x - x_1} + \ldots + \frac{A_{p_1}^1}{(x - x_1)^{p_1}} + \ldots + \frac{A_1^k}{x - x_k} + \ldots + \frac{A_{p_k}^k}{(x - x_k)^{p_k}} \\ &+ \frac{B_1^1 x + C_1^1}{x^2 + \alpha_1 x + \beta_1} + \ldots + \frac{B_{q_1}^1 x + C_{q_1}^1}{(x^2 + \alpha_1 x + \beta_1)^{q_1}} + \ldots \\ &+ \frac{B_1^l x + C_1^l}{x^2 + \alpha_l x + \beta_l} + \ldots + \frac{B_{q_l}^l x + C_{q_l}^l}{(x^2 + \alpha_l x + \beta_l)^{q_l}}. \end{split}$$

Postup při integraci racionální funkce:

1. Vydělit polynomy

$$\int \frac{P(x)}{Q(x)} dx = \int P_1(x) dx + \int \frac{P_2(x)}{Q(x)} dx,$$

kde stupeň $P_2 < \text{stupeň } Q$.

- 2. Rozklad na parciální zlomky podle předchozí věty.
- 3. Integrace parciálních zlomků. Stačí umět integrovat x^n , $\frac{1}{x^n}$, $\frac{2x}{(1+x^2)^k}$, $\frac{1}{(1+x^2)^k}$ a použít lineární substituci.

Příklady: 1. Vydělte polynomy $\frac{x^4+1}{x^2+2x}$. 2. Zintegrujte $\frac{1}{x+1}$ a $\frac{x+1}{x^2+x+1}$.

- 3. Spočtěte primitivní funkci $\int \frac{x^2+1}{(x+1)(x^2+x+1)}$

6.3 Substituce, převádějící na racionální funkce

(1) Nechť $a \in \mathbf{R}$. Při integraci funkcí typu

$$\int R\left(e^{ax}\right) dx$$

používáme substituci

$$t = e^{ax}$$
.

(2) Při integraci funkcí typu

$$\int R\left(\log x\right)\frac{1}{x}\,dx$$

používáme substituci

$$t = \log x$$
.

Příklady: 1. Spočtěte $\int \frac{1}{x(\log^2 x - 5\log x + 6)} dx$.

2. Spočtěte $\int \frac{1}{1+e^{\frac{x}{2}}+e^{\frac{x}{3}}+e^{\frac{x}{6}}} dx$. Konec 6. přednášky 7.3.

6.4. Integrace trigonometrických funkcí

Definice. Racionální funkcí dvou proměnných rozumíme podíl dvou polynomů $R(a,b) = \frac{P(a,b)}{Q(a,b)}$, kde P(a,b) a Q(a,b) jsou polynomy dvou proměnných a Q není identicky nulový.

(3) Při integraci funkcí

$$\int R(\sin x, \cos x) \ dx$$

používáme substituce:

(i) pokud $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, pak užíváme substituci $t = \cos x$

(ii) pokud $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, pak užíváme substituci $t = \sin x$

(iii) pokud $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, pak užíváme substituci $t = \tan x$

(iv) vždy funguje substituce $t = \tan \frac{x}{2}$.

Dobrá rada: Pokud je možné použít (i) nebo (ii), je výpočet většinou nejsnazší. Substituci (iv) je dobré používat jen, když nelze použít (i), (ii) ani (iii).

Poznámka: Po substituci $t = \tan x$ a $t = \tan \frac{x}{2}$ je většinou nutné primitivní funkci po formálním spočtení ještě 'lepit'.

Příklady: 1. Spočtěte $\int \frac{1}{\cos x \sin^2 x} dx$. 2. Spočtěte $\int \frac{1}{1+\sin^2 x} dx$.

6.5. Integrace funkcí obsahujících odmocniny

(4) Nechť $q \in \mathbf{N}$ a $ad \neq bc$. Při integraci funkcí typu

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{q}}\right)$$

používáme substituci

$$t = \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{q}}.$$

(5) (Eulerovy substituce) Nechť $a \neq 0$. Při integraci funkcí typu

$$\int R(x, \sqrt{ax^2 + bx + c}) dx$$

používáme následující substituce:

a) Polynom $ax^2 + bx + x$ má dvojnásobný kořen α a a > 0, pak

$$\sqrt{ax^2 + bx + c} = \sqrt{a}|x - \alpha|$$

a jedná se v podstatě o integraci běžné racionální funkce.

b) Polynom $ax^2 + bx + x$ má dva reálné kořeny α_1 a α_2 . Pak úpravou převedeme na tvar (4) pro odmocninu $\sqrt{a\frac{x-\alpha_1}{x-\alpha_2}}$ nebo $\sqrt{a\frac{\alpha_1-x}{x-\alpha_2}}$. c) Polynom ax^2+bx+x nemá reálný kořen a a>0. Pak použijeme substituci

$$\sqrt{ax^2 + bx + c} = \sqrt{ax} + t.$$

Poznámka: Substituce (3) (iii), (iv) a (5) c) jsou substituce 2. druhu a je vždy potřeba ověřit, že vnitřní funkce je monotónní a na.

Příklady: 1. Spočtěte $\int \frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}} \ dx$. 2. Spočtěte $\int \frac{1}{x^2\sqrt{x^2+1}} \ dx$. Konec 7. přednášky 13.3.

7. Určitý integrál

7.1. Riemannův integrál

Definice. Konečnou posloupnost $\{x_j\}_{j=0}^n$ nazýváme dělením intervalu [a,b], jestliže $a=x_0 < x_1 < x_1 < x_2 < x_2 < x_2 < x_3 < x_3 < x_4 < x_4 < x_4 < x_4 < x_5 < x_4 < x_5 < x_5$ $\ldots < x_{n-1} < x_n = b$. Řekneme, že dělení D' intervalu [a,b] zjemňuje dělení D intervalu [a,b], jestliže každý bod dělení D je i bodem dělení D'.

Definice. Nechť f je omezená funkce definovaná na intervalu [a,b] a D je dělení [a,b]. Definujme horní a dolní součty

$$S(f,D) = \sum_{j=1}^{n} \sup\{f(x); \ x \in [x_{j-1}, x_j]\}(x_j - x_{j-1}),$$

$$s(f, D) = \sum_{j=1}^{n} \inf\{f(x); \ x \in [x_{j-1}, x_j]\}(x_j - x_{j-1}),$$

horní Riemannův integrál

$$(R)$$
 $\int_a^b f(x) dx = \inf \{ S(f, D); D \text{ je dělení } [a, b] \}$

a dolní Riemannův integrál

$$(R) {\int_a^b} f(x) \; dx = \sup \Bigl\{ s(f,D); \; D \text{ je dělení } [a,b] \Bigr\}.$$

Pokud $(R)\overline{\int_a^b}f(x)\;dx=(R)\int_a^bf(x)\;dx,$ pak řekneme, že f je Riemannovsky integrovatelná a klademe

$$(R) \int_{a}^{b} f(x) \ dx = (R) \int_{a}^{b} f(x) \ dx.$$

Množinu funkcí majících Riemannův integrál značíme R([a, b]).

