Otomat hữu hạn đa định

Trần Vĩnh Đức

Trường Đại Học Bách Khoa Hà Nội

Ngày 18 tháng 2 năm 2019

Thuật ngữ

- ▶ Determinism : Đơn đinh
- Nondeterminism : Đa định ≠ không đơn định
- Deterministic Finite Automaton (DFA) : Otomat hữu hạn đơn định
- Nondeterministic Finite Automaton (NFA): Otomat hữu hạn đa định

Nội dung

Đơn định chọi đa định

Định nghĩa Otomat hữu hạn đa định

Sự tương đương giữa các DFA và NFA

Tính đóng với các phép toán chính quy

Nội dung

Đơn định chọi đa định

Định nghĩa Otomat hữu hạn đa định

Sự tương đương giữa các DFA và NFA

Tính đóng với các phép toán chính quy

Đơn định chọi đa định

- Đơn định : trạng thái tiếp theo xác định duy nhất bởi trạng thái hiện tại và ký hiệu vào.
- ► Đa định : Có thể lựa chọn trạng thái tiếp theo.
- ▶ Đa định là tổng quát hóa của đơn định. Đa định ≠ không đơn định.

Hình: Một Otomat đa định

Deterministic Nondeterministic computation computation • start reject accept or reject accept

Đa định - cách đoán nhận xâu

- Chạy từ trạng thái bắt đầu
- Đoán nhận xâu khi tồn tại một dãy lựa chọn dẫn đến trạng thái chấp nhận
- ► NFA luôn "chọn đúng"
- ▶ NFA sau đây đoán nhận xâu 010110

Hình: Một Otomat đa định

Một ví dụ khác

Hình: Otomat đa định đoán nhận xâu có dạng 0^k với k chia hết cho 2 hoặc 3.

Một ví dụ nữa

► NFA trên đoán nhận những xâu nào dưới đây?

 $\varepsilon,\,a,\,b,\,baba,\,babba,\,bb,\,baa$

Nội dung

Đơn định chọi đa định

Định nghĩa Otomat hữu hạn đa định

Sự tương đương giữa các DFA và NFA

Tính đóng với các phép toán chính quy

Một vài ký hiệu

▶ Ta ký hiệu $\mathcal{P}(\mathit{Q})$ là tập mọi tập con của tập Q :

$$\mathcal{P}(Q) = \{ P \mid P \subseteq Q \}$$

lacktriangle Với bộ chữ Σ , ta ký hiệu

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}.$$

NFA chọi DFA

- NFA tương tự như DFA: Tập trạng thái, bộ chữ vào, hàm chuyển, một trạng thái bắt đầu, và tập trạng thái kết thúc
- Khác biệt cơ bản giữa NFA và DFA là hàm chuyển trạng thái
- Với DFA

$$\delta: Q \times \Sigma \longrightarrow Q$$

Với NFA

$$\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \frac{\mathcal{P}(Q)}{\mathbb{Q}^{2}}$$

Định nghĩa

Otomat hữu hạn đa định là một bộ năm $(Q, \Sigma, \delta, q_0, F)$ trong đó:

- 1. Q tập trạng thái hữu hạn;
- 2. Σ bảng chữ hữu hạn;
- 3. Hàm chuyển trạng thái

$$\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$$

- 4. $q_0 \in Q$ là trạng thái bắt đầu;
- 5. $F \subseteq Q$ tập trạng thái kết thúc.

Hàm chuyển trạng thái của NFA

$$\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$$

- $ightharpoonup \mathcal{P}(\mathit{Q}) = \mathsf{các}\;\mathsf{tập}\;\mathsf{con}\;\mathsf{của}\;\mathit{Q}.$

Hình: $\delta(q, a) = \{p_1, p_2\}.$

Ví dụ

- $Q = \{q_1, q_2, q_3, q_4\},\$
- ▶ $\Sigma = \{0, 1\}$,
- ► Hàm chuyển

- ▶ q₁ trạng thái bắt đầu,
- ► {q₄} tập trạng thái chấp nhận.

