PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

Curso de Engenharia Mecânica - Conformação Mecânica

Professor: José Fazzi

1ª Tarefa 2020/02

André Mombach dos Santos

Essa tarefa foi desenvolvida pelo autor/aluno (21-22/09/2020) em linguagem Python no ambiente <u>Jupyter Notebook (https://jupyter.org/)</u>, com auxilio das bibliotecas <u>Numpy (https://numpy.org/)</u> e <u>Handcalcs (https://github.com/connorferster/handcalcs)</u>.

Questão I

Uma chapa de latão ($\sigma_e=26\cdot|\phi|\cdot0.50\cdot\frac{kgf}{mm^2}$), de espessura 15 mm e largura 500 mm, deve ser transformada por laminação a frio em um chapa de 5 mm de espessura.

Considerando o coeficiente de atrito $\mu=0.10$ e que os cilindros de laminação em cada passe são 15% maior que o mínimo necessário:

- 1. Programe um processo de laminação para obtenção da chapa desejada e calcule o comprimento final da chapa, sabendo que o comprimento inicial é de 5 m;
- 2. Calcule força e potência ideais para o primeiro e o último passe, sabendo que cada par de cilindros gira a 150 RPM;
- 3. Calcule a força e a potência reais de laminação para o primeiro e o último passe.

Resposta I

1. Determinação das etapas do projeto e do comprimento final

O primeiro passo é descobrir quantos passes serão necessários para que o processo seja feito de forma homogênea. Para tanto, calcula-se o ϕ_h para o processo inteiro, e então o comparamos com o coeficiente n, que indica qual a deformação verdadeira máxima homogênea:

$$h_i=15.000~\mathrm{mm}$$

$$h_f = 5.000 \text{ mm}$$

$$\phi_{h_{total}} = \ln\!\left(rac{h_f}{h_i}
ight) = \ln\!\left(rac{5.000\,\mathrm{mm}}{15.000\,\mathrm{mm}}
ight) \qquad = -1.099$$

 $n=0.5 \ \ ({
m retirado\ da\ equação\ de\ Hollomon})$

$$N_{passes} = \operatorname{Arredondar}\!\left(rac{\operatorname{Absoluto}(\phi_{h_{total}})}{n}
ight) = \operatorname{Arredondar}\!\left(rac{\operatorname{Absoluto}(-1.099)}{0.5}
ight) \hspace{1cm} = 3$$

Como demonstrado, serão necessários 3 passes.

Logo, cada passe apresentará a deformação de:

$$\phi_h = rac{\phi_{h_{total}}}{N_{passes}} = rac{-1.099}{3} \qquad = -0.366$$

Com ϕ_h , torna-se possível a determinação das espessuras em cada etapa:

$$\begin{array}{lll} h_{i_1} = 15.000 \ \mathrm{mm} \\ \\ h_{f_1} = h_{i_1} \cdot (e)^{\phi_h} = 15.000 \ \mathrm{mm} \cdot (2.718)^{-0.366} & = 10.400 \ \mathrm{mm} \\ \\ \Delta_{h_1} = h_{i_1} - h_{f_1} = 15.000 \ \mathrm{mm} - 10.400 \ \mathrm{mm} & = 4.600 \ \mathrm{mm} \\ \\ h_{i_2} = 10.400 \ \mathrm{mm} \\ \\ h_{f_2} = h_{i_2} \cdot (e)^{\phi_h} = 10.400 \ \mathrm{mm} \cdot (2.718)^{-0.366} & = 7.211 \ \mathrm{mm} \\ \\ \Delta_{h_2} = h_{i_2} - h_{f_2} = 10.400 \ \mathrm{mm} - 7.211 \ \mathrm{mm} & = 3.189 \ \mathrm{mm} \\ \\ h_{i_3} = 7.211 \ \mathrm{mm} \\ \\ h_{f_3} = h_{i_3} \cdot (e)^{\phi_h} = 7.211 \ \mathrm{mm} \cdot (2.718)^{-0.366} & = 5.000 \ \mathrm{mm} \\ \\ \Delta_{h_3} = h_{i_3} - h_{f_3} = 7.211 \ \mathrm{mm} - 5.000 \ \mathrm{mm} & = 2.211 \ \mathrm{mm} \end{array}$$

Com todos estes dados, já se torna possível o cálculo do comprimento final.

De acordo com a conservação de massa, o volume da peça não deve mudar. Como não se considera variação na largura no processo ed conformação a frio, conclui-se que a deformação verdadeira no comprimento é exatamente a deformação verdadeira na espessura com o sinal invertido.

 $\phi_l = 0.366$

 $l_i = 5.000 \; \mathrm{m} \; \; (\mathrm{comprimento\ inicial\ da\ peça})$

$$egin{aligned} l_{f_1} &= l_{i_1} \cdot (e)^{\phi_l} \ &= 5.000 \ \mathrm{m} \cdot (2.718)^{0.366} \ &= 7.211 \ \mathrm{m} \end{aligned}$$
 (comprimento da peça depois de passar pelo primeiro rolo)

$$\begin{split} \Delta_{l_1} &= l_{f_1} - l_{i_1} \\ &= 7.211~\text{m} - 5.000~\text{m} \\ &= 2.211~\text{m}~\left(\text{variação de comprimento na etapa do primeiro rolo}\right) \end{split}$$

$$l_{i_2}=7.211~\mathrm{m}$$

$$egin{aligned} l_{f_2} &= l_{i_2} \cdot (e)^{\phi_l} \ &= 7.211 \ \mathrm{m} \cdot (2.718)^{0.366} \ &= 10.400 \ \mathrm{m} \end{aligned}$$

$$\begin{split} \Delta_{l_2} &= l_{f_2} - l_{i_2} \\ &= 10.400 \; \mathrm{m} - 7.211 \; \mathrm{m} \\ &= 3.189 \; \mathrm{m} \end{split}$$

$$l_{i_3} = 10.400 \ \mathrm{m}$$

$$egin{aligned} l_{f_3} &= l_{i_3} \cdot (e)^{\phi_l} \ &= 10.400 \ \mathrm{m} \cdot (2.718)^{0.366} \ &= 15.000 \ \mathrm{m} \end{aligned}$$

$$egin{aligned} \Delta_{l_3} &= l_{f_3} - l_{i_3} \ &= 15.000 \ \mathrm{m} - 10.400 \ \mathrm{m} \ &= 4.600 \ \mathrm{m} \end{aligned}$$

De modo óbvio, se a conformação tenta diminuir a espessura por um fator de 3, a largura será aumentada também por um fator de 3.

