```
In [4]:
import pandas as pd
import numpy as np
import seaborn as sns
In [5]:
data=pd.read excel("C:/Users/Furkan/Desktop/FinalData.xlsx")
In [6]:
df=data.copy()
In [7]:
for items in df.index:
    if df.loc[items,"LV ActivePower (kW)"]==0 and df.loc[items,"Wind Speed (m/s)"]>=3.5:
        df=df.drop(items)
In [8]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 48313 entries, 0 to 50529
Data columns (total 23 columns):
 # Column
                                       Non-Null Count Dtype
___
                                      48313 non-null object
48313 non-null object
48313 non-null float64
 0
    Date
 1
     Time
    LV ActivePower (kW)
                                      48313 non-null float64
 3 Wind Speed (m/s)
 4 Theoretical Power Curve (KWh) 48313 non-null float64
                                      48313 non-null float64
48313 non-null int64
48313 non-null int64
    Wind Direction (°)
    Month
    Day/Night
 7
 8 Temp
                                      48313 non-null int64
 9 Sun Hour
                                      48313 non-null float64
                                      48313 non-null int64
 10 Moon Illumunation
 11 Moonrise
                                      48313 non-null object
48313 non-null object
 12 Moonset
                                      48313 non-null object
 13 Sunrise
 14 Sunset
                                      48313 non-null object
 15 DewPoint
                                      48313 non-null int64
                                      48313 non-null int64
48313 non-null int64
48313 non-null int64
 16 WindChillC
 17 WindGust
 18 Humidity
                                      48313 non-null float64
 19 RainMM
 20 Pressure
                                      48313 non-null int64
 21 Visibility
                                      48313 non-null int64
 22 Density
                                      48313 non-null float64
dtypes: float64(7), int64(10), object(6)
memory usage: 10.1+ MB
In [9]:
from sklearn.cluster import KMeans
In [10]:
list of inertia=[]
for items in range(3,21):
    kmeans clustering=KMeans(n clusters=items,random state=15,max iter=300)
    kmeans clustering.fit(df["LV ActivePower (kW)"].values.reshape(-1,1))
    list_of_inertia.append(kmeans_clustering.inertia_)
```

```
In [11]:
list of inertia
Out[11]:
[5949550946.887177,
 3062634716.7541704,
 1843421959.7294416,
 1230028904.8773026,
 885934449.7084732,
 666440942.4969716,
 517857872.4725709,
 419305093.72755724,
 346678709.8857388,
 288836067.85985726,
 242668668.34289414,
 209975224.967791,
 181129917.14061648,
 156892388.05392748,
 138381687.9385177,
 123093652.02511719,
 110023872.17902423,
 99113616.82461463]
In [12]:
sns.lineplot(data=pd.DataFrame(list_of_inertia))
Out[12]:
<matplotlib.axes._subplots.AxesSubplot at 0x1f2795be388>
 5
 4
 3
1
 0
   0.0
         2.5
              5.0
                    7.5
                         10.0
                               12.5
                                    15.0
                                          17.5
In [13]:
kmeans exp 1=KMeans(n clusters=8, max iter=300, random state=15)
In [14]:
kmeans exp 1.fit(df["LV ActivePower (kW)"].values.reshape(-1,1))
Out[14]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n clusters=8, n init=10, n jobs=None, precompute distances='auto',
       random_state=15, tol=0.0001, verbose=0)
In [15]:
kmeans_exp_1.inertia_
Out[15]:
```

666440942.4969716

```
In [16]:
 kmeans_exp_1.labels_
Out[16]:
array([1, 1, 1, ..., 0, 6, 2])
In [17]:
pd.DataFrame(kmeans exp 1.labels ).T
Out[17]:
            0 1 2 3 4 5 6 7 8 9 ... 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312
  0 1 1 1 1 1 1 1 1 1 1 ... 2
1 rows × 48313 columns
In [18]:
 kmeans exp 1.cluster centers
Out[18]:
array([[1935.05539594],
                                [ 433.21839602],
                                [3025.16372689],
                                 [ 41.04942939],
                                  [ 880.57582071],
                                 [3533.70742627],
                                [2490.74450172],
                                 [1389.33031345]])
In [19]:
 sns.scatterplot(data=pd.DataFrame(kmeans exp 1.labels ),x bins=500,y bins=50)
Out[19]:
 <matplotlib.axes._subplots.AxesSubplot at 0x1f27a8fc708>
                   CONCRETE BY A STATE OF CONCRETE CONCRETE BY CONTRACT OF CONTRACT AND C
                  6
                  5
     4
                 • 0
                CONCEDED TO MODEL OF THE PROPERTY OF THE PROPE
     3
                 2
                 1
                  0
                                                                                                                        30000
                                              10000
                                                                                   20000
                                                                                                                                                           40000
                                                                                                                                                                                                 50000
 In [ ]:
 In [20]:
 a=pd.DataFrame(kmeans_exp_1.labels_)
 a.columns=["Cluster"]
```

```
In [21]:
a.Cluster.value_counts()
Out[21]:
3
     14462
      7687
5
1
      6504
      5270
4
      4239
0
      3548
      3463
6
2
      3140
Name: Cluster, dtype: int64
In [22]:
list of inertia 2=[]
for items in range(3,21):
    kmeans clustering=KMeans(n clusters=items,random state=15,max iter=300)
    kmeans clustering.fit(df["Wind Speed (m/s)"].values.reshape(-1,1))
    list_of_inertia_2.append(kmeans_clustering.inertia_)
In [23]:
list_of_inertia_2
Out[23]:
[145334.95261306292,
 81492.11070325745,
 53831.74157278696,
 38253.03414548813,
 29017.357650404876,
 22327.138177423283,
 17893.591427936903,
 14571.942860809306,
 12145.259835077311,
 10330.604953440565,
 8902.550900205048,
 7803.625455928432,
 6787.12293813029,
 5949.031223443224,
 5329.895123532263,
 4777.6103202084105,
 4321.373463335205,
 3919.086080769841]
In [24]:
sns.lineplot(data=pd.DataFrame(list of inertia 2))
Out[24]:
<matplotlib.axes._subplots.AxesSubplot at 0x1f279551748>
                                             - 0
140000
120000
 100000
 80000
 60000
 40000
  20000
```

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

```
In [25]:
kmeans_exp_2=KMeans(n_clusters=8,max_iter=300,random_state=15)
In [26]:
kmeans_exp_2.fit(df["Wind Speed (m/s)"].values.reshape(-1,1))
Out[26]:
random_state=15, tol=0.0001, verbose=0)
In [27]:
kmeans_exp_2.labels_
Out[27]:
array([3, 3, 3, ..., 0, 7, 7])
In [28]:
kmeans_exp_2.cluster_centers_
Out[28]:
array([[ 8.00176898],
      [ 3.93157946],
      [15.02390396],
      [ 6.07843663],
      [12.30419596],
      [18.87039919],
      [ 1.93647288],
      [10.09920461]])
In [29]:
kmeans_exp_2.inertia_
Out[29]:
22327.138177423283
In [30]:
b=pd.DataFrame(kmeans_exp_2.labels_)
b.columns=["Cluster"]
In [31]:
b.Cluster.value_counts()
Out[31]:
  8703
  8302
0
    7518
1
   7473
   6650
7
4
   5445
2
  2786
5
   1436
Name: Cluster, dtype: int64
```

T- [201

```
ın [32]:
```

```
list_of_inertia_3=[]
for items in range(3,21):
    kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
    kmeans_clustering.fit(df["Theoretical_Power_Curve (KWh)"].values.reshape(-1,1))
    list_of_inertia_3.append(kmeans_clustering.inertia_)
```

In [33]:

```
sns.lineplot(data=pd.DataFrame(list_of_inertia_3))
```

Out[33]:

