5

10

15

20

REVENDICATIONS

- 1. Procédé de contrôle de la rétrogradation des transmissions automatiques ou automatisées utilisé à des fins d'assistance au freinage et comportant un ensemble de lois de passage de rétrogradation classiques, caractérisé en ce qu'il consiste, en dessous d'un certain seuil (E_{seuil}) arbitraire d'enfoncement de la pédale de l'accélérateur, à définir une nouvelle loi de passage de rétrogradation destinée à remplacer la loi de passage de rétrogradation classique en cours et définie par un décalage (Δ_{(n)(n-1)}) de la loi de passage en cours, ledit décalage (Δ_{(n)(n-1)}) étant calculé entre le seuil (E_{seuil}) arbitraire d'enfoncement de la pédale de l'accélérateur et l'enfoncement nul de la pédale de l'accélérateur.
- 2. Procédé de contrôle, selon la revendication 1, caractérisé en ce que le calcul du décalage $(\Delta_{(n)(n-1)})$ de la loi de passage en cours comporte les étapes suivantes :
 - a) déterminer en logique floue, pour un rapport de vitesses engagé, pour un enfoncement (E) de la pédale de l'accélérateur nul et à partir de la décélération du véhicule due au freinage (Γ_{veh}), du temps de freinage (Γ_{freinage}), de la vitesse du véhicule (V_{veh}) et de la charge du véhicule (Q), un intervalle (I) de régimes de l'arbre d'entrée de boîte du moteur dans lequel la rétrogradation doit être engagée, ledit intervalle (I) comportant une borne supérieure (Ω_{Sport}) qui correspond à une conduite sportive et une borne inférieure (Ω_{Eco}) qui correspond à une conduite économique,
 - b) déterminer par interpolation linéaire en fonction d'un indice $(I_{sportivit\acute{e}})$ de sportivité de conduite du conducteur, lui-même déterminé en logique floue, et en fonction des régimes (Ω_{Eco}) et (Ω_{Sport}) calculés précédemment, le régime (Ω_{seull}) de l'arbre d'entrée de boîte du moteur en dessous duquel la rétrogradation doit être engagée,
 - c) convertir le régime (Ω_{seuil}) de l'arbre d'entrée de boîte de vitesses en régime de vitesse du véhicule à la roue ($V_{\text{veh(n)(n-1)}}$) pour chaque rapport de vitesses (N), ledit régime ($V_{\text{veh(n)(n-1)}}$) correspondant à la

25

5

10

15

- position où l'enfoncement (E) de la pédale de l'accélérateur est nul,
- d) calculer par interpolation linéaire le décalage $(\Delta_{(n)(n-1)})$ entre la position où l'enfoncement (E) de la pédale de l'accélérateur est nul et la position où l'enfoncement (E) de la pédale de l'accélérateur est égal au seuil (E_{seuil}) arbitraire d'enfoncement de la pédale de l'accélérateur,
- e) Vérifier que le décalage ($\Delta_{(n)(n-1)}$) est supérieur ou égal à 0, sinon conserver le résultat obtenu avec la loi de passage de rétrogradation classique.
- 3. Transmission automatique ou automatisée de véhicule automobile, caractérisée en ce qu'elle comprend un procédé de contrôle de la rétrogradation des transmissions automatiques ou automatisées utilisé à des fins d'assistance au freinage selon l'une des revendications précédentes.