PiCore: A Rely-guarantee Framework for Event-based Systems

Yongwang Zhao

School of Computer Science and Engineering, Beihang University, China zhaoyongwang@gmail.com, zhaoyw@buaa.edu.cn

March 17, 2019

Contents

1	Abstract Syntax of PiCore Language							
2	Son	ne Lemmas of Abstract Syntax	3					
3	Small-step Operational Semantics of PiCore Language							
	3.1	Datatypes for Semantics	3					
	3.2	Semantics of Events	6					
	3.3	Semantics of Event Systems	6					
	3.4	Semantics of Parallel Event Systems	6					
	3.5	Lemmas	6					
		3.5.1 programs	6					
		3.5.2 Events	7					
		3.5.3 Event Systems	9					
		3.5.4 Parallel Event Systems	17					
4	Computations of PiCore Language 1							
	4.1	Environment transitions	18					
	4.2	Sequential computations	19					
		4.2.1 Sequential computations of programs	19					
		4.2.2 Sequential computations of events	19					
		4.2.3 Sequential computations of event systems	20					
		4.2.4 Sequential computations of par event systems	20					
	4.3	Lemmas	20					
		4.3.1 Events	20					
		4.3.2 Event systems	25					
		4.3.3 Parallel event systems	43					
	4.4	Compositionality of the Semantics	52					
		4.4.1 Definition of the conjoin operator	52					

		4.4.2 4.4.3	Lemmas of conjoin					
5			natee Validity of Picore Computations			74		
	5.1		tions Correctness Formulas			74		
	5.2	Lemm	as of Correctness Formulas	• •	• •	76		
6	The Rely-guarantee Proof System and its Soundness of Pi- Core							
	6.1		System for Programs			82 82		
	6.2		guarantee Condition			83		
	6.3		System for Events			85		
	6.4		System for Event Systems					
	6.5		System for Parallel Event Systems			86		
7	Sou	ndness				87		
•	7.1		previous lemmas			87		
	•	7.1.1	event			87		
		7.1.2	event system			87		
		7.1.3	parallel event system					
	7.2	State t	trace equivalence			96		
		7.2.1	trace equivalence of program and anonymous evo	ent		96		
		7.2.2	trace between of basic and anonymous events .			100		
		7.2.3	trace between of event and event system			103		
	7.3	Sound	ness of Events			106		
	7.4	Sound	ness of Event Systems			117		
	7.5	Sound	ness of Parallel Event Systems			206		
8	Rel	y-guara	antee-based Safety Reasoning			222		
1	٨	hetra	act Syntax of PiCore Language					
			, and a					
		PiCore-L s Main l	Language begin					
\mathbf{ty}	pe-sy	nonym	s bexp = s set					
\mathbf{ty}	pe-sy	nonym	's guard = 's set					
$\mathbf{t}\mathbf{y}$	pe-sy	nonym	$('l,'s,'prog)$ event' = $'l \times ('s \ guard \times 'prog)$					
			$d::('l,'s,'prog) \ event' \Rightarrow 's \ guard \ \mathbf{where}$ $s:(snd \ ev)$					
de	finiti	on body	$:: ('l,'s,'prog) \ event' \Rightarrow 'prog \ \mathbf{where}$					

```
body\ ev \equiv snd\ (snd\ ev)
\mathbf{datatype}\ ('l,'k,'s,'prog)\ event = \\ AnonyEvent\ 'prog \\ \mid BasicEvent\ ('l,'s,'prog)\ event'
\mathbf{datatype}\ ('l,'k,'s,'prog)\ esys = \\ EvtSeq\ ('l,'k,'s,'prog)\ event\ ('l,'k,'s,'prog)\ esys \\ \mid EvtSys\ ('l,'k,'s,'prog)\ event\ set
\mathbf{type\text{-synonym}}\ ('l,'k,'s,'prog)\ paresys = 'k \Rightarrow ('l,'k,'s,'prog)\ esys
```

2 Some Lemmas of Abstract Syntax

```
primrec is-basicevt :: ('l,'k,'s,'prog) event ⇒ bool
  where is-basicevt (AnonyEvent -) = False |
        is-basicevt (BasicEvent -) = True

primrec is-anonyevt :: ('l,'k,'s,'prog) event ⇒ bool
  where is-anonyevt (AnonyEvent -) = True |
        is-anonyevt (BasicEvent -) = False

lemma basicevt-isnot-anony: is-basicevt e ⇒ ¬ is-anonyevt e
        by (metis event.exhaust is-anonyevt.simps(2) is-basicevt.simps(1))

lemma anonyevt-isnot-basic: is-anonyevt e ⇒ ¬ is-basicevt e
        using basicevt-isnot-anony by auto

lemma evtseq-ne-es: EvtSeq e es ≠ es
        apply(induct es)
        apply auto[1]
        by simp
```

3 Small-step Operational Semantics of PiCore Language

```
theory PiCore-Semantics
imports PiCore-Language
begin
```

end

3.1 Datatypes for Semantics

```
record ('l,'k,'s,'prog) actk = Act :: ('l,'k,'s,'prog) act
                             K :: 'k
definition get-actk :: ('l,'k,'s,'prog) act \Rightarrow 'k \Rightarrow ('l,'k,'s,'prog) actk (-\pm-[91,91]
90)
  where get-actk a k \equiv (|Act=a, K=k|)
type-synonym ('l,'k,'s,'prog) x = 'k \Rightarrow ('l,'k,'s,'prog) event
type-synonym ('s,'prog) pconf = 'prog \times 's
type-synonym ('s,'prog) pconfs = ('s,'prog) pconf list
definition getspc-p :: ('s,'prog) pconf \Rightarrow 'prog where
  qetspc-p \ conf \equiv fst \ conf
definition gets-p :: ('s,'prog) \ pconf \Rightarrow 's \ \mathbf{where}
  gets-p conf \equiv snd conf
type-synonym ('l,'k,'s,'prog) econf = (('l,'k,'s,'prog) event) \times ('s \times (('l,'k,'s,'prog)
x)
type-synonym ('l,'k,'s,'prog) econfs = ('l,'k,'s,'prog) econf list
definition getspc-e :: ('l,'k,'s,'prog) \ econf \Rightarrow ('l,'k,'s,'prog) \ event \ \mathbf{where}
  getspc-e\ conf \equiv fst\ conf
definition gets-e :: ('l,'k,'s,'prog) \ econf \Rightarrow 's \ \mathbf{where}
  gets-e\ conf \equiv fst\ (snd\ conf)
definition getx-e :: ('l, 'k, 's, 'prog) econf <math>\Rightarrow ('l, 'k, 's, 'prog) x where
  getx-e\ conf \equiv snd\ (snd\ conf)
type-synonym ('l,'k,'s,'prog) esconf = (('l,'k,'s,'prog) esys) \times ('s \times (('l,'k,'s,'prog)
x)
type-synonym ('l,'k,'s,'prog) esconfs = ('l,'k,'s,'prog) esconf list
definition getspc\text{-}es :: ('l,'k,'s,'prog) \ esconf \Rightarrow ('l,'k,'s,'prog) \ esys \ \textbf{where}
  getspc\text{-}es\ conf \equiv fst\ conf
definition gets\text{-}es :: ('l, 'k, 's, 'prog) \ esconf \Rightarrow 's \ \mathbf{where}
  gets-es\ conf \equiv fst\ (snd\ conf)
definition getx-es :: ('l,'k,'s,'prog) esconf \Rightarrow ('l,'k,'s,'prog) x where
  getx-es\ conf \equiv snd\ (snd\ conf)
```

```
type-synonym ('l,'k,'s,'prog) pesconf = (('l,'k,'s,'prog) paresys) \times ('s \times (('l,'k,'s,'prog)
x)
type-synonym ('l,'k,'s,'prog) pesconfs = ('l,'k,'s,'prog) pesconf list
definition getspc :: ('l,'k,'s,'prog) pesconf <math>\Rightarrow ('l,'k,'s,'prog) paresys where
  getspc \ conf \equiv fst \ conf
definition gets :: ('l, 'k, 's, 'prog) pesconf \Rightarrow 's where
  gets\ conf \equiv fst\ (snd\ conf)
definition getx :: ('l, 'k, 's, 'prog) pesconf \Rightarrow ('l, 'k, 's, 'prog) x where
  getx\ conf \equiv snd\ (snd\ conf)
definition getact :: ('l, 'k, 's, 'prog) \ actk \Rightarrow ('l, 'k, 's, 'prog) \ act \ where
  qetact \ a \equiv Act \ a
definition getk :: ('l, 'k, 's, 'prog) \ actk \Rightarrow 'k \ where
  qetk \ a \equiv K \ a
locale event =
fixes ptran :: 'Env \Rightarrow (('s,'prog) \ pconf \times ('s,'prog) \ pconf) \ set
[81,81,81] 80)
fixes fin-com :: 'prog
{\bf assumes}\ petran-simps:
    \Gamma \vdash (a, b) - pe \rightarrow (c, d) \Longrightarrow a = c
assumes none-no-tran': ((fin\text{-}com, s), (P,t)) \notin ptran \Gamma
assumes ptran-neq: ((P, s), (P, t)) \notin ptran \Gamma
begin
definition ptran' :: 'Env \Rightarrow ('s, 'prog) \ pconf \Rightarrow ('s, 'prog) \ pconf \Rightarrow bool \ (-\vdash -
-c \rightarrow -[81,81] \ 80)
where \Gamma \vdash P - c \rightarrow Q \equiv (P,Q) \in ptran \ \Gamma
definition ptrans :: 'Env \Rightarrow ('s,'prog) \ pconf \Rightarrow ('s,'prog) \ pconf \Rightarrow bool \ (-\vdash -
-c*\rightarrow -[81,81,81] 80
where \Gamma \vdash P - c *\to Q \equiv (P,Q) \in (ptran \ \Gamma) \hat{} *
lemma none-no-tran: \neg(\Gamma \vdash (fin\text{-}com,s) - c \rightarrow (P,t))
  using none-no-tran' by (simp\ add:ptran'-def)
lemma none-no-tran2: \neg(\Gamma \vdash (fin\text{-}com,s) - c \rightarrow Q)
  using none-no-tran by (metis prod.collapse)
lemma ptran-not-none: (\Gamma \vdash (Q,s) - c \rightarrow (P,t)) \Longrightarrow Q \neq fin\text{-}com
```

3.2 Semantics of Events

```
inductive etran :: 'Env \Rightarrow ('l,'k,'s,'prog) econf \Rightarrow ('l,'k,'s,'prog) actk \Rightarrow ('l,'k,'s,'prog) econf \Rightarrow bool (-\(\daggerightarrow\) - et--\(\daggerightarrow\) - [81,81,81] 80) where

AnonyEvent: \Gamma \vdash (P, s) - c \rightarrow (Q, t) \Longrightarrow \Gamma \vdash (AnonyEvent \ P, s, x) - et-(Cmd \ CMP)\sharp k \rightarrow (AnonyEvent \ Q, t, x)
| EventEntry: [P = body \ e; \ P \neq fin\text{-}com; \ s \in guard \ e; \ x' = x(k:= BasicEvent \ e)]]
\Longrightarrow \Gamma \vdash (BasicEvent \ e, \ s, \ x) - et-(EvtEnt \ (BasicEvent \ e))\sharp k \rightarrow ((AnonyEvent \ P), \ s, \ x')
```

3.3 Semantics of Event Systems

3.4 Semantics of Parallel Event Systems

inductive

```
pestran :: 'Env \Rightarrow ('l,'k,'s,'prog) \ pesconf \Rightarrow ('l,'k,'s,'prog) \ actk \\ \Rightarrow ('l,'k,'s,'prog) \ pesconf \Rightarrow bool \ (-\vdash --pes--\to -[70,70] \ 60) where ParES: \ \Gamma \vdash (pes(k),\ (s,\ x)) \ -es-(a\sharp k) \rightarrow (es',\ (s',\ x')) \Longrightarrow \Gamma \vdash (pes,\ (s,\ x)) \ -pes-(a\sharp k) \rightarrow (pes(k:=es'),\ (s',\ x'))
```

3.5 Lemmas

3.5.1 programs

lemma *list-eq-if* [rule-format]:

```
\forall ys. \ xs=ys \longrightarrow (length \ xs = length \ ys) \longrightarrow (\forall i < length \ xs. \ xs!i=ys!i) by (induct \ xs) auto

lemma list-eq: (length \ xs = length \ ys \land (\forall i < length \ xs. \ xs!i=ys!i)) = (xs=ys) apply (rule \ iffI) apply clarify apply (erule \ nth-equalityI) apply simp+
```

```
done
```

```
lemma nth-tl: [ys!\theta=a; ys\neq ]] \implies ys=(a\#(tl\ ys))
 by (cases ys) simp-all
lemma nth-tl-if [rule-format]: ys \neq [] \longrightarrow ys! \theta = a \longrightarrow P \ ys \longrightarrow P \ (a \# (tl \ ys))
  by (induct ys) simp-all
lemma nth-tl-onlyif [rule-format]: ys \neq [] \longrightarrow ys!\theta = a \longrightarrow P (a\#(tl\ ys)) \longrightarrow P\ ys
 by (induct ys) simp-all
lemma prog-not-eq-in-ctran-aux:
  assumes c: \Gamma \vdash (P,s) -c \rightarrow (Q,t)
 shows P \neq Q using c
 using ptran-neq apply(simp add:ptran'-def) apply auto
done
lemma prog-not-eq-in-ctran [simp]: \neg \Gamma \vdash (P,s) -c \rightarrow (P,t)
apply clarify using ptran-neq apply(simp add:ptran'-def)
done
3.5.2
          Events
lemma ent-spec1: \Gamma \vdash (ev, s, x) - et - (\textit{EvtEnt be}) \sharp k \rightarrow (e2, s1, x1) \Longrightarrow ev = be
  apply(rule etran.cases)
 apply(simp)
 apply(simp add:qet-actk-def)
 apply(simp add:get-actk-def)
  done
lemma ent-spec: \Gamma \vdash ec1 - et - (EvtEnt (BasicEvent ev)) \sharp k \rightarrow ec2 \Longrightarrow getspc-e ec1
= BasicEvent\ ev
 by (metis ent-spec1 getspc-e-def prod.collapse)
lemma ent-spec2': \Gamma \vdash (ev, s, x) - et - (EvtEnt (BasicEvent e)) \sharp k \rightarrow (e2, s1, x1)
                    \implies s \in \mathit{guard}\ e \, \land \, s = \mathit{s1}
                            \land e2 = AnonyEvent ((body e)) \land x1 = x (k := BasicEvent)
e)
  apply(rule etran.cases)
 apply(simp)
 apply(simp\ add:get-actk-def)+
 done
lemma ent-spec2: \Gamma \vdash ec1 - et - (EvtEnt (BasicEvent ev)) \sharp k \rightarrow ec2
                    \implies gets-e ec1 \in guard ev \land gets-e ec1 = gets-e ec2
                                 \land getspc\text{-}e\ ec2 = AnonyEvent\ ((body\ ev)) \land getx\text{-}e\ ec2
= (getx-e \ ec1) \ (k := BasicEvent \ ev)
  using getspc-e-def getx-e-def gets-e-def ent-spec2' by (metis surjective-pairing)
```

```
lemma no-tran2basic0: \Gamma \vdash (e1, s, x) - et - t \rightarrow (e2, s1, x1) \Longrightarrow \neg(\exists e. e2 = t)
BasicEvent \ e)
 apply(rule etran.cases)
 apply(simp) +
 done
lemma no-tran2basic: \neg(\exists \ t \ ec1. \ \Gamma \vdash ec1 \ -et-t \rightarrow (BasicEvent \ ev, \ s, \ x))
  using no-tran2basic0 by (metis prod.collapse)
lemma noevtent-notran0: \Gamma \vdash (BasicEvent\ e,\ s,\ x) - et - (a\sharp k) \rightarrow (e2,\ s1,\ x1) \Longrightarrow
a = EvtEnt (BasicEvent e)
 apply(rule\ etran.cases)
  apply(simp) +
 apply(simp add:get-actk-def)
  done
lemma noevtent-notran: ec1 = (BasicEvent\ e,\ s,\ x) \Longrightarrow \neg\ (\exists\ k.\ \Gamma \vdash ec1\ -et-(EvtEnt
(BasicEvent\ e))\sharp k \rightarrow \ ec2)
                        \implies \neg (\Gamma \vdash ec1 - et - t \rightarrow ec2)
  proof -
   assume p\theta: ec1 = (BasicEvent\ e,\ s,\ x) and
           p1: \neg (\exists k. \ \Gamma \vdash ec1 \ -et - (EvtEnt \ (BasicEvent \ e)) \sharp k \rightarrow ec2)
    then show \neg (\Gamma \vdash ec1 - et - t \rightarrow ec2)
     proof -
      {
        assume a\theta: \Gamma \vdash ec1 - et - t \rightarrow ec2
          with p0 have a1: getact t = EvtEnt (BasicEvent e) using getact-def
noevtent-notran0 get-actk-def
          by (metis cases prod-cases3 select-convs(1))
        from a\theta obtain k where k = geth \ t by auto
       with p1 a0 a1 have \Gamma \vdash ec1 - et - (EvtEnt (BasicEvent e)) \sharp k \rightarrow ec2 using
get-actk-def getact-def
          by (metis\ cases\ select\text{-}convs(1))
        with p1 have False by auto
     then show ?thesis by auto
      qed
 qed
lemma evt-not-eq-in-tran-aux:\Gamma \vdash (P,s,x) - et - et \rightarrow (Q,t,y) \Longrightarrow P \neq Q
  apply(erule etran.cases)
  apply (simp add: prog-not-eq-in-ctran-aux)
 by simp
lemma evt-not-eq-in-tran [simp]: \neg \Gamma \vdash (P,s,x) - et - et \rightarrow (P,t,y)
apply clarify
apply(drule evt-not-eq-in-tran-aux)
```

```
apply simp
done
lemma evt-not-eq-in-tran2 [simp]: \neg(\exists et. \ \Gamma \vdash (P,s,x) - et - et \rightarrow (P,t,y)) by simp
3.5.3 Event Systems
lemma esconf-trip: [gets-es\ c=s;\ getspc-es\ c=spc;\ getx-es\ c=x] \implies c=
(spc,s,x)
     by (metis gets-es-def getspc-es-def getx-es-def prod.collapse)
lemma evtseq-tran-evtseq:
       \llbracket\Gamma \vdash (\textit{EvtSeq e1 es}, \textit{s1}, \textit{x1}) - \textit{es} - \textit{et} \rightarrow (\textit{es2}, \textit{t1}, \textit{y1}); \textit{es2} \neq \textit{es}\rrbracket \implies \exists \textit{e. es2} = \texttt{es2}
EvtSeq \ e \ es
      apply(rule estran.cases)
      apply(simp) +
      done
lemma evtseq-tran-evtseq-anony:
       \llbracket\Gamma \vdash (\textit{EvtSeq e1 es}, \, \textit{s1}, \, \textit{x1}) \, - \textit{es} - \textit{et} \rightarrow (\textit{es2}, \, \textit{t1}, \, \textit{y1}); \, \textit{es2} \, \neq \, \textit{es}\rrbracket \implies \exists \, \textit{e. es2} \, = \, \texttt{es2} = \, \texttt{es3} = \, \texttt{es4} =
EvtSeq\ e\ es\ \wedge\ is-anonyevt\ e
     apply(rule estran.cases)
     apply(simp) +
     apply (metis event.exhaust is-anonyevt.simps(1) no-tran2basic0)
     \mathbf{by} \ simp
lemma evtseq-tran-evtsys:
      \llbracket \Gamma \vdash (EvtSeq\ e1\ es,\ s1,\ x1)\ -es-et \rightarrow (es2,\ t1,\ y1);\ \neg (\exists\ e.\ es2\ =\ EvtSeq\ e\ es) 
rbracket
\implies es2 = es
     apply(rule estran.cases)
     apply(simp) +
      done
lemma evtseq-tran-exist-etran:
       \Gamma \vdash (\mathit{EvtSeq}\ \mathit{e1}\ \mathit{es},\ \mathit{s1},\ \mathit{x1})\ -\mathit{es} - \mathit{et} \rightarrow (\mathit{EvtSeq}\ \mathit{e2}\ \mathit{es},\ \mathit{t1},\ \mathit{y1}) \Longrightarrow \exists\,\mathit{t}.\ \Gamma \vdash (\mathit{e1},
s1, x1) - et - t \rightarrow (e2, t1, y1)
     apply(rule\ estran.cases)
     apply(simp) +
     apply blast
     by (simp add: evtseq-ne-es)
lemma evtseq-tran-0-exist-etran:
       \Gamma \vdash (EvtSeq\ e1\ es,\ s1,\ x1)\ -es-et \rightarrow (es,\ t1,\ y1) \Longrightarrow \exists\ t.\ \Gamma \vdash (e1,\ s1,\ x1)
-\mathit{et}-\mathit{t} \rightarrow (\mathit{AnonyEvent\ fin\text{-}com},\ \mathit{t1},\ \mathit{y1})
     apply(rule\ estran.cases)
     apply(simp) +
    \mathbf{apply} \; (\textit{metis} \; (\textit{no-types}, \, \textit{hide-lams}) \; \textit{add.commute} \; \textit{add-Suc-right esys.size} (\textit{3}) \; \textit{not-less-eq} \\
trans-less-add2)
      by auto
```

```
lemma notrans-to-basicevt-insameesys:
 \llbracket \Gamma \vdash (es1, s1, x1) - es - et \rightarrow (es2, s2, x2); \exists e. \ es1 = EvtSeq \ e \ esys \rrbracket \Longrightarrow \neg (\exists e.
es2 = EvtSeq (BasicEvent e) esys)
  apply(rule estran.cases)
 apply simp
 apply(rule\ etran.cases)
 apply (simp \ add: \ get-actk-def)+
  apply(rule etran.cases)
  apply (simp\ add:\ get\text{-}actk\text{-}def)+
  by (metis evtseq-tran-exist-etran no-tran2basic)
lemma evtseq-tran-sys-or-seq:
  \Gamma \vdash (EvtSeq\ e1\ es,\ s1,\ x1)\ -es-et \rightarrow (es2,\ t1,\ y1) \Longrightarrow es2 = es \lor (\exists\ e.\ es2 = es)
EvtSeq e es)
 by (meson evtseq-tran-evtseq)
lemma evtseq-tran-sys-or-seq-anony:
 \Gamma \vdash (EvtSeq\ e1\ es,\ s1,\ x1)\ -es-et \rightarrow (es2,\ t1,\ y1) \Longrightarrow es2 = es \lor (\exists\ e.\ es2 = es)
EvtSeq\ e\ es\ \land\ is-anonyevt\ e)
  by (meson evtseq-tran-evtseq-anony)
lemma evtseq-no-evtent:
  \llbracket \Gamma \vdash (EvtSeq\ e1\ es,\ s1,\ x1)\ -es-t\sharp k \rightarrow (es2,\ s2,\ x2); is-anonyevt\ e1 \rrbracket \implies \neg(\exists\ e.)
t = EvtEnt \ e
 apply(rule estran.cases)
  apply(simp) +
 \mathbf{apply}(\mathit{rule}\ \mathit{etran.cases})
 apply(simp\ add:get-actk-def)+
 apply(rule\ etran.cases)
 apply(simp\ add:get-actk-def)+
  done
lemma evtseq-no-evtent2:
  \llbracket \Gamma \vdash esc1 - es-t \sharp k \rightarrow esc2; \ getspc-es \ esc1 = EvtSeq \ e \ esys; \ is-anonyevt \ e \rrbracket \Longrightarrow
\neg(\exists e. \ t = EvtEnt \ e)
  proof -
    assume p\theta: \Gamma \vdash esc1 - es - t \sharp k \rightarrow esc2
     and p1: getspc-es esc1 = EvtSeq e esys
     and p2: is-anonyevt e
    then obtain es1 and s1 and x1 where a1: esc1 = (es1, s1, x1)
      using prod-cases3 by blast
    from p\theta obtain es2 and s2 and x2 where a2: esc2 = (es2, s2, x2)
     using prod-cases3 by blast
    from p1 a1 have es1 = EvtSeq \ e \ esys by (simp \ add:getspc-es-def)
    with p0 p2 a1 a2 show ?thesis using evtseq-no-evtent[of \Gamma e esys s1 x1 t k
es2 s2 x2]
     by simp
```

```
qed
emm
```

```
lemma esys-not-eseq: getspc-es esc = EvtSys es \Longrightarrow \neg(\exists e \ esys. \ getspc-es \ esc =
EvtSeq\ e\ esys)
 \mathbf{by}(simp\ add:getspc\text{-}es\text{-}def)
lemma eseq-not-esys: qetspc-es esc = EvtSeq e esys \Longrightarrow \neg(\exists es. qetspc-es esc =
 \mathbf{by}(simp\ add:getspc\text{-}es\text{-}def)
lemma evtent-is-basicevt: \Gamma \vdash (es, s, x) - es - EvtEnt \ e \sharp k \rightarrow (es', s', x') \Longrightarrow \exists \ e'.
e = BasicEvent e'
 apply(rule estran.cases)
 apply(simp\ add:get-actk-def)+
 apply(rule etran.cases)
 apply(simp add:qet-actk-def)+
 apply(rule etran.cases)
 apply simp+
 apply(rule etran.cases)
 apply simp+
 apply auto[1]
 apply (metis\ ent-spec1\ event.exhaust\ evtseq-no-evtent\ get-actk-def\ is-anonyevt.simps(1))+
 done
lemma evtent-is-basicevt-inevtseq: \Gamma \vdash (EvtSeq\ e\ es, s1, x1) - es - EvtEnt\ e1 \sharp k \rightarrow
(esc2,s2,x2)
   \implies e = e1 \land (\exists e'. e = BasicEvent e')
 apply(rule estran.cases)
 apply(simp\ add:get-actk-def)
 apply(rule\ etran.cases)
 apply(simp add:get-actk-def)+
 apply(rule etran.cases)
 apply(simp\ add:get-actk-def)+
 apply(rule etran.cases)
 apply(simp add:qet-actk-def)
 apply(simp add:get-actk-def)
 apply auto[1]
 by (metis Pair-inject ent-spec1 esys.inject(1) evtent-is-basicevt get-actk-def)
lemma evtent-is-basicevt-inevtseq2: \Gamma \vdash esc1 - es - EvtEnt \ e1 \ k \rightarrow esc2; getspc-es
esc1 = EvtSeq \ e \ es
   \implies e = e1 \land (\exists e'. e = BasicEvent e')
 proof -
   assume p\theta: \Gamma \vdash esc1 - es - EvtEnt \ e1 \sharp k \rightarrow \ esc2
     and p1: getspc-es \ esc1 = EvtSeq \ e \ es
   then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
     using prod-cases3 by blast
   moreover
```

```
from p0 obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
      using prod-cases3 by blast
    ultimately show ?thesis
        using p0 p1 evtent-is-basicevt-inevtseq[of \Gamma e es s1 x1 e1 k es2 s2 x2]
getspc-es-def[of esc1] by auto
  qed
lemma evtsysent-evtent0: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - t \rightarrow (EvtSeg\ ev\ (EvtSys\ es),
s1,x1) \Longrightarrow
          s=s1 \ \land \ (\exists \ evt \ e. \ evt \in es \ \land \ evt = \ BasicEvent \ e \ \land \ Act \ t = \ EvtEnt
(BasicEvent\ e)\ \land
           \Gamma \vdash (BasicEvent\ e,\ s,\ x)\ -et-t \rightarrow (ev,\ s1,\ x1))
  apply(rule estran.cases)
 apply(simp)
  \mathbf{prefer} \ 2
 apply(simp)
  prefer 2
 apply(simp)
  apply(rule etran.cases)
  apply(simp)
  apply(simp add:get-actk-def)
 apply(rule\ conjI)
 apply(simp)
  using get-actk-def
 \mathbf{by}\ (\mathit{metis}\ \mathit{Pair-inject}\ \mathit{esys.inject}(1)\ \mathit{esys.inject}(2)\ \mathit{select-convs}(1))
lemma evtsysent-evtent: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow
(EvtSeg\ ev\ (EvtSys\ es),\ s1,x1) \Longrightarrow
          s = s1 \land BasicEvent \ e \in es \land \Gamma \vdash (BasicEvent \ e, \ s, \ x) \ -et - (EvtEnt
(BasicEvent\ e))\sharp k \rightarrow (ev,\ s1,\ x1)
  apply(rule estran.cases)
 apply(simp) +
 apply (metis ent-spec1)
 apply(simp) +
 done
lemma evtsysent-evtent2: \Gamma \vdash (EvtSys\ es,\ s,\ x)\ -es-(EvtEnt\ ev)\sharp k \rightarrow (esc2,\ s,\ x)
s1,x1) \Longrightarrow
        s = s1 \land (ev \in es)
 apply(rule\ estran.cases)
 apply(simp) +
 apply (metis ent-spec1)
 apply(simp) +
 done
lemma evtsysent-evtent3: \llbracket \Gamma \vdash esc1 - es - (EvtEnt\ ev) \sharp k \rightarrow esc2;\ getspc-es\ esc1 =
EvtSys \ es \Longrightarrow
       (ev \in es)
 proof -
```

```
assume p\theta: \Gamma \vdash esc1 - es - (EvtEnt \ ev) \sharp k \rightarrow esc2
      and p1: getspc-es \ esc1 = EvtSys \ es
    then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
      using prod-cases3 by blast
    moreover
    from p0 obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
      using prod-cases3 by blast
    from p1 a0 have es1 = EvtSys es by (simp\ add:getspc-es-def)
    with a0 a1 p0 show ?thesis using evtsysent-evtent2[of \Gamma es s1 x1 ev k es2 s2
x2] by simp
  qed
lemma evtsys-evtent: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - t \rightarrow (es2,\ s1,x1) \Longrightarrow \exists\ e.\ es2 =
EvtSeq e (EvtSys es)
  apply(rule estran.cases)
 apply(simp) +
  done
lemma act-in-es-notchqstate: \llbracket \Gamma \vdash (es, s, x) - es - (Cmd \ c) \sharp k \rightarrow (es', s', x') \rrbracket \Longrightarrow
  apply(rule estran.cases)
 apply (simp\ add:\ get\text{-}actk\text{-}def)+
 apply(rule etran.cases)
 apply (simp add: get-actk-def)+
  apply(rule etran.cases)
  by (simp \ add: \ get-actk-def)+
\mathbf{lemma}\ \mathit{cmd-enable-impl-anonyevt}\colon
    \llbracket \Gamma \vdash (es, s, x) - es - (Cmd \ c) \sharp k \rightarrow (es', s', x') \rrbracket
        \implies \exists \ e \ e' \ es1. \ es = EvtSeq \ e \ es1 \ \land \ e = AnonyEvent \ e'
  apply(rule estran.cases)
  apply (simp \ add: get-actk-def) +
  apply(rule etran.cases)
 apply (simp add: get-actk-def)+
  apply(rule etran.cases)
 apply (simp add: get-actk-def)+
  done
lemma \ cmd-enable-impl-notesys:
    \llbracket \Gamma \vdash (es, s, x) - es - (Cmd \ c) \sharp k \rightarrow (es', s', x') \rrbracket
        \implies \neg(\exists \ ess. \ es = EvtSys \ ess)
  apply(rule\ estran.cases)
  apply (simp \ add: get-actk-def)+
  done
lemma cmd-enable-impl-notesys2:
    \llbracket \Gamma \vdash esc1 - es - (Cmd\ c) \sharp k \rightarrow esc2 \rrbracket
        \implies \neg(\exists ess. getspc\text{-}es esc1 = EvtSys ess)
```

```
proof -
   assume p\theta: \Gamma \vdash esc1 - es - (Cmd \ c) \sharp k \rightarrow esc2
   then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
     using prod-cases3 by blast
   moreover
   from p0 obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
     using prod-cases3 by blast
    ultimately show ?thesis using p0 cmd-enable-impl-notesys[of \Gamma es1 s1 x1 c
k \ es2 \ s2 \ x2] getspc-es-def[of \ esc1]
     by simp
 qed
\mathbf{lemma}\ \mathit{cmd-enable-impl-anonyevt2}\colon
   \llbracket \Gamma \vdash esc1 - es - (Cmd\ c) \sharp k \rightarrow esc2 \rrbracket
       \implies \exists \ e \ e' \ es1. \ getspc\text{-}es \ esc1 = EvtSeq \ e \ es1 \ \land \ e = AnonyEvent \ e'
 proof -
   assume p\theta: \Gamma \vdash esc1 - es - (Cmd \ c) \sharp k \rightarrow esc2
   then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
     using prod-cases3 by blast
   moreover
   from p0 obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
     using prod-cases3 by blast
    ultimately show ?thesis using p\theta cmd-enable-impl-anonyevt[of \Gamma es1 s1 x1
c \ k \ es2 \ s2 \ x2] getspc-es-def[of \ esc1]
     by simp
 qed
lemma entevt-notchgstate: [\Gamma \vdash (es, s, x) - es - (EvtEnt (BasicEvent e)) \sharp k \rightarrow (es', s', x')]
s', x') \implies s = s'
 apply(rule estran.cases)
 apply(simp) +
 apply(rule etran.cases)
 apply (simp add: get-actk-def)+
 apply auto
 using ent-spec2' get-actk-def by metis
x'] \Longrightarrow (\forall k'. k' \neq k \longrightarrow x k' = x' k')
 apply(rule\ estran.cases)
 apply(simp) +
 apply(rule etran.cases)
 apply (simp \ add: get-actk-def)+
 apply(rule etran.cases)
 apply (simp \ add: get-actk-def) +
 apply(rule\ etran.cases)
 apply (simp \ add: get-actk-def)+
 done
lemma entevt-ines-notchg-otherx2: \llbracket \Gamma \vdash esc1 - es - (EvtEnt\ e) \sharp k \rightarrow esc2 \rrbracket
```

```
\implies (\forall k'. \ k' \neq k \longrightarrow (getx\text{-}es\ esc1)\ k' = (getx\text{-}es\ esc2)\ k')
  proof -
   assume p\theta: \Gamma \vdash esc1 - es - (EvtEnt \ e) \sharp k \rightarrow esc2
   then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
     using prod-cases3 by blast
   moreover
   from p0 obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
     using prod-cases3 by blast
   ultimately have \forall k'. k' \neq k \longrightarrow x1 k' = x2 k'
     using entevt-ines-notchg-otherx[of \Gamma es1 s1 x1 e k es2 s2 x2] p0 by simp
   with a0 a1 show ?thesis using getx-es-def by (metis snd-conv)
  qed
lemma cmd-ines-nchg-x: \llbracket \Gamma \vdash (es, s, x) - es - (Cmd \ c) \sharp k \rightarrow (es', s', x') \rrbracket \Longrightarrow (\forall k.
x' k = x k
 apply(rule estran.cases)
  apply(simp) +
 apply(rule etran.cases)
  apply (simp\ add:\ get\text{-}actk\text{-}def)+
  apply(rule etran.cases)
  apply (simp \ add: get-actk-def)+
  apply(rule\ etran.cases)
 apply (simp\ add:\ get\text{-}actk\text{-}def)+
  done
lemma cmd-ines-nchg-x2: \llbracket \Gamma \vdash esc1 - es - (Cmd\ c) \sharp k \rightarrow esc2 \rrbracket \implies (\forall\ k.\ (getx-es
esc2) k = (getx-es\ esc1)\ k)
  proof -
   assume p\theta: \Gamma \vdash esc1 - es - (Cmd\ c) \sharp k \rightarrow esc2
   then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
     using prod-cases3 by blast
   moreover
   from p0 obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
     using prod-cases3 by blast
   ultimately have \forall k. x1 \ k = x2 \ k using cmd-ines-nchg-x [of \Gamma es1 s1 x1 c k
es2 s2 x2] p0 by simp
   with a0 a1 show ?thesis using getx-es-def by (metis snd-conv)
  qed
lemma entevt-ines-chg-selfx: \llbracket \Gamma \vdash (es, s, x) - es - (EvtEnt \ e) \sharp k \rightarrow (es', s', x') \rrbracket \Longrightarrow
x'k = e
  apply(rule\ estran.cases)
 apply(simp) +
  apply(rule\ etran.cases)
  apply (simp add: get-actk-def)+
  apply(rule\ etran.cases)
  apply (simp add: get-actk-def)+
  apply(rule etran.cases)
  apply (simp add: get-actk-def)+
```

done

```
lemma entevt-ines-chg-selfx2: \llbracket \Gamma \vdash esc1 - es - (EvtEnt \ e) \sharp k \rightarrow esc2 \rrbracket \implies (getx-es
esc2) k = e
    proof -
         assume p\theta: \Gamma \vdash esc1 - es - (EvtEnt \ e) \sharp k \rightarrow esc2
         then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
              using prod-cases3 by blast
         moreover
         from p\theta obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
              using prod-cases3 by blast
         ultimately have x2 \ k = e using entert-ines-chg-selfx p0 by auto
         with a1 show ?thesis using getx-es-def by (metis snd-conv)
    qed
lemma estran-impl-evtentorcmd: \llbracket \Gamma \vdash (es, s, x) - es - t \rightarrow (es', s', x') \rrbracket
     \implies (\exists e \ k. \ \Gamma \vdash (es, s, x) - es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s, x) + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s', x') + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s', x') + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es, s', x') + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es', s', x') + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es', s', x') + es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c \ k. \ \Gamma \vdash (es', s', x') + es - EvtEnt \ e \sharp k \rightarrow (es', s', x'))
x) - es - Cmd \ c \sharp k \rightarrow (es', s', x'))
    apply(rule estran.cases)
         apply (simp add: get-actk-def)
         apply(rule etran.cases)
             apply (simp add: get-actk-def)+
              apply auto[1]
         apply(rule etran.cases)
             apply (simp add: get-actk-def)+
             apply auto[1]
             apply (metis get-actk-def)
         apply(rule etran.cases)
             apply (simp add: get-actk-def)
             apply (metis get-actk-def)
              apply (metis get-actk-def)
    done
lemma estran-impl-evtentorcmd': \llbracket \Gamma \vdash (es, s, x) - es - t \sharp k \rightarrow (es', s', x') \rrbracket
     \implies (\exists e. \ \Gamma \vdash (es, s, x) - es - EvtEnt \ e \sharp k \rightarrow (es', s', x')) \lor (\exists c. \ \Gamma \vdash (es, s, x))
-es-Cmd\ c\sharp k \rightarrow (es', s', x')
    apply(rule estran.cases)
    apply \ simp
    apply (metis get-actk-def iffs)
    \mathbf{apply}(\mathit{rule}\ \mathit{etran.cases})
    apply simp
    apply (metis get-actk-def iffs)
    apply (metis get-actk-def iffs)
    apply(rule\ etran.cases)
    apply simp
    apply (metis get-actk-def iffs)
    apply (metis get-actk-def iffs)
    done
```

```
lemma estran-impl-evtentorcmd2: \llbracket \Gamma \vdash esc1 - es - t \rightarrow esc2 \rrbracket
  \implies (\exists e \ k. \ \Gamma \vdash esc1 \ -es-EvtEnt \ e\sharp k \rightarrow \ esc2) \lor (\exists c \ k. \ \Gamma \vdash esc1 \ -es-Cmd)
c\sharp k \rightarrow esc2)
 proof -
    assume p\theta: \Gamma \vdash esc1 - es - t \rightarrow esc2
    then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
      using prod-cases3 by blast
    moreover
    from p0 obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
      using prod\text{-}cases3 by blast
    ultimately show ?thesis using p0 estran-impl-evtentorcmd[of \Gamma es1 s1 x1 t
es2 \ s2 \ x2] by simp
  qed
lemma estran-impl-evtentorcmd2': \llbracket \Gamma \vdash esc1 - es - t \sharp k \rightarrow esc2 \rrbracket
  \implies (\exists e. \ \Gamma \vdash esc1 \ -es-EvtEnt \ e\sharp k \rightarrow esc2) \lor (\exists c. \ \Gamma \vdash esc1 \ -es-Cmd \ c\sharp k \rightarrow
esc2)
 proof -
    assume p\theta: \Gamma \vdash esc1 - es - t \sharp k \rightarrow esc2
    then obtain es1 and s1 and x1 where a0: esc1 = (es1, s1, x1)
      using prod-cases3 by blast
    moreover
    from p\theta obtain es2 and s2 and x2 where a1: esc2 = (es2, s2, x2)
      using prod-cases3 by blast
    ultimately show ?thesis using p0 estran-impl-evtentorcmd'[of \Gamma es1 s1 x1 t
k \ es2 \ s2 \ x2] by simp
  qed
          Parallel Event Systems
3.5.4
lemma pesconf-trip: \llbracket gets\ c=s;\ getspc\ c=spc;\ getx\ c=x \rrbracket \Longrightarrow c=(spc,s,x)
 by (metis gets-def getspc-def getx-def prod.collapse)
lemma pestran-estran: \llbracket \Gamma \vdash (pes, s, x) - pes - (a \sharp k) \rightarrow (pes', s', x') \rrbracket \Longrightarrow
             \exists es'. (\Gamma \vdash (pes \ k, \ s, \ x) - es - (a\sharp k) \rightarrow (es', \ s', \ x')) \land pes' = pes(k:=es')
  apply(rule pestran.cases)
  apply(simp)
 apply(simp add:qet-actk-def)
 by auto
lemma act-in-pes-notchgstate: \llbracket \Gamma \vdash (pes, s, x) - pes - (Cmd \ c) \sharp k \rightarrow (pes', s', x') \rrbracket
\implies x = x'
  apply(rule pestran.cases)
  apply (simp\ add:\ get-actk-def)+
  apply(rule\ estran.cases)
  apply (simp\ add:\ get\text{-}actk\text{-}def)+
  apply(rule etran.cases)
  apply (simp \ add: get-actk-def) +
  apply(rule etran.cases)
```

```
apply (simp\ add:\ get\text{-}actk\text{-}def)+ done

lemma evtent\text{-}in\text{-}pes\text{-}notchgstate:\ [\![\Gamma\vdash(pes,\ s,\ x)\ -pes-(EvtEnt\ e)\sharp k\to (pes',\ s',\ x')\!]\!] \implies s=s'
apply (rule\ pestran.cases)
apply (simp\ add:\ get\text{-}actk\text{-}def)+
apply (rule\ estran.cases)
apply (simp\ add:\ get\text{-}actk\text{-}def)+
apply (metis\ entevt\text{-}notchgstate\ evtent\text{-}is\text{-}basicevt\ get\text{-}actk\text{-}def})
by (metis\ entevt\text{-}notchgstate\ evtent\text{-}is\text{-}basicevt\ get\text{-}actk\text{-}def})
lemma evtent\text{-}in\text{-}pes\text{-}notchgstate2: [\![\Gamma\vdash esc1\ -pes-(EvtEnt\ e)\sharp k\to esc2]\!] \implies gets
esc1=gets\ esc2
using evtent\text{-}in\text{-}pes\text{-}notchgstate} by (metis\ pesconf\text{-}trip)
```

4 Computations of PiCore Language

 $\begin{array}{l} \textbf{theory} \ \textit{PiCore-Computation} \\ \textbf{imports} \ \textit{PiCore-Semantics} \\ \textbf{begin} \end{array}$

4.1 Environment transitions

```
locale\ event\text{-}comp = event\ ptran\ petran\ fin\text{-}com
for ptran :: 'Env \Rightarrow (('s,'prog) \ pconf \times ('s,'prog) \ pconf) \ set
and petran :: 'Env \Rightarrow ('s,'prog) pconf \Rightarrow ('s,'prog) pconf \Rightarrow bool (-\vdash --pe\rightarrow -
[81,81,81] 80)
and fin-com :: 'prog
fixes cpts-p :: 'Env \Rightarrow ('s,'prog) pconfs set
fixes cpts-of-p :: 'Env \Rightarrow 'prog \Rightarrow 's \Rightarrow (('s,'prog) pconfs) set
assumes cpts-p-simps:
    ((\exists P \ s. \ aa = [(P, s)]) \lor
     (\exists P \ t \ xs \ s. \ aa = (P, s) \# (P, t) \# xs \land (P, t) \# xs \in cpts-p \ \Gamma) \lor
     (\exists P \ s \ Q \ t \ xs. \ aa = (P, s) \# (Q, t) \# xs \land \Gamma \vdash (P, s) -c \rightarrow (Q, t) \land (Q, t)
\# xs \in cpts-p \ \Gamma)) \Longrightarrow (aa \in cpts-p \ \Gamma)
assumes cptn-not-empty [simp]: [] \notin cpts-p \Gamma
assumes cpts-of-p-def: l!0 = (P,s) \land l \in cpts-p \ \Gamma \Longrightarrow l \in cpts-of-p \ \Gamma \ P \ s
begin
lemma CptsPOne: [(P,s)] \in cpts-p \Gamma
```

```
using cpts-p-simps[of [(P,s)] \Gamma] by auto
```

lemma
$$CptsPEnv: (P, t)\#xs \in cpts-p \ \Gamma \Longrightarrow (P,s)\#(P,t)\#xs \in cpts-p \ \Gamma$$
 using $cpts-p-simps[of (P, s) \# (P, t) \# xs \ \Gamma]$ by $auto$

lemma
$$CptsPComp$$
: $\llbracket\Gamma \vdash (P,s) - c \rightarrow (Q,t); (Q,t) \# xs \in cpts-p \ \Gamma \rrbracket \Longrightarrow (P,s) \# (Q,t) \# xs \in cpts-p \ \Gamma$
using $cpts-p-simps[of (P,s) \# (Q,t) \# xs \ \Gamma \]$ by $auto$

4.2 Sequential computations

4.2.1 Sequential computations of programs

inductive

eetran :: 'Env
$$\Rightarrow$$
 ('l,'k,'s,'prog) econf \Rightarrow ('l,'k,'s,'prog) econf \Rightarrow bool (- \vdash - $-ee \rightarrow$ - [81,81,81] 80)

for $\Gamma :: 'Env$

where

 $EnvE: \Gamma \vdash (P, s, x) - ee \rightarrow (P, t, y)$

lemma
$$eetranE: \Gamma \vdash p - ee \rightarrow p' \Longrightarrow (\bigwedge P \ s \ t. \ p = (P, \ s) \Longrightarrow p' = (P, \ t) \Longrightarrow Q) \Longrightarrow Q$$

by (induct p, induct p', erule eetran.cases, blast)

inductive

esetran :: 'Env
$$\Rightarrow$$
 ('l,'k,'s,'prog) esconf \Rightarrow ('l,'k,'s,'prog) esconf \Rightarrow bool (- \vdash - -ese \rightarrow - [81,81,81] 80)

where

EnvES:
$$\Gamma \vdash (P, s, x) - ese \rightarrow (P, t, y)$$

lemma
$$esetranE: \Gamma \vdash p - ese \rightarrow p' \Longrightarrow (\bigwedge P \ s \ t. \ p = (P, \ s) \Longrightarrow p' = (P, \ t) \Longrightarrow Q) \Longrightarrow Q$$

by (induct p, induct p', erule esetran.cases, blast)

inductive

pesetran :: 'Env
$$\Rightarrow$$
 ('l,'k,'s,'prog) pesconf \Rightarrow ('l,'k,'s,'prog) pesconf \Rightarrow bool (-\(\dagger--pese\rightarrow - [81,81,81] 80)

where

EnvPES:
$$\Gamma \vdash (P, s, x) - pese \rightarrow (P, t, y)$$

lemma pesetran
E:
$$\Gamma \vdash p \ -pese \rightarrow p' \Longrightarrow (\bigwedge P \ s \ t. \ p = (P, \ s) \Longrightarrow p' = (P, \ t) \Longrightarrow Q) \Longrightarrow Q$$

by (induct p, induct p', erule pesetran.cases, blast)

4.2.2 Sequential computations of events

inductive-set cpts- $ev :: 'Env \Rightarrow ('l, 'k, 's, 'prog) econfs set$

for $\Gamma :: 'Env$

where

 $CptsEvOne: [(e,s,x)] \in cpts-ev \Gamma$

```
 \mid \mathit{CptsEvEnv}\colon (e,\ t,\ x) \# xs \in \mathit{cpts-ev}\ \Gamma \Longrightarrow (e,\ s,\ y) \# (e,\ t,\ x) \# xs \in \mathit{cpts-ev}\ \Gamma \\ \mid \mathit{CptsEvComp}\colon \llbracket \Gamma \vdash (e1,s,x) - et - ct \rightarrow (e2,t,y);\ (e2,t,y) \# xs \in \mathit{cpts-ev}\ \Gamma \rrbracket \Longrightarrow (e1,s,x) \# (e2,t,y) \# xs \in \mathit{cpts-ev}\ \Gamma
```

```
definition cpts-of-ev :: 'Env \Rightarrow ('l,'k,'s,'prog) event \Rightarrow 's \Rightarrow ('l,'k,'s,'prog) x \Rightarrow ('l,'k,'s,'prog) econfs set where cpts-of-ev \Gamma ev x \equiv \{l. \ l!0=(ev,(s,x)) \land l \in cpts-ev \ \Gamma\}
```

4.2.3 Sequential computations of event systems

```
inductive-set cpts-es :: 'Env \Rightarrow ('l,'k,'s,'prog) esconfs set for \Gamma :: 'Env where CptsEsOne: [(es,s,x)] \in cpts-es \Gamma | CptsEsEnv: (es,t,x)\#xs \in cpts-es \Gamma \Rightarrow (es,s,y)\#(es,t,x)\#xs \in cpts-es \Gamma | CptsEsComp: [\![\Gamma \vdash (es1,s,x) - es - ct \rightarrow (es2,t,y); (es2,t,y)\#xs \in cpts-es \Gamma ] \Rightarrow (es1,s,x)\#(es2,t,y)\#xs \in cpts-es \Gamma definition cpts-of-es :: 'Env \Rightarrow ('l,'k,'s,'prog) esys \Rightarrow 's \Rightarrow ('l,'k,'s,'prog) x \Rightarrow ('l,'k,'s,'prog) esconfs set where cpts-of-es \Gamma es s x \equiv \{l. \ l!0 = (es,s,x) \land l \in cpts-es \Gamma}
```

4.2.4 Sequential computations of par event systems

```
inductive-set cpts-pes :: 'Env \Rightarrow ('l,'k,'s,'prog) pesconfs set for \Gamma :: 'Env where CptsPesOne: [(pes,s,x)] \in cpts-pes \Gamma | CptsPesEnv: (pes,t,x)#xs \in cpts-pes \Gamma \Longrightarrow (pes,s,y)#(pes,t,x)#xs \in cpts-pes \Gamma | CptsPesComp: [\Gamma \vdash (pes1,s,x) - pes - ct \rightarrow (pes2,t,y); (pes2,t,y)#xs \in cpts-pes \Gamma ] \Longrightarrow (pes1,s,x)#(pes2,t,y)#xs \in cpts-pes \Gamma definition cpts-of-pes :: 'Env \Rightarrow ('l,'k,'s,'prog) paresys \Rightarrow 's \Rightarrow ('l,'k,'s,'prog) x \Rightarrow ('l,'k,'s,'prog) pesconfs set where cpts-of-pes \Gamma pes s x \equiv \{l. l!0=(pes,s,x) \land l \in cpts-pes \Gamma
```

