第二章 线性规划

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

人工变量法

■ 考虑求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$\lim z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 = 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

大M法

■ 添加人工变量 x₆, x₇

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 = 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

$$\lim z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

大 M 法

■用单纯形法求解

$c_j \rightarrow$		-3	0	1	0	0	$\mid -M$	-M
$\mathbf{C}_B \mid \mathbf{X}_B$	$\mid \mathbf{b} \mid$	x_1	x_2	x_3	$ x_4 $	x_5	$ x_6 $	x_7
$0 \mid x_4$	4	1	1	1	1	0	0	0
$-M \mid x_6$	1	-2	[1]	-1	0	-1	1	0
$-M \mid x_7$	9	0	3	1	0	0	0	1
$c_j - z_j$		-3 - 2M	4M	1	0	-M	0	0
$0 \mid x_4$	3	3	0	2	1	1	-1	0
$0 x_2$	1	-2	1	-1	0	-1	1	0
$-M \mid x_7$	6	[6]	0	4	0	3	-3	1

大 M 法

■ 用单纯形法求解 (续)

$c_j \rightarrow$		-3	0	1	0	0	-M	-M
$\mathbf{C}_B \bigm \mathbf{X}_B$	\mathbf{b}	x_1	$ x_2 $	x_3	$ x_4 $	x_5	x_6	x_7
$\begin{bmatrix} 0 & x_4 \\ 0 & x_2 \end{bmatrix}$	$\begin{vmatrix} 0 \\ 3 \end{vmatrix}$	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0 1/3	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -1/2 \\ 0 \end{bmatrix}$	-1/2	1/2 1/3
$\begin{array}{c c} -3 & x_1 \\ \hline -3 & x_1 \end{array}$	1	1	0	[2/3]	0	1/2	-1/2	1/6
$c_j - z$	j	0	0	3	0	3/2	-3/2 - M	1/2 - M
$0 \mid x_4$	0	0	0	0	1	-1/2	1/2	-1/2
$0 x_2$	5/2	-1/2	1	0	0	-1/4	1/4	1/4
$1 \mid x_3$	3/2	3/2	0	1	0	3/4	-3/4	1/4
$c_j - z$	j	-9/2	0	0	0	-3/4	3/4 - M	-1/4 - M

■ 用大 M 法求解线性规划问题

$$\max z = 6x_1 + 4x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 100 \\ 4x_1 + 2x_2 \le 120 \\ x_1 = 14 \\ x_2 \ge 22 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 标准化,增加人工变量

$$\max z = 6x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 100 \\ 4x_1 + 2x_2 + x_4 = 120 \\ x_1 + x_6 = 14 \\ x_2 - x_5 + x_7 = 22 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■用单纯形法求解

c_j -	>	6	4	0	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B$	$_{3}\mid \mathbf{b}$	$ x_1 $	x_2	x_3	$ x_4 $	$ x_5 $	$ x_6 $	$ x_7 $
$0 \mid x_3$	100	2	3	1	0	0	0	0
$0 \mid x_4$	120	4	2	0	1	0	0	0
$-M \mid x_{\epsilon}$	14	[1]	0	0	0	0	1	0
$-M \mid x_7$	22	0	1	0	0	-1	0	1
c_j –	z_j	M+6	M+4	0	0	-M	0	0
$0 \mid x_3$	72	0	3	1	0	0	-2	0
$\begin{array}{c c} \hline 0 & x_3 \\ \hline 0 & x_4 \end{array}$	0.4	0	$\frac{3}{2}$	1 0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0 0	$\begin{vmatrix} -2 \\ -4 \end{vmatrix}$	0 0
	0.4	0 0 1		_	$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$			0 0
$0 x_4$	64	0 0 1 0	2	0	1	0		0 0 0 1

■ 用单纯形法求解 (续)

