Envariabelanalys 2018-02-27 #20

Minns Ean är konvergent omm lim Ean existerar (aindligt)

N-00, n=0

SN

Två konvergenskriterier till (för icke-negativa serier)

Sats: Rotkriteriet

Kvotkriteriet

Om
$$a_n \ge 0$$
 och $a_n \ge 0$ och $\lim_{n \to \infty} \sqrt[n]{a_n} = A$ $\lim_{n \to \infty} \sqrt[n]{a_n} = A$

Så $A < 1 \Rightarrow \sum_{n=0}^{\infty} a_n$ konvergent
$$A > 1 \Rightarrow -11 - \text{divergent}$$

$$A = 1 ?$$

Ty: A < 1: for n > N: $\sqrt[n_0]{a_n} < \frac{A+1}{2} < 1$ $0 \le a_n < (\frac{A+1}{2})^n, \sum_{i=1}^{\infty} (\frac{A+1}{2})^n < \infty$ (majorant principen) $\frac{a_{n+1}}{a_n} < \frac{A+1}{2}; a_{n+1} < (\frac{A+1}{2})a_n ... + 1$ $A > 1: \sqrt[n_0]{a_n} > \frac{A+1}{2} > 1, a_n > (\frac{A+1}{2})^n$

A=1: $\sum_{n=1}^{\infty} \frac{1}{n^n} ger A=1$ oberoende au α .

Serier som inte (säkert) är icke-negativa?

Sats: Élanl konv. => Éan konv Serien saigs de vara absolut konvergent.

ty: lat
$$a_n^+ = \begin{cases} a_n & a_n \ge 0 \\ 0 & a_n < 0 \end{cases}, \quad a_n^+ \ge 0$$

$$a_n^- = \begin{cases} 0 & a_n \ge 0 \\ -a_n & a_n < 0 \end{cases}, \quad a_n^- \ge 0$$

da ar an = an - an, |an | = an + an

 $0 \le a_n^{\pm} \le |a_n|$ så (med foruts.) $\sum_{n=1}^{\infty} a_n^{\pm}$ bonv. (maj. prind) så $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n^{\pm} - a_n^{\pm}) = \sum_{n=1}^{\infty} a_n^{\pm} - \sum_{n=1}^{\infty} a_n^{\pm}$.

En serie som är konvergent men inte absolut konvergent sägs vara betingat konvergent.

Leibnitz briterium: Om "Sgnan = -sgnan, (alternerande serie)

| and | and | and | (autagande belopp)

| liman = 0
| sa ar \(\sum_{n=1}^{\infty} a_n \) konvergent.

ty: (om a,>0) $S_{2N+2}-S_{2N}=a_{2N+1}+a_{2N+2}\geqslant 0$, $S_{2N+2}\geqslant S_{2N}$ $S_{2N+1}-S_{2N-1}=a_{2N}+a_{2N+1}\leq 0$, $S_{2N+1}\leq S_{2N-1}$

$$S_{a} S_{2} \leq S_{u} \leq S_{6} \leq ...$$
 $S_{1} \geq S_{3} \geq S_{5} \geq ...$
 $S_{2N} + G_{2N+1} \leq ... \leq S_{1} = \alpha,$
 $S_{2N} + G_{2N+1} \leq ... \leq S_{N} \leq ...$

Så {Sin}, växande, begränsad {Sentificial artagande, begransad

så lim szn, lim szn+1 existerar, men szn+1-szn=azn+1-0 da N-00

ex. \(\sum_{na}^{(-1)^n} \) air konvergent omm \(d > 0 \) $(\alpha \leq 0: \frac{(-1)^n}{2} \neq 0)$

betingat bonvergent de 0 < a < 1 absolut konvergent de a:>1

Om $\sum_{n=1}^{\infty} a_n$ är betingat bonvergent, dus konv. men $\sum_{n=1}^{\infty} a_n^{\dagger}$, $\sum_{n=1}^{\infty} a_n^{\dagger}$ divergenta. kan om kastning av termerna ge ett godtyckligt värde för summan (!),

ty: För att få värdet s: tag positiva termer tills summan av dem >5, sedan negativa termer tills summan är <5, så positiva

lim an=0 så mya serien konvergerar mot s

Potensserier, 9.5 \(\sum_{a_n} \times^n \) (eller \(\sum_{a_n} (x-c)^n \) \(\times^n \) variabel*

Sats: för $\sum a_n x^n$ finns $R \in [0, \infty]$ s.a. serien är absolutkonvergent

för lx1<R och divergent för 1x1>R

för |x|=R: abs.konv/bet.konv./div. (R=0 konv.)

ty: Om serien ar konu. for xo och |x|< |xol:

$$\sum_{n=0}^{\infty} |a_n x^n| = \sum_{n=0}^{\infty} |a_n x^n_0| \left| \frac{x}{x_0} \right|^n \leq \sum_{n=0}^{\infty} K_n = \frac{K}{1-r} < \infty$$

EK |K|=rci/så konvergensintervallet R kallas konvergensradien

Sats (Abel):
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 är kontinuerlig på hela konv. intervallet.
Spec. $\begin{cases} \lim_{n\to\infty} f(x) = \sum_{n=0}^{\infty} a_n R^n \text{ om serien konv} \\ -R + \sum_{n=0}^{\infty} a_n (-R)^n \end{cases}$

R kan (ofta) bestämmas med rot-eller kvotkriteriet en 1.

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \text{om det existerar (alltid } \frac{1}{R} = \limsup_{n \to \infty} \sqrt{|a_n|}$$

ex.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} ger \frac{1}{R} = \lim_{n \to \infty} \left| \frac{1}{\frac{(n+1)!}{n!}} \right| = \lim_{n \to \infty} \frac{1}{n+1} = 0, \text{ so } R = \infty, \text{ serien ar (absolut) to nv}$$
 for all $\alpha \times (-e^{x})$

Sats: Om
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 for $|x| \in (R>0)$ so

If
$$(x) = \sum_{n=0}^{\infty} a_n n x^{n-1} d = |x| < R$$
 och $f'(x) = \sum_{n=0}^{\infty} a_n n x^{n-1} d = |x| < R$

$$\int_{0}^{\infty} f(t)dt = \sum_{n=0}^{\infty} \frac{a_{n-1}}{n+1} \times^{n+1} for |x| < R$$

$$\int_{0}^{\infty} de rivera ach integrera term for term "$$

$$\begin{cases} ex. & f_n(x) = \arctan(n x) - \arctan((n-1)x) \text{ ger } \sum_{n=1}^{N} f_n(x) = \arctan(N x) \xrightarrow{N \to \infty} \frac{n_2}{1 + n_2} \end{cases}$$

ex.
$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 konv. för alla x

ent satsen
$$f'(x) = \sum_{n=0}^{\infty} \frac{n \cdot x^{n-1}}{n!} = \sum_{k=0}^{\infty} \frac{x^k}{k!} = f(x)$$
, sã (ODE) $f(x) = (\cdot e^x, ngn \text{ bonst } C)$
 $\frac{x^{n-1}}{(n-1)!}$

ex.
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} d\alpha |x| < 1$$

 $\sum_{n=0}^{\infty} (-x)^n = 1 - x + x^2 - x^3 + ... |x| < 1$

integrera:
$$ln(1+x) = \int_{0}^{x} \frac{dx}{1+t} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \times \frac{n+1}{2} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 konv. La 1x1<1

Abels sats:
$$2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 (konv. enl. Leibniz)