```
!wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
!ls
!tar xvzf ta-lib-0.4.0-src.tar.gz
import os
os.chdir('ta-lib')
!./configure --prefix=/usr
!make
!make install
os.chdir('../')
!pip install TA-Lib
```

## STOCK TREND PREDICTION DMW Mini Project-LP-1

- NAME-Harsh Munot(BECOB212)
- NAME-Payal Narkhede(BECOB214)
- NAME-Snehal Patil(BECOB226)

```
DATASET DETAILS
```

Dataset- KOTAKBANK.csv from NIFTY-50 dataset on Kaggle There are 4863 entries from 2000 to 2020 There are total 14 cloumns We have tried to build a model which can predict the uptrend i.e. 1 or downTrend i.e. 0.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.read_csv("/content/KOTAKBANK.csv",index_col=[0])
df.index=pd.to_datetime(df.index)
df.head()
```

|              | Symbol        | Series | Prev<br>Close | Open  | High   | Low    | Last   | Close  | VWAP   | Volume | Turr     |
|--------------|---------------|--------|---------------|-------|--------|--------|--------|--------|--------|--------|----------|
| Dat          | e             |        |               |       |        |        |        |        |        |        |          |
| 2000<br>01-0 | -<br>KOTAKMAH | EQ     | 212.35        | 220.0 | 229.35 | 220.00 | 229.35 | 229.35 | 229.13 | 7086   | 1.623640 |
| 2000<br>01-0 | -<br>KOTAKMAH | EQ     | 229.35        | 247.7 | 247.70 | 225.25 | 247.70 | 246.95 | 244.12 | 73681  | 1.798729 |
| 2000<br>01-0 | -<br>KOTAKMAH | EQ     | 246.95        | 229.0 | 240.00 | 227.20 | 228.00 | 228.40 | 233.75 | 105799 | 2.473093 |

df=df.drop(['Symbol','Series','Prev Close','VWAP','Turnover','Trades','Deliverable Volume','%Del
df.head()

## 0pen High Low Last Close Volume

2000-01-03 220.0 229.35 220.00 229.35 7086 229.35

2000\_01\_04 2177 247 70 つつに つに 217 70 216 05 72601

df.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4863 entries, 2000-01-03 to 2020-10-30

| Data | columns | (total 6 columns | s):     |
|------|---------|------------------|---------|
| #    | Column  | Non-Null Count   | Dtype   |
|      |         |                  |         |
| 0    | 0pen    | 4863 non-null    | float64 |
| 1    | High    | 4863 non-null    | float64 |
| 2    | Low     | 4863 non-null    | float64 |
| 3    | Last    | 4863 non-null    | float64 |
| 4    | Close   | 4863 non-null    | float64 |
| 5    | Volume  | 4863 non-null    | int64   |
| 1.4  | C 7 .   | CA/E\ CA/A\      |         |

dtypes: float64(5), int64(1)

memory usage: 265.9 KB

nlt vlahel('Date')

Date

```
df.Close.plot(figsize=(15,7))
plt.xlabel('Date')
plt.ylabel('Stock Price')
plt.title('KOTAKBANK')
plt.grid()
plt.show()
```



```
df=df['2004-01-01':'2020-10-30']
df.Close.plot(figsize=(15,7))
```

```
plt.xlabel('Stock Price')
plt.title('KOTAKBANK')
plt.grid()
plt.show()
```



```
import talib as ta

df['RSI']=ta.RSI(df['Close'].values,timeperiod=14)

df['DIFF1']=df['Close'].diff().values

df['DIFF2']=df['Close'].diff(2).values

df['DIFF3']=df['Close'].diff(3).values

df['DIFF4']=df['Close'].diff(4).values

print(df.head())

