Zero-Field Spectral Cosmology (ZFSC) v3.1

Двуветвевой квантово-геометрический каркас со спектральной стабилизацией

Версия документа: 3.1.0 (15 сентября 2025)

Аннотация

Представлена версия ZFSC v3.1 как двуветвевой (лево-/правохиральный) квантово-геометрический каркас, в котором наблюдаемые массы и смешивания выводятся из спектра эффективного гамильтониана на дискретной геометрии. Ключевые элементы: общий спектральный стабилизатор Φ^* , квантовый переключатель $S_{\Omega}(t)$, резонансный ОМ-фактор Ω и пропускная способность резервуара κ , собранные в сквозной масштаб $\Theta = \kappa/(\Phi^*\Omega)$. Дана строгая операторная запись, процедуры извлечения Φ^* и Ω из спектральных данных, а также протокол численной валидации с метриками устойчивости плато.

Содержание

1	Спектральный принцип и постановка задачи	2
2	Слоистое гильбертово пространство и геометрия	2
3	Двуветвевой (хиральный) каркас	2
4	Набор операторов Oi (содержит v3.0 как подмножество)	2
5	Спектральный стабилизатор Фи*: определение и извлечение	3
6	OM-фактор Ω и переключатель $S\Omega$	3
7	Резервуар и сквозной масштаб Θ	3
8	Оператор резервуара Ξ	4
9	Полная форма эффективного гамильтониана v3.1	4
10	Поколения и смешивания	4
11	Фиксация устойчивости плато и Линдблад-реализация	4
12	Циклическая геометрия и угловая дискретизация	5
13	Нормировка и перевод в физические массы	5
14	Метрики устойчивости и извлечение параметров	5
15	Предсказания и проверяемые следствия v3.1	5
16	Численная валидация: протокол v3.1	6
17	Симметрии и совместимость членов	6

1 Спектральный принцип и постановка задачи

Фундаментальная гипотеза ZFSC: наблюдаемый спектр масс и смешиваний определяется собственными значениями и собственными векторами эффективного гамильтониана, построенного на дискретной квантовой геометрии.

$$m_n = \lambda_n\!\big(H_{\rm eff}(t)\big), \qquad {\rm Mix} = U_A^\dagger U_B, \tag{1} \label{eq:mn}$$

где $U_{A,B}$ — матрицы собственных векторов в секторах A,B (например, $u/d,\ell/\nu$). В версии v3.1 гамильтониан имеет двуветвевую структуру и явную временную модуляцию включения.

2 Слоистое гильбертово пространство и геометрия

Пусть $\mathcal{H}=\bigoplus_\ell \mathcal{H}_\ell$ — слоистое гильбертово пространство. Дискретная геометрия слоя ℓ задаётся связностью C_ℓ и лапласианом $L_\ell=D_\ell-C_\ell$. Базовый геометрический гамильтониан H_0 строится на $\{L_\ell\}$ и может включать квазипериодические/квазикристаллические компоненты.

3 Двуветвевой (хиральный) каркас

ZFSC v3.1 описывает две сопряжённые ветви — левую (L) и правую (R). Эффективный гамильтониан блочно-диагонален:

$$H_{\mathrm{eff}}(t) = S_{\Omega}(t) \, \mathrm{diag}\!\Big(H_L,\, H_R\Big), \qquad H_B = H_0 + \sum_i \alpha_i \, O_i \; + \; \Theta \, \Xi, \quad B \in \{L,R\}. \eqno(2)$$

Здесь O_i — фиксированный набор операторов (см. §4); Ξ — оператор резервуара (см. §8); Θ — сквозной масштаб подпитки (см. §7); $S_\Omega(t)$ — переключатель включения (§6). Важное $mpe fo sahue \ cummempuu \ v3.1$: одни и те же стабилизатор Φ^* и резонансный фактор Ω применяются одновременно к обеим ветвям L/R (общая "крышка").

4 Набор операторов O_i (содержит v3.0 как подмножество)

- 1. Структурированная энтропия: $O_{\mathrm{ent}}=\Phi(L),$ где $L=\bigoplus_{\ell}L_{\ell}$ и Φ монотонная эрмитова функция (типично X или X^2 при нормировке).
- 2. Каналы подпитки полей: $O_{\rm ch} = \sum_{\alpha \in \{{\rm gr,em,wk,st}\}} \Pi_{\alpha}$ (проекторы на канальные подсекторы).
- 3. Радиальный конфайнмент (поколения): $O_{\rm rad} = \sum_\ell f(B_\ell)$, где $B_\ell = g_r L_{\rm rad}^{(\ell)} + V_{\rm cap}^{(\ell)}(r)$; три нижних собственных уровня $\epsilon_{\ell,g}$ (g=1,2,3) реализуют поколения.

