Satisfiability Checking Subtropical Satisfiability

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 19/20

Reminder: SMT

The subtropical method is an efficient but incomplete way to check for satisfiability of some of these constraints.

Subtropical Satisfiability

- Let f be a multivariate polynomial and $f \sim 0$ with $\sim \in \{>, \geq, =\}$.
- The subtropical method quickly finds a solution to $f \sim 0$ with strictly positive real variables or returns unknown. If a solution is found: The constraint is satisfiable. Else: $f \sim 0$ might still hold.
- The method is incomplete and thus can be used in conjunction with other techniques.

Find real roots (with all positive coordinates) for a polynomial f.

Find real roots (with all positive coordinates) for a polynomial f.

If f(1,...,1) = 0 we are done. If f(1,...,1) > 0, consider -f instead of f. Assume we now have f(1,...,1) < 0.

Find real roots (with all positive coordinates) for a polynomial f.

- If f(1,...,1) = 0 we are done. If f(1,...,1) > 0, consider -f instead of f. Assume we now have f(1,...,1) < 0.
- 2 Find a solution p with all positive coordinates for f(p) > 0.

Find real roots (with all positive coordinates) for a polynomial f.

- If f(1,...,1) = 0 we are done. If f(1,...,1) > 0, consider -f instead of f. Assume we now have f(1,...,1) < 0.
- 2 Find a solution p with all positive coordinates for f(p) > 0.
- 3 By the Intermediate Value Theorem (a continuous function with positive and negative values has a zero) we are now able to construct a root of f using the knowledge gained in steps 1 and 2.

Find real roots (with all positive coordinates) for a polynomial f.

- If f(1,...,1) = 0 we are done. If f(1,...,1) > 0, consider -f instead of f. Assume we now have f(1,...,1) < 0.
- 2 Find a solution p with all positive coordinates for f(p) > 0.
- 3 By the Intermediate Value Theorem (a continuous function with positive and negative values has a zero) we are now able to construct a root of f using the knowledge gained in steps 1 and 2.

If the constraint is not an equality, we are done after step 2.

Intuition – univariate

We observe for a univariate f(x):

$$\lim_{x\to\infty} f(x) = \left\{ \begin{array}{ll} \infty & \textit{if the leading coefficient is positive} \\ -\infty & \textit{else} \end{array} \right.$$

Intuition - multivariate 1

Intuition – multivariate 2

$$f(x,y) = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

Handling multivariate polynomials

- Consider f(x, y) and have (x, y) "growing in some direction".
- For this direction the two variables x and y can be parameterised by a single variable t to construct f^* (starting from f(1,1)).
- Instead of having f on \mathbb{R}^2 , we consider f restricted to a line as f^* and have the simple case from before.

Handling multivariate polynomials

- Consider f(x, y) and have (x, y) "growing in some direction".
- For this direction the two variables x and y can be parameterised by a single variable t to construct f^* (starting from f(1,1)).
- Instead of having f on \mathbb{R}^2 , we consider f restricted to a line as f^* and have the simple case from before.
- We need to find a direction such that the leading coefficient for the parameterisation f^* is positive.

Handling multivariate polynomials

- Consider f(x, y) and have (x, y) "growing in some direction".
- For this direction the two variables x and y can be parameterised by a single variable t to construct f^* (starting from f(1,1)).
- Instead of having f on \mathbb{R}^2 , we consider f restricted to a line as f^* and have the simple case from before.
- We need to find a direction such that the leading coefficient for the parameterisation f^* is positive.

How do we find a "direction" which has a positive leading coefficient?

The frame of a multivariate polynomial f

Definition

```
For f = \sum_{i=1,2,...,n} f_i x_1^{e_i,1} \dots x_d^{e_i,d} \in \mathbb{Z}[x_1,\dots,x_d] with (i) n > 0, (ii) (e_{i,1}, ldots, e_{i,d}) \neq (e_{j,1}\dots, e_{j,d}) for i \neq j and (iii) f_i \neq 0 for i = 1, \dots, n we define: frame(f) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,n\}\} frame^+(f) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,n\} \land f_i > 0\} frame^-(f) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,n\} \land f_i < 0\}
```

