Probability Basics

Bayes' Theorem

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

likelihood of t given a given features

Generalized Bayes' Theorem

P(
$$t = I | \mathbf{q}_1, \dots, \mathbf{q}_m$$
) = $\frac{P(\mathbf{q}_1, \dots, \mathbf{q}_m | t = I)P(t = I)}{P(\mathbf{q}_1, \dots, \mathbf{q}_m)}$ Normalising

posterior probability: degree of belief after knowing $(\mathbf{q}_1, \dots, \mathbf{q}_m)$

Table: A simple dataset for MENINGITIS diagnosis with descriptive features that describe the presence or absence of three common symptoms of the disease: HEADACHE, FEVER, and VOMITING.

ID	HEADACHE	FEVER	Vomiting	MENINGITIS
1	true	true	false	false
2	false	true	false	false
3	true	false	true	false
4	true	false	true	false
5	false	true	false	true
6	true	false	true	false
7	true	false	true	false
8	true	false	true	true
9	false	true	false	false
10	true	false	true	true

Meningitis is a serious disease

$$\mathbf{P}(H, F, V, M) = \begin{bmatrix} P(h, f, v, m), & P(\neg h, f, v, m) \\ P(h, f, v, \neg m), & P(\neg h, f, v, \neg m) \\ P(h, f, \neg v, m), & P(\neg h, f, \neg v, m) \\ P(h, f, \neg v, \neg m), & P(\neg h, f, \neg v, \neg m) \\ P(h, \neg f, v, m), & P(\neg h, \neg f, v, m) \\ P(h, \neg f, v, \neg m), & P(\neg h, \neg f, v, \neg m) \\ P(h, \neg f, \neg v, m), & P(\neg h, \neg f, \neg v, m) \\ P(h, \neg f, \neg v, \neg m), & P(\neg h, \neg f, \neg v, \neg m) \end{bmatrix}$$

$$P(M|h, \neg f, v) = ?$$

In the terms of Bayes' Theorem this problem can be stated as:

$$P(M|h,\neg f,v) = \frac{P(h,\neg f,v|M) \times P(M)}{P(h,\neg f,v)}$$

► There are two values in the domain of the MENINGITIS feature, 'true' and 'false', so we have to do this calculation twice.

- ► We will do the calculation for *m* first
- To carry out this calculation we need to know the following probabilities: P(m), $P(h, \neg f, v)$ and $P(h, \neg f, v \mid m)$.

	ID	HEADACHE	FEVER	VOMITING	MENINGITIS	
	1	true	true	false	false	
	2	false	true	false	false	
	3	true	false	true	false	
	4	true	false	true	false	
$h, \neg f, v$	5	false	true	false	true	
	 6	true	false	true	false	» m
	<u></u> 7	true	false	true	false	m
	8	true	false	true	true	
	9	false	true	false	false /	
	<u>10</u>	true	false	true	true /	
	N.C.					

We can calculate the required probabilities directly from the data. For example, we can calculate P(m) and $P(h, \neg f, v)$ as follows:

$$P(m) = \frac{|\{\mathbf{d}_5, \mathbf{d}_8, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3, \mathbf{d}_4, \mathbf{d}_5, \mathbf{d}_6, \mathbf{d}_7, \mathbf{d}_8, \mathbf{d}_9, \mathbf{d}_{10}\}|} = \frac{3}{10} = 0.3$$

$$P(h, \neg f, v) = \frac{|\{\mathbf{d}_3, \mathbf{d}_4, \mathbf{d}_6, \mathbf{d}_7, \mathbf{d}_8, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3, \mathbf{d}_4, \mathbf{d}_5, \mathbf{d}_6, \mathbf{d}_7, \mathbf{d}_8, \mathbf{d}_9, \mathbf{d}_{10}\}|} = \frac{6}{10} = 0.6$$

► However, as an exercise we will use the chain rule calculate:

$$P(h, \neg f, v \mid m) = ?$$

ID	HEADACHE	FEVER	Vomiting	MENINGITIS
1	true	true	false	false
2	false	true	false	false
3	true	false	true	false
4	true	false	true	false
5	false	true	false	true
6	true	false	true	false
7	true	false	true	false
8	true	false	true	true
9	false	true	false	false
_10	true	false	true	true

