MAT237 Multivariable Calculus Lecture Notes

Yuchen Wang, Tingfeng Xia January 27, 2019

Contents

1	Critical Points	2
2	The Implicit Function Theorem	4
3	The Inverse Function Theorem	4
4	Zero content	5
5	Theorems of 1-D Integral Calculus	5
6	Generalized Integral Calculus	7

1 Critical Points

Definition A symmetric $n \times n$ matrix A is

- 1. **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$
- 2. nonnegative definite if $\mathbf{x}^T A \mathbf{x} \geq 0$ for all $x \in \mathbb{R}^n$

In addition, we say that A is

- 1. **negative definite** if -A is positive definite
- 2. **nonpositive definite** if -A is nonnegative definite

A matrix A is **indefinite** if none of the above holds. Equivalently, A is indefinite if there exist $\mathbf{x}, \mathbf{y} \in \mathbb{R}$ such that $\mathbf{x}^T A \mathbf{x} < 0 < \mathbf{y}^T A \mathbf{y}$

Theorem 1 Assume that A is a symmetric matrix. Then

- 1. A is positive definite \iff all its eigenvalues are positive $\iff \exists \lambda_1 > 0 \text{ such that } \mathbf{x}^T A \mathbf{x} \geq \lambda_1 |\mathbf{x}|^2 \text{ for all } \mathbf{x} \in \mathbb{R}^n$
- 2. A is nonnegative definite \iff all its eigenvalues are nonnegative
- 3. A is indefinite \iff A has both positive and negative eigenvalues

Remark If A is a symmetric matrix then The smallest eigenvalue of $A = \min_{\{\mathbf{u} \in \mathbb{R}^n : |\mathbf{u}|=1\}} \mathbf{u}^T A \mathbf{u}$

Theorem 2 For the matrix $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$,

- 1. if det A < 0, then A is indefinite
- 2. if det A > 0, then if $\alpha > 0$ then A is positive definite if $\alpha < 0$ then A is negative definite
- 3. if det A = 0 then at least one eigenvalue equals zero.

Definition A critical point **a** of C^2 function **f** is $\underline{\text{degenerate}}$ if $\det(D_{\mathbf{H}}(\mathbf{a})) = 0$

Theorem 3 - first derivative test If $\mathbf{f}: S \in \mathbb{R}^n \to \mathbb{R}$ is differentiable, then every local extremum is a critical point.

Theorem 4 - second derivative test

- 1. If $f: S \to \mathbb{R}$ is C^2 and **a** is a local minimum point for f, then **a** is a critical point of f and $H(\mathbf{a})$ is nonnegative definite.
- 2. If **a** is a critical point and $H(\mathbf{a})$ is positive definite, then **a** is a local minimum point.

Corollary Assume that f is C^2 and $\nabla f(\mathbf{a}) = \mathbf{0}$

- 1. If H(a) is positive definite, then a is a local min;
- 2. If H(a) is negative definite, then a is a local max;
- 3. If H(a) is indefinite, then a is a saddle point;
- 4. If none of the above hold, then we cannot determine the character of the critical point without further thought.

E.Knight's approach to critical points. In solving a question of $f : \mathbb{R}^2 \to \mathbb{R}$ we could use the following "quick check" approach:

- 1. Calculate the gradient of F, equating it to zero to find the critical points
- 2. Calculate the Hessian of F, find the corresponding matrices for each critical points, where the Hessian is defined as

$$H(f) = \begin{bmatrix} \partial_{xx} f & \partial_{xy} f = \partial_{yx} f \\ \partial_{xy} f = \partial_{yx} f & \partial_{yy} f \end{bmatrix}$$

- 3. Calculate the determinant of the hessian, and there are the following cases to consider
 - (a) $\det H < 0$, then sig(H) = (1,1) and the point is a saddle point
 - (b) $\det H < 0$, then
 - i. $tr(H) < 0 \implies sig(H) = (2,0)$ and the point is a local minimum
 - ii. $tr(H) > 0 \implies sig(H) = (0,2)$ and the point is a local maximum
 - (c) $\det H = 0$, then the test is inconclusive. We have to do this case by starring at it.

2 The Implicit Function Theorem

Assume that S is an open subset of \mathbb{R}^{n+k} and that $F: S \to \mathbb{R}^k$ is a function of class C^1 . Assume also that (\mathbf{a}, \mathbf{b}) is a point in S such that $\mathbf{F}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$ and $\det D_{\mathbf{v}} \mathbf{F}(\mathbf{a}, \mathbf{b}) \neq 0$

1. Then there exists $r_0, r_1 > 0$ such that for every $\mathbf{x} \in \mathbb{R}^n$ such that $|\mathbf{x} - \mathbf{a}| < r_0$, there exists a unique $\mathbf{y} \in \mathbb{R}^k$ such that $|\mathbf{y} - \mathbf{b}| < r_1$

$$F(x, y) = 0(1)$$

In other words, equation (1) implicitly defines a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$ for $x \in \mathbb{R}^n$ near \mathbf{a} , with $\mathbf{y} = \mathbf{f}(\mathbf{x})$ close to \mathbf{b} . Note in particular that $\mathbf{b} = \mathbf{f}(\mathbf{a})$.

