

高精度双引脚数字脉冲输出温度传感器

Datasheet 1.5

产品概述

NST1001是一款高精度双引脚数字脉冲输出型温度传 感器,属于纳芯微电子D-NTC™系列。NST1001特有 的脉冲计数型数字输出以及在宽温度范围内高精度的 特性,可直接与MCU的GPIO连接使用,保障测量精度 的同时降低MCU开销并减少成本。NST1001的测温范 围为-50°C 到150°C, 满足汽车、工业、家用电器等场 合对温度监测的需求。NST1001仅有两个引脚,可以 使得NST1001芯片可轻松应用于双线数字温度探针或 者直接替代NTC热敏电阻。相较于传统的NTC热敏电 阻, NST1001使用更简单、数字化、更精确, 其无需 借助系统校准或软硬件补偿的情况下就可以实现全温 区内的高精度温度检测。NST1001内置EMI滤波器,使 得其可以用于存在较大干扰的设备中。由于NST1001 工作电流极低,可以通过MCU的GPIO供电,因此也可 以用于对功耗要求特别严格的无线物联网传感器节点 中。

应用场合

- 数字输出温度探针
- 工业物联网
- 白色家电
- 冷链物流
- 电池管理

NST1001 典型误差曲线

特征

- 宽温度工作范围-50°C 至 150°C
- 分辨率高,最高可达 0.0625℃
- 全温域内保持高精度
- -20 ℃~85℃: ±0.5℃ (最大)
- -50℃~-20℃: ±0.75℃ (最大)
- 85°C~150°C: ±0.75°C (最大)
- 脉冲数型数字输出, 无需 AD 转换接口
- 单次温度转换时间 50ms
- 转换时工作电流仅30uA、零待机功耗
- 供电范围宽, 1.65V 到 5.5V
- 可直接替换传统 NTC 热敏电阻
- 封装形式

TO-92S (4mm x 3mm)

DFN2L (1.6mm x 0.8mm) (注1

注 1: 与 0603 电阻封装外形尺寸相同

双引脚温度传感器

目录

1.0	极限参值	3
2.0	电气特性	
2.1. 2.2. 2.3.	电气特性 时序图 时序特征	
3.0	典型性能特性	5
4.0	功能描述	8
4.1. 4.2. 4.3.		9
5.0	典型应用	11
5.1. 5.2. 5.3. 5.4. 5.5.	零待机功耗的应用	12 12 12 13
6.0	封装信息	14
6.1. 6.2. 6.3.	To-92S-2L 封装	15
7.0	订货信息	17
8.0	文件修订历史	17

1.0 极限参值

参数	标示	最小值	典型值	最大值	单位	备注
DQ电压	VDQ	-0.3		6.5	V	
储存温度		-60		155	°C	
工作温度	TBoperation	-50		150	℃	
最大结温				155	℃	
ESD防护	НВМ	±8			KV	
ESD MAD A	CDM	±1250			V	

2.0 电气特性

2.1. 电气特性

参数	标示	最小值	典型值	最大值	单位	备注
供电						
工作电压范围	V_{pu}	1.65	3.3	5.5	V	上拉电阻5kohm情况下
上拉电阻范围	R _{pu}	0.5	5	10	ΚΩ	
电源变化敏感度			16		m°C ∕V	VDQ变化范围为1.65V到 5.5V
工作电流	lconv		30	45	uA	温度转换阶段
工作电流	lcom		1	5	uA	脉冲通信阶段
		量	性程与分辨率			
量程		-50		150	℃	
分辨率			0.0625		℃	
		-0.5		0.5	℃	-20℃到85℃
精度		-0.75		0.75	℃	-50℃到-20℃
		-0.75		0.75	°C	85℃到150℃
			《冲计数输出			
脉冲个数 @ 0℃			801		个数	
脉冲个数范围		1		3201	个数	

