1 Riemann integral is continuous

This easy theorem supports the claim that "integrating functions makes them nicer", since f is required only to be Riemann-integrable and not necessarily continuous on its domain.

Theorem 1. Suppose we have some interval I, some $t_0 \in I$ and some Riemann-integrable function $f: I \to \mathbb{R}$. Define $g: I \to \mathbb{R}$ by

$$g(x) = \int_{t_0}^x f(t) \, \mathrm{d}t.$$

Then g is continuous.

Proof. Since f is Riemann-integrable, it is bounded by some M > 0. Let $y \in I$ be given and fix some $\varepsilon > 0$. Then provided we take $x \in I$ such that $|x - y| < \frac{\varepsilon}{M}$, we will have

$$|g(x) - g(y)| = \left| \int_{t_0}^x f(t) dt - \int_{t_0}^y f(t) dt \right|$$

$$= \left| \int_y^x f(t) dt \right|$$

$$\leq \int_y^x |f(t)| dt$$

$$\leq M |x - y|$$

$$< \varepsilon,$$

as desired. \Box