NAME-SUHEL GUPTA ROLL NO.-2018120 SUBJECT-COMPUTER ORIENTED STATISTICAL TECHNIQUE

INDEX

Practical No.	Topics	Date	Signature
1A	MATRICES-I		
1B	MATRICES-II		
2A	STATISTICAL FUNCTION-I		
2B	STATISTICAL FUNCTION-II		
2C	STATISTICAL FUNCTION-III		
3	IMPORTING DATA FROM EXCEL FILE		
4	CORRELATION & LINEAR REGRESSION		
5	LEAST SQUARE METHOD		
6	BINOMIAL DISTRIBUTION		

PRACTIAL NO.1 (A)

AIM: Create Matrix A and B using R, $A = \begin{pmatrix} -3 & 2 & 6 & 1 & 5 & 4 \\ 4 & 0 & -1 & B = -3 & 2 & 6 \\ 5 & 2 & 3 & 0 & -4 & 3 \end{pmatrix}$

Find the following matrices.

- a) A+B
- b) AB
- c) BA
- d) A^T
- $e) (A+B)^T$
- f) A⁻¹

SOURCE CODE:

```
> "Practical no.1A"
```

- [1] "Practical no.1A"
- > "Name:Suhel"
- [1] "Name:Suhel"
- > a=c(-3,2,6,4,0,-1,5,2,3)
- > b=c(1,5,4,-3,2,6,0,-4,3)
- > A=matrix(a,nrow=3,ncol=3,byrow="TRUE")
- > A

[,1] [,2] [,3]

- [1,] -3 2 6
- [2,] 4 0 -1
- [3,] 5 2 3
- > B=matrix(b,nrow=3,ncol=3,byrow="TRUE")
- > P

[,1] [,2] [,3]

- [1,] 1 5 4
- [2,] -3 2 6
- [3,] 0 -4 3
- > A+B

[,1] [,2] [,3]

- [1,] -2 7 10
- [2,] 1 2 5
- [3,] 5 -2 6
- > "product of matrices A and B:"
- [1] "product of matrices A and B:"
- > A%*%B

[,1] [,2] [,3]

- [1,] -9 -35 18
- [2,] 4 24 13
- [3,] -1 17 41
- > "product of matrices B and A:"
- [1] "product of matrices B and A:"
- > B%*%A

[,1] [,2] [,3]

- [1,] 37 10 13
- [2,] 47 6 -2
- [3,] -1 6 13
- > "transpose of matrix A:"
- [1] "transpose of matrix A:"
- > t(A)

[,1] [,2] [,3]

[1,] -3 4 5

- [2,] 2 0 2
- [3,] 6 -1 3
- > "transpose of matrix (A+B):"
- [1] "transpose of matrix (A+B):"
- > t(A+B)
 - [,1] [,2] [,3]
- [1,] -2 1 5
- [2,] 7 2 -2
- [3,] 10 5 6
- > "inverse of matrix A:"
- [1] "inverse of matrix A:"

PRACTIAL NO.1 (B)

AIM: Create matrix A and B such that
$$A= \begin{pmatrix} -3 & 2 & 6 & 4 \\ 4 & 0 & -1 & B= & -6 \\ 5 & 2 & 3 & 3 \end{pmatrix}$$

Also create diagonal matrix D with the enteries are -3,0,9,2.3

- 1) Find X such that AX=B
- 2) Display D
- 3) Calculate $D^3+D^2-2D+4I$

Where I is a square matrix.

OUTPUT:

```
> "Practical NO. 1B"
[1] "Practical NO. 1B"
> "Name: Suhel"
[1] "Name: Suhel"
> a=c(-3,2,6,4,0,-1,5,2,3)
> b=c(4,-6,3)
> A=matrix(a,nrow=3,ncol=3,byrow="TRUE")
> B=matrix(b,nrow=3,ncol=1,byrow="TRUE")
> X=(solve(A))%*%B
> A
  [,1] [,2] [,3]
[1,] -3 2 6
[2,] 4 0 -1
[3,] 5 2 3
> B
  [,1]
[1,] 4
[2,] -6
[3,] 3
> X
    [,1]
[1,] -4.250
[2,] 28.625
[3,] -11.000
> d=c(-3,0,9,2.3)
> d
[1] -3.0 0.0 9.0 2.3
> D=diag(d)
> D
  [,1] [,2] [,3] [,4]
[1,] -3 0 0 0.0
[2,] 0 0 0 0.0
[3,] 0 0 9 0.0
[4,] 0 0 0 2.3
> D2=D%*%D
> D2
  [,1] [,2] [,3] [,4]
[1,] 9 0 0 0.00
```

