US Patent & Trademark Office Patent Public Search | Text View

United States Reissue Patent

Kind Code

Date of Reissued Patent

Inventor(s)

RE50536

August 19, 2025

Case; Leonard R. et al.

Methods of performing fracturing operations using an on-site electric power supply

Abstract

Methods and systems for integral storage and blending of the materials used in oilfield operations are disclosed. A modular integrated material blending and storage system includes a first module comprising a storage unit, a second module comprising a liquid additive storage unit and a pump for maintaining pressure at an outlet of the liquid additive storage unit. The system further includes a third module comprising a pre-gel blender. An output of each of the first module, the second module and the third module is located above a blender and gravity directs the contents of the first module, the second module and the third module to the blender. The system also includes a pump that directs the output of the blender to a desired down hole location. The pump may be powered by natural gas or electricity.

Inventors: Case; Leonard R. (Duncan, OK), Hagan; Ed B. (Hastings, OK), Stegemoeller;

Calvin L. (Sagerton, TX), Hyden; Ron (Spring, TX)

Applicant: Halliburton Energy Services, Inc. (Houston, TX)

Family ID: 1000008509305

Assignee: Halliburton Energy Services, Inc. (Houston, TX)

Appl. No.: 17/221281

Filed: April 02, 2021

Related U.S. Application Data

continuation parent-doc US 16537070 20190809 US RE50109 child-doc US 17221281 continuation parent-doc US 16537124 20190809 US RE49155 child-doc US 17221281 continuation-in-part parent-doc US 12557730 20090911 US 8444312 20130512 child-doc US 12774959

continuation-in-part parent-doc US 12557730 20090911 US 8444312 20130512 child-doc US

12774959

division parent-doc US 15079027 20160323 US RE46725 20180220 child-doc US 12774959 reissue parent-doc US 12774959 20100506 US 8834012 20140916 child-doc US 16537070 reissue parent-doc US 15853076 20171222 US RE47695 20191105 child-doc US 16537070 reissue parent-doc US 12774959 20100506 US 8834012 20140916 child-doc US 12774959 reissue parent-doc US 15079027 20160323 US RE46725 20180220 child-doc US 12774959 reissue parent-doc US 12774959 20100506 US 8834012 20140916 child-doc US 12774959 reissue parent-doc US 12774959 20100506 US 8834012 20140916 child-doc US 16537124 reissue parent-doc US 15853076 20171222 US RE47695 20191105 child-doc US 16537124 reissue parent-doc US 12774959 20100506 US 8834012 20140916 child-doc US 15079027 reissue parent-doc US 12774959 20100506 GRANTED US 8834012 20140916 child-doc US 17221281

Publication Classification

Int. Cl.: E21B21/06 (20060101); **E21B43/26** (20060101)

U.S. Cl.:

CPC **E21B21/062** (20130101); **E21B43/2607** (20200501);

Field of Classification Search

CPC: E21B (43/40); E21B (21/062)

USPC: 366/141; 366/181.8; 366/183.1; 366/154.1

References Cited

U.S. PATENT DOCUMENTS

C.S. THEN BOCCMENTS				
Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
548793	12/1894	Winship	N/A	N/A
1730173	12/1928	Stearns	N/A	N/A
2026600	12/1935	Wilkinson	N/A	N/A
2795403	12/1956	Mead	N/A	N/A
2821854	12/1957	Franke	73/296	N/A
3155248	12/1963	Haller	214/38	N/A
3259190	12/1965	Parsons	N/A	N/A
3279550	12/1965	Kersten	177/136	N/A
3291234	12/1965	Woodburn	177/36	N/A
3378074	12/1967	Kiel	N/A	N/A
3381943	12/1967	Miller	N/A	N/A
3547291	12/1969	Batteron et al.	214/515	N/A
3587760	12/1970	Othmar et al.	N/A	N/A
3591147	12/1970	Anderson et al.	259/154	N/A
3687319	12/1971	Adam et al.	214/501	N/A
3722595	12/1972	Kiel	N/A	N/A
3792790	12/1973	Brubaker	214/501	N/A
3854540	12/1973	Holmstrom, Jr.	177/136	N/A

3857452	12/1973	Hartman	177/139	N/A
3893655	12/1974	Sandiford	N/A	N/A
3931999	12/1975	McCain	N/A	N/A
3934739	12/1975	Zumsteg et al.	214/501	N/A
3962877	12/1975	Schiemichen	N/A	N/A
4063605	12/1976	Graham	177/225	N/A
4103752	12/1977	Schmidt	177/141	N/A
4159180	12/1978	Cooper et al.	N/A	N/A
4163626	12/1978	Batterton et al.	N/A	N/A
4169506	12/1978	Berry	N/A	N/A
4187047	12/1979	Squifflet	414/332	N/A
4249838	12/1980	Harvey et al.	N/A	N/A
4265266	12/1980	Kierbow et al.	N/A	N/A
4345628	12/1981	Campbell et al.	141/83	N/A
4345872	12/1981	Arnold	414/705	N/A
4411327	12/1982	Lockery et al.	177/211	N/A
4465420	12/1983	Dillman	414/332	N/A
4576005	12/1985	Force	N/A	N/A
4583170	12/1985	Carlin et al.	N/A	N/A
4621972	12/1985	Grotte	414/477	N/A
4634335	12/1986	Van Den Pol	414/494	N/A
4708569	12/1986	Nijenhuis	414/332	N/A
4716932	12/1987	Adams, Jr.	N/A	N/A
4726435	12/1987	Kitagawa et al.	177/187	N/A
4730118	12/1987	Quarles et al.	N/A	N/A
4775275	12/1987	Perry	414/21	N/A
4819750	12/1988	Carnevale	177/256	N/A
4844189	12/1988	Shisgal et al.	177/211	N/A
4850702	12/1988	Arribau et al.	N/A	N/A
4850750	12/1988	Cogbill et al.	N/A	N/A
4854714	12/1988	Davis	N/A	N/A
4898473	12/1989	Stegemoeller et	N/A	N/A
		al.		
4913198	12/1989	Hayahara et al.	141/83	N/A
4916631	12/1989	Crain et al.	N/A	N/A
5016666	12/1990	McKinney et al.	N/A	N/A
5044861	12/1990	Kirchhoff et al.	414/332	N/A
5127450	12/1991	Saatkamp	141/9	N/A
5133212	12/1991	Grills et al.	73/296	N/A
5161628	12/1991	Wirth	177/137	N/A
5205370	12/1992	Paul et al.	177/256	N/A
5272920	12/1992	Stephenson et al.	N/A	N/A
5318382	12/1993	Cahill	N/A	N/A
5333695	12/1993	Walter	172/272	N/A
5343000	12/1993	Griffen et al.	177/145	N/A
5382411	12/1994	Allen	N/A	N/A
5426137	12/1994	Allen	N/A	N/A
5452615	12/1994	Hilton	73/862.043	N/A
5452954	12/1994	Handke et al.	N/A	N/A
5546683	12/1995	Clark	37/468	N/A

