Determinarea unei baze primal admisibile

Considerăm problema de programare liniară în forma standard:

$$\inf \left\{ c^{\top} \cdot x \mid A \cdot x = b, \ x \ge \mathbf{0} \right\}$$
 unde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $b \ge \mathbf{0}$, $c \in \mathbb{R}^n$.

Acestei probleme îi asociem problema artificială:

$$\min\left\{ \begin{array}{l} \mathbf{e}^{\top} \cdot x^{a} \mid A \cdot x + \mathbf{I}_{m} \cdot x^{a} = b, \ x \geq \mathbf{0}, \ x^{a} \geq \mathbf{0} \end{array} \right\} \qquad \text{(Pa)}$$
 unde $\mathbf{e} = \begin{pmatrix} 1, ..., 1 \end{pmatrix}^{\top} \in \mathbb{R}^{m}, \quad x^{a} = \begin{pmatrix} x_{n+1}, x_{n+2}, ..., x_{n+m} \end{pmatrix}^{\top} \in \mathbb{R}^{m},$

iar I_m este matricea unitate de ordinul m.

Proprietăți ale problemei (Pa):

- ightharpoonup matricea restricţiilor: $(A: \mathbf{I}_m) \in \mathbb{R}^{m \times (n+m)}$, $rang(A: \mathbf{I}_m) = m < n+m$;
- $ightharpoonup \mathbf{I}_m$ este o bază primal admisibilă: $\mathbf{I}_m^{-1} \cdot b = b \ge \mathbf{0}$;
- ightharpoonup are o soluţie optimă finită: $x^a \ge \mathbf{0} \implies \overline{z}_a = \mathbf{e}^{\mathsf{T}} \cdot x^a = \sum_{i=1}^m x_{n+i} \ge 0$.

Concluzie: (Pa) se poate rezolva cu algoritmul simplex.

Fie B baza optimă a problemei (P_a) iar $\mathcal B$ mulţimea indicilor de bază.

<u>Teoremă.</u> Dacă valoarea minimă a problemei (P_a), $\overline{z}_a > 0$, atunci problema iniţială (P) nu are soluţie.

<u>Demonstraţie.</u> Prin absurd, dacă (P) are o soluţie admisibilă, conform TFPL are şi o soluţie admisibilă de bază.

Fie B_* baza corespunzătoare. Ea este formată doar din coloane ale matricei A!

Avem: $B_*^{-1} \cdot b \ge 0$, deci B_* este bază primal admisibilă şi pentru (P_a), iar variabilele x^a sunt secundare!

Deci, (Pa) are o soluţie admisibilă (de bază), pentru care,

$$x^a = \mathbf{0} \implies \mathbf{e}^{\mathsf{T}} \cdot x^a = \mathbf{0} < \overline{z}_a \rightarrow \text{valoarea optimă. Contradicție.}$$
 (q.e.d.)

<u>Teoremă.</u> Dacă $\mathcal{B} \cap \{n+1,...,n+m\} = \emptyset$, atunci $\overline{z}_a = 0$ şi B este o bază primal admisibilă a problemei iniţiale (P).

Demonstrație. Evident, B conține <u>numai</u> coloane a matricei A. (q.e.d.)

<u>Teoremă.</u> Dacă valoarea minimă a lui (P_a) este $\overline{z}_a = 0$ și există $n + i_0 \in \mathcal{B}$, pentru care $y_{i_0,j} = 0$, $\forall j = \overline{1,n}$, $i_0 = loc_{\mathcal{B}}(n+i_0)$, atunci, $rang(A) \leq m-1$ și restricția i_0 din (P) este o combinație liniară de celelalte restricții.

Demonstrație. Notăm:
$$B^{-1} = (\beta_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le m}}$$
 și $Y = (y_{ij}) = B^{-1} \cdot A$.

