Startup Success Prediction

```
In [6]: #importing the Dependinces
        import pandas as pd
        import numpy as np
        import matplotlib as mpl
        from matplotlib import pyplot as plt
        import seaborn as sns
        from datetime import date
        from scipy import stats
        from scipy.stats import norm, skew #for some statistics
        import plotly.express as px
        import plotly.graph_objects as go
        import plotly.figure factory as ff
        from plotly.colors import n colors
        from plotly.subplots import make_subplots
        import warnings
        warnings.filterwarnings("ignore")
        %matplotlib inline
        pd.set_option("display.max_columns", None)
        pd.set option("display.max rows", None)
        plt.style.use('seaborn')
        from collections import Counter
        import datetime
        import wordcloud
        import json
        import pandas as pd
        import geopandas as gpd
        import matplotlib.pyplot as plt
        import shapefile as shp
        import sys
```

```
In [7]: #Loading the dataset in pandas dataframe
data = pd.read_csv('/content/startup data.csv')
```

In [8]: #check first five rows of the dataset
data.head()

_		 \sim 1	
/ N	+	 \mathbf{o}	
		 \sim 1	

	Unnamed: 0	state_code	latitude	longitude	zip_code	id	city	Unnamed: 6
0	1005	CA	42.358880	-71.056820	92101	c:6669	San Diego	NaN
1	204	CA	37.238916	-121.973718	95032	c:16283	Los Gatos	NaN
2	1001	CA	32.901049	-117.192656	92121	c:65620	San Diego	San Diego CA 92121
3	738	CA	37.320309	-122.050040	95014	c:42668	Cupertino	Cupertino CA 95014
4	1002	CA	37.779281	-122.419236	94105	c:65806	San Francisco	San Francisco CA 94105

In [9]: #check last five rows of the dataset
data.tail()

Out[9]:

		Unnamed: 0	state_code	latitude	longitude	zip_code	id	city	Unname
•	918	352	CA	37.740594	-122.376471	94107	c:21343	San Francisco	Na
	919	721	MA	42.504817	-71.195611	1803	c:41747	Burlington	Burlingto MA 180
	920	557	CA	37.408261	-122.015920	94089	c:31549	Sunnyvale	Na
	921	589	CA	37.556732	-122.288378	94404	c:33198	San Francisco	Na
	922	462	CA	37.386778	-121.966277	95054	c:26702	Santa Clara	San Clara C 950t

_

In [10]: #check shape of the dataset

data.shape

Out[10]: (923, 49)

In [11]: #check columns of the dataset data.columns

Out[11]: Index(['Unnamed: 0', 'state_code', 'latitude', 'longitude', 'zip_c ode', 'id', 'city', 'Unnamed: 6', 'name', 'labels', 'founded_at', 'clos ed_at', 'first_funding_at', 'last_funding_at', 'age_first_funding_y ear', 'age_last_funding_year', 'age_first_milestone_year', 'age_last_milestone_year', 'relationships', 'funding_rounds 'funding_total_usd', 'milestones', 'state_code.1', 'is_CA', 'is_NY',
 'is_MA', 'is_TX', 'is_otherstate', 'category_code', 'is_sof tware', 'is_web', 'is_mobile', 'is_enterprise', 'is_advertising', 'is_gamesvideo', 'is_ecommerce', 'is_biotech', 'is_consulti ng', 'is_othercategory', 'object_id', 'has_VC', 'has_angel', 'ha s_roundA', 'has_roundB', 'has_roundC', 'has_roundD', 'avg_participants 'is top500', 'status'], dtvpe='object')

In [12]: #check more infomation of the dataset data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 923 entries, 0 to 922
Data columns (total 49 columns):

