1

ASSIGNMENT-2

UNNATI GUPTA

Download all python codes from

https://github.com/unnatigupta2320/Assignment-2/tree/master/codes

and latex-tikz codes from

https://github.com/unnatigupta2320/Assignment-2/tree/master

1 Question No. 2.36

Construct a quadrilateral MIST where MI = 3.5, IS = 6.5, $\angle M = 75^{\circ}$, $\angle I = 105^{\circ}$ and $\angle S = 120^{\circ}$.

2 SOLUTION

For this quadrilateral MIST we have,

$$\angle M + \angle I = 75^{\circ} + 105^{\circ} = 180^{\circ}.$$
 (2.0.1)

 \implies MT || IS(:: MI being the transversal)

As, sum of adjacent angle on same side is 180° only when lines are parallel.

1) Now, considering ST as another transversal on parallel lines MT and IS then $\angle S$ and $\angle T$ being on same side of transversal, we get

$$\implies \angle S + \angle T = 180^{\circ}, \qquad (2.0.2)$$

$$\implies \angle T = 60^{\circ} \tag{2.0.3}$$

2) Now taking sum of all the angles given and (2.0.3) we get

$$\angle M + \angle I + \angle S + \angle T = 360^{\circ} \tag{2.0.4}$$

So construction of given quadrilateral is possible as sum of all the angles is equal to 360° .

3) Now, Using cosine formula in $\triangle MIS$ we can find SM:

$$\Rightarrow \|\mathbf{S} - \mathbf{M}\|^2 = \|\mathbf{M} - \mathbf{I}\|^2 + \|\mathbf{I} - \mathbf{S}\|^2 - 2 \times \|\mathbf{M} - \mathbf{I}\| \times \|\mathbf{I} - \mathbf{S}\| \cos I$$
(2.0.5)

$$\implies SM = 8.14$$
 (2.0.6)

4) Also in $\triangle MIS$, Let \angle IMS = θ , \angle MIS = β , \angle ISM = γ .Now using sine formula in $\triangle MIS$ we have

$$\frac{\sin \theta}{IS} = \frac{\sin \beta}{SM} = \frac{\sin \gamma}{MI} \tag{2.0.7}$$

$$\theta = \sin^{-1} 0.7713; \qquad (2.0.8)$$

$$\theta = \angle IMS = 50.47^{\circ};$$
 (2.0.9)

5) Now, polar coordinates of vertex **S** of $\triangle MIS$ be

$$\mathbf{S} = SM \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \tag{2.0.10}$$

$$\mathbf{S} = 8.14 \begin{pmatrix} \cos 50.47 \\ \sin 50.47 \end{pmatrix} \tag{2.0.11}$$

$$\implies \mathbf{S} = \begin{pmatrix} 5.18 \\ 6.27 \end{pmatrix}, \tag{2.0.12}$$

6) Also in $\triangle MTS$, Let \angle TSM = ϕ , \angle TMS = α 1, \angle MTS = α 2, Now using sine formula in $\triangle MTS$ we have

$$\frac{\sin\phi}{MT} = \frac{\sin\alpha 1}{ST} = \frac{\sin\alpha 2}{SM} \tag{2.0.13}$$

$$\frac{\sin 95.47^{\circ}}{MT} = \frac{\sin 60^{\circ}}{8.14} \tag{2.0.14}$$

$$\implies MT = 9.35 \tag{2.0.15}$$

- 7) Now, the polar coordinates of **T** of $\triangle MTS$ can be calculated using vector MT and angle $\triangle TMI$.
- 8) Let $\angle TMI = \omega = 75^{\circ}$. The polar coordinates of **T** are:

$$\implies \mathbf{T} = MT \begin{pmatrix} \cos \omega \\ \sin \omega \end{pmatrix} \tag{2.0.16}$$

$$\implies \mathbf{T} = \begin{pmatrix} 2.42 \\ 9.63 \end{pmatrix} \tag{2.0.17}$$

9) Now,the vertices of given Quadrilateral MIST

can be written as,

$$\mathbf{M} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{I} = \begin{pmatrix} 3.5 \\ 0 \end{pmatrix}, \mathbf{S} = \begin{pmatrix} 5.18 \\ 6.27 \end{pmatrix}, \mathbf{T} = \begin{pmatrix} 2.42 \\ 9.63 \end{pmatrix}$$
(2.0.18)

10) On constructing the given quadrilateral we, get:

Fig. 2.1: Quadrilateral MIST