- 4. Топология смешиваний: $O_{\mathrm{mix}}=(W_g\otimes \mathbb{I}_s)H_0(W_g^{\dagger}\otimes \mathbb{I}_s)-H_0$, где $W_g(\kappa)=e^{-i\kappa K_g}$ с локальными генераторами K_g .
- 5. Фиксация устойчивых плато: $O_{\mathrm{stab}} = -\sum_n \Xi_n P_n$ (см. §11); Линдбладреализация даёт полную положительность.
- 6. Циклическая геометрия: $O_{\mathrm{cyc}}=f(L_{C_P}),\,L_{C_P}=2\mathbb{I}-(X+X^\dagger)$ на цикле $C_P.$

Коэффициенты α_i — малые, иерархия норм сохраняет симметрии базовой геометрии.

5 Спектральный стабилизатор Φ^* : определение и извлечение

Стабилизатор Φ^* — безразмерная величина, задающая норму стабилизирующего вклада и масштаб резервуара. Он *извлекается из спектра* по одной из процедур:

- (A) Near-degeneracy: анализ отношений ближайших собственных значений λ_{n+1}/λ_n и их сходимости к плато.
- (B) Gap-sealing: использование относительных зазоров $g_n = (\lambda_{n+1} \lambda_n)/\overline{\lambda}$ и гармонического среднего по стабильным модам.
- (C) Chaos/modes ratio: сравнение энерговклада хаотического фона и модплато; симметризация между L/R через геометрическое среднее.

В хаос-нормировке обычно $\Phi^* \approx 1 \pm \varepsilon$ (малое отклонение фиксируется по метрикам стабильности).

6 ОМ-фактор Ω и переключатель $S_{\Omega}(t)$

ОМ-фактор Ω — безразмерный резонансный множитель, характеризующий эффективную ширину "горлышка" включения динамики. Он влияет как на амплитуду, так и на фазовый режим переключателя. В v3.1:

$$S_{\Omega}(t) = S(t; \Omega), \qquad \Omega \in \mathbb{R}_{+}, \quad \Omega \approx 1 \pm \varepsilon_{\Omega}.$$
 (3)

Практические формы $S(t;\Omega)$: сглаженная ступенька (сигмоида), ступенчатый режим, либо узкополосная модуляция для сканов по резонансам. Ω извлекается из частотно-временных характеристик устойчивости плато (см. §14).

7 Резервуар и сквозной масштаб Θ

Резервуар управляет дозированной подпиткой спектра. В v3.1 его вклад собран в $c\kappa 603$ ной масштаб

$$\Theta = \frac{\kappa}{\Phi^* \, \Omega},\tag{4}$$

где κ — пропускная способность. Квантование κ допускает дискретные наборы (например, $\{3,5,8,13\}$) либо масштабирование $\kappa \sim \sqrt{N}$, что удобно при изменении размерности матрицы.

8 Оператор резервуара Ξ

Оператор Е действует в канальных подсекторах и реализует дозированную подачу:

$$\Xi = \sum_{\alpha \in \{\text{gr,em,wk,st}\}} \xi_{\alpha} \Pi_{\alpha}, \qquad \xi_{\alpha} \ge 0, \quad \|\Xi\| \ll \|H_{0}\|.$$
 (5)

Замечание о нотации: символ Ξ для резервуара отличается от индикаторов устойчивости Ξ_n в §11 (контекст определяет значение).

9 Полная форма эффективного гамильтониана v3.1

Собрав определения (2)–(4), получаем для каждой ветви $B \in \{L, R\}$:

$$\begin{split} H_B &= H_0 + \alpha_{\mathrm{ent}} \, \Phi(L) + \alpha_{\mathrm{ch}} \sum_{\alpha} \Pi_{\alpha} + \alpha_{\mathrm{rad}} \sum_{\ell} f(B_{\ell}) + \alpha_{\mathrm{mix}} \Big[(W_g \otimes \mathbb{I}_s) H_0(W_g^{\dagger} \otimes \mathbb{I}_s) - H_0 \Big] \\ &+ \alpha_{\mathrm{cyc}} \, f(L_{C_P}) - \alpha_{\mathrm{stab}} \sum_{n} \Xi_n P_n \; + \; \Theta \, \Xi \; - \; \mu \, \mathbb{I}, \end{split} \tag{6}$$

И

$$H_{\text{eff}}(t) = S_{\Omega}(t) \operatorname{diag}(H_L, H_R). \tag{7}$$

Иерархия норм сохраняет базовые симметрии: $\|\alpha_{\mathrm{ent}}\Phi(L)\| \gtrsim \|\alpha_{\mathrm{ch}}\sum\Pi_{\alpha}\| \gtrsim \|\alpha_{\mathrm{rad}}\sum f(B_{\ell})\| \gtrsim \|\alpha_{\mathrm{mix}}(\cdot)\| \gtrsim \|\alpha_{\mathrm{stab}}\sum\Xi_n P_n\| \gtrsim \|\alpha_{\mathrm{cyc}}f(L_{C_P})\| \gg \|\Theta\Xi\|.$

10 Поколения и смешивания

Три поколения появляются как три нижние связанные моды B_ℓ ниже порога континума. Отсутствие четвёртой моды при типичных $V_{\rm cap}^{(\ell)}(r)$ реализует естественный запрет. Топология смешиваний через локальный W_g обеспечивает слабые дальние переходы: малые углы в кварковом секторе и большие — в лептонном возникают без подгонки.