Using the chain rule calculate:

$$P(h, \neg f, v \mid m) = P(h \mid m) \times P(\neg f \mid h, m) \times P(v \mid \neg f, h, m)$$

ID	HEADACHE	FEVER	Vomiting	MENINGITIS
5	false	true	false	true
8	true	false	true	true
10	true	false	true	true

Using the chain rule calculate:

$$P(h, \neg f, v \mid m) = P(h \mid m) \times P(\neg f \mid h, m) \times P(v \mid \neg f, h, m)$$

$$= \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{5}, \mathbf{d}_{8}, \mathbf{d}_{10}\}|} \times \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|} \times \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}$$

ID	HEADACHE	FEVER	Vomiting	MENINGITIS
5	false	true	false	true
8	true	false	true	true
10	true	false	true	true

Using the chain rule calculate:

$$P(h, \neg f, v \mid m) = P(h \mid m) \times P(\neg f \mid h, m) \times P(v \mid \neg f, h, m)$$

$$= \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{5}, \mathbf{d}_{8}, \mathbf{d}_{10}\}|} \times \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|} \times \frac{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}{|\{\mathbf{d}_{8}, \mathbf{d}_{10}\}|}$$

$$= \frac{2}{3} \times \frac{2}{2} \times \frac{2}{2} = 0.6666$$

ID	HEADACHE	FEVER	Vomiting	MENINGITIS
5	false	true	false	true
8	true	false	true	true
10	true	false	true	true

▶ So the calculation of $P(m|h, \neg f, v)$ is:

$$P(m|h, \neg f, v) = \frac{\begin{pmatrix} P(h|m) \times P(\neg f|h, m) \\ \times P(v|\neg f, h, m) \times P(m) \end{pmatrix}}{P(h, \neg f, v)}$$

▶ So the calculation of $P(m|h, \neg f, v)$ is:

$$P(m|h, \neg f, v) = \frac{\begin{pmatrix} P(h|m) \times P(\neg f|h, m) \\ \times P(v|\neg f, h, m) \times P(m) \end{pmatrix}}{P(h, \neg f, v)}$$
$$= \frac{0.6666 \times 0.3}{0.6} = 0.3333$$

▶ The corresponding calculation for $P(\neg m|h, \neg f, v)$ is:

$$P(\neg m \mid h, \neg f, v) = \frac{P(h, \neg f, v \mid \neg m) \times P(\neg m)}{P(h, \neg f, v)}$$

$$= \frac{\left(P(h \mid \neg m) \times P(\neg f \mid h, \neg m) \times P(\neg m)\right)}{X \times P(v \mid \neg f, h, \neg m) \times P(\neg m)}$$

$$= \frac{(P(h \mid \neg m) \times P(\neg f \mid h, \neg m) \times P(\neg m))}{P(h, \neg f, v)}$$

H.W.

$$P(m|h, \neg f, v) = 0.3333$$

 $P(\neg m|h, \neg f, v) = 0.6667$

These calculations tell us that it is twice as probable that the patient does not have meningitis than it is that they do even though the patient is suffering from a headache and is vomiting!

Uncertainty

Acting Under Uncertainty

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions

Acting Under Uncertainty

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions
- Partial solution (previous discussion): maintain belief states
 - represent the set of all possible world states the agent might be in
 - generating a contingency plan handling every possible eventuality
- Several drawbacks:

Acting Under Uncertainty

- Agents often make decisions based on incomplete information
 - partial observability
 - nondeterministic actions
- Partial solution (previous discussion): maintain belief states
 - represent the set of all possible world states the agent might be in
 - generating a contingency plan handling every possible eventuality

Several drawbacks:

- must consider every possible explanation for the observation
- contingent plans handling every eventuality grow arbitrarily large
- sometimes there is no plan that is guaranteed to achieve the goal

Logic and Uncertainty

Major problem with logical-agent approaches:

Agents almost never have access to the whole truth about their environments

- Very often, even in simple worlds, there are important questions for which there is no yes/no answer
- In that case, an agent must reason under uncertainty
- Uncertainty also arises because of an agent's incomplete or incorrect understanding of its environment

Uncertainty Example

Let action A_t = "leave for airport t minutes before flight" Will A_t get me there on time?

