Confidence Intervel

Miaoyan Wang

Department of Statistics UW Madison

Review: Point Estimators

- Most probability distributions are indexed by one or more parameters. For example, $N(\mu, \sigma^2)$.
- In hypothesis tests, we have used **point estimators** for parameters. For example, consider an i.i.d. sample $D_1, D_2, \ldots, D_n \sim_{\text{i.i.d}} N(\mu_D, \sigma_D^2)$. Let

$$\bar{D} = \frac{1}{n} \sum_{i=1}^{n} D_n, \quad S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_n - \bar{D})^2.$$

Then \bar{D} is a point estimator of μ_D and S_D^2 is a point estimator of σ^2 .

- We know that $E(\bar{D}) = \mu_D$ and $E(S_D^2) = \sigma_D^2$.
- That is, \bar{D} is an **unbiased estimator** of μ_D and S_D^2 is an unbiased estimator of σ_D^2 .

Interval Estimators

- Now we turn to interval estimators to give a reasonable interval for parameters.
 - ▶ For μ : $[a_1, a_2]$ for some constants a_1, a_2 based on data
 - ▶ For σ^2 : $[b_1, b_2]$ for some constants b_1, b_2 based on data
- The assumptions are the same as in hypothesis testing, but we do not need a null hypothesis about the parameters (e.g. $\mu_D = \mu_1 \mu_2 = 0$).

Confidence Interval for μ_D

- Suppose D_1, D_2, \dots, D_n is an i.i.d. sample from $N(\mu_D, \sigma_D^2)$ and σ_D^2 is unknown.
- Note that

$$\frac{D-\mu_D}{S_D/\sqrt{n}}\sim T_{n-1}.$$

• Let $t_{n-1,\alpha/2}$ denote the t critical value such that

$$P(-t_{n-1,\alpha/2} \leq T_{n-1} \leq t_{n-1,\alpha/2}) = 1 - \alpha.$$

Confidence Interval for $\mu_D = \mu_1 - \mu_2$

Then we have

$$1-\alpha = P\left(\mu_D \in \left[\bar{D} - t_{n-1,\alpha/2} \frac{S_D}{\sqrt{n}}, \ \bar{D} + t_{n-1,\alpha/2} \frac{S_D}{\sqrt{n}}\right]\right)$$

• A $(1-\alpha)$ CI for μ_D is

$$\mu_D \in \left[\bar{d} - t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}}, \ \bar{d} + t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}} \right]$$

or

$$ar{d} \pm t_{n-1,\alpha/2} rac{s_D}{\sqrt{n}}$$

- The half width of this CI is $t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}}$.
- The width of this CI is $2 \times t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}}$.

Confidence Intervals for $\mu_D = \mu_1 - \mu_2$

• A $(1-\alpha)$ CI for μ_D is

$$\mu_D \in \left[\bar{d} - t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}}, \ \bar{d} + t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}} \right]$$

ullet In the lake clarity 1980 vs. 1990 example, a 95% CI for μ_D is

$$0.497 - 2.080 \times \frac{0.435}{\sqrt{22}} \le \mu_D \le 0.497 + 2.080 \times \frac{0.435}{\sqrt{22}}$$

which is [0.30, 0.69] or 0.497 ± 0.195 .

Remarks

- By convention, CIs are two-sided. But one-sided confidence bounds are possible.
- It is not true that $P(0.30 \le \mu_D \le 0.69) = 0.95$. Why not? because
 - once a sample is observed, there is nothing random.
- The 0.95 probability concerns with the repeated random sampling. It is interpreted as, 95% of the time, the (random) CIs calculated in this way contains (fixed) μ_D .
- For a single case, it is interpreted as ? having 95% confidence that μ_D is between 0.30 m and 0.69 m.
- The interval [0.30, 0.69] (or 0.497 ± 0.195) can be thought of as a plausible range of μ_D .
- What are the assumptions made when we perform a paired T test or construct a corresponding confidence interval for μ ?

Two-sided Confidence Interval

• Based on Z-statistic: $(\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\ \bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}})$

Size of Interval

• Based on T-statistic: $(\bar{X}-t_{n-1,\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}},\ \bar{X}+t_{n-1,\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}})$

One-sided Confidence Interval

- Based on Z-statistic:
 - Lower interval: $(-\infty, \frac{\bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})}{\text{Upper bound}}$
 - ▶ Upper interval: $(\bar{X} z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$

Upper Interval

Lower Interval

- Based on T-statistic:
 - ▶ Lower interval: $(-\infty, \underbrace{\bar{X} + t_{n-1,\alpha} \frac{\hat{\sigma}}{\sqrt{n}}})$ Upper bound
 - Upper interval: $(\bar{X} t_{n-1,\alpha} \frac{\hat{\sigma}}{\sqrt{n}}, \infty)$

Example

Problem: Suppose the mean of an i.i.d. sample of n=100 is $\bar{x}=50$ with sample standard deviation 10. Set up an upper 95%-CI estimate for the population mean μ .

