PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-081266

(43)Date of publication of application: 27.03.2001

(51)Int.CI.

CO8L 33/10 CO8J 7/00 (CO8L 33/10 CO8L 51:06

(21)Application number: 11-261763

(71)Applicant:

KANEGAFUCHI CHEM IND CO LTD

(22)Date of filing:

16.09.1999

(72)Inventor:

KOIZUMI KEIJI

OKIMI TAKAO

NISHIMURA JUICHI

(54) DELUSTERED THERMOPLASTIC RESIN FILM

(57) Abstract:

PROBLEM TO BE SOLVED: To prepare a delustesred film which shows excellence in whitening by bending, in shock resistance, solvent resistance and plasticizer migration resistance and does not cause any unprinting trouble and to obtain a thermoplastic resin composition which shows good moldability.

SOLUTION: A deulstered thermoplastic film is produced by forming a thermoplastic resin composition obtained by mixing 0.5 to 50 pts.wt. of an acrylic grafted copolymer (B) with 100 pts.wt. of an acrylic resin having a multi-layer structure (A) wherein (1) the acrylic grafted copolymer (B) to be used has a weight average diameter of 0.5 to 15 μm and does not include a particle having a diameter of not less than 60 µm or (2), in forming the thermoplastic resin composition into a film, the one side or both sides of the film is pressurized with a roll or a pair of rolls at a temperature in the range of 0 to 70° C to smoothen a convex portion while the temperature of the film is kept not less than 150° C.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's

decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-81266 (P2001-81266A)

(43)公開日 平成13年3月27日(2001.3.27)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
C08L 33/10		C 0 8 L 33/10	4 F 0 7 3
C08J 7/00	301	C 0 8 J 7/00	301 4J002
// (C08L 33/10			
51: 06)			

審査請求 未請求 請求項の数3 OL (全 11 頁)

(21)出願番号	特顯平11-261763	(71)出顧人 000000941
(22)出顧日	平成11年9月16日(1999.9.16)	大阪府大阪市北区中之島3丁目2番4号
	• • • • • • • • • • • • • • • • • • • •	(72)発明者 小泉 惠司
		摂津市鳥飼西5丁目5番32-303号
		(72)発明者 沖見 高雄
	•	摂津市鳥飼西5丁目5番35-203号
		(72)発明者 西村 重一
	·	高槻市古曽部町2丁目14番地の10
		Fターム(参考) 4F073 AA01 AA05 AA06 AA13 AA16
		BA18 BB01 GA01 GA05
		4J002 BN121 BN122

(54) 【発明の名称】 飽消し熱可塑性樹脂フィルム

(57)【要約】

【課題】 折曲白化性に優れ、耐衝撃性、耐溶剤性、耐可塑剤移行性にも優れ、印刷抜けを起こさない艶消しフィルムを提供し、加工性の良好な熱可塑性樹脂組成物を提供する。

【解決手段】 多層構造を有するアクリル樹脂(A) 100重量部に対し、アクリル系グラフト共重合体(B) $0.5\sim50$ 重量部を配合してなる熱可塑性樹脂組成物を、成形してなる艶消し熱可塑性樹脂フィルムであって、(1)アクリル系グラフト共重合体(B)は、重量平均粒子径が $0.5\sim15\mu$ mであり、 60μ m以上の粒子を含まないものを使用する、又は、(2)熱可塑性樹脂組成物をフィルム成形するに際し、フィルム温度が150℃以上である間に、該フィルムの片面又は、両面を $0\sim70$ ℃の温度のロールで押圧し、該フィルム表面の凸部を平滑にすることを特敵とする。

【特許請求の範囲】

【請求項1】多層構造を有するアクリル樹脂(A)10 ○重量部に対して、アクリル酸アルキルエステル40~ 90重量%とメタク リル酸アルキルエステル60~10 重量%とを含む単量体及び共重合可能な他のビニル系単 量体の少なくとも1種0~10重量%と、該単量体10 ○重量部に対して○. 1~20重量部の、該単量体と共 重合しうる、1分子当たり2個以上の非共役二重結合を 有する多官能性単量体とを重合せしめてなる架橋アクリ ル酸エステル系重合体(b-1)40~85重量部とメ タクリル酸アルキル エステル60~100重量%とアク リル酸アルキルエス テルエステル0~40重量%及び共 重合可能な他のビニル系単量体の少なくとも1種0~1 ○重量%とよりなる単量体成分(b-2)60~15重 **量部を架橋アクリル酸エステル系重合体(b−1)にグ** ラフト重合せしめてなる重量平均粒子径が0.5~15 μmであって、60μm以上の粒子を含まないアクリル 系グラフト共重合体 (B) 0.5~50重量部を配合し た熱可塑性樹脂組成物を成形してなる艶消し熱可塑性樹 脂フィルム。

【請求項2】多層構造を有するアクリル樹脂(A)10 0 重量部に対して、アクリル酸アルキルエステル40~ 90重量%とメタクリル酸アルキルエステル60~10 重量%とを含む単量体及び共重合可能な他のビニル系単 量体の少なくとも1種0~10重量%と、該単量体10 ○重量部に対して○. 1~20重量部の、該単量体と共 重合しうる、1分子当たり2個以上の非共役二重結合を 有する多官能性単量体とを重合せしめてなる架橋アクリ ル酸エステル系重合体(b-1)40~85重量部とメ タクリル酸アルキルエステル60~100重量%とアク 30 リル酸アルキルエステルエステル0~40重量%及び共 重合可能な他のビニル系単量体の少なくとも1種0~1 ①重量%とよりなる単量体成分(b-2)60~15重 **量部を架橋アクリル酸エステル系重合体(b−l)にグ** ラフト重合せしめてなる重量平均粒子径が0.5~15 μmであるアクリル系グラフト共重合体(B)0.5~ 50重量部を配合してなる熱可塑性樹脂組成物をフィル ム成形するに際し、フィルム温度が150℃以上である 間に、該フィルムの片面又は、両面を0~70℃の温度 のロールで押圧し、該フィルム表面の凸部を平滑にした 40 ことを特徴とする艶消し熱可塑性樹脂フィルム。