[2,] 0 0 0 0.00

```
[3,] 0 0 81 0.00
[4,] 0 0 05.29
> D3=(D2)%*%D
> D3
  [,1] [,2] [,3] [,4]
[1,] -27 0 0 0.000
[2,] 0 0 0 0.000
[3,] 0 0 729 0.000
[4,] 0 0 0 12.167
> i=c(1,1,1,1)
> i
[1] 1 1 1 1
> I=diag(i)
> l
 [,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
> D#
 [,1] [,2] [,3] [,4]
[1,] -3 0 0 0.0
[2,] 0 0 0 0.0
[3,] 0 0 9 0.0
[4,] 0 0 0 2.3
> D3+D2-2*D+4*I
  [,1] [,2] [,3] [,4]
[1,] -8 0 0 0.000
[2,] 0 4 0 0.000
[3,] 0 0 796 0.000
[4,] 0 0 0 16.857
```

PRACTIAL NO.2(A)

AIM: following data represent the marks obtained by S.Y.B.SC students.

78,56,45,82,69,54,48,39,44,90,87,73,79,54,42,38,62.

- a) Create object "mks" to store those marks
 Write R-command to determine
- b) The number of students
- c) The range
- d) Arrange marks
- e) Median marks
- f) Average marks taking 2 decimal places
- g) Variance of marks
- h) S.D of marks
- i) Modal marks
- j) All quartiles
- k) D₇
- 1) P₇₂
- m) Q.D
- n) Overall summary

- > "Practical No.2a"
- [1] "Practical No.2a"
- > "Name:Suhel"
- [1] "Name:Suhel"
- > mks=c(78,56,45,82,69,54,48,39,44,90,87,73,79,54,42,38,62)
- > mks
- [1] 78 56 45 82 69 54 48 39 44 90 87 73 79 54 42 38 62
- > "Number of Students"
- [1] "Number of Students"
- > length(mks)
- [1] 17
- > range(mks)
- [1] 38 90
- > "Average Marks"
- [1] "Average Marks"
- > mean(mks)
- [1] 61.17647
- > "median marks"
- [1] "median marks"
- > median(mks)
- [1] 56
- > "Average Marks upto 2 decimal places"
- [1] "Average Marks upto 2 decimal places"
- > round(mean(mks),2)

```
[1] 61.18
> "Variance of marks"
[1] "Variance of marks"
> var(mks)
[1] 311.9044
> "S.D of marks"
[1] "S.D of marks"
> sd=sqrt(var(mks))
> sd
[1] 17.66082
> "Modal Marks"
[1] "Modal Marks"
> t=table(mks)
> t
mks
38 39 42 44 45 48 54 56 62 69 73 78 79 82 87 90
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
> mode<-which(t==max(t))
> mode
54
7
> "All three Quartiles"
[1] "All three Quartiles"
> "First Quartile"
[1] "First Quartile"
> quantile(mks, 0.25)
25%
45
> "Second Quartile"
[1] "Second Quartile"
> quantile(mks,0.5)
50%
56
> "Third Quartile"
[1] "Third Quartile"
> quantile(mks, 0.75)
75%
78
> "7th Decile"
[1] "7th Decile"
> quantile(mks,0.7)
70%
74
> "72th Percentile"
[1] "72th Percentile"
> quantile(mks,0.72)
72%
```

75.6

```
> "Quartile Deviation"
[1] "Quartile Deviation"
> IQR(mks)
[1] 33
> summary(mks)
Min. 1st Qu. Median Mean 3rd Qu. Max.
38.00 45.00 56.00 61.18 78.00 90.00
>
```

PRACTIAL NO.2 (B)

AIM: For the Data x:150 155 160 165 170 175 f:6 11 14 9 3 2

using R, find the following.