4.3 Lemmas

4.3.1 Events

```
lemma cpts-e-not-empty [simp]:[] \notin cpts-ev \Gamma apply(force elim:cpts-ev.cases) done lemma eetran-eqconf: \Gamma \vdash (e1, s1, x1) - ee \rightarrow (e2, s2, x2) \Longrightarrow e1 = e2 apply(rule eetran.cases) apply(simp)+ done
```

```
lemma eetran-eqconf1: \Gamma \vdash ec1 - ee \rightarrow ec2 \implies getspc-e \ ec1 = getspc-e \ ec2
    proof -
        assume a\theta: \Gamma \vdash ec1 - ee \rightarrow ec2
         then obtain e1 and s1 and s1 and e2 and e3 and e3 and e3 where e1: ec1 =
(e1, s1, x1) and a2: ec2 = (e2, s2, x2)
             by (meson prod-cases3)
        then have e1 = e2 using a 0 eetran-equal by fastforce
        with a1 show ?thesis by (simp add: a2 getspc-e-def)
    qed
lemma eqconf-eetran1: e1 = e2 \Longrightarrow \Gamma \vdash (e1, s1, x1) - ee \rightarrow (e2, s2, x2)
    by (simp add: eetran.intros)
lemma eqconf-eetran: getspc-e\ ec1=getspc-e\ ec2\Longrightarrow\Gamma\vdash ec1-ee\rightarrow ec2
    proof -
        assume qetspc-e\ ec1 = qetspc-e\ ec2
        then show ?thesis using getspc-e-def eetran.EnvE by (metis eq-fst-iff)
    qed
lemma cpts-ev-sub0: [el \in cpts-ev \Gamma; Suc 0 < length \ el] \implies drop \ (Suc \ 0) \ el \in
cpts-ev \Gamma
    apply(rule\ cpts-ev.cases)
    apply(simp) +
    done
lemma cpts-ev-subi: [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in [el \in cpts-ev \ R; Suc \ I] \ el \in [el \in cpts-ev \ R; Suc \ R; Su
cpts-ev \Gamma
    proof -
        assume p0:el \in cpts-ev \Gamma and p1:Suc i < length el
        have \forall el \ i. \ el \in cpts\text{-}ev \ \Gamma \land Suc \ i < length \ el \longrightarrow drop \ (Suc \ i) \ el \in cpts\text{-}ev \ \Gamma
            proof -
             {
                 \mathbf{fix} el i
                have el \in cpts\text{-}ev \ \Gamma \land Suc \ i < length \ el \longrightarrow drop \ (Suc \ i) \ el \in cpts\text{-}ev \ \Gamma
                     proof(induct i)
                          case 0 show ?case by (simp add: cpts-ev-sub0)
                     \mathbf{next}
                          case (Suc \ j)
                           assume b0: el \in cpts\text{-}ev \ \Gamma \land Suc \ j < length \ el \longrightarrow drop \ (Suc \ j) \ el \in
cpts-ev \Gamma
                         show ?case
                             proof
                                  assume c\theta: el \in cpts\text{-}ev \ \Gamma \land Suc \ (Suc \ j) < length \ el
                                  with b0 have c1: drop (Suc j) el \in cpts\text{-}ev \Gamma
                                      by (simp add: c0 Suc-lessD)
                                  then show drop (Suc (Suc j)) el \in cpts\text{-}ev \Gamma
                                       using c0 cpts-ev-sub0 by fastforce
                             qed
```

```
qed
      }
      then show ?thesis by auto
    with p0 p1 show ?thesis by auto
  qed
lemma notran-confeq\theta: [el \in cpts-ev \ \Gamma; Suc \ \theta < length \ el; \ \neg \ (\exists \ t. \ \Gamma \vdash el \ ! \ \theta)]
-et-t \rightarrow el ! 1)
                        \implies getspc\text{-}e\ (el!\ 0) = getspc\text{-}e\ (el!\ 1)
  apply(simp)
  apply(rule\ cpts-ev.cases)
  apply(simp) +
  apply(simp\ add:getspc-e-def)+
  done
lemma notran-confegi: [el \in cpts\text{-}ev \ \Gamma; Suc \ i < length \ el; \neg \ (\exists \ t. \ \Gamma \vdash el! \ i - et - t \rightarrow
el! Suci)
                        \implies getspc\text{-}e\ (el\ !\ i) = getspc\text{-}e\ (el\ !\ (Suc\ i))
  proof -
    assume p\theta: el \in cpts\text{-}ev \Gamma and
           p1: Suc \ i < length \ el \ and
           p2: \neg (\exists t. \Gamma \vdash el ! i - et - t \rightarrow el ! Suc i)
    have \forall el \ i. \ el \in cpts-ev \ \Gamma \land Suc \ i < length \ el \land \neg \ (\exists \ t. \ \Gamma \vdash el \ ! \ i - et - t \rightarrow
el! Suci)
                  \longrightarrow getspc-e \ (el ! i) = getspc-e \ (el ! (Suc i))
      proof -
      {
        \mathbf{fix} \ el \ i
       assume a0: el \in cpts\text{-}ev \ \Gamma \land Suc \ i < length \ el \land \neg \ (\exists \ t. \ \Gamma \vdash el \ ! \ i - et - t \rightarrow
el! Suci)
        then have getspc-e (el ! i) = getspc-e (el ! (Suc i))
          proof(induct \ i)
             case \theta then show ?case
               using notran-confeq0 by (metis One-nat-def)
          next
             case (Suc \ j)
            let ?subel = drop (Suc j) el
             assume b0: el \in cpts\text{-}ev \ \Gamma \land Suc \ (Suc \ j) < length \ el \land \neg \ (\exists \ t. \ \Gamma \vdash el \ !
Suc \ j - et - t \rightarrow el \ ! \ Suc \ (Suc \ j))
          then have b1: ?subel \in cpts-ev \Gamma by (simp add: Suc-lessD b0 cpts-ev-subi)
             from b\theta have b2: Suc \theta < length ?subel by auto
             from b0 have b3: \neg (\exists t. \Gamma \vdash ?subel ! 0 - et - t \rightarrow ?subel ! 1) by auto
             with b1 b2 have b3: getspc-e (?subel! 0) = getspc-e (?subel! 1)
               using notran-confeq0 by blast
             then show ?case
                  by (metis Cons-nth-drop-Suc One-nat-def Suc-lessD b0 nth-Cons-0
nth-Cons-Suc)
```

```
qed
             }
             then show ?thesis by auto
        with p0 p1 p2 show ?thesis by auto
    qed
lemma cpts-ev-onemore: [el \in cpts-ev \Gamma; length el > 0; \Gamma \vdash el ! (length el - 1)
-et-t \rightarrow ec \parallel \Longrightarrow
                                                         el @ [ec] \in cpts\text{-}ev \Gamma
    proof -
        assume p\theta: el \in cpts\text{-}ev \Gamma
             and p1: length el > 0
             and p2: \Gamma \vdash el! (length el - 1) - et - t \rightarrow ec
          have \forall el \ ec \ t \ \Gamma. \ el \in cpts-ev \ \Gamma \ \land \ length \ el > 0 \ \land \ \Gamma \vdash el \ ! \ (length \ el - 1)
-et-t \rightarrow ec \longrightarrow el @ [ec] \in cpts-ev \Gamma
             proof \ -
                 fix el ec t \Gamma
                 assume a\theta: el \in cpts\text{-}ev \Gamma
                     and a1: length \ el > 0
                      and a2: \Gamma \vdash el! (length \ el - 1) - et - t \rightarrow ec
                 from a0 a1 a2 have el @ [ec] \in cpts\text{-}ev \Gamma
                      proof(induct el)
                          case (CptsEvOne\ e\ s\ x)
                          assume b\theta: \Gamma \vdash [(e, s, x)] ! (length [(e, s, x)] - 1) - et - t \rightarrow ec
                          then have \Gamma \vdash (e, s, x) - et - t \rightarrow ec by simp
                      then show ?case by (metis append-Cons append-Nil cpts-ev.CptsEvComp
                                        cpts-ev.CptsEvOne surj-pair)
                      next
                          case (CptsEvEnv \ e \ s1 \ x \ xs \ s2 \ y)
                          assume b\theta: (e, s1, x) \# xs \in cpts\text{-}ev \Gamma
                              and b1: 0 < length((e, s1, x) \# xs) \Longrightarrow
                                                  \Gamma \vdash ((e, s1, x) \# xs) ! (length ((e, s1, x) \# xs) - 1) - et - t \rightarrow
ec
                                                     \implies ((e, s1, x) \# xs) @ [ec] \in cpts\text{-}ev \Gamma
                              and b2: 0 < length ((e, s2, y) \# (e, s1, x) \# xs)
                              and b3: \Gamma \vdash ((e, s2, y) \# (e, s1, x) \# xs) ! (length ((e, s2, y) \# (e, s2, y) \# (
s1, x) \# xs - 1 - et - t \rightarrow ec
                          then show ?case
                              \mathbf{proof}(cases\ xs = [])
                                   assume c\theta: xs = []
                                   with b3 have \Gamma \vdash (e, s1, x) - et - t \rightarrow ec by simp
                                   with b1 c0 have ((e, s1, x) \# ss) @ [ec] \in cpts\text{-}ev \Gamma by simp
                                   then show ?thesis by (simp add: cpts-ev.CptsEvEnv)
                              next
                                   assume c\theta: xs \neq []
```

```
with b3 have \Gamma \vdash last \ xs - et - t \rightarrow ec by (simp \ add: \ last-conv-nth)
                                with b1 c0 have ((e, s1, x) \# ss) @ [ec] \in cpts\text{-}ev \Gamma using b3 by
auto
                                then show ?thesis by (simp add: cpts-ev.CptsEvEnv)
                            ged
                   \mathbf{next}
                        case (CptsEvComp e1 s1 x1 et e2 t1 y1 xs1)
                        assume b\theta: \Gamma \vdash (e1, s1, x1) - et - et \rightarrow (e2, t1, y1)
                            and b1: (e2, t1, y1) \# xs1 \in cpts\text{-}ev \Gamma
                            and b2: 0 < length((e2, t1, y1) \# xs1) \Longrightarrow
                            \Gamma \vdash ((e2,\,t1,\,y1) \;\#\; xs1) \;! \; (length \; ((e2,\,t1,\,y1) \;\#\; xs1) \,-\, 1) \; -et - t \rightarrow t
ec
                                    \implies ((e2, t1, y1) \# xs1) @ [ec] \in cpts\text{-}ev \Gamma
                            and b3: 0 < length((e1, s1, x1) \# (e2, t1, y1) \# xs1)
                             and b4: \Gamma \vdash ((e1, s1, x1) \# (e2, t1, y1) \# xs1) ! (length ((e1, s1, s1, y1) \# xs1)) ! (length ((e1, s1, y1) \# xs1)) ! (lengt
x1) \# (e2, t1, y1) \# xs1) - 1) - et - t \rightarrow ec
                        then show ?case
                            \mathbf{proof}(cases\ xs1=[])
                                assume c\theta: xs1 = []
                                with b4 have \Gamma \vdash (e2, t1, y1) - et - t \rightarrow ec by simp
                                with b2\ c0 have ((e2,\ t1,\ y1)\ \#\ xs1)\ @\ [ec]\ \in\ cpts\text{-}ev\ \Gamma by simp
                                with b0 show ?thesis using cpts-ev.CptsEvComp by fastforce
                                assume c\theta: xs1 \neq []
                               with b4 have \Gamma \vdash last \ xs1 - et - t \rightarrow ec by (simp \ add: \ last-conv-nth)
                                 with b2 c0 have ((e2, t1, y1) \# xs1) @ [ec] \in cpts-ev \Gamma using b4
by auto
                                then show ?thesis using b0 cpts-ev.CptsEvComp by fastforce
                            qed
                    qed
            then show ?thesis by auto
            qed
        then show el @ [ec] \in cpts\text{-}ev \Gamma \text{ using } p0 \ p1 \ p2 \text{ by } blast
    qed
lemma cpts-ev-same: [length \ el > 0; \forall i. \ i < length \ el \longrightarrow getspc-e \ (el!i) = es]
\implies el \in cpts\text{-}ev \ \Gamma
   proof -
        assume p\theta: length el > \theta
           and p1: \forall i. \ i < length \ el \longrightarrow getspc-e \ (el!i) = es
        have \forall el \ es. \ length \ el > 0 \land (\forall i. \ i < length \ el \longrightarrow getspc-e \ (el!i) = es) \longrightarrow
el \in cpts\text{-}ev \Gamma
           proof -
            {
                fix el es
                assume a\theta: length (el :: ('l,'k,'s,'prog) econfs) > \theta
                   and a1: \forall i. i < length \ el \longrightarrow getspc-e \ (el!i) = es
```

```
then have el \in cpts\text{-}ev \Gamma
         proof(induct el)
           case Nil show ?case using Nil.prems(1) by auto
           case (Cons a as)
          assume b0: 0 < length \ as \implies \forall i < length \ as. \ getspc-e \ (as!i) = es \implies
as \in cpts\text{-}ev \Gamma
            and b1: 0 < length (a \# as)
            and b2: \forall i < length (a \# as). getspc-e ((a \# as) ! i) = es
           then show ?case
            \mathbf{proof}(cases\ as = [])
              assume c\theta: as = []
              then show ?thesis by (metis cpts-ev.CptsEvOne old.prod.exhaust)
            next
              assume c\theta: \neg(as = [])
           then obtain b and bs where c1: as = b \# bs by (meson neg-Nil-conv)
              from c\theta have \theta < length as by <math>simp
              with b0 have \forall i < length \ as. \ getspc-e \ (as ! i) = es \implies as \in cpts-ev
\Gamma by simp
              with b2 have as \in cpts\text{-}ev \Gamma by force
              moreover from b2 have getspc-e a = es by auto
              moreover from b2 c1 have getspc-e b = es by auto
                      ultimately show ?thesis using c1 getspc-e-def by (metis
cpts-ev.CptsEvEnv fst-conv prod-cases3)
            qed
         qed
     then show ?thesis by auto
     qed
   then show ?thesis using p0 p1 by auto
 qed
4.3.2
         Event systems
lemma cpts-es-not-empty [simp]:[] \notin cpts-es \Gamma
apply(force elim:cpts-es.cases)
done
lemma esetran-eqconf: \Gamma \vdash (es1, s1, x1) - ese \rightarrow (es2, s2, x2) \Longrightarrow es1 = es2
 apply(rule\ esetran.cases)
 apply(simp) +
 done
lemma esetran-eqconf1: \Gamma \vdash esc1 - ese \rightarrow esc2 \Longrightarrow getspc\text{-}es\ esc1 = getspc\text{-}es\ esc2
 proof -
   assume a\theta: \Gamma \vdash esc1 - ese \rightarrow esc2
```

```
then obtain es1 and s1 and x1 and es2 and s2 and x2 where a1: esc1 =
(es1, s1, x1) and a2: esc2 = (es2, s2, x2)
     by (meson prod-cases3)
   then have es1 = es2 using a0 esetran-eqconf by fastforce
   with a1 show ?thesis by (simp add: a2 getspc-es-def)
  qed
lemma egconf-esetran1: es1 = es2 \Longrightarrow \Gamma \vdash (es1, s1, s1) - ese \rightarrow (es2, s2, s2)
  by (simp add: esetran.intros)
lemma eqconf-esetran: getspc\text{-}es\ esc1 = getspc\text{-}es\ esc2 \Longrightarrow \Gamma \vdash esc1\ -ese \rightarrow\ esc2
 proof -
   assume a\theta: getspc-es esc1 = getspc-es esc2
   obtain es1 and s1 and x1 where a1: esc1 = (es1, s1, x1) using prod-cases3
by blast
   obtain es2 and s2 and x2 where a2: esc2 = (es2, s2, x2) using prod-cases3
   with a\theta a1 have es1 = es2 by (simp \ add:getspc-es-def)
     with all all have all: \Gamma \vdash (es1, s1, x1) - ese \rightarrow (es2, s2, x2) by (simp)
add:eqconf-esetran1)
   from a3 a1 a2 show ?thesis by simp
  qed
lemma exist-estran: \llbracket (es1, s1, x1) \# (es, s, x) \# esl \in cpts-es \Gamma; es1 \neq es \rrbracket \Longrightarrow
(\exists est. \ \Gamma \vdash (es1, s1, x1) - es - est \rightarrow (es, s, x))
  apply(rule\ cpts-es.cases)
 apply(simp) +
 by auto
lemma cpts-es-drop\theta: [el \in cpts-es \Gamma; Suc \theta < length el] \Longrightarrow drop (Suc \theta) el \in \theta
cpts-es \Gamma
  apply(rule cpts-es.cases)
 apply(simp) +
 done
lemma cpts-es-dropi: [el \in cpts-es \Gamma; Suc i < length \ el] \implies drop \ (Suc \ i) \ el \in
cpts-es \Gamma
 proof -
   assume p\theta:el \in cpts\text{-}es \Gamma and p1:Suc i < length el
   have \forall el \ i. \ el \in cpts\text{-}es \ \Gamma \land Suc \ i < length \ el \longrightarrow drop \ (Suc \ i) \ el \in cpts\text{-}es \ \Gamma
     proof -
      {
       \mathbf{fix} el i
       have el \in cpts\text{-}es \ \Gamma \land Suc \ i < length \ el \longrightarrow drop \ (Suc \ i) \ el \in cpts\text{-}es \ \Gamma
          proof(induct i)
           case \theta show ?case by (simp add: cpts-es-drop\theta)
```

```
\mathbf{next}
                          case (Suc \ j)
                            assume b\theta: el \in cpts-es \Gamma \land Suc j < length <math>el \longrightarrow drop (Suc j) el \in
cpts\text{-}es\ \Gamma
                          show ?case
                              proof
                                   assume c\theta: el \in cpts\text{-}es\ \Gamma \land Suc\ (Suc\ j) < length\ el
                                   with b0 have c1: drop (Suc j) el \in cpts\text{-}es \Gamma
                                       by (simp add: c0 Suc-lessD)
                                   then show drop (Suc\ (Suc\ j))\ el \in cpts\text{-}es\ \Gamma
                                        using c\theta cpts-es-drop\theta by fastforce
                              qed
                     qed
             }
             then show ?thesis by auto
         with p0 p1 show ?thesis by auto
    qed
lemma cpts-es-dropi2: [el \in cpts-es \Gamma; i < length \ el] \implies drop \ i \ el \in cpts-es \Gamma
   using cpts-es-dropi by (metis (no-types, hide-lams) drop-0 lessI less-Suc-eq-0-disj)
lemma cpts-es-take0: [el \in cpts-es \ \Gamma; \ i < length \ el; \ el1 = take \ (Suc \ i) \ el; \ j < length \ el; \ el2 = take \ (Suc \ i) \ el; \ j < length \ el2 = take \ (Suc \ i) \ el2 = take \ (
length el1
                                                     \implies drop \ (length \ el1 - Suc \ j) \ el1 \in cpts\text{-}es \ \Gamma
    proof -
        assume p\theta: el \in cpts\text{-}es \Gamma
             and p1: i < length el
             and p2: el1 = take (Suc i) el
             and p3: j < length el1
        have \forall i j. el \in cpts\text{-}es \ \Gamma \land i < length \ el \land el1 = take \ (Suc \ i) \ el \land j < length
el1
                      \longrightarrow drop \ (length \ el1 \ - \ Suc \ j) \ el1 \in cpts\text{-}es \ \Gamma
             proof -
             {
                 \mathbf{fix} \ i \ j
                 assume a\theta: el \in cpts\text{-}es \Gamma
                     and a1: i < length el
                      and a2: el1 = take (Suc i) el
                      and a3: j < length el1
                  then have drop (length el1 - Suc j) el1 \in cpts-es \Gamma
                      \mathbf{proof}(induct\ j)
                          case \theta
                          have drop \ (length \ el1 - Suc \ 0) \ el1 = [el! \ i]
                              by (simp add: a1 a2 take-Suc-conv-app-nth)
                          then show ?case by (metis cpts-es.CptsEsOne old.prod.exhaust)
                      next
```

```
case (Suc \ jj)
          assume b0: el \in cpts\text{-}es \ \Gamma \Longrightarrow i < length \ el \Longrightarrow el1 = take \ (Suc \ i) \ el
                   \implies jj < length \ el1 \implies drop \ (length \ el1 - Suc \ jj) \ el1 \in cpts-es
Γ
            and b1: el \in cpts\text{-}es \Gamma
            and b2: i < length el
            and b3: el1 = take (Suc i) el
            and b4: Suc jj < length el1
          then have b5: drop (length el1 - Suc jj) el1 \in cpts-es \Gamma
            using Suc\text{-}lessD by blast
          let ?el2 = drop (Suc i) el
          from a2 have b6: el1 @ ?el2 = el by simp
          let ?el1sht = drop (length el1 - Suc jj) el1
          let ?el1lng = drop (length el1 - Suc (Suc jj)) el1
          let ?elsht = drop (length el1 - Suc jj) el
          let ?ellng = drop (length el1 - Suc (Suc jj)) el
          from b6 have a7: ?el1sht @ ?el2 = ?elsht
            by (metis diff-is-0-eq diff-le-self drop-0 drop-append)
          from b6 have a8: ?el1lng @ ?el2 = ?ellng
               by (metis (no-types, lifting) a append-eq-append-conv diff-is-0-eq'
diff-le-self drop-append)
          have a9: ?ellng = (el ! (length el1 - Suc (Suc jj))) # ?elsht
           by (metis (no-types, lifting) Cons-nth-drop-Suc Suc-diff-Suc Suc-leI a8
                append-is-Nil-conv b4 diff-diff-cancel drop-all length-drop
                list.size(3) not-less old.nat.distinct(2))
          from b1 b4 have a10: ?elsht \in cpts\text{-}es\ \Gamma
            by (metis a 7 append-is-Nil-conv b 5 cpts-es-dropi2 drop-all not-less)
          from b1 b4 have a11: ?ellnq \in cpts-es \Gamma
            by (metis a9 cpts-es-dropi2 drop-all list.simps(3) not-less)
          have a12: ?el1lng = (el ! (length el1 - Suc (Suc jj))) # ?el1sht
            by (metis (no-types, lifting) Cons-nth-drop-Suc Suc-diff-Suc
              b4 b6 diff-less gr-implies-not0 length-0-conv length-greater-0-conv
              nth-append zero-less-Suc)
          from a11 have ?el1lng \in cpts\text{-}es \Gamma
            proof(induct ?ellng)
              case CptsEsOne show ?case
                using CptsEsOne.hyps a7 a9 by auto
              case (CptsEsEnv es1 t1 x1 xs1 s1 y1)
              assume c\theta: (es1, t1, x1) \# xs1 \in cpts\text{-}es \Gamma
               and c1: (es1, t1, x1) \# xs1 = drop (length el1 - Suc (Suc jj)) el
                        drop \ (length \ el1 - Suc \ (Suc \ jj)) \ el1 \in cpts\text{-}es \ \Gamma
               and c2: (es1, s1, y1) \# (es1, t1, x1) \# xs1 = drop (length el1 -
Suc (Suc jj)) el
              from c\theta have (es1, s1, y1) \# (es1, t1, x1) \# xs1 \in cpts-es \Gamma
               by (simp add: a11 c2)
               have c3: ?el1sht! 0 = (es1, t1, x1) by (metis (no-types, lifting)
Suc-leI Suc-lessD a7
```

```
a9 append-eq-Cons-conv b4 c2 diff-diff-cancel length-drop
list.inject
                     list.size(3) nth-Cons-0 old.nat.distinct(2))
              then have c4: \exists el1sht'. ?el1sht = (es1, t1, x1) \# el1sht' by (metis
Cons-nth-drop-Suc b4
                  diff-diff-cancel drop-0 length-drop less-or-eq-imp-le zero-less-Suc)
            have c5: ?el1lng = (es1, s1, y1) # ?el1sht using a12 a9 c2 by auto
              with b5 c4 show ?case using cpts-es.CptsEsEnv by fastforce
            next
              case (CptsEsComp es1 s1 x1 et es2 t1 y1 xs1)
              assume c\theta: \Gamma \vdash (es1, s1, x1) - es - et \rightarrow (es2, t1, y1)
               and c1: (es2, t1, y1) \# xs1 \in cpts\text{-}es \Gamma
               and c2: (es2, t1, y1) \# xs1 = drop (length el1 - Suc (Suc <math>jj)) el
                         \implies drop \ (length \ el1 - Suc \ (Suc \ jj)) \ el1 \in cpts\text{-}es \ \Gamma
               and c3: (es1, s1, x1) \# (es2, t1, y1) \# xs1 = drop (length el1 -
Suc\ (Suc\ jj))\ el
               have c4: ?el1sht! 0 = (es2, t1, y1) by (metis (no-types, lifting)
Suc-leI Suc-lessD a7
                          a9 append-eq-Cons-conv b4 c3 diff-diff-cancel length-drop
list.inject
                     list.size(3) nth-Cons-0 old.nat.distinct(2))
             then have c5: \exists el1sht'. ?el1sht = (es2, t1, y1) \# el1sht' by (metis
Cons-nth-drop-Suc b4
                  diff-diff-cancel drop-0 length-drop less-or-eq-imp-le zero-less-Suc)
             have c6: ?el1lng = (es1, s1, x1) # ?el1sht using a12 a9 c3 by auto
              with b5 c5 show ?case using c0 cpts-es.CptsEsComp by fastforce
            ged
          then show ?case by simp
        qed
     }
     then show ?thesis by auto
     qed
   then show drop (length el1 - Suc j) el1 \in cpts-es \Gamma
     using p0 p1 p2 p3 by blast
 qed
lemma cpts-es-take: [el \in cpts-es \ \Gamma; \ i < length \ el] \implies take \ (Suc \ i) \ el \in cpts-es
Γ
 using cpts-es-take0 gr-implies-not0 by fastforce
lemma cpts-es-seg: [el \in cpts-es \Gamma; m \leq length \ el; n \leq length \ el; m < n
                 \implies take (n - m) (drop \ m \ el) \in cpts\text{-}es \ \Gamma
 proof -
   assume p\theta: el \in cpts\text{-}es \Gamma
     and p1: m \leq length \ el
     and p2: n \leq length \ el
```

```
and p3: m < n
   then have drop \ m \ el \in cpts\text{-}es \ \Gamma
        using cpts-es-dropi by (metis (no-types, lifting) drop-0 le-0-eq le-SucE
less-le-trans zero-induct)
   then show ?thesis using cpts-es-take
     by (metis (no-types, lifting) cpts-es-dropi2 drop-take inc-induct
       leD le-SucE length-take min.absorb2 p0 p1 p2 p3)
 qed
lemma cpts-es-seg2: [el \in cpts-es \Gamma; m \leq length \ el; n \leq length \ el; take (n - m)
(drop \ m \ el) \neq []]
                   \implies take (n - m) (drop \ m \ el) \in cpts\text{-}es \ \Gamma
 proof -
   assume p\theta: el \in cpts\text{-}es \Gamma
     and p1: m \leq length \ el
     and p2: n \leq length \ el
     and p3: take (n-m) (drop \ m \ el) \neq []
   from p3 have m < n by simp
   then show ?thesis using cpts-es-seg using p0 p1 p2 by blast
  qed
lemma cpts-es-same: [length\ el > 0; \forall i.\ i < length\ el \longrightarrow getspc-es\ (el!i) = es]
\implies el \in cpts\text{-}es \Gamma
 proof -
   assume p\theta: length el > \theta
     and p1: \forall i. \ i < length \ el \longrightarrow getspc\text{-}es \ (el!i) = es
   have \forall el es. length el > 0 \land (\forall i. i < length el \longrightarrow getspc-es (el!i) = es) <math>\longrightarrow
el \in \mathit{cpts\text{-}es}\ \Gamma
     proof -
       assume a0: length (el :: ('l,'k,'s,'prog) esconf list) > 0
         and a1: \forall i. i < length \ el \longrightarrow getspc-es \ (el!i) = es
       then have el \in cpts\text{-}es \Gamma
         proof(induct el)
           case Nil show ?case using Nil.prems(1) by auto
         next
           case (Cons a as)
          assume b0: 0 < length \ as \implies \forall i < length \ as. \ getspc-es \ (as!i) = es \implies
as \in cpts\text{-}es \Gamma
             and b1: 0 < length (a \# as)
             and b2: \forall i < length (a \# as). getspc-es ((a \# as) ! i) = es
           then show ?case
             \mathbf{proof}(cases\ as = [])
               assume c\theta: as = []
               then show ?thesis by (metis cpts-es.CptsEsOne old.prod.exhaust)
               assume c\theta: \neg(as = [])
            then obtain b and bs where c1: as = b \# bs by (meson neq-Nil-conv)
```

```
from c\theta have \theta < length as by <math>simp
               with b0 have \forall i < length \ as. \ getspc-es \ (as ! i) = es \Longrightarrow as \in cpts-es
\Gamma by simp
               with b2 have as \in cpts-es \Gamma by force
               moreover from b2 have getspc\text{-}es\ a = es\ by\ auto
               moreover from b2 c1 have getspc-es b = es by auto
                       ultimately show ?thesis using c1 getspc-es-def by (metis
cpts-es.CptsEsEnv fst-conv prod-cases3)
             qed
         \mathbf{qed}
      then show ?thesis by auto
      qed
   then show ?thesis using p0 p1 by auto
  qed
lemma noevtent-inmid-eq:
   (\neg (\exists j. j > 0 \land Suc j < length \ esl \land getspc-es \ (esl ! j) = EvtSys \ es \land getspc-es
(esl ! Suc j) \neq EvtSys es))
      = (\forall j. \ j > 0 \land Suc \ j < length \ esl \longrightarrow getspc\text{-}es \ (esl \ ! \ j) = EvtSys \ es \longrightarrow
getspc\text{-}es\ (esl\ !\ Suc\ j) = EvtSys\ es)
      by blast
lemma evtseq-next-in-cpts:
  esl \in cpts-es \Gamma \Longrightarrow \forall i. \ Suc \ i < length \ esl \land \ getspc-es (esl!i) = EvtSeq \ e \ esys
                      \longrightarrow getspc\text{-}es \ (esl!Suc \ i) = esys \lor (\exists e. \ getspc\text{-}es \ (esl!Suc \ i) =
EvtSeq e esys)
  proof -
   assume p\theta: esl \in cpts-es \Gamma
   then show ?thesis
     proof -
      {
       \mathbf{fix} i
       assume a\theta: Suc i < length \ esl
         and a1: getspc\text{-}es\ (esl!i) = EvtSeq\ e\ esys
       let ?esl1 = drop \ i \ esl
          from p\theta a\theta have a\theta: esl1 \in cpts-es \Gamma by (metis\ (no-types,\ hide-lams)
Suc\text{-}diff\text{-}1\ Suc\text{-}lessD
              cpts-es-dropi\ diff-diff-cancel\ drop-0\ length-drop\ length-greater-0-conv
             less-or-eq-imp-le\ list.size(3))
       from a0 a1 have getspc\text{-}es (?esl1!0) = EvtSeq e esys by auto
       then obtain s1 and x1 where a3: ?esl1!0 = (EvtSeq \ e \ esys, s1, x1)
         using getspc-es-def by (metis fst-conv old.prod.exhaust)
        from a2 a1 have getspc-es (?esl1!1) = esys \vee (\exists e. getspc-es (?esl1!1) =
EvtSeq e esys)
         proof(induct ?esl1)
```

```
case (CptsEsOne es' s' x')
           then show ?case by (metis One-nat-def Suc-eq-plus1-left Suc-lessD a0
               le\-add\-diff\-inverse2 length\-Cons length\-drop less\-imp\-le
               list.size(3) not-less-iff-gr-or-eq)
           case (CptsEsEnv es' t' x' xs' s' y')
           assume b\theta: (es', s', y') \# (es', t', x') \# xs' = drop i esl
            and b1: getspc-es (esl ! i) = EvtSeq e esys
          then have es' = EvtSeq \ e \ esys \ using \ getspc-es-def \ by \ (metis \ a3 \ fst-conv
nth-Cons-\theta)
        with b0 have getspc-es (drop i esl! 1) = EvtSeq e esys using getspc-es-def
             by (metis One-nat-def fst-conv nth-Cons-0 nth-Cons-Suc)
           then show ?case by auto
         next
           case (CptsEsComp es1's'x'et'es2't'y'xs')
           assume b\theta: \Gamma \vdash (es1', s', x') - es - et' \rightarrow (es2', t', y')
             and b1: (es1', s', x') \# (es2', t', y') \# xs' = drop \ i \ esl
            and b2: getspc-es (esl ! i) = EvtSeq e esys
           then have b3: es1' = EvtSeq \ e \ esys
            by (metis Pair-inject a3 nth-Cons-0)
           from b0 b3 have es2' = esys \lor (\exists e. es2' = EvtSeq e esys)
             using evtseq-tran-sys-or-seq by simp
           with b1 show ?case using getspc-es-def
            by (metis One-nat-def fst-conv nth-Cons-0 nth-Cons-Suc)
         qed
      then have getspc\text{-}es\ (esl!Suc\ i) = esys \lor (\exists\ e.\ getspc\text{-}es\ (esl!Suc\ i) = EvtSeq
e \ esys)
         using a\theta by fastforce
     then show ?thesis by auto
     qed
 qed
lemma evtseq-next-in-cpts-anony:
  esl \in cpts-es \Gamma \Longrightarrow \forall i. \ Suc \ i < length \ esl \land \ getspc-es (esl!i) = EvtSeq \ e \ esys \land 
is-anonyevt e
                      \longrightarrow getspc\text{-}es\ (esl!Suc\ i) = esys
                      \vee (\exists e. \ getspc\text{-}es \ (esl!Suc \ i) = EvtSeq \ e \ esys \land is\text{-}anonyevt \ e)
 proof -
   assume p\theta: esl \in cpts-es \Gamma
   then show ?thesis
     proof -
       \mathbf{fix} i
       assume a\theta: Suc i < length \ esl
         and a1: getspc-es (esl!i) = EvtSeq e esys <math>\land is-anonyevt e
       let ?esl1 = drop \ i \ esl
```

```
from p0 a0 have a2: ?esl1 \in cpts-es \Gamma by (metis (no-types, hide-lams)
Suc-diff-1 Suc-lessD
             cpts-es-dropi\ diff-diff-cancel\ drop-0\ length-drop\ length-greater-0-conv
             less-or-eq-imp-le\ list.size(3))
       from a0 a1 have getspc-es (?esl1!0) = EvtSeq e esys by auto
       then obtain s1 and x1 where a3: ?esl1!0 = (EvtSeq\ e\ esys,s1,x1)
         \mathbf{using}\ \mathit{getspc\text{-}es\text{-}def}\ \mathbf{by}\ (\mathit{metis}\ \mathit{fst\text{-}conv}\ \mathit{old.prod.exhaust})
       from a2 a1 have getspc\text{-}es (?esl1!1) = esys
                      \vee (\exists e. \ getspc\text{-}es \ (?esl1!1) = EvtSeq \ e \ esys \land is\text{-}anonyevt \ e)
         proof(induct ?esl1)
           case (CptsEsOne\ es'\ s'\ x')
           then show ?case by (metis One-nat-def Suc-eq-plus1-left Suc-lessD a0
               le\-add\-diff\-inverse2 length\-Cons length\-drop less\-imp\-le
               list.size(3) not-less-iff-gr-or-eq)
         next
           case (CptsEsEnv es' t' x' xs' s' y')
           assume b\theta: (es', s', y') \# (es', t', x') \# xs' = drop i esl
            and b1: getspc-es (esl! i) = EvtSeq e esys \land is-anonyevt e
         then have es' = EvtSeq \ e \ esys \ using \ getspc-es-def \ by \ (metis \ a3 \ fst-conv
nth-Cons-\theta)
          with b0 have getspc-es (drop i esl! 1) = EvtSeq\ e\ esys\ \land\ is-anonyevt e
                using getspc-es-def by (metis One-nat-def b1 fst-conv nth-Cons-0
nth-Cons-Suc)
           then show ?case by auto
         next
           case (CptsEsComp es1's'x'et'es2't'y'xs')
           assume b\theta: \Gamma \vdash (es1', s', x') - es - et' \rightarrow (es2', t', y')
             and b1: (es1', s', x') \# (es2', t', y') \# xs' = drop i esl
            and b2: getspc-es (esl ! i) = EvtSeq e esys <math>\land is-anonyevt e
           then have b3: es1' = EvtSeq \ e \ esys
            by (metis Pair-inject a3 nth-Cons-0)
          from b0 b3 have es2' = esys \lor (\exists e. es2' = EvtSeq e esys \land is-anonyevt
e)
            using evtseq-tran-sys-or-seq-anony
            by simp
           with b1 show ?case using qetspc-es-def
            by (metis One-nat-def fst-conv nth-Cons-0 nth-Cons-Suc)
         qed
       then have getspc\text{-}es\ (esl!Suc\ i) = esys
         \vee (\exists e. \ getspc\text{-}es \ (esl!Suc \ i) = EvtSeq \ e \ esys \land is\text{-}anonyevt \ e)
         using a\theta by fastforce
     then show ?thesis by auto
     qed
 qed
lemma evtsys-next-in-cpts:
```

```
esl \in cpts-es \Gamma \Longrightarrow \forall i. Suc \ i < length \ esl \land \ getspc-es (esl!i) = EvtSys \ es
                      \longrightarrow getspc\text{-}es \ (esl!Suc \ i) = EvtSys \ es \lor (\exists \ e. \ getspc\text{-}es \ (esl!Suc
i) = EvtSeq \ e \ (EvtSys \ es))
 proof -
   assume p\theta: esl \in cpts-es \Gamma
   then show ?thesis
     proof -
       \mathbf{fix} i
       assume a\theta: Suc i < length \ esl
         and a1: getspc\text{-}es (esl!i) = EvtSys \ es
       let ?esl1 = drop \ i \ esl
         from p\theta a\theta have a\theta: est1 \in cpts-es \Gamma by (metis\ (no\text{-types},\ hide\text{-lams})
Suc\text{-}diff\text{-}1 Suc\text{-}lessD
             cpts-es-dropi diff-diff-cancel drop-0 length-drop length-greater-0-conv
             less-or-eq-imp-le\ list.size(3))
       from a0 a1 have getspc-es (?esl1!0) = EvtSys es by auto
       then obtain s1 and x1 where a3: ?esl1!0 = (EvtSys \ es, s1, x1)
         using getspc-es-def by (metis fst-conv old.prod.exhaust)
      from a2 a1 have getspc\text{-}es (?esl1!1) = EvtSys es \vee (\exists e. getspc\text{-}es (?esl1!1)
= EvtSeq \ e \ (EvtSys \ es))
         proof(induct ?esl1)
           case (CptsEsOne\ es'\ s'\ x')
           then show ?case by (metis One-nat-def Suc-eq-plus1-left Suc-lessD a0
               le-add-diff-inverse2 length-Cons length-drop less-imp-le
               list.size(3) not-less-iff-gr-or-eq)
         next
           case (CptsEsEnv es' t' x' xs' s' y')
           assume b\theta: (es', s', y') \# (es', t', x') \# xs' = drop i esl
             and b1: getspc\text{-}es (esl! i) = EvtSys es
            then have es' = EvtSys \ es \ using \ getspc-es-def \ by \ (metis \ a3 \ fst-conv
nth-Cons-\theta)
           with b0 have getspc-es (drop i esl! 1) = EvtSys es using getspc-es-def
             by (metis One-nat-def fst-conv nth-Cons-0 nth-Cons-Suc)
           then show ?case by simp
           case (CptsEsComp es1' s' x' et' es2' t' y' xs')
           assume b\theta: \Gamma \vdash (es1', s', x') - es - et' \rightarrow (es2', t', y')
             and b1: (es1', s', x') \# (es2', t', y') \# xs' = drop \ i \ esl
             and b2: getspc\text{-}es\ (esl\ !\ i) = EvtSys\ es
           then have b3: es1' = EvtSys \ es
             by (metis Pair-inject a3 nth-Cons-0)
           from b0 b3 have \exists e. \ es2' = EvtSeq \ e \ (EvtSys \ es) using evtsys-evtent
by simp
           then obtain e where es2' = EvtSeq e (EvtSys es) by auto
           with b1 have \exists e. \ getspc\text{-}es \ (drop \ i \ esl \ ! \ 1) = EvtSeq \ e \ (EvtSys \ es)
                  using getspc-es-def by (metis One-nat-def eq-fst-iff nth-Cons-0
nth-Cons-Suc)
           then show ?case by simp
```

```
qed
```

```
then have getspc\text{-}es\ (esl!Suc\ i) = EvtSys\ es\ \lor\ (\exists\ e.\ getspc\text{-}es\ (esl!Suc\ i) =
EvtSeq\ e\ (EvtSys\ es))
         using a\theta by fastforce
     then show ?thesis by auto
     qed
 qed
lemma evtsys-next-in-cpts-anony:
  esl \in cpts-es \Gamma \Longrightarrow \forall i. Suc \ i < length \ esl \land \ getspc-es (esl!i) = EvtSys \ es
                     \longrightarrow getspc\text{-}es \ (esl!Suc \ i) = EvtSys \ es
                   \vee (\exists e. \ getspc\text{-}es \ (esl!Suc \ i) = EvtSeq \ e \ (EvtSys \ es) \land is\text{-}anonyevt
e)
 proof -
   assume p\theta: esl \in cpts-es \Gamma
   then show ?thesis
     proof -
       \mathbf{fix} i
       assume a\theta: Suc i < length \ esl
         and a1: getspc-es (esl!i) = EvtSys es
       let ?esl1 = drop \ i \ esl
         from p\theta a\theta have a2: ?esl1 \in cpts-es \Gamma by (metis\ (no-types,\ hide-lams)
Suc-diff-1 Suc-lessD
             cpts-es-dropi diff-diff-cancel drop-0 length-drop length-greater-0-conv
             less-or-eq-imp-le\ list.size(3))
       from a0 a1 have getspc-es (?esl1!0) = EvtSys es by auto
       then obtain s1 and x1 where a3: ?esl1!0 = (EvtSys\ es, s1, x1)
         using getspc-es-def by (metis fst-conv old.prod.exhaust)
       from a2 a1 have getspc\text{-}es (?esl1!1) = EvtSys es
         \vee (\exists e. \ getspc\text{-}es \ (?esl1!1) = EvtSeq \ e \ (EvtSys \ es) \land is\text{-}anonyevt \ e)
         proof(induct ?esl1)
           case (CptsEsOne es' s' x')
           then show ?case by (metis One-nat-def Suc-eq-plus1-left Suc-lessD a0
               le\-add\-diff\-inverse2 length\-Cons length\-drop less\-imp\-le
               list.size(3) not-less-iff-gr-or-eq)
         next
           case (CptsEsEnv es' t' x' xs' s' y')
           assume b\theta: (es', s', y') \# (es', t', x') \# xs' = drop i esl
            and b1: getspc\text{-}es (esl ! i) = EvtSys \ es
            then have es' = EvtSys \ es \ using \ getspc-es-def \ by \ (metis \ a3 \ fst-conv
nth-Cons-\theta)
           with b0 have getspc-es (drop i esl! 1) = EvtSys es using getspc-es-def
            by (metis One-nat-def fst-conv nth-Cons-0 nth-Cons-Suc)
           then show ?case by simp
         next
           case (CptsEsComp es1's'x'et'es2't'y'xs')
```

```
assume b\theta: \Gamma \vdash (es1', s', x') - es - et' \rightarrow (es2', t', y')
              and b1: (es1', s', x') \# (es2', t', y') \# xs' = drop i esl
              and b2: getspc-es (esl ! i) = EvtSys es
            then have b3: es1' = EvtSys \ es
              by (metis Pair-inject a3 nth-Cons-0)
            from b0 b3 have \exists e. \ es2' = EvtSeq \ e \ (EvtSys \ es) using evtsys-evtent
by simp
            then obtain e where es2' = EvtSeq \ e \ (EvtSys \ es) by auto
             with b0 b1 b3 have \exists e. \ getspc\text{-}es \ (drop \ i \ esl \ ! \ 1) = EvtSeq \ e \ (EvtSys
es) \wedge is-anonyevt e
             using getspc-es-def by (metis One-nat-def ent-spec2' evtsysent-evtent0
           fst-conv is-anonyevt.simps(1) noevtent-notran nth-Cons-0 nth-Cons-Suc)
           then show ?case by simp
          qed
        then have getspc\text{-}es\ (esl!Suc\ i) = EvtSys\ es
            \vee (\exists e. \ getspc\text{-}es\ (esl!Suc\ i) = EvtSeq\ e\ (EvtSys\ es) \land is\text{-}anonyevt\ e)
          using a\theta by fastforce
      then show ?thesis by auto
      qed
 \mathbf{qed}
lemma evtsys-all-es-in-cpts:
  \llbracket esl \in cpts - es \ \Gamma; \ length \ esl > 0; \ getspc - es \ (esl!0) = EvtSys \ es \ \rrbracket \Longrightarrow
       \forall i. \ i < length \ esl \longrightarrow getspc-es \ (esl!i) = EvtSys \ es \ \lor \ (\exists \ e. \ getspc-es \ (esl!i)
= EvtSeq \ e \ (EvtSys \ es))
  proof -
    assume p\theta: esl \in cpts-es \Gamma
     and p1: length esl > 0
     and p2: getspc\text{-}es \ (esl!0) = EvtSys \ es
    show ?thesis
     proof -
      {
        \mathbf{fix} i
        assume a\theta: i < length \ esl
        then have getspc\text{-}es\ (esl!i) = EvtSys\ es\ \lor\ (\exists\ e.\ getspc\text{-}es\ (esl!i) = EvtSeq
e (EvtSys \ es))
          \mathbf{proof}(induct\ i)
            case \theta from p2 show ?case by simp
          next
            case (Suc \ j)
            assume b\theta: j < length \ esl \Longrightarrow
                           getspc\text{-}es\ (esl\ !\ j) = EvtSys\ es\ \lor\ (\exists\ e.\ getspc\text{-}es\ (esl\ !\ j) =
EvtSeq\ e\ (EvtSys\ es))
             and b1: Suc j < length \ esl
```

```
then have getspc\text{-}es\ (esl\ !\ j) = EvtSys\ es\ \lor\ (\exists\ e.\ getspc\text{-}es\ (esl\ !\ j) =
EvtSeq \ e \ (EvtSys \ es))
              \mathbf{by} \ simp
            then show ?case
              proof
                assume c\theta: getspc\text{-}es\ (esl\ !\ j) = EvtSys\ es
                with p0 b1 show ?thesis using evtsys-next-in-cpts by auto
                assume c\theta: \exists e. \ getspc\text{-}es\ (esl\ !\ j) = EvtSeq\ e\ (EvtSys\ es)
                with p0 b1 show ?thesis using evtseq-next-in-cpts by blast
              qed
          qed
      }
      then show ?thesis by auto
 qed
lemma evtsys-all-es-in-cpts-anony:
  \llbracket esl \in cpts - es \ \Gamma; \ length \ esl > 0; \ getspc - es \ (esl!0) = EvtSys \ es \ \rrbracket \Longrightarrow
        \forall i. \ i < length \ esl \longrightarrow getspc\text{-}es \ (esl!i) = EvtSys \ es
            \vee (\exists e. \ getspc\text{-}es\ (esl!i) = EvtSeq\ e\ (EvtSys\ es) \land is\text{-}anonyevt\ e)
  proof -
    assume p\theta: esl \in cpts-es \Gamma
      and p1: length \ esl > 0
      and p2: getspc\text{-}es\ (esl!0) = EvtSys\ es
    show ?thesis
      proof -
      {
        \mathbf{fix}\ i
        assume a\theta: i < length \ esl
        then have getspc\text{-}es\ (esl!i) = EvtSys\ es\ \lor\ (\exists\ e.\ getspc\text{-}es\ (esl!i) = EvtSeq
e (EvtSys \ es) \land is-anonyevt e)
          proof(induct i)
            case \theta from p2 show ?case by simp
          next
            case (Suc \ j)
            assume b\theta: j < length \ esl \Longrightarrow
                        getspc-es (esl ! j) = EvtSys es
                       \vee (\exists e. \ getspc\text{-}es\ (esl\ !\ j) = EvtSeq\ e\ (EvtSys\ es) \land is\text{-}anonyevt
e)
              and b1: Suc j < length esl
            then have getspc\text{-}es\ (esl\ !\ j) = EvtSys\ es
                    \vee (\exists e. \ getspc\text{-}es \ (esl \ ! \ j) = EvtSeq \ e \ (EvtSys \ es) \land is\text{-}anonyevt \ e)
              by simp
            then show ?case
              proof
                assume c\theta: getspc-es (esl ! j) = EvtSys es
                with p0 b1 show ?thesis using evtsys-next-in-cpts-anony by auto
              next
```

```
assume c\theta: \exists e. \ getspc\text{-}es\ (esl\ !\ j) = EvtSeq\ e\ (EvtSys\ es) \land is\text{-}anonyevt
e
               with p0 b1 show ?thesis using evtseq-next-in-cpts-anony by blast
             qed
         qed
      then show ?thesis by auto
      qed
 \mathbf{qed}
lemma not-anonyevt-none-in-evtseq:
   [esl \in cpts-es \ \Gamma; \ esl = (EvtSeq \ e \ es, s1, x1) \# (es, s2, x2) \# xs \ ] \implies e \neq AnonyEvent
fin-com
 apply(rule cpts-es.cases)
  apply(simp) +
  apply (metis Suc-eq-plus1 add.commute add.right-neutral esys.size(3) le-add1
lessI not-le)
  apply(rule estran.cases)
  apply(simp) +
  apply (metis Suc-eq-plus1 add.commute add.right-neutral esys.size(3) le-add1
lessI not-le)
  apply(rule\ etran.cases)
 apply(simp) +
  prefer 2
 apply(simp) using ptran-not-none apply auto[1]
  done
lemma not-anonyevt-none-in-evtseq1:
    [esl \in cpts-es \ \Gamma; \ length \ esl > 1; \ getspc-es \ (esl!0) = EvtSeq \ e \ es;
      getspc\text{-}es\ (esl!1) = es\ \rrbracket \implies e \neq AnonyEvent\ fin\text{-}com
  using getspc-es-def not-anonyevt-none-in-evtseq
   by (metis (no-types, hide-lams) Cons-nth-drop-Suc drop-0 eq-fst-iff less-Suc-eq
less-Suc-eq-0-disj less-one)
lemma fst-esys-snd-eseq-exist-evtent:
   \llbracket esl \in cpts - es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \ \# \ xs \rrbracket
\Longrightarrow
          \exists t. \ \Gamma \vdash (EvtSys\ es,\ s,\ x)\ -es-t \rightarrow (EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)
 apply(rule cpts-es.cases)
 apply(simp) +
 apply blast
 by blast
lemma fst-esys-snd-eseq-exist-evtent2:
   \llbracket esl \in cpts - es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# \ (EvtSeq \ ev \ (EvtSys \ es), \ s1, x1) \ \# \ xs \rrbracket
         \exists e \ k. \ \Gamma \vdash (EvtSys \ es, \ s, \ x) \ -es - (EvtEnt \ (BasicEvent \ e)) \sharp k \rightarrow (EvtSeq \ ev
(EvtSys\ es),\ s1,x1)
 apply(rule cpts-es.cases)
```

```
apply(simp) +
 apply blast
 \mathbf{by}\ (metis\ (no\text{-}types,\ hide\text{-}lams)\ cmd\text{-}enable\text{-}impl\text{-}notesys2\ estran\text{-}impl\text{-}evtentorcmd
    evtent-is-basicevt fst-conv getspc-es-def nth-Cons-0 nth-Cons-Suc)
lemma fst-esys-snd-eseq-exist:
 \llbracket esl \in cpts \text{-} es \ \Gamma; \ length \ esl \geq 2 \ \land \ getspc \text{-} es \ (esl!0) = EvtSys \ es \ \land \ getspc \text{-} es \ (esl!1)
\neq EvtSys \ es
    \implies \exists s \ x \ ev \ s1 \ x1 \ xs. \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es), \ s1, x1)
\# xs
 proof -
   assume a0: length esl \geq 2 \land getspc\text{-}es (esl!0) = EvtSys es \land getspc\text{-}es (esl!1)
\neq EvtSys \ es
      and c1: esl \in cpts\text{-}es \Gamma
    from a0 have b0: qetspc\text{-}es\ (esl!0) = EvtSys\ es\ \land\ qetspc\text{-}es\ (esl!1) \neq EvtSys
es
      by (metis (no-types, lifting))
    from a0 have b1: 2 \le length \ esl \ by \ fastforce
   moreover from b0\ b1 have \exists s\ x.\ esl!0 = (EvtSys\ es,\ s,\ x) using getspc\text{-}es\text{-}def
      by (metis eq-fst-iff)
     moreover have \exists ev \ s1 \ x1. \ esl!1 = (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) using
getspc-es-def
      proof -
        from c1 a0 b0 have \exists ev. \ getspc\text{-}es \ (esl!1) = EvtSeq \ ev \ (EvtSys \ es)
           by (metis One-nat-def Suc-1 Suc-le-lessD evtsys-next-in-cpts)
        then show ?thesis using getspc-es-def by (metis fst-conv surj-pair)
      qed
    ultimately show ?thesis by (metis (no-types, hide-lams) One-nat-def Suc-1
      Suc-n-not-le-n diff-is-0-eq hd-Cons-tl hd-conv-nth length-tl
      list.size(3) not-numeral-le-zero nth-Cons-Suc order-trans)
  qed
lemma notevtent-cptses-isenvorcmd:
  \llbracket esl \in cpts - es \ \Gamma; \ length \ esl \geq 2; \ \neg \ (\exists \ e \ k. \ \Gamma \vdash esl \ ! \ 0 \ - es - EvtEnt \ e\sharp k \rightarrow esl \ ! \ 1) 
rbracket
    \implies \Gamma \vdash esl ! 0 - ese \rightarrow esl ! 1 \lor (\exists c \ k. \ \Gamma \vdash esl ! 0 - es - Cmd \ c \sharp k \rightarrow esl ! 1)
  apply(rule\ cpts-es.cases)
  apply simp+
  apply (simp add: esetran.intros)
  using estran-impl-evtentorcmd2
  by (metis One-nat-def nth-Cons-0 nth-Cons-Suc)
lemma only-envtran-to-basicevt:
  esl \in cpts-es \Gamma \Longrightarrow \forall i. Suc i < length \ esl \land (\exists \ e. \ qetspc-es (esl!i) = EvtSeq \ e
esys)
                       \land getspc-es (esl!Suc i) = EvtSeq (BasicEvent e) esys
```

```
\longrightarrow getspc\text{-}es\ (esl!i) = EvtSeq\ (BasicEvent\ e)\ esys
 proof -
   assume p\theta: esl \in cpts-es \Gamma
   then show ?thesis
     proof -
      \mathbf{fix} i
      assume a\theta: Suc i < length \ esl
        and a1: getspc-es (esl!Suc i) = EvtSeq (BasicEvent e) esys
        and a00: \exists e. \ getspc\text{-}es \ (esl!i) = EvtSeq \ e \ esys
      let ?esl1 = drop \ i \ esl
        from p0 a0 have a2: ?esl1 \in cpts-es \Gamma by (metis (no-types, hide-lams)
Suc\text{-}diff\text{-}1 Suc\text{-}lessD
            cpts-es-dropi diff-diff-cancel drop-0 length-drop length-greater-0-conv
            less-or-eq-imp-le\ list.size(3))
      from a0 a1 have qetspc-es (?esl1!1) = EvtSeq (BasicEvent e) esys by auto
        then obtain s1 and x1 where a3: ?esl1!1 = (EvtSeq (BasicEvent e)
esys, s1, x1)
        using getspc-es-def by (metis fst-conv old.prod.exhaust)
       from a2 a1 have getspc\text{-}es (?esl1!0) = EvtSeq (BasicEvent e) esys
        proof(induct ?esl1)
          case (CptsEsOne\ es'\ s'\ x')
          then show ?case by (metis One-nat-def Suc-eq-plus1-left Suc-lessD a0
             le-add-diff-inverse2 length-Cons length-drop less-imp-le
             list.size(3) not-less-iff-gr-or-eq)
        next
          case (CptsEsEnv es' t' x' xs' s' y')
          assume b\theta: (es', s', y') \# (es', t', x') \# xs' = drop i esl
           and b1: getspc-es (esl ! Suc i) = EvtSeq (BasicEvent e) esys
          then have es' = EvtSeq (BasicEvent e) esys
            by (metis One-nat-def a3 nth-Cons-0 nth-Cons-Suc prod.inject)
         with b0 show ?case using getspc-es-def by (metis fst-conv nth-Cons-0)
        next
          case (CptsEsComp es1's'x'et'es2't'y'xs')
          assume b\theta: \Gamma \vdash (es1', s', x') - es - et' \rightarrow (es2', t', y')
           and b1: (es1', s', x') \# (es2', t', y') \# xs' = drop i esl
            and b2: getspc-es (esl ! Suc i) = EvtSeq (BasicEvent e) esys
          then have b3: es2' = EvtSeq (BasicEvent e) esys
           by (metis One-nat-def Pair-inject a3 nth-Cons-0 nth-Cons-Suc)
          from a00 obtain e' where b4: getspc-es (esl ! i) = EvtSeq e' esys by
auto
          then have es1' = EvtSeq e' esys
          by (metis (no-types, lifting) CptsEsComp.hyps(4) fst-conv getspc-es-def
nth-via-drop)
          with b0 b3 have \neg (\exists e. es2' = EvtSeq (BasicEvent e) esys)
           using notrans-to-basicevt-insameesys [of \Gamma es1's'x'et'es2't'y'esys]
by auto
```

```
with b3 show ?case by blast
                    qed
            then show ?thesis by auto
            qed
   \mathbf{qed}
lemma incpts-es-impl-evnorcomptran:
     esl \in cpts-es \Gamma \Longrightarrow \forall i. \ Suc \ i < length \ esl \longrightarrow \Gamma \vdash esl \ ! \ i - ese \rightarrow \ esl \ ! \ Suc \ i \lor
(\exists et. \ \Gamma \vdash esl \ ! \ i - es - et \rightarrow esl \ ! \ Suc \ i)
    proof -
        assume p\theta: esl \in cpts-es \Gamma
        {
            \mathbf{fix} i
            assume a\theta: Suc i < length \ esl
            let ?esl1 = take 2 (drop i esl)
            from a\theta \ p\theta have take \ (Suc \ (Suc \ i) - i) \ (drop \ i \ esl) \in cpts\text{-}es \ \Gamma
                using cpts-es-seg[of esl <math>\Gamma i Suc (Suc i)] by simp
            then have ?esl1 \in cpts\text{-}es \Gamma by auto
            moreover
            from a\theta obtain esc1 and s1 and x1 where a1: esl! i = (esc1, s1, x1)
                using prod-cases3 by blast
            moreover
            from a0 obtain esc2 and s2 and s2 where a2: esl! Suc i = (esc2, s2, x2)
                using prod-cases3 by blast
            moreover
          from a0 have esl! i = ?esl1 ! 0 by (simp add: Cons-nth-drop-Suc Suc-lessD)
            moreover
               from a0 have esl! Suc i = ?esl1 ! 1 by (simp add: Cons-nth-drop-Suc
Suc-lessD)
            ultimately have (esc1, s1, x1) \# [(esc2, s2, x2)] \in cpts\text{-}es \Gamma
           by (metis Cons-nth-drop-Suc Suc-lessD a0 numeral-2-eq-2 take-0 take-Suc-Cons)
            then have \Gamma \vdash (esc1, s1, x1) - ese \rightarrow (esc2, s2, x2) \lor (\exists et. \Gamma \vdash (esc1, s1, s2, x2))
x1) -es-et \rightarrow (esc2, s2, x2))
                apply(rule cpts-es.cases)
                apply simp+
                apply (simp add: esetran.intros)
                by auto
           with a1 a2 have \Gamma \vdash esl ! i - ese \rightarrow esl ! Suc i \lor (\exists et. \Gamma \vdash esl ! i - es - et \rightarrow esl ! i - es - et \rightarrow esl ! i - es - et \rightarrow esl ! i - esl
esl! Suc i) by simp
        }
        then show ?thesis by auto
   qed
lemma incpts-es-eseq-not-evtent:
    \llbracket esl \in cpts - es \ \Gamma; \ Suc \ i < length \ esl; \ \exists \ e \ esys. \ getspc - es \ (esl!i) = EvtSeq \ e \ esys \ \land
is-anonyevt e
        \implies \neg(\exists e \ k. \ t = EvtEnt \ e \land \Gamma \vdash esl!i \ -es-t \sharp k \rightarrow esl!Suc \ i)
```

```
proof -
   assume p\theta: esl \in cpts-es \Gamma
     and a\theta: Suc i < length \ esl
     and a1: \exists e \ esys. \ getspc\text{-}es\ (esl!i) = EvtSeq\ e \ esys \land is\text{-}anonyevt\ e
   let ?esl1 = drop \ i \ esl
  from p0 a0 have a2: ?esl1 \in cpts-es \Gamma by (metis (no-types, hide-lams) Suc-diff-1
Suc-lessD
         cpts-es-dropi diff-diff-cancel drop-0 length-drop length-greater-0-conv
        less-or-eq-imp-le\ list.size(3))
   from a0 a1 obtain e and esys where a3: getspc-es (?esl1!0) = EvtSeq e esys
by auto
   then obtain s1 and x1 where a4: ?esl1!0 = (EvtSeq\ e\ esys,s1,x1)
     using getspc-es-def by (metis fst-conv old.prod.exhaust)
   from a2 a3 have \neg(\exists e \ k. \ t = EvtEnt \ e \land \Gamma \vdash ?esl1!0 \ -es-t \sharp k \rightarrow ?esl1!1)
     proof(induct ?esl1)
        case (CptsEsOne es' s' x')
        then show ?case by (metis One-nat-def Suc-eq-plus1-left Suc-lessD a0
            le-add-diff-inverse2 length-Cons length-drop less-imp-le
            list.size(3) not-less-iff-gr-or-eq)
       next
        case (CptsEsEnv es' t' x' xs' s' y')
        assume b\theta: (es', s', y') \# (es', t', x') \# xs' = ?esl1
          and b1: getspc-es (?esl1 ! 0) = EvtSeq e esys
        then have es' = EvtSeq \ e \ esys
          by (metis Pair-inject a4 nth-Cons-0)
        with b0 show ?case using getspc-es-def
       by (metis (mono-tags, lifting) a1 evtseq-no-evtent2 nth-Cons-0 nth-via-drop)
       next
        case (CptsEsComp es1's'x'et'es2't'y'xs')
        assume b\theta: \Gamma \vdash (es1', s', x') - es - et' \rightarrow (es2', t', y')
          and b1: (es1', s', x') \# (es2', t', y') \# xs' = drop i esl
          and b2: getspc-es (?esl1 ! 0) = EvtSeq e esys
        then have b3: es1' = EvtSeq \ e \ esys
           by (metis Pair-inject a₄ nth-Cons-0)
        with b0 b1 show ?case using qetspc-es-def
        by (metis (no-types, lifting) a1 evtseq-no-evtent2 nth-Cons-0 nth-via-drop)
       qed
   with a0 show ?thesis by (simp add: Cons-nth-drop-Suc Suc-lessD)
 qed
lemma evtsys-not-eq-in-tran-aux:\Gamma \vdash (P,s,x) - es - est \rightarrow (Q,t,y) \Longrightarrow P \neq Q
  apply(erule estran.cases)
 apply (simp add: evt-not-eq-in-tran-aux)
 apply (simp add: evt-not-eq-in-tran-aux)
 by (simp add: evtseq-ne-es)
```

```
lemma evtsys-not-eq-in-tran-aux1:\Gamma \vdash esc1 - es - est \rightarrow esc2 \Longrightarrow getspc-es \ esc1 \neq
getspc-es esc2
 proof -
   assume p\theta: \Gamma \vdash esc1 - es - est \rightarrow esc2
     obtain es1 and s1 and x1 and es2 and s2 and x2 where a0: esc1 =
(es1, s1, x1) \land esc2 = (es2, s2, x2)
     by (metis prod.collapse)
   with p0 have es1 \neq es2 using evtsys-not-eq-in-tran-aux by simp
    with a0 show ?thesis by (simp add:getspc-es-def)
  \mathbf{qed}
lemma evtsys-not-eq-in-tran [simp]: \neg \Gamma \vdash (P,s,x) - es - est \rightarrow (P,t,y)
  apply clarify
  apply(drule evtsys-not-eq-in-tran-aux)
 apply simp
  done
lemma evtsys-not-eq-in-tran2 [simp]: \neg(\exists est. \Gamma \vdash (P,s,x) - es - est \rightarrow (P,t,y)) by
lemma es-tran-not-etran2: \Gamma \vdash (P,s,x) - es - pt \rightarrow (Q,t,y) \implies \neg(\Gamma \vdash (P,s,x))
-ese \rightarrow (Q,t,y)
 by (metis esetran.cases evtsys-not-eq-in-tran-aux)
lemma es-tran-not-etran1: \Gamma \vdash esc1 - es - pt \rightarrow esc2 \Longrightarrow \neg(\Gamma \vdash esc1 - ese \rightarrow esc2)
  using esetran-eqconf1 evtsys-not-eq-in-tran-aux1 by blast
4.3.3
         Parallel event systems
lemma cpts-pes-not-empty [simp]:[] \notin cpts-pes \Gamma
apply(force elim:cpts-pes.cases)
done
lemma pesetran-eqconf: \Gamma \vdash (es1, s1, x1) - pese \rightarrow (es2, s2, x2) \Longrightarrow es1 = es2
  apply(rule\ pesetran.cases)
 apply(simp) +
 done
lemma pesetran-eqconf1: \Gamma \vdash esc1 - pese \rightarrow esc2 \Longrightarrow getspc \ esc1 = getspc \ esc2
  proof -
   assume a\theta: \Gamma \vdash esc1 - pese \rightarrow esc2
   then obtain es1 and s1 and x1 and es2 and s2 and x2 where a1: esc1 =
(es1, s1, x1) and a2: esc2 = (es2, s2, x2)
     by (meson prod-cases3)
   then have es1 = es2 using a pesetran-eqconf by fastforce
   with a1 show ?thesis by (simp add: a2 getspc-def)
  qed
lemma eqconf-pesetran1: es1 = es2 \Longrightarrow \Gamma \vdash (es1, s1, s1) - pese \to (es2, s2, s2)
```

```
by (simp add: pesetran.intros)
```

```
lemma eqconf-pesetran: getspc\ esc1 = getspc\ esc2 \Longrightarrow \Gamma \vdash esc1 - pese \rightarrow esc2
  proof -
    assume a\theta: getspc esc1 = getspc esc2
   obtain es1 and s1 and x1 where a1: esc1 = (es1, s1, x1) using prod-cases3
   obtain es2 and s2 and x2 where a2: esc2 = (es2, s2, x2) using prod-cases3
by blast
    with a0 a1 have es1 = es2 by (simp \ add: getspc-def)
     with a1 a2 have a3: \Gamma \vdash (es1, s1, x1) - pese \rightarrow (es2, s2, x2) by (simp
add:eqconf-pesetran1)
    from a3 a1 a2 show ?thesis by simp
  qed
lemma pestran-cpts-pes: \llbracket \Gamma \vdash C1 - pes-ct \rightarrow C2; C2\#xs \in cpts-pes \Gamma \rrbracket \implies
C1 \# C2 \# xs \in cpts\text{-}pes \Gamma
 proof -
    assume p\theta: \Gamma \vdash C1 - pes - ct \rightarrow C2
      and p1: C2\#xs \in cpts\text{-}pes \Gamma
   moreover
    obtain pes1 and s1 and x1 where C1 = (pes1, s1, x1)
      using prod-cases3 by blast
    moreover
    obtain pes2 and s2 and x2 where C2 = (pes2, s2, x2)
      using prod-cases3 by blast
    ultimately show ?thesis by (simp add: cpts-pes.CptsPesComp)
  qed
lemma cpts-pes-onemore: [el \in cpts-pes \ \Gamma; (\Gamma \vdash el ! (length \ el - 1) - pes-t \rightarrow
ec) \lor (\Gamma \vdash el ! (length \ el - 1) - pese \rightarrow ec)] \Longrightarrow
                           el @ [ec] \in cpts\text{-}pes \Gamma
  proof -
    assume p\theta: el \in cpts\text{-}pes \Gamma
      and p2: (\Gamma \vdash el! (length el - 1) - pes - t \rightarrow ec) \lor (\Gamma \vdash el! (length el - 1))
-pese \rightarrow ec)
    from p\theta have p1: el \neq []
      using cpts-pes.simps by blast
    have \forall el \ ec \ t. \ el \in cpts\text{-}pes \ \Gamma \land ((\Gamma \vdash el \ ! \ (length \ el - 1) \ -pes-t \rightarrow ec) \lor (\Gamma
\vdash el ! (length el - 1) - pese \rightarrow ec))
      \longrightarrow el @ [ec] \in cpts\text{-}pes \Gamma
      proof -
      {
        \mathbf{fix}\ el\ ec\ t
        assume a0: el \in cpts\text{-}pes \Gamma
          and a2: (\Gamma \vdash el ! (length el - 1) - pes - t \rightarrow ec) \lor (\Gamma \vdash el ! (length el - 1) - pes - t \rightarrow ec)
1) - pese \rightarrow ec)
        then have a1: length el > 0
```

```
using cpts-pes.simps by blast
               from a0 a1 a2 have el @ [ec] \in cpts\text{-}pes \Gamma
                   proof(induct el)
                        case (CptsPesOne\ e\ s\ x)
                        assume b0: (\Gamma \vdash [(e, s, x)] ! (length [(e, s, x)] - 1) - pes - t \rightarrow ec)
                                                   \vee \Gamma \vdash [(e, s, x)] ! (length [(e, s, x)] - 1) - pese \rightarrow ec
                      then have (\Gamma \vdash (e, s, x) - pes - t \rightarrow ec) \lor (\Gamma \vdash (e, s, x) - pes e \rightarrow ec) by
simp
                       then show ?case
                           proof
                                assume \Gamma \vdash (e, s, x) - pes - t \rightarrow ec
                                then show ?thesis by (metis append-Cons append-Nil
                                       cpts-pes.CptsPesComp cpts-pes.CptsPesOne surj-pair)
                           next
                                assume \Gamma \vdash (e, s, x) - pese \rightarrow ec
                                then show ?thesis
                                   by (metis append-Cons append-Nil cpts-pes.CptsPesEnv
                                            cpts-pes.CptsPesOne pesetranE surj-pair)
                           qed
                   next
                        case (CptsPesEnv \ e \ s1 \ x \ xs \ s2 \ y)
                        assume b\theta: (e, s1, x) \# xs \in cpts\text{-}pes \Gamma
                           and b1: 0 < length((e, s1, x) \# xs) \Longrightarrow
                                                           (\Gamma \vdash ((e, s1, x) \# xs) ! (length ((e, s1, x) \# xs) - 1)
-pes-t \rightarrow ec) \lor
                                              (\Gamma \vdash ((e, s1, x) \# xs) ! (length ((e, s1, x) \# xs) - 1) - pese \rightarrow
ec) \Longrightarrow
                                                   ((e, s1, x) \# xs) \otimes [ec] \in cpts\text{-}pes \Gamma
                           and b2: 0 < length ((e, s2, y) \# (e, s1, x) \# xs)
                          and b3: (\Gamma \vdash ((e, s2, y) \# (e, s1, x) \# xs) ! (length ((e, s2, y) \# (e, s2, y) \# 
s1, x) \# xs - 1 - pes - t \rightarrow ec  \lor
                                               s1, x) \# xs - 1 - pese \rightarrow ec
                       then show ?case
                           \mathbf{proof}(cases\ xs = [])
                               assume c\theta: xs = []
                           with b3 have (\Gamma \vdash (e, s1, x) - pes - t \rightarrow ec) \lor (\Gamma \vdash (e, s1, x) - pes e \rightarrow ec)
ec) by simp
                                with b1 c0 have ((e, s1, x) \# ss) \otimes [ec] \in cpts\text{-pes } \Gamma by simp
                               then show ?thesis by (simp add: cpts-pes.CptsPesEnv)
                           next
                                assume c\theta: xs \neq []
                               with b3 have (\Gamma \vdash last \ xs - pes - t \rightarrow ec) \lor (\Gamma \vdash last \ xs - pes e \rightarrow ec)
by (simp add: last-conv-nth)
                               with b1 c0 have ((e, s1, x) \# xs) @ [ec] \in cpts\text{-}pes \Gamma \text{ using } b3 \text{ by}
auto
                               then show ?thesis by (simp add: cpts-pes.CptsPesEnv)
                           qed
                   next
```

```
(\Gamma \vdash ((e2, t1, y1) \# xs1) ! (length ((e2, t1, y1) \# xs1) - 1)
-pes-t \rightarrow ec) \lor
                                               (\Gamma \vdash ((e2, t1, y1) \# xs1) ! (length ((e2, t1, y1) \# xs1) - 1)
-pese \rightarrow ec) \Longrightarrow
                                                ((e2, t1, y1) \# xs1) @ [ec] \in cpts-pes \Gamma
                           and b3: 0 < length ((e1, s1, x1) \# (e2, t1, y1) \# xs1)
                            and b4: (\Gamma \vdash ((e1, s1, x1) \# (e2, t1, y1) \# xs1) ! (length ((e1, s1, s1, s1)) ! (length ((e1, s1)) ! (len
x1) \# (e2, t1, y1) \# xs1) - 1) - pes - t \rightarrow ec) \lor
                                              \Gamma \vdash ((e1, s1, x1) \# (e2, t1, y1) \# xs1) ! (length ((e1, s1, x1)))
\# (e2, t1, y1) \# xs1) - 1) - pese \rightarrow ec
                        then show ?case
                           proof(cases xs1 = [])
                                assume c\theta: xs1 = []
                                 with b4 have (\Gamma \vdash (e2, t1, y1) - pes - t \rightarrow ec) \lor (\Gamma \vdash (e2, t1, y1)
-pese \rightarrow ec) by simp
                                with b2 c0 have ((e2, t1, y1) \# xs1) @ [ec] \in cpts\text{-}pes \Gamma by simp
                                with b0 show ?thesis using cpts-pes.CptsPesComp by fastforce
                           next
                                assume c\theta: xs1 \neq []
                                 with b4 have (\Gamma \vdash last \ xs1 \ -pes-t \rightarrow \ ec) \lor (\Gamma \vdash last \ xs1 \ -pese \rightarrow
ec) by (simp add: last-conv-nth)
                                with b2 c0 have ((e2, t1, y1) \# xs1) @ [ec] \in cpts-pes \Gamma using b4
by auto
                                then show ?thesis using b0 cpts-pes.CptsPesComp by fastforce
                           \mathbf{qed}
                   \mathbf{qed}
            then show ?thesis by blast
            qed
        then show el @ [ec] \in cpts\text{-}pes \Gamma \text{ using } p0 \ p1 \ p2 \text{ by } blast
    qed
lemma pes-not-eq-in-tran-aux:\Gamma \vdash (P,s,x) - pes-est \rightarrow (Q,t,y) \Longrightarrow P \neq Q
    apply(erule pestran.cases)
   by (metis Pair-inject evtsys-not-eq-in-tran fun-upd-same)
lemma pes-not-eq-in-tran [simp]: \neg \Gamma \vdash (P,s,x) - pes - est \rightarrow (P,t,y)
    apply clarify
    apply(drule\ pes-not-eq-in-tran-aux)
    apply simp
    done
lemma pes-tran-not-etran1: \Gamma \vdash pes1 - pes-t \rightarrow pes2 \Longrightarrow \neg(\Gamma \vdash pes1 - pese \rightarrow pes2)
    by (metis pes-not-eq-in-tran pesetranE surj-pair)
```

case (CptsPesComp e1 s1 x1 et e2 t1 y1 xs1)

and $b1: (e2, t1, y1) \# xs1 \in cpts\text{-}pes \Gamma$ and $b2: 0 < length ((e2, t1, y1) \# xs1) \Longrightarrow$

assume $b\theta$: $\Gamma \vdash (e1, s1, x1) - pes - et \rightarrow (e2, t1, y1)$

```
lemma pes-tran-not-etran2: \Gamma \vdash (P,s,x) - pes - pt \rightarrow (Q,t,y) \Longrightarrow \neg(\Gamma \vdash (P,s,x))
-pese \rightarrow (Q,t,y)
      by (simp add: pes-tran-not-etran1)
lemma incpts-pes-impl-evnorcomptran:
        esl \in cpts\text{-}pes \ \Gamma \Longrightarrow \forall i. \ Suc \ i < length \ esl \longrightarrow \Gamma \vdash esl \ ! \ i \ -pese \rightarrow esl \ ! \ Suc \ i \ \lor
(\exists et. \ \Gamma \vdash esl \ ! \ i - pes - et \rightarrow esl \ ! \ Suc \ i)
       proof -
              assume p\theta: esl \in cpts-pes \Gamma
              then show ?thesis
                    \mathbf{proof}(induct\ esl)
                            case (CptsPesOne) show ?case by simp
                    next
                            case (CptsPesEnv pes t x xs s y)
                            assume a\theta: (pes, t, x) \# xs \in cpts\text{-}pes \Gamma
                                   and a1: \forall i. Suc i < length ((pes, t, x) \# xs) \longrightarrow
                                                                            \Gamma \vdash ((pes, t, x) \# xs) ! i - pese \rightarrow ((pes, t, x) \# xs) ! Suc i \lor
                                                                               (\exists et. \ \Gamma \vdash ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) !
Suc \ i)
                            then show ?case
                                  proof -
                                   {
                                          \mathbf{fix} i
                                         assume b0: Suc i < length ((pes, s, y) \# (pes, t, x) \# xs)
                                       have \Gamma \vdash ((pes, s, y) \# (pes, t, x) \# xs) ! i - pese \rightarrow ((pes, s, y) \# (pes, t)) \# (pes, t) \# (p
t, x) \# xs)! Suc i \vee i
                                                                  (\exists et. \ \Gamma \vdash ((pes, s, y) \# (pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, s, y) \# (pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, s, y) \# (pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, s, y) \# (pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, s, y) \# (pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, s, y) \# (pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, s, y) \# (pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - pes - et \rightarrow ((pes, t, x) \# xs) ! i - 
y) \# (pes, t, x) \# xs) ! Suc i)
                                                \mathbf{proof}(cases\ i=\theta)
                                                        assume c\theta: i = \theta
                                                        then show ?thesis by (simp add: eqconf-pesetran1 nth-Cons')
                                                next
                                                        assume c\theta: i \neq \theta
                                                        then have i > \theta by auto
                                                        with a1 b0 show ?thesis by (simp add: length-Cons)
                                                qed
                                   then show ?thesis by auto
                                   qed
                     next
                            case (CptsPesComp pes1 s x ct pes2 t y xs)
                            assume a\theta: \Gamma \vdash (pes1, s, x) - pes - ct \rightarrow (pes2, t, y)
                                   and a1: (pes2, t, y) \# xs \in cpts\text{-}pes \Gamma
                                   and a2: \forall i. Suc \ i < length \ ((pes2, t, y) \# xs) \longrightarrow
                                                                          \Gamma \vdash ((pes2, t, y) \# xs) ! i - pese \rightarrow ((pes2, t, y) \# xs) ! Suc i \lor
                                                                            (\exists et. \ \Gamma \vdash ((pes2, t, y) \# xs) ! i - pes - et \rightarrow ((pes2, t, y) \# xs))
! Suc i)
                            then show ?case
```

```
proof -
                               \mathbf{fix} i
                               assume b0: Suc i < length ((pes1, s, x) \# (pes2, t, y) \# xs)
                               have \Gamma \vdash ((pes1, s, x) \# (pes2, t, y) \# xs) ! i - pese \rightarrow ((pes1, s, x) \# t)
(pes2, t, y) \# xs) ! Suc i \lor
                                                (\exists et. \ \Gamma \vdash ((pes1, s, x) \# (pes2, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs) ! i - pes - et \rightarrow ((pes1, t, y) \# xs
(s, x) \# (pes2, t, y) \# xs) ! Suc i)
                                    \mathbf{proof}(cases\ i=0)
                                          assume c\theta: i = \theta
                                          with a0 show ?thesis using nth-Cons-0 nth-Cons-Suc by auto
                                    next
                                          assume c\theta: i \neq \theta
                                          then have i > \theta by auto
                                          with a2 b0 show ?thesis using Suc-inject Suc-less-eq2 Suc-pred
                                                length-Cons nth-Cons-Suc by auto
                                    \mathbf{qed}
                          }
                          then show ?thesis by auto
                          qed
                \mathbf{qed}
     \mathbf{qed}
lemma cpts-pes-drop\theta: [el \in cpts-pes \ \Gamma; Suc \ \theta < length \ el] \implies drop \ (Suc \ \theta) \ el
\in cpts\text{-}pes \Gamma
      apply(rule cpts-pes.cases)
     apply(simp)+
     done
lemma cpts-pes-dropi: [el \in cpts-pes \ \Gamma; Suc \ i < length \ el] \implies drop \ (Suc \ i) \ el \in
 cpts-pes \Gamma
     proof -
           assume p\theta:el \in cpts-pes \Gamma and p1:Suc i < length el
           have \forall el \ i. \ el \in cpts\text{-}pes \ \Gamma \land Suc \ i < length \ el \longrightarrow drop \ (Suc \ i) \ el \in cpts\text{-}pes
Γ
               proof -
                {
                     \mathbf{fix}\ el\ i
                     have el \in cpts\text{-pes }\Gamma \land Suc \ i < length \ el \longrightarrow drop \ (Suc \ i) \ el \in cpts\text{-pes }\Gamma
                          \mathbf{proof}(induct\ i)
                                case \theta show ?case by (simp add: cpts-pes-drop\theta)
                          next
                                case (Suc\ j)
                                assume b0: el \in cpts\text{-}pes \ \Gamma \land Suc \ j < length \ el \longrightarrow drop \ (Suc \ j) \ el \in
cpts	ext{-}pes\ \Gamma
                               {f show} ?case
                                    proof
                                          assume c\theta: el \in cpts\text{-}pes \ \Gamma \land Suc \ (Suc \ j) < length \ el
                                          with b0 have c1: drop (Suc j) el \in cpts\text{-}pes \Gamma
```

```
by (simp add: c0 Suc-lessD)
                                  then show drop (Suc\ (Suc\ j))\ el \in cpts\text{-}pes\ \Gamma
                                      using c0 cpts-pes-drop0 by fastforce
                             qed
                     qed
             then show ?thesis by auto
         with p0 p1 show ?thesis by auto
    qed
lemma cpts-pes-take0: [el \in cpts-pes \ \Gamma; \ i < length \ el; \ el1 = take \ (Suc \ i) \ el; \ j < length \ el \ el2 = take \ (Suc \ i) \ el \ el2 = take \ (Suc \ i) \ el
length el1
                                                   \implies drop\ (\mathit{length}\ \mathit{el1}\ -\ \mathit{Suc}\ \mathit{j})\ \mathit{el1}\ \in\ \mathit{cpts-pes}\ \Gamma
    proof -
        assume p\theta: el \in cpts\text{-}pes \Gamma
            and p1: i < length el
            and p2: el1 = take (Suc i) el
            and p3: j < length el1
        have \forall i \ j. \ el \in cpts\text{-pes} \ \Gamma \land i < length \ el \land el1 = take \ (Suc \ i) \ el \land j < length
el1
                      \longrightarrow drop \ (length \ el1 \ - \ Suc \ j) \ el1 \in cpts-pes \ \Gamma
             proof -
             {
                 \mathbf{fix} \ i \ j
                 assume a\theta: el \in cpts\text{-}pes \Gamma
                     and a1: i < length el
                     and a2: el1 = take (Suc i) el
                     and a3: j < length el1
                 then have drop (length el1 - Suc j) el1 \in cpts-pes \Gamma
                     \mathbf{proof}(induct\ j)
                          case \theta
                          have drop \ (length \ el1 - Suc \ 0) \ el1 = [el \ ! \ i]
                             by (simp add: a1 a2 take-Suc-conv-app-nth)
                         then show ?case by (metis cpts-pes.CptsPesOne old.prod.exhaust)
                         case (Suc jj)
                         assume b0: el \in cpts\text{-}pes \ \Gamma \Longrightarrow i < length \ el \Longrightarrow el1 = take \ (Suc \ i) \ el
                                             \implies jj < length \ el1 \implies drop \ (length \ el1 - Suc \ jj) \ el1 \in cpts-pes
Γ
                             and b1: el \in cpts\text{-}pes \Gamma
                             and b2: i < length el
                             and b3: el1 = take (Suc i) el
                             and b4: Suc jj < length el1
                          then have b5: drop (length el1 - Suc jj) el1 \in cpts-pes \Gamma
                             using Suc-lessD by blast
                         let ?el2 = drop (Suc i) el
                          from a2 have b6: el1 @ ?el2 = el by simp
                         let ?el1sht = drop (length el1 - Suc jj) el1
```

```
let ?el1lng = drop (length el1 - Suc (Suc jj)) el1
          let ?elsht = drop (length el1 - Suc jj) el
          let ?ellng = drop (length el1 - Suc (Suc jj)) el
          from b6 have a7: ?el1sht @ ?el2 = ?elsht
           by (metis diff-is-0-eq diff-le-self drop-0 drop-append)
          from b6 have a8: ?el1lng @ ?el2 = ?ellng
              by (metis (no-types, lifting) a7 append-eq-append-conv diff-is-0-eq'
diff-le-self drop-append)
          have a9: ?ellng = (el ! (length el1 - Suc (Suc jj))) # ?elsht
          by (metis (no-types, lifting) Cons-nth-drop-Suc Suc-diff-Suc Suc-leI a8
               append-is-Nil-conv b4 diff-diff-cancel drop-all length-drop
               list.size(3) not-less old.nat.distinct(2))
          from b1 b4 have a10: ?elsht \in cpts\text{-}pes \Gamma
           by (metis Suc-diff-Suc a7 append-is-Nil-conv b5 cpts-pes-dropi drop-all
not-less)
          from b1 b4 have a11: ?ellnq \in cpts-pes \Gamma
           by (metis (no-types, lifting) Suc-diff-Suc a9 cpts-pes-dropi diff-is-0-eq
               drop-0 \ drop-all \ leI \ list.simps(3))
          have a12: ?el1lng = (el ! (length el1 - Suc (Suc jj))) # ?el1sht
              by (metis (no-types, lifting) Cons-nth-drop-Suc Suc-diff-Suc b4 b6
diff-less
                    gr-implies-not0 length-0-conv length-greater-0-conv nth-append
zero-less-Suc)
          from all have ?elllng \in cpts\text{-}pes \Gamma
           proof(induct ?ellng)
             case CptsPesOne show ?case
               using CptsPesOne.hyps a7 a9 by auto
            next
             case (CptsPesEnv es1 t1 x1 xs1 s1 y1)
             assume c\theta: (es1, t1, x1) \# xs1 \in cpts\text{-}pes \Gamma
              and c1: (es1, t1, x1) \# xs1 = drop (length el1 - Suc (Suc jj)) el
                        drop \ (length \ el1 - Suc \ (Suc \ jj)) \ el1 \in cpts-pes \ \Gamma
              and c2: (es1, s1, y1) \# (es1, t1, x1) \# xs1 = drop (length el1 -
Suc\ (Suc\ jj))\ el
             from c\theta have (es1, s1, y1) \# (es1, t1, x1) \# xs1 \in cpts\text{-}pes \Gamma
               by (simp add: a11 c2)
               have c3: ?el1sht! 0 = (es1, t1, x1) by (metis (no-types, lifting))
Suc-leI Suc-lessD a7
                         a9 append-eq-Cons-conv b4 c2 diff-diff-cancel length-drop
list.inject
                    list.size(3) nth-Cons-0 old.nat.distinct(2))
             then have c4: \exists el1sht'. ?el1sht = (es1, t1, x1) \# el1sht' by (metis
Cons-nth-drop-Suc b4
                 diff-diff-cancel drop-0 length-drop less-or-eq-imp-le zero-less-Suc)
            have c5: ?el1lng = (es1, s1, y1) # ?el1sht using a12 a9 c2 by auto
             with b5 c4 show ?case using cpts-pes.CptsPesEnv by fastforce
           next
```

```
case (CptsPesComp es1 s1 x1 et es2 t1 y1 xs1)
              assume c\theta: \Gamma \vdash (es1, s1, x1) - pes - et \rightarrow (es2, t1, y1)
                and c1: (es2, t1, y1) \# xs1 \in cpts\text{-}pes \Gamma
               and c2: (es2, t1, y1) \# xs1 = drop (length el1 - Suc (Suc jj)) el
                         \implies drop \ (length \ el1 - Suc \ (Suc \ jj)) \ el1 \in cpts-pes \ \Gamma
               and c3: (es1, s1, s1) \# (es2, t1, y1) \# ss1 = drop (length el1 -
Suc\ (Suc\ jj))\ el
                have c4: ?el1sht! \theta = (es2, t1, y1) by (metis (no-types, lifting)
Suc-leI Suc-lessD a7
                           a9 append-eq-Cons-conv b4 c3 diff-diff-cancel length-drop
list.inject
                     list.size(3) nth-Cons-0 old.nat.distinct(2))
              then have c5: \exists el1sht'. ?el1sht = (es2, t1, y1) \# el1sht' by (metis
Cons-nth-drop-Suc b4
                  diff-diff-cancel drop-0 length-drop less-or-eq-imp-le zero-less-Suc)
             have c6: ?el1lnq = (es1, s1, x1) # ?el1sht using a12 a9 c3 by auto
             with b5 c5 show ?case using c0 cpts-pes.CptsPesComp by fastforce
            qed
           then show ?case by simp
         qed
     then show ?thesis by auto
   then show drop (length el1 - Suc j) el1 \in cpts-pes \Gamma
     using p0 p1 p2 p3 by blast
 qed
lemma cpts-pes-take: [el \in cpts-pes \ \Gamma; \ i < length \ el] \implies take \ (Suc \ i) \ el \in cpts-pes
 using cpts-pes-take0 gr-implies-not0 by fastforce
lemma cpts-pes-seg: [el \in cpts-pes \ \Gamma; \ m \leq length \ el; \ n \leq length \ el; \ m < n]
                  \implies take (n - m) (drop \ m \ el) \in cpts-pes \ \Gamma
 proof -
   assume p\theta: el \in cpts\text{-}pes \Gamma
     and p1: m \leq length \ el
     and p2: n \leq length el
     and p3: m < n
   then have drop \ m \ el \in cpts\text{-}pes \ \Gamma
       using cpts-pes-dropi by (metis (no-types, lifting) drop-0 le-0-eq le-SucE
less-le-trans zero-induct)
   then show ?thesis using cpts-pes-take
   by (smt Suc-diff-Suc diff-diff-cancel diff-less-Suc diff-right-commute length-drop
less-le-trans p2 p3)
 ged
lemma cpts-pes-seg2: [el \in cpts-pes \Gamma; m \leq length el; n \leq length el; take (n - length)
```

```
m) (drop\ m\ el) \neq []]
\implies take\ (n-m)\ (drop\ m\ el) \in cpts\text{-}pes\ \Gamma

proof —
assume p0\colon el \in cpts\text{-}pes\ \Gamma
and p1\colon m \leq length\ el
and p2\colon n \leq length\ el
and p3\colon take\ (n-m)\ (drop\ m\ el) \neq []
from p3\ have\ m < n\ by\ simp
then show ?thesis using cpts\text{-}pes\text{-}seg\ using}\ p0\ p1\ p2\ by\ blast
qed
```

4.4 Compositionality of the Semantics

4.4.1 Definition of the conjoin operator

```
definition same-length :: ('l,'k,'s,'prog) pesconfs \Rightarrow ('k \Rightarrow ('l,'k,'s,'prog) esconfs) \Rightarrow bool where same-length c cs \equiv \forall k. length (cs \ k) = length \ c

definition same-state :: ('l,'k,'s,'prog) pesconfs \Rightarrow ('k \Rightarrow ('l,'k,'s,'prog) esconfs) \Rightarrow bool where same-state c cs \equiv \forall k \ j. j < length \ c \longrightarrow gets \ (c!j) = gets-es \ ((cs \ k)!j) \land gets \ (c!j) = gets-es \ ((cs \ k)!j)
```

definition same-spec :: ('l,'k,'s,'prog) pesconfs \Rightarrow $('k \Rightarrow ('l,'k,'s,'prog)$ esconfs) \Rightarrow bool where same-spec c $cs \equiv \forall k \ j. \ j < length \ c \longrightarrow (getspc \ (c!j)) \ k = getspc-es \ ((cs \ k) \ ! \ j)$

definition compat-tran :: $'Env \Rightarrow ('l, 'k, 's, 'prog) \ pesconfs \Rightarrow ('k \Rightarrow ('l, 'k, 's, 'prog) \ esconfs) \Rightarrow bool \ \mathbf{where}$

```
 \begin{array}{c} compat\text{-}tran \ \Gamma \ c \ cs \equiv \forall j. \ Suc \ j < length \ c \longrightarrow \\ & ((\exists \ t \ k. \ (\Gamma \vdash c!j - pes - (t\sharp k) \rightarrow \ c!Suc \ j)) \ \land \\ & (\forall k \ t. \ (\Gamma \vdash c!j - pes - (t\sharp k) \rightarrow \ c!Suc \ j) \longrightarrow (\Gamma \vdash \ cs \ k!j - es - (t\sharp k) \rightarrow \ cs \ k! \ Suc \ j) \ \land \\ & (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash \ cs \ k'!j - es e \rightarrow \ cs \ k'! \ Suc \ j)))) \\ & \vee \\ & ((\Gamma \vdash (c!j) - pes e \rightarrow \ (c!Suc \ j)) \ \land \ (\forall \ k. \ (\Gamma \vdash ((cs \ k)!j) - es e \rightarrow \ ((cs \ k)! \ Suc \ j)))) \end{array}
```

definition conjoin :: $'Env \Rightarrow ('l,'k,'s,'prog) \ pesconfs \Rightarrow ('k \Rightarrow ('l,'k,'s,'prog) \ esconfs) \Rightarrow bool (-- \phi - [65,65] 64)$ **where**

 Γ $c \propto cs \equiv (same\text{-length } c \ cs) \land (same\text{-state } c \ cs) \land (same\text{-spec } c \ cs) \land (compat\text{-tran } \Gamma \ c \ cs)$

4.4.2 Lemmas of conjoin

```
lemma acts-in-conjoin-cpts: Γ c ∝ cs ⇒ ∀ i. Suc i < length (cs k) → Γ ⊢ ((cs k)!i) −ese→ ((cs k)! Suc i) 
 ∨ (∃ e. Γ ⊢ ((cs k)!i) −es−(EvtEnt e‡k)→ ((cs k)! Suc i)) 
 ∨ (∃ c. Γ ⊢ ((cs k)!i) −es−(Cmd c‡k)→ ((cs k)! Suc i))
```

```
proof -
     assume p\theta: \Gamma c \propto cs
        \mathbf{fix} i
        assume a\theta: Suc i < length (cs k)
           from p0 have a1: length c = length (cs k) by (simp add:conjoin-def
same-length-def)
        from p0 have compat-tran \Gamma c cs by (simp add:conjoin-def)
        with a0 a1 have (\exists t \ k. \ (\Gamma \vdash c!i - pes - (t\sharp k) \rightarrow c!Suc \ i) \land
                                          (\forall k \ t. \ (\Gamma \vdash c!i \ -pes-(t\sharp k) \rightarrow \ c!Suc \ i) \ \longrightarrow \ (\Gamma \vdash \ cs \ k!i
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ i) \ \land
                                             (\forall\,k'.\ k'\neq\,k\,\longrightarrow\,(\Gamma\vdash\,cs\;k'!i\;-ese\rightarrow\;cs\;k'!\;Suc\;i))))
                                  ((\Gamma \vdash (c!i) - pese \rightarrow (c!Suc\ i)) \land (\forall k.\ (\Gamma \vdash ((cs\ k)!i) - ese \rightarrow (c!Suc\ i))) \land (\forall k.\ (\Gamma \vdash ((cs\ k)!i) - ese \rightarrow (c!Suc\ i)))))
((cs\ k)!\ Suc\ i)))
          by (simp add: compat-tran-def)
        then have \Gamma \vdash ((cs \ k)!i) - ese \rightarrow ((cs \ k)! \ Suc \ i)
                  \vee (\exists e. \Gamma \vdash ((cs \ k)!i) - es - (EvtEnt \ e\sharp k) \rightarrow ((cs \ k)! \ Suc \ i))
                   \vee (\exists c. \Gamma \vdash ((cs \ k)!i) - es - (Cmd \ c\sharp k) \rightarrow ((cs \ k)! \ Suc \ i))
             assume b\theta: \exists t \ k. \ (\Gamma \vdash c! i - pes - (t \sharp k) \rightarrow c! Suc \ i) \land 
                                          (\forall k \ t. \ (\Gamma \vdash c!i \ -pes-(t\sharp k) \rightarrow \ c!Suc \ i) \ \longrightarrow \ (\Gamma \vdash \ cs \ k!i
-es-(t\sharp k)\to cs \ k! \ Suc \ i) \ \land
                                              (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! i - ese \rightarrow cs \ k'! \ Suc \ i)))
             then obtain t and k1 where b1: (\Gamma \vdash c!i - pes - (t\sharp k1) \rightarrow c!Suc\ i) \land
                                          (\forall k \ t. \ (\Gamma \vdash c!i \ -pes-(t\sharp k) \rightarrow c!Suc \ i) \longrightarrow (\Gamma \vdash cs \ k!i)
-es-(t\sharp k)\to cs \ k! \ Suc \ i) \ \land
                                            (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! i - ese \rightarrow cs \ k'! \ Suc \ i))) by
auto
             then show ?thesis
                \mathbf{proof}(\mathit{cases}\ k=k1)
                  assume c\theta: k = k1
                   with b1 show ?thesis by (meson estran-impl-evtentorcmd2')
                  assume c\theta: k \neq k1
                   with b1 show ?thesis by auto
                qed
             assume b\theta: (\Gamma \vdash (c!i) - pese \rightarrow (c!Suc\ i)) \land (\forall k. (\Gamma \vdash ((cs\ k)!i) - ese \rightarrow (c!Suc\ i))) \land (\forall k. (\Gamma \vdash ((cs\ k)!i) - ese \rightarrow (c!Suc\ i)))
((cs\ k)!\ Suc\ i))
             then show ?thesis by simp
           qed
     then show ?thesis by simp
  qed
lemma entevt-in-conjoin-cpts:
   \llbracket \Gamma \ c \propto cs; \ Suc \ i < length \ (cs \ k); \ getspc-es \ ((cs \ k)!i) = EvtSys \ es;
     getspc\text{-}es\ ((cs\ k)!Suc\ i) \neq EvtSys\ es\ []
```

```
\implies (\exists e. \ \Gamma \vdash ((cs \ k)!i) - es - (EvtEnt \ e\sharp k) \rightarrow ((cs \ k)! \ Suc \ i))
  proof -
    assume p\theta: \Gamma c \propto cs
      and p1: Suc \ i < length \ (cs \ k)
      and p2: getspc\text{-}es\ ((cs\ k)!i) = EvtSys\ es
      and p3: getspc\text{-}es ((cs k)!Suc i) \neq EvtSys es
    then have \Gamma \vdash ((cs \ k)!i) - ese \rightarrow ((cs \ k)! \ Suc \ i)
         \vee (\exists e. \Gamma \vdash ((cs \ k)!i) - es - (EvtEnt \ e\sharp k) \rightarrow ((cs \ k)! \ Suc \ i))
         \vee (\exists c. \Gamma \vdash ((cs \ k)!i) - es - (Cmd \ c\sharp k) \rightarrow ((cs \ k)! \ Suc \ i))
      using acts-in-conjoin-cpts by fastforce
    then show ?thesis
      proof
         assume \Gamma \vdash ((cs \ k)!i) - ese \rightarrow ((cs \ k)! \ Suc \ i)
         with p2 p3 show ?thesis by (simp add: esetran-eqconf1)
      next
         assume (\exists e. \Gamma \vdash cs \ k \ ! \ i - es - EvtEnt \ e \sharp k \rightarrow cs \ k \ ! \ Suc \ i)
                \vee (\exists c. \Gamma \vdash cs \ k ! \ i - es - Cmd \ c \sharp k \rightarrow cs \ k ! \ Suc \ i)
         then show ?thesis
           proof
             assume \exists e. \Gamma \vdash cs \ k \ ! \ i - es - EvtEnt \ e \sharp k \rightarrow \ cs \ k \ ! \ Suc \ i
             then show ?thesis by simp
           \mathbf{next}
             assume \exists c. \Gamma \vdash cs \ k \ ! \ i - es - Cmd \ c \sharp k \rightarrow cs \ k \ ! \ Suc \ i
             with p2 p3 show ?thesis
               by (meson cmd-enable-impl-anonyevt2 esys-not-eseq)
           qed
      qed
  qed
lemma notentevt-in-conjoin-cpts:
  \llbracket \Gamma \ c \propto cs; \ Suc \ i < length \ (cs \ k); \ \neg (getspc-es \ ((cs \ k)!i) = EvtSys \ es \land getspc-es
((cs \ k)!Suc \ i) \neq EvtSys \ es);
    \forall i < length (cs k). getspc-es ((cs k) ! i) = EvtSys es
                         \vee (\exists e. is\text{-}anonyevt \ e \land getspc\text{-}es\ ((cs\ k)\ !\ i) = EvtSeq\ e\ (EvtSys)
es))]
    \implies \neg(\exists e. \ \Gamma \vdash ((cs \ k)!i) - es - (EvtEnt \ e \sharp k) \rightarrow ((cs \ k)! \ Suc \ i))
  proof -
    assume p\theta: \Gamma c \propto cs
      and p1: Suc \ i < length \ (cs \ k)
        and p2: \neg(getspc\text{-}es\ ((cs\ k)!i) = EvtSys\ es\ \land\ getspc\text{-}es\ ((cs\ k)!Suc\ i) \neq
EvtSys \ es)
      and p3: \forall i < length (cs k). getspc-es ((cs k) ! i) = EvtSys es
                       \vee (\exists e. is\text{-}anonyevt \ e \land getspc\text{-}es \ ((cs \ k) \ ! \ i) = EvtSeq \ e \ (EvtSys)
es))
     from p2 have getspc\text{-}es ((cs \ k)!i) \neq EvtSys es \lor getspc\text{-}es ((cs \ k)!Suc \ i) =
EvtSys es by simp
     with p3 have (\exists e. is-anonyevt e \land getspc-es ((cs k) ! i) = EvtSeq e (EvtSys)
es))
                    \vee getspc-es ((cs \ k)!Suc \ i) = EvtSys \ es
```

```
using Suc-lessD p1 by blast
   then show ?thesis
     proof
       assume \exists e. is-anonyevt e \land getspc-es ((cs \ k) \ ! \ i) = EvtSeq \ e \ (EvtSys \ es)
       then obtain e1 where is-anonyevt e1 \land getspc-es ((cs \ k) \ ! \ i) = EvtSeq e1
(EvtSys es) by auto
       then show ?thesis using evtent-is-basicevt-inevtseq2 by fastforce
     next
       assume getspc\text{-}es\ ((cs\ k)!Suc\ i) = EvtSys\ es
     then show ?thesis by (metis Suc-lessD evtseq-no-evtent2 evtsys-not-eq-in-tran-aux1
p1 p3
     qed
 qed
lemma take-n-conjoin: \Gamma c \propto cs; n \leq length c; c1 = take n c; cs1 = (\lambda k. take
n (cs k))
    \implies \Gamma \ c1 \propto cs1
 proof -
   assume p\theta: \Gamma c \propto cs
     and p1: n \leq length c
     and p2: c1 = take \ n \ c
     and p3: cs1 = (\lambda k. take \ n \ (cs \ k))
     have a0: same-length c1 cs1 by (metis conjoin-def length-take p0 p2 p3
same-length-def)
   then have a1: \forall k. length (cs1 k) = length c1 by (simp add:same-length-def)
   have same-state c1 cs1
     proof -
       \mathbf{fix} \ k \ j
       assume b\theta: j < length c1
       from p1 p3 a1 have b1: cs1 k = take n (cs k) by simp
       from p\theta have b2[rule\text{-}format]: \forall k j. j < length c
             \longrightarrow gets \ (c!j) = gets\text{-}es \ ((cs \ k)!j) \land getx \ (c!j) = getx\text{-}es \ ((cs \ k)!j)
         by (simp add:conjoin-def same-state-def)
      from p2\ b1\ b0 have qets\ (c!\ j) = qets\ (c1!\ j) \land qets\ es\ ((cs\ k)!\ j) = qets\ es
((cs1\ k)!j)
         \wedge \ getx \ (c!j) = getx \ (c1!j)
         by (simp add: nth-append)
        with p1 p2 b1 b2[of j k] b0 have gets (c1!j) = gets-es ((cs1 k)!j) \land getx
(c1!j) = getx-es ((cs1 k)!j)
         by simp
     }
     then show ?thesis by (simp add:same-state-def)
     qed
   moreover
   have same-spec c1 cs1
     proof -
     {
```

```
\mathbf{fix} \ k \ j
         assume b\theta: j < length c1
         from p1 p3 a1 have b1: cs1 k = take n (cs k) by simp
         from p\theta have b2[rule-format]: \forall k j. j < length c
                 \longrightarrow (getspc \ (c!j)) \ k = getspc-es \ ((cs \ k) \ ! \ j)
            by (simp add:conjoin-def same-spec-def)
         from p2\ b1\ b0 have getspc\ (c1!j) = getspc\ (c!j)
            \land getspc\text{-}es ((cs \ k) \ ! \ j) = getspc\text{-}es ((cs1 \ k) \ ! \ j)
            by (simp add: nth-append)
         then have (getspc\ (c1!j))\ k = getspc\text{-}es\ ((cs1\ k)\ !\ j)
            using b\theta b2 p2 by auto
       then show ?thesis by (simp add:same-spec-def)
       qed
    moreover
    have compat-tran \Gamma c1 cs1
       proof -
       {
         \mathbf{fix} \ j
         assume b\theta: Suc j < length c1
         with p0 p2 have ((\exists t \ k. \ (\Gamma \vdash c!j - pes - (t\sharp k) \rightarrow c!Suc \ j)) \land
                                     (\forall k \ t. \ (\Gamma \vdash c!j \ -pes-(t\sharp k) \rightarrow \ c!Suc \ j) \ \longrightarrow \ (\Gamma \vdash \ cs \ k!j)
-es-(t\sharp k)\to cs \ k! \ Suc \ j) \ \land
                                       (\forall k'.\ k' \neq k \longrightarrow (\Gamma \vdash cs\ k'!j - ese \rightarrow cs\ k'!\ Suc\ j))))
                             ((\Gamma \vdash (c!j) - pese \rightarrow (c!Suc\ j)) \land (\forall k.\ (\Gamma \vdash ((cs\ k)!j) - ese \rightarrow (c!Suc\ j))))
((cs \ k)! \ Suc \ j)))
            by (simp add:conjoin-def compat-tran-def)
          moreover
         from p2\ b0 have c!j = c1!j by simp
         moreover
         from p2\ b0 have c!Suc\ j = c1!Suc\ j by simp
         moreover
         from p1 p2 p3 a1 b0 have \forall k. cs1 k!j = cs k!j
            by (simp \ add: Suc\text{-}lessD)
         moreover
         from p1 p2 p3 a1 b0 have \forall k. \ cs1 \ k! Suc \ j = cs \ k! Suc \ j
            by (simp \ add: Suc\text{-}lessD)
          ultimately
         have ((\exists t \ k. \ (\Gamma \vdash c1!j - pes - (t\sharp k) \rightarrow c1!Suc \ j)) \land 
                               (\forall k \ t. \ (\Gamma \vdash c1!j \ -pes-(t\sharp k) \rightarrow c1!Suc \ j) \ \longrightarrow \ (\Gamma \vdash cs1 \ k!j
-es-(t\sharp k)\rightarrow cs1 \ k! \ Suc \ j) \ \land
                                 (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs1 \ k'! j - ese \rightarrow cs1 \ k'! \ Suc \ j))))
                        ((\Gamma \vdash (c1!j) - pese \rightarrow (c1!Suc\ j)) \land (\forall k.\ (\Gamma \vdash ((cs1\ k)!j) - ese \rightarrow (csl))) \land (\forall k.\ (\Gamma \vdash (csl))) \land (\forall k.\ (\Gamma \vdash (csl))) \land (\forall k.\ (\Gamma \vdash (csl))) \land (csl))
((cs1 \ k)! \ Suc \ j))) by simp
       then show ?thesis by (simp add:compat-tran-def)
       qed
```

```
ultimately show ?thesis by (simp add:conjoin-def a0)
 qed
n (cs k)
   \Longrightarrow \Gamma \ c1 \propto cs1
 proof -
   assume p\theta: \Gamma c \propto cs
    and p1: n \leq length c
    and p2: c1 = drop \ n \ c
    and p3: cs1 = (\lambda k. drop \ n \ (cs \ k))
    have a0: same-length c1 cs1 by (metis conjoin-def length-drop p0 p2 p3
same-length-def)
   then have a1: \forall k. length (cs1 k) = length c1 by (simp add:same-length-def)
   have same-state c1 cs1
    proof -
      \mathbf{fix} \ k \ j
      assume b\theta: j < length c1
      from p1 p3 a1 have b1: cs1 k = drop n (cs k) by simp
      from p\theta have b2[rule\text{-}format]: \forall k j. j < length c
            \longrightarrow gets \ (c!j) = gets - es \ ((cs \ k)!j) \land getx \ (c!j) = getx - es \ ((cs \ k)!j)
        by (simp add:conjoin-def same-state-def)
      from p2\ b1\ b0 have gets\ (c\ !\ (n+j)) = gets\ (c1\ !\ j) \land gets\ es\ ((cs\ k)!(n+j))
+ j)) = gets-es ((cs1 k)!j)
        \wedge \ getx \ (c!(n+j)) = getx \ (c!(j))
        proof -
          have f1: n + j \leq length c
           using b0 p2 by auto
          then have n + j \leq length (cs k)
           by (metis (no-types) conjoin-def p0 same-length-def)
          then show ?thesis
           using f1 by (simp add: b1 p2)
        qed
       with p1 p2 b1 b2 [of n + j k] b0 have gets (c1!j) = gets-es ((cs1 k)!j) \land
getx (c1!j) = getx-es ((cs1 k)!j)
           by (smt a1 add-diff-cancel-left' drop-eq-Nil length-drop less-diff-conv2
list.size(3)
        nat-le-linear nat-neq-iff not-less-zero nth-drop order.asym semiring-normalization-rules (24))
     then show ?thesis by (simp add:same-state-def)
    qed
   moreover
   have same-spec c1 cs1
    proof -
     {
```

```
\mathbf{fix} \ k \ j
                     assume b\theta: j < length c1
                     from p1 p3 a1 have b1: cs1 k = drop n (cs k) by simp
                     from p\theta have b2[rule-format]: \forall k j. j < length c
                                      \longrightarrow (getspc \ (c!j)) \ k = getspc\text{-}es \ ((cs \ k) \ ! \ j)
                           by (simp add:conjoin-def same-spec-def)
                     from p2\ b1\ b0 have getspc\ (c1!j) = getspc\ (c!(n+j))
                           \land \ getspc\text{-}es\ ((cs\ k)\ !\ (n+j)) = getspc\text{-}es\ ((cs1\ k)\ !\ j)
                           proof -
                                have f1: n + j \leq length c
                                     using b\theta p2 by auto
                                then have n + j \leq length (cs k)
                                     by (metis (no-types) conjoin-def p0 same-length-def)
                                then show ?thesis
                                     using f1 by (simp add: b1 p2)
                     then have (getspc\ (c1!j))\ k = getspc\text{-}es\ ((cs1\ k)\ !\ j)
                           using b\theta b2 p2 by auto
                then show ?thesis by (simp add:same-spec-def)
                qed
          moreover
          have compat-tran \Gamma c1 cs1
                proof -
                {
                     \mathbf{fix} \ j
                     assume b\theta: Suc j < length c1
                     with p0 p2 have ((\exists t \ k. \ (\Gamma \vdash c!(n+j) - pes - (t \sharp k) \rightarrow c!Suc \ (n+j))) \land
                                                                  (\forall k \ t. \ (\Gamma \vdash c!(n+j) - pes - (t\sharp k) \rightarrow c!Suc \ (n+j)) \longrightarrow (\Gamma \vdash cs)
k!(n+j) - es - (t \sharp k) \rightarrow cs \ k! \ Suc \ (n+j)) \land
                                                                                            (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'!(n+j) - ese \rightarrow cs \ k'! \ Suc
(n+j)))))
                                                                          ((\Gamma \vdash (c!(n+j)) - pese \rightarrow (c!Suc\ (n+j))) \land (\forall k.\ (\Gamma \vdash ((cs))))) \land (\forall k.) \land (f) \vdash (f) \land 
k)!(n+j)) - ese \rightarrow ((cs \ k)! \ Suc \ (n+j))))
                           by (simp add:conjoin-def compat-tran-def)
                     moreover
                     from p2\ b0 have c!(n+j) = c1!j by simp
                     moreover
                     from p2\ b0 have c!Suc\ (n+j) = c1!Suc\ j by simp
                     moreover
                     from p1 p2 p3 a1 b0 have \forall k. cs1 k!j = cs k!(n+j)
                     by (metis drop-eq-Nil length-greater-0-conv less-imp-Suc-add linear nth-drop
zero-less-Suc)
                     moreover
                     from p1 p2 p3 a1 b0 have \forall k. cs1 k!Suc j = cs k!Suc (n+j)
                              by (smt Suc-lessE add-Suc-right drop-eq-Nil length-greater-0-conv linear
nth-drop zero-less-Suc)
                     ultimately
```

```
have ((\exists t \ k. \ (\Gamma \vdash c1!j - pes - (t\sharp k) \rightarrow c1!Suc \ j)) \land 
                                                                         (\forall k \ t. \ (\Gamma \vdash c1!j \ -pes-(t\sharp k) \rightarrow c1!Suc \ j) \longrightarrow (\Gamma \vdash cs1 \ k!j)
-es-(t\sharp k)\rightarrow cs1 \ k! \ Suc \ j) \ \land
                                                                              (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs1 \ k'!j - ese \rightarrow cs1 \ k'! \ Suc \ j))))
                                                         ((\Gamma \vdash (c1!j) - pese \rightarrow (c1!Suc\ j)) \ \land \ (\forall\ k.\ (\Gamma \vdash ((cs1\ k)!j) - ese \rightarrow (csl)))) \land (\forall\ k.\ (\Gamma \vdash (csl))) \land (\forall\ k.\ (\Gamma \vdash (csl))) \land (\forall\ k.\ (\Gamma \vdash (csl))) \land (\exists\ k.\ (T)) \land (\exists\ k.\ (
((cs1 \ k)! \ Suc \ j))) by simp
                 then show ?thesis by (simp add:compat-tran-def)
           ultimately show ?thesis by (simp add:conjoin-def a0)
      qed
lemma conjoin-imp-cptses-k-help: [c \in cpts-pes \Gamma] \Longrightarrow
                 \forall cs \ k. \ \Gamma \ c \propto cs \longrightarrow (cs \ k \in cpts\text{-}es \ \Gamma)
      proof -
           assume p\theta: c \in cpts\text{-}pes \Gamma
                 \mathbf{fix} \ k
                 from p\theta have \forall cs. c \in cpts\text{-}pes \Gamma \land \Gamma c \propto cs \longrightarrow (cs k \in cpts\text{-}es \Gamma)
                      \mathbf{proof}(induct\ c)
                            case (CptsPesOne \ pes \ s \ x)
                            {
                                  \mathbf{fix} \ cs
                                  assume a\theta: \Gamma [(pes, s, x)] \propto cs
                          then have p3:length(cs k) = 1 by (simp add:conjoin-def same-length-def)
                                    from a0 have p5: same-spec [(pes, s, x)] cs \land same-state [(pes, s, x)]
cs by (simp add:conjoin-def)
                                  with a0 p3 have cs k ! 0 = (pes k, s, x)
                                       using esconf-trip pesconf-trip same-spec-def same-state-def
                                         by (metis One-nat-def length-Cons list.size(3) nth-Cons-0 prod.sel(1)
prod.sel(2) zero-less-one)
                                  with p3 have cs \ k \in cpts\text{-}es \ \Gamma
                            by (metis (no-types, hide-lams) One-nat-def Suc-less-eq cpts-es.CptsEsOne
length-0-conv length-Cons neg0-conv neg-Nil-conv prod-cases3)
                            then show ?case by auto
                       next
                            case (CptsPesEnv pes t x xs s y)
                            assume a\theta: (pes, t, x) \# xs \in cpts\text{-}pes \Gamma
                                 and a1[rule-format]: \forall cs. (pes, t, x) \# xs \in cpts\text{-}pes \Gamma \wedge \Gamma (pes, t, x)
\# xs \propto cs \longrightarrow cs \ k \in cpts\text{-}es \ \Gamma
                            {
                                  \mathbf{fix} cs
                                  assume b\theta: (pes, s, y) \# (pes, t, x) \# xs \in cpts\text{-}pes \Gamma
                                       and b1: \Gamma (pes, s, y) # (pes, t, x) # xs \preceq cs
                                  let ?esl = (pes, t, x) \# xs
                                 let ?esllon = (pes, s, y) \# (pes, t, x) \# xs
```

```
let ?cs = (\lambda k. drop 1 (cs k))
           from b1 have \Gamma ?esl \propto ?cs using drop-n-conjoin[of \Gamma ?esllon cs 1 ?esl
?cs] by auto
           with a0 a1 [of ?cs] have b2: ?cs k \in cpts-es \Gamma by simp
           from b1 have b3: cs k ! \theta = (pes k, s, y)
                  using conjoin-def[of \ \Gamma \ ?esllon \ cs] same-state-def[of \ ?esllon \ cs]
same-spec-def[of ?esllon cs]
             by (metis esconf-trip gets-def getspc-def getx-def length-greater-0-conv
                 list.simps(3) nth-Cons-0 prod.sel(1) prod.sel(2))
           from b1 have getspc\text{-}es\ (cs\ k\ !\ 1) = (getspc\ (?esllon\ !\ 1))\ k
             using conjoin-def [of \Gamma ?esllon cs] same-spec-def [of ?esllon cs]
               by (metis diff-Suc-1 length-Cons zero-less-Suc zero-less-diff)
           moreover
           from b1 have gets (?esllon!1) = gets-es ((cs k)!1) \land getx (?esllon!
1) = qetx-es ((cs k)!1)
             using conjoin-def[of \ \Gamma \ ?esllon \ cs] same-state-def[of \ ?esllon \ cs]
                diff-Suc-1 length-Cons zero-less-Suc zero-less-diff by fastforce
           ultimately have cs \ k \ ! \ 1 = (pes \ k, \ t, \ x)
             using b0 getspc-def gets-def getx-def
               by (metis One-nat-def esconf-trip fst-conv nth-Cons-0 nth-Cons-Suc
snd-conv)
           with b2\ b3 have cs\ k \in cpts\text{-}es\ \Gamma using CptsEsEnv
            by (metis Cons-nth-drop-Suc One-nat-def Suc-lessD cpts-es-not-empty
                   drop-0 drop-eq-Nil not-le)
         then show ?case by auto
       next
         case (CptsPesComp pes1 s y ct pes2 t x xs)
         assume a\theta: \Gamma \vdash (pes1, s, y) - pes - ct \rightarrow (pes2, t, x)
           and a1: (pes2, t, x) \# xs \in cpts\text{-}pes \Gamma
           and a2[rule-format]: \forall cs. (pes2, t, x) \# xs \in cpts-pes \Gamma \wedge \Gamma (pes2, t, t)
x) \# xs \propto cs \longrightarrow cs \ k \in cpts\text{-}es \ \Gamma
         {
           \mathbf{fix} cs
           assume b0: (pes1, s, y) \# (pes2, t, x) \# xs \in cpts\text{-}pes \Gamma
             and b1: \Gamma (pes1, s, y) # (pes2, t, x) # xs \preceq cs
           let ?esl = (pes2, t, x) \# xs
           let ?esllon = (pes1, s, y) \# (pes2, t, x) \# xs
           let ?cs = (\lambda k. drop \ 1 \ (cs \ k))
           from b1 have \Gamma ?esl \propto ?cs using drop-n-conjoin[of \Gamma ?esllon cs 1 ?esl
?cs] by auto
           with all a2[of ?cs] have b2: ?cs k \in cpts-es \Gamma by simp
           from b1 have b3: cs k ! 0 = (pes1 k, s, y)
                  using conjoin-def[of \ \Gamma \ ?esllon \ cs] same-state-def[of \ ?esllon \ cs]
same\mbox{-}spec\mbox{-}def[of\ ?esllon\ cs]
             \mathbf{by}\ (\textit{metis esconf-trip gets-def getspc-def getx-def length-greater-0-conv}
                 list.simps(3) nth-Cons-0 prod.sel(1) prod.sel(2))
```

```
from b1 have getspc-es (cs \ k \ ! \ 1) = (getspc \ (?esllon \ ! \ 1)) \ k
               using conjoin-def [of \Gamma ?esllon cs] same-spec-def [of ?esllon cs]
                 by (metis diff-Suc-1 length-Cons zero-less-Suc zero-less-diff)
             moreover
              from b1 have gets (?esllon!1) = gets-es ((cs k)!1) \land getx (?esllon!
1) = getx-es((cs k)!1)
               using conjoin-def [of \Gamma ?esllon cs] same-state-def [of ?esllon cs]
                   diff-Suc-1 length-Cons zero-less-Suc zero-less-diff by fastforce
             ultimately have b4: cs k ! 1 = (pes2 k, t, x)
               using b0 getspc-def gets-def getx-def
                  by (metis One-nat-def esconf-trip fst-conv nth-Cons-0 nth-Cons-Suc
snd-conv)
             from b1 have compat-tran \Gamma ?esllon cs by (simp add:conjoin-def)
             then have ((\exists t \ k. \ (\Gamma \vdash ?esllon!0 - pes - (t \sharp k) \rightarrow ?esllon!Suc \ 0)) \land
                                    (\forall k \ t. \ (\Gamma \vdash ?esllon!0 - pes - (t \sharp k) \rightarrow ?esllon!Suc \ 0) \longrightarrow
(\Gamma \vdash cs \ k!\theta \ -es-(t\sharp k) \rightarrow cs \ k! \ Suc \ \theta) \land
                                             (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! 0 - ese \rightarrow cs \ k'! \ Suc
\theta))))
                                   ((\Gamma \vdash (?esllon!0) - pese \rightarrow (?esllon!Suc \ 0)) \land (\forall k. \ (\Gamma \vdash (?esllon!Suc \ 0)))))
((cs\ k)!\theta)\ -ese {\rightarrow}\ ((cs\ k)!\ Suc\ \theta))))
                using compat-tran-def [of \Gamma ?esllon cs] by fastforce
             then have cs \ k \in cpts\text{-}es \ \Gamma
               proof
                  assume c\theta: (\exists t \ k. \ (\Gamma \vdash ?esllon!\theta - pes - (t \sharp k) \rightarrow ?esllon!Suc \ \theta)) \land
                                    (\forall k \ t. \ (\Gamma \vdash ?esllon!0 - pes - (t \sharp k) \rightarrow ?esllon!Suc \ 0) \longrightarrow
(\Gamma \vdash cs \ k!\theta - es - (t\sharp k) \rightarrow cs \ k! \ Suc \ \theta) \land
                                        (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! \theta - ese \rightarrow cs \ k'! \ Suc \ \theta)))
                  then obtain t1 and k1 where c1: (\Gamma \vdash ?esllon!0 - pes - (t1 \sharp k1) \rightarrow
?esllon!Suc 0) by auto
                  with c0 have c2: (\Gamma \vdash cs \ k1!0 - es - (t1\sharp k1) \rightarrow cs \ k1! \ Suc \ 0) \land
                                      (\forall k'. \ k' \neq k1 \longrightarrow (\Gamma \vdash cs \ k'! \theta - ese \rightarrow cs \ k'! \ Suc \ \theta))
by auto
                  show ?thesis
                    proof(cases k = k1)
                      assume d\theta: k = k1
                      with c2 have (\Gamma \vdash cs \ k!\theta - es - (t1\sharp k) \rightarrow cs \ k! \ Suc \ \theta) by auto
                      with b2 b3 b4 show ?thesis using CptsEsComp
                 by (metis Cons-nth-drop-Suc One-nat-def Suc-lessD cpts-es-not-empty
drop-0 drop-eq-Nil not-le)
                    next
                      assume d\theta: k \neq k1
                      with c2 have \Gamma \vdash cs \ k!0 - ese \rightarrow cs \ k! Suc \theta by auto
                      with b2 b3 b4 show ?thesis using CptsEsEnv
                 by (metis Cons-nth-drop-Suc One-nat-def Suc-lessD cpts-es-not-empty
                           drop-0 drop-eq-Nil esetran-eqconf not-le)
```

```
qed
               \mathbf{next}
                  assume c\theta: (\Gamma \vdash (?esllon!\theta) - pese \rightarrow (?esllon!Suc \theta)) \land (\forall k. (\Gamma \vdash (?esllon!\theta)))
((cs \ k)!0) - ese \rightarrow ((cs \ k)! \ Suc \ 0)))
                 then have \Gamma \vdash ((cs \ k)!\theta) - ese \rightarrow ((cs \ k)! \ Suc \ \theta) by simp
              with b2 b3 b4 show ?thesis using CptsEsEnv a0 c0 pes-tran-not-etran1
by fastforce
               qed
           then show ?case by auto
        qed
    }
    with p0 show ?thesis by simp
  \mathbf{qed}
lemma conjoin-imp-cptses-k:
      [c \in cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x; \ \Gamma \ c \propto cs]
         \implies cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x
  proof -
    assume p\theta: c \in cpts-of-pes \Gamma pes s x
      and p1: \Gamma c \propto cs
   from p\theta have a1: c \in cpts\text{-}pes\ \Gamma \land c!\theta = (pes,s,x) by (simp\ add:cpts\text{-}of\text{-}pes\text{-}def)
    from a1 p1 have cs \ k \in cpts-es \ \Gamma using conjoin-imp-cptses-k-help by auto
    moreover
    from p\theta p1 have cs k ! \theta = (pes k, s, x)
      by (metis a1 conjoin-def cpts-pes-not-empty esconf-trip fst-conv gets-def
      getspc-def getx-def length-greater-0-conv same-spec-def same-state-def snd-conv)
    ultimately show ?thesis by (simp add:cpts-of-es-def)
  qed
4.4.3
           Semantics is Compositional
lemma conjoin-cs-imp-cpt: [\exists k \ p. \ pes \ k = p; \ (\exists \ cs. \ (\forall \ k. \ (cs \ k) \in cpts-of-es \ \Gamma \ (pes \ k))]
(k) s x) \wedge \Gamma c \propto cs)
                                   \implies c \in \mathit{cpts}\text{-}\mathit{of}\text{-}\mathit{pes}\ \Gamma\ \mathit{pes}\ s\ x
  proof -
    assume p\theta: \exists cs. (\forall k. (cs k) \in cpts-of-es \Gamma (pes k) s x) \land \Gamma c \propto cs
      and p1: \exists k \ p. \ pes \ k = p
    then obtain cs where (\forall k. (cs k) \in cpts\text{-}of\text{-}es \Gamma (pes k) s x) \wedge \Gamma c \propto cs by
auto
    then have a\theta: (\forall k. (cs k)! \theta = (pes k, s, x) \land (cs k) \in cpts\text{-}es \Gamma) \land \Gamma c \propto cs by
(simp\ add:cpts-of-es-def)
    from p1 obtain p and k where a1: pes k = p by auto
    from p1 obtain k and p where pes k = p by auto
    with a0 have a2: (cs \ k)!0=(pes \ k,s,x) \land (cs \ k) \in cpts-es \ \Gamma by auto
    then have (cs \ k) \neq [] by auto
    moreover
```

```
from a0 have same-length c cs by (simp add:conjoin-def)
        ultimately have a3: c \neq [] using same-length-def by force
        have g\theta: c!\theta = (pes, s, x)
            proof -
                from a3 a0 have same-spec c cs by (simp add:conjoin-def)
                 with a3 have b2: \forall k. (getspc (c!0)) k = getspc\text{-}es ((cs k) ! 0) by (simp
                with a0 have \forall k. (getspc (c!0)) k = pes k by (simp add:getspc-es-def)
                then have b3: getspc (c!0) = pes by auto
                from a0 have same-state c cs by (simp add:conjoin-def)
                 with a3 have gets (c!0) = gets-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx-es ((cs \ k)!0) \land getx \ (c!0) = getx
k)!0)
                    by (simp add:same-state-def)
                with a2 have gets (c!0) = s \land getx(c!0) = x
                    by (simp add:gets-def getx-def getx-es-def getx-es-def)
           with b3 show ?thesis using gets-def getx-def getspc-def by (metis prod.collapse)
        have \forall i. i > 0 \land i \leq length \ c \longrightarrow take \ i \ c \in cpts\text{-pes} \ \Gamma
            proof -
            {
                \mathbf{fix} i
                assume b\theta: i > \theta \land i \leq length c
                then have take i \ c \in cpts\text{-}pes \ \Gamma
                    \mathbf{proof}(induct\ i)
                        case \theta show ?case using \theta.prems by auto
                    next
                        assume c\theta: \theta < j \land j \leq length \ c \Longrightarrow take \ j \ c \in \textit{cpts-pes} \ \Gamma
                           and c1: 0 < Suc j \land Suc j \leq length c
                        show ?case
                           \mathbf{proof}(cases\ j=\theta)
                                assume d\theta: j = \theta
                                        with c0 show ?case by (simp add: a3 cpts-pes.CptsPesOne g0
hd-conv-nth take-Suc)
                           next
                                assume d\theta: j \neq \theta
                                from a0 have d1: compat-tran \Gamma c cs by (simp add:conjoin-def)
                                then have d2: \forall j. \ Suc \ j < length \ c \longrightarrow
                                                            (\exists t \ k. \ (\Gamma \vdash c!j - pes - (t\sharp k) \rightarrow c!Suc \ j) \land
                                                                 (\forall k \ t. \ (\Gamma \vdash c!j \ -pes-(t\sharp k) \rightarrow c!Suc \ j) \longrightarrow (\Gamma \vdash cs \ k!j)
-es-(t\sharp k)\to\ cs\ k!\ Suc\ j)\ \wedge
                                                                      (\forall\,k'.\ k'\neq k\,\longrightarrow\,(\Gamma\vdash\,cs\;k'!j\;-ese\rightarrow\,cs\;k'!\;Suc\;j))))
                                                                   ((\Gamma \vdash (c!j) - pese \rightarrow (c!Suc\ j)) \land (\forall k.\ (\Gamma \vdash ((cs\ k)!j))))
-ese \rightarrow ((cs \ k)! \ Suc \ j))))
                                    by (simp add:compat-tran-def)
```

```
from c1 have d6: Suc (j-1) < length c using d0 by auto
                                                                                                                            with d3 have d4: (\exists t \ k. \ (\Gamma \vdash c!(j-1) - pes - (t\sharp k) \rightarrow c!Suc \ (j-1)) \land (j-1) \land 
                                                                                                                                                                                                                                                 (\forall\, k\ t.\ (\Gamma \vdash c!(j-1)\ -pes-(t\sharp k) \rightarrow\ c!Suc\ (j-1))\ \longrightarrow\ (\Gamma \vdash c!(j-1))\ (f \vdash c
cs \ k!(j-1) \ -es-(t\sharp k) \rightarrow \ cs \ k! \ Suc \ (j-1)) \ \land
                                                                                                                                                                                                                                                                                                                                             (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'!(j-1) - ese \rightarrow cs \ k'!)
Suc\ (j-1)))))
                                                                                                                                                                                                                                                    ((\Gamma \vdash (c!(j-1)) - pese \rightarrow (c!Suc\ (j-1))) \land (\forall \, k.\ (\Gamma \vdash ((cs))) \land (\forall \, k.)) \land (\forall \, k.) \land (f \vdash ((cs))) \land ((cs)) \land (
k)!(j-1)) - ese \rightarrow ((cs \ k)!Suc \ (j-1))))
                                                                                                                                                           using d2 by auto
                                                                                                                                      from c0 c1 d0 have d5: take j c \in cpts\text{-}pes \Gamma by auto
                                                                                                                                    from d4 show ?case
                                                                                                                                                    proof
                                                                                                                                                                     assume (\exists t \ k. \ (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \land
                                                                                                                                                                                                                                                 (\forall k \ t. \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)
cs \ k!(j-1) - es - (t\sharp k) \rightarrow \ cs \ k! \ Suc \ (j-1)) \ \land
                                                                                                                                                                                                                                                                                                                                             (\forall k'. k' \neq k \longrightarrow (\Gamma \vdash cs \ k'!(j-1) - ese \rightarrow cs \ k'!)
Suc\ (j-1)))))
                                                                                                                                                                                then obtain t and k where e\theta: (\Gamma \vdash (c!(j-1)) - pes - (t\sharp k) \rightarrow
(c!Suc\ (j-1))) by auto
                                                                                                                                                             then have \Gamma \vdash ((take \ j \ c) \ ! \ (length \ (take \ j \ c) - 1)) \ -pes - (t \sharp k) \rightarrow
(c!Suc\ (j-1))
                                                                                                                                                                                       by (metis (no-types, lifting) Suc-diff-1 Suc-leD Suc-lessD
                                                                                                                                                                                                d6 butlast-take c1 d0 length-butlast neq0-conv nth-append-length
 take-Suc-conv-app-nth)
                                                                                                                                                                                                with d5 have (take\ j\ c)\ @\ [c!Suc\ (j-1)]\ \in\ cpts\text{-}pes\ \Gamma using
 cpts-pes-onemore by blast
                                                                                                                                                    then show ?thesis using d0 d6 take-Suc-conv-app-nth by fastforce
                                                                                                                                                                assume (\Gamma \vdash (c!(j-1)) - pese \rightarrow (c!Suc\ (j-1))) \land (\forall k.\ (\Gamma \vdash ((cs)))) \land (\forall k.\ (r) \vdash ((cs))) \land (r) \land (r)
k)!(j-1)) - ese \rightarrow ((cs \ k)!Suc \ (j-1))))
                                                                                                                                                                                              then have \Gamma \vdash ((take \ j \ c) \ ! \ (length \ (take \ j \ c) - 1)) - pese \rightarrow
(c!Suc\ (j-1))
                                                                                                                                                                                       by (metis (no-types, lifting) Suc-diff-1 Suc-leD Suc-lessD
                                                                                                                                                                                                d6 butlast-take c1 d0 length-butlast neg0-conv nth-append-length
 take-Suc-conv-app-nth)
                                                                                                                                                                                                with d5 have (take j c) @ [c!Suc\ (j-1)] \in cpts\text{-}pes\ \Gamma using
 cpts-pes-onemore by blast
                                                                                                                                                      then show ?thesis using d0 d6 take-Suc-conv-app-nth by fastforce
                                                                                                                                                    qed
                                                                                                                   qed
                                                                                  qed
                                                  then show ?thesis by auto
                                                  qed
```