	$c_j \rightarrow$		6	4	0	0	0	-M	-M
\mathbf{C}_{B}	$\mid \mathbf{X}_B \mid$	b	x_1	$ x_2 $	x_3	$ x_4 $	x_5	$ x_6 $	$ x_7 $
0	x_3	6	0	0	1	0	[3]	-2	-3
0	x_4	20	0	0	0	1	2	-4	-2
6	x_1	14	1	0	0	0	0	1	0
4	x_2	22	0	1	0	0	-1	0	1
C	$z_j - z_j$		0	0	0	0	4	-6-M	-4-M
0	x_5	2	0	0	1/3	0	1	-2/3	-1
0	$\left \begin{array}{c} x_5 \\ x_4 \end{array} \right $	2 16	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{vmatrix} 1/3 \\ -2/3 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{vmatrix} -2/3 \\ -8/3 \end{vmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$
			_			-	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	' .	$\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$
0	x_4	16	0	0	-2/3	1	~	' .	$egin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $

两阶段法

■ 对于标准形式线性规划问题

max
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

■ 引入辅助问题

min
$$w = \sum_{i=1}^{m} y_i$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j + y_i = b_i \ (i = 1, \dots, m) \\ x_j, y_i \ge 0 \ (i = 1, \dots, m, j = 1, \dots, n) \end{cases}$$

两阶段法

■ 第一阶段: 采用单纯形法求解, 求解辅助问题

当人工变量取值为 0 时, 目标函数值也为 0。这时候的最优解就是原线性规划问题的一个基可行解。如果第一阶段求解结果最优解的目标函数值不为 0, 也即最优解的基变量中含有非零的人工变量, 表明原线性规划问题无可行解

■ 第二阶段: 在第一阶段已求得原问题的一个初始基可行解的基础上, 再求原问题的最优解

对第一阶段的最优单纯形表稍加改动,首先把第一行的价值向量替换成原问题的价值向量,人工变量全部从表中去掉,然后继续用单纯形法计算

■ 原问题有可行解时,辅助问题最优值为 0

■ 求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■ 大 M 法

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■ 第一阶段

min
$$w = x_6 + x_7 \pmod{w'} = -x_6 - x_7$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■ 第二阶段

$$\max z = -3x_1 + 0x_2 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 = 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 第一阶段

c_j -	\rightarrow	0	0	0	0	0	-1	-1
$\mathbf{C}_B \mid \mathbf{X}$	$_{B}\mid\mathbf{b}$	$ x_1 $	x_2	$ x_3 $	$ x_4 $	x_5	x_6	x_7
0 x	$_4$ 4	1	1	1	1	0	0	0
$-1 \mid x$	6 1	-2	[1]	-1	0	-1	1	0
$-1 \mid x$	7 9	0	3	1	0	0	0	1
c_j –	z_{j}	-2	4	0	0	-1	0	0
0 x	4 3	3	0	2	1	1	-1	0
0 x	$_{2}$ 1	-2	1	-1	0	-1	1	0
$-1 \mid x$	7 6	[6]	0	4	0	3	-3	1
c_j –	z_j	6	0	4	0	3	-4	0
$0 \mid x$	4 0	0	0	0	1	-1/2	1/2	-1/2
0 x	2 3	0	1	1/3	0	0	0	1/3
$0 \mid x$	$_1 \mid 1$	1	0	2/3	0	1/2	-1/2	1/6
c_j –	z_j	0	0	0	0	0	-1	-1

■ 第二阶段

	$c_j \rightarrow$		-3	0	1	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	x_3	x_4	$ x_5 $
0	x_4	0	0	0	0	1	-1/2
0	x_2	3	0	1	1/3	0	0
-3	x_1	1	1	0	[2/3]	0	1/2
	$c_j - z_j$	j	0	0	3	0	3/2
0	x_4	0	0	0	0	1	-1/2
0	x_2	5/2	-1/2	1	0	0	-1/4
_ 1	x_3	3/2	3/2	0	1	0	3/4
	$c_j - z_j$	i	-9/2	0	0	0	-3/4

