

File Changes Classification for analysis

Ankita Bajpai Atefeh Khajeh Hamed Jalali Mohsen Haghaieghshenasfard

Situation

- Designing a model for a software project depends on several criteria and conditions.
- There is a direct relationship between the model of the project and the level of complexity regarding to diverse parts and phases of it.
- Although each model is designed accurately, it is needed to be altered during the implementation phase.

Project Goal

• Control of metrics and relationships between files and merge or split them to make the model more robust

More Description

- Sampling of data based on the hunk collection
- Combine its columns and define new features
- Designing and implementing the proposed model both based on machine learning algorithms

Raw Data

Hunk Collection

file_action_id	new_start	new_lines	old_start	old_lines	content
5853eb373ee1b95d6d8826f3	7	4	7	2	+ ZOOKEEPER-1433. improve
5853eb373ee1b95d678826f3	18	2	17	0	+ ZOOKEEPER-1339. C client
5853eb373ee1b95d6d8826f6	439	1	439	1	- if (pyw-> permanent == 0 &

newHunk Dataframe

(file_action_id)	sumNewLines	sumOldLines	totalChanges	frequenc $\hat{\bar{y}}$
5853eb373ee1b95d618826f3	6	0	6	1
5853eb373ee1b95d618826f6	1	1	2	1
5853eb373ee1b95d628826f3	2	0	2	1

Key Points

 Classifying of file changes based on some analytic statistics i.e.
Min, 1stQu., Median, Mean, 3rd Qu., Max

Key Points (cont.)

• k-means algorithm

Recommendation

- Designing a boosting model based on several lazy models constructing by different features regarding their correlations
- Run the predictive model hourly and daily to be proactive on the future complexity of project

Further Works

- Find the relationships between different files and identify which files are highly correlated using "Graph Mining"
- Designing a Fuzzy model for controlling the complexity of the project based on "Computing with Words" as weights of the model are determined by words and Fuzzy Memberships

Online Reverse Modeling in Software Engineering

QUESTION?