TTK4150 Nonlinear Control Systems

Department of Engineering Cybernetics,

Fall 2024 - Assignment 4

Due date: Monday, October 28. at 23:59

Norwegian University of Science and Technology

Problem 1 (5%) For each of the functions

$$V_{1}(x,t) = x_{1}^{2} + (1 + e^{t}) x_{2}^{2}$$

$$V_{2}(x,t) = \frac{x_{1}^{2} + x_{2}^{2}}{1 + t}$$

$$V_{3}(x,t) = (1 + \cos^{4} t) (x_{1}^{2} + x_{2}^{2})$$

determine if V_i is positive definite and decrescent.

Problem 2 (5%) Consider the system

$$\dot{x}_1 = -\phi(t)x_1 + a\phi(t)x_2
\dot{x}_2 = b\phi(t)x_1 - ab\phi(t)x_2 - c\psi(t)x_2^3$$

where a, b and c are positive constants and $t \mapsto \phi(t)$ and $t \mapsto \psi(t)$ are nonnegative, continuous, bounded functions that satisfy

$$\phi(t) \ge \phi_0 > 0, \quad \psi(t) \ge \psi_0 > 0, \quad \forall t \ge 0$$

Show that the origin is globally uniformly asymptotically stable.

Hint: Use the Lyapunov function candidate $V(x) = \frac{1}{2} (bx_1^2 + ax_2^2)$.

Problem 3 (10%) Consider the system

$$\dot{x}_1 = x_2
\dot{x}_2 = -x_1 - c(t)x_2$$

where the function $t \mapsto c(t)$ is continuously differentiable and satisfies

$$k_1 \le c(t) \le k_2, \quad \forall t \ge 0$$

where k_i are constants and $k_1 > 0$. Using the Lyapunov function candidate $V(x) = \frac{1}{2} (x_1^2 + x_2^2)$, show that the origin is globally uniformly stable and that every solution $t \mapsto x(t)$ satisfies $x_2(t) \to 0$

Hint: See the slides from Lecture 6 on Barbalat's lemma and/or the LaSalle-Yoshizawa Theorem.

Problem 4 (10%) Exercise 4.45 in Khalil

Consider the system

$$\dot{x}_1 = h(t)x_2 - g(t)x_1^3$$

$$\dot{x}_2 = -h(t)x_1 - g(t)x_2^3$$

where $t \mapsto h(t)$ and $t \mapsto g(t)$ are bounded, continuously differentiable functions and $g(t) \ge k > 0$, for all $t \ge 0$.

- **a** Is the equilibrium point x = 0 uniformly asymptotically stable?
- **b** Is it exponentially stable?

Hint 1: See Theorem 4.15.

Hint 2: Read p. 157-158 in Khalil, and consider carefully which methods of stability analysis can and cannot be applied to the problem at hand.

- **c** Is it globally uniformly asymptotically stable?
- d Is it globally exponentially stable?

Problem 5 (10%) Exercise 4.54 in Khalil

For each of the following scalar systems, investigate input-to-state stability:

- (1) $\dot{x} = -(1+u)x^3$
- (2) $\dot{x} = -(1+u)x^3 x^5$
- (3) $\dot{x} = -x + x^2 u$
- (4) $\dot{x} = x x^3 + u$

Hint: If a system is ISS, then

a for u = 0, the origin is globally asymptotically stable.

b for a bounded input $t \mapsto u(t)$, every solution $t \mapsto x(t)$ is bounded.

If one of these is not satisfied, the system can **not** be ISS.

