Particle spectrograph

Wave operator and propagator

$\tau_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$	0	$\frac{6k^2(r_1+r_5)+t_1}{(1+2k^2)^2(r_1+r_5)t_1}$
${\mathfrak l}_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2}(k^2+2k^4)(r_1+r_5)}$	$\frac{6 k^2 (r_1 + r_5) + t_1}{2 (k + 2 k^3)^2 (r_1 + r_5) t_1}$	0	$-\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5 \right)}$	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) \; (r_1 + r_5)}$	0	$\frac{i}{k(1+2k^2)(r_1+r_5)}$
$\tau_{1^{+}\alpha\beta}^{\#1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_1 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)\cdot kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} \dagger^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} +^{\alpha}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lpha\beta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$	
$\sigma_{2}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$	

$\omega_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}_{+\alpha\beta} \ f_{2}^{\#1}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} + \alpha^{eta}$	$f_2^{#1} + \alpha^{\beta}$	$\omega_{2}^{#1} +^{\alpha\beta\chi}$

Source constraints/gauge generators						
SO(3) irreps	Multiplicities					
$\sigma_{0+}^{\#1} == 0$	1					
$\tau_{0+}^{\#1} == 0$	1					
$\tau_{0+}^{\#2} == 0$	1					
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3					
$\tau_1^{\#1\alpha} == 0$	3					
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3					
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5					
Total constraints:	17					

₩.				_1 =				
$\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$		$\omega_{0}^{\#1}$	$f^{\#1}$	f
${\mathfrak r}_0^{\#2}$	0	0	0	0		∞ ₀ +	, 0,	_
					$\omega^{\#_{\pm}^{1}}$ +	0	0	
$\tau_{0}^{\#1}$	0	0	0	0	000			
					$f_{0+}^{#1}$ †	0	0	
$\sigma_{0}^{\#1}$	0	0	0	0				
ρ					$f_{0+}^{#2} \dagger$	0	0	
	+	+	+	+	0			
	/# ₁	$t_0^{\#1}$	τ ₀ ^{#2}	γ#1 0-	$\omega_{0}^{#1}$ †	0	0	
	S			0				

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1}{}_{lpha}$	$\omega_{1^- lpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	$k^2 (r_1 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i kt_1</u> 3
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{l}kt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

Massive and massless spectra

	Quadratic pole						
?	Pole residue:	$-\frac{1}{(r_1+r_5)t_1^2} > 0$					
	Polarisations:	2					

Unitarity conditions

 $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0$