MỤC LỤC

Nội dung	Trang
Chương 1. MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH	4
1.1. MỘT SỐ KHÁI NIỆM VỀ MA TRẬN	4
1.2. CÁC PHÉP TOÁN TRÊN MA TRẬN	5
1.3. CÁC LOẠI MA TRẬN VUÔNG ĐẶC BIỆT	7
1.4. LŨY THỪA MA TRẬN	8
1.5. CÁC PHÉP BIẾN ĐỔI SƠ CẤP TRÊN DÒNG	8
1.6. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH	9
1.7. THUẬT TOÁN GAUSS VÀ GAUSS – JORDAN ĐỂ GIẢI HỆ PI	HUONG
TRÌNH TUYẾN TÍNH	11
1.8. MA TRẬN KHẢ NGHỊCH	13
1.9. ỨNG DỤNG MA TRẬN NGHỊCH ĐẢO ĐỂ GIẢI PHƯƠNG TRÌ	NH MA
TRẬN	15
Chương 2. ĐỊNH THỨC	25
2.1. HOÁN VỊ	25
2.2. ĐỊNH THỨC CỦA MA TRẬN VUÔNG	26
2.3. TÍNH CHẤT CĂN BẢN CỦA ĐỊNH THỨC	27
2.4. CÁC PHÉP BIẾN ĐỔI SƠ CẤP TRÊN CỘT	27
2.5. CÔNG THỨC KHAI TRIỂN ĐỊNH THỨC	27
2.6. ĐỊNH LÝ LAPLACE	28
2.7 ĐỊNH THỨC VÀ MA TRẬN KHẢ NGHỊCH	29
2.8. PHƯƠNG PHÁP CRAMER ĐỂ GIẢI HỆ PHƯƠNG TRÌNH TUYẾN TÍ	NH30
Chương 3. KHÔNG GIAN VECTO	38
3.1. KHÁI NIỆM KHÔNG GIAN VECTO	38
3.2. KHÔNG GIAN CON	39
3.3. SỰ PHỤ THUỘC TUYẾN TÍNH VÀ ĐỘC LẬP TUYẾN TÍNH	39
3.4. KHÔNG GIAN CON SINH BỞI MỘT TẬP HỢP	40
3.5. CƠ SỞ VÀ SỐ CHIỀU	40
3.6. TỔNG CÁC KHÔNG GIAN CON	41
3.7. TỌA ĐỘ	43
Chương 4. ÁNH XẠ TUYẾN TÍNH	51
4.1. ĐỊNH NGHĨA VÀ CÁC TÍNH CHẤT CĂN BẢN	51
4.2. MA TRẬN BIỂU DIỄN ÁNH XẠ TUYẾN TÍNH	53
4.3. NHÂN VÀ ẢNH CỦA ÁNH XẠ TUYẾN TÍNH	56
4.4. TOÁN TỬ TUYẾN TÍNH	57

Chương 5. CÁC DẠNG CHÍNH TẮC CỦA MA TRẬN	65
5.1. ĐA THỨC ĐẶC TRƯNG	65
5.2. TRỊ RIÊNG, VECTƠ RIÊNG CỦA TOÁN TỬ TUYẾN TÍNH V	À MA TRẬN
VUÔNG	66
5.3. TOÁN TỬ VÀ MA TRẬN VUÔNG CHÉO HÓA	67
TÀI LIÊU THAM KHẢO	77

KÝ HIỆU TOÁN HỌC TRONG TÀI LIỆU

∃ tồn tại

∧ và

∨ hay

∈ thuộc

≠ khác

 \sum tổng

 $\boldsymbol{M}_{\scriptscriptstyle mxn}(\boldsymbol{K})$ tập hợp các ma trận loại mxn trên trường \boldsymbol{K}

 $M_{_{n}}(K)$ tập hợp các ma trận vuông cấp n trên K

L(V,W) tập hợp các ánh xạ tuyến tính từ V vào W

L(V) tập hợp các toán tử tuyến tính trên V

Chương 1

MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

- ❖ Mục tiêu học tập: Sau khi học xong chương này, người học có thể:
 - Tính các phép toán trên ma trận
 - Úng dụng ma trận giải hệ phương trình tuyến tính

