MEDIDA Y ASOCIACIÓN DE RESISTENCIAS LEY DE OHM (CIRCUITO R)

PRÁCTICA 1

CURSO 2017/2018

	Nombres y Apellidos					
1						
2						
3						
4						
5						

MEDIDA DE RESISTENCIAS

(1) Medir el valor de cada resistencia, R, usando los polímetros como ohmímetros.

Pasos: Tras encender el polímetro si tiene un botón para ello...

- Insertar sucesivamente cada resistencia entre los terminales Ω y COM.
- Elegir con el mando giratorio (selector de funciones) la 1^a escala de resistencia, de Ω , que no dé un "1" a la izqda., la 1^a que mida R (es la que da más cifras).
- Si la escala tiene una letra, p.ej. "k", se tienen $k\Omega$; si no, son Ω (ohmios).
- Anotar la unidad entre los paréntesis, y los valores en las celdas vacías.
- Apagar el polímetro al final. <u>Nota</u>: El caracter decimal (, o .) se pone abajo.

RESIST	ENCIAS					
R онміметко						
()					

R_1	R_2	<i>R</i> ₃

(2) A continuación, determinar el valor que tiene cada resistencia, R, según el fabricante, es decir, concretar el intervalo de valores $[R_{minima}, R_{maxima}]$ en que se encuentra su valor usando el código de colores que aparece más abajo.

RESISTENCIAS	R_1		R_2	R_3
1ª CIFRA				
2ª CIFRA				
10 N				
$R_{\text{MEDIA}} = \{ \text{Número forms} \}$	ado por 1ª (CIFRA y	2ª CIFRA	$\times 10^{N} (\Omega)$
R _{MEDIA} ()				
TOLERANCIA ()				
$R_{\text{MÍNIMA}} = R_{\text{MEDIA}} - \text{TOL}(\Omega)$	\Box		`	$1 - \frac{\text{TOL}(\%)}{100}$ $0,05) = \times 0,95$
$R_{ ext{MÁXIMA}} = R_{ ext{MEDIA}} + TOL(\Omega)$	\Box	R _{MÁXIM}	$_{\rm MA} = R_{\rm MEDIA}$	$\Lambda \left(1 + \frac{\text{TOL}(\%)}{100}\right)$
		Ej.: +	-5 %:×(1+	$0,05) = \times 1,05$
$TOL(\Omega) = R_{MEDIA}$	TOL(%) 100	Ej.: 5 %	% ⇒× 5/100	$0 = \times 0.05$
		<u> </u>		T
RMÍNIMA ()				
R _{MÁXIMA} ()				

① Debe haber coherencia con las medidas realizadas en el Apartado 1 (ni aquí, ni en el resto de la práctica consideraremos la incertidumbre de dichas medidas, que cuenta, como mínimo, con la contribución asociada a la resolución del polímetro).

ASOC. EN SERIE Y PARALELO DE RESISTENCIAS

- (3) Insertar en el tablero las tres resistencias de manera que queden conectadas en serie: un terminal de la 1ª conectado a uno de la 2ª, y el otro de la 2ª a uno de la 3ª.
- Quedan conectados si están conectados a una misma cruz del tablero.
- La resistencia, R, entre los puntos de la cruz la consideramos nula.

- (4) Medir y calcular la resistencia equivalente: la resistencia entre A y B.
- Usar un polímetro como ohmímetro y dos cables para conectarlo a A y B.
- La resistencia de los cables, R, la consideramos nula.
- $R_{Eq} = R_1 + R_2 + R_3$. Emplear los valores obtenidos en el apartado (1).

REq(medida) (REq(calculada) (
---------------	--	------------------	--

- (5) Insertar en el tablero las tres resistencias de manera que queden conectadas en paralelo: con sus terminales correspondientes conectados entre sí.
- Conectar los terminales utilizando los conectores o puentes. Su resistencia, R, la consideramos nula.
- •Esto supone para puentes, cables y cruces que están a potencial constante: $\Delta V=RI=0 \Rightarrow \Delta V=0 \Rightarrow V=cte$. \Rightarrow Todos los puntos de cada cable en forma de "E" que conecta R_1 , R_2 y R_3 están al mismo potencial, el de A o el de B. Son eléctricamente el mismo punto.

- (6) Medir y calcular la resistencia equivalente: la resistencia entre A y B.
- Actuar igual que en el apartado 4.
- $\bullet 1/R_{eq} = 1/R_1 + 1/R_2 + 1/R_3.$

3

COMPROBACIÓN EXPERIMENTAL DE LA LEY DE OHM

(7) <u>PUESTA A PUNTO DE LA FUENTE DE ALIMENTACIÓN</u>

Nota: Transforma tensión alterna ("~", la del enchufe) en continua ("-").

