

Finding Similar Items: Locality Sensitive Hashing

Vladimir Vlassov

Outline

- Applications
- Shingling
- Min-hashing
- LSH: Locality-Sensitive Hashing
- Distance Measures

A Fundamental Data-mining Problem

Examine data for "similar" items

based on some similarity or distance measure, such as Jaccard distance/similarity, Euclidean distances, cosine distance, edit distance, Hamming distance

A Fundamental Data-mining Problem (cont.)

Find "similar" items

Given

- high-dimensional data points x₁, x₂, ...;
- a distance function d(x_i, x_j) that quantifies the "distance" between x_i and x_i;
- a distance threshold s the max size of near neighbors Find all pairs of data points (x_i, x_j) that are within the distance threshold: $d(x_i, x_i) \le s$, i.e., at most s apart from each other
 - Naïve solutions is O(N²)
 - Some optimization allows O(N)

Jaccard Similarity

Many data-mining problems can be expressed as finding "similar" sets

The Jaccard similarity of two sets, C1 and C2, is the fraction of common items, i.e., the fraction of their intersection – size of their intersection divided by the size of their union:

sim(C1, C2) = |C1∩C2| / |C1UC2|

Jaccard distance: d(C1, C2) = 1 - |C1∩C2| / |C1∪C2|

Jaccard Similarity

Similar Documents

Given a body of documents, e.g., the Web, find pairs of *textually similar documents* with a lot of text in common (*near duplicate pairs*)

Examples:

- Mirror sites, or approximate mirrors
 - quite similar, but are rarely identical
 - Don't want to show both in a search result.
- Plagiarism, including large quotations.
- Similar news articles at many news sites.
 - Articles from the same source, e.g. the Associated Press
 - Cluster articles by "same story"

Collaborative filtering

Find pairs of "similar" customers with similar tastes – having similar "baskets" with rather high Jaccard similarity (≥ 20%)

Dual: Find pairs of "similar" products bought by similar sets of customers

Combine similarity-finding with clustering to group mutually-similar products.

 A more powerful notion of customer-similarity by asking whether they made purchases within many of the same groups.

Example: NetFlix users with similar tastes in movies, for recommendation systems. (*Dual*: movies with similar sets of fans).

Finding Similar Documents

Problems:

- Common text, not common topic.
- Many small pieces of one document may appear out of order in another.
 - Special cases are easy, e.g., identical documents, or one document contained in another
- Too many documents to compare all pairs, or too many pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Techniques for Similar Documents

- Shingling: Convert documents to sets.
- Minhashing: Convert large sets to short signatures, while preserving similarity.
- 3. Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs

The Big Picture

Step 1: Shingling: Convert documents to sets

Documents as Sets

Step 1: Shingling: Convert documents to sets

Simple approaches:

- Document = set of words appearing in document
- Document = set of "important" words
- Don't work well for this application. Why?

Need to account for ordering of words!

A different way: **Shingles!**

Define: Shingles

A **k-shingle** (or **k-gram**) for a document is a sequence of *k* tokens that appears in the document

- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for examples

```
Example: k = 2; document D_1 = abcab
Set of 2-shingles: S(D_1) = \{ab, bc, ca\}
```

Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Similarity Metric for Shingles

Document D is a set of its k-shingles C=S(D)

Equivalently, each document is a 0/1 vector in the space of *k*-shingles

- Each unique shingle is a dimension an element of the vector representing the document
 (1 the shingle is in the document; 0 it is not)
- Vectors are very sparse

A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Working Assumption and Observation

Documents that have lots of shingles in common have similar text, even if the text appears in different order

- Changing a word only affects k-shingles within distance k
 from the word.
- Reordering paragraphs only affects the 2*k* shingles that cross paragraph boundaries.
- Example: k = 3, "The dog which chased the cat" versus "The dog that chased the cat".
 - Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, h_c.

Shingle Size

Caveat: k should be large enough, or most documents will have most shingles.

In other words, **k** should be large enough that the probability of any given shingle appearing in any given document is low.

