(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-182872 (P2001-182872A)

(43)公開日 平成13年7月6日(2001.7.6)

(51) Int.Cl.7

做別記号

FΙ

テーマコート*(参考)

F16L 11/16

11/11

F16L 11/16 11/11

3H111

審査請求 未請求 請求項の数6 書面 (全4頁)

(21)出願番号

特展平11-377101

(22)出旗日

平成11年12月22日(1999.12.22)

(71)出願人 000005278

株式会社プリヂストン

東京都中央区京橋1丁目10番1号

(72) 発明者 榎本 行延

横浜市戸塚区柏尾町150-7

(72)発明者 高野 伸和

横浜市戸塚区上矢部町710

(74)代理人 100086896

弁理士 鈴木 悦郎

Fターム(参考) 3H111 AAO3 BAO1 BA11 BA15 BA25

BA29 CA44 CA47 CB04 CB05

CCO2 CCO7 DA26 DB09 DB19

(54) 【発明の名称】 冷媒用ホース

(57)【要約】

【課題】本発明は冷媒として二酸化炭素を用いる輸送用 ホースに関するもので、柔軟性を維持しつつ冷媒として の二酸化炭素の透過を完全に防止した輸送用ホースにか かるものである。

【解決手段】蛇腹管からなる内面金属層と、その外側を 覆うゴム又は熱可塑性樹脂からなる弾性層と、当該弾性 層の外側を覆う金属線又は有機繊維を編組又はスパイラ ル巻きした補強層とからなることを特徴とする冷媒用ホ ース。1・・(螺旋状)金属管、2・弾性層、3・補強 層、4··外面層。

【特許請求の範囲】

【請求項1】 内面金属層と、その外側を覆う弾性層 と、当該弾性層の外側を覆う補強層とからなることを特 徴とする冷媒用ホース。

【請求項2】 内面金属層が蛇腹管である請求項1記載 の冷媒用ホース。

【請求項3】 弾性層が蛇腹管の凹み部を埋める厚さを 有する請求項 1 記載の冷媒用ホース。

【請求項4】 弾性層がゴム又は熱可塑性樹脂である請 求項1乃至3記載の冷媒用ホース。

【請求項5】 補強層が金属線又は有機繊維を編組又は スパイラル巻きしたものである請求項1記載の冷媒用ホ ース。

【請求項6】 補強層の外側に外面層を備えた請求項1 乃至5記載の冷媒用ホース。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は冷媒として二酸化炭 素を用いる輸送用ホースに関するもので、柔軟性を維持 しつつ冷媒としての二酸化炭素の透過を完全に防止した 20 構造も比較的簡単なホースを提供するものである。 輸送用ホースにかかるものである。

[0002]

【従来の技術】自動車のエアコンシステムの冷媒とし て、従来は特定フロン(CFC-12)が用いられてい たが、地球環境の保全のためその使用が禁止された。そ して代替フロンとして(HFC-134a)が広く用い られている。しかし、との代替フロンも地球環境的にみ て、オゾン破壊係数は零ではあるが、地球の温暖化係数 は高く温暖化促進の原因となりつつある。

の転換が研究されており、その1つとして二酸化炭素を 冷媒とする開発が進められている。しかるに、二酸化炭 素を用いたエアコンシステムでは使用条件が厳しくな り、特にディスチャーヂ側のホースではHFC-134 aを用いたエアコンシステムとは大きく異なることが指 摘されている。例えば耐圧的にはHFC-134aを用 いたエアコンシステムでは3~4Mpaであるのに対し 二酸化炭素をもちいたシステムでは15~20Mpa、 耐熱的には前者が120℃であるのに対し後者は150 ~170℃を要する。更に二酸化炭素のとれらの条件下 40 でのガス透過係数はHFC-134aの透過係数の約2 00倍でありかかる対策も必要である。

【0004】とのような条件下で冷媒用ホースを構成す る髙分子材料を選択する際、ナイロン又はナイロンとオ レフィンのアロイ等の熱可塑性樹脂を内面層に用いたと しても二酸化炭素の透過量は現在のHFC-134aを 用いたシステムにおける透過量の約20倍となり、エア コンシステムとしては実際上使用に供し得ない。更に言 えば、使用温度もHFC-134aより非常に高いた め、ゴムや熱可塑性樹脂のみでホースを構成することは 50 蛇腹管の凹み部を完全に埋めなくても良いことは言うま