单个脉冲分辨率			0.0625		℃	
输出逻辑高	VH	Vpu-0.3			V	上拉电阻为5KOhm
输出逻辑低	VL			0.2	V	
DQ端允许电容	C_{DQ}			2/R _{pu}	uF	Rpu为5k ohm时, C _{DQmax} =400 pF
		DQ	拉低复位时	间		
DQ拉低复位时间	T _{RST}			5	ms	DQ拉低5ms以上可使 NST1001掉电
			响应时间			
硅油热响应时间			0.73		S	TO-92S
硅油热响应时间 63%最终稳定值					S S	TO-92S DFN2L
			0.73			
63%最终稳定值			0.73		S	DFN2L
63%最终稳定值空气热响应时间			0.73 0.21 9.95		S S	DFN2L TO-92S

备注: 1. 漂移数据基于 1000 小时压力测试,条件为+125°C, VDD =5.5V。

2.2. 时序图

图 2.1 NST1001 时序图

2.3. 时序特征

参数	标示	最小值	典型值	最大值	单位	备注
单帧周期	Tframe	32	50	70	ms	
数据转换期	T _{CONV}	16	24	32	ms	
脉冲通信期	T _{data}	17	26	35	ms	
单脉冲周期	Тр	5	8	11	us	
单脉冲周期高电平时间	TH	4	6	8.3	us	
单脉冲周期低电平时间	TL	1.3	2	3	us	
单帧内脉冲个数		1		3201	个	

3.0 典型性能特性

图3.1 使用TO-92S封装测试,DQ端高电压时为3.3V(温度公式4.1直接计算)

图3.2 使用TO-92S封装测试, DQ端高电压时为3.3V (温度分段公式4.2计算)

图3.3 在空气中热响应测试 (TO-92S)

图 3.4 在空气中热响应测试(DFN2L)

图 3.5 在硅油中热响应测试 (TO-92S)

图 3.6 在硅油中热响应测试 (DFN2L)

4.0 功能描述

4.1. 整体描述

NST1001是一颗高精度的数字脉冲输出型温度传感器,其功能框图见图4.1。传感器芯片包含振荡器,温度ADC,信号调理电路和控制接口。NST1001采用了多种高精度信号处理技术实现了高精度的温度信号处理,避免了工艺偏差等带来的误差。同时NST1001都包含了一个OTP,出厂前每颗芯片都进行了温度标定,并将标定系数写入芯片,通过数字校准电路对温度误差进行校准,从而保证了其全温区的精度。由于芯片自身平均功耗仅为15uA左右,芯片自热带来的温度检测误差几乎可以忽略不计。

NST1001 共有两个引脚,DQ 和 GND。其中供电和信号输出都通过 DQ 引脚来完成。使用时,将 DQ 引脚通过一个上拉电阻连接到电源 VDD(或者 MCU 的一个 GPIO),NST1001 即可从上拉电阻获得供电并进行温度转换。一次温度转换结束后,NST1001 通过 DQ 引脚将温度信号以脉冲的形式发出,此时芯片内部电路通过一个储能电容临时供电。将 DQ 连接到MCU 的一个 GPIO 上对脉冲进行简单的计数,就可以得到温度值。NST1001 上电以后即重复的进行温度转换和发送,每个温度转换加上对外发送温度转换脉冲的周期为 50ms 左右。

图 4.1 NST1001 功能框图

4.2. 特性描述

NST1001提供了利用数字脉冲输出来代表温度值的输出形式。NST1001上电后即周期的进行温度转换和温度数据发送。每个周期共计需要时间约50ms,其中温度转换时间24ms,此时芯片工作电流约为30uA。温度数据发送时间为26ms,期间芯片自身消耗的电流约为1uA。NST1001的上电以后数据传输格式如图4.2和图4.3所示。需要注意的是,为了方便某些情况下MCU使用单次温度转换模式(上电后仅读取第一次温度转换结果),上电后第二次温度转换的数据没有发出。