Continuando com o projeto do processo:

Com todos Δ_h , calcula-se o raio mínimo requirido pelo rolo de compressão de cada etapa:

$$\mu = 0.1 \; \; ({\rm identificado \; pelo \; enunciado})$$

$$CS=1.25~~(25\%~{
m de~segurança})$$

$$R_1 = CS \cdot rac{\Delta_{h_1}}{\left(\sin\left(\arctan(\mu)
ight)
ight)^2} = 1.25 \cdot rac{4.600 ext{ mm}}{\left(\sin\left(\arctan(0.1)
ight)
ight)^2} = 580.697 ext{ mm}$$

$$R_2 = CS \cdot rac{\Delta_{h_2}}{\left(\sin\left(\arctan(\mu)
ight)
ight)^2} = 1.25 \cdot rac{3.189 ext{ mm}}{\left(\sin\left(\arctan(0.1)
ight)
ight)^2} = 402.633 ext{ mm}$$

$$R_3 = CS \cdot rac{\Delta_{h_3}}{\left(\sin\left(\operatorname{arctan}(\mu)
ight)
ight)^2} = 1.25 \cdot rac{2.211 \ ext{mm}}{\left(\sin\left(\operatorname{arctan}(0.1)
ight)
ight)^2} = 279.170 \ ext{mm}$$

E tambem o parâmetro l_d :

$$l_{d_1} = (R_1 \cdot \Delta_{h_1})^{0.5} = (580.697 \text{ mm} \cdot 4.600 \text{ mm})^{0.5} = 51.681 \text{ mm}$$
 $l_{d_2} = (R_2 \cdot \Delta_{h_2})^{0.5} = (402.633 \text{ mm} \cdot 3.189 \text{ mm})^{0.5} = 35.834 \text{ mm}$ $l_{d_3} = (R_3 \cdot \Delta_{h_3})^{0.5} = (279.170 \text{ mm} \cdot 2.211 \text{ mm})^{0.5} = 24.846 \text{ mm}$

Como o exercício menciona um processo a frio, não se deve preocupar com a variação na espessura. Pode-se estimar que a variação na entrada, na saída e consequentemente a média são todos o mesmo valor.

$$b_m=500.000~\mathrm{mm}$$

A área de contato A_c , no entanto, varia entre etapas:

$$egin{aligned} A_{c_1} &= l_{d_1} \cdot b_m = 51.681 \ \mathrm{mm} \cdot 500.000 \ \mathrm{mm} \end{aligned} &= 25840.681 \ \mathrm{mm}^{2.0} \ A_{c_2} &= l_{d_2} \cdot b_m = 35.834 \ \mathrm{mm} \cdot 500.000 \ \mathrm{mm} \end{aligned} &= 17916.928 \ \mathrm{mm}^{2.0} \ A_{c_3} &= l_{d_3} \cdot b_m = 24.846 \ \mathrm{mm} \cdot 500.000 \ \mathrm{mm} \end{aligned} &= 12422.904 \ \mathrm{mm}^{2.0} \ A_{c_3} &= l_{d_3} \cdot b_m = 24.846 \ \mathrm{mm} \cdot 500.000 \ \mathrm{mm} \end{aligned}$$

Durante um processo de laminação a frio, se faz necessário a realização de recozimento entre as etapas. Caso não seja feito, o material não voltará às suas características iniciais e o encruamento passará do seu ponto de homogeniedade, acarretando em deformações heterogêneas ao longo da lamina. Com certeza, não é algo desejável.

Dito isto, o cálculo da tensão de escoamento σ_e para cada etapa será feito com os valores de σ_e antes de passar ser comprimido rolo e σ_e depois de ser comprimido pelo rolo. Como o material será recozido em cada etapa, a tensão de escoamento inicial sempre será a mesma e correspondente ao início da região elástica, com $\phi=0.002$.

Como o material será conformado sempre a mesma quantidade ($\phi_h=cte$), a σ_e de saída também terá sempre o mesmo valor.

```
\begin{split} \phi_{plastico} &= 0.002 \ (\text{deformação verdadeira no início da deformação plástica}) \\ \sigma_o &= 26 \cdot 9.81 \cdot MPa \\ &= 26 \cdot 9.81 \cdot MPa \\ &= 255.060 \ \text{MPa} \ (\text{transformar de kgf/mm² para MPa}) \end{split} \sigma_{e_i} &= \sigma_o \cdot (\phi_{plastico})^n \\ &= 255.060 \ \text{MPa} \cdot (0.002)^{0.5} \\ &= 11.407 \ \text{MPa} \ (\text{como o material \'e recozido, a tensão de entrada \'e sempre a mesma}) \end{split} \sigma_{e_f} &= \sigma_o \cdot \text{Absoluto} \left(\phi_h\right)^n \\ &= 255.060 \ \text{MPa} \cdot \text{Absoluto} \left(-0.366\right)^{0.5} \\ &= 154.349 \ \text{MPa} \ (\text{como $\phi$ \'e constate durante as etapas, a tensão de saída também \'e sempre a mesma}) \end{split} \sigma_{medio} &= \frac{\sigma_{e_i} + \sigma_{e_f}}{2} \\ &= \frac{11.407 \ \text{MPa} + 154.349 \ \text{MPa}}{2} \\ &= \frac{22.278 \ \text{MPa}}{2} \end{split}
```

