CS2020 Data Structures and Algorithms

Last Day of CS2020!

Last Three Classes

Last Friday

Geometry

More details when you take Computational Geometry

Last Wednesday

− Network Flows <

More details in CS 4234 (Optimization Algorithms) and CS5234.

Today

Parallel Algorithms

More details when you take a Parallel Computing module

Announcements

Clickers

- Return at the end of lecture today.
- Don't forget!
- If you have lost your clicker:

S\$105 / clicker

Come talk to us ASAP...

Announcements

Anonymous Feedback

- 1. For SoC: NUS Student Feedback System
 - Due April 22nd
 - Tell the departmental administrators what you think of CS2020.

- 2. For me: Coursemology Survey
 - How can I improve CS2020 next year?
 - What should we do differently?

Feedback for me

Question 1: General

- 1. Feedback on me
- 2. Feedback on your tutor

Question 2: **Organization**

- 1. How did DGs work for you?
- 2. What did you think of problem sessions?

Question 3: **Technology**

- 1. What did you think of NB?
- 2. What did you think of Coursemology?
- 3. What did you think of the clickers?

Many thanks to our great team of tutors

Many thanks to our great team of tutors

Final Exam

Final Exam

Wednesday April 25: 5pm

- Location: Multi-Purpose Sports Hall 1-B
- Same rules as Quiz 1 and Quiz 2:
 - Closed book
 - Two double-sided pieces of paper
- Three-way focus:
 - Basic algorithms and data structures
 - Java
 - Problem solving
- All the material from CS2020

Breakdown by topics

	Algorithms / Theory	Java	Problem solving
Quiz 1	45	35	20
Coding Quiz	20	80	0
Quiz 2	20	0	80
Total:	28	<i>38</i>	33

	Algorithms / Theory	Java	Problem solving
Final Exam	35	25	40

Theory:

- Asymptotic analysis
- Simple recurrences
- Simple probability

Algorithms and data structures, part 1:

- Abstract Data Types
 - Bags, Lists, Stacks, Queues
- Divide-and-conquer
 - Binary search
 - Peak finding
- Sorting
 - BubbleSort, InsertionSort, SelectionSort, MergeSort, QuickSort
 - Reversal Sorting, The Birthday Party, etc.

Algorithms and data structures, part 2:

- Trees
 - Binary search trees
 - Tries
 - AVL trees
 - Augmented Trees
 - Order statistics trees (Select, Rank)
 - Interval trees
 - Range trees
 - Skip lists
 - Heaps
 - Union-Find

Algorithms and data structures, part 3:

- Hashing
 - Direct access tables
 - Chaining
 - Open addressing
 - Table resizing
 - Basic hash functions
 - Simple probability
 - Simple amortized analysis
 - Bloom filters

Algorithms and data structures, part 4:

- Basic graphs
 - Formats: adjacency list/matrix
 - BFS, DFS, etc.
- Shortest paths
 - Dijkstra's Algorithm
 - Bellman-Ford
 - Special cases
- Minimum spanning trees
 - Cut Property, Cycle Property
 - Prim's, Kruskal's Algorithms

Advanced topics:

- Dynamic programming
 - Simple problems
 - Floyd-Warshall All-Pairs Shortest Path
- Geometry
 - BSP, kd-tree, line intersection
- Flow networks
 - Ford-Fulkerson Algorithm
- Parallel Algorithms
 - Parallel MergeSort

Java:

- Object-oriented programming
 - Basic principles and implementation in Java
- Basic Java
 - classes and inheritance: class, interface, implements, extends
 - access control: public, private, protected, static
 - simple error handling: exceptions
 - Generics
 - Comparable
 - Iterators
 - etc.....

Advice

Much like Quiz 1:

- Review how the algorithms works.
- Review the different techniques.
- Review Java details.

Think about common themes:

- For example: Binary search
- For example: Augmenting data structures
- For example: Developing proper graph models
- And others...

Advice

Think about trade-offs:

- When do you use Bellman-Ford vs. Dijkstra's?
- When do you use Chaining vs. Open addressing?
- Etc...

Don't stress...

Be happy.

