[Chapter 4 solution]

4.15 Fitting straight lines to the $I_D - V_G$ plots gives the intercepts V_{GSi} ; 0.55 V and 0.65 V. Using $V_T = V_{Gi} - V_D/2$, gives V_T (0.5 μ m) = 0.5 V and V_T (2 μ m) = 0.6 V. Fitting straight lines to the $I_D - V_D$ plots gives:

L (µm)	$V_G - V_T(V)$	R _m (Ohms)	L (μm)	$V_G - V_T(V)$	R _m (Ohms)
0.5	1.4	283	2 .	1.4	1087
0.5	0.9	333	2	0.9	1613

From the $R_{\rm m}-L$ plot, $\Delta L=0.35~\mu m$ and R_{SD} = 220 ohms.

$$\mu_{\rm eff} = \frac{g_d L_{\rm eff}}{W C_{\rm ext} (V_G - V_T)} = \frac{9.2 \times 10^{-4} \, \rm{x} 1.65 \, \rm{x} 10^{-4}}{10^{-3} \, \rm{x} 3.45 \, \rm{x} 10^{-7} \, \rm{x} 1.4} = 315 \, \, \rm{cm}^2 \, / \, V - s$$

 $V_{\rm T}$ (0.5 µm) = 0.5 V; $V_{\rm T}$ (2 µm) = 0.6 V; ΔL = 0.35 µm; $R_{\rm SD}$ = 220 ohms; $\mu_{\rm eff}$ = 315 cm²/V-s

4.17 $R_m = V_{DS}/I_D$ versus $1/(V_{GS}-V_T)$ curves are measured on MOSFETs with various gate lengths. Curve fitting gives: y = 198.7 + 50x; y = 200.6 + 112x; y = 203 + 173x; y = 207.3 + 263x.

From the $R_m - 1/(V_{GS} - V_T)$ curves, determine R_{mi} and m. Then plot m versus L and R_{mi} versus m.

$$R_{m} = \frac{L - \Delta L}{W_{\rm eff} \mu_{o} C_{\rm ext} (V_{GS} - V_{T})} + \frac{\theta(L - \Delta L)}{W_{\rm eff} \mu_{o} C_{\rm ext}} + R_{SD}; \quad \frac{dR_{m}}{d[1/(V_{GS} - V_{T})]} = m = \frac{L - \Delta L}{W_{\rm eff} \mu_{o} C_{\rm ext}}; \\ \frac{dm}{dL} = \frac{1}{W_{\rm eff} \mu_{o} C_{\rm ext}}; \\ \frac{dR_{min}}{dm} = t_{min} = t$$

 $\Delta L = 0.13 \ \mu \text{m}, \ \mu_0 = 475 \ \text{cm}^2/\text{V-s}, R_{SD} = 196 \ \Omega, \ \theta = 0.04 \ \text{V}^{-1}$

 $R_{\rm m}$

4.18 Yes, if the gate-induced electron channel extends into the source and drain at high gate voltages.

4.19
$$R_{SD} = 110 \Omega$$
, $\Delta_L = 0.4 \mu m$.
$$R_m = \frac{V_D}{I_D} = \frac{t_{ox}(L - \Delta L)}{W \mu_{off} K_{ox} \varepsilon_o (V_G - V_T)}$$
; $Slope = \frac{dR_m}{L} = \frac{t_{ox}}{W \mu_{off} K_{ox} \varepsilon_o (V_G - V_T)}$

 $t_{ax} \stackrel{\bigvee}{\cup} \Rightarrow V_T \stackrel{\bigvee}{\cup} \Rightarrow (V_G - V_T) \stackrel{\cap}{\cap} \cdot \cdot slope \stackrel{\bigvee}{\cup}$

4.20

Gate

L

Gate

[Chapter 5 solution]

Exercise 5.2는 solution이 있음.

$$\begin{aligned} &\mathbf{5.1} \text{ (a) } \delta C = \frac{n_T(0)}{2N_D} C_0 \Bigg(\exp \Bigg(-\frac{t_2}{\tau_e} \Bigg) - \exp \Bigg(-\frac{t_1}{\tau_e} \Bigg) \Bigg) = \Delta C_o \Bigg(\exp \Bigg(-\frac{t_2}{\tau_e} \Bigg) - \exp \Bigg(-\frac{t_1}{\tau_e} \Bigg) \Bigg) \text{ is a maximum when } \delta C/\mathrm{dT} = 0. \\ &\frac{d\delta C}{dT} = \Delta C_o \Bigg[e^{-t_2/\tau_e} \Bigg(-\frac{t_2}{\tau_e} \frac{d(1/\tau_e)}{dT} \Bigg) - e^{-t_1/\tau_e} \Bigg(-\frac{t_1}{\tau_e} \frac{d(1/\tau_e)}{dT} \Bigg) \Bigg] = \Delta C_o \frac{d(1/\tau_e)}{dT} \Bigg[e^{-t_2/\tau_e} \Bigg(-\frac{t_2}{\tau_e} \Bigg) - e^{-t_1/\tau_e} \Bigg(-\frac{t_1}{\tau_e} \Bigg) \Bigg] = 0 \end{aligned}$$
 This can be equal to zero only if the []=0, i.e., $t_1 \exp(-t_1/\tau_e) = t_2 \exp(-t_2/\tau_e)$ or $\Bigg[\frac{\tau_{e,\max} = \frac{t_2 - t_1}{\ln(t_2/t_1)} = \frac{t_1(r-1)}{\ln(r)} \Bigg]$ (b) $\delta C = \Delta C_o \Big(\exp(-t_2/\tau_e) - \exp(-t_1/\tau_e) \Big) = \Delta C_o \Big(\exp(-(t_2/t_1)t_1/\tau_e) - \exp(-t_1/\tau_e) \Big);$ using $\mathbf{x} = \exp(-t_1/\tau_e)$ and $\mathbf{r} = t_2/t_1$ gives $\delta C = \Delta C_o (\mathbf{x}^r - \mathbf{x})$. The peak in the δC -x curve occurs when $\delta C/\mathrm{dx} = 0$. This gives $x_{\max} = r^{-1/(r-1)}$.