from $d\theta$ have $d\beta$: $j - 1 \ge \theta$ by simp

```
with a3 have q1: c \in cpts-pes \Gamma by auto
    from g0 g1 show ?thesis by (simp add:cpts-of-pes-def)
  qed
lemma comp-tran-env: [(\forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ t1 \ x1); \ c = (pes, t1, x1)]
\# xs; c \in cpts\text{-}pes \Gamma;
                            \Gamma \ c \propto cs; \ c' = (pes, s1, y1) \ \# \ (pes, t1, x1) \ \# \ xs \implies
       compat-tran \Gamma c' (\lambda k. (pes k, s1, y1) \# cs k)
  proof -
    let ?cs' = \lambda k. (pes k, s1, y1) # cs k
    assume p\theta: \forall k. cs \ k \in cpts-of-es \Gamma (pes \ k) t1 \ x1
       and p1: c \in cpts\text{-}pes \Gamma
       and p2: \Gamma c \propto cs
       and p3: c' = (pes, s1, y1) \# (pes, t1, x1) \# xs
       and p_4: c = (pes, t1, x1) # xs
     from p0 have b3: \forall k. cs k \in cpts-es \Gamma \land (cs \ k)!0 = (pes \ k,t1,x1) by (simp
add:cpts-of-es-def)
    show compat-tran \Gamma c'?cs'
       proof -
       {
         \mathbf{fix} \ j
         assume dd\theta: Suc j < length c'
         have (\exists t \ k. \ (\Gamma \vdash (c'!j) - pes - (t \sharp k) \rightarrow (c'!Suc \ j)) \land
                                (\forall k \ t. \ (\Gamma \vdash c'!j \ -pes-(t\sharp k) \rightarrow c'!Suc \ j) \longrightarrow (\Gamma \vdash ?cs' \ k!j)
-es-(t\sharp k)\rightarrow ?cs' k! Suc j) \land
                                            (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash ?cs' \ k'!) \ -ese \rightarrow ?cs' \ k'! \ Suc
j))))
                         ((\Gamma \vdash (c'!j) - pese \rightarrow (c'!Suc\ j)) \land (\forall k. (\Gamma \vdash ((?cs'\ k)!j) - ese \rightarrow
((?cs'k)! Suc j))))
            \mathbf{proof}(cases\ j=\theta)
              assume d\theta: j = \theta
              from p3 have (\Gamma \vdash (c'!0) - pese \rightarrow (c'!1))
                by (simp add: pesetran.intros)
              moreover
              have \forall k. (\Gamma \vdash ((?cs'k)!\theta) - ese \rightarrow ((?cs'k)!1))
                by (simp add: b3 esetran.intros)
              ultimately show ?thesis using d0 by simp
            next
              assume d\theta: j \neq \theta
              then have d0-1: j > 0 by simp
              from p2 have compat-tran \Gamma c cs by (simp add:conjoin-def)
              then have d1: \forall j. Suc j < length c \longrightarrow
                                   (\exists t \ k. \ (\Gamma \vdash c!j - pes - (t\sharp k) \rightarrow c!Suc \ j) \land
                                      (\forall k \ t. \ (\Gamma \vdash c!j \ -pes-(t\sharp k) \rightarrow c!Suc \ j) \longrightarrow (\Gamma \vdash cs \ k!j)
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ j) \ \land
                                          (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'!j - ese \rightarrow cs \ k'! \ Suc \ j))))
                                       ((\Gamma \vdash (c!j) \ -pese \rightarrow \ (c!Suc\ j)) \ \land \ (\forall\ k.\ (\Gamma \vdash ((cs\ k)!j)
```

```
-ese \rightarrow ((cs \ k)! \ Suc \ j)))
                                                                               by (simp add:compat-tran-def)
                                                                 from p3 p4 dd0 d0 have d2: Suc (j-1) < length c by auto
                                                               let ?j1 = j - 1
                                                          from d1 d2 have d3: (\exists t \ k. \ (\Gamma \vdash c!(j-1) - pes - (t\sharp k) \rightarrow c! Suc\ (j-1)) \land
                                                                                                                                                           (\forall k \ t. \ (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t \sharp k) \rightarrow c! Suc \ (j-1)) \longrightarrow (\Gamma \vdash c!(j-1) - pes - (t
cs \ k!(j\!-\!1) \ -es\!-\!(t\sharp k)\!\to \ cs \ k! \ Suc \ (j\!-\!1)) \ \land
                                                                                                                                                                                                                       (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'!(j-1) - ese \rightarrow cs \ k'!)
Suc\ (j-1)))))
                                                                                                                                                             ((\Gamma \vdash (c!(j-1)) - pese \rightarrow (c!Suc\ (j-1))) \land (\forall k.\ (\Gamma \vdash ((cs))))) \land (\forall k.\ (\Gamma \vdash ((cs)))) \land ((cs))) \land ((cs))) \land ((cs)) \land ((cs)) \land ((cs)) \land ((cs))) \land ((cs)) \land ((cs
k)!(j-1)) - ese \rightarrow ((cs \ k)!Suc \ (j-1))))
                                                                               by auto
                                                                 from p3 p4 d0 dd0 have d4: c'!j = c!(j-1) \land c'!Suc j = c!Suc (j-1)
by simp
                                                               have d5: (\forall k. (?cs'k) ! j = (cs k)! (j-1)) \land (\forall k. (?cs'k) ! Suc j = (cs k)!)
k)! Suc (j-1)
                                                                          by (simp add: d0-1)
                                                                 with d3 d4 show ?thesis by auto
                                                      qed
                                then show ?thesis by (simp add:compat-tran-def)
                                qed
          qed
lemma comp-tran-pestran: \llbracket (\forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes2 \ k) \ t1 \ x1); \ c = (pes2, pes2, p
t1, x1) \# xs; c \in cpts\text{-}pes \Gamma;
                                                                                                                    \Gamma c \propto cs; c' = (pes1, s1, y1) \# (pes2, t1, x1) \# xs; \Gamma \vdash (pes1, y1) \# xs
s1, y1) - pes - ct \rightarrow (pes2, t1, x1)
                                                                                                                                \implies compat-tran \Gamma c' (\lambda k. (pes1 \ k, s1, y1) \# cs \ k)
           proof -
                     let ?cs' = \lambda k. (pes1 \ k, s1, y1) \# cs k
                     assume p\theta: \forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes2 \ k) \ t1 \ x1
                               and p1: c \in cpts\text{-}pes \Gamma
                               and p2: \Gamma c \propto cs
                               and p3: c' = (pes1, s1, y1) \# (pes2, t1, x1) \# xs
                               and p4: c = (pes2, t1, x1) \# xs
                                and p5: \Gamma \vdash (pes1, s1, y1) - pes - ct \rightarrow (pes2, t1, x1)
                     from p0 have b3: \forall k. \ cs \ k \in cpts\text{-}es \ \Gamma \land (cs \ k)!0 = (pes2 \ k,t1,x1) by (simp)
add:cpts-of-es-def)
                     show compat-tran \Gamma c'?cs'
                               proof -
                                {
                                          \mathbf{fix} \ j
                                          assume dd\theta: Suc j < length c'
                                          have (\exists t \ k. \ (\Gamma \vdash (c'!j) - pes - (t\sharp k) \rightarrow (c'!Suc \ j)) \land
                                                                                                                                                 (\forall k \ t. \ (\Gamma \vdash c'!j \ -pes-(t\sharp k) \rightarrow c'!Suc \ j) \longrightarrow (\Gamma \vdash ?cs' \ k!j)
 -es-(t\sharp k)\to ?cs'\ k!\ Suc\ j)\ \land
```

```
(\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash ?cs' \ k'! j - ese \rightarrow ?cs' \ k'! \ Suc
j))))
                                                ((\Gamma \vdash (c'!j) - pese \rightarrow (c'!Suc\ j)) \land (\forall k.\ (\Gamma \vdash ((?cs'\ k)!j) - ese \rightarrow (c'!Suc\ j))) \land (\forall k.\ (\Gamma \vdash ((?cs'\ k)!j) - ese \rightarrow (c'!Suc\ j))))
((?cs'k)! Suc j))))
                       \mathbf{proof}(cases\ j=\theta)
                            assume d\theta: j = \theta
                              from p5 obtain k and aa where c\theta: ct = (aa\sharp k) using get-actk-def
by (metis cases)
                            with p5 have \exists es'. (\Gamma \vdash (pes1 \ k, s1, y1) - es - (aa\sharp k) \rightarrow (es', t1, x1))
\land pes2 = pes1(k := es')
                               using pestran-estran by auto
                             then obtain es' where c1: (\Gamma \vdash (pes1 \ k, s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - es - (aa\sharp k) \rightarrow (es', s1, y1) - (es', s1, y1) -
t1, x1) \land pes2 = pes1(k:=es')
                               by auto
                           from b3 have c2: cs k \in cpts-es \Gamma \wedge (cs k)!0 = (pes2 k,t1,x1) by auto
                            then obtain xs1 where c4: (cs k) = (pes2 k,t1,x1)#xs1
                                by (metis cpts-es-not-empty neq-Nil-conv nth-Cons-0)
                          then have c3: ?cs' k = (pes1 \ k, s1, y1) \# (pes2 \ k, t1, x1) \# xs1 by simp
                            from p3 p5 c0 have g\theta: \Gamma \vdash (c'!\theta) - pes - (aa\sharp k) \rightarrow (c'!Suc \theta) by auto
                           moreover
                             have \forall k1 \ t1. \ (\Gamma \vdash c'!0 \ -pes-(t1\sharp k1) \rightarrow c'!Suc \ \theta) \longrightarrow (\Gamma \vdash ?cs' \ k1!\theta)
-es-(t1\sharp k1) \rightarrow ?cs' k1! Suc 0) \land
                                                                                          (\forall k'. \ k' \neq k1 \longrightarrow (\Gamma \vdash ?cs' \ k'! 0 - ese \rightarrow ?cs' \ k'!
Suc \ \theta))
                               proof -
                                    fix k1 t1
                                    assume d\theta: \Gamma \vdash c'!\theta - pes - (t1 \sharp k1) \rightarrow c'!Suc \theta
                                     with p3 have \Gamma \vdash ?cs' k1!0 - es - (t1 \sharp k1) \rightarrow ?cs' k1! Suc 0
                                        using b3 fun-upd-apply nth-Cons-0 nth-Cons-Suc pestran-estran by
fast force
                                     moreover
                                     from d\theta have \forall k'. k' \neq k1 \longrightarrow (\Gamma \vdash ?cs' k'! \theta - ese \rightarrow ?cs' k'! Suc
\theta)
                                          using b3 esetran.intros fun-upd-apply nth-Cons-0 nth-Cons-Suc p3
pestran-estran by fastforce
                                   ultimately have (\Gamma \vdash c'!\theta - pes - (t1\sharp k1) \rightarrow c'!Suc \theta) \longrightarrow (\Gamma \vdash ?cs')
k1!0 - es - (t1 \sharp k1) \rightarrow ?cs' k1! Suc 0) \land
                                                                                          (\forall k'. \ k' \neq k1 \longrightarrow (\Gamma \vdash ?cs' \ k'! 0 - ese \rightarrow ?cs' \ k'!
Suc \ \theta)) by simp
                                then show ?thesis by auto
                            ultimately show ?thesis using d0 by auto
                            assume d\theta: j \neq \theta
                            then have d\theta-1: j > \theta by simp
```

```
from p2 have compat-tran \Gamma c cs by (simp add:conjoin-def)
                                                       then have d1: \forall j. \ Suc \ j < length \ c \longrightarrow
                                                                                                                                         (\exists t \ k. \ (\Gamma \vdash c!j - pes - (t\sharp k) \rightarrow c!Suc \ j) \land 
                                                                                                                                                      (\forall\,k\ t.\ (\Gamma \vdash c!j\ -pes-(t\sharp k) \rightarrow\ c!Suc\ j)\ \longrightarrow\ (\Gamma \vdash\ cs\ k!j
-es-(t\sharp k)\!\to\,cs\,\,k!\,\,Suc\,\,j)\,\,\wedge
                                                                                                                                                                   (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'!j - ese \rightarrow cs \ k'! \ Suc \ j))))
                                                                                                                                                          ((\Gamma \vdash (c!j) - pese \rightarrow (c!Suc\ j)) \land (\forall k.\ (\Gamma \vdash ((cs\ k)!j))))
-ese \rightarrow ((cs \ k)! \ Suc \ j))))
                                                                    by (simp add:compat-tran-def)
                                                        from p3 p4 dd0 d0 have d2: Suc (j-1) < length c by auto
                                                                with d0 d0-1 d1 have d3: (\exists t \ k. \ (\Gamma \vdash c!(j-1) - pes - (t\sharp k) \rightarrow c!Suc
(j-1)) \wedge
                                                                                                                                     (\forall k \ t. \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)) \ \longrightarrow \ (\Gamma \vdash c!(j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1) \ -pes-(t\sharp k) \rightarrow c!Suc \ (j-1)
cs \ k!(j-1) - es - (t \sharp k) \rightarrow cs \ k! \ Suc \ (j-1)) \land
                                                                                                                                                                                        (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! (j-1) - ese \rightarrow cs \ k'!)
Suc\ (j-1)))))
                                                                                                                                       ((\Gamma \vdash (c!(j-1)) - pese \rightarrow (c!Suc\ (j-1))) \land (\forall k.\ (\Gamma \vdash ((cs))))) \land (\forall k.\ (\Gamma \vdash ((cs)))) \land ((cs))) \land ((cs))) \land ((cs)) \land ((cs)) \land ((cs)) \land ((cs))) \land ((cs)) \land ((cs
k)!(j-1)) - ese \rightarrow ((cs \ k)!Suc \ (j-1))))
                                                               bv blast
                                                        from p3 p4 d0 dd0 have d4: c'!j = c!(j-1) \land c'!Suc j = c!Suc (j-1)
by simp
                                                      have d5: (\forall k. (?cs'k)! j = (cs k)! (j-1)) \land (\forall k. (?cs'k)! Suc j = (cs k)! (j-1)) \land (\forall k. (?cs'k)! Suc j = (cs k)! (j-1))
k)! Suc (j-1)
                                                               by (simp add: d0-1)
                                                        with d3 d4 show ?thesis by auto
                            then show ?thesis by (simp add:compat-tran-def)
                            qed
         qed
lemma cpt-imp-exist-conjoin-cs\theta:
                  \forall c. \ c \in cpts\text{-}pes \ \Gamma \longrightarrow
                                                                          (\exists cs. (\forall k. (cs k) \in cpts\text{-}of\text{-}es \Gamma ((getspc (c!0)) k) (gets (c!0)) (gets
(c!\theta)) \wedge \Gamma c \propto cs
         proof -
          {
                  \mathbf{fix} \ c
                  assume p\theta: c \in cpts\text{-}pes \Gamma
                  then have \exists cs. (\forall k. (cs k) \in cpts\text{-}of\text{-}es \Gamma ((getspc (c!0)) k) (gets (c!0)) (gets
(c!\theta)) \wedge \Gamma c \propto cs
                           proof(induct \ c)
                                    case (CptsPesOne pes1 s1 x1)
                                    let ?cs = \lambda k. [(pes1 \ k, s1, x1)]
                                   let ?c = [(pes1, s1, x1)]
                                     have \forall k. ?cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (getspc \ (?c! \ 0) \ k) \ (gets \ (?c! \ 0)) \ (getx \ (?c
```

```
! \theta))
          proof -
            \mathbf{fix}\ k
            have ?cs \ k = [(pes1 \ k,s1,x1)] by simp
            moreover
           have ?cs \ k \in cpts\text{-}es \ \Gamma by (simp \ add: \ cpts\text{-}es.CptsEsOne)
              ultimately have ?cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes1 \ k) \ s1 \ s1 \ by \ (simp \ add:
cpts-of-es-def)
          then show ?thesis by (simp add: gets-def getspc-def getx-def)
          qed
        moreover
        have \Gamma ?c \propto ?cs
          proof -
            have same-length ?c ?cs by (simp add: same-length-def)
            moreover
           have same-state ?c ?cs using same-state-def gets-def gets-es-def getx-def
getx-es-def
              by (smt length-Cons less-Suc0 list.size(3) nth-Cons-0 snd-conv)
            have same-spec ?c ?cs using same-spec-def getspc-def getspc-es-def
            by (metis (mono-tags, lifting) fst-conv length-Cons less-Suc0 list.size(3)
nth-Cons-\theta)
            moreover
            have compat-tran \Gamma ?c ?cs by (simp add: compat-tran-def)
            ultimately show ?thesis by (simp add:conjoin-def)
        ultimately show ?case by auto
      next
        case (CptsPesEnv pes1 t1 x1 xs s1 y1)
        let ?c = (pes1, t1, x1) \# xs
        assume b\theta: ?c \in cpts-pes \Gamma
          and b1: \exists cs. (\forall k. cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (getspc \ (?c! \ 0) \ k) \ (gets \ (?c! \ 0))
                       (getx\ (?c!\ 0))) \land \Gamma\ ?c \propto cs
       then obtain cs where b2: (\forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes1 \ k) \ t1 \ x1) \land \Gamma \ ?c
\propto cs
         using getspc-def gets-def getx-def by (metis fst-conv nth-Cons-0 snd-conv)
        then have b3: \forall k. \ cs \ k \in cpts\text{-}es \ \Gamma \land (cs \ k)!0 = (pes1 \ k,t1,x1) by (simp)
add:cpts-of-es-def)
       let ?c' = (pes1, s1, y1) \# (pes1, t1, x1) \# xs
       let ?cs' = \lambda k. (pes1 \ k,s1,y1) \#(cs \ k)
       have g\theta: \forall k. ?cs' k \in cpts\text{-}of\text{-}es \ \Gamma \ (getspc \ (?c'! \ \theta) \ k) \ (gets \ (?c'! \ \theta)) \ (gets \ (?c'! \ \theta))
(?c'! 0))
          proof -
          {
            \mathbf{fix} \ k
           from b3 have c0: cs k \in cpts-es \Gamma \wedge (cs \ k)!0 = (pes1 \ k,t1,x1) by auto
```

```
then obtain xs1 where (cs k) = (pes1 k,t1,x1) \# xs1
            by (metis cpts-es-not-empty neq-Nil-conv nth-Cons-0)
          with c0 have c1: ?cs' k \in cpts\text{-}es \Gamma by (simp \ add: \ cpts\text{-}es.CptsEsEnv)
            then have ?cs' k \in cpts\text{-}of\text{-}es \Gamma (getspc (?c'! 0) k) (gets (?c'! 0))
(getx (?c'! 0))
            by (simp add: cpts-of-es-def gets-def getspc-def getx-def)
         then show ?thesis by auto
         qed
       from b2 have b4: \Gamma ?c \propto cs by simp
       from b1 have g1: \Gamma ?c' \preceq ?cs'
         proof -
          from b4 have same-length ?c' ?cs'
            by (simp add: conjoin-def same-length-def)
          moreover
          have same-state ?c' ?cs'
            proof -
              fix k'j
              assume c\theta: j < length ?c'
            have gets (?c'!j) = gets\text{-}es ((?cs'k')!j) \land getx (?c'!j) = getx\text{-}es ((?cs'k')!j)
k')!j)
                \mathbf{proof}(cases\ j=0)
                  assume d\theta: j = \theta
                     then show ?thesis by (simp add:gets-def gets-es-def getx-def
getx-es-def)
                  assume d\theta: j \neq \theta
                   with b4 show ?thesis using same-state-def gets-def gets-es-def
getx-def getx-es-def
                  using c0 conjoin-def length-Cons less-Suc-eq-0-disj nth-Cons-Suc
by fastforce
                qed
            then show ?thesis by (simp add: same-state-def)
            qed
          moreover
          have same-spec ?c' ?cs'
            proof -
            {
              fix k'j
              assume c\theta: j < length ?c'
              have (getspc \ (?c'!j)) \ k' = getspc\text{-}es \ ((?cs' \ k') \ ! \ j)
                \mathbf{proof}(cases\ j=\theta)
                  assume d\theta: j = \theta
                  then show ?thesis by (simp add:getspc-def getspc-es-def)
                next
                  assume d\theta: j \neq \theta
```

```
with b4 show ?thesis using same-spec-def getspc-def getspc-es-def
                                                      by (metis (no-types, lifting) Nat.le-diff-conv2 One-nat-def c0
conjoin\text{-}def
                                                     less-Suc0 list.size(4) not-less nth-Cons')
                                        qed
                               then show ?thesis by (simp add: same-spec-def)
                               qed
                           moreover
                           from b0 b2 b4 have compat-tran \Gamma ?c' ?cs'
                               using comp-tran-env [of cs Γ pes1 t1 x1 ?c xs ?c' s1 y1] by simp
                           ultimately show ?thesis by (simp add:conjoin-def)
                      qed
                 from g0 g1 show ?case by auto
             next
                  case (CptsPesComp pes1 s1 y1 ct pes2 t1 x1 xs)
                 let ?c = (pes2, t1, x1) \# xs
                 assume b\theta: ?c \in cpts-pes \Gamma
                      and b1: \exists cs. (\forall k. cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (getspc \ (?c! \ 0) \ k) \ (gets \ (?c! \ 0))
                                                   (getx\ (?c!\ 0))) \land \Gamma\ ?c \propto cs
                      and b00: \Gamma \vdash (pes1, s1, y1) - pes - ct \rightarrow (pes2, t1, x1)
                 then obtain cs where b2: (\forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes2 \ k) \ t1 \ x1) \land \Gamma \ ?c
\propto cs
                    using getspc-def gets-def getx-def by (metis fst-conv nth-Cons-0 snd-conv)
                  then have b3: \forall k. \ cs \ k \in cpts\text{-}es \ \Gamma \land (cs \ k)!0 = (pes2 \ k,t1,x1) by (simp)
add:cpts-of-es-def)
                 let ?c' = (pes1, s1, y1) \# (pes2, t1, x1) \# xs
                 let ?cs' = \lambda k. (pes1 \ k, s1, y1) \# (cs \ k)
                have g\theta: \forall k. ?cs' k \in cpts-of-es \Gamma (getspc (?c'! \theta) k) (gets (?c'! \theta)) (gets (?c'! \theta))
(?c'! 0))
                      proof -
                       {
                          \mathbf{fix} \ k
                        obtain ka and aa where c\theta: ct = (aa \sharp ka) using get-actk-def by (metis
cases)
                              with b00 have \exists es'. (\Gamma \vdash (pes1 \ ka, s1, y1) - es - (aa \sharp ka) \rightarrow (es', t1, y1)
x1) \land pes2 = pes1(ka := es')
                               using pestran-estran by auto
                          then obtain es' where c1: (\Gamma \vdash (pes1 \ ka, s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) \rightarrow (es', s1, y1) - es - (aa\sharp ka) 
t1, x1) \land pes2 = pes1(ka := es')
                               by auto
                           from b3 have c2: cs k \in cpts-es \Gamma \wedge (cs \ k)!0 = (pes2 \ k,t1,x1) by auto
                           then obtain xs1 where c4: (cs k) = (pes2 k,t1,x1) \# xs1
                               by (metis cpts-es-not-empty neq-Nil-conv nth-Cons-0)
                         then have c3: ?cs' k = (pes1 k, s1, y1) # (pes2 k,t1,x1)#xs1 by <math>simp
                        have ?cs' k \in cpts-of-es \Gamma (getspc (?c' ! 0) k) (gets (?c' ! 0)) (getx (?c'
! 0))
                               \mathbf{proof}(\mathit{cases}\ k = \mathit{ka})
```

```
assume d\theta: k = ka
               with c1 have \Gamma \vdash (pes1 \ k, \ s1, \ y1) - es - (aa\sharp k) \rightarrow (pes2 \ k, \ t1, \ x1)
\mathbf{by} auto
              with c2 \ c3 \ d0 have ?cs' \ k \in cpts\text{-}es \ \Gamma
                using cpts-es.CptsEsComp by fastforce
               then show ?thesis by (simp add: cpts-of-es-def gets-def getspc-def
getx-def)
              assume d\theta: k \neq ka
              with c1 have pes1 k = pes2 k by simp
              with c2 c3 have d1: ?cs' k \in cpts\text{-}es \Gamma
                by (simp add: cpts-es.CptsEsEnv)
               then show ?thesis by (simp add: cpts-of-es-def gets-def getspc-def
getx-def)
            qed
         then show ?thesis by auto
       from b2 have b4: \Gamma ?c \propto cs by simp
       from b1 have g1: \Gamma ?c' \propto ?cs'
         proof -
          from b4 have same-length ?c' ?cs'
            by (simp add: conjoin-def same-length-def)
          moreover
          have same-state ?c' ?cs'
            proof -
              fix k' j
              assume c\theta: j < length ?c'
            have gets (?c'!j) = gets\text{-}es ((?cs' k')!j) \land getx (?c'!j) = getx\text{-}es ((?cs' k')!j)
k')!j)
                \mathbf{proof}(cases\ j=\theta)
                  assume d\theta: j = \theta
                     then show ?thesis by (simp add:gets-def gets-es-def getx-def
getx-es-def)
                  assume d\theta: j \neq \theta
                   with b4 show ?thesis using same-state-def gets-def gets-es-def
getx-def getx-es-def
                  using c0 conjoin-def length-Cons less-Suc-eq-0-disj nth-Cons-Suc
by fastforce
                qed
            }
            then show ?thesis by (simp add: same-state-def)
            qed
          moreover
          have same-spec ?c' ?cs'
            proof -
```

```
fix k'j
                assume c\theta: j < length ?c'
                have (getspc \ (?c'!j)) \ k' = getspc-es \ ((?cs' \ k') \ ! \ j)
                  proof(cases j = 0)
                    assume d\theta: j = \theta
                    then show ?thesis by (simp\ add:getspc\text{-}def\ getspc\text{-}es\text{-}def)
                  next
                    assume d\theta: j \neq \theta
                   with b4 show ?thesis using same-spec-def getspc-def getspc-es-def
                    by (metis (no-types, lifting) Nat.le-diff-conv2 One-nat-def Suc-leI
c0 conjoin-def
                        list.size(4) neq0-conv not-less nth-Cons')
                  qed
              then show ?thesis by (simp add: same-spec-def)
              qed
            moreover
            from b0\ b00\ b2\ b4 have compat-tran \Gamma\ ?c'\ ?cs'
             using comp-tran-pestran [of cs \Gamma pes2 t1 x1 ?c xs ?c' pes1 s1 y1 ct] by
simp
            ultimately show ?thesis by (simp add:conjoin-def)
          qed
        from g0 g1 show ?case by auto
      qed
  then show ?thesis by (metis (mono-tags, lifting))
  qed
lemma cpt-imp-exist-conjoin-cs: c \in cpts-of-pes <math>\Gamma pes s x
                \implies \exists cs. (\forall k. (cs k) \in cpts\text{-}of\text{-}es \Gamma (pes k) s x) \land \Gamma c \propto cs
  proof -
    assume p\theta: c \in cpts-of-pes \Gamma pes s x
    then have c!\theta = (pes, s, x) \land c \in cpts\text{-}pes \Gamma by (simp\ add: cpts\text{-}of\text{-}pes\text{-}def)
    then show ?thesis
      using cpt-imp-exist-conjoin-cs0 getspc-def gets-def getx-def
        by (metis fst-conv snd-conv)
 qed
theorem par-evtsys-semantics-comp:
  cpts-of-pes \Gamma pes s x = \{c. \exists cs. (\forall k. (cs k) \in cpts-of-es \Gamma (pes k) s x) \land \Gamma c \propto cpts-of-pes \Gamma (pes k) s x\}
cs
  proof -
    have \forall c. \ c \in cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x \longrightarrow (\exists cs. \ (\forall k. \ (cs \ k) \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k)
(s \ x) \land \Gamma \ c \propto cs)
      proof -
```

```
{
        \mathbf{fix} \ c
        assume a\theta: c \in cpts-of-pes \Gamma pes s x
        then have \exists cs. (\forall k. (cs k) \in cpts\text{-}of\text{-}es \Gamma (pes k) s x) \land \Gamma c \propto cs
              using cpt-imp-exist-conjoin-cs cpts-of-pes-def getx-def mem-Collect-eq
prod.sel(2) by fastforce
      then show ?thesis by auto
      qed
    moreover
     have \forall c. (\exists cs. (\forall k. (cs k) \in cpts-of-es \Gamma (pes k) s x) \land \Gamma c \propto cs) \longrightarrow
c \in cpts-of-pes \Gamma pes s x
      proof -
        \mathbf{fix} c
        assume a\theta: \exists cs. (\forall k. (cs k) \in cpts-of-es \Gamma (pes k) s x) \land \Gamma c \propto cs
        then have c \in cpts-of-pes \Gamma pes s x
          using conjoin-cs-imp-cpt by fastforce
      then show ?thesis by auto
      qed
    ultimately show ?thesis by auto
  qed
end
end
```

5 Rely-guarnatee Validity of Picore Computations

```
theory PiCore-Validity imports PiCore-Computation begin
```

5.1 Definitions Correctness Formulas

```
locale event-validity = event-comp ptran petran fin-com cpts-p cpts-of-p for ptran :: 'Env \Rightarrow (('prog \times 's) \times 'prog \times 's) set and petran :: 'Env \Rightarrow ('s,'prog) pconf \Rightarrow ('s,'prog) pconf \Rightarrow bool (-\(\dagger--pe\rightarrow-[81,81] 80) and fin-com :: 'prog and cpts-p :: 'Env \Rightarrow ('s,'prog) pconfs set and cpts-of-p :: 'Env \Rightarrow 'prog \Rightarrow 's \Rightarrow (('s,'prog) pconfs) set + fixes prog-validity :: 'Env \Rightarrow 'prog \Rightarrow 's set \Rightarrow ('s \times 's) set \Rightarrow ('s \times 's) set \Rightarrow 's set \Rightarrow bool (-\(\beta--sat_p[-,-,-,-,-][60,60,0,0,0,0]] 45) fixes assume-p :: 'Env \Rightarrow ('s set \times ('s \times 's) set) \Rightarrow (('s,'prog) pconfs) set fixes commit-p :: 'Env \Rightarrow (('s \times 's) set \times 's set) \Rightarrow (('s,'prog) pconfs) set
```

```
assumes prog-validity-def: \Gamma \models P \ sat_p \ [pre, \ rely, \ guar, \ post] \Longrightarrow
   \forall s. \ cpts-of-p \ \Gamma \ P \ s \cap assume-p \ \Gamma \ (pre, \ rely) \subseteq commit-p \ \Gamma \ (guar, \ post)
assumes assume-p-def: gets-p (c!0) \in pre \land (\forall i. Suc \ i < length \ c \longrightarrow
                   \Gamma \vdash c!i - pe \rightarrow c!(Suc\ i) \longrightarrow (gets-p\ (c!i), gets-p\ (c!Suc\ i)) \in rely)
                    \implies c \in assume-p \ \Gamma \ (pre, rely)
assumes commit-p-def: c \in commit-p \Gamma (quar, post) \Longrightarrow (\forall i. Suc i < length <math>c \longrightarrow
                   \Gamma \vdash c!i - c \rightarrow c!(Suc\ i) \longrightarrow (gets-p\ (c!i),\ gets-p\ (c!Suc\ i)) \in guar) \land
                   (getspc-p\ (last\ c) = fin-com \longrightarrow gets-p\ (last\ c) \in post)
begin
definition assume-e :: 'Env \Rightarrow ('s \ set \times ('s \times 's) \ set) \Rightarrow (('l, 'k, 's, 'prog) \ econfs)
set where
  assume-e \Gamma \equiv \lambda(pre, rely). {c. gets-e (c!0) \in pre \land (\forall i. Suc i < length c \longrightarrow
                   \Gamma \vdash c!i - ee \rightarrow c!(Suc\ i) \longrightarrow (gets-e\ (c!i),\ gets-e\ (c!Suc\ i)) \in rely)
definition commit-e :: 'Env \Rightarrow (('s \times 's) set \times 's set) \Rightarrow (('l, 'k, 's, 'prog) econfs)
set where
  commit-e \Gamma \equiv \lambda(guar, post). {c. (\forall i. Suc i < length c \longrightarrow
                   (\exists t. \ \Gamma \vdash c!i - et - t \rightarrow c!(Suc \ i)) \longrightarrow (gets - e \ (c!i), gets - e \ (c!Suc \ i)) \in
guar) \wedge
                   (getspc-e\ (last\ c) = AnonyEvent\ fin-com \longrightarrow gets-e\ (last\ c) \in post)\}
definition evt-validity :: 'Env \Rightarrow ('l,'k,'s,'prog) event \Rightarrow 's set \Rightarrow ('s \times 's) set \Rightarrow
('s \times 's) \ set \Rightarrow 's \ set \Rightarrow bool
                     (- \models -sat_e \ [-, -, -, -] \ [60, 60, 0, 0, 0, 0, 0] \ 45) where
  \Gamma \models Evt \ sat_e \ [pre, \ rely, \ guar, \ post] \equiv
  \forall s \ x. \ (cpts\text{-}of\text{-}ev \ \Gamma \ Evt \ s \ x) \cap assume\text{-}e \ \Gamma \ (pre, \ rely) \subseteq commit\text{-}e \ \Gamma \ (guar, \ post)
definition assume-es :: 'Env \Rightarrow ('s \ set \times ('s \times 's) \ set) \Rightarrow (('l, 'k, 's, 'prog) \ esconfs)
set where
  assume-es \Gamma \equiv \lambda(pre, rely). {c. gets-es (c!0) \in pre \land (\forall i. Suc i < length c \longrightarrow
                  \Gamma \vdash c!i - ese \rightarrow c!(Suc\ i) \longrightarrow (gets-es\ (c!i),\ gets-es\ (c!Suc\ i)) \in rely)\}
definition commit-es :: 'Env \Rightarrow (('s \times 's) \ set \times 's \ set) \Rightarrow (('l, 'k, 's, 'prog) \ esconfs)
set where
  commit-es \Gamma \equiv \lambda(guar, post). {c. (\forall i. Suc i < length c \longrightarrow
                   (\exists t. \ \Gamma \vdash c!i - es - t \rightarrow c!(Suc \ i)) \longrightarrow (gets - es \ (c!i), gets - es \ (c!Suc \ i))
\in guar) }
definition es-validity :: 'Env \Rightarrow ('l,'k,'s,'prog) esys \Rightarrow 's set \Rightarrow ('s \times 's) set \Rightarrow
('s \times 's) \ set \Rightarrow 's \ set \Rightarrow bool
                     (- \models -sat_s [-, -, -, -] [60,60,0,0,0,0] 45) where
  \Gamma \models es \ sat_s \ [pre, \ rely, \ guar, \ post] \equiv
  \forall s \ x. \ (cpts\text{-}of\text{-}es \ \Gamma \ es \ s \ x) \cap assume\text{-}es \ \Gamma \ (pre, rely) \subseteq commit\text{-}es \ \Gamma \ (quar, post)
```

definition assume-pes :: $'Env \Rightarrow ('s \ set \times ('s \times 's) \ set) \Rightarrow (('l, 'k, 's, 'prog) \ pesconfs)$

```
set where
  assume-pes \Gamma \equiv \lambda(pre, rely). {c. gets (c!0) \in pre \land (\forall i. Suc i < length c \longrightarrow
                 \Gamma \vdash c!i - pese \rightarrow c!(Suc\ i) \longrightarrow (gets\ (c!i),\ gets\ (c!Suc\ i)) \in rely)\}
definition commit-pes :: 'Env \Rightarrow (('s \times 's) \ set \times 's \ set) \Rightarrow (('l, 'k, 's, 'prog) \ pesconfs)
set where
  commit-pes \Gamma \equiv \lambda(guar, post). {c. (\forall i. Suc i < length c \longrightarrow
                   (\exists t. \ \Gamma \vdash c!i - pes - t \rightarrow c!(Suc \ i)) \longrightarrow (gets \ (c!i), gets \ (c!Suc \ i)) \in
guar)
definition pes-validity :: 'Env \Rightarrow ('l,'k,'s,'prog) paresys \Rightarrow 's set \Rightarrow ('s \times 's) set
\Rightarrow ('s \times 's) set \Rightarrow 's set \Rightarrow bool
                    (- \models -SAT [-, -, -, -] [60,60,0,0,0,0] 45) where
  \Gamma \models \mathit{pes}\; \mathit{SAT}\; [\mathit{pre},\, \mathit{rely},\, \mathit{guar},\, \mathit{post}] \equiv
   \forall s \ x. \ (cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x) \cap assume\text{-}pes \ \Gamma \ (pre, \ rely) \subseteq commit\text{-}pes \ \Gamma \ (guar,
post)
5.2
          Lemmas of Correctness Formulas
lemma assume-es-one-more:
  [esl \in cpts-es \ \Gamma; \ m > 0; \ m < length \ esl; \ take \ m \ esl \in assume-es \ \Gamma \ (pre, \ rely); \ \neg(\Gamma)
\vdash esl!(m-1) - ese \rightarrow esl!m)
         \implies take (Suc \ m) \ esl \in assume-es \ \Gamma \ (pre, \ rely)
  proof -
    assume p\theta: esl \in cpts-es \Gamma
      and p1: m > 0
      and p2: m < length \ esl
      and p3: take m esl\inassume-es \Gamma (pre, rely)
      and p4: \neg(\Gamma \vdash esl!(m-1) - ese \rightarrow esl!m)
    let ?esl1 = take (Suc m) esl
    let ?esl = take \ m \ esl
    have gets-es (?esl1!0) \in pre \land (\forall i. Suc i<length ?esl1 \longrightarrow
                       \Gamma \vdash ?esl1!i - ese \rightarrow ?esl1!(Suc \ i) \longrightarrow (gets-es \ (?esl1!i), gets-es
(?esl1!Suc\ i)) \in rely)
      proof
         from p1 p2 p3 show gets-es (?esl1!0) \in pre by (simp add:assume-es-def)
         show \forall i. Suc i < length ?esl1 \longrightarrow
                       \Gamma \vdash ?esl1!i - ese \rightarrow ?esl1!(Suc\ i) \longrightarrow (gets-es\ (?esl1!i), gets-es
(?esl1!Suc\ i)) \in rely
           proof -
           {
              \mathbf{fix} i
              assume a\theta: Suc i < length ?esl1
                and a1: \Gamma \vdash ?esl1!i - ese \rightarrow ?esl1!(Suc i)
              have (gets\text{-}es \ (?esl1!i), gets\text{-}es \ (?esl1!Suc \ i)) \in rely
```

with p1 have b1: qets-es (?esl1!i) = qets-es (?esl!i) by simp

proof(cases i < m - 1) assume b0: i < m - 1

```
from b0 p1 have b2: gets-es (?esl1!Suc i) = gets-es (?esl!Suc i) by
simp
              from p3 have \forall i. Suc i < length ?esl \longrightarrow
                              \Gamma \vdash ?esl!i - ese \rightarrow ?esl!(Suc i) \longrightarrow
                               (gets-es\ (?esl!i),\ gets-es\ (?esl!Suc\ i)) \in rely
                by (simp add:assume-es-def)
              with b0 have (gets-es\ (?esl!i),\ gets-es\ (?esl!Suc\ i)) \in rely
                by (metis (no-types, lifting) One-nat-def Suc-mono Suc-pred a1
                  length-take less-SucI less-imp-le-nat min.absorb2 nth-take p1 p2)
              with b1 b2 show ?thesis by simp
            next
              assume \neg (i < m - 1)
              with a0 have b0: i = m - 1 by (simp \ add: \ less-antisym \ p1)
              with p1 p4 a1 show ?thesis by simp
         } then show ?thesis by auto ged
     qed
   then show ?thesis by (simp add:assume-es-def)
 qed
lemma assume-es-take-n:
  [m > 0; m \le length \ esl; \ esl \in assume-es \ \Gamma \ (pre, \ rely)]
       \implies take \ m \ esl \in assume-es \ \Gamma \ (pre, \ rely)
 proof -
   assume p1: m > 0
     and p2: m \leq length \ esl
     and p3: esl \in assume - es \Gamma (pre, rely)
   let ?esl1 = take \ m \ esl
   from p3 have gets-es (esl!0) \in pre by (simp\ add:assume-es-def)
   with p1 p2 p3 have gets-es (?esl1!0) \in pre by simp
   moreover
   have \forall i. Suc i < length ?esl1 \longrightarrow
        \Gamma \vdash ?esl1!i - ese \rightarrow ?esl1!(Suc\ i) \longrightarrow (gets-es\ (?esl1!i),\ gets-es\ (?esl1!Suc\ i)
i)) \in rely
     proof -
     {
       \mathbf{fix} i
       assume a\theta: Suc i < length ?esl1
         and a1: \Gamma \vdash ?esl1!i - ese \rightarrow ?esl1!(Suc i)
           with p3 have (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in rely\ by\ (simp
add:assume-es-def)
       with p1 p2 a0 have (gets-es (?esl1!i), gets-es (?esl1!Suc i)) \in rely
         using Suc-lessD length-take min.absorb2 nth-take by auto
     then show ?thesis by auto qed
   ultimately show ?thesis by (simp add:assume-es-def)
  qed
```

```
lemma assume-es-drop-n:
  \llbracket m < \mathit{length}\ \mathit{esl};\ \mathit{esl} \in \mathit{assume-es}\ \Gamma\ (\mathit{pre},\ \mathit{rely});\ \mathit{gets-es}\ (\mathit{esl} ! m) \in \mathit{pre1} \rrbracket
        \implies drop \ m \ esl \in assume-es \ \Gamma \ (pre1, rely)
  proof -
   assume p1: m < length \ esl
      and p3: esl \in assume - es \Gamma (pre, rely)
      and p2: gets-es (esl!m) \in pre1
    let ?esl1 = drop \ m \ esl
    from p1 p2 p3 have gets-es (?esl1!0) \in pre1
      by (simp add: hd-conv-nth hd-drop-conv-nth not-less)
    moreover
    have \forall i. Suc i < length ?esl1 \longrightarrow
          \Gamma \vdash ?esl1!i - ese \rightarrow ?esl1!(Suc\ i) \longrightarrow (gets-es\ (?esl1!i),\ gets-es\ (?esl1!Suc\ i)
i)) \in rely
      proof -
        \mathbf{fix} i
        assume a\theta: Suc i < length ?esl1
          and a1: \Gamma \vdash ?esl1!i - ese \rightarrow ?esl1!(Suc i)
        with p1 p3 have (gets\text{-}es\ (esl!(m+i)),\ gets\text{-}es\ (esl!Suc\ (m+i))) \in rely by
(simp\ add:\ assume-es-def)
        with p1 p2 a0 have (gets-es\ (?esl1!i),\ gets-es\ (?esl1!Suc\ i)) \in rely
          using Suc-lessD length-take min.absorb2 nth-take by auto
      then show ?thesis by auto qed
    ultimately show ?thesis by (simp add:assume-es-def)
  qed
lemma commit-es-take-n:
  [m > 0; m \le length \ esl; \ esl \in commit-es \ \Gamma \ (guar, \ post)]
        \implies take \ m \ esl \in commit-es \ \Gamma \ (guar, \ post)
  proof -
    assume p1: m > 0
      and p2: m \leq length \ esl
      and p3: esl \in commit-es \Gamma (guar, post)
    let ?esl1 = take \ m \ esl
    have \forall i. Suc i < length ?esl1 \longrightarrow
            (\exists t. \ \Gamma \vdash ?esl1!i - es - t \rightarrow ?esl1!(Suc \ i)) \longrightarrow (gets-es \ (?esl1!i), gets-es
(?esl1!Suc\ i)) \in guar
      proof -
      {
        \mathbf{fix} i
        assume a\theta: Suc i < length ?esl1
          and a1: (\exists t. \Gamma \vdash ?esl1!i - es - t \rightarrow ?esl1!(Suc i))
            with p3 have (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in guar\ by\ (simp
add:commit-es-def)
        with p1 p2 a0 have (gets-es (?esl1!i), gets-es (?esl1!Suc i)) \in guar
          using Suc-lessD length-take min.absorb2 nth-take by auto
      }
```

```
then show ?thesis by auto ged
    then show ?thesis by (simp add:commit-es-def)
  qed
lemma commit-es-drop-n:
  [m < length \ esl; \ esl \in commit-es \ \Gamma \ (guar, \ post)]
        \implies drop \ m \ esl \in commit-es \ \Gamma \ (guar, \ post)
  proof -
    assume p1: m < length \ esl
      and p3: esl \in commit-es \Gamma (guar, post)
    let ?esl1 = drop \ m \ esl
    have \forall i. Suc i < length ?esl1 \longrightarrow
            (\exists t. \ \Gamma \vdash ?esl1!i - es - t \rightarrow ?esl1!(Suc \ i)) \longrightarrow (gets-es \ (?esl1!i), gets-es
(?esl1!Suc\ i)) \in guar
      proof -
        \mathbf{fix} i
        assume a\theta: Suc i < length ?esl1
          and a1: (\exists t. \Gamma \vdash ?esl1!i - es - t \rightarrow ?esl1!(Suc i))
         with p3 have (gets-es\ (esl!(m+i)),\ gets-es\ (esl!Suc\ (m+i))) \in guar\ by
(simp\ add:commit-es-def)
        with p1 a0 have (gets-es\ (?esl1!i),\ gets-es\ (?esl1!Suc\ i)) \in guar
          using Suc-lessD length-take min.absorb2 nth-take by auto
      then show ?thesis by auto qed
   then show ?thesis by (simp add:commit-es-def)
  qed
lemma assume-es-imp: [pre1 \subseteq pre; rely1 \subseteq rely; c \in assume-es \Gamma (pre1, rely1)] \implies
c \in assume - es \Gamma (pre, rely)
  proof -
    assume p\theta: pre1 \subseteq pre
      and p1: rely1 \subseteq rely
      and p3: c \in assume - es \Gamma (pre1, rely1)
    then have a\theta: gets-es (c!\theta) \in pre1 \land (\forall i. Suc i < length c \longrightarrow
              \Gamma \vdash c!i - ese \rightarrow c!(Suc\ i) \longrightarrow (gets-es\ (c!i),\ gets-es\ (c!Suc\ i)) \in rely1)
      by (simp add:assume-es-def)
    show ?thesis
      \mathbf{proof}(simp\ add:assume-es-def,rule\ conjI)
        from p\theta a\theta show gets-es (c ! \theta) \in pre by auto
      next
        from p1 a0 show \forall i. Suc i < length c \longrightarrow \Gamma \vdash c ! i - ese \rightarrow c ! Suc i
                             \longrightarrow (gets\text{-}es\ (c\ !\ i),\ gets\text{-}es\ (c\ !\ Suc\ i)) \in rely
          by auto
      qed
 qed
lemma commit-es-imp: [guar1 \subseteq guar; post1 \subseteq post; c \in commit-es \Gamma (guar1, post1)]
\implies c \in commit\text{-}es \ \Gamma \ (guar, post)
```

```
proof -
    \mathbf{assume}\ p\theta\colon guar1\!\subseteq\!guar
      and p1: post1 \subseteq post
      and p3: c \in commit-es \Gamma (guar1, post1)
    then have a\theta: \forall i. Suc i < length c \longrightarrow
                 (\exists t. \ \Gamma \vdash c!i - es - t \rightarrow c!(Suc \ i)) \longrightarrow (gets - es \ (c!i), gets - es \ (c!Suc \ i))
\in quar1
       by (simp add:commit-es-def)
    show ?thesis
       proof(simp add:commit-es-def)
        from p0 a0 show \forall i. Suc i < length c \longrightarrow (\exists t. \Gamma \vdash c ! i - es - t \rightarrow c ! Suc
i)
                                \longrightarrow (gets\text{-}es\ (c\ !\ i),\ gets\text{-}es\ (c\ !\ Suc\ i))\in guar
           by auto
       qed
  qed
lemma assume-pes-imp: [pre1 \subseteq pre; rely1 \subseteq rely; c \in assume-pes \Gamma (pre1, rely1)] \Longrightarrow
c \in assume \text{-pes } \Gamma \text{ (pre,rely)}
  proof -
    assume p\theta: pre1 \subseteq pre
       and p1: rely1 \subseteq rely
      and p3: c \in assume \text{-}pes \Gamma (pre1, rely1)
    then have a\theta: gets\ (c!\theta) \in pre1 \land (\forall i. Suc\ i < length\ c \longrightarrow
                 \Gamma \vdash c!i - pese \rightarrow c!(Suc\ i) \longrightarrow (gets\ (c!i),\ gets\ (c!Suc\ i)) \in rely1)
       by (simp add:assume-pes-def)
    show ?thesis
       proof(simp add:assume-pes-def,rule conjI)
         from p\theta a\theta show gets (c ! \theta) \in pre by auto
       next
         from p1 a0 show \forall i. Suc i < length \ c \longrightarrow \Gamma \vdash c ! \ i - pese \rightarrow c ! Suc \ i
                                \longrightarrow (gets \ (c \ ! \ i), \ gets \ (c \ ! \ Suc \ i)) \in rely
           by auto
       qed
  qed
lemma commit-pes-imp: [guar1 \subseteq guar; post1 \subseteq post; c \in commit-pes \Gamma (guar1, post1)]
\implies c \in commit\text{-}pes \ \Gamma \ (guar, post)
  proof -
    assume p\theta: quar1 \subseteq quar
      and p1: post1 \subseteq post
       and p3: c \in commit-pes \Gamma (guar1, post1)
    then have a\theta: \forall i. Suc \ i < length \ c \longrightarrow
                   (\exists t. \ \Gamma \vdash c!i - pes - t \rightarrow c!(Suc \ i)) \longrightarrow (gets \ (c!i), gets \ (c!Suc \ i)) \in
guar1
       by (simp add:commit-pes-def)
    show ?thesis
       proof(simp add:commit-pes-def)
          from p0 a0 show \forall i. Suc i < length c \longrightarrow (\exists t. \Gamma \vdash c ! i - pes - t \rightarrow c !
```

```
Suc i)
                           \longrightarrow (gets \ (c \ ! \ i), gets \ (c \ ! \ Suc \ i)) \in guar
          by auto
      qed
  ged
lemma assume-pes-take-n:
  [m > 0; m \le length \ esl; \ esl \in assume \text{-pes} \ \Gamma \ (pre, \ rely)]
        \implies take \ m \ esl \in assume pes \ \Gamma \ (pre, rely)
  proof -
   assume p1: m > 0
     and p2: m \leq length \ esl
     and p3: esl \in assume \text{-} pes \Gamma (pre, rely)
   \mathbf{let}~?esl1~=~take~m~esl
   from p3 have gets (esl!0) \in pre by (simp\ add:assume-pes-def)
   with p1 p2 p3 have gets (?esl1!0) \in pre by simp
   moreover
   have \forall i. Suc i < length ?esl1 \longrightarrow
          \Gamma \vdash ?esl1!i - pese \rightarrow ?esl1!(Suc\ i) \longrightarrow (gets\ (?esl1!i),\ gets\ (?esl1!Suc\ i))
\in rely
     proof -
      {
       \mathbf{fix} i
       assume a\theta: Suc i < length ?esl1
         and a1: \Gamma \vdash ?esl1!i - pese \rightarrow ?esl1!(Suc\ i)
     with p3 have (gets\ (esl!i),\ gets\ (esl!Suc\ i)) \in rely\ by\ (simp\ add:assume-pes-def)
       with p1 p2 a0 have (gets (?esl1!i), gets (?esl1!Suc i)) \in rely
          using Suc-lessD length-take min.absorb2 nth-take by auto
     then show ?thesis by auto qed
   ultimately show ?thesis by (simp add:assume-pes-def)
  qed
lemma assume-pes-drop-n:
  \llbracket m < length \ esl; \ esl \in assume \text{-pes} \ \Gamma \ (pre, \ rely); \ gets \ (esl!m) \in pre1 \rrbracket
        \implies drop \ m \ esl \in assume-pes \ \Gamma \ (pre1, rely)
 proof -
   assume p1: m < length \ esl
      and p3: esl \in assume \text{-}pes \Gamma (pre, rely)
     and p2: gets (esl!m) \in pre1
   let ?esl1 = drop \ m \ esl
   from p1 p2 p3 have gets (?esl1!0) \in pre1
      by (simp add: hd-conv-nth hd-drop-conv-nth not-less)
   moreover
   have \forall i. Suc i < length ?esl1 \longrightarrow
          \Gamma \vdash ?esl1!i - pese \rightarrow ?esl1!(Suc\ i) \longrightarrow (gets\ (?esl1!i),\ gets\ (?esl1!Suc\ i))
\in rely
     proof -
      {
```

```
fix i assume a0: Suc i < length ?esl1 and a1: \Gamma \vdash ?esl1!i - pese \rightarrow ?esl1!(Suc i) with p1 p3 have (gets (esl!(m+i)), gets (esl!Suc (m+i))) \in rely by (simp add: assume-pes-def) with p1 p2 a0 have (gets (?esl1!i), gets (?esl1!Suc i)) \in rely using Suc-lessD length-take min.absorb2 nth-take by auto \} then show ?thesis by auto qed ultimately show ?thesis by (simp add:assume-pes-def) qed end
```

6 The Rely-guarantee Proof System and its Soundness of PiCore

```
theory PiCore-Hoare imports PiCore-Validity begin \mathbf{declare} \ [[smt\text{-}timeout = 300]]
```

6.1 Proof System for Programs

```
declare Un-subset-iff [simp del] sup.bounded-iff [simp del]
definition stable-e :: 'a set \Rightarrow ('a \times 'a) set \Rightarrow bool where
  stable-e \equiv \lambda f g. (\forall x \ y. \ x \in f \longrightarrow (x, \ y) \in g \longrightarrow y \in f)

lemma Id = \{(s, \ t). \ s = t\}
  by auto

lemma stable-e-id: stable-e P Id
  unfolding stable-e-def Id-def by auto

lemma stable-e-id2: stable-e P \{(s,t). \ s = t\}
  unfolding stable-e-def by auto

lemma stable-e-int2: stable-e s r \Longrightarrow stable-e t \ r \Longrightarrow stable-e (s \cap t) \ r
  by (metis (full-types) IntD1 IntD2 IntI stable-e-def)

lemma stable-e-int3: stable-e k r \Longrightarrow stable-e s r \Longrightarrow stable-e t \ r
```

```
lemma stable-e-un2: stable-e s r \Longrightarrow stable-e t r \Longrightarrow stable-e (s \cup t) r
 by (simp add: stable-e-def)
6.2
        Rely-guarantee Condition
record 's rgformula =
    pre-rgf :: 's set
   rely-rgf :: ('s × 's) set
    guar-rgf :: ('s \times 's) set
    post-rgf :: 's set
definition getrg formula ::
     \textit{'s set} \Rightarrow \textit{('s} \times \textit{'s) set} \Rightarrow \textit{('s} \times \textit{'s) set} \Rightarrow \textit{'s set} \Rightarrow \textit{'s rgformula (RG[-,-,-,-])}
[91,91,91,91] 90)
     where getrgformula pre r g pst \equiv (pre-rgf = pre, rely-rgf = r, guar-rgf = g,
post-rgf = pst
definition Pre_f :: 's \ rgformula \Rightarrow 's \ set
  where Pre_f rg = pre-rgf rg
definition Rely_f :: 's \ rgformula \Rightarrow ('s \times 's) \ set
  where Rely_f rg = rely-rgf rg
definition Guar_f :: 's \ rgformula \Rightarrow ('s \times 's) \ set
  where Guar_f rg = guar-rgf rg
definition Post_f :: 's \ rgformula \Rightarrow 's \ set
  where Post_f rg = post-rgf rg
type-synonym ('l,'k,'s,'prog) rgformula-e = ('l,'k,'s,'prog) event \times 's rgformula
definition get-int-pre :: ('l, 'k, 's, 'prog) rgformula-e set <math>\Rightarrow 's set
where get-int-pre S \equiv \{s. \ \forall f \in S. \ s \in Pre_f \ (snd \ f)\}
definition get-int-rely :: ('l, 'k, 's, 'prog) rgformula-e set \Rightarrow ('s \times 's) set
where get-int-rely S \equiv \{s. \ \forall f \in S. \ s \in Rely_f \ (snd \ f)\}
definition get-un-guar :: ('l, 'k, 's, 'prog) rgformula-e set \Rightarrow ('s \times 's) set
where get-un-guar S \equiv \{s. \exists f \in S. s \in Guar_f (snd f)\}
definition get-un-post :: ('l, 'k, 's, 'prog) rgformula-e set <math>\Rightarrow 's set
where get-un-post S \equiv \{s. \exists f \in S. s \in Post_f (snd f)\}
```

by (metis (full-types) IntD1 IntD2 IntI stable-e-def)

```
type-synonym ('l,'k,'s,'prog) rgformula-es =
  ('l, 'k, 's, 'prog) rgformula-ess \times 's rgformula
type-synonym ('l, 'k, 's, 'prog) rgformula-par =
  'k \Rightarrow ('l, 'k, 's, 'prog) \ rgformula-es
definition E_e :: ('l, 'k, 's, 'prog) \ rgformula-e \Rightarrow ('l, 'k, 's, 'prog) \ event
  where E_e rg = fst rg
definition Pre_e :: ('l, 'k, 's, 'prog) \ rgformula-e \Rightarrow 's \ set
  where Pre_e rg = pre-rgf (snd rg)
definition Rely_e :: ('l, 'k, 's, 'prog) \ rgformula-e \Rightarrow ('s \times 's) \ set
  where Rely_e rg = rely-rgf (snd rg)
definition Guar_e :: ('l, 'k, 's, 'prog) \ rgformula-e \Rightarrow ('s \times 's) \ set
  where Guar_e rg = guar-rgf (snd rg)
definition Post_e :: ('l, 'k, 's, 'prog) \ rgformula-e \Rightarrow 's \ set
  where Post_e rg = post-rgf (snd rg)
definition Pre_{es} :: ('l, 'k, 's, 'prog) \ rgformula-es \Rightarrow 's \ set
  where Pre_{es} rg = pre-rgf (snd rg)
definition Rely_{es} :: ('l,'k,'s,'prog) rgformula-es \Rightarrow ('s \times 's) set
  where Rely_{es} rg = rely-rgf (snd rg)
definition Guar_{es} :: ('l, 'k, 's, 'prog) \ rgformula-es \Rightarrow ('s \times 's) \ set
  where Guar_{es} rg = guar-rgf (snd rg)
definition Post_{es} :: ('l,'k,'s,'prog) rgformula-es \Rightarrow 's set
  where Post_{es} rg = post-rgf (snd rg)
fun evtsys-spec :: ('l,'k,'s,'prog) rgformula-<math>ess \Rightarrow ('l,'k,'s,'prog) esys where
  evtsys-spec-evtseq: evtsys-spec (rgf-EvtSeq\ ef\ esf) = EvtSeq\ (E_e\ ef)\ (evtsys-spec
(fst\ esf))
  evtsys-spec-evtsys: evtsys-spec (rgf-EvtSys esf) = EvtSys (Domain \ esf)
definition paresys-spec :: ('l,'k,'s,'prog) rgformula-par \Rightarrow ('l,'k,'s,'prog) paresys
  where paresys-spec pesf \equiv \lambda k. evtsys-spec (fst (pesf k))
locale event-hoare = event-validity ptran petran fin-com cpts-p cpts-of-p prog-validity
assume-p commit-p
```

rgf-EvtSeq ('l,'k,'s,'prog) rgformula-e ('l,'k,'s,'prog) rgformula- $ess \times$'s rgformula

datatype ('l,'k,'s,'prog) rgformula-ess =

| rgf-EvtSys ('l,'k,'s,'prog) rgformula-e set

```
for ptran :: 'Env \Rightarrow (('prog \times 's) \times 'prog \times 's) \ set
and petran :: 'Env \Rightarrow ('s, 'prog) \ pconf \Rightarrow ('s, 'prog) \ pconf \Rightarrow bool \ (-\vdash --pe \rightarrow -
[81,81,81] 80)
and fin-com :: 'prog
and cpts-p :: 'Env \Rightarrow ('s,'prog) pconfs set
and cpts-of-p :: 'Env \Rightarrow 'prog \Rightarrow 's \Rightarrow (('s,'prog) \ pconfs) \ set
and prog-validity :: 'Env \Rightarrow 'prog \Rightarrow 's \ set \Rightarrow ('s \times 's) \ set \Rightarrow ('s \times 's) \ set \Rightarrow 's
set \Rightarrow bool
                    (- \models -sat_p \ [-, -, -, -] \ [60, 60, 0, 0, 0, 0] \ 45)
and assume-p :: 'Env \Rightarrow ('s set \times ('s \times 's) set) \Rightarrow (('s,'prog) pconfs) set
and commit-p :: 'Env \Rightarrow (('s \times 's) \ set \times 's \ set) \Rightarrow (('s, 'prog) \ pconfs) \ set
fixes rghoare-p :: 'Env \Rightarrow ['prog, 's set, ('s \times 's) set, ('s \times 's) set, 's set] \Rightarrow bool
     (-\vdash -sat_p \ [-, -, -, -] \ [60,60,0,0,0,0] \ 45)
assumes rgsound-p: \Gamma \vdash P \ sat_p \ [pre, rely, guar, post] \longrightarrow \Gamma \models P \ sat_p \ [pre, rely, guar, post]
quar, post
begin
```

6.3 Proof System for Events

```
inductive rghoare-e :: 'Env \Rightarrow [('l,'k,'s,'prog) event, 's set, ('s \times 's) set, ('s \times 's) set, 's set] \Rightarrow bool (- \vdash - sat<sub>e</sub> [-, -, -, -] [60,60,0,0,0,0] 45)
```

where

 $AnonyEvt: \Gamma \vdash P \ sat_p \ [pre, \ rely, \ guar, \ post] \Longrightarrow \Gamma \vdash AnonyEvent \ P \ sat_e \ [pre, \ rely, \ guar, \ post]$

```
| BasicEvt: \llbracket \Gamma \vdash body \ ev \ sat_p \ [pre \cap (guard \ ev), \ rely, \ guar, \ post]; stable-e pre \ rely; \forall \ s. \ (s, \ s) \in guar \rrbracket \Longrightarrow \Gamma \vdash BasicEvent \ ev \ sat_e \ [pre, \ rely, \ guar, \ post]
```

```
| Evt-conseq: \llbracket pre \subseteq pre'; rely \subseteq rely'; guar' \subseteq guar; post' \subseteq post;

\Gamma \vdash ev \ sat_e \ [pre', rely', guar', post'] \ \rrbracket

\Longrightarrow \Gamma \vdash ev \ sat_e \ [pre, rely, guar, post]
```

definition Evt-sat-RG:: 'Env \Rightarrow ('l,'k,'s,'prog) event \Rightarrow 's rgformula \Rightarrow bool ((---) [60,60,60] 61)

where Evt-sat-RG Γ e $rg \equiv \Gamma \vdash e \ sat_e \ [Pre_f \ rg, \ Rely_f \ rg, \ Guar_f \ rg, \ Post_f \ rg]$

6.4 Proof System for Event Systems

```
inductive rghoare-es: 'Env \Rightarrow [('l,'k,'s,'prog) \ rgformula-ess, 's \ set, ('s \times 's) \ set
```

```
rely \subseteq Rely_e \ ef; \ rely \subseteq Rely_f \ (snd \ esf);
                 Guar_e \ ef \subseteq guar; \ Guar_f \ (snd \ esf) \subseteq guar;
                 Post_e \ ef \subseteq Pre_f \ (snd \ esf)
                 \implies \Gamma \vdash (rgf\text{-}EvtSeq\ ef\ esf)\ sat_s\ [pre,\ rely,\ guar,\ post]
| EvtSys-h: [ \forall ef \in esf. \Gamma \vdash E_e \ ef \ sat_e \ [Pre_e \ ef, \ Rely_e \ ef, \ Guar_e \ ef, \ Post_e \ ef ];
                \forall ef \in esf. \ pre \subseteq Pre_e \ ef; \ \forall ef \in esf. \ rely \subseteq Rely_e \ ef;
               \forall ef \in esf. \ Guar_e \ ef \subseteq guar; \ \forall \ ef \in esf. \ Post_e \ ef \subseteq post;
               \forall ef1 \ ef2. \ ef1 \in esf \land ef2 \in esf \longrightarrow Post_e \ ef1 \subseteq Pre_e \ ef2;
                stable-e pre\ rely;\ \forall\ s.\ (s,\ s) \in guar
                \implies \Gamma \vdash rgf\text{-}EvtSys \ esf \ sat_s \ [pre, \ rely, \ guar, \ post]
| EvtSys\text{-}conseq: [pre \subseteq pre'; rely \subseteq rely'; guar' \subseteq guar; post' \subseteq post;
                            \Gamma \vdash esys \ sat_s \ [pre', rely', guar', post'] \ ]
                           \Longrightarrow \Gamma \vdash esys \ sat_s \ [pre, \ rely, \ guar, \ post]
definition Esys-sat-RG:: 'Env \Rightarrow ('l, 'k, 's, 'prog) rgformula-ess \Rightarrow 's rgformula \Rightarrow
bool ((- +_{es} -) [60, 60, 60] 61)
where Esys-sat-RG \Gamma es rg \equiv \Gamma \vdash es\ sat_s\ [Pre_f\ rg,\ Rely_f\ rg,\ Guar_f\ rg,\ Post_f\ rg]
          Proof System for Parallel Event Systems
inductive rghoare-pes :: 'Env \Rightarrow [('l,'k,'s,'prog) \ rgformula-par, 's set, ('s \times 's)]
set, ('s \times 's) set, 's set] \Rightarrow bool
            (-\vdash -SAT [-, -, -, -] [60,60,0,0,0,0] 45)
for \Gamma :: 'Env
where
  ParallelESys: [\forall k. \Gamma \vdash fst \ (pesf \ k) \ sat_s \ [Pre_{es} \ (pesf \ k), \ Rely_{es} \ (pesf \ k), \ Guar_{es}]
(pesf k), Post_{es} (pesf k)];
                      \forall k. \ pre \subseteq Pre_{es} \ (pesf \ k);
                      \forall k. \ rely \subseteq Rely_{es} \ (pesf \ k);
                      \forall\,k\;j.\;j{\neq}k\;\longrightarrow\;\;Guar_{es}\;(\mathit{pesf}\;j)\subseteq\,\mathit{Rely}_{es}\;(\mathit{pesf}\;k);
                      \forall k. \ Guar_{es} \ (pesf \ k) \subseteq guar;
                      \forall k. \ Post_{es} \ (pesf \ k) \subseteq post
                 \Longrightarrow \Gamma \vdash pesf SAT [pre, rely, guar, post]
| ParallelESys-conseq: \llbracket pre \subseteq pre'; rely \subseteq rely'; guar' \subseteq guar; post' \subseteq post; \rrbracket
                            \Gamma \vdash pesf SAT [pre', rely', quar', post'] 
                           \implies \Gamma \vdash pesf\ SAT\ [pre,\ rely,\ guar,\ post]
lemma es-sat-eq: (\Gamma \vdash fst \ (pesf \ k) \ sat_s \ [Pre_{es} \ (pesf \ k), \ Rely_{es} \ (pesf \ k), \ Guar_{es}
(pesf k), Post_{es} (pesf k)])
  =\Gamma (fst (pesf k)) \vdash_{es} (snd (pesf k))
by (simp add:Esys-sat-RG-def Pre<sub>es</sub>-def Rely<sub>es</sub>-def Guar<sub>es</sub>-def Post<sub>es</sub>-def Pre<sub>f</sub>-def
Rely_f-def Guar_f-def Post_f-def)
```