2. Moreover, the function $\mathbf{f}: B(r_0, \mathbf{a}) \to B(r_1, \mathbf{b}) \subset \mathbb{R}^k$ from part (1) above is of class C^1 , and its derivatives may be determined by differentiating the identity

$$F(x,f(x)) = 0$$

and solving to find the partial derivatives of **f**.

Remark

$$D\mathbf{f}(\mathbf{a}) = -[D_{\mathbf{y}}\mathbf{F}(\mathbf{a}, \mathbf{b})]^{-1}D_{\mathbf{x}}\mathbf{F}(\mathbf{a}, \mathbf{b})$$

3 The Inverse Function Theorem

Let U and V be open sets in \mathbb{R}^n , and assume that $\mathbf{f}: U \to V$ is a mapping of class C^1 .

Assume that $\mathbf{a} \in U$ is a point such that $D\mathbf{f}(\mathbf{a})$ is invertible. and let $\mathbf{b} := \mathbf{f}(\mathbf{a})$. Then there exist open sets $M \subset U$ and $N \subset V$ such that

- 1. $\mathbf{a} \in M$ and $\mathbf{b} \in N$
- 2. **f** is one-to-one from M onto N (hence invertible), and
- 3. the inverse function $f^{-1}: N \to M$ is of class C^1

Moreover, if $x \in M$ and $y = \mathbf{f}(\mathbf{x}) \in N$, then

$$D(\mathbf{f}^{-1})(\mathbf{y}) = [D\mathbf{f}(\mathbf{x})]^{-1}$$

In particular,

$$D(\mathbf{f}^{-1})(\mathbf{b}) = [D\mathbf{f}(\mathbf{a})]^{-1}$$

4 Zero content

Zero content in 1-D A set $S \subset \mathbb{R}$ is said to have zero content if

$$\forall \epsilon > 0, \exists \text{ intervals } I_1, ..., I_n \text{ s.t. } S \subseteq \bigcup_{i=1}^n I_i \wedge \sum_{i=1}^n Len(I_i) < \epsilon$$

Multidimensional zero content. A set $S \subset \mathbb{R}^n$ is said to have zero content if

$$\forall \epsilon > 0, \exists \text{ boxes } B_1, ..., B_n \text{ s.t. } S \subseteq \bigcup_{i=1}^n B_i \wedge \sum_{i=1}^n Area(B_i) < \epsilon$$

5 Theorems of 1-D Integral Calculus

Lemma: Refined partitions give better approximations Let P be some partition over an interval and let P' be a refinement of P, then

$$LS_{P'}f \geq LS_{P}f \wedge US_{P'} \leq US_{P}f$$

Where LS and US stands for lower sum and upper sum respectively.

Lemma: Lower sum is always less then or equal to upper sum If P and Q are any partitions of [a,b], then $LS_Pf \leq US_Qf$. The essence of this proof is to consider the common refinement of these two partitions.

Lemma. $\epsilon - \delta$ definition of integrability If f is a bounded function on [a, b], the following conditions are equivalent:

- 1. f is integrable on [a, b]
- 2. $\forall \epsilon > 0, \exists P \text{ of } [a, b] \text{ such that } US_P f LS_P f < \epsilon$

Theorem: Integration is "Linear"

1. Suppose a < b < c. If f is integrable on [a, b] and on [b, c], then f is integrable on [a, c], further more

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

2. If f and g are integrable on [a, b], then so is f + g, further more

$$\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Theorem. Suppose f is integrable on [a, b].

- 1. If $c \in \mathbb{R}$, the cf is integrable on [a,b], and $\int_a^b cf(x) = c \int_a^b f(x) dx$
- 2. Of $[c,d] \subset [a,b]$, then f is integrable on [c,d].
- 3. If g is integrable on [a,b] and $f(x) \leq g(x), \forall x \in [a,b]$, then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$
- 4. |f| is integrable on [a,b], and $|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$

Theorem: Bounded + monotone \Longrightarrow **integrable** If f is bounded and monotone on [a, b], then f is integrable on [a, b]. The proof of this uses the $\epsilon - \delta$ definition of integrability

Theorem: Continuous \Longrightarrow **integrable** If f is continuous on [a, b], then f is integrable on [a, b]. Note that continuous is a sufficient but not necessary condition of integrability

Theorem: discontinuous at only finite pts \Longrightarrow **integrable** If f is bounded on [a,b] and continuous at all except finitely many points in [a,b], then f is integrable on [a,b]. A easy example of this would be any \mathbb{R} function that has a hole in it.