- 1º) Conectar la fuente a la red, si no lo está.
- 2°) Cortocircuitar la fuente con un cable, es decir, conectar con UN CABLE los terminales + y de la fuente.
- 3°) Encender la fuente.
- 4^{o}) Situar el mando de tensión al máximo y el de intensidad tal que I=0,2 A. Nota: Como está cortocircuitada indica una diferencia de potencial nula entre sus terminales (Cable $R=0 \Rightarrow \Delta V=R$ $I=0 \times n$ úmero finito =0).
- 5°) Retirar el cable (circuito abierto $\Rightarrow \Delta V = R I = \infty \times 0 = número finito)$.
- 6°) Situar el mando de tensión a cero.
- 7°) Apagar la fuente.
- Esto garantiza que no circularán más de 0,2 A entre sus terminales. Así queda protegido el fusible de un polímetro si como amperímetro se conecta en paralelo.
- La fuente está preparada para ser cortocircuitada, un enchufe no: Su △V la garantiza la compañía, y como la R del cable será despreciable, la I es enorme y el calentamiento enorme. Además, al acercar el cable se produce ruptura dieléctrica en el enchufe y se quema. La subida de I hace saltar las protecciones del sistema.
- (8) Montar un circuito como el de la figura utilizando la tercera resistencia, R_3 .
- No encender nada hasta que el/la profesor/a revise el montaje.
- El amperímetro debe estar en serie para no fundirse si tiene una escala de \underline{A} .
- El voltímetro no debe tener una escala de Ω , sino de \underline{V} , para no dañar el aparato cuando esté encendida la fuente.

- (9) Completar la siguiente tabla. Para ello:
- Aplicar con la fuente de alimentación las tensiones V_F de forma aproximada.
- Medir la corriente I que circula por R_3 con el amperímetro y la tensión entre sus terminales V con el voltímetro (dan más cifras significativas que la fuente).
- Utilizar las escalas adecuadas del amperímetro y del voltímetro en cada medida: la primera que no se sature, la 1^a que no dé un "1" a la izquierda en pantalla.

Punto Experimental	$V_F(V)$	I()	V()
1	0	0	0
2	5		
3	10		
4	15		
5	20		
6	25		
7	30		

- (10) Situar los mandos de la fuente a cero, apagar todo y desmontar el circuito.
- (11) Introducir los puntos (I,V) en un PC del laboratorio, incluido el (0,0).

• ¡Ojo!, «I» se corresponde con «X»
$$V = RI$$

y «V» con «Y». $\downarrow \qquad \downarrow$
 $Y = bX + a$

- Al introducir y anotar tener presente que, por ejemplo: $6.9E-03 = 6.9 \cdot 10^{-3}$.
- Descartar «puntos anómalos», si los hay, junto al/a la profesor/a.

DESGRAPAR EL BOLETÍN Y REPARTIRSE EL TRABAJO: UNOS AL APARTADO 12 Y OTROS A LA GRÁFICA (PÁG. 9) (12) Para ganar tiempo, fotografiar los resultados de la regresión lineal que da el PC con un móvil y luego anotarlos desde la foto en la siguiente tabla.

r =	$r^2 =$
$\overline{b} =$	$u_b =$
$\overline{a} =$	$u_a =$

- (13) Expresar los resultados del ajuste lineal correctamente. Para ello:
- Truncar (cortar) r, el coeficiente de regresión, y r², reteniendo hasta la primera cifra distinta de nueve tras la coma decimal, incluyendo esa cifra. Pero si hay tres nueves, retener 0,999. <u>Nota</u>: Se corta, no se redondean.

$$r =$$
 $r^2 =$

- Redondear, a continuación, la incertidumbre típica de «b», u_b , y luego con ella, su respectivo valor medio, \overline{b} . Y después, hacer lo mismo con «a».
- ① <u>Redondeo incertidumbre</u> (a 2 cifras significativas: la 1^a no nula y la siguiente): Cortar en la cifra que esté tras la 1^a no nula. Si el pico (lo que sobra) > 5, sumar 1 a esa cifra; si pico < 5, no sumarle nada; si pico = 5, sumarle 1 si es impar (nada, si es par). Si tras sumar se tiene 1|0|0 (tres cifras), tomar 1|0 (dos cifras).
- ① <u>Redondeo valor medio</u>: Cortar en el orden de magnitud de la última cifra de la incertidumbre redondeada, y aplicar al pico del valor medio (a lo que sobra) el criterio del «5» (el criterio que se ha aplicado al pico de la incertidumbre).

