DS707 Data Analytics

Project Report

SSLC Data Analysis

Masters of Technology in Information Technology

Submitted by

Roll No	Names of Students
MT2013025	Apoorwa Mishra
MT2013026	Arjun S Bharadwaj
MT2013140	Ankit Shah

Under the guidance of **Prof. Chandrashekar R**

International Institute of Information Technology Bangalore, Karnataka, India – 560 100

Fall Semester 2014

Contents

1	Discretizaion + Classification	1
2	Regression + Classification	2
3	Regression + Classification	4
4	Regression + Classification	5
5	Regression + Classification	6
6	Regression + Classification	7
7	Regression + Classification	8
8	Regression + Classification	9

Discretizaion + Classification

- Objective:
 - Discretize subject marks into discrete attributes S (use NRC_CLASS as domain)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

Consider the marks information: L1_MARKS, L2_MARKS, L3_MARKS, S1_MARKS, S2_MARKS, S3_MARKS. Consider TOTAL_MARKS as the dependent variable

• Objective:

- Determine the least number of attributes S that give the best possible regression equation (least error)
- Build a classification model based on S for NRC_CLASS class variable

• Procedure followed:

- Data is loaded and cleansed by removing invalid and missing rows.
- Regression analysis is performed on the data by using the marks data.
- Synergy/Interaction effect of all the marks are observed and the combination of marks having least p-value is chosen for classification
- Marks are rounded off for improving the speed of classification.
- Classification is performed on the data based on the class variable combination having least p-value.
- The results of confusion matrices are compared.

• Results Obtained:

- All Subjects are used for classification:
 - * Accuracy: 90.2%

* 95% CI: (0.8962, 0.9076)

- Best case:

L1_MARKS, L2_MARKS, S2_MARKS, S3_MARKS (p-value = 0.0732) are used for classification:

* Accuracy: 84.03%

* 95% CI: (0.8332, 0.8472)

- Worst case:

L3_MARKS, S1_MARKS (p-value = 0.94523) are used for classification:

* Accuracy: 69.46%

* 95% CI: (0.6857, 0.7033)

• Conclusion:

- Taking all the subjects marks for classification gives the highest accuracy.
- Taking the combination of the subjects having low p-value offers the next highest accuracy for classification.
- Conversely, the combination of subjects having highest p-value gives the least accuracy.

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2