MA0501 – Tarea 2

Diego Alberto Vega Víquez - C38367 — José Carlos Quintero Cedeño - C26152 — Gabriel Valverde Guzmán - C38060

2025-08-24

Tabla de contenidos

Ejercicio 1	2
Ejercicio 2	2
Ejercicio 3	3
Ejercicio 4	3
Ejercicio 5	3
Ejercicio 6	4
Ejercicio 7	4
Ejercicio 8	4
Ejercicio 9	5
Ejercicio 10	5
Ejercicio 11	8
Ejercicio 12	8
Ejercicio 13	9
Ejercicio 14	9
Ejercicio 15	9
Ejercicio 16	10

i Instrucción

Suponga que p^* aproxima a p con 3 dígitos significativos.

Encuentre el intervalo en el cual p^* debe estar, si:

- a) p = 150
- b) p = 900
- c) p = 1500
- d) p = 90

Solución

Ejercicio 2

i Instrucción

Considere los siguientes valores para p y p^* :

a.
$$p = \pi$$
 $p^* = 3.1$

b.
$$p = \frac{1}{3}$$
 $p^* = 0.333$

c.
$$p = \frac{\pi}{1000}$$
 $p^* = 0.0031$

d.
$$p = \frac{100}{3}$$
 $p^* = 33.3$

¿Cuál es el error absoluto y relativo al aproximar p por p^* ?

Solución

Ejercicio 3

i Instrucción

Sea

$$\alpha_n = \frac{n+10}{n^5},$$

pruebe que

$$\alpha_n = 0 + O\left(\frac{1}{n^4}\right).$$

¿Qué se puede concluir?

Solución

Ejercicio 4

i Instrucción

Suponga que f(x) es una aproximación de x con redondeo a k dígitos.

Demuestre que:

$$\left|\frac{x-fl(x)}{x}\right| \leq 0.5 \times 10^{-k+1}.$$

Solución

Ejercicio 5

i Instrucción

Si se calcula la raíz menor en valor absoluto de la ecuación:

$$f(x) = x^2 + 0.4002 \times 10^0 x + 0.8 \times 10^{-4} = 0,$$

con la fórmula cuadrática usual, entonces se produce una pérdida de dígitos significativos. ¿Por qué?

Encuentre una fórmula alternativa para efectuar este cálculo sin que se produzca tal pérdida y determine la raíz de menor magnitud.

3

i Instrucción

Escriba una función en R que verifique, para cualquier n, la siguiente identidad:

$$\begin{vmatrix} x & a_1 & a_2 & \cdots & a_n \\ a_1 & x & a_2 & \cdots & a_n \\ a_1 & a_2 & x & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & x \end{vmatrix} = (x + a_1 + \cdots + a_n)(x - a_1)(x - a_2) \cdots (x - a_n).$$

Solución

Ejercicio 7

i Instrucción

Escriba una función en R que verifique para cualquier n la siguiente identidad:

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ b_1 & a_1 & a_1 & \cdots & a_1 \\ b_1 & b_2 & a_2 & \cdots & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & b_3 & \cdots & a_n \end{vmatrix} = (a_1 - b_1)(a_2 - b_2) \cdots (a_n - b_n).$$

Solución

Ejercicio 8

i Instrucción

Se dice que una matriz es rala si esta tiene más entradas nulas que no nulas (mayor estricto). Escriba una función en R que permita determinar si una matriz es rala.

Solución

i Instrucción

Se dice que una matriz $A \in M_{n \times m}$ tiene forma de O si todas las entradas de la fila 1, fila n, columna 1 y columna m no son nulas, y las demás entradas de la matriz son nulas.

Escriba una función en R que permita determinar si una matriz está en forma de O.

Solución

Ejercicio 10

i Instrucción

En el capítulo de análisis funcional complete las demostraciones de los teoremas $2,\,4,\,5,\,14,\,16$ y de los ejemplos 3, 5.

Solución

🕊 Teorema 2

En un espacio vectorial de dimensión finita todas las normas son equivalentes.

