Stochastik 1 Hausaufgaben Blatt 3

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 14, 2024)

Problem 1. Beim n-fachen Wurf einer fairen Münze, $n \geq 3$, interessieren wir uns für die Wartezeit (die Anzahl an benötigten Würfen), bis zum ersten Mal Kopf oder dreimal Zahl gefallen ist.

- (a) Geben Sie einen geeigneten Wahrscheinlichkeitsraum für dieses Experiment an.
- (b) Beschreiben Sie diese Wartezeit durch eine Zufallsvariable W auf dem Wahrscheinlichkeitsraum und geben Sie die Verteilung der Zufallsvariable W an.
- (c) Berechnen Sie die bedingte Wahrscheinlichkeit $\mathbb{P}(W=3|W\geq 2)$

Proof. (a) Laplace-Raum $\{H, T\}^3$.

(b) $W: \{H, T\}^3 \to \mathbb{R}$:

$$W(A) = \begin{cases} 1 & A \in \{H\} \times \{H, T\}^2 \\ 2 & A \in \{(T, H)\} \times \{H, T\} \\ 3 & \text{sonst.} \end{cases}$$

Die Verteilung ist

$$\mathbb{P}(W=1) = \frac{1}{2}$$

$$\mathbb{P}(W=2) = \frac{1}{4}$$

$$\mathbb{P}(W=3) = \frac{1}{4}$$

(c) Es gilt $\mathbb{P}(W \geq 2 \cap W = 3) = \mathbb{P}(W = 3)$ und damit

$$\mathbb{P}(W \ge 2|W = 3) = \frac{\mathbb{P}(W \ge 2 \cap W = 3)}{\mathbb{P}(W \ge 2)}$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

$$= \frac{\mathbb{P}(W=3)}{\mathbb{P}(W \ge 2)}$$

$$= \frac{1/4}{1/2}$$

$$= \frac{1}{2}.$$

Problem 2. (a) Sei (Ω, \mathcal{A}) ein Messraum. Für eine Menge $A \subseteq \Omega$ betrachten wir die Indikatorfunktion $\mathbb{1}_A$. Zeigen Sie, dass $\mathbb{1}_A$ (Borel-)messbar ist genau dann wenn $A \in \mathcal{A}$

- (b) Zeigen Sie, dass abzählbare Teilmengen von $\mathbb R$ Borel-Mengen sind, d.h. Elementen der Borel- σ -Algebra $\mathcal B$.
- (c) Beweisen Sie, dass eine Funktion $f: \mathbb{R} \to \mathbb{R}$ Borel-Borel-messbar ist, wenn die Menge der Unstetigkeitsstellen von f abzählbar ist.
- (d) Beweisen oder widerlegen Sie: Wann immer für |f| eine Funktion $f: \mathbb{R} \to \mathbb{R}$ messbar ist, so ist f selbst messbar.

Proof. (a) Sei $U \subseteq \mathbb{R}$ eine Borelmenge. Wir betrachten deren Urbild für 4 Fälle:

	$1 \in U$	$1 \not\in U$
$0 \in U$	$\mathbb{1}_A^{-1}(U) = \Omega$	$\mathbb{1}_A^{-1}(U) = \Omega \setminus A$
$0 \not\in U$	$\mathbb{1}_A^{-1}(U) = A$	$\mathbb{1}_A^{-1}(U) = \varnothing$

Es ist klar, dass alle 4 Mengen messbar sind genau dann, wenn A messbar ist.

- (b) Jede Menge mit nur einem Punkt ist abgeschlossen (T_1) und damit Borel-messbar. Da jede abzählbare Teilmenge des \mathbb{R} s eine abzählbare Vereinigung von Punktmengen ist, ist jede abzählbare Menge messbar.
- (c) ...
- (d) Falsch. Sei A eine nicht-messbare Menge. Wir betrachten

$$f(x) = \begin{cases} 1 & x \in A \\ -1 & x \notin A \end{cases} = \mathbb{1}_A - \mathbb{1}_{\mathbb{R} \setminus A}$$

Nach (a) wissen wir, dass f genau dann messbar ist, wenn A messbar ist. |f| ist aber die konstante FUnktion 1, was messbar ist.