

Bài 01 Tổng quan

MẠNG MÁY TÍNH

cuu duong than cong . com

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Nội dung

- Mạng máy tính là gì?
- 2. Lịch sử MMT
- 3. Các khái niệm cơ bản
- 4. Các thành phần trong mạng máy tính
- 5. Đồ hình mạng
- 6. Các ứng dụng mạng

Mạng máy tính là gì?

- ☐ Mạng máy tính (computer network):
 - Nhiều máy tính kết nối với nhau bằng phương tiện truyền dẫn
 - Liên lạc và chia sẻ tài nguyên

Internet?

☐ Internet:

- Mạng của mạng
- Có khả năng truy cập toàn cầu

cuu duong than

https://fb.com/tailieudientucntt

cuu duong than

Lợi ích

- ☐ Hạ tầng truyền thông (communication infrastructure): ứng dụng phân tán
 - Web
 - VoIP
 - Games
 - **.**...
- □ Dịch vụ truyền thông (communication services) cho các ứng dụng
 - Truyền dữ liệu đáng tin cậy
 - Truyền dữ liệu không đáng tin cậy

Cấu trúc Internet

Sơ đô kết nối các isp ở việt nam & cdio

Bản quyền thuộc về Trung tâm Internet Việt Nam

Phân loại mạng - 1

☐Theo địa hình:

- Mang cục bộ (LAN Local Area Network)
 - Kích thước nhỏ (toà nhà, phòng máy, công ty, ..)
 - Thuộc 1 đơn vị, 1 tổ chức
 - Tốc độ cao, ít lỗi
 - Rẻ tiền
- Mang đô thị (MAN Metropolean Area Network)
 - Nhiều mạng LAN kết hợp lại
 - Có phạm vi trong 1 quận, huyện, thành phố
 - Thuộc 1 đơn vị, 1 tổ chức
 - Chậm, nhiều lỗi, chi phí cao hơn LAN
- Mạng diện rộng (WAN Wide Area Network)
 - Nhiều LAN, MAN kết hợp với nhau
 - Phạm vi quốc gia, châu lục, quốc tế
 - Thuộc nhiều đơn vị, 1 tổ chức
 - Chậm, nhiều lỗi, chi phí cao hơn LAN, MAN

Phân loại mạng - 2

☐ Theo phạm vi hoạt động:

- intranet
 - Nội bộ trong 1 đơn vị
- extranet
 - Intranet
 - · Cho phép bên ngoài truy cập vào thông qua chứng thực
- internet
 - Cho phép bên ngoài truy cập

Phân loại mạng – 4

- ☐ Theo phương tiện truyền dẫn:
 - Có dây
 - Không dây
 - Infrastructure
 - Ad-hoc

Nội dung

- 1. Mạng máy tính là gì?
- 2. Lịch sử MMT
- 3. Các khái niệm cơ bản
- 4. Các thành phần trong mạng máy tính
- 5. Đồ hình mạng
- 6. Các ứng dụng mạng

Lịch sử MMT

□ Ý tưởng mầm móng đầu tiên là của J.C.R. Licklider (MIT)

"a network of such [computers], connected to one another by wide-band communication lines" which provided "the functions of present-day libraries together with anticipated advances in information storage and retrieval and [other] symbiotic functions." - J.C.R. Licklider

Lịch sử MMT (tt)

☐ Khởi đầu là mạng ARPANET năm 1969

- Xuất phát từ việc phát minh ra công nghệ chuyển mạch mạch gói của <u>Leonard Kleinrock</u> (MIT)
- J.C.R. Licklider và Lawrence Robert
- 21/11/1969, mạng ARPANET đầu tiên đã kết nối 2 nơi: Trường ĐH California, Los Angeles và Viện nghiên cứu Stanford

Lịch sử MMT (tt)

☐ Từ 1970s đến 1980s:

- ALOHAnet
- Telenet
- CyclaBITNET cuu duong than cong . com
- CSNET
- NSFNET

Lịch sử MMT (tt)

- □ 1990s: năm bùng nổ của Internet
 - 1990, ARPANET đóng
 - 1995, NSFNET dóng
 - Rất nhiều ứng dụng ra đời
 - Email cuu duong than cong . co
 - Web
 - Instant message, ICQ
 - Peer-to-peer file sharing
- □ 2000s: P2P, wireless, sensor, grid computing, VoIP,

