제 I 9강 IP 개요 (데이터그램 포맷, 단편화,주소 구조)

Computer Networking: A Top Down Approach

컴퓨터 네트워크 (2019년 1학기)

박승철교수

한국기술교육대학교 컴퓨터공학부

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

Pre-study Test:

- 1) 다음 중 IP 가 전송하는 정보 단위의 정확한 이름은?
- ① 프레임
- ② 데이터그램
- ③ 세그먼트
- 4 메시지
- 2) 오른쪽 IP 데이터그램 헤더 필드에서 인터넷 전송 과정에서 변할 수 없는 것은?
- 1 Length
- 2 Identifier
- 3 Time to live
- 4 Header checksum

3) 오른쪽 IP 데이터그램 헤더 필드에서 단편화(fragmentation) 과정에서 값이 변할 수 있는 필드를 모두 고르시오.

4) TCP는 IP를 사용하여 세그먼트를 전송한다. IP 데이터그램 데이터 필드의 맨 첫 부분에 나타나는 정보는 무엇인가?

- 5) IP 주소가 할당되는 가장 정확한 대상은?
- 1 Host
- 2 Process
- 3 Router
- 4 NIC(Network Interface Card)
- 6) 오른쪽 그림의 인터넷에 존재하는 네트워크의 개수는?

7) 오른쪽 그림의 인터넷에 존재하는 네트워크를 식별하기 위한 네트워크 ID의 비트수는?

The Internet network layer

host, router network layer functions:

IP datagram format

TCP 세그먼트 구조

- network links have MTU (max.transfer size) largest possible link-level frame
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

MTU

데이터 통신망	MTU
Hyperchannel	65,535
Token Ring(16Mbps)	17,914
Token Ring(4Mbps)	4,464
FDDI	4,352
Ethernet	1500
X.25	576
PPP	296

■ 문제I: MTU가 I420일 때 각 데이터그램의 fragflag와 offset을 구하라.

■ 문제2:데이터그램2가 다시 MTU가 820인 네트워크에 의해 단편화될 때 각 데이터그램의 fragflag와 offset을 구하라.

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

IP addressing: introduction

IP address: 32-bit identifier for host, router interface

 interface: connection between host/router and physical link

- router's typically have multiple interfaces
- host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

223.1.1.1 = <u>11011111 00000001 00000001 00000001</u>
223 1 1 1

IP addressing: introduction

Q: how are interfaces actually connected?

A: we'll learn about that in chapter 5, 6.

A: wired Ethernet interfaces connected by Ethernet switches

For now: don't need to worry about how one interface is connected to another (with no intervening router)

connected by WiFi base station

IP 주소

32 bits IP 주소

네트워크(망) 식별자(ID)

호스트 식별자(ID)

이진수 IP 주소

1000000 10011100 00001110 00000111

128 . 156 . 14 . 7

십진수 점 표기법 (dotted decimal notation)

Subnets

■ IP address:

- subnet part high order bits
- host part low order bits
- what 's a subnet ?
 - device interfaces with same subnet part of IP address
 - can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet

subnet mask: /24

Subnets

how many?

After-study Test:

- 1) 다음 중 IP 가 전송하는 정보 단위의 정확한 이름은?
- ① 프레임
- ② 데이터그램
- ③ 세그먼트
- 4 메시지
- 2) 오른쪽 IP 데이터그램 헤더 필드에서 인터넷 전송 과정에서 변할 수 없는 것은?
- 1 Length
- 2 Identifier
- 3 Time to live
- 4 Header checksum

3) 오른쪽 IP 데이터그램 헤더 필드에서 단편화(fragmentation) 과정에서 값이 변할 수 있는 필드를 모두 고르시오.

4) TCP는 IP를 사용하여 세그먼트를 전송한다. IP 데이터그램 데이터 필드의 맨 첫 부분에 나타나는 정보는 무엇인가?

- 5) IP 주소가 할당되는 가장 정확한 대상은?
- 1 Host
- 2 Process
- 3 Router
- 4 NIC(Network Interface Card)
- 6) 오른쪽 그림의 인터넷에 존재하는 네트워크의 개수는?

7) 오른쪽 그림의 인터넷에 존재하는 네트워크를 식별하기 위한 네트워크 ID의 비트수는?

