Rent, Risk, and Recovery: Strategic Leasing Insights from Macroeconomic Models

Datafest 2025

Predicting National Average Rent with Macro Factors

Avg National Rent (standardized)

Macro Data (GDP, S&P 500, CPI, Federal Funds, VIX, PNFI)

Panel Regression for City-Specific Sensitivities - Fixed-Effects Model (Common Slopes)

 $price_{i,t} = lpha_i + eta_1 GDP_pct_change_t + eta_2 SP_pctchange_t + eta_3 fed_rate_t + eta_4 vix_pctchange_t + eta_5 CPI_pct_change_t + eta_6 PNFI_pct_change_t + arepsilon_{i,t}$

OLS Regression Results						
Dep. Variable:	price		R-squared:		0.973	
Model:	0LS		Adj. R-squared:		0.971	
	Least Squares		F-statistic:		607.7	
	Sun, 06 Apr 2025		Prob (F-statistic):		2.59e-189	
Time:	06:48:25		Log-Likelihood: AIC:		-670.03	
No. Observations:	270			1372.		
Df Residuals:			BIC:		1430.	
Df Model:	15					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
C(city)[Atlanta]	26.5549	0.801	33.161	0.000	24.978	28.132
C(city)[Austin]	39.0612	0.801	48.778	0.000	37.484	40.638
C(city)[Boston]	37,2109	0.801	46.468	0.000	35.634	38.788
C(city)[Manhattan]	74.5817	0.801	93.135	0.000	73.005	76.159
C(city)[Northern New Jersey]	26.6540	0.801	33.285	0.000	25.077	28.231
C(city)[Northern Virginia]	31.5887	0.801	39.447	0.000	30.012	33.166
C(city)[Philadelphia]	26.6458	0.801	33.274	0.000	25.069	28.223
C(city)[Salt Lake City]	22.3190	0.801	27.871	0.000	20.742	23.896
C(city)[San Francisco]	69.4495	0.801	86.726	0.000	67.873	71.027
C(city)[Seattle]	38.0139	0.801	47.471	0.000	36.437	39.591
GDP_pct_change	-0.0278	0.133	-0.209	0.834	-0.289	0.233
SP_pctchange	0.0920	0.042	2.205	0.028	0.010	0.174
fed_rate	0.6175	0.098	6.280	0.000	0.424	0.811
vix_pctchange	0.0084	0.005	1.654	0.099	-0.002	0.018
CPI_pct_change	1.9914	0.432	4.608	0.000	1.140	2.842
PNFI_pct_change	-0.2668	0.184	-1.451	0.148	-0.629	0.095
Omnibus:	11.882	======================================		0.366		
Prob(Omnibus):	0.003	Jarque-Bera (JB):		23.420		
Skew:	0.163	Prob(JB):		8.21e-06		
Kurtosis:	4.405	Cond. No.		749.		
					===	

 City fixed effects α capture large rent level differences (e.g., Manhattan ≈ \$75/SF vs. Phoenix ≈ \$25/SF)

- Common slope estimates:
 - Positive for GDP and S&P 500 (though not all are statistically significant)
 - **Negative** for VIX
 - Slightly negative for the federal funds rate (suggesting higher rates may suppress rents)
- The model's R^2 is relevant → macro variables explain some rent variation
- City-specific dynamics are crucial

Bayesian Hierarchical Model (Partial Pooling)

Let
$$\theta$$
 represent all unknown parameters:
$$\theta = \left\{\alpha_j, \beta_j^{GDP}, \beta_j^{SP}, \mu_\alpha, \mu_{\beta,GDP}, \mu_{\beta,SP}, \tau_\alpha, \tau_{\beta,GDP}, \tau_{\beta,SP}, \sigma\right\}$$
 Given the data $D = \{y_i, x_i\}$, the posterior is:
$$p(\theta \mid D) \propto \underbrace{\prod_{i=1}^N \mathcal{N}\left(y_i \mid \alpha_{j[i]} + \beta_{j[i]}^{GDP} x_i^{GDP} + \beta_{j[i]}^{SP} x_i^{SP}, \sigma^2\right)}_{\text{Likelihood}} \times \underbrace{\prod_{j=1}^J \mathcal{N}(\alpha_j \mid \mu_\alpha, \tau_\alpha^2) \cdot \mathcal{N}(\beta_j^{GDP} \mid \mu_{\beta,GDP}, \tau_{\beta,GDP}^2) \cdot \mathcal{N}(\beta_j^{SP} \mid \mu_{\beta,SP}, \tau_{\beta,SP}^2)}_{\text{City-level priors}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2) \cdot \mathcal{N}(\mu_{\beta,SP} \mid 0, 5^2)}_{\text{HalfNormal}(\tau_\alpha \mid 5) \cdot \text{HalfNormal}(\tau_{\beta,GDP} \mid 2) \cdot \text{HalfNormal}(\tau_{\beta,SP} \mid 2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2) \cdot \mathcal{N}(\mu_{\beta,SP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2) \cdot \mathcal{N}(\mu_{\beta,SP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2) \cdot \mathcal{N}(\mu_{\beta,GDP} \mid 0, 5^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2)}_{\text{Likelihood noise prior}} \times \underbrace{\mathcal{N}(\mu_\alpha \mid 0, 10^2)$$

Modeling Insight – Shrinkage:

- Extreme values (ex: Manhattan's GDP effect) are pulled toward the average
- Partial pooling reduces overconfidence and better reflects uncertainty

Macroeconomic Impacts:

- GDP has a weak but positive effect on rents
- Stock market gains have a positive influence

City-Specific Dynamics:

- San Francisco and Manhattan: Rent trends are less tied to GDP (possibly inverse)
- Phoenix, Atlanta, Houston: More responsive to economic growth
- Stock market effects are broadly positive and more consistent across cities