006-CLASE 1 - PARTE 1 - INECUACIONES DE PRIMER GRADO

Prof. Javier Pereyra

Inecuaciones

Una **inecuación** es una expresión matemática que establece una relación de desigualdad entre dos expresiones. Las relaciones de desigualdad pueden ser de los siguientes tipos:

- Mayor que: a > b
- Menor que: a < b
- Mayor o igual que: $a \ge b$
- Menor o igual que: $a \leq b$

Ejemplo 1: 2x - 3 < 5

1. Resolución

Primero, aislamos la variable x:

$$2x - 3 < 5$$
$$2x < 8$$
$$x < 4$$

2. Solución como un Intervalo

La solución se puede expresar en forma de intervalo:

$$S = (-\infty, 4)$$

3. Representación Gráfica

El punto vacío en x=4 indica que 4 no está incluido en la solución. Esto se debe a que la desigualdad es estricta (<) y no incluye el valor 4.

Ejemplo 2: $3x + 2 \ge 11$

1. Resolución

$$3x + 2 \ge 11$$
$$3x \ge 9$$
$$x \ge 3$$

2. Solución como un Intervalo

La solución se puede expresar en forma de intervalo:

$$S = [3, +\infty)$$

3. Representación Gráfica

El punto relleno en x=3 indica que 3 está incluido en la solución. Esto se debe a que la desigualdad es no estricta (\geq) y sí incluye el valor 3.

Inversión de la Desigualdad al Multiplicar o Dividir por un Número Negativo

Cuando resolvemos inecuaciones, es importante recordar que al multiplicar o dividir ambos lados de una desigualdad por un número negativo, la dirección de la desigualdad se invierte. Esto se debe a la propiedad uniforme de las desigualdades.

1. Propiedad Uniforme de las Desigualdades

La **propiedad uniforme** establece que si multiplicamos o dividimos ambos lados de una desigualdad por el mismo número positivo, la dirección de la desigualdad no cambia. Sin embargo, si multiplicamos o dividimos por un número negativo, la dirección de la desigualdad se invierte.

2. Ejemplo con Multiplicación

Consideremos la desigualdad:

$$-2x < 4$$

Para despejar x, dividimos ambos lados por -2:

$$x>\frac{4}{-2}$$

$$x > -2$$

Aquí, la dirección de la desigual dad cambió de < a >.

3. Ejemplo con División

Consideremos otra desigualdad:

$$\frac{-3x}{5} \ge 6$$

Multiplicamos ambos lados por 5 para despejar x:

$$-3x \ge 6 \cdot 5$$

$$-3x \ge 30$$

Luego dividimos ambos lados por -3:

$$x \le \frac{-30}{-3}$$

Aquí, la dirección de la desigualdad cambió de \geq a \leq .

4. Explicación de Por Qué se Invierte la Desigualdad

Para entender por qué la desigualdad se invierte, consideremos un ejemplo concreto.

- 1. **Desigualdad Original:** Supongamos que tenemos 2 < 3.
- 2. **Multiplicación por un Número Negativo:** Multipliquemos ambos lados por -1:

$$2 \cdot (-1)$$
 y $3 \cdot (-1)$

Esto nos da:

$$-2 \ y \ -3$$

En la recta numérica, -3 está a la izquierda de -2, lo que significa que -3 < -2. Así, la desigualdad 2 < 3 se convierte en -2 > -3 después de multiplicar por -1. Al multiplicar ambos lados por un número negativo, el orden de los números se invierte, cambiando la dirección de la desigualdad.

3. División por un Número Negativo: Consideremos otra desigualdad, 4 > 2. Dividamos ambos lados por -2:

$$\frac{4}{-2} \quad y \quad \frac{2}{-2}$$

Esto nos da:

$$-2 \ y \ -1$$

En la recta numérica, -2 está a la izquierda de -1, lo que significa que -2 < -1. Así, la desigualdad 4 > 2 se convierte en -2 < -1 después de dividir por -2. Al dividir ambos lados por un número negativo, el orden de los números se invierte, cambiando la dirección de la desigualdad.

5. Propiedad Uniforme de las Desigualdades

La propiedad uniforme se basa en el hecho de que la multiplicación y la división por números positivos preservan el orden de los números, mientras que la multiplicación y la división por números negativos invierten el orden. Esto se puede entender visualizando una recta numérica:

- En una recta numérica, los números mayores están a la derecha de los números menores.
- Multiplicar o dividir por un número positivo simplemente escala la recta numérica, preservando el orden.
- Multiplicar o dividir por un número negativo invierte la dirección de los números en la recta, cambiando la posición relativa de los números.

Ejercicios de Inecuaciones de Primer Grado

Resuelve las siguientes inecuaciones. Luego, proporciona la solución en forma de intervalo y la representación gráfica.

