The LAPIS (Low-rank Approximation via Partially Imputed Svd) Algorithm

Joshua Derenski

Simulations

Parameters

- Number of Ls: 1
- Draws per L: 150
- Number of Units: 300
- Number of Control Units: 295
- Number of Times: 150
- Number of pre-treatment Times: 140
- Rank of L: 10
- Autocorrelation Parameter: 0
- True Effect Size for Constant Effect: 10
- Error Type: gaussian
- Error Variance (if Gaussian error): 16
- Degrees of freedom (if t-error): 5
- Exchangable: FALSE
- Penalized: TRUE
- Rank Estimation Method: threshold
- Scaling for L: 5
- Treatment Effect Type: decay
- Treatment Design: staggered adoption
- Lag Structure (if using staggered adoption structure): random
- Average Treatment Length (if using staggered adoption structure, with random adoption): 4
- Maximum lag: 4

LAPIS vs Competitors, Fixed Parameters

Results

Signal to Noise Ratio

[1] 31.31921

mse for DID

mse ## 41.14603

Se for mse for DID

se_mse ## 0.5412132

$\mathbf{mse} \ \mathbf{for} \ \mathbf{SC}$

mse ## 298.3315

Se for mse for SC

se_mse ## 4.105254

${\bf mse~for~MC_NNM}$

mse ## 27.3045

Se for mse for MC_NNM

se_mse ## 1.026703

mse for SDID

mse ## 187.5724

Se for mse for SDID

se_mse ## 3.440258

mse For LAPIS

mse ## 12.03815

Se for mse for LAPIS

se_mse ## 0.6266685

```
mse For Oracle (Perfect L)

## mse
## 10.70181

mse For Oracle (Perfect L)

## se_mse
## 0.5627172
```

Matrix Bias vs Reduction in Variance due to Averaging

For more general designs of W (like the block design scheme considered here) we allow a block in the bottom right hand corner of W to be non-zero. When implementing LAPIS, we have two competing effects on estimation:

- The bias that's introduced by making more of the Y_{ij} s zero.
- The help we get with estimating τ by being able to average over cells (because we asmeane tau) is the same for all units and times.

It would appear that accurracy increases for estimating τ to a point, and then decreases when the bias introduced by replacement of cells with 0 in Y becomes too great.

Influence of N_0/N on Performance

Influence of ρ on Performance

Influence of τ on Performance

Influence True Rank on Performance

Influence of Rank Error on Performance

```
## [1] -9
## [1] -7
## [1] -5
## [1] -1
## [1] 1
## [1] 3
## [1] 5
## [1] 7
## [1] 9
```

True Treatment Effect Over Time

