

DFA

NFA

ab \xrightarrow{a} $\xrightarrow{\varepsilon}$ \xrightarrow{b}

b

A1 ∪ A2'yi tanımak için bir NFA'nin oluşturulması

A1 ve A2 düzgün dilleri ise A1 U A2 dili de düzenli dildir.

$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

1.
$$Q = \{q_0\} \cup Q_1 \cup Q_2$$
.

2. The state q_0 is the start state of N.

3.
$$F = F_1 \cup F_2$$
.

$$q\in Q \text{ and any } a\in \Sigma$$

$$\mathbf{4.} \ \ \delta(q,a)=\begin{cases} \delta_1(q,a) & q\in Q_1\\ \delta_2(q,a) & q\in Q_2\\ \{q_1,q_2\} & q=q_0 \text{ and } a=\varepsilon\\ \emptyset & q=q_0 \text{ and } a\neq\varepsilon. \end{cases}$$

A1 ve A2 düzgün dilleri ise A1 . A2 dili de düzenli dildir.

N

4. $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2. \end{cases}$$

$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

$$N = (Q, \Sigma, \delta, q_1, F_2)$$
 to recognize $A_1 \circ A_2$.

1.
$$Q = Q_1 \cup Q_2$$
.

- **2.** The state q_1
- **3.** The accept states F_2

A1 düzgün dil ise A1* dili de düzenli dildir.

$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 .

 $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

- **1.** $Q = \{q_0\} \cup Q_1$.
- **2.** The state q_0 is the new start state.
- 3. $F = \{q_0\} \cup F_1$.

Bitiştirme

VEYA

Yıldız kapanma

$\{aab\}^*\{a, aba\}^*$

W=aababa

$((aa + b)^*(aba)^*bab)^*$

A nondeterministic finite automaton (NFA) $(Q, \Sigma, q_0, A, \delta)$,

Q is a finite set of states;

 Σ is a finite input alphabet;

 $q_0 \in Q$ is the initial state;

 $A \subseteq Q$ is the set of accepting states;

 $\delta: Q \times (\Sigma \cup \{\Lambda\}) \to 2^Q$ is the transition function

The Λ-Closure of a Set of States

 $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states.

The Λ -closure of S is the set $\Lambda(S)$ that can be defined recursively as follows.

- 1. $S \subseteq \Lambda(S)$.
- 2. For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$.

Λ (S)'in hesaplanması

Bir durum, eğer Λ (S)'nin bir elemanı ise veya bir veya daha fazla geçiş kullanılarak S'nin bir elemanından ulaşılabiliyorsa, (S)'dedir.

T kümesi, S olacak şekilde başlatılr. Kümenin kendisi boşluk kapanma kümesine aittir. . Her $q \in T$ 'yi dikkate alarak ve $\delta(q, \Lambda)$ ' ulaşılan durumlar, eğer o ana kadar T kümesinde yoksa T'ye eklenir. T' artık değişmeyinceye kadar bu işlemlere devam edilir. T'nin son değeri Λ (S)'dir.

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. We define the extended transition function

$$\delta^*: O \times \Sigma^* \to 2^Q$$

as follows:

- 1. For every $q \in Q$, $\delta^*(q, \Lambda) = \Lambda(\{q\})$.
- 2. For every $q \in Q$, every $y \in \Sigma^*$, and every $\sigma \in \Sigma$,

$$\delta^*(q, y\sigma) = \Lambda\left(\bigcup\{\delta(p, \sigma) \mid p \in \delta^*(q, y)\}\right)$$

A string $x \in \Sigma^*$ is accepted by M if $\delta^*(q_0, x) \cap A \neq \emptyset$. The language L(M) accepted by M is the set of all strings accepted by M.

Aşağıdaki NFA-Λ makinesinde **'aab'** katarını tarayınız.

$$\Lambda$$
 {0,a}= Λ (δ (0,a) U δ (3,a))= Λ ({1} U{3,4})={1,3,4}

$$\Lambda \{0,aa\} = \Lambda(\delta(1,a) \cup \delta(3,a) \cup \delta(4,a)) = \Lambda(\{2\} \cup \{3,4\} \cup \emptyset) = \{2,3,4\}$$

$$\delta^*(0, aa) = \{2, 3, 4\}.$$

$$\delta^*(0,aab)$$

$$\bigcup \{\delta(p,b) \mid p \in \{2,3,4\}\} = \delta(2,b) \cup \delta(3,b) \cup \delta(4,b) = \{0\} \cup \emptyset \cup \{5\}$$
$$= \{0,5\}$$

 $\land \{0,5\}=\{0,5,3\}$ Kabul durumu (3 nolu durum) içerdiğinden KABUL edilir.

ÖRNEK: Aşağıdaki NFA-A makinesinde 'aba' katarını tarayınız.

 $F=\{w\}$

$$\delta^*(q_0, \Lambda) = \Lambda(\lbrace q_0 \rbrace)$$
$$= \lbrace q_0, p, t \rbrace$$

$$\delta^*(q_0, a) = \Lambda \left(\bigcup \{ \delta(k, a) \mid k \in \delta^*(q_0, \Lambda) \} \right)$$

$$= \Lambda \left(\delta(q_0, a) \cup \delta(p, a) \cup \delta(t, a) \right)$$

$$= \Lambda \left(\emptyset \cup \{p\} \cup \{u\} \right)$$

$$= \Lambda(\{p, u\})$$

$$= \{p, u\}$$

$$\delta^*(q_0, ab) = \Lambda \left(\bigcup \{ \delta(k, b) \mid k \in \{p, u\} \} \right)$$

$$= \Lambda (\delta(p, b) \cup \delta(u, b))$$

$$= \Lambda (\{r, v\})$$

$$= \{r, v, w, q_0, p, t\}$$

$$\delta^*(q_0, aba) = \Lambda\left(\bigcup\{\delta(k, a) \mid k \in \{r, v, w, q_0, p, t\}\}\right)$$

$$= \Lambda(\delta(r, a) \cup \delta(v, a) \cup \delta(w, a) \cup \delta(q_0, a) \cup \delta(p, a) \cup \delta(t, a))$$

$$= \Lambda(\{s\} \cup \{v\} \cup \emptyset \cup \emptyset \cup \{p\} \cup \{u\})$$

$$= \Lambda(\{s, v, p, u\})$$

 $= \{s, v, p, u, w, q_0, t\}$

Sonuç kümede «w» durumu olduğu için katar kabul edilir.

 $(a^*ab (ba)^*)^*$

Regüler ifadesi için NFA-A makinesini çiziniz ve eşdeğer NFA makinesini çiziniz.

q	$\delta(q,a)$	$\delta(q,b)$	$\boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{\Lambda})$	$\delta^*(q,a)$	$\delta^*(q,b)$
1	{1}	Ø	{2, 4}	{2, 3}	Ø
2	{3}	{5}	Ø	{2, 3}	Ø
3	Ø	{2}	Ø	Ø	$\{1, 2, 4\}$
4	{5}	{4}	Ø	{2, 3}	{5}
5	Ø	Ø	Ø	{1, 2, 4}	Ø

q	$\delta(q,a)$	$\delta(q,b)$	$\delta(q, \Lambda)$	$\delta^*(q,a)$	$\delta^*(q,b)$
1	{1}	Ø	{2, 4}	{1, 2, 3, 4, 5}	{4, 5}
2	{3}	{5}	Ø	{3}	{5}
3	Ø	{2}	Ø	Ø	{2}
4	{5}	{4}	Ø	{5}	{4}
5	Ø	Ø	Ø	Ø	Ø

DURUM SAYISI İNDİRGEME