df.tail()
```

Open High Low Last ... DIFF1 DIFF2 DIFF3 DIFF4

df['Trends']=np.where(df.Close.shift(-1)>df.Close,1,0)
print(df.head(15))
df.tail(15)

|            | 0pen  | High   | Low    | Last  | <br>DIFF2          | DIFF3             | DIFF4             | Trends |
|------------|-------|--------|--------|-------|--------------------|-------------------|-------------------|--------|
| Date       |       |        |        |       |                    |                   |                   |        |
| 2004-01-01 | 399.0 | 399.00 | 383.00 | 391.9 | <br>NaN            | NaN               | NaN               | 0      |
| 2004-01-02 | 397.5 | 397.50 | 379.00 | 383.0 | <br>NaN            | NaN               | NaN               | 0      |
| 2004-01-05 | 388.0 | 390.90 | 370.00 | 373.0 | <br>-19.15         | NaN               | NaN               | 0      |
| 2004-01-06 | 375.8 | 375.80 | 363.00 | 363.0 | <br>-16.45         | -23.25            | NaN               | 1      |
| 2004-01-07 | 350.0 | 376.95 | 350.00 | 370.1 | <br>-1.45          | -13.80            | -20.60            | 1      |
| 2004-01-08 | 377.9 | 388.00 | 374.00 | 388.0 | <br>15.90          | 11.80             | -0.55             | 1      |
| 2004-01-09 | 386.0 | 402.00 | 386.00 | 393.5 | <br>20.75          | 23.40             | 19.30             | 0      |
| 2004-01-12 | 388.3 | 389.00 | 378.00 | 382.5 | <br>-1.65          | 11.60             | 14.25             | 1      |
| 2004-01-13 | 390.0 | 390.00 | 379.80 | 385.0 | <br>-6.20          | 1.30              | 14.55             | 0      |
| 2004-01-14 | 384.5 | 389.95 | 384.50 | 386.0 | <br>2.60           | -6.55             | 0.95              | 1      |
| 2004-01-15 | 395.0 | 397.50 | 385.00 | 391.5 | <br>4.95           | 7.90              | -1.25             | 0      |
| 2004-01-16 | 390.0 | 395.00 | 375.05 | 382.0 | <br>-3.20          | <del>-</del> 3.55 | -0.60             | 0      |
| 2004-01-19 | 378.0 | 384.80 | 375.10 | 378.0 | <br><b>-12.8</b> 5 | <del>-</del> 7.55 | <del>-</del> 7.90 | 1      |
| 2004-01-20 | 385.0 | 392.00 | 383.50 | 391.0 | <br>8.25           | -0.25             | 5.05              | 0      |
| 2004-01-21 | 383.2 | 390.00 | 370.00 | 380.5 | <br>-0.80          | -5.15             | -13.65            | 0      |

[15 rows x 12 columns]

|                | 0pen    | High    | Low     | Last    | Close   | Volume  | RSI       | DIFF1  | DIFF2  | DIFF3  |
|----------------|---------|---------|---------|---------|---------|---------|-----------|--------|--------|--------|
| Date           |         |         |         |         |         |         |           |        |        |        |
| 2020-<br>10-12 | 1328.00 | 1358.20 | 1307.50 | 1312.85 | 1312.90 | 5175329 | 49.522672 | -6.95  | -7.20  | -11.80 |
| 2020-<br>10-13 | 1319.65 | 1349.70 | 1307.20 | 1341.10 | 1344.95 | 4872154 | 56.427840 | 32.05  | 25.10  | 24.85  |
| 2020-<br>10-14 | 1335.25 | 1358.00 | 1324.15 | 1355.00 | 1353.35 | 3358472 | 58.047671 | 8.40   | 40.45  | 33.50  |
| 2020-<br>10-15 | 1353.35 | 1365.95 | 1301.25 | 1307.00 | 1309.55 | 3496590 | 48.022629 | -43.80 | -35.40 | -3.35  |
| 2020-<br>10-16 | 1308.50 | 1343.30 | 1308.50 | 1336.45 | 1336.55 | 2358054 | 53.368905 | 27.00  | -16.80 | -8.40  |
| 2020-<br>10-19 | 1350.00 | 1380.00 | 1333.50 | 1374.90 | 1376.70 | 3971028 | 59.963650 | 40.15  | 67.15  | 23.35  |
| 2020-<br>10-20 | 1371.70 | 1386.00 | 1355.50 | 1369.10 | 1368.80 | 3228111 | 58.218980 | -7.90  | 32.25  | 59.25  |
| 2020-<br>10-21 | 1375.00 | 1400.00 | 1358.65 | 1392.25 | 1393.30 | 4280457 | 61.919412 | 24.50  | 16.60  | 56.75  |
| 2020-<br>10-22 | 1388.00 | 1405.00 | 1377.55 | 1391.50 | 1393.05 | 3610102 | 61.859207 | -0.25  | 24.25  | 16.35  |
| 2020-          | 1400.00 | 1407.70 | 1378.25 | 1385.65 | 1383.05 | 2385861 | 59.372418 | -10.00 | -10.25 | 14.25  |

print(df['Trends'].count())
print(df['Trends'].sum())