2. Obtenção das grandezas ideais

As forças ideais F_{id} , os momentos ideais M_{id} e as potências P_{id} de cada etapa:

$$\begin{split} \omega_{angular} &= 150 \cdot \left(2 \cdot \frac{\pi}{60}\right) \cdot \left(\frac{1}{s}\right) \\ &= 150 \cdot \left(2 \cdot \frac{3.142}{60}\right) \cdot \left(\frac{1}{s}\right) \\ &= 15.708 \text{ Hz} \quad \text{(transformação da rotação de RPM para rad/s)} \end{split}$$

$$egin{aligned} F_{i_1} &= \sigma_{medio} \cdot A_{c_1} \ &= 82.878 \ \mathrm{MPa} \cdot 25840.681 \ \mathrm{mm}^{2.0} \ &= 2.142 \ \mathrm{MN} \end{aligned}$$

$$\begin{split} M_{i_1} &= F_{i_1} \cdot l_{d_1} \\ &= 2.142 \ \mathrm{MN} \cdot 51.681 \ \mathrm{mm} \\ &= 110.682 \ \mathrm{kN} \cdot \mathrm{m} \end{split}$$

$$\begin{split} P_{i_1} &= M_{i_1} \cdot \omega_{angular} \\ &= 110.682 \; \text{kN} \cdot \text{m} \cdot 15.708 \; \text{Hz} \\ &= 1.739 \; \text{MW} \end{split}$$

$$\begin{split} F_{i_2} &= \sigma_{medio} \cdot A_{c_2} \\ &= 82.878 \; \text{MPa} \cdot 17916.928 \; \text{mm}^{2.0} \\ &= 1.485 \; \text{MN} \end{split}$$

$$egin{aligned} M_{i_2} &= F_{i_2} \cdot l_{d_2} \ &= 1.485 \ \mathrm{MN} \cdot 35.834 \ \mathrm{mm} \ &= 53.210 \ \mathrm{kN} \cdot \mathrm{m} \end{aligned}$$

$$egin{aligned} P_{i_2} &= M_{i_2} \cdot \omega_{angular} \ &= 53.210 \; \mathrm{kN} \cdot \mathrm{m} \cdot 15.708 \; \mathrm{Hz} \ &= 835.825 \; \mathrm{kW} \end{aligned}$$

$$egin{aligned} F_{i_3} &= \sigma_{medio} \cdot A_{c_3} \ &= 82.878 \ \mathrm{MPa} \cdot 12422.904 \ \mathrm{mm}^{2.0} \ &= 1.030 \ \mathrm{MN} \end{aligned}$$

$$\begin{split} M_{i_3} &= F_{i_3} \cdot l_{d_3} \\ &= 1.030 \; \text{MN} \cdot 24.846 \; \text{mm} \\ &= 25.581 \; \text{kN} \cdot \text{m} \end{split}$$

$$\begin{split} P_{i_3} &= M_{i_3} \cdot \omega_{angular} \\ &= 25.581 \; \text{kN} \cdot \text{m} \cdot 15.708 \; \text{Hz} \\ &= 401.823 \; \text{kW} \end{split}$$

Potências ideais relativamente altas. Provavelmente se deve ao raio ser grande, bem como a área de contato.

3. Finalmente, obtenção dos parâmetros não-ideais ou reais

3.1 Primeiro Passo

Alguns fatores serão utilizados para correção de forças, momentos, etc.

O primeiro passo para obter a força real é o cálculo do raio corrigido. Marca, também, o início do processo iterativo. Considera-se os rolos feitos de aço. A força referência é a força ideal F_{i_1} , por enquanto:

 $c=46.891~\mathrm{pPa}^{-1}~~\mathrm{(constante\ do\ aço\ transformada\ para\ de\ kgf/mm^2\ para\ Pa)}$

$$egin{align*} Rlinha_{1_1} &= R_1 \cdot \left(1 + \left(rac{c \cdot F_{i_1}}{b_m \cdot \Delta_{h_1}}
ight)
ight) \ &= 580.697 \ \mathrm{mm} \cdot \left(1 + \left(rac{46.891 \ \mathrm{pPa}^{-1} \cdot 2.142 \ \mathrm{MN}}{500.000 \ \mathrm{mm} \cdot 4.600 \ \mathrm{mm}}
ight)
ight) \ &= 606.054 \ \mathrm{mm} \end{split}$$

As constantes que serão utilizados para obter o primeiro fator de correção:

$$\begin{split} Curva_{empirica} &= \mu \cdot \sqrt{\frac{Rlinha_{1_1}}{h_{f_1}}} \\ &= 0.1 \cdot \sqrt{\frac{606.054 \text{ mm}}{10.400 \text{ mm}}} \\ &= 0.763 \end{split}$$

$$\epsilon &= \frac{\Delta_{h_1}}{h_{i_1}} \\ &= \frac{4.600 \text{ mm}}{15.000 \text{ mm}} \\ &= 0.307 \end{split}$$

Do cruzamento deste dois valores do Gráfico 1 da apostila (pg. 35), conclui-se que:

$$f_{1_{Passol_1}} = 1.1 \; ext{(aproximadamente)}$$

E, consequentemente, a primeira força corrigida do primeiro passo ${\cal F}_{c_{1_1}}$

$$\begin{split} F_{c_{\mathrm{l}_{1}}} &= b_{m} \cdot \left(\left(R linha_{\mathrm{l}_{1}} \cdot \Delta_{h_{1}} \right)^{0.5} \right) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{\mathrm{l}_{Passol_{1}}} \\ &= 500.000 \; \mathrm{mm} \cdot \left(\left(606.054 \; \mathrm{mm} \cdot 4.600 \; \mathrm{mm} \right)^{0.5} \right) \cdot 1.15 \cdot 82.878 \; \mathrm{MPa} \cdot 1.1 \\ &= 2.768 \; \mathrm{MN} \end{split}$$

A força ideal F_{i_1} foi encontrada como valendo 2.142MN. Agora, a primeira força corrigida $F_{c_{l_1}}$ foi encontrada como 2.768MN. A diferença é gritante. Mais um processo iterativo é necessário. Dessa vez, a força de referência mudou:

$$egin{align*} Rlinha_{1_2} &= R_1 \cdot \left(1 + \left(rac{c \cdot F_{c_{1_1}}}{b_m \cdot \Delta_{h_1}}
ight)
ight) \ &= 580.697 \ \mathrm{mm} \cdot \left(1 + \left(rac{46.891 \ \mathrm{pPa}^{-1} \cdot 2.768 \ \mathrm{MN}}{500.000 \ \mathrm{mm} \cdot 4.600 \ \mathrm{mm}}
ight)
ight) \ &= 613.466 \ \mathrm{mm} \end{aligned}$$

A discrepância entre os raios foi bem menor nesta etapa. Bom indicador.