Poznámka: Omezenost f je nutně potřeba.

Přiklady: 1. $(R) \int_0^1 1 \, dx = 1$.

2. Nechť D je Dirichletova funkce, pak $(R) \overline{\int_0^1} D(x) dx = 1$ a $(R) \int_0^1 D(x) dx = 0$.

Věta L 7.1 (o zjemnění dělení). Nechť f je omezená funkce na [a,b], D a D' jsou dělení intervalu [a,b] a D' zjemněuje D. Pak

$$s(f, D) < s(f, D') < S(f, D') < S(f, D).$$

Věta L 7.2 (o dvou děleních). Nechť f je omezená funkce na [a,b] a D_1 , D_2 jsou dělení intervalu [a,b]. Pak

$$s(f, D_1) \le S(f, D_2).$$

Důsledek: Nechť f je omezená na [a,b], D_1 a D_2 jsou dělení [a,b],

$$m := \inf\{f(x) : x \in [a,b]\}\ a \ M := \sup\{f(x) : x \in [a,b]\}\ .$$

Pak

$$m(b-a) \le s(f, D_1) \le (R) \int_a^b f(x) \, dx \le (R) \overline{\int_a^b} f(x) \, dx \le S(f, D_2) \le M(b-a).$$

Definice. Nechť $D = \{x_j\}_{j=0}^n$ je dělení [a,b]. Číslo $\nu(D) = \max_{j=1,...,n} |x_j - x_{j-1}|$ nazveme normou dělení D.

Konec 8. přednášky 14.3.

Věta T 7.3 (aproximace R integrálu pomocí součtů). Nechť f je omezená funkce na [a,b] a $\{D_n\}_{n=1}^{\infty}$ je posloupnost dělení [a,b] taková, že $\lim_{n\to\infty} \nu(D_n) = 0$. Potom

$$(R)\overline{\int_a^b} f(x) dx = \inf_{n \in \mathbf{N}} S(f, D_n) \ a \ (R) \int_a^b f(x) dx = \sup_{n \in \mathbf{N}} s(f, D_n).$$

Přiklad: Spočtěte $(R) \int_0^1 x^2 dx$.

Věta L 7.4 (kritérium existence R integrálu). Nechť f je omezená funkce na [a, b]. Pak

$$f \in R([a,b]) \Leftrightarrow \forall \varepsilon > 0 \exists d \check{e} len i D [a,b] : S(f,D) - s(f,D) < \varepsilon.$$

Definice. Řekneme, že funkce f je stejnoměrně spojitá na intervalu I, pokud

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in I : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Poznámky: 1. Spojitost a stejnoměrná spojitost na intervalu *I* se liší pořadím kvantifikátorů:

Spojitost:
$$\forall x \in I \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in I : \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon;$$

Stejnoměrná spojitost: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ \forall y \in I : \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$.

- 2. Nechť f je stejnoměrně spojitá na I, pak f je spojitá na I.
- 3. Funkce $f(x) = \frac{1}{x}$ je spojitá na (0,1), ale není tam stejnoměrně spojitá.

Věta T 7.5 (o vztahu spojitosti a stejnoměrné spojitosti). Nechť f je spojitá na omezeném uzavřeném intervalu [a,b], pak f je stejnoměrně spojitá na [a,b].

Konec 9. přednášky 20.3.

Věta L 7.6 (o vztahu spojitosti a Riemannovské integrovatelnosti). Nechť f je spojitá na [a,b], pak $f \in R([a,b])$.

Věta L 7.7 (vztah monotonie a Riemannovské integrovatelnosti). Nechť f je (omezená) monotónní funkce na intervalu [a,b]. Pak $f \in R([a,b])$.

Věta T 7.8 (vlastnosti R integrálu).

a) Linearita: $f, g \in R([a, b]), \alpha \in \mathbf{R} \Rightarrow f + g \in R([a, b]), \alpha f \in R([a, b])$

$$(R)\int_a^b f + g = (R)\int_a^b f + (R)\int_a^b g \qquad a \qquad (R)\int_a^b \alpha f = \alpha(R)\int_a^b f.$$

- b) Monotonie: $f,g \in R([a,b]), f \leq g$, pak $(R) \int_a^b f \leq (R) \int_a^b g$. c) Aditivita vzhledem k intervalům: Nechť a < b < c. Pak

$$f \in R([a,c]) \Leftrightarrow f \in R([a,b]) \ a \ f \in R([b,c]),$$

$$(R) \int_{a}^{c} f = (R) \int_{a}^{b} f + (R) \int_{b}^{c} f.$$

Úmluva: 1. Nechť b < a, pak definujeme $\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$

2. Dále definujeme $\int_a^a f(x) dx = 0$.

Konec 10. přednášky 21.3.

Věta T 7.9 (o derivaci integrálu podle horní meze). Nechť J je neprázdný interval a $f \in R([\alpha, \beta])$ pro každé $\alpha, \beta \in J$. Nechť $c \in J$ je libovolný pevný bod. Definujme na J funkci

$$F(x) = (R) \int_{c}^{x} f(t) dt.$$

Pak platí

- (i) F je spojitá na J,
- (ii) Jestliže je f spojitá v bodě $x_0 \in J$, pak $F'(x_0) = f(x_0)$.

Důsledek:

- (i) Je-li f spojitá na (a, b), pak má na (a, b) primitivní funkci (**Věta T 6.2**).
- (ii) Nechť f je spojitá na intervalu $[\alpha, \beta], \alpha, \beta \in \mathbf{R}$. Pak

$$(R) \int_{\alpha}^{\beta} f(t) dt = \lim_{x \to \beta^{-}} F(x) - \lim_{x \to \alpha^{+}} F(x),$$

kde F je primitivní funkce k f na (α, β) .

7.2. Newtonův integrál

Definice. Řekneme, že funkce f má na intervalu (a,b) Newtonův integrál, jestliže má na (a,b) primitivní funkci F a $\lim_{x\to a+} F(x)$ a $\lim_{x\to b-} F(x)$ jsou vlastní. Hodnotou Newtonova integrálu rozumíme číslo

$$(N) \int_{a}^{b} f(t) dt = \lim_{x \to b-} F(x) - \lim_{x \to a+} F(x).$$

Množinu funkcí majících Newtonův integrál značíme N(a,b)

Poznámky:1. Jestliže f je spojitá na [a,b], pak existují oba integrály a rovnají se $(R) \int_a^b f(x) \ dx = 0$ $(N) \int_a^b f(x) dx.$

- 2. Existuje $(N) \int_0^1 \frac{1}{\sqrt{x}} dx$, ale neexistuje Riemannův integrál, protože f není omezená.
- 3. Existuje (R) $\int_{-1}^{1} \operatorname{sgn}(x) dx$, ale neexistuje Newtonův integrál, protože $\operatorname{sgn} x$ nemá primitivní funkci.

