A Superlinearly-Convergent Proximal Newton-Type Method for the Optimization of Finite Sums

Anton Rodomanov^{1,2} Dmitry Kropotov^{2,3}

¹Higher School of Economics

²Bayesian Methods Research Group

Moscow, Russia

³Lomonosov Moscow State University

22 June 2016

International Conference on Machine Learning (ICML-2016), New York, USA

Consider the minimization of the composite finite average:

$$\min_{x \in \mathbb{R}^d} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) + h(x) \right]$$

Consider the minimization of the composite finite average:

$$\min_{x \in \mathbb{R}^d} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) + h(x) \right]$$

Assumptions:

- \bullet each f_i is twice-continuously differentiable and convex
- h is a general convex function (but simple)
- ullet ϕ is strongly convex

Consider the minimization of the composite finite average:

$$\min_{x \in \mathbb{R}^d} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) + h(x) \right]$$

Assumptions:

- \bullet each f_i is twice-continuously differentiable and convex
- h is a general convex function (but simple)
- ullet ϕ is strongly convex

Examples: linear regression, logistic regression, CRF etc.

Consider the minimization of the composite finite average:

$$\min_{x \in \mathbb{R}^d} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) + h(x) \right]$$

Assumptions:

- \bullet each f_i is twice-continuously differentiable and convex
- h is a general convex function (but simple)
- ullet ϕ is strongly convex

Examples: linear regression, logistic regression, CRF etc.

• n is very large

We are interested in **incremental methods** [Bertsekas, 2011] whose iteration cost is independent of *n*:

We are interested in **incremental methods** [Bertsekas, 2011] whose iteration cost is independent of *n*:

- Stochastic methods for $\min_{x} \{ \mathbb{E}_{z}[f(x;z)] \} = \min_{x} \left\{ \frac{1}{n} \sum_{i=1}^{n} f_{i}(x) \right\}$:
 - Examples: SGD [Robbins-Monro, 1951], oLBFGS [Schraudolph et al., 2007],
 AdaGrad [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - Iteration: $x_{k+1} = x_k \alpha_k B_k \nabla f_{i_k}(x_k)$.
 - Convergence rate: sublinear, usually $\mathcal{O}(1/k)$.

We are interested in **incremental methods** [Bertsekas, 2011] whose iteration cost is independent of *n*:

- Stochastic methods for $\min_{x} \{ \mathbb{E}_{z}[f(x;z)] \} = \min_{x} \left\{ \frac{1}{n} \sum_{i=1}^{n} f_{i}(x) \right\}$:
 - Examples: SGD [Robbins-Monro, 1951], oLBFGS [Schraudolph et al., 2007],
 AdaGrad [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - Iteration: $x_{k+1} = x_k \alpha_k B_k \nabla f_{i_k}(x_k)$.
 - Convergence rate: sublinear, usually $\mathcal{O}(1/k)$.
- Methods for $\min_{x} \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$:
 - Examples: SAG [Le Roux et al., 2012], SVRG [Johnson & Zhang, 2013], FINITO [Defazio et al., 2014b], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc.
 - Main idea: variance reduction.
 - Convergence rate: linear, $\mathcal{O}(c^k)$.

We are interested in **incremental methods** [Bertsekas, 2011] whose iteration cost is independent of *n*:

- Stochastic methods for $\min_{x} \{ \mathbb{E}_{z}[f(x;z)] \} = \min_{x} \left\{ \frac{1}{n} \sum_{i=1}^{n} f_{i}(x) \right\}$:
 - Examples: SGD [Robbins-Monro, 1951], oLBFGS [Schraudolph et al., 2007],
 AdaGrad [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - Iteration: $x_{k+1} = x_k \alpha_k B_k \nabla f_{i_k}(x_k)$.
 - Convergence rate: sublinear, usually $\mathcal{O}(1/k)$.
- Methods for $\min_{x} \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$:
 - Examples: SAG [Le Roux et al., 2012], SVRG [Johnson & Zhang, 2013], FINITO [Defazio et al., 2014b], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc.
 - Main idea: variance reduction.
 - Convergence rate: linear, $\mathcal{O}(c^k)$.

Goal: an incremental method with a superlinear convergence rate.

Main contributions

Our main contributions:

- New method: Newton-type Incremental Method (NIM)
- Theorem establishing superlinear convergence of NIM

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right].$$

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right].$$

• Build the second-order Taylor approximation of each f_i :

$$f_i(x) \approx m_k^i(x) := f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i).$$

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right].$$

- Build the second-order Taylor approximation of each f_i : $f_i(x) \approx m_k^i(x) := f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i).$
- Then $\phi(x) \approx m_k(x) := \frac{1}{n} \sum_{i=1}^n m_k^i(x) + h(x)$.

