Università degli Studi di Milano - Bicocca Dipartimento di Informatica, Sistemistica e Comunicazione Corso di Laurea Magistrale in Informatica

Progettazione e Implementazione di un Sistema di Adaptive Cruise Control basato su Logica Fuzzy

Progetto Sistemi Complessi e Incerti

Autore: Simone Lesinigo 899540

Indice

In	Introduzione				
1	Stat	o dell'	Arte	2	
2	Mod	dello P	roposto	4	
	2.1	Definiz	zione delle Variabili Linguistiche e Membership Functions	4	
		2.1.1	Weather Condition	4	
		2.1.2	Time Headway	5	
		2.1.3	Relative Velocity	8	
		2.1.4	Acceleration	10	
	2.2	Creazi	one delle Regole	11	
3	Imp	lement	tazione	12	
	3.1	Datase	et di riferimento e calcoli preliminari	12	
		3.1.1	Timestamps	13	
		3.1.2	Ego Acceleration	13	
		3.1.3	Leader Acceleration	13	
		3.1.4	Ego Velocity	13	
		3.1.5	Leader Velocity	13	
		3.1.6	Space Gap	14	
4	Rist	ıltati e	e Analisi	15	
5	Con	clusion	ni	16	
Δ	Reg	alo del	Sistema Fuzzy	18	

Elenco delle figure

2.1	Membership Functions di Weather Condition	5
2.2	Membership Functions di Time Headway	6
2.3	Membership Functions di Relative Velocity	9
2.4	Membership Functions di Acceleration	11

Elenco delle tabelle

2.1	Confronto tra distanza di sicurezza da mantenere e distanza mantenuta	•	8
A.1	Regole del Sistema Fuzzy		19

Introduzione

Negli ultimi anni, i sistemi avanzati di assistenza alla guida (ADAS, acronoimo di Advanced Driver Assistance Systems) hanno assunto un ruolo centrale nella progettazione dei veicoli moderni, contribuendo a migliorare la sicurezza e il comfort del conducente. Tra questi sistemi, l'Adaptive Cruise Control (ACC) permette di mantenere automaticamente una distanza di sicurezza dal veicolo che precede, adattando la velocità del veicolo controllato in funzione delle condizioni del traffico.

Il presente lavoro si concentra sulla progettazione di un sistema fuzzy per l'ACC, che sfrutta logiche di tipo linguistico per gestire in maniera graduale e naturale le accelerazioni e le decelerazioni del veicolo. L'approccio fuzzy si rivela particolarmente efficace per modellare comportamenti complessi come quelli della guida in autostrada, dove le velocità e le distanze tra veicoli variano continuamente.

Nel paper viene illustrato come è stato progettato e implementato il sistema fuzzy, descrivendo la scelta delle variabili linguistiche, la costruzione degli insiemi fuzzy e la definizione delle regole di controllo. Inoltre, viene presentata una simulazione basata su dati reali per analizzare i risultati e valutare l'efficacia del sistema nel regolare la velocità e mantenere la sicurezza e il comfort durante la guida.

1 Stato dell'Arte

La crescente complessità del traffico stradale e la ricerca di una maggiore sicurezza hanno spinto l'evoluzione dei sistemi di assistenza alla guida (ADAS), tra cui l'Adaptive Cruise Control (ACC). L'ACC è progettato per mantenere una distanza di sicurezza costante dal veicolo che precede, gestendo automaticamente la velocità e la distanza tra i veicoli.

Sebbene i controller PID siano ampiamente utilizzati per la loro robustezza e i bassi requisiti hardware, spesso necessitano di una calibrazione complessa per adattarsi ai diversi scenari di guida e non riescono a ottenere un controllo ottimale. Per superare queste limitazioni, la ricerca si è orientata verso approcci più flessibili come la **logica fuzzy** e il **Model Predictive Control (MPC)** [1].

Applicazione della Logica Fuzzy nell'ACC

I sistemi basati su logica fuzzy sono particolarmente adatti per gestire la complessità e l'incertezza del comportamento di guida. Essi modellano il processo decisionale umano, utilizzando variabili linguistiche e regole basate sull'esperienza del guidatore. La logica fuzzy permette di ottenere una risposta più fluida e naturale rispetto ai metodi di controllo tradizionali, migliorando il comfort di guida [2].

