ELEC1601 A4 Exam Notes

530427410

Name	AND Form	OR Form
Nume	ANDTOIN	OKTOIIII
Identity Law	1 A = A	0 + A = A
Null Law	0A = 0	1 + A = 1
Idempotent Law	AA = A	A + A = A
Inverse Law	AĀ = 0	A + Ā = 1
Commutative Law	AB = BA	A + B = B + A
Associative Law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive Law	A + BC = (A + B)(A + C)	A(B+C) = AB + AC
Absorption Law	A(A + B) = A	A + AB = A
De Morgan's Law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{(A+B)} = \overline{A}\overline{B}$

SOP:

- (1) Fetch all rows with output one
- (2) Negate a variable if it's zero
- 2s COMP: if and only if negative
 - (1) Invert the bits
 - (2) Add 1

 $[0,(2^n-1)]$

	Binary range: $[0, (2^n - 1)]$
Sus	$b = \log_2(n) = \frac{\log n}{\log 2}$
	$n=2^b$
ry es	Canonical design flow:
	(a) Circuit → Truth tab

- (a) Circuit → Truth table → Algebra (SOP)
- (b) Algebra \rightarrow Truth table \rightarrow SOP \rightarrow Circuit

Memory size: $total = 2^N \times M$ Frequency in clock: $f = \frac{1}{T}$

Worst-case rounding error: Halve the LSB (C) Carry flag, (Z) Zero flag, (N) Negative flag

(X) r27:r26, (Y) r29:r28, (Z) r31:r30

Program memory: flash mem, 2 bytes/cell, 14 bit address (so has 2^14 locations), total 32 KB.

Data memory: Static RAM chip, 1 byte each cell, total 2KB.

ALU: Performs operations of 3 types: arithmetic, logical, bit level.

AVR starter template

.section .data

; insert data definitions here

.section .text

.global

asm function asm function:

; insert code here

ret

.end

AVR if/else

; compare

; branch to `if`

else:

jmp

after if if:

after_if:

AVR for loop

loop_start:

; init values

check:

; compare

; br.

after_loop loop:

jmp check

after_loop:

AVR switch

; do maths

; check which label to branch

default

imp after switch

case1:

imp after switch

; case... until n-th case

after_switch: