PERCEPTRON

- · Características Básicas
- · Modelo de Neurônio
- Estrutura da Rede
- · Algoritmo de Aprendizado

CARACTERISTICAS BASICAS

- Regra de propagação $net_j = \sum x_i w_{ij} + \theta_i$
- Função de ativação: Degrau
- Topologia: uma única camada de processadores
- Algoritmo de Aprendizado: $\Delta w_{ij} = \eta x_i (t_j s_j)$ (supervisionado)
- Valor de Entrada/Saída: Binários

MODELO DO NEURÔNIO

Na sua forma mais simples, o modelo do processador consiste em:

$$s_{j} = F(net_{j}) = F\left(\sum_{i} x_{i} w_{ij} + \theta_{i}\right) = \begin{cases} 1 & net_{j} > 0 \\ 0 & net_{j} \le 0 \end{cases}$$

PERCEPTRON

Finalidade do Termo Bias:

 $\sum_i x_i w_{ij} = 0$ Define um hiperplano passando pela origem $\sum_i x_i w_{ij} + \theta_i = 0$ Desloca-se o hiperplano da origem

ALGORITMO DE APRENDIZADO

- iniciar os pesos sinápticos com valores randomicos e pequenos ou iguais a zero;
- aplicar um padrão com seu respectivo valor desejado de saída (t_i) e verificar a saída da rede (s_i);
- 3) calcula o erro na saída $E_i = t_i s_i$;
- 4) se $E_j = 0$, volta ao passo 2; se $E_j \neq 0$, atualiza os pesos: $\Delta w_{ij} = \eta x_i E_j$;
- 5) volta ao passo 2.

ALGORITMO DE APRENDIZADO

IMPORTANTE

- não ocorre variação no peso se a saída estiver correta;
- caso contrário, cada peso é incrementado de η quando a saída é menor que o alvo (valor desejado) e decrementado de η quando a saída é maior que o alvp.

$$\Delta w_{ij} = \eta \, x_i \, e_j$$

PERCEPTRON

Relembra um pouco conhecimento de Cálculo

Gradiente:
$$\nabla f(x, y) = \left(\frac{\partial}{\partial x} f(x, y), \frac{\partial}{\partial y} f(x, y)\right)$$

Derivada direcional: $D_{\mathbf{u}} f(x, y) = \nabla f(x, y) \cdot \mathbf{u}$

$$= \|\nabla f(x, y)\| \|\mathbf{u}\| \cos \gamma$$
$$= \|\nabla f(x, y)\| \cos \gamma$$

 $D_{\mathbf{u}}f(x, y)$ é a taxa de variação de f(x, y) na direção definida por \mathbf{u} .

PERCEPTRON

Relembra um pouco conhecimento de Cálculo (cont.)

Teorema do gradiente: Seja f uma função de duas variáveis, diferenciáveis no ponto P(x, y).

- i) O máximo de $D_{\mathbf{u}}f(x, y)$ em P(x, y) é $\|\nabla f(x, y)\|$.
- ii) O máximo da taxa de crescimento de f(x, y) em P(x, y) ocorre na direção de $\nabla f(x, y)$.

Corolário: Seja f uma função de duas variáveis, diferenciáveis no ponto P(x, y).

- i) O mínimo de $D_{\mathbf{u}}f(x, y)$ em P(x, y) é - $\|\nabla f(x, y)\|$.
- ii) O máximo da taxa de <u>decrescimento</u> de f(x, y) em P(x, y) ocorre na direção de $-\nabla f(x, y)$.

PERCEPTRON

Superficie de Erro

Processo de Minimização

A direção do gradiente negativo é a de descida mais ingreme ("steepest descent")

PERCEPTRON

Método do Gradiente Descendente (GD)

$$\Delta w_{ij} = -\eta \underline{\delta E}_j \over \delta w_{ij}$$

Cada peso sináptico i do elemento processador j é atualizado proporcionalmente ao negativo da derivada parcial do erro deste processador com relação ao peso.

