Ordinal Number Encoding

```
In [1]:
import datetime
In [2]:
today_date=datetime.datetime.today()
In [3]:
today_date
Out[3]:
datetime.datetime(2020, 7, 16, 19, 13, 59, 571679)
In [6]:
today_date-datetime.timedelta(3)
Out[6]:
datetime.datetime(2020, 7, 13, 19, 13, 59, 571679)
In [9]:
#### List Comprehension
days=[today_date-datetime.timedelta(x) for x in range(0,15)]
In [11]:
import pandas as pd
data=pd.DataFrame(days)
data.columns=["Day"]
In [12]:
data.head()
Out[12]:
                      Day
0 2020-07-16 19:13:59.571679
1 2020-07-15 19:13:59.571679
2 2020-07-14 19:13:59.571679
3 2020-07-13 19:13:59.571679
  2020-07-12 19:13:59.571679
```

In [22]:

```
data['weekday']=data['Day'].dt.weekday_name
data.head()
```

Out[22]:

	Day	weekday
0	2020-07-16 19:13:59.571679	Thursday
1	2020-07-15 19:13:59.571679	Wednesday
2	2020-07-14 19:13:59.571679	Tuesday
3	2020-07-13 19:13:59.571679	Monday
4	2020-07-12 19:13:59.571679	Sunday

In [23]:

```
dictionary={'Monday':1,'Tuesday':2,'Wednesday':3,'Thursday':4,'Friday':5,'Saturday':6,'Sund
}
```

In [24]:

```
dictionary
```

Out[24]:

```
{'Monday': 1,
 'Tuesday': 2,
 'Wednesday': 3,
 'Thursday': 4,
 'Friday': 5,
 'Saturday': 6,
 'Sunday': 7}
```

In [26]:

```
data['weekday_ordinal']=data['weekday'].map(dictionary)
```

In [27]:

data

Out[27]:

	Day	weekday	weekday_ordinal
0	2020-07-16 19:13:59.571679	Thursday	4
1	2020-07-15 19:13:59.571679	Wednesday	3
2	2020-07-14 19:13:59.571679	Tuesday	2
3	2020-07-13 19:13:59.571679	Monday	1
4	2020-07-12 19:13:59.571679	Sunday	7
5	2020-07-11 19:13:59.571679	Saturday	6
6	2020-07-10 19:13:59.571679	Friday	5
7	2020-07-09 19:13:59.571679	Thursday	4
8	2020-07-08 19:13:59.571679	Wednesday	3
9	2020-07-07 19:13:59.571679	Tuesday	2
10	2020-07-06 19:13:59.571679	Monday	1
11	2020-07-05 19:13:59.571679	Sunday	7
12	2020-07-04 19:13:59.571679	Saturday	6
13	2020-07-03 19:13:59.571679	Friday	5
14	2020-07-02 19:13:59.571679	Thursday	4

Count Or Frequency Encoding

In [46]:

train_set = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adu
train_set.head()

Out[46]:

	0	1	2	3	4	5	6	7	8	9	10	11
0	39	State- gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	2174	0
1	50	Self- emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	0
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	0
4												•

In [47]:

columns=[1,3,5,6,7,8,9,13]

In [48]:

train_set=train_set[columns]

In [49]:

train_set.columns=['Employment','Degree','Status','Designation','family_job','Race','Sex','

In [50]:

train_set.head()

Out[50]:

	Employment	Degree	Status	Designation	family_job	Race	Sex	Country
0	State-gov	Bachelors	Never-married	Adm-clerical	Not-in- family	White	Male	United- States
1	Self-emp-not- inc	Bachelors	Married-civ- spouse	Exec- managerial	Husband	White	Male	United- States
2	Private	HS-grad	Divorced	Handlers- cleaners	Not-in- family	White	Male	United- States
3	Private	11th	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	United- States
4	Private	Bachelors	Married-civ- spouse	Prof-specialty	Wife	Black	Female	Cuba

In [51]:

```
for feature in train_set.columns[:]:
    print(feature,":",len(train_set[feature].unique()),'labels')
```

Employment : 9 labels
Degree : 16 labels
Status : 7 labels
Designation : 15 labels
family_job : 6 labels

Race : 5 labels
Sex : 2 labels
Country : 42 labels

In [52]:

```
country_map=train_set['Country'].value_counts().to_dict()
```

In [53]:

train_set['Country']=train_set['Country'].map(country_map)
train_set.head(20)

Out[53]:

	Employment	Degree	Status	Designation	family_job	Race	Sex	Country
0	State-gov	Bachelors	Never- married	Adm-clerical	Not-in- family	White	Male	29170
1	Self-emp-not- inc	Bachelors	Married-civ- spouse	Exec- managerial	Husband	White	Male	29170
2	Private	HS-grad	Divorced	Handlers- cleaners	Not-in- family	White	Male	29170
3	Private	11th	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	29170
4	Private	Bachelors	Married-civ- spouse	Prof- specialty	Wife	Black	Female	95
5	Private	Masters	Married-civ- spouse	Exec- managerial	Wife	White	Female	29170
6	Private	9th	Married- spouse- absent	Other- service	Not-in- family	Black	Female	81
7	Self-emp-not- inc	HS-grad	Married-civ- spouse	Exec- managerial	Husband	White	Male	29170
8	Private	Masters	Never- married	Prof- specialty	Not-in- family	White	Female	29170
9	Private	Bachelors	Married-civ- spouse	Exec- managerial	Husband	White	Male	29170
10	Private	Some- college	Married-civ- spouse	Exec- managerial	Husband	Black	Male	29170
11	State-gov	Bachelors	Married-civ- spouse	Prof- specialty	Husband	Asian- Pac- Islander	Male	100
12	Private	Bachelors	Never- married	Adm-clerical	Own-child	White	Female	29170
13	Private	Assoc- acdm	Never- married	Sales	Not-in- family	Black	Male	29170
14	Private	Assoc- voc	Married-civ- spouse	Craft-repair	Husband	Asian- Pac- Islander	Male	583
15	Private	7th-8th	Married-civ- spouse	Transport- moving	Husband	Amer- Indian- Eskimo	Male	643
16	Self-emp-not- inc	HS-grad	Never- married	Farming- fishing	Own-child	White	Male	29170
17	Private	HS-grad	Never- married	Machine-op- inspct	Unmarried	White	Male	29170
18	Private	11th	Married-civ- spouse	Sales	Husband	White	Male	29170
19	Self-emp-not- inc	Masters	Divorced	Exec- managerial	Unmarried	White	Female	29170

Advantages

- 1. Easy To Use
- 2. Not increasing feature space

Disadvantages

3. It will provide same weight if the frequencies are same

Target Guided Ordinal Encoding

- 1. Ordering the labels according to the target
- 2. Replace the labels by the joint probability of being 1 or 0

In [55]:

```
import pandas as pd
df=pd.read_csv('titanic.csv', usecols=['Cabin','Survived'])
df.head()
```

Out[55]:

	Survived	Cabin
0	0	NaN
1	1	C85
2	1	NaN
3	1	C123
4	0	NaN

```
In [56]:
```

```
df['Cabin'].fillna('Missing',inplace=True)
```

```
In [61]:
```

```
df['Cabin']=df['Cabin'].astype(str).str[0]
```

```
In [62]:
```

```
df.head()
```

Out[62]:

	Survived	Cabin
0	0	М
1	1	С
2	1	М
3	1	С
4	0	М

```
In [63]:
df.Cabin.unique()
Out[63]:
array(['M', 'C', 'E', 'G', 'D', 'A', 'B', 'F', 'T'], dtype=object)
In [64]:
df.groupby(['Cabin'])['Survived'].mean()
Out[64]:
Cabin
     0.466667
В
     0.744681
C
     0.593220
D
     0.757576
Ε
     0.750000
F
     0.615385
G
     0.500000
     0.299854
М
     0.000000
Т
Name: Survived, dtype: float64
In [68]:
df.groupby(['Cabin'])['Survived'].mean().sort_values().index
Out[68]:
Index(['T', 'M', 'A', 'G', 'C', 'F', 'B', 'E', 'D'], dtype='object', name='C
abin')
In [69]:
ordinal_labels=df.groupby(['Cabin'])['Survived'].mean().sort_values().index
ordinal labels
Out[69]:
Index(['T', 'M', 'A', 'G', 'C', 'F', 'B', 'E', 'D'], dtype='object', name='C
abin')
In [70]:
enumerate(ordinal_labels,0)
Out[70]:
<enumerate at 0x24e376166c0>
In [71]:
ordinal_labels2={k:i for i,k in enumerate(ordinal_labels,0)}
ordinal_labels2
Out[71]:
{'T': 0, 'M': 1, 'A': 2, 'G': 3, 'C': 4, 'F': 5, 'B': 6, 'E': 7, 'D': 8}
```

In [72]:

```
df['Cabin_ordinal_labels']=df['Cabin'].map(ordinal_labels2)
df.head()
```

Out[72]:

	Survived	Cabin	Cabin_ordinal_labels
0	0	М	1
1	1	С	4
2	1	М	1
3	1	С	4
4	0	М	1

Mean Encoding

In [75]:

```
mean_ordinal=df.groupby(['Cabin'])['Survived'].mean().to_dict()
```

In [76]:

mean_ordinal

Out[76]:

```
{'A': 0.466666666666667,

'B': 0.7446808510638298,

'C': 0.5932203389830508,

'D': 0.7575757575757576,

'E': 0.75,

'F': 0.6153846153846154,

'G': 0.5,

'M': 0.29985443959243085,
```

In [77]:

'T': 0.0}

```
df['mean_ordinal_encode']=df['Cabin'].map(mean_ordinal)
df.head()
```

Out[77]:

	Survived	Cabin	Cabin_ordinal_labels	mean_ordinal_encode
0	0	М	1	0.299854
1	1	С	4	0.593220
2	1	М	1	0.299854
3	1	С	4	0.593220
4	0	М	1	0.299854

In [1]:
pwd
Out[1]:
'C:\\Users\\91920\\Machine Learning\\EDA'
In []: