Contents

- 1 Introduction

1 Introduction

2 Topological Spaces

Problem 2-5: For each of the following properties, give an example consisting of two subsets $X,Y\subseteq\mathbb{R}^2$, both considered as topological spaces with their Euclidian topologies, together with a map $f: X \to Y$ that has the indicated property. (a) f is open but neither closed nor continuous.

- (b) f is closed but neither open nor continuous.
- (c) *f* is continuous but neither open nor closed.
- (d) f is continuous and open but not closed.
- (e) *f* is continuous and closed but not open. (f) f is open and closed but not continuous.

• T is the trivial topology on $\{x, y\}$

- X is the one-point topology on the set $\{x, y, z\}$ on x
- Then we can proceed like so:
- (a) Consider the inclusion map $f: T \to X$. This map is not continuous

because the preimage $f^{-1}(\{x\}) = \{x\}$ of the open set in X is not open in T. The map is also not closed because the image $f({x,y}) = {x,y}$

- not continuous because the preimage of the open set $\{y\}$ in X is not open in T. The map is also not open because the image $f(\{x,y\}) =$ $\{y,z\}$ is not open in X. The image of the lone non-null closed set $f(\lbrace x,y\rbrace)=\lbrace y,z\rbrace$ is closed, however, implying that the map is closed. (c) Consider the identity map $f:D\to T$. This map is continuous (since
- closed, since the image of the clopen set $\{x\}$ in D is neither closed nor open in T. (d) Consider the constant map $f: D \to X$ sending all elements of T to x. This map is continuous since any map from a discrete space is

any map from a discrete space is continuous), but neither open nor

- Similar to (d), this map is continuous, but the image of any set in T is either \emptyset or $\{y\}$, both of which are closed. Similar to the reasoning in (d), this map is closed but not open. (f) Consider the identity map $f: T \to D$. This map is open and closed, since the image of the lone non-null clopen set $\{x,y\}$ is clopen in D,
- **Problem 2-6**: Suppose X and Y are topological spaces, and $f: X \to Y$ is

(c) f is continuous if and only if $f^{-1}(\operatorname{Int} B) \subseteq \operatorname{Int} f^{-1}(B)$ for all $B \subseteq Y$. (d) f is open if and only if $f^{-1}(\operatorname{Int} B) \supseteq \operatorname{Int} f^{-1}(B)$ for all $B \subseteq Y$.

(a) f is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$. (b) f is closed if and only if $f(\overline{A}) \supseteq \overline{f(A)}$ for all $A \subseteq X$.

 $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)})$

(a) (\Longrightarrow) By the "unit identity" above, we have,

• $f(A) \subseteq B \iff A \subseteq f^{-1}(B)$ (adjunction identity)

• $f^{-1}(f(A)) \supseteq A$ (unit identity) • $f(f^{-1}(B)) \subseteq B$ (co-unit identity)

unit identity" above:

thus,

that $f^{-1}(f(A))$ is closed. Then this is equivalent to,

 $f(\overline{A}) \subseteq \overline{f(A)}$

Where the last equality follows from the fact that f is continuous, so

 $f(f^{-1}(U)) \subseteq U$ So,

 $\overline{f(f^{-1}(U))} \subset \overline{U} = U$

Where the last equality follows from U closed. Then by the assumption,

We wish to show that $f^{-1}(U)$ is closed in X. First note that by the "co-

$$\overline{f(A)}\subseteq\overline{f\left(\overline{A}\right)}\subseteq f\left(\overline{A}\right)$$

 $f(\overline{A}) \subseteq f(\overline{A})$. Then $A \subseteq \overline{A} \Longrightarrow f(A) \subseteq f(\overline{A}) \Longrightarrow \overline{f(A)} \subseteq f(\overline{A})$, and

(b) (\Longrightarrow) Suppose f is closed. Then $f(\overline{A})$ is closed since \overline{A} is closed so

 $f^{-1}(\operatorname{Int} B) \subset \operatorname{Int} f^{-1}(B) \quad \forall B \subset Y$ $\Longleftrightarrow X - \operatorname{Int} f^{-1}(B) \subseteq X - f^{-1}(\operatorname{Int} B) = f^{-1}(X - \operatorname{Int} B) \quad \forall B \subseteq Y$

 $\Longleftrightarrow \overline{X - f^{-1}(B)} \subseteq f^{-1} \left(\overline{X - B} \right) \quad \forall B \subseteq Y$

