ABCD: A Graph Framework to Convert Complex Sentences to a Covering Set of Simple Sentences

Yanjun Gao, Ting-hao Huang, Rebecca Jane Passonneau {yug125, txh710, rjp49} @ psu.edu Pennsylvania State University ACL 2021

Introduction

Orig	Sokuhi was born in Fujian and was ordained at 17.
SS1	Sokuhi was born in Fujian.
SS2	Sokuhi was ordained at 17.

- One of many sophisticated complex sentence types we are dealing with!
- Others include: embedded clauses, relative clauses, etc.

Introduction

Orig Sokuhi was born in Fujian and was ordained at 17.

SS1 Sokuhi was born in Fujian.

SS2 Sokuhi was ordained at 17.

- Decomposing complex sentences into simple sentences is a fundamental and significant research in NLP.
- Propositions are addressed in summarization, argument mining, question answering, knowledge graph construction etc.

Previous Automated Methods

- Rule-based parsing
 - Pros: hierarchical processing
 - Cons: less flexibility; limited performance from rules
- Neural text segmentation
 - Pros: easy to train
 - Cons: output is incomplete propositions
- Encoder-Decoder based Split-and-Rephrase
 - Pros: output complete propositions
 - Cons: hard to train; hard to generalize

Previous Automated Methods

- Rule-based parsing
 - Pros: hierarchical processing
 - Cons: less flexibility; limited performance from rules
- Neural text segmentation
 - Pros: easy to train
 - Cons: output is incomplete propositions
- Encoder-Decoder based Split-and-Rephrase
 - Pros: output complete propositions
 - Cons: hard to train; hard to generalize

Our work: ABCD: A linguistic-aware, neural "editor" to learn to edit sentence graphs into subgraphs

ABCD Methodology

copy break drop /

Complex Sentence: Sokuhi was born in Fuzhou, China and was ordained at 17 by Feiying Tongrong.

Clauses: 1. Sokuhi was born in Fuzhou.

2. Sokuhi was ordained at 17 by Feiying Tongrong.

- Converts sentences into word relation graphs (WRGs) that encode word adjacency and grammatical dependencies (e.g., subject dependencies)
- Four graph edge edit types:
 - Accept
 - > Break
 - > Copy
 - > **D**rop

ABCD Methodology

- ❖ **Distant supervision label** creator generating ground truth edge edits
- Neural model learns to classify 4 edit types
- Postprocesser with DFS algorithm
 - finds connected components (CC)
 - converts CC into sentences

Example WRG

ABCD Pipeline

ABCD Neural Model

Dataset

♦ DeSSE: Decomposed Students' Essays

♦ MinWiki: from Wikipedia Text

Dataset	A	В	C	D
MinWiki	85.23%	4.58%	3.60%	6.57%
DeSSE	74.77%	2.39%	5.62%	17.21%
MinWiki	0.0167	0.3533	0.4164	0.2135
DeSSE	0.0200	0.6266	0.2658	0.0876

Table 2: Distributions (Top) and inverse class weights (Bottom) for the four edit labels on both MinWiki and DeSSE datasets.

Intrinsic Evaluation on Output Propositions

		MinWiki			
Group	Model	#T	Match	BLEU4	BERTSc
		/SS	#SS(%)		
	DisSim	8.50	68.46	64.20	94.42
Parsing	DCP_{vp}	14.82	45.49	28.80	64.50
1 arsing	DCP_{sbar}	19.07	17.49	19.35	49.07
	DCP_{recur}	16.30	67.90	31.78	58.08
Encoder-decoder	COPY	9.37	79.26	80.96	95.96
ABCD biLSTM	mlp	9.37	78.61	75.80	92.91
ADOD BILSTM	bilin	9.53	76.72	76.38	90.28

Table 4.4. Performance of baselines and our models on Minwiki test set (N=1075, #T/SS = 10.03). We report numbers of token per propositions (#T/SS), number of input sentences that have match number of output between prediction and ground truth in percentage (Match #SS%), BLEU with four-gram and BERTScore.

Intrinsic Evaluation on Output Propositions

		DeSSE			
Group	Model	#T	Match	BLEU4	BERTSc
		/SS	#SS(%)		
	DisSim	9.59	40.00	37.89	89.54
Parsing	DCP_{vp}	15.99	42.40	47.25	60.18
1 arsing	DCP_{sbar}	17.24	44.81	48.02	59.89
	DCP_{recur}	14.16	55.63	34.44	61.37
Encoder-decoder	COPY	18.13	36.20	45.91	88.71
ABCD biLSTM	mlp	8.85	53.29	53.42	90.23
ADCD BILSTM	bilin	8.10	52.66	41.57	94.78

Table 4.5. Performance of baselines and our models on DeSSE test set (N=790, #T/SS = 9.07). We report numbers of token per propositions (#T/SS), number of input sentences that have match number of output between prediction and ground truth in percentage (Match #SS%), BLEU with four-gram and BERTScore.

Output Example

Orig: I guess I always knew it was **genetics** but I didn't know why our features are the way that they are.

Human: I guess I always knew it was genetics. I didn't know why our features are the way that they are. (n=2)

Copy: I guess I always knew it was interesting but I didn't know why our features are the way that they are. (n=1)

ABCD: I guess I always knew it was genetics. I didn't know why our features are the way that they are. (n=2)

Future Work

- Introducing sequential decision into the model
- Testing ABCD in downstream applications

ABCD is available at https://github.com/serenayj/ABCD-ACL2021

DeSSE is available at https://github.com/serenayj/DeSSE

