What is a Formal Grammar?

Arno Pauly

January 29, 2021

Defining formal grammars

- We have our alphabet Σ , the elements of which we call *terminal* symbols (and often use $\{a, b, c, \ldots\}$).
- ▶ We have a disjoint set of symbols \mathcal{N} , the elements of which we call *non-terminal* symbols (and often use capital letters).
- ► There is a special start symbol S ∈ Γ.
- A grammar then is a finite list of pairs (u, w) with $u, w \in (\Sigma \cup \mathcal{N})^*$ (called *production rules*, and often written $u \to w$).

How a formal grammar defines a language

Definition

A grammar G defines a language $L(G) \subseteq \Sigma^*$ by saying that $t \in L(G)$ if we can reach t with the following process:

- 1. Start with S.
- 2. Write our current word as v_0uv_1 , and pick a rule (u, w). Then replace the current word by v_0wv_1 .
- 3. If the current word is *t*, stop, else repeat Step 2.

Example

Example

Let $\Sigma = \{a,b\}$, $\mathcal{N} = \{S\}$ and the rules be $S \to \varepsilon$, $S \to aSa$ and $S \to bSb$.

▶ This grammar defines the palindroms over $\{a, b\}$.

A "real" grammar

Example

Let $\Sigma = \{\text{the}, \text{dog}, \text{cat}, \text{eats}, \text{sleeps}\},\$

 $\mathcal{N} = \{S, NOUN, NP, VP, TRANS-VERB, INTRANS-VERB\}$

and the rules be $S \to \text{NP VP}$, $\text{NP} \to \text{the NOUN}$, $\text{NOUN} \to \text{cat}$, $\text{NOUN} \to \text{dog}$, $\text{VP} \to \text{INTRANS-VERB}$, $\text{VP} \to \text{TRANS-VERB NP}$, $\text{TRANS-VERB} \to \text{eats}$, $\text{INTRANS-VERB} \to \text{sleeps}$, $\text{INTRANS-VERB} \to \text{eats}$.

Task

Find all "words" (ie sentences) belonging to the language of this grammar.

Outlook

- Without restrictions on how rules might look like, it can be very time consuming to show that a word belongs to the language,
- and impossible(!!) to show that a word does not.
- We can formalize the derivation process a bit more, by introducing the transitive closure of a relation.