1.1. MỘT SỐ KHÁI NIỆM VỀ MA TRẬN

1.1.1. Định nghĩa

Một ma trận A loại mxn trong trường K là một bảng chữ nhật gồm mxn phần tử trong K được viết thành m dòng và n cột như sau:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

trong đó $a_{ij} \in K$ là phần tử ở vị trí dòng thứ i và cột thứ j của A

- Ma trận A có thể viết gọn là $A = (a_{ij})$
- Ký hiệu $M_{\scriptscriptstyle mxn}$ (K) là tập hợp tất cả các ma trận loại m $_{\scriptscriptstyle xn}$ trên K
- Một ma trận trên K thường được ký hiệu bởi những chữ in hoa (ví dụ: A, B, C,....)
- Ký hiệu $A \in M_{mxn}$ (K) cho biết A là một ma trận loại mxn trên K
- Ký hiệu [A]_{ij} (hoặc a_{ij}) được hiểu là phần tử nằm ở vị trí (i, j) của A
 Ví du:

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 7 & 5 \end{pmatrix}$$
 thì $[A]_{11} = 1$, $[A]_{22} = 7$, $[A]_{23} = 5$,

- Nếu m = n thì ta nói A là một ma trận vuông cấp n trên K. Tập hợp tất cả các ma trận vuông cấp n trên trường K ký hiệu M_n (K)

Ví dụ:

$$\mathbf{A} = \begin{pmatrix} 2 & \sqrt{3} & 4 \\ 3 & -1 & 5 \\ 2 & 2i & i \end{pmatrix}$$

- + Các phần tử trên đường chéo chính 2, -1, i
- + Các phần tử trên đường chéo phụ 2, -1, 4

1.1.2. Định nghĩa

Ta nói $A \in M_{mxn}$ (K) là ma trận không (hay ma trận zero), ký hiệu $A = O_{mxn}$ (hay đôi khi là 0 nếu không có sự nhầm lẫn), nếu $[A]_{ij} = 0$, $\forall i,j$

Ví dụ:

$$O_{3\times 3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

1.2. CÁC PHÉP TOÁN TRÊN MA TRẬN

1.2.1. Định nghĩa

Cho A, B
$$\in M_{mxn}(K)$$
. Ta nói A = B nếu $[A]_{ij} = [B]_{ij}$, $\forall i,j$

Ví du:

$$A = \begin{pmatrix} p & q \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 4 \\ n & 0 \end{pmatrix}$ thì $A = B \iff p = 2$, $q = 4$, $1 = n$,

1.2.2. Định nghĩa

Cho A $\in M_{mxn}$ (K). Ta gọi B $\in M_{mxn}$ (K) là chuyển vị của A (ký hiệu B = A^T), nếu

$$[B]_{ij} = [A]_{ji}, \forall_{i,j}$$

Ví du:

Ví dụ:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \end{pmatrix} \text{ thì } A^{T} = \begin{pmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \end{pmatrix}$$

> Tính chất:

(i)
$$(A^{T})^{T} = A;$$

(ii)
$$A^T = B^T <=> A = B$$

1.2.3. Định nghĩa

Cho $A \in M_{mxn}(K)$ và $c \in K$. Tích của c với A (ký hiệu cA) là một ma trận được định nghĩa bởi $[cA]_{ij} = c[A]_{ij}$, $\forall i, j$

Nếu c = -1 thì ta ký hiệu (-1)A = -A và gọi là ma trận đối của A

$$2\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$$

Tính chất:

Cho $A \in M_{mxn}(K)$ và $c, d \in K$. Khi đó:

(i)
$$(c.d).A = c.(d.A)$$
, suy ra $(-c)A = c(-A)$;

(ii)
$$(c.A)^T = c.A^T$$
.

