Data Quality and Data Cleaning

Imperial College London

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data transformation

Normalization and aggregation

Data reduction

 Obtains reduced representation in volume but produces the same or similar analytical results

Data discretization

Part of data reduction but with particular importance,
 especially for numerical data

Forms of data preprocessing

THE MEANING OF DATA QUALITY

Meaning of Data Quality (1)

- Generally, you have a problem if the data doesn't mean what you think it does, or should
 - Data not up to spec : garbage in, glitches, etc.
 - You don't understand the spec : complexity, lack of metadata.
- Many sources and manifestations
- Data quality problems are expensive and pervasive
 - Data quality problems cost hundreds of billions each year.
 - Resolving data quality problems is often the biggest effort in a data mining study.

Example

T.Das 9733608327 (24.95 | Y | - | 0.0 | 1000 Ted J 1973-360-8779 | 2000 | N | M (NY | 1000

- Can we interpret the data?
 - What do the fields mean?
 - What is the key? The measures?
- Data glitches
 - Typos, multiple formats, missing / default values
- Metadata and domain expertise
 - Field three is Revenue. In dollars or cents?
 - Field seven is Usage. Is it censored?

Data Glitches

- Systemic changes to data which are external to the recorded process.
 - Changes in data layout / data types
 - Integer becomes string, fields swap positions, etc.
 - Changes in scale / format
 - Dollars vs. euros
 - Temporary reversion to defaults
 - Failure of a processing step
 - Missing and default values
 - Application programs do not handle NULL values well ...
 - Gaps in time series
 - Especially when records represent incremental changes.

Conventional Definition of Data Quality

- Accuracy
 - The data was recorded correctly.
- Completeness
 - All relevant data was recorded.
- Uniqueness
 - Entities are recorded once.
- Timeliness
 - The data is kept up to date.
 - Special problems in federated data: time consistency.
- Consistency
 - The data agrees with itself.

Problems ...

- Unmeasurable
 - Accuracy and completeness are extremely difficult, perhaps impossible to measure.
- Context independent
 - No accounting for what is important. E.g., if you are computing aggregates, you can tolerate a lot of inaccuracy.
- Incomplete
 - What about interpretability, accessibility, metadata, analysis, etc.
- Vague
 - The conventional definitions provide no guidance towards practical improvements of the data.

Finding a modern definition

- We need a definition of data quality which
 - Reflects the use of the data
 - Leads to improvements in processes
 - Is measurable (we can define metrics)

- First, we need a better understanding of how and where data quality problems occur
 - The data quality continuum

THE DATA QUALITY CONTINUUM

The Data Quality Continuum

Data and information is not static, it flows in a data collection and usage process

- Data gathering ——
- Data delivery
- Data storage ——
- Data integration —
- Data retrieval
- Data mining/analysis -

Data Gathering

- How does the data enter the system?
- Sources of problems:
 - Manual entry
 - No uniform standards for content and formats
 - Parallel data entry (duplicates)
 - Approximations, surrogates Software/Hardware constraints
 - Measurement errors

Solutions

Potential Solutions:

- Preemptive:

- Process architecture (build in integrity checks)
- Process management (reward accurate data entry, data sharing, data stewards)

– Retrospective:

- Cleaning focus (duplicate removal, merge/purge, name & address matching, field value standardization)
- Diagnostic focus (automated detection of glitches).

Data Delivery

- Destroying or mutilating information by inappropriate pre-processing
 - Inappropriate aggregation
 - Nulls converted to default values
- Loss of data:
 - Buffer overflows
 - Transmission problems
 - No checks

Solutions

- Build reliable transmission protocols
 - Use a relay server
- Verification
 - Checksums, verification parser
 - Do the uploaded files fit an expected pattern?
- Relationships
 - Are there dependencies between data streams and processing steps
- Interface agreements
 - Data quality commitment from the data stream supplier.