Continuando:

$$egin{align*} Curva_{empirica} &= \mu \cdot \sqrt{rac{Rlinha_{1_2}}{h_{f_1}}} \ &= 0.1 \cdot \sqrt{rac{613.466 ext{ mm}}{10.400 ext{ mm}}} \ &= 0.768 \ \ &\epsilon = rac{\Delta_{h_1}}{h_{i_1}} \ &= rac{4.600 ext{ mm}}{15.000 ext{ mm}} \ \end{array}$$

Valores bem próximos aos da iteração breve. Portanto:

$$egin{align*} f_{1_{Passol_2}} &= 1.12 \; ext{ (aproximadamente)} \ &F_{c_{1_2}} &= b_m \cdot \left((Rlinha_{1_2} \cdot \Delta_{h_1})^{0.5}
ight) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{1_{Passol_2}} \ &= 500.000 \; \mathrm{mm} \cdot \left((613.466 \; \mathrm{mm} \cdot 4.600 \; \mathrm{mm})^{0.5}
ight) \cdot 1.15 \cdot 82.878 \; \mathrm{MPa} \cdot 1.12 \ &= 2.835 \; \mathrm{MN} \ &$$

Bem parecido. Mais uma última iteração para confirmar:

$$egin{align*} Rlinha_{1_3} &= R_1 \cdot \left(1 + \left(rac{c \cdot F_{c_{1_2}}}{b_m \cdot \Delta_{h_1}}
ight)
ight) \ &= 580.697 \ \mathrm{mm} \cdot \left(1 + \left(rac{46.891 \ \mathrm{pPa}^{-1} \cdot 2.835 \ \mathrm{MN}}{500.000 \ \mathrm{mm} \cdot 4.600 \ \mathrm{mm}}
ight)
ight) \ &= 614.265 \ \mathrm{mm} \end{aligned}$$

$$egin{aligned} Curva_{empirica} &= \mu \cdot \sqrt{rac{Rlinha_{1_3}}{h_{f_1}}} \ &= 0.1 \cdot \sqrt{rac{614.265 ext{ mm}}{10.400 ext{ mm}}} \ &= 0.769 \end{aligned}$$

$$egin{aligned} \epsilon &= rac{\Delta_{h_1}}{h_{i_1}} \ &= rac{4.600 ext{ mm}}{15.000 ext{ mm}} \ &= 0.307 \end{aligned}$$

 $f_{1_{Passol_2}}=1.12$ (aproximadamente)

$$egin{aligned} F_{c_{1_3}} &= b_m \cdot \left((Rlinha_{1_3} \cdot \Delta_{h_1})^{0.5}
ight) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{1_{Passol_3}} \ &= 500.000 \; ext{mm} \cdot \left((614.265 \; ext{mm} \cdot 4.600 \; ext{mm})^{0.5}
ight) \cdot 1.15 \cdot 82.878 \; ext{MPa} \cdot 1.12 \ &= 2.837 \; ext{MN} \end{aligned}$$

Houve convergência da grandeza. Calcula-se agora o momento real M_{c_1} , com as mesmas grandezas utilizadas no Gráfico 1, porém agora olhando para o Gráfico 2.

$$f_{2_{Passo1}}=0.115$$

$$egin{aligned} M_{c_1} &= 2 \cdot R_1 \cdot \left(rac{\left(h_{i_1}
ight)^2}{h_{f_1}}
ight) \cdot \sigma_{medio} \cdot b_m \cdot f_{2_{Passol}} \ &= 2 \cdot 580.697 ext{ mm} \cdot \left(rac{\left(15.000 ext{ mm}
ight)^2}{10.400 ext{ mm}}
ight) \cdot 82.878 ext{ MPa} \cdot 500.000 ext{ mm} \cdot 0.115 \ &= 119.734 ext{ kN} \cdot ext{m} \end{aligned}$$

E finalmente a potência corrigida P_{c_1} para o primeiro passo:

$$P_{c_1} = M_{c_1} \cdot \omega_{angular} = 119.734 \ \mathrm{kN} \cdot \mathrm{m} \cdot 15.708 \ \mathrm{Hz} \qquad = 1.881 \ \mathrm{MW}$$

3.2 Segundo Passo

Repete-se todo o processo do primeiro passo. Não será comentado para economizar espaço.

$$egin{align*} Rlinha_{2_1} &= R_2 \cdot \left(1 + \left(rac{c \cdot F_{i_2}}{b_m \cdot \Delta_{h_2}}
ight)
ight) \ &= 402.633 \ \mathrm{mm} \cdot \left(1 + \left(rac{46.891 \ \mathrm{pPa}^{-1} \cdot 1.485 \ \mathrm{MN}}{500.000 \ \mathrm{mm} \cdot 3.189 \ \mathrm{mm}}
ight)
ight) \ &= 420.214 \ \mathrm{mm} \end{array}$$

$$egin{aligned} Curva_{empirica} &= \mu \cdot \sqrt{rac{Rlinha_{2_1}}{h_{f_2}}} \ &= 0.1 \cdot \sqrt{rac{420.214 ext{ mm}}{7.211 ext{ mm}}} \ &= 0.763 \end{aligned}$$

$$egin{aligned} \epsilon &= rac{\Delta_{h_2}}{h_{i_2}} \ &= rac{3.189 ext{ mm}}{10.400 ext{ mm}} \ &= 0.307 \end{aligned}$$

