

Curso de ingeniería centrado en código Experiencia adquirida como legado de la pandemia

Bettachini, V.A.

Ingeniería Mecánica, DIIT, UNLaM

V Encuentro *Mejora de las Estratégias Pedagógicas* 22 de septiembre de 2023

s. XIX: únicas herramientas pizarrón + papel

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)
 - Alumno: pizarrón (Powerpoint) → cuaderno

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)
 - Alumno: pizarrón (Powerpoint) → cuaderno
 - Modelado y cálculos: vuelven a hacerse

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)
 - Alumno: pizarrón (Powerpoint) → cuaderno
 - Modelado y cálculos: vuelven a hacerse
 - Resuelto en papel \implies debe **transcribirse**

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)
 - Alumno: pizarrón (Powerpoint) → cuaderno
 - Modelado y cálculos: vuelven a hacerse
 - Resuelto en papel \implies debe **transcribirse**

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)
 - Alumno: pizarrón (Powerpoint) → cuaderno
 - Modelado y cálculos: vuelven a hacerse
 - Resuelto en papel \implies debe **transcribirse**

- s. XXI: minimizar el tedio del c&p
 - Profesor: actualiza código en repositorio

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)
 - Alumno: pizarrón (Powerpoint) → cuaderno
 - Modelado y cálculos: vuelven a hacerse
 - Resuelto en papel \implies debe **transcribirse**

- s. XXI: minimizar el tedio del c&p
 - Profesor: actualiza código en repositorio
 - Alumno: repositorio del curso → propio

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)
 - Alumno: pizarrón (Powerpoint) → cuaderno
 - Modelado y cálculos: vuelven a hacerse
 - Resuelto en papel \implies debe **transcribirse**

- s. XXI: minimizar el tedio del c&p
 - Profesor: actualiza código en repositorio
 - Alumno: repositorio del curso → propio
 - Modelado y cálculos: única vez

- s. XIX: únicas herramientas pizarrón + papel
 - Profesor: cada clase transcribe (o presenta)
 - Alumno: pizarrón (Powerpoint) → cuaderno
 - Modelado y cálculos: vuelven a hacerse
 - Resuelto en papel \implies debe **transcribirse**
- s. XXI: minimizar el tedio del c&p
 - Profesor: actualiza código en repositorio
 - Alumno: repositorio del curso → propio
 - Modelado y cálculos: única vez
 - Código provisto ⇒ es re-utilizable

s.XXI: todo el material disponible en línea

s.XXI: todo el material disponible en línea

Calculadora de bolsillo → no repetir aritmética de primaria.

- Calculadora de bolsillo → no repetir aritmética de primaria.
- Sistema de álgebra computacional

- Calculadora de bolsillo → no repetir aritmética de primaria.
- Sistema de álgebra computacional
 - \rightarrow **no repetir** asignaturas de álgebra y análisis matemático. Enfocarse en nuevas habilidades, no en cálculos automatizables.

```
%i3) integrate ( 1 / (1 + x^4), x);
                    2 \times + sart(2)
                    2 sart(2)
```


- Calculadora de bolsillo → no repetir aritmética de primaria.
- Sistema de álgebra computacional
 - \rightarrow **no repetir** asignaturas de álgebra y análisis matemático. Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - El cálculo numérico resuelve lo imposible en papel/pizarrón.

```
sistemaEcuaciones = [
%i3) integrate ( 1 / (1 + x^4), x);
                                                                                       phi EL.
                                                                                   variablesDespeje = [x.diff(t,2), phi.diff(t,2)] # despejar aceleraciones generalizadas
                                                                                   variablesDespeje sol= sym.nonlinsolve(sistemaEcuaciones, variablesDespeje ).arqs[0]
                                                                             [15]: x_pp = sym.Eq(variablesDespeje(0), variablesDespeje_sol.args(0) ) # [m s-2]
                4 sart(2)
                                                    4 sart(2)
                                                                                   phi pp = sym.Eq(variablesDespeje[1], variablesDespeje sol.args[1] ) # [m s-2]
                                                                                   x pp, phi pp
                         2 \times + sart(2)
                                                        2 x - sart(2)
                  atan(-----)
                         2 sart(2)
                                                        2 sart(2)
```