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right].$$

- Build the second-order Taylor approximation of each f_i : $f_i(x) \approx m_k^i(x) := f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i).$
- Then $\phi(x) \approx m_k(x) := \frac{1}{n} \sum_{i=1}^n m_k^i(x) + h(x)$.
- Find the minimizer of the model $\bar{x}_k := \operatorname{argmin}_x m_k(x)$.
- Choose next iterate: $x_{k+1} = x_k + \alpha(\bar{x}_k x_k)$.

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right].$$

- Build the second-order Taylor approximation of each f_i : $f_i(x) \approx m_k^i(x) := f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i).$
- Then $\phi(x) \approx m_k(x) := \frac{1}{n} \sum_{i=1}^n m_k^i(x) + h(x)$.
- Find the minimizer of the model $\bar{x}_k := \operatorname{argmin}_x m_k(x)$.
- Choose next iterate: $x_{k+1} = x_k + \alpha(\bar{x}_k x_k)$.
- (Standard Newton method) $v_k^i = x_k$ for all i = 1, ..., n.

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right].$$

- Build the second-order Taylor approximation of each f_i : $f_i(x) \approx m_k^i(x) := f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i).$
- Then $\phi(x) \approx m_k(x) := \frac{1}{n} \sum_{i=1}^n m_k^i(x) + h(x)$.
- Find the minimizer of the model $\bar{x}_k := \operatorname{argmin}_x m_k(x)$.
- Choose next iterate: $x_{k+1} = x_k + \alpha(\bar{x}_k x_k)$.
- (Standard Newton method) $v_k^i = x_k$ for all i = 1, ..., n.
- (NIM) Update only one v_k^i : choose $i_k \in \{1, ..., n\}$ and set

$$v_{k+1}^i := \begin{cases} x_{k+1} & \text{if } i = i_k, \\ v_k^i & \text{otherwise.} \end{cases}$$

Iteration cost is independent of n.

Recall:

$$m_k^i(x) = f_i(v_k^i) + \nabla f_i(v_k^i)^{\top} (x - v_k^i) + \frac{1}{2} (x - v_k^i)^{\top} \nabla^2 f_i(v_k^i) (x - v_k^i)$$

$$m_k(x) = \frac{1}{n} \sum_{i=1}^n m_k^i(x) + h(x)$$

$$m_k(x) = \frac{1}{n} \sum_{i=1}^n \left[f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i) \right] + h(x).$$

$$m_k(x) = \frac{1}{n} \sum_{i=1}^n \left[f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i) \right] + h(x).$$

Note: m_k is a (composite) quadratic,

$$m_k(x) = (g_k - u_k)^{\top} x + \frac{1}{2} x^{\top} H_k x + h(x) + \text{const},$$

and determined only by the following three quantities:

$$H_k := \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(v_k^i), \quad u_k := \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(v_k^i) v_k^i, \quad g_k := \frac{1}{n} \sum_{i=1}^n \nabla f_i(v_k^i).$$

$$m_k(x) = \frac{1}{n} \sum_{i=1}^n \left[f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i) \right] + h(x).$$

Note: m_k is a (composite) quadratic,

$$m_k(x) = (g_k - u_k)^{\top} x + \frac{1}{2} x^{\top} H_k x + h(x) + \text{const},$$

and determined only by the following three quantities:

$$H_k := \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(v_k^i), \quad u_k := \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(v_k^i) v_k^i, \quad g_k := \frac{1}{n} \sum_{i=1}^n \nabla f_i(v_k^i).$$

Since only one v_k^i is updated at every iteration, we have for $i = i_k$

$$H_{k+1} = H_k + \frac{1}{n} \left[\nabla^2 f_i(v_{k+1}^i) - \nabla^2 f_i(v_k^i) \right]$$

$$u_{k+1} = u_k + \frac{1}{n} \left[\nabla^2 f_i(v_{k+1}^i) v_{k+1}^i - \nabla^2 f_i(v_k^i) v_k^i \right]$$

$$g_{k+1} = g_k + \frac{1}{n} \left[\nabla f_i(v_{k+1}^i) - \nabla f_i(v_k^i) \right].$$

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for i = 1, ..., n and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}) v^{i}, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v^{i})$$

for $k \ge n-1$ do

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for i = 1, ..., n and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}) v^{i}, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v^{i})$$

for $k \ge n - 1$ do

Compute minimizer: $\bar{x}_k := \operatorname{argmin}_x \left[(g - u)^\top x + \frac{1}{2} x^\top H x + h(x) \right]$ Make a step: $x_{k+1} := x_k + \alpha (\bar{x}_k - x_k)$