【請求項3】前記多層構造を有するアクリル樹脂(A)が、アクリル酸アルキルエステル50~80重量%とメタクリル酸アルキルエステル50~20重量%とを含む単量体と、該単量体100重量部に対して、0.1~20重量部の該単量体と共重合しうる1分子当たり2個以上の非共役二重結合を有する多官能性単量体からなる、ガラス転移温度(以下Tgと記す)が−30~0℃である架橋重合体成分(a−1)20~80重量%とアクリル酸アルキルエステル80~100重量%以上とメタク 50

リル酸アルキルエステル0~20重量%とよりなる単量 体と、該単量体100重量部に対して、0.1~20重 量部の該単量体と共重合しうる1分子当たり2個以上の 非共役二重結合を有する多官能性単量体からなる Tg が -30℃未満である架橋重合体成分(a-2)80~2 0重量%とからなり、内側に(a-1)および外側に (a-2)、または内側に(a-2)及び外側に(a-1)からなる二層構造を有する架橋アクリル酸エステル 系弾性体 (A-l-a) 5~50重量%とこれに グラフ ト重合させるメタクリル酸アルキルエステル80~10 ○重量%とアクリル酸アルキルエステル○~20重量% よりなる単量体を、これらの単量体100重量部に対し て、0.01~10重量部の連鎖移動剤を加えて重合さ せて得られるメタクリル酸アルキルエステル系樹脂成分 (A-1-b) 95~50重量%とからなり、架橋アク リル酸エステル系弾性体(A-l-a)の重量平均粒子 径が300~3000人、ゲル含有率が5重量%以上で あるメタクリル酸エステル系樹脂である請求項1又は2 記載の艶消し熱可塑性樹脂フィルム。

20 【発明の詳細な説明】

[0001]

[0002]

【発明の属する技術分野】本発明は、印刷に適した艶消し熱可塑性樹脂フィルムに関する。さらに詳しくは、多層構造を有するアクリル樹脂にアクリル系グラフト共重合体を配合してなる耐折曲白化性に優れ、印刷飛びを起こさない艶消し熱可塑性樹脂フィルムに関する。

【従来の技術】アクリル樹脂などの熱可塑性樹脂の成型 品は一般に艶があり、それが用途によっては重要な特性 とされている。しかし、一方ではこのような艶を必要と

しなかったり、艶がない方が好まれるようとも多い。 とりわけ、車両内装材、家具や電気機器のハウジング、壁紙、建材等の用途には艶消し性が好まれる。

【0003】従来の熱可塑性樹脂の艶消し方法としては、大別して、(1)紋(シボ)付け加工、艶消し加工による方法、(2)無機物または有機物の艶消剤を添加する方法とに分けられる。

【0004】上記(1)の方法は、一般に物性の低下が少ないという利点はあるものの生産性は悪く、加工賃がかさむ上、艶消し効果も不十分であり、多くの場合二次加工を施す用途には不向きである。一方、上記(2)の方法は、生産性がそれほど低下せずに艶消しの程度のコントロールも可能であり、二次加工を施す用途にも適適用できるが物性の低下という大きな問題を含んでいる。特にシリカゲル等の無機物を艶消剤として用いた場合には、耐衝撃性、強伸度、透明性などの物性の低下がもし、有機物、特に高分子系の艶消剤を用いる方法として、特開昭56-36535号公報に記載されているように懸濁重合することによって得られる平均粒子径が35~500μmの架橋ボリマーを用いる方法があるが、

この方法では耐衝撃性や強伸度の物性の低下は小さい が、艶消し効果は、不十分であり、折曲白化性も悪い。 さらに、特開平9-272778号公報に記載されてい るようにアクリル樹脂に艶消剤とポリアルキレングリコ ールを併用する方法が提案されている。しかし、この方 法では、折曲白化性は向上するが、耐衝撃性、耐熱性、 強伸度という物性の低下が著しい。また、アクリル樹脂 フィルムの表面に印刷を施す場合、異物による表面の凸 部(以下、フィッシュアイと呼ぶ。)により印刷抜けが 生ずるという問題点を有しており、透明フィルムに関し 10 ては、印刷抜けを改良する方法として特開平9-263 614号公報に記載されている方法が提案されている が、艶消しフィルムには言及されておらず、艶消剤を含 有する場合には、印刷抜けの改良効果が不十分である。

【発明が解決しようとする課題】本発明者等は上記問題 点を解決することを目的とするものであり、艶消し性、 耐衝撃性、耐熱性、引張強度の物性を損なうことなく、 折曲白化性、フィルム中のフィッシュアイ等のごときフ ィルム表面の凸部を減少させ、印刷抜けの発生を極力防 20 止するように改良するものである。

[0006]

【課題を解決するための手段】本発明者らは上記問題点 について鋭意検討の結果、発明1として、 艶消しフィル ムを形成する艶消剤として使用するアクリル系グラフト 共重合体中に60μm以上の大粒子を取り除くことによ り、フィルム中のフィッシュアイ等のフィルム表面の凸 部を減少させることができ、印刷飛びという課題が解決 できることを見い出し、本発明を完成した。

【0007】さらに、発明2として、フィルム成形する に際し、フィルム温度が150℃以上である間に、該フ ィルムの片面又は、両面を0~70℃の温度のロールで 押圧し、該フィルム表面の凸部を平滑にすることで上記 課題が解決できることを見い出し、本発明を完成した。 【0008】すなわち、本発明の要旨とするところは、 多層構造を有するアクリル樹脂(A)100重量部に対 して、有機艶消剤として機能するアクリル系グラフト共 重合体(B)0.5~50重量部を配合してなる熱可塑 性樹脂組成物を成形してなるフィッシュアイ等のフィル ム表面の凸部が少なく印刷飛びを起こさない良好なフィ ルムを得ることにある。