#	Column Column	Non-Null Count	Dtype
0	Unnamed: 0	923 non-null	 int64
1	state_code	923 non-null	object
2	latitude	923 non-null	float64
3	longitude	923 non-null	float64
4	zip_code	923 non-null	object
5	id	923 non-null	object
6	city	923 non-null	object
7	Unnamed: 6	430 non-null	object
8	name	923 non-null	object
9	labels	923 non-null	int64
10	founded_at	923 non-null	object
11	closed_at	335 non-null	object
12	first_funding_at	923 non-null	object
13	last_funding_at	923 non-null	object
14	age_first_funding_year	923 non-null	float64
15	age_last_funding_year	923 non-null	float64
16	age_first_milestone_year	771 non-null	float64
17	age_last_milestone_year	771 non-null	float64
18	relationships	923 non-null	int64

19	funding_rounds	923	non-null	int64
20	funding_total_usd	923	non-null	int64
21	milestones	923	non-null	int64
22	state_code.1	922	non-null	object
23	is_CA	923	non-null	int64
24	is_NY	923	non-null	int64
25	is_MA	923	non-null	int64
26	is_TX	923	non-null	int64
27	is_otherstate	923	non-null	int64
28	category_code	923	non-null	object
29	is_software	923	non-null	int64
30	is_web	923	non-null	int64
31	is_mobile	923	non-null	int64
32	is_enterprise	923	non-null	int64
33	is_advertising	923	non-null	int64
34	is_gamesvideo	923	non-null	int64
35	is_ecommerce	923	non-null	int64
36	is_biotech		non-null	int64
37	is_consulting	923	non-null	int64
38	is_othercategory		non-null	int64
39	object_id		non-null	object
40	has_VC		non-null	int64
41	has_angel		non-null	int64
42	has_roundA		non-null	int64
43	has_roundB		non-null	int64
44	has_roundC		non-null	int64
45	has_roundD		non-null	int64
46	avg_participants		non-null	float64
47	is_top500		non-null	int64
48	status		non-null	object
dtyp	es: float64(7), int64(28),	obje	ect(14)	

dtypes: float64(7), int64(28), object(14)
memory usage: 353.5+ KB

In [13]: #check mathamtic describe data.describe()

Out[13]:

	Unnamed: 0	latitude	longitude	labels	age_first_funding_year	age_last_fι
count	923.000000	923.000000	923.000000	923.000000	923.000000	
mean	572.297941	38.517442	-103.539212	0.646804	2.235630	
std	333.585431	3.741497	22.394167	0.478222	2.510449	
min	1.000000	25.752358	-122.756956	0.000000	-9.046600	
25%	283.500000	37.388869	-122.198732	0.000000	0.576700	
50%	577.000000	37.779281	-118.374037	1.000000	1.446600	
75%	866.500000	40.730646	-77.214731	1.000000	3.575350	
max	1153.000000	59.335232	18.057121	1.000000	21.895900	
_						

In [14]:

#check corr relation of the dataset
data.corr()

Out[14]:

	Unnamed: 0	latitude	longitude	labels	age_first_funding_year
Unnamed: 0	1.000000	0.054726	0.023292	-0.068721	-0.004507
latitude	0.054726	1.000000	0.368475	0.046560	-0.046868
longitude	0.023292	0.368475	1.000000	-0.036092	-0.014158
labels	-0.068721	0.046560	-0.036092	1.000000	-0.075637
age_first_funding_year	-0.004507	-0.046868	-0.014158	-0.075637	1.000000
age_last_funding_year	-0.116533	-0.041692	-0.000148	0.073731	0.762382
age_first_milestone_year	-0.135614	-0.072000	-0.051674	0.162279	0.593526
age_last_milestone_year	-0.131698	-0.054275	-0.087701	0.265871	0.472029
relationships	-0.079950	-0.039198	-0.073197	0.360434	-0.187817
funding_rounds	-0.118456	-0.000659	0.022447	0.206049	-0.155478
funding_total_usd	-0.064169	-0.072941	0.017970	0.040176	0.046350
milestones	-0.000338	0.017708	-0.016420	0.328260	-0.295894
is_CA	-0.042446	-0.417471	-0.780122	0.077217	-0.010800
is_NY	0.033485	0.205747	0.449871	0.059996	-0.128102
is_MA	0.043021	0.318015	0.441031	0.081735	0.020279
is_TX	-0.021463	-0.423888	0.066199	-0.045309	0.032838
is_otherstate	0.002249	0.338590	0.257801	-0.169067	0.081031
is_software	0.001367	-0.001656	0.024857	0.012429	0.116797
is_web	0.007076	-0.009799	-0.022024	-0.000873	-0.166601
is_mobile	-0.028279	0.035917	0.013527	0.007312	-0.054658
is_enterprise	0.042640	-0.002291	-0.003244	0.073772	-0.047326
is_advertising	-0.075131	0.054575	0.039998	0.044355	-0.071336
is_gamesvideo	0.065020	-0.033160	-0.025569	-0.025893	-0.063787
is_ecommerce	-0.026132	0.041628	0.043092	-0.072193	-0.071580
is_biotech	0.004224	0.012956	0.028075	0.000104	0.190653
is_consulting	-0.040929	-0.033905	0.021244	0.002373	-0.012596
is_othercategory	0.006243	-0.039656	-0.046560	-0.042408	0.115649
has_VC	-0.040057	0.031045	0.024852	-0.056515	0.168140
has_angel	0.134044	0.028891	0.102001	-0.072840	-0.345985
has_roundA	-0.076568	-0.033072	-0.066288	0.184307	-0.293081

