Cyclic Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 26, 2014

Cyclic Codes

Definition

A cyclic shift of a vector $\begin{bmatrix} v_0 & v_1 & \cdots & v_{n-2} & v_{n-1} \end{bmatrix}$ is the vector $\begin{bmatrix} v_{n-1} & v_0 & v_1 & \cdots & v_{n-3} & v_{n-2} \end{bmatrix}$.

Definition

An (n, k) linear block code C is a cyclic code if every cyclic shift of a codeword in C is also a codeword.

Example

Consider the (7,4) code C with generator matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Polynomial Representation of Vectors

• For every vector $\mathbf{v} = \begin{bmatrix} v_0 & v_1 & \cdots & v_{n-2} & v_{n-1} \end{bmatrix}$ there is a polynomial

$$\mathbf{v}(X) = v_0 + v_1 X + v_2 X^2 + \cdots + v_{n-1} X^{n-1}$$

• Let $\mathbf{v}^{(i)}$ be the vector resulting from i cyclic shifts on \mathbf{v}

$$\mathbf{v}^{(i)}(X) = v_{n-i} + v_{n-i+1}X + \dots + v_{n-1}X^{i-1} + v_0X^i + \dots + v_{n-i-1}X^{n-1}$$

• $\mathbf{v}(X)$ and $\mathbf{v}^{(i)}(X)$ are related by

$$X^{i}\mathbf{v}(X)=\mathbf{v}^{(i)}(X)+\mathbf{q}(X)(X^{n}+1)$$

where
$$\mathbf{q}(X) = v_{n-i} + v_{n-i+1}X + \cdots + v_{n-1}X^{i-1}$$

- $\mathbf{v}^{(i)}(X)$ is the remainder when $X^i\mathbf{v}(X)$ is divided by X^n+1
- Polynomial representations of codewords will be called code polynomials

Properties of Cyclic Codes

- The nonzero code polynomial of minimum degree in a linear block code is unique.
- Let $\mathbf{g}(X) = g_0 + g_1 X + \cdots + g_{r-1} X^{r-1} + X^r$ be the nonzero code polynomial of minimum degree in an (n, k) cyclic code C.
 - The constant term g₀ is equal to 1.
 - A binary polynomial of degree n-1 or less is a code polynomial if and only if it is a multiple of $\mathbf{g}(X)$.
 - g(X) is called the generator polynomial of the cyclic code.
 - The degree of the generator polynomial is n k.
 - The generator polynomial is a factor of $X^n + 1$.
- If $\mathbf{g}(X)$ is a polynomial of degree n-k and is a factor of X^n+1 , then $\mathbf{g}(X)$ generates an (n,k) cyclic code.

Systematic Encoding of Cyclic Codes

• To encode a k-bit message $\begin{bmatrix} u_0 & u_1 & \cdots & u_{k-1} \end{bmatrix}$ construct the message polynomial

$$\mathbf{u}(X) = u_0 + u_1 X + \cdots + u_{k-1} X^{k-1}.$$

- Given a generator polynomial g(X) of an (n, k) cyclic code, the corresponding codeword is u(X)g(X). This is not a systematic encoding.
- A systematic encoding of the message can be obtained as follows
 - Divide $X^{n-k}\mathbf{u}(X)$ by $\mathbf{g}(X)$ to obtain remainder $\mathbf{b}(X)$
 - The code polynomial is given by $\mathbf{b}(X) + X^{n-k}\mathbf{u}$

Questions? Takeaways?