# Relational parametricity and "theorems for free" A tutorial, with example code in Scala

Sergei Winitzki

Academy by the Bay

2021-09-04

#### Outline of the tutorial

- Motivation: practical applications of the parametricity theorem
- What is "fully parametric code"
- A complete proof of "theorems for free" in 7 steps
  - ▶ Step 1: Deriving fmap and cmap methods from types
  - Step 2: The commutativity law for bifunctors and profunctors
  - ▶ Step 3: Motivation for the relational formulation of naturality laws
  - ► Step 4: Definition of relational lifting (rmap)
  - Step 5: Properties of relational lifting
  - ▶ Step 6: Proof of the relational naturality law
  - ▶ Step 7: Deriving the wedge law from the relational naturality law
- Applications of the parametricity theorem
  - Yoneda identities
- Advanced applications of the parametricity theorem
  - Church encoding of recursive types
  - Simplifying types with universal quantifiers
  - Equivalence of foldMap and foldLeft for polynomial functors

#### Applications of parametricity. "Theorems for free"

**Parametricity theorem**: any fully parametric function obeys a certain law Example applications:

- Naturality law for headOption: for all x: List[A] and f: A => B,
   x.headOption.map(f) == x.map(f).headOption
- Uniqueness properties for fully parametric functions
  - ► The map and contramap methods uniquely follow from types
  - ► There is only one function f with type signature f[A]: A => (A, A)
- Type equivalence for universally quantified types
  - ► The type of functions pure [A]: A => F[A] is equivalent to F[Unit]

    \* In Scala 3, this type is written as [A] => A => F[A]
  - ► The type [A] => (Option[(R, A)] => A) => A is equivalent to List[R]
  - ► The type [A] => ((A => R) => A) => A is equivalent to R

#### Requirements for parametricity. Fully parametric code

Parametricity theorem works only if the code is "fully parametric"

- "Fully parametric" code: use only type parameters and Unit, no run-time type reflection, no external libraries or built-in types (so, no IO-like monads)
- "Fully parametric" is a stronger restriction than "purely functional"

Parametricity theorem applies only to a subset of a programming language

• Usually, it is a certain flavor of typed lambda calculus

#### Examples of code that is not fully parametric

```
Explicit matching on type parameters using type reflection:
    def badHeadOpt[A]: List[A] => Option[A] = {
                                => None
      case Nil
      case (head: Int) :: tail => None // Run-time type match!
      case head :: tail => Some(head)
Using typeclasses: define a typeclass NotInt[A] with the method notInt[A]
that returns true unless A = Int
    def badHeadOpt[A: NotInt]: List[A] => Option[A] = {
      case h :: tail if notInt[A] => Some(h)
      case _ => None
Failure of naturality law:
    scala > badHeadOpt(List(10, 20, 30).map(x => s"x = $x"))
    res0: Option[String] = Some(x = 10)
    scala > badHeadOpt(List(10, 20, 30)).map(x => s"x = $x")
    res1: Option[String] = None
```

#### Fully parametric programs are written using the 9 code constructions:

- Use Unit value (or equivalent type), e.g. (), Nil, None
- Use bound variable (a given argument of the function)
- Create a function: { x => expr(x) }
- Use a function: f(x)
- Oreate a product: (a, b)
- Use a product: p.\_1 (or via pattern matching)
- Create a co-product: Left[A, B](x)
- Use a co-product: { case ... => ... } (pattern matching)
- Use a recursive call: e.g., fmap(f)(tail) within the code of fmap

#### Step 1. Naturality laws require map

Naturality law: applying t[A]:  $F[A] \Rightarrow G[A]$  before  $\_.map(f)$  equals applying t[B]:  $F[B] \Rightarrow G[B]$  after  $\_.map(f)$  for any function f:  $A \Rightarrow B$ 



Example: F = List, G = Option, t = headOption
 The naturality law of headOption: for all x: List[A] and f: A => B, x.headOption.map(f) = x.map(f).headOption

Naturality laws are formulated using  $\_.map$  for F and G What is the code of map for a given  $F[\_]$ ?

