Fundamentos de la programación

Computadoras y programación

Grado en Ingeniería Informática Grado en Ingeniería del Software Grado en Ingeniería de Computadores

Ana Gil Luezas (adaptadas del original de Luis Hernández Yáñez)

Facultad de Informática Universidad Complutense

Índice

Informática, computadoras y programación	2
Un poco de historia	7
Computadoras, lenguaje máquina y ensamblador	11
Lenguajes de programación de alto nivel	18
Elementos de los lenguajes de programación	24
Sintaxis de los lenguajes de programación	26
Un primer programa en C++	29
Herramientas de desarrollo	32
Un ejemplo	36

Informática (Ciencia de la computación)

Conjunto de conocimientos científicos y técnicos que hacen posible el tratamiento automático de la información por medio de ordenadores

Computadora

Máquina electrónica, analógica o digital, dotada de una memoria de gran capacidad y de métodos de tratamiento de la información, capaz de resolver problemas matemáticos y lógicos mediante la ejecución de programas informáticos

Fundamentos de la programación: Computadoras y programación

Página 2

Computadoras

En todas partes y con muchas formas

Hardware y software

Hardware

Componentes que integran la parte material de una computadora

Software

Programas, instrucciones y reglas informáticas para ejecutar tareas en una computadora

Fundamentos de la programación: Computadoras y programación

Programar

Indicar a la computadora qué es lo que tiene que hacer para realizar una tarea concreta.

Algoritmo: Descripción precisa de una secuencia de instrucciones para resolver un problema.

Un programa es la codificación de un algoritmo en un lenguaje concreto:

- Secuencia de instrucciones
- Instrucciones que entiende la computadora

Proceso o cómputo: la ejecución de un programa, o una secuencia de instrucciones, en un ordenador.

Programadores

Trabajo en equipo. Múltiples roles...

- ✓ Analistas
- ✓ Diseñadores
- ✓ Programadores
- ✓ Probadores
- ✓ Administradores de sistemas
- ✓ Etcétera...

Página 6

Fundamentos de la programación: Computadoras y programación

La Ingeniería del Software

La programación es sólo una etapa del proceso de desarrollo Modelo de desarrollo "en cascada":

Página 7

Un poco de historia

La prehistoria

El ábaco

Siglo XIX

Máquina analítica de Charles Babbage

Lady Ada Lovelace es considerada la primera programadora

(Wikipedia)

Un poco de historia

Fundamentos de la programación: Computadoras y programación

Siglo XX

1936 Máquina de Turing

1946 ENIAC: Primera computadora digital de propósito general

1947 El transistor

1953 IBM 650: Primera computadora a gran escala

1966 ARPANET: Origen de Internet

1967 El disquete

1970 Sistema operativo UNIX

1972 Primer virus informático (Creeper) Lenguaje de programación C

1974 Protocolo TCP. Primera red local

ENIAC (Wikipedia)

Un poco de historia

1975	Se funda Microsoft
1076	Co funda Amala

1976 Se funda Apple

1979 Juego Pacman

1981 IBM PC Sistema operativo MS-DOS

1983 Lenguaje de programación C++

1984 CD-ROM

1985 Windows 1.0

1990 Lenguaje HTML World Wide Web

1991 Sistema operativo Linux

Apple II (Wikipedia)

IBM PC (Wikipedia)

Página 10

Fundamentos de la programación: Computadoras y programación

Un poco de historia

1992 Windows 3.1

1995 Lenguaje de programación Java DVD

1998 Se funda Google

1999 MSN Messenger

2001 Windows XP Mac OS X

2002 Mozilla Firefox

2007 iPhone

2008 Android ...

Página 11

Computadoras

Esquema general

Fundamentos de la programación: Computadoras y programación

Página 12

Computadoras

La arquitectura de Von Neumann

Una ALU de 2 bits (Wikipedia)