1.2.4. Định nghĩa

Cho A, B \in M_{mxn}(K). Tổng của A và B (ký hiệu: A + B) là một ma trận thuộc M_{mxn}(K) được định nghĩa bởi

$$(A + B)_{ij} = A_{ij} + B_{ij}, \forall i, j.$$

$$Vi d\mu: \begin{pmatrix} 1 & 3 \\ 5 & -2 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 4 & 1 \end{pmatrix}$$

- ightharpoonup Tính chất: Cho A, B, C ∈ M_{mxn}(K) và c,d ∈ K. Khi đó
 - (i) A + B = B + A;
 - (ii) (A + B) + C = A + (B + C);
 - (iii) 0 + A = A + 0 = A;
 - (iv) A + (-A) = (-A) + A = 0;
 - (v) $(A + B)^T = A^T + B^T$;
 - (vi) c(A + B) = cA + cB;
 - (vii) (c + d)A = cA + dA

1.2.5. Định nghĩa

Cho $A \in M_{mxn}(K)$ và $B \in M_{nxp}(K)$. Tích của A và B (ký hiệu AB) là một ma trận thuộc $M_{mxp}(K)$ được định nghĩa bởi

$$[AB]_{ij} = [A]_{i1}[B]_{1j} + [A]_{i2}[B]_{2j} + ... + [A]_{in}[B]_{nj}$$

Ví du

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, AB = \begin{pmatrix} 1.1+1.3 & 1.2+1.4 \\ 2.1+1.3 & 2.2+1.4 \\ 3.1+2.3 & 3.2+2.4 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 5 & 8 \\ 9 & 14 \end{pmatrix}$$

Chú ý:

- Tích của hai ma trận chỉ thực hiện được khi số cột của ma trận thứ nhất bằng số dòng của ma trận thứ hai.
- AB và BA cùng tồn tại khi A và B là hai ma trận vuông cùng cấp và AB ≠ BA
- AB = 0 có thể xảy ra $A \neq 0$ và $B \neq 0$

Ví dụ:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{AB} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

> Tính chất:

Cho A, A' $\in M_{m \times n}(K)$, B, B' $\in M_{n \times p}(K)$, $C \in M_{p \times q}(K)$ và $c \in K$. Khi đó:

- (i) (AB)C = A(BC);
- (ii) $A0_{nxp} = 0_{mxp}$; $0_{rxm}A = 0_{rxn}$;
- (iii) $A(B \pm B') = AB \pm AB'$; $(A \pm A')B = AB \pm A'B$;
- (iv) $(AB)^{T} = A^{T}B^{T}$;
- (v) c(AB) = A(cB) = (cA)B.

1.3. CÁC LOẠI MA TRẬN VUÔNG ĐẶC BIỆT

1.4.1. Định nghĩa

Ta nói $A \in M_n(K)$ là ma trận đường chéo cấp n nếu $[A]_{ij} = 0, \ \forall \ i \neq j,$ (nghĩa là ma trận vuông có tất cả phần tử bên ngoài đường chéo chính đều bằng 0)

Ví dụ:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

1.4.2. Định nghĩa

Một ma trận đường chéo cấp n trên K với tất cả các phần tử trên đường chéo đều bằng nhau được gọi là ma trận vô hướng cấp n trên K. Một ma trận vô hướng cấp n với phần tử 1 trên đường chéo chính được gọi là ma trận đơn vị cấp n trên K

Ký hiệu: In ma trận đơn vị cấp n trên K có dạng.

$$I_{n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = (\delta_{ij}), i, j = \overline{1,n}$$

Trong đó δ_{ij} là ký hiệu:

$$\delta_{ij} = \begin{cases} 1, & \text{n\'eu } i = j \\ 0, & \text{n\'eu } i \neq j \end{cases}$$

1.4.3. Định nghĩa

Ta nói $B \in M_n(K)$ là ma trận tam giác trên nếu $[B]_{ij} = 0$, $\forall i > j$ (nghĩa là ma trận vuông có mọi phần tử ở bên dưới đường chéo chính đều bằng không)

1.4.4. Định nghĩa

Ta nói $C \in M_n(K)$ là ma trận tam giác dưới nếu $[C]_{ij} = 0 \ \forall \ i \leq j$ (nghĩa là ma trận vuông có các phần tử ở bên trên đường chéo chính đều bằng 0)

1.4.5. Định nghĩa

Một ma trận tam giác trên hoặc tam giác dưới gọi chung là ma trận tam giác.

