CS 301 – Intro to Data Mining

Algorithms for Constructing Rules from Coverings (continued)

 PRISM looked for a covering each time it needed to put together a part of a rule for <u>one</u> particular value of a decision attribute (i.e., class)

Ex: If ? then **Recommended Lenses** = hard

Age = young	Correctness 2/8
 Astigmatism = yes	4/12
Tear Production Rate = normal	4/12

Best is 4/12, so could pick either **Astigmatism** = yes or **Tear Production Rate** = normal

If **Astigmatism** = yes then **Recommended Lenses** = hard

Only correct for 4 of the 12 instances it covers (hardly "perfect"!), so try to add more conditions to the rule

If Astigmatism = yes and ? then Recommended Lenses = hard

	Correctness
Astigmatism = yes and Age = young	2/4
Astigmatism = yes and Age = pre-presbyopic	1/4
Astigmatism = yes and Age = presbyopic	1/4
Astigmatism = yes and Spectacle Prescription = myor	oe 3/6

Instead you can find **one** covering from which you can generate the rules for **all** values of the decision attribute

Finding all coverings for a decision attribute

You might decide you like one covering better than another ©

Let S be the set of all non-decision attributes

For every non-empty subset P of S compute P*

where P^* is a partitioning of the instances of the dataset on some attributes such that if instances x_i and x_j are in the same block in P^* it means that they are indistinguishable in their values for the attributes in P

Ex: Decision attribute is **f**

	а	b	С	d	f	color1	color2
x1	0	L	0	Ш	0	В	W
x2	0	R	1	ш	1	В	W
х3	0	L	0	L	0	W	В
х4	0	R	1	L	1	W	В
х5	1	R	0	L	2	В	W
х6	1	R	0	L	2	W	В
x7	2	S	2	Н	3	В	W
х8	2	S	2	Н	3	W	В

$${a}^* = {\{x_1, x_2, x_3, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}}$$

$$\{b\}^* = \{\{x_1,\; x_3\},\; \{x_2,\; x_4,\; x_5,\; x_6\},\; \{x_7,\; x_8\}\}$$

$$\{c\}^* = \{\{x_1, x_3, x_5, x_6\}, \{x_2, x_4\}, \{x_7, x_8\}\}$$

$$\{a,\,c\}^*=\{a,\,b\}^*=\{b,\,c\}^*=\{a,\,b,\,c,\,d\}^*=\{\{x_1,\,x_3\},\,\{x_2,\,x_4\},\,\{x_5,\,x_6\},\,\{x_7,\,x_8\}\}$$

$$\{a,\,b,\,c,\,d,\,color1,\,color2\}^* = \{\{x_1\},\,\{x_2\},\,\{x_3\},\,\{x_4\},\,\{x_5\},\,\{x_6\},\,\{x_7\},\,\{x_8\}\}$$

. . .

Later we're also going to need the partition for the decision attribute

$${f}^* = {{X_1, X_3}, {X_2, X_4}, {X_5, X_6}, {X_7, X_8}}$$

Attribute dependency inequality:

Let P₁, P₂ be partitions

Then $P_1 \le P_2$ if for each block B of P_1 there exists a block B' of P_2 such that B is a proper subset of B'

$$\underline{Ex}: \{\{x_1, x_3\}, \{x_2, x_4, x_5, x_6\}, \{x_7, x_8\}\} \le \{\{x_1, x_3\}, \{x_2, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}$$
 $yes/no?$
$$\{\{x_1, x_3\}, \{x_2, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\} \le \{\{x_1, x_3\}, \{x_2, x_4, x_5, x_6\}, \{x_7, x_8\}\}$$
 $yes/no?$

Covering:

Let S be the set of all non-decision attributes and let R be the set of decision attributes

P is a **covering** of R if:

- (1) P is a subset of S,
- (2) $P^* \le R^*$, and
- (3) P is minimal.

<u>Ex</u>: Which of the partitions computed earlier qualifies as a **covering** for $R = \{f\}$?

$$\{f\}^* = \{\{x_1, x_3\}, \{x_2, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}\$$
 $S = \{a, b, c, d, color1, color2\}$

$${a}^* = {\{x_1, x_2, x_3, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}}$$
 yes/no?

$$\{b\}^* = \{\{x_1, x_3\}, \{x_2, x_4, x_5, x_6\}, \{x_7, x_8\}\}$$
 yes/no?

$$\{C\}^* = \{\{X_1, X_3, X_5, X_6\}, \{X_2, X_4\}, \{X_7, X_8\}\}\$$
 yes/no?

$${a, c}^* = {\{x_1, x_3\}, \{x_2, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}}$$
 yes/no?

$${a, b}^* = {\{x_1, x_3\}, \{x_2, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}}$$
 yes/no?

$$\{b, c\}^* = \{\{x_1, x_3\}, \{x_2, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}$$
 yes/no?

$${a, b, c, d}^* = {\{x_1, x_3\}, \{x_2, x_4\}, \{x_5, x_6\}, \{x_7, x_8\}\}}$$
 yes/no?

$$\{a, b, c, d, color1, color2\}^* = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}\}$$
 yes/no?