Exam review

Problem session today!

Many tutor's holding special review sessions...

Final Exam

Wednesday April 25: 5pm

- Location: Multi-Purpose Sports Hall 1-B
- Same rules as Quiz 1 and Quiz 2:
 - Closed book
 - Two double-sided pieces of paper
- Three-way focus:
 - Basic algorithms and data structures
 - Java
 - Problem solving
- All the material from CS2020

• Algorithms modules:

- CS3230: Design and Analysis of Algorithms
- CS3210: Parallel Computing
- CS3233: Competitive Programming
- CS4231: Parallel and Distributed Algorithms
- CS4234: Optimization
- CS5234: Combinatorial and Graph Algorithms
- CS5237: Computational Geometry

• Theory:

- CS4232: Theory of Computation
- CS5230: Computational Complexity

- Software engineering modules:
 - CS2103: Software engineering
 - CS4211: Formal methods for software engineering
 - CS4218: Software testing and debugging
- System design and programming modules:
 - CS3216: Software development on evolving platforms
 - CS3217: Software engineering on modern application platforms

- Specialized modules:
 - Distributed Systems
 - Computer Security
 - Game Design
 - Computer Graphics
 - Machine Learning
 - Computational Biology
 - Wireless computing and sensor networks
 - Etc...

Today

Parallel Algorithms

Goal:

- Develop a parallel sorting algorithm.
- Your challenge: parallelize the rest of the algorithms we have studied.

Moore's Law

Number of transistors doubles every 2 years!

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year... Certainly over the short term this rate can be expected to continue, if not to increase." Gordon Moore, 1965

Limits will be reached in 10-20 years...maybe.

Clock speed?

- More transistors per chip → smaller transistors.
- Smaller transistors → faster
- Conclusion:

Clock speed doubles every two years, also.

What to do with more transistors?

- More functionality
 - GPUs, FPUs, specialized crypto hardware, etc.
- Deeper pipelines
- More clever instruction issue (out-of-order issue, scoreboarding, etc.)
- More on chip memory (cache)

Limits for making faster processors?

Problems with faster clock speeds:

- Heat
 - Faster switching creates more heat.
- Wires
 - Adding more components takes more wires to connect.
 - Wires don't scale well!
- Clock synchronization
 - How do you keep the entire chip synchronized?
 - If the clock is too fast, then the time it takes to propagate a clock signal from one edge to the other matters!

Conclusion:

- We have lots of new transistors to use.
- We can't use them to make the CPU faster.

What do we do?

Data source: Wikipedia

Instructions per Second

To make an algorithm run faster:

- Must take advantage of multiple cores.
- Many steps executed at the same time!

Parallel Algorithms

Challenges:

- How do we write parallel programs?
 - Partition problem over multiple cores.
 - Specify what can happen at the same time.
 - Avoid unnecessary sequential dependencies.
 - Synchronize different threads (e.g., locks).
 - Avoid race conditions!
 - Avoid deadlocks!

Parallel Algorithms

Challenges:

- How do we analyze parallel algorithms?
 - Total running time depends on # of cores.
 - Cost is harder to calculate.
 - Measure of scalability?

Parallel Algorithms

Challenges:

- How do we debug parallel algorithms?
 - More non-determinacy
 - Scheduling leads to un-reproduceable bugs
 - Heisenbugs!
 - Stepping through parallel programs is hard.
 - Race conditions are hard.
 - Deadlocks are hard.

Today

Parallel Algorithms

- Developing an algorithm with lots of parallelism.
- Analyzing parallelism.
- MergeSort

Not going to have time to talk about:

- Parallel programming
- Race conditions
- Locks
- Etc....

Questions to ask:

• What steps can we execute at the same time?

• How much parallelism is possible?

- How fast will it run:
 - On a single processor machine?
 - On an 8-core machine?
 - On a really, really big supercomputer?

Models

Sequential algorithms:

Easy: execute one step after another...

Models

Parallel algorithm models:

- PRAM (EREW/CREW/CRCW)
- SIMD/MIMD
- BSP
- Shared memory
- Message passing
- Dataflow
- LogP
- etc....

