```
In [1]:
```

```
import matplotlib.pyplot as plt
import numpy as np
import pylab as py
```

Lab1

11-06-2019

Aim: Explore basic python opertaion for scientefic competing

```
In [2]:
x=np.linspace(0,5,100)
#get 100 values from 0-5
print(x)
           0.05050505 0.1010101 0.15151515 0.2020202
[0.
                                                     0.25252525
0.3030303
           0.35353535 0.4040404
                                0.45454545 0.50505051 0.55555556
0.60606061 0.65656566 0.70707071 0.75757576 0.80808081 0.85858586
0.90909091 0.95959596 1.01010101 1.06060606 1.11111111 1.16161616
 1.21212121 1.26262626 1.31313131 1.36363636 1.41414141 1.46464646
 1.51515152 1.56565657 1.61616162 1.66666667 1.71717172 1.76767677
 1.81818182 1.86868687 1.91919192 1.96969697 2.02020202 2.07070707
 2.12121212 2.17171717 2.22222222 2.27272727 2.32323232 2.37373737
 2.42424242 2.47474747 2.52525253 2.57575758 2.62626263 2.67676768
 3.03030303 3.08080808 3.13131313 3.18181818 3.23232323 3.28282828
 3.3333333 3.38383838 3.43434343 3.48484848 3.53535354 3.58585859
 3.63636364 3.68686869 3.73737374 3.78787879 3.83838384 3.88888889
 3.93939394 3.98989899 4.04040404 4.09090909 4.14141414 4.19191919
4.2424244 4.29292929 4.34343434 4.39393939 4.44444444 4.49494949
 4.54545455 4.5959596 4.64646465 4.6969697 4.74747475 4.7979798
 4.84848485 4.8989899 4.94949495 5.
                                          ]
In [3]:
x=range(0,10,2)
# values in the range[0,10] with an increment of 2
#range can not produce floating point values
print(x)
range(0, 10, 2)
In [ ]:
x=np.arange(0,100,2.5)
# similar to range but can produce evenly spaced floating point values
print(x)
```

In []:

```
## Floor function
## it will return an integer not greater than the actual answer(