Study of expansions/contractions of AQP gene family under a Possion regression model in R

Set the Environment

```
# Load packages
require(phylolm)
require(phytools)
require(reshape2)
require(phangorn)
require(ggplot2)
require(cowplot)

# Load species tree in newick format
speciestree <- read.tree("speciestree_newik.txt")
plot(speciestree, cex=0.4, no.margin = T)</pre>
```


Non-parametric Bootstrapping for bracnch length simulation

We will simulate 1000 possible scenarios with different branch length for the species tree using the function "pb_edgelength" from [??????: L. Revell's method (http://blog.phytools.org/2015/04/sampling-edgelengths-under-yule-process.html)]. This function set branch length to a given species tree based on the Yule process.

```
# Set pb_edgelength function
pb_edgelength <- function(tree,b=1,plot=TRUE,...){</pre>
  11 <- rexp(n=Ntip(tree)-1,rate=2:Ntip(tree)*b)</pre>
  tree$edge.length <- rep(0,nrow(tree$edge))</pre>
  live.nodes <- Descendants(tree, Ntip(tree)+1, "children")</pre>
  tips <- vector()</pre>
  for(i in 1:length(ll)){
    tips <- c(tips,live.nodes[live.nodes<=Ntip(tree)])</pre>
    live.nodes <- setdiff(live.nodes,tips)</pre>
    ii <- which(tree$edge[,2]%in%c(live.nodes,tips))</pre>
    tree$edge.length[ii] <- tree$edge.length[ii]+ll[i]</pre>
    node <- if(length(live.nodes)<=1) live.nodes else</pre>
      sample(live.nodes,1) ## choose one node
    live.nodes <- c(setdiff(live.nodes,node),</pre>
                      Descendants(tree, node, "children"))
    if(plot) plotTree(tree,...)
  }
  tree
}
# Create 1000 replicates of the species tree
simulated_speciestrees <- rep(list(speciestree),1000)</pre>
```

```
# Create 1000 replicates of the species tree
simulated_speciestrees <- rep(list(speciestree),1000)

# Use "pb_edgelength" to simulate different branch lengths for each replicate
simulated_speciestrees_bl <- lapply(simulated_speciestrees, pb_edgelength,plot=F)

# Change class to multiPhylo for further analyses
class(simulated_speciestrees_bl) <- "multiPhylo"</pre>
```

AQP1-like Analysis

Marine/Non-Marine classification

We will load data containing variables in the model (AQP1-like count and habitat classification per taxon) in tsv format. Then, we will compare the amount of AQP1-like copies between Marine and Non-Marine species considering their phylogenetic relationships. To do so, we will fit a Poisson regression model to the AQP1-like count data and the 1000 sampled trees using phyloglm()

```
method = "poisson_GEE")})
head(marine_model_results_1, n=1)
## [[1]]
## Call:
## phyloglm(formula = AQP1_like ~ Habitat, data = marine_data_1,
##
       phy = x, method = "poisson_GEE")
##
## Parameter estimate(s) from poisson_GEE:
##
## Coefficients:
##
         (Intercept) HabitatNon-Marine
           1.3684456
##
                              0.3181062
```

We will extract sampling means considering the log-scale relationships between the response (AQP1-like count) and the explanatory (Habitat) variables in the Poisson regression model. The mathematical function that explains this relationship looks like:

$$y = e^{\alpha + \beta(x)} = e^{\alpha} + e^{\beta * x}$$

We will also extract p-values for each of the 1000 scenarios, which explain whether the differences between Marine and Non-Marine means are significant.

Statistical analysis of bootstrapped model results

Mean and Median

Mean value of sampling means for AQP1-like in marine and non-marine species.

	Mean
Marine	3.451217

	Mean
Non-Marine	5.005511

Median values of sampling means for AQP1-like in marine and non-marine species.

	Median
Marine	3.427115
Non-Marine	5.011499

Compare model results to those without considering phylogenetic relationships.