7 Soundness

7.1 Some previous lemmas

7.1.1 event

```
lemma assume-e-imp: [pre1 \subseteq pre; rely1 \subseteq rely; c \in assume-e \Gamma (pre1, rely1)] \implies
c \in assume - e \Gamma (pre, rely)
  proof -
    assume p\theta: pre1 \subseteq pre
      and p1: rely1 \subseteq rely
      and p3: c \in assume - e \Gamma (pre1, rely1)
    then have a0: gets-e (c!0) \in pre1 \land (\forall i. Suc \ i < length \ c \longrightarrow
                \Gamma \vdash c!i - ee \rightarrow c!(Suc\ i) \longrightarrow (gets-e\ (c!i),\ gets-e\ (c!Suc\ i)) \in rely1)
      by (simp add:assume-e-def)
    \mathbf{show}~? the sis
      proof(simp add:assume-e-def,rule conjI)
        from p\theta a\theta show gets-e(c!\theta) \in pre by auto
      next
        from p1 a0 show \forall i. Suc i < length c \longrightarrow \Gamma \vdash c ! i - ee \rightarrow c ! Suc i
                               \longrightarrow (gets-e\ (c\ !\ i),\ gets-e\ (c\ !\ Suc\ i)) \in rely
           by auto
      \mathbf{qed}
  qed
lemma commit-e-imp: [quar1 \subseteq quar; post1 \subseteq post; c \in commit-e \Gamma (quar1, post1)]
\implies c \in commit - e \ \Gamma \ (guar, post)
  proof -
    assume p\theta: quar1 \subseteq quar
      and p1: post1 \subseteq post
      and p3: c \in commit - e \Gamma (guar1, post1)
    then have a\theta: (\forall i. Suc i < length c \longrightarrow
                (\exists t. \ \Gamma \vdash c!i - et - t \rightarrow c!(Suc \ i)) \longrightarrow (gets - e \ (c!i), gets - e \ (c!Suc \ i)) \in
guar1) \land
                (getspc-e\ (last\ c) = AnonyEvent\ fin-com \longrightarrow gets-e\ (last\ c) \in post1)
      by (simp add:commit-e-def)
    show ?thesis
      proof(simp add:commit-e-def)
        from p0 p1 a0 show (\forall i. Suc \ i < length \ c \longrightarrow (\exists t. \ \Gamma \vdash c \ ! \ i - et - t \rightarrow c \ !
Suc i
                               \longrightarrow (gets-e\ (c\ !\ i),\ gets-e\ (c\ !\ Suc\ i)) \in guar) \land
                (getspc-e\ (last\ c) = AnonyEvent\ fin-com \longrightarrow gets-e\ (last\ c) \in post)
           by auto
      qed
  qed
7.1.2
           event system
lemma concat-i-lm[rule-format]: \forall ls l. concat ls = l \land (\forall i < length ls. ls!i \neq []) \longrightarrow
(\forall i. Suc \ i < length \ ls \longrightarrow
```

```
(\exists m \ n. \ m \leq length \ l \land n \leq length \ l \land m \leq n \land ls!i@[(ls!Suc
[i][\theta] = take (n - m) (drop m l))
 proof -
    \mathbf{fix} ls
    have \forall l. concat ls = l \land (\forall i < length \ ls. \ ls!i \neq []) \longrightarrow (\forall i. \ Suc \ i < length \ ls
                       (\exists m \ n. \ m \leq length \ l \land n \leq length \ l \land m \leq n \land ls!i@[(ls!Suc
[i][\theta] = take (n - m) (drop m l))
    proof(induct ls)
      case Nil show ?case by simp
    next
      case (Cons \ x \ xs)
      assume a\theta: \forall l. \ concat \ xs = l \land (\forall i < length \ xs. \ xs \ ! \ i \neq []) \longrightarrow
                        (\forall i. \ Suc \ i < length \ xs \longrightarrow (\exists \ m \ n. \ m \leq length \ l \land n \leq length
l \wedge
                                m \leq n \wedge xs \mid i \otimes [xs \mid Suc \mid i \mid \theta] = take (n - m) (drop)
m(l)))
      show ?case
       proof -
          \mathbf{fix}\ l
          assume b\theta: concat (x \# xs) = l
            and b1: \forall i < length (x \# xs). (x \# xs) ! i \neq []
          let ?l' = concat xs
          from b\theta have b2: l = x@?l' by simp
         have \forall i. \ Suc \ i < length \ (x \# xs) \longrightarrow (\exists \ m \ n. \ m \leq length \ l \land n \leq length
l \wedge
                       m \le n \land (x \# xs) ! i @ [(x \# xs) ! Suc i ! \theta] = take (n - m)
(drop \ m \ l))
            proof -
              \mathbf{fix} i
              assume c\theta: Suc i < length (x \# xs)
              then have c1: length xs > 0 by auto
              have \exists m \ n. \ m \leq length \ l \land n \leq length \ l \land m \leq n \land l
                       (x \# xs) ! i @ [(x \# xs) ! Suc i ! 0] = take (n - m) (drop m l)
                \mathbf{proof}(cases\ i=0)
                  assume d\theta: i = \theta
                   from b1 c1 have d1: (x \# xs) ! 1 \neq [] by (metis One-nat-def c0
d\theta)
                  with b0 have d2: x @ [xs!0!0] = take (length x + 1) (drop 0 l)
                           by (smt Cons-nth-drop-Suc Nil-is-append-conv One-nat-def
append-eq-conv-conj
                    c0 concat.simps(2) d0 drop-0 drop-Suc-Cons length-greater-0-conv
                nth-Cons-Suc nth-append self-append-conv2 take-0 take-Suc-conv-app-nth
take-add)
                  then have d3: (x \# xs) ! 0 @ [(x \# xs) ! 1 ! 0] = take (length x)
```

```
+ 1) (drop \ 0 \ l)
                 by simp
                moreover
                have 0 \leq length \ l \ using \ calculation \ by \ auto
                moreover
                from b0\ d1 have length\ x+1 \leq length\ l
                   by (metis Suc-eq-plus1 d2 drop-0 length-append-singleton linear
take-all)
                ultimately show ?thesis using d0 by force
              \mathbf{next}
                assume d\theta: i \neq \theta
                moreover
                from b1 have d1: \forall i < length \ xs. \ xs \ ! \ i \neq [] by auto
                moreover
                from c\theta have Suc\ (i-1) < length\ xs using d\theta by auto
                ultimately have \exists m \ n. \ m \leq length \ ?l' \land n \leq length \ ?l' \land
                           m \le n \land xs ! (i - 1) @ [xs ! Suc (i - 1) ! \theta] = take (n)
-m) (drop m ?l')
                   using a\theta \ d\theta by blast
               then obtain m and n where d2: m \leq length ?l' \land n \leq length ?l'
                           m \le n \land xs \ ! \ (i-1) \ @ \ [xs \ ! \ Suc \ (i-1) \ ! \ \theta] = take \ (n
-m) (drop \ m ?l')
                   by auto
                let ?m' = m + length x
                let ?n' = n + length x
                from b\theta d\theta have m' \leq length \ l by auto
                moreover
                from b\theta d2 have ?n' \leq length \ l by auto
                moreover
                from d2 have ?m' \le ?n' by auto
                moreover
               have (x \# xs) ! i @ [(x \# xs) ! Suc i ! \theta] = take (?n' - ?m') (drop)
?m'l)
                 using b2 d0 d2 by auto
                ultimately have ?m' < length \ l \land ?n' < length \ l \land ?m' < ?n' \land
                         (x \# xs) ! i @ [(x \# xs) ! Suc i ! 0] = take (?n' - ?m')
(drop ?m' l) by simp
                then show ?thesis by blast
              qed
          then show ?thesis by auto
          qed
       then show ?thesis by auto
       qed
   \mathbf{qed}
 then show ?thesis by blast
```

```
qed
```

```
lemma concat-last-lm: \forall ls \ l. \ concat \ ls = l \land length \ ls > 0 \longrightarrow
                      (\exists m : m \leq length \ l \wedge last \ ls = drop \ m \ l)
  proof
    \mathbf{fix} ls
    show \forall l. \ concat \ ls = l \land length \ ls > 0 \longrightarrow
                      (\exists m : m \leq length \ l \land last \ ls = drop \ m \ l)
      proof(induct ls)
        case Nil show ?case by simp
      next
        case (Cons \ x \ xs)
        assume a\theta: \forall l. \ concat \ xs = l \land \theta < length \ xs \longrightarrow (\exists \ m \leq length \ l. \ last \ xs
= drop \ m \ l)
       show ?case
          proof -
          {
            \mathbf{fix} l
            assume b\theta: concat (x \# xs) = l
              and b1: 0 < length (x \# xs)
            let ?l' = concat xs
            have \exists m \leq length \ l. \ last \ (x \# xs) = drop \ m \ l
              \mathbf{proof}(cases\ xs = [])
                assume c\theta: xs = []
                then show ?thesis using b0 by auto
              next
                assume c\theta: xs \neq []
                then have c1: length xs > 0 by auto
                with a0 have \exists m \leq length ?l'. last xs = drop \ m ?l' by auto
                then obtain m where c2: m \le length ?l' \land last xs = drop m ?l' by
auto
                with b0 show ?thesis
                  by (metis append-eq-conv-conj c0 concat.simps(2)
                      drop-all drop-drop last.simps nat-le-linear)
              qed
          }
          then show ?thesis by auto
          qed
      qed
 qed
lemma concat-equiv: [l \neq l]; l = concat \ lt; \forall i < length \ lt. length \ (lt!i) \geq 2] \implies
          \forall i. \ i \leq length \ l \longrightarrow (\exists k \ j. \ k < length \ lt \land j \leq length \ (lt!k) \land
                  drop \ i \ l = (drop \ j \ (lt!k)) @ concat \ (drop \ (Suc \ k) \ lt) )
  proof -
    assume p\theta: l = concat lt
      and p1: \forall i < length \ lt. \ length \ (lt!i) \geq 2
      and p3: l \neq []
    then have p_4: lt \neq [] using concat.simps(1) by blast
```

```
show ?thesis
     proof -
       \mathbf{fix} i
       assume a\theta: i < length l
       from a0 have \exists k j. k < length lt \land j \leq length (lt!k) \land
                 drop \ i \ l = (drop \ j \ (lt!k)) @ concat \ (drop \ (Suc \ k) \ lt)
         \mathbf{proof}(induct\ i)
           case \theta
           assume b\theta: \theta \leq length l
           have drop \ \theta \ l = drop \ \theta \ (lt \ ! \ \theta) \ @ \ concat \ (drop \ (Suc \ \theta) \ lt)
           by (metis concat.simps(2) drop-0 drop-Suc-Cons list.exhaust nth-Cons-0
p\theta p4)
           then show ?case using p4 by blast
         next
           case (Suc\ m)
          assume b0: m \leq length \ l \Longrightarrow \exists k \ j. \ k < length \ lt \land j \leq length \ (lt \ ! \ k) \land
                         drop \ m \ l = drop \ j \ (lt \ ! \ k) \ @ \ concat \ (drop \ (Suc \ k) \ lt)
             and b1: Suc m \leq length l
           then have \exists k \ j. \ k < length \ lt \land j \leq length \ (lt \ ! \ k) \land
                         drop \ m \ l = drop \ j \ (lt \ ! \ k) \ @ \ concat \ (drop \ (Suc \ k) \ lt)
             by auto
           then obtain k and j where b2: k < length \ lt \land j \leq length \ (lt \ ! \ k) \land
                        drop \ m \ l = drop \ j \ (lt \ ! \ k) \ @ \ concat \ (drop \ (Suc \ k) \ lt) \ \mathbf{by} \ auto
           show ?case
             proof(cases j = length(lt!k))
               assume c\theta: j = length(lt!k)
               with b2 have c1: drop m \ l = concat \ (drop \ (Suc \ k) \ lt) by simp
               from b1 have drop m l \neq [] by simp
               with c1 have c2: drop (Suc k) lt \neq [] by auto
               then obtain lt1 and lts where c3: drop (Suc k) lt = lt1 # lts
                 by (meson neg-Nil-conv)
                   then have c4: drop\ (Suc\ (Suc\ k))\ lt = lts by (metis\ drop\ -Suc\ )
list.sel(3) tl-drop)
               moreover
               from c3 have c5: lt!Suc k = lt1 by (simp add: nth-via-drop)
              ultimately have drop (Suc \ m) \ l = drop \ 1 \ lt1 \ @ \ concat \ lts \ using \ c1
c3
                 by (metis One-nat-def Suc-leI Suc-lessI b2 concat.simps(2)
                   drop-0 drop-Suc drop-all list.distinct(1) list.size(3)
                   not-less-eq-eq numeral-2-eq-2 p1 tl-append2 tl-drop zero-less-Suc)
              with c4 c5 have drop\ (Suc\ m)\ l = drop\ 1\ (lt!Suc\ k)\ @\ concat\ (drop\ m)
(Suc\ (Suc\ k))\ lt) by simp
               then show ?thesis by (metis One-nat-def Suc-leD Suc-leI Suc-lessI
c2 b2 drop-all numeral-2-eq-2 p1)
             next
               assume c\theta: j \neq length(lt!k)
               with b2 have c1: j < length(lt!k) by auto
              with b2 have drop\ (Suc\ m)\ l=drop\ (Suc\ j)\ (lt\ !\ k)\ @\ concat\ (drop\ m)
```

```
(Suc \ k) \ lt)
                     by (metis c0 drop-Suc drop-eq-Nil le-antisym tl-append2 tl-drop)
                   then show ?thesis using Suc-leI c1 b2 by blast
           qed
       then show ?thesis by auto
       qed
  \mathbf{qed}
lemma rely-take-rely: \forall i. Suc \ i < length \ l \longrightarrow \Gamma \vdash l!i - ese \rightarrow l!(Suc \ i)
         \longrightarrow (gets\text{-}es\ (l!i),\ gets\text{-}es\ (l!Suc\ i)) \in rely \Longrightarrow
         \forall m \ subl. \ m \leq length \ l \wedge subl = take \ m \ l \longrightarrow (\forall i. \ Suc \ i < length \ subl \longrightarrow \Gamma
\vdash subl!i - ese \rightarrow subl!(Suc \ i)
          \longrightarrow (gets\text{-}es\ (subl!i),\ gets\text{-}es\ (subl!Suc\ i)) \in rely)
  proof -
    assume p0: \forall i. Suc i < length l \longrightarrow \Gamma \vdash l!i - ese \rightarrow l!(Suc i)
          \longrightarrow (gets\text{-}es\ (l!i),\ gets\text{-}es\ (l!Suc\ i)) \in rely
    show ?thesis
       proof -
         \mathbf{fix} \ m
        have \forall subl. m \leq length \ l \land subl = take \ m \ l \longrightarrow (\forall i. \ Suc \ i < length \ subl \longrightarrow
\Gamma \vdash subl!i - ese \rightarrow subl!(Suc \ i)
          \longrightarrow (gets\text{-}es\ (subl!i),\ gets\text{-}es\ (subl!Suc\ i)) \in rely)
            proof(induct m)
              case \theta show ?case by simp
            next
              case (Suc \ n)
              assume a0: \forall subl. \ n \leq length \ l \land subl = take \ n \ l \longrightarrow
                              (\forall i. \ Suc \ i < length \ subl \longrightarrow \Gamma \vdash subl \ ! \ i - ese \rightarrow subl \ ! \ Suc \ i
                                    (gets-es\ (subl\ !\ i),\ gets-es\ (subl\ !\ Suc\ i))\in rely)
              show ?case
                proof -
                   \mathbf{fix} subl
                   assume b\theta: Suc n \leq length l
                     and b1: subl = take (Suc \ n) \ l
                  with a0 have \forall i. Suc \ i < length \ subl \longrightarrow \Gamma \vdash subl \ ! \ i - ese \rightarrow subl \ !
Suc \ i \longrightarrow
                                    (gets-es\ (subl\ !\ i),\ gets-es\ (subl\ !\ Suc\ i)) \in rely
                      using p\theta by auto
                then show ?thesis by auto
                qed
           qed
       then show ?thesis by auto
```

```
qed
      qed
lemma rely-drop-rely: \forall i. Suc \ i < length \ l \longrightarrow \Gamma \vdash l!i - ese \rightarrow l!(Suc \ i)
                           \longrightarrow (gets-es\ (l!i),\ gets-es\ (l!Suc\ i)) \in rely \Longrightarrow
                           \forall m \ subl. \ m \leq length \ l \land subl = drop \ m \ l \longrightarrow (\forall i. \ Suc \ i < length \ subl \longrightarrow i < length \ subl
\Gamma \vdash subl!i - ese \rightarrow subl!(Suc i)
                          \longrightarrow (\textit{gets-es } (\textit{subl!}i), \textit{gets-es } (\textit{subl!}Suc \ i)) \in \textit{rely})
      proof -
             assume p0: \forall i. Suc i < length l \longrightarrow \Gamma \vdash l!i - ese \rightarrow l!(Suc i)
                           \longrightarrow (gets\text{-}es\ (l!i),\ gets\text{-}es\ (l!Suc\ i)) \in rely
             show ?thesis
                   proof -
                          \mathbf{fix} \ m
                            have \forall subl. m < length \ l \land subl = drop \ m \ l \longrightarrow (\forall i. Suc \ i < length \ subl
\longrightarrow \Gamma \vdash subl!i - ese \rightarrow subl!(Suc i)
                           \longrightarrow (gets\text{-}es\ (subl!i),\ gets\text{-}es\ (subl!Suc\ i)) \in rely)
                                proof(induct \ m)
                                       case \theta show ?case by (simp add: p\theta)
                                next
                                       case (Suc \ n)
                                       assume a0: \forall subl. \ n \leq length \ l \land subl = drop \ n \ l \longrightarrow
                                                                                   (\forall i. \ Suc \ i < length \ subl \longrightarrow \Gamma \vdash subl \ ! \ i - ese \rightarrow subl \ ! \ Suc \ i
                                                                                                  (gets-es\ (subl\ !\ i),\ gets-es\ (subl\ !\ Suc\ i))\in rely)
                                       show ?case
                                             proof -
                                                    \mathbf{fix} \ subl
                                                    assume b\theta: Suc n \leq length l
                                                          and b1: subl = drop (Suc \ n) \ l
                                                 with a0 have \forall i. Suc \ i < length \ subl \longrightarrow \Gamma \vdash subl \ ! \ i - ese \rightarrow subl \ !
Suc \ i \longrightarrow
                                                                                                  (gets-es\ (subl\ !\ i),\ gets-es\ (subl\ !\ Suc\ i))\in rely
                                                              using p\theta by auto
                                             then show ?thesis by auto
                                             qed
                                qed
                   then show ?thesis by auto
                   qed
      qed
lemma rely-takedrop-rely: [\forall i. Suc \ i < length \ l \longrightarrow \Gamma \vdash l!i \ -ese \rightarrow l!(Suc \ i)]
                           \longrightarrow (gets\text{-}es\ (l!i),\ gets\text{-}es\ (l!Suc\ i)) \in rely;
                         \exists m \ n. \ m \leq length \ l \land n \leq length \ l \land m \leq n \land subl = take \ (n - m) \ (drop)
m \ l) \rrbracket \Longrightarrow
```

```
\forall i. \ Suc \ i < length \ subl \longrightarrow \Gamma \vdash subl! i - ese \rightarrow subl! (Suc \ i)
        \longrightarrow (gets\text{-}es\ (subl!i),\ gets\text{-}es\ (subl!Suc\ i)) \in rely
  proof -
    assume p1: \forall i. Suc \ i < length \ l \longrightarrow \Gamma \vdash l!i - ese \rightarrow l!(Suc \ i)
        \longrightarrow (gets\text{-}es\ (l!i),\ gets\text{-}es\ (l!Suc\ i)) \in rely
      and p3: \exists m \ n. \ m \leq length \ l \land n \leq length \ l \land m \leq n \land subl = take \ (n - length)
m) (drop m l)
    from p3 obtain m and n where a0: m \leq length \ l \land n \leq length \ l \land m \leq n
\wedge subl = take (n - m) (drop \ m \ l)
      by auto
    let ?subl1 = drop \ m \ l
    have a1: \forall i. Suc \ i < length ?subl1 \longrightarrow \Gamma \vdash ?subl1!i - ese \rightarrow ?subl1!(Suc \ i)
          \rightarrow (gets-es \ (?subl1!i), gets-es \ (?subl1!Suc \ i)) \in rely
      using a0 p1 rely-drop-rely by blast
    show ?thesis using a0 a1 by simp
  qed
lemma pre-trans: [esl \in assume-es \Gamma (pre, rely); \forall i < length esl. getspc-es (esl!i)
= es; stable-e pre rely
        \implies \forall i < length \ esl. \ gets-es \ (esl!i) \in pre
  proof -
    assume p\theta: esl \in assume-es \Gamma (pre, rely)
      and p2: \forall i < length \ esl. \ getspc-es \ (esl!i) = es
      and p3: stable-e pre rely
    then show ?thesis
      proof -
      {
        \mathbf{fix} i
        assume a\theta: i < length \ esl
        then have gets-es (esl!i) \in pre
          proof(induct i)
            case \theta from p\theta show ?case by (simp add:assume-es-def)
          next
            case (Suc \ j)
            assume b\theta: j < length \ esl \implies gets\text{-}es \ (esl \ ! \ j) \in pre
              and b1: Suc j < length esl
            then have b2: gets-es (esl ! j) \in pre by auto
            from p2\ b1 have getspc\text{-}es\ (esl\ !\ j) = es\ by\ auto
            moreover
            from p2\ b1 have getspc\text{-}es\ (esl\ !\ Suc\ j) = es\ by\ auto
                 ultimately have \Gamma \vdash esl ! j - ese \rightarrow esl ! Suc j by (simp add:
eqconf-esetran)
             with p0 b1 have (gets-es (esl!j), gets-es (esl!Suc j)) \in rely by (simp
add:assume-es-def)
            with p3 b2 show ?case by (simp add:stable-e-def)
          qed
```

```
then show ?thesis by auto
      qed
  qed
lemma pre-trans-assume-es:
  [esl \in assume\text{-}es \ \Gamma \ (pre, rely); \ n < length \ esl;
    \forall j. j \leq n \longrightarrow getspc\text{-}es \ (esl ! j) = es; \ stable\text{-}e \ pre \ rely
        \implies drop \ n \ esl \in assume-es \ \Gamma \ (pre, rely)
  proof -
    assume p\theta: esl \in assume-es \Gamma (pre, rely)
      and p2: \forall j. j \leq n \longrightarrow getspc\text{-}es \ (esl ! j) = es
      and p3: stable-e pre rely
      and p_4: n < length \ est
    then show ?thesis
      \mathbf{proof}(cases \ n = \theta)
        assume n = \theta with p\theta show ?thesis by auto
      next
        assume n \neq 0
        then have a\theta: n > \theta by simp
       let ?esl = drop \ n \ esl
       let ?esl1 = take (Suc n) esl
        from p0 a0 p4 have ?esl1 \in assume-es \Gamma (pre, rely)
          using assume-es-take-n[of Suc \ n \ esl \ \Gamma \ pre \ rely] by simp
        moreover
        from p2 a0 have \forall i < length ?esl1. getspc-es (?esl1 ! i) = es by simp
        ultimately
        have \forall i < length ?esl1. gets-es (?esl1!i) \in pre
          using pre-trans[of take (Suc n) esl \Gamma pre rely es] p3 by simp
        with a0 p4 have gets-es (?esl!0) \in pre
          using Cons-nth-drop-Suc Suc-leI length-take lessI less-or-eq-imp-le
         min.absorb2 nth-Cons-0 nth-append-length take-Suc-conv-app-nth by auto
        moreover
        \mathbf{have} \ \forall \ i. \ \mathit{Suc} \ i{<}\mathit{length} \ \mathit{?esl} \ \longrightarrow
               \Gamma \vdash ?esl!i - ese \rightarrow ?esl!(Suc\ i) \longrightarrow (gets-es\ (?esl!i), gets-es\ (?esl!Suc
i)) \in rely
          proof -
            \mathbf{fix} i
            assume b\theta: Suc i < length ?esl
              and b1: \Gamma \vdash ?esl!i - ese \rightarrow ?esl!(Suc i)
            from p\theta have \forall i. Suc i < length esl \longrightarrow
              \Gamma \vdash esl!i - ese \rightarrow esl!(Suc\ i) \longrightarrow (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in
rely
               by (simp add:assume-es-def)
            with p4 a0 b0 b1 have (gets-es\ (?esl!i),\ gets-es\ (?esl!Suc\ i)) \in rely
              using less-imp-le-nat rely-drop-rely by auto
          then show ?thesis by auto
```

```
qed
    ultimately show ?thesis by (simp add:assume-es-def)
   qed
qed
```

7.1.3parallel event system

7.2State trace equivalence

7.2.1 trace equivalence of program and anonymous event

```
primrec lower-anonyevt0 :: ('l, 'k, 's, 'prog) event \Rightarrow 's \Rightarrow ('s, 'prog) pconf
  where AnonyEv: lower-anonyevt0 (AnonyEvent p) s = (p, s)
       BasicEv: lower-anonyevt0 \ (BasicEvent \ p) \ s = (fin-com, \ s)
definition lower-anonyevt1 :: ('l, 'k, 's, 'prog) econf \Rightarrow ('s, 'prog) pconf
  where lower-anonyevt1 ec \equiv lower-anonyevt0 (getspc-e ec) (gets-e ec)
definition lower-evts :: ('l, 'k, 's, 'prog) econfs \Rightarrow (('s, 'prog) \ pconfs)
  where lower-evts ecfs \equiv map lower-anonyevt1 ecfs
lemma lower-anonyevt-s : getspc-e e = AnonyEvent P \Longrightarrow gets-p (lower-anonyevt1
e) = gets-e e
 by (simp add: qets-p-def lower-anonyevt1-def)
lemma lower-evts-same-len: ps = lower-evts es \Longrightarrow length ps = length es
apply(induct ps) by(simp add:lower-evts-def lower-anonyevt1-def)+
lemma lower-evts-same-s: ps = lower-evts (es::('l, 'k, 's, 'prog) \ econfs) \Longrightarrow \forall i < length
ps. \ gets-p \ (ps!i) = gets-e \ (es!i)
proof(induct ps arbitrary:es)
 case Nil
 then show ?case by(simp add:lower-evts-def lower-anonyevt1-def)
next
  case (Cons \ a \ ps)
  assume p: (\land es. ps = lower-evts (es::('l,'k,'s,'prog) econfs) \Longrightarrow \forall i < length ps.
gets-p (ps!i) = gets-e (es!i)
   and p1: a \# ps = lower-evts es
   \mathbf{fix} i
   assume i: i < length (a \# ps)
   then have gets-p((a \# ps) ! i) = gets-e(es ! i)
   proof(induct i)
     case \theta
       then show ?case apply (simp add:gets-p-def gets-e-def) using p1 ap-
\mathbf{ply}(case\text{-}tac\ qetspc\text{-}e\ (es!\theta))
       apply (simp add:lower-evts-def lower-anonyevt1-def getspc-e-def)
     apply (metis AnonyEv gets-e-def getspc-e-def lower-anonyevt1-def map-eq-Cons-D
nth-Cons-0 \ sndI)
       apply (simp add:lower-evts-def lower-anonyevt1-def getspc-e-def)
```

```
by (metis BasicEv gets-e-def getspc-e-def lower-anonyevt1-def map-eq-Cons-D
nth-Cons-0 \ sndI)
   \mathbf{next}
     case (Suc j)
     assume a\theta: Suc j < length (a \# ps)
     hence a1: j < length ps by auto
        from p1 have ps = lower-evts (tl es) apply (simp add:lower-evts-def
lower-anonyevt1-def) by auto
     moreover
     have gets-p ((a \# ps) ! Suc j) = gets-p (ps ! j) by (simp \ add: gets-p-def)
     moreover
    from p1 have gets-e (es! Suc j) = gets-e (tl es! j) using lower-evts-same-len[of
a \# ps \ es] apply(simp \ add: gets-e-def)
       by (metis length-0-conv list.simps(3) local.nth-tl nth-Cons-Suc)
     ultimately show ?case
       using lower-evts-same-len[of ps tl es] p[rule-format, of tl es j] a1 by auto
   qed
 then show ?case by auto
\mathbf{qed}
lemma equiv-lower-evts0: [\exists P. getspc-e \ (es!\ 0) = AnonyEvent\ P; \ es \in cpts-ev
\Gamma \rrbracket \implies lower\text{-}evts \ es \in cpts\text{-}p \ \Gamma
proof-
   assume a\theta: es \in cpts-ev \Gamma and a1: \exists P. getspc-e(es! \theta) = AnonyEvent P
   have \forall es \ P. \ getspc\text{-}e \ (es \ ! \ \theta) = AnonyEvent \ P \land es \in cpts\text{-}ev \ \Gamma \longrightarrow lower\text{-}evts
es \in cpts-p \Gamma
     proof -
       \mathbf{fix} \ es
       assume b\theta: \exists P. getspc-e \ (es ! \theta) = AnonyEvent P \ and
             b1: es \in cpts-ev \Gamma
       from b1 b0 have lower-evts es \in cpts-p \Gamma
         proof(induct es)
           case (CptsEvOne e's'x')
           assume c\theta: \exists P. getspc-e ([(e', s', x')] ! \theta) = AnonyEvent P
           then obtain P where getspc-e ([(e', s', x')] ! 0) = AnonyEvent P by
auto
           then have c1: e' = AnonyEvent P by (simp \ add:getspc-e-def)
           then have c2: lower-anonyevt1 (e', s', x') = (P, s')
            by (simp add: gets-e-def getspc-e-def lower-anonyevt1-def)
           then have c2: lower-evts [(e', s', x')] = [(P, s')]
            by (simp add: lower-evts-def)
           then show ?case by (simp add: CptsPOne)
           case (CptsEvEnv e' t' x' xs' s' y')
           assume c\theta: (e', t', x') \# xs' \in cpts\text{-}ev \Gamma and
```

```
c1: \exists P. \ getspc-e \ (((e', t', x') \# xs') ! \ \theta) = AnonyEvent \ P \Longrightarrow
lower-evts ((e', t', x') \# xs') \in cpts-p \Gamma and
              c2: \exists P. \ getspc\text{-}e\ (((e', s', y') \# (e', t', x') \# xs') ! \theta) = AnonyEvent
P
          let ?ob = lower-evts ((e', s', y') \# (e', t', x') \# xs')
          from c2 obtain P where c-:getspc-e (((e', s', y') \# (e', t', x') \# xs')
! \theta) = AnonyEvent P  by auto
          then have c3: ?ob! \theta = (P, s')
            by (simp add: lower-evts-def lower-anonyevt1-def lower-anonyevt0-def
gets-e-def getspc-e-def)
              from c- have c5: (e', s', y') = (AnonyEvent P, s', y') by (simp)
add:getspc-e-def)
          then have c4: e' = AnonyEvent P by simp
           with c1 have c6: lower-evts ((e', t', x') \# xs') \in cpts-p \Gamma by (simp)
add:qetspc-e-def)
          from c5 have c7: ?ob = (P, s') \# lower-evts ((e', t', x') \# xs')
           by (metis (no-types, lifting) c3 list.simps(9) lower-evts-def nth-Cons-0)
          from c4 have c8: lower-evts ((e', t', x') \# xs') = (P, t') \# lower-evts
xs'
             \mathbf{by}\ (simp\ add: lower-evts-def\ lower-anonyevt 1-def\ lower-anonyevt 0-def
gets-e-def getspc-e-def)
          with c6 c7 show ?case by (simp add: CptsPEnv)
        next
          case (CptsEvComp e1 s1 x1 et e2 t1 y1 xs1)
          assume c\theta: \Gamma \vdash (e1, s1, x1) - et - et \rightarrow (e2, t1, y1) and
                 c1: (e2, t1, y1) \# xs1 \in cpts\text{-}ev \Gamma \text{ and }
                 c2: \exists P. \ getspc\text{-}e\ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ 0) = AnonyEvent\ P
                     \implies lower\text{-}evts\ ((e2,\ t1,\ y1)\ \#\ xs1) \in cpts\text{-}p\ \Gamma and
                   c3: \exists P. \ getspc-e \ (((e1, s1, x1) \# (e2, t1, y1) \# xs1) ! \ 0) =
AnonyEvent P
           from c3 obtain P where c-:getspc-e (((e1, s1, x1) # (e2, t1, y1) #
xs1) ! 0) = AnonyEvent P by auto
          then have c4: e1 = AnonyEvent P by (simp add:getspc-e-def)
          with c\theta have \exists Q. e2 = AnonyEvent Q
            apply(clarify)
            apply(rule\ etran.cases)
            apply(simp-all)+
          then obtain Q where c5: e2 = AnonyEvent <math>Q by auto
           with c2 have c6:lower-evts ((e2, t1, y1) \# xs1) \in cpts-p \Gamma by (simp)
add: getspc-e-def)
          have c7: lower-evts ((e1, s1, x1) \# (e2, t1, y1) \# xs1) =
                (lower-anonyevt1\ (e1,\ s1,\ x1))\ \#\ lower-evts\ ((e2,\ t1,\ y1)\ \#\ xs1)
            by (simp add: lower-evts-def)
           have c7: lower-evts ((e2, t1, y1) \# xs1) = lower-anonyevt1 (e2, t1,
y1) # lower-evts xs1
            by (simp add: lower-evts-def)
```

```
with c6 have c8: lower-anonyevt1 (e2, t1, y1) # lower-evts xs1 \in
cpts-p \Gamma  by simp
          from c4 have c9: lower-anonyevt1 (e1, s1, x1) = (P, s1)
            by (simp add: gets-e-def getspc-e-def lower-anonyevt1-def)
          from c5 have c10: lower-anonyevt1 (e2, t1, y1) = (Q, t1)
            by (simp add: gets-e-def getspc-e-def lower-anonyevt1-def)
             from c0 c4 c5 have c11: \Gamma \vdash (AnonyEvent\ P,\ s1,\ x1)\ -et-et \rightarrow
(AnonyEvent Q, t1, y1) by simp
          then have \Gamma \vdash (P, s1) - c \rightarrow (Q, t1)
            apply(rule\ etran.cases)
            apply(simp-all)
            done
           with c8 c9 c10 have lower-anonyevt1 (e1, s1, x1) # lower-anonyevt1
(e2, t1, y1) \# lower-evts xs1 \in cpts-p \Gamma
            using CptsPComp by simp
          with c7 c7- show ?case by simp
         qed
     then show ?thesis by auto
   with a0 a1 show ?thesis by blast
 qed
lemma equiv-lower-evts2 : es \in cpts-of-ev \Gamma (AnonyEvent P) s x \Longrightarrow lower-evts
es \in cpts-p \ \Gamma \land (lower-evts \ es) \ ! \ \theta = (P,s)
 proof -
   assume a\theta: es \in cpts-of-ev \Gamma (AnonyEvent P) s x
   then have a1: es!\theta = (AnonyEvent\ P,(s,x)) \land es \in cpts-ev\ \Gamma by (simp\ add:
cpts-of-ev-def)
   then have a2: getspc-e (es! 0) = AnonyEvent\ P by (simp\ add:getspc-e-def)
   with a1 have a3: lower-evts es \in cpts-p \Gamma using equiv-lower-evts0
     by (simp add: equiv-lower-evts0)
   have a4: lower-evts es! \theta = lower-anonyevt1 (es! \theta)
    by (metis a3 cptn-not-empty list.simps(8) list.size(3) lower-evts-def neq0-conv
not-less0 nth-equalityI nth-map)
   from a1 have a5: lower-anonyevt1 (es! \theta) = (P,s)
     by (simp add: gets-e-def getspc-e-def lower-anonyevt1-def)
   with a4 have a6: lower-evts es! \theta = (P,s) by simp
   with a3 show ?thesis by simp
 \mathbf{qed}
lemma equiv-lower-evts: es \in cpts-of-ev \Gamma (AnonyEvent P) sx \Longrightarrow lower-evts es
\in \mathit{cpts}	ext{-}\mathit{of}	ext{-}\mathit{p}\ \Gamma\ \mathit{P}\ \mathit{s}
  using equiv-lower-evts2[of es \Gamma P s x] cpts-of-p-def[of lower-evts es P s \Gamma] by
simp
```

7.2.2 trace between of basic and anonymous events

```
lemma evtent-in-cpts1: el \in cpts-ev \Gamma \wedge el ! \theta = (BasicEvent ev, s, x) \Longrightarrow
      Suc i < length \ el \land \Gamma \vdash el \ ! \ i - et - (EvtEnt \ (BasicEvent \ ev)) \sharp k \rightarrow el \ ! \ (Suc
      (\forall j. \ Suc \ j \leq i \longrightarrow getspc\text{-}e \ (el \ ! \ j) = BasicEvent \ ev \land \Gamma \vdash el \ ! \ j \ -ee \rightarrow el \ !
(Suc\ j))
 proof -
    assume p\theta: el \in cpts-ev \Gamma \land el ! \theta = (BasicEvent ev, s, x)
   assume p1: Suc i < length \ el \land \Gamma \vdash el \ ! \ i - et - (EvtEnt \ (BasicEvent \ ev)) \sharp k \rightarrow
el! (Suc i)
    from p\theta have p\theta 1: el \in cpts\text{-}ev \Gamma and
                 p02: el! 0 = (BasicEvent ev, s, x) by auto
    from p1 have p3: getspc-e (el! i) = BasicEvent ev by (meson ent-spec)
    show \forall j. \ Suc \ j \leq i \longrightarrow getspc-e \ (el!j) = BasicEvent \ ev \land \Gamma \vdash el!j - ee \rightarrow
el! (Suc j)
     proof -
      {
        \mathbf{fix} \ j
        assume a\theta: Suc j \leq i
        \mathbf{have} \ \forall \, k. \ k < i \longrightarrow \mathit{getspc-e} \ (\mathit{el} \ ! \ (i \ -k \ -1)) = \mathit{BasicEvent} \ \mathit{ev} \ \land \ \Gamma \vdash \mathit{el} \ !
(i-k-1)-ee \rightarrow el!(i-k)
          proof -
          {
            \mathbf{fix} \ k
           assume k < i
            -1)-ee \rightarrow el!(i-k)
             proof(induct k)
                case \theta
                from p3 have b0: \neg(\exists t \ ec1. \ \Gamma \vdash ec1-et-t \rightarrow (el \ ! \ i))
                  using no-tran2basic getspc-e-def by (metis prod.collapse)
              with p1 p01 have b1: getspc-e (el!(i-1)) = getspc-e(el!i) using
notran-confeqi
                  by (metis 0.prems Suc-diff-1 Suc-lessD)
                with p3 show ?case by (simp add: eqconf-eetran)
             next
                case (Suc\ m)
               assume b0: m < i \Longrightarrow getspc\text{-}e \ (el! \ (i-m-1)) = BasicEvent \ ev
                                    \wedge \Gamma \vdash el ! (i - m - 1) - ee \rightarrow el ! (i - m) and
                       b1: Suc \ m < i
                then have b2: qetspc-e (el!(i-m-1)) = BasicEvent\ ev and
                          b3: \Gamma \vdash el! (i-m-1) - ee \rightarrow el! (i-m)
                            using Suc-lessD apply blast
                            using Suc-lessD b0 b1 by blast
                have b4: Suc\ m = m + 1 by auto
                with b2 have \neg(\exists t \ ec1. \ \Gamma \vdash ec1-et-t\rightarrow(el \ ! \ (i-Suc \ m)))
               using no-tran2basic getspc-e-def by (metis diff-diff-left prod.collapse)
                with p1 p02 have b5: getspc-e (el! ((i - Suc m - 1))) = getspc-e
```

```
(el!(i-Sucm))
                    using notran-confeqi by (smt Suc-diff-1 Suc-lessD b1 diff-less
less-trans p01
                                      zero-less-Suc zero-less-diff)
             with b2\ b4 have b6: getspc-e\ (el!((i-Suc\ m-1))) = BasicEvent
ev
                by (metis diff-diff-left)
                from b5 have \Gamma \vdash el! (i - Suc \ m - 1) - ee \rightarrow el! (i - Suc \ m)
using eqconf-eetran by simp
              with b6 show ?case by simp
         }
         then show ?thesis by auto
         qed
       then show ?thesis by (metis (no-types, lifting) Suc-le-lessD diff-Suc-1
diff	ext{-}Suc	ext{-}less
                         diff-diff-cancel gr-implies-not0 less-antisym zero-less-Suc)
     qed
 qed
lemma evtent-in-cpts2: el \in cpts-ev \Gamma \wedge el ! \theta = (BasicEvent ev, s, x) \Longrightarrow
     Suc i < length \ el \land \Gamma \vdash el \ ! \ i - et - (EvtEnt \ (BasicEvent \ ev)) \sharp k \rightarrow el \ ! \ (Suc
     (gets-e\ (el\ !\ i) \in guard\ ev \land drop\ (Suc\ i)\ el \in
         cpts-of-ev \Gamma (AnonyEvent (body ev)) (gets-e (el! (Suci))) ((getx-e (el!
i)) (k := BasicEvent ev)))
 proof -
   assume p\theta: el \in cpts-ev \Gamma \land el ! \theta = (BasicEvent ev, s, x)
   assume p1: Suc i < length \ el \land \Gamma \vdash el \ ! \ i - et - (EvtEnt \ (BasicEvent \ ev)) \sharp k \rightarrow
   then have a2: gets-e (el!i) \in guard ev \land gets-e (el!i) = gets-e (el!(Suc
i))
                         \land getspc-e (el! (Suc i)) = AnonyEvent (body ev)
                         \land getx-e (el! (Suc i)) = (getx-e (el! i)) (k := BasicEvent
ev)
     by (meson ent-spec2)
   from p1 have (drop (Suc i) el)!0 = el ! (Suc i) by auto
   with a2 have a3: (drop\ (Suc\ i)\ el)!0 = (AnonyEvent\ (body\ ev), (gets-e\ (el\ !
(Suc\ i)),
                                      (getx-e\ (el\ !\ i))\ (k:=BasicEvent\ ev)\ ))
      using gets-e-def getspc-e-def getx-e-def by (metis prod.collapse)
   have a4: drop (Suc i) el \in cpts-ev \Gamma by (simp add: cpts-ev-subi p0 p1)
   with a2 a3 show gets-e (el!i) \in guard ev \land drop (Suci) el \in
         cpts-of-ev \Gamma (AnonyEvent (body ev)) (gets-e (el! (Suci))) ((getx-e (el!
i)) (k := BasicEvent ev))
      by (metis (mono-tags, lifting) CollectI cpts-of-ev-def)
```

```
lemma no-evtent-in-cpts: el \in cpts-ev \Gamma \Longrightarrow el ! \theta = (BasicEvent \ ev, \ s, \ x) \Longrightarrow
      (\neg (\exists i \ k. \ Suc \ i < length \ el \land \Gamma \vdash el \ ! \ i - et - (EvtEnt \ (BasicEvent \ ev)) \sharp k \rightarrow
el ! (Suc i)) \implies
      (\forall j. \ Suc \ j < length \ el \longrightarrow getspc-e \ (el \ ! \ j) = BasicEvent \ ev
                                 \wedge \Gamma \vdash el ! j - ee \rightarrow el ! (Suc j)
                                \land getspc-e (el! (Suc j)) = BasicEvent ev)
  proof -
    assume p\theta: el \in cpts-ev \Gamma and
           p1: el! 0 = (BasicEvent ev, s, x) and
            p2: \neg (\exists i \ k. \ Suc \ i < length \ el \land \Gamma \vdash el \ ! \ i - et - (EvtEnt \ (BasicEvent
(ev))\sharp k \rightarrow el ! (Suc i)
    show ?thesis
      proof -
      {
        \mathbf{fix} \ j
        assume Suc j < length el
        then have getspc-e\ (el\ !\ j) = BasicEvent\ ev \land \Gamma \vdash el\ !\ j - ee \rightarrow el\ !\ (Suc
j)
                  \land getspc\text{-}e \ (el \ ! \ (Suc \ j)) = BasicEvent \ ev
          proof(induct j)
            case \theta
            assume a\theta: Suc \theta < length el
                 from p1 have a00: getspc-e (el! 0) = BasicEvent ev by (simp
add:getspc-e-def)
            from a0 p2 have \neg (\exists k. \Gamma \vdash el ! 0 - et - (EvtEnt (BasicEvent ev)) \sharp k \rightarrow
el ! (Suc \ \theta)) by simp
             with p0 p1 have \neg (\exists t. \Gamma \vdash el ! 0 - et - t \rightarrow el ! (Suc 0)) by (metis
noevtent-notran)
            with p\theta a\theta have a1: getspc-e (el! \theta) = getspc-e (el! (Suc \theta))
              using notran-confeqi by blast
            with a00 have a2: qetspc-e (el! (Suc 0)) = BasicEvent ev by simp
          from a1 have \Gamma \vdash el ! 0 - ee \rightarrow el ! Suc 0 using getspc-e-def eetran.EnvE
                  by (metis eq-fst-iff)
            then show ?case by (simp add: a00 a2)
          next
            case (Suc\ m)
             assume a0: Suc m < length \ el \implies getspc-e \ (el ! m) = BasicEvent \ ev
\wedge \Gamma \vdash el ! m - ee \rightarrow el ! Suc m
                        \land getspc-e (el! Suc m) = BasicEvent ev
            assume a1: Suc\ (Suc\ m) < length\ el
           with a0 have a2: getspc-e (el! m) = BasicEvent ev \land \Gamma \vdash el! m - ee \rightarrow
el! Suc m by simp
           then have a3: getspc-e (el! Suc m) = BasicEvent ev using getspc-e-def
by (metis eetranE fstI)
```

```
then have a4: \exists s \ x. \ el \ ! \ Suc \ m = (BasicEvent \ ev, \ s, \ x) unfolding
getspc-e-def
             by (metis fst-conv surj-pair)
           from a0 a1 p2 have \neg (\exists k. \Gamma \vdash el ! (Suc m) - et - (EvtEnt (BasicEvent))
(ev))\sharp k \rightarrow el ! (Suc (Suc m))) by simp
           with a4 have a5: \neg (\exists t. \Gamma \vdash el ! (Suc m) - et - t \rightarrow el ! (Suc (Suc m)))
             using noevtent-notran by metis
             with p0 a0 a1 have a6: getspc-e (el! (Suc m)) = getspc-e (el! (Suc
(Suc\ m)))
             using notran-confeqi by blast
             with a3 have a7: getspc-e (el! (Suc (Suc m))) = BasicEvent ev by
simp
          from a6 have \Gamma \vdash el ! Suc \ m - ee \rightarrow el ! Suc \ (Suc \ m) using getspc-e-def
eetran.EnvE
                 by (metis eq-fst-iff)
           with a3 a7 show ?case by simp
         qed
     then show ?thesis by auto
     qed
 \mathbf{qed}
          trace between of event and event system
primrec rm-evtsys\theta :: ('l, 'k, 's, 'prog) esys \Rightarrow 's \Rightarrow ('l, 'k, 's, 'prog) x \Rightarrow ('l, 'k, 's, 'prog)
econf
  where EvtSeqrm: rm\text{-}evtsys0 \ (EvtSeq\ e\ es)\ s\ x=(e,\ s,\ x)
       EvtSysrm: rm-evtsys0 (EvtSys es) s = (AnonyEvent fin\text{-}com, s, x)
definition rm-evtsys1 :: ('l,'k,'s,'prog) esconf \Rightarrow ('l,'k,'s,'prog) econf
  where rm-evtsys1 esc \equiv rm-evtsys0 (getspc-es esc) (gets-es esc) (getx-es esc)
definition rm-evtsys :: ('l, 'k, 's, 'prog) esconfs <math>\Rightarrow ('l, 'k, 's, 'prog) econfs
  where rm-evtsys escfs \equiv map \ rm-evtsys1 escfs
definition e-eqv-einevtseq :: ('l,'k,'s,'prog) esconfs \Rightarrow ('l,'k,'s,'prog) econfs \Rightarrow
('l,'k,'s,'prog) \ esys \Rightarrow bool
  where e-eqv-einevtseq esl el es \equiv length esl = length el \wedge
           (\forall i. \ Suc \ i \leq length \ el \longrightarrow gets-e \ (el \ ! \ i) = gets-es \ (esl \ ! \ i) \land
                                     getx-e(el!i) = getx-es(esl!i) \land
                                     getspc-es\ (esl\ !\ i) = EvtSeq\ (getspc-e\ (el\ !\ i))\ es)
lemma e-eqv-einevtseq-s: [e-eqv-einevtseq esl el es; gets-e e1 = gets-es e51; getx-e
e1 = getx-es \ es1;
                          getspc\text{-}es\ es1 = EvtSeq\ (getspc\text{-}e\ e1)\ es] \implies e\text{-}eqv\text{-}einevtseq
```

```
(es1 \# esl) (e1 \# el) es
 proof -
   assume p\theta: e-eqv-einevtseq esl el es
     and p1: gets-e e1 = gets-es es1
     and p2: getx-e e1 = <math>getx-es es1
     and p3: getspc-es\ es1 = EvtSeq\ (getspc-e\ e1)\ es
   \mathbf{let} \ ?el' = e1 \ \# \ el
   let ?esl' = es1 \# esl
   from p0 have a1: length esl = length el by (simp add: e-eqv-einevtseq-def)
   from p0 have a2: \forall i. Suc i \leq length \ el \longrightarrow gets-e (el ! i) = gets-es (esl ! i)
Λ
                                           getx-e(el!i) = getx-es(esl!i) \land
                                           getspc-es (esl!i) = EvtSeq (getspc-e (el!
i)) es
     by (simp add: e-eqv-einevtseq-def)
   from a1 have length (es1 \# esl) = length (e1 \# el) by simp
   moreover have \forall i. Suc \ i \leq length \ ?el' \longrightarrow gets-e \ (?el'! \ i) = gets-es \ (?esl'! \ i)
i) \wedge
                                  getx-e (?el'! i) = getx-es (?esl'! i) \land
                                 getspc\text{-}es \ (?esl'! \ i) = EvtSeq \ (getspc\text{-}e \ (?el'! \ i)) \ es
     by (simp add: a2 nth-Cons' p1 p2 p3)
  ultimately show e-eqv-einevtseq?esl'?el'es by (simp add:e-eqv-einevtseq-def)
 qed
definition same-s-x:: ('l, 'k, 's, 'prog) esconfs \Rightarrow ('l, 'k, 's, 'prog) econfs \Rightarrow bool
  where same-s-x esl el \equiv length esl = length el \wedge
          (\forall i. Suc \ i \leq length \ el \longrightarrow gets-e \ (el \ ! \ i) = gets-es \ (esl \ ! \ i) \land
                                  getx-e(el!i) = getx-es(esl!i))
lemma rm-evtsys-same-sx: same-s-x esl (rm-evtsys esl)
 \mathbf{proof}(induct\ esl)
   case Nil
   show ?case by (simp add:rm-evtsys-def same-s-x-def)
   case (Cons ec1 esl1)
   assume a0: same-s-x esl1 (rm-evtsys esl1)
   have a1: rm-evtsys (ec1 # esl1) = rm-evtsys1 ec1 # rm-evtsys esl1 by (simp
add:rm-evtsys-def)
    obtain es and s and x where a2: ec1 = (es, s, x) using prod-cases3 by
blast
   then show ?case
     proof(induct es)
       case (EvtSeq x1 es1)
       assume b\theta: ec1 = (EvtSeq x1 es1, s, x)
       then have b1: rm-evtsys1 ec1 # rm-evtsys esl1 = (x1, s, x) # rm-evtsys
esl1
         by (simp add:rm-evtsys1-def getspc-es-def gets-es-def getx-es-def)
      have length (ec1 \# esl1) = length (rm-evtsys (ec1 \# esl1)) by (simp add:
rm-evtsys-def)
```

```
moreover have \forall i. Suc \ i \leq length \ (rm\text{-}evtsys \ (ec1 \# esl1)) \longrightarrow
                        gets-e ((rm-evtsys (ec1 \# esl1)) ! i) = gets-es ((ec1 \# esl1))
! i)
                          \land getx-e ((rm-evtsys (ec1 # esl1)) ! i) = getx-es ((ec1 #
esl1)! i)
         proof -
         {
           \mathbf{fix} i
           assume c\theta: Suc i \leq length (rm\text{-}evtsys (ec1 \# esl1))
          have gets-e ((rm\text{-}evtsys\ (ec1\ \#\ esl1))\ !\ i) = gets\text{-}es\ ((ec1\ \#\ esl1)\ !\ i)
                          \land getx-e ((rm-evtsys (ec1 # esl1)) ! i) = getx-es ((ec1 #
esl1)! i)
            \mathbf{proof}(cases\ i=0)
              assume d\theta: i = \theta
             with a0 a1 b0 b1 show ?thesis using gets-e-def gets-es-def getx-e-def
qetx-es-def
                by (metis nth-Cons-0 snd-conv)
            next
               assume d\theta: i \neq \theta
              then have (rm\text{-}evtsys\ (ec1\ \#\ esl1))\ !\ i = (rm\text{-}evtsys\ esl1)\ !\ (i-1)
                by (simp add: a1)
               moreover have (ec1 \# esl1) ! i = esl1 ! (i - 1)
                by (simp add: d0 nth-Cons')
               ultimately show ?thesis using a0 c0 d0 same-s-x-def
                by (metis (no-types, lifting) Suc-diff-1 Suc-leI Suc-le-lessD
                    Suc-less-eq a1 length-Cons neq0-conv)
             qed
         }
         then show ?thesis by auto
         qed
       ultimately show ?case using same-s-x-def by blast
     next
       case (EvtSys xa)
       assume b\theta: ec1 = (EvtSys \ xa, \ s, \ x)
       then have b1: rm-evtsys1 ec1 # rm-evtsys esl1 = (AnonyEvent fin-com, s,
x) \# rm\text{-}evtsys \ esl1
         by (simp add:rm-evtsys1-def getspc-es-def gets-es-def getx-es-def)
       have length (ec1 \# esl1) = length (rm-evtsys (ec1 \# esl1)) by (simp add:
       moreover have \forall i. \ Suc \ i \leq length \ (rm\text{-}evtsys \ (ec1 \# esl1)) \longrightarrow
                        gets-e ((rm-evtsys (ec1 \# esl1))! i) = gets-es ((ec1 \# esl1))
! i)
                         \land getx-e ((rm-evtsys (ec1 # esl1)) ! i) = getx-es ((ec1 #
esl1)! i)
         proof -
           \mathbf{fix} i
           assume c\theta: Suc i \leq length (rm\text{-}evtsys (ec1 \# esl1))
```

```
have gets-e ((rm\text{-}evtsys\ (ec1\ \#\ esl1))\ !\ i) = gets\text{-}es\ ((ec1\ \#\ esl1)\ !\ i)
                            \land getx-e ((rm-evtsys (ec1 # esl1)) ! i) = getx-es ((ec1 #
esl1)! i)
             proof(cases i = 0)
                assume d\theta: i = \theta
               with a0 a1 b0 b1 show ?thesis using gets-e-def gets-es-def getx-e-def
getx-es-def
                  by (metis nth-Cons-0 snd-conv)
             next
                assume d\theta: i \neq \theta
               then have (rm\text{-}evtsys\ (ec1\ \#\ esl1))\ !\ i=(rm\text{-}evtsys\ esl1)\ !\ (i-1)
                  by (simp add: a1)
                moreover have (ec1 \# esl1) ! i = esl1 ! (i - 1)
                  by (simp add: d0 nth-Cons')
                ultimately show ?thesis using a0 c0 d0 same-s-x-def
                  by (metis (no-types, lifting) Suc-diff-1 Suc-leI Suc-le-lessD
                      Suc-less-eq a1 length-Cons neg0-conv)
             qed
          }
          then show ?thesis by auto
        ultimately show ?case using same-s-x-def by blast
      qed
 qed
definition e-sim-es:: ('l,'k,'s,'prog) esconfs \Rightarrow ('l,'k,'s,'prog) econfs
                          \Rightarrow ('l,'k,'s,'prog) event set \Rightarrow ('l,'s,'prog) event' \Rightarrow bool
  where e-sim-es esl el es e \equiv length \ esl = length \ el \land getspc-es \ (esl!0) = EvtSys
es \wedge
                                getspc-e \ (el!0) = BasicEvent \ e \land
                              (\forall i. \ i < length \ el \longrightarrow gets-e \ (el! \ i) = gets-es \ (esl! \ i) \land
                                                        getx-e(el!i) = getx-es(esl!i)) \land
                                (\forall \, i. \,\, i > 0 \,\, \land \,\, i < \mathit{length} \,\, \mathit{el} \,\, \longrightarrow \,\,
                                       (getspc\text{-}es\ (esl!i) = EvtSys\ es\ \land\ getspc\text{-}e\ (el!i) =
AnonyEvent fin-com)
                                   \lor (qetspc\text{-}es \ (esl!i) = EvtSeq \ (qetspc\text{-}e \ (el!i)) \ (EvtSys)
es))
7.3
        Soundness of Events
lemma anony-cfgs\theta: [\exists P. qetspc-e \ (es! \theta) = AnonyEvent P; es \in cpts-ev \Gamma]
                      \implies \forall i. \ (i < length \ es \longrightarrow (\exists \ Q. \ getspc\text{-}e \ (es!i) = AnonyEvent
Q)
 proof -
    assume a\theta: es \in cpts-ev \Gamma and a1: \exists P. getspc-e (es! <math>\theta) = AnonyEvent P
    from a0 a1 show \forall i. (i < length \ es \longrightarrow (\exists \ Q. \ getspc-e \ (es!i) = AnonyEvent
Q)
      proof(induct es)
```

```
case (CptsEvOne\ e\ s\ x)
       assume b\theta: \exists P. \ getspc\text{-}e\ ([(e,\ s,\ x)]\ !\ \theta) = AnonyEvent\ P
       show ?case using b\theta by auto
       case (CptsEvEnv e' t' x' xs' s' y')
       assume b\theta: (e', t', x') \# xs' \in cpts\text{-}ev \Gamma and
             b1: \exists P. \ getspc\text{-}e\ (((e', t', x') \# xs') ! \theta) = AnonyEvent\ P \Longrightarrow
                   \forall i < length ((e', t', x') \# xs'). \exists Q. getspc-e (((e', t', x') \# xs') !
i) = AnonyEvent Q and
             b2: \exists P. \ getspc-e \ (((e', s', y') \# (e', t', x') \# xs') ! \ 0) = AnonyEvent
P
       from b2 obtain P1 where b3: getspc-e (((e', s', y') # (e', t', x') # xs')!
\theta) = AnonyEvent P1 by auto
       then have b4: e' = AnonyEvent P1 by (simp \ add: \ getspc-e-def)
       with b1 have \forall i < length ((e', t', x') \# xs'). \exists Q. getspc-e (((e', t', x') \# xs'))
xs')! i) = AnonyEvent Q
         by (simp add: qetspc-e-def)
        with b4 show ?case by (metis (no-types, hide-lams) Ex-list-of-length b3
gr0-conv-Suc
                   length-Cons\ length-tl\ list.sel(3)\ not-less-eq\ nth-non-equal-first-eq)
     next
       case (CptsEvComp e1 s1 x1 et e2 t1 y1 xs1)
       assume b\theta: \Gamma \vdash (e1, s1, x1) - et - et \rightarrow (e2, t1, y1) and
              b1: (e2, t1, y1) \# xs1 \in cpts\text{-}ev \Gamma \text{ and }
             b2: \exists P. \ getspc-e \ (((e2, t1, y1) \# xs1) ! \ 0) = AnonyEvent \ P \Longrightarrow
                    \forall i < length ((e2, t1, y1) \# xs1). \exists Q. getspc-e (((e2, t1, y1) \# xs1))
xs1)! i) = AnonyEvent Q and
           b3: \exists P. \ getspc-e \ (((e1, s1, x1) \# (e2, t1, y1) \# xs1) ! \ 0) = AnonyEvent
        from b3 obtain P1 where b4: getspc-e (((e1, s1, x1) # (e2, t1, y1) #
(xs1)! 0 = AnonyEvent P1 by auto
       then have b5: e1 = AnonyEvent P1 by (simp add: qetspc-e-def)
       with b\theta have \exists Q. e2 = AnonyEvent Q
            apply(clarify)
            apply(rule etran.cases)
            apply(simp-all)+
            done
        then have \exists P. \ getspc-e \ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ \theta) = AnonyEvent\ P\ by
(simp\ add:getspc-e-def)
       with b2 have b6: \forall i < length ((e2, t1, y1) \# xs1). \exists Q. getspc-e (((e2, t1, y1) \# xs1))
y1) \# xs1! i) = AnonyEvent Q by auto
        with b5 show ?case by (metis (no-types, hide-lams) Ex-list-of-length b3
gr0-conv-Suc
                   length-Cons\ length-tl\ list.sel(3)\ not-less-eq\ nth-non-equal-first-eq)
     qed
 qed
lemma anony-cfgs: es \in cpts-of-ev \Gamma (AnonyEvent P) sx \implies \forall i. (i < length
es \longrightarrow (\exists Q. \ getspc-e \ (es!i) = AnonyEvent \ Q))
```

```
proof -
    assume a\theta: es \in cpts-of-ev \Gamma (AnonyEvent P) s x
  then have a1: es!\theta = (AnonyEvent\ P,(s,x)) \land es \in cpts-ev\ \Gamma by (simp\ add:cpts-of-ev-def)
   then have \exists P. \ getspc\text{-}e \ (es! \ \theta) = AnonyEvent P \ by \ (simp \ add: getspc\text{-}e\text{-}def)
    with a1 show ?thesis using anony-cfqs0 by blast
  qed
lemma AnonyEvt-sound: \Gamma \models P \ sat_p \ [pre, \ rely, \ guar, \ post] \Longrightarrow \Gamma \models AnonyEvent
P \ sat_e \ [pre, \ rely, \ guar, \ post]
  proof -
    assume a\theta: \Gamma \models P \ sat_p \ [pre, \ rely, \ guar, \ post]
    then have a1: \forall s. cpts\text{-}of\text{-}p \ \Gamma \ P \ s \cap assume\text{-}p \ \Gamma \ (pre, rely) \subseteq commit\text{-}p \ \Gamma
(guar, post)
      using prog-validity-def by simp
    then have \forall s \ x. \ (cpts\text{-}of\text{-}ev \ \Gamma \ (AnonyEvent \ P) \ s \ x) \cap assume\text{-}e \ \Gamma \ (pre, \ rely)
                       \subseteq commit - e \Gamma (quar, post)
      proof -
        \mathbf{fix} \ s \ x
        have \forall el. \ el \in (cpts\text{-}of\text{-}ev \ \Gamma \ (AnonyEvent \ P) \ s \ x) \cap assume\text{-}e \ \Gamma \ (pre, rely)
\longrightarrow el \in commit - e \Gamma (guar, post)
          proof -
          {
            \mathbf{fix} el
             assume b0: el \in (cpts\text{-}of\text{-}ev\ \Gamma\ (AnonyEvent\ P)\ s\ x) \cap assume\text{-}e\ \Gamma\ (pre,
rely)
            then obtain pl where b1: pl = lower-evts el by simp
            with b0 have b2: pl \in cpts-of-p \Gamma P s using equiv-lower-evts by auto
        from b0 b1 have b21: pl \in cpts-p \ \Gamma \land pl!0 = (P,s) using equiv-lower-evts2[of
el \Gamma P s x | by auto
            from b0 have b3: el!0 = (AnonyEvent P,(s,x)) and b4: el \in cpts-ev \Gamma
              by (simp add:cpts-of-ev-def)+
            from b\theta have b5: el \in assume-e \Gamma (pre, rely) by simp
            hence b51: gets-e(el!0) \in pre by (simp\ add:assume-e-def)
           from b1 b21 b3 b51 have b6: gets-p (pl!0) \in pre by (simp\ add:gets-p-def
qets-e-def)
            have b7: \forall i. Suc i < length pl \longrightarrow
               \Gamma \vdash pl!i - pe \rightarrow pl!(Suc\ i) \longrightarrow (gets-p\ (pl!i), gets-p\ (pl!Suc\ i)) \in rely
              proof -
              {
                \mathbf{fix} i
                assume c\theta: Suc i < length \ pl and c1: \Gamma \vdash pl!i - pe \rightarrow pl!(Suc \ i)
                from b1 c0 have c2: Suc i < length \ el \ by \ (simp \ add:lower-evts-def)
                from c1 have c3: getspc-p (pl!i) = getspc-p (pl!(Suc\ i))
                   using getspc-p-def fst-conv petran-simps
                  by (metis prod.collapse)
                from b1 have c4: lower-anonyevt1 (el!i) = pl!i
                  by (simp add: Suc-lessD c2 lower-evts-def)
```

```
from b1 have c5: lower-anonyevt1 (el!Suc i) = pl!Suc i
                by (simp add: Suc-lessD c2 lower-evts-def)
              from b0 c2 have c7: \exists Q. \ getspc-e \ (el!i) = AnonyEvent Q
                by (meson Int-iff Suc-lessD anony-cfqs)
              then obtain Q1 where c71: getspc-e (el!i) = AnonyEvent Q1 by
auto
              from b0\ c2 have c8: \exists\ Q.\ getspc\text{-}e\ (el!\ (Suc\ i)) = AnonyEvent\ Q
                by (meson Int-iff anony-cfgs)
              then obtain Q2 where c81: getspc-e (el ! (Suc i)) = AnonyEvent
Q2 by auto
              from c4 c71 have c9: getspc-p (pl! i) = Q1
                       using lower-anonyevt1-def AnonyEv getspc-p-def by (metis
fst-conv)
              from c5 \ c81 have c10: getspc-p \ (pl \ ! \ (Suc \ i)) = Q2
                       using lower-anonyevt1-def AnonyEv qetspc-p-def by (metis
fst-conv)
              with c3 c9 have c11: Q1 = Q2 by simp
              from c4 c71 have c61: gets-p (pl!i) = gets-e (el!i)
               using lower-anonyevt1-def AnonyEv gets-p-def by (metis snd-conv)
              from c5 c81 have c62: gets-p (pl! (Suc i)) = gets-e (el! (Suc i))
               using lower-anonyevt1-def AnonyEv gets-p-def by (metis snd-conv)
               from c71 \ c81 \ c11 have c12: getspc-e \ (el!i) = getspc-e \ (el!(Suc \ i))
by simp
                   then have c13: \Gamma \vdash el!i - ee \rightarrow el!(Suc\ i) using eetran. EnvE
getspc-e-def
                by (metis prod.collapse)
               from b5 c2 have (\forall i. Suc \ i < length \ el \longrightarrow \Gamma \vdash el \ ! \ i - ee \rightarrow el \ !
Suc i
                        \longrightarrow (gets-e \ (el \ ! \ i), \ gets-e \ (el \ ! \ Suc \ i)) \in rely) by (simp
add:assume-e-def)
              with c2 c13 have (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in rely by auto
              with c61 c62 have (gets-p (pl!i), gets-p (pl!Suc i)) \in rely by simp
            then show ?thesis by auto
            qed
        with b6 have b8: pl \in assume-p \Gamma (pre, rely) by (simp \ add: assume-p-def)
          with a1 b2 have b9: pl \in commit - p \Gamma (guar, post) by auto
          then have b10: (\forall i. Suc \ i < length \ el \longrightarrow
             (\exists t. \ \Gamma \vdash el!i - et - t \rightarrow el!(Suc \ i)) \longrightarrow (gets - e \ (el!i), gets - e \ (el!Suc \ i))
\in quar
             proof -
             {
```

```
\mathbf{fix} i
              assume c\theta: Suc i < length el
              assume c1: \exists t. \Gamma \vdash el! i - et - t \rightarrow el! (Suc i)
             from b1 c0 have c2: Suc i < length pl by (simp add:lower-evts-def)
              from b1 have c3: lower-anonyevt1 (el!i) = pl!i
               by (simp add: Suc-lessD c0 lower-evts-def)
              from b1 have c4: lower-anonyevt1 (el!Suc i) = pl!Suc i
               by (simp add: Suc-lessD c0 lower-evts-def)
              from b\theta c\theta have c7: \exists Q. getspc-e (el!i) = AnonyEvent Q
               by (meson Int-iff Suc-lessD anony-cfgs)
              then obtain Q1 where c71: getspc-e (el!i) = AnonyEvent Q1 by
auto
              from b0\ c0 have c8: \exists\ Q.\ getspc\text{-}e\ (el!\ (Suc\ i)) = AnonyEvent\ Q
               by (meson Int-iff anony-cfqs)
               then obtain Q2 where c81: qetspc-e (el! (Suc i)) = AnonyEvent
Q2 by auto
              have c5: \Gamma \vdash pl!i - c \rightarrow pl!(Suc\ i)
               proof -
               from c1 obtain t where d\theta: \Gamma \vdash el!i - et - t \rightarrow el!(Suc\ i) by auto
                 obtain s1 and x1 where d1: s1 = gets-e (el!i) \land x1 = getx-e
(el!i) by simp
                 obtain s2 and x2 where d2: s2 = gets-e (el ! (Suc i)) \wedge x2 =
getx-e (el ! (Suc i)) by simp
                 with d1 c71 c81 have d21: el! i = (AnonyEvent Q1, s1, x1)
                                     \land el ! (Suc i) = (AnonyEvent Q2, s2, x2)
                   using gets-e-def getx-e-def getspc-e-def by (metis prod.collapse)
                     with d0 have d3: \Gamma \vdash (AnonyEvent\ Q1,\ s1,\ x1)\ -et-t \rightarrow
(AnonyEvent Q2, s2, x2) by simp
                 then have \exists k. \ t = ((Cmd \ CMP) \sharp k)
                   apply(rule etran.cases)
                   apply simp-all
                   by auto
                 then obtain k where t = ((Cmd \ CMP) \sharp k) by auto
                 with d3 have d4: \Gamma \vdash (Q1,s1) - c \rightarrow (Q2, s2)
                   apply(clarify)
                   apply(rule\ etran.cases)
                  apply simp-all+
                   done
            from c3 d21 have d5: pl!i = (Q1,s1) by (simp add:lower-anonyevt1-def
getspc-e-def gets-e-def)
                        from c4 d21 have d6: pl! (Suc i) = (Q2,s2) by (simp)
add:lower-anonyevt1-def getspc-e-def gets-e-def)
                 with d4 d5 show ?thesis by simp
                with b9 c2 have c6: (gets-p \ (pl!i), gets-p \ (pl!Suc \ i)) \in guar \ by
(simp\ add:commit-p-def)
```

```
from c3 c71 have c9: gets-e (el!i) = gets-p (pl!i) using
lower-anonyevt-s by fastforce
                from c4 c81 have c10: gets-e (el!Suc i) = gets-p (pl!Suc i) using
lower-anonyevt-s by fastforce
                 from c6\ c9\ c10 have (gets\text{-}e\ (el!i),\ gets\text{-}e\ (el!Suc\ i))\in guar\ \mathbf{by}
simp
              then show ?thesis by auto
              qed
           have b11: (getspc-e\ (last\ el) = AnonyEvent\ fin-com \longrightarrow gets-e\ (last\ el)
\in post)
             proof
               assume c\theta: qetspc-e (last el) = AnonyEvent fin-com
               from b1 have c1: last pl = lower-anonyevt1 (last el)
                 by (metis b4 cpts-e-not-empty last-map lower-evts-def)
               from b9 have c2: getspc-p (last pl) = fin-com \longrightarrow gets-p (last pl) \in
post by (simp add:commit-p-def)
               from c\theta c1 have c3: getspc-p (last pl) = fin-com
                 by (simp add: getspc-p-def lower-anonyevt1-def)
               with c2 have c4: gets-p (last pl) \in post by auto
               from c\theta c1 have gets-p (last pl) = gets-e (last el)
                 by (simp add: getspc-p-def lower-anonyevt1-def gets-p-def)
               with c4 show gets-e(last el) \in post by simp
             qed
         with b10 have el \in commit-e \ \Gamma \ (guar, post) by (simp \ add:commit-e-def)
         then show ?thesis by auto
         qed
       then have (cpts-of-ev \ \Gamma \ (AnonyEvent \ P) \ s \ x) \cap assume-e \ \Gamma \ (pre, \ rely) \subseteq
commit-e \Gamma (quar, post) by auto
     then show ?thesis by auto
   then show ?thesis by (simp add: evt-validity-def)
  qed
lemma BasicEvt-sound:
   \llbracket \ \Gamma \models (body \ ev) \ sat_p \ [pre \cap (guard \ ev), \ rely, \ guar, \ post];
       stable-e \ pre \ rely; \ \forall \ s. \ (s, \ s) \in guar 
    \Longrightarrow \Gamma \models ((\textit{BasicEvent ev}) :: ('l, 'k, 's, 'prog) \ \textit{event}) \ \textit{sat}_e \ [\textit{pre}, \ \textit{rely}, \ \textit{guar}, \ \textit{post}]
  proof -
   assume p\theta: \Gamma \models (body\ ev)\ sat_p\ [pre \cap (guard\ ev),\ rely,\ guar,\ post]
   assume p1: \forall s. (s, s) \in guar
```

```
assume p2: stable-e pre rely
   have \forall s \ x. \ (cpts\text{-}of\text{-}ev \ \Gamma \ ((BasicEvent \ ev)::('l,'k,'s,'prog) \ event) \ s \ x) \cap assume\text{-}e
\Gamma (pre, rely)
                         \subseteq commit - e \Gamma (guar, post)
      proof -
        fix s x
         have \forall el. \ el \in (cpts\text{-}of\text{-}ev \ \Gamma \ (BasicEvent \ ev) \ s \ x) \cap assume\text{-}e \ \Gamma \ (pre, rely)
\longrightarrow el \in commit - e \Gamma (guar, post)
           proof -
           {
             \mathbf{fix} \ el
              assume b0: el \in (cpts\text{-}of\text{-}ev \ \Gamma \ (BasicEvent \ ev) \ s \ x) \cap assume\text{-}e \ \Gamma \ (pre,
rely)
             then have b0-1: el \in (cpts-of-ev \ \Gamma \ (BasicEvent \ ev) \ s \ x) and
                         b0-2: el \in assume-e \Gamma (pre, rely) by auto
             from b0-1 have b1: el! 0 = (BasicEvent ev, (s, x)) and
                              b2: el \in cpts\text{-}ev \Gamma \text{ by } (simp \ add:cpts\text{-}of\text{-}ev\text{-}def) +
             from b\theta-2 have b\beta: gets-e(el!\theta) \in pre and
                              b4: (\forall i. Suc \ i < length \ el \longrightarrow \Gamma \vdash el!i \ -ee \rightarrow el!(Suc \ i) \longrightarrow
                                      (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in rely) by (simp\ add:
assume-e-def)+
             have el \in commit\text{-}e \ \Gamma \ (guar, post)
                     \mathbf{proof}(cases \ \exists \ i \ k. \ Suc \ i < length \ el \ \land \ \Gamma \vdash el \ ! \ i \ -et - (EvtEnt
(BasicEvent\ ev))\sharp k \rightarrow el\ !\ (Suc\ i))
                      assume c\theta: \exists i \ k. Suc i < length \ el \land \Gamma \vdash el \ ! \ i - et - (EvtEnt)
(BasicEvent\ ev))\sharp k \rightarrow el\ !\ (Suc\ i)
                  then obtain m and k where c1: Suc m < length \ el \land \Gamma \vdash el \ ! \ m
-et-(EvtEnt\ (BasicEvent\ ev))\sharp k \rightarrow el!\ (Suc\ m)
                    by auto
               with b1 b2 have c2: \forall j. Suc j \leq m \longrightarrow getspc\text{-}e\ (el!j) = BasicEvent
ev \wedge \Gamma \vdash el ! j - ee \rightarrow el ! (Suc j)
                    by (meson evtent-in-cpts1)
                  from b1 b2 c1 have c4: gets-e (el! m) \in guard ev and
                             c6: drop (Suc \ m) \ el \in cpts\text{-}of\text{-}ev \ \Gamma \ (AnonyEvent \ (body \ ev))
(qets-e\ (el\ !\ (Suc\ m)))\ ((qetx-e\ (el\ !\ m))\ (k:=BasicEvent\ ev))
                           using evtent-in-cpts2[of el \Gamma ev s x m k] by auto
                         from p\theta[rule\text{-}format] c4 have c7: \Gamma \models ((AnonyEvent\ (body)))
(v)::('l,'k,'s,'prog) (vent)
                                    sat_e [pre \cap (guard \ ev), \ rely, \ guar, \ post]
                    by (simp add: AnonyEvt-sound)
                 from b4 c1 c2 have c8:\forall j. Suc j \leq m \longrightarrow (gets-e\ (el!\ j),\ gets-e\ (el
! (Suc j)) \in rely by auto
                  with p2\ b3 have c9: \forall j.\ j \leq m \longrightarrow gets\text{-}e\ (el!\ j) \in pre
                    proof -
                      \mathbf{fix} \ j
```

```
assume d\theta: j \leq m
                  then have gets-e(el!j) \in pre
                    proof(induct j)
                      case \theta show ?case by (simp add: b3)
                    next
                      case (Suc jj)
                      assume e\theta: Suc\ jj \le m
                      assume e1: jj \leq m \implies gets-e\ (el!jj) \in pre
                      from e\theta c8 have (gets-e\ (el\ !\ jj),\ gets-e\ (el\ !\ (Suc\ jj))) \in rely
\mathbf{by} auto
                      with p2 e0 e1 show ?case by (meson Suc-leD stable-e-def)
                    qed
                 }
                then show ?thesis by auto
              from c1 have c10: qets-e (el! m) = qets-e (el! (Suc m)) by (meson
ent-spec2)
               with c9 have c11: gets-e (el! (Suc m)) \in pre by auto
                     from c7 have c12: \forall s x. (cpts-of-ev \Gamma ((AnonyEvent (body
(v)::('l,'k,'s,'prog) event) s(x) \cap
                 assume-e \Gamma (pre \cap (guard ev), rely) \subseteq commit-e \Gamma (guar, post) by
(simp\ add:evt\text{-}validity\text{-}def)
               have drop\ (Suc\ m)\ el \in assume-e\ \Gamma\ (pre\ \cap\ (guard\ ev),\ rely)
                 proof -
                   from c11 have d1: gets-e (drop (Suc m) el! 0) \in pre using c1
by auto
                  from c4 c10 have d2: gets-e (drop\ (Suc\ m)\ el\ !\ 0) \in guard\ ev
                    using c1 by auto
                  from b4 have d3: \forall i. Suc i < length \ el - Suc \ m \longrightarrow
                           \Gamma \vdash el ! Suc (m + i) - ee \rightarrow el ! Suc (Suc (m + i)) \longrightarrow
                          (gets-e\ (el\ !\ Suc\ (m+i)),\ gets-e\ (el\ !\ Suc\ (Suc\ (m+i))))
\in rely
                      by simp
                  with d1 d2 show ?thesis by (simp add:assume-e-def)
                qed
               with c6 c12 have c13: drop (Suc m) el \in commit-e \Gamma (guar, post)
                by (meson AnonyEvt-sound IntI contra-subsetD evt-validity-def p0)
              have c14: \forall i. Suc \ i < length \ el \longrightarrow (\exists \ t. \ \Gamma \vdash el \ ! \ i - et - t \rightarrow el \ ! \ Suc
i)
                   \longrightarrow (gets-e\ (el\ !\ i),\ gets-e\ (el\ !\ Suc\ i)) \in guar
                proof -
                  \mathbf{fix} i
                  assume d\theta: Suc i < length \ el and
```

```
d1: (\exists t. \Gamma \vdash el ! i - et - t \rightarrow el ! Suc i)
                  then have (gets-e\ (el\ !\ i),\ gets-e\ (el\ !\ Suc\ i))\in guar
                    proof(cases\ Suc\ i \leq m)
                      assume e\theta: Suc i \leq m
                      with c2 have \Gamma \vdash el ! i - ee \rightarrow el ! (Suc i) by auto
                      then have \neg(\exists t. \Gamma \vdash el ! i - et - t \rightarrow el ! Suc i)
                        by (metis eetranE evt-not-eq-in-tran prod.collapse)
                      with d1 show ?thesis by simp
                    next
                      assume e\theta: \neg Suc i \leq m
                      then have e1: Suc i > m by auto
                      show ?thesis
                        proof(cases\ Suc\ i=m+1)
                          assume f\theta: Suc\ i=m+1
                         then have f1: i = m by auto
                        with c1 have \Gamma \vdash el! \ i - et - (EvtEnt \ (BasicEvent \ ev)) \sharp k \rightarrow
el! (Suc i) by simp
                         then have gets-e(el!i) = gets-e(el!(Suci)) by (meson
ent-spec2)
                          with p1 show ?thesis by auto
                          assume f\theta: \neg Suc i = m + 1
                          with e1 have f1: Suc i > Suc m by auto
                           from c13 have f2: \forall i. Suc \ i < length \ (drop \ (Suc \ m) \ el)
                                  (\exists t. \Gamma \vdash (drop (Suc m) el) ! i -et -t \rightarrow (drop (Suc
m) \ el) \ ! \ Suc \ i) \longrightarrow
                                (gets-e ((drop (Suc m) el)! i), gets-e ((drop (Suc m)
el)! Suc i)) \in guar
                                 by (simp add:commit-e-def)
                            with d0 d1 f1 have (gets-e (drop (Suc m) el! (i - Suc
m)), gets-e (drop (Suc m) el! Suc (i - Suc m))) \in guar
                            proof -
                              from d\theta f1 have g\theta: Suc (i - Suc \ m) < length (drop)
(Suc \ m) \ el) by auto
                              from d1 f1 have (\exists t. \Gamma \vdash drop (Suc m) el! (i - Suc
m) - et - t \rightarrow drop \ (Suc \ m) \ el \ ! \ Suc \ (i - Suc \ m))
                               using d\theta by auto
                              with g0 f2 show ?thesis by simp
                            qed
                          then show ?thesis
                            using c1 f1 by auto
                        qed
                    \mathbf{qed}
                 }
                then show ?thesis by auto
                ged
```

```
from c13 have c15: getspc-e (last el) = AnonyEvent fin-com \longrightarrow
gets-e(last el) \in post
                 proof -
                   from c1 have last (drop (Suc m) el) = last el by simp
                   with c13 show ?thesis by (simp add:commit-e-def)
                 qed
               from c14 c15 show ?thesis by (simp add:commit-e-def)
             next
                 assume c\theta: \neg (\exists i \ k. \ Suc \ i < length \ el \land \Gamma \vdash el \ ! \ i - et - (EvtEnt)
(BasicEvent\ ev))\sharp k \rightarrow el\ !\ (Suc\ i)
                with b1 b2 have c1: \forall j. Suc j < length \ el \longrightarrow getspc-e \ (el!j) =
BasicEvent\ ev
                             \wedge \Gamma \vdash el ! j - ee \rightarrow el ! (Suc j)
                             \land qetspc-e (el! (Suc j)) = BasicEvent ev
                 using no-evtent-in-cpts by simp
             then have c2: (\forall i. Suc \ i < length \ el \longrightarrow (\exists t. \ \Gamma \vdash el!i - et - t \rightarrow el!(Suc
i))
                         \longrightarrow (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in guar)
                 proof -
                   \mathbf{fix} i
                   \mathbf{assume}\ \mathit{Suc}\ \mathit{i}{<}\mathit{length}\ \mathit{el}
                     and d\theta: \exists t. \ \Gamma \vdash el!i - et - t \rightarrow el!(Suc \ i)
                   with c1 have \Gamma \vdash el ! i - ee \rightarrow el ! Suc i by auto
                   then have \neg (\exists t. \Gamma \vdash el! i - et - t \rightarrow el! (Suc i))
                     by (metis eetranE evt-not-eq-in-tran2 prod.collapse)
                   with d0 have False by simp
                 }
                 then show ?thesis by auto
               from b1 b2 have el \neq [] using cpts-e-not-empty by auto
               with b1 b2 obtain els where el = (BasicEvent \ ev, \ s, \ x) \# els
                 by (metis hd-Cons-tl hd-conv-nth)
               then have getspc-e (last el) = BasicEvent ev
                 proof(induct els)
                   case Nil
                   assume el = [(BasicEvent\ ev,\ s,\ x)]
                   then have last el = (BasicEvent \ ev, \ s, \ x) by simp
                   then show ?case by (simp add:getspc-e-def)
                 next
                   case (Cons els1 elsr)
                   assume d\theta: el = (BasicEvent\ ev,\ s,\ x)\ \#\ els1\ \#\ elsr
                   then have d1: length el > 1 by simp
                   with d\theta obtain mm where d\theta: Suc\ mm = length\ el\ by\ simp
                   with d1 obtain jj where d3: Suc jj = mm \text{ using } d0 \text{ by } auto
                   with d2 have d4: last el = el ! mm
                         by (metis (no-types, lifting) Cons-nth-drop-Suc drop-eq-Nil
last-ConsL last-drop le-eq-less-or-eq lessI)
```

```
with c1 have getspc-e (el! (Suc jj)) = BasicEvent ev using d2
d3 by auto
                     with d3 d4 show ?case by simp
                  then have c3: getspc-e (last el) = AnonyEvent fin-com \longrightarrow gets-e
(last \ el) \in post \ \mathbf{by} \ simp
                 with c2 show ?thesis by (simp add:commit-e-def)
              qed
          }
          then show ?thesis by auto
      then show ?thesis by auto
    then show ?thesis by (simp add: evt-validity-def)
  qed
lemma ev-seq-sound:
      [pre \subseteq pre'; rely \subseteq rely'; guar' \subseteq guar; post' \subseteq post;]
        \Gamma \models ev \ sat_e \ [pre', \ rely', \ guar', \ post']]
    \Longrightarrow \Gamma \models ev \ sat_e \ [pre, \ rely, \ guar, \ post]
  proof -
    assume p\theta: pre \subseteq pre'
      and p1: rely \subseteq rely'
      and p2: guar' \subseteq guar
      and p3: post' \subseteq post
      and p_4: \Gamma \models ev sat_e [pre', rely', guar', post']
     from p4 have p5: \forall s \ x. \ (cpts\text{-}of\text{-}ev \ \Gamma \ ev \ s \ x) \cap assume\text{-}e \ \Gamma \ (pre', \ rely') \subseteq
commit-e \Gamma (guar', post')
      by (simp add: evt-validity-def)
   have \forall s \ x. \ (cpts\text{-}of\text{-}ev \ \Gamma \ ev \ s \ x) \cap assume\text{-}e \ \Gamma \ (pre, \ rely) \subseteq commit\text{-}e \ \Gamma \ (guar,
post)
      proof -
      {
        fix c s x
        assume a\theta: c \in (cpts\text{-}of\text{-}ev \ \Gamma \ ev \ s \ x) \cap assume\text{-}e \ \Gamma \ (pre, rely)
        then have c \in (cpts\text{-}of\text{-}ev \ \Gamma \ ev \ s \ x) \land c \in assume\text{-}e \ \Gamma \ (pre, \ rely) by simp
        with p0 p1 have c \in (cpts\text{-}of\text{-}ev \ \Gamma \ ev \ s \ x) \land c \in assume\text{-}e \ \Gamma \ (pre', rely')
          using assume-e-imp[of pre pre' rely rely' c] by simp
        with p5 have c \in commit - e \Gamma (guar', post') by auto
        with p2 p3 have c \in commit - e \Gamma (guar, post)
          using commit-e-imp[of guar' guar post' post c] by simp
      then show ?thesis by auto
      ged
    then show ?thesis by (simp add:evt-validity-def)
```

```
qed
```

```
theorem rgsound-e:

\Gamma \vdash Evt \ sat_e \ [pre, \ rely, \ guar, \ post] \Longrightarrow \Gamma \models Evt \ sat_e \ [pre, \ rely, \ guar, \ post]
apply (erule \ rghoare-e.induct)
apply (simp \ add: \ AnonyEvt-sound \ rgsound-p)
apply (meson \ BasicEvt-sound \ rgsound-p)
apply (simp \ add: \ ev-seq-sound \ rgsound-p)
done
```