5578798	12/1995	Nuyts	177/136	N/A
5606853	12/1996	Birch et al.	N/A	N/A
5635680	12/1996	Dojan	177/136	N/A
5637837	12/1996	Merz et al.	177/145	N/A
5665910	12/1996	Knutson et al.	73/200	N/A
5717167	12/1997	Filing et al.	177/136	N/A
5752768	12/1997	Assh	366/3	N/A
5764522	12/1997	Shalev	700/240	N/A
5769058	12/1997	Scogin	N/A	N/A
5811737	12/1997	Gaiski	177/1	N/A
5811738	12/1997	Boyovich et al.	177/136	N/A
5833364	12/1997	Rushing et al.	N/A	N/A
5850757	12/1997	Wierenga	73/296	N/A
5880410	12/1998	Neuman	177/187	N/A
5884232	12/1998	Buder	702/42	N/A
5981446	12/1998	Qiu et al.	N/A	N/A
6006227	12/1998	Freeman et al.	N/A	N/A
6007227	12/1998	Carlson	N/A	N/A
6118083	12/1999	Boyovich et al.	177/136	N/A
6148667	12/1999	Johnson	73/296	N/A
6186657	12/2000	Fuchsbichler	N/A	N/A
6242701	12/2000	Breed et al.	177/144	N/A
6284987	12/2000	Al-Modiny	177/170	N/A
6313414	12/2000	Campbell	177/16	N/A
6384349	12/2001	Voll	177/25.19	N/A
6414455	12/2001	Watson	N/A	N/A
6474926	12/2001	Weiss	414/919	B65D 88/30
6495774	12/2001	Pederson	177/136	N/A
6532830	12/2002	Jansen et al.	73/862.042	N/A
6601763	12/2002	Hoch et al.	235/385	N/A
6769315	12/2003	Stevenson et al.	73/862.629	N/A
6817376	12/2003	Morgan et al.	N/A	N/A
6928886	12/2004	Meusel et al.	73/862.324	N/A
6948535	12/2004	Stegemoeller	N/A	N/A
7048432	12/2005	Phillippi et al.	N/A	N/A
7114322	12/2005	Yamanaka et al.	N/A	N/A
7202425	12/2006	Knudsen et al.	177/211	N/A
7214028	12/2006	Boasso	414/812	B60P
				1/6427
7214892	12/2006	Williamson	177/170	N/A
7240549	12/2006	Kimbara et al.	73/296	N/A
7267001	12/2006	Stein	73/296	N/A
7353875	12/2007	Stephenson et al.	N/A	N/A
7472542	12/2008	Yamanaka et al.	N/A	N/A
7528329	12/2008	Nuyts	177/136	N/A
7789142	12/2009	Dotson	N/A	N/A
7836949	12/2009	Dykstra McNaglet al	N/A	N/A
7841394	12/2009	McNeel et al.	N/A	N/A
7946340	12/2010	Surjaatmadja et	N/A	N/A
		al.		

8146665	12/2011	Neal	N/A	N/A
8444312	12/2012	Hagan et al.	366/141	N/A
2001/0038018	12/2000	Bell et al.	222/58	N/A
2003/0047387	12/2002	Bogat	186/59	N/A
2003/0047603	12/2002	Lustenberger et al.	235/385	N/A
2003/0054963	12/2002	Chowdhary et al.	N/A	N/A
2003/0117890	12/2002	Dearing et al.	N/A	N/A
2003/0202869	12/2002	Posch	N/A	N/A
2004/0008571	12/2003	Coody et al.	N/A	N/A
2004/0011523	12/2003	Sarada	N/A	N/A
2005/0067336	12/2004	Graham, Sr.	N/A	N/A
2005/0110648	12/2004	Lehrman et al.	340/686.1	N/A
2005/0155667	12/2004	Stegemoeller	N/A	N/A
2006/0015414	12/2005	Congram et al.	N/A	N/A
2006/0028914	12/2005	Phillippi et al.	N/A	N/A
2006/0107998	12/2005	Kholy et al.	N/A	N/A
2006/0225924	12/2005	Ivan et al.	175/66	N/A
2007/0107540	12/2006	Davis	73/866	N/A
2007/0120367	12/2006	Scherzer	N/A	N/A
2007/0125543	12/2006	McNeel et al.	N/A	N/A
2007/0125544	12/2006	Robinson et al.	N/A	N/A
2007/0201305	12/2006	Heilman et al.	366/141	E21B 43/267
2007/0277982	12/2006	Shampine et al.	N/A	N/A
2008/0017369	12/2007	Sarada	N/A	N/A
2008/0029267	12/2007	Shampine et al.	N/A	N/A
2008/0066911	12/2007	Luharuka et al.	N/A	N/A
2008/0087428	12/2007	Symington et al.	N/A	N/A
2008/0135238	12/2007	Cugnet et al.	N/A	N/A
2008/0165613	12/2007	Dykstra	N/A	N/A
2008/0173480	12/2007	Annaiyappa et al.	N/A	N/A
2008/0203734	12/2007	Grimes et al.	N/A	N/A
2008/0238101	12/2007	Ziegenfuss	N/A	N/A
2008/0264625	12/2007	Ochoa	N/A	N/A
2008/0264641	12/2007	Slabaugh et al.	N/A	N/A
2008/0271927	12/2007	Crain	N/A	N/A
2009/0068031	12/2008	Gambier et al.	N/A	N/A
2009/0078410	12/2008	Krenek et al.	N/A	N/A
2009/0090504	12/2008	Weightman	N/A	N/A
2009/0095482	12/2008	Surjaatmadja	N/A	N/A
2009/0107734	12/2008	Lucas	N/A	N/A
2009/0178387	12/2008	Schultz et al.	N/A	N/A
2009/0301725	12/2008	Case et al.	N/A	N/A
2010/0018710	12/2009	Leshchyshyn et al.	N/A	N/A
2010/0038907	12/2009	Hunt	290/43	E21B 41/0085
2010/0071284	12/2009	Hagan et al.	52/192	B65D 88/30
2010/0071899	12/2009	Coquilleau et al.	N/A	N/A

2010/0314106	12/2009	Tubel	N/A	N/A
2011/0197988	12/2010	Van Vliet et al.	N/A	N/A
2012/0157356	12/2011	Dawson et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
2522428	12/2007	CA	N/A
1877079	12/2005	CN	N/A
37 17 417	12/1987	DE	N/A
295 18 215	12/1995	DE	N/A
0605113	12/1993	EP	N/A
A 0 605 113	12/1993	EP	N/A
1655456	12/2005	EP	N/A
1900973	12/2009	EP	N/A
2474335	12/1980	FR	N/A
2474335	12/1980	FR	N/A
976279	12/1963	GB	N/A
1994019263	12/1993	WO	N/A
WO 94/19263	12/1993	WO	N/A
WO 2007/113528	12/2006	WO	N/A
2009065858	12/2008	WO	N/A
WO 2009/065858	12/2008	WO	N/A

OTHER PUBLICATIONS

"Auxiliary Pump Plants," Halliburton Special Services, dated May 24, 2000. cited by applicant "2,400 Hydraulic Horsepower Electric Pump Plant With All Support Equipment," Halliburton Special Services, dated May 24, 2000. cited by applicant

"Electric Pumping Equipment SCR Drive," Pumping Equipment Data Book Manual No. 277.17165, Halliburton Services, Section 17, pp. 187-194, dated Sep. 1980. cited by applicant U.S. Pat. No. 548,793, issued Oct. 29, 1895 to James H. Winship for "Rendering Apparatus". cited by applicant

Office Action in U.S. Appl. No. 11/741,509, dated Aug. 19, 2009. cited by applicant Office Action in U.S. Appl. No. 11/741,509, dated Jan. 28, 2010. cited by applicant Office Action in U.S. Appl. No. 11/930,756, dated Mar. 18, 2009. cited by applicant Office Action in U.S. Appl. No. 11/930,756, dated Jul. 7, 2009. cited by applicant Office Action in U.S. Appl. No. 11/930,756, dated Jan. 28, 2010. cited by applicant Advisory Action in U.S. Appl. No. 11/930,756, dated Mar. 31, 2010. cited by applicant Office Action issued in U.S. Appl. No. 12/235,270, dated Mar. 4, 2011. cited by applicant Office Action issued in U.S. Appl. No. 12/435,551, dated Jun. 15, 2011. cited by applicant Office Action issued in U.S. Appl. No. 12/635,009, dated Jul. 23, 2012. cited by applicant Fenna et al., "Dictionary of Weights, Measures, and Units," Oxford University Press, 2002, pp. I, 65 and 66, dated 2002. cited by applicant

Kutz et al., "Mechanical Engineers' Handbook," 2nd Ed., 1998, p. I, II, and 1332, dated 1998. cited by applicant

Abulnaga, "Slurry Systems Handbook," 2002, pp. I, II, and 1.20, dated 2002. cited by applicant International Search Report in PCT/GB2010/001717 mailed May 10, 2011. cited by applicant Office Action in U.S. Appl. No. 12/182,297 mailed Apr. 21, 2011. cited by applicant International Search Report in PCT/GB2010/000512 mailed Jun. 25, 2010. cited by applicant Office Action in U.S. Appl. No. 12/422,450 mailed Jun. 18, 2010. cited by applicant

