2007 MEDITERRANEAN SWORDFISH STOCK ASSESSMENT SESSION

(Madrid, Spain - September 3 to 7, 2007)

1. Opening, adoption of Agenda and meeting arrangements

The meeting was held at the ICCAT Secretariat offices in Madrid. Dr. George Tserpes, meeting Chairman, opened the meeting. Mr. Driss Meski, Executive Secretary, welcomed participants ("the Group").

The Agenda (**Appendix 1**) was adopted with some changes. The Group noted the reduced number of participants and regretted the lack of participants from countries traditionally involved in the swordfish fisheries. The List of Participants is attached as **Appendix 2** and the List of Documents presented at the meeting is attached as **Appendix 3**. The following participants served as rapporteurs:

Section	Rapporteurs
1, 9, and 10	P. Pallarés
2	J.M. Ortiz de Urbina
3	A. Di Natale
4	P. Kebe and G. Tserpes
5	P. Peristeraki
6	G. Tserpes
7	G. Tserpes and V Restrepo
8	I Neilson

2. Description of fisheries

Mediterranean swordfish fisheries are characterized by high catch levels. It should be noted that average annual reported catches (on average about 15,177 t from 1984 to 2005; **Table 1**) are similar to those of the North Atlantic. The Mediterranean is a much smaller body of water compared to the North Atlantic. However, the potential reproductive area in the Mediterranean is probably relatively larger than that in the Atlantic. Further, the productivity of the Mediterranean Sea is thought to be very high.

Swordfish fishing has been carried out in the Mediterranean using harpoons and driftnets (drifting gillnets) at least since Roman times. Currently, swordfish fishing is carried out throughout the Mediterranean Sea. The biggest producers of swordfish in the Mediterranean Sea in the recent years (1997-2005) are Italy (44%), Morocco (23%), Greece (10%), and Spain (9%). Also, Algeria, Cyprus, Malta, Tunisia, and Turkey have fisheries targeting swordfish in the Mediterranean. Incidental catches of swordfish have also been reported by Albania, Croatia, France, Japan, Libya, and Portugal. The Group recognized that there might be additional fleets taking swordfish in the Mediterranean, for example, Israel, Lebanon, Egypt and Monaco, but the data are not reported to ICCAT or FAO. Furthermore, a paper presented at this meeting (SCRS/2007/115, by Orsi Relini *et al.*) provides information about the activity of a French gillnet fishing fleet which operates in the Ligurian Sea, also within the marine "Pelagos" Mammal Sanctuary. According to this report, the total number of driftnetters has grown constantly, from 46 vessels in year 2000 to more than 100 vessels in 2006, in the studied area, and these vessels are reported to catch also swordfish. The SCRS points out that catches from this fleet have never been reported to ICCAT.

Mediterranean total swordfish landings showed an upward trend from 1965-1972, stabilized between 1973-1977, and then resumed an upward trend reaching a peak in 1988 (20,365 t; **Table 1, Figure 1**). The sharp increase between 1983 and 1988 may be partially attributed to improvement in the national systems for collecting catch statistics. Since 1988, the reported landings of swordfish in the Mediterranean Sea have declined, and since 1990, they have fluctuated between about 12,000 to 16,000 t. In 2005 catches were 14,601 t.

In recent years, the main fishing gears used are surface longline (56% of the total catch) and gillnet. Most of the previously mentioned countries operate longline fisheries, and in 2005 driftnet fisheries reported were mostly

limited to Morocco. There are also other countries known to be fishing with driftnets that do not report their catches. Swordfish are also caught with harpoons and traps, but traps do not target swordfish. It should be noted that since the beginning of 2002 driftnet fishing has been banned in EU countries and this will influence the catch data beginning in 2002.

There is a high demand for swordfish for fresh consumption in most Mediterranean countries.

A description follows for fisheries of those nations that attended the meeting. See **Figure 2** for reference to particular locations mentioned below). For additional information about fisheries for some nations not attending the meeting see the 2003 Detailed Report.

EC- Greece

The Greek swordfish fleets exclusively use drifting longlines and operate throughout the eastern Mediterranean basin. About 250 vessels were involved in the swordfish fishery in 2006. Most of them entered the fishery occasionally, mainly during the summer months.

The swordfish fishing season lasts from February to the end of September, as there is a closed season in the Greek Seas from October to January, aiming to protect recruits.

Swordfish comprises the main bulk of large pelagic catches in the Greek seas and its production during the 2006 fishing season was estimated at 1,375 t. The Greek swordfish production is rather stable over the last decade.

EC- Italy

The Italian swordfish fishery has a long historical tradition. Recent catches usually account for a total between 6,000 to over 7,000 t per year, with slight variability from year to year, according to various factors. The largest fishery, in terms of number of vessels, is the longline fishery with about 1200 vessels from 7 to over 30 meters in length. The fishery is currently carried out from late February to December, in many Mediterranean areas. The most significant changes in the fishing strategies occurred in the last ten years, due to the increase in tuna longlining in the spring, implying a parallel decrease in swordfish longlining. This is changing again since 2006, when the swordfish fishery became more relevant due to different conditions in the bluefin tuna fishery. In the last two years, some vessels have started fishing trials using very deep longline in the southern Tyrrhenian Sea but information on this activity is not available. The swordfish target longline fishery provides the highest catch, while smaller quantities are provided by the tuna longline fishery as by-catch. The driftnet fishery was formerly the most important fishery for swordfish but, according to the EC Regulation, it has been banned since January 2002. Recent catches now come from unclassified nets. The traditional harpoon fishery in the Strait of Messina catches very small quantities of swordfish, while even smaller catches are reported in tuna traps.

The former EC legislation concerning the minimum size for Mediterranean swordfish (120 cm LJFL) was cancelled in 2000 and since then the previous measure, which already existed in the Italian regulation (140 cm UJFL), came into force again.

EC- Spain

The Spanish swordfish fishery in the Mediterranean dates back to the early 20th century. Its expansion was initiated in the 1960-1970 period, and it has been stable since the 1980s (SCRS/2003/042). Fishing is carried out mainly by surface longline. Swordfish are also caught occasionally by semi-pelagic longline ("piedri-bola") and as by-catch of the longline fishery that targets bluefin tuna and albacore.

The Spanish swordfish fishery in the Mediterranean is characterized by the heterogeneity of the fleet and by the composition of the gears, as well as by the changes in fishing strategy. The fleet, which can be comprised by as many as 145 vessels, has evolved and currently presents the following average characteristics: 16 m in length, 166 hp engines, and 28 GRT. In addition, the traditional longline gear is being substituted by the American style longline, which is being used by about 29% of the vessels. The fishing area extends from the Iberian Peninsula to 06°E and up to the limits of the Moroccan and Algerian territorial waters. The major activity takes place in the summer and autumn months.

In 2006, swordfish catches amounted to 1,592 t (of which 1,190 t were caught by surface longline), similar to the catch level for the period 2000-2002. The American style longlines showed an increase in the mean weight of the catch. As regards fishing effort, it has been stable recently.

Swordfish fishing by surface longline in the Mediterranean is subject to regulation by the Decree of 27 July 2006 (APA/2521/2006) that regulates the technical characteristics of the gears and the minimum size for the catch (90 cm LJFL), among others.

Morocco

The Moroccan swordfish fishery in the Mediterranean Sea has been developed since 1983. About 320 vessels are currently involved in this fishery, using mainly driftnet and surface longline (SCRS/2006/125). The boats are, on average, 13 m in length, 13 GRT, and have 110 hp engines.

The most important fishing grounds are located in the Strait of Gibraltar and the southern Alboran Sea. The first area remains the most important in terms of the size of the fleet targeting swordfish. In the Strait of Gibraltar, swordfish fishing takes place throughout the year, with a highest activity from April to October. In the southern Alboran Sea, fishing occurs almost the entire year. Minor catches of swordfish are also taken occasionally by traps and purse seiners.

After the peak landings of 4,900 t registered in 1997, the swordfish catch dropped to stabilize around 3,000 t. In 2005, the catch decreased by about 22% with respect to the previous year. The remarkable change in this fishery during the five last years is the significant reduction in driftnet catches and the increase in longline catches, due to the implementation of the National Plan for banning the driftnet activity following the ICCAT Resolution related to the ban of driftnets in the Mediterranean Sea .

The by-catches of this fishery include mainly small tunas, sharks, billfishes and bluefin tuna.

The size of the landed fish varies according to the fishing area. In the Strait of Gibraltar, the mean size of swordfish is about 145 cm. In the Alboran Sea, the fish have a smaller mean size (106 cm) (SCRS/2003/053).

In Morocco, the regulation of swordfish fishing concerns the establishment of a minimum commercial size of 120cm (25kg) (Decree No.1154-88 of 3 October 1988); the establishment of 2.5 km maximum length for driftnets; the prohibition of mesh size less than 400 mm (Circular No.1232 of 11 March 1991), and a freeze on fishing effort through the suspension of the investments for vessel construction since 1992(Circular note No. 3887 of 18 August 1992).

3. Biological data

According to the available information (Anon. 1996), in previous years only a few swordfish from the Mediterranean are reported to exceed 200 kg. In recent times, a slightly higher percentage of large swordfish has been reported from several fisheries. The majority of the Mediterranean catch is comprised of individuals less than 3 years old and the average size is much lower than in the Atlantic. The fact that the fishery is still mostly based on 2-3 young year-classes makes it vulnerable to recruitment changes.

Growth studies of swordfish in the Mediterranean, carried out by several teams, using both anal fin spines and length frequency data, all show a similar pattern of growth. It is also well known that Mediterranean swordfish have sexually dimorphic growth, with males having a lower length-at-age, and achieving a smaller asymptotic size than do females. The growth equations adopted by the GFCM/ICCAT Working Group in 1995 are those published by Tserpes and Tsimenides (1995) and still used as follows:

```
Linf = 238.60 (1 - e - 0.185 (t + 1.404)) for sexes combined Linf = 203.08 (1 - e - 0.241 (t + 1.205)) for males Linf = 226.53 (1 - e - 0.210 (t + 1.165)) for females.
```

A very recent paper (SCRS/2007/117, by Valeiras *et al.*) found different growth rates in the swordfish present in the western Mediterranean. This paper provided growth equations by sex, based on anal spines reading. It is important to note that the sampling was conducted in an area where mixing between the Atlantic stock and the

Mediterranean stock is possible. According to this paper, the growth rate is lower compared to previous studies, particularly at young ages. SCRS considers that the situation on this crucial area of the Mediterranean should be further investigated, due to its relevance for the understanding of the mixing between the two stocks.

Spawning generally occurs in spring and summer, with peaks in June and July, and variations in timing may be due to a variety of environmental and oceanographic influences. The most important spawning areas in the Mediterranean, according to current knowledge, are around the Balearic Islands, the southern and central Tyrrhenian Sea, the Ionian Sea and the Strait of Messina, and there is a strong indication that spawning areas also exist in the eastern Mediterranean. Juveniles are found throughout the Mediterranean but often tend to concentrate close to the coast, mostly in autumn.

According to a review of the biological information available for the Mediterranean swordfish (SCRS/2001/050), major differences with the Atlantic stock have been noticed. Mature females as small as 110 cm LJFL have been observed and the estimated size at which 50% of the female population is mature occurs at 142 cm (SCRS/95/045). According to the growth curves used by SCRS in the past for Mediterranean swordfish, these two sizes correspond to 2 and 3.5 year-old fish, respectively. At 125 cm about 20% of the females in the Mediterranean would be mature. Males reach sexual maturity at smaller sizes.

Table 2 summarized biological information available for the Mediterranean swordfish.

Environmental factors

It is well known that swordfish catches are highly affected by prevailing environmental factors. For example, the catches of swordfish are affected mainly by the presence of a stable thermocline during late spring and summer. In fact, when using driftnets, all catches are done just above the thermocline, where spawning occurs. Swordfish catches are also affected by the moon phase. In the presence of a full moon, higher catches are recorded for traditional longlines, whilst lower catches are recorded for driftnets (SCRS/94/86, SCRS/91/65). Areas characterized by higher turbulence also seem important for swordfish. Higher catches are recorded in the Tyrrhenian and Alboran Seas.

A paper presented at this meeting (SCRS/2007/115 by Orsi Relini *et al.*) provides a study about the correlation between winter North Atlantic Oscilation (NAO) and the longline CPUE series in the Ligurian Sea over the period 1990-2006. According to this study, an inversely related correlation has been detected, even if other environmental factors should be possibly taken into account. This study also reports that swordfish recruitment in the Ligurian Sea does not show any correlation with the winter NAO index. Temporal differences of SST have been also related to the growth rate of 0 group swordfish in the eastern Mediterranean (Peristeraki *et al.*, 2007).

During this meeting, it was discussed that other possible correlations could be explored and studied, including those between the apparent distribution and concentration of swordfish and the eastern Mediterranean Transient (EMT) index, which seems a very important factor to be taken into account in the Mediterranean, able to induce relevant changes in the pelagic environment, in the spatial and temporal distribution of many pelagic species including swordfish and, then, in the fishery.

It was recommended that more work should be carried out in order to identify better the effects of the environment on swordfish biology, ecology and fishery.

4. Catch data

Two documents related to catch data were presented.

Document SCRS/2007/106 summarized the information on the by-catches and discards data in the Greek swordfish fishery. Landed swordfish represent 84% of the total catch in weight.

SCRS/2007/108 described the discards of undersized swordfish in the Greek longline swordfish fishery. It was noted that between 15 to 17 tons were discarded yearly. After some discussion the Group noted that discards information was not reported in general to the Secretariat in the Mediterranean area, by countries other than Greece.

4.1 Task-1

In **Table 1** the Secretariat presented the Mediterranean swordfish catch data reported to ICCAT for the years 1950 to 2006 by flag, fleet and gear. The Group decided to focus only on data up to 2005 as the 2006 reported information is incomplete. During the revisions of the catch table, the lack of the Tunisian catch for 2005 and the Algerian catch for 2003 was noted. The Group was also very concerned about the low level of swordfish reported by Italy for some past years. In order to fill the gaps in the catch time series the Group decided:

- To carry forward the 2004 Tunisian catch (791 t) to 2005.
- To use the 665 t reported in the Algerian Annual Report for 2003 in the assessment and as unofficial data in the Task I database.
- To re-adjust the Italian catches in 1990 (from 5,224 t to 9,104 t), 1991 (from 4,789 t to 8,538 t) and 1995 (from 6,725 t to 7,350 t) following the Italian scientists' advice.

In addition, the ICCAT Task I and FAO FIGIS data were compared and found to be in agreement for the period after 1967, but showed discrepancies for the period from 1950 to1967. The Group decided to adopt the higher catch figures held in the FIGIS database and recommended that the ICCAT and FAO datasets be harmonized for the period 1950-1967 as they already are for later periods and other species.

Accordingly, **Table 1** was updated and presented again by the Secretariat and approved by the Group.

4.2 Size and catch at size

The catalog of all Task I and Task II had been distributed earlier (April 2007) to all potentials participants in order to review the gaps and deficiencies and to submit revisions to the Secretariat. Unfortunately, no feedback was received. During the meeting, the same file was updated and presented again to the Group. At the beginning of the meeting, new Task II size information were available for Moroccan gillnet for the years 1999-2005 and also for Italian gillnet and longline by month. According to the new Italian size sample available by fleets, the Group decided to breakdown the Italian catch reported by area in order to match it with the size samples.

The Secretariat presented the substitution rules used (**Table 3**) to create the catch at size following the rules adopted in 2003 (SCRS/2003/015 and SCRS/2003/050). The catch-at-size file summarized in **Table 4** for the years 1985 to 2005 were converted to catch at age (**Table 5**) by applying the same slicing procedure used in 2003 and the same growth equation (inverse Von-Bertalanffy equation).

5. Relative abundance indices

Five papers concerning catch rate data were presented.

SCRS/2007/118 presented the updated standardized catch rates for swordfish from the Spanish longline fleet in the Mediterranean Sea for the years 1988-2005. Data included 18,630 observations that were analyzed by means of GLM techniques. The effects of year, area and quarter were considered, and all factors (including interactions) were significant. Annual standardized CPUEs declined rapidly from 1988 to 1992, and more gradually until 1999. It has remained stable thereafter.

SCRS/2007/107 presented annual standardized catch rates from the Italian and Greek fleets operating in the central eastern Mediterranean. The analysis included data from the Greek longline fisheries operating in the eastern Mediterranean and the Sicilian longline fisheries operating in the Tyrrhenian Sea and the Straits of Sicily, for the years 1987-2005. Indices were estimated by means of GLM techniques and results did not demonstrate the presence of any particular trend over time.

SCRS/2007/115 presented a time series of nominal catch rates from the Italian swordfish longline fleets operating in the Ligurian Sea, from 1990 to 2006. No significant trend was observed during the studied period of time. An inverse relation of the swordfish CPUE with the NAO index values was also observed. The Group was pleased to receive this contribution dealing with environmental effects on catch rates, an area where the state of knowledge has been considered deficient. However, the Group encourages further investigation about the effects of environmental and oceanographic factors specifically related to the Mediterranean Sea.

SCRS/2007/116 presented an analysis of the standardized catch rates of the Moroccan driftnet fishery from the Mediterranean Sea. Nominal CPUE, by month and boat, from 1998 to 2006 were analyzed by means of GLM techniques. Standardized catch rates did not show any trend throughout the years. It was commented that high CPUE values were observed compared with other Mediterranean driftnet fisheries, which might be attributed to specific characteristics of the exploited area, which extends around the Gibraltar Straits.

SCRS/2007/119 presented a detailed description of the Italian nominal CPUE time series (1985-2006) from the southern Italian gillnet and longline fleets. The gillnet CPUEs showed a slightly increasing trend, while the longline CPUEs showed a moderately decreasing trend. The exploitation pattern of the fleets was considered stable for the last two decades.

6. Stock status results

6.1 Production model evaluations

6.1.1 ASPIC

The non-equilibrium surplus production model (ASPIC, cataloged version 5.16) was applied to catch and effort data for Mediterranean swordfish. The input data used in these analyses are presented in **Table 6** In order to better inform the model, recorded catches from 1950 to 2005 were used. The ICCAT Task I and FAO FIGIS data were compared and found to be in agreement for the period after 1967, but showed discrepancies for the period from 1950 to 1967. The Group decided to adopt the higher catch figures held in the FIGIS database and recommended that the ICCAT and FAO datasets be harmonized for the period 1950-1967 (they are already harmonized for later periods and other species). For these analyses, a composite CPUE pattern was developed as the weighted average of the Italian longline (SCRS/2007/107), Greek longline (SCRS/2007/107), Moroccan gillnet (SCRS/2007/116), Italian Gillnet (Anon. 2004), Spanish longline (SCRS/2007/118), and Japanese longline (see Anon, 1996) catch rate time series. It was noted that the Japanese data are related to the swordfish by-catch in the tuna longline fishery. Weighting was used in this case, due to concerns that some of the fleets from which time series were available represented a relatively small area of fishing and/or typically represented small volumes of the total Mediterranean catch of swordfish. In this case, a weight of 4 was assigned to the Italian and Moroccan indices, a weight of 2 to the Greek and Spanish time-series, and a weight of 1 to the Japanese time-series. The resulting CPUE pattern is shown in **Figure 3**.

