Лабораторная работа №5

Дисциплина: архитектура компьютера

Ларина Наталья Денисовна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Основы работы в mc 4.2 Структура программы на языке ассемблера NASM 4.3 Подключение внешнего файла 4.4 Выполнение заданий для самостоятельной работы	9 11 13 16
5	Выводы	21
6	Список литературы	22

Список таблиц

Список иллюстраций

4.1	Открытыи mc	9
4.2	Перемещение между директориями	10
4.3	Создание каталога	10
4.4	Перемещение между директориями	11
4.5	Создание файла	11
4.6	Открытый отредактированный файл	12
4.7	Открытие файла для просмотра	12
4.8	Компиляция файла	12
4.9	Передача на обработку компоновщику	13
4.10	Исполнение файла	13
4.11	Скачанный файл	13
4.12	Копирование файла	14
4.13	Копирование файла	14
4.14	Редактирование файла	15
4.15	Исполнение файла	15
4.16	Отредактированный файл	16
4.17	Исполнение файла	16
4.18	Копирование файла	17
4.19	Редактирование файла	17
4.20	Исполнение файла	18
4.21	Копирование файла	19
4.22	Редактирование файла	19
4.23	Исполнение файла	20

1 Цель работы

Приобретение практических навыков работы в Midnight Commander, освоение инструкций языка ассемблера mov и int.

2 Задание

- 1. Основы работы с тс
- 2. Структура программы на языке ассемблера NASM
- 3. Подключение внешнего файла
- 4. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. mc является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной. Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss). Для объявления инициированных данных в секции .data используются директивы DB, DW, DD, DQ и DT, которые резервируют память и указывают, какие значения должны храниться в этой памяти: - DB (define byte) — определяет переменную размером в 1 байт; - DW (define word) — определяет переменную размеров в 2 байта (слово); - DD (define double word) — определяет переменную размером в 4 байта (двойное слово); - DO (define quad word) — определяет переменную размером в 8 байт (учетве- рённое слово); - DT (define ten bytes) — определяет переменную размером в 10 байт. Директивы используются для объявления простых переменных и для объявления массивов. Для определения строк принято использовать директиву DB в связи с особенностями хранения данных в оперативной памяти. Инструкция языка ассемблера mov предназначена для дублирования данных источника в приёмнике.

mov dst,src

Здесь операнд dst — приёмник, а src — источник. В качестве операнда могут выступать регистры (register), ячейки памяти (memory) и непосредственные значения (const). Инструкция языка ассемблера intпредназначена для вызова прерывания с указанным номером.

int n

Здесь n— номер прерывания, принадлежащий диапазону 0–255. При программировании в Linux с использованием вызовов ядра sys_calls n=80h (принято задавать в шестнадцатеричной системе счисления).

4 Выполнение лабораторной работы

4.1 Основы работы в тс

Открываю Midnight Commander и ввожу в терминал mc (рис. 4.1).

Рис. 4.1: Открытый тс

Далее перехожу в каталог ~/work/study/2022-2023/Архитектура Компьютера/arch-pc, используя файловый менеджер mc (рис. 4.2)

Рис. 4.2: Перемещение между директориями

Затем создаю каталог lab05 с помощью функциональной клавиши F7 (рис. 4.3).

Рис. 4.3: Создание каталога

Перехожу в созданный каталог (рис. 4.4).

	Левая	панель	Файл	Команда	Настро	ойки	Права
ſ	<2	23-2024/Ap	хитектура	компьютера	/arch-pc/	/lab05	[^]>-
П					Размер	Время	правки
П	/				-BBEPX-	ноя 8	3 13:49
П							
П							
П							
П							
П							

Рис. 4.4: Перемещение между директориями

В строке ввода прописываю команду touch lab5-1.asm, чтобы создать файл, в котором буду работать (рис. 4.5).

```
виши Shift.
ab05 $ touch lab5-1.asm
7<mark>НвКтлог 8</mark>Удалить
```

Рис. 4.5: Создание файла

4.2 Структура программы на языке ассемблера NASM

Открываю созданный файл для редактирования в редакторе nano с помощью функциональной клавиши F4. Ввожу в файл код программы для запроса строки у пользователя. Далее выхожу из файла (Ctrl+X), сохраняя изменения (Y, Enter) (рис. 4.6).

```
Вабо5:mc—Konsole

Файл Правка Вид Закладки Модули Настройка Справка

Гоновая вкладка оправка Вид Закладки Модули Настройка Справка

Гоновая вкладка оправка вкладка оправка оправка
```

Рис. 4.6: Открытый отредактированный файл

Затем с помощью функциональной клавиши F3 открываю файл для просмотра, чтобы проверить, содержит ли файл текст программы (рис. 4.7).

```
| SECTION | data | Cекция инициированных данных д
```

Рис. 4.7: Открытие файла для просмотра

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-1.asm. Создался объектный файл lab5-1.o (рис. 4.8).

