Lab 3 — Notes Spring 2024

JOHN GERGUIS

General Notes

- Starting from lab 3, you will begin dealing with ALD chips (1105/1106/1107).
- The ALD chips are not in the kit, they will be handed to you with other extra components including the ESD wristband.
- ALD chips are very sensitive to electrostatic charge.
- Please make sure to wear a ESD wristband and connect it to ground before touching any of the ALD chips (check the ESD safety section in the video).
- Don't touch directly the pins of the chips, always try to handle it from the package.

Task 1

Task 3.7.1: Determine $V_{\rm tn}$

- 1. Connect your ESD wristband to ground and put on the wristband.
- 2. Place the ALD1106 into your breadboard and connect V to ground and V + to $V_{\rm DD}$.
- 3. Build the circuit in figure 3.2 using $R_S = 100 \,\mathrm{k}\Omega$, $V_{DD} = 5 \,\mathrm{V}$, and $V_{SS} = -5 \,\mathrm{V}$. Use any of the four transistors on the ALD1106.
- 4. Set v_{CTRL} to the value calculated in prelab step 4.
- 5. *Measure* the voltage across R_S to ensure that i_D is set to $1 \,\mu A$.
- 6. *Measure* v_{CS} . This is the threshold voltage of the transistor.
- 7. Repeat the threshold voltage measurement for all four transistors on the ALD1106.
- 8. *Compare* the threshold voltages of the four measured transistors. Do the transistors have similar threshold voltages?
- 9. *Compare* the threshold voltages to the range listed on the ALD1106 datasheet. Does your measurement fall within the range listed on the datasheet?

- * V- is connected to ground in this task.
- * The opamp chip is LM324.
- 4. Check the value of Vctrl with a GTA.
- 5/6 Measure the voltages using the voltmeter tool.
- 7. Measure Vgs (Vth) for all the 4 transistors.

Task 2

Task 3.7.2: Estimate k_n

Figure 3.4: Test set for measuring the drain characteristics.

- 1. Place the ALD1106 in your breadboard and connect V to V_{SS} and V + to V_{DD} .
- 2. Set up the to measure the drain I–V characteristics of the transistor by building the circuit in figure 3.4 with $R_{\rm D}=470\,\Omega$. Use W1 to generate v_1 and W2 to generate v_2 . Use the oscilliscope channel to measure $v_{\rm DS}$ and channel to measured $v_{\rm RD}$. Make sure to connect the source of the NMOS in the ALD1106 to $V_{\rm SS}$.
- 3. Set the power supplies to $V_{\rm DD} = 5 \, \rm V$ and $V_{\rm SS} = -5 \, \rm V$ then turn them on.
- 4. *Open* the "Tracer" tool in Waveforms^a.
- 5. Set the device to "N-FET" and change the adapter dropdown to "No Adapter."
- 6. Open the options dropdown and change "Emitter" to $-5 \,\mathrm{V}$.
- 7. Ensure that "Measure" is set to "Id/Vds"
- 8. Configure the curve tracer to measure from $v_{\rm GS} = 0$ V to $v_{\rm GS} = 5$ V in even 500 mV steps over the range 0 V $\leq v_{\rm RD} < 10$.
- 9. Set $R_D = 470 \Omega$ in the tracer tool.
- 10. Run the curve tracer and save a screenshot of the output.
- 11. Calculate the $k_{\rm n}$ value for each curve that the transistor enters saturation. Use the $V_{\rm tn}$ measured in task 3.7.1.

- * V- is connected to -5v in this task.
- * Check the demo on the curve tracer tool in the video for this task.
- 2->10 Follow the instruction to plot the I-V characteristics for 11 curves.
- 11. Compute Kn for all curves. Use Vth from task 1. get Id and Vgs values from the curves.

^a If you can't find this tool, you need to update to the newest version of waveforms.

Task 3

Task 3.7.3: Estimate $g_{\rm m}$

Figure 3.5: Test set for measuring the i_D vs. v_{GS} characteristics.

- 1. Construct the circuit in figure 3.5. This is almost the same circuit as task 3.7.2, except channel 2 is now measuring $v_{\rm GS}$.
- 2. Configure the tracer tool in Waveforms to measure "iD/vGS."
- 3. Set the drain voltage to a constant 5 V
- 4. Configure the gate voltage to sweep from 0 V to 5 V in 100 mV steps.
- 5. Run the curve tracer.
- 6. Capture a screenshot of the curve tracer output.
- Export the data from the curve tracer and load it into MATLAB, Excel, or a similar tool.
- 8. Calculate g_m for each point using equation (3.5).
- 9. *Plot* g_m vs. i_D . What is the correlation between i_D and g_m ?
- 10. *Plot* g_m vs. v_{GS} and your answer to prelab question 2. Use the V_{tn} you measured in task 3.7.1 and the k_n you calculated for the curve corresponding to v_{GS} = 2.5 V in task 3.7.2. Over what range of voltages does the model agree with the measurement?

* V- is connected to -5v in this task.

- * Check the video on how to export data and compute gm using excel or Matlab.
- * Make sure to put the steps of Vrd: 1 in the settings, to get only 1 curve for Id vs Vgs
- 6. Take screenshot for Id-Vgs
- 9. Plot gm vs Id from the measured data (using excel for example) + comment on correlation.
- 10. Draw 2 curves for gm vs Vgs on the same plot:
- a) Curve 1: From measured data (using excel for example).
- b) Curve 2: From the theoretical relation $g_m = K_n(V_{gs} V_{th})$. Use Vth from task 1, and Kn from task 2 for the curve corresponding to vgs = 2.5v.

Comment on the range of agreement between the 2 curves