Sistemi a Logica Fuzzy Gerarchici e a Cascata: Per gestire un gran numero di variabili di input senza aumentare esponenzialmente il numero delle regole, sono stati proposti sistemi a cascata o gerarchici, in cui più sistemi di inferenza fuzzy sono collegati tra loro. Questo approccio riduce il tempo di computazione, rendendo il sistema adatto per applicazioni in tempo reale [2].

Confronto con altri approcci: In un'implementazione su un'auto modello autonoma, è stato dimostrato che un controller fuzzy può fornire una risposta più fluida e mantenere un errore di distanza inferiore rispetto a un controller PID tradizionale [3]. Un'altra ricerca ha evidenziato come un ACC che combina una rete neurale e un algoritmo fuzzy superi le prestazioni delle reti neurali convenzionali.

Integrazione con altre tecnologie

Studi più recenti hanno esplorato l'integrazione della logica fuzzy con altre metodologie di controllo avanzate. Ad esempio, una strategia di controllo gerarchica combina un osservatore dello stato del veicolo basato su machine learning, un Fuzzy Model Predictive Controller (fuzzy-MPC) e un controller esecutivo PID per migliorare la precisione di tracciamento e la stabilità del sistema. Questo approccio ibrido mira a bilanciare le prestazioni di tracciamento, il comfort e la robustezza del controllo in ambienti incerti [4].

In sintesi, i controller a logica fuzzy rappresentano una soluzione robusta e intuitiva per la

progettazione di sistemi ACC, offrendo prestazioni superiori in termini di fluidità e comfort di guida rispetto ai controller classici. L'integrazione di questi sistemi con altre tecnologie, come l'MPC e il machine learning, apre la strada a soluzioni ancora più sofisticate, in grado di adattarsi dinamicamente a scenari di guida complessi e variabili.

2 Modello Proposto

Il presente capitolo descrive la progettazione del sistema fuzzy impiegato per l'Adaptive Cruise Control.

Si considera un veicolo di categoria M1 (auto destinata al trasporto di persone, con al massimo otto posti a sedere oltre al conducente) dalle prestazioni medie in termini di accelerazione e decelerazione.

L'ambiente di riferimento è quello autostradale, in cui i veicoli si muovono in traiettorie rettilinee.

D'ora in avanti, il veicolo che segue verrà indicato come ego (ossia il veicolo dell'utilizzatore del sistema ACC), mentre il veicolo che precede verrà indicato come leader.

Per le velocità di esercizio si è scelto un intervallo compreso tra $70 \frac{\mathrm{km}}{\mathrm{h}}$ e $150 \frac{\mathrm{km}}{\mathrm{h}}$: il valore minimo riflette le condizioni tipiche di marcia autostradale, mentre il valore massimo coincide con il limite consentito sulle autostrade italiane (generalmente $130 \frac{\mathrm{km}}{\mathrm{h}}$, elevabile a $150 \frac{\mathrm{km}}{\mathrm{h}}$ in circostanze particolari [5]).

2.1 Definizione delle Variabili Linguistiche e Membership Functions

Nel modello sono state introdotte quattro variabili linguistiche: tre in input e una in output.

Di seguito sono presentate le 3 variabili di input.

2.1.1 Weather Condition

La variabile weather_condition rappresenta lo stato meteorologico e assume valori normalizzati nell'intervallo [0, 1], dove 0 corrisponde a condizioni pessime (bad) e 1 a condizioni ottimali (good).

• Termini linguistici:

- bad: trapezoidale definita dai punti [0.0, 0.0, 0.35, 0.65].
- good: trapezoidale definita dai punti [0.35, 0.65, 1.0, 1.0].
- Universo: [0, 1]

La Figura 2.1 mostra le Membership Functions associate ai termini bad e good.

Figura 2.1: Membership Functions di Weather Condition.

2.1.2 Time Headway

La variabile time_headway rappresenta il tempo necessario affinché il veicolo ego percorra la distanza che lo separa dal veicolo leader. È definita come:

$$time_headway [s] = \frac{space_gap [m]}{ego_velocity [m/s]}$$

dove space_gap è la distanza tra i due veicoli ed ego_velocity è la velocità dell'ego.