[0009]

【発明の実施の形態】本発明に用いられる多層構造を有 するアクリル樹脂(A)の代表例は、アクリル酸アルキ ルエステル50~80重量%とメタクリル酸アルキルエ ステル50~80重量%とメタクリル酸アルキルエステ ル50~20重量%とを含む単量体と、該単量体100 重量部に対して、0.1~20重量部の該単量体と共重 合しうる1分子当たり2個以上の非共役二重結合を有す る多官能性単量体からなる、ガラス転移温度(以下Tg 50 になるとフィルムの透明性が低下し、0°Cを超えると耐

と記す) が-30~0℃である架橋重合体成分(a-1)20~80重量%とアクリル酸アルキルエステル8 0~100重量%以上とメタクリル酸アルキルエステル 0~20重量%とよりなる単量体と、該単量体100重 量部に対して、0.1~20重量部の該単量体と共重合 しうる1分子当たり2個以上の非共役二重結合を有する 多官能性単量体からなるTgが−30℃未満である架橋 重合体成分(a-2)80~20重量%とからなり、内 側に (a-1) および外側に (a-2)、または内側に (a-2) 及び外側に (a-1) からなる二層構造を有 する架橋アクリル酸エステル系弾性体(A-l-a)5 ~50重量%とこれにグラフト重合させるメタクリル酸 アルキルエステル80~100重量%とアクリル酸アル キルエステル0~20重量%よりなる単量体を、これら の単量体100重量部に対して、0.01~10重量部 の連鎖移動剤を加えて重合させて得られるメタクリル酸 アルキルエステル系樹脂成分 (A-1-b) 95~50 重量%とからなり、架橋アクリル酸エステル系弾性体 (A-1-a) の重量平均粒子径が300~3000 A、ゲル含有率が5重量%以上であるメタクリル酸エス テル系樹脂である多層構造重合体である。

[0010]架橋重合体成分(a-1)に用いられるア クリル酸アルキルエステルのアルキル基の炭素数は、1 ~8が好ましく、例えば、アクリル酸メチル、アクリル 酸エチル、アクリル酸プロピル、アクリル酸ブチル、ア クリル酸-2-エチルヘキシル、アクリル酸-n-オク チル等が挙げられる。これらは単独で用いてもよく、2 種以上併用してもよい。前記アクリル酸アルキルエステ ルのアルキル基は直鎖状でも分岐鎖状でもよいが、炭素 数が8を超える場合には反応速度が遅くなるので好まし くない。

[0011] 架橋重台体成分(a-1)に用いられるメ タクリル酸アルキルエステルのアルキル基の炭素数は 1 ~4 が好ましく、例えば、代表例として、メタクリル酸 メチルが挙げられるが、メタクリル酸エチル、メタクリ ル酸プロビル、メタクリル酸ブチル等が挙げられる。と れらは単独で用いてもよく、2種以上併用してもよい。 前記メタクリル酸アルキルエステルのアルキル基は直鎖 状でも分岐鎖状でもよいが、炭素数が4を超える場合に は反応速度が遅くなるので好ましくない。

【0012】前記アクリル酸アルキルエステルとメタク リル酸アルキルエステルとの使用割合は、前者が50~ 80重量%、好ましくは60~75重量%、後者が50 ~20重量%、好ましくは40~25重量%である。ア クリル酸アルキルエステルが50重量%未満になると、 耐衝撃性が低下し、また、80重量%を超えるとフィル ムの透明性が低下する。この架橋重合体成分(a-l) のTgは-30~0℃、好ましくは、-25~-5℃で ある。架橋重台体成分(a-1)のTgが-30℃未満 衝撃性が低下する。

【0013】架橋アクリル酸エステル系弾性体(A-1 - a) のもう一つの架橋重合体成分(a-2)は、Tg が-30℃未満である架橋アクリル酸エステル系重合体 である。架橋重合体成分(a-2)はアクリル酸アルキ ルエステル80重量%以上とメタクリル酸アルキルエス テル20重量%以下とを含む単量体100重量部に対し て、0.1~20重量部の前記単量体と共重合しうる1 分子当たり2個以上の非共役二重結合を有する多官能性 単量体からなる。

【0014】アクリル酸アルキルエステルのアルキル基 の炭素数、メタクリル酸アルキルエステルのアルキル基 の炭素数は、上記架橋重合体(a-1)の場合と同様、 それぞれ1~8、1~4が好ましい。この架橋重合体成 分(a-2)に使用されるアクリル酸アルキルエステル 及びメタクリル酸アルキルエステルは、それぞれ架橋重 合体成分(a-1)に使用されるものが単独または2種 以上組み合わせて用いられる。

【0015】前記アクリル酸アルキルエステルとメタク 量%以上、好ましくは90重量%以上、さらに好ましく は95重量%以上、後者が20重量%以下、好ましくは 10重量%以下、さらに好ましくは5重量%以下であ る。アクリル酸アルキルエステルが80重量%以下にな ると耐衝撃性が低下する。この架橋重台体成分(a-2) のTgは、-30℃未満、好ましくは-50℃以下 である。架橋重合体成分(a-2)のTgが-30℃以 上になるとフィルムの耐衝撃性が低下する。

【0016】前記架橋重合体成分(a-1)および(a -2) に用いる、単量体と共重合しうる、1分子当たり 30 2個以上の非共役二重結合を有する多官能性単量体は、 架橋剤、グラフト交叉剤等として使用する成分であり、 例えば、エチレングリコールジメタクリレート、ジエチ レングリコールジメタクリレート、ジブロピレングリコ ールジメタクリレート、ジブチレングリコールジメタク リレートなどのジアルキレングリコールジメタクリレー トまたはこれらのメタクリレートをアクリレートにした もの、ジビニルベンゼン、ジビニルアジペート等のビニ ル基含有多官能性単量体、ジアリルフタレート、ジアリ ルマレエート、アリルアクリレート、アリルメタクリレ 40 ート、トリアリルシアヌレート、トリアリルイソシアヌ レート等のアリル基含有多官能性単量体などが挙げら れ、これらは単独または2種以上組み合わせて用いられ