7.4 Soundness of Event Systems

```
lemma evtseq-nfin-samelower: [esl \in cpts-of-es \ \Gamma \ (EvtSeq \ e \ es) \ s \ x; \ \forall i. \ Suc \ i \le i \le i]
length\ esl\ \longrightarrow\ getspc\text{-}es\ (esl\ !\ i)\ \neq\ es
        \implies (\exists el. (el \in cpts\text{-}of\text{-}ev \ \Gamma \ e \ s \ x \land length \ esl = length \ el \land e\text{-}eqv\text{-}einevtseq)
esl el es))
  proof -
    assume p\theta: esl \in cpts-of-es \Gamma (EvtSeq\ e\ es) s\ x
      and p1: \forall i. Suc \ i \leq length \ esl \longrightarrow getspc-es \ (esl!i) \neq es
    from p0 have p01: esl! 0 = (EvtSeq \ e \ es, \ s, \ x) \land esl \in cpts\text{-}es \ \Gamma \ \mathbf{by} \ (simp)
add: cpts-of-es-def)
    then have p01-1: esl! 0 = (EvtSeq \ e \ es, \ s, \ x) by simp
   then have p2: \exists e. \ getspc\text{-}es \ (esl \ ! \ \theta) = EvtSeq \ e \ es \ by \ (simp \ add:getspc\text{-}es\text{-}def)
    from p01 have p01-2: esl \in cpts-esl \Gamma by simp
    let ?el = rm\text{-}evtsys\ esl
    have a1: length esl = length ?el by (simp add: rm-evtsys-def)
    moreover have ?el \in cpts\text{-}of\text{-}ev \ \Gamma \ e \ s \ x
      proof -
        from p01-2 p1 p2 have b1: ?el \in cpts-ev \Gamma
          proof(induct esl)
            case (CptsEsOne es1 s1 x1)
            assume c\theta: \exists e. \ getspc\text{-}es\ ([(es1,\ s1,\ x1)]\ !\ \theta) = EvtSeq\ e\ es
            then obtain e1 where c1: getspc-es ([(es1, s1, x1)] ! 0) = EvtSeq e1
es by auto
            then have es1 = EvtSeq \ e1 \ es \ by \ (simp \ add:getspc-es-def)
            then have rm-evtsys1 (es1, s1, x1) = (e1, s1, x1)
              by (simp add: gets-es-def getspc-es-def rm-evtsys1-def getx-es-def)
                  then have rm-evtsys [(es1, s1, x1)] = [(e1, s1, x1)] by (simp)
add:rm-evtsys-def)
            then show ?case by (simp add: cpts-ev.CptsEvOne)
          next
            case (CptsEsEnv es1 t1 x1 xs1 s1 y1)
            assume c\theta: (es1, t1, x1) \# xs1 \in cpts\text{-}es \Gamma
             and c1: \forall i. Suc \ i \leq length \ ((es1, t1, x1) \# xs1) \longrightarrow getspc\text{-}es \ (((es1, t1, x1) \# xs1) )
t1, x1) \# xs1) ! i) \neq es
                            \Longrightarrow \exists e. \ getspc\text{-}es\ (((es1,\ t1,\ x1)\ \#\ xs1)\ !\ 0) = EvtSeq\ e\ es
                             \implies rm\text{-}evtsys \ ((es1,\ t1,\ x1)\ \#\ xs1) \in cpts\text{-}ev\ \Gamma
              and c11: \forall i. Suc \ i \leq length \ ((es1, s1, y1) \# (es1, t1, x1) \# xs1)
                                    \longrightarrow getspc\text{-}es (((es1, s1, y1) \# (es1, t1, x1) \# xs1) !
```

```
i) \neq es
             and c2: \exists e. \ getspc\text{-}es\ (((es1,\ s1,\ y1)\ \#\ (es1,\ t1,\ x1)\ \#\ xs1)\ !\ 0) =
EvtSeq e es
              from c2 obtain e1 where c3: getspc-es (((es1, s1, y1) # (es1, t1,
x1) \# xs1) ! 0) = EvtSeq e1 es by auto
             then have c4: es1 = EvtSeq\ e1 es by (simp\ add: getspc-es-def)
            from c11 have \forall i. Suc \ i \leq length \ ((es1, t1, x1) \# xs1) \longrightarrow getspc-es
(((es1, t1, x1) \# xs1) ! i) \neq es
               by auto
            with c1 c4 have c5: rm-evtsys ((es1, t1, x1) \# xs1) \in cpts-ev \Gamma by
(simp\ add:getspc-es-def)
            have c6: rm-evtsys ((es1, t1, x1) \# xs1) = (rm-evtsys1 (es1, t1, x1))
\# (rm\text{-}evtsys xs1)
               by (simp add: rm-evtsys-def)
             have c7: rm-evtsys ((es1, s1, y1) # (es1, t1, x1) # xs1) =
              (rm\text{-}evtsys1\ (es1,\ s1,\ y1))\ \#\ (rm\text{-}evtsys1\ (es1,\ t1,\ x1))\ \#\ (rm\text{-}evtsys)
xs1)
                by (simp add: rm-evtsys-def)
             from c4 have c8: rm-evtsys1 (es1, s1, y1) = (e1, s1, y1)
               by (simp add: gets-es-def getspc-es-def rm-evtsys1-def getx-es-def)
             from c4 have c9: rm-evtsys1 (es1, t1, x1) = (e1, t1, x1)
               by (simp add: gets-es-def getspc-es-def rm-evtsys1-def getx-es-def)
            have c10: rm-evtsys ((es1, s1, y1) # (es1, t1, x1) # xs1) = (e1, s1,
y1) \# (e1, t1, x1) \# rm\text{-}evtsys xs1
               by (simp add: c7 c8 c9)
             have rm-evtsys ((es1, t1, x1) \# xs1) = (e1, t1, x1) \# rm-evtsys xs1
               by (simp add: c6 c9)
             with c5 c10 show ?case by (simp add: cpts-ev.CptsEvEnv)
         next
           case (CptsEsComp es1 s1 x1 et es2 t1 y1 xs1)
           assume c\theta: \Gamma \vdash (es1, s1, x1) - es - et \rightarrow (es2, t1, y1)
             and c1: (es2, t1, y1) \# xs1 \in cpts\text{-}es \Gamma
            and c2: \forall i. \ Suc \ i \leq length \ ((es2, t1, y1) \# xs1) \longrightarrow getspc-es \ (((es2, t1, y1) \# xs1) \longrightarrow getspc-es)
t1, y1) \# xs1) ! i) \neq es
                        \implies \exists e. \ getspc\text{-}es\ (((es2,\ t1,\ y1)\ \#\ xs1)\ !\ 0) = EvtSeq\ e\ es
                          \implies rm\text{-}evtsys \ ((es2, t1, y1) \# xs1) \in cpts\text{-}ev \ \Gamma
             and c3: \forall i. \ Suc \ i \leq length \ ((es1, s1, x1) \# (es2, t1, y1) \# xs1)
                            \longrightarrow getspc\text{-}es (((es1, s1, x1) \# (es2, t1, y1) \# xs1) ! i)
\neq es
             and c_4: \exists e. \ getspc\text{-}es\ (((es1,\ s1,\ x1)\ \#\ (es2,\ t1,\ y1)\ \#\ xs1)\ !\ 0) =
EvtSeq e es
             from c4 obtain e1 where c41: getspc-es (((es1, s1, x1) # (es2, t1,
y1) \# xs1) ! 0) = EvtSeq e1 es
               by auto
             then have c5: es1 = EvtSeq \ e1 es by (simp \ add:getspc-es-def)
             from c3 have getspc-es (es2, t1, y1) \neq es by auto
             then have c6: es2 \neq es by (simp\ add: getspc\text{-}es\text{-}def)
```

with $c0 \ c5$ have $\exists \ e2$. $es2 = EvtSeq \ e2$ es by $(meson \ evtseq-tran-evtsys)$

```
then obtain e2 where e7: es2 = EvtSeq e2 es by auto
             with c0 c5 have \exists t. \Gamma \vdash (e1,s1,x1) - et - t \rightarrow (e2,t1,y1) by (simp)
add: evtseq-tran-exist-etran)
             then obtain t where c71: \Gamma \vdash (e1,s1,x1) - et - t \rightarrow (e2,t1,y1) by
auto
            have c8: rm-evtsys ((es1, s1, x1) # (es2, t1, y1) # xs1) =
             (rm\text{-}evtsys1\ (es1, s1, x1)) \# (rm\text{-}evtsys1\ (es2, t1, y1)) \# (rm\text{-}evtsys1)
xs1)
               by (simp add: rm-evtsys-def)
            have c9: rm-evtsys ((es2, t1, y1) # xs1) = rm-evtsys1 (es2, t1, y1)
\# (rm\text{-}evtsys \ xs1)
               by (simp add: rm-evtsys-def)
              from c3 have c10: \forall i. Suc \ i \leq length \ ((es2, t1, y1) \# xs1) \longrightarrow
getspc\text{-}es (((es2, t1, y1) \# xs1) ! i) \neq es
             by auto
           from c7 have \exists e. \ getspc\text{-}es\ (((es2,\ t1,\ y1)\ \#\ xs1)\ !\ \theta) = EvtSeq\ e\ es
             by (simp add:getspc-es-def)
             with c2 c10 have c11: rm-evtsys ((es2, t1, y1) \# xs1) \in cpts-ev \Gamma
by auto
            from c5 have c12: rm-evtsys1 (es1, s1, x1) = (e1, s1, x1)
             by (simp add: gets-es-def getspc-es-def rm-evtsys1-def getx-es-def)
            from c7 have c13: rm-evtsys1 (es2, t1, y1) = (e2, t1, y1)
             by (simp add: gets-es-def getspc-es-def rm-evtsys1-def getx-es-def)
             with c71 c8 c9 c11 c12 show ?case using cpts-ev.CptsEvComp by
fast force
        ged
       moreover have ?el ! \theta = (e,(s,x))
        proof -
          from p01 have rm-evtsys1 (esl! 0) = (e, s, x)
            by (simp add: gets-es-def getspc-es-def getx-es-def rm-evtsys1-def)
             moreover from a1 b1 have ?el ! 0 = rm\text{-}evtsys1 (esl ! 0) using
rm-evtsys-def
            by (metis cpts-e-not-empty length-greater-0-conv nth-map)
          ultimately show ?thesis by simp
        qed
       ultimately have ?el ! \theta = (e,(s,x)) \land ?el \in cpts\text{-}ev \Gamma  by auto
      then show ?thesis by (simp add: cpts-of-ev-def)
     qed
   moreover from p01-2 p1 p2 have e-eqv-einevtseq esl?el es
     proof(induct esl)
      case (CptsEsOne es1 s1 x1)
      assume a\theta: \exists e. \ getspc\text{-}es\ ([(es1,\ s1,\ x1)] \ !\ \theta) = EvtSeq\ e\ es
       then obtain e1 where a1: getspc-es ([(es1, s1, x1)] ! 0) = EvtSeq e1 es
by auto
       then have es1 = EvtSeq\ e1\ es\ bv\ (simp\ add:qetspc-es-def)
      then have rm-evtsys1 (es1, s1, x1) = (e1, s1, x1)
        by (simp add: gets-es-def getspc-es-def rm-evtsys1-def getx-es-def)
```

```
then have a2: rm-evtsys [(es1, s1, x1)] = [(e1, s1, x1)] by (simp)
add:rm-evtsys-def)
       \mathbf{show}~? case
         proof(simp add:e-eqv-einevtseq-def, rule conjI)
          show b0: Suc 0 = length (rm-evtsys [(es1, s1, s1, s1)]) by (simp add: a2)
          [x1)] ! 0)
            by (simp add: gets-es-def rm-evtsys1-def gets-e-def)
          moreover
           from a2 have getx-e (rm-evtsys [(es1, s1, x1)] ! 0) = getx-es ([(es1,
s1, x1)] ! 0)
            by (simp add: getx-es-def rm-evtsys1-def getx-e-def)
          moreover
        from a2 have qetspc\text{-}es ([(es1, s1, x1)]! 0) = EvtSeq (qetspc\text{-}e (rm\text{-}evtsys)
[(es1, s1, x1)] ! 0)) es
            using qetspc-es-def qetspc-e-def by (metis a1 fst-conv nth-Cons-0)
           ultimately show \forall i. Suc \ i \leq length \ (rm\text{-}evtsys \ [(es1, s1, x1)]) \longrightarrow
                    gets-e \ (rm-evtsys \ [(es1, s1, x1)] \ ! \ i) = gets-es \ ([(es1, s1, x1)] \ ! \ i)
i) \wedge
                   getx-e \ (rm-evtsys \ [(es1, s1, x1)] \ ! \ i) = getx-es \ ([(es1, s1, x1)] \ !
i) \wedge
                  getspc-es ([(es1, s1, x1)]! i) = EvtSeq (getspc-e (rm-evtsys [(es1,
s1, x1) ]!i) es
                    by (metis One-nat-def Suc-le-lessD less-one)
         qed
     next
       case (CptsEsEnv es1 t1 x1 xs1 s1 y1)
       assume a\theta: (es1, t1, x1) \# xs1 \in cpts\text{-}es \Gamma
         and a1: \forall i. Suc \ i \leq length \ ((es1, t1, x1) \# xs1) \longrightarrow getspc\text{-}es \ (((es1, t1, x1) \# xs1))
t1, x1) \# xs1) ! i) \neq es \Longrightarrow
                  \exists e. \ getspc\text{-}es\ (((es1,\ t1,\ x1)\ \#\ xs1)\ !\ 0) = EvtSeq\ e\ es \Longrightarrow
                  e-eqv-einevtseq ((es1, t1, x1) \# xs1) (rm-evtsys ((es1, t1, x1) \#
xs1)) es
         and a2: \forall i. Suc \ i \leq length \ ((es1, s1, y1) \# (es1, t1, x1) \# xs1)
                    \longrightarrow getspc\text{-}es (((es1, s1, y1) \# (es1, t1, x1) \# xs1) ! i) \neq es
          and a3: \exists e. \ getspc\text{-}es\ (((es1,\ s1,\ y1)\ \#\ (es1,\ t1,\ x1)\ \#\ xs1)\ !\ 0) =
EvtSeq e es
       from a2 have a4: \forall i. Suc i \leq length((es1, t1, x1) \# xs1) \longrightarrow getspc-es
(((es1, t1, x1) \# xs1) ! i) \neq es
         by auto
       from a3 obtain e1 where a5: es1 = EvtSeq e1 es using qetspc-es-def by
(metis fst-conv nth-Cons-0)
       then have \exists e. \ getspc\text{-}es\ (((es1,\ t1,\ x1)\ \#\ xs1)\ !\ 0) = EvtSeq\ e\ es
         using getspc-es-def by (simp add: getspc-es-def)
      with a1 a4 have a6: e-eqv-einevtseq ((es1, t1, x1) \# xs1) (rm-evtsys ((es1,
t1, x1) \# xs1) es by simp
       from a5 have a7: rm-evtsys1 (es1, s1, y1) = (e1, s1, y1)
         by (simp add: gets-es-def getspc-es-def rm-evtsys1-def getx-es-def)
```

```
have rm\text{-}evtsys\ ((es1,\ s1,\ y1)\ \#\ (es1,\ t1,\ x1)\ \#\ xs1) =
        rm-evtsys1 (es1, s1, y1) # rm-evtsys ((es1, t1, x1) # xs1) by (simp\ add:
rm-evtsys-def)
       with a6 a7 show ?case using gets-e-def gets-es-def getx-e-def getx-es-def
        getspc-es-def getspc-e-def e-eqv-einevtseq-s by (metis a5 fst-conv snd-conv)
       case (CptsEsComp es1 s1 x1 et es2 t1 y1 xs1)
       assume a\theta: \Gamma \vdash (es1, s1, x1) - es - et \rightarrow (es2, t1, y1)
         and a1: (es2, t1, y1) \# xs1 \in cpts\text{-}es \Gamma
         and a2: \forall i. Suc \ i \leq length \ ((es2, t1, y1) \# xs1) \longrightarrow getspc-es \ (((es2, t1, y1) \# xs1))
t1, y1) \# xs1) ! i) \neq es \Longrightarrow
                    \exists e. \ getspc\text{-}es\ (((es2,\ t1,\ y1)\ \#\ xs1)\ !\ 0) = EvtSeq\ e\ es \Longrightarrow
                     e-eqv-einevtseq ((es2, t1, y1) # xs1) (rm-evtsys ((es2, t1, y1)
# xs1)) es
         and a3: \forall i. Suc \ i \leq length \ ((es1, s1, x1) \# (es2, t1, y1) \# xs1)
                     \rightarrow getspc\text{-}es (((es1, s1, x1) \# (es2, t1, y1) \# xs1) ! i) \neq es
          and a4: \exists e. \ getspc-es \ (((es1, s1, x1) \# (es2, t1, y1) \# xs1) ! \ 0) =
EvtSeq\ e\ es
       from a3 have a5: \forall i. Suc i \leq length ((es2, t1, y1) \# xs1) \longrightarrow getspc-es
(((es2, t1, y1) \# xs1) ! i) \neq es
         by auto
       from a4 obtain e1 where a6: es1 = EvtSeq e1 es using getspc-es-def by
(metis fst-conv nth-Cons-0)
       from a3 have getspc-es (es2, t1, y1) \neq es by auto
       then have a7: es2 \neq es by (simp\ add:getspc-es-def)
       with a0 a6 have \exists e2. \ es2 = EvtSeq \ e2 \ es by (meson evtseq-tran-evtsys)
       then obtain e2 where a8: es2 = EvtSeq e2 es by auto
       then have a9: \exists e. \ getspc\text{-}es\ (((es2,\ t1,\ y1)\ \#\ xs1)\ !\ 0) = EvtSeq\ e\ es\ by
(simp\ add:getspc-es-def)
         with a2 a5 have a10: e-eqv-einevtseq ((es2, t1, y1) \# xs1) (rm-evtsys
((es2, t1, y1) \# xs1)) es by simp
        have a11: rm-evtsys ((es1, s1, x1) # (es2, t1, y1) # xs1) = rm-evtsys1
(es1, s1, x1) \# rm\text{-}evtsys ((es2, t1, y1) \# xs1)
         by (simp add:rm-evtsys-def)
       from a6 have a12: rm-evtsys1 (es1, s1, x1) = (e1, s1, x1)
         by (simp add: qets-es-def qetspc-es-def rm-evtsys1-def qetx-es-def)
     with a6 a11 a10 show ?case using gets-e-def gets-es-def getx-e-def getx-es-def
         getspc-es-def getspc-e-def e-eqv-einevtseq-s by (metis fst-conv snd-conv)
     qed
     ultimately have ?el \in cpts-of-ev \Gamma e s x \land length esl = length ?el \land
e-eqv-einevtseq esl?el es by auto
   then show ?thesis by auto
  qed
\mathbf{lemma}\ \textit{evtseq-fst-finish}\colon
  [esl \in cpts\text{-}es \ \Gamma; \ getspc\text{-}es \ (esl \ ! \ 0) = EvtSeq \ e \ es; \ Suc \ m \leq length \ esl;
    \exists i. \ i \leq m \land getspc\text{-}es \ (esl \ ! \ i) = es
```

```
\exists i. (i \leq m \land getspc\text{-}es \ (esl \ ! \ i) = es) \land (\forall j. \ j < i \longrightarrow getspc\text{-}es \ (esl \ ! \ j) \neq i)
es)
  proof -
     assume p\theta: esl \in cpts-es \Gamma
       and p1: getspc-es (esl ! 0) = EvtSeq e es
       and p2: Suc m \leq length esl
       and p3: \exists i. i \leq m \land getspc\text{-}es \ (esl ! i) = es
    have \forall m. \ esl \in cpts\text{-}es \ \Gamma \land getspc\text{-}es \ (esl \ ! \ \theta) = EvtSeq \ e \ es \land Suc \ m \leq length
esl \wedge
                 (\exists i. \ i \leq m \land getspc\text{-}es \ (esl \ ! \ i) = es) \longrightarrow
             (\exists i. (i \leq m \land getspc\text{-}es (esl! i) = es) \land (\forall j. j < i \longrightarrow getspc\text{-}es (esl! i))
j) \neq es))
       proof -
       {
         \mathbf{fix} \ m
         assume a\theta: esl \in cpts-es \Gamma
            and a1: getspc\text{-}es (esl ! 0) = EvtSeq e es
            and a2: Suc m \leq length \ esl
            and a3: (\exists i. i \leq m \land getspc\text{-}es (esl! i) = es)
        then have \exists i. (i \leq m \land getspc\text{-}es \ (esl \ ! \ i) = es) \land (\forall j. \ j < i \longrightarrow getspc\text{-}es
(esl ! j) \neq es)
            \mathbf{proof}(induct\ m)
               case \theta show ?case using \theta.prems(4) by auto
            next
               case (Suc \ n)
              assume b\theta: esl \in cpts-es \Gamma \Longrightarrow
                             getspc\text{-}es\ (esl\ !\ 0) = EvtSeq\ e\ es \Longrightarrow
                             Suc \ n \leq length \ esl \Longrightarrow
                             \exists i \leq n. \ getspc\text{-}es \ (esl ! i) = es \Longrightarrow
                           \exists i. (i \leq n \land getspc\text{-}es \ (esl \ ! \ i) = es) \land (\forall j. \ j < i \longrightarrow getspc\text{-}es
(esl ! j) \neq es
                 and b1: esl \in cpts\text{-}es \Gamma
                 and b2: getspc\text{-}es\ (esl\ !\ \theta) = EvtSeq\ e\ es
                 and b3: Suc\ (Suc\ n) \le length\ esl
                 and b4: \exists i \leq Suc \ n. \ getspc\text{-}es \ (esl ! i) = es
              show ?case
                 \operatorname{\mathbf{proof}}(cases \exists i \leq n. \ getspc\text{-}es \ (esl ! i) = es)
                   assume c\theta: \exists i \leq n. \ getspc\text{-}es \ (esl! \ i) = es
                   with b0 b1 b2 b3 have \exists i. (i \leq n \land getspc\text{-}es (esl ! i) = es) \land (\forall j.
j < i \longrightarrow getspc\text{-}es \ (esl \ ! \ j) \neq es)
                      using Suc\text{-}leD by blast
                   then show ?case using le-Suc-eq by blast
                   assume c\theta: \neg (\exists i \le n. \ getspc\text{-}es \ (esl! \ i) = es)
                   with b4 have getspc\text{-}es (esl ! (Suc n)) = es using le\text{-}SucE by auto
                   moreover from c\theta have \forall j. j < Suc \ n \longrightarrow getspc\text{-}es \ (esl \ ! \ j) \neq es
by auto
                   ultimately show ?case by blast
                 qed
```

```
qed
       then show ?thesis by auto
    then show ?thesis using p0 p1 p2 p3 by blast
  qed
\mathbf{lemma}\ \mathit{EventSeq}\text{-}\mathit{sound}:
    \llbracket \Gamma \models e \ sat_e \ [pre, \ rely1, \ guar1, \ post1]; \Gamma \models es \ sat_s \ [pre2, \ rely2, \ guar2, \ post];
       rely \subseteq rely1; rely \subseteq rely2; guar1 \subseteq guar; guar2 \subseteq guar; post1 \subseteq pre2
       \implies \Gamma \models EvtSeq \ e \ es \ sat_s \ [pre, \ rely, \ guar, \ post]
  proof -
    assume p\theta: \Gamma \models e \ sat_e \ [pre, \ rely1, \ guar1, \ post1]
       and p1: \Gamma \models es\ sat_s\ [pre2,\ rely2,\ guar2,\ post]
      and p2: rely \subseteq rely1
      and p3: rely \subseteq rely2
      and p_4: guar1 \subseteq guar
      and p5: guar2 \subseteq guar
      and p6: post1 \subseteq pre2
    then have \forall s \ x. \ (cpts\text{-}of\text{-}es \ \Gamma \ (EvtSeq \ e \ es) \ s \ x) \cap assume\text{-}es \ \Gamma \ (pre, \ rely) \subseteq
commit-es \Gamma (guar, post)
       proof -
       {
         fix s x
         have \forall esl. \ esl \in (cpts\text{-}of\text{-}es\ \Gamma\ (EvtSeq\ e\ es)\ s\ x)\cap assume\text{-}es\ \Gamma\ (pre,\ rely)
\longrightarrow esl \in commit-es \Gamma (guar, post)
           proof -
              \mathbf{fix} \ esl
              assume a\theta: esl \in (cpts\text{-}of\text{-}es\ \Gamma\ (EvtSeq\ e\ es)\ s\ x) \cap assume\text{-}es\ \Gamma\ (pre,
rely)
             then have a01: esl \in cpts-of-es \Gamma (EvtSeq \ e \ es) s \ x \ by \ simp
             from a0 have a02: esl \in assume - es \Gamma (pre, rely) by auto
                from a01 have a01-1: esl! 0 = (EvtSeq \ e \ es, \ s, \ x) by (simp \ add: \ add)
cpts-of-es-def)
              from a01 have a01-2: esl \in cpts-esl \cap by (simp add: cpts-of-es-def)
             have esl \in commit\text{-}es\ \Gamma\ (guar,\ post)
               \mathbf{proof}(cases \ \forall i. \ Suc \ i \leq length \ esl \longrightarrow getspc\text{-}es \ (esl \ ! \ i) \neq es)
                  assume b0: \forall i. Suc \ i \leq length \ esl \longrightarrow getspc\text{-}es \ (esl!i) \neq es
                  with a01 have \exists el. (el \in cpts\text{-}of\text{-}ev \ \Gamma \ e \ s \ x \land length \ esl = length \ el
\land e-eqv-einevtseq esl el es)
                    by (simp add: evtseq-nfin-samelower)
                    then obtain el where b1: el \in cpts-of-ev \Gamma e s x \wedge length esl =
length\ el\ \land\ e\text{-}eqv\text{-}einevtseq\ esl\ el\ es
                    by auto
                  have el \in assume - e \Gamma (pre, rely1)
```

```
proof(simp add:assume-e-def, rule conjI)
                           from a02 have c0: gets-es (esl ! 0) \in pre by (simp
add:assume-es-def)
                  moreover
                    from b1 have gets-e (el! 0) = s by (simp add:cpts-of-ev-def
gets-e-def)
                  moreover
                 from a01-1 have gets-es (esl! 0) = s by (simp add:cpts-of-ev-def
gets-es-def)
                  ultimately show gets-e (el ! \theta) \in pre by simp
                next
                  show \forall i. Suc \ i < length \ el \longrightarrow \Gamma \vdash el \ ! \ i - ee \rightarrow el \ ! \ Suc \ i \longrightarrow
                         (gets-e\ (el\ !\ i),\ gets-e\ (el\ !\ Suc\ i))\in rely1
                   proof -
                    {
                     \mathbf{fix} i
                     assume c\theta:Suc i < length el
                       and c1: \Gamma \vdash el! i - ee \rightarrow el! Suc i
                     then have c2: getspc-e (el ! i) = getspc-e (el ! Suc i)
                       by (simp add: eetran-eqconf1)
                         moreover from b1 c0 have getspc\text{-}es (esl ! i) = EvtSeq
(getspc-e (el!i)) es
                       by (simp add: e-eqv-einevtseq-def)
                      moreover from b1 c0 have getspc-es (esl ! Suc i) = EvtSeq
(getspc-e (el ! Suc i)) es
                       by (simp add: e-eqv-einevtseq-def)
                     ultimately have c3: getspc-es (esl ! i) = getspc-es (esl ! Suc
i) by simp
                         then have \Gamma \vdash esl ! i - ese \rightarrow esl ! Suc i by (simp add:
eqconf-esetran)
                    with a02 b1 c0 have (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in rely
                       by (simp add: assume-es-def)
                     moreover have gets-es (esl!i) = gets-e (el!i)
                       by (metis b1 c0 e-eqv-einevtseq-def less-imp-le-nat)
                     moreover have qets-es (esl!Suc i) = qets-e (el ! Suc i)
                       by (metis Suc-le-eq b1 c0 e-eqv-einevtseq-def)
                     ultimately have (gets-e\ (el\ !\ i),\ gets-e\ (el\ !\ Suc\ i)) \in rely by
simp
                      with p2 have (gets-e\ (el\ !\ i),\ gets-e\ (el\ !\ Suc\ i)) \in rely1 by
auto
                    then show ?thesis by auto
                    qed
                qed
              with p0 b1 have el \in commit-e \Gamma (guar1, post1)
                by (meson IntI contra-subsetD evt-validity-def)
             then have \forall i. Suc \ i < length \ el \longrightarrow (\exists \ t. \ \Gamma \vdash el! \ i - et - t \rightarrow el! (Suc \ i))
```

```
\longrightarrow (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in guar1\ \mathbf{by}\ (simp)
add:commit-e-def)
                 with p4 have b2: \forall i. Suc i < length \ el \longrightarrow (\exists \ t. \ \Gamma \vdash el!i \ -et - t \rightarrow
el!(Suc\ i)
                        \longrightarrow (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in guar\ \mathbf{by}\ auto
                show ?thesis
                  proof(simp add:commit-es-def)
                     show \forall i. Suc \ i < length \ esl \longrightarrow (\exists \ t. \ \Gamma \vdash esl \ ! \ i - es - t \rightarrow esl \ !
Suc i)
                                \rightarrow (gets\text{-}es \ (esl \ ! \ i), \ gets\text{-}es \ (esl \ ! \ Suc \ i)) \in guar
                      proof
                      {
                        \mathbf{fix} i
                        assume c\theta: Suc i < length \ esl
                          and c1: (\exists t. \Gamma \vdash esl ! i - es - t \rightarrow esl ! Suc i)
                         with b1 have c2: qetspc-es (esl! i) = EvtSeq (qetspc-e (el!
i)) es
                          by (simp add: e-eqv-einevtseq-def)
                       from b1 c0 have c3: getspc-es (esl! Suc i) = EvtSeq (getspc-e
(el ! Suc i)) es
                          by (simp add: e-eqv-einevtseq-def)
                        from c1 have getspc-es (esl ! i) \neq getspc-es (esl ! Suc i)
                                using evtsys-not-eq-in-tran-aux getspc-es-def by (metis
surjective-pairing)
                         with c2 c3 have getspc-e (el ! i) \neq getspc-e (el ! Suc i) by
simp
                        then have \exists t. \Gamma \vdash (el ! i) - et - t \rightarrow (el ! Suc i)
                          using b1 c0 cpts-of-ev-def notran-confeqi by fastforce
                        with b2 have (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in guar
                          using b1 c\theta by auto
                        moreover have gets-e(el!i) = gets-es(esl!i)
                          using b1 c0 e-eqv-einevtseq-def less-imp-le by fastforce
                        moreover have gets-e (el!Suc i) = gets-es (esl ! Suc i)
                          using Suc-leI b1 c0 e-eqv-einevtseq-def by fastforce
                      ultimately have (qets-es\ (esl\ !\ i),\ qets-es\ (esl\ !\ Suc\ i)) \in quar
\mathbf{by} \ simp
                      then show ?thesis by auto
                      qed
                  \mathbf{qed}
                assume b0: \neg (\forall i. Suc \ i \leq length \ esl \longrightarrow getspc\text{-}es \ (esl! \ i) \neq es)
                 from a01-1 have b00: getspc-es (esl! 0) = EvtSeq e es by (simp
add:getspc\text{-}es\text{-}def)
               from b0 have \exists m. Suc m \leq length \ esl \land getspc\text{-}es \ (esl ! m) = es \ by
auto
               then obtain m where b1: Suc m \leq length \ esl \land getspc\text{-}es \ (esl \mid m)
= es  by auto
```

```
with a01-1 a01-2 b00 b1 have b2: \exists i. (i \leq m \land getspc\text{-}es \ (esl \ ! \ i)
= es) \land (\forall j. \ j < i \longrightarrow getspc\text{-}es \ (esl \ ! \ j) \neq es)
                 using evtseq-fst-finish by blast
               then obtain n where b3: (n \le m \land getspc\text{-}es \ (esl ! n) = es) \land (\forall j.
j < n \longrightarrow getspc\text{-}es \ (esl ! j) \neq es)
                  by auto
            with b00 have b41: n \neq 0 by (metis (no-types, hide-lams) add.commute
add.right-neutral
                                             add\text{-}Suc\ dual\text{-}order.irrefl\ esys.size(3)\ le\text{-}add1
le-imp-less-Suc)
                then have b4: n > 0 by auto
                then obtain esl\theta where b5: esl\theta = take \ n \ esl by simp
                then have b5-1: length \ esl0 = n \ using \ b1 \ b3 \ less-le-trans \ by \ auto
                obtain esl1 where b6: esl1 = drop n esl by simp
                with b5 have b7: esl0 @ esl1 = esl by simp
                from a01-2 b1 b3 b4 b5 have b8: esl0 \in cpts-es \Gamma
                     by (metis (no-types, lifting) Suc-diff-1 Suc-le-lessD cpts-es-take
less-trans)
                from a01-2 b1 b3 b4 b5 b6 have b9: esl1 \in cpts-es \Gamma
                    by (metis (no-types, lifting) Suc-diff-1 Suc-le-lessD cpts-es-dropi
le-neq-implies-less less-trans)
               have b10: esl0 ! 0 = (EvtSeq\ e\ es,\ s,\ x) by (simp\ add:\ a01-1\ b4\ b5)
               have b11: getspc-es (esl1 ! \theta) = es using b1 b3 b6 by auto
                from b3 b5 have b11-1: \forall i. i < length \ esl0 \longrightarrow getspc-es \ (esl0 ! i)
\neq es by auto
                moreover from b8 b10 have esl0 \in cpts-of-es \Gamma (EvtSeq e es) s x
\mathbf{by}\ (simp\ add:cpts\text{-}of\text{-}es\text{-}def)
                ultimately have b12: \exists el. (el \in cpts\text{-}of\text{-}ev \ \Gamma \ e \ s \ x \land length \ esl0 =
length \ el \land e-eqv-einevtseq \ esl0 \ el \ es)
                 by (simp add: evtseq-nfin-samelower)
                then obtain el where b12-1: el \in cpts-of-ev \Gamma e s x \land length esl0
= length \ el \land \ e-eqv-einevtseq \ esl0 \ el \ es
                  by auto
                then have b12-2: el \in cpts-ev \Gamma by (simp \ add:cpts-of-ev-def)
                 from a02 have b13: gets-es (esl!0) \in pre \land (\forall i. Suc i<length esl
                                       \Gamma \vdash esl!i - ese \rightarrow esl!(Suc\ i) \longrightarrow (gets-es\ (esl!i),
gets\text{-}es\ (esl!Suc\ i))\in rely)
                       by (simp add:assume-es-def)
                have b14: esl0 \in assume\text{-}es \Gamma (pre, rely)
                  \mathbf{proof}(simp\ add:assume-es-def,\ rule\ conjI)
                    show gets-es (esl0 ! 0) \in pre using a01-1 b10 b13 by auto
                  from b5 b13 show \forall i. Suc i < length \ esl0 \longrightarrow \Gamma \vdash esl0 \ ! \ i - ese \rightarrow
esl0! Suc i
                           \longrightarrow (gets-es\ (esl0\ !\ i),\ gets-es\ (esl0\ !\ Suc\ i)) \in rely\ \mathbf{by}\ auto
```

