Universidad Nacional Autónoma de México Facultad de Ingeniería

Inteligencia Artificial

PRÁCTICA 7. PRONÓSTICO CON REGRESIÓN LINEAL MÚLTIPLE

Casasola García Oscar 316123747 oscar.casasola.g7@gmail.com Grupo 03

Profesor: Dr. Guillermo Gilberto Molero Castillo

Semestre 2022-1

Contenido Preparación del entorno de ejecución......2 1) Importar las bibliotecas necesarias2 2) Gráfica de las mediciones de aceite......3 Se seleccionan las variables predictoras (X) y la variable a pronosticar (Y)3 Se entrena el modelo a través de una regresión lineal múltiple4 Se genera el pronóstico......4 Valores pronosticados5 Comparación del modelo de pronóstico......5 Proyección de los valores reales y pronosticados6

Contexto

Objetivo: Obtener el pronóstico de la saturación de aceite remanente (ROS, Residual Oil Saturation) a partir de las cuatro mediciones de los registros geofísicos convencionales: (RC1) Registro Neutrón, (RC2) Registro Sónico, (RC3) Registro Densidad-Neutrón, y (RC4) Registro Densidad Corregido por Arcilla.

Fuente de datos

Se tienen mediciones de registros geofísicos convencionales: RC1 (Registro Neutrón), RC2 (Registro Sónico), RC3 (Registro Densidad-Neutrón) y RC4 (Registro Densidad -corregido por arcilla-)

- Para la toma de registros se cuenta con cables electromecánicos, sensores, dispositivos eléctricos y sistemas computarizados.
- Se procesan los datos a través de los sensores, para luego ser enviados a la superficie por medio del cable.
- ⇒ RC1 = Registro Neutrón
- ⇒ RC2 = Registro Sónico
- ⇒ RC3 = Registro Densidad-Neutrón
- ⇒ RC4 = Registro Densidad (corregido por arcilla)

Preparación del entorno de ejecución

1) Importar las bibliotecas necesarias

2) Importar los datos

Fuente de datos: RGeofisicos.csv

```
# Si se usa Google Colab
#from google.colab import files
#files.upload()

#from google.colab import drive
#drive.mount('/content/drive')
```

RGeofisicos = pd.read_csv("RGeofisicos.csv")
RGeofisicos

	Profundidad	RC1	RC2	RC3	RC4
0	5660.0	0.777924	0.814029	0.675698	0.757842
1	5660.5	0.796239	0.813167	0.748670	0.793872
2	5661.0	0.769231	0.797562	0.702285	0.748362
3	5661.5	0.764774	0.790365	0.680289	0.738451
4	5662.0	0.773813	0.788184	0.700248	0.718462
5	5662.5	0.795627	0.798850	0.753472	0.777537
6	5663.0	0.802155	0.837717	0.785441	0.807957
7	5663.5	0.797878	0.833851	0.756847	0.779641
8	5664.0	0.777206	0.813117	0.718713	0.761454
9	5664.5	0.788604	0.820041	0.729582	0.765600
10	5665.0	0.776924	0.815917	0.737350	0.788688
11	5665.5	0.769003	0.797940	0.724736	0.779675
12	5666.0	0.755305	0.815150	0.679189	0.762972
13	5666.5	0.746095	0.804713	0.659602	0.754690
14	5667.0	0.757050	0.793180	0.651374	0.748380
15	5667.5	0.744187	0.786476	0.612430	0.688062
16	5668.5	0.747083	0.798745	0.674513	0.714754
17	5669.0	0.752375	0.785494	0.711418	0.753766
18	5669.5	0.733356	0.779964	0.683226	0.727931

