18.335 Take-Home Midterm Exam: Spring 2023

Posted Friday 12:30pm April 14, due 11:59pm Monday April 17.

Problem 0: Honor code

Copy and sign the following in your solutions:

I have not used any resources to complete this exam other than my own 18.335 notes, the textbook, running my own Julia code, and posted 18.335 course materials.

your signature

Problem 1: (32 points)

Given two real vectors $u = (u_1, u_2, \dots, u_n)^T$ and $v = (v_1, v_2, \dots, v_n)^T$, computing the dot product $f(u, v) = u_1v_1 + u_2v_2 + \dots + u_nv_n = u^Tv$ in floating point arithmetic with left to right summation is backward stable. The computed dot product $\hat{f}(u, v)$ satisfies the *component-wise* backward error criteria

$$\hat{f}(u,v) = (u + \delta u)^T v$$
, where $|\delta u| \le n \varepsilon_{\text{mach}} |u| + \mathcal{O}(\varepsilon_{\text{mach}}^2)$.

The notation |w| indicates the vector $|w| = (|w_1|, |w_2|, \dots, |w_n|)^T$, i.e., the vector obtained by taking the absolute value of each entry of w.

(a) Using the dot product algorithm $\hat{f}(u,v)$, derive an algorithm $\hat{g}(A,b)$ for computing the matrix-vector product g(A,b) = Ab in floating point arithmetic, and show that it satisfies the component-wise backward stability criteria

$$\hat{g}(A,b) = (A + \delta A)b,$$
 where $|\delta A| \le n\varepsilon_{\text{mach}}|A| + \mathcal{O}(\varepsilon_{\text{mach}}^2),$

where the notation |B| indicates the matrix obtained by taking the absolute value of each entry of B.

(b) Suppose the algorithm $\hat{g}(A,b)$ is used to compute matrix-matrix products C=AB by computing one column of the matrix C at a time. Is the resulting floating-point algorithm $\hat{h}(A,B)$ component-wise backward stable in the sense that there is a matrix δA such that

$$\hat{h}(A,B) = (A + \delta A)B$$
, where $|\delta A| \le n\varepsilon_{\text{mach}}|A| + \mathcal{O}(\varepsilon_{\text{mach}}^2)$?

Explain why or why not.

Problem 2: (32 points)

Given an *n*-dimensional subspace \mathcal{V} , the standard Rayleigh–Ritz projection approximates a few $(n \ll m)$ eigenvalues of an $m \times m$ matrix A by finding a scalar λ and $x \in \mathcal{V}$ such that $Ax - \lambda x \perp \mathcal{V}$, i.e., the residual is perpendicular to the subspace. A *two-sided* Rayleigh–Ritz projection uses a second subspace \mathcal{W} (not orthogonal to \mathcal{V}) and searches for a scalar λ and $x \in \mathcal{V}$ such that

$$Ax - \lambda x \perp \mathcal{W}$$
, and $x \in \mathcal{V}$, (1)

i.e., the residual is perpendicular to the *second* subspace. In this problem, A is diagonalizable.

(a) Let V and W be a pair of bases for \mathscr{V} and \mathscr{W} , and let λ (finite) and w solve the eigenvalue problem $Bw = \lambda Mw$, where $B = W^TAV$ and $M = W^TV$. Show that λ and x = Vw satisfy the criteria in (1).

(b) Suppose that $\mathscr{V} = \operatorname{span}\{x_1, \dots, x_n\}$ and $\mathscr{W} = \operatorname{span}\{y_1, \dots, y_n\}$, where $Ax_i = \lambda_i x_i$ and $A^T y_i = \lambda_i y_i$ for $i = 1, \dots, n$, are a pair of *n*-dimensional *right and left invariant subspaces* of A. If the bases V and W are chosen to be *bi-orthonormal*, meaning that $W^T V = I$, show that λ and x from part (a) are an eigenpair of the full $m \times m$ matrix A, i.e., that $Ax = \lambda x$.

Hint 1: In part (b), consider the similarity transform $[WW_{\perp}]^TA[VV_{\perp}]$, where V_{\perp} and W_{\perp} are a biorthonormal basis for the orthogonal complements, \mathscr{V}^{\perp} and \mathscr{W}^{\perp} , respectively. **Hint 2:** The right and left eigenvectors of a diagonalizable matrix can be made biorthonormal (why?), so \mathscr{V} and \mathscr{W}^{\perp} are orthogonal subspaces.

Problem 2: (36 points)

The method of Generalized Minimal RESiduals (GMRES) uses n iterations of the Arnoldi method to construct a sequence of approximate solutions $x_1, x_2, ..., x_n$ to the $m \times m$ linear system Ax = b. At the nth iteration, the approximate solution $x_n = Q_n y_n$ is constructed by solving the least-squares problem,

$$y_n = \operatorname{argmin}_{\mathbf{v}} \|\tilde{H}_n \mathbf{y} - \|\mathbf{b}\| \mathbf{e}_1\|,$$

where \tilde{H}_n is an $(n+1) \times n$ upper Hessenberg matrix and Q_n is the usual orthonormal basis for the Krylov subspace $\mathcal{K}_n(A,b) = \text{span}\{b,Ab,A^2b,\ldots,A^{n-1}b\}$.

- (a) Describe an algorithm based on Givens rotations that exploits the upper Hessenberg structure of \tilde{H}_n to solve the $(n+1) \times n$ least-squares problem in $\mathcal{O}(n^2)$ flops.
- (b) If the QR factorization $\tilde{H}_{n-1} = \Omega_{n-1}R_{n-1}$ is known from the previous iteration, explain how to update the QR factorization to $\tilde{H}_n = \Omega_n R_n$ cheaply using a single Givens rotation.
- (c) Using your result from part (b), explain how the solution to the least-squares problem can also be updated cheaply from the solution at the previous iteration.
- (d) What is the approximate flop count for updating the least-squares solution at the n^{th} step of GMRES? You may use big-O notation to express the asymptotic scaling in n.