```
In [58]:
           from scipy.io import arff
           import pandas as pd
           import math
           import matplotlib.pyplot as plt
           import operator
           col=["c_type", "lifestyle", "vacation", "credit", "salary", "property_value", "cl
In [59]:
In [60]:
           train_data=pd.read_csv("trainProdSelection.arff", delimiter="\t")
           test data=pd.read csv("testProdSelection.arff",delimiter="\t")
In [61]:
           train data.columns=col
In [62]:
           train_data.head()
           train_data.shape
Out[62]: (185, 7)
In [63]:
           test data.columns=col
           test data.head()
Out[63]:
                             lifestyle vacation
                c_type
                                              credit
                                                       salary
                                                              property_value
                                                                             class
                                           29
                                                      16.1900
                                                                                C1
           0
               student
                       spend>>saving
                                                  10
                                                                      2.4839
               student
                       spend<<saving
                                           28
                                                  60
                                                      15.4600
                                                                      1.1885
                                                                                C1
                                                                      1.4379
           2
              engineer
                        spend>saving
                                           15
                                                      21.2600
                                                                                C1
           3
               librarian
                        spend<saving
                                            2
                                                      19.7207
                                                                      0.6913
                                                                                C1
                                            7
               librarian
                        spend>saving
                                                     12.7098
                                                                      1.4728
                                                                                C1
           train data.describe()
In [64]:
Out[64]:
                                                     property_value
                     vacation
                                   credit
                                              salary
                  185.000000
                              185.000000
                                         185.000000
                                                         185.000000
           count
           mean
                   27.691892
                               62.783784
                                          20.702852
                                                          4.146650
              std
                   18.572630
                               69.120537
                                           4.244655
                                                          3.775707
                                                          0.008000
                    1.000000
                                3.000000
                                           8.507600
             min
             25%
                    9.000000
                               15.000000
                                          18.594400
                                                           1.644700
             50%
                   26.000000
                               45.000000
                                          20.390000
                                                           2.897200
             75%
                   48.000000
                               72.000000
                                          22.790000
                                                           4.838800
             max
                   64.000000
                              347.000000
                                          31.750000
                                                          17.873700
```

In [67]:

In [68]:

In [69]: test_data.head()

Out[69]:

	c_type	lifestyle	vacation	credit	salary	property_value	class
0	student	spend>>saving	29	10	16.1900	2.4839	C1
1	student	spend< <saving< th=""><th>28</th><th>60</th><th>15.4600</th><th>1.1885</th><th>C1</th></saving<>	28	60	15.4600	1.1885	C1
2	engineer	spend>saving	15	41	21.2600	1.4379	C1
3	librarian	spend <saving< th=""><th>2</th><th>9</th><th>19.7207</th><th>0.6913</th><th>C1</th></saving<>	2	9	19.7207	0.6913	C1
4	librarian	spend>saving	7	9	12.7098	1.4728	C1

Out[70]:

	vacation	credit	salary	property_value
0	11	21	15.32	2.0232
1	7	64	16.55	3.1202
2	3	47	15.71	3.4022
3	15	10	16.96	2.2825
4	6	80	15.50	3.7338

In [71]: dtest_numeric=test_data[['vacation','credit','salary','property_value']]
 dtest_numeric.head()

Out[71]:

	vacation	credit	salary	property_value
0	29	10	16.1900	2.4839
1	28	60	15.4600	1.1885
2	15	41	21.2600	1.4379
3	2	9	19.7207	0.6913
4	7	9	12.7098	1.4728

In [72]: dtrain_norm = (dtrain_numeric-dtrain_numeric.min())/(dtrain_numeric.max()-dtrain_
dtrain_norm.head()

Out[72]:

	vacation	credit	salary	property_value
C	0.158730	0.052326	0.293102	0.112797
1	0.095238	0.177326	0.346023	0.174200
2	2 0.031746	0.127907	0.309882	0.189984
3	0.222222	0.020349	0.363663	0.127311
4	0.079365	0.223837	0.300847	0.208545

Out[73]:

	vacation	credit	salary	property_value
0	0.54	0.021008	0.175059	0.243041
1	0.52	0.231092	0.138339	0.085992
2	0.26	0.151261	0.430086	0.116229
3	0.00	0.016807	0.352657	0.025714
4	0.10	0.016807	0.000000	0.120460

In [74]: train_data.head()

Out[74]:

	c_type	lifestyle	vacation	credit	salary	property_value	class
0	student	spend>saving	11	21	15.32	2.0232	C1
1	student	spend>saving	7	64	16.55	3.1202	C1
2	student	spend>saving	3	47	15.71	3.4022	C1
3	student	spend>saving	15	10	16.96	2.2825	C1
4	student	spend>saving	6	80	15.50	3.7338	C1

