Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и вантовой Информатики

Курс: средства и системы параллельного программирования

Отчет № 3.

Анализ влияния количества процессов на время выполнения параллельного поиска простых чисел

Работу выполнила

Килина М. Л.

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью «решета Эратосфена». Оценить суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов.

Формат командной строки: <левая граница диапазона> <правая граница диапазона> <имя файла вывода простых чисел> <имя файла вывода времени>

Описание алгоритма.

Математическая постановка: Для нахождения всех простых чисел не больше заданного числа N, следуя методу Эратосфена нужно выполнить следующий шаги:

- 1. Записать подряд все целые числа от двух до N.
- 2. Пусть переменная p изначально равна двум первому простому числу.
- 3. Удалить из списка все числа, кратные p, начиная с p^2 .
- 4. Найти наименьшее число из оставшихся в списке, большее, чем p. Присвоить p это значение.
- 5. Повторять шаги 3 и 4, пока это возможно.

В параллельной программе в нулевом процессе по методу Эратосфена находятся все простые числа от 2 до N_0 , где $N_0 = [\sqrt{N}]$. Список оставшихся чисел разделяется поровну между остальными процессами, каждый из которых удаляет из своей части числа, кратные простым числам в диапазоне от 2 до N_0 .

Анализ времени выполнения: Для оценки времени выполнения каждого процесса использовалась функция MPI_Wtime().

Результаты выполнения.

Производился поиск простых чисел в диапазоне $[1, 10^8]$. Количества процессов брались 1, 2, 4, 8, 16, 32, 64 и 80.

На графиках представлены зависимости максимального времени среди всех процессов и суммарного времен для всех процессов от количества процессов:

. Зависимость максимального времени среди процессов от количества процессов

Зависимость суммарного времени для всех процессов от их количества

Полученные зависимости также приведены в таблице:

Число процессов	Макс. Время (с)	Суммарное время (с)
1	1.768405	1.768405
2	3.345959	6.691894
4	1.045020	4.171150
8	0.735140	5.854048
16	0.742634	11.787503
32	0.504490	12.587118
64	0.278313	13.115724
80	0.286611	15.777886

Результаты работы программы с использованием pthread.

Брался диапазон [1, 10⁶].

Зависимость максимального среди всех процессов времени от числа процессов:

Зависимость суммарного времени всех процессов от их числа:

Таблица полученных зависимостей:

Число процессов	Макс. Время (с)	Суммарное время (с)
1	19.401379	19.401379
2	17.432237	34.730761
4	15.382760	49.974802
8	9.548912	57.123014
16	6.078571	65.771599
32	3.829551	77.067226
64	3.699131	78.657228
80	3.936663	73.280163