PERCEPTRON

Logo:

EXEMPLO

Simulação do Operador Lógico AND

Peso inicial: w_0 = 0, w_1 = 0, w_2 =0 Taxa de aprendizado: η = 0.5

EXEMPLO

1ª Cicle

```
Entrada 1: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(0 \times 1 + 0 \times 0 + 0 \times 0) = f(0) = 0 \longrightarrow s_{\text{out}} = t

Entrada 2: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(0 \times 1 + 0 \times 1 + 0 \times 0) = f(0) = 0 \longrightarrow s_{\text{out}} = t

Entrada 3: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(0 \times 1 + 0 \times 0 + 0 \times 1) = f(0) = 0 \longrightarrow s_{\text{out}} = t

Entrada 4: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(0 \times 1 + 0 \times 1 + 0 \times 1) = f(0) = 0 \longrightarrow s_{\text{out}} = t

Entrada 4: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(0 \times 1 + 0 \times 1 + 0 \times 1) = f(0) = 0 \longrightarrow s_{\text{out}} \neq t

w_0 = w_0 + (t - s_{\text{out}})x_0 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5

w_1 = w_1 + (t - s_{\text{out}})x_1 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5

w_2 = w_2 + (t - s_{\text{out}})x_2 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5
```

EXEMPLO

2ª Ciclo

```
Entrada 1: s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(0.5 \times 1 + 0.5 \times 0 + 0.5 \times 0) = f(0.5) = 1 \longrightarrow s_{out} \neq t
w_0 = w_0 + (t - s_{out})x_0 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0
w_1 = w_1 + (t - s_{out})x_1 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5
w_2 = w_2 + (t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5
Entrada 2: s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)
= f(0 \times 1 + 0.5 \times 0 + 0.5 \times 1) = f(0.5) = 1 \longrightarrow s_{out} \neq t
w_0 = w_0 + (t - s_{out})x_0 = 0 + 0.5 \times (0 - 1) \times 1 = -0.5
w_1 = w_1 + (t - s_{out})x_1 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5
w_2 = w_2 + (t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0
```

EXEMPLO

2ª Ciclo

```
Entrada 3: s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(-0.5 \times 1 + 0.5 \times 1 + 0 \times 0) = f(0) = 0 \longrightarrow s_{out} = t

Entrada 4: s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(-0.5 \times 1 + 0.5 \times 1 + 0 \times 1) = f(0) = 0 \longrightarrow s_{out} \neq t

w_0 = w_0 + (t - s_{out})x_0 = -0.5 + 0.5 \times (1 - 0) \times 1 = 0

w_1 = w_1 + (t - s_{out})x_1 = 0.5 + 0.5 \times (1 - 0) \times 1 = 1

w_2 = w_2 + (t - s_{out})x_2 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5
```

EXEMPLO

3ª Ciclo

```
Entrada 1: s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(0 \times 1 + 1 \times 0 + 0.5 \times 0) = f(0) = 0 \longrightarrow s_{out} = t

Entrada 2: s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(0 \times 1 + 1 \times 0 + 0.5 \times 1) = f(0.5) = 1 \longrightarrow s_{out} \neq t

w_0 = w_0 + (t - s_{out})x_0 = -0.5 + 0.5 \times (0 - 1) \times 1 = -1

w_1 = w_1 + (t - s_{out})x_1 = 1 + 0.5 \times (0 - 1) \times 0 = 1

w_2 = w_2 + (t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0
```

EXEMPLO

3ª Ciclo

```
Entrada 3: s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(-1\times1+1\times1+0\times0) = f(0) = 0 \longrightarrow s_{out} = t

Entrada 4: s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(-1\times1+1\times1+0\times1) = f(0) = 0 \longrightarrow s_{out} \neq t

w_0 = w_0 + (t-s_{out})x_0 = -1 + 0.5 \times (1-0) \times 1 = -0.5

w_1 = w_1 + (t-s_{out})x_1 = 1 + 0.5 \times (1-0) \times 1 = 1.5

w_2 = w_2 + (t-s_{out})x_2 = 0 + 0.5 \times (1-0) \times 1 = 0.5
```