<matplotlib.axes. subplots.AxesSubplot at 0x1f279a80bc8>

In [34]:

```
kmeans_exp_3=KMeans(n_clusters=8,max_iter=300,random_state=15)
```

In [35]:

```
kmeans_exp_3.fit(df["Theoretical_Power_Curve (KWh)"].values.reshape(-1,1))
```

Out[35]:

In [36]:

```
kmeans_exp_3.labels_
```

Out[36]:

array([1, 1, 1, ..., 2, 4, 7])

In [37]:

```
kmeans_exp_3.cluster_centers_
```

Out[37]:

```
kmeans_exp_3.inertia_
```

Out[38]:

639416324.5652404

In [39]:

```
c=pd.DataFrame(kmeans_exp_3.labels_)
c.columns=["Cluster"]
```

In [40]:

```
c.Cluster.value_counts()
```

Out[40]:

```
5 13280
0 9893
1 5642
3 5192
6 4304
2 3490
7 3481
4 3031
```

Name: Cluster, dtype: int64

In [41]:

```
list_of_inertia_4=[]
for items in range(3,21):
    kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
    kmeans_clustering.fit(df["Wind Direction (°)"].values.reshape(-1,1))
    list_of_inertia_4.append(kmeans_clustering.inertia_)
```

In [42]:

```
sns.lineplot(data=pd.DataFrame(list_of_inertia_4))
```

Out[42]:

<matplotlib.axes. subplots.AxesSubplot at 0x1f27c2750c8>

In [431:

```
kmeans_exp_4=KMeans(n_clusters=8,max_iter=300,random_state=15)
```

In [44]:

```
kmeans_exp_4.fit(df["Wind Direction (°)"].values.reshape(-1,1))
```

Out[44]:

```
KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
       n_clusters=8, n_init=10, n_jobs=None, precompute_distances='auto',
       random state=15, tol=0.0001, verbose=0)
In [45]:
kmeans_exp_4.labels_
Out[45]:
array([4, 4, 4, ..., 5, 5, 5])
In [46]:
kmeans exp 4.inertia
Out[46]:
5638038.056385048
In [47]:
kmeans_exp_4.cluster_centers_
Out[47]:
array([[191.70151862],
       [ 51.57363633],
       [332.69337911],
       [ 25.11108028],
       [270.95486598],
       [ 72.75491057],
       [128.00789744],
       [222.52916315]])
In [48]:
d=pd.DataFrame(kmeans_exp_4.labels_)
d.columns=["Cluster"]
d.Cluster.value counts()
Out[48]:
    10214
5
     9485
0
     8060
      7838
      4944
     3222
4
     2413
6
     2137
Name: Cluster, dtype: int64
In [49]:
#Experiments
In [50]:
list_of_inertia_5=[]
for items in range (3,21):
    kmeans clustering=KMeans(n clusters=items,random state=15,max iter=300)
    kmeans_clustering.fit(df[["LV ActivePower (kW)","Wind Speed (m/s)"]].values.reshape(-1,1))
    list of inertia 5.append(kmeans clustering.inertia )
In [51]:
sns.lineplot(data=pd.DataFrame(list of inertia 5))
```

```
Out[51]:
<matplotlib.axes. subplots.AxesSubplot at 0x1f27c7514c8>
                                      - 0
 6
 5
 4
 3
 2
1
 0
             5.0
                   7.5
                       10.0
                             12.5
                                  15.0
                                       17.5
   0.0
        2.5
In [52]:
kmeans exp 5=KMeans(random state=15,n clusters=8)
In [53]:
Out[53]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
      n clusters=8, n init=10, n jobs=None, precompute distances='auto',
      random state=15, tol=0.0001, verbose=0)
In [54]:
kmeans_exp_5.labels_
Out[54]:
array([6, 6, 6, ..., 2, 7, 4])
In [55]:
kmeans_exp_5.cluster_centers_
Out[55]:
array([[4.40490354e+01, 2.94735640e+00],
       [3.52632525e+03, 1.45580498e+01],
       [1.93302957e+03, 9.07341861e+00],
      [8.95755764e+02, 7.03511708e+00],
      [2.98950651e+03, 1.12346637e+01],
       [1.39752407e+03, 8.04796232e+00],
       [4.48160588e+02, 5.85808982e+00],
       [2.47007454e+03, 1.01720227e+01]])
In [56]:
kmeans_exp_5.inertia_
Out[56]:
665909780.2417341
In [57]:
e=pd.DataFrame(kmeans exp 5.labels)
```

```
e.Cluster.value counts()
Out[57]:
0
    14616
1
      7849
      6535
6
      5184
3
5
      4156
2
      3478
      3340
      3155
Name: Cluster, dtype: int64
In [58]:
df_cluster_1=df[["LV ActivePower (kW)","Wind Speed (m/s)"]]
In [59]:
df cluster 1=df cluster 1.assign(Cluster=kmeans exp 5.labels )
In [60]:
df cluster 1
Out[60]:
      LV ActivePower (kW) Wind Speed (m/s) Cluster
                               5.311336
    0
              380.047791
                                            6
              453.769196
                               5.672167
                                            6
    2
              306.376587
                               5.216037
                                            6
              419.645904
                               5.659674
                                            6
              380.650696
                               5.577941
                                            6
                                            4
 50525
             2963.980957
                              11.404030
             1684.353027
                               7.332648
                                            2
 50526
 50527
             2201.106934
                               8.435358
                                            2
             2515.694092
 50528
                               9.421366
                                            7
 50529
             2820.466064
                               9.979332
                                            4
48313 rows × 3 columns
In [61]:
from matplotlib import pyplot as plt
In [62]:
np.unique(kmeans_exp_5.labels_)
Out[62]:
array([0, 1, 2, 3, 4, 5, 6, 7])
In [63]:
sns.scatterplot(x="LV ActivePower (kW)", y="Wind Speed
(m/s)",style="Cluster",data=df_cluster_1,x_bins=50,y_bins=50)
Out[63]:
```

e.columns=["Cluster"]

In [64]:

from sklearn.preprocessing import scale

In [65]:

 $\verb|kmeans_exp_6=KMeans(random_state=15,n_clusters=8)|$

In [66]:

kmeans_exp_6.fit(scale(df[["LV ActivePower (kW)","Wind Speed (m/s)"]]))

Out[66]:

In [67]:

df_cluster_2=pd.DataFrame(scale(df[["LV ActivePower (kW)","Wind Speed (m/s)"]]))

In [68]:

df_cluster_2=df_cluster_2.assign(Cluster=kmeans_exp_6.labels_)

In [69]:

 $\label{eq:cluster2} $$ df_cluster_2.columns=[["LV ActivePower (kW)","Wind Speed (m/s)","Cluster"]] $$$

In [70]:

df_cluster_2

Out[70]:

	LV ActivePower (kW)	Wind Speed (m/s)	Cluster
0	-0.753184	-0.531873	4
1	-0.696963	-0.447458	7
2	-0.809366	-0.554168	4
3	-0.722986	-0.450381	7
4	-0.752724	-0.469502	4
48308	1.217341	0.893498	1
48309	0.241488	-0.058992	2

48310	LV ActivePower (RW)	Wind Speed (m/s)	Cluster
48311	0.875474	0.429658	5
48312	1.107895	0.560193	1

48313 rows × 3 columns

In [71]:

```
#Experiment 2
```

In [72]:

```
list_of_inertia_6=[]
for items in range(3,21):
    kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
    kmeans_clustering.fit(df[["LV ActivePower (kW)","Wind Speed (m/s)","Wind Direction (°)"]])
    list_of_inertia_6.append(kmeans_clustering.inertia_)
```

In [73]:

```
sns.lineplot(data=pd.DataFrame(list_of_inertia_6))
```

Out[73]:

<matplotlib.axes. subplots.AxesSubplot at 0x1f27c09ecc8>

In [74]:

```
kmeans_exp_7=KMeans(random_state=15,n_clusters=8)
```

In [75]:

Out[75]:

In [76]:

```
kmeans_exp_7.cluster_centers_
```

Out[76]:

```
array([[8.71679274e+02, 6.97645576e+00, 1.02251719e+02], [2.47270823e+03, 1.01750805e+01, 9.65651085e+01], [3.52870266e+03, 1.45829497e+01, 1.40932588e+02], [3.96666706e+01, 2.90153597e+00, 1.54360598e+02], [1.38089091e+03, 8.01542537e+00, 9.93574330e+01], [2.99892153e+03, 1.12559996e+01, 1.00508500e+02],
```

```
[4.25853699e+02, 5.78146154e+00, 1.10517297e+02],
        [1.92598839e+03, 9.06017077e+00, 1.02406715e+02]])
In [77]:
kmeans_exp_7.labels_
Out[77]:
array([6, 6, 6, ..., 1, 1, 5])
In [78]:
kmeans_exp_7.inertia_
Out[78]:
1059685098.6015022
In [79]:
df cluster 3=df[["LV ActivePower (kW)","Wind Speed (m/s)","Wind Direction (°)"]]
In [80]:
df_cluster_3.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 48313 entries, 0 to 50529
Data columns (total 3 columns):
 # Column
                            Non-Null Count Dtype
                             ----
O LV ActivePower (kW) 48313 non-null float64
1 Wind Speed (m/s) 48313 non-null float64
2 Wind Direction (°) 48313 non-null float64
dtypes: float64(3)
memory usage: 2.7 MB
In [81]:
len(kmeans exp 7.labels )
Out[81]:
48313
In [82]:
df_cluster_3=df_cluster_3.assign(Cluster=kmeans_exp_7.labels_)
In [83]:
df cluster 3
Out[83]:
       LV ActivePower (kW) Wind Speed (m/s) Wind Direction (°) Cluster
    0
              380.047791
                               5.311336
                                             259.994904
    1
              453.769196
                                5.672167
                                             268.641113
                                                            6
    2
              306.376587
                               5.216037
                                             272.564789
                                                            6
    3
              419.645904
                               5.659674
                                             271.258087
              380 650696
                                5.577941
                                             265 674286
                                                            6
```

50525

2963.980957

11.404030

80.502724

50526	LV ActivePower (kW)	Wind Speed (m/s) 7.332648	Wind Direction (°)	Cluster
50527	2201.106934	8.435358	84.742500	1
50528	2515.694092	9.421366	84.297913	1
50529	2820.466064	9.979332	82.274620	5

48313 rows × 4 columns

In [84]:

```
sns.scatterplot(x="Wind Speed (m/s)",y="Wind Direction (°)",data=df_cluster_3,style="Cluster")
```

Out[84]:

<matplotlib.axes. subplots.AxesSubplot at 0x1f27c3ffe08>

In [85]:

```
#Experiment3
```

In [86]:

```
kmeans_exp_8=KMeans(n_clusters=17,random_state=15)
```

In [87]:

```
kmeans_exp_8.fit(df[["LV ActivePower (kW)","Wind Speed (m/s)","Theoretical_Power_Curve (KWh)","Win
d Direction (°)"]])
```

Out[87]:

In [88]:

```
kmeans_exp_8.cluster_centers_
```

Out[88]:

```
array([[3.18892271e+03, 1.17305781e+01, 3.45068529e+03, 1.04410666e+02], [6.07250965e+02, 6.24421476e+00, 7.13340567e+02, 1.08308492e+02], [1.91484139e+03, 8.97638876e+00, 2.12956778e+03, 1.01882472e+02], [1.36480088e+01, 2.44771293e+00, 2.18992563e+01, 2.68583960e+02], [2.21937305e+03, 9.57235500e+00, 2.50994626e+03, 9.85757588e+01], [2.81541025e+03, 1.09917608e+01, 3.23128845e+03, 9.69887333e+01], [1.33197716e+03, 7.87675999e+00, 1.46232510e+03, 1.02315276e+02], [2.05947349e+02, 4.62689235e+00, 2.52556431e+02, 1.24044097e+02], [3.57231380e+02, 8.73115664e+00, 1.98011573e+03, 4.77371718e+01], [2.49712438e+03, 1.02663271e+01, 2.92557651e+03, 9.79219401e+01], [8.33893515e+02, 6.81883103e+00, 9.39115571e+02, 1.03827983e+02], [1.07728902e+03, 7.35263062e+00, 1.18552096e+03, 1.00136633e+02],
```

```
[3.55003707e+03, 1.48542516e+01, 3.59068598e+03, 1.43880367e+02],
        [7.06541265e+02, 1.21533188e+01, 3.27561613e+03, 7.06871175e+01], [1.61795160e+03, 8.40412050e+00, 1.77081753e+03, 9.87370313e+01],
        [1.51305250e+01, 2.59055822e+00, 2.42820134e+01, 6.92179479e+01],
        [4.05151699e+02, 5.53906153e+00, 4.83638020e+02, 1.15626449e+02]])
In [89]:
kmeans exp 8.labels
Out[89]:
array([16, 16, 16, ..., 2, 4, 9])
In [90]:
df_cluster_4=df[["LV ActivePower (kW)","Wind Speed (m/s)","Theoretical_Power_Curve (KWh)","Wind Di
rection (°)"]]
In [91]:
df_cluster_4=df_cluster_4.assign(Cluster=kmeans_exp_8.labels_)
In [92]:
df_cluster_4
Out[92]:
```

	LV ActivePower (kW)	Wind Speed (m/s)	Theoretical_Power_Curve (KWh)	Wind Direction (°)	Cluster
0	380.047791	5.311336	416.328908	259.994904	16
1	453.769196	5.672167	519.917511	268.641113	16
2	306.376587	5.216037	390.900016	272.564789	16
3	419.645904	5.659674	516.127569	271.258087	16
4	380.650696	5.577941	491.702972	265.674286	16
50525	2963.980957	11.404030	3397.190793	80.502724	5
50526	1684.353027	7.332648	1173.055771	84.062599	6
50527	2201.106934	8.435358	1788.284755	84.742500	2
50528	2515.694092	9.421366	2418.382503	84.297913	4
50529	2820.466064	9.979332	2779.184096	82.274620	9

48313 rows × 5 columns

In [93]:

```
kmeans_exp_8.inertia_
```

Out[93]:

1165187574.7937226

In [94]:

```
sns.scatterplot(x="LV ActivePower (kW)",y="Wind Speed (m/s)",size="Cluster",data=df_cluster_4)
```

Out[94]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f27c405988>

25 -

In [95]:

```
df_cluster_4.Cluster.value_counts()
```

```
Out[95]:
```

```
12
      7093
15
      6482
      5428
3
      3465
16
      3150
1
      2890
10
      2579
      2354
11
0
      2270
      2185
6
      2097
5
14
      2063
2
      1943
9
      1919
     1854
4
8
      306
13
      235
Name: Cluster, dtype: int64
```

In [96]:

In [97]:

```
df_clust.describe()
```

Out[97]:

	LV ActivePower (kW)	Wind Speed (m/s)	Theoretical_Power_Curve (KWh)	Wind Direction (°)	Temp	Sun Hour	DewPoint	WindChillC
count	48313.000000	48313.000000	48313.000000	48313.000000	48313.000000	48313.000000	48313.000000	48313.000000
mean	1367.691704	7.584808	1504.010263	124.291200	16.340095	10.529758	10.836007	16.457682
std	1311.305617	4.274504	1375.027496	93.271962	7.281467	3.125715	5.794409	8.027477
min	-2.471405	0.000000	0.000000	0.000000	-1.000000	3.400000	-5.000000	-5.000000
25%	120.164101	4.192660	159.625118	50.099098	10.000000	8.700000	6.000000	10.000000
50%	924.296509	7.139705	1080.139085	73.949280	16.000000	11.600000	11.000000	17.000000
75%	2566.322998	10.381380	3007.323841	201.751099	21.000000	11.600000	16.000000	22.000000
max	3618.732910	25.206011	3600.000000	359.997589	32.000000	14.500000	22.000000	32.000000
4								<u> </u>