Věta L 7.10 (per partes pro určitý integrál). Nechť f, f', g, g' jsou spojité na intervalu [a, b]. Potom

$$\int_{a}^{b} f(x)g'(x) \ dx = [fg]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \ dx,$$

 $kde\ [fg]_a^b = f(b)g(b) - f(a)g(a)\ a\ obecne \\ ji = \lim_{x \to b+} f(x)g(x) - \lim_{x \to a-} f(x)g(x) - \lim_{x \to a-}$

Přiklad: $\int_0^1 \log x \, dx$ *Konec 11. přednášky 27.3.*

Věta BD 7.11 (o substituci pro určitý integrál). (i) Nechť f je spojitá na intervalu [a,b] a φ : $[\alpha, \beta] \rightarrow [a, b]$ je funkce, která má na intervalu $[\alpha, \beta]$ spojitou první derivaci. Pak

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

 $(ii) \ \textit{Necht f je spojitá na intervalu} \ [a,b] \ \textit{a} \ \varphi : [\alpha,\beta] \ \rightarrow \ [a,b] \ \textit{je na a má na} \ [\alpha,\beta] \ \textit{vlastn\'{i} spojitou}$ nenulovou derivaci. Pak

$$\int_{a}^{b} f(x) \ dx = [\Phi(\varphi^{-1}(t))]_{a}^{b} = [\Phi(t)]_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t))\varphi'(t) \ dt,$$

 $kde \Phi je primitivní funkce k <math>f \circ \varphi \cdot \varphi'$.

Přiklady: 1. $\int_0^{\frac{\pi}{2}} \cos^3 x \sin x \, dx.$ 2. obsah kruhu: $\int_{-r}^{r} \sqrt{r^2 - x^2} \, dx.$

Pozorování: Nechť f je spojitá funkce na (a, b) a a < c < b. Pak

(i)
$$f \in N(a,c)$$
 a $f \in N(c,b) \Rightarrow f \in N(a,b)$.

(ii)
$$f \in N(a,b) \Rightarrow f \in N(a,c)$$
.

7.3. Konvergence integrálu

Cílem této kapitoly je určit, kdy je integrál $(N) \int_a^b f(x) dx$ konečný. V tomto případě řikáme, že $(N) \int_a^b f(x) dx$ konverguje.

Připomeň: Je-li $f:[a,b] \to \mathbf{R}$ spojitá funkce na omezeném uzavřeném intervalu, pak $(N) \int_a^b f(x) \ dx$

Příklady: 1. $\int_1^\infty \frac{1}{x^\alpha} dx$ konverguje $\Leftrightarrow \alpha > 1$ 2. $\int_2^\infty \frac{1}{x \log^\alpha(x)} dx$ konverguje $\Leftrightarrow \alpha > 1$

3. $\int_0^1 \frac{1}{x^{\alpha}} \frac{dx}{dx}$ konverguje $\Leftrightarrow \alpha < 1$ 4. $\int_0^{\frac{1}{2}} \frac{1}{x |\log x|^{\alpha}} dx$ konverguje $\Leftrightarrow \alpha > 1$

Věta L 7.12 (srovnávací kritérium pro konvergenci integrálu). Nechť $a \in \mathbf{R}, b \in \mathbf{R}^*$ a a < b. Nechť jsou funkce $f,g:[a,b)\to \mathbf{R}$ spojité na [a,b) a necht $0\leq f(x)\leq g(x)$ pro všechna $x\in[a,b)$. Potom

$$g \in N(a,b) \Rightarrow f \in N(a,b).$$

Příklad: $\int_0^\infty \frac{1}{1+x^4} dx$ konverguje

 ${f Vreve{e}ta}$ L 7.13 (limitní srovnávací kritérium pro konvergenci integrálu). Nechť $a\in{f R},\ b\in{f R}^*$ a a < b. Nechť jsou funkce $f, g : [a,b) \to \mathbf{R}$ spojité a nezáporné funkce na [a,b). Jestliže existuje $\lim_{x\to b-}\frac{f(x)}{g(x)}\in(0,\infty),\ pak$

$$g \in N(a,b) \Leftrightarrow f \in N(a,b).$$

Příklad: $\int_1^\infty \frac{\sqrt{x}+\sqrt{x+1}}{x^3+x^2} \ dx$ konverguje

Konec 12. přednášky 28.3.

Lemma (odhad Newtonova integrálu součinu dvou funkcí) Nechť $a,b \in \mathbf{R}$ a a < b. Nechť f je spojitá funkce na [a,b] a $g:[a,b]\to \mathbf{R}$ je nerostoucí, nezáporná a spojitá. Potom

$$g(a) \inf_{x \in [a,b]} \int_a^x f(t) \ dt \le \int_a^b f(t)g(t) \ dt \le g(a) \sup_{x \in [a,b]} \int_a^x f(t) \ dt.$$

Speciálně platí

$$\Bigl| \int_a^b f(t)g(t) \ dt \Bigr| \leq g(a) \sup_{x \in [a,b]} \Bigl| \int_a^x f(t) \ dt \Bigr|.$$

Věta T 7.14 (Abelovo-Dirichletovo kritérium konvergence integrálu). Nechť $a \in \mathbf{R}, b \in \mathbf{R}^*$ a a < b. Necht $f:[a,b)\to \mathbf{R}$ je spojitá a F je primitivní funkce k funkci f na (a,b). Dále necht $g:[a,b)\to \mathbf{R}$ je na [a,b) monotónní a spojitá. Pak platí

(A) Jestliže $f \in N(a,b)$ a g je omezená, pak $fg \in N(a,b)$.

(D) Je-li F omezená na
$$(a,b)$$
 a $\lim_{x\to b^-} g(x) = 0$, pak $fg \in N(a,b)$.

Příklad: $\int_1^\infty \frac{\sin x}{x} \, dx$ konverguje, ale nekonverguje absolutně. Konec 13. přednášky 3.4.

Příklady: 1. Stirlingova formule

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} (\frac{n}{e})^n} = 1.$$

2. Wallisova formule

$$\sqrt{\frac{\pi}{2}} = \lim_{m \to \infty} \frac{(m!)^2 2^{2m}}{(2m)! \sqrt{2m}}.$$

Věta L 7.15 (věta o střední hodnotě integrálního počtu). Nechť $a,b \in \mathbf{R}$ a a < b. Nechť f je spojitá funkce na [a,b], g je nezáporná na $[a,b], g \in N(a,b)$ a $fg \in N(a,b)$. Potom existuje $c \in [a,b]$ takové, že

$$\int_a^b f(x)g(x) \ dx = f(c) \int_a^b g(x) \ dx.$$

7.4. Aplikace určitého integrálu

Definice. Nechť $f:[a,b]\to \mathbf{R}$ je nezáporná spojitá funkce, pak *obsahem plochy* pod grafem funkce f nazveme

Obsah
$$(f, [a, b]) = (R) \int_{a}^{b} f(x) dx = (N) \int_{a}^{b} f(x) dx.$$

Konec 14. přednášky 4.4.

