

Como eliminar as serrilhas no processo serigráfico

Confira todos os pontos a serem considerados para evitar serrilhas que denegeram a qualidade de seu trabalho

Por Tarsis Bianchini

Tela de 165 fios/cm

"Tenho que imprimir uma camiseta escura com a melhor qualidade possível. Além de retículas, tenho letras que precisam ficar perfeitas, sem nenhuma serrilha. Como vou utilizar plastisol, usei um tecido de poliéster de 120 fios/cm. Apesar da qualidade da definição ficar satisfatória, a impressão ficou com pouca cobertura e sem vida.

Meu fornecedor de tinta disse não ser possível fabricar uma tinta mais concentrada, com maior poder de cobertura. Tentei usar uma tela mais aberta, poliéster com 77 fios/cm. Mas o serrilhado nas letras inviabilizou o resultado, sem contar com o ganho de pontos nas retículas e moiré.

Tentei também impressão sobre impressão, mas não consegui um perfeito registro das duas impressões e o resultado foi insatisfatório.

O que tenho que fazer para conseguir ao mesmo tempo a deposição de tinta necessária e a qualidade de impressão desejada?"

Neste artigo, serão apresentados tópicos relacionados à eliminação da serrilha (baixa definição da imagem impressa), um problema freqüente na pré-impressão serigráfica, que gera imperfeições na reprodução do original. Um dos fatores essenciais a serem considerados nessa problemática é a emulsão e sua aplicação na matriz. Mas outros fatores também podem interferir. A seguir será apresentada

Tela de 90 fios/cm

Tela de 55 fios/cm

Comparação entre imagens: exemplos de má definição da impressão (esquerda). Exemplos de boa definição (direita)

uma análise de todas as causas que podem gerar as serrilhas. É importante entender claramente cada um destes fatores e evitar sua interferência.

Lineatura da tela

Um conceito fundamental é saber que o tecido da matriz serigráfica determina o depósito de tinta no substrato.

Ele também está relacionado com a ancoragem da camada fotográfica. Uma tela mais fechada, como a de 165 fios/cm, deposita menos tinta do que uma tela mais aberta, como a de 90 fios/cm. Já

uma tela ainda mais aberta, como a de 55 fios/cm, permitirá um fluxo ainda maior de tinta, conseqüentemente, maior deposição.

Emulsão

Uma emulsão de baixa qualidade não gera um recorte da imagem independente da trama do tecido, ou seja, as bordas da imagem acompanham o quadriculado dos fios, o que causa falhas na impressão, como o serrilhado.

Hoje, com as emulsões de altíssima qualidade, o recorte da imagem é totalmente

Com uma boa emulsão, o recorte da imagem independe da lineatura utilizada

Ampliação do tecido em 300 vezes. Comparação entre camadas sem planeidade (acima) e com planeidade (baixo), cujo recorte é perfeito

independente desse quadriculado. Elas conseguem reproduzir fielmente o original, seja numa tela mais fechada ou mais aberta.

Nas imagens da página anterior, é possível verificar recortes de alguns detalhes. Foram utilizadas emulsões de perfeita definição e telas de 32 e de 110 fios/cm.

Para uma perfeita qualidade da imagem impressa, a emulsão serigráfica tem que garantir bordas bem definidas e camadas planas.

Esse conceito deve ser realçado: uma boa emulsão garante a perfeita definição da imagem, mesmo para trabalhos que requeiram tecidos mais abertos e maior passagem de tinta.

Portanto, para o problema citado inicialmente, a solução é trabalhar com uma emulsão de alta qualidade. Assim, podese utilizar telas mais abertas, de acordo com a necessidade de aumentar a deposição de tinta.

Processo de impressão serigráfica

1

Durante o processo de impressão, a tira de poliuretano do rodo pressiona a matriz serigráfica contra o substrato e faz a tinta escoar pelas aberturas do tecido

2

Conforme a tinta passa pela tela, ao tocar no substrato (base), ela flui horizontalmente até encontrar a borda da emulsão, preenchendo todo o volume delimitado pelo tecido (que está acima), pela emulsão fotográfica (pelos lados) e pelo substrato (por baixo). A continuação do movimento da tira de poliuretano remove o excesso de tinta pelo lado interno da matriz

3

Assim que o rodo de impressão passa, o tecido serigráfico, graças à sua elasticidade, distanciase da base (vence o fora contato), deixando a tinta depositada no substrato

Como a qualidade de impressão é afetada pela planeidade da camada fotográfica

Camada de emulsão

Pode-se comparar o processo de impressão serigráfica com o de injeção de uma peça plástica. Se o molde não fechar bem, haverá infiltração do plástico liso e, consequentemente, as indesejáveis falhas de injeção (rebarbas). O molde, na serigrafia, seria a camada de emulsão.

Se a camada de emulsão for plana, haverá sempre uma limitação bem definida para o escoamento da tinta. Se a camada de emulsão não for plana, a tinta pode penetrar por baixo das irregularidades, degenerando a qualidade da imagem impressa.

Baixa qualidade do original ou fotolito

O uso de um fotolito de baixa qualidade acarreta impressos com serrilhas. Uma boa emulsão com certeza reproduzirá todas as falhas e imperfeições. Por exemplo, com um positi-

Aplicação correta da emulsão

Com a matriz na posição vertical, aplicar uma ou duas camadas de emulsão pelo lado externo, que é o lado do substrato. Em seguida, sem secar, aplicar duas ou mais camadas pelo lado interno, que é o lado do rodo de impressão, forçando a emulsão para fora.

O número de aplicações pelo lado interno determina a espessura da camada pelo lado externo.

Após a secagem, podem ser aplicadas camadas adicionais no lado externo

para melhorar a planeidade ou adequar a espessura final.

