In this document, we verify the essential inequality necessary to prove 2M_T>mu(T;v) by considering the critical values of mu^bullet, when there are (essentially) 5 sub-ktrees _We first write the formulas in general > i := 5j := 5(1) > LHS := (N1, N2, N3, N4, N5, k, mu1, mu2, mu3, mu4, mu5) → $(N1 \cdot N2 \cdot N3 \cdot N4 \cdot N5)$ +1)·(1 + mu1 + mu2 + mu3 + mu4 + mu5 + k) + k·<math>(1 + k - j) + mu1·(1 + k - j) $+ mu1 \cdot N1 + mu2 \cdot (1 + k + mu2) \cdot N2 + mu3 \cdot (1 + k + mu3) \cdot N3 + mu4 \cdot (1 + k + mu3) \cdot (1 + k + mu3) \cdot (1 + k + mu3) \cdot (1 + k$ $+ mu4) \cdot N4 + mu5 \cdot (1 + k + mu5) \cdot N5$ LHS:= $(N1, N2, N3, N4, N5, k, \mu 1, \mu 2, \mu 3, \mu 4, \mu 5) \rightarrow (N1 N2 N3 N4 N5 + 1) (1 + \mu 1)$ (2) $+\mu 2 + \mu 3 + \mu 4 + \mu 5 + k$) $+k(1+k-j) + \mu 1(1+k+\mu 1)N1 + \mu 2(1+k+\mu 1)N$ $+\mu 2$) $N2 + \mu 3$ (1 + k + $\mu 3$) $N3 + \mu 4$ (1 + k + $\mu 4$) $N4 + \mu 5$ (1 + k + $\mu 5$) N5> $RHS := (N1, N2, N3, N4, N5, k, mu1, mu2, mu3, mu4, mu5) \rightarrow (1 + mu1 + mu2)$ $+ mu3 + mu4 + mu5 \cdot ((1 + k + mu1) \cdot N1 + (1 + k + mu2) \cdot N2 + (1 + k + mu3) \cdot N2 + (1 + k + mu3) \cdot N3 + (1 + k$ $+ mu3 \cdot N3 + (1 + k + mu4) \cdot N4 + (1 + k + mu5) \cdot N5 + k - j$ RHS:= $(N1, N2, N3, N4, N5, k, \mu1, \mu2, \mu3, \mu4, \mu5) \rightarrow (1 + \mu1 + \mu2 + \mu3 + \mu4)$ (3) $+\mu 5$) $((1 + k + \mu 1) N1 + (1 + k + \mu 2) N2 + (1 + k + \mu 3) N3 + (1 + k + \mu 4) N3 + (1$ $+ \mu 4$) $N4 + (1 + k + \mu 5) N5 + k - j$) > Dif := (N1, N2, N3, N4, N5, k, mu1, mu2, mu3, mu4, mu5) → LHS(N1, N2, N3, N4, mu5)N5, k, mu1, mu2, mu3, mu4, mu5) – RHS(N1, N2, N3, N4, N5, k, <math>mu1, mu2, mu3, mu4, mu5) (4) μ 1, μ 2, μ 3, μ 4, μ 5) - RHS(N1, N2, N3, N4, N5, k, μ 1, μ 2, μ 3, μ 4, μ 5) > $f1 := (N1, N2, N3, N4, N5, k) \rightarrow Dif(N1, N2, N3, N4, N5, k, 0, 0, 0, 0, 0)$ $f1 := (N1, N2, N3, N4, N5, k) \rightarrow Dif(N1, N2, N3, N4, N5, k, 0, 0, 0, 0, 0)$ (5) > $f2 := (N1, N2, N3, N4, N5, k) \rightarrow Dif\left(N1, N2, N3, N4, N5, k, \frac{N1-1}{2}, 0, 0, 0, 0\right)$ $f2 := (N1, N2, N3, N4, N5, k) \rightarrow Dif\left(N1, N2, N3, N4, N5, k, \frac{1}{2}N1 - \frac{1}{2}, 0, 0, 0, 0\right)$ (6)> $f3 := (N1, N2, N3, N4, N5, k) \rightarrow Dif(N1, N2, N3, N4, N5, k, \frac{N1-1}{2}, \frac{N2-1}{2}, 0, 0, 0)$ 0 $f3 := (N1, N2, N3, N4, N5, k) \rightarrow Dif(N1, N2, N3, N4, N5, k, \frac{1}{2}N1 - \frac{1}{2}, \frac{1}{2}N2)$ **(7)** $-\frac{1}{2}$, 0, 0, 0

