

Cryptography

Lecture 3 : Mathematics Background – Part 2

Dr. Muhammad Hataba

Muhammad.Hataba@giu-uni.de

References and Legalities

These slides are in part based on:

- Understanding Cryptography, Christof Paar and Jan Pelzl
- Cryptography and Network Security Course, Swansea University,
- Information Security Course, German International University, Amr ElMougy
- Cryptography Course, German International University, Alia El Bolock

Arithmetic for Extension Fields

Arithmetic for Extension Fields

- Addition
- Subtraction
- Multiplication
- Inversion (Division)

Addition and Subtraction in *GF(2^m)*

Definition 4.3.3 Extension field addition and subtraction Let $A(x), B(x) \in GF(2^m)$. The sum of the two elements is then computed according to:

$$C(x) = A(x) + B(x) = \sum_{i=0}^{m-1} c_i x^i, \quad c_i \equiv a_i + b_i \mod 2$$

and the difference is computed according to:

$$C(x) = A(x) - B(x) = \sum_{i=0}^{m-1} c_i x^i, \quad c_i \equiv a_i - b_i \equiv a_i + b_i \mod 2.$$

Addition and Subtraction in GF(2^m)

- As we are performing operations mmd2, the addition and subtraction are the same operation.
- Addition md2 is equivalent to bitwise XOR.

C(x) = A(x) + B(x) of two elements from $GF(2^8)$ is computed as:

$$A(x) = x^{7} + x^{6} + x^{4} + 1$$

$$B(x) = x^{4} + x^{2} + 1$$

$$C(x) = x^{7} + x^{6} + x^{2}$$

Multiplication in *GF(2^m)*

$$A(x) \cdot B(x) = (a_{m-1}x^{m-1} + \dots + a_0) \cdot (b_{m-1}x^{m-1} + \dots + b_0)$$

$$C'(x) = c'_{2m-2}x^{2m-2} + \dots + c'_0,$$

where:

$$c'_0 = a_0 b_0 \mod 2$$
 $c'_1 = a_0 b_1 + a_1 b_0 \mod 2$
 \vdots
 $c'_{2m-2} = a_{m-1} b_{m-1} \mod 2.$

Multiplication in $GF(2^m)$

Definition 4.3.4 Extension field multiplication

Let $A(x), B(x) \in GF(2^m)$ and let

$$P(x) \equiv \sum_{i=0}^{m} p_i x^i, \quad p_i \in GF(2)$$

be an irreducible polynomial. Multiplication of the two elements A(x), B(x) is performed as

$$C(x) \equiv A(x) \cdot B(x) \mod P(x)$$
.

➤ Note that the multiplication may create terms with degree more than (m-1), in which case the results need to be reduced using the irreducible polynomial in a modulo operation and keep only the remainder.

(Hint: you can use the extended Euclidean Algorithm)

Example: Extending GF(2) to $GF(2^2)$

- Find an irreducible polynomial f(x) defined over your base finite field.
- Irreducible equation means it cannot be factored, i.e., f(x) is reducible if it has a factor x + a and $a \in GF(2)$.
- Add an element α to the group that satisfies $f(\alpha) = 0$
- Using what you know of your finite field already, plus this fact, you can create the rest of the field.
- Example, $f(x) = x^2 + X + 1$, obviously, X or X+1 cannot factor it. If X is a factor f(0) should be 0 also if X+1 is a factor f(1)should be 0 because we take mod 2.
- To extend GF(2) to GF(2^2), we know the elements 0, 1 and α (the root of f(x)) how can we get the rest of the elements? We should have 4 elements.
- $f(\alpha) = \alpha^2 + \alpha + 1 = 0$ or $\alpha^2 = \alpha + 1$ if you multiply α by itself you get element in the field that is $\alpha + 1$.
- $-GF(2^2) = \{0, 1, \alpha, \alpha + 1\}$

- We can work with addition in $GF(2^2)$ by just working with vectors
- The vectors are of the form $(a_0, a_1), a_i \in GF(2)$ which represents
- $a_0+a_1\alpha$. You can add them by just adding like vectors with each element being in GF(2).