	Mean
Marine	3.800000
Non-Marine	6.666667

	Median
Marine	3.5
Non-Marine	6.0

Finally, we will plot sampling distribution of Marine and Non-Marine means.

xlim(2.5, 7) +

We will explore sampling distribution of p-values to conclude whether the differences in amount of AQP1-like are statistically significant between Marine and Non-Marine species, taking into account that only p-values smaller than 0.05 show statistical significance:

```
table(marine_p_values_1 < 0.05)
```

count
41
959

Since it seems that not all bootstrapped p-values are under 0.05, we need to summarize and visualize sampling distribution of p-values.

```
# Mean of sampling distribution of p-values
marine_mean_pvalues_1 <- mean(marine_p_values_1)

# Median of sampling distribution of p-values
marine_median_pvalues_1 <- median(marine_p_values_1)

# Extract the 95% confidence interval for sampling distribution of p-values
marine_sorted_pvalues_1 <- sort(marine_p_values_1)
marine_lower_limit_1 <- marine_sorted_pvalues_1[26]
marine_upper_limit_1 <- marine_sorted_pvalues_1[975]</pre>
```

Mean	Median	Lower_limit	Upper_limit
0.009497	0.0004603	1.8e-06	0.0825906

Finally, we will plot sampling distribution of p-values.

```
# Create the dataframe
marine_df_pvalue_1 <- data.frame(Pvalue = marine_p_values_1)

# Plot bootstrapped p-values distribution
marine_p_pvalue_1 <- ggplot(marine_df_pvalue_1, aes(x=Pvalue)) +
    geom_density(alpha=0.25) +
    scale_fill_manual(values=c("#8fce00")) +
    xlim(-0.1, 1) +
    geom_vline(xintercept = 0.05, linetype="dashed") +
    xlab("Bootstrapped p-values")</pre>
marine_p_pvalue_1
```


Terrestrial/Non-Terrestrial classification

```
# Load data
terrestrial_data_1 <- read.table("AQP1_terrestrialnonterrestrial_model.tsv",</pre>
                                  h=T, row.names = 1)
# Fit the model
terrestrial_model_results_1 <- lapply(simulated_speciestrees_bl,</pre>
                           function(x){phyloglm(AQP1_like~Habitat,
                                                 terrestrial_data_1, phy=x,
                                                 method = "poisson_GEE")})
head(terrestrial_model_results_1, n=1)
## [[1]]
## Call:
## phyloglm(formula = AQP1_like ~ Habitat, data = terrestrial_data_1,
##
       phy = x, method = "poisson_GEE")
##
## Parameter estimate(s) from poisson_GEE:
##
## Coefficients:
##
          (Intercept) HabitatTerrestrial
           1.49117960
                               0.01820524
##
```

Statistical analysis of bootstrapped model results

Mean and Median

	Mean
Non-Terrestrial	3.889458
Terrestrial	3.940548

	Median
Non-Terrestrial	3.868995
Terrestrial	3.906468

	Mean
Aquatic	4.617284
Terrestrial	7.800000

	Median
Aquatic	4.0
Terrestrial	8.5

Warning: Removed 2 rows containing non-finite values (stat_density).


```
table(terrestrial_p_values_1 < 0.05)
```

p-value < 0.05	count
FALSE	964
TRUE	36

```
# Mean of sampling distribution of p-values
terrestrial_mean_pvalues_1 <- mean(terrestrial_p_values_1)

# Median of sampling distribution of p-values
terrestrial_median_pvalues_1 <- median(terrestrial_p_values_1)

# Extract the 95% confidence interval for sampling distribution of p-values
terrestrial_sorted_pvalues_1 <- sort(terrestrial_p_values_1)
terrestrial_lower_limit_1 <- terrestrial_sorted_pvalues_1[26]
terrestrial_upper_limit_1 <- terrestrial_sorted_pvalues_1[975]</pre>
```

Mean	Median	Lower_limit	Upper_limit
0.5498899	0.5727568	0.0265037	0.9810499

```
# Create the dataframe
terrestrial_df_pvalue_1 <- data.frame(Pvalue = terrestrial_p_values_1)

# Plot bootstrapped p-values distribution
terrestrial_p_pvalue_1 <- ggplot(terrestrial_df_pvalue_1, aes(x=Pvalue)) +
    geom_density(alpha=0.25) +
    scale_fill_manual(values=c("#8fce00")) +
    xlim(-0.1, 1) +
    geom_vline(xintercept = 0.05, linetype="dashed") +
    xlab("Bootstrapped p-values")

terrestrial_p_pvalue_1</pre>
```


Warning: Removed 2 rows containing non-finite values (stat_density).

