Exercice

On considère une variable aléatoire réelle T dont une densité de probabilité f est donnée par :

$$f(x) = \begin{cases} e^{-(x-\theta)} & pour \ x \ge \theta \\ 0 & si \ x < \theta \end{cases}$$

 θ désignant un paramètre réel strictement positif inconnu. Soit $T_1, T_2, ..., T_n$ n variables aléatoires indépendantes de même loi que T.

On considère les variables aléatoires réelles :

$$X_n = \frac{1}{n} \sum_{i=1}^n T_i \quad et \quad Y_n = \inf_{1 \le i \le n} T_i$$

- 1. a. Vérifier que f est une densité de probabilité
 - b. Déterminer la fonction de répartition F de T.
 - c. Calculer E(T) et V(T).
- 2. Montrer que $Z_n = X_n 1$ est un estimateur sans biais de θ .
- 3. Déterminer la fonction de répartition de Y_n puis une densité de Y_n .
- 4. Montrer que $W_n = Y_n \frac{1}{n}$ est un estimateur sans biais de θ .
- 5. Calculer la variance de chacun des estimateurs Z_n et W_n . En déduire que Z_n et W_n sont deux estimateurs convergeant de θ .

Ouel est le meilleur des deux ?

6. On veut construire un estimateur sans biais et convergeant pour le paramètre θ , comme combinaison linéaire de Z_n et W_n .

De plus on désire que la variance de l'estimateur soit la plus petite possible.

Vérifier que la solution est $H_n = aZ_n + bW_n$ avec : $a = \frac{1 - \rho_n \sqrt{n}}{n + 1 - 2\rho_n \sqrt{n}}$ et $b = \frac{n - \rho_n \sqrt{n}}{n + 1 - 2\rho_n \sqrt{n}}$

où ρ_n désigne le coefficient de corrélation des variables aléatoires réelles X_n et Y_n .