- k = 5 is OK for short documents, e.g. emails
- k = 9, 10 is better for long documents

Example

Find similarity of D_1 = "editorial" and D_2 = "factorial"

```
k=1
sim(\{e, d, i, t, o, r, a, l\}, \{f, a, c, t, o, r, i, l\}) = 6/10 = 0.6
k=5
sim({edito, ditor, itori, toria, orial}, {facto, actor, ctori, toria, orial}) = 2 / 8 = 0.25
k=9
sim(\{editorial\}, \{factorial\}) = 0
```


Compressing Shingles

To compress long shingles, one can hash them to (say) 4 bytes to fit in integer

Represent a document by the set of hash values of its *k*-shingles

- For instance, one could construct the set of 9-shingles for a document and then map each of those 9-shingles to a bucket number in the range 0 to 2³² – 1.
 - Each shingle is represented by 4B integer instead of 9B string.

Motivation for Minhash/LSH

Suppose we need to find near-duplicate documents among N = 1 million documents

Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs – complexity $O(N^2)$

- $N(N-1)/2 \approx 5*10^{11}$ comparisons
- At 10⁵ secs/day and 10⁶ comparisons/sec, it would take **5 days**

For N = 10 million, it takes more than a year...

Step 2: *Minhashing*: Convert large sets to short signatures, while preserving similarity

The set of strings of length *k* that appear in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

Basic Data Model: Sets

Many similarity problems can be formalized as *finding* subsets of some universal set that have significant intersection.

Examples include:

- Documents represented by their sets of shingles (or hashes of those shingles).
- 2. Similar customers or products.

Remind: Jaccard Similarity of Sets

The *Jaccard similarity* of two sets is the size of their intersection divided by the size of their union.

$$Sim(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Jaccard distance: $d(C_1, C_2) = 1 - Sim(C_1, C_2)$

Example

- Size of intersection = 3; size of union = 4,
- Jaccard similarity: $sim(C_1, C_2) = 3/4$
- Distance: $d(C_1, C_2) = 1 sim(C_1, C_2) = 1/4$

From Sets to Boolean Matrices

Visualise a collection of sets as *characteristic matrix*

Rows correspond to elements (shingles) of the universal set.

Columns correspond to sets (documents)

1 in row e and column S if and only if e is a member of S,
 i.e. e ∈ S

Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)

- Can be computed using bitwise AND and bitwise OR
- Typical matrix is sparse!

Example: Jaccard Similarity of Columns (Sets)

$$Sim(C_1, C_2) = 2 / 5 = 0.4$$

Four Types of Rows

Given columns C_1 and C_2 , rows may be classified as:

C_1	C_2		
1	1	a	1 in both columns
1	0	b	columns are different
0	1	C	
0	0	d	0 in both columns

Denote, a = # rows of type a, etc. Note $Sim(C_1, C_2) = a/(a+b+c)$.

Outline: Finding Similar Columns

So far:

- Documents → Sets of shingles
- Represent sets as boolean column-vectors in a matrix

Next goal: Find similar columns while computing *small signatures*

Similarity of columns == similarity of signatures

Outline: Finding Similar Columns (cont)

- 1. Compute **signatures of columns** = small summaries of columns.
- 2. Examine *pairs of signatures* to find similar signatures.
 - Essential: Similarities of signatures and columns are related.
- 3. Optional: check that columns with similar signatures are really similar.

Warnings:

- Comparing all pairs may take too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)

MinHashing

Let *h* is a hash function that maps the members of a set *S* to distinct integers.

MinHash $h_{\min}(S)$ is the member $e \in S$ with the minimum value of h(e)

If for two sets S_1 and S_2 , $h_{\min}(S_1) = h_{\min}(S_2) = e$, then $e \in S_1 \cap S_2$

The probability of this to be true is $|S_1 \cap S_2|/|S_1 \cup S_2|$, i.e. the *Jaccard similarity*:

$$Pr[h_{min}(S_1) = h_{min}(S_2)] = Sim(S_1, S_2)$$

MinHash Signature of a Set

Key idea:

- Take k (e.g. k=100) independent hash functions, e.g.,
 h(x) = (ax+b)%c
- Apply the functions to the elements (the row numbers with value 1), to compute a vector of k minHash values for a set S.

