磁场的能量

当电键打开后,电源已不再向灯泡供应能量了。 它突然闪亮一下,所消耗的能量从哪里来的?

使灯泡闪亮的电流是线圈中的自感电动势产生的电流,这电流随着线圈中的磁场的消失而逐渐消失。可以认为使灯泡闪亮的能量是原来储存在通有电流的线圈中的,或者说是储存在线圈内的磁场中,称为磁能。

设电路接通后回路中某瞬时的电流为了,自感电

动势为
$$L\frac{\mathrm{d}I}{\mathrm{d}t}$$

动势为 $L^{\mathrm{d}I}$,由欧姆定律得

$$\varepsilon - L \frac{\mathrm{d}I}{\mathrm{d}t} = IR$$

$$\int_0^t \varepsilon I \, \mathrm{d}t = \int_0^{I_0} LI \, \mathrm{d}I + \int_0^t RI^2 \, \mathrm{d}t$$

在自感和电流无关的情况下

$$Q = \int_0^\infty RI^2 dt = RI^2 \int_0^\infty e^{-2\frac{R}{L}t} dt = \frac{1}{2} LI_0^2$$

$$\bullet$$
 自感线圈磁能 $W_{\rm m} = \frac{1}{2} L I_0^2$

对于一个很长的直螺线管

$$B = \mu nI, L = \mu n^2V$$

$$\therefore W_m = \frac{1}{2} \frac{B^2}{\mu} V = \frac{1}{2} BHV$$

◈ 磁场能量密度

$$w_{\rm m} = \frac{W_{\rm m}}{V} = \frac{B^2}{2\mu} = \frac{1}{2}\mu H^2 = \frac{1}{2}BH$$

 \bullet 磁场能量 $dW_m = w_m dV = \frac{1}{2}BH dV$

$$W_{\rm m} = \int_{V} w_{\rm m} dV = \int_{V} \frac{B^2}{2\mu} dV = \frac{1}{2} \int_{V} BH dV$$

例:如图同轴电缆,中间充以磁介质,芯线与圆筒上的电流大小相等、方向相反.已知 R_1 , R_2 , I, μ , π 单位长度同轴电缆的磁能和自感.设金属芯线内的磁场可略.

解 由安培环路定律可求 H

$$\begin{cases} r < R_1, & H = 0 \\ R_1 < r < R_2, & H = \frac{I}{2\pi r} \\ r > R_2, & H = 0 \end{cases}$$

则 $R_1 < r < R_2$

$$w_{\rm m} = \frac{1}{2} \mu H^2 = \frac{1}{2} \mu (\frac{I}{2\pi r})^2$$

$$R_1 < r < R_2$$
 $W_m = \frac{1}{2} \mu (\frac{I}{2\pi r})^2 = \frac{\mu I^2}{8\pi^2 r^2}$

$$W_{\rm m} = \int_{V} w_{\rm m} dV = \int_{V} \frac{\mu I^{2}}{8\pi^{2} r^{2}} dV$$

单位长度壳层体积

$$dV = 2\pi r dr \cdot 1$$

$$W_{\rm m} = \int_{R_1}^{R_2} \frac{\mu I^2}{4\pi r} dr = \frac{\mu I^2}{4\pi} \ln \frac{R_2}{R_1}$$

$$W_{\rm m} = \frac{1}{2}LI^2$$
 $L = \frac{\mu}{2\pi} \ln \frac{R_2}{R_1}$

例: 求两个相互邻近的电流回路的磁场能量,这两个回路的电流分别是 I_1 和 I_2 。

解:为了求出此状态时的磁能,设想 I_1 和 I_2 是按下述步骤建立的。

(1) 先合上电键 K_1 ,使 i_1 从零增大到 I_{1_0} 这一过程中由于自感 L_1 的存在,由电源 \mathcal{E}_1 作功而储藏到磁场中的能量为

 $W_1 = \frac{1}{2} L_1 I_1^2$

(2) 再合上电键 K_2 ,调节 R_1 使 I_1 保持不变,这时 i_2 由零增大到 I_2 。这一过程中由于自感 L_2 的存在,由电源 \mathcal{E}_2 作功而储藏到磁场中的能量为

$$W_2 = \frac{1}{2} L_2 I_2^2$$

注意到当 i_2 增大时,在回路1中会产生互感电动势 \mathcal{E}_{12}

$$\varepsilon_{12} = -M_{12} \frac{\mathrm{d} \, \iota_2}{\mathrm{d} \, t}$$

要保持电流 I_1 不变,电源 \mathcal{E}_1 还必须反抗此电动势作功。这样由于互感的存在,由电源 \mathcal{E}_1 作功而储藏到磁场中的能量为

$$W_{12} = \int \mathcal{E}_{12} I_1 \, dt = \int M_{12} I_1 \frac{d i_2}{d t} \, dt$$

$$= \int_0^{I_2} M_{12} I_1 \, di = M_{12} I_1 \int_0^{I_2} d i_2$$

$$= M_{12} I_1 I_2$$

经过上述两个步骤后,系统达到电流分别是 I_1 和 I_2 的状态,这时储藏到磁场中的能量为

$$W_m = W_1 + W_2 + W_{12}$$

$$= \frac{1}{2} L_1 I_1^2 + \frac{1}{2} L_2 I_2^2 + M_{12} I_1 I_2$$

如果上述两个步骤反向进行,则储藏到磁场中的能量为

$$W'_{m} = \frac{1}{2}L_{1}I_{1}^{2} + \frac{1}{2}L_{2}I_{2}^{2} + M_{21}I_{1}I_{2}$$

由于两种通电方式的最后状态相同,所以

$$W_m = W'_m$$
 $M_{12} = M_{21} = M$

最后储藏到磁场中的总能量为:

$$W'_{m} = \frac{1}{2}L_{1}I_{1}^{2} + \frac{1}{2}L_{2}I_{2}^{2} + MI_{1}I_{2}$$