💡 Teorema 4

Para todo producto interno se tiene la desigualdad de Cauchy-Schwarz:

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle,$$

para todo $x, y \in X$, además se tiene igualdad si para todo x, y son linealmente dependientes.

♦ Prueba

Si x=0 la desigualdad es trivial. Si $x\neq 0$, tome

$$z = y - \frac{\langle y, x \rangle}{\|x\|^2} x,$$

luego es claro que $\langle z, x \rangle = 0$ y que:

$$0 \leq \|z\|^2 = \left\langle y - \frac{\langle y, x \rangle}{\|x\|^2} x, \ y - \frac{\langle y, x \rangle}{\|x\|^2} x \right\rangle = \langle y, y \rangle - \frac{\langle y, x \rangle \langle x, y \rangle}{\|x\|^2} = \|y\|^2 - \frac{|\langle x, y \rangle|^2}{\|x\|^2}.$$

De donde se tiene la desigualdad. Además se tiene igualdad si para todo x, y son linealmente dependientes (ejercicio).

? Teorema 5

Sea X un espacio vectorial complejo (o real). Entonces la función

$$||x|| := \langle x, x \rangle^{1/2}$$

define una norma en X, es decir un espacio pre–Hilbert es siempre un espacio normado.

Prueba

Ejercicio (use la desigualdad de Cauchy-Schwarz para probar la desigualdad triangular).

💡 Teorema 14

Sea U un subespacio vectorial de un espacio de pre–Hilbert X.

Un elemento v es la mejor aproximación a $w \in X$ con respecto a U si y solo si:

$$\langle w - v, u \rangle = 0 \quad \forall u \in U.$$

Es decir, si y solamente si $w-v\perp U$. Además, para cada $w\in X$ existe a lo más una única mejor aproximación con respecto a U.

▶ Prueba(Ejercicio)■

? Teorema 16

Sea U un subespacio vectorial completo de un espacio pre–Hilbert X.

Entonces para cada elemento $w \in X$ existe una única mejor aproximación con respecto a U.

• El operador $P:X\to U$ que le asigna a $w\in X$ su mejor aproximación es un operador lineal acotado con las siguientes propiedades:

$$P^2 = P$$
 y $||P|| = 1$.

• Este operador se conoce como la **proyección ortogonal** de X sobre U.

Prueba

(Ejercicio)

© Ejemplo 3

El espacio vectorial C[a,b] provisto con la norma

$$\|f\|_{\infty}:=\max_{x\in[a,b]}|f(x)|$$

es un espacio de Banach.

Prueba

(Ejercicio)

💡 Ejemplo 5

El espacio vectorial C[a,b] provisto con la norma L_2 :

$$||f||_1 := \left(\int_a^b |f(x)|^2 dx\right)^2$$

NO es un espacio de Banach.

Prueba

Ejercicio (sug. use la misma sucesión del ejemplo 4).

Ejercicio 11

i Instrucción

En el teorema 7, si tomamos como espacio pre–Hilbert a \mathbb{R}^n con el producto punto clásico, escriba una función en R que reciba una base de un subespacio de \mathbb{R}^n en una lista de listas y retorne la base ortogonal en una lista de listas, luego otra función que calcule la base ortonormal.

Solución

Ejercicio 12

i Instrucción

Repita el ejercicio anterior usando los espacios y el producto interno del ejemplo 7. ¿Será posible hacer una función que reciba también como parámetro el producto interno como una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R} y genere la base ortogonal y ortonormal usando este producto interno?

Solución

i Instrucción

En el Corolario 2, si tomamos como espacio pre–Hilbert a \mathbb{R}^n con el producto punto clásico, escriba una función en R que reciba una base de un subespacio U de \mathbb{R}^n en una lista de listas, un vector de \mathbb{R}^n y retorne en una lista la mejor aproximación a ese vector en U.

Solución

Ejercicio 14

i Instrucción

Repita el ejercicio anterior usando los espacios y el producto interno del ejemplo 7. ¿Será posible hacer una función que reciba también como parámetro el producto interno como una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R} y genere la mejor aproximación usando este producto interno?