10/11/22, 3:14 AM Untitled2 - Jupyter Notebook

has_roundB	-0.135289	-0.011801	-0.067017	0.208257	-0.060532
has_roundC	-0.090922	-0.057762	-0.042309	0.165902	0.033388
has_roundD	-0.081123	-0.018825	-0.042854	0.139940	0.121338
avg_participants	0.026713	-0.018176	-0.045191	0.185992	0.114363
is_top500	0.026019	0.032675	-0.091913	0.310652	0.050638

In [15]: #check missing value of the dataset data.isnull().sum()

Out[15]:	Unnamed: 0	0
	state_code	0
	latitude	0
	longitude	0
	zip_code	0
	id	0
	city	0
	Unnamed: 6	493
	name	0
	labels	0
	founded_at	0
	closed_at	588
	first_funding_at	0
	last_funding_at	0
	age_first_funding_year	0
	age_last_funding_year	0
	age_first_milestone_year	152
	age_last_milestone_year	152
	relationships	0
	funding_rounds	0
	funding_total_usd	0
	milestones	0
	state_code.1	1
	is_CA	0
	is_NY	0
	is_MA	0
	is_TX	0
	is_otherstate	0
	category_code	0
	is_software	0
	is_web	0
	is_mobile	0
	is_enterprise	0
	is_advertising	0
	is_gamesvideo	0
	is_ecommerce	0
	is_biotech	0
	is_consulting	0
	is_othercategory	0
	object_id	0

```
has VC
                                         0
         has_angel
                                         0
         has_roundA
                                         0
         has_roundB
                                         0
         has roundC
                                         0
         has roundD
                                         0
         avg_participants
                                         0
         is_top500
                                         0
         status
                                         0
         dtype: int64
In [16]: # Total Missing Values kolom "Unnamed: 6"
         totalNull = data['Unnamed: 6'].isnull().sum()
         print('Total Missing Values Kolom "Unnamed: 6": ', totalNull)
         Total Missing Values Kolom "Unnamed: 6":
In [17]: #Handling Missing Value closed at
         data['closed at'] = data['closed at'].fillna(value="31/12/2013")
In [18]: totalNull = data['closed_at'].isnull().sum()
         print('Total Missing Values Kolom "closed_at": ', totalNull)
         Total Missing Values Kolom "closed_at": 0
In [19]: #Handling Missing Value age_first_milestone_year and age_last_miles
         data[['age_first_milestone_year','age_last_milestone_year','milesto
Out [19]:
             age_first_milestone_year age_last_milestone_year milestones
          0
                          4.6685
                                             6.7041
                                                          3
                          7.0055
                                             7.0055
                                                          1
                          1.4575
                                             2.2055
                                                          2
          3
                          6.0027
                                             6.0027
                                                          1
                          0.0384
                                             0.0384
                                                          1
In [20]: data['age_first_milestone_year'] = data['age_first_milestone_year']
         data['age_last_milestone_year'] = data['age_last_milestone_year'].f
In [21]: #Handling Missing Value state_code.1
         for index, row in data.iterrows():
              if row['state_code']!=row['state_code.1']:
                  print(index, row['state_code'], row['state_code.1'])
         515 CA nan
```

