Machine Learning for Data Science (CS4786) Lecture 10

Spectral Embedding

MOTIVATING EXAMPLE

MOTIVATING EXAMPLE

GRAPH EMBEDDING

- GOAL: Place vertices (users) of the graph in appropriate locations (in a K dimensional space)
- Distances between vertices (users) should be representative of some desired properties of the graph
 - Eg. Cornell folks are together, all Yale folks are together

How do we do this?

- If I gave you a proposed location how would you evaluate it for instance?
- What are the desirable properties?

THOUGHT EXPERIMENT

- For each user i we specify embedding (location) y_i
- How do we find good locations y_1, \ldots, y_n ?
- What are good properties?

MOTIVATING EXAMPLE

Centering locations

MOTIVATING EXAMPLE

Centering locations

Points are centered at 0

Make total distance between friends small:

$$Obj(y_1, \dots, y_n) = \sum_{(i,j) \in E} dist^2(y_i, y_j)$$

- Points are centered at 0
- Keep your Friends close (sum of distances between linked nodes should be small)

If all y's are at same location then friends are all close

Spread around the points!

Make $Var(y_1, \ldots, y_n)$ large.

- Points are centered at 0
- Keep your Friends close (sum of distances between linked nodes should be small)
- Variance or spread amongst the nodes should be large

SPECTRAL EMBEDDING

- Lets start with one dimensional projection
- Single number y_i for each node i
- Lets review the three desired properties

- Points are centered at 0
- Keep your Friends close
- Variance or spread amongst the nodes should be large

$$\frac{1}{n} \sum_{t=1}^{n} y_t = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$y^{\top} \mathbf{1} = 0$$

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close
- Variance or spread should be large

REPRESENTING THE GRAPH

REPRESENTING THE GRAPH

WHY THE LAPLACIAN?

$$\begin{aligned} \text{Obj}(y_1, \dots, y_n) &= \sum_{(i,j) \in \text{ Friends}} (y_i - y_j)^2 \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (y_i - y_j)^2 \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \left(y_i^2 + y_j^2 - 2y_i y_j \right) \\ &= \frac{1}{2} \left(\sum_{i=1}^n \left(\sum_{j=1}^n A_{i,j} \right) y_i^2 + \sum_{j=1}^n \left(\sum_{i=1}^n A_{i,j} \right) y_j^2 - 2 \sum_{i=1}^n \sum_{j=1}^n A_{i,j} y_i y_j \right) \\ &= \frac{1}{2} \left(\sum_{i=1}^n D_{i,i} y_i^2 + \sum_{j=1}^n D_{j,j} y_j^2 - 2 \sum_{i=1}^n \sum_{j=1}^n A_{i,j} y_i y_j \right) \\ &= \sum_{i=1}^n D_{i,i} \ y_i^2 - \sum_{i=1}^n \sum_{j=1}^n A_{i,j} y_i y_j \\ &= (y^\top Dy - y^\top Ay) \\ &= y^\top (D - A) y = y^\top L y \end{aligned}$$

THE LAPLACIAN MATRIX

REPRESENTING THE GRAPH

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close $minimize y^{\top}Ly$
- Variance or spread should be large

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close $minimize y^{\top}Ly$
- Variance or spread should be large

Maximize Variance

$$Var(y_1, ..., y_n) = \frac{1}{n} \sum_{t=1}^{n} (y_t - \text{mean}(y))^2$$
$$= \frac{1}{n} \sum_{t=1}^{n} y_t^2 = \frac{1}{n} ||y||_2^2$$

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close $minimize y^{\top}Ly$
- Variance or spread should be large $\frac{1}{n} \|y\|_2^2$

Minimize
$$\frac{y^{\top}Ly}{\|y\|_2^2}$$
 s.t. $y \perp \mathbf{1}$

Minimize
$$y^{\top}Ly$$
 s.t. $||y||_2^2 = 1$ $y \perp \mathbf{1}$

EXAMPLES

• Fact: For a connected graph, exactly one, the smallest of eigenvalues is 0, corresponding eigenvector is $(1, 1, ..., 1)^{\top} / \sqrt{n}$

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close $minimize y^{\top}Ly$
- Variance or spread should be large $\frac{1}{n} ||y||_2^2$

Minimize
$$y^{\top}Ly$$
 s.t. $||y||_2^2 = 1$ $y \perp \mathbf{1}$

y =Second smallest eigenvector of L

SPECTRAL EMBEDDING

- For K > 1 dimensional embedding
- First dimension is the second smallest eigenvector
- Second dimension is the third smallest eigenvector and so on ...
- (Unnormalized) Spectral clustering: compute 2: K + 1 smallest eigen vectors
- Set Y_i to be the i'th row

SPECTRAL CLUSTERING ALGORITHM (UNNORMALIZED)

- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of L (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on y_1, \ldots, y_n

TROUBLE MAKERS

TROUBLE MAKERS

- Variance is high
- Almost all connected nodes have same (small value)

NORMALIZED SPECTRAL EMBEDDING

- Nodes linked to each other are close to each other
- Variance or spread should be large
 - But variance under what distribution?
 - Higher degree nodes are more important!
 - Lets try distribution given by p_i \propto D_{i,i}