#### مباراة الولوج لكلية الطب و الصيدلة مراكش يوليوز 2012 مادة الفيزياء (المدة الزمنية 30 دقيقة)

التمرين<u>01</u>: سرعة انتشار موجة طول حبل (طوله L) هي ٧٥. إذا أصبح طول الحبل هو 3L فإن سرعة الموجة تصبح:

A- 
$$v' = 3v_0$$

B- 
$$v' = v_0/3$$

C- 
$$v' = v_0$$

D- 
$$v' = 6v_0$$

كل الأجوبة أعلاه غير صحيحة -E

التمرين Q2: نطلق جسما بدون سرعة بدنية من ارتفاع h=120 m. إذا اعتبرنا الأحتكاكات مهملة و  $g=9,81 \text{ ms}^{-2}$  فإن الجسم سيصل سطح الأرض بسرعة:

- A- 48,52 ms<sup>-2</sup>
- B- 5,248 ms<sup>-1</sup>
- C- 52,48 ms<sup>-1</sup>
- D- 174,68 kmh<sup>-1</sup>
- كل الأجوبة أعلاه غير صحيحة -E

التمرين Q3: يستعمل جهاز للتسخين موصلا أوميا مقاومته R يخضع لتوتر متناوب جيبي قيمته الفعالة U=220~V و تكون قدرته P=200~W. مقاومة الموصل الأومى هي :

- Α- 24.2 Ω
- B- 2.42 Ω
- C- 24.2 k Ω
- D- 9.09 Ω
- كل الأجوبة أعلاه غير صحيحة -E

التمرين Q4: يمر في وشيعة توتر كهرباني شدته  $\frac{10t}{4+5t}$  + بالثانية و i(t) باللاومبير. إذا علمنا أن التوتر بين مربطي الوشيعة هو  $U_L=1.5~V$  في اللحظة  $U_L=1.5~V$  فقيمة معامل التحريض هي :

- A- 6 H
- B- 60 H
- C- 0.6 H
- D- 6 mH
- كل الأجوبة أعلاه غير صحيحة -E

التمرين O5: نقوم بشحن مكثف سعته  $C=1.4~\mu$ P بتوتر قيمته V 3 ثم نفر غه في وشيعة معامل تحريضها L=40~mH مقاومتها مهملة. الطاقة الكلية المخزونة في الدارة هي :

- A- 6.3 J
- B- 6.3 µJ
- C- 6.3 mJ
- D- 12.6 µJ
- كل الأجوبة أعلاه غير صحيحة E

التمرين  $x_1$  عندما يتغير موضع مركز قصور جسم صلب خاضع لتأثير نابض صلابته  $x_1$  من  $x_2$  فإن شغل القوة المرنة  $x_2$ 

A- 
$$w_{1,2} = \frac{1}{2}k(x_1 - x_2)$$

B- 
$$w_{1,2} = \frac{1}{2}k(x_1 - x_2)^2$$

C- 
$$w_{1,2} = \frac{1}{2}k(x_1^2 - x_2^2)$$

D- 
$$w_{1,2} = \frac{1}{2}k(x_1^2 + x_2^2)^2$$

كل الأجوبة أعلاه غير صحيحة -E

التمرين 07: المعادلة الزمنية لحركة نقطة متحركة M هي: M هي:  $\theta(t) = 4t + 2,5$  . تنجز النقطة M دورتين كاملتين خلال:

- A 2.5 s
- B- 8 s
- C- 5 s
- D- 3,14 s
- كل الأجوبة أعلاه غير صحيحة -E

التعرين 88: تتفتت نواة الرادون  $Rn^{222}$  فتنبعث دقيقة من صنف  $\alpha$  لتعطي نواة لها بدور ها نشاط إشعاعي من نوع  $\alpha$ . النواة الناتجة عن هذين التفتتين هي :

B- 
$$^{214}_{82}Pb$$

التمرين 0: الراديوم 0 التي تصر مشع. بعد سلسلة من التفتتات من نوع  $\alpha$  و  $\alpha$  و  $\alpha$  يتحول إلى نواة الرصاص المستقرة . عدد التفتتات من نوع  $\alpha$  و  $\alpha$  التي تسمح بهذا هي :

- A-  $4\alpha$  et  $5\beta$
- B-  $5\alpha$  et  $5\beta$
- C- 4α et 4β
- D- 5α et 4β
- كل الأجوبة أعلاه غير صحيحة -E

التمرين O10: نتوفر على عينة كتلتها 12mg من الفوسفور  $1_{15}^{32}P$  المشع ذو الدور الإشعاعي  $t_{1/2}=14,2$  . المدة الزمنية اللازمة لتغتت 9mg من هذه العينة هي:

A- 
$$\tau = 14,2 j$$

B- 
$$\tau = 28.4 i$$

C- 
$$\tau = 7.1 i$$

D- 
$$\tau = 21.3 j$$

#### مباراة الوثوج لكلية الطب و الصيدلة مراكش يوثيوز2012 مادة الكيمياء (المدة الزمنية 30 دقيقة)

Q11- نحرق m = 2.7g من الالومنيوم AI في حوجلة تحتوي على 4,8 L من ثنائي الأكسجين وذلك في الظروف التي يكون فيها الحجم المولى M(AI) = 27g/moI فنحصل على أوكسيد الالومنيوم  $AI_2O_3$ . ما هي كتلة أوكسيد الالومنيوم المكونة  $V_m = 24 L/moI$  M(O) = 16g/moI

A: 5,1 g B: 13,566 g C: 2,7 g D: 0,0265 g

كل الأجوبة خاطنة :E:

Q12- بعتبر محلولا مانيا لحمض الميثانويك HCOOH تركيزه  $C_A = 10^{-2}$  mol/l و حجمه V = 100 ml هذا المحلول أعطى  $C_A = 10^{-2}$  mol/l تركيزه HCOOH أحسب ثابتة التوازن لهذا الحمض.