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for i = 1, ..., n and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}) v^{i}, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v^{i})$$

for $k \ge n - 1$ do

Compute minimizer: $\bar{x}_k := \operatorname{argmin}_x \left[(g - u)^\top x + \frac{1}{2} x^\top H x + h(x) \right]$

Make a step: $x_{k+1} := x_k + \alpha(\bar{x}_k - x_k)$

Update model for $i := (k+1) \mod n + 1$ (cyclic order):

$$H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]$$

$$u := u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) x_{k+1} - \nabla^2 f_i(v^i) v^i \right]$$

$$g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]$$

$$v^i := x_{k+1}$$

end for

```
Input: x_0, \ldots, x_{n-1} \in \mathbb{R}^d: initial points; \alpha > 0: step length.
Initialize model: v^i := x_{i-1} for i = 1, ..., n and
     H := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}) v^{i}, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v^{i})
for k > n - 1 do
      Compute minimizer: \bar{x}_k := \operatorname{argmin}_x \left[ (g - u)^\top x + \frac{1}{2} x^\top H x + h(x) \right]
       Make a step: x_{k+1} := x_k + \alpha(\bar{x}_k - x_k)
       Update model for i := (k+1) \mod n + 1 (cyclic order):
          H := H + \frac{1}{\pi} \left[ \nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]
          u := u + \frac{1}{\eta} \left[ \nabla^2 f_i(x_{k+1}) x_{k+1} - \nabla^2 f_i(v^i) v^i \right]

g := g + \frac{1}{\eta} \left[ \nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]
           v' := x_{k+1}
```

end for

Note: H, u, g and v^i are kept in memory.

Required memory: $\mathcal{O}(d^2 + nd)$.

Convergence rate (local)

Theorem

Suppose $\nabla^2 f_i$ are Lipschitz-continuous with constant M_f . Assume x^* is a minimizer of ϕ with $\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(x^*) \succeq \mu_f I \succ 0$, and all the initial points are close enough to x^* : $||x_i - x^*|| \le R$ for $0 \le i \le n-1$.

Convergence rate (local)

Theorem

Suppose $\nabla^2 f_i$ are Lipschitz-continuous with constant M_f . Assume x^* is a minimizer of ϕ with $\frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(x^*) \succeq \mu_f I \succ 0$, and all the initial points are close enough to x^* : $||x_i - x^*|| < R$ for 0 < i < n-1.

Then the sequence of iterates $\{x_k\}$ of NIM with $\alpha \equiv 1$ converges to x^* at an R-superlinear rate, i.e. there exist $\{z_k\}$ and $\{q_k\}$ such that for $k \geq n$

$$||x_k - x^*|| \le z_k, \qquad z_{k+1} \le q_k z_k, \qquad q_k \to 0,$$

where

$$R := \frac{\mu_f}{2M_f}, \qquad q_k := \left(1 - \frac{3}{4n}\right)^{2^{\lfloor k/n \rfloor - 1}}.$$

More precisely, the rate of convergence is *n*-step quadratic:

$$z_{k+n} \leq \frac{M_f}{\mu_f} z_k^2.$$

Convergence rate (global)

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right].$$
 Assume $h(x) := \frac{\mu}{2} ||x||^2.$

Theorem

Denote the condition number of ϕ as $\kappa_{\phi}:=(L_f+\mu)/\mu$ and the minimizer of ϕ as x^* . Then, for any initial points x_0,\ldots,x_{n-1} , NIM with a constant step length $\alpha\equiv\kappa_{\phi}^{-3}(1+19\kappa_{\phi}(n-1))^{-1}$ converges to x^* at a linear rate:

$$\phi(x_k) - \phi(x^*) \le c^k [\phi(x_0) - \phi(x^*)],$$

where

$$c := (1 - \kappa_{\phi}^{-4} (1 + 19\kappa_{\phi}(n-1))^{-1})^{\frac{1}{1+2(n-1)}}.$$

N.B.: This result is qualitative.

