Analytical solution for vegulor linear regressing. $\frac{\int J(0)}{\Delta t} = (x^T x)^{-1} x^T y$ J(0)=18 (y-(x.0, -0,xn))2 The J(0) in vidge regression turns indo $50) = \frac{1}{2} = \frac{\pi}{5} (y - x^20)^2 + \frac{1}{2} = 10$ matrix form this becomes. J(0) = (x0-y) T (x0-y) + 10TO. (Ignores 1/2m) . GABAR = (x0) 0 - 2 (x0) 2 y + y T y + 1000 = 2x1x0-2x1y+701=0 To = xxx xTy (xix + XI) Thu is the sudger or normal solution for & vidge regression

2	. The normal form of linear regression is.
9	1 1-1
	$0 = x^{7}y (x^{7}x)^{-1}$
	Vov (0) = vov (xTy) (xTx)-1.
	y , in the second secon
3	var (0) = var (x T x) -1 x T (x0+ E))
5	
5	= 52 (x1x)-1.
5	
5	Similarly the variance for vidge regression would be
5	Televis I A + 2 25 in 3xi
	Vav (Or) = C-2 (xTx + /T) (xTx) (XTx +/T)/
D. 41.	was the second of the second o
5	85 00
5	vor (0) - vor (0v) = c2((x1x)-1 - (x1x+AI)(x1x)-1 (x1x+AI)/
5	00.001 m.(1) ((1.1) (x) (x,1)(12)(x)
5	2 ((5) -2 - 12 (15) -3 7 1 2
	$= \frac{6\omega \lambda(2\lambda(x) + (1-x)x)}{2\lambda(x)} \int_{-12}^{12} \omega \lambda dx$
	$= \frac{6^{2}\omega\lambda(2\lambda(x^{7}x)^{-2}-\lambda^{2}(x^{7}x)^{-3})\omega\lambda}{(2\lambda^{2}+\lambda^{2}(x^{7}x)^{-1})(2\lambda^{2}+\lambda^{2}(x^{7}x)^{-1})(2\lambda^{2}+\lambda^{2})}$
	As the vor(O) - vor (Or) is to clearly positive,
>	vor(0) > vor (Ov) as long as 170.
	The same of the sa
2	
The state of the s	
0	
Control of the second s	

3) 0 = agns 11 y - x0112, wi0=b Lagrages equations give of Wester ((0, 1) = J(6) + 1 g(0) where g(0) = wTO-5 = (x0-y) T (x0-y) + 1 (WTO-b) $\frac{\partial L(0, h)}{\partial h} \cdot \frac{\partial \left(0^{T} x^{T} x 0 \cdot 0^{T} x^{T} y - y^{T} x 0 + y y^{T} + 0 w^{T} h - h h\right)}{\partial h}$ = OWT-Bb Smilarly, $\frac{\partial C(0,\lambda)}{\partial \lambda} = 2x x^{T}0 - 2x^{T}y + \lambda \omega^{T}$ 0 = ZXXTO - ZXTY+ NWT. 0 = xTy - 1/2W. Therfore. w (xiy-1/2w) = b

 $\frac{1}{\omega^{T}} = -\frac{2(b-\omega^{T}x^{T}y)}{\omega^{T}}$

0 = xiy + (b-wixiy)w

```
In [105]: %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import random
    from sklearn import linear_model
    np.set_printoptions(suppress=True)

In [456]: def genData(numPoints, slope, intercept):
        x = np.zeros(shape=(numPoints, 2))
        y = np.zeros(shape=numPoints)

        x[:,0] = 1
        x[:,1] = np.random.uniform(-2, 2, size = numPoints)

        for i in range(0, numPoints): y[i] = (x[i][1] * slope) + (intercept + return x, y)
In [457]: x, y = genData(100, 3, 2)
```

4A (i): Analytical Least Sqaures

```
In [458]: def analytical_linear_regression_ridge(x_train, y_train, lamb):
    X = np.array(x_train)
    y = np.array(y_train)

Xt = transpose(X)
    product = dot(Xt, X) + lamb
    #print (product)
    theInverse = inv(product)
    w = dot(dot(theInverse, Xt), y)

return w
```

```
In [459]: analytical_linear_regression(x,y)
Out[459]: array([2.10895163, 3.04420866])
```

4A (ii): Analytical Ridge Regression

```
In [461]: def analytical_linear_regression_ridge(x_train, y_train, lamb):
    X = np.array(x_train)
    y = np.array(y_train)

Xt = transpose(X)
    product = dot(Xt, X) + lamb
    #print (product)
    theInverse = inv(product)
    w = dot(dot(theInverse, Xt), y)

return w
```

```
In [462]: analytical_linear_regression_ridge(x, y, 5)
Out[462]: array([1.87243346, 2.86548333])
```

Ridge regression appears to be supressing the coefficient values

4A (iii) Batch GD Lasso

Comparing Custom vs Lasso

The results of the custom lasso function matches one of sklearn.