Nội dung

- 1. Mạng máy tính là gì?
- 2. Lịch sử MMT
- 3. Các khái niệm cơ bản
- 4. Các thành phần trong mạng máy tính
- 5. Đồ hình mạng
- 6. Các ứng dụng mạng

Kiểu truyền

- Unicast
 - Từ 1 node đến 1 node

- □ Broadcast
 - Từ 1 node đến tất cả các node trong một vùng mạng

- Multicast
 - Từ 1 node đến 1 nhóm

- □ Anycast
 - Từ 1 node đến 1 node bất kỳ trong một nhóm

Giao thức - 1

☐ Giao thức:

- Hiểu: như là một "thống nhất" giữa các "đối tượng" khi trao đổi thông tin
- qui định, qui tắc để trao đổi dữ liệu giữa các đối tượng trên mạng
 - Định dạng dữ liệu trao đổi (syntax, semantic)
 - Thứ tự thông tin truyền nhận giữa các thực thể trên mạng
 - Các hành động cụ thể sau mỗi sự kiện nhận/gởi hay 1 sự kiện nào đó xảy ra
- VD: HTTP, TCP, IP, PPP, ...
- ☐ Do các tổ chức và hiệp hội xây dựng: IEEE, ANSI, TIA, EIA, ITU-T

Giao thức - VD

Giao thức TCP

Băng thông

- ☐ Băng thông (bandwidth):
 - Lượng thông tin có thể truyền đi trên 1 kết nối mạng trong 1 khoảng thời gian
 - Lý tưởng
 - Đơn vị tính: bit/s (bps), Mbps, Gbps, ...
- ☐ Thông lượng (throughput):
 - Băng thông thực tế
 - Nhỏ hơn nhiều so với băng thông lý thuyết
 - Các yếu tố ảnh hưởng:
 - Thiết bị liên mạng com cong com
 - Topology mang
 - Số lượng user trên mạng
 - Máy tính của user, server

– ...

- □ Là thời gian trễ của 1 gói tin
- ☐ Các nguyên nhân gây ra trễ:
 - Trễ do tốc độ truyền (transmission delay)
 - Trễ trên đường truyền (propagation delay)
 - Xử lí tại nút (nodal processing)
 - Hàng đợi (queuing delay)

- ☐ Trễ do tốc độ truyền (transmission delay):
 - Là thời gian cần thiết để chuyển mạch hết gói tin lên đường truyền
 - $D_{trans} = L/R (s)$
 - R = băng thông của đường truyền (bps)
 - L = chiều dài gói tin (bit)
 - Ví dụ: gói tin có chiều dài L = 100bytes. Đường truyền có băng thông R = 10 Mbps

$$\rightarrow$$
 D_{trans} = 100 *8/(10*1000²) s

- Trễ trên đường truyền (propagation delay)
 - Thời gian truyền 1 bit từ nơi gởi đến nơi nhận
 - - d = chiều dài đường truyền
 - c = tốc độ truyền ($\sim 2x10^8$ m/sec $3x10^8$ m/sec)
- ☐ Xử lý tại nút (nodal processing): D_{proc}
 - Là thời gian xử lý header của 1 gói tin và quyết định chuyển mạch gói tin theo hướng nào
 - Kiểm lỗi bit
 - Xác định đầu ra (vd dựa trên địa chỉ đến.)
 - Thường rất nhỏ

- ☐ Hàng đợi: D_{queue}
 - Là thời gian gói tin chờ trong hàng đợi để được đưa lên đường truyền
 - Phụ thuộc: số lượng gói tin đến trước nó
- ☐ Tổng độ trễ khi truyền 1 gói tin:

$$D = D_{proc} + D_{queue} + D_{trans} + D_{prop}$$

□ Ví du 1:

- Khoảng cách từ A đến B: 100km
- tốc độ đường truyền 360.000km/h
- Trung bình mỗi gói tin có kích thước 1000 bytes
- Băng thông của đường truyền: 100Mbps
- Mỗi gói tin cần 0.01s để xử lý

Cho biết:

- Thời gian để gởi 1 gói tin. Giả sử, tại thời điểm đang xét, hàng đợi của A là rỗng
- Tại thời điểm t = 0.1s, bit đầu tiên của gói tin đang ở vị trí nào?
- Tính thời gian cần thiết để gởi 5 gói tin, giả sử 5 gói tin đã nằm trong hàng đợi

- □Các lệnh dùng để kiểm tra thời gian trễ
 - Ping
 - Tracert
 - Pathping

cuu duong than cong . com


```
C:\Users\ttmtrang>ping 172.29.2.2

Pinging 172.29.2.2 with 32 bytes of data:

Reply from 172.29.2.2: bytes=32 time=1ms TTL=62

Ping statistics for 172.29.2.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 1ms, Average = 1ms
```

```
C:\Users\ttmtrang>tracert 172.29.2.2

Tracing route to Maillog.hcmuns.edu.vn [172.29.2.2]

over a maximum of 30 hops:

1 2 ms 2 ms 172.29.70.1
2 1 ms 3 ms 4 ms 172.29.90.1
3 2 ms 1 ms 1 ms Maillog.hcmuns.edu.vn [172.29.2.2]

Trace complete.
```



```
C:\Users\ttmtrang>pathping 172.29.2.2
Tracing route to Maillog.hcmuns.edu.vn [172.29.2.2]
over a maximum of 30 hops:
     ttmtrang-PC [172.29.70.95]
 1
    172.29.70.1
    172.29.90.1
    Maillog.hcmuns.edu.vn [172.29.2.2]
Computing statistics for 75 seconds...
            Source to Here
                             This Node/Link
qoH
Ø
                             Lost/Sent = Pct
     RTT
            Lost/Sent = Pct
                                               Address
                                               ttmtrang-PC [172.29.70.95]
                                          0%
                                0/100 =
       2ms
               0/ 100 =
                         0%
                                0/100 =
                                          0%
                                              172.29.70.1
  1
                                0/100 =
                                          0%
  2
               0/100 =
                                          0%
                                              172.29.90.1
       5ms
                         0%
                                0/100 =
                                0/100 =
                                          0%
               0/ 100 =
  3
       4ms
                         0%
                                0/100 =
                                          0%
                                               Maillog.hcmuns.edu.vn [172.29.2.2]
Trace complete.
```


Firewall

☐ Bức tường lửa (Firewall):

Bảo vệ hệ thống

Streaming Media

DNS Intrusion

- Kiểm soát luồng dữ liệu
 - từ mạng bên trong đi ra ngoài
 - Từ bên ngoài đi vào mạng bên trong

Phần mềm/phần cứng

SMTP

han cứng

Rules Andried

All Destinations

Internal Network

OTHOCKHOT TO CH

External Network

Khoa Công nghệ thông tin - Đại học Khoa học tự nhiên TP Hồ Chí Minh

Access Policy

Allow 🗹

Proxy

□ Proxy

- Là 1 ứng dụng đặc biệt
- "Thay thê" các kết nối

Nội dung

- 1. Mạng máy tính là gì?
- 2. Lịch sử MMT
- 3. Các khái niệm cơ bản
- 4. Các thành phần trong mạng máy tính
- 5. Đồ hình mạng
- 6. Các ứng dụng mạng

Thành phần mạng – bên ngoài

hosts = end systems

chay ứng dụng mạng

wireless laptop

cellular handheld

wireless

wired links

- cáp, sóng vô tuyến
- Tốc độ truyền = bandwidth

Mobile network

☐ Thiết bị liên mạng

- Routers, switch,...
- Chuyển tiếp dữ liệu

Thành phần mạng – bên trong

- □ Dịch vụ mạng
 - Web, Mail, FTP,...
- ☐ Giao thức
 - HTTP, FTP, TCP, IP, PPP,...
- ☐ Phương thức truyền dữ liệu:
 - chuyển mạch mạch (circuit-switching):
 - mỗi cuộc gọi chiếm dụng hết vùng băng thông được cấp.
 - VD: mạng điện thoại PSTN
 - chuyển mạch gói (packet-switching)
 - dữ liệu chuyển mạch trên mạng rời rạc theo từng khúc, gọi là gói (packet)
 - VD: mạng máy tính

