Homework 3

Please show all relevant work when you upload the assignment.

8. (General tilting •) A general model for information about expected returns can be expressed in vector-matrix form as

$$p = P\overline{r} + e$$

In the model **P** is an $m \times n$ matrix, $\overline{\mathbf{r}}$ is an n-dimensional vector, and \mathbf{p} and \mathbf{e} are m-dimensional vectors. The vector \mathbf{p} is a set of observation values and \mathbf{e} is a vector of errors having zero mean. The error vector has a covariance matrix \mathbf{Q} . The best (minimum-variance) estimate of $\overline{\mathbf{r}}$ is

$$\hat{r} = (P^T Q^{-1} P)^{-1} P^T Q^{-1} p.$$
 (8.12)

- (a) Suppose there is a single asset and just one measurement of the form $p = \overline{r} + e$ Show that according to (8.12), we have $\hat{r} = p$.
- (b) Suppose there are two uncorrelated measurements with values p_1 and p_2 , having variances σ_1^2 and σ_2^2 . Show that

$$\hat{r} = \left(\frac{p_1}{\sigma_1^2} + \frac{p_2}{\sigma_2^2}\right) \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1}$$

2. (APT factors) Two stocks are believed to satisfy the two-factor model

$$r_1 = a_1 + 2f_1 + f_2$$

$$r_2 = a_2 + 3f_1 + 4f_2$$

In addition, there is a risk-free asset with a rate of return of 10%. It is known that $\overline{r}_1 = 15\%$ and $\overline{r}_2 = 20\%$. What are the values of λ_0 , λ_1 , and λ_2 for this model?

4. (Variance estimate) Let r_i , for $i=1,2,\ldots,n$, be independent samples of a return r of mean \overline{r} and variance σ^2 . Define the estimates

$$\hat{\bar{r}} = \frac{1}{n} \sum_{i=1}^{n} r_i$$

$$x^2 = \frac{1}{n-1} \sum_{i=1}^n (r_i - \hat{r})^2$$

Show that $E(s^2) = \sigma^2$