MSCI152: Introduction to Business Intelligence and Analytics

Lecture 4: Qualitative Data

Lancaster University Management School

Overview

- Recoding and Aggregating
- Frequency Table
- Charts
 - Bar Charts
 - Pie Charts
 - Lots more charts . . .

Categorical Data Example

We want to analyze the sales of a car dealership to find out about

- mix of sales of different types of cars
- changes since last year

Date	Customer	Model	Version	Colour	Price
3rd Jan	Smith	Mondeo	Zetec	Grey	£18445
3rd Jan	Hendry	Galaxy	Titanium X	Blue	£28545
3rd Jan	Hudson	Focus	RS	Red	£27895
4th Jan	Thompson	C-Max	Style	White	£17245
4th Jan	Hastings	Kuga	Zetec	Blue	£20495
5th Jan	Lewis	Ka	Edge	Blue	£8995
5th Jan	Jones	Mondeo	Titanium	Black	£19945
5th Jan	Cole	Fiesta	Studio	Green	£9995

Price is numerical, other variables are categorical

Recoding and Aggregating

Recode:

- Combine models and versions into fewer categories for type of car
- Decide on the categories for type of car: small, family, 4x4, MPV, sports
- This is nominal data (no particular order)

Aggregate:

Number of cars of each type sold in the year

Categorical Data Example

Recode: Create categorical variable **Type**, assign values based on the value of **Model**

Date	Customer	Model	Version	Colour	Price	Туре
3rd Jan	Smith	Mondeo	Zetec	Grey	£18445	Family
3rd Jan	Hendry	Galaxy	Titanium X	Blue	£28545	MPV
3rd Jan	Hudson	Focus	RS	Red	£27895	Sports
4th Jan	Thompson	C-Max	Style	White	£17245	4×4
4th Jan	Hastings	Kuga	Zetec	Blue	£20495	MPV
5th Jan	Lewis	Ka	Edge	Blue	£8995	Small
5th Jan	Jones	Mondeo	Titanium	Black	£19945	Family
5th Jan	Cole	Fiesta	Studio	Green	£9995	Small

Aggregate: Count the number of different **Types** occurring within each year

Frequency Table

This table contains the data from the whole population

These data are the **counts** (i.e., **Frequency**) of each **Type** (i.e., **Class**) sold in each year

- Year 1 total sales = 278+425+159+231+114 = 1207
- Year 2 total sales = 252+364+104+172+54 = 946

Table 1. The number of cars sold

Туре	Year 1	Year 2
Small	278	252
Family	425	364
4x4	159	104
MPV	231	172
Sports	114	54
Total	1207	946

A table needs:

- Title/legend
- Column headings

Helpful:

- Totals
- Percentages, Relative Frequency

Relative Frequency Table

Relative Frequency is the ratio between the frequency of a particular class and the count of all measurements (i.e., the total)

 Here, each cell is the **proportion** of all cars sold in Year 2 that were of that type

Table 2. The number of cars sold in Year 2

	Number of	Relative	
Туре	cars	Frequency	
Small	252	0.27	
Family	364	0.38	
4x4	104	0.11	
MPV	172	0.18	
Sports	54	0.06	
Total	946	1.00	

Relative Frequency

$$= \frac{\mathsf{Count} \; \mathsf{of} \; \mathsf{class}}{\mathsf{Total} \; \mathsf{count}}$$

e.g. for 4x4's, the relative frequency

$$=\frac{104}{946}=0.11$$

Percentage Relative Frequency Table

Percentage relative frequency reports the relative frequency as a percentage rather than a proportion

- It is the relative frequency multiplied by 100
- In Excel, just click the % symbol in the Number group in the Home tab

Table 2. The number of cars sold in Year 2

	Number of	lumber of Relative	
Туре	cars	Frequency	Frequency
Small	252	0.27	27%
Family	364	0.38	38%
4x4	104	0.11	11%
MPV	172	0.18	18%
Sports	54	0.06	6%
Total	946	1.00	100%

Terminology Used

Class

one of the categories into which qualitative data can be classified

Class frequency

 the number of observations in the data set falling into a particular class

Class relative frequency

 the class frequency divided by the total number of observations in the data set

Class percentage relative frequency

the class relative frequency multiplied by 100

Frequency Tables

Rows

 categories (classes): every observation falls into exactly one category

Columns

- frequencies: sum to total count of data in class
- relative frequencies: sum to 1
- percentage relative frequencies: sum to 100%

Any table needs

title/legend, column headings, etc.

