TOPOLOGIE

Ouverts et fermés

Solution 1

Motrons que E est fermé si et seulement si (u_n) n'est pas majorée.

• Supposons (u_n) non majorée et posons $U =]-\infty, u_0[\cup (\bigcup_{n=0}^{\infty}]u_n, u_{n+1}[)]$. Montrons que $\mathbb{R} \setminus E = U$. Soit $x \in U$. Si $x \in]-\infty, u_0[$, alors $x < u_0$ et $x \notin E$ car (u_n) est croissante. Sinon, il existe $n \in \mathbb{N}$ tel que $x \in]u_n, u_{n+1}[]$. A nouveau, $x \notin E$ par croissance de (u_n) . Soit maintenant $x \in \mathbb{R} \setminus E$. Comme (u_n) est strictement croissante, $x \in \mathbb{N}$ comprise entre deux termes consécutifs de la suite donc $x \in U$. Comme $x \in U$. Comme $x \in U$. Comme $x \in U$. Soit maintenant $x \in \mathbb{R} \setminus E$.

Supposons (u_n) majorée. Par conséquent, (u_n) converge vers une limite l. On ne peut avoir l ∈ E. Or (u_n) est une suite convergente d'éléments de E mais sa limite n'est pas dans E. E ne peut donc pas être fermé.

Solution 2

 $L'application \ \phi: \left\{ \begin{array}{ll} \mathcal{L}(E)^2 & \longrightarrow & \mathcal{L}(E) \\ (f,g) & \longmapsto & f \circ g \end{array} \right. \ \text{est continue. L'application} \ \psi: \mathcal{L}(E) \to \mathcal{L}(E)^2 \ \text{est \'egalement continue. Enfin, } Id_{\mathcal{L}(E)} \ \text{est clairement} \\ linéaire. \ Ainsi \ \phi \circ \psi - Id_{\mathcal{L}}(E). \ \text{On conclut en remarquant que l'ensemble des projecteurs de E est l'image réciproque du fermé } \{0\} \ \text{par l'application continue} \ \phi \circ \psi - Id_{\mathcal{L}}(E).$

Solution 3

1. La forme linéaire $\phi: f \in E \mapsto f(0)$ est continue puisque pour tout $f \in E$, $|f(0)| \leq ||f||_{\infty}$. De même, la forme linéaire $\psi: f \in E \mapsto \int_0^1 f(t) \, dt$ est également continue puisque pour tout $f \in E$, $|\int_0^1 f(t) \, ft| \leq ||f||_{\infty}$. On en déduit que $\phi^{-1}(\{0\})$ et $\psi^{-1}([1, +\infty[)$ sont fermés en tant qu'images réciproques de fermés par des applications continues. Enfin, A est fermé en tant qu'intersection de ces deux fermés.

2. Soit $f \in A$. Supposons $||f||_{\infty} \le 1$. Alors $|f(t)| \le 1$ pour tout $t \in [0,1]$. En particulier, $f \le 1$ sur [0,1] donc $\int_0^1 f(t) \, dt \le 1$. Mais puisque $f \in A$, $\int_0^1 f(t) \, dt \ge 1$. Finalement $\int_0^1 f(t) \, dt = 1$ ou encore $\int_0^1 (1-f(t)) \, dt = 0$. L'application 1-f est positive, continue et d'intérgrale nulle sur [0,1]: elle est donc nulle i.e. f est constante égale à 1, ce qui contredit le fait que f(0) = 0. On a donc montré par l'absurde que $||f||_{\infty} > 1$.

3. On vérifie que f_n est bien continue en α donc continue sur [0,1]. On a bien également $f_n(0) = 0$. Enfin, par la relation de Chasles,

$$\int_{0}^{1} f(t) dt = \int_{0}^{\alpha} \frac{1}{\alpha} \left(1 + \frac{1}{n} \right) t dt + \int_{\alpha}^{1} \left(1 + \frac{1}{n} \right) dt = \left(1 - \frac{\alpha}{2} \right) \left(1 + \frac{1}{n} \right)$$

Il suffit donc de choisir $\alpha = \frac{2}{n+1}$ pour avoir $\int_0^1 f_n(t) dt = 1$ de sorte que $f_n \in A$. On vérifie également que $\frac{2}{n+1} \in]0,1]$.

4. Puisque pour tout $f \in A$, $||f||_{\infty} > 1$, $d(0,A) \ge 1$. De plus, en définissant f_n comme dans la question précédente

$$d(0, A) \le ||f_n||_{\infty} = 1 + \frac{1}{n}$$

Par passage à la limite, $d(0, A) \le 1$. Finalement, d(0, A) = 1.

Solution 4

1. Posons $U_n = \{u_k, \ k \ge n\}$ pour tout $n \in \mathbb{N}$. Soit $\ell \in V$. Soit $n \in \mathbb{N}$. Alors ℓ est également une valeur d'adhérence de la suite $(u_k)_{k \ge n}$ et on en déduit que $\ell \in \overline{U_n}$. Ainsi $\ell \in \bigcap_{n \in \mathbb{N}} \overline{\{u_k, \ k \ge n\}}$. D'où l'inclusion $V \subset \bigcap_{n \in \mathbb{N}} \overline{\{u_k, \ k \ge n\}}$. Réciproquement, soit $\ell \in \bigcap_{n \in \mathbb{N}} \overline{\{u_k, \ k \ge n\}}$.

1

2. En déduire que V est fermé.

Solution 5

 \emptyset et E sont clairement des parties ouvertes et fermées de E. Soit A une partie ouverte et fermée E. Supposons A non vide et fixons alors $a \in A$. Soit alors $b \in B$. Considérons l'application

$$\varphi: t \in \mathbb{R} \mapsto (1-t)a + tb$$

On vérifie aisément que l'application φ est lipschitzienne :

$$\forall (s,t) \in [0,1]^2, \ \|\varphi(s) - \varphi(t)\| = |s - t| \|a - b\|$$

L'application φ est donc continue. L'ensemble

$$S = \{t \in [0, 1], \ \varphi(t) \in A\}$$

est une partie de \mathbb{R} non vide $(0 \in S)$ et majorée. Elle possède donc une borne supérieure $m \le 1$. De plus, $\varphi^{-1}(A)$ est à la fois ouvert et fermé car φ est continue. Ainsi $S = \varphi^{-1}(A) \cap [0,1]$ est fermé donc $m = \sup S \in S$. Comme $\varphi^{-1}(A)$ est ouvert, il existe $\varepsilon > 0$ tel que $]m - \varepsilon, m + \varepsilon[\subset \varphi^{-1}(A)]$. Si m < 1, alors $t = m + \frac{1}{2}\min\{\varepsilon, 1 - m\} \in \varphi^{-1}(A) \cap [0,1] = S$ et t > m, ce qui contredit le fait que m est la borne supérieure de S. Ainsi $m = 1 \in S$ donc $p = \varphi(1) \in A$. On a donc prouvé que p = A.

Solution 6

Posons φ : $u \in E \mapsto \sum_{n=0}^{+\infty} u_n$. φ est clairement linéaire et

$$\forall u \in E, \ |\varphi(u)| = \left| \sum_{n=0}^{+\infty} u_n \right| \le \sum_{n=0}^{+\infty} |u_n| = ||u||$$

Ainsi φ est continue par caractérisation fondamentale de la continuité des applications linéaires. Par ailleurs $F = \varphi^{-1}(\{1\})$ donc F est fermé en tant qu'image réciproque d'un fermé par une application continue.

Pour montrer que F n'est pas ouvert, on peut montrer que E \ F. Pour $k \in \mathbb{N}$, on définit la suite u_k en posant $u_n^k = \left(1\frac{1}{k+1}\right)\delta_{0,n}$. Alors $(u^k)_{k\in\mathbb{N}}$ est une suite d'éléments de E \ F. En posant $a_n = \delta_{0,n}$, $||u^k - a|| = \frac{1}{k+1}$ donc $(u^k)_{k\in\mathbb{N}}$ converge vers a qui est un élément de F. Par caractérisation séquentielle, E \ F n'est pas fermé donc F n'est pas ouvert.

REMARQUE. On peut aussi utiliser le résultat classique mais hors programme stipulant que si A est une partie ouverte et fermée d'un espace vectoriel E, alors $A = \emptyset$ ou A = E. Rappelons une démonstration de ce résultat. Soit donc A une telle partie et supposons $A \neq \emptyset$. Donnons-nous alors $a \in A$ et $x \in E$. Posons $\varphi : t \in [0,1] \mapsto (1-t)a+tx$. Comme φ est continue, $\varphi^{-1}(A)$ est une partie ouverte et fermée de [0,1]. De plus, $\varphi^{-1}(A)$ est non vide puisqu'elle contient 0. Elle admet donc une borne supérieure m. Si on suppose $m \neq 1$, alors il existe $\varepsilon > 0$ tel que $m + \varepsilon \in \varphi^{-1}(A)$ car $\varphi^{-1}(A)$ est ouverte. Ceci contredit alors le fait que $m = \sup \varphi^{-1}(A)$. Ainsi m = 1 et comme $\varphi^{-1}(A)$ est fermée, elle contient sa borne supérieure. Ainsi $1 \in \varphi^{-1}(A)$ i.e. $x \in A$.

Enfin, F est un sous-espace affine de E. En effet, en notant a la suite telle que $a_n = \delta_{n,0}$, alors $F = a + \text{Ker } \varphi$. Mais $\text{Ker } \varphi$ n'est pas nul (il contient par exemple la suite dont les deux premiers termes valent 1 et -1 et les autres sont nuls). Par conséquent, F un sous-espace affine non réduit à un point donc non borné : en notant u un élément non nul de $\text{Ker } \varphi$, $a + \lambda u \in E$ pour tout $\lambda \in \mathbb{R}$. Ainsi, pour tout $\lambda \in \mathbb{R}$, $\|a + \lambda u\| \ge |\lambda| \|u\| - \|a\|$ donc $\|a + \lambda u\| \xrightarrow[\lambda \to +\infty]{} + \infty$.

Solution 7

- 1. L'application $\varphi \colon f \in E \mapsto f(1)$ est une forme linéaire. De plus, pour tout $f \in E$, $|\varphi(f)| = |f(1)| \le ||f||_{\infty}$ donc φ est continue lorsque l'on munit E de la norme $||\dot{q}||_{\infty}$. Ainsi 0 est ouvert pour la norme $||\dot{q}||_{\infty}$ comme image réciproque de l'ouvert \mathbb{R}_+^* par l'application continue φ .
- **2.** L'application ψ : $f \in E \mapsto \int_0^1 f(t) dt$ est une forme linéaire. De plus, pour tout $f \in E$,

$$|\psi(f)| = \left| \int_0^1 f(t) \, dt \right| \le \int_0^1 |f(t)| \, dt = ||f||_1$$

Ainsi ψ est à nouveau continue si l'on unit E de la norme $\|\cdot\|_1$. Par conséquent, F est fermé pour la norme $\|\cdot\|_1$ comme image réciproque du fermé \mathbb{R}_- par l'application continue ψ .

Pour montrer que 0 n'est pas ouvert pour la norme ||·||₁, on va montrer que E \ O n'est pas fermé pour cette même norme. Posons pour n ∈ N*.

$$f_n: x \in [0,1] \mapsto \begin{cases} 1 & \text{si } 0 \le x \le 1 - \frac{1}{n} \\ n - nx & \text{sinon} \end{cases}$$

On vérifie aisément que $f_n \in E \setminus O$ pour tout $n \in \mathbb{N}^*$. De plus, en notant f la fonction constante égale à 1, pour tout $n \in \mathbb{N}^*$

$$||f - f_n|| = \frac{1}{2n}$$

Donc (f_n) converge vers f pour la norme $\|\cdot\|_1$ mais $f \in 0$. D'après la caractérisation séquentielle des fermés, $E \setminus O$ n'est pas fermé pour la norme $\|\cdot\|_1$ et O n'est donc pas ouvert pour cette norme.

Solution 8

- 1. Clairement, F ⊂ E et F est stable par combinaison linéaire donc F est un sous-espace vectoriel de E.
- **2.** Pour $p \in \mathbb{N}$, définissons la suite u^p par

$$\forall n \in \mathbb{N}, u_n^p = \begin{cases} \frac{1}{n+1} & \text{si } n \le p\\ 0 & \text{sinon} \end{cases}$$

Clairement, $u^p \in F$ pour tout $n \in \mathbb{N}$. Notons u la suite définie par

$$\forall n \in \mathbb{N}, \ u_n = \frac{1}{n+1}$$

Alors, pour tout $p \in \mathbb{N}$,

$$\|u - u_p\|_{\infty} = \frac{1}{p+2}$$

donc $(u^p)_{p\in\mathbb{N}}$ converge vers u mais $u\notin F$. Par caractérisation séquentielle, F n'est pas fermé dans E.