1.
$$2(x-3)+4 < 3x-5$$

2.
$$\frac{4x-10}{2} \ge x+3$$

$$3. \ 4 - \frac{2(x+6)}{6} \le 3x - 8$$

4.
$$-3(x-2) + 4 > -2(x+1) - 7$$

$$5. \ \frac{6-x}{2} + 2 \ge \frac{x+5}{4}$$

6.
$$4 - \frac{8(x-7)}{4} < 2x + 6$$

7.
$$2 + \frac{15x+10}{2} \ge \frac{1}{5}x - \frac{3}{10}$$

8.
$$2(x-4) - 3 \le 5x - 2(x+3)$$

9.
$$\frac{3x-1}{4} > \frac{2(x+3)-5}{3}$$

$$10. \ \frac{3(x+2)}{4} - 2 \le \frac{4-x}{2}$$

Resolución de desigualdades

1.
$$2(x-3)+4<3x-5$$

$$2(x-3) + 4 < 3x - 5$$

$$2x - 6 + 4 < 3x - 5$$

$$2x - 2 < 3x - 5$$

$$-2 + 5 < x$$

$$3 < x$$

$$x > 3$$

Intervalo solución: $(3, +\infty)$

$$2. \ \frac{4x-10}{2} \ge x+3$$

$$2x - 5 \ge x + 3$$
$$2x - x \ge 3 + 5$$
$$x \ge 8$$

Intervalo solución: $[8, +\infty)$

$$3. \ 4 - \frac{2(x+6)}{6} \le 3x - 8$$

$$4 - \frac{2x + 12}{6} \le 3x - 8$$

$$4 - \frac{2x}{6} - \frac{12}{6} \le 3x - 8$$

$$4 - \frac{1}{3}x - 2 \le 3x - 8$$

$$2 - \frac{1}{3}x \le 3x - 8$$

$$10 \le \frac{10}{3}x$$

$$x \ge 3$$

Intervalo solución: $[3, +\infty)$

4.
$$-3(x-2) + 4 > -2(x+1) - 7$$

$$-3(x-2) + 4 > -2(x+1) - 7$$

$$-3x + 6 + 4 > -2x - 2 - 7$$

$$-3x + 10 > -2x - 9$$

$$-3x + 2x > -9 - 10$$

$$-x > -19$$

$$x < 19$$

Intervalo solución: $(-\infty, 19)$

$$5. \ \frac{6-x}{2} + 2 \ge \frac{x+5}{4}$$

$$\frac{6-x}{2} + 2 \ge \frac{x+5}{4}$$

$$\frac{6-x+4}{2} \ge \frac{x+5}{4}$$

$$\frac{10-x}{2} \ge \frac{x+5}{4}$$

$$2(10-x) \ge x+5$$

$$20-2x \ge x+5$$

$$15 \ge 3x$$

$$x \le 5$$

Intervalo solución: $(-\infty, 5]$

$$6. \ 4 - \frac{8(x-7)}{4} < 2x + 6$$

$$4 - \frac{8(x-7)}{4} < 2x + 6$$

$$4 - 2(x-7) < 2x + 6$$

$$4 - 2x + 14 < 2x + 6$$

$$18 - 2x < 2x + 6$$

$$12 < 4x$$

$$x > 3$$

Intervalo solución: $(3, +\infty)$

7.
$$2 + \frac{15x+10}{2} \ge \frac{1}{5}x - \frac{3}{10}$$

$$2 + \frac{15x + 10}{2} \ge \frac{1}{5}x - \frac{3}{10}$$
$$\frac{4}{2} + \frac{15x + 10}{2} \ge \frac{1}{5}x - \frac{3}{10}$$
$$\frac{15x + 10 + 4}{2} \ge \frac{1}{5}x - \frac{3}{10}$$
$$\frac{15x + 14}{2} \ge \frac{1}{5}x - \frac{3}{10}$$

Multiplico todo por 10: $5(15x + 14) \ge 2x - 3$

$$75x + 70 \ge 2x - 3$$

$$73x \ge -73$$

$$x \ge -1$$

Intervalo solución: $[-1, +\infty)$

8.
$$2(x-4) - 3 \le 5x - 2(x+3)$$

$$2(x-4) - 3 \le 5x - 2(x+3)$$

$$2x - 8 - 3 \le 5x - 2x - 6$$

$$2x - 11 \le 3x - 6$$

$$-11 + 6 \le 3x - 2x$$

$$-5 \le x$$

$$x \ge -5$$

Intervalo solución: $[-5, +\infty)$

9.
$$\frac{3x-1}{4} > \frac{2(x+3)-5}{3}$$

$$\frac{3x-1}{4} > \frac{2(x+3)-5}{3}$$

$$\frac{3x-1}{4} > \frac{2x+6-5}{3}$$

$$\frac{3x-1}{4} > \frac{2x+1}{3}$$

$$3(3x-1) > 4(2x+1)$$

$$9x-3 > 8x+4$$

$$x > 7$$

Intervalo solución: $(7, +\infty)$

$$10. \ \frac{3(x+2)}{4} - 2 \le \frac{4-x}{2}$$

$$\frac{3x+6}{4} - 2 \le \frac{4-x}{2}$$
$$\frac{3x+6-8}{4} \le \frac{4-x}{2}$$
$$\frac{3x-2}{4} \le \frac{4-x}{2}$$

Multiplico por 4: $2(3x-2) \leq 4(4-x)$ $6x-4 \leq 16-4x$ $10x \leq 20$ $x \leq 2$

Intervalo solución: $(-\infty, 2]$

