Percobaan 1

Pengenalan Instrumentasi Laboratorium

Tujuan

- Mempelajari penggunaan instrumentasi Multimeter, Osiloskop, dan Pembangkit Sinyal
- Mempelajari keterbatasan penggunaan multimeter
- Mempelajari cara membandingkan sinyal input dan output dengan menggunakan osiloskop

Multimeter

Fungsi Dasar Multimeter

Amperemeter DC

Voltmeter DC

Voltmeter AC

Ohmmeter

Fungsi Tambahan Multimeter

- Amperemeter AC
- Penguji dioda
- Penguji transistor
- Pengukur temperatur
- Pengukur kapasitansi

Pengelompokan Multimeter

- Analog
 - menggunakan peraga jarum moving coil
 - besaran ukur dasar arus
 - Non-elektronis
 - Elektronis
- Digital (elektronis)
 - menggunakan peraga bilangan digital
 - besaran ukur dasar tegangan yang dikonversi ke sinyal digital

© mth 2011

Multimeter Nonelektronik

- Spesifikasi utama
 - batas ukur dan skala tegangan searah (DC&ac), arus (DC), dan resistansi
 - sensitivitas pengukuran tegangan dalam Ω/V
 - ketelitian dalam %
 - jangkauan frekuensi tegangan bolak-balik yang mampu diukur (misalnya antara 20 Hz -30 KHz).
 - batere yang diperlukan

Multimeter Elektronis

- Besaran ukur dasar berupa tegangan
 - Rangkaian input menggunakan tabung vakum atau FET agar sensitivitas tinggi
 - Analog peraga tetap moving coil
- Nama lain (untuk analog)
 - Viltohmyst
 - VTVM (Vacuum Tube Volt Meter)
 - Solid State Multimeter
 - Transistorized Multimeter

Multimeter Digital

- Sensitivitas tinggi dalam puluhan $M\Omega$
- Mengukur besaran dasar tegangan menggunakan ADC
- Umumnya autoranging

Pengukuran tegangan dan arus

- Sebelum mengukur
 - Perhatikan polaritas!
 - Untuk tegangan tinggi perhatikan aturan penggunaan probe
- Saat mengukur
 - Mulai dari skala terbesar!
 - Turunkan skala penuh hingga diperoleh skala maksimum tanpa overflow

Pengukuran Tegangan AC

- Menggunakan rangkaian penyearah
- Umumnya hanya berlaku untuk bentuk gelombang sinusoid
- Untuk pengukuran akurat harus menggunakan multimeter true rms (didemonstrasikan di lab)

True-RMS vs NonTrue-RMS

- True RMS dilakukan perhitungan menggunakan persamaan RMS
- NonTrue RMS
 - Mengukur tegangan hasil penyearahan (tegangan rata-rata)
 - Menggunakan faktor skala untuk menentukan nilai efektif pada peraga
 - Nilai pada Peraga = hasil ukur * 0,707/0,637
 - = 1,11 x tegangan DC hasil penyearahan

© mth 2011

Akibat pada Non True RMS AC

- Sinusoid V_p = 1V
 - DC terukur (nilai rata-rata)0,637
 - Nilai efektif fitampilkan pada peraga AC 0,637 x 1,11 = 0,707 V
 - Nilai efektif sebenarnya 0,707V

Nilai peraga benar

- Squarewave V_p = 1V
 - DC terukur 1V
 - Peraga AC 1x1,11=1,11 V
 - Nilai sebenarnya 1VNilai peraga salah
- Segitiga V_p = 1V
 - DC terukur 0,5
 - Peraga AC 0,5x1,11= 0,55 V
 - Nilai sebenarnya 1/√3
 = 0,577 V

Nilai peraga salah

Pengukuran Arus

- Mengukur arus pada keadaan hot (arus besar, rangkaian induktif!)
 - Hubungkan ammeter paralel dengan jalur arus pada titik ukur skala terbesar
 - Putus hubungan jalur di atas hingga arus pindah lewat meter
 - Hubungkan singkatkan kembali ammeter setiap hendak memperkecil skala

Mengukur Arus Hot

Menghubungkan memutus © mth 2011

Laboratorium Dasar Teknik Elektro Sekolah Teknik Elektro dan Informatika

Mengukur Resistansi

- Pengukuran resistansi
 - Set arus maksimum pada setiap perubahan skala
 - Gunakan skala yang memberi penunjukan meter di tengah skala

Pengukuran Resistansi

- Pengukuran Two wire
 - Pada multimeter biasa dengan mengukur arus
 - Kurang baik bila resistansi ukur satu orde dengan resistansi kontak

R=V/I V konstan

Pengukuran Resistansi

- Four Wire (didemostrasikan di laboratorium)
 - Mencegah resistansi kontak terukur bersama resistansi yang sedang diukur
 - Dilakukan dengan mengukur tegangan

R=V/I I konstan

Osiloskop

Istilah

- Osiloskop?
 - Osilograf yang mencatat gelombang listrik secara visual pada suatu layar
- Osilograf
 - Alat pencatat aliran atau tekanan listrik yang berubah-ubah

KBBI

Konsep

- Menggambar pada layar
 - y=f(x)=f(t)
 dengan x=t=waktu, y=tegangan
 - y=f(t) dan x=f(t)
 dengan x=tegangan, y=tegangan
 disebut mode XY
- Layar gambar
 - CRT (Tabung Sinar Katoda) pada osiloskop analog
 - LCD pada osiloskop digital

Prinsip Kerja Umum

Sinkronisasi

- Bila tidak sinkron gambar tampak bergerak
- Sinkronisasi, waktu saat mulai sweep (time base) disesuaikan terhadap rujukan tertentu
 - sinyal input
 - sinyal jala-jala (line)
 - sinyal lain (ext.)