The frame of a multivariate polynomial f

Definition

```
For f = \sum_{i=1,2,...,n} f_i x_1^{e_i,1} \dots x_d^{e_i,d} \in \mathbb{Z}[x_1,\dots,x_d] with (i) n > 0, (ii) (e_{i,1}, Idots, e_{i,d}) \neq (e_{j,1}\dots, e_{j,d}) for i \neq j and (iii) f_i \neq 0 for i = 1,\dots,n we define: frame(f) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,n\}\} frame^+(f) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,n\} \land f_i > 0\} frame^-(f) = \{(e_{i,1},\dots,e_{i,d}) \mid i \in \{1,\dots,n\} \land f_i < 0\}
```

$$f = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

frame(f) = {(0,1),(1,3),(2,2),(3,0),(4,4)}

And we define based on the signs of the coefficients:

frame⁺(
$$f$$
) = {(0,1), (1,3)}
frame⁻(f) = {(2,2), (3,0), (4,4)}

The frame of a multivariate polynomial f visualized

$$f = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

frame(f) = {(0,1),(1,3),(2,2),(3,0),(4,4)}

The Newton polytope of a polynomial f

Convex hull

Given $S \subseteq \mathbb{R}^d$, the *convex hull conv*(S) $\subseteq \mathbb{R}^d$ is the smallest (inclusion-minimal) convex set containing S.

The Newton polytope of a polynomial f

Convex hull

Given $S \subseteq \mathbb{R}^d$, the *convex hull conv*(S) $\subseteq \mathbb{R}^d$ is the smallest (inclusion-minimal) convex set containing S.

Newton polytope

The Newton polytope of a polynomial $f \not\equiv 0$ is the convex hull of its frame: Newton(f) = conv(frame(f))

This is indeed a polytope because the convex hull of finite non-empty set of points is bounded.

The Newton polytope of a polynomial f visualized

The shaded region is the Newton polytope Newton(f) of f.

Faces of a polytope

Given a polytope $P \subseteq \mathbb{R}^d$, the face of P with respect to a vector $n \in \mathbb{R}^d$ is: $face(n, P) = \{ p \in P \mid n^T p \ge n^T q \text{ for all } q \in P \}.$

Faces of a polytope

Given a polytope $P \subseteq \mathbb{R}^d$, the face of P with respect to a vector $n \in \mathbb{R}^d$ is: $face(n, P) = \{ p \in P \mid n^T p \ge n^T q \text{ for all } q \in P \}.$

Vertices of a polytope

The faces of dimension 0 are called *vertices*. The set of all *vertices* of a given polytope P is V(P).

Faces of a polytope

Given a polytope $P \subseteq \mathbb{R}^d$, the *face* of P with respect to a vector $n \in \mathbb{R}^d$ is: $face(n, P) = \{ p \in P \mid n^T p \ge n^T q \text{ for all } q \in P \}.$

Vertices of a polytope

The faces of dimension 0 are called *vertices*. The set of all *vertices* of a given polytope P is V(P).

Note: $p \in V(P)$ iff there exists $n \in \mathbb{R}^d$ with $n^T p > n^T q$ for all $q \in P \setminus \{p\}$.

Faces of a polytope

Given a polytope $P \subseteq \mathbb{R}^d$, the face of P with respect to a vector $n \in \mathbb{R}^d$ is: $face(n, P) = \{ p \in P \mid n^T p \ge n^T q \text{ for all } q \in P \}.$

Vertices of a polytope

The faces of dimension 0 are called *vertices*. The set of all *vertices* of a given polytope P is V(P).

Note: $p \in V(P)$ iff there exists $n \in \mathbb{R}^d$ with $n^T p > n^T q$ for all $q \in P \setminus \{p\}$.

Because frame(f) is finite, it is true that: $V(Newton(f)) \subseteq frame(f) \subseteq Newton(f)$).

The faces of a Newton polytope visualized

The shaded region is the Newton polytope P of f. $face((1,1), P) = \{(4,4)\}$ has dimension 0.

The faces of a Newton polytope visualized

The shaded region is the Newton polytope P of f. $face((4,-1),P)=\{(3,0)+t(1,4)|0\leq t\leq 1\}$ has dimension 1.

Hyperplanes separating vertices of the polytope

Hyperplanes

A *hyperplane* is a subspace whose dimension is one less than that of its surrounding space. Such a *hyperplane* H can be described by the following equation:

$$H: n^T x + c = 0$$

Hyperplanes separating vertices of the polytope

Hyperplanes

A *hyperplane* is a subspace whose dimension is one less than that of its surrounding space. Such a *hyperplane* H can be described by the following equation:

$$H: n^T x + c = 0$$

Lemma 1

Let f be a polynomial, $p \in frame(f)$ and $n \in \mathbb{R}^d$. Then the following are equivalent:

- **11** $p \in V(Newton(f))$ with respect to n.
- 2 There exists $c \in \mathbb{R}$ such that the hyperplane $H: n^T x + c = 0$ strictly separates p from $frame(f) \setminus \{p\}$. The normal vector n is directed from H towards p.

Hyperplanes separating vertices of the polytope visualized

The shaded region is the Newton polytope P of f.

 $H: (-2,3)^T x - 6 = 0$ strictly separates (1,3) from the frame(f).

Vertices as dominating monomials

If p is a vertex of the Newton polytope with respect to n, then the corresponding monomial will dominate the entire polynomial in the direction of n.