The production model was first fit to catch and effort for the period 1968-2005 (reflecting the assessment conducted in 2003). In this case, there was insufficient information in the data with which to freely estimate all model parameters. The model convergence could be achieved by fixing the initial biomass ratio, but the Group considered that assuming the biomass was at an unfished level (K) in 1968 was an incorrect one in light of the reported catches since 1950. The Group decided to fix B₁₉₆₈ at .75K for this run as a better representation of the situation at that time. In order to inform the model and possibly improve estimates of stock productivity and current status, the data from 1950 through 2005 were then fit. In this case, it was possible to freely estimate all model parameters, although when doing so the modeled stock dynamics prior to the mid 1980s was unexpected, showing a build-up of biomass from very low levels in the early 1950s. Therefore, the Groupdecided to also conduct a run assuming the stock was at an unfished level in 1950 even though some catches are known to have occurred before that time. Across the models, (see Figure 4 and Appendix 4 for details supporting the model fits), the estimates of population status in the most recent year indicated a stock that was at or somewhat below the ICCAT Convention objective while recent fishing mortality was somewhat above the level that would permit the stock to attain the level necessary to attain the Convention objective (MSY levels). While the uncertainty in these results based on bootstrapping is large (Figure 5), the weight of the evidence supports these conclusions (Table 7). The median results of the model outcomes (Figures 6a, b) indicate that the fishery underwent a rapid expansion in the 1980s resulting in F's likely at or above F_{MSY} and a slowly declining stock which has recently likely fallen below the level which can support MSY over the long-run (Figures 7a, b).

6.1.2 Tserpes and McAllister Method (TSM)

A non-equilibrium production model was applied based on the approach followed in SCRS/2007/109. The model used total catch data for the 1987-2005 period and a combined CPUE series, the same as used in ASPIC. The XSA estimates of average F were used to estimate the harvest rate at the beginning of the examined period and consequently the initial biomass fraction

Based on the ICCAT XSA assessment the values of F and M for the beginning of the period were fixed to 0.42 and 0.20 respectively. The best fit was provided for r = 0.67 and k = 90547mt. Observed and predicted indices are shown in **Figure 8**. Based on the above estimates equilibrium MSY was found to be equal to 15166mt. The corresponding rates for fishing mortality and biomass are: $F_{msy} = \frac{r}{2} = 0.33$ and $B_{msy} = \frac{k}{2} = 45273$ mt. Annual catches in the latest years are around to MSY, while stock biomass levels are stable but about 12% lower

6.2 Age structured models

6.2.1 XSA assessment

than B_{msy} (**Figure 9**).

The XSA model was implemented using the code developed in R-language (see **Appendix 5**) under the auspices of the FLR-project (Kell *et al.*, 2007; http://www.flr-project.org/). Catch-at-age tables included ages 0 to 10 (plus group) and six tuning data sets were available from the following fleets: Italian longliners–ITLL (SCRS/2007/107), Greek longliners-GLL (SCRS/2007/107), Moroccan gillnetters-MODN (SCRS/2007/116), Italian gillnetters-ITDN (SCRS/2003/040), Spanish longline-SPLL (SCRS/2007/118), and Japanese longliners-JALL (see Anon, 1996). Greek, Italian, and Spanish longline CPUE series were considered as representative of 2-9 age-group abundances, while for the rest, the 3-9 age-group was assumed. Full maturity was assumed from age 4 onwards and 50% at age 3. Zero maturity was assumed for the younger ages.

A series of preliminary runs with different parameterization were performed and based on the fleet catchability diagnostics the final model was based on runs assuming q independent of year-class size for all ages except 0 and 1, constant q after age 6, as well as population and F shrinkage. Natural mortality was considered equal to 0.2. **Figure 10** llustrates the catchability residuals by fleet and age. In general, residuals do not show any specific pattern for the younger more abundant age-classes, while they are positively biased in the older ages.

Tables 8 and 9 present the estimates of fishing mortality and population numbers-at-age, respectively. As in the 2003 assessment, recruitment appears to be consistent without any especially strong or weak year classes. The mean Fs for ages 2-5 are plot against year in **Figure 11**.

Both total and spawning stock biomass estimates remained stable during the last decade (Figure 12).

6.2.2 VPA

The software VPA-2BOX was used to conduct a sequential population analysis using the same input data as in the XSA analyses. The following assumptions were made:

- Indices: A lognormal error structure was assumed for all indices. The index selectivities were estimated using the partial catches (including all ages, from 0 to 10+).
- <u>F ratios</u>: $F_{10+}/F_9 = 1.0$ in all years.
- <u>Terminal year Fs</u>: Estimated for ages 5 and 8. Assumed values: $F_0=0.01*F_5$, $F_1=0.4*F_5$, $F_2=F_5$, $F_3=F_5$, $F_4=F_5$, $F_6=F_8$, $F_7=F_8$, $F_9=F_8$.

The fit to the data was poor. The coefficients of variation for the estimates of F5 and F8 in 2005 were 15% and 81% respectively. The fits to the individual indices were rather poor in some cases (see **Figure 13**).

The Group examined the estimated selectivities at age for the various indices (**Figure 14**) and concluded that they seemed reasonable, given the size composition of the catches for the corresponding fleets.

The overall results of the model fit are given in **Table 10** and **Appendix 6**. In terms of stock size, the estimated recruitment (age 0) trend is rather constant at slightly above one million fish per year, and the trend for ages 2 to 8 is a declining one (**Figure 15**). The estimated trend in spawning biomass shows an overall decline of 40% between 1985 and 2005, but the level of exploitable biomass is estimated to have varied without a trend (**Figure 16**).

The estimates of fishing mortality (apical values) are shown in **Figure 17**, suggesting that it has varied without a trend during the last decade. The estimated selectivities at age by 5-year time periods are shown in **Figure 18**, suggesting that selectivity has remained relatively constant since 1990.

6.2.3 Comparison of the age-structured results

XSA and VPA-2BOX are different implementations of sequential population analyses. For this Mediterranean swordfish assessment, they were used with the same data and similar, although not identical, assumptions.

The Group compared the results obtained with both methods in terms of recruitment, fishing mortality, and biomass trends, and found them to be very similar (**Figure 19**). Small discrepancies are evident only for older ages (e.g., F at age 9). But, overall, both methods provide a very similar perception of stock status.

6.2.4 Equilibrium yield-per-recruit analyses

The VPA-2Box and XSA results were used as the basis for yield-per-recruit analyses which are a form of long-term projection. The input age-specific vectors are given in **Table 11**. The resulting equilibrium estimates for several biological reference points are given in **Table 12**. These are per-recruit results, scaled to a recruitment level of 1,059,533 age-0 swordfish (the mean 1985-2002 level estimated in the VPA-2box). **Figure 20** shows the equilibrium yield levels obtained for different fishing mortality multipliers of the current selectivity vector.

Bootstraping (1,000 iterations) was used to characterize the uncertainty in the VPA-2BOX assessment of recent status for Mediterranean swordfish. There is a high degree of variability in the estimates of recent status, but all of the bootstrap outcome indicate this stock is both overfished and undergoing overfishing (**Figure 21**).

6.2.5 Summary of age-structured assessment results.

The two age-structured models used in the assessment give very consistent results. During the past 20 years, fishing mortality has fluctuated at high levels, usually doubling the value of natural mortality. The value of natural mortality is sometimes used as a proxy for F_{MSY} in data-poor situations, which would suggest that overfishing has occurred during this time. Both models estimate that spawning biomass has declined between 1985 and 2005 (a decline between 24% and 38%, depending on the model). On the other hand, recruitment has varied ($CV \approx 12\%$) during this time period without a trend.

Results of equilibrium yield-per-recruit analyses that are based on age-structured assessments also indicate that growth overfishing is taking place. Depending on the model used, current (2005) fishing mortality is 1.7 or 2.1 times higher than the value that would maximize yield per-recruit. In the case of the VPA, assuming a constant level of recruitment, a 69% reduction in fishing mortality to the Fmax level would result in a modest (7%) increase in long-term yield and a substantial (more than double) increase in spawning biomass.

In addition, current F is expected to result in a spawning stock biomass per recruit (SPR) at about 8% of the unfished condition, a level which is considered to result in a non-negligible risk of rapid stock decline. Fishing at F_{MAX} given the current selectivity would be expected to result in an SPR of 20%.

Using F_{MAX} as a proxy for Fmsy, the Convention's objective, suggests that the Mediterranean swordfish stock is in an overfished condition and that overfishing is taking place (**Figure 22**). Note, however, that these conclusions are based on deterministic analyses of the available data. The level of uncertainty in these estimates has not been evaluated.

6.3 Stock status summary

Two forms of assessment, both with high degree of uncertainty, gave a consistent view of declining stock abundance, but differed in the extent of the decline, in the sense that some models suggested little changes in the last decade. Estimates of population status from production modeling using a longer time-series of catch and effort for which we have less confidence indicated a stock level that was most likely about 10% below that necessary to achieve the ICCAT Convention objective while recent fishing mortality was about 25% above the level that would permit the stock to attain MSY levels. The results of the production model assessment indicate that the fishery underwent a rapid expansion in the 1980s resulting in Fs likely at or above F_{MSY} and a slowly declining stock biomass which has recently most likely fallen below the level which can support MSY. Estimates of stock status from virtual population analysis using a shorter time series of catch and effort data for which we have more confidence, indicated a relatively stable spawning stock level and stable recruitment over the past 20 years, but that level is less than half that necessary to achieve the ICCAT Convention objective and estimates of recent fishing mortality rates from this form of assessment are about twice that which, if continue into the future, is expected to drive the spawning biomass to a very low level (about 8% SPR) within a generation.

Those low levels are considered to give rise to non negligible risks of rapid declines in the stock, although no such a signal has yet been observed in the Mediterranean swordfish fisheries.

7. Projections

7.1 Production model projections

The combined production model bootstrap outcomes were projected forward under several different future constant catch scenarios. Catches in years 2006 and 2007 were assumed to have been at the 2005 level (14,600 t) and catches in subsequent years through 2015 were assumed to equal either 10,000, 12,000, 14,300 (the approximate MSY) or 16,000 t. The projections indicate that catches in excess of 12,000 t starting in 2008 are likely to result in future decline in stock status (**Figure 23**).

7.2 VPA Scenarios

The VPA-2BOX model bootstrap outcomes were projected forward under several different future constant catch scenarios. Projected recruitment was taken as a random draw from the 1985-2002 time series and the recruitments (and cohort strengths for the corresponding ages) for 2003-2005 year classes were also assumed to be of the same dimension. Catches in years 2006 and 2007 were assumed to have been at the 2005 level (14,600 t) and catches in subsequent years through 2015 were assumed to equal either 10,000, 12,000, 14,300 (the production model approximate MSY) or 16,000 t. The projections indicate that catches in excess of 14,000 t starting in 2008 are likely to result in future decline in stock status (**Figure 24**).

Using the Fisheries Library in R (FLR) framework that was developed in the frames of the European Fisheries Management System (EFIMAS) project (http://www.flr-project.org/), four exploitation scenarios were applied.

The operational model used in all scenarios was based on the estimated (through XSA) stock population at age at the beginning of the year 2000. This was used as a starting population and each projection scenario was simulated 250 times for a period of 20 years by assuming:

- a) Natural mortality equal to 0.2
- b) An empirically estimated Beverton-Holt S/R model. As VPA results has not allowed estimation of model parameters (due to low contrasts), those were estimated empirically (Hilborn & Walters, 1992) assuming that half of the current stock sized will produce about half of the maximum recruitment.

The initial vector of abundance at age and the predicted recruitment from the S/R model, were modelled by assuming normally distributed errors with CVs equal to 15% and 10%, respectively. Thus, the corresponding values were drawn randomly from the assumed distributions.

All scenarios apart from the first one, attempt to examine the effects of global fishery closures during the recruitment period. Recruitment extends from September to February, with its peak from October-January. Such closures have been extensively discussed in the past (Di Natale *et al.*, 2002) and it has been assumed that they will mainly affect the fishing mortality of age 0 fish (up to 71cm of LJFL in the catch-at-age table).

Scenario 1: The current exploitation pattern

It was assumed that Fs at age will be equal to the average values estimated for the 1995-1999 period for the whole of the projection period. Based on YPR, this F level is about twice that which would permit the stock to attain MSY level and in the long-run, the expected spawning stock biomass would be around 50% of B_{MSY} or around 10% of the unfished biomass, which is considered very low and resulting in non-negligible risk of rapid stock decline although such a signal has not yet been observed in the Mediterranean swordfish fisheries.

Results are summarized in **Figure 24**. The scenario indicates a stable production pattern with annual catches being around to 14,000-15,000 t (probability > 50%) of which juveniles equal 5,800-6,200 t. The number of juvenile fish in the catch will mostly vary from 380,000-420,000 fish corresponding to 72-74% of the total catch number. In general, the reported rates for the period 2000-2004 are in the range of the model predicted values.

Scenario 2: A two-month closure during the peak of the recruitment period

As the Mediterranean swordfish spawns from May-July (Rey 1988, Cavalaro *et al.*, 1991, Tserpes *et al.*, 2001), it was assumed that such a closure would reduce fishing mortality of the 0-age fish (those having LJFL < 71cm) in the catch at age matrix) by 50%. Taking into account that throughout the Mediterranean much more fishing pressure is exerted on the stock from late spring to middle autumn (Anon. 2004), it was considered that this closure will reduce global fishing effort by 10%. Assuming that fishing effort is proportional to fishing mortality infers that a similar reduction in fishing mortality is expected for the rest age classes.

Results are summarized in **Figure 25**. The scenario indicates that application of such a closure would initially result to a small decrease of the current production levels, which however will be after 6-7 years stabilized around to 15,800-16,200 t. Juvenile catches will be stabilized to 5,700-6,100 t and their number will be around 370,000-400,000 fish, representing as much as 67-71% of the total catch. This projected F level is about 1.8 times higher than that which would permit the stock to attain MSY level and the expected spawning stock biomass in the long-term would be around 12% of the unfished biomass and about 60% of B_{MSY}.

Scenario 3: A four-month closure during the peak of the recruitment period

It was assumed that such a closure would reduce fishing mortality of the 0-age fish by 90% and the global fishing effort by 20%.

Results are summarized in **Figure 26**. The closure would initially result in a 10-15% decrease of the current production levels, which however will be after 7-8 years stabilized around to 17,000-17,800 t. Juvenile catches will be stabilized to 5,600-6,000 t and their number will be around 350,000-380,000 fish, representing as much as 65-67% of the total catch. This projected F level is about 1.6 times higher than that which would permit the stock to attain MSY level and the expected spawning stock biomass in the long-term would be around 13% of the unfished biomass and about 70% of B_{MSY} .

Scenario 4: Closure for the whole recruitment period

It was assumed that such a closure would practically eliminate fishing mortality of the 0-age fish and reduce the global fishing effort by 40%.

Results are summarized in **Figure 27**. Initially the closure would result in an important decrease (about 40%) of the current production levels. Production will be stabilized after 8-10 years at about 18,500-20,000 t. Similarly, juvenile catches will be stabilized at around 4,800-5,100 t and their number will be around 310,000-330,000 fish, representing as much as 59-63% of the total catch. This projected F level is the outcomes closest to F_{MAX} , which would permit the stock to attain an MSY-proxy level and the expected spawning stock biomass in the long-term would be around 20% of the unfished biomass and about B_{MSY} .

Conclusions

Results indicate that seasonal closures will be beneficial in increasing the catch levels and reducing the volume of juvenile catches in the medium term. As the Group believes that discards included in the catch-at-age table are underestimated, there is a possibility of fishing mortality underestimations of the 0-group. Hence, in reality, seasonal closures might be more beneficial than currently estimated. In addition to the yield considerations reported here, seasonal closures would also be expected to result in a greater economic return for the fishery, since small fish obtain lower prices for fishermen on a per kilogram basis. However, such economic benefits have not yet been quantified.

Results demonstrated that the longer the closure, the more beneficial it will be in the long-term (**Figure 28**), although production decreases are always expected in the short term. Such decreases are most important in the case of Scenario 4, which is the closest to reducing F to F_{MAX} . The positive effects of Scenario 2 may be smaller than currently estimated especially if the two-month closure is applied in months of low fishing activity (December-January) resulting in lower mortality reductions than currently assumed.

7.3 Summary of projections

The assessment of Mediterranean swordfish indicates the stock is below the level which can support MSY and that current fishing mortality exceeds F_{MSY} . The degree to which biomass is below B_{MSY} and F is above F_{MSY}

differs between assessment models. In any case, fishing mortality (and near-term catches) needs to be reduced to move the stock toward the Convention objective of biomass levels which could support MSY and away from levels which are considered to result in a non-negligible risk of rapid stock decline. While one modeling approach indicates the current stock status is only about 12% below B_{MSY} , it also indicates that future catches in excess of 12,000 t will not result in improvement in stock status. In contrast, the modeling approach that provides a more pessimistic view of current status, indicates future catches that allow rebuilding are somewhat higher, up to about 14,000 t, assuming that the current high selectivity for juvenile fish continues and recruitment does not improve.

Seasonal closure projections that assume no compensation in effort, no interaction with other management actions in place and an improvement in recruitment with increasing spawning stock biomass (SSB), are forecast to be beneficial in moving the stock condition closer to the Convention objective, resulting in increased catch levels in the medium term, and reductions in the volume of juvenile catches. Seasonal closures, however, especially the longer ones, would result in significant catch reductions within the first few years after their application. A six-month (September through February) closure of the Mediterranean to swordfish fishing is projected to permit the stock to rebuild to about MSY levels within a generation (about 7 years) and could result in sustainable catches on the order of 18,500 t if recruitment improves with gains in SSB. A four-month closure (October-January) projects some improvement in SSB, to about 65% of B_{MSY} within a generation and could result in sustainable catches on the order of 18,500 t if recruitment improves with gains in SSB. A two-month closure (October-November) projects a much smaller gain in SSB to about 50% of B_{MSY} and a catch level near the average of the past 20 years, if recruitment does not decline. These effects would be diminished, especially if closure is applied in months of low fishing activity (December-January). Results of the seasonal closure projections are summarized in **Figure 29**.

