Modeling and analysis of placement group heuristics

Asser Tantawi

IBM TJ Watson Research Center

Concepts

- System
 - multiple racks
- Rack
 - capacity for m (homogeneous) VMs (slots)
- Placement Group
 - size n (homogeneous) VMs
 - placed with rack affinity
 - VM requests arrive over a period of time
- VM
 - single and group arrivals
 - have a lifetime, thus utilization (allocation) load on the system

7/13/21

Question

- Given a heuristic for selecting a rack to place a group
- what is the impact of
 - heuristic
 - system load
 - group size (relative to rack capacity)
 - group requests arrival period
- on placement success
 - probability of being able to place all members of the group

7/13/21

Modeling

<u>rack</u>

slot state:

rate transition

matrix:

$$\mathbf{Q} = \begin{bmatrix} -\lambda & \lambda \\ \mu & -\mu \end{bmatrix}$$

utilization:

$$\rho \triangleq \text{Prob}[busy] = \frac{\lambda}{\lambda + \mu}$$

transient analysis:

$$\pi(t) = \pi(0) e^{Qt}$$

$$\boldsymbol{\pi} = \begin{bmatrix} \pi_0 & \pi_1 \end{bmatrix}$$

Modeling

 $P = [p(0) \quad p(1)]$

group arrival process:

Assuming Poisson request arrivals with rate θ

$$\boldsymbol{P}_i = \boldsymbol{P}_0 \, \theta^i [(\boldsymbol{I}\theta - \boldsymbol{Q})^{-1}]^i$$

Assuming independence, group success probability is

$$\nu = \prod_{i=1}^{n} 1 - p_i(1)^{m-i+1}$$

success probability					eavy Id hei	rack ıristic)		medium rack						light rack (good heuristic)				
		p00 = 0.2							p00 = 0.4					p00 = 0.8					
	rho = 0.4			•						_					_				
		1/2	0.673	0.757	0.860	0.944	0.984		0.981	0.986	0.991	0.995	0.998	1.000	1.000	1.000	1.000	1.000	
		1/4	0.902	0.935	0.967	0.988	0.997		0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
low load	n/m	1/8	0.965	0.979		0.997	0.999		0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
		1/16	0.987	0.993	0.998	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
			1/16	1/8	1/4	1/2	1		1/16	1/8	1/4	1/2	1	1/16	1/8	1/4	1/2	1	
					tau						tau					tau			
	rho = 0.6																		
		1/2	0.644	0.710	0.797	0.881	0.937		0.975	0.975	0.975	0.975	0.975	1.000	1.000	1.000	0.998	0.992	
medium		1/4	0.890	0.917	0.947	0.972	0.987		0.997	0.997	0.997	0.997	0.997	1.000	1.000	1.000	1.000	1.000	
load	n/m	1/8	0.959	0.971	0.983	0.992	0.996		0.999	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	
		1/16		0.989	0.994	0.997	0.999		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
			1/16	1/8	1/4	1/2	1		1/16	1/8	1/4	1/2	1	1/16	1/8	1/4	1/2	1	
					tau						tau					tau			
	rho = 0.8																		
larg	e group	A 4/0	0.557	0.557	0.557	0.557	0.557		0.050	0.040	0.040	0.740	0.647	4.000	0.000	0.000	0.000	0.704	
		1/2	0.557	0.557	0.557	0.557	0.557		0.950	0.918	0.849	0.742	0.647	1.000	0.998	_	0.889	0.731	
high	n/	1/4	0.847	0.847	0.847	0.847	0.847		0.993	0.986	0.970	0.938	0.902	1.000	1.000	0.999	0.984	0.943	
load	n/m	1/8	0.938	0.938	0.938	0.938	0.938 0.972		0.998	0.996	0.990	0.979	0.966	1.000	1.000	1.000 1.000	0.997 0.999	0.986 0.997	
	(1/16	1/16	0.972 1/8	0.972 1/4	0.972 1/2	1		1/16	1/8	1/4	1/2	1	1/16		1/4	1/2	1	
sma	all group		1/10	1/0	tau	1/4	T		4	1/0	tau	1/ 4	A	1/10	1/0	tau	1/ 4		
7/13	8/21				tuu				fac	st arriva			slov	v arrivals		tuu			

Gap

0.02

0.04

0.08

0.16

0.32

backup

3) PG arrival vate