单纯形法计算中的几个问题

- 当所有 $\sigma_j \leq 0$,且<mark>某个非基变量的检验数为 0</mark> 时,那么线性规划问题有无穷 多最优解(见例 3)
- 当结果出现所有 $\sigma_j \leq 0$ 时, 如基变量中仍含有非零的人工变量(两阶段法求解时第一阶段目标函数值不等于零), 表明问题无可行解(见例 4)
- lacksquare 当目标函数求极小化时,解的判别以 $\sigma_i \geq 0$ 作为判别最优解的标准(见例 5)

例 3: 无穷多解

■ 考虑求解线性规划问题

$$\max z = x_1 + 2x_2$$
s.t.
$$\begin{cases} x_1 \le 4 \\ x_2 \le 3 \\ x_1 + 2x_2 \le 8 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\lim z = x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_3 = 4 \\ x_2 + x_4 = 3 \\ x_1 + 2x_2 + x_5 = 8 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

例 3: 无穷多解

■用单纯形法求解

($c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	x_3	$ x_4 $	x_5
0	x_3	4	1	0	1	0	0
0	x_4	3	0	[1]	0	1	0
0	x_5	8	1	2	0	0	1
c_{i}	$j-z_j$		1	2	0	0	0
0	x_3	4	1	0	1	0	0
0	x_2	3	0	1	0	1	0
0	x_5	2	[1]	0	0	-2	1
c_{i}	$j-z_j$		1	0	0	-2	0

例 3: 无穷多解

■ 用单纯形法求解 (续)

($c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	x_2	$ x_3 $	x_4	x_5
0	x_3	2	0	0	1	[2]	-1
2	x_2	3	0	1	0	1	0
1	x_1	2	1	0	0	-2	1
c_{i}	$j-z_j$		0	0	0	0	-1
0	x_4	1	0	0	[1/2]	1	-1/2
2	x_2	2	0	1	-1/2	0	1/2
1	x_1	4	1	0	1	0	0
$c_{:}$	$j-z_j$		0	0	0	0	-1

$$\mathbf{X}_1 = (2, 3, 2, 0, 0)^{\mathsf{T}}, \ \mathbf{X}_2 = (4, 2, 0, 1, 0)^{\mathsf{T}}, \dots$$

例 4: 无可行解

■ 考虑求解线性规划问题

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} x_1 + x_2 \le 2 \\ 2x_1 + 2x_2 \ge 6 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 - Mx_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 + 2x_2 - x_4 + x_5 = 6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

例 4: 无可行解

■ 用单纯形法求解

$c_j \rightarrow$	2	1	0	\mid 0 \mid $-M$
$oldsymbol{\mathrm{C}}_B \mid \mathbf{X}_B \mid \mathbf{b}$	$ x_1 $	$ x_2 $	x_3	$ x_4 x_5$
$ \begin{array}{c cccc} 0 & x_3 & 2 \\ -M & x_5 & 6 \end{array} $		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	1 0	$\begin{array}{c cccc} & 0 & 0 \\ -1 & 1 \end{array}$
$c_j - z_j$	2+2M	1+2M	0	-M 0
$\begin{array}{c cccc} 2 & x_1 & 2 \\ -M & x_5 & 2 \end{array}$	1 0	1 0	$\begin{vmatrix} & 1 \\ -2 & \end{vmatrix}$	$\begin{array}{c cccc} & 0 & 0 \\ -1 & 1 \end{array}$
$c_j - z_j$	0	-1	-2-2M	$\mid -M \mid 0$

■ 当所有 $\sigma_j \leq 0$ 时,基变量中仍含有非零的人工变量 $x_5 = 2$,故无可行解

例 5: 极小化

■ 考虑求解线性规划问题

min
$$z = x_1 - x_2 + x_3 - 3x_5$$

s.t.
$$\begin{cases} x_2 + x_3 - x_4 + 2x_5 = 6 \\ x_1 + 2x_2 - 2x_4 = 5 \\ 2x_2 + x_4 + 3x_5 + x_6 = 8 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

