Design Software to calculate the degree centrality for the Hist1 region

Degree centrality can be described as the number of connections that a node has within a network.

We can interpret the normalized linkage table as a network with the following roles:

"The network contains a vertex for each window in the Hist1

region

· The network contains an edge < A, B> when L(A, B) > L-avg, where:

· L(A,B) = the normalized linkage of Windows A&B

" L-avg = the average value in the normalized linkage table for the Hist I region

Windows	1	2	3
1	1	0.59	0.41
2	0.59	1_	0.44
3	0.41	0.44	1

To calculate L-avg on this mimized version of the normalized linkage table, we do the following computation:

(1+.59+.41+0.59+1+.44+41+44+)

 \Rightarrow 0.653 $\overline{3}$

So we have ar L-avg as [0.65]

Now We most determine the edges of a network. If L(A,B) > L-avg, mark it as a '1' in an adjacency matrix. In this specific case, all L(A,B) valves were less than L-avg, marking no edges. I presume this will change When I perform the operation on a 80 ×80 moutrix lo Manually Carculate Degree Contrality WE Sum each row and divide by N-I Buml \bigcirc X 0 $C_{Di} = \sum_{i=1}^{n} \frac{Q_{ij}}{I}$ numerator: Sums all possible ties denominator: number of possible ties This scales the degree centrality between Ward I

1

T

-

-

r

5

6

E

6

6

6

6

6

6

6

6

4

4

6