- a) Range
- b) Mean
- c) Median
- d) Mode
- e) Q_1
- f) P₆₇
- g) D₈
- h) Q.D
- i) Var
- j) S.D
- k) Summary
- 1) Draw Histogram

- > "Practical No.2b"
- [1] "Practical No.2b"
- > "Name:Suhel"
- [1] "Name:Suhel"
- > x = seq(150,175,5)
- > x
- [1] 150 155 160 165 170 175
- > f=c(6,11,14,9,3,2)
- > f
- [1] 6 11 14 9 3 2
- > data=rep(x,f)
- > data
- [39] 165 165 170 170 170 175 175
- > "range"
- [1] "range"
- > range(data)
- [1] 150 175
- > "Median"
- [1] "Median"
- > median(data)
- [1] 160
- > "Mode"
- [1] "Mode"
- > t=table(data)
- > t
- data

```
150 155 160 165 170 175
6 11 14 9 3 2
> mode=which(t==max(t))
> mode
160
3
> "1st Quartile"
[1] "1st Quartile"
> quantile(data, 0.25)
25%
155
> "67th percentile"
[1] "67th percentile"
> quantile(data, 0.67)
67%
160
> "8th Decile"
[1] "8th Decile"
> quantile(data, 0.8)
80%
165
> "Quartile Deviation(IQR)"
[1] "Quartile Deviation(IQR)"
> IQR(data)
[1] 10
> "Variance"
[1] "Variance"
> var(data)
[1] 41.99495
> "Standard Deviation"
[1] "Standard Deviation"
> sd(data)
[1] 6.480351
> summary(data)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 150.0 155.0 160.0 159.8 165.0 175.0
> "Histogram"
[1] "Histogram"
> limits = seq(150,175,5)
> limits
[1] 150 155 160 165 170 175
```

> hist(data,breaks=limits,col="red",border="blue", xlab="observations",ylab="frequency")

PRACTIAL NO.2 (C)

AIM: For the Following Data

Class 0-25 25-50 50-75 75-100 100-125 frequency 5 8 13 11 3

Using R, Create object 'data' to store these data.

Write R command to find

- a) Mean
- b) Variance
- c) S.D
- d) Histogram

- > "Practical No.2c"
- [1] "Practical No.2c"
- > "Name:Suhel"
- [1] "Name:Suhel"
- > l=seq(0,100,25)
- >|
- [1] 0 25 50 75 100
- > u=seq(25,125,25)
- > u
- [1] 25 50 75 100 125
- > f=c(5,8,13,11,3)
- > f
- [1] 5 8 13 11 3
- > x=(1+u)/2
- > x
- [1] 12.5 37.5 62.5 87.5 112.5
- > data=rep(x,f)
- > data
- [1] 12.5 12.5 12.5 12.5 12.5 37.5 37.5 37.5 37.5 37.5 37.5

- [37] 87.5 112.5 112.5 112.5
- > "Mean"
- [1] "Mean"
- > mean(data)
- [1] 61.875
- > "Variance"
- [1] "Variance"
- > var(data)
- [1] 816.9071
- > "Standard Deviation"
- [1] "Standard Deviation"
- > sd(data)
- [1] 28.58159
- > "Histogram"

[1] "Histogram"

> limits=seq(0,125,25)

> limits

[1] 0 25 50 75 100 125

> hist(data,breaks=limits,col="blue",border="red",xlab="observations",ylab="frequency")

PRACTIAL NO.3 (A)

<u>AIM:</u> Prepare an excel file for the data.

SR No.	name	Physics	Chemistry	Maths
1	Sonam	45	85	52
2	Suhel	54	25	25
3	Deepti	87	25	87
4	Shweta	52	14	74
5	Nikita	25	65	74
6	Bhavna	25	48	78
7	Akshada	98	22	74
8	Shreya	68	97	25
9	Akansha	74	25	87
10	Pooja	60	50	72

Using R import the data Excel and perform the following functions:

- a) Mean marks of Physics
- b) Mean marks of Maths
- c) Median of Chemistry
- d) D₄ for maths
- e) IQR of Chemistry
- f) S.D for all subjects.