• Equivalently, the code of fmap[A, B]: (A => B) => F[A] => F[B]

#### Step 1. Fully parametric type constructors

What is the fmap function for a given type constructor F[\_]?

- If the code of t[A]: F[A] => G[A] is fully parametric, then there are only a few ways to build the type constructors F[\_] and G[\_]
- Such "fully parametric" type constructors F[\_] are built as:

```
■ F[A] = Unit or F[A] = B where B is another type parameter
```

- $\mathbf{O}$  F[A] = A
- $\mathbf{3} \mathbf{F}[\mathbf{A}] = (\mathbf{G}[\mathbf{A}], \mathbf{H}[\mathbf{A}]) \mathbf{product types}$
- F[A] = Either[G[A], H[A]] co-product types
- 5 F[A] = G[A] => H[A] function types
- F[A] = G[F[A], A] recursive types
- **◊** F[A] = [X] ⇒ G[A, X] universally quantified types

The recursive type construction (Fix) can be defined as:

```
case class Fix[G[_, _], A](unfix: G[Fix[G[_, _], A], A])

F[A] = Fix[G, A] satisfies the type equation F[A] = G[F[A], A]
```

#### Step 1. Deriving fmap from types

```
• What is the fmap function for a covariant type constructor F[_]?
  fmap_F[A, B]: (A \Rightarrow B) \Rightarrow F[A] \Rightarrow F[B]
    If F[A] = Unit or F[A] = B then fmap_F(f) = identity
    2 If F[A] = A then fmap_F(f) = f
    If F[A] = (G[A], H[A]) then we need fmap_G and fmap_H
       fmap_F(f) = \{ case (ga, ha) => (fmap_G(f)(ga), \}
       fmap_H(f)(ha)) }
    4 If F[A] = Either[G[A], H[A]] then fmap_F(f) = \{
         case Left(ga) => Left(fmap_G(f)(ga))
         case Right(ha) => Right(fmap_H(f)(ha))
    6 If F[A] = G[A] \Rightarrow H[A] then we need cmap_G and fmap_H
       cmap_G[A, B]: (A \Rightarrow B) \Rightarrow G[B] \Rightarrow G[A]
       fmap_F(f) = (k: G[A] \Rightarrow H[A]) \Rightarrow (gb: G[B]) \Rightarrow
       fmap_H(f)(k(cmap_G(f)(gb))
    6 If F[A] = G[F[A], A] then we need fmap_G1 and fmap_G2
       fmap_F(f) = fmap_G1(fmap_F(f)) and fmap_G2(f)
    If F[A] = [X] \Rightarrow G[A, X] then we need fmap_G1
```

 $fmap_F(f) = k \Rightarrow [X] \Rightarrow fmap_G1(f)(k[X]))$ 

#### Step 1. Deriving cmap from types

• When F[\_] is contravariant, we need the cmap function  $cmap_G[A, B]: (A \Rightarrow B) \Rightarrow G[B] \Rightarrow G[A]$ • Use structural indunction on the type of F[\_]: If F[A] = Unit or F[A] = B then cmap\_F(f) = identity 2 If F[A] = A then F is not contravariant! If F[A] = (G[A], H[A]) then we need cmap\_G and cmap\_H  $cmap_F(f) = \{ case (gb, hb) => (cmap_G(f)(gb), \}$ cmap\_H(f)(hb)) } If F[A] = Either[G[A], H[A]] then cmap\_F(f) = { case Left(gb) => Left(cmap\_G(f)(gb)) case Right(hb) => Right(cmap\_H(f)(hb)) 6 If  $F[A] = G[A] \Rightarrow H[A]$  then we need fmap\_G and cmap\_H  $cmap_F(f) = (k: G[B] \Rightarrow H[B]) \Rightarrow (ga: G[A]) \Rightarrow$ cmap\_H(f)(k(fmap\_G(f)(ga)) 6 If F[A] = G[F[A], A] then we need fmap\_G1 and cmap\_G2  $cmap_F(f) = fmap_G1(cmap_F(f))$  and Then  $cmap_G2(f)$ If  $F[A] = [X] \Rightarrow G[A, X]$  then we need cmap\_G1