8. Recommendations

8.1 Statistics and research

- Data submission. Data must be reported by the ICCAT deadlines, even when no analytical stock assessment is scheduled. Historical catch, effort and CPUE data, if revised or when requested by the Secretariat, should also be provided, if possible. If the catch and size data are provided to the Secretariat by the specified deadlines, then the Secretariat will provide the catch-at-size and the adopted substitution table to the relevant scientists for review in advance of the meeting. This will then allow the stock assessment session to proceed immediately with analyses, without the delay associated with recalculating the catch-at-size during the meeting due the late submission of new data on the first day of the meeting. This continuing problem caused difficulty for the current assessment, requiring the Group to make assumptions such as the carry-forward of catch from one year to the next or substitutions for Task II data for those countries that did not report as required.
- Participation by ICCAT Contracting Parties in the assessment Group. The Group noted that several Contracting Parties, in spite of having significant swordfish fisheries, did not send national scientists to the 2007 assessment. This has obvious negative consequences for the Group's ability to accurately interpret fisheries trends, and provide better advice to the Commission.
- Sampling schemes. The Group noted that the COPEMED Program, which has greatly improved the collection of data on statistics and biology, has ended and new national and international initiatives are needed. There remain several areas for improvement in provision of basic catch and effort data and size samples. The Group noted the improvements in the data obtained in several countries, due to the new EC data collection regulations.
- Catch. All countries catching swordfish (directed or by-catch) should report catch, catch-at-size (by sex) and effort statistics by as small an area as possible (5-degree rectangles for longline, and 1-degree rectangles for other gears), and by month. It is recommended that at least the order of magnitude of unreported catches be estimated. The Group noted that it is important to collect size data together with the catch and effort data to provide meaningful CPUEs. After comparing the ICCAT Task I and FAO FIGIS data, the Group decided to adopt the higher catch figures held in the FIGIS database for years prior to 1968 and recommended that the ICCAT and FAO datasets be harmonized for the period 1950-1967 as they already are for later periods and other species.

- *Discards*. Participating countries improve their estimates of discards of juvenile swordfish, when applicable, and submit such information to the ICCAT Secretariat.
- CPUE. CPUE series should be developed to take into account the geographic stratification of the catch by gear and month using standard measures of effort for each gear (e.g., number of hooks for longline, length of nets for gillnet), on as fine a scale as possible (5-degree rectangles for longline, and 1-degree rectangles for other gears). Although CPUE by age is the usual input for the age-structured analyses, the Group recognized that this must be based on an increased level of sampling, not merely substitution of the current data. Therefore, it is recommended that increased sampling take place so that CPUEs can be developed by age. To achieve this goal, the Group noted that it is important to collect size data together with the catch and effort data to provide meaningful CPUEs.
- Environment. The Group recommended continued work to better identify the effects of the environment on swordfish biology, ecology and fisheries. Future CPUE analyses should focus on developing additional methods to explicitly incorporate environmental variability into the model, and the influence of environment on the distribution of spawners and juveniles.
- Age determination. The Group noted new research that indicated estimates of age at length from direct ageing studies vary within the Mediterranean on a geographic basis. To avoid the possibility that such variation results from differences in age determination methods, national scientists were encouraged to exchange spine sections and share age determination methodology.
- Gear selectivity studies. Further research on gear design and use is encouraged in order to minimize catch of age-0 swordfish and increase yield and spawning biomass per recruit from this fishery.
- Stock mixing and management boundaries. As noted in the 2006 Swordfish Stock Structure workshop, further research including tagging investigations in defining the extent of mixing near stock boundaries such as the one between the Mediterranean and Atlantic stocks would be useful, and potentially improve the assessment of both stocks.
- Next Mediterranean swordfish stock assessment. It is recommended that the next swordfish stock assessment be conducted no sooner than 2010 so long as there is no signal from the stock indicating a dramatic decline. This allows time to increase the time series of catch and effort data, and to advance basic research and assessment methods. It should be noted that the data required for that session should be up to and including the year prior to the meeting.

8.2 Management

The Commission should adopt a Mediterranean swordfish fishery management plan with the goal of rebuilding the stock to levels that are consistent with the ICCAT Convention objective. One technical measure the Committee has thus far evaluated is fishing closures which could initiate rebuilding, depending on their duration and timing. The Committee recommends the Commission consider adoption of such measures which will move the stock condition to the level which will support MSY.

Following the results from recent studies (SCRS/2006/163), technical modifications of the longline fishing gears as well as the way they are operated can be considered as an additional technical measure in order to reduce the catch of juveniles. The Committee recommends this type of measures be considered as part of a Mediterranean swordfish management plan.

It is evident from the stock status evaluation that the current capacity in the Mediterranean swordfish fishery exceeds that needed to efficiently extract MSY. Management measures aimed at reducing this capacity should also be considered part of a Mediterranean swordfish management plan adopted by the Commission.

9. Other matters

The Group drafted the Executive Summary in preparation for the 2007 SCRS Swordfish Species Group.

10. Report adoption and closure

The report was adopted and the meeting was closed.

References

- ANON, 1996. Report of the Second Meeting of the ad hoc GFCM/ICCAT Working Group on Stocks of Large Pelagic Fishes in the Mediterranean Sea Mediterranean Swordfish Data Preparatory Meeting (Bari, Italy, September 13 to 19, 1995). Col. Vol. Sci. Pap. ICCAT, 45(1): 1-97.
- ANON. 2004. 2003 ICCAT Mediterranean Swordfish Stock Assessment Session (Madrid, Spain, 26-29 May 2003) Col. Vol. Sci. Pap. ICCAT, 56(3): 789-837.
- CAVALLARO, G., A. Potoschi and C. Cefali. 1991. Fertility gonad-somatic index and catches of eggs and larvae of *Xiphias gladius* L. 1758 in the southern Tyrrhenian Sea. Col. Vol. Sci. Pap. 35(2): 502-507.
- DI NATALE, A., J.M. de La Serna, G. De Metrio, V. Restrepo, A. Srour and G. Tserpes. 2002. On the reduction of juvenile swordfish catches in the Mediterranean. ICCAT Col. Vol. Sci. Pap. 54(5): 1529-1533.
- HILBORN, R. and C.J. Walters. 1992. Quantitative fisheries stock assessment. Chapman and Hall, London, 570p.
- KELL, L.T., L. Mosqueira, P. Grosjean, J.-M. Fromentin, D. Garcia, R. Hillary, E. Jardim, S. Mardle, M.A. Pastoors, J.J. Poos, F. Scott, R.D. Scott. 2007. FLR: an open-source framework for the evaluation and development of management strategies. ICES J. Mar. Sci. 64, 640–646.
- REY, J.C. 1988. Comentarios sobre las areas de reproduccion del pez espada (*Xiphias gladius*) en el Atlantico y Mediterraneo. Col. Vol. Sci. Pap. 27: 180-192.
- TSERPES, G., P. Peristeraki S. and Somarakis. 2001. On the reproduction of swordfish (*Xiphias gladius* L.) in the eastern Mediterranean. Col. Vol. Sci. Pap. ICCAT, 52: 740-744.

Table 1. Estimated catches (t) of swordfish (*Xiphias gladius*) in the Medditerranean Sea, by major area, gear and flag.

		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
TOTAL		6896	13666	15292	16765	18320	20365	17762	16018	15746	14709	13265	16082	13015	12053	14693	14369	13699	15569	15006	12814	15674	14405	14601
Landings	Longline	6313	6749	6493	7505	8007	9476	7065	7184	7393	7631	7377	8985	6319	5884	5389	6496	6097	6963	7180	7697	10415	11054	11274
	Other surf.	583	6917	8799	9260	10313	10889	10697	8834	8353	7078	5888	7097	6696	6169	9304	7873	7602	8606	7826	5117	5259	3343	3214
Discards	Longline	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	9
	Albania	0	0	0	0	0	0	0	0	0	0	0	0	0	13	13	13	13	0	0	0	0	0	0
	Algerie Chinese	877	884	890	847	1820	2621	590	712	562	395	562	600	807	807	807	825	709	816	1081	814	665	564	635
	Taipei	0	0	0	0	0	0	0	0	0	0	1	1	0	1	3	0	0	0	0	0	0	0	0
	Croatia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	20	0	0	0	0	0	0
	EC.Cyprus	28	63	71	154	84	121	139	173	162	56	116	159	89	40	51	61	92	82	135	104	47	49	53
	EC.España	1322	1245	1227	1337	1134	1762	1337	1523	1171	822	1358	1503	1379	1186	1264	1443	906	1436	1484	1498	1226	951	910
	EC.France	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	27	0	19	0
	EC.Greece	772	1081	1036	1714	1303	1008	1120	1344	1904	1456	1568	2520	974	1237	750	1650	1520	1960	1730	1680	1230	1120	1311
	EC.Italy	3026	9360	10863	11413	12325	13010	13009	9101	8538	7595	6330	7765	7310	5286	6104	6104	6312	7515	6388	3539	8395	6942	7460
	EC.Malta	59	94	172	144	163	233	122	135	129	85	91	47	72	72	100	153	187	175	102	257	163	195	362
	EC.Portugal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	115	8	1	120	14
	Japan	6	19	14	7	3	4	1	2	1	2	4	2	4	5	5	7	4	2	1	1	0	3	5
	Libya	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	8	6	0	10	2	0
	Maroc	43	39	38	92	40	62	97	1249	1706	2692	2589	2654	1696	2734	4900	3228	3238	2708	3026	3379	3300	3253	2523
	NEI-2	532	771	730	767	828	875	979	1360	1292	1292	0	0	0	0	0	0	0	0	0	0	0	0	0
	Tunisie	15	15	61	64	63	80	159	176	181	178	354	298	378	352	346	414	468	483	567	1138	288	791	791
	Turkey	216	95	190	226	557	589	209	243	100	136	292	533	306	320	350	450	230	370	360	370	350	386	425
Discards	EC.Greece	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	113

Table 1. Estimated catches (t) of swordfish (Xiphias gladius) in the Medditerranean Sea, by major area, gear and flag.

	_	_						_										_									_									_										_						$\overline{}$
Plag	Guer	195	0 1951	1952	1954 1	955 1956	6 1958	1959	1960	1961 18	962 19	963 15	KH 19	85 IPA	66 19	FT 196	1969	1970	1971	1972	1973	1956	1975 1	976 1	977	978 197	9 1990	1981	1992	1983	1994	1985	1986	1997	1988	1989	1990	1991	1992	1993	1994	1995 1			1999 1	999 200	0 200	1 2002	2003	2004	2005	2006
Albenia	UN	_						_										_									┸									_							13	13		13						_
Algerie	GN	1						- 1										1									1									- 1									.590 :	530 59	9 64	2 467		233	341	87
1	HL.	1						- 1										1									1									- 1										- 1				112	175	72
1	LL.	1						- 1										1			100	196	500	348	170	100 52	690	760	970	977	294	990	947	1820	3631	590	179	179	6	173	195	247	247	247		- 1	13	3 90		52	99	456
1	200	1						- 1										1									1		-		-								-							- 1					56	
1	77	1						- 1										1									1									- 1									57	52 :						- "
1		1						- 1										1									1									- 1									178				665			- 1
	CON	-						\rightarrow										-									-									\rightarrow	309	300	359		1				118	120 0	e 30	0 346	660	122		\dashv
Chinese Taipei	LL.	-						\rightarrow										₩									₩									\rightarrow				1	1		1			—						—
Crostia	LL.	_						\rightarrow										—									₩									_									10							—
BC-Cypnu	LL.																						5	59	95	82 9	9 73	2 78	305	28	63	71	154	94	131	139	179	163	56	116	159	29	40	51	61	92 1	R2 13	5 104	47	49	58	40
BC.Broots	GN	Т						\neg										П									Т									97	85	39								\neg						П
	HL.	1						- 1										1									1					1														- 1						- 1
1	E.E.	59	V 580	337	450	340 36	- 414						12	00 100	00 7	0 100	1100	900	1100	1300	1105	760	90	69	667	739 90	0 794	1120	900	1996	1243	1719	1337	1154	1769	1210	1419	1132	790	1293	1400 1	1351 1	040	1166	1409 1	187 139	S 140	2 1421	1165	999	260	1555
1	SU							- 1															-	-			1					2											10					5 19				
1	770	1						- 1										l									1					3			2	- 1									2				3			
1	**	1						- 1										l									1									- 1						•	•	•	*	1	•					- 1
1	TW	1																I									1					1																				
	UN	+						\rightarrow										₩									+					1				\rightarrow			32	65	301		134	79	8	26 3	3 7	3 %	.58	20	46	56
BCPresse	PS.	1						- 1										1									1															0				- 1						- 1
	UN																										\perp									\perp												2 27		19		
BC.Geesce	LL.																											90	773	772	3080	1096	1714	1305	1008	1130	1344	1904	1456	1568	2500	974 1	1297	750	1679 1	520 194	RO 173	0 1680	1230	1129	1434	\neg
BC Itely	GN	Т						\neg										П									\top				1459	1540	1620	1749	1946	2542	4355	3142	4677	3070	1921 e	G94 2	M87 :	1602	3632 3	632 466	9					2342
	HP	1						- 1										1						302	67	756 47	5 504	45	156	366													10	12	12		8		7	5	6	
1	r.r.	1						- 1										l								750 345					1750	2400	2632	2001	2969	1900	1000	1470	1510	1140	1004A 1	1005 1			2478 2				5944			
1	200	1						- 1										1							,,,,		-		2000	2000	2.00	200	****	2001	2767	area		2410			,,,,,,											20
1	**	1						- 1										1									1																			- 1				2		**
1	SP.	1						- 1										1									1																		_	- 1						- 1
1	115	1						- 1																			1				3												2	2	2		2			1		- 1
	CN	-						\rightarrow								156	2340	200.6	3348	4144	3136	3790	1362				₩								8175							п							2540			—
BCMMa	LL.	1						- 1										l									1			59	94	172	144	169	235	122	135	129	85	91	47	72	72	100	159	187 17	5 10	2 257	163	195	342	239
	UN																	112	224	234	224	192	214	135	223	136 15	222	2 192	177																							
BC.Portugal	LL.																										П																			- 1	3 11	5 8	1	129	14	16
Japan	LL.	\top						\neg										$\overline{}$						1		2	3 1	ı	5	- 6	19	14	7	- 3	- 4	- 1	2	1	2	4	2	4	5	5	7	4	2	1 1		- 3	- 5	П
Libya	LL.							\neg																			-									\neg									11	-	8	6	10	2		\neg
	UN	1						- 1					2		14 3	6 56		1									1																			- 1			-			- 1
Marco	GN	-						-					_				_	-									+									\rightarrow	966	1100	1001	10.00	V100 1	410 1	wa .	4000	2905 2	979 149	n 956	6 2710	1629	1199	290	\dashv
	LL.	1									100		803 -	vi		se 19		2014	994	229	101	100	110	166	104	170	1			47	19	50	- 00		62	977									333 3				1670			- 1
1	1.6	1								-	188	-	201 2	20 E	r2 3	p. 134	250	234	320	229	160	199	116	180	100	1.74	1			40	39	.00	92	40	62	90	315	306	897	267	247	100	2.0	243	343	250 20			1600	1996	Tient.	
1	PS.	1																I									1																			- 1		4				
	TP	1						\rightarrow						1		1	1	_	1	- 1		- 3					-									\rightarrow		12		4	18	9		2		+		2	1			
NEE-2	GN	1																									1								277			559														- 1
1	LL.	1																1									1		517	532	552	499	534	566	598	598	918	730	753							- 1						- 1
1	UN	1																I									738	8 672																		- 1						- 1
Tunisie	LL	Т						\neg										$\overline{}$				5	3	5			\top	7	19	15	15	61	64	- 6	80	159	176	191	178	354	198	378	352	346	414	158 4	D 56	7 1138	185	791	791	П
	PS.	1						- 1										1									1																									- 1
1	TP	1																I									1																			- 1			-			- 1
1		1																1									1									- 1										- 1			,			
	TW	+						\rightarrow										-									-																			-						\dashv
Turkey	GN	1																I									1					190	226	357	509	209	263	100	136	191	200	336	329	359	400	230 3	10 36	0				- 1
1	LL.	1																I									1																			- 1				386	425	- 1
1	PS.	1																I									1																			- 1			350			- 1
	UN	L					500	200	112	112 1	112 2	124	112 1	12 3	16 1	11	5 133	99	76	60	.59	15	10	7	34	30 4	4 13	3 70	40	216	95															\perp		370				
TOTAL		59	6 580	337	452	340 36	914	200	112	206 3	300 3	118	894 178	90 173	92 13	7 344	3723	3341	4975	5958	4907	5004	1000 4	637 5	290 5	998 354	7 6579	6813	6343	6956	13666	15292	16765	18320	20965	7762 1	6028 1	5746 1	4709 1	1365 b	9092 13	1015 12	2053 14	4593 J	4909 13	999 1554	9 1500	6 12814	15674	14405 ((460) P	0218
		_						_	_									_									_									_										_			$\overline{}$	$\overline{}$	_	_

Table 2. Biological parameters and conversion factors for Mediterranean swordfish.

Growth parameters used by the SCRS for Atlantic and Mediterranean swordfish.

	Reference	N	LJ-FL (cm)	Method	Stock
<u>Sexes combined</u> $L_t = 238.58 (1 - e^{-0.185 (t+1.404)})$	Tserpes and Tsimenides (1995)	1100	62-210	Spines	Med.

Size-weight relationships used by the SCRS for Mediterranean swordfish.

		Reference	N	LJ-FL (cm)	Stock
$GWT = 5.70 \times 10^{-6} \times LJ - FL^{3.5}$	16	De Metrio	462	64-205	Mediterranean
$RWT = 8.90493 \times 10^{-7} \times LJ - F$	$L^{3.554738}$	(1987) Mejuto and De	1006	62-237	Mediterranean
LJ-FL: length from lower jaw to fo RWT: round weight GWT: gutted weight	rk	la Serna (1993)			
Conversion factors among the dif swordfish	ferent types of weight for the			_	
Equation	Reference		Geograph	nic area	
$RWT = 1.12 \times GWT$	Anon. (2004)		Mediterra	anean	

Estimated size of initial sexual maturity for Mediterranean swordfish.

	Reference	Stock
50% of the females are mature at 142 cm (3.5 years)	de la Serna et al., (1996)	Mediterranean

Natural mortality: 0.2 for all ages 2005 Catch Weight (kg) at age

Table 3. Substitution table for Mediterranean swordfish.