Computadoras

La memoria

Cada celda tiene una dirección asociada Celdas de 8 / 16 / 32 / 64 bits

Información volátil

```
1 Bit = 0 / 1

1 Byte = 8 bits = 1 carácter / nº (0-255)

1 Kilobyte (KB) = 1024 Bytes

1 Megabyte (MB) = 1024 KB

1 Gigabyte (GB) = 1024 MB

1 Terabyte (TB) = 1024 GB

1 Petabyte (PB) = 1024 TB
```

2¹⁰ = 1024 ≈ 1000

Fundamentos de la programación: Computadoras y programación

Página 14

Computadoras

Unidad Central de Proceso (CPU)

Registros de 8 / 16 / 32 / 64 bits

Programación de computadoras

Los procesadores trabajan con ceros y unos (bits)

Unidad de memoria básica: Byte (8 bits)

Sianificado

(2 dígitos hexadecimales: $01011011 \rightarrow 0101 \ 1011 \rightarrow 5B$)

Lenguaje máquina

Instrucción

Códigos hexadecimales que representan instrucciones, registros de la CPU, direcciones de memoria o datos

Ejempl	lo de	progr	ama:
--------	-------	-------	------

Lenguaje de bajo nivel

Dependiente de la máquina

Programación intrincada

	- 9 ,
A0 2F	Acceder a la posición de memoria 2F
3E 01	Copiar el dato en el registro 1 de la ALU
A0 30	Acceder a la posición de memoria 30
3E 02	Copiar el dato en el registro 2 de la ALU
1D	Sumar

DO 21 C------

B3 31 Guardar el resultado en la posición de memoria 31

Fundamentos de la programación: Computadoras y programación

Página 16

El lenguaje máquina

Lenguaje ensamblador

Nemotécnicos para los códigos hexadecimales:

A0 \rightarrow READ 3E \rightarrow REG 1D \rightarrow ADD ...

Mayor legibilidad:

READ 2F REG 01 READ 30 REG 02 ADD

WRITE 31

Lenguaje de nivel medio

Fundamentos de la programación: Computadoras y programación

Página 18

Lenguajes de programación de alto nivel

- ✓ Más cercanos a los lenguajes natural y matemático resultado = dato1 + dato2;
- ✓ Mayor legibilidad, mayor facilidad de codificación
- ✓ Estructuración de datos / abstracción procedimental

FORTRAN Python Prolog C# C Pascal Cobol Lisp Ruby BASIC Smalltalk Haskell Ada Simula Java Eiffel C++

. . .

Lenguajes de programación de alto nivel

El sistema operativo:

Software básico encargado de manejar el hardware y facilitar el trabajo a los programas de aplicación, proporcionándoles un conjunto de servicios genéricos.

- Interfaz con el usuario.
- Asignación de tiempos de CPU.
- Control y asignación racional de los recursos de la computadora.
- Ejecución de programas.
- Administración de discos y dispositivos.

•••

Fundamentos de la programación: Computadoras y programación

Página 20

Lenguajes de programación de alto nivel

Modelo de ejecución basado en compilación: Compilan y enlazan programas completos

Otros modelos: Intérpretes, Máquinas virtuales

Los lenguajes de programación de alto nivel

¿Por qué C++?

Bjarne Stroustrup (1983)

- ✓ Para programar necesitamos un lenguaje
- ✓ Lenguaje muy ampliamente utilizado en las áreas de ingeniería
- ✓ Bien definido por un estándar (C++ 11)
- ✓ Disponible para casi cualquier computadora
- ✓ Los conceptos son trasladables a otros lenguajes

C++: Un mejor C

La base de C++: El lenguaje C

- ✓ Lenguaje creado por Dennis M. Ritchie en 1972
- ✓ Lenguaje de nivel medio:
 - Estructuras típicas de los lenguajes de alto nivel
 - Construcciones para control a nivel de máquina
- ✓ Lenguaje sencillo (pocas palabras reservadas)
- ✓ Lenguaje estructurado (no estrictamente)
 - Compartimentación de código y datos
 - Componente estructural básico: la función (subprograma)
- ✓ Programación modular

Fundamentos de la programación: Computadoras y programación

Los lenguajes de programación

Elementos de un lenguaje

- ✓ Instrucciones
- ✓ Datos (literales, variables, tipos)
- ✓ Subprogramas (funciones)
- ✓ Comentarios
- ✓ Directivas

Los lenguajes de programación

Sintaxis y semántica de los lenguajes

Sintaxis

 Reglas que determinan cómo se pueden construir y secuenciar los elementos del lenguaje

Semántica

 Significado de cada elemento del lenguaje ¿Para qué sirve?, ¿Qué hace?