Din ipoteză,
$$0 = y_{i_0 j} = \sum_{k=1}^m \beta_{i_0 k} a_{k j} = \sum_{k=1, \ k \neq i_0}^m \beta_{i_0 k} a_{k j} + \beta_{i_0 i_0} a_{i_0 j}$$
, $\forall \ j = \overline{1, n}$.

Deoarece B conţine vectorul e^{i_0} , în B^{-1} vom avea $\beta_{i_0i_0}=1$.

$$\text{Deci,} \quad a_{i_0 j} = -\sum_{k=1, \ k \neq i_0}^m \beta_{i_0 k} a_{k j}, \ \forall \ j = \overline{1, n} \ , \quad \Leftrightarrow \quad A_{i_0} = -\sum_{k=1, \ k \neq i_0}^m \beta_{i_0 k} A_k \ ,$$

adică, linia A_{i_0} este combinație liniară de celelalte linii. Deci, $rang(A) \le m-1$.

Sistemul fiind compatibil, rezultă și
$$b_{i_0} = -\sum_{k=1,\ k\neq i_0}^m \beta_{i_0 k} b_k$$
. (q.e.d.)

Teoremă. Dacă valoarea minimă a lui (P_a) este $\overline{z}_a = 0$ şi există $n + i_0 \in \mathcal{B}$, pentru care $i_0 = loc_{\mathcal{B}}(n + i_0)$, $\exists \ k \in \{1, ..., n\}$, $y_{i_0 k} \neq 0$, atunci, se poate efectua o schimbare de bază prin care vectorul unitar e^{i_0} din B să fie înlocuit de coloana A^k .

<u>Demonstrație.</u> Din Lema substituției, $y_{i_0k} \neq 0 \implies \det(\tilde{B}) \neq 0$. În plus, din formulele de schimbare a bazei, deoarece

$$\overline{x}_{i_0} = 0 \quad \Rightarrow \quad \begin{cases} \tilde{x}_i = \overline{x}_i \,, \, \forall \, i = \overline{1,m} \quad \Leftrightarrow \quad \tilde{B}^{-1} \cdot b = B^{-1} \cdot b \geq \mathbf{0} \,, \\ \tilde{z} = \overline{z} \,. \end{cases} \tag{q.e.d.}$$

<u>Observaţie.</u> Dacă $\overline{z}_a = 0$, toate variabilele artificiale au valoarea zero! inclusiv cele care au mai rămas în bază.

Variabilele artificiale din bază care au valoarea zero, pot fi:

eliminate împreună cu restricţia asociată.

sau

înlocuite cu o variabilă a problemei date.

Metoda celor două faze

Exemple

Problemă cu optim finit.

Considerăm problema:
$$\inf \left\{ -2x_1 + 6x_3 - 2x_4 - 3x_5 \right\}$$

$$\begin{cases} 2x_1 - 2x_2 + x_3 - x_4 & \leq -6 \\ 5x_1 + 4x_2 - 3x_3 - 3x_4 & = 20 \\ 2x_1 - x_2 + 2x_3 + x_4 + x_5 & = 0 \end{cases}$$

$$x_i \geq 0, \ \forall i = \overline{1,5}.$$

În prima restricție introducem variabila ecart x_6 (forma standard).

Înmulţim apoi prima restricţie cu -1 pentru ca termenul liber să conţină doar valori nenegative (condiţia pentru Faza I).

Problema devine:
$$\inf \left\{ -2x_1 + 6x_3 - 2x_4 - 3x_5 + 0x_6 \right\}$$

$$\begin{cases} -2x_1 + 2x_2 - x_3 + x_4 & -x_6 = 6 \\ 5x_1 + 4x_2 - 3x_3 - 3x_4 & = 20 \\ 2x_1 - x_2 + 2x_3 + x_4 + x_5 & = 0 \end{cases}$$