Yr tiFleetC													_
1990 EC.ITA	t1GearG UN	t1Yt 2294	RF 62.98687358	zYr szFleetC szGearG 1990 EC.ITA-IT-TYRR GN	Lrng 86-210	Lmed	Wimed 130	52Y1 31	szNt 36	szint 1159	szFrqT	TPerGrp 6 mm	re su
1990 EC.ITA-IT-IO		62	1.702347935	1990 EC.ITA-IT-TYRR GN	86-210		130	31	36	1159	1	6 mm	9.
1990 EC.ITA-IT-LIC		59	1,61997626	1990 EC.ITA-IT-TYRR GN	86-210		130	31	36	1159	1	6 mm	SU
1991 EC.ITA	UN	2926	40.48377679	1991 EC.ITA-IT-TYRR GN	62-230	-	133	36	72	2016	1	6 mm	SU
1995 EC.ITA-IT-AD	ORI. LL	170	13.976613	1995 EC.ITA-IT-IONI.FLL	30-260		89	13	12	970	5	6 mm	51.
1995 EC.ITA-IT-IO	NI.5 GN	350	15.77571387	1995 EC.ITA-IT-IONI.FGN	35-220	1	119	32	22	697	5	6 mm	50
1995 EC.ITA-IT-SA	ARD LL	65	4.711000973	1995 EC.ITA-IT-TYRR LL	62-186	1	103	14	14	980	1	6 mm	51
1999 MAR	GN	2979	12.51815901	1999 MAR GN	80-230	1	140	45	238	5293	5	6 mm	ra
000 MAR	GN	2503	19.27522164	2000 MAR GN	55-250	1	141	45	130	2870	5	6 mm	ra
000 JPN	ш	2	0.577737854	2000 EC.ESP LL	70-220	1	144	51	3	68	5	6 mm	SU
001 DZA	GN	642	18.52497019	2001 MAR GN	95-235	1	143	48	35	724	5	6 mm	SI.
001 DZA	ш	133	0.095014876	2001 EC.ESP-ES-5W/LL	55-210	1	105	16	1400	85908	5	6 mm	51
001 DZA	UN	306	0.218605655	2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	51
001 EC.CYP	ш	135	1.484889248	2001 EC.GRC LL	51-258		134	40	91	2300	1	6 mm	SU
001 EC.ESP	ш	27		2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	SI.
001 EC.ESP	ш	20		2001 EC.ESP LL	95-230		159	72	22	311	5	6 mm	ra
001 EC.ESP	ш	40		2001 EC.ESP LL	40-160		89	9	16	1676	5	6 mm	ra
2001 EC.ESP	SU	5	0.003543428	2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	SI
001 EC.ESP	TP	4	0.002571831	2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	51
001 EC.ESP	UN	73		2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	S
2001 EC.ESP-E5-3		1315		2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	ra
2001 EC.FRA	UN	12		2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	51.
001 EC.GRC	ш	1730		2001 EC.GRC LL	51-258		134	40	91	2300	1	6 mm	ra
2001 EC.ITA-IT-SI		1632.28	135.812913	2001 EC.ITA-IT-SIC.S'LL	75-190		115	21	12	573	5	6 mm	ra
001 EC.ITA-IT-TY		603.72	88.22543291	2001 EC.ITA-IT-TYRR LL	75-165		103	13	7	508	5	6 mm	ra
001 EC.ITA-IT-IO		62	0.778710293	2001 EC.ITA-IT-TYRR GN	80-220		138	41	80	1969	5	6 mm	SI
001 EC.ITA-IT-IO		332	4.153121563	2001 EC.ITA-IT-TYRR GN	80-220		138	41	80	1959	5	6 mm	SI
001 EC.ITA-IT-LIC		21	0.259570098	2001 EC.ITA-IT-TYRR GN	80-220		138	41	80	1969	5	6 mm	S
001 EC.ITA-IT-TY		3737	46.72261758	2001 EC.ITA-IT-TYRR GN	80-220		138	41	80	1969	5	6 mm	ra
2001 EC.MLT	ш	102	6.113752796	2001 EC.MLT LL	95-145		115	19	17	856	5	6 mm	ra
2001 EC.PRT-PT-I		115	0.08222716	2001 EC.ESP-ES-SWILL	55-210		106	16	1400	86908	5	6 mm	51
2001 JPN	ш	1	0.000714398	2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	SI
2001 LBY	ш	6	0.003974908	2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	SI
001 MAR	GN	2266	65.38564245	2001 MAR GN	95-235		143	48	35	724	5	6 mm	ra
001 MAR	ш	754	0.538655764	2001 EC.ESP-ES-SWILL	55-210		105	16	1400	86908	5	6 mm	s
2001 MAR	PS	4	0.00285759	2001 EC.ESP-ES-SWILL	55-210	1	105	16	1400	86908	5	6 mm	5
2001 MAR	TP	2	0.001428795	2001 EC.ESP-ES-SWILL	55-210	1	105	16	1400	86908	5	6 mm	51
2001 TUN	ш	567	47.52427382	2001 EC.ITA-IT-SIC.S'LL	75-190		115	21	12	573	5	6 mm	SI
001 TUR	GN	360		2001 TUR GN	70-185		120	26	3	111	5	6 yy	ra
2002 DZA	GN	467		2002 MAR GN	75-235	1	144	50	113	2277	5	6 mm	51
002 DZA	ш	99	0.065343006	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	51
2002 DZA	UN	248	0.16358753	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	51
002 EC.CYP	ш	104	1.136627953	2001 EC.GRC LL	51-258	1	134	40	91	2300	1	6 mm	SI
2002 EC.ESP	ш	43	0.028513312	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	SI
2002 EC.ESP	ш	6	10.55588309	2002 EC.ESP LL	70-210	1	133	41	1	13	5	6 mm	ra
2002 EC.ESP	LL.	25	0.968294278	2002 EC.ESP LL	75-180	1	111	20	25	1283	5	6 mm	ra
2002 EC.ESP	SU	19	0.012540577	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	51
2002 EC.ESP	TP	2	0.00151807	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	51
2002 EC.ESP	UN	56	0.037027703	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	S
2002 EC.ESP-E5-	SWILL	1347	0.88932491	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	ra
2002 EC.FRA	UN	27	0.01782082	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	51
2002 EC.GRC	ш	1680	18.43465169	2001 EC.GRC LL	51-258	1	134	40	91	2300	1	6 mm	SI.
2002 EC.ITA-IT-SI	C.5 LL	1344	62.86524395	2002 EC.ITA-IT-SIC.S'LL	75-160	1	111	18	21	1192	5	6 mm	ra
002 EC.ITA-IT-TY	YRR LL	497	23.25152859	2002 EC.ITA-IT-SIC.S'LL	75-160	1	111	18	21	1192	5	6 mm	SI
002 EC.ITA-IT-IO	NLF UN	25	1.191414555	2002 EC.ITA-IT-SIC.S'LL	75-160	1	111	18	21	1192	5	6 mm	SI
002 EC.ITA-IT-IO	INI.5 UN	136	6.354210962	2002 EC.ITA-IT-SIC.S'LL	75-160	1	111	18	21	1192	5	6 mm	S
002 EC.ITA-IT-LIC	GUF UN	8	0.397138185	2002 EC.ITA-IT-SIC.S'LL	75-160	1	111	18	21	1192	5	6 mm	SI
002 EC.ITA-IT-TY	YRR UN	1528	71.48487333	2002 EC.ITA-IT-SIC.S'LL	75-160	1	111	18	21	1192	5	6 mm	51
002 EC.MLT	ш	257	15.46779879	2001 EC.MLT LL	95-145		115	19	17	856	5	6 mm	SI
002 EC.PRT-PT-I	MAILL	8	0.005016231	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	9
002 JPN	ш	1	0.00055003	2002 EC.ESP-ES-SWILL	60-210	1	102	14	1515	107751	5	6 mm	5
002 MAR	GN	2230	19.75104292	2002 MAR GN	75-235		144	50	113	2277	5	6 mm	r
002 MAR	ш	1149	0.758374886	2002 EC.ESP-ES-SWILL	60-210		102	14	1515	107751	5	6 mm	SI
002 TUN	ш	1138	53.23242105	2002 EC.ITA-IT-SIC.5'LL	75-160		111	18	21	1192	5	6 mm	SI
002 TUR	UN	370	4.060012575	2001 EC.GRC LL	51-258		134	40	91	2300	1	6 mm	SI
003 DZA	UN	665		2003 EC.ESP-ES-5WILL	60-215		113	20	1357	68028	5	6 mm	s
003 EC.CYP	ш	47	1.238405357	2003 EC.GRC LL	60-235	1	135	38	38	1000	5	6 yy	5
003 EC.ESP	ш	78	0.057854189	2003 EC.ESP-ES-SWILL	60-215		113	20	1357	68028	5	6 mm	5
003 EC.ESP	ш	6	0.004088586	2003 EC.ESP-ES-SWILL	60-215		113	20	1357	68028	5	6 mm	s
2003 EC.ESP	ш	24	0.017449545	2003 EC.ESP-ES-5WILL	60-215		113	20	1357	68028	5	6 mm	9
2003 EC.ESP	TP	3	0.002102891	2003 EC.ESP-ES-5WILL	60-215	1	113	20	1357	68028	5	6 mm	SI
003 EC.ESP	UN	58	0.04269539	2003 EC.ESP-ES-SWILL	60-215	1	113	20	1357	68028	5	6 mm	5
003 EC.ESP-E5-		1057	0.77927914	2003 EC.ESP-ES-SWILL	60-215		113	20	1357	68028	5	6 mm	r.
003 EC.GRC	ш	1230		2003 EC.GRC LL	60-235		135	38	38	1000	5	6 yy	r
03 EC.ITA-IT-SI		2468	152.1652768	2003 EC.ITA-IT-SIC.5'LL	40-185		114	20	16	796	5	6 mm	r
03 EC.ITA	SP	2	0.149184823	2003 EC.ITA-IT-TYRR HP	75-190		126	30	13	448	5	6 mm	S
03 EC.ITA	TP	2	0.149184823	2003 EC.ITA-IT-TYRR HP	75-190		126	30	13	448	5	6 mm	S
03 EC.ITA	UN	104	7.757610803	2003 EC.ITA-IT-TYRR HP	75-190		126	30	13	448	5	6 mm	S
003 EC.ITA-IT-AD		646	124.9697614	2003 EC.ITA-IT-ADRI. LL	89-210		121	26	5	200	1	6 mm	5
		16		2003 EC.ITA-IT-ADRI/ UN	68-158		100	12	5	419	1	6 mm	n
		162		2003 EC.ITA-IT-IONIA LL	51-221		98	18	10	551	1	6 mm	n
003 EC.ITA-IT-IO	NIFUN	41		2003 EC.ITA-IT-IONIA GN	83-203	1	132	41	2	53	1	6 mm	n
003 EC.ITA-IT-IO		885	106.9129666	2003 EC.ITA-IT-IONIA LL	52-208		96	16	8	508	1	6 mm	6
003 EC.ITA-IT-IO 003 EC.ITA-IT-IO		-		2003 EC.ITA-IT-IONIA GN	49-183		90	14	1	88	1	6 mm	n
003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO	NI.S LL	273	225.5422618	2003 EC.HA-H-IONIA GN									
003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO	INI.S LL INI.S UN			2003 EC.ITA-IT-TY.LI LL	61-200	1	124	28	16	564	1	6 mm	5
003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-LIO	INI.S LL INI.S UN GUF LL	273	9.880504988		61-200 75-225		124 122	28 27	16 61	564 2236	1 5	6 mm 6 mm	
003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IX 003 EC.ITA-IT-IX	INI.S LL INI.S UN GUF LL GUF UN	273 155	9.880504988 0.359395677	2003 EC.ITA-IT-TY.LI LL		1							5
003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-LK 003 EC.ITA-IT-LK 003 EC.ITA-IT-LK	INLS LL INLS UN GUF LL GUF UN ARD LL	273 155 22	9.880504988 0.359395677	2003 EC.ITA-IT-TY.LI LL 2003 EC.ITA-IT-TYRR GN	75-225	1	122	27	61	2236	5	6 mm	s
003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IX 003 EC.ITA-IT-IX 003 EC.ITA-IT-SA	INI.S LL INI.S UN GUF LL GUF UN ARD LL ARD UN	273 155 22 372	9.880504988 0.359395677 23.71321197	2003 EC.ITA-IT-TY.LI LL 2003 EC.ITA-IT-TYRR GN 2003 EC.ITA-IT-TY.LI LL	75-225 61-200	1	122 124	27 28	61 16	2236 564	5 1	6 mm	s s
003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IO 003 EC.ITA-IT-IX 003 EC.ITA-IT-IX 003 EC.ITA-IT-IX 003 EC.ITA-IT-IX 003 EC.ITA-IT-IX 003 EC.ITA-IT-IX	INI.S LL. INI.S UN GUF LL. GUF UN ARD LL. ARD UN IRR HP	273 155 22 372 68	9.880504988 0.359395677 23.71321197 1.110859366 0.484850675	2003 EC.ITA-IT-TY.LI LL 2003 EC.ITA-IT-TYRR GN 2003 EC.ITA-IT-TY.LI LL 2003 EC.ITA-IT-TYRR GN	75-225 61-200 75-225	1	122 124 122	27 28 27	61 16 61	2236 564 2236	5 1 5	6 mm 6 mm 6 mm	51. 51. 51. 13
2003 EC.ITA-IT-AL 2003 EC.ITA-IT-IO 2003 EC.ITA-IT-IO 2003 EC.ITA-IT-IO 2003 EC.ITA-IT-IO 2003 EC.ITA-IT-IA 2003 EC.ITA-IT-IA 2003 EC.ITA-IT-IA 2003 EC.ITA-IT-IA 2003 EC.ITA-IT-IA 2003 EC.ITA-IT-IA 2003 EC.ITA-IT-IA	INI.S LL. INI.S UN GUF LL. GUF UN ARD LL. ARD UN FIRE HP	273 155 22 372 68	9.880504988 0.359395677 23.71321197 1.110859366 0.484850675 73.70410504	2003 EC.ITA-IT-TY,LI LL 2003 EC.ITA-IT-TYRR GN 2003 EC.ITA-IT-TYRR GN 2003 EC.ITA-IT-TYRR HP	75-225 61-200 75-225 75-190	1	122 124 122 126	27 28 27 30	61 16 61 13	2236 564 2236 448	5 1 5 5	6 mm 6 mm 6 mm	90 90 90 90 10 10 10

