CS 383C

CAM 383C/M 383E Numerical Analysis: Linear Algebra l

Fall 2008

Solutions to Homework 9

Lecturer: Inderjit Dhillon Date Due: Dec 5, 2008

Keywords: Iterative Methods, Arnoldi Iteration, Lanczos Method

1. Problem 33.2

(a) Since $h_{n+1,n} = 0$, $H = \begin{bmatrix} H_n & B \\ 0 & H_{m-n} \end{bmatrix}$, where B is a $n \times (m-n)$ matrix. Also, $AQ_n = Q_n H_n$ because $h_{n+1,n} = 0$.

- (b) Let $\mathbf{v} \in \mathcal{K}_n$. Since Q_n forms an orthogonal basis for \mathcal{K}_n , $\mathbf{v} = Q_n \mathbf{x}$ for some $\mathbf{x} \in \mathbb{C}^n$. Now, $A\mathbf{v} = AQ_n\mathbf{x} = Q_n(H_n\mathbf{x}) = Q_n\mathbf{y}$, where $\mathbf{y} = H_n\mathbf{x}$. Therefore, $A\mathbf{v} \in \mathcal{K}_n$. Hence proved.
- (c) n+1-th basis vector of \mathcal{K}_{n+1} is given by $A^nb=A(A^{n-1}b)$. Using part(b), $A^nb\in\mathcal{K}_n$. Hence, $\mathcal{K}_{n+1}\subseteq\mathcal{K}_n$. Also, $\mathcal{K}_n\subseteq\mathcal{K}_{n+1}$ trivially. Hence, $\mathcal{K}_n=\mathcal{K}_{n+1}$ and using induction, $\mathcal{K}_n=\mathcal{K}_{n+i}$, $1\leq i\leq (m-n)$.
- (d) Let \boldsymbol{v} be an eigenvector of H_n with eigenvalue λ . Using part (b), $AQ_n = Q_nH_n$. Hence, $A(Q_n\boldsymbol{v}) = Q_nH_n\boldsymbol{v} = \lambda(Q_n\boldsymbol{v})$. Therefore, every eigenvalue of H_n is an eigenvalue of A.
- $\text{(e)} \ \ \boldsymbol{x} = A^{-1}\boldsymbol{b} = A^{-1}Q_n\boldsymbol{e_1}\|\boldsymbol{b}\| = A^{-1}Q_nH_nH_n^{-1}\boldsymbol{e_1}\|\boldsymbol{b}\| = A^{-1}AQ_nH_n^{-1}\boldsymbol{e_1}\|\boldsymbol{b}\| = Q_n(H_n^{-1}\boldsymbol{e_1}\|\boldsymbol{b}\|) \in \mathcal{K}_n.$
- 2. **Problem 36.1** Any $\boldsymbol{x} \in \mathcal{K}_n$ can be represented as $\boldsymbol{x} = Q_n \boldsymbol{y}$. Also, $T_n = Q_n^T A Q_n$. Thus, the Rayleigh quotient when restricted to \mathcal{K}_n is given by: $r(\boldsymbol{x}) = \frac{\boldsymbol{y}^T Q_n^T A Q_n \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}} = \frac{\boldsymbol{y}^T T_n \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}}$, where $\boldsymbol{x} = Q_n \boldsymbol{y}$. Now, eigenvalues of a matrix are stationary points of the Rayleigh quotient, thus the Ritz values, i.e. eigenvalues of T_n are all stationary points of Rayleigh quotients of A when restricted to \mathcal{K}_n .

3. Problem 38.5

- (a) $\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} \mathbf{b}^T \mathbf{x}, \ \nabla \phi(\mathbf{x}) = A \mathbf{x} \mathbf{b}.$
- (b) Now, $\mathbf{x}_n = \mathbf{x}_{n-1} + \alpha_n r_{n-1}$. Optimal α_n is the one that minimizes $\phi(\mathbf{x}_n)$. Thus, to obtain the optimal α_n we set gradient of $\phi(\mathbf{x}_n)$ w.r.t. α_n to be 0:

$$r_{n-1}^T A r_{n-1} \alpha_n + r_{n-1}^T (A \boldsymbol{x}_{n-1} - \boldsymbol{b}) = 0.$$

Simplifying, we get: $\alpha_n = \frac{r_{n-1}^T r_{n-1}}{r_{n-1}^T A r_{n-1}}$.

(c) i.
$$x_0 = 0, r_0 = b$$

ii. for
$$n = 1, 2, 3...$$

iii.
$$\alpha_n = \frac{r_{n-1}^T r_{n-1}}{r_{n-1}^T A r_{n-1}}$$

iv.
$$x_n = x_{n-1} + \alpha_n r_{n-1}$$

v.
$$r_n = b - A\boldsymbol{x}_n$$