Logistic regression

Jeff Leek

@jtleek

www.jtleek.com

Case-control study for genetic association

$$C_i = b_0 + b_1G_i + e_i$$

C = 1 if case, 0 if control G = 0 if C, 1 if T

Not continuous $C_{i} = b_{0} + b_{1}G_{i} + e_{i}$

$$C = 1$$
 if case, 0 if control $G = 0$ if C , 1 if T

Between 0 and 1 $Pr(C_i = 1) = b_0 + b_1G_i$

Always less than 0 $log(p) = b_0 + b_1G_i$

$$C = 1$$
 if case, 0 if control $G = 0$ if C , 1 if T $p = Pr(C = 1)$

Log odds can be any number

$$log(p/(1-p)) = b_0 + b_1G_i$$

$$C = 1$$
 if case, 0 if control $G = 0$ if C , 1 if T $p = Pr(C = 1)$

Increase in log odds of case status given genotype

$$log(p/(1-p)) = b_0 + b_1G_i$$

$$C = 1$$
 if case, 0 if control $G = 0$ if C , 1 if T $p = Pr(C = 1)$

Odds ratio of 2

Odds/log odds

Quantity	Log Odds	Odds
Definition	log(p/(1-p))	p/(1-p)
In logistic regression	b	exp(b)
Definition of "no" effect	0	1

Notes and further reading

- Logistic regression is a "generalized linear model"
 - https://en.wikipedia.org/wiki/Generalized_linear_model
- A nice set of lecture notes
 - http://data.princeton.edu/wws509/notes/
- This is again a huge topic and we have only scratched the surface.