 $f_{1_{Passo2_1}}=1.1 \; ext{(aproximadamente)}$

$$egin{aligned} F_{c_{2_1}} &= b_m \cdot \left(\left(R linha_{2_1} \cdot \Delta_{h_2}
ight)^{0.5}
ight) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{1_{Passo2_1}} \ &= 500.000 \; \mathrm{mm} \cdot \left(\left(420.214 \; \mathrm{mm} \cdot 3.189 \; \mathrm{mm}
ight)^{0.5}
ight) \cdot 1.15 \cdot 82.878 \; \mathrm{MPa} \cdot 1.1 \ &= 1.919 \; \mathrm{MN} \end{aligned}$$

$$egin{align*} Rlinha_{2_2} &= R_2 \cdot \left(1 + \left(rac{c \cdot F_{c_2}}{b_m \cdot \Delta_{h_2}}
ight)
ight) \ &= 402.633 \ \mathrm{mm} \cdot \left(1 + \left(rac{46.891 \ \mathrm{pPa}^{-1} \cdot 1.919 \ \mathrm{MN}}{500.000 \ \mathrm{mm} \cdot 3.189 \ \mathrm{mm}}
ight)
ight) \ &= 425.354 \ \mathrm{mm} \end{split}$$

$$egin{aligned} Curva_{empirica} &= \mu \cdot \sqrt{rac{Rlinha_{2_2}}{h_{f_2}}} \ &= 0.1 \cdot \sqrt{rac{425.354 ext{ mm}}{7.211 ext{ mm}}} \ &= 0.768 \end{aligned}$$

$$egin{aligned} \epsilon &= rac{\Delta_{h_2}}{h_{i_2}} \ &= rac{3.189 ext{ mm}}{10.400 ext{ mm}} \ &= 0.307 \end{aligned}$$

 $f_{1_{Passo2_2}}=1.11$ (aproximadamente)

$$egin{aligned} F_{c_{2_2}} &= b_m \cdot \left((Rlinha_{2_2} \cdot \Delta_{h_2})^{0.5}
ight) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{1_{Passo2_2}} \ &= 500.000 \; \mathrm{mm} \cdot \left((425.354 \; \mathrm{mm} \cdot 3.189 \; \mathrm{mm})^{0.5}
ight) \cdot 1.15 \cdot 82.878 \; \mathrm{MPa} \cdot 1.11 \ &= 1.948 \; \mathrm{MN} \end{aligned}$$

$$egin{align*} Rlinha_{2_3} &= R_2 \cdot \left(1 + \left(rac{c \cdot F_{c_{2_2}}}{b_m \cdot \Delta_{h_2}}
ight)
ight) \ &= 402.633 \ ext{mm} \cdot \left(1 + \left(rac{46.891 \ ext{pPa}^{-1} \cdot 1.948 \ ext{MN}}{500.000 \ ext{mm} \cdot 3.189 \ ext{mm}}
ight)
ight) \ &= 425.700 \ ext{mm} \end{split}$$

$$egin{aligned} Curva_{empirica} &= \mu \cdot \sqrt{rac{Rlinha_{2_3}}{h_{f_2}}} \ &= 0.1 \cdot \sqrt{rac{425.700 ext{ mm}}{7.211 ext{ mm}}} \ &= 0.768 \end{aligned}$$

$$egin{aligned} \epsilon &= rac{\Delta_{h_2}}{h_{i_2}} \ &= rac{3.189 ext{ mm}}{10.400 ext{ mm}} \ &= 0.307 \end{aligned}$$

 $f_{1_{Passo2_3}}=1.12$ (aproximadamente)

$$egin{aligned} F_{c_{2_3}} &= b_m \cdot \left((Rlinha_{2_3} \cdot \Delta_{h_2})^{0.5}
ight) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{1_{Passo2_3}} \ &= 500.000 \; ext{mm} \cdot \left((425.700 \; ext{mm} \cdot 3.189 \; ext{mm})^{0.5}
ight) \cdot 1.15 \cdot 82.878 \; ext{MPa} \cdot 1.12 \ &= 1.967 \; ext{MN} \end{aligned}$$

$$f_{2_{Passo2}} = 0.112$$

$$egin{align*} M_{c_2} &= 2 \cdot R_2 \cdot \left(rac{(h_{i_2})^2}{h_{f_2}}
ight) \cdot \sigma_{medio} \cdot b_m \cdot f_{2_{Passo2}} \ &= 2 \cdot 402.633 \ \mathrm{mm} \cdot \left(rac{(10.400 \ \mathrm{mm})^2}{7.211 \ \mathrm{mm}}
ight) \cdot 82.878 \ \mathrm{MPa} \cdot 500.000 \ \mathrm{mm} \cdot 0.112 \ &= 56.060 \ \mathrm{kN} \cdot \mathrm{m} \end{split}$$

E finalmente a potência corrigida P_{c_1} para o primeiro passo:

$$P_{c_2} = M_{c_2} \cdot \omega_{angular} = 56.060 \; \text{kN} \cdot \text{m} \cdot 15.708 \; \text{Hz} \qquad = 880.596 \; \text{kW}$$

3.3 Terceiro (e último!) Passo

$$egin{align*} Rlinha_{3_1} &= R_3 \cdot \left(1 + \left(rac{c \cdot F_{i_3}}{b_m \cdot \Delta_{h_3}}
ight)
ight) \ &= 279.170 \; \mathrm{mm} \cdot \left(1 + \left(rac{46.891 \; \mathrm{pPa^{-1} \cdot 1.030 \; MN}}{500.000 \; \mathrm{mm \cdot 2.211 \; mm}}
ight)
ight) \ &= 291.360 \; \mathrm{mm} \end{array}$$

$$\begin{split} Curva_{empirica} &= \mu \cdot \sqrt{\frac{Rlinha_{3_1}}{h_{f_3}}} \\ &= 0.1 \cdot \sqrt{\frac{291.360 \text{ mm}}{5.000 \text{ mm}}} \\ &= 0.763 \end{split}$$

$$egin{aligned} \epsilon &= rac{\Delta_{h_3}}{h_{i_3}} \ &= rac{2.211 ext{ mm}}{7.211 ext{ mm}} \ &= 0.307 \end{aligned}$$

