1. The three models AR(2), MA(1), and ARMA(2,1) are fitted to the following time series:

Year	Quarter 1	Quarter 2	Quarter 3	Quarter 4
2010	112	104	100	96
2011	101	101	105	94
2012	106	106	108	110

The results using R are as follows:

Λ 1	D i	റ	١
\boldsymbol{H}	n		,

	1110(2).		
	ar1	ar2	intercept
	0.2618	0.0868	104.227
st. error	0.3289	0.3326	2.372
$\sigma^2 = 25.02$		$\log \text{ likelihood} = -36.4$	

MA(1):

		()
	ma1	intercept
	0.1899	103.798
st. error	0.2574	1.7373
$\sigma^2 = 25.66$		$\log \text{ likelihood} = -36.51$

ARMA(2,1):

		ar1	ar2	ma1	intercept
		-0.5547	0.4437	0.9779	104.4542
•	st. error	0.3329	0.33267	0.235	2.4584
	$\sigma^2 = 21.31$		$\log \text{ likelihood} = -36.02$		

The models are ranked using Akaike Information Criterion, Corrected for bias (AICC) (see §11.3 of Lecture Notes or slide 32 of week 5).

AICC = $-2 \times \text{log-likelihood} + 2 \times \frac{rn}{n-r-1}$ where n is the sample size and r is the number of free parameters, most often r = p + q + 1.

Determine the order from the best to worst model. Give full explanation on how you arrived to your answer. Show calculations.

- A. AR(2), MA(1), ARMA(2,1)
- B. AR(2), ARMA (2,1), MA(1)
- C. MA(1), AR(2), ARMA(2,1)
- D. MA(1), ARMA (2,1), AR(2)
- E. ARMA (2,1), AR(2), MA(1).
- 2. In modeling the weekly sales of a certain commodity over the past six months, the time series model $X_t \phi_1 X_{t-1} = Z_t + \theta_1 Z_{t-1}$ was thought to be appropriate. Suppose the model was fitted and the autocorrelations of the residuals were:

k 1 2 3 4 5 6 7 8
$$\hat{\rho}_{\hat{W}}(k)$$
 -.04 -.50 .03 -.01 .01 .02 .03 -.01 st. dev $\hat{\rho}_{\hat{W}}(k)$.08 .10 .11 .11 .11 .11 .11 .11

Is the assumed model really appropriate? If not, how would you modify the model? Explain.

Hint: Check slides 8 - 9 of Lecture 11 for the 95% confidence intervals for autocorrelation function of the fitted residuals. You might also find slide 26 of Week 2 and slide 15 of Lecture 11 useful.

3. Suppose that in a sample of size 100 from an AR(1) process with mean μ , $\phi = 0.6$, and $\sigma^2 = 2$, we obtain $\bar{x}_{100} = 0.271$. Construct an approximate 95% confidence interval for μ . Are the data compatible with the hypothesis that $\mu = 0$?

Help: (i) Here $\sigma^2 \equiv \sigma_Z^2$ is the variance of noise Z_t .

- (ii) Large sample distribution of \bar{X}_n is given as follows (See, for example, slide 48 or §10.1 of Week 4): For n large, distribution of the sample mean \bar{X}_n is approximately normal with mean $\mu \equiv EX_t$ and variance $n^{-1}v$, where $v \approx \gamma_X(0) + 2\sum_{h=1}^{\infty} \gamma_X(h)$.
- (iii) For ACVF for AR(1) process see slide 43 of Week 2.

The following problem is for students enrolled in PSTAT 274 ONLY

- **G1.** Two hundred observations of a time series, X_1, \ldots, X_{200} , gave the following sample statistics: sample mean: $\bar{x}_{200} = 3.82$; sample variance: $\hat{\gamma}(0) = 1.15$; sample ACF: $\hat{\rho}(1) = .427$, $\hat{\rho}(2) = .475$, $\hat{\rho}(3) = .469$
- (a) Based on these sample statistics, is it reasonable to suppose that $\{X_t \mu\}$ is a white noise?
- (b) Assuming that $\{X_t \mu\}$ can be modeled as the AR(2) process,

$$X_t - \mu - \phi_1(X_{t-1} - \mu) - \phi_2(X_{t-2} - \mu) = Z_t,$$

where $Z_t \sim \text{IID}(0, \sigma_Z^2)$, find estimates of μ, ϕ_1, ϕ_2 , and σ_Z^2 .

(c) Assuming that the data was generated from an AR(2) model, derive estimates of the PACF for all lags $h \ge 1$.