In [98]:

```
list_of_inertia_7=[]
for items in range(3 21):
```

```
kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
kmeans_clustering.fit(df_clust)
list_of_inertia_7.append(kmeans_clustering.inertia_)
```

In [99]:

```
list_of_inertia_7
```

Out[99]:

```
[13721860012.030508,
8117318385.580713,
5613944087.730892,
4282542631.9201155,
3542798450.39081,
2841629808.8082385,
2419008520.392374,
2117104020.1980238,
1905898599.8631473,
1730404069.8885908,
1577359796.8438053,
1451298124.43838,
1337392036.3970506,
1254152778.6105337,
1186587577.509508,
1132244043.7206438,
1078255697.032554,
1032032064.070267]
```

In [100]:

```
sns.lineplot(data=pd.DataFrame(list_of_inertia_7))
```

Out[100]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f27c0a5b88>

In [101]:

```
kmeans_exp_9=KMeans(n_clusters=8,random_state=15)
```

In [102]:

```
kmeans_exp_9.fit(df_clust)
```

Out[102]:

In [103]:

```
kmeans_exp_9.cluster_centers_
```

```
Out[103]:
array([[ 4.69092918e+01, 2.90238656e+00, 6.20968747e+01,
          1.53422873e+02, 1.64290577e+01, 1.13074142e+01,
          1.13610430e+01, 1.70467729e+01, 1.01635349e+01,
          7.01887936e+01, -1.38083989e-15, 1.22158875e+00],
        [ 3.48250858e+03, 1.42231300e+01, 3.56516388e+03,
          1.35747473e+02, 1.48104356e+01, 9.41408577e+00, 8.39357295e+00, 1.43059008e+01, 2.11003247e+01,
          6.62817154e+01, 1.56757362e-03, 1.22904866e+00],
        [ 1.51905346e+03, 8.22188808e+00, 1.66451583e+03,
          1.00850290e+02, 1.70736095e+01, 1.06714793e+01,
          1.17391716e+01, 1.70979882e+01, 1.45398817e+01, 7.10731361e+01, 7.45562130e-03, 1.21972587e+00]
                                                   1.21972587e+00],
        [ 4.78368622e+02, 5.78863721e+00, 5.67853427e+02,
          1.12837460e+02, 1.70926119e+01, 1.09160398e+01,
          1.17914375e+01, 1.74767355e+01, 1.21715475e+01,
          6.99467816e+01, -9.41954847e-16, 1.21893702e+00],
        [ 2.70968389e+03, 1.07527045e+01, 3.12800214e+03, 9.79235082e+01, 1.71065172e+01, 1.00725765e+01,
          1.10696099e+01, 1.69467414e+01, 1.82258818e+01,
          6.88199019e+01, 4.90539594e-03, 1.22011821e+00],
        [ 2.10233038e+03, 9.35471936e+00, 2.37109451e+03,
          9.94034930e+01, 1.67007939e+01, 1.03494114e+01, 1.12031207e+01, 1.65767862e+01, 1.62496578e+01, 7.05688475e+01, 2.29947988e-02, 1.22207784e+00],
        [ 9.55938306e+02, 7.13158846e+00, 1.08563788e+03,
          1.01585287e+02, 1.70920906e+01, 1.05935202e+01,
        1.17513925e+01, 1.72515782e+01, 1.33685481e+01, 7.05575566e+01, 1.94949870e-03, 1.21948268e+00] [ 5.24553516e+02, 1.06499947e+01, 2.74485758e+03,
                                                   1.21948268e+00],
          5.78790778e+01, 5.78199052e+00, 4.88317536e+00,
          2.74881517e+00, 2.71327014e+00, 2.20165877e+01,
          8.11255924e+01, 2.15639810e-01, 1.27120343e+00]])
In [104]:
kmeans exp 9.labels
Out[104]:
array([3, 3, 3, ..., 5, 5, 4])
In [105]:
kmeans_exp_9.inertia_
Out[105]:
2841629808.8082385
In [106]:
from sklearn.cluster import DBSCAN
In [107]:
dbscan exp 1=DBSCAN(eps=1000000,min samples=1500)
In [108]:
#dbscan exp 1.fit(df clust)
In [109]:
#dbscan exp 1
In [110]:
```

```
# Silhoutte Values
In [111]:
from sklearn.metrics import silhouette_samples, silhouette_score
In [3]:
?silhouette score
In [122]:
silhouette_score(df["LV ActivePower (kW)"].values.reshape(-1,1),kmeans_exp_1.labels_)
Out[122]:
0.6478462783673685
In [124]:
silhouette_score(df["Wind Speed (m/s)"].values.reshape(-1,1),kmeans_exp_2.labels_)
Out[124]:
0.5289507261539236
In [125]:
silhouette_score(df["Theoretical_Power_Curve (KWh)"].values.reshape(-1,1),kmeans_exp_3.labels_)
Out[125]:
0.660672243563822
In [126]:
silhouette score(df["Wind Direction (°)"].values.reshape(-1,1),kmeans exp 4.labels )
Out[126]:
0.5342132017381143
In [ ]:
silhouette_score(df["Wind Direction (°)"].values.reshape(-1,1),kmeans_exp_4.labels_)
In [127]:
silhouette score(df[["LV ActivePower (kW)","Wind Speed (m/s)"]],kmeans exp 5.labels )
Out[127]:
0.6479522758184177
In [128]:
kmeans exp 5.inertia
Out[128]:
665909780.2417341
In [129]:
kmeans exp 10=KMeans(n clusters=6,random state=15)
```

```
In [131]:
kmeans\_exp\_10.fit((df[["LV ActivePower (kW)","Wind Speed (m/s)"]]))
Out[131]:
KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
      n_clusters=6, n_init=10, n_jobs=None, precompute_distances='auto',
      random state=15, tol=0.0001, verbose=0)
In [132]:
kmeans_exp_10.inertia_
Out[132]:
1229441473.9298115
In [133]:
silhouette score(df[["LV ActivePower (kW)","Wind Speed (m/s)"]], kmeans exp 10.labels )
Out[133]:
0.6546166342498526
In [134]:
kmeans_exp_11=KMeans(n_clusters=5,random_state=15)
In [135]:
Out[135]:
KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
      n_clusters=5, n_init=10, n_jobs=None, precompute_distances='auto',
      random_state=15, tol=0.0001, verbose=0)
In [136]:
silhouette_score(df[["LV ActivePower (kW)","Wind Speed (m/s)"]], kmeans_exp_11.labels_)
Out[136]:
0.6576921304462101
In [137]:
kmeans_exp_11.inertia_
Out[137]:
1843590397.3715093
In [138]:
kmeans_exp_12=KMeans(n_clusters=7,random_state=15)
In [139]:
kmeans exp 12.fit((df[["LV ActivePower (kW)","Wind Speed (m/s)"]]))
```

