FÍSICA 2 - PRIMER PARCIAL - Z2155 - 09/09/2022

Apellido/s, Nombre/s: e-mail:

Legajo:

	2 4	5	6	Calificación
1 2	3			
			•	

Calificación: número de respuestas correctas + 1

Dentro de un calorímetro de equivalente en agua π = 250 g, hay 650 g de agua, en equilibrio con él, a 25 °C. Se agregan 400 g de hielo a 0 °C. Determine el estado final (temperatura de equilibrio, masa final de agua líquida y masa final de hielo).

Datos: Calor específico del agua $c_A = 4{,}184 \text{ kJ/(kg.K)}$; Calor latente de fusión del hielo $L_F = 334 \text{ kJ/kg.}$

2) La potencia por unidad de área que irradia un cuerpo negro a cierta temperatura es de 5 kW/m². Calcule la longitud de onda para la cual la distribución espectral de la potencia emitida por dicho cuerpo negro tiene su máximo.

Constante de Stefan-Boltzmann: $\sigma = 5,67 \times 10^{-8} \text{ W/(m}^2.\text{K}^4)$. Constante de la Ley del desplazamiento: $B = 2,898 \times 10^{-3} \text{ m.K.}$

- 3) Un motor térmico reversible tiene rendimiento 0,8 operando entre dos fuentes térmicas, la caliente a temperatura $T_C = 1000$ K. Un segundo motor, que es irreversible, opera entre las mismas fuentes, y entrega por ciclo $W_{IRREV} = 300$ J de trabajo. Ambos motores absorben 500 J de la fuente caliente. Calcule:
 - a) la temperatura de la fuente fria;
 - b) la cantidad de calor que cada máquina entrega a la fuente fría.
- 4) Las cargas puntuales representadas en la figura están en reposo y en el vacío. Calcule:
 - a) el vector campo electrostático en el origen de coordenadas;
 - b) el trabajo que haría el campo electrostático producido por el par de cargas si se transportara desde el infinito hasta el punto A una carga puntual $q_0 = -4$ nC.

$$K_0 \approx 9 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2} ; 1 \text{nC} = 10^{-9} \text{C}$$

5) Sea un segmento de longitud L = 1.8 m con densidad lineal de carga uniforme λ ubicado en el vacío. Sabiendo que el potencial en el punto P = (0; 0.5 m) respecto del infinito es $V_A = 42 \text{ V}$, calcule λ .

Datos:
$$\varepsilon_0 = 8.85.10^{-12} \text{ C}^2/(\text{N.m}^2), V_\infty = 0;$$

$$\int \frac{du}{\sqrt{u^2 + a^2}} = \ln|u + \sqrt{u^2 + a^2}|$$

- a) la diferencia de potencial $V_A V_B$ entre los puntos A y B,
- b) cuánto vale Rx.