AQP3-like Analysis

Marine/Non-Marine classification

```
# Load data
marine_data_3 <- read.table("AQP3_marinenonmarine_model.tsv", h=T, row.names = 1)</pre>
# Fit the model
marine_model_results_3 <- lapply(simulated_speciestrees_bl,</pre>
                           function(x){phyloglm(AQP3_like~Habitat,
                                                 marine_data_3, phy=x,
                                                 method = "poisson_GEE")})
head(marine_model_results_3, n=1)
## [[1]]
## phyloglm(formula = AQP3_like ~ Habitat, data = marine_data_3,
       phy = x, method = "poisson_GEE")
##
##
## Parameter estimate(s) from poisson_GEE:
##
## Coefficients:
         (Intercept) HabitatNon-Marine
##
```

Statistical analysis of bootstrapped model results

Mean and Median

	Mean
Marine	2.690793
Non-Marine	2.697608

	Median
Marine	2.692615
Non-Marine	2.682093

	Mean
Marine	2.380000
Non-Marine	2.294118

	Median
Marine	2
Non-Marine	2

Warning: Removed 2 rows containing non-finite values (stat_density).


```
table(marine_p_values_3 < 0.05)
```

p-value < 0.05	count
FALSE	922
TRUE	78

```
# Mean of sampling distribution of p-values
marine_mean_pvalues_3 <- mean(marine_p_values_3)

# Median of sampling distribution of p-values
marine_median_pvalues_3 <- median(marine_p_values_3)

# Extract the 95% confidence interval for sampling distribution of p-values
marine_sorted_pvalues_3 <- sort(marine_p_values_3)
marine_lower_limit_3 <- marine_sorted_pvalues_3[26]
marine_upper_limit_3 <- marine_sorted_pvalues_3[975]</pre>
```

Mean	Median	Lower_limit	Upper_limit
0.5320279	0.5809523	0.0026383	0.9729916

```
# Create the dataframe
marine_df_pvalue_3 <- data.frame(Pvalue = marine_p_values_3)

# Plot bootstrapped p-values distribution
marine_p_pvalue_3 <- ggplot(marine_df_pvalue_3, aes(x=Pvalue)) +
    geom_density(alpha=0.25) +
    scale_fill_manual(values=c("#8fce00")) +
    xlim(-0.1, 1) +
    geom_vline(xintercept = 0.05, linetype="dashed") +
    xlab("Bootstrapped p-values")

marine_p_pvalue_3</pre>
```


Warning: Removed 2 rows containing non-finite values (stat_density).

Terrestrial/Non-Terrestrial classification

```
# Load data
terrestrial_data_3 <- read.table("AQP3_terrestrialnonterrestrial_model.tsv",</pre>
                                  h=T, row.names = 1)
# Fit the model
terrestrial_model_results_3 <- lapply(simulated_speciestrees_bl,</pre>
                           function(x){phyloglm(AQP3_like~Habitat,
                                                terrestrial_data_3, phy=x,
                                                method = "poisson_GEE")})
head(terrestrial_model_results_3, n=1)
## [[1]]
## Call:
## phyloglm(formula = AQP3_like ~ Habitat, data = terrestrial_data_3,
       phy = x, method = "poisson_GEE")
##
## Parameter estimate(s) from poisson_GEE:
## Coefficients:
##
          (Intercept) HabitatTerrestrial
            0.9221440
                               -0.1299878
##
```

Statistical analysis of bootstrapped model results

Mean and Median

	Mean
Non-Terrestrial	2.690692
Terrestrial	2.195769

	Median
Non-Terrestrial	2.692673
Terrestrial	2.196321

	Mean
Aquatic	2.567901
Terrestrial	1.400000

Median
2
1

```
# Create dataframe
terrestrial_df_means_3 <- data.frame(NonTerrestrial = means_nonterrestrial_3,</pre>
                                      Terrestrial = means_terrestrial_3)
# Melt Marine and Non-Marine means data
terrestrial_melted_df_means_3 = melt(terrestrial_df_means_3,
                                      value.name = "Mean", variable.name = "Habitat")
# Plot means data
terrestrial_p_means_3 <- ggplot(terrestrial_melted_df_means_3,</pre>
                                aes(x=Mean, fill=Habitat)) +
  geom_density(alpha=0.25) +
 scale_fill_manual(values=c("#0b5394", "#cc0000")) +
 xlim(1, 4) +
  geom_vline(data=terrestrial_df_means_3, aes(xintercept=mean(NonTerrestrial)),
             linetype="dashed") +
  geom_vline(data=terrestrial_df_means_3, aes(xintercept=mean(Terrestrial)),
             linetype="dashed") +
  xlab("Bootstrapped means") +
```

