Linjära rum

dimension basbyten tillämpningar inom: signalbehandling och differensekvationer

Linjära rum _

Vi rekapitulerar definitionerna:

En mängd element (vektorer) $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_p}\}$ i ett linjärt rum V är linjärt beroende omm $c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + c_p \mathbf{v_p} = 0$ har en icke-trivial lösning, alltså en där inte alla $c_i = 0$. Detta är ekvivalent med att åtminstone något $\mathbf{v_i}$ kan skrivas som en linjärkombination av de övriga.

Om en mängd element i V inte är linjärt beroende så är den linjärt oberoende.

En mängd som innehåller nollvektorn $\mathbf{0}$ i V är linjärt beroende, ty c $\mathbf{0} = 0$ för varje c.

Att en mängd element (vektorer) $\{v_1, v_2, ..., v_q\}$ i ett linjärt rum V spänner upp V betyder att alla element \mathbf{v} i V kan skrivas som en linjärkombination av $\{v_1, v_2, ..., v_q\}$, alltså som \mathbf{v} = \mathbf{c}_1 \mathbf{v}_1 + \mathbf{c}_2 \mathbf{v}_2 +.... \mathbf{c}_p \mathbf{v}_q .

En $\mathbf{bas}~\mathcal{B}=\{\mathbf{b_1},\mathbf{b_2},\dots,\mathbf{b_n}\}$ i V är en mängd linjärt oberoende element i V som spänner upp V.

Linjära rum

Teorem: Antag att ett linjärt rum V har en bas med n element. Då är varje mängd I V med n+1 element linjärt beroende.

Bevis: Låt den givna basen vara $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}, ..., \mathbf{b_n}\}$ och betrakta mängden $A = \{a_1, a_2, ..., a_n, a_{n+1}\}$ i V. Mängden $\{a_1, \mathbf{b_1}, \mathbf{b_2}, ..., \mathbf{b_n}\}$ innehåller \mathcal{B} , så den spänner upp V. Eftersom \mathcal{B} spänner upp V: $\mathbf{a_1} = \beta_1 \mathbf{b_1} + \beta_2 \mathbf{b_2} + \beta_n \mathbf{b_n}$. Om alla koefficienter är noll så är $\mathbf{a_1} = \mathbf{0}$ och A är linjärt beroende. I annat fall är något β_k skilt från noll och $\mathbf{b_k}$ kan skrivas som en linjärkombination av $\{\mathbf{b_1}, \mathbf{b_2}, ... \mathbf{b_{k-1}}, \mathbf{a_1}, \mathbf{b_{k+1}}, ... \mathbf{b_n}\}$, dessa vektorer spänner upp V.

Nästa steg är att $\mathbf{a_2} = \alpha_1 \ \mathbf{a_1} + \beta_1 \mathbf{b_1} + ... \beta_{k-1} \ \mathbf{b_{k-1}} + \beta_{k+1} \ \mathbf{b_{k+1}} + ... \ \beta_n \mathbf{b_n}$. Om alla β är noll är A linjärt beroende, eftersom då $\alpha_1 \ \mathbf{a_1} - \mathbf{a_2} = \mathbf{0}$. Om något β_p är skilt från noll kan vi byta ut $\mathbf{b_p}$ mot $\mathbf{a_2}$ på samma sätt som vi gjorde med $\mathbf{a_1}$. Proceduren upprepas, till slut kommer vi till att $\{\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}\}$ antingen är linjärt beroende eller också spänner upp V och i det senare fallet kan ju $\mathbf{a_{n+1}}$ skrivas som en linjärkombination av $\{\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}\}$ vilket också visar att A var linjärt beroende.

Linjära rum

Teorem: Om ett linjärt rum V har en bas med n element så har varje annan bas för V också n element.

Bevis: Antag att V har två baser, den ena med n element, den andra med m element. Om n < m är den andra mängden linjärt beroende enligt föregående teorem, och kan inte vara en bas. Om n > m är den första mängden linjärt beroende enligt det förra teoremet, och kan inte vara en bas. Alltså: m = n, v.s.b.