Theorem: Discontinuous at only zero content \implies integrable If f is bounded on [a, b] and the set of points in [a, b] at which f is discontinuous has zero content, then f is integrable on [a, b].

Proposition. Suppose f and g are integrable on [a,b] and f(x)=g(x) for all except finitely many points $x\in [a,b]$. Then $\int_a^b f(x)dx=\int_a^b g(x)dx$.

The Fundamental Theorem Of Calculus

- 1. Let f be an integrable function on [a, b]. For $x \in [a, b]$, let $F(x) = \int_a^x f(t)dt$. Then F is continuous on [a, b]; more-over, F'(x) exists and equals f(x) at every x at which f is continuous,
- 2. Let F be a continuous function on [a,b] that is differentiable except perhaps at finitely many points in [a,b], and let f be a function on [a,b] that agrees with F' at all points where the latter is defined. If f is integrable on [a,b], then $\int_a^b f(t)dt = F(b) F(a)$

Proposition. Suppose f is integrable on [a, b]. Given $\epsilon > 0, \exists \delta > 0$ such that if $P = \{x_0, ..., x_J\}$ is any partition of [a, b] satisfying

$$\max\{x_j - x_{j-1} | 1 \le j \le J\} < \delta$$

the sums $LS_P f$ and $US_P f$ differ from $\int_a^b f(x) dx$ by at most ϵ .

6 Generalized Integral Calculus

Theorems of double integrals

1. If f_1 and f_2 are integrable on the bounded set S and $c_1, c_2 \in \mathbb{R}$, then $c_1f_1 + c_2f_2$ is integrable on S, and

$$\int \int_{S} [c_1 f_1 + c_2 f_2] dA = c_1 \int \int_{S} f_1 dA + c_2 \int \int_{S} f_2 dA$$

2. Let S_1 and S_2 be bounded sets with no points in common (intersection $= \emptyset$), and let f be a bounded function. If f is integrable on S_1 and on S_2 , then f is integrable on $S_1 \cup S_2$, in which case

$$\int \int_{S_1 \cup S_2} f dA = \int \int_{S_1} f dA + \int \int_{S_2} f dA$$

- 3. If f and g are integrable on S and $f(\mathbf{x}) \leq g(\mathbf{x})$ for $\mathbf{x} \in S$, then $\int \int_S f dA \leq \int \int_S g dA$
- 4. If f is integrable on S, then so is |f|, and

$$\left| \int \int_{S} f dA \right| \le \int \int_{S} |f| dA$$

Theorem. Suppose f is a bounded function on the rectangle R. If the set of points in R at which f is discontinuous has zero content, then f is integrable on R.

Proposition: on zero content

- 1. If $Z \subset \mathbb{R}^2$ has zero content and $U \subset Z$, then U has zero content.
- 2. If $Z_1, ..., Z_k$ have zero content, then so does $\bigcup_{1}^{k} Z_j$
- 3. $\mathbf{f}: (a_0, b_0) \to \mathbb{R}^2$ is of class C_1 , then $\mathbf{f}([a, b])$ has zero content whenever $a_0 < a < b < b_0$

Discontinuity of characteristic function The function χ_S is discontinuous at \mathbf{x} if and only if \mathbf{x} is in the boundary of S.

Theorem. Let S be a measurable subset of \mathbb{R}^2 . Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is bounded and the set of points in S at which f is discontinuous has zero content. Then f is integrable on S. Remark on this theorem: the only points where f_{χ_S} can be discontinuous are those points in the closure of either f or χ_S is discontinuous. Both of these cases are discontuinity on a set of zero content. And we can definitely fix S inside of a rectangle, then by the previously stated theorem (The theorem directly above), such function is integrable.

Proposition: Integration on a set of zero content evaluates to zero. Suppose $Z \subset \mathbb{R}^2$ has zero content. If $f: \mathbb{R}^2 \to \mathbb{R}$ is bounded, then f is integrable on Z and $\int_Z f dA = 0$

Corollary.

- 1. Suppose that f is integrable on the set $S \subset \mathbb{R}^2$. If $g(\mathbf{x}) = f(\mathbf{x})$ except for \mathbf{x} in a set of zero content, then g is integrable on S and $\int_S g dA = \int_S f dA$
- 2. Suppose that f is integrable on S and on T, and $S \cap T$ has zero content. Then f is integrable on $S \cup T$, and $\int_{S \cup T} f dA = \int_{S} f d + \int_{T} f dA$