Hidrostática

Estudaremos neste capítulo as interações macroscópicas que os fluidos, ou seja, gases e líquidos fazem entre si e os sólidos ao redor, submersos ou parcialmente submersos.

Conceitos necessários:

- Força;
- Área;
- Densidade;
- Massa específica;
- Pressão exercida por um fluido;
- Pressão Atmosférica;
- ❖ Volume de um corpo;

Pressão (P) ->[Pascal]: Pressão sobre uma superfície é a relação entre a força exercida (F) e a área (A) onde esta força está sendo aplicada.

$$P=rac{F}{A} \qquad rac{F}{A}
ightarrow rac{N}{m^2}
ightarrow Pascal$$

Força (F): Fr=m.a -> P=m.g -> N

Área (A): Depende do formato do objeto/corpo que está exercendo a força.

Exemplo: área do quadrado A=b.h (base (m) x altura (m)) -> m²;

área do círculo $A=\pi.r^2$ (Pi . [raio (m)]²) -> m²

Observe o tijolo ao lado, quantas faces (lados) ele possui? Todas as suas faces apresentam a mesma área? Quais as maiores faces? Quais as menores?

Vamos calcular!

Voltando a pressão, será que a forma com que colocamos o tijolo sobre uma mesa altera a pressão exercida pelo tijolo?

Massa Específica (μ) -> [Kg/m³]: É a quantidade de matéria por unidade de volume que uma determinada substância possui, em outras palavras, é a quantidade de massa que um determinado volume da substância tem.

$$\mu = rac{m(kg)}{V(m^3)}$$

Material	Massa específica (kg/m³)
Vácuo de laboratório	1017
Ar a 20°C e pressão de 1 atm	1,21
Ar a 20°C e pressão de 50 atm	60,5
Alcool etilico	0,81.103
Água	1.103
Agua do mar	1,03.10 ³
Sangue	1,06.10 ³
Concreto	2.103
Alumínio	2,7.103
Planeta Terra (média)	5, 5. 10 ³
Mercúrio (metal)	13,6.10 ³
Ouro	19,3.10 ³
Ósmio	22,5.10 ³
Buraco negro	1.1019

Densidade (d ou \varrho) -> [Kg/m³]: É a quantidade de matéria por unidade de volume que um determinado corpo possui, em outras palavras, é a quantidade de massa que um determinado volume de um corpo.

$$d=rac{m(kg)}{V(m^3)}$$

Mas o que é volume?

Vivemos em um mundo que tem três dimensões espaciais, altura, largura e comprimento, logo volume é o quanto de espaço um corpo ocupa, segundo as três dimensões espaciais.

Obs: o tijolo contém buracos que contam como volume dele, isso também quer dizer que a densidade está relacionada com corpos que podem conter mais de um tipo de substância em sua constituição.

$$V = \frac{b \cdot h \cdot l}{2}$$

$$V=\pi r^2 h$$

$$V = \frac{4}{3}\pi r^3$$

$$V = \frac{\pi r^2 h}{3}$$

$$V = l \cdot w \cdot h$$

$$V = rac{l \cdot w \cdot h}{3}$$

Pressão no interior de um fluido – cada porção do fluido está sob ação da gravidade (g) e das forças exercidas pelo restante do fluido.

Equação fundamental da hidrostática (vide figura): $P_1-P_2=
ho.\,g.\,h$

isto é, a diferença de pressão entre dois pontos, P_1 e P_2 , depende da diferença de altura dos dois pontos (h) e da densidade do líquido (ϱ) . Não depende da área.

Variação da pressão com a profundidade (lei de Stevin).

$$P = P_{atm} + \rho. g. h$$

Figura 9.19. A porção cilíndrica mostrada está em equilíbrio sob a ação de seu próprio peso e das forças que o restante do líquido exerce sobre ela.

Figura 9.20. A pressão a uma profundidade h é dada por $p = p_{atm} + \rho g h$.

Gráfico da variação da pressão no interior de um líquido.

$$P = P_{atm} + \rho. g. h$$

P -> Pressão no ponto estudado [Pa -> Pascal];

P_{atm} -> Pressão atmosférica [Pa];

 $\varrho \rightarrow$ Densidade do fluido [kg/m³];

g -> Aceleração da gravidade [m/s²];

h -> altura da coluna de líquido acima [m]

Figura 9.22. A pressão no fundo desses recipientes é a mesma, embora eles contenham quantidades diferentes de um mesmo líquido.