Soient $u \in F$ et $\varepsilon \in \mathbb{R}_+^*$. Définissons v en posant $v_n = u_n + \frac{\varepsilon}{2}$ pour tout $n \in \mathbb{N}$. Ainsi $v \ni nF$ mais $v \in B(u, \varepsilon)$ donc F n'est pas ouvert dans E.

Solution 9

- 1. Soit $(u^p)_{p\in\mathbb{N}}$ une suite d'éléments de A convergeant vers $u\in E$. Remarquons alors que pour tout $p\in\mathbb{N}$, $\lim_{n\to+\infty}u_n^p=u_n$. Or pour tout $(n,p)\in\mathbb{N}^2$, $u_{n+1}^p\geq u_n$ donc, en faisant tendre p vers l'infini, $u_{n+1}\geq u_n$. Ainsi $u\in A$ et donc A est fermé par caractérisation séquentielle.
- 2. Soit $(u^p)_{p\in\mathbb{N}}$ une suite d'éléments de B convergeant vers $u\in E$. Comme $(u^p)_{p\in\mathbb{N}}$ converge uniformément vers u,

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \lim_{p \to +\infty} u_n^p = \lim_{p \to +\infty} \lim_{n \to +\infty} u_n^p = \lim_{p \to +\infty} 0 = 0$$

d'après le théorème de la double limite (adapté aux suites). Ainsi $u \in B$ et B est fermé par caractérisation séquentielle.

- 3. Soit $(u^p)_{p\in\mathbb{N}}$ une suite d'éléments de C convergeant vers $u\in E$. Notons ℓ_p la limite de u^p . Comme $(u^p)_{p\in\mathbb{N}}$ converge uniformément vers u, la suite $(\ell_p)_{p\in\mathbb{N}}$ et u converge vers $\lim_{p\to+\infty}\ell_p$ d'après le théorème de la double limite. En particulier, $u\in C$ et C est fermé par caractérisation séquentielle.
- **4.** Soit $(u^p)_{p\in\mathbb{N}}$ une suite d'éléments de D convergeant vers $u\in E$. Soit $N\in\mathbb{N}$ et $\varepsilon>0$. Il existe $p\in\mathbb{N}$ tel que $\|u-u^p\|_{\infty}<\frac{\varepsilon}{2}$. Comme 0 est valeur d'adhérence de u^p , il existe un entier $n\geq N$ tel que $|u^p_n|<\frac{\varepsilon}{2}$. Alors

$$|u_n| \leq |u_n - u_n^p| + |u_n^p| \leq \|u - u_p\|_{\infty} + |u_n^p| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

donc 0 est valeur d'adhérence de u. Ainsi $u \in D$ et D est fermé par caractérisation séquentielle.

5. Définissons pour $p \in \mathbb{N}$ la suite u^p par

$$\forall n \in \mathbb{N}, \ u_n^p = \begin{cases} 1 & \text{si } p \mid n \\ 0 & \text{sinon} \end{cases}$$

 $S^p = \sum_{k=0}^p \frac{u^p}{2^p}$. Pour tout $p \in \mathbb{N}$, la suite S^p est périodique comme combinaison linéaire de suites périodiques (facile). La série $\sum_{p \in \mathbb{N}} \frac{u^p}{2^p}$ converge normalement et donc uniformément. Par conséquent, $(S^p)_{p \in \mathbb{N}}$ converge uniformément vers une suite S. Par ailleurs,

$$\forall n \in \mathbb{N}, \ \mathbf{S}_n = \sum_{p=0}^{+\infty} \frac{u_n^p}{2^p}$$

On montre que $S_1 = 0$ et que $S_n > 0$ pour tout $n \in \mathbb{N} \setminus \{1\}$. Ainsi S n'est pas périodique. Par caractérisation séquentielle, E n'est donc pas fermé.

Solution 10

- **1.** A est l'image réciproque de l'ouvert \mathbb{R}_+^* par l'application continue $(x,y) \mapsto e^{xy} (x+y)^2$ donc A est ouvert dans \mathbb{R}^2 .
- **2.** B est l'image réciproque du fermé \mathbb{R}_- par l'application continue $(x,y) \mapsto \ln(1+x^2+y^2) x y$ donc B est fermé dans \mathbb{R}^2 .
- 3. C est l'image réciproque du fermé $\{0\}$ par l'application continue $(x,y) \mapsto \sin(x+y) \sqrt{x^2+y^2}$ donc C est fermé dans \mathbb{R}^2 .

Adhérence et intérieur

Solution 11

Soit M une matrice trigonalisable de $\mathcal{M}_n(\mathbb{K})$. Il existe donc une matrice triangulaire supérieure T et une matrice inversible P telle que $M=PTP^{-1}$. Notons D la matrice diagonale dont les coefficients diagonaux sont $1,2,\ldots,n$. Par continuité de l'application $X\in\mathcal{M}_n(\mathbb{K})\mapsto PXP^{-1}$, la suite de terme général $P(T+\frac{1}{p}D)P^{-1}$ converge vers $PTP^{-1}=M$. De plus, pour p suffisamment grand, les coefficients diagonaux de $T+\frac{1}{p}D$ sont deux à deux distincts, ce qui prouve que $P(T+\frac{1}{p}D)P^{-1}$ est diagonalisable. On a ainsi construit une suite de matrices diagonalisables convergeant vers M. Ceci prouve que l'adhérence de l'ensemble des matrices diagonalisables contient l'ensemble des matrices trigonalisables. Dans le cas où $\mathbb{K}=\mathbb{C}$, c'est fini puisque toute matrice de $\mathcal{M}_n(\mathbb{C})$ est trigonalisable. Supposons maintenant $\mathbb{K}=\mathbb{R}$. Soit (M_p) une suite convergente de matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$. Notons M sa limite. Notons également χ_p le polynôme caractéristique de M. Montrons le lemme suggéré dans l'énoncé. Soit donc $P\in\mathbb{R}[X]$ scindé sur \mathbb{R} , unitaire et de degré n. Notons α_1,\ldots,α_n ses racines comptées avec multiplicités. Ainsi, pour tout $z\in\mathbb{C}$,

$$|P(z)| = \prod_{k=1}^{n} |z - \alpha_k| \ge \prod_{k=1}^{n} |\operatorname{Im}(z - \alpha_k)| = |\operatorname{Im}(z)|^n$$

Puisque les matrices M_p sont diagonalisables, leur polynômes caractéristiques χ_p sont scindés sur \mathbb{R} , unitaires et de degré n. Par conséquent, pour tout $p \in \mathbb{N}$ et tout $z \in \mathbb{C}$, $|\chi_p(z)| \ge |\operatorname{Im}(z)|^n$. Soit alors z une racine de χ (éventuellement complexe). Remarquons que $\lim_{p \to +\infty} \chi_p(z) = \chi(z)$ puisque les coefficients d'un polynôme caractéristique sont des fonctions polynomiales et donc continues des coefficients de la matrice. On a donc par passage à la limite, $0 = |\chi(z)| \ge |\operatorname{Im}(z)|$. Ainsi $\operatorname{Im}(z) = 0$ et z est réel. Les racines de χ sont toutes réelles, ce qui prouve que χ est scindé sur \mathbb{R} et donc que \mathbb{M} est trigonalisable dans $\mathcal{M}_n(\mathbb{R})$. Finalement, l'adhérence de l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$ est inclus dans l'ensemble des matrices trigonalisables de $\mathcal{M}_n(\mathbb{R})$.

Solution 12

Soient $(x, y) \in \overline{A}^2$ et $t \in [0, 1]$. Montrons que $z = (1 - t)x + ty \in \overline{A}$. Pour cela, donnons-nous r > 0 et montrons que $B(z, r) \cap A \neq \emptyset$. Puisque $(x, y) \in \overline{A}^2$, $B(x, r) \cap A \neq \emptyset$ et $B(y, r) \cap A \neq \emptyset$. Il existe donc $u \in B(x, r) \cap A$ et $v \in B(y, r) \cap A$. Posons w = (1 - t)u + tv. Par convexité de $A, w \in A$. De plus,

$$\|w - z\| = \|(1 - t)(u - x) + t(v - y)\| \le \|(1 - t)u\| + \|tv\| = (1 - t)\|u - x\| + t\|v - y\|$$

Puisque $u \in B(x, r)$ et $v \in B(y, r)$, ||u - x|| < r et ||v - y|| < r. On en déduit que ||w - z|| < r de sorte que $w \in B(z, r) \cap A$. Ainsi $w \in \overline{A}$. Ceci prouve que \overline{A} est convexe.

Soient (x,y)Ų et $t \in [0,1]$. Montrons que $z = (1-t)x + ty \in Å$. Puisque $x \in Å$ et yÅ, il existe $r_1 > 0$ et $r_2 > 0$ tels que $B(x,r_1) \subset A$ et $B(x,r_2) \subset A$. Posons alors $r = \min(r_1,r_2)$ et montrons que $B(z,r) \in A$. Soit donc $w \in B(z,r)$. On a donc $\|w-z\| < r$. Posons u = x + w - z et v = y + w - z. Alors $\|u-x\| = \|w-z\| < r \le r_1$ et $\|v-y\| = \|w-z\| < r \le r_2$ donc $u \in B(x,r_1) \subset A$ et $v \in B(y,r_2) \subset A$. De plus (1-t)u + tv = (1-t)x + ty + w - z = w donc $w \in A$ par convexité de A. Ceci prouve que $B(w,r) \subset A$ puis que A est convexe.

Solution 13

Dans la suite, on notera J_r la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont les coefficients «diagonaux» valent 1 (elle n'est évidemment définie que si $0 \le r \le \min(n,p)$). Cette matrice est clairement de rang r.

On notera également N_r le nombre de matrices carrées de taille r extraites que l'on peut extraire d'une matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ et Φ_r l'application qui à une matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ associe le N_r -uplet des déterminants de ces N_r matrices extraites.

On rappelle enfin que le rang d'une matrice est la taille maximale d'une matrice carré inversible extraite de cette matrice.

Etude de A_r

- $A_0 = \{0\}$ donc A_0 est fermé mais pas ouvert.
- Si $r > \min(n, p)$, $A_r = \emptyset$ donc A_r est ouvert et fermé.
- Si $1 \le r \le \min(n, p)$, la suite $(J_r/k)_{k \in \mathbb{N}^*}$ est à valeurs dans A_r et sa limite la matrice nulle n'est pas dans A_r . Ainsi A_r n'est pas fermé.
- Si r < min(n, p), la suite (J_r + ½E_{r+1,r+1})_{k∈N*} est à valeurs dans le complémentaire de A_r et sa limite J_r appartient à A_r. Le complémentaire de A_r n'est donc pas fermé, ce qui signifie que A_r n'est pas ouvert.
- Si $r = \min(n, p)$, A_r est l'image réciproque par l'application continue Φ_r de l'ouvert $\mathbb{R}^{N_r} \setminus \{(0, ..., 0)\}$. A_r est donc un ouvert.

Etude de B_r

- Si $r \ge \min(n, p)$, alors $B_r = \mathcal{M}_{n,p}(\mathbb{K})$ donc B_r est ouvert et fermé.
- Si $r < \min(n, p)$, B_r n'est pas ouvert en exploitant le même argument que pour A_r .
- Si $r < \min(n, p)$, B_r est le complémentaire de C_{r+1} qui est ouvert donc B_r est fermé.

Etude de C_r

- $C_0 = \mathcal{M}_{n,p}(\mathbb{K})$ donc C_0 est fermé et ouvert.
- Si $r > \min(n, p)$, alors $C_r = \emptyset$ donc C_r est ouvert et fermé.
- Si $r \le \min(n, p)$, C_r est l'image réciproque par l'application continue Φ_r de l'ouvert $\mathbb{R}^{N_r} \setminus \{(0, ..., 0)\}$. C_r est donc un ouvert.
- Si $1 \le r \le \min(n, p)$, C_r est le complémentaire de B_{r-1} qui n'est pas ouvert donc donc C_r n'est pas fermé.

