Neural Networks Overview

Introduction

Brain

There are about 10^11 neurons(brain cells)

천억개의 뉴런들은 만개의 뉴련들과 연결==10^11 x 10^4=10^15

전송 속도 =1khz

이렇게 뇌에는 매우 많은 뉴런들이 있고 뉴런들은 서로 연결되어있다.

Neurons

- Basic components of brain
- Shape
 - Cell body : main process unit
 - o Dendrite(수상돌기): input gates(numerous dendrites per neuron)
 - o Axon(축삭돌기): output gate(one per neuron)

Neurons in brain

- Every neuron connects to 10^3 to 10^4 other neurons
- A brain is a network of neurons
- Neurons just transmit signals to neighboring neurons!!

Connection between neuron

Structure

• Synapse : Connection spot

• Axon terminal : release neurotransmitter

• Dendrite : receive neurotransmitter

- Every connection does not has the same effect
- Each connection has different strength—>이게 W가중치의 개념이다!!
 - $\circ\hspace{0.1in}$ The more receptor a dendrite has , the better it receives neurotransmitter

Function of neurons

• Input

- Input signals coming from dendrites
- Signal are amplified

Reservoir

Cell body reservoirs the signals

Output

• If the amount of reserved signals in body cell is larger than a threshold, cell body releases a signal through axon

와... 그러니까 Dendrite(수상돌기)에서 데이터가 들어오면 cell body(세포체)로 데이터를 보낸다. cell body는 Reservoir로서 데이터를 저장하는데 어느 한계치를 넘으면 axon(축삭 돌기)를 통해 방출한다. 방출한 signal은 또 다른 neuron의 dendrite로 들어간다!!

Simple Mathematical Model

simple representation of neurons

퍼셉트론은 다수의 신호를 입력받아 하나의 신호를 출력한다.

Structure of a Typical Neuron

- X : dendrite(input)
- W: amount of receptors in each dendrite(connection strength)
 보통 가중치는 전류에서 말하는 저항에 해당한다. 저항은 전류의 흐름을 억제하는 매개 변수로 저항이 낮을수록 큰 전류가 흐른다. 하지만 퍼셉트론의 가중치는 그 값이 클수록 강한 신호를 흘려 보낸다.
- F: cell body
- y:axon(output)

Simple mathematical model of neurons

1. Summation

$$S = X1w1+x2w2+,,,,+xnwn$$

2.Threshold

Reservoir : Cell body reservoirs the signals from dendrites(signals are amplified)

Output: If the amount of reserved signals is greater than a threshold, then cell body outputs a signal else no output

Simple mathematical model of neurons

- First function : Weighted summation of inputs
 S=x1w1+x2w2+... xnwn
- Second function: Non linear threshold
 step func잘안쓰는 이유: x>0,x<0부근에서 미분하면 0이다.따라서 gradient descend method에서 값이 업데이트 되는게없다!

잠깐! 왜 activation func은 비선형이어야하는가?

선형 함수를 이용하면 신경망의 층을 깊에 하는 의미가 없어지기 떄문이다.

예를들어 선형함수인 h(x)=cx를 활성화 함수로 사용한 3층 네트워크가 있다.

출력y(x)=h(h(h(x)))가된다. 이 계산은 $y(x)=c*c*c*x \ y(x)=ax$, a=c*c*c!! 똑같은 식이다. 이 예처럼 선형 함수를 이용해서는 여러 층으로 구성하는 이점을 살릴 수 없다.

$$y = \begin{cases} 1 & \sum_{i=1}^{n} x_i w_i > 0 \\ 0 & otherwise \end{cases}$$

지금 배운 뉴런들을 연결하면 뇌가 되는거네?

그걸 수학적 모델로 표현한것이 Neural Network

What a perceptrion Can do??

f : 출력을 결정하는 함수=Activation Function

$$y = \begin{cases} 1 & \sum_{i=1}^{n} x_i w_i > 0 \\ 0 & otherwise \end{cases}$$

>> Perceptrons can solve linearly separable problems!!

%잠깐!! 저 1은 왜있지?

>>bias(편향)으로 만약없으면 직선은 원점만 지난다. 즉, bias가 있으면 threshold를 설정하는 그것인데 뉴런을 얼마나 쉽게 활성화 되느냐를 조정하는 매개변수라 생각하면된다.

layer마다 있음!!

And Operation

Or operation

Not 게이트도 가능하다!!

지금까지 살펴보면 perceptron의 형태(모형)은 바뀌지 않았다.

오로지, W값만 바뀌었다.>> 해결하고자 하는 문제에 따라 w가 바뀐다!

하지만 일일히 문제를 직면할때마다 w를 구할려면 답도 없다.

따라서 W를 자동으로 구성하는 알고리즘을 만들어야함!!>>Back propagation같은

A neural network can slove non-linarly separable problems

example: XOR operation

AND,OR,NOT게이트만 있으면 모든 digital circuit를 만들수 있다. 따라서, Neural Network로 모든것을 만들수 있다.

Xor operation

이렇게 non-linearly separable 문제를 해결할려면 Multi-layer perceptron 이 필요하다.