 $x_i \ge 0, \quad \forall i = 1, 6.$

Faza I

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉
		-2								
x_8	20	5	4	-3	-3	0	0	0	1	0
<i>x</i> ₉	0	2	-1	2	1	1	0	0	0	1
	26	5	5	-2	-1	1	-1	0	0	0

					x_4				
<i>x</i> ₇	6	0	1	1	2	1	-1	1	0
<i>x</i> ₈	20	0($\frac{13}{2}$)-8	$\frac{2}{\frac{-11}{2}}$	<u>-5</u> 2	0	0	1
x_1	0	1	$\frac{-1}{2}$	1	1/2	$\frac{1}{2}$	0	0	0
	26	0	<u>15</u> 2	-7	<u>-7</u> 2	$\frac{-3}{2}$	-1	0	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>X</i> 7
<i>x</i> ₇	38 13	0	0	29 13	<u>37</u> 13	18 13	-1	1
x_2	<u>40</u> 13	0	1	<u>-16</u> 13	<u>-11</u> 13	<u>-5</u> 13	0	0
x_1	<u>20</u> 13	1	0	<u>5</u> 13	1 13	<u>4</u> 13	0	0
	38 13	0	0	<u>29</u> 13	<u>37</u> 13	18 13	-1	0

	\bar{x}	x_1	x_2	x_3	x_4	χ_5	x_6
x_4	38 37	0	0	<u>29</u> 37	1	<u>18</u> 37	<u>-13</u> 37
x_2	<u>146</u> 37	0	1	<u>-21</u> 37	0	<u>1</u> 37	<u>-11</u> 37
x_1	<u>54</u> 37	1	0	<u>12</u> 37	0	<u>10</u> 37	<u>1</u> 37
	0	0	0	0	0	0	0

Faza II

	\bar{x}	x_1	x_2	x_3	x_4	<i>X</i> 5	x_6
x_4	38 37	0	0	<u>29</u> 37	1 (18 37	<u>-13</u> 37
x_2	<u>146</u> 37	0	1	<u>-21</u> 37	0	$\frac{1}{37}$	<u>-11</u> 37
x_1	<u>54</u> 37	1	0	<u>12</u> 37	0	<u>10</u> 37	<u>1</u> 37
	<u>-184</u> 37	0	0	<u>-304</u> 37	0	<u>55</u> 37	<u>24</u> 37

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6
x_5	<u>19</u> 9	0	0	<u>29</u> 18	37 18	1	<u>-13</u> 18
x_2	<u>35</u> 9	0	1	<u>-11</u> 18	$\frac{-1}{18}$	0	<u>-5</u> 18
x_1	8 9	1	0	<u>-1</u> 9	<u>-5</u> 9	0 ($\left(\begin{array}{c} \frac{2}{9} \end{array}\right)$
	<u>-37</u> 9	0	0	<u>-191</u> 18	<u>-55</u> 18	0	<u>31</u> 18

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6
x_5	5	<u>13</u> 4	0	$\frac{5}{4}$	$\frac{1}{4}$	1	0
x_2	5	<u>5</u> 4	1	<u>-3</u> 4	<u>-3</u> 4	0	0
x_6	4	9/2	0	<u>-1</u> 2	<u>-5</u> 2	0	1
	-15	<u>-31</u> 4	0	<u>-39</u> 4	<u>5</u> 4	0	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆
x_4	20	13	0	5	1	4	0
26	20	11	1	2	0	2	0
x_6	54	37	0	12	0	10	1
	-40	-24	0	-16	0	-5	0

Soluţie optimă!

Problemă fără soluție.

$$\inf \left\{ -2x_1 + 6x_3 - 2x_4 - 3x_5 \right\}$$

$$\begin{cases} 2x_1 - 2x_2 + x_3 - x_4 & \le -6 \\ 5x_1 + 4x_2 - 3x_3 - 3x_4 & = 20 \\ 2x_1 + 5x_2 + 2x_3 + x_4 + x_5 & = 4 \end{cases}$$