then have $\exists i. i \leq m \land getspc\text{-}es \ (esl ! i) = es \ by \ auto$

```
qed
              with p2 have b15: esl0 \in assume\text{-}es \Gamma (pre, rely1)
                by (simp add: assume-es-def subset-iff)
              have b16: el \in assume - e \Gamma (pre, rely1)
                proof(simp add:assume-e-def, rule conjI)
                           from a02 have c0: gets-es (esl ! 0) \in pre by (simp
add:assume-es-def)
                  moreover
                  from b12-1 have gets-e (el! 0) = s by (simp\ add:cpts-of-ev-def
gets-e-def)
                  moreover
                 from a01-1 have gets-es (esl! \theta) = s by (simp add:cpts-of-ev-def
qets-es-def)
                  ultimately show qets-e(el! 0) \in pre by simp
                  show \forall i. \ Suc \ i < length \ el \longrightarrow \Gamma \vdash el \ ! \ i - ee \rightarrow el \ ! \ Suc \ i \longrightarrow
                         (gets-e\ (el\ !\ i),\ gets-e\ (el\ !\ Suc\ i)) \in rely1
                    proof -
                      \mathbf{fix} i
                      assume c\theta:Suc i < length \ el
                        and c1: \Gamma \vdash el ! i - ee \rightarrow el ! Suc i
                      then have c2: getspc-e (el ! i) = getspc-e (el ! Suc i)
                        by (simp add: eetran-eqconf1)
                      moreover from b12-1 c0 have getspc-es (esl0 ! i) = EvtSeq
(getspc-e (el!i)) es
                        by (simp add: e-eqv-einevtseq-def)
                         moreover from b12-1 c0 have getspc-es (esl0 ! Suc i) =
EvtSeq (getspc-e (el ! Suc i)) es
                        by (simp add: e-eqv-einevtseq-def)
                       ultimately have c3: getspc-es (esl0 ! i) = getspc-es (esl0 ! i)
Suc i) by simp
                     then have c4: \Gamma \vdash esl0 ! i - ese \rightarrow esl0 ! Suc i by (simp add:
eqconf-esetran)
                     with b14 b12-1 c0 have (gets-es (esl0!i), gets-es (esl0!Suc i))
\in rely
                       from b14 have \forall i. Suc \ i < length \ esl0 \longrightarrow \Gamma \vdash esl0!i \ -ese \rightarrow
esl0!(Suc \ i)
                                   \longrightarrow (gets\text{-}es\ (esl0!i),\ gets\text{-}es\ (esl0!Suc\ i)) \in rely
                            by (simp add:assume-es-def)
                         with b12-1 c0 c4 show ?thesis by simp
                        qed
                      moreover have gets-es (esl0!i) = gets-e (el!i)
                        by (metis b12-1 c0 e-eqv-einevtseq-def less-imp-le-nat)
```

```
moreover have gets-es (esl0!Suc\ i) = gets-e (el\ !\ Suc\ i)
                            using b12-1 c0 by (simp add: b12-1 c0 e-eqv-einevtseq-def
Suc-leI)
                       ultimately have (gets-e\ (el\ !\ i),\ gets-e\ (el\ !\ Suc\ i)) \in rely by
simp
                        with p2 have (gets-e\ (el\ !\ i),\ gets-e\ (el\ !\ Suc\ i)) \in rely1 by
auto
                      then show ?thesis by auto
                      qed
                have b17: el \in commit-e \Gamma (guar1, post1)
                  using b12-1 b16 evt-validity-def p0 by fastforce
                   then have b18: \forall i. Suc i < length \ el \longrightarrow (\exists t. \ \Gamma \vdash el!i \ -et-t \rightarrow
el!(Suc\ i))
                               \longrightarrow (gets-e (el!i), gets-e (el!Suc i)) \in quar1 by (simp
add:commit-e-def)
                with p4 have b19: \forall i. Suc \ i < length \ el \longrightarrow (\exists \ t. \ \Gamma \vdash el! i \ -et - t \rightarrow
el!(Suc\ i)
                        \longrightarrow (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in guar\ \mathbf{by}\ auto
                from b11 have \exists sn \ xn. \ esl1 \ ! \ \theta = (es, sn, xn)  using getspc\text{-}es\text{-}def
                  by (metis fst-conv surj-pair)
               then obtain sn and xn where b13: esl1 ! 0 = (es, sn, xn) by auto
             with b9 have esl1 \in cpts-of-es \Gamma es sn \ xn \ by \ (simp \ add:cpts-of-es-def)
                have \forall i. Suc \ i < length \ esl \longrightarrow (\exists t. \ \Gamma \vdash esl!i \ -es-t \rightarrow esl!(Suc \ i))
                             \rightarrow (gets\text{-}es \ (esl!i), \ gets\text{-}es \ (esl!Suc \ i)) \in guar
                  proof -
                  {
                    \mathbf{fix} i
                    assume c\theta: Suc i < length esl
                      and c1: \exists t. \ \Gamma \vdash esl!i - es - t \rightarrow esl!(Suc \ i)
                    have (gets\text{-}es\ (esl!i),\ gets\text{-}es\ (esl!Suc\ i)) \in guar
                      proof(cases\ Suc\ i < n)
                        assume d\theta: Suc i < n
                     with b5\ b5-1\ b12-1\ c0\ c1 have d1:\ getspc-es\ (esl0\ !\ i)=EvtSeq
(getspc-e (el!i)) es
                          using e-eqv-einevtseq-def by (metis less-imp-le-nat)
                        with b5 b5-1 b12-1 c0 c1 have d2: getspc-es (esl0 ! Suc i) =
EvtSeq (getspc-e (el ! Suc i)) es
                          using e-eqv-einevtseq-def by (metis Suc-le-eq d0)
                       from c1 have d3: qetspc-es (esl! i) \neq qetspc-es (esl! Suc i)
                               using evtsys-not-eq-in-tran-aux getspc-es-def by (metis
surjective-pairing)
```

```
with d1 d2 have getspc-e (el! i) \neq getspc-e (el! Suc i)
                     by (simp add: Suc-lessD b5 d0)
                    then have \exists t. \Gamma \vdash (el ! i) - et - t \rightarrow (el ! Suc i)
                    using b12-1 b5-1 cpts-of-ev-def d0 notran-confeqi by fastforce
                    with b19 have (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in guar
                     using b12-1 b5-1 d0 by auto
                    moreover have gets-e(el!i) = gets-es(esl0!i)
                       using b12-1 b5-1 d0 e-eqv-einevtseq-def less-imp-le-nat by
fast force
                    moreover have gets-e(el!Suc\ i) = gets-es(esl0\ !\ Suc\ i)
                    using Suc-leI b12-1 b5-1 d0 e-eqv-einevtseq-def less-imp-le-nat
by fastforce
                    ultimately have (gets-es\ (esl0\ !\ i),\ gets-es\ (esl0\ !\ Suc\ i)) \in
quar by simp
                    then show ?thesis by (simp add: Suc-lessD b5 d0)
                    assume d\theta: \neg (Suc \ i < n)
                    from b5-1 b12-1 have d1: getspc-es (esl0 ! (n-1)) = EvtSeq
(getspc-e (el!(n-1))) es
                     by (simp add: b12-1 e-eqv-einevtseq-def b4)
                   with b5 have d1-1: getspc-es (esl! (n-1)) = EvtSeq (getspc-e
(el!(n-1))) es
                     by (simp add: b4)
                     then have \exists sn1 \ sn1 \ sn1 \ esl! \ (n-1) = (EvtSeq \ (getspc-e \ (el \ !
(n-1)) es, sn1, xn1)
                     using getspc-es-def by (metis fst-conv surj-pair)
                    then obtain sn1 and sn1 where d2: esl!(n-1) = (EvtSeq)
(getspc-e\ (el\ !\ (n-1)))\ es,\ sn1,\ xn1)
                     by auto
                     from b4\ b5\ b5-1\ b12-1\ have gets-e\ (el!\ (n-1)\ )=gets-es
(esl0 ! (n-1)) \land
                                 qetx-e \ (el ! (n-1)) = qetx-es \ (esl0 ! (n-1)) by
(simp add:e-eqv-einevtseq-def)
                     with b5 d2 have d3: el! (n-1) = (getspc-e \ (el! (n-1)),
sn1, xn1)
                     using gets-e-def gets-es-def getx-e-def getx-es-def getspc-e-def
                     by (metis Suc-diff-1 b4 lessI nth-take prod.collapse snd-conv)
                    from b13 have d4: esl! n = (es, sn, xn) using b6 c0 d0 by
auto
                   from a01-2 b1 b3 have d5: drop (n-1) esl \in cpts-es \Gamma using
cpts-es-dropi
                        by (metis (no-types, hide-lams) Suc-diff-1 Suc-le-lessD b5
b5-1
```

```
drop-0 less-or-eq-imp-le neq0-conv not-le take-all zero-less-diff)
                        with b1 b3 b4 b6 b9 d2 d4 have d6: \exists est. \Gamma \vdash est! (n-1)
-es-est \rightarrow esl ! n
                               using incpts-es-impl-evnorcomptran cpts-es-not-empty
evtseq	ext{-}ne	ext{-}es
                          by (smt Suc-diff-1 Suc-le-lessD a01-2 d1-1 esetran-eqconf1
le-neq-implies-less less-trans)
                       with d2 have d7: \exists t. \Gamma \vdash (getspc\text{-}e\ (el\ !\ (n-1)),\ sn1,\ xn1)
-et-t \rightarrow (AnonyEvent\ fin-com, sn,\ xn)
                        using evtseq-tran-0-exist-etran using d4 by fastforce
                          with b4 b5-1 b12-1 b12-2 d3 have d8:el @ [(AnonyEvent
fin\text{-}com,sn,\ xn)] \in cpts\text{-}ev\ \Gamma
                        using cpts-ev-onemore by fastforce
                      let ?el1 = el @ [(AnonyEvent fin-com, sn, xn)]
                      from d8 have d9: ?el1 \in cpts\text{-}of\text{-}ev \ \Gamma \ e \ s \ x
                        by (metis (no-types, lifting) append-Cons b12-1 b3 b4 b5-1
                                cpts-of-ev-def list.size(3) mem-Collect-eq neq-Nil-conv
nth-Cons-\theta)
                      moreover from b16 d7 have ?el1 \in assume - e \Gamma (pre, rely1)
                        proof -
                          have gets-e(?el1!0) \in pre
                            proof -
                                        from b16 have gets-e(el!0) \in pre by (simp
add:assume-e-def)
                            then show ?thesis by (metis b12-1 b4 b5-1 nth-append)
                            qed
                          moreover
                         have \forall i. Suc i < length ?el1 \longrightarrow \Gamma \vdash ?el1!i - ee \rightarrow ?el1!(Suc
i) \longrightarrow
                                (gets-e \ (?el1!i), gets-e \ (?el1!Suc \ i)) \in rely1
                            proof -
                              \mathbf{fix} i
                              assume e0: Suc i<length ?el1
                                and e1: \Gamma \vdash ?el1!i - ee \rightarrow ?el1!(Suc\ i)
                                from b16 have e2: \forall i. Suc \ i < length \ el \longrightarrow \Gamma \vdash el!i
-ee \rightarrow el!(Suc\ i) \longrightarrow
                                    (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in rely1\ \mathbf{by}\ (simp
add:assume-e-def)
                              have (gets-e\ (?el1!i),\ gets-e\ (?el1!Suc\ i)) \in rely1
                                proof(cases Suc i < length ?el1 - 1)
                                  assume f0: Suc i < length ?el1 - 1
                                with e0 e2 show ?thesis by (metis (no-types, lifting)
Suc-diff-1
                                       Suc-less-eq Suc-mono e1 length-append-singleton
nth-append zero-less-Suc)
                                next
```

```
assume \neg (Suc i < length ?el1 - 1)
                              then have f0: Suc i \ge length ?el1 - 1 by simp
                              with e0 have f1: Suc i = length ?el1 - 1 by simp
                              then have f2: ?el1!(Suc i) = (AnonyEvent fin-com,
sn, xn) by simp
                                from f1 have f3: ?el1!i = (getspc-e \ (el! \ (n-1)),
sn1, xn1)
                         by (metis b12-1 b5-1 d3 diff-Suc-1 length-append-singleton
lessI nth-append)
                           with d7 f2 have getspc-e (?el1!i) \neq getspc-e (?el1!(Suc
i))
                           using evt-not-eq-in-tran-aux by (metis e1 eetran.cases)
                             moreover from e1 have getspc-e (?e11!i) = getspc-e
(?el1!(Suc\ i))
                                using eetran-eqconf1 by blast
                              ultimately show ?thesis by simp
                            qed
                         }
                         then show ?thesis by auto
                         qed
                        ultimately show ?thesis by (simp add:assume-e-def)
                      qed
                    ultimately have d10: ?el1 \in commit-e \Gamma (quar1, post1)
                      using evt-validity-def p0 by fastforce
                   have d11: getspc-e (last ?el1) = AnonyEvent fin-com by (simp
add:getspc-e-def)
                    with d10 have d12: gets-e (last ?el1) \in post1 by (simp add:
commit-e-def)
                    show ?thesis
                      \mathbf{proof}(cases\ Suc\ i=n)
                       assume g\theta: Suc i = n
                       from d10 have (\forall i. Suc i < length ?el1 \longrightarrow (\exists t. \Gamma \vdash ?el1!i
-et-t \rightarrow ?el1!(Suc\ i))
                             \longrightarrow (gets-e \ (?el1!i), gets-e \ (?el1!Suc \ i)) \in guar1) by
(simp add: commit-e-def)
                         with d7 have g1: (gets-e\ (?el1!i), gets-e\ (?el1!Suc\ i)) \in
guar1
                         by (metis (no-types, lifting) b12-1 b5-1 d3 diff-Suc-1
                     g0\ length-append-singleton lessI\ nth-append nth-append-length)
                        moreover have ?el1!(Suc\ i) = (AnonyEvent\ fin\text{-}com,\ sn,\ sn,\ sn)
xn)
                         using b12-1 b5-1 q0 by auto
                       moreover from g0\ b5-1\ b12-1 have ?el1!i = (getspc-e\ (el
!(n-1), sn1, xn1)
```

```
by (metis b12-1 b5-1 d3 diff-Suc-1 lessI nth-append)
                       ultimately have (sn1,sn) \in guar1 by (simp\ add:gets-e-def)
                         with p_4 have (sn1,sn) \in guar by auto
                        with d4 d2 have (gets-es (esl ! (n-1)), gets-es (esl ! Suc
(n-1)) \in guar
                           by (simp add: gets-es-def b4)
                         then show ?thesis using g\theta by auto
                       next
                         assume Suc \ i \neq n
                         then have g1: Suc \ i > n
                           using d0 linorder-neqE-nat by blast
                          from d4 have g2: esl1 ! 0 = (es, sn, xn) by (simp add:
b13)
                          with b9 have g3: esl1 \in cpts-of-es \Gamma es sn \ xn \ by \ (simp
add:cpts-of-es-def)
                         have esl1 \in assume\text{-}es \Gamma (pre2, rely2)
                           proof(simp add:assume-es-def, rule conjI)
                            from d12 have sn \in post1 by (simp \ add:gets-e-def)
                            with g2 p6 show gets-es (esl1 ! 0) \in pre2
                                   using gets-es-def by (metis fst-conv rev-subsetD
snd-conv)
                             show \forall i. \ Suc \ i < length \ esl1 \longrightarrow \Gamma \vdash esl1 \ ! \ i - ese \rightarrow
esl1! Suc i
                              \longrightarrow (gets\text{-}es\ (esl1\ !\ i),\ gets\text{-}es\ (esl1\ !\ Suc\ i)) \in rely2
                              proof -
                              {
                                \mathbf{fix} i
                                assume h\theta: Suc i < length \ esl1
                                  and h1: \Gamma \vdash esl1 ! i - ese \rightarrow esl1 ! Suc i
                                have h2: esl1 ! i = esl! (n + i) using b5-1 b7 by
auto
                                have h3: esl1! Suc i = esl! (n + Suc i)
                                  by (metis b5-1 b7 nth-append-length-plus)
                                with h1 h2 have h4: \Gamma \vdash esl ! (n + i) - ese \rightarrow esl !
(n + Suc i) by simp
                                have Suc\ (n+i) < length\ esl\ using\ b5-1\ b7\ h0\ by
anto
                                  with a02 h4 have (gets-es (esl ! (n + i)), gets-es
(esl ! (n + Suc i))) \in rely
                                  by (simp add:assume-es-def)
                                 with h2 h3 have (gets-es (esl1 ! i), gets-es (esl1 !
Suc\ i)) \in rely\ \mathbf{by}\ simp
                                then have (gets-es (esl1 ! i), gets-es (esl1 ! Suc i))
\in rely2
                                  using p3 by auto
                              then show ?thesis by auto
```

```
qed
                            qed
                          with p1 g3 have g4: esl1 \in commit-es \Gamma (guar2, post)
                           by (meson Int-iff es-validity-def subsetCE)
                         have g5: esl! i = esl1! (i - n)
                            by (metis b5-1 b7 g1 not-less-eq nth-append)
                         have g6: esl! Suc i = esl1! (Suc i - n)
                           by (metis b5-1 b7 d0 nth-append)
                        have g7: Suc (i - n) < length \ esl1 using b6 \ c0 \ g1 by auto
                           from g4 have \forall i. Suc i < length esl1 \longrightarrow (\exists t. \Gamma \vdash esl1!i
-es-t \rightarrow esl1!(Suc\ i))
                               \longrightarrow (gets\text{-}es\ (esl1!i),\ gets\text{-}es\ (esl1!Suc\ i)) \in guar2\ \mathbf{by}
(simp\ add:commit-es-def)
                           with g7 have (gets-es (esl1!(i - n)), gets-es (esl1!(Suc\ i
(n-n) \in guar2
                            using Suc-diff-le c1 g1 g5 g6 by auto
                          with g5 g6 have (gets-es\ (esl\ !\ i),\ gets-es\ (esl\ !\ Suc\ i)) \in
guar2 by simp
                         then show ?thesis using p5 by auto
                        qed
                    \mathbf{qed}
                 }
                then show ?thesis by auto
                qed
              then show ?thesis by (simp add:commit-es-def)
            \mathbf{qed}
         then show ?thesis by auto
         qed
     then show ?thesis by auto
     qed
   then show ?thesis by (simp add: es-validity-def)
 qed
primrec parse-es-cpts-i2 :: ('l, 'k, 's, 'prog) esconfs \Rightarrow ('l, 'k, 's, 'prog) event set \Rightarrow
                          (('l,'k,'s,'prog) \ esconfs) \ list \Rightarrow (('l,'k,'s,'prog) \ esconfs) \ list
 where parse-es-cpts-i2 [] es\ rlst = rlst |
       parse-es-cpts-i2 (x\#xs) es rlst =
           (if getspc-es x = EvtSys \ es \land length \ xs > 0
               \land (getspc\text{-}es (xs!0) \neq EvtSys \ es) \ then
             parse-es-cpts-i2 \ xs \ es \ (rlst@[[x]])
```

```
else
                parse-es-cpts-i2 xs es (list-update rlst (length rlst - 1) (last rlst @
[x]))
lemma concat-list-lemma-take-n [rule-format]:
  \llbracket esl = concat \ lst; \ i \leq length \ lst \rrbracket \Longrightarrow
     \exists k. \ k \leq length \ esl \land \ take \ k \ esl = concat \ (take \ i \ lst)
  proof -
   assume p\theta: esl = concat \ lst
     and p1: i \leq length lst
   then show ?thesis
     \mathbf{proof}(induct\ i)
       case \theta
       have concat (take 0 lst) = take 0 esl by simp
       then show ?case by auto
     next
       case (Suc ii)
       assume a\theta: esl = concat \ lst \Longrightarrow ii \le length \ lst
                   \implies \exists k \leq length \ esl. \ take \ k \ esl = concat \ (take \ ii \ lst)
         and a1: esl = concat \ lst
         and a2: Suc \ ii \leq length \ lst
        then have \exists k \leq length \ esl. \ take \ k \ esl = concat \ (take \ ii \ lst)
         using Suc-leD by blast
       then obtain k where a3: k \le length \ esl \land \ take \ k \ esl = concat \ (take \ ii \ lst)
         by auto
       from a2 have a4: concat (take (Suc ii) lst) = concat (take ii lst) @ lst!ii
         by (simp add: take-Suc-conv-app-nth)
       with a3 have concat (take (Suc ii) lst) = take (k + length (lst!ii)) esl
         by (metis Cons-nth-drop-Suc Suc-le-lessD a2 append-eq-conv-conj
           append-take-drop-id concat.simps(2) concat-append p0 take-add)
       then show ?case by (metis nat-le-linear take-all)
     qed
 \mathbf{qed}
lemma concat-list-lemma-take-n2 [rule-format]:
  \llbracket esl = concat \ lst; \ i < length \ lst \rrbracket \Longrightarrow
      \exists k. \ k \leq length \ esl \land k = length \ (concat \ (take \ i \ lst)) \land take \ k \ esl = concat
(take \ i \ lst)
  proof -
   assume p\theta: esl = concat \ lst
     and p1: i \leq length lst
   then show ?thesis
     \mathbf{proof}(induct\ i)
       case \theta
       have concat (take 0 lst) = take 0 esl by simp
       then show ?case by auto
       case (Suc ii)
       assume a\theta: esl = concat \ lst \Longrightarrow ii \le length \ lst
```

```
\implies \exists k < length \ esl. \ k = length \ (concat \ (take \ ii \ lst))
                                                                     \wedge take k esl = concat (take ii lst)
                             and a1: esl = concat \ lst
                             and a2: Suc \ ii \leq length \ lst
                       then have \exists k \leq length \ esl. \ k = length \ (concat \ (take \ ii \ lst))
                                                               \wedge take k esl = concat (take ii lst)
                             using Suc-leD by blast
                      then obtain k where a3: k \le length \ esl \land k = length \ (concat \ (take \ ii \ lst))
                                                                                             \wedge take k esl = concat (take ii lst)
                             by auto
                       from a2 have a4: concat (take (Suc ii) lst) = concat (take ii lst) @ lst!ii
                             by (simp add: take-Suc-conv-app-nth)
                       with a3 have concat (take (Suc ii) lst) = take (k + length (lst!ii)) esl
                             by (metis Cons-nth-drop-Suc Suc-le-lessD a2 append-eq-conv-conj
                                   append-take-drop-id concat.simps(2) concat-append p0 take-add)
                then show ?case by (metis a2 concat-list-lemma-take-n length-take min.absorb2
p\theta)
                 qed
      qed
lemma concat-list-lemma [rule-format]:
     \forall \ esl \ lst. \ esl = concat \ lst \ \land \ (\forall \ i < length \ lst. \ length \ (lst!i) > 0) \longrightarrow
                       (\forall i. Suc \ i < length \ esl
                              \longrightarrow (\exists k \ j. \ Suc \ k < length \ lst \land Suc \ j < length \ (lst!k@[lst!(Suc \ k)!0])
                                                               \land esl!i = (lst!k@[lst!(Suc\ k)!0])!j \land esl!Suc\ i = (lst!k@[lst!(Suc\ k)])!j \land esl!Suc\ i = (lst!k@[lst!(Suc\ k)])!j \land esl!Suc\ i = (lst!k@[lst!(Suc\ k)])
k)!0])!Suc j
                                                         \vee Suc k = length\ lst \wedge Suc\ j < length\ (lst!k) \wedge esl!i = lst!k!j \wedge
esl!Suc\ i = lst!k!Suc\ j)
     proof -
          \mathbf{fix} lst
           have \forall esl. esl = concat lst \land (\forall i<length lst. length (lst!i) > 0)\longrightarrow
                       (\forall i. Suc \ i < length \ esl
                             \longrightarrow (\exists k \ j. \ Suc \ k < length \ lst \land Suc \ j < length \ (lst!k@[lst!(Suc \ k)!0])
                                                               \land esl!i = (lst!k@[lst!(Suc\ k)!0])!j \land esl!Suc\ i = (lst!k@[lst!(Suc\ k)])!j \land esl!Suc\ i = (lst!k@[lst!(Suc\ k)])!j \land esl!Suc\ i = (lst!k@[lst!(Suc\ k)])
k)!0])!Suc j
                                                         \vee Suc k = length\ lst \wedge Suc\ j < length\ (lst!k) \wedge esl!i = lst!k!j \wedge
esl!Suc \ i = lst!k!Suc \ j)
                 proof(induct lst)
                       case Nil then show ?case by simp
                 next
                       case (Cons l lt)
                       assume a\theta: \forall esl. \ esl = concat \ lt \land (\forall i < length \ lt. \ \theta < length \ (lt \ ! \ i)) \longrightarrow
                       (\forall i. Suc \ i < length \ esl \longrightarrow
                                      (\exists k \ j. \ Suc \ k < length \ lt \land
                                                         Suc \ j < length \ (lt \ ! \ k \ @ \ [lt \ ! \ Suc \ k \ ! \ \theta]) \ \land
                                                        esl!i = (lt!k@[lt!Suck!0])!j \wedge esl!Suci = (lt!k@[lt!
Suc \ k \ ! \ \theta]) \ ! \ Suc \ j \ \lor
                                                         Suc k = length \ lt \land Suc \ j < length \ (lt \ ! \ k) \land esl \ ! \ i = lt \ ! \ k \ ! \ j \land
```

```
esl ! Suc i = lt ! k ! Suc j)
        {
          \mathbf{fix} \ est
          assume b\theta: esl = concat (l \# lt)
           and b1: \forall i < length (l \# lt). 0 < length ((l \# lt)! i)
          {
            \mathbf{fix} i
            assume c\theta: Suc i < length \ esl
            then have \exists k \ j. \ Suc \ k < length \ (l \# lt) \land
                    Suc \ j < length \ ((l \# lt) ! k @ [(l \# lt) ! Suc \ k ! \theta]) \land
                    esl ! i = ((l \# lt) ! k @ [(l \# lt) ! Suc k ! 0]) ! j \land
                    esl ! Suc i = ((l \# lt) ! k @ [(l \# lt) ! Suc k ! 0]) ! Suc j \lor
                    Suc \ k = length \ (l \# lt) \land
                   Suc \ j < length \ ((l \# lt) ! k) \land esl ! i = (l \# lt) ! k ! j \land esl ! Suc
i = (l \# lt) ! k ! Suc j
             \mathbf{proof}(cases\ lt = [])
                assume d\theta: lt = []
                with b\theta have esl = l by auto
                with b\theta c\theta have Suc \theta = length (l \# []) \land
                   Suc i < length ((l \# \parallel) ! 0) \land esl ! i = (l \# \parallel) ! 0 ! i \land esl ! Suc
i = (l \# []) ! 0 ! Suc i
                    by simp
                with d0 show ?thesis by auto
             next
                assume d\theta: lt \neq []
                then show ?thesis
                  \mathbf{proof}(cases\ Suc\ i < length\ (l@[(l \# lt) !\ Suc\ 0!0]))
                    assume e\theta: Suc i < length (l@[(l \# lt) ! Suc \theta!\theta])
                    with b0 b1 show ?thesis
                      by (smt Cons-nth-drop-Suc Suc-lessE Suc-lessI Suc-mono
                        cancel-comm-monoid-add-class. <math>diff-cancel concat. <math>simps(2)
                 d0 diff-Suc-1 drop-0 drop-Suc-Cons length-Cons length-append-singleton
                        length-greater-0-conv nth-Cons-0 nth-append)
                    assume e\theta\theta: \neg(Suc\ i < length\ (l@[(l \# lt) ! Suc\ \theta!\theta]))
                    then have e\theta: Suc i \geq length (l@[(l \# lt) ! Suc \theta!\theta]) by simp
                    from b0 have \exists esl1. \ esl = l@esl1 \land esl1 = concat \ lt \ by \ simp
                    then obtain esl1 where e1: esl = l@esl1 \wedge esl1 = concat lt by
auto
                    with a0 b1 have e2: \forall i. Suc i < length \ esl1 \longrightarrow
                       (\exists k \ j. \ Suc \ k < length \ lt \land
                              Suc \ j < length \ (lt \ ! \ k \ @ \ [lt \ ! \ Suc \ k \ ! \ \theta]) \ \land
                             esl1 ! i = (lt ! k @ [lt ! Suc k ! 0]) ! j \wedge esl1 ! Suc i = (lt
! k @ [lt ! Suc k ! \theta]) ! Suc j \lor
                             Suc k = length \ lt \land Suc \ j < length \ (lt \ ! \ k) \land esl1 \ ! \ i = lt
! k ! j \wedge esl1 ! Suc i = lt ! k ! Suc j)
                      by auto
```

```
from c0 \ e0 \ e00 \ e1 have e3: \ esl!i = \ esl1!(i-length \ l)
                     by (simp add: length-append-singleton nth-append)
                   from c0 \ e0 \ e00 \ e1 have e4: esl!Suc \ i = esl1!(Suc \ i - length \ l)
                     by (simp add: length-append-singleton less-Suc-eq nth-append)
                   from c0 \ e0 \ e00 \ e1 have e5: Suc \ (i-length \ l) < length \ esl1
                     using Suc-le-mono add.commute le-SucI length-append
                      length-append-singleton less-diff-conv2 by auto
                   with e2 have \exists k j. Suc k < length lt \land
                             Suc \ j < length \ (lt \ ! \ k \ @ \ [lt \ ! \ Suc \ k \ ! \ \theta]) \ \land
                             esl1 ! (i-length \ l) = (lt ! k @ [lt ! Suc k ! 0]) ! j \wedge esl1 !
Suc\ (i-length\ l)=(lt\ !\ k\ @\ [lt\ !\ Suc\ k\ !\ 0])\ !\ Suc\ j\ \lor
                                  Suc k = length \ lt \land Suc \ j < length \ (lt \ ! \ k) \land esl1 \ !
(i-length\ l) = lt\ !\ k\ !\ j\ \land\ esl1\ !\ Suc\ (i-length\ l) = lt\ !\ k\ !\ Suc\ j
                     by auto
                   then obtain k and j where Suc \ k < length \ lt \ \land
                             Suc \ j < length \ (lt \ ! \ k \ @ \ [lt \ ! \ Suc \ k \ ! \ \theta]) \ \land
                             esl1 ! (i-length \ l) = (lt ! k @ [lt ! Suc k ! 0]) ! j \wedge esl1 !
Suc\ (i-length\ l) = (lt\ !\ k\ @\ [lt\ !\ Suc\ k\ !\ 0])\ !\ Suc\ j\ \lor
                                  Suc k = length \ lt \land Suc \ j < length \ (lt \ ! \ k) \land esl1 \ !
(i-length\ l) = lt\ !\ k\ !\ j \land esl1\ !\ Suc\ (i-length\ l) = lt\ !\ k\ !\ Suc\ j
                     by auto
                   with c0 e0 e1 show ?thesis
                     by (smt Suc-diff-le Suc-le-mono Suc-mono e3 e4 length-Cons
                        length-append-singleton nat-neg-iff nth-Cons-Suc)
                 qed
             qed
         }
       then show ?case by auto
      qed
  then show ?thesis by blast
  qed
lemma concat-list-lemma2 [rule-format]:
 \forall \ esl \ lst. \ esl = concat \ lst \longrightarrow
         (\forall i < length \ lst. \ (take \ (length \ (lst!i)) \ (drop \ (length \ (concat \ (take \ i \ lst)))
esl) = lst ! i)
  proof -
  {
   \mathbf{fix} lst
   have \forall esl. \ esl = concat \ lst \longrightarrow
         (\forall i < length \ lst. \ (take \ (length \ (lst!i)) \ (drop \ (length \ (concat \ (take \ i \ lst)))
esl) = lst!i)
      \mathbf{proof}(induct\ lst)
       case Nil then show ?case by simp
      next
       case (Cons l lt)
```

```
assume a0[rule-format]: \forall esl. esl = concat lt \longrightarrow
                            (\forall i < length \ lt. \ take \ (length \ (lt \ ! \ i)) \ (drop \ (length \ (concat
(take\ i\ lt)))\ esl) = lt\ !\ i)
       {
         \mathbf{fix} esl
         assume b\theta: esl = concat (l \# lt)
         let ?esl = concat \ lt
         from b\theta have b1: esl = l @ ?esl by auto
         {
           \mathbf{fix} i
           assume c\theta: i < length (l \# lt)
          have take (length ((l \# lt)! i)) (drop (length (concat (take i (l \# lt))))
esl) = (l \# lt) ! i
             proof(cases i = 0)
               assume d\theta: i = \theta
               then show ?thesis by (simp add: b0 d0)
             next
               assume d\theta: i \neq \theta
               with c0 have take (length (lt ! (i-1))) (drop (length (concat (take
(i-1) lt))) ?esl) = lt ! (i-1)
            using a0[of?esli-1] by (metis One-nat-def leI less-Suc0 less-diff-conv2
list.size(4))
               moreover
              from d\theta c\theta have lt!(i-1) = (l \# lt)!i by (simp \ add: nth-Cons')
              moreover
               from b0\ b1\ d0\ c0 have drop\ (length\ (concat\ (take\ (i-1)\ lt)))\ ?esl
                              = drop (length (concat (take i (l # lt)))) esl
                  by (metis append-eq-conv-conj append-take-drop-id concat-append
drop-Cons')
               ultimately show ?thesis by simp
             qed
         }
       then show ?case by auto
     qed
 then show ?thesis by auto
 \mathbf{qed}
lemma concat-list-lemma3 [rule-format]:
  \llbracket esl = concat \ lst; \ i < length \ lst; \ length \ (lst!i) > 1 \rrbracket \Longrightarrow
     \exists k \ j. \ k = length \ (concat \ (take \ i \ lst)) \land j = length \ (concat \ (take \ (Suc \ i) \ lst))
           k \leq length \ esl \land j \leq length \ esl \land k < j \land drop \ k \ (take \ j \ esl) = lst \ ! \ i
 proof -
   assume p\theta: esl = concat \ lst
     and p1: i < length lst
     and p2: length (lst!i) > 1
    then have a1: take (length (lst!i)) (drop (length (concat (take i lst))) esl) =
```

```
lst ! i
     using concat-list-lemma2 by auto
   let ?k = length (concat (take i lst))
   let ?j = length (concat (take (Suc i) lst))
   from p0 p1 p2 have a10: drop ?k (take ?j esl) = lst ! i
     proof -
        have length (lst ! i) + length (concat (take i lst)) = length (concat (take i lst))
(Suc\ i)\ lst)
         by (simp add: p1 take-Suc-conv-app-nth)
       then show ?thesis
         by (metis (full-types) a1 take-drop)
   have a2: ?j - ?k = length (lst!i) by (simp \ add: p1 \ take-Suc-conv-app-nth)
   have a3: ?j = ?k + length (lst!i) by (simp add: p1 take-Suc-conv-app-nth)
   moreover
   from p\theta p1 have ?k < length esl
    by (metis append-eq-conv-conj append-take-drop-id concat-append nat-le-linear
take-all)
   moreover
   from p\theta p1 have ?j \le length esl
    by (metis append-eq-conv-conj append-take-drop-id concat-append nat-le-linear
take-all)
   moreover
   from a3 p2 have ?k < ?j using a2 diff-is-0-eq leI not-less0 by linarith
   ultimately have ?k \le length \ esl \land ?j \le length \ esl \land ?k < ?j \land drop ?k \ (take
?j\ esl) = lst ! i
     using a10 by simp
   then show ?thesis by blast
 qed
lemma concat-list-lemma-withnextfst:
  \llbracket esl = concat \ lst; \ Suc \ i < length \ lst; \ length \ (lst!Suc \ i) > 0 \rrbracket \Longrightarrow
     \exists k j. k \leq length \ esl \land j \leq length \ esl \land k < j \land drop \ k \ (take j \ esl) = lst!i \ @
[lst!Suc\ i!0]
 proof -
   assume p\theta: esl = concat \ lst
     and p1: Suc \ i < length \ lst
     and p2: length (lst!Suc i) > 0
   then have \exists k. \ k \leq length \ esl \wedge take \ k \ esl = concat \ (take \ (Suc \ (Suc \ i)) \ lst)
     using concat-list-lemma-take-n[of esl lst Suc (Suc i)] by simp
    then obtain k where a1: k \leq length \ esl \wedge take \ k \ esl = concat \ (take \ (Suc
(Suc\ i))\ lst) by auto
    from p0 p1 p2 have \exists k. k \leq length \ esl \land take \ k \ esl = concat \ (take \ (Suc \ i)
lst)
     using concat-list-lemma-take-n[of esl lst Suc i] by simp
   then obtain k2 where a2: k2 \le length \ esl \land \ take \ k2 \ esl = concat \ (take \ (Suc
i) lst) by auto
```

```
with p0 have a5: concat (take (Suc i) lst) @ [lst!Suc i!0] = take (Suc k2) esl
          by (metis (no-types, lifting) Cons-nth-drop-Suc append-eq-conv-conj
             append-take-drop-id concat-list-lemma2 drop-eq-Nil length-greater-0-conv
            less-eq-Suc-le not-less-eq-eq nth-Cons-0 nth-take p1 p2 take-Suc-conv-app-nth
take-eq-Nil
      then have a3: concat (take i lst)@lst!i@[lst!Suc i!0] = take (Suc k2) esl
          by (metis (no-types, lifting) Suc-lessD append-Nil2 append-eq-appendI
              concat.simps(1) concat.simps(2) concat-append p1 take-Suc-conv-app-nth)
      from p0 p1 p2 have \exists k. \ k \leq length \ esl \land take \ k \ esl = concat \ (take \ i \ lst)
          using concat-list-lemma-take-n[of esl lst i] by simp
      then obtain k1 where a4: k1 \leq length \ esl \wedge take \ k1 \ esl = concat \ (take \ i \ lst)
by auto
      from a3 a4 have drop k1 (take (Suc k2) esl) = lst!i@[lst!Suc i!0]
          by (metis append-eq-conv-conj length-take min.absorb2)
      then show ?thesis using a2 a4 a5
          by (metis Nil-is-append-conv drop-eq-Nil leI length-take
              min.absorb2 nat-le-linear not-Cons-self2 take-all)
   qed
lemma concat-list-lemma-withnextfst2:
   \llbracket esl = concat \ lst; \ Suc \ i < length \ lst; \ length \ (lst!Suc \ i) > 0 \rrbracket \Longrightarrow
          \exists k \ j. \ k = length \ (concat \ (take \ i \ lst)) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))))
lst))) \wedge
         k \leq \mathit{length} \ \mathit{esl} \ \land \ \mathit{j} \leq \mathit{length} \ \mathit{esl} \ \land \ \mathit{k} < \mathit{j} \ \land \ \mathit{drop} \ \mathit{k} \ (\mathit{take} \ \mathit{j} \ \mathit{esl}) = \mathit{lst}!\mathit{i} \ @ \ [\mathit{lst}!\mathit{Suc}
i!0
   proof -
      \mathbf{assume}\ p\theta\colon esl=concat\ lst
          and p1: Suc \ i < length \ lst
          and p2: length (lst!Suc i) > 0
      then have \exists k. \ k \leq length \ esl \land k = length \ (concat \ (take \ (Suc \ (Suc \ i)) \ lst))
          \land take k esl = concat (take (Suc (Suc i)) lst)
          using concat-list-lemma-take-n2[of esl lst Suc (Suc i)] by simp
      then obtain k where a1: k \leq length \ esl \land k = length \ (concat \ (take \ (Suc \ (Su
i)) lst))
               \wedge take k esl = concat (take (Suc (Suc i)) lst) by auto
       from p0 p1 p2 have \exists k. k \leq length \ esl \land k = length \ (concat \ (take \ (Suc \ i)
lst))
          \land take \ k \ esl = concat \ (take \ (Suc \ i) \ lst)
          using concat-list-lemma-take-n2[of esl lst Suc i] by simp
      then obtain k2 where a2: k2 \leq length \ esl \land k2 = length \ (concat \ (take \ (Suc
i) lst))
          \land take k2 esl = concat (take (Suc i) lst) by auto
      with p0 have a5: concat (take (Suc i) lst) @ [lst!Suc i!0] = take (Suc k2) esl
          by (metis (no-types, lifting) Cons-nth-drop-Suc append-eq-conv-conj
              append-take-drop-id concat-list-lemma2 drop-eq-Nil length-greater-0-conv
```

```
less-eq-Suc-le not-less-eq-eq nth-Cons-0 nth-take p1 p2 take-Suc-conv-app-nth
take-eq-Nil)
          then have a3: concat (take i lst)@lst!i@[lst!Suc i!0] = take (Suc k2) esl
               by (metis (no-types, lifting) Suc-lessD append-Nil2 append-eq-appendI
                     concat.simps(1) concat.simps(2) concat-append p1 take-Suc-conv-app-nth)
          from p0 p1 p2 have \exists k. k \leq length \ esl \land k = length \ (concat \ (take \ i \ lst))
               \wedge take k esl = concat (take i lst)
               using concat-list-lemma-take-n2[of esl lst i] by simp
          then obtain k1 where a4: k1 \leq length \ esl \land k1 = length \ (concat \ (take \ i \ lst))
               \wedge take k1 esl = concat (take i lst) by auto
          from a3 a4 have drop k1 (take (Suc k2) esl) = lst!i@[lst!Suc i!0]
               by (metis append-eq-conv-conj length-take)
          with a2 a4 a5 show ?thesis by (metis (no-types, lifting) Nil-is-append-conv
                               drop-eq-Nil leI length-append-singleton less-or-eq-imp-le not-Cons-self2
take-all)
     qed
\mathbf{lemma}\ concat\text{-}list\text{-}lemma\text{-}with next fst 3:
     \llbracket esl = concat \ lst; \ Suc \ i < length \ lst; \ length \ (lst!Suc \ i) > 1 \rrbracket \Longrightarrow
              \exists k \ j. \ k = length \ (concat \ (take \ i \ lst)) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (concat \ (take \ (Suc \ i))) \land j = Suc \ (length \ (take \ (Suc \ i))) \land j = Suc \ (length \ (take \ (Suc \ i))) \land j = Suc \ (length \ (take \ (Suc \ i))) \land j = Suc \ (length \ (take \ (tak
lst))) \wedge
             k \leq length \ esl \land j < length \ esl \land k < j \land drop \ k \ (take \ j \ esl) = lst!i \ @ [lst!Suc]
i!0
     proof -
          assume p\theta: esl = concat \ lst
              and p1: Suc i < length lst
               and p2: length (lst!Suc\ i) > 1
          then have \exists k. \ k \leq length \ esl \land k = length \ (concat \ (take \ (Suc \ (Suc \ i)) \ lst))
               \land take \ k \ esl = concat \ (take \ (Suc \ (Suc \ i)) \ lst)
               \mathbf{using}\ concat\text{-}list\text{-}lemma\text{-}take\text{-}n2[of\ esl\ lst\ Suc\ (Suc\ i)]\ \mathbf{by}\ simp
         then obtain k where a1: k \leq length \ esl \land k = length \ (concat \ (take \ (Suc \ (Su
i)) lst))
                      \wedge take k esl = concat (take (Suc (Suc i)) lst) by auto
           from p0 p1 p2 have \exists k. k \leq length \ esl \land k = length \ (concat \ (take \ (Suc \ i)
lst))
               \land take k esl = concat (take (Suc i) lst)
               using concat-list-lemma-take-n2[of esl lst Suc i] by simp
          then obtain k2 where a2: k2 \leq length \ esl \land k2 = length \ (concat \ (take \ (Suc
i) lst))
               \land take k2 esl = concat (take (Suc i) lst) by auto
          with p0 have a5: concat (take (Suc i) lst) @ [lst!Suc i!0] = take (Suc k2) esl
           by (metis One-nat-def Suc-lessD Suc-n-not-le-n append-Nil2 append-take-drop-id
```

```
concat-list-lemma2 concat-list-lemma-withnextfst2 hd-conv-nth
        le-neq-implies-less nth-take p1 p2 take-hd-drop)
   then have a3: concat (take i lst)@lst!i@[lst!Suc i!0] = take (Suc k2) esl
      by (metis (no-types, lifting) Suc-lessD append-Nil2 append-eq-appendI
        concat.simps(1) \ concat.simps(2) \ concat-append \ p1 \ take-Suc-conv-app-nth)
   from p0 p1 p2 have \exists k. \ k \leq length \ esl \land k = length \ (concat \ (take \ i \ lst))
      \wedge take k esl = concat (take i lst)
      using concat-list-lemma-take-n2[of esl lst i] by simp
   then obtain k1 where a4: k1 \leq length \ esl \land k1 = length \ (concat \ (take \ i \ lst))
      \wedge take k1 esl = concat (take i lst) by auto
   from a3 a4 have drop k1 (take (Suc k2) esl) = lst!i@[lst!Suc i!0]
      by (metis append-eq-conv-conj length-take)
   with a2 a4 a5 show ?thesis
    by (smt One-nat-def append-eq-conv-conj concat-list-lemma2 concat-list-lemma-withnextfst2
     le I\ length-Cons\ less-trans\ list.size(3)\ nat-neq-iff\ p0\ p1\ p2\ take-all\ zero-less-one)
  qed
lemma parse-es-cpts-i2-concat:
      \forall esl \ rlst \ es. \ esl \in cpts{-}es \ \Gamma \land (rlst::(('l,'k,'s,'prog) \ esconfs) \ list) \neq []
                      \longrightarrow concat (parse-es-cpts-i2 \ esl \ es \ rlst) = concat \ rlst @ esl
  proof -
   \mathbf{fix} \ esl
    have \forall rlst \ es. \ esl \in cpts\text{-}es \ \Gamma \ \land \ (rlst::(('l,'k,'s,'prog) \ esconfs) \ list) \neq [] \longrightarrow
concat (parse-es-cpts-i2 \ esl \ es \ rlst) = concat \ rlst @ esl
      proof(induct\ esl)
       case Nil show ?case by simp
       case (Cons esc esl1)
      assume a0: \forall rlst \ es. \ esl1 \in cpts\text{-}es \ \Gamma \land rlst \neq [] \longrightarrow concat \ (parse\text{-}es\text{-}cpts\text{-}i2)
esl1 \ es \ rlst) = concat \ rlst @ esl1
       then show ?case
         proof -
         {
           assume b0: esc # esl1 \in cpts-es \Gamma \land (rlst::(('l, 'k, 's, 'prog) \ esconfs) \ list)
\neq []
           have concat (parse-es-cpts-i2 (esc # esl1) es rlst) = concat rlst @ (esc
# esl1)
              proof(cases\ getspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ getspc\text{-}es
(esl1!0) \neq EvtSys \ es)
               assume c\theta: getspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ getspc\text{-}es
```

```
(esl1!0) \neq EvtSys \ es
             then have c1: parse-es-cpts-i2 (esc \# esl1) es rlst = parse-es-cpts-i2
esl1 \ es \ (rlst@[[esc]])
                by simp
              from b\theta have c2: rlst@[[esc]] \neq [] by simp
              from b0\ c0 have esl1 \in cpts\text{-}es\ \Gamma using cpts\text{-}es\text{-}dropi by force
               with a0 c2 have c3: concat (parse-es-cpts-i2 esl1 es (rlst@[[esc]]))
= concat (rlst@[[esc]]) @ esl1 by simp
               have concat rlst @ (esc \# esl1) = concat (rlst@[[esc]]) @ esl1 by
auto
              with c1 c3 show ?thesis by presburger
            assume c\theta: \neg(getspc\text{-}es\ esc=EvtSys\ es\ \land\ length\ esl1>0\ \land\ getspc\text{-}es
(esl1!0) \neq EvtSys \ es)
              then have c1: parse-es-cpts-i2 (esc \# esl1) es rlst =
                           parse-es-cpts-i2\ esl1\ es\ (list-update\ rlst\ (length\ rlst\ -\ 1)
(last \ rlst \ @ \ [esc])) by auto
              show ?thesis
               \mathbf{proof}(cases\ esl1=[])
                 assume d\theta: esl1 = []
                 then have d1: parse-es-cpts-i2 (esc # []) es rlst =
                             parse-es-cpts-i2 [] es (list-update rlst (length rlst – 1)
(last \ rlst \ @ \ [esc])) by simp
                  have d2: parse-es-cpts-i2 [] es (list-update rlst (length rlst -1)
(last \ rlst \ @ \ [esc])) =
                        list-update rlst (length rlst -1) (last rlst @ [esc]) by simp
                  from b0 have concat (list-update rlst (length rlst -1) (last rlst
@[esc])) = concat \ rlst \ @esc \#[]
                   by (metis (no-types, lifting) append-assoc append-butlast-last-id
                      append-self-conv\ concat.simps(2)\ concat-append\ length-butlast
list-update-length)
                 with d0 d1 d2 show ?thesis by simp
               next
                 assume d\theta: \neg(esl1 = [])
                 then have length \ esl1 > 0 by simp
                 with b0 have d1: esl1 \in cpts-es \Gamma using cpts-es-dropi by force
                 from b\theta have list-update rlst (length rlst -1) (last rlst @ [esc])
\neq [] by simp
                  with a0 d1 have d2: concat (parse-es-cpts-i2 esl1 es (list-update
rlst (length \ rlst - 1) (last \ rlst @ [esc]))) =
                                concat (list-update rlst (length rlst -1) (last rlst @
[esc]) @ esl1 by auto
                from b0 have d3: concat rlst @ (esc \# esl1) = concat (list-update)
rlst (length \ rlst - 1) (last \ rlst @ [esc])) @ esl1
                       by (metis (no-types, lifting) Cons-eq-appendI append-assoc
append-butlast-last-id
                     concat.simps(2) concat-append length-butlast list-update-length
self-append-conv2)
```

```
with c1 d2 show ?thesis by simp
                 qed
             \mathbf{qed}
         }
         then show ?thesis by auto
         qed
     \mathbf{qed}
  then show ?thesis by auto
  qed
lemma parse-es-cpts-i2-concat1:
     esl \in cpts-es \Gamma \Longrightarrow concat (parse-es-cpts-i2 \ esl \ es \ [[]]) = esl
  by (simp add: parse-es-cpts-i2-concat)
lemma parse-es-cpts-i2-lst0:
   \forall esl \ l1 \ l2 \ es. \ esl \in cpts-es \ \Gamma \land (l2::(('l,'k,'s,'prog) \ esconfs) \ list) \neq []
                 \longrightarrow parse-es-cpts-i2 esl es (l1@l2) = l1@(parse-es-cpts-i2 esl es l2)
  proof -
  {
   \mathbf{fix} esl
   have \forall l1 \ l2 \ es. \ esl \in cpts-es \ \Gamma \land (l2::(('l,'k,'s,'prog) \ esconfs) \ list) \neq []
                     \longrightarrow parse-es-cpts-i2 \ esl \ es \ (l1@l2) = l1@(parse-es-cpts-i2 \ esl \ es
l2)
     proof(induct esl)
       case Nil show ?case by simp
     next
       case (Cons esc esl1)
       assume a0: \forall l1 \ l2 \ es. \ esl1 \in cpts-es \ \Gamma \land (l2::(('l,'k,'s,'prog) \ esconfs) \ list)
\neq []
                          \longrightarrow parse-es-cpts-i2 esl1 es (l1 @l2) = l1 @ parse-es-cpts-i2
esl1 es l2
       show ?case
         proof -
           fix l1 l2 es
           assume b\theta: esc \# esl1 \in cpts\text{-}es \Gamma
             and b1: (l2::(('l,'k,'s,'prog)\ esconfs)\ list) \neq []
           have parse-es-cpts-i2 (esc \# esl1) es (l1 @ l2) = l1 @ parse-es-cpts-i2
(esc # esl1) es l2
             \mathbf{proof}(cases\ esl1=[])
               assume c\theta: esl1 = []
               then have parse-es-cpts-i2 (esc \# []) es (l1 @ l2) =
                         parse-es-cpts-i2 | es (list-update (l1 @ l2) (length (l1 @ l2)
- 1) (last (l1 @ l2) @ [esc]))
                 by simp
               then have c1: parse-es-cpts-i2 (esc \# []) es (l1 @ l2) =
                          list-update (l1 @ l2) (length (l1 @ l2) - 1) (last (l1 @ l2)
@ [esc])
```

```
by simp
              with b1 have c2: parse-es-cpts-i2 (esc \# []) es (l1 @ l2) =
                            l1 @ (list-update l2 (length l2 - 1) (last l2 @ [esc]))
               by (smt append-butlast-last-id append-is-Nil-conv butlast-append
               butlast-list-update last-appendR last-list-update list-update-nonempty)
              have l1 @ parse-es-cpts-i2 (esc # []) es l2 =
                     l1 @ parse-es-cpts-i2 [] es (list-update <math>l2 (length l2 - 1) (last
l2 \otimes [esc]) by simp
              then have l1 @ parse-es-cpts-i2 (esc # []) es l2 =
                      l1 @ (list-update l2 (length l2 - 1) (last l2 @ [esc])) by simp
              with c0 c2 show ?thesis by simp
              assume c\theta: \neg(esl1 = [])
              with b0 have c1: esl1 \in cpts-es \Gamma using cpts-es-dropi by force
             show ?thesis
              \mathbf{proof}(cases\ qetspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ qetspc\text{-}es
(esl1!0) \neq EvtSys \ es)
               assume d0: getspc-es esc = EvtSys es \land length esl1 > 0 \land getspc-es
(esl1!0) \neq EvtSys \ es
                 then have d1:parse-es-cpts-i2 (esc # esl1) es (l1 @ l2) =
                               parse-es-cpts-i2 esl1 es (l1 @ l2@[[esc]]) by simp
                 from a0 c1 have d2: parse-es-cpts-i2 esl1 es (l1 @ l2@[[esc]]) =
                               l1 @ parse-es-cpts-i2 esl1 es (l2@[[esc]]) by simp
                 from d\theta have d\theta: l\theta @ parse-es-cpts-i\text{2} (esc # esl1) es l\theta =
                               l1 @ parse-es-cpts-i2 esl1 es (l2@[[esc]]) by simp
                 with d1 d2 show ?thesis by simp
                   assume d\theta: \neg(getspc\text{-}es\ esc=EvtSys\ es\ \land\ length\ esl1>0\ \land
getspc\text{-}es\ (esl1!0) \neq EvtSys\ es)
                 then have d1: parse-es-cpts-i2 (esc \# esl1) es (l1 @ l2) =
                               parse-es-cpts-i2 esl1 es (list-update (l1 @ l2) (length
(l1 @ l2) - 1)
                                                    (last (l1 @ l2) @ [esc])) by auto
                 with b1 have d2: parse-es-cpts-i2 (esc \# esl1) es (l1 @ l2) =
                               parse-es-cpts-i2 esl1 es (l1 @ list-update l2 (length l2
- 1) (last l2 @ [esc]))
                   by (smt append1-eq-conv append-assoc append-butlast-last-id
                          append-is-Nil-conv length-butlast list-update-length)
                with a0 b1 c1 have d3: parse-es-cpts-i2 (esc \# esl1) es (l1 @ l2)
                               l1 @ parse-es-cpts-i2 esl1 es (list-update l2 (length l2
- 1) (last l2 @ [esc]) )
                    by auto
                 from d\theta have l1 @ parse-es-cpts-i2 (esc \# esl1) es l2 =
                              l1 @ parse-es-cpts-i2 esl1 es (list-update l2 (length l2
- 1) (last l2 @ [esc]))
                    by auto
                 with d3 show ?thesis by simp
               qed
```

```
qed
          }
          then show ?thesis by auto
          qed
     qed
  then show ?thesis by auto
 qed
lemma parse-es-cpts-i2-lst:
    \forall esl \ l1 \ l2 \ es. \ esl \in cpts-es \ \Gamma \land (l2::(('l,'k,'s,'prog) \ esconfs) \ list) \neq []
                   \longrightarrow parse-es-cpts-i2\ esl\ es\ ([l1]@l2)=[l1]@(parse-es-cpts-i2\ esl\ es
l2)
 using parse-es-cpts-i2-lst0 by blast
lemma parse-es-cpts-i2-fst: \forall esl elst rlst es l. esl\incpts-es \Gamma \land rlst = [l] \land elst =
parse-es-cpts-i2 esl es rlst
                                              \longrightarrow (\exists i \leq length \ (elst!0). \ take \ i \ (elst!0) = l)
 proof -
    \mathbf{fix} \ esl
    have \forall elst rlst es l. esl \in cpts-es \Gamma \land rlst = [l] \land elst = parse-es-cpts-i2 esl es
rlst
                            \longrightarrow (\exists i \leq length \ (elst!0). \ take \ i \ (elst!0) = l)
      proof(induct esl)
        case Nil show ?case by simp
      next
        case (Cons esc esl1)
            assume a0: \forall elst rlst es l. esl1 \in cpts-es \Gamma \land rlst = [l] \land elst =
parse-es-cpts-i2 esl1 es rlst
                                    \longrightarrow (\exists i \leq length \ (elst ! 0). \ take \ i \ (elst ! 0) = l)
        show ?case
         proof -
            fix elst rlst es l
           assume b\theta: esc \# esl1 \in cpts\text{-}es \Gamma
             and b1: rlst = [l]
             and b2: elst = parse-es-cpts-i2 (esc \# esl1) es rlst
            have \exists i \leq length (elst ! 0). take i (elst ! 0) = l
             \mathbf{proof}(cases\ esl1=[])
                assume c\theta: esl1 = []
               with b2 have c1: elst = parse-es-cpts-i2 [] es (list-update \ rlst (length
rlst - 1) (last rlst @ [esc]))
                 \mathbf{by} \ simp
                then have elst = list\text{-}update \ rlst \ (length \ rlst - 1) \ (last \ rlst \ @ [esc])
by simp
                with b1 have c2: elst = [l@[esc]] by simp
                  then show ?thesis by (metis butlast-conv-take butlast-snoc linear
```

```
nth-Cons-0 take-all)
            next
              assume c\theta: \neg(esl1 = [])
              with b0 have c1: esl1 \in cpts-es \Gamma using cpts-es-dropi by force
              from c0 obtain esl2 and ec1 where c2: esl1 = ec1 \# esl2
                by (meson neg-Nil-conv)
              show ?thesis
               \mathbf{proof}(cases\ getspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ getspc\text{-}es
(esl1!0) \neq EvtSys \ es)
               assume d0: getspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ getspc\text{-}es
(esl1!0) \neq EvtSys \ es
                  with c2 have d01: getspc-es ec1 \neq EvtSys es by simp
                       from d\theta have d1: parse-es-cpts-i2 (esc \# esl1) es rlst =
parse-es-cpts-i2 esl1 es (rlst@[[esc]])
                    by simp
                   with b1 b2 have d2: elst = parse-es-cpts-i2 esl1 es ([l]@[[esc]])
by simp
             from c1 have parse-es-cpts-i2 esl1 es ([l]@[[esc]]) = [l]@parse-es-cpts-i2
esl1 \ es \ ([[esc]])
                    using parse-es-cpts-i2-lst by blast
                with d2 have elst = [l] @ parse-es-cpts-i2 esl1 es ([[esc]]) by simp
                  then show ?thesis by auto
                next
                    assume d\theta: \neg(getspc\text{-}es\ esc=EvtSys\ es\ \land\ length\ esl1>0\ \land
getspc\text{-}es\ (esl1!0) \neq EvtSys\ es)
                  then have d1: parse-es-cpts-i2 (esc \# esl1) es rlst =
                            parse-es-cpts-i2\ esl1\ es\ (list-update\ rlst\ (length\ rlst\ -\ 1)
(last rlst @ [esc])) by auto
                  with b2 have d2: elst = parse-es-cpts-i2 esl1 es (list-update \ rlst
(length \ rlst - 1) \ (last \ rlst \ @ [esc]))
                    by simp
                 with b1 have elst = parse-es-cpts-i2\ esl1\ es\ ([l\ @\ [esc]]) by simp
                 with a0 c1 have \exists i \leq length \ (elst ! 0). take i \ (elst ! 0) = l @ [esc]
by simp
                  then obtain i where i \leq length (elst! 0) \wedge take i (elst! 0) = l
@ [esc] by auto
                      then show ?thesis by (metis (no-types, lifting) butlast-snoc
butlast-take diff-le-self dual-order.trans)
                qed
            \mathbf{qed}
         then show ?thesis by auto
         qed
     \mathbf{qed}
  then show ?thesis by blast
 ged
```

```
lemma parse-es-cpts-i2-start-withlen [simp]:
    \forall esl \ elst \ rlst \ esl \in cpts-es \Gamma \land rlst \neq [] \land elst = parse-es-cpts-i2 esl es rlst
                        (\forall i. \ i \geq length \ rlst \land i < length \ elst \longrightarrow
                                length (elst!i) \geq 2 \land getspc\text{-}es (elst!i!0) = EvtSys \ es \land
getspc\text{-}es\ (elst!i!1) \neq EvtSys\ es)
  proof -
    \mathbf{fix} \ esl
    have \forall elst rlst es l. esl\in cpts-es \Gamma \land rlst \neq [] \land elst = parse-es-cpts-i2 esl es
rlst \longrightarrow
                        (\forall i. \ i \geq length \ rlst \land i < length \ elst \longrightarrow
                                length (elst!i) \ge 2 \land getspc\text{-}es (elst!i!0) = EvtSys \ es \land
getspc\text{-}es\ (elst!i!1) \neq EvtSys\ es)
      proof(induct esl)
        case Nil show ?case by simp
      next
        case (Cons esc esl1)
      assume a0: \forall elst \ rlst \ es \ l. \ esl1 \in cpts-es \ \Gamma \land rlst \neq [] \land elst = parse-es-cpts-i2
esl1 \ es \ rlst \longrightarrow
                                     (\forall i. \ i \geq length \ rlst \land i < length \ elst \longrightarrow
                                            length (elst!i) \ge 2 \land getspc\text{-}es (elst ! i ! 0) =
EvtSys es
                                           \land getspc-es (elst ! i ! 1) \neq EvtSys es)
        then show ?case
          proof -
            fix elst rlst es l
            assume b\theta: esc \# esl1 \in cpts\text{-}es \Gamma
              and b1: rlst \neq []
              and b2: elst = parse-es-cpts-i2 (esc \# esl1) es rlst
              have \forall i. i \geq length \ rlst \land i < length \ elst \longrightarrow length \ (elst!i) \geq 2 \land
getspc\text{-}es\ (elst\ !\ i\ !\ \theta) = EvtSys\ es
                                                 \land getspc-es (elst ! i ! 1) \neq EvtSys es
              \mathbf{proof}(cases\ esl1=[])
                assume c\theta: esl1 = []
                then have c1: parse-es-cpts-i2 (esc \# []) es rlst =
                            parse-es-cpts-i2 [] es (list-update rlst (length rlst – 1) (last
rlst @ [esc])) by simp
                have c2: parse-es-cpts-i2 [] es (list-update\ rlst (length\ rlst-1) (last
rlst @ [esc]))
                      = list-update rlst (length rlst - 1) (last rlst @ <math>[esc]) by simp
                with b2\ c0\ c1 have elst = list-update rlst\ (length\ rlst - 1)\ (last\ rlst
@ [esc]) by simp
                with b1 show ?thesis by auto
              next
                assume c\theta: \neg(esl1 = [])
                with b0 have c1: esl1 \in cpts-es \Gamma using cpts-es-dropi by force
                from c\theta obtain esl2 and ec1 where c2: esl1 = ec1 \# esl2
```

```
by (meson neq-Nil-conv)
              show ?thesis
               \mathbf{proof}(cases\ getspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ getspc\text{-}es
(esl1!0) \neq EvtSys \ es)
               assume d0: getspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ getspc\text{-}es
(esl1!0) \neq EvtSys \ es
                  with c2 have d01: getspc-es ec1 \neq EvtSys es by simp
                       from d0 have d1: parse-es-cpts-i2 (esc \# esl1) es rlst =
parse-es-cpts-i2\ esl1\ es\ (rlst@[[esc]])
                    by simp
                  with b1 b2 have d2: elst = parse-es-cpts-i2 \ esl1 \ es \ (rlst@[[esc]])
by simp
                       from c1 have d4: parse-es-cpts-i2 esl1 es (rlst@[[esc]]) =
rlst@parse-es-cpts-i2 esl1 es ([[esc]])
                    using parse-es-cpts-i2-lst0 by blast
                   with d2 have d3: elst = rlst @ parse-es-cpts-i2 esl1 es ([[esc]])
by simp
                  show ?thesis
                    \mathbf{proof}(cases\ esl2=[])
                      assume e\theta: esl2 = []
                      with c2 have e1: elst = rlst @ parse-es-cpts-i2 [] es
                                    (list-update [[esc]] (length [[esc]] - 1) (last [[esc]]
@ [ec1]))
                         using b2 d1 by auto
                     then have elst = rlst @ (list-update [[esc]] (length [[esc]] - 1)
(last\ [[esc]]\ @\ [ec1]))
                      then have elst = rlst @ ([[esc] @ [ec1]]) by simp
                      with d0 d01 show ?thesis using leD le-eq-less-or-eq by auto
                      assume e\theta: \neg(esl2 = [])
                      let ?elst2 = parse-es-cpts-i2 \ esl1 \ es \ ([[esc]])
                      from a0 c1 have e1: \forall i. i \geq 1 \land i < length ?elst2 \longrightarrow
                                         length \ (?elst2!i) \ge 2 \land getspc\text{-}es \ (?elst2!i)
\theta) = EvtSys\ es
                                         \land getspc-es (?elst2 ! i ! 1) \neq EvtSys es
                      by (metis One-nat-def length-Cons list.distinct(2) list.size(3))
                      from c2\ d01\ d3 have elst=rlst @ parse-es-cpts-i2\ esl2\ es
                                                 (list-update [[esc]] (length [[esc]] - 1)
(last\ [[esc]]\ @\ [ec1]))\ \mathbf{by}\ simp
                   then have e2: elst = rlst @ parse-es-cpts-i2 esl2 es [[esc]@[ec1]]
\mathbf{by} \ simp
                    with d3 have e3: ?elst2 = parse-es-cpts-i2 \ esl2 \ es \ [[esc]@[ec1]]
by simp
                       from c1 c2 e0 have esl2 \in cpts-es \Gamma using cpts-es-dropi by
force
```

```
with e3 have e4: \exists i \leq length \ (?elst2!0). take i \ (?elst2!0) =
[esc]@[ec1]
                       using parse-es-cpts-i2-fst by blast
                     with d0 d01 e1 e2 e3 show ?thesis
                       proof -
                        \mathbf{fix} i
                        assume f0: length rlst \leq i \land i < length elst
                       have length (elst ! i) \geq 2 \land getspc\text{-}es (elst ! i ! 0) = EvtSys
es
                                \land getspc-es (elst ! i ! 1) \neq EvtSys es
                          \mathbf{proof}(cases\ length\ rlst = i)
                            assume g\theta: length rlst = i
                                then have elst ! i = ?elst2!0 by (simp \ add: \ e2 \ e3)
nth-append)
                            with e4 show ?thesis
                                    by (metis (no-types, lifting) One-nat-def Suc-1
butlast-snoc
                                            butlast-take c2 d0 diff-Suc-1 length-Cons
length-append-singleton
                               length-take lessI list.size(3) min.absorb2 nth-Cons-0
                                  nth-append-length nth-take)
                          next
                            assume g\theta: \neg (length rlst = i)
                            with f0 have length rlst < i \land i < length elst by simp
                               with e1 show ?thesis by (metis Nil-is-append-conv
Suc-leI a0 b1
                                c1 d4 e2 e3 length-append-singleton)
                          qed
                       }
                       then show ?thesis by auto
                       qed
                   \mathbf{qed}
               next
                    assume d\theta: \neg(getspc\text{-}es\ esc=EvtSys\ es\ \land\ length\ esl1>0\ \land
qetspc-es (esl1!0) \neq EvtSys \ es)
                 then have d1: parse-es-cpts-i2 (esc \# esl1) es rlst =
                            parse-es-cpts-i2\ esl1\ es\ (list-update\ rlst\ (length\ rlst\ -\ 1)
(last rlst @ [esc])) by auto
                  with b2 have d2: elst = parse-es-cpts-i2 esl1 es (list-update rlst
(length \ rlst - 1) \ (last \ rlst \ @ [esc]))
                   by simp
                  with a0 c1 show ?thesis using b1 by (metis length-list-update
list-update-nonempty)
                qed
            qed
        then show ?thesis by blast
        qed
```

```
qed
  }
  then show ?thesis by blast
  qed
lemma parse-es-cpts-i2-start-withlen0 [simp]:
    [esl \in cpts-es \ \Gamma; \ rlst \neq []; \ elst = parse-es-cpts-i2 \ esl \ es \ rlst] \implies
          \forall i. \ i \geq length \ rlst \land i < length \ elst \longrightarrow length \ (elst!i) \geq 2
            \land getspc-es (elst!i!0) = EvtSys es \land getspc-es (elst!i!1) \neq EvtSys es
  using parse-es-cpts-i2-start-withlen by fastforce
lemma parse-es-cpts-i2-fstempty: [esl = (EvtSys \ es, \ s, \ x) \ \# \ (EvtSeq \ e \ (EvtSys \ es, \ s, \ x)]
es), s1,x1) \# xs; esl \in cpts-es \Gamma;
        rlst = parse-es-cpts-i2 \ esl \ es \ [[]]] \implies rlst!0 = []
  proof -
    assume p\theta: esl = (EvtSys\ es,\ s,\ x)\ \#\ (EvtSeq\ e\ (EvtSys\ es),\ s1,x1)\ \#\ xs
      and p1: esl \in cpts - es \Gamma
      and p2: rlst = parse-es-cpts-i2 esl es [[]]
     then have rlst = parse-es-cpts-i2 ((EvtSeq e (EvtSys es), s1,x1) # xs) es
([[]]@[[(EvtSys\ es,\ s,\ x)]])
      by (simp add:getspc-es-def)
    moreover from p0 p1 have (EvtSeq\ e\ (EvtSys\ es),\ s1,x1)\ \#\ xs\in cpts\text{-}es\ \Gamma
      using cpts-es-dropi by force
    ultimately have rlst = [[]]@ parse-es-cpts-i2 ((EvtSeq e (EvtSys es), s1,x1)
\# xs) es ([[(EvtSys es, s, x)]])
      using parse-es-cpts-i2-lst0 by blast
    then show ?thesis by simp
  qed
lemma parse-es-cpts-i2-concat3: [esl = (EvtSys\ es,\ s,\ x)\ \#\ (EvtSeq\ e\ (EvtSys\ es),
s1,x1) # xs; esl \in cpts - es \Gamma;
        rlst = parse-es-cpts-i2 \ esl \ es \ [[]]] \Longrightarrow concat \ (tl \ rlst) = esl
  using parse-es-cpts-i2-concat1 parse-es-cpts-i2-fstempty
  by (smt append-Nil concat.simps(1) concat.simps(2) hd-Cons-tl list.distinct(1)
nth-Cons-\theta)
lemma parse-es-cpts-i2-noent-mid\theta:
    \forall esl \ elst \ l \ es. \ esl \in cpts-es \ \Gamma \land elst = parse-es-cpts-i2 \ esl \ es \ [l] \longrightarrow
                           \neg (length \ l > 1 \land getspc\text{-}es \ (last \ l) = EvtSys \ es \land getspc\text{-}es
(esl!0) \neq EvtSys \ es) \longrightarrow
                        \neg(\exists j. \ j > 0 \land Suc \ j < length \ l \land )
                             getspc\text{-}es\ (l!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (l!Suc\ j) \neq EvtSys
es) \longrightarrow
                        (\forall i. \ i < length \ elst \longrightarrow \neg(\exists j. \ j > 0 \land Suc \ j < length \ (elst!i)
                            getspc\text{-}es\ (elst!i!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!Suc\ j) \neq
EvtSys \ es))
 proof -
```

```
{
    \mathbf{fix} \ esl
    have \forall elst l es. esl\in cpts-es \Gamma \land elst = parse-es-cpts-i2 esl es [l] \longrightarrow
                              \neg (length \ l > 1 \land getspc\text{-}es \ (last \ l) = EvtSys \ es \land getspc\text{-}es
(esl!0) \neq EvtSys \ es) \longrightarrow
                            \neg(\exists j. \ j > 0 \land Suc \ j < length \ l \land
                                 getspc\text{-}es\ (l!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (l!Suc\ j) \neq EvtSys
es) \longrightarrow
                           (\forall i. \ i < length \ elst \longrightarrow \neg(\exists j. \ j > 0 \ \land \ Suc \ j < length \ (elst!i)
                                getspc\text{-}es\ (elst!i!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!Suc\ j) \neq
EvtSys \ es))
      proof(induct esl)
         case Nil show ?case by simp
       next
         case (Cons esc esl1)
         assume a0: \forall elst \ l \ es. \ esl1 \in cpts-es \Gamma \land elst = parse-es-cpts-i2 \ esl1 \ es \ [l]
                              \neg (length \ l > 1 \land getspc\text{-}es \ (last \ l) = EvtSys \ es \land getspc\text{-}es
(esl1!0) \neq EvtSys \ es) \longrightarrow
                           \neg(\exists j. \ j > 0 \land Suc \ j < length \ l \land
                                 getspc\text{-}es\ (l!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (l!Suc\ j) \neq EvtSys
es) \longrightarrow
                           (\forall\,i.\,\,i<\mathit{length}\,\,\mathit{elst}\,\longrightarrow \neg(\exists\,j.\,\,j>0\,\,\wedge\,\,\mathit{Suc}\,\,j<\mathit{length}\,\,(\mathit{elst!}i)
                                getspc\text{-}es\ (elst!i!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!Suc\ j) \neq
EvtSys \ es))
         then show ?case
           proof -
              fix elst l es
             assume b\theta: esc \# esl1 \in cpts\text{-}es \Gamma
               and b1: elst = parse-es-cpts-i2 (esc \# esl1) es [l]
                and b2: \neg (length l > 1 \land getspc-es (last l) = EvtSys es \land getspc-es
((esc \# esl1) ! 0) \neq EvtSys es)
               and b3: \neg (\exists j > 0. \ Suc \ j < length \ l \land getspc\text{-}es \ (l!j) = EvtSys \ es \land )
getspc\text{-}es\ (l ! Suc\ j) \neq EvtSys\ es)
              have (\forall i. \ i < length \ elst \longrightarrow \neg \ (\exists j > 0. \ Suc \ j < length \ (elst ! i) \land )
                      getspc\text{-}es\ (elst\ !\ i\ !\ j) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst\ !\ i\ !\ Suc\ j) \neq
EvtSys \ es))
               \mathbf{proof}(cases\ esl1\ =\ [])
                  assume c\theta: esl1 = []
                  then have c1: parse-es-cpts-i2 (esc \# []) es [l] =
                              parse-es-cpts-i2 [] es (list-update [l] (length [l] - 1) (last [l]
@ [esc])) by simp
                 have c2: parse-es-cpts-i2 [] es (list-update [l] (length [l] - 1) (last [l]
@ [esc]))
                         = list-update [l] (length [l] - 1) (last [l] @ [esc]) by <math>simp
                  with b1 c0 c1 have elst = list-update [l] (length [l] - 1) (last [l] @
```

```
[esc]) by simp
               then have elst = [l @ [esc]] by simp
             with b2 b3 show ?thesis by (smt Suc-eq-plus1-left Suc-lessD Suc-lessI
diff-Suc-1
            dual-order.strict-trans last-conv-nth length-Cons length-append-singleton
                 less-antisym less-one list.size(3) nat-neg-iff nth-Cons-0 nth-append
nth-append-length)
            next
               assume c\theta: \neg(esl1 = [])
               with b0 have c1: esl1 \in cpts-es \Gamma using cpts-es-dropi by force
               from c\theta obtain esl2 and ec1 where c2: esl1 = ec1 \# esl2
                by (meson neq-Nil-conv)
               show ?thesis
               \mathbf{proof}(cases\ qetspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ qetspc\text{-}es
(esl1!0) \neq EvtSys \ es)
                assume d0: getspc\text{-}es\ esc = EvtSys\ es\ \land\ length\ esl1 > 0\ \land\ getspc\text{-}es
(esl1!0) \neq EvtSys \ es
                  with c2 have d01: getspc-es ec1 \neq EvtSys es by simp
                         from d0 have d1: parse-es-cpts-i2 (esc \# esl1) es [l] =
parse-es-cpts-i2\ esl1\ es\ ([l]@[[esc]])
                    by simp
                   with b1 b2 have d2: elst = parse-es-cpts-i2 \ esl1 \ es \ ([l]@[[esc]])
by simp
                         from c1 have d4: parse-es-cpts-i2 esl1 es ([l]@[[esc]]) =
[l]@parse-es-cpts-i2 esl1 es ([[esc]])
                    using parse-es-cpts-i2-lst0 by blast
                  with d2 have d3: elst = [l] @ parse-es-cpts-i2 esl1 es ([[esc]]) by
simp
                  let ?elst1 = parse-es-cpts-i2 \ esl1 \ es \ ([[esc]])
                    have \neg (length [esc] > 1 \land getspc\text{-}es (last [esc]) = EvtSys \ es \land
getspc\text{-}es\ (esl1!0) \neq EvtSys\ es)
                    by simp
                  moreover have \neg(\exists j. j > 0 \land Suc j < length [esc] \land
                           qetspc-es ([esc]!j) = EvtSys es \land qetspc-es ([esc]!Suc j) \neq
EvtSys es) by simp
                  ultimately have \forall i. \ i < length ?elst1 \longrightarrow \neg(\exists j. \ j > 0 \land Suc \ j
< length (?elst1!i) \land
                          getspc\text{-}es \ (?elst1!i!j) = EvtSys \ es \land getspc\text{-}es \ (?elst1!i!Suc
j) \neq EvtSys \ es)
                     using a\theta c1 by simp
                        with b3 d3 show ?thesis by (smt Nil-is-append-conv Nit-
pick.size-list-simp(2)
                      One-nat-def Suc-diff-Suc Suc-less-eq append-Cons append-Nil
                      diff-Suc-1 diff-Suc-Suc list.sel(3) not-gr0 nth-Cons')
                     assume d\theta: \neg(getspc\text{-}es\ esc=EvtSys\ es\ \land\ length\ esl1>0\ \land
getspc\text{-}es\ (esl1!0) \neq EvtSys\ es)
```

```
then have parse-es-cpts-i2 (esc \# esl1) es [l] =
                                parse-es-cpts-i2\ esl1\ es\ (list-update\ [l]\ (length\ [l]\ -\ 1)
(last [l] @ [esc]))
                              by auto
                     with b1 have d1: elst = parse-es-cpts-i2 \ esl1 \ es \ ([l@[esc]]) by
simp
                   show ?thesis
                     \mathbf{proof}(cases\ length\ esl1=0)
                       assume e\theta: length \ esl1 = \theta
                       then have e1: esl1 = [] by simp
                       with d1 have elst = [l@[esc]] by simp
                       with b2 show ?thesis using e1 c0 by linarith
                     next
                       assume e\theta: \neg(length\ esl1=\theta)
                       then have length \ esl1 > 0 by simp
                         with d0 have e1: \neg(getspc\text{-}es\ esc=EvtSys\ es\wedge getspc\text{-}es
(esl1!0) \neq EvtSys \ es) by simp
                      then have \neg (1 < length (l@[esc]) \land getspc\text{-}es (last (l@[esc]))
= EvtSys \ es
                                  \land getspc-es (esl1 ! 0) \neq EvtSys es) by auto
                     moreover from b2\ b3 have \neg\ (\exists j>0.\ Suc\ j < length\ (l@[esc])
\land getspc\text{-}es ((l@[esc])!j) = EvtSys \ es \land
                              getspc\text{-}es\ ((l@[esc]) ! Suc\ j) \neq EvtSys\ es)
                             by (metis (no-types, hide-lams) Suc-neq-Zero diff-Suc-1
last{-}conv{-}nth
                              length-append-singleton less-antisym list.size(3) not-gr0
not-less-eq
                           nth-Cons-0 nth-append zero-less-diff)
                       ultimately show ?thesis using a0 d1 c1 by blast
                     qed
                 qed
             \mathbf{qed}
         then show ?thesis by auto
         qed
      qed
  then show ?thesis by blast
  qed
lemma parse-es-cpts-i2-noent-mid:
    [esl = (EvtSys\ es,\ s,\ x)\ \#\ (EvtSeq\ e\ (EvtSys\ es),\ s1,x1)\ \#\ xs;\ esl \in cpts-es\ \Gamma;
      elst = parse-es-cpts-i2 \ esl \ es \ [[]]] \implies \forall i. \ i < length \ (tl \ elst) \longrightarrow
                            \neg(\exists j. \ j > 0 \land Suc \ j < length \ ((tl \ elst)!i) \land 
                        getspc\text{-}es\ ((tl\ elst)!i!j) = EvtSys\ es\ \land\ getspc\text{-}es\ ((tl\ elst)!i!Suc
j) \neq EvtSys \ es)
  proof -
    assume p0: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ e \ (EvtSys \ es), \ s1,x1) \# xs
     and p1: esl \in cpts - es \Gamma
```

```
and p2: elst = parse-es-cpts-i2 esl es [[]]
   then have \neg(length \mid > 1 \land getspc\text{-}es (last \mid ) = EvtSys \ es \land getspc\text{-}es (esl!0)
\neq EvtSys \ es) \ \mathbf{by} \ simp
    moreover have \neg(\exists j. j > 0 \land Suc j < length [] \land
                       getspc\text{-}es ([]!j) = EvtSys \ es \land getspc\text{-}es ([]!Suc \ j) \neq EvtSys \ es)
by simp
   ultimately have \forall i. i < length \ elst \longrightarrow \neg(\exists j. j > 0 \land Suc \ j < length \ (elst!i)
                             getspc\text{-}es\ (elst!i!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!Suc\ j) \neq
EvtSys \ es)
      using p1 p2 parse-es-cpts-i2-noent-mid0 by blast
   then show ?thesis by (metis (no-types, lifting) List.nth-tl Nitpick.size-list-simp(2)
Suc\text{-}mono\ list.sel(2))
  qed
lemma parse-es-cpts-i2-start-aux: [esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ e \ (EvtSys \ es, \ s, \ x)]
(es), s1,x1) \# xs; esl \in cpts - es \Gamma;
        elst = parse-es-cpts-i2 \ esl \ es \ [[]]] \Longrightarrow
        \forall i. \ i < length \ (tl \ elst) \longrightarrow length \ ((tl \ elst)!i) \geq 2 \ \land
           getspc\text{-}es\ ((tl\ elst)!i!0) = EvtSys\ es\ \land\ getspc\text{-}es\ ((tl\ elst)!i!1) \neq EvtSys\ es
  proof -
    assume p0: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ e \ (EvtSys \ es), \ s1,x1) \# xs
      and p1: esl \in cpts\text{-}es \Gamma
      and p2: elst = parse-es-cpts-i2 \ esl \ es \ [[]]
    from p1 p2 have a0: \forall i. i \geq length [[]] \land i < length elst \longrightarrow length (elst!i) \geq
            getspc\text{-}es\ (elst!i!0) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!1) \neq EvtSys\ es
    by (metis\ length-Cons\ list.\ distinct(2)\ list.size(3)\ parse-es-cpts-i2-start-withlen0)
    then show ?thesis
      proof -
      {
        \mathbf{fix} i
        assume b\theta: i < length (tl elst)
        from a0 b0 have length (tl elst ! i) \geq 2
          by (metis List.nth-tl Nil-tl Nitpick.size-list-simp(2) One-nat-def
              Suc-eq-plus1-left Suc-less-eq le-add1 length-Cons less-nat-zero-code)
       moreover from a0 b0 have getspc-es (elst!Suc i!0) = EvtSys es \land getspc-es
(\mathit{elst!Suc}\ i!1) \neq \mathit{EvtSys}\ \mathit{es}
          by force
        moreover from b\theta have (tl\ elst)!i = elst!Suc\ i by (simp\ add:\ List.nth-tl)
       ultimately have length (tl elst ! i) \geq 2 \wedge getspc\text{-}es ((tl elst)!i!0) = EvtSys
es
          \land getspc\text{-}es ((tl \ elst)!i!1) \neq EvtSys \ es \ \mathbf{by} \ simp
      then show ?thesis by auto
```

```
qed
  \mathbf{qed}
lemma parse-es-cpts-i2-noent-mid-i:
    [esl = (EvtSys\ es,\ s,\ x)\ \#\ (EvtSeq\ e\ (EvtSys\ es),\ s1,x1)\ \#\ xs;\ esl \in cpts-es\ \Gamma;
     elst = tl \ (parse-es-cpts-i2 \ esl \ es \ [[]]); Suc \ i < length \ elst; \ esl1 = elst!i@[elst!Suc
i!\theta] \longrightarrow
        \neg(\exists j. \ j > 0 \land Suc \ j < length \ esl1 \land
             getspc\text{-}es\ (esl1!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (esl1!Suc\ j) \neq EvtSys\ es)
  proof -
    assume p0: esl = (EvtSys\ es,\ s,\ x) \# (EvtSeq\ e\ (EvtSys\ es),\ s1,x1) \# xs
      and p1: esl \in cpts - es \Gamma
     and p2: elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]])
     and p3: Suc i < length \ elst
     and p4: esl1 = elst!i@[elst!Suc\ i!\theta]
    let ?esl2 = elst!i
    from p0 p1 p2 p3 have \neg(\exists j. j > 0 \land Suc j < length ?esl2 \land
             getspc\text{-}es \ (?esl2!j) = EvtSys \ es \land getspc\text{-}es \ (?esl2!Suc \ j) \neq EvtSys \ es)
      using parse-es-cpts-i2-noent-mid[of esl es s x e s1 x1 xs \Gamma elst]
        by (meson Suc-lessD parse-es-cpts-i2-noent-mid)
    moreover
    from p0 p1 p2 p3 have getspc\text{-}es (elst!Suc i!0) = EvtSys es
      using parse-es-cpts-i2-start-aux[of esl es s x e s1 x1 xs \Gamma
          parse-es-cpts-i2 esl es [[]]] by blast
    ultimately show ?thesis by (simp add: nth-append p4)
  qed
lemma parse-es-cpts-i2-drop-cptes:
  \llbracket esl = (EvtSys\ es,\ s,\ x)\ \#\ (EvtSeq\ e\ (EvtSys\ es),\ s1,x1)\ \#\ xs;\ esl \in cpts-es\ \Gamma;
        elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]]) \parallel \Longrightarrow
        \forall i. \ i < length \ elst \longrightarrow concat \ (drop \ i \ elst) \in cpts\text{-}es \ \Gamma
  proof -
    assume p0: esl = (EvtSys\ es,\ s,\ x) \# (EvtSeq\ e\ (EvtSys\ es),\ s1,x1) \# xs
      and p1: esl \in cpts - es \Gamma
     and p2: elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]])
    then have a1: concat elst = esl using parse-es-cpts-i2-concat3 by metis
    {
     \mathbf{fix} i
      assume b\theta: i < length \ elst
      then have concat (drop \ i \ elst) \in cpts\text{-}es \ \Gamma
        \mathbf{proof}(induct\ i)
          case 0 with p1 a1 show ?case by auto
        next
          case (Suc \ j)
          assume c\theta: j < length \ elst \implies concat \ (drop \ j \ elst) \in cpts\text{-}es \ \Gamma
            and c1: Suc j < length \ elst
          then have c2: concat (drop\ (Suc\ j)\ elst) = drop\ (length\ (elst!j))\ (concat
(drop \ j \ elst))
                  by (metis Cons-nth-drop-Suc Suc-lessD append-eq-conv-conj con-
```

```
cat.simps(2))
         from c0 c1 have concat (drop j elst) \in cpts\text{-}es \Gamma by simp
         with c1 c2 show ?case
           using cpts-es-dropi2[of\ concat\ (drop\ j\ elst)\ \Gamma\ length\ (elst\ !\ j)]
        by (smt List.nth-tl Suc-leI Suc-lessE concat-last-lm diff-Suc-1 drop.simps(1)
           last-conv-nth last-drop le-less-trans length-0-conv length-Cons length-drop
         length-greater-0-conv length-tl lessI numeral-2-eq-2 p1 p2 parse-es-cpts-i2-start-withlen0
             zero-less-diff)
       qed
   }
   then show ?thesis by auto
 qed
lemma parse-es-cpts-i2-in-cptes-i:
  \llbracket esl = (EvtSys\ es,\ s,\ x)\ \#\ (EvtSeq\ e\ (EvtSys\ es),\ s1,x1)\ \#\ xs;\ esl \in cpts-es\ \Gamma;
       elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]]) \parallel \Longrightarrow
       \forall i. \ Suc \ i < length \ elst \longrightarrow (elst!i)@[elst!Suc \ i!0] \in cpts-es \ \Gamma
 proof -
   assume p0: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ e \ (EvtSys \ es), \ s1,x1) \# xs
     and p1: esl \in cpts - es \Gamma
     and p2: elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]])
   then have p3: concat elst = esl using parse-es-cpts-i2-concat3 by metis
   from p0 p1 p2 have p4: \forall i. i < length \ elst \longrightarrow length \ (elst!i) \geq 2
     using parse-es-cpts-i2-start-aux[of esl es s x e s1 x1 xs \Gamma parse-es-cpts-i2 esl
es [[]]]
       by simp
    {
     \mathbf{fix} i
     assume a\theta: Suc i < length \ elst
     have (elst!i)@[elst!Suc\ i!\theta] \in cpts\text{-}es\ \Gamma
       \mathbf{proof}(cases\ i=\theta)
         assume b\theta: i = \theta
         with a0 p4 have b1: length (elst!1) \geq 2 by auto
         from p3 a0 have esl = (elst!0) @ concat (drop 1 elst)
           by (metis Cons-nth-drop-Suc One-nat-def Suc-lessD b0 concat.simps(2)
drop-0)
         with a0 have esl = (elst!0) @ ((elst!1) @ concat (drop 2 elst))
          by (metis Cons-nth-drop-Suc One-nat-def Suc-1 b0 concat.simps(2))
           with a0 b0 b1 have take ((length (elst ! 0)) + 1) esl = (elst ! 0) @
[elst!Suc \ 0!0]
                by (smt Cons-nth-drop-Suc Nil-is-append-conv One-nat-def Suc-1
Suc-le-lessD
                     append.simps(1) append.simps(2) append-eq-conv-conj drop-0
length-greater-0-conv
            list.size(3) not-less0 nth-Cons-0 take-0 take-Suc-conv-app-nth take-add)
```

```
with p1 b0 show ?thesis using cpts-es-take[of esl \Gamma length (elst ! 0)]
        by (metis One-nat-def Suc-lessD add.right-neutral add-Suc-right le-less-linear
take-all)
       next
         assume i \neq 0
         then have b\theta: i > \theta by simp
         let ?elst = drop (i - 1) elst
         \mathbf{let}~?esl = concat~?elst
         from a0 b0 have b01: length ?elst > 2 by simp
         from a0 p4 b0 have b1: length (?elst!1) \geq 2 by auto
         from p0 p1 p2 a0 b1 have b2: ?esl \in cpts-es \Gamma
           using parse-es-cpts-i2-drop-cptes [of esl es s x e s1 x1 xs \Gamma elst]
             One-nat-def Suc-lessD Suc-pred b0 by presburger
         from p3 a0 have b3: ?esl = (?elst!0) @ concat (drop 1 ?elst)
           by (metis Cons-nth-drop-Suc One-nat-def Suc-lessD Suc-pred b0
               concat.simps(2) drop-0 length-drop zero-less-diff)
         with a0 have ?esl = (?elst!0) @ ((?elst!1) @ concat (drop 2 ?elst))
           by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1
               Suc\text{-leI }Suc\text{-lessD }b0\ concat.simps(2)\ diff\text{-diff-cancel }diff\text{-le-self}
               diff-less-mono length-drop)
         with b0 b01 b1 have take ((length (?elst ! 0)) + 1) ?esl = (?elst ! 0) @
[?elst!1!0]
        by (smt Cons-nth-drop-Suc Nil-is-append-conv One-nat-def append.simps(2)
           append-eq-conv-conj drop-0 length-greater-0-conv list.size(3) not-numeral-le-zero
               nth-Cons-0 take-0 take-Suc-conv-app-nth take-add)
         with b2 show ?thesis using cpts-es-take[of ?esl \Gamma length (?elst ! 0)]
                by (smt Nil-is-append-conv a0 concat-i-lm cpts-es-seg2 list.size(3)
not-Cons-self2
             not-numeral-le-zero p0 p1 p2 p3 parse-es-cpts-i2-start-aux)
       qed
   then show ?thesis by auto
  qed
lemma parse-es-cpts-i2-in-cptes-last:
  \llbracket \mathit{esl} = (\mathit{EvtSys}\ \mathit{es},\ \mathit{s},\ \mathit{x})\ \#\ (\mathit{EvtSeq}\ \mathit{e}\ (\mathit{EvtSys}\ \mathit{es}),\ \mathit{s1},\mathit{x1})\ \#\ \mathit{xs};\ \mathit{esl} \in \mathit{cpts-es}\ \Gamma;
        elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]]) ] \Longrightarrow
       last\ elst\ \in cpts\text{-}es\ \Gamma
  proof -
   assume p0: esl = (EvtSys\ es,\ s,\ x) \# (EvtSeq\ e\ (EvtSys\ es),\ s1,x1) \# xs
     and p1: esl \in cpts\text{-}es \Gamma
     and p2: elst = tl \ (parse-es-cpts-i2 \ esl \ es \ [[]])
   then have \forall i. i < length \ elst \longrightarrow concat \ (drop \ i \ elst) \in cpts\text{-}es \ \Gamma
      using parse-es-cpts-i2-drop-cptes[of esl es s x e s1 x1 xs \Gamma elst] by fastforce
   then show ?thesis
```

```
less-one list.simps(3) p0 p1 p2 parse-es-cpts-i2-concat3 self-append-conv)
  ged
lemma evtsys-fst-ent:
      [esl \in cpts\text{-}es \ \Gamma; \ getspc\text{-}es \ (esl \ ! \ \theta) = EvtSys \ es; \ Suc \ m \leq length \ esl; \ \exists \ i. \ i \leq length \ esl 
m \land getspc\text{-}es \ (esl \ ! \ i) \neq EvtSys \ es
         \implies \exists i. (i < m \land getspc\text{-}es \ (esl ! i) = EvtSys \ es \land getspc\text{-}es \ (esl ! Suc \ i)
\neq EvtSys \ es)
                   \land (\forall j. \ j < i \longrightarrow getspc\text{-}es \ (esl \ ! \ j) = EvtSys \ es)
  proof -
    assume p\theta: esl \in cpts-es \Gamma
       and p1: getspc\text{-}es (esl ! 0) = EvtSys es
       and p2: Suc m < length \ esl
       and p3: \exists i. i \leq m \land getspc\text{-}es \ (esl!i) \neq EvtSys \ es
    have \forall m. \ esl \in cpts\text{-}es \ \Gamma \land getspc\text{-}es \ (esl \ ! \ 0) = EvtSys \ es \land Suc \ m \leq length
esl
                      \land (\exists i. \ i \leq m \land getspc\text{-}es \ (esl \ ! \ i) \neq EvtSys \ es)
              \longrightarrow (\exists i. (i < m \land getspc\text{-}es (esl ! i) = EvtSys \ es \land getspc\text{-}es (esl ! Suc
i) \neq EvtSys \ es)
                   \land (\forall j. \ j < i \longrightarrow getspc\text{-}es \ (esl \ ! \ j) = EvtSys \ es))
       proof -
       {
         \mathbf{fix} \ m
         assume a\theta: esl \in cpts\text{-}es \Gamma
           and a1: getspc-es (esl ! 0) = EvtSys es
           and a2: Suc m \leq length \ esl
           and a3: \exists i. i \leq m \land getspc\text{-}es \ (esl!i) \neq EvtSys \ es
         then have \exists i. (i < m \land getspc\text{-}es (esl! i) = EvtSys \ es
                            \land getspc-es (esl! Suc i) \neq EvtSys es)
                            \land (\forall j. \ j < i \longrightarrow getspc\text{-}es \ (esl \ ! \ j) = EvtSys \ es)
           proof(induct \ m)
              case \theta show ?case using \theta.prems(4) p1 by auto
           next
              case (Suc \ n)
              assume b0: esl \in cpts-es \Gamma \Longrightarrow
                            getspc\text{-}es\ (esl\ !\ 0) = EvtSys\ es \Longrightarrow
                            Suc \ n \leq length \ esl \Longrightarrow
                            \exists i \leq n. \ getspc\text{-}es \ (esl ! i) \neq EvtSys \ es \Longrightarrow
                            \exists i. (i < n \land getspc\text{-}es (esl ! i) = EvtSys \ es
                                 \land getspc\text{-}es \ (esl ! Suc \ i) \neq EvtSys \ es)
                                 \land (\forall j < i. \ getspc\text{-}es\ (esl\ !\ j) = EvtSys\ es)
                and b1: esl \in cpts\text{-}es \Gamma
                and b2: getspc-es (esl ! 0) = EvtSys es
                and b3: Suc\ (Suc\ n) \leq length\ esl
                and b4: \exists i \leq Suc \ n. \ getspc\text{-}es \ (esl! \ i) \neq EvtSys \ es
              show ?case
```

by (metis (no-types, lifting) append-butlast-last-id append-eq-conv-conj concat.simps(1) concat.simps(2) diff-less length-butlast length-greater-0-conv

```
\mathbf{proof}(cases \ \exists \ i \leq n. \ getspc\text{-}es \ (esl \ ! \ i) \neq EvtSys \ es)
                                   assume c\theta: \exists i \le n. getspc\text{-}es (esl!i) \ne EvtSys es
                                   with b0 b1 b2 b3 have \exists i. (i < n \land getspc\text{-}es \ (esl ! i) = EvtSys \ es
                                                             \land getspc\text{-}es \ (esl ! Suc \ i) \neq EvtSys \ es)
                                                             \land (\forall j < i. \ getspc\text{-}es\ (esl\ !\ j) = EvtSys\ es) by simp
                                   then show ?thesis using less-Suc-eq by auto
                              next
                                   assume c\theta: \neg(\exists i \le n. \ getspc\text{-}es\ (esl!\ i) \ne EvtSys\ es)
                                   with b4 have getspc-es (esl! Suc n) \neq EvtSys es
                                        using le-SucE by auto
                                   moreover from c\theta have \forall j < n. getspc\text{-}es\ (esl\ !\ j) = EvtSys\ es\ by
auto
                                   moreover from c\theta have getspc\text{-}es (esl ! n) = EvtSys es by auto
                                   ultimately show ?thesis by blast
                              qed
                 qed
             then show ?thesis by auto
             qed
        then show ?thesis using p0 p1 p2 p3 by blast
    qed
lemma rm-evtsys-in-cptse\theta:
         [esl \in cpts-es \ \Gamma; \ length \ esl > 0; \ \exists \ e. \ getspc-es \ (esl!0) = EvtSeq \ e \ (EvtSys \ es);
             \neg (\exists j. \ Suc \ j < length \ esl \land \ getspc\text{-}es \ (esl!j) = EvtSys \ es \land \ getspc\text{-}es \ (esl!Suc
(j) \neq EvtSys \ es)
               \implies rm\text{-}evtsys\ esl \in cpts\text{-}ev\ \Gamma
    proof -
        assume p\theta: esl \in cpts-es \Gamma
            and p1: length \ esl > 0
            and p2: \exists e. \ getspc\text{-}es \ (esl!0) = EvtSeq \ e \ (EvtSys \ es)
           and p3: \neg(\exists j. Suc j < length \ esl \land \ getspc\text{-}es \ (esl!j) = EvtSys \ es \land \ getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es)
           have \forall esl \ e \ es \ .esl \in cpts-es \ \Gamma \land length \ esl > 0 \land (\exists \ e. \ qetspc-es \ (esl!0) =
EvtSeq\ e\ (EvtSys\ es))\ \land
             \neg(\exists j. \ Suc \ j < length \ esl \land \ getspc\text{-}es \ (esl!j) = EvtSys \ es \land \ getspc\text{-}es \ (esl!Suc \ getspc\text{-}es \ getspc\text{-}es \ (esl!Suc \ getspc\text{-}es \ (esl!Suc \ getspc\text{-}es \ getspc\text{-}es 
(j) \neq EvtSys\ es
               \longrightarrow rm\text{-}evtsys\ esl \in cpts\text{-}ev\ \Gamma
             proof -
                 fix esl e es
                 assume a\theta: esl \in cpts-es \Gamma
                     and a1: length \ esl > 0
                      and a2: \exists e. \ getspc\text{-}es \ (esl!0) = EvtSeq \ e \ (EvtSys \ es)
                          and a3: \neg(\exists j. Suc j < length \ esl \land \ getspc\text{-}es \ (esl!j) = EvtSys \ es \land
getspc\text{-}es\ (esl!Suc\ j) \neq EvtSys\ es)
                 from a0 a1 a2 a3 have rm-evtsys esl \in cpts-ev \Gamma
```

```
proof(induct esl)
           case (CptsEsOne\ es1\ s\ x)
           show ?case
             proof(induct es1)
               case (EvtSeq x1 es1)
               have rm-evtsys [(EvtSeq x1 \ es1, s, x)] = [(x1, s, x)]
                 by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
getx-es-def)
               then show ?case by (simp add: cpts-ev.CptsEvOne)
             next
               case (EvtSys xa)
               have rm-evtsys [(EvtSys\ xa,\ s,\ x)] = [(AnonyEvent\ fin-com,\ s,\ x)]
                 by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
getx-es-def)
               then show ?case by (simp add: cpts-ev.CptsEvOne)
             qed
         next
           case (CptsEsEnv\ es1\ t\ x\ xs\ s\ y)
           assume b\theta: (es1, t, x) \# xs \in cpts\text{-}es \Gamma
             and b1: 0 < length ((es1, t, x) \# xs) \Longrightarrow
                        \exists e. \ getspc\text{-}es\ (((es1,\ t,\ x)\ \#\ xs)\ !\ 0) = EvtSeq\ e\ (EvtSys\ es)
\Longrightarrow
                        \neg (\exists j. Suc j < length ((es1, t, x) \# xs) \land 
                        getspc\text{-}es\ (((es1,\ t,\ x)\ \#\ xs)\ !\ j) = EvtSys\ es\ \land
                        getspc\text{-}es\ (((es1,\ t,\ x)\ \#\ xs)\ !\ Suc\ j) \neq EvtSys\ es) \Longrightarrow
                          rm\text{-}evtsys \ ((es1,\ t,\ x)\ \#\ xs) \in cpts\text{-}ev\ \Gamma
             and b2: 0 < length ((es1, s, y) \# (es1, t, x) \# xs)
            and b3: \exists e. \ getspc\text{-}es\ (((es1, s, y) \# (es1, t, x) \# xs) ! \theta) = EvtSeq
e (EvtSys \ es)
             and b4: \neg (\exists j. Suc j < length ((es1, s, y) \# (es1, t, x) \# xs) \land
                             getspc-es (((es1, s, y) \# (es1, t, x) \# xs) ! j) = EvtSys
es \wedge
                                getspc-es (((es1, s, y) \# (es1, t, x) \# xs) ! Suc j) \neq
EvtSys \ es)
           from b4 have \neg (\exists j. Suc j < length ((es1, t, x) \# xs) \land 
                              getspc-es (((es1, t, x) # xs) ! j) = EvtSys es \land
                               getspc-es (((es1, t, x) \# xs) ! Suc j) \neq EvtSys es) by
force
         moreover have \exists e. \ getspc\text{-}es\ (((es1,\ t,\ x)\ \#\ xs)\ !\ \theta) = EvtSeq\ e\ (EvtSys)
es
             proof -
              from b3 obtain e where getspc-es (((es1, s, y) # (es1, t, x) # xs)
! \ \theta) = EvtSeq \ e \ (EvtSys \ es)
                 by auto
               then have es1 = EvtSeq \ e \ (EvtSys \ es) by (simp \ add: getspc-es-def)
               then show ?thesis by (simp add:getspc-es-def)
           ultimately have rm-evtsys ((es1, t, x) # xs) \in cpts-ev \Gamma using b1 b3
by blast
```

```
then have b4: rm-evtsys1 (es1, t, x) # rm-evtsys xs \in cpts-ev \Gamma by
(simp\ add:rm-evtsys-def)
           have b5: rm-evtsys ((es1, s, y) # (es1, t, x) # xs) =
                  rm-evtsys1 (es1, s, y) # rm-evtsys1 (es1, t, x) # rm-evtsys xs
              by (simp add:rm-evtsys-def)
           from b4 show ?case
            proof(induct es1)
              \mathbf{case}(\mathit{EvtSeq}\ x1\ es2)
             assume c0: rm-evtsys1 (EvtSeq\ x1\ es2,\ t,\ x) \#\ rm-evtsys xs\in cpts-ev
Γ
              have rm-evtsys ((EvtSeq x1 es2, s, y) \# (EvtSeq x1 es2, t, x) \# xs)
                      (x1,s,y) \# (x1, t, x) \# rm\text{-}evtsys xs
                by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
qetx-es-def)
              moreover from c\theta have (x1, t, x) \# rm\text{-}evtsys \ xs \in cpts\text{-}ev \ \Gamma
                by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
getx-es-def)
              ultimately show ?case by (simp add: cpts-ev.CptsEvEnv)
             next
              case (EvtSys xa)
              assume c0: rm-evtsys1 (EvtSys xa, t, x) # rm-evtsys xs \in cpts-ev \Gamma
              have rm-evtsys ((EvtSys xa, s, y) \# (EvtSys xa, t, x) \# xs) =
                       (AnonyEvent\ fin\text{-}com,\ s,\ y)\ \#\ (AnonyEvent\ fin\text{-}com,\ t,\ x)\ \#
rm-evtsys xs
                 by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
getx-es-def)
              moreover from c\theta have (AnonyEvent fin-com,t, x) # rm-evtsys xs
\in cpts\text{-}ev \Gamma
                by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
getx-es-def)
              ultimately show ?case by (simp add: cpts-ev.CptsEvEnv)
            qed
         next
           case (CptsEsComp e1 s1 x1 et e2 t1 y1 xs1)
           assume b\theta: \Gamma \vdash (e1, s1, x1) - es - et \rightarrow (e2, t1, y1)
            and b1: (e2, t1, y1) \# xs1 \in cpts\text{-}es \Gamma
            and b2: 0 < length((e2, t1, y1) \# xs1) \Longrightarrow
                        \exists e. \ getspc\text{-}es\ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ 0) = EvtSeq\ e\ (EvtSys)
es) \Longrightarrow
                        \neg (\exists j. Suc j < length ((e2, t1, y1) \# xs1) \land
                               getspc\text{-}es\ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ j) = EvtSys\ es\ \land
                               getspc\text{-}es\ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ Suc\ j) \neq EvtSys\ es)
                                 rm\text{-}evtsys\ ((e2,\ t1,\ y1)\ \#\ xs1)\in cpts\text{-}ev\ \Gamma
             and b3: 0 < length ((e1, s1, x1) \# (e2, t1, y1) \# xs1)
              and b4: \exists e. \ getspc-es \ (((e1, s1, x1) \# (e2, t1, y1) \# xs1) ! \ 0) =
EvtSeq e (EvtSys es)
            and b5: \neg (\exists j. Suc j < length ((e1, s1, x1) \# (e2, t1, y1) \# xs1) \land
```

```
getspc-es (((e1, s1, x1) # (e2, t1, y1) # xs1)! j) =
EvtSys \ es \ \land
                             getspc-es (((e1, s1, x1) \# (e2, t1, y1) \# xs1) ! Suc j)
\neq EvtSys \ es)
           have b6: rm-evtsys ((e1, s1, x1) # (e2, t1, y1) # xs1) =
                    rm-evtsys1 (e1, s1, x1) \# rm-evtsys1 (e2, t1, y1) \# rm-evtsys
xs1
              by (simp add:rm-evtsys-def)
            from b4 obtain e' where getspc\text{-}es (((e1, s1, x1) # (e2, t1, y1) #
xs1) ! 0) = EvtSeq e' (EvtSys es)
            by auto
           then have b7: e1 = EvtSeq \ e' \ (EvtSys \ es) by (simp \ add: getspc-es-def)
          show ?case
            \operatorname{\mathbf{proof}}(cases \exists e. \ e2 = EvtSeq \ e \ (EvtSys \ es))
              assume c\theta: \exists e. \ e2 = EvtSeq \ e \ (EvtSys \ es)
              then obtain e where c1: e2 = EvtSeq \ e \ (EvtSys \ es) by auto
               then have c2: \exists e. \ getspc\text{-}es\ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ 0) = EvtSeq\ e
(EvtSys\ es)
                by (simp\ add:getspc-es-def)
             moreover from b5 have \neg (\exists j. Suc j < length ((e2, t1, y1) \# xs1))
Λ
                              getspc\text{-}es\ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ j) = EvtSys\ es\ \land
                               getspc\text{-}es\ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ Suc\ j) \neq EvtSys\ es)
by force
                ultimately have c3: rm-evtsys ((e2, t1, y1) \# xs1) \in cpts-ev \Gamma
using b2 by blast
              then have c5: rm-evtsys1 (e2, t1, y1) # rm-evtsys xs1 \in cpts-ev \Gamma
by (simp add:rm-evtsys-def)
              from b0 c1 b7 have \exists t. \Gamma \vdash (e', s1, x1) - et - t \rightarrow (e, t1, y1)
                using evtseq-tran-exist-etran by simp
               then obtain t where c8: \Gamma \vdash (e', s1, x1) - et - t \rightarrow (e, t1, y1) by
auto
              from b7 have rm-evtsys1 (e1, s1, x1) = (e', s1, x1)
                by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
qetx-es-def)
              moreover from c1 have rm-evtsys1 (e2, t1, y1) = (e, t1, y1)
                by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
qetx-es-def)
             ultimately show ?thesis using b6 c8 c5 using cpts-ev.CptsEvComp
by fastforce
              assume c\theta: \neg(\exists e. e2 = EvtSeq \ e \ (EvtSys \ es))
              with b0\ b7 have c1: e2 = EvtSys\ es\ by\ (meson\ evtseq-tran-evtseq)
             then have c11: rm-evtsys1 (e2, t1, y1) # rm-evtsys xs1 \in cpts-ev \Gamma
                proof -
                  from b5 have d\theta: \neg (\exists j. Suc j < length ((e2, t1, y1) \# xs1) \land
                         getspc\text{-}es\ (((e2,\ t1,\ y1)\ \#\ xs1)\ !\ j) = EvtSys\ es\ \land
                          getspc-es (((e2, t1, y1) \# xs1) ! Suc j) \neq EvtSys es) by
```

```
force
                 have d00: \forall j. j < length xs1 \longrightarrow getspc-es (xs1!j) = EvtSys es
                   proof -
                   {
                     \mathbf{fix} \ j
                     assume e\theta: j < length xs1
                     then have getspc\text{-}es\ (xs1!j) = EvtSys\ es
                       proof(induct j)
                        case \theta from b1 c1 d\theta show ?case
                             using getspc-es-def by (metis One-nat-def e0 fst-conv
length\text{-}Cons
                                     less-one not-less-eq nth-Cons-0 nth-Cons-Suc)
                       next
                        case (Suc\ m)
                           assume f0: m < length \ xs1 \implies getspc\text{-}es \ (xs1 \ ! \ m) =
EvtSys es
                          and f1: Suc \ m < length \ xs1
                        with d0 show ?case by auto
                       qed
                   then show ?thesis by auto
                   qed
                     then have d1: \forall j. j < length (rm-evtsys xs1) \longrightarrow getspc-e
((rm\text{-}evtsys\ xs1)!j) = AnonyEvent\ fin\text{-}com
                 by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
getx-es-def getspc-e-def)
               from c1 have d2: rm-evtsys1 (e2, t1, y1) = (AnonyEvent fin-com,
t1, y1)
                   by (simp add:rm-evtsys1-def getspc-es-def gets-es-def getx-es-def
getspc-e-def)
                with d1 have \forall i. i < length (rm-evtsys1 (e2, t1, y1) \# rm-evtsys
xs1) \longrightarrow
                                     getspc-e ((rm-evtsys1 (e2, t1, y1) # rm-evtsys
xs1!i) = AnonyEvent fin-com
                   using getspc-e-def less-Suc-eq-0-disj by force
                moreover have length (rm\text{-}evtsys1\ (e2,\ t1,\ y1)\ \#\ rm\text{-}evtsys\ xs1)
> \theta by simp
                 ultimately show ?thesis using cpts-ev-same by blast
              from b7 have c2: rm-evtsys1 (e1, s1, x1) = (e', s1, x1)
                by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
getx-es-def)
              from c1 have c3: rm-evtsys1 (e2, t1, y1) = (AnonyEvent fin-com,
t1, y1)
                by (simp add:rm-evtsys-def rm-evtsys1-def getspc-es-def gets-es-def
getx-es-def)
                from b0 b7 c1 have \exists t. \Gamma \vdash (e', s1, x1) - et - t \rightarrow (AnonyEvent)
fin-com, t1, y1)
```

```
using evtseq-tran-0-exist-etran by simp
             then obtain t where \Gamma \vdash (e', s1, x1) - et - t \rightarrow (AnonyEvent fin-com,
t1, y1) by auto
                   with b6 c2 c3 c11 show ?thesis using cpts-ev.CptsEvComp by
fast force
             \mathbf{qed}
         qed
     then show ?thesis by auto
   with p0 p1 p2 p3 show ?thesis by force
  qed
lemma rm-evtsys-in-cptse:
   [esl \in cpts-es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \ \# \ xs;
     \Gamma \vdash (EvtSys\ es,\ s,\ x)\ -es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev\ (EvtSys\ es,\ s,\ x))
es), s1,x1);
     \neg(\exists j.\ j > 0 \land Suc\ j < length\ esl \land getspc\text{-}es\ (esl!j) = EvtSys\ es \land getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es);
     el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)\ \#\ xs)
] \Longrightarrow
      el \in cpts\text{-}ev \Gamma
 proof -
   assume p\theta: esl \in cpts-es \Gamma
     and p1: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
     and p2: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev
(EvtSys\ es),\ s1,x1)
     and p3: \neg(\exists j. j > 0 \land Suc j < length esl \land getspc-es (esl!j) = EvtSys es
                     \land getspc\text{-}es \ (esl!Suc \ j) \neq EvtSys \ es)
      and p_4: el = (BasicEvent\ e,\ s,\ x) \# rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),
s1,x1) \# xs
   let ?esl1 = (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
   from p0 p1 have a1: ?esl1 \in cpts-es \Gamma using cpts-es-dropi by force
   moreover have a2: length ?esl1 > 0 by simp
   moreover have a3: \exists e. \ qetspc-es \ (?esl1!0) = EvtSeq \ e \ (EvtSys \ es)  by (simp)
add:qetspc-es-def)
   moreover from p1 p3 have a4: \neg (\exists j. Suc j < length ?esl1 \land getspc-es (?esl1
! j) = EvtSys \ es
           \land getspc-es (?esl1 ! Suc j) \neq EvtSys es) by force
   ultimately have ?esl1 \in cpts\text{-}es \Gamma \text{ using } rm\text{-}evtsys\text{-}in\text{-}cptse0 \text{ by } blast
  with a1 a2 a3 a4 have a5: rm-evtsys ?esl1 \in cpts-ev \Gamma using rm-evtsys-in-cptse0
by blast
   have rm-evtsys ?esl1 = rm-evtsys1 (EvtSeq\ ev\ (EvtSys\ es),\ s1,x1) # rm-evtsys
     by (simp add:rm-evtsys-def)
   then have a6: rm-evtsys ?esl1 = (ev, s1, x1) \# rm-evtsys xs
     by (simp add:rm-evtsys1-def getspc-es-def gets-es-def getx-es-def)
```

```
s1, x1)
     using evtsysent-evtent[of \Gamma es s x e k ev s1 x1] by auto
    with p4 a6 show ?thesis using a5 cpts-ev.CptsEvComp by fastforce
  ged
lemma fstent-nomident-e-sim-es-aux:
   [esl \in cpts-es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# \ (EvtSeq \ ev \ (EvtSys \ es), \ s1, x1) \ \# \ xs;
     \neg(\exists j. j > 0 \land Suc j < length \ esl \land \ getspc\text{-}es \ (esl!j) = EvtSys \ es \land \ getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es);
     el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)\ \#\ xs);
el \in cpts - ev \ \Gamma \rrbracket \Longrightarrow
       \forall i. i > 0 \land i < length \ el \longrightarrow
            (getspc\text{-}es\ (esl!i) = EvtSys\ es\ \land\ getspc\text{-}e\ (el!i) = AnonyEvent\ fin\text{-}com)
               \vee (getspc\text{-}es \ (esl!i) = EvtSeq \ (getspc\text{-}e \ (el!i)) \ (EvtSys \ es))
  proof -
   assume p\theta: esl \in cpts-es \Gamma
     and p1: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1, x1) \# xs
     and p2: \neg(\exists j. j > 0 \land Suc j < length esl \land getspc-es (esl!j) = EvtSys es
                 \land getspc\text{-}es (esl!Suc j) \neq EvtSys es)
      and p3: el = (BasicEvent \ e, \ s, \ x) \# rm-evtsys ((EvtSeq \ ev \ (EvtSys \ es),
s1, x1) \# xs
     and p_4: el \in cpts-ev \Gamma
   let ?el1 = rm\text{-}evtsys ((EvtSeq ev (EvtSys es), s1,x1) \# xs)
   let ?esl1 = (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
   have a1: length ?esl1 = length ?el1 using rm-evtsys-same-sx same-s-x-def by
blast
   from p0 p1 have a2: ?esl1\incpts-es \Gamma using cpts-es-dropi by force
   from p2 have p2-1: \forall j. j > 0 \land Suc j < length esl
         getspc\text{-}es\ (esl\ !\ j) = EvtSys\ es \longrightarrow getspc\text{-}es\ (esl\ !\ Suc\ j) = EvtSys\ es
     using noevtent-inmid-eq by auto
   have \forall i. i < length ?el1 \longrightarrow
        (getspc-es\ (?esl1!i) = EvtSys\ es\ \land\ getspc-e\ (?el1!i) = AnonyEvent\ fin-com)
               \vee (getspc\text{-}es \ (?esl1!i) = EvtSeq \ (getspc\text{-}e \ (?el1!i)) \ (EvtSys \ es))
     proof -
     {
       \mathbf{fix} i
       assume b\theta: i < length ?el1
      then have (getspc-es\ (?esl1!i) = EvtSys\ es\ \land\ getspc-e\ (?el1!i) = AnonyEvent
fin-com)
               \lor (getspc\text{-}es \ (?esl1!i) = EvtSeq \ (getspc\text{-}e \ (?el1!i)) \ (EvtSys \ es))
         \mathbf{proof}(induct\ i)
           have getspc\text{-}es \ (?esl1!0) = EvtSeq \ (getspc\text{-}e \ (?el1!0)) \ (EvtSys \ es)
            using getspc-es-def getspc-e-def rm-evtsys-def rm-evtsys1-def gets-es-def
getx-es-def EvtSegrm
             by (smt fstI length-greater-0-conv list.distinct(2) nth-Cons-0 nth-map)
           then show ?case by simp
```

```
\mathbf{next}
 case (Suc j)
 assume c0: j < length ?el1 \Longrightarrow getspc-es (?esl1 ! j) = EvtSys es \land
            getspc-e \ (?el1 \ ! \ j) = AnonyEvent \ fin-com \lor
            qetspc-es (?esl1 ! i) =
            EvtSeq (getspc-e (?el1 ! j)) (EvtSys es)
   \mathbf{and} \ c1\colon Suc\ j\ <\ length\ ?el1
 then have c2: getspc-es (?esl1 ! j) = EvtSys es \land
            getspc-e \ (?el1 \ ! \ j) = AnonyEvent fin-com \lor
            getspc\text{-}es \ (?esl1 ! j) =
            EvtSeq\ (getspc\text{-}e\ (?el1\ !\ j))\ (EvtSys\ es)\ \mathbf{by}\ simp
 show ?case
   \mathbf{proof}(cases\ getspc\text{-}es\ (?esl1\ !\ j) = EvtSys\ es\ \land
            getspc-e \ (?el1 \ ! \ j) = AnonyEvent \ fin-com)
     assume d\theta: getspc-es (?esl1 ! j) = EvtSys es \land
            qetspc-e \ (?el1 ! j) = AnonyEvent fin-com
     with p1 p2-1 a1 have d1: getspc-es (?esl1 ! Suc j) = EvtSys es
      proof -
        from p1 d0 have getspc-es (esl! Suc j) = EvtSys es by simp
        moreover
        from p1 c1 have 0 < Suc j \land Suc (Suc j) < length esl
          using a1 by auto
        ultimately have getspc\text{-}es\ (esl\ !\ Suc\ (Suc\ j)) = EvtSys\ es
          using p2-1 by simp
        with p1 show ?thesis by simp
       qed
     with a1 c1 have d2: getspc-e (?el1 ! Suc j) = AnonyEvent fin-com
       using getspc-es-def getspc-e-def rm-evtsys-def rm-evtsys1-def
        gets-es-def getx-es-def EvtSysrm by (smt fst-conv nth-map)
     with d1 show ?case by simp
   next
     assume \neg(getspc\text{-}es \ (?esl1 \ ! \ j) = EvtSys \ es \land
            getspc-e \ (?el1 \ ! \ j) = AnonyEvent \ fin-com)
     with c2 have d0: getspc\text{-}es (?esl1 ! j) =
            EvtSeq (getspc-e (?el1 ! j)) (EvtSys es)
     obtain e and s1 and x1 where d1: ?el1 ! j = (e,s1,x1)
       using prod-cases3 by blast
     with d0 have d2: ?esl1 ! j = (EvtSeq\ e\ (EvtSys\ es), s1, x1)
       proof -
        have e1: same-s-x ?esl1 ?el1 using rm-evtsys-same-sx by blast
        from d\theta \ d1 have getspc\text{-}es \ (?esl1 ! j) = EvtSeq \ e \ (EvtSys \ es)
          by (simp add:getspc-es-def getspc-e-def)
        moreover
        from e1 have gets-e (?el1 ! j) = gets-es (?esl1 ! j)
          by (simp add: Suc.prems less-or-eq-imp-le same-s-x-def)
        moreover
        from e1 have getx-e (?el1 ! j) = getx-es (?esl1 ! j)
          by (simp add: Suc.prems less-or-eq-imp-le same-s-x-def)
```

```
ultimately show ?thesis
                  using d1 getspc-es-def gets-es-def gets-es-def gets-e-def gets-e-def
                     by (metis prod.collapse snd-conv)
                qed
              then show ?case
                \mathbf{proof}(cases\ getspc\text{-}es\ (?esl1\ !\ Suc\ j) = EvtSys\ es)
                 assume e0: getspc-es (?esl1 ! Suc j) = EvtSys es
                  then obtain s2 and x2 where e1: ?esl1 ! Suc j = (EvtSys \ es,
s2, x2)
                   using getspc-es-def by (metis fst-conv surj-pair)
                 then have e2: ?el1 ! Suc j = (AnonyEvent fin-com, s2,x2)
                   using getspc-es-def rm-evtsys-def rm-evtsys1-def
                   gets-es-def getx-es-def EvtSysrm by (metis Suc.prems a1 fst-conv
nth-map \ snd-conv)
                 with e1 have getspc-es (?esl1 ! Suc j) = EvtSys es \land
                     getspc-e \ (?el1 ! Suc \ j) = AnonyEvent fin-com
                   using getspc-es-def getspc-e-def by (metis fst-conv)
                 then show ?thesis by simp
                 assume e0: getspc-es (?esl1 ! Suc j) \neq EvtSys es
                  with a1 a2 c1 d2 have \exists e1. getspc-es (?esl1 ! Suc j) = EvtSeq
e1 (EvtSys es)
                   using evtseq-next-in-cpts getspc-es-def by fastforce
                  then obtain e1 where e1:getspc-es (?esl1 ! Suc j) = EvtSeq e1
(EvtSys es) by auto
                 with a1 c1 have getspc-e (?el1 ! Suc j) = e1
                   using getspc-es-def getspc-e-def rm-evtsys-def rm-evtsys1-def
                     gets-es-def getx-es-def EvtSeqrm by (smt fstI nth-map)
                 with e1 have getspc\text{-}es (?esl1 ! Suc j) =
                            EvtSeq (getspc-e (?el1 ! Suc j)) (EvtSys es) by simp
                 then show ?thesis by simp
                qed
            \mathbf{qed}
         qed
     then show ?thesis by auto
     qed
   with p1 p2 p3 p4 show ?thesis by (metis (no-types, lifting) Suc-diff-1
            Suc-less-SucD length-Cons nth-Cons-pos)
 qed
lemma fstent-nomident-e-sim-es:
   [esl \in cpts-es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \ \# \ xs;
     \neg(\exists j.\ j > 0 \land Suc\ j < length\ esl \land getspc-es\ (esl!j) = EvtSys\ es \land getspc-es
(esl!Suc\ j) \neq EvtSys\ es) \Longrightarrow
     \exists el \ es \ x. \ el \in cpts\text{-}of\text{-}ev \ \Gamma \ (BasicEvent \ e) \ s \ x \land e\text{-}sim\text{-}es \ esl \ el \ es \ e
 proof -
   assume p\theta: esl \in cpts-es \Gamma
```

```
and p1: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1, x1) \# xs
     and p3: \neg(\exists j. j > 0 \land Suc j < length \ esl \land getspc-es \ (esl!j) = EvtSys \ es
                   \land getspc\text{-}es \ (esl!Suc \ j) \neq EvtSys \ es)
    from p1 have \exists t. \Gamma \vdash (EvtSys \ es, \ s, \ x) - es - t \rightarrow (EvtSeg \ ev \ (EvtSys \ es),
s1, x1)
      apply(induct \ esl)
      apply(simp)
      by (metis\ esys.distinct(1)\ exist-estran\ p0\ p1)
    then obtain t where a1: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - t \rightarrow (EvtSeq\ ev\ (EvtSys\ es,\ s,\ x))
es), s1,x1) by auto
   then have \exists evt \ e. \ evt \in es \land evt = BasicEvent \ e \land Act \ t = EvtEnt \ (BasicEvent
e) \wedge
            \Gamma \vdash (BasicEvent\ e,\ s,\ x)\ -et-t \rightarrow (ev,\ s1,\ x1)\ \mathbf{using}\ evtsysent\text{-}evtent0
\mathbf{by}\ \mathit{fastforce}
   then obtain evt and e where a2: evt \in es \land evt = BasicEvent \ e \land Act \ t =
EvtEnt (BasicEvent e) \land
            \Gamma \vdash (BasicEvent\ e,\ s,\ x) - et - t \rightarrow (ev,\ s1,\ x1) by auto
   \mathbf{let} \ ?esl1 = (\mathit{EvtSeq} \ ev \ (\mathit{EvtSys} \ es), \ s1,\!x1) \ \# \ xs
   let ?el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ?esl1
   let ?el1 = rm\text{-}evtsys ?esl1
   have a5: ?el = (BasicEvent\ e,\ s,\ x)\ \#\ ?el1 by simp
   from p1 have a3: esl = (EvtSys \ es, \ s, \ x) \# ?esl1 by simp
    from a2 obtain at and ak where \Gamma \vdash (BasicEvent\ e,\ s,\ x)\ -et-(at\sharp ak) \rightarrow
(ev, s1, x1)
      using get-actk-def by (metis actk.cases)
   with p0 p1 p3 a1 a2 have a4: ?el \in cpts\text{-}ev \Gamma
      using rm-evtsys-in-cptse [of esl \Gamma es s x ev s1 x1 xs]
       by (metis estran.EvtOccur evtsysent-evtent0 noevtent-notran0)
   moreover have e-sim-es esl ?el es e
     proof -
        from a3 have b1: length esl = length ?el by (simp add:rm-evtsys-def)
       moreover
      from p1 have b2: getspc-es (esl! 0) = EvtSys es by (simp add:getspc-es-def)
       moreover
       have b3: getspc-e (?el! 0) = BasicEvent\ e\ by\ (simp\ add:getspc-e-def)
       moreover
       from a3 b1 have b4: \forall i. i < length ?el \longrightarrow
                  gets-e \ (?el! i) = gets-es \ (esl! i) \land
                  getx-e \ (?el! i) = getx-es \ (esl! i)
           have c1: same-s-x ?esl1 (rm-evtsys ?esl1) using rm-evtsys-same-sx by
auto
            show ?thesis
             proof -
             {
               \mathbf{fix} i
               have i < length ?el \longrightarrow
                 gets-e (?el ! i) = gets-es (esl ! i) \land
                 getx-e (?el ! i) = getx-es (esl ! i)
```

```
proof(cases i = \theta)
                   assume i = 0
                   with p1 show ?thesis using gets-e-def getx-e-def gets-es-def
                       getx-es-def by (metis nth-Cons-0 snd-conv)
                 next
                   assume i \neq 0
                   with p1 p3 a3 c1 show ?thesis by (simp add: same-s-x-def)
             then show ?thesis by auto
             qed
         qed
       moreover
       have \forall i. i > 0 \land i < length ?el \longrightarrow
                     (getspc-es\ (esl!i) = EvtSys\ es\ \land\ getspc-e\ (?el!i) = AnonyEvent
fin-com)
                   \lor (getspc\text{-}es \ (esl!i) = EvtSeq \ (getspc\text{-}e \ (?el!i)) \ (EvtSys \ es))
         using p0 p1 p3 a4 by (meson fstent-nomident-e-sim-es-aux)
       ultimately show ?thesis by (simp add:e-sim-es-def)
  ultimately show ?thesis using cpts-of-ev-def by (smt mem-Collect-eq nth-Cons')
  qed
lemma fstent-nomident-e-sim-es2:
   [esl \in cpts-es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \ \# \ xs;
      \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev\ (EvtSys\ es,\ s,\ x))
es), s1, x1);
      \neg(\exists j.\ j > 0 \land Suc\ j < length\ esl\ \land\ getspc\text{-}es\ (esl!j) = EvtSys\ es\ \land\ getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es);
     el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)\ \#\ xs);
el \in cpts - ev \Gamma \rrbracket \Longrightarrow
      e-sim-es esl el es e
  proof -
   assume p\theta: esl \in cpts-es \Gamma
      and p1: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
     and p2: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev
(EvtSys\ es),\ s1,x1)
      and p3: \neg(\exists j. j > 0 \land Suc j < length esl \land getspc-es (esl!j) = EvtSys es
                   \land getspc-es (esl!Suc j) \neq EvtSys es)
       and p_4: el = (BasicEvent\ e,\ s,\ x) \# rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),
s1,x1) \# xs
     and p5: el \in cpts - ev \Gamma
   from p2 have a2: \Gamma \vdash (BasicEvent\ e,\ s,\ x)\ -et - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow
(ev, s1, x1)
      using evtsysent-evtent[of \Gamma es s x e k ev s1 x1] by auto
   let ?esl1 = (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
   let ?el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ?esl1
   let ?el1 = rm\text{-}evtsys ?esl1
```

```
have a5: ?el = (BasicEvent\ e,\ s,\ x) \# ?el1 by simp
   from p1 have a3: esl = (EvtSys \ es, \ s, \ x) \ \# \ ?esl1 by simp
   from p0 p1 p2 p3 p4 a2 have a4: ?el \in cpts\text{-}ev \Gamma
     using rm-evtsys-in-cptse by metis
   show ?thesis
     proof -
       from a3 have b1: length esl = length ?el by (simp add:rm-evtsys-def)
     from p1 have b2: getspc\text{-}es\ (esl\ !\ 0) = EvtSys\ es\ by\ (simp\ add:getspc\text{-}es\text{-}def)
       moreover
      have b3: getspc-e (?el! 0) = BasicEvent\ e\ by\ (simp\ add:getspc-e-def)
       moreover
       from a3 b1 have b4: \forall i. i < length ?el \longrightarrow
                gets-e (?el ! i) = gets-es (esl ! i) \land
                getx-e (?el ! i) = getx-es (esl ! i)
        proof -
          have c1: same-s-x ?esl1 (rm-evtsys ?esl1) using rm-evtsys-same-sx by
auto
          show ?thesis
            proof -
              \mathbf{fix} i
              have i < length ?el \longrightarrow
                gets-e \ (?el! i) = gets-es \ (esl! i) \land
                getx-e (?el ! i) = getx-es (esl ! i)
               proof(cases i = 0)
                 assume i = 0
                 with p1 show ?thesis using gets-e-def getx-e-def gets-es-def
                     getx-es-def by (metis nth-Cons-0 snd-conv)
               next
                 assume i\neq 0
                 with p1 p3 a3 c1 show ?thesis by (simp add: same-s-x-def)
            then show ?thesis by auto
            qed
        \mathbf{qed}
       moreover
       have \forall i. i > 0 \land i < length ?el \longrightarrow
                  (getspc-es\ (esl!i) = EvtSys\ es\ \land\ getspc-e\ (?el!i) = AnonyEvent
fin-com)
                 \lor (getspc\text{-}es \ (esl!i) = EvtSeq \ (getspc\text{-}e \ (?el!i)) \ (EvtSys \ es))
        using p0 p1 p3 a4 by (meson fstent-nomident-e-sim-es-aux)
       ultimately show ?thesis using e-sim-es-def using p4 by blast
     qed
 ged
```

