

G510 & GTS-4E-60 集成应用设计说明

文档版本: V1.0.2

更新日期: 2014-03-29

版权声明

版权所有©深圳市广和通实业发展有限公司 2013。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

注意

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标申明

} FI3 C C M 深圳市广和通实业发展有限公司的注册商标,由所有人拥有。

版本记录

文档版本	更新日期	说明
V1.0.0	2013-08-01	初始版本
V1.0.1	2013-10-12	更新图 2-1
V1.0.2	2014-03-29	增加 GTGM 命令说明,增加 IPR 命令说明,示例中增加两条命令设置。

适用型号

序号	产品型号	说明
1	G510	
2	GTS-4E-60	集成应用设计。

目录

1	集成应	过用设计说明	5
		设计说明	
3	软件应	过用说明	6
	3.1	+GTGM,设置串口 2 为普通串口或 GPS 接收串口	6
	3.2	+IPR, 设置串口波特率	7
	3.3	+GTGPS, 通过串口输出 GPS 数据	7
	3.4	扩展功能: 低功耗及热启动实现	10
	3.5	扩展功能:天线开路检测实现	10

1 集成应用设计说明

在 M2M 应用中,特别是在车联网业务的应用中,经常会遇到同时使用无线通信模块和定位模块的情况。 Fibocom 不仅分别提供了两种类型的模块,同时还提供两种模块的集成应用设计,方便客户的开发和应用。 本集成应用设计有以下优点:

- 1. 两种模块形式,可以根据终端产品需要进行搭配;
- 2. 两个模块组合形式,对外只需要一个串口,节约终端产品应用处理器的资源;
- 3. 可以根据终端结构尺寸要求,对终端产品的 PCB 布局进行优化设计;
- 4. 终端产品的生产以及后续维护过程中,成本消耗更低、问题维护简便;
- 5. 通过单独模块产品的质量体系,保证成本最优;

本文档包含硬件、软件的设计内容,以 G510 & GTS-4E-60 两个模块为例。

2 硬件设计说明

G510 GPRS 无线通信模块包含 3 个 UART, 所以在 G510 为主的集成应用设计中, 我们选择了 GTS-4E-60 搭配, 两个模块可以通过串口互联。应用处理器只需要连接 G510 的主串口即可实现对 G510 和 GTS-4E-60 的控制。

电路图设计:

GPS POWER SUPPLY

图 2-1 电路图设计

3 软件应用说明

以下功能需要特定的软件版本支持,具体软件版本信息请联系 Fibocom FAE。

3.1 +GTGM, 设置串口 2 为普通串口或 GPS 接收串口

指令	语法	响应	备注
Set	+GTGM= <mode></mode>	ОК	设置串口2的工作模式
		or:	
		ERROR:	
Read	+GTGM?	+GTGM: <mode></mode>	读取当前串口2的工作模式。

		OK	
Test	+GTGM=?	+GTGM: (0-1)	测试该条指令设置格式和范围。
		OK	

下表显示 +GTGM 指令参数:

参数	描述
<mode></mode>	串口2工作模式
	0 普通串口,支持部分查询 AT 命令 (缺省值)
	1 GPS 数据接收功能,不能接收普通 AT 命令
	参数掉电保存

3.2 +IPR, 设置串口波特率

指令	语法	响应	备注
Set	+IPR= <baud1>,<baud2></baud2></baud1>	ОК	设置串口波特率
		or:	
		ERROR:	
Read	+IPR?	+IPR: <baud1></baud1>	读取当前串口 1 波特率。
		OK	
Test	+IPR=?	+IPR: (串口1支持的波特	测试该条指令设置格式和范围。
		率)	
		OK	

下表显示+IPR 指令参数:

参数	描述	
<baud1></baud1>	串口 1 的波特率	
<baud2></baud2>	串口 2 的波特率	
	串口 2 支持波特率同串口 1,不支持自适应波特率	

3.3 +GTGPS, 通过串口输出 GPS 数据

设置该指令之前, GPS 模块应处于正常工作状态。

指令	语法	响应	备注
Set	+GTGPS= <intervl>,<type></type></intervl>	<nmea0183 data=""></nmea0183>	设置输出间隔时间和输出数据类型。
		ОК	
		or:	

		ERROR:	
Read	+GTGPS?	+GTGPS:	读取当前 GPS 输出间隔时间和输出
		<intervl>,<type></type></intervl>	数据类型。
		OK	
Test	+GTGPS =?	+GTGPS: (0-60),(1-15)	测试该条指令设置格式和范围。

下表显示+GTGPS 指令参数:

参数	描述	
< intervl >	GPS 输出间隔时间:	
	0,客户查询 GPS 数据模式,只返回一次数据	
	1-60,间隔时间,每隔设定时间,输出 GPS 数据一次	
< type >	输出数据类型:	
	1: 输出 GPGGA 数据	
	//Global Positioning System Fixed Data	
	2: 输出 GPGSA 数据	
	//GNSS DOP and Active Satellites	
	4: 输出 GPGSV 数据	
	//GNSS Satellites in View	
	8: 输出 GPRMC 数据	
	//Recommended Minimum Specific GNSS Data	