19	5670.0	0.713796	0.769322	0.600747	0.682140
20	5670.5	0.730675	0.790874	0.620547	0.700536
21	5671.0	0.723575	0.776079	0.654705	0.710247
22	5671.5	0.705104	0.748151	0.646052	0.704211
23	5672.0	0.695764	0.755593	0.647573	0.688053
24	5672.5	0.690900	0.741153	0.622093	0.662947
25	5673.0	0.719354	0.747426	0.646606	0.649385
26	5673.5	0.690589	0.724560	0.638601	0.662852
27	5674.0	0.698980	0.748176	0.648402	0.659771
28	5674.5	0.713517	0.769434	0.665381	0.693296
29	5675.0	0.691382	0.745327	0.562401	0.562902
30	5675.5	0.710586	0.757745	0.626525	0.662724
31	5676.0	0.713261	0.764235	0.662805	0.697686
32	5676.5	0.706780	0.750652	0.674763	0.708427
33	5677.0	0.716311	0.734232	0.650890	0.676664
34	5677.5	0.712586	0.747234	0.613715	0.666385
35	5678.0	0.718184	0.761320	0.568504	0.644622
36	5679.5	0.712518	0.696722	0.598481	0.673889
37	5680.0	0.730503	0.699670	0.593132	0.670354

Gráfica de las mediciones de aceite

```
plt.figure(figsize=(20,5))
plt.plot(RGeofisicos['Profundidad'],RGeofisicos['RC1'],color='green',marker='o',label='RC1')
plt.plot(RGeofisicos['Profundidad'],RGeofisicos['RC2'],color='purple',marker='o',label='RC2')
plt.plot(RGeofisicos['Profundidad'],RGeofisicos['RC3'],color='blue',marker='o',label='RC3')
plt.plot(RGeofisicos['Profundidad'],RGeofisicos['RC4'],color='pink',marker='o',label='RC4')
plt.xlabel('Profundidad / Pies')
plt.ylabel('Profundidad / Pies')
plt.ylabel('Porcentaje / %')
plt.title('Registros geofísicos convencionales')
plt.grid(True)
plt.legend()
plt.show()
```


Aplicación del algoritmo

Se importan las bibliotecas que se van a ocupar:

```
from sklearn import linear_model from sklearn.metrics import mean_squared_error, max_error, r2_score
```

Se seleccionan las variables predictoras (X) y la variable a pronosticar (Y)

X_train = np.array(RGeofisicos[['Profundidad','RC1','RC2','RC3']]) # Separamos las variables predictoras pd.DataFrame(X_train)

	0	1	2	3	19	5670.0	0.713796	0.769322	0.600747
0	5660.0	0.777924	0.814029	0.675698	20	5670.5	0.730675	0.790874	0.620547
1	5660.5	0.796239	0.813167	0.748670	21	5671.0	0.723575	0.776079	0.654705
2	5661.0	0.769231	0.797562	0.702285	22	5671.5	0.705104	0.748151	0.646052
3	5661.5	0.764774	0.790365	0.680289	23	5672.0	0.695764	0.755593	0.647573
4	5662.0	0.773813	0.788184	0.700248	24	5672.5	0.690900	0.741153	0.622093
5	5662.5	0.795627	0.798850	0.753472	25	5673.0	0.719354	0.747426	0.646606
6	5663.0	0.802155	0.837717	0.785441	26	5673.5	0.690589	0.724560	0.638601
7	5663.5	0.797878	0.833851	0.756847	27	5674.0	0.698980	0.748176	0.648402
8	5664.0	0.777206	0.813117	0.718713	28	5674.5	0.713517	0.769434	0.665381
9	5664.5	0.788604	0.820041	0.729582	29	5675.0	0.691382	0.745327	0.562401
10	5665.0	0.776924	0.815917	0.737350	30	5675.5	0.710586	0.757745	0.626525
11	5665.5	0.769003	0.797940	0.724736	31	5676.0	0.713261	0.764235	0.662805
12	5666.0	0.755305	0.815150	0.679189		5676.5		0.750652	
13	5666.5	0.746095	0.804713	0.659602	32		0.706780		0.674763
14	5667.0	0.757050	0.793180	0.651374	33	5677.0	0.716311	0.734232	0.650890
15	5667.5	0.744187	0.786476	0.612430	34	5677.5	0.712586	0.747234	0.613715
16	5668.5	0.747083	0.798745	0.674513	35	5678.0	0.718184	0.761320	0.568504
17	5669.0	0.752375	0.785494	0.711418	36	5679.5	0.712518	0.696722	0.598481
18	5669.5	0.733356	0.779964	0.683226	37	5680.0	0.730503	0.699670	0.593132