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for i = 1, ..., n and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}) v^{i}, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v^{i})$$

for $k \ge n - 1$ do

Compute minimizer:
$$\bar{x}_k := \operatorname{argmin}_x \left[(g - u)^\top x + \frac{1}{2} x^\top H x + h(x) \right]$$

Make a step: $x_{k+1} := x_k + \alpha(\bar{x}_k - x_k)$

Update model for $i := (k+1) \mod n + 1$ (cyclic order):

$$H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right] u := u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) x_{k+1} - \nabla^2 f_i(v^i) v^i \right] g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right] v^i := x_{k+1}$$

end for

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for i = 1, ..., n and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}) v^{i}, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v^{i})$$

for $k \ge n - 1$ do

Compute minimizer:
$$\bar{x}_k := \operatorname{argmin}_x \left[(g - u)^\top x + \frac{1}{2} x^\top H x + h(x) \right]$$

Make a step: $x_{k+1} := x_k + \alpha(\bar{x}_k - x_k)$

Update model for $i := (k+1) \mod n + 1$ (cyclic order):

$$H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]$$

$$u := u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) x_{k+1} - \nabla^2 f_i(v^i) v^i \right]$$

$$g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]$$

$$v^i := x_{k+1}$$

end for

• If $h \equiv 0$, then $\bar{x}_k = H^{-1}(u - g)$.

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for i = 1, ..., n and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}) v^{i}, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v^{i})$$

for $k \ge n - 1$ do

Compute minimizer:
$$\bar{x}_k := \operatorname{argmin}_x \left[(g - u)^\top x + \frac{1}{2} x^\top H x + h(x) \right]$$

Make a step: $x_{k+1} := x_k + \alpha(\bar{x}_k - x_k)$

Update model for $i := (k+1) \mod n + 1$ (cyclic order):

$$H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]$$

$$u := u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) x_{k+1} - \nabla^2 f_i(v^i) v^i \right]$$

$$g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]$$

$$v^i := x_{k+1}$$

end for

- If $h \equiv 0$, then $\bar{x}_k = H^{-1}(u g)$.
- Otherwise, use an iterative method for finding \bar{x}_k .

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for i = 1, ..., n and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v^{i}) v^{i}, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v^{i})$$

for $k \ge n - 1$ do

Compute minimizer:
$$\bar{x}_k := \operatorname{argmin}_x \left[(g - u)^\top x + \frac{1}{2} x^\top H x + h(x) \right]$$

Make a step: $x_{k+1} := x_k + \alpha(\bar{x}_k - x_k)$

Update model for $i := (k+1) \mod n + 1$ (cyclic order):

$$H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]$$

$$u := u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) x_{k+1} - \nabla^2 f_i(v^i) v^i \right]$$

$$g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]$$

$$v^i := x_{k+1}$$

end for

- If $h \equiv 0$, then $\bar{x}_k = H^{-1}(u g)$.
- Otherwise, use an iterative method for finding \bar{x}_k .
- **Idea:** \bar{x}_k may be computed inexactly (as in inexact Newton methods).

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right].$$

(Assume $h \equiv 0$ for simplicity.)

Model:
$$m_k(x) = (g_k - u_k)^{\top} x + \frac{1}{2} x^{\top} H_k x + \text{const.}$$

NIM iteration:
$$x_{k+1} = x_k + \alpha(\bar{x}_k - x_k)$$
, where $\bar{x}_k := \operatorname{argmin} m_k(x)$.

Inexact minimization: instead of \bar{x}_k , use \hat{x}_k such that

$$\|\nabla m_k(\hat{x}_k)\| \le \eta_k \|\nabla \phi(x_k)\|, \qquad \eta_k := \left\{0.5, \sqrt{\|\nabla \phi(x_k)\|}\right\}.$$

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right].$$

(Assume $h \equiv 0$ for simplicity.)

Model:
$$m_k(x) = (g_k - u_k)^{\top} x + \frac{1}{2} x^{\top} H_k x + \text{const.}$$

NIM iteration: $x_{k+1} = x_k + \alpha(\bar{x}_k - x_k)$, where $\bar{x}_k := \operatorname{argmin} m_k(x)$.

Inexact minimization: instead of \bar{x}_k , use \hat{x}_k such that

$$\|\nabla m_k(\hat{x}_k)\| \le \eta_k \|\nabla \phi(\mathbf{x}_k)\|, \qquad \eta_k := \left\{0.5, \sqrt{\|\nabla \phi(\mathbf{x}_k)\|}\right\}.$$

Problem: cannot compute $\|\nabla \phi(x_k)\|$ (this in incremental optimization!).

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right].$$

(Assume $h \equiv 0$ for simplicity.)

Model:
$$m_k(x) = (g_k - u_k)^{\top} x + \frac{1}{2} x^{\top} H_k x + \text{const.}$$

NIM iteration:
$$x_{k+1} = x_k + \alpha(\bar{x}_k - x_k)$$
, where $\bar{x}_k := \operatorname{argmin} m_k(x)$.

