

Allerton 2013

Channel-Adaptive Spectrum Detection and Sensing Strategy for Cognitive Radio Ad Hoc Networks

This research was supported by the NSF grant CNS-1018447.

Yuan Lu ylu8@ncsu.edu Alexandra Duel-Hallen sasha@ncsu.edu

Department of Electrical and Computer Engineering
North Carolina State University

Introduction: Hardware Constrained CR

Overlaid CR (Cognitive Radio) Structure

 SUs (Secondary User) are required to sense before accessing the spectrum licensed to PUs (Primary Users).

Hardware Constraint

- Each SU has limited sensing capability.
- Sensing outcomes are prone to errors, especially under low PU-to-SU SNR region:
 - Miss detection (MD) Collision with PUs,
 - False alarm (FA) → Missed spectrum opportunities.

Observations and Contribution

Observations

- Secondary network throughput degrades when the received PU signal is weak at the SU sensor.
- Neighboring SUs experience similar spectrum opportunities
 → SU congestion.

Novel Contribution

- Adapt threshold to the instantaneous received SNR of the PU signal at the SU sensor → improved sensor reliability.
- This CSI (Channel State Information) is incorporated into the sensing strategy → randomized sensing decisions & reduced SU congestion.

Related Work

Resolve SU congestion

- Randomized policies, e.g. [2-3] small gain vs. myopic strategy [1].
- Reward adaptation to SU link CSI [4] diversity boosts CR network throughput.
- Throughput of all strategies degrades for weak PU SNR at sensor.

Improved sensing detectors

- Threshold adaptation, e.g. [5-7] has not been incorporated into sensing strategy design.
- Cooperative sensing, e.g. [8] requires many independent sensing decisions.
- [1] Q. Zhao, L. Tong, A. Swami & Y. Chen, JSAC 07
- [2] K. Liu & Q. Zhao, ISSSTA 08
- [3] Y. Lee, Electron. Lett. 10
- [4] Y. Lu & A. Duel-Hallen, CCNC 13

- [5] F.T. Foukalas, et. al, Optimization Lett. 11
- [6] X. Ling, et. al, IEEE Wireless Commun. Lett. 12
- [7] Y. Lin et. al, IEEE Trans. Mobile Comput. 12
- [8] Z. Quan, et. al, IEEE Signal Process. Mag. 08

Adaptive Sensing Threshold Control

• For the m^{th} SU pair on the n^{th} channel, $m = 1 \cdots M$, $n = 1 \cdots N$, the instantaneous **miss detection** and **false alarm** probabilities are [1]:

$$p_{\text{MD}}^{mn}(t) = 1 - Q_{\nu}(\sqrt{2\nu\lambda^{mn}(t)}, \sqrt{\tau^{mn}(t)}), \quad p_{\text{FA}}^{mn}(t) = \Gamma(\nu, \tau^{mn}(t)/2)/\Gamma(\nu)$$

where $\lambda^{mn}(t)$ is the PU-to-SU SNR per sample, ν is the number of samples, $\tau^{mn}(t)$ is the detection threshold.

• Conventionally, the detection **threshold** is fixed, $\tau^{mn}(t) = \tau^{mn}$:

$$p_{\text{MD}}^{mn} = 1 - \int_{\lambda^{mn}} Q_{\nu}(\sqrt{2\nu\lambda^{mn}}, \sqrt{\tau^{mn}}) f_{\lambda^{mn}}(\lambda^{mn}) d\lambda^{mn},$$

$$p_{\text{FA}}^{mn} = \Gamma(\nu, \tau^{mn}/2) / \Gamma(\nu).$$

• We propose to **adapt the threshold** to the instantaneous PU-to-SU CSI $\lambda^{mn}(t)$:

$$\tau^{mn}(t) = p_{\text{MD}}^{mn-1}(p_{\text{MD,Target}}).$$

SU(Tx)

PU(Rx)

Myopic Sensing in a POMDP Framework

- The PU traffic is modeled as a stationary Markov chain.
- SUs can **learn** the particular realization of the MC through sensing and **predict the channel availability probabilities (belief vector)** $\theta^{mn}(t)$ accordingly.
- At each time slot, SU chooses to sense the channel with the maximum expected reward $E[R^{mn}(t)]$:

$$n_*^m(t) = \arg\max_n \theta^{mn}(t) R^{mn}(t).$$

Use $p_{FA}^{mn}(t)$ to Update Belief

■ The **belief vector** is updated according to the sensing result and the sensor reliability information [1], $\forall n = n_*^m(t), m = 1,...,M$,