Figura 9.21. Este gráfico mostra como a pressão p no interior de um líquido varia com a profundidade h.

Pressão Atmosférica (P_{atm}) [Pa]

Pressão atmosférica é a pressão que os gases que compõem a atmosfera dos planetas exercem sobre tudo que está em sua superfície.

No caso do planeta terra é a pressão que a atmosfera terrestre exerce sobre tudo aquilo que está em sua superfície e tem valor estimado de 1 atm [uma atmosfera] ao nível do mar, que equivale a:

$$1 \ atm = 1.10^5 Pa$$

EM ELEVADAS ALTITUDES Aqui, a força da gravidade na atmosfera é menos intensa, e as moléculas de ar ficam distantes umas das outras. Portanto, quanto mais o alpinista à direita subir, menor a pressão atmosférica sobre ele e mais rarefeito o ar.

PERTO DA SUPERFÍCIE
Os gases da atmosfera
se deformam com
a força da gravidade
e se concentram, conforme
indica o desenho. Quanto
mais próximo do nivel
do mar e do centro da Terra,
maior a pressão atmosférica.

Tubo completamente preenchido com Hg (a). Emborcado em uma cuba com Hg (b), o nível do mercúrio desce até a marca de 76 cm, equilibrando a pressão atmosférica sobre a superfície do Hg na cuba. Se o líquido fosse água, em lugar do Hg, a coluna no tubo teria 10,3 m de altura.

Vasos comunicantes

Recipientes com bases ligadas por meio de um tubo. As pressões em pontos de uma mesma horizontal são iguais.

Figura 9.24. Neste sistema de vasos comunicantes, a pressão no ponto *A* é igual à pressão no ponto *B*.

Figura 9.28. Em um lençol de água como o representado na figura, a água jorra do poço artesiano sem que haja necessidade do emprego de bombas.

Princípio de Pascal

O acréscimo de pressão em um ponto de um líquido em equilíbrio transmite-se a todos os pontos do líquido: $\Delta P_1 = \Delta P_2$

Figura 9.29.
O aumento de pressão no ponto (1) é transmitido integralmente ao ponto (2).

Figura 9.31. O elevador hidráulico costuma ser utilizado em oficinas mecânicas para trocas de óleo e outros serviços. Com esse dispositivo, é possível equilibrar uma grande força por meio de outra muito menor.

O princípio de Pascal nos diz que a mudança de pressão é transmitida integralmente para todos os postos do fluido, em uma situação de fluido confinado. Desta forma, quando olhamos para a figura 9.31, o elevador hidráulico, podemos perceber que se a pressão se distribui de forma igual, P1=P2 e como P=F/A, logo:

$$rac{F_1}{A_1}=rac{F_2}{A_2}$$

Exemplo

Empuxo (E) [N]

Empuxo é uma Força vertical para cima exercida sobre um objeto imerso em um fluido.

Um líquido exerce pressão em todas as direções sobre um objeto mergulhado. Como a pressão aumenta com a profundidade, as forças exercidas na parte inferior são maiores que na parte superior do objeto, resultando uma força para cima.

Figura 9.35. Um líquido exerce pressão sobre um objeto nele mergulhado em todas as direções, inclusive de baixo para cima.

Empuxo (E) [N]

O valor do empuxo (E) que atua em um objeto mergulhado em um líquido é igual ao peso do líquido deslocado pelo objeto.

$$E =
ho_{ ext{liquido}}$$
. g. $V_{ ext{liquido deslocado}}$

E-> empuxo [N];

φ -> densidade do líquido [kg/m³];

V-> Volume de líquido deslocado pela parte submersa do corpo [m³].

Exemplo

Figura 9.39. O bloco de peso P = 10 N (indicado pelo dinamômetro) recebeu um empuxo E = 10 N - 6 N = 4 Nao ser mergulhado no líquido do recipiente. Na escala da balança, vemos que o peso do líquido deslocado pelo bloco também é igual a 4 N. Portanto, essa experiência nos mostra que o valor do empuxo é igual ao peso do líquido deslocado.