 $cmap_F(f) = k \Rightarrow [X] \Rightarrow cmap_G1(f)(k[X]))$ 

#### Step 1. Detect covariance and contravariance from types

- The type constructions for fmap and cmap are the same except for function types
- The function arrow (=>) swaps covariant and contravariant positions
- In any fully parametric type expression, each type parameter is either in a covariant position or in a contravariant position

type 
$$F[A, B] = (A \Rightarrow Either[A, B], (B \Rightarrow A) \Rightarrow A \Rightarrow (A, B))$$

- F[A, B] is covariant w.r.t. B since B is always in covariant positions
  - ▶ We can recognize this just by counting the function arrows
- We can generate the code for fmap and cmap mechanically, from types
- A type expression F[A, B, ...] can be analyzed with respect to each of the type parameters separately, and found to be covariant, contravariant, or neither ("invariant")

#### Step 1. "Invariant" types and profunctors

For "invariant" types, we use a trick: rename contravariant positions

- Example: type F[A] = Either[A => (A, A), (A, A) => A]
- Define type  $G[X, A] = Either[X \Rightarrow (A, A), (X, X) \Rightarrow A]$
- Then F[A] = G[A, A] while G[X, A] is contravariant in X and covariant in A. Such G[X, A] are called profunctors
- We can implement cmap with respect to X and fmap with respect to A def fmapG[X, A, B]: (A => B) => G[X, A] => G[X, B] def cmapG[X, Y, A]: (Y => X) => G[X, A] => G[Y, A]
- Then we can compose cmapG and fmapG to get xmapF:
   def xmapF[A, B]: (A => B) => (B => A) => G[A, A] => G[B, B] =
   f => g => cmapG[A, B, A](g) andThen fmapG[B, A, B](f)
- What if we compose in another order? Need a commutativity law:



#### Step 1. Verifying the functor laws

- fmap and cmap need to satisfy two functor laws
- Identity law: fmap(identity) = identity, cmap(identity) =
   identity
- Composition law: for any f: A => B and g: B => C,
  fmap(f) andThen fmap(g) = fmap(f andThen g)
  cmap(g) andThen cmap(f) = cmap(f andThen g)

#### Step 1. Summary

- fmap or cmap or xmap follow from a given type expression
- The code of fmap, cmap, xmap is always fully parametric and lawful
- It is precisely that code that we need to use in naturality laws
- Consistency of xmap requires to have a commutativity law
  - Commutativity laws are the subject of Step 2

#### Why we need relational parametricity

"Relational parametricity" is a method for proving parametricity theorems

- Main papers: Reynolds (1983) and Wadler "Theorems for free" (1989)
  - ▶ Those papers are outdated and also hard to understand
- There are few pedagogical tutorials on relational parametricity
  - ▶ "On a relation of functions" by R. Backhouse (1990)
  - ▶ "The algebra of programming" by R. Bird and O. de Moor (1997)

This tutorial does not follow any of the above but derives all results

#### Motivating relational parametricity. II. The difficulty

Cannot lift  $f: A \Rightarrow B$  to  $F[A] \Rightarrow F[B]$  when  $F[_]$  is not covariant!

