MAE 598: Design Optimization Project-2

Design Optimization using DOE and Response Surface in ANSYS

Rumitkumar Patel- ASU ID: 1219783279

Introduction

This project is performed to find the optimum solution and primarily reduce the volume of the required material used as well as for emergency braking conditions while maintaining every other aspect of the design under a certain limit. This analysis is performed on a brake disc model. The project is separated into 5 parts: Design problem statement, Mathematical problem formulation, Brake design model analysis, Design optimization, and Results and Conclusion.

Design Problem Statement

The primary objective is to minimize the brake disc volume for emergency braking conditions.

The secondary objectives are as follows:

- Minimize the maximum von-mises stress in the brake disc (*structural analysis*).
- Maximize the first natural frequency of the brake disc (*modal analysis*).
- Minimize the maximum temperature in the brake disc (*thermal analysis*).

Mathematical Problem Formulation

The primary objective is to minimize the disc volume.

Constraints: Here, the maximum von-mises stress and the maximum temperature is to be upper bounded. The first natural frequency of the brake disc should be higher than that of the engine fire frequency.

Variables: The variables that are changed to find the optimum solution are the brake disc's inner diameter, outer diameter, and thickness.

Brake design model analysis

Here, there are three analyses are performed: 1. Static structural analysis, 2. Modal analysis, 3. Transient thermal analysis. The project schematics of the work are shown below. The initial design of the brake disc has design variables thickness (P1), outer diameter (P2), and inner diameter (P3) are 25 mm, 125 mm, and 75 mm respectively.

Figure 1: Ansys Optimization Flowchart

Static Structural Analysis

Static structural analysis is implemented to find the maximum von-mises stress that is produced in the model. Gray cast iron and structural steel are used as materials for the brake disc and brake pads respectively. Tetrahedrons are used as a meshing method for the brake disc as well as the brake pads. The inner face of the brake pads which are in contact with the brake disc has smaller elements so that it can generate more accurate results. There are some boundary conditions are applied to the model to get accurate results. The rotational velocity of 250 rad/s is given for Y-axis. The brake pads are restricted to moving in the X and Z-axis. They can only move along Y-

axis. The pressure of 10.495 MPa is applied to the outer side of the brake pads to press the brake pads against the brake disc. A revolute joint is created between the brake disc and the ground so that the brake can rotate with respect to the ground. The contact between the brake pads and the brake disc is created to simulate the connection between the two. After solving the simulation, it has been found that the maximum stress of 13.539 MPa is produced in the contact region as shown in the figure below.

Figure 2: Static Structural Analysis

Modal Analysis

Modal analysis is performed using the same geometry as well as the same meshing method of tetrahedrons. It is implemented to find the first natural frequency of the brake disc. As it is shown in the figure the first natural frequency of the brake disc is found as 1612.6 Hz.

Figure 3: Modal Analysis

Transient Thermal Analysis

Transient thermal analysis is implemented to observe the maximum temperature generated in the model. The initial temperature of the brake disc is 35 °C. Convection is applied to all the faces of the brake disc with a film coefficient of $5 W/m^2$. Heat flux of $1.5395 MW/m^2$ is applied to the surface of the brake disc where the brake pads are in contact while the disc is rotating. After solving the problem, we found that the maximum temperature is 339.97 °C.

Figure 4: Thermal Analysis

Design Optimization

The values of the output parameters are known from the static structural analysis, modal analysis, and thermal analysis performed on the initial values of the input parameters (P1, P2, and P3 as discussed earlier). Here, DOE and ANSYS built-in optimization method is implemented to find the optimum solutions when the objective functions are maximum stress, solid volume, maximum temperature, and first natural frequency of the brake disc.

Design of Experiments

Latin hypercube sampling (LHS) is used to generate the input data points from the given region by the user. The range for the brake disc thickness, outer diameter, and inner diameters are taken as 9-26 mm, 127-150 mm, and 68-89 mm respectively. Here, a total of 50 DOE input parameters are generated in the bounds mentioned above. All the output parameters are found by solving the analyses according to the input parameters generated. Bounds for each input parameter are also shown in the table below. The results for all the DOE points are also shown in the figures shown below.