A: 10<sup>-2,9</sup>

B: 10<sup>-3</sup>

C:-3,8

 $D:10^{-3,8}$ 

كل الأجوبة خاطئة :E

 $_{\rm c}$  -  $_{\rm c}$ 

A: 0,01 mol/l

B:0,2 g/I

C: 0.173 mol/l

D: 0.2 mol/l

كل الأجوبة خاطئة: E:

Q14- نتوفر على محلول  $S_1$  مكون من أيونات الحديد  $Te^{3}$  و كمية من حمض الكبريت المركز والوافر. نأخذ حجما  $V_1 = 10 \text{ ml}$  من المحلول  $S_1$  نعايره بواسطة محلول برمنغنات البوتاسيوم ( $K^+$ , MnO<sub>4</sub>) تركيزه  $C_2 = 2.10^{-2}$  mol/1 تركيزه  $K^+$ , تركيزه  $K^+$ ,  $K^+$  المحلول  $K^-$  في المحلول  $K^-$  في المحلول  $K^-$  المحلول  $K^-$ 

A: 0,168.10<sup>-2</sup> mol/l

B: 0,168 mol/l

C: 0,0336 mol/l

**D:** 6,72.10<sup>-3</sup> mol/l

كل الأجوبة خاطئة :E

Q15- نحضر خليطا متساوي المولات من أندريد البروبانويك  $C_2H_5$ COOCOC $_2H_5$  و بوتان -1-أول  $C_4H_9$ OH . كتلة الأندريد المتفاعلة هي M(C)=12 g/mol; M(H)=1 g/mol . كتلة الأندريد المتفاعلة m=6,5 g

**A**: 6,5 g

B: 0,05 mol

C: 3,7 g

D: 2,8 g

كل الأجوبة خاطئة :E

Q16- لتصنيع ميثانوات البنزيل، ندخل في حوجلة 0,3 mol من حمض الإيتانويك و0,3 mol من كحول البنزليك ذي الصيغة C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>OH. عند التوازن، يبقى في الوسط التفاعلي 0,1 mol من حمض الإيتانويك. أحسب قيمة ثابتة التوازن الحاصل في الحوجلة.

A: 1/2

B:2

C: 1/4

D: 4

كل الأجوبة خاطنة: E:

Q17- نضيف كتلة m = 35g من مسحوق الحديد إلى حجم V = 1 litre من محلول كلورور الحديد III ذي تركيز C = 0.5 mol/ فيحدث تفاعل وفق المعادلة : C = 0.5 mol/ من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية عند نهاية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية المتبقية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية التفاعل C = 0.5 mol/ نخص من مسحوق الحديد المتبقية المتبعد المتبعد

A: 21 g

B:14g

C: 0 g

D: 7 g

كل الأجوبة خاطئة :E

ويا المحلول 3,3 ما طبيعة هذا الحمض و  $C = 5.10^{-3} \, \text{mol/l}$  و المحلول 3,3 ما طبيعة هذا الحمض و Q18

ق*وي* :A

ضعيف: B

کربوکسیلی :C

محايد :D

كل الأجوبة خاطئة :E

Q19-نتوفر على حجم  $V_1 = 1$  litre من محلول  $S_1$  لحمض الفوسفوريك ، تركيزه C = 0.1 mol/l . ما هو الحجم  $V_1 = 1$  litre المحلول  $S_1$  الذي يجب أن ناخذه من المحلول  $S_1$  الخصص الفوسفوريك تركيزه  $S_2$  المحلول  $S_1$  المحلول  $S_2$  الخصص الفوسفوريك تركيزه  $S_1$  المحلول  $S_2$  المحلول  $S_3$  المحلول  $S_3$  المحلول  $S_3$  المحلول أن المح

A: 45 ml

B:5 cl

C: 35 cm<sup>3</sup>

D: 0,5 ml

كل الأجوبة خاطئة :E

Q20- الصيغة العامة للإسترات مع1 < n هي :

A:  $C_nH_{2n+1}O_2$ 

 $B: C_nH_{2n}O_2$ 

**C**:  $C_n H_{2n+2} O$ 

D:  $C_nH_{2n}O_{2n}$ 

كل الأجوبة خاطئة :E



#### مباراة الولوج لكلية الطب و الصيدلة مراكش يوليوز 2012 مادة الرياضيات (المدة الزمنية 30 دقيقة)

السؤال <u>21</u>: Q21

ين حدها الأول  $u_0 = 25$  و  $u_2 + u_3 + u_4 = 21$  اذن حدها الأول  $u_0$  هو:

A) -52 B) -16 C) -11 D) 1 E) -10

السؤال <u>22</u>: Q22

: هي  $\lim_{n\to\infty} (\sqrt{n^2+n+1} - \sqrt{n^2-n+1} + (n^2)^{\frac{1}{n}})$ 

A) 2 B)  $+\infty$  C) 3 D) 0 E)  $1\sqrt{-}$ 

السؤال <u>23</u>: Q23

لتكن h الدالة المعرفة بما يلي:

 $h(x) = \frac{\sin\left(2x + \frac{\pi}{3}\right)}{x - \frac{\pi}{3}} \text{ pour } x \neq \frac{\pi}{3} \text{ et } h\left(\frac{\pi}{3}\right) = a$ 

a قيمة a لتكون h متواصلة في النقطة قa هي :

