- 22. Le symétrique de 2 4i pour la loi * est :
- •1. $-\frac{1}{2}$ + i 2. 2 + 4i 3. $-\frac{1}{2}$ $\frac{i}{4}$ 4. $-\frac{1}{10}$ 5. $-\frac{1}{2}$ $\frac{i}{3}$
- 23. Pour z = 2 + i, calculer $z^{(4)} = z * z * z * z$
- Remarque: vu l'associativité de *, on a $z^{(4)} = (z * z) * (z * z)$ 1. 17 2. 16 + 32i 3. -7 + 24i 4. 8 + 4i 5. 16 - i (B. -85)
- 24. Soit $A = \{1, i, -1, -i\}$ munit de la multiplication «•» dans C.
 - La proposition fausse est : 1. i est - i sont inverses l'un de l'autre pour . dans A 2. (A, •) est un sous – groupe pour • dans A
 - 3. -1 est son propre inverse pour · dans A
 - 4. I et I sont inverses l'un de l'autre pour · dans A 5. I est l'élément neutre pour . dans A
- On note E l'ensemble des nombres réels différents de 1. On définit dans \mathbf{R} la loi Δ par $\forall (a, b) \in \mathbf{R} \times \mathbf{R}$, $a \Delta b = ab - a - b + 2$.
- Les questions 25 à 27 se rapportent à cet énoncé. 25. On peut montrer que la loi Δ est une loi de composition interne dans E si a, b et c sont des nombres réels, la proposition fausse est : 1. $(a \triangle b = a \triangle c) \Rightarrow (a = 1 \text{ ou } b = c)$ 4. $(a \neq 1 \text{ et } b \neq 1) \Rightarrow (a \triangle b \neq 1)$
- 2. $(a \triangle b = 1) \Rightarrow (a = 1 \text{ ou } b = 1)$ 5. $(a \triangle b \neq 1) \Rightarrow (a \neq 1 \text{ et } b \neq 1)$ 3. $(a = 1 \text{ ou } b = 1) \Rightarrow (a \triangle b \neq b \neq 1)$ 26. On peut montrer que (\mathbf{R} , Δ) n'est pas un groupe mais (\mathbf{E} , Δ) est un groupe abélien. La proposition fausse est :
 - 1. l'élément neutre de (E, Δ) est 2 2. le nombre 0 est un élément absorbant dans (\mathbf{R}, Δ) 3. la loi Δ est associative dans \mathbf{R} et dans \mathbf{E}
 - Ia loi Δ est commutative dans E et dans E 5. tout élément de E a un symétrique pour la loi Δ
- 27. L'élément symétrique de 3 pour la loi Δ est : 1. $\frac{4}{3}$ 2. $\frac{6}{5}$ 3. $\frac{5}{6}$ 4. 5. $\frac{3}{4}$ (M. - 87)