Projeto Integrado 3

Prof. Aníbal Cavalcante de Oliveira UFC - QXD190 - 2019.1

Agenda - Aula 1

Apresentação.

- Ementa.
- Objetivos.
- Bibliografia.
- Notas e Avaliações.

Apresentação

Aníbal Cavalcante de Oliveira - hanibal.ce80@gmail.com

- Graduação em Ciência da Computação (2009)
- Mestrado em Ciência da Computação (2015)

Apresentação

Histórico Profissional

BISA Tecnologia (2004 - 2006) - Suporte - http://www.bisaweb.com.br/

CEF (2006 - 2008) - Estagiário.

BB (2008 - 2009) - Estagiário.

ND Eng. E Software - (2009 - 2013) - AS - http://www.nd.com.br/

Projeto LE@D DELL - (2012 - 2015) - AS - http://projetolead.com.br/

NUTEDS - (2013 - 2015) - AS - http://www.nuteds.ufc.br

Apresentação (Alunos)

Instruções de apresentação:

- 1. Diga o seu nome;
- 2. Responda: Qual semestre e disciplinas está cursando?

Ementa

Parte 1

- 1. Software vs. Programa de Computador
- 2. Produtos de Software
- 3. Evolução do Software e Qualidade de Software.
- 4. Metodologias Tradicionais de Desenvolvimento de Software.
- 5. Diagramas UML

Ementa

Parte 2

- 1. Introdução às metodologias ágeis.
- 2. Scrum e Extreme Programming.
- 3. Elaboração de Histórias dos Usuários.
- 4. Verificação e Validação de Software.

Objetivos

- Apresentar os princípios e conceitos, teóricos e práticos, da concepção, implantação e avaliação de produtos e serviços digitais;
- Conhecer diferentes metodologias projetuais a fim de identificar afinidades, consistência, inconsistência e concatenações possíveis entre os modelos teóricos;
- Proporcionar ampla visão sobre os processos de gerenciamento de projetos de design digital, para meios e mídias digitais, considerando a relação designer, cliente e público-alvo;
- Aprender a construir relações interpessoais necessárias ao desenvolvimento de projetos em equipe.
- Compreender o conceito e as características do ecossistema da mobilidade, indutor de atividade, dispositivos, sistemas e informação.

Objetivos Específicos

- 1. Debater e compreender a história dos meios de mídias;
- 2. Discutir a experiência propiciada ao indutor de atividade pelos meios e mídias digitais;
- 3. Relacionar modelo comunicacional e Estratégia de Comunicação com a eficiência do ato de comunicação;
- 4. Debater como pode-se chegar a produtos e a serviços mais eficientes, os quais considerem a informação, a programação, a interação, a navegação, a imersão e a experiência do indutor de atividade;
- 5. Desenvolver o projeto de informação, o projeto de interface, o projeto de navegação e o projeto de interação.
- 6. Conceber, implantar e avaliar os produtos e os serviços propostos.

Bibliografia

Bibliografia

Bibliografia Básica:

PRESSMAN, R. S.; B. M. Engenharia de software: Uma abordagem profissional. 8.ed. Porto Alegre: AMGH, 2016.

SOMMERVILLE, I. Engenharia de software. 9. ed. São Paulo: Pearson, 2012.

Bibliografia Complementar:

SUTHERLAND, Jeff. Scrum: A Arte de fazer o dobro do trabalho na metade do tempo. Leya, 2016.

TEIXEIRA, Fabrício. Introdução e Boas Práticas em UX Design. Casa do Código. 2016

Ferramentas

1 - Axure RP

https://www.axure.com/download

2 - Visual Studio Code

https://code.visualstudio.com/download

3 - Astah Community

http://astah.net/download

Bibliografia

Avaliação

NP1 – Artefatos (01/04)

- Documento de Visão do Projeto (Briefing)
- Artigo Científico.
- Documento de Requisitos do Projeto.

NP2 – Artefatos (18/06)

- Backlog do Produto (Histórias de Usuários).
- Sprints e Entregas Semanais.
- Software em Produção (Back e Front-end).
- Relatório Final do Projeto e Apresentação do Produto de Software.

Auxílios e Dúvidas

- 1. Procurar o professor e-mail: hanibal.ce80@gmail.com
- 2. Sala 4 NPI ou Sala no 20 andar do bloco 4

O que é Engenharia de Software?

O que é Engenharia de Software?

Engenharia x Software

 Podemos construir um software da mesma maneira que construímos uma casa?

Características do Software

- Não se desgasta com o tempo, mas pode se deteriorar;
- Pode ser desenvolvido ou projetado pela engenharia, não manufaturado no sentido clássico;
- Principal destaque na melhoria da performance de uma Empresa.

