Robot Localization

Javier González Jiménez

Reference Books:

- Probabilistic Robotics. S. Thrun, W. Burgard, D. Fox. MIT Press. 2001
- Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods. Juan-Antonio Fernández-Madrigal and José Luis Blanco Claraco. IGI-Global. 2013.

Content

- Least Squares Positioning
- Map registration
 - Landmark points (known correspondence)
 - Scan points: ICP (unknown correspondences)
- Filtering
 - Kalman Filter
 - Extended Kalman Filter
 - Particle Filter

Robot Localization

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities."

[Cox '91]

Given Wanted

Map of the environment Sequence of sensor measurements

Types of localization problems

Position tracking: the robot knows approximately where it is

Robot pose

- Global localization: The robot has no clue where it is
- Kidnapped robot problem: It thinks where it is but is wrong

Least Squares Positioning

Problem: Given a vector of measurements z that is related to the unknown pose x by the linear observation model (o function)

$$z = Hx$$

we want to find the "best" pose \hat{x}

Example:

Least Squares Positioning: Given z = Hx, find the (best) pose \hat{x}

$$z_{\text{mx1}} = H_{\text{mxn}} x_{\text{nx1}}$$

n: pose, typically 3 o 6 unknowns

m: #observation constraints (equations)

if m=n: unknowns (n) equals (independent) equations (m). For example, having 3 independent observations to compute the pose

• H (3x3) is invertible, direct solution for x: $x = H^{-1}z$

if m<n: more unknowns (n) than equations (m)

• The pose is Non-observable: infinitely many solutions for x (H^TH not invertible)

if m>n: less unknowns (n) than equations (m)

- No exact solution since measurements z are affected by error: z = Hx + e
- Find x that is closest to the ideal \rightarrow minimum square error

Cost function
$$||e||^2$$
 Cost function $\hat{x} = \arg\min_{x} [e^T e] = \arg\min_{x} [(z - Hx)^T (z - Hx)] = \arg\min_{x} ||z - Hx||^2$

Solution:
$$\hat{x} = (H^T H)^{-1} H^T z$$

Weighted Least Squares

- Measurements are not equally reliable: different "importance" of the noise error for each measurement $e_i = z_i - ([Hx]_i)$ Element i of the vector Hx
- This is modelled by a diagonal covariance matrix (no correlation between the error measurements, since the constant and to be independent one to another). $Q = \begin{bmatrix} \sigma_{Z_1}^2 & 0 & \cdots \\ 0 & \sigma_{Z_2}^2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \quad Q^{-1} = \begin{bmatrix} \overline{\sigma_{Z_1}^2} & 0 & \cdots \\ 0 & \overline{\sigma_{Z_1}^2} & \cdots \\ 0 & \overline{\sigma_{Z_1}^2} & \cdots \end{bmatrix}$ they are assumed to be independent one to another)
- Each element e_i of the error vector e is inversely weighted by the uncertainty in measurement z, i.e. $1/\sigma_{z_i}^2$

$$\hat{x} = \arg\min_{x} e^{T} Q^{-1} e = \arg\min_{x} \left[(z - Hx)^{T} Q^{-1} (z - Hx) \right] = \arg\min_{x} \sum_{i=1}^{m} \frac{e_{i}^{2}}{\sigma_{Z_{i}}^{2}}$$

$$\hat{x} = (H^T Q^{-1} H)^{-1} H^T Q^{-1} z$$

$$\Sigma_{\widehat{\mathcal{X}}} = (H^T Q^{-1} H)^{-1}$$

Best estimation

Uncertainty of the estimation

LS equivalent to ML Estimation if error is Gaussian

Maximum Likelihood (ML) Estimation [from lecture 2]:

Find x that maximizes the likelihood function $\mathcal{L}(x) \triangleq p(z|x)$

$$x_{ML} = \arg\max_{x} p(z|x)$$

If the error in the measurements is Gaussian, i.e. $e \sim N(0, Q)$

$$z = Hx + e \Rightarrow z \sim N(Hx, Q)$$
$$p(z|x) = K \cdot \exp\{-\frac{1}{2}[z - Hx]^T Q^{-1}[z - Hx]\}$$

$$\hat{x}_{ML} = \arg \max_{x} p(z|x) = \arg \max_{x} \{-[z - Hx]\}^{T} Q^{-1}[z - Hx]\}$$

$$= \arg \min_{x} [(z - Hx)^{T} Q^{-1}(z - Hx)] = \arg \min_{x} e^{T} Q^{-1} e = \hat{x}_{LS}$$

$$\hat{x}_{ML} = \hat{x}_{LS}$$

Non-linear Least Squares

Non-linear observation (sensor) model: z = h(x) (instead of z = Hx)

$$\widehat{x} = \arg\min_{x} \|\mathbf{z} - h(x)\|^2$$
These is a vector of m numbers (observations), not RVs!

No closed-form solution exists, but iterative:

Taylor expansion: $h(x) = h(x_0 + \delta) \cong h(x_0) + \int_{h_0} \delta$

$$\|z - h(x)\|^2 \cong \|z - h(x_0) - J_{h_0} \delta\|^2 = \|\underbrace{z - h(x_0)} - J_{h_0} \delta\|^2 = \|e_0 - J_{h_0} \delta\|^2$$
Equivalent
$$\delta = \arg\min_{\delta} \|e_0 + J_e \delta\|^2$$

$$\delta = -(J_e^T J_e)^{-1} J_e^T e_0$$
So that makes this squared norm minimum optimization problem

$$J_{h_0} = \frac{dh}{dx} \bigg|_{x_0} = \begin{bmatrix} \frac{dh_1}{dx_1} & \dots & \frac{dh_1}{dx_n} \\ \vdots & & \vdots \\ \frac{dh_m}{dx_1} & \dots & \frac{dh_m}{dx_n} \end{bmatrix}_{r} = -J_e$$

Jacobian of the error vector e = z - h(x) is the minus JACOBIAN of the sensor model h(x)

Weighted Non-linear Least Squares

Hessian and gradient of the cost function $f = \frac{1}{2}e(x)^TQ^{-1}e(x)$

$$\delta = -(J_e^T Q^{-1} J_e)^{-1} J_e^T Q^{-1} e = H_f^{-1} \nabla f$$

$$= I_f^T Q^{-1} J_e = H_f \text{ Hessian matrix of } f \text{ (Fisher Information matrix)}$$

$$= I_f^T Q^{-1} J_e = V_f \text{ Gradient vector of } f$$

Algorithm (known as Gauss-Newton):

- 1. Begin with an initial guess \hat{x}
- 2. Evaluate

$$\delta = -(J_e^T Q^{-1} J_e)^{-1} J_e^T Q^{-1} [z - h(\hat{x})]$$

- 3. Set $\hat{x} = \hat{x} \delta$
- 4. If $\delta > tolerance$ goto 1 else stop

A note on Jacobian and Gradient

• The **gradient** is the vector formed by the partial derivatives of a scalar (or real-value) function $(f: \mathbb{R}^n \to \mathbb{R})$

GRADIENT of
$$f \colon \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} \in \mathbb{R}^n$$

 $\cos^{2} x_{2})^{2}$

10

Example (Wikipedia): Gradient of the function $f(x_1,x_2) = -(\cos^2 x_1 + \cos^2 x_2)^2$ depicted as a projected vector field on the bottom plane

- The Jacobian matrix is
 - the matrix formed by the partial derivatives of a vector function $(f: \mathbb{R}^n \to \mathbb{R}^m)$
 - a generalization of the gradient to vector functions.