Condições de flutuação

E < mg – o objeto tende a afundar.

E = mg – o objeto permanece imerso em equilíbrio.

E > mg - o objeto tende a subir

Figura 9.41. Se um objeto está flutuando totalmente mergulhado em um líquido, seu peso é igual ao empuxo que ele está recebendo.

Viscosidade

característica da estrutura molecular das substâncias que tende a dificultar o deslocamento do fluido. Quanto mais alto o coeficiente de viscosidade, maior a resistência ao deslocamento de suas partículas.

Tipos de escoamento: laminar (ou estacionário) e turbulento.

Figura C.5. Se a velocidade de um fluido não for muito grande, ele deverá escoar em regime laminar (a). Entretanto, para velocidades grandes, o fluido pode se mover em regime turbulento, ou seja, pode escoar irregularmente com formação de redemoinhos (b).

Vazão (Z) [m³/s]

Volume de líquido que atravessa uma seção transversal de um tubo por unidade de tempo:

$$Z=rac{V}{\Delta t}$$
 $rac{V}{\Delta t}$ $rac{V}{\Delta t}$ $ightarrow rac{m^2}{s}$

Equação da continuidade – em dois pontos de um tubo com seções transversais distintas, atravessados por um fluido vale a relação: quanto menor a área, maior é a velocidade que o fluido terá!

Desta forma: A_1 . $V_1=A_2$. V_2

Onde: A_1 e A_2 são as diferentes seções transversais do tubo; V_1 é a **velocidade do fluido** que passa na área 1 e V_2 é a **velocidade do fluido** que passa na área 2.

Figura C.7. Escoamento de um filete de água sob ação da gravidade. À medida que avança, o fluxo de água torna-se mais estreito.

Figura C.8. A velocidade é máxima no centro do tubo, pois a força de atrito tangencial diminui a velocidade do fluido nas paredes do tubo.

Equação de Bernoulli

Para elevar um líquido em um duto de uma altura h é necessário que as forças nele atuantes realizem um trabalho. Esse trabalho das forças F1, F2 e gravitacional é igual à variação da energia cinética do sistema. Daí, chega-se à equação de Bernoulli:

$$P_1 +
ho.\,g.\,h_1 + rac{
ho.\,V_1{}^2}{2} = P_2 +
ho.\,g.\,h_2 + rac{
ho.\,V_2{}^2}{2}$$

Figura C.10. Representação, sem escala e em cores fantasia, de fluido escoando por um duto que sofre uma elevação.

$$p + \rho g h + \frac{1}{2} \rho v^2 = constante$$

h = altura

p = densidade do fluido

V = velocidade $-v_1\Delta t = s_1$

Supondo:

 $+v_2\Delta t = s_2 +$

- ·Fluido incompressível
- Viscosidade nula
- ·Regime estacionário

Tubo de Venturi

Tubo de Venturi é um equipamento que indica a variação da pressão de um fluido em escoamento em regiões com áreas transversais diferentes. **Onde a área é menor, haverá maior velocidade, assim a pressão será menor**. A recíproca é verdadeira.

$$A_1.\,V_1=A_2.\,V_2$$

$$P_1 + rac{
ho.\,V_1{}^2}{2} = P_2 + rac{
ho.\,V_2{}^2}{2}$$

(Uncisal) Em um laboratório, as substâncias são identificadas no rótulo pelo nome e por algumas propriedades químicas. No intuito de descobrir qual a substância armazenada num frasco no qual o rótulo foi retirado, um estudante aplicado de física propôs um experimento. Foram colocados num sistema constituído por vasos comunicantes o líquido desconhecido e álcool. Como são líquidos imiscíveis, é possível estimar a densidade do líquido medindo a altura das colunas líquidas a partir da superfície de separação desses líquidos. Esses valores são mostrados na figura a seguir. Consultando a tabela com os valores das densidades de alguns líquidos, disponível nesse laboratório, é provável que o líquido desconhecido seja:

Liquidos	Densidade [g/cm ³]
Álcool	0,79
Benzeno	0,90
Água	1,00
Mercúrio	13,60
Hexano	0,66
Nitroglicerina	1,60