A) 2 B) 0 C) 1 D) -2 E) -1

السؤال <u>24</u>: Q24

 $f(x) = \ln (5 - |x - 1| - |5x - 1|)$  هو : هو الدالة المعرفة بما يلي : هو الدالة المعرفة بما يلي

A)  $]-\frac{1}{2}$ , 0[ (B)  $]-\frac{1}{2}$ ,  $\frac{7}{6}[$  (C) ]0,  $\frac{7}{6}[$  (D)  $]-\infty$ , 0[ (E)  $]-\frac{1}{2}$ ,  $\frac{1}{5}[$ 

السؤال <u>25</u>: Q25

: نعتبر الدالة f(-1) بن قيمة  $f(x) = 1 + 2x + 3x^2 + \dots + 100x^{99}$  نعتبر الدالة

A) 51 B) -52 (C) 50 (D) -50 E) -51

السؤال <u>26</u>: Q26

: هي  $\int_0^1 \frac{1}{x^2-x-1} dx$  هي

A)  $\ln \left( \frac{\sqrt{5}-1}{\sqrt{5}+1} \right)$  B)  $\frac{4}{\sqrt{5}} \ln \left( \frac{3-\sqrt{5}}{2} \right)$  C)  $\frac{2}{\sqrt{5}} \ln \left( \frac{30}{\sqrt{5}+1} \right)$  D)  $-\frac{2}{\sqrt{5}} \ln \left( \frac{3-\sqrt{5}}{2} \right)$  E)  $\frac{2}{\sqrt{5}} \ln \left( \frac{3-\sqrt{5}}{2} \right)$ 

السوال 27: Q27

نعتبر في مجموعة الأعداد العقدية الحدودية :

$$P(z) = z^3 + (\sqrt{3} - i)z^2 + (1 - i\sqrt{3})z - i$$

اذن مجموعة حلول P(z) = 0 هي :

A) 
$$S=\{i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i\}$$
 B)  $S=\{-i, \frac{\sqrt{3}}{2} + \frac{1}{2}i, \frac{\sqrt{3}}{2} - \frac{1}{2}i\}$ 

C) S={ 
$$i, \frac{\sqrt{3}}{4} + \frac{1}{4}i, -\frac{\sqrt{3}}{4} - \frac{1}{4}i$$
 } D) S={ $i, -\sqrt{3} + i, -\sqrt{3} - i$ }

E) S={ 
$$-i$$
,  $-\sqrt{3} + i$ ,  $-\sqrt{3} - i$ }

السؤال <u>28</u>: Q28

الدالة الأصلية للدالة منقطة 0 cos x cos 2x والتي تأخذ القيمة صفر في نقطة 0 هي :

| $A) \frac{1}{3} (\sin x)^3 - \sin x$ | B) $\sin x + \frac{2}{3}\sin 2x$ | C) $\sin x - \frac{2}{3} (\sin x)^3$ |  |
|--------------------------------------|----------------------------------|--------------------------------------|--|
|                                      |                                  |                                      |  |
| D) $\frac{1}{2}(\sin x)^2\sin(2x)$   |                                  | E) $\sin x \sin 2x$                  |  |

السؤال <u>29</u> : Q29

$$f(x) = \frac{1+\ln(x)}{x}$$
: لتكن ب الدالة المعرفة بما يلي

و c منحى الدالة في المستوى المنسوب إلى معلم متعامد ممنظم معادلة المستقيم الماس للمنحى c في النقطة c هي :

A) 
$$y = x - \frac{1}{2}$$
 B)  $y = x + \frac{1}{2}$  C)  $y = \frac{e}{2}x$  D)  $y = -\frac{e}{2}x + 1$  E)  $y = \frac{e}{2} + x$ 

السؤال <u>30</u>: Q30

نعتبر في المستوى العقدي النقط A و B و C التي الحاقها على التوالي هي:

$$z_C = -(2+\sqrt{3})+i$$
 g  $z_B = -1-i$  g  $z_A = 1+i\sqrt{3}$ 

إذن المثلث ABC

| قائم الزاوية في ٨ (٨ | قائم الذاه بة في B) B | قائد الذاه بة في () | غير قائم الزاوية (D | متساوى الأضلاع (E |
|----------------------|-----------------------|---------------------|---------------------|-------------------|

# مباراة الولوج لكلية الطب والصيدلة مراكش يوليوز 2012 مادة الطبيعيات (المدة الزمنية 30 دقيقة)

# سؤال 31: Q31 حدد الإجابة الصحيحة (إجابة واحدة فقط):

تعطى جزيئة واحدة من أستيل كوأنزم- أ(Acetyl Coenzyme A) خلال دورة واحدة من دورة كريبس

12 ATP -A

15 ATP -B

38 ATP - C

2 ATP -D

36 ATP - E

#### سؤال 32:32 حدد الإجابة الصحيحة (إجابة واحدة فقط):

تعتبر نيكوتين اميد النكليوتيد جزيئة ناقلة للالكترونات وتلعب دورا مهما في تفاعلات الأكسدة والاختزال وتنحدر من الفيتامين التالي :

B2 -A

В3 -В

B6 -C

B9-D

B12-E

سؤال 33 : Q33 حدد الإجابة الصحيحة (إجابة واحدة فقط) :

