Introducción Definiciones Demostrando propiedades Representación

Introducción a Teoría de Grafos

Ayelén Dinkel - Fernando Nicolás Frassia Ferrari

1er Cuatrimestre 2024, TN

Introducción
Definiciones
Demostrando propiedades
Representación

¿Qué es un grafo?

Puntos y líneas

¿Qué es un grafo?

Puntos y líneas

¿Qué es un grafo?

Grafo

Un grafo es un par (V,E), donde V es un conjunto de vértices y $E \subseteq VxV$ un conjunto de aristas.

¿Qué es un grafo?

Grafo

Un grafo es un par (V,E), donde V es un conjunto de vértices y $E \subseteq VxV$ un conjunto de aristas.

Por comodidad nombramos n = |V| y m = |E|.

¿Por qué grafos?

Porque son simples y prácticos para modelar distintos problemas.

¿Por qué grafos?

- Porque son simples y prácticos para modelar distintos problemas.
- Porque se conoce una gran variedad de propiedades sobre ellos.

Ejemplos de grafos

Ejemplos:

- Puentes de Königsberg.
- El problema de los cuatro colores.

Ejemplos de grafos

Ejemplos:

- Puentes de Königsberg.
- El problema de los cuatro colores.
- $V = \{1, ..., N\}$; $E = \{(i, j) \in V \times V \mid i < j$; i divide a j $\}$

Ejemplos de grafos

Ejemplos:

- Puentes de Königsberg.
- El problema de los cuatro colores.

■
$$V = \{1, ..., N\}$$
; $E = \{(i, j) \in V \times V \mid i < j$; i divide a j $\}$

■ V = {Ciudades de Argentina}, $E = \{(i, j) \in V \times V | distancia(i, j) \ge 500km \}$

Más ejemplos!

 $E = \{(i,j) \in V \times V | \text{ la materia } j \text{ es correlativa de la materia } i \}$

Más ejemplos!

 $E = \{(i,j) \in V \times V | \text{ la materia } j \text{ es correlativa de la materia } i \}$

Introducción

Definiciones

Demostrando propiedades

Representación

Tipos de grafos

- No dirigidos
- Dirigidos: (di)grafos

Definiciones

Vecindario

Dado un vértice $v \in V$ de un grafo G, decimos que su vecindario N(v) es el conjunto de vértices de G que son adyacentes a v.

Definiciones

Vecindario

Dado un vértice $v \in V$ de un grafo G, decimos que su vecindario N(v) es el conjunto de vértices de G que son adyacentes a v.

Grado

El grado de un nodo v es el cardinal de su vecindario.

$$d(v) = |N(v)|$$

Definiciones

Vecindario

Dado un vértice $v \in V$ de un grafo G, decimos que su vecindario N(v) es el conjunto de vértices de G que son adyacentes a v.

Grado

El grado de un nodo v es el cardinal de su vecindario.

$$d(v) = |N(v)|$$

Obs: Si tenemos un (di)grafo, tenemos que hablar del grado de entrada $(d_{in}(v))$ y el grado de salida $(d_{out}(v))$

Recorrido

Dado grafo G, un recorrido es una secuencia de vértices v_1, v_2, \ldots, v_k que cumple que para i hay una arista de v_i a v_{i+1} .

Recorrido

Dado grafo G, un recorrido es una secuencia de vértices v_1, v_2, \ldots, v_k que cumple que para i hay una arista de v_i a v_{i+1} .

Camino

Es un recorrido que no repite vértices.

Recorrido

Dado grafo G, un recorrido es una secuencia de vértices v_1, v_2, \ldots, v_k que cumple que para i hay una arista de v_i a v_{i+1} .

Camino

Es un recorrido que no repite vértices.

Circuito

Es un recorrido v_1, v_2, \dots, v_k que cumple que $v_1 = v_k$

Recorrido

Dado grafo G, un recorrido es una secuencia de vértices v_1, v_2, \dots, v_k que cumple que para i hay una arista de v_i a v_{i+1} .

