Tutorial - 4

- 1. For each of the following integrals, specify the values of the parameters σ which ensures that the integral converges:
- a) $\int_0^\infty e^{-5t} e^{-(\sigma+j\omega)t} dt$
- b) $\int_{-\infty}^{0} e^{-5t} e^{-(\sigma+j\omega)t} dt$
- c) $\int_{-5}^{5} e^{-5t} e^{-(\sigma+j\omega)t} dt$
- d) $\int_{-\infty}^{\infty} e^{-5t} e^{-(\sigma+j\omega)t} dt$
- 2. Consider the signal $x(t) = e^{-5t}u(t-1)$, evaluate X(s) and specify its region of convergence.
- 3. For each of the following algebraic expressions for the Laplace transform of a signal, determine the number of zeros located in the finite s-plane and the number of zeroes located at infinity:
 - a) $\frac{1}{s+1} + \frac{1}{s+3}$ b) $\frac{s+1}{s^2-1}$

 - c) $\frac{s^3-1}{s^2+s+1}$
- 4. How many signals have a Laplace transform that may be expressed as $\frac{s-1}{(s+2)(s+3)(s^2+s+1)}$ in its region of convergence?
- 5. Find the Laplace transform of the following signals using properties
 - a. $x(t) = 2^{-2t}u(t) + 4^{-4t}u(t)$
 - b. $x(t) = e^{-5t}[u(t) u(t-5)]$
 - c. $x(t) = e^{-at} sin \Omega_0 t u(t)$
 - d. $x(t) = t^2 Cos \Omega_0 t u(t)$
- 6. Given $x_1(t) = e^{-2t}u(t)$ and $x_2(t) = e^{-3t}u(t)$. Determine Y(s) where, $y(t) = x_1(t t)$ 2) * $x_2(-t+3)$.
- 7. Find the initial and final values, for the following transforms

a.
$$\frac{s+5}{s^2+3s+2}$$

b.
$$\frac{s^2 + 5s + 7}{s^2 + 3s + 2}$$

- 8. Find the causality and stability of the system $X(s) = \frac{2}{(s+4)(s-1)}$ for the following ROC's.
 - a. -4 < Re(s) < 1
 - b. Re(s) > 1
 - c. Re(s) < -4
- 9. Realize the transfer function of the system given in direct form I and direct form II.

$$H(s) = \frac{s+1}{s^2 + 3s + 5}$$

10. Realize the transfer function of the system given in cascade form and parallel form.

$$H(s) = \frac{s(s+2)}{(s+1)(s+3)(s+4)}$$