- Calculadora de bolsillo → no repetir aritmética de primaria.
- Sistema de álgebra computacional
 - \rightarrow **no repetir** asignaturas de álgebra y análisis matemático. Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - El cálculo numérico resuelve lo imposible en papel/pizarrón.
- Enfoque constructivista de la re-utilización del código

```
sistemaEcuaciones = [
%i3) integrate ( 1 / (1 + x^4), x);
                                                                                       phi EL.
                                                                                   variablesDespeje = [x.diff(t,2), phi.diff(t,2)] # despejar aceleraciones generalizadas
                                                                                    variablesDespeje sol= sym.nonlinsolve(sistemaEcuaciones, variablesDespeje ).arqs[0]
                                                                              [15]: x_pp = sym.Eq(variablesDespeje(0), variablesDespeje_sol.args(0) ) # [m s-2]
                4 sart(2)
                                                                                    phi pp = sym.Eq(variablesDespeie[1], variablesDespeie sol.args[1] ) # [m s-2]
                         2 \times + sart(2)
                                                        2 x - sgrt(2)
                  atan(-----)
                         2 sart(2)
                                                        2 sart(2)
```


- Calculadora de bolsillo → no repetir aritmética de primaria.
- Sistema de álgebra computacional
 - \rightarrow **no repetir** asignaturas de álgebra y análisis matemático. Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - El cálculo numérico resuelve lo imposible en papel/pizarrón.
- Enfoque constructivista de la re-utilización del código
 - El código inicial es provisto por el docente.

```
sistemaEcuaciones = [
%i3) integrate ( 1 / (1 + x^4), x);
                                                                                       phi EL.
                                                                                   variablesDespeje = [x.diff(t,2), phi.diff(t,2)] # despejar aceleraciones generalizadas
                                                                                    variablesDespeje sol= sym.nonlinsolve(sistemaEcuaciones, variablesDespeje ).arqs[0]
                                                                              [15]: x_pp = sym.Eq(variablesDespeje(0), variablesDespeje_sol.args(0) ) # [m s-2]
                4 sart(2)
                                                                                    phi pp = sym.Eq(variablesDespeie[1], variablesDespeie sol.args[1] ) # [m s-2]
                         2 \times + sart(2)
                                                        2 x - sgrt(2)
                  atan(-----)
                         2 sart(2)
                                                        2 sart(2)
```


- Calculadora de bolsillo → no repetir aritmética de primaria.
- Sistema de álgebra computacional
 - \rightarrow **no repetir** asignaturas de álgebra y análisis matemático. Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - El cálculo numérico resuelve lo imposible en papel/pizarrón.
- Enfoque constructivista de la re-utilización del código
 - El código inicial es provisto por el docente.
 - Cada nuevo desafío se ataca agregando partes al código previo.

```
[14]: sistemaEcuaciones = [
%i3) integrate ( 1 / (1 + x^4), x);
                                                                                        phi EL.
                                                                                    variablesDespeje = [x.diff(t,2), phi.diff(t,2)] # despejar aceleraciones generalizadas
                                                                                     variablesDespeje sol= sym.nonlinsolve(sistemaEcuaciones, variablesDespeje ).arqs[0]
                                                                               [15]: x_pp = sym.Eq(variablesDespeje(0), variablesDespeje_sol.args(0) ) # [m s-2]
                4 sart(2)
                                                                                     phi pp = sym.Eq(variablesDespeie[1], variablesDespeie sol.args[1] ) # [m s-2]
                         2 \times + sart(2)
                                                         2 x - sgrt(2)
                   atan(-----)
```


