

Generalized Bayesian Inference and Prior-data Conflict

Gero Walter

Department of Statistics Ludwig-Maximilians-University Munich

May 16th, 2008

Introduction — What is Prior-data Conflict?

A name for situations in which *informative prior beliefs* and *trusted data* are in conflict with each other.

Example: (Walley 1991)

Data: $X \sim N(\vartheta, 1)$

Conjugate prior: $\qquad \qquad \qquad \qquad \qquad \mathsf{N}(\mu,1)$

Posterior: $\vartheta \mid x \sim \mathsf{N}\left(\frac{\mu+x}{2}, \frac{1}{2}\right)$

Introduction — What is Prior-data Conflict?

A name for situations in which informative prior beliefs and trusted data are in conflict with each other.

Example: (Walley 1991)

Data:	X	\sim	N(artheta,1)
Conjugate prior:			$N(\mu,1)$
Posterior:	$\vartheta \mid x$	~	$N\left(\frac{\mu+x}{2},\frac{1}{2}\right)$

Consider

- Case (i): $\mu = 5.5$, $x = 6.5 \implies \vartheta \sim N(6, \frac{1}{2})$
- ► Case (ii): $\mu = 3.5$, $x = 8.5 \implies \vartheta \sim N(6, \frac{1}{2})$

Introduction — Imprecise Probabilities

IP models promise to solve these problems: they can reflect the amount of knowledge they stand for.

→ Multidimensional nature of uncertainty: stochastic uncertainty ←→ ambiguity in probability assignments

Introduction — Imprecise Probabilities

IP models promise to solve these problems: they can reflect the amount of knowledge they stand for.

→ Multidimensional nature of uncertainty: stochastic uncertainty \(\ldots\) ambiguity in probability assignments

Bad news:

- IDM under prior information or
- models in the framework of Quaeghebeur & de Cooman or
- iLUCK-models

ignore prior-data conflict just like precise models!

Recalling (i)LUCK-models

— Construction of Conjugate Priors

→ Conjugate priors can be constructed as follows:

$$p(\vartheta) \propto \exp\left\{n^{(0)}\left[\langle \psi, y^{(0)} \rangle - \mathbf{b}(\psi)\right]\right\}$$

→ Updating yields then Posterior:

$$p(\vartheta \mid x) \propto \exp\left\{n^{(1)}\left[\langle \psi, y^{(1)} \rangle - \mathbf{b}(\psi)\right]\right\}, \text{ where}$$

$$y^{(1)} = \frac{n^{(0)}y^{(0)} + \tau(x)}{n^{(0)} + n}$$
 and $n^{(1)} = n^{(0)} + n$.

(i)LUCK-models — Interpretation of Parameters

 $y^{(0)}$: "main prior parameter"

- ▶ For samples from a N(μ , 1), $p(\mu)$ is a N($y^{(0)}, \frac{1}{n^{(0)}}$)
- For samples from a M(θ), $p(\theta)$ is a Dir($n^{(0)}, y^{(0)}$) $(y_j^{(0)} = t_j \hat{=} \text{ prior probability for class } j, n^{(0)} = s)$

 $n^{(0)}$: "prior strength" or "pseudocounts"

With
$$\tau(x) = \sum_{i=1}^n \tau(x_i)$$
 and $\tilde{\tau}(x) =: \frac{1}{n} \sum_{i=1}^n \tau(x_i)$:

$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(x).$$

Method of Quaeghebeur and de Cooman

Construction of *imprecise* prior: Vary $y^{(0)}$ in a convex set $\mathcal{Y}^{(0)}$

- Prior credal set contains all convex mixtures of distributions with $v^{(0)} \in \mathcal{V}^{(0)}$
- \rightarrow Set $\mathcal{Y}^{(1)}$ defining the imprecise posterior is easily derived by

$$\mathcal{Y}^{(1)} = \left\{ \frac{n^{(0)}y^{(0)} + \tau(x)}{n^{(0)} + n} \middle| y^{(0)} \in \mathcal{Y}^{(0)} \right\}$$
$$= \frac{n^{(0)}}{n^{(0)} + n} \cdot \mathcal{Y}^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(x).$$