 $\Longleftrightarrow \overline{f^{-1}(X-B)} \subseteq f^{-1}\big(\overline{X-B}\big) \quad \forall B \subseteq Y$

So,

Which is equivalent to,

 $f(f^{-1}(B)) \subseteq \overline{B} \quad \forall B \subseteq Y \iff A \subseteq f^{-1}(f(A)) \quad \forall A \subseteq X$ Since for any subsets $A\subseteq X$ and $B\subseteq Y$ we have $f(A)\subseteq B \Longleftrightarrow A\subseteq$ $f^{-1}(B)$. To show this we have: (\Longrightarrow) $\overline{f(A)} \supseteq f(\overline{f^{-1}(f(A))}) \supseteq f(\overline{A})$

(d) (\Longrightarrow) We have, Int $f^{-1}(B) \subseteq f^{-1}(B)$

But since f is open by assumption, that makes $f(\operatorname{Int} f^{-1}(B))$ a subset

not just of B but of Int B. So: $f(\operatorname{Int} f^{-1}(B)) \subset \operatorname{Int} B$

Int $f^{-1}(f(U)) \subseteq f^{-1}(f(U)) \subseteq U$

Where the leftmost inclusion follows from the assumption applied to

Proof: Define the following topological spaces: • D is the discrete topology on $\{x, y\}$

is not closed in X. The image of the lone non-null open set $f(\{x,y\}) =$ $\{x,y\}$ is open, however, implying that the map is open. (b) Consider the map $f: T \to X$ mapping $x \mapsto y$ and $y \mapsto z$. This map is

continuous. The image of any set in D is either \emptyset or $\{x\}$, both of which

are open in X. In particular, the image of any open set is open. But the image of the closed set $\{x\}$ in D is $\{x\}$, which is not closed in X. (e) Consider the constant map $f: D \to X$ sending all elements of T to y.

- but it is also not continuous because the preimage $f^{-1}(\{x\}) = \{x\}$ of the open set in D is not open in T.
- *Proof*: We will use repeatedly the following set-theoretic identities that hold for any function $f: X \to Y$ and subsets $A \subseteq X$, $B \subseteq Y$:
- From which it follows that, $\overline{A}\subseteq \overline{f^{-1}\big(\overline{f(A)}\big)}=f^{-1}\big(\overline{f(A)}\big)$
 - By the "adjunction identity" above. (\Leftarrow) Suppose $f(\overline{A}) \subseteq f(A)$ for all $A \subseteq X$, and U is a closed set in Y.
 - $f\!\left(\overline{f^{-1}(U)}\right)\subseteq\overline{f(f^{-1}(U))}\subseteq U$ So that $\overline{f^{-1}(U)} \subseteq f^{-1}(U)$, implying that $f^{-1}(U)$ is closed.

 (\Leftarrow) Suppose $\overline{f(A)} \subseteq f(\overline{A})$ for all $A \subseteq X$ and U is closed in X. Since U is closed $\overline{U}=U$, so $\overline{f(U)}\subseteq f(\overline{U})=f(U)$. It follows that f(U) is

 $\Longleftrightarrow \overline{f^{-1}(B)} \subseteq f^{-1}\left(\overline{B}\right) \quad \forall B \subseteq Y$ Next we can show that,

 $\overline{f^{-1}(B)} \subseteq f^{-1}\left(\overline{B}\right) \quad \forall B \subseteq Y \Longleftrightarrow f\left(\overline{A}\right) \subseteq \overline{f(A)} \quad \forall A \subseteq X$

$$(\longleftarrow) \quad \overline{f^{-1}(B)} \subseteq f^{-1}\Big(\overline{f(f^{-1}(B))}\Big) \subseteq f^{-1}\Big(\overline{B}\Big)$$

Where in either case, the leftmost inclusion follows from substitution of either $\overline{f(A)}$ or $\overline{f^{-1}(B)}$ into the antecedent, and the rightmost inclusion

follows from the "(co-)unit" identities.

 $\implies f(\operatorname{Int} f^{-1}(B)) \subseteq f(f^{-1}(B)) \subseteq B$

 $\Longrightarrow \operatorname{Int} f^{-1}(B) \subset f^{-1}(\operatorname{Int} B)$ (\Leftarrow) Let U be an open set in X. Then,

Int $f(U) \subseteq f(\operatorname{Int} f^{-1}(f(U))) \subseteq f(U)$

 $f(U) \subseteq Y$. It follows that f(U) is open.