TITLE HERE

In Partial Fulfillment of the Requirements for the Degree of degree ${\it degree}$

1st Semester A.Y. 2025-2026

by

Nmae

Abstract

Contents

\mathbf{A}	bstract	2					
1	Introduction	4					
2 Background							
3	Methodology						
	3.1 Parametric bootstrap	4					
	3.2 Nonrank-based method	5					
\mathbf{R}	eferences	6					
A	Appendices						

1 Introduction

2 Background

3 Methodology

3.1 Parametric bootstrap

Algorithm 1 Computation of Joint Confidence Region via Parametric Bootstrap

1: **for**
$$b = 1, 2, \dots, B$$
 do

2: Generate $\hat{\theta}_{bi}^* \sim N(\hat{\theta}_i, \sigma_i^2)$, i = 1, 2, ..., K and let $\hat{\theta}_{b(1)}, \hat{\theta}_{b(2)}, ..., \hat{\theta}_{b(K)}$ be the corresponding ordered values

varaos								
	k = 1	k=2		k = K				
b=1	$\hat{\theta}_{1(1)}^*$	$\hat{\theta}_{1(2)}^*$		$\hat{\theta}_{1(K)}^*$				
b=2	$\hat{ heta}_{2(1)}^*$	$\hat{ heta}_{2(2)}^*$		$\hat{ heta}_{2(K)}^*$				
:	:	:		:				
b = B	$\hat{ heta}_{B(1)}^*$	$\hat{ heta}_{B(2)}^*$		$\hat{\theta}_{B(K)}^*$				

3: Compute

$$\hat{\sigma}_{b(k)}^* = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_{b1}^{*2} + \sigma_1^2, \hat{\theta}_{b2}^{*2} + \sigma_2^2, \dots, \hat{\theta}_{bK}^{*2} + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^{*2}}$$

4: Compute
$$t_b^* = \max_{1 \le k \le K} \left| \frac{\hat{\theta}_{b(k)}^* - \hat{\theta}_k^*}{\sigma_{b(k)}^*} \right|$$

5: end for

6: Compute the $(1 - \alpha)$ -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .

7: The joint confidence region of $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_{(1)} \pm \hat{t} \times \hat{\sigma}_{(1)}\right] \times \left[\hat{\theta}_{(2)} \pm \hat{t} \times \hat{\sigma}_{(2)}\right] \times \cdots \times \left[\hat{\theta}_{(K)} \pm \hat{t} \times \hat{\sigma}_{(K)}\right]$$

where $\hat{\sigma}_{(k)}$ is computed as

$$\hat{\sigma}_{(k)} = \sqrt{\text{kth ordered value among } \left\{\hat{\theta}_1^2 + \sigma_1^2, \hat{\theta}_2^2 + \sigma_2^2, \dots, \hat{\theta}_K^2 + \sigma_K^2\right\} - \hat{\theta}_{(k)}^2}$$

4

Algorithm 2 Computation of Coverage Probability for Parametric Bootstrap

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and thus $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\theta}_i \sim N(\theta_i, \sigma_i^2)$, for i = 1, 2, ..., K
- 3: Compute the rectangular confidence region $\mathfrak R$ using Algorithm 1.
- 4: Check if $(\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}) \in \mathfrak{R}$ and compute $T = \prod_{k=1}^{K} |\Lambda_{Ok}|$.
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T

3.2 Nonrank-based method

The nonrank-based method accounts for potential correlation among items being ranked. For this case, an exchangeable correlation, ρ (See Equation 3.1.), is assumed and used in the calculation of the variance covariance matrix (See Equation 3.2.)

$$\boldsymbol{\rho} = (1 - \rho) \mathbf{I}_K + \rho \mathbf{1}_K \mathbf{1}_K' \tag{3.1}$$

$$\Sigma = \Delta^{1/2} \rho \Delta^{1/2} \tag{3.2}$$

where $\Delta = \text{diag} \{\sigma_1^2, \sigma_2^2, \dots, \sigma_K^2\}$, with known σ_k 's.

Algorithm 3 Computation of Joint Confidence Region via Nonrank-based Method Let the data consist of $\hat{\theta}_1, \dots, \hat{\theta}_K$ and suppose Σ is known

- 1: **for** $b = 1, 2, \dots, B$ **do**
- 2: Generate $\hat{\boldsymbol{\theta}}_b^* \sim N_K \left(\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma} \right)$ and write $\hat{\boldsymbol{\theta}}_b^* = \left(\hat{\theta}_{b1}^*, \hat{\theta}_{b2}^*, \dots, \hat{\theta}_{bK}^* \right)'$
- 3: Compute $t_b^* = \max_{1 \le j \le K} \left| \frac{\hat{\theta}_{bj}^* \hat{\theta}_j^*}{\sigma_j} \right|$
- 4: end for
- 5: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 6: The joint confidence region of $\theta_1, \theta_2, \dots, \theta_K$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \cdots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$$

Algorithm 4 Computation of Coverage Probability for Nonrank-based Method

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and Σ

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\boldsymbol{\theta}} \sim N_K(\boldsymbol{\theta}, \boldsymbol{\Sigma})$
- 3: Compute the rectangular confidence region $\mathfrak R$ using Algorithm 3.
- 4: Check if $(\theta_1, \theta_2, \dots, \theta_K) \in \mathfrak{R}$ and compute $T = \prod_{k=1}^K |\Lambda_{Ok}|$.
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T

THIS IS Rizzo (2008) and Klein et al. (2020)

References

Klein, M., Wright, T., & Wieczorek, J. (2020). A joint confidence region for an overall ranking of populations.

Rizzo, M. (2008). Statistical computing with r.

Appendices