- "Truck-Back Turbines", Machine Design, vol. 32, No. 5, Mar. 3, 1960, p. 12, 3 pages. cited by applicant
- Tomlinson, H. L., A. C. Byrd, and C. F. VanBerg. "Fracturing process control and automation." Permian Basin Oil and Gas Recovery Conference. Society of Petroleum Engineers, 1988. cited by applicant
- Stephenson, S. V., et al. "Fracturing process control and automation: Phase 2." Petroleum Computer Conference. Society of Petroleum Engineers, 1993. cited by applicant
- Purvis, D. L., R. J. Novotny, and B. T. Carlson. "Field-Applied Computerized Tracking System: A Practical Approach to On-Site Quality Control." SPE Computer Applications 3.05 (1991): 22-28. cited by applicant
- Invalidity Chart, Mud Pump and Associated Materials HHUS Sold to Nabors, *U.S. Well Services*, *LLC* v. *TOPS Well Services*, *LLC* et al., Case 3:19-cv-00237, D.I. 76-13 (S.D. Tex.), Apr. 29, 2020, 135 pages. cited by applicant
- "The Jet Frac Revolution," Turbine Stimulation Technologies, BIC Magazine, Apr. 2006, 3 pages. cited by applicant
- Archive of MTT Website, available at
- https://web.archive.org/web/20090615185330/marineturbine.com/frac.asp, Jun. 15, 2009, 3 pages. cited by applicant
- Excerpts from manual related to Halliburton Stim Star vessel, 7 pages. cited by applicant 1966 Halliburton Sales and Service Catalog, 3 pages. cited by applicant
- "Hydraulic Fracturing and Flowback Hazards Other than Respirable Silica." Occupational Safety and Health Administration, OSHA 3763-12 2014, 2014, 27 pages. cited by applicant
- Occupational Safety and Health Administration. "Hazard alert: Worker exposure to silica during hydraulic fracturing." Retrieved from
- http://www.osha.gov/dts/hazardalerts/hydraulic_frac_hazard_alert.html (2012), 7 pages. cited by applicant
- Declaration of Harold E. McGowen III, PE, Pursuant to 37 C.F.R. § 1.132, dated Jan. 24, 2022, 16 pages. cited by applicant
- Railroad Commission of Texas, Injection / Disposal Well: Permitting, Testing, and Monitoring Manual, Summary of Standards and Procedures, Technical Review at Section 6 ("Injection Pressure Requirements"), available at https://www.rrc.texas.gov/oil-and-gas/publications-and-notices/manuals/injection-disposal-well-manual/summary-of-standards-and-procedures/technical-review/, accessed Jan. 24, 2022, 15 pages. cited by applicant
- Takacs, Gabor. Chapter 1—Electrical Submersible Pumps Manual: Design, Operations, and Maintenance. Gulf Professional Publishing, Mar. 2009, 8 pages. cited by applicant
- Declaration of Harold E. McGowen III, PE, Pursuant to 37 C.F.R. § 1.132, dated Apr. 18, 2022, 17 pages. cited by applicant
- API TR 11L, A. P. I. "Design Calculations for Sucker Rod Pumping Systems (Conventional Units)." (Jun. 2008), Abstract only, 3 pages. cited by applicant
- M.L. Van Domelen, E.L. Jantz, and K.S. Murphy, Halliburton Services Onsite Design, Analysis, and Automation Maximizes Efficiency of Fracturing Operations, SPE 18863, 10 pages. cited by applicant
- Turner P. Northern, "Automatic Lease Operations," Journal of Petroleum Technology, vol. 6, No. 01, pp. 21-24, 1954, doi: 10.2118/283-g. cited by applicant
- Eugene C. Campbell, "Isolated Waterflood," PE Production Automation Symposium, 1964, vol. All Days, SPE-856-MS, doi: 10.2118/856-ms. cited by applicant
- R.A. Hinchliffe, "The Solid State Pipeline Gauger," Journal of Canadian Petroleum Technology, vol. 5, No. 04, pp. 171-174, 1966, doi: 10.2118/66-04-03. cited by applicant
- Millard E. Owens & Bret R. Allard, "Installation and Operation Of Hydraulic Pumping Systems On Cook Inlet," Offshore Technology Conference, 1970, vol. All Days, OTC-1194-MS, doi:

- 10.4043/1194-ms. cited by applicant
- M.P. Cleary, A.M. Burharali, A.R. Crockett, & I.A. Salehi, "Computerized Field System for Real-Time Monitoring and Analysis of Hydraulic Fracturing Operations," in International Meeting on Petroleum Engineering, 1986, vol. All Days, SPE-14087-MS, doi: 10.2118/14087-ms. cited by applicant
- H.L. Tomlinson, A.C. Byrd, & C.F. VanBerg, Jr., "Fracturing process control and automation," in Permian Basin Oil and Gas Recovery Conference, 1988. cited by applicant
- S.O. Norris & K.S. Capps, "Reservoir Simulation with Simultaneous Graphic Display on the Macintosh II PC," SPE Computer Applications, vol. 2, No. 06, pp. 24-27, 1990, doi: 10.2118/20362-pa. cited by applicant
- S.V. Stephenson, E.L. Woodall, C.D Donaghe, & R.E Dant, "Fracturing process control and automation: Phase 2," Petroleum Computer Conference, 1993. cited by applicant Stephen Rassenfoss, "The Keywords for Blowout Preventers Are Trust But Verify," Journal of Petroleum Technology, vol. 64, No. 08, pp. 40-48, 2012, doi: 10.2118/0812-0040-JPT. cited by applicant
- Document 381—USWS'S Opening Brief in Support of Its Motion for Judgment on the Pleadings of Invalidity Under 35 USC § 251, Jul. 7, 2023, Case 6:21-cv-00367-ADA, 27 pages. cited by applicant
- Document 394—Halliburton's Brief in Opposition to USWS'S Motion for Judgment on the Pleadings, Jul. 21, 2023, Case 6:21-cv-00367-ADA, 26 pages. cited by applicant Document 402—USWS'S Reply Brief in Support of Its Motion for Judgment on the Pleadings of Invalidity Under 35 U.S.C. § 251, Jul. 25, 2023, Case 6:21-cv-00367-ADA, 16 pages. cited by applicant
- Excerpts of Transcript of Jury Trial Proceedings before the Honorable Alan D. Albright, Case 6:21-cv-00367-ADA, *Halliburton Energy Services* vs. *U.S. Well Services*, *Inc.*, Aug. 23, 2023, 16 pages. cited by applicant
- Excerpts of Transcript of Jury Trial Proceedings before the Honorable Alan D. Albright, Case 6:21-cv-00367-ADA, *Halliburton Energy Services* vs. *U.S. Well Services*, *Inc.*, Aug. 24, 2023, 40 pages. cited by applicant
- Text Order Denying [381] Motion for Judgment on the Pleadings, Aug. 16, 2023, entered by Judge Alan D. Albright, Case 6:21-cv-00367-ADA, 2 pages. cited by applicant
- Verdict Form, Case 6:21-cv-00367-ADA, *Halliburton Energy Services* vs. *U.S. Well Services*, *Inc.*, Filed Aug. 24, 2023, 6 pages. cited by applicant
- Cooper, Bob et al., "Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipment", 1969, American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., Society of Petroleum Engineers of Aime, SPE-2706, 10 pages. cited by applicant
- Porter, John A., "Gas Turbines—Application and Experience", 1968, American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., Denver, CO, Power Sources, Society of Petroleum Engineers of Aime, SPE-1889, 6 pages. cited by applicant
- Document 202—Unopposed Motion for Leave to Amend and Supplement Final Invalidity Contentions, Mar. 25, 2024, Case 6:22-cv-00905-ADA, 8 pages. cited by applicant Transcript of Oral Videotaped Deposition Ron Hyden, Feb. 15, 2024 (redacted), Case 6:22-cv-00905-ADA-DTG, 83 pages. cited by applicant
- Transcript of Video-Recorded Deposition of Halliburton Energy Services, Inc., et al., through Leonard Case, Feb. 13, 2024 (redacted), Case 6:22-cv-00905-ADA, 128 pages. cited by applicant Document 136—Defendants U.S. Well Services, LLC's and Profrac Holding Corp.'s Fourth Amended Answer and Counterclaim, Nov. 30, 2023, Case 6:22-cv-00905-ADA-DTG, 103 pages. cited by applicant
- Document 131—Defendants U.S. Well Services, LLC's and Profrac Holding Corp.'s Third Amended Answer and Counterclaim, Nov. 17, 2023, Case 6:22-cv-00905-ADA-DTG, 69 pages.