• Finding (i.e., "inducing") rules from coverings - RICO

Pick the covering you prefer from the ones you found

initialize E to the set of all instances;

initialize rule set to empty;

while E contains instances do

create rule that uses attribute values of first instance in E for each attribute in covering;

add rule to rule set;

remove instances in E covered by this rule;

end-while

Ex: If we had picked covering {a, c} what rule set would we get?

	а	b	С	d	f	color1	color2
x1	0	L	0	L	0	В	W
x2	0	R	1	ш	1	В	W
х3	0	L	0	L	0	W	В
х4	0	R	1	L	1	W	В
х5	1	R	0	L	2	В	W
х6	1	R	0	L	2	W	В
x7	2	S	2	Н	3	В	W
х8	2	S	2	Н	3	W	В

If
$$a = 0$$
 and $c = 0$ then $f = 0$

If
$$a = 0$$
 and $c = 1$ then $f = 1$

If
$$a = 1$$
 and $c = 0$ then $f = 2$

If
$$a = 2$$
 and $c = 2$ then $f = 3$

Could any conditions be dropped in any of those rules?

If
$$a = 0$$
 and $c = 0$ then $f = 0$

If
$$a = 0$$
 and $c = 1$ then $f = 1$

If
$$a = 1$$
 and $c = 0$ then $f = 2$

If
$$a=2$$
 and $c=2$ then $f=3$ OR If $a=2$ and $c=2$ then $f=3$

- **Essential attribute:** attribute that appears in <u>every</u> covering; *what is the significance of this???*
- Some advantages to this algorithm: (1) will always find at least one covering and (2) will always generate rules that are 100% correct

Ex: Decision attribute is Play

	Outlook	Temperature	Humidity	Windy	Play
x1	sunny	hot	high	FALSE	no
x2	sunny	hot	high	TRUE	no
х3	overcast	hot	high	FALSE	yes
х4	rainy	mild	high	FALSE	yes
x5	rainy	cool	normal	FALSE	yes
х6	rainy	cool	normal	TRUE	no
x7	overcast	cool	normal	TRUE	yes
х8	sunny	mild	high	FALSE	no
х9	sunny	cool	normal	FALSE	yes
x10	rainy	mild	normal	FALSE	yes
x11	sunny	mild	normal	TRUE	yes
x12	overcast	mild	high	TRUE	yes
x13	overcast	hot	normal	FALSE	yes
x14	rainy	mild	high	TRUE	no

Coverings are {Outlook, Temperature, Windy} and {Outlook, Humidity, Windy}

Rule set for covering { *Outlook*, *Temperature*, *Windy*}:

[[[sunny, hot, TRUE, no], 1], [[sunny, hot, FALSE, no], 1], [[sunny, mild, TRUE, yes], 1], [[sunny, mild, FALSE, no], 1], [[sunny, cool, FALSE, yes], 1], [[overcast, hot, FALSE, yes], 2], [[overcast, mild, TRUE, yes], 1], [[overcast, cool, TRUE, yes], 1], [[rainy, mild, TRUE, no], 1], [[rainy, mild, FALSE, yes], 2], [[rainy, cool, TRUE, no], 1], [[rainy, cool, FALSE, yes], 1]]

Here *Outlook* and *Windy* would be essential attributes

Without dropping conditions, we get 12 rules as compared to:

6 rules produced by **PRISM**

```
Prism rules
------

If outlook = overcast then yes

If humidity = normal
   and windy = FALSE then yes

If temperature = mild
   and humidity = normal then yes

If outlook = rainy
   and windy = FALSE then yes

If outlook = sunny
   and humidity = high then no

If outlook = rainy
   and windy = TRUE then no
```

At most 2 decisions required in result produced by ID3/J48

Ex: Decision attribute is **Recommended Lenses**

Table 1.1 Contact Lens Data						
Age	Spectacle Prescription	Astigmatism	Tear Production Rate	Recommended Lenses		
young	myope	no	reduced	none		
young	myope	no	normal	soft		
young	myope	yes	reduced	none		
young	myope	yes	normal	hard		
young	hypermetrope	no	reduced	none		
young	hypermetrope	no	normal	soft		
young	hypermetrope	yes	reduced	none		
young	hypermetrope	yes	normal	hard		
pre-presbyopic	myope	no	reduced	none		
pre-presbyopic	myope	no	normal	soft		
pre-presbyopic	myope	yes	reduced	none		
pre-presbyopic	myope	yes	normal	hard		
pre-presbyopic	hypermetrope	no	reduced	none		
pre-presbyopic	hypermetrope	no	normal	soft		
pre-presbyopic	hypermetrope	yes	reduced	none		
pre-presbyopic	hypermetrope	yes	normal	none		
presbyopic	myope	no	reduced	none		
presbyopic	myope	no	normal	none		
presbyopic	myope	yes	reduced	none		
presbyopic	myope	yes	normal	hard		
presbyopic	hypermetrope	no	reduced	none		
presbyopic	hypermetrope	no	normal	soft		
presbyopic	hypermetrope	yes	reduced	none		
presbyopic	hypermetrope	yes	normal	none		

Only covering we would find for this dataset is the entire set of attributes, with a rule for each instance

A downside to using this particular approach $\ensuremath{\mathfrak{B}}$