Models

Dynamic Multithreading

- Focus on logical parallelism
 - What steps can run in parallel?
 - What steps must be sequential?
- Machine independent
 - No fixed number of processors.
 - Assumes strong memory model.
- Relies on a scheduler to map algorithm to machine.
 - There exist provably good schedulers!

Example: Fibonacci

```
fib(n)
    if (n < 2) then
        return n;
    x = fib(n-1);
    y = fib(n-2);
    return x + y;
}</pre>
```

The running time of this algorithm is:

- 1. $O(\log n)$
- 2. O(n)
- 3. $O(n^2)$
- **✓**4. $O(2^n)$
 - 5. I forget.

Just for fun...

Recall: matrix definition of Fibonacci Numbers

$$\begin{pmatrix} F_{k+2} \\ F_{k+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$

Induction:

$$\begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^k \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

How expensive to exponentiate 2x2 matrix? $O(\log k)$

Example: Fibonacci

```
badFib(n)
  if (n < 2) then
     return n;
  x = badFib(n-1);
  y = badFib(n-2);
  return x + y;
}</pre>
```

Example: Fibonacci

```
parallelFib(n)
  if (n < 2) then
      return n;
 x = spawn parallelFib(n-1);
 y = spawn parallelFib(n-2);
  sync;
 return x + y;
```

Executing Parallel Fibonacci

Executing Parallel Fibonacci

Example: Fibonacci

```
parallelFib(n)
  if (n < 2) then
    return n;
 x = spawn parallelFib(n-1);
 y = spawn parallelFib(n-2);
  sync;
 return x + y;
```

Executing Parallel Fibonacci

Executing Parallel Fibonacci

Parallel Computations

Represent a computation as a DAG:

Directed acyclic graph

Nodes = steps of computation

- Edges = dependencies
 - Spawn edges
 - Sync edges
 - Continuation edges

Scheduling a DAG-computation:

- On one processor...
- On many processors...

Simple model of parallel computation

Dynamic Multithreading

- Two special commands:
 - spawn: start a new (possibly parallel) procedure
 - sync: wait for all concurrent tasks to complete

- Machine independent
 - No fixed number of processors.

- Parallel computation modelled as DAG.
 - There exist provably good schedulers!

What algorithm could you use to schedule the DAG computation on 1 processor?

1. Breadth-First Search

- ✓2. Topological Sort
 - 3. Bellman-Ford
 - 4. Dijkstra's
 - 5. Prim's
 - 6. Something more complicated.

Schedule DAG on 1 processor?

How many steps does fib(4) take if it is scheduled on **one** processor?

- 2. 8
- 3. 13
- **✓**4. 17
 - 5. 32
 - 6. I can't count.

How much work?

Calculating the Work

```
parallelFib(n)
  if (n < 2) then
    return n;
 x = spawn parallelFib(n-1);
 y = spawn parallelFib(n-2);
  sync;
 return x + y;
```

$$T(n) = T(n-1) + T(n-2) + O(1)$$

Analyzing a Parallel Computation

Work: $\mathbf{T_1}$

Total running time if executed on one processor.

Equivalent: total steps taken on all processors.

– Calculate:

- Count the number of nodes in your graph.
- Set up a recurrence (as before).
- Essentially, same as sequential algorithm analysis.

Analyzing a Parallel Computation

Definition: $\mathbf{T}_{\mathbf{p}}$

Total running time if executed on p processors.

– Calculate:

- Depends on the scheduler.
- Cannot be easily calculated for arbitrary p.
- We will see how to bound T_p given a *good* scheduler.

Schedule DAG on ∞ processors?

What is the **fastest** fib(4) can run if you have as many processors as you want?

Schedule DAG on ∞ processors?

Analyzing a Parallel Computation

Critical Path: T_{∞}

Total running time if executed on infinite processors.
 Equivalent: what is the *fastest* the program can execute?

– Calculate:

- Find the longest path in the DAG.
- Set up a recurrence....