cited by applicant

Document 143—Redacted Defendants U.S. Well Services, LLC's and Profrac Holding Corp.'s Opening Claim Construction Brief, Dec. 18, 2023, Case 6:22-cv-00905-ADA-DTG, 28 pages. cited by applicant

Document 160—Redacted Plaintiffs Halliburton Energy Services, Inc.'s, Halliburton Group Technologies, Inc.'s, and Halliburton US Technologies, Inc.'s Claim Construction Brief in Response, Jan. 11, 2024, Case 6:22-CV-00905-ADA-DTG, 29 pages. cited by applicant Document 169—Plaintiffs Halliburton Energy Services, Inc.'s, Halliburton Group Technologies, Inc.'s, and Halliburton US Technologies, Inc.'s Claim Construction Sur-Reply Brief, Feb. 8, 2024, Case 6:22-cv-00905-ADA-DTG, 19 pages. cited by applicant

Exhibit D to Document 143—Declaration of Dr. Gary R. Wooley, Dec. 18, 2023, Case 6:22-cv-00905-ADA-DTG, 42 pages. cited by applicant

Document 217—Memorandum in Support of Second Claim Construction Order, Case 6:22-CV-905-ADA-DTG, Apr. 9, 2024, 23 pages. cited by applicant

Document 219—Second Claim Construction Order, Case 6:22-CV-00905-ADA-DTG, Apr. 10, 2024, 1 page. cited by applicant

Boerger pump—available at: http://www.boerger-

 $pumps.com/contero/gallery/Prospekte_USA/us_p_ssr_boerger_powerfeed_0309.pdf.\ cited\ by\ applicant$

International Search Report and Written Opinion issued in PCT/GB2011/000678 mailed on Oct. 12, 2012. cited by applicant

Office Action in U.S. Appl. No. 12/435,551, Jun. 15, 2011. cited by applicant Office Action from U.S. Appl. No. 11/930,756, dated May 27, 2010. cited by applicant International Search Report for Application No. PCT/GB2010/000512, Jun. 25, 2010. cited by applicant

Office Action in U.S. Appl. No. 12/635,009, Jul. 23, 2012. cited by applicant

Fenna et al., "Dictionary of Weights, Measures, and Units," Oxford University Press, 2002, pp. I, 65 and 66, 2002. cited by applicant

Kutz et al., "Mechanical Engineers' Handbook," 2nd Ed., 1998, pp. I, II, and 1332, 1998. cited by applicant

Abulnaga, "Slurry Systems Handbook," 2002, pp. I, II, and 1.20, 2002. cited by applicant International Preliminary Report on Patentability in PCT/GB2009/001675 issued Feb. 1, 2011. cited by applicant

Office Action issued in Canadian Application No. 2, 731, 840 on Jul. 25, 2012. cited by applicant

Primary Examiner: Doerrler; William C

Attorney, Agent or Firm: Baker Botts L.L.P.

Background/Summary

(1) Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,834,012. The reissue applications are U.S. Patent Application Ser. No. 15/079,027, now U.S. Pat. No. RE46725, which is a reissue application of U.S. Pat. No. 8,834,012, U.S. patent application Ser. No. 15/853,076, now U.S. Pat. No. RE47695, which is a divisional reissue application of U.S. patent application Ser. No. 15/079,027, now U.S. Pat. No. RE46725, U.S. patent application Ser. No. 16/537,070, which is a continuation reissue application of U.S. patent application Ser. No. 15/853,076, now U.S. Pat. No. RE47695, U.S. patent application Ser. No. 16/537,124, which is a

continuation reissue application of U.S. patent application Ser. No. 15/853,076 now U.S. Pat. No. RE47695, the present U.S. patent application Ser. No. .[.XX/XXX,XXX.]. .Iadd.17/221,281.Iaddend., which is a continuation reissue application of U.S. patent application Ser. No. 16/537,070 and the following co-pending U.S. patent application Ser. Nos. . XX/XXX,XXX, XX/XXX,XXX, and XX/XXX,XXX.]. .Iadd.17/221,152 17/221,176, 17/221,186, 17/221,242, 17/221,221, 17/221,204, 17/221,317, 17/221,267, 17/352,956, and 17/353,091. Iaddend., each of which is a continuation reissue application of U.S. patent application Ser. No.Iadd.s.Iaddend.. 16/537,070 .Iadd.and 16/537,124 and a reissue of U.S. Pat. No. 8,843,012.Iaddend.. CROSS REFERENCE TO RELATED APPLICATIONS (2) This application is a continuation reissue of U.S. patent application Ser. No. 16/537,070 and U.S. patent application Ser. No. 16/537,124, both filed on Aug. 9, 2019, which are continuation reissue applications of U.S. patent application Ser. No. 15/853,076, filed on Dec. 22, 2017, now U.S. Pat. No. RE47695, which is .Iadd.a reissue of U.S. Pat. No. 8,834,012 and .Iaddend.a divisional reissue application of U.S. patent application Ser. No. 15/079,027, filed on Mar. 23, 2016, now U.S. Pat. No. RE46725, which is a reissue .[.application.]. of U.S. patent application Ser. No. 12/744,959, filed on May 6, 2010, now U.S. Patent No. 8,834,012,issued on Sep. 16, 2014, entitled "Electric or Natural Gas Fired Small Footprint Fracturing Fluid Blending and Pumping Equipment," which is a continuation-in-part of U.S. patent application Ser. No. 12/557,730, filed Sep. 11, 2009, now U.S. Pat. No. 8,444,312, issued on May 21,2013, entitled "Improved Methods and Systems for Integral Blending and Storage of Materials," the entire disclosures of which are incorporated herein by reference.

BACKGROUND

- (1) The present invention relates generally to oilfield operations, and more particularly, to methods and systems for integral storage and blending of the materials used in oilfield operations.
- (2) Oilfield operations are conducted in a variety of different locations and involve a number of equipments, depending on the operations at hand. The requisite materials for the different operations are often hauled to and stored at the well site where the operations are to be performed. (3) Considering the number of equipments necessary for performing oilfield operations and ground
- conditions at different oilfield locations, space availability is often a constraint. For instance, in well treatment operations such as fracturing operations, several wells may be serviced from a common jobsite pad. In such operations, the necessary equipment is not moved from well site to well site. Instead, the equipment may be located at a central work pad and the required treating fluids may be pumped to the different well sites from this central location. Accordingly, the bulk of materials required at a centralized work pad may be enormous, further limiting space availability.
- (4) Typically, in modem well treatment operations, equipment is mounted on a truck or a trailer and brought to location and set up. The storage units used are filled with the material required to prepare the well treatment fluid and perform the well treatment. In order to prepare the well treatment fluid, the material used is then transferred from the storage units to one or more blenders to prepare the desired well treatment fluid which may then be pumped down hole.
- (5) For instance, in conventional fracturing operations a blender and a pre-gel blender are set between the high pressure pumping units and the storage units which contain the dry materials and chemicals used. The dry materials and the chemicals used in the fracturing operations are then transferred, often over a long distance, from the storage units to the mixing and blending equipments. Once the treating process is initiated, the solid materials and chemicals are typically conveyed to the blender by a combination of conveyer belts, screw type conveyers and a series of hoses and pumps.
- (6) The equipment used for transferring the dry materials and chemicals from the storage units to the blender occupy valuable space at the job site. Additionally, the transfer of dry materials and

chemicals to the blender consumes a significant amount of energy as well as other system resources and contributes to the carbon foot print of the job site. Moreover, in typical "on land" operations the entire equipment spread including the high horsepower pumping units are powered by diesel fired engines and the bulk material metering, conveying and pumping is done with diesel fired hydraulic systems. Emissions from the equipment that is powered by diesel fuel contributes to the overall carbon footprint and adversely affects the environment.