Problem 6 (15%) Exercise 4.55 in Khalil

For each of the following scalar systems, investigate input-to-state stability:

$$\dot{x}_1 = -x_1 + x_1^2 x_2, \qquad \dot{x}_2 = -x_1^3 - x_2 + u \tag{1}$$

$$\dot{x}_1 = -x_1 + x_2, \qquad \dot{x}_2 = -x_1^3 - x_2 + u \tag{2}$$

$$\dot{x}_1 = (x_1 - x_2 + u)(x_1^2 - 1),$$
 $\dot{x}_2 = (x_1 + x_2 + u)(x_1^2 - 1)$ (3)

$$\dot{x}_1 = -x_1 + x_1^2 x_2, \qquad \dot{x}_2 = -x_2 + x_1 + u \tag{4}$$

Hint for (2): Read example 4.27 before doing this exercise.

Hint for (3): For $u(t) \equiv 0$ an ISS system needs to have a globally asymptotically stable origin. This requires the absence of other equilibria.

Problem 7 (5%) Consider the system

$$\dot{x}_1 = -x_1 + x_2^2$$

$$\dot{x}_2 = -x_2$$

Use a quadratic Lyapunov function candidate to show that the origin is globally asymptotically

Hint: In order to prove this globally, notice that the system can viewed as a cascade.

Problem 8 (10%) Exercise 5.3 in Khalil

Consider a system defined by the memoryless function $y = u^{1/3}$.

- **a** Show that the system is \mathcal{L}_{∞} stable with zero bias.
- **b** For any positive constant a, show that the system is finite-gain \mathcal{L}_{∞} stable with $\gamma = a$ and $\beta = (1/a)^{1/2}$.
- ${f c}$ Compare the two statements.

Problem 9 (5%) Exercise 5.4 in Khalil

Consider a system defined by the memoryless function by y = h(u) where $h: \mathbb{R}^m \to \mathbb{R}^q$ is globally Lipschitz. Investigate \mathcal{L}_p stability for each $p \in [1, \infty]$ when

- (1) h(0) = 0.
- (2) $h(0) \neq 0$.

Problem 10 (10%) Exercise 5.20 in Khalil

Consider the feedback connection of Figure 1, where H_1 and H_2 are linear time-invariant systems represented by the transfer function $H_1(s) = (s-1)/(s+1)$ and $H_2(s) = 1/(s-1)$. Find the closed-loop transfer function from (u_1, u_2) to (y_1, y_2) and from (u_1, u_2) to (e_1, e_2) . Consider these transfer functions and discuss why we have to consider both inputs (u_1, u_2) and both outputs (e_1, e_2) (or (y_1, y_2)) in studying the stability of the feedback connection.

Figure 1: Feedback connection.

Problem 11 (5%) Exercise 6.2 in Khalil

Consider the system

$$a\dot{x} = -x + \frac{1}{k}h(x) + u$$
$$y = h(x)$$

where a and k are positive constants and h belongs to the sector [0, k]. Show that the system is passive with $V(x) = a \int_0^x h(\sigma) d\sigma$ as the storage function.

Problem 12 (10\%) Consider again the spring-mass-damper system from the previous assignments, but this time without damping, i.e. d = 0. The transformed system is now:

$$\dot{\tilde{x}}_1 = \tilde{x}_2
m\dot{\tilde{x}}_2 = -f_3 \left[(\tilde{x}_1 + x_{1d})^3 - x_{1d}^3 \right] - f_1 \tilde{x}_1 + \tilde{u}$$
(5)

a Define the output

$$y = \tilde{x}_2$$

and use $V(\tilde{x}) = \frac{1}{2} \left(\tilde{x}_1^2 + m \tilde{x}_2^2 \right)$ as a storage function for the system. Outline a control law (find an input \tilde{u}) that makes the system passive from a new control input v to the output v (in Khalil this technique is described as feedback passivation). The new control input v should be introduced as a term of \tilde{u} .

- **b** Is the system zero-state observable?
- **c** Derive a controller (find an input v) that globally stabilizes the origin of the system (5).

Note: Passivity-based control will be covered in the lectures later on, however, this problem serves as a gentle introduction which you should be able to solve already.

Problem 13 (Optional) Exercise 6.1 in Khalil.