```
df.dropna(inplace=True)
predictor_list=['RSI','DIFF1','DIFF2','DIFF3','DIFF4']
X=df[predictor_list]
y=df['Trends']
y.tail()
    Date
    2020-10-26
                  1
    2020-10-27
    2020-10-28
                  1
    2020-10-29
                  0
    2020-10-30
                  a
    Name: Trends, dtype: int64
print(df['Trends'].count())
df['Trends'].sum()
    4167
    2168
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42,stratify=y)
print(X_train.shape,X_test.shape)
print(y_train.shape,y_test.shape)
    (3333, 5)(834, 5)
    (3333,) (834,)
print(X_train,X_test)
print(y_train,y_test)
                      RSI DIFF1 DIFF2 DIFF3 DIFF4
    Date
    2020-01-02 49.741388
                          -2.50 -12.80 -18.85 -14.05
    2019-05-06 68.063975 -7.40
                                 4.05 23.85 31.15
    2016-12-06 36.486365
                           4.20 10.45 -10.95 -21.45
    2019-03-11 49.242285 10.65 12.35
                                         8.25
                                                9.10
    2019-04-16 70.476185 12.55 42.95 43.20 36.50
                                   . . .
                                          . . .
                      . . .
                            . . .
    2009-11-11 60.631459 22.45
                                  9.80 49.95 95.15
    2015-12-24 59.550285 -1.20 3.15 -4.55 -1.10
    2009-06-09 64.768922 37.85 5.45
                                        0.90 16.95
    2014-06-18 71.649055
                           23.00 29.80 43.30
                                                26.55
    2007-02-06 76.065300
                            2.50
                                 20.50 44.55 41.70
    [3333 rows x = 5 columns]
                                              RSI DIFF1 DIFF2 DIFF3 DIFF4
    Date
    2005-10-03 28.639965
                            0.70 -3.65 -3.20
                                                 0.65
    2004-03-30 47.487975 -3.40 -8.45 -4.80 -9.25
    2008-01-08 58.099341 -59.25 -50.35 -19.10 -68.60
    2014-08-05 56.059885
                            0.20
                                 12.65 -15.75 -36.30
    2010-12-06 47.405880 -5.65 -8.35
                                          0.05
                                                 3.50
                                    . . .
                                           . . .
    2018-12-24 54.907086 11.30
                                   2.20 12.85
                                                 1.40
    2004-04-07 48.584772 -5.35 -9.30 -9.40 -21.90
    2011-01-07 36.673685 -9.90 -13.70 -25.30 -21.90
```

```
2009-08-27 54.184438 -12.60 -6.60 -17.65 -5.15
    2010-04-08 60.069829 -1.55 4.15 19.75 39.25
    [834 rows x 5 columns]
    Date
    2020-01-02
                  0
    2019-05-06
    2016-12-06
                 1
    2019-03-11
                  1
    2019-04-16
                  0
    2009-11-11
                 0
    2015-12-24
                  1
    2009-06-09
                 1
    2014-06-18
    2007-02-06
                  1
    Name: Trends, Length: 3333, dtype: int64 Date
    2005-10-03
    2004-03-30
                 1
    2008-01-08
                  0
    2014-08-05
                  0
    2010-12-06
    2018-12-24
                  1
    2004-04-07
                 1
    2011-01-07
    2009-08-27
                  1
    2010-04-08
                  0
    Name: Trends, Length: 834, dtype: int64
from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier(criterion='gini',max_depth=3,random_state=20,min_samples_leaf=5)
model=clf.fit(X_train,y_train)
print(accuracy_score(y_test,model.predict(X_test),normalize=True)*100)
    52.038369304556355
from sklearn.model_selection import KFold
kf=KFold(n_splits=5, shuffle=False)
kf.split(X)
    <generator object _BaseKFold.split at 0x7f2b7d3ec4c0>
from sklearn.metrics import accuracy_score
accuracy_model=[]
for train_index,test_index in kf.split(X):
 X_train,X_test=X.iloc[train_index],X.iloc[test_index]
  y_train,y_test=y[train_index],y[test_index]
  model=clf.fit(X_train,y_train)
  accuracy_model.append(accuracy_score(y_test,model.predict(X_test),normalize=True)*100)
print(accuracy_model)
    [51.91846522781775, 49.040767386091126, 51.50060024009604, 52.22088835534213, 50.5402160864
```