Annotazione Si osservi che la formula impiega l'assunzione semplificativa secondo cui il veicolo leader sia in grado di arrestarsi istantaneamente. Tale ipotesi, evidentemente irrealistica, trascura lo spazio di frenata necessario al leader, che contribuirebbe ad aumentare il valore effettivo del time_headway. Questa approssimazione è tuttavia considerata accettabile nell'ottica di una modellazione semplificata e risulta coerente con quanto previsto dalla normativa ACC ISO 15622:2018 [6].

• Termini linguistici:

- dangerous: trapezoidale definita dai punti [0.0, 0.0, 0.8, 1.5].
- short: triangolare definita dai punti [1.0, 2.0, 3.0].
- adequate: triangolare definita dai punti [2.5, 3.75, 5.0].
- long: triangolare definita dai punti [4.5, 5.75, 7.0].
- very_long: trapezoidale definita dai punti [6.5, 7.0, 15.5, 15.5].

• Universo: [0, 15.5] s. Il valore minimo corrisponde al limite fisico teorico, sebbene sia considerato praticamente irraggiungibile. Il valore massimo è stato determinato sulla base della portata tipica di un front radar sensor prodotto da BOSCH [7], pari a 300 m, e di una velocità minima del veicolo ego pari a 70 km/h. Pertanto, il massimo time_headway è calcolato come:

$$\max(\text{time_headway})\left[s\right] = \frac{300\left[m\right]}{\frac{70\left[km/h\right]}{3.6}} = \frac{300\left[m\right]}{19.\overline{4}\left[m/s\right]} \approx 15.4\left[s\right]$$

Figura 2.2: Membership Functions di Time Headway

Motivazioni della Scelta della Variabile

Si è preferito utilizzare la variabile time_headway piuttosto che introdurre un insieme separato di variabili come distanza, ego_velocity e leader_velocity, sia per contenere la complessità del sistema riducendo il numero di regole da definire, sia perché le Membership Functions nei sistemi fuzzy non sono progettate per adattarsi dinamicamente in base a uno o più parametri.

Ad esempio, risulterebbe problematico definire in modo univoco cosa significhi una distanza dangerous: quale intervallo tra 0 m e 300 m dovrebbe essere considerato tale? La pericolosità della distanza è infatti fortemente dipendente dalla velocità del veicolo.

Consideriamo la relazione:

$$d_{\text{sicurezza}}[\mathbf{m}] = d_{\text{reazione}}[\mathbf{m}] + d_{\text{frenata}}[\mathbf{m}]$$
 (2.1)

dove $d_{\text{sicurezza}}$ rappresenta la distanza di sicurezza, d_{reazione} è lo spazio percorso durante il tempo di reazione (ovvero il tempo necessario affinché il conducente inizi la frenata), e d_{frenata} è lo spazio di arresto effettivo.

Si ha:

$$d_{\text{reazione}} = v \cdot t$$

dove v è la velocità del veicolo in m/s e t è il tempo di reazione in secondi.

Lo spazio di frenata è invece espresso da:

$$d_{\text{frenata}} = \frac{v^2}{2 \, a \, \mu}$$

dove a è la decelerazione massima e μ è il coefficiente di attrito con il manto stradale (in condizioni ottimali pari a 0.8) [8].

Se due veicoli sono separati da 20 m, tale distanza risulta adeguata se la velocità dell'ego è pari a $30 \,\mathrm{km/h}$. In tal caso, assumendo un tempo di reazione di 1 s, un coefficiente di attrito $\mu = 0.8$ e una brusca decelerazione pari a 1 g (ossia $a = -9.81 \,\mathrm{m/s^2}$), si ottiene:

$$\begin{split} d_{\text{sicurezza}} &= v \cdot t + \frac{v^2}{2 \, a \, \mu} \\ \\ d_{\text{sicurezza}} &= \frac{30 \, \left[\frac{\text{km}}{\text{h}}\right]}{3.6} \times 1 \, [\text{s}] + \frac{\left(\frac{30 \, \left[\frac{\text{km}}{\text{h}}\right]}{3.6}\right)^2}{2 \times 9.81 \, \left[\frac{\text{m}}{\text{s}^2}\right] \times 0.8} = \\ &= 8.\overline{33} \, [\text{m}] + \frac{\left(8.\overline{33} \, \left[\frac{\text{m}}{\text{s}}\right]\right)^2}{15.7 \, \left[\frac{\text{m}}{\text{s}^2}\right]} = 8.\overline{33} \, \text{m} + \frac{69.4 \, \left[\frac{\text{m}^2}{\text{s}^2}\right]}{15.7 \, \left[\frac{\text{m}}{\text{s}^2}\right]} = \\ &= 8.\overline{33} \, [\text{m}] + 4.42 \, [\text{m}] \approx 12.75 \, \text{m}. \end{split}$$