Graphic Approach

```
In [24]: #Correlation heatmap
    data['age_first_milestone_year'] = data.age_first_milestone_year.as
    data['age_last_milestone_year'] = data.age_last_milestone_year.asty
```

```
In [25]: features = ['age_first_funding_year', 'age_last_funding_year', 'age_f
    plt.figure(figsize=(30,20))
    ax = sns.heatmap(data = data[features].corr(), cmap='YlGnBu', annot=T
    bottom, top = ax.get_ylim()
    ax.set_ylim(bottom + 0.5, top - 0.5)
```

Out[25]: (31.5, -0.5)

Scatter plot

```
In [26]: fig, ax = plt.subplots()
    _ = plt.scatter(x=data['age_first_funding_year'], y=data['age_last_
    _ = ax.set(xlabel="age_first_funding_year", ylabel="age_last_funding_year")
```


Box plots

```
In [28]: featuresNum = ['age_first_funding_year', 'age_last_funding_year', 'ag
plt.figure(figsize=(15, 7))
for i in range(0, len(featuresNum)):
    plt.subplot(1, len(featuresNum), i+1)
    sns.boxplot(y=data[featuresNum[i]], color='green', orient='v')
    plt.tight_layout()
```

Dataset collection founded years


```
In [30]: data["founded_at"].apply(lambda x: '20:' + x[:2]).value_counts(norm
Out[30]: 20:1/
                   563
                    43
          20:6/
          20:8/
                    42
          20:10
                     38
          20:5/
                     36
          20:9/
                     35
          20:7/
                     31
          20:3/
                    30
          20:4/
                     30
          20:2/
                    29
          20:11
                    23
          20:12
                     23
         Name: founded_at, dtype: int64
```

```
In [31]: data["founded_at"].apply(lambda x: '20:' + x[:2]).value_counts(norm
Out[31]: 20:1/
                   0.609967
         20:6/
                   0.046587
         20:8/
                   0.045504
         20:10
                   0.041170
         20:5/
                   0.039003
         20:9/
                   0.037920
         20:7/
                   0.033586
         20:3/
                   0.032503
         20:4/
                   0.032503
         20:2/
                   0.031419
                   0.024919
         20:11
         20:12
                   0.024919
         Name: founded_at, dtype: float64
In [32]: data["closed_at"].apply(lambda x: '20:' + x[:2]).value_counts(norma
Out[32]: 20:31
                   0.637053
         20:1/
                   0.069339
         20:6/
                   0.041170
         20:7/
                   0.037920
         20:2/
                   0.035753
         20:5/
                   0.033586
         20:8/
                   0.027086
         20:10
                   0.020585
         20:3/
                   0.020585
         20:11
                   0.020585
         20:4/
                   0.019502
         20:12
                   0.018418
         20:9/
                   0.018418
         Name: closed_at, dtype: float64
```

How many Startup are acquired or closed have?

```
In [33]: df_acquired = data[(data["status"] == True)]
    df_acquired.shape

Out[33]: (0, 48)

In [34]: df_closed = data[(data["status"] == False)]
    df_closed.shape

Out[34]: (0, 48)
```

In [35]: sns.countplot(data['status'])

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x7f88cc80cb50>

Which category has the largest number of startup

Out[36]: <matplotlib.legend.Legend at 0x7f88cc7480d0>

Which category having most number of total funding

Out [37]:

	category_code	funding_total_usd
18	mobile	7263750881
30	software	2657598865
34	web	1729035436
3	biotech	1723699484
8	enterprise	1338882096
4	cleantech	1300284730
28	semiconductor	1105156970
0	advertising	918619012
11	games_video	844643530
12	hardware	773938873