4B

```
In [484]: def add_poly(x, degree):
    for i in range(2, degree+1):
        #x[:, degree] = x[:,1] ** degree
        x = np.column_stack((x,x[:,1].copy() ** i))
    return x

x, y = genData(100, 3, 2)
x = add_poly(x,6)
```

```
In [486]: thetas_lasso = []
    thetas_ridge = []
    thetas_analytical = []

for i in range(100):

    x, y = genData(100, 3, 2)
    m, n = np.shape(x)
    numIterations= 5000
    alpha = 0.001
    x = add_poly(x,5)
    m, n = np.shape(x)

    thetas_analytical.append(analytical_linear_regression(x, y))
    thetas_ridge.append(analytical_linear_regression_ridge(x,y, 5))
    thetas_lasso.append(gradientDescentLasso(x, y, np.ones(n), alpha, m,
```

4C

```
In [487]: plt.hist(np.array(thetas_ridge)[:,0], label = 'Ridge', alpha = .3)
    plt.hist(np.array(thetas_analytical)[:,0], label = 'Analytical', alpha =
    plt.hist(np.array(thetas_lasso)[:,0], label = 'Lasso', alpha = 1)

plt.plot([2 for i in range (25)], [i for i in range(25)])

plt.legend()
    plt.show()
```



```
In [488]: plt.hist(np.array(thetas_lasso)[:,1], label = 'Lasso', alpha = 1)
    plt.hist(np.array(thetas_ridge)[:,1], label = 'Ridge', alpha = 0.6)
    plt.hist(np.array(thetas_analytical)[:,1], label = 'Analytical', alpha =

    plt.plot([3 for i in range (25)], [i for i in range(25)])

    plt.legend()
    plt.show()
```


4C

```
In [647]: plt.hist(sum(np.dot(1.5,transpose(thetas_lasso))), label = 'Lasso', alpha
    plt.hist(sum(np.dot(1.5,transpose(thetas_ridge))), label = 'Ridge', alpha
    plt.hist(sum(np.dot(1.5,transpose(thetas_analytical))), label = 'Analy',
    plt.plot([6.5 for i in range (150)], [i for i in range(150)])

    plt.legend()
    plt.show()
```


4D

```
In [491]: def frange(start, stop, step):
    i = start
    while i < stop:
        yield i
        i += step</pre>
```

```
In [492]: thetas_lasso = []
    thetas_ridge = []
    thetas_analytical = []

for lamb in frange(0, 20, 0.1):

    x, y = genData(100, 3, 2)
    m, n = np.shape(x)
    numIterations= 5000
    alpha = 0.001
    x = add_poly(x,5)
    m, n = np.shape(x)

    thetas_analytical.append(analytical_linear_regression(x, y))
    thetas_ridge.append(analytical_linear_regression_ridge(x,y, lamb))
    thetas_lasso.append(gradientDescentLasso(x, y, np.ones(n), alpha, m,
```

```
In [650]: plt.hist(np.array(thetas_ridge)[:,0], label = 'Ridge', alpha = .3)
    plt.hist(np.array(thetas_analytical)[:,0], label = 'Analytical', alpha =
    plt.hist(np.array(thetas_lasso)[:,0], label = 'Lasso', alpha = 1)

    plt.plot([2 for i in range (175)], [i for i in range(175)])

    plt.legend()
    plt.show()
```



```
In [648]: plt.hist(np.array(thetas_lasso)[:,1], label = 'Lasso', alpha = 1)
    plt.hist(np.array(thetas_ridge)[:,1], label = 'Ridge', alpha = 0.6)
    plt.hist(np.array(thetas_analytical)[:,1], label = 'Analytical', alpha =

    plt.plot([3 for i in range (175)], [i for i in range(175)])

    plt.legend()
    plt.show()
```



```
In [512]: plt.hist(sum(np.dot(x,transpose(thetas_lasso))), label = 'Lasso', alpha =
    plt.hist(sum(np.dot(x,transpose(thetas_ridge))), label = 'Ridge', alpha =
    plt.hist(sum(np.dot(x,transpose(thetas_analytical))), label = 'Analy', al
    plt.hist(y, label = 'Actual', alpha = 0.3)
    plt.legend()
    plt.show()
```



```
In [649]: plt.hist(sum(np.dot(1.5,transpose(thetas_lasso))), label = 'Lasso', alpha
    plt.hist(sum(np.dot(1.5,transpose(thetas_ridge))), label = 'Ridge', alpha
    plt.hist(sum(np.dot(1.5,transpose(thetas_analytical))), label = 'Analy',

    plt.plot([6.5 for i in range (175)], [i for i in range(175)])

    plt.legend()
    plt.show()
    #True Value?
```



```
In [504]: plt.plot(sum(np.dot(1.5,transpose(thetas_lasso))), label = 'Lasso', alpha
plt.plot(sum(np.dot(1.5,transpose(thetas_ridge))), label = 'Ridge', alpha
plt.plot(sum(np.dot(1.5,transpose(thetas_analytical))), label = 'Analy',

plt.plot([i for i in range(200)], [6.5 for i in range (200)])

plt.legend()
plt.show()
```