A- الاكسدة الكاملة لواحد جزيئة FADH2 تعطى : ATP

B- الحصيلة الطاقية لانحلال جزيئة الكليكوز هي 4 ATP

C- لا يمكن أن تتم عملية انحلال الكليكوزفي غياب الأكسيجين

D- توجد عملية انحلال جزيئة الكليكوز فقط لدى الخلايا الحيوانية

E- في حالة التخمر الكحولي، واحد مول الكليكوز يعطى 2 مول من الايتانول و2 مول من CO2

#### سؤال 34: Q34 حدد الإجابة الخاطئة (إجابة واحدة فقط):

#### داخل خلية العضلة المخططة

A- تتكون الخبيطات السميكة من الميوزين

B- تتكون الخبيطات الدقيقة من الاكتين و التروبونين و التروبوميوزين

C- نسجل غیاب المیتوکندریات

D- يعتبر الكرياتين فوسفاط مخزونا إستعجاليا من الطاقة, يساهم في تجديد "ATP"

E- يلعب الكالسيوم دورا هاما في التحام رؤوس الميوزين بخبيطات الأكتين

#### سوال 35 : Q35 حدد الإجابة الخاطئة (إجابة واحدة فقط) :

A- القواعد الأزوتية مسؤولة عن امتصاص الضوء من طرف ADN

B- تكون النسبة المئوية ل GC (% GC) منخفضة في تيلوميرات الصبغيات

C- تقاس درجة نقاوة « ADN » بقسمة امتصاص الضوء في 260 نانومتر على الامتصاصية في 280 نانومتر

D- بوليمر از الحمض النووي الريبوزي ناقص الاكسيجين (ADN polymérase), مركب آنزيمي يعمل على تركيب لولب جديد فئ الاتجاه '5 → '3 اعتمادا على اللولب القديم.

E- يبتدئ تركيب البروتينات دائما بإدماج الحمض الأميني الميثيونين، الذي يتم حذفه لاحقا

#### سؤال 36: Q36 حدد الإجابة الخاطئة (إجابة واحدة فقط):

- A- أثناء الدورة الخلوية، تدوم مرحلة السكون أكثر من فترة التقاسم الخلوي الغير المباشر
- B-.طرف الحمض النووي الأحادي المتأخر في فتحة التضاعف و ذو الاستطالة المتقطعة يعرف باتجاه '5 →'3
  - أثناء النسخ يمر الحمض النووي الريبوزي ناقص الأكسيجين إلى الجبلة الشفافة تاركا النواة.
- D- تضاعف الحمض النووي الريبوزي ناقص الأكسيجين, لا يمكن أن يجرى إلا بالانطلاق من الحمض الريبوزي الممهد الذي يحذف فيما بعد.
  - E- عدد القواعد الأزوتية النووية (A+G) دائما يساوى (T+C) بغض النظر عن النوع

#### سؤال 37: Q37 حدد الإجابة الخاطئة (إجابة واحدة فقط):

- A- كل وحدة رمزية يقابلها حمض أميني واحد و يمكن لعدة وحدات رمزية أن ترمز لحمض أميني واحد
- B- الحمض نووي ريبوزي ناقص الأكسيجين لولب مضاعف تجمع بين كل طرف منه: القواعد الأّزوتية
- تتميز سلسلة الحمض النووي الريبوزي ناقص الأوكسيجين الغير المستنسخة بنفس الاتجاه للحمض الريبوزي
   الرسول المنتوج
- البروتينات الناتجة عن الترجمة نسبية لخارجات و باطنات االحمض النووي الريبوزي ناقص الاكسيجين عند
   الكائنات ذات الخلايا الحقيقية
  - $N_t$  تخليق البروتين ينطلق دائما من جانب طرف الأزوت E

#### سؤال 38: Q38 حدد الإجابة الصحيحة (إجابة واحدة فقط):

#### تضم الأجسام المضادة:

- A- سلسلة ثقيلة و سلسلة خفيفة
  - B- أربع سلاسل ثقيلة
- سلسلتان ثقیلتان و سلسلتان خفیفتان
- D- أربع سلاسل ثقيلة و أربع سلاسل خفيفة
  - E- أربع سلاسل خفيفة

# سؤال 39: Q39 حدد الإجابة الصحيحة (إجابة واحدة فقط):

تتكون الخلايا المناعاتية في عضو من بين الأعضاء التالية :

- A- الغدة السعترية
  - B- الطحال
- C- العقد اللمفاوية
  - D- اللوزنان
    - E- الكبد

#### سؤال 40 : Q40 حدد الإجابة الصحيحة (إجابة واحدة فقط) :

ماهي الخلية التي لا تنتمي إلى خلايا الدفاع المناعاتية:

- A- البلعمية
- B- اللمفاوية -ت
- C- اللمفاوية -ب
- D- لمفاويات ذاكرة
- E- الكرية الحمراء

# تصحيح مباراة ولوج السنة الأولى لكلية الطب والصيدلة (مراكش)

#### 2012/2011

# مادة الرياضيات

السؤال 021:

 $(\forall (n,p) \in \square^2)$ ;  $u_n = u_p + (n-p)r$  ليكن  $(u_n)$ ، لدينا المتتالية الحسابية الحسابية الدينا

$$u_2 + u_3 + u_4 = u_6 - 4r + u_6 - 3r + u_6 - 2r$$
$$= 3u_6 - 9r$$
$$= 75 - 9r$$

r = 6 فإن  $u_2 + u_3 + u_4 = 21$  فإن

 $u_0 = u_6 - 6r = -11$ وبالتالي

السؤال Q22:

$$\lim_{n \to +\infty} \left( \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1} + \left( n^2 \right)^{\frac{1}{n}} \right) = \lim_{n \to +\infty} \left( \frac{2n}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n + 1}} + e^{\frac{1}{n} \ln(n^2)} \right)$$

$$= \lim_{n \to +\infty} \left( \frac{2}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + \sqrt{1 - \frac{1}{n} + \frac{1}{n^2}}} + e^{\frac{2\ln(n)}{n}} \right)$$

$$= 2.$$

$$\lim_{n\to+\infty} \frac{\ln(n)}{n} = 0$$
 نذکر أن

السؤال Q23:

لدينا:

$$\lim_{x \to \frac{\pi}{3}} h(x) = h\left(\frac{\pi}{3}\right)$$
 نعلم أن:  $h$  متصلة في  $\frac{\pi}{3}$  إذا وفقط إذا كان

. 
$$\forall x \in \square$$
 ,  $f'(x) = 2\cos\left(2x + \frac{\pi}{3}\right)$  بحيث:  $(2x + \frac{\pi}{3})$  القابلة للإشتقاق على  $(2x + \frac{\pi}{3})$  بعتبر الدالة ال

$$\lim_{x \to \frac{\pi}{3}} h(x) = \lim_{x \to \frac{\pi}{3}} \frac{\sin\left(2x + \frac{\pi}{3}\right)}{x - \frac{\pi}{3}}$$

$$= \lim_{x \to \frac{\pi}{3}} \frac{f(x) - f\left(\frac{\pi}{3}\right)}{x - \frac{\pi}{3}}$$

$$= f'\left(\frac{\pi}{3}\right)$$

$$= 2\cos \pi$$

$$= -2$$

$$a = -2$$

السؤال Q24:

. 
$$D_f = \{x \in \Box \ / \ 5 - |x - 1| - |5x - 1| \succ 0\}$$
 بين  $f(x) = \ln(5 - |x - 1| - |5x - 1|)$  ليينا

نعتبر الجدول التالي:

| x                 | -∞   | 1<br>5 | . +∞ |
|-------------------|------|--------|------|
| x-1               | 1-x  | 1-x    | x-1  |
| 5x-1              | 1-5x | 5x-1   | 5x-1 |
| 5 -  x-1  -  5x-1 | 3+6x | 5-4x   | 7-6x |

$$\begin{split} D_f = & \left( \left] - \infty; \frac{1}{5} \right] \cap \left] - \frac{1}{2}; + \infty \right[ \left] \cup \left( \left[ \frac{1}{5}; 1 \right] \cap \left] - \infty; \frac{5}{4} \right[ \right] \cup \left( \left[ 1; + \infty \right[ \cap \left] - \infty; \frac{7}{6} \right[ \right) \right] \right] \\ = & \left[ -\frac{1}{2}; \frac{7}{6} \right] \end{split}$$

يمكن ملاحظة أن 0 و 1يقبلان صورة بالدالة f و المجال الوحيد من بين المجالات المقترحة الذي يحتوي على العددين 0 و 1 هو  $-\frac{1}{2}$ ,  $-\frac{1}{2}$ .

السؤال Q25:

لدينا : 
$$(p,r) \in \mathbb{Z}^2$$
 مجموع حدود متابعة  $\forall (p,r) \in \mathbb{Z}^2$  ,  $p + (p+r) + (p+2r) + \cdots + d = \left(\frac{d-p}{r} + 1\right) \left(\frac{p+d}{2}\right)$  مجموع حدود متابعة لمتتالية حسابية أساسها  $(p,r) \in \mathbb{Z}^2$ 

إذن:

$$f(-1) = 1 - 2 + 3 - 4 + \dots + 99 - 100$$

$$= \sum_{k=0}^{49} (2k+1) - \sum_{k=1}^{50} 2k$$

$$= \left(\frac{99 - 1}{2} + 1\right) \times \frac{1 + 99}{2} \left(\frac{100 - 2}{2} + 1\right) \times \frac{2 + 100}{2}$$

$$= -50$$

السؤال Q26:

$$\frac{1+\sqrt{5}}{2}$$
 و  $\frac{1-\sqrt{5}}{2}$  و مخلفین هما:  $\frac{1}{2}$  و مخلفین هما:

$$x^2 - x - 1 = \left(x - \frac{1 - \sqrt{5}}{2}\right) \left(x - \frac{1 + \sqrt{5}}{2}\right)$$
 إذن:

و منه:



$$\int_{0}^{1} \frac{1}{x^{2} - x - 1} dx = \frac{1}{\sqrt{5}} \int_{0}^{1} \left( \frac{1}{x - \frac{1 + \sqrt{5}}{2}} - \frac{1}{x - \frac{1 - \sqrt{5}}{2}} \right) dx$$

$$= \left[ \ln \left| x - \frac{1 + \sqrt{5}}{2} \right| - \ln \left| x - \frac{1 - \sqrt{5}}{2} \right| \right]_{x=0}^{x=1}$$

$$= \frac{2}{\sqrt{5}} \ln \left( \frac{3 - \sqrt{5}}{2} \right)$$

السؤال Q27:

$$P(z) = (z-i)(z^2+\sqrt{3}z+1)$$
لدينا  $P(i) = 0$  ومنه:

 $z_2 = \frac{-\sqrt{3}-i}{2}$  مميز المعادلة  $z_1 = \frac{-\sqrt{3}+i}{2}$  هو  $z_1 = \frac{-\sqrt{3}+i}{2}$  هو  $z_1 = 0$  ، إذن للمعادلة حلين متر افقين هما  $z_1 = 0$  هو  $z_2 = 0$  ،