The resulting column-vector of k minHash values is a signature of the set S

MinHashing using Permutations

- Permute the rows.
- Define minhash function for this permutation, h(C) = the number of the first (in the permuted order) row in which column C has 1.
- Apply, to all columns, several (e.g., 100) randomly chosen permutations to create a signature for each column.
- Result is a signature matrix: columns = sets, rows = minhash values, in order for that column.

Using several permutations is equivalent to using several hash functions of the type h(x) = (ax + b)%c

Signature Matrix

Thus, we can form from characteristic matrix **M** a **signature matrix**, in which the *i*-th column of **M** is replaced by the minhash signature for (the set of) the *i*-th column.

Minhashing – Example

Hash Ir functions (permutations)

Input	matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M (indexes of rows with first 1after permutations)

3	1	3	1
2	~	თ	1
1	2	1	2

Similarity of Signatures

For two sets S_1 and S_2 , the probability

$$\Pr[h_{\min}(S_1) = h_{\min}(S_2)]$$

is the fraction of the minHash functions in which they agree

 i.e. the number of rows in the signature matrix with the same values in S₁ and S₂ columns divided by the total number of rows in the signature k.

This probability is *the Jacard similarity* of the two corresponding sets.

$$Pr[h_{min}(S_1) = h_{min}(S_2)] = Sim(S_1, S_2)$$

Similarity of Signatures (cont)

- The similarity of signatures is the fraction of the minhash functions (rows) in which they agree.
- Thus, the expected similarity of two signatures equals the Jaccard similarity of the columns or sets that the signatures represent.
 - And the longer the signatures, the smaller will be the expected error.

Similarity of Signatures – Example

Hash Ir functions (permutations)

Input matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M (indexes of rows with first 1after permutations)

2	1	2	1
2	1	3	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0,75	0,75	0	0
Sig/Sig	0,67	1	0	0

Scalability Issue with Permutations

- Suppose 1 billion rows (shingles).
- Hard to pick a random permutation of 1...billion.
- Also, representing a random permutation requires 1 billion entries.
- And accessing rows in permuted order may lead to thrashing.
 - Better yet to use several has functions, say, 100, to "generate" 100 "permutations" of rows and compute minimal hash value for elements (rows with 1) of each column corresponding to a set

Implementation

```
for each row r do begin
  for each hash function h_i do
     compute h_i(r);
  for each column c
    if c has 1 in row r
      for each hash function h_i do
        if h_i(r) is smaller than M(i, c) then
             M(i, c) := h_i(r);
end;
```


Step 3: Locality-Sensitive Hashing

Scalability Issue

Assume we have build a signature matrix

Need to compare signatures (columns) in pairs for similarity $- O(N^2)$

Checking all pairs is hard

Example: 10⁶ columns implies (10⁶ by 2)

 $=\sim 5*10^{11}$ column-comparisons.

At 1 microsecond/comparison: 6 days.

$$\frac{n!}{k!(n-k)!}$$

LSH: Locality-Sensitive Hashing

- General idea: Generate from the collection of all elements (signatures in our example) a small list of candidate pairs: pairs of elements whose similarity must be evaluated.
- For signature matrices: Hash columns to many buckets, and make elements of the same bucket candidate pairs.

Candidate Generation from Minhash Signatures

- Pick a similarity threshold t, a fraction < 1.
- We want a pair of columns c and d of the signature matrix
 M to be a candidate pair if and only if their signatures
 agree in at least fraction t of the rows.
 - I.e., M(i, c) = M(i, d) for at least fraction t values of i.

LSH for MinHash Signatures

Big idea: hash columns of signature matrix *M* several times.

Arrange that (only) similar columns are likely to hash to the same bucket.

Candidate pairs are those that hash at least once to the same bucket.

Partition into Bands

Partition into Bands (cont)

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make k as large as possible.
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band.
- Tune b and r to catch most similar pairs, but few non-similar pairs.

Hash Function for One Bucket

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are *identical* in a particular band.
- Hereafter, we assume that "same bucket" means "identical in that band."

Example: Bands

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40Mb.
 - They fit easily into main memory.
- Want all 80%-similar pairs of documents.
- 5,000,000,000 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 raws/band.

