In The Name Of God

Subject: Generative Models

Presenter: Reza Karimzadeh

Supervised Learning

- ❖ Available pairs of data (X, Y)
 - X: input
 - Y: label
- ❖ Learn a function for mapping X to Y
- ***** Examples:
 - regression
 - classification
 - segmentation
 - image captioning
 - Etc.

Unsupervised Learning

- ❖ Available data just X
 - No label
- ❖ Learn hidden structure of data
- ***** Examples:
 - clustering
 - dimensionality reduction
 - feature learning
 - etc.

- * map input data (X) to a lower diminution (Z)
- \diamond reconstruct data (\hat{X}) from extracted features (Z)
- ❖ L2-norm for cost function

* consider a simple AE

$$\hat{X} = W^T W X$$

$$Loss = \|\hat{X} - X\|^2 = \|W^T W X - X\|^2$$

$$W^* = \min_{W} \|W^T W X - X\|^2$$

❖ It is PCA!!

- * We add some nonlinearity to Autoencoders i.e. activation function
 - Nonlinear PCA
- ❖ Deeper networks can capture more complicated manifolds → deep autoencoder

6

- ❖ AE learn to reconstruct sin function in [0, 2*pi]
- ❖ if we keep decoder part and vary the latent space (Z) the output will be a sin function in [0, 2*pi] but in other parts is non-sin

❖ Is it a generative model?

- ❖ Is it a generative model?
- > Decoder only can generate data that lie on training data manifold
- > Samples generated from distribution of training data
- > Samples are similar to training data

* Low dimensional feature extraction

 $784D \rightarrow 32D \rightarrow 784D$

Denoising

Image reconstruction

Super Resolution

Coupled Deep Autoencoder for Single Image Super-Resolution, IEEE, ITC, 2015

Generative Models

- **Explicitly** working with the distribution
 - Variational autoencoders
- ❖ Implicit generative model (Generative Adversarial Networks)
 - trained without even needing to explicitly define a density functions

Let's define some notions:

- 1. X: data that we want to model a.k.a the animal
- 2. z: latent variable a.k.a our imagination
- 3. P(X): probability distribution of the data, i.e. that animal kingdom
- 4. P(z): probability distribution of latent variable, i.e. our brain, the source of our imagination
- 5. P(X|z): distribution of generating data given latent variable, e.g. turning imagination into real animal

 \clubsuit Our objective here is to model the data, hence we want to find P(X). Using the law of probability, we could find it in relation with z as follows:

$$P(X) = \int P(X|z)P(z)dz$$

- \diamond VAE idea: Infer P(z) from P(z|X)
 - estimate latent variable likely using our data
- \clubsuit How to infer P(z|X)?
 - infer P(z|X) using a method called Variational Inference (VI)
 - The main idea of VI is to pose the inference by approach it as an optimization problem By modeling the true distribution P(z|X) using simpler distribution that is easy to evaluate, e.g. Gaussian,

Let infer P(z|X) using Q(z|X) via KL distance:

$$D_{KL}[Q(z|X)\|P(z|X)] = \sum_z Q(z|X)\,\lograc{Q(z|X)}{P(z|X)}$$

$$=E\left[\lograc{Q(z|X)}{P(z|X)}
ight]$$

$$= E[\log Q(z|X) - \log P(z|X)]$$

 \Leftrightarrow Let use P(X), P(X|z), and P(z), via Bayes Rule

$$egin{aligned} D_{KL}[Q(z|X) \| P(z|X)] &= E\left[\log Q(z|X) - \log rac{P(X|z)P(z)}{P(X)}
ight] \ &= E[\log Q(z|X) - (\log P(X|z) + \log P(z) - \log P(X))] \ &= E[\log Q(z|X) - \log P(X|z) - \log P(z) + \log P(X)] \end{aligned}$$

Expectation is over z, this moves P(X) outside

$$D_{KL}[Q(z|X) \| P(z|X)] = E[\log Q(z|X) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$D_{KL}[Q(z|X) || P(z|X)] - \log P(X) = E[\log Q(z|X) - \log P(X|z) - \log P(z)]$$

* If we look carefully at the right hand side of the equation, we would notice that it could be rewritten as another KL divergence.

* rewritten another KL divergence on the right hand side by rearranging sign.

$$egin{aligned} D_{KL}[Q(z|X) \| P(z|X)] - \log P(X) &= E[\log Q(z|X) - \log P(X|z) - \log P(z)] \ \log P(X) - D_{KL}[Q(z|X) \| P(z|X)] &= E[\log P(X|z) - (\log Q(z|X) - \log P(z))] \ &= E[\log P(X|z)] - E[\log Q(z|X) - \log P(z)] \ &= E[\log P(X|z)] - D_{KL}[Q(z|X) \| P(z)] \end{aligned}$$

VAE objective function:

$$\log P(X) - D_{KL}[Q(z|X)||P(z|X)] = E[\log P(X|z)] - D_{KL}[Q(z|X)||P(z)]$$

- So we have got:
 - 1. Q(z|X) that project our data X into latent variable space \rightarrow Encoder
 - z, the latent variable \rightarrow Generated code
 - 3. P(X|z) that generate data given latent variable \rightarrow Decoder network
- VAE tries to find the lower bound of logP(X) (ELBO (Evidence Lower Bound)) Objective: Maximizing logP(X/z) and minimizing KL distance between our simple distribution Q(z/X) and the true latent distribution P(z).