OUTPUT:

```
> "Practical No.3"
```

- [1] "Practical No.3"
- > "Name:Suhel"
- [1] "Name:Suhel"
- > data=read.table(file.choose("Suhel.csv"),header=TRUE,sep=",")
- > data

Sr.no Name Physics Chemistry Maths

- 1 1 Sonam 45 85 52
- 2 2 Suhel 54 25 25
- 3 3 Deepti 87 25 87
- 4 4 Shweta 52 14 74
- 5 5 Nikita 25 65 74
- 6 6 Bhavna 25 48 78
- 7 7 Akshada 98 22 74
- 8 8 Shreya 68 97 25
- 9 9 Akansha 74 25 87
- 10 10 Pooja 60 50 72
- > mean(data\$Physics)
- [1] 58.8
- > median(data\$Chemistry)
- [1] 36.5
- > quantile(data\$Maths,0.4)

40%

73.2

> IQR(data\$Chemistry)

[1] 36.25

> sd(data\$Physics)

[1] 24.02221

> sd(data\$Maths)

[1] 23.08824

> sd(data\$Chemistry)

[1] 28.72165

PRACTIAL NO.4

AIM: Create an object 'x' & 'y' in R for the data

X 2 4 6 4 5 3 Y 18 14 4 6 6 12

Find the following

- a) Coefficient of correlation
- b) Regression equation y on x. hence find 'y' where x=10
- c) Regression equation x on y. hence find 'x' where y=8
- d) Create an object 'z'

Z: 39,40,43,47,46,38

- e) Regression equation z on x and y
- f) Draw scatter diagram of data x & y.

```
> "Practical No.4"
[1] "Practical No.4"
> "Name:Suhel"
[1] "Name:Suhel"
> x=c(2,4,6,4,5,3)
> x
[1] 2 4 6 4 5 3
> y=c(18,14,4,6,6,12)
> y
[1] 18 14 4 6 6 12
> "Coefficient of Correlation"
[1] "Coefficient of Correlation"
> r=cor(x,y,method="pearson")
> r
[1] -0.8720816
> R=cor(x,y,method="spearman")
> R
[1] -0.8676471
> "Regression Equation y on x"
[1] "Regression Equation y on x"
> f=Im(y^x)
> f
Call:
Im(formula = y \sim x)
Coefficients:
(Intercept)
                 Χ
    23.6
             -3.4
> fitted.values(f)
```

```
1 2 3 4 5 6
16.8 10.0 3.2 10.0 6.6 13.4
> predict(f,data.frame(x=10))
  1
-10.4
> "Regression Equation x on y"
[1] "Regression Equation x on y"
> f1=Im(x^y)
> fitted.values(f1)
         2
              3
                   4
                         5
2.210526 3.105263 5.342105 4.894737 4.894737 3.552632
> predict(f1,data.frame(y=8))
4.447368
> z=c(39,40,43,47,46,38)
[1] 39 40 43 47 46 38
> "Regression Equation z on x&y"
[1] "Regression Equation z on x&y"
> f2=Im(z^x+y)
> f2
Call:
Im(formula = z \sim x + y)
Coefficients:
(Intercept)
                Χ
  53.6612 -0.9780
                      -0.7582
> fitted.values(f2)
                         5
                               6
              3
                   4
38.05678 39.13370 44.76007 45.19963 44.22161 41.62821
> plot(x,y,xlab="xaxis",ylab="yaxis",main="Scatter Diagram")
```

Scatter Diagram

PRACTIAL NO.5

AIM: Using R, Find the trend line for the data. Hence find sales. For the year. 2008

