USN

1 R V 2 4 C S 2 5 4

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

I Semester B. E. Regular / Supplementary Examinations Feb/Mar-2025 Common to AIML / BT / CS / CY / CD / IS

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.
- 3. Use of Handbook of Mathematics is permitted

_		
DA	ים	r .
\mathbf{P}_{F}	NK I	- A

M BT CO

1 1.1	The Trace and determinant of matrix whose eigen values are 7,1,9,			
	respectively and	02	1	1
1.2	The coefficient of x^3 in Maclaurin series of $\sin(2x)$ is	02	2	2
1.3	The curvature of the function $f(x) = x^2 + 2x + 1$ at $x = 0$ is	02	1	2
1.4				
	The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$ is			
	[3 3 7]	02	1	1
1.5	If $f(x,y) = x \sin y$, then value of f_{xy} at (0,1) is	02	2	2
1.6	For the implicit function, $x^3 + y^3 - 3xy + y^2 = 0$, find $\frac{dy}{dx}$ using			
	partial differentiation.	02	2	2
1.7	Evaluate the integral $\int_0^1 \int_0^2 \int_0^3 dx dy dz$.	02	1	1
1.8	Sketch the domain of integral $\int_0^1 \int_{x^2}^x f(x,y) dy dx$.	02	3	3
1.9	If $r = 0.8$, $b_{xy} = 0.32$, then the value of b_{yx} is	02	1	1
1.10	If $\mu_2 = 8$, $\mu_3 = 50$ and $\mu_4 = 199$, then $\beta_1 = $ and $\beta_2 =$	02	1	1

PART-B

2	a .	Examine the consistency and solve the system of equations				
		x - y + z = 4				
		2x + y - 3z = 0				
		x + y + z = 0	05 2		2	
	b	Solve following system of equations by Gauss Seidel method				
		10x + y + z = 9				
		x - 10y + 3z = 8				
		2x + y - 10z = 3				
		By taking initial approximation $X(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$. Perform				
		4 iterations.	05	2	2	
	c	Find the dominant eigen value and the corresponding eigen vector				
		$\begin{bmatrix} 6 & -2 & 2 \end{bmatrix}$				
		of the matrix. $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by power method by taking the				
		$\begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$	06	3	3	
		initial eigen vector as $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$. Perform four iterations.	00	3	3	\dashv
		f interpret on the or outle group lly	-		-	\dashv
3	а	Show that the pair of curves intersect each other orthogonally.	00	2		
		$r^2 \sin(2\theta) = a^2, \qquad r^2 \cos(2\theta) = b^2$	08	2	2	
	b	Show that the radius of curvature of the curve $r^n = a^n \cos n\theta$	00			
		varies inversely as r^{n-1} .	08	3	2	
		OR				_

4	a	Find the circle of curvature at the point $(3/2, 3/2)$ of the curve			
b		$x^{3} + y^{3} = 3xy$.	00	3	2
	D	Expand $tan^{-1}x$ in powers of $(x-1)$ upto the term containing fourth degree.			
			08	2	2
5	a	If $v = e^{a\theta}\cos(a\log r)$ prove that			
	•	$\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} = 0$	08	2	
	b	The temperature 'T' at any point (x, y, z) in space is $T = 400 \text{ xyz}^2$.			
		Find the highest temperature at the surface of the unit sphere. $x^2 + y^2 + z^2 = 1$.	00		
		OR	08	4	4
6	a	If $Z = f(x, y)$ where $x = r \cos \theta$, $y = r \sin \theta$. Show that			
		If $z = f(x, y)$ where $x = r \cos \theta$, $y = r \sin \theta$. Show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$.			
	b	If $r = r \sin \theta \cos \phi$ $y = y \sin \theta$	08	2	1
		$\frac{1}{\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}} = r^2 \sin\theta \cos\phi, \ y = r \sin\theta \sin\phi, \ z = r \cos\theta. $ Show that			
		$\sigma(r,\theta,\phi)$	08	4	4
7	a	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dz dy dx}{\sqrt{1-x^2-y^2-z^2}}$.			
	b		08	2	2
		Change the order of integration and evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$.	08	3	3
		OR			
8	a	Evaluate ((xy dy do arrow 1)			
	~	Evaluate $\iint xy \ dx \ dy$ over the region bounded by x-axis, ordinate $x = 2a$ and the curve $x^2 = 4ay$.			
	b	Find the area enclosed by the cardiod $r = a(1 + \cos\theta)$ between	08	2	2
		$\theta = 0$ and $\theta = \pi$, using double integration.	08	3	3
9	а	If F is the force required to lift a load W , by means of a pulley, fit a			
		Michael expression $F = u + bw$ against the following data			
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
	b	Also find the force at the load $W = 130$	08	2	2
	b	Various doses of medical substances were given to groups of 25 mice and the following results were observed.		_	-
		Dose mg (x) 4 6 8 10 12 14 16			
		No. of recoveries (y) 1 3 6 8 14 16 20		4	
		i) Find the equation of regression line of y on x which fits			
		the data best. ii) Estimate the number of recoveries in a group of 25 mice			
		who received the doses of 7 mg.	08	2	3
		OP		_	
	OR				
10	a	Calculate the first four central moments of the following			
		distribution. Wages 1.5 - 2.5 2.5 - 3.5 3.5 - 4.5 4.5 - 5.5 5.5 - 6.5			
		<i>f</i> 1 3 7 3 1	08	2	2
	b	Fit a curve of the form $y = ab^x$ for the data and hence find the			
		estimation for 'y' when $x = 8$.			
		y 87 97 113 129 202 195 193	08	2	3