【0017】前記多官能性単量体は、架橋重合体成分 (a-1) または (a-2) のゲル含有率および樹脂成 分単量体のグラフト率に影響を及ぼす。その多官能性単 量体の少量は架橋重台体成分(a-1)または(a-2) に使用される単量体100重量部に対して0.1~ 20重量部、好ましくは0.5~10重量部である。使 50 ルが80重量%未満になると、耐溶剤性が低下する。

用量が0.1重量部より少ない場合には、透明性あるい は耐溶剤性が低下し、20重量部を超える場合には伸度 や耐衝撃性が低下する。

【0018】多層構造を有するアクリル樹脂(A)の架 橋アクリル酸エステル系重合体(A-I-a)は、架橋 重合体成分(a-1)を20~80重量%、好ましくは 30~60重量%、架橋重合体成分(a-2)を80~ 20重量%、好ましくは70~40重量%からなる。架 橋重合体成分(a-1)が20重量%未満になるとフィ 10 ルムの耐溶剤性が低下し、80重量%を超えると耐衝撃 性が低下する。

【0019】架橋アクリル酸エステル系弾性体(A-1 - a) は架橋重合体成分(a-1) および(a-2) の 二層構造を有するが、内側に架橋重合体成分(a- 1)、外側に架橋重合体成分(a-2)としてもよく、 また内側に架橋重合体成分(a-2)、外側に架橋重合 体成分(a-1)としてもよい。架橋重合体成分(a-1) を内側に、(a-2) を外側にする場合は、まず、 (a-1)の単量体を重合し、ついで(a-2)の単量 リル酸アルキルエステルとの使用割合は、前者が80重 20 体を重合させればよい。架橋重合体成分(a-2)を内 側に、(a-1)を外側にする場合は、この逆の順序と すればよい。

> 【0020】架橋アクリル酸エステル系弾性体(A-1 -a)の重量平均粒子径は、300~3000Å、好ま しくは500~2000点、さらに好ましくは600~ 1800A、最も好ましくは700~1500Aの範囲 である。重量平均粒子径が300A未満では、耐衝撃性 が低下するので好ましくなく、3000Aを超えると透 明性が低下するので好ましくない。

【0021】また、架橋アクリル酸エステル系弾性体 (A-1-a) のゲル含有率は5重量%以上、好ましく は10重量%以上、さらに好ましくは20重量%以上で ある。架橋アクリル酸エステル系弾性体(A-l-a) のゲル含有率が5重量%未満になると、耐溶剤性あるい は耐衝撃性が低下するので好ましくない。

【0022】メタクリル酸アルキルエステル系樹脂成分 (A-1-b) はメタクリル酸アルキルエステル80~ 100重量%、アクリル酸アルキルエステル0~20重 量%を含む単量体100重量部に対して、0.01~1 0 重量部の連鎖移動剤を加えて架橋アクリル酸エステル 系弾性体 (A-1-a) にグラフト重合させて得られ る。使用するメタクリル酸アルキルエステルのアルキル 基の炭素数、アクリル酸アルキルエステルのアルキル基 の炭素数は、上記架橋アクリル酸エステル系弾性体(A - 1 - a) の場合と同様、それぞれ 1 ~ 4、 1 ~ 8 が好 ましい。これらのアルキルエステルとしては、上記架橋 アクリル酸エステル系弾性体(A-1-a)に使用され るものと同様のアルキルエステルが単独または2種以上 組み合わせて用いられる。メタクリル酸アルキルエステ 【0023】メタクリル酸アルキルエステル系樹脂成分(A-1-b)のグラフト重合時に使用される連鎖移動剤は、メタクリル酸アルキルエステル80~100重量%とアクリル酸アルキルエステル0~20重量%よりなる単量体100重量部に対して、0.01~10重量部、好ましくは0.05~5重量部使用される。連鎖移動剤の量が0.01重量部未満の場合は加工性が低下し、また、連鎖移動剤の量が0.01重量部を超えると、耐溶剤性あるいは透明性が低下する。前記連鎖移動剤は通常ラジカル重合に用いられるものの中から選択して用いるのが好ましく、具体例としては、例えば、炭素数2~20のアルキルメルカブタン、メルカブト酸類、チオフェノール、四塩化炭素などが挙げられ、これらは単独または2種以上組み合わせて用いられる。

【0024】多層構造を有するアクリル樹脂(A)は、架橋アクリル酸エステル系弾性体(A-1-a)5 \sim 5 $0重量部、好ましくは<math>10\sim40$ 重量部と、これにグラフト重合するメタクリル酸アルキルエステル系樹脂成分(A-1-b) $95\sim50$ 重量部、好ましくは $90\sim4$ 0重量部とからなる。架橋アクリル酸エステル系弾性体 20(A-1-a)が5重量未満になると、得られる樹脂組成物の強靭性や柔軟性が充分でなくなり、また50重量部を超えると耐溶剤性が低下したり、高延伸をかけて押出成形する際に安定に製膜しにくく、加工性が低下する。

【0025】多層構造を有するアクリル樹脂(A)のグラフト率(架橋アクリル酸エステル系弾性体(A-1-a)を幹ポリマーとする)は、50~150%、好ましくは80~110%であり、グラフト率が50%未満の場合は、耐溶剤性が低下して好ましくなく、また150%を超えると加工性が低下して好ましくない。また該重合体のメチルエチルケトン可溶分の還元粘度は0.1~0.6d1/g、好ましくは0.2~0.5d1/gの範囲であり、0.1d1/g未満の場合は、耐溶剤性が低下するので好ましくなく、また0.6d1/gを超えると、加工性が低下するので好ましくない。

