lab07

Xinlong Wan

kmeans

```
hist(rnorm(30, -3))
```

Histogram of rnorm(30, -3)


```
tmp <- c(rnorm(30, -3), rnorm(30, +3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
[2,] -3.096753 3.927053
[3,] -4.574697 3.946691
```

[4,] -2.940199 2.145891

[5,] -3.000527 5.201289

[6,] -3.373100 2.953791

plot(x)

Use the kmeans function

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

```
Within cluster sum of squares by cluster:
[1] 55.13581 55.13581
  (between_SS / total_SS = 91.3 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
```

```
# play with kmeans and ask for different number of clusters
km <- kmeans(x, centers=3, nstart=20)
plot(x, col=km$cluster)
points(km$centers, col="blue", pch=16, cex=2)</pre>
```


Hierarchical clustering

```
d <- dist(x)
hc <- hclust(d)
hc</pre>
```

Call:
hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

There is a plot method for hclust result.

```
plot(hc)
abline(h=10, col='red')
```

Cluster Dendrogram

d hclust (*, "complete")

To get all the members of a given cluster residing in the same cut branch.

```
cut_hc <- cutree(hc, h=10)
cut_hc</pre>
```

```
plot(x, col=cut_hc)
```


It is often helpful to use "k" instead of "h=" in cutree.

```
cutree(hc, k=4)
```

PCA

Fish

Sugars

Fats_and_oils

```
url <- "https://tinyurl.com/UK-foods"</pre>
  x <- read.csv(url)
  ncol(x)
[1] 5
  nrow(x)
[1] 17
     Q1. 5 columns 17 rows.
  #View(head(x, 6))
  head(x,6)
                X England Wales Scotland N.Ireland
1
                       105
                             103
                                       103
           Cheese
2
                             227
                                       242
                                                  267
   Carcass_meat
                       245
3
     Other_meat
                       685
                             803
                                       750
                                                  586
4
            {\tt Fish}
                       147
                             160
                                       122
                                                   93
                             235
                                                  209
5 Fats_and_oils
                       193
                                       184
           Sugars
                             175
                       156
                                       147
                                                  139
  # change the index to first column
  rownames(x) \leftarrow x[,1]
  x < -x[,-1]
  head(x)
                England Wales Scotland N.Ireland
Cheese
                     105
                           103
                                     103
                                                 66
Carcass_meat
                    245
                           227
                                     242
                                                267
Other_meat
                    685
                           803
                                     750
                                                586
```

```
dim(x)
```

[1] 17 4

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. the second approach is more robust. Since we don't need to reassign x. And we can have two dataset from the same url but with different columns as rownames.

Visualize the data

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3. # change the beside to False to get a stacked barplot

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```



```
x$color <- rainbow(nrow(x))

pairs(x[, 1:4], col=x$color, pch=16)
par(xpd=TRUE)
legend("topleft", fill = unique(x$color), legend = c( rownames(x) ), cex=0.2)</pre>
```


Q5. It makes pairwise comparison of each combination. plot(2,3) is comparing Wales and Scotland for the prize of each different food type. Points on diagonal mean the prize of that specific food cost the same in the two countries in comparison.

Q6. Certain food is higher in N. Ireland. But it's generally hard to compare.

Use the PCA on the dataset

```
x <- x[, 1:4]

pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        5.552e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

```
head(pca)
```

\$sdev

[1] 3.241502e+02 2.127478e+02 7.387622e+01 5.551558e-14

\$rotation

φισσαστοπ				
	PC1	PC2	PC3	PC4
Cheese	-0.056955380	-0.016012850	-0.02394295	-0.537717586
Carcass_meat	0.047927628	-0.013915823	-0.06367111	0.827327785
Other_meat	-0.258916658	0.015331138	0.55384854	-0.054885657
Fish	-0.084414983	0.050754947	-0.03906481	-0.017195729
Fats_and_oils	-0.005193623	0.095388656	0.12522257	0.039441462
Sugars	-0.037620983	0.043021699	0.03605745	0.002788534
Fresh_potatoes	0.401402060	0.715017078	0.20668248	-0.030319813
Fresh_Veg	-0.151849942	0.144900268	-0.21382237	-0.051070911
Other_Veg	-0.243593729	0.225450923	0.05332841	0.060355222
Processed_potatoes	-0.026886233	-0.042850761	0.07364902	0.003645959
Processed_Veg	-0.036488269	0.045451802	-0.05289191	-0.003672450
Fresh_fruit	-0.632640898	0.177740743	-0.40012865	0.031359988
Cereals	-0.047702858	0.212599678	0.35884921	0.073618516
Beverages	-0.026187756	0.030560542	0.04135860	-0.005163295
Soft_drinks	0.232244140	-0.555124311	0.16942648	-0.009904437
Alcoholic_drinks	-0.463968168	-0.113536523	0.49858320	0.088180533
Confectionery	-0.029650201	-0.005949921	0.05232164	0.004029923

\$center

Cheese	Carcass_meat	Other_meat	Fish
94.25	245.25	706.00	130.50
Fats_and_oils	Sugars	Fresh_potatoes	Fresh_Veg
205.25	154.25	798.25	208.00
Other_Veg	Processed_potatoes	Processed_Veg	${\tt Fresh_fruit}$
457.75	202.00	349.00	967.50
Cereals	Beverages	Soft_drinks	Alcoholic_drinks
1502.50	57.50	1427.00	360.75
Confectionery			
FF 0F			

55.25

\$scale

[1] FALSE

\$x

	PC1	PC2	PC3	PC4
England	-144.99315	2.532999	-105.768945	1.042460e-14
Wales	-240.52915	224.646925	56.475555	9.556806e-13
Scotland	-91.86934	-286.081786	44.415495	-1.257152e-12

```
N.Ireland 477.39164 58.901862 4.877895 2.872787e-13

Q7

plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8.


```
v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )
v

[1] 67 29 4 0

z <- summary(pca)
z$importance

PC1 PC2 PC3</pre>
```

```
Standard deviation 324.15019 212.74780 73.87622 5.551558e-14

Proportion of Variance 0.67444 0.29052 0.03503 0.000000e+00

Cumulative Proportion 0.67444 0.96497 1.00000 1.000000e+00
```

```
barplot(v, xlab="Principal Component", ylab="Percent Variation")
```

PC4

Principal Component

The first two PCs capture most of the variance.

```
# visualize the loading for each variables in PC1.
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```



```
# loading in second PC
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```

Q9