Problems (Too many sources of uncertainty)

- partial observability (road state, other drivers' plans, etc.)
- noisy sensors (unreliable traffic reports)
- uncertainty in action outcomes (flat tire, etc.)
- immense complexity of modeling and predicting traffic

Goal: deliver a passenger to the airport on time

Uncertainty Example

Let action A_t = "leave for airport t minutes before flight" Will A_t get me there on time?

A purely logical approach either

- 1. risks falsehood (" A_{25} will get me there on time"), or
- 2. leads to conclusions that are too weak for decision making (" A_{25} will get me there on time if there's no accident on the way, it doesn't rain, my tires remain intact, . . . ")

(A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Uncertainty Example

Let action A_t = "leave for airport t minutes before flight" Will A_t get me there on time?

A purely logical approach either

- 1. risks falsehood (" A_{25} will get me there on time"), or
- 2. leads to conclusions that are too weak for decision making (" A_{25} will get me there on time if there's no accident on the way, it doesn't rain, my tires remain intact, . . . ")

 $(A_{1440} \text{ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)$

With purely-logical approach it is difficult to anticipate everything that can go wrong

Reasoning under Uncertainty

A *rational* agent is one that makes rational decisions — in order to maximize its performance measure)

A rational decision depends on

- the relative importance of various goals
- the likelihood they will be achieved
- the degree to which they will be achieved

Reasoning under Uncertainty

A *rational* agent is one that makes rational decisions — in order to maximize its performance measure)

A rational decision depends on

- the relative importance of various goals
- the likelihood they will be achieved
- the degree to which they will be achieved

Probability theory offers a clean way to quantify likelihood

Given the symptoms (toothache) infer the cause (cavity)

How to encode this relation in logic?

diagnostic rules:

causal rules:

Given the symptoms (toothache) infer the cause (cavity) How to encode this relation in logic?

diagnostic rules:

Toothache → Cavity (wrong)

Toothache → (Cavity V Gum-Problem V Abscess V ...)

(too many possible causes, some very unlikely)

Given the symptoms (toothache) infer the cause (cavity)
How to encode this relation in logic?

diagnostic rules:

```
Toothache→ Cavity (wrong)

Toothache→ (Cavity V Gum-Problem V Abscess V ...)

(too many possible causes, some very unlikely)
```

causal rules:

```
Cavity → Toothache (wrong)

(Cavity ...) → Toothache (many possible (con)causes)
```

Handling Uncertain Knowledge

Reasons FOL-based approaches fail to cope with domains like, for instance, medical diagnosis:

- Laziness: too much work to write complete axioms, or too hard to work with the enormous sentences that result
- Theoretical Ignorance: The available knowledge of the domain is incomplete
- Practical Ignorance: The theoretical knowledge of the domain is complete but some evidential facts are missing

Degrees of Belief and probability

In several real-world domains the agent's knowledge can only provide a degree of belief in the relevant sentences

The agent cannot say whether a sentence is true, but only that is true x% of the times

The main tool for handling degrees of belief is *Probability Theory*

The use of probability summarizes the uncertainty that stems from our laziness or ignorance about the domain

Probability theory

- Probability can be derived from
 - statistical data (ex: 80% of toothache patients so far had cavities)
 - some knowledge (ex: 80% of toothache patients has cavities)
 - their combination

Probability theory

- Probability can be derived from
 - statistical data (ex: 80% of toothache patients so far had cavities)
 - some knowledge (ex: 80% of toothache patients has cavities)
 - their combination
- Probability statements are made with respect to a state of knowledge (aka evidence)
 - e.g., "The probability that the patient has a cavity, given that she has a toothache, is 0.8":
 - P(HasCavity (patient) | hasToothAche(patient)) = 0.8