图 4.2 单次数据格式

4.3. 脉冲数与温度转换方程

NST1001 最小输出值为 1 个脉冲,最大输出值为 3201 个脉冲,分别对应最低温度-50 ℃和最高温度 150 $^{\circ}$ 。当温度低于-50 $^{\circ}$ で或高于 150 $^{\circ}$ で时,脉冲输出分别被钳位到-50 $^{\circ}$ で 。需要注意的是,如果温度长期超过 150 $^{\circ}$ で,可能会影响芯片的使用寿命。NST1001 是通过计算输出的脉冲数来得到相应的温度值,具体的计算方法如下:

$$Temp = Num * 0.0625^{\circ} C - 50.0625^{\circ} C$$
(4.1)

其中

Temp 是温度值,

Num 是脉冲数 (1 ~ 3201);

表 4-1 根据脉冲数温度转换方程计算得到的部分温度值与对应的脉冲数

温度(℃)	脉冲数
-50	1
-40	161
-20	481
0	801
30	1281
50	1601
100	2401
150	3201

为了获得到更好的温度精度,消除高低温的非线性温度差值,给出了分段温度计算公式,具体如下:

$$T = Temp + (Temp-30)*0.005$$
 $Temp < 30^{\circ}C$; $T = Temp + (100 - Temp)*0.012$ $Temp < 100^{\circ}C$; $T = Temp + (100 - Temp)*0.012$ $Temp < 150^{\circ}C$;

其中*Temp* 是指利用公式(4.1)计算得到的温度值,根据*Temp* 在不同的温度区间给出不同的温度修正计算公式。利用分段温度计算公式(4.2)计算得到温度值,温度误差明显减小,具体如图 3.2 所示。

5.0 典型应用

NST1001 采用寄生供电模式,即利用通信引脚 DQ 的高电平时间充电,完成工作。芯片使用两脚连接方式, DQ 作为通信数字脉冲输出端和寄生电源供电端,GND 接地。单片机的 GPIO 口与芯片 DQ 端相连,对每次温度转换后输出的脉冲进行计数,然后将脉冲数转换成温度。

5.1. 一个单片机 GPIO 口的应用

DQ 引脚连接一个 GPIO 及通过上拉电阻连接到 VDD,具体如图 5.1 所示。NST1001 利用上拉电阻供电,脉冲输出时通过 GPIO 来统计脉冲数。此应用方法只需要一个 GPIO 口,节省了单片机的 GPIO 资源。需要对 NST1001 进行掉电复位时,只需要通过 GPIO 拉低 5ms 以上即可。

图 5.1 一个单片机 GPIO 端口的应用图

设计参数	设计值
Rpu	0.5 ΚΩ~10ΚΩ
VDD	1.65V~5.5V
单片机	有中断资源

表 5-1 设计参数

备注:芯片工作最大工作电流为 30uA(典型值),上拉电阻 Rpu 的选择会影响 VDD 允许的最低工作电压,此处按照 R₂=5 KΩ,得到 VDD 最低工作电压为 1.65V。

5.2. 零待机功耗的应用

该方案占用用两个 GPIO,可以实现真正的零功耗。DQ 连接到 GPIO2,同时通过上拉电阻连接到 GPIO1,如图 5.3 所示。GPIO1 拉高即可给通过上拉电阻给芯片供电。脉冲输出时,GPIO2 设置为输入 IO,对脉冲进行计数并转换得到温度。转换完毕以后,将 GPIO1 拉低,停止给芯片供电,NST1001 不消耗任何待机功耗。

图 5.2 待机零功耗应用图

5.3. 下拉电阻设计方案

图 5.3 是 NST1001 的下拉电阻接法典型应用连接图,类似于常见的 NTC 温度采集方案。利用该方案,可以直接替代传统的 NTC 温度采集方案,不需要改变任何外围电路设计。