1.4.6. Định nghĩa

Ta nói $A\in M_n$ (K) là một ma trận phản đối xứng (hay phản xứng) nếu A^T = - A, nghĩa là $[A]_{ij}$ = - $[A]_{ji}$, \forall i,j

Nhận xét: Tất cả các phần tử trên đường chéo chính của ma trận phản ứng đều = 0 (vì $[A]_{ii} = -[A]_{ii} => [A]_{ii} = 0$)

$$Vi du: A = \begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & 1 \\ 3 & -1 & 0 \end{pmatrix}$$

1.4. LŨY THÙA MA TRẬN

1.4.1. Định nghĩa

Cho $A \in M_n(K)$. Ta định nghĩa luỹ thừa của A một cách quy nạp như sau:

$$A^0 = I_n, A^1 = A, A^2 = A.A, ..., A^{k+1} = A^k.A, \forall k \in N$$

Ví du:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \mathbf{v} \mathbf{\hat{a}} \ \mathbf{A}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Như vậy với $A \neq 0$ nhưng $A^3 = 0$

Với $A \in M_n(K)$, có thể xảy ra trường hợp $A \neq 0$ nhưng $\exists A^k = 0$

Một ma trận $A \in M_n(K)$ thoả điều kiện $A^k = 0$ với một $k \in N$ nào đó được gọi là ma trận lũy linh.

1.4.2. Tính chất

- $(i) \quad (0_n)^k = 0_n, \ \forall \ k \in N$
- $(ii) \quad (I_n)^k = I_n, \ \forall \ k \! \in \, N$
- $(iii) \ A^{r+s} = A^r.A^s, \ \forall \ A \in M^n \ (K), \ \forall \ r,s \in N$
- (iv) $A^{rs} = (A^r)^s$, $\forall A \in M_n(K)$, $\forall r, s \in N$

1.5. CÁC PHÉP BIẾN ĐỔI SƠ CẤP TRÊN DÒNG

1.5.1. Các phép biến đổi sơ cấp trên dòng

(i) Biến dòng i thành c lần dòng i $(c \in K, c \neq 0)$,

ký hiệu A
$$\xrightarrow{d_i=cd_i}$$
 A'

(ii) Biến dòng i thành dòng i cộng c lần dòng j (c ∈ K, i ≠ j),

ký hiệu A
$$\xrightarrow{d_i=d_i+cd_j}$$
 A'

(iii) Hoán vị dòng i và dòng j của A với nhau (i ≠ j),

ký hiệu A
$$\xrightarrow{d_i \leftrightarrow d_j}$$
 A'

Ví dụ:

$$\begin{pmatrix}
1 & 2 & 5 \\
-5 & 3 & 1 \\
0 & 2 & 3
\end{pmatrix}
\xrightarrow{d_1=2d_1}
\begin{pmatrix}
2 & 4 & 10 \\
-5 & 3 & 1 \\
0 & 2 & 3
\end{pmatrix}
\xrightarrow{d_2=d_2+2d_1}
\begin{pmatrix}
2 & 4 & 10 \\
-1 & 11 & 21 \\
0 & 2 & 3
\end{pmatrix}
\xrightarrow{d_2\leftrightarrow d_3}
\begin{pmatrix}
2 & 4 & 10 \\
0 & 2 & 3 \\
-1 & 11 & 21
\end{pmatrix}$$

1.5.2. Định nghĩa

Cho A, B \in M_{m x n}(K). Ta nói A tương đương dòng với B (ký hiệu A $^{\circ}$ B) nếu B có thể nhận được từ A qua một số hữu hạn phép biến đổi sơ cấp trên dòng.

1.5.3. Định nghĩa

Cho $A \in M_{m \times n}(K)$. A được gọi là ma trận bậc thang nếu thỏa hai điều kiện sau:

- Có các dòng ≠ 0 nằm bên trên các dòng 0 (nếu có).
- Đồng thời trên 2 dòng khác không thì phân tử khác không đầu tiên của dòng dưới nằm bên phải phần tử khác không đầu tiên của dòng trên.

1.5.4. Định nghĩa

Ma trận bậc thang B được gọi là dạng bậc thang của A nếu B $^{\circ}$ A.

1.5.5. Mệnh đề

Hạng của ma trận bậc thang A bằng số dòng khác không của nó.