Probability theory

- Probabilities of propositions change with new evidence:
 - "The probability that the patient has a cavity, given that she has a toothache and a history of gum disease, is 0.4":
 - P(HasCavity (patient) | hasToothAche(patient) \land HistoryOfGum(patient)) = 0.4

Making Decisions Under Uncertainty

Ex: Suppose I believe:

- $P(A_{25} \text{ gets me there on time } | ...) = 0.04$
- $P(A_{90} \text{ gets me there on time } | ...) = 0.70$
- $P(A_{120} \text{ gets me there on time } | ...) = 0.95$
- $P(A_{1440} \text{ gets me there on time } | ...) = 0.9999$

Making Decisions Under Uncertainty

Ex: Suppose I believe:

- $P(A_{25} \text{ gets me there on time } | ...) = 0.04$
- $P(A_{qq})$ gets me there on time |...) = 0.70
- $P(A_{120} \text{ gets me there on time } | ...) = 0.95$
- $P(A_{1440} \text{ gets me there on time } | ...) = 0.9999$

Which action to choose?

- Depends on tradeoffs among preferences:
 - missing flight vs. costs (airport cuisine, sleep overnight in airport)

Making Decisions Under Uncertainty

Ex: Suppose I believe:

- $P(A_{25} \text{ gets me there on time } | ...) = 0.04$
- $P(A_{90} \text{ gets me there on time } | ...) = 0.70$
- $P(A_{120} \text{ gets me there on time } | ...) = 0.95$
- $P(A_{1440} \text{ gets me there on time } | ...) = 0.9999$

Which action to choose?

- Depends on tradeoffs among preferences:
 - missing flight vs. costs (airport cuisine, sleep overnight in airport)

When there are conflicting goals the agent may express preferences among them by means of a **utility function**.

Making Decisions Under Uncertainty

- Utilities are combined with probabilities in the general theory of rational decisions, aka decision theory:
- Decision theory = Probability theory + Utility theory
- Maximum Expected Utility (MEU): an agent is rational if and only if it chooses the action that yields the maximum expected utility, averaged over all the possible outcomes of the action.

Probabilistic inference

Probability Theory

Probability Theory makes the same ontological commitments as First-order Logic:

Every sentence φ is either true or false

The degree of belief that φ is true is a number P between 0 and 1

$$P(\varphi)=1 \qquad \longrightarrow \qquad \varphi \text{ is certainly true}$$

$$P(\varphi)=0 \qquad \longrightarrow \qquad \varphi \text{ is certainly not true}$$

$$P(\varphi) = 0.65 \longrightarrow \varphi$$
 is true with a 65% chance

Syntax for propositions

```
Propositional or Boolean random variables e.g., Cavity (do I have a cavity?) Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite) e.g., Weather is one of \langle sunny, rain, cloudy, snow \rangle Weather = rain is a proposition Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.
```

Arbitrary Boolean combinations of basic propositions

Conditional probability

Definition of conditional probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

A general version holds for whole distributions, e.g.,

$$\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$$

(View as a 4×2 set of equations, **not** matrix mult.)

Start with the joint distribution:

rav iii	toothache		¬ toothache	
55 45 55 55	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

Start with the joint distribution:

10.	toothache		¬ toothache	
5 (5)	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Start with the joint distribution:

resr	toothache		¬ toothache	
55 45 55 55	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = ?$$

Start with the joint distribution:

resr	toothache		¬ toothache	
55 45 55 55	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) \, = \, \frac{P(\neg cavity \wedge toothache)}{P(toothache)}$$

Start with the joint distribution:

10.	toothache		¬ toothache	
5 (5)	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$\begin{split} P(\neg cavity | toothache) &= \frac{P(\neg cavity \wedge toothache)}{P(toothache)} \\ &= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4 \end{split}$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$\mathbf{P}(Cavity|toothache) = \frac{\mathbf{P}(Cavity,toothache)}{P(toothache)} = \alpha \, \mathbf{P}(Cavity,toothache)$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$\begin{split} \mathbf{P}(Cavity|toothache) &= \frac{\mathbf{P}(Cavity,toothache)}{P(toothache)} = \alpha \, \mathbf{P}(Cavity,toothache) \\ &= \, \alpha \, [\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch)] \end{split}$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$\begin{split} \mathbf{P}(Cavity|toothache) &= \frac{\mathbf{P}(Cavity,toothache)}{P(toothache)} = \alpha \, \mathbf{P}(Cavity,toothache) \\ &= \alpha \, [\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch)] \\ &= \alpha \, [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle] \end{split}$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$\mathbf{P}(Cavity|toothache) = \frac{\mathbf{P}(Cavity,toothache)}{P(toothache)} = \alpha \mathbf{P}(Cavity,toothache)$$

$$= \alpha \left[\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch)\right]$$

$$= \alpha \left[\langle 0.108,0.016\rangle + \langle 0.012,0.064\rangle\right]$$

$$= \alpha \left\langle 0.12,0.08\rangle = \langle 0.6,0.4\rangle$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

$$\mathbf{P}(Cavity|toothache) = \frac{\mathbf{P}(Cavity,toothache)}{P(toothache)} = \alpha \mathbf{P}(Cavity,toothache)$$

$$= \alpha \left[\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch)\right]$$

$$= \alpha \left[\langle 0.108,0.016\rangle + \langle 0.012,0.064\rangle\right]$$

$$= \alpha \left\langle 0.12,0.08\rangle = \langle 0.6,0.4\rangle$$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Independence

 $A \ \text{and} \ B \ \text{are independent iff} \\ \mathbf{P}(A|B) = \mathbf{P}(A) \quad \text{or} \quad \mathbf{P}(B|A) = \mathbf{P}(B) \quad \text{or} \quad \mathbf{P}(A,B) = \mathbf{P}(A)\mathbf{P}(B) \\ \hline \text{Cavity} \quad \text{decomposes into} \\ \hline \text{Weather} \quad \text{Weather}$

Independence

A and B are independent iff $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(A,B) = \mathbf{P}(A)\mathbf{P}(B)$ Cavity Toothache Catch Weather

 $\mathbf{P}(Toothache, Catch, Cavity, Weather)$ = $\mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity:

P(Catch|Toothache, Cavity) = P(Catch|Cavity)

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2)
$$P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$$

Catch is conditionally independent of Toothache given Cavity:

$$P(Catch|Toothache, Cavity) = P(Catch|Cavity)$$

Equivalent statements:

```
\begin{split} \mathbf{P}(Toothache|Catch,Cavity) &= \mathbf{P}(Toothache|Cavity) \\ \mathbf{P}(Toothache,Catch|Cavity) &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \end{split}
```

Write out full joint distribution using chain rule:

 $\mathbf{P}(Toothache, Catch, Cavity)$ = $\mathbf{P}(Toothache|Catch, Cavity)\mathbf{P}(Catch, Cavity)$

Write out full joint distribution using chain rule:

```
\mathbf{P}(Toothache, Catch, Cavity)
```

- $= \mathbf{P}(Toothache|Catch,Cavity)\mathbf{P}(Catch,Cavity)$
- $=\mathbf{P}(Toothache|Catch,Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$

Write out full joint distribution using chain rule:

```
\begin{split} &\mathbf{P}(Toothache, Catch, Cavity) \\ &= \mathbf{P}(Toothache|Catch, Cavity) \mathbf{P}(Catch, Cavity) \\ &= \mathbf{P}(Toothache|Catch, Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity) \\ &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity) \end{split}
```

How many independent numbers?

Write out full joint distribution using chain rule:

```
\begin{split} &\mathbf{P}(Toothache, Catch, Cavity) \\ &= \mathbf{P}(Toothache|Catch, Cavity) \mathbf{P}(Catch, Cavity) \\ &= \mathbf{P}(Toothache|Catch, Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity) \\ &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity) \end{split}
```

2 + 2 + 1 = 5 independent numbers

In many cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.