 $\nabla f_1(x)$: each row is a gradient

JACOBIAN of
$$f$$
: $J = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{df_1}{dx_1} & \cdots & \frac{df_1}{dx_n} \\ \vdots & & \vdots \\ \frac{df_m}{dx_1} & \cdots & \frac{df_m}{dx_n} \end{bmatrix}$ $J = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix}$

Least Squares Positioning

Example: Multi-lateration(also called Range-only positioning) in 2D

Estimate the position p of a vehicle in 2D, given distances d_i to n beacons m_i (sort of indoor GPS)

 m_i : position of beacon i

 $p=[x,y]^{\mathrm{T}}$: robot position

The range-bearing observation model (revisited)

Observation model

$$\mathbf{z}_{i} \equiv \begin{bmatrix} d_{i} \\ \theta_{i} \end{bmatrix} = h(\mathbf{x}, \mathbf{m}_{i}) + \mathbf{e}_{i} = \begin{bmatrix} \sqrt{(x_{i} - x)^{2} + (y_{i} - y)^{2}} \\ \operatorname{atan}(\frac{y_{i} - y}{x_{i} - x}) - \theta \end{bmatrix} + \mathbf{e}_{i}$$

$$\mathbf{J}_{h,x} = \frac{\partial h}{\partial \{x, y, \theta\}} = \begin{bmatrix} -\frac{x_{i} - x}{d} & -\frac{y_{i} - y}{d} & 0 \\ \frac{y_{i} - y}{d^{2}} & -\frac{x_{i} - x}{d^{2}} & -1 \end{bmatrix}$$

The observations are the true values $h(\mathbf{x}, \mathbf{m}_i)$ (from the true pose to the true landmark position) plus a sensor error \mathbf{e}_i

Jacobian (wrt the robot pose x)

$$J_{h,x} = \frac{\partial h}{\partial \{x, y, \theta\}} = \begin{bmatrix} -\frac{x_i - x}{d} & -\frac{y_i - y}{d} & 0\\ \frac{y_i - y}{d^2} & -\frac{x_i - x}{d^2} & -1 \end{bmatrix}_{2x3}$$

Example 3 beacons: Trilateration (Range-only positioning) in 2D

$$\mathbf{z} = h(\mathbf{x}) + e \xrightarrow{m=3} \begin{bmatrix} h_1(x) \\ h_2(x) \\ h_3(x) \end{bmatrix} = \begin{bmatrix} \|m_1 - \mathbf{x}\| \\ \|m_2 - \mathbf{x}\| \\ \|m_3 - \mathbf{x}\| \end{bmatrix} = \begin{bmatrix} [(x_1 - x)^2 + (y_1 - y)^2]^{1/2} \\ [(x_2 - x)^2 + (y_2 - y)^2]^{1/2} \\ [(x_3 - x)^2 + (y_3 - y)^2]^{1/2} \end{bmatrix}$$
Distance of \mathbf{x} to each landmark m_i

$$e = \mathbf{z} - h(\mathbf{x}) = \begin{bmatrix} d_1 - h_1(x) \\ d_2 - h_2(x) \\ d_3 - h_3(x) \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
Jacobian of $h = -$ Jacobian of e

$$J_h = -J_e$$

Least square solution:

$$\hat{x} = \arg\min_{x} e^{T} e = \arg\min_{x} [e_1^2 + e_2^2 + e_3^2]$$

Example 3 beacons: Range-only positioning in 2D (cont.)

$$\begin{bmatrix} h_1(x) \\ h_2(x) \\ h_3(x) \end{bmatrix} = \begin{bmatrix} ||m_1 - \mathbf{x}|| \\ ||m_2 - \mathbf{x}|| \\ ||m_3 - \mathbf{x}|| \end{bmatrix} = \begin{bmatrix} [(x_1 - x)^2 + (y_1 - y)^2]^{1/2} \\ [(x_2 - x)^2 + (y_2 - y)^2]^{1/2} \\ [(x_3 - x)^2 + (y_3 - y)^2]^{1/2} \end{bmatrix}$$

Do not depend on the robot heading θ

Gradient of h_i :

$$\frac{\partial}{\partial x} [(x_i - x)^2 + (y_i - y)^2]^{1/2} = -\frac{1}{d_i} (x_i - x)$$

$$\frac{\partial}{\partial y} [(x_i - x)^2 + (y_i - y)^2]^{1/2} = -\frac{1}{d_i} (y_i - x)$$

$$J_h = \nabla h = \begin{bmatrix} -\frac{1}{d_1} (x_1 - x) & -\frac{1}{d_1} (y_1 - y) & 0 \\ -\frac{1}{d_2} (x_2 - x) & -\frac{1}{d_2} (y_2 - y) & 0 \\ -\frac{1}{d_3} (x_3 - x) & -\frac{1}{d_3} (y_3 - y) & 0 \end{bmatrix} = -J_e$$