. 
$$S = \left\{i; -\frac{\sqrt{3}}{2} + \frac{1}{2}i; -\frac{\sqrt{3}}{2} - \frac{1}{2}i\right\}$$
 ومنه مجموعة حلول المعادلة  $Z \in \square$  ;  $P(z) = 0$ 

السؤال Q28:

الدالة 
$$u: x \mapsto \sin x - \frac{2}{3}(\sin x)^3$$
 الدالة

$$\forall x \in \Box ; u'(x) = \cos x - 2\sin^2 x \cos x = \cos x (1 - 2\sin^2 x) = \cos x \cos 2x$$

وبما أن u(0) = 0 في الدالة الأصلية للدالة  $\cos x \cos 2x$  على التي تأخذ القيمة u(0) = 0 في الدالة المعرفة بما يلي:

$$x \mapsto \sin x - \frac{2}{3} (\sin x)^3$$

السؤال Q29:

. 
$$y = f'\left(e^{-\frac{1}{2}}\right)\left(x - e^{-\frac{1}{2}}\right) + f\left(e^{-\frac{1}{2}}\right)$$
 هعادلة المستقيم المماس للمنحنى  $(C)$  في النقطة ذات الأفصول  $(C)$ 

$$\forall x \in \Box^{+*}; f'(x) = \frac{1}{x^2} \left( \frac{1}{x} \times x - 1 - \ln x \right) = \frac{-\ln x}{x^2}$$
 دينا:

$$f\left(e^{-\frac{1}{2}}\right) = \frac{e^{\frac{1}{2}}}{2}$$
 ومنه  $f'\left(e^{-\frac{1}{2}}\right) = \frac{e}{2}$  ومنه

 $y = \frac{e}{2}x$  :هي النقطة ذات الأفصول وبالتالي معادلة المستقيم المماس للمنحنى (C) في النقطة ذات الأفصول

السؤال O30:

. 
$$C\left(-2-\sqrt{3};1\right)$$
 و  $B\left(-1;-1\right)$  و  $A\left(1;\sqrt{3}\right)$  دينا  $\left(O,\overset{=}{u},\overset{=}{v}\right)$  و المعلم المتعامد الممنظم المباشر

. 
$$\overrightarrow{BC}\left(-1-\sqrt{3};2\right)$$
 و  $\overrightarrow{AC}\left(-3-\sqrt{3};1-\sqrt{3}\right)$  و  $\overrightarrow{AB}\left(-2;-1-\sqrt{3}\right)$  و إذن

#### مادة الفيزياء

.  $\Delta t$  يعبر عن سرعة انتشار موجة بالعلاقة : d حيث  $v=\frac{d}{\Delta t}$  : المسافة التي قطعتها الموجة وخلال المدة الزمنية t

 $.\upsilon'=rac{3L}{\Delta t}:\Delta t$  وجال مدة زمنية  $\Delta t$  د نمنية  $\Delta t$  وبالنسبة لحبل طوله  $\Delta t$  وخال مدة زمنية وخال مدة زمنية  $\Delta t$ 

.  $\upsilon'=3\upsilon_0$  ومنه نستنج م $\frac{\upsilon'}{\upsilon_0}=\frac{3L}{L}=3$  ومنه نستنج نقصي الزمن  $\Delta t$ 

.  $v^2 - v_0^2 = 2gh$ : لدينا الحركة مستقيمية متتغيرة بانتظام باستعمال العلاقة المستقلة عن الزمن نكتب

 $\upsilon=\sqrt{2 imes 9,81 imes 120}=48,52m/\ s$  : ومنه  $\upsilon=\sqrt{2gh}$  : إذن  $\upsilon_0=0$  ، إذن  $\upsilon_0=0$  ، ومنه  $\upsilon=\sqrt{2}$  ومنه  $\upsilon=\sqrt{2}$  ، ومنه  $\upsilon=\sqrt{2}$  ، القدرة الكهربائية  $\upsilon=\sqrt{2}$  . سؤال 3 ونعلم أن  $\upsilon=\sqrt{2}$  ، مع  $\upsilon=\sqrt{2}$  القدرة الكهربائية (W) .

 $I=rac{U}{R}$  : إذن U=R.I:R وحسب قانون أوم بالنسبة لموصل أومي مقاومته

 $R=rac{(220)^2}{100}=242\Omega$  : نطبیق عددي  $P=rac{U^2}{R} \Rightarrow R=rac{U^2}{P}$  : (1) هکذا تصبح العلاقة

ومنه  $U_L=L.rac{d}{dt}\Big(rac{10t}{4+5t}\Big)$  : يعبر عن التوتر بين مربطي وشيعة  $U_L=L.rac{di}{dt}$  مقاومتها مهملة بالعلاقة :  $U_L=L.rac{di}{dt}$ 

.  $L=rac{U_L}{40}(4+5t)^2$  : كالتالي يكتب كالتالي ،  $U_L=L.rac{40}{(4+5t)^2}$ 

L=0.6H : نجد  $t=3.10^{-3}\,s$  عند اللحظة

 $\xi = \frac{1}{2}C.U_c^2$ : يكتب كالتالي  $\xi = \frac{1}{2}C.U_c^2$  المكثف ذو السعة  $\xi = \frac{1}{2}$ 

.  $\xi = 0.5.1, 4.10^{-6}.(3)^2 = 12, 6.10^{-6} J = 12,6 \mu J$ : تطبیق عددي

 $\delta w = -K_x \vec{i} \cdot \delta \vec{x} \vec{i}$  الشغل الجزئي  $\delta w = \vec{T} \cdot \vec{\delta l}$  أي:  $\delta w = \vec{T} \cdot \vec{\delta l}$  هو:

$$W(\vec{T}) = \int_{x_1}^{x_2} -K_x dx = K \left[ \frac{x^2}{2} \right]_{x_2}^{x_1} = \frac{K}{2} (x_1^2 - x_2^2)$$
 : each  $x = 1$ 

