

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

TITLE OF THE INVENTION

ENTRAPED DETECTING DEVICE FOR OPENING-CLOSING MEMBER

This application is based on and claims priority under 35 U.S.C. § 119 with respect to Japanese Patent Application No. 2002-344334 filed on November 27, 2002, the entire contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to a detecting device. More particularly, the present invention pertains to a detecting device for detecting an entrapment of an external object by an opening-closing member, for example, a sliding door, a sunroof, and a backdoor for vehicles.

BACKGROUND OF THE INVENTION

With the known technology, whether an opening-closing member entraps an external object when the opening-closing member is moved from an open state to a closed state is detected and the movement of the opening-closing member is reversed when it is judged that the external object is entrapped. In order to achieve the foregoing, it is required to detect the entrapment of the external object by the opening-closing member.

Japanese Patent Laid-Open Publication No. H09-264094 describes a device including a sensor provided along an end surface of the opening-closing member. A conduction portion of the sensor is covered with a rubber. When the sensor detects ON state, the device described in Japanese Patent Laid-Open Publication No. H09-264094 detects the entrapment of the external object between the sensor and a vehicle body.

Japanese Patent Laid-Open Publication No. 2000-160931 describes a device for detecting the entrapment of the external object based on a variation of a rotational speed of an electric motor and a variation of an electric current supplied to the electric motor for actuating the opening-closing member.

Notwithstanding, because the detection of the entrapment using the sensor only detects the entrapment at a location provided with the sensor, the entrapment of the external object cannot be detected when the external object is entrapped without contacting the sensor.

5 In the meantime, with the detection for the entrapment of the external object based on the variation of the rotation speed of the electric motor, because, generally, various members such as a cable and a decelerator are provided between the electric motor and the opening-closing member, a time lag may be generated from the entrapment of the external object until the rotational speed of the electric motor is
10 actually changed. Thus, the timing for detecting the entrapment of the external object after actual entrapment may be delayed.

A need thus exists for a detecting device for an opening-closing member for securely detecting the entrapment of an external object and minimizing the delay of the detection timing.

15

SUMMARY OF THE INVENTION

In light of the foregoing, the present invention provides an entrapped detection device of an opening-closing member which is opening and closing an opening portion of a vehicle body, which includes a driving power source for moves the
20 opening-closing member, a motivity transmission member provided between the opening-closing member and the driving power source, a deformation member configured to be deformed via the motivity transmission member in accordance with the load applied to the opening-closing member at an opening-closing operation of the opening-closing member, a strain gauge assembled to the deformation member and
25 configured to convert a strain according to the deformation of the deformation member to an electric signal and a control mechanism for detecting an entrapment of an external object based on the electric signal from the strain gauge. a detection device for entrapment of an opening-closing member.

30

BRIEF DESCRIPTION OF THE DRAWING FIGURES

The foregoing and additional features and characteristics of the present invention will become more apparent from the following detailed description considered with reference to the accompanying drawing figures in which like reference numerals designate like elements.

5 Fig. 1 is a lateral view of a vehicle including a detecting device for an entrapment according to an embodiment of the present invention.

Fig. 2 is a view viewed from II of Fig. 1.

Fig. 3 is a view viewed from III of Fig. 2.

Fig. 4 is a view viewed from IV of Fig. 2.

10 Fig. 5 is a cross-sectional view taken on line V-V of Fig. 3.

Fig. 6 is a view of a rear side bracket viewed from VI of Fig. 3.

Fig. 7 is a view of the rear side bracket viewed from VII of Fig. 6.

Fig. 8 is a view of a front side bracket viewed from VIII of Fig. 4.

15 DETAILED DESCRIPTION OF THE INVENTION

One embodiment of the present invention will be explained with reference to the drawing figures as follows. A slide door for opening and closing a door opening at a lateral side of a vehicle serves as an opening-closing member in the embodiment.

As shown in Fig. 1, a slide door 1 serving as the opening-closing member is 20 slidably supported along the lateral surface of a body 2 via a center guide rail 3 extended in the longitudinal direction (i.e., right, left direction of Fig. 1) of the vehicle and a pair of upper and lower guide rails 41, 42 for opening and closing a door opening 21 formed on the lateral surface of the body 2.

25 The upper guide rail 41 is positioned along an upper rim of the door opening 21 to be fixed to the body 2. The lower guide rail 42 is positioned along a lower rim of the door opening 21 to be fixed to the body 2. The center guide rail 3 is positioned rearward of the door opening 21 to be fixed to the body 2.