												_
2003 EC.PRT-PT-MA		1	0.000449619	2003 EC.E5P-E5-5WILL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 LBY	LL.	10	0.007417979	2003 EC.E5P-E5-5W/LL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 MAR	GN	1629	54.35412019	2003 MAR GN 2003 EC ESP-ES-SWILL	85-225	134	38	30	784	5	6 mm	raise
2003 MAR	ш	1670	1.230924505		60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 MAR	TP	1	0.000737081	2003 EC.E5P-E5-5W/LL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 TUN	U.	285	17.57182174	2003 EC.ITA-IT-SIC.S'LL	40-185	114	20	16	796	5	6 mm	subs-raise
2003 TUN	PS	2	0.148886453	2003 EC.ITA-IT-TYRR HP	75-190	126	30	13	448	5	6 mm	subs-raise ignore (<0.
2003 TUN	TP	0	0									
2003 TUN	TW	0		2003 EC.GRC LL	** ***	405	••		4000			ignore (<0.
2003 TUR	P5 GN	350 233	9.143571741	2003 EC.GRC LL 2004 MAR GN	60-235 85-240	135	38 53	38 73	1000	5	6 yy	subs-raise
2004 DZA			3.189350514							-	6 mm	subs-raise
2004 DZA	HL	112	0.127439834	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 DZA	ш	52	0.059168494	2004 EC.E5P-E5-5WILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 DZA	P5	45 122	0.051203505	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 DZA	UN		0.13881839	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 EC.CYP	LL.	49	0.584518276	2004 EC.GRC LL	60-235	134	38	84	2225	5	6 yy	subs-raise
2004 EC.ESP	ш	23		2004 EC.ESP-ES-SWILL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 EC.ESP	ш	6	0.007127528	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 EC.ESP	ш	11	0.012812255	2004 EC.E5P-E5-5WILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 EC.ESP	TP	1	0.001612341	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 EC.ESP	UN	20	0.023133743	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 EC.ESP-ES-SW		889	1.011423966	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52643	5	6 mm	raise
2004 EC.FRA	UN	19	0.021619258	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 EC.GRC	ш	1129	13.43885021	2004 EC.GRC LL	60-235	134	38	84	2225	5	6 yy	raise
2004 EC.ITA-IT-SIC.S		2473	57.58625719	2004 EC.ITA-IT-SIC.S'LL	45-235	121	28	43	1525	5	6 mm	raise
2004 EC.ITA	SP	2	0.66535069	2004 EC.ITA-IT-TYRR HP	90-180	135	39	3	77	5	6 mm	subs-raise
2004 EC.ITA	TP	1	0.332575345	2004 EC.ITA-IT-TYRR HP	90-180	136	39	3	77	5	6 mm	subs-raise
2004 EC.ITA	UN	27	8.982234312	2004 EC.ITA-IT-TYRR HP	90-180	136	39	3	77	5	6 mm	subs-raise
2004 EC.ITA-IT-ADRI		589	21.45004487	2004 EC, ITA-IT-ADRI, LL	82-191	120	27	12	460	1	6 qu	join-raise
2004 EC.ITA-IT-ADRI			21.45004487	2004 EC.ITA-IT-ADRI. LL	69-200	121	26	15	592	1	6 qu	join-raise
2004 EC.ITA-IT-ADRI		4	0.045675724	2004 EC.ITA-IT-TYRR GN	85-230	133	36	88	2453	5	6 mm	subs-raise
2004 EC.ITA-IT-IONIJ		154	6.1753519	2004 EC.ITA-IT-IONIA LL	49-265	103	21	25	1200	1	6 qu	raise
2004 EC.ITA-IT-IONIJ	NUN	11	0.125608241	2004 EC.ITA-IT-TYRR GN	85-230	133	36	88	2453	5	6 mm	subs-raise
2004 EC.ITA-IT-IONI.	£Щ	831	33.32284045	2004 EC.ITA-IT-IONIA LL	49-265	103	21	25	1200	1	6 qu	subs-raise
2004 EC.ITA-IT-IONI.	S UN	178	2.032569716	2004 EC.ITA-IT-TYRR GN	85-230	133	36	88	2453	5	6 mm	subs-raise
2004 EC.ITA-IT-LIGU	FLL	149	9.287437263	2004 EC.ITA-IT-TY.LI LL	63-206	122	28	16	581	1	6 qu	raise
2004 EC.ITA-IT-LIGU	FUN	2	2.265579191	2004 EC, ITA-IT-TY, LI GN	76-240	130	42	1	21	1	6 qu	raise
2004 EC.ITA-IT-SARE	DШ	298	95.56549205	2004 EC.ITA-IT-SARD LL	106-223	142	45	3	70	1	6 qu	raise
2004 EC.ITA-IT-SARD	DUN	5	0.057094655	2004 EC.ITA-IT-TYRR GN	85-230	133	36	88	2453	5	6 mm	subs-raise
2004 EC.ITA-IT-TYRE	RHP	5	1.763179328	2004 EC.ITA-IT-TYRR HP	90-180	135	39	3	77	5	6 mm	raise
2004 EC.ITA-IT-TYRF	RLL	957	263.3656496	2004 EC.ITA-IT-TYRR LL	80-155	97	11	4	324	5	6 mm	raise
2004 EC.ITA-IT-TYRF	RUN	1256	14.33726718	2004 EC.ITA-IT-TYRR GN	85-230	133	36	88	2453	5	6 mm	raise
2004 EC.MLT	ш	195	1.566489573	2005 EC.MLT LL	52-184	101	17	125	7520	1	6 mm	subs-raise
2004 EC.PRT-PT-MA	II.	120	0.13577025	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 JPN	ш	3	0.002876499	2004 EC.E5P-E5-5W/LL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 LBY	ш	2	0.00277523	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 MAR	GN	1299	17.78102707	2004 MAR GN	85-240	147	53	73	1390	5	6 mm	raise
2004 MAR	ш	1954	2.223369959	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 TUN	ш	791	18.41698518	2004 EC.ITA-IT-SIC.S'LL	45-235	121	28	43	1525	5	6 mm	subs-raise
2004 TUR	ш	386	4.594071808	2004 EC.GRC LL	60-235	134	38	84	2225	5	6 yy	subs-raise
2005 DZA	GN	311	3.657412701	2005 MAR GN	90-260	156	64	85	1320	5	6 mm	subs-raise
2005 DZA	HL	175	0.223963785	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 DZA	ш	93	0.119020754	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 DZA	PS	56	0.071668411	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.CYP	ш	53	0.558458101	2005 EC.GRC LL	85-225	133	37	95	2577	5	6 qu	subs-raise
2005 EC.ESP	ш	24	0.030349013	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.ESP 2005 EC.ESP	ш	13	0.030349013	2005 EC.ESP-ES-SWILL 2005 EC.ESP-ES-SWILL	50-220	110	18	781 781	42742	5	6 mm	subs-raise subs-raise
2005 EC.ESP 2005 EC.ESP	ш	13	0.016563062	2005 EC.ESP-ES-SWILL 2005 EC.ESP-ES-SWILL	50-220	110	18		42742			subs-raise subs-raise
		64						781		5	6 mm	
2005 EC.ESP	TP	3	0.004037747	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.ESP	UN	45	0.059388797	2005 EC.ESP-ES-SW/LL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.ESP-ES-SW		760	0.972444355	2005 EC.E5P-E5-5W/LL	50-220	110	18	781	42742	5	6 mm	raise
2005 EC.GRC	ш	1424	15.06418033	2005 EC.GRC LL	85-225	133	37	95	2577	5	6 qu	raise
2005 EC.ITA-IT-SIC.S		2608	115.1733727	2005 EC.ITA-IT-SIC.S'LL	75-185	113	19	23	1187	5	6 mm	raise
2005 EC.ITA	5P	2	0.410354194	2005 EC.ITA-IT-TYRR HP	85-200	144	47	5	109	5	6 mm	subs-raise
2005 EC.ITA	TP	2	0.332199586	2005 EC.ITA-IT-TYRR HP	85-200	144	47	5	109	5	6 mm	subs-raise
2005 EC.ITA	UN	68	13.19027767	2005 EC.ITA-IT-TYRR HP	85-200	144	47	5	109	5	6 mm	subs-raise
2005 EC.ITA-IT-ADRI		564	0.395484091	2005 EC.ITA-IT-ADRI. LL	77-230	146	58	1426	24722	1	6 qu	raise
2005 EC.ITA-IT-ADRI		6	0.15811225	2005 EC.ITA-IT-TYRR GN	75-250	135	40	38	955	5	6 mm	subs-raise
2005 EC.ITA-IT-IONIJ		171	7.989980555	2005 EC.ITA-IT-ADRI. LL	75-205	124	28	21	766	5	6 qu	raise
2005 EC.ITA-IT-IONIJ		41	2.58394223	2005 EC.ITA-IT-IONIA UN	45-190	97	15	16	1066	5	6 qu	raise
2005 EC.ITA-IT-IONI.		815	35.98726335	2005 EC.ITA-IT-SIC.S'LL	75-185	113	19	23	1187	5	6 mm	subs-raise
2005 EC.ITA-IT-IONI.	EUN.	253	6.674181576	2005 EC.ITA-IT-TYRR GN	75-250	135	40	38	955	5	6 mm	subs-raise
2005 EC.ITA-IT-LIGU	FLL	153	0.303355474	2005 EC.ITA-IT-TY.LI LL	72-194	133	37	504	13572	1	6 qu	raise
2005 EC.ITA-IT-LIGU	FUN	49	1.291250038	2005 EC.ITA-IT-TYRR GN	75-250	135	40	38	955	5	6 mm	subs-raise
2005 EC.ITA-IT-SARE	ВLL	266	3.84705977	2005 EC.ITA-IT-TYRR LL	80-240	153	64	69	1085	5	6 mm	subs-raise
2005 EC.ITA-IT-SARD	DUN	34	0.895959414	2005 EC.ITA-IT-TYRR GN	75-250	135	40	38	955	5	6 mm	subs-raise
2005 EC.ITA-IT-TYRF		6	1.082579827	2005 EC.ITA-IT-TYRR HP	85-200	144	47	5	109	5	6 mm	raise
2005 EC.ITA-IT-TYRF		982	14.20866692	2005 EC.ITA-IT-TYRR LL	80-240	153	64	69	1085	5	6 mm	raise
2005 EC.ITA-IT-TYRF		1440	37.94852103	2005 EC.ITA-IT-TYRR GN	75-250	135	40	38	955	5	6 mm	raise
	ш	73	0.588555012	2005 EC.MLT LL	52-184	101	17	125	7520	1	6 mm	subs-raise
2005 EC.MLT	ш	289	2,31637296	2005 EC.MLT LL	52-184	101	17	125	7520	1	6 mm	raise
		14	0.017804481	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.MLT	111		U.U : / OU ++O	2000 CO.LOP-CO-OVE CL		110		101	42142		0.000	
2005 EC.MLT 2005 EC.PRT-PT-MA		-	0.006454505	SOME EC ECC CHALL		445		794	42742		E	
2005 EC.MLT 2005 EC.PRT-PT-MA 2005 JPN	ш	5	0.006154525	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.MLT 2005 EC.PRT-PT-MA 2005 JPN 2005 MAR	LL GN	722	8.490842347	2005 MAR GN	90-260	156	64	85	1320	5	6 mm	raise
2005 EC.MLT 2005 EC.PRT-PT-MA 2005 JPN 2005 MAR 2005 MAR	UL GN UL	722 1801	8.490842347 2.304907294	2005 MAR GN 2005 EC.ESP-ES-SWILL	90-260 50-220	156 110	64 18	85 781	1320 42742	5 5	6 mm 6 mm	raise subs-raise
2005 EC.MLT 2005 EC.PRT-PT-MA 2005 JPN 2005 MAR	LL GN	722	8.490842347	2005 MAR GN	90-260	156	64	85	1320	5	6 mm	raise

Table 4. Catch at size, in number of fish, of Mediterranean swordfish.

Size																					
(cm)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
10											102				41						
30 35											102 1013										
40	49		807		3490	82		54		173	1246	1	1				10		1438		
45	496	332	007	440	1996	82		157		173	274		1				20		226	116	23
50	1268	1721		757	3715	175	231	1333	676	520	284			679	275		105	24	2467	1195	925
55	732	1453	2262	1636	5249	205	443	2466	1272	829	2230	133	44	5950	52	93	218	71	3672	2869	3726
60	1039	2996	1570	2091	8461	498	1713	6088	3419	3506	7934	210	1032	7289	510	401	405	154	9877	3880	972
65	2572	2965	6060	4798	6532	2452	2907	10565	6565	8855	7942	1387	1985	3327	2437	1213	812	808	13028	14401	893
70	4000	3965	9856	17416	12701	4357	8725	12271	11006	19596	9961	12286	8954	10004	11940	3725	10942	2235	10117	20594	1546
75	7351	4286	15570	20722	16227	8395	11145	12600	17584	21730	15047	10465	9893	16843	11467	5285	7018	9451	6579	12661	2992
80	14266	6855	22931	36847	22965	15621	13127	16968	22807	16438	22578	14524	13687	23804	12777	12971	12306	22051	8133	19693	8959
85	15203	11290	21179	33964	22505	29901	19676	17974	28555	11403	32709	19746	17651	47539	18334	23308	20539	35570	14535	36247	16627
90 95	23075 22770	15964 19756	34150 29244	53565 51714	36622 36975	45180 41135	26301 33195	17817 26830	33716 40528	23079 31967	40882 52035	32765 39212	26167 31493	53251 46525	30274 35183	38664 40952	31562 39155	65227 50924	31567 40235	74126 44466	35610 46099
100	34296	21578	34523	62083	48641	51963	41551	48117	56454	65700	58235	39652	38909	43977	40204	49383	45477	56134	61056	43680	61005
105	28847	19395	19941	45087	47257	50078	43173	60415	64008	59031	46353	37649	32642	37139	45542	41023	43974	56007	62920	34927	56929
110	30257	33073	24176	36776	39544	64052	42074	65567	72395	73148	40637	34490	34439	39861	39276	43291	49167	68031	78404	43299	68569
115	26992	34814	33384	40707	40861	60707	43728	55991	46493	62386	34593	32068	41396	38572	39972	39997	46150	55710	61124	37028	50229
120	29897	42255	23781	36050	37933	73117	46435	43702	35408	50955	37230	38290	43432	32689	33230	42564	42730	34555	55377	35034	34862
125	29454	39849	29188	32290	37531	56973	35736	31799	28727	37168	27193	32510	45167	27857	28551	34305	38671	33908	42236	32462	31854
130	25013	32335	26908	27267	23868	39333	36012	25736	22606	29773	30273	28908	38824	24333	22205	33224	32692	26446	34825	29991	28606
135	25216	24557	28630	25745	26480	26854	32724	19956	14886	25879	21606	22359	31330	17825	21371	24598	26259	17683	26154	22801	21957
140	20227	22025	20742	18736	25653	21701	25548	15992	13699	17948	17130	19094	25039	16370	17439	21076	21920	11511	20327	17544	16470
145 150	20607 16353	14890 20485	16738 23857	25916 24549	22039 17897	12398 12603	18183 15988	13649 13425	9978 9251	13071 10976	10317 8095	12268 11787	14484 17263	12715 11458	14595 13732	16108 15983	18493 13967	9355 6349	15756 13781	13488 13100	13124 12389
155	14281	11603	23837 17741	23569	18766	8162	13852	9361	8041	8818	9047	8867	10172	11590	13736	12262	9676	5974	10898	10637	9683
160	14760	14619	19574	16304	16830	9053	10482	10119	7497	9728	8391	6246	17504	9967	9526	12126	8596	6435	9067	9682	8822
165	9999	15121	19225	20563	15231	5194	8100	7546	6525	7060	5307	5420	7547	9678	8779	9425	8206	5488	6216	8402	7639
170	12454	14798	15095	12372	9931	5611	9020	7579	5916	6991	5576	4884	5180	8750	7781	9212	5367	4130	5411	7687	6044
175	9401	9491	13803	13137	7855	5011	5463	5158	4077	6405	4458	3949	4337	6183	5193	5423	4773	3121	2655	4703	4935
180	11154	10106	11439	7480	5964	3885	3707	4718	3776	4628	3481	2606	4609	5925	5705	5420	3488	2406	3305	4620	3475
185	3457	4977	5016	4948	2840	1530	3366	2965	2384	3823	3576	2547	2915	3601	3718	3585	3198	2195	1889	2593	3662
190	2907	4359	3146	2955	3878	1689	2150	2087	2353	2926	1332	1602	839	2959	3001	3375	2979	1405	2038	2402	1693
195	1468	688	1419	2444	3334	1306	1688	2423	1697	2304	1343	1277	729	2304	991	1741	1842	1317	1197	1643	1459
200	1215	1196	1746	2473	1187	886	1379	2359	1384	1417	1071	920	915	1186	949	1139	802	910	774	1346	1268
205 210	839 395	2406 2185	1255 659	666 1975	661 1141	243 469	1076 512	938 215	718 519	729 963	872 512	666 501	467 230	801 603	460 546	1051 476	749 1261	439 574	1163 578	829 563	799 620
215	612	363	1809	1060	644	313	146	95	104	389	434	181	143	426	255	212	750	237	93	309	829
220	571	110	451	451	10	66	222	98	161	196	186	266	99	175	165	341	312	214	85	315	504
225	*	5	8	13	511	74	182	133	174	292	64	8	58	181	48		143	237	89	96	271
230		5	807	442	2		254	183	34	166	16	2	86	143	42	58	114	95		114	163
235							55	36	15	62	51	4		36	7	88	209	71	43	192	124
240	3	4						29	2	61	25	1	1	28	7	44				23	77
245									44	7	42			23	96	4					12
250	3				3				2.		25	_		0	46	44	20	2.1			59
255									21		25	1	1	-	48		20	24			12
260											25	1	1	62 0	41					39	12
265 270												1	1	U	17					39	
280												1	1	0	17						
285		1	0									•		Ü		4					
295		_	_													4					
Grand	463497	468876	538688	710008	633928	661357	560269	575512	585477	641094	571761	479749	529665	582627	500517	554196	555077	597474	659337	609796	566529

Table 5. Catch at age, in number of fish, of Mediterranean swordfish.

Age	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2
0	6956	10260	12669	13206	31982	4320	7039	23117	14134	17802	23486	4943	5447	19237	5703	2541	3599	1319	35011	27356	6
1	81312	57372	125110	200401	138059	135680	103688	96640	143891	113441	158900	116850	99162	186668	110510	115895	111760	175122	98087	193664	102
2	142885	138165	132141	216626	206460	279271	205034	261677	268701	299377	214501	175107	175012	188768	192234	207824	218564	267177	305739	189784	267
3	99727	122451	102534	107217	113313	161486	133993	101367	85861	118543	101570	109047	146535	89276	92402	117320	123261	96208	134199	106013	102
4	60524	57874	67234	80562	70340	43836	60258	44158	33884	41780	34615	41219	54040	43398	49690	54575	53357	27395	49567	45355	42
5	32604	37985	48388	46531	39786	18046	24862	22567	17993	21857	17913	15476	31916	25547	23974	27689	20875	14760	19485	23423	20
6	23564	24430	29722	25046	17394	10545	12879	12535	9888	13108	9861	7997	8986	14932	13542	14084	9971	6910	7991	11776	10
7	9652	11631	11477	9713	7550	3955	6043	6108	5315	7429	5727	4625	5450	7649	7753	7773	6360	3977	4375	5950	5
8	2636	2434	2679	3625	4885	2166	2645	3257	2636	3476	1836	1934	1115	3488	2029	3031	2968	1803	2058	2650	2
9	1547	2158	2248	2737	1452	957	1794	2734	1672	1715	1574	1320	1085	1575	1162	1545	1090	1071	1272	1673	1
10+	2089	4116	4486	4342	2707	1095	2033	1352	1503	2568	1776	1232	916	2088	1518	1920	3271	1730	1553	2154	3
	463497	468876	538688	710008	633928	661357	560269	575512	585477	641094	571761	479749	529665	582627	500517	554196	555077	597474	659337	609796	566

Table 6. Inputs used for production modeling of the Mediterranean swordfish stock. Note that negative CPUE values indicate missing data which were not used in the model fitting. (*) negative values represent missing values.

Year	CPUE*	Yield (t)	Year	CPUE	Yield (t)
1950	-9.00	1586.0	1978	1.47	5958.0
1951	-9.00	1580.0	1979	3.02	5547.0
1952	-9.00	1837.0	1980	0.77	6579.0
1953	-9.00	1500.0	1981	0.42	6813.0
1954	-9.00	1952.0	1982	-9.00	6343.0
1955	-9.00	1840.0	1983	0.61	6896.4
1956	-9.00	1893.0	1984	1.31	13665.6
1957	-9.00	2000.0	1985	2.17	15292.0
1958	-9.00	2914.0	1986	0.83	16764.9
1959	-9.00	2200.0	1987	0.53	18320.0
1960	-9.00	3112.0	1988	0.68	20365.4
1961	-9.00	3206.0	1989	1.07	17761.9
1962	-9.00	3300.0	1990	0.78	16017.5
1963	-9.00	3318.0	1991	0.59	15746.3
1964	-9.00	2394.0	1992	0.47	14709.4
1965	-9.00	3760.0	1993	0.41	13264.9
1966	-9.00	3752.0	1994	0.54	16082.2
1967	-9.00	3217.0	1995	0.58	13014.8
1968	-9.00	3440.0	1996	0.57	12052.8
1969	-9.00	3723.0	1997	0.41	14693.3
1970	-9.00	3341.0	1998	0.64	14368.9
1971	-9.00	4975.0	1999	0.64	13698.6
1972	-9.00	5958.0	2000	0.42	15568.8
1973	-7.80	4807.0	2001	0.55	15006.1
1974	-9.00	5034.0	2002	0.59	12814.3
1975	0.22	4301.0	2003	0.50	15674.1
1976	0.74	4637.0	2004	0.52	14405.4
1977	-9.00	5280.0	2005	0.53	14601.1

Table 7. Summary of production model estimates of current stock status based on bootstrap (999) results from three production model outcomes (see **Appendix 4** for details).

$P(F>F_{MSY})$	0.70		
P(B <b<sub>MSY)</b<sub>	0.64		
$P(B < B_{MSY}, F > F_{MSY})$	0.64		
	Median	10%-tile	90%-tile
B/B_{MSY}	0.87	0.50	1.38
F/F _{MSY}	1.27	0.64	2.54
MSY	14,254	9,306	16,823

Table 8. Fishing mortality by age estimates obtained from the XSA model.

Age	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	0.01	0.01	0.01	0.01	0.04	0.00	0.01	0.02	0.01	0.02	0.03	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.03	0.03	0.01
1	0.12	0.10	0.17	0.24	0.17	0.21	0.15	0.13	0.17	0.15	0.22	0.18	0.16	0.26	0.16	0.17	0.14	0.21	0.15	0.23	0.15
2	0.29	0.30	0.33	0.51	0.42	0.61	0.56	0.69	0.65	0.65	0.49	0.39	0.46	0.49	0.48	0.52	0.54	0.58	0.70	0.48	0.55
3	0.36	0.44	0.39	0.48	0.56	0.69	0.68	0.60	0.51	0.68	0.48	0.49	0.68	0.45	0.48	0.60	0.69	0.49	0.66	0.56	0.53
4	0.39	0.37	0.45	0.60	0.69	0.44	0.60	0.50	0.41	0.51	0.43	0.37	0.49	0.43	0.49	0.59	0.61	0.31	0.50	0.49	0.47
- 5	0.43	0.45	0.61	0.66	0.69	0.37	0.48	0.47	0.40	0.51	0.43	0.35	0.55	0.45	0.45	0.57	0.47	0.34	0.39	0.47	0.44
6	0.60	0.68	0.78	0.76	0.56	0.39	0.50	0.48	0.39	0.56	0.46	0.34	0.35	0.54	0.45	0.53	0.41	0.28	0.31	0.43	0.41
7	0.65	0.69	0.82	0.64	0.55	0.24	0.40	0.47	0.38	0.57	0.52	0.40	0.42	0.58	0.60	0.52	0.48	0.29	0.28	0.40	0.40
8	0.34	0.34	0.33	0.68	0.79	0.29	0.25	0.39	0.38	0.46	0.27	0.33	0.16	0.52	0.30	0.50	0.38	0.24	0.23	0.28	0.26
9	0.48	0.51	0.60	0.67	0.65	0.34	0.43	0.44	0.36	0.46	0.39	0.31	0.31	0.35	0.33	0.39	0.34	0.23	0.27	0.30	0.26
10	0.48	0.51	0.60	0.67	0.65	0.34	0.43	0.44	0.36	0.46	0.39	0.31	0.31	0.35	0.33	0.39	0.34	0.23	0.27	0.30	0.26

Table 9. Estimates of stock abundance (numbers) at the beginning of the year, obtained from the XSA model.

