1. PSEUDO-INTRODUCTION

Let M be a compact Riemannian manifold. The eigenvalues of the Laplace operator Δ acting on $L^2(M)$ form a discrete sequence $0 = \lambda_0 \leq \lambda_1 \leq \ldots$ The multiset of eigenvalues $\{\lambda_i\}$ is the **Laplace spectrum** of M. We say that two manifolds are **isospectral** if their Laplace spectra coincide. A manifold is **absolutely spectrally rigid** if the only manifolds to which it is isospectral are in fact isometric.

In this article, we prove the following

Theorem 1. Let k be a totally real number field with ring of integers R, and A a quaternion algebra over k with type number 1. Further, suppose that there is a unique real place of k at which A is unramified. Let \mathcal{O} be a maximal order in A, \mathcal{O}^1 the multiplicative group of norm 1 units. For an ideal I in R, let $\mathcal{O}^1(I) \leq \mathcal{O}^1$ be the kernel of the reduction map. Denote by Γ (resp. $\Gamma(I)$) the image of \mathcal{O}^1 (resp. $\mathcal{O}^1(I)$) in $\mathrm{PSL}(2,\mathbb{R}) = \mathrm{Isom}^+(\mathbb{H})$. Suppose that I is not divisible by any prime in R at which A is ramified. Then the Riemann surface $\Gamma(I) \setminus \mathbb{H}$ is absolutely spectrally rigid.

2. Audible properties

2.1. **Heat invariants.** Let M be a compact Riemannian manifold. Enumerate the spectrum of its Laplace-Beltrami operator as $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots$, where each eigenvalue is repeated according to its multiplicity. Pick an $L^2(M)$ -orthonormal basis $\{\varphi_j\}$ of corresponding eigenfunctions. The **heat kernel** of M is the function $K : \mathbb{R}_{>0} \times M \times M$ defined by

(1)
$$K(t, x, y) = \sum_{j} e^{-t\lambda_{j}} \varphi_{j}(x) \varphi_{j}(y).$$

2.2. Scope: Riemannian manifolds.

Theorem 2. Volume is an audible property.

 $TODO: use asymptotics of \Theta_M.$

Theorem 3. Dimension is an audible property.

 $TODO: use asymptotics of \Theta_M.$

2.3. Scope: smooth, compact Riemannian surfaces.

Theorem 4. Suppose dim M=2 and that M is smooth. The homeomorphism class of M is audible.

TODO: gauss-bonnet.

Theorem 5. Suppose dim M=2, and that M is smooth. The property of having constant curvature is audible.

1

TODO: GCB the metric of constant curvature minimizes topological entropy, which is a spectral invariant.

2.4. Scope: Riemann surfaces.

Theorem 6. Suppose M is a compact Riemann surface. Then arithmeticity is audible.

TODO: apply Takeuichi.

2.5. Scope: Arithmetic Riemann surfaces.

Theorem 7. Suppose M is an arithmetic Riemann surface. The commensurability class of M is audible.

TODO: apply Reid.

3. The proof

Now let us fix all of data (k, A, \mathcal{O}, I) as in the main theorem. Sequentially applying the theorems of the preceding section, we may assume that a manifold M isospectral to $\Gamma(I)\backslash\mathbb{H}$ is of the form $M = \Lambda\backslash\mathbb{H}$ for some subgroup Λ of Γ with the same index as $\Gamma(I)$.

To prove the theorem, it suffices to show that Λ is in fact conjugate (in A^{\times}) to $\Gamma(I)$. To this end, we convert the problem into a local one.

[TODO: get to the prime power setting].

4. Arithmetic Subgroups of Algebraic Groups

A matrix group $G \leq \operatorname{GL}(n,\mathbb{C})$ is said to be **algebraic** if it consists of all invertible matrices whose coefficients annihilate some set of polynomials on $M(n,\mathbb{C})$. If this set of polynomials can be taken with coefficients in some subring $R \leq \mathbb{C}$, then this group is said to be **defined over** R.

4.1. **Base case.** Let X denote the **Bruhat-Tits tree** for $\mathrm{SL}_2(k)$. The vertices of X are homothety classes of lattices in k^2 , and two vertices $x,y\in X$ are adjacent if there exist lattices $L_x\in x$ and $L_y\in y$ so that $L_y\leq L_x$ and $L_y/\pi L_x$ is a \mathfrak{k} -line in $L_x/\pi L_x\approx \mathfrak{k}^2$. We write $d:X\times X\to \mathbb{Z}_{\geq 0}$ for the graph-theoretic distance function on X.

For a lattice $L \leq k^2$, we write [L] for the vertex in X corresponding to L. For a subset $A \subset X$ of vertices, write

$$B(A,r) = \{ y \in X : d(x,y) \le r, \forall x \in A \}$$

$$S(A,r) = \{ y \in X : d(x,y) = r \, \forall x \in A \}$$

for the ball and sphere about A of radius r, respectively.

