HPC with Multicore and GPUs

Stan Tomov

Electrical Engineering and Computer Science Department University of Tennessee, Knoxville

CS 594 Lecture Notes March 28, 2012

Outline

- Introduction
 - Hardware trends
- Challenges of using multicore+GPUs
- How to code for GPUs and multicore
 - An approach that we will study
- Introduction to CUDA
- Conclusions

Speeding up Computer Simulations

Better numerical methods

http://www.cs.utk.edu/~tomov/cflow/

Performance Development in Top500

Exploit advances in hardware

Why multicore and GPUs?

Hardware trends

• Multicore

GPU Accelerators

(Source: slide from Kathy Yelick)

	GeForce GTX 280	GeForce GTX 260	Tesla C1060	Tesla S1070
Form Factor	Dual slot card	Dual slot card	Dual slot card	Rackmount
TPCs	10	8	10	4x10
SMs	30	24	30	4x30
SPs	240	192	240	4x240
Graphics Freq.	602MHz	576MHz		
Processor Freq.	1296MHz	1242MHz	1300MHz	1500MHz
Memory Freq.	1107MHz	999MHz	800MHz	800MHz
Memory Bandwidth	141.7GB/s	127.9GB/s	102.4GB/s	4x102.4GB/s
Memory Capacity	1GB	896MB	4GB	4x4GB
Power	236W TDP	183W TDP	160W "Typical"	700W "Typical"
SP GFLOP/s (wo/MUL)	622.1	476.9	624.0	4x720.0
SP GFLOP/s (w/MUL)	933.1	715.4	936.0	4x1080.0
DP GFLOP/s	77.8	59.6	78.0	4x72.0

(Source: "NVIDIA's GT200: Inside a Parallel Processor")

Main Issues

Despite issues, **high speedups** on HPC applications are reported using GPUs (from NVIDIA CUDA Zone homepage)

- Increase in parallelism *1

 How to code (programming model, language, productivity, etc.)?
- Increase in commun. **
 cost (vs computation)
 How to redesign algorithms?
- Hybrid Computing How to split and schedule the computation between hybrid hardware components?

CUDA architecture & programming:

- A data-parallel approach that scales
- Similar amount of efforts on using CPUs vs GPUs by domain scientists demonstrate the GPUs' potential

Processor speed *2
improves 59% / year but
memory bandwidth by 23%
latency by 5.5%

e.g., schedule small
non-parallelizable tasks
on the CPU, and large and
paralelizable on the GPU

Evolution of GPUs

GPUs: excelling in graphics rendering

- Requires enormous computational power
- Allows for high parallelism
- Needs high bandwidth vs low latency (as low latencies can be compensated with deep graphics pipeline)

Obviously, this pattern of computation is common with many other applications

Challenges of using multicore+GPUs

Massive parallelism

Many GPU cores, serial kernel execution [e.g. 240 in the GTX280; up to 512 in *Fermi* – to have concurrent kernel execution]

- Hybrid/heterogeneous architectures
 Match algorithmic requirements to architectural strengths
 [e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on GPU]
- Compute vs communication gap
 Exponentially growing gap; persistent challenge
 [Processor speed improves 59%, memory bandwidth 23%, latency 5.5%]
 [on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of O(1,000)
 Gflop/s but GPUs communicate through the CPU using O(1) GB/s connection]

How to Code for GPUs?

Complex question

- Language, programming model, user productivity, etc
- Recommendations
 - Use CUDA / OpenCL

[already demonstrated benefits in many areas; data-based parallelism; move to support task-based]

- Use GPU BLAS

[high level; available after introduction of **shared memory** – can do data reuse; leverage existing developments]

Use Hybrid Algorithms

[currently GPUs – massive parallelism but serial kernel execution; hybrid approach – small non-parallelizable tasks on the CPU, large parallelizable tasks on the GPU]

An approach for multicore+GPUs

- Split algorithms into tasks and dependencies between them, e.g., represented as DAGs
- Schedule the execution in parallel without violating data dependencies

e.g., in the **PLASMA** library for Dense Linear Algebra http://icl.cs.utk.edu/plasma/

Hybrid CPU+GPU algorithms (small tasks for multicores and large tasks for GPUs)

e.g., in the **MAGMA** library for Dense Linear Algebra http://icl.cs.utk.edu/magma/

An approach for multicore+GPUs

- Split algorithms into tasks and dependencies between them, e.g., represented as DAGs
- Schedule the execution in parallel without violating data dependencies

Hybrid CPU+GPU algorithms (small tasks for multicores and large tasks for GPUs)

e.g., in the **MAGMA** library for Dense Linear Algebra http://icl.cs.utk.edu/magma/

How to program in parallel?

There are many parallel programming paradigms, e.g.,

- In reality applications usually combine different paradigms
- CUDA and OpenCL have roots in the data-parallel approach (now adding support for task parallelism)
 http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
 http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

Compute Unified Device Architecture (CUDA) Software Stack

CUDA Memory Model

(Source: NVIDIA CUDA Programming Guide)

CUDA Hardware Model

CUDA Programming Model

- Grid of thread blocks
 (blocks of the same dimension, grouped together to execute the same kernel)
- Thread block

 (a batch of threads with fast shared memory executes a kernel)
- Sequential code launches asynchronously GPU kernels

```
// set the grid and thread configuration
Dim3 dimBlock(3,5);
Dim3 dimGrid(2,3);

// Launch the device computation
MatVec<<<dimGrid, dimBlock>>>( . . . );
```

```
__global__ void MatVec( . . . ) {

// Block index
int bx = blockldx.x;
int by = blockldx.y;

// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;
. . . .
}
```

(Source: NVIDIA CUDA Programming Guide)

Conclusions

- Hybrid Multicore+GPU computing:
 - Architecture trends: towards heterogeneous/hybrid designs
 - Can significantly accelerate linear algebra [vs just multicores];
 - Can significantly accelerate algorithms that are slow on homogeneous architectures