Imperial College London

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May - June 2015

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

Integration Theory & Applications

Date: Thursday, 21 May 2015. Time: 2.00pm - 4.00pm. Time allowed: 2 hours.

This paper has FOUR questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the main book is full.

Statistical tables will not be provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers to each question as per the table below.

Raw mark	up to 12	13	14	15	16	17	18	19	20
Extra credit	0	$\frac{1}{2}$	1	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3	$3\frac{1}{2}$	4

- Each question carries equal weight.
- · Calculators may not be used.

- 1. i. Consider sets of the plane which are subsets of $E = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\} \subset \mathbb{R}^2$. Give the definition of the outer measure, a measurable set (in the Lebesgue sense) and its measure.
 - ii. Let X be a set with a complete σ -additive measure μ on it. Let $f_n: X \to \mathbb{R}$, n = 1, 2, ... be measurable functions on X converging everywhere on X as $n \to \infty$ to a function f. Show that f is measurable.
- 2. i. State the definition of a measurable simple function.
 - ii. State the definition of an integral of a simple function over a set of finite measure.
 - iii. Let $f:[0,\infty)\to\mathbb{R}$ be such that f is integrable with respect to the Lebesgue measure μ on $[0,\infty)$. Given $\epsilon>0$, show that there exists a simple function φ vanishing outside a set of finite measure and such that

$$\int_0^\infty |f - \varphi| d\mu < \epsilon.$$

- 3. i. State the Levi theorem.
 - ii. Let A be a set with a complete σ -additive measure μ on it, such that $\mu(A)<\infty$. Let $f:A\to\mathbb{R}$ be integrable with respect to μ on A. Prove that if $\int_A |f| d\mu=0$ then f=0 a.e. on A.
- i. Prove that any absolutely continuous function on a finite interval can be represented as a difference of two nondecreasing absolutely continuous functions.
 - ii. Let $f:[a,b]\to\mathbb{R}$ be a nondecreasing absolutely continuous function. Show that if a set $A\subset [a,b]$ has Lebesgue measure zero then f(A) has Lebesgue measure zero.

	EXAMINATION SOLUTIONS 2014-15	Course M34 PM19
Question 1		Marks & seen/unseen
Parts L	The outer measure of a set A	5 seen
	is $\mu^*(A) = \inf_{k} \sum_{k} m(P_k)$	
	over all coverings of A by	
	finite or countable number	
	of rectangles Pr; M(Px) 15	:
	the area (measure) of the rec-	
	tangle Px. Let R(X) be the minimal ring	
	poincy at and by the semiring	,
	of rectangles. H sel 113	d_
:	measurable if ∀E>0 ∃ B ∈ R(Z)	
	such that u*(AB) < E.	
	such that $\mu^*(A \triangle B) < E$. μ^* restricted to measurable sets is called the measure μ .	
	sets is called the measure u.	
· · · · · · · · · · · · · · · · · · ·	Setter's initials Checker's initials	Page numbe

	EXAMINATION SOLUTIONS 2014-15	Course
Question		
1		Marks & seen/unseen
Parts	Let $f_n(x) \to f(x) \ \forall x \in X$ as $n \to \infty$.	15 seen
	Then {x: f(x) < c } =	
	= UUM (x) < C- k]	
	Indeed it 1(x) < C then Ik	
	c+ 1(x) < C- 1/2. For 1013 x	
	∃n s.t. \m≥n: fm(x) < c-k	
	On the other hand, if for any	
:	hived kn we have for all	
	$m > n$: $f_m(x) < c - 1/k$ then	
	levier by taking me	A
	Since all {x: fm(x) < C-/x} are measurable and measurable	
	sets form a 6-algebra,	
	Sx: 1(x) < c } is measurable.	
	As c is arbitrary, & is measurable	
	Setter's initials Ch	Page number

	EXAMINATION SOLUTIONS 2014-15	Course
Question Z		Marks & seen/unseen
Parts	A measurable function is called simple if it assumes at most countable number of values. Let $j: X \to R$ be a simple function with values y_1, y_2, \dots $y_i \neq y_x$ if $j \neq k$.	Seen/unseen Z Seen
	Let $A \subset X$ be a set of finite measure. The integral of f over A , $f d \mu$, is the sum of the series $\sum y_n \mu(A_n)$ $A_n = [x \in A : f(x) = y_n]$ if the series converge absolutely.	
	Setter's initials Chacker's initials	Page number

