Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

21 Luglio 2020 - 9:00 ESAME ONLINE

- 2. Scrivere lo script Matlab es2_parte1.m in cui:
 - a) si valutino le successioni $\{u_n, n \geq 1\}$ e $\{z_n, n \geq 1\}$, definite rispettivamente come

$$\begin{cases} s_1 = 1; & s_2 = 1 + \frac{1}{4} \\ u_1 = 1; & u_2 = 1 + \frac{1}{4} \\ s_{n+1} = s_n + \frac{1}{(n+1)^2}, & n \ge 2 \\ u_{n+1} = \sqrt{6} \, s_{n+1}, & n \ge 2 \end{cases}$$

$$\begin{cases} z_1 = 1; & z_2 = 2 \\ z_{n+1} = 2^{n-\frac{1}{2}} \sqrt{1 - \sqrt{1 - 4^{1-n}} \, z_n^2}, & n \ge 2 \end{cases}$$

Punti: 3

b) si modifichi la successione $\{z_n, n \geq 1\}$ in una successione $\{y_n, n \geq 1\}$ analiticamente equivalente, ma che risulti numericamente più stabile (suggerimento: considerare la successione che si ottiene razionalizzando z_{n+1} , ossia moltiplicando numeratore e denominatore per $\sqrt{1 + \sqrt{1 - 4^{1-n} z_n^2}}$);

Punti: 4

c) si disegni in un unico grafico in scala semilogaritmica sulle ordinate (comando semilogy) l'andamento dell'errore relativo di $\{u_n, n=1,\ldots,41\}, \{z_n, n=1,\ldots,41\}$ e $\{y_n, n=1,\ldots,41\}$ rispetto a π , e si commentino i risultati ottenuti.

Punti: 5

- d) Scrivere lo script Matlab es2_parte2.m che
 - Generi un segnale x(t) somma di 2 sinusoidi, una di frequenza 25 Hz ed ampiezza 4 e l'altra di frequenza 60 Hz ed ampiezza 3 (si consideri un tempo di osservazione di 4 sec e si campioni a 230Hz). Si sommi al segnale x(t) una funzione sinusoidale di disturbo con frequenza 110Hz ed ampiezza 2. Si implementi un filtro nel dominio di Fourier che elimini la frequenza di disturbo e si ricostruisca il segnale ripulito.

Punti: 4

Totale: 16