DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN

Principal Component Analysis (PCA) Dimensionality and noise reduction

Kim Steenstrup Pedersen

Plan for this lecture

- Continuous latent variable models:
 - Why linear PCA?
- Principal component analysis (PCA):
 - Maximum variance formulation
 - Minimum error formulation
- Applications of PCA:
 - Preprocessing of data for noise reduction
 - Dimensionality reduction
 - Visualization of high dimensional data
- And some computational tricks

Continuous latent variable models

- Often high dimensional data have few degrees of freedom, i.e. a low intrinsic dimensionality.
- Example: Images of hand written digits

- Dimensionality: 64 x 64 pixels = high dimensionality
- Intrinsic degrees of freedom (< 64 x 64):
 - Easy: Translation (2), rotation (1)
 - Complicated: Degrees of freedom coming from the variability in how to write the digit 3.
 - Not all images represents valid digits the set of digit images is sparsely distributed in the space of images.

Priors for People Tracking from small training sets Raquel Urtasun, David Fleet, Aaron Hertzmann, Pascal Fua 1 Computer Vision Laboratory Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne, Switzerland 2 Department of Computer Science University of Toronto M5S 3H5, Canada

[Urtasun et al, 2005b]

Dimensionality: 15 joints x 3 (3D)

The intrinsic dimensionality of walking is much lower

- We can model the degrees of freedom as latent (hidden) variables z.
- The connection between data representation x and latent variables z is in general some non-linear mapping:

$$\mathbf{x} = \varphi(\mathbf{z}, \varepsilon)$$

Including some noise \mathcal{E} .

• The simplest choice is a linear model with additive noise:

$$\mathbf{x} = \mathbf{A}\mathbf{z} + \mathbf{b} + \boldsymbol{\varepsilon}$$

 Principal component analysis (PCA) is based on a linear model.

Data is 2D but it only has 1 degree of freedom and lies along a line (linear subspace)

A bit more messy but data can still be approximated with a linear model:

Principal Component Analysis (PCA): The typical steps

Project data $\{\mathbf{x}_n\}_{n=1,\dots,N}$ onto directions $\{\mathbf{u}_i\}_{i=1,\dots,M}$ with $M \ll D$.

We find directions sequentially, u_1 first.

Mean of projected data: $\mathbf{u}_1^T \bar{\mathbf{x}}$ with

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \ .$$

Variance of projected data:

$$\frac{1}{N} \sum_{n=1}^{N} \left\{ \mathbf{u}_{1}^{T} \left(\mathbf{x}_{n} - \bar{\mathbf{x}} \right) \right\}^{2} = \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1} .$$

with the empirical co-variance

$$S = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x}) (x_n - \bar{x})^T$$

PCA: Maximum variance formulation (The first)

Maximize variance

$$\mathbf{u}_{1}^{T}\mathbf{S}\mathbf{u}_{1}$$

with respect to u_1 .

But we need a constraint to avoid $u_1 \to \infty$:

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

Student exercise – take derivative wrt \mathbf{u}_1 and show

$$Su_1 = \lambda_1 u_1 .$$

Multiply by \mathbf{u}_1^T and show

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \lambda_1 \ .$$

How to interpret these two results?

Recall: The eigenvectors are orthonormal and form a coordinate system

 x_1

PCA: Minimum error formulation (The second)

Goal: Find the optimal reconstructing orthonormal directions $\left\{\mathbf{u}_{i}\right\}$

PCA: Minimum error formulation (The second)

• Assume complete orthonormal basis given: $\{\mathbf{u}_i\}$, i = 1,...,D

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j} = \delta_{ij} \qquad \delta_{ij} = 1 \text{ if } i = j, \text{ otherwise } \delta_{ij} = 0$$

• In this basis, data \mathbf{x}_n may be represented as $(z_{n1}, z_{n2}, ..., z_{nD})$

$$z_{ni} = \mathbf{x}_n^T \mathbf{u}_i$$
 (projection on PC) And back: $\mathbf{x}_n = \sum_{i=1}^D z_{ni} \mathbf{u}_i$

 Goal: Approximate data with fewer dimensions M < D by an M dimensional linear subspace:

$$\tilde{\mathbf{x}}_{n} = \sum_{i=1}^{M} z_{ni} \mathbf{u}_{i} + \sum_{j=M+1}^{D} b_{j} \mathbf{u}_{j}$$

$$z_{ni} = \mathbf{x}_{n}^{T} \mathbf{u}_{i} , i = 1,...,M$$

$$b_{j} = \overline{\mathbf{x}}^{T} \mathbf{u}_{j} , j = M+1,...,D$$

By minimizing the sum of squares error:

$$J = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \tilde{\mathbf{x}}_n)^2 = \sum_{j=M+1}^{D} \mathbf{u}_j^T \mathbf{S} \mathbf{u}_j \quad \text{subject to constraint } \mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$$

PCA: Minimum error formulation (The second)

Minimizing the sum of squares error:

$$J = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \tilde{\mathbf{x}}_n)^2 = \sum_{i=M+1}^{D} \mathbf{u}_i^T \mathbf{S} \mathbf{u}_i \quad \text{subject to constraint } \mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$$

- It can be proven that the general solution is given by the eigenvector equation: $\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$
- Also the corresponding error for this solution is

$$J = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \tilde{\mathbf{x}}_n)^2 = \sum_{i=M+1}^{D} \lambda_i$$

 Hence for fixed M choose the eigenvectors corresponding to the M largest eigenvalues to minimize the sum of squares reconstruction error.