Professional-looking tables

- align columns of text to the left
- align columns of numbers the right
- (e.g., same as Excel)

Charts: Pie Chart

Angle of each segment represents the proportion of the whole "Pie"

• Angle = $360^{\circ} \times 11\% = 39.6^{\circ}$

Categories must be separate and add up to a meaningful value

Pie chart needs:

- title
- legend
- values or %

Pie Chart: Spot the mistakes

Pie Charts

Segments/portions in pie charts:

- represent categories: every observation falls into exactly one category
- follow the area principle: angle of each portion represents the percentage of that category
- their percentage relative frequencies sum up to 100%

Any pie chart needs:

title/caption, portion legends, % or numbers

Professional looking pie charts:

- adjust portion colours
- ensure text and text colour is clear and readable

Charts: Bar Chart

Height of bar represents the frequency

- same width of bar
- gaps between bars (categorical data)

Bar chart needs:

- title
- axis title
- labels

Charts: Pareto Chart

Pareto chart is a bar chart with categories in decreasing order of frequency

Bar Charts

Are sometimes called column charts

Bars

- represent categories: every observation fits exactly one category
- bar heights are equal to the count or number of data falling into that category
 - heights of bars sum to the count/number of all data
 - e.g., percentages will sum up to 100%
- bar width has no meaning

Any bar chart needs:

title/caption, axis titles, axis labels, legend

Professional looking bar charts:

use clear, brief but understandable category labels

Pie chart vs bar chart

Pie Chart Advantages:

- Shows proportion of the whole
- e.g., can see whether category is about a quarter or a half of the total

Bar Chart Advantages:

- Shows relative values more clearly
- can see whether one category is more or less than another category
- Easy to read category labels even for categories with small frequencies

Table 3. The number of cars sold in Years 1 and 2

More complicated tables need good formatting Complicated data may need more than one table

Table 3. The number of cars sold in Years 1 and 2

	Year 1	Year 2	Year 1	Year 2	Y1 to Y2
Type	Sold	Sold	%	%	% change
Small	278	252	23%	27%	-9%
Family	425	364	35%	38%	-14%
4x4	159	104	13%	11%	-35%
MPV	231	172	19%	18%	-26%
Sports	114	54	9%	6%	-53%
Total	1207	946	100%	100%	-22%

Relative percentage change in sales from Year 1 to Year 2 for **Small** cars

$$\frac{(252-278)}{278} = -9\%$$

Comparing Years: Pie Chart

Challenging to compare between the years

% shows the sales mix

Not suitable if we showed number rather than %

Pie Chart: Area Principle

The area should correspond to the value being represented

$$\mathsf{Area} \ = \pi \times \ (\mathsf{radius})^2; \quad \mathsf{radius}_2 = \ \mathsf{radius}_1 \times \sqrt{\frac{\mathsf{total}_2}{\mathsf{total}_1}}$$

If this is not true then the chart can be misleading

How does the number of small cars change from Year 1 to Year 2?

Comparing Years: Bar Charts

In comparative charts you need a legend to distinguish between the level in the data being compared.

Here Year 1 and Year 2

Comparing Years: Percentage Bar Charts

Percentage (%) values show the change in sales mix

Could be very misleading unless read carefully

Comparing Years: Stacked Bar Charts

Can be effective particularly if just 2 or 3 categories

Comparing Years: Stacked (%) Bar Charts

Percentage (%) values show the change in sales mix

• Similar to comparative pie charts

Other Charts: Line Chart

Like bar chart: draws line across tops of bars

Good for comparisons

Careful: Must not be read as trend across the *x*-axis (categorical)

Other Charts: Radar or Spiderweb Chart

Gaining popularity

Other Charts: Doughnut Chart

Not recommended: potentially misleading as it violates the area principle

Other Charts: Bar Chart for Ordinal Data

Plot in **order** – the resulting pattern looking across the bars has meaning.

Bar chart better than pie chart for ordinal data.

Summary

Not difficult to draw a chart in Excel

But, high quality professional analysis and presentation requires:

- Careful thought in basic analysis of data
- · Careful thought in choice of tables and charts
- Attention to detail
- titles, axis labels, data labels, legend, colours
- Ability to interpret results and identify key points
- Clear writing

Wrap up

Here we:

• Looked at a range of charts for qualitative data

Next time:

• Charts for quantitative data