RUSSIA - KAZAN

International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1 3

shortcut Country: BGR

Shortcut

Павел има детско влакче. То се състои от една главна линия, по която има n гари, последователно номерирани с целите числа от 0 до n-1 . Гарите 0 и n-1 са върху двата края на главната линия. Разстоянието между гарите i и i+1 е l_i сантиметра ($0 \leq i < n-1$).

Освен главната линия има и няколко второстепенни линии. Всяка второстепенна линия свързва гара от главната линия и нова станция, която не е на главната линия (Тези нови гари не са номерирани). Най-много една второстепенна линия може да започва от всяка гара на главната линия. Дължината на второстепенната линия, започваща от гара i е d_i сантиметра. Означаваме $d_i=0$, за да отбележим, че не съществува второстепенна линия, започваща от гара i.

Павел планира да построи един пряк път за експресна линия между две различни гари (възможно съседни) от **главната линия**. Експресната линия ще има дължина точно c сантиметра, независимо от това, кои две гари свързава.

Всеки участък от линията, включително новата експресна линия може да се ползва в двете си посоки. Pазстоянието между две гари е равно на по-малката дължина на път, измежду пътищата от едната гара до другата. \mathcal{L} иаметър на цялата система от линии е максимумът на разстоянията между всички двойки гари. С други думи, това е най-малкото число t, такова, че разстоянието между

всеки две гари е най-много t .

Павел иска да построи експресна линия така, че диаметърът на получената система от линии да е минимален.

Детайли за реализацията

Трябва да реализирате функцията int64 find_shortcut(int n, int[] l, int[] d, int c)

- o n: брой на гарите на главната линия,
- \circ I: разстояние между гарите от главната линия (масив с дължина n-1),
- \circ d: дължини на второстепенните линии (масив с дължина n),
- о с: дължина на новата експресна линия.
- Функцията трябва да върне най-малкия възможен диаметър на цялата система от линии след добавянето на новата експресна линия.

Примери

Пример 1

За системата от линии, показани по-горе, грейдерът ще направи следното извикване:

find_shortcut(4, [10, 20, 20], [0, 40, 0, 30], 10)

Оптималното решение е да се построи експресна линия, свързваща гари 1 и 3, както е показано по-долу.

Диаметърът на получената система от линии е $80\,$ сантиметра, така че функцията трябва да върне $80\,$.

Пример 2

Грейдерът прави следното извикване:

```
find_shortcut(9, [10, 10, 10, 10, 10, 10, 10],
```

```
[20, 0, 30, 0, 0, 40, 0, 40, 0], 30)
```

Оптимално решение е свързаването на гари $\,2\,$ и $\,7\,$, и в този случай диаметърът е $\,110\,$.

Пример 3

Грейдерът прави следното извикване:

```
find_shortcut(4, [2, 2, 2],
[1, 10, 10, 1], 1)
```

Оптимално решение е свързаването на гари $\,2\,$ и $\,3\,$, и в този случай диаметърът е $\,21\,$.

Пример 4

Грейдерът прави следното извикване:

```
find_shortcut(3, [1, 1],
[1, 1, 1], 3)
```

Свързването на кои да е две гари с експресна линия с дължина 3 не подобрява първоначалния диаметър на системата от линии, който е 4 .

Подзадачи

Във всички подзадачи $2 \leq n \leq 1\,000\,000$, $1 \leq l_i \leq 10^9$, $0 \leq d_i \leq 10^9$, $1 < c < 10^9$.

- 1. (9 точки) $2 \le n \le 10$,
- 2. (14 точки) 2 < n < 100,
- 3. (8 точки) 2 < n < 250 ,
- 4. (7 точки) $2 \le n \le 500$,
- 5. (33 точки) $2 \le n \le 3000$,
- 6. (22 точки) $2 \le n \le 100\,000$,
- 7. (4 точки) $2 \le n \le 300\,000$,
- 8. (3 точки) 2 < n < 1000000.

Примерен грейдер

Примерният грейдер чете вход в следния формат:

- \circ ред 1: чели числа n и c,
- \circ ред 2: чели числа l_0, l_1, \dots, l_{n-2} ,
- \circ ред 3: чели числа $d_0, d_1, \ldots, d_{n-1}$.