Y_train = np.array(RGeofisicos['RC4']) # Separamos la variable a pronosticar
pd.DataFrame(Y_train)

	0	19	0.682140
0	0.757842	20	0.700536
1	0.793872	21	0.710247
2	0.748362	22	0.704211
3	0.738451	23	0.688053
4	0.718462	24	0.662947
5	0.777537	25	0.649385
6	0.807957	26	0.662852
7	0.779641	27	0.659771
8	0.761454	28	0.693296
9	0.765600	20	0.093290
10	0.788688	29	0.562902
	00000	30	0.662724
11	0.779675	31	0.697686
12	0.762972	31	0.037000
13	0.754690	32	0.708427
14	0.748380	33	0.676664
15	0.688062	34	0.666385
16	0.714754	35	0.644622
17	0.753766	36	0.673889
0.00	05500	27	0.670354
18	0.727931	37	0.670354

Se entrena el modelo a través de una regresión lineal múltiple

RLMultiple = linear_model.LinearRegression()
RLMultiple.fit(X_train,Y_train) # Se entrena el modelo

#LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

Se genera el pronóstico

Y_pronostico = RLMultiple.predict(X_train)
pd.DataFrame(Y_pronostico)

	0	19	0.667227
0	0.747294	20	0.690328
1	0.792029	21	0.700034
2	0.752073	22	0.680054
3	0.737382	23	0.677721
4	0.751189	24	0.659473
5	0.790661	25	0.687266
6	0.818408	26	0.663540
7	0.801339	27	0.677919
8	0.767461		0.698386
9	0.780089	28	0.696366
10	0.776995	29	0.631284
11	0.762686	30	0.675163
12	0.737347	31	0.695701
13	0.720689	32	0.695139
14	0.719555	33	0.684519
15	0.692428	34	0.667370
16	0.726975	35	0.651260
17	0.744654	36	0.648244
18	0.719935	37	0.655373