 $J_h^T J_h$ is **not invertible** (rank =2) \rightarrow as expected, the heading of the robot (θ) is not observable (can not be estimated)

Solution: Drop the unknown θ in the formulation

$$J_h = \begin{bmatrix} -\frac{1}{d_1}(x_1 - x) & -\frac{1}{d_1}(y_1 - y) \\ -\frac{1}{d_2}(x_2 - x) & -\frac{1}{d_2}(y_2 - y) \\ -\frac{1}{d_3}(x_3 - x) & -\frac{1}{d_3}(y_3 - y) \end{bmatrix} \qquad \delta = (J_h^T J_h)^{-1} J_h^T [z - h(\hat{x})]$$

Example: Range-only positioning in 2D (cont.)

If just one landmark is observed, estimating p = (x, y) has infinitely many solutions!

$$z_1 = d_1 = [(x_1 - x)^2 + (y_1 - y)^2]^{1/2} + e_d$$

The robot position will be on a circumference with radius d_1

With $e_d \sim N(0, \sigma^2)$, the robot position uncertainty will be given by a "gaussian donut" \rightarrow It is not a Gaussian distribution

Bayes: $p(x|z_1, m_1) = kp(z_1|x, m_1)p(x|m_1)$ $if p(x|m_1) \ uniform \rightarrow p(x, |z_1, m_1) = k'p(z_1|x, m_1)$

Notice: $p(z|x,m_1)$ is Gaussian BUT $\mathcal{L}(x)=p(z_1|x,m_1)$ IS NOT ("donut shape")

Two observed range combined

First range observation (to beacon B1)

Second range observation (to beacon B2)

Least Squares Positioning

Characteristics:

- Needs full observability of the state (pose) to give an estimation.
 - For example, in range-only positioning (2 unknowns: x, y), with only one observed landmark the problem becomes undetermined
 - However, using filtering techniques (i.e. Kalman filter) we can have one solution because a prior exists (explained later)
- If closed-form (non-iterative) solution exists:
 - Global minimum guaranteed → Very effective Global Localization otherwise
 - Must be solved iteratively
 - Global minimum NOT guaranteed
 - Requires a good initial guess (e.g. from the motion model)
- Recall: Least Squares is equivalent to ML Estimation if p(z|x,m) is Gaussian

Map registration

A set of observed world points are registered (overlapped) against ...

- A global map → gives us the global pose of the observation (global localization)
- A previously observed point set → gives us their relative pose (odometry)

Two types of points:

 Landmark points:
 Correspondences are typically known (from landmarks descriptors)

• Scan points:

Correspondence between points are unknown

For landmark points: known correspondences assumed

Given two sets of points $M = \{m_1, \dots, m_n\}$ and $X = \{x_1, \dots, x_n\}$ where the pair (m_i, x_i) are corresponding points, i.e. points of the same physical entity, observed from different robot poses

$$p \oplus x = \begin{bmatrix} p_x + x \cos \theta - y \sin \theta \\ p_y + x \sin \theta + y \cos \theta \end{bmatrix} = t + Rx$$

Error for one point:

$$E_i(R, t) = ||m_i - p \oplus x_i||^2 = ||m_i - Rx_i - t_i||^2$$

Error for
$$n$$
 points: $E(R,t) = \sum_{i=1}^{n} ||m_i - Rx_i - t||^2$

Find the translation t and rotation R that minimize the sum of the squared error E(R,t)

R, t can be calculated iteratively (e.g. Gauss-Newton) or in closed-form (analytically)

Scan Points Matching: Iterated Closest Point (ICP) Algorithm

Iterate until convergence:

