INTEGRAL LERROMAKURRA

- 1. Integral lerromakurra erabiliz, kalkulatu $x^2 + y^2 = R^2$ kurbaren luzera
- E: $2\pi R$

2. Kalkulatu $I = \int_C (x^2 - y^2) ds$ non $C = \begin{cases} x^2 + y^2 = 4y \\ x > 0 \end{cases}$

- E: -8π
- 3. Kalkulatu $I = \int_C xy^3 ds$ non C izanik XY planoan dagoen y = 2x zuzenaren segmentua kurba A(-1)
- 1,-2,0)-tik B(1,2,0)-ra.

- E: $\frac{16\sqrt{5}}{5}$
- 4. Kalkulatu $I = \oint_C y^2 dx + x^2 dy$ non C O(0,0), A(1,0) eta B(1,1) erpinetako hirukia den.
- E: $\frac{1}{3}$
- 5. Kalkulatu $I = \int_{(2,1)}^{(1,2)} y \, dx$ integrazio-mugak elkartzen dituen bide zuzenetik.
- E: $-\frac{3}{2}$
- 6. Ebaluatu $I = \int_C y^2 dx x^2 dy$ erloju-orratzen kontrako noranzkoan $x^2 + y^2 = 1$ zirkunferentzian zehar (0,1) puntutik (1,0) puntura. E: 0
- 7. Kalkulatu $I = \oint_C xy \, dx + y \, dy$ non $C : y^2 + 4x^2 8x = 0$.

E: -2π

8. Kalkulatu $I = \oint_C x^2 dx + y dy$ non $C: y^2 + 4x^2 - 8x = 0$.

- E: 0
- 9. Kalkulatu $I = \int_C (x+y) dx + (x-y) dy$ A(0,0) eta $B(\pi,\pi)$ puntuen artean, C hurrengo kurba izanik:
- a) Esandako puntuak elkartzen dituen zuzena.

E: π^2

b) $y = x + \sin x$ kurba.

E: π^2

c) APB lerro hautsia, $P(\pi,0)$ puntua izanik.

E: π^2

d) $y = \frac{x^2}{\pi}$ kurba.

- E: π^2
- e) Posible al da funtzio potentziala kalkulatzea? Arrazoitu erantzuna, eta erantzuna baiezkoa bada, kalkulatu funtzio potentziala. E: π^2

- 10. Aztertu bidearekiko independentzia eta balioetsi hurrengo integrala $I = \int_{(1,-2)}^{(3,4)} \frac{y \, dx x \, dy}{x^2}$ y = 3x - 5 zuzenean zehar:
- a) Funtzio potentziala erabiliz.

E: $-\frac{10}{3}$

b) Zuzena parametrizatuz.

E: $-\frac{10}{3}$

11. Kalkulatu $I = \oint_C (2x^3 - y^3) dx + (x^3 + y^3) dy$, C kurba $x^2 + y^2 = 1$ zirkunferentzia izanik.

E: $\frac{3\pi}{2}$

12. Kalkulatu $I = \int_C P(x,y) dx + Q(x,y) dy$ integrala, $D = \mathbb{R}^2 - \{H\}$ eremuan P, Q eta beraien lehenengo deribatu partzialak jarraituak direla eta $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ dela jakinik. Gainera, (ikusi irudia) A puntutik B puntura $\int_{C_1} = 1$ dela ezaguna da. Lortu:

a) $\oint_C P(x, y) dx + Q(x, y) dy$

E: 0

- b) $\int_{C_2} A$ puntutik B puntura.
- E: 1
- 13. Izan bedi $I = \int_C (x y) dx + (2x + y) dy$ integral lerromakurra, eta izan bitez A(0,0), B(1,0) eta D(1,1) puntuak:
- a) Kalkulatu *I* a lo largo de la poligonal *C* definida por los segmentos *AB* y *BD* entre los puntos *A* y *D*.
- b) Zehaztu I –ren balioa A eta D puntuen artean, $y = x^2$ C kurban zehar, entre los puntos A y D.

E: 2

- 14. Kalkulatu $I = \oint_C (1+xy) dx + (x-y) dy$ integral lerromakurraren balioa, y = 2+x zuzenak eta $y = x^2$ parabolak definitzen duten domeinu sinpleki konexuaren mugari dagokion C kurba sinple eta itxian zehar, bere noranzko negatiboan. E: $-\frac{9}{4}$
- 15. Kalkulatu $I = \oint_C (xy^2) dx + (x^2y) dy$ integral lerromakurraren balioa, y = 1 + x zuzenak eta $y = x^2$ parabolak definitzen duten domeinu sinpleki konexuaren mugari dagokion C kurba sinple eta itxian zehar, bere noranzko negatiboan. E: 0

16. Izan bitez $I = \int_C (x - y + z) dx + (3x^2 + z) dy + (x + z - 1) dz$ integral lerromakurra, x = t, $y = t^2$, $z = t^3$ kurba parametrizatua, eta t = 0 eta t = 1 uneetarako lortutako kurbako A eta B puntuak, hurrenez hurren.

Kalkulatu IA eta B puntuen artean, A eta B batzen dituen C kurbaren arkutik. E: $\frac{77}{30}$

17. Izan bitez $I = \int_C xy \, dx + (y+x) \, dy$ integral lerromakurra, eta A(0,0), B(1,1) eta D(2,0) puntuak. Kalkulatu I A eta D puntuen artean, C kurba $y = x^2$ ekuazio kartesiarraren gaineko \widehat{AB} segmentu lerromakurrak eta x+y=2 ekuazio kartesiarraren gaineko \overline{BD} segmentu zuzenak definitzen dute. E: $\frac{1}{12}$