Name, Vorname:

Matr.-Nr.:

Aufgabe 1. (4 P)

An einer Spannungsquelle wird bei I = 0.5 A die Spannung U=20V und bei I = 2A die Spannung U=17V gemessen. Bestimmen Sie den Innenwiderstand und die Leerlaufspannung.

Aufgabe 2. (6 P)

Für den Differenzdruck ΔP über einer Rohrstrecke gilt folgende Abhängigkeit von der Strömungsgeschwindigkeit: $\Delta P = \alpha \cdot \frac{\rho}{2} \cdot v^2$. Es sei $\alpha = 4$, $\rho = 1000 kg/m^3$. v wird gemessen mit einem Sensor, der die Messspannung $U_{\rm M} = 2 \frac{V}{m/sec} \cdot v$ liefert.

- a) Welcher Differenzdruck liegt vor bei $U_M = 6 \text{ V}$?
- b) Geben Sie die Formel für die Sensorkennlinie der Druckmessung, $U_M = f(\Delta P)$, an!
- c) Bestimmen Sie die lokale Empfindlichkeit des Sensors bei einem Differenzdruck von 8000 N/m².

Aufgabe 3. (6 P)

Für einen NTC wurden folgende Werte gemessen

<i>θ</i> [°C]	0	20	30	50
$R_{NTC}[k\Omega]$	5,8	2,4	1,6	0,8

- a) Näherungsweise soll eine lineare Kennlinie verwendet werden. Bestimmen Sie dazu aus den 4 Messpunkten die Ausgleichsgerade $\hat{R}(\mathcal{G})$.
- b) Welche Gleichung $U(\hat{R}(\mathcal{G}))$ muss eine Verstärkerschaltung realisieren, damit bei einem Sensor mit der linearen Charakteristik $\hat{R}(\mathcal{G})$ aus a) die Ausgangsspannungen U = 0 V bei $\mathcal{G}=0$ °C und U = 5 V bei $\mathcal{G}=50$ °C entstehen?

(Falls Sie a) nicht gelöst haben, können Sie in b) ersatzweise $\hat{R}(\theta) = 5.67 \ k\Omega - 0.123 \frac{k\Omega}{^{\circ}C} \cdot \theta$ verwenden.)

Aufgabe 4. (4 P)

Für einen Widerstandstemperatursensor wurde die Temperaturabhängigkeit für eine Bezugstemperatur von 35 °C wie folgt angegeben

$$R(\mathcal{G}) = R_{35} \cdot (1 + \alpha \cdot (\mathcal{G} - 35^{\circ}C))$$
, mit $R_{35} = 1000\Omega$, $\alpha = 0.05 \frac{1}{^{\circ}C}$

Geben Sie die Kennlinie in der gleichen Form für die Bezugstemperatur 25 °C an.

Aufgabe 5. (4 P)

Bestimmen Sie das Übertragungsverhalten $U_a = f \big(U_1, U_2 \big) \mbox{ der nebenstehenden}$ Operationsverstärkerschaltung.

Aufgabe 6. (6 P)

Eine Messreihe liefert für den Schaltweg eines Mikroschalters die unten angegebenen Werte. Geben Sie das vollständige Messergebnis für ein Vertrauensniveau von 99% an.

Messung Nr.	1	2	3	4	5
Schaltweg [µm]	30	35	27	31	34

Hinweis:

Anzahl	Vertrauensfaktor t						
Messungen in der Messreihe n	(1-α) = 68,27 %	(1-α) = 90,00 %	(1-α) = 95,00 %	(1-α) = 95,45 %	(1-α) = 99,00 %	(1-α) = 99,73 %	(1-α) = 99,98 % *
2	1,84	6,31	12,71	18,44	63,66	235,80	761,40
3	1,32	2,92	4,30	4,93	9,93	19,21	42,30
4	1,20	2,35	3,18	3,48	5,84	9,22	19,77
5	1,15	2,13	2,78	2,98	4,60	6,62	12,48
6	1,11	2,02	2,57	2,73	4,03	5,51	9,77

Aufgabe 7. (10 P)

- a) Skizzieren Sie blockdiagrammartig den inneren Aufbau eines intelligenten Sensors.
- b) Zu welcher Fehlerart gehören Toleranzfehler von Messgeräten? Durch welche Angabe werden sie vom Gerätehersteller spezifiziert?
- c) Im Datenblatt eines Sensors steht die Angabe "Zeitkonstante τ = 10 sec". Was ist gemeint? Skizze!
- d) Geben Sie mindestens 2 verschiedene Sensortypen für die Temperaturmessung an (Kurzbezeichnungen).
- e) Geben Sie zu den folgenden Transistorschaltbildern den jeweiligen Typ und die passenden Buchstaben in den Kästchen an.

Typ: Typ:

Gesamtpunktzahl: 40 P.