♦ How to solve?

$$\log P(X) - D_{KL}[Q(z|X)||P(z|X)] = E[\log P(X|z)] + D_{KL}[Q(z|X)||P(z)]$$

- \clubsuit Maximizing logP(X/z): Any discriminative supervised-parametric model (SVM/MLP/...)
- ❖ Any classifier with z as input and X as output, and a proper loss

♦ How to solve?

$$\log P(X) - D_{KL}[Q(z|X) \| P(z|X)] = E[\log P(X|z)] - D_{KL}[Q(z|X) \| P(z)]$$

- \clubsuit minimizing $D_{KL}[Q(z|X)||P(z)]$:
 - P(z): Latent variable pdf, we will sample it to generate X. \rightarrow P(z) \sim N(0,1)
 - Easy to make Q(z|X) as-close-as possible to it
 - Q(z|X): Another simplification: $N(\mu(X), \Sigma(X))$, and diagonal, $\Sigma(X)$!
 - Easy to compute KL between two Gaussian!

How to solve?

$$\log P(X) - D_{KL}[Q(z|X) || P(z|X)] = E[\log P(X|z)] - D_{KL}[Q(z|X) || P(z)]$$

- \bullet minimizing $D_{KL}[Q(z|X)||P(z)]$:
 - $P(z) \sim N(0,1), Q(z|X) \sim N(\mu(X), \Sigma(X))$

$$D_{KL}[N(\mu(X),\Sigma(X))\|N(0,1)] = rac{1}{2}\left(ext{tr}(\Sigma(X)) + \mu(X)^T\mu(X) - k - \log\,\det(\Sigma(X))
ight)$$

- \Leftrightarrow minimizing $D_{KL}[Q(z|X)||P(z)]$:
 - P(z) ~ N(0,1), Q(z|X) ~ N(\mu(X), \Sigma(X))

$$D_{KL}[N(\mu(X),\Sigma(X))\|N(0,1)] = rac{1}{2}\left(ext{tr}(\Sigma(X)) + \mu(X)^T\mu(X) - k - \log\,\det(\Sigma(X))
ight)$$

$$D_{KL}[N(\mu(X),\Sigma(X))\|N(0,1)] = rac{1}{2}\left(\sum_k \Sigma(X) + \sum_k \mu^2(X) - \sum_k 1 - \log \prod_k \Sigma(X)
ight)$$

$$=rac{1}{2}\left(\sum_k \Sigma(X) + \sum_k \mu^2(X) - \sum_k 1 - \sum_k \log \Sigma(X)
ight)$$

$$=rac{1}{2}\,\sum_{k}\left(\Sigma(X)+\mu^2(X)-1-\log\Sigma(X)
ight)$$

- \Leftrightarrow minimizing $D_{KL}[Q(z|X)||P(z)]$:
 - $P(z) \sim N(0,1)$, $Q(z|X) \sim N(\mu(X), \Sigma(X))$
- \bullet In practice, however, it's better to model $\Sigma(X)$ as $\log \Sigma(X)$, as it is more numerically stable to take exponent compared to computing log.

$$D_{KL}[N(\mu(X), \Sigma(X)) \| N(0, 1)] = rac{1}{2} \sum_k \left(\exp(\Sigma(X)) + \mu^2(X) - 1 - \Sigma(X)
ight)$$

Overall description

Overall description

Decoder

- * References
- Auto-encoding variational bayes (https://arxiv.org/pdf/1312.6114.pdf?source=post_page------
- https://agustinus.kristia.de/techblog/2016/12/10/variational-autoencoder/
- Attribute2image: Conditional image generation from visual attributes

29

Generative adversarial Networks (GANs)

- **Explicitly** working with the distribution
 - Variational autoencoders
- Implicit generative model (Generative Adversarial Networks)
 - trained without even needing to explicitly define a density functions

- Sample from a simple distribution, e.g. random noise
- Then, learn transformation to training distribution

- Generator network: try to fool the discriminator by generating real-looking images
- Discriminator network: try to distinguish between real and fake images

- Generator network: try to fool the discriminator by generating real-looking images
- Discriminator network: try to distinguish between real and fake images

❖ GAN:

- Generative: Learn a Generative Model
- Adversarial: Trained in an Adversarial Setting
- Network: Use Deep Neural Networks

❖ GAN final goal:

- Generation of samples from some distribution
- Create Art
- Image-to-Image translation (Aerial images to Maps)

35

GANs output examples

Phillip Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017.

GANs output examples

C. Ledig et al, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, CVPR 2017.

original

bicubic (21.59dB/0.6423)

37

GANs output examples

https://thispersondoesnotexist.com/

- Generator network: intend to generate real-looking samples
- Discriminator network: intend to distinguish between real and fake samples

Discriminator output for real samples

$$J^{(D)} = \mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

$$J^{(G)} = \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})}[\log D(G(\mathbf{z}))]$$

$$\theta_D^* = \max_{\theta_D} \mathbb{E}_{\boldsymbol{x} \sim p_{data}} \left[\log D_{\theta_D}(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log \left(1 - D_{\theta_D} \left(G_{\theta_G}(\boldsymbol{z}) \right) \right) \right]$$

$$\theta_G^* = \max_{\theta_G} \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(D_{\theta_D} \left(G_{\theta_G}(\mathbf{z}) \right) \right) \right]$$

A minimax game between generator and discriminator:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

- Solving problem:
 - Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

A minimax game between generator and discriminator:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

- Solving problem:
 - Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient ascent on generator

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Training GANs:

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Generated samples

(Rightmost column shows the nearest training example of the neighboring sample)

Any Question?

❖ Contact me!!

Rezakarimzadeh1996@gmail.com

بيشرفته درحوزه سلامت وكاربردهاي هوش مصنوعے درپزشك

2 1 The First International Congress on

Advanced Health Technologies-Artificial Intelligence in Medicine

