SVD and Applications

(Singular Value Decomposition)

Girish Varma

Linear Algebra Recap

- 1. Rd: all d-dimensional real vectors.
- 2. $B = \{b_1, b_2, \dots, b_d\}$ are a **basis** iff they are **linearly independent**.
 - a. Example: [1,0], [0,1] for d = 2 called **standard basis**, denoted by e_1 , e_2 .
 - b. Example: [1,1], [1,-1] for d = 2.
- 3. For any vector x in \mathbb{R}^d , and a basis B = {b₁, b₂, ..., b_d}, there are **unique** $\alpha_1,...$, $\alpha_d \in \mathbb{R}$ such that $x = \alpha_1 b_1 + ... + \alpha_d b_d$.
 - a. They are called the **coordinates** of x with respect to the basis B
- 4. Let $\alpha = [\alpha_1, \dots, \alpha_d]$ and $\beta = [\beta_1, \dots, \beta_d]$ are coordinates with respect to basis B and C. Then there is a **change of basis matrix** M such that $\beta = M\alpha$.

Linear Algebra Recap 2

- 1. Rank of a matrix, Norm of a vector |v|
- 2. Dot product $x \square y = \sum x_i y_i$.
 - a. If y is a unit vector, it is the **projection** of x along direction y.
- 3. $B = \{b_1, b_2, \dots, b_d\}$ are **orthogonal** if all pairwise dot products are 0. They are **orthonormal** if they are unit vectors and orthogonal.
- 4. For a matrix M, vector v and real λ , if Mv = λ v. Then λ is an **eigenvalue** and v an **eigenvector** of M.

Spectral Decomposition Recap

Let M be a **symmetric** matrix (M^T = M). Then there is an orthonormal **eigenbasis** B = [$b_1, b_2, ..., b_d$] and $\lambda_1, ..., \lambda_d$ such that

$$M = B^{T} \operatorname{diag}(\lambda_{1}, \ldots, \lambda_{d}) B.$$

Application: If a vector is expressed in the eigenbasis B of M, then computing Mx takes only d steps of computation (instead of d² steps of matrix multiplication).

SVD: Singular Value Decomposition

For any matrix $M \in \mathbb{R}^{n \times d}$ can be decomposed into $M = U D V^T$ where columns of $U \in \mathbb{R}^{n \times n}$, $V \in \mathbb{R}^{d \times d}$ are **orthonormal** and $D \in \mathbb{R}^{n \times d}$ is a diagonal matrix with **positive** real entries.

Columns of V are called **left singular vectors** (and U **right singular vectors**) and diagonal entries of D denoted by s_1, \ldots, s_r the **singular values**.

$$M(\alpha_1 v_1 + \dots + \alpha_d v_d) = s_1 \alpha_1 u_1 + \dots + s_d \alpha_d u_d$$

Pros: Defined for non square, non symmetric matrices also.

Best Least Squares Fit

Let $X^1, \ldots, X^n \in \mathbb{R}^d$ (n d-dim points).

Goal: Find a **1-dim subspace** (line passing through origin) which is the best fit. **best fit** means one which minimizes sum of squares of perp. distances.

 $(dist of point to line)^2 = |X^1|^2 - (len of proj)^2$

Singular Vectors

Consider the matrix A $\in \mathbb{R}^{n \times d}$ whose rows are X^1, \dots, X^n . Let $v \in \mathbb{R}^d$ be the unit vector along the line. Then $X^1 \square v$ gives the projection on the line.

First singular vector $\mathbf{v_1}$ of A is defined as $\mathbf{v_1} = \arg\max_{|\mathbf{v}|=1} |A\mathbf{v}|$. and first singular value is $|A\mathbf{v_1}|$

Best Fit 2-dim subspace:

The second singular vector v₂ of A is defined as

$$\mathbf{v_2} = \underset{\mathbf{v} \perp \mathbf{v_1}, |\mathbf{v}| = 1}{\arg \max} |A\mathbf{v}|.$$

$$\mathbf{v_3} = \underset{\mathbf{v} \perp \mathbf{v_1}, \mathbf{v_2}, |\mathbf{v}| = 1}{\operatorname{arg\,max}} |A\mathbf{v}|$$

Example

Take many observations

SVD will give a single non zero singular value

Singular vector will be along the direction x, in the 6D space.

FIG. 1 A toy example. The position of a ball attached to an oscillating spring is recorded using three cameras A, B and C. The position of the ball tracked by each camera is depicted in each panel below.

Compression (Dimensionality Reduction)

Example : Customer - Product Data n customers buying d products

Matrix A = (a_{ij}) a_{ij} is the prob. that i buys j

Hypothesis: customer purchase behaviour depends only on k underlying factors like age, income, family size etc. k << d

Then A = UV where U $\in \mathbb{R}^{n \times k}$ and V $\in \mathbb{R}^{k \times d}$.

nxk + kxd <<< nxd

Document Retrieval: Latent Semantic Analysis

Given a document q, get a ranked list of similar documents in your database.

Term-Document Matrix: n documents having d important terms. Represent each document as a d-dim vector which has the counts of the term in the document.

To get ranked list: find the term-document vector for query q and take dot products with vectors in database. Rank according to the dot products.

Problem: d might be too large. But most vectors are sparse

Solution: Take SVD of the Term-Document Matrix and ignore singular values which are too small.

PCA: Principal Component Analysis

If we have n points $(X^1, ..., X^n)$ on d dimensional space, we did SVD on the nxd matrix. This can take a long time when n is large.

Mean Subtraction: Let $\mathbf{X} = (\sum X^i)/n$. Let $Y^i = X^i - \mathbf{X}$

Covariance Matrix : $C = (c_{ii})$ is a dxd dim symmetric matrix.

$$c_{ij} = (\sum_k Y^k_i Y^k_j)/n$$

Check: SVD of symmetric matrix same as Spectral Decomposition.

Ignore the singular vectors corresponding to small singular values. Represent (X^1, \dots, X^n) as coordinates along these few vectors.

References

For theorems & proofs: Book by John Hopcroft and Ravi Kannan https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf

A Tutorial on PCA by Jonathon Shlens https://arxiv.org/pdf/1404.1100.pdf

Extra Topics

- 1. Computing SVD and Spectral Decomposition
- 2. Prove Best Fit k-dim Subspace Theorem