Linearity: Vertices of $\mathcal{Y}^{(0)} \longrightarrow \text{Vertices of } \mathcal{Y}^{(1)}$

(First) Generalization:

LUCK-models (Linearly Updated Conjugate prior Knowledge):

Prior $p(\vartheta)$ and posterior $p(\vartheta \mid x)$ such that

$$p(\vartheta) \propto \exp\left\{n^{(0)} \left[\langle \psi, y^{(0)} \rangle - \mathbf{b}(\psi)\right]\right\}$$
 and $p(\vartheta \mid x) \propto \exp\left\{n^{(1)} \left[\langle \psi, y^{(1)} \rangle - \mathbf{b}(\psi)\right]\right\}$, whe

$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(x)$$
 and $n^{(1)} = n^{(0)} + n$.

▶ iLUCK-models (imprecise LUCK-models):

Vary $y^{(0)}$ in a set $\mathcal{Y}^{(0)}$ (method of Quaeghebeur and de Cooman)

iLUCK-model — Main Parameter Posterior Imprecision

$$\overline{y}^{(1)} - \underline{y}^{(1)} = \frac{n^{(0)}\overline{y}^{(0)} + \tau(x)}{n^{(0)} + n} - \frac{n^{(0)}\underline{y}^{(0)} + \tau(x)}{n^{(0)} + n}$$
$$= \frac{n^{(0)}(\overline{y}^{(0)} - \underline{y}^{(0)})}{n^{(0)} + n}$$

...does not depend on the sample statistic!

iLUCK-model — Main Parameter Posterior Imprecision

$$\overline{y}^{(1)} - \underline{y}^{(1)} = \frac{n^{(0)}\overline{y}^{(0)} + \tau(x)}{n^{(0)} + n} - \frac{n^{(0)}\underline{y}^{(0)} + \tau(x)}{n^{(0)} + n}$$
$$= \frac{n^{(0)}(\overline{y}^{(0)} - \underline{y}^{(0)})}{n^{(0)} + n}$$

... does not depend on the sample statistic!

For any sample of size n, posterior imprecision is reduced by the same amount!

Introduction
Recalling (i)LUCK-models
Generalized iLUCK-models
Concluding Remarks

Generalized iLUCK-models — Formal Definition

Definition (Generalized iLUCK-models)

Consider a set of LUCK-models $(p(\vartheta), p(\vartheta \mid x))$ that is produced by $y^{(0)}$ varying in some set $\mathcal{Y}^{(0)} \subset \mathcal{Y}$ and, in addition, $n^{(0)}$ varying in a set $\mathcal{N}^{(0)} \subset \mathbb{R}^+$. Let furthermore again the credal sets \mathcal{P} and $\mathcal{P}_{\mid x}$ consist of all convex mixtures obtained from this variation of $p(\vartheta)$ and $p(\vartheta \mid x)$. Then $(\mathcal{P}, \mathcal{P}_{\mid x})$ is called the corresponding generalized iLUCK-model based on $\mathcal{Y}^{(0)}$ and $\mathcal{N}^{(0)}$.

$$\mathcal{Y}^{(0)} \times \mathcal{N}^{(0)} \longrightarrow \mathcal{Y}^{(1)} \times \mathcal{N}^{(1)}$$

$$= \left\{ \frac{n^{(0)}y^{(0)} + \tau(x)}{n^{(0)} + n} \middle| n^{(0)} \in \mathcal{N}^{(0)}, y^{(0)} \in \mathcal{Y}^{(0)} \right\} \times \left\{ n^{(0)} + n \middle| n^{(0)} \in \mathcal{N}^{(0)} \right\}$$

