Vorlesungsmitschrift

Algorithmen und Berechenbarkeit

Vorlesung 17

Letztes Update: 2018/01/31 - 12:02 Uhr

Die Komplexitätsklasse \mathcal{NP}

Ein Problem \mathcal{X} ist in der Komplexitätsklasse \mathcal{P} , wenn es einen Polynomzeitalgorithmus für \mathcal{X} gibt (alternativ: Ein Problem \mathcal{X} ist in der Komplexitätsklasse \mathcal{P} , wenn es eine TM \mathcal{M} gibt, die \mathcal{X} in einer polynomiellen Anzahl an Schritten löst).

Definition Akzeptanzverhalten einer NTM: Eine NTM \mathcal{M} akzeptiert eine Eingabe $x \in \Sigma^*$ falls es mindestens eine Sequenz von gültigen Rechenschritten (gemäß Übergangsrelation) gibt, die in einer akzeptierenden Konfiguration endet.

Definition Laufzeit einer NTM: Sei \mathcal{M} eine NTM. Die Laufzeit $T_{\mathcal{M}}(x)$ von \mathcal{M} auf einer Eingabe $x \in L(\mathcal{M})$ ist definiert als

 $T_{\mathcal{M}}(x) := \text{Länge des kürzesten akzeptierenden Rechenwegs von } \mathcal{M} \text{ auf } x$

Außerdem gilt: Für ein $x \notin L(\mathcal{M})$ ist $T_{\mathcal{M}}(x) = 0$. Die Worst-Case-Laufzeit $t_{\mathcal{M}}(n)$ für \mathcal{M} auf Eingaben der Länge n ist

$$t_{\mathcal{M}}(n) := \max\{T_{\mathcal{M}}(x) \mid x \in \Sigma^n\}$$

Definition Komplexitätsklasse \mathcal{NP} : \mathcal{NP} ist die Klasse der Entscheidungsprobleme, die durch eine NTM \mathcal{M} erkannt wird, deren Worst-Case-Laufzeit $t_{\mathcal{M}}(n)$ polynomiell **in** n beschränkt ist. \mathcal{NP} bedeutet Nichtdeterministisch Polynomiell.

Beispiel für ein \mathcal{NP} -Problem: CLIQUE

Das CLIQUE-Problem liegt nicht in \mathcal{P} und ist definiert wie folgt: Gegeben sei ein ungerichteter Graph G(V, E) und ein $k \in \{1, \dots, |V|\}$. Nun möchte man wissen, ob G eine CLIQUE der Größe k hat. Dieses Problem kann naiv in $\mathcal{O}(n^k)$ entschieden werden, was jedoch nicht polynomiell ist (Eine CLIQUE ist dabei eine Teilmenge von Knoten von G, die vollständig untereinander verbunden sind).

Satz: CLIQUE $\in \mathcal{NP}$

Beweis: Es wird eine NTM \mathcal{M} beschrieben mit $L(\mathcal{M})$ =CLIQUE, die polynomielle Laufzeit hat und wie folgt vorgeht:

- 1. Falls die Eingabe nicht der Form (G, K) entspricht, wird verworfen.
- 2. Sei nun $G=(V,E),\ N=$ Anzahl der Knoten ohne Beschränkung der Allgemeinheit und $V=\{1,\ldots,N\}.$

 \mathcal{M} schreibt hinter die Eingabe den String $\#^N$, der Kopf bewegt sich über das erste #.

- 3. \mathcal{M} läuft von links nach rechts über $\#^N$ und ersetzt nichtdeterministisch jedes # durch 0 oder 1. Der resultierende String sei $y = (y_1, y_2, \dots, y_N) \in \{0, 1\}^N$
- 4. Sei $C = \{i \in V \mid q_i = 1\}$. \mathcal{M} akzeptiert, falls C = K-CLIQUE.

Task 1,2 und 4 sind deterministisch, Task 3 ist nichtdeterministisch. Alle Tasks benötigen eine polynomielle Anzahl an Schritten.

Nun muss gezeigt werden, dass $L(\mathcal{M}) = \text{CLIQUE}$.

- a) Angenommen, G enthält CLIQUE:
 - \Rightarrow Dann existiert mindestens ein y, dass zur Akzeptanz in Task 4 führt
 - \Rightarrow Dieses y wird in Task 3 nichtdeterministisch gefunden
 - $\Rightarrow \mathcal{M}$ akzeptiert die Eingabe
- b) Angenommen, G enthält CLIQUE nicht:
 - ⇒ Egal was das Ergebnis aus Task 3 ist, Task 4 führt nie zur Akzeptanz

$$\Rightarrow$$
 CLIQUE $\in \mathcal{NP}$.

(Im Skript Kapitel 3.2.2 lesen)

Beispiel für ein \mathcal{NP} -Hart-Problem: Rucksack/Knapsack

Optimierungsvariante

Gegeben sind n Gegenstände $U = \{u_1, u_2, \dots, u_n\}$ mit den jeweiligen Werten w_i , den Gewichten g_i und einer Rucksackkapazität G. Gewichtsschranke B. Nun wird $\mathcal{I} \subseteq 1, \dots, n$ gewählt, sodass

$$\sum_{i \in \mathcal{I}} g_i \leq G \text{ und } \sum_{i \in \mathcal{I}} w_i \text{ maximal }$$

	1	2	3	 i		n
1						
2						
3						
÷						
i					$\square_{i,j}$	
÷						
\sum_{w_i}						

 $\Box_{i,j}$ bezeichnet dabei das minimale Gewicht eines Rucksacks mit der Auswahl aus $\{1,\ldots,i\}$ und Wert genau j.

Betrachtet man nun einen Rucksackinhalt mit Wert j und Gewicht $\square_{i,j}$:

- a) Falls der Gegenstand i enthalten ist, so hat der Rucksack ein Gewicht von $g_i + \square_{i-1,j-1}$.
- b) Falls der Gegenstand i nicht enthalten ist, so gilt $\square_{i,j} = \square_{i-1,j}$

Insgesamt also

$$\square_{i,j} = \min(\square_{i-1,j}, g_i + \square_{i-1,j-w_i})$$

Als Laufzeit ergibt sich $\mathcal{O}(n \cdot \sum w_i)$. Das ist pseudopolynomiell, da die Laufzeit sehr stark von den kodierten Zahlen abhängt. Eine vergleichsweise kleine Vergrößerung der Eingabe kann die Laufzeit extrem stark ansteigen lassen.

Entscheidungsvariante

Gegeben sind wieder $U, g_i, G \in \mathbb{N}, w_i, W \in \mathbb{N}$. Man stellt sich nun die Frage: Existiert ein $K \subseteq U$, für das gilt:

$$\sum_{u_i \in K} g_i \leq G \text{ und } \sum_{k_i \in K} w_i \geq W$$

Es kann gezeigt werden, dass das Lösen der einen automatisch auch die andere Variante löst.