Bias-variance tradeoff

Hunan U

1 Introduction

Previously, we talked about the bias-variance tradeoff and briefly mentioned the James-Stein estimator. The main take-away is that a biased estimator may have a better performance than an unbiased estimator, in terms of achieving a lower MSE. In statistics, the most notable example is the James-Stein estimator.

We use R to demonstrate the superiority of James-Stein estimator for a particular model, which is also a good exercise for R programming and statistical computing.

2 Set-up

The hiring problem. Alice is a hiring manager. She looks at N different aspects of each candidate's characteristics (say communication skills, analytical skills, etc). A candidate's true characteristic in aspect i is μ_i . Alice cannot observe μ_i , but she can have an imperfect measure z_i of each μ_i . Alice wishes to have a good estimate of a candidate's characteristics $\mu = (\mu_1, \dots, \mu_N)$ based on the measures $z = (z_1, \dots, z_n)$.

We build a simple model for the hiring problem:

• Data are generated from

$$z_i | \mu_i \sim N(\mu_i, 1), \quad i = 1, \dots, N.$$

- In plain words, the first observation z_1 is drawn from the normal distribution with mean μ_1 and variance 1, the second observation z_2 is drawn from the normal distribution with mean μ_2 and variance 1, and so on.
- Note that for each candidate μ , we have only **one measurement** z, which is composed of N numbers, (z_1, \ldots, z_N) .

Question: How to obtain a good estimate of $\mu = (\mu_1, \dots, \mu_N)$ based on the one observation $z = (\mu_1, \dots, \mu_N)?$

1. The maximum-likelihood estimator (MLE) is $\hat{\mu}^{(MLE)} = z$. We can verify that this estimator is unbiased:

$$\mathbb{E}\hat{\mu}^{(MLE)} = \mu.$$

2. The James-Stein Estimator is

$$\hat{\mu}^{(JS)} = (1 - \frac{N-2}{||z||^2})z.$$

Clearly, the James-Stein Estimator is biased. Indeed, it simply "shrinks" the unbiased MLE by $1 - \frac{N-2}{||z||^2}$. When $N \ge 3$, we have $1 - \frac{N-2}{||z||^2} < 1$.

¶ James-Stein Theorem (1961)

For $N \geq 3$, the James-Stein Estimator dominates the MLE in terms of achieving a lower

$$\mathbb{E}||\hat{\mu}^{(JS)} - \mu||^2 < \mathbb{E}||\hat{\mu}^{(MLE)} - \mu||^2,$$

where $||\hat{\mu} - \mu||^2 = \sum_{i=1}^{N} (\hat{\mu}_i - \mu_i)^2$.

Proving this theorem may be thorny if you have limited exposure to mathematical statistics before. However, we can use R to run some experiments/simulations, and data will tell us whether this theorem holds in reality.

3 Experiments

The function run_experiment() performs the following operations:

- 1. Take an input N and generate some vector μ with length N
- 2. Repeat the following steps nrep(=100) times:
 - generate a measurement z based on
 - compute the _MLE and _JSE based on z
 - compute the err_MLE and err_JSE based on z and
- 3. Return a data frame containing all the err_MLE and err_JSE

```
run_experiment = function(N) {
   nrep = 100
    err_MLE = rep(0,nrep)
    err_JSE = rep(0,nrep)
     = rnorm(N) # generated from standard normal dist
    for (i in 1:nrep) {
        e = rnorm(N, 0, 1)
        z = + e
        _{MLE} = z
        _{\rm JSE} = (1-(N-2)/sum(z^2))*z
        err_MLE[i] = sum((_MLE-)^2)/N
        err_JSE[i] = sum((_JSE-)^2)/N
    }
    err_both = as.data.frame(cbind(err_MLE,err_JSE))
    names(err_both) = c("err_MLE","err_JSE")
    return(err_both)
}
```

We have the data for all the MSEs on 100 samples of James-Stein estimator and Maximum Likelihood estimator. We use the box plot to compare them.

```
get_box = function(N) {
    err = run_experiment(N)
    boxplot(err, ylab = "Error: ||hat{}-||/N")
    title(paste("_i is generated from Normal(0,1), sample size N=",N,sep=""))
}

get_box(N=3)

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, :
conversion failure on 'Error: ||hat{}-||/N' in 'mbcsToSbcs': dot substituted
for <ce>

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, :
conversion failure on 'Error: ||hat{}-||/N' in 'mbcsToSbcs': dot substituted
for <bc>

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, :
conversion failure on 'Error: ||hat{}-||/N' in 'mbcsToSbcs': dot substituted
for <ce>
```

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: ||hat{}-||/N' in 'mbcsToSbcs': dot substituted for <bc>

Warning in title(paste("_i is generated from Normal(0,1), sample size N=", : conversion failure on '_i is generated from Normal(0,1), sample size N=3' in 'mbcsToSbcs': dot substituted for <ce>

Warning in title(paste("_i is generated from Normal(0,1), sample size N=",: conversion failure on '_i is generated from Normal(0,1), sample size N=3' in 'mbcsToSbcs': dot substituted for <bc>

.._i is generated from Normal(0,1), sample size N=3

get box(N=5)

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: $||hat{}\}-||/N'|$ in 'mbcsToSbcs': dot substituted for <ce>

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: $||hat{} - ||/N'|$ in 'mbcsToSbcs': dot substituted for <bc>

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: $||hat{} - ||/N'|$ in 'mbcsToSbcs': dot substituted for <ce>

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: ||hat{}-||/N' in 'mbcsToSbcs': dot substituted for <bc>

Warning in title(paste("_i is generated from Normal(0,1), sample size N=", : conversion failure on '_i is generated from Normal(0,1), sample size N=5' in 'mbcsToSbcs': dot substituted for <ce>

Warning in title(paste("_i is generated from Normal(0,1), sample size N=",: conversion failure on '_i is generated from Normal(0,1), sample size N=5' in 'mbcsToSbcs': dot substituted for <bc>

.._i is generated from Normal(0,1), sample size N=5

get_box(N=2)

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: $||hat{} - ||/N'|$ in 'mbcsToSbcs': dot substituted for <ce>

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: $||hat{} - ||/N'|$ in 'mbcsToSbcs': dot substituted for <bc>

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: $||hat{} - ||/N'|$ in 'mbcsToSbcs': dot substituted for <ce>

Warning in (function (main = NULL, sub = NULL, xlab = NULL, ylab = NULL, : conversion failure on 'Error: ||hat{}-||/N' in 'mbcsToSbcs': dot substituted for <bc>

Warning in title(paste("_i is generated from Normal(0,1), sample size N=", : conversion failure on '_i is generated from Normal(0,1), sample size N=2' in 'mbcsToSbcs': dot substituted for <ce>

Warning in title(paste("_i is generated from Normal(0,1), sample size N=", : conversion failure on '_i is generated from Normal(0,1), sample size N=2' in 'mbcsToSbcs': dot substituted for
bc>

.._i is generated from Normal(0,1), sample size N=2

The statistical experiments confirm the superiority of James-Stein estimator when $N \geq 3$.