Generalized iLUCK-models — Update Step

$$\underline{y}^{(1)} = \begin{cases} \frac{\overline{n}^{(0)}\underline{y}^{(0)} + \tau(x)}{\overline{n}^{(0)} + n} & \text{if} \quad \tilde{\tau}(x) \ge \underline{y}^{(0)} \\ \frac{\underline{n}^{(0)}\underline{y}^{(0)} + \tau(x)}{\underline{n}^{(0)} + n} & \text{if} \quad \tilde{\tau}(x) < \underline{y}^{(0)} \iff \text{prior-data conflict} \end{cases}$$

$$\overline{y}^{(1)} = \begin{cases} \frac{\overline{n}^{(0)}\overline{y}^{(0)} + \tau(x)}{\overline{n}^{(0)} + n} & \text{if} \quad \tilde{\tau}(x) \leq \overline{y}^{(0)} \\ \\ \frac{\underline{n}^{(0)}\overline{y}^{(0)} + \tau(x)}{\underline{n}^{(0)} + n} & \text{if} \quad \tilde{\tau}(x) > \overline{y}^{(0)} & \iff \text{prior-data conflict} \end{cases}$$

Generalized iLUCK-models — Update Step

	$\tilde{\tau}(x) < \underline{y}^{(0)}$	$\underline{y}^{(0)} \leq \tilde{\tau}(x) \leq \overline{y}^{(0)}$	$\tilde{\tau}(x) > \overline{y}^{(0)}$
Calculation of $\underline{y}^{(1)}$ via	<u>n</u> (0)	$\overline{n}^{(0)}$	$\overline{n}^{(0)}$
Calculation of $\overline{y}^{(1)}$ via	$\overline{n}^{(0)}$	$\overline{n}^{(0)}$	<u>n</u> (0)

— Main Parameter Posterior Imprecision

$$\overline{y}^{(1)} - \underline{y}^{(1)} = \frac{\overline{n}^{(0)}(\overline{y}^{(0)} - \underline{y}^{(0)})}{\overline{n}^{(0)} + n} + \Delta\left(\tilde{\tau}(x); \underline{y}^{(0)}, \overline{y}^{(0)}\right) \frac{n(\overline{n}^{(0)} - \underline{n}^{(0)})}{(\overline{n}^{(0)} + n)(\underline{n}^{(0)} + n)},$$

where

$$\Delta\left(\tilde{\tau}(x); \underline{y}^{(0)}, \overline{y}^{(0)}\right) = \inf\left\{\left|\tilde{\tau}(x) - y^{(0)}\right| : \underline{y}^{(0)} \le y^{(0)} \le \overline{y}^{(0)}\right\}$$

is the distance of observation $\tilde{\tau}(x)$ to prior interval $[\underline{y}^{(0)}; \overline{y}^{(0)}]$.

$$\rightarrow$$
 $\Delta(\)=0$ \iff same amount of imprecision as in iLUCK-models if $\overline{n}^{(0)}=n^{(0)}$

$$ightharpoonup \Delta(\)>0 \iff ext{prior-data conflict: wider interval!}$$

Why then not choose $\overline{n}^{(0)} = n^{(0)}$?

The factor to $\Delta(\)$ gets maximal if $n=\sqrt{\underline{n}^{(0)}\overline{n}^{(0)}}.$

$$\iff \overline{y}^{(1)} - \underline{y}^{(1)}$$
 maximal for fixed $\Delta(\)$.

 \iff Same weight on the prior and on the sample.

 $\iff \sqrt{\underline{n}^{(0)}\overline{n}^{(0)}}$ is the 'global' prior strength to be compared to $n^{(0)}$.

For $n \longrightarrow \infty$, it doesn't matter, as $\frac{\overline{n}^{(1)} - \underline{n}^{(1)}}{\overline{n}^{(1)}} \longrightarrow 0$.

Concluding Remarks

informative prior beliefs and trusted data & updating by generalized Bayes' rule:

▶ use generalized iLUCK-models

See manuscript "Imprecision and Prior-data Conflict in Generalized Bayesian Inference" (tba for JSTP Special Issue on Imprecision).

→ alternative learning rules?