	EXAMINATION SOLUTIONS 2014-15	Course
Question 2		Marks & seen/unseen
Parts	Since f is integrable over $[0, \infty)$, for given $E > 0$ $\exists x_0 > 0$ s.t. $\int f d\mu < \frac{E}{2}$. Let $(x) = \int_{n}^{\infty} f_0 x \times \text{such that}$ $\int_{n}^{\infty} \{x > \frac{1}{n}\} = \int_{n}^{\infty} f_0 x \times \text{such that}$ $\int_{n}^{\infty} \{x > \frac{1}{n}\} = \int_{n}^{\infty} f_0 x \times \text{such that}$ $\int_{n}^{\infty} \{x > \frac{1}{n}\} = \int_{n}^{\infty} f_0 x \times f_0 \times f_0 = \int_{n}^{\infty} f_0 f_0 \times f_$	15 unseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2014-15	Course
Question 3		Marks & seen/unseen
Parts	Let $f_i(x) \leq f_i(x) \leq \dots$ on A , $f_n, n=1,2$ are integrable and $\int f_n d\mu \leq K$ for all n , where K is anostant. Then there exist a.e. a finite limit $f(x) = \lim_{n \to \infty} f_n(x)$, f is integrable and $\int f_n d\mu \to \int f_i d\mu$. A	5 seen
	Setter's initials Checker's initials	Page number 5

	EXAMINATION SOLUTIONS 2014-15	Course
Question 3		Marks & seen/unseen
Parts V	Let A = {x ∈ A: f > 1/k].	15 unsee
	By Chebysher inequality,	seed
	M(Ax) < x Slfldm = 0, i.e.	
	for any K=1,2,, M(An)=0	
	Note that the set B=	
	$= \left\{ x \in A : f(x) \neq 0 \right\} =$	
	$= \bigcup_{k=1}^{\infty} A_k$	
	Since A, CAZC conti-	
	nuity of the measure implies	
W	$\mu(B) = \lim_{n \to \infty} \mu(A_n) = 0$.	
	Thus M { x 6 A : f(x) = 03 =	
	= M(A) - M(B) = M(A), i.e. $f=0$	<u> </u>
	Setter's initials Checker's initials	Page numb

	EXAMINATION SOLUTIONS 2014-15	Course
Question		<u> </u>
4		Marks & seen/unseen
Parts		
i	Any a.c. function on an interval	8 unseen
	Any a.c. function on an interval [a, B] can be written as	mace.
	an indefinite intestal,	
	$f(x) = \int_{0}^{x} f'(t) dt + f(a).$	
	Let $f'_{+}(t) = \begin{cases} f'(t) & \text{if } f(t) \ge 0 \\ 0, & \text{otherwise}, \end{cases}$	
	$f'(t) = \begin{cases} -f'(t) & \text{if } f'(t) < 0 \\ 0, & \text{otherwise} \end{cases}$	
	Thus f'(t) = f'(t) - f'(t)	
	\$'±(+) ≥ 0; and f= f-fz,	
	f= if(+)d++(a);	
	$f_2 = + \int_a^x f'(t) dt$; f_{12} are	
	nondecreasing; and they are indefinite	
	a.c. since they are indefinite integrals.	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2014-15	Сонтѕе
Question 4		Marks &
Parts	Fix any $E>0$. Since f is a.c. f $g>0$ s.t. for any finite system of subintervals (a_j, b_j) , $j=1,, n$ satisfying $\sum_{i=1}^{n} (b_i - a_i) < \delta$ and nonintersecting, we have $\sum_{i=1}^{n} f(b_i) - f(a_i) < E$. Let $A \subset [a_i, b_i]$, $A(A) = 0$. Then for $B = A \setminus (\{a_i\} \cup \{b_i\})$ we have: $B \in (a_i, b_i)$, $A(B) = 0$. By a problem in exercises, we can find an open set G such that $B \subset G \subset (a_i, b_i)$ and $A(G) = A(G) + A(B) < S$. Therefore, $A(G) = A(B) + A(B) = 0$.	12 unseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2014-15	Course
Question		Marks & seen/unseen
Parts	Since G is an open set,	
	$G = \bigcup_{j=1}^{\infty} (a_j, b_j)$, where	
	(a: b.) - nonintersecting open	
	intervals. We have	
:	$\mu(a) = \frac{2}{5}(b_j - a_j) < \delta$.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Therefore (f is a.c.).	
	$\tilde{\Sigma} f(k_i)-f(a_i) <\varepsilon$ $\forall n, so$	
	$\leq f(b_j)-f(a_j) \leq \varepsilon$.	
	Since f is nonderneasing,	
	it is obvious that	
	f(A) < U[f(a;), f(b;)]Uf(a)	
	Uf(B). Therefore, by subadolitivity	
	$M^*(f(A)) \leq \sum_{i=1}^{\infty} f(B_i) - f(Q_i) \leq \varepsilon$	
		Page numb