Fundamentos de la programación: Computadoras y programación Página 26

Sintaxis de los lenguajes de programación

Especificación

- ✓ Lenguajes (BNF)
- ✓ Diagramas

Ejemplo: Números enteros

Anumero entero> ::= <signo opcional><secuencia de dígitos>
 <signo opcional> ::= +|-|<nada>
 <secuencia de dígitos> ::= <dígito>|<dígito><secuencia de dígitos>
 <dígito> ::= 0|1|2|3|4|5|6|7|8|9
 <nada> ::=
 | Significa ó

Backus-Naur Form (BNF)

<numero entero> ::= <signo opcional><secuencia de dígitos>
 <signo opcional> ::= +|-|<nada>
 <secuencia de dígitos> ::= <dígito>|<dígito><secuencia de dígitos>
 <dígito> ::= 0|1|2|3|4|5|6|7|8|9
 <nada> ::=

+23

<numero entero> ::= <signo opcional><secuencia de dígitos>

::= +<secuencia de dígitos> ::= +<dígito><secuencia de dígitos>

::= +2<secuencia de dígitos> ::= +2<dígito> ::= +23

√

1374

<numero entero> ::= <signo opcional><secuencia de dígitos>

::= <secuencia de dígitos> ::= <dígito><secuencia de dígitos>

::= 1<secuencia de dígitos> ::= 1<dígito><secuencia de dígitos>

::= 13<secuencia de dígitos> ::= 13<dígito><secuencia de dígitos>

::= **137**<secuencia de dígitos> ::= **137**<dígito> ::= **1374**

1-34

<numero entero> ::= <signo opcional><secuencia de dígitos>

::= <secuencia de dígitos> ::= <dígito><secuencia de dígitos>

::= 1<secuencia de dígitos> ::= ERROR (- no es <dígito>)

Fundamentos de la programación: Computadoras y programación

Diagramas de sintaxis

Un primer programa en C++

Hola Mundo!

Un programa que muestra un saludo en la pantalla:

```
#include <iostream>
using namespace std;

int main()
{
   cout << "Hola Mundo!" << endl; // Muestra Hola Mundo!
   return 0;
}</pre>
```

Fundamentos de la programación: Computadoras y programación

Página 30

Elementos sintácticos del programa

Las instrucciones terminan en ;

Un primer programa en C++: ejecución

¿Qué hace el programa?

- ✓ La ejecución del programa siempre empieza en la función main()
- ✓ Se ejecutan las instrucciones en secuencia de principio a fin

Fundamentos de la programación: Computadoras y programación

Editor

- ✓ Bloc de notas, Wordpad, Writer, Gedit, Kwrite, ... (texto simple, sin formatos)
- ✓ Editores específicos, coloreado sintáctico: Emacs, Notepad++

Compilación, enlace y ejecución

Fundamentos de la programación: Computadoras y programación

Más herramientas de desarrollo

Compilador

✓ Importante: C++ estándar (C++11) GNU G++ (*MinGW* en Windows), MS Visual Studio, Borland C++, ...

```
Simbolo del sistema

C:\FP\Unidad02>g++ -o hola.exe hola.cpp

C:\FP\Unidad02>hola
Hola Hundo!

C:\FP\Unidad02>_
```


Más herramientas de desarrollo

Entornos de desarrollo (IDE)

- ✓ Para editar, compilar y probar el código del programa
- ✓ Recomendaciones:
 - Windows: MS Visual Studio (MS Visual C++ Express) o Eclipse
 - Linux: Netbeans o Eclipse

Fundamentos de la programación: Computadoras y programación

Página 36

Fundamentos de la programación

Un ejemplo de programación

Sintaxis y semántica de los lenguajes

Sintaxis

 Reglas que determinan cómo se pueden construir y secuenciar los elementos del lenguaje

Semántica

Significado de cada elemento del lenguaje
 ¿Para qué sirve?, ¿Qué hace?
 Reglas que determinan el efecto da cada instrucción

Fundamentos de la programación: Computadoras y programación

Página 38

Un ejemplo de programación

Una computadora de un coche

Coche que acepta programas que le indican una ruta.