Answer: Assume the observation $X_i \sim_{\text{i.i.d.}} N(\mu, \sigma^2)$ for all $i=1,\ldots,100$. Since σ is unknown, we consider the T-statistic. Note that $t_{99,0.05}=1.66$ and $\hat{\sigma}=10$. So the 95%-CI for μ is

$$(\bar{x}-t_{99,0.05}*\frac{\hat{\sigma}}{\sqrt{n}},\infty)=(50-1.66*\frac{10}{\sqrt{100}},\ \infty)=(48.34,\ \infty).$$

Distribution of Test Statistics

Let $(X_1, X_2, ..., X_n)$ be an i.i.d. sample drawn from a population $N(\mu, \sigma^2)$.

- ullet If μ is unknown, σ is known, then
 - ► Sample Mean:

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim {\sf N}(0,1)$$

Sample Variance:

$$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2$$

• If both μ and σ are unknown, then

$$T = \frac{\bar{X} - \mu}{\hat{\sigma}/\sqrt{n}} \sim T_{n-1}$$

.

Summary: Hypothesis Testing on Population Mean

If σ is known, z-statistics: $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$

significance level	α	0.1	0.05	0.01
	$1-\alpha$	90%	95%	99%
N(0,1)	$z_{\alpha/2}^*$	1.64	1.96	2.58

	Two-Sided	Lower One-Sided	Upper One-Sided
H_0	$\mu = \mu_0$	$\mu = \mu_0$	$\mu = \mu_0$
H_1	$\mu \neq \mu_0$	$\mu < \mu_0$	$\mu > \mu_0$
Test		$\bar{x} - \mu_0$	
Statistic		$z = \frac{1}{\sigma/\sqrt{n}}$	
P-value	P(Norm(0,1) > z)	P(Norm(0,1) < z)	P(Norm(0,1) > z)
	- z z	Z	Z
Accept H_0 w/ significance level α	$ z < z^*_{lpha/2}$ or equivalently $ ar{x} - \mu_0 < z^*_{lpha/2} rac{\sigma}{\sqrt{n}}$	$z>-z_{lpha}^{st}$ or equivalently $ar{x}-\mu_{0}>-z_{lpha}^{st}rac{\sigma}{\sqrt{n}}$	$z < z_{lpha}^*$ or equivalently $ar{x} - \mu_0 < z_{lpha}^* rac{\sigma}{\sqrt{n}}$

Summary: Hypothesis Testing on Population Mean

If σ is unknown, t-statistics: $t = \frac{\bar{x} - \mu_0}{\hat{\sigma} / \sqrt{n}} \sim T_{n-1}$

significance level	α	0.1	0.05	0.01
	$1-\alpha$	90%	95%	99%
T_{n-1}	$t_{n-1,\alpha/2}^*$	$qt(\alpha/2,n-1)$		

	Two-Sided	Lower One-Sided	Upper One-Sided
H ₀	$\mu = \mu_0$	$\mu = \mu_0$	$\mu = \mu_0$
H ₁	$\mu \neq \mu_0$	$\mu < \mu_0$	$\mu > \mu_0$
Test		$t = \frac{\bar{x} - \mu_0}{\bar{x} - \mu_0}$	
Statistic		$t = \frac{1}{\hat{\sigma}/\sqrt{n}}$	
P-value	$P(T_{n-1} > t)$	$P(T_{n-1} < t)$	$P(T_{n-1} > t)$
	- t t	The state of the s	
Accept H_0 w/ significance level α	$\begin{vmatrix} t < t^*_{n-1,\alpha/2} \\ \text{or equivalently} \\ \bar{x} - \mu_0 < t^*_{n-1,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \end{vmatrix}$	$t>-t^*_{n-1,lpha}$ or equivalently $ar{x}-\mu_0>-t^*_{n-1,lpha}rac{\hat{\sigma}}{\sqrt{n}}$	$\begin{array}{c} t < t^*_{n-1,\alpha} \\ \text{or equivalently} \\ \bar{x} - \mu_0 < t^*_{n-1,\alpha} \frac{\hat{\sigma}}{\sqrt{n}} \end{array}$

Confidence Interval (Variance Known)

Parameter of interest: population mean μ

- When σ^2 known: z-test
 - Statistics

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

▶ 95% Confidence Interval (CI)

$$\mu \in (\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}} \quad , \quad \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}})$$