Vertices as dominating monomials

If p is a vertex of the Newton polytope with respect to n, then the corresponding monomial will dominate the entire polynomial in the direction of n.

Lemma 2

Let f be a polynomial and $p \in frame(f)$ be a vertex of Newton(f) with respect to $n \in \mathbb{R}^d$. Then there exists $a_0 \in \mathbb{R}^+$ such that for all $a \in \mathbb{R}^+$ with $a \ge a_0$ the following holds:

- $2 sign(f(a^{n_1},\ldots,a^{n_d})) = sign(f_p)$

where f_p is the corresponding coefficient to p and $f_p a^{n^T p} = f_p (a^{n_1})^{p_1} (a^{n_2})^{p_2} ... (a^{n_d})^{p_d}$.

Vertices as dominating monomials

If p is a vertex of the Newton polytope with respect to n, then the corresponding monomial will dominate the entire polynomial in the direction of n.

Lemma 2

Let f be a polynomial and $p \in frame(f)$ be a vertex of Newton(f) with respect to $n \in \mathbb{R}^d$. Then there exists $a_0 \in \mathbb{R}^+$ such that for all $a \in \mathbb{R}^+$ with $a \ge a_0$ the following holds:

$$2 sign(f(a^{n_1},\ldots,a^{n_d})) = sign(f_p)$$

where f_p is the corresponding coefficient to p and $f_p a^{n^T p} = f_p (a^{n_1})^{p_1} (a^{n_2})^{p_2} ... (a^{n_d})^{p_d}$.

To find a point with all positive coordinates where f > 0 we now just need to find a $p \in frame^+(f)$ and check if it is also a vertex of Newton(f).

Recap

Let f a multivariate polynomial. If

- \blacksquare *H* is a hyperplane with normal vector n,
- $p \in frame^+(f)$ and
- $lue{}$ H separates p from the remaining frame of f

then

Recap

Let f a multivariate polynomial. If

- \blacksquare *H* is a hyperplane with normal vector n,
- $p \in frame^+(f)$ and
- \blacksquare H separates p from the remaining frame of f

then

- f_p eventually dominates f (going towards n),
- thus f eventually becomes positive and
- we can construct a solution.

Recap

Let f a multivariate polynomial. If

- \blacksquare *H* is a hyperplane with normal vector n,
- $p \in frame^+(f)$ and
- $lue{H}$ separates p from the remaining frame of f

then

- f_p eventually dominates f (going towards n),
- thus f eventually becomes positive and
- we can construct a solution.

How do we find n and H?

Example

Let f again be a multivariate polynomial with:

$$f = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

- As we have seen the point (1,3) is a vertex of Newton(f) with respect to the normal vector (-2,3).
- Lemma 2 guarantees that $f(a^{-2}, a^3) > 0$ for sufficiently large positive values of a.
- For example: a = 2, $f(2^{-2}, 2^3) = \frac{51193}{256}$.
- Generally, a suitable a can be found by starting with a=2 and doubling a until the constraint is satisfied.

The linear problem

- Problem: Given a polynomial f, does a point with all positive coordinates exist with f > 0?
- By Lemma 1 the problem can be reduced to finding a hyperplane $H: n^T x + c = 0$ separating a $p \in frame^+(f)$ from $frame(f) \setminus \{p\}$ where $frame(f) \subset \mathbb{R}^d$ and $n \in \mathbb{R}^d$ is a vector pointing from H to p.
- This can be expressed as a linear problem with d + 1 real variables n and c:

$$\varphi(p, frame(f), n, c) = n^T p + c > 0 \land \bigwedge_{q \in frame(f) \setminus p} n^T q + c < 0$$

The linear problem: example

■ Let *f* again be a multivariate polynomial with:

$$f = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

- Problem: Does a point with all positive coordinates exist with f > 0
- By Lemma 1 the problem can be reduced to finding a hyperplane $H: n^T x + c = 0$ separating a $p \in frame^+(f)$ from $frame(f) \setminus \{p\}$ where $frame(f) \subset \mathbb{R}^2$ and $n \in \mathbb{R}^2$ is a vector pointing from H to p.
- Encoding :

$$\exists n_x, n_y, c: p_x n_x + p_y n_y + c > 0 \land \bigwedge_{q \in frame(f) \setminus p} q_x n_x + q_y n_y + c < 0$$
 for a given $p \in frame^+(f)$.

The last step (for equalities)

- We have f(1,...,1) < 0.
- And we found a such that $f(a^n) > 0$ for some direction n.
- What do we need to do now?

The last step (for equalities)

- We have f(1, ..., 1) < 0.
- And we found a such that $f(a^n) > 0$ for some direction n.
- What do we need to do now?
- Find solution to: f = 0.