Data Storage

- You get a data set. What do you do with it?
- Problems in physical storage
 - Can be an issue, but terabytes are cheap.
- Problems in logical storage (ER -> relations)
 - Poor metadata.
 - Data feeds are often derived from application programs or legacy data sources. What does it mean?
 - Inappropriate data models.
 - Missing timestamps, incorrect normalization, etc.
 - Ad-hoc modifications.
 - Structure the data to fit the GUI.
 - Hardware / software constraints.
 - Data transmission via Excel spreadsheets, Y2K

Solutions

- Metadata
 - Document and publish data specifications.
- Planning
 - Assume that everything bad will happen.
- Data exploration
 - Use data browsing and data mining tools to examine the data.
 - Does it meet the specifications you assumed?
 - Has something changed?

Data Integration

- Combine data sets (acquisitions, across departments).
- Common source of problems
 - Heterogenous data : no common key, different field formats
 - Approximate matching
 - Different definitions
 - What is a customer: an account, an individual, a family, ...
 - Time synchronization
 - Does the data relate to the same time periods? Are the time windows compatible?
 - Legacy data
 - IMS, spreadsheets, ad-hoc structures
 - Sociological factors
 - Reluctance to share loss of power.

Solutions

- Commercial Tools
 - Significant body of research in data integration
 - Many tools for address matching, schema mapping are available.
- Data browsing and exploration
 - Many hidden problems and meanings : must extract metadata.
 - View before and after results : did the integration go the way you thought?

Data Retrieval

- Exported data sets are often a view of the actual data. Problems occur because:
 - Source data not properly understood.
 - Just plain mistakes.
 - Inner join vs. outer join
 - Understanding NULL values
- Computational constraints
 - E.g., too expensive to give a full history, we'll supply a snapshot.
- Incompatibility

Data Mining and Analysis

- What are you doing with all this data anyway?
- Problems in the analysis.
 - Scale and performance
 - Confidence bounds?
 - Black boxes and dart boards
 - "fire your Statisticians"
 - Attachment to models
 - Insufficient domain expertise
 - Casual empiricism

Solutions

- Data exploration
 - Determine which models and techniques are appropriate, find data bugs, develop domain expertise.
- Continuous analysis
 - Are the results stable? How do they change?
- Accountability
 - Make the analysis part of the feedback loop.

DATA QUALITY

Meaning of Data Quality (1)

There are many types of data, which have different uses and typical quality problems

- Federated data
- High dimensional data
- Descriptive data
- Longitudinal data
- Streaming data
- Web (scraped) data
- Numeric vs. categorical vs. text data

Meaning of Data Quality (2)

- There are many uses of data
 - Operations
 - Aggregate analysis
 - Customer relations ...
- Data Interpretation: the data is useless if we don't know all of the *rules* behind the data.
- Data Suitability: Can you get the answer from the available data
 - Relevant data is missing

Data Quality Constraints

- Many data quality problems can be captured by static constraints based on the schema.
 - Nulls not allowed, field domains, foreign key constraints, etc.
- Many others are due to problems in workflow, and can be captured by dynamic constraints
 - E.g., orders above \$200 are processed by Biller 2
- The constraints follow an 80-20 rule
 - A few constraints capture most cases, thousands of constraints to capture the last few cases.
- Constraints are measurable.

DATA QUALITY METRICS

Data Quality Metrics

- We want a measurable quantity
 - Indicates what is wrong and how to improve
 - Realize that data quality is a messy problem, no set of numbers will be perfect
- Types of metrics
 - Static vs. dynamic constraints
 - Operational vs. diagnostic
- Metrics should be *directionally correct* with an improvement in use of the data.
- A very large number metrics are possible
 - Choose the most important ones.

Examples of Data Quality Metrics

- Conformance to schema
 - Evaluate constraints on a snapshot.
- Conformance to business rules
 - Evaluate constraints on changes in the database.
- Accuracy
 - Perform inventory (expensive), or use proxy (track complaints). Audit samples?
- Accessibility
- Interpretability
- Glitches in analysis
- Successful completion of end-to-end process

TECHNICAL TOOLS

Technical Approaches

- A multi-disciplinary approach is needed to attack data quality problems
 - No one approach solves all problem
- Process management
 - Ensure proper procedures
- Statistics
 - Focus on analysis: find and repair anomalies in data.
- Database
 - Focus on relationships: ensure consistency.
- Metadata / domain expertise
 - What does it mean? Interpretation

Process Management

Business processes which encourage data quality.

