Задача 1. В классе учатся 20 человек. Сколькими способами из них можно выбрать двоих школьников: старосту и ответственного за проездные билеты? А просто двоих школьников?

Задача 2. Сколько разных слов (не только осмысленных) можно получить, переставляя буквы в словах

Задача 3. а) Сколькими способами можно выбрать трёх дежурных в классе из 20 человек? б) А сколькими способами можно выбрать старосту, его помощника и трёх дежурных?

Определение 1. Числом сочетаний из n элементов no k называется количество способов выбрать kпредметов из n различных предметов. Обозначение: $\binom{n}{k}$ или $\binom{k}{n}$ (читается «це из n по k»).

Задача 4. Докажите, что **a)** $C_n^k = C_n^{n-k}$; **б)** $C_{n+1}^k = C_n^k + C_n^{k-1}$.

Задача 5. Найдите формулу для C_n^k .

Задача 6. а) На рисунке изображен план города (линии — это улицы, пересечения линий — перекрестки). На улицах введено одностороннее движение: можно ехать только «вверх» или «вправо». Сколько разных маршрутов Aведёт из точки A в точку B?

б) Сколько из этих маршрутов не проходят через отмеченную на плане точку внутри города? Задача 7. Сколькими способами можно рассадить класс, если пришло 27 человек, а мест 30?

Задача 8. Сколькими способами можно высадить в ряд 3 груши и 4 яблони?

Определение 2. Треугольником Паскаля называют числовой треугольник, изображенный на рисунке (по краям треугольника сто-**35 A 144 9** UH 12 DUCKARE BEINGTARD HEX BUICET DABLO TOWN OF BRUKACTO-Пихабир Тапините следующие 5 строк.

Задача 10. Докажите, что k-ое число n-ой строки равно C_n^k (строки нумеруются сверху вниз, начиная с нуля, а числа в строках нумеруются слева направо, также начиная с нуля).

Задача 11. Докажите, что сумма чисел в n-ой строке треугольника Паскаля равна 2^n .

Задача 12. Докажите тождество: $C_n^1 + 2C_n^2 + 3C_n^3 + \cdots + nC_n^n = n2^{n-1}$.

Задача 13. а) Раскройте скобки и приведите подобные в выражениях $(a+b)^2$, $(a+b)^3$, $(a+b)^4$. **б)** (Бином Hьютона) Раскроем скобки и приведём подобные в выражении $(a+b)^n$. Возьмём любое слагаемое. Оно имеет вид $C \cdot a^k \cdot b^{n-k}$ (почему?). Докажите, что $C = C_n^k$.

Задача 14. Докажите тождество: $C_n^0 - C_n^1 + C_n^2 - C_n^3 + \dots + (-1)^n C_n^n = 0.$

Задача 15. Возьмём любое число C в треугольнике Паскаля и сложим все числа, начиная с него и идя по прямой направо-вверх. Докажите, что сумма равна числу, стоящему под C справа.

Задача 16. Выведите из задачи 15 формулы для сумм $1+\ldots+n,\,T_1+\ldots+T_n,\,\Pi_1+\ldots+\Pi_n.$

Задача 17*. Как из предыдущей задачи вывести формулы для $1^2 + \cdots + k^2$, $1^3 + \cdots + k^3$, ...?

Задача 18*. Отметьте в треугольнике Паскаля чётные числа. В каких строках все числа нечётные?

Задача 19*. Докажите, что $C_p^0 \cdot C_q^m + C_p^1 \cdot C_q^{m-1} + \dots + C_p^{m-1} \cdot C_q^1 + C_p^m \cdot C_q^0 = C_{p+q}^m$.

Задача 20. В НИИ работают 67 человек. Из них 47 знают английский язык, 35 — немецкий, и 23 — оба языка. Сколько человек в НИИ не знают ни английского, ни немецкого языков? а) Пусть кроме этого польский знают 20 человек, английский и польский — 12, немецкий и польский — 11, все три языка — 5. Сколько человек не знают ни одного из этих языков?

Задача 21. В ряд записали 105 единиц, поставив перед каждой знак «+». Сначала изменили знак на противоположный перед каждой третьей единицей, затем — перед каждой пятой, а затем — перед каждой седьмой. Найдите значение полученного выражения.

Задача 22. а) На полке стоят 10 книг. Сколькими способами их можно переставить так, чтобы ни одна книга не осталась на месте? б) А если на месте должны остаться ровно 3 книги?

|--|