Inexact minimization: instead of \bar{x}_k , use \hat{x}_k such that

$$\|\nabla m_k(\hat{x}_k)\| \leq \eta_k \|g_k\|, \qquad \eta_k := \left\{0.5, \sqrt{\|g_k\|}\right\}.$$

Recall:
$$g_k := \frac{1}{n} \sum_{i=1}^n \nabla f_i(v_k^i) \approx \nabla \phi(x_k)$$
.

Convergence rate remains superlinear!

Problem:
$$\min_{x} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right].$$

(Assume $h \equiv 0$ for simplicity.)

Model:
$$m_k(x) = (g_k - u_k)^{\top} x + \frac{1}{2} x^{\top} H_k x + \text{const.}$$

NIM iteration: $x_{k+1} = x_k + \alpha(\bar{x}_k - x_k)$, where $\bar{x}_k := \operatorname{argmin} m_k(x)$.

Inexact minimization: instead of \bar{x}_k , use \hat{x}_k such that

$$\|\nabla m_k(\hat{x}_k)\| \leq \eta_k \|g_k\|, \qquad \eta_k := \left\{0.5, \sqrt{\|g_k\|}\right\}.$$

Recall: $g_k := \frac{1}{n} \sum_{i=1}^n \nabla f_i(v_k^i) \approx \nabla \phi(x_k).$

Convergence rate remains superlinear!

For $h \not\equiv 0$, all of this can be generalized using the **composite gradient** mapping (see paper for details).

Order of component selection (cyclic vs randomized)

• What if randomized order is used in NIM instead of cyclic?

Experiments (ℓ_2 -regularized logistic regression): Epochs

Experiments (ℓ_2 -regularized logistic regression): Real time

L2-reg	alp	oha (n=50	0 000, d=5	00)	mnist8m (n=8 100 000, d=784)			
Res	NIM	SAG	Newton	LBFGS	NIM	SAG	Newton	LBFGS
10^{-1}	1.91s	1.36s	1.6m	4.01s	57.68s	34.91s	47.8m	1.1m
10^{-2}	13.37s	6.72s	2.6m	17.68s	1.6m	2.1m	1.4h	5.2m
10^{-3}	28.56s	17.73s	3.0m	37.70s	3.2m	3.9m	-	22.9m
10^{-4}	36.65s	36.04s	3.4m	58.35s	16.7m	7.1m	-	1.6h
10^{-5}	46.66s	1.0m	3.6m	1.4m	26.7m	1.0h	-	-
10^{-6}	53.92s	1.5m	4.0m	1.9m	33.5m	-	-	-
10^{-7}	57.63s	2.0m	4.0m	2.4m	40.1m	-	-	-
10^{-8}	1.0m	2.7m	4.1m	2.8m	46.0m	-	-	-
10^{-9}	1.1m	3.5m	4.3m	3.2m	49.6m	-	-	-
10^{-10}	1.2m	4.3m	4.7m	3.4m	53.3m	-	-	-

Inner solver: Conjugate Gradient Method.

Experiments (ℓ_1 -regularized logistic regression): Real time

L1-reg	alpha (ı	n=500 000), d=500)	mnist8m (n=8 100 000, d=784)			
Res	NIM	SAG	Newton	NIM	SAG	Newton	
10^{-1}	26.76s	1.31s	1.1m	15.7m	33.62s	53.6m	
10^{-2}	44.94s	6.52s	1.8m	37.0m	2.1m	1.8h	
10^{-3}	55.56s	17.26s	2.3m	46.9m	4.0m	2.5h	
10^{-4}	1.1m	35.51s	2.5m	1.0h	7.3m	3.1h	
10^{-5}	1.3m	1.0m	2.9m	1.2h	1.4h	-	
10^{-6}	1.3m	1.5m	3.1m	1.5h	-	-	
10^{-7}	1.4m	2.1m	3.1m	1.8h	-	-	
10^{-8}	1.5m	2.9m	3.5m	2.3h	-	-	
10^{-9}	1.6m	3.8m	4.4m	2.9h	-	-	
10^{-10}	1.6m	4.8m	4.5m	3.4h	-	-	

Inner solver: Fast Gradient Method [Nesterov, 2013].

Conclusion

- The presented Newton-type Incremental Method (NIM) is the first incremental method with a superlinear rate of convergence.
- Method NIM can be seen as an incremental variant of the standard Newton method.
- NIM has the same advantages and disadvantages as the classic Newton method:
 - + Fast superlinear rate of convergence with the unit step length.
 - Superlinear convergence is guaranteed only locally.
 - Not applicable to high-dimensional problems.

Thank you!