EAT-Klausur 29. 9, 05

11)
$$U = U_0 + R_i \cdot I$$

$$R_i = -\frac{\Delta U}{\Delta I} = -\frac{20 - 17}{0.5 - 2} \Omega = 2\Omega$$

$$U_0 = 20 V + 2\Omega \cdot 0.5A = 21 V$$

4.)
$$R(\vartheta) = R_{35} \cdot (1 + d \cdot (\vartheta - 35^{\circ}c))$$

$$R_{25} = R_{35} \cdot (1 + d \cdot (25^{\circ}c - 35^{\circ}c))$$

$$R(\vartheta) = \frac{R_{20}}{1 + d \cdot 10^{\circ}c} \cdot (1 + d \cdot (\vartheta - 25^{\circ}c) - d \cdot 10^{\circ}c)$$

$$= R_{25} \cdot (1 + \frac{d}{1 - d \cdot 10^{\circ}c} \cdot (\vartheta - 25^{\circ}c))$$

$$d = 0.05 k_1^{-1} R_{35} = 1000 R, R_{15} = 500 R$$

$$R(v) = 1000 R + 50 \frac{R}{K} (v^2 - 35^{\circ}c) = 500 R + 50 \frac{R}{K} (v^2 - 25^{\circ}c)$$

$$= 500 R \cdot (1 + 0.1 K^{-1} (v^2 - 25^{\circ}c))$$

2.) a)
$$U_{H} = 6V \Rightarrow V = 3 \text{ m/sec}$$

$$\Rightarrow \Delta p = \frac{4 \cdot 1000}{2} \text{ kg/m}^{3} \cdot 9 \text{ m}^{2}/\text{nec}^{2}$$

$$= 38 \text{ kN/m}^{2} = 38 \text{ kPa}$$

$$V = \sqrt{\frac{2 \Delta \rho}{d S}} \implies U_{M} = 2 \frac{V}{M/sec} \cdot \sqrt{\frac{2 \Delta \rho}{d S}}$$

$$U_{M} = 1 \cdot V \cdot \sqrt{\frac{8 \sec^{2} m^{3}}{4000 \text{ kg m}^{2}}} \cdot \sqrt{\Delta \rho} = 1 \cdot V \cdot \sqrt{\frac{\Delta \rho}{500 \text{ Ra}}}$$

$$E (8000 N/m^{2}) = \frac{dU_{H}}{dAP} \Big|_{AP = 8000 N/m^{2}}$$

$$= \frac{1 V}{500 Ra \cdot \frac{1}{2} \cdot \sqrt{\frac{AP}{500 Ra}}} \Big|_{AP = 8000 Ra}$$

$$= 0,001 \frac{V}{Pa}$$

3.)
$$\bar{v} = \frac{4}{4} \cdot 100 \, c = 25 \, c$$

a)

 $G_{v}^{2} = \frac{4}{4} \cdot (25^{2} + 5^{2} + 5^{2} + 25^{2}) = 325 \, c^{2}$
 $\bar{R}_{NTc} = \frac{4}{7} \cdot 10,6 \, kR = 2,65 \, k\Omega$

$$\hat{R}(v) = 2,65 kR - 0,0992 \frac{kR}{c} \cdot (v - 25°C)$$

$$= 5.431 R - 99,2 % v$$

3.) b)
$$\hat{R}(0c) = 5131 R$$
 $\stackrel{?}{\Rightarrow} U = 0V$
 $\hat{R}(50c) = 171 \Omega$ $\stackrel{?}{\Rightarrow} U = 5V$

Ausate:
$$U(\hat{R}(0)) = \mathbf{K} \cdot (\hat{R}(0) - 5131 R)$$

$$K = \frac{5V}{171 \Omega - 5131 R} = -\frac{1V}{992R}$$

$$\Rightarrow U(\hat{R}(0)) = \frac{1V}{992R} \cdot (5131 R - \hat{R}(0))$$

6.)
$$\overline{5} = \frac{1}{5} (30 + 35 + 27 + 31 + 34) \text{ nm}$$

= 31,4 nm

$$G_{S} = \left[\frac{1}{4}\left(1.4^{2} + 3.6^{2} + 4.4^{2} + 0.4^{2} + 2.6^{2}\right)\right] \mu m$$

$$= 3.21 \mu m$$

$$t_{5.99}$$

$$dS = \frac{1}{15} \cdot 4.6 \cdot 3.21 \mu m = 6.602 \mu m$$

- b) unbekannte systematische Fehles aufeze ben durch Genanigkeitstelasse
- der Hessgröße c) Auf sprung formige Anderungen Tea fiert der Seusor ausgang verzögert, derart dass mach T= 10 sec ca. 63% des Endwartes erreicht sind.

d) Pt 100, NTC, PTC, Ni 100, Si-Tempsons