30 The slide door 1 is supported with guide roller units 5A, 5B, 5C slidably guided by the guide rails 3, 41, 42 respectively. The slide door 1 slides to open and close the door opening 21 by sliding the guide roller units 5A, 5B, 5C, relative to the

corresponding guide rails 3, 41, 42, respectively. The guide rails 3, 41, 42 are positioned in parallel with each other. Front ends of the guide rails 3, 41, 42 are bent in the vehicle compartment direction in order to guide the slide door 1 to be approximately flat with the lateral surface of the body 2. The slide door 1 is positioned
5 on the external surface of the body 2 at the rear portion of the vehicle relative to the door opening 21 at the opening state of the door opening 21.

The slide door 1 is slidably supported at the lateral surface of the body 2 by the guide roller units 5A, 5B, 5C via the guide rails 3, 41, 42. The slide door 1 slides by the sliding movement of the guide roller units 5A, 5B, 5C relative to the guide rails 3,
10 41, 42 by a power slide unit 60.

The power slide unit 60 of the slide door 1 will be explained in details as follow. As shown in Fig. 1, the power slide unit 60 includes a drive mechanism 6, a joint pulley mechanism 66, a cable 7, a pulley mechanism 8, and a cable holder 9. Each mechanism is connected each other via the cable 7 in the power slide unit 60 and
15 treated as one unit before assembling on the vehicle. Each end portion of the cable holder 9 in the longitudinal direction of the vehicle is provided with a front side bracket 93 and a rear side bracket 92 respectively for assembling the end portion of the cable 7 to the body 2.

The drive mechanism 6 is fixed to a panel of the slide door 1 positioned in the
20 slide door 1. The drive mechanism 6 includes an output drum 62 connected to an output shaft of an electric motor 61 via a deceleration gear mechanism 63 and enables the normal and reverse rotation by switching the rotational direction of the electric motor 61.

The actuation of the electric motor 61 is controlled by a door electric control
25 unit 64 serving as a control mechanism positioned in the slide door 1. The door electric control unit 64 outputs the drive signal to the electric motor 61 for driving the electric motor 61 in the desired direction based on various input signals (e.g., ON, OFF of an opening-closing switch of the slide door 1 and a vehicle speed). The door electric control unit 64 is electrically connected with a battery in the vehicle. The door
30 electric control unit 64 is electrically connected with strain gauges 94, 95 assembled to

the front side bracket 93 and the rear side bracket 92 respectively. The strain gauges 94, 95 serve as sensors for perceiving a slight expansion amount of a metal line or a metal foil such as Cu Ni as a change of the electric resistance.

As shown in Figs. 1-2, the cable 7 includes a first cable 71 and a second cable 72. First ends of the respective first cable 71 and the second cable 72 are engaged with and wound around the output drum 62. The first cable 71 is guided through the joint pulley 66 positioned in the side door 1 and the pulley mechanism 8 positioned outside of the rear end of the side door 1 and is introduced rearward along the cable holder 9. The second cable 72 is guided through the pulley mechanism 8 to be introduced forward of the vehicle along the cable holder 9 in the opposite direction from the first cable 71. As shown in Fig. 2, each second end of the cables 71, 72 are diagonally guided onto guide pulleys 82, 83 so that the cables 71, 72 cross each other. The cables 71, 72 are introduced rearward and forward respectively along the cable holder 9 to be engaged with each tensioner 78A, 78B. More particularly, as shown in Fig. 5, a plug 75 including a collar portion 76 is fixed to the second ends of the cables 71, 72 respectively. The plug 75 and a spring 77 are accommodated in a case 78. The biasing load of the spring 77 for always pushing the first cable 71 and the second cable 72 rearward (right direction of Fig. 2) and forward (left direction of Fig. 2) respectively is applied to the collar portion 76 so that a predetermined tension force is provided to the first cable 71 and the second cable 72.

The cable holder 9 is assembled to the vehicle, after engaging a snap 99 of the cable holder 9 to the center guide rail 3, by tightening the front side bracket 93 and the rear side bracket 92 to the body 2 while removing the looseness of the cable by providing the tension load to the first cable 71 and the second cable 72. With the foregoing construction, an interval between end portions of the first cable 71 and the second cable 72 is determined by a length of the cable holder 9 without being influenced by the variation of the vehicle size. In addition, because appropriate tension is applied to the first cable 71 and the second cable 72, the operational load of the driver does not assume too heavy due to the too much tension and the first cable 71 and the second cable 72 are not dislocated from a guiding portion such as the pulley. This ensures the operation with the durability.