Tính toán của NFA

- ▶ Xét NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ và w là một xâu trên Σ .
- $ightharpoonup \mathcal{A}$ chấp nhận xâu w **nếu** có thể viết

$$w=y_1y_2\dots y_m,\quad ext{v\'oi}\quad y_i\in \Sigma_{arepsilon}$$

và tồn tại một dãy trạng thái

$$p_0, p_1, \ldots, p_m \in Q$$

thỏa mãn ba điều kiện:

- 1. $p_0 = q_0$,
- 2. $p_{i+1} \in \delta(p_i, y_{i+1})$, với $i = 0, 1, \dots, m-1$,
- 3. $p_m \in F$.

Nội dung

Đơn định chọi đa định

Định nghĩa Otomat hữu hạn đa định

Sự tương đương giữa các DFA và NFA

Tính đóng với các phép toán chính quy

Sự tương đương giữa các DFA và NFA

Định lý

Mỗi NFA đều có một DFA tương đương.

NFA không có ε -chuyển \Rightarrow DFA

- ▶ Xét $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ là một NFA không có ε -chuyển.
- ▶ DFA $\mathcal{B}=(Q',\Sigma,\delta',q_0',F')$ tương đương với \mathcal{A} được xây dựng như sau:
 - 1. $Q' = \mathcal{P}(Q)$
 - 2. Với mỗi $R \in Q'$ và $a \in \Sigma$:

$$\delta'(R,a) = \{q \in Q \mid q \in \delta(r,a) \text{ v\'oi } r \in R\}$$

$$= \bigcup_{r \in R} \delta(r,a).$$

- 3. $q'_0 = \{q_0\}$
- 4. $F' = \{R \in Q' \mid R \text{ chứa một trạng thái chấp nhận của } \mathcal{A}\}.$

Ví dụ

NFA có ε -chuyển \Rightarrow DFA

▶ Khi NFA $\mathcal A$ có ε -chuyển. Với mỗi tập trạng thái $R\subseteq Q$, ta định nghĩa:

$$E(R) = \{ p \in Q \mid \text{từ một trạng thái của } R \text{ có thể tới được } p$$

$$\text{chỉ dùng dãy gồm } 0 \text{ hoặc nhiều } \varepsilon\text{-chuyển} \}$$

NFA có ε -chuyển \Rightarrow DFA

Để xử lý các ε -chuyển, ta sửa lại cách xây dựng DFA $\mathcal B$ như sau:

▶ Thay thế $\delta(r,a)$ bởi $E(\delta(r,a))$. Có nghĩa rằng:

$$\delta'(R,a) = \{q \in Q \mid q \in E(\delta(r,a)) \text{ v\'oi } r \in R\}$$

▶ Thay thế q_0' bởi $E(\{q_0\})$.

Ví dụ

δ'	a	b
$*E(\{1\}) = \{1,3\}$	$\{1, 3\}$	{2}
$\{2\}$	$\{2, 3\}$	$\{3\}$
$\{2, 3\}$	$\{1, 2, 3\}$	$\{3\}$
{3}	$\{1, 3\}$	Ø
*{1,2,3}	$\{1, 2, 3\}$	$\{2, 3\}$
Ø	Ø	Ø

NFA và ngôn ngữ chính quy

Hê quả

Một ngôn ngữ là chính quy nếu và chỉ nếu có một NFA đoán nhận nó.

Nội dung

Đơn định chọi đa định

Định nghĩa Otomat hữu hạn đa định

Sự tương đương giữa các DFA và NFA

Tính đóng với các phép toán chính quy

Đóng với phép hợp

Định lý

Lớp ngôn ngữ chính quy đóng với phép hợp.

Đóng với phép ghép

Định lý

Lớp ngôn ngữ chính quy đóng với phép ghép.

Đóng với phép Sao

Định lý Lớp ngôn ngữ chính quy đóng với phép sao.