Kí hiệu: r(A).

1.6. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

1.6.1. Định nghĩa

Một hệ phương trình tuyến tính trên K là một hệ thống gồm m phương trình bậc nhất (n ẩn) có dạng tổng quát như sau:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots + a_{m1}x_1 - a_{m2}x_2 - \dots - a_{mn}x_n = b_m
\end{cases} (*)$$

Trong đó $a_{ij} \in K$ (gọi là các hệ số) và các $b_i \in K$ (gọi là các hệ số tự do) là các phần tử cho trước, các x_i là các ẩn cần tìm (trong K)

Nếu (*) có $b_1=b_2=...=b_m=0$ thì ta nói (*) là 1 hệ phương trình tuyến tính thuần nhất trên K.

Ví dụ: Hệ phương trình

$$\begin{cases} 2x_1 + x_2 + x_3 = 1 \\ x_1 + x_2 + x_3 = 4 \\ x_1 - x_2 - 2x_3 = -3 \end{cases}$$
 (1)

là một hệ gồm 3 phương trình tuyến tính 3 ẩn trên R

Ta nói $(c_1,, c_n) \in K^n$ là n nghiệm của hệ (*) nếu khi ta thay $x_1 = c_1, ..., x_n = c_n$ vào (*) thì tất cả các đẳng thức trong (*) đều thoả

Ví dụ: Hệ phương trình tuyến tính (1) có 1 nghiệm là (1, 2, 1)

1.6.2. Định lý

Đối với hệ phương trình tuyến tính (*) thì chỉ có một trong ba trường hợp nghiệm xảy ra là: hoặc có nghiệm duy nhất hoặc vô nghiệm hoặc vô số nghiệm.

1.6.3. Hệ quả

Hệ phương trình tuyến tính thuần nhất chỉ có nghiệm tầm thường hoặc có vô số nghiệm.

1.6.4. Định nghĩa

Cho hệ phương trình tuyến tính (*) Đặt:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

Ta gọi A là ma trận hệ số, X là cột các ẩn và B cột các hệ số tự do của hệ (*) Ký hiệu:

$$\tilde{A} = (A | B) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} | b_1 \\ a_{21} & a_{22} & \dots & a_{2n} | b_2 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} | b_m \end{pmatrix}$$

Ma trận \widetilde{A} được gọi là ma trận mở rộng của hệ (*) khi viết $\widetilde{A} = (A|B)$ gọi là sự ma trận hoá hệ (*)

Ví du:

$$\begin{pmatrix}
2 & -1 & 1 & 1 \\
1 & 1 & 1 & 4 \\
1 & -1 & -2 & -3
\end{pmatrix}$$

1.6.5. Định nghĩa

Hai hệ phương trình tuyến tính (có cùng số ẩn) được gọi là tương đương nhau nếu có cùng tập hợp nghiệm.

1.6.6. Định lý

Cho hai hệ gồm m phương trình tuyến tính n ẩn trên K có dạng ma trận hoá lần lượt là $\widetilde{A} = (A|B)$ và $\widetilde{C} = (C|D)$, khi đó, nếu $\widetilde{A} \circ \widetilde{C}$ thì hai hệ trên tương đương nhau: $Vi \ du$:

$$\begin{pmatrix} 2 & -1 & 1 & 1 \\ 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & -3 \end{pmatrix} \xrightarrow{d_1 = d_1 - 2d_2} \begin{pmatrix} 0 & -3 & -1 & -7 \\ 1 & 1 & 1 & 4 \\ 0 & -2 & -3 & -7 \end{pmatrix} \xrightarrow{d_3 = d_3 - d_1} \begin{pmatrix} 0 & 0 & -7 & -7 \\ 1 & 0 & 3 & 4 \\ 0 & 1 & -2 & 0 \end{pmatrix}$$

$$\frac{d_{I} = -\frac{1}{7}d_{I}}{d_{2} = d_{2} - 3 d_{I}} \rightarrow \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$