Definition: Dimensionen för ett linjärt rum V är antalet basvektorer. Om V inte spänns upp av ett ändligt antal basvektorer är V oändligdimensionellt. Dimensionen för {**0**} definieras som noll.

För en matris A gäller som vi tidigare sett att pivotkolumnerna är en bas för kolumnrummet Col A. Dimensionen för Col A kallas för matrisens rang, rank A, och är tydligen lika med antalet pivotkolumner. Vi har också sett att nollrummet Nul A för matrisen har en bas med en basvektor för varje fri variabel. Dimensionen för Nul A är alltså lika med antalet fria variabler. Om A är m x n är antalet kolumner n lika med antalet pivotkolumner plus antalet fria variabler, således:

rank A + dim Nul A = n

Inverterbara matriser

Ekvivalenta satser om n imes n matrisen A (en gång till)

(antingen är alla satser sanna, eller så är alla falska).

- A är inverterbar.
- A är radekvivalent till I_n .
- *A* har n pivot-element.
- Ekvationen Ax = 0 har bara en trivial lösning.
- Kolumnerna i A bildar en linjärt oberoende uppsättning vektorer.
- Den linjära transformationen $x \to Ax$ är ett-till-ett.
- Ekvationen Ax = b har minst en lösning för varje för varje b i \mathbb{R}^n .
- Kolumnerna i A spänner upp \mathbb{R}^n .
- Den linjära transformen $x \to Ax$ avbildar $A \not = \mathbb{R}^n$.
- Det finns en $n \times n$ matris C sådan att CA = I.
- Det finns en $n \times n$ matris D sådan att AD = I.
- A^T är en inverterbar matris.
- Kolumnerna i A bildar en bas för \mathbb{R}^n .
- $Col A = \mathbb{R}^n$
- dim(Col A) = n
- rank A = n
- Nul A = (0)
- dim(Nul A) = 0
- $detA \neq 0$

Koordinatsystem

FIGURE 1 A coordinate system on a plane H in \mathbb{R}^3 .

 $\{\mathbf{v_1}, \mathbf{v_2}\}$ är linjärt oberoende och spänner upp ett plan i \mathbb{R}^3 , ett underrum.

Som ett alternativ till standardbasen i \mathbb{R}^3 kan vektorn \mathbf{x} i detta plan entydigt beskrivas med basen $\{\mathbf{v_1}, \mathbf{v_2}\}$:

$$\mathbf{x} = 2\mathbf{v_1} + 3\mathbf{v_2}$$

Koordinatsystem

Koordinater

Om $\mathcal{B}=\{m{b_1}\ ...\ m{b_n}\}$ är en bas i V finns det för varje annan vektor $m{x}$ i V en linjär kombination basvektorer, skalade med c_1,c_2,\ldots,c_n som ger ett unikt uttryck för $m{x}$

$$\boldsymbol{x} = c_1 \boldsymbol{b_1} + c_2 \boldsymbol{b_2} + \dots + c_n \boldsymbol{b_n}$$

Talen (vikterna) med vilka basvektorerna skalats $(c_1, c_2, ..., c_n)$ kallas koordinater för x relativt basen \mathcal{B} , eller \mathcal{B} -koordinater.

Vektorn
$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_B = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$
 kallas koordinatvektorn eller \mathcal{B} -koordinatvektorn, för \mathbf{x} .

