Build a Personalized Online Course Recommender System with Machine Learning

Young Rha 2023-12-18

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

Goal

• This project aims to explore recommendation system through analyzing online courses dataset. Both content based and collaborative filtering methods will be used to measure the performance between the various methods.

Problem:

- The online courses dataset consist of courses data and user profile data. The recommendation system aims to generate course recommendations to the user where the likelihood of accepted recommendation is optimized.
- The recommendation system will assume several hypotheses such as:
 - A user will likely accept courses similar to courses they have taken in the past
 - Users with the similar interest are likely to accept courses taken by other users with the group

Exploratory Data Analysis

Course counts per genre

Course enrollment distribution

20 most popular courses

TITI	ΙF	Fnro)lle

	11155	Lillons
0	python for data science	14936
1	introduction to data science	14477
2	big data 101	13291
3	hadoop 101	10599
4	data analysis with python	8303
5	data science methodology	7719
6	machine learning with python	7644
7	spark fundamentals i	7551
8	data science hands on with open source tools	7199
9	blockchain essentials	6719
10	data visualization with python	6709
11	deep learning 101	6323
12	build your own chatbot	5512
13	r for data science	5237
14	statistics 101	5015
15	introduction to cloud	4983
16	docker essentials a developer introduction	4480
17	sql and relational databases 101	3697
18	mapreduce and yarn	3670
19	data privacy fundamentals	3624

Word cloud of course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profilebased recommender system

Flowchart of content-based recommender system using course similarity

Evaluation results of course similarity based recommender system

Top 10 courses					
threshold: 0.6					
	count				
COURSE_ID					
excourse62	257				
excourse22	257				
WA0103EN	101				
TA0105	41				
DS0110EN	38				
excourse47	24				
excourse46	24				
excourse65	23				
excourse63	23				
TMP0101EN	17				

Flowchart of clustering-based recommender system

Evaluation results of clustering-based recommender system

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

Flowchart of NMF based recommender system

Flowchart of Neural Network Embedding based recommender system

Validation result of Neural Network Embedding based recommender system

Hyperparameters

• Loss: MSE

• Optimizer: adam

• Metrics: RMSE

• Epochs: 10

• Batch size: 64

• Embedding layers: 16

Compare the performance of collaborative-filtering models

Conclusions

Content-based recommendation methods

- All 3 methods seem to return varying courses as their top recommendations. Suggesting that they capture different area of interest for the recommendation.
- The results seem to heavily depend on the type of methods as well as the hyperparameters.
- Choosing hyperparameters requires good insight into the dataset as well as the objective of the recommendation system.
- Perhaps combining various content based recommendation methods may yield a better result as it may capture a larger scope of the user's interest. It may also be possible to capture the hit rate of each method and build a supervised learning model such as neural network to further improve the results.

Collaborative filtering

- Given the strong performance of the baseline method, the dataset doesn't seem to suffer from the overfit. It may be the reason why knn and nmf based methods performed worse than the baseline method as well. Perhaps the hyperparameters for knn and nmf require more tuning.
- Embedding based method seems to have decreasing RMSE value at 10 epochs. The results may be further improved with fine tuning the hyperparameters.
- While all methods seem to yield relatively low RMSE value, the embedding method seems to be the best method for the recommendation system.

Appendix

- Content-based clustering
 - ► Kmeans inertia vs. clusters
 - ► PCA acc. variance vs. n components