【0026】多層構造を有するアクリル樹脂(A)の製造方法は特に限定されない。例えば懸濁重合法、乳化重合法などが挙げられるが、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、これらの単量体と共重合しうる1分子当たり2個以上の非共役二重結合を有する多官能性単量体を用い、乳化重合法で製造するのが好ましい。

【0027】さらに詳しくは、例えば、乳化重合法を用いて、架橋重合体成分(a-1)を製造した後、架橋重合体成分(a-2)を製造して架橋アクリル酸エステル系弾性体(A-1-a)を得て、メタクリル酸アルキルエステル系樹脂成分(A-1-b)を同一重台機で製造することができる。

【0028】前記乳化重合法においては、通常の重台開

始剤、特に遊離基を発生する重合開始剤が使用される。 このような重合開始剤の具体例としては、たとえば、過 硫酸カリウム、過硫酸ナトリウム等の無機過酸化物や、 クメンハイドロパーオキサイド、ベンゾイルパオキサイ ドなどの有機過酸化物などが挙げられる。さらにアゾビ スイソブチロニトリルなどの油溶性開始剤も使用され る。これらは単独または2種以上組み合わせて用いられる。

【0029】 これら重合開始剤は、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート、アスコルビン酸、硫酸第一鉄などの還元剤と組み合わせた通常のレドックス型開始剤として使用してもよい。

【0030】前記乳化重合に使用される界面活性剤にも特に限定はなく、通常の乳化重合用の界面活性剤であれば使用することができる。例えば、アルキル硫酸ソーダ、アルキルベンゼンスルフォン酸ソーダ、ラウリン酸ソーダなどの陰イオン性界面活性剤やアルキルフェノール類とエチレンオキサイドとの反応生成物などの非イオン性界面活性剤が挙げられる。これらの界面活性剤は単独で用いてもよく、2種類以上併用してもよい。さらに必要に応じて、アルキルアミン塩酸塩などの陽イオン性界面活性剤を使用してもよい。

【0031】とのような共重合によって得られる重合体ラテックスから、通常の凝固(例えば、塩を用いた凝固)と洗浄、脱水、乾燥により、または噴霧、凍結乾燥などによる処理によって樹脂組成物が分離、回収される。

【0032】本発明で使用するアクリル系グラフト共重 合体(B)はアクリル酸アルキルエステル40~90重 量%、好ましくは50~85重量%と、メタクリル酸ア ルキルエステル60~10重量%、好ましくは50~1 5重量%とを含む単量体及び共重合可能な他のビニル系 単量体の少なくとも1種0~10重量%と、該単量体1 00重量部に対して、0.1~20重量部、好ましくは 0.5~10重量部の、該単量体と共重合しうる、1分 **子あたり2個以上の非共役二重結合を有する多官能性単** 量体とを重合せしめてなる架橋アクリル酸エステル系重 合体(b-1)40~85重量部、好ましくは50~7 5重量部とメタクリル酸アルキルエステル60重量%以 上、好ましくは70重量%以上とアクリル酸アルキルエ ステル40重量%以下、好ましくは30重量%以下及び 共重台可能な他のビニル系単量体の少なくとも1種0~ 10重量%、好ましくは0~5重量%とを含む単量体成 分(b-2)60~15重量部、好ましくは50~25 重量部を架橋アクリル酸エステル系重合体(b-1)に グラフト重台せしめてなる重量平均粒子径が0.5~1 $5 \mu m$ 、好ましくは $1 \sim 10 \mu m$ であるアクリル系グラ フト共重台体である。

【0033】架橋アクリル酸エステル系重合体(b-

1)のアクリル酸アルキルエステルが40重量%未満で は耐衝撃性が低下し、90重量%以上では、折曲白化性 や透明性が低下する。との架橋アクリル酸エステル系重 合体(b−1)に使用されるアクリル酸アルキルエステ ルおよびメタクリル酸アルキルエステルは多層構造を有 するアクリル樹脂(A)に使用されるものと同様のもの が単独または2種以上組み合わせて用いられる。

【0034】架橋アクリル酸エステル系重合体(b-1) に使用される1分子あたり2個以上の非共役二重結 合を多官能性単量体は多層構造を有するアクリル樹脂 (A) に使用されるものと同様のものが単独または2種 以上組み合わせて用いられる。1分子あたり2個以上の 非共役二重結合を有する多官能性単量体の量が、0.1 重量部未満であると艶消し性が低下し、20重量部を超 えると、フィルムの伸度が低下したり、耐衝撃性が低下

して好ましくない。

【0035】架橋アクリル酸エステル系重合体(b-1)の量が40重量部未満では、艶消し性が低下し、8 5重量部を超えると、フィルムの伸度が低下したり、耐 重合体(B)の重量平均粒子径が0.5μm未満では艶 消し性が低下し、15μmを超えると、耐衝撃性が低下 したり、透明性が低下したり、折曲白化性が低下して好 ましくない。

【0036】架橋アクリル酸エステル系重合体(b-1) にグラフト重合する単量体成分(b-2)に使用さ れるアクリル酸アルキルエステルおよびメタクリル酸ア ルキルエステルは多層構造を有するアクリル樹脂(A) に使用されるものと同様のものが単独または2種以上組 み合わせて用いられる。

【0037】アクリル系グラフト共重合体(B)の製造 方法は特に限定されない。例えば、懸濁重合法、乳化重 合法などが挙げられるが、アクリル酸アルキルエステ ル、メタクリル酸アルキルエステル、これらの単量体と 共重合しうる 1 分子当たり 2 個以上の非共役二重結合を 有する多官能性単量体、更に所望により、エチレン系不 飽和単量体を用い、重量平均粒子径を0.5~15μm とするため、懸濁重合で製造するのが好ましい。このよ うな共重合によって得られる重合体スラリーから、通常 の洗浄、脱水、乾燥等の処理によって分離、回収され