Example:

AT+GTGM=1

OK

AT+IPR=115200,9600

OK

AT+GTGPS=0,1

\$GPGGA,033415.000,2229.8775,N,11354.7370,E,1,04,6.2,53.0,M,-2.6,M,,0000*74

OK

AT+GTGPS=0,4

\$GPGSV,3,1,12,19,63,197,25,23,55,273,32,11,15,189,39,32,06,201

\$GPGSV,3,2,12,20,04,226,42,07,58,100,,26,56,354,,10,48,020,*7C

\$GPGSV,3,3,12,05,48,028,,16,41,021,,13,39,024,,06,29,246,*7B

OK

AT+GTGPS=0,15

\$GPGGA,033522.000,2229.8800,N,11354.7415,E,1,04,6.2,46.4,M,-2.6,M,,0000*78

\$GPGSA,A,3,19,23,11,32......6.9,6.2,3.1*33

\$GPGSV.3.1.12.19.64.197.32.23.55.272.30.11.15.188.37.32.06.201.4

\$GPGSV,3,2,12,16,40,022,18,20,04,226,40,07,58,099,,26,56,355,*7B

\$GPGSV,3,3,12,10,48,020,,05,48,029,,13,39,024,,06,29,246,*74

\$GPRMC,033522.000,A,2229.8800,N,11354.7415,E,0.26,212.86,250713,,,A*6C

OK

AT+GTGPS=1.15

\$GPGGA,033554.000,2229.8839,N,11354.7453,E,1,04,6.2,38.7,M,-2.6,M,,0000*7B

\$GPGSA,A,3,19,23,11,32,....,6.9,6.2,3.1*33

\$GPGSV,3,1,12,19,64,197,29,23,55,272,32,11,15,188,39,32,06,200

\$GPGSV,3,2,12,20,04,225,40,07,58,099,,26,56,355,,10,48,021,*7C

\$GPGSV,3,3,12,05,48,029,,16,40,022,,13,39,025,,06,28,246,*78

\$GPRMC,033554.000,A,2229.8839,N,11354.7453,E,0.22,212.86,250713,,,A*61

OK

// 每 1 秒,通过 URC 形式直接上报 NMEA0183 数据,没有 OK 结束。

\$GPGGA,033555.000,2229.8841,N,11354.7453,E,1,04,6.2,38.5,M,-2.6,M,,0000*77

\$GPGSA,A,3,19,23,11,32......6.9,6.2,3.1*33

\$GPGSV,3,1,12,19,64,197,29,23,55,272,32,11,15,188,39,32,06,200

\$GPGSV,3,2,12,20,04,225,40,07,58,099,,26,56,355,,10,48,021,*7C

\$GPGSV,3,3,12,05,48,029,,16,40,022,,13,39,025,,06,28,246,*78

\$GPRMC,033555.000,A,2229.8841,N,11354.7453,E,0.42,212.86,250713,.,A*69

\$GPGGA,033556.000,2229.8845,N,11354.7452,E,1,04,6.2,38.2,M,-2.6,M,,0000*76

\$GPGSA,A,3,19,23,11,32,,,,,,6.9,6.2,3.1*33

\$GPGSV,3,1,12,19,64,197,29,23,55,272,32,11,15,188,39,32,06,200

\$GPGSV,3,2,12,20,04,225,40,07,58,099,,26,56,355,,10,48,021,*7C

\$GPGSV,3,3,12,05,48,029,,16,40,022,,13,39,025,,06,28,246,*78

\$GPRMC,033556.000,A,2229.8845,N,11354.7452,E,0.55,212.86,250713,,,A*69

AT+GTGPS=?

+GTGPS: (0-60),(1-15)

OK

3.4 扩展功能: 低功耗及热启动实现

参考电路:

图 3-1 参考电路

软件上,可以定义一条 AT 命令去控制 G510 模块的 DSR_N 管脚,通过该管脚去控制 GTS-4E-60 的主电源打开或关闭。

当 GTS-4E-60 主电源关闭,只提供备用电源,则 GTS-4E-60 模块进入低功耗模式,星历和历书保存在模块的 RAM 中。在 2 小时以内,当再次提供主电源,则模块会通过热启动搜星并定位,热启动时间最快可达到 1 秒。

3.5 扩展功能: 天线开路检测实现

参考电路:

图 3-2

软件上,可以定义一条 AT 命令去配置是否打开或关闭天线开路检测功能。G510 模块的 DTR_N 管脚,

可以作为中断去检测天线是否开路。

当 GPS 天线工作正常时,Q9 不导通,ANT_DEC 为低电平;当天线开路后,Q9 导通,ANT_DEC 变化为高电平,触发 G510 的 DTR_N 产生中断,G510 软件通过 AT 命令上报出来。