Definice. Nechť $f:[a,b]\to \mathbf{R}$ je spojitá funkce a nechť $D=\{x_j\}_{j=0}^n$ je dělení intervalu [a,b]. Označme

$$L(f,D) = \sum_{j=1}^{n} \sqrt{(x_j - x_{j-1})^2 + (f(x_j) - f(x_{j-1}))^2}.$$

 $D\acute{e}lkou\ k\check{r}ivky\ f$ nazveme

$$L(f([a,b])) = \sup\{L(f,D); D \text{ je dělení } [a,b]\}.$$

Věta T 7.16 (délka křivky). Nechť f má na intervalu [a, b] spojitou první derivaci. Pak

$$L(f([a,b])) = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

Věta BD 7.17 (délka křivky v \mathbf{R}^n). Nechť $\varphi : [a, b] \to \mathbf{R}^n$ je spojitá a má spojitou první derivaci. Pak

$$L(\varphi([a,b])) = \int_{a}^{b} \sqrt{(\varphi'_{1}(x))^{2} + (\varphi'_{2}(x))^{2} + \dots + (\varphi'_{n}(x))^{2}} dx$$

Příklad: Spočtete délku kružnice.

Věta BD 7.18 (objem a povrch rotačního tělesa - bez důkazu). Nechť $f:[a,b]\to \mathbf{R}$ je spojitá a nezáporná. Označme

$$T = \left\{ [x, y, z] \in \mathbf{R}^3: \ x \in [a, b] \ a \ \sqrt{y^2 + z^2} \le f(x) \right\}.$$

Pak

Objem
$$(T) = \pi \int_a^b (f(x))^2 dx$$
.

Je-li navíc f' spojitá na [a,b], pak

Obsah povrchu
$$(T) = 2\pi \int_a^b f(x) \sqrt{1 + (f'(x))^2} dx$$
.

Příklad: Spočtete objem a obsah povrchu koule.

Poznámka: Stejná křivka může mít různé parametrizace. Je vhodné ukázat, že délka křivky nezávisí na parametrizaci.

Konec 15. přednášky 10.4.

Věta L 7.19 (integrální kritérium konvergence řad). Nechť f je nezáporná, nerostoucí a spojitá na intervalu $[n_0 - 1, \infty)$ pro nějaké $n_0 \in \mathbf{N}$. Nechť pro posloupnost a_n platí $a_n = f(n)$ pro všechna $n \geq n_0$. Pak

$$(N)$$
 $\int_{n_0}^{\infty} f(x) dx < \infty \Leftrightarrow \sum_{n=1}^{\infty} a_n \text{ konverguje.}$

Příklady: 1. $\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx$ konverguje $\Leftrightarrow \alpha > 1$ 2. $\int_{2}^{\infty} \frac{1}{x \log^{\alpha}(x)} dx$ konverguje $\Leftrightarrow \alpha > 1$

8. Funkce více proměnných

8.1. Úvodní definice a spojitost

Definice. Nechť $M \subset \mathbf{R}^n$. Funkcí více reálných proměnných rozumíme zobrazení $f: M \to \mathbf{R}$. Vektorovou funkcí více reálných proměnných rozumíme zobrazení $f: M \to \mathbf{R}^m$, kde $m \in \mathbf{N}$.

Definice. $Vzdálenost dvou bodů <math>x=[x_1,x_2,\ldots,x_n],\ y=[y_1,y_2,\ldots,y_n]\in\mathbf{R}^n$ je

$$|x - y| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Nechť $c \in \mathbb{R}^n$ a r > 0. Otevřená koule se středem v c o poloměru r je množina

$$B(c,r) := \{ x \in \mathbf{R}^n : |x - c| < r \}.$$

Prstencová okolí c je definováno jako $P(c,r) := B(c,r) \setminus \{c\}.$

Příklad: Trojúhelníková nerovnost. Pro libovolné $x,y,z\in\mathbf{R}^n$ platí

$$|x-z| \le |x-y| + |y-z|.$$

Definice. Řekneme, že množina $G \subset \mathbf{R}^n$ je otevřená, pokud pro každé $x \in G$ existuje r > 0 tak, že $B(x,r) \subset G$.

Definice. Nechť $f: G \to \mathbf{R}$, kde $G \subset \mathbf{R}^n$ je otevřená. Řekneme, že f má v bodě $a \in G$ limitu rovnou $A \in \mathbf{R}^*$, jestliže platí

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in P(a, \delta) : f(x) \in B(A, \varepsilon).$$

Značíme $\lim_{x\to a} f(x) = A$.

Řekneme, že funkce f je bodě $a \in G$ spojitá, jestliže $\lim_{x \to a} f(x) = f(a)$.

Limitu (a spojitost) vektorové funkce $f = [f_1, f_2, \dots, f_m] : G \to \mathbf{R}^m$ definujeme po složkách. Tedy

$$\lim_{x \to a} f(x) = [\lim_{x \to a} f_1(x), \lim_{x \to a} f_2(x), \dots, \lim_{x \to a} f_m(x)].$$

Příklad: Pro funkci f(x,y) = x platí v bodě $a = [a_1, a_2]$, že $\lim_{[x,y]\to a} f(x,y) = a_1$. Tedy f je spojitá na \mathbb{R}^2 .

Zřejmě platí aritmetika limit, věta o dvou policajtech i věta o spojitosti složené funkce, a proto je budeme používat na cvičení.

Příklad: Funkce

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{pro } [x,y] \neq [0,0] \\ 0 & \text{pro } [x,y] = [0,0] \end{cases}$$

je spojitá na \mathbb{R}^2 .

Definice. Mějme posloupnost bodů $x_j \in \mathbf{R}^n$ pro $j \in \mathbf{N}$. Řekneme, že *limita posloupnosti* x_j je rovna $a \in \mathbf{R}^n$, pokud

$$\forall \varepsilon > 0 \ \exists j_0 \in \mathbf{N} \ \forall j \ge j_0 : \ |x_j - a| < \varepsilon.$$

Poznámka: Konvergence posloupnosti bodů $x_j = [(x_j)_1, (x_j)_2, \dots, (x_j)_n] \in \mathbf{R}^n$ pro $j \in \mathbf{N}$ je ekvivalentní konvergenci po složkách, tedy

$$\lim_{j \to \infty} x_j = \left[\lim_{j \to \infty} (x_j)_1, \lim_{j \to \infty} (x_j)_2, \dots, \lim_{j \to \infty} (x_j)_n \right].$$

Příklad: $\lim_{j\to\infty} \left[\frac{1}{j}, \frac{3j^2+1}{j^2+j}\right] = [0, 3].$

Věta T 8.1 (Heine). Nechť $G \subset \mathbf{R}^n$, $a \in G$, $A \in \mathbf{R}^*$ a $f : G \to \mathbf{R}$. Pak je ekvivalentní:

(i)
$$\lim_{x \to a} f(x) = A$$
,

(ii) pro každou posloupnost $\{x_j\}_{j=1}^{\infty}$ splňující

$$x_j \in G \setminus \{a\}$$
 $a \lim_{j \to \infty} x_j = a \ plati \lim_{j \to \infty} f(x_j) = A.$

Příklad: Funkce

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{pro } [x,y] \neq [0,0] \\ 0 & \text{pro } [x,y] = [0,0] \end{cases}$$

není spojitá v bodě [0,0].