Example: Fibonacci

```
parallelFib(n)
  if (n < 2) then
     return n;
  x = spawn parallelFib(n-1); \leftarrow
                                              MAX
  y = spawn parallelFib(n-2); ✓
  sync;
  return x + y; <
T_{\infty}(n) = \max(T_{\infty}(n-1), T_{\infty}(n-2)) + O(1)
```

Schedule DAG on ∞ processors?

Example: Fibonacci

```
parallelFib(n)
  if (n < 2) then
     return n;
  x = spawn parallelFib(n-1);
  y = spawn parallelFib(n-1);
  sync;
  return x + y;
T_{\infty}(n) = \max(T_{\infty}(n-1), T_{\infty}(n-2)) + O(1)
      = O(n)
```

Analyzing Parallel Algorithms

Key metrics:

- Work: T_1

- Critical Path: T_{∞}

What is the work?

What is the work on this graph?

- **✓**1. 18
 - 2. 24
 - 3. 32
 - 4. 37
 - 5. 45
 - 6. I forgot to count.

Key metrics:

- Work: T_1

- Critical Path: T_{∞}

Work = 18

Key metrics:

- Work: T_1

- Critical Path: T_{∞}

What is the critical path on this graph?

Key metrics:

- Work: T_1

Critical Path: T_∞

Critical path = 9

Parallelism: How parallel is your program?

Parallelism: How parallel is your program?

- How many processes does it scale to?
- How many processes can we usefully use?

Key metrics:

- Work: T_1
- Critical Path: T_{∞}

Parallelism:

- How parallel is your program?
- Example: original (non-parallel) badFibonacci
 - $T_1 = O(2^n)$
 - $T_{\infty} = O(2^n)$
 - Parallelism = $(T_1 / T_\infty) = 1$

Key metrics:

- Work: T_1
- Critical Path: T_{∞}

Parallelism:

- How parallel is your program?
- Example: parallel Fibonacci
 - $T_1 = O(2^n)$
 - $T_{\infty} = O(n)$
 - Parallelism = $(T_1 / T_\infty) = O(2^n / n)$

Key metrics:

What is the parallelism?

What is the parallelism of this graph?

Key metrics:

- Work: $T_1 = 18$

Running Time: T_p

Total running time if executed on p processors.

- Claim: $T_p > T_{\infty}$
 - Cannot run slower on more processors!
 - Mostly, but not always, true in practice.

Running Time: T_p

Total running time if executed on p processors.

- Claim: $T_p > T_1 / p$
 - Total work, divided perfectly evenly over **p** processors.
 - Only for a perfectly parallel program.

Running Time: T_p

Total running time if executed on p processors.

- Goal: $T_p = (T_1/p) + T_\infty$
 - Almost optimal (within a factor of 2).
 - We have to spend time T_{∞} on the critical path. We call this the "sequential" part of the computation.
 - We have to spend time (T₁ / p) doing all the work.
 We call this the "parallel" part of the computation.

Key metrics:

- Work: T_1
- Critical Path: T_{∞}
- Parallelism: (T_1 / T_{∞})

Running time on **p** processors:

- Assume $p = (T_1 / T_\infty)$
- Then:

$$\mathbf{T}_{\mathbf{p}} = (\mathbf{T}_{1} / \mathbf{p}) + \mathbf{T}_{\infty} = \mathbf{2T}_{\infty}$$

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

Greedy Scheduler

- 1. If $\leq p$ tasks are *ready*, execute all of them.
- 2. If > p tasks are *ready*, execute p of them.

Theorem (Brent-Graham): $\mathbf{T}_{\mathbf{p}} \leq (\mathbf{T}_{1} / p) + \mathbf{T}_{\infty}$ Proof:

- At most steps (\mathbf{T}_1/p) of type 2.
- Every step of type 1 works on the critical path, so at most + T_{∞} steps of type 1.

Greedy Scheduler

- 1. If $\leq p$ tasks are *ready*, execute all of them.
- 2. If > p tasks are *ready*, execute p of them.

Problem:

- Greedy scheduler is *centralized*.
- How to determine which tasks are ready?
- How to assign processors to ready tasks?

Work-Stealing Scheduler

- Each process keeps a queue of tasks to work on.
- Each spawn adds one task to queue, keeps working.
- Whenever a process is free, it takes a task from a randomly chosen queue (i.e., work-stealing).