Viceversa, alla velocità di $130 \,\mathrm{km/h}$, la medesima distanza di $20 \,\mathrm{m}$ risulterebbe del tutto insufficiente. Ricalcolando infatti la distanza di sicurezza da mantenere nelle stesse condizioni si ottiene:

$$d_{\rm sicurezza} \approx 119.1 \, {\rm m}$$

La variabile time_headway consente di modellare direttamente il tempo che separa i due veicoli indipendentemente dalla loro velocità assoluta o dalla distanza in metri. Di fatto, agisce come una forma di normalizzazione del concetto di distanza, rendendolo più interpretabile e stabile all'interno del sistema fuzzy.

Scelta degli intervalli

Per definire gli intervalli della variabile linguistica time_headway, ci si è basati sulla cosiddetta regola dei 3 secondi [9], un criterio ampiamente adottato nella sicurezza stradale
per garantire una distanza adeguata dal veicolo che precede. Tale regola stabilisce che,
indipendentemente dalla velocità, il conducente dovrebbe mantenere almeno tre secondi di
distanza temporale dal veicolo antistante, assicurando così il tempo necessario per reagire
in caso di frenata improvvisa.

Partendo da questo principio, è stato definito l'intervallo per la categoria adequate. Successivamente, sono stati impostati gli intervalli per le categorie dangerous e short, seguiti da quelli per long e very_long.

Per verificare la correttezza degli intervalli scelti, la Tabella 2.1 confronta la distanza da mantenere calcolata tramite l'equazione 2.1 con la distanza effettivamente mantenuta per i diversi valori di ego_velocity e time_headway. Nella tabella è inoltre riportata la differenza percentuale tra le due misure.

Si sottolinea che, per il calcolo di entrambe le distanze, sono stati utilizzati i valori $a=9.81~\mathrm{m/s^2}$ e $\mu=0.8$ come in precedenza, modificando però il tempo di reazione da 1 s a 2 s, in quanto si presuppone che, in autostrada con ACC attivo, il conducente presti un livello di attenzione ridotto e impieghi più tempo a reagire.

Velocità	Time	Distanza da	Distanza	Differenza %
$[\mathrm{km/h}]$	Headway [s]	mantenere [m]	mantenuta [m]	Differenza 70
	0.5	62.977	33.810	-86.266
	1.0		43.533	-44.666
	2.0		62.977	0.000
70	3.0		82.421	+23.591
10	4.0		101.866	+38.177
	7.0		160.199	+60.688
	10.0		218.533	+71.182
	15.0		315.755	+80.055
	0.5	120.594	74.761	-61.307
	1.0		90.038	-33.936
	2.0		120.594	0.000
110	3.0		151.149	+20.215
110	4.0		181.705	+33.632
	7.0		273.372	+55.886
	10.0		365.038	+66.964
	15.0		517.816	+76.711
	0.5	193.942	131.442	-47.550
	1.0		152.275	-27.363
	2.0		193.942	0.000
150	3.0		235.609	+17.685
150	4.0		277.275	+30.054
	7.0		402.275	+51.789
	10.0		527.275	+63.218
	15.0		735.609	+73.635

Tabella 2.1: Confronto tra distanza di sicurezza da mantenere e distanza mantenuta.

2.1.3 Relative Velocity

La variabile relative_velocity rappresenta la velocità relativa del veicolo leader rispetto al veicolo ego. Essa è definita come:

 $relative_velocity = leader_velocity - ego_velocity.$

Annotazione Si noti che, sebbene la variabile rappresenti la velocità relativa del *leader* rispetto all'*ego*, i termini linguistici sono definiti dal punto di vista dell'*ego*. Ad esempio, se il *leader* viaggia a $30 \, \frac{\text{m}}{\text{s}}$ e l'*ego* a $20 \, \frac{\text{m}}{\text{s}}$, si ha:

relative_velocity =
$$10 \frac{\text{m}}{\text{s}}$$
,

ossia il leader è $36 \frac{\mathrm{km}}{\mathrm{h}}$ più veloce dell'ego. In questo caso, il fenomeno rientra nella categoria moving_away_fast, poiché l'ego si sta allontanando rapidamente dal leader.