- 1. For each point x_i in one set (e.g. scan points), make a pair with the **closest** point m_i in the other point set
- 2. Solve one step in the Gauss-Newton method for the minimization of:

$$E(R,t) = \sum_{i=1}^{n} ||m_{i} - Rx_{i} - t_{i}||^{2}$$

Convergence: computed R,t in step 2 are negligible or the pairs in step 1 do not change

Closest-point matching is generally stable, but slow and requires preprocessing (KD-tree technique)

ICP: Also for 3D point clouds

[Nuechter et al., 2004]

[Jaimez & Gonzalez-Jimenez, 2015]

Discrete Kalman Filter (KF)

Kalman Filter is a method to overcome the occasional un-observability problem of the Least Squares approach thanks to a model of how the state changes Based on the Bayes Filter (called **Markov localization**):

$$Belief(x_t) = p(x_t|u_1, z_1 \dots, u_t, z_t) = p(x_t|u_{1:t}, z_{1:t})$$

$$Correction \qquad Prediction (prior)$$

$$= \eta \left[p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) Belief(x_{t-1}) dx_{t-1} \right]$$

KF computes this equation alternating between two steps::

- Prediction (computes prior): $\overline{bel}(x_t) = \int p(x_t|u_t,x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$ Total probability (sum rule)
- Correction (computes posterior): $bel(x_t) = \eta p(z_t|x_t)\overline{bel}(x_t)$ Bayes rule where:
 - 1) The two process equations, $p(x_t|u_t, x_{t-1})$ (motion) and $p(z_t|x_t)$ (sensing) are **linear**
 - 2) All pdfs involved are **Gaussians**: $p(x_t|u_t, x_{t-1})$, $p(z_t|x_t)$, $bel(x_0)$

RECALL 1 Bayes filter:

$$\begin{aligned} \textit{Belief}(x_t) &= p(x_t \mid u_1, z_1 \dots, u_t, z_t) = p(x_t \mid u_{1:t}, z_{1:t}) & z_{1:t} = z_1, \dots, z_t \\ u_{1:t} &= u_1, \dots, u_t \end{aligned}$$
 Bayes
$$= \eta \ p(z_t \mid x_t, \underline{u_{1:t}, z_{1:t-1}}) \ p(x_t \mid u_{1:t}, z_{1:t-1}) \iff \text{without } z_t$$
 Markov
$$= \eta \ p(z_t \mid x_t) \ p(x_t \mid u_{1:t}, z_{1:t-1}) & p(x_t) = \int p(x_t, x_{t-1}) \, dx_{t-1} = \int p(x_t \mid x_{t-1}) \, p(x_{t-1}) \, dx_{t-1}$$
 Total prob.
$$= \eta \ p(z_t \mid x_t) \int p(x_t \mid \underline{u_{1:t}, z_{1:t-1}}, x_{t-1}) \, p(x_{t-1} \mid u_{1:t}, z_{1:t-1}) \, dx_{t-1}$$
 Markov
$$= \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) \, p(x_{t-1} \mid u_{1:t}, z_{1:t-1}) \, dx_{t-1}$$
 We don't apply Markov here because it is not needed. This is the definition of $Belief(x_{t-1})$
$$= \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) \, p(x_t \mid u_{t}, x_{t-1}) \, Belief(x_{t-1}) \, dx_{t-1}$$
 We don't apply Markov here because it is not needed. This is the definition of $Belief(x_{t-1})$

RECALL 2: How Gaussians look like

$$p(\mathbf{x}) = N(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

RECALL 3:

- Product
- Marginalization/conditioning
- Linear transformation

of Gaussians pdf's is Gaussian

We stay in the "Gaussian world" as long as we start with Gaussians and perform only linear transformations.

$$\left. \begin{array}{l} X \sim N(\mu, \Sigma) \\ Y = AX + B \end{array} \right\} \quad \Rightarrow \quad Y \sim N(A\mu + B, A\Sigma A^T)$$

$$X_{1} \sim N(\mu_{1}, \Sigma_{1}) \} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N(\Sigma_{12}(\Sigma_{1}^{-1}\mu_{1} + \Sigma_{2}^{-1}\mu_{2}), \quad \Sigma_{12} = (\Sigma_{1}^{-1} + \Sigma_{2}^{-1})^{-1})$$

