

Financial Econometrics

Report on the project "Forecasting the Yield Curve: An Econometric Study"

Vsevolod Zaostrovsky, Ivan Cherepakhin, Artemy Sazonov

Supervisors: Ivan P. Stankevich Vega Institute Foundation

November 16, 2023

The Data

Figure: YTM for three different bonds

The Yield Curve

Figure: The Yield Curves in two different moments of time

Maturity	autoARIMA	ARIMA(0, 0, 0)	RW	VECM(2)	GARCH
3m	0.0045	0.0047	0.0109	0.0193	0.6115
6m	0.0039	0.0041	0.0100	0.0182	0.4658
9m	0.0035**	0.0038	0.0095	0.0178	0.5676
12m	0.0038**	0.0039	0.0069	0.0194	0.7794
5y	0.0052	0.0053	0.0072	0.0182	1.2742
15y	0.0059	0.0061	0.0076	0.0174	1.9276

The second approach: Nelson-Siegel parametric model

The static NS model is defined as follows:

$$G(T) = \beta_0 + (\beta_1 + \beta_2) \frac{\tau}{T} \left(1 - e^{-\frac{T}{\tau}} \right) - \beta_2 e^{-\frac{T}{\tau}}, \tag{1}$$

where T is the time to maturity, G(T) is the yield estimator of the government bonds from the curve basis, and the parameters to be estimated are

- 1. τ is the 'typical' time to maturity,
- 2. β_0 is the long-run of zero-bond yields,
- 3. β_1 is the mid-run of zero-bond yields,
- 4. β_2 is the short-run of zero-bond yields.

Coefficient	auto-ARIMA	VAR(1)	RW
β_0	53.78356	131.1459	66.3105
β_1	63.31042	143.9235	66.25878
eta_2	133.9688	388.3436	177.1525
au	1.083687	2.569167	1.328986

Our conclusions and next steps

We concluded that:

- 1. It is better not to use simple time series models to predict bond returns ...
- 2. ...since the first difference of bonds is martingale relative to the filtering of these models.
- 3. Research structural breaks.

Our plans on the next research iteration:

- 1. Try the more complicated modifications of NS model.
- 2. Add exogeneous variables.
- 3. Research structural breaks.

