1. 给定矩阵

$$m{A} = egin{bmatrix} -4 & -3 & -1 & -2 & -3 & -2 \ 2 & 1 & 0 & 2 & 1 & 1 \ 0 & 1 & 0 & -2 & 0 & 0 \ -1 & 0 & 1 & 1 & -1 & 0 \ 5 & 3 & 1 & 2 & 4 & 2 \ -1 & 0 & 0 & -2 & 0 & 0 \end{bmatrix},$$

接下列步骤计算 $m{A}$ 的广义 Jordan 标准型 $m{J}$ 和 Frobenius 标准型 $m{F}$,并求可逆矩阵 $m{P_1}$, $m{P_2}$ 满足 $m{P_1}^{-1}m{AP_1}=m{J}$, $m{P_2}^{-1}m{AP_2}=m{F}$.

- (a) 验证 $f_A(\lambda) = (\lambda^2 + 1)^2(\lambda 1)^2$, 并叙述此时的空间第一分解定理(i.e. **全空间的准素分解定理**).
- (b) 设 $\mathscr{A}: F^n \to F^n$, $X \mapsto AX$. 通过行初等变换找出 $(A E)^2$ 列向量组的极大无关组,并由此寻找 $\mathrm{Ker}(\mathscr{A}^2 + \mathscr{E})^2$ 的一组基,已知:

$$(\mathbf{A} - \mathbf{E})^2 = \begin{bmatrix} 8 & 5 & 1 & 4 & 5 & 3 \\ -8 & -3 & 1 & -4 & -5 & -3 \\ 4 & -1 & -1 & 4 & 3 & 1 \\ 0 & 1 & -1 & -2 & 0 & 0 \\ -8 & -5 & -1 & -4 & -5 & -3 \\ 8 & 3 & -1 & 4 & 5 & 3 \end{bmatrix}.$$

- (c) 取 $\alpha \in F^n$ 生成循环子空间 $F[\mathscr{A}]\alpha$,你能找到一个 α 满足 $\dim F[\mathscr{A}]\alpha = 4 = \deg(\lambda^2 + 1)^2$ 吗?
- (d) 在 (c) 的基础上,设 $\mathscr{A}_1=\mathscr{A}|_{F[\mathscr{A}]_{\boldsymbol{\alpha}}}$,找到一组基 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4$,使得

$$\mathscr{A}_1(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) J((\lambda^2 + 1)^2).$$

己知:

$$(A^{2} + E) \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 3 \\ -1 & -2 \\ -1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \\ 2 & -2 \\ 0 & 2 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}, A \begin{bmatrix} 1 & 2 \\ 1 & -2 \\ -1 & 2 \\ -1 & 2 \\ -1 & 0 \\ -1 & -2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -1 & 2 \\ 3 & -2 \\ -2 & 2 \\ -1 & 2 \end{bmatrix}.$$

(e) 解线性方程组 $(A-E)^2X = O$,得到基础解系如下:

$$m{X} = c_1 egin{bmatrix} -1 \ 1 \ 1 \ -1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ -1 \ 0 \ \end{bmatrix}, \ c_1, c_2 \in F.$$

求 \boldsymbol{A} 的一个属于特征值 $\lambda=1$ 的一级广义特征向量 $\boldsymbol{\beta}$, i.e., $(\boldsymbol{A}-\boldsymbol{E})\boldsymbol{\beta}\neq\boldsymbol{O}$, $(\boldsymbol{A}-\boldsymbol{E})^2\boldsymbol{\beta}=\boldsymbol{O}$.

- (f) 求出 P₁.
- (g) 令 $\gamma = \alpha + \beta$, 问 γ 的关于 $\mathscr A$ 的极小多项式是什么? 求出 P_2 . (可以用 $\mathscr A$, γ 来表示而不求出具体值.)