極めて困難であった。

【0005】とのように高分子材料によるホースが実用 に供し得ないため、金属製蛇腹管を用い、これに金属ワ イヤーを編組補強したホースが一部で提案されている。 かかるホースは金属管であるため二酸化炭素の透過は完 全に防止できるとととなるものの、他の面で改良されな ければならない点が多い。即ち、金属蛇腹管の蛇腹が内 圧によって変形しない範囲での使用にとどまり、内圧が 高くなるとそれに合せて蛇腹の厚みを予め厚くしておく 10 必要があり、重量が重くなると共にコストアップともな る。

【0006】勿論、蛇腹管の厚みが厚くなればそれだけ 柔軟性が乏しくなり、高圧用のものほど柔軟性が低く、 施工作業性が悪くなることは否めない。更に、このよう な蛇腹管は繰り返し屈曲に弱く、比較的短時間にクラッ クが入ってしまい実用価値としては低いものであった。

【発明が解決しようとする課題】本発明は二酸化炭素を 冷媒として用いるに最適なホースに関するものであり、

[0008]

【課題を解決するための手段】本発明の冷媒用ホース は、内面金属層と、その外側を覆う弾性層と、当該弾性 層の外側を覆う補強層とからなることを特徴とするもの であり、好ましくは、内面金属層が蛇腹管で、弾性層が 蛇腹管の凹み部を埋める厚さを有し、補強層が金属線又 は有機繊維を編組又はスパイラル巻きしたものである。 [0009]

【発明の実施の形態】以下、本発明のホースの好ましい 【0003】とのため、地球温暖化係数の小さい冷媒へ 30 形態を説明すると、最内層に金属層(蛇腹管)を備える ととで二酸化炭素の透過を完全に防止すると共に、蛇腹 管とすることによって可撓性を付与したものであり、更 にこの金属層上に弾性層を形成し、これによって金属層 にかかる内圧を分散してこの層に均一に内圧を担わせる こととなったものである。更に又、補強層として金属線 又は有機繊維を編組み或いはスパラル巻き付けすること によって可撓性を保持したものである。

> 【0010】金属層を形成する材料としては例えばステ ンレス、銅、アルミニウム合金が挙げられる。尚、金属 層を覆う弾性層との接着のため予め表面にブラスメッキ を施すとともある。尚、金属層の好ましい形態である蛇 腹管の蛇腹形状は螺旋状であっても夫々が独立した蛇腹 であってもよい。

> 【0011】金属層を覆う弾性層の具体例としては、エ チレンプロピレンゴム (EPDM)、ニトリルブタジエ ンゴム (NBR)、クロロプレンゴム (CR)、ブチル ゴム(IIR)、アクリルゴム(ACM)、エチレンア クリルゴム (AEM) 等のゴム又は熱可塑性樹脂が単独 又は混合して用いられる。尚、金属層を覆う弾性層は、

3

でもない。

【0012】また、弾性層として熱可塑性樹脂を用いる 場合は、更に容易に蛇腹管の凹み部へ樹脂を充填させる ため金属蛇腹管を熱したり、樹脂を被覆後高周波誘導加 熱等で金属を加熱することが有効である。

【0013】弾性層を覆う補強層の具体例としては、鋼 線、ステンレスワイヤー、ポリエチレンテレフタレート 繊維(PET)、ポリエチレンナフタレート繊維(PE N)、ナイロン繊維、アラミド繊維、カーボン繊維等を れたスパイラル層とする。

【0014】尚、この補強層を囲んで外面層を形成する こともでき、材料的には前述の弾性層と同一の材料でも 構わないが、目的に応じて適宜最適なを選ぶこととな る。補強層をステンレスワイヤーとすることで外面層を 除くこともできる。

[0015]

【実施例】(製造例)本発明を実施例をもって更に詳細 に説明する。先ず、ステンレス鋼製の厚さ0.2mm内 径7.5mm、外径11.5mm、蛇腹のピッチ2mm 20 た。 の螺旋状蛇腹管を用い、との外表面を充分脱脂した後、 加硫接着剤としてケムロック205とケムロック234 B (いずれもロード社製) を用い重ね塗りした。

【0016】 ここで蛇腹管の内側に心棒となる鉄等で作 った蛇腹管の内径と同等のマンドレルを挿入した。そし て、蛇腹管の外周にクロスヘッドを有する押出機を用い て弾性層としてEPDMゴムを被覆した。この時、蛇腹 の凹み部にEPDMゴムが完全に充填するよう押出し条 件を調整した。尚、この例では蛇腹管にマンドレルを挿 入して弾性層をもって被覆したが、マンドレルを用いな 30 めて高い。 いでも弾性層の被覆は可能である。