 $f_{1_{Passo3_1}}=1.1$ (aproximadamente)

$$egin{aligned} F_{c_{3_1}} &= b_m \cdot \left(\left(Rlinha_{3_1} \cdot \Delta_{h_3}
ight)^{0.5}
ight) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{1_{Passo3_1}} \ &= 500.000 \; ext{mm} \cdot \left(\left(291.360 \; ext{mm} \cdot 2.211 \; ext{mm}
ight)^{0.5}
ight) \cdot 1.15 \cdot 82.878 \; ext{MPa} \cdot 1.1 \ &= 1.331 \; ext{MN} \end{aligned}$$

$$egin{align*} Rlinha_{3_2} &= R_3 \cdot \left(1 + \left(rac{c \cdot F_{c_{3_1}}}{b_m \cdot \Delta_{h_3}}
ight)
ight) \ &= 279.170 \ \mathrm{mm} \cdot \left(1 + \left(rac{46.891 \ \mathrm{pPa}^{-1} \cdot 1.331 \ \mathrm{MN}}{500.000 \ \mathrm{mm} \cdot 2.211 \ \mathrm{mm}}
ight)
ight) \ &= 294.924 \ \mathrm{mm} \end{aligned}$$

$$egin{align*} Curva_{empirica} &= \mu \cdot \sqrt{rac{Rlinha_{3_2}}{h_{f_3}}} \ &= 0.1 \cdot \sqrt{rac{294.924 ext{ mm}}{5.000 ext{ mm}}} \ &= 0.768 \ \end{align*}$$

$$egin{aligned} \epsilon &= rac{\Delta_{h_3}}{h_{i_3}} \ &= rac{2.211 ext{ mm}}{7.211 ext{ mm}} \ &= 0.307 \end{aligned}$$

 $f_{1_{Passo3_2}}=1.11$ (aproximadamente)

$$egin{aligned} F_{c_{3_2}} &= b_m \cdot \left(\left(Rlinha_{3_2} \cdot \Delta_{h_3}
ight)^{0.5}
ight) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{1_{Passo3_2}} \ &= 500.000 \; ext{mm} \cdot \left(\left(294.924 \; ext{mm} \cdot 2.211 \; ext{mm}
ight)^{0.5}
ight) \cdot 1.15 \cdot 82.878 \; ext{MPa} \cdot 1.11 \ &= 1.351 \; ext{MN} \end{aligned}$$

$$egin{align*} Rlinha_{3_3} &= R_3 \cdot \left(1 + \left(rac{c \cdot F_{c_{3_2}}}{b_m \cdot \Delta_{h_3}}
ight)
ight) \ &= 279.170 \ ext{mm} \cdot \left(1 + \left(rac{46.891 \ ext{pPa}^{-1} \cdot 1.351 \ ext{MN}}{500.000 \ ext{mm} \cdot 2.211 \ ext{mm}}
ight)
ight) \ &= 295.164 \ ext{mm} \end{split}$$

$$egin{aligned} Curva_{empirica} &= \mu \cdot \sqrt{rac{Rlinha_{3_3}}{h_{f_3}}} \ &= 0.1 \cdot \sqrt{rac{295.164 ext{ mm}}{5.000 ext{ mm}}} \ &= 0.768 \end{aligned}$$

$$\epsilon = rac{\Delta_{h_3}}{h_{i_3}} \ = rac{2.211 ext{ mm}}{7.211 ext{ mm}} \ = 0.307$$

 $f_{1_{Passo3_{2}}}=1.105~{
m (aproximadamente)}$

$$egin{aligned} F_{c_{3_3}} &= b_m \cdot \left((Rlinha_{3_3} \cdot \Delta_{h_3})^{0.5}
ight) \cdot 1.15 \cdot \sigma_{medio} \cdot f_{1_{Passo_{3_3}}} \ &= 500.000 \ ext{mm} \cdot \left((295.164 \ ext{mm} \cdot 2.211 \ ext{mm})^{0.5}
ight) \cdot 1.15 \cdot 82.878 \ ext{MPa} \cdot 1.105 \ &= 1.345 \ ext{MN} \end{aligned}$$

$$f_{2_{Passo3}} = 0.115$$

$$egin{align*} M_{c_3} &= 2 \cdot R_3 \cdot \left(rac{(h_{i_3})^2}{h_{f_3}}
ight) \cdot \sigma_{medio} \cdot b_m \cdot f_{2_{Passo3}} \ &= 2 \cdot 279.170 \ \mathrm{mm} \cdot \left(rac{(7.211 \ \mathrm{mm})^2}{5.000 \ \mathrm{mm}}
ight) \cdot 82.878 \ \mathrm{MPa} \cdot 500.000 \ \mathrm{mm} \cdot 0.115 \ &= 27.673 \ \mathrm{kN} \cdot \mathrm{m} \end{aligned}$$

E finalmente a potência corrigida P_{c_1} para o primeiro passo:

$$P_{c_3} = M_{c_3} \cdot \omega_{angular} = 27.673 \; \text{kN} \cdot \text{m} \cdot 15.708 \; \text{Hz} \qquad = 434.686 \; \text{kW}$$

Síntese

Como conclusão, plota-se uma tabela para comparação de resultados:

Na tabela, serão expostos as grandezas de cada etapa em forma de pares. O valor da esquerda é referente ao processo ideal, enquanto o da direta é referente ao processo real:

Out[47]:

	Etapa 1	Etapa 2	Etapa 3
Força	(2.142 MN, 2.837 MN)	(1.485 MN, 1.967 MN)	(1.030 MN, 1.345 MN)
Momento	(110.682 kN·m, 119.734 kN·m)	(53.210 kN·m, 56.060 kN·m)	(25.581 kN·m, 27.673 kN·m)
Potência	(1.739 MW, 1.881 MW)	(835.825 kW, 880.596 kW)	(401.823 kW, 434.686 kW)

Nota-se que, como esperado, todas as grandezas reais requerem maior intensidade de energia do que os ideais.

