Manual de usuario

Armando Ocampo

Introducción

El siguiente manual tiene como objetivo explicar el uso de funciones en R studio y Tableau para generar tablas y gráficos que permitan comparar el índice diario recomendado (idr) en México con el consumo promedio reportado a partir de los datos de ENSANUT 100k 2018 e EAT-Lancet. La información se divide en dos apartados, el primero explicando las funciones de R y el segundo describe como utilizar la información obtenida y desarrollar el gráfico en Tableau.

Rstudio

A partir de R studio obtendremos las tablas con idr
 reportado por ENSANUT e EAT-Lancet. Esto a partir de las siguientes funciones

```
idr_ensanut()
idr_eat_lancet()
```

Ambas funciones se utilizan de forma directa, sin argumentos. Generando como salida una tabla conformada por los 7 grupos de alimentos, el idr, el consumo promedio en poblacion mexicana y el grupo de alimento al que pertenecen. A continuación se muestra una serie de comandos para visualizar los datos de salida que genera cada función

```
# correr los siguientes argumentos para ver ejemplo
# idr_ensanut_table <- idr_ensanut()
# idr_ensanut_table

# idr_eat_table <- idr_eat_lancet()
# idr_eat_table</pre>
```

De la misma manera, se puede filtrar el consumo promedio de los siete grupos de alimentos por zona (centro, sur, norte, cdmx) y compararlo con el idr de ENSANUT e EAT-Lancet. Para esto se utilizan las siguientes funciones:

```
idr_ensanut_zone()
idr_eat_lancet_zone()
```

Ambas tienen el argumento zone, el cual permite filtrar los datos para cada zona.

```
# correr los siguientes ejemplos
# idr_ensanut_norte <- idr_ensanut_zone(zone = "norte")
# idr_ensanut_norte

# idr_eat_norte <- idr_eat_lancet_zone(zone = "norte")
# idr_eat_norte</pre>
```

Con estas funciones se obtine la información de trabajo. Guarda el resultado de cada una con la función write.csv(). Esto te permitirá terminar la evaluación de la infromación.

Tableau

Para este apartado es necesario hacer un usuario y descargar la aplicación de *Tableau Public* en tu computadora de trabajo.

Una vez realizada la actualización abrir Tableau y cargara archivo .csv. En el editor de datos pegar el siguiente comando, esto nos ayudará a crear los bins para el gráfico.

```
Path
0
200
```

Este argumento debe generar un error. Por lo cual debemos agregar un apartado de unión entre nuestros datos. Esto se realiza conla función Add new join clause igualando a 1 en ambos data sets.

```
< 1 = 1 >
```

A continuación, nos dirigimos a Sheet 1 para comenzar a generar las fórmulas para manipular los datos y generar el gráfico.

Distance

Analysis » Created Calculated Field

Name as **Distance**

Data type to **Integer**

Current value to 10

OK

Crear Path(bin)

Click derecho en Path » Create » Bins

New Field name to Path(bin)

Size of bins to 1

OK

Index

Analysis » Created Calculated Field

```
-6+((INDEX()-1)*0.12)
```

TC_Value

Analysis » Created Calculated Field

```
WINDOW_MAX(MAX([freq]))
```

\mathbf{Y}

Analysis » Created Calculated Field

TC_alimento Rank

Analysis » Created Calculated Field

```
RANK_UNIQUE([TC_Value])
```

\mathbf{X}

Analysis » Created Calculated Field

```
[Index]+([TC_alimento Rank]*[Distance])
```

A graficar

Cambiar Mark Type a polygon

Colocar **Path(bin)** en columns » click derecho, permitir missing values » llevar **Path(bin)** a path mark Llevar **alimento** a colour Mark

Llevar \mathbf{X} a columns » click derecho » Compute Using » Path(bin)

click derecho » Edit Table Calculations » Nest Calculations » select TC_a limento Rank » Specific Dimensions – solo **alimentos**

Llevar Y a rows click derecho » Compute Using » Path(bin)

Llevar Grupo a Columns

Click derecho ${\bf Distance}$ » Cambiar valor a 0