theme(legend.position = c(0.8, 0.8))


```
table(terrestrial_p_values_3 < 0.05)</pre>
```

```
\begin{array}{ll} \hline \text{p-value} < 0.05 & \text{count} \\ \hline \text{FALSE} & 634 \\ \text{TRUE} & 366 \\ \hline \end{array}
```

```
# Mean of sampling distribution of p-values
terrestrial_mean_pvalues_3 <- mean(terrestrial_p_values_3)

# Median of sampling distribution of p-values
terrestrial_median_pvalues_3 <- median(terrestrial_p_values_3)

# Extract the 95% confidence interval for sampling distribution of p-values
terrestrial_sorted_pvalues_3 <- sort(terrestrial_p_values_3)
terrestrial_lower_limit_3 <- terrestrial_sorted_pvalues_3[26]
terrestrial_upper_limit_3 <- terrestrial_sorted_pvalues_3[975]</pre>
```

Mean	Median	Lower_limit	Upper_limit
0.1313033	0.0796738	0.0032968	0.5822021

```
# Create the dataframe
terrestrial_df_pvalue_3 <- data.frame(Pvalue = terrestrial_p_values_3)

# Plot bootstrapped p-values distribution
terrestrial_p_pvalue_3 <- ggplot(terrestrial_df_pvalue_3, aes(x=Pvalue)) +
    geom_density(alpha=0.25) +
    scale_fill_manual(values=c("#8fce00")) +
    xlim(-0.1, 1) +
    geom_vline(xintercept = 0.05, linetype="dashed") +
    xlab("Bootstrapped p-values")

terrestrial_p_pvalue_3</pre>
```


AQP8-like Analyses

##

Marine/Non-Marine classification

```
## Parameter estimate(s) from poisson_GEE:
##
## Coefficients:
## (Intercept) HabitatNon-Marine
## 0.89447486 0.08448404
```

Statistical analysis of bootstrapped model results

Mean and Median

	Mean
Marine	2.171854
Non-Marine	2.571623

	Median
Marine	2.165946
Non-Marine	2.564994

	Mean
Marine	2.720000
Non-Marine	3.078431

	Median
Marine	2
Non-Marine	3


```
table(marine_p_values_8 < 0.05)
```

p-value < 0.05	count
FALSE	784
TRUE	216

```
# Mean of sampling distribution of p-values
marine_mean_pvalues_8 <- mean(marine_p_values_8)

# Median of sampling distribution of p-values
marine_median_pvalues_8 <- median(marine_p_values_8)

# Extract the 95% confidence interval for sampling distribution of p-values
marine_sorted_pvalues_8 <- sort(marine_p_values_8)
marine_lower_limit_8 <- marine_sorted_pvalues_8[26]
marine_upper_limit_8 <- marine_sorted_pvalues_8[975]</pre>
```

Mean	Median	Lower_limit	Upper_limit
0.2215673	0.1453152	0.0048216	0.7835163

```
# Create the dataframe
marine_df_pvalue_8 <- data.frame(Pvalue = marine_p_values_8)

# Plot bootstrapped p-values distribution
marine_p_pvalue_8 <- ggplot(marine_df_pvalue_8, aes(x=Pvalue)) +
    geom_density(alpha=0.25) +
    scale_fill_manual(values=c("#8fce00")) +
    xlim(-0.1, 1) +
    geom_vline(xintercept = 0.05, linetype="dashed") +
    xlab("Bootstrapped p-values")</pre>
marine_p_pvalue_8
```


Terrestrial/Non-Terrestrial classification

```
# Load data
terrestrial_data_8 <- read.table("AQP8_terrestrialnonterrestrial_model.tsv",</pre>
                                  h=T, row.names = 1)
# Fit the model
terrestrial_model_results_8 <- lapply(simulated_speciestrees_bl,</pre>
                           function(x){phyloglm(AQP8_like~Habitat,
                                                terrestrial_data_8, phy=x,
                                                method = "poisson_GEE")})
head(terrestrial_model_results_8, n=1)
## [[1]]
## Call:
## phyloglm(formula = AQP8_like ~ Habitat, data = terrestrial_data_8,
       phy = x, method = "poisson_GEE")
##
## Parameter estimate(s) from poisson_GEE:
## Coefficients:
##
          (Intercept) HabitatTerrestrial
            0.9161201
                                0.5517799
##
```