- For covariant F[\_] we lift f: A => B to fmap(f): F[A] => F[B]
- For contravariant F[\_] we lift f: B => A to cmap(f): F[A] => F[B]

In general, F[\_] will be neither covariant nor contravariant

- Example: foldLeft with respect to type parameter A
   def foldLeft[T, A]: List[T] => (T => A => A) => A => A
- This is not of the form F[A] => G[A] with covariant F[\_] and G[\_]
  - ► Some occurrences of A are in covariant positions but other occurrences are in contravariant positions, all mixed up

#### Motivating relational parametricity. III. Liftings

The solution involves three nontrivial steps:

- Replace functions f: A => B by relations r: A <=> B
   Instead of b == f(a), we will write: (a, b) in r
- 2 Turns out, we can lift  $r: A \iff B$  to  $rmap(r): F[A] \iff F[B]$
- 3 Reformulate the naturality law of t via relations: for any  $r: A \iff B$ ,



To read the diagram: the starting values are on the left
For any r: A <=> B, for any fa: F[A] and fb: F[B] such that
(fa, fb) in rmap\_F(r), we require (t(fa), t(fb)) in rmap\_G(r)

#### Definition and examples of relations

In the terminology of relational databases:

- A relation r: A <=> B is a table with 2 columns (A and B)
- Each row (a: A, b: B) means that the value a is related to b

Mathematically speaking: a relation  $\mathbf{r}$ : A <=> B is a subset  $r \subset A \times B$ 

• We write (a, b) in r to mean  $a \times b \in r$  where  $a \in A$  and  $b \in B$ 

Relations can be many-to-many while functions  $A \Rightarrow B$  are many-to-one A function  $f: A \Rightarrow B$  can be also viewed as a relation  $rel(f): A \iff B$ 

- Two values a: A, b: B are in rel(f) if b == f(a)
- rel(identity: A => A) defines an identity relation id: A <=> A

Example of a relation that can be many-to-many:

```
Given two functions f: A \Rightarrow C, g: B \Rightarrow C, define a "pullback" relation pullback(f, g): A <=> B as: (a: A, b: B) in r means f(a) == g(b)
```

• The pullback relation is not equivalent to a function A => B or B => A

#### Proof of relational parametricity. I. Relation combinators

#### Relation combinators:

- For any relation r: A <=> B, the inverse relation is inv(r): B <=> A
  - ▶ The inverse operation is its own inverse: inv(inv(r)) == r
- For any relations r: A <=> B and s: A <=> B, get the union (r or s) and the intersection (r and s):

```
(a, b) in (r and s) means (a, b) in r and (a, b) in s
(a, b) in (r or s) means (a, b) in r or (a, b) in s
```

- For any relations r: A <=> B and s: B <=> C define the composition (r compose s) as a relation u: A <=> C by (a: A, c: C) in u when there exists b: B such that (a, b) in r and (b, c) in s
  - Composition corresponds to "join" in relational databases
  - ► Directionality law: inv(r compose s) == inv(s) compose inv(r)
  - Associativity and identity laws with respect to id: A <=> A
  - ▶ Preserves composition of functions: for f: A => B and g: B => C, rel(f andThen g) == rel(f) compose rel(g)
- The "pullback relation" can be expressed through composition: pullback(f, g) == rel(f) compose inv(rel(g))

#### Pullback relation expressed through composition of relations

For any  $f: A \Rightarrow C, g: B \Rightarrow C, a: A, b: B, to prove:$ 

(a, b) in pullback(f, g) is equivalent to:
 (a, b) in rel(f) compose inv(rel(g))

$$A \stackrel{\text{rel(f)}}{\longleftrightarrow} C \stackrel{\text{inv(rel(g))}}{\longleftrightarrow} B$$

- The first condition is equivalent to: f(a) == g(b)
- The second condition is equivalent to: there exists c: C such that:
   (a, c) in rel(f) and (c, b) in inv(rel(g))
- This is equivalent to: c is such that c == f(a) and c == g(b)
- This is equivalent to the first condition

# Proof of relational parametricity. II. Definition of rmap

For a type constructor F and  $r: A \iff B$ , need  $rmap(r): F[A] \iff F[B]$ Define rmap for F[A] by induction over the *type expression* of F[A] There are seven possibilities (assuming that the code is fully parametric):