- 1

Which State having most number of Startup

Out[39]: <matplotlib.legend.Legend at 0x7f88cc3f10d0>

Out [40]:

	state_code	num_startup
2	CA	488
23	NY	106
12	MA	83
32	WA	42
29	TX	42
3	CO	19
9	IL	18
26	PA	17

31	VA	13
7	GA	11
20	NJ	7
13	MD	7
25	OR	7
18	NC	7
6	FL	6
24	ОН	6
16	MN	5
5	DC	4
4	СТ	4
15	MI	3
28	TN	3
27	RI	3
30	UT	3
22	NV	2
19	NH	2
1	AZ	2
14	ME	2
11	KY	2
10	IN	2
17	МО	2
33	WI	1
0	AR	1
21	NM	1
8	ID	1
34	WV	1
1		

Which State having most number of acquired Startup per category

Which State having most number of closed Startup per category

Which city having most number of acquired Startup per category

Which city having most number of closed Startup per category

Which city having most number of total funding

Out[45]:

91 Kirkland 5718914576 174 San Francisco 1673487129 135 New York 1231405734 125 Mountain View 985553322 181 Santa Clara 839050274 176 San Jose 733181780 13 Austin 706317317 173 San Diego 614475001 163 Redwood City 521330100

Loveland

city funding_total_usd

510000000

110

In [47]: df_what_in_kirkland = data[(data["city"] == 'Kirkland')]
 df_what_in_kirkland.shape

Out [47]: (2, 48)

In [48]: df_what_in_kirkland.head()

Out [48]: **Unnamed:** Unnamed: state_code latitude longitude zip_code city id Kirkland WA 98033-332 62 WA 47.675489 -122.191667 c:19861 Kirkland 98033-6314 6314 364 86 WA 30.632480 -86.984345 98033 c:13219 Kirkland NaN

```
In [49]: #How many Startup have has_VC?
fig, ax = plt.subplots(figsize=(10,5))

_ = sns.countplot(x="has_VC", hue="status", data=data, palette="nip order=data.has_VC.value_counts().index)

_ = ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
_ = ax.set(xlabel="Has_VC", ylabel="No. of startup")
plt.legend(bbox_to_anchor=(0.945, 0.90))
```

Out[49]: <matplotlib.legend.Legend at 0x7f88cc2e5c50>

Out[50]: <matplotlib.legend.Legend at 0x7f88cc4d1490>


```
In [51]: #How many Startup have both 'acquired' status and is_top500?
len(data[(data["status"] == True) & (data["is_top500"] == True)].in
```

Out[51]: 0

```
In [52]: #How many Startup have both 'closed' status and is_top500?
len(data[(data["status"] == False) & (data["is_top500"] == False)].
```

Out[52]: 0

```
In [53]: df_acquired["is_top500"].value_counts(normalize=True)
```

Out[53]: Series([], Name: is_top500, dtype: float64)

```
In [54]: #How many years on average the company closes
df_closed.founded_at=pd.to_datetime(df_closed.founded_at)
df_closed.closed_at=pd.to_datetime(df_closed.closed_at)
```

In [55]: #which relationship related to acquired or closed startup? fig, ax = plt.subplots(figsize=(17,10)) sns.countplot(x="relationships", hue="status", data=data, palette="order=data.relationships.value_counts().index) plt.legend(bbox_to_anchor=(0.945, 0.90))

Out[55]: <matplotlib.legend.Legend at 0x7f88cc86f3d0>

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x7f88ccbf37d0>

Mapping area startup

In [57]: 'geopandas' in sys.modules

Out[57]: True

In [58]: new_data = gpd.GeoDataFrame(data, geometry=gpd.points_from_xy(data.

