STAT S4201 001, Homework 2

Brian Weinstein (bmw2148)

Feb 10, 2016

Code is attached here and also posted at https://github.com/BrianWeinstein/advanced-data-analysis. Where relevant, code snippets and output are are included in-line.

Problem 1:

(a) Suppose that $\{X_1, X_2, \ldots, X_n\}$ is a random sample from $N(\mu, \sigma^2)$. Construct a 95% confidence interval for σ^2 under the following scenarios: (a) μ is known to be 0. (b) μ is unknown.

Since the X_i are normal, the construction

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

has a Chi-Squared distribution with (n-1) degrees of freedom, where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ and $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$.

Therefore, we can construct a $100(1-\alpha)\%$ confidence interval for σ^2 as

$$1 - \alpha = P\left[F_{n-1}\left(\frac{\alpha}{2}\right) \le \frac{(n-1)s^2}{\sigma^2} \le F_{n-1}\left(1 - \frac{\alpha}{2}\right)\right]$$
$$= P\left[\frac{1}{F_{n-1}\left(\frac{\alpha}{2}\right)} \ge \frac{\sigma^2}{(n-1)s^2} \ge \frac{1}{F_{n-1}\left(1 - \frac{\alpha}{2}\right)}\right]$$
$$= P\left[\frac{(n-1)s^2}{F_{n-1}\left(1 - \frac{\alpha}{2}\right)} \le \sigma^2 \le \frac{(n-1)s^2}{F_{n-1}\left(\frac{\alpha}{2}\right)}\right]$$

where $F_{n-1}(x)$ is the cumulative distribution function of χ^2_{n-1} . Setting $\alpha = 0.05$ to construct a 95% CI, we have

$$0.95 = P\left[\frac{(n-1)s^2}{F_{n-1}(0.975)} \le \sigma^2 \le \frac{(n-1)s^2}{F_{n-1}(0.025)}\right].$$

(b) Fix n = 10 and σ = 1. Run a Monte Carlo simulation to confirm that the confidence interval you constructed under the scenario (a) produces a coverage of 95%. Report how many random samples were drawn in your simulation and how close your coverage was to 95%.

See attached code. In my simulation I drew 1000 random samples, with a 95% confidence interval capturing the true variance in 948 of the trials (94.8% coverage).

Problem 2: Ramsey 3.22

```
# Data input
time26 <- c(5.79, 1579.52, 2323.70)
time28 <- c(68.8, 108.29, 110.29, 426.07, 1067.60)
```

(a) Form two new variables by taking the logarithms of the breakdown times.

```
> Y1 <- log(time26); Y1
[1] 1.756132 7.364876 7.750916
> Y2 <- log(time28); Y2
[1] 4.231204 4.684813 4.703113 6.054604 6.973168</pre>
```

- (b) $\overline{Y}_1 \overline{Y}_2 = 5.6240 5.3294 = 0.2946$
- (c) $\exp(\overline{Y}_1 \overline{Y}_2) = \exp(0.2946) = 1.3426$, where 1.3426 is the multiplicative treatment effect, indicating that the breakdown time at 26 kV is estimated to be 1.3426 times larger than the breakdown time at 28 kV.
- (d) Compute a 95% confidence interval for the difference in mean log breakdown times. Take the antilogaritms of the endpoints and express the result in a sentence.

The pooled standard deviation is given by

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}} = \sqrt{\frac{(3 - 1)(11.257) + (5 - 1)(1.310)}{(3 + 5 - 2)}} = 2.1508,$$

where $n_1 = 3$ and $n_2 = 5$ are the sample sizes and $s_1^2 = 11.2574$ and $s_2^2 = 1.3104$ are the sample variances of the log-transformed measurements.

The standard error of $(\overline{Y}_1 - \overline{Y}_2)$ is given by

SE
$$(\overline{Y}_1 - \overline{Y}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = (2.1508) \sqrt{\frac{1}{3} + \frac{1}{5}} = 1.5707.$$

Therefore a 95% confidence interval for the difference in mean log breakdown times is

$$(\overline{Y}_1 - \overline{Y}_2) \pm t_{(3+5-2)} \left(1 - \frac{\alpha}{2}\right) SE(\overline{Y}_1 - \overline{Y}_2)$$

$$0.2946 \pm t_6 \left(1 - \frac{0.05}{2}\right) 1.5707$$

$$0.2946 \pm (2.4469)(1.5707)$$

$$0.2946 \pm 3.8435$$

$$\implies -3.5489 \le (\overline{Y}_1 - \overline{Y}_2) \le 4.1381.$$

Taking the anilogarithms of the confidence interval endpoints,

Lower confidence limit =
$$e^{-3.5489} = 0.0288$$

Upper confidence limit = $e^{4.1381} = 62.682$,

we find that the breakdown time at 26 kV is estimated to be 1.3426 (from part c) times longer than the breakdown time at 28 kV, (95% confidence: 0.0288 to 62.682 times).