【0038】上記の如き、アクリル系グラフト共重合体 (B) は、一般的にコア・シェル型アクリル系共重台体 と呼ばれることもある。よって、本発明では、コア・シ ェル重合体(B)と言い換えることもできる。

【0039】多層構造を有するアクリル樹脂(A)とア クリル系グラフト共重台体(B)の混合物である本発明 の熱可塑性樹脂組成物の配合割台は多層構造を有するア クリル樹脂(A)100重量部に対し、アクリル系グラ フト共重合体(B)0.5~50重量部であり、好まし 50

くは1~40重量部、さらに好ましくは2~30重量部 である。アクリル系グラフト共重合体(B)が、O.5 重量部未満では、艶消し性が低下し、50重量部を超え るとフィルムの成形性が低下して好ましくない。

10

【0040】本発明の熱可塑性樹脂組成物は特にフィル ムとして有用であり、例えば、通常の溶融押出法である インフレーション法やT型ダイス押出法、あるいはカレ ンダー法などにより、また、溶液キャスト法などによ り、高延伸加工性が良好で、耐衝撃性、透明性、耐候 性、耐溶剤性、耐可塑剤移行性、折曲白化性に優れ、印 刷抜けの改良されたフィルムが得られる。フィルムの厚 みは5~500μm程度が適当であり、10~300μ mの厚みが好ましい。

【0041】本発明の樹脂組成物には、着色のための無 機系または有機系の顔料、染料、熱や光に対する安定性 を増すための抗酸化剤、紫外線吸収剤、光安定剤などを 1種又は2種以上組み合わせて添加してもよい。

【0042】本発明の一つは、上記アクリル系グラフト 共重合体(B)として、60μm以上の粒子、好ましく 衝撃性が低下して好ましくない。アクリル系グラフト共 20 は50μm以上の粒子を含まないものを使用する。60 μ皿以上の粒子を含むと成形したフィルムにフィッシュ アイが増え、印刷抜けが発生するので好ましくない。上 記アクリル系グラフト共重合体(B)から60 μ m以上 の粒子を除外する方法は特に限定されないが、例えば、 篩による分級、空気分級、デカンテーションを利用した 分級などの公知の方法を用いることができる。また、必 要によっては、得られたアクリル系グラフト共重合体 (B)を分級前あるいは分級後に粉砕又は溶融させ、粒 子径を調整することも可能である。

> 【0043】本発明の他の一つは、上記アクリル系グラ フト共重合体(B)として60µm以上の粒子の存在の 有無とは関係なく、熱可塑性樹脂組成物をフィルム成形 する際、例えば、高延伸加工を施す際、0~70℃の口 ール、好ましくは5~65℃のロール、さらに好ましく は8~60℃のロール、最も好ましくは10~50℃の ロールで片面又は、両面を押さえつけ、表面の凸部を平 滑にすることを特徴とする。ロールの温度が0℃未満で は、凸部を平滑にする効果が不十分で好ましくなく、7 0℃を超えると、フィルム表面外観が低下するので好ま しくない。上記ロールで押さえつけるときのフィルムの 温度は、150℃以上、好ましくは160℃以上、 さら に好ましくは170℃以上、最も好ましくは180以上 であり、フィルムの温度が150℃未満では、フィッシ ュアイを平滑にする効果が不十分で好ましくない。 あま り高温では、熱による影響が大きくなり過ぎるため約2 20℃以下が好ましい。

【0044】本発明において、フィッシュアイ等のごと きフィルム表面の凸部を減少させ印刷抜けの発生を極力 防止するようにするには、フィッシュアイ等のごときフ ィルム表面の凸部を、例えば、5個/m¹以下、好まし

くは3個 $/m^2$ 以下、更に好ましくは2個 $/m^4$ 以下、最も好ましくは1個 $/m^4$ 以下、にするのが望まれる。

[0045]フィルム片面にグラビア印刷を施し、幅が 1 m で長さが約10 m のフィルムについて目視で検査 し、その印刷抜け個数を1 m 当たりに換算した。単位は個2 m 。

[0046]

【実施例】以下、実施例及び比較例を示し、本発明を更に具体的に説明するが、これらは本発明を何ら限定するものではない。尚、以下の記載において、「部」又は「%」は、特に断らない限り、それぞれ「重量部」、「重量%」を示す。

【0047】実施例及び比較例中の測定、評価は次の条件及び方法を用いて行った。

(1) 架橋アクリル酸エステル系弾性体(A-1-a) 又は架橋アクリル酸エステル系重合体(b-1)のゲル 含有率

架橋アクリル酸エステル系弾性体(A-l-a)又は架橋アクリル酸エステル系重合体(b-l)を100メッシュ金網上に所定量採取し、メチルエチルケトンに48 20時間浸漬し、減圧乾燥してメチルエチルケトンを除去した後、恒量になった重量を読みとり、次式により算出した。

ゲル含有率=(ア)×100/(イ)

(ア): 再乾燥後の重量

(イ):採取サンプルの重量

(2) ガラス転移温度

「ポリマー・ハンドブック [Polymer Hand Book (J. Brandrup, Interscience, 1989)]」に記載されている値 (MMA; 105℃、BA: -54℃) をフォックス (Fox) の式を用いて算出した。

(3) グラフト率

アクリル樹脂(A) 1 gをメチルエチルケトン5 0 m 1 に分散溶解させ、遠心分離器(3 0, 0 0 0 r p m×2 H r s) で不溶分と可溶分とを分離し、不溶分を真空乾燥により充分に乾燥させたものをゴム・グラフト分として重量を測定し、次式により算出した。

グラフト率 (%) = ((ウ) - (エ))×100/

(X)

