连续映射

定义 1 (连续映射). 设拓扑空间 X 和 Y,映射 $f: X \to Y$,若对 Y 中的任一开集 U, $f^{-1}(U)$ 为 X 中的开集,则称 f 为从 X 到 Y 的**连续映射**.

定义 2 (同胚映射). 设映射 $f: X \to Y$ 满足以下条件:

- 1. *f* 是双射;
- 2. *f* 是连续映射;
- 3. f^{-1} 是连续映射.

则称 f 为从 X 到 Y 的**同胚映射**,称拓扑空间 X 和 Y **同胚**.

定理 1. 两个连续映射的复合仍为连续映射.

证明. 设 $f: X \to Y$, $g: Y \to Z$ 为两个连续映射,则对 Z 中任意开集 U, $g^{-1}(U)$ 为 Y 中的开集, $f^{-1}(g^{-1}(U))$ 为 X 中的开集. 于是 $g \circ f$ 为连续映射.

定理 2. 设连续映射 $f: X \to Y$, $A \subset X$, 并有 A 上的子空间拓扑,则 f 在 A 上的限制映射 $f|_A: A \to Y$ 也是连续映射.

证明. 设开集 $O \subset Y$,注意到 $(f|_A)^{-1}(O) = f^{-1}(O) \cap A$ 为开集.

定义 3 (恒等映射). 设映射 $id: X \to X$, id(x) = x, $x \in X$, 称 id 为 X 上的恒等映射.

定义 4 (嵌入映射). 设 $A \subset X$, 定义映射 $i: A \to X$, i(x) = x, $x \in A$, 称为 X 的嵌入映射.

定理 3. 下面五个命题等价.

- 1. $f: X \to Y$ 是一个连续映射;
- 2. 若 β 是 Y 的一个拓扑基,则 β 的任意元素的原像都是开的;
- 3. 对任意 $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$;
- 4. 对任意 $B \subset Y$, $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$;
- 5. Y 中任意闭集的原像都是闭的.

证明. $1 \rightarrow 2: f$ 为连续映射,则开集的原像都是开集,而 β 中的元素为开集,则原像仍为开集.

 $2 \to 3$: 设 $A \subset X$, 显然 $f(A) \subset \overline{f(A)}$, 考虑 $x \in \overline{A} \setminus A$, $f(x) \notin f(A)$, 即证 f(x) 为 f(A) 的极限点. 考虑 Y 的拓扑基 β , 对 $B \in \beta$, 存在邻域 N, 使得 $f(x) \in B \subset N$, 下证 $N \setminus \{f(x)\} \cap f(A) \neq \emptyset$.

由于 B 的原像仍为开的,故 $x \in f^{-1}(B)$ 为一开集,又 x 为 A 的极限点,故 $f^{-1}(B)\setminus\{x\}\cap A \neq \emptyset$,于是 $B\setminus\{f(x)\}\cap f(A) \neq \emptyset$,而 $B\subset N$,故有 $N\setminus\{x\}\cap f(A) \neq \emptyset$.

$$3 \rightarrow 4: f^{-1}(B) \in X$$
,则 $f\left(\overline{f^{-1}(B)}\right) \subset \overline{f\left(f^{-1}(B)\right)} \subset \overline{B}$,则

$$\overline{f^{-1}(B)} = f^{-1} \circ f\left(\overline{f^{-1}(B)}\right) \subset f^{-1}(\overline{B}).$$

 $4 \rightarrow 5$: 对任意闭集 $B \subset Y$, 有 $B = \overline{B}$, 则由命题 4, 有

$$f^{-1}(B) = f^{-1}(\overline{B}) \supset \overline{f^{-1}(B)},$$

而显然 $f^{-1}(B) \subset \overline{f^{-1}(B)}$, 于是 $f^{-1}(B) = \overline{f^{-1}(B)}$, 故 $f^{-1}(B)$ 为闭集.

 $5\to 1$: 对任意闭集 $B\subset Y$,有 $f^{-1}(B)$ 为闭集,则 $Y\backslash B$ 和 $X\backslash f^{-1}(B)$ 均为开集,而 $f^{-1}(Y\backslash B)=X\backslash f^{-1}(B)$ 为开集,故 f 为连续映射.