x axis: lambda | y axis: prediction

Comments and Summary

It is observed that Lasso and Ridge force down the coefficients of the regression equations. Lasso much more aggresively than ridge as seen in the above plot. While this may be useful in complex models, in this particular problem where our simulated data is randomly distributed around y = 2x + 3, analytical regression appears to work the best.

It can also be noted that the models perform the best for lambda < 1 in Lasso and lambda < 100 in Ridge.

5A

```
In [737]: import pandas as pd
    import seaborn as sns
    sns.set()
    from sklearn.model_selection import train_test_split
    import statsmodels.formula.api as smf
    from statsmodels.graphics.gofplots import ProbPlot
    import sklearn.linear_model
    import sklearn.metrics
    import sklearn.model_selection
In [569]: df = pd.read_csv("hw2_dataset.txt", delim_whitespace=True, names=['sales_'qualit']

In [569]: df = pd.read_csv("hw2_dataset.txt", delim_whitespace=True, names=['sales_'qualit']
```

Split to train, test and validate

Visualize the distribition of the features

10/2/18, 11:36 PM

Eyeball variance and correlations

Lot size, Year Built and Finished Square Feet seem to be good predictors at first glance

Lets take a closer look

```
In [604]: def plot_corr(df,size):
    corr = df.corr()
    fig, ax = plt.subplots(figsize=(size, size))
    ax.matshow(corr)
    plt.xticks(range(len(corr.columns)), corr.columns);
    plt.yticks(range(len(corr.columns)), corr.columns);
```

In [605]: plot_corr(df, 12)

In [608]: df.corr()

Out[608]:

	sales_price	finished_sq_ft	no_of_bedroom	no_of_bathroom	ac	garage_s
sales_price	1.000000	0.819470	0.413324	0.683685	0.288596	0.577
finished_sq_ft	0.819470	1.000000	0.557838	0.755273	0.267950	0.533
no_of_bedroom	0.413324	0.557838	1.000000	0.583447	0.234651	0.316
no_of_bathroom	0.683685	0.755273	0.583447	1.000000	0.324760	0.489
ac	0.288596	0.267950	0.234651	0.324760	1.000000	0.319
garage_size	0.577786	0.533766	0.316814	0.489898	0.319281	1.000
pool	0.146612	0.162396	0.134542	0.184153	0.102361	0.108
year_built	0.555516	0.441197	0.268692	0.512841	0.425588	0.461
quality	-0.758078	-0.695553	-0.378322	-0.682215	-0.413768	-0.547
style	0.357493	0.616842	0.380370	0.492983	0.130594	0.234
lot_size	0.224169	0.157525	0.126538	0.147007	-0.105305	0.152
adj_hwy	-0.050968	-0.060625	-0.028744	-0.050928	-0.040814	-0.001

```
In [656]: ordinal_vars = ['no_of_bedroom', 'no_of_bathroom', 'ac', 'pool', 'year_bu
cont_vars = list(set(df.columns) - set(ordinal_vars) - set(['sales_pri
model = smf.ols(formula='sales_price~' + '+'.join(list(df.columns[1:])),
yhat, resid = model.fit().fittedvalues , model.fit().resid
```


10/2/18, 11:36 PM

```
In [654]: sns.set(style="whitegrid")
ax = sns.boxplot(x=df['ac'] , y=df["sales_price"])
```


10/2/18, 11:36 PM

Both continous variables look normally distributed with their residuals having no pattern. There appears to be slight negatove correlation in the residuals of bedrooms and bathrooms at higher number of bedroom/bathrooms.