Design Variables	Lower Bound (mm)	Upper Bound (mm)
Thickness (P1)	9	26
Inner Diameter (P2)	127	150
Outer Diameter (P3)	68	89

	A	В	С	D	E	F	G	н
1	Name 💌	P1 - rotor_thickness (mm)	P2 - rotor_OD (mm)	P3 - rotor_ID (mm)	P4 - Equivalent Stress Maximum (Pa)	P5 - Total Deformation Reported Frequency (Hz)	P6 - Temperature Maximum (C)	P7 - Solid Volume (m^3)
2	1	15.29	128.61	88.37	1.1318E+07	1206.8	408.29	0.00067969
3	2	18.35	141.95	76.61	1.1137E+07	1215.3	376.71	0.0010401
4	3	9.51	146.55	69.89	1.0226E+07	859.34	565.36	0.00068974
5	4	16.65	140.57	87.95	2.0906E+07	1117.9	390.44	0.00088764
6	5	10.19	132.29	71.57	9.9554E+06	1172.6	533.54	0.00059587
7	6	24.81	134.13	80.81	1.2061E+07	1393.1	341.96	0.0011252
8	7	16.31	143.79	87.11	1.595E+07	1091.9	395.72	0.00092602
9	8	24.47	141.03	68.21	1.1437E+07	1330.3	343.45	0.0013599
10	9	12.23	135.51	74.51	1.0079E+07	1224.3	470.58	0.00070181
11	10	11.21	149.77	70.31	1.0097E+07	871.43	501.62	0.00081127
12	11	13.59	127.23	71.15	1.1705E+07	1398.1	435.13	0.00067318
13	12	10.87	138.27	77.45	1.0141E+07	1151.3	512.16	0.00066787
14	13	14.95	137.35	73.67	1.1454E+07	1249.5	414.41	0.00083783
15	14	19.37	148.39	75.77	1.1337E+07	1124.8	369	0.0012045
16	15	13.25	131.37	88.79	1.8717E+07	1152.1	441.94	0.00065213
17	16	22.43	145.17	85.43	1.2168E+07	1148.4	350.72	0.0012198
18	17	21.75	138.73	71.99	1.1378E+07	1327.6	353	0.001162
19	18	18.01	148.85	84.59	1.1416E+07	1051.3	378.65	0.0010946
20	19	10.53	136.43	79.97	1.0104E+07	1204.9	523.69	0.00063302
21	20	9.85	149.31	81.65	1.0087E+07	938.64	550	0.00071851
22	21	14.61	141.49	78.29	1.0307E+07	1164.4	417.44	0.00086035
23	22	22.77	130.91	85.01	1.2458E+07	1322.4	349.38	0.00095639
24	23	25.15	147.01	82.91	1.1928E+07	1191.8	340.43	0.001404
25	24	11.55	129.99	76.19	9.8878E+06	1357.8	484.29	0.0006179
26	25	20.39	139.19	70.73	1.1351E+07	1292.5	360.99	0.0011174

Figure 5: DOE Points

Figure 6: DOE Points (Continued)

Response Surface

When DOE is completed, the response surface is created using the method of Standard Response Surface- Full 2^{nd} Order Polynomial by taking the refinement type as manual and generating 3 verification points to verify the results. The goodness of fit is provided below. The response surface table is also given below.