+	0	1	α	$\alpha + 1$
0	0	1	α	$\alpha + 1$
1	1	0	$\alpha + 1$	α
α	α	$\alpha + 1$	0	1
$\alpha + 1$	$\alpha + 1$	α	1	0

	0	1	α	$\alpha + 1$
0	0	0	0	0
1	0	1	α	$\alpha + 1$
α	0	α	$\alpha + 1$	1
$\alpha + 1$	0	$\alpha + 1$	1	α

Multiplication cannot be done simply by multiplying elements

Example

Example 7. Let p = 2 and $f(x) = x^3 + x + 1$. Then f(x) is irreducible over GF(2). Let α be a root of f(x), i.e., $f(\alpha) = 0$. The finite field GF(2³) is defined by

$$GF(2^3) = \{a_0 + a_1 \alpha + a_2 \alpha^2 \mid a^i \in GF(2)\}.$$

Table 1. GF(2³), defined by $f(x) = x^3 + x + 1$ and $f(\alpha) = 0$.

As a 3-tuple	As a polynomial	As a power of α
000 =	0	= 0
001 =	1	= 1
010 =	α	$= \alpha$
100 =	α^2	$=\alpha^2$
011 =	$1 + \alpha$	$= \alpha^3$
110 =	$\alpha + \alpha^2$	$= \alpha^{4}$
111 =	$1 + \alpha + \alpha^2$	$= \alpha^5$
101 =	$1 + \alpha^2$	$= \alpha^6$
	$\alpha^7 = 1$	

Irreducible Polynomial P(x) for $GF(2^m)$

 Table 4.9 List of irreducible polynomials

Degree	Irreducible Polynomials
1	(x+1),(x)
2	$(x^2 + x + 1)$
3	$(x^3 + x^2 + 1), (x^3 + x + 1)$
4	$(x^4 + x^3 + x^2 + x + 1), (x^4 + x^3 + 1), (x^4 + x + 1)$
5	$(x^5 + x^2 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1), (x^5 + x^4 + x^3 + x^2 + 1), (x^5 + x^4 + x^2 + x + 1)$

• Example: We can choose polynomials from this table for Linear Feedback Shift Registers (See Chapter 2 in the Understanding Cryptography Book, but we won't go into that here)

e.g., for GF(2⁸): $P(x) = x^{8} + x^{4} + x^{3} + x + 1$

Inversion in GF(2^m)

- Core operation for S-Boxes (byte substitution transformation).
- For a given finite field $GF(2^m)$ and the corresponding irreducible reduction polynomial P(x), the inverse A^{-1} of a nonzero element $A \subseteq GF(2^m)$ is defined as:

$$A^{-1}(x)\cdot A(x) = 1 \mod P(x)$$

 Lookup tables with precomputed inverses of all field elements exist for small fields (= 2¹⁶ elements)

Multicative Inverse Table for GF(28)

X and Y are bytes used within the AES S-Box operation

		Y															
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	00	01	8D	F6	СВ	52	7B	D1	E8	4F	29	C0	В0	E1	E5	C7
	1	74	B4	AA	4B	99	2B	60	5F	58	3F	FD	CC	FF	40	EE	B2
	2	3A	6E	5A	F1	55	4D	A8	C9	C1	0A	98	15	30	44	A2	C2
	3	2C	45	92	6C	F3	39	66	42	F2	35	20	6F	77	BB	59	19
	4	1D	FE	37	67	2D	31	F5	69	A7	64	AB	13	54	25	E9	09
	5	ED	5C	05	CA	4C	24	87	BF	18	3E	22	F0	51	EC	61	17
	6	16	5E	AF	D3	49	A6	36	43	F4	47	91	DF	33	93	21	3B
	7	79	B7	97	85	10	B5	BA	3C	B6	70	D0	06	A1	FA	81	82
X	8	83	7E	7F	80	96	73	BE	56	9B	9E	95	D9	F7	02	B9	A4
	9	DE	6A	32	6D	D8	8A	84	72	2A	14	9F	88	F9	DC	89	9A
	Α	FB	7C	2E	C3	8F	B8	65	48	26	C8	12	4A	CE	E7	D2	62
	В	0C	E0	1F	EF	11	75	78	71	A5	8E	76	3D	BD	BC	86	57
	C	0B	28	2F	A3	DA	D4	E4	0F	A9	27	53	04	1B	FC	AC	E6
	D	7A	07	AE	63	C5	DB	E2	EA	94	8B	C4	D5	9D	F8	90	6B
	Ε	B1	0D	D6	EB	C6	0E	CF	AD	08	4E	D7	E3	5D	50	1E	B3
	F	5B	23	38	34	68	46	03	8C	DD	9C	7D	A0	CD	1A	41	1C

To Summarize...

Thank you

