Recap: Hidden Functional dependencies:

Functional dependencies are constraints between sets of attaibutes un a relation

FD: A → B

means: the values of B are determined by A or A'Is said to functionally determine B

Some times 70's are reiddled by redundancies...

ACC.-NO, (TITLE) -> YR-PUB.

W ACC-NO -> YR-PUB

ACC-NO -> YR-PUB, (TITLE) = redemdant.

ACC-NO -> S-NAME

[ACC-NO → S-ADDR] ← redundant & Hidden
S-NAME → S-ADDR Dependancy &

Observation: FD's can be exhaustive, and therefore require a "technique" to determine closure.

The closure of FD refers to the complete set of all possible attributes that can be functionally derived from a given set of FD's.

represented as (4+) / {7+3}/7+

	E. Giner R- (ARCDEE)
	Eg: Given $R = (A, B, C, D, E, F)$ fd's: $i) A \rightarrow B$
	2) A → C
	3) CD → E
	4) CD → F
	5) B → E
	which of the following are the hidden
	functional dependencies.
	· · · · · · · · · · · · · · · · · · ·
	α $A \rightarrow E$
	b) A → 8c
	$c)AD \rightarrow E$
	$d)AD \rightarrow F$
	To compute the closure of an attribute given a set
	To compute the closure of an attribute given a set of FD's, we use the Armstrong Axioms
E	Armstrong Anions:
	Input: set of FD's and the relational schema
	Mothad 2 and lain
	Method 3 rules/axioms:
	(i) Reflexivity rule
	(ii) Fransitive rule
	(iii) fransitive rule
	Delpit: The closure of the attribute
	Olitpit: The closure of the attribute

5	The Rules:		
ع	(i) Reflexive rule: if B ⊆ A then A → B holds.		
	(i) Augmentation rule; if A > B then AC > BC holds		
	(ii) Augmentation rule: if A > B then AC > BC holds (iii) Transitivity rule: if A > B & B > C then A > c holds.		
	Objective: Apply any of these rules	to FD's until	
	Objective: Apply any of these rules to FD's until no new FD's are obtained.		
	checks: (i) soundress: Any new FD's/FD derived		
	by the assioms are/is endeed		
	members of the closure.		
	(i) Completeness: All elements of the closure		
	can be determined by repeated		
	capplication of the axioms		
2	Otto Dula		
2	E Other Rules:		
	es than Da a stable	1 - 31 0-00	
	(iv) Union Rule: if A > B & A > X then	A > BX holds	
	(V) Decomposition: if A → Bx holds then	$A \rightarrow B a$	
	(v) Decomposition: if A → B× holds then A → X also ho	A→B& lds.	
	(v) Decomposition: if A → B× holds then A → X also ho (vi) Pseudo-transitivity: if A → B.	$A \rightarrow B &$ $lds.$ $lc B \rightarrow D holds$	
	(v) Decomposition: if A → B× holds then A → X also ho	$A \rightarrow B &$ $lds.$ $lc B \rightarrow D holds$	
	(v) Decomposition: if A→B× holds then A→X also ho (vi) Pseudo-transitivity: if A→B Then CA→D als	A > B & lds. l CB > D holds o holds.	
	(v) Decomposition: if A→B× holds then A→X also ho (vi) Pseudo-transitivity: if A→B Then CA→D als	A > B & lds. l CB > D holds o holds.	
	(v) Decomposition: if A → B× holds then A → X also ho (vi) Pseudo-transitivity: if A → B.	A > B & lds. l CB > D holds o holds.	
	(v) Decomposition: if A→B× holds then A→X also ho (vi) Pseudo-transitivity: if A→B Then CA→D als	A > B & lds. l CB > D holds o holds.	
	(v) Decomposition: if $A \rightarrow B \times holds$ then $A \rightarrow X$ also ho (vi) Pseudo-transitivity: if $A \rightarrow B$. Then $CA \rightarrow D$ als Example 1: Given $R(A,B,C)$ & $fd: \{A \rightarrow B, C\}$ determine the closure of A, B	A > B & lds. l CB > D holds o holds.	
	(v) Decomposition: if A → B× holds then A → X also ho (vi) Pseudo-transitivity: if A → B Then CA → D als Example s: Given R(A,B,C) & fd: \(\xi\) A → B, determine the closure of \(\xi\) A B To find the closure of \(\xi\) A \(\xi\) at	A > B & lds. lds. l CB > D holds o holds. B > C } , & C.	

Example 2: given R(ABCDEF) 70's: A >B C > DE AC >F D->AF E-CF State Frue/ Talse: D+ = A B D F solm D' = D = DAF Ecusing D->AF3 = ABDF { rusing A>B} oo Frue. DE+ = ABCDEF Example 3: R(A,B,C,D,E,F,G) fd: {A→B, BC→DE, AEG→G} @ determine Act Example 4: R(ABCDEFGH) fd: {A → BC CD → E Determine if BCD>H E -> C is a valid D -> AEH ABH >BD DH -BC {

Example 5: Given R (ABCDE) and
Example 5: Given R(ABCDE) and fd's: {A → BC
$cD \rightarrow E$
$B \rightarrow D$
E > A3
determine if AB is a
candidate key of R
v
Example 6: State (Ime/False) Given R(ABCDEF) and fds: \(\rightarrow AB, B \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\) \(AB \rightarrow S not" the primary key.
and fds: $\{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
AB is "not" the primary key.