Class 7: Machine Learning 1

Jaime Bruce (PID: A16568558)

2/8/2022

Clustering methods

Find groups (a.k.a) clusters in my data

K-means clustering

Make up some data to test with

```
# Make up some data with 2 clear groups
tmp <-c( rnorm(30, mean = 3), rnorm(30, mean = -3) )
x <- cbind(tmp, rev(tmp))
plot(x)</pre>
```


The kmeans() function does k-mean clustering

```
k <- kmeans(x, centers = 4, nstart = 20)
## K-means clustering with 4 clusters of sizes 13, 17, 17, 13
##
## Cluster means:
##
         tmp
## 1 2.798031 -3.691248
## 2 3.131725 -2.070248
## 3 -2.070248 3.131725
## 4 -3.691248 2.798031
##
## Clustering vector:
## [39] 4 3 4 3 3 3 3 3 3 3 4 4 3 4 3 4 4 3 3 3 4
##
## Within cluster sum of squares by cluster:
## [1] 8.250789 19.233688 19.233688 8.250789
## (between_SS / total_SS = 95.0 %)
## Available components:
##
                   "centers"
## [1] "cluster"
                                "totss"
                                             "withinss"
                                                           "tot.withinss"
## [6] "betweenss"
                   "size"
                                "iter"
                                             "ifault"
```

We can use the dollar syntax to get at the results (components of the returned list).

Q1. How many points are in each cluster?

k\$size

```
## [1] 13 17 17 13
```

Q2. What 'component' of your result object details - cluster size? - cluster assignment/membership? - cluster center?

k\$size

```
## [1] 13 17 17 13
```

k\$cluster

k\$centers

```
## tmp

## 1 2.798031 -3.691248

## 2 3.131725 -2.070248

## 3 -2.070248 3.131725

## 4 -3.691248 2.798031
```

Q3. Plot x colored by the kmeans cluster assignemnt and add cluster centers as blue points

```
plot(x, col = k$cluster)
points(k$centers, col = "blue", pch = 15, cex = 2)
```


Hierarchical Clustering

The hclust() function needs a distance matrix as input not our original data. For this we use the dist() function.

```
hc <- hclust( dist(x) )
hc

##
## Call:
## hclust(d = dist(x))
##
## Cluster method : complete</pre>
```

```
## Distance : euclidean
## Number of objects: 60

plot(hc)
abline(h = 10, col = "red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

To get our cluster membership vector we need to cut our tree and for this we use the cutree()

Principal Component Analysis

PCA of UK food data

Let's read our data about the weird stuff folks from the UK eat and drink:

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)</pre>
```

Look at the first bit of the file:

head (x)

##		England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
##	Cheese	105	103	103	66
##	Carcass_meat	245	227	242	267
##	Other_meat	685	803	750	586
##	Fish	147	160	122	93
##	Fats_and_oils	193	235	184	209
##	Sugars	156	175	147	139

How many columns in this dataset:

```
ncol(x)
```

[1] 4

We can make some plots to try to understand this data a bit more. For example barplots:

```
barplot( as.matrix(x) )
```


PCA to the rescue

The maine base R function for PCA is called prcomp()

```
pca <- prcomp( t( x ) )</pre>
summary(pca)
## Importance of components:
                                PC1
                                          PC2
                                                   PC3
                                                              PC4
##
## Standard deviation
                           324.1502 212.7478 73.87622 4.189e-14
                             0.6744
                                       0.2905 0.03503 0.000e+00
## Proportion of Variance
## Cumulative Proportion
                             0.6744
                                       0.9650 1.00000 1.000e+00
What is in this returned pca object?
```

```
attributes(pca)
```

```
## $names
## [1] "sdev" "rotation" "center" "scale" "x"
##
## $class
## [1] "prcomp"
```

```
plot( pca$x[,1:2], col = c("orange", "red", "blue", "green"), pch = 15 )
text( pca$x[,1], pca$x[,2], labels = colnames(x))
```


We can look at how the variables contribute to our new PCs by examining the pcas\$rotation component of our results.

```
barplot( pca$rotation[,1], las = 2 )
```


An RNA-Seq PCA example...

Read the data first

```
url2 <- "https://tinyurl.com/expression-CSV"</pre>
rna.data <- read.csv(url2, row.names=1)</pre>
head(rna.data)
##
                    wt3
                         wt4 wt5 ko1 ko2 ko3 ko4 ko5
## gene1
          439 458
                    408
                         429 420
                                  90
                                       88
                                          86
                                               90
## gene2
         219 200
                    204
                         210 187 427 423 434 433 426
## gene3 1006 989
                  1030 1017 973 252 237 238 226 210
                    829
                         856 760 849 856 835 885 894
## gene4
          783 792
          181 249
                    204
                         244 225 277 305 272 270 279
## gene5
## gene6
          460 502
                    491
                         491 493 612 594 577 618 638
How many genes (how many rows)?
```

[1] 100

nrow(rna.data)

How many experiments (columns)?

```
ncol(rna.data)
```

[1] 10

Let's do PCA of this dataset. First take the transpose as that is what the prcom() function wants...

```
pca <- prcomp( t(rna.data), scale=TRUE )
summary(pca)</pre>
```

```
## Importance of components:
                             PC1
                                     PC2
                                             PC3
                                                     PC4
                                                              PC5
                                                                      PC6
                                                                              PC7
##
## Standard deviation
                           9.6237 1.5198 1.05787 1.05203 0.88062 0.82545 0.80111
## Proportion of Variance 0.9262 0.0231 0.01119 0.01107 0.00775 0.00681 0.00642
                          0.9262\ 0.9493\ 0.96045\ 0.97152\ 0.97928\ 0.98609\ 0.99251
## Cumulative Proportion
##
                               PC8
                                       PC9
                                                PC10
## Standard deviation
                           0.62065 0.60342 3.348e-15
## Proportion of Variance 0.00385 0.00364 0.000e+00
## Cumulative Proportion 0.99636 1.00000 1.000e+00
```

We can make our score plot (a.k.a PCA plot) from the pca\$x.

```
plot(pca$x[,1], pca$x[,2])
```


Make a little color vector to color up our plot by wt and ko

```
colvec <- c(rep("red", 5), rep("blue", 5) )
plot(pca$x[,1], pca$x[,2], col = colvec, pch = 15)</pre>
```

