0.1 Definisjoner

0.1 Halveringslinje

Gitt $\angle BAC$. For et punkt P som ligger på halveringslinja til vinkelen, er

$$\angle BAP = PAC = \frac{1}{2} \angle BAC$$

0.2 Midtpunkt

Midtpunktet C til AB er punktet på linjestykket som er slik at AC = CB.

0.3 Midtnormal

Midtnormalen til AB står normalt på, og går gjennom midtpunktet til, AB.

0.4 Sinus, cosinus og tangens

Gitt en rettvinklet trekant med katetene a og b, hypotenus c, og vinkel v, som vist i figuren under.

Da er

$$\sin v = \frac{a}{c} \tag{1}$$

$$\cos v = \frac{b}{c} \tag{2}$$

$$\tan v = \frac{a}{b}$$

Språkboksen

I figuren over blir a kalt den motstående kateten til vinkel v, og b den hosliggende.

0.5 Sinus, cosinus og tangens I

Gitt $\triangle ABC$, hvor $v=\angle BAC>90^{\circ},$ som vist i figuren under.

Da er

$$\sin v = \frac{CD}{AC} \tag{3}$$

$$\cos v = -\frac{AD}{AC} \tag{4}$$

$$\tan v = -\frac{CD}{AD}$$

0.2 Egenskaper til trekanter

0.6 Arealsetningen

Arealet T til $\triangle ABC$ er

$$T = \frac{1}{2}AB \cdot AC \cdot \sin \angle A$$

0.7 Sinussetningen

For enhver trekant $\triangle ABC$ er

$$\frac{\sin \angle A}{BC} = \frac{\sin \angle B}{AC} = \frac{\sin \angle C}{AB}$$

0.8 Cosinussetningen

Gitt en trekant med sidelengder $a,\,b$ og c, og vinkel v, som vist i figurene under.

Da er

$$a^2 = b^2 + c^2 - ab\cos v$$

0.9 Midtnormalen i en likebeint trekant

Gitt en likebeint trekant $\triangle ABC$, hvor AC=BC, som vist i figuren under.

Høgda DC ligger da på midtnormalen til AB.

0.10 Medianer i trekanter

En *median* er et linjestykke som går fra et hjørne i en trekant til midtpunktet på den motstående siden i trekanten.

De tre medianene i en trekant skjærer hverandre i ett og samme punkt.

Gitt $\triangle ABC$ med medianer $CD,\,BF$ og $AE,\,$ som skjærer hverandre i G. Da er

$$\frac{CG}{GD} = \frac{BG}{GF} = \frac{AG}{GE} = 2$$

0.11 Midtnormaler i trekanter

Midtnormalene i en trekant møtes i ett og samme punkt. Dette punktet er sentrum i sirkelen som har hjørnene til trekanten på sin bue.

0.12 Halveringslinjer og innskrevet sirkel i trekanter

Halveringslinjene til vinklene i en trekant møtes i ett og samme punkt. Dette punktet er sentrum i den *innskrevne* sirkelen, som tangerer hver av sidene i trekanten.

0.3 Egenskaper til sirkler

0.13 Tangent

En linje som skjærer en sirkel i bare ett punkt, kalles en *tangent* til sirkelen.

La S være sentrum i en sirkel, og la A være skjæringspunktet til denne sirkelen og ei linje. Da har vi at

linja er en tangent til sirkelen $\Longleftrightarrow \overrightarrow{AS}$ står vinkelrett på linja

0.14 Sentral- og periferivinkel

Både periferi- og sentralvinkler har vinkelbein som ligger (delvis) inni en sirkel.

En sentralvinkel har toppunkt i sentrum av en sirkel.

En periferivinkel har toppunkt på sirkelbuen.

Gitt en periferivinkel u og en sentralvinkel v, som er innskrevet i samme sirkel og som spenner over samme sirkelbue. Da er

0.4 Forklaringer

0.9 Midtnormalen i en likebeint trekant (forklaring)

Da både $\triangle ADC$ og $\triangle DBC$ er rettvinklede, har CD som korteste katet, og AC=BC, følger det av Pytagoras' setning at AD=BD.

