Milestone Review Flysheet

Institutio Rensselaer Polytechnic Institute

Milestone CDR

Vehicle Properties		
Total Length (in)	104	
Diameter (in)	4.02	
Gross Lift Off Weigh (lb)	13.176	
Airframe Material	Phenolic	
Fin Material	G-10 Fiberglass	
Drag	Polished Surfaces	

Motor Properties	
Motor Manufacturer	Aerotech
Motor Designation	K1103X
Max/Average Thrust (lb)	233.69
Total Impulse (lbf-s)	396.34
Mass Before/After Burn (oz)	51.5/22.2
Liftoff Thrust (lb)	233.69
Liftoff Thrust (lb)	233.69

Stability Analysis		
Center of Pressure (in from nose)	72	
Center of Gravity (in from nose)	36	
Static Stability Margin	9.13	
Static Stability Margin (off launch rail)	6.1	
Thrust-to-Weight Ratio	15.74	
Rail Size and Length (in)	39.37	
Rail Exit Velocity	63.5 ft/s	

Ascent Analysis		
Maximum Veloxity (ft/s)	753	
Maximum Mach Number	0.669	
Maximum Acceleration (ft/s^2)	677	
Target Apogee (From Simulations)	5400	
Stable Velocity (ft/s)	750	
Distance to Stable Velocity (ft)	590	

Recovery System Properties					
Dogue Parachute					
Manufactu	irer/Model	SkyAr	SkyAngle Cert-3 Drogue		
Si	ze		6.3 sq. ft		
Altitud	e at Deploym	ent (ft)	54	34	
Velocity at Deployment (ft/s) 0)			
Terminal Velocity (ft/s) 50		0			
Recovery Harness Material Kevlar		/lar			
Harness Size/Thickness (in) 5\8		/8			
Recovery Harness Length (ft) 20.8).8			
Harness/ Inter Kinetic	Airframe faces	Swivel Joint, 1500 lbf max; 1.5 in eyebolt fixed to foreward motor centering ring and rear payload section bulkhead		ard motor r payload	
Section 1 Section 2 Section 3 Section		Section 4			

Recovery System Properties					
Main Parachute					
Manufac	turer/Model	SkyA	SkyAngle Classic-II 52		
	Size		29.5 sq. ft		
Altitu	de at Deployme	nt (ft)	nt (ft) 800		
Velocity at Deployment (ft/s)		50			
Terminal Velocity (ft/s)		14.5			
Recovery Harness Material		aterial	Kevlar		
Harness Size/Thickness (in)		5\8			
Recovery Harness Length (ft) 20.8).8			
Swivel Joint, 1500 lbf max; 1.5 i eyebolt fixed to foreward moto centering ring and rear payload section bulkhead		ard motor r payload			
	Section 1	Section 2	Section 3	Section 4	

44.94 495.83	304.16	N/A
--------------	--------	-----

3.78	52.2	29.4	N/A

Recovery Electonics	
Altimeter(s)/Timer(s) (Make/Model)	Perfectflite Stratologger SL100
Redundancy Plan	Footh amusicht Davon?
	Featherweight Raven3
Pad Stay Time (Launch Configuration)	1 hour

Recovery Electonics		
Rocket Locators (Make/Model)	GPS Radio Link	
Transmitting Frequencies	***Required by CDR***	
Black Powder Mass Drogue Chute (grams)	2.1	
Black Powder Mass Main Chute (grams)	1.7	

Milestone Review Flysheet

Institutio Rensselaer Polytechnic Institute

Milestone CDR

Autonomous Ground Support Equipment (MAV Teams Only)		
	Overview	
Capture Mechanism		
	Overview	
Container Mechanism		
	Overview	
Launch Rail Mechanism	***Include Description of rail locking mechanism***	
	Overview	
Igniter Installation Mechanism		

	Payload	
	Overview	
Payload 1	Analysis of structural protuberances by altering the deployment angle of 3D printed drag flaps and examine the differneces in pressure created. After motor burn out, the rocket's altitude and velocity are plotted against an idealized curve. Drap flap angle is adjusted in order to match the curve and reach the target altitude. Pressure readings are taken inside the drag-flap area are out side of it in order to observe pressure variation.	
	Overview	
Payload 2	Atmospheric measurements with a sensors array and a camera to capture images of the horizon. Sensors and camera gather data via a clear Lexan Polycarbonate section of Body Tube. The camera follows the horizon with a rotating collar around the central axis based on a gravity-controlled system.	
	Test Plans, Status, and Results	
Ejection Charge Tests		
Sub-scale Test Flights	Sub-scale test flight run with 3.0" diameter paper rocket with plywood fins that is 64" in length. Fin structure was extremely similar to full-scale rocket fin structure. Test flight completed sucecessfully. Actual apogee of 1237' was higher than projected apogee of 1000'. First recovery deployment event occurred at apogee as expected with a small streamer deployed as the drogue. Second recovery deployment event occurred at 700' as expected with a 20" Nylon parachute deployed as the main parachute. Both events were triggered with an electronic deployment system run by a Perfectflite Stratologger SL100 altimeter similar to the one that will be used in the full-scale launch vehicle. The launch vehicle was successfully recovered with no damage to the launch vehicle.	
Full-scale Test Flights		
	Milestone Review Flysheet	
Institutio	Rensselaer Polytechnic Institute Milestone CDR	
Additional Comments		