CountMin Sketch: Finding Heavy Hitters

COMPCSI 753: Algorithms for Massive Data

Instructor: Ninh Pham

University of Auckland

Basic definitions

- Let U be a universe of size n, i.e. $U = \{1, 2, 3, \dots, n\}$.
- Cash register model stream:
 - Sequence of m elements a_1, \ldots, a_m where $a_i \in U$.
 - ullet Elements of ${f U}$ may or may not occur once or several times in the stream.
- Finding heavy hitters in data stream (today's lecture):
 - Given a stream, finding frequent items.

Frequent items

- Each element of data stream is a tuple.
- Given a stream of \mathbf{m} elements $\mathbf{a_1}, \ldots, \mathbf{a_m}$ where $\mathbf{a_i} \in \mathbf{U}$, finding the most/top- \mathbf{k} frequent elements.
- Example:

```
• \{\underline{1}, 2, \underline{1}, 3, 4, 5\} \rightarrow \mathbf{f} = \{\underline{2}, 1, 1, 1, 1\}
• \{\underline{1}, \underline{2}, \underline{1}, 3, \underline{1}, \underline{2}, 4, 5, \underline{2}, 3\} \rightarrow \mathbf{f} = \{\underline{3}, \underline{3}, 2, 1, 1\}
```

 We need an approximation solution with much smaller memory with theoretical guarantees.

Deterministic: Misra Gries

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, n=6, k=3, m=11 {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}
 - 1 🛭 🖎 🖎 🗶 2 6

Randomized: CountMin sketch

- Setup:
 - d independent universal hash functions h over range [0, w)
 - \mathbf{d} different counters, $\mathbf{C_1}$, ..., $\mathbf{C_d}$. Each of size \mathbf{w} initialized with $\mathbf{0}$ s.
- Process an element a_i :
 - For each hash function, compute $h_i(a_i)$ and increment $C_i[h_i(a_i)]$ by 1

Randomized: CountMin sketch

- Query: How many times **a**_i occurred?
 - For each hash function, compute $h_i(a_j)$ and get $C_i[h_i(a_j)]$
 - Return $\min(C_1[h_1(a_j)], \dots, C_d[h_d(a_j)])$

return the minimum of values in blue cells

Universal hash function family

- Universal hash function definition:
 - A family of hash function $H = \{h : U \rightarrow \{0, 1, ..., w-1\}\}$ is universal if for any 2 distinct keys $\mathbf{x}_i \neq \mathbf{x}_j \in U$, we have

$$Pr_h[h(x_i) = h(x_j)] \le 1/w$$

- In our CountMin sketch:
 - Given two different items $a_i \neq a_j$, what is the prob. a_i and a_j collide?

$$Pr_h[h(a_i) = h(a_i)] \le 1/w$$

Analysis on 1 array of counters

- Notation:
 - Stream of m items $\{a_1, \ldots, a_m\}$ from the universe U of size n.
 - Frequency vector $\mathbf{f} = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ and $\|\mathbf{f}\|_1 = \mathbf{m}$.
- Question:
 - Given a particular item a_1 , how many times $a_i \neq a_1$ collide by h?

Analysis on 1 array of counters

- Question:
 - Given a particular item a_1 , how many times $a_i \neq a_1$ collide by h.

- Answer:
 - Let X_2, \ldots, X_n be contributions of a_2, \ldots, a_n in the bucket $h(a_1)$.

$$Pr [h(a_i) = h(a_1)] \le 1/w \to E [X_i] \le f_i/w$$

• Let $Y = X_2 + ... + X_n$ be the total increments by other item $a_i \neq a_1$.

$$E[Y] = E[X_2] + ... + E[X_n] = (f_2 + ... + f_n)/w \le m/w$$

Basic tools: Tail inequality

• Markov's inequality for $E[Y] = \mu$:

$$\Pr[Y \ge 1 + \varepsilon] \le \frac{\mu}{1 + \varepsilon}$$
 for any $\varepsilon > 0$.

$$\Pr[Y \ge (1+\epsilon) \ \mu] \le \frac{1}{1+\epsilon} \text{ for any } \epsilon > 0.$$

Analysis on 1 array of counters

- Observation: We always over-estimate.
- Question: How large we over estimate?
- Analysis for a particular item a_1 :
 - Let $Y = X_2 + ... + X_n$ be the total increments by other item $a_i \neq a_1$.
 - The value of counter $h(a_1)$: $f'_1 = f_1 + Y$.
 - Using Markov's inequality:

$$\Pr\left[f'_1 \ge f_1 + \varepsilon m\right] = \Pr\left[Y \ge \varepsilon m\right] \le E[Y] / \varepsilon m \le m / (w * \varepsilon m)$$

- Choose $\mathbf{w} = 2/\epsilon$, we have this prob. is at most 1/2.
- Choose $\mathbf{w} = 2/\epsilon$, the probability that our error is larger than $\epsilon \mathbf{m}$ is smaller than 1/2.

Analysis on d arrays of counters

- Boosting the accuracy:
 - ullet Using ${f d}$ independent hash functions corresponding to ${f d}$ independent arrays of counters.
 - $F_1 = \min(C_1[h_1(a_1)], \dots, C_d[h_d(a_1)]) = \min(f'_1, f'_2, \dots, f'_d).$
- Analysis:
 - Pr $[F_1 \ge f_1 + \varepsilon m] = Pr [f'_1 \ge f_1 + \varepsilon m \land ... \land f'_d \ge f_1 + \varepsilon m] \le 1/2^d$
 - Choose $d = \log(1/\delta)$, we have $Pr[F_1 \ge f_1 + \varepsilon m] \le \delta$.
- With probability at least 1δ , we have

$$\mathbf{F}_1 < \mathbf{f}_1 + \varepsilon \mathbf{m} = \mathbf{f}_1 + \varepsilon \|\mathbf{f}\|_1$$

Homework

- Implement the CountMin Sketch algorithm on the dataset from assignment 1:
 - Description: Each line (doc ID, word ID, freq.) as a stream tuple.
 - Query: What are the most and top-10 frequent word ID have been used?