图 5.3 下拉电阻连接应用图

5.4. 多点温度采集

该方案中所有 NST1001 节点共享 GPIO0 作为 DQ 计数端口,并共用同一上拉电阻。通过将 GPIO1~GPIOn 中的一个拉低来使能要采集的温度节点,其他不用的节点对应的 GPIO 则设置为高阻态。注意不能同时拉低 GPIO1~GPIOn 中的两个以上。

图 5.4 使用 NST1001 进行多点温度采集

5.5. 温度隔离采集

该方案利用苏州纳芯微电子的数字隔离芯片 NSi8121 一起配合使用,适用于对温度采集需要隔离的应用。

图 5.5 隔离应用示意图

6.0 封装信息

6.1. TO-92S-3L 封装

表 6.1 To-92S-3L 引脚定义

引脚 类型		类型	描述
NAME	NO.		
GND	1	GND	接地
NC	2	NC	必须悬空(注意不能接地)
DQ	3	1/0	供电及数据输出引脚

bh a		机械尺寸/mi	m
符号	最小值	典型值	最大值
Α	2.9	3.0	3.1
b	0.35	0.39	0.56
b1		0.44	
С	0.36	0.38	0.51
D	3.9	4.0	4.1
E	1.42	1.52	1.62
E1		0.75	
е		1.27	
e1		2.54	
L	13.5	14.5	15.5
L1		1.6	
θ 1		6°	
θ 2		3°	
θ 3		45°	
θ 4		3°	

6.2. TO-92S-2L 封装

表 6.1 TO-92S-2L 引脚定义

引.	引脚 类型		描述
NAME	NO.		
DQ	1	1/0	供电及数据输出引脚
GND	2	GND	接地

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.420	1.620	0.056	0.064
A1	0.660	0.860	0.026	0.034
b	0.330	0.480	0.013	0.019
b1	0.400	0.510	0.016	0.020
С	0.330	0.510	0.013	0.020
D	3.900	4.100	0.154	0.161
D1	2.280	2.680	0.090	0.106
E	3.050	3.250	0.120	0.128
е	1.270	TYP.	0.050	TYP.
e1	2.440	2.640	0.096	0.104
L	15.100	15.500	0.594	0.610
L1	0.350	0.650	0.014	0.026
θ	45°	TYP.	45°	TYP.

6.3. DFN2L 封装

表 6.2 DFN2L 引脚定义

引	引脚 类型		描述
NAME	NO.		
DQ	1	1/0	供电及数据输出引脚
GND	2	GND	接地(宽的引脚)

COMMON DIMENSIONS(MM)					
PKG.	X1: EXTREME THIN				
REF.	MIN.	N□M.	MAX		
Α	0.40	0.45	0.50		
A1	0.00	-	0.05		
A3	0.125 REF.				
D	1.55	1.60	1.65		
E	0.75	0.80	0.85		
D2	0.75	0.85	0.95		
E2	0.54	0.64	0.74		
L	0.54	0.64	0.74		
b	0.28	0.33	0.41		
6	0.85 BSC				

7.0 订货信息

订货型号	包装形式	丝印标识	描述
NST1001-QDNR	3000ea/Reel	T01	DFN2L封装,编带
NST1001-QTOS	1000ea/Bag	NST101	TO-92S-3L封装,散袋装
NST1001-QTZB	1000ea/Bag	NST101	TO-92S-2L封装, 散袋装

8.0 文件修订历史

修订	描述	日期
0.0	初始版本	2018/6/7
0.1	初始发布版本	2018/9/10
1.0	量产版本	2018/12/17
1.1	增加温度误差修正公式	2019/01/11
1.2	修订格式	2019/6/19
1.3	修改包装形式,增加丝印内容	2019/10/11
1.4	修改了订货信息中的订货料号	2019/11/28
1.5	增加了订货料号;	2020/2/10