Лекции по математике, 1 курс Разные авторы

Ряды Фарея Скрипченко Александра Сергеевна

Теорема 1. $\pi \notin \mathbb{Q}$.

Доказательство. Заметим, что

$$tg x = \frac{x}{1 - \frac{x^2}{3 - \frac{x^2}{5 - \dots}}}.$$

Кроме того, t
g $\frac{\pi}{4}=1.$ Предположим, что π рационально, тогда
 $t=\frac{\pi}{4}$ рационально, и

$$1 = \frac{t}{1 - \frac{t^2}{3 - \frac{t^2}{5 - \dots}}},$$

т.е. бесконечная цепная дробь, противоречие.

Определение 1. Последовательность Фарея \mathcal{F}_n — подмножество $[0,1] \cap \mathbb{Q}$, в которое входят все дроби со знаменателем не больше n, упорядоченные по возрастанию.

Вопрос: как понять, куда ставить новые дроби, и как устроены расстояния между соседями?

Лемма 2. Пусть $\frac{a}{b},\frac{c}{d},\frac{p}{q}$ — подряд идущие элементы последовательности, и $\frac{a}{b}<\frac{p}{q}<\frac{c}{d}$. Тогда bp-aq=cq-pd=1.

Теорема 3 (Дирихле). $\forall x \in \mathbb{R}, \forall N \in \mathbb{N} \exists p,q \leq N: |x-\frac{p}{q}| < \frac{1}{Nq}.$

Доказательство. Пусть $x \in [0,1]$. Рассмотрим последовательность \mathcal{F}_n . Пусть $\frac{c}{d} < x < \frac{a}{b}$ — соседние члены этой последовательности и $\frac{e}{f}$ — их медианта. Заметим, что f = b + d > N; кроме того, длины отрезков, на которые медианта разобьёт $(\frac{c}{d}; \frac{a}{b})$ — это $\frac{1}{fb}$ и $\frac{1}{fd}$. Наш x попал на один из этих отрезков. Пусть, не умаляя общности, это отрезок $(\frac{a}{b}; \frac{e}{f})$; тогда возьмём приближение $\frac{a}{b}$, оно подходит.

Теорема 4 (Рот). $\forall \alpha \notin Q, \varepsilon > 0$ существует лишь конечное количество приближений вида $\frac{p}{q}$ таких, что $|\alpha - \frac{p}{q}| < \frac{1}{q^{2+\varepsilon}}$.

Определение 2. Дзета-функция $\zeta(s)$ — сумма ряда $a_n=n^{-s}$. Определена везде, кроме s=1. Если $\mathrm{Re}(s)>1$, то ряд абсолютно сходится; если $s=-2k, k\in\mathbb{N}$, то $\zeta(s)=0$ («тривиальные нули»); все остальные нули называются нетривиальными.

Гипотеза Римана. Если s — нетривиальный ноль, то $Re(s) = \frac{1}{2}$.

Определение 3. Функция Мёбиуса $\mu(n)$ —

$$\mu_n = \begin{cases}
0, n \text{ несвободно от квадратов.} \\
(-1)^k, k - \text{количество простых множителей в } n.
\end{cases}$$

Определение 4. Функция Мёртенса $M(n) - M(n) = \sum_{i=1}^{n} \mu(i)$.

Теорема 5. Гипотеза Римана равносильна следующему утверждению:

$$\forall \varepsilon > 0 \exists C > 0 : M(n) \le Cn^{\frac{1}{2} + \varepsilon}.$$

Пусть L(n) — количество элементов в \mathcal{F}_n и α_v-v -й элемент этой последовательности. Обозначим $\delta_v=\alpha_v-\frac{v}{L(n)}.$

Теорема 6. Гипотеза Римана равносильна следующему утверждению:

$$\forall \varepsilon > 0 \exists C > 0 : \sum_{v=1}^{L(n)} |\delta_v| \le C n^{\frac{1}{2} + \varepsilon}.$$