Figure 7: Goodness of fit plot

Table of	Table of Schematic D3: Response Surface								
	A	В	С	D	E				
1		P4 - Equivalent Stress Maximum	P5 - Total Deformation Reported Frequency	P6 - Temperature Maximum	P7 - Solid Volume				
2	■ Coefficient of Determination (Best Value = 1)								
3	Learning Points	XX 0.80297	0.99208	0.99971	☆ 1				
4	■ Root Mean Square Error (Best Value = 0)								
5	Learning Points	9.115E+05	12.977	1.1184	1.0153E-07				
6	Verification Points	1.8403E+06	39.073	3.0666	4.4576E-07				
7	■ Relative Maximum Absolute Error (Best Value = 0%)								
8	Learning Points	XX 169.44	XX 32.066	★ 4.7932	0.12913				
9	Verification Points	X 134.12	X 43.329	- 7.6659	0.24652				
10	■ Relative Average Absolute Error (Best Value = 0%)								
11	Learning Points	× 29.684	6.2309	★★ 1.2933	0.033362				
12	Verification Points	× 47.928	×× 18.408	★ 3.3291	0.17027				

Figure 8: Response Surface table

Here, Local sensitivity analysis and local sensitivity curves are also shown below.

Figure 9: Local Sensitivity

Here, the given figure shows the maximum equivalent stress (Y-axis) with respect to the design variables (P1, P2, P3) (X-axis).

Figure 10: Local Sensitivity Curve: Stress

Here, the given figure shows the solid volume (Y-axis) with respect to the design variables (P1, P2, P3) (X-axis).

Figure 11: Local Sensitivity Curve: Volume

Here, the given figure shows the first natural frequency (Y-axis) with respect to the design variables (P1, P2, P3) (X-axis).

Figure 12: Local Sensitivity Curve: Frequency

Here, the given figure shows the maximum temperature(Y-axis) with respect to the design variables (P1, P2, P3) (X-axis).

Figure 13: Local Sensitivity Curve: Temperature

Optimization

Here, the Manual optimization method of Multiobjective Genetic Algorithm (MOGA) is chosen for the optimization of multiple objectives. Here, the candidate points are also verified. We have provided objectives and constraints as shown below in the figure. Here, the maximum stress is upper bounded by 14 MPa. The maximum temperature is upper bounded by $400\,^{\circ}\text{C}$. The solid volume of the brake disc is also upper bounded by $0.00099667\,m^3$. Here, these three parameters are minimized. The frequency is lower bounded by -1200 Hz to get accurate results. The frequency is to be maximized. The figure below shows the objectives and constraints and the method of optimization in detail.

Figure 14: Optimization Properties

After the solution of optimization, the highlighted candidate point is chosen as the final optimized result because that particular point has the least volume compared to the other two candidate points. The optimization results are shown in the table below:

Figure 15: Optimization Results

The convergence criteria plot is given for reference as follows:

Figure 16: Convergence Criteria plot

Results and Conclusion

Please consider the table below:

Parameter	Initial Values	Optimal values from	% increment/%
		ANSYS	decrement
Thickness (P1)	25 mm	16.634 mm	
Outer diameter (P2)	125 mm	127.08 mm	
Inner diameter (P3)	75 mm	83.463 mm	
Max. Stress	13.539 MPa	11.752 MPa	-13.2%
Natural Frequency	1612.6 Hz	1323.9 Hz	-17.9%
Max. Temperature	339.97 °C	391.25 ℃	+15.08%
Solid Volume	$0.00099667 m^3$	$0.00072152 \ m^3$	-27.6%

As observed from the above table, The improvement in the reduction in the solid volume can be seen, which is 27.6% less than the volume that was given as the initial design. So, the design has improved by that margin. For, the optimal design, the brake disc thickness, outer diameter, and inner diameter are as 16.634 mm, 127.08 mm, and 83.463 mm. Not only, the solid volume of the design has been successfully reduced, but also the maximum stress is reduced by 13.2%, Here, all the values found, satisfy the constraints that are provided. The maximum temperature has risen by 15.08%, which is logical since the thickness of the disc has been reduced. However, the maximum temperature still satisfies the given constraint of 400 °C. Also, the first natural frequency of the disc is 1323,9 Hz in the improved design which is less than 1612.6 Hz by 17.9%. Though, it satisfies the constraint of engine fire frequency of 1200 Hz. So, Overall, the design is improved by 27.6% for the primary objective with every other secondary objective under the desired limitations.