- Assign dollars to quality problems
- Standardization of content and formats
- Enter data once, enter it correctly (incentives for sales, customer care)
- Automation
- Assign responsibility: data stewards
- End-to-end data audits and reviews
 - Transitions between organizations.
- Data Monitoring
- Data Publishing
- Feedback loops

Feedback Loops

- Data processing systems are often thought of as open-loop systems.
 - Do your processing then throw the results over the fence.
- Analogy to control systems : feedback loops.
 - Monitor the system to detect difference between actual and intended
 - Feedback loop to correct the behavior of earlier components
 - Of course, data processing systems are much more complicated than linear control systems.

Example

- Sales, provisioning, and billing for telecommunications service
 - Many stages involving handoffs between organizations and databases
 - Simplified picture
- Transition between organizational boundaries is a common cause of problems.
- Natural feedback loops
 - Customer complains if the bill is to high
- Missing feedback loops
 - No complaints if we undercharge.

Monitoring

- Use data monitoring to add missing feedback loops.
- Methods:
 - Data tracking / auditing
 - Follow a sample of transactions through the workflow.
 - Build secondary processing system to detect possible problems.
 - Reconciliation of incrementally updated databases with original sources.
 - Mandated consistency with a Database of Record
 - Feedback loop sync-up
 - Data Publishing

Data Publishing

- Make the contents of a database available in a readily accessible and digestible way
 - Web interface (universal client).
 - Data Squashing: Publish aggregates, cubes, samples, parametric representations.
 - Publish the metadata.
- Close feedback loops by getting a lot of people to look at the data.
- Surprisingly difficult sometimes.
 - Organizational boundaries, loss of control interpreted as loss of power, desire to hide problems.

Statistical Approaches

- No explicit data quality methods
 - Traditional statistical data collected from carefully designed experiments, often tied to analysis
 - But, there are methods for finding anomalies and repairing data.
 - Existing methods can be adapted for data quality purposes.
- Four categories can be adapted for data quality
 - Missing, incomplete, ambiguous or damaged data e.g truncated, censored
 - Suspicious or abnormal data e.g. outliers
 - Testing for departure from models
 - Goodness-of-fit

Missing Data

- Missing data values, attributes, entire records, entire sections
- Missing values and defaults are indistinguishable
- Truncation/censoring not aware, mechanisms not known
- Problem: Misleading results, bias.

Detecting Missing Data

Overtly missing data

- Match data specifications against data are all the attributes present?
- Scan individual records are there gaps?
- Rough checks: number of files, file sizes, number of records, number of duplicates
- Compare estimates (averages, frequencies, medians) with "expected" values and bounds; check at various levels of granularity since aggregates can be misleading.

Missing data detection (cont.)

Hidden damage to data

- Values are truncated or censored check for spikes and dips in distributions and histograms
- Missing values and defaults are indistinguishable too many missing values? metadata or domain expertise can help
- Errors of omission e.g. all calls from a particular area are missing - check if data are missing randomly or are localized in some way

Imputing Values to Missing Data

- In federated data, between 30%-70% of the data points will have at least one missing attribute data wastage if we ignore all records with a missing value
- Remaining data is seriously biased
- Lack of confidence in results
- Understanding pattern of missing data unearths data integrity issues

Missing Value Imputation (1)

- Standalone imputation
 - Mean, median, other point estimates
 - Assume: Distribution of the missing values is the same as the non-missing values.
 - Does not take into account inter-relationships
 - Introduces bias
 - Convenient, easy to implement

Missing Value Imputation (2)