(ウ):ゴム・グラフト分の重量

(エ):架橋アクリル酸エステル系弾性体(A-la)の重量

(4)還元粘度

アクリル樹脂 (A) のメチルエチルケトン可溶分を0. 3% N, N - シメチルホルムアミド溶液を30 Cで測定した。単位はd1/g である。

(5) メルトインデックス。

230℃で過重。8kgで測定した。単位はg/10min. である。

(6)耐衝擊性

50μmの厚みのフィルムをポリカーボネート製板 (0.8mm厚) にラミネートし、デュポン衝撃でJIS K72llに準拠し、半数破壊高さ×錘の重量からエネルギーを測定した。-20℃で行い、単位はJ(ジュール)である。

12

(7) ビカット

フィルムを積層し、加工プレスにより厚さ3mmのプレス板を作成し、ISO-R-306に準拠して測定し 10 た。5kg荷重をかけた。単位は℃である。

(8)透明性

日本電色工業株式会社製のヘイズメーター(HAZE METER)を用いて、JIS K7105に準拠して、50μmの厚みのフィルムの全光線透過率、曇価を 測定した。23℃で測定し、単位は%である。

(9) 光沢

日本電色工業株式会社製のグロスメーター(GLOSS METER)を用いて、JIS Z8741に準拠して測定した。23℃で測定し、単位は%である。

(10)耐溶剤性

厚み 50μ mのフィルムを幅10mm、長さ100mm の短冊状に切り取り、3.2gの錘を吊して、トルエン中に浸漬し、フィルムが切れる時間を測定した。単位は秒である。

(11)耐可塑剤移行性

直径 1 mm、長さ 7 0 mm の形状をした樹脂組成物成形体を D O P (ジ2 - x チルヘキシルフタレート) に 7 O $\mathbb{C} \times 2 \text{ } 4$ 時間浸漬し、直径の変化率を測定した。単位は%である。

30 (12) 折曲白化性

厚み 50μ mのフィルムを180度折り曲げ、次の基準により評価した。

【0048】〇:折り曲げた部分が白化しない。

【0049】×;折り曲げた部分が白化する。

(13)加工性

Tダイ押出成型法にて、 50μ mのフィルムを押出し して、次の基準により評価した。

【0050】○;フィルム切れがなく、厚みが均一で安定に押し出すことができる。

40 【0051】×;フィルム切れがあり、押し出しが不安 定である。

(14) 印刷抜け

フィルム片面にグラビア印刷を施し、幅が1 mで長さが約1 0 mのフィルムについて目視で検査し、その印刷技け個数を1 m²当たりに換算した。単位は個2 m³。

(15)表面性

フィルムを肉眼で次の基準により評価した。

【0052】〇:焼け、異物がほとんど観察されない。

【0053】×:焼け、異物のいずれかが観察され、表 50 面が不均一である。また、以下の記載による略号は、そ 13

れぞれ下記の物質を表す。

[0054]

OSA:ジオクチルスルホコハク酸ナトリウム

B A; アクリル酸ブチル MMA;メタクリル酸メチル

CHP; クメンハイドロバーオキサイド

AMA;メタクリル酸アリル

t DM; ターシャリードデシルメルカプタン

*

ナトリウムホルムアルデヒドスルホキシレート

硫酸第一鉄・2水塩

エチレンジアミン四酢酸-2-ナトリウム

200部

BPO:過酸化ベンゾイル

施例イ-1~4

0.15部

0.0015部 0.006部

と表1に示したOSAを仕込み、器内を窒素ガスで充分 に置換して実質的に酸素のない状態とした後、内温を6 0℃にし、表1に示す混合物(1)を15部/時間の割 合で連続的に添加し、重合させた。添加終了後更に1時 間重合を継続し、重合転化率を98%以上にし、架橋重 合体成分 (a − 1) 又は (a − 2) を得た。

【0055】次に、架橋重合体成分(a-1)又は(a -2)の存在下、表1に示す混合物(2)を15部/時 20 し、水洗、乾燥を行い、アクリル樹脂(A)の乾燥粉末 間の割合で連続的に添加して、重合させ、添加終了後、 更に、重合を継続し、重合転化率を98%以上にして、 架橋アクリル酸エステル系弾性体(A-1-a)のラテ ックスを得た。

【0056】次に、架橋アクリル酸エステル系弾性体 (A-1-a)の存在下、表1に示す混合物(3)を1 0部/時間の割合で連続的に添加して重合させ、更に、 1時間重合を継続し、重合転化率を98%以上にして、 メタクリル酸アルキルエステル系樹脂成分(A-lb) の重合を終了させ、ラテックスを得た。 【0057】前記ラテックスを塩化カルシウムで塩析

* BDMA; 1, 4-ブチレングリコールジメタクリレー

(1) 多層構造を有するアクリル樹脂(A) の製造 実

攪拌機、温度計、窒素ガス導入管、モノマー供給管、 還

流冷却器を備えた8リットル重合機に以下の物質

[0058]

【表】】

を得た。

	4-1	東施例	Z. 7	4-4
(#)	1 - 6	3-1-0		000
OSA (E)	0. 2.9	0.29	0. 30	0.0
(邦)	3.0	2.0	1.5	4
	3.0	ŀ	40	30
_	7.0	100	09	
	0.12	0.24	0, 20	01.0
_	0.02	0.04	0.03	0.01
(34)	2.0	1.0	2.0	9
	ı	3.0	ł	
-	100	7.0		100
_			0.24	0.11
CHP (略)	0.04	0.02	0.04	0.01
(規)	0.2	0.0	6.5	0.6
_	0.6	0.6	0.6	8 0
_	10			0
t DM (BS)	0.25	<u>ده</u>	0.30	
- 1		0.30	0.27	0.30
狼鶴アクリル酸エステル系領性体(A − 1 − a)の 重量平均粒子径(A)	008	008	820	850
架橋アクリル酸エステル系領性体(A-1-a)の ゲル含有率 (%)	88	8 5	9.0	9.2
楽橋アクリル酸エステル系弾性体 (A – 1 – a) の 内側成分のガラス転移滋度:T g (で)	2 2 -	-54	-10	-22
架響アケリル費エステル系弾性体 (A-1-a)の 外側成分のガラス転移温度:Tg (で)	-54	-22	-64	-54
グラフト率 (%)	100	101	0.6	115
遠元粘度 (d1/g)	0.24	0.25	0.20	0.35

