

Privacy Protection in Generative Model

Haihan Gao¹, Xiaolu Chen², Li Zhang³

University of Science and Technology of China

2022.10.26

¹SA22011017

²SA22221005 ³SA22221064

Outline

Data for machine learning

■ Age of big data

machine learning becoming a hit require a large amount of data from real world

■ Privacy data

like human face and fingerprint... sensitive and individual but of high practical value a tradeoff between data diversity and data utilization

Generative model for privacy protection

Generative model

adding noise to real data without exposing the original figure little significance if only copy input to output

Related work

DP-SGD[?]

effective in generating high-dimensional sanitized data difficult implement

PATE

only train generators with DP guarantees high privacy costs

Fed-Avg GAN

provide user-level DP guarantees merely works on decentralized data

Introduction of GAN

Generator

create fake data from random sample sample $Z = (z_1, z_2, ...z_n)$ $\tilde{Z} = G(Z)$

Discriminator

discriminate between fake and real data $D(X, G(Z)) = \begin{cases} 0, & \text{if input } \in G(Z) \\ 1, & \text{if input } \in X \end{cases}$

■ Task of two part

Generator G(Z) closer to X, the better **Discriminator** distinguish G(Z) and X more, the better

Problem of generative model

- Most privacy-preserving training algorithms for neural network models is manipulating the gradient information generated during backpropagation.
- Methods
 Clipping the gradients (to bound sensitivity)
 Adding calibrated random noise (to introduce stochasticity)
- **Problem**:limited in shallow networks and fail to sufficiently capture the sample quality of the original data.

Review DP

■ Neighboring dataset

D, D': differed with only a piece of data

Differential Privacy

$$Pr[M(D) \in O] \le e^{\epsilon} Pr[M(D') \in O] + \delta$$

M:a random algorithm

O: output set

 ϵ : privacy budget smaller ϵ , M(D) and M(D') closer

 δ :disturbance

Review DP

Suppose $\mathcal{M}: \mathbb{R}^n \to X$, X is called mapping Space and \mathcal{M} is called map from origin space into mapping space. For two dataset x and x', they only has one-item difference.We call \mathcal{M} satisfies (ϵ, δ) -privacy if following statement is true

$$Pr[\mathcal{M}(x) \in S] \le e^{\epsilon} Pr(\mathcal{M}(x') \in S) + \delta$$
 (1)

What is \mathcal{M} ,input space and mapping space in this scenario?

Review DP

According the define of [?], \mathcal{M} is the generative model.Its input space is consisted with training data and its mapping space is consisted with its output. Take Conditional-VAE for an example.Suppose training data takes with following formular

$$(X, y) = (x_i, y_i)_{i=1}^n$$
 (2)

it is consisted with n data samples and $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$, x_i is the data(such as an image) and y_i is the label of the image. \mathcal{M} is a model which generate new data from existing data and label.

Privacy define

Possibility is hard to quantify for NN model.So we take several ways to varify our model satisify (ϵ, δ) privacy

From attackers

One of the goal of the attacker is to varify whether a data is from or not from the dataset. If the privacy dataset $\mathcal D$ is revealed. We can build the attacker from $\mathcal D$

- sample k data $x \in \mathcal{D}$ and sample k noise from \mathbb{R}^n but $\notin \mathcal{D}$. Denoted as $X = x_1, x_2, \cdots, x_k$ and $Y = y_1, y_2, \cdots, y_k$
- X is true data,we attack label True to all its data and Y is fake data which randomly sample from \mathbb{R}^n ,so we attach False label into Y,mixture X, Y and its labels T together
- build a classifier C, which takes true/fake image as input and output the Possibility of whether the input pattern is belonged to True/Generated Data. Train the model with supervised learning method

For attackers

suppose P is the Possibility attacker could correctly varify the real data through generative data. We define privacy loss

$$privacy loss = \frac{P - 0.5}{0.5} \tag{3}$$

Utility experiment

use generative data for image classifier task. We train the downstream image classifier model with Training data T_{train} and validate the training accuracy with testing data T_{train} . There are four condition for utility measurement

Test. There are rour condition for dentry measurement.					
accuracy test data train data	privacy data	generative data			
privacy data	p_1	p_2			
generative data	<i>p</i> ₃	p_4			

We call $p_1 - p_2$ accuracy loss from the generative process

Work schedule

- Haihan Gao: Algorithm design and implementation of main model and add privacy into whole model
- Xiaolu Chen: Research of previous work and implementation of Attackers
- Li Zhang: Report writing, research of privacy attack and implementation of utility network