Feature Selection

```
In [666]:
          df.corr()['sales price'].sort values()
Out[666]: quality
                             -0.758078
          adj hwy
                             -0.050968
          pool
                             0.146612
          lot size
                             0.224169
                             0.288596
          ac
                             0.357493
          style
          no of bedroom
                             0.413324
          year built
                             0.555516
          garage size
                             0.577786
          no of bathroom
                             0.683685
          finished sq ft
                             0.819470
          sales price
                             1.000000
          Name: sales price, dtype: float64
```

pool, lot_size, AC, no_of_bedroom, year_built and garage size seem to be the best features according to the correlation matrix. Checking Lasso

```
In [716]: lasso = sklearn.linear model.Lasso(alpha=5000)
          lasso.fit(train X, train Y)
          yhat = lasso.predict(test X)
          sklearn.metrics.r2 score(yhat, test Y)
          list(zip(lasso.coef ,train X.columns))
Out[716]: [(150.73292204429302, 'finished_sq_ft'),
           (-0.0, 'no of bedroom'),
           (0.0, 'no_of_bathroom'),
           (0.0, 'ac'),
           (903.9011231145407, 'garage_size'),
           (0.0, 'pool'),
           (1443.231910666321, 'year_built'),
           (-16999.423032695362, 'quality'),
           (-8582.96089212173, 'style'),
           (1.5398623473056685, 'lot size'),
           (-0.0, 'adj hwy')]
```

Looks like lasso needs a very large alpha to feature select. High sale price could be affecting this. Log tranforming sale price

```
In [717]: lasso = sklearn.linear model.Lasso(alpha=0.01)
          lasso.fit(train X, np.log(train Y))
          yhat = lasso.predict(test X)
          sklearn.metrics.r2 score(yhat, test Y)
          list(zip(lasso.coef_,train_X.columns))
Out[717]: [(0.0003950393176841929, 'finished sq ft'),
           (0.0, 'no_of_bedroom'),
           (0.015435329286820208, 'no of bathroom'),
           (0.0, 'ac'),
           (0.034868752672289734, 'garage size'),
           (0.0, 'pool'),
           (0.004243370662446476, 'year_built'),
           (-0.09932725241921879, 'quality'),
           (-0.01629751896049492, 'style'),
           (6.0546711817545355e-06, 'lot size'),
           (-0.0, 'adj_hwy')]
In [718]: feature selected = ['finished sq ft', 'no of bathroom', 'garage size', 'y
                               'quality', 'style', 'lot size']
```

Looks like that did the trick. finished_sq_ft, no_of_bathroom, garage_size, year_built, lot_size, quality, style confirmed as good features for the model. Evaluating model performances.

Linear Model with all variables

```
In [723]: model = sklearn.linear_model.LinearRegression()
    model.fit(train_X, np.log(train_Y))
    yhat = model.predict(test_X)
    print ('r squared')
    print(sklearn.metrics.r2_score(np.exp(yhat), test_Y))
    print ('mean_squared_error')
    print(np.sqrt(sklearn.metrics.mean_squared_error(np.exp(yhat), test_Y)))

r squared
    0.7460820063287352
    mean_squared_error
    69080.48609533662
```

Linear Model with Feature Selected Variables

```
In [724]: model = sklearn.linear_model.LinearRegression()
    model.fit(train_X[feature_selected], np.log(train_Y))
    yhat = model.predict(test_X[feature_selected])
    print ('r squared')
    print(sklearn.metrics.r2_score(np.exp(yhat), test_Y))
    print ('mean_squared_error')
    print(np.sqrt(sklearn.metrics.mean_squared_error(np.exp(yhat), test_Y)))

r squared
    0.7482995891440712
    mean_squared_error
    68779.89038923314
```

Looks like feature selection did not make a difference

```
In [727]: | model = sklearn.linear model.Lasso(alpha = 0.01)
          model.fit(train X, np.log(train Y))
          yhat = model.predict(test X)
          print ('r squared')
          print(sklearn.metrics.r2 score(np.exp(yhat), test Y))
          print ('mean squared error')
          print(np.sqrt(sklearn.metrics.mean squared error(np.exp(yhat), test Y)))
          r squared
          0.7530501783940131
          mean squared error
          67031.16615394727
In [735]: | model = sklearn.linear model.Ridge(alpha = 5)
          model.fit(train X, np.log(train Y))
          yhat = model.predict(test X)
          print ('r squared')
          print(sklearn.metrics.r2_score(np.exp(yhat), test_Y))
          print ('mean squared error')
          print(np.sqrt(sklearn.metrics.mean squared error(np.exp(yhat), test Y)))
          r squared
          0.7476659600957913
          mean squared error
          68766.26171032534
```