Solución

Ejercicio 15

i Instrucción

Pruebe que la función $f(x) = \sqrt{x+2}$ tiene un punto fijo único en [0,7].

Solución

i Instrucción

Sea $f:X\to X$ una aplicación. Denotamos por F_f el conjunto de puntos fijos de la aplicación f.

Pruebe las siguientes propiedades:

a. Sean $f, g: X \to X$ aplicaciones tales que $f \circ g = g \circ f$ entonces se tiene que:

$$f(F_g) \subset F_g, \quad g(F_f) \subset F_f.$$

- b. Sean $f,g:X\to X$ aplicaciones, si $F_g=\{x^*\}$ y $f\circ g=g\circ f$ entonces $F_f\neq\emptyset.$
- c. Sea $X \neq \emptyset$ y $f: X \to X$ aplicación. Si existe $n \in \mathbb{R}$ tal que $F_{f^n} = \{x^*\}$ entonces $F_f = \{x^*\}.$
- d. Se
a $X\neq\emptyset$ y $f:X\to X$ aplicación. Si $F_f\neq\emptyset$ entonce
s $F_{f^n}\neq\emptyset$ para todo $n\in\mathbb{N}.$
- e. Sea $X \neq \emptyset$ y $f: X \to X$ aplicación sobreyectiva, supóngase que $f_d^{-1}: X \to X$ es tal que $f \circ f_d^{-1} = I_X \text{ y } F_{f_d^{-1}} \neq \emptyset \text{ entonces } F_f \neq \emptyset.$
- f. Sea A un conjunto con un número impar de elementos y $f:A\to A$ tal que $f^2(x)=x$ para todo $x\in A$, se tiene entonces que $F_f\neq\emptyset$.
- g. Sea $f: \mathbb{R} \to \mathbb{R}$ con f continua y acotada entonces $F_f \neq \emptyset$.
- h. Sea $f: \mathbb{R} \to \mathbb{R}$ con f continua y periódica entonces $F_f \neq \emptyset$.

Solución

a. Sean $f, g: X \to X$ aplicaciones tales que $f \circ g = g \circ f$ entonces se tiene que:

$$f(F_g)\subset F_g,\quad g(F_f)\subset F_f.$$

♦ Prueba

(Ejercicio)

b. Sean $f,g:X\to X$ aplicaciones, si $F_g=\{x^*\}$ y $f\circ g=g\circ f$ entonces $F_f\neq\emptyset$.

Prueba

(Ejercicio)

c. Sea $X \neq \emptyset$ y $f: X \rightarrow X$ aplicación. Si existe $n \in \mathbb{R}$ tal que $F_{f^n} = \{x^*\}$ entonces $F_f = \{x^*\}$.

♦ Prueba
(Ejercicio)
d. Se a $X\neq\emptyset$ y $f:X\to X$ aplicación. Si $F_f\neq\emptyset$ entonce s $F_{f^n}\neq\emptyset$ para todo $n\in\mathbb{N}.$
• Prueba
(Ejercicio) ■
e. Sea $X \neq \emptyset$ y $f: X \to X$ aplicación sobreyectiva, supóngase que $f_d^{-1}: X \to X$ es tal qu $f \circ f_d^{-1} = I_X \text{ y } F_{f_d^{-1}} \neq \emptyset \text{ entonces } F_f \neq \emptyset.$
♦ Prueba
(Ejercicio) ■
f. Sea A un conjunto con un número impar de elementos y $f:A\to A$ tal que $f^2(x)=x$ par todo $x\in A$, se tiene entonces que $F_f\neq\emptyset$.
• Prueba
(Ejercicio) ■
g. Sea $f:\mathbb{R}\to\mathbb{R}$ con f continua y acotada entonces $F_f\neq\emptyset$.
♦ Prueba
(Ejercicio) ■
h. Sea $f:\mathbb{R} \to \mathbb{R}$ con f continua y periódica entonces $F_f \neq \emptyset$.
> Prueba
(Ejercicio) ■