Solution 14

- 1. Soit $P \in A$. Comme P est scindé à racines simples, P s'annule n fois sur \mathbb{R} en changeant de signes. Il existe donc des réels $\beta_1 < \beta_2 < \cdots < \beta_{n+1}$ tels que $P(\beta_i)P(\beta_{i+1}) < 0$ pour tout $i \in [1,n]$. L'application $\Phi : Q \in \mathbb{R}_n[X] \mapsto (Q(\beta_1),\dots,Q(\beta_{n+1}))$ est continue car elle est linéaire et que $\mathbb{R}_n[X]$ est de dimension finie. Munissons \mathbb{R}_{n+1} de la norme uniforme et notons $\varepsilon = \min_{1 \le i \le n+1} |P(\beta_i)|$ ainsi que $P(\beta_i)$ la boule ouverte de centre $P(\beta_i)$ est du même signe que $P(\beta_i)$ par définition de $P(\beta_i)$ au nouvert par une application continue. De plus, si $P(\beta_i)$ est du même signe que $P(\beta_i)$ par définition de $P(\beta_i)$ par définit de $P(\beta_i)$ par définition de $P(\beta_i)$ par définition de $P(\beta_i$
- 2. On va montrer que l'adhérence de A est la réunion de l'ensemble des polynômes de degré n scindés et du singleton {0}.

- 1. Supposons que F est ouvert. Comme $0_E \in F$, il existe $r \in \mathbb{R}_+^*$ tel que $B(0_E, r) \subset F$. Soit alors $x \in E$. Si $x = 0_E$, alors $x \in F$. Sinon $\frac{rx}{\|2x\|} \in B(0_E, r) \subset F$. Ainsi $x = \frac{2}{r} \cdot \frac{rx}{\|2x\|} \in F$. Ainsi F = E.
- **2.** Supposons que $\mathring{F} \neq \emptyset$. Il existe donc $a \in F$ et $r \in \mathbb{R}_+^*$ tel que $B(a,r) \subset F$. Mais F est stable par la translation $x \mapsto x a$ donc $B(0_E, r) \subset F$. En raisonnant comme dans la question précédente, F = E.

Solution 16

Rappelons que pour toute partie A de E, $Fr(A) = \overline{A} \cap \overline{E} \setminus \overline{A}$. Notamment Fr(A) est fermé comme intersection de deux fermés. Comme F est fermé,

$$Fr(F) = \overline{F} \cap \overline{E \setminus F} = F \cap \overline{E \setminus F}$$

Comme Fr(F) est également fermé,

$$Fr(Fr(F)) = \overline{Fr F} \cap \overline{E \setminus Fr(F)} = Fr(F) \cap \overline{E \setminus Fr(F)}$$

Il suffit donc de montrer que $Fr(F) \subset \overline{E \setminus Fr(F)}$ pour conclure.

La première égalité montre que $Fr(F) \subset F$ donc $E \setminus F \subset E \setminus Fr(F)$. Par conséquent, $\overline{E \setminus F} \subset \overline{E \setminus Fr(F)}$.

On en déduit que

$$\operatorname{Fr}(F) \cap \overline{E \setminus F} \subset \overline{E \setminus F} \subset \overline{E \setminus \operatorname{Fr}(F)}$$

ce qui permet de conclure.

Densité

Solution 17

1. On munit $\mathcal{C}([0,1])$ du produit scalaire $(f,g) \mapsto \int_0^1 f(t)g(t) dt$. Notons \mathcal{P} l'ensemble des fonctions polynomiales à coefficients réels définies sur [0, 1].

Par linéarité de l'intégrale, pour tout $P \in \mathcal{P}$, $\int_0^1 f(t)P(t) dt = 0$ i.e. $\langle f, P \rangle = 0$.

Le théorème de Stone-Weierstrass nous dit que \mathcal{P} est dense dans $\mathcal{C}([0,1])$ pour la norme infinie. Or la norme L² associée au produit scalaire défini précédemment est dominée par la norme infinie donc \mathcal{P} est aussi dense dans $\mathcal{C}([0,1])$ pour la norme L^2 . On en déduit que pour tout $g \in \mathcal{C}([0,1]), \langle f, g \rangle = 0$. Ainsi $f \in \mathcal{C}([0,1])^{\perp} = \{0\}$ i.e. f = 0.

Réciproquement la fonction nulle vérifie bien la condition de l'énoncé.

2. On a pour tout $n \in \mathbb{N}$, $\int_0^1 f(t)t^{n_0+n} dt = 0$. D'après la question précédente, $t \mapsto t^{n_0}f(t)$ est nulle. On en déduit donc que pour $t \in]0,1], f(t) = 0$ puis que f est nulle sur [0,1] par continuité en 0.

Solution 18

On raisonne par récurrence sur *n*.

Soit A une partie convexe et dense de \mathbb{R} . A est donc un intervalle vérifiant $\bar{A} = \mathbb{R}$. On a donc sup $A = \sup \bar{A} = +\infty$ et inf $A = \inf \bar{A} = -\infty$. Ainsi $A = \mathbb{R}$.

Supposons la propriété à montrer vraie à un rang $n-1 \ge 1$. Soit alors A une partie convexe et dense de \mathbb{R}^n . Soit H un hyperplan de \mathbb{R}^n . On va montrer que $A \cap H$ est une partie convexe et dense de H.

D'abord $A \cap H$ est convexe comme intersection de deux convexes.

On munit alors \mathbb{R}^n de sa structure euclidienne canonique et on note u un vecteur unitaire normal à H. Soit $x \in H$ et $\varepsilon > 0$. Posons $a = x + \frac{\varepsilon}{2}u$. Par densité de A dans \mathbb{R}^n , il existe $b \in \mathbb{R}^n$ tel que $||b - a|| < \frac{\varepsilon}{2}$. On a alors en utilisant l'inégalité de Cauchy-Schwarz et le fait que ||u|| = 1:

$$\langle b,u\rangle = \langle b-a,u\rangle + \langle a,u\rangle \geq -\|b-a\|\|u\| + \frac{\varepsilon}{2}\|u\|^2 > 0$$

Posons $c = x - \frac{\varepsilon}{2}u$. Par densité de A dans \mathbb{R}^n , il existe $d \in \mathbb{R}^n$ tel que $\|d - c\| < \frac{\varepsilon}{2}$. On a alors en utilisant l'inégalité de Cauchy-Schwarz et le fait que ||u|| = 1:

$$\langle d, u \rangle = \langle d - c, u \rangle + \langle c, u \rangle \le \|d - c\| \|u\| - \frac{\varepsilon}{2} \|u\|^2 < 0$$

Par le théorème des valeurs intermédiaires, l'application $t \mapsto \langle (1-t)b+td,u \rangle$ s'annule en un point $t_0 \in]0,1[$. Posons $e=(1-t_0)b+t_0d$. On a donc $e \in H$ et $e \in A$ par convexité de A. De plus,

$$||b-x|| \le ||b-a|| + ||a-x|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

et

$$||d - x|| \le ||d - c|| + ||c - x|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Par inégalité triangulaire,

$$||e - x|| = (\le (1 - t_0)||b - x|| + t_0||d - x|| < (1 - t_0)\varepsilon + t_0\varepsilon = \varepsilon$$

Ceci achève de prouver la densité de $A \cap H$ dans H.

D'après notre hypothèse de récurrence, $A \cap H = H$. Or \mathbb{R}^n est égal à la réunion de ses hyperplans. Donc $A = \mathbb{R}^n$.

REMARQUE. L'énoncé est faux en dimension infinie. $\mathbb{R}[X]$ est une partie convexe (en tant que sous-espace vectoriel) et dense (d'après le théorème de Stone-Weierstrass) de $\mathcal{C}([0,1])$ muni de la topologie de la convergence uniforme. Pourtant, $\mathbb{R}[X]$ est d'intérieur vide. En effet, $\mathbb{R}[X]$ est l'union des $\mathbb{R}_n[X]$ qui sont des fermés d'intérieur vide en tant que sous-espaces vectoriels de dimension finie. On conclut par le théorème de Baire.

Solution 19

Si $\alpha_1, \dots, \alpha_n$ et β_1, \dots, β_n sont des réels strictement positifs, on montre que

$$\det\left(\left(\frac{1}{\alpha_i + \beta_j}\right)_{1 \le i, j \le n}\right) = \frac{\left(\prod_{1 \le i < j \le n} \alpha_i - \alpha_j\right)\left(\prod_{1 \le i < j \le n} \beta_i - \beta_j\right)}{\prod_{1 \le i, j \le n} \alpha_i + \beta_j} \tag{1}$$

Pour des vecteurs x_1, \ldots, x_n d'un espace préhilbertien E, on pose $Gram(x_1, \ldots, x_n) = \det((x_i|x_j)_{1 \le i,j \le n})$. On montre que si (u_1, \ldots, u_n) est une famille libre de vecteurs de E et u un vecteur de E, alors

$$d(x, \text{vect}(u_1, \dots, u_n))^2 = \frac{Gram(u_1, \dots, u_n, u)}{Gram(u_1, \dots, u_n)}$$
(2)

Pour $\alpha \in \mathbb{R}_+$, on notera $f_{\alpha} \in \mathcal{C}([0,1],\mathbb{R})$ la fonction $x \mapsto x^{\alpha}$. On a donc pour $\alpha, \beta \in \mathbb{R}_+$, $(f_{\alpha}|f_{\beta}) = \frac{1}{\alpha + \beta + 1}$.

 $(i) \implies (ii)$ Comme la suite (a_n) est croissante, soit elle converge, soit elle diverge vers $+\infty$. Si elle converge, la série $\sum_{n \in \mathbb{N}} \frac{1}{a_n}$ est grossièrement divergente. Supposons donc que la suite (a_n) diverge vers $+\infty$. En utilisant (1) et (2), on montre que

$$d_n^2 = d(f_0, \text{vect}(f_{a_0}, \dots, f_{a_n}))^2 = \frac{\prod_{i=0}^n a_i^2}{\prod_{i=0}^n (1 + a_i)^2} = \left(\prod_{i=0}^n \frac{a_i}{1 + a_i}\right)^2$$

et donc

$$d_n = \prod_{i=0}^n \frac{a_i}{1 + a_i}$$

Comme vect $((f_{a_n})_{n\in\mathbb{N}})$ est dense dans $\mathcal{C}([0,1],\mathbb{R}),(d_n)$ converge vers 0. En passant au logarithme, on en déduit que la série $\sum_{n\in\mathbb{N}}\ln\left(1+\frac{1}{a_n}\right)$ diverge vers $+\infty$. Puisque (a_n) diverge vers $+\infty$, $\ln\left(1+\frac{1}{a_n}\right)\sim\frac{1}{n}$ et la série $\sum_{n\in\mathbb{N}}\frac{1}{a_n}$ diverge donc également.

 $(ii) \implies (i)$ Fixons $p \in \mathbb{N}$. En utilisant à nouveau (1) et (2), on trouve

$$d_{p,n}^2 = d(f_p, \text{vect}(f_{a_0}, \dots, f_{a_n})^2 = \frac{1}{2p+1} \left(\prod_{i=0}^n \frac{a_i - p}{1+p+a_i} \right)^2$$

et donc

$$d_{p,n} = \frac{1}{\sqrt{2p+1}} \prod_{i=0}^{n} \frac{|a_i - p|}{1 + p + a_i}$$

S'il existe $i \in \mathbb{N}$ tel que $a_i = p$, alors $d_{p,n} = 0$ pour tout $n \ge i$. Dans le cas contraire, on a

$$\ln d_{p,n} = -\frac{1}{2}\ln(2p+1) + \sum_{i=0}^{n} \ln\left|\frac{a_i - p}{1 + p + a_i}\right|$$

On distingue à nouveau plusieurs cas :

- Si (a_n) converge vers un réel l, on montre que la suite $\left(\left|\frac{a_n-p}{1+p+a_n}\right|\right)_{n\in\mathbb{N}}$ converge vers un réel positif strictement inférieur à 1 $(\text{distinguer les cas } l \leq p \text{ et } l > p). \text{ La série } \sum_{n \in \mathbb{N}} \ln \left| \frac{a_n - p}{1 + p + a_n} \right| \text{ diverge donc grossièrement vers } -\infty. \text{ On en déduit que } d_{p,n} \underset{n \to +\infty}{\longrightarrow}$
- Si (a_n) diverge vers $+\infty$, alors

$$\ln \left| \frac{a_n - p}{1 + p + a_n} \right| \sim -\frac{2p + 1}{1 + p + a_n} \sim -\frac{2p + 1}{a_n}$$

Comme la série $\sum_{n\in\mathbb{N}}\frac{1}{a_n}$ diverge vers $+\infty$, la série $\sum_{n\in\mathbb{N}}\ln\left|\frac{a_n-p}{1+p+a_n}\right|$ diverge également vers $+\infty$ et, à nouveau, $d_{p,n}\underset{n\to+\infty}{\longrightarrow}0$.