Theorem (work-stealing): $\mathbf{T}_{\mathbf{p}} \leq (\mathbf{T}_{1}/p) + \mathcal{O}(\mathbf{T}_{\infty})$

- See, e.g., the Cilk / Cilk++ scheduler.
- Now part of Intel Parallel Studio

Socrates:

- a parallel chess program from ~1995
- used to demonstrate advantage of work-stealing
- defeated an early version of Deep Blue (the chess computer that eventually beat Kasparov)

Socrates:

- a parallel chess program from ~1995
- used to demonstrate advantage of work-stealing
- defeated an early version of Deep Blue (the chess computer that eventually beat Kasparov)

- Development: 32-processor machine
- Deployed (for competition): 512-processor machine

Socrates:	Original Version	New Version
T_{32}	65 sec.	40 sec.

Socrates:	Original Version	New Version
T_{32}	65 sec.	40 sec.
T_1	2048 sec.	1024 sec.
T_{∞}	1 sec.	8 sec.

Which is better?

- 1. Original version
- 2. New version

		Original Version	New Version
Response	T_{32}	65 sec.	40 sec.
	T_1	2048 sec.	1024 sec.
	T_{∞}	1 sec.	8 sec.

Socrates:	Original Version	New Version	
T_{32}	65 sec.	40 sec.	
T_1	2048 sec.	1024 sec.	
T_{∞}	1 sec.	8 sec.	
T ₅₁₂	$T_1/512 + T_{\infty}$	$T_1/512 + T_{\infty}$	
	2048/512 + 1	1024/512 + 8	
	5 sec.	10 sec.	

So far...

- Model for parallel algorithms
 - Dynamic multithreading
 - spawn/synch semantics
- Metrics for analyzing parallel programs
 - Work
 - Critical path
 - Parallelism
 - Speed-up

Matrix Addition

Add(A,B)
for
$$i = 1$$
 to n do
for $j = 1$ to n do

$$C[i,j] = A[i,j] + B[i,j]$$

Matrix Addition

Work Analysis

$$- T_1(n) = O(n^2)$$

Critical Path Analysis

$$- T_{\infty}(n) = O(n^2)$$

Ex: Matrix Addition

```
plus(A,B,C,i,j)
    C[i,j] = A[i,j] + B[i,j];

pBadBadMatrixAdd(A, B, C, n)
    for (i=1; i<n; i++)
        for (j=1; j<n; j++)
        spawn plus(A,B,C,i,j);</pre>
```

Ex: Matrix Addition

```
plus(A,B,C,i,j)
 C[i,j] = A[i,j] + B[i,j];
pBadBadMatrixAdd(A, B, C, n)
  for (i=1; i<n; i++)
                                     Loop construct:
                                     Execute this line n<sup>2</sup> times!
    for (j=1; j<n; j++)
         spawn plus(A,B,C,i,j);
```

Critical Path: $T_{\infty}(n) = O(n^2)$

Matrix Addition

Basic idea: divide-and-conquer

- Divide matrix into four quadrants.
- Sum each part separately.
- All four parts can happen in parallel!

Matrix Addition

```
pMatAdd(A, B, C, i, j, n)
 if (n == 1)
   C[i,j] = A[i,j]+B[i,j];
 else
   spawn pMatAdd(A,B,C,i,j,n/2);
   spawn pMatAdd(A,B,C,i,j+n/2,n/2);
   spawn pMatAdd(A,B,C,i+n/2,j,n/2);
   spawn pMatAdd(A,B,C,i+n/2,j+n/1,n/2);
   synch;
```

Matrix Addition

Work Analysis

$$- T_1(n) = 4T_1(n/2) + O(1) = O(n^2)$$

Critical Path Analysis

$$- T_{\infty}(n) = T_{\infty}(n/2) + O(1) = O(\log n)$$

Example: Matrix Multiplication

Given: two matrices A[n,n] and B[n,n]