Statistical analysis of bootstrapped model results

Mean and Median

	Mean
Non-Terrestrial	2.273694
Terrestrial	3.820235

	Median
Non-Terrestrial	2.268447
Terrestrial	3.813666

	Mean
Aquatic Terrestrial	2.604938 4.100000
remedian	4.100000
Terrestrial	4.100000

Median
2
5

```
# Create dataframe
terrestrial_df_means_8 <- data.frame(NonTerrestrial = means_nonterrestrial_8,</pre>
                                      Terrestrial = means_terrestrial_8)
\# Melt Marine and Non-Marine means data
terrestrial_melted_df_means_8 = melt(terrestrial_df_means_8,
                                      value.name = "Mean", variable.name = "Habitat")
# Plot means data
terrestrial_p_means_8 <- ggplot(terrestrial_melted_df_means_8,</pre>
                                aes(x=Mean, fill=Habitat)) +
  geom_density(alpha=0.25) +
 scale_fill_manual(values=c("#0b5394", "#cc0000")) +
 xlim(1, 5) +
  geom_vline(data=terrestrial_df_means_8, aes(xintercept=mean(NonTerrestrial)),
             linetype="dashed") +
  geom_vline(data=terrestrial_df_means_8, aes(xintercept=mean(Terrestrial)),
             linetype="dashed") +
  xlab("Bootstrapped means") +
  theme(legend.position = c(0.8, 0.8))
```



```
table(terrestrial_p_values_8 < 0.05)
```

```
p-value < 0.05 count
TRUE 1000
```

```
# Mean of sampling distribution of p-values
terrestrial_mean_pvalues_8 <- mean(terrestrial_p_values_8)

# Median of sampling distribution of p-values
terrestrial_median_pvalues_8 <- median(terrestrial_p_values_8)

# Extract the 95% confidence interval for sampling distribution of p-values
terrestrial_sorted_pvalues_8 <- sort(terrestrial_p_values_8)
terrestrial_lower_limit_8 <- terrestrial_sorted_pvalues_8[26]
terrestrial_upper_limit_8 <- terrestrial_sorted_pvalues_8[975]</pre>
```

Mean	Median	Lower_limit	Upper_limit
0.0002574	2.23e-05	2e-07	0.002289

```
# Create the dataframe
terrestrial_df_pvalue_8 <- data.frame(Pvalue = terrestrial_p_values_8)

# Plot bootstrapped p-values distribution
terrestrial_p_pvalue_8 <- ggplot(terrestrial_df_pvalue_8, aes(x=Pvalue)) +
    geom_density(alpha=0.25) +
    scale_fill_manual(values=c("#8fce00")) +
    xlim(-0.1, 1) +
    geom_vline(xintercept = 0.05, linetype="dashed") +
    xlab("Bootstrapped p-values")

terrestrial_p_pvalue_8</pre>
```


AQP11-like Analyses

Marine/Non-Marine classification

```
# Load data
marine_data_11 <- read.table("AQP11_marinenonmarine_model.tsv", h=T, row.names = 1)</pre>
# Fit the model
marine_model_results_11 <- lapply(simulated_speciestrees_bl,</pre>
                           function(x){phyloglm(AQP11_like~Habitat,
                                                 marine_data_11, phy=x,
                                                 method = "poisson_GEE")})
head(marine_model_results_11, n=1)
## [[1]]
## phyloglm(formula = AQP11_like ~ Habitat, data = marine_data_11,
       phy = x, method = "poisson_GEE")
##
##
## Parameter estimate(s) from poisson_GEE:
##
## Coefficients:
         (Intercept) HabitatNon-Marine
##
```

Statistical analysis of bootstrapped model results

Mean and Median

	Mean
Marine	1.615659
Non-Marine	1.861902

	Median
Marine	1.613049
Non-Marine	1.855204

	Mean
Marine	1.960000
Non-Marine	1.254902

Median
2
1


```
table(marine_p_values_11 < 0.05)
```

p-value < 0.05	count
FALSE	700
TRUE	300

```
# Mean of sampling distribution of p-values
marine_mean_pvalues_11 <- mean(marine_p_values_11)

# Median of sampling distribution of p-values
marine_median_pvalues_11 <- median(marine_p_values_11)

# Extract the 95% confidence interval for sampling distribution of p-values
marine_sorted_pvalues_11 <- sort(marine_p_values_11)
marine_lower_limit_11 <- marine_sorted_pvalues_11[26]
marine_upper_limit_11 <- marine_sorted_pvalues_11[975]</pre>
```