Chuyển mạch mạch - 1

- Mỗi "cuộc gọi" chiếm 1 tài nguyên nhất định
 - Yêu cầu thiết lập đường dẫn trước
 - Chiếm giữ tài nguyên suốt "cuộc gọi"
- ☐ Đảm bảo không bị nghẽn mạch
- ☐ Sử dụng băng thông không hiệu quả nếu dữ liệu rời rạc (hoặc dày đặc nhưng bit rate không đều)
- ☐ Khắc phục:
 - Nhập nhiều "cuộc gọi" trên cùng 1 đường truyền
 - kỹ thuật: FDMA, TDMA

Chuyển mạch mạch - 2

• 4 cuộc gọi

• FDMA

o TDMA

Tần số

Chuyển mạch gói

- ☐ Mỗi luồng dữ liệu được chia nhỏ thành các gói
- ☐ Các gói tin chia sẻ chung tài nguyên mạng
 - Mỗi gói sử dụng toàn bộ băng thông
 - cho phép nhiều người dùng đồng thời hơn
 - Bị tắt nghẽn
- ☐ Yêu cầu tài nguyên sử dụng vừa đủ
- ☐ Mỗi gói có thêm phần "header" làm tăng kích thước dữ liệu truyền
- □ Phù hợp cho dữ liệu tức thời

Băng thông bị chia nhỏ

Cáp phát tà nguyên

Đẳng kí trước tài nguyên

Nội dung

- 1. Mạng máy tính là gì?
- 2. Lịch sử MMT
- 3. Các khái niệm cơ bản
- 4. Các thành phần trong mạng máy tính
- 5. Đồ hình mạng
- 6. Các ứng dụng mạng

- □ Đồ hình mạng (network topology):
 - cách thức bố trí đường truyền để nối kết các nút mạng
- ☐ Phân loại:
 - Đồ hình vật lí: Mô tả cách bố trí đường truyền thật sự
 - Đồ hình logic: Mô tả con đường mà dữ liệu thật sự di chuyển.
- ☐ Các kiểu đồ hình mạng:
 - Bus: các thiết bị nối trực tiếp vào một đường mạng chung
 - Star: các thiết bị nối trực tiếp vào một thiết bị chung
 - Ring: các thiết bị nối với nhau tạo thành vòng tròn
 - Mesh: 2 thiết bị bất kì được nối trực tiếp với nhau

https://fb.com/tailieudientucnt

□ Dang bus:

các node chia sẻ chung 1 đường truyền

□ Dạng sao (star)

Các node liên kết với nhau qua 1 node trung tâm

□ Dạng vòng (ring)

Các node nối với nhau thành 1 vòng khép kín

- □ Dạng lưới (mesh)
 - Một node nối với nhiều node
 - Gia tăng độ tin cậy của hệ thống
 - Có 2 loại:
 - mesh 1 phần (bán phần)
 - mesh toàn phần

Bus	Use of cable is economical. Media is inexpensive & easy to work with. System is simple and reliable. Bus is easy to extend.	Network can slow down in heavy traffic. Problems are difficult to isolate. Cable break can affect many users
Ring	System provides equal access for all computers. Performance is even despite many users.	Failure of one computer can impact the rest of the network. Problems are hard to isolate. Network reconfiguration disrupts operation.
Star	Modifying system and adding new computers is easy. Centralized monitoring and management are possible. Failure of one computer does not affect the rest of the network.	If the centralized point fails, the network fails.
Mesh	System provides increased redundancy and reliability as well as ease of troubleshooting.	System is expensive to install because it uses a lot of cabling.

Nội dung

- 1. Mạng máy tính là gì?
- 2. Lịch sử MMT
- 3. Các khái niệm cơ bản
- 4. Các thành phần trong mạng máy tính
- 5. Đồ hình mạng
- 6. Các ứng dụng mạng

Úng dụng mạng

- □ Ứng dụng trong gia đình
 - Chat
 - Mail
 - Instant message
- ☐ Úng dụng trong thương mại
 - Trang web mua bán online
- Úng dụng trong xã hội
 - Social network
 - Báo online cuu duong than cong . com
- Úng dụng hỗ trợ cho người dùng di động
 - Wireless network

Vấn đề phát sinh

- □ Virus, trojan, spyware...
- ☐ Bảo mật
 - Tấn công
 - Nghe lén thông tin ong than cong . com
 - **.**..
- □Tội phạm

