## Community ecology - Computer lab II - AB332

Anders K. Krabberød (UiO) and Ramiro Logares (ICM)

October 2023

### Computer lab II

First load the necessary packages.

Now load the the data from the previous lab (change path to the file if necessary):

```
load("AB332_lab_I.RData")
```

### Ordination and clustering

### PCA

Pca from the rarefied table

```
otu.tab.trans.ss.nozero.pca <- PCAtools::pca(t(otu.tab.trans.ss.nozero), scale = FALSE) # Runs de PCA
biplot(otu.tab.trans.ss.nozero.pca, showLoadings = T, lab = rownames(otu.tab.trans.ss.nozero)) # Plots

## Warning: Removed 4 rows containing missing values ('geom_segment()').

## Warning: Removed 4 rows containing missing values ('geom_label_repel()').

## Warning: ggrepel: 14 unlabeled data points (too many overlaps). Consider

## increasing max.overlaps</pre>
```



screeplot(otu.tab.trans.ss.nozero.pca, axisLabSize = 18, titleLabSize = 22) # We plot the percentage of

# **SCREE** plot



#### **NMDS**

We will define the function NMDS.scree() that automatically performs a NMDS for 1-7 dimensions and plots the number of dimensions vs. stress

```
set.seed(666) # Set a seed to make results reproducible

NMDS.scree <- function(x) { # x is the name of the distance matrix

plot(rep(1, 7), replicate(7, metaMDS(x, autotransform = FALSE, k = 1)$stress), xlim = c(1, 7), ylim =
for (i in 1:7) {
   points(rep(i + 1, 7), replicate(7, metaMDS(x, autotransform = FALSE, k = i + 1)$stress))
}
</pre>
```

Using the function to determine the optimal number of dimensions Using the rarefied table

We calculate NMDS for k(dimensions)=2 Rarefied table (we use the dataframe to have access to sample and OTU names)

```
otu.tab.trans.ss.nozero.bray.nmds <- metaMDS(otu.tab.trans.ss.nozero, k = 2, trymax = 100, trace = FALS otu.tab.trans.ss.nozero.bray.nmds
```

```
##
## Call:
## metaMDS(comm = otu.tab.trans.ss.nozero, distance = "bray", k = 2, trymax = 100, autotransform =
```

```
##
## global Multidimensional Scaling using monoMDS
##
## Data: otu.tab.trans.ss.nozero
## Distance: bray
##
## Dimensions: 2
## Stress: 0.06397485
## Stress type 1, weak ties
## Best solution was not repeated after 100 tries
## The best solution was from try 77 (random start)
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'otu.tab.trans.ss.nozero'
```

### Make stressplot

```
stressplot(otu.tab.trans.ss.nozero.bray.nmds)
```



Simple plotting Rarefied table

```
plot(otu.tab.trans.ss.nozero.bray.nmds, display = "sites", type = "n")
points(otu.tab.trans.ss.nozero.bray.nmds, display = "sites", col = "red", pch = 19)
text(otu.tab.trans.ss.nozero.bray.nmds, display = "sites")
```



#### Let's make nicer plots

We get the seasons for samples

```
isa.metadata <- read_tsv("https://raw.githubusercontent.com/krabberod/UNIS_AB332_2022/main/computer_lab

## Rows: 82 Columns: 26

## -- Column specification -------

## Delimiter: "\t"

## chr (3): Sample_Name, date, seasons

## dbl (23): year, season_nr, month, day, DOY, running_day, template, depth, de...

##

## i Use 'spec()' to retrieve the full column specification for this data.

## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.</pre>
```

Rarefied table We generate a table of nmds scores and other features

isa.metadata.simp <- isa.metadata[6:30, ]</pre>

isa.metadata <- column\_to\_rownames(isa.metadata, var = "Sample\_Name")

```
otu.tab.trans.ss.nozero.bray.nmds.scores <- as.data.frame(scores(otu.tab.trans.ss.nozero.bray.nmds)$sit otu.tab.trans.ss.nozero.bray.nmds.scores$season <- isa.metadata.simp$seasons otu.tab.trans.ss.nozero.bray.nmds.scores$month <- as.factor(isa.metadata.simp$month) otu.tab.trans.ss.nozero.bray.nmds.scores$samples <- rownames(otu.tab.trans.ss.nozero.bray.nmds.scores)
```

#### Create the plot

```
ggplot(otu.tab.trans.ss.nozero.bray.nmds.scores) +
  geom_point(mapping = aes(x = NMDS1, y = NMDS2, colour = season), size = 3) +
  coord_fixed() + ## need aspect ratio of 1!
  geom_text_repel(
    box.padding = 0.5, aes(x = NMDS1, y = NMDS2, label = samples),
    size = 3
)
```

## Warning: ggrepel: 5 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps



### #Clustering of samples

Allows determining the similarity between samples as well as the organization of samples in groups. Hierarchical clustering: samples will be organized in ranks according to their similarity and all samples will be included in a large group Unweighted Pair-Group Method Using Arithmetic Averages (UPGMA): This linkage method will link samples by considering their distance to a subgroup arithmetic average. This is a method widely used in ecology

### $\mathbf{UPGMA}$

Rarefied dataset We generate 100 trees by re-sampling and then, we plot the consensus tree

otu.tab.trans.ss.nozero.bray.upgma <- recluster.cons(otu.tab.trans.ss.nozero.bray, tr = 100, p = 0.5, m plot(otu.tab.trans.ss.nozero.bray.upgma\$cons) # plot consensus tree



We'll calculate bootstrap support values (0: bad - 100: perfect) This allows us to know how well supported is the branching pattern

otu.tab.trans.ss.nozero.bray.upgma.boot <- recluster.boot(otu.tab.trans.ss.nozero.bray.upgma\$cons, otu.recluster.plot(otu.tab.trans.ss.nozero.bray.upgma\$cons, otu.tab.trans.ss.nozero.bray.upgma.boot, direct



save.image("AB332\_lab\_II.RData")