Konec 16. přednášky 11.4.

8.2. Parciální derivace a totální diferenciál

Definice. Nechť $G \subset \mathbf{R}^n$ je otevřená, $i \in \{1, \dots, n\}, f : G \to \mathbf{R}$ a $x \in G$. Parciální derivací funkce $f\ v\ bodě\ x\ podle\ i\text{--}t\'e\ proměnn\'e\ nazveme$

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x_1, \dots, x_i + t, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{t} = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t},$$

Příklad: Spočtěte parciální derivace funce $f(x,y) = xe^{x^2+y^2}$ na \mathbf{R}^2 .

Definice. Nechť $M \subset \mathbf{R}^n$, $f: M \to \mathbf{R}$ a $x_0 \in M$. Řekneme, že f nabýva v bodě x_0 svého minima(lokálního minima) vzhledem k M, pokud

pro všechna
$$x \in M$$
 platí $f(x) \ge f(x_0)$

(existuje $\delta > 0$, že pro všechna $x \in M \cap B(x_0, \delta)$ platí $f(x) > f(x_0)$).

Analogicky definujeme maximum (lokální maximum).

Věta L 8.2 (nutná podmínka existence extrému). Nechť $G \subset \mathbf{R}^n$ je otevřená, $i \in \{1, \dots, n\}$, $a \in G$ a $f: G \to \mathbf{R}$. Má-li f v bodě a lokální minimum (maximum) a existuje-li $\frac{\partial f}{\partial x_i}(a)$, pak $\frac{\partial f}{\partial x_i}(a) = 0$.

Příklady: 1. Nalezněte maximum a minimum funkce $f(x,y)=x^2-xy+y^2$ na množině M:= $\{[x,y] \in \mathbf{R}^2: x^2 + y^2 \le 1\}.$

2. Metoda nejmenších čtverců (Lineární regrese): Mějme zadány body $[x_i, y_i] \in \mathbf{R}^2, i = 1, \dots, n$. Chceme nalézt $a, b \in \mathbf{R}$, abychom měli co nejmenší

$$\sum_{i=1}^{n} (y_i - (ax_i + b))^2.$$

Definice. Nechť $G \subset \mathbf{R}^n$ je otevřená, $f: G \to \mathbf{R}, \ x \in G$ a $0 \neq v \in \mathbf{R}^n$. Derivací funkce $f \ v$ bodě $x \in G$ ve směru v nazveme

$$\frac{\partial f}{\partial v}(x) = \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t},$$

pokud limita existuje.

Příklady: 1. Z existence $\frac{\partial f}{\partial x_i}(x)$ neplyne existence $\frac{\partial f}{\partial v}(x)$. Stačí mít f(x,y)=1 na osách a 0 jinde. 2. Z existence všech $\frac{\partial f}{\partial x_i}(x)$ neplyne spojitost v x. Položme f=1 na $\{[x,y]: x\neq 0, y=x^2\}$ a 0 jinde.

Definice. Nechť $G \subset \mathbf{R}^n$ je otevřená, $f: G \to \mathbf{R}$ a $a \in G$. Řekneme, že lineární zobrazení $L: \mathbf{R}^n \to \mathbf{R}$ R je totální diferenciál funkce f v bodě a, jestliže

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - L(h)}{|h|} = 0.$$

Značíme Df(a) a hodnotu v bodě $h \in \mathbf{R}^n$ značíme Df(a)(h).

Poznámka: 1. Lineární zobrazení $L: \mathbf{R}^n \to \mathbf{R}$ lze reprezentovat jako $L(h) = A_1h_1 + A_2h_2 + \ldots +$ $A_n h_n$.

- 2. Ekvivalentně lze definovat jako $\lim_{x\to a} \frac{f(x)-f(a)-L(x-a)}{|x-a|} = 0$. 3. Geometricky význam je, že lineární funkce f(a)+L(x-a) je velmi blízko původní funkce $f(x)\sim$ f(a) + L(x-a).

Konec 17. přednášky 17.4.

Věta L 8.3 (o tvaru totálního diferenciálu). Nechť $G \subset \mathbf{R}^n$ je otevřená, $a \in G$ a $f: G \to \mathbf{R}$. Nechť existuje totální diferenciál f v bodě a, pak existují parciální derivace $\frac{\partial f}{\partial x_i}(a)$ a pro všechna $h \in \mathbf{R}^n$ plati

$$Df(a)(h) = \frac{\partial f}{\partial x_1}(a)h_1 + \ldots + \frac{\partial f}{\partial x_n}(a)h_n.$$

Navíc pro $0 \neq v \in \mathbf{R}^n$ platí

$$\frac{\partial f}{\partial v}(a) = Df(a)(v).$$

Příklady: 1. Funkce

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{pro } [x,y] \neq [0,0] \\ 0 & \text{pro } [x,y] = [0,0] \end{cases}$$

nemá totální diferenciál v [0,0]

2. Funkce

$$g(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{pro } [x,y] \neq [0,0] \\ 0 & \text{pro } [x,y] = [0,0] \end{cases}$$

má totální diferenciál v [0,0].

Definice. Nechť $G \subset \mathbf{R}^n$ je otevřená, $f: G \to \mathbf{R}$ a $a \in G$. Nechť f má v bodě a totální diferenciál. Pak definujeme gradient funkce f v bodě a jako vektor

$$\nabla f(a) = \left[\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_i}(a), \dots, \frac{\partial f}{\partial x_i}(a) \right].$$

Můžeme tedy psát $Df(a)(h) = \langle \nabla f(a), h \rangle$.

Věta L 8.4 (o vztahu spojitosti a totálního diferenciálu). Nechť $G \subset \mathbf{R}^n$ je otevřená, $a \in G$ a $f: G \to \mathbf{R}$. Nechť existuje totální diferenciál f v bodě a, pak je f v bodě a spojitá.

Věta T 8.5 (postačující podmínka pro existenci totálního diferenciálu). Nechť $G \subset \mathbf{R}^n$ je otevřená, $a \in G$ a $f: G \to \mathbf{R}$. Nechť f má v bodě $a \in \mathbf{R}^n$ spojité parciální derivace, tedy funkce

$$x \to \frac{\partial f}{\partial x_i}(x), \ j = 1, \dots, n$$

jsou spojité v a. Pak Df(a) existuje.

Poznámka: Nechť existuje totální diferenciál f v a. Pak $|Df(a)(h)| = |\langle \nabla f(a), h \rangle| \le |\nabla f(a)| \cdot |h|$.

Věta L 8.6 (o aritmetice totálního diferenciálu). Nechť $a \in \mathbf{R}^n$, $f,g: \mathbf{R}^n \to \mathbf{R}$ a Df(a), Dg(a) existují. Pak existují i D(f+g)(a), D(cf)(a) ($c \in \mathbf{R}$), D(fg)(a), a pokud $g(a) \neq 0$ pak i D(f/g)(a) a platí

$$(i) D(f+g)(a) = Df(a) + Dg(a),$$

$$(ii) D(cf)(a) = cD(f)(a),$$

$$(iii)\ D(fg)(a) = f(a)Dg(a) + Df(a)g(a),$$

$$(iv)\ D(f/g)(a) = \frac{Df(a)g(a) - f(a)Dg(a)}{g(a)^2}$$

Konec 18. přednášky 18.4.