【0017】次いでEPDM(未加硫)ゴム上に、ブラ スメッキした0.33mmの太さの硬鋼線を4本合糸 し、24キャリアーの編組機でピッチ30mmで編み上 げて補強層とした。更に、この補強層の外層に外面層と して補強層保護のため厚さ0.8mmのEPDMのシー トを巻き付け、更に外側にラッピングシーツを巻き付け た。

【0018】かかるホースの加硫は150℃で60分行 い、ラッピングシーツを剥した後、蛇腹管の中のマンド 40 3・補強層、 レルを抜き取って冷媒用ホースを得た。図1、図2はか

かる冷媒用ホースの一部切り欠き側面図である。図中、 符号1は螺旋状金属管、2は弾性層、3は補強層であ り、図1は外面層4を被覆しない冷媒用ホース(実施例 1)であり、図2はかかる外面層を施したホース(実施 例2) である。

【0019】(試験例) このホースを500mmの長さ とし、既知の金属蛇腹管に用いられる接続金具を取り付 け、柔軟性、耐圧力、繰り返し曲げ性能、繰り返し加圧 性能について既知の金属蛇腹管ホース(比較例1)と比 用いることができ、絹組又は互いに対となす方向に巻か(10)較した。かかるホースの構成は図3に示す通りで、20 MPaの使用に耐えられるよう設計されたものである。 試験結果を図3に示す。

> 【0020】柔軟性:外径の5倍の半径に曲げる際の力 とした。

> 耐圧力:水圧によって内圧を加え、破壊された際の圧力 である。

> 繰り返し曲げ性能:U字形にホースを取り付け、最短点 を150mm、最長点を250mmとして繰り返し曲 げ、ホースから内圧が漏れるまでの繰り返し回数を調べ

> 繰り返し加圧性能:500mmのホースを曲げ半径75 mmでU字形に取り付け、内圧を15MPa~0MPa を1サイクルとして150°Cの雰囲気中で30cpmで 繰り返し加圧した。

[0021]

【発明の効果】本発明における冷媒用ホースは従来の金 属蛇腹管ホースと比べて柔軟性、耐圧力が向上し、更に 繰り返し曲げ性能及び繰り返し加圧性能は従来のホース と比べて飛躍的に向上したものであり、その実用性は極

【図面の簡単な説明】

【図1】図1は本発明の冷媒用ホースの第1例を示すー 部切り欠き側面図である。

【図2】図3は本発明の冷媒用ホースの第2例を示すー 部切り欠き側面図である。

【図3】図3は試験結果を示す表である。

【符号の説明】

- 1 · (螺旋状)金属管、
- 2 … 弹性層、
- - 4 · 外面層。

【図1】

【図2】

【図3】

•	実施例 1	実施例 2	比較例1
ホース寸法			
内径(mm)	7.5	7.5	7.5
構強層外径(mm)	14.0	14.0	14.0
外径 (mm)		15.6	
ホース構造			
内面層(蛇腹)材質	SUS304	SUS304	SUS304
内面層の厚み(mm)	0.20	0.20	0.35
弹性層構造	EPDM	EPDM	
補強層構造	0.33×24×5	0.33×24×5	0.30×24×5
補強層材質	ステンレスワイヤー	理鋼線	ステフレスワイ マ ー
外面層材質		EPDM	
ホース性能			
柔軟性(N)	15	18	3.7
耐圧力 (MPa)	88	93	68
			(変形)
級返曲回数(回)	50000 中止	50000 中止	300 0
韓返加圧性能 (回)	150000 中止	150000 中止	12000 -

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-182872

(43) Date of publication of application: 06.07.2001

.....

(51)Int.CI.

F16L 11/16 F16L 11/11

(21)Application number: 11-377101

(71)Applicant: BRIDGESTONE CORP

(22)Date of filing:

22.12.1999

(72)Inventor: ENOMOTO YUKINOBU

TAKANO NOBUKAZU

(54) HOSE FOR REFRIGERANT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a transport hose for completely preventing transmission of carbon dioxide as a refrigerant while holding flexibility, in relation to the transport hose using carbon dioxide as the refrigerant. SOLUTION: This hose for refrigerant is composed of an inner surface metallic layer which consists of a bellows pipe, an elastic layer which consists of rubber or thermoplastic resin for covering its outside, and a reinforcing layer which is formed by winding or spirally winding metallic wire or organic fiber for covering the outside of the elastic layer. 1.. \$ (spiral) metallic pipe, 2.. elastic layer, 3.. reinforcing layer, 4.. outer surface layer.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

Date of final disposal for application

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office