Job No.: Michael Keogh Address: 81 Great North Road, Kamo, New Zealand Date: 10/31/2023

Latitude: -35.665913 **Longitude:** 174.296446 **Elevation:** 98 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.8 m
Wind Region	NZ1	Terrain Category	2.0	Design Wind Speed	38.22 m/s
Wind Pressure	0.88 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 2.14 m Cpe = -0.9886 pe = -0.78 KPa pnet = -0.78 KPa

For roof CP,e from 2.14 m To 4.28 m Cpe = -0.8557 pe = -0.67 KPa pnet = -0.67 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 7 m Cpe = 0.7 pe = 0.55 KPa pnet = 0.81 KPa

For side wall CP,e from 0 m To 4.28 m Cpe = pe = -0.51 KPa pnet = -0.51 KPa

Maximum Upward pressure used in roof member Design = 0.78 KPa

Maximum Downward pressure used in roof member Design = 0.33 KPa

Maximum Wall pressure used in Design = 0.81 KPa

Maximum Racking pressure used in Design = 0.94 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 4000 mm Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet

First Page

condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.50 S1 Downward =11.27 S1 Upward =23.76

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.46 Kn-m Capacity 1.87 Kn-m Passing Percentage 128.08 % V_{0.9D-WnUp} 1.46 Kn-m Capacity 16.08 Kn-m Passing Percentage 1101.37 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 10.88 mm Limit by Woolcock et al, 1999 Span/100 = 40.00 mm Sag during installation = 15.52 mm

Reactions

Maximum = 1.46 kn

Girt Design Sides

Girt's Spacing = 700 mm Girt's Span = 7000 mm Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.65 S1 Downward =12.68 S1 Upward =20.41

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 3.47 Kn-m Capacity 3.79 Kn-m Passing Percentage 109.22 % V_{0.9D-WnUp} 1.98 Kn-m Capacity 20.10 Kn-m Passing Percentage 1015.15 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 40.64 mm Limit by Woolcock et al. 1999 Span/100 = 70.00 mm

Second page

Sag during installation =145.58 mm

Reactions

Maximum = 1.98 kn

Middle Pole Design

Geometry

250x250 SG8 Dry	Dry Use	Height	4560 mm
Area	62500 mm2	As	46875 mm2
Ix	325520833 mm4	Zx	2604167 mm3
Iy	325520833 mm4	Zx	2604167 mm3
Lateral Restraint	4560 mm c/c		

Loads

Total Area over Pole = 14 m2

Dead	3.50 Kn	Live	3.50 Kn
Wind Down	4.62 Kn	Snow	0.00 Kn
Moment wind	16.20 Kn-m		
Phi	0.8	K8	0.76
K1 snow	0.8	K1 Dead	0.6
K1 wind	1		

Material

Shaving	Steaming	Normal	Dry Use
fb =	14 MPa	$f_S =$	3 MPa
fc =	18 MPa	fp =	8.9 MPa
ft =	6 MPa	E =	8000 MPa

Capacities

PhiNex Wind	680.75 Kn	PhiMnx Wind	22.06 Kn-m	PhiVnx Wind	112.50 Kn
PhiNcx Dead	408.45 Kn	PhiMnx Dead	13.24 Kn-m	PhiVnx Dead	67.50 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.75 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.56 < 1 OK$

Deflection at top under service lateral loads = 19.13 mm < 45.60 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$ $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L = 0 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 16.20 Kn-m Shear Wind = 4.50 Kn

Pile Properties

Safety Factory 0.55

Hu = 0.00 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 0.00 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = Infinity < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

Dry Use	Height	4560 mm
50625 mm2	As	37968.75 mm2
213574219 mm4	Zx	1898438 mm3
213574219 mm4	Zx	1898438 mm3
	50625 mm2 213574219 mm4	50625 mm2 As 213574219 mm4 Zx

Lateral Restraint mm c/c

Loads

Total Area over Pole = 14 m2

Dead	3.50 Kn	Live	3.50 Kn
Wind Down	4.62 Kn	Snow	0.00 Kn
Moment Wind	8.10 Kn-m		
Phi	0.8	K8	0.66
K1 snow	0.8	K1 Dead	0.6
K 1 wind	1		

Material

Shaving	Steaming	Normal	Dry Use
fb =	14 MPa	$f_S =$	3 MPa
fc =	18 MPa	fp =	8.9 MPa
ft =	6 MPa	E =	8000 MPa

Capacities

PhiNex Wind	479.12 Kn	PhiMnx Wind	13.97 Kn-m	PhiVnx Wind	91.13 Kn
PhiNcx Dead	287.47 Kn	PhiMnx Dead	8.38 Kn-m	PhiVnx Dead	54.68 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.60 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.36 < 1 OK$

Deflection at top under service lateral loads = 15.31 mm < 47.88 mm

Ds =	0.6 mm	Pile Diameter
L =	0 mm	Pile embedment length
f1 =	3600 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Total Area over Pole = 14 m2

Moment Wind =	8.10 Kn-m
Shear Wind =	2.25 Kn

Pile Properties

Safety Factory 0.55

Hu = 0.00 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 0.00 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = Infinity < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 0 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 8.10 Kn-m Shear Wind = 2.25 Kn

Pile Properties

Safety Factory 0.55

Hu = 0.00 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 0.00 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = Infinity < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(0) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(0)

Skin Friction = 0.00 Kn

Weight of Pile + Pile Skin Friction = 0.00 Kn

Uplift on one Pile = 7.77 Kn

Uplift is ok