Ekvationen för att byta koordinater från basen \mathcal{B} till standardbasen i \mathbb{R}^n $(e_1, e_2, ..., e_n)$

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Exempel (Lay 2.9 2):

Basen B i
$$\mathbb{R}^2$$
 är given som $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix} \right\}$ och $\begin{bmatrix} x \end{bmatrix}_{\mathbb{B}} = \begin{bmatrix} -1\\3 \end{bmatrix}$
I standardbasen är $\mathbf{x} = -1 \begin{bmatrix} -2\\1 \end{bmatrix} + 3 \begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 11\\2 \end{bmatrix}$
Allmänt $\mathbf{x} = P_{\mathbb{B}} \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathbb{B}} = \begin{bmatrix} -2 & 3\\1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathbb{B}}$

Obs hur matrisen $P_{\mathcal{B}}$ (som beräknar koordinaterna i standardbasen från koordinaterna i \mathcal{B}) bildas av basvektorerna i \mathcal{B} uttryckta i standardbasen.

P_B har linjärt oberoende kolumner och är alltså inverterbar, ekvationen för att byta koordinater från standardbasen till

basen B är
$$[\mathbf{x}]_{B} = P_{B}^{-1}\mathbf{x} = \begin{bmatrix} -1/5 & 3/5 \\ 1/5 & 2/5 \end{bmatrix} \mathbf{x}$$

Basbytet är en ett-till-ett avbildning (bijektion) $\mathbb{R}^2 \to \mathbb{R}^2$ Det avbildar också \mathbb{R}^2 på hela \mathbb{R}^2 , sammantaget en isomorfism.

På helt analogt sätt går det till att transformera koordinatvektorer vid byte mellan koordinatsystem som inte är standardsystemet.

I de båda figurerna visas hur vektorn \mathbf{x} i \mathbb{R}^2 kan specificeras också med något av koordinatsystemen i $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$ eller $\Gamma = \{\mathbf{c_1}, \mathbf{c_2}\}$.

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 och $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$

Bara den informationen är inte tillräcklig för att specificera sambandet mellan baserna \mathcal{B} och \mathcal{C} men om koordinatvektorerna för den ena basen uttryckta i den andra är känd framskrider koordinattransformationen på samma sätt som vid transformation till och från standardbasen.

Exempel (Lay 4.6 1.):

Låt $\mathcal{B} = \{\mathbf{b_1, b_2}\}$ eller $\mathcal{C} = \{\mathbf{c_1, c_2}\}$, där:

$$b_1 = 4c_1 + c_2$$
 och $b_2 = -6c_1 + c_2$.

Om
$$\mathbf{x} = 3\mathbf{b_1} + \mathbf{b_2}$$
, alltså: $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, vad är $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{C}}$?

$$[\mathbf{x}]_C = [3\mathbf{b_1} + \mathbf{b_2}]_C = 3[\mathbf{b_1}]_C + [\mathbf{b_2}]_C = [[\mathbf{b_1}]_C \ [\mathbf{b_2}]_C]_C^3 = P_{C \leftarrow B}_C^3$$

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_C = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

Allmänt:

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}}$$
 där matrisen $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = [[\mathbf{b}_1]_{\mathcal{C}} [\mathbf{b}_2]_{\mathcal{C}} ... [\mathbf{b}_n]_{\mathcal{C}}]$

bildas av basvektorerna i \mathcal{B} , givna i \mathcal{C} -koordinater.

 $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ kallas för basbytesmatrisen från \mathcal{B} till \mathcal{C} .

Det kan också hända att basvektorerna i baserna \mathcal{B} och \mathcal{C} är givna i standardbasen. Exempel (Lay 4.6 2.):

Låt
$$\mathcal{B} = \{\mathbf{b_1, b_2}\}$$
 och $\mathcal{C} = \{\mathbf{c_1, c_2}\}$, där $\mathbf{b_1} = \begin{bmatrix} -9\\1 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} -5\\-1 \end{bmatrix}$, $\mathbf{c_1} = \begin{bmatrix} 1\\-4 \end{bmatrix}$, $\mathbf{c_2} = \begin{bmatrix} 3\\-5 \end{bmatrix}$

Hur kan $\underset{C \leftarrow B}{P}$ beräknas i detta fall?

