k-Limited Strategies in Banach Mazur Games

Steven Clontz

December 6, 2017

Definition 1. Let \mathbb{P} be partially ordered by \leq . Let $\mathbb{P}^{\downarrow} = \{f \in \mathbb{P}^{\omega} : f(n) \geq f(n+1)\}$. Then for $f, g \in \mathbb{P}^{\downarrow}$, we say that f, g zip into each other if for all $m < \omega$ there exists $n < \omega$ such that $f(m) \geq g(n)$ and $g(m) \geq f(n)$.

Definition 2. $BM_{po}(\mathbb{P},W)$ is a game defined for all non-empty partial orders \mathbb{P} and all subsets $W \subseteq \mathbb{P}^{\downarrow}$ closed under zipping. During round 0, I chooses $a_0 \in \mathbb{P}$, and then II chooses $b_0 \leq a_0$; during around n+1, I chooses $a_{n+1} \leq b_n$, and then II chooses $b_{n+1} \leq a_{n+1}$. II wins this game if $\langle a_0, a_1, \ldots \rangle \in W$.

Theorem 3. II
$$\uparrow_{(k+1)\text{-}mark} BM_{po}(\mathbb{P},W)$$
 if and only if II $\uparrow_{(k+1)\text{-}tact} BM_{po}(\mathbb{P},W)$.

Proof. Let $\tau(\vec{p}, n+1)$ be a winning (k+1)-mark for II, where n+1 is the number of moves previously made by I. Let \leq well-order \mathbb{P}^{k+1} . For $f \in \mathbb{P}^{\omega}$, let $f_n = \langle f(n), \dots, f(n+k) \rangle \in \mathbb{P}^{k+1}$.

For $\vec{p} \in \mathbb{P}^{k+1}$ and $q \in \mathbb{P}$, say \vec{p} is n-above q if there exists $s_n(\vec{p}) \in \mathbb{P}$ such that

$$\vec{p}(k) \ge s_n(\vec{p}) \ge \tau(\vec{r} \ (s_n(\vec{p})), n+k+1) \ge q$$

for all $\vec{r} \in \mathbb{P}^k$ "between $\vec{p}(0)$ and $\vec{p}(k)$ ".

For
$$\vec{p} \in \mathbb{P}^{k+1}$$
, let $t^0(\vec{p}) = \vec{p}$, $\tau^{n+1}(\vec{p}) = \tau(t^n(\vec{p}), n+1)$, and $t^{n+1}(\vec{p}) = (t^n(\vec{p}) \mid k) \cap \langle \tau^{n+1}(\vec{p}) \rangle$.

Say \vec{p} is ω -above q if \vec{p} is n-above q for all $n < \omega$. If \vec{p} is ω -above some $l(\vec{p})$, then say \vec{p} is long; otherwise call \vec{p} short.

For \vec{p} short, let

$$\mu(\vec{p}) = \min_{\preceq} \{ \vec{r} \text{ short} : \vec{r}(k) \geq \vec{p}(k) \}$$

and since $\mu(\vec{p})$ is not n-above $\vec{p}(k)$ for some n, let

$$N(\vec{p}) = \min\{n < \omega : \mu(\vec{p}) \text{ is not } n\text{-above } \vec{p}(k)\}.$$

We define

$$\sigma(\vec{p}) = \begin{cases} \tau(\vec{p}, |\vec{p}|) & |\vec{p}| \le k \\ l(\vec{p}) & \vec{p} \text{ is long } \\ \tau^{N(\vec{p})+1}(\vec{p}) & \vec{p} \text{ is short} \end{cases}.$$

Suppose σ is legally attacked by $a \in \mathbb{P}^{\omega}$. Thus for n < k.

$$a(n) \ge \tau(a \upharpoonright (n+1), n) = \sigma(a \upharpoonright (n+1)) \ge a(n+1).$$

For $n \leq \omega$, if a_n is long, then a_n is n-above $l(a_n)$. Therefore,

$$a(n+k) = a_n(k) \ge s_n(a_n) \ge \tau((a_n \mid k) \cap \langle s_n(a_n) \rangle, n+k) \ge l(a_n) = \sigma(a_n) \ge a(n+k+1).$$

Thus if a_n is long for $n < \omega$, it follows that $\langle a(0), \ldots, a(k-1), s_0(a_0)(k), s_1(a_1)(k), \ldots \rangle$ is a legal attack against τ . Since τ is winning, this attack belongs to W. Since this attack zips into a, a also belongs to W.

Otherwise, we may choose $k < N < \omega$ such that

- a_{n+N} is short for all $n < \omega$, since a_m short implies a_n short for all $m \le n$.
- $\mu(a_{n+N}) = \vec{m}$ is fixed for all $n < \omega$, since there cannot be an infinite \leq -decreasing sequence.

As a result, a_{n+N} is... Thus for n < k,

$$b(n) \ge \tau(b \upharpoonright (n+1), n) = \sigma(a \upharpoonright (n+1)) \ge a(n+1).$$