- Better imputation use attribute relationships
- Assume : all prior attributes are populated
 - That is, monotonicity in missing values.

```
X1 | X2 | X3 | X4 | X5

1.0 | 20 | 3.5 | 4 | .

1.1 | 18 | 4.0 | 2 | .

1.9 | 22 | 2.2 | . | .

0.9 | 15 | . | . | .
```

- Two techniques
 - Regression (parametric),
 - Propensity score (nonparametric)

Censoring and Truncation

- Well studied in Biostatistics, relevant to time dependent data e.g. duration
- Censored Measurement is bounded but not precise e.g., Call duration > 20 are recorded as 20
- Truncated Data point dropped if it exceeds or falls below a certain bound e.g. customers with less than 2 minutes of calling per month

Censored Time Intervals

Censoring/Truncation (cont.)

- If censoring/truncation mechanism not known, analysis can be inaccurate and biased.
- But if you know the mechanism, you can mitigate the bias from the analysis.
- Metadata should record the existence as well as the nature of censoring/truncation

Suspicious Data

Consider the data points

- "92" is suspicious an *outlier*
- Outliers are potentially legitimate
- Often, they are data or model glitches
- Or, they could be a data miner's dream, e.g., highly profitable customers

Outliers

- Outlier "departure from the expected"
- Types of outliers defining "expected"
- Many approaches
 - Error bounds, tolerance limits control charts
 - Model based regression depth, analysis of residuals
 - Geometric
 - Distributional
 - Time Series outliers

Model Fitting and Outliers

- Models summarize general trends in data
 - more complex than simple aggregates
 - e.g. linear regression, logistic regression focus on attribute relationships
- Data points that do not conform to well fitting models are potential outliers
- Goodness of fit tests (DQ for analysis/mining)
 - check suitableness of model to data
 - verify validity of assumptions
 - data rich enough to answer analysis/business question?

Set Comparison and Outlier Detection

- "Model" consists of partition based summaries
- Perform nonparametric statistical tests for a rapid section-wise comparison of two or more massive data sets
- If there exists a baseline "good" data set, this technique can detect potentially corrupt sections in the test data set

Time Series Outliers

- Data is a time series of measurements of a large collection of entities (e.g. customer usage).
- Vector of measurements define a trajectory for an entity.
- A trajectory can be glitched, and it can make radical but valid changes.
- Approach: develop models based on entity's past behavior (within) and all entity behavior (relative).
- Find potential glitches:
 - Common glitch trajectories
 - Deviations from within and relative behavior.

Database Tools

- Most DBMS's provide many data consistency tools
 - Transactions —
 - Data types
 - Domains (restricted set of field values)
 - Constraints
 - Column Constraints
 - Not Null, Unique, Restriction of values
 - Table constraints
 - Primary and foreign key constraints
 - Powerful query language
 - Triggers
 - Timestamps, temporal DBMS

Why is every DB dirty?

- Consistency constraints are often not used
 - Cost of enforcing the constraint
 - E.g., foreign key constraints, triggers.
 - Loss of flexibility
 - Constraints not understood
 - E.g., large, complex databases with rapidly changing requirements
 - DBA does not know / does not care.
- Garbage in
 - Merged, federated, web-scraped databases
- Undetectable problems
 - Incorrect values, missing data
- Metadata not maintained
- Database is too complex to understand

Too complex to understand ...

- Unintended consequences
 - Best example: cascading deletes to enforce participation constraints
 - Consider salesforce table and sales table. Participation constraint of salesforce in sales. Then you fire a salesman ...
- Real life is complicated. Hard to anticipate special situations
 - Textbook example of functional dependencies: zip code determines state. Except for a few zip codes in sparsely populated regions that straddle states.