KF: Let's go into the details

Kalman Filter is a general tool to estimate the state x of a process that is governed by the linear stochastic **model**:

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, R_t)$ Prediction phase

covariance of the linear

motion model $B_t u_t$

with a linear measurement equation

$$z_t = C_t x_t + \delta_t$$

 $\delta_t \sim N(0, Q_t)$ Correction phase covariance of the linear measurement model $C_t x_t$

- Matrix (nxn) that describes how the state x evolves from t-1 to t without motion command (u_t)
- Matrix (nxl) that describes how the motion command u_t (lx1) changes the state x from t-1 to t
- Matrix (kxn) that describes how the state x_t is related to an observation z_t .
- $\mathcal{E}_t \delta_t$ Random variables representing the motion and measurement noise. They are assumed to be independent and normally distributed with covariance R_t and Q_t , respectively.

Kalman Filter from Bayes filter

Motion model: Distribution over poses when executing the noisy motion command u_t and its pose is x_{t-1}

Distribution over poses x_{t-1}

Posterior Likelihood
$$\overline{Bel}(x_t)$$
 or prior
$$Bel(x_t) := \eta \quad p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) \, Bel(x_{t-1}) \, dx_{t-1}$$

$$N(x_t; A_t x_{t-1} + B_t u_t, R_t) \quad N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1})$$

Motion model: Distribution over poses when executing the noisy motion command u_t and its pose is x_{t-1}

Distribution over poses x_{t-1}

Prediction phase (Prior computation):

$$\overline{Bel}(x_t) = \eta \int \exp\left\{-\frac{1}{2}(x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1}(x_t - A_t x_{t-1} - B_t u_t)\right\} \exp\left\{-\frac{1}{2}(x_{t-1} - \mu_{t-1})^T \Sigma_{t-1}^{-1}(x_{t-1} - \mu_{t-1})\right\} dx_{t-1}$$

This is another Gaussian, since marginalization and product of Gaussians is Gaussian:

$$\overline{Bel}(x_t) = p(x_t) = \int p(x_t, x_{t-1}) \, dx_{t-1} = \int p(x_t | x_{t-1}) \, p(x_{t-1}) \, dx_{t-1}$$
 u_t omitted for clarity

$$\overline{Bel}(x_t) = N(x_t; \bar{\mu}_t, \overline{\Sigma}_t) \begin{cases} \bar{\mu}_t = A_t \mu_{t-1} + B_t u_t \\ \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + B_t \Sigma_{u_t} B_t^T \end{cases}^{R_t}$$

Posterior Likelihood
$$\overline{Bel}(x_t)$$
 or prior
$$Bel(x_t) := \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

$$N(x_t; \mu_t, \Sigma_t) \quad N(z_t; C_t x_t, Q_t) \qquad N(x_t; \overline{\mu}_t, \overline{\Sigma}_t)$$

Correction phase (posterior computation):

$$z_t = C_t x_t + \delta_t \implies p(z_t \mid x_t) = N(z_t; C_t x_t, Q_t) \quad \text{Observation model}$$

$$Bel(x_t) = \eta \exp\left\{-\frac{1}{2}(z_t - C_t x_t)^T Q_t^{-1}(z_t - C_t x_t)\right\} \exp\left\{-\frac{1}{2}(x_t - \overline{\mu}_t)^T \overline{\Sigma}_t^{-1}(x_t - \overline{\mu}_t)\right\}$$

This is the multiplication of two Gaussians, which is also Gaussian

$$Bel(x_t) = \begin{cases} \mu_t = \bar{\mu}_t + K_t(z_t - C_t \bar{\mu}_t) \\ \Sigma_t = (I - K_t C_t) \overline{\Sigma}_t \end{cases} \text{ with gain } K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

Algorithm Kalman_filter (μ_{t-1} , Σ_{t-1} , u_t , z_t):

