ES601 - Análise Linear de Sistemas

Atividade Teórica

12 de setembro de 2021

1. Atividade Teórica

Apresentação Resolução das questões de Análise Linear de Sistemas por Guilherme Nunes Trofino, 217276, sobre Sistemas de Segunda Ordem.

Questão 1

Exercício 1.1. Considere um sistema mecânico de segunda ordem descrito pela seguinte equação:

$$\boxed{m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + c\frac{\mathrm{d}x}{\mathrm{d}t} + kx = u} \quad \text{onde:} \quad \begin{cases} u, & \text{Degrau Unitário de 1N} \\ m = 1 \text{ kg}, & \text{Massa} \\ k = 1000 \text{ N/m}, & \text{Constante Elástica} \\ c = 1 \text{ Ns/m}, & \text{Amortecimento} \end{cases}$$
 (1.1)

Simule a resposta usando o Simulink com saída para workspace do MATLAB. Compare a resposta simulada e a resposta analítica.

Observação Utilizar a função array dentro do workspace.

Resolução. Primeiramente será necessário rescrever a equação que descreve o sistema para que a mesma possa ser representada no Simulink:

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + c\frac{\mathrm{d}x}{\mathrm{d}t} + kx = u$$
 Simplificação de Notação
$$m\ddot{x} + c\dot{x} + kx = u$$
 Isolamento de Variável
$$\ddot{x} = \frac{1}{m}u - \frac{c}{m}\dot{x} - \frac{k}{m}x$$
 Equação Simplifica (1.2)

Desta forma, a Equação 1.2 será representada no Simulink com o seguinte diagrama:

Figura 1.1: Representação da Simulação no Simulink

Realizando a simulação o seguinte gráfico será obtido:

Figura 1.2: Gráfico da Simulação no Simulink

Na sequência será necessário solucionar a equação analiticamente através da Transformada de Laplace:

$$m\frac{d^{2}x}{dt^{2}} + c\frac{dx}{dt} + kx = u$$

$$m\ddot{x} + c\dot{x} + kx = u$$

$$m(s^{2}X - sx_{0} - \dot{x}_{0}) + c(sX - x_{0}) + kX = \frac{1}{s}$$

$$X(ms^{2} + cs + k) = \frac{1}{s} + mx_{0}s + m\dot{x}_{0} + cx_{0}$$

$$X = \frac{1}{s} \frac{1}{ms^{2} + cs + k} + \frac{(ms + c)x_{0}}{ms^{2} + cs + k} + \frac{m\dot{x}_{0}}{ms^{2} + cs + k}$$
(1.3)

Note que $x_0 = \dot{x}_0 = 0$ como demonstrado:

$$m\ddot{x}_0 + c\dot{x}_0 + k0 = 0 \iff \boxed{\ddot{x}_0 = \dot{x}_0 = 0}$$

Desta forma apenas a **Solução Particular**, dependente do input, fará parte da continuação da resolução, pois a **Solução Homogênea**, dependente das condições inciais, será nula. Aplica-se assim frações parciais:

$$\frac{1}{s} \frac{1}{(ms^2 + cs + k)} = \frac{A}{s} + \frac{Bs + C}{s^2 + as + b} = \begin{cases} As^2 + B^2 = 0 & \to \boxed{B = -1/b} \\ Aas + Cs = 0 & \to \boxed{C = -a/b} \\ Ab = 1 & \to \boxed{A = +1/b} \end{cases} \text{ onde: } a = \frac{c}{m} \text{ e } b = \frac{k}{m}$$

Simplificando:

$$X = \frac{1}{1000} \frac{1}{s} - \frac{1}{1000} \frac{s+1}{(s^2+1s+1000)}$$

$$X = \frac{1}{1000} \frac{1}{s} - \frac{1}{1000} \frac{s+1}{(s+1/2)^2 + 3999/4}$$

$$X = \frac{1}{1000} \frac{1}{s} - \frac{1}{1000} \frac{s+1/2}{(s+1/2)^2 + 3999/4} - \frac{1}{2000} \frac{2}{\sqrt{3999}} \frac{\sqrt{3999}/2}{(s+1/2)^2 + 3999/4}$$

$$x(t) = \frac{u(t)}{1000} - \frac{1}{1000} e^{-\frac{t}{2}} \cos(\frac{\sqrt{3999}}{2}t) - \frac{1}{1000\sqrt{3999}} e^{-\frac{t}{2}} \sin(\frac{\sqrt{3999}}{2}t)$$

$$(1.5)$$

Equação acima será modelada em MATLAB através do seguinte algoritmo:

```
%%===========
%%
                          _____
           %% Mass
           %% Elastic Constant
k = 1000;
           %% Damping Constant
A = c/m;
B = k/m;
C = B - 1/4;
D = sqrt(C);
t0 = linspace(0,10,10000);
x0 = 1/B - 1/B.*(exp(-t0./2).*cos(D.*t0)) - 1/(B*D).*exp(-t0./2).*sin(D.*t0);
plot(t0, x0, out.tout, out.xout,'.')
LW = 2;
           %Line Width
FS = 16;
           %Font Size
xlabel("t [s]", "fontsize",FS); %Legend X
ylabel("x [m]", "fontsize",FS); %Legend Y
axis ([0 10 0 0.002]); grid; set(gca , "fontsize", FS); %Format
legend("x_{0}","x_{out}", "location", "southeast") %Legend Data
```


Figura 1.3: Comparação Simulação e Solução Analítica