Age	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	858436	1059774	1266447	1192898	998972	996250	1050985	1234377	1078160	1112449	957806	930276	1086685	1001879	1016078	1141916	1227789	944378	1322151	1033050	992349
1	797601	696545	858403	1025437	964736	789016	811759	854116	989748	869958	894720	762979	757181	884782	802898	826743	932627	1001978	772000	1050874	821091
2	621285	579714	518539	590113	659254	665501	523854	571183	612186	680732	610051	589513	519444	530583	556513	557802	572480	662851	662717	543677	686098
3	359138	380215	350448	305825	289114	354544	295131	245383	233945	261085	289799	307254	325503	268391	265271	283343	270574	273027	303651	269566	275048
4	206550	204492	201474	194893	154309	135289	146042	121949	110237	114633	107875	146248	153851	135595	139697	134376	127051	111435	137326	128691	125822
5	101496	114786	115466	104674	87509	63513	71453	65672	60285	59854	56429	57275	82731	77537	72092	69853	61194	56307	66617	68028	64722
6	56812	53856	59920	51264	44125	36109	35799	36220	33541	33210	29426	30133	32994	39164	40575	37530	32412	31390	32842	37053	34703
7	21924	25438	22272	22551	19628	20559	20099	17772	18420	18586	15459	15251	17488	18944	18696	21079	18115	17590	19486	19707	19774
8	10149	9324	10439	8007	9780	9311	13274	11033	9075	10310	8570	7528	8337	9428	8666	8373	10296	9132	10826	12021	10796
9	4420	5941	5448	6140	3317	3651	5676	8488	6110	5064	5325	5365	4426	5821	4595	5271	4140	5765	5854	7012	7459
10	5969	11331	10871	9741	6184	4178	6432	4198	5492	7583	6008	5007	3737	7717	6003	6551	12423	9313	7148	9028	15108

Table 10. Results obtained with VPA-2Box for Mediterranean swordfish.

VPA-2BOX SUMMARY STATISTICS AND DIAGNOSTIC OUTPUT

Med SWO 1985-2005 10:11, 6 September 2007

Total objective function = -22.01 (with constants) = 45.07

Number of parameters (P) = 8

Number of data points (D) = 73

AIC : 2*objective+2P = 106.14

AICc: 2*objective+Plog(D) = 124.46

Chi-square discrepancy = 219.10

Loglikelihoods (deviance) = 22.01 (192.39)

effort data = 22.01 (192.39)

Log-posteriors = 0.00

catchability = 0.00

f-ratio = 0.00

natural mortality = 0.00

natural mortality = 0.00

mixing coeff. = 0.00

Constraints = 0.00

terminal F = 0.00

stock-rec./sex ratio = 0.00

Out of bounds penalty = 0.00

TABLE 1. FISHING MORTALITY RATE FOR SWO Med

	1	2	3	4	5	6	7	8	9	10	11
1985	0.009	0.119	0.294	0.370	0.387	0.433	0.609	0.605	0.270	0.202	0.202
1986	0.011	0.096	0.304	0.441	0.382	0.450	0.681	0.702	0.298	0.370	0.370
1987	0.011	0.176	0.331	0.388	0.464	0.640	0.777	0.819	0.340	0.494	0.494
1988	0.012	0.242	0.518	0.490	0.603	0.687	0.833	0.635	0.673	0.696	0.696
1989	0.036	0.169	0.422	0.568	0.702	0.689	0.601	0.654	0.784	0.636	0.636
1990	0.005	0.209	0.603	0.692	0.450	0.387	0.390	0.262	0.393	0.338	0.338
1991	0.007	0.150	0.558	0.662	0.607	0.499	0.528	0.406	0.280	0.663	0.663
1992	0.021	0.131	0.682	0.599	0.477	0.482	0.509	0.516	0.400	0.522	0.522
1993	0.015	0.175	0.639	0.499	0.409	0.363	0.404	0.422	0.441	0.369	0.369
1994	0.018	0.156	0.658	0.658	0.485	0.507	0.493	0.607	0.541	0.579	0.579
1995	0.027	0.217	0.491	0.489	0.406	0.397	0.453	0.416	0.292	0.507	0.507
1996	0.006	0.185	0.393	0.499	0.375	0.320	0.309	0.398	0.240	0.353	0.353
1997	0.006	0.159	0.462	0.673	0.498	0.561	0.311	0.359	0.156	0.206	0.206
1998	0.022	0.270	0.508	0.455	0.429	0.466	0.562	0.475	0.411	0.343	0.343
1999	0.006	0.166	0.492	0.504	0.497	0.448	0.485	0.649	0.220	0.232	0.232
2000	0.003	0.171	0.533	0.640	0.639	0.576	0.519	0.575	0.574	0.260	0.260
2001	0.003	0.144	0.557	0.711	0.688	0.543	0.421	0.471	0.451	0.418	0.418
2002	0.002	0.217	0.597	0.512	0.333	0.409	0.346	0.295	0.235	0.290	0.290
2003	0.028	0.148	0.717	0.694	0.546	0.419	0.407	0.384	0.244	0.259	0.259
2004	0.039	0.213	0.471	0.589	0.535	0.543	0.485	0.607	0.425	0.321	0.321
2005	0.005	0.203	0.507	0.507	0.507	0.507	0.507	0.483	0.483	0.483	0.483

TABLE 2. ABUNDANCE AT THE BEGINNING OF THE YEAR [BY AREA] FOR SWO Med

=											
	1	2	3	4	5	6	7	8	9	10	11
1985	853462.	796739.	616580.	353546.	206569.	101617.	56464.	23221.	12247.	9290.	12545.
1986	1053587.	692476.	579010.	376370.	199924.	114802.	53956.	25155.	10380.	7657.	14604.
1987	1263362.	853340.	515207.	349874.	198335.	111734.	59934.	22353.	10210.	6310.	12593.
1988	1205321.	1022910.	585970.	303101.	194424.	102113.	48229.	22561.	8072.	5953.	9443.
1989	999786.	974910.	657188.	285737.	152087.	87127.	42043.	17168.	9789.	3370.	6283.
1990	1005953.	789684.	673827.	352859.	132539.	61708.	35799.	18865.	7309.	3658.	4186.
1991	1064293.	819703.	524399.	301905.	144673.	69209.	34325.	19845.	11888.	4040.	4579.
1992	1230363.	865015.	577687.	245826.	127453.	64558.	34390.	16570.	10826.	7355.	3637.
1993	1071362.	986457.	621109.	239228.	110598.	64773.	32632.	16928.	8096.	5941.	5340.
1994	1114172.	864388.	678038.	268342.	118939.	60148.	36876.	17844.	9091.	4264.	6385.
1995	955786.	896127.	605493.	287611.	113771.	59940.	29666.	18447.	7966.	4331.	4887.
1996	911834.	761327.	590663.	303538.	144462.	62089.	32999.	15447.	9965.	4871.	4547.
1997	1064216.	742080.	518092.	326443.	150822.	81272.	36928.	19831.	8496.	6419.	5419.
1998	990080.	866387.	518225.	267288.	136359.	75067.	37976.	22159.	11342.	5952.	7890.
1999	997147.	793237.	541468.	255196.	138796.	72716.	38559.	17728.	11286.	6157.	8043.
2000	1121672.	811247.	549896.	271075.	126162.	69118.	38038.	19435.	7585.	7414.	9214.
2001	1210564.	916051.	559797.	264130.	117071.	54510.	31813.	18529.	8957.	3498.	10498.
2002	958634.	987873.	649287.	262697.	106203.	48193.	25940.	17102.	9470.	4672.	7546.
2003	1395125.	783675.	651177.	292608.	128903.	62341.	26214.	15032.	10427.	6131.	7485.
2004	779565.	1110620.	553233.	260198.	119717.	61163.	33561.	14292.	8380.	6685.	8607.
2005	1497990.	613560.	734974.	282844.	118194.	57406.	29106.	16925.	6380.	4484.	9082.
2006		1220249.	410140.	362450.	139484.	58287.	28310.	14354.	8546.	3222.	6850.

TABLE 3. CATCH OF SWO Med

========	CAICH OF SWO	:========	.========	.========	========	========	========		.========	=========	
==											
	1	2	3	4	5	6	7	8	9	10	11
1985	6956.	81312.	142885.	99727.	60524.	32604.	23564.	9652.	2636.	1547.	2089.
1986	10260.	57372.	138165.	122451.	57874.	37985.	24430.	11631.	2434.	2158.	4116.
1987	12669.	125110.	132141.	102534.	67234.	48388.	29722.	11477.	2679.	2248.	4486.
1988	13206.	200401.	216626.	107217.	80562.	46531.	25046.	9713.	3625.	2737.	4342.
1989	31982.	138059.	206460.	113313.	70340.	39786.	17394.	7550.	4885.	1452.	2707.
1990	4320.	135680.	279271.	161486.	43836.	18046.	10545.	3955.	2166.	957.	1095.
1991	7039.	103688.	205034.	133993.	60258.	24862.	12879.	6043.	2645.	1794.	2033.
1992	23117.	96640.	261677.	101367.	44158.	22567.	12535.	6108.	3257.	2734.	1352.
1993	14134.	143891.	268701.	85861.	33884.	17993.	9888.	5315.	2636.	1672.	1503.
1994	17802.	113441.	299377.	118543.	41780.	21857.	13108.	7429.	3476.	1715.	2568.
1995	23486.	158900.	214501.	101570.	34615.	17913.	9861.	5727.	1836.	1574.	1776.
1996	4943.	116850.	175107.	109047.	41219.	15476.	7997.	4625.	1934.	1320.	1232.
1997	5447.	99162.	175012.	146535.	54040.	31916.	8986.	5450.	1115.	1085.	916.
1998	19237.	186668.	188768.	89276.	43398.	25547.	14932.	7649.	3488.	1575.	2088.
1999	5703.	110510.	192234.	92402.	49690.	23974.	13542.	7753.	2029.	1162.	1518.
2000	2541.	115895.	207824.	117320.	54575.	27689.	14084.	7773.	3031.	1545.	1920.
2001	3599.	111760.	218564.	123261.	53357.	20875.	9971.	6360.	2968.	1090.	3271.
2002	1319.	175122.	267177.	96208.	27395.	14760.	6910.	3977.	1803.	1071.	1730.
2002	35011.	98087.	305739.	134199.	49567.	19485.	7991.	4375.	2058.	1272.	1553.
2003	27356.		189784.			23423.				1673.	2154.
		193664.		106013.	45355.		11776.	5950.	2650.		
2005	6866.	102412.	267135.	102803.	42959.	20865.	10579.	5926.	2234.	1570.	3180.

TABLE 4. SPAWNING STOCK FECUNDITY AND RECRUITMENT OF SWO Med

year	spawning biomass	
1985	34910.	853462.
1986	35546.	1053587.
1987	35038.	1263362.
1988	31432.	1205321.
1989	26051.	999786.
1990	23069.	1005953.
1991	24349.	1064293.
1992	22123.	1230363.
1993	20860.	1071362.
1994	21923.	1114172.
1995	21033.	955786.
1996	23114.	911834.
1997	25760.	1064216.
1998	25279.	990080.
1999	24768.	997147.
2000	24068.	1121672.
2001	21667.	1210564.
2002	19699.	958634.
2003	22199.	1395125.
2004	22031.	779565.
2005	21468.	1497990.
		.========

23

Table 11. Inputs for the equilibrium per-recruit analyses.

Age	WeightVPA	WeightXSA	SelectivityVPA	Sel.XSA	М	Maturity
0	2.514321	3.32	0.024095	0.03	0.2	0
1	7.735611	7.81	0.289941	0.4	0.2	0
2	16.80517	16.98	0.915818	0.9	0.2	0
3	30.47185	30.84	1	1	0.2	0.5
4	48.35025	49.01	0.868821	0.9	0.2	1
5	68.15898	68.83	0.798131	0.9	0.2	1
6	87.37038	89.29	0.698365	0.8	0.2	1
7	106.7164	107.98	0.74868	1	0.2	1
8	125.7099	126.75	0.6183	0.6	0.2	1
9	142.5164	144.02	0.494168	0.7	0.2	1
10	181.3714	180.177	0.494168	0.7	0.2	1

Table 12. Equilibrium catch (numbers), yield (t) and spawning stock biomass (t) corresponding to the 2005 level of fishing mortality and other biological reference points. Absolute quantities reflect an assumed level of recruitment of 1,059,533 fish.

VPA	F	Catch	Yield	SSB	XSA	F	Catch	Yield	SSB
F2005	0.51	539,062	14,917	22,629	F2005	0.56	572,218	14,339	16,319
Fmax	0.30	437,174	16,010	54,401	Fmax	0.26	425,023	16,570	58,957
F20%	0.29	432,577	16,008	56,109	F20%	0.27	432,168	16,564	56,320
F30%	0.21	363,444	15,461	84,164	F30%	0.19	361,622	16,146	84,481
F40%	0.16	302,236	14,223	112,218	F40%	0.14	299,814	14,946	112,641

Figure 1. Cumulative estimates of swordfish catches (t) in the Mediterranean by major gear type, 1950-2005.

Figure 2. Map of the Mediterranean Sea with the locations referred to in the Report. The Mediterranean/Atlantic boundary used by ICCAT is at 5°W longitude. The approximate provincial administrative limit for the Mediterranean used by Morocco is also shown.

Figure 3. The relative CPUE time series used in production modeling, which results from the combined information in the Italian longline, Greek longline, Spanish longline, Japanese longline, Moroccan gillnet, and Italian gillnet time series.

Figure 4. Fits of the three productions models (ASPIC) with different model structures to the observed CPUE data.

Figure 5. Scatter of stock status results for 2005 from 1500 bootstrap results using three model formulations (ASPIC, see **Appendix 4**) for the Mediterranean swordfish. The median outcome is indicated as the large closed circle in the center of the distribution of points.

Figure 6.a. The median estimated trajectory of B- and F-ratios expressed relative to MSY for the period 1968-2005. The results are amalgamated from the three production model scenarios described in the **Appendix 4**.

Figure 6.b. The time trajectory of estimated median relative biomass and relative F starting from 1968 based on the combined bootstrap outcomes of the ASPIC production model.

Figure 7. Estimates of B/B_{MSY} (upper plate) and F/F_{MSY} (lower plate) with associated 80% bootstrap confidence limits (dashed lines) based on the combined bootstrap outcomes of the ASPIC production model.

Figure 8. Observed abundance indices and model fitted line based on the predicted indices, for the TSM production model.

Figure 9. Relative biomass and catch rate estimates from the TSM production model.

Figure 10. Estimated catchability residuals by fleet from the XSA model.

Figure 11. Mean Fs (ages 2-5) by year estimates obtained with the XSA model.

Figure 12. Total (TB) and spawning stock biomass (SSB) estimates obtained with the XSA model.

Figure 13. Fits to the available CPUE indices obtained using VPA-2Box, in log scale. The diamonds are the observed data and the squares connected with a line are the predicted ones.

Figure 14. Estimated selectivities at age for each index used in the VPA-2Box analyses.

Figure 15. Estimated populations sizes at age for Mediterranean swordfish obtained with the VPA-2Box analyses.

Figure 16. Estimated spawning and exploitable biomass for Mediterranean swordfish obtained with the VPA-2Box analyses.

Figure 17. Estimated fishing mortality rates for Mediterranean swordfish obtained with the VPA-2Box analyses.

Figure 18. Estimated selectivity patterns for Mediterranean swordfish obtained with the VPA-2Box analyses, by 5-year blocks.

Figure 19. Comparison of some results obtained with two different age-structured assessment methods applied to Mediterranean swordfish. Top: Recruitment; Middle: Fishing mortality at age. Bottom: Spawning biomass (t) and total biomass (kg).

Figure 20a. Equilibrium yield – F relationship for Mediterranean swordfish based on VPA-2box (scaled assuming a level of recruitment of 1,059,533 fish).

Figure 20b. Equilibrium yield – F relationship for Mediterranean swordfish based on XSA (scaled assuming a level of recruitment of 1,059,533 fish).

Figure 21. Trends in the estimated ratios of fishing mortality relative to the F that maximizes yield per recruit (F_{max}) against the estimated ratios of spawning biomass relative to the level that would result from fishing at F_{max} . Top: VPA-2Box results. Bottom: XSA results. The large open circles indicate the position of the 2005 data point.

Figure 22. The range of bootstrap outcomes from the VPA-2BOX status evaluations. The large, closed circle represents the deterministic outcome. Although the uncertainty in the outcomes is high, all of the estimates indicate the stock is overfished and undergoing overfishing

Figure 23a. Forecasts of B/B_{MSY} for the different constant catch scenarios shown based on the combined bootstrap outcomes from the ASPIC production model. The lines with symbols represent median outcomes. The assumed constant catch for the MSY scenario was 14,300 t. The confidence interval reflects the upper 80% bound for the 10,000 t scenario and the lower boundary is that from the 16,000 t scenario.

Figure 23b. Forecasts of B/B_{MAX} (B_{MAX} is a proxy for B_{MSY}) for the different constant catch scenarios shown based on the combined bootstrap outcomes from the VPA-2BOX model. The lines with symbols represent median outcomes. The confidence interval reflects the upper 80% bound for the 10,000 t scenario and the lower boundary is that from the 16,000 t scenario.

Figure 24. From left to right and top to bottom: Box-whisker plots by year, for the total catch (weight), juvenile catch (weight), juvenile catch (number) and juvenile catch ratio (number) estimates obtained from the VPA Scenario 1 simulations. Solid circles indicate the corresponding reported rates for the years 2000-2005.

Figure 25. From left to right and top to bottom: Box-whisker plots by year, for the total catch (weight), juvenile catch (weight), juvenile catch (number) and juvenile catch ratio (number) estimates obtained from the VPA Scenario 2 simulations. Solid circles indicate the corresponding reported rates for the years 2000-2005.