 $\theta=2 imes2\pi=4\pi$  : ينجز دورتين، أي  $\theta(t)=4t+2.5$  . النقطة M تنجز دورتين، أي  $\theta=2 imes2$ 

t=2.5s . المدة الزمنية اللازمة لكي تنجز النقطة M دورتين هي .  $4\pi=4t+2.5$ 

ي يا يانون الإنحفاظ نكتب : Rn  $\longrightarrow_Z^A Y + {}^4_2 He$  . وحسب قانون الإنحفاظ نكتب : سؤال 8 معادلة التفتت هي  $ZY + {}^4_2 He$ 



$$^{A}_{Z}Y=^{218}_{84}Po$$
 :  $\stackrel{}{}$  يَذِن  $\begin{cases} 222=A+4 \\ 86=Z+2 \end{cases} \Rightarrow \begin{cases} A=222-4 \\ Z=86-2 \end{cases} \Rightarrow \begin{cases} A=218 \\ Z=84 \end{cases}$ 

lpha سؤال 9 تتحول ن ويدة الراديوم إلى نويدة الرصاص بعد سلسلة من التفتتات التلقائية والمتتالية من طراز lpha و

: بن معادلة التفتت عامية الإنحفاظ نكتب  $^{226}_{88}Ra$  وحسب قانون الإنحفاظ نكتب إذن معادلة التفتت يا الإنحفاظ الانحفاظ الإنحفاظ الإنحاظ الإنحاظ الإنحاظ الإنحاظ الإنحاظ الانحاظ الإنحاظ الإنحاظ الإنحاظ الإنحاظ الإنحاظ ا

$$\begin{cases} 226 = 206 + 4x \\ 88 = 82 + 2x - y \end{cases} \Rightarrow \begin{cases} 4x = 222 - 206 \\ y = 2x + 82 - 88 \end{cases} \Rightarrow \begin{cases} x = 20/4 = 5 \\ y = 2 \times 5 - 6 = 4 \end{cases}$$

 $\beta$  و 4 من نوع  $\alpha$  و افتتات من نوع  $\alpha$  و 4 من نوع  $\beta$ 

سؤال 10 حسب قانون التناقص الإشعاعي نكتب :  $m(t)=m_0e^{-\lambda t}$  الكتلة المتبقية.

$$m' = m_0 - m(t) = 9.10^{-3} g$$
 ولدينا

$$m'=m_0(1-e^{-\lambda t})$$
: زي

$$\frac{m'}{m_0} = 1 - e^{-\lambda t}$$
: إذن

$$e^{-\lambda t}=1-rac{m'}{m_0}$$
 : ومنه

$$-\lambda t = \ln\!\left(1\!-\!rac{m'}{m_0}
ight)$$
 : وبالتالي

$$t=rac{-1}{\lambda}\ln\!\left(1-rac{m'}{m_0}
ight)$$
: فنحصل على تعبير الزمن

$$\lambda = \frac{\ln(2)}{t_{1/2}}$$
 : ونعلم أن

$$t=rac{-t_{_{1/2}}}{\ln{(2)}}\ln{\left(1-rac{m'}{m_{_{0}}}
ight)}$$
 : إذَن

$$t = \frac{-14,2}{0,693} \ln \left( 1 - \frac{9}{12} \right) = 28,4j$$
: تطبیق عددي

# مادة الكيمياء

سؤال 11 معادلة احتراق الألومنيوم في الأكسجين :  $2Al_2O_{3(S)}$  : وحسب المعاملات التناسبية نكتب بيؤال 11 معادلة احتراق الألومنيوم في الأكسجين : ومدين المعاملات التناسبية الكتب ا

$$\frac{n(Al)}{4} = \frac{n(Al_2O_3)}{2} \Rightarrow m(Al_2O_3) = \frac{m(Al)}{2M(Al)}M(Al_2O_3)$$



$$m(Al_2O_3) = \frac{2.7 \times 102}{2 \times 27}$$
 : تطبیق عددي

.  $m(Al_2O_3)=5$ ,1g : إذن الكتلة المتكونة من  $Al_2O_{3(S)}$  أثناء التفاعل هي الكتلة المتكونة من

 $HCOOH_{(aq)} + H_2O_{(l)} \longrightarrow HCOO^-_{(aq)} + H_3O^+_{(aq)}$ ي ينمذج تفكك حمض الميثانويك كالتالي يا

$$.$$
  $C=[HCOOH]$  و  $K_{A}=rac{[HCOO^{-}][H_{3}O^{+}]}{[HCOOH]}$  و  $K_{A}=rac{[HCOOH]}{[HCOOH]}$ 

 $[HCOO^{-}] = [H_{3}O^{+}]$  : ومن خلال معادلة التفاعل لدينا

$$[H_3O^+] = 10^{-pH} = 10^{-2.9}$$
 :  $0$ 

$$K_{A}=rac{\left[H_{3}O^{+}
ight]^{2}}{C}$$
: يصبح تعبير  $K_{A}$  كالتالي

$$K_A = \frac{10^{-(2\times2,9)}}{10^{-2}} = 10^{2-5,8} = 10^{-3,8}$$
 ;  $\dot{\psi}$ 

.  $Fe_2(SO_4)_3$ ,6 $H_2O$   $\longrightarrow$  2 $Fe^{3+}+3SO_4^{2-}$  : الماء بالمعادلة المعادلة المعادلة كبريتات الحديد في الماء بالمعادلة المعادلة المعاد

