Theorem 5.11

For every graph G

$$\kappa(G) \le \lambda(G) \le \delta(G)$$

Proof:

If G is disconnected or trivial, then $\kappa(G) = \lambda(G) = 0$ and the inequalities hold; while ig $G = K_n$ for some integer $n \geq 2$, then $\kappa(G) = \lambda(G) = \delta(G = n - 1)$. Thus we may assume that G is a connected graph of order $n \geq 3$ that is not complete. Hence $\delta(G) \leq n - 2$.

First, we show that $\lambda(G) \leq \delta(G)$. Let v be a vertex of G with $deg(v) = \delta(G)$. Since the set of the $\delta(G)$ edges incident with v in G is an edge-cut, it follows that

$$\lambda(G) \le \delta(G) \le n-2$$

It remains to show that $\kappa(G) \leq \lambda(G)$. Let X be a minimum edge-cut of G. Then $|X| = \lambda(G) \geq n-2$ Necessarily, G - X contains exactly two components G_1 and G_2 . Suppose that the order of G_1 is k. Thus the order of G is n - k, where $k \geq 1$ and $n - k \geq 1$. Consequently, every edge in X joins a vertex of G_1 and a vertex of G_2 . We consider two cases.

Case 1. Every vertex of G_1 is adjacent in G to every vertex of G_2 . Thus |X| = k(n-k). Since $(k-1)(n-k-1) \ge 0$, it follows that

$$(k-1)(n-k-1) = k(n-k) - n + 1 \ge 0$$

and so $\lambda(G) = |X| = k(n-k) \ge n-1$. However, $\lambda(G) \le n-2$; so this case cannot occur.

Case 2. There exists vertices in u in G_1 and v in G_2 such that u and v are not adjacent in G. We now define a set U of vertices of G. For each $e \in X$, we select a vertex for U in the following way. If u is incident with e, then choose the other vertex in G_2 that is incident with e as an element of U; otherwise, select the vertex that is incident with e and belongs to G_1 as an element of U. it follows that G - U is disconnected and so U is a vertex-cut. Hence

$$\kappa(G) \le |U| \le |X| = \lambda(G)$$

as desired.