Лабораторная работа №1

Владимир Медведев, группа М3238

Задача №2, вариант 1

Под выбором случайной точки естественно подразумевать равномерное распределение вероятности. Для равномерного распределения вероятности значение вероятности должно быть пропорционально мере множества. Тогда обозначим

 $l(x) = \int_0^x \sqrt{1 + (x^2)'^2} \, dx = \int_0^x \sqrt{1 + 4x^2} \, dx$ - длина части дуги параболы, начинающейся в точке (0,0) и заканчивающейся в точке (x,x^2) . Тогда если зададим вероятность соответствующей дуги равной $P(x) = \frac{l(x)}{l(2)}$, такое распределение будет равномерным. Чтобы вычислить требуемую в задании вероятность определим подмножество данной параболы, где угол на превосходит $\pi/3$. Очевидно, что оно определяется неравенством

$$\arctan(x^2)' \leqslant \pi/3 \iff \arctan 2x \leqslant \pi/3 \iff 0 \leqslant 2x \leqslant \sqrt{3} \iff 0 \leqslant x \leqslant \frac{\sqrt{3}}{2}$$

Его вероятность равна $\frac{l(\frac{\sqrt{3}}{2})}{l(2)} = \frac{\ln{(2+\sqrt{3})} + 2\sqrt{3}}{4l(2)}$. Длина всей параболы равна $l(2) = \frac{\ln{(\sqrt{17}+4)} + 4\sqrt{17}}{4}$. Тогда ответом на задачу будет являться $\frac{\ln{(2+\sqrt{3})} + 2\sqrt{3}}{\ln{(\sqrt{17}+4)} + 4\sqrt{17}} \approx 0.257$.

Задача №3, вариант 3

$$P(X=i|X+Y=j) = \frac{P(X=i\bigcap X+Y=j)}{P(X+Y=j)} = \frac{P(X=i\bigcap Y=j-i)}{P(X+Y=j)} = \frac{P(A_i)P(B_{j-i})}{P(X+Y=j)} = \frac{(1-p)^jp^2}{\sum_{r=0}^{j}(1-p)^jp^2} = \frac{1}{j+1}$$

Задача №4

Данные получены с помощью кода, представленного в репозитории.

Для значений с p=0.5 вероятность приближается с помощью интегральной теоремы Муавра-Лапласа, так как в данном случае $\frac{n}{2}=np$. В остальных же случаях это приближение работает плохо и вместо него используется локальная теорема Муавра-Лапласа. При p=0.5 приближение, ожидаемо, работает хорошо. Известно, что оно работает лучше, когда $|\frac{1}{2}-p|$ минимален. При $p\neq0.5$ абсолютная погрешность везде достаточно мала.

Пометка * - вычислить точно не удаётся, данные получены из эксперимента.

		0.001	0.01	0.1	0.25	0.5
10	Exact	2.5e-13	2.4e-8	1.5e-3	0.22	0.65625
	Approximate	0	2.75e-53	5.8e-5	0.226	0.6827
100	Exact	9.6e-122	6.1e-73	3.6 - 21	4.25 e-6	0.7287
	Approximate	0	0	1.26e-34	1.04e-6	0.6827
1000	Exact	0	0	0	1.5e-58	0.673
	Approximate	0	0	0	3.61e-67	0.6827
10000	Exact	0*	0*	0*	0*	0.683*
	Approximate	0	0	0	0	0.6827