• Termini linguistici:

- approaching_fast: trapezoidale definita dai punti [-23.0, -23.0, -10.0, -5.0].
- approaching: triangolare definita dai punti [-7.0, -3.0, -0.5].
- steady: triangolare definita dai punti [-1.0, 0.0, 1.0].
- moving_away: triangolare definita dai punti [0.5, 3.0, 7.0].
- moving_away_fast: trapezoidale definita dai punti [5.0, 10.0, 23.0, 23.0].
- Universo: $[-23.0, +23.0] \frac{m}{s}$

Gli estremi dell'universo sono stati determinati calcolando, in valore assoluto, la massima differenza di velocità tra il veicolo leader e il veicolo ego, come mostrato di seguito:

$$\max(\text{relative_velocity})\,[\text{m/s}] = \frac{150\,[\text{km/h}] - 70\,[\text{km/h}]}{3.6} = 22.\overline{2}\,[\text{m/s}]$$

 $In \ Figura \ 2.3 \ sono \ riportate \ le \ Membership \ Functions \ associate \ alla \ variabile \ {\tt relative_velocity}.$

Figura 2.3: Membership Functions di Relative Velocity

Di seguito viene presentata l'unica variabile in *output*.

2.1.4 Acceleration

La variabile acceleration rappresenta l'accelerazione (positiva, negativa o nulla) impartita al veicolo:

• Termini linguistici:

- strong_deceleration: trapezoidale definita dai punti [-3.0, -3.0, -2.5, -2.0].
- medium_deceleration: triangolare definita dai punti [-2.5, -1.8, -1.0].
- light_deceleration: triangolare definita dai punti [-1.2, -0.7, -0.2].
- zero_acceleration: trapezoidale definita dai punti [-0.3, -0.1, 0.1, 0.3].
- light_acceleration: triangolare definita dai punti [0.2, 0.7, 1.2].
- medium_acceleration: triangolare definita dai punti [1.0, 1.8, 2.5].
- strong_acceleration: trapezoidale definita dai punti [2.0, 2.5, 3.0, 3.0].

Si noti che per il termine zero_acceleration è stata scelta una funzione trapezoidale, anziché triangolare. Questa decisione consente di rappresentare un intervallo più ampio di valori prossimi allo zero come "assenza di accelerazione", evitando che piccolissime variazioni (inevitabili nei sensori o nel modello) vengano interpretate come continue micro-accelerazioni o micro-decelerazioni. In questo modo il sistema risulta più stabile e garantisce una guida percepita come più confortevole dal conducente.

• Universo: $[-3.0, +3.0] \frac{m}{c^2}$

Un'accelerazione al di fuori di tale intervallo è considerata non confortevole e quindi incompatibile con l'obiettivo di comfort che il sistema ACC deve garantire. In particolare:

- Una decelerazione inferiore a $-3 \frac{m}{s^2}$ è considerata troppo brusca CERCARE MAX DEC CONFORTEVOLE; in questi casi l'intervento viene demandato all'AEB (Autonomous Emergency Braking), un sistema ADAS distinto incaricato della gestione delle frenate di emergenza.
- Un'accelerazione **superiore** a $+3 \frac{m}{s^2}$ è considerata eccessiva e non confortevole per il conducente e i passeggeri.

In Figura 2.4 sono riportate le Membership Functions associate alla variabile acceleration.

Figura 2.4: Membership Functions di Acceleration

2.2 Creazione delle Regole

Per la definizione delle regole di controllo sono state considerate tutte le possibili combinazioni dei termini linguistici delle variabili in input, in modo da garantire la copertura di tutti i possibili scenari. Il numero totale delle regole si ottiene moltiplicando il numero di termini di ciascuna variabile di input:

$$n^{\circ}$$
 regole = $2 \times 5 \times 5 = 50$

Tale numero è relativamente contenuto per un controller fuzzy, anche grazie agli accorgimenti già illustrati nella Sezione 2.1.2; per questo motivo si è deciso di non adottare un approccio a cascata, privilegiando invece una singola base di regole che mantiene la struttura del sistema più semplice.

