Exerice 5

On étudie
$$ker(u-Id_E)$$
 et $Im(u-Id_E)$
soit $x \in ker(u-Id_E)$ et $y \in Im(u-Id_E)$
On va étudier $\langle x|y \rangle$
 $x \in ker(u-Id_E) \Rightarrow (u-Id_E)(x) = 0$
 $\Rightarrow u(x) - x = 0$
 $\Rightarrow u(x) = x$
 $y \in Im(u-Id_E) \Rightarrow \exists x' \in (u-Id_E) \text{ tq } (u-Id_E)x' = y$
 $\Rightarrow u(x') - x' = y$
On a $\langle x|y \rangle = \langle x|u(x') - x' \rangle$
 $= \langle x|u(x') \rangle - \langle x|x' \rangle$
 $= \langle u(x)|u(x') \rangle - \langle x|x' \rangle$

Or comme u est une isométrie le produit scalaire reste inchangé.

$$= \langle x|x'\rangle - \langle x|x'\rangle$$
$$= 0$$

Donc $ker(u - Id_E)$ et $Im(u - Id_E)$ sont orthogonaux

Comme $ker(u-Id_E)$ et $Im(u-Id_E)$ sont orthogonaux on a que:

$$ker(u-Id_E)$$
 et $Im(u-Id_E)$ sont libres

$$ker(u - Id_E) \cap Im(u - Id_E) = \{0\}$$

Et on a que
$$dim(U - Id_E) = dim(ker(u - Id_E)) + dim(Im(u - Id_E))$$

Or
$$dim(U - Id_E) = dim(E)$$
, alors $dim(ker(u - Id_E)) + dim(Im(u - Id_E)) = dim(E)$

Donc
$$ker(u - Id_E) \oplus Im(u - Id_E) = E$$