$$x_i \ge 0, \quad \forall i = \overline{1,5}.$$

Faza I

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉
<i>x</i> ₇	6	-2	2	-1	1	0	-1	1	0	0
x_8	20	5	4	-3	-3	0	0	0	1	0
<i>x</i> ₉	4	2 (5	2	1	1	0	0	0	1
	30	5	11	-2	-1	1	-1	0	0	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	x_8	<i>x</i> ₉
<i>x</i> ₇	<u>22</u> 5		0	$-\frac{9}{5}$	<u>3</u> 5	$-\frac{2}{5}$	-1	1	0	$-\frac{2}{5}$
<i>x</i> ₈	<u>84</u> 5	<u>17</u> 5	0	<u>23</u> 5	$-\frac{19}{5}$	$-\frac{4}{5}$	0	0	1	$-\frac{4}{5}$
x_2	<u>4</u> 5	$\left(\begin{array}{c} \frac{2}{5} \end{array}\right)$	1	<u>2</u> 5	<u>1</u> 5	<u>1</u> 5	0	0	0	<u>1</u> 5
	<u>106</u> 5	<u>3</u> 5	0	$-\frac{32}{5}$	$-\frac{16}{5}$	$-\frac{6}{5}$	-1	0	0	$-\frac{11}{5}$

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	x_8	<i>x</i> ₉
<i>x</i> ₇	10			1	2	1	-1	1	0	1
<i>x</i> ₈	10	0	$-\frac{17}{2}$	-8	$-\frac{11}{2}$	$-\frac{5}{2}$	0	0	1	$-\frac{5}{2}$
x_1	2	1	<u>5</u> 2	1	1/2	1 2	0	0	0	1/2
	20	0	$-\frac{3}{2}$	-7	$-\frac{7}{2}$	$-\frac{3}{2}$	-1	0	0	$-\frac{5}{2}$

Problema artificială are soluție optimă: 20 > 0

Problema iniţială nu are soluţii!

Problemă cu optim infinit.

Considerăm problema:

$$\inf \left\{ -2x_1 + 6x_3 - 2x_4 - 3x_5 \right\}$$

$$\begin{cases} 2x_1 - 2x_2 + x_3 - x_4 & \le -6 \\ 5x_1 + 4x_2 - 3x_3 - 3x_4 & = 20 \\ 2x_1 - x_2 + 2x_3 + \frac{1}{2}x_4 + x_5 & = 0 \end{cases}$$

$$x_i \ge 0, \ \forall i = \overline{1,5}.$$

Faza I

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉
<i>x</i> ₇	6	-2	2	-1	1	0	-1	1	0	0
<i>x</i> ₈	20	5	4	-3	1 -3	0	0	0	1	0
<i>x</i> ₉	0	2	-1	2	1	1	0	0	0	1
	26	5	5	-2	$-\frac{3}{2}$	1	-1	0	0	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	x_8	<i>x</i> ₉
<i>x</i> ₇	6	0	1	1	$\frac{3}{2}$	1	-1	1	0	1
<i>x</i> ₈	20	0	<u>13</u> 2	-8	<u>-17</u>	$-\frac{5}{2}$	0	0	1	$-\frac{5}{2}$
x_1	0	1	$-\frac{1}{2}$	1	<u>1</u> 4	1/2	0	0	0	1/2
	26	0	<u>15</u> 2	-7	$-\frac{11}{4}$	$-\frac{3}{2}$	-1	0	0	$-\frac{5}{2}$

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>X</i> 7	<i>x</i> ₈	<i>X</i> 9
x_7	38 13	0	0	<u>29</u> <u>13</u>	<u>28</u> 13	18 13	-1	1	$-\frac{2}{13}$	18 13
x_2	<u>40</u> 13	0	1	$-\frac{16}{13}$	$-\frac{17}{26}$	$-\frac{5}{13}$	0	0	<u>2</u> 13	$-\frac{5}{13}$
x_1	<u>20</u> 13	1	0	<u>5</u> 13	$-\frac{1}{13}$	4 13	0	0	1 13	<u>4</u> 13
	38 13	0	0	<u>29</u> 13	28 13	18 13	-1	0	$-\frac{15}{13}$	<u>5</u> 13