Bref, dans tous les cas $d_{p,n}$ tend vers 0 lorsque n tend vers $+\infty$.

Soit maintenant $\varepsilon > 0$ et $f \in \mathcal{C}([0,1],\mathbb{R})$. Par le théorème de Weierstrass, il existe un polynôme P à coefficients réels tels que $||f-P||_{\infty} < \frac{\varepsilon}{2}$. On montre facilement que $||f-P||_{\infty} < \frac{\varepsilon}{2}$. Si P est nul c'est fini, puisqu'alors P appartient à vect $((f_{a_n})_{n\in\mathbb{N}})$. Sinon, posons $P = \sum_{p=0}^{n} a_p f_p$. Posons $M = \max\{|a_p|, 0 \le p \le n\}$. Pour $p \in [0, n]$, il existe $g_p \in \text{vect}((f_{a_n})_{n \in \mathbb{N}})$ tel que $||f_p - g_p||_2 < n$ $\frac{\varepsilon}{2\mathrm{M}(n+1)}$. Posons alors $g=\sum_{p=0}^n a_pg_p$. Alors, par inégalité triangulaire

$$\|P - g\|_2 \le \sum_{p=0}^n |a_p| \|f_p - g_p\|_2 < \frac{\varepsilon}{2}$$

A nouveau par inégalité triangulaire

$$||f - g||_2 \le ||f - P||_2 + ||P - g||_2 < \varepsilon$$

ce qui prouve la densité de vect $((f_{a_n})_{n\in\mathbb{N}})$.

Solution 20

Remarquons déjà que, par linéarité de l'intégrale, $\int_a^b f(t)P(t) dt = 0$ pour toute fonction polyomiale P. Le théorème de Weierstrass permet d'affirmer qu'il existe une suite (P_n) de fonctions polynomiales convergeant uniformément vers f sur [a, b]. De plus,

$$\forall n \in \mathbb{N}, \int_{a}^{b} f(t)^{2} dt = \int_{a}^{b} f(t)(f(t) - P_{n}(t)) dt + \int_{a}^{b} f(t)P_{n}(t) dt = \int_{a}^{b} f(t)(f(t) - P_{n}(t)) dt$$

Comme f^2 est positive

$$\int_{a}^{b} f(t)^{2} dt = \left| \int_{a}^{b} f(t)^{2} dt \right| = \left| \int_{a}^{b} f(t)(f(t) - P_{n}(t)) dt \right| \leq \int_{a}^{b} |f(t)| \cdot |f(t) - P_{n}(t)| dt \leq \|f - P_{n}\|_{\infty} \int_{a}^{b} |f(t)| dt$$

Comme (P_n) converge uniformément vers f, $\lim_{n\to+\infty} \|f-P_n\|_{\infty} = 0$ puis $\int_a^b f(t)^2 dt = 0$. Or f^2 est continue et positive sur [a,b] donc elle y est nulle. f est donc également nulle sur [a, b].

- 1. Tout d'abord $0 \in F \subset \overline{F}$. Soient $(x,y) \in \overline{F}^2$ et $(\lambda,\mu) \in \mathbb{K}^2$. Il existe donc deux suites (x_n) et (y_n) à valeurs dans F convergeant respectivement vers x et y. Alors $(\lambda x_n + \mu y_n)$ est une suite à valeurs dans F (puisque c'est un sous-espace vectoriel de E) convergeant vers $\lambda x + \mu y$. Ainsi $\lambda x + \mu y \in \overline{F}$. Par conséquent, \overline{F} est un sous-espace vectoriel de E.
- **2.** On a H $\subset \overline{H} \subset E$. Supposons H non fermé i.e. $\overline{H} \neq H$. Il existe donc $u \in \overline{H} \setminus H$. Soit alors $x \in E$. Puisque H est un hyperplan, c'est le noyau d'une forme linéaire non nulle φ sur E. Puisque $u \notin H$, $\varphi(u) \neq 0$. Posons alors $\lambda = \frac{\varphi(x)}{\varphi(u)}$ et $h = x - \lambda u$. Alors $\varphi(h) = 0$ donc $h \in H \subset \overline{H}$. De plus, $u \in \overline{H}$. Puisque \overline{H} est un sous-espace vectoriel de E, $x = h + \lambda u \in \overline{H}$. Finalement, $E = \overline{H}$ i.e. H est dense dans E.

Solution 22

On notera $\|\cdot\|$ une norme sur E (peu importe laquelle, elles sont toutes équivalentes puisque E est de dimension finie).

1. Il existe des réels a_0, \dots, a_n tels que $a = a_0 < a_1 < \dots < a_n = b$ et φ est constante sur chaque intervalle $]a_k, a_{k+1}[$. Notons c_k la valeur de φ sur $]a_k, a_{k+1}[$. Alors, pour $\lambda \in \mathbb{R}^*$,

$$\int_a^b e^{i\lambda t} \varphi(t) dt = \sum_{k=0}^{n-1} c_k \int_{a_k}^{a_{k+1}} e^{i\lambda t} dt = \sum_{k=0}^{n-1} \frac{c_k}{i\lambda} \left(e^{i\lambda a_{k+1}} - e^{i\lambda a_k} \right)$$

Puisque $x \mapsto e^{i\lambda x}$ est bornée, on en déduit sans peine que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} e^{i\lambda t} \varphi(t) \, dt = 0$$

2. Il existe une suite (φ_n) de fonctions en escalier convergeant uniformément vers f sur [a,b]. Posons $\Phi_n: \lambda \mapsto \int_a^b e^{i\lambda t} \varphi_n(t) dt$ et $F: \lambda \mapsto \int_a^b e^{i\lambda t} F(t) dt$. Pour tout $\lambda \in \mathbb{R}$,

$$\|\mathbf{F}(\lambda) - \Phi_n(\lambda)\| \le \int_a^b |e^{i\lambda t}| \cdot \|f(t) - \varphi_n(t)\| \, dt \le (b - a)\|f - \varphi_n\|_{\infty}$$

et donc

$$\|\mathbf{F} - \Phi_n\|_{\infty} \le (b-a)\|f - \varphi_n\|_{\infty}$$

REMARQUE. La première norme uniforme est une norme uniforme sur \mathbb{R} tandis que la seconde est une norme uniforme sur [a, b].

Puisque (φ_n) converge uniformément vers f sur [a,b], l'inégalité précédente montre que (Φ_n) converge uniformément vers F sur \mathbb{R} . D'après le théorème de la double limite,

$$\lim_{\lambda \to +\infty} F(\lambda) = \lim_{n \to +\infty} \lim_{\lambda \to +\infty} \Phi_n(\lambda)$$

D'après la question précédente, $\lim_{\lambda \to +\infty} \Phi_n(\lambda) = 0$ pour tout $n \in \mathbb{N}$. Ainsi $\lim_{\lambda \to +\infty} F(\lambda) = 0$, ce qui répond à la question.

3. Fixons $\varepsilon > 0$. Puisque f est intégrable, les intégrales $\int_0^{+\infty} \|f(t)\| \, \mathrm{d}t$ et $\int_{-\infty}^0 \|f(t)\| \, \mathrm{d}t$ convergent. Ainsi $\lim_{b \to +\infty} \int_b^{+\infty} \|f(t)\| \, \mathrm{d}t = 0$ et $\lim_{a \to -\infty} \int_{-\infty}^a \|f(t)\| \, \mathrm{d}t = 0$. Il existe donc des réels a et b tels que a < b, $\int_b^{+\infty} \|f(t)\| \, \mathrm{d}t \le \frac{\varepsilon}{3}$ et $\int_{-\infty}^a \|f(t)\| \, \mathrm{d}t \le \frac{\varepsilon}{3}$. D'après la question précédente, $\lim_{k \to +\infty} \int_a^b e^{i\lambda t} f(t) \, \mathrm{d}t = 0$. Il existe donc $\lambda_0 \in \mathbb{R}$ tel que

$$\forall \lambda \geq \lambda_0, \left| \int_a^b e^{i\lambda t} f(t) dt \right| \leq \frac{\varepsilon}{3}$$

Soit donc $\lambda \geq \lambda_0$.

$$\left| \int_{-\infty}^{+\infty} e^{i\lambda t} f(t) \, dt \right| \le \left| \int_{-\infty}^{a} e^{i\lambda t} f(t) \, dt \right| + \left| \int_{a}^{b} e^{i\lambda t} f(t) \, dt \right| + \left| \int_{b}^{+\infty} e^{i\lambda t} f(t) \, dt \right|$$

$$\le \int_{-\infty}^{a} \|f(t)\| \, dt + \frac{\varepsilon}{3} + \int_{a}^{+\infty} \|f(t)\| \, dt \le \varepsilon$$

Ceci signifie que

$$\lim_{\lambda \to +\infty} \int_{-\infty}^{\infty} e^{i\lambda t} f(t) \, dt = 0$$

1. Soit $M \in \mathcal{M}_n(\mathbb{C})$. M est alors trigonalisable : il existe $P \in GL_n(\mathbb{C})$ et $T \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure telle que $M = PTP^{-1}$. Notons $D \in \mathcal{M}_n(\mathbb{C})$ la matrice diagonale dont les coefficients diagonaux sont 1, 1/2, ..., 1/n.

Si tous les coefficients diagonaux de T sont égaux, posons $T_k = T + \frac{1}{k}D$ pour $k \in \mathbb{N}^*$. T_k est triangulaire et tous ses coefficients diagonaux sont deux à deux distincts donc T_k est diagonalisable. De plus, (T_k) converge vers T. En posant $M_k = PT_kP^{-1}$, les M_k sont également diagonalisables et, par continuité du produit matriciel, (M_k) converge vers M.

Si les coefficients diagonaux de A ne sont pas tous égaux, posons

$$\alpha = \min\{|T_{i,i} - T_{j,j}|, (i,j) \in [1, n]^2, T_{i,i} \neq T_{i,j}\} > 0$$

Posons $T_k = T + \frac{\alpha}{k}D$. Soit $(i, j) \in [1, n]^2$ tel que $i \neq j$.

- Si $T_{i,i} = T_{j,j}$, alors $(T_k)_{i,i} (T_k)_{k,k} = \frac{\alpha}{k} \left(\frac{1}{i} \frac{1}{i}\right) \neq 0$.
- Si $T_{i,i} \neq T_{i,i}$, alors, par inégalité triangulaire,

$$|(T_k)_{i,i} - (T_k)_{j,j}| = \left|T_{i,i} - T_{j,j} + \frac{\alpha}{ik} - \frac{\alpha}{ik}\right| \ge |T_{i,i} - T_{j,j}| - \frac{\alpha}{k} \left|\frac{1}{i} - \frac{1}{i}\right| > 0$$

$$\operatorname{car} |T_{i,i} - T_{j,j}| \ge \alpha, \frac{1}{k} \le 1 \text{ et } \left| \frac{1}{i} - \frac{1}{i} \right| < 1.$$

 T_k est donc triangulaire à coefficients diagonaux distincts et on conclut comme précédemment que (M_k) est une suite à valeurs dans $\mathcal{D}_n(\mathbb{K})$ convergeant vers M.

Ainsi on a montré que toute matrice de $M_n(\mathbb{C})$ était limite d'une suite de matrices de $\mathcal{D}_n(\mathbb{C})$ donc $\mathcal{D}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.

2. a. Supposons que P est scindé dans $\mathbb{R}[X]$. Il existe donc des réels $\lambda_1, \ldots, \lambda_d$ tels que $P = \prod_{k=1}^d (X - \lambda_k)$. Soit $z \in \mathbb{C}$.

$$|P(z)| = \prod_{k=1}^{d} |z - \lambda_k|$$

Or pour tout $k \in [1, d]$,

$$|z - \lambda_k| \ge |\operatorname{Im}(z - \lambda_k)| = |\operatorname{Im}(z)| \ge 0$$

 $\operatorname{car} \lambda_k \in \mathbb{R}$. On en déduit que $|P(z)| \ge |\operatorname{Im}(z)|^d$.