- F[A] = Unit or another fixed type (say, T) not related to A
- The identity functor: F[A] = A
- Product type: F[A] = (G[A], H[A])
- Oco-product type: F[A] = Either[G[A], H[A]]
- Function type: F[A] = G[A] => H[A]
- Recursive type: F[A] = G[A, F[A]]
- Universally quantified term: F[A] = [Z] => G[A, Z]

Define rmap similarly to how a functor's fmap is defined in these cases

- $\bullet$  The inductive assumption is that liftings to  ${\tt G}$  and  ${\tt H}$  are already defined
- For G[A, Z], need to use two liftings (rmap\_G1 and rmap\_G2)
- Liftings with respect to different type parameters will commute!
- For F[A] = G[H[A]] we expect  $rmap_F(r) == rmap_G(rmap_H(r))$

#### Some diagrams for clarification

The commutativity theorem for relational liftings: For any type constructor G[A, X] and any two relations  $r: A \iff B$  and  $s: X \iff Y$ :



Relational lifting for a composition of type constructors, F[A] = G[H[A]]:

$$H[A] \leftarrow \text{rmap}_H(r) \rightarrow H[B]$$

$$G[H[A]] \xleftarrow{\text{rmap}_G(\text{rmap}_H(r))} G[H[B]]$$

### Proof of relational parametricity. II. Definition of rmap

Need to define rmap(r):  $F[A] \iff F[B]$  in these 7 cases:

- F[A] = T (a fixed type): define rmap(r) = id: T <=> T
- 2 The identity functor, F[A] = A: define rmap(r) = r:  $A \iff B$
- When F[A] = (G[A], H[A]): define ((g1,h1), (g2,h2)) in rmap(r)
  to mean (g1, g2) in rmap\_G(r) and (h1, h2) in rmap\_H(r)
- When F[A] = Either[G[A], H[A]]: either (Left(g1), Left(g2)) in rmap(r) when (g1, g2) in rmap\_G(r) or (Right(h1), Right(h2)) in rmap(r) when (h1, h2) in rmap\_H(r)
- When F[A] = G[A] => H[A]: define (f1, f2) in rmap(r) to mean (f1(g1), f2(g2)) in rmap\_H(r) for any g1: G[A] and g2: G[B] such that (g1, g2) in rmap\_G(r)
- When F[A] = G[A, F[A]]: define rmap(r) = rmap\_G1(r) compose rmap\_G2(rmap(r)) - the second rmap(r) is a recursive call
- When F[A] = [Z] ⇒ G[A, Z]: define (f1, f2) in rmap(r) to mean: for any types Z1 and Z2, and for any relation s: Z1 <⇒ Z2, we require (f1[A][Z1], f2[B][Z2]) in (rmap\_G1(r) compose rmap\_G2(s))

## Proof of relational parametricity. III. Examples of using rmap

Use rmap to lift a relation r to a type constructor Two main examples of relations generated by functions: rel(f) and pullback(f, g)

Three main examples of type constructors (F[A], G[A], H[A]):

```
• If F[A] is covariant then:
  rmap(rel(f)) == rel(fmap(f))
  rmap(pullback(f, g)) == pullback(fmap(f), fmap(g))
```

- If G[A] = A => A then (fa, fb) in rmap(rel(f)) means:
   when (a, b) in rel(f) then (fa(a), fb(b)) in rel(f)
   or: f(fa(a)) == fb(f(a)) or: fa andThen f == f andThen fb
   This relation has the form of a pullback
- If H[A] = (A => A) => A then (fa, fb) in rmap\_H(rel(f)) means:
   when (p, q) in rmap\_G(rel(f)) then (fa(p), fb(q)) in rel(f)
   equivalently: if p andThen f == f andThen q then f(fa(p))==fb(q)
   This is not a pullback relation: cannot express p through q