Prediction:

$$\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t$$

$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

Correction:

$$K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

$$\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t)$$

$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

Return μ_t , Σ_t

More uncertainty: The predicted covariance is the sum of those of the two RVs involved: R_t for $B_t u_t$ and $A_t \Sigma_{t-1} A_t^T$ for x_{t-1}

→ Covariance of the Innovation

This is called: **Innovation:** error between the observation and the prediction of the landmark

Less uncertainty: $\det(\Sigma_t) < \det(\overline{\Sigma}_t)$

Discrete Kalman Filter

Summary

- Highly efficient: Polynomial complexity in dimensionality of the measurement k and state dimensionality n (n=3 for 2D pose): $O(k^{2.376} + n^2)$
- Gives an optimal estimate for linear Gaussian systems
- Unfortunately, most robotics models (motion and sensing) are nonlinear ⁽³⁾, and hence, KF can not be applied ...

BUT we can linearize the motion and sensing model \rightarrow Extended KF

Extended Kalman Filter

EKF is an adaptation of KF to Nonlinear Dynamic Systems

Model transition (**prediction**): $\bar{x}_t = x_{t-1} \oplus u_t + \varepsilon_t$ (Instead of $\bar{x}_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$)

Observation function (**correction**): $z_t = h(x_t) + \delta_t$ (Instead of $z_t = C_t x_t + \delta_t$)

PROBLEM: Transformed Gaussians are no longer Gaussians

The robot pose estimate can not be represented in a parametric form (mean, covariance)

Watch out: \bar{x}_t is NOT the mean of x_t , but the **predicted** x_t (before the observation z_t)

Linearity Assumption Revisited (lecture 2)

Linearity Assumption Revisited (lecture 2)

For the same linearization of the function f(x), much more error in the gaussian approximation when covariance large!!

33

EKF Linearization: First Order Taylor Expansion

• Prediction: $\bar{x}_t = x_{t-1} \oplus u_t + \varepsilon_t = g(x_{t-1}, u_t) + \varepsilon_t$

The Jacobian is evaluated here, the mean of
$$x_{t-1}$$

$$g(x_{t-1}, u_t) \approx g(\mu_{t-1}, u_t) + \frac{\partial g(\mu_{t-1}, u_t)}{\partial x_{t-1}} \quad (x_{t-1} - \mu_{t-1}) = g(\mu_{t-1}, u_t) + G \quad \Delta x_{t-1}$$
 Linearization for x_{t-1} at μ_{t-1}
$$\bar{x}_t = g(x_{t-1}, u_t) + \varepsilon_t \approx g(\mu_{t-1}, u_t) + G \quad \Delta x_{t-1} + \varepsilon_t$$
 Random $x_{t-1} \sim N(0, \Sigma_{t-1})$ variables $x_{t-1} \sim N(0, \Sigma_{t-1})$ variables $x_{t-1} \sim N(0, \Sigma_{t-1})$

Parameters of the Normal distribution of \bar{x}_t :

$$\bar{x}_t \sim N(\bar{\mu}_t, \bar{\Sigma}_t) = N(\mu_{t-1} \oplus u_t, G_t \Sigma_{t-1} G_t^T + R_t)$$

EKF Prediction Step

Motion of a **known pose** μ_{t-1} by $u_t \sim N(\bar{u}_t, R_t)$

Motion of the pose $x_{t-1} \sim N(\mu_{t-1}, \Sigma_{t-1})$ by a **known** motion u_t

Motion of the pose $x_{t-1} \sim N(\mu_{t-1}, \Sigma_{t-1})$ by $u_t \sim N(\bar{u}_t, R_t)$

EKF Linearization: First Order Taylor Expansion

• Correction:
$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t) = h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$
 Predicted mean (computed in the prediction step: $\mu_{t-1} \oplus u_t$)
$$Likelihood$$
 Prior (Prediction)
$$Bel(x_t) = \eta \exp\left\{-\frac{1}{2}(z_t - h(x_t))^T Q_t^{-1}(z_t - h(x_t))\right\} \exp\left\{-\frac{1}{2}(x_t - \overline{\mu}_t)^T \overline{\Sigma}_t^{-1}(x_t - \overline{\mu}_t)\right\}$$