- Calculadora de bolsillo → no repetir aritmética de primaria.
- Sistema de álgebra computacional
 - \rightarrow **no repetir** asignaturas de álgebra y análisis matemático. Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - El cálculo numérico resuelve lo imposible en papel/pizarrón.
- Enfoque constructivista de la re-utilización del código
 - El código inicial es provisto por el docente.
 - Cada nuevo desafío se ataca agregando partes al código previo.
 - Finalmente el alumno recicla el propio.

```
[14]: sistemaEcuaciones = [
%i3) integrate ( 1 / (1 + x^4), x);
                                                                                      phi EL.
                                                                                   variablesDespeje = [x.diff(t,2), phi.diff(t,2)] # despejar aceleraciones generalizadas
                                                                             [15]: x_pp = sym.Eq(variablesDespeje(0), variablesDespeje_sol.args(0) ) # [m s-2]
                4 sart(2)
                                                                                   phi pp = sym.Eq(variablesDespeie[1], variablesDespeie sol.args[1] ) # [m s-2]
                         2 \times + sart(2)
                                                       2 x - sgrt(2)
                  atan(-----)
```


Asistencia docente y corrección asincrónica

Seguimiento individualizado

Registro del cumplimiento con entregas semanales

	g05e04	g04e02	g04e03	g04e04	g03e01c
Search students (Sep 14th	Sep 7th	Sep 7th	Sep 7th	Aug 31st
්රී Class average					
BE BORDON, JU	Turned in	Returned	Turned in	Returned	Turned in
CL CHAZARRETA	Turned in	Returned	Returned	Returned	Returned
CM COELHO, MA	Turned in	Turned in	Turned in	Returned	Turned in
LIZARRAGA,	Turned in	Turned in	Turned in	Returned	Returned
PAZ, JAVIER		Returned	Needs revision	Viewed	Turned in
PREGELJ, MA	Turned in	Turned in	Turned in	Turned in	Returned
RODRIGUEZ	Turned in	Turned in	Turned in	Returned	Returned

Gestión de recursos: tiempo, personal e infraestructura

Sincrónico	Teoría	Ejercicios	
Antes	Leer y aplicar	Iniciar	
Durante	Aclarar dudas	Terminarles (semanal)	
Luego	Consultas	Correcciones	
	adicionales	del docente	

Replicar En 2024 Física II adoptará simulaciones en cuadernos Jupyter.

Replicar En 2024 Física II adoptará simulaciones en cuadernos Jupyter.

Adaptar Retro-alimentación de los alumnos mejora:

Replicar En 2024 Física II adoptará simulaciones en cuadernos Jupyter.

Adaptar Retro-alimentación de los alumnos mejora:

Apuntes y código en el repositorio.

Replicar En 2024 Física II adoptará simulaciones en cuadernos Jupyter.

Adaptar Retro-alimentación de los alumnos mejora:

- Apuntes y código en el repositorio.
- Metodología de ejercitación y evaluación.

Replicar En 2024 Física II adoptará simulaciones en cuadernos Jupyter.

Adaptar Retro-alimentación de los alumnos mejora:

- Apuntes y código en el repositorio.
- Metodología de ejercitación y evaluación.

Actualizar Incorporar prompt engineering a lo enseñado. Que los alumnos exploten sistemas de inteligencia artificial para generar código útil aunque no dominen la sintáxis del lenguaje de programación.

Replicar En 2024 Física II adoptará simulaciones en cuadernos Jupyter.

Adaptar Retro-alimentación de los alumnos mejora:

- Apuntes y código en el repositorio.
- Metodología de ejercitación y evaluación.

Actualizar Incorporar prompt engineering a lo enseñado. Que los alumnos exploten sistemas de inteligencia artificial para generar código útil aunque no dominen la sintáxis del lenguaje de programación.

Difundir Asesorar y colaborar a quienes quieran incorporar esta metodología en el DIIT.