Camino

Es un recorrido que no repite vértices.

Circuito

Es un recorrido v_1, v_2, \dots, v_k que cumple que $v_1 = v_k$

Ciclo

Es un circuito que no repite vértices.

Ejercicio

Demostrar o dar un contraejemplo: Si todos los vértices tienen grado mayor a cero, el grafo es conexo.

Ejercicio

Demostrar o dar un contraejemplo: Si todos los vértices tienen grado mayor a cero, el grafo es conexo.

Recordemos: grafo conexo = existe camino entre todo par de vértices.

Ejercicio

Demostrar o dar un contraejemplo: Si todos los vértices tienen grado mayor a cero, el grafo es conexo.

Recordemos: grafo conexo = existe camino entre todo par de vértices. **Falso**, contraejemplo:

¿Qué hubiera pasado si intentábamos demostrarlo?

K Herramientas para demostrar

Recordemos las herramientas que ya conocíamos antes:

K Herramientas para demostrar

Recordemos las herramientas que ya conocíamos antes:

- Inducción
- Absurdo

Ahora sumamos una nueva:

K Herramientas para demostrar

Recordemos las herramientas que ya conocíamos antes:

- Inducción
- Absurdo

Ahora sumamos una nueva:

Construcción

Absurdo

T Construcción

Ejercicio

Sean P y Q dos caminos distintos de un grafo G que unen un vértice v con otro w. Demostrar en forma directa que G tiene un ciclo cuyas aristas pertenecen a P o Q. Ayuda: denotar $P = v_0, \dots, v_p$ y $Q = w_0, \dots, w_q \text{ con } v_0 = w_0 = v$ y $v_p = w_q = w$. Definir explícitamente cuáles son los subcaminos de P y Q cuya unión forman un ciclo.

O Absurdo

📆 Construcción

Ejercicio

Sean P y Q dos caminos distintos de un grafo G que unen un vértice v con otro w. Demostrar en forma directa que G tiene un ciclo cuyas aristas pertenecen a P o Q. Ayuda: denotar $P = v_0, \dots, v_p$ y $Q = w_0, \dots, w_q \text{ con } v_0 = w_0 = v$ y $v_p = w_q = w$. Definir explícitamente cuáles son los subcaminos de P y Q cuya unión forman un ciclo.

¿Qué tenemos?

T Construcción

Tenemos dos caminos distintos P y Q que unen a v y w:

$$\mathbf{P} = \mathbf{v}_0, \dots, \mathbf{v}_p$$
 y $\mathbf{Q} = \mathbf{w}_0, \dots, \mathbf{w}_q$ donde $\mathbf{v}_0 = \mathbf{w}_0 = \mathbf{v}$ y $\mathbf{v}_p = \mathbf{w}_q = \mathbf{w}$

Tenemos dos caminos distintos P y Q que unen a v y w:

$$P=v_0,\ldots,v_p$$
 y $Q=w_0,\ldots,w_q$ donde $v_0=w_0=v$ y $v_p=w_q=w$

Obs: Tenemos dos opciones

- a- P y Q son dos caminos disjuntos
- b- P y Q son caminos que comparten nodos

(Ambos casos sin tener en cuenta a los extremos v y w)

Construcción

S Absurdo

T Construcción

Ahora VEAMOS (6)

- · Estamos en el caso dorde comparten nodos, Pero Sebenos pue son caminos distintos
- · Esto nos Permite decir pue Existen dos nodos

Ty no hay no dos en el me dio que Pertenez can

A ambos caminos. Esto vale Forque se no

Existen los caminos Py Q serian youles. Abs!

entones existe al menos un vertice que Pertenece a un

Camino y no al Otro.