In [59]: new_data.head()

In [59]:	new_data.head()								
Out[59]:	Unna	med: 0	state_code	latitude	longitude	zip_code	id	city	Unnamed: 6
	0	1005	CA	42.358880	-71.056820	92101	c:6669	San Diego	NaN
	1	204	CA	37.238916	-121.973718	95032	c:16283	Los Gatos	NaN
	2	1001	CA	32.901049	-117.192656	92121	c:65620	San Diego	San Diego CA 92121
	3	738	CA	37.320309	-122.050040	95014	c:42668	Cupertino	Cupertino CA 95014
	4	1002	CA	37.779281	-122.419236	94105	c:65806	San Francisco	San Francisco CA 94105
	_								
In [60]:	<pre>age=["age_first_funding_year","age_last_funding_year","age_first_mi for a in range(len(age)): print("Is there any negative value in '{}' column : {} ".forma</pre>								
	<pre>Is there any negative value in 'age_first_funding_year' column : True</pre>								
	Is there any negative value in 'age_last_funding_year' column : T								
	rue Is there any negative value in 'age_first_milestone_year' column : True								
		re ar	ny negativ	ve value	in 'age_l	ast_mile	estone_	year' co	lumn :
In [61]:	df=data	a.dro	p(data[da p(df[data	ata.age_] a.age_fi	first_fund last_fundi rst_milest last_miles	ng_year< one_year	<pre>0].ind <0].in</pre>	ex) dex)	

```
In [62]: for a in range(len(age)):
    print("Is there any negative value in '{}' column : {} ".forma

Is there any negative value in 'age_first_funding_year' column :
    True
    Is there any negative value in 'age_last_funding_year' column : T
    rue
    Is there any negative value in 'age_first_milestone_year' column
: True
    Is there any negative value in 'age_last_milestone_year' column
: False
```

Outliers

```
In [63]: featuresNumfinal = ['age_first_funding_year', 'age_last_funding_year

plt.figure(figsize=(15, 7))
    for i in range(0, len(featuresNumfinal)):
        plt.subplot(1, len(featuresNumfinal), i+1)
        sns.boxplot(y=df[featuresNumfinal[i]], color='green', orient='v
        plt.tight_layout()
```


In [64]: #Log-transformation of the funding and milestone year variable
 df["age_first_funding_year"] = np.log1p(df["age_first_funding_year")
 df["age_last_funding_year"] = np.log1p(df["age_last_funding_year"])
 df["age_first_milestone_year"] = np.log1p(df["age_first_milestone_year")
 df["age_last_milestone_year"] = np.log1p(df["age_last_milestone_year"))

Feature Engineering

In [66]: #New Column has_RoundABCD
df['has_RoundABCD'] = np.where((df['has_roundA'] == 1) | (df['has_r
df.head()

_			г.	_	~ 1	
	ш	-	1.6		h	
u	ΑU	L		U.	U	

	Unnamed: 0	state_code	latitude	longitude	zip_code	id	city	Unnamed: 6
0	1005	CA	42.358880	-71.056820	92101	c:6669	San Diego	NaN
1	204	CA	37.238916	-121.973718	95032	c:16283	Los Gatos	NaN
2	1001	CA	32.901049	-117.192656	92121	c:65620	San Diego	San Diego CA 92121
3	738	CA	37.320309	-122.050040	95014	c:42668	Cupertino	Cupertino CA 95014
4	1002	CA	37.779281	-122.419236	94105	c:65806	San Francisco	San Francisco CA 94105

In [67]: #New Column "has_Investor
df['has_Investor'] = np.where((df['has_VC'] == 1) | (df['has_angel'
df.head()

Unnamed: 6	city	id	zip_code	longitude	latitude	state_code	Unnamed: 0	Out[67]: _	Out[6
NaN	San Diego	c:6669	92101	-71.056820	42.358880	CA	1005	C	
NaN	Los Gatos	c:16283	95032	-121.973718	37.238916	CA	I 204	1	
San Diego CA 92121	San Diego	c:65620	92121	-117.192656	32.901049	CA	2 1001	2	
Cupertino CA 95014	Cupertino	c:42668	95014	-122.050040	37.320309	CA	3 738	3	

CA 37.779281 -122.419236

_

1002

In [68]: len(df[(df["has_RoundABCD"] == 1)].index)

Out[68]: 674

In [69]: len(df[(df['has_RoundABCD'] == 1) & (df['status'] == 1)].index)
len(df)