Calculate: matrix C = AB

$$C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$$

Time: O(n³)

```
\begin{aligned} & \text{Multiply}(A,B) \\ & \textbf{for } i = 1 \textbf{ to } n \textbf{ do} \\ & \textbf{for } j = 1 \textbf{ to } n \textbf{ do} \\ & & C[i,j] = 0 \\ & \textbf{for } k = 1 \textbf{ to } n \textbf{ do } C[i,j] += A[i,k] * B[k,j] \end{aligned}
```


Divide-and-Conquer

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Ex: Matrix Addition

```
pMatMult(A, B, C, n)
  if (n == 1) C = A * B;
  else
     spawn pMatMult(A11, B11, C11, n/2);
     spawn pMatMult(A12, B21, T11, n/2);
     spawn pMatMult(A11, B12, C12, n/2);
     spawn pMatMult(A12, B22, T12, n/2);
     spawn pMatMult(A21, B12, C22, n/2);
     spawn pMatMult(A22, B22, T22, n/2);
     spawn pMatMult(A21, B11, C21, n/2);
     spawn pMatMult(A22, B21, T21, n/2);
     synch;
     spawn pMatAdd(C, T, C, n)
     synch;
```

Work Analysis

$$- T_1(n) = 8T_1(n/2) + 4O(n^2/4) = O(n^3)$$
8 multiplications
4 additions

Divide-and-Conquer

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Critical Path Analysis

$$- T_{\infty}(n) = T_{\infty}(n/2) + O(\log n) = O(\log^2 n)$$

time for 1 multiplication: all multiplications in parallel

time for one parallel addition: all additions in parallel

Ex: Matrix Addition

```
pMatMult(A, B, C, n)
  if (n == 1) C = A * B;
  else
     spawn pMatMult(A11, B11, C11, n/2);
     spawn pMatMult(A12, B21, T11, n/2);
     spawn pMatMult(A11, B12, C12, n/2);
     spawn pMatMult(A12, B22, T12, n/2);
     spawn pMatMult(A21, B12, C22, n/2);
     spawn pMatMult(A22, B22, T22, n/2);
     spawn pMatMult(A21, B11, C21, n/2);
     spawn pMatMult(A22, B21, T21, n/2);
     synch;
     spawn pMatAdd(C, T, C, n)
     synch;
```

Work Analysis

$$- T_1(n) = 8T_1(n/2) + O(4) = O(n^3)$$

Critical Path Analysis

$$- T_{\infty}(n) = T_{\infty}(n/2) + O(\log n) = O(\log^2 n)$$

Alternate version:

- Uses no temporary space.
- But has a longer critical path.

Trade-off: time vs. space

Exercise: come up with a version that uses no extra space!

```
MergeSort(A, n)
   if (n=1) then return;
   else
        X = MergeSort(A[1..n/2], n/2)
        Y = MergeSort(A[n/2+1, n], n/2)
        A = Merge(X, Y);
```

```
pMergeSort(A, n)
  if (n==1) then return;
  else
    X = spawn pMergeSort(A[1..n/2], n/2)
    Y = spawn pMergeSort(A[n/2+1, n], n/2)
    synch;
    A = Merge(X, Y);
```

```
pMergeSort(A, n)
  if (n==1) then return;
  else
    X = spawn pMergeSort(A[1..n/2], n/2)
    Y = spawn pMergeSort(A[n/2+1, n], n/2)
    synch;
    A = Merge(X, Y);
```

Work Analysis

```
- T_1(n) = 2T_1(n/2) + O(n) = O(n \log n)
```

```
pMergeSort(A, n)
  if (n==1) then return;
  else
    X = spawn pMergeSort(A[1..n/2], n/2)
    Y = spawn pMergeSort(A[n/2+1, n], n/2)
    synch;
    A = Merge(X, Y);
```

Critical Path Analysis

$$- T_{\infty}(n) = T_{\infty}(n/2) + O(n) = O(n)$$

Oops!

How do we merge two arrays A and B in parallel?

How do we merge two arrays A and B in parallel?

– Let's try divide and conquer:

```
X = spawn Merge(A[1..n/2], B[1..n/2])

Y = spawn Merge(A[n/2+1..n], B[n/2+1..n])
```

A	=	5	8	9	11	13	20	22	24
В	=	6	7	10	23	27	29	32	35

– How do we merge X and Y?