Valores pronosticados

RGeofisicos['Pronostico'] = Y_pronostico RGeofisicos

	Profundidad	RC1	RC2	RC3	RC4	Pronostico	l	19	19 5670.0	19 5670.0 0.713796	19 5670.0 0.713796 0.769322	19 5670.0 0.713796 0.769322 0.600747	19 5670.0 0.713796 0.769322 0.600747 0.682140
0	5660.0	0.777924	0.814029	0.675698	0.757842	0.747294		20	20 5670.5	20 5670.5 0.730675	20 5670.5 0.730675 0.790874	20 5670.5 0.730675 0.790874 0.620547	20 5670.5 0.730675 0.790874 0.620547 0.700536
1	5660.5	0.796239	0.813167	0.748670	0.793872	0.792029		21	21 5671.0	21 5671.0 0.723575	21 5671.0 0.723575 0.776079	21 5671.0 0.723575 0.776079 0.654705	21 5671.0 0.723575 0.776079 0.654705 0.710247
2	5661.0	0.769231	0.797562	0.702285	0.748362	0.752073		22	22 5671.5	22 5671.5 0.705104	22 5671.5 0.705104 0.748151	22 5671.5 0.705104 0.748151 0.646052	22 5671.5 0.705104 0.748151 0.646052 0.704211
3	5661.5	0.764774	0.790365	0.680289	0.738451	0.737382		23	23 5672.0	23 5672.0 0.695764	23 5672.0 0.695764 0.755593	23 5672.0 0.695764 0.755593 0.647573	23 5672.0 0.695764 0.755593 0.647573 0.688053
4	5662.0	0.773813	0.788184	0.700248	0.718462	0.751189		24	24 5672.5	24 5672.5 0.690900	24 5672.5 0.690900 0.741153	24 5672.5 0.690900 0.741153 0.622093	24 5672.5 0.690900 0.741153 0.622093 0.662947
5	5662.5	0.795627	0.798850	0.753472	0.777537	0.790661		25	25 5673.0	25 5673.0 0.719354	25 5673.0 0.719354 0.747426	25 5673.0 0.719354 0.747426 0.646606	25 5673.0 0.719354 0.747426 0.646606 0.649385
6	5663.0	0.802155	0.837717	0.785441	0.807957	0.818408		26	26 5673.5	26 5673.5 0.690589	26 5673.5 0.690589 0.724560	26 5673.5 0.690589 0.724560 0.638601	26 5673.5 0.690589 0.724560 0.638601 0.662852
7	5663.5	0.797878	0.833851	0.756847	0.779641	0.801339		27	27 5674.0	27 5674.0 0.698980	27 5674.0 0.698980 0.748176	27 5674.0 0.698980 0.748176 0.648402	27 5674.0 0.698980 0.748176 0.648402 0.659771
8	5664.0	0.777206			0.761454	0.767461		28	28 5674.5	28 5674.5 0.713517	28 5674.5 0.713517 0.769434	28 5674.5 0.713517 0.769434 0.665381	28 5674.5 0.713517 0.769434 0.665381 0.693296
9	5664.5	0.788604	0.820041	0.729582	0.765600	0.780089		29	29 5675.0	29 5675.0 0.691382	29 5675.0 0.691382 0.745327	29 5675.0 0.691382 0.745327 0.562401	29 5675.0 0.691382 0.745327 0.562401 0.562902
10	5665.0	0.776924	0.815917	0.737350	0.788688	0.776995		30	30 5675.5	30 5675.5 0.710586	30 5675.5 0.710586 0.757745	30 5675.5 0.710586 0.757745 0.626525	30 5675.5 0.710586 0.757745 0.626525 0.662724
11 12	5665.5 5666.0	0.769003 0.755305	0.797940 0.815150	0.724736 0.679189	0.762972	0.762686 0.737347		31	31 5676.0	31 5676.0 0.713261	31 5676.0 0.713261 0.764235	31 5676.0 0.713261 0.764235 0.662805	31 5676.0 0.713261 0.764235 0.662805 0.697686
13	5666.5	0.746095	0.804713	0.659602	0.754690	0.737347		32	32 5676.5	32 5676.5 0.706780	32 5676.5 0.706780 0.750652	32 5676.5 0.706780 0.750652 0.674763	32 5676.5 0.706780 0.750652 0.674763 0.708427
14	5667.0	0.757050	0.793180	0.651374	0.748380	0.719555		33	33 5677.0	33 5677.0 0.716311	33 5677.0 0.716311 0.734232	33 5677.0 0.716311 0.734232 0.650890	33 5677.0 0.716311 0.734232 0.650890 0.676664
15	5667.5	0.744187	0.786476		0.688062	0.692428		34	34 5677.5	34 5677.5 0.712586	34 5677.5 0.712586 0.747234	34 5677.5 0.712586 0.747234 0.613715	34 5677.5 0.712586 0.747234 0.613715 0.666385
16	5668.5	0.747083	0.798745	0.674513	0.714754	0.726975		35	35 5678.0	35 5678.0 0.718184	35 5678.0 0.718184 0.761320	35 5678.0 0.718184 0.761320 0.568504	35 5678.0 0.718184 0.761320 0.568504 0.644622
17	5669.0	0.752375	0.785494	0.711418	0.753766	0.744654		36	36 5679.5	36 5679.5 0.712518	36 5679.5 0.712518 0.696722	36 5679.5 0.712518 0.696722 0.598481	36 5679.5 0.712518 0.696722 0.598481 0.673889
18	5669.5	0.733356	0.779964	0.683226	0.727931	0.719935		37					

Obtención de los coeficientes, intercepto, error y Score

```
print('Coeficientes: \n',RLMultiple.coef_)
print('Intercepto: \n',RLMultiple.intercept_)
print('Residuo: %.4f' % max_error(Y_train,Y_pronostico))
print('MSE: %.4f' % mean_squared_error(Y_train,Y_pronostico))
print('RMSE: %.4f' % mean_squared_error(Y_train,Y_pronostico,squared=False)) #True devuelve MSE y False devuelve RMSE
print('Score (Bondad de ajuste): %.4f' % r2_score(Y_train,Y_pronostico))
```

```
Coeficientes:

[-7.50589329e-05 5.06619053e-01 2.27471256e-01 4.89091335e-01]
Intercepto:

0.26237021738651867
Residuo: 0.0684
MSE: 0.0004
RMSE: 0.0195
Score (Bondad de ajuste): 0.8581
```