A **geodesic** is a non-backtracking path in X. The length of a geodesic c is $\sup_{x,y\in c} d(x,y) \in$ $\mathbb{Z}_{>0} \cup \{\infty\}$. For vertices $x, y \in X$ write [x, y] for the unique geodesic starting at x and finishing at

For a subset $A \subset X$ we say that a vertex $x \in A$ is an **interior point** of A and write $x \in A^{\text{int}}$ if $B(x,1) \subset A$. Otherwise we say x is a **boundary point** of A and write $x \in \partial A$. We say x is an **extremal point** in A if either: $A = \{x\}$ or $Card(S(x, 1) \cap A) = 1$.

Let $\mathcal{G} = \mathrm{SL}_2$, and write $G = \mathcal{G}(k)$ and $K = \mathcal{G}(R)$. G acts on the set of lattices in k^2 , and this action passes to one on X. For a subgroup $H \leq G$, we write X^H for its fixed point set on X. For a subset $A \subset X$, and a subgroup $H \leq G$, we write H_A for its (pointwise) stabilizer in H.

For each vertex x and integer $n \geq 1$, we have a R/\mathcal{P}^n -representation $\rho_x : G_x \to \mathrm{SL}(L_x/\pi^n L_x) \approx$ (R/\mathcal{P}^n)

Upon picking a basis e_1, e_2 for L_o we may identify G_{x_o} with $SL_2(R)$. The action of $SL_2(k)$ on X has exactly two orbits. Letting $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$, the set $\{x_o, \alpha x_o\}$ constitutes a fundamental domain for this action. The respective stabilizers G_{x_o} and $G_{\alpha x_o} = \alpha G_{x_o} \alpha^{-1}$ are representatives of the two conjugacy classes of maximal compact subgroups. The following lemma is standard:

Lemma 1. For a vertex $x \in X$, there is a G_x equivariant bijection between n-sphere S(x,n) and cyclic R/\mathcal{P}^n -submodules of $L_x/\pi^n L_x$. Using a basis for L_x , the latter set is naturally identified with $\mathbb{P}^1(R/\mathcal{P}^n)$

Lemma 2. Let $H \leq G$ be a subgroup such that X^H is nonempty.

- (1) For a subgroup $H \leq G$ and a vertex $x \in X^H$, the bijection in lemma 1 restricts to one between H-fixed vertices $X^H \cap S(x,n)$, and H-stable R/\mathcal{P}^n -submodules of $L_x/\pi^n L_x$. (2) For $x \in X^H$, one has $B(x,n) \leq X^H$ if and only if H acts by scalars under $\rho_{x,n}$.
- (3) A vertex x is a non-extremal boundary point of X^H if and only if $\rho_{x,1}$ decomposes as a direct sum of (distinct) nontrivial characters.
- (4) A vertex x is extremal in X^H if and only if the \mathfrak{k} -representation $\rho_{x,1}$ is reducible but indecomposable.

Proof. item 1 and item 2 follow immediately from the definitions and the equivariance in lemma 1.

item 3: Suppose x is a nonextremal boundary point of X^H . There are then exactly two vertices $y,z\in X^H$ adjacent to x. Under the identification of S(x,1) with $\mathbb{P}^1(\mathfrak{k})$, we see that H must act as a group of hyperbolic transformations with common fixed points y, z.

item 4 Suppose x is extremal in X^H . Then x has exactly one neighbor in X^H . Under the identification of S(x,1) with $\mathbb{P}^1(\mathfrak{k})$, we find that H must act as a group of parabolic transformations. \square

Proposition 1. [ref ribetGL2] Let $g \in SL_2(R)$ and $x \in \partial X^{\langle g \rangle}$. For an integer n > 0, the following are equivalent.

- (1) The characteristic polynomial $p_q(T)$ is reducible mod \mathcal{P}^n .
- (2) There exists a geodesic of length n based at x and contained in $X^{\langle g \rangle}$.

Proof. Assuming item 1, pick $\alpha, \beta \in R$ such that $p_g(T) \equiv (T - \alpha)(T - \beta) \mod \mathcal{P}^n$. Then since x is a boundary point, g does not act as a scalar on $L_x/\pi L_x$. Consequently, $L_x/\pi L_x$ is a cyclic R[g] module. Pick a vector $v \in L_x$ such that $\{v, gv\}$ projects to a basis of $L_x/\pi L_x$. By Nakayama's lemma, $\{v, gv\}$ projects to a basis of $L_x/\pi L_x$.

Let $w = (g - \beta)v$. Then, compute modulo \mathcal{P}^n :

$$gw \equiv (g^2 - g\beta)v$$
$$\equiv ((\alpha + \beta)g - \alpha\beta g - g\beta)v$$
$$\equiv \alpha(g - \beta)v$$
$$\equiv \alpha w$$

Thus, the cyclic R/\mathcal{P}^n -submodule of $L_x/\pi^n L_x$ spanned by w is g stable. The corresponding vertex lies in $X^{\langle g \rangle}$ and is at distance n from x as desired.

Now assume that $y \in X^{\langle g \rangle}$ has d(x,y) = n. Pick a lattice L_y representing y with $\pi^n L_x < L_y < L_x$. Then L_y projects to a g-stable free rank 1 R/\mathcal{P}^n submodule of $L_x/\pi^n L_y$ on which g must act by an element $\alpha \in (R/\mathcal{P}^n)^{\times}$. It follows that $(t-\alpha)$ divides $p_g(t)$ modulo \mathcal{P}^n , proving reducibility. \square

Proposition 2. Let $g \in SL_2(R)$. For an integer n > 0, the following are equivalent:

- (1) $\operatorname{tr}(q) = \pm 2 \mod \mathcal{P}^{2n}$
- (2) There is a point $x \in X^g$ such that $B(x,n) \subset X^g$.

Proof. The argument is by induction on n.

Base case: suppose $\operatorname{tr}(g) = 2 \pm 2 \mod \mathcal{P}^2$. By proposition 1 there is a geodesic γ of length 2 contained in X^g . Conjugating by an element of $\operatorname{GL}_2(k)$ if needed, we may assume that γ takes the form (y, x_o, z) . Since g has two fixed points in the 1 neighborhood of x_o , it acts semisimply on $L_{x_o}/\pi L_{x_o}$ say with eigenvalues $\alpha, \beta \in R/\mathcal{P}$. These eigenvalues must satisfy $\alpha + \beta = \pm 2 \mod \mathcal{P}$ and $\alpha\beta = 1 \mod \mathcal{P}$, but then g acts as \pm id and the claim follows.

Suppose now that for all k < n that $\operatorname{tr}(g) = \pm 2 \mod \mathcal{P}^{2k}$ iff and only if g fixes some k ball in X. Let $\operatorname{tr}(g) = \pm 2 \mod \mathcal{P}^{2n}$. Applying proposition 1 as before, there is some geodesic γ passing through x_o of length 2n which is fixed pointwise by g.

4.2. Some projective geometry. Let F be a field, let V be a two dimensional vectorspace over F. The projective line over F is the set of F-lines in V. There are several useful coordinate systems that one can put on $\mathbb{P}^1(F)$.

The first system requires no choices: the association of a nonzero vector v with the F-line that it spans yields a surjection $V \setminus \{0\} \to \mathbb{P}^1(F)$. The multiplicative group F^\times acts transitively on the fibers, yielding our first identification: $\mathbb{P}^1(F) = F^\times/(V - \{0\})$

A bijection $\mathbb{P}^1(F) \to \mathbb{P}^1(F)$ is a **projective transformation** if it lifts to a linear automorphism of V. Write G' for the group of projective transformations.

Lemma 3. A nonidentity projective transformation can have at most 2 fixed points on $\mathbb{P}^1(F)$

Proof. The points in $\mathbb{P}^1(F)$ fixed by g correspond to eigenlines of its lifts to GL(V). Since V is two dimensional, it supports at most two linearly independent lines.

We classify nonidentity transformations accordingly:

- say g is **hyperbolic** if it fixes two points on $\mathbb{P}^1(F)$
- say g is **parabolic** if it fixes exactly one point on $\mathbb{P}^1(F)$
- say g is **elliptic** if it fixes no points in $\mathbb{P}^1(F)$.

The following lemma demonstrates how to determine the category of a projective transformation in terms of its lifts. For a linear transformation $\tilde{g} \in GL(V)$ write $p_{\tilde{g}}(T) = \det(\tilde{g} - T \operatorname{id}) \in F[T]$ for its characteristic polynomial and $\delta(\tilde{g}) = \operatorname{tr}(g)^2 - 4 \det(g)$ for its discriminant.

Lemma 4. Let g be a nonidentity projective transformation.

- g is hyperbolic if and only if any lift ğ is semisimple and diagonalizable over F, for any lift ğ. This is so if and only if δ(ğ) ∈ (F[×])².
- g is parabolic if and only if \tilde{g} is not semisimple for any lift \tilde{g} . This is so if and only if $\delta(\tilde{q}) = 0$.
- g is parabolic if and only if \tilde{g} is not semisimple for any lift \tilde{g} . This is so if and only if $\delta(\tilde{g}) \in F^{\times} \setminus (F^{\times})^2$.