EXEMPLO

4ª Ciclo

```
Entrada 1: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(-0.5 \times 1 + 1.5 \times 0 + 0.5 \times 0) = f(-0.5) = 0 \longrightarrow s_{\text{out}} = t

Entrada 2: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(-0.5 \times 1 + 1.5 \times 0 + 0.5 \times 1) = f(0) = 0 \longrightarrow s_{\text{out}} = t

Entrada 3: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(-0.5 \times 1 + 1.5 \times 1 + 0.5 \times 0) = f(1) = 1 \longrightarrow s_{\text{out}} \neq t

w_0 = w_0 + (t - s_{\text{out}})x_0 = -0.5 + 0.5 \times (0 - 1) \times 1 = -1

w_1 = w_1 + (t - s_{\text{out}})x_1 = 1.5 + 0.5 \times (0 - 1) \times 1 = 1

w_2 = w_2 + (t - s_{\text{out}})x_2 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5

Entrada 4: s_{\text{out}} = f(w_0x_0 + w_1x_1 + w_2x_2)

= f(-1 \times 1 + 1 \times 1 + 0.5 \times 1) = f(0.5) = 1 \longrightarrow s_{\text{out}} = t
```

EXEMPLO 5° Ciclo Entrada 1: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$ $= f(-1 \times 1 + 1 \times 0 + 0.5 \times 0) = f(-1) = 0$ \longrightarrow $s_{out} = t$ Entrada 2: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$ $= f(-1 \times 1 + 1 \times 0 + 0.5 \times 1) = f(-0.5) = 0$ \longrightarrow $s_{out} = t$ Entrada 3: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$ $= f(-1 \times 1 + 1 \times 1 + 0.5 \times 0) = f(0) = 0$ \longrightarrow $s_{out} = t$ Entrada 4: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$ $= f(-1 \times 1 + 1 \times 1 + 0.5 \times 1) = f(0.5) = 1$ \longrightarrow $s_{out} = t$ $w_0 = -1, w_1 = 1, w_2 = 0.5$

Exercicio

• Treinar um perceptron para implementar a função lógica OR.

O PROBLEMA DO OU-EXCLUSIVO (XOR)

Conclusão

- mudando-se os valores de w_1 , w_2 e θ , muda-se a inclinação e a posição da reta;
- entretanto é impossível achar uma reta que divide o plano de forma separar os pontos A_1 e A_2 de um lado e A_0 e A_3 de outro
- redes de 1 única camada só representam funções linearmente separáveis

O PROBLEMA DO OU-EXCLUSIVO (XOR)

Minsky & Papert provaram que este problema pode ser solucionado adicionando-se uma outra camada intermediaria de processadores- Multi-Layer Perceptron (MLP)

UMA OBSERVAÇÃO

 Redes Neurais de múltiplas camadas só oferecem vantagens sobre as de uma única camada se existir uma função de ativação nãolinear entre as camadas.

Camada Escondida: $Net_1 = S_0W_1$

 $S_1 = k_1 Net_1$

Camada de Saída: $S_2 = k_2 Net_2 = k_2 (S_1 W_2)$

 $= k_2((k_1 Net_1)W_2)$

 $= k_2((k_1 S_0 W_1) W_2)$

 $=k_2k_1(S_0W_1)W_2$

 $= KS_0(W_1W_2)$

 $=KS_0W$

Equivalente a uma única camada

MULTI-LAYER PERCEPTRON

- Redes de apenas uma camada só representam funções linearmente separáveis
- Redes de múltiplas camadas solucionam essa restrição
- O desenvolvimento do algoritmo Back-Propagation foi um dos motivos para o ressurgimento da área de redes neurais