Limits (Section 20)

Definition (20.1, slightly modified)

Suppose $S \subset \mathbb{R}$, $a \in S^-$, $f : S \to \mathbb{R}$, $L \in \mathbb{R} \cup \{\pm \infty\}$. Then $\lim_{x \to a^S} f = L$ (limit of f at a along S) if $\lim f(x_n) = L$ for any sequence $(x_n) \subset S$, with $\lim x_n = a$.

Such sequences (x_n) exist, due to $a \in S^-$.

Proposition (Connection between limits and continuity)

If $a \in S$, then $f : S \to \mathbb{R}$ is continuous at a iff $\lim_{x \to a^S} f = f(a)$.

Proof. f is continuous at a iff $f(x_n) \to f(a)$ for any sequences $(x_n) \subset S$ which converges to a.

Common set-ups for limits

"Usual" limit. I is an interval, a is interior to I, $S = I \setminus \{a\}$, $f: I \setminus \{a\} \to \mathbb{R}$. Instead of $\lim_{x \to a^S} f$, simply write $\lim_{x \to a} f$. $\lim_{x \to a} f = L$ if $\lim_{x \to a} f = L$ for any sequence $(x_n) \subset I \setminus \{a\}$, with $\lim_{x \to a} f = a$.

Example.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

One-sided limit. S = (a,b) (b > a). Instead of $\lim_{x \to a^S} f$, write $\lim_{x \to a^+} f$ (right-hand limit). The left-hand limit $\lim_{x \to a^-} f$ is defined similarly.

Example. $\lim_{x\to 0^+} \frac{1}{x} = +\infty$. Indeed, if $x_n > 0 \ \forall n$, and $x_n \to 0$, then $\frac{1}{x_n} \to +\infty$.

Equivalent definition

Theorem (20.6, simplified)

Suppose $a \subset S^-$. For $f: S \to \mathbb{R}$ and $L \in \mathbb{R}$, TFAE:

- ② $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ |f(x) L| < \varepsilon \text{ whenever } x \in (a \delta, a + \delta) \cap S.$

Corollary

Suppose a is interior to the interval I. For $f: I \setminus \{a\} \to \mathbb{R}$ and $L \in \mathbb{R}$, TFAE:

- ② $\forall \varepsilon > 0 \ \exists \delta > 0 \ s.t. \ |f(x) L| < \varepsilon \ whenever$ $x \in ((a \delta, a + \delta) \cap I) \setminus \{a\}.$

If f is defined at a, then it is continuous at a iff $\lim_{x\to a} f = f(a)$.

Useful theorems about limits

Theorem (20.4 – sums, products, ratios)

Suppose $\lim_{x\to a^S} f_1=L_1$, $\lim_{x\to a^S} f_2=L_2$, $L_1,L_2\in\mathbb{R}$. Then

- $\lim_{x\to a^S} (f_1 + f_2) = L_1 + L_2$.
- $\lim_{x\to a^S} f_1 f_2 = L_1 L_2$.
- If $L_2 \neq 0$, then $\lim_{x \to a^S} \frac{f_1}{f_2} = \frac{L_1}{L_2}$.

Theorem (Squeeze Theorem for functions - Homework)

Consider $f, g, h: S \to \mathbb{R}$, so that $f \leqslant g \leqslant h$. If $\lim_{x \to a^S} f = L = \lim_{x \to a^S} h$, then $\lim_{x \to a^S} g = L$.

More theorems about limits

Theorem (20.5 – compositions of functions)

Suppose $\lim_{x\to a^S} f=L\in\mathbb{R}$, and g is defined on $f(S)\cup L$, continuous at L. Then $\lim_{x\to a^S} g\circ f=g(L)$.

Proof. Suppose $(x_n) \subset S$, and $x_n \to a$. Prove that $g(f(x_n)) \to g(L)$. Fix $\varepsilon > 0$. Need to find $N \in \mathbb{N}$ s.t. $|g(f(x_n)) - g(L)| < \varepsilon \ \forall n \geqslant N$. Find $\delta > 0$ s.t. $|g(y) - g(L)| < \varepsilon$ if $|y - L| < \delta$. Find N s.t. $|f(x_n) - L| < \delta$ if $n \geqslant N$. This N works for us!

Theorem (20.10 – when are one sided limits the same)

$$\lim_{x\to a} f = L \text{ iff } \lim_{x\to a^+} f = L = \lim_{x\to a^-} f.$$

Differentiation (Section 28)

Definition (28.1)

Suppose I is an open interval, $a \in I$. $f: I \to \mathbb{R}$ is differentiable at a if the derivative $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists, and is finite.

Example.
$$f(x) = \frac{1}{x}$$
. For $a \in \mathbb{R} \setminus \{0\}$, $f'(a) = \lim_{x \to a} \frac{1/x - 1/a}{x - a}$ $= \lim_{x \to a} \frac{(a - x)/xa}{x - a} = -\lim_{x \to a} \frac{1}{xa} = -\frac{1}{a^2}$. Example 2, p. 224. $g(x) = \sqrt{x}$. For $a > 0$, $g'(a) = \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} = \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{(\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a})} = \lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$. Example 3, p. 224. $h(x) = x^n \ (n \in \mathbb{N})$. Recall that $x^n - a^n = (x - a)(x^{n-1} + xa^{n-2} + \dots + x^{n-2}a + a^{n-2})$. For $a \in \mathbb{R}$, $h'(a) = \lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{x \to a} (x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1}) = na^{n-1}$.