The construction of the rear side bracket 92 and the front side bracket 93 will be further explained as follows. The tensioner 78A provided on the second end of the first cable 71 is assembled to the rear side bracket 92 of the cable holder 9. As shown in Figs. 6-7, the rear side bracket 92 includes an assembling portion 92A assembled to
5 the vehicle body 2, a supporting portion 92B for supporting the tensioner 78A, and a plane surface portion 92D formed approximately perpendicular to the axis line of the first cable 71 and including a slit shaped stopper portion 92C for stopping the first cable 71. The assembling portion 92A is formed at a portion away from the central axis of the first cable 71. The plane surface portion 92D is formed between the
10 assembling portion 92A and the stopper portion 92C.

The assembling portion 92A includes an assembling bore 92a. By assembling the tightening member such as a bolt to the lateral side surface of the assembling portion 92a, the rear side bracket 92 is fixed to the lateral side of the body 2. The tensioner 78A is supported by the supporting portion 92B while providing the first cable 71 to the stopper portion 92C. In other words, an end portion of the case 78 of the tensioner 78A contacts the stopper portion 92C while the tension is applied to the first cable 71. In the foregoing manner, the second end of the first cable 71 is assembled to the body 2. The plane surface portion 92D is provided with the strain gauge 94. The strain gauge 94 outputs the electric signal when plane surface portion
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

vehicle body 2, a supporting portion 93B for supporting the tensioner 78B, and a plane surface portion 93D including a slit shaped stopper portion 93C formed approximately perpendicular to the axis line of the second cable 72 for stopping the second cable 72. The assembling portion 93A is formed at away from the axial center of the second cable 72. The plane surface portion 93D is formed between the assembling portion 93A and the stopper portion 93C.

An assembling bore 93a is formed on the assembling portion 93A. By assembling the tightening members such as a bolt on the lateral surface of the body 2 via the assembling bore 93a, the front side bracket 93 is fixed relative to the lateral surface of the body 2. The tensioner 78B is supported by the supporting portion 93B while providing the second cable 72 to the stopper portion 93C. In other words, an end portion of the case 78 of the tensioner 78B contacts the stopper portion 93C while the tension is applied to the second cable 72. In the foregoing manner, the second end of the second cable 72 is assembled to the body 2. The planes surface portion 93D is provided with the strain gauge 95. The strain gauge 94 outputs the electric signal when plane surface portion 92D is deformed. The electric signal outputted from the strain gauge 95 is amplified by the amplifier 65 to be outputted to the door electric control unit 64. A restriction portion 93E for restricting the deformation of the plane surface portion 93D equal to or greater than the predetermined amount is formed at a side of the supporting portion 93B. The restriction portion 93E restricts the plastic deformation of the plane surface portion 93D by the tension of the second cable 72. The supporting portion 93B includes a rib 93b. This increases the rigidity of the supporting portion 92B and the supporting portion 92B per se is unlikely deformed. It is configured that the plane surface portion 93D is deformed when the tension is applied to the second cable 72.

The operation will be explained as follows. When the output dram 62 is rotated in a first direction by normally driving the electric motor 61 from the closing state of the door opening 21, the first cable 71 is wound by the output dram 62 and the second cable 72 is introduced to the output dram 62 as shown in Fig. 1. Thus, the guide roller units 5A slidingly moves relative to the center guide rail 3 in the rearward direction of the vehicle (i.e., right direction of Fig. 1) to open the door opening 21.

When the output dram 62 is rotated in a second direction by reversely driving the electric motor 61 from the open state of the door opening 21, the second cable 72 of the cable 7 is wound by the output dram 62 and the first cable 71 is released from the output dram 62. Thus, the guide roller units 5A slidingly moves in the forward 5 direction (i.e., left direction of fig. 1) relative to the center guide rail 3 to close the door opening 21.

The operation when the external object is entrapped between the sliding door 1 and the front rim of the door opening 21 at the closing operation of the slide door 1 and when the external object is entrapped between a window frame of the slide door 1 10 and the front rim of the door opening 21 at the opening operation of the slide door 1 will be explained as follows.

The large load is applied to the slide door 1 right after the entrapment of the external object than when the external object is not entrapped by the further actuation of the electric motor 61 while the external object is sandwiched between the slide door 15 1 and the front rim of the door opening 21. This applies the excessive tension to the first cable 71 and the second cable 72 to increase the tension force applied to the stopper portion 92C and the stopper portion 93C by the tensioner 78A, 78B. When the plane surface portion 92D and the plane surface portion 93D are deformed in the axial direction of the cable 7 by the tension of the stopper portion 92C and the stopper 20 portion 93C in the axial direction of the cable 7, the strain gauges 94, 95 output the electric signal in accordance with the deformation of the plane surface portions 92D, 93D. The outputted electric signal is amplified at the amplifier 65 to be inputted into the door electric control unit 64. The door electric control unit 64 judges the entrapment of the external object based on the electric signal from the strain gauges 25 94, 95.