Do đó hệ phương trình đã cho tương đương với

$$\begin{cases} 0x_1 & +0x_2 & +x_3 & = 1 \\ x_1 & +0x_2 & +0x_3 & = 1 \\ 0x_1 & +x_2 & +0x_3 & = 2 \end{cases} \iff \begin{cases} x_3 & = 1 \\ x_1 & = 1 \\ x_2 & = 2 \end{cases}$$

Vậy nghiệm của hệ là $(x_1, x_2, x_3) = (1, 2, 1)$

1.7. THUẬT TOÁN GAUSS VÀ GAUSS – JORDAN ĐỂ GIẢI HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

1.7.1. Thuật toán Gauss

Cho hệ phương trình tuyến tính: AX = B

Bước 1: Ma trận hoá hệ phương trình dưới dạng

$$\tilde{A} = (A|B)$$

Đặt i := 1 và j := 1 rồi chuyển sang bước 2

Bước 2: nếu j > n hoặc i > m thì thuật toán kết thúc, ngược lại thì ta chuyển sang bước 3

Bước 3: nếu $a_{ij} = 0$ thì ta chuyển sang bước 4. Ngược lại thì ta thực hiện lần lượt các phép biến đổi

$$d_k = d_k - \frac{a_{kj}}{a_{ij}} d_i$$
, $k = \overline{i+1,m}$

ta chuyển sang bước 5

Bước 4: Nếu tồn tại k > i sao cho $a_{kj} \neq 0$ thì ta thực hiện biến đổi $d_k \leftrightarrow d_i$ rồi quay lại bước 3. Ngược lại thì ta thay j bởi j + 1 rồi quay lạ bước 2

Bước 5: Thay i bởi i + 1 và j bởi j + 1 rồi quay lại bước 2.

Vídụ: giải hệ phương trình

$$\begin{cases} x_1 + 2x_2 + 5x_3 = -9 \\ x_1 - x_2 + 3x_3 = 2 \\ 3x_1 - 6x_2 - x_3 = 25 \end{cases}$$

$$\begin{pmatrix}
1 & 2 & 5 & | & -9 \\
1 & -1 & 3 & | & 2 \\
3 & -6 & -1 & | & 25
\end{pmatrix}
\xrightarrow{d_2 = d_2 - d_1}
\begin{pmatrix}
1 & 2 & 5 & | & -9 \\
0 & -3 & -2 & | & 11 \\
0 & -12 & -16 & | & 52
\end{pmatrix}
\xrightarrow{d_3 = d_3 - 4d_2}
\begin{pmatrix}
1 & 2 & 5 & | & -9 \\
0 & -3 & -2 & | & 11 \\
0 & 0 & -8 & | & 8
\end{pmatrix}$$

Suy ra $(x_1, x_2, x_3) = (2, -3, -1)$

1.7.2. Thuật tóan Gauss - Jordan

Nếu ta thay bước 3 trong thuật toán Gauss bởi bước 3' mạnh hơn thì thuật toán thu được gọi là thuật toán Gauss – Jordan.

Bước 3' Nếu $a_{ij} = 0$ thì ta chuyển sang bước 4. Ngược lại thì ta thực hiện lần lượt các phép biến đổi.

$$d_i = \frac{1}{a_{ij}} d_i$$
; $d_k = d_k - \frac{a_{kj}}{d_i}$, $\forall k \neq i$

rồi chuyển sang bước 5.

Nếu ma trận thu được cuối cùng trong thuật toán Gauss – Jordan có dạng (A'|B').

Thì A' được gọi là ma trận rút gọn theo dòng từng bậc của A (hay ma trận rút gọn), ký hiệu $R_{\rm A}$

Ví dụ:

$$B = \begin{pmatrix} 1 & 2 & 7 \\ -2 & 1 & -4 \\ 1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} = R_B$$

1.7.3. Định nghĩa

Cho $A \in M_{m \times n}(K)$ có ma trận rút gọn theo dòng từng bậc là R_A , khi đó số dòng khác 0 của R_A được gọi là hạng của A, kí hiệu r(A)

Ví dụ:

$$R_B = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow r(B) = 2$$

1.7.4. Mệnh đề

- i) $r(R_A) = r(A)$
- ii) $0 \le r(A) \le \min\{m, n\}$
- iii) $r(A) = 0 \ll A = O_{m \times n}$

