

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Title: Pd(II)-catalyzed, Picolinamide-aided sp2 γ-C-H Functionalization of Phenylglycinol: Access to γ-C-H Arylated, Alkylated and Halogenated Phenylglycinol Scaffolds Authors: Singh, Prabhakar (/jspui/browse?type=author&value=Singh%2C+Prabhakar) Arulananda Babu, S. (/jspui/browse?type=author&value=Arulananda+Babu%2C+S.) Aggarwal, Y. (/jspui/browse?type=author&value=Aggarwal%2C+Y.) Patel, P. (/jspui/browse?type=author&value=Patel%2C+P.) Keywords: C-H activation C-H functionalization Palladium Phenylglycinol Issue Date: 2020 Publisher: Wiley-VCH GmbH Citation: Asian Journal of Organic Chemistry Abstract: We report the Pd(II)-catalyzed picolinamide-aided ortho-C-H arylation-, alkylation-, and halogenation (sp2 γ-C-H functionalization) of phenylglycinol substrates. Phenylglycinols are remarkable building blocks and have found different applications in synthetic organic and medicinal chemistry. This work is a contribution towards the expansion of the library of phenylglycinol scaffolds and also substrate scope development by using the Pd(II)-catalyzed bidentate directing group picolinamide-aided C-H activation tactic. URI: https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560 (https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560) http://hdl.handle.net/123456789/3427 (http://hdl.handle.net/123456789/3427)	Please use	this identifier to cite or link to this item: http://hdl.handle.net/123456789/3427
Arulananda Babu, S. (/jspui/browse?type=author&value=Arulananda+Babu%2C+S.) Aggarwal, Y. (/jspui/browse?type=author&value=Aggarwal%2C+Y.) Patel, P. (/jspui/browse?type=author&value=Patel%2C+P.) Keywords: C-H activation C-H functionalization Palladium Phenylglycinol Issue Date: 2020 Publisher: Wiley-VCH GmbH Citation: Asian Journal of Organic Chemistry Abstract: We report the Pd(II)-catalyzed picolinamide-aided ortho-C-H arylation-, alkylation-, and halogenation (sp2 γ-C-H functionalization) of phenylglycinol substrates. Phenylglycinols are remarkable building blocks and have found different applications in synthetic organic and medicinal chemistry. This work is a contribution towards the expansion of the library of phenylglycinol scaffolds and also substrate scope development by using the Pd(II)-catalyzed bidentate directing group picolinamide-aided C-H activation tactic. URI: https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560 (https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560)	Title:	
C-H functionalization Palladium Phenylglycinol Issue Date: 2020 Publisher: Wiley-VCH GmbH Citation: Asian Journal of Organic Chemistry Abstract: We report the Pd(II)-catalyzed picolinamide-aided ortho-C-H arylation-, alkylation-, and halogenation (sp2 y-C-H functionalization) of phenylglycinol substrates. Phenylglycinols are remarkable building blocks and have found different applications in synthetic organic and medicinal chemistry. This work is a contribution towards the expansion of the library of phenylglycinol scaffolds and also substrate scope development by using the Pd(II)-catalyzed bidentate directing group picolinamide-aided C-H activation tactic. URI: https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560 (https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560)	Authors:	Arulananda Babu, S. (/jspui/browse?type=author&value=Arulananda+Babu%2C+S.) Aggarwal, Y. (/jspui/browse?type=author&value=Aggarwal%2C+Y.)
Publisher: Wiley-VCH GmbH Citation: Asian Journal of Organic Chemistry We report the Pd(II)-catalyzed picolinamide-aided ortho-C-H arylation-, alkylation-, and halogenation (sp2 γ-C-H functionalization) of phenylglycinol substrates. Phenylglycinols are remarkable building blocks and have found different applications in synthetic organic and medicinal chemistry. This work is a contribution towards the expansion of the library of phenylglycinol scaffolds and also substrate scope development by using the Pd(II)-catalyzed bidentate directing group picolinamide-aided C-H activation tactic. URI: https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560 (https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560)	Keywords:	C-H functionalization Palladium
Citation: Asian Journal of Organic Chemistry We report the Pd(II)-catalyzed picolinamide-aided ortho-C–H arylation-, alkylation-, and halogenation (sp2 γ–C–H functionalization) of phenylglycinol substrates. Phenylglycinols are remarkable building blocks and have found different applications in synthetic organic and medicinal chemistry. This work is a contribution towards the expansion of the library of phenylglycinol scaffolds and also substrate scope development by using the Pd(II)-catalyzed bidentate directing group picolinamide-aided C–H activation tactic. URI: https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560 (https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560)	Issue Date:	2020
Abstract: We report the Pd(II)-catalyzed picolinamide-aided ortho-C-H arylation-, alkylation-, and halogenation (sp2 y-C-H functionalization) of phenylglycinol substrates. Phenylglycinols are remarkable building blocks and have found different applications in synthetic organic and medicinal chemistry. This work is a contribution towards the expansion of the library of phenylglycinol scaffolds and also substrate scope development by using the Pd(II)-catalyzed bidentate directing group picolinamide-aided C-H activation tactic. URI: https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560 (https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560)	Publisher:	Wiley-VCH GmbH
halogenation (sp2 y-C-H functionalization) of phenylglycinol substrates. Phenylglycinols are remarkable building blocks and have found different applications in synthetic organic and medicinal chemistry. This work is a contribution towards the expansion of the library of phenylglycinol scaffolds and also substrate scope development by using the Pd(II)-catalyzed bidentate directing group picolinamide-aided C-H activation tactic. URI: https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560 (https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560)	Citation:	Asian Journal of Organic Chemistry
(https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202000560)	Abstract:	halogenation (sp2 γ –C–H functionalization) of phenylglycinol substrates. Phenylglycinols are remarkable building blocks and have found different applications in synthetic organic and medicinal chemistry. This work is a contribution towards the expansion of the library of phenylglycinol scaffolds and also substrate scope development by using the Pd(II)-catalyzed
	URI:	
		, , , , , , , , , , , , , , , , , , , ,

Files	in	This	Item:

Collections:

Show full item record (/jspui/handle/123456789/3427?mode=full)

. (/jspui/handle/123456789/3427/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.