Mean	Median	Lower_limit	Upper_limit
0.190361	0.116134	0.0005974	0.7706079

```
# Create the dataframe
marine_df_pvalue_11 <- data.frame(Pvalue = marine_p_values_11)

# Plot bootstrapped p-values distribution
marine_p_pvalue_11 <- ggplot(marine_df_pvalue_11, aes(x=Pvalue)) +
    geom_density(alpha=0.25) +
    scale_fill_manual(values=c("#8fce00")) +
    xlim(-0.1, 1) +
    geom_vline(xintercept = 0.05, linetype="dashed") +
    xlab("Bootstrapped p-values")</pre>
marine_p_pvalue_11
```


Terrestrial/Non-Terrestrial classification

```
# Load data
terrestrial_data_11 <- read.table("AQP11_terrestrialnonterrestrial_model.tsv",</pre>
                                  h=T, row.names = 1)
# Fit the model
terrestrial_model_results_11 <- lapply(simulated_speciestrees_bl,</pre>
                           function(x){phyloglm(AQP11_like~Habitat,
                                                terrestrial_data_11, phy=x,
                                                method = "poisson_GEE")})
head(terrestrial_model_results_11, n=1)
## [[1]]
## Call:
## phyloglm(formula = AQP11_like ~ Habitat, data = terrestrial_data_11,
       phy = x, method = "poisson_GEE")
##
##
## Parameter estimate(s) from poisson_GEE:
## Coefficients:
##
          (Intercept) HabitatTerrestrial
            0.4889922
                                0.1001441
##
```

Statistical analysis of bootstrapped model results

Mean and Median

	Mean
Non-Terrestrial	1.680427
Terrestrial	1.793592

	Median
Non-Terrestrial	1.677680
Terrestrial	1.797702

3.5
Mean
.82716 .70000

	Median
Aquatic	2
Terrestrial	1

```
# Create dataframe
terrestrial_df_means_11 <- data.frame(NonTerrestrial = means_nonterrestrial_11,
                                     Terrestrial = means_terrestrial_11)
\# Melt Marine and Non-Marine means data
terrestrial_melted_df_means_11 = melt(terrestrial_df_means_11,
                                     value.name = "Mean", variable.name = "Habitat")
# Plot means data
terrestrial_p_means_11 <- ggplot(terrestrial_melted_df_means_11,</pre>
                                aes(x=Mean, fill=Habitat)) +
  geom_density(alpha=0.25) +
 scale_fill_manual(values=c("#0b5394", "#cc0000")) +
 xlim(1, 3) +
  geom_vline(data=terrestrial_df_means_11, aes(xintercept=mean(NonTerrestrial)),
             linetype="dashed") +
  geom_vline(data=terrestrial_df_means_11, aes(xintercept=mean(Terrestrial)),
             linetype="dashed") +
  xlab("Bootstrapped means") +
```

theme(legend.position = c(0.8, 0.8))


```
table(terrestrial_p_values_11 < 0.05)</pre>
```

```
\begin{array}{c|cccc} \hline \text{p-value} < 0.05 & \text{count} \\ \hline \text{FALSE} & 993 \\ \text{TRUE} & 7 \\ \hline \end{array}
```

```
# Mean of sampling distribution of p-values
terrestrial_mean_pvalues_11 <- mean(terrestrial_p_values_11)

# Median of sampling distribution of p-values
terrestrial_median_pvalues_11 <- median(terrestrial_p_values_11)

# Extract the 95% confidence interval for sampling distribution of p-values
terrestrial_sorted_pvalues_11 <- sort(terrestrial_p_values_11)
terrestrial_lower_limit_11 <- terrestrial_sorted_pvalues_11[26]
terrestrial_upper_limit_11 <- terrestrial_sorted_pvalues_11[975]</pre>
```

Mean	Median	Lower_limit	Upper_limit
0.5008527	0.479314	0.0970311	0.9623558

```
# Create the dataframe
terrestrial_df_pvalue_11 <- data.frame(Pvalue = terrestrial_p_values_11)

# Plot bootstrapped p-values distribution
terrestrial_p_pvalue_11 <- ggplot(terrestrial_df_pvalue_11, aes(x=Pvalue)) +
    geom_density(alpha=0.25) +
    scale_fill_manual(values=c("#8fce00")) +
    xlim(-0.1, 1) +
    geom_vline(xintercept = 0.05, linetype="dashed") +
    xlab("Bootstrapped p-values")

terrestrial_p_pvalue_11</pre>
```