It is hard to use relations that do not have the form of a pullback

#### Proof of relational parametricity. IV. Formulation

Instead of proving relational properties for  $t[A]: P[A] \Rightarrow Q[A]$ , use the function type and the quantified type constructions and get:

- Any fully parametric t[A]: P[A] satisfies for any r: A <=> B the relation (t[A], t[B]) in rmap\_P(r)
- Any fully parametric t: P[] satisfies (t, t) in rmap\_P(id)

It is more convenient to prove a parametricity theorem with a free variable:

Any fully parametric expression t[A](z): P[A] with z: Q[A] satisfies, for any relation r: A <=> B and for any z1: Q[A], z2: Q[B], the law: if (z1, z2) in rmap\_Q(r) then (t[A](z1), t[B](z2)) in rmap\_P(r)

This applies to expressions containing one free variable (z)

Any number of free variables can be grouped into a tuple

#### From relational parametricity to naturality laws

Example:  $t[A] = \{ a: A \Rightarrow a \}$  of type  $P[A] = A \Rightarrow A$ Parametricity theorem says:

• For any types A and B, and for any relation  $r: A \iff B$ , we have:

```
(t[A], t[B]) in rmap_P(r) where rmap_P(r): (A \Rightarrow A) \iff B)
```

- (p, q) in rmap\_P(r) means: for any a: A, b: B, if (a, b) in r then p(a), q(b) in r
- So, (t[A], t[B]) in rmap\_P(r) means: for any a: A, b: B, if (a, b) in r then (t(a), t(b)) in r

Trick: choose r = rel(f) where  $f: A \Rightarrow B$  is an arbitrary function

- We get: for any a: A, b: B, if f(a) == b then f(t(a)) == t(b)
- Equivalently: f(t(a)) == t(f(a)), i.e., t commutes with all functions
- One can then prove that t must be an identity function
  - ► Choose f = { \_: A => b } with a fixed constant b: B

#### Proof of relational parametricity. V. Outline

The theorem says that t[A](z) satisfies its relational parametricity law Proof goes by induction on the structure of the code of t[A](z) At the top level, t[A](z) must have one of the 9 code constructions Each construction decomposes the code of t[A](z) into sub-expressions The inductive assumption is that the theorem holds for all sub-expressions (including the bound variable z)

#### Proof of relational parametricity. VI. Examples

We will show how to prove the first 4 constructions Constant type: If t[A](z) = c where c is a fixed value of a fixed type C:

• We have rmap\_P(r) == id while (c, c) in id holds

Use argument: If t[A](z) = z where z is a value of type Q[A]:

• If (z1, z2) in rmap\_Q(r) then (t(z1), t(z2)) in rmap\_Q(r)

Create function: If  $t(z) = h \Rightarrow s(z, h)$  where h: H[A] and s(z, h): S[A]:

• If (z1, z2) in rmap\_Q(r) and (h1, h2) in rmap\_H(r) then (s(z1, h1), s(z2, h2)) in rmap\_S(r)

Use function: If t(z) = g(z)(h(z)) where g(z): H[A] => P[A] and h(z): H[A] are sub-expressions:

- If (z1, z2) in rmap\_Q(r) then inductive assumption says: (h(z1), h(z2)) in rmap\_H(r)
- If (h1, h2) in rmap\_H(r) then inductive assumption says: (g(h1), g(h2)) in rmap\_P(r)

#### Summary

- Relational parametricity is a powerful technique
- It has been generalized to many different settings
  - ► Gradual typing, higher-kinded types, dependent types, etc.
- Relational parametricity has a steep learning curve
  - Cannot directly write code that manipulates relations
  - ▶ All calculations need to be done symbolically or with proof assistants
- The result may be a relation that is difficult to interpret as code
- A couple of results in FP do require the relational naturality law
- More details in the free book https://github.com/winitzki/sofp