Definir para cada caso o processo ideal de emulsionamento, levandose em consideração os seguintes fatores:

- Deposição desejada;
- · Nível de detalhes;
- Substrato:
- · Fonte de luz:
- · Tipo do tecido;
- · Emulsão.

Aplicação correta da camada de emulsão

O emulsionamento adequado deve gerar uma camada plana, externa e com espessura uniforme. Camadas com espessuras variadas ou com riscos comprometem a qualidade da imagem impressa.

Para a aplicação manual de emulsão, utilize um aplicador que cubra a largura total do desenho. Nunca realize passadas paralelas, pois isso formará uma camada não uniforme.

Antes de aplicar a emulsão, limpe o tecido completamente, para garantir a uniformidade e a adesão da camada de emulsão. Isso também confere maior tempo de vida útil para a matriz. Para a limpeza, recomenda-se a utilização de produtos específicos, que removam os contaminantes oleosos e partículas de poeira.

Além dos cuidados acima, deve-se ter atenção a outros inconvenientes, a saber:

- · tensão incorreta do tecido;
- não deixar a tela secar completamente antes de emulsionar;
- perfil do aplicador danificado; tecido contaminado por tintas do serviço anterior.

vo produzido por uma impressora de jato de tinta de 200 dpi, o recorte de imagem reproduzida na matriz fica so-frível, conseqüentemente a impressão fica com serrilhas.

É importante controlar a qualidade da arte final. Recomenda-se a utilização de saídas com resolução acima de 1.200 dpi.

Secagem da emulsão

Na primeira parte desse artigo, foram abordados tópicos relacionados à planeidade da camada de emulsão, que deve delimitar o escoamento da tinta durante a impressão.

O nível dessa planeidade está diretamente ligado ao tipo de emulsão (as emulsões com fotopolímero geram camadas mais planas que outras), ao processo de emulsionamento e ao processo de secagem.

Após a aplicação da emulsão, deixá-la secar completamente, na posição horizontal, com o lado externo voltado para baixo.

Nunca inverter a posição de secagem, pois a ação da gravidade prejudicará a planeidade.

Para tecidos fechados e camadas finas, é possível secar a matriz na posição vertical.

Espessura da camada de emulsão

Para uma impressão perfeita, é importante que o tecido da matriz não fique em contato com o substrato. Isto pode bloquear parcialmente o escoamento da tinta e causar falhas de impressões em algumas áreas, sendo que a qualidade da impressão estará comprometida pela interferência dos fios do tecido.

Por isso, para que a tinta impressa não apresente as marcas do tecido e não haja falhas de impressão, é necessária a aplicação de uma fina camada de emulsão no lado externo da matriz.

Para obter esse resultado, é preciso aumentar o número de demãos pelo lado interno, sem secagem intermediária, ou utilizar uma emulsão com maior teor de sólidos.

Com um positivo de boa qualidade é possível obter uma matriz com boa definição de imagem

A espessura ideal da camada de emulsão do lado externo da tela (EOM) deverá variar de 10% (para a impressão de retículas) a 25% (letras e traços). Para finalidades especiais, estes valores podem ser alterados.

Recomenda-se o uso de um medidor de espessura para controlar do processo de aplicação de emulsão.

Coloração do tecido

Os tecidos disponíveis no mercado podem ter a coloração branca ou amarela. No tecido branco, os raios de luz sofrem difração durante a exposição, causando uma degeneração da imagem fotografada. Tecidos amarelos eliminam esse problema, permitindo

Posição correta para a secagem da matriz

Nunca secar a matriz na posição invertida

Camada de emulsão incorreta. O tecido marca a tinta impressa

Camada de emulsão aplicada corretamente. O filme de tinta não apresenta marcas do tecido

melhor definição e resolução da imagem fotografada.

Estrutura de fios

Os tecidos técnicos usados nas matrizes serigráficas podem ser fabricados no padrão sarja ou tafetá.

O padrão tafetá deve ser preferido, pois cada fio da trama passa alternadamente por cima de um fio da urdidura e por baixo do próximo (estrutura 1:1), proporcionando melhor qualidade de impressão frente ao padrão sarja.

O padrão sarja pode prejudicar a definição da imagem impressa, gerar moiré, perda dos detalhes finos e alterar a deposição da tinta e conseqüente a cor impressa. Isso pode ser comprovado quando se comparam os valores de Rz (nível de planeidade) da camada de emulsão aplicada em telas com diferentes padrões.

Tempo de exposição inadequado

O tempo de exposição determina a qualidade da definição e resolução da imagem e a durabilidade da matriz. Durante a exposição, o lado externo da camada fotográfica reage inicialmente com os raios de luz. Com o passar do tempo, o endurecimento vai se completando também nas camadas mais

internas da emulsão. Se o tempo de exposição for excessivo, haverá uma perda de definição e resolução, devido à difração de luz.

Revelação imprópria

Dirija um jato suave de água, uniformemente por toda a matriz, em ambos os lados. Lavar até que a imagem apareça totalmente, e as áreas não expostas fiquem livres de resíduos. Para matrizes com tecidos muito abertos ou com camadas espessas, deixá-las submersas por alguns minutos antes de usar o jato de água.

Use maior pressão somente pelo lado externo e tenha cuidado para não danificar a emulsão. Avalie o endurecimento fotográfico observando a escala de exposição. Se necessário, expor outra matriz com os parâmetros corretos.

Lembre-se: forçar a revelação de uma boa emulsão, para abrir os detalhes finos e conseguir a qualidade desejada significa que algum parâmetro está fora de controle.

Estrutura 2:1 do padrão Sarja

Estrutura 1:1 do padrão Tafetá