Description

FIGURES

- (1) Some specific example embodiments of the disclosure may be understood by referring, in part, to the following description and the accompanying drawings.
- (2) FIG. **1** is a top view of an Integrated Material Storage and Blending System in accordance with an exemplary embodiment of the present invention.
- (3) FIG. **2** is a cross sectional view of an Integrated Pre-gel Blender in accordance with a first exemplary embodiment of the present invention.
- (4) FIG. **3** is a cross sectional view of an Integrated Pre-gel Blender in accordance with a second exemplary embodiment of the present invention.
- (5) FIG. **4** is a cross sectional view of an Integrated Pre-gel Blender in accordance with a third exemplary embodiment of the present invention.
- (6) FIG. **5** depicts a close up view of the interface between the storage units and a blender in an Integrated Material Storage and Blending System in accordance with an exemplary embodiment of the present invention.
- (7) FIG. **6** is an isometric view of an Integrated Material Storage and Blending System in accordance with an exemplary embodiment of the present invention.
- (8) .Iadd.FIG. 7 is a diagram illustrating a pumping system in accordance with an exemplary embodiment of the present invention..Iaddend.
- (9) .Iadd.FIG. 8 is a self-erecting storage unit in accordance with an exemplary embodiment of the present invention..Iaddend.
- (10) While embodiments of this disclosure have been depicted and described and are defined by reference to example embodiments of the disclosure, such references do not imply a limitation on the disclosure, and no such limitation is to be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only, and not exhaustive of the scope of the disclosure.

SUMMARY

(11) The present invention relates generally to oilfield operations, and more particularly, to methods and systems for integral storage and blending of the materials used in oilfield operations.

(12) In one embodiment, the present invention is directed to an integrated material blending and storage system comprising: a storage unit; a blender located under the storage unit; wherein the blender is operable to receive a first input from the storage unit; a liquid additive storage module having a pump to maintain constant pressure at an outlet of the liquid additive storage module; wherein the blender is operable to receive a second input from the liquid additive storage module; and a pre-gel blender; wherein the blender is operable to receive a third input from the pre-gel blender; wherein gravity directs the contents of the storage unit, the liquid additive storage module and the pre-gel blender to the blender; a first pump; and a second pump; wherein the first pump directs the contents of the blender to the second pump; and wherein the second pump directs the contents of the blender down hole; wherein at least one of the first pump and the second pump is

powered by one of natural gas and electricity.

- (13) In another exemplary embodiment, the present invention is directed to a modular integrated material blending and storage system comprising: a first module comprising a storage unit; a second module comprising a liquid additive storage unit and a pump for maintaining pressure at an outlet of the liquid additive storage unit; and a third module comprising a pre-gel blender; wherein an output of each of the first module, the second module and the third module is located above a blender; and wherein gravity directs the contents of the first module, the second module and the third module to the blender; a pump; wherein the pump directs the output of the blender to a desired down hole location; and wherein the pump is powered by one of natural gas and electricity. (14) The features and advantages of the present disclosure will be readily apparent to those skilled in the art upon a reading of the description of exemplary embodiments, which follows. DESCRIPTION
- (15) The present invention relates generally to oilfield operations, and more particularly, to methods and systems for integral storage and blending of the materials used in oilfield operations. (16) Turning now to FIG. 1, an Integrated Material Storage and Blending System (IMSBS) in accordance with an exemplary embodiment of the present invention is depicted generally with reference numeral 100. The IMSBS 100 includes a number of storage units 102. The storage units 102 may contain sand, proppants or other solid materials used to prepare a desired well treatment fluid.
- (17) In one exemplary embodiment, the storage units **102** may be connected to load sensors (not shown) to monitor the reaction forces at the legs of the storage units **102**. The load sensor readings may then be used to monitor the change in weight, mass and/or volume of materials in the storage units **102**. The change in weight, mass or volume can be used to control the metering of material from the storage units **102** during well treatment operations. As a result, the load sensors may be used to ensure the availability of materials during oilfield operations. In one exemplary embodiment, load cells may be used as load sensors. Electronic load cells are preferred for their accuracy and are well known in the art, but other types of force-measuring devices may be used. As will be apparent to one skilled in the art, however, any type of load-sensing device can be used in place of or in conjunction with a load cell. Examples of suitable load-measuring devices include weight-, mass-, pressure- or force-measuring devices such as hydraulic load cells, scales, load pins, dual sheer beam load cells, strain gauges and pressure transducers. Standard load cells are available in various ranges such as 0-5000 pounds, 0-10000 pounds, etc.
- (18) In one exemplary embodiment the load sensors may be communicatively coupled to an information handling system **104** which may process the load sensor readings. While FIG. **1** depicts a separate information handling system **104** for each storage unit **102**, as would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, a single information handling system may be used for all or any combination of the storage units 102. Although FIG. 1 depicts a personal computer as the information handling system **104**, as would be apparent to those of ordinary skill in the art, with the benefit of this disclosure, the information handling system 104 may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, the information handling system **104** may be a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. For instance, in one exemplary embodiment, the information handling system **104** may be used to monitor the amount of materials in the storage units **102** over time and/or alert a user when the contents of a storage unit 102 reaches a threshold level. The user may designate a desired sampling interval at which the information handling system **104** may take a reading of the load sensors.
- (19) The information handling system 104 may then compare the load sensor readings to the

threshold value to determine if the threshold value is reached. If the threshold value is reached, the information handling system **104** may alert the user. In one embodiment, the information handling system **104** may provide a real-time visual depiction of the amount of materials contained in the storage units **102**. Moreover, as would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the load sensors may be coupled to the information handling system **104** through a wired or wireless (not shown) connection.

- (20) As depicted in FIG. 1, the IMSBS 100 may also include one or more Integrated Pre-gel Blenders (IPB) **106**. The IPB **106** may be used for preparing any desirable well treatment fluids such as a fracturing fluid, a sand control fluid or any other fluid requiring hydration time. (21) FIG. **2** depicts an IPB **200** in accordance with an exemplary embodiment of the present invention. The IPB **200** comprises a pre-gel storage unit **202** resting on legs **204**. As would be appreciated by those of ordinary skill in the art, the pre-gel storage unit **202** may be a storage bin, a tank, or any other desirable storage unit. The pre-gel storage unit 202 may contain the gel powder used for preparing the gelled fracturing fluid. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the gel powder may comprise a dry polymer. Specifically, the dry polymer may be any agent used to enhance fluid properties, including, but not limited to, wg18, wg35, wg36 (available from Halliburton Energy Services of Duncan, Okla.) or any other guar or modified guar gelling agents. The materials from the pre-gel storage unit **202** may be directed to a mixer **206** as a first input through a feeder **208**. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, in one embodiment, the mixer **206** may be a growler mixer and the feeder **208** may be a screw feeder which may be used to provide a volumetric metering of the materials directed to the mixer **206**. A water pump **210** may be used to supply water to the mixer **206** as a second input. A variety of different pumps may be used as the water pump **210** depending on the user preferences. For instance, the water pump **210** may be a centrifugal pump, a progressive cavity pump, a gear pump or a peristaltic pump. The mixer **206** mixes the gel powder from the pre-gel storage unit **202** with the water from the water pump **210** at the desired concentration and the finished gel is discharged from the mixer **206** and may be directed to a storage unit, such as an external frac tank (not shown), for hydration. The finished gel may then be directed to a blender 108 in the IMSBS 100.
- (22) In one exemplary embodiment, the legs **204** of the pre-gel storage unit **202** are attached to load sensors **212** to monitor the reaction forces at the legs **204**. The load sensor **212** readings may then be used to monitor the change in weight, mass and/or volume of materials in the pre-gel storage unit **202**. The change in weight, mass or volume can be used to control the metering of material from the pre-gel storage unit **202** at a given set point. As a result, the load sensors **212** may be used to ensure the availability of materials during oilfield operations. In one exemplary embodiment, load cells may be used as load sensors **212**. Electronic load cells are preferred for their accuracy and are well known in the art, but other types of force-measuring devices may be used. As will be apparent to one skilled in the art, however, any type of load-sensing device can be used in place of or in conjunction with a load cell. Examples of suitable load-measuring devices include weight-, mass-, pressure- or force-measuring devices such as hydraulic load cells, scales, load pins, dual sheer beam load cells, strain gauges and pressure transducers. Standard load cells are available in various ranges such as 0-5000 pounds, 0-10000 pounds, etc.
- (23) In one exemplary embodiment the load sensors **212** may be communicatively coupled to an information handling system **214** which may process the load sensor readings. Although FIG. **2** depicts a personal computer as the information handling system **214**, as would be apparent to those of ordinary skill in the art, with the benefit of this disclosure, the information handling system **214** may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, the information handling system **214** may be a network

storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. For instance, in one exemplary embodiment, the information handling system **214** may be used to monitor the amount of materials in the pre-gel storage unit **202** over time and/or alert a user when the contents of the pre-gel storage unit **202** reaches a threshold level. The user may designate a desired sampling interval at which the information handling system **214** may take a reading of the load sensors **212**. The information handling system **214** may then compare the load sensor readings to the threshold value to determine if the threshold value is reached. If the threshold value is reached, the information handling system **214** may alert the user. In one embodiment, the information handling system **214** may provide a real-time visual depiction of the amount of materials contained in the pre-gel storage unit **202**.