X	=	5	6	7	8	9	10	11	23
Y	=	13	20	22	24	27	29	32	35

Recurse: **pMerge**(A[1..n/2], B[1..j]) **pMerge**(A[n/2+1..n], B[j+1..n])

```
pMerge(A[1..k], B[1..m], C[1..n])
  if (m > k) then pMerge(B, A, C);
  else if (n==1) then C[1] = A[1];
  else if (k==1) and (m==1) then
    if (A[1] \leq B[1]) then
      C[1] = A[1]; C[2] = B[1];
    else
      C[1] = B[1]; C[2] = A[1];
  else
    binary search for j where B[j] \le A[k/2] \le B[j+1]
    spawn pMerge(A[1..k/2],B[1..j],C[1..k/2+j])
    spawn pMerge(A[k/2+1..1],B[j+1..m],C[k/2+j+1..n])
    synch:
```


Recurse: **pMerge**(A[1..n/2], B[1..j]) **pMerge**(A[n/2+1..n], B[j+1..n])

Critical Path Analysis:

- Define $T_{\infty}(n)$ to be the work done by parallel merge when the two input arrays A and B together have n elements.
- There are k > n/2 elements in A, and (n-k) elements in B, so in total: k/2 + (n-k) = n (k/2) < n (n/4) < 3n/4

$$- T_{\infty}(n) \le T_{\infty}(3n/4) + O(\log n)$$
$$\approx O(\log^2 n)$$

Work Analysis:

- Define $T_1(n)$ to be the work done by parallel merge when the two input arrays A and B together have n elements.
- Fix: $\frac{1}{4} \le \alpha \le \frac{3}{4}$

$$- T_1(n) = T_1(\alpha n) + T_1((1-\alpha)n) + O(\log n)$$

$$\approx 2T_1(n/2) + O(\log n)$$

$$= O(n)$$

```
pMergeSort(A, n)
  if (n=1) then return;
  else
    X = spawn pMergeSort(A[1..n/2], n/2)
    Y = spawn pMergeSort(A[n/2+1, n], n/2)
    synch;
    A = spawn pMerge(X, Y);
    synch;
```

Critical Path Analysis

$$- T_{\infty}(n) = T_{\infty}(n/2) + O(\log^2 n) = O(\log^3 n)$$

So far today...

- Model for parallel algorithms
 - Dynamic multithreading
- Metrics for analyzing parallel programs
 - Work
 - Critical path

- Two parallel algorithms
 - Matrix multiplication
 - MergeSort

Parallel Programming is Hard

```
class Counter{
  int cnt = 0;
 void pInc(){
   cnt = cnt + 1;
Counter c = new counter();
spawn c.pInc();
spawn c.pInc();
sync();
```

What is the final value of the counter?

- 1. 0
- 2. 1
- 3. 2
- **✓**4. 1 or 2
 - 5. 0 or 1
 - 6. 0 or 1 or 2

Computation DAG:

Processor 1

$$-x = cnt.read() = 0$$

$$- cnt = x+1;$$

Processor 2

$$- y = cnt.read() = 1$$

$$- cnt = y+1$$

Result:
$$cnt = 2$$
;

Processor 1

$$-x = cnt.read() = 0$$

$$- cnt = x+1;$$

Processor 2

$$- y = cnt.read() = 0$$

$$-$$
 cnt = y+1

Result:
$$cnt = 1$$
;

Race condition:

- Different parallel interleavings lead to different outcomes.
- Design algorithms to avoid race conditions!

When does a race condition occur:

- Two threads can access the same shared memory.
- Those two threads can happen in either order.

Another example:

```
class Milk{
    quantity = 2 liters;

    checkMilk():
        if (quantity < 1 liter) then
            buy 1 liter milk;
    }
}</pre>
```

Beware: if used in parallel, too much milk!

Avoiding Race Conditions

Locks:

A lock ensures that only one process can access a critical section at a given time.

```
checkMilk():
    lock(milk);
    if (quantity < 1 liter) then
        buy 1 liter milk;
    unlock(milk);
}</pre>
```

Only one process can access milk at a time!