Věta L 8.7 (o přírůstku funkce). Nechť $G \subset \mathbf{R}^n$ je otevřená a $f: G \to \mathbf{R}$ má totální diferenciál v každém bodě G. Nechť $a,b \in G$ a nechť úsečka L spojující a,b je obsažena v G, tj. $L = \{(1-t)a+tb: t \in [0,1]\} \subset G$. Pak existuje $\xi \in L$ takové, že

$$f(b) - f(a) = Df(\xi)(b - a).$$

Definice. Nechť $G \subset \mathbf{R}^n$ je otevřená, $f: G \to \mathbf{R}^k$ a $a \in G$. Řekneme, že lineární zobrazení $L: \mathbf{R}^n \to \mathbf{R}^k$ je derivací funkce f v bodě a, jestliže

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - L(h)|}{|h|} = 0.$$

Značíme Df(a) a hodnotu v bodě $h \in \mathbf{R}^n$ značíme Df(a)(h).

Poznámka: Nechť $L: \mathbf{R}^n \to \mathbf{R}^k$ je lineární zobrazení. Potom existuje právě jedna $n \times k$ matice A tak, že L(h) = Ah.

Věta L 8.8 (reprezentace derivace maticí). Nechť $G \subset \mathbf{R}^n$ je otevřená a $f = [f_1, f_2, \dots, f_k] : G \to \mathbf{R}^k$ má derivaci v bodě $a \in G$. Pak Df(a) je reprezentováno maticí

$$\begin{pmatrix} \frac{\partial f_1(a)}{\partial x_1} & \cdots & \frac{\partial f_1(a)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k(a)}{\partial x_1} & \cdots & \frac{\partial f_k(a)}{\partial x_n} \end{pmatrix}.$$

Poznámky: 1. Matice Df(a) se nazývá Jakobiho matice. Pokud k = n tak se determinant této matice nazývá Jakobián a značí se $J_f(a)$.

- 2. Derivace Df(a) existuje právě tehdy, když existují totální diferenciály $Df_1(a), \ldots, Df_k(a)$.
- 3. Z 2. bodu a Věty 8.5. dostáváme, že jsou-li všechny parciální derivace f spojité v bodě a, pak existuje derivace Df(a).

Poznámka: Nechť $L=Ah: \mathbf{R}^n \to \mathbf{R}^k$ je lineární zobrazení reprezentované maticí A. Pak existuje C>0 tak, že

$$|Ah| \leq C|h|$$
.

Lemma Nechť $f: \mathbf{R}^n \to \mathbf{R}^k$ má derivaci v bodě $a \in \mathbf{R}^n$. Pak existuje $\delta_0 > 0$ a $C \in \mathbf{R}$ tak, že |f(a+h) - f(a)| < C|h| pro všechna $h \in B(0, \delta_0)$.

Věta T 8.9 (derivace složeného zobrazení). Nechť $f: \mathbf{R}^n \to \mathbf{R}^k, \ g: \mathbf{R}^k \to \mathbf{R}^s, \ f \ má \ derivaci \ v$ $a \in \mathbf{R}^n$ a g má derivaci v $b = f(a) \in \mathbf{R}^k$. Pak existuje derivace $Dg \circ f(a)$ a platí

$$Dg \circ f(a) = Dg(b) \cdot Df(a) = Dg(f(a)) \cdot Df(a).$$

Příklad: Nechť $F = (F_1, F_2) : \mathbf{R}^2 \to \mathbf{R}^2$ je zobrazení definováné

$$F(x,y) = \begin{cases} [(x^2 + y^2)(e^x - 1), \frac{x^2}{x^2 + y^2}] & \text{pro } [x,y] \neq [0,0], \\ [0,0] & \text{pro } [x,y] \neq [0,0], \end{cases}$$

a $G: \mathbf{R}^2 \to \mathbf{R}^3$ je zobrazení definované $G(s,t) = [st, s^2, t^2]$. Spočtěte $D(G \circ F)(1,0)$. Konec 19. přednášky 24.4.

Věta L 8.10 (řetízkové pravidlo). Nechť $f: \mathbf{R}^n \to \mathbf{R}^k$ má derivaci $v \ a \in \mathbf{R}^n$ a $g: \mathbf{R}^k \to \mathbf{R}$ má totální diferenciál v bodě $b = f(a) = [f_1(a), \dots, f_k(a)]$. Pak funkce

$$h(x) = g(f_1(x), \dots, f_k(x))$$

má totální diferenciál v a a platí

$$\frac{\partial h}{\partial x_i}(a) = \sum_{j=1}^k \frac{\partial g}{\partial y_j}(b) \frac{\partial f_j}{\partial x_i}(a).$$

9. Metrické prostory I

9.1. Základní pojmy

Definice. Metrickým prostorem budeme rozumět dvojici (P, ϱ) , kde P je množina bodů a $\varrho: P \times P \to P$ R splňuje

- (i) $\forall x, y \in P : \varrho(x, y) = 0 \Leftrightarrow x = y$,
- (ii) $\forall x, y \in P : \rho(x, y) = \rho(y, x)$, (symetrie)
- (iii) $\forall x, y, z \in P : \varrho(x, z) \leq \varrho(x, y) + \varrho(y, z)$. (\triangle -nerovnost)

Funkci ρ nazýváme metrika.

Příklady:

- 1) Euklidovská metrika na \mathbf{R}^n . Pro $x,y \in \mathbf{R}^n$ definujeme $\varrho_e(x,y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$. 2) Maximová metrika na \mathbf{R}^n . Definujeme $\varrho_\infty(x,y) = \max_{i=1...n} |x_i y_i|$.
- 3) Součtová metrika na \mathbf{R}^n . Definujeme $\varrho_1(x,y) = \sum_{i=1}^n |x_i y_i|$.
- 4) Diskrétní metrika na libovolné množině P je definována jako $\varrho(x,x)=0$ pro všechna $x\in P$ a $\varrho(x,y)=1$ pro všechna $x\neq y$.
- 5) Supremová metrika na C([0,1]) je definována $\varrho(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$.
- 6) Metrika na $L^2([0,2\pi])=\{f:[0,2\pi]\to\mathbf{R}:\ \int_0^{2\pi}|f(x)|^2\ dx<\infty\}$ je definována

$$\varrho(f,g) = \sqrt{\int_0^{2\pi} |f(x) - g(x)|^2 dx}.$$

7) Definujme prostor obrázků $Obr = \{x \in \mathbf{R}^{1280 \times 1024} : x_i \in [0,1] \}$ s metrikou $|x-y| = \varrho_e(x,y)$.

