Lattice-Boltzmann:

What is it?
Why does it matter?
What are we going to do with it?

<u>Video of a Lattice-Boltzmann simulation of the human vocal fold.</u>

Lattice-Boltzmann

- Used for simulation of fluids according to the Boltzmann equation.
- An alternative to solving the Navier-Stokes equation.
- Practically used for simulating:
 - Aerodynamics, e.g. http://optilb.org/openlb/automotive
 - Plasma flows
 - Flow through porous media (e.g. soil)
 - Simulation of respiration for medical science, e.g. <u>http://optilb.org/openlb/respiration-nose</u>
 - Blood flow through veins and arteries, e.g.
 Sun, C., & Munn, L. L. (2008). Lattice Boltzmann simulation of blood flow in digitized vessel networks. Computers & Mathematics with Applications (Oxford, England: 1987), 55(7), 1594–1600. http://doi.org/10.1016/j.camwa.2007.08.019
- Many real codes use LBM; e.g.:
 - OpenLB: http://optilb.org/openlb/
 - Ludwig: http://ludwig.epcc.ed.ac.uk
 - waLBerla: http://walberla.net

Lattice-Boltzmann

- The equation describes the change of particle distribution through the sum of changes due to external forces, diffusion and collisions.
- The "maths" models a probability distribution, not individual particles.

Structured grid

- Lattice-Boltzmann is a member of the structured grid dwarf.
- The 2D spatial domain is discretised into square cells.
- The probability distribution is represented as 9
 "speeds" (or directions) of fluid flow in each cell.
 - I.e. 9 floating point numbers per cell

D2Q9: 2 dimensions, 9 speeds

Coursework: implementing D2Q9

- We give you a serial D2Q9 Lattice-Boltzmann code.
- It reads in problem parameters and a file of obstacle positions.
- It then runs the solution for a number of timesteps.
- Finally it writes 2 files, and prints a summary:
 - The final state of the grid
 - The average velocity across the whole grid for each time step

Data structures – as given

Halo exchange

- All cells can be computed independently
 - Good for parallelism!
- Decompose the grid data across multiple MPI ranks
- Each MPI rank works on a portion (sub-domain) of the grid
 But!
- One routine needs data from neighbouring cells
- Need to implement a halo exchange scheme to communicate the sub-domain boundary data to neighbouring ranks

Example decomposition

Decompose along rows between two ranks

Basic code structure:

- initialise()
- for each timestep:
 - 1. accelerate flow()
 - 2. propagate()
 - 3. rebound()
 - 4. collision()
 - 5. av_velocity()
- write_values()
- finalise()

Accelerate Flow

On one row of cells, add to the right pointing speeds, and subtract from the left pointing speeds

Propagation Step

Rebound Step: Obstacle Cells

Mirror the speeds in each cell E.g. east becomes west, north-west becomes south-east

Collision Step: Non-Obstacle Cells

Perform 'relaxation' arithmetic in each cell

Loops

```
/* iterate for maxIters timesteps */
for (tt=0; tt<params.maxIters; tt++) {
    ...
    e.g. propagate() {
    /* loop over _all_ cells */
    for (jj=0; jj<params.ny; jj++) {
        for (ii=0; ii<params.nx; ii++) {
            ...
        }
        }
}</pre>
```

```
cells[ii + jj*params.nx].speeds[0]
```

Getting the coursework

Code will be on GitHub

https://github.com/UoB-HPC/advanced-hpc-lbm

- There are currently FOUR input files.
 - We will be checking that your code works for all of them
 - So you should too!
 - You are free to create extra problem sizes to work on too
 - Might help when you're running on multiple GPUs

The assignments

The Advanced HPC course differs from the intro's ones

- More challenging parallel programming tasks
- Targeting multiple nodes of BCp4 and GPUs
- Designed to encourage "exploration based discovery":
 - Port the LBM code to use an "MPI+X" style of parallelism, to run across multiple nodes and GPUs at once
 - You get to choose the "X": OpenCL, OpenMP 4.5, Kokkos...
 - We encourage you to explore interesting technologies and ideas

Assignment 1 – Flat MPI

- Parallelise the LBM code using just MPI ("flat MPI")
- Crucial to get this step working first!!!
- Submit working code by the end of week 17
 - No report required at this stage
 - We will auto-mark your code and check it works though

Formative

Assignment 2 – MPI+X

- Parallelise the LBM code using MPI and some other language that supports running on the GPUs
 - "MPI+X"
- This should leverage your working MPI code
- Submit working code by the end of week 24
- Include a 3-4 page report describing what you did
- Summative: 100%

Important guidance

- Aim to get the workload right:
 - ~100 hours for the course, of which ~12 hours will be in lectures
 - The rest of the time is all available for the assignments
 - \rightarrow 88 hours over 11 weeks, or 8 hours per week
 - Don't overdo it!! The right answer is what you can do in the time allocated
- This is a deliberately open-ended assignment
 - You need to practice knowing when you're done
 - We do not need perfection
 - If you're enjoying the assignment and you want to keep going, only do so if this doesn't negatively impact your health, or other coursework
- Don't be fooled by distant deadlines
 - This is a highly challenging assignment, you'll need the time!
 - You really really need working flat MPI before week 18...

Further reading

Learn more about lattice Boltzmann at NASA:

 https://youtu.be/I82uCa7SHSQ?list=PLYfV6sBy5qTI0iZhmI8L1 rhg0cpYUHGCl

Watch lattice Boltzmann simulations:

- The respiratory system: <u>https://youtu.be/FmPvHIZSjyk?list=PLYfV6sBy5qTI0iZhmI8L1rhg0cpYUHGCl</u>
- The circulatory system: <u>https://youtu.be/o11NDvrZMNs?list=PLYfV6sBy5qTI0iZhmI8L</u> <u>1rhg0cpYUHGCl</u>