▶ $(1 - \alpha)$ -Confidence Interval (CI):

$$\mu \in (\bar{x} - z_{\alpha/2}^* \frac{\sigma}{\sqrt{n}} \quad , \quad \bar{x} + z_{\alpha/2}^* \frac{\sigma}{\sqrt{n}})$$

• $z_{\alpha/2}^*$ is called critical value at level $\alpha/2$.

significance level	α	0.1	0.05	0.01
	$1-\alpha$	90%	95%	90%
N(0,1)	$z_{\alpha/2}^*$	1.64	1.96	2.58

Confidence Interval (Variance Unknown)

Parameter of interest: population mean μ

- When σ^2 is unknown: t-test
 - Statistics

$$t = \frac{\bar{x} - \mu_0}{\hat{\sigma} / \sqrt{n}}$$

• $(1-\alpha)$ -Confidence Interval (CI)

$$\mu \in (\bar{x} - t_{n-1,\alpha/2}^* \frac{\hat{\sigma}}{\sqrt{n}} \quad , \quad \bar{x} + t_{n-1,\alpha/2}^* \frac{\hat{\sigma}}{\sqrt{n}})$$

• $t_{n-1,\alpha/2}^*$ is called critical value at level $\alpha/2$.

In R: qt(...,df=n-1).

Margin of Error & Sample Size & Confidence Level

$$\underbrace{\bar{x}}_{\text{estimate}} \pm \underbrace{z_{\alpha/2} \frac{\sigma}{\sqrt{n}}}_{\text{margin of error}} \quad \text{or} \quad \underbrace{\bar{x}}_{\text{estimate}} \pm \underbrace{t_{n-1,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}}_{\text{margin of error}}$$

The size of the margin of error can be reduced if

- confidence level is smaller (e.g. $95\% \rightarrow 90\%$);
- sample size n is larger;
- ullet or if σ is smaller

We usually prefer **shorter** Confidence Interval.

Duality of Confidence Intervals and Hypothesis Tests

In a two sided test, $H_0: \mu = \mu_0$ is not rejected at level α if and only if

 μ_0 is in the (1-lpha) CI for μ

Proof: In a two sided z-test, $H_0: \mu = \mu_0$ is not rejected if

$$\begin{aligned} |\bar{x} - \mu_0| &\leq z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \iff -z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \bar{x} - \mu_0 \leq z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \\ &\iff \bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu_0 \leq \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \end{aligned}$$

Confidence Interval

In general, $(1-\alpha)$ -CI for population parameter θ can be calculated from the test statistic for θ .

- Find the test statistic for θ and its null distribution;
- Find the critical value at level $\alpha/2$ (if two sided test) based on null distribution, say $c_{\alpha/2}^*$;
- ullet Write the (1-lpha)-Cl in the form of

estimate \pm margin of error

where the margin of error usually is the $c_{\alpha/2}^* \times$ denominator in test statistics.

Comparison of Two Population Means: Paired T Test

- Parameter of interest: $\mu_1 \mu_2$
- Data: $D_1 = y_1 y_2, \dots, D_n = y_1 y_n$
- Paired two-sample inference:
 - Hypothesis testing $H_0: \mu_D = \mu_D^0$

$$T = rac{ar{D} - \mu_D^0}{S_D/\sqrt{n}} \sim T_{n-1}, \ ext{where} \ S_D = \sqrt{rac{1}{n-1} \sum_{i=1}^n (D_i - ar{D})^2},$$

• $(1 - \alpha)$ CI for $\mu_D = \mu_1 - \mu_2$:

$$ar{d} \pm t_{n-1,\alpha/2} rac{s_D}{\sqrt{n}}$$

Comparison of Two Population Means: Independent Two Sample ${\cal T}$ Test

- Independent two-sample inference assuming $\sigma_1^2 = \sigma_2^2$:
 - Hypothesis testing H_0 : $\mu_1 \mu_2 = \mu_D^0$

$$T = rac{ar{Y}_1 - ar{Y}_2 - \mu_D^0}{\sqrt{S_p^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}} \sim T_{n_1 + n_2 - 2},$$

where
$$S_p^2 = n_1 + n_2 - 2\sum_{i=1}^{n_1} (Y_{1i} - \bar{Y}_1)^2 + \sum_{i=1}^{n_2} (Y_{2i} - \bar{Y}_2)$$
.

• $(1 - \alpha)$ CI for $\mu_1 - \mu_2$:

$$ar{y}_1 - ar{y}_2 \pm t_{n_1 + n_2 - 2, \alpha/2} \sqrt{s_p^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}$$