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	x_8	<i>X</i> 9		
x_3	38 29	0	0	1	28 29	18 29	$-\frac{13}{29}$	13 29	$-\frac{2}{29}$	18 29		
x_2	136 29	0	1	0	31 58	<u>11</u> 29	$-\frac{16}{29}$	<u>16</u> 29	<u>2</u> 29	<u>11</u> 29	←	Inversa bazei curente
x_1	<u>30</u> 29	1	0	0	$-\frac{13}{29}$	<u>2</u> 29	<u>5</u> 29	$-\frac{5}{29}$	<u>3</u> 29	$\frac{2}{29}$		
	0	0	0	0	0	0	0	-1	-1	-1		

Faza II

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6
x_3	38 29	0	0	1	<u>28</u> <u>29</u>	18 29	$-\frac{13}{29}$
x_2	136 29	0	1	0	31 58	<u>11</u> 29	$-\frac{16}{29}$
x_1	<u>30</u> 29	1	0	0	$-\frac{13}{29}$	<u>2</u> 29	<u>5</u> 29
	<u>168</u> 29	0	0	0	<u>252</u> 29	<u>191</u> 29	$-\frac{88}{29}$

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6
x_4	<u>19</u> 14	0	0	<u>29</u> 28	1	<u>9</u> 14	$-\frac{13}{28}$
x_2	<u>111</u> 28	0	1	$-\frac{31}{56}$	0	$\frac{1}{28}$	$-\frac{17}{56}$
x_1	<u>23</u> 14	1	0	13 28	0	<u>5</u> 14	$-\frac{1}{28}$
	-6	0	0	-9	0	1	1

Problema are optim infinit!

Problemă cu restricții redundante.

Considerăm problema:

$$\inf \left\{ -3x_1 + x_2 - x_3 + 2x_4 + 4x_5 \right\}$$

$$\begin{cases} 2x_1 - x_2 + 3x_3 + x_4 & = 5 \\ x_1 - 3x_2 + 2x_3 & -x_5 & = 3 \\ 3x_1 - 4x_2 + 5x_3 + x_4 - x_5 & = 8 \end{cases}$$

$$x_i \ge 0, \quad \forall i = \overline{1,5}.$$

Faza I

						<i>X</i> 5			
x_6	5	2	-1	3	1	0	1	0	0
<i>x</i> ₇	3	1	-3	(2)	0	-1	0	1	0
<i>x</i> ₈	5 3 8	3	-4	5	1	-1	0	0	1
	16	6	-8	10	2	-2	0	0	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	x_8
x_6	$\frac{1}{2}$	1/2	$\left(\frac{7}{2}\right)$	0	1	3 2	1	$-\frac{3}{2}$	0
x_3	3 2	1/2	$-\frac{3}{2}$	1	0	$-\frac{1}{2}$	0	1/2	0
<i>x</i> ₈	$\frac{1}{2}$	1/2	$\frac{7}{2}$	0	1	3 2	0	$-\frac{5}{2}$	1
	1	1	7	0	2	3	0	-5	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>X</i> 5	x_6	<i>x</i> ₇	<i>x</i> ₈
x_2	<u>1</u> 7	<u>1</u> 7	1	0	<u>2</u> 7	<u>3</u> 7	<u>2</u> 7	$-\frac{3}{7}$	0
x_3	<u>12</u> 7	<u>5</u> 7	0	1	<u>3</u> 7	<u>1</u> 7	<u>3</u> 7	$-\frac{1}{7}$	0
x_8	0	0	0	0	0	0	-1	-1	1
	0	0	0	0	0	0	-2	-2	0

Faza II

	\bar{x}	x_1	x_2	x_3	x_4	x_5
x_2	<u>1</u> 7	$\left(\frac{1}{7}\right)$	1	0	<u>2</u> 7	<u>3</u> 7
x_3	<u>12</u> 7	<u>5</u> 7	0	1	<u>3</u> 7	<u>1</u> 7
	_ <u>11</u> 7	<u>17</u> 7	0	0	$-\frac{15}{7}$	$-\frac{26}{7}$

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅
x_1	1	1	7	0	2	3
x_3	1	0	-5	1	-1	-2
	-4	0	-17	0	-7	-11

Soluţia optimă!

