Práctica 1. Dynamic model of a robot manipulator with the Lagrange method.

Consider the robot manipulator represented in Figure 1, which moves in a vertical plane.

Figure 1: Planar robot manipulator that moves in a vertical plane.

The dynamic model of this robotic system is represented by the second order differential equation

$$\mathbf{B}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{N}(\mathbf{q}) = \mathbf{u},$$

where the two matrices $\mathbf{B}(\mathbf{q})$ and $\mathbf{C}(\mathbf{q},\dot{\mathbf{q}})$ have the following expressions

$$\mathbf{B}(\mathbf{q}) = \begin{bmatrix} I_1 + I_2 + m_2 q_2^2 & 0 \\ 0 & m_2 \end{bmatrix},$$

$$\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) = \begin{bmatrix} 2m_2 q_2 \dot{q}_1 \dot{q}_2 \\ -m_2 q_2 \dot{q}_1^2 \end{bmatrix},$$

$$\mathbf{N}(\mathbf{q}) = m_2 g \begin{bmatrix} q_2 \cos q_1 \\ \sin q_1 \end{bmatrix}.$$

 $\mathbf{q}=(q_1,q_2)^T$ is the vector of configuration variables, where q_1 is the angular position of the link with respect to the x axis of the reference frame $\{x,y\}$ and q_2 is the linear position of the center of mass \mathbf{b} of the link with respect to the origin of the reference frame. The vector $\dot{\mathbf{q}}=(\dot{q}_1,\dot{q}_2)^T$ is the vector of joint velocities, where \dot{q}_1 is an angular velocity and \dot{q}_2 is a linear velovity. The vector $\ddot{\mathbf{q}}=(\ddot{q}_1,\ddot{q}_2)^T$ is the vector of accelerations, where \ddot{q}_1 is an angular acceleration and \ddot{q}_2 is a linear acceleration. The control inputs of the system are $\mathbf{u}=(u_1,u_2)^T$, where u_1 is the torque applied by the angular actuator to the link and u_2 is the force applied by the linear actuators to the link. I_1 is the barycentric moment of inertia of the angular and linear actuators, I_2 is the barycentric moment of inertia of the link, and m_2 is the mass of the link.

- a. Demonstrate the equations of the dynamic model using the Lagrange method.
- b. Compute the state space representation of the dynamics of the manipulator in which $\mathbf{x}=(x_1,x_2,x_3,x_4)^T=(q_1,q_2,\dot{q}_1,\dot{q}_2)^T.$ Take the coordinates of point \mathbf{p} as the output variables.

Write a detailed report answering each question in a different section. Originality and completeness of the answers will be the aspects that will be taken into account in the grading of the report.

Solution of Práctica 1

a. Demonstrate the equations of the dynamic model using the Lagrange method.

The solution goes here

b. Compute the state space representation of the dynamics of the manipulator in which $\mathbf{x}=(x_1,x_2,x_3,x_4)^T=(q_1,q_2,\dot{q}_1,\dot{q}_2)^T.$ Take the coordinates of point \mathbf{p} as the output variables.

The solution goes here