Una volta generate tutte le combinazioni, è stato quindi assegnato il termine linguistico di output ritenuto più appropriato (relativo alla variabile acceleration). L'elenco completo delle regole è riportato in Appendice A.1.

Si evidenzia che, a parità di valore delle altre variabili, in condizioni meteorologiche peggiori sono stati scelti output di accelerazione più prudenti, al fine di riflettere una maggiore attenzione alla sicurezza.

3 Implementazione

Il modello è stato implementato in Python utilizzando la libreria scikit-fuzzy. L'intero codice sorgente è disponibile su GitHub.

L'output del sistema fuzzy non è stato utilizzato direttamente, ma sottoposto a un *fil-tro passa-basso* al fine di ridurre la variabilità rapida del segnale ed aumentare il comfort percepito dal conducente. Il filtro è descritto dalla seguente equazione:

$$a_f(t) = \alpha \cdot a(t) + (1 - \alpha) \cdot a_f(t - 1),$$

dove:

- $a_f(t)$ rappresenta l'accelerazione filtrata
- $\alpha = 0.1$ è il coefficiente di smoothing scelto
- \bullet a(t) rappresenta l'accelerazione fuzzy grezza in output
- $a_f(t-1)$ è rappresenta l'accelerazione filtrata al passo precedente

Una visualizzazione interattiva del funzionamento di tale filtro è disponibile su GeoGebra [10].

Inoltre, per eliminare oscillazioni di bassa entità, tutte le accelerazioni con valore assoluto inferiore a $0.12\,\frac{\mathrm{m}}{\mathrm{s}^2}$ sono state poste pari a zero. Questa soglia consente di evitare micro-variazioni potenzialmente fastidiose. Si noti che un valore troppo elevato potrebbe generare accelerazioni più brusche nel momento in cui il sistema reagisce a una variazione.

Sia la soglia di $0.12 \frac{m}{s^2}$ sia il coefficiente $\alpha = 0.1$ sono stati scelti empiricamente tramite test, bilanciando la reattività del sistema con la stabilità e il comfort del conducente.

3.1 Dataset di riferimento e calcoli preliminari

Per valutare la bontà del modello, è stato utilizzato un dataset pubblico del 2019 [11], che d'ora in avanti verrà denominato dataset_reale, contenente dati raccolti da un veicolo dotato di ACC su un tratto dell'Interstate-65 (un'autostrada statunitense) per una durata di 15 minuti. I dati sono stati acquisiti direttamente tramite l'unità radar di serie del veicolo e il CAN bus. I confronti tra i dati osservati e quelli simulati sono riportati nel Capitolo 4.

Il dataset_reale include le seguenti colonne:

- timestamps [s]: istanti di campionamento (frequenza di 10 Hz)
- ego_velocity [m/s]: velocità del veicolo ego

- leader_velocity [m/s]: velocità del veicolo leader
- space_gap [m]: distanza tra i veicoli
- ACC command acceleration [m/s²]: accelerazione richiesta dal sistema ACC per il veicolo *ego*

È stato creato un dataset, che d'ora in avanti verrà denominato dataset_simulazione, contenente i dati generati dalla simulazione. Esso è strutturato con le stesse colonne del dataset_reale, a cui sono state aggiunte due ulteriori variabili, ego_acceleration e leader_acceleration, in modo da consentire un confronto diretto tra i risultati del modello e i dati osservati. Le colonne che compongono il dataset_simulazione sono riportate di seguito.

3.1.1 Timestamps

La simulazione utilizza la stessa frequenza del dataset_reale, ovvero 10 Hz (0.1 secondi per passo), per un totale di 9000 misurazioni (15 minuti).

3.1.2 Ego Acceleration

L'accelerazione del veicolo ego viene calcolata ad ogni passo come output del modello fuzzy e filtrata attraverso il filtro EWMA. Al tempo t=0 l'accelerazione iniziale è impostata a zero e, come detto in precedenza, qualsiasi valore di accelerazione con modulo inferiore a $0.12 \, \frac{\mathrm{m}}{\mathrm{s}^2}$ viene posto uguale a zero.