$$\theta_{r}^{mn}(t) = \begin{cases} \frac{\left(1 - p_{\text{FA}}^{mn}\right)\theta^{mn}(t)}{\left(1 - p_{\text{FA}}^{mn}\right)\theta^{mn}(t) + p_{\text{MD}}^{mn}(1 - \theta^{mn}(t))}, a^{m}(t) = 1\\ \frac{p_{\text{FA}}^{mn}\theta^{mn}(t)}{p_{\text{FA}}^{mn}\theta^{mn}(t) + (1 - p_{\text{MD}}^{mn})(1 - \theta^{mn}(t))}, a^{m}(t) = 0\\ \theta^{mn}(t+1) = \\ \begin{cases} p_{11}^{mn}\theta_{r}^{mn}(t) + p_{01}^{mn}(1 - \theta_{r}^{mn}(t)), \text{if } n = n_{*}^{m}(t)\\ p_{11}^{mn}\theta^{mn}(t) + p_{01}^{mn}(1 - \theta^{mn}(t)), \text{if } n \neq n_{*}^{m}(t) \end{cases}$$

$$\theta^{mn}(t+1) = \begin{cases} p_{11}^{mn}\theta_{r}^{mn}(t) + p_{01}^{mn}(1 - \theta^{mn}(t)), \text{if } n \neq n_{*}^{m}(t) \end{cases}$$

$$\theta^{mn}(t+1) = \begin{cases} p_{11}^{mn}\theta_{r}^{mn}(t) + p_{01}^{mn}(1 - \theta^{mn}(t)), \text{if } n \neq n_{*}^{m}(t) \end{cases}$$

$$\theta^{mn}(t) = 0$$

$$\theta^{mn}(t+1) = 0$$

$$\theta^{mn}(t) = 0$$

• We employ $p_{FA}^{mn}(t)$ instead of the average $p_{FA}^{mn} \rightarrow \text{improved}$ estimation of the current PU states.

Reward Adaptation

We modify the reward by the sensing reliability:

$$R_{\rm AT}^{mn}(t) = (1 - p_{\rm FA}^{mn}(t))R_{\rm FT}^{mn}(t).$$

- Conventionally, $R_{\rm FT}^{mn}(t) = B_n$; we proposed $R_{\rm FT}^{mn}(t) = C^{mn}(t)$ in [1].
- $p_{\rm FA}(t)$ decreases with PU-to-SU CSI $\lambda(t)$.
- SUs favor channels with small $p_{FA}(t)$, or strong $\lambda(t)$.
- Fewer spectrum opportunities get wasted.
- Randomized sensing decisions and reduced SU congestion.

[1] Y. Lu & A. Duel-Hallen, CCNC 13

Simulation Setup

• 20 SU pairs and 40 channels with the same bandwidth B=1.

- All SU-to-SU and PU-to-SU links follow i.i.d Rayleigh fading with mean SNRs equal to 10dB and -10dB, respectively.
- Overlay structure: miss detection always leads to primary collision.

Adaptation to the PU-to-SU CSI

- More reliable sensing results and reduced SU collisions.
- Average PU-to-PU SNR=10dB, i.i.d Rayleigh fading.
- 0.4 to 1 bit throughput gain relative to fixed threshold policies.

Comparison with Cooperative Sensing

- $p_{\text{MD,Target}} = 0.1$.
- OR-rule hard decision combining [1]: $P_{\text{FA}} = 1 (1 p_{\text{FA}})^L$, $P_{\text{MD}} = p_{\text{MD}}^L$.
- Need ≥ 30 independent sensing branches with fixed threshold to match the performance of the proposed sensing strategy at a single detector.

Impact of Correlated Shadow Fading

- Easier to adapt to shadow fading than to multipath fading.
- Correlation in space & frequency reduces diversity.
- Spatial correlation for adjacent SUs is ρ and $\rho_{mm'} = \rho^{|m-m'|}$ [1].
- $\mu_{\gamma_{dB}} = 10 \text{dB}, \ \mu_{\lambda_{dB}} = -10 \text{dB}.$
- Throughput degrades as ρ increases.
- Throughput gain is mostly preserved in practical ad hoc networks with ρ ≤ 0.3 [2].

PU-to-SU CSI Error

PU-to-SU CSI estimation:

- Channel gain map [1]
- "Silence" phase [2]
- CSI mismatch:

$$\hat{\tau}(t) = \hat{p}_{\mathrm{MD}}^{-1}(p_{\mathrm{MD,Target}}),$$

$$\hat{p}_{\mathrm{MD}}(t) = \int_{0}^{+\infty} p_{\mathrm{MD}}(t) f(\lambda \mid \hat{\lambda}) d\lambda.$$

- Approximates the ideal CSI case when NMSE < 0.1.
- Degrades gracefully to the conventional myopic strategy as the CSI mismatch increases.

Conclusion and Future Work

Conclusion

- The detection threshold is adapted to the instantaneous PU signal SNR under an instantaneous p_{MD} constraint.
- Instantaneous p_{FA} is incorporated in the sensing strategy.
- Provide 0.4 to 1 bit gain over fixed threshold strategies.
- Matches the throughput of conventional cooperative sensing with 30 independent diversity branches.

Future Work

- Estimation and prediction of fading PU-to-SU channel.
- Joint CSI-aided sensing and collision-avoidance MAC.
- Test under asynchronous model.

Thank you!