[]mit. 12

-Asynchronous sequential circuit design 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

(二)不完全定义状态表的化简方法——隐含(蕴含)表法

完全定义状态表化简: 寻找等价状态; 不完全定义状态表化简: 寻找相容状态;

相容状态——输出与次态的确定部分满足合并条件的两个状态(如a和b) 称为相容状态,或称相容状态对,记为(a,b)。

相容状态无传递性—— 若状态 S_i 和 S_j 相容,状态 S_j 和 S_m 相容,则状态 S_i 和 S_m 不一定相容,即相容状态无传递性。

a和b相容, a 和c相容,但b 和c不相容

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	a/X	X/X
b	c/1	b/0
С	d/0	X / 1
d	X/X	b/X
е	a/ <mark>0</mark>	c/1

相容状态类——俩俩相容的状态集合

If: (S_i, S_j) , (S_j, S_m) , (S_i, S_m)

Then: (S_i, S_j, S_m)

最大相容状态类—— 某一相容状态类不 属于其他任何相容状态类

化简如下状态表

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	a/ X	X/X
b	c/1	b/0
С	d/0	X / 1
d	X/X	b/X
е	a/0	c/1

① 建立隐含表

② 比较

③ 追踪

④ 相容状态对

- •圆周上的点:代表状态
- •点与点之间的连线:表示
- 两个状态之间的相容关系

⑤ 最大相容类

直观法

$$(ab)$$
, (ad) , $(bd) \rightarrow (abd)$

$$(ac)$$
, (ad) , $(cd) \rightarrow (acd)$

$$(ac)$$
, (ae) , $(ce) \rightarrow (ace)$

图形法

(abd)

(acd)

(ace)

所有点之间都有连线的多 边形构成一个最大相容类

⑥ 确定原始状态表的最小闭合覆盖集

最小闭合覆盖集应满足的三个条件

- 1. 满足覆盖性:覆盖全部原始状态, 不得遗漏, 即原始状态中的每个 状态至少包含于该集的一个相容类(或最大相容类)
- 2. 满足闭合性:该集的任一个相容类(或最大相容类)在任何输入下所产生的次态应属于该集的某个相容类(或最大相容类)
- 3. 满足最小性: 在满足上述两个要求的前提下,该集的相容类(或 最大相容类)应为最少

现态	Qn+1/ Z	
Qn	X=0	X=1
а	a/X	X/X
b	c / 1	b/0
С	d/0	X / 1
d	X/X	b/X
е	a/ <mark>0</mark>	c/1

最大相容类

(abd), (acd), (ace)

相容状态对

(ab), (ac), (ad), (ae), (bd), (cd), (ce) ▶找出覆盖集,方案很多,如:

[abd, ace] [abd, ce] [acd, ab, ae]......

▶为满足最小性,选取相容类(或最大相容类)个数最少的集合:

[abd, ace] [abd, ce] [ace, bd]

➢ 讨论闭合性: 分别考察[abd , ace], [abd , ce], [ace , bd]

现态	Qn+	⁻¹ / Z
Qn	X=0	X=1
а	a/ X	X / X
b	c/1	b/0
C	d/0	X / 1
d	X/X	b/X
е	a/ 0	c/1

▶ 讨论闭合性: 分别考察[abd, ace], [abd, ce], [ace, bd]

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	a/X	X/X
b	c/1	b/0
C	d/0	X / 1
d	X/X	b/X
е	a/ <mark>0</mark>	c/1

所以:最小闭合覆盖集为—— [abd, ace]✓

⑦ 建立状态表

设:	$q_1 = 0$	(abd)	\Rightarrow
	$q_2 = 0$	(ace)	

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
q₁	q ₂ /1	q ₁ /0	
۵a	g ₄ / 0	$g_{\alpha}/1$	

₩			
现态	Qn+1/ Z		
Qn	X=0	X=1	
\mathbf{q}_1	q_1/X	X/X	
\mathbf{q}_1	$q_2/1$	q ₁ /0	
q_2	$q_1/0$	X / 1	
\mathbf{q}_1	X/X	q_1/X	
q_2	q ₁ / 0	$q_2/1$	