PCA: Summary

- The two formulations are equivalent.
- Solve the eigenvector equation for the data covariance:

$$\mathbf{S}\mathbf{u}_i = \frac{1}{N}\mathbf{X}^T\mathbf{X}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Where the data matrix is $\mathbf{X} = (\mathbf{x}_1 - \overline{\mathbf{x}}, \dots, \mathbf{x}_N - \overline{\mathbf{x}})^T \in \mathbb{R}^{N \times D}$

• Eigenvectors form the Principal Components (PC) and an orthogonal coordinate basis.

$$z_{ni} = \mathbf{x}_n^T \mathbf{u}_i$$
 (projection on PC), \mathbf{x}_n in PC space $(z_{n1},...,z_{nM})^T$

- Eigenvalues represents the projected data variance along the corresponding PC.
- Now what can this be used for?

Visualizing the first principle component

Black: Mean data point (mean hand) $\overline{\mathbf{X}}$

Green: Visualizing +/- 2 standard deviations along first PC $\bar{\mathbf{x}} \pm 2\sqrt{\lambda_1}\mathbf{u}_1$

Conclusion: PC 1 captures finger spread variation and size

PCA can be used to visualize the largest / important variation in the data set.

Visualizing the first principle components

Videos by R. Fonseca http://www.diku.dk/hjemmesider/ansatte/rfonseca/HandPC/

Outlier hand \mathbf{x}_i

Projected onto PC1 $(\mathbf{x}_{i}^{T}\mathbf{u}_{1})\mathbf{u}_{1} + \overline{\mathbf{x}}$

Filtering: We remove irrelevant variation by projection onto principal components. In this example we concentrate on the spread of all fingers.

Data set (measurements from N=252 men):

- Density determined from underwater weighing
- Percentage body fat from Siri's (1956) equation
- Age (years)
- Weight (lbs)
- Height (inches)
- Circumferences (cm): Neck, Chest, Abdomen 2, Hip, Thigh,
 Knee, Ankle, Biceps (extended), Forearm, Wrist
- Observations x: circumferences, weight, age and height (D=15 dimensional vector)

Target values t: Percentage body fat (scalar)

Data set:
$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^T$$
, $\mathbf{T} = (t_1, \dots, t_N)^T$

- Picking features by hand, Ex.:
 - Selection 1 : Columns 4 (weight), 7 (chest), 8 (abdomen), and 9 (hip)
 - Selection 2 : Column 8 (abdomen)
- This is based on intuition and picking variables with the largest covariance with the target variable in column 2 (percentage body fat).
- Lets see what we get out of performing PCA on this data set (dimensionality reduction).
 - Do PCA on columns 3 to 15, that is perform PCA on $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^T \in R^{N \times D}$, N = 252, D = 13

Eigenvalues and total variance

Total variance =
$$\sum_{i=1}^{D} \lambda_i$$

PCA for columns 3 to 15: Projections of data

Data on PC 1 and 2

Data on PC 1, 2, and 3

What dimensionality for the latent variable should we choose? 1, 2, or 3?

Regression results revisited: Do we improve our results?

 Maximum likelihood RMS error with column 8: RMS = 10.9 (% body fat)

- Maximum likelihood RMS error with PC 1: RMS = 9.9 (% body fat)
- (Average results over 50 trials (bootstrapping) to compensate for sensitivity to random partitioning of data into training and test set).
- And maybe we can do better by using both PC 1 and 2?

Target variable plotted against 1st PC and 2nd PC

Percentage body fat (column 2) as a function of 1st and 2nd PC

Since the first 2 PCs capture more than 95 % of the total variance a good choice would be these.

Visualizing the 1st PC vector (Sometimes useful visualization trick)

PCA picks a linear combination of variables 4, 7, 8, 9, and 10 (the rest are fairly small).

- Projection of data onto PC's can visualize the major modes of variation in the dataset.
- PC's versus target values / class labels can help with our the selection of models.
- By inspecting the individual PC vector we can see which features contributes the most to this PC (feature selection).
- PCA with M < D gives a lossy reconstruction of data and can be used for noise removal.

