Teoremes vectorials

Exemples 3D

 $\bar{\mathsf{F}}_{\mathsf{frec}\,\mathsf{visc}}\,\mathsf{de}\,\mathsf{T}\to\mathsf{P}$

Eq. mov. per a θ ?

Valors de v_0 per als quals θ_{eq} = 0 és **ESTABLE**

$$\bar{\mathbf{v}}_{\mathsf{T}}(\mathsf{P}) = \bar{\mathbf{v}}_{\mathsf{REL}}(\mathsf{P}) + \bar{\mathbf{v}}_{\mathsf{ar}}(\mathsf{P}) \ = \left\{ \begin{aligned} &\mathbf{v}_0 \cos \theta \\ &-\mathbf{v}_0 \sin \theta + 3b\dot{\theta} \\ &0 \end{aligned} \right\}_{\mathsf{B}=(1,2,3)}$$

$$\bar{\mathbf{F}}_{\mathsf{fv}} = -c \, \bar{\mathbf{v}}_{\mathsf{T}}(\mathsf{P}) = \begin{cases} -c \mathbf{v}_0 \cos \theta \\ c \mathbf{v}_0 \sin \theta - 3c b \dot{\theta} \\ 0 \end{cases}_{\mathsf{B}} \qquad \mathbf{F}_{\mathsf{fv}} = \mathbf{F}_$$

= Diagrama general d'interaccions

Sist = Placa $6 \text{ ie} + \ddot{\theta} = 7 \text{ incòg}$

Sist = Forq $10 \text{ ie} + \ddot{\theta} = 11 \text{ incòg}$

Forces sobre "Placa + Forq"

Forces sobre "Placa + Forq"

Anàlisi de l'estabilitat de $\theta_{eq}=0$

3 passos

com al pèndol simple

$$I_{33}\ddot{\theta} + 9cb^2\dot{\theta} + k\theta - 3bcv_0\sin\theta = 0$$

$$I_{33}\ddot{\varepsilon} + 9cb^2\dot{\varepsilon} + k\varepsilon - 3bcv_0\sin\varepsilon = 0$$

La linealitzem

$$\sin \varepsilon pprox \varepsilon$$

$$I_{33}\ddot{\varepsilon} + 9cb^{2}\dot{\varepsilon} + (k - 3bcv_{0})\varepsilon = 0$$
A
B

$$\ddot{\varepsilon} = -\frac{B}{I_{33}}\varepsilon - \frac{A}{I_{33}}\dot{\varepsilon}$$

$$K > 0 \iff B > 0 \iff k > 3bcv_0$$

 $I_{33}(A)$ de taules + doble Steiner per passar a O:

(a)
$$I_{33}(O) = I_{33}(G) + I_{33}^{\oplus}(O)$$

(b)
$$I_{33}(A) = I_{33}(G) + I_{33}^{\oplus}(A)$$

(a - b)
$$I_{33}(O) = I_{33}(A) + I_{33}^{\oplus}(O) - I_{33}^{\oplus}(A)$$

$$I_{33}(O) = \frac{1}{6} m(3b^2) + m(2b)^2 - mb^2 = \frac{9}{2} mb^2$$

DEURES

Valor de la normal N en funció de θ i $\dot{\theta}$?

$$\Omega = ct$$

N que rep el sòlid a P?

 Ω_{Critica} perd contacte a P?

En general

En un motor:

O bé sabrem Γ , i $\ddot{\psi}$ serà incògnita

O bé sabrem $\ddot{\psi}$, i Γ serà incògnita

En aquest exercici

$$\dot{\psi} = \Omega = ct \implies \ddot{\psi} = 0$$
 (coneguda)

 Γ serà incògnita

$$\left\{\bar{\mathsf{F}}_{\mathsf{Forq}\to\mathsf{Peca}}\right\}_{\mathsf{B}} = \left\{\begin{matrix}\mathsf{F}_1\\\mathsf{F}_2\\\mathsf{F}_3\end{matrix}\right\}$$

$$\left\{ \bar{\mathsf{M}}_{\mathsf{Forq} \to \mathsf{Peça}} \left(\mathsf{O} \right) \right\}_{\mathsf{B}} = \left\{ \begin{matrix} \mathsf{M}_1 \\ \mathsf{M}_2 \\ 0 \end{matrix} \right\}$$

 μ N \otimes

DEURES

Determineu

- Parell motor Γ per mantenir $\Omega = ct$
- Eq. mov. per al cas en que el contacte a P ja s'ha perdut ($\Omega > \Omega_{\rm critica}$)