Рис. 4.8: Компиляция файла

Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-1 lab5-1.o (рис. 4.9). Создался исполняемый файл lab5-1.

```
$ ld -m elf_i386 -o lab5-1 lab5-1.o
```

Рис. 4.9: Передача на обработку компоновщику

Далле запускаю исполняемый файл. Программа выводит строку "Введите строку" и ждет ввода с клавиатуры, я ввожу свои ФИО, на этом программа заканчивает свою работу (рис. 4.10).

```
ndlarina@dk8n63 ~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ./lab5-1
Введите строку:
Ларина Наталья Денисовна
```

Рис. 4.10: Исполнение файла

4.3 Подключение внешнего файла

Скачиваю файл in_out.asm со страницы курса в ТУИС, который сохранился в каталог "Загрузки" (рис. 4.11).

Файл Команда		Настройки		Права Г^]>¬
				правки
		203405	сен 1	
		3942	ноя	
		10342	CeH I	
	Имя	Имя от ~9-13 13-49-52.png чет.doc чет.pdf чёт.pdf чёт-1.pdf	Имя Размер -ВВЕРХ- от ~9-13 13-49-52.png 203405 чет.doc 0 чет.pdf 002421 чёт-1.pdf 1002421 3942	Имя Pasмep Bpeмя -BBEPX- ноя от ~9-13 13-49-52.png 203405 сен 1 чет.doc 0 сен 2 чет.pdf 0 сен 2 чёт.pdf 1002421 окт 2 чёт-1.pdf 1002421 окт 2 3942 ноя

Рис. 4.11: Скачанный файл

Копирую файл in_out.asm из каталога Загрузки в созданный каталог lab05 с помощью функциональной клавиши F5 (рис. 4.12).

Рис. 4.12: Копирование файла

Затем с помощью функциональной клавиши F5 копирую файл lab5-1 в тот же каталог, но с другим именем, для этого в появившемся окне mc прописываю имя для копии файла (рис. 4.13).

Рис. 4.13: Копирование файла

Изменяю содержимое файла lab5-2.asm во встроенном редакторе nano (рис. 4.14), чтобы в программе использовались подпрограммы из внешнего файла in out.asm.

Рис. 4.14: Редактирование файла

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-2.asm. Создался объектный файл lab5-2.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-2 lab5-2.o Создался исполняемый файл lab5-2. Запускаю исполняемый файл (рис. -4.15).

```
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ nasm -f elf lab5-2.asm
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ld -m elf_i386 -o lab5-2 lab5-2.o
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ./lab5-2
Введите строку:
Ларина Наталья Денисовна
```

Рис. 4.15: Исполнение файла

Далее открываю файл lab5-2.asm для редактирования в nano функциональной клавишей F4. Изменяю в нем подпрограмму sprintLF на sprint. Сохраняю изменения и открываю файл для просмотра, чтобы проверить сохранение действий (рис. 4.16).

```
lab5-2.asm [-M--] 11 L:[ 1+13 14/ 16] *(904 / 963b) 0032 0x020

%include Vincout and ; подключение внешнего файла
SECTION .data ; Секция инициированных данных
msg: DB 'brequie compacy ',0h ; сообщение
SECTION .bsc ; Секция не инициированных данных
bufl: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
mov eax, msg ; запись адреса выводимого сообщения в 'EAX'
call sprint ; вызов подпрограммы печати сообщения
mov ecx, bufl ; запись адреса переменной в 'EAX'
mov edx, 80 ; запись длины вводимого сообщения в 'EBX'
call sread ; вызов подпрограммы ввода сообщения
call quit ; вызов подпрограммы завершения
```

Рис. 4.16: Отредактированный файл

Снова транслирую файл, выполняю компоновку созданного объектного файла, запускаю новый исполняемый файл (рис. 4.17).

```
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ nasm -f elf lab5-2.asm
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ld -m elf_i386 -o lab5-2-2 lab5-2.o
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ./lab5-2-2
Введите строку: Ларина Наталья Денисовна
```

Рис. 4.17: Исполнение файла

Разница между первым исполняемым файлом lab5-2 и вторым lab5-2-2 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint.

4.4 Выполнение заданий для самостоятельной работы

1. Создаю копию файла lab5-1.asm с именем lab5-1-1.asm с помощью функциональной клавиши F5 (рис. 4.18).