Tools

- Extraction, Transformation, Loading
- Approximate joins
- Duplicate finding
- Database exploration

Data Loading

- Extraction, Transformation, Loading (ETL)
- The data might be derived from a questionable source.
 - Federated database, Merged databases
 - Text files, log records
 - Web scraping
- The source database might admit a limited set of queries
- The data might need restructuring
 - Field value transformation
 - Transform tables (e.g. denormalize, pivot, fold)

Extract, Transform, Load

- Provides tools to
 - Access data (DB drivers, web page fetch, parse tools)
 - Validate data (ensure constraints)
 - Transform data (e.g. addresses, phone numbers)
 - Load data
- Design automation
 - Schema mapping
 - Queries to data sets with limited query interfaces (web queries)

Web Scraping

- Lots of data in the web, but its mixed up with a lot of junk.
- Problems:
 - Limited query interfaces
 - Fill in forms
 - "Free text" fields
 - E.g. addresses
 - Inconsistent output
 - i.e., html tags which mark interesting fields might be different on different pages.
 - Rapid change without notice.

Tools

- Automated generation of web scrapers
 - Excel will load html tables
- Automatic translation of queries
 - Given a description of allowable queries on a particular source
- Monitor results to detect quality deterioration
- Extraction of data from free-form text
 - E.g. addresses, names, phone numbers
 - Auto-detect field domain

Approximate Matching

- Relate tuples whose fields are "close"
 - Approximate string matching
 - Generally, based on edit distance.
 - Fast SQL expression using a q-gram index
 - Approximate tree matching
 - For XML
 - Much more expensive than string matching
 - Recent research in fast approximations
 - Feature vector matching
 - Similarity search
 - Many techniques discussed in the data mining literature.
 - Ad-hoc matching
 - Look for a clever trick.

Approximate Joins and Duplicate Elimination

- Perform joins based on incomplete or corrupted information.
 - Approximate join : between two different tables
 - Duplicate elimination : within the same table
- More general than approximate matching.
 - Semantics: Need to use special transforms and scoring functions.
 - Correlating information: verification from other sources,
 e.g. usage correlates with billing.
 - Missing data: Need to use several orthogonal search and scoring criteria.
- But approximate matching is a valuable tool ...

Algorithm

- Partition data set
 - By hash on computed key
 - By sort order on computed key
 - By similarity search / approximate match on computed key
- Perform scoring within the partition
 - Hash: all pairs
 - Sort order, similarity search: target record to retrieved records
- Record pairs with high scores are matches
- Use multiple computed keys / hash functions
- Duplicate elimination : duplicate records form an equivalence class.

Approximate Join Example

Database Exploration

- Tools for finding problems in a database
 - Opposite of ETL
 - Similar to data quality mining
- Simple queries are effective:

```
Select Field, count(*) as Cnt
from Table
Group by Field
Order by Cnt Desc
```

- Hidden NULL values at the head of the list,
 typos at the end of the list
- Just look at a sample of the data in the table.

Database Profiling

- Systematically collect summaries of the data in the database
 - Number of rows in each table
 - Number of unique, null values of each field
 - Skewness of distribution of field values
 - Data type, length of the field
 - Use free-text field extraction to guess field types (address, name, zip code, etc.)
 - Functional dependencies, keys
 - Join paths
- Does the database contain what you think it contains?
 - Usually not.

Finding Keys and Functional Dependencies

- Key: set of fields whose value is unique in every row
- Functional Dependency: A set of fields which determine the value of another field
 - E.g., ZipCode determines the value of State
 - But not really ...
- Problems: keys not identified, uniqueness not enforced, hidden keys and functional dependencies.
- Key finding is expensive: O(f^k) Count Distinct queries to find all keys of up to k fields.
- Fortunately, we can prune a lot of this search space if we search only for *minimal* keys and FDs
- Approximate keys: almost but not quite unique.
- Approximate FD : similar idea

Finding Join Paths

- How do I correlate this information?
- In large databases, hundreds of tables, thousands of fields.
- Field names are very unreliable.
 - Natural join does not exist outside the laboratory.
- Use data types and field characterization to narrow the search space.

Domain Expertise

Data quality gurus: "We found these peculiar records in your database after running sophisticated algorithms!"

Domain Experts: "Oh, those apples - we put them in the same baskets as oranges because there are too few apples to bother. Not a big deal. We knew that already."

Why Domain Expertise?