Out[75]:

	c_type	lifestyle	class	vacation	credit	salary	property_value
C	student	spend>saving	C1	0.158730	0.052326	0.293102	0.112797
1	student	spend>saving	C1	0.095238	0.177326	0.346023	0.174200
2	student	spend>saving	C1	0.031746	0.127907	0.309882	0.189984
3	student	spend>saving	C1	0.222222	0.020349	0.363663	0.127311
4	student	spend>saving	C1	0.079365	0.223837	0.300847	0.208545

```
In [76]: # dtrain=dtrain.drop(['lifestyle','c_type'],axis=1)
    dtrain['cclass']=dtrain['class']
    dtrain.head()
```

Out[76]:

	c_type	lifestyle	class	vacation	credit	salary	property_value	cclass
(student	spend>saving	C1	0.158730	0.052326	0.293102	0.112797	C1
1	student	spend>saving	C1	0.095238	0.177326	0.346023	0.174200	C1
2	student	spend>saving	C1	0.031746	0.127907	0.309882	0.189984	C1
3	student	spend>saving	C1	0.222222	0.020349	0.363663	0.127311	C1
4	student	spend>saving	C1	0.079365	0.223837	0.300847	0.208545	C1

```
In [77]: dtrain=dtrain.drop('class',axis=1)
    dtrain.head()
```

Out[77]:

	c_type	lifestyle	vacation	credit	salary	property_value	cclass
0	student	spend>saving	0.158730	0.052326	0.293102	0.112797	C1
1	student	spend>saving	0.095238	0.177326	0.346023	0.174200	C1
2	student	spend>saving	0.031746	0.127907	0.309882	0.189984	C1
3	student	spend>saving	0.22222	0.020349	0.363663	0.127311	C1
4	student	spend>saving	0.079365	0.223837	0.300847	0.208545	C1

```
In [78]: # dtest=pd.concat([test_data,tectype,telife],axis=1)
# dtest=dtest.drop(['lifestyle','c_type'],axis=1)
# dtest['cclass']=dtest['class']
# dtest.head()
test_data=test_data.drop(['vacation','credit','salary','property_value'],axis=1)
dtest=pd.concat([test_data,dtest_norm],axis=1)
```

Out[79]:

	c_type	lifestyle	vacation	credit	salary	property_value	cclass
0	student	spend>>saving	0.54	0.021008	0.175059	0.243041	C1
1	student	spend< <saving< th=""><th>0.52</th><th>0.231092</th><th>0.138339</th><th>0.085992</th><th>C1</th></saving<>	0.52	0.231092	0.138339	0.085992	C1
2	engineer	spend>saving	0.26	0.151261	0.430086	0.116229	C1
3	librarian	spend <saving< th=""><th>0.00</th><th>0.016807</th><th>0.352657</th><th>0.025714</th><th>C1</th></saving<>	0.00	0.016807	0.352657	0.025714	C1
4	librarian	spend>saving	0.10	0.016807	0.000000	0.120460	C1

FROM SCRATCH

```
In [80]: k list=[]
         acc list=[]
         for k in range(1,26,2):
             k list.append(k)
             predict=[]
             def euc_distance(testrow,trainrow,length):
                  distance=0
                  for i in range(1,3):
                      if(testrow[i]==trainrow[i]):
                          distance+=1
                   for i in range(2):
         #
                        if(testrow[i]==trainrow[i]):
         #
                            distance+=1
                 for i in range(3,length-1):
                      distance+=pow((testrow[i]-trainrow[i]),2)
                  return math.sqrt(distance)
             def getNeighbours(traindata,testRow,k):
                  distance with train=[]
                  length=len(testRow)
                  for x in range(len(traindata)):
                      dist=euc distance(testRow,traindata[x],length)
                      distance_with_train.append((traindata[x],dist))
                  distance with train.sort(key=operator.itemgetter(1))
                  neighbors = []
                 for x in range(k):
                      neighbors.append(distance with train[x][0])
                  return neighbors
             def getResponse(neighbors):
                  votes = {}
                  for x in range(len(neighbors)):
                      response = neighbors[x][-1]
                      if response in votes:
                          votes[response] += 1
                      else:
                          votes[response] = 1
                  sortedVotes = sorted(votes.items(), key=operator.itemgetter(1), reverse=T
                  return sortedVotes[0][0]
             def getAccuracy(dtest, predict):
                  correct = 0
                  for x in range(len(dtest)):
                      if dtest[x][-1] == predict[x]:
                          correct += 1
                  return (correct/float(len(dtest))) * 100.0
             for i in range(len(dtest)):
                  neighbour=getNeighbours(dtrain.values,dtest.values[i],k)
             #
                    print(neighbour)
                  result = getResponse(neighbour)
                  predict.append(result)
                    print('> predicted=' + repr(result) + ', actual=' + repr(xtest.values[i
             accuracy = getAccuracy(dtest.values, predict)
             acc list.append(accuracy)
             print('Accuracy: ' + repr(accuracy) + '%', 'with k=',k)
```

