Pollno: 4 & MCA

MODULE 3

I show that every simple graph on n vertices is a subgraph of kn

Answer:

Let G be a simple graph with n restices that means their was no loop or parallel edges where arckn) be a graph with complete graph with a vention Hence the number of vertices are same so we can worte it as

V(m) = v(kn)

In a complete graph outto a vestices has accedes 16, (1) edges

Simple graph has also have no edges so, edges set are also subset of complete graph.

モ(の) こも(kn)

2. show that every subgraph of a bipartile graph is bipastite.

Answer:

where on is a bipartite graph with its vertex v can be partitioned two disjoint set & and V2. The subgraph H of G1 15 the graph whose some of them are in vaand v, are considered every edges of it each of the end ventices in vi and other in V2 So . H is also bipartite graph is bipartite

Verify whether the integer sequences (7,6,5,4,3,3,2) and (6,6,5,4,3,3,1) are graphical

4. Let on be a graph in which there is no pair of adjacent edges since thore are no adjacent edges are the degree of each vertex is wither zeroon one or two

Eg:

| dcup=1
| dcup=1
| dcup=1
| dcup=1
| dcup=1
| dcup=1
| dcup=0
| dcup=0
| dcup=0

Prove that It is impossible to have a group of nine people at a party such that each knows exactly five of others in the group.

Answer:

each vertex represent a person.

If two persons knows each other there is an edge between them

gince each knows 5 others

regree of vertices = 5
Sum of degree of vertices = 9x5 = 45

from first degree of graph theory Edcus = 28

Here 45 = 2e because 2e is an even namber, 45 is not even

H is impossible to have a good of Nine people at a Party that each one knows exactly 5 of the others

6 Let of be a graph with n vertices to af which have degree k, and the others have degree k+1 prove that t=Ck+1) b-2e,

Abswer.

where e is the no. of edges in G By first theorem of graph theory

5d(V)=2e

t of which have degree k.

ie, tk.

other have degree kt 1

Cn-t) Ck+1)

=> Edevo = tk+cn-t)ck+1)

= tk+nk- tk+n-t

= nle+n-t

2e=(k+1) n-6

t = (++1) n-2e

7 let on be a regular graph, where k is an odd number prove that the no of edges in oils a multiple of ke

let G be a k regular graph cuith overtices let e ba the no of edges in G

dcv)=k for each restex of a

をdcv)=カト -- O

By flast theorem of graph thoory

Z a cv)=2e - 0

foom () and () =72e=0k

 $e = \frac{nk}{2}$ $= \left(\frac{n}{2}\right)k$

no of edges of on is a multiple of k.

8. Let G be a goaph with n vertices and exactly n-1 edges prove that G has either vertex of degree 1 or an Isolated vertex

n = no - of vertex

n-1 = No of edges

suppose degree of each vertex in 5772

d(V) >2

5 d CV) 2 2 n

=>2(n-1)2,20

=>ハーノ Zの

what is the smallest integer n s the complete graph kn has atleast 500 edges?

No of edges of $k_0 = n(2)$ $n(2 \ge 500)$ $n(n-1) \ge 500$ $n(n-1) \ge 1000$ $n^2 - n \ge 1000$ $n^2 - n - 1000 \ge 6$ n = 32.1265, -31.1265 $\therefore n \ge 32, n \ge 33$

10 Prove that there is no simple graph with 7

Vertex one of which has degree 2. two bave degree 3, three have degree 4 and the remaining vertex has degree 5

Assume that such a graph exist.

by first theorem in graph theory.

Edcv)=2e

V=6.

= 1(2)+2(3)+3(4)+1(5)

= 2+6+12+5

= 25

20 + 25

: There is no such a graph exist the assumption is contradition

MODULE 5

1. calculate the karl pearson's algorithm of carrelation from the following data

œ	6	8	12	15	18	20	24	28	31
							22		

∞	y	œμ	202	y2
6	10	60	36	100
8	12	96	64	144
12	15	180	144	225
15	15	225	225	225
18	18	324	324	324
		500	400	625
20	25		576	484
24	22	528	784	676
28	26	728		
31	28	669	961	784
162	141	3509	3514	3587

$$xy = \frac{1}{h} \sum xy - xy$$

$$\sqrt{\frac{1}{h}} \sum x^2 - x^2(\frac{h}{h} + \frac{h}{h} + \frac{h}{h$$

2 compute kant pensons coefficient connelation in the following serves relating the cost of living and oxigos