Inversement, supposons que

$$\forall z \in \mathbb{C}, |P(z)| \ge |\operatorname{Im}(z)|^d$$

Si $z \notin \mathbb{R}$, on a donc |P(z)| > 0 et donc $P(z) \neq 0$. Les racines de P sont donc toutes réelles. P est donc scindé dans $\mathbb{R}[X]$.

b. En procédant comme dans le cas complexe, on montre que <u>toute</u> matrice de $\mathcal{T}_n(\mathbb{R})$ est limite d'une suite à valeurs dans $\mathcal{D}_n(\mathbb{R})$. Ainsi $\mathcal{T}_n(\mathbb{R}) \subset \overline{\mathbb{D}_n(\mathbb{R})}$. Par ailleurs, $\mathcal{D}_n(\mathbb{R}) \subset \mathcal{T}_n(\mathbb{R})$ donc $\overline{\mathcal{D}_n(\mathbb{R})} \subset \overline{\mathcal{T}_n(\mathbb{R})}$. Il suffit alors de montrer que $\mathcal{T}_n(\mathbb{R})$ est fermé pour conclure.

Soit (T_k) une suite de matrices de $\mathcal{T}_n(\mathbb{R})$ convergant vers T. Puisque les T_k sont trigonalisables dans $\mathcal{M}_n(\mathbb{R})$, les χ_{T_k} sont scindés dans $\mathbb{R}[X]$. D'après la question précédente, on a alors

$$\forall k \in \mathbb{N}, \ \forall z \in \mathbb{C}, \ |\chi_{T_k}(z)| \ge |z|^n$$

Fixons $z \in \mathbb{C}$. L'application $M \mapsto \chi_M$ est continue puisque chaque coefficient de χ_M est polynomial en les coefficients de M. En passant à la limite dans l'inégalité précédente, on obtient alors $|\chi_T(z)| \ge |z|^n$. D'après la question précédente, χ_T est scindé dans $\mathbb{R}[X]$ et T est donc trigonalisable dans $\mathcal{M}_n(\mathbb{R})$. Ceci prouve donc que $\mathcal{T}_n(\mathbb{R})$ est fermé.

- 1. φ est continue sur $\mathcal{M}_2(\mathbb{R})$ car polynomiale en les coefficients de M. Remarquons que φ est l'application qui à une matrice associe le discriminant de son polynôme caractéristique.
- 2. M est trigonalisable dans $\mathcal{M}_2(\mathbb{R})$ si et seulement si χ_M est scindé dans $\mathbb{R}[X]$, ce qui équivaut à $\varphi(M) \geq 0$ puisque $\varphi(M)$ est le discriminant de χ_M .

3. Soit $A \in \mathcal{M}_2(\mathbb{R})$ une matrice de valeurs propres complexes, par exemple $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Alors $\varphi(A) < 0$. Si A était limite d'une suite de matrices diagonalisables (A_k) , on aurait $\varphi(A_k) \geq 0$ pour tout $k \in \mathbb{N}$. Par continuité de φ , $\lim_{k \to +\infty} \varphi(A_k) = \varphi(A) < 0$ mais, par passage à la limite, $\lim_{k \to +\infty} \varphi(A_k) \geq 0$. On obtient donc une contradiction. Ainsi $\mathcal{D}_2(\mathbb{R})$ n'est pas dense dans $\mathcal{M}_2(\mathbb{R})$.

4. On a déjà $\mathcal{D}_2(\mathbb{R}) \subset \mathcal{T}_2(\mathbb{R})$ donc $\overline{\mathcal{D}_2(\mathbb{R})} \subset \overline{\mathcal{T}_2(\mathbb{R})}$. De plus, on a vu que $\mathcal{T}_2(\mathbb{R})$ est l'image réciproque du fermé \mathbb{R}_+ par l'application continue φ donc $\mathcal{T}_2(\mathbb{R})$ est fermé i.e. $\overline{\mathcal{T}_2(\mathbb{R})} = \mathcal{T}_2(\mathbb{R})$. Ainsi $\overline{\mathcal{D}_2(\mathbb{R})} \subset \mathcal{T}_2(\mathbb{R})$.

Inversement, soit $M \in \mathcal{T}_2(\mathbb{R})$. Il existe donc $P \in GL_2(\mathbb{R})$ telle que $T = P^{-1}MP$ soit triangulaire. En posant $T_k = T + \begin{pmatrix} \frac{1}{k} & 0 \\ 0 & \frac{2}{k} \end{pmatrix}$, T_k

est triangulaire et ses coefficients diagonaux sont distincts au moins à partir d'un certain rang. Les matrices $M_k = PT_kP^{-1}$ sont donc diagonalisables à <u>partir</u> d'un certain rang et la suite (M_k) converge vers M par continuité du produit matriciel. Donc $M \in \mathcal{D}_2(\mathbb{R})$. Par double inclusion, $\mathcal{D}_2(\mathbb{R}) = \mathcal{F}_2(\mathbb{R})$.

Solution 25

Soit $a \in E$. Comme U est dense dans E, il existe $u \in U$ et $r_1 > 0$ tels que $B(a,r) \cap U \neq \emptyset$. Soit alors $u \in B(a,r) \cap U$. Mais $B(a,r) \cap U$ est ouvert comme intersection de deux ouverts. Il existe donc $\varepsilon > 0$ tel que $B(u,\varepsilon) \subset B(a,r) \cap U$. Mais comme V est dense dans E, $B(u,\varepsilon) \cap V \neq \emptyset$. A fortiori, $B(a,r) \cap U \cap V \neq \emptyset$. Ceci prouve que $U \cap V$ est dense dans E.

Solution 26

1. Pour tout $\lambda \in \mathbb{K}$;

$$\chi_{AB}(\lambda) = \det(\lambda I_n - AB) = \det(A(\lambda A^{-1} - B)) = \det(A) \det(\lambda A^{-1} - B) = \det(\lambda A^{-1} - B) \det(A) = \det(\lambda I_n - BA) = \det(\lambda I_n - BA)$$

2. Fixons $B \in \mathcal{M}_n(\mathbb{R})$. Les applications $A \mapsto \chi_{AB}$ et $A \mapsto \chi_{BA}$ sont continues : les coefficients des deux polynômes caractéristiques χ_{AB} et χ_{BA} sont polynomiaux en les coefficients de A. La question précédente montre que ces deux applications coïncident sur $GL_n(\mathbb{K})$. Or on montre classiquement que $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$. On en déduit que $A \mapsto \chi_{AB}$ et $A \mapsto \chi_{BA}$ coïncident sur $\mathcal{M}_n(\mathbb{K})$.

Limite et continuité

Solution 27

- 1. On a $|f(x,y)| \le |x| + |y| = ||(x,y)||_1$. On en déduit que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.
- **2.** On a f(x, x) = 0 et f(x, 0) = 1. Donc f n'admet pas de limite en (0, 0).
- 3. On a f(x, -x) = 0 et $\lim_{x\to 0} f(x, x) = +\infty$ donc f n'admet pas de limite en (0, 0).
- **4.** Remarquons que pour $(x, y) \in \mathbb{R}^2$:

$$|x^3 + y^3| \le |x|^3 + |y|^3 \le (|x| + |y|)(x^2 + y^2) \le 2||(x, y)||_1(x^2 + y^2)$$

On en déduit que pour $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$:

$$|f(x,y)| \le 2||(x,y)||_1$$

Ainsi $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

5. On a d'une part :

$$\lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\sin x}{x} = 1$$

et, d'autre part :

$$\lim_{(x,y)\to(0,0)} x^2 + y^2 - 1 = -1$$

On en déduit que $\lim_{(x,y)\to(0,0)} f(x,y) = -1$.

6. On a $\lim_{x\to 0^+} f(x,x) = 1$ et $\lim_{x\to 0^+} f\left(e^{-\frac{1}{x}},x\right) = \frac{1}{e}$ (on vérifie que $\lim_{x\to 0^+} \left(e^{-\frac{1}{x}},x\right) = (0,0)$). On en déduit que f n'admet pas de limite en (0,0).

7. On a:

$$f(x,y) = \frac{\sin x^2}{x^2} \frac{x^2}{\sqrt{x^2 + y^2}} + \frac{\sin y^2}{y^2} \frac{y^2}{\sqrt{x^2 + y^2}}$$

D'une part:

$$\lim_{x \to 0} \frac{\sin x^2}{x^2} = \lim_{y \to 0} \frac{\sin y^2}{y^2} = 1$$

D'autre part:

$$0 \le \frac{x^2}{\sqrt{x^2 + y^2}} \le \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2}$$

et de même

$$0 \le \frac{y^2}{\sqrt{x^2 + y^2}} \le \sqrt{x^2 + y^2}$$

On en déduit que :

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \frac{y^2}{\sqrt{x^2+y^2}} = 0$$

puis que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Solution 28

- 1. N_2 est une norme : il s'agit de la norme uniforme sur [-1,1]. Concernant N_1 , l'homogénéité et l'inégalité triangulaire ne pose pas de problème. Si $P \in \mathbb{R}[X]$ vérifie $N_1(P) = 0$, alors $P^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$. Alors, d'après la formule de Taylor, $P = \sum_{n=0}^{+\infty} \frac{P^{(n)}(0)}{n!} X^n = 0$.
- 2. D est un endomorphisme. D'après la formule de Taylor et l'inégalité triangulaire,

$$N_1(D(P)) = N_1(P') = \sum_{n=0}^{+\infty} |P^{(n+1)}(0)| = \sum_{n=1}^{+\infty} |P^{(n)}(0)| \le N_1(P)$$

D'après la caractérisation de la continuité des applications linéaires, D est continu pour la norme N₁.

3. Pour tout $p \in \mathbb{P}$, $N_2(X^p) = 1$ et $N_2(D(X^p)) = N_2(pX^{p-1}) = p$. Ainsi $\lim_{p \to +\infty} \frac{N_2(D(X^p))}{N_2(X^p)} = +\infty$ donc D n'est pas continu pour la norme N_2 en vertu de la caractérisation de la continuité des applications linéaires.

Solution 29

Soit N une norme sur E. Tout d'abord, φ est un endomorphisme de E. Considérons pour $a \in \mathbb{R}_+$, $f_a : x \in [0,1] \mapsto e^{ax}$. Ainsi $\varphi(f_a) = f'_a = af_a$, puis par homogénéité, $N(\varphi(f_a)) = aN(f_a)$. Par conséquent, $\lim_{a \to +\infty} \frac{N(\varphi(f_a))}{N(f_a)} = +\infty$ et donc φ n'est pas continue par caractérisation de la continuité des applications linéaires.

Solution 30

- 1. Evident.
- **2.** Supposons que |b| > 1. Alors

$$\frac{|f(X^n)|}{\|X^n\|} = |b|^n \underset{n \to +\infty}{\longrightarrow} +\infty$$

D'après la caractérisation de la continuité pour les applications linéaires, f n'est pas continue. Supposons $|b| \le 1$. Soit $P = \sum_{k=0}^{+\infty} a_k X^k \in E$. Par inégalité triangulaire,

$$|f(b)| \le \sum_{k=0}^{+\infty} |a_k| |b|^k \le \sum_{k=0}^{+\infty} |a_k| = ||P||$$

D'après la caractérisation de la continuité pour les applications linéaires, f est continue.

Solution 31

- 1. ϕ est clairement linéaire et pour $f \in E$, $\phi(f)$ est une primitive de f donc $\phi(f) \in E$.
- **2.** Soit $f \in E$. Par inégalité triangulaire

$$\forall x \in [0, 1], \ \|\phi(f)(x)\| \le \int_0^x |f(t)| \ \mathrm{d}t \le \int_0^1 |f(t)| \ \mathrm{d}t = \|f\|$$

A nouveau par inégalité triangulaire,

$$\|\phi(f)\| \le \int_0^1 |f(t)| dt \le \int_0^1 \|f\| dt = \|f\|$$

Par caractérisation de la continuité pour les applications linéaires, φ est continu.

3. Soit $n \in \mathbb{N}^*$. D'une part,

$$||f_n|| = [-e^{-nt}]_0^1 = 1 - e^{-nt}$$

D'autre part,

$$\forall x \in [0,1], \ \varphi(f_n)(x) = \left[-e^{-nt} \right]_0^x = 1 - e^{-nx}$$

de sorte que

$$\|\phi(f_n)\| = 1 - \frac{1 - e^{-n}}{n}$$

4. On a déjà montré que $\|\phi(f)\| \le \|f\|$ pour tout $f \in E$ donc $\|f\|$ est bien définie et $\|f\| \le 1$. De plus,

$$\frac{\|\phi(f_n)\|}{\|f_n\|} = \frac{1 - \frac{1 - e^{-n}}{n}}{1 - e^{-n}} \underset{n \to +\infty}{\longrightarrow} 1$$

donc ||f|| = 1.

