Practica 3. Regresión lineal con BGD

DRA. CONSUELO VARINIA GARCÍA MENDOZA

Especificaciones del programa 1

I. Sin utilizar las bibliotecas de scikit-learn para regresión lineal elabora un programa en python que implemente

BGD monovariable sin sesgo

- II. Entrada
 - Archivo casas.csv, número de iteraciones, peso inicial y α
- III. Divide casas.csv en 70% para entrenamiento y 30% para pruebas,
 con los parámetros shuffle=True y random_state =0
- Salida (para mayor referencia ver el ejemplo de la Fig. 1)
 - peso en cada iteración calculado con el conjunto de entrenamiento
 - y_test
 - y_pred en cada iteración
 - Error de estimación $\sum_{l=1}^{n} \left| y_pred_i y_test_i \right|$
 - Gráfica 1
 - distribución de los datos de prueba
 - *y_pred* en cada iteración
 - Gráfica 2
 - Error de estimación de cada iteración

1	А	В
1	Terreno (m2)	Precio (MDP)
2	440	1.01
3	616	1.42
4	381	0.88
5	963	2.21
6	431	0.99
7	255	0.59
8	594	1.37
9	625	1.44
10	708	1.63
11	468	1.08
40		

Figura 1. Ejemplo de salida

Especificaciones del programa 2

- I. Sin utilizar las bibliotecas de scikit-learn para regresión lineal elabora un programa en python que implemente BGD multivariable
- II. Entrada
 - Archivo Dataset_multivariable.csv, número de iteraciones, pesos inicial y α
- III. Divide Dataset_multivariable.csv en 70% para entrenamiento y 30% para pruebas, con los parámetros shuffle=True y random state =0
- IV. Salida (para mayor referencia ver el ejemplo de la Fig. 2)
 - pesos en cada iteración calculados con el conjunto de entrenamiento
 - y_test
 - y_pred en cada iteración
 - Error de estimación $\sum_{l=1}^{n} \left| y_pred_i y_test_i \right|$
 - Gráfica 1
 - Error de estimación $\sum_{i=1}^{n} |y_pred_i y_test_i|$ de cada iteración

4	Α	В	C	D	E	F
1	x1	x2	х3	x4	x5	у
2	1	0.4	-12	12	10.2	11.6
3	1	0.6	-15	16	11.9	14.5
4	1	0.8	-18	20	13.6	17.4
5	1	1	-21	24	15.3	20.3
6	1	1.2	-24	28	17	23.2
7	1	1.4	-27	32	18.7	26.1
8	1	1.6	-30	36	20.4	29
9	1	1.8	-33	40	22.1	31.9
10	1	2	-36	44	23.8	34.8
11	1	2.2	-39	48	25.5	37.7
						4

Figura 2. Ejemplo de salida