11 Фиксация устойчивости плато и Линдбладреализация

Индикатор устойчивости для моды n в скане параметра t:

$$\Xi_n = \exp\left(-a\frac{|\dot{\lambda}_n|}{\varepsilon_1} - b\frac{|\ddot{\lambda}_n|}{\varepsilon_2} - c\,\delta_{\rm ring}(n)\right) \in (0,1], \qquad P_n = |\psi_n\rangle\langle\psi_n|. \tag{8}$$

Энергетическая фиксация $-\alpha_{\rm stab} \sum_n \Xi_n P_n$ повышает робастность плато. Динамическая (полностью положительная) форма на уровне плотности ρ :

$$\dot{\rho} = -i[H_B, \rho] + \sum_j \left(D_j \rho D_j^{\dagger} - \frac{1}{2} \{ D_j^{\dagger} D_j, \rho \} \right), \qquad D_j = \sqrt{\beta_j} \, P_{\text{stable}}^{(j)}. \tag{9}$$

12 Циклическая геометрия и угловая дискретизация

На цикле C_P имеем $L_{C_P}=2\mathbb{I}-(X+X^\dagger),\,X|m\rangle=|m+1\rangle,\,Z|m\rangle=\omega^m|m\rangle,\,\omega=e^{2\pi i/P}.$ Выбор $P\in\{8,16,32,64\}$ (и их композиции) формирует устойчивые угловые щели, согласующиеся с плато.

13 Нормировка и перевод в физические массы

Общий сдвиг снимается μ (например, через условие ${\rm Tr} H_B=0$). Абсолютный масштаб задаётся функционалом резервуара:

$$\Lambda_* \propto \Omega(\rho) = \Omega_0 + \xi \operatorname{Tr}(\rho \Phi(L)), \qquad m_n^{\text{phys}} = \Lambda_* g\left(\frac{\lambda_n}{\Lambda_*}\right), \tag{10}$$

где g — фиксированная монотонная функция (на первой итерации g(x) = x).

14 Метрики устойчивости и извлечение параметров

Для оценки плато используются:

- plateau_persistence: доля t-окна, где $\Xi_n \geq \tau$ (порог).
- **shell_purity:** чистота выбранной спектральной оболочки (отсутствие скрещиваний/пересадок мод).
- ullet gap ratio: нормированное отношение локальных зазоров $g_n.$

Извлечение Φ^* и Ω опирается на стабилизированные наборы мод с максимальной $plateau_persistence$ и согласованными gap_ratio . Симметризация L/R делается через геометрическое среднее соответствующих оценок.

15 Предсказания и проверяемые следствия v3.1

- 1. **Три поколения** из радиальной квантизации; отсутствие четвёртой моды ниже порога.
- 2. **CKM/PMNS-структура** из локальной топологии смешиваний; подавление дальних углов в кварках и усиление в лептонах.
- 3. **Угловые щели** по выборным P и их композициям.
- 4. **Малая** Λ как следствие слабой дозированной подпитки (малость $\Theta \Xi$).
- 5. **Робастность к шумам** геометрии из-за присутствия Φ^* и энергетической/линдбладовской фиксации.
- 6. Двуветвевой симметрический стабилизатор: совпадение Φ^* и Ω для L/R является условием согласованной динамики; отклонение диагностируется по рассогласованию метрик.

16 Численная валидация: протокол v3.1

- 1. Синтезировать $\{L_\ell\}$, построить H_0 , задать набор O_i и L_{C_B} ; выбрать P.
- 2. Выбрать класс $S_{\Omega}(t)$ и сетку параметров; задать кванты для κ ; инициализировать оценки Φ^*, Ω .
- 3. Собрать H_B по (6) для B=L,R; сформировать $H_{\text{eff}}(t)$.
- 4. Диагонализовать, вычислить метрики §14; извлечь Φ^* (варианты A/B/C) и Ω ; симметризовать L/R.
- 5. Выполнить сканы по α_i , P, классам S_{Ω} , дискретам κ ; сравнить долю/качество плато с/без каждого O_i .
- 6. Отчёт: средние/медианные метрики, распределения щелей, карты устойчивости; проверка предсказаний § 15.

17 Симметрии и совместимость членов

При малых α_i и Θ базовые симметрии H_0 сохраняются. Коммутационные свойства между O_i выбираются так, чтобы не индуцировать избыточное спонтанное нарушение симметрий. Разумная иерархия норм приведена после (6).

Заключение

ZFSC v3.1 формализует двуветвевой (хиральный) спектральный каркас с общим стабилизатором Φ^* и резонансным фактором Ω . Эффективный гамильтониан (6) включает необходимые геометрические и топологические вклады и допускает строгую численную валидацию без подгонки параметров. Каркас воспроизводит ключевые структурные свойства спектра частиц и задаёт программу последующих проверок.