1.7.5. Định lý: (Kronecker – Capelli)

Hệ phương trình tuyến tính AX = B có nghiệm nếu và chỉ nếu $r(A) = r(\tilde{A})$

1.7.6. Định lý

Nếu $\widetilde{A} = (A|B)$ là dạng ma trận hóa của hệ phương trình tuyến tính AX = B thì $r(\widetilde{A}) = r(A)$ hoặc $r(\widetilde{A}) = r(A) + 1$. Hơn nữa,

- (i) Nếu $r(\tilde{A}) = r(A) + 1$ thì hệ vô nghiệm
- (ii) Nếu $r(\tilde{A}) = r(A) = n$ thì hệ có nghiệm duy nhất
- (iii) Nếu $r(\tilde{A}) = r(A) < n$ thì hệ có vô số nghiệm với bậc tự do n r(A)

1.8. MA TRẬN KHẢ NGHỊCH

1.9.1. Định nghĩa

Một ma trận cấp n trên K nhận được từ I_n qua duy nhất một phép biến đổi sơ cấp trên dòng được gọi là một ma trận sơ cấp.

Ví dụ:

$$\mathbf{I}_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1.9.2. Định nghĩa

Cho $A \in M_{m \times n}(K)$. Ta nói A khả nghich trái nếu tồn tại $B \in M_{m \times n}(K)$ sao cho $BA = I_n$ (khi đó B được gọi là nghịch đảo trái của A). A được gọi là khả nghịch phải nếu tồn tại $C \in M_{n \times m}(K)$ sao cho $AC = I_m$ (khi đó C được gọi là nghịch đảo phải của A)

Cho $A\in M_n(K)$. Ta nói A khả nghịch nếu tồn tại $B\in M_n(K)$ sao cho AB=BA = I_n , khi đó B được gọi là ma trận nghịch đảo của A

1.9.3. Mệnh đề

Cho A, B \in M_n(K), khi đó

(i) Nếu A có một dòng (hay một cột) bằng 0 thì A không khả nghịch.

- (ii) Ma trân nghich đảo của A (nếu có) là duy nhất và được ký hiệu bởi A-1
- (iii) Nếu A khả nghịch thì A^{-1} ; A^{T} ; cA ($c \neq 0$) cùng khả nghịch và hơn nữa

$$(A^{-1})^{-1} = A; (A^{T})^{-1} = (A^{-1})^{T}; (cA)^{-1} = \frac{1}{c}A^{-1}$$

(iv) Nếu A và B cùng khả nghịch thì tích AB cũng khả nghịch và $(AB)^{-1} = B^{-1}A^{-1}$

1.9.4. Định lý

Cho $A \in M_n(K)$ và A khả nghịch ($<=>A \circ I_n$) khi đó những phép biến đổi sơ cấp trên dòng nào biến A thành I_n thì cũng chính chúng (theo thứ tự đó) sẽ biến I_n thành A^{-1} Hay nói cách khác,

$$\stackrel{\text{n\'eu}}{\text{n\'eu}} A \xrightarrow{\varphi_1} A_1 \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_k} A_k = I_n$$

$$\stackrel{\text{thì}}{\text{thì}} I_n \xrightarrow{\varphi_1} B_1 \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_k} B_k = A^{-1}$$

Như vậy để tìm $A^{\text{-}1}$ ta thành lập ma trận mở rộng $(A|I_n)$ và dùng các phép biến đổi sơ cấp trên dòng thích hợp để đưa A về I_n . Khi đó ma trận tương ứng bên phải vạch "|" chính là $A^{\text{-}1}$

Ví dụ: Tìm ma trận nghịch đảo của ma trận

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 7 \\ 2 & 1 & 2 \\ -7 & 1 & 4 \end{pmatrix}$$