Problem 3: Ramsey 3.25

See attached code. When excluding either (1) no observations, (2) observation 646, or (3) observations 646 and 645, there is no evidence that the mean dioxin level in Vietnam veterans is greater than the mean dioxin level in non-Vietnam veterans. The difference in means non-(veteran minus veteran) (parts per trillion), one-sided p-values, and 95% confidence intervals for the difference in means (parts per trillion) are:

Case	Difference in means	one-sided p-value	95% CI
(1)	-0.0745	0.3963	-0.6305 to 0.4815
(2)	-0.0113	0.4805	-0.6305 to 0.4815
(3)	0.0210	0.5386	-0.6305 to 0.4815

Problem 4: Ramsey 3.28

When including all of the observations, the t-test generates a two-sided p-value of 0.0809:

And when excluding the smallest length in the Perished group, we have a two-sided p-value of 0.18:

With the full dataset, the p-value indicates that the data is suggestive, but isn't conclusive, in the hypothesis that the humerus length differs in the two populations. When excluding the smallest length in the Perished group, the p-value indicates that there's little evidence of a difference between the groups.

Since the conclusion of the study depends on which dataset is used, we must either use resistant analysis (Chapter 4) or report the results of both analysis, as done here.

Figure 1: Out-of-state vs in-state tuition costs for 25 public colleges.

Problem 5: Ramsey 3.32

Analyze the data to describe the extent to which:

(a) public school tuition is more expensive when out-of-state than when in-state.

Boxplots of out-of-state vs in-state tuition for the 25 public schools (see Figure 1) reveal (1) that out-of-state tuition has a higher center than in-state tuition, (2) that out-of-state tuition has a higher standard deviation than in-state tuition, and (3) that some outliers may be skewing the results. The standard error for out-of-state tuition is 4,500.41 USD, which is 1.71 times higher than the standard error for in-state tuition of 2633.68 USD, making the two-sample t-tools unreliable here.

Luckily, the one-sample paired t-tools may be more appropriate in this case, since each {out-of-state, in-state} measurement is an observation on a single college. The distribution of the the difference between each {out-of-state, in-state} pair is nearly normal, as shown in Figure 2. Using the paired t-test to test the alternative hypothesis that (out-of-state tuition) – (in-state tuition) > 0, we find substantial evidence that the mean difference in the out-of-state tuition and in-state tuition among a random sample of 25 public colleges is positive (one-sided p-value = 3.264×10^{-13}). It's estimated that the mean tuition cost is \$9,038.4 more for out-of-state tuition (95% confidence interval: \$7,687.08 to \$10,389.72).

(b) in-state tuition is more expensive for private schools than for public schools.

Boxplots of in-state tuition costs for private vs public colleges (see Figure 3) reveal that private tuition has both a higher center and significantly higher spread than public tuition, making this dataset a good candidate for a log transformation. The log-transformed data is shown in Figure 4, where the private tuition has a standard error of 0.495 and the public tuition has a similar standard error of 0.334 (on the log scale). Since the sample sizes in each group are the same, the difference in standard errors has little effect on the robustness of the t-tools. Using the two-sample t-test on the log-transformed tuitions, we find substantial evidence that private school in-state tuition is greater than public school in-state tuition on the log scale (one-sided p-value: 6.31×10^{-15}). Back-transforming the

Figure 2: (Out-of-state) - (in-state) tuition costs for 25 public colleges.

Figure 3: In-state tuition costs for private vs public colleges.

Figure 4: Log-transformed in-state tuition costs for private vs public colleges.

estimate and confidence interval from the log scale to the original scale, it's estimated that the mean tuition cost is 3.692 times higher for out-of-state than in-state (95% confidence interval: 2.904 to 4.695 times).

(c) out-of-state tuition is more expensive for private schools than for public schools.

Boxplots of out-of-state tuition costs for private vs public colleges (see Figure 5) reveal that private tuition has both a higher center and significantly higher spread than public tuition, making this dataset a good candidate for a log transformation.

The log-transformed data is shown in Figure 6, where the private tuition has a standard error of 0.495 and the public tuition has a similar standard error of 0.334 (on the log scale). Since the sample sizes in each group are the same, the the difference in standard errors has little effect on the robustness of the t-tools. Using the two-sample t-test on the log-transformed tuitions, we find substantial evidence that private school in-state tuition is greater than public school in-state tuition on the log scale (one-sided p-value: 0.0001073). Back-transforming the estimate and confidence interval from the log scale to the original scale, it's estimated that the mean tuition cost is 1.613 times higher for out-of-state than in-state (95% confidence interval: 1.269 2.0512 times).

Problem 6: Ramsey 4.19 asdf

Todo list

Figure 5: In-state tuition costs for private vs public colleges.

Figure 6: Log-transformed out-of-state tuition costs for private vs public colleges.