例 5: 极小化

■用单纯形法求解

	$c_j \rightarrow$		1	-1	1	0	$\mid -3 \mid$	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	x_1	x_2	$ x_3 $	x_4	$ x_5 $	x_6
1	x_3	6	0	1	1	-1	2	0
1	x_1	5	1	2	0	-2	0	0
0	x_6	8	0	2	0	1	[3]	1
	$c_j - z_j$	j	0	-4	0	3	-5	0
1	x_3	2/3	0	-1/3	1	-5/3	0	-2/3
1	x_1	5	1	[2]	0	-2	0	0
-3	x_5	8/3	0	2/3	0	1/3	1	1/3
	$c_j - z_j$	j	0	-2/3	0	14/3	0	5/3

单纯形法的进一步讨论

■ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	-1	1	0	-3	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	$ x_3 $	$ x_4 $	x_5	$ x_6 $
1	x_3	3/2	1/6	0	1	-2	0	-2/3
-1	x_2	5/2	1/2	1	0	-1	0	0
-3	x_5	1	$ \begin{array}{r r} 1/6 \\ 1/2 \\ -2/3 \end{array} $	0	0	1	1	1/3
	$c_j - z_j$	j	1/3	0	0	4	0	5/3

- **最优解 X** = $(0, 5/2, 3/2, 0, 1)^{\mathsf{T}}$
- 最优值 $z^* = -4$

单纯形法计算中的几个问题

- 按最小比值 θ 来确定换出基的变量时,有时出现存在两个以上相同的最小比值,从而使下一个表的基可行解中出现一个或多个基变量等于零的退化解
- 退化解的出现原因是模型中存在多余的约束,使多个基可行解对应同一顶点
- 当存在退化解时, 就有可能出现迭代计算的循环
- 解决办法
 - \Box 当存在多个 $\sigma_j > 0$ 时,始终选取中下标值为最小的变量作为换入变量
 - $_{f Q}$ 当计算 $_{f heta}$ 值出现两个以上相同的最小比值时,始终选取下标值为最小的变量作为换出变量

课堂练习1

■ 已知初始单纯形表和用迭代后单纯形法, 试求括弧中的值

项目	x_1	x_2	$ x_3 $	x_4	x_5
$\begin{array}{c c} x_4 & 6 \\ x_5 & 1 \end{array}$	$(b) \\ -1$	(<i>c</i>) 3	$\begin{pmatrix} (d) \\ (e) \end{pmatrix}$	1 0	0 1
$c_j - z_j$	(a)	-1	2	0	0
$\begin{array}{c c} x_1 & (f) \\ x_5 & 4 \end{array}$	$\begin{matrix} (g) \\ (h) \end{matrix}$	2 (<i>i</i>)	$\begin{vmatrix} -1 \\ 1 \end{vmatrix}$	1/2 1/2	0 1
$c_j - z_j$	0	-7	(j)	(k)	(l)

课堂练习2

■ 用大 M 法求解线性规划问题

$$\min z = -3x_1 + x_2 + x_3$$
s.t.
$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \\ -2x_1 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■ 课后作业

课堂练习2(答案)

■ 标准化并添加人工变量后得到

$$\max z = 3x_1 - x_2 - x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 11 \\ -4x_1 + x_2 + 2x_3 - x_5 + x_6 = 3 \\ -2x_1 + x_3 + x_7 = 1 \\ x_j \ge 0 \ (j = 1, \dots, 7) \end{cases}$$

■ 最优解 $\mathbf{X} = (4, 1, 9)^{\mathsf{T}}$, 最优值 $z^* = -2$

小结

单纯形法完整计算步骤

Q&A

Thank you!

感谢您的聆听和反馈