Year	2001	2002	2003	2004	2005	2006	2007
sales	40	48	65	72	70	62	81

```
> "Practical No.5"
[1] "Practical No.5"
> "Name:Suhel"
[1] "Name:Suhel"
> year=c(2001,2002,2003,2004,2005,2006,2007)
[1] 2001 2002 2003 2004 2005 2006 2007
> sales=c(40,48,65,72,70,62,81)
> sales
[1] 40 48 65 72 70 62 81
> x=year-2004
> x
[1] -3 -2 -1 0 1 2 3
> n=length(year)
> n
[1] 7
> a=(sum(sales))/n
> b=(sum(x*sales)/sum(x^2))
> a
[1] 62.57143
> b
[1] 5.571429
> "Sales for the Year 2008"
[1] "Sales for the Year 2008"
> a+b*4
[1] 84.85714
```

PRACTIAL NO.6

AIM: Using R,

- a) $X \sim B(n=5, p=\frac{1}{4})$. Find $p(x), p(x=4), p(x \le 3)$ and $p(x \ge 2)$
- b) Suppose there are 12 multiple choice questions in English class quiz. Each question has five possible answer, and only one of them is correct. Find the probability of having
 - i) Exactly 4 correct answers.
 - ii) 4 or less correct answer.
 - More than 6 correct answer. iii)

```
OUTPUT:
> "Practical No.6A"
[1] "Practical No.6A"
> "Name:Suhel"
[1] "Name:Suhel"
x=0:5
> x
[1] 0 1 2 3 4 5
> dbinom(x,5,0.25)
[1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 0.0146484375
[6] 0.0009765625
> "probablity that x=4"
[1] "probablity that x=4"
> dbinom(4,5,0.25)
[1] 0.01464844
> "probablity x is less than or equal to 3"
[1] "probablity x is less than or equal to 3"
> pbinom(3,5,0.25)
[1] 0.984375
> "probablity x is greater than or equal to 2"
[1] "probablity x is greater than or equal to 2"
> 1-pbinom(1,5,0.25)
[1] 0.3671875
> "Part b"
[1] "Part b"
> x=0:12
> x
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12
```

[1] 0.0687 0.2062 0.2835 0.2362 0.1329 0.0532 0.0155 0.0033 0.0005 0.0001

> round(dbinom(x,12,0.2),4)

[11] 0.0000 0.0000 0.0000

> "probablity that exactly 4 correct answer" [1] "probablity that exactly 4 correct answer"

- > dbinom(4,12,0.2)
- [1] 0.1328756
- > "probablity that 4 or less correct answer"
- [1] "probablity that 4 or less correct answer"
- > pbinom(4,12,0.2)
- [1] 0.9274445
- > "probablity that more than 6 correct answer"
- [1] "probablity that more than 6 correct answer"
- > 1-pbinom(6,12,0.2)
- [1] 0.003903132

PRACTIAL NO.6B

AIM: Using R,

- a) $X \sim N(15,4)$. Find $p(z \le 1.96)$, $p(z \le 1.645)$, $p(z \ge 1.96)$
- b) $X \sim N(\mu = 20, \sigma = 3)$, Find $p(x \le 18), p(x \ge 25)$
 - i) Exactly 4 correct answers.
 - ii) 4 or less correct answer.
 - iii) More than 6 correct answer.

OUTPUT:

- > "Practical No.6B"
- [1] "Practical No.6B"
- > "Name:Suhel"
- [1] "Name:Suhel"
- > "Normal Distribution Mean=15,S.D=4"
- [1] "Normal Distribution Mean=15,S.D=4"
- > "Probablity z<=1.96"
- [1] "Probablity z<=1.96"
- > pnorm(1.96)
- [1] 0.9750021
- > "Probablity z<=1.645"
- [1] "Probablity z<=1.645"
- > pnorm(1.645)
- [1] 0.9500151
- > "Probablity z>=1.96"
- [1] "Probablity z>=1.96"
- > 1-pnorm(1.96)
- [1] 0.0249979
- > "Normal Distribution Mean=20,S.D=3"
- [1] "Normal Distribution Mean=20,S.D=3"
- > "Probablity x<=18"
- [1] "Probablity x<=18"
- > pnorm(18,20,3)
- [1] 0.2524925
- > "Probablity x>=25"
- [1] "Probablity x>=25"
- > 1-pnorm(25,20,3)
- [1] 0.04779035