Rangkaian Triger

- Membentuk gelombang sweep berdasarkan perubahan (-) ke (+) atau sebaliknya
- Menghasilkan sinyal sweep yang sinkron

Dual Trace

 Ada 2 input Y yang digambarkan pada layar dengan "alternate" atau "chop"

Sebelum Mengukur

- Perbaiki penampilan layar
 - Fokus
 - Intensitas
 - Trace Rotation (bila perlu)
- Kalibrasi
 - Tempatkan semua kontrol pada posisi terkalibrasi
 - Gunakan sinyal untuk menguji kalibrasi

Mengukur Tegangan

Baca langsung dengan skala vertikal

Mengukur Fasa dengan Dual Trace

Baca "beda" waktu dan hitung fasa

 $\phi = \Delta t/T*360^{\circ}$

© mth 2011

Mengukur Fasa dengan Lisajous

Gunakan mode xy, baca c dan d

 $\phi = \sin^{-1}(c/d)$

Mengukur Frekuensi

Baca perioda T f=1/T

Mengukur Frekuensi dengan Pembanding

 Gunakan kanal 2 untuk pembanding (dual trace), ubah frekuensi hingga periode

Sama (f_A=f_B)

Sumber Sinyal Ukur

Sinyal Ukur

© mth 2011

Mengukur Frekuensi dengan Lisajous

 Gunakan mode xy, baca perbandingan frekuensi x dan y (hanya untuk perbandingan bulat kecil)

Mengukur Faktor Penguatan (Amplifier)

 Gunakan mode xy dengan skala sama slope=penguatan (hanya bila beda fasa 0 atau 180°)

Mengukur Faktor Penguatan (Amplifier)

 Gunakan dual trace penguatan=perbandingan amplituda

Mengamati Karakteristik Komponen Kutub Dua (1)

Gunakan mode xy, rangkaian pengamatan

Mengamati Karakteristik Komponen Kutub Dua (2)

- x mengukur tegangan
- y mengukur arus secara tak langsung dengan mengukur tegangan pada resistor
- Gunakan invert pada Y
- Hati-hati dan hitung dulu masalah nilai DC generator sinyal

Generator Sinyal

Generator Sinyal

- Menghasilkan gelombang
 - Sinusoid
 - Persegi
 - Segitiga
 - DC offset (tidak semua)

- Kontrol
 - Bentuk gelombang
 - Amplitudo
 - Frekuensi
- Impedansi Output
 - Konektor 4mm 300Ω
 - Konektor BNC50Ω

Simak video cara penggunaan alat ukur dan petunjuk keselamatan sebelum melakukan praktikum

Situs:

http://labdasar.ee.itb.ac.id

Percobaan

Percobaan Multimeter

- 1. Mengumpulkan spesifikasi multimeter
 - Tujuan: memperoleh informasi tentang batasan kemampuan multimeter
- 2. Mengukur arus searah
 - Tujuan: melatih cara mengukur arus: cara menghubungkan dan skala ukur
- 3. Mengukur tegangan searah
 - Tujuan: melatih cara mengukur tegangan: cara menghubungkan dan memahami pengaruh sensitivitas

Percobaan Multimeter

4. Mengukur tegangan searah

 Tujuan: melatih cara mengukur tegangan: memahami pengaruh sensitivitas dan frekuensi sinyal

5. Mengukur resistansi

 Tujuan: melatih cara mengukur resistansi dan membaca nilai resistansi

Demo Multimeter

- Pengukuran tegangan bolak-balik dengan multimeter True RMS
 - Tujuan: melihat pengaruh bentuk gelombang pada pembacaan tegangan bolakbalik
- Pengukuran resistansi kecil dengan four wire
 - Tujuan: melihat pengaruh resistansi kontak pada pengukuran resistansi kecil

- 1. Mengumpulkan spesifikasi osiloskop
 - Tujuan: memperoleh informasi tentang batasan kemampuan multimeter
- 2. Mem-verifikasi kalibrasi osiloskop
 - Tujuan: melatih cara mem-verifikasi osiloskop, memverifikasi skala ukur osilskop
 - Catatan: bila kalibrasi kurang baik anggap saja kalibrasinya benar

3. Mengukur tegangan DC

 Tujuan: mempelajari cara membaca tegangan (penggunaan tombol tombol kopling Gnd dan DC serta Y-pos)

4. Mengukur tegangan AC

 Tujuan: mempelajari cara membaca tegangan (penggunaan tombol tombol kopling Gnd dan AC serta tombol Y-pos)

5. Mengukur beda fasa

 Tujuan: mempelajari cara mengukur beda fasa dengan dual trace dan lisajous pada mode xy (serta penggunaan tombol x position)

6. Mengukur frekuensi

 Tujuan: mempelajari cara menghitung frekuensi dengan pembacaan langsung dan lisajous pada mode xy

- Menggunakan osiloskop untuk menggambarkan karakteristik komponen dua terminal (arus vs tegangan)
 - Tujuan: mempelajari cara memanfaatkan osiloskop untuk menggambarkan kurva i-v pada komponen dua terminal dan melihat kurva i-v resistor, kapasitor, dan dioda

Kit Percobaan

Foto Kit Multimeter

Foto Kit Osiloskop

SELAMAT MELAKUKAN PERCOBAAN 1

© mth 2011