2

What is claimed is:

1	1.	A cementing tool for cementing a casing assembly at a junction of
2 plural wellbores, comprising:		ores, comprising:

- a body;
- an anchoring mechanism adapted to anchor the body axially within the casing assembly; and
- a flow conduit adapted to channel cement flow to an annular region outside the casing assembly,
- wherein the anchoring mechanism is adapted to be released to enable retrieval of the cementing tool from the casing assembly.
- 1 2. The cementing tool of claim 1, further comprising a sealing element coupled to an external surface of the body and adapted to effect a fluid seal between the body and the casing assembly.
- 1 3. The cementing tool of claim 2, further comprising another sealing 2 element coupled to the external surface of the body.
 - 4. The cementing tool of claim 3, further comprising setting members adapted to set the sealing elements.
- 5. The cementing tool of claim 4, further comprising ports, each port adapted to communicate fluid pressure from inside the cementing tool to one side of a respective setting member.

- 1 6. The cementing tool of claim 5, further comprising a shear 2 mechanism adapted to attach the setting member to the body of the cementing 3 tool.
- 7. The cementing tool of claim 1, further comprising flow control device to control fluid flow through the flow conduit.
- 1 8. The cementing tool of claim 7, wherein the flow control device 2 comprises a sliding sleeve.
- 1 9. The cementing tool of claim 7, wherein the flow control device 2 comprises a check valve.
- 1 10. The cementing tool of claim 1, further comprising a first member 2 slidable from a first position to a second position to lock the anchoring 3 mechanism.
- 1 11. The cementing tool of claim 10, wherein the first member is slidable 2 from the second position to the first position to release the anchoring mechanism.
- 1 12. The cementing tool of claim 10, further comprising a shear 2 mechanism adapted to temporarily restrain sliding of the first member.
- 1 13. The cementing tool of claim 1, further comprising a bypass device 2 having a distal end adapted to connect to a guide shoe at an end of the casing 3 assembly.

2

3

4

- 1 14. The cementing tool of claim 13, wherein the bypass device has an 2 inner conduit adapted to isolate cement flow from an internal volume of the casing 3 assembly, the inner conduit of the bypass device being part of the flow conduit.
- 1 15. The apparatus of claim 14, wherein the one bypass device comprises 2 a plurality of tubes.
- 1 16. The cementing tool of claim 13, wherein the casing assembly defines 2 plural lateral legs, the cementing tool further comprising a barrier disposed about 3 the bypass device to seal cement from entering the internal volume through one of 4 the lateral legs.
- 1 The cementing tool of claim 1, further comprising an outer sleeve 2 formed of a stretchable material, the outer sleeve adapted to detach from hardened 3 cement outside the cementing tool to enable easy removal of the cementing tool 4 from the hardened cement.
 - 18. The cementing tool of claim 1, wherein the body defines an inner bore and one or more radial ports in communication with the inner bore, the cementing tool further comprising a flow control device adapted to control flow through the one or more radial ports.
- 1 19. The cementing tool of claim 18, wherein the inner bore comprises a lower portion below the one or more radial ports to receive a plug provided ahead of a flow of cement.

		•		
1	20.	The cementing tool of claim 1, wherein the casing assembly has a		
2	wall separating the plural bores, and wherein the body of the cementing tool is			
.3	adapted to equalize pressure across the wall.			
1	21.	The cementing tool of claim 1, wherein the anchoring mechanism		
2	comprises a positive feedback locator to indicate that the cementing tool has			
3	reached a target depth.			
1	22.	A method of cementing a casing assembly at a junction of plural		
2	wellbores, comprising:			
3		lowering a cementing tool to engage inside the casing assembly;		
4		pumping cement slurry through the cementing tool to fill an annular		
5	region outside the casing assembly;			
6		disengaging the cementing tool from the casing assembly; and		
7		lifting the cementing tool from the casing assembly.		
1	23.	The method of claim 22, further comprising providing a landing		
2	mechanism	on the cementing tool to engage a profile inside the casing assembly.		
	2.1			
1	24.	The method of claim 23, further comprising setting at least one		
2	sealing elem	nent to seal the cementing tool against the casing assembly.		
1	25	The mosthed of claim 24 wherein disappearing the companing tool		
1	25.	The method of claim 24, wherein disengaging the cementing tool		
2	comprises u	nlocking the landing mechanism and unsetting the sealing element.		
1	26.	The method of claim 22, further comprising providing a sleeve		
1	۷٠.	The incured of claim 22, runder comprising providing a sice of		

formed of a stretchable material around an outer surface of the cementing tool.

2

1	27.	The method of claim 26, further comprising detaching the cementing
2	tool from a h	ardened block of cement by stretching the sleeve to unbond from the
3	hardened blo	ock of cement.

- 1 28. The method of claim 22, further comprising providing a positive 2 feedback indicator on the cementing tool to indicate when the cementing tool is 3 engaged in the casing assembly.
- 1 29. The method of claim 22, wherein lifting the cementing tool is 2 accomplished without first milling at the junction.
- 1 30. The method of claim 22, further comprising providing a flow control device in the cementing tool to control the flow of a cement slurry.
 - 31. The method of claim 30, wherein providing the flow control device comprises providing one of a check valve and a sleeve valve.
- The method of claim 30, further comprising closing the flow control device to set a sealing element of the cementing tool against an inner surface of the casing assembly.
- 1 33. The method of claim 32, further comprising opening the flow control device after setting the sealing element,
- wherein pumping the cement slurry through the cementing tool
 comprises pumping the cement slurry through the flow control device.

•

1	34.	A method for cementing a casing assembly comprising a junction	
2	assembly and a guide shoe assembly, the junction assembly having an internal		
3	volume, the guide shoe assembly having a fluid channel therein, the method		
4	comprising:	•	
5		pumping cement down a work string;	
6		channeling cement flow from the work string through at least one	
7	bypass device	ce extending through the internal volume of the junction assembly and	
8	down a lateral branch of the junction assembly into the fluid channel in the guide		
9	shoe; and		
10		preventing the flow of cement exiting the guide shoe from back	
11	filling into the internal volume of the junction assembly.		
1	35.	The method of claim 34, wherein preventing the flow of cement	
2	comprises p	roviding a barrier between one of the lateral branches and the bypass	
3	device.		
1	36.	The method of claim 35, wherein preventing the flow of cement	
2	comprises effecting a fluid seal above the junction assembly to trap a fluid in the		
3	internal volume of the junction assembly prior to cementing the junction assembly		
1	37.	A system comprising:	
2		a casing assembly having a junction assembly to complete a junction	
3	of plural wellbores,		
4		the junction assembly having plural branch legs; and	
5		a cementing tool adapted to be releasably engaged in the casing	
6	assembly to direct flow of cement into the junction assembly and out into an		
7	annular region around the casing assembly		

- 1 38. The system of claim 37, wherein the cementing tool has an external
- 2 seal and a member adapted to set the external seal against an inner wall of the
- 3 casing assembly.
- 1 39. The system of claim 38, wherein the cementing tool has an
- 2 anchoring mechanism, and the casing assembly has a landing profile, the
- 3 anchoring mechanism adapted to engage the landing profile.