Construcción

T Construcción

Ejercicio

Demostrar que todo digrafo D satisface:

$$\sum_{v \in V(D)} d_{in}(v) = \sum_{v \in V(D)} d_{out}(v) = |E(D)|$$

Por inducción en cantidad de aristas (|E(D)|):

Por inducción en cantidad de aristas (|E(D)|):

■ Caso base, qvq |E(D)| = 0: Los 3 lados de la igualdad valen 0 porque no hay aristas, todos los nodos tienen grado de entrada 0 y grado de salida 0, entonces vale.

*** Construcción

Por inducción en cantidad de aristas (|E(D)|):

- Caso base, qvq |E(D)| = 0: Los 3 lados de la igualdad valen 0 porque no hay aristas, todos los nodos tienen grado de entrada 0 y grado de salida 0, entonces vale.
- Paso inductivo, qvq $P(|E(D)|) \implies P(|E(D)|+1)$:

Por inducción en cantidad de aristas (|E(D)|):

- Caso base, qvq |E(D)| = 0: Los 3 lados de la igualdad valen 0 porque no hay aristas, todos los nodos tienen grado de entrada 0 y grado de salida 0, entonces vale.
- Paso inductivo, qvq $P(|E(D)|) \implies P(|E(D)|+1)$:
 - Cuál es nuestra hipótesis inductiva? que vale P(|E(D)|):

$$\sum_{v \in V(D)} d_{in}(v) = \sum_{v \in V(D)} d_{out}(v) = |E(D)|$$

Construcción

Solution

Absurdo

🔗 Inducción

■ Llamemos (s, t) a la nueva arista y sin pérdida de generalidad nombremos s a su nodo de salida y t a su nodo de entrada. Y, por comodidad de notación, llamemos D' al nuevo grafo, es decir $D' = (V(D), E(D) \cup \{(s, t)\})$.

- Llamemos (s, t) a la nueva arista y sin pérdida de generalidad nombremos s a su nodo de salida y t a su nodo de entrada. Y, por comodidad de notación, llamemos D' al nuevo grafo, es decir $D' = (V(D), E(D) \cup \{(s, t)\})$.
- Por renombre, probar que vale P(|E(D)| + 1) es lo mismo que probar que vale:

$$\sum_{v \in V(D')} d_{in}(v) = \sum_{v \in V(D')} d_{out}(v) = |E(D')|$$

- Llamemos (s, t) a la nueva arista y sin pérdida de generalidad nombremos s a su nodo de salida y t a su nodo de entrada. Y, por comodidad de notación, llamemos D' al nuevo grafo, es decir $D' = (V(D), E(D) \cup \{(s, t)\})$.
- Por renombre, probar que vale P(|E(D)| + 1) es lo mismo que probar que vale:

$$\sum_{v \in V(D')} d_{in}(v) = \sum_{v \in V(D')} d_{out}(v) = |E(D')|$$

 $|E(D')| = |E(D) \cup \{(s,t)\}| = |E(D)| + |(s,t)| = |E(D)| + 1.$

- La propiedad parece verdadera o falsa?
 - Herramientas para demostrar
- ***Construcción

 $\sum_{v \in V(D')} d_{in}(v)$

Construcción

Inducción

Absurdo

Inducción

$$\sum_{v \in V(D')} d_{in}(v)$$

$$\blacksquare$$
 = $d_{in}(t_{D'})$ +

$$\sum_{v \in V(D') \setminus \{t_{D'}\}} d_{in}(v)$$

***Construcción

$$\sum_{v \in V(D')} d_{in}(v)$$

$$\blacksquare = d_{in}(t_{D'}) +$$

$$\sum_{v \in V(D') \setminus \{t_{D'}\}} d_{in}(v)$$

$$= 1 + d_{in}(t_D) +$$

$$\sum_{v \in V(D) \setminus \{t_D\}} d_{in}(v)$$

Construcción

🔗 Inducción

$$\sum_{v \in V(D')} d_{in}(v)$$

 $\blacksquare = d_{in}(t_{D'}) +$

$$\sum_{v \in V(D') \setminus \{t_{D'}\}} d_{in}(v)$$

 $= 1 + d_{in}(t_D) +$

$$\sum_{v \in V(D) \setminus \{t_D\}} d_{in}(v)$$

 $\blacksquare = 1 +$

La propiedad parece verdadera o falsa?

