Compte Rendu TP3 Filtre inverse vidéeo et floutages d'images

Ivan Lejeune

11 février 2024

Table des matières

1	Choix des images, histogramme et profil de ligne 1.1 Choix de l'image	2
	1.2 Histogramme	2
2	Inverse vidéo	3
	2.1 Comparaison des profils de ligne	3
3	Filtre flou 1	4
	3.1 Programme	4
	3.2 Comparaison des profils de ligne	5
4	Filtre flou 2	6
	4.1 Programme	6
	4.2 Floutage répété	7
	4.3 Comparaison des profils de ligne	8
	4.4 Comparaison des histogrammes	9
5	Floutage de l'image couleur	10
	5.1 Programme	10
	5.2 Comparaison des histogrammes	10

1 Choix des images, histogramme et profil de ligne

1.1 Choix de l'image

On commence par choisir une image au format ppm, dans notre cas, l'image peppers.pgm. On la transforme ensuite en pgm. Cela donne alors :

FIGURE 1 – Image originale

FIGURE 2 – Image en niveaux de gris

1.2 Histogramme

On commence par calculer l'histogramme de l'image. Et ensuite le profil de ligne de l'image. On choisit ici la ligne 30. Cela donne :

FIGURE 3 – Histogramme de l'image en niveaux de gris

FIGURE 4 – Profil de ligne de l'image en niveaux de gris

2 Inverse vidéo

On commence par créer le programme inverse.cpp. L'essentiel du code est le suivant :

FIGURE 5 - Code du programme inverse.cpp

On peut alors appliquer le programme à l'image peppers.pgm. Cela donne :

FIGURE 6 - Image originale

 $Figure \ 7-Image \ inversée$

2.1 Comparaison des profils de ligne

On compare ensuite le profil de ligne de l'image originale et de l'image inversée. Cela donne :

Figure 8 – Profil de ligne de l'image originale

Figure 9 – Profil de ligne de l'image inversée

On remarque que le profil de ligne de l'image inversée est l'opposé de celui de l'image originale.

3 Filtre flou 1

3.1 Programme

On commence par créer le programme flou1.cpp. L'essentiel du code est le suivant :

Figure 10 - Code du programme filtre_flou1.cpp

On peut alors appliquer le programme à l'image ${\tt peppers.pgm}.$ Cela donne :

FIGURE 11 – Image originale

FIGURE 12 – Image floutée

3.2 Comparaison des profils de ligne

On compare ensuite le profil de ligne de l'image originale et de l'image floutée. Cela donne :

FIGURE 13 – Profil de ligne de l'image originale

Figure 14 – Profil de ligne de l'image floutée

On remarque que le profil de ligne de l'image floutée est plus lisse que celui de l'image originale.

4 Filtre flou 2

4.1 Programme

On commence par créer le programme flou2.cpp. L'essentiel du code est le suivant :

Figure 15 - Code du programme filtre_flou2.cpp

On peut alors appliquer le programme à l'image ${\tt peppers.pgm}.$ Cela donne :

FIGURE 16 - Image originale

FIGURE 17 – Image floutée

4.2 Floutage répété

On applique ensuite le programme ${ t flou2.cpp}$ à l'image floutée plusieurs fois. Cela donne :

FIGURE 18 – Image floutée deux fois

FIGURE 19 – Image floutée cinq fois

4.3 Comparaison des profils de ligne

On compare ensuite le profil de ligne de l'image originale et de toutes les images floutées. Cela donne :

FIGURE 20 – Profil de ligne de l'image floutée

On peut clairement voir ici que plus on floute l'image, plus le profil de ligne devient lisse.

4.4 Comparaison des histogrammes

On compare ensuite les histogrammes de l'image originale et de toutes les images floutées. Cela donne :

FIGURE 21 - Histogramme de l'image floutée

Comme pour le profil de ligne, on peut clairement voir ici que plus on floute l'image, plus l'histogramme devient lisse.

5 Floutage de l'image couleur

5.1 Programme

On commence par créer le programme filtre_flou_couleur.cpp. L'essentiel du code est le suivant :

FIGURE 22 - Code du programme filtre_flou_couleur.cpp

On peut alors appliquer le programme à l'image peppers.ppm. Cela donne :

FIGURE 23 - Image originale

FIGURE 24 – Image floutée

5.2 Comparaison des histogrammes

On compare ensuite les histogrammes de l'image originale et de l'image floutée. Cela donne :

FIGURE 25 – Histogramme de l'image floutée