Out.[1391:

```
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n clusters=7, n init=10, n jobs=None, precompute distances='auto',
       random state=15, tol=0.0001, verbose=0)
In [140]:
silhouette score(df[["LV ActivePower (kW)","Wind Speed (m/s)"]], kmeans exp 12.labels )
Out[140]:
0.650806137309017
In [141]:
kmeans_exp_12.inertia_
Out[141]:
885643293.4037602
In [143]:
silhouette score(df[["LV ActivePower (kW)","Wind Speed (m/s)","Wind Direction (°)"]], kmeans exp 7.
labels )
Out[143]:
0.5346192051379163
In [144]:
kmeans_exp_7.inertia_
Out[144]:
1059685098.6015022
In [145]:
kmeans exp 13=KMeans(n clusters=7,random state=15)
In [146]:
kmeans exp 13.fit(df[["LV ActivePower (kW)","Wind Speed (m/s)","Wind Direction (°)"]])
Out[146]:
\label{lem:k-means++', max_iter=300,} KMeans (algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=7, n_init=10, n_jobs=None, precompute_distances='auto',
       random state=15, tol=0.0001, verbose=0)
In [147]:
kmeans exp 13.inertia
Out[147]:
1280774023.9213927
In [148]:
silhouette score(df[["LV ActivePower (kW)","Wind Speed (m/s)","Wind Direction (°)"]], kmeans exp 13
.labels_)
Out[148]:
```

```
0.55614598130/3801
In [149]:
kmeans exp 14=KMeans(n clusters=6,random state=15)
In [150]:
kmeans exp 14.fit(df[["LV ActivePower (kW)","Wind Speed (m/s)","Wind Direction (°)"]])
Out[150]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=6, n_init=10, n_jobs=None, precompute_distances='auto',
       random state=15, tol=0.0001, verbose=0)
In [151]:
kmeans exp 14.inertia
Out[151]:
1626139832.088378
In [152]:
silhouette score(df[["LV ActivePower (kW)","Wind Speed (m/s)","Wind Direction (°)"]], kmeans exp 14
.labels )
Out[152]:
0.5782076403302493
In [153]:
silhouette score(df[["LV ActivePower (kW)","Wind Speed (m/s)","Theoretical Power Curve (KWh)","Win
d Direction (°)"]], kmeans_exp_8.labels_)
Out[153]:
0.4475707098056214
In [154]:
kmeans exp 8.inertia
Out[154]:
1165187574.7937226
In [155]:
kmeans_exp_15=KMeans(n_clusters=7,random_state=15)
In [156]:
kmeans exp 15.fit(df[["LV ActivePower (kW)","Wind Speed (m/s)","Theoretical Power Curve (KWh)","Wi
nd Direction (°)"]])
Out[156]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=7, n_init=10, n_jobs=None, precompute_distances='auto',
       random state=15, tol=0.0001, verbose=0)
```

In [157]:

```
kmeans exp 15.inertia
Out[157]:
3519873936.391018
In [158]:
silhouette score(df[["LV ActivePower (kW)","Wind Speed (m/s)","Theoretical Power Curve (KWh)","Win
d Direction (°)"]], kmeans exp 15.labels )
Out[158]:
0.5884869663912284
In [159]:
kmeans_exp_16=KMeans(n_clusters=6,random_state=15)
In [160]:
kmeans exp 16.fit(df[["LV ActivePower (kW)","Wind Speed (m/s)","Theoretical Power Curve (KWh)","Wi
nd Direction (°)"]])
Out[160]:
KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
       n clusters=6, n init=10, n jobs=None, precompute distances='auto',
       random state=15, tol=0.0001, verbose=0)
In [161]:
silhouette_score(df[["LV ActivePower (kW)","Wind Speed (m/s)","Theoretical_Power_Curve (KWh)","Win
d Direction (°)"]], kmeans exp 16.labels )
Out[161]:
0.5800855002629363
In [162]:
kmeans exp 16.inertia
Out[162]:
4259717568.4028482
In [163]:
silhouette_score(df_clust,kmeans_exp_9.labels_)
Out[163]:
0.564922161212547
In [164]:
kmeans_exp_9.inertia_
Out[164]:
2841629808.8082385
In [165]:
kmeans_exp_17=KMeans(n_clusters=7,random_state=15)
```

```
In [166]:
kmeans exp 17.fit(df clust)
Out[166]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=7, n_init=10, n_jobs=None, precompute_distances='auto',
       random_state=15, tol=0.0001, verbose=0)
In [167]:
kmeans_exp_17.inertia_
Out[167]:
3542798450.39081
In [168]:
silhouette score(df clust,kmeans exp 17.labels )
Out[168]:
0.5858043461274995
In [170]:
kmeans_exp_18=KMeans(n_clusters=6,random_state=15)
In [171]:
kmeans exp 18.fit(df clust)
Out[171]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n clusters=6, n init=10, n jobs=None, precompute distances='auto',
       random state=15, tol=0.0001, verbose=0)
In [172]:
kmeans_exp_18.inertia_
Out[172]:
4282542631.9201155
In [173]:
silhouette_score(df_clust,kmeans_exp_18.labels_)
Out[173]:
0.5773901469511109
In [ ]:
```

```
In [1]:
import pandas as pd
import numpy as np
import seaborn as sns
In [2]:
data=pd.read excel("C:/Users/Furkan/Desktop/FinalData.xlsx")
In [3]:
df=data.copy()
In [4]:
for items in df.index:
    if df.loc[items,"LV ActivePower (kW)"]==0 and df.loc[items,"Wind Speed (m/s)"]>=3.5:
        df=df.drop(items)
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 48313 entries, 0 to 50529
Data columns (total 23 columns):
 # Column
                                     Non-Null Count Dtype
___
 0
    Date
                                      48313 non-null object
                                     48313 non-null object
48313 non-null float64
 1
     Time
    LV ActivePower (kW)
                                     48313 non-null float64
   Wind Speed (m/s)
   Theoretical Power Curve (KWh) 48313 non-null float64
                                     48313 non-null float64
48313 non-null int64
 5
    Wind Direction (°)
    Month
                                     48313 non-null int64
 7
    Day/Night
   Temp
                                     48313 non-null int64
 8
 9 Sun Hour
                                     48313 non-null float64
                                     48313 non-null int64
 10 Moon Illumunation
                                     48313 non-null object
48313 non-null object
 11 Moonrise
 12 Moonset
                                     48313 non-null object
 13 Sunrise
 14 Sunset
                                     48313 non-null object
 15 DewPoint
                                     48313 non-null int64
                                     48313 non-null int64
 16 WindChillC
                                     48313 non-null int64
48313 non-null int64
 17
    WindGust
 18 Humidity
                                     48313 non-null float64
 19 RainMM
 20 Pressure
                                     48313 non-null int64
 21 Visibility
                                     48313 non-null int64
 22 Density
                                     48313 non-null float64
dtypes: float64(7), int64(10), object(6)
memory usage: 10.1+ MB
In [22]:
df.describe().T
Out[22]:
```

50% 75% count mean std min 25% max **LV ActivePower (kW)** 48313.0 1367.691704 1311.305617 -2.471405 120.164101 924.296509 2566.322998 3618.732910 Wind Speed (m/s) 48313.0 7.584808 4.274504 0.000000 4.192660 7.139705 10.381380 25.206011 Theoretical Power Curve

(KWh)	48313.0 count	1504.010263 mean	1375.027496 std	0.000000 min	159.625118 25 %	1080.139085 50%	3007.323841 75 %	3600.000000 max
Wind Direction (°)	48313.0	124.291200	93.271962	0.000000	50.099098	73.949280	201.751099	359.997589
Month	48313.0	6.563140	3.338178	1.000000	4.000000	7.000000	9.000000	12.000000
Day/Night	48313.0	0.504150	0.499988	0.000000	0.000000	1.000000	1.000000	1.000000
Temp	48313.0	16.340095	7.281467	-1.000000	10.000000	16.000000	21.000000	32.000000
Sun Hour	48313.0	10.529758	3.125715	3.400000	8.700000	11.600000	11.600000	14.500000
Moon Illumunation	48313.0	46.147041	31.648975	0.000000	17.000000	45.000000	74.000000	100.000000
DewPoint	48313.0	10.836007	5.794409	-5.000000	6.000000	11.000000	16.000000	22.000000
WindChillC	48313.0	16.457682	8.027477	-5.000000	10.000000	17.000000	22.000000	32.000000
WindGust	48313.0	14.482996	7.908197	0.000000	9.000000	13.000000	19.000000	52.000000
Humidity	48313.0	69.554261	16.489826	31.000000	56.000000	71.000000	85.000000	97.000000
RainMM	48313.0	0.005216	0.135015	0.000000	0.000000	0.000000	0.000000	3.500000
Pressure	48313.0	1014.512181	5.962183	993.000000	1010.000000	1014.000000	1019.000000	1032.000000
Visibility	48313.0	9.881605	0.899149	0.000000	10.000000	10.000000	10.000000	10.000000
Density	48313.0	1.222541	0.033878	1.146970	1.198180	1.222526	1.248446	1.310768

