Introduction to Linear Algebra in Python Part II: Matrices

BILD 62

Reminders

Last time we talked about:

- Different ways to conceptualize a vector, either as a list of numbers of as an arrow in space
- Different operations you can do with vectors (addition, subtraction, scalar multiplication, dot products)

By the end of this lecture, you will be able to:

- Construct and multiply matrices in Python (and by hand)
- Create and manipulate special cases of matrices
- Explain matrices as a linear transformation and relate matrix properties to properties of that linear transformation
- Define what eigenvalues/eigenvectors are and determine them using Python

What's the fuss about **eigenvectors**?

Principal Component Analysis (video)

Eigenfaces

A brief introduction to matrices

2 x 3 matrix

Matrix A has 2 rows and 3 columns, can

be indexed as $\mathbf{A}_{i,j}$, where i is the row number and j is the column number.

For example,
$$A_{1,2} = 4$$
 and $A_{2,3} = 3$.

$$A = \begin{pmatrix} 2 & 4 & 8 \\ 1 & 7 & 3 \end{pmatrix}$$

Note: Be mindful of indexing differences when translating formulas into Python code!

Special matrices

Square matrices are those with the same number of row and column. m = n. For example,

$$A = \begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix}, b = \begin{pmatrix} 2 & 4 & 8 \\ 1 & 7 & 3 \\ 2 & 5 & 6 \end{pmatrix}$$

Diagonal matrices are square matrices with only the values along the main diagonal are non-zero. For example,

$$C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

Identity matrices are diagonal matrices where all the non-zero values are 1. For example,

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Slide: Jing Wang

Matrix transposition

Transposition flips rows and columns — each row of the original matrix becomes the corresponding column of the new matrix

$$A = \begin{pmatrix} 2 & 4 & 8 \\ 1 & 7 & 3 \end{pmatrix}$$
We can move between these with transposition
$$A^{T} = \begin{pmatrix} 2 & 1 \\ 4 & 7 \\ 8 & 3 \end{pmatrix}$$

The example for today's notebook will focus on the visual system — specifically connections from the **retina** to the **LGN**, a visual nucleus in the **thalamus**

The retina *projects* to the LGN

Dorsal Pathway LGN **Ventral Pathway** Retina

Image: Neuromatch Academy

We can describe **LGN** activity as an equation, summing the weights (\mathbf{w}) * activities (\mathbf{r}) of each **retina** neuron.

We can simplify this by using vectors, and computing the **dot product**.

Building a model of neural connections using linear equations

Let's try this in the notebook.

Thinking about the computations as linear transformations of matrices

Additional resources

<u>https://www.youtube.com/watch?v=Ene_TYyTdNM</u> — modeling neural connections as vectors and dot product review

http://matrixmultiplication.xyz/ — awesome visualization of matrix multiplication!

Essence of linear algebra - YouTube