Solution 32

 Δ est clairement linéaire et, pour tout $u \in E$,

$$\|\Delta(u)\|_{\infty} = \|(u_n) - (u_{n+1})\|_{\infty} \le \|(u_n)\|_{\infty} + \|(u_{n+1})\|_{\infty} \le 2\|u\|_{\infty}$$

Ce qui prouve à la fois que $\Delta(u) \in E$ et que Δ est linéaire : Δ est un endomorphisme continu de E.

Compacité

Solution 33

L'espace normé en question doit nécessairement être de dimension infinie. Considérons $E = \ell^{\infty}(\mathbb{R})$ (ensemble des suite réelles bornées) muni de la norme ∞ . La boule unité fermée B de E est bien fermée et bornée. Pour $n \in \mathbb{N}$, on pose $u_n = \left(\delta_{pn}\right)_{p \in \mathbb{N}}$. Ainsi (u_n) est une suite d'éléments de B. Supposons B compact. Il existe donc une sous-suite $(u_{\varphi}(n))$ convergente. Notons $l = (l_p)_{p \in \mathbb{N}}$ sa limite. Soit $p \in \mathbb{N}$. la suite $(u_{\varphi(n),p})_{n \in \mathbb{N}}$ converge vers l_p . Or pour $\varphi(n) > p$, $u_{\varphi(n),p} = 0$ donc $l_p = 0$. La suite l est donc nulle. Or $\|u_n\| = 1$ pour tout $n \in \mathbb{N}$. Par continuité de la norme, $\|l\| = 1$, ce qui contredit l = 0.

Solution 34

1. Comme $\mathbb{R}^2 \setminus f^{-1}(\{a\})$ est connexe par arcs, son image par f qui est continue est donc également connexe par arcs. C'est donc un intervalle I de \mathbb{R} ne contenant pas a. C'est donc un intervalle minoré ou majoré par a. Ainsi $f(\mathbb{R}^2) = I \cup \{a\}$ admet a pour minimum ou maximum. Ceci prouve que f admet a pour extremum global sur \mathbb{R}^2 .

- 2. Puisque f⁻¹({a}) est bornée, il existe une boule fermée de R² telle que f⁻¹({a}) ⊂ B. Alors R² \ B est connexe par arcs et son image par f est un intervalle I ne contenant pas a. L'intervalle I est encore majoré par a ou minoré par a. Supposons que I est minoré par a, c'est-à-dire que f(x) ≥ a pour tout x ∈ R² \ B. f étant continue sur le compact B, elle y admet un minimum global m. Puisque f⁻¹({a}) ⊂ B, a ≥ m. Ainsi f admet un minimum global sur R² (en fait sur B). Supposons que I est majoré par a, c'est-à-dire que f(x) ≤ a pour tout x ∈ R² \ B. f étant continue sur le compact B, elle y admet un maximum global M. Puisque f⁻¹({a}) ⊂ B, a ≤ M. Ainsi f admet un maximum global sur R² (en fait sur B).
- 3. Remarquons que pour tout $a \in \mathbb{R}$, $f(\mathbb{R}^2 \setminus f^{-1}(\{a\}))$ est un intervalle minoré ou majoré par a. Supposons f non majorée sur \mathbb{R}^2 . Soit $A \in \mathbb{R}$. $f(\mathbb{R}^2 \setminus f^{-1}(\{A\}))$ est un intervalle minoré ou majoré par A. Puisque f est non majorée, il existe $x \in \mathbb{R}^2 \setminus f^{-1}(\{A\})$) tel que f(x) > A. Ainsi l'intervalle $f(\mathbb{R}^2 \setminus f^{-1}(\{A\}))$ est minoré par A puisqu'il contient f(x). Le compact $f^{-1}(\{A\})$ est inclus dans une boule fermée de rayon $R \in \mathbb{R}_+$. Ainsi pour $x \in \mathbb{R}^2$ tel que $\|x\| > R$, on a f(x) > A. On en déduit que $\lim_{\|x\| \to +\infty} = +\infty$. Supposons f non minorée sur \mathbb{R}^2 . Soit $A \in \mathbb{R}$. $f(\mathbb{R}^2 \setminus f^{-1}(\{A\}))$ est un intervalle minoré ou majoré par A. Puisque f est non minorée, il existe $x \in \mathbb{R}^2 \setminus f^{-1}(\{A\})$) tel que f(x) < A. Ainsi l'intervalle $f(\mathbb{R}^2 \setminus f^{-1}(\{A\}))$ est majoré par A puisqu'il contient f(x). Le compact $f^{-1}(A)$ est inclus dans une boule fermée de rayon $R \in \mathbb{R}_+$. Ainsi pour $x \in \mathbb{R}^2$ tel que $\|x\| > R$, on a f(x) < A. On en déduit que

 $\lim_{\|x\|\to +\infty} = -\infty.$ Supposons f bornée sur \mathbb{R}^2 . Soit (x_n) une suite d'éléments de \mathbb{R}^2 telle que $\|x_n\| \xrightarrow[n \to +\infty]{} +\infty$. La suite $(f(x_n))$ étant bornée, on peut supposer qu'elle converge quitte à en extraire une sous-suite. Notons l sa limite. Soit $\varepsilon > 0$. D'après notre remarque préliminaire, $f(\mathbb{R}^2 \setminus f^{-1}(\{l+\varepsilon\}))$ est un intervalle minoré ou majoré par $l+\varepsilon$. Or $\|x_n\| \xrightarrow[n \to +\infty]{} +\infty$ et $f^{-1}(\{l+\varepsilon\})$ est compact donc borné : il existe donc $N \in \mathbb{N}$ tel que $x_n \notin f^{-1}(\{l+\varepsilon\})$ pour tout $n \ge N$. Enfin $(f(x_n))$ converge vers l donc il existe $p \ge N$ tel que $f(x_p) < l+\varepsilon$. Ainsi $f(\mathbb{R}^2 \setminus f^{-1}(\{l+\varepsilon\}))$ est un intervalle majoré par $l+\varepsilon$. On prouve de même que $f(\mathbb{R}^2 \setminus f^{-1}(\{l-\varepsilon\}))$ est un intervalle majoré par $l-\varepsilon$. Les compacts $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l-\varepsilon\})$ sont inclus dans une boule de rayon $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l-\varepsilon\})$ sont inclus dans une boule de rayon $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l+\varepsilon\})$ sont inclus dans une boule de rayon $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{l+\varepsilon\})$ sont inclus dans une boule de rayon $f^{-1}(\{l+\varepsilon\})$ et $f^{-1}(\{$

Solution 35

1. Remarquons déjà que l'existence de la valeur d'adhérence (x', y') est justifiée par la compacité de K^2 . Il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que la suite $(x_{\varphi(n)}, y_{\varphi(n)})_{n \in \mathbb{N}}$ converge vers (x', y'). Remarquons alors que pour tout $n \in \mathbb{N}$,

$$\|g^n(x') - x\| = \|g^n(x') - g^n(x_n)\| \le \|x' - x_n\|$$
 et $\|g^n(y') - y\| = \|g^n(y') - g^n(y_n)\| \le \|y' - y_n\|$

car g et donc g^n est 1-lipschitzienne. On en déduit donc que pour tout $n \in \mathbb{N}$,

$$\|(g^{\varphi(n)}(x')-g^{\varphi(n)}(y'))-(x-y)\|\leq \|g^{\varphi(n)}(x')-x\|+\|g^{\varphi(n)}(y')-y\|\leq \|x'-x_{\varphi(n)}\|+\|y'-y_{\varphi(n)}\|$$

Ainsi la suite $(g^{\varphi(n)}(x') - g^{\varphi(n)}(y'))_{n \in \mathbb{N}}$ converge vers x - y, qui est bien une valeur d'adhérence de la suite $(g^n(x') - g^n(y'))_{n \in \mathbb{N}}$.

2. A nouveau, le fait que g soit 1-lipschitzienne montre que la suite $(\|g^n(x') - g^n(y')\|)_{n \in \mathbb{N}}$ est une suite réelle décroissante. Elle est également minorée donc elle converge.

La question précédente et la continuité de la norme montrent que $\|x-y\|$ est une valeur d'adhérence de cette même suite. C'est donc que la suite $(\|g^n(x')-g^n(y')\|)_{n\in\mathbb{N}}$ converge vers $\|x-y\|$.

Si l'on reprend la première question,

$$\|g^{n+1}(x') - g(x)\| \le \|g^n(x') - x\| = \|g^n(x') - g^n(x_n)\| \le \|x' - x_n\| \qquad \text{et} \qquad \|g^{n+1}(y') - g(y)\| \le \|g^n(x') - x\| = \|g^n(y') - g^n(y_n)\| \le \|y' - y_n\|$$

On en déduit comme précédemment que g(x) - g(y) est encore une valeur d'adhérence de la suite $(g^n(x') - g^n(y'))_{n \in \mathbb{N}}$ et donc également de la suite $(\|g^n(x') - g^n(y')\|)_{n \in \mathbb{N}}$. On en déduit que $\|g(x) - g(y)\| = \|x - y\|$. g est donc bien une isométrie.

3. Fixons $y \in E$. La suite $(g^n(y))_{n \in \mathbb{N}}$ est à valeurs dans le compact K donc on peut en extraire une suite $g^{(\varphi(n)}(y))_{n \in \mathbb{N}}$ convergente. La suite $(g^{\varphi(n+1)}(y) - g^{\varphi(n)}(y))_{n \in \mathbb{N}}$ converge donc vers 0. Mais comme g est une isométrie,

$$\forall n \in \mathbb{N}, \|g^{\varphi(n+1)-\varphi(n)}(y) - y\| = \|(g^{\varphi(n+1)}(y) - g^{\varphi(n)}(y))\|$$

donc la suite $(g^{\varphi(n+1)-\varphi(n)}(y))_{n\in\mathbb{N}}$ converge vers y. Or pour tout $n\in\mathbb{N}$, $\varphi(n+1)>\varphi(n)$ car φ est strictement croissante donc $g^{\varphi(n+1)-\varphi(n)}(y)$ appartient à g(K). On en déduit que $y\in\overline{g(K)}$. Mais comme g est continue et K est compact, g(K) est compact donc fermé. Ainsi $\overline{g(K)}=g(K)$ et $y\in g(K)$. L'application g est donc surjective. Pour le contre-exemple, on peut considérer l'espace vectoriel E des suites bornées muni de la norme infinie ainsi que la boule unité K. L'application g qui à une suite $u\in E$ associe la suite v définie par $v_0=0$ et $v_{n+1}=u_n$ pour tout $v\in \mathbb{N}$ 0 est clairement une isométrie. De plus, $v\in \mathbb{N}$ 1 est stable par $v\in \mathbb{N}$ 2 mais $v\in \mathbb{N}$ 3 est clairement pas surjective.

Solution 36

1. L'application $\phi: \begin{cases} K^2 \longrightarrow \mathbb{R} \\ (x,y) \longmapsto \|x-y\| \end{cases}$ est continue comme composée des applications continues $(x,y) \mapsto x-y$ et $x \mapsto \|x\|$. Comme K^2 est compact comme produit de compacts, $\phi(K^2)$ est un compact de \mathbb{R} . En particulier, $\phi(K)$ est majoré et contient sa borne supérieure. Ainsi $\delta(K)$ existe et la borne supérieure le définissant est atteinte.

2. Remarquons tout d'abord que le symétrique par rapport à a d'un point x de E est 2a - x.

Soit
$$B \in \mathcal{S}_a$$
. Pour $y \in E$, notons $\phi_y : \begin{cases} E & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \|x - y\| \end{cases}$. On a

$$T(B) = B \cap \left(\bigcap_{y \in B} \phi_y^{-1} \left(\left[0, \frac{1}{2} \delta(B) \right] \right) \right)$$

Comme ϕ_y est continue pour tout $y \in B$, les $\phi_y^{-1}\left(\left[0, \frac{1}{2}\delta(B)\right]\right)$ sont fermés. Ainsi T(B) est fermé comme intersection de fermés. De plus, $T(B) \subset B$ avec B compact donc T(B) est compact.

Montrons que T(B) est symétrique par rapport à a. Soit $x \in T(B)$. On veut donc montrer que $2a - x \in T(B)$. Or pour tout $y \in B$:

$$||(2a - x) - y|| = ||x - (2a - y)|| \le \frac{1}{2}\delta(B)$$

car $x \in T(B)$ et $2a - y \in B$ par symétrie de B par rapport à a. Ainsi $2a - x \in T(B)$. Donc $T(B) \in S_a$.