In [6]:

```
from sklearn.cluster import KMeans
```

Wind Gust

In [7]:

```
list_of_inertia=[]
for items in range(3,21):
    kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
    kmeans_clustering.fit(df["WindGust"].values.reshape(-1,1))
    list_of_inertia.append(kmeans_clustering.inertia_)
```

In [8]:

```
list_of_inertia
```

Out[8]:

```
[560690.5094988057,
330874.88989972015,
225864.79518516368,
153801.14222590494,
117701.95160097053,
90027.02506275156,
72471.37050124576,
61212.63110711296,
49811.318345247564,
42827.63603060018,
35324.19737825483,
30841.221294785984,
23774.48097732406,
21609.707532905617,
19461.753499364975,
17910.915737616986,
15153.905581603882,
12971.064329382765]
```

In [12]:

```
sns.lineplot(data=pd.DataFrame(list_of_inertia))
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x29847b1ec08>

```
500000
 400000
 300000
 200000
 100000
                     5.0
                           7.5
                                 10.0
                                       12.5
        0.0
              2.5
                                             15.0
                                                    17.5
In [7]:
kmeans_exp_1=KMeans(n_clusters=6,max_iter=300,random_state=15)
In [8]:
kmeans exp 1.fit(df["WindGust"].values.reshape(-1,1))
Out[8]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
        n_clusters=6, n_init=10, n_jobs=None, precompute_distances='auto',
        random_state=15, tol=0.0001, verbose=0)
In [9]:
from sklearn.metrics import silhouette_samples, silhouette_score
In [11]:
silhouette_score(df["WindGust"].values.reshape(-1,1),kmeans_exp_1.labels_)
Out[11]:
0.5662882537635232
In [28]:
kmeans_exp_1.inertia_
Out[28]:
153801.14222590494
In [29]:
kmeans_exp_1.labels_
Out[29]:
array([2, 2, 2, ..., 2, 2, 2])
In [30]:
pd.DataFrame(kmeans exp 1.labels ).T
Out[30]:
   0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad \dots \quad 48303 \quad 48304 \quad 48305 \quad 48306 \quad 48307 \quad 48308 \quad 48309 \quad 48310 \quad 48311 \quad 48312
0 2 2 2 2 2 2 2 2 2 2 ... 2
```

1 rows × 48313 columns

```
In [31]:
kmeans exp 1.cluster centers
Out[31]:
array([[13.91631151],
      [27.24555461],
      [ 5.17871009],
      [19.7060504],
      [38.74057315],
      [ 9.61526495]])
In [32]:
sns.scatterplot(data=pd.DataFrame(kmeans_exp_1.labels_),x_bins=500,y_bins=50)
Out[32]:
<matplotlib.axes. subplots.AxesSubplot at 0x2984c04c188>
   4
    . . .
   3
                                •
   2
    ----
1
   0
        10000
               20000
                     30000
                            40000
                                  50000
In [33]:
a=pd.DataFrame(kmeans exp 1.labels )
a.columns=["Cluster"]
In [34]:
a.Cluster.value_counts()
Out[34]:
0
   12905
   10285
5
    9801
3
2
     9272
    4724
1
     1326
Name: Cluster, dtype: int64
Wind Gust (clustering with different k value)
In [40]:
list_of_inertia=[]
for items in range(1,31):
   kmeans clustering=KMeans(n clusters=items,random state=15,max iter=300)
   kmeans_clustering.fit(df["WindGust"].values.reshape(-1,1))
   list_of_inertia.append(kmeans_clustering.inertia_)
In [41]:
```

```
Out[41]:
[3021412.281456337,
 1082273.3349676395,
 560690.5094988057,
 330874.88989972015,
 225864.79518516368,
 153801.14222590494,
 117701.95160097053,
 90027.02506275156,
 72471.37050124576,
 61212.63110711296,
 49811.318345247564,
 42827.63603060018,
 35324.19737825483,
 30841.221294785984.
 23774.48097732406,
 21609.707532905617,
 19461.753499364975,
 17910.915737616986,
 15153.905581603882,
 12971.064329382765,
 11279.900323258145,
 9955.664031567925,
 8713.02384911417,
 6979.952502423299,
 5966.990452152229,
 5316.046409518047,
 4446.022189028068,
 3513.871659366495,
 2862.9276167323114,
 2441.678952043884]
In [42]:
sns.lineplot(data=pd.DataFrame(list_of_inertia))
Out[42]:
<matplotlib.axes._subplots.AxesSubplot at 0x2984c0bd988>
 3000000
                                           — 0
 2500000
 2000000
 1500000
 1000000
  500000
     0
                                                30
In [45]:
kmeans exp 1=KMeans(n clusters=4, max iter=300, random state=15)
In [12]:
kmeans exp 1.fit(df["WindGust"].values.reshape(-1,1))
Out[12]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n clusters=6, n init=10, n jobs=None, precompute distances='auto',
```

random state=15, tol=0.0001, verbose=0)

list of inertia

```
In [13]:
 silhouette_score(df["WindGust"].values.reshape(-1,1),kmeans_exp_1.labels_)
Out[13]:
0.5662882537635232
In [47]:
 kmeans exp 1.inertia
Out[47]:
330874.88989972015
In [48]:
 kmeans_exp_1.labels
Out[48]:
array([2, 2, 2, ..., 2, 2, 2])
In [49]:
 pd.DataFrame(kmeans_exp_1.labels_).T
Out[49]:
               0 1 2 3 4 5 6 7 8 9 ... 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312
   0 2 2 2 2 2 2 2 2 2 2 ... 2
                                                                                                                                                                                                                                                                                                                                                                                                               2
                                                                                                                                                                                                                                                                                                                                                                                                                                            2
                                                                                                                                                                                                                                                                                                                        2
1 rows × 48313 columns
In [50]:
 kmeans_exp_1.cluster_centers_
Out[50]:
array([[22.28330206],
                                       [14.05703032],
                                       [ 6.95319452],
                                     [34.45831843]])
In [64]:
sns.scatterplot(data=pd.DataFrame(kmeans exp 1.labels ))
Out[64]:
<matplotlib.axes. subplots.AxesSubplot at 0x2984b5f6288>
                                  (ECO - CEC) •
      3.0
      2.0
                          (\mathbf{c}_{\mathsf{C}}) = (\mathbf{c}_{\mathsf{C}}) + (\mathbf{c}_{\mathsf{C}}
    1.5
                                                                                                                                                                                                                   • 0
    1.0
                             0.0
```

```
In [65]:
a=pd.DataFrame(kmeans_exp_1.labels_)
a.columns=["Cluster"]
In [66]:
a.Cluster.value_counts()
Out[66]:
    18534
2
    16857
    10127
     2795
Name: Cluster, dtype: int64
Humidity
In [70]:
list of inertia=[]
for items in range(3,21):
    kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
    kmeans_clustering.fit(df["Humidity"].values.reshape(-1,1))
    list of inertia.append(kmeans clustering.inertia )
In [71]:
list_of_inertia
Out[71]:
[1454518.7254992437,
 874136.2237488809,
 569560.506177118,
 392136.17812633904,
 300510.126817572,
 227300.26051588322,
 181731.33333743754,
 138458.7453470317,
 116460.8566828362,
 97198.92966412017,
 82160.05914513885,
 72118.51065125204,
 64312.99578001878,
 54230.39278320354,
 49294.816293515454,
 46298.492143974145,
 40838.34098810151,
 37526.728872356776]
In [72]:
sns.lineplot(data=pd.DataFrame(list_of_inertia))
Out[72]:
<matplotlib.axes. subplots.AxesSubplot at 0x2984bdb3148>
                                           — 0
1400000
 1200000
 1000000
 800000
```

10000

600000

20000

40000

50000

