

Student: Fangyi Li (1092229)

Course: BINF\*6210 Assignment 1

### What I Wanted to Find Out

Test whether Canid species that live farther from the equator have wider geographic ranges?



a pattern known as Rapoport's rule

- I explored global DNA barcode data (BOLDSYSTEMS for the dog family (Canidae).
- I built this small project to see what real data say.

Rapoport's rule describes how species at higher latitudes often have broader geographic ranges (Stevens, 1989).

Does this rule hold true for Canid (dogs, wolves, foxes, jackals, etc.)?

### Hypothesis $(H_1)$ :

Latitudinal range increases with median latitude (positive relationship).

### Hypothesis $(H_0)$ :

No relationship exists between latitude and range size.

#### **Expectation:**

If Rapoport's rule holds, the regression line will slope upward.



## Gathered Data from the **BOLDSYSTEMS**

#### **TAXONOMY BROWSER: Canidae**

Family: Canidae

| Statistics                |             |
|---------------------------|-------------|
| Specimen Records:         | 3,751       |
| Specimens with Sequences: | 3,516       |
| Specimens with Barcodes:  | 3,019       |
| Species:                  | 36          |
| Species With Barcodes:    | 31          |
| Public Records:           | 2,639       |
| Public Species:           | 34          |
| Public BINs:              | 30          |
| SPECIES LIST              | PUBLIC DATA |

Downloaded ~3,700 specimen records,
 30 BINs (genetic clusters).

 Each record includes latitude, longitude, and species name.

 Dataset looks large, but geographic info was messy; many samples had missing coordinates.

## Cleaning the Data to Keep Only Reliable Records



### What I Calculated for Each BIN

For each BIN (≈ species), I summarized:



Then tested if BINs farther from the equator (higher latitude) have broader ranges.

# 8 Canid BINs remained after cleaning mostly from the Northern Hemisphere

|   | bin_uri      | n_records | lat_min * | lat_max  | lat_range ** | lat_median | species                  | hemisphere |
|---|--------------|-----------|-----------|----------|--------------|------------|--------------------------|------------|
| 1 | BOLD:AAA1542 | 844       | -35.73359 | 65.01579 | 100.749383   | 12.89357   | Canis lupus              | Northern   |
| 2 | BOLD:AAC5017 | 20        | 24.13800  | 53.20000 | 29.062000    | 38.82081   | Canis latrans            | Northern   |
| 3 | BOLD:AAC5230 | 187       | 16.34300  | 49.25010 | 32.907100    | 38.82081   | Urocyon cinereoargenteus | Northern   |
| 4 | BOLD:AAC5231 | 58        | 31.91670  | 76.53000 | 44.613300    | 74.16847   | Vulpes velox             | Northern   |
| 5 | BOLD:ACR0824 | 4         | -28.55362 | 36.40239 | 64.956006    | -28.55362  | Lycaon pictus            | Southern   |
| 6 | BOLD:ADC5726 | 26        | 32.90602  | 62.73421 | 29.828185    | 38.93208   | Vulpes vulpes            | Northern   |
| 7 | BOLD:ADK6164 | 5         | 32.90602  | 38.93210 | 6.026075     | 38.93208   | Vulpes vulpes            | Northern   |
| 8 | BOLD:ADM0647 | 4         | 31.51354  | 48.57328 | 17.059738    | 38.93208   | Canis aureus             | Northern   |

- 8 BINs passed all filters with valid coordinates.
- Each BIN represents 1 Canid species or cluster.
- 7 occur in the north, one (Lycano pictus) in the south.
- These data provide the basis for the following analysis

### Almost all BINs cluster between 30°-50° North latitude



 Histogram of BIN median latitudes shows concentration in temperate zones.

 Suggests limited coverage in tropical and southern regions.

## Do higher-latitude BINs actually have wider ranges?



This scatterplot shows each BIN's median latitude versus its latitudinal range, with colors indicating hemisphere.

 The regression line slopes slightly downward, showing no visible support for Rapoport's rule.

## Statistics show no significant relationship between latitude and range size

```
Call:
lm(formula = lat_range ~ lat_median, data = bin_filtered)
Residuals:
   Min
            1Q Median 3Q
                                  Max
<u>-30.918</u> -10.925 -6.649 3.310
                               50.612
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.6705 15.1339
                                3.745
                                       0.00957 **
lat_median -0.5067
                       0.3612 -1.403 0.21026
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 28.09 on 6 degrees of freedom
Multiple R-squared: 0.247, Adjusted R-squared: 0.1215
F-statistic: 1.968 on 1 and 6 DF, p-value: 0.2103
```

Linear regression found a weak negative slope (β = -0.51, p = 0.21, R² = 0.25).

 The p-value is above 0.05, meaning the trend is not statistically significant.

 Therefore, Canid BINs at higher latitude do not have larger geographic ranges in this dataset.

## The expected pattern was not observed in Canidae

- The regression showed no significant link between latitude and range size.
- The trend was slightly negative instead of positive, opposite to Rapoport's rule.
- This likely reflects small sample size and limited southern-hemisphere records.
- One widespread species (Canis lupus) strongly influenced the dataset.
- Latitude alone may not capture the environment factors shaping range size.

Overall, the Canidae data did not support Rapoport's rule, but the analysis demonstrates how BOLD records can be used to test ecological hypothesis.

## How this project could be improved next...

→ Add more BINs by combing Canidae with other carnivore families.

→ Include tropical and southern-hemisphere species to balance the dataset.

→ Incorporate environmental variables such as temperature or habitat type.

→ Apply the same workflow to test other ecological rules.

### Reference

- [1] Ratnasingham S, Wei C, Chan D, Agda J, Agda J, Ballesteros-Mejia L, Ait Boutou H, El Bastami Z M, Ma E, Manjunath R, Rea D, Ho C, Telfer A, McKeowan J, Rahulan M, Steinke C, Dorsheimer J, Milton M, Hebert PDN . "BOLD v4: A Centralized Bioinformatics Platform for DNA-Based Biodiversity Data." In DNA Barcoding: Methods and Protocols, pp. 403-441. Chapter 26. New York, NY: Springer US, 2024
- [2] Ratnasingham, S. & Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7, 355-364. DOI: 10.1111/j.1471-8286.2007.01678.x
- [3] Stevens, G. C. (1989). The latitudinal gradient in geographical range: How so many species coexist in the tropics. *The American Naturalist*, 133(2), 240–256. https://doi.org/10.1086/284913
- [4] Wickham H, Hester J, Bryan J (2024). *readr: Read Rectangular Text Data*. R package version 2.1.5, https://github.com/tidyverse/readr, https://readr.tidyverse.org.
- [5] Wickham H, François R, Henry L, Müller K, Vaughan D (2025). *dplyr: A Grammar of Data Manipulation*. R package version 1.1.4, <a href="https://dplyr.tidyverse.org">https://dplyr.tidyverse.org</a>.
- [6] Wickham H, Vaughan D, Girlich M (2025). tidyr: Tidy Messy Data. R package version 1.3.1, https://tidyr.tidyverse.org.
- [7] Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, <a href="https://ggplot2.tidyverse.org">https://ggplot2.tidyverse.org</a>