Prvi međuispit

6. travnja 2009.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (3 boda)

35227

- a) (1 bod) Zašto je za primjenu identifikacije zasnovane na Fourierovoj analizi prikladan chirp pobudni signal?
- b) (1 bod) Kako odabiremo početnu i završnu frekvenciju chirp signala?
- c) (1 bod) Skicirajte amplitudno-frekvencijsku karakteristiku chirp signala s početnom frekvencijom $\omega_{poc}=0.1~{\rm rad/s}$ i završnom frekvencijom $\omega_{zav}=10~{\rm rad/s}$.

2. zadatak (3 boda)

Proveden je identifikacijski eksperiment kao što je prikazano na slici 1, te je na izlazu snimljen signal y. Odredite i komentirajte izraz za težinsku funkciju $g(\tau)$ uz pretpostavku da signali u i z ne koreliraju i da je spektralna snaga bijelog šuma $S_{uu}(\omega) = 2$.

Slika 1: Zatvoreni sustav upravljanja.

3. zadatak (3 boda)

U identifikacijskom eksperimentu sustav je doveden u radnu točku i zatim je u toj radnoj točki snimljena prijelazna funkcija tog sustava. Iz prijelazne funkcije određeno je da je $t_{95} = 30$ s.

- a) (2 boda) Odredite parametre PRBS signala koji se može koristiti za identifikaciju tog sustava i kojega je moguće realizirati posmačnim registrom s n=4 stupnja.
- b) (1 bod) Skicirajte autokorelacijsku funkciju PRBS-a s tako odabranim parametrima.

4. zadatak (3 boda)

Neka je dan sustav opisan sljedećom prijenosnom funkcijom:

$$G_s(s) = \frac{2}{4s+1}$$

koji je pobuđen signalom šuma spektralne gustoće snage:

$$S_{uu}(\omega) = \frac{16}{\omega^2 + 64}$$

- a) (2 bodova) Odredite spektralnu gustoću dobivenog izlaznog signala $S_{yy}(\omega)$.
- b) (1 bod) Iz $S_{yy}(\omega)$ odredite $R_{yy}(\tau)$.

5. zadatak (3 boda)

Izračunajte vrijednost međukorelacijske funkcije $R_{uy}(10)$ ako je poznato da je $R_{uy}(0) = 0.7$.

6. zadatak (4 boda)

Zadan je zatvoreni regulacijski krug kao na slici 2. Pretpostavimo da signali $x_R(t)$ i z(t) ne koreliraju.

- a) (2 boda) Koliko korelacijskih mjerenja treba provesti da bi se mogla odrediti prijenosna funkcija sustava $G_s(s)$? Kako se provode ta mjerenja?
- b) (2 boda) Izvedite relaciju iz koje se može izračunati $G_s(s)$.

Slika 2: Zatvoreni regulacijski krug.

7. zadatak (3 boda)

- a) (2 bodova) Skicirajte načelnu shemu parametarskog postupka identifikacije.
- b) (1 bod) Na koji način se u matematičkom modelu nadomješta signal smetnje koji se pojavljuje u sustavu?

8. zadatak (4 boda)

Parametarskom metodom identifikacije dobiven je ARMAX model sustava opisan kao:

$$A(z^{-1}) = 1 + 2z^{-1}$$

$$B(z^{-1}) = 1 + 0.5z^{-1}$$

$$C(z^{-1}) = -1 + 0.2z^{-1}$$

- a) (1 bod) Skicirajte blokovsku shemu ARMAX modelske strukture.
- b) (2 boda) Napišite jednadžbu diferencija identificiranog modela.
- c) (1 bod) Izračunajte vrijednost izlaznog signala sustava y(3) ako je pobuda sustava u(k) jedinična odskočna funkcija i ako su diskretne vrijednosti šuma $\epsilon(k)$ dane u tablici 1.

Tablica 1: Iznos šuma

k	$\epsilon(k)$
1	0.5
2	0.1
3	-0.3