 $\mathbf{lemma}\ \textit{e-sim-es-same-assume} \colon$

```
[esl \in cpts-es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \ \# \ xs;
      \Gamma \vdash (EvtSys\ es,\ s,\ x)\ -es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev\ (EvtSys\ es,\ s,\ x))
es), s1,x1);
      \neg (\exists j. \ j > 0 \land Suc \ j < length \ esl \land \ qetspc\text{-}es \ (esl!j) = EvtSys \ es \land \ qetspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es);
      el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)\ \#\ xs);
      e-sim-es esl el es e; esl\inassume-es \Gamma (pre,rely)
      \implies el \in assume - e \ \Gamma \ (pre, rely)
  proof -
    assume p\theta: esl \in cpts-es \Gamma
      and p1: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1, x1) \# xs
      and p2: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev)
(EvtSys\ es),\ s1,x1)
      and p3: \neg(\exists j. j > 0 \land Suc j < length esl \land getspc-es (esl!j) = EvtSys es
                     \land \ qetspc\text{-}es\ (esl!Suc\ j) \neq EvtSys\ es)
       and p_4: el = (BasicEvent\ e,\ s,\ x) \# rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),
s1,x1) \# xs
      and a1: e-sim-es esl el es e
      and b\theta: esl \in assume - es \Gamma (pre, rely)
    from p3 have p3-1: \forall j. j > 0 \land Suc j < length \ esl \longrightarrow getspc-es \ (esl ! j) =
EvtSys es
           \longrightarrow getspc\text{-}es\ (esl\ !\ Suc\ j) = EvtSys\ es\ using\ noevtent\text{-}inmid\text{-}eq\ by\ auto
    let ?esl1 = (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
    \mathbf{let} \ ?el1 = rm\text{-}evtsys \ ((\textit{EvtSeq ev} \ (\textit{EvtSys es}), \ s1,\!x1) \ \# \ xs)
    from p4 have a2: el = (BasicEvent \ e, \ s, \ x) \# (ev, s1, x1) \# rm\text{-}evtsys \ xs
    by (simp add: gets-es-def getspc-es-def getx-es-def rm-evtsys1-def rm-evtsys-def)
    from p1 a2 have a3: length esl = length \ el \ by \ (simp \ add:rm-evtsys-def)
    from b0 have b1: gets-es (esl!0) \in pre \land (\forall i. Suc i<length esl \longrightarrow
             \Gamma \vdash esl!i - ese \rightarrow esl!(Suc \ i) \longrightarrow (gets-es \ (esl!i), \ gets-es \ (esl!Suc \ i)) \in
rely)
      by (simp\ add:assume-es-def)
    then show ?thesis
      proof -
        from p1 p4 b1 have gets-e (el!0) \in pre using gets-es-def gets-e-def
          by (metis\ nth\text{-}Cons\text{-}0\ snd\text{-}conv)
        moreover
        have \forall i. Suc \ i < length \ el \longrightarrow \Gamma \vdash el!i \ -ee \rightarrow \ el!(Suc \ i)
                  \longrightarrow (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in rely
          proof -
          {
             \mathbf{fix} i
             assume c\theta: Suc i < length el
               and c1: \Gamma \vdash el!i - ee \rightarrow el!(Suc\ i)
             with a2 have \neg(\Gamma \vdash el!\theta - ee \rightarrow el!1)
             by (metis (no-types, lifting) One-nat-def eetran-eqconf evtsysent-evtent0
```

```
no-tran2basic nth-Cons-0 nth-Cons-Suc p2)
```

```
with c1 have c2: i \neq 0 by (metis One-nat-def)
             with at have c3: (getspc\text{-}es\ (esl!i) = EvtSys\ es\ \land\ getspc\text{-}e\ (el!i) =
AnonyEvent fin-com)
                               \lor (getspc\text{-}es \ (esl!i) = EvtSeq \ (getspc\text{-}e \ (el!i)) \ (EvtSys)
es))
             using e-sim-es-def Suc-lessD c0 by blast
           from c1 have c4: getspc-e (el!i) = getspc-e (el!Suc i)
            by (simp add: eetran-eqconf1)
           from a1 c0 a3 have c5: gets-es (esl!i) = gets-e (el!i)
                                  \land gets-es (esl!Suc i) = gets-e (el!Suc i) by (simp
add:e\text{-}sim\text{-}es\text{-}def)
           from a1 \ c0 \ a3 have c6:
                          (qetspc-es\ (esl!Suc\ i) = EvtSys\ es\ \land\ qetspc-e\ (el!Suc\ i) =
AnonyEvent fin-com)
                      \lor (getspc\text{-}es \ (esl!Suc \ i) = EvtSeq \ (getspc\text{-}e \ (el!Suc \ i)) \ (EvtSys)
es))
             using e-sim-es-def by blast
          have (gets-e\ (el!i),\ gets-e\ (el!Suc\ i)) \in rely
          \mathbf{proof}(cases\ getspc\text{-}es\ (esl!i) = EvtSys\ es\ \land\ getspc\text{-}e\ (el!i) = AnonyEvent
fin-com)
                    assume d\theta: getspc\text{-}es\ (esl!i) = EvtSys\ es\ \land\ getspc\text{-}e\ (el!i) =
AnonyEvent fin-com
               with c2 p3-1 c0 a3 have getspc-es (esl!Suc i) = EvtSys es by auto
            with d0 have \Gamma \vdash esl!i - ese \rightarrow esl!Suc i by (simp add: eqconf-esetran)
                with b1 c0 a3 have (gets-es (esl!i), gets-es (esl!Suc i)) \in rely by
auto
              then show ?thesis using c5 by simp
            assume \neg(getspc\text{-}es\ (esl!i) = EvtSys\ es \land getspc\text{-}e\ (el!i) = AnonyEvent
fin-com)
             with c3 have d0: getspc-es (esl!i) = EvtSeq (getspc-e (el!i)) (EvtSys)
es)
                by simp
               let ?ei = getspc-e (el!i)
               show ?thesis
                proof(cases ?ei = AnonyEvent fin-com)
                  assume e\theta: ?ei = AnonyEvent fin-com
                  with c1 have e1: getspc-e (el!Suc i) = AnonyEvent fin-com
                    using eetran-eqconf1 by fastforce
                  show ?thesis
                   \mathbf{proof}(cases\ getspc\text{-}es\ (esl!Suc\ i) = EvtSys\ es\ \land\ getspc\text{-}e\ (el!Suc\ i)
i) = AnonyEvent fin-com)
                    assume f0: getspc\text{-}es (esl!Suc i) = EvtSys es \land getspc\text{-}e (el!Suc
i) = AnonyEvent fin-com
                      with d0 have getspc-e (el!i) \neq AnonyEvent fin-com
```

```
proof -
                          let ?esl' = drop \ i \ esl
                          from p\theta have ?esl' \in cpts - es \Gamma
                         by (metis Suc-lessD a3 c0 c2 cpts-es-dropi old.nat.exhaust)
                          moreover
                          from c\theta a3 have length ?esl' > 1
                            by auto
                          moreover
                         from d\theta have getspc\text{-}es (?esl'!\theta) = EvtSeq (getspc\text{-}e (el!i))
(EvtSys \ es)
                            using a3 c\theta by auto
                          moreover
                          from f0 have getspc\text{-}es (?esl'!1) = EvtSys es
                            using a3 c0 by fastforce
                       ultimately show ?thesis using not-anonyevt-none-in-evtseq1
by blast
                        qed
                      with e0 show ?thesis by simp
                    next
                     assume \neg(getspc\text{-}es\ (esl!Suc\ i) = EvtSys\ es \land getspc\text{-}e\ (el!Suc\ i)
i) = AnonyEvent fin-com)
                          with c6 have f0: getspc-es (esl!Suc i) = EvtSeq (getspc-e)
(el!Suc\ i))\ (EvtSys\ es)
                        by simp
                       with c4 have getspc\text{-}es (esl!Suc i) = EvtSeq (getspc\text{-}e (el!i))
(EvtSys\ es)\ \mathbf{by}\ simp
                     with d0 have getspc\text{-}es (esl!Suc\ i) = getspc\text{-}es (esl!i) by simp
                              then have \Gamma \vdash esl!i - ese \rightarrow esl!Suc \ i \ by \ (simp \ add:
eqconf-esetran)
                      with b1 have (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in rely
                        by (simp \ add: \ a3 \ c\theta)
                      with c5 show ?thesis by simp
                    qed
                \mathbf{next}
                  assume e0: ?ei \neq AnonyEvent fin-com
                  with c4\ c6 have getspc\text{-}es\ (esl!Suc\ i) = EvtSeq\ (getspc\text{-}e\ (el!Suc\ i)
i)) (EvtSys es)
                  with c4\ d0 have getspc\text{-}es\ (esl!Suc\ i) = getspc\text{-}es\ (esl!i) by simp
                then have \Gamma \vdash esl!i - ese \rightarrow esl!Suc \ i \ by \ (simp \ add: eqconf-esetran)
                  with b1 have (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in rely
                    by (simp \ add: \ a3 \ c\theta)
                  with c5 show ?thesis by simp
                 qed
             qed
         then show ?thesis by auto
         qed
```

```
ultimately show ?thesis by (simp add:assume-e-def)
      qed
  qed
lemma e-sim-es-same-commit:
  [esl \in cpts-es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \ \# \ xs;
      \Gamma \vdash (EvtSys\ es,\ s,\ x)\ -es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev\ (EvtSys\ es,\ s,\ x))
      \neg(\exists j. \ j > 0 \land Suc \ j < length \ esl \land getspc\text{-}es \ (esl!j) = EvtSys \ es \land getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es);
     el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)\ \#\ xs);
      e-sim-es esl el es e; el\incommit-e \Gamma (guar,post)
      \implies esl \in commit\text{-}es \ \Gamma \ (guar, post)
  proof -
    assume p\theta: esl \in cpts-es \Gamma
      and p1: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
     and p2: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev
(EvtSys\ es),\ s1,x1)
      and p3: \neg(\exists j. j > 0 \land Suc j < length esl \land getspc-es (esl!j) = EvtSys es
                    \land getspc\text{-}es (esl!Suc j) \neq EvtSys es)
       and p_4: el = (BasicEvent\ e,\ s,\ x) \# rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),
s1,x1) \# xs
      and a1: e-sim-es esl el es e
      and b3: el \in commit - e \Gamma (guar, post)
    from p3 have p3-1: \forall j. j > 0 \land Suc j < length esl \longrightarrow getspc-es (esl! j) =
EvtSys es
            \rightarrow getspc-es (esl ! Suc j) = EvtSys es using noevtent-inmid-eq by auto
     from p0 p1 p2 p3 p4 have a0: el \in cpts-ev \Gamma using rm-evtsys-in-cptse by
metis
    let ?esl1 = (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
    let ?el1 = rm\text{-}evtsys ((EvtSeq ev (EvtSys es), s1,x1) \# xs)
    from p4 have a2: el = (BasicEvent \ e, \ s, \ x) \# (ev,s1,x1) \# rm-evtsys \ xs
    by (simp add: gets-es-def getspc-es-def getx-es-def rm-evtsys1-def rm-evtsys-def)
    from p1 a2 have a3: length esl = length \ el \ by \ (simp \ add:rm-evtsys-def)
    from b3 have b4: \forall i. Suc i < length el \longrightarrow
               (\exists t. \ \Gamma \vdash el!i - et - t \rightarrow el!(Suc \ i)) \longrightarrow (gets - e \ (el!i), gets - e \ (el!Suc \ i))
\in guar
               by (simp add:commit-e-def)
    then show esl \in commit-es \Gamma (guar, post)
      proof -
        have \forall i. Suc \ i < length \ esl \longrightarrow (\exists \ t. \ \Gamma \vdash esl!i \ -es-t \rightarrow esl!(Suc \ i))
               \longrightarrow (gets\text{-}es\ (esl!i),\ gets\text{-}es\ (esl!Suc\ i)) \in guar
          proof -
            \mathbf{fix} \ i
            assume c\theta: Suc i < length esl
```

```
and c1: \exists t. \Gamma \vdash esl!i - es - t \rightarrow esl!(Suc i)
           have (gets\text{-}es\ (esl!i),\ gets\text{-}es\ (esl!Suc\ i)) \in guar
             \mathbf{proof}(cases\ i=0)
               assume d\theta: i = \theta
                from p2 have \Gamma \vdash (BasicEvent\ e,\ s,\ x) - et - (EvtEnt\ (BasicEvent\ e,\ s,\ x))
(ev, s1, x1)
                 using evtsysent-evtent by fastforce
               with a2\ b4 have (s,\ s1)\in guar\ using\ gets\ e-def
                by (metis a3 c0 d0 fst-conv nth-Cons-0 nth-Cons-Suc snd-conv)
               with p1 show ?thesis by (simp add: gets-es-def d0)
             next
               assume d\theta: i \neq \theta
               then show ?thesis
                 proof(cases\ getspc-es\ (esl!i) = EvtSys\ es)
                  assume e\theta: qetspc\text{-}es\ (esl!i) = EvtSys\ es
                    with p3-1 c0 d0 have e1: getspc-es (esl!Suc i) = EvtSys es by
simp
                  from c1 obtain t where \Gamma \vdash esl ! i - es - t \rightarrow esl ! Suc i by auto
                  then have getspc\text{-}es\ (esl!i) \neq getspc\text{-}es\ (esl!Suc\ i)
                    using evtsys-not-eq-in-tran-aux1 by blast
                  with e0 e1 show ?thesis by simp
                  assume e\theta: getspc\text{-}es\ (esl!i) \neq EvtSys\ es
                  from p0 p1 c0 have getspc-es (esl!i) = EvtSys es \lor
                      (\exists e. \ getspc\text{-}es\ (esl!i) = EvtSeq\ e\ (EvtSys\ es))
                     using evtsys-all-es-in-cpts getspc-es-def
                 by (metis Suc-lessD fst-conv length-Cons nth-Cons-0 zero-less-Suc)
                    with e\theta have \exists e. \ getspc\text{-}es\ (esl!i) = EvtSeq\ e\ (EvtSys\ es) by
simp
                    then obtain e where e1: getspc-es (esl!i) = EvtSeq e (EvtSys)
es) by auto
                  from p0 p1 c0 have e0-1: getspc-es (esl!Suc i) = EvtSys es \vee
                      (\exists e. \ getspc\text{-}es \ (esl!Suc \ i) = EvtSeq \ e \ (EvtSys \ es))
                    using evtsys-all-es-in-cpts qetspc-es-def
                by (metis fst-conv length-greater-0-conv list.distinct(1) nth-Cons-0)
                  obtain esi and si and xi and esi' and si' and xi'
                     where e2: esl!i = (esi,si,xi) \land esl!(Suc\ i) = (esi',si',xi')
                     by (metis prod.collapse)
                 with c1 obtain t where e3: \Gamma \vdash (esi, si, xi) - es - t \rightarrow (esi', si', xi')
by auto
                  from e\theta-1 show ?thesis
                    proof
                      assume f\theta: getspc\text{-}es\ (esl!Suc\ i) = EvtSys\ es
                      with e1 e2 e3 have \exists t. \Gamma \vdash (e, si, xi) - et - t \rightarrow (AnonyEvent)
fin-com, si',xi')
```

```
by (simp add: evtseq-tran-0-exist-etran qetspc-es-def)
                  then obtain et where f1: \Gamma \vdash (e, si, xi) - et - et \rightarrow (AnonyEvent)
fin-com, si',xi')
                       by auto
                      from p1 p4 a3 c0 d0 e1 e2 have f2:el!i = (e, si, xi)
                       using getspc-es-def getspc-e-def rm-evtsys-def rm-evtsys1-def
                         gets-es-def getx-es-def EvtSegrm
                              by (smt Suc-lessD fst-conv list.simps(9) nth-Cons-Suc
nth-map old.nat.exhaust snd-conv)
                      moreover
                       from p1 p4 a3 c0 d0 e2 f0 have f3:el!Suc i = (AnonyEvent
fin-com, si',xi'
                       using getspc-es-def getspc-e-def rm-evtsys-def rm-evtsys1-def
                         gets-es-def getx-es-def EvtSysrm
                         by (smt List.nth-tl Suc-lessE diff-Suc-1 fst-conv
                           length-tl\ list.sel(3)\ nth-map\ snd-conv)
                      ultimately have (si,si') \in guar using b \not= f1 a3 c0 gets-e-def
                       by (metis fst-conv snd-conv)
                      with e2 show ?thesis by (simp add:gets-es-def)
                      assume f0: \exists e. \ getspc\text{-}es \ (esl!Suc \ i) = EvtSeq \ e \ (EvtSys \ es)
                       then obtain e' where f1: getspc-es (esl!Suc i) = EvtSeq e'
(EvtSys\ es)
                       by auto
                      with e1 e2 e3 have \exists t. \Gamma \vdash (e, si, xi) - et - t \rightarrow (e', si', xi')
                       by (simp add: evtseq-tran-exist-etran getspc-es-def)
                      moreover
                      from p1 p4 a3 c0 d0 e1 e2 have f2:el!i = (e, si, xi)
                       {\bf using} \ getspc\text{-}es\text{-}def \ getspc\text{-}e\text{-}def \ rm\text{-}evtsys\text{-}def \ rm\text{-}evtsys1\text{-}def
                         gets-es-def getx-es-def EvtSeqrm
                             by (smt\ Suc\text{-}lessD\ fst\text{-}conv\ list.simps(9)\ nth\text{-}Cons\text{-}Suc}
nth-map old.nat.exhaust snd-conv)
                      moreover
                      from p1 p4 a3 c0 d0 e2 f1 have f3:el!Suc i = (e', si',xi')
                       using qetspc-es-def qetspc-e-def rm-evtsys-def rm-evtsys1-def
                         gets-es-def getx-es-def EvtSeqrm
                          \mathbf{by}\ (smt\ Suc\text{-}lessD\ fst\text{-}conv\ less\text{-}Suc\text{-}eq\text{-}0\text{-}disj\ list.simps}(9)
nth-Cons-Suc nth-map snd-conv)
                      ultimately have (si,si') \in guar using b4 f1 a3 c0 gets-e-def
                       by (metis fst-conv snd-conv)
                      with e2 show ?thesis by (simp add:gets-es-def)
                    qed
                qed
            qed
         then show ?thesis by auto
         qed
```

```
qed
  qed
lemma rm-evtsys-assum-comm:
   [esl \in cpts-es \ \Gamma; \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \ \# \ xs;
      \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev\ (EvtSys\ es,\ s,\ x))
es), s1,x1);
     \neg(\exists j. \ j > 0 \land Suc \ j < length \ esl \land getspc\text{-}es \ (esl!j) = EvtSys \ es \land getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es);
     el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)\ \#\ xs);
      el \in assume - e \Gamma (pre, rely) \longrightarrow el \in commit - e \Gamma (guar, post)
      \implies esl \in assume - es \ \Gamma \ (pre, rely) \longrightarrow esl \in commit - es \ \Gamma \ (guar, post)
  proof -
   assume p\theta: esl \in cpts-es \Gamma
     and p1: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1, x1) \# xs
     and p2: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev
(EvtSys\ es),\ s1,x1)
      and p3: \neg(\exists j. j > 0 \land Suc j < length esl \land getspc-es (esl!j) = EvtSys es
                   \land getspc\text{-}es \ (esl!Suc \ j) \neq EvtSys \ es)
       and p_4: el = (BasicEvent\ e,\ s,\ x) \# rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),
s1,x1) \# xs
      and p5: el \in assume - e \Gamma (pre, rely) \longrightarrow el \in commit - e \Gamma (guar, post)
    from p3 have p3-1: \forall j. j > 0 \land Suc j < length esl \longrightarrow getspc-es (esl! j) =
EvtSys es
            \rightarrow getspc-es (esl ! Suc j) = EvtSys es using noevtent-inmid-eq by auto
    from p0 p1 p2 p3 p4 have a0: el \in cpts-ev \Gamma using rm-evtsys-in-cptse by
metis
   let ?esl1 = (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs
   let ?el1 = rm\text{-}evtsys ((EvtSeq ev (EvtSys es), s1,x1) \# xs)
   from p0 p1 p2 p3 p4 a0 have a1: e-sim-es esl el es e
      using fstent-nomident-e-sim-es2 by metis
   from p4 have a2: el = (BasicEvent\ e,\ s,\ x)\ \#\ (ev,s1,x1)\ \#\ rm\text{-}evtsys\ xs
    by (simp add: qets-es-def qetspc-es-def qetx-es-def rm-evtsys1-def rm-evtsys-def)
   from p1 a2 have a3: length esl = length el by (simp add:rm-evtsys-def)
   show ?thesis
      proof
       assume b\theta: esl \in assume - es \Gamma (pre, rely)
            with p0 p1 p2 p3 p4 a1 have b2: el \in assume - e \Gamma (pre,rely) using
e-sim-es-same-assume by metis
       with p5 have b3: el \in commit - e \Gamma (guar, post) by simp
     with p0 p1 p2 p3 p4 a1 show esl \in commit-es \Gamma (guar, post) using e-sim-es-same-commit
by metis
     qed
  qed
```

then show ?thesis by (simp add:commit-es-def)

```
lemma EventSys-sound-aux1:
    \llbracket \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, \ Rely \ ef, \ Guar \ ef, \ Post \ ef \ ];
    esl \in cpts-es \ \Gamma; length \ esl \ge 2 \ \land \ getspc-es \ (esl!0) = EvtSys \ es \ \land \ getspc-es \ (esl!1)
     \neg(\exists j. \ j > 0 \land Suc \ j < length \ esl \land getspc\text{-}es \ (esl!j) = EvtSys \ es \land getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es)
       \implies \exists m \in es. \ (esl \in assume - es \ \Gamma \ (Pre \ m, Rely \ m) \longrightarrow esl \in commit - es \ \Gamma \ (Guar
m, Post m)
                            \land (\exists k. \ \Gamma \vdash esl!0 - es - (EvtEnt \ m) \sharp k \rightarrow esl!1)
  proof -
    assume p\theta: \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, \ Rely \ ef, \ Guar \ ef, \ Post \ ef]
      and a0: length esl \geq 2 \land getspc\text{-}es \ (esl!0) = EvtSys \ es \land getspc\text{-}es \ (esl!1)
\neq EvtSys \ es
      and c41: \neg(\exists j. j > 0 \land Suc j < length \ esl \land \ getspc\text{-}es \ (esl!j) = EvtSys \ es
\land getspc\text{-}es \ (esl!Suc \ j) \neq EvtSys \ es)
      and c1: esl \in cpts\text{-}es \Gamma
    from a0 c1 have c2: \exists s \ x \ ev \ s1 \ x1 \ xs. \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev
(EvtSys\ es),\ s1,x1)\ \#\ xs
      by (simp add:fst-esys-snd-eseq-exist)
    then obtain s and x and ev and s1 and x1 and xs where c3:
      esl = (EvtSys\ es,\ s,\ x)\ \#\ (EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)\ \#\ xs\ \mathbf{by}\ auto
    with c1 have \exists e \ k. \Gamma \vdash (EvtSys \ es, \ s, \ x) - es - (EvtEnt \ (BasicEvent \ e)) \sharp k \rightarrow
(EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)
      using fst-esys-snd-eseq-exist-evtent2 by fastforce
    then obtain e and k where c4:
      \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeq\ ev\ (EvtSys\ es,\ s,\ x))
es), s1, x1)
      by auto
    let ?el = (BasicEvent\ e,\ s,\ x)\ \#\ rm\text{-}evtsys\ ((EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)\ \#
xs)
   from c1 c3 c4 c41 have c5: ?el \in cpts-ev \Gamma \text{ using } rm-evtsys-in-cptse \text{ by } metis
    from c4 have \exists ei \in es. \ ei = BasicEvent \ e using evtsysent-evtent by metis
    then obtain ei where c\theta: ei \in es \land ei = BasicEvent \ e by auto
    from c3 c4 c6 have c61: \Gamma \vdash esl!0 - es - (EvtEnt\ ei) \sharp k \rightarrow esl!1 by simp
    have c8: ?el \in assume - e \ \Gamma \ (Pre\ ei,\ Rely\ ei) \longrightarrow ?el \in commit - e \ \Gamma \ (Guar\ ei,Post
ei
      proof
        assume d\theta: ?el \in assume - e \Gamma (Pre\ ei,\ Rely\ ei)
        moreover
         from p0 c6 have d1: \Gamma \models ei \ sat_e \ [Pre \ ei, Rely \ ei, Guar \ ei, Post \ ei] by
auto
        moreover
      from c5 have ?el \in cpts-of-ev \Gamma (BasicEvent e) s x by (simp add:cpts-of-ev-def)
        ultimately show ?el \in commit-e \ \Gamma \ (Guar \ ei, Post \ ei) using evt\text{-}validity\text{-}def
c6
          \mathbf{by}\ \mathit{fastforce}
      qed
```

```
with c1 c3 c4 c41 have c7: esl \in assume-es \Gamma (Pre ei, Rely ei) \longrightarrow esl \in commit-es
\Gamma (Guar ei, Post ei)
      using rm-evtsys-assum-comm by metis
    then show ?thesis using c6 c61 by blast
  ged
\mathbf{lemma}\ \mathit{EventSys}	ext{-}\mathit{sound}	ext{-}\mathit{aux1}	ext{-}\mathit{forall}	ext{:}
    \llbracket \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, \ Rely \ ef, \ Guar \ ef, \ Post \ ef \ ];
    esl \in cpts-es \ \Gamma; length \ esl \ge 2 \ \land \ getspc-es \ (esl!0) = EvtSys \ es \ \land \ getspc-es \ (esl!1)
\neq EvtSys \ es;
     \neg(\exists j. \ j > 0 \land Suc \ j < length \ esl \land getspc-es \ (esl!j) = EvtSys \ es \land getspc-es
(esl!Suc\ j) \neq EvtSys\ es)
      \implies \forall m \in es. \ (\exists k. \ \Gamma \vdash esl!0 - es - (EvtEnt \ m) \sharp k \rightarrow esl!1)
                              \rightarrow (esl \in assume - es \ \Gamma \ (Pre \ m, Rely \ m) \longrightarrow esl \in commit - es \ \Gamma
(Guar \ m, Post \ m))
  proof -
    assume p\theta: \forall ef \in es. \Gamma \models ef sat_e [Pre \ ef, Rely \ ef, Guar \ ef, Post \ ef]
      and a0: length esl \geq 2 \land getspc\text{-}es \ (esl!0) = EvtSys \ es \land getspc\text{-}es \ (esl!1)
      and c41: \neg(\exists j. j > 0 \land Suc j < length esl \land getspc-es (esl!j) = EvtSys es
\land getspc\text{-}es \ (esl!Suc \ j) \neq EvtSys \ es)
      and c1: esl \in cpts - es \Gamma
    then show ?thesis
      proof -
      {
        \mathbf{fix} \ m
        assume c01: m \in es
          and c02: \exists k. \Gamma \vdash esl!0 - es - (EvtEnt m) \sharp k \rightarrow esl!1
         from a0 c1 have c2: \exists s \ x \ ev \ s1 \ x1 \ xs. \ esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq
ev (EvtSys \ es), \ s1,x1) \# xs
          by (simp add:fst-esys-snd-eseq-exist)
        then obtain s and x and ev and s1 and x1 and xs where c3:
          esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs \ \mathbf{by} \ auto
        with c02 have \exists k. \ \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ m) \sharp k \rightarrow (EvtSeq\ ev
(EvtSys\ es),\ s1,x1) by simp
          then obtain k where c4: \Gamma \vdash (EvtSys\ es,\ s,\ x)\ -es-(EvtEnt\ m)\sharp k \rightarrow
(EvtSeq\ ev\ (EvtSys\ es),\ s1,x1) by auto
        then have \exists e. m = BasicEvent \ e \ by \ (meson \ evtent-is-basicevt)
        then obtain e where c40: m = BasicEvent e by auto
        let ?el = (m, s, x) \# rm\text{-}evtsys ((EvtSeq ev (EvtSys es), s1,x1) \# xs)
        from c1 c3 c4 c40 c41 have c5: ?el \in cpts-ev \Gamma using rm-evtsys-in-cptse
by metis
        from c3 c4 c40 have c61: \Gamma \vdash esl!0 - es - (EvtEnt \ m) \sharp k \rightarrow esl!1 by simp
          have c8: ?el \in assume - e \ \Gamma \ (Pre \ m, \ Rely \ m) \longrightarrow ?el \in commit - e \ \Gamma \ (Guar
m, Post m)
          proof
             assume d\theta: ?el \in assume - e \Gamma (Pre m, Rely m)
             moreover
```

```
from p0 c01 c40 have d1: \Gamma \models m \ sat_e \ [Pre \ m, Rely \ m, Guar \ m, Post]
m] by auto
            moreover
                from c5 c40 have ?el \in cpts-of-ev \Gamma (BasicEvent e) s x by (simp
add:cpts-of-ev-def)
         ultimately show ?el \in commit - e \Gamma (Guar m, Post m) using evt-validity-def
c40
              by fastforce
          qed
         with c1 c3 c4 c40 c41 have c7: esl \in assume - es \Gamma (Pre m, Rely m) \longrightarrow
esl \in commit-es \Gamma (Guar m, Post m)
          using rm-evtsys-assum-comm by metis
     then show ?thesis by auto
      qed
 qed
lemma EventSys-sound-seg-aux0-exist:
    [esl \in cpts-es \ \Gamma; length \ esl \ge 2; \ getspc-es \ (esl!0) = EvtSys \ es; \ getspc-es \ (esl!1)
\neq EvtSys \ es
      \implies \exists m \in es. \ (\exists k. \ \Gamma \vdash esl! 0 - es - (EvtEnt \ m) \sharp k \rightarrow esl! 1)
  proof -
    assume p\theta: esl \in cpts-es \Gamma
      and p1: length \ esl \ge 2
     and p2: getspc\text{-}es (esl!0) = EvtSys \ es
      and p3: getspc\text{-}es (esl!1) \neq EvtSys \ es
    then have a1: \exists s \ x \ ev \ s1 \ x1 \ xs. \ esl = (EvtSys \ es, \ s, \ x) \ \# (EvtSeq \ ev \ (EvtSys \ es, \ s, \ x)
(es), s1, x1) \# xs
      by (simp add:fst-esys-snd-eseq-exist)
    then obtain s and x and ev and s1 and x1 and xs where a2:
      esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1, x1) \# xs \ \mathbf{by} \ auto
   with p0 a1 have \exists e \ k. \ \Gamma \vdash (EvtSys \ es, \ s, \ x) - es - (EvtEnt \ (BasicEvent \ e)) \sharp k \rightarrow
(EvtSeq\ ev\ (EvtSys\ es),\ s1,x1)
      using fst-esys-snd-eseq-exist-evtent2 by fastforce
    then obtain e and k where a3:
      \Gamma \vdash (EvtSys\ es,\ s,\ x)\ -es - (EvtEnt\ (BasicEvent\ e)) \sharp k \rightarrow (EvtSeg\ ev\ (EvtSys\ es,\ s,\ x))
es), s1, x1)
      by auto
    from a3 have \exists i \in es. i = BasicEvent e using every ent-event by metis
    then obtain ei where c6: ei \in es \land ei = BasicEvent \ e by auto
   then show ?thesis using One-nat-def a2 a3 nth-Cons-0 nth-Cons-Suc by force
  qed
\mathbf{lemma}\ \textit{EventSys-sound-seg-aux0-forall}:
    \llbracket \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, \ Rely \ ef, \ Guar \ ef, \ Post \ ef \ ];
    esl \in cpts-es \Gamma; length \ esl \ge 2 \land getspc-es (esl!0) = EvtSys \ es \land getspc-es (esl!1)
\neq EvtSys \ es;
     getspc-es (last \ esl) = EvtSys \ es;
```

```
\neg(\exists j. \ j > 0 \land Suc \ j < length \ esl \land \ getspc\text{-}es \ (esl!j) = EvtSys \ es \land \ getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es)
      \implies \forall ei \in es. \ (\exists k. \ \Gamma \vdash esl!0 - es - (EvtEnt \ ei) \sharp k \rightarrow esl!1)
                               \longrightarrow (esl \in assume - es \ \Gamma \ (Pre\ ei, Rely\ ei) \longrightarrow esl \in commit - es
\Gamma (Guar ei, Post ei)
                                      \land gets\text{-}es \ (last \ esl) \in Post \ ei)
  proof -
    assume p\theta: \forall ef \in es. \Gamma \models ef sat_e [Pre \ ef, Rely \ ef, Guar \ ef, Post \ ef]
      and a0: length esl \geq 2 \land getspc\text{-}es \ (esl!0) = EvtSys \ es \land getspc\text{-}es \ (esl!1)
\neq EvtSys \ es
      and p\theta: getspc-es (last\ esl) = EvtSys\ es
      and c41: \neg(\exists j. j > 0 \land Suc j < length esl \land getspc-es (esl!j) = EvtSys es
\land \ getspc\text{-}es \ (esl!Suc \ j) \neq \textit{EvtSys} \ es)
      and c1: esl \in cpts\text{-}es \Gamma
    then show ?thesis
      proof-
        \mathbf{fix} ei
        assume c01: ei \in es
          and c02: \exists k. \ \Gamma \vdash esl! 0 - es - (EvtEnt \ ei) \sharp k \rightarrow esl! 1
         from a0 c1 have c2: \exists s \ x \ ev \ s1 \ x1 \ xs. \ esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq
ev (EvtSys \ es), \ s1,x1) \# xs
          by (simp add:fst-esys-snd-eseq-exist)
        then obtain s and x and ev and s1 and x1 and xs where c3:
           esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) \# xs \ \mathbf{by} \ auto
        with c02 have \exists k. \ \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ ei) \sharp k \rightarrow (EvtSeg\ ev
(EvtSys\ es),\ s1,x1) by simp
          then obtain k where c4: \Gamma \vdash (EvtSys\ es,\ s,\ x) - es - (EvtEnt\ ei) \sharp k \rightarrow
(EvtSeq \ ev \ (EvtSys \ es), \ s1,x1) by auto
        then have \exists e. ei = BasicEvent \ e by (meson \ evtent-is-basicevt)
        then obtain e where c\theta: ei = BasicEvent\ e by auto
        let ?el = (ei, s, x) \# rm\text{-}evtsys ((EvtSeq ev (EvtSys es), s1,x1) \# xs)
         from c1 c3 c4 c6 c41 have c5: ?el \in cpts-ev \Gamma using rm\text{-}evtsys\text{-}in\text{-}cptse
by metis
        from c3 c4 c6 have c61: \Gamma \vdash esl!0 - es - (EvtEnt\ ei) \sharp k \rightarrow esl!1 by simp
          have c8: ?el \in assume - e \ \Gamma \ (Pre\ ei,\ Rely\ ei) \longrightarrow ?el \in commit - e \ \Gamma \ (Guar
ei,Post \ ei)
          proof
            assume d0: ?el \in assume - e \Gamma (Pre \ ei, Rely \ ei)
             from p0 c01 c6 have d1: \Gamma \models ei \ sat_e \ [Pre \ ei, Rely \ ei, Guar \ ei, Post]
ei] by auto
             moreover
                  from c5 c6 have ?el \in cpts-of-ev \Gamma (BasicEvent e) s x by (simp
add:cpts-of-ev-def)
          ultimately show ?el \in commit - e \Gamma (Guar \ ei, Post \ ei) using evt - validity - def
```

```
c6
            by fastforce
         qed
         with c1 c3 c4 c41 c6 have c7: esl\in assume-es \Gamma (Pre ei, Rely ei) \longrightarrow
esl \in commit-es \Gamma (Guar \ ei, Post \ ei)
         using rm-evtsys-assum-comm by metis
       moreover
       have esl \in assume - es \Gamma (Pre ei, Rely ei) \longrightarrow gets - es (last esl) \in Post ei
         proof
           assume d\theta: esl \in assume - es \Gamma (Pre ei, Rely ei)
               from c1 c3 c4 c41 c5 c6 have d2: e-sim-es esl ?el es e using
fstent-nomident-e-sim-es2 by metis
          with c1 c3 c4 c41 c5 c6 d0 have d3: ?el \in assume - e \Gamma (Pre ei, Rely ei)
            using e-sim-es-same-assume by metis
           with c8 have d1: ?el \in commit - e \Gamma (Guar \ ei, Post \ ei) by auto
          have d4: getspc-e (last ?el) = AnonyEvent fin-com
            proof -
           from a0 d2 have e1: length ?el = length esl by (simp add: e-sim-es-def)
              with d2 have \forall i. i > 0 \land i < length ?el \longrightarrow
                                   (getspc\text{-}es\ (esl!i) = EvtSys\ es\ \land\ getspc\text{-}e\ (?el!i) =
AnonyEvent\ fin-com)
                                       \lor (getspc\text{-}es \ (esl!i) = EvtSeq \ (getspc\text{-}e \ (?el!i))
(EvtSys\ es))
                by (simp add: e-sim-es-def)
                with a0 e1 have (getspc-es\ (last\ esl) = EvtSys\ es\ \land\ getspc-e\ (last
(?el) = AnonyEvent\ fin-com)
                                       \vee (getspc-es (last esl) = EvtSeq (getspc-e (last
?el) (EvtSys es))
           by (metis (no-types, lifting) c3 diff-less last-conv-nth length-greater-0-conv
length-tl
                      list.sel(3) \ list.simps(3) \ zero-less-one)
              with p6 show ?thesis by simp
           with d1 have gets-e (last ?el) \in Post ei by (simp add: commit-e-def)
          moreover
          from a0 d2 have gets-e (last ?el) = gets-es (last esl) using e-sim-es-def
            proof -
           from a0 d2 have e1: length ?el = length esl by (simp add: e-sim-es-def)
              with d2 have \forall i. i < length ?el \longrightarrow gets-e (?el!i) = gets-es (esl!)
i) \wedge
                                                      getx-e(?el!i) = getx-es(esl!i)
                by (simp \ add: e\text{-}sim\text{-}es\text{-}def)
              with a0 e1 show ?thesis
           by (metis (no-types, lifting) c3 diff-less last-conv-nth length-greater-0-conv
length-tl
                     list.sel(3) \ list.simps(3) \ zero-less-one)
            \mathbf{qed}
```

```
ultimately show gets-es (last \ esl) \in Post \ ei \ by \ simp
           qed
         ultimately have (esl \in assume - es \ \Gamma \ (Pre\ ei, Rely\ ei) \longrightarrow esl \in commit - es \ \Gamma
(Guar ei, Post ei)
                                        \land gets-es (last esl) \in Post ei) by simp
      then show ?thesis by auto
      qed
  \mathbf{qed}
lemma EventSys-sound-seg-aux\theta:
    \llbracket \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, Rely \ ef, Guar \ ef, Post \ ef \ ];
     esl \in cpts-es \Gamma; length \ esl \ge 2 \land getspc-es (esl!0) = EvtSys \ es \land getspc-es (esl!1)
\neq EvtSys \ es;
     getspc-es (last esl) = EvtSys es;
     \neg(\exists j.\ j > 0 \land Suc\ j < length\ esl\ \land\ getspc\text{-}es\ (esl!j) = EvtSys\ es\ \land\ getspc\text{-}es
(esl!Suc\ j) \neq EvtSys\ es)
       \implies \exists m \in es. \ (esl \in assume - es \ \Gamma \ (Pre \ m, Rely \ m) \longrightarrow esl \in commit - es \ \Gamma \ (Guar
m, Post m)
                                    \land gets\text{-}es (last esl) \in Post m)
                           \land (\exists k. \ \Gamma \vdash esl! 0 - es - (EvtEnt \ m) \sharp k \rightarrow esl! 1)
  proof -
    assume p\theta: \forall ef \in es. \Gamma \models ef sat_e [Pre \ ef, Rely \ ef, Guar \ ef, Post \ ef]
       and p1: length esl \geq 2 \land getspc\text{-}es \ (esl!0) = EvtSys \ es \land getspc\text{-}es \ (esl!1)
\neq EvtSys \ es
      and p2: getspc-es (last esl) = EvtSys es
       and p3: \neg(\exists j. j > 0 \land Suc j < length \ esl \land getspc-es \ (esl!j) = EvtSys \ es
\land getspc\text{-}es \ (esl!Suc \ j) \neq EvtSys \ es)
      and p_4: esl \in cpts-es \Gamma
    then have \exists m \in es. (\exists k. \ \Gamma \vdash esl!0 - es - (EvtEnt \ m) \sharp k \rightarrow esl!1)
      using EventSys-sound-seg-aux0-exist[of\ esl\ \Gamma\ es] by simp
    then obtain m where a1: m \in es \land (\exists k. \ \Gamma \vdash esl!0 - es - (EvtEnt \ m) \sharp k \rightarrow esl!1)
by auto
   with p0 p1 p2 p3 p4 have (esl\inassume-es \Gamma (Pre m,Rely m) \longrightarrow esl\incommit-es
\Gamma (Guar m, Post m)
                                    \land gets\text{-}es \ (last \ esl) \in Post \ m)
        using EventSys-sound-seg-aux0-forall [of es \Gamma Pre Rely Guar Post esl] by
simp
     with a1 show ?thesis by auto
  qed
lemma EventSys-sound-aux-i-forall:
    [\forall ef \in es. \Gamma \models ef sat_e [Pre ef, Rely ef, Guar ef, Post ef];
     \forall ef \in es. \ pre \subseteq Pre \ ef; \ \forall ef \in es. \ rely \subseteq Rely \ ef;
     \forall ef \in es. \ Guar \ ef \subseteq guar; \ \forall \ ef \in es. \ Post \ ef \subseteq post;
     \forall ef1 \ ef2. \ ef1 \in es \land ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2;
     esl \in cpts-es \Gamma; esl = (EvtSys\ es,\ s,\ x) \# (EvtSeq\ e\ (EvtSys\ es),\ s1,x1) \# xs;
     esl \in assume - es \Gamma (pre, rely);
```

```
elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]])]
             \implies \forall i. \ Suc \ i < length \ elst \longrightarrow
                         (\forall \ ei \in es. \ (\exists \ k. \ \Gamma \vdash (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - (elst!i@[(elst!Suc\ i)!0]) - (elst!i@[(
i)!0])!1)
                                                                          \longrightarrow elst!i@[(elst!Suc\ i)!\theta] \in commit-es\ \Gamma\ (Guar\ ei,Post
ei)
                                                                                   \land gets\text{-}es ((elst!Suc \ i)!0) \in Post \ ei)
    proof -
        assume p0: \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, \ Rely \ ef, \ Guar \ ef, \ Post \ ef]
             and p1: \forall ef \in es. pre \subseteq Pre ef
             and p2: \forall ef \in es. rely \subseteq Rely ef
             and p3: \forall ef \in es. Guar \ ef \subseteq guar
             and p_4: \forall ef \in es. Post ef \subseteq post
             and p5[rule-format]: \forall ef1 ef2. ef1 \in es \land ef2 \in es \longrightarrow Post ef1 \subseteq Pre ef2
             and p8: esl \in cpts\text{-}es \Gamma
             and p9: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ e \ (EvtSys \ es), \ s1, x1) \# xs
             and p10: esl \in assume - es \Gamma (pre, rely)
             and p11: elst = tl \ (parse-es-cpts-i2 \ esl \ es \ [[]])
         from p9 p8 p11 have a0[rule-format]: \forall i. i < length \ elst \longrightarrow length \ (elst!i)
\geq 2 \wedge
                                        getspc\text{-}es\ (elst!i!0) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!1) \neq EvtSys\ es
             using parse-es-cpts-i2-start-aux by metis
        from p9 p8 p11 have a1: \forall i. i < length \ elst \longrightarrow
                                      \neg(\exists j. \ j > 0 \land Suc \ j < length \ (elst!i) \land
                                       getspc\text{-}es\ (elst!i!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!Suc\ j) \neq EvtSys
es)
             using parse-es-cpts-i2-noent-mid by metis
        from p9 p8 p11 have a2: concat elst = est using parse-es-cpts-i2-concat3 by
metis
        show ?thesis
             proof -
                 \mathbf{fix} i
                 assume b\theta: Suc i < length \ elst
                          then have \forall ei \in es. (\exists k. \Gamma \vdash (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt
ei) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!1)
                                                                           \longrightarrow elst!i@[(elst!Suc\ i)!0] \in commit-es\ \Gamma\ (Guar\ ei,Post
ei
                                                                                    \land gets-es ((elst!Suc\ i)!0) \in Post\ ei
                              proof(induct i)
                                   case \theta
                                   assume c\theta: Suc \theta < length \ elst
                                   let ?els = elst ! 0 @ [elst ! Suc 0 ! 0]
                                   have c1: ?els \in cpts\text{-}es \Gamma
                                       proof -
                                            from a0 have c11: \forall i < length \ elst. \ elst \ ! \ i \neq []
                                                using list.size(3) not-numeral-le-zero by force
                                            with a2 c0 have \exists m \ n. \ m \leq length \ esl \land n \leq length \ esl \land m \leq
n \wedge ?els = take (n - m) (drop m esl)
```

```
using concat-i-lm by blast
                    then obtain m and n where d1: m \leq length \ esl \land n \leq length
esl \land m \leq n
                          \land ?els = take (n - m) (drop m esl) by auto
                    have ?els \neq [] by simp
                    with p8 d1 show ?thesis by (simp add: cpts-es-seg2)
                    qed
                have c2: getspc-es (last ?els) = EvtSys es by (simp \ add: a0 \ c0)
                have c3: \neg(\exists j. j > 0 \land Suc j < length ?els \land getspc-es (?els!j) =
EvtSys es
                  \land getspc\text{-}es \ (?els!Suc \ j) \neq EvtSys \ es)
                  proof -
                    from a\theta have getspc\text{-}es (elst ! Suc \theta ! \theta) = EvtSys es using c\theta
by blast
                with a1 show ?thesis by (metis (no-types, lifting) Suc-leI Suc-lessD
                           Suc-lessE c0 diff-Suc-1 diff-is-0-eq' length-append-singleton
nth-Cons-0 nth-append)
                  qed
               from a0 have c4: 2 \le length ?els \land getspc\text{-}es (?els ! 0) = EvtSys es
\land getspc-es (?els! 1) \neq EvtSys es
                by (metis (no-types, hide-lams) Suc-1 Suc-eq-plus1-left Suc-le-lessD
                        Suc\mbox{-}lessD add.right\mbox{-}neutral c0 length\mbox{-}append\mbox{-}singleton not\mbox{-}less
nth-append)
                  with p0 c1 c2 c3 have c5: \forall ei \in es. (\exists k. \Gamma \vdash ?els!0 - es - (EvtEnt))
ei) \sharp k \rightarrow ?els!1)
                           \longrightarrow (?els \in assume-es \Gamma (Pre ei, Rely ei) \longrightarrow ?els \in commit-es
\Gamma (Guar ei, Post ei)
                                    \land gets\text{-}es (last ?els) \in Post ei)
                   using EventSys-sound-seg-aux0-forall[of es \Gamma Pre Rely Guar Post
?els] by auto
                from p10 a2 have ?els \in assume - es \Gamma (pre, rely)
                  proof -
                    from a0 have d1: \forall i < length \ elst. \ elst \ ! \ i \neq []
                      using list.size(3) not-numeral-le-zero by force
                    with a2 c0 have \exists m \ n. \ m \leq length \ esl \land n \leq length \ esl \land m \leq
n \wedge ?els = take (n - m) (drop \ m \ esl)
                      using concat-i-lm by blast
                    moreover
                  from p10 have \forall i. Suc i < length esl \longrightarrow \Gamma \vdash esl!i - ese \rightarrow esl!(Suc
i) \longrightarrow
                                  (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in rely\ \mathbf{by}\ (simp)
add:assume-es-def)
                      ultimately have \forall i. \ Suc \ i < length \ ?els \longrightarrow \Gamma \vdash ?els!i \ -ese \rightarrow
?els!(Suc\ i) \longrightarrow
                        (gets-es\ (?els!i),\ gets-es\ (?els!Suc\ i)) \in rely
                        using rely-takedrop-rely by blast
```

```
moreover
                   have gets-es (?els!0) \in pre
                     proof -
                       from a2 have ?els!0 = esl!0
                         by (metis (no-types, lifting) Suc-lessD d1
                             c0 concat.simps(2) cpts-es-not-empty hd-append2
                                        length-greater-0-conv list.collapse nth-Cons-0 p8
snoc\text{-}eq\text{-}iff\text{-}butlast)
                       moreover
                   from p10 have gets-es (esl!0) \in pre by (simp\ add:assume-es-def)
                       ultimately show ?thesis by simp
                   ultimately show ?thesis by (simp add:assume-es-def)
                  qed
                  with p1 p2 c5 have \forall ei \in es. ?els \in assume-es \Gamma (Pre ei, Rely ei)
using assume-es-imp
                 by metis
                with c5 show ?case by auto
                case (Suc \ j)
                let ?elstjj = elst ! j @ [elst ! Suc j ! 0]
               let ?els = elst ! Suc j @ [elst ! Suc (Suc j) ! 0]
                assume c01: Suc j < length elst
                          \implies \forall ei \in es. \ (\exists k. \ \Gamma \vdash ?elstjj ! \ 0 - es - EvtEnt \ ei \sharp k \rightarrow ?elstjj
! 1) \longrightarrow
                             ?elstjj \in commit-es \Gamma (Guar ei, Post ei) \wedge gets-es (elst!
Suc \ j \ ! \ \theta) \in Post \ ei
                and c02: Suc\ (Suc\ j) < length\ elst
                then show ?case
                 proof-
                   \mathbf{fix} ei
                   assume d\theta: ei \in es
                     and d1: \exists k. \ \Gamma \vdash ?els ! \ 0 - es - EvtEnt \ ei \sharp k \rightarrow ?els ! \ 1
                    from c02 \ a0[of j] have \exists m \in es. \ (\exists k. \ \Gamma \vdash ?elstjj!0 - es - (EvtEnt)
m) \sharp k \rightarrow ?elstjj!1)
                      using EventSys-sound-seg-aux0-exist[of?elstjj \Gamma es] p8 p9 p11
                           by (smt One-nat-def Suc-1 Suc-le-lessD Suc-lessD le-SucI
length-append-singleton
                         nth-append parse-es-cpts-i2-in-cptes-i)
               then obtain ei' where c03: ei' \in es \land (\exists k. \Gamma \vdash ?elstjj! 0 - es - (EvtEnt))
ei') \sharp k \rightarrow ?elstjj!1)
                     by auto
                     with c01 c02 have c04: ?elstjj \in commit-es \Gamma (Guar ei', Post
ei')
                                       \land gets-es (elst! Suc j! 0) \in Post ei'
```

```
have c1: ?els \in cpts-es \Gamma
                    proof -
                      from a0 have c11: \forall i < length \ elst. \ elst \ ! \ i \neq []
                        using list.size(3) not-numeral-le-zero by force
                      with a2 c02 have \exists m \ n. \ m \leq length \ esl \land n \leq length \ esl \land
m \leq n \land ?els = take (n - m) (drop m esl)
                        using concat-i-lm by blast
                    then obtain m and n where d1: m \le length \ esl \land n \le length
esl \land m \leq n
                           \land ?els = take (n - m) (drop m esl) by auto
                      have ?els \neq [] by simp
                      with p8 d1 show ?thesis by (simp add: cpts-es-seg2)
                      qed
                 have c2: getspc-es (last ?els) = EvtSys es by (simp add: a0 c02)
                  have c3: \neg(\exists j. j > 0 \land Suc j < length ?els \land getspc-es (?els!j)
= EvtSys \ es
                    \land getspc\text{-}es \ (?els!Suc \ j) \neq EvtSys \ es)
                    proof -
                       from a0 have getspc-es (elst! Suc (Suc j)! 0) = EvtSys es
using c\theta 2 by blast
                        with a1 show ?thesis by (metis (no-types, lifting) Suc-leI
Suc-lessD
                        Suc-lessE c02 diff-Suc-1 diff-is-0-eq' length-append-singleton
nth-Cons-0 nth-append)
                    ged
                 from a0 have c4: 2 \le length ?els \land getspc\text{-}es (?els ! 0) = EvtSys
es \land getspc\text{-}es \ (?els ! 1) \neq EvtSys \ es
                by (metis (no-types, hide-lams) Suc-1 Suc-eq-plus1-left Suc-le-lessD
                     Suc\text{-}lessD add.right-neutral c02 length-append-singleton not-less
nth-append)
                  with p0 c1 c2 c3 d0 d1 have c5: (?els\inassume-es \Gamma (Pre ei,Rely
ei) \longrightarrow ?els \in commit-es \Gamma (Guar ei, Post ei)
                             \land qets\text{-}es (last ?els) \in Post ei)
                   using EventSys-sound-seg-aux0-forall[of es \Gamma Pre Rely Guar Post
?els] by blast
                  from p10 a2 have ?els \in assume - es \Gamma (Pre\ ei, rely)
                    proof -
                      from a0 have d1: \forall i < length \ elst. \ elst \ ! \ i \neq []
                        using list.size(3) not-numeral-le-zero by force
                      with a2 c02 have \exists m \ n. \ m \leq length \ esl \land n \leq length \ esl \land
m \leq n \land ?els = take (n - m) (drop m esl)
                        using concat-i-lm by blast
                      moreover
```