Substituting xmax into the original "δC" equation give

$$\delta C_{\text{max}} = \Delta C_o(x_{\text{max}}^r - x_{\text{max}}) = \Delta C_o x_{\text{max}}(x_{\text{max}}^{r-1} - 1) = \Delta C_o r^{-1/(r-1)} (r^{-(r-1)/(r-1)} - 1) = \Delta C_o r^{-1/(r-1)} (1/r - 1)$$

$$\delta C_{\max} = \Delta C_o r^{-1/(r-1)} \left(\frac{1}{r} - 1 \right) = \Delta C_o \frac{1-r}{r r^{1/(r-1)}} = \Delta C_o \frac{1-r}{r^{r/(r-1)}}$$

5.14 The slope = 8/0.0032 = (E_C-E_T)/2.3k = 2500 giving E_C - E_T = 0.5 eV. For the intercept: The plot shows $\tau_e T^2$ = 100 at 1/T = 0.0032 \Rightarrow 1/T = 0 occurs at $\tau_e T^2$ down by eight decades giving the intercept = $1/\sigma_n \gamma_n$ = 10^{-6} \Rightarrow σ_n = 10^{-15} cm².

$$E_{\rm C} = E_{\rm T} = 0.5 \text{ eV}$$
 and $\sigma_{\rm a} = 10^{-15} \text{ cm}^2$

5.21 When the impurity is introduced, it is neutral. Since it accepts electrons, it must be an acceptor. A donor already has an electron in its neutral state and does not accept any more electrons from the conduction band. The wafer resistivity increases since *n* decreases.

[Chapter 6 solution]

6.1 The flatband voltage is $V_{FB} = E_G/2q - \phi_F$, where $\phi_F = (kT/q)\ln(N_A/n_i) = 0.357 \text{ V}; V_{FB} = 0.56 - 0.357 = 0.203 \text{ V}.$

$$\frac{C_{FB}}{C_{ex}} = \frac{1}{1 + 136/1.5 \times 10^{-6} \times 10^{8}} = 0.524$$

Since $\chi(Xx)=\chi(Si)$, therefore $E_{c}(Xx)=E_{c}(Si)$ and $V_{FB}=-E_{G}/2q$ - $\phi_{F}=-0.56$ -0.357=-0.917 V

$$V_{\text{FB}}(a) = 0.203 \text{ V}, C_{\text{FB}}/C_{0\text{X}} = 0.524, V_{\text{FB}}(b) = -0.917 \text{ V}$$

6.7 (a) At flatband, $C_{lf}/C_{ox} = 1/(1+C_{ox}/C_{lf}) = 1/(1+K_{ox}L_D/K_{st_{ox}})$, where the Debye length is $L_D = [kTK_s\epsilon_0/q^2(p+n)]^{1/2} = [kTK_s\epsilon_0/q^22n_i]^{1/2} \approx 29 \ \mu m$ in Si at room temperature. Since $L_D >> t_{ox}$ we find $C_{lf}/C_{ox} \approx 0$ at flatband. For V_G lower or higher than V_{FB} , the $C_{lf}/C_{ox} - V_G$ curve is symmetrical with respect to $V_G = 0$.

(b) The width of the curve decreases slightly.

6.15
$$V_T \sim V_{FB}$$
; $V_{FB} = \phi_{MS} - \frac{Q_f}{C_{ox}} - \frac{1}{C_{ox}} \int_0^{t_{ox}} \frac{x}{t_{ox}} \rho_{ox} dx$; $\Delta V_T = \Delta V_{FB} = -\frac{1}{C_{ox}} \int_0^{t_{ox}} \frac{x}{t_{ox}} \rho_{ox} dx = -\frac{1}{C_{ox}} \int_0^{t_{ox}} \frac{x}{2} \rho_{ox} dx = -0.5 V$

$$\rho_{\rm ex} = 0.5 \times 2 \times 10^{-8} / 10^{-6} = 10^{-2} \ C / cm^3$$