Отчёт по работе №25. «Лестничные фильтры»

1) Лестничные фильтры третьего порядка с параметрами:
$$R_0=50, \qquad f_0=1\,MHz, \qquad Q=10$$
 Вычислим эталонные значения L_0 и C_0 по формулам:
$$L_0=\frac{R_0}{2\pi f_0}=7.96\cdot 10^{-6}=7.96u$$

$$L_0=\frac{L_0}{2\pi f_0}=7.96\cdot 10^{-6}=7.96u$$

$$C_0=\frac{1}{2\pi f_0R_0}=3.18\cdot 10^{-9}=3.18n$$
 2) Исходя из полученных графиков, получим

3) Получим две таблицы:

1	2	
	ı	ı
		MOIII
		201
	۶	=

RLS	25	20	75
G(0)	1.78	1	0.637
H(0)	666.5m	501m	400m

RLL	25	05	52
g(0)	0.442	1	1.4
H(0)	333m	500m	600m

4) Изучим фазовые характеристики фильтров, и получим следующие значения:

5) Исходя из логарифмической частотной характеристики фильтра нижних частот, измерим уровни затухания в децибелах на разных частотах:

f	0	f_0	$2f_0$	$10f_0$
μ	9-	6-	-24	99-

6) Подавление на f_0 : -6.1, $\Delta f_{\rm 0дност.} = 52k$

$$2\Delta f \rightarrow -24 \, dB \text{ or } 0$$

 $10\Delta f \rightarrow -61 \, dB \text{ or } 0$

7) Уровни режекции:

$\Delta f, k$	101	19	10
Уровень режекции	-3dB	-43dB	-63 <i>dB</i>

1) Фильтры Баттерворта нижних частот с параметрами:

$$R_0 = 100$$
, $f_0 = 1 MHz$, $L_0 = 15.916\mu$, $C_0 = 1.592n$

 $R_0 = 100$, Порядков $n = \overline{3 \dots 7}$.

Получим их затухания на частотах f_0 , $2f_0$, $10f_0$:

7	6	5	4	3	n
-3	-3	-3	-3	-3	η_{f_0} , dB
-18	-24	-30	-36	-42.8	η_{2f_0} , dB
-60	-80	-100	-120	-140	η_{10f_0} , dB

0.5 *dB* и 3 *dB*: Получим аналогичную таблицу для фильтров Чебышева с неравномерностями

Для частоты $2f_0$:

0.5 dB	Чебышева	Фильтр		3 dB	Чебышева	0.5~dB	Чебышева	Фильтр
	-62 dB	n = 3			-28 dB		-20 dB	n = 3
	8b 68-	n=4	Для частоты $10f_0$:		-40 dB		-30 dB	n=4
	-115 dB	n = 5	оты $10f_0$:		-51 dB		-42 dB	n = 5
	-140 dB	n = 6			-63 dB		-54 dB	n = 6
	-167 dB	n = 7			-74 dB		-65 dB	n = 7
			•					

2) После этого вернёмся к схеме и перенастроим её на: Чебышева 3 dB-98 dB

-71dB

-124 dB

-150 dB

-176 dB

$$R_0 = 50$$
, $f_0 = 10MHz$, $L_0 = 0.7958u$, $C_0 = 0.3184n$

Nº 9.4

1) Настроим фильтры на:

$$Q = 5$$
, $R_0 = 50$, $f_0 = 1MHz$, $L_0 = 7.9577u$, $C_0 = 3.1831v$

1) Фильтр Чебышева семиполюсной с неравномерностью $3\ dB$:

$$R_0 = 600$$
, $f_0 = 465kHz$, $\Delta f = 24kHz$, $Q = \frac{f_0}{\Delta f} = 19.375$

Вычислим эталонные значения:

$$C_0 = 0.57045n, \qquad L_0 = 0.20536m$$

соседнему каналу ($f_0 + \Delta f = 489kHz, f_0 - \Delta f = 441kHz$): По логарифмической частотной характеристике измерим избирательность по

ерекалибруем реализованн	Баттерворта	Чебышева $0.5\ dB$	Чебышева $3\ dB$	
ерекалибруем реализованные фильтры для высокочастотного диапазона:	-41 dB	-63 dB	-73 dB	$\eta(f_0 + \Delta f)$
тотного диапазона:	-44 dB	-66.5 dB	-76 dB	$\eta(f_0 - \Delta f)$

2) Пер

$$R_0 = 50, \qquad f_0 = 465 \, MHz$$
ния:

Вычислим эталонные значения:

$$C_0 = 6.8454p$$
, $L_0 = 17.113n$