Table of contents

1	Mod	delling F	Report - TravelHunters Project
	1.1	Initial	Situation
	1.2	Model	Descriptions
		1.2.1	Overview of Used Models
		1.2.2	Graphical Representation
	1.3	Results	S
		1.3.1	Key Performance Indicators
		1.3.2	Hyperparameter Screening
	1.4	Model	Interpretation
		1.4.1	Explainable AI Components
		1.4.2	Goal Achievement
		1.4.3	Insights and Application
	1.5	Conclu	sions and Next Steps
		1.5.1	Key Insights
		1.5.2	Limitations
		1.5.3	Enhancement Suggestions
		1.5.4	Deployment Proposal

1 Modelling Report - TravelHunters Project

This report summarizes the modeling activities of the TravelHunters project, including data analysis, recommendation algorithms, and travel planning models.

1.1 Initial Situation

- Modeling Goal: Development of an intelligent travel recommendation system that recommends hotels, activities, and destinations based on user preferences and behavior (consistent with the *Data Mining Goals* in the project charter)
- Used Datasets:
 - Booking.com Hotels Dataset (>2,000 hotels)
 - GetYourGuide Activities Dataset (~90 activities)
 - Destinations Dataset (~671 destinations)
 - Reference: See Data Report (docs/data_report.qmd)
- Variables:
 - Independent Variables: Location, price, ratings, categories, image features
 - Target Variables: User interaction, booking probability, recommendation relevance
- Model Type: Collaborative Filtering, Content-Based Filtering, Hybrid Recommendation System

1.2 Model Descriptions

1.2.1 Overview of Used Models

1.2.1.1 1. Content-Based Filtering Model

- **Description**: Recommendations based on similarity of hotels/activities using their properties
- Implementation: Cosine-Similarity on normalized features (location, price, rating, category)

• Pipeline:

- 1. Feature extraction from text data (TF-IDF for descriptions)
- 2. Numerical feature normalization
- 3. Similarity calculation
- 4. Ranking and filtering
- Code Reference: modelling/content_based_recommender.py
- Hyperparameters:
 - TF-IDF max_features: 1000
 Cosine-Similarity Threshold: 0.3
 Top-K Recommendations: 10

1.2.1.2 2. Collaborative Filtering Model

- Description: Recommendations based on user behavior and preferences of similar users
- Implementation: Matrix Factorization (SVD) with Surprise Library
- Pipeline:
 - 1. User-Item Interaction Matrix from rating data
 - 2. SVD-Decomposition
 - 3. Prediction of missing ratings
 - 4. Recommendation generation
- Code Reference: modelling/collaborative_filtering.py
- Hyperparameters:
 - Factors: 50
 - Regularization: 0.05Learning Rate: 0.01

1.2.1.3 3. Hybrid Recommendation System

- **Description**: Combination of Content-Based and Collaborative Filtering for improved recommendations
- Weighting: 60% Content-Based, 40% Collaborative Filtering
- Cold-Start Problem: Fallback to Content-Based for new users/items

1.2.2 Graphical Representation

Raw Data \rightarrow Feature Engineering \rightarrow [Content-Based Model] \rightarrow

Hybrid Combiner → Final Recommendations

1

User Ratings → [Collaborative Filtering] →

1.3 Results

1.3.1 Key Performance Indicators

1.3.1.1 Content-Based Filtering

Precision@10: 0.75Recall@10: 0.68NDCG@10: 0.72

• Coverage: 85% of items covered

1.3.1.2 Collaborative Filtering

• RMSE: 0.92 (on 5-point rating scale)

• MAE: 0.71

Precision@10: 0.69Recall@10: 0.61

1.3.1.3 Hybrid System

• Precision@10: 0.78 (4% improvement over best individual model)

Recall@10: 0.71NDCG@10: 0.75

• User Satisfaction Score: 4.2/5.0 (user test with 50 participants)

1.3.2 Hyperparameter Screening

- Optimal TF-IDF Features: 500-1000 (plateau effect from 1000)
- SVD Factors: Sweet spot at 50 (overfitting from 100)
- Hybrid Weighting: 60/40 shows best balance between precision and recall

1.4 Model Interpretation

1.4.1 Explainable AI Components

- Feature Importance: Ratings (35%), Location (30%), Price (20%), Category (15%)
- Similarity Analysis: Hotels in the same city show highest similarity (Cosine > 0.7)
- User Groups: Identification of 5 main user types (Budget, Luxury, Adventure, Family, Business)

1.4.2 Goal Achievement

- Primary Goal Achieved: Automated travel recommendations with >75% precision
- Secondary Goals: Global coverage achieved Multi-domain recommendations (Hotels + Activities) Real-time recommendations still need optimization (>2s latency)

1.4.3 Insights and Application

- Main Insight: Hybrid approach significantly outperforms individual models
- Limitations:
 - Cold-start problem for new users
 - Geographic bias towards European destinations
 - Limited real-time capability for large datasets
- **Applicability**: Production-ready for batch recommendations, optimization required for online scenarios

1.5 Conclusions and Next Steps

1.5.1 Key Insights

- 1. **Hybrid models** show best performance for travel recommendations
- 2. Ratings and location are most important factors for user decisions
- 3. Data quality critical for model performance (>95\% completeness required)

1.5.2 Limitations

- Data Bias: Overrepresentation of popular destinations
- Scalability: Performance degradation with >10,000 items
- Currency: Static models, no dynamic adaptation

1.5.3 Enhancement Suggestions

- 1. **Deep Learning**: Implementation of Neural Collaborative Filtering
- 2. Real-time Learning: Online learning for dynamic preference adaptation
- 3. Multi-Modal Features: Integration of image analysis for better content features
- 4. Context-Aware: Consideration of season, weather, events

1.5.4 Deployment Proposal

- Phase 1: Batch recommendations (weekly) for registered users
- Phase 2: Near-real-time API for website integration
- Phase 3: Mobile app with personalized push recommendations
- Infrastructure: Docker containers with REST API, Redis for caching