Problem Set #2

MACS 30100, Dr. Evans Soo Wan Kim

Problem 1

Part (a)

Figure 1: Histogram of percentages of the income.text data

Part (b)

Log likelihood value: -8298.63695601

Part (c).

 $\mu \text{ MLE} = 11.3314411636$ $\sigma \text{ MLE} = 0.211674565363$

Variance-covariance matrix:

 $\left[\begin{array}{ccc} 2.22922149e - 04 & 9.27073415e - 06 \\ 9.27073415e - 06 & 1.64466141e - 04 \end{array} \right]$

Part (d).

The probability that the incomes data has $\mu = 9.0$ and $\sigma = 0.3$ is 0.

Figure 2: Lognormal PDF with $\mu = 9.0$ and $\sigma = 0.3$

Part (e).

The probability that I will learn more than \$100,000 is: 0.195766989696 The probability that I will learn less than \$75,000 is: 0.307687164314

Problem 2 Part (a).

 β_0 MLE = 0.293418697526 β_1 MLE = 0.00763476963395 β_2 MLE = 0.444707732948 β_3 MLE = -0.00780350965027 σ MLE = 0.0230457171774

Log likelihood value: 477.537339914 Variance-covariance matrix:

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

Figure 3: Lognormal PDF with MLE estimates for μ and σ

Part (b). The probability that $\beta_0 = 1.0$, $\sigma^2 = 0.01$, and β_1 , β_2 , $\beta_3 = 0$ is 0.