×	Y	x2	y 2	xy xy
100	98	1000	9604	9800
101	99	10201	9801	9999
103	997	10609	9801	10197
102	95	1000	9 409	9894
100	92	9801	9025	9500
99	95	9409	8464	9108
97	94	9604	9029	9215
98	90	9216	8836	9212
96	91	9025	8100	8 640
95	111		8261	8645
991	950	98269	90346	94210

$$\bar{x} = \sum_{n} = \frac{991}{10} = 9.91, \bar{y} = \sum_{n} = 95$$

$$\bar{x}(x,y) = \frac{1}{5} \sum_{n} xy - \bar{x}\bar{y}$$

$$\sqrt{\frac{1}{5}x^2 - \bar{x}^2} + \frac{1}{5}x^2 - \bar{y}^2}$$

$$= \frac{1}{5} \times 94210 - 99.1\times95$$

$$= \frac{10 \times 94210 - 99.1\times95}{\sqrt{10 \times 98269} \left(\frac{1}{99}\right) \left(\frac{1}{10} \times 90346 - 95^{2}\right)}$$

$$= \frac{9421 - 94(4.5)}{\sqrt{(98269 - 9820.81)(9034.6 - 9025)}}$$

3 The following data relate to the marks obtained by 10 student of a class in statistics and costy.

Marksin | 30 38 28 27 28 23 30 33 28 35

Maaksin 29 27 22 29 20 29 18 21 27 22 costing:

×	Ч	₹x	Ry	P=RX-RY	p 2
30	29	4.5	2	2.5	6.25
38	27	1	4.5	3.5	12.25
28	22	7	6.5	05	0.25
27	29	9	2	7	49
28	20	7	9	2 8	4
23	29	10	2	5,5	64
30	18	4.5	10	9	30.25
33	21	3	8	2.5	6 2 5
58	27	7	4.5	4.5	20 25
35	22	2	6.5		
					5p2=2175

correlation factor = Em (m2-1)

Fank coppelation coefficient

$$= 1 - 6 \left(\frac{217.5 + \frac{66}{12}}{10(10^2 - 1)} \right) = 1 - \frac{1338}{990}$$

4 Find the coefficient of anot coordination between the marks obtained in Mathematics (x) and thus in statistics by 10 students of certain class out of a total of no mark in each subject

×	4	RX	Ry	D	D2
12	16	10	8.5	15	2 25
18	15	85	10	-15	2 2 5
32	28	3	35	-0.5	0 25
18	16	85	8.5	0	0
25	24	45	5	-05	0.25
24	22	6	8	0	0
25	28	45	35	0	0
40	36	1	1	0	0
38	34	2	2	0	0
22	19	7	7		March 19
				N. L.	
					6

$$CF = 2(2^{2}-1) + 2(2^{2}-1) + 2(2^{2}-1) + 2(2^{2}-1)$$

$$= 24$$

Rank correlation coefficient is given by $\sigma = 1 - \frac{6CE \, D^2 + \frac{1}{12} \, cF)}{n \, cn^2 - 1}$ $= 1 - \frac{6(6 + \frac{24}{12})}{10(10^2 - 1)}$ $= 1 - \frac{6x8}{990} = 1 - \frac{48}{990} = 0.95$

obtain the equation of the two lines of regression for following data

Y 43 44 46 40 44 42 45 42 38 40 42 57 Y 29 31 19 18 19 27 27 29 41 30 26 10

Hence obtain the value of convelation efficiency blow ac and y.

Œ	9	9c2	y ²	∞y.
43	29	1849	841	1247
44	31	1936	961	1364
46	19	2116	361	874
40	18	1600	324	720
44	19	1936	361	836
42	27	1764	729	1134
45	29	2025	7-29	1215
12	41	1764	841	1218
38 40	30	1600	900	1558
42	25	1764	676	1092
57	10	32 49	100	530
528	30.6	23047	8 504	13028

Line regression of you a is given by $y-\bar{y}=by_{0c}(x-\bar{x})$ $by x=\frac{cov(x/y)}{\sigma x^{2}}$

$$cov(x,y) = \frac{1}{12} x xy - \overline{x} y$$

$$= \frac{1}{12} x 13028 - 43.58 \times 255 (x = \frac{123}{12})$$

$$= -25.63$$

 $\sigma \propto^2 = \frac{5}{5} \times \frac{2}{5} - \frac{2}{5} = \frac{23047}{12} - 43.6^2$ = 1920.58 - 1892.25 = -24-63 -21.87 1e, by $2c = \frac{-25.63}{21.37} = -1.199$ 1e, you so = y-25.5= -1.199(se-43.5). y = -1. 1990c +1.199 x 43-58 + 25.5. y=-1.199x+77.752 Line of agression of a ong is given by, x-x=bxy(y-y) whose bay = Cov (xry) 042 = 242 - 92 $=\frac{8504}{12}$ - 25 52 18, boog = -25.63 58.75 = 0.436 le, x on y = x-x=bxy (y-y) $= \infty - 43.58 = -0.436 (y - 25.5)$ = x = -0.4364 +0.436x 25.5+43.55. = -0 4369 +54.698 The correlation coefficient is, ア(x,y)= カミエター マダ (対をx2-を2)(対をy2-92)

$$= \frac{1}{12} \times 13028 - 43.58 \times 25.5$$

$$\sqrt{\left(\frac{1}{12} \times 23047 - 4358^{2}\right) \left(\frac{1}{12} \times 8904 - 25.5^{2}\right)}.$$

8. Find the regression equation of y on occubere y and oc are the marks obtained by to students as given below.

x: 20 45 65 40 55 35 15 80 25 50 y 20 60 55 45 75 35 25 90 10 50

æ	9	∞^2	42	æy.
20	20	400	400	400
45	60	2025	3600	2400
65	55	4235	3025	3545
40	45	1600	2025	1800
55	75	3026	5625	4125
35	35	1225	12 25	1225
15	25	225	225	375
80	90	6400	8400	7-200
25	10	6 2 5	1000	250
50	50	250 0	2500	2500
430	465	22 250	27225	24150.