Hardware Curva de desgaste

Software Curva de Desgaste

 Grande parte dos softwares produzidos no passado não possuem documentação e nem planejamento.

Código Fonte do Apple 1 (1976)

	PAPE	LE COMP	TER CO.	4-6-76	MARINE S. WOEN ?
300	18		ADD	CLC	Clear carry.
3,61	100000000000000000000000000000000000000	Ø2 Ø7	ADDI	LDX #\$Ø2 LDA(#) M1, X (#9)	Index for 3-byte add.
3,55		Ø5	1	ADC(MM2,X(VS) STA(MM1,X(VS)	Add a byte of Manta to Manti.
369	CA	P. 1.		DEX	Advance index to next more signiff. byte
3,8A	10	F7	1	BPL ADDI(-#9)	Loop until done.
3,#c	6,0	1 - 1	1	RTS	Return.
390	26	03	MDI . I	ASLESSIGN (#3)	Clear LSB of SIGN.
300	2.0	12 Ø3		JSR ABSWAP(312)	Abs val of Manti, then swap with Mant
3/2	24	89	ABSWAP	BITEMI (#9)	Mast, neg?
3/4		Ø5	710011711	BPL ABSWAPI (+#5)	No, swap with Munty and return.
3/6	20	84 Ø3		JSR FCOMPL(384)	Yes, complement it.
319	EG			INC(A)SISN(A3)	Incr. SIGN, complementing LSB.
3/8	38		ABSWAPI	SEC .	Set carry for return to MUL/DIV.
3/C	AZ	.24	SWAP :	LDX #\$Ø4	Index for 4-byte swap.
3/€	94	#8 ·	SWAPI	STY(2)E-1, X (#8)	
32,0	85	47		LDA(8)XI-1, X (87)	Swap a lyte of Exp/Ment, with
. 322		Ø3		LDY(P)X2-1,X (#3)	Exp/Mantz and leave a copy of
329	94	\$7	4 1 4	STY(2) XI-1, X (87)	Mant, in E (3 bytes). E+3 wed.
326		£3	12	STA (2) X2-1, X (43)	
328		The second second	Age of the	DEX	Advance index to next byte.
327	Dg	+3		BNE SWAPI (- DD)	Loop until done.
328	1.60		gara to see	R15	Return.
32C	. Ce	£8	NORMI	DEC(X)XI (XF)	Decrement Exp.
32€	26	#S		ASL(2)M1+2 (#B)	
339	2.6	gA '		ROLGOMI-I (GA)	Shift Mant, (3 bytes) left.
332	26	g9		ROUDMI (89)	¥
334	AS	29	NORM	LDA(DMI (P9)	High-order Mant, byte.
336	C9	CØ		CMP #1CØ	Upper two bits unequal?
338	3,0	24.		BMI RT5: (*#4)	Yes. return with Manti normalised
33A		£'8		LDAGEXI (PE)	Exp. sero!
V 33C	D-65	EE	RTSI	RTS NORMI (-1214)	Return.

Definição de Engenharia de Software

Instituto de Engenheiros Eletricistas e Eletrônicos – IEEE

1. A aplicação de uma **abordagem sistemática**, **disciplinada** e **quantificável** para o **desenvolvimento**, **operação** e **manutenção** de software, isto é, a aplicação de engenharia em software;

2. O estudo de **abordagens** ou **processos** como o do primeiro item.

O que é um processo?

1. Na Administração é a sequência de atividades realizadas na geração de resultados para o cliente, do início do pedido até a entrega do produto.

2. No Direito é o instrumento formal em que se opera a jurisdição, cujos objetivos são eliminar conflitos e fazer justiça por meio da aplicação da Lei.

3. Na Engenharia de Alimentos, é o conjunto de atividades ou operações industriais que modificam as propriedades das matérias-primas com o propósito de obter produtos que atendam as necessidades do cliente.

O que é um processo?

O Processo de Software

 Abrange um conjunto de três elementos fundamentais: Métodos, Ferramentas e Procedimentos para projetar, construir e manter grandes sistemas de software de forma profissional

Exemplo de um Processo de Software

Construa um avião de papel

Analista de Qualidade de Software

Para cada grupo teremos os seguintes papeis:

- Engenheiro de Requisitos Será o responsável por entrevistar o cliente e gerar o documento de requisitos;
- Projetista Irá interagir com o Engenheiro de Requisitos e deverá gerar o Modelo do Projeto;
- Desenvolvedor Irá interagir com o Projetista e deverá construir o produto;
- Testador Construirá os casos de testes, baseados nos requisitos e executará esses testes. Um documento de análise dos resultados deverá ser gerado;
- Gerente de Projeto Acompanhará todo o processo e verificará quem precisa de ajuda para terminar o produto dentro do prazo estipulado. Verificará o documento de análise do testador e encaminhará para o responsável em fazer as manutenções.