Given: f(1,...,1) < 0 < f(p) for some real coordinates p. Find root of f on the line from (1,...,1) to p.

The Intermediate Value Theorem tells us this root exists.

- Construct a new univariate polynomial f^* from f by parameterising the variables in a new variable t such that we traverse the line from (1,...,1) to p for $t \in [0,1]$.
- **2** Find root t_0 of this new polynomial f^* by common techniques e.g. bisection.
- 3 Construct root of f as point on the line from (1, ..., 1) to p for parameter t_0 .

■ Let $f = x^2 + y^2 - 4$.

- Let $f = x^2 + y^2 4$.
- We have f(1,1) < 0 and f(2,2) > 0 and can construct a root of f on (1,1)—(2,2).

- Let $f = x^2 + y^2 4$.
- We have f(1,1) < 0 and f(2,2) > 0 and can construct a root of f on (1,1)—(2,2).
- $x \to 1 + (2 1) * t = 1 + t$ $y \to 1 + (2 - 1) * t = 1 + t$

- Let $f = x^2 + y^2 4$.
- We have f(1,1) < 0 and f(2,2) > 0 and can construct a root of f on (1,1)—(2,2).
- $x \to 1 + (2 1) * t = 1 + t$ $y \to 1 + (2 - 1) * t = 1 + t$
- Then $f^* = (1+t)^2 + (1+t)^2 4$.

• Let
$$f = x^2 + y^2 - 4$$
.

- We have f(1,1) < 0 and f(2,2) > 0 and can construct a root of f on (1,1)—(2,2).
- $x \to 1 + (2 1) * t = 1 + t$ $y \to 1 + (2 - 1) * t = 1 + t$
- Then $f^* = (1+t)^2 + (1+t)^2 4$.
- There ex. $t \in [0,1]$ such that $f^*(t) = 0$.

• Let
$$f = x^2 + y^2 - 4$$
.

- We have f(1,1) < 0 and f(2,2) > 0 and can construct a root of f on (1,1)—(2,2).
- $x \to 1 + (2 1) * t = 1 + t$ $y \to 1 + (2 - 1) * t = 1 + t$
- Then $f^* = (1+t)^2 + (1+t)^2 4$.
- There ex. $t \in [0,1]$ such that $f^*(t) = 0$.
- Here we have: $t = \sqrt{2} 1$.

- Let $f = x^2 + y^2 4$.
- We have f(1,1) < 0 and f(2,2) > 0 and can construct a root of f on (1,1)—(2,2).
- $x \to 1 + (2 1) * t = 1 + t$ $y \to 1 + (2 - 1) * t = 1 + t$
- Then $f^* = (1+t)^2 + (1+t)^2 4$.
- There ex. $t \in [0,1]$ such that $f^*(t) = 0$.
- Here we have: $t = \sqrt{2} 1$.
- $(1 + (\sqrt{2} 1), 1 + (\sqrt{2} 1)) = (\sqrt{2}, \sqrt{2})$ is a root of f.

For constraints of the form f > 0 (or f ≥ 0):
 Solve the linear problem of finding a hyperplane separating a p ∈ frame⁺(f) from the rest of frame(f).
 Construct a point for which f > 0 (or f ≥ 0) by choosing large enough values going in the direction of the normal vector of the hyperplane.

- For constraints of the form f>0 (or $f\geq 0$): Solve the linear problem of finding a hyperplane separating a $p\in frame^+(f)$ from the rest of frame(f). Construct a point for which f>0 (or $f\geq 0$) by choosing large enough values going in the direction of the normal vector of the hyperplane.
- For equalities of the form f = 0 (assuming f(1,...,1) < 0): Find a point for which f > 0 like above, then construct a root of f as a point on the line from (1,..,1) to this point.

- For constraints of the form f>0 (or $f\geq 0$): Solve the linear problem of finding a hyperplane separating a $p\in frame^+(f)$ from the rest of frame(f). Construct a point for which f>0 (or $f\geq 0$) by choosing large enough values going in the direction of the normal vector of the hyperplane.
- For equalities of the form f = 0 (assuming f(1,...,1) < 0): Find a point for which f > 0 like above, then construct a root of f as a point on the line from (1,..,1) to this point.

Not shown here: deal with multiple constraints at once. How?

- For constraints of the form f > 0 (or f ≥ 0):
 Solve the linear problem of finding a hyperplane separating a p ∈ frame⁺(f) from the rest of frame(f).
 Construct a point for which f > 0 (or f ≥ 0) by choosing large enough values going in the direction of the normal vector of the hyperplane.
- For equalities of the form f = 0 (assuming f(1, ..., 1) < 0): Find a point for which f > 0 like above, then construct a root of f as a point on the line from (1, ..., 1) to this point.

Not shown here: deal with multiple constraints at once. How? Search for one direction that works for all constraints.