Out[69]: 911

San

Francisco

CA 94105

San

Francisco

94105 c:65806

```
In [70]:
           #New Column "has_Seed"
           df['has_Seed'] = np.where((df['has_RoundABCD'] == 0) & (df['has_Inv
           df.head()
Out [70]:
               Unnamed:
                                                                                     Unnamed:
                         state code
                                      latitude
                                                longitude zip_code
                                                                        id
                                                                                city
                      0
                                                                                             6
                                                                                San
            0
                   1005
                                CA 42.358880
                                               -71.056820
                                                             92101
                                                                    c:6669
                                                                                          NaN
                                                                               Diego
                                                                                Los
                    204
                                CA 37.238916 -121.973718
                                                             95032 c:16283
                                                                                          NaN
                                                                               Gatos
                                                                                     San Diego
                                                                                San
            2
                   1001
                                CA 32.901049 -117.192656
                                                             92121 c:65620
                                                                                      CA 92121
                                                                               Diego
                                                                                      Cupertino
            3
                    738
                                   37.320309
                                              -122.050040
                                                             95014 c:42668
                                                                           Cupertino
                                                                                      CA 95014
                                                                                           San
                                                                                San
                   1002
                                CA 37.779281 -122.419236
                                                             94105 c:65806
                                                                                      Francisco
                                                                            Francisco
                                                                                      CA 94105
          df['has_Seed'] == 1
In [71]:
Out [71]:
           0
                     True
           1
                    False
           2
                    False
           3
                    False
           4
                     True
           5
                    False
           6
                    False
           7
                    False
           8
                    False
           9
                    False
           10
                    False
           11
                    False
           12
                     True
           13
                    False
                    False
           14
           15
                     True
           16
                    False
           17
                    False
           18
                    False
```

Model belding

```
In [72]: #Cek categorical
    cat_feature = df.select_dtypes(include='object')
    cat_feature.head()
```

Out [72]:

	state_code	zip_code	id	city	Unnamed: 6	name	founded_at	closed_a
0	CA	92101	c:6669	San Diego	NaN	Bandsintown	1/1/2007	31/12/201
1	CA	95032	c:16283	Los Gatos	NaN	TriCipher	1/1/2000	31/12/201
2	CA	92121	c:65620	San Diego	San Diego CA 92121	Plixi	3/18/2009	31/12/201
3	CA	95014	c:42668	Cupertino	Cupertino CA 95014	Solidcore Systems	1/1/2002	31/12/201
4	CA	94105	c:65806	San Francisco	San Francisco CA 94105	Inhale Digital	8/1/2010	10/1/201

__

```
In [73]: | df = data.drop(['state_code'],axis=1)
          df = df.drop(['id'],axis=1)
          df = df.drop(['Unnamed: 6'],axis=1)
          df = df.drop(['category_code'],axis=1)
          df = df.drop(['object_id'],axis=1)
          df = df.drop(['zip_code'],axis=1)
          df = df.drop(['founded_at'],axis=1)
          df = df.drop(['closed_at'],axis=1)
          df = df.drop(['first_funding_at'],axis=1)
          df = df.drop(['last_funding_at'],axis=1)
          df = df.drop(['city'],axis=1)
          df = df.drop(['name'],axis=1)
          df = df.drop(['Unnamed: 0'],axis=1)
df = df.drop(['latitude','longitude'],axis=1)
          df = df.drop(['geometry'],axis=1)
          #df = df.drop(['age_closed_startup'],axis=1)
          df = df.drop(['relationships'],axis=1)
```

```
In [74]: df.columns
Out[74]: Index(['labels', 'age_first_funding_year', 'age_last_funding_year'
                 'age_first_milestone_year', 'age_last_milestone_year', 'fun
         ding_rounds',
                 'funding_total_usd', 'milestones', 'is_CA', 'is_NY', 'is_MA
         ', 'is_TX',
                 'is_otherstate', 'is_software', 'is_web', 'is_mobile', 'is_
         enterprise',
                'is_advertising', 'is_gamesvideo', 'is_ecommerce', 'is_biot
         ech',
                'is_consulting', 'is_othercategory', 'has_VC', 'has_angel',
                'has_roundA', 'has_roundB', 'has_roundC', 'has_roundD',
                'avg_participants', 'is_top500', 'status'],
               dtype='object')
In [75]: #del data['Unnamed: 6']
         del data['Unnamed: 0']
```