```
400000 -
200000 -
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
```

The plot is not readable, with different range;

In [84]:

```
list_of_inertia=[]
for items in range(3,15):
    kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
    kmeans_clustering.fit(df["Humidity"].values.reshape(-1,1))
    list_of_inertia.append(kmeans_clustering.inertia_)
```

In [85]:

```
list_of_inertia
```

Out[85]:

```
[1454518.7254992437,
874136.2237488809,
569560.506177118,
392136.17812633904,
300510.126817572,
227300.26051588322,
181731.33333743754,
138458.7453470317,
116460.8566828362,
97198.92966412017,
82160.05914513885,
72118.51065125204]
```

In [86]:

```
sns.lineplot(data=pd.DataFrame(list_of_inertia))
```

Out[86]:

<matplotlib.axes._subplots.AxesSubplot at 0x2984a185988>

In [8]:

```
kmeans_exp_1=KMeans(n_clusters=6,max_iter=300,random_state=15)
```

In [14]:

```
kmeans_exp_1.fit(df["Humidity"].values.reshape(-1,1))
```

Out[14]:

```
random state=15, tol=0.0001, verbose=0)
In [15]:
silhouette score(df["Humidity"].values.reshape(-1,1),kmeans exp 1.labels )
Out[15]:
0.5591162167677304
In [10]:
kmeans_exp_1.inertia_
Out[10]:
392136.17812633904
In [11]:
kmeans_exp_1.labels_
Out[11]:
array([0, 0, 0, ..., 4, 4, 4])
In [12]:
pd.DataFrame(kmeans_exp_1.labels_).T
Out[12]:
  0 1 2 3 4 5 6 7 8 9 ... 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312
0 0 0 0 0 0 0 0 0 0 0 ...
1 rows × 48313 columns
In [13]:
kmeans_exp_1.cluster_centers_
Out[13]:
array([[89.11449502],
      [51.12732697],
      [80.59997668],
      [39.93187815],
      [61.50582608],
      [71.17458243]])
In [93]:
sns.scatterplot(data=pd.DataFrame(kmeans_exp_1.labels_),x_bins=500,y_bins=50)
Out[93]:
<matplotlib.axes. subplots.AxesSubplot at 0x2984aefe5c8>
   4
    CONTRACTOR CONTRACTOR
 3
                                • 0
```

```
2 - ***COMMINISTRATION OF COMMINISTRATION OF COMMIN
```

In [14]:

```
a=pd.DataFrame (kmeans_exp_1.labels_)
a.columns=["Cluster"]
a.Cluster.value_counts()
```

Out[14]:

```
0 12149
2 8577
1 8380
4 8153
5 6885
3 4169
Name: Cluster, dtype: int64
```

"Visibility" feature is not suitable for clustering.

In [15]:

```
list_of_inertia=[]
for items in range(3,6):
    kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
    kmeans_clustering.fit(df["Visibility"].values.reshape(-1,1))
    list_of_inertia.append(kmeans_clustering.inertia_)
```

In [16]:

```
list_of_inertia
```

Out[16]:

[517.6318652395157, 250.70503597122303, 6.348619609588698e-23]

In [17]:

```
sns.lineplot(data=pd.DataFrame(list_of_inertia))
```

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x1658641e648>

In [18]:

```
kmeans_exp_1=KMeans(n_clusters=2,max_iter=300,random_state=15)
```

```
In [19]:
kmeans exp 1.fit(df["Visibility"].values.reshape(-1,1))
Out[19]:
random state=15, tol=0.0001, verbose=0)
In [20]:
kmeans_exp_1.inertia_
Out[20]:
1784.0621563933598
In [108]:
kmeans exp 1.labels
Out[108]:
array([0, 0, 0, ..., 0, 0, 0])
In [109]:
pd.DataFrame(kmeans_exp_1.labels_).T
Out[109]:
  0 1 2 3 4 5 6 7 8 9 ... 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312
0 0 0 0 0 0 0 0 0 0 0 ...
1 rows × 48313 columns
In [110]:
kmeans_exp_1.cluster_centers_
Out[110]:
array([[9.97638043],
      [1.74100719]])
In [111]:
sns.scatterplot(data=pd.DataFrame(kmeans_exp_1.labels_),x_bins=500,y_bins=50)
Out[111]:
<matplotlib.axes. subplots.AxesSubplot at 0x29847aff248>
1.0
 0.8
0.6
 0.4
 0.2
 0.0
```

```
0 10000 20000 30000 40000 50000
```

```
In [34]:
```

```
a=pd.DataFrame(kmeans_exp_1.labels_)
a.columns=["Cluster"]
```

Density

```
In [113]:
```

```
list_of_inertia=[]
for items in range(3,21):
    kmeans_clustering=KMeans(n_clusters=items,random_state=15,max_iter=300)
    kmeans_clustering.fit(df["Density"].values.reshape(-1,1))
    list_of_inertia.append(kmeans_clustering.inertia_)
```

In [114]:

```
list_of_inertia
```

Out[114]:

```
[8.246558114067083,
4.427515061115515,
2.869137558298023,
1.9760965163653235,
1.5605874423794044,
1.1539972287782083,
0.8543979490696777,
0.7249435357148676,
0.6068996832406915,
0.5292445084547235,
0.4689009956214695,
0.4199026260148145,
0.3576310834948045,
0.3139064626167676,
0.27621216384400277,
0.2496742431580268,
0.22287729255557584,
0.1998165145676149]
```

In [115]:

```
sns.lineplot(data=pd.DataFrame(list_of_inertia))
```

Out[115]:

<matplotlib.axes._subplots.AxesSubplot at 0x29848fc0208>

In [116]:

```
kmeans_exp_1=KMeans(n_clusters=7,max_iter=300,random_state=15)
```

```
In [16]:
\verb|kmeans_exp_1.fit(df["Density"].values.reshape(-1,1))|
Out[16]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=6, n_init=10, n_jobs=None, precompute_distances='auto',
       random state=15, tol=0.0001, verbose=0)
In [17]:
silhouette score(df["Density"].values.reshape(-1,1),kmeans exp 1.labels )
Out[17]:
0.5656484186287785
In [118]:
kmeans exp 1.inertia
Out[118]:
1.5605874423794044
In [119]:
kmeans_exp_1.labels_
Out[119]:
array([5, 5, 5, ..., 1, 1, 1])
In [120]:
pd.DataFrame(kmeans exp 1.labels ).T
Out[120]:
  0 1 2 3 4 5 6 7 8 9 ... 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312
0 5 5 5 5 5 5 5 5 5 ...
1 rows × 48313 columns
In [121]:
kmeans_exp_1.cluster_centers_
Out[121]:
array([[1.21284286],
       [1.26773644],
       [1.16788297],
       [1.23059769],
       [1.19498369],
       [1.28614076],
       [1.24965204]])
sns.scatterplot(data=pd.DataFrame(kmeans exp 1.labels ),x bins=500,y bins=50)
Out[122]:
<matplotlib.axes._subplots.AxesSubplot at 0x2984904b508>
```