Cross validation

```
In [751]: model = sklearn.linear model.Lasso(alpha = 0.01)
          cross val = sklearn.model selection.cross validate(model, train X, train
          for name, arr in cross val.items(): print(str(name) + ': ' + str(np.mean())
          fit time: 0.0024578213691711427
          score time: 0.00042994022369384765
          test score: 0.6689242814702787
          train score: 0.8048230446858824
In [760]: model = sklearn.linear model.Ridge(alpha = 100)
          cross val = sklearn.model selection.cross validate(model, train X, train
          for name, arr in cross val.items(): print(str(name) + ': ' + str(np.mean())
          fit time: 0.0033580303192138673
          score time: 0.00040417909622192383
          test score: 0.6800744016506195
          train score: 0.7901845136944875
In [753]: model = sklearn.linear model.LinearRegression()
          cross val = sklearn.model selection.cross validate(model, train X, train
          for name, arr in cross val.items(): print(str(name) + ': ' + str(np.mean(
          fit time: 0.003530752658843994
          score_time: 0.0004337906837463379
          test score: 0.668923429084489
          train score: 0.8048230446867354
```

Attempting to optimise lambda parameters

```
In [763]: test_scores = []
    for i in range(0,200):
        model = sklearn.linear_model.Ridge(alpha = i)
        cross_val = sklearn.model_selection.cross_validate(model, train_X, tr
        test_scores.append(np.mean(cross_val['test_score']))
```

```
In [764]: plt.plot(test_scores, label = 'Lasso', alpha = 1)
```

Out[764]: [<matplotlib.lines.Line2D at 0x7fb626ef9a20>]


```
In [765]: model = sklearn.linear_model.Ridge(alpha = 12)
    cross_val = sklearn.model_selection.cross_validate(model, train_X, train_
    for name, arr in cross_val.items(): print(str(name) + ': ' + str(np.mean())
```

fit_time: 0.002511477470397949 score_time: 0.0005710601806640625 test_score: 0.6910011523453953 train score: 0.8017770438714937

Improved Ridge Test Score to .69. Optimal Alpha at 12

```
In [772]: | test scores = []
          for i in range(0,4000):
              model = sklearn.linear model.Lasso(alpha = i)
              cross val = sklearn.model selection.cross validate(model, train X, tr
              test_scores.append(np.mean(cross_val['test_score']))
          plt.plot(test scores, label = 'Lasso', alpha = 1)
          small alpha may cause precision problems.
            ConvergenceWarning)
          /opt/conda/lib/python3.6/site-packages/sklearn/model selection/ valida
          tion.py:458: UserWarning: With alpha=0, this algorithm does not conver
          ge well. You are advised to use the LinearRegression estimator
            estimator.fit(X train, y train, **fit params)
          /opt/conda/lib/python3.6/site-packages/sklearn/linear model/coordinate
          descent.py: 477: UserWarning: Coordinate descent with no regularizatio
          n may lead to unexpected results and is discouraged.
            positive)
          /opt/conda/lib/python3.6/site-packages/sklearn/linear model/coordinate
          descent.py:491: ConvergenceWarning: Objective did not converge. You m
          ight want to increase the number of iterations. Fitting data with very
          small alpha may cause precision problems.
            ConvergenceWarning)
          /opt/conda/lib/python3.6/site-packages/sklearn/model selection/ valida
          tion.py:458: UserWarning: With alpha=0, this algorithm does not conver
          ge well. You are advised to use the LinearRegression estimator
            estimator.fit(X train, y train, **fit params)
          /opt/conda/lib/pvthon3.6/site-packages/sklearn/linear model/coordinate
In [773]: model = sklearn.linear model.Lasso(alpha = 1200)
          cross val = sklearn.model selection.cross validate(model, train X, train
          for name, arr in cross val.items(): print(str(name) + ': ' + str(np.mean())
          fit time: 0.0020616650581359863
          score time: 0.0005331158638000489
          test score: 0.6969680199807289
          train score: 0.8015423047712833
```

Improved Lasso's score to 0.69 as well. Optimal alpha at 1200

Summary and Interpretation: Even though Lasso and Ridge regression showed great promise in theory, their practical applications are yet to be seen. Using either Lasso or Ridge doesn't seem to improve the scores of the regression by a lot. Feature selection doesn't appear to help much either. While some features appear to be correlated, including them doesn't appear to adversely affect the score of the regression. For further improvement we could try and use p-values for feature selection or use a better algorithm altogether.

In []:	
---------	--