- 3. Soient $B \in \mathcal{S}_a$ et $(x,y) \in T(B)^2$. A fortiori, $(x,y) \in B^2$ de sorte que, par définition de $T(B) \|x-y\| \leq \frac{1}{2}\delta(B)$. On en déduit que $\delta(T(B)) \leq \frac{1}{2}\delta(B)$. On peut alors montrer par récurrence que $\delta(B_n) \leq \frac{1}{2^n}\delta(B_0)$ pour tout $n \in \mathbb{N}$. Posons $\tilde{B} = \bigcap_{n \geq 0} B_n$. Alors \tilde{B} est fermé comme intersection de fermés et \tilde{B} est inclus dans le compact B_0 donc il est compact. Puisque $\tilde{B} \subset B_n$, $\delta(\tilde{B}) \leq \delta(B_n) \leq \frac{1}{2^n}\delta(B_0)$ pour tout $n \in \mathbb{N}$. Ainsi $\delta(\tilde{B}) = 0$. Si $B_0 = \emptyset$, alors clairement $\tilde{B} = \emptyset$. Montrons maintenant que si $B_0 \neq \emptyset$, alors $\tilde{B} = \{a\}$. Soit $x \in \tilde{B}$. Alors $x \in \mathbb{N}$ appartiennent à $x \in \mathbb{N}$ puisque tous les $x \in \mathbb{N}$ 0 sont symétriques par rapport à $x \in \mathbb{N}$ 1. En particulier, $\|x (2a x)\| = 0$ puis $x \in \mathbb{N}$ 2.
- **4.** Soient u une isométrie et $(x,y) \in E^2$. On pose alors $B_0 = \{x,y\}$ et on définit la suite (B_n) comme précédemment. Posons $m = \frac{x+y}{2}$ de sorte que B_0 est symétrique par rapport à m. Alors, comme précédemment, $\bigcap_n \in \mathbb{N}B_n = \{m\}$. Montrons maintenant que si B est un compact de E, alors $T(u(B)) \subset u(T(B))$. Soit en effet $x \in T(u(B))$. En particulier, $x \in u(B)$ donc il existe $a \in T(B)$ tel que x = u(a). De plus, pour tout $y \in u(B)$, $\|x-y\| \le \frac{1}{2}\delta(u(B))$ donc pour tout $b \in B$, $\|u(a)-u(b)\| \le \frac{1}{2}\delta(u(B))$. Or u est une isométrie donc $\|u(a)-u(b)\| = \|a-b\|$ et on montre facilement que $\delta(u(B)) = \delta(B)$. Finalement $\|a-b\| \le \frac{1}{2}\delta(B)$ pour tout $b \in B$ i.e. $a \in T(B)$. Ainsi $x = u(a) \in u(T(B))$. On en déduit alors par récurrence que $T^n(u(B_0)) \subset u(T^n(B_0))$ i.e. $C_n \subset u(B_n)$ en posant $C_n = T^n(u(B_0))$. Finalement,

$$\bigcap_{n\in\mathbb{N}} C_n \subset \bigcap_{n\in\mathbb{N}} u(B_n)$$

Mais comme u est injective en tant qu'isométrie,

$$\bigcap_{n \in \mathbb{N}} u(\mathbf{B}_n) = u\left(\bigcap_{n \in \mathbb{N}} \mathbf{B}_n\right) = u(\{a\}) = \{u(a)\}$$

Mais $C_0 = \{u(x), u(y)\}$ est symétrique par rapport à $n = \frac{u(x) + u(y)}{2}$ donc on montre comme à la question précédente que $\bigcap_{n \in \mathbb{N}} C_n = \{n\}$. Finalement, $\{n\} \subset \{u(a)\}$ donc n = u(a). u conserve bien les milieux.

Solution 37

1. Tout d'abord, f est continue sur K car lipschitzienne. L'application φ : $x \in K \mapsto \|f(x) - x\|$ est allors elle-même continue par continuité de la norme. Elle admet donc un minimum sur le compact K atteint en $a \in K$. Supposons que $f(a) \neq a$. D'après la propriété vérifiée par f, on aurait alors $\varphi(f(a)) < \varphi(a)$, ce qui est contradictoire. Ainsi f(a) = a et f admet un point fixe. Supposons maintenant que f possède deux points fixes a et b. Comme $a \neq b$, $\|f(a) - f(b)\| < \|a - b\|$ i.e. $\|a - b\| < \|a - b\|$, ce qui est absurde. Ainsi f possède un unique point fixe.

2. Notons a l'unique point fixe de f. La suite de terme général $||x_n - a||$ est décroissante et minorée par 0. Elle converge donc. Notons m sa limite. Soit alors ℓ une valeur d'adhérence de la suite (x_n) . On peut alors extraire de la suite (x_n) une suite $(x_{\psi(n)})$ convergeant vers ℓ .

La suite de terme général $||x_{\psi(n)} - a||$

- converge vers m en tant que suite extraite de la suite de terme général $||x_n a||$;
- converge vers $\|\ell a\|$ par continuité de la norme.

Ainsi $m = \|\ell - a\|$.

De même, la suite de terme général $||x_{\psi(n)+1} - a||$

- converge vers m en tant que suite extraite de la suite de terme général $||x_n a||$;
- converge également vers $||f(\ell) a||$ puisque pour tout $n \in \mathbb{N}$, $||x_{\psi(n)+1} a|| = ||f(x_{\psi(n)}) a||$ et que f est continue.

Ainsi $m = ||f(\ell) - a||$.

Supposons que $\ell \neq a$. Alors

$$m = ||f(\ell) - a|| = ||f(\ell) - f(a)|| < ||\ell - a|| = m$$

ce qui est absurde. Ainsi $\ell = a$.

La suite (x_n) est donc à valeurs dans un compact et ne possède que a comme unique valeur d'adhérence : elle converge donc vers a.

3. On peut par exemple considérer $f: x \in \mathbb{R} \mapsto \sqrt{x^2 + 1}$. f n'admet clairement aucun point fixe. Par contre, pour $(x, y) \in \mathbb{R}^2$ tel que $x \neq y$,

$$|f(x) - f(y)| = \left| \sqrt{x^2 + 1} - \sqrt{y^2 + 1} \right| = \frac{|x^2 - y^2|}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}} = \frac{|x - y| \cdot |x + y|}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}}$$

Or, par stricte croissance de la racine carrée et inégalité triangulaire

$$\sqrt{x^2 + 1} + \sqrt{y^2 + 1} > \sqrt{x^2} + \sqrt{y^2} = |x| + |y| \ge |x + y|$$

On en déduit que

$$|f(x) - f(y)| < |x - y|$$

Solution 38

Tout d'abord les deux maxima sont bien définies car B et S sont des compacts et $z \mapsto |P(z)|$ est continue.

Tout d'abord, $S \subset B$ donc $\max_{z \in B} |P(z)| >= \max_{z \in S} |P(z)|$. Supposons que l'inégalité soit stricte. Le maximum de |P| sur B est alors atteint en un point z_0 qui n'appartient pas à S, autrement dit un point intérieur à B.

Si pour tout $k \in \mathbb{N}^*$, $P^{(k)}(z_0) = 0$, alors P est constant d'après la formule de Taylor. De même, si $P(z_0) = 0$, P est le polynôme constant nul. Mais on a alors clairement $\max_{z \in \mathbb{B}} |P(z)| = \max_{z \in \mathbb{S}} |P(z)|$, ce qui contredit notre hypothèse.

Ainsi $P(z_0) \neq 0$ et on peut poser $p = \min\{k \in \mathbb{N}^*, P^{(k)}(z_0) \neq 0\}$. D'après la formule de Taylor, il existe un polynôme $Q \in \mathbb{C}[X]$ tel que

$$\forall z \in \mathbb{C}, \ P(z) = P(z_0) + \frac{P^{(p)}(z_0)}{p!} (z - z_0)^p + Q(z - z_0)(z - z_0)^{p+1}$$

Notamment,

$$\forall (r,\theta) \in \mathbb{R}^2, \ P(z_0 + re^{i\theta}) = P(z_0) \left(1 + \frac{P^{(p)}(z_0)}{p!P(z_0)} r^p e^{ip\theta} + \frac{Q(re^{i\theta})}{P(z_0)} r^{p+1} e^{i(p+1)\theta} \right)$$

Posons A = $\frac{P^{(p)}(z_0)}{p!P(z_0)}$ et R = $\frac{Q}{P(z_0)}$.

$$\forall (r,\theta) \in \mathbb{R}^2, \ P(z_0 + re^{i\theta}) = P(z_0) \left(1 + Ar^p e^{ip\theta} + R(re^{i\theta}r^{p+1}e^{i(p+1)\theta}) \right)$$

Choisissons θ de telle sorte que $Ae^{ip\theta} = |A|$. Par inégalité triangulaire,

$$\forall r \in \mathbb{R}_+, \ |P(z_0 + re^{i\theta})| \ge |P(z_0)| \left(1 + |A|r^p - |R(re^{i\theta})|r^{p+1}\right) = |P(z_0)| \left(1 + r^p(|A| - |R(re^{i\theta})|r\right) = |P(z_0)| = |P(z_0)| = |P$$

Ainsi

$$\forall r \in \mathbb{R}_+, \ |P(z_0 + re^{i\theta})| - |P(z_0)| \ge |A||P(z_0)|r^p - |R(re^{i\theta})|r^{p+1} = r^p \left(|A||P(z_0)| - |R(re^{i\theta})|r\right)$$

Comme R est continue et $|A||P(z_0)| \neq 0$,

$$r^p(|\mathbf{A}||\mathbf{P}(z_0)| - |\mathbf{R}(re^{i\theta})|r) \sim |\mathbf{A}||\mathbf{P}(z_0)|r^p$$

Notamment, $r \mapsto |P(z_0 + re^{i\theta})| - |P(z_0)|$ est strictement positive au voisinage de 0^+ . Comme z_0 est intérieur à B, il existe r > 0 tel que $z_0 + re^{i\theta} \in B$ et $|P(z_0 + re^{i\theta})| - |P(z_0)| > 0$, ce qui contredit le fait que |P| admet son maximum sur B en z_0 .

On conclut donc par l'absurde que $\max_{z \in B} |P(z)| = \max_{z \in S} |P(z)|$.

Solution 39

Comme $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, il suffit de montrer que $O_n(\mathbb{R})$ est borné et fermé. Munissons $\mathcal{M}_n(\mathbb{R})$ de la norme euclidienne. Alors pour tout $A \in \mathcal{M}_n(\mathbb{R})$,

$$||A||^2 = tr(A^T A) = tr(I_n) = n$$

donc $O_n(\mathbb{R})$ est borné. De plus, l'application $f: A \in \mathcal{M}_n(\mathbb{R}) \mapsto A^T A$ est continue par continuité du produit matriciel et de la transposition. Or $O_n(\mathbb{R}) = f^{-1}(\{I_n\})$ et le singleton $\{I_n\}$ est fermé donc $O_n(\mathbb{R})$ est fermé.

Solution 40

1. Soit $f \in \mathcal{L}(E, F)$. Comme f est de dimension finie, il existe $C \in \mathbb{R}_+$ tel que $N'(f(x)) \leq CN(x)$ pour tout $x \in E$. Ceci justifie l'existence de la borne supérieure définissant ||f||. De plus, N' est continue car lipschitzienne. f est linéaire et E est de dimension finie donc f est continue. Par conséquent, $N' \circ f$ est également continue.

De plus, S et B sont bornés et fermés en tant qu'images réciproques des fermés {1} et [0, 1] par l'application continue N. Comme E est de dimension finie, S et B sont compacts.

Ainsi N' \circ f admet un maximum sur S et sur B. Notons $M_1 = \max_S N' \circ f$ et $M_2 = \max_B N' \circ f$.

Soit $x \in E \setminus \{0_E\}$. Alors $x/N(x) \in S$. De plus,

$$\frac{\mathrm{N}'(f(x))}{\mathrm{N}(x)} = \mathrm{N}'\left(\frac{f(x)}{\mathrm{N}(x)}\right) \qquad \text{par homogénéité de N'}$$

$$= \mathrm{N}' \circ f\left(\frac{x}{\mathrm{N}(x)}\right) \qquad \text{par linéarité de } f$$

$$\leq \mathrm{M}_1$$

Soit x_1 le point de S où N' \circ f admet son maximum. On a alors $\frac{N'(f(x_1))}{N(x_1)} = M_1$ de sorte que $||f|| = M_1$.