```
.................
                               ...........
 6
                   • 0
                                    . ....
         ....................................
                              OFF STREETMEN
 3
 2
   . .......
1
       0
          10000
                  20000
                         30000
                                 40000
In [21]:
a=pd.DataFrame(kmeans_exp_1.labels_)
a.columns=["Cluster"]
a.Cluster.value_counts()
Out[21]:
    47757
     556
Name: Cluster, dtype: int64
In [ ]:
Density with different random state
In [124]:
list_of_inertia=[]
for items in range (3,21):
    kmeans_clustering=KMeans(n_clusters=items,random_state=10,max_iter=300)
    kmeans_clustering.fit(df["Density"].values.reshape(-1,1))
    list of inertia.append(kmeans clustering.inertia )
In [125]:
list of inertia
Out[125]:
[8.246558114067083,
 4.427679012974612,
 2.870086287502298,
 1.9760965163653235,
 1.5583140932428412,
 1.1551164576306077,
 0.8544922796011799,
 0.7249435357148676,
 0.6085390971154986,
 0.5293742119983692,
 0.46816860711018193,
 0.4116567359221708,
 0.3479207230858452,
 0.3137822443787309,
 0.2736731747898067,
 0.24753742055827682,
 0.22136008230950516,
 0.1957749662622888]
In [126]:
```

sns.lineplot(data=pd.DataFrame(list_of_inertia))

```
Out[126]:
<matplotlib.axes._subplots.AxesSubplot at 0x2984a636288>
 8
 7
 6
 5
 4
 3
2
1
0
                  7.5
                      10.0
                           12.5
                                15.0
   0.0
        2.5
             5.0
                                      17.5
In [127]:
kmeans_exp_1=KMeans(n_clusters=7,max_iter=300,random_state=10)
In [128]:
kmeans exp 1.fit(df["Density"].values.reshape(-1,1))
Out[128]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
      n_clusters=7, n_init=10, n_jobs=None, precompute_distances='auto',
      random state=10, tol=0.0001, verbose=0)
In [129]:
kmeans_exp_1.inertia_
Out[129]:
1.5583140932428412
In [130]:
kmeans_exp_1.labels_
Out[130]:
array([6, 6, 6, ..., 2, 2, 2])
In [131]:
pd.DataFrame(kmeans_exp_1.labels_).T
Out[131]:
  0 6 6 6 6 6 6 6 6 6 ... 2
                                                                 2
1 rows × 48313 columns
In [132]:
kmeans_exp_1.cluster_centers_
Out[132]:
-----/[[1 020[07/01
```

```
array([[1.23059/69],
       [1.16788297],
       [1.26872308],
      [1.19498369],
      [1.24965204],
      [1.21284286],
       [1.2886508]])
In [133]:
sns.scatterplot(data=pd.DataFrame(kmeans_exp_1.labels_),x_bins=500,y_bins=50)
Out[133]:
<matplotlib.axes. subplots.AxesSubplot at 0x2984b018cc8>
   • (((• • •
 6
       5
   TO CCCCCCC
 4
         3
   CECCCE 1000 CO 10
                                 • ((0.00)
 2
                1
    .....
                            CONTRACTOR CONTRACTOR
 0
         10000
                 20000
                        30000
                               40000
                                       50000
In [134]:
a=pd.DataFrame(kmeans_exp_1.labels_)
a.columns=["Cluster"]
Density with different k value
In [139]:
list of inertia=[]
for items in range (3,15):
    kmeans_clustering=KMeans(n_clusters=items,random_state=10,max_iter=300)
    kmeans_clustering.fit(df["Density"].values.reshape(-1,1))
    list of inertia.append(kmeans clustering.inertia )
In [140]:
list of inertia
Out[140]:
[8.246558114067083,
 4.427679012974612,
 2.870086287502298,
 1.9760965163653235,
 1.5583140932428412,
 1.1551164576306077,
 0.8544922796011799,
 0.7249435357148676,
 0.6085390971154986,
 0.5293742119983692,
 0.46816860711018193,
 0.4116567359221708]
In [141]:
sns.lineplot(data=pd.DataFrame(list_of_inertia))
```

Out [1/11].

```
Out[141]:
<matplotlib.axes._subplots.AxesSubplot at 0x29849d77848>
                                      — 0
 8
 7
 6
 5
 4
 3
 2
 1
                                     10
In [142]:
kmeans_exp_1=KMeans(n_clusters=5,max_iter=300,random_state=10)
In [143]:
kmeans_exp_1.fit(df["Density"].values.reshape(-1,1))
Out[143]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=5, n_init=10, n_jobs=None, precompute_distances='auto',
       random state=10, tol=0.0001, verbose=0)
In [144]:
kmeans exp 1.inertia
Out[144]:
2.870086287502298
In [145]:
kmeans exp 1.labels
Out[145]:
array([2, 2, 2, ..., 2, 2, 2])
In [146]:
pd.DataFrame(kmeans_exp_1.labels_).T
Out[146]:
  0 1 2 3 4 5 6 7 8 9 ... 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312
0 2 2 2 2 2 2 2 2 2 2 ...
1 rows × 48313 columns
In [147]:
kmeans_exp_1.cluster_centers_
Out[147]:
array([[1.22208931],
       [1.17044742],
```

```
[1.2739256],
       [1.19971744],
       [1.24602981]])
In [148]:
sns.scatterplot(data=pd.DataFrame(kmeans_exp_1.labels_),x_bins=500,y_bins=50)
Out[148]:
<matplotlib.axes. subplots.AxesSubplot at 0x298489adc08>
     • ( • c × c · c · c · • • • 0
                                4.0
 3.5
           3.0
 2.5
                                   . .....
 2.0
1.5
            1.0
 0.5
     ••••••••••••••••••••••••
                          0.0
           10000
                  20000
                          30000
                                 40000
                                         50000
In [134]:
a=pd.DataFrame(kmeans_exp_1.labels_)
a.columns=["Cluster"]
kmeans exp 2=KMeans(n clusters=6,random state=15)
In [20]:
kmeans exp 2.fit(df["Temp"].values.reshape(-1,1))
Out[20]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n clusters=6, n init=10, n jobs=None, precompute distances='auto',
       random_state=15, tol=0.0001, verbose=0)
In [22]:
silhouette score(df["Temp"].values.reshape(-1,1),kmeans exp 2.labels )
Out[22]:
0.5760048070855869
In [23]:
kmeans exp 3=KMeans(n clusters=5,random state=15)
In [26]:
kmeans_exp_3.fit(df["Sun Hour"].values.reshape(-1,1))
Out[26]:
\label{lem:kmeans} $$ KMeans (algorithm='auto', copy_x=True, init='k-means++', max iter=300, $$
       n_clusters=5, n_init=10, n_jobs=None, precompute_distances='auto',
       random state=15, tol=0.0001, verbose=0)
```

Tn [271•

```
نالد الكانا،
silhouette score(df["Sun Hour"].values.reshape(-1,1),kmeans exp 3.labels )
Out[27]:
0.7675712626413547
In [28]:
kmeans exp 4=KMeans(n clusters=8,random state=15)
In [31]:
kmeans_exp_4.fit(df["DewPoint"].values.reshape(-1,1))
Out[31]:
KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
       n_clusters=8, n_init=10, n_jobs=None, precompute_distances='auto',
       random_state=15, tol=0.0001, verbose=0)
In [32]:
silhouette score(df["DewPoint"].values.reshape(-1,1),kmeans exp 4.labels )
Out[32]:
0.6045743854538681
In [33]:
kmeans exp 5=KMeans(n clusters=8,random state=15)
In [35]:
kmeans exp 5.fit(df["WindChillC"].values.reshape(-1,1))
Out[35]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=8, n_init=10, n_jobs=None, precompute_distances='auto',
       random state=15, tol=0.0001, verbose=0)
In [36]:
silhouette score(df["WindChillC"].values.reshape(-1,1),kmeans exp 5.labels )
Out[36]:
0.5996954694443724
In [ ]:
```