 $n(A)=rac{n(Fe^{3+})}{2}$ : نضع  $Fe_2(SO_4)_3,6H_2O=A$  وحسب المعاملات التناسبية لدينا

$$[Fe^{3+}] = \frac{n(Fe^{3+})}{V} = \frac{2n(A)}{V} = \frac{2m(A)}{V.M(A)}$$
 : إِذَن

 $^{2}$  حيث  $^{3}$  التركيز الفعلي لأيونات  $^{4}$  و  $^{3}$  الحجم الكلي للمحلول و الكتلة المولية للمركب  $^{3}$  هي :  $^{3}$   $^{4}$  الحجم  $^{3}$   $^{4}$  الحجم الكلي  $^{3}$   $^{4}$  الحجم  $^{3}$   $^{4}$   $^{5}$   $^{5}$   $^{5}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{6}$   $^{$ 

$$[Fe^{3+}] = \frac{2 \times 2,2}{0.05 \times 496} = 0.22 mol/L$$
: تطبیق عددي

 $.\,Fe^{^{2+}}$   $\longrightarrow$   $Fe^{^{3+}}+e^{^{-}}$  و  $MnO_4^-+8H^++5e^-$  سؤال 14 أنصاف المعادلة :  $MnO_4^-+8H^++5e^-$ 

 $MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$ : المعادلة الحصيلة

$$.\,C_1 = 5rac{C_2V_{BE}}{V} = rac{5 imes2 imes10^{-2} imes16,8}{10} = 0,168 mol/\,\,L$$
 : عند التكافؤ

سؤال 15 يصنع الإستر انطلاقا من تفاعل الأندريد (A) مع الكحول (B) وفق المعادلة: (سؤال 16)

$$m(B)=m(A)rac{M(B)}{M(A)}$$
 : إذن  $n(A)=n(B)$  : الخليط ستوكيومتري $n(A)=n(B)$ 

$$m(B) = \frac{6.5(4 \times 12 + 10 + 16)}{6 \times 12 + 3 \times 16 + 10} = 3.7g$$
 إذن الكتلة المتفاعلة من الكحول (B) هي



#### الجدول الوصفى:

|                  | Acide +   | Alcool SES  | ter + F | H <sub>2</sub> O |
|------------------|-----------|-------------|---------|------------------|
| t = 0            | 0,3       | 0,3         | 0       | 2                |
| $t_{\mathrm{f}}$ | $0.3-x_f$ | $0.3 - x_f$ | $x_f$   | $x_f$            |

 $x_f=0.2mol$  يبقى في الوسط التفاعلي 0.1mol من الحمض، أي أن التقدم هو

. 
$$K = \frac{[Ester][H_2O]}{[Acide][Alcool]} = \frac{x.x}{(0.3 - x_m)(0.3 - x_m)} = \frac{0.2^2}{0.1^2} = 4$$
 : ومنه نستنتج أن

 $2Fe^{3+}+Fe$   $\longrightarrow$   $3Fe^{2+}$  : سؤال 17 المعادلة التفاعل الحاصل تكتب كالتالي

$$n_{\scriptscriptstyle 0}(Fe^{\scriptscriptstyle 3+})=C.V=0,5mol$$
 : هي  $Fe^{\scriptscriptstyle 3+}$  هي كمية المادة البدئية للمتفاعل

$$n_{0}(Fe)=0,625mol$$
 : هي  $Fe$  هي المادة البدئية للمتفاعل على المادة البدئية البدئية المادة البدئية المادة البدئية المادة البدئية البد

#### جدول التطور:

|                  | $2Fe^{3+} + Fe$ | $\longrightarrow$ 3Fe <sup>2+</sup> |         |
|------------------|-----------------|-------------------------------------|---------|
| t = 0            | 0,5             | 0,625                               | 0       |
| $t_{\mathrm{f}}$ | $0.3 - 2 x_f$   | $0,625-x_f$                         | $3 x_f$ |

 $x_{m}=rac{0.5}{2}=0.25mol$  أو  $x_{m}=0.625mol$  تحديد التقدم القصوي، حسب الجدول لدينا

$$x_{m} = 0.25 mol$$

وتكون قيمة التقدم القصوي هي الأصغر أي

 $n_f(Fe) = 0.625 - 0.25 = 0.375 mol$  : إذن كمية مادة الحديد المتبقية هي

$$n_f(Fe) = rac{m_f(Fe)}{M(Fe)} \Rightarrow m_f(Fe) = n_f(Fe).M(Fe)$$
 ونعلم أن  $m_f(Fe) = n_f(Fe).M(Fe)$ 

 $m_f(Fe) = 0.375 \times 56 = 21g$ : تطبیق عددي

.  $pH \neq -\log(C)$  : ومنه نستنتج أن  $pH = -\log(C)$  ، ومنه نستنتج أن الحمض  $pH = -\log(C)$  ، ومنه نستنتج أن الحمض ضعيف .

$$V_2 = rac{C_2 V_3}{C} = rac{0.01 imes 50}{0.1} = 5 mL$$
 : إذن  $CV_2 = C_2 V_3$  : سؤال 19 حسب علاقة التخفيف نكتب

بيؤال 20 الصيغة العامة للإستر  $C_nH_{2n}O_2$  ، أمثلة :

| C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> | H OCH3                                 | n = 2 |
|----------------------------------------------|----------------------------------------|-------|
| C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> | О<br>Н <sub>3</sub> С ОСН <sub>3</sub> | n = 3 |