Suppose C₁ and C₂ are 80% Similar

- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability C_1 , C_2 are *not* similar in any of the 20 bands: $(1-0.328)^{20} = 0,00035$.
 - i.e., about 1/3000th of the 80%-similar underlying sets are false negatives.

Suppose C₁ and C₂ Only 40% Similar

- Probability C_1 , C_2 identical in any one particular band: $(0.4)^5 = 0.01$.
- Probability C_1 , C_2 identical in ≥ 1 of 20 bands: $\leq 20 * 0.01 = 0.2$.
- But false positives much lower for similarities << 40%.

Analysis of LSH – What we want

One Band of One Raw

b Bands of r Raws

Example: b = 20; r = 5

s	1 - (1- s ^r)b
0,2	0,006
0,3	0,047
0,4	0,186
0,5	0,470
0,6	0,802
0,7	0,975
0,8	0,9996

$$t \approx (1/b)^{1/r} = 0.549$$

LSH Summary

- Tune r and b to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Combining the Techniques

Combining the Techniques

- Shingling: Pick k and construct from each document the set of k -shingles. Optionally, hash the k -shingles to shorter bucket numbers.
 Sort the document-shingle pairs to order them by shingle.
- MinHashing: Pick a length n for the minhash signatures.
 Compute the minhash signatures for all the documents (Section 3.3.5).

Combining the Techniques (cont)

- 4. LSH: Choose a similarity threshold t to classify a pair of sets (signatures) as a desired "similar pair." Pick a number of bands b and a number of rows r such that br = n, and the threshold t = (1/b)^{1/r}. Tradeoff: To avoid false negatives select b and r to produce a threshold lower than t; if speed is important and you wish to limit false positives, select b and r to produce a higher threshold.
- 5. Find *candidate pairs* by applying LSH (Section 3.4.1).

Combining the Techniques (cont)

- Check each candidate pair's signatures if the fraction of components in which they agree is at least t, i.e. if they are similar at least t
- 7. Optionally, if the signatures are sufficiently similar, check if the corresponding documents are truly similar.

Distance Measures

Generalized LSH is based on some kind of "distance" between points.

Similar points are "close."

Axioms of a Distance Measure

d is a distance measure if it is a function from pairs of points to real numbers such that:

- 1. d(x,y) > 0.
- 2. d(x,y) = 0 iff x = y.
- 3. d(x,y) = d(y,x).
- 4. d(x,y) < d(x,z) + d(z,y) (triangle inequality).

Euclidean Distances

In an *n*-dimensional Euclidean space, points are *vectors of n real numbers*.

The conventional distance L_2 -norm

$$d([x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n]) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Jaccard Distance

$$d(x,y) = 1 - SIM(x,y)$$

The Jaccard distance is 1 minus the ratio of the sizes of the intersection and union of sets x and y.

Cosine Distance

- Used in spaces with dimensions, where points may be thought of as directions.
- The cosine distance between two points is the angle that the vectors to those points make.

To calculate the cosine distance:

- compute the cosine of the angle
- apply the arc-cosine function to translate to an angle in the 0-180 degree range.

Edit Distance

Edit distance between two strings x and y is the smallest *number of insertions and deletions* of single characters that will convert x to y.

The edit distance d(x, y) = length(x) + length(y) - 2* length(LCS)

- Here LCS is a longest common subsequence of x and y;
- to find LCS, delete characters from x and y until they are identical.

Hamming Distance

The Hamming distance between two vectors in a vector space is the number of components in which they differ.

Distance Measures

Generalized LSH is based on some kind of "*distance*" between points.

Similar points are "close."

Locality-Sensitive Functions – General Definition

Probabilty

of being declared a

candidate

Generalized LSH is based on some kind of "distance" between points. Similar points are "close."

Let $d_1 < d_2$ be two distances according to some distance measure d.

A family F of hash functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for every f in F:

- 1. If $d(x, y) \le d_1$, then the probability that f(x) = f(y) is at least p_1 .
- 2. If $d(x, y) \ge d_2$, then the probability that f(x) = f(y) is at most p_2 .