Ett sätt är att gå via standardbasen: $P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$, $P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}} = \mathbf{x}$ och $[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x}$

så:
$$\left[\mathbf{x}\right]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}\left[\mathbf{x}\right]_{\mathcal{B}}$$

Ett annat sätt är att ansätta $\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

Då gäller:
$$\begin{bmatrix} \mathbf{c_1} & \mathbf{c_2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{b_1} \text{ och } \begin{bmatrix} \mathbf{c_1} & \mathbf{c_2} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{b_2}$$

och man kan lösa systemet för båda samtidigt genom radoperationer på

$$\begin{bmatrix} \mathbf{c_1} \ \mathbf{c_2} \ \mathbf{b_1} \ \mathbf{b_2} \end{bmatrix} = \begin{bmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \mathbf{6} & \mathbf{4} \\ 0 & 1 & -\mathbf{5} & -\mathbf{3} \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{b_1} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 6 \\ -5 \end{bmatrix} \text{ och } \begin{bmatrix} \mathbf{b_2} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$$

Signalbehandling

Låt oss studera det linjära rum \mathbb{S} som består av dubbelt oändliga talföljder $\{y_k\} = (..., y_{-2}, y_{-1}, y_0, y_1, y_2,)$. De kan representera t.ex. samplingar av signaler vid diskreta tidpunkter.

Att \mathbb{S} uppfyller kraven för ett linjärt rum är klart om addition definieras som $\{y_k\} + \{z_k\} = \{y_k + z_k\}$ och multiplikation med skalär som $c\{y_k\} = \{c\ y_k\}$.

Exempel på signaler:

- delta $\delta = (..., 0, 0, 0, 1, 0, 0, 0, ...)$
- enhetssteg $\upsilon = (..., 0, 0, 0, 1, 1, 1, 1, ...)$
- konstant $\chi = (..., 1, 1, 1, 1, 1, 1, ...)$
- alternerande $\alpha = (..., 1, -1, 1, -1, ...)$
- Fibonacci F = (..., 2, , 1, 0, 1, 1, 2, ...)
- exponentiell $\epsilon = (..., c^{-1}, c^0, c^1, c^2, ...)$

$$k = 0$$

Signalbehandling

Skiftoperatorn S är en linjär transformation som skiftar en talföljd ett steg åt höger: $S(\{x_k\}) = \{y_k\}, y_k = x_{k-1}, \text{ eller } S(\{x_k\}) = \{x_{k-1}\}.$

$$\delta = (..., 0, 0, 1, 0, 0, ...)$$
 $S(\delta) = (..., 0, 0, 0, 1, 0, ...)$
 $S^{2}(\delta) = (..., 0, 0, 0, 0, 1, ...)$
 $S^{-1}(\delta) = (..., 0, 1, 0, 0, ...)$
 \uparrow
 $k = 0$
 $S^{-1}(\delta) = (..., 0, 0, 0, 0, ...)$

S är en linjär transformation eftersom S($\{x_k\} + \{y_k\}$) = $\{x_{k-1}\} + \{y_{k-1}\} = S(\{x_k\}) + S(\{y_k\})$ och S($\{cx_k\}\} = cS(\{x_k\})$).

Det gäller också att S($\{x_{k+q}\}$) = $\{x_{k-1+q}\}$ för alla q, vilket tillsammans med lineariteten gör S till en linjär tidsinvariant transformation (LTI).

Signalbehandling _

Ett annat exempel på en LTI är det glidande medelvärdet:.

$$M_m(\{x_k\}) = \{y_k\}, \quad y_k = \frac{1}{m} \sum_{j=k-m+1}^k x_j$$

som är användbart för att jämna ut tillfälliga fluktuationer i en signal och göra det lättare att se längre trender och mönster.

Signalbehandling

Ett underrum till \mathbb{S} är \mathbb{S}_n , mängden av alla signaler med längden n. Exempelvis alla $\{y_k\}$ sådana att $y_k=0$ när k<0 eller k>n-1.

