SILICON RECTIFIER DIODES 0.7, 1, 10, 20 A SILIZIUM-GLEICHRICHTERDIODEN 0,7, 1, 10, 20 A

Туре Тур	Maximum ratings • Grenzdaten							Characteristic data • Kenndaten					
	IFAV	I _{FSM}	U _{a ef}	U_{RWM}	U _{RSM}	Ro min	t_{rr}	U_F at	at	I _F	I _{R max}	at U _R	Case Gehäuse
	Α	<u>A</u>	V 6)	V	٧	Ω	μs	٧	bei	Α	μΑ	bei V	Geh Geh
KY701F KY702F KY703F KY704F KY705F KY706F KY721F KY722F	0,7 ²) 0,7 ²) 0,7 ²) 0,7 ²) 0,7 ²) 0,7 ²) 1 ²) 1 ²)	30 30 30 30 30 30 30 30	15 30 60 125 190 250 15 30	80 150 300 600 900 1000 80 150	100 180 360 720 1100 1250	0,4 0,6 1,2 2,5 4 5 0,4 0,6	3	< 1,15 < 1,15 < 1,15 < 1,15 < 1,15 < 1,15 < 1,15		1 1 1 1 1 1	50 50 50 50 50 50 50 50	80 150 300 600 900 1000 80 150	D27 D27 D27 D27 D27 D27 D28 D28
KY723F KY724F KY725F KY726F KY731	1 ²) 1 ²) 1 ²) 1 ²) 1,2 ¹)	30 30 30 30 40	60 125 190 250	300 600 900 1000 150	360 720 1100 1250 180	1,2 2,5 4 5		< 1,15 < 1,15 < 1,15 < 1,15 < 1,1		1 1 1 1	50 50 50 50 50	300 600 900 1000	D28 D28 D28 D28
KY708 KY710 KY711 KY712	10 ³) 10 ³) 10 ³)	80 ³) ⁴) 80 ³) ⁴) 80 ³) ⁴) 80 ³) ⁴)	30 60 90 120	90 180 270 360	100 200 300 400	,		< 1,1 < 1,1 < 1,1 < 1,1		10 10 10 10	< 60 < 60 < 60 < 60	150 100 200 300 400	D48 D29 D29 D29 D29
KY738/300 KY738/400 KY715 KY717 KY718	10 10 20 ⁴) ³) 20 ⁴) ³) 20 ⁴) ³)	80 ³) ⁴) ⁷) 80 ³) ⁴) ⁷) 140 ⁴) ⁷) 140 ⁴) ⁷)		270 360 90 180 270	360 480 120 240 360			< 1,1 < 1,1 < 1,1 < 1,1 < 1,1		10 10 20 20 20	< 60 < 60 < 100 < 100 < 100	300 400 100 200 300	D49 D49 D31 D31 D31
KY719	20 4) 3)	140 4) 7)	120	360	480			< 1,1		20	< 100	400	D31

¹⁾ $\vartheta_a \le 70 \,^{\circ}\text{C}$ 2) $\vartheta_a \le 55 \,^{\circ}\text{C}$

SILICON ALTERNATOR-DIODES 20 A SILIZIUM-ALTERNATOR-DIODEN 20 A

Туре Тур	Maxir	num ratin	gs • Gre	nzdaten		U_F at	l _F	I_R at	U_R		
	10 1)	I _O	I _{FSM}	U _{RRM}	U _{RWM}	URSM	max be	A	max bei	O _R	Case Gehäuse
	Α	Α	Α	٧	V	V	٧		μΑ	٧	
KYZ61H		24 ²)	200		150	180	1,1	20	100	150	D53
KYZ61V		24 ²)	200		150	180	1,1	20	100	150	D54
KYZ66H		24 ²)	200		150	180	1,1	20	100	150	D53
KYZ66V		24 ²)	200		15 0	180	1,1	20	100	150	D54
KYZ70	4	20	140	50		60	1,1	20	100	50	
KYZ71	4	20	140	100		120	1,1	20	100		D32
KYZ72	4	20	140	200		240	1,1	20		100	D32
KYZ73	4	20	140	300		360	1,1	20	100	200	D32
KYZ74	4	20	140	400		480	1,1	20	100 100	300 400	D32 D32
KYZ75	4	20	140	50		60				•	
KYZ76	À	20	140	100		120	1,1	20	100	50	D32
KYZ77	1	20	140	200			1,1	20	100	100	D32
KYZ78	4	20	140	300		240	1,1	20	100	200	D32
KYZ79	4	20	140			360	1,1	20	100	300	D32
	-	20	140	400		480	1,1	20	100	400	D32

¹) $\vartheta_a \le 40$ °C; without cooling • ohne Kühlung ²) $\theta = 180$ °, $R_L = R$, L

KYZ75—KYZ79 with reverse polarity • mit umgekehrter Polarität

³) $\vartheta_a \le +85\,^{\circ}\mathrm{C}$; with cooling surface • mit Kühlfläche 4) t ≤ 10 ms 5) $\vartheta_j = 120\,^{\circ}\mathrm{C}$

⁶⁾ $R_L = C$ 7) $\partial_a \le 85 \,^{\circ}C$ 8) $f = 15...1500 \, Hz$