Рис. 4.18: Копирование файла

Открываю созданный файл для редактирования с помощью функциональной клавиши F4. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.19).

```
/afs/.dk.sci.pfu.edu.ru/home/n/d/ndlarina/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05/lab5-1-1.asm
ECITOM .data; Секция инициированных данных
взс. 80 'Введите строку: 10; сообщение плос
взсел: EOU S-msg: Длина переменной 'msg'
ECITOM .bss; Секция не инициированных данных
bufl: Riss 80; Буфер размером 80 байт
SECITOM .text; Код программы
closML_start; Начало программы
start; Точка входа в программы
start; Точка входа в программы
ov еах, 4; Системный вызов для записи (sys_write)
mov ebx, 1; Описатель файла 1 - стандартный вывод
mov ebx, 1; Описатель файла 1 - стандартный вывод
mov ex, msg; Адрес строки 'msg' в 'ecx'
mov ex, msg, 2; Адрес строки 'msg' в 'ecx'
mov ex, msg, 3; Системный вызов для чтения (sys_read)
mov ebx, 0; Дескриптор файла 0 - стандартный ввод
mov exx, 80; Дона вводимой строки
ov exx, 81; Системный вызов для записи (sys_write)
mov exx, 4; Системный вызов для записи (sys_write)
mov exx, 4; Системный вызов для записи (sys_write)
mov exx, 1; Системный вызов для выхода (sys_exit)
mov exx, 1; Системный вызов для строки виба высов для строки
```

Рис. 4.19: Редактирование файла

2. Создаю объектный файл lab5-1-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-1-1, запускаю полученный исполняемый файл. Программа запрашивает ввод, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 4.20).

```
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ nasm -f elf lab5-1-1.asm
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ld -m elf_i386 -o lab5-1-1 lab5-1-1.o
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ./lab5-1-1
Введите строку:
Ларина Наталья Денисовна
Ларина Наталья Денисовна
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $
```

Рис. 4.20: Исполнение файла

Код программы из пункта 1:

```
SECTION .data ; Секция инициированных данных
msg: DB 'Введите строку:',10
msgLen: EQU $-msg ; Длина переменной 'msg'
SECTION .bss ; Секция не инициированных данных
buf1: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1; Описатель файла 1 - стандартный вывод
mov ecx, msg ; Адрес строки 'msg' в 'ecx'
mov edx, msqLen; Размер строки 'msq' в 'edx'
int 80h ; Вызов ядра
mov eax, 3; Системный вызов для чтения (sys read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, buf1 ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1; Описатель файла '1' - стандартный вывод
mov ecx, buf1 ; Адрес строки buf1 в есх
mov edx, buf1 ; Размер строки buf1
int 80h ; Вызов ядра
```

```
mov eax,1 ; Системный вызов для выхода (sys_exit)
mov ebx,0 ; Выход с кодом возврата 0 (без ошибок)
int 80h ; Вызов ядра
```

3. Создаю копию файла lab5-2.asm с именем lab5-2-1.asm с помощью функциональной клавиши F5 (рис. 4.21).

Рис. 4.21: Копирование файла

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.22).

Рис. 4.22: Редактирование файла

4. Создаю объектный файл lab5-2-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-2-1, запускаю полученный исполняемый файл. Программа запрашивает ввод без переноса на новую строку, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 4.23).

```
ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ nasm -f elf lab5-2-1.asm ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ld -m elf_i386 -o lab5-2-1 lab5-2-1.o ndlarina@dk8n63 -/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05 $ ./lab5-2-1
Введите строку: Ларина Наталья
Ларина Наталья
```

Рис. 4.23: Исполнение файла

Код программы из пункта 3:

```
%include 'in_out.asm'
SECTION .data ; Секция инициированных данных
msq: DB 'Введите строку: ',0h ; сообщение
SECTION .bss ; Секция не инициированных данных
buf1: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
mov eax, msq ; запись адреса выводимого сообщения в `EAX`
call sprint; вызов подпрограммы печати сообщения
mov ecx, buf1; запись адреса переменной в `EAX`
mov edx, 80 ; запись длины вводимого сообщения в `EBX`
call sread; вызов подпрограммы ввода сообщения
mov eax,4; Системный вызов для записи (sys write)
mov ebx,1; Описатель файла '1' - стандартный вывод
mov ecx, buf1 ; Адрес строки buf1 в есх
int 80h ; Вызов ядра
call quit ; вызов подпрограммы завершения
```

5 Выводы

В ходе выполнения данной лабораторной работы я освоила инструкции языка ассемблера mov и int, а также приобрела практические навыки работы в Midnight Commander.

6 Список литературы

1. Лабораторная работа №5