En bas för \mathbb{S}_n är $\mathcal{B}_n = \{\delta, S(\delta), S^2(\delta), \dots S^n(\delta)\}$ och \mathbb{S}_n är isomorft med \mathbb{R}^{n+1} .

$$\left\{y_{k}\right\} = \sum_{j=0}^{n} y_{j} S^{j}(\delta)$$

Ett underrum till $\mathbb S$ är också $\mathbb S_f$, mängden av alla talföljder med ett ändligt antal komponenter som är skilda från noll. $\mathbb S_n$ är ett underrum till $\mathbb S_f$.

Differensekvationer

Linjärt oberoende

Tidsdiskreta signaler fås t ex genom att mäta (sampla) en analog signal med jämna tidsintervall. Det ger en mängd värden $\{..., y_{k-1}, y_k, y_{k+1}, ...\}$ där k utgörs av alla heltal.

Antag att 3 olika signaler samplas på detta vis, $\{u_k\}$, $\{v_k\}$ och $\{w_k\}$. Dessa signaler är linjärt oberoende då $c_1=c_2=c_3=0$ (c_i är skalärer) är enda lösningen till

$$c_1 u_k + c_2 v_k + c_3 w_k = 0$$
 för alla k .

För 3 på varandra följande värden, t ex vid tidpunkterna k,k+1 och k+2, kan man då ställa upp matrisen

$$\begin{pmatrix} u_k & v_k & w_k \\ u_{k+1} & v_{k+1} & w_{k+1} \\ u_{k+2} & v_{k+2} & w_{k+2} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 för alla k .

Denna koefficientmatris kallas ibland Casorati-matrisen.

Om matrisen är inverterbar för något värde på k, så är signalerna linjärt oberoende.

Differensekvationer

Exempel (Lay 4.8 1,):

Visa att $\{1^k\}$, $\{(-2)^k\}$ och $\{3^k\}$ är linjärt oberoende signaler.

Casoratimatrisen är:

$$C = \begin{bmatrix} 1^{k} & (-2)^{k} & 3^{k} \\ 1^{k+1} & (-2)^{k+1} & 3^{k+1} \\ 1^{k+2} & (-2)^{k+2} & 3^{k+2} \end{bmatrix} = \begin{bmatrix} 1 & (-2)^{k} & 3^{k} \\ 1 & (-2)^{k+1} & 3^{k+1} \\ 1 & (-2)^{k+2} & 3^{k+2} \end{bmatrix} \sim \begin{bmatrix} 1 & (-2)^{k} & 3^{k} \\ 0 & (-2)^{k} (-3) & 3^{k} 2 \\ 0 & (-2)^{k} 3 & 3^{k} 8 \end{bmatrix}$$

$$\det C = \begin{vmatrix} 1 & (-2)^k & 3^k \\ 0 & (-2)^k (-3) & 3^k 2 \\ 0 & (-2)^k 3 & 3^k 8 \end{vmatrix} = (-2)^k 3^k \begin{vmatrix} 1 & 1 & 1 \\ 0 & -3 & 2 \\ 0 & 3 & 8 \end{vmatrix} = (-2)^k 3^k \begin{vmatrix} -3 & 2 \\ 0 & 10 \end{vmatrix} \neq 0$$

så C är inverterbar för alla k och talföljderna är därmed oberoende. Men det räcker att sätta in ett värde på k, t.ex. k = 0, och visa det linjära oberoendet för det fallet.

Differensekvationer _

En ekvation $a_0y_{k+n} + a_1y_{k+n-1} + a_ny_k = z_k$ som ska gälla för alla k kallas för en linjär differensekvation av ordning n.

Om $\{z_k\}$ = 0 kallas den för homogen.

Inom signalbehandling kallas en sådan differensekvation för ett linjärt tidsinvariant (LTI) filter och koefficienerna {a_i} kallas filterkoefficienter.

En *n*-te ordningens differensekvation kan reduceras till ett system av första ordningens differensekvationer:

$$x_{k+1} = Ax_k$$
 för alla k , x_k i \mathbb{R}^n , $A = (n \times n)$:

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}$$