Puisque $S \subset B$, $M_1 \le M_2$. Soit x_2 le point de B où N' \circ f admet son maximum. D'après les calculs précédents, $M_2 = N'(f(x_2)) \le M_1N(x_2) \le M_1$ car $N(x_2) \le 1$. Ainsi $M_1 = M_2 = ||f||$.

2. Soit $(f,g) \in \mathcal{L}(E)^2$. Soit $x \in E$. Par définition de ||g||,

$$N(g \circ f(x)) = N(g(f(x))) \le ||g||N(f(x))$$

Mais par définition de ||f||,

$$N(f(x)) \le ||f|| N(x)$$

Donc

$$N(g \circ f(x)) \le ||g|| ||f|| N(x)$$

Donc pour tout $x \in E \setminus \{0_E\}$,

$$\frac{N(g \circ f(x))}{N(x)} \le ||g|| ||f||$$

Ainsi

$$\sup_{x\in \mathbb{E}\setminus \{0_{\mathrm{E}}\}}\frac{\mathrm{N}(g\circ f(x))}{\mathrm{N}(x)}\leq \|g\|\|f\|$$

i.e. $\|g \circ f\| \le \|g\| \|f\|$. $\|\cdot\|$ est donc bien une norme d'algèbre.

3. a. Soit $x = (x_1, ..., x_n) \in \mathbb{R}^p$ et $y = (y_1, ..., y_n) = f(x)$. Fixons $i \in [1, n]$. Alors

$$y_i = \sum_{j=1}^p \mathbf{A}_{i,j} x_j$$

Donc

$$|y_i| \le \sum_{j=1}^p |A_{i,j}| |x_j| \le \sum_{j=1}^p |A_{i,j}| ||x||_{\infty}$$

Et donc

$$||f(x)||_{\infty} = ||y||_{\infty} = \max_{1 \le i \le n} |y_i| \le \left(\max_{1 \le i \le n} \sum_{j=1}^{p} |A_{i,j}|\right) ||x||_{\infty}$$

donc

$$||f|| \le \max_{1 \le i \le n} \sum_{j=1}^{p} |A_{i,j}|$$

Soit $i_0 \in [1, n]$ tel que

$$\sum_{j=1}^p |{\bf A}_{i_0,j}| = \max_{1 \le i \le n} \sum_{j=1}^p |{\bf A}_{i,j}|$$

Posons $x_j=1$ si $A_{i_0,j}\geq 0$ et $x_j=-1$ si $A_{i_0,j}<0$. Alors, en posant $x=(x_1,\ldots,x_p)$, on a $\|x\|_\infty=1$. De plus, en posant $y=(y_1,\ldots,y_n)=f(x)$

$$y_{i_0} = \sum_{j=1}^{p} A_{i_0,j} x_j = \sum_{j=1}^{p} |A_{i_0,j}|$$

On en déduit que

$$\|f\| \ge \|f(x)\|_{\infty} = \|y\|_{\infty} \ge |y_{i_0}| = \sum_{j=1}^p |A_{i_0,j}| = \max_{1 \le i \le n} \sum_{j=1}^p |A_{i,j}|$$

Donc

$$||f|| = \max_{1 \le i \le n} \sum_{i=1}^{p} |A_{i,j}|$$

b. Soit $x=(x_1,\ldots,x_p)\in\mathbb{R}^p$ et $y=(y_1,\ldots,y_n)=f(x)$. Fixons $i\in[1,n]$. Alors

$$y_i = \sum_{j=1}^p A_{i,j} x_j$$

Donc

$$||f(x)||_1 = ||y||_1 = \sum_{i=1}^n |y_i| \le \sum_{i=1}^n \sum_{j=1}^p |A_{i,j}| |x_j| = \sum_{j=1}^p |x_j| \sum_{i=1}^n |A_{i,j}| \le \sum_{j=1}^p |x_j| \max_{1 \le j \le p} \sum_{i=1}^n |A_{i,j}| = \left(\max_{1 \le j \le p} \sum_{i=1}^n |A_{i,j}|\right) ||x||_1$$

Par conséquent,

$$||f|| \le |\max_{1 \le j \le p} \sum_{i=1}^{n} |A_{i,j}|$$

Soit $j_0 \in [\![1,p]\!]$ tel que $\sum_{i=1}^n |A_{i,j_0}| = \max_{1 \le j \le p} \sum_{i=1}^n |A_{i,j}|$. Posons $x_{j_0} = 1$ et $x_j = 0$ si $j \ne j_0$. Alors, en posant $x = (x_1, \dots, x_p)$, on a $\|x\|_1 = 1$. De plus, en posant $y = (y_1, \dots, y_n) = f(x)$,

$$||f|| \ge ||f(x)||_1 = ||y||_1 = \sum_{i=1}^n |y_i| = \sum_{i=1}^n \left| \sum_{j=1}^p A_{i,j} x_j \right| = \sum_{i=1}^n |A_{i,j_0}| = \max_{1 \le j \le p} \sum_{i=1}^n |A_{i,j}|$$

donc

$$||f|| = \max_{1 \le j \le p} \sum_{i=1}^{n} |A_{i,j}|$$

c. Soit $x = (x_1, ..., x_p) \in \mathbb{R}^p$. En notant X la matrice de x dans la base canonique,

$$||f(x)||_2^2 = ||AX||_2^2 = X^T A^T AX$$

Comme A^TA est symétrique réelle, il existe une base orthonormée $(U_1, ..., U_p)$ de vecteurs propres de A^TA . Notons λ_i la valeur propre associée à U_i . Si $X = \sum_{i=1}^p \alpha_i U_i$,

$$||f(x)||^2 = ||y||_2^2 = \sum_{i=1}^p \alpha_i^2 \lambda_i \le \max \operatorname{Sp}(A^T A) \sum_{i=1}^p \alpha_i^2 = \max \operatorname{Sp}(A^T A) ||x||_2^2$$

Ainsi

$$||f|| \le \sqrt{\max \operatorname{Sp}(\mathbf{A}^{\mathsf{T}}\mathbf{A})}$$

Soit X un vecteur propre associé à la plus grande valeur propre λ de A^TA . Soit $x \in \mathbb{R}^n$ dont la matrice dans la base canonique est X. Alors

$$||f(x)||_2^2 = ||AX||_2^2 = X^T A^T A X = \lambda X^T X = \lambda ||x||_2^2$$

Ainsi $||f|| \le \sqrt{\lambda}$. Par conséquent, $||f|| = \max \operatorname{Sp}(A^T A)$.

Connexité

Solution 41

1. Posons $U = \mathbb{R}^n \setminus \bigcup_{i=1}^n \text{Ker } f_i \text{ et notons } E = \{-1, +1\}^r.$ Pour $a \in E$, on pose $C_a = \{x \in U \mid \forall i \in [1, r], \ a_i f_i(x) > 0\}$. Montrons que les composantes connexes par arcs de U sont les C_a pour $a \in E$.

Montrons que les C_a sont non vides. Soient $a \in E$. Comme la famille f_1, \ldots, f_r est libre, l'application linéaire $F: \begin{cases} \mathbb{R}^n \longrightarrow \mathbb{R}^r \\ x \longmapsto (f_i(x))_{1 \leq i \leq r} \end{cases}$ est de rang r, autrement dit surjective. Il existe donc $x \in \mathbb{R}^n$ tel que F(x) = a. On vérifie alors que $x \in C_a$. Montrons que les C_a sont connexes par arcs. Soient $a \in E$, $x, y \in C_a$. Pour tout $i \in [1, r]$ n, $a_i f_i((1-t)x + ty) = a_i(1-t)f_i(x) + a_i t f_i(y) > 0$ pour tout $t \in [0, 1]$ (considérer les cas t = 0, t = 1 et $t \in [0, 1[)$). Ainsi C_a est convexe et, a fortiori, connexe par arcs. Montrons que les C_a sont maximaux. Soit $a \in E$, $x \in C_a$ et $y \in U \setminus C_a$. Il existe donc $i \in [1, n]$ tel que $a_i f_i(x) > 0$ et $a_i f_i(y) < 0$. Soit $\phi: [0, 1] \to \mathbb{R}^n$ continue telle que $\phi(0) = x$ et $\phi(y) = y$. L'application $a_i f_i \circ \phi$ est continue sur [0, 1] et s'annule d'après le théorème des valeurs intermédiaires. Ainsi ϕ ne peut être à valeurs dans G. Ceci prouve que G0 est un connexe par arcs maximal.

2. On pose à nouveau $U = \mathbb{C}^n \setminus \bigcup_{i=1}^n \operatorname{Ker} f_i$. Montrons que U est connexe par arcs. Soient $x, y \in U$. L'application $P: \begin{cases} \mathbb{C} \longrightarrow \mathbb{C} \\ z \longmapsto \prod_{i=1}^r f_i((1-z)) \end{cases}$ est polynomiale. Elle possède donc un nombre fini de racines (ces racines sont distinctes de 0 et 1; on pourrait même les calculer). Il est donc possible de construire une application $\varphi: [0,1] \to \mathbb{C}$ ne prenant pas pour valeurs ces racines. On peut même construire de manière plus explicite cette application φ . Il existe un nombre fini de droites du plan complexe passant par 0 et par une racine de P. Comme il existe une infinité de droites du plan complexe passant par 0, on peut trouver une droite D_1 passant par 0 et ne passant par une racine de P. De plus, il existe une unique droite passant par 1 et parallèle à D_1 . Comme il existe une infinité de droites passant par 1, on peut trouver une droite D_2 passant par 1, ne passant pas par une racine de P et non parallèle à D_1 . Notons a l'intersection de D_1 et D_2 . On pose $\varphi(t) = 2ta$ pour $t \in \left[0, \frac{1}{2}\right]$ et $\varphi(t) = (2-2t)a + (2t-1)$ pour $t \in \left[\frac{1}{2}, 1\right]$. L'application $\varphi: \left\{\begin{array}{c} [0,1] & \longrightarrow \mathbb{C}^n \\ t & \longmapsto (1-\varphi(t))x + \varphi(t)y \end{array}\right.$

est continue. Comme φ ne prend pas pour valeurs les racines de P, P $\circ \varphi$ ne s'annule pas ; autrement dit, φ est à valeurs dans U. Enfin, $\varphi(0) = x$ et $\varphi(1) = y$: φ est donc un chemin continu de U entre x et y.

Solution 42

1. Soit $(a, b) \in S^2$. Supposons dans un premier temps que $a \neq -b$. Posons

$$\gamma: t \in [0,1] \mapsto \frac{(1-t)a + tb}{\|(1-t)a + tb\|}$$

- Comme $a \neq -b$, on vérifie aisément que le dénominateur ne s'annule pas de sorte que γ est continue sur [0,1].
- γ est clairement à valeurs dans S.
- $\gamma(0) = a \text{ et } \gamma(1) = b$.

Supposons a = -b. Comme dim $E \ge 2$, il existe un vecteur c non colinéaire à a. En particulier, c est non nul et quitte à le divisier par sa norme, on peut supposer $c \in S$. On alors $c \ne -a$ et $c \ne -b$. D'après ce qui précède, il existe un chemin continu γ_1 reliant a à c et un chemin continu γ_2 reliant c à b. En posant $\gamma(t) = \gamma_1(2t)$ pour $t \in [0, 1/2]$ et $\gamma(t) = \gamma_2(2t - 1)$ pour $t \in [1/2, 1]$, γ est un chemin continu reliant a à b.

2. Soit S(a,r) la sphère de centre $a \in E$ et de rayon r. Alors S(a,r) est l'image de S par l'application continue $x \mapsto a + rx$ donc S(a,r) est également connexe par arcs.

Solution 43

On sait que det $O_n(\mathbb{R}) = \{-1, 1\}$. Or det est continu sur $\mathcal{M}_n(\mathbb{R})$ et $\{-1, 1\}$ n'est évidemment pas connexe par arcs donc $O_n(\mathbb{R})$ n'est pas non plus connexe par arcs.

Solution 44

On rappelle qu'en posant
$$R: \theta \in \mathbb{R} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
,

$$SO_2(\mathbb{R}) = \{R(\theta), \ \theta \in \mathbb{R}\}\$$

Comme R est clairement continue sur $\mathbb R$ et que $\mathbb R$ est connexe par arcs, $SO_2(\mathbb R)$ est connexe par arcs.