Definice. Nechť (P, ρ) je metrický prostor, $x \in P$, r > 0. Otevřenou koulí se středem x a poloměrem r nazveme

$$B(x,r) := \{ y \in P : \varrho(x,y) < r \}.$$

Uzavřenou koulí se středem x a poloměrem r nazveme

$$\overline{B(x,r)} := \{ y \in P : \ \varrho(x,y) \le r \}.$$

Definice. Nechť (P, ϱ) je metrický prostor. Řekneme, že množina $G \subset P$ je otevřená (v, ϱ) , jestliže pro každý bod $x \in G$ existuje r > 0, že $B(x,r) \subset G$. Řekneme, že množina $F \subset P$ je uzavřená $(v(P,\varrho))$, pokud je $P \setminus F$ otevřená.

Příklady: 1. Nechť (P,ϱ) je metrický prostor. Pak B(x,r) je otevřená množina a $\overline{B(x,r)}$ je uzavřená

2. Je [0,1] otevřená množina v \mathbf{R} s diskrétní metrikou?

Věta L 9.1 (vlastnosti otevřených množin). Nechť (P, ϱ) je metrický prostor. Pak

(i) ∅ a P jsou otevřené.

(ii) Jsou-li
$$G_1, \ldots, G_n$$
 otevřené, pak $\bigcap_{i=1}^n G_i$ je otevřená.

(iii) Nechť A je libovolná (i nekonečná) indexová množina.

Jsou-li
$$G_{\alpha}$$
, $\alpha \in A$ otevřené, pak $\bigcup_{\alpha \in A} G_{\alpha}$ je otevřená.

Věta L 9.2 (vlastnosti uzavřených množin). Nechť (P, ϱ) je metrický prostor. Pak

(i) ∅ a P jsou uzavřené.

(ii) Jsou-li
$$F_1, \ldots, F_n$$
 uzavřené, pak $\bigcup_{i=1}^n F_i$ je uzavřená.

(iii) Jsou-li
$$F_{\alpha}$$
, $\alpha \in A$ uzavřené, pak $\bigcap_{\alpha \in A} F_{\alpha}$ je uzavřená.

Příklad: $\bigcap_{i=1}^{\infty}(-\frac{1}{i},\frac{1}{i})=\{0\}$ není otevřená v **R**. $\bigcup_{i=1}^{\infty}[\frac{1}{i},1-\frac{1}{i}]=(0,1)$ není uzavřená v **R**. Konec 20. přednášky 25.4.

Definice. Nechť (P,ϱ) je metrický prostor, $A\subset P$ a $x\in P$. Řekneme, že x je vnitřním bodem množiny A, jestliže existuje r>0 tak, že $B(x,r)\subset A$. Množinu všech vnitřních bodů A nazýváme vnitřkem A a značíme int A.

Příklad: Co je vnitřek [0,1) v $(\mathbf{R},|.|)$, Q(0,1) v $(\mathbf{R}^2,|.|)$ a \mathbf{Q} v $(\mathbf{R},|.|)$?

Věta L 9.3 (charakterizace vnitřku). Nechť (P, ϱ) je metrický prostor a $A \subset P$. Potom int A je největší (vzhledem k množinové inkluzi) otevřená množina obsažená v A.

Definice. Nechť (P, ϱ) je metrický prostor, $M \subset P$ a $x \in P$. Řekneme, že x je hraničním bodem množiny M, jestliže pro každé r > 0 platí

$$M \cap B(x,r) \neq \emptyset$$
 a $(P \setminus M) \cap B(x,r) \neq \emptyset$.

Množinu všech hraničních bodů M nazýváme hranici M a značíme ji ∂M . Uzávěr množiny <math>M je definován jako $\overline{M} = M \cup \partial M$.

Příklad: Co je hranice a uzávěr [0,1) v $(\mathbf{R},|.|)$, Q(0,1) v $(\mathbf{R}^2,|.|)$ a \mathbf{Q} v $(\mathbf{R},|.|)$?

Věta L 9.4 (uzávěr a uzavřené množiny). Necht (P, ρ) je metrický prostor a $A \subset P$. Pak

$$A$$
 je uzavřená v $P \Leftrightarrow \overline{A} = A$.

Věta L 9.5 (vlastnosti uzávěru). Nechť (P, ϱ) je metrický prostor a $A \subset P$. Potom platí

(i)
$$A \subset B \Rightarrow \overline{A} \subset \overline{B}$$
,

(ii) nechť
$$A \neq \emptyset$$
, pak $\overline{A} = \{x \in P : \rho(x, A) = 0\}$,

(iii)
$$\overline{A} = \overline{A}$$
, tedy \overline{A} je uzavřená množina.

9.2. Konvergence a spojitá zobrazení v metrických prostorech

Definice. Nechť (P,ϱ) je metrický prostor a $\{x_n\}_{n=1}^{\infty}$ je posloupnost prvků P a $x \in P$. Řekneme, že $\{x_n\}_{n=1}^{\infty}$ konverguje k x (v $(P,\varrho))$, pokud $\lim_{n\to\infty}\varrho(x_n,x)=0$. Značíme $\lim_{n\to\infty}x_n=x$, nebo $x_n \stackrel{\varrho}{\to} x$.

Konec 21. přednášky 2.5.

Věta L 9.6 (vlastnosti konvergence). Nechť (P, ρ) je metrický prostor. Pak platí

- (i) Nechť pro posloupnost $\{x_n\}_{n=1}^{\infty}$ z P existuje $n_0 \in \mathbf{N}$ a $x \in P$ tak, že pro všechna $n \ge n_0$ platí $x_n = x$. Pak $\lim_{n \to \infty} x_n = x$.
- (ii) $\lim_{n\to\infty} x_n = x$ a $\lim_{n\to\infty} x_n = y \Rightarrow x = y$. (Jednoznačnost limity)
- (iii) Necht $\{x_{n_k}\}_{k=1}^{\infty}$ je vybraná posloupnost z $\{x_n\}_{n=1}^{\infty}$ a necht $\lim_{n\to\infty} x_n = x$. Pak $\lim_{k\to\infty} x_{n_k} = x$.

Definice. Nechť (P, ϱ) a (Q, σ) jsou metrické prostory. Nechť $M \subset P$, $f : M \to Q$ a $x_0 \in M$. Řekneme, že f je spojitá v bodě x_0 (vzhledem k M), jestliže

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B_{\rho}(x_0, \delta) \cap M : \ f(x) \in B_{\sigma}(f(x_0), \varepsilon).$$

Řekneme, že f je spojitá na M (vzhledem k M), jestliže je spojitá v každém bodě M (vzhledem k M). Nechť pro každé $\delta > 0$ platí $B_{\varrho}(x_0, \delta) \cap M \setminus \{x_0\} \neq \emptyset$. Řekneme, že f má v bodě x_0 limitu (vzhledem k M) rovnou $y \in Q$, jestliže

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B_{\rho}(x_0, \delta) \cap M \setminus \{x_0\} : \ f(x) \in B_{\sigma}(y, \varepsilon).$$

Poznámky: 1. Pojem konvergence a spojitosti v $(\mathbf{R}^n, |.|)$ je shodný s dříve zavedeným pojmem. 2. Definice spojitosti lze zapsat jako $\forall \varepsilon > 0 \ \exists \delta > 0 : \ f(B_{\rho}(x_0, \delta)) \subset B_{\sigma}(f(x_0), \varepsilon)$.

