微机原理与接口技术

典型存储芯片结构

华中科技大学 左冬红

异步SRAM存储芯片读时序

异步SRAM存储芯片写时序1

异步SRAM存储芯片写时序2

NOR Flash存储芯片

N的SR只供据够出不进ORFLASH。如从是地总正数可行外外外的外外的人,就是对行行和外外的,就是,直操的人,是数能输但接作的,就是是

NOR Flash存储芯片读时序

NOR Flash存储芯片编程流程

NAND Flash存储芯片

命令、地址、数据都由1/0引脚输入

模式		CLE	ALE	CE	WE	RE	WP
读	命令输入	1	0	0	1	1	X
	地址输入	0	1	0	1	1	X
编程擦除	命令输入	1	0	0	1	1	1
	地址输入	0	1	0	1	1	1
数据输入		0	0	0	1	1	1
数据输出		0	0	0	1	\rightarrow	X
数据输出暂停		X	X	X	1	1	X
读忙		X	X	X	1	1	X
编程忙		X	X	X	X	X	1
擦除忙		X	Χ	X	X	X	1
写保护		Χ	Χ	X	X	X	0
空闲		X	Χ	1	X	X	$0V/V_{CC}$

NAND Flash页读操作时序

NAND Flash页写操作时序

I/O₀=0编程结束

I/O₀=1编程出错

同步SSRAM存储芯片

SSRAM存储芯片工作模式

工作模式	存储单元地址	CE	ADV	WE	ŌĒ	CLK	IO
保持(微功耗)	X	1	X	X	X	↑	高阻
突发读第一个数据	外部输入地址	0	X	1	0	↑	输出
突发写第一个数据	外部输入地址	0	X	0	X	↑	输入
突发读下一个数据	下一个地址	X	1	1	0	↑	输出
突发写下一个数据	下一个地址	X	1	0	X	↑	输入
突发读暂停	当前地址	X	0	1	0	\uparrow	输出
突发写暂停	当前地址	X	0	0	X	↑	输入

SSRAM读操作时序

SSRAM写操作时序

SDRAM存储芯片 块2 块3 块1 块0(Bank 0) 刷新 存储矩阵 $2^n \times 2^m \times i$ 行译码 行地址 计数器 复用器 感知放大 DM CKE-控制逻辑 <u>CS</u>-<u>WE</u> <u>CAS</u> 数据输出 寄存器 I/O门控 译 DQM屏蔽逻辑 模式寄存器 RAS 码 \Rightarrow DQ[*i*-1:0] 块控制 数据输入 输出锁存 逻辑 寄存器 A[*n*-1:0] BA₀ BA₁ 地址 列地址计数 列译码 \overline{m} 器/锁存器

SDR SDRAM存储芯片命令

命令名称	CS	RAS	CAS	WE	DM	地址	DQ
禁止	1	X	X	X	X	X	X
空操作	0	1	1	1	X	X	X
激活(激活选中存储块中的行)	0	0	1	1	X	块/行	X
读(选择存储块和列、开始突发读)	0	1	0	1	0/1	块/列	X
写(选择存储块和列、开始突发写)	0	1	0	0	0/1	块/列	有效
突发终止	0	1	1	0	X	X	激活
预充电(使行失活)	0	0	1	0	X	编码	X
刷新	0	0	0	1	X	X	X
装载模式寄存器	0	0	0	0	X	模式码	X
写/读使能	X	X	X	X	0	X	激活
写/读禁止	X	X	X	X	1	X	高阻

SDRAM存储芯片在各种命令控制下的状态转换关系

DDR2 SDRAM存储芯片

DDR2 SDRAM连续突发读时序

DDR2 SDRAM连续突发写时序

小结

- •常用存储芯片
 - •结构
 - 外部接口
 - •读写时序

下一讲:存储器接口设计