- (14) Calcular las abcisas, I_1 e I_2 (las «x»), de los puntos «1» y «2» de la recta [promedio] de mejor ajuste ($Y = \overline{b} X + \overline{a}$). Se dan sus ordenadas, V_1 y V_2 (las «y»).
- Usar los valores medios de «a» y «b» que corresponden a esa recta (Apdo. 13).
- Redondear las abcisas a un número de cifras «adecuado» atendiendo a la resolución de la gráfica: al orden de magnitud de la centésima parte del eje.

PUNTO 1	<i>x</i> ₁ :	$I_1 =$	у1:	$V_1 = 2.5 V$
PUNTO 2	x_2 :	$I_2 =$	y 2:	$V_2 = 27.5 V$

PREGUNTAS

① Atendiendo a los resultados de la regresión (Apdo. 13), a la gráfica vista en el PC, y sin calcular nada, ¿parece verificarse la Ley de Ohm, es decir, el material parece ser óhmico en el rango de tensiones aplicado?¿Por qué? (Dar 2 motivos)

② ¿Cuál es el valor de la resistencia, según los resultados finales de la regresión (Apdo. 13) y sin calcular nada?

$$R = \overline{R} \pm u_R = \overline{R} (u_R) = \pm$$

(15) Representar gráficamente V frente a I, es decir, los puntos experimentales (I,V)

- Reflejar los cálculos y redondear los resultados a un número de cifras significativas adecuado: a dos (como en el caso de la incertidumbre).
- Tomar como R_{verdadera} la obtenida con el ohmímetro (Apdo. 1).
- Tomar para R_{media} y u_R los valores indicados en la pregunta 2.
- Tomar de incertidumbre la expandida al 95 % (2 veces la típica): U = 2 u.

$$\epsilon_{relativo} = \epsilon_{absoluto} / |R_{verdadera}| = (R_{media} - R_{verdadera}) / |R_{verdadera}| =$$

 $\varepsilon_{\rm relativo} =$

$$U_{\text{relativa}(95\%)} = U_{\text{absoluta}(95\%)} / |R_{\text{media}}| = 2 u_R / |R_{\text{media}}| =$$

 $U_{\text{relativa}} =$

Tras marcar en la siguiene tabla con « \times » lo que corresponda, responder a: ¿Se ha obtenido un valor adecuado para R? \square $Si \mid \square$ Es aceptable $\mid \square$ No

Valor	1ª Condición (error pequeño)	2ª Condición (intervalo pequeño)	3ª Condición (valor verdadero en inte	
Bueno	lεl ≤ 1%	U ≤ 1%	$U > \varepsilon $	
Aceptable	1 % < ε < 10 %	1 % < U < 10 %	$U = \epsilon $	
Malo	ε ≥ 10 %	U ≥ 10 %	$U < \varepsilon $	

- 4 Evaluar cuánto representa «a» respecto a la ordenada «Y», en %.
- Es decir, cuánto representa $|a_{media}|$ y U_a (=2 u_a) respecto a $|Y_{media}|$ (≈ 15), en %.
- Reflejar las operaciones y redondear los resultados obtenidos a 2 cifras.

$$|a_{media}| / |Y_{media}| = |a_{media}| / 15 =$$

$$U_a$$
 / $|Y_{media}| = 2u_a$ / $|Y_{media}| =$

<u>Nota</u>: Teóricamente «a» debería ser un valor concreto y «cero». Como tenemos un rango o intervalo de valores, lo deseable, a nivel experimental, es que incluya el «cero» y que cualquier valor en él sea despreciable frente a $|Y_{media}|$. Esto último se cumple si $|a_{media}|$ y $U_a << |Y_{media}|$.

¿Se ha obtenido una ordenada en el origen adecuada? \square Sí | \square Aceptable | \square No

$Ordenada egin{array}{c} I^a Condici\'on \ {}_{(valor\ medio \ despreciable)} \end{array}$		2ª Condición (incertidumbre desprecia	ıble)	3ª Condición (valor verdadero en intervalo,	
Buena	≤ 1%		≤ 1%		$U_a > a_{media} $
Aceptable	Entre 1 y 10 %		Entre 1 y 10 %		$U_a = a_{media} $
Mala	≥ 10 %		≥ 10 %		$U_a < a_{media} $