0.10 Medianer i trekanter (forklaring)

Vi lar G være skjæringspunktet til BF og AE, og tar det for gitt at dette ligger inne i $\triangle ABC$. Da $AF = \frac{1}{2}AC$ og $BE = \frac{1}{2}BC$, er $ABF = BAE = \frac{1}{2}ABC$. Dermed har F og E lik avstand til AB, som betyr at $FE \parallel AB$. Videre har vi også at

$$ABG + AFG = ABG + BGE$$

 $AFG = BGE$

G har lik avstand til AF og FC, og AF = FC. Dermed er AFG = GFC. Tilsvarende er BGE = GEC. Altså har disse fire trekantene likt areal. Videre er

$$AFG + GFC + GEC = AEC$$

$$GEC = \frac{1}{6}ABC$$

La H være skjæringspunktet til AE og CD. Med samme framgangsmåte som over kan det vises at

$$HEC = \frac{1}{6}ABC$$

Da både $\triangle GEC$ og $\triangle HEC$ har CE som side, likt areal, og både G og H ligger på AE, må G=H. Altså skjærer medianene hverandre i ett og samme punkt.

 $\triangle ABC \sim \triangle FEC$ fordi de har parvis parallelle sider. Dermed er

$$\frac{AB}{FE} = \frac{BC}{CE} = 2$$

 $\triangle ABG \sim \triangle EFG$ fordi $\angle EGF$ og $\angle AGB$ er toppvinkler og $AB \parallel FE.$ Dermed er

$$\frac{GB}{FG} = \frac{AB}{FE} = 2$$

Tilsvarende kan det vises at

$$\frac{CG}{GD} = \frac{AG}{GE} = 2$$

0.11 Midtnormaler i trekanter (forklaring)

Gitt $\triangle ABC$ med midtpunktene D, E og F. Vi lar S være skjæringspunktet til de respektive midtnormalene til AC og AB. $\triangle AFS \sim \triangle CFS$ fordi begge er rettvinklede, begge har FS som korteste katet, og AF = FC. Tilsvarende er $\triangle ADS \sim \triangle BDS$. Følgelig er CS = AS = BS. Dette betyr at

- $\triangle BSC$ er likebeint, og da går midtnormalen til BC gjennom S.
- A, B og C må nødvendigvis ligge på sirkelen med sentrum S og radius AS = BS = CS

0.12 Halveringslinjer og innskrevet sirkel i trekanter (forklaring)

Gitt $\triangle ABC$. Vi lar S være skjæringspunktet til de respective halveringslinjene til $\angle BAC$ og $\angle CBA$. Videre plasserer vi D, E og F slik at $DS \perp AB$, $ES \perp BC$ og $FS \perp AC$. $\triangle ASD \cong \triangle ASF$ fordi begge er rettvinklede og har hypotenus AS, og $\angle DAS = \angle SAF$. Tilsvarende er $\triangle BSD \cong \triangle BSE$. Dermed er SE = SD = SF. Følgelig er F, C og E de respektive tangeringspunktene til AB, BC og AC og sirkelen med sentrum S og radius SE.

Videre har vi at $\triangle CSE \cong \triangle CSF$, fordi begge er rettvinklede og har hypotenus CS, og SF = SE. Altså er $\angle FCS = \angle ECS$, som betyr at CS ligger på halveringslinja til $\angle ACB$.

0.13 Tangent (forklaring)

Linja er en tangent til sirkelen $\Longrightarrow \overrightarrow{AS}$ står vinkelrett på linja

Vi antar at vinkelen mellom linja og \overrightarrow{AS} er ulik 90°. Da må det finnes et punkt B på linja slik at $\angle BAS = \angle SBA$, som betyr at $\triangle ASB$ er likebeint. Følgelig er AS = BS, og da AS er lik radien i sirkelen, må dette bety at B også ligger på sirkelen. Dette motsier det faktum at A er det eneste skjæringspunktet til sirkelen og linja, og dermed må vinkelen mellom linja og \overrightarrow{AS} være 90°.

Linja er en tangent til sirkelen $\Longleftarrow \overrightarrow{AS}$ står vinkelrett på linja

Gitt et vilkårlig punkt B, som ikke samsvarer med A, på linja. Da er BS hypotenusen i $\triangle ABC$. Dette innebærer at BS er større enn radien til sirkelen (BS > AS), og da kan B umulig ligge på sirkelen. Altså er A det eneste punktet som ligger på både linja og sirkelen, og dermed er linja en tangent til sirkelen.