by auto

from p10 have $\forall i. Suc i < length esl \longrightarrow \Gamma \vdash esl!i - ese \rightarrow$

```
esl!(Suc\ i) \longrightarrow
                                                                                      (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in rely\ \mathbf{by}\ (simp)
add:assume-es-def)
                                                         ultimately have \forall i. Suc i < length ?els \longrightarrow \Gamma \vdash ?els!i - ese \rightarrow
 ?els!(Suc\ i) \longrightarrow
                                                                     (gets-es\ (?els!i),\ gets-es\ (?els!Suc\ i)) \in rely
                                                                     using rely-takedrop-rely by blast
                                                           moreover
                                                           have gets-es (?els!\theta) \in Pre ei
                                                                proof -
                                                                       from p5[of ei' ei] d0 c03 c04 have gets-es (elst! Sucj!
\theta) \in Pre\ ei
                                                                            by blast
                                                                                    then show ?thesis by (simp add: Suc-lessD c02 d1
nth-append)
                                                           ultimately show ?thesis by (simp add:assume-es-def)
                                                      qed
                                                 with p2 have ?els \in assume - es \Gamma (Pre ei, Rely ei)
                                                      using assume-es-imp[of Pre ei Pre ei rely Rely ei]
                                                        d\theta order-refl by auto
                                                  with c5 have c6: ?els \in commit-es\ \Gamma\ (Guar\ ei, Post\ ei) \land gets-es
(last ?els) \in Post \ ei \ \mathbf{by} \ simp
                                            }
                                            then show ?thesis by auto
                                            qed
                                  \mathbf{qed}
              then show ?thesis by auto
               qed
     qed
{f lemma} {\it EventSys-sound-aux-i}:
         \llbracket \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, Rely \ ef, Guar \ ef, Post \ ef \ ];
           \forall ef \in es. \ pre \subseteq Pre \ ef; \ \forall ef \in es. \ rely \subseteq Rely \ ef;
           \forall ef \in es. \ Guar \ ef \subseteq guar; \ \forall \ ef \in es. \ Post \ ef \subseteq post; \ \forall \ ef1 \ ef2. \ ef1 \in es \ \land \ ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2;
            esl \in cpts-es \Gamma; esl = (EvtSys\ es,\ s,\ x) \# (EvtSeq\ e\ (EvtSys\ es),\ s1,x1) \# xs;
            esl \in assume - es \Gamma (pre, rely);
            elst = tl \ (parse-es-cpts-i2 \ esl \ es \ [[]])
              \implies \forall i. \ Suc \ i < length \ elst \longrightarrow
                                       (\exists m \in es. \ elst!i@[(elst!Suc \ i)!0] \in commit-es \ \Gamma \ (Guar \ m,Post \ m)
                                                                               \land gets\text{-}es ((elst!Suc \ i)!0) \in Post \ m
                           \wedge (\exists k. \ \Gamma \vdash (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - (elst!i@[(elst!Suc\ i)!0])!0 
i)!(0])!(1))
    proof -
         assume p\theta: \forall ef \in es. \Gamma \models ef sat_e [Pre ef, Rely ef, Guar ef, Post ef]
```

```
and p1: \forall ef \in es. pre \subseteq Pre ef
          and p2: \forall ef \in es. rely \subseteq Rely ef
          and p3: \forall ef \in es. Guar \ ef \subseteq guar
          and p_4: \forall ef \in es. Post ef \subseteq post
          and p5: \forall ef1 \ ef2. \ ef1 \in es \land ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2
          and p8: esl \in cpts - es \Gamma
          and p9: esl = (EvtSys \ es, \ s, \ x) \ \# \ (EvtSeq \ e \ (EvtSys \ es), \ s1,x1) \ \# \ xs
          and p10: esl \in assume - es \Gamma (pre, rely)
          and p11: elst = tl (parse-es-cpts-i2 esl es [[]])
       from p9 p8 p11 have a0[rule-format]: \forall i. i < length \ elst \longrightarrow length \ (elst!i)
\geq 2 \wedge
                                getspc\text{-}es\ (elst!i!0) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!1) \neq EvtSys\ es
          using parse-es-cpts-i2-start-aux by metis
       from p9 p8 p11 have a1: \forall i. i < length \ elst \longrightarrow
                               \neg(\exists j. \ j > 0 \land Suc \ j < length \ (elst!i) \land 
                                qetspc-es\ (elst!i!j) = EvtSys\ es\ \land\ qetspc-es\ (elst!i!Suc\ j) \neq EvtSys
es
          using parse-es-cpts-i2-noent-mid by metis
       from p9 p8 p11 have a2: concat elst = est using parse-es-cpts-i2-concat3 by
       show ?thesis
          proof -
           {
              \mathbf{fix} i
              assume b\theta: Suc i < length \ elst
             with a0[of i] have \exists m \in es. (\exists k. \Gamma \vdash elst!i!0 - es - (EvtEnt m) \sharp k \rightarrow elst!i!1)
                  using EventSys-sound-seg-aux0-exist[of elst!i@[(elst!Suc i)!0] \Gamma es]
                     parse-es-cpts-i2-in-cptes-i[of esl es s x e s1 x1 xs \Gamma elst]
                     by (smt Suc-1 Suc-le-lessD Suc-lessD le-SucI length-append-singleton
                       length-greater-0-conv list.size(3) not-numeral-le-zero nth-append p11 p8
p9)
                     then obtain m where b1: m \in es \land (\exists k. \ \Gamma \vdash elst!i!\theta - es - (EvtEnt))
m) \sharp k \rightarrow elst!i!1) by auto
              with p0 p1 p2 p3 p4 p5 p8 p9 p10 p11 b0
              have b2[rule-format]: \forall i. Suc i < length elst <math>\longrightarrow (\forall ei \in es.
                     (\exists k. \ \Gamma \vdash (elst ! i @ [elst ! Suc i ! 0]) ! 0 - es - EvtEnt ei \sharp k \rightarrow (elst ! i @ elst ! i @ els
[elst ! Suc i ! 0]) ! 1) \longrightarrow
                       elst! i \otimes [elst! Suc i! \theta] \in commit-es \Gamma (Guar ei, Post ei) \land gets-es
(elst ! Suc i ! \theta) \in Post ei)
               using EventSys-sound-aux-i-forall[of es \Gamma Pre Rely Guar Post pre rely guar
post \ esl \ s \ x \ e \ s1 \ x1 \ xs \ elst
                     by fastforce
                  from b0 b1 b2[of i m] have elst!i@[(elst!Suc\ i)!0] \in commit-es\ \Gamma\ (Guar
m, Post m)
                              \land gets\text{-}es ((elst!Suc \ i)!0) \in Post \ m
              by (metis (no-types, lifting) Suc-1 Suc-le-lessD Suc-lessD a0 length-greater-0-conv
                         list.size(3) not-numeral-le-zero nth-append)
               with b1 have \exists m \in es. \ elst!i@[(elst!Suc \ i)!0] \in commit-es \ \Gamma \ (Guar \ m,Post
```

```
m)
                                       \land gets\text{-}es ((elst!Suc i)!0) \in Post m
                            \wedge (\exists k. \ \Gamma \vdash (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ m) \sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - (elst!i@[(elst!Suc\ i)!0])!0 
i)!0])!1)
                                  by (smt One-nat-def Suc-lessD a0 b0 lessI less-le-trans nth-append
numeral-2-eq-2)
             then show ?thesis by auto
             \mathbf{qed}
    qed
\mathbf{lemma}\ \textit{EventSys-sound-aux-last-forall}:
         \llbracket \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, \ Rely \ ef, \ Guar \ ef, \ Post \ ef \ ];
          \forall ef \in es. \ pre \subseteq Pre \ ef; \ \forall ef \in es. \ rely \subseteq Rely \ ef;
           \forall ef \in es. \ Guar \ ef \subseteq guar; \ \forall ef \in es. \ Post \ ef \subseteq post;
           \forall ef1 \ ef2. \ ef1 \in es \land ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2;
           esl \in cpts-es \Gamma; esl = (EvtSys\ es,\ s,\ x) \# (EvtSeq\ e\ (EvtSys\ es),\ s1,x1) \# xs;
           esl \in assume - es \Gamma (pre, rely);
           elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]])
             \implies \forall ei \in es. \ (\exists k. \ \Gamma \vdash (last \ elst)!0 - es - (EvtEnt \ ei) \sharp k \rightarrow (last \ elst)!1)
                                                            \longrightarrow last \ elst \in commit-es \ \Gamma \ (Guar \ ei, Post \ ei)
    proof -
         assume p\theta: \forall ef \in es. \Gamma \models ef sat_e [Pre \ ef, Rely \ ef, Guar \ ef, Post \ ef]
             and p1: \forall ef \in es. pre \subseteq Pre ef
             and p2: \forall ef \in es. rely \subseteq Rely ef
             and p3: \forall ef \in es. Guar \ ef \subseteq guar
             and p_4: \forall ef \in es. Post ef \subseteq post
             and p5: \forall ef1 \ ef2. \ ef1 \in es \land ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2
             and p8: esl \in cpts - es \Gamma
             and p9: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ e \ (EvtSys \ es), \ s1, x1) \# xs
             and p10: esl \in assume - es \Gamma (pre, rely)
             and p11: elst = tl (parse-es-cpts-i2 esl es [[]])
         from p9 p8 p11 have a0[rule-format]: \forall i. i < length \ elst \longrightarrow length \ (elst!i)
> 2 \
                                        getspc\text{-}es\ (elst!i!0) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!1) \neq EvtSys\ es
             using parse-es-cpts-i2-start-aux by metis
        from p9 p8 p11 have a1: \forall i. i < length \ elst \longrightarrow
                                      \neg(\exists j. \ j > 0 \land Suc \ j < length \ (elst!i) \land
                                       getspc\text{-}es\ (elst!i!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!Suc\ j) \neq EvtSys
es)
             using parse-es-cpts-i2-noent-mid by metis
        from p9 p8 p11 have a2: concat elst = est using parse-es-cpts-i2-concat3 by
        with p9 have a3: elst \neq [] by auto
        show ?thesis
        proof -
         {
```

```
\mathbf{fix} \ ei
      assume a01: ei \in es
       and a02: \exists k. \Gamma \vdash (last \ elst)! 0 - es - (EvtEnt \ ei) \sharp k \rightarrow (last \ elst)! 1
      have last\ elst \in commit-es\ \Gamma\ (Guar\ ei, Post\ ei)
      proof(cases length elst = 1)
       assume b\theta: length\ elst=1
       from a2\ b0 have b1: last\ elst = esl
       by (metis (no-types, lifting) One-nat-def a3 append-butlast-last-id append-self-conv2
concat.simps(1) concat.simps(2) diff-Suc-1 length-0-conv length-butlast self-append-conv)
       let ?els = elst ! 0
         from p8 a2 b0 have c1: ?els \in cpts-es \Gamma using b1 a3 last-conv-nth by
fast force
       from a1 b0 have c3: \neg(\exists j. j > 0 \land Suc j < length ?els \land getspc-es (?els!j)
= EvtSys \ es
          \land getspc\text{-}es \ (?els!Suc \ j) \neq EvtSys \ es) \ \mathbf{by} \ simp
       from a0 b0 have c4: 2 \le length ?els \land getspc\text{-}es (?els ! 0) = EvtSys es \land
getspc\text{-}es \ (?els ! 1) \neq EvtSys \ es
          by simp
      with p0 c1 c3 have c5: \forall m \in es. (\exists k. \Gamma \vdash ?els!0 - es - (EvtEnt m) \sharp k \rightarrow ?els!1)
                          \longrightarrow (?els \in assume-es \Gamma (Pre m,Rely m) \longrightarrow ?els \in commit-es
\Gamma (Guar m, Post m))
           using EventSys-sound-aux1-forall[of es \Gamma Pre Rely Guar Post ?els] by
fastforce
       from p10 a2 have ?els \in assume - es \Gamma (pre, rely)
          proof -
            from a2 b0 have \exists m \ n. \ m \leq length \ esl \land last \ elst = (drop \ m \ esl)
              using concat-last-lm using b1 by auto
           moreover
            from p10 have \forall i. Suc \ i < length \ esl \longrightarrow \Gamma \vdash esl!i \ -ese \rightarrow \ esl!(Suc \ i)
             (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in rely\ by\ (simp\ add:assume-es-def)
           ultimately have \forall i. \ Suc \ i < length \ ?els \longrightarrow \Gamma \vdash ?els!i \ -ese \rightarrow ?els!(Suc
                (gets-es\ (?els!i),\ gets-es\ (?els!Suc\ i)) \in rely
                using a3 b0 b1 last-conv-nth by force
            moreover
            have gets-es (?els!\theta) \in pre
             proof -
                from a2 have ?els!0 = esl!0
                  using a3 b0 b1 last-conv-nth by fastforce
                from p10 have gets-es (esl!0) \in pre by (simp add:assume-es-def)
                ultimately show ?thesis by simp
```

```
qed
           ultimately show ?thesis by (simp add:assume-es-def)
         qed
       with p1 p2 a01 have ?els \in assume - es \Gamma (Pre ei, Rely ei)
         using assume-es-imp[of pre Pre ei rely Rely ei elst! 0] by simp
       with a01 a02 c5 have c6: ?els \in commit-es \Gamma (Guar \ ei, Post \ ei)
         by (simp add: a3 b0 last-conv-nth)
         with c5 show ?thesis using a3 b0 last-conv-nth by (metis One-nat-def
diff-Suc-1)
     next
       assume length elst \neq 1
       with a3 have b0: length elst > 1 by (simp add: Suc-lessI)
       \mathbf{let} \ ?els = \mathit{last} \ \mathit{elst}
       from p8 a2 b0 have c1: ?els \in cpts\text{-}es \Gamma
         proof -
           from a2 b0 have \exists m : m \leq length \ esl \land ?els = drop \ m \ esl
             by (simp add: concat-last-lm a3)
           then obtain m where d1: m \leq length \ esl \land ?els = drop \ m \ esl \ by \ auto
           with a\theta have m < length \ esl
             by (metis One-nat-def a3 diff-less drop-all last-conv-nth le-less-linear
                 length-greater-0-conv\ list.size(3)\ not-less-eq\ not-numeral-le-zero)
           with p8 d1 show ?thesis using cpts-es-dropi
             by (metis drop-0 le-0-eq le-SucE zero-induct)
         qed
      from a1 b0 have c3: \neg(\exists j. j > 0 \land Suc j < length ?els \land getspc-es (?els!j)
= EvtSys \ es
         \land getspc\text{-}es \ (?els!Suc \ j) \neq EvtSys \ es)
          by (metis One-nat-def Suc-lessD a3 diff-less last-conv-nth zero-less-one)
       from a0 b0 have c4: 2 \le length ?els \land getspc\text{-}es (?els ! 0) = EvtSys es \land
getspc\text{-}es \ (?els ! 1) \neq EvtSys \ es
         by (simp add: a3 last-conv-nth)
      with p0 c1 c3 have c5: \forall m \in es. (\exists k. \Gamma \vdash ?els!0 - es - (EvtEnt m) \sharp k \rightarrow ?els!1)
                         \longrightarrow (?els \in assume-es \Gamma (Pre m,Rely m) \longrightarrow ?els \in commit-es
\Gamma (Guar m, Post m))
           using EventSys-sound-aux1-forall[of es \Gamma Pre Rely Guar Post ?els] by
fastforce
       from p10 a2 have c6: ?els \in assume - es \Gamma (Pre ei,rely)
         proof -
           from a2 b0 have \exists m : m \leq length \ esl \land ?els = drop \ m \ esl
             by (simp add: concat-last-lm a3)
           moreover
            from p10 have \forall i. Suc \ i < length \ esl \longrightarrow \Gamma \vdash esl!i \ -ese \rightarrow \ esl!(Suc \ i)
```

```
(gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in rely\ by\ (simp\ add:assume-es-def)
                       ultimately have \forall i. Suc \ i < length \ ?els \longrightarrow \Gamma \vdash ?els!i - ese \rightarrow ?els!(Suc
i) \longrightarrow
                                (gets-es\ (?els!i),\ gets-es\ (?els!Suc\ i)) \in rely
                                using a3 b0 last-conv-nth by force
                        moreover
                        have gets-es (?els!0) \in Pre\ ei
                           proof -
                                from p0 p1 p2 p3 p4 p5 p8 p9 p10 p11
                                have c1[rule-format]: \forall i. Suc i < length elst \longrightarrow
                       (\forall ei \in es. \ (\exists k. \ \Gamma \vdash (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - es - (EvtEnt\ ei)\sharp k \rightarrow (elst!i@[(elst!Suc\ i)!0])!0 - (el
i)!0])!1)
                                                                    \longrightarrow elst!i@[(elst!Suc\ i)!\theta] \in commit-es\ \Gamma\ (Guar\ ei,Post
ei)
                                                                            \land qets-es ((elst!Suc\ i)!0) \in Post\ ei)
                                      using EventSys-sound-aux-i-forall[of es \Gamma Pre Rely Guar Post pre
rely guar
                                                    post esl s x e s1 x1 x5 elst] by blast
                                let ?els1 = elst!(length\ elst\ -\ 2)@[(elst!(length\ elst\ -\ 1))!0]
                                have d1: ?els1 \in cpts\text{-}es \Gamma
                                    proof -
                                        from a0 have c11: \forall i < length \ elst. \ elst \ ! \ i \neq []
                                            using list.size(3) not-numeral-le-zero by force
                                        with a2 b0 have \exists m \ n. \ m \leq length \ esl \land n \leq length \ esl \land m \leq
n \wedge ?els1 = take (n - m) (drop m esl)
                                            using concat-i-lm[of elst esl length elst - 2]
                                                by (metis (no-types, lifting) Suc-1 Suc-diff-1
                                                        Suc-diff-Suc a3 length-greater-0-conv lessI)
                                         then obtain m and n where d1: m \leq length \ esl \land n \leq length
esl \land m \leq n
                                                    \land ?els1 = take (n - m) (drop m esl) by auto
                                        have ?els1 \neq [] by simp
                                        with p8 d1 show ?thesis by (simp add: cpts-es-seg2)
                                        qed
                                moreover
                                have length ?els1 > 2 using a0[of length elst - 2]
                                    by (simp \ add: \ a3)
                                moreover
                                    have getspc-es (?els1 ! 0) = EvtSys es \land getspc-es (?els1 ! 1) \neq
EvtSys es
                               using a0[of length elst - 2] by (metis (no-types, lifting) One-nat-def
                                            Suc\text{-}lessD Suc\text{-}less\text{-}SucD b0 calculation(2) diff\text{-}less
                                length-append-singleton nth-append numeral-2-eq-2 zero-less-numeral)
                       ultimately have \exists m \in es. (\exists k. \Gamma \vdash ?els1!0 - es - (EvtEnt m) \sharp k \rightarrow ?els1!1)
                                    using EventSys-sound-seg-aux0-exist[of ?els1 \Gamma es] by simp
                                 then obtain m where d2: m \in es \land (\exists k. \ \Gamma \vdash ?els1!0 - es - (EvtEnt))
m) \sharp k \rightarrow ?els1!1)
```

```
by auto
                then have gets-es (elst ! (length elst -1) ! 0) \in Post m
                        using c1[of length elst - 2 m] by (metis (no-types, lifting)
One-nat-def
                Suc-diff-Suc Suc-lessD b0 diff-less le-imp-less-Suc le-numeral-extra(3)
numeral-2-eq-2)
                then have gets-es (last elst ! \theta) \in Post m
                  by (simp add: a3 last-conv-nth)
                with p5 a01 d2 show ?thesis by auto
            ultimately show ?thesis by (simp add:assume-es-def)
          qed
        moreover
        from p1 p2 have rely \subseteq Rely ei by (simp add: a01)
        ultimately have ?els \in assume - es \Gamma (Pre\ ei,\ Rely\ ei)
          using assume-es-imp by blast
        with c5 have c6: ?els \in commit-es\ \Gamma\ (Guar\ ei, Post\ ei) using a01 a02 by
blast
        with c5 show ?thesis using a3 b0 last-conv-nth by blast
      qed
    then show ?thesis by auto qed
  qed
lemma EventSys-sound-aux-last:
    [\forall ef \in es. \Gamma \models ef sat_e [Pre ef, Rely ef, Guar ef, Post ef];
     \forall ef \in es. \ pre \subseteq Pre \ ef; \ \forall ef \in es. \ rely \subseteq Rely \ ef;
     \forall ef \in es. \ Guar \ ef \subseteq guar; \ \forall \ ef \in es. \ Post \ ef \subseteq post;
     \forall ef1 \ ef2. \ ef1 \in es \land ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2;
     esl \in cpts-es \Gamma; esl = (EvtSys\ es,\ s,\ x) \# (EvtSeq\ e\ (EvtSys\ es),\ s1,x1) \# xs;
     esl \in assume - es \Gamma (pre, rely);
     elst = tl \; (parse-es-cpts-i2 \; esl \; es \; [[]])]
      \implies \exists m \in es. \ last \ elst \in commit-es \ \Gamma \ (Guar \ m, Post \ m)
                         \land (\exists k. \ \Gamma \vdash (last \ elst)! \theta - es - (EvtEnt \ m) \sharp k \rightarrow (last \ elst)! 1)
 proof -
    assume p\theta: \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, Rely \ ef, Guar \ ef, Post \ ef]
      and p1: \forall ef \in es. pre \subseteq Pre ef
      and p2: \forall ef \in es. rely \subseteq Rely ef
      and p3: \forall ef \in es. Guar \ ef \subseteq guar
      and p_4: \forall ef \in es. Post ef \subseteq post
      and p5: \forall ef1 \ ef2. \ ef1 \in es \land ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2
      and p8: esl \in cpts - es \Gamma
      and p9: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ e \ (EvtSys \ es), \ s1,x1) \# xs
      and p10: esl \in assume - es \Gamma (pre, rely)
      and p11: elst = tl (parse-es-cpts-i2 esl es [[]])
    from p9 p8 p11 have a0[rule-format]: \forall i. i < length \ elst \longrightarrow length \ (elst!i)
\geq 2 \wedge
```

```
getspc\text{-}es\ (elst!i!0) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!1) \neq EvtSys\ es
      using parse-es-cpts-i2-start-aux by metis
    from p9 p8 p11 have a1: \forall i. i < length \ elst \longrightarrow
                   \neg(\exists j. \ j > 0 \land Suc \ j < length \ (elst!i) \land
                   getspc\text{-}es\ (elst!i!j) = EvtSys\ es\ \land\ getspc\text{-}es\ (elst!i!Suc\ j) \neq EvtSys
es
      using parse-es-cpts-i2-noent-mid by metis
    from p9 p8 p11 have a2: concat elst = esl using parse-es-cpts-i2-concat3 by
metis
    with p9 have a3: elst \neq [] by auto
   from p8 p9 p11 a0 [of length elst - 1] have \exists m \in es. (\exists k. \Gamma \vdash last elst!0 - es - (EvtEnt))
m) \sharp k \rightarrow last \ elst!1)
      using EventSys-sound-seg-aux0-exist[of \ last \ elst \ \Gamma \ es]
         parse-es-cpts-i2-in-cptes-last[of\ esl\ es\ s\ x\ e\ s1\ x1\ xs\ \Gamma\ elst]
        by (metis a3 diff-less last-conv-nth length-greater-0-conv less-one)
   then obtain m where b1: m \in es \land (\exists k. \Gamma \vdash last \ elst! \theta - es - (EvtEnt \ m) \sharp k \rightarrow last
elst!1) by auto
    with p0 p1 p2 p3 p4 p5 p8 p9 p10 p11
    have last \ elst \in commit-es \ \Gamma \ (Guar \ m, Post \ m)
      using EventSys-sound-aux-last-forall[of es \Gamma Pre Rely Guar Post pre
         rely guar post esl s x e s1 x1 x5 elst] by blast
    with b1 show ?thesis by auto
  qed
lemma EventSys-sound-0:
    \llbracket \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, \ Rely \ ef, \ Guar \ ef, \ Post \ ef \ ];
     \forall ef \in es. \ pre \subseteq Pre \ ef; \ \forall ef \in es. \ rely \subseteq Rely \ ef;
     \forall ef \in es. \ Guar \ ef \subseteq guar; \ \forall \ ef \in es. \ Post \ ef \subseteq post;
     \forall ef1 \ ef2. \ ef1 \in es \land ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2;
     stable-e pre\ rely;\ \forall\ s.\ (s,\ s) \in guar;
     esl \in cpts-es \Gamma; esl = (EvtSys\ es,\ s,\ x) \# (EvtSeq\ e\ (EvtSys\ es),\ s1,x1) \# xs;
     esl \in assume - es \Gamma (pre, rely)
      \implies \forall i. \ Suc \ i < length \ esl \ \longrightarrow \ (\exists \ t. \ \Gamma \vdash esl!i \ -es-t \rightarrow \ esl!(Suc \ i)) \ \longrightarrow
                            (gets\text{-}es\ (esl!i),\ gets\text{-}es\ (esl!Suc\ i)) \in guar
  proof -
    assume p\theta: \forall ef \in es. \Gamma \models ef sat_e [Pre ef, Rely ef, Guar ef, Post ef]
      and p1: \forall ef \in es. pre \subseteq Pre ef
      and p2: \forall ef \in es. rely \subseteq Rely ef
      and p3: \forall ef \in es. Guar \ ef \subseteq guar
      and p_4: \forall ef \in es. Post ef \subseteq post
      and p5: \forall ef1 \ ef2. \ ef1 \in es \land \ ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2
      and p6: stable-e pre rely
      and p7: \forall s. (s, s) \in guar
      and p8: esl \in cpts - es \Gamma
      and p9: esl = (EvtSys \ es, \ s, \ x) \# (EvtSeq \ e \ (EvtSys \ es), \ s1,x1) \# xs
      and p10: esl \in assume - es \Gamma (pre, rely)
    let ?elst = tl (parse-es-cpts-i2 \ esl \ es \ [[]])
     from p9 p8 have a0: concat ?elst = esl using parse-es-cpts-i2-concat3 by
metis
```

```
from p9 p8 have a1: \forall i. i < length ?elst \longrightarrow length (?elst!i) \ge 2 \land
                getspc\text{-}es \ (?elst!i!0) = EvtSys \ es \land getspc\text{-}es \ (?elst!i!1) \neq EvtSys \ es
     using parse-es-cpts-i2-start-aux by metis
   from p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
   have \forall i. Suc i < length ?elst \longrightarrow
               (\exists m \in es. ?elst!i@[(?elst!Suc\ i)!0] \in commit-es\ \Gamma\ (Guar\ m,Post\ m)
                              \land gets\text{-}es ((?elst!Suc i)!0) \in Post m)
     using EventSys-sound-aux-i
        [of es \Gamma Pre Rely Guar Post pre rely guar post esl s x e s1 x1 xs ?elst] by
blast
   then have a2: \forall i. Suc \ i < length ?elst \longrightarrow
              (\exists m \in es. ?elst!i@[(?elst!Suc\ i)!0] \in commit-es\ \Gamma\ (Guar\ m,Post\ m)) by
auto
   from p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
   have a3: \exists m \in es. \ last ?elst \in commit-es \Gamma (Guar m, Post m)
     using EventSys-sound-aux-last
        [of es \Gamma Pre Rely Guar Post pre rely guar post esl s x e s1 x1 xs ?elst] by
blast
   then obtain m where a4: m \in es \land last ?elst \in commit-es \Gamma (Guar m, Post m)
by auto
   show ?thesis
     proof -
     {
       \mathbf{fix} \ i
       assume b\theta: Suc i < length \ esl
         and b1: \exists t. \Gamma \vdash esl ! i - es - t \rightarrow esl ! Suc i
       from p9 have b01: esl \neq [] by simp
       moreover
       from a1 have b3: \forall i < length ?elst. length (?elst!i) > 2 by simp
       ultimately have \exists k \ j. \ k < length ?elst \land j \leq length (?elst!k) \land
                 drop \ i \ esl = (drop \ j \ (?elst!k)) @ concat \ (drop \ (Suc \ k) \ ?elst)
         using concat-equiv [of esl?elst] a0 b0 by auto
       then obtain k and j where b2: k < length ?elst \land j < length (?elst!k) \land
               drop \ i \ esl = (drop \ j \ (?elst!k)) @ concat \ (drop \ (Suc \ k) \ ?elst)  by auto
       have (gets\text{-}es\ (esl!i),\ gets\text{-}es\ (esl!Suc\ i)) \in guar
         \mathbf{proof}(cases\ k = length\ ?elst - 1)
           assume c\theta: k = length ?elst - 1
           with b2 have c1: drop \ i \ esl = drop \ j \ (last ?elst)
             by (metis (no-types, lifting) Nitpick.size-list-simp(2) Suc-leI b01
                a0 concat.simps(1) drop-all last-conv-nth length-tl self-append-conv)
           with b0 b01 have c2: drop j (last ?elst) \neq [] by auto
           with b2\ c0 have c3: j < length\ (last\ ?elst) by auto
           with c1 have c4: esl! i = (last ?elst) ! j
             by (metis Suc-lessD b0 hd-drop-conv-nth)
           from c1 c3 have c5: esl! Suc i = (last ?elst)! Suc j
             by (metis Cons-nth-drop-Suc Suc-lessD b0 list.sel(3) nth-via-drop)
```

```
from a4 have \forall i. Suc i < length (last ?elst) \longrightarrow (\exists t. \Gamma \vdash (last ?elst)!i
-es-t \rightarrow (last ?elst)!(Suc i))
                \longrightarrow (gets\text{-}es\ ((last\ ?elst)!i),\ gets\text{-}es\ ((last\ ?elst)!Suc\ i)) \in Guar\ m
            by (simp add: commit-es-def)
          with b1 c3 c4 c5 have (gets-es (esl! i), gets-es (esl! Suc i)) \in Guar m
           by (metis Cons-nth-drop-Suc b0 c1 length-drop list.sel(3) zero-less-diff)
           with p3 a4 show ?thesis by auto
         next
           assume c00: k \neq length ?elst - 1
           with b2 have c0: k < length ?elst - 1 by auto
          show ?thesis
            proof(cases j = length (?elst!k))
              assume d\theta: j = length (?elst!k)
              with b2 have d1: drop i esl = concat (drop (Suc k) ?elst) by auto
              from b3\ c0 have d2: length (?elst! (Suc k)) > 2 by auto
             from c\theta have concat (drop\ (Suc\ k)\ ?elst) = ?elst\ !\ (Suc\ k)\ @\ concat
(drop\ (Suc\ (Suc\ k))\ ?elst)
                    by (metis (no-types, hide-lams) Cons-nth-drop-Suc List.nth-tl
concat.simps(2) drop-Suc length-tl)
               with d1 have d3: drop \ i \ esl = ?elst \ ! \ (Suc \ k) \ @ \ concat \ (drop \ (Suc \ k))
(Suc\ k))\ ?elst)\ \mathbf{by}\ simp
              with b0 \ c0 \ d2 have d4: esl! \ i = ?elst! \ (Suc \ k)! \ 0
                   by (metis (no-types, hide-lams) Cons-nth-drop-Suc One-nat-def
Suc-1
                    less-or-eq-imp-le not-less not-less-eq-eq nth-Cons-0 nth-append)
              from b0 \ c0 \ d2 \ d3 have d5: esl! Suc i = ?elst! (Suc k)! 1
                by (metis (no-types, hide-lams) Cons-nth-drop-Suc One-nat-def
                Suc-1 Suc-le-lessD Suc-lessD nth-Cons-0 nth-Cons-Suc nth-append)
              from c\theta have Suc\ k < length\ ?elst by auto
              show ?thesis
                \mathbf{proof}(cases\ Suc\ k = length\ ?elst - 1)
                  assume e0: Suc k = length ?elst - 1
                  with d4 have e1: esl! i = (last ?elst)! 0
                   by (metis a0 b01 concat.simps(1) last-conv-nth)
                  from e\theta d4 have e2: esl! Suc i = (last ?elst)! 1
                   by (metis\ a0\ b01\ concat.simps(1)\ d5\ last-conv-nth)
                   from a4 have \forall i. Suc i < length (last ?elst) \longrightarrow (\exists t. \Gamma \vdash (last
?elst)!i - es - t \rightarrow (last ?elst)!(Suc i))
                          \longrightarrow (gets-es\ ((last\ ?elst)!i),\ gets-es\ ((last\ ?elst)!Suc\ i)) \in
Guar m
                   by (simp add: commit-es-def)
                with b1 e1 e2 have (gets-es\ (esl\ !\ i),\ gets-es\ (esl\ !\ Suc\ i))\in Guar
                  by (metis One-nat-def Suc-1 Suc-le-lessD a0 b01 concat.simps(1)
d2 \ e0 \ last-conv-nth)
                  with p3 a4 show ?thesis by auto
```

```
next
                 assume Suc \ k \neq length \ ?elst - 1
                 with c0 have e0: Suc k < length ?elst - 1 by auto
                 let ?els' = ?elst!(Suc\ k)@[(?elst!Suc\ (Suc\ k))!0]
                 from e\theta have Suc (Suc k) < length ?elst by auto
                 with a2 have \exists m \in es. ?els'\in commit-es \Gamma (Guar m, Post m)
                   by blast
                   then obtain m where e1: m \in es \land ?els' \in commit-es \Gamma (Guar
m, Post m)
                   by auto
               then have e2: \forall i. \ Suc \ i < length \ ?els' \longrightarrow (\exists \ t. \ \Gamma \vdash ?els'!i - es - t \rightarrow
?els'!(Suc\ i))
                             \longrightarrow (gets\text{-}es \ (?els'!i), gets\text{-}es \ (?els'!Suc \ i)) \in Guar \ m
                   by (simp add: commit-es-def)
                 from d4 have e3: esl ! i = ?els' ! 0
                   by (metis (no-types, lifting) Suc-le-eq d2 dual-order.strict-trans
lessI nth-append numeral-2-eq-2)
                 from d5 have e4: esl! Suc i = ?els'! 1
                  by (metis (no-types, lifting) Suc-1 Suc-le-lessD d2 nth-append)
                from b1 e3 e4 have e5: \exists t. \Gamma \vdash ?els!!0 - es - t \rightarrow ?els!!1 by simp
                 have length ?els' > 1 using d2 by auto
                  with e2 e5 have (gets-es (?els'!0), gets-es (?els'!1)) \in Guar m
by simp
                 with e3 e4 have (gets-es\ (esl\ !\ i),\ gets-es\ (esl\ !\ Suc\ i))\in Guar
m by simp
                 with p3 e1 show ?thesis by auto
               qed
            next
              assume d00: j \neq length (?elst!k)
              with b2 have d\theta: j < length (?elst!k) by auto
              with b2 have d1: esl ! i = (?elst!k) ! j
            by (metis (no-types, lifting) Cons-nth-drop-Suc Suc-lessD append-Cons
b0 list.inject)
              from b0 \ b2 \ d0 have d2: drop \ (Suc \ i) \ esl = (drop \ (Suc \ j) \ (?elst!k))
@ concat (drop (Suc k) ?elst)
                 by (metis (no-types, lifting) d00 drop-Suc drop-eq-Nil le-antisym
tl-append2 tl-drop)
              show ?thesis
               \mathbf{proof}(cases\ j = length\ (?elst!k) - 1)
                 assume e\theta: j = length (?elst!k) - 1
                 let ?els' = ?elst!k@[(?elst!(Suc\ k))!0]
                 from d1 \ d0 have e1: esl ! i = last (?elst!k)
                   by (metis e0 gr-implies-not0 last-conv-nth length-0-conv)
                   from b2\ e0 have e2: drop\ (Suc\ i)\ esl = concat\ (drop\ (Suc\ k)
?elst)
                   by (simp add: d2)
                 (Suc\ (Suc\ k))\ ?elst)
```

```
by (metis Cons-nth-drop-Suc Suc-lessI c00 b2 concat.simps(2)
diff-Suc-1)
                  from b3\ c0 have length (?elst! (Suc k)) \geq 2 by auto
                  with e3 have e4: esl! Suc i = ?elst!(Suc k)!0
                    by (metis (no-types, lifting) One-nat-def Suc-1 Suc-leD
                          Suc-n-not-le-n b0 hd-append2 hd-conv-nth hd-drop-conv-nth
list.size(3)
                   with e\theta have e5: esl ! Suc i = ?els' ! Suc j
                           by (metis Suc-pred' d0 gr-implies-not0 linorder-negE-nat
nth-append-length)
                  from e\theta e1 have e\theta: esl! i = ?els'! j
                    by (metis (no-types, lifting) d0 d1 nth-append)
                  from c0 a2 have \exists m \in es. ?els' \in commit-es \Gamma (Guar m, Post m)
                    by simp
                   then obtain m where e7: m \in es \land
                         ?els' \in commit-es \Gamma (Guar m, Post m)
                    by auto
                then have e8: \forall i. \ Suc \ i < length \ ?els' \longrightarrow (\exists t. \ \Gamma \vdash ?els'!i - es - t \rightarrow
?els'!(Suc\ i))
                                \longrightarrow (gets\text{-}es \ (?els'!i), gets\text{-}es \ (?els'!Suc \ i)) \in Guar \ m
                    by (simp add: commit-es-def)
                   from b1 e5 e6 have e9: \exists t. \Gamma \vdash ?els'!j - es - t \rightarrow ?els'!Suc j by
simp
                  have Suc j < length ?els' using e\theta d\theta by auto
                   with e8 e9 have (gets-es\ (?els'!j), gets-es\ (?els'!Suc\ j)) \in Guar
m by simp
                   with e5 e6 have (gets-es\ (esl\ !\ i),\ gets-es\ (esl\ !\ Suc\ i))\in Guar
m by simp
                  with p3 e7 show ?thesis by auto
                next
                  assume e\theta: j \neq length (?elst!k) - 1
                  with d0 have e00: j < length (?elst!k) - 1 by auto
                  with b0 d2 have e1: esl! Suc i = (?elst!k)! Suc j
                    by (metis (no-types, lifting) List.nth-tl Suc-diff-Suc drop-Suc
                             drop-eq-Nil hd-conv-nth hd-drop-conv-nth leD length-drop
length-tl nth-append zero-less-Suc)
                  let ?els' = ?elst!k@[(?elst!(Suc\ k))!0]
                  from c0 a2 have \exists m \in es. ?els' \in commit-es \Gamma (Guar\ m, Post\ m)
                    by simp
                     then obtain m where e2: m \in es \land ?els' \in commit-es \Gamma (Guar
m, Post m)
                    by auto
                then have e3: \forall i. Suc \ i < length \ ?els' \longrightarrow (\exists \ t. \ \Gamma \vdash ?els'! i - es - t \rightarrow
?els'!(Suc\ i))
                                \longrightarrow (gets\text{-}es \ (?els'!i), gets\text{-}es \ (?els'!Suc \ i)) \in Guar \ m
```

```
by (simp add: commit-es-def)
                       from d1 \ e00 have e4: esl! \ i = ?els'! \ j
                         by (simp add: d0 nth-append)
                       from e1 \ e00 have e5: esl! Suc i = ?els'! Suc j
                         by (simp add: Suc-lessI nth-append)
                       from b1 e5 e4 have e6: \exists t. \Gamma \vdash ?els'!j - es - t \rightarrow ?els'!Suc j by
simp
                       have Suc j < length ?els' using e00 by auto
                          with e3 e4 e6 have (gets-es\ (?els'!j), gets-es\ (?els'!Suc\ j)) \in
Guar m by simp
                        with e4 e5 have (gets-es\ (esl\ !\ i),\ gets-es\ (esl\ !\ Suc\ i))\in Guar
m by simp
                       with p3 e2 show ?thesis by auto
                    qed
                qed
           qed
       then show ?thesis by auto
       qed
  qed
\mathbf{lemma}\ \mathit{EventSys}	ext{-}\mathit{sound}:
     \llbracket \forall ef \in es. \ \Gamma \models ef \ sat_e \ [Pre \ ef, \ Rely \ ef, \ Guar \ ef, \ Post \ ef \ ];
     \forall ef \in es. \ pre \subseteq Pre \ ef; \ \forall ef \in es. \ rely \subseteq Rely \ ef;
     \forall ef \in es. \ Guar \ ef \subseteq guar; \ \forall \ ef \in es. \ Post \ ef \subseteq post;
     \forall ef1 \ ef2. \ ef1 \in es \land ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2;
     stable-e pre rely; \forall s. (s, s) \in quar 
       \Longrightarrow \Gamma \models EvtSys \ es \ sat_s \ [pre, \ rely, \ guar, \ post]
  proof -
    assume p\theta: \forall ef \in es. \Gamma \models ef sat_e [Pre ef, Rely ef, Guar ef, Post ef]
      and p1: \forall ef \in es. pre \subseteq Pre ef
      and p2: \forall ef \in es. rely \subseteq Rely ef
      and p3: \forall ef \in es. Guar \ ef \subseteq guar
      and p_4: \forall ef \in es. Post ef \subseteq post
      and p5: \forall ef1 \ ef2. \ ef1 \in es \land \ ef2 \in es \longrightarrow Post \ ef1 \subseteq Pre \ ef2
      and p6: stable-e pre rely
      and p7: \forall s. (s, s) \in guar
     then have \forall s \ x. \ (cpts\text{-}of\text{-}es \ \Gamma \ (EvtSys \ es) \ s \ x) \cap assume\text{-}es \ \Gamma \ (pre, \ rely) \subseteq
commit-es \Gamma (guar, post)
      proof-
         \mathbf{fix} \ s \ x
          have \forall esl. \ esl \in (cpts-of-es \ \Gamma \ (EvtSys \ es) \ s \ x) \cap assume-es \ \Gamma \ (pre, \ rely)
\longrightarrow esl \in commit\text{-}es \ \Gamma \ (guar, \ post)
           proof -
              fix esl
            assume a0: esl \in (cpts\text{-}of\text{-}es\ \Gamma\ (EvtSys\ es)\ s\ x) \cap assume\text{-}es\ \Gamma\ (pre,\ rely)
```

```
then have a1: esl \in (cpts-of-es \ \Gamma \ (EvtSys \ es) \ s \ x) by simp
            then have a1-1: esl!0 = (EvtSys\ es,\ s,\ x) by (simp\ add:cpts-of-es-def)
            from a1 have a1-2: esl \in cpts-es \Gamma by (simp\ add:cpts-of-es-def)
            from a0 have a2: esl \in assume - es \Gamma (pre, rely) by simp
            then have \forall i. \ Suc \ i < length \ esl \longrightarrow (\exists \ t. \ \Gamma \vdash esl!i \ -es-t \rightarrow esl!(Suc \ i))
                            (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in guar
              proof -
               {
                 \mathbf{fix} i
                 assume b\theta: Suc i < length esl
                   and b1: \exists t. \Gamma \vdash esl!i - es - t \rightarrow esl!(Suc i)
                 then obtain t where b2: \Gamma \vdash esl!i - es - t \rightarrow esl!(Suc\ i) by auto
                 from a1-2 b0 b1 have (gets-es\ (esl!i),\ gets-es\ (esl!Suc\ i)) \in guar
                  \mathbf{proof}(cases \ \forall i. \ Suc \ i \leq length \ esl \longrightarrow getspc\text{-}es \ (esl \ ! \ i) = EvtSys
es
                   assume c\theta: \forall i. Suc \ i \leq length \ esl \longrightarrow getspc\text{-}es \ (esl \ ! \ i) = EvtSys
es
                     with b0 have getspc-es (esl! i) = EvtSys es by simp
                     moreover from b0 \ c0 have getspc\text{-}es \ (esl \ ! \ (Suc \ i)) = EvtSys \ es
by simp
                     ultimately have \neg(\exists t. \Gamma \vdash esl!i - es - t \rightarrow esl!(Suc i))
                using evtsys-not-eq-in-tran2 getspc-es-def by (metis surjective-pairing)
                     with b1 show ?thesis by simp
                       assume c\theta: \neg (\forall i. Suc \ i \leq length \ esl \longrightarrow getspc\text{-}es \ (esl \ ! \ i) =
EvtSys \ es)
                     then obtain m where c1: Suc m \leq length \ esl \land getspc\text{-}es (esl!
m) \neq EvtSys \ es
                       by auto
                         from a1-1 have c2: getspc-es (esl!0) = EvtSys es by (simp)
add:getspc\text{-}es\text{-}def)
                   from c1 have \exists i. i \leq m \land getspc\text{-}es \ (esl!i) \neq EvtSys \ es \ by \ auto
                       with a1-2 a1-1 c1 c2 have \exists i. (i < m \land getspc\text{-}es (esl ! i) =
EvtSys es
                                \land getspc\text{-}es \ (esl ! Suc \ i) \neq EvtSys \ es)
                                \land (\forall j. \ j < i \longrightarrow getspc\text{-}es \ (esl \ ! \ j) = EvtSys \ es)
                       using evtsys-fst-ent by blast
                     then obtain n where c3: (n < m \land getspc\text{-}es \ (esl ! n) = EvtSys
es
                                \land getspc\text{-}es \ (esl ! Suc \ n) \neq EvtSys \ es)
                               \land (\forall j. \ j < n \longrightarrow getspc\text{-}es \ (esl \ ! \ j) = EvtSys \ es) \ \mathbf{by} \ auto
                     with b1 have c_4: i \geq n
                       proof -
                         assume d\theta: i < n
```

```
with c3 have qetspc\text{-}es (esl ! i) = EvtSys es by simp
                    moreover from c3 \ d0 have getspc\text{-}es \ (esl ! Suc \ i) = EvtSys \ es
                        using Suc-lessI by blast
                      ultimately have \neg(\exists t. \Gamma \vdash esl!i - es - t \rightarrow esl!Suc i)
                                 using evtsys-not-eq-in-tran getspc-es-def by (metis
surjective\mbox{-}pairing)
                      with b1 have False by simp
                    then show ?thesis using leI by auto
                    qed
                  let ?esl = drop \ n \ esl
                  from c1 c3 have c5: length ?esl \ge 2
                    by (metis One-nat-def Suc-eq-plus1-left Suc-le-eq length-drop
                        less-diff-conv less-trans-Suc numeral-2-eq-2)
                   from c1 c3 have c6: getspc\text{-}es (?esl!0) = EvtSys es \land getspc\text{-}es
(?esl!1) \neq EvtSys \ es
                    by force
                  from a1-2 c1 c3 have c7: ?esl \in cpts-es \Gamma using cpts-es-dropi
                    by (metis (no-types, lifting) b0 c4 drop-0 dual-order.strict-trans
                          le-0-eq le-SucE le-imp-less-Suc zero-induct)
                  from c5 c6 c7 have \exists s \ x \ ev \ s1 \ x1 \ xs. ?esl = (EvtSys es, s, x) #
(EvtSeg\ ev\ (EvtSys\ es),\ s1,x1)\ \#\ xs
                      using fst-esys-snd-eseq-exist by blast
                  then obtain s and x and e and s1 and x1 and xs where c8:
                      ?esl = (EvtSys\ es,\ s,\ x)\ \#\ (EvtSeq\ e\ (EvtSys\ es),\ s1,x1)\ \#\ xs
by auto
                  let ?elst = tl \ (parse-es-cpts-i2 \ ?esl \ es \ [[]])
             from c8\ c7 have c9: concat\ ?elst = ?esl\ using\ parse-es-cpts-i2-concat3
by metis
                  have c10: ?esl \in assume - es \Gamma (pre, rely)
                    \mathbf{proof}(cases\ n=0)
                      assume d\theta: n = \theta
                      then have ?esl = esl by simp
                      with a2 show ?thesis by simp
                    next
                      assume d\theta: n \neq \theta
                      let ?eslh = take (n + 1) esl
                    from a2 have d1: \forall i. Suc \ i < length \ ?esl \longrightarrow \Gamma \vdash ?esl!i - ese \rightarrow
?esl!(Suc\ i)
                          \longrightarrow (gets-es \ (?esl!i), gets-es \ (?esl!Suc \ i)) \in rely \ \mathbf{by} \ (simp)
add:assume-es-def)
                      have gets-es (?esl!0) \in pre
                        proof -
                                from a2 d0 have gets-es (?eslh!0) \in pre by (simp)
add:assume-es-def)
```

```
moreover
                             from a2 have \forall i. Suc i < length ?eslh \longrightarrow \Gamma \vdash ?eslh!i
-ese \rightarrow ?eslh!(Suc i)
                              \longrightarrow (gets-es \ (?eslh!i), gets-es \ (?eslh!Suc \ i)) \in rely \ by
(simp add:assume-es-def)
                         ultimately have ?eslh \in assume-es \Gamma (pre, rely) by (simp)
add:assume-es-def)
                          moreover
                        from c3 have \forall i < length ?eslh. getspc-es (?eslh!i) = EvtSys
es
                     by (metis Suc-eq-plus1 length-take less-antisym min-less-iff-conj
nth-take)
                         ultimately have \forall i < length ?eslh. gets-es (?eslh!i) \in pre
                           using p6 pre-trans by blast
                          with d0 have gets-es (?eslh! n) \in pre
                           using b\theta c4 by auto
                         then show ?thesis by (simp add: c8 nth-via-drop)
                      with d1 show ?thesis by (simp add:assume-es-def)
                    qed
                  from p0 p1 p2 p3 p4 p5 p6 p7 c7 c8 c10
                    have c11: \forall i. Suc i < length ?esl \longrightarrow (\exists t. \Gamma \vdash ?esl!i - es - t \rightarrow
?esl!(Suc\ i)) \longrightarrow
                        (\textit{gets-es (?esl!i)}, \textit{gets-es (?esl!Suc i)}) \in \textit{guar}
                    using EventSys-sound-0
                       [of es \Gamma Pre Rely Guar Post pre rely guar post ?esl s x e s1 x1
xs] by simp
                  from b0 c4 have c12: esl! i = ?esl! (i - n) by auto
                  moreover
                  from b0 c4 have c13: esl! Suc i = ?esl! Suc (i - n) by auto
                  moreover
                  from b0 c4 have Suc (i - n) < length ?esl by auto
                  from b1 c12 c13 have \exists t. \Gamma \vdash ?esl ! (i - n) - es - t \rightarrow ?esl ! Suc
(i-n) by simp
                  ultimately
                 have (gets\text{-}es\ (?esl\ !\ (i-n)),\ gets\text{-}es\ (?esl\ !\ Suc\ (i-n)))\in guar
                    using c11 by simp
                  with c12 c13 show ?thesis by simp
                qed
            then show ?thesis by auto
             ged
           then have esl \in commit-es \Gamma (guar, post) by (simp\ add:commit-es-def)
```

```
then show ?thesis by auto
           qed
      then show ?thesis by blast
      qed
   then show \Gamma \models EvtSys\ es\ sat_s\ [pre,\ rely,\ guar,\ post] by (simp\ add:es\ validity\ def)
  qed
lemma esys-seq-sound:
      [pre \subseteq pre'; rely \subseteq rely'; guar' \subseteq guar; post' \subseteq post;]
       \Gamma \models esys \ sat_s \ [pre', \ rely', \ guar', \ post']
    \implies \Gamma \models esys \ sat_s \ [pre, \ rely, \ guar, \ post]
  proof -
    assume p\theta: pre \subseteq pre'
      and p1: rely \subseteq rely'
      and p2: guar' \subseteq guar
      and p3: post' \subseteq post
      and p4: \Gamma \models esys sat_s [pre', rely', quar', post']
     from p4 have p5: \forall s \ x. \ (cpts\text{-}of\text{-}es \ \Gamma \ esys \ s \ x) \cap assume\text{-}es \ \Gamma \ (pre', \ rely') \subseteq
commit-es \Gamma (guar', post')
      by (simp add: es-validity-def)
     have \forall s \ x. \ (cpts\text{-}of\text{-}es \ \Gamma \ esys \ s \ x) \cap assume\text{-}es \ \Gamma \ (pre, \ rely) \subseteq commit\text{-}es \ \Gamma
(guar, post)
      proof –
      {
         fix c s x
         assume a\theta: c \in (cpts\text{-}of\text{-}es\ \Gamma\ esys\ s\ x) \cap assume\text{-}es\ \Gamma\ (pre,\ rely)
         then have c \in (cpts\text{-}of\text{-}es\ \Gamma\ esys\ s\ x) \land c \in assume\text{-}es\ \Gamma\ (pre,\ rely) by simp
         with p0 p1 have c \in (cpts\text{-}of\text{-}es\ \Gamma\ esys\ s\ x) \land c \in assume\text{-}es\ \Gamma\ (pre',\ rely')
           using assume-es-imp[of pre pre' rely rely' c] by simp
         with p5 have c \in commit-es\ \Gamma\ (guar',\ post') by auto
         with p2 p3 have c \in commit\text{-}es\ \Gamma\ (guar,\ post)
           using commit-es-imp[of guar' guar post' post c] by simp
      then show ?thesis by auto
    then show ?thesis by (simp add:es-validity-def)
  qed
lemma EventSys-sound':
assumes p\theta: \forall ef \in esf. \ \Gamma \vdash E_e \ ef \ sat_e \ [Pre_e \ ef, \ Rely_e \ ef, \ Guar_e \ ef, \ Post_e \ ef]
  and p1: \forall ef \in esf. pre \subseteq Pre_e ef
  and p2: \forall ef \in esf. rely \subseteq Rely_e ef
  and p3: \forall ef \in esf. Guar_e \ ef \subseteq guar
  and p_4: \forall ef \in esf. Post_e \ ef \subseteq post
  and p5: \forall ef1 \ ef2. \ ef1 \in esf \land \ ef2 \in esf \longrightarrow Post_e \ ef1 \subseteq Pre_e \ ef2
  and p\theta: stable-e pre rely
```

```
and p7: \forall s. (s, s) \in guar
shows \Gamma \models evtsys\text{-}spec (rgf\text{-}EvtSys \ esf) \ sat_s \ [pre, rely, guar, post]
proof -
let ?es = Domain \ esf
       let ?RG = \lambda e. SOME rg. (e,rg) \in esf
      have a1: \forall e \in ?es. \exists ef \in esf. ?RG e = snd ef by (metis Domain.cases snd-conv
someI)
       let ?Pre = pre-rgf \circ ?RG
       let ?Rely = rely - rgf \circ ?RG
       let ?Guar = guar - rgf \circ ?RG
       let ?Post = post-rgf \circ ?RG
       from p0 have a2: \forall i \in esf. \Gamma \models E_e \ i \ sat_e \ [Pre_e \ i, Rely_e \ i, Guar_e \ i, Post_e \ i]
           by (simp add: rgsound-e)
       have \forall ef \in ?es. \Gamma \models ef sat_e [?Pre ef, ?Rely ef, ?Guar ef, ?Post ef]
           by (metis (mono-tags, lifting) Domain.cases E_e-def Guar<sub>e</sub>-def Post<sub>e</sub>-def
                   Pre_e-def Rely_e-def a2 comp-apply fst-conv snd-conv some I-ex)
       moreover
       have \forall ef \in ?es. pre \subseteq ?Pre ef by (metis <math>Pre_e-def a1 comp-def p1)
       have \forall ef \in ?es. rely \subseteq ?Rely ef by (metis Rely_e-def a1 comp-apply p2)
       moreover
       have \forall ef \in ?es. ?Guar \ ef \subseteq guar \ by \ (metis \ Guar_e-def \ a1 \ comp-apply \ p3)
       moreover
       have \forall ef \in ?es. ?Post \ ef \subseteq post \ by \ (metis \ Post_e - def \ a1 \ comp-apply \ p4)
       moreover
       have \forall ef1 ef2. ef1 \in ?es \land ef2 \in ?es \longrightarrow ?Post ef1 \subseteq ?Pre ef2
           by (metis (mono-tags, lifting) Post<sub>e</sub>-def Pre<sub>e</sub>-def a1 comp-def p5)
       ultimately have \Gamma \models EvtSys \ (Domain \ esf) \ sat_s \ [pre, rely, guar, post]
           using p6 p7 EventSys-sound [of ?es \Gamma ?Pre ?Rely ?Guar ?Post pre rely guar
post] by simp
      then show \Gamma \models evtsys\text{-spec}\ (rgf\text{-}EvtSys\ esf)\ sat_s\ [pre,\ rely,\ guar,\ post]\ by\ simp
qed
theorem rgsound-es: \Gamma \vdash (esf::('l,'k,'s,'prog) \ rgformula-ess) \ sat_s \ [pre, \ rely, \ guar, \ 
post
        \implies \Gamma \models evtsys\text{-spec esf sat}_s [pre, rely, guar, post]
apply(erule rghoare-es.induct)
    apply auto[1]
    using EventSeq-sound rgsound-e apply smt
    using EventSys-sound' apply blast
    using esys-seq-sound apply blast
done
```

7.5 Soundness of Parallel Event Systems

```
lemma conjoin-comm-imp-rely-n[rule-format]: [\forall k. \ pre \subseteq Pre \ k; \ \forall k. \ rely \subseteq Rely \ k;
```

```
\forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k;
    \forall k. \ cs \ k \in commit\text{-}es \ \Gamma \ (Guar \ k, \ Post \ k);
    c \in cpts-of-pes \Gamma pes s x; c \in assume-pes \Gamma (pre, rely); \Gamma c \propto cs
    \forall n \ k. \ n \leq length \ (cs \ k) \land n > 0 \longrightarrow take \ n \ (cs \ k) \in assume-es \ \Gamma \ (Pre \ k, Rely)
k)
  proof -
    assume p1: \forall k. pre \subseteq Pre k
      and p2: \forall k. rely \subseteq Rely k
      and p3: \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k
      and p_4: c \in cpts-of-pes \Gamma pes s x
      and p5: c \in assume\text{-}pes \Gamma (pre, rely)
      and p6: \Gamma c \propto cs
      and p\theta: \forall k. \ cs \ k \in commit\text{-}es \ \Gamma \ (Guar \ k, \ Post \ k)
     from p6 have p8: \forall k. length (cs \ k) = length \ c by (simp \ add:conjoin-def
same-length-def)
  from p4 p6 have p7: \forall k. \ cs \ k \in cpts-of-es \Gamma (pes k) s x using conjoin-imp-cptses-k
by auto
      then have p9: \forall k. \ cs \ k \in cpts\text{-}es \ \Gamma \land cs \ k \ !0 = (pes \ k,s,x) by (simp)
add:cpts-of-es-def)
    from p6 have p10: \forall k j. j < length c \longrightarrow gets (c!j) = gets-es ((cs k)!j) by
(simp add:conjoin-def same-state-def)
    {
      \mathbf{fix} \ n
      have \forall k. \ n \leq length \ (cs \ k) \land n > 0 \longrightarrow take \ n \ (cs \ k) \in assume-es \ \Gamma \ (Pre
k, Rely k
        proof(induct \ n)
          case \theta then show ?case by simp
        next
          case (Suc\ m)
         assume b\theta: \forall k. m \leq length (cs k) \land \theta < m \longrightarrow take m (cs k) \in assume-es
\Gamma (Pre k, Rely k)
             \mathbf{fix} \ k
            assume c\theta: Suc\ m \le length\ (cs\ k) \land \theta < Suc\ m
            from p7 have c2: length (cs k) > 0
                   \mathbf{by} \ (\textit{metis} \ (\textit{no-types}, \ \textit{lifting}) \ \textit{cpts-es-not-empty} \ \textit{cpts-of-es-def} \ \textit{gr0I}
length-0-conv \ mem-Collect-eq)
              from p6 have c3: length (cs \ k) = length \ c by (simp \ add:conjoin-def
same-length-def)
            let ?esl = take (Suc m) (cs k)
            have take (Suc m) (cs k) \in assume-es \Gamma (Pre k, Rely k)
              \mathbf{proof}(cases\ m=0)
                 assume d\theta: m = \theta
                 have gets-es (take (Suc m) (cs k)!0) \in Pre k
                   proof -
                     from p6\ c2\ c3 have gets\ (c!0) = gets\text{-}es\ ((cs\ k)!0)
                       by (simp add:conjoin-def same-state-def)
```

```
moreover
                   from p5 have gets (c!0) \in pre by (simp\ add:assume-pes-def)
                   ultimately show ?thesis using p1 p8 by auto
                moreover
               from d0 have d1: length (take (Suc m) (cs k)) = 1
              using One-nat-def c2 gr0-implies-Suc length-take min-0R min-Suc-Suc
by fastforce
               moreover
                from d1 have \forall i. Suc \ i < length \ (take \ (Suc \ m) \ (cs \ k))
                      \longrightarrow \Gamma \vdash (take \ (Suc \ m) \ (cs \ k)) \ ! \ i - ese \rightarrow (take \ (Suc \ m) \ (cs \ k))
! Suc i
                      \longrightarrow (gets-es ((take (Suc m) (cs k)) ! i), gets-es ((take (Suc m)
(cs\ k))! Suc\ i)) \in rely
                 by auto
               moreover
               have assume-es \Gamma (Pre k, Rely k) = {c. gets-es (c! 0) \in Pre k \land
                      (\forall i. \ Suc \ i < length \ c \longrightarrow \Gamma \vdash c \ ! \ i - ese \rightarrow c \ ! \ Suc \ i
                          \longrightarrow (gets-es\ (c\ !\ i),\ gets-es\ (c\ !\ Suc\ i)) \in Rely\ k)\} by (simp\ 
add:assume-es-def)
              ultimately show ?thesis using Suc-neq-Zero less-one mem-Collect-eq
\mathbf{by} auto
              next
                assume m \neq 0
                then have dd\theta: m > \theta by simp
                with b0 c0 have dd1: take m (cs k) \in assume-es \Gamma (Pre k, Rely k)
by simp
                have gets-es (?esl ! 0) \in Pre k
                 proof -
                   from p6 c2 c3 have gets (c!0) = gets-es ((cs k)!0)
                      by (simp add:conjoin-def same-state-def)
                   moreover
                   from p5 have gets (c!0) \in pre by (simp\ add:assume-pes-def)
                   ultimately show ?thesis using p1 p8 by auto
                 qed
               moreover
                have \forall i. Suc i < length ?esl \longrightarrow
                    \Gamma \vdash ?esl!i - ese \rightarrow ?esl!(Suc i) \longrightarrow
                     (gets-es\ (?esl!i),\ gets-es\ (?esl!Suc\ i)) \in Rely\ k
                 proof -
                  {
                   \mathbf{fix} i
                   assume d0: Suc i<length ?esl
                     and d1: \Gamma \vdash ?esl!i - ese \rightarrow ?esl!Suc i
                   then have d2: ?esl!i = (cs \ k)!i \land ?esl!Suc \ i = (cs \ k)! Suc \ i
                   from p6 c3 d0 have d4: (\exists t \ k. \ (\Gamma \vdash c!i - pes - (t\sharp k) \rightarrow c!Suc \ i) \land
                                (\forall k \ t. \ (\Gamma \vdash c!i - pes - (t \sharp k) \rightarrow c!Suc \ i) \longrightarrow (\Gamma \vdash cs \ k!i)
```

```
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ i) \ \land
                                       (\forall\,k'.\ k'\neq\,k\,\longrightarrow\,(\Gamma\vdash\,cs\;k'!i\;-ese\rightarrow\,cs\;k'!\;Suc\;i))))
                               (\Gamma \vdash (c!i) - pese \rightarrow (c!Suc\ i) \land (\forall\ k.\ (\Gamma \vdash ((cs\ k)!i) - ese \rightarrow (c!Suc\ i)) \land (\forall\ k.\ (\Gamma \vdash ((cs\ k)!i) - ese \rightarrow (c!Suc\ i)))
((cs\ k)!\ Suc\ i)))
                        by (simp add:conjoin-def compat-tran-def)
                      from d1 have d5: \Gamma \vdash ((cs \ k)!i) - ese \rightarrow ((cs \ k)! \ Suc \ i)
                             by (simp \ add: \ d2)
                      from d4 have (gets-es\ (?esl!i),\ gets-es\ (?esl!Suc\ i)) \in Rely\ k
                          assume e\theta: \exists t \ k. \ (\Gamma \vdash c!i - pes - (t \sharp k) \rightarrow c!Suc \ i) \land
                                    (\forall k \ t. \ (\Gamma \vdash c!i - pes - (t \sharp k) \rightarrow c!Suc \ i) \longrightarrow (\Gamma \vdash cs \ k!i)
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ i) \ \land
                                         (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! i - ese \rightarrow cs \ k'! \ Suc \ i)))
                          then obtain ct and k' where e1: (\Gamma \vdash (c!i) - pes - (ct \sharp k') \rightarrow
(c!Suc\ i)) \land
                                    (\Gamma \vdash ((cs \ k')!i) - es - (ct\sharp k') \rightarrow ((cs \ k')! \ Suc \ i)) by auto
                          with p6 p8 d0 d5 have e2: k \neq k'
                             using conjoin-def [of \Gamma c cs] same-spec-def [of c cs]
                                es-tran-not-etran1 by blast
                          with e0 e1 have e3: \Gamma \vdash ((cs \ k)!i) - ese \rightarrow ((cs \ k)! \ Suc \ i) by
auto
                          with d0 have \Gamma \vdash (?esl!i) - ese \rightarrow (?esl! Suc i) by auto
                          then show ?thesis
                             proof(cases \ i < m - 1)
                               assume f\theta: i < m - 1
                             with d2 have f1:take\ (Suc\ m)\ (cs\ k)\ !\ i=take\ m\ (cs\ k)\ !\ i
                                 by (simp add: diff-less-Suc less-trans-Suc)
                              from f0 have f2: take (Suc m) (cs k)! Suc i = take m (cs
k)! Suc i
                                 by (simp add: d2 gr-implies-not0 nat-le-linear)
                               from dd1 have \forall i. Suc i < length (take m (cs k)) \longrightarrow
                                 \Gamma \vdash (take \ m \ (cs \ k))!i - ese \rightarrow (take \ m \ (cs \ k))!(Suc \ i) \longrightarrow
                                   (qets-es\ ((take\ m\ (cs\ k))!i),\ qets-es\ ((take\ m\ (cs\ k))!Suc
i)) \in Rely k
                                 by (simp add:assume-es-def)
                              with dd0 f0 have (gets-es (take m (cs k) ! i), gets-es (take
m (cs k) ! Suc i) \in Rely k
                             by (metis (no-types, lifting) One-nat-def Suc-mono Suc-pred
d0 d1 f1 f2 length-take min-less-iff-conj)
                               with f1 f2 show ?thesis by simp
                             next
                               assume \neg (i < m - 1)
                               with d\theta have f\theta: i = m - 1
                                 by (simp add: c0 dd0 less-antisym min.absorb2)
                               let ?esl2 = take (Suc m) (cs k')
```

```
from b0 \ c0 \ dd0 have take m \ (cs \ k') \in assume\text{-}es \ \Gamma \ (Pre
k', Rely k')
                            by (metis Suc-leD p8)
                           moreover
                           from e1 f0 have \neg(\Gamma \vdash cs \ k' \mid (m-1) - ese \rightarrow cs \ k' \mid m)
                             using Suc-pred' dd0 es-tran-not-etran1 by fastforce
                            ultimately have f1: take (Suc m) (cs k') \in assume-es \Gamma
(Pre k', Rely k')
                            using assume-es-one-more of cs k' \Gamma m Pre k' Rely k' \mid p8
p9 \ c0 \ dd0
                             by (simp add: Suc-le-eq)
                           from p7 have cs \ k' \in cpts-of-es \Gamma (pes k') s \ x by simp
                           with p8 c0 dd0 have f2: ?esl2 \in cpts-of-es \Gamma (pes k') s x
                            using cpts-es-take[of cs\ k'\ \Gamma\ m] cpts-of-es-def[of \Gamma\ pes\ k'
[s, x]
                              by (simp add: Suc-le-lessD)
                         from p\theta p8 c\theta have ?esl2 \in commit-es \Gamma (Guar k', Post k')
                            using commit-es-take-n[of Suc m cs k' \Gamma Guar k' Post k']
by auto
                           then have \forall i. Suc i < length ?esl2 \longrightarrow
                                        (\exists t. \ \Gamma \vdash ?esl2!i - es - t \rightarrow ?esl2!(Suc \ i)) \longrightarrow
                                     (gets-es\ (?esl2!i),\ gets-es\ (?esl2!Suc\ i)) \in Guar\ k'
                             by (simp add:commit-es-def)
                         with p8 e1 f0 c0 dd0 have (gets-es (?esl2! (m-1)), gets-es
(?esl2!m)) \in Guar k'
                                    by (metis (no-types, lifting) One-nat-def Suc-pred
diff-less-Suc\ length-take lessI\ min.absorb2\ nth-take)
                           with p3 p10 c0 f0 e2 show ?thesis
                         by (smt Suc-diff-1 Suc-leD c3 dd0 le-less-linear not-less-eq-eq
nth-take subsetCE)
                         qed
                     next
                        assume e\theta: ((\Gamma \vdash (c!i) - pese \rightarrow (c!Suc\ i)) \land (\forall k. (\Gamma \vdash ((cs) + c))))
k)!i) - ese \rightarrow ((cs \ k)! \ Suc \ i)))
                       from p5 have \forall i. Suc i < length c \longrightarrow
                                        \Gamma \vdash c!i - pese \rightarrow c!(Suc \ i) \longrightarrow
                                        (gets\ (c!i),\ gets\ (c!Suc\ i)) \in rely
                          by (simp\ add:assume-pes-def)
                       moreover
                       from p8\ c0\ d0 have e1:Suc i < length\ c by simp
                       ultimately have (gets\ (c!i),\ gets\ (c!Suc\ i)) \in rely\ using\ e\theta
by simp
                       with p2 have (gets\ (c!i),\ gets\ (c!Suc\ i)) \in Rely\ k by auto
                       with p8 p10 c0 d0 show ?thesis
                         using Suc-lessD e1 d2 by auto
                     ged
                 then show ?thesis by auto
```

```
ultimately show ?thesis by (simp add:assume-es-def)
             qed
           then show ?case by auto
         qed
    then show ?thesis by auto
  qed
lemma conjoin-comm-imp-rely:
  \llbracket \forall k. \ pre \subseteq Pre \ k; \ \forall k. \ rely \subseteq Rely \ k;
    \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k;
    \forall k. \ cs \ k \in commit\text{-}es \ \Gamma \ (Guar \ k, \ Post \ k);
    c \in cpts-of-pes \Gamma pes s x; c \in assume-pes \Gamma (pre, rely); \Gamma c \propto cs \longrightarrow
    \forall k. (cs \ k) \in assume\text{-}es \ \Gamma (Pre \ k, Rely \ k)
proof -
  assume a1: \forall k. pre \subseteq Pre k
  assume a2: \forall k. rely \subseteq Rely k
  assume a3: \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k
  assume a4: \forall k. \ cs \ k \in commit-es \ \Gamma \ (Guar \ k, \ Post \ k)
  assume a5: c \in cpts-of-pes \Gamma pes s x
  assume a6: c \in assume\text{-}pes \Gamma (pre, rely)
  assume a7: \Gamma c \propto cs
  have f8: c \neq []
    using a5 cpts-of-pes-def by force
   from a7 have p8: \forall k. \ length \ (cs \ k) = length \ c by (simp \ add:conjoin-def
same-length-def)
  {
    \mathbf{fix}\ k
    have (cs \ k) \in assume\text{-}es \ \Gamma \ (Pre \ k, Rely \ k)
       using a1 a2 a3 a4 a5 a6 a7 p8 f8
       conjoin-comm-imp-rely-n[of pre Pre rely Rely Guar cs \Gamma Post c pes s x length
(cs \ k) \ k] by force
  }
  then show ?thesis by simp
qed
lemma cpts-es-sat-rely[rule-format]:
  \llbracket \forall k. \ \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k];
         \forall k. pre \subseteq Pre k;
         \forall k. \ rely \subseteq Rely \ k;
         \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k;
         c \in cpts-of-pes \Gamma pes s x; c \in assume-pes \Gamma (pre, rely);
         \Gamma \ c \propto cs; \ \forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x \] \Longrightarrow
         \forall n \ k. \ n \leq length \ (cs \ k) \land n > 0 \longrightarrow take \ n \ (cs \ k) \in assume-es \ \Gamma \ (Pre \ k,
Rely k)
  proof -
    assume p\theta: \forall k. \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k]
```

```
and p1: \forall k. pre \subseteq Pre k
      and p2: \forall k. rely \subseteq Rely k
     and p3: \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k
     and p4: c \in cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x
     and p5: c \in assume\text{-}pes \Gamma (pre, rely)
     and p\theta: \Gamma c \propto cs
     and p7: \forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x
     from p6 have p8: \forall k. length (cs \ k) = length \ c by (simp \ add:conjoin-def
same-length-def)
    from p7 have p9: \forall k. \ cs \ k \in cpts\text{-}es \ \Gamma \ \text{using} \ cpts\text{-}of\text{-}es\text{-}def \ mem\text{-}Collect\text{-}eq
by fastforce
    from p6 have p10: \forall k j. j < length c \longrightarrow gets (c!j) = gets-es ((cs k)!j) by
(simp add:conjoin-def same-state-def)
     \mathbf{fix}\ n
     have \forall k. \ n \leq length \ (cs \ k) \land n > 0 \longrightarrow take \ n \ (cs \ k) \in assume-es \ \Gamma \ (Pre \ k,
Rely k)
        proof(induct \ n)
          case \theta then show ?case by simp
        next
          case (Suc\ m)
        assume b\theta: \forall k. m \leq length (cs k) \land \theta < m \longrightarrow take m (cs k) \in assume-es
\Gamma (Pre k, Rely k)
          {
            \mathbf{fix} \ k
            assume c\theta: Suc\ m \le length\ (cs\ k) \land \theta < Suc\ m
            from p7 have c2: length (cs k) > 0
                  by (metis (no-types, lifting) cpts-es-not-empty cpts-of-es-def gr0I
length-0-conv mem-Collect-eq)
             from p6 have c3: length (cs k) = length c by (simp add:conjoin-def
same-length-def)
            let ?esl = take (Suc m) (cs k)
            have ?esl \in assume-es \Gamma (Pre k, Rely k)
            \mathbf{proof}(cases \ m = \theta)
             assume d\theta: m = \theta
             have gets-es (take\ (Suc\ m)\ (cs\ k)!\theta) \in Pre\ k
                proof -
                  from p6 c2 c3 have gets (c!0) = gets-es ((cs k)!0)
                    by (simp add:conjoin-def same-state-def)
                 moreover
                  from p5 have gets (c!0) \in pre by (simp\ add:assume-pes-def)
                  ultimately show ?thesis using p1 p8 by auto
                qed
              moreover
             from d0 have d1: length (take (Suc m) (cs k)) = 1
              using One-nat-def c2 gr0-implies-Suc length-take min-OR min-Suc-Suc
by fastforce
```

```
moreover
              from d1 have \forall i. Suc \ i < length \ (take \ (Suc \ m) \ (cs \ k))
                     \longrightarrow \Gamma \vdash (take \ (Suc \ m) \ (cs \ k)) \ ! \ i - ese \rightarrow (take \ (Suc \ m) \ (cs \ k)) \ !
Suc i
                    \longrightarrow (gets-es ((take (Suc m) (cs k))! i), gets-es ((take (Suc m) (cs
(k))! Suc(i)) \in rely
                 by auto
              moreover
              have assume-es \Gamma (Pre k, Rely k) = {c. gets-es (c! 0) \in Pre k \land
                     (\forall i. \ Suc \ i < length \ c \longrightarrow \Gamma \vdash c \ ! \ i - ese \rightarrow c \ ! \ Suc \ i
                             \longrightarrow (gets\text{-}es\ (c\ !\ i),\ gets\text{-}es\ (c\ !\ Suc\ i)) \in Rely\ k)\} by (simp\ 
add:assume-es-def)
              ultimately show ?thesis using Suc-neq-Zero less-one mem-Collect-eq
by auto
             next
              assume m \neq 0
              then have dd\theta: m > \theta by simp
              with b0\ c0 have dd1: take m\ (cs\ k) \in assume\text{-}es\ \Gamma\ (Pre\ k,\ Rely\ k) by
simp
              have gets-es (?esl ! 0) \in Pre k
                 proof -
                   from p\theta c2 c3 have gets (c!\theta) = gets-es ((cs k)!\theta)
                     by (simp add:conjoin-def same-state-def)
                   moreover
                   from p5 have gets (c!0) \in pre by (simp\ add:assume-pes-def)
                   ultimately show ?thesis using p1 p8 by auto
                 ged
              moreover
              have \forall i. Suc i < length ?esl \longrightarrow
                    \Gamma \vdash ?esl!i - ese \rightarrow ?esl!(Suc i) \longrightarrow
                    (gets-es\ (?esl!i),\ gets-es\ (?esl!Suc\ i)) \in Rely\ k
                 proof -
                   \mathbf{fix} i
                   assume d\theta: Suc i < length ?esl
                     and d1: \Gamma \vdash ?esl!i - ese \rightarrow ?esl!Suc i
                   then have d2: ?esl!i = (cs \ k)!i \land ?esl!Suc \ i = (cs \ k)! \ Suc \ i
                   from p6 c3 d0 have d4: (\exists t \ k. \ (\Gamma \vdash c!i - pes - (t\sharp k) \rightarrow c!Suc \ i) \land
                                  (\forall k \ t. \ (\Gamma \vdash c!i \ -pes-(t\sharp k) \rightarrow c!Suc \ i) \longrightarrow (\Gamma \vdash cs \ k!i)
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ i) \ \land
                                     (\forall\,k'.\ k'\neq k \longrightarrow (\Gamma \vdash \mathit{cs}\ k'!i\ -\mathit{ese} \rightarrow \mathit{cs}\ k'!\ \mathit{Suc}\ i))))
                           ((cs \ k)! \ Suc \ i)))
                     by (simp add:conjoin-def compat-tran-def)
                   from d1 have d5: \Gamma \vdash ((cs \ k)!i) - ese \rightarrow ((cs \ k)! \ Suc \ i)
                         by (simp \ add: \ d2)
```

```
from d4 have (gets-es\ (?esl!i),\ gets-es\ (?esl!Suc\ i)) \in Rely\ k
                    proof
                      assume e\theta: \exists t \ k. \ (\Gamma \vdash c!i - pes - (t \sharp k) \rightarrow c!Suc \ i) \land
                                (\forall k \ t. \ (\Gamma \vdash c!i - pes - (t \sharp k) \rightarrow c!Suc \ i) \longrightarrow (\Gamma \vdash cs \ k!i)
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ i) \ \land
                                    (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! i - ese \rightarrow cs \ k'! \ Suc \ i)))
                       then obtain ct and k' where e1: (\Gamma \vdash (c!i) - pes - (ct \sharp k') \rightarrow
(c!Suc\ i)) \land
                                (\Gamma \vdash ((cs \ k')!i) - es - (ct\sharp k') \rightarrow ((cs \ k')! \ Suc \ i)) by auto
                      with p6 p8 d0 d5 have e2: k \neq k'
                        using conjoin-def [of \Gamma c cs] same-spec-def [of c cs]
                           es-tran-not-etran1 by blast
                       with e0 e1 have e3: \Gamma \vdash ((cs \ k)!i) - ese \rightarrow ((cs \ k)! \ Suc \ i) by
auto
                      with d0 have \Gamma \vdash (?esl!i) - ese \rightarrow (?esl! Suc i) by auto
                      then show ?thesis
                        \mathbf{proof}(cases\ i < m-1)
                          assume f\theta: i < m - 1
                          with d2 have f1:take (Suc m) (cs k) ! i = take m (cs k) ! i
                            by (simp add: diff-less-Suc less-trans-Suc)
                          from f0 have f2: take (Suc m) (cs k)! Suc i = take m (cs
k)! Suc i
                            by (simp add: d2 gr-implies-not0 nat-le-linear)
                          from dd1 have \forall i. Suc i < length (take m (cs k)) \longrightarrow
                             \Gamma \vdash (take \ m \ (cs \ k))!i \ -ese \rightarrow (take \ m \ (cs \ k))!(Suc \ i) \longrightarrow
                               (gets-es\ ((take\ m\ (cs\ k))!i),\ gets-es\ ((take\ m\ (cs\ k))!Suc
i)) \in Rely k
                            by (simp add:assume-es-def)
                           with dd0 f0 have (gets-es (take m (cs k) ! i), gets-es (take
m (cs k) ! Suc i) \in Rely k
                          by (metis (no-types, lifting) One-nat-def Suc-mono Suc-pred
d0 d1 f1 f2 length-take min-less-iff-conj)
                          with f1 f2 show ?thesis by simp
                          assume \neg (i < m - 1)
                          with d\theta have f\theta: i = m - 1
                            by (simp add: c0 dd0 less-antisym min.absorb2)
                          let ?esl2 = take (Suc m) (cs k')
                          from b0 \ c0 \ dd0 have take m \ (cs \ k') \in assume\text{-}es \ \Gamma \ (Pre \ k',
Rely k')
                            by (metis Suc-leD p8)
                          moreover
                          from e1 f0 have \neg(\Gamma \vdash cs k'! (m-1) - ese \rightarrow cs k'!m)
                            using Suc-pred' dd0 es-tran-not-etran1 by fastforce
                            ultimately have f1: take (Suc m) (cs k') \in assume-es \Gamma
(Pre k', Rely k')
```

```
using assume-es-one-more of cs k' \Gamma m Pre k' Rely k' \mid p8
p9 \ c0 \ dd0
                          by (simp add: Suc-le-eq)
                        from p7 have cs \ k' \in cpts-of-es \Gamma (pes k') s \ x by simp
                        with p8 c0 dd0 have f2: ?esl2\incpts-of-es \Gamma (pes k') s x
                         using cpts-es-take[of cs k' \Gamma m] cpts-of-es-def[of \Gamma pes k' s]
x
                            by (simp add: Suc-le-lessD)
                        from p0 have f3: \Gamma \models pes \ k' \ sat_s \ [Pre \ k', Rely \ k', Guar \ k',
Post k' by simp
                        with f1 f2 have ?esl2 \in commit-es \Gamma (Guar k', Post k')
                             using es-validity-def [of \Gamma pes k' Pre k' Rely k' Guar k'
Post k'
                            by auto
                        then have \forall i. Suc i < length ?esl2 \longrightarrow
                                      (\exists t. \ \Gamma \vdash ?esl2!i - es - t \rightarrow ?esl2!(Suc \ i)) \longrightarrow
                                    (gets-es\ (?esl2!i),\ gets-es\ (?esl2!Suc\ i)) \in Guar\ k'
                          by (simp add:commit-es-def)
                        with p8 e1 f0 c0 dd0 have (gets-es (?esl2! (m-1)), gets-es
(?esl2!m)) \in Guar k'
                       by (metis (no-types, lifting) One-nat-def Suc-pred diff-less-Suc
length-take lessI min.absorb2 nth-take)
                        with p3 p10 c0 f0 e2 show ?thesis
                        by (smt Suc-diff-1 Suc-leD c3 dd0 le-less-linear not-less-eq-eq
nth-take subsetCE)
                      qed
                   next
                   assume e\theta: ((\Gamma \vdash (c!i) - pese \rightarrow (c!Suc\ i)) \land (\forall k. (\Gamma \vdash ((cs\ k)!i))))
-ese \rightarrow ((cs \ k)! \ Suc \ i))))
                     from p5 have \forall i. Suc i < length c \longrightarrow
                                      \Gamma \vdash c!i - pese \rightarrow c!(Suc\ i) \longrightarrow
                                      (gets\ (c!i),\ gets\ (c!Suc\ i)) \in rely
                       by (simp add:assume-pes-def)
                    moreover
                     from p8\ c0\ d0 have e1:Suc\ i < length\ c by simp
                    ultimately have (gets\ (c!i),\ gets\ (c!Suc\ i)) \in rely\ using\ e\theta by
simp
                     with p2 have (gets\ (c!i),\ gets\ (c!Suc\ i)) \in Rely\ k by auto
                     with p8 p10 c0 d0 show ?thesis
                      using Suc-lessD e1 d2 by auto
                   qed
               }
               then show ?thesis by auto
             ultimately show ?thesis by (simp add:assume-es-def)
           qed
```

```
then show ?case by auto
         qed
    }
    then show ?thesis by auto
    qed
lemma es-tran-sat-guar-aux:
  \llbracket \forall k. \ \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k];
         \forall k. pre \subseteq Pre k;
         \forall k. \ rely \subseteq Rely \ k;
         \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k;
         c \in cpts-of-pes \Gamma pes s x; c \in assume-pes \Gamma (pre, rely);
         \Gamma c \propto cs; \forall k. \ cs \ k \in cpts-of-es \Gamma (pes \ k) \ s \ x \parallel
           \Rightarrow \forall \ k \ i \ m. \ m \leq length \ c \longrightarrow Suc \ i < length \ (take \ m \ (cs \ k)) \longrightarrow (\exists \ t.(\Gamma \vdash 
(take \ m \ (cs \ k))!i-es-t \rightarrow ((take \ m \ (cs \ k))!Suc \ i)))
                     \longrightarrow (gets-es\ ((take\ m\ (cs\ k))!i), gets-es\ ((take\ m\ (cs\ k))!Suc\ i)) \in
Guar k
  proof -
    assume p\theta: \forall k. \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k]
       and p1: \forall k. pre \subseteq Pre k
      and p2: \forall k. rely \subseteq Rely k
       and p\beta: \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k
       and p_4: c \in cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x
      and p5: c \in assume\text{-}pes \Gamma (pre, rely)
      and p\theta: \Gamma c \propto cs
      and p7: \forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x
      from p6 have p8: \forall k. length (cs \ k) = length \ c by (simp \ add:conjoin-def
same-length-def)
    {
      \mathbf{fix} \ k \ i \ m
      assume a\theta: m \leq length c
         and a1: Suc i < length (take \ m (cs \ k))
         and a2: \exists t.(\Gamma \vdash (take \ m \ (cs \ k))!i-es-t \rightarrow ((take \ m \ (cs \ k))!Suc \ i))
       have (gets-es\ ((take\ m\ (cs\ k))!i), gets-es\ ((take\ m\ (cs\ k))!Suc\ i)) \in Guar\ k
         proof(cases m = \theta)
           assume m = \theta with a1 show ?thesis by auto
         next
           assume m \neq 0
           then have b\theta: m > \theta by simp
           let ?esl = take \ m \ (cs \ k)
           from p7 have cs \ k \in cpts-of-es \Gamma \ (pes \ k) \ s \ x by simp
        then have cs \ k!\theta = (pes \ k,s,x) \land cs \ k \in cpts\text{-}es \ \Gamma  by (simp \ add:cpts\text{-}of\text{-}es\text{-}def)
           with b0 have ?esl!0 = (pes \ k, s, x) \land ?esl \in cpts\text{-}es \ \Gamma
              by (metis Suc-pred a0 cpts-es-take leD not-less-eq nth-take p8)
          then have r1: ?esl \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x \ by \ (simp \ add:cpts\text{-}of\text{-}es\text{-}def)
           from p0 p1 p2 p3 p4 p5 p6 p7
               have \forall n. n \leq length (cs k) \land n > 0 \longrightarrow take n (cs k) \in assume-es \Gamma
(Pre\ k,\ Rely\ k)
```

```
using cpts-es-sat-rely[of \Gamma pes Pre Rely Guar Post pre rely c s x cs]
by auto
           with p8 a0 b0 have r2: ?esl \in assume - es \Gamma (Pre k, Rely k) by auto
           from p0 have (cpts\text{-}of\text{-}es\ \Gamma\ (pes\ k)\ s\ x)\cap assume\text{-}es\ \Gamma\ (Pre\ k,\ Rely\ k)\subseteq
commit-es \Gamma (Guar k, Post k)
              by (simp add:es-validity-def)
           with r1 r2 have ?esl \in commit\text{-}es \Gamma (Guar k, Post k)
              using IntI subsetCE by auto
           then have \forall i. Suc i < length ?esl \longrightarrow
                    (\exists t. \ \Gamma \vdash ?esl!i \ -es-t \rightarrow ?esl!(Suc \ i)) \longrightarrow (gets-es \ (?esl!i), \ gets-es
(?esl!Suc\ i)) \in Guar\ k
             by (simp add:commit-es-def)
           with a1 a2 show ?thesis by auto
    then show ?thesis by auto
  qed
lemma es-tran-sat-quar:
       \llbracket \forall k. \ \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k];
         \forall k. pre \subseteq Pre k;
         \forall k. \ rely \subseteq Rely \ k
         \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k;
         c \in cpts-of-pes \Gamma pes s x; c \in assume-pes \Gamma (pre, rely);
         \Gamma \ c \propto cs; \ \forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x \ ]
         \Longrightarrow \forall k \ i. \ Suc \ i < length \ (cs \ k) \longrightarrow (\exists \ t.(\Gamma \vdash (cs \ k)!i-es-t \rightarrow (cs \ k)!Suc \ i))
                    \longrightarrow (gets\text{-}es\ ((cs\ k)!i), gets\text{-}es\ ((cs\ k)!Suc\ i)) \in Guar\ k
  proof -
    assume p\theta: \forall k. \ \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k]
       and p1: \forall k. pre \subseteq Pre k
      and p2: \forall k. rely \subseteq Rely k
      and p3: \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k
      and p4: c \in cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x
      and p5: c \in assume\text{-}pes \Gamma (pre, rely)
      and p\theta: \Gamma c \propto cs
       and p7: \forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x
    then have \forall k \ i \ m. \ m \leq length \ c \longrightarrow Suc \ i < length \ (take \ m \ (cs \ k)) \longrightarrow (\exists \ t.(\Gamma ))
\vdash (take \ m \ (cs \ k))!i-es-t \rightarrow ((take \ m \ (cs \ k))!Suc \ i)))
                     \longrightarrow (gets\text{-}es\ ((take\ m\ (cs\ k))!i), gets\text{-}es\ ((take\ m\ (cs\ k))!Suc\ i)) \in
Guar k
      using es-tran-sat-guar-aux [of \Gamma pes Pre Rely Guar Post pre rely c s x cs] by
simp
    moreover
   from p\theta have \forall k. length c = length(csk) by (simp\ add:conjoin-def\ same-length-def)
    ultimately show ?thesis by auto
  qed
```

```
lemma conjoin-es-sat-assume:
       \llbracket \forall k. \ \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k];
         \forall k. pre \subseteq Pre k;
         \forall k. \ rely \subseteq Rely \ k;
         \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k;
          c \in cpts-of-pes \Gamma pes s x; c \in assume-pes \Gamma (pre, rely);
         \Gamma \ c \propto cs; \ \forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x \ ]
          \implies \forall k. \ cs \ k \in assume\text{-}es \ \Gamma \ (Pre \ k, \ Rely \ k)
  proof -
    assume p\theta: \forall k. \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k]
       and p1: \forall k. pre \subseteq Pre k
       and p2: \forall k. rely \subseteq Rely k
       and p3[rule-format]: \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k
       and p4: c \in cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x
       and p5: c \in assume\text{-}pes \Gamma (pre, rely)
       and p\theta: \Gamma c \propto cs
       and p7: \forall k. \ cs \ k \in cpts\text{-}of\text{-}es \ \Gamma \ (pes \ k) \ s \ x
       from p6 have p11[rule-format]: \forall k. length (cs k) = length c by (simp
add:conjoin-def same-length-def)
     from p7 have p12: \forall k. \ cs \ k \in cpts\text{-}es \ \Gamma \ \textbf{using} \ cpts\text{-}of\text{-}es\text{-}def \ mem\text{-}Collect\text{-}eq
by fastforce
     with p11 have c \neq Nil using cpts-es-not-empty length-0-conv by auto
    then have p13: length c > 0 by auto
    {
       \mathbf{fix} \ k
       have cs \ k \in assume-es \ \Gamma \ (Pre \ k, Rely \ k)
         using p0 p1 p2 p3 p4 p5 p6 p7 p13 p11
           cpts-es-sat-rely[of <math>\Gamma pes Pre Rely Guar Post <math>pre rely c s x cs length (cs k)
k] by force
    then show ?thesis by auto
  qed
lemma pes-tran-sat-guar:
       \llbracket \forall k. \ \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k];
         \forall k. pre \subseteq Pre k;
         \forall k. \ rely \subseteq Rely \ k;
         \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k;
         \forall k. \ Guar \ k \subseteq guar;
          c \in cpts-of-pes \Gamma pes s x; c \in assume-pes \Gamma (pre, rely)
          \Longrightarrow \forall i. \ Suc \ i < length \ c \longrightarrow (\exists t. \ \Gamma \vdash c!i - pes - t \rightarrow c!(Suc \ i))
                    \longrightarrow (gets\ (c!i), gets\ (c!Suc\ i)) \in guar
  proof -
    assume p\theta: \forall k. \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k]
       and p1: \forall k. pre \subseteq Pre k
       and p2: \forall k. rely \subseteq Rely k
       and p3: \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k
       and p_4: \forall k. Guar k \subseteq guar
```

```
and p5: c \in cpts-of-pes \Gamma pes s x
       and p6: c \in assume \text{-}pes \Gamma (pre, rely)
       {
         \mathbf{fix} i
         assume a\theta: Suc i < length c
            and a1: \exists t. \Gamma \vdash c!i - pes - t \rightarrow c!(Suc i)
         from p5 have \exists cs. (\forall k. (cs k) \in cpts-of-es \Gamma (pes k) s x) \land \Gamma c \propto cs
            by (meson cpt-imp-exist-conjoin-cs)
         then obtain cs where a2: (\forall k. (cs \ k) \in cpts\text{-}of\text{-}es \ \Gamma (pes \ k) \ s \ x) \land \Gamma \ c \propto
cs by auto
         then have compat-tran \Gamma c cs by (simp add:conjoin-def)
         with a0 have a3: (\exists t \ k. \ (\Gamma \vdash c!i - pes - (t\sharp k) \rightarrow c!Suc \ i) \land
                                     (\forall k \ t. \ (\Gamma \vdash c!i \ -pes-(t\sharp k) \rightarrow c!Suc \ i) \longrightarrow (\Gamma \vdash cs \ k!i)
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ i) \ \land
                                        (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! i - ese \rightarrow cs \ k'! \ Suc \ i))))
                              ((\Gamma \vdash (c!i) - pese \rightarrow (c!Suc\ i)) \land (\forall k.\ (\Gamma \vdash ((cs\ k)!i) - ese \rightarrow (c!Suc\ i))))
((cs\ k)!\ Suc\ i)))
            by (simp add:compat-tran-def)
         from a1 have \neg(\Gamma \vdash (c!i) - pese \rightarrow (c!Suc\ i))
            using pes-tran-not-etran1 by blast
         with a3 have \exists t \ k. \ (\Gamma \vdash c!i - pes - (t \sharp k) \rightarrow c!Suc \ i) \land
                                     (\forall k \ t. \ (\Gamma \vdash c!i \ -pes-(t\sharp k) \rightarrow c!Suc \ i) \longrightarrow (\Gamma \vdash cs \ k!i)
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ i) \ \land
                                        (\forall k'.\ k' \neq k \longrightarrow (\Gamma \vdash cs\ k'!i\ -ese \rightarrow cs\ k'!\ Suc\ i)))
            by simp
         then obtain t and k where a4: (\Gamma \vdash c!i - pes - (t \sharp k) \rightarrow c!Suc \ i) \land
                                     (\forall k \ t. \ (\Gamma \vdash c!i \ -pes-(t\sharp k) \rightarrow c!Suc \ i) \longrightarrow (\Gamma \vdash cs \ k!i)
-es-(t\sharp k)\rightarrow cs \ k! \ Suc \ i) \ \land
                                        (\forall k'. \ k' \neq k \longrightarrow (\Gamma \vdash cs \ k'! i - ese \rightarrow cs \ k'! \ Suc \ i)))
            by auto
         from p0 p1 p2 p3 p4 p5 p6 a2 have
            \forall k \ i. \ Suc \ i < length \ (cs \ k) \longrightarrow (\exists \ t.(\Gamma \vdash (cs \ k)!i - es - t \rightarrow (cs \ k)!Suc \ i))
                   \longrightarrow (gets\text{-}es\ ((cs\ k)!i), gets\text{-}es\ ((cs\ k)!Suc\ i)) \in Guar\ k
            using es-tran-sat-guar [of \Gamma pes Pre Rely Guar Post pre rely c s x cs] by
simp
           then have a5: Suc i < length (cs k) \longrightarrow (\exists t.(\Gamma \vdash (cs k)!i-es-t \rightarrow (cs k)))
k)!Suc\ i))
                   \longrightarrow (gets-es\ ((cs\ k)!i), gets-es\ ((cs\ k)!Suc\ i)) \in Guar\ k\ \mathbf{by}\ simp
             from a2 have a6: length c = length (cs k) by (simp add:conjoin-def
same-length-def)
         with a0 a4 a5 have a7: (gets-es((cs k)!i), gets-es((cs k)!Suc i)) \in Guar k
        from a0 a2 have a8: gets-es ((cs k)!i) = gets(c!i) by (simp \ add:conjoin-def
same-state-def)
            from a0 a2 have a9: gets-es ((cs \ k)!Suc \ i) = gets \ (c!Suc \ i) by (simp)
add:conjoin-def same-state-def)
         with a 7 a 8 have (gets\ (c!i), gets\ (c!Suc\ i)) \in Guar\ k by auto
         with p_4 have (gets\ (c!i), gets\ (c!Suc\ i)) \in guar\ by\ auto
```

```
thus ?thesis by auto
  \mathbf{qed}
lemma parallel-sound:
       \llbracket \forall k. \ \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k];
          \forall k. pre \subseteq Pre k;
         \forall k. \ rely \subseteq Rely \ k;
         \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k;
         \forall k. \ Guar \ k \subseteq guar;
         \forall k. \ Post \ k \subseteq post
     \Longrightarrow \Gamma \models pes \ SAT \ [pre, \ rely, \ guar, \ post]
  proof -
     assume p\theta: \forall k. \Gamma \models (pes \ k) \ sat_s \ [Pre \ k, Rely \ k, Guar \ k, Post \ k]
       and p1: \forall k. pre \subseteq Pre k
       and p2: \forall k. rely \subseteq Rely k
       and p3: \forall k \ j. \ j \neq k \longrightarrow Guar \ j \subseteq Rely \ k
       and p_4: \forall k. Guar k \subseteq guar
       and p5: \forall k. Post k \subseteq post
     have \forall s \ x. \ (cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x) \cap assume\text{-}pes \ \Gamma \ (pre, \ rely) \subseteq commit\text{-}pes \ \Gamma
(guar, post)
       proof -
       {
          \mathbf{fix} \ c \ s \ x
          assume a\theta: c \in (cpts\text{-}of\text{-}pes\ \Gamma\ pes\ s\ x) \cap assume\text{-}pes\ \Gamma\ (pre,\ rely)
          then have a1: c \in (cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x) \land c \in assume\text{-}pes \ \Gamma \ (pre, \ rely) by
         with p0 p1 p2 p3 p4 have \forall i. Suc \ i < length \ c \longrightarrow (\exists \ t. \ \Gamma \vdash c! i - pes - t \rightarrow
c!(Suc\ i))
                  \rightarrow (gets \ (c!i), gets \ (c!Suc \ i)) \in guar
            using pes-tran-sat-guar [of \Gamma pes Pre Rely Guar Post pre rely guar c s x]
by simp
          then have c \in commit\text{-}pes\ \Gamma\ (guar,\ post)
            by (simp add: commit-pes-def)
       then show ?thesis by auto
       qed
     then show ?thesis by (simp add:pes-validity-def)
  qed
lemma parallel-seq-sound:
       [pre \subseteq pre'; rely \subseteq rely'; guar' \subseteq guar; post' \subseteq post;]
         \Gamma \models pes \ SAT \ [pre', \ rely', \ guar', \ post']
     \Longrightarrow \Gamma \models \mathit{pes}\; \mathit{SAT}\; [\mathit{pre},\, \mathit{rely},\, \mathit{guar},\, \mathit{post}]
  proof -
     assume p\theta: pre \subseteq pre'
       and p1: rely \subseteq rely'
       and p2: guar' \subseteq guar
```

```
and p3: post' \subseteq post
      and p4: \Gamma \models pes SAT [pre', rely', guar', post']
    from p4 have p5: \forall s \ x. \ (cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x) \cap assume\text{-}pes \ \Gamma \ (pre', rely') \subseteq
commit-pes \Gamma (quar', post')
      by (simp add: pes-validity-def)
    have \forall s \ x. \ (cpts\text{-}of\text{-}pes \ \Gamma \ pes \ s \ x) \cap assume\text{-}pes \ \Gamma \ (pre, \ rely) \subseteq commit\text{-}pes \ \Gamma
(quar, post)
      proof -
      {
         fix c s x
        assume a\theta: c \in (cpts\text{-}of\text{-}pes\ \Gamma\ pes\ s\ x) \cap assume\text{-}pes\ \Gamma\ (pre,\ rely)
        then have c \in (cpts\text{-}of\text{-}pes\ \Gamma\ pes\ s\ x) \land c \in assume\text{-}pes\ \Gamma\ (pre,\ rely) by simp
         with p0 p1 have c \in (cpts\text{-}of\text{-}pes\ \Gamma\ pes\ s\ x) \land c \in assume\text{-}pes\ \Gamma\ (pre',\ rely')
           using assume-pes-imp[of pre pre' rely rely' c] by simp
         with p5 have c \in commit\text{-pes }\Gamma (guar', post') by auto
         with p2 p3 have c \in commit\text{-pes }\Gamma (quar, post)
           using commit-pes-imp[of guar' guar post' post c] by simp
      then show ?thesis by auto
    then show ?thesis by (simp add:pes-validity-def)
  qed
lemma parallel-sound':
assumes p\theta: \forall k. \ \Gamma \vdash fst \ ((pes::'k \Rightarrow ('l,'k,'s,'prog) \ rgformula-es) \ k) \ sat_s \ [Pre_{es}]
(pes k), Rely_{es} (pes k), Guar_{es} (pes k), Post_{es} (pes k)]
      and p1: \forall k. pre \subseteq Pre_{es} (pes k)
      and p2: \forall k. \ rely \subseteq Rely_{es} \ (pes \ k)
      and p3: \forall k \ j. \ j \neq k \longrightarrow Guar_{es} \ (pes \ j) \subseteq Rely_{es} \ (pes \ k)
      and p_4: \forall k. Guar_{es} (pes k) \subseteq guar
      and p5: \forall k. Post_{es} (pes k) \subseteq post
shows \Gamma \models paresys-spec \ pes \ SAT \ [pre, \ rely, \ guar, \ post]
proof -
from p0 have \forall k. \Gamma \models evtsys\text{-spec} (fst (pes k)) sat_s [Pre_{es} (pes k), Rely_{es} (pes k)]
k), Guar_{es} (pes k), Post_{es} (pes k)]
      proof -
      {
         \mathbf{fix} \ k
         from p0 have \Gamma \vdash fst \ (pes \ k) \ sat_s \ [Pre_{es} \ (pes \ k), \ Rely_{es} \ (pes \ k), \ Guar_{es}
(pes k), Post_{es} (pes k)
           by simp
          then have \Gamma \models evtsys\text{-}spec \ (fst \ (pes \ k)) \ sat_s \ [Pre_{es} \ (pes \ k), \ Rely_{es} \ (pes \ k)]
k), Guar_{es} (pes k), Post_{es} (pes k)]
            using rgsound-es [of \Gamma fst (pes k) Pre<sub>es</sub> (pes k) Rely<sub>es</sub> (pes k) Guar<sub>es</sub>
(pes \ k) \ Post_{es} \ (pes \ k)
             by simp
      then show ?thesis by auto
      qed
```

```
with p1 p2 p3 p4 p5 show \Gamma \models paresys-spec pes SAT [pre, rely, guar, post]
      using parallel-sound [of \Gamma paresys-spec pes Pre_{es} \circ pes Rely_{es} \circ pes Guar_{es} \circ pes
Post_{es} \circ pes
             pre rely guar post by (simp add:paresys-spec-def)
ged
\textbf{theorem} \ \textit{rgsound-pes:} \ \Gamma \vdash \textit{rgf-par} \ \textit{SAT} \ [\textit{pre}, \textit{rely}, \textit{guar}, \textit{post}] \Longrightarrow \Gamma \models \textit{paresys-spec}
rgf-par SAT [pre, rely, guar, post]
  apply(erule rghoare-pes.induct)
  using parallel-sound' apply blast
  using parallel-seq-sound apply blast
done
end
end
       Rely-guarantee-based Safety Reasoning
8
theory PiCore-RG-Invariant
imports PiCore-Hoare
begin
type-synonym 's invariant = 's \Rightarrow bool
context event-hoare
begin
definition invariant-presv-pares:: 'Env \Rightarrow 's \ invariant \Rightarrow ('l, 'k, 's, 'prog) \ paresys \Rightarrow
's \ set \Rightarrow ('s \times 's) \ set \Rightarrow bool
  where invariant-presv-pares \Gamma invar pares init R \equiv
           \forall s0 \ x0 \ pesl. \ s0 \in init \land pesl \in (cpts\text{-}of\text{-}pes \ \Gamma \ pares \ s0 \ x0 \ \cap \ assume\text{-}pes \ \Gamma
(init, R)
                             \longrightarrow (\forall i < length pesl. invar (qets (pesl!i)))
definition invariant-presv-pares2::'Env \Rightarrow 's invariant \Rightarrow ('l, 'k, 's, 'prog) paresys
\Rightarrow 's set \Rightarrow ('s \times 's) set \Rightarrow bool
  where invariant-presv-pares 2 \Gamma invar pares init R \equiv
          \forall s0 \ x0 \ pesl. \ pesl \in (cpts\text{-}of\text{-}pes \ \Gamma \ pares \ s0 \ x0 \ \cap \ assume\text{-}pes \ \Gamma \ (init, R))
                             \longrightarrow (\forall i < length pesl. invar (qets (pesl!i)))
lemma invariant-presv-pares \Gamma invar pares init R= invariant-presv-pares 2 \Gamma invar
pares init R
apply(rule iffI)
apply(simp add:invariant-presv-pares-def invariant-presv-pares2-def cpts-of-pes-def
assume-pes-def gets-def)
apply clarsimp
\mathbf{apply}(simp\ add:invariant\text{-}presv\text{-}pares\text{-}def\ invariant\text{-}presv\text{-}pares\text{-}2\text{-}def\ cpts\text{-}of\text{-}pes\text{-}def\ option})
```

```
assume-pes-def gets-def)
done
theorem invariant-theorem:
 assumes parsys-sat-rg: \Gamma \vdash pesf\ SAT\ [init,\ R,\ G,\ pst]
           stb-rely: stable-e (Collect invar) R
           stb-guar: stable-e (Collect invar) G
   and
          init-in-invar: init \subseteq (Collect\ invar)
 shows invariant-presv-pares \Gamma invar (paresys-spec pesf) init R
proof -
  from parsys-sat-rg have \Gamma \models paresys-spec pesf SAT [init, R, G, pst] using
rgsound-pes by fast
  hence cpts-pes: \forall s \ x. \ (cpts\text{-of-pes} \ \Gamma \ (paresys\text{-spec pesf}) \ s \ x) \cap assume\text{-pes} \ \Gamma
(init, R) \subseteq commit-pes \Gamma (G, pst)
   by (simp add:pes-validity-def)
 show ?thesis
 proof -
   fix s0 x0 pesl
   assume a\theta: s\theta \in init
     and a1: pesl \in cpts-of-pes \Gamma (paresys-spec pesf) s0 \ x0 \cap assume-pes \Gamma (init,
R
    from a1 have a3: pesl!\theta = (paresys-spec\ pesf,\ s\theta,\ x\theta) \land pesl \in cpts-pes\ \Gamma by
(simp add:cpts-of-pes-def)
   from a cpts-pes have pesl-in-comm: pesl \in commit-pes \Gamma (G, pst) by auto
   {
     \mathbf{fix} i
     assume b\theta: i < length pesl
     then have gets (pesl!i) \in (Collect invar)
     \mathbf{proof}(induct\ i)
       case \theta
       with a3 have gets (pesl!0) = s0 by (simp\ add:gets-def)
       with a0 init-in-invar show ?case by auto
     next
       case (Suc ni)
       assume c\theta: ni < length pesl \implies qets (pesl! ni) \in (Collect invar)
         and c1: Suc ni < length pesl
       then have c2: gets (pesl ! ni) \in (Collect invar) by auto
       from c1 have c3: ni < length pesl by simp
       with c\theta have c4: gets (pesl ! ni) \in (Collect invar) by simp
       from a3 c1 have \Gamma \vdash pesl ! ni - pese \rightarrow pesl ! Suc ni \lor (\exists et. \Gamma \vdash pesl ! ni
-pes-et \rightarrow pesl ! Suc ni)
         using incpts-pes-impl-evnorcomptran by blast
       then show ?case
       proof
         assume d\theta: \Gamma \vdash pesl ! ni - pese \rightarrow pesl ! Suc ni
        then show ?thesis using c3 c4 a1 c1 stb-rely by(simp add:assume-pes-def
stable-e-def)
       next
```

```
assume \exists et. \Gamma \vdash pesl! ni -pes-et \rightarrow pesl! Suc ni then obtain et where d0: \Gamma \vdash pesl! ni -pes-et \rightarrow pesl! Suc ni by auto then show ?thesis using c3 c4 c1 pesl-in-comm stb-guar apply(simp add:commit-pes-def stable-e-def)

by blast

qed

qed

}

then show ?thesis using invariant-presv-pares-def by blast

qed
end
end
```