PROJET de Programmation CHP

Calcul Parallèle

Partie I : Equilibre de charge

Discutez de l'importance de l'équilibre de charge lors de l'élaboration d'un code de calcul parallèle permettant la résolution d'équations aux dérivées partielles.

- Expliquez quels sont les enjeux, les difficultés et les moyens disponibles lorsque l'on est confronté aux deux principaux types de maillages rencontrés en calcul scientifique : les maillages structurés et non-structurés.
- Illustrez votre analyse par des résultats obtenus en cours et/ou en projets CHP (exemples de partitions SCOTCH, METIS). Détaillez la procédure permettant de tracer la courbe de Speed-up et/ou d'efficacité puis analysez les résultats obtenus avec le code éléments finis en prenant soin de préciser l'environnement de calcul utilisé et le type de communication réalisée pour le parallélisme.

Partie II : mise en oeuvre d'une méthode de décomposition de domaine de type Schwarz sur maillage Cartésien régulier

1 - Résolution de l'équation de conduction instationnaire

On se place dans le domaine $[0, L_x] \times [0, L_y]$ de \mathbb{R}^2 dans lequel on résoud l'équation de conduction instationnaire suivante :

(1)
$$\begin{cases} \partial_t u(x,y,t) - D\Delta u(x,y,t) = f(x,y,t) \\ u|_{\Gamma_0} = g(x,y,t) \\ u|_{\Gamma_1} = h(x,y,t) \end{cases} \Gamma_1$$

2 - Conditions de bord et second membre pour les cas de validation

On utilisera les cas suivants pour valider le travail avec $L_x = L_y = 1$ et D = 1:

a - Les solutions stationnaires résultant des conditions suivantes

$$f = 2 * (x - x^2 + y - y^2)$$
 avec $g = 0$ et $h = 0$

Puis

$$f = sin(x) + cos(y)$$
 avec $g = sin(x) + cos(y)$ et $h = sin(x) + cos(y)$

b - La solution instationnaire périodique résultant des conditions suivantes

$$f = e^{-\left(x - \frac{L_x}{2}\right)^2} e^{-\left(y - \frac{L_y}{2}\right)^2} \cos\left(\frac{\pi}{2}t\right) \quad \text{avec} \quad g = 0 \quad \text{et} \quad h = 1$$

- 3 Implémentation informatique Codez la méthode de Décomposition de Domaine basée sur l'algorithme de Schwarz additif
 - 1. On ne stockera pas la matrice au complet, le système linéaire sera résolu par un gradient conjugué.
 - 2. Faites une description détaillée de la décomposition de votre domaine de calcul en sousdomaines en insistant sur votre gestion du recouvrement.
 - 3. Détaillez les communications nécessaires à la résolution du problème.
 - 4. Analysez le speed-up ou l'efficacité de votre code en fonction :
 - du recouvrement;
 - et des paramètres numériques de votre choix.
 - 5. Améliorez les performances de votre code parallèle en modifiant les conditions de transmission entre les sous-domaines (conditions mixtes Dirichlet-Neumann $\alpha \frac{\partial u}{\partial n} + \beta u$ avec n la normale sortante au domaine).
 - les conditions de bords peuvent modifier les propriétés de la matrice. Si elle n'est plus symétrique, le solveur doit être modifié (BiCGStab ou bien Jacobi ...).

Il faudra fournir les documents suivants

- 1. Un rapport contenant votre analyse de la partie I et la description des travaux réalisés et résultats obtenus dans la partie II.
- 2. Le code parallèle commenté avec les commandes de compilation.