Max Wisniewski, Alexander Steen

Tutor: Adrian Steffens

Aufgabe 24: Stetige Abbildungen auf Punktmengen

(i) Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ stetig. Zeigen Sie, dass für jede Menge $A \subset \mathbb{R}^n$ gilt

$$f(\overline{A}) \subset \overline{f(A)}$$
.

Beweis:

Wir benutzten für den Beweis das Folgenkonvergenz kriterium für Abgeschlossene Menge.

D.h. wenn B eine abgeschlossene Menge ist muss für jede Folge $(x)_{k\in\mathbb{N}}$ aus B, $\left(\lim_{n\to\infty}x_k\right)\in B$ gelten.

Nun gilt, aber, für jeden Punkt $x_0 \in \overline{A}$, dass es eine Folge $(x)_{n \in \mathbb{N}}$ gibt mit $\lim_{n \to n, \infty} x_k = x_0$.

$$f(x_0) = f(\lim_{n \to \infty} x_n)$$
$$= \lim_{n \to \infty} f(x_n)$$

Wir haben eine Folge von Bildern der Funktion. Wir wissen, dass in einer abgeschlossenen Menge jede konvergente Folge gegen einen Punkt innerhalb der Menge konvergiert. Da $f(x_0)$ eine konvergente Folge $f(x_k)$ besitzt, da die x_k konvergieren und f stetig ist, muss das Bild des Abschluss des Quellbereiches auch im Abschluss des Bild liegen.

(ii) Ist das stetige Bild f(M) einer beliebigen offenen bzw. abgeschlossenen Menge $M \subset \mathbb{R}^n$ wieder offen bzw. abgeschlossen? Geben Sie ein Beispiel an.

Lösung:

tbd

(iii) Sei $f:\mathbb{R}^n\to\mathbb{R}^m$ stetig. Erfülle $M\subset\mathbb{R}^n$ die Heine - Borell - Eigenschaft. Dann erfüllt f(M) diese Eigenschaft auch.

Lösung:

tbd

Aufgabe 25: Wachstum spezieller Funktionen

Sei $f: \mathbb{R}^n \to \mathbb{R}$ stetig mit folgenden Eigenschaften:

$$f(x) > 0$$
 für alle $x \neq 0$
 $f(cx) = cf(x)$ für alle $x \in \mathbb{R}^n$ und alle $c > 0$.

Zeigen Sie, dass es Konstanten a, b > 0 gibt, so dass

$$a|x| \le f(x) \le b|x|$$
 für alle $x \in \mathbb{R}^n$.

Beweis:

tbd

Aufgabe 26: Wegzusammenhang

Eine Menge $A \subset \mathbb{R}^n$ heißt wegzusammenhängend, wenn es für je zwei Punkte $x, y \in A$ eine stetige Funktion $\gamma: [0,1] \to A$ gibt, mit $\gamma(0) = x$ und $\gamma(1) = y$. Man nennt γ einen stetigen Weg von x nach y.

(i) Seien $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ stetig und A wegzusammenhängend. Zeigen Sie, dass dann auch f(A) wegzusammenhängend ist.

Beweis:

tbd

(ii) Zeige Sie, dass genau dann $A \subset \mathbb{R}$ wegzusammenhängend ist, wenn A ein Intervall ist, d.h. wenn für alle $x, y \in A, \ x \leq y, \ [x, y] \subset A$.

Beweis:

tbd

(iii) Können Sie den bekannten Zwischenwertsatz aus der Analysis I auch auf Funktionen $f:A\subset\mathbb{R}^n\to\mathbb{R}$ verallgemeinern.

Beweis: tbd

Aufgabe 27 Stetigkeit der Umkehrfunktion

(i) Zeigen Sie, dass die Funktion

$$\begin{array}{ccccc} f & : & (-1,1) & \longrightarrow & \mathbb{R} \\ & x & \mapsto & \frac{x}{1-x^2} \end{array}$$

einen Homöomorphismus von (0,1) nach \mathbb{R}^+ definiert, d.h. f ist invertierbar zwischen den angegebenen Mengen und sowohl f als auch f^{-1} ist stetig.

Beweis.:

 tbd

(ii) Sei die Funktion $f:[0,1)\cup[2,3]\to[0,2]$ gegeben durch

$$f(x) = \begin{cases} x & , x \in [0, 1) \\ x - 1 & , x \in [2, 3] \end{cases}.$$

Zeigen Sie, dass f stetig und invertierbar ist, aber die Umkehrfunktion f^{-1} : $[0,2] \to [0,1) \cup [2,3]$ nicht stetig ist.

Beweis:

 tbd