```
scores = pd.DataFrame(accuracy_model,columns=['Scores'])
sns.set(style="white", rc={"lines.linewidth": 3})
sns.displot(scores)
plt.show()
sns.set()
```



from sklearn.metrics import confusion\_matrix
from sklearn.metrics import accuracy\_score
cm = confusion\_matrix(y\_test, y\_pred)
print("CONFUSION MATRIX \n",cm)

CONFUSION MATRIX [[155 245] [167 266]]

from sklearn.metrics import classification\_report
y\_pred=model.predict(X\_test)
report=classification\_report(y\_test,y\_pred)
print(report)

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.48      | 0.39   | 0.43     | 400     |  |
| 1            | 0.52      | 0.61   | 0.56     | 433     |  |
| accuracy     |           |        | 0.51     | 833     |  |
| macro avg    | 0.50      | 0.50   | 0.50     | 833     |  |
| weighted avg | 0.50      | 0.51   | 0.50     | 833     |  |

```
from scipy.stats import sem
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
```

```
from matplotlib import pyplot
model_NB = GaussianNB()
model_NB.fit(X_train, y_train)

GaussianNB(priors=None, var_smoothing=1e-09)

# evaluate a model with a given number of repeats
def evaluate_model(X, y, repeats):
    cv = RepeatedKFold(n_splits=10, n_repeats=repeats, random_state=1)
    scores_NB = cross_val_score(model_NB, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
    return scores_NB

# create dataset

repeats = range(1,16)
results = list()
for r in repeats:
    scores_NB = evaluate_model(X, y, r)
```

results.append(scores\_NB)

sns.displot(scores\_NB)

```
cm = confusion_matrix(y_test, y_pred_NB)
print(cm)
report=classification_report(y_test,y_pred_NB)
print(report)
     [[ 76 324]
      [ 86 347]]
                                 recall f1-score
                   precision
                                                     support
                         0.47
                                   0.19
                                              0.27
                                                         400
                0
                1
                         0.52
                                   0.80
                                              0.63
                                                         433
                                              0.51
                                                         833
         accuracy
        macro avg
                         0.49
                                   0.50
                                              0.45
                                                         833
     weighted avg
                         0.49
                                   0.51
                                              0.46
                                                         833
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification report
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
%matplotlib inline
k_range = range(1, 31)
k_scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')
    k_scores.append(scores.mean())
sns.distplot(k_scores)
     /usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distr
       warnings.warn(msg, FutureWarning)
     <matplotlib.axes._subplots.AxesSubplot at 0x7f2b81d447b8>
        80
        70
        60
     Density
6 6
        30
        20
        10
         0
             0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510
```

>1 mean=0.4968 se=0.005 >2 mean=0.4968 se=0.005

y\_pred\_NB = model\_NB.predict(X\_test)

y\_pred\_knn= classifier\_knearest.predict(X\_test)

report=classification\_report(y\_test,y\_pred\_knn)

cm = confusion\_matrix(y\_test, y\_pred\_knn)

print(cm)

print(report)

| [[206 194]<br>[217 216]] |           |        |          |         |
|--------------------------|-----------|--------|----------|---------|
|                          | precision | recall | f1-score | support |
| 0                        | 0.49      | 0.52   | 0.50     | 400     |
| 1                        | 0.53      | 0.50   | 0.51     | 433     |
| accuracy                 |           |        | 0.51     | 833     |
| macro avg                | 0.51      | 0.51   | 0.51     | 833     |
| weighted avg             | 0.51      | 0.51   | 0.51     | 833     |

/