Multiplication of two Gaussians = another Gaussian with a smaller Covariance

$$Bel(x_t) = N(x_t; \mu_t, \Sigma_t) \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t)) \\ \Sigma_t = (I - K_t H_t) \overline{\Sigma}_t \\ K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1} \end{cases}$$

36

EKF Correction Step

Extended Kalman Filter

Extended_Kalman_filter (μ_{t-1} , Σ_{t-1} , u_t , z_t):

Prediction:

1.
$$\bar{\mu}_t = g(\mu_{t-1}, u_t) = \mu_{t-1} \oplus u_t$$

$$\mathbf{2.} \quad \overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$$

Correction:

1.
$$K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1}$$

2.
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

3.
$$\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$$

Return μ_t , Σ_t

Jacobians

$$G_t = \frac{\partial g(\mu_{t-1}, u_t)}{\partial x_{t-1}}$$

$$H_t = \frac{\partial h(\bar{\mu}_t)}{\partial x_t}$$

Extended Kalman Filter

Observed landmarks

We'll program this example in the practical sessions

- Technique for implementing recursive Bayesian filter by Monte Carlo sampling
- Idea: to represent the posterior density by a set of k random samples (particles). The robot pose follows the distribution given by the samples

Example for a Gaussian pdf:

Still an implementation of the Bayes Filter

$$Bel(x_t) = \eta p(z_t|x_t)\overline{Bel}(x_t) = \eta p(z_t|x_t)\overline{Bel}(g(u_t,x_{t-1}))$$

$$x_t = g(u_t,x_{t-1})$$

$$particles x_t^i \text{ drawn from } prior$$

$$x_t = g(u_t,x_{t-1})$$

$$Importance factor (weight) \text{ for } x_t^i : w_t^i \propto p(z_t|x_t)$$

Bayes Filter for pdf given by samples

Illustration of the PF in 1D: SIR implementation, M particles: $\left\{x_{k-1}^{(m)}, w^{(m)}\right\}_{m=1}^{m}$

Weights here are represented by the area of the circle

Pose of the particle Weight of the m at time kparticle *m*

SIR: Sequential Importance Resampling

1. Prediction

Implements the prediction \overline{Bel} $(g(u_t, x_{t-1}))$ in a sample-based form


```
% xP (3xn): Vector with the pose (x,y,θ) of the n particles
% U: covariance matrix 3x3 of the error motion
% Each particle p moves with the motion vector plus noise
for(p = 1:nParticles)
    xP(:,p) = compose(xP(:,p),u+sqrt(U)*randn(3,1));
end;
```

2. Update. a) Observation prediction

2. Update. b) Resampling based on weights (survival of the fittest)

IDEA: Particles with big weights will occupy a greater percentage of the y axis in a Likelihood accumulated Look-up table (LAT)

b1) Build a Look-up table for the Likelihood accumulation

Normalized Likelihood accumulated table
$$NLAT(k)$$

$$NLAT(k) = \frac{1}{sum} \sum_{i=1}^{k} L(x_i)$$

$$sum = \sum_{i=1}^{np} L(x_i)$$

2. Update. b) Resampling based on weights (survival of the fittest)

b2) Randomly generate new particles from the weights

Example in 1D: Position tracking. A robot moves in a corridor with a range sensor that gets the distance to ONE landmark at the end of the corridor

Example in 1D: Global localization

2 Landmarks, 1 observation

Number of particles = 500

__ prior

- posterior
- Gaussian Observation likelihood to landmark 1
- Gaussian Observation likelihood to landmark 2

Given a measurement of z = 12 m we have to main hypothesis of the pose

Advantages

- Model any probability distribution
- Model multimodal distributions (multiple hypothesis)
- Very simple implementation

Disadvantages

- Not as accurate as continuous random variable (it's an approximation). The more particles the more accurate
- Sometimes the PF fails: degeneracy problems
- Computational complexity: assumable for states of small dimension (3D), e.g. localization in 2D