Věta L 9.7 (charakterizace spojitosti). Nechť (P, ϱ) a (Q, σ) jsou metrické prostory a $f: P \to Q$. Pak následující tvrzení jsou ekvivalentní:

- (i) f je spojitá na P,
- (ii) $\forall G \subset Q$ otevřenou, je $f^{-1}(G)$ otevřená,
- (iii) $\forall F \subset Q$ uzavřenou, je $f^{-1}(F)$ uzavřená.

Příklady: 1. Množina $\{[x,y]\in\mathbf{R}^2:\ x^2+y^2<1\}$ je otevřená. 2. Množina $\{[x,y,z]\in\mathbf{R}^3:\ x+y+z\geq0,\ x^2+y^2+z^2\leq1\}$ je uzavřená.

Věta L 9.8 (spojitost složeného zobrazení). Nechť (P,ϱ) , (Q,σ) a (Z,τ) jsou metrické prostory. Nechť $f:P\to Q$ je spojité zobrazení a $g:Q\to Z$ je spojité zobrazení. Pak $g\circ f:P\to Z$ je spojité zobrazení.

Příklad: Funkce $f(x,y) = \sqrt{x^2 + y^2}$ je spojitá z \mathbb{R}^2 do \mathbb{R} .

Věta T 9.9 (Heine). Nechť (P, ϱ) a (Q, σ) jsou metrické prostory. Nechť $M \subset P$, $x_0 \in M$, $A \in Q$ a $f: M \to Q$. Pak je ekvivalentní:

$$(i) \lim_{x \to x_0, x \in M} f(x) = A,$$

(ii) pro každou posloupnost $\{x_n\}_{n=1}^{\infty}$ splňující

$$x_n \in M$$
, $x_n \neq x_0$ a $\lim_{n \to \infty} x_n = x_0$ platí $\lim_{n \to \infty} f(x_n) = A$.

Důsledek: Jako speciální připad dostáváme Větu 8.1.

Konec 22. přednášky 9.5.

9.3. Kompaktní množiny

Věta L 9.10 (charakterizace uzavřených množin). Nechť (P,ϱ) je metrický prostor a $F \subset P$. Pak

$$F$$
 je uzavřená $\Leftrightarrow (x_n \xrightarrow{\varrho} x \ a \ x_n \in F \Rightarrow x \in F).$

Definice. Nechť (P, ϱ) je metrický prostor a $K \subset P$. Řekneme, že K je kompaktní, jestliže z každé posloupnosti prvků K lze vybrat konvergentní podposloupnost s limitou v K.

Příklad: [0,1] je kompaktní v \mathbf{R} .

Věta L 9.11 (vlastnosti kompaktních množin). Nechť (P,ϱ) je metrický prostor a $K\subset P$ je kompaktní. Pak platí

- (i) K je uzavřená,
- (ii) Je- $li\ F \subset K\ uzavřená,\ pak\ je\ F\ kompaktní,$
- (iii) K je omezená (tedy $\exists x \in P, r > 0, \text{ že } K \subset B(x,r)$).

Věta T 9.12 (charakterizace kompaktních množin \mathbf{R}^n). *Množina* $K \subset \mathbf{R}^n$ *je kompaktní*, *právě když je omezená a uzavřená*.

Příklady: 1. $\overline{B(0,1)}$ je kompaktní v \mathbf{R}^n .

2. B(0,1) není kompaktní v C([0,1]).

Věta L 9.13 (nabývání extrémů na kompaktu). Nechť (P, ϱ) je metrický prostor a $K \subset P$ je kompaktní. Nechť $f: K \to \mathbf{R}$ je spojitá. Pak f nabývá na K svého maxima i minima. Specielně je tedy f na K omezená.

Konec 23. přednášky 15.5.

Věta L 9.14 (spojitý obraz kompaktu). Nechť (P, ϱ) , (Q, τ) jsou metrické prostory a nechť $f: P \to Q$ je spojité zobrazení. Nechť $K \subset P$ je kompaktní množina, pak $f(K) \subset Q$ je kompaktní množina.

Definice. Nechť $(P,\varrho),\ (Q,\tau)$ jsou metrické prostory, $K\subset P$ a $f:K\to Q$. Řekneme, že f je stejnoměrně spojitá na K, jestliže

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in K : \ \left[\varrho(x, y) < \delta \Rightarrow \tau(f(x), f(y)) < \varepsilon \right].$$

Věta T 9.15 (o vztahu spojitosti a stejnoměrné spojitosti na metrickém prostoru). Nechť (P, ϱ) , (Q, τ) jsou metrické prostory, $K \subset P$ je kompaktní a nechť $f: K \to Q$ je spojité zobrazení. Pak f je stejnoměrné spojitá na K.

Příklad: 1. Nalezněte maximum a minimum funkce $f(x,y) = x^2 - xy + y^2$ na množině $M := \{[x,y] \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$

9.4. Úplné metrické prostory

Definice. Nechť (P, ϱ) je metrický prostor a $\{x_n\}_{n=1}^{\infty}$ je posloupnost bodů z P. Řekneme, že x_n splňuje Bolzano-Cauchyovu podmínku (případně, že je cauchyovská), jestliže platí

$$\forall \varepsilon > 0 \exists n_0 \in \mathbf{N} \ \forall m, n \in \mathbf{N}, \ m, n \ge n_0 : \ \varrho(x_n, x_m) < \varepsilon.$$

Poznámka: Každá konvergentní posloupnost je cauchyovská.

Definice. Řekneme, že metrický prostor (P, ϱ) je úplný, jestliže každá cauchyovská posloupnost bodů z P je konvergentní.

Příklady: 1. $(\mathbf{R}, |.|)$ je úplný (viz Věta 2.14).

- 2. ((0,1),|.|) není úplný.
- 3. $(\mathbf{Q}, |.|)$ není úplný.
- 4. $(\mathbf{R}^n, |.|)$ je úplný.

Věta L 9.16 (vztah kompaktnosti a úplnosti). Nechť (P, ϱ) je metrický prostor a P je kompaktní. Pak P je úplný metrický prostor.

Konec 24. přednášky 22.5.

Věta T 9.17 (úplnost a prostor spojitých funkcí). Metrický prostor C([0,1]) se supremovou metrikou je úplný.

Příklad: Metrický prostor C([0,1]) s metrikou $\varrho(f,g) = \int_0^1 |f(x) - g(x)| \, dx$ není úplný.

Věta T 9.18 (Banachova věta o kontrakci). Nechť (P, ϱ) je úplný metrický prostor a $T: P \to P$ je kontrakce, tedy

$$\exists \gamma \in [0,1) \ \forall x,y \in P : \ \rho(T(x),T(y)) \leq \gamma \rho(x,y).$$

Pak existuje právě jedno $x \in P$ tak, že T(x) = x.

Poznámka: 1. Předchozí věta nám přístí rok ukáže, že každá "hezká" diferenciální rovnice má řešení.
2. Fractal compression

Konec 25. přednášky 23.5.