Instrucciones que entiende:

Un ejemplo de programación

El algoritmo

Secuencia de pasos que hay que seguir para resolver el problema.

- 1.- Arrancar
- 2.- Ir un bloque al Norte
- 3.- Ir dos bloques al Este
- 4.- Ir cinco bloques al Norte
- 5.- Ir dos bloques al Este
- 6.- Parar

Estas instrucciones sirven tanto para una persona como para una computadora.

Fundamentos de la programación: Computadoras y programación

Página 42

Un ejemplo de programación

El programa

Escribir el algoritmo en el lenguaje de programación.

Start;

Go North 1 Blocks;

Go East 2 Blocks;

Go North 5 Blocks;

Go East 2 Blocks;

Stop;

El programa

Escribimos el código del programa en un editor y lo guardamos en un documento programa.prg.

Copiamos el archivo en una llave USB y lo llevamos al coche.

Fundamentos de la programación: Computadoras y programación

Un ejemplo de programación

La compilación

Introducimos la llave USB en el coche y pulsamos el botón de ejecutar el programa:

Errores de sintaxis

Depuración

Editamos el código para arreglar los errores de sintaxis.

```
Stat;
                                Start;
Go North 1 Blocks
                                Go North 1 Blocks;
Go East Blocks;
                                Go East 3 Blocks;
Go Noth 5 Blocks;
                                Go North 5 Blocks;
Go West 2 Blocks;
                                Go West 2 Blocks;
Stop;
                                Stop;
```

Página 46

Fundamentos de la programación: Computadoras y programación

Un ejemplo de programación

Depuración

Editamos el código para arreglar el error de ejecución.

```
Start;
Go North 1 Blocks;
Go East 3 Blocks;
Go North 5 Blocks;
Go West 2 Blocks;
Stop;
Stop;
Start;
Go North 1 Blocks;
Go North 1 Blocks;
Go West 2 Blocks;
Stop;
Stop;
```


Fundamentos de la programación: Computadoras y programación

Página 48

Un ejemplo de programación

La ejecución Se realiza lo que pide cada instrucción. Start; Go North 1 Blocks; Go East 2 Blocks; Go West 2 Blocks; Stop;

Error lógico

¡El programa se ejecuta, pero no obtiene el resultado deseado!

Depuración

Editamos el código para arreglar el error lógico.

```
Start;
Go North 1 Blocks;
Go East 2 Blocks;
Go North 5 Blocks;
Go West 2 Blocks;
Stop;
Stop;
Start;
Go North 1 Blocks;
Go East 2 Blocks;
Go North 5 Blocks;
Stop;
Stop;
```

Fundamentos de la programación: Computadoras y programación Página 50

Un ejemplo de programación

La ejecución Se realiza lo que pide cada instrucción. Start; Go North 1 Blocks; Go East 2 Blocks; Go East 2 Blocks; Stop;

¡Conseguido!

Acerca de Creative Commons

Licencia CC (<u>Creative Commons</u>)

Este tipo de licencias ofrecen algunos derechos a terceras personas bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

- Reconocimiento (*Attribution*):
 En cualquier explotación de la obra autorizada por la licencia hará falta reconocer la autoría.
- No comercial (*Non commercial*): La explotación de la obra queda limitada a usos no comerciales.
- Compartir igual (*Share alike*):

 La explotación autorizada incluye la creación de obras derivadas siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber más.

Fundamentos de la programación: Computadoras y programación

Página 52