- (24) Moreover, as would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the load sensors **212** may be coupled to the information handling system **214** through a wired or wireless (not shown) connection. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, in one exemplary embodiment, the dry polymer material may be replaced with a Liquid Gel Concentrate ("LGC") material that consists of the dry polymer mixed in a carrier fluid. In this exemplary embodiment, the feeder and mixer mechanisms would be replaced with a metering pump of suitable construction to inject the LGC into the water stream, thus initiating the hydration process.
- (25) FIG. 3 depicts an IPB in accordance with a second exemplary embodiment of the present invention, denoted generally by reference numeral **300**. The IPB **300** comprises a pre-gel storage unit **302** resting on legs **308**. The pre-gel storage unit **302** in this embodiment may include a central core **304** for storage and handling of materials. In one embodiment, the central core **304** may be used to store a dry gel powder for making gelled fracturing fluids. The pre-gel storage unit **302** may further comprise an annular space **306** for hydration volume. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the gel powder may comprise a dry polymer. Specifically, the dry polymer may comprise a number of different materials, including, but not limited to, wg18, wg35, wg36 (available from Halliburton Energy Services of Duncan, Okla.) or any other guar or modified guar gelling agents.
- (26) The materials from the central core **304** of the pre-gel storage unit **302** may be directed to a mixer **310** as a first input through a feeder **312**. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, in one embodiment, the mixer **310** may be a growler mixer and the feeder **312** may be a screw feeder which may be used to provide a volumetric metering of the materials directed to the mixer **310**. A water pump **314** may be used to supply water to the mixer **310** as a second input. A variety of different pumps may be used as the water pump **314** depending on the user preferences. For instance, the water pump **314** may be a centrifugal pump, a progressive cavity pump, a gear pump or a peristaltic pump. The mixer **310** mixes the gel powder from the pre-gel storage unit **302** with the water from the water pump **314** at the desired concentration and the finished gel is discharged from the mixer **310**. As discussed above with reference to the storage units **102**, the pre-gel storage unit **302** may rest on load sensors **316** which may be used for monitoring the amount of materials in the pre-gel storage unit **302**. The change in weight, mass or volume can be used to control the metering of material from the pre-gel storage unit **302** at a given set point.
- (27) In this embodiment, once the gel having the desired concentration is discharged from the mixer **310**, it is directed to the annular space **306**. The gel mixture is maintained in the annular space **306** for hydration. Once sufficient time has passed and the gel is hydrated, it is discharged from the annular space **306** through the discharge line **318**.
- (28) FIG. **4** depicts a cross sectional view of a storage unit in an IPB **400** in accordance with a third exemplary embodiment of the present invention. The IPB **400** comprises a pre-gel storage unit **402** resting on legs **404**. The pre-gel storage unit **402** in this embodiment may include a central core **406** for storage and handling of materials. In one embodiment, the central core **406** may be used to store

- a dry gel powder for making gelled fracturing fluids. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the gel powder may comprise a dry polymer. Specifically, the dry polymer may be any agent used to enhance fluid properties, including, but not limited to, wg18, wg35, wg36 (available from Halliburton Energy Services of Duncan, Okla.) or any other guar or modified guar gelling agents. The pre-gel storage unit **402** may further comprise an annular space **408** which may be used as a hydration volume. In this embodiment, the annular space **408** contains a tubular hydration loop **410**.
- (29) The materials from the central core **406** of the pre-gel storage unit **402** may be directed to a mixer **412** as a first input through a feeder **414**. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, in one embodiment, the mixer **412** may be a growler mixer and the feeder **414** may be a screw feeder which may be used to provide a volumetric metering of the materials directed to the mixer **412**. A water pump **416** may be used to supply water to the mixer **412** as a second input. A variety of different pumps may be used as the water pump **416** depending on the user preferences. For instance, the water pump **416** may be a centrifugal pump, a progressive cavity pump, a gear pump or a peristaltic pump. The mixer **412** mixes the gel powder from the pre-gel storage unit **402** with the water from the water pump **416** at the desired concentration and the finished gel is discharged from the mixer **412**. As discussed above with reference to FIG. **1**, the pre-gel storage unit **402** may rest on load sensors **418** which may be used for monitoring the amount of materials in the pre-gel storage unit **402**. The change in weight, mass or volume can be used to control the metering of material from the pre-gel storage unit **402** at a given set point.
- (30) In this embodiment, once the gel having the desired concentration is discharged from the mixer **412**, it is directed to the annular space **408** where it enters the tubular hydration loop **410**. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the portions of the gel mixture are discharged from the mixer **412** at different points in time, and accordingly, will be hydrated at different times. Specifically, a portion of the gel mixture discharged from the mixer **412** into the annular space **408** at a first point in time, t**1**, will be sufficiently hydrated before a portion of the gel mixture which is discharged into the annular space **408** at a second point in time, t**2**. Accordingly, it is desirable to ensure that the gel mixture is transferred through the annular space **408** in a First-In-First-Out (FIFO) mode. To that end, in the third exemplary embodiment, a tubular hydration loop **410** is inserted in the annular space **408** to direct the flow of the gel as it is being hydrated.
- (31) As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, in order to achieve optimal performance, the tubular hydration loop **410** may need to be cleaned during a job or between jobs. In one embodiment, the tubular hydration loop **410** may be cleaned by passing a fluid such as water through it. In another exemplary embodiment, a pigging device may be used to clean the tubular hydration loop **410**.
- (32) Returning to FIG. **1**, the IMSBS **100** may include one or more blenders **108** located at the bottom of the storage units **102**. In one embodiment, multiple storage units **102** may be positioned above a blender **108** and be operable to deliver solid materials to the blender **108**. FIG. **5** depicts a close up view of the interface between the storage units **102** and the blender **108**. As depicted in FIG. **5**, gravity directs the solid materials from the storage units **102** to the blender **108** through the hopper **502**, obviating the need for a conveyer system.
- (33) Returning to FIG. **1**, the IMSBS **100** may also include one or more liquid additive storage modules **110**. The liquid additive storage modules **110** may contain a fluid used in preparing the desired well treatment fluid. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, depending on the well treatment fluid being prepared, a number of different fluids may be stored in the liquid additive storage modules **110**. Such fluids may include, but are not limited to, surfactants, acids, cross-linkers, breakers, or any other desirable chemical additives. As discussed in detail with respect to storage units **102**, load sensors (not shown) may be

used to monitor the amount of fluid in the liquid additive storage modules **110** in real time and meter the amount of fluids delivered to the blender **108**. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, a pump may be used to circulate the contents and maintain constant pressure at the head of the liquid additive storage modules **110**. Because the pressure of the fluid at the outlet of the liquid additive storage modules **110** is kept constant and the blender **108** is located beneath the liquid additive storage modules **110**, gravity assists in directing the fluid from the liquid additive storage modules **110** to the blender **108**, thereby obviating the need for a pump or other conveyor systems to transfer the fluid. (34) As depicted in more detail in FIG. **5**, the blender **108** includes a fluid inlet **112** and an optional water inlet **504**. Once the desired materials are mixed in the blender **108**, the materials exit the blender **108** through the outlet **114**.