Por último, plota-se outra tabela, agora com os valores sendo exibidos ao decorrer da correção. O primeiro valor é sempre ideal, enquanto os outros 3 são os corrigidos, lembrando que quanto mais iterado, mais corrigido - logo, quanto mais para a direita, mais corrigido está o valor.

Out[48]:

	Etapa 1	Etapa 2	Etapa 3
Raios	(580.697 mm, 606.054 mm, 613.466 mm, 614.265 mm)	(402.633 mm, 420.214 mm, 425.354 mm, 425.700 mm)	(279.170 mm, 291.360 mm, 294.924 mm, 295.164 mm)
Forças	(2.142 MN, 2.768 MN, 2.835 MN, 2.837 MN)	(1.485 MN, 1.919 MN, 1.948 MN, 1.967 MN)	(1.030 MN, 1.331 MN, 1.351 MN, 1.345 MN)

Questão II

Uma laminadora deverá realizar a deformação de uma barra de seção retangular de 5.0" x 5.0", entre cilindros de ferro fundido, com espaçamento entre eles de 60 mm, sendo a rotação dos cilindros da ordem de 80 RPM e diâmetro de 500 mm em uma gaiola com potência de motor de 700 cv e rendimento de $\eta_{mec}=0.85$.

- 1. Determine o comprimento final da barra sabendo que seu comprimento inicial é de 5 m;
- 2. Será possível realizar o processo?

O material será laminado a 1000 °C, e sua composição química é:

- 0,40%C;
- 0,87%Mn;
- 0,95%Cr;
- 0,25%Si;
- 0,20%Mo;
- 0,04%S;
- 0,03%P.

Resposta II

1. Determinando o comprimento final da barra e outras grandezas importantes

O primeiro passo consta na determinação da deformação máxima na espessura que a chapa sofrerá

$$\begin{aligned} h_i &= 5.0 \cdot 25.4 \cdot mm \\ &= 5.0 \cdot 25.4 \cdot mm \\ &= 127.000 \text{ mm} \text{ (transformação de } inch \text{ para } mm) \end{aligned}$$

$$h_f = 60.000 \; \mathrm{mm} \; \; \mathrm{(definido \, pelo \, enunciado)}$$

$$egin{aligned} \Delta_h &= h_i - h_f \ &= 127.000 \ \mathrm{mm} - 60.000 \ \mathrm{mm} \ &= 67.000 \ \mathrm{mm} \end{aligned}$$

$$\phi_h = \ln\left(rac{h_f}{h_i}
ight) \ = \ln\left(rac{60.000 ext{ mm}}{127.000 ext{ mm}}
ight) \ = -0.75$$

Como o processo é feito a quente, não se deve preocupar com deformação homogênea: a tensão de escoamento é constante.

Com tais informações, calcula-se o raio

$$Temp_{processo} = 1.000 \,\mathrm{k}^{\circ}\mathrm{C}$$
 $C = 500.000 \,\mu^{\circ}\mathrm{C}^{-1}$

$$\begin{split} \mu &= 1.05 - C \cdot Temp_{processo} \\ &= 1.05 - 500.000 \; \mu^{\circ} \, \text{C}^{-1} \cdot 1.000 \; \text{k}^{\circ} \, \text{C} \\ &= 0.55 \; \; \text{(específico para rolos de ferro fundido, de acordo com a apostila)} \end{split}$$

 $R=250.000~\mathrm{mm}~\mathrm{(configuração~da~máquina)}$

CritSeg = 1.25 (agindo com segurança)

$$egin{aligned} R_{Minimo} &= CritSeg \cdot rac{\Delta_h}{\left(\sin\left(rctan(\mu)
ight)
ight)^2} \ &= 1.25 \cdot rac{67.000 ext{ mm}}{\left(\sin\left(rctan(0.55)
ight)
ight)^2} \ &= 360.610 ext{ mm} \end{aligned}$$

Percebe-se que o raio atual da máquina não é adequado para a tarefa, uma vez que o raio mínimo que o processo requer é maior que este valor. Para que o projeto se torne acessível, o rolo deverá ser alterado.

$$R = 360.610 \text{ mm}$$

Continuando, definindo alguns parâmetros de contato:

$$l_d = \left(R \cdot \Delta_h\right)^{0.5} \ = \left(360.610 \text{ mm} \cdot 67.000 \text{ mm}\right)^{0.5} \ = 155.438 \text{ mm}$$

Como o processo é feito a quente, a deformação verdadeira ϕ_b na espessura **não** deverá ser desprezada.

$$Temp_{proc} = 1273 ext{ (K)}$$
 $C_{b\mu} = rac{Temp_{ref}}{Temp_{proc}}$ $= rac{1000}{1273}$

 $Temp_{ref} = 1000 \text{ (K)}$

$$egin{aligned} \phi_b &= -\phi_h \cdot (e)^{\left(-C_{b\mu} \cdot \left(rac{b_i}{l_d}
ight)
ight)} \ &= --0.75 \cdot (2.718)^{\left(-0.786 \cdot \left(rac{127.000 ext{ nm}}{155.438 ext{ mm}}
ight)
ight)} \ &= 0.395 \end{aligned}$$

$$\begin{split} b_f &= b_i \cdot (e)^{\phi_b} \\ &= 127.000 \; \text{mm} \cdot (2.718)^{0.395} \\ &= 188.453 \; \text{mm} \; \; \text{(variação bastante considerável, como se percebe com o cálculo)} \end{split}$$

O importante, neste caso, é conhecer a variação média na espessura, ou seja, entre seu valor de entrada e de saída:

$$b_m = rac{b_i + b_f}{2} = rac{127.000 ext{ mm} + 188.453 ext{ mm}}{2} = 157.727 ext{ mm}$$

Com tal valor, torna-se possível a validação da área de contato A_c :

$$A_c = b_m \cdot l_d = 157.727 \text{ mm} \cdot 155.438 \text{ mm} = 24516.656 \text{ mm}^{2.0}$$