Differentiability implies continuity

Definition (28.1)

Suppose I is an open interval, $a \in I$. $f: I \to \mathbb{R}$ is differentiable at a if the derivative $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists, and is finite.

Theorem (28.2)

If f is differentiable at a, then it is continuous at a.

Proof. For
$$x \neq a$$
, $f(x) - f(a) = (x - a) \frac{f(x) - f(a)}{x - a}$, hence $\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} (x - a) \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = 0 \cdot f'(a) = 0$. Thus, $\lim_{x \to a} f(x) = f(a)$, so f is continuous at $f(a) = 0$.

Continuity doesn't imply differentiability.

f(x) = |x| is continuous at a = 0, but not differentiable.

$$\frac{f(x)-f(0)}{x-0} = \left\{ \begin{array}{ll} 1 & x>0 \\ -1 & x<0 \end{array} \right. \text{, so } \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} \text{ does not exist.}$$

Another example of differentiation

Let
$$f(x) = \begin{cases} 0 & x < 0 \\ x^2 & x \ge 0 \end{cases}$$
. Where is f differentiable? Find the derivative.

$$a < 0$$
: $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{0}{x - a} = 0$.

$$a > 0$$
: $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^2 - a^2}{x - a} = 2a$.

What happens when
$$a=0$$
? If $x \neq 0$, then $\frac{f(x)-f(0)}{x-0} = \begin{cases} 0 & x < 0 \\ x & x > 0 \end{cases}$. So, $\left|\frac{f(x)-f(0)}{x-0}\right| \leqslant |x|$.

By Squeeze Theorem,
$$f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$$
.

Conclusion:
$$f(x) = \begin{cases} 0 & x \leq 0 \\ 2x & x > 0 \end{cases}$$
.

Rules of differentiation: sum, product, etc.

Theorem (part of 28.3 – read the whole theorem in textbook!)

Suppose f and g are differentiable at a. Then fg is differentiable at a, with [fg]'(a) = f'(a)g(a) + f(a)g'(a).

Proof. Let
$$p = fg$$
, then $p(x) - p(a) = f(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a) = f(x)(g(x) - g(a)) + (f(x) - f(a))g(a).$

$$\frac{p(x) - p(a)}{x - a} = f(x)\frac{g(x) - g(a)}{x - a} + g(a)\frac{f(x) - f(a)}{x - a}.$$

$$p'(a) = \lim_{x \to a} \frac{p(x) - p(a)}{x - a} = \lim_{x \to a} f(x)\lim_{x \to a} \frac{g(x) - g(a)}{x - a} + g(a)\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f(a)g'(a) + g(a)f'(a).$$

Corollary. For $m \in \mathbb{N}$, $[x^m]' = mx^{m-1}$. Proof: induction.

Chain Rule

Theorem (28.4 – Chain Rule)

Suppose f is differentiable at a, g is differentiable at f(a). Then $g \circ f$ is differentiable at a, with $(g \circ f)'(a) = g'(f(a))f'(a) = (g' \circ f)(a) \cdot f'(a)$.

False proof.
$$(g \circ f)'(a) = \lim_{X \to a} \frac{g(f(x)) - g(f(a))}{x - a}$$

 $= \lim_{X \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \frac{f(x) - f(a)}{x - a}$
 $= \lim_{X \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \lim_{X \to a} \frac{f(x) - f(a)}{x - a}$.
 $\lim_{X \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$.
 $f(x) \to f(a)$ (differentiability \Rightarrow continuity), hence $\lim_{X \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} = \lim_{Y \to f(a)} \frac{g(y) - g(f(a))}{y - f(a)} = g'(f(a))$.

This does not work! f(x) might equal f(a); can't divide by 0.

On the road to Chain Rule: Caratheodory Theorem

Theorem (Caratheodory – Exercise 28.16)

Suppose I is an interval, $f: I \to \mathbb{R}$. f is differentiable at $a \in I$ iff \exists function $\phi: I \to \mathbb{R}$, continuous at a, s.t. $f(x) - f(a) = \phi(x)(x - a)$ $\forall x \in I$. Then $\phi(a) = f'(a)$.

Proof: existence of
$$\phi \Rightarrow$$
 differentiability.

$$\phi(a) = \lim_{x \to a} \phi(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Proof: differentiability \Rightarrow existence of ϕ .

Define
$$\phi(a) = f'(a)$$
, $\phi(x) = \frac{f(x) - f(a)}{x - a}$ for $x \neq a$. $\lim_{x \to a} \phi(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) = \phi(a)$, so ϕ is continuous at a .

Remark. We re-prove that, if f is differentiable at a, then it is continuous at a (as a product of two continuous functions).