Problemă (eliminare variabilă artificială).

$$\inf \left\{ -3x_1 + x_2 - x_3 + 2x_4 + 4x_5 \right\}$$

$$\begin{cases} 2x_1 - x_2 + 3x_3 + x_4 &= 5 \\ x_1 - 3x_2 + 2x_3 &- x_5 &= 3 \\ 3x_1 - 6x_2 + 5x_3 &- x_5 &= 8 \end{cases}$$

$$x_i \ge 0, \quad \forall i = \overline{1,5}.$$

Faza I

			x_2					
x_4	5 3	2	-1	3	1	0	0	0
x_6	3	1	-3(2	0	-1	1	0
<i>x</i> ₇	8	3	-6	5	0	-1	0	1
	11	4	<u>-9</u>	7	0	-2	0	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇
x_4	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{7}{2}$	0	1	3 2	$-\frac{3}{2}$	0
x_3	3 2	$\frac{1}{2}$	$-\frac{3}{2}$	1	0	$-\frac{1}{2}$	1/2	0
<i>x</i> ₇	$\frac{1}{2}$	1/2	3 2	0	0	3 2	$-\frac{5}{2}$	1
	$\frac{1}{2}$	1/2	3 2	0	0	3 2	$-\frac{7}{2}$	0

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇
x_2	<u>1</u> 7	1 7	1	0	$\frac{2}{7}$	<u>3</u> 7	$-\frac{3}{7}$	0
x_3	<u>12</u> 7	<u>5</u> 7	0	1	<u>3</u> 7	<u>1</u> 7	$-\frac{1}{7}$	0
<i>x</i> ₇	<u>2</u> 7	<u>2</u> 7	0	0	$-\frac{3}{7}$	<u>6</u> 7	$-\frac{13}{7}$	1
	<u>2</u> 7	<u>2</u> 7	0	0	$-\frac{3}{7}$	<u>6</u> 7	$-\frac{20}{7}$	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇
<i>x</i> ₅	<u>1</u> 3	<u>1</u> 3	1	0	0	1	$-\frac{5}{3}$	<u>2</u> 3
x_3	<u>5</u> 3	<u>2</u> 3	-1	1	0	0	$-\frac{1}{3}$	<u>1</u> 3
x_4	0	0	2	0	1	0	1	-1
	0	0	0	0	0	0	-1	-1

Soluție optimă

cu valoarea = 0, şi cu variabila artificială x_7 în bază !

Faza II

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅
x_5	<u>1</u> 3	$\left(\frac{1}{3}\right)$	1	0	0	1
x_3	<u>5</u> 3	<u>2</u> 3	-1	1	0	0
x_4	0	0	2	0	1	0
	$-\frac{1}{3}$	<u>11</u> 3	8	0	0	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>X</i> 5
<i>x</i> ₅	1/3	$\left(\frac{1}{3}\right)$	0	0	$-\frac{1}{2}$	1
<i>x</i> ₃	<u>5</u> 3	<u>2</u> 3	0	1	$\frac{1}{2}$	0
x_2	0	0	1	0	1/2	0
	$-\frac{1}{3}$	11 3	0	0	-4	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>X</i> 5
x_1	1	1	0	0	$-\frac{3}{2}$	3
x_3	1	0	0	1	3 2	-2
x_2	0	0	1	0	$\left(\frac{1}{2}\right)$	0
	-4	0	0	0	3 2	-11

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅
x_1	1	1	3	0	0	3
x_3	1	0	-3	1	0	-2
x_4	0	0	2	0	1	0
	-4	0	-3	0	0	-11

Soluţia optimă!