Thành lập ma trân mở rông:

$$(A|I_3) = \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ -7 & 1 & 4 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{d_2 = d_2 - 2d_1} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & -5 & -12 & -2 & 1 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 4d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & -5 & -12 & -2 & 1 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 4d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 4d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 2d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 2d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 2d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 2d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 2d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix} \xrightarrow{d_3 = d_3 + 2d_2} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 22 & 53 & 7 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 5 & 12 & 2 & -1 & 0 \\ 0 & 2 & 5 & -1 & 4 & 1 \end{pmatrix} \xrightarrow{d_2 = d_2 - 2d_3} \begin{pmatrix} 1 & 3 & 7 & 1 & 0 & 0 \\ 0 & 1 & 2 & 4 & -9 & -2 \\ 0 & 2 & 5 & -1 & 4 & 1 \end{pmatrix} \xrightarrow{d_1 = d_1 - 3d_2} \xrightarrow{d_3 = d_3 - 2d_2}$$

$$\begin{pmatrix} 1 & 0 & 1 & -11 & 27 & 6 \\ 0 & 1 & 2 & 4 & -9 & -2 \\ 0 & 0 & 1 & -9 & 22 & 5 \end{pmatrix} \xrightarrow{d_1 = d_1 - d_3} \begin{pmatrix} 1 & 0 & 0 & -2 & 5 & 1 \\ 0 & 1 & 0 & 22 & -53 & -12 \\ 0 & 0 & 1 & -9 & 22 & 5 \end{pmatrix} = (I_3|A^{-1})$$

$$V_{ay}^{2} A^{-1} = \begin{pmatrix} -2 & 5 & 1\\ 22 & -53 & -12\\ -9 & 22 & 5 \end{pmatrix}$$

1.9. ỨNG DỤNG MA TRẬN NGHỊCH ĐẢO ĐỂ GIẢI PHƯƠNG TRÌNH MA TRẬN

1.9.1. Mệnh đề

Cho $A\in M_m(K)$, X và $B\in M_{mxn}(K)$. Khi đó, nếu A khả nghịch thì phương trình AX=B có nghiệm duy nhất $X=A^{-1}B$

1.9.2. Mệnh đề

Cho $A\in M_n(K),$ X và $B\in M_{m\times n}(K).$ Khi đó, nếu A khả nghịch thì phương trình XA=B có nghiệm duy nhất $X=BA^{-1}$

1.9.3. Mệnh đề

Cho $A\in M_m(K),\,C\in M_n(K),\,X\in M_{m\,x\,n}(K),\,B\in M_{m\,x\,n}(K).$ Khi đó, nếu A và C khả nghịch thì phương trình AXC=B có nghiệm duy nhất $X=A^{-1}BC^{-1}$ Vi~du:

$$\begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix} \mathbf{X} = \begin{pmatrix} -1 & 2 \\ -5 & 6 \end{pmatrix}$$

Ta có: $X = A^{-1}B$

Với
$$A^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -2 \\ 5 & -3 \end{pmatrix} => X = \frac{1}{2} \begin{pmatrix} 4 & -2 \\ 5 & -3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ -5 & 6 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix}$$

TÀI LIỆU THAM KHẢO

- ❖ TÀI LIỆU THAM KHẢO ĐỂ BIÊN SOẠN NỘI DUNG MÔN HỌC:
 - 1. Đại số tuyến tính Bùi xuân Hải (chủ biên) 2000 Ban xuất bản trường Đại học Khoa học Tự nhiên.
 - 2. Đại số tuyến tính: Lý thuyết và Bài tập Tạ Văn Hùng, Nguyễn Phi Khứ, Hà Thanh Tâm
 - 3. Đại số tuyến tính Dương Quốc Việt, Nguyễn Cảnh lương, NXB KHKT, Hà Nội, 2005
 - 4. Bài tập đại số tuyến tính Hoàng Xuân Sính, Trần Phương Dung Tái bản lần thứ 2 Hà Nội 2003
 - 5. Bài tập đại số tuyến tính và hình học giải tích Khu Quốc Anh, Hà Nội, Đại học Quốc gia Hà Nội, 1999
- ❖ TÀI LIỆU THAM KHẢO ĐỂ NGHỊ CHO HỌC VIÊN:
 - 1. Đại số tuyến tính Bùi xuân Hải (chủ biên) 2000 Ban xuất bản trường Đại học Khoa học Tự nhiên.
 - 2. Đại số tuyến tính : Lý thuyết và Bài tập Tạ Văn Hùng, Nguyễn Phi Khứ, Hà Thanh Tâm