(35) In one embodiment, when preparing a well treatment fluid, a base gel is prepared in the IPB **106**. In one embodiment, the gel prepared in the IPB may be directed to an annular space **406** for hydration. In another exemplary embodiment, the annular space may further include a hydration loop **410**. In one exemplary embodiment, the resulting gel from the IPB **106** may be pumped to the centrally located blender **108**. Each of the base gel, the fluid modifying agents and the solid components used in preparing a desired well treatment fluid may be metered out from the IPB **106**, the liquid additive storage module **110** and the storage unit **102**, respectively. The blender **108** mixes the base gel with other fluid modifying agents from the liquid additive storage modules **110** and the solid component(s) from the storage units **102**. As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, when preparing a fracturing fluid the solid component may be a dry proppant. In one exemplary embodiment, the dry proppant may be gravity fed into the blending tub through metering gates. Once the blender **108** mixes the base gel, the fluid modifying agent and the solid component(s), the resulting well treatment fluid may be directed to a down hole pump (not shown) through the outlet **114**. A variety of different pumps may be used to pump the output of the IMSBS down hole. For instance, the pump used may be a centrifugal pump, a progressive cavity pump, a gear pump or a peristaltic pump. In one exemplary embodiment, chemicals from the liquid additive storage modules 110 may be injected in the manifolds leading to and exiting the blender **108** in order to bring them closer to the centrifugal pumps and away from other chemicals when there are compatibility or reaction issues. (36) As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the mixing and blending process may be accomplished at the required rate dictated by the job parameters. As a result, pumps that transfer the final slurry to the down hole pumps typically have a high horsepower requirement. .Iadd.FIG. 7 depicts a pumping system in accordance with an exemplary embodiment of the present invention, denoted generally with reference numeral 700. .Iaddend.In one exemplary embodiment, .Iadd.shown in FIG. 7, .Iaddend.the transfer pump .Iadd.702 .Iaddend.may be powered by a natural gas fired engine or a natural gas fired generator set .Iadd.714.Iaddend.. In another exemplary embodiment, the transfer pump may be powered by electricity from a power grid. Once the fluid system is mixed and blended with proppant and other fluid modifiers it is boosted to the high horsepower down hole pumps .Iadd.704.Iaddend.. The down hole pumps pump the slurry through the high pressure ground manifold .Iadd.706 .Iaddend.to the well head .Iadd.708 .Iaddend.and down hole. In one embodiment, the down hole pumps .Iadd.704 .Iaddend.may be powered by a natural gas fired engine, a natural gas fired generator set .Iadd.714 .Iaddend.electricity from a power grid .Iadd.716.Iaddend.. The down hole pumps typically account for over two third of the horsepower on location, thereby reducing the carbon footprint of the overall operations. (37) In one exemplary embodiment, the natural gas used to power the transfer pumps, the down

hole pumps or the other system components may be obtained from the field on which the subterranean operations are being performed .Iadd.720.Iaddend.. In one embodiment, the natural gas may be converted to liquefied natural gas .Iadd.712 .Iaddend.and used to power pumps and

other equipment that would typically be powered by diesel fuel. In another embodiment, the natural gas may be used to provide power through generator sets .Iadd.714.Iaddend.. The natural gas from the field may undergo conditioning .Iadd.710 .Iaddend.before being used to provide power to the pumps and other equipment. The conditioning process may include cleaning the natural gas, compressing the natural gas in compressor stations and if necessary, removing any water contained therein.

- (38) As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the IMSBS may include a different number of storage units **102**, IPBs **106** and/or liquid additive storage modules **110**, depending on the system requirements. For instance, in another exemplary embodiment (not shown), the IMSBS may include three storage units, one IPB and one liquid additive storage module.
- (39) FIG. **6** depicts an isometric view of HVISBS in accordance with an exemplary embodiment of the present invention, denoted generally with reference numeral **600**. As depicted in FIG. **6**, each of the storage units 602, each of the liquid additive storage modules 604 and each of the IPBs 606 may be arranged as an individual module. In one embodiment, one or more of the storage units **602**, the liquid additive storage modules **604** and the IPBs **606** may include a latch system which is couplable to a truck or trailer which may be used for transporting the module. In one embodiment, the storage units **602** may be a self-erecting storage unit as disclosed in U.S. patent application Ser. No. 12/235,270, assigned to Halliburton Energy Services, Inc., which is incorporated by reference herein in its entirety. Accordingly, the storage units **602** may be specially adapted to connect to a vehicle which may be used to lower, raise and transport the storage unit **602**. .[.Once.]. .Iadd.For example, FIG. 8 depicts a self-erecting storage unit in accordance with an exemplary embodiment of the present invention. In one embodiment, the self-erecting storage unit is a silo 800. The silo 800 may be mounted on and transported to a desired location using a trailer 802 which may be pulled by a truck 804. In one embodiment, hydraulic cylinders (not shown) may extend out from the trailer 802 and raise the silo 800 from a horizontal position to a vertical position. Referring now to FIG. 6, once .Iaddend.at a jobsite, the storage unit **602** may be erected and filled with a predetermined amount of a desired material. A similar design may be used in conjunction with each of the modules of the MSBS **600** disclosed herein in order to transport the modules to and from a job site. Once the desired number of storage units 602, the liquid additive storage modules 604 and the lPBs **606** are delivered to a job site, they are erected in their vertical position. Dry materials such as proppants or gel powder may then be filled pneumatically to the desired level and liquid chemicals may be pumped into the various storage tanks. Load sensors (not shown) may be used to monitor the amount of materials added to the storage units **602**, the liquid additive storage modules **604** and the lPBs **606** in real time.
- (40) As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, an IMSBS **600** in accordance with an exemplary embodiment of the present invention which permits accurate, real-time monitoring of the contents of the storage units **602**, the liquid additive storage modules **604** and/or the IPBs **606** provides several advantages. For instance, an operator may use the amount of materials remaining in the storage units **602**, the liquid additive storage modules **604** and/or the IPBs **606** as a quality control mechanism to ensure that material consumption is in line with the job requirements. Additionally, the accurate, real-time monitoring of material consumption expedites the operator's ability to determine the expenses associated with a job.
- (41) As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the different equipment used in an IMSBS in accordance with the present invention may be powered by any suitable power source. For instance, the equipment may be powered by a combustion engine, electric power supply which may be provided by an on-site generator or by a hydraulic power supply.
- (42) Therefore, the present invention is well-adapted to carry out the objects and attain the ends and

advantages mentioned as well as those which are inherent therein. While the invention has been depicted and described by reference to exemplary embodiments of the invention, such a reference does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts and having the benefit of this disclosure. The depicted and described embodiments of the invention are exemplary only, and are not exhaustive of the scope of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims

- .[.1. An integrated material blending and storage system comprising: a storage unit; a blender located under the storage unit; wherein the blender is operable to receive a first input from the storage unit through a hopper; a liquid additive storage module having a first pump to maintain constant pressure at an outlet of the liquid additive storage module; wherein the blender is operable to receive a second input from the liquid additive storage module; and a pre-gel blender, wherein the pre-gel blender comprises at least a pre-gel storage unit resting on a leg, further wherein the pre-gel storage unit comprises a central core and an annular space, wherein the annular space hydrates the contents of the pre-gel blender; wherein the blender is operable to receive a third input from the pre-gel blender; wherein gravity directs the contents of the storage unit, the liquid additive storage module and the pre-gel blender to the blender; a second pump; and a third pump; wherein the second pump directs the contents of the blender to the third pump; and wherein the third pump directs the contents of the blender down hole; wherein at least one of the second pump and the third pump is powered by one of natural gas and electricity..].
- .[.2. The system of claim 1, wherein the storage unit comprises a load sensor..].
- .[.3. The system of claim 1, wherein the pre-gel blender comprises: a feeder coupling the pre-gel storage unit to a first input of a mixer; a fourth pump coupled to a second input of the mixer; wherein the pre-gel storage unit contains a solid component of a well treatment fluid; wherein the feeder supplies the solid component of the well treatment fluid to the mixer; wherein the fourth pump supplies a fluid component of the well treatment fluid to the mixer; and wherein the mixer outputs a well treatment fluid..].
- .[.4. The system of claim 3, wherein the well treatment fluid is a gelled fracturing fluid..].
- .[.5. The system of claim 4, wherein the solid component is a gel powder..].
- .[.6. The system of claim 4, wherein the fluid component is water..].
- .[.7. The system of claim 3, wherein the central core contains the solid component of the well treatment fluid..].
- .[.8. The system of claim 3, wherein the well treatment fluid is directed to the annular space..].
- .[.9. The system of claim 3, wherein the annular space comprises a tubular hydration loop..].
- .[.10. The system of claim 9, wherein the well treatment fluid is directed from the mixer to the tubular hydration loop..].
- .[.11. The system of claim 3, wherein the well treatment fluid is selected from the group consisting of a fracturing fluid and a sand control fluid..].
- .[.12. The system of claim 3, further comprising a power source to power at least one of the feeder, the mixer and the pump..].
- .[.13. The system of claim 12, wherein the power source is selected from the group consisting of a combustion engine, an electric power supply and a hydraulic power supply..].
- .[.14. The system of claim 13, wherein one of the combustion engine, the electric power supply and the hydraulic power supply is powered by natural gas..].