The door electric control unit 64 may judge the entrapment of the external object as follows. For example, the entrapment of the external object may be judged when a measurement value (ex., voltage value) in accordance with the electric signal from the strain gauges 94, 95 is equal to or greater than a threshold value. In the 30 foregoing way, the entrapment of the external object can be detected only by comparing the measurement value and the threshold value only by predetermining a

value at which the entrapment is apparently generated as the threshold value. Accordingly, the entrapment of the external object can be judged easily.

The entrapment of the external object may be judged when a variation amount of the measurement value in accordance with the electric signal from the strain gauges 94, 95 in a predetermined time is equal to or greater than a predetermined amount. 5 Because the entrapment is judged when the strain gauge 94, 95 is suddenly strained by the entrapment of the external object, the prompt detection of the entrapment is achieved.

Further, the entrapment of the external object may be judged by determining a 10 value of the electric signal when the electric signal from the strain gauge 94, 95 maintains at an approximately constant value for a predetermined period as a reference value. In this case, the entrapment of the external object is judged when the difference between the measurement value in accordance with the electric signal from the strain gauges 94, 95 and the reference value is equal to or greater than a 15 predetermined value. With this method, the entrapment of the external object can be securely judged even when the brackets 92, 93 are deformed from the initial configuration due to the aging and the environment used so that the strain gauges 94, 95 always output the electric signal irrespective of the load applied to the slide door 1.

Thus, by assembling the strain gauge to the bracket deformed in accordance 20 with the load applied to the slide door, the entrapment of the external object can be securely detected and the detection timing is unlikely delayed.

Although the present invention is explained with an embodiment applying the detection device for the entrapment of the opening-closing member to the slide door, the detection device for the entrapment of the opening-closing member can be applied 25 to other opening-closing bodies such as the backdoor of a van and a sunroof.

According to the embodiment of the present invention, because the strain gauge is used for detecting the entrapment of the external object, the load applied to the opening-closing member is increased when the external object is entrapped, and thus the detection of the entrapment of the external object by the strain gauge can be 30 securely performed.

In addition, because the member assembled with the strain gauge is the material deformed in accordance with the load applied to the opening-closing member, the time lag from the actual entrapment of the external object to the detection of the entrapment of the external object can be restrained relative to the
5 detection device for detecting the entrapment of the external object in accordance with the variation of the electric current and the rotational speed of the electric motor for actuating the opening-closing member.

According to the embodiment of the present invention, the actuation of the electric motor continues in order to displace the opening-closing member to the
10 completely closed position or to the completely open position at a stage when the external object is entrapped during the process for the displacement of the opening-closing member to the completely closed position or to the completely open position. In this case, although the electric motor actuates for winding the cable, the bracket may be deformed due to the excessive tension applied to the cable at a state that the
15 position of the opening-closing member is unlikely displaced due to the entrapment of the external object. By outputting the electric signal in accordance with the deformation of the bracket by the strain gauge, the control mechanism detects the entrapment of the external object. Thus, the detection of the prompt and secure entrapment of the external object assumes detectable.

20 According to the embodiment of the present invention, when the excessive tension is applied to the cable, the plane surface portion is deformed to strain the strain gauge in accordance with the deformation of the plane surface portion, thus the secure and the prompt detection of the entrapment of the external object assumes detectable.

25 According to the embodiment of the present invention, when the excessive tension is applied to the cable, the deformation at a portion between the assembling portion of the bracket and the stopper portion assumes relatively large. Accordingly, the detection of the strain by the strain gauge is securely performed.

According to the embodiment of the present invention, the entrapment of the
30 external object is judged when the electric signal in accordance with the strain of the

strain gauge assumes equal to or greater than the predetermined threshold value with the control mechanism. In this case, by predetermining the value at which apparently the entrapment of the external object is generated as the threshold value, the entrapment of the external object can be detected by comparing the outputted electric
5 signal and the threshold value. This enables easy judgment of the entrapment of the external object.

According to the embodiment of the present invention, the entrapment of the external object is judged based on the variation of the electric signal per a predetermined time, in other words, based on the variation speed of the electric signal.
10 Thus, the entrapment of the external object is judged when the strain gauge is suddenly deformed by the entrapment of the external object. This enables fast detection of the entrapment.

According to the embodiment of the present invention, the entrapment of the external object can be securely judged even when the member is maintained deformed
15 due to the aging and the environment used and the gauge is strained irrespective of the load applied to the opening-closing member.

The principles, preferred embodiment and mode of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not to be construed as limited to the particular
20 embodiment disclosed. Further, the embodiment described herein is to be regarded as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims,
25 be embraced thereby.