- N<D: The problem is singular with only N eigenvalues!
- The eigenvector equation for the empirical covariance

$$\mathbf{S}\mathbf{u}_i = \frac{1}{N}\mathbf{X}^T\mathbf{X}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

- Pre-multiply by **X**: $N^{-1}XX^{T}(X\mathbf{u}_{i}) = \lambda_{i}(X\mathbf{u}_{i})$
- Introduce $\mathbf{v}_i = \mathbf{X}\mathbf{u}_i$ and substitute: $N^{-1}\mathbf{X}\mathbf{X}^T\mathbf{v}_i = \lambda_i\mathbf{v}_i$
- Find eigenvectors for this smaller N x N problem.
- Eigenvector for covariance: Pre-multiply by X^T

$$\frac{1}{N} \mathbf{X}^T \mathbf{X} \left(\mathbf{X}^T \mathbf{v}_i \right) = \mathbf{S} \left(\mathbf{X}^T \mathbf{v}_i \right) = \lambda_i \left(\mathbf{X}^T \mathbf{v}_i \right)$$

 $\frac{1}{N} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{v}_i) = \mathbf{S} (\mathbf{X}^T \mathbf{v}_i) = \lambda_i (\mathbf{X}^T \mathbf{v}_i)$ and back to eigenvectors of \mathbf{S} : $\mathbf{u}_i = \frac{1}{(N\lambda_i)^{1/2}} \mathbf{X}^T \mathbf{v}_i$

Singular Value Decomposition (SVD) : A computational trick

- SVD a simple way of doing PCA: $[\mathbf{U}, \mathbf{K}, \mathbf{V}] = \text{SVD}(\mathbf{X})$ $\mathbf{X} = \mathbf{U}\mathbf{K}\mathbf{V}^T \in R^{N \times D}$
- U and V are N x N and D x D orthogonal matrices:

$$\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}_N \qquad \qquad \mathbf{V}^T \mathbf{V} = \mathbf{V} \mathbf{V}^T = \mathbf{I}_D$$

- **K** is a *N* x *D* diagonal matrix of sorted singular values (≥0).
- The covariance may be expressed as

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^T \mathbf{X} = \frac{1}{N} \mathbf{V} \mathbf{K}^T \mathbf{U}^T \mathbf{U} \mathbf{K} \mathbf{V}^T = \frac{1}{N} \mathbf{V} \mathbf{K}^T \mathbf{K} \mathbf{V}^T$$

Columns of V are eigenvectors of S (the PCs):

$$\mathbf{S}\mathbf{v}_{i} = \frac{\mathbf{K}_{ii}^{2}}{N}\mathbf{v}_{i} \qquad \qquad \lambda_{i} = \frac{\mathbf{K}_{ii}^{2}}{N}$$

• Projection of data onto *i*'th PC: $\mathbf{X}\mathbf{v}_i = \mathbf{U}\mathbf{K}\mathbf{V}^T\mathbf{v}_i = \mathbf{u}_i\mathbf{K}_{ii}$

PCA in preprocessing: Standardization

 It is common to preprocess data by normalizing the individual variables to have zero mean and unit variance:

$$\tilde{x}_{ni} = \frac{\left(x_{ni} - \bar{x}_i\right)}{\sigma_i}$$

Covariance matrix becomes the correlation matrix

$$\rho_{ij} = \tilde{\mathbf{S}}_{ij} = \frac{1}{N} \sum_{n=1}^{N} \frac{\left(x_{ni} - \bar{x}_{i}\right) \left(x_{nj} - \bar{x}_{j}\right)}{\sigma_{i}}$$

 Necessary for some ML algorithms, e.g. distance based methods.

Hydrothermal geyser in Yellowstone National Park,

Wyoming, USA.

- x-axis duration of eruption in minutes
- y-axis time to next eruption in minutes
- Notice the big difference in magnitude of the two axes.

Example of standardization

PCA in preprocessing: Whitening (Scaling and decorrelating the variables)

• Write the eigenvector equation as SU = UL, where

$$\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_D) \quad \text{and} \quad \mathbf{L} = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_D \end{pmatrix}$$

- Translate, rotate, and scale the data into the coordinate system of the PCs: $\mathbf{y}_n = \mathbf{L}^{-1/2}\mathbf{U}^T(\mathbf{x}_n \overline{\mathbf{x}})$
- In this coordinate system the data is zero mean and have identity covariance

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{n} \mathbf{y}_{n}^{T} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{L}^{-1/2} \mathbf{U}^{T} (\mathbf{x}_{n} - \overline{\mathbf{x}}) (\mathbf{x}_{n} - \overline{\mathbf{x}})^{T} \mathbf{U} \mathbf{L}^{-1/2}$$

$$= \mathbf{L}^{-1/2} \mathbf{U}^{T} \mathbf{S} \mathbf{U} \mathbf{L}^{-1/2} = \mathbf{L}^{-1/2} \mathbf{U}^{T} \mathbf{U} \mathbf{L} \mathbf{L}^{-1/2} = \mathbf{L}^{-1/2} \mathbf{L} \mathbf{L}^{-1/2} = \mathbf{L}^{-1/2} \mathbf{L}^{-1/2} \mathbf{L}^{-1/2}$$

This is referred to as whitening the data.

Example of whitening

- Continuous latent variable models
- Linear PCA: Find eigenvectors of data covariance
 - Maximum variance formulation
 - Minimum error formulation
- Applications
 - Preprocessing of data (whitening and filtering)
 - Dimensionality reduction
 - Visualization of high dimensional data

Literature

- Continuous latent variable models: CB page 559 561
- and Principal Component Analysis (PCA):
 CB page 561 570