GAUSS SEIDEL

- an iterative method and an improved form of <u>Jacobi method</u>
- also known as the successive displacement method.
- named after Carl Friedrich Gauss (Apr. 1777–Feb. 1855) and Philipp Ludwig von Seidel (Oct. 1821–Aug. 1896).
- the starting values are $u_2 = u_3 = u_4 = 0$
- The difference between the Gauss-Seidel and Jacobi methods is that the Jacobi method uses the values obtained from the previous step while the Gauss-Seidel method always applies the latest updated values during the iterative procedures

Given:

$$5x_1-x_2+2x_3=12$$

$$3x_1+8x_2-2x_3=-25$$

$$x_1+x_2+4x_3=6$$

Solution:

Find the equations for x_1 , x_2 , x_3

$$x_1=(12+x_2-2x_3)/5$$

$$x_{2=}(-25-3x_1+2x_3)/8$$

$$x_3 = (6 - x_1 - x_2)/4$$

	1	2	3	4	5
X ₁	0	=(12+0-2(0))/5 =12/5 =2.4	=(12-4.025-2(1.90625))/5 =0.8325	=(12-2.961-2(2.03))/5 =0.9958 (1)	
X ₂	0	= (-25-3(2.4)+2(0))/8 =-4.025	= (-25-3(0.8325)+2(1.90625))/8 =-2.961	= (-25 -3(0.9958)+2(2.03))/8 =-2.991 (-3)	
X ₃	0	=(6- 2.4-(-4.025))/4 =1.90625	=(6-0.8325-(-2.961))/4 =2.03	=(6-0.9958 -(-2.991))/4 =1.9988 (2)	

Check: **x**₁=1 **x**₂=-3 **x**₃=2

$$5x_1-x_2+2x_3=12$$

$$3x_1+8x_2-2x_3=-25$$

$$x_1+x_2+4x_3=6$$

6=6

https://www.sciencedirect.com/topics/engineering/gauss-seidel-method