Deadlocks (see: Dining Philosophers)

- Process A: lock(x)
- Process B: lock(y)
- Process A: lock(y)
- Process B: lock(x)

Linked List

• Support:

- insert
- delete
- search

• Parallelism:

- Many operations will run at the same time.
- E.g., a database with many simultaneous users.

Problem 1: Concurrent insert/delete

 $insert(14) \rightarrow after 12$

Problem 1: Concurrent insert/delete

insert(14) \rightarrow after 12 delete(12)

Problem 2: infinite search

Linked List

- Support: only integers
 - insert
 - delete
 - search

• Parallelism:

- Many operations will run at the same time.
- E.g., a database with many simultaneous users.

Linked List

```
insert(int x){
    LLnode node = new LLnode(x);
   lock(this);
   node.setNext(this.next);
   this.setNext(node);
   unlock(this);
```

NB: Fake Java syntax for locks...

Concurrent Search Trees

AVL Trees

- Option 1: Lock entire tree tree insert.
 - Poor concurrency.
 - Only one process can insert at a time.
 - Can processes search during an insert?

Concurrent Search Trees

AVL Trees

- Option 1: Lock entire tree tree insert.
- Option 2: Hand-over-hand locking
 - Let x = insertion point.
 - Lock x
 - Repeat:
 - Lock parent of x.
 - Rotate (if necessary).
 - Unlock x.
 - x = x.parent

- Basic class: java.lang.thread
 - Extend the thread class to create a thread.
 - Override: public void run(){ ... }

- Basic interface: Runnable
 - Implement Runnable to create a thread
 - public void run(){ ... }

```
class DBSearch extends Thread{
  static Database dbMain;
  static found = false;
  int searchKey;
 DBSearch(int i){searchKey = i;}
 public void run(){
     dbMain.search(searchKey);
 public static void main(...){
     DBSearch[] dbS[1000]
     for (int i=0; i<1000; i++){
            dbS[i] = new DBSearch(i);
            dbS[i].start();
```

Synchronization:

 Ensure that only one process accesses shared data at a time by declaring an object synchronized.

```
public synchronized void doSomething(){
   dbMain.search(searchKey);
}
```

```
Example:
public class SynchronizedCounter {
  private int c = 0;
  public synchronized void increment() { c++; }
  public synchronized void decrement() { c--; }
  public synchronized int value() { return c; }
```

See: Oracle Java Concurrency Tutorial

Dynamic Multithreading in Java

Fork/Join executors

- Maintains a pool of threads (ForkJoinPool)
- Each task implements ForkJoinTask
- A task either does computation, or spawns other (smaller) ForkJoinTasks.
- An ExecutorService distributed tasks to worker threads in the thread pool via a work-stealing algorithm.

Today

- Model for parallel algorithms
 - Dynamic multithreading
- Metrics for analyzing parallel programs
 - Work and Critical path
- Two parallel algorithms
 - Matrix multiplication and MergeSort
- Problems in Parallelism
 - Race conditions and deadlock
- MultiThreaded Java

"If you need your software to run twice as fast, hire better programmers.

But if you need your software to run more than twice as fast, use a better algorithm."

-- Software Lead at Microsoft

Algorithms

Object-oriented programming

Java

Goals for the Semester

Algorithms:

- Design of efficient algorithms
- Analysis of algorithms

Implementation:

- Solve real problems
- Analyze and profile performance
- Improve performance via better algorithms

Goals of CS2020:

- Learn some Java.
- Learn some algorithms.
- Solve lots of problems.

Goals of CS2020:

- Learn some Java.
- Learn some algorithms.
- Solve lots of problems.

I hope everyone has had fun...

Goals of CS2020:

- Learn some Java.
- Learn some algorithms.
- Solve lots of problems.

I hope everyone has had fun...

If you ever want to chat about algorithms, just drop by my office...

Goals of CS2020:

- Learn some Java.
- Learn some algorithms.
- Solve lots of problems.

I hope everyone has had fun...

If you ever want to chat about algorithms, just drop by my office...

And it's over... congratulations!