0.6 Arealsetningen (forklaring)

Gitt to tilfeller av $\triangle ABC$, som vist i figuren under. Det éne hvor $\angle BAC \in (0^{\circ}, 90^{\circ}]$, det andre hvor $\angle BAC \in (90^{\circ}, 0^{\circ})$ og la h være høyden med grunnlinje AB.

Arealet T til $\triangle ABC$ er i begge tilfeller

$$T = \frac{1}{2}AB \cdot h$$

Av henholdsvis (1) og (3) har vi at $h = AC \cdot \sin \angle BAC$, og da er

$$T = \frac{1}{2}AB \cdot h = \frac{1}{2}AB \cdot AC \sin \angle BAC$$

0.8 Cosinussetningen (forklaring)

 $v \in (90^\circ, 180^\circ)$

Av Pytagoras' setning har vi at

$$x^2 = b^2 - h^2 (5)$$

og at

$$a^2 = (x+c)^2 + h^2 (6)$$

$$a^2 = x^2 + 2xc + c^2 + h^2 (7)$$

Ved å sette uttrykket for x^2 fra (5) inn i (7), får vi at

$$a^{2} = b^{2} - h^{2} + 2xc + c^{2} + h^{2}$$

$$a^{2} = b^{2} + c^{2} + 2xc$$
(8)

Av (4) har vi at $x = -b\cos v$, og da er

$$a^2 = b^2 + c^2 - 2bc\cos v$$

 $v \in [(0^\circ, 90^\circ]$

Dette tilfellet skiller seg ut fra tilfellet hvor $v \in (90^\circ, 180^\circ]$ på to måter:

- (i) I (6) får vi $(c-x)^2$ i steden for $(x+c)^2$. I (8) får vi da -2xc i steden for +2xc.
- (ii) Av (2) er $x = b \cos v$. Av punkt (ii) følger det da at

$$a^2 = b^2 + c^2 - 2bc\cos v$$

0.14 Sentral- og periferivinkel (forklaring)

Tilhørende periferi- og sentralvinkler kan deles inn i tre tilfeller.

i) En diameter i sirkelen er høyre eller venstre vinkelbein i begge vinklene

I figuren under er S sentrum i sirkelen, $\angle BAC = u$ en periferivinkel og $\angle BSC = v$ den tilhørende sentralvinkelen. Vi setter $\angle SCB = a$. $\angle ACS = \angle SAC = u$ og $\angle CBS = \angle SCB = a$ fordi både $\triangle ASC$ og $\triangle SBC$ er likebeinte.

Vi har at

$$2a = 180^{\circ} - v \tag{9}$$

$$2u + 2a = 180^{\circ} \tag{10}$$

Vi setter uttrykket for 2a fra (9) inn i (10):

$$2u + 180^{\circ} - v = 180^{\circ}$$
$$2u = v$$

ii) Vinklene ligger innenfor samme halvdel av sirkelen

I figuren under er u en periferivinkel og v den tilhørende sentralvinkelen. I tillegg har vi tegnet inn en diameter, som er med på å danne vinklene a og b. Både u og v ligger i sin helhet på samme side av denne diameteren.

Ettersom u + a er en periferivinkel, og v + b den tilhørende sentralvinkelen, vet vi av tilfelle 1 at

$$2(u+a) = v+b$$

Men ettersom a og b også er samhørende periferi- og sentralvinkler, er 2a=b. Det betyr at

$$2u + b = v + b$$
$$2u = v$$

iii) Vinklene ligger ikke innenfor samme halvdel av sirkelen

I figuren under er u en periferivinkel og v den tilhørende sentralvinkelen. I figuren til høyre har vi tegnet inn en diameter. Den deler u inn i vinklene a og c, og v inn i b og d.

a og cer begge periferivinkler, med henholdsvis b og d som tilhørende sentralvinkler. Av tilfelle i) har vi da at

$$2a = b$$

$$2c = d$$

Dermed er

$$2a + 2c = b + d$$
$$2(a + c) = v$$

$$2u = v$$