> $f4 := (N1, N2, N3, N4, N5, k) \rightarrow Dif(N1, N2, N3, N4, N5, k, \frac{N1-1}{2}, \frac{N2-1}{2}, \frac{$

$$\frac{(N3-1)}{2}, 0, 0)$$

$$f4 := (N1, N2, N3, N4, N5, k) \rightarrow Dif\left(N1, N2, N3, N4, N5, k, \frac{1}{2}N1 - \frac{1}{2}, \frac{1}{2}N2\right)$$

$$-\frac{1}{2}, \frac{1}{2}N3 - \frac{1}{2}, 0, 0$$

$$= (N1, N2, N3, N4, N5, k) \rightarrow Dif\left(N1, N2, N3, N4, N5, k, \frac{N1-1}{2}, \frac{N2-1}{2}, \frac{N2-1}{2$$

> simplify(diff(f6(N1, N2, N3, N4, N5, k), k))-N2N1 - N3N1 - N2N3 - N2N4 - N2N5 - N3N4 - N3N5 - N4N5 - N4N1- $N5N1 + N1N2N3N4N5 - \frac{3}{2} + \frac{1}{2}N4 + \frac{1}{2}N5 + \frac{1}{2}N2 + \frac{1}{2}N3 + \frac{1}{2}N1$ +2k

> simplify(diff(f5(N1, N2, N3, N4, N5, k), k)) $-2 - N2N1 - N3N1 - N2N3 - N2N4 - \frac{1}{2}N2N5 - N3N4 - \frac{1}{2}N3N5$ (14) $-\frac{1}{2}N4N5 - N4N1 - \frac{1}{2}N5N1 + N1N2N3N4N5 + N5 + 2k$

> simplify(diff(f4(N1, N2, N3, N4, N5, k), k))

..-

$$N1 N2 N3 N4 N5 - \frac{5}{2} + 2 k - \frac{1}{2} N1 - \frac{1}{2} N2 - \frac{1}{2} N3 + \frac{1}{2} N4 + \frac{1}{2} N5 - N2 N1$$

$$-N3 N1 - \frac{1}{2} N4 N1 - \frac{1}{2} N5 N1 - N2 N3 - \frac{1}{2} N2 N4 - \frac{1}{2} N2 N5 - \frac{1}{2} N3 N4$$

$$-\frac{1}{2} N3 N5$$
(15)

> simplify(diff(f3(N1, N2, N3, N4, N5, k), k))

$$N1 N2 N3 N4 N5 - 3 + 2 k - N1 - N2 - N2 N1 - \frac{1}{2} N3 N1 - \frac{1}{2} N4 N1 - \frac{1}{2} N5 N1$$
 (16)
$$-\frac{1}{2} N2 N3 - \frac{1}{2} N2 N4 - \frac{1}{2} N2 N5$$

>
$$minimize(f3(N1, N2, N3, N4, N5, 5), N1 = 2 ...infinity, N2 = 2 ...infinity, N3 = 2 ...infinity, N4 = 2 ...infinity, N5 = 2 ...infinity)$$
125
(17)

> minimize(f4(N1, N2, N3, N4, N5, 5), N1 = 2 ...infinity, N2 = 2 ...infinity, N3 = 2 ...infinity, N4 = 2 ...infinity, N5 = 2 ...infinity)

$$\frac{229}{2}$$
 (18)

By checking the derivatives and using symmetry, we note that it is sufficient to consider the cases where most Ni are equal to the minimum (2)

 \rightarrow simplify(diff(f6(N1, N2, N3, N4, N5, 5), N1))

$$6 - \frac{1}{4} N2^{2} - \frac{1}{4} N3^{2} - \frac{1}{2} N2 N1 - \frac{1}{2} N3 N1 + \frac{1}{2} N2 N3 N4^{2} N5 + \frac{1}{2} N2 N3 N4 N5^{2}$$

$$- \frac{1}{4} N4^{2} - \frac{1}{4} N5^{2} - \frac{1}{2} N4 N1 - \frac{1}{2} N5 N1 + \frac{7}{2} N2 N3 N4 N5$$

$$+ \frac{1}{2} N2^{2} N3 N4 N5 + \frac{1}{2} N2 N3^{2} N4 N5 + N1 N2 N3 N4 N5 - \frac{11}{2} N4 - \frac{11}{2} N5$$

$$- \frac{11}{2} N2 - \frac{11}{2} N3 + N1$$

 \rightarrow simplify(diff(f5(N1, N2, N3, N4, N5, 5), N1))

$$-\frac{1}{4}N2^{2} - \frac{1}{4}N3^{2} - \frac{1}{2}N2N1 - \frac{1}{2}N3N1 + \frac{1}{2}N2N3N4^{2}N5 - \frac{1}{4}N4^{2} - \frac{1}{2}N4N1$$
 (20)

$$+4N2N3N4N5 + \frac{1}{2}N2^{2}N3N4N5 + \frac{1}{2}N2N3^{2}N4N5 + \frac{13}{4}$$

$$+N1N2N3N4N5 - \frac{11}{2}N4 - 3N5 - \frac{11}{2}N2 - \frac{11}{2}N3 + \frac{1}{2}N1$$

> *f6*(2, 2, 2, 2, 2, 5)

 $\frac{181}{2} \tag{22}$