Figure 26. From left to right and top to bottom: Box-whisker plots by year, for the total catch (weight), juvenile catch (weight), juvenile catch (number) and juvenile catch ratio (number) estimates obtained from the VPA Scenario 3 simulations. Solid circles indicate the corresponding reported rates for the years 2000-2005.

Figure 27. From left to right and top to bottom: Box-whisker plots by year, for the total catch (weight), juvenile catch (weight), juvenile catch (number) and juvenile catch ratio (number) estimates obtained from the VPA Scenario 4 simulations. Solid circles indicate the corresponding reported rates for the years 2000-2005.

Figure 28. Projections results in terms of fishing mortality and biomass relatives to F_{max} and B_{max} for the four VPA scenarios considered.

Figure 29. Median SSB and annual catch levels with the associated 80% confidence limits as predicted by the seasonal closure scenarios. Estimates refer to the last ten years of the projection period, i.e. after stabilization.

Agenda

- 1. Opening, adoption of the Agenda and meeting arrangements.
- 2. Descriptions of fisheries
- 3. Biological data
- 4. Catch data
- 5. Relative abundance indices
- 6. Stock status results
- 7. Projections
- 8. Recommendations
 - 8.1 Research and statistics
 - 8.2 Management
- 9. Other matters
- 10. Adoption of the report and closure

Appendix 2

List of Participants

CONTRACTING PARTIES

SCRS Chairman

Scott, Gerald P.

SCRS Chairman, NOAA Fisheries, Southeast Fisheries Science Center Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida, 33149-1099

Tel: +1 305 361 4220, Fax: +1 305 361 4219, E-Mail: gerry.scott@noaa.gov

CANADA

Neilson, John D.

Head, Large Pelagics Project, Population Ecology Section, St. Andrews Biological Station, Fisheries and Oceans Canada, 531 Brandy Cove Road, St. Andrews, New Brunswick, E5B 2L9

Tel: +1 506 529 5913, Fax: +1 506 529 5862, E-Mail: neilsonj@mar.dfo-mpo.gc.ca

EUROPEAN COMMUNITY

Chessa, Agostina

Ministero delle Politiche Agricole, Alimentari e Forestali Italiano, Direzione Generale Pesca, Via Dell'Arte 16, Roma, Italy Tel: +39 06 59084777; E-mail: a.chessa@politicheagricole.it

De la Serna Ernst, José Miguel

Instituto Español de Oceanografía, C.O. de Málaga, Apartado 285 - Puerto Pesquero s/n, 29640 Fuengirola, Málaga, Spain Tel: +34 952 476 955, Fax: +34 952 463 808, E-Mail: delaserna@ma.ieo.es

Di Natale, Antonio

Director-AQUASTUDIO, Via Trapani, nº 6, 98121 Messina, Sicily, Italy

Tel: +39 090 346 408, Fax: +39 090 364 560, E-Mail: adinatale@acquariodigenova.it

Ortiz de Urbina, José María

Instituto Español de Oceanografía, C.O. de Málaga, Apartado 285 - Puerto Pesquero s/n, 29640 Fuengirola, Málaga, Spain Tel: +34 952 476 955; Fax: +34 952 463 808; E-mail: urbina@ma.ieo.es

Peristeraki, Panagiota

Hellenic Center for Marine Research, Institute of Marine Biological Resources, P.O. Box 2214, 71003 Iraklion, Greece Tel: +30 2810 337 830, Fax: +30 2810 337 820, E-Mail: notap@her.hcmr.gr

Tserpes, George

Hellenic Center for Marine Research (HCMR), Institute of Marine Biological Resources, P.O. Box 2214, 71003 Iraklion, Crete, Greece

Tel: +30 2810 337851, Fax: +30 2810 337820, E-Mail: gtserpes@her.hcmr.gr

Valeiras Mota, Xulio*

Instituto Español de Oceanografia, Promontorio San Martín, s/n - Apto. 240, 39080 Santander, Spain Tel: +34 942 291 060, Fax: +34 942 275 072, E-Mail: xulio.valeiras@st.ieo.es

MOROCCO

Abid, Noureddine

Center Regional de L'INRH á Tanger/M'dig, B.P. 5268, 90000 Drabed, Tanger

Tel: +212 3932 5139, Fax: +212 3932 5139, E-Mail: abid.n@menara.ma; noureddine_abid@yahoo.fr

ICCAT SECRETARIAT

C/Corazón de María, 8 – 6th fl. 28002 Madrid, Spain Tel: +34 91 416 5600, Fax: +34 91 415 2612, E-Mail: info@iccat.int

Restrepo, Víctor Kebe, Papa Pallarés, Pilar Palma, Carlos

Appendix 3

List of Documents

- SCRS/2007/106 By catches and discards of the Greek swordfish fishery. PERISTERAKI, P., N. Kypraios, G. Lazarakis and G. Tserpes.
- SCRS/2007/107 Standardization of swordfish (*Xiphias gladius*) catch rates from the Greek and Italian Mediterranean longline fisheries. TSERPES, G., P. Peristeraki and A. Di Natale.
- SCRS/2007/108 Discards of undersized swordfish individuals in the Greek swordfish fisheries. TSERPES, G. and P. Peristeraki.
- SCRS/2007/109 Estimates of Mediterranean swordfish stock by means of a non-equilibrium surplus production model approach. TSERPES, G.
- SCRS/2007/115 A time series of swordfish longline CPUE in the northwestern Mediterranean: search for exploitation and/or climatic factors influencing fish abundance. ORSI RELINI, L., G. Palandri, F. Garibaldi, C. Cima, L.Lanteri, M. Relini.
- SCRS/2007/116 Standardized catch rates of swordfish (*Xiphias gladius*) from the Moroccan driftnet fishery operated in the Mediterranean Sea, period: 1998- 2006. ABID, N., and M. Idrissi.
- SCRS/2007/117 Age and growth of swordfish (*Xiphias gladius*) in western Mediterranean Sea. VALEIRAS, X., J.M. de la Serna, D. Macías, M. Ruiz, S. García-Barcelona, M.J. Gómez and J.M. Ortíz de Urbina.
- SCRS/2007/118 Updated standardized catch rates in number and weight for swordfish (*Xiphias gladius* L.) caught by the Spanish longline fleet in the Mediterranean Sea, 1988- 2005. ORTIZ DE URBINA, J. M., J. M. de la Serna, J. Mejuto and D. Macías.
- SCRS/2007/119 CPUE series (1985-2006) for swordfish (*Xiphias gladius* 1.) by gear type in the Tyrrhenian Sea and in the Strait of Sicily. DI NATALE, A. and A. Mangano.

Details of Production Modeling (ASPIC) for Mediterranean Stock Assessment

2007 Mediterranean swordfish stock assessment

AllCPUEcombined fix b1 at .75k,including Sicilian index series

ASPIC -- A Surplus-Production Model Including Covariates (Ver. 5.16). BOT program mode, LOGISTIC model mode, YLD conditioning, SSE optimization

Author: Michael H. Prager; NOAA Center for Coastal Fisheries and Habitat Research

101 Pivers Island Road; Beaufort, North Carolina 28516 USA

Mike.Prager@noaa.gov

Reference: Prager, M. H. 1994. A suite of extensions to a nonequilibrium

surplus-production model. Fishery Bulletin 92: 374-389.

(ASPIC User's Manual is available

from the author).

CONTROL PARAMETERS (FROM INPUT FILE)

Input file: correctedshortseries.inp ------

Operation of ASPIC: Fit logistic (Schaefer) model by direct optimization with bootstrap.

Number of bootstrap trials: Number of years analyzed: 38 333

Number of data series: 1 Bounds on MSY (min, max): 1.000E+03 5.000E+06 Objective function: Bounds on K (min, max): 1.000E+04 4.000E+07 Least squares Relative conv. criterion (simplex): 1.000E-08 Monte Carlo search mode, trials: 0 50000 Relative conv. criterion (restart): 3.000E-08 Random number seed: 673221

Relative conv. criterion (effort): Identical convergences required in fitting: 1.000E-04

Maximum F allowed in fitting: 8.000

PROGRAM STATUS INFORMATION (NON-BOOTSTRAPPED ANALYSIS)

error code 0

Normal convergence

GOODNESS-OF-FIT AND WEIGHTING (NON-BOOTSTRAPPED ANALYSIS)

Weighted Current Inv. var. R-squared Weighted Loss component number and title SSE N MSE weight weight in CPUE

Loss(-1) SSE in yield 0.000E+00

0.000E+00 1 Loss(0) Penalty for B1 > KN/A 0.000E+00 N/A

Loss(1) Combined Series 6.330E+00 29 2.344E-01 1.000E+00 1.000E+00 0.140

.....

TOTAL OBJECTIVE FUNCTION, MSE, RMSE: 6.32978787E+00 2.435E-01 4.934E-01

Estimated contrast index (ideal = 1.0): 0.3911 $C^* = (Bmax-Bmin)/K$ Estimated nearness index (ideal = 1.0): N* = 1 - |min(B-Bmsy)|/K1.0000

MODEL PARAMETER ESTIMATES (NON-BOOTSTRAPPED)

Estimate User/pgm guess 2nd guess Estimated User guess Parameter

B1/K Starting relative biomass (in 1968) 7.500E-01 7.500E-01 2.514E-01 1

MSY	Maximum sustainable yield	1.214E+04	8.750E+	04 9.339E+03	1	1
K	Maximum population size	2.346E+05	1.000E+06	5.604E+04	1	1
phi	Shape of production curve (Bmsy/K)	0.5000	0.5000		0	1
	 Catchability Coefficients by Data Se 	eries	-			
q(1)	Combined Series	4.344E-06	1.800E-06	1.710E-04	1	1

MANAGEMENT and DERIVED PARAMETER ESTIMATES (NON-BOOTSTRAPPED)

Parameter		Estimate L	ogistic formula	General formula
MSY Maximu	m sustainable yield	1.214E+04		
Bmsy Stock bio	omass giving MSY	1.173E+05	K/2	K*n**(1/(1-n))
Fmsy Fishing r	nortality rate at MSY	1.035E-01	MSY/Bmsy	MSY/Bmsy
n Exponent in	n production function	2.0000		
g Fletcher's g	amma 4	.000E+00	[n**(n/	/(n-1))]/[n-1]
B./Bmsy Ratio: I	3(2006)/Bmsy	9.374E-01		
F./Fmsy Ratio: F	(2005)/Fmsy	1.269E+00		
Fmsy/F. Ratio: F	msy/F(2005)	7.881E-01		
• • •	. yield available at Fms	•	4 MSY*B./Bms	sy MSY*B./Bmsy
as proport	ion of MSY	9.374E-01		
Ye. Equilibriu	m yield available in 200	06 1.209E+04	4*MSY*(B/K-(B))	g(K)**2) $g(K)$ **n)
as proport	ion of MSY	9.961E-01		

----- Fishing effort rate at MSY in units of each CE or CC series ------

 $fmsy(1) \quad Combined \ Series \qquad \qquad 2.382E+04 \qquad \qquad Fmsy/q(\ 1) \qquad \qquad Fmsy/q(\ 1)$

MedSWO2007AllCPUEcombined fix b1 at .75k,including Sicilian index series

ESTIMATED POPULATION TRAJECTORY (NON-BOOTSTRAPPED)

						Model Estin			f
	Year	total s	starting av	erage tota		surplus F	mort bion	nass	
Obs	or ID	F mor	t biomass	biomass	yield y	ield producti	on to Fms	y to Bmsy	
1	1968	0.019	1.760E+05	1.787E+05	3.440E+03	3.440E+03	8.813E+03	1.860E-01	1.500E+00
2	1969	0.020	1.814E+05	1.837E+05	3.723E+03	3.723E+03	8.256E+03	1.959E-01	1.546E+00
3	1970	0.018	1.859E+05	1.881E+05	3.341E+03	3.341E+03	7.717E+03	1.716E-01	1.584E+00
4	1971	0.026	1.903E+05	1.915E+05	4.975E+03	4.975E+03	7.293E+03	2.511E-01	1.622E+00
5	1972	0.031	1.926E+05	1.932E+05	5.958E+03	5.958E+03	7.068E+03	2.981E-01	1.642E+00
6	1973	0.025	1.937E+05	1.947E+05	4.807E+03	4.807E+03	6.853E+03	2.385E-01	1.651E+00
7	1974	0.026	1.957E+05	1.965E+05	5.034E+03	5.034E+03	6.604E+03	2.475E-01	1.668E+00
8	1975	0.022	1.973E+05	1.984E+05	4.301E+03	4.301E+03	6.348E+03	2.095E-01	1.682E+00
9	1976	0.023	1.994E+05	2.001E+05	4.637E+03	4.637E+03	6.096E+03	2.239E-01	1.699E+00
10	1977	0.026	2.008E+05	2.012E+05	5.280E+03	5.280E+03	5.942E+03	2.537E-01	1.712E+00
11	1978	0.030	2.015E+05	2.014E+05	5.958E+03	5.958E+03	5.899E+03	2.858E-01	1.717E+00
12	1979	0.028	2.014E+05	2.016E+05	5.547E+03	5.547E+03	5.878E+03	2.659E-01	1.717E+00
13	1980	0.033	2.017E+05	2.014E+05	6.579E+03	6.579E+03	5.905E+03	3.157E-01	1.720E+00
14	1981	0.034	2.011E+05	2.007E+05	6.813E+03	6.813E+03	6.014E+03	3.281E-01	1.714E+00

15	1982	0.032	2.003E+05	2.001E+05	6.343E+03	6.343E+03	6.090E+03	3.063E-01	1.707E+00
16	1983	0.035	2.000E+05	1.996E+05	6.896E+03	6.896E+03	6.163E+03	3.338E-01	1.705E+00
17	1984	0.070	1.993E+05	1.957E+05	1.367E+04	1.367E+04	6.719E+03	6.748E-01	1.699E+00
18	1985	0.081	1.923E+05	1.884E+05	1.529E+04	1.529E+04	7.679E+03	7.844E-01	1.639E+00
19	1986	0.093	1.847E+05	1.805E+05	1.676E+04	1.676E+04	8.613E+03	8.975E-01	1.575E+00
20	1987	0.107	1.766E+05	1.720E+05	1.832E+04	1.832E+04	9.496E+03	1.029E+00	1.505E+00
21	1988	0.125	1.678E+05	1.626E+05	2.037E+04	2.037E+04	1.033E+04	1.211E+00	1.430E+00
22	1989	0.115	1.577E+05	1.542E+05	1.776E+04	1.776E+04	1.094E+04	1.113E+00	1.344E+00
23	1990	0.108	1.509E+05	1.485E+05	1.602E+04	1.602E+04	1.128E+04	1.043E+00	1.286E+00
24	1991	0.109	1.462E+05	1.440E+05	1.575E+04	1.575E+04	1.151E+04	1.057E+00	1.246E+00
25	1992	0.105	1.419E+05	1.404E+05	1.471E+04	1.471E+04	1.167E+04	1.013E+00	1.210E+00
26	1993	0.096	1.389E+05	1.381E+05	1.326E+04	1.326E+04	1.176E+04	9.281E-01	1.184E+00
27	1994	0.119	1.374E+05	1.352E+05	1.608E+04	1.608E+04	1.186E+04	1.149E+00	1.171E+00
28	1995	0.098	1.332E+05	1.326E+05	1.301E+04	1.301E+04	1.193E+04	9.485E-01	1.135E+00
29	1996	0.091	1.321E+05	1.320E+05	1.205E+04	1.205E+04	1.195E+04	8.823E-01	1.126E+00
30	1997	0.113	1.320E+05	1.306E+05	1.469E+04	1.469E+04	1.198E+04	1.087E+00	1.125E+00
31	1998	0.112	1.293E+05	1.281E+05	1.437E+04	1.437E+04	1.204E+04	1.084E+00	1.102E+00
32	1999	0.109	1.269E+05	1.261E+05	1.370E+04	1.370E+04	1.207E+04	1.050E+00	1.082E+00
33	2000	0.126	1.253E+05	1.235E+05	1.557E+04	1.557E+04	1.211E+04	1.218E+00	1.068E+00
34	2001	0.125	1.218E+05	1.204E+05	1.501E+04	1.501E+04	1.213E+04	1.205E+00	1.039E+00
35	2002	0.108	1.190E+05	1.186E+05	1.281E+04	1.281E+04	1.214E+04	1.044E+00	1.014E+00
36	2003	0.135	1.183E+05	1.165E+05	1.567E+04	1.567E+04	1.214E+04	1.300E+00	1.008E+00
37	2004	0.127	1.148E+05	1.136E+05	1.441E+04	1.441E+04	1.213E+04	1.226E+00	9.781E-01
38	2005	0.131	1.125E+05	1.112E+05	1.460E+04	1.460E+04	1.211E+04	1.269E+00	9.587E-01
39	2006	1.	100E+05			9	.374E-01		

RESULTS FOR DATA SERIES # 1 (NON-BOOTSTRAPPED)

Combined Series

Data type CC: CPUE-catch series Series weight: 1.000

	Oł	served Est	imated Estim	Observed	Model Resid	in Statist			
Obs	Year	CPUE	CPUE F	yield yi	eld log scale	weight			
		1060		7.7.E 01	0.0102	2.445.02	2.445.02	0	1.005.00
	I	1968		7.76E-01	0.0192	3.44E+03	3.44E+03	0	1.00E+00
2	2	1969		7.98E-01	0.0203	3.72E+03	3.72E+03	0	1.00E+00
	3	1970		8.17E-01	0.0178	3.34E+03	3.34E+03	0	1.00E+00
4	4	1971		8.32E-01	0.026	4.98E+03	4.98E+03	0	1.00E+00
:	5	1972		8.39E-01	0.0308	5.96E+03	5.96E+03	0	1.00E+00
(5	1973		8.46E-01	0.0247	4.81E+03	4.81E+03	0	1.00E+00
,	7	1974		8.54E-01	0.0256	5.03E+03	5.03E+03	0	1.00E+00
;	8	1975	2.21E-01	8.62E-01	0.0217	4.30E+03	4.30E+03	1.35957	1.00E+00
9	9	1976	7.36E-01	8.69E-01	0.0232	4.64E+03	4.64E+03	0.16637	1.00E+00
10	C	1977		8.74E-01	0.0262	5.28E+03	5.28E+03	0	1.00E+00
1	1	1978	1.47E+00	8.75E-01	0.0296	5.96E+03	5.96E+03	-0.52011	1.00E+00
12	2	1979	3.02E+00	8.76E-01	0.0275	5.55E+03	5.55E+03	-1.23656	1.00E+00
1.	3	1980	7.68E-01	8.75E-01	0.0327	6.58E+03	6.58E+03	0.12981	1.00E+00
14	4	1981	4.22E-01	8.72E-01	0.034	6.81E+03	6.81E+03	0.72588	1.00E+00
1:	5	1982		8.69E-01	0.0317	6.34E+03	6.34E+03	0	1.00E+00
10	6	1983	6.09E-01	8.67E-01	0.0345	6.90E+03	6.90E+03	0.35317	1.00E+00

17	1984	1.31E+00	8.50E-01	0.0698	1.37E+04	1.37E+04	-0.43346	1.00E+00
18	1985	2.17E+00	8.18E-01	0.0812	1.53E+04	1.53E+04	-0.97529	1.00E+00
19	1986	8.33E-01	7.84E-01	0.0929	1.68E+04	1.68E+04	-0.06057	1.00E+00
20	1987	5.31E-01	7.47E-01	0.1065	1.83E+04	1.83E+04	0.34106	1.00E+00
21	1988	6.76E-01	7.06E-01	0.1253	2.04E+04	2.04E+04	0.04408	1.00E+00
22	1989	1.07E+00	6.70E-01	0.1152	1.78E+04	1.78E+04	-0.47153	1.00E+00
23	1990	7.75E-01	6.45E-01	0.1079	1.60E+04	1.60E+04	-0.18418	1.00E+00
24	1991	5.94E-01	6.25E-01	0.1094	1.58E+04	1.58E+04	0.05185	1.00E+00
25	1992	4.75E-01	6.10E-01	0.1048	1.47E+04	1.47E+04	0.24991	1.00E+00
26	1993	4.05E-01	6.00E-01	0.096	1.33E+04	1.33E+04	0.39261	1.00E+00
27	1994	5.42E-01	5.87E-01	0.1189	1.61E+04	1.61E+04	0.08022	1.00E+00
28	1995	5.76E-01	5.76E-01	0.0982	1.30E+04	1.30E+04	0.00082	1.00E+00
29	1996	5.68E-01	5.73E-01	0.0913	1.21E+04	1.21E+04	0.00975	1.00E+00
30	1997	4.08E-01	5.67E-01	0.1125	1.47E+04	1.47E+04	0.32847	1.00E+00
31	1998	6.37E-01	5.56E-01	0.1122	1.44E+04	1.44E+04	-0.13483	1.00E+00
32	1999	6.43E-01	5.48E-01	0.1086	1.37E+04	1.37E+04	-0.16024	1.00E+00
33	2000	4.20E-01	5.37E-01	0.126	1.56E+04	1.56E+04	0.2458	1.00E+00
34	2001	5.47E-01	5.23E-01	0.1247	1.50E+04	1.50E+04	-0.04437	1.00E+00
35	2002	5.86E-01	5.15E-01	0.108	1.28E+04	1.28E+04	-0.1293	1.00E+00
36	2003	4.99E-01	5.06E-01	0.1346	1.57E+04	1.57E+04	0.01448	1.00E+00
37	2004	5.17E-01	4.93E-01	0.1268	1.44E+04	1.44E+04	-0.04657	1.00E+00
38	2005	5.32E-01	4.83E-01	0.1313	1.46E+04	1.46E+04	-0.09636	1.00E+00

^{*} Asterisk indicates missing value(s).