Line of Degression of you a Is given by. $y - \bar{y} \cdot by \times (x - \bar{x})$.

$$b_{yx} = \frac{cov(x,y)}{\sigma x^{2}}$$

$$cov(x,y) = \frac{1}{5} 2xy - xy$$

$$cov(x,y) = \frac{1}{5} x_{24150} - 465 x_{43}$$

$$72^{2} = -6 \le x^{2} - 2^{2}$$

$$= \frac{1}{10} \times 22250 - 43^{2}$$

$$= 2225 - 1849$$

$$= 376$$

$$xyoc = \frac{415.5}{376} = 1.105$$
Now y on x is given by

Wow y on x 15 given by, y-46.5=1.105 (x-43)

> y= 1.1050c-1.105 x43448.5 y=1.1050c-1.015

By method of least squares, find the straight line of the form y= and that best fits the following the

let y=ax+b — 0

normal equations are given by

Ly=azx+nb — 0

Zxy= 42x2+ b 2>c - 3

œ	9	œy	· x2
1	12	12	1
2	19	38	4
3	28	84	9
4	39	156	16
5	54	286	25
15	155	575	56

substituting values of £x, £y, £xy and £x2 in @83

155=150+5b—@ 575=550+15b— 5 Solving@and@weget

(1) x3 => 465 => 469 + 15b -- (1) 675 = 659 + 15b -- (1) € 109

=> a=11 and b=-2using in 0 line of best fit 18 y=110c-2

8. If y is the pull required to lift a load x by mouns of pulley block, find a linear law of the form y=4x4b connecting x and y using the following data.

Value of y when x=110"

Abswer:

Linear law is given by 4=9x+6—0

£4=9£x+06—0

£x4=9£x+06x—6)

Y	X	XY	χ2
10 14 20 24	40 50 60 80	400 400 1200 1920	1600 2500 3600 6400
6g	230	4220	14100

subtituting values in @ and @ 68 = 2309 + 4b 4220 = 141009 + 230bsolving we get 9 = 0.354999 = -3.371Using these values in 9 $9 = 0.354 \times 1 - 3.371$ Now substituting given value of 1 $1 = 0.354 \times 1 - 3.371$ $1 = 0.354 \times 100 + -3.371$ $1 = 0.354 \times 100 + -3.371$

9. Fit a second degree parabola of the form $y = axc^2 + bxc + c$ to the following da + a.

let the pasabola of best fit be given by,

	g	xy	x 2	224	∞ ³	x4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 1 4 1 7 2 1 2 9 3 2 4 6	06 14 258 42 725 96	0.25 1 2.26 4 6.25 9 12.25	0 3 1-4 3.825 8 4 18 125 28 8 56-35	0.125 1 3.375 8 15.625 27 42.875	0.0625 5.0625 16 39.0625 81 150.062
14	17-1	417	35	117.2	98	292.25

Substituting values in @, @ and @ 171 = 359 + 146 + 70 - 8 417 = 989 + 356 + 140 - 8117.2 = 292.259 + 986 + 350 - 8

solving () and () we get a = 0.3238, b = -0.2238, c = 1.2714 Substituting in (), passabola of best fit 15, $y = 0.3238 \times 2 -0.2238 \times +1.2714.$

values of an experiment fit a second degree farabola of the form v = a+br+cr2 to the data?

V 20 30 40 50 60 70 80 R 27 22 197 165 1.43 1.11 0.93

	I R	RV	R ²	RV	R3	Rt
V 20 30 40 50 60 70	2.7 22 197 165 143 (.11	54 66 788 825 858 777 74.4	7.29 4.84 3.88 2.72 2.04 1.23 0.86	145 8 145 2 155 236 136 125 122 69 86 24 69 192	19.66 10.64 7.64 4.49 2.49 1.36 0.80	53.14 23.42 19.06 7.41 4.18 1.61 8:74
350	11.99	519.2	22.86	8 60 994	47.53	105.46

360 = 79+11.99 b + 22.86 c. — (5) 519.2 = 11.9994 + 22.86 b + 47 53 c — (6) 860.49 = 22.869 + 47.53 b + 105.46 c — (1) solving above equations we get,

a = 142.15

b = -75.39

C = 11.32

Parabola of best fit is

V= 142 15 - 75.39 R+11.32R2