- Domain expertise is important for understanding the data, the problem and interpreting the results
 - "The counter resets to 0 if the number of calls exceeds N".
 - "The missing values are represented by 0, but the default billed amount is 0 too."
- Insufficient domain expertise is a primary cause of poor data quality— data are unusable
- Domain expertise should be documented as metadata

Metadata

- Usually in people's heads seldom documented
- Fragmented across organizations
 - Often experts don't agree. Force consensus.
- Lost during personnel and project transitions
- If undocumented, deteriorates and becomes fuzzy over time

Metadata

- Data about the data
- Data types, domains, and constraints help, but are often not enough
- Interpretation of values
 - Scale, units of measurement, meaning of labels
- Interpretation of tables
 - Frequency of refresh, associations, view definitions
- Most work done for scientific databases
 - Metadata can include programs for interpreting the data set.

XML

- Tree structured
 - Multiple field values, complex structure, etc.
- "Self-describing": schema is part of the record
 - Field attributes
- DTD: minimal schema in an XML record.

Lineage Tracking

- Record the processing used to create data
 - Coarse grained: record processing of a table
 - Fine grained: record processing of a record
- Record graph of data transformation steps.
- Used for analysis, debugging, feedback loops

EXAMPLE

Motivation: Data Cleaning

Find movies starring Tom Hanks

Star	Title	Year	Genre
Keanu Reeves	The Matrix	1999	Sci-Fi
Tom Hanks	Toy Story 3	2010	Animation
Schwarzenegger	The Terminator	1984	Sci-Fi
Samuel Jackson	The man	2006	Crime

Movies starring S..warz...ne...ger?

Star	Title	Year	Genre
Keanu Reeves	The Matrix	1999	Sci-Fi
Tom Hanks	Toy Story 3	2010	Animation
Schwarzenegger	The Terminator	1984	Sci-Fi
Samuel Jackson	The man	2006	Crime

Similarity Search

Find movies with a star "similar to" Schwarrzenger.

Star	Title	Year	Genre
Keanu Reeves	The Matrix	1999	Sci-Fi
Samuel Jackson	Iron man	2008	Sci-Fi
Schwarzenegger	The Terminator	1984	Sci-Fi
Samuel Jackson	The man	2006	Crime

Record Linkage

Table R Table S

Star
Keanu Reeves

Samuel Jackson
Schwarzenegger

...

Star
Keanu Reeves
Samuel L. Jackson
Schwarzenegger
...

Two-step solution

Step 2: Verification

Set-Similarity Join b d RID RID а R.a~S.c 30 RIDR RID_s Sim b а

Finding pairs of records with a similarity on their join attributes > t

Why this formulation?

Word tokens:

```
"Samuel L. Jackson" → {Samuel, L., Jackson}
"Samuel Jackson" → {Samuel, Jackson}
```

Gram tokens:

Set-similarity functions

- Jaccard
- Dice
- Cosine
- Hamming
- . . .

$$Jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} \ge t$$

All solvable in this framework

A naïve solution

- Map: $\langle 23, (a,b,c) \rangle \rightarrow (a, 23), (b, 23), (c, 23)$
- Reduce:(a,23),(a,29),(a,50), ... → Verify each pair

- Too much data to transfer
- Too many pairs to verify

Solving frequency skew: prefix filtering

Sort tokens by frequency (ascending)

Prefix of a set: least frequent tokens

Prefixes of similar sets should share tokens

Prefix filtering: example

- Each set has 5 tokens
- "Similar": they share at least 4 tokens
- Prefix length: 2

Hadoop Solution: Overview

Stage 1: Order tokens by frequency

Stage 2: Finding "similar" id pairs

Stage 3: id pairs → record pairs

Stage 1: Sort tokens by frequency

Compute token frequencies

MapReduce phase 1

Sort them

MapReduce phase 2

Stage 2: Find "similar" id pairs

Partition using prefixes

Verify similarity

Stage 3: id pairs → record pairs (phase 1)

Bring records for each id in each pair

Stage 3: id pairs → record pairs (phase 2)

Join two half filled records