3.1.3 Leader Acceleration

L'accelerazione del veicolo *leader* viene calcolata a partire dal dataset_reale come variazione di velocità tra due campioni consecutivi:

$$a_t(\text{leader}) = \frac{v_t(\text{leader}) - v_{t-1}(\text{leader})}{\Delta t}$$

3.1.4 Ego Velocity

La velocità del veicolo *ego* viene aggiornata ad ogni passo della simulazione. Come valore iniziale è stato preso il primo campione presente nel dataset_reale.

Ad ogni step temporale $\Delta t=0.1\,\mathrm{s},$ la nuova velocità è calcolata secondo la legge del moto uniformemente accelerato:

$$v_t(\text{ego}) = v_{t-1}(\text{ego}) + a_t(\text{ego}) \cdot \Delta t$$

dove $a_t(ego)$ è l'accelerazione filtrata in output dal modello del veicolo ego al tempo t.

Annotazione Come verrà visto successivamente AGGIUNGI RIFERIMENTO, l'accelerazione impartita dal modello non corrisponderà all'accelerazione effettiva del veicolo nella realtà. Tuttavia, non essendo possibile testare il modello proposto su un veicolo reale, questa semplificazione è considerata accettabile per valutare la performance del sistema.

3.1.5 Leader Velocity

La velocità del veicolo *leader* viene copiata direttamente dalla colonna corrispondente del dataset_reale.

3.1.6 Space Gap

Il valore iniziale dello space_gap è preso dal primo campione del dataset_reale.

Ad ogni passo temporale, lo spazio tra i veicoli viene aggiornato come:

$$\operatorname{space_gap}_t = \operatorname{space_gap}_{t-1} + \left(\operatorname{leader_travelled_space}_t - \operatorname{ego_travelled_space}_t\right)$$

dove le distanze percorse dai veicoli durante lo step Δt sono:

$$\operatorname{ego_travelled_space}_t = v_{t-1}(\operatorname{ego}) \cdot \Delta t + \frac{1}{2} a_t(\operatorname{ego}) \cdot (\Delta t)^2$$

$$\text{leader_travelled_space}_t = v_{t-1}(\text{leader}) \cdot \Delta t + \frac{1}{2} a_t(\text{leader}) \cdot (\Delta t)^2$$

Per ciascun timestamp vengono inoltre ricalcolati i parametri necessari al modello fuzzy:

$$\text{time_headway}_t = \frac{\text{space_gap}_t}{v_t(\text{ego})}$$

relative_velocity_t =
$$v_t(\text{leader}) - v_t(\text{ego})$$

Questi valori vengono utilizzati come input dal modello per calcolare la nuova accelerazione in output.