- .[.15. The system of claim 1, further comprising a load sensor coupled to one of the storage unit, the liquid additive storage module or the pre-gel blender..].
- .[.16. The system of claim 15, further comprising an information handling system communicatively coupled to the load sensor..].
- .[.17. The system of claim 15, wherein the load sensor is a load cell..].
- .[.18. The system of claim 15, wherein a reading of the load sensor is used for quality control..].
- .[.19. The system of claim 1, wherein the electricity is derived from one of a power grid and a natural gas generator set..].
- .[.20. A modular integrated material blending and storage system comprising: a first module comprising a storage unit; a second module comprising a liquid additive storage unit and a first pump for maintaining pressure at an outlet of the liquid additive storage unit; and a third module comprising a pre-gel blender, wherein the pre-gel blender comprises at least a pre-gel storage unit resting on a leg, further wherein the pre-gel storage unit comprises a central core and an annular space, wherein the annular space hydrates the contents of the pre-gel blender; wherein an output of each of the first module, the second module and the third module is located above a blender; and wherein gravity directs the contents of the first module through a hopper, the second module and the third module to the blender; a second pump; wherein the second pump directs the output of the blender to a desired down hole location; and wherein the second pump is powered by one of natural gas and electricity..].
- .[.21. The system of claim 20, wherein each of the first module, the second module and the third module is a self erecting module..].
- .[.22. The system of claim 20, wherein the third module comprises: a feeder coupling the pre-gel storage unit to a first input of a mixer; a third pump coupled to a second input of the mixer; wherein the pre-gel storage unit contains a solid component of a well treatment fluid; wherein the feeder supplies the solid component of the well treatment fluid to the mixer; wherein the third pump supplies a fluid component of the well treatment fluid to the mixer; and wherein the mixer outputs a well treatment fluid..].
- .[.23. The system of claim 22, wherein the well treatment fluid is directed to the blender..].
- .[.24. The system of claim 20, wherein the blender mixes the output of the first module, the second module and the third module..].
- .[.25. The system of claim 20, further comprising a fourth pump for pumping an output of the blender down hole..].
- .[.26. The system of claim 25, wherein the fourth pump is selected from the group consisting of a centrifugal pump, a progressive cavity pump, a gear pump and a peristaltic pump..].
- .Iadd.27. A method for a fracturing operation comprising: having or using a system comprising: a blender for preparing a fracturing fluid comprising a component, wherein the component is transferred from a storage unit to the blender; and at least one pump, wherein the fracturing fluid is pumped down hole using the at least one pump to perform the fracturing operation, wherein only electricity powers the at least one pump that pumps the fracturing fluid down hole to perform the fracturing operation, and wherein the electricity is provided by an on-site electric power supply that produced the electricity using natural gas..Iaddend.
- .Iadd.28. The method of claim 27, wherein the on-site electric power supply is an on-site generator..Iaddend.
- .Iadd.29. The method of claim 27, wherein the natural gas is compressed or liquified..Iaddend.
- .Iadd.30. The method of claim 27, wherein the natural gas is conditioned..Iaddend.
- .Iadd.31. The method of claim 27, wherein water has been removed from the natural gas..Iaddend.
- .Iadd.32. The method of claim 27, wherein the natural gas is field gas..Iaddend.
- .Iadd.33. The method of claim 32, wherein the field gas is from a field on which the fracturing operation is being performed..Iaddend.
- .Iadd.34. The method of claim 27, wherein the component comprises a solid material..Iaddend.

- .Iadd.35. The method of claim 27, wherein the component comprises a liquid additive..Iaddend.
- .Iadd.36. The method of claim 27, wherein the fracturing fluid is pumped into a plurality of wells from a common pad..Iaddend.
- .Iadd.37. The method of claim 27, wherein the electricity is sufficient to provide at least two thirds of a total horsepower for the fracturing operation..Iaddend.
- .Iadd.38. The method of claim 27, wherein the at least one pump comprises a plurality of pumps..Iaddend.
- .Iadd.39. The method of claim 27, wherein the system further comprises a transfer pump..Iaddend.
- .Iadd.40. The method of claim 27, wherein the on-site electric power supply produced the electricity using only natural gas..Iaddend.
- .Iadd.41. The method of claim 27, wherein the electricity is provided by only the on-site electric power supply..Iaddend.
- .Iadd.42. The method of claim 41, wherein the on-site electric power supply produced the electricity using only natural gas..Iaddend.
- .Iadd.43. A method for a fracturing operation comprising: having or using a system comprising: a blender for preparing a fracturing fluid comprising a solid material, wherein the solid material is transferred from a storage unit to the blender; and at least one pump, wherein the fracturing fluid is pumped down hole using the at least one pump to perform the fracturing operation, wherein only electricity powers the at least one pump that pumps the fracturing fluid down hole to perform the fracturing operation, and wherein the electricity is provided by an on-site electric power supply that produced the electricity using natural gas..Iaddend.
- .Iadd.44. The method of claim 43, wherein the solid material comprises sand or proppant..Iaddend.
- .Iadd.45. The method of claim 43, wherein the solid material is directed from the storage unit to the blender without a powered conveyor system..Iaddend.
- .Iadd.46. The method of claim 43, wherein the on-site electric power supply is an on-site generator..Iaddend.
- .Iadd.47. The method of claim 43, wherein the natural gas is field gas..Iaddend.
- .Iadd.48. The method of claim 43, wherein the on-site electric power supply produced the electricity using only natural gas..Iaddend.
- .Iadd.49. The method of claim 43, wherein the electricity is provided by only the on-site electric power supply..Iaddend.
- .Iadd.50. The method of claim 49, wherein the on-site electric power supply produced the electricity using only natural gas..Iaddend.
- .Iadd.51. A method for a fracturing operation comprising: having or using a system comprising: a blender for preparing a fracturing fluid comprising a component, wherein the component is transferred from a storage unit to the blender; and at least one pump, wherein the fracturing fluid is pumped down hole using the at least one pump to perform the fracturing operation, wherein only electricity powers the at least one pump that pumps the fracturing fluid down hole to perform the fracturing operation, and wherein the electricity is provided by an on-site electric power supply that produced the electricity using field gas..Iaddend.
- .Iadd.52. The method of claim 51, wherein the field gas is compressed or liquified..Iaddend.
- .Iadd.53. The method of claim 51 wherein the field gas is conditioned..Iaddend.
- .Iadd.54. The method of claim 51, wherein water has been removed from the field gas..Iaddend.
- .Iadd.55. The method of claim 51, wherein the on-site electric power supply is an on-site generator..Iaddend.
- .Iadd.56. The method of claim 51, wherein the electricity is provided by only the on-site electric power supply..Iaddend.
- .Iadd.57. The method of claim 56, wherein the on-site electric power supply produced the electricity using only field gas..Iaddend.
- .Iadd.58. A method for a fracturing operation comprising: having or using a system comprising: a

blender for preparing a fracturing fluid comprising a component, wherein the component is transferred from a storage unit to the blender; and at least one pump, wherein the fracturing fluid is pumped down hole using the at least one pump to perform the fracturing operation, wherein only electricity powers the blender that prepares the fracturing fluid and the at least one pump that pumps the fracturing fluid down hole to perform the fracturing operation, and wherein the electricity is provided by an on-site electric power supply that produced the electricity using natural gas..laddend.

- .Iadd.59. The method of claim 58, wherein the on-site electric power supply produced the electricity using only natural gas..Iaddend.
- .Iadd.60. The method of claim 58, wherein the on-site electric power supply produced the electricity using only field gas..Iaddend.
- .Iadd.61. The method of claim 58, wherein the natural gas is field gas..Iaddend.