Accuracy: 40.0% with k= 1 Accuracy: 35.0% with k= 3 Accuracy: 35.0% with k= 5

```
Accuracy: 35.0% with k= 7
Accuracy: 35.0% with k= 9
Accuracy: 35.0% with k= 11
Accuracy: 30.0% with k= 13
Accuracy: 30.0% with k= 15
Accuracy: 30.0% with k= 17
Accuracy: 25.0% with k= 19
Accuracy: 25.0% with k= 21
Accuracy: 30.0% with k= 23
Accuracy: 20.0% with k= 25
```

Using KNN Classifier

```
In [149]:
           from sklearn.model_selection import train_test_split
           from sklearn.neighbors import KNeighborsClassifier
           from sklearn.metrics import accuracy score
In [158]:
           x_train= dtrain.loc[:,'c_type':'property_value']
           y train= dtrain.loc[:,['cclass']]
In [159]:
           x train.head()
Out[159]:
                          lifestyle vacation
                                             credit
                                                      salary property_value
               c_type
            0 student spend>saving
                                 0.158730 0.052326
                                                   0.293102
                                                                  0.112797
            1 student spend>saving 0.095238 0.177326
                                                    0.346023
                                                                  0.174200
            2 student spend>saving 0.031746 0.127907
                                                   0.309882
                                                                  0.189984
            3 student spend>saving 0.222222 0.020349
                                                    0.363663
                                                                  0.127311
            4 student spend>saving 0.079365 0.223837 0.300847
                                                                  0.208545
In [160]:
           x_train["type"] = lb_make.fit_transform(x_train["c_type"])
           x_train["type"].value_counts()
Out[160]:
                49
           1
           3
                39
           4
                37
           0
                37
           2
                23
           Name: type, dtype: int64
In [161]: | x train["style"] = lb make.fit transform(x train["lifestyle"])
           x_train["style"].value_counts()
Out[161]: 3
                86
                41
           1
           2
                38
                20
           Name: style, dtype: int64
```

In [162]: x_train.head()

Out[162]:

	c_type	lifestyle	vacation	credit	salary	property_value	type	style
0	student	spend>saving	0.158730	0.052326	0.293102	0.112797	4	3
1	student	spend>saving	0.095238	0.177326	0.346023	0.174200	4	3
2	student	spend>saving	0.031746	0.127907	0.309882	0.189984	4	3
3	student	spend>saving	0.22222	0.020349	0.363663	0.127311	4	3
4	student	spend>saving	0.079365	0.223837	0.300847	0.208545	4	3

In [166]: x_train=x_train[["type","style","vacation","credit","salary","property_value"]]
 x_train.head()

Out[166]:

	type	style	vacation	credit	salary	property_value
0	4	3	0.158730	0.052326	0.293102	0.112797
1	4	3	0.095238	0.177326	0.346023	0.174200
2	4	3	0.031746	0.127907	0.309882	0.189984
3	4	3	0.222222	0.020349	0.363663	0.127311
4	4	3	0.079365	0.223837	0.300847	0.208545

In [171]: x_train["type"] = x_train['type'].astype(float)
x_train.head()

Out[171]:

	type	style	vacation	credit	salary	property_value
0	4.0	3	0.158730	0.052326	0.293102	0.112797
1	4.0	3	0.095238	0.177326	0.346023	0.174200
2	4.0	3	0.031746	0.127907	0.309882	0.189984
3	4.0	3	0.22222	0.020349	0.363663	0.127311
4	4.0	3	0.079365	0.223837	0.300847	0.208545

In [173]: x_train["style"] = x_train['style'].astype(float)
x_train.head()

Out[173]:

	type	style	vacation	creait	salary	property_value
0	4.0	3.0	0.158730	0.052326	0.293102	0.112797
1	4.0	3.0	0.095238	0.177326	0.346023	0.174200
2	4.0	3.0	0.031746	0.127907	0.309882	0.189984
3	4.0	3.0	0.222222	0.020349	0.363663	0.127311
4	4.0	3.0	0.079365	0.223837	0.300847	0.208545

```
In [174]:
           y train.head()
Out[174]:
               cclass
                  C1
            0
            1
                  C1
            2
                  C1
            3
                  C1
                  C1
In [175]: | x_test=dtest.loc[:,'c_type':'property_value']
           y_test=dtest.loc[:,['cclass']]
In [176]: x_test["type"] = lb_make.fit_transform(x_test["c_type"])
           x_test["type"].value_counts()
Out[176]: 4
                 6
           3
                 5
           2
                 3
                 3
           1
                 3
           Name: type, dtype: int64
In [177]: x_test["style"] = lb_make.fit_transform(x_test["lifestyle"])
           x test["style"].value counts()
Out[177]:
           3
                 8
           2
                7
           1
                 4
           Name: style, dtype: int64
In [181]:
           x_test=x_test[["type","style","vacation","credit","salary","property_value"]]
           x test.head()
Out[181]:
                                                    property_value
                    style vacation
                                     credit
                                              salary
               type
            0
                       2
                                                          0.243041
                 4
                             0.54 0.021008 0.175059
            1
                       0
                                                         0.085992
                 4
                             0.52 0.231092 0.138339
            2
                 1
                       3
                             0.26 0.151261 0.430086
                                                          0.116229
            3
                 2
                       1
                             0.00 0.016807 0.352657
                                                         0.025714
            4
                 2
                       3
                             0.10 0.016807 0.000000
                                                         0.120460
```

```
In [182]: x_test["type"] = x_test['type'].astype(float)
    x_test.head()
```

Out[182]:

	type	style	vacation	credit	salary	property_value
0	4.0	2	0.54	0.021008	0.175059	0.243041
1	4.0	0	0.52	0.231092	0.138339	0.085992
2	1.0	3	0.26	0.151261	0.430086	0.116229
3	2.0	1	0.00	0.016807	0.352657	0.025714
4	2.0	3	0.10	0.016807	0.000000	0.120460

```
In [184]: x_test["style"] = x_test['style'].astype(float)
x_test.head()
```

Out[184]:

	type	style	vacation	credit	salary	property_value
0	4.0	2.0	0.54	0.021008	0.175059	0.243041
1	4.0	0.0	0.52	0.231092	0.138339	0.085992
2	1.0	3.0	0.26	0.151261	0.430086	0.116229
3	2.0	1.0	0.00	0.016807	0.352657	0.025714
4	2.0	3.0	0.10	0.016807	0.000000	0.120460

```
In [185]: for K in range(20):
           K value = K+1
           neigh = KNeighborsClassifier(n neighbors = K value, weights='uniform', algorithm
           neigh.fit(x train, y train)
           y pred = neigh.predict(x test)
           print("Accuracy is ", accuracy_score(y_test,y_pred)*100,"% for K-Value:",K_value
          Accuracy is 20.0 % for K-Value: 1
          Accuracy is 25.0 % for K-Value: 2
          Accuracy is 25.0 % for K-Value: 3
          Accuracy is 25.0 % for K-Value: 4
          Accuracy is 25.0 % for K-Value: 5
          Accuracy is 25.0 % for K-Value: 6
          Accuracy is 25.0 % for K-Value: 7
          Accuracy is 25.0 % for K-Value: 8
          Accuracy is 25.0 % for K-Value: 9
          Accuracy is 25.0 % for K-Value: 10
          Accuracy is 25.0 % for K-Value: 11
          Accuracy is 15.0 % for K-Value: 12
          Accuracy is 15.0 % for K-Value: 13
          Accuracy is 15.0 % for K-Value: 14
          Accuracy is 10.0 % for K-Value: 15
          Accuracy is 15.0 % for K-Value: 16
          Accuracy is 10.0 % for K-Value: 17
          Accuracy is 10.0 % for K-Value: 18
          Accuracy is 5.0 % for K-Value: 19
          Accuracy is 10.0 % for K-Value: 20
          G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
          column-vector y was passed when a 1d array was expected. Please change the shap
          e of y to (n samples, ), for example using ravel().
            after removing the cwd from sys.path.
          G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A
          column-vector y was passed when a 1d array was expected. Please change the shap
          e of y to (n_samples, ), for example using ravel().
            after removing the cwd from sys.path.
          G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A
          column-vector y was passed when a 1d array was expected. Please change the shap
          e of y to (n_samples, ), for example using ravel().
            after removing the cwd from sys.path.
          G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
          column-vector y was passed when a 1d array was expected. Please change the shap
          e of y to (n samples, ), for example using ravel().
            after removing the cwd from sys.path.
          G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
          column-vector y was passed when a 1d array was expected. Please change the shap
          e of y to (n_samples, ), for example using ravel().
            after removing the cwd from sys.path.
          G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
          column-vector y was passed when a 1d array was expected. Please change the shap
          e of y to (n samples, ), for example using ravel().
            after removing the cwd from sys.path.
          G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
          column-vector y was passed when a 1d array was expected. Please change the shap
```

e of y to (n samples,), for example using ravel().

G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A

after removing the cwd from sys.path.

column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.