De acordo com a conservação de massa, é possível obter o valor da deformação no comprimento ϕ_l com a deformação na largura e na espessura:

$$\phi_l = -\phi_b - \phi_h$$
= -0.395 - -0.75
= 0.355

$$Conserva$$
ção $_{massa} = \phi_l + \phi_b + \phi_h$
= $0.355 + 0.395 + -0.75$
= 0.0 (a variação de massa ou volume sempre deve ser 0 entre os processos de conformação)

E com todas as deformação verdadeiras definidas, fica fácil determinar o comprimento final da peça:

$$l_i = 5.000 \ \mathrm{m}$$

$$l_f = l_i \cdot (e)^{\phi_l} = 5.000 \ \mathrm{m} \cdot (2.718)^{0.355} \qquad = 7.132 \ \mathrm{m}$$

A tensão de escoamento σ_e é constante para o processo a quente e segue uma equação empírica guiada por sua composição:

$$\begin{split} &C_{perc} = 0.4 ~~(\%) \\ &Mn_{perc} = 0.87 ~~(\%) \\ &Cr_{perc} = 0.95 ~~(\%) \\ &C_2 = 10.000 ~\text{m} ^{\circ}\text{C}^{-1} \\ &\sigma_{e_{kgfmm2}} = (14 - C_2 \cdot Temp_{processo}) \cdot (1.4 + C_{perc} + Mn_{perc} + 0.3 \cdot Cr_{perc}) \\ &= (14 - 10.000 ~\text{m} ^{\circ}\text{C}^{-1} \cdot 1.000 ~\text{k} ^{\circ}\text{C}) \cdot (1.4 + 0.4 + 0.87 + 0.3 \cdot 0.95) \\ &= 11.82 ~~(\text{kgf/mm}^2) \end{split}$$

$$&\sigma_e = \sigma_{e_{kgfmm2}} \cdot 9.81 \cdot MPa \\ &= 11.82 \cdot 9.81 \cdot MPa \\ &= 115.954 ~\text{MPa} ~~\text{(transformado para MPa para manter a consistência dimensional)} \end{split}$$

A força F, na laminação a quente, é calculada pela área de contato e pela pressão específica K_w .

 K_w depende de dois novos fatores, a velocidade de deformação $\dot{\phi}$ e o coeficiente de plasticidade η :

$$egin{aligned} \eta &= 0.01 \cdot (14 - C_2 \cdot Temp_{processo}) \ &= 0.01 \cdot \left(14 - 10.000 \ \mathrm{m} \, ^{\circ} \mathrm{C}^{-1} \cdot 1.000 \ \mathrm{k} \, ^{\circ} \mathrm{C}
ight) \ &= 0.04 \end{aligned}$$

$$\omega_{angular} = 80 \cdot \left(2 \cdot \frac{\pi}{60}\right) \cdot \frac{1}{s}$$

$$= 80 \cdot \left(2 \cdot \frac{3.142}{60}\right) \cdot \frac{1}{s}$$

$$= 8.378 \text{ Hz}$$

$$egin{aligned} V_{linear} &= \omega_{angular} \cdot R \ &= 8.378 \; \mathrm{Hz} \cdot 360.610 \; \mathrm{mm} \ &= 3.021 \; \mathrm{m} \cdot \mathrm{s}^{-1} \end{aligned}$$

$$egin{aligned} \phi_{dot} &= rac{2 \cdot V_{linear} \cdot \left(rac{\Delta_h}{R}
ight)^{0.5}}{h_i + h_f} \ &= rac{2 \cdot 3.021 ext{ m} \cdot ext{s}^{-1} \cdot \left(rac{67.000 ext{ mm}}{360.610 ext{ mm}}
ight)^{0.5}}{127.000 ext{ mm} + 60.000 ext{ mm}} \ &= 13.927 ext{ Hz} \end{aligned}$$

Finalmente, K_w :

$$\begin{split} K_w &= \left(1 + \frac{1.6 \cdot \mu \cdot l_d - 1.2 \cdot \Delta_h}{h_i + h_f}\right) \cdot \left(\sigma_{e_{kgfmm2}} + \eta \cdot \phi_{dot} \cdot s\right) \cdot (9.81 \cdot MPa) \\ &= \left(1 + \frac{1.6 \cdot 0.55 \cdot 155.438 \text{ mm} - 1.2 \cdot 67.000 \text{ mm}}{127.000 \text{ mm} + 60.000 \text{ mm}}\right) \cdot (11.82 + 0.04 \cdot 13.927 \text{ Hz} \cdot s) \cdot (9.81 \cdot MPa) \\ &= 158.030 \text{ MPa} \ \, \text{(cálculo \'e empírico e envolve kgf/mm², alguma complicação no dimensional acontece)} \end{split}$$

Perto do final, F:

$$\begin{split} F &= K_w \cdot A_c \\ &= 158.030 \; \text{MPa} \cdot 24516.656 \; \text{mm}^{2.0} \\ &= 3.874 \; \text{MN} \; \; \text{(valor elevado, uma vez que a área de contato é relativamente grande)} \end{split}$$

O cálculo do momento M deve ser feito com a força F e l_d :

$$\begin{aligned} M &= F \cdot l_d \\ &= 3.874 \; \text{MN} \cdot 155.438 \; \text{mm} \\ &= 602.222 \; \text{kN} \cdot \text{m} \end{aligned}$$

2. Determinando se o processo é viável (Síntese)

Enfim, a potência \dot{W} :

$$\begin{split} \eta_{mecanica} &= 0.85 \\ W_{dot} &= \frac{M \cdot \omega_{angular}}{\eta_{mecanica}} \\ &= \frac{602.222 \text{ kN} \cdot \text{m} \cdot 8.378 \text{ Hz}}{0.85} \\ &= 5.935 \text{ MW} \text{ (ou } 8100 \text{ cv)} \end{split}$$

Como se percebe, é um valor muito alto para ser praticado. Se deve ao tamanho da área de contato e também à variação de espessura em um único passe (~67mm) muito alta.

Para resolver tal problema, sugere-se a divisão do processo em mais de uma gaiola.