AUTÓMATAS Y GRAMÁTICAS

AUTOMATAS DE ESTADOS FINITOS

Contenido Conceptual

Autómatas finitos deterministas y no deterministas, tablas de transición, aceptación de cadenas. Obtención de autómatas a partir de expresiones regulares. Conversión de AFN en AFD, Diseño de analizadores léxicos, estructura del analizador.

Objetivos

- Identificar y diferenciar autómatas finitos deterministas y no deterministas.
- Lograr la capacidad para representar e implementar autómatas que reconozcan patrones en cadenas de entrada para obtener los componentes léxicos a partir de expresiones regulares.
- Obtener la habilidad para construir autómatas finitos no deterministas mediante "Construcción de Thompson" y convertirlos en autómatas finitos deterministas.

Definiciones

Diagrama de transiciones representa las acciones que tienen lugar cuando el analizador léxico es llamado por el analizador sintáctico para obtener el siguiente componente léxico.

Construcción del diagrama de transiciones:

- Las *posiciones* en un diagrama de transición se representan con un círculo y se llaman *estados*.
- Los *estados* se conectan mediante flechas, llamadas *aristas*.
- Las *aristas* tienen etiquetas que indican los caracteres de entrada.
- El estado de inicio es el estado inicial del diagrama de transición.
- El *estado de aceptación* es el estado en el cual se ha encontrado un token y se indica con un círculo doble.

Construcción de Thompson permite la obtención de cada operación de la expresión regular al conectar entre sí los AFN de las subexpresiones.

Representaciones de la Construcción de Thompson:

• Expresiones regulares básicas: a representa una correspondencia con un carácter simple del alfabeto

• *Concatenación:* AFN para la expresión regular rs , donde r y s son expresiones regulares.

• *Selección de alternativas*: AFN para la expresión regular *r/s*, donde r y s son expresiones regulares.

AUTÓMATAS Y GRAMÁTICAS

• Repetición o cerradura de Kleene: AFN para la expresión regular r^* , donde r es una expresión regular.

Construcción del subconjunto:

Para la construcción de un AFD a partir de un AFN M dado, M

- Calcularnos la cerradura ε del estado de inicio de M, esto se convierte en el estado de inicio de M.
- Para este conjunto, y para cada conjunto subsiguiente, calculamos las transiciones en los caracteres.

Ejercicio 1:

Cree, mediante "Construcción de Thompson", los siguientes autómatas finitos no deterministas:

Ejemplo: dada la expresión regular (a | b)* abb.

- a) Que reconozca la expresión regular a* | b a.
- b) Que reconozca la expresión regular (x | y x) *.
- c) Que reconozca la expresión regular a* b | a.

AUTÓMATAS Y GRAMÁTICAS

Ejercicio 2:

Convierta, utilizando construcción de subconjuntos, los autómatas finitos no deterministas realizados en el ejercicio anterior, en autómatas finitos deterministas.

Ejemplo: NFA que corresponde a la expresión regular a* bajo la construcción de Thompson

 El estado de inicio del DFA correspondiente es

T= {1,2,4}
Existe una transición desde el estado 2 hasta el estado 3 en :

estado 2 hasta el estado 3 en a, y no hay transiciones desde los estados 1 o 4 en a

$$\{1,2,4\}_a = \{3\} = \{2,3,4\}$$

- Existe una transición desde 2 a 3 en a y ninguna transición a desde 3 o 4, de modo que hay una transición desde {2, 3, 4} hasta
 - ${\overline{2,3,4}}_{s} = {\overline{3}} = {2,3,4}$ Existe una transición a desde {2,
- Existe una transición a desde {2, 3, 4} hacia sí misma.