(2) アクリル系グラフト共重合体(B) の製造 実施 例ロ-1~4、比較例ロ-5~7(各々実施例ロ-1~

攪拌機、温度計、窒素ガス導入管、モノマー供給管、還 流冷却器を備えた8リットル重合機に以下の物質

200部

ラウリル硫酸ナトリウム

0.05部

ポリアクリル酸ナトリウム

0.55部

硫酸ソーダ

1. 6部

を仕込み、器内を窒素ガスで充分に置換して実質的に酸 素のない状態とした後、内温を60℃にし、表2に示す 混合物(1)を仕込み、重合させ、重合転化率を98% 以上にし、架橋アクリル酸エステル系重台体(b-1) 50 を得た。

【0059】次に架橋アクリル酸エステル系重合体(b 40 -1) の存在下、表2に示す混合物(2)を15部/時 間の割合で連続的に添加して重合させ、添加終了後、更 に、重合を継続し、重合転化率を98%以上にして、ア クリル系グラフト共重台体(B)のスラリーを得た。 【0060】前記スラリーを水洗、脱水、乾燥を行い、

表2に示す分級を実施し、アクリル系グラフト共重合体 (B) の乾燥粉末を得た。

[0061]

【表2】

18

	(b-1) BDMA (%) BPMA (%) BPO (%) 合物 (2) MMA (部) B A (部) B PO (部) 同様アクリル陸エステル系重合体 (b-1) の ゲル合有率 (%) アクリル系グラフト共重合体 (B) の		実加	前例		比較例					
		D-1	D - 2	p - 3	□ - 4	D - 5	D-6	0-7			
	(部)	6.0	6.5	8 5	4.5	6.0	6.5	8.5			
	MMA (%)	3 0	45	15	5 5	3 0	4 5	1 6			
		70	5.5	8.5	4.5	70	5.5	8 5			
(b-1)		0.70	0.90	2.00	0.45	0.70	0.90	2.00			
		0.02	0.01	0.04	0.02	0.02	0.01	0.04			
	(部)	40	3 5	1 5	5 5	4 0	3 5	15			
混合物 (2)	MMA (AB)	90	80	9 5	8.5	9.0	80	9 5			
		10	20	5	15	10	20	5			
(8-1) → (8)		0.03	0.01	0.02	0.02	0.03	0.01	0.02			
		9 0	9 3	9 9	9 5	9 0	93	99			
		5	3	7	1 3	5	3	7			
	級の有無	有	有	有	有	無	無	無			
60 µ m以	上の粒子の含有率 (重量%)	0	0	0	0	8	5	10			

(3) 熱可塑性樹脂組成物の製造 実施例ハー1~7、 比較例ハー8~11

表3に示すアクリル樹脂(A)とアクリル系グラフト共重合体(B)をヘンシェルミキサーで混合した。この混合物をベント式押出機で190℃設定で押し出し、ペレット化し、前記した物性、特性の測定、評価に供した。

尚、ペレット中の残存モノマーは500ppm以下であった。該ペレットをT型ダイス付き押出機でフィルムに成形し、前記した物性、特性の測定、評価に供した。 【0062】

【表3】

2	^

	1	9				_	_														_		_		
	N-11				100		1 1			1	0		椞	9.0	6.9	7.5	9.1		3.6	0 9	18	0	0	40.0	0
ع	V−16		1 0 0	1 1		_						8	¥	6.2	10.8	1.1	8.8	4.1	3.3	5.0	2.2	0	0	50.0	0
프 &	0-V		001) ()	2.0				•			*	1. 5	8.8	8.8	\$ 1	7.0	1.0	6.5	4.8	×	×	80.0	×
	8-V	001			1					9		1	*	9 '9	11.8	7.1	0.6	4.5	3.0	09	2.0	0	0	40.0	0
	N-7								Ì				有	6.3	10.8	1.1	8 9	4.1	3.3	. 0 9	2.2	0	0	2.0	0
	9-1/			100							0		4	6.0	8.8	7.3	88	44	2.7	2 5	2.4	0	0	1.1	0
	7-5	100								2			育	8.8	13.7	0.0	6.8	3.5	4 5	2.8	2.0	0	0	2.3	0
多洲	11-4		i		100		 			i	1		¥	9	6.9	7.5	9.0	4.7	3.5	2.0	1.2	0	0	1.0	0
	٧-3		İ	100				1 1 2 1	•	 	- - - -		¥	5.3	14.7	8.9	88	43	3.4	09.	1 9	0	0	2.3	0
	N-2		100			1	i p∞	İ	i	i	i		無	6.3	9.6	7.0	8.7	4.0	2.8	9	2.1	0	0	. 0. 5	0
	Λ-1		 	i i		9	 		i		Í.		鰈	6, 6	11.8	7.1	0.8	4.5	3.0	09	02	0	0	0.1	0
		-	多国株込を有するアクリル樹脂 (A) 「イー2	(単元金)	L.			トク・コンサイン・七番を存(B) は、 だ ロー3	86.				30℃の金属ロール押さえつけ	メルトインデックス	100 也 有	アカット		は 年 代 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	米农	印新姓名	数四個性等行机	يد	#	田宮故中	华温泉

[0063]

【発明の効果】表3から明らかなように、実施例で代表 される本発明の艶消し熱可塑性樹脂フィルムは、折曲白 化性、耐衝撃性、耐溶剤性、耐可塑剤移行性に優れ、フィッシュアイ等のごときフィルム表面の凸部を減少させることにより表面性に優れ、印刷抜けを起こさない。