Information theory and coding

Bartek Blaszczyszyn Notes by Antoine Groudiev

5th February 2024

Introduction

This document is Antoine Groudiev's class notes while following the class *Théorie de l'information et codage* (Information theory and coding) at the Computer Science Department of ENS Ulm. It is freely inspired by Bartek Blaszczyszyn's class notes.

1 Entropy and source coding

We shall introduce *Shannon's entropy* of a probability distribution on a discrete space and study its basic properties. Our goal is to prove *Shannon's source coding theorem* formulated in 1948. It will allow us to interpret the entropy as a notion of the *amount of information* "carried" by random variables of a given distribution.

1.1 Shannon's entropy

Let \mathcal{X} be a finite or countable set, and $p := \{p(x) \mid x \in \mathcal{X}\}$ be a probability distribution on \mathcal{X} .

Definition (Shannon's entropy). We define (Shannon's) entropy H(p) of p to be:

$$H(p) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) \tag{1}$$

with the convention that $0 \log 0 = 0$, and $a \log 0 = -\infty$ for a > 0. We will later on discuss the base of the logarithm.

Definition (Entropy of a random variable). Let X be a random variable on \mathcal{X} with distribution p, that is $\mathbb{P}(X=x)=p(x)$, also denoted $X\sim p$. We define:

$$H(X) := H(p) = -\mathbb{E}(\log p(X)) \tag{2}$$

Observe that $0 \le H(p) \le +\infty$, and that H(p) = 0 if and only if X is constant almost surely.

Property. Entropy is invariant with respect to deterministic injective mapping $f: \mathcal{X} \to \mathcal{Y}$:

$$H(X) = H(f(X))$$

The entropy H(p) can be interpreted as the amount of information carried on average by one realization from the distribution p. Later in this chapter, we shall prove a result supporting this interpretation.

Definition (Entropy units). The unit of the entropy depends on the base of the logarithm:

- In binary basis, when $\log = \log_2$, we denote $H(p) = H_2(p)$, and its unit is the [bit/symbol] (per realization of X).
- In arbitrary basis b > 0, when $\log = \log_b$, we denote $H(p) = H_b(p)$, and its unit is the [b digit/symbol] (a b-digit is a digit which can take b values).
- In basis e, when $\log = \ln$, we denote $H(p) = H_e(p)$, and its unit is the [nat/symbol] (nat is the natural unit of information).

The conversion between units can be done by changing the base of the logarithm:

$$H_b(p) = \frac{H_2(p)}{\log_2(b)}$$

Example (Bernoulli distribution). Let $\mathcal{X} = \{0,1\}$, and p the Bernoulli distribution such as

$$\begin{cases} p(0) = p \\ p(1) = 1 - p \end{cases}$$

Therefore, we have $H(p) = -p \log(p) - (1-p) \log(1-p)$. The Bernoulli distribution with the maximum entropy is:

$$\max_{0 \le p \le 1} H_2(p) = H_2(1/2) = 1 [bit/symbol]$$

Example (Uniform distribution). Let \mathcal{X} be a finite set, and p the uniform distribution, that is:

$$\forall x \in \mathcal{X}, \ p(x) := \frac{1}{|\mathcal{X}|}$$

Therefore, we have $H(p) = \log(|X|)$.

Example (Geometric distribution). Let $\mathcal{X} = \mathbb{N}^*$ and p the geometric distribution of parameter p > 0, that is:

$$\forall n \in \mathbb{N}^{\star}, \ p(n) = p(1-p)^{n-1}$$

Recall that $\mathbb{E}[X] = \frac{1}{p}$ when X follows a geometric law of parameter p.

Therefore, we have:

$$H(p) = \log\left(\frac{1-p}{p}\right) - \frac{1}{p}\log(1-p)$$

1.2 Gibbs' inequality

Theorem (Gibbs' inequality). Let p and q be two probability distributions on \mathcal{X} . Then:

$$H(p) = -\sum_{x \in \mathcal{X}} p(x) \log p(x) \leqslant -\sum_{x \in \mathcal{X}} p(x) \log q(x)$$
 (3)

Moreover, if $H(p) < \infty$, then there is equality in (3) if and only if p = q.

The right-hand-side of (3) is called *cross entropy* between p and q.

Proof. Let $x \sim p$. Gibbs' inequality is equivalent to:

$$\mathbb{E}[\log p(X)] \geqslant \mathbb{E}[\log q(X)]$$

If $\mathbb{E}[\log q(X)] = -\infty$, the inequality is trivial. Otherwise, since we have $\mathbb{E}[\log q(X)] \leq 0$:

$$\mathbb{E}[\log q(X)] - \mathbb{E}[\log p(X)] = \mathbb{E}[\log q(X) - \log p(X)]$$
$$= \mathbb{E}\left[\log\left(\frac{q(X)}{p(X)}\right)\right]$$

log being concave, by applying Jensen's inequality, we obtain:

$$\mathbb{E}\left[\log\left(\frac{q(X)}{p(X)}\right)\right] \leqslant \log \mathbb{E}\left[\frac{q(X)}{p(X)}\right]$$

$$= \log \sum_{x \in \mathcal{X}} \frac{q(x)}{p(X)} p(x)$$

$$= \log \sum_{x \in \mathcal{X}} q(x)$$

$$= \log 1 = 0$$

The equality in Jensen's inequality holds if and only if $\frac{q(X)}{p(X)}$ is almost surely constant, that is $p = \lambda q$ almost surely; furthermore, we must have $\lambda = 1$ since both p and q are distributions, hence p = q almost surely.