Comparación del modelo de pronóstico

$$Y = a + b_1 X_1 + b_2 X_2 \dots + b_n X_n + u$$

```
Y = 0.2624 - 0.000075(Profundidad) + 0.5066(RC1) + 0.2275(RC2) + 0.4891(RC3) + 0.0684
```

- Se tiene un **Score de 0.8581**, el cual indica que el pronóstico de la saturación de aceite remanente (SOR), en un determinado nivel de profundidad, se logrará con un **85.81% de efectividad** (grado de intensidad).
- Además, los pronósticos del modelo final se alejan en promedio 0.0004 y 0.0195 unidades del valor real, esto es, MSE y RMSE, respectivamente.

Proyección de los valores reales y pronosticados

```
plt.figure(figsize=(20,5))
plt.plot(RGeofisicos['Profundidad'],RGeofisicos['RC1'],color='green',marker='o',label='RC1')
plt.plot(RGeofisicos['Profundidad'],RGeofisicos['RC2'],color='purple',marker='o',label='RC2')
plt.plot(RGeofisicos['Profundidad'],RGeofisicos['RC3'],color='blue',marker='o',label='RC3')
plt.plot(RGeofisicos['Profundidad'],RGeofisicos['RC4'],color='pink',marker='o',label='RC4')
plt.plot(RGeofisicos['Profundidad'],Y_pronostico,color='red',marker='o',label='Pronostico')
plt.xlabel('Profundidad / Pies')
plt.ylabel('Profundidad / Pies')
plt.title('Registros geofisicos convencionales')
plt.grid(True)
plt.legend()
plt.show()
```



```
plt.figure(figsize=(20,5))
plt.plot(RGeofisicos['Profundidad'],Y_pronostico,color='red',marker='o',label='Pronostico')
plt.xlabel('Profundidad [Pies]')
plt.ylabel('Porcentaje [%]')
plt.title('Registros geofísicos convencionales')
plt.grid(True)
plt.legend()
plt.show()
```


Nuevos pronósticos

```
ROS = pd.DataFrame({'Profundidad': [5680.5], 'RC1': [0.45], 'RC2': [0.64], 'RC3': [0.5]})
RLMultiple.predict(ROS)

array([0.45410379])
```

En este caso, al dar estos nuevos valores y mediciones, se obtiene un Score de 0.4541, es decir, un 45.41% de efectividad.

Conclusiones

A lo largo de esta práctica, a través de cuatro mediciones de los registros geofísicos convencionales, los cuales son: (RC1) Registro Neutrón, (RC2) Registro Sónico, (RC3) Registro Densidad-Neutrón, y (RC4) Registro Densidad Corregido por Arcilla, se obtuvo el pronóstico de la saturación de aceite remanente (ROS, Residual Oil Saturation), esto gracias a la aplicación del algoritmo de regresión lineal múltiple (ya que se tienen más de dos variables independientes), que pertenece a la categoría de aprendizaje supervisado, el cual su principal objetivo es predecir valores desconocidos o faltantes de una función de valor continuo.

Como se mencionó anteriormente, al aplicar este algoritmo, se obtuvo un **Score de 0.8581**, el cual indica que el pronóstico de la saturación de aceite remanente (SOR), en un determinado nivel de profundidad, se logrará con un **85.81% de efectividad** (grado de intensidad).

Por ende el modelo de pronóstico quedó de la siguiente manera:

$$Y = a + b_1 X_1 + b_2 X_2 \dots + b_n X_n + u$$

$$Y = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + u$$

Y: pronóstico de la saturación de aceite remanente (ROS, Residual Oil Saturation)

a: intercepto

 b_1 : pendiente 1

b₂: pendiente 2

 b_3 : pendiente 3

 b_4 : pendiente 4

u: Residuo

$$Y = 0.2624 - 0.000075(Profundidad) + 0.5066(RC1) + 0.2275(RC2) + 0.4891(RC3) + 0.0684$$

En adición a esto los pronósticos del modelo final se alejan en promedio **0.0004** y **0.0195** unidades del valor real, esto es, **MSE** y RMSE, respectivamente.