4 Risultati e Analisi

5 Conclusioni

Bibliografia

- [1] P. Panse, A. Singh e C. Satsangi, «Adaptive Cruise Control using Fuzzy Logic,» International Journal of Digital Application and Contemporary research, vol. 3, p. 7, mar. 2015. indirizzo: https://www.researchgate.net/publication/280314821.
- [2] M. Simic, «Cascaded Fuzzy Logic for Adaptive Cruise Control,» MIST INTERNA-TIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, vol. 10, n. 1, pp. 33-40, 2022. DOI: 10.47981/j.mijst.10(01)2022.320(33-40). indirizzo: https://mijst.mist.ac.bd/mijst/index.php/mijst/article/view/320.
- [3] K. Alomari, R. Mendoza, S. Sundermann, D. Goehring e R. Rojas, «Fuzzy Logic-based Adaptive Cruise Control for Autonomous Model Car,» gen. 2020, pp. 121–130. DOI: 10.5220/0010175101210130.
- [4] J. Guo, Y. Wang, L. Chu, C. Bai, Z. Hou e D. Zhao, «Adaptive Cruise System Based on Fuzzy MPC and Machine Learning State Observer,» Sensors, vol. 23, n. 12, 2023, ISSN: 1424-8220. DOI: 10.3390/s23125722. indirizzo: https://www.mdpi.com/1424-8220/23/12/5722.
- [5] «Limite autostrada: regole, neopatentati, pioggia, nebbia, 150 km/h.» Ultimo accesso: 12 luglio 2025, AutoScout24. indirizzo: https://www.autoscout24.it/informare/consigli/norme-della-strada/limite-in-autostrada/.
- [6] International Organization for Standardization. «ISO 15622:2018 Intelligent transport systems Adaptive Cruise Control systems Performance requirements and test procedures.» Ultimo accesso: 28 agosto 2025. indirizzo: https://www.iso.org/standard/71515.html.
- [7] «Adaptive Cruise Control for Passenger Cars.» Ultimo accesso: 6 luglio 2025, BO-SCH. indirizzo: https://www.bosch-mobility.com/en/solutions/assistance-systems/adaptive-cruise-control/.
- [8] G. Carichino. «Lo spazio di frenata: tabella, calcolo online e condizioni. »indirizzo: https://www.youmath.it/domande-a-risposte/view/6684-spazio-difrenatura.html.
- [9] Gianni Lombardi. «Automobile: la regola dei 3 secondi per evitare incidenti e calcolare correttamente le distanze di sicurezza.» Ultimo accesso: 1 settembre 2025. indirizzo: https://benzinazero.wordpress.com/2016/03/23/automobile-la-regola-dei-3-secondi-per-evitare-incidenti-thinksafe/.
- [10] William C. Evans. «Exponentially-Weighted Moving Average.» Ultimo accesso: 1 settembre 2025, Geogebra. indirizzo: https://www.geogebra.org/m/tb88mqrm.
- [11] Y. Wang, G. Gunter, M. Nice e D. Work, Estimating Adaptive Cruise Control Model Parameters from On-Board Radar Units, https://acc-dataset.github.io/datasets/, Ultimo accesso: 1 settembre 2025, 2019.

A Regole del Sistema Fuzzy

Weather_Condition	Time_Headway	Relative_Velocity	Acceleration
bad	dangerous	approaching_fast	strong_deceleration
bad	dangerous	approaching	medium_deceleration
bad	dangerous	steady	medium_deceleration
bad	dangerous	v	light_deceleration
bad	U	moving_away moving_away_fast	light_deceleration
	dangerous short		strong_deceleration
bad bad	short	approaching_fast	medium_deceleration
bad		approaching	
	short	steady	light_deceleration
bad	short	moving_away	zero_acceleration
bad	short	moving_away_fast	light_acceleration
bad	adequate	approaching_fast	strong_deceleration
bad	adequate	approaching	medium_deceleration
bad	adequate	steady	zero_acceleration
bad	adequate	moving_away	light_acceleration
bad	adequate	moving_away_fast	medium_acceleration
bad	long	approaching_fast	medium_deceleration
bad	long	approaching	light_deceleration
bad	long	steady	zero_acceleration
bad	long	moving_away	light_acceleration
bad	long	moving_away_fast	medium_acceleration
bad	very_long	approaching_fast	$medium_deceleration$
bad	very_long	approaching	light_deceleration
bad	very_long	steady	light_acceleration
bad	very_long	moving_away	medium_acceleration
bad	very_long	moving_away_fast	strong_acceleration
good	dangerous	approaching_fast	$medium_deceleration$
good	dangerous	approaching	light_deceleration
good	dangerous	steady	light_deceleration
good	dangerous	moving_away	zero_acceleration
good	dangerous	moving_away_fast	light_acceleration
good	short	approaching_fast	$medium_deceleration$
good	short	approaching	$light_deceleration$
good	short	steady	zero_acceleration
good	short	moving_away	light_acceleration
good	short	moving_away_fast	medium_acceleration
good	adequate	approaching_fast	medium_deceleration
good	adequate	approaching	light_deceleration
good	adequate	steady	zero_acceleration
good	adequate	moving_away	light_acceleration
good	adequate	moving_away_fast	medium_acceleration
good	long	approaching_fast	light_deceleration
good	long	approaching	light_deceleration
good	long	steady	light_acceleration
good	long	moving_away	medium_acceleration
good	long	moving_away_fast	strong_acceleration
good	very_long	approaching_fast	light_deceleration
good	very_long	approaching	zero_acceleration
good	very_long	steady	light_acceleration
good	very_long	moving_away	medium_acceleration
good	very_long	moving_away_fast	strong_acceleration
8000	very nong	1110 v 1115 - a vv ay - 1 a s t	5010118_acceleration

Tabella A.1: Regole del Sistema Fuzzy