Herramientas para demostrar

Construcción

Absurdo

Inducción

$$\sum_{v \in V(D')} d_{out}(v)$$

- La propiedad parece verdadera o falsa?
 - Herramientas para demostrar
- T Construcción
- & Absurdo

$$\sum_{v \in V(D')} d_{out}(v)$$

$$\blacksquare = d_{out}(s_{D'}) +$$

$$\sum_{v \in V(D') \setminus \{s_{D'}\}} d_{out}(v)$$

La propiedad parece verdadera o falsa?

Construcción

Construcción

Inducción

Absurdo

$$\sum_{v \in V(D')} d_{out}(v)$$

$$\blacksquare = d_{out}(s_{D'}) +$$

$$\sum_{v \in V(D') \setminus \{s_{D'}\}} d_{out}(v)$$

$$= 1 + d_{out}(s_D) +$$

$$\sum_{v \in V(D) \setminus \{s_D\}} d_{out}(v)$$

Construcción

$$\sum_{v \in V(D')} d_{out}(v)$$

$$\blacksquare = d_{out}(s_{D'}) +$$

$$\sum_{v \in V(D') \setminus \{s_{D'}\}} d_{out}(v)$$

$$= 1 + d_{out}(s_D) +$$

$$\sum_{v \in V(D) \setminus \{s_D\}} d_{out}(v)$$

$$\blacksquare$$
 = 1+

La propiedad parece verdadera o falsa?

Herramientas para demostrar

Inducción

Entonces, por hipótesis inductiva:

$$\sum_{v \in V(D)} d_{in}(v) = \sum_{v \in V(D)} d_{out}(v) = |E(D)|$$

Construcción

Inducción

Absurdo

■ Entonces, por hipótesis inductiva:

$$\sum_{v \in V(D)} d_{in}(v) = \sum_{v \in V(D)} d_{out}(v) = |E(D)|$$

Sumo 1 a cada lado, se mantiene la igualdad:

$$\sum_{v \in V(D)} d_{in}(v) + 1 = \sum_{v \in V(D)} d_{out}(v) + 1 = |E(D)| + 1$$

Canaly saids

Entonces, por hipótesis inductiva:

$$\sum_{v \in V(D)} d_{in}(v) = \sum_{v \in V(D)} d_{out}(v) = |E(D)|$$

Sumo 1 a cada lado, se mantiene la igualdad:

$$\sum_{v \in V(D)} d_{in}(v) + 1 = \sum_{v \in V(D)} d_{out}(v) + 1 = |E(D)| + 1$$

Reemplazo por lo que dije antes:

$$\sum_{v \in V(D')} d_{in}(v) = \sum_{v \in V(D')} d_{out}(v) = |E(D')|$$

Finalmente, vale P(|E|+1)

33 La propiedad parece verdadera o falsa?

\$\times\$ Herramientas para demostrar

\$\tilde{\tau}\$ Construcción

\$\tilde{\tau}\$ Inducción

Ejercicio

Probar que en un grafo bipartito todo camino de longitud par comienza y termina en nodos de la misma partición.

Ejercicio

Probar que en un grafo bipartito todo camino de longitud par comienza y termina en nodos de la misma partición.

Recordemos: Grafo Bipartito = sus nodos se pueden separar en dos conjuntos disjuntos, de manera que sus aristas no pueden relacionar nodos de un mismo conjunto.

Supongo que no vale, es decir: supongo que existe un grafo bipartito G donde no todo camino de longitud par comienza y termina en nodos de la misma partición.

- Supongo que no vale, es decir: supongo que existe un grafo bipartito G donde no todo camino de longitud par comienza y termina en nodos de la misma partición.
- Entonces existe c camino en G de longitud par que comienza en una partición y termina en otra.