Non-Null Count Dtype

In [76]: df.info()

Column

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 923 entries, 0 to 922
Data columns (total 32 columns):
```

0	labels	923	non-null	int64		
1	age_first_funding_year		non-null	float64		
2	age_last_funding_year		non-null	float64		
3	age_first_milestone_year		non-null	float64		
4	age_last_milestone_year		non-null	float64		
5	funding_rounds		non-null	int64		
6	funding_total_usd		non-null	int64		
7	milestones		non-null	int64		
8	is_CA	923	non-null	int64		
9	is_NY	923	non-null	int64		
10	is_MA		non-null	int64		
11	is_TX	923	non-null	int64		
12	is_otherstate	923	non-null	int64		
13	is_software		non-null	int64		
14	is_web	923	non-null	int64		
15	is_mobile	923	non-null	int64		
16	is_enterprise	923	non-null	int64		
17	is_advertising	923	non-null	int64		
18	is_gamesvideo	923	non-null	int64		
19	is_ecommerce	923	non-null	int64		
20	is_biotech	923	non-null	int64		
21	is_consulting	923	non-null	int64		
22	is_othercategory	923	non-null	int64		
23	has_VC	923	non-null	int64		
24	has_angel	923	non-null	int64		
25	has_roundA	923	non-null	int64		
26	has_roundB	923	non-null	int64		
27	has_roundC	923	non-null	int64		
28	has_roundD	923	non-null	int64		
29	avg_participants	923	non-null	float64		
30	is_top500	923	non-null	int64		
31	status	923	non-null	object		
dtypes: float64(5), int64(26), object(1)						
	ry usage: 230.9+ KB					
v	df drop(!status! avis-1)					

```
In [77]: X = df.drop('status', axis=1)
Y = df['status']
```

```
In [78]: print(X)
print(Y)
```

```
labels
              age_first_funding_year
                                          age_last_funding_year
0
                                 2.2493
           1
                                                           3.0027
1
           1
                                5.1260
                                                           9.9973
2
           1
                                 1.0329
                                                           1.0329
3
           1
                                 3.1315
                                                           5.3151
4
           0
                                 0.0000
                                                           1.6685
5
           0
                                                           4.5452
                                4.5452
           1
6
                                 1.7205
                                                           5.2110
7
           1
                                 1.6466
                                                           6.7616
8
           1
                                                          11.1123
                                 3.5863
9
           1
                                 1.6712
                                                           4.6849
           1
10
                                4.6274
                                                           9.4493
11
           0
                                1.0849
                                                           5.3370
12
           0
                                4.9041
                                                           4.9041
13
           1
                                 0.0192
                                                           2.4356
14
           1
                                4.6658
                                                           8.9973
15
           0
                                6.6082
                                                           6.6082
           0
                                2.5863
                                                           6.7644
16
           1
17
                                4.5918
                                                           7.1726
```

Type Markdown and LaTeX: α^2

```
In [79]: from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size)
```

```
In [82]: from sklearn.preprocessing import StandardScaler
    scler = StandardScaler()
    X_train = scler.fit_transform(X_train)
    X_test = scler.transform(X_test)
```

```
In [84]: from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
```

```
In [85]: model.fit(X_train, Y_train)
```

Out[85]: LogisticRegression()

```
#accuracy on training data
    from sklearn.metrics import accuracy_score
    X_train_prediction = model.predict(X_train)
    training_data_accuracy = accuracy_score(X_train_prediction, Y_train)

In [88]: print('Accuracy on training data : ', training_data_accuracy)
    Accuracy on training data : 1.0

In [89]: #accuracy on test data
    X_test_prediction = model.predict(X_test)
    test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

In [90]: print('Accuracy on test data : ', test_data_accuracy)
    Accuracy on test data : 1.0
```