

stochvolTMB: An R-package for likelihood estimation of stochastic volatility models

Norwegian Computing Center

Summary

Stochastic volatility (SV) models are often used to model financial returns that exhibit time-varying and autocorrelated variance. The first SV model was introduced by Taylor (1982) and models the logarithm of the variance as a latent autoregressive process of order one. Parameter estimation of stochastic volatility models can be challenging and a variety of methods have been proposed, such as simulated likelihood (Liesenfeld 2006), quasi-maximum likelihood (Harvey, Ruiz, and Shephard 1994) and Markov Chain Monte Carlo methods (MCMC) (Pitt and Shephard 1999; Kastner 2016). stochvolTMB takes a frequentist approach and estimates the parameters using maximum likelihood, similar to Skaug and Yu (2014). The latent variables are integrated out using the Laplace approximation. The models are implemented in C++ using the R-package (R Core Team 2019) TMB (Kristensen et al. 2016) for fast and efficient estimation. TMB utilizes the Eigen (Guennebaud, Jacob, and others 2010) library for numerical linear algebra and CppAD (Bell 2005) for automatic differentiation of the negative log-likelihood. This can lead to substantial speed-up compared to MCMC methods.

Implementation

stochvolTMB implements stochastic volatility models of the form

$$y_{t} = \sigma_{y} e^{h_{t}/2} \epsilon_{t}, \quad t = 1, \dots, T,$$

$$h_{t+1} = \phi h_{t} + \sigma_{h} \eta_{t}, \quad t = 1, \dots, T - 1,$$

$$\eta_{t} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1),$$

$$\epsilon_{t} \stackrel{\text{iid}}{\sim} F,$$

$$h_{1} \sim \mathcal{N} \left(0, \frac{\sigma_{h}}{\sqrt{(1 - \phi^{2})}} \right)$$

$$(1)$$

where y_t is the observed log return for day t, h_t is the logarithm of the conditional variance of day t and $\boldsymbol{\theta} = (\phi, \sigma_y, \sigma_h)$ are the fixed parameters. Four distributions are implemented for ϵ_t : (1) The standard normal distribution; (2) The t-distribution with ν degrees of freedom; (3) The skew-normal distribution with skewness parameter α ; and (4) The leverage model where (ϵ_t, η_t) are multivariate normal with zero mean and correlation coefficient ρ . The last three distributions add an additional fixed parameter to $\boldsymbol{\theta}$. stochvolTMB also supports generic functions such as plot, summary, predict and AIC. The plotting is implemented using ggplot2 (Wickham (2016)) and data processing utilizes the R-package data.table (Dowle and Srinivasan 2019).

The parameter estimation is done in an iterative two-step procedure: (1) Optimize the joint negative log-likelihood with respect to the latent log-volatility $\mathbf{h} = (h_1, \dots, h_T)$ holding $\boldsymbol{\theta}$ fixed, and (2) Optimizing the Laplace approximation of the joint negative log-likelihood w.r.t $\boldsymbol{\theta}$. This procedure is iterated until convergence. Standard deviations for

DOI: XX.XXXXX/joss.XXXXX

Software

- Review 🗗
- Archive ௴

Submitted: Published:

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC-BY).

the log-volatility and the fixed parameters are obtained by the delta-method (Kristensen et al. 2016).

stochvolTMB different from R-package stochvol (Kastner 2016) as stochvol performs Bayesian inference using MCMC. By using optimization instead of simulation we are able to obtain a 5-10 times speed up, dependent on the data, model and number of observations.

References

Bell, Brad. 2005. "CppAD: A Package for C++ Algorithmic Differentiation." http://www.coin-or.org/CppAD.

Dowle, Matt, and Arun Srinivasan. 2019. data.table: Extension of 'Data.frame'. https://CRAN.R-project.org/package=data.table.

Guennebaud, Gaël, Benoît Jacob, and others. 2010. "Eigen V3." http://eigen.tuxfamily.org.

Harvey, Andrew, Esther Ruiz, and Neil Shephard. 1994. "Multivariate Stochastic Variance Models." *Review of Economic Studies* 61 (2): 247–64. http://EconPapers.repec.org/RePEc:oup:restud:v:61:y:1994:i:2:p:247-264.

Kastner, Gregor. 2016. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol." *Journal of Statistical Software* 69 (5): 1–30. https://doi.org/10.18637/jss.v069.i05.

Kristensen, Kasper, Anders Nielsen, Casper Berg, Hans Skaug, and Bradley Bell. 2016. "TMB: Automatic Differentiation and Laplace Approximation." *Journal of Statistical Software, Articles* 70 (5): 1–21. https://doi.org/10.18637/jss.v070.i05.

Liesenfeld, Richard. 2006. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models." $\frac{http://www.tandfonline.com/doi/abs/10.1080/07474930600713424.$

Pitt, Michael K., and Neil Shephard. 1999. "Time-Varying Covariances: A Factor Stochastic Volatility Approach." In *Bayesian Statistics*, 6 (Alcoceber, 1998), 547–70. Oxford Univ. Press, New York.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. R foundation for statistical computing. https://www.R-project.org/.

Skaug, Hans J., and Jun Yu. 2014. "A Flexible and Automated Likelihood Based Framework for Inference in Stochastic Volatility Models." "Computational Statistics & Data Analysis" "76": 642–54. https://doi.org/https://doi.org/10.1016/j.csda.2013.10.005.

Taylor, S. J. 1982. "Financial Returns Modelled by the Product of Two Stochastic Processes-a Study of the Daily Sugar Prices 1961-75." *Time Series Analysis : Theory and Practice* 1: 203–26. https://ci.nii.ac.jp/naid/10018822959/en/.

Wickham, Hadley. 2016. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org.