Algebraic Number Theory

Problem sheet 4

- 1. (3 points)(**Hermite**) For any integer d, prove that there are only finitely many number fields with discriminant d. (Recall also that we have seen that, if $d = d_K$, then $d \equiv 0, 1(4)$).
- 2. (2 points) Let R and R' be commutative rings and $0 \notin S \subset R$ be a multiplicatively closed subset. Assume further that $\varphi \colon R \to R'$ is a ring homomorphism such that $\varphi(S) \subseteq R'^{\times}$. Show that φ extends uniquely to a ring homomorphism $\tilde{\varphi} \colon RS^{-1} \to R'$.
- 3. (3 points) Let R be a commutative ring and $0 \notin S \subset R$ be a multiplicatively closed subset. Show that RS^{-1} is a flat R-module, ie. $RS^{-1} \otimes_R \cdot$ is an exact functor.
- 4. (3 points) Let R be a commutative ring and M a module, prove that TFAE:
 - (a) M = 0;
 - (b) $M_{\mathfrak{p}} = 0$ for all prime ideals $\mathfrak{p} \triangleleft R$;
 - (c) $M_{\mathfrak{m}} = 0$ for all maximal ideals $\mathfrak{m} \triangleleft R$.
- 5. (3 points) Let R be a commutative ring and let $f: M \to N$ be an R-module homomorphism between R-modules M, N. Show that TFAE:
 - (i) f is injective (resp. surjective);
 - (ii) $f_{\mathfrak{p}} \colon M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective (resp. surjective) for all prime ideals $\mathfrak{p} \lhd R$;
 - (iii) $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is injective (resp. surjective) for all maximal ideals $\mathfrak{m} \triangleleft R$.

Where $M_{\mathfrak{p}} = R_{\mathfrak{p}} \otimes_R M$, $M_{\mathfrak{m}} = R_{\mathfrak{m}} \otimes_R M$, $N_{\mathfrak{p}} = R_{\mathfrak{p}} \otimes_R N$, and $N_{\mathfrak{m}} = R_{\mathfrak{m}} \otimes_R N$.

- 6. (3 points) Let R be an integral domain and $0 \notin S \subset R$ be a multiplicatively closed subset. Assume RS^{-1} is integral over R. Show that $RS^{-1} = R$.
- 7. (3 points) (Nakayama's Lemma) Let R be a local ring with maximal ideal $\mathfrak{m} \triangleleft R$ and let M be a finitely generated R-module. Further let $N \leq M$ be a submodule such that $M = N + \mathfrak{m}M$. Show that M = N.
- 8. (3 points) Let K be a field and $v: K^{\times} \to \mathbb{Z}$ be a surjective group homomorphism and let $v(0) = \infty$. Assume $v(x+y) \ge \min(v(x), v(y))$. Verify that $\mathcal{O} := \{\alpha \in K \mid v(\alpha) \ge 0\}$ is a DVR.
- 9. (3 points) Prove that a ring R is a DVR if and only if R is Dedekind and local ring.
- 10. (3 points) Let \mathcal{O} be a Dedekind domain and let k be a positive integer. Let $\mathfrak{p}_i \triangleleft \mathcal{O}$ be a prime ideal for all $1 \leq i \leq k, x_i \in K$ (where K is the field of fractions of \mathcal{O}) and $n_i \in \mathbb{Z}$. Show that there exists an element $x \in K$ such that $v_{\mathfrak{p}_i}(x x_i) \geq n_i$ (i = 1, ..., k) and $v_{\mathfrak{p}}(x) \geq 0$ for all primes $\mathfrak{p} \neq \mathfrak{p}_i$.
- 11. Let K/\mathbb{Q} be a number field and S be a finite set of prime ideals in \mathcal{O}_K . Put $X = \operatorname{Spec}(\mathcal{O}_K) \setminus S$.
 - (a) (6+1) points) Verify that the sequence

$$1 \to \mathcal{O}^{\times} \to \mathcal{O}(X)^{\times} \to \bigoplus_{\mathfrak{p} \in \mathrm{Spec}(\mathcal{O}) \backslash X} K^{\times} / \mathcal{O}_{\mathfrak{p}}^{\times} \to Cl(\mathcal{O}) \to Cl(\mathcal{O}(X)) \to 1 \ .$$

is exact (construction of the maps is part of the problem). Further show that $K^{\times}/\mathcal{O}_{\mathfrak{p}}^{\times} \cong \mathbb{Z}$ for all primes $0 \neq \mathfrak{p} \in \operatorname{Spec}(\mathcal{O})$.

- (b) (2 points) Verify that $Cl(\mathcal{O}_K(X))$ is finite and $\mathcal{O}_K(X)^{\times} \cong \mu(K) \times \mathbb{Z}^{|S|+r+s-1}$ where r (resp. s) is the number of real embeddings (resp. of pairs of complex embeddings) of K.
- 12. (3 points) (Newton polygon) Let \mathcal{O} be a DVR with field of fractions K and valuation $v \colon K^{\times} \to \mathbb{Z}$. The Newton polygon of a polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in K[x]$ of degree n is the lower convex hull of the points $(-i, v(a_i))$ in the plain (ie. a convex broken line connecting $(-n, v(a_n))$ with $(0, v(a_0))$ whose vertices are among the points $(-i, v(a_i))$ such that none of these points are below the broken line). Further denote by S(f) the multiset of slopes of the Newton polygon, ie. S(f) is a multiset with n elements such that the multiplicity of the rational number s in S(f) is the length of the projection of line in the Newton polygon with slope s. Show that $S(fg) = S(f) \cup S(g)$. In particular, if the Newton polygon of the polynomial $f(x) \in K[x]$ consists of a single segment with no lattice points apart from the two endpoints then f is irreducible.