- Supongo que no vale, es decir: supongo que existe un grafo bipartito G donde no todo camino de longitud par comienza y termina en nodos de la misma partición.
- Entonces existe c camino en G de longitud par que comienza en una partición y termina en otra.
- Es decir, \exists c / c = $\langle (u_1, u_2), ..., (u_{k-1}, u_k) \rangle$, donde $u_1 \in$ partición $P_1 \land u_k \in$ partición $P_2 \land P_1 \neq P_2 \land |c|$ es par.

Como las aristas siempre cruzan de una partición a la otra, si recorro c, cada 2 aristas estoy en la misma partición (porque fui y volví).

🥸 Absurdo

- Como las aristas siempre cruzan de una partición a la otra, si recorro c, cada 2 aristas estoy en la misma partición (porque fui y volví).
- Ahora, como |c| es par, $\exists t / |c| = 2t$

🥸 Absurdo

- Como las aristas siempre cruzan de una partición a la otra, si recorro c, cada 2 aristas estoy en la misma partición (porque fui y volví).
- Ahora, como |c| es par, $\exists t / |c| = 2t$
- Entonces, recorrer todo el camino c equivale a esto de ir y volver t veces.

🥸 Absurdo

- Como las aristas siempre cruzan de una partición a la otra, si recorro c, cada 2 aristas estoy en la misma partición (porque fui y volví).
- Ahora, como |c| es par, $\exists t / |c| = 2t$
- Entonces, recorrer todo el camino c equivale a esto de ir y volver t veces.
- En particular, en la última arista vuelvo a P_1 , entonces u_k $\in P_1$.

- Como las aristas siempre cruzan de una partición a la otra, si recorro c, cada 2 aristas estoy en la misma partición (porque fui y volví).
- Ahora, como |c| es par, $\exists t / |c| = 2t$
- Entonces, recorrer todo el camino c equivale a esto de ir y volver t veces.
- En particular, en la última arista vuelvo a P_1 , entonces u_k $\in P_1$.
- Absurdo, porque dijimos inicialmente que u_k ∈ P₂ ∧ P₁ ≠ P₂. El absurdo provino de suponer que este camino existía.

Pregunta: Cómo representamos grafos en memoria?

- Representación
- Lista de advacencia
- Lista de adyacencia

М	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	0	1
3	0	1	0	1	0
4	1	0	1	0	1
5	0	1	0	1	0

М	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	0	1
3	0	1	0	1	0
4	1	0	1	0	1
5	0	1	0	1	0

■ Complejidad espacial: $\Theta(n^2)$

- Representación
- Lista de adyacencia

М	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	0	1
3	0	1	0	1	0
4	1	0	1	0	1
5	0	1	0	1	0

- Complejidad espacial: $\Theta(n^2)$
- Útil para grafos densos.

🦸 Eligiendo representaciones

Matriz de adyacencia

М	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	0	1
3	0	1	0	1	0
4	1	0	1	0	1
5	0	1	0	1	0

- Complejidad espacial: $\Theta(n^2)$
- Útil para grafos densos.
- Tip: Como es simétrica se puede guardar la mitad superior para ahorrar espacio.

Eligiendo representaciones

Lista de adyacencia

Lista de adyacencia

■ Complejidad espacial: $\Theta(n+m)$

- Representación
- Matriz de adyacencia
- - Eligiendo representaciones

Lista de adyacencia

- Complejidad espacial: $\Theta(n+m)$
- Útil para grafos esparsos.

Eligiendo representaciones

📜 Problema

Discutir las ventajas y desventajas en cuanto a la complejidad temporal y espacial de las siguientes implementaciones de un grafo G, de acuerdo a las siguientes operaciones:

- Determinar si dos vértices son adyacentes.
- Recorrer y/o procesar el vecindario N(v) de un vértice.
- Remover un vértice y todas sus aristas.

