GMF Investments Portfolio Forecasting

Overview

This project leverages time series forecasting models to enhance portfolio management strategies for **Guide Me in Finance (GMF) Investments**. Using historical data for key financial assets—Tesla (TSLA), Vanguard Total Bond Market ETF (BND), and S&P 500 ETF (SPY)—we aim to forecast market trends, optimize asset allocation, and manage risk. By incorporating ARIMA, SARIMA, and LSTM models, this project enables GMF Investments to offer clients data-driven investment recommendations.

Project Goals

- Market Trend Forecasting: Predict future market trends for TSLA, BND, and SPY to anticipate asset performance.
- **Portfolio Optimization**: Use forecasted insights to optimize portfolio allocation, balancing high returns with risk management.
- Risk Management: Adjust portfolio strategy based on predicted volatility and market trends to minimize client exposure to risks.

Data Sources

Data is sourced using the YFinance library, covering:

- Tesla (TSLA): High-growth, high-volatility stock in the automotive sector.
- Vanguard Total Bond Market ETF (BND): A bond ETF for stability and income.
- S&P 500 ETF (SPY): An ETF representing U.S. market exposure.

Historical data includes Open, High, Low, Close, Volume, and Adjusted Close prices from **January 1**, **2015**, **to December 31**, **2024**.

Technologies Used

PROF

- **Programming Language**: Python
- Data Collection: YFinance API
- Time Series Models: ARIMA, SARIMA, LSTM (Long Short-Term Memory)
- Libraries: pandas, numpy, statsmodels, tensorflow, scikit-learn

Project Structure

- Idocs: Documentation on methodology, model descriptions, and portfolio optimization.
- Inotebooks: Jupyter notebooks for data exploration, model development, and portfolio optimization.
- requirements.txt: List of dependencies needed to run the project.
- LICENSE.md: Licensing information for open-source distribution.

Getting Started

1. Clone the repository:

```
git clone https://github.com/epythonlab/gmf-investments-portfolio-
forecasting.git
cd gmf-investments-portfolio-forecasting
```

2. Install dependencies:

Ensure you have Python 3.7+ installed, then install the required libraries:

```
pip install -r requirements.txt
```

Data Collection

Use the YFinance library to collect historical financial data. To fetch data for each asset, use the following example for Tesla (TSLA):

```
import yfinance as yf

# Download data for Tesla
tsla_data = yf.download("TSLA", start="2015-01-01", end="2024-12-31")
```

Usage

1. Run Jupyter Notebooks:

- Data Exploration: Analyze trends and preprocess data.
- Modeling Notebooks: ARIMA, SARIMA, and LSTM models for forecasting asset prices.
- Portfolio Optimization: Adjust portfolio allocation based on forecasting results.

2. Portfolio Optimization:

- Utilize forecasted trends to balance the portfolio with high-growth, stable, and diversified assets.
- Visualize asset allocation to see how each asset contributes to the portfolio's risk-return profile.

Methodology

Data Preprocessing

- Clean and preprocess data by removing missing values and handling anomalies.
- Analyze volatility and trends for each asset to inform model choice and calibration.

PROF

Model Development

- ARIMA & SARIMA: Traditional time series models for initial trend analysis and baseline comparison.
- LSTM: Deep learning model for capturing non-linear patterns and dependencies, particularly
 effective for high-volatility assets.

Evaluation Metrics

- Root Mean Square Error (RMSE)
- Mean Absolute Error (MAE)

Use these metrics to assess and compare model performance, refining them based on results.

Contributing

You are welcome to contributions to enhance this project! Please read our CONTRIBUTING.md for details on our code of conduct and submission guidelines.

Steps to Contribute:

- 1. Fork the repository.
- 2. Create a feature branch (git checkout -b feature-name).
- 3. Commit your changes (git commit -m 'Add new feature').
- 4. Push to the branch (git push origin feature-name).
- 5. Create a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE.md file for details.