Corollary (Uniform distribution maximizes entropy). Let p be a probability distribution on some set \mathcal{X} with $|\mathcal{X}| < \infty$. Then:

$$0 \leqslant H(p) \leqslant \log(|\mathcal{X}|)$$

and the equality holds if and only if p is uniform on \mathcal{X} .

Proof. Let $X \sim p$ and be q the uniform distribution on \mathcal{X} . By Gibbs' inequality:

$$H(p) \leqslant -\sum_{x \in \mathcal{X}} p(x) \log \left(\frac{1}{|X|}\right) = \log |X|$$

Notice that $\log |X|$ is the entropy of the uniform distribution q.

Corollary (Geometric distribution maximizes entropy in the set of probability measures on \mathbb{N}^* having given expectation). Let p be a probability distribution on $\mathcal{X} = \mathbb{N}^*$ with mean $\mu = \sum_{n \geq 1} np(n) < \infty$. Then:

$$H(p) \leqslant \mu \log(\mu) - (\mu - 1) \log(\mu - 1)$$

where the right-hand-side is the entropy of the geometric distribution with parameter $1/\mu$.

Proof. Let p be a probability distribution on $\mathcal{X} = \mathbb{N}^*$ with mean $\mu < \infty$, and q the geometric distribution of parameter $1/\mu$. According to Gibbs' inequality,

$$\begin{split} H(p) \leqslant & -\sum_{n\geqslant 1} p(n) \log q(n) \\ & = -\sum_{n\geqslant 1} p(n) \log \left(\frac{1}{\mu} \left(1 - \frac{1}{\mu}\right)^{n-1}\right) \\ & = \sum_{n\geqslant 1} p(n) \log \mu - \sum_{n\geqslant 1} (n-1) p(n) \log \left(1 - \frac{1}{\mu}\right) \\ & = \log \mu - \log \left(1 - \frac{1}{\mu}\right) (\mu - 1) \\ & = \log \mu - (\log(\mu - 1) - \log \mu) (\mu - 1) \\ & = \log \mu + \mu \log \mu - \mu \log(\mu - 1) + \log(\mu - 1) - \log \mu \\ & = \mu \log \mu - (\mu - 1) \log(\mu - 1) = H(q) \end{split}$$

1.3 Entropy of random vectors

Definition (Entropy of random vectors). Let $X := (X_1, ..., X_n)$ be a random vector on $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$, for some $n \geq 1$, with distribution

$$p(x_1^n) = p(x_1, \dots, x_n) = \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)$$

The entropy of X is defined as the entropy of its distribution:

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x) = -\mathbb{E}[\log p(X)]$$
 (4)

Property (Entropy of independent variables). Let $X := (X_1, \ldots, X_n)$ be a vector of idenpendent, random variables. Then:

$$H(X) = \sum_{i=1}^{n} H(X_i) \tag{5}$$

Proof. Let p be the joint distribution of X. By independence, $p(x) = \prod_{i=1}^n p_i(x_i)$. Hence:

$$H(X) = -\mathbb{E}[\log p(X)]$$

$$= -\mathbb{E}\left[\log \prod_{i=1}^{n} p_i(X_i)\right]$$

$$= -\mathbb{E}\left[\sum_{i=1}^{n} \log p_i(X_i)\right]$$

$$= \sum_{i=1}^{n} -\mathbb{E}[\log p_i(X_i)]$$

$$= \sum_{i=1}^{n} H(X_i)$$

Property (Independence maximizes entropy). Let $X := (X_1, \ldots, X_n)$ be a vector of (arbitrary) random variables for some $n \ge 1$. Then:

$$H(X) \leqslant \sum_{i=1}^{n} H(X_i) \tag{6}$$

Moreover, the equality holds if and only if X_1, \ldots, X_n are independent.

Proof. By induction. If n = 1, the results holds. Let X be an n-vector of random variables and X_{n+1} another random variable. Denote $q(x,y) = p(x)p_{n+1}(y)$, where $X \sim p$ and $X_{n+1} \sim p_{n+1}$, and $(X_1, \ldots, X_n, X_{n+1}) \sim p'$. Since:

$$H(X) + H(X_{n+1}) = -\mathbb{E}[\log p(X) + \log p_{n+1}(X_{n+1})]$$

= $-\mathbb{E}[\log q(X, X_{n+1})]$
 $\geqslant -\mathbb{E}[\log p'(X, X_{n+1})] = H(X_1, \dots, X_n, X_{n+1})$

by Gibbs' inequality, the property is hereditary. Furthermore, there is equality in Gibbs' when p' = q, hence when X_{n+1} is independent from X, i.e. when $X_1, \ldots, X_n, X_{n+1}$ are independent.