Appendix 5

R-code used for the XSA assessment

```
library(FLCore)
library(FLEDA)
library(FLAssess)
library(FLXSA)
# read stock data
swo <- read.FLStock("swo.idx")</pre>
# set catch = landings (there are no discard data)
catch(swo) <- landings(swo)
catch.n(swo) <- landings.n(swo)
catch.wt(swo) <- landings.wt(swo)
for (i in c("stock.n", "catch.n", "landings.n", "discards.n")) units(slot(swo,i)) <- "thousands"
for (i in c("stock.wt","catch.wt","landings.wt","discards.wt")) units(slot(swo,i)) <- "kg"
for \ (i \ in \ c("catch", "landings", "discards")) \ units(slot(swo, i)) <- \ "tonnes"
units(swo@harvest)<-"year-1"
# read tuning file
swo.ind <- read.FLIndices("swo.tun")</pre>
# define plusgroup
swo@range["plusgroup"]<- 10
```

```
# XSA control
swo.xsactl <- FLXSA.control(fse = 0.3, rage = 1, qage = 6, shk.n = TRUE, shk.f = TRUE,
shk.yrs = 5, shk.ages = 5, window = 100, tsrange = 20, tspower = 3, vpa = TRUE)
# Selecting the fleets
swo.ind00 \leftarrow swo.ind[c(1,2,3,4,5,6)] # the number of fleets
swo.ind00[["SPLL"]]@range[] <- c(2,9,9,1988,2005,0,1)
swo.ind00[["GRLL"]]@range[] <- c(2,9,9,1987,2005,0,1)
swo.ind00[["ITLL"]]@range[] <- c(2,9,9,1991,2005,0,1)
swo.ind00[["MODN"]]@range[] <- c(3,9,9,1998,2005,0,1)
swo.ind00[["JALL"]]@range[] <- c(3,9,9,1985,1993,0,1)
swo.ind00[["ITDN"]]@range[] <- c(3.9.9.1991,2001.0.1)
# VPA
swo.xsa <- FLXSA(swo, swo.ind00, swo.xsactl, "Assessment in 2006")
# Diagnostic plots
xyplot(data~year|as.factor(age), data=swo.xsa@index.res$SPLL, main="SPLL", pch=19)
xyplot(data~year|as.factor(age), data=swo.xsa@index.res$GRLL, main="GRLL", pch=19)
xyplot(data~year|as.factor(age), data=swo.xsa@index.res$MODN, main="MODN", pch=19)
xyplot(data~year|as.factor(age), data=swo.xsa@index.res$JALL, main="JALL", pch=19)
xyplot(data~year|as.factor(age), data=swo.xsa@index.res$ITLL, main="ITLL", pch=19)
xyplot(data~year|as.factor(age), data=swo.xsa@index.res$ITDN, main="ITDN", pch=19)
# Abundance & Mortality plots
fm <- swo.xsa@harvest
stock.n <- swo.xsa@stock.n
ttl <- list(label="Mediterranean Swordfish stock abundance", cex=1)
yttl <- list(label="Number of fish", cex=0.9)
xttl <- list(cex=0.9)
i <- 0:10
xyplot(data~year|as.factor(age), data=swo.xsa@stock.n[i], type="p", pch=19, main=ttl, ylab=yttl, xlab=xttl)
xyplot(data~year|as.factor(age), data=swo.xsa@harvest[i], type="p", pch=19, main=ttl, ylab=yttl, xlab=xttl)
# updated stock object
swo <- swo+swo.xsa
# Total and spawning biomass estimates
stock.n <- swo@stock.n
stock.wt <- swo@stock.wt
mat <- swo@mat
spbio <- stock.n*stock.wt*mat</pre>
totbio <- stock.n*stock.wt
swo@m.spwn <- spbio
# Diagnostics (inspect the diagnostics in the old style)
diagnostics(swo.xsa)
```

VPA-2BOX Modeling: Fits to Index Data for SWO Med

5.1 JPN LL

Lognormal dist.
average numbers
Ages 1 - 11
log-likelihood =
deviance =
Chi-sq. discrepancy=

-27.48 84.11 118.61

Year	Observ	-e-d	Dredicte									Untransfrmd	Chi-square Discrepancy
1985	1.				0.82				17E-05		1.595		
1986	0.	127	0.2	58	-0.13	2	0.198	0.5	17E-05		0.612	0.698	0.492
1987	-0.	352	0.1	92	-0.54	4	0.198	0.5	17E-05		0.379	0.653	4.641
1988	-0.	031	0.0	58	-0.08	9	0.198	0.5	17E-05		0.523	0.572	0.263
1989	0.	136	-0.0	89	0.22	5	0.198	0.5	17E-05		0.618	0.494	1.296
1990	0.	805	-0.1	43	0.94	8	0.198	0.5	17E-05		1.207	0.468	58.527
1991	-0.	491	-0.1	33	-0.35	8	0.198	0.5	17E-05		0.330	0.472	2.472
1992	0.	004	-0.2	01	0.20	4	0.198	0.5	17E-05		0.542	0.441	1.030
1993	-1.	282	-0.1	99	-1.08	3	0.198	0.5	17E-05		0.150	0.442	11.157
	tivities												
Year	1	2	3	4	5	6	7	8	9	10	11		
1985	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1986	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1987	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1988	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1989	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1990	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1991	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1992	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1993	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		

5.2 GRE LL

5.2 GRE LL

Lognormal dist.
average biomass
Ages 1 - 11
log-likelihood =
deviance =
Chi-sq. discrepancy= 7.11 37.59 26.18

Year	Observed	Predicted	Residuals (Obs-pred)	Standard Deviation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
1987	-0.024	0.295	-0.319	0.198	0.425E-07	0.937	1.289	2.060
1988	0.176	0.171	0.005	0.198	0.425E-07	1.144	1.139	0.005
1990	0.031	0.037	-0.006	0.198	0.425E-07	0.990	0.996	0.016
1991	0.280	-0.010	0.290	0.198	0.425E-07	1.270	0.950	2.410
1992	-1.012	-0.075	-0.937	0.198	0.425E-07	0.349	0.890	9.476
1993	-0.018	-0.069	0.051	0.198	0.425E-07	0.942	0.896	0.025
1994	0.344	-0.056	0.400	0.198	0.425E-07	1.354	0.908	5.345
1995	-0.235	-0.050	-0.186	0.198	0.425E-07	0.759	0.913	0.861
1998	0.401	0.042	0.359	0.198	0.425E-07	1.433	1.001	4.095
1999	0.203	0.029	0.175	0.198	0.425E-07	1.176	0.988	0.703
2000	-0.008	-0.021	0.013	0.198	0.425E-07	0.952	0.940	0.001
2001	0.036	-0.096	0.133	0.198	0.425E-07	0.995	0.872	0.359
2002	-0.234	-0.073	-0.161	0.198	0.425E-07	0.760	0.892	0.680
2003	0.038	-0.035	0.074	0.198	0.425E-07	0.997	0.926	0.077
2004	-0.003	-0.060	0.057	0.198	0.425E-07	0.957	0.904	0.036
2005	0.025	-0.027	0.052	0.198	0.425E-07	0.985	0.935	0.027

Selecti	vities	by age									
Year	1	2	3	4	5	6	7	8	9	10	11
1987	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1988	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1990	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1991	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1992	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1993	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1994	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1995	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1998	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
1999	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
2000	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
2001	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
2002	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
2003	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
2004	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903
2005	0.017	0.126	0.564	0.795	0.920	0.952	1.000	0.960	0.862	0.857	0.903

5.3 ITA LL

Lognormal dist. average biomass Ages 1 - 11

log-likelihood = deviance = Chi-sq. discrepancy= 8.22 25.67 25.07

Year	Observ	red	Predicte	Re	siduals bs-pred	Sta	ndard	Cato	Q habil.	Untrar Obse	sfrmd	Untransfrmd Predicted	Chi-square Discrepancy
1991	-0.	013	-0.0	03	-0.01	0	0.198	0.5	02E-07		0.950	0.959	0.021
1992	-0.	057	-0.0	57	0.00	0	0.198	0.5	02E-07		0.909	0.910	0.010
1994	-0.	119	0.0	03	-0.12	2	0.198	0.5	02E-07		0.855	0.966 0.975 1.006	0.439
1995	0.	110	0.0	13	0.09	7	0.198	0.5	02E-07		1.074	0.975	0.162
1997	-0.	353	0.0	44	-0.39	7	0.198	0.5	02E-07		0.676	1.006	2.903
1998	0.	163	0.0	10	0.15	3	0.198	0.5	02E-07		1.133	0.972	0.507
			0.0									0.967	
2000	-0.	580	-0.0	19	-0.56	1	0.198	0.5	02E-07		0.539	0.944	4.845
									02E-07		1.034	0.912	0.313
			0.0									0.968	
2003	-0.	273	0.0	08	-0.28	1	0.198	0.5	02E-07		0.733	0.970	1.684
2004	0.	047	-0.0	16	0.06	3	0.198	0.5	02E-07		1.010	0.948	0.049
2005	0.	145	0.0	61	0.08	3	0.198	0.5	02E-07		1.113	0.948 1.024	0.108
		_											
Select	ivities	by age	3		_	_	_						
Year	1	2		4	5	6	7	8	9	10	11		
			1.000										
1991			1.000										
1992			1.000										
1994			1.000										
1995			1.000				0.396						
1997	0.033		1.000		0.516	0.433			0.321		0.287		
1998	0.033	0.303		0.800		0.433			0.321		0.287		
2000	0.033	0.303			0.516	0.433			0.321		0.287		
2000	0.033		1.000			0.433				0.309	0.287		
2001	0.033		1.000				0.396				0.287		
2002			1.000				0.396				0.287		
2003			1.000										
2004			1.000										
2003	0.033	0.303	1.000	0.800	0.310	0.433	0.390	0.440	0.321	0.309	0.207		

5.4 ESP LL

Lognormal dist.
average biomass
Ages 1 - 11
log-likelihood =
deviance =
Chi-sq. discrepancy=

14.58 29.13 35.75

Year	Observe	ed 1	Predicte	Re d (C	siduals bs-pred	Sta .) Dev	ndard iation	Cato	Q habil.	Untrar Obse	sfrmd	Untransfrmd Predicted	Chi-square Discrepancy
	0.7												20.230
1000	0 4	254	0.1	96	0.00	8	0.198	0.5	41E-07		1 234	1.054	0.549
1990	0.1	334	0.0	74	0.26	0	0.198	0.5	41E-07		1.337	1.031	1.844
1991	0.2	211	-0.0	37	0.24	8	0.198	0.5	41E-07		1.182	0.922	1.641
1992	-0.2	276	-0.0	75	-0.20	1	0.198	0.5	41E-07		0.726	0.888	0.979
1993	0.0	084	-0.0 -0.0 -0.0 -0.0 -0.0	28	0.11	2	0.198	0.5	41E-07		1.041	0.931	1.641 0.979 0.232
	0.3	102	-0.0	13	0.11	5	0.198	0.5	41E-07		1.059	0.944 0.956 0.996	0.250
1995	0.0	010	-0.0	01	0.01	1	0.198	0.5	41E-07		0.966	0.956	0.002
1996	-0.1	146	0.0	40	-0.18	6	0.198	0.5	41E-07		0.827	0.996	0.864
1997	-0.0	064	-0.0	10	-0.05	4	0.198	0.5	41E-07		0.898	0.947	0.124
1998	-0.0	068	-0.0	36	-0.03	2	0.198	0.5	41E-07		0.894	0.923	0.063
1999	-0.2	242	-0.0	38	-0.20	4	0.198	0.5	41E-07		0.752	0.921	1.001
2000	-0.0	030	-0.0	50	0.01	9	0.198	0.5	41E-07		0.928	0.911	0.000
2001	-0.3	385	-0.0	60	-0.32	5	0.198	0.5	41E-07		0.651	0.901	2.127
2002	-0.0	016	0.0	12	-0.02	9	0.198	0.5	41E-07		0.942	0.969	0.056
2003	-0.4	416	-0.0	11	-0.40	5	0.198	0.5	41E-07		0.631	0.946	2.992
2004	-0.3	328	-0.0	05	-0.32	2	0.198	0.5	41E-07		0.690	0.952	2.098
2005	0.2	209	0.0	34	0.17	4	0.198	0.5	41E-07		1.179	0.991	0.864 0.124 0.063 1.001 0.000 2.127 0.056 2.992 2.098 0.700
Select	ivities l	by age	2	4	_	6	7	0	0	10	11		
	0.027												
	0.027						0.175		0.088		0.071		
1990			1.000										
1991	0.027						0.175		0.088		0.071		
1992	0.027				0.462		0.175				0.071		
1993			1.000								0.071		
1994			1.000								0.071		
1995	0.027				0.462		0.175		0.088	0.069	0.071		
1996			1.000						0.088		0.071		
1997	0.027	0.587	1.000	0.584	0.462	0.291	0.175		0.088	0.069	0.071		
1998	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
1999	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
2000	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
2001	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
2002	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
2003	0.027	0.587					0.175		0.088	0.069	0.071		
2004	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
2005	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		

5.5 MAR GN

Lognormal dist.
average biomass
Ages 1 - 11
log-likelihood =
deviance = 12.14 1.62

Chi-sq.	discrepancy=	1.56
---------	--------------	------

Year	Observed		Predicted		(Obs-pred)		ndard iation		Q Catchabil.		sfrmd	Untransfrmd Predicted	Chi-square Discrepancy
1998	0.010		0.103		0.005		0 100		0.672E-07		1 015	1 106	0.040
	0.018				-0.085		0.198				1.015	1.106	0.248
1999	-0.079		0.0		-0.162		0.198				0.922	1.084	0.690
2000	0.175		0.027		0.148		0.198	0.6	0.672E-07		1.188	1.024	0.471
2001	-0.038		-0.066		0.028		0.198	0.6	0.672E-07		0.961	0.934	0.002
2002	-0.005		-0.0	66	6 0.061		0.198	0.6	0.672E-07		0.992	0.934	0.044
2003	-0.006		-0.0	.016 0.011		1	0.198	0.6	0.672E-07		0.992	0.981	0.002
2004	0.002		-0.038		0.041		0.198	0.6	0.672E-07		0.999	0.960	0.011
2005	-0.068		-0.027		-0.041		0.198	0.6	0.672E-07		0.932	0.971	0.087
	tivities			4	_	ć		0	0	1.0	1.1		
Year	1	2	3	4	5	6	7	8	9	10	11		
1998	0.000	0.028		0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
1999	0.000	0.028		0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2000	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2001	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2002	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2003	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2004	0.000	0.028		0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2005	0.000	0.028		0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		

5.6 ITA GN
Lognormal dist.
average biomass
Ages 1 - 11
log-likelihood =
deviance =
Chi-sq. discrepancy= 7.44 14.27 11.94

Year	Observed		Predicted		(Obs-pred) D			Cato	Q Catchabil.		erved		Chi-square Discrepancy
1991	0.061		0.018		0.043			0.447E-07					0.015
1992	-0.038		-0.060		0.022		0.198	0.4	0.447E-07		0.934	0.914	0.000
1994	-0.083		-0.034		-0.049		0.198	0.4	0.447E-07		0.892	0.937	0.111
1995	0.148		-0.016		0.165		0.198	0.4	47E-07	1.125		0.954	0.609
1997	-0.261		0.089		-0.350		0.198	0.4	0.447E-07 0.		0.748	1.060	2.382
1998	0.296		0.057		0.239		0.198	0.4	0.447E-07		1.304	1.027	1.501
1999	0.369		0.039		0.331		0.198	0.4	0.447E-07		1.404	1.008	3.326
2000	-0.492		-0.010		-0.482		0.198	0.4	0.447E-07		0.593	0.961	3.892
2001	-0.002		-0.083		0.082		0.198	0.447E-07		0.968		0.893	0.102
Selectivities by age													
	1			4	5	6	7	8	9	10	11		
1991	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		
1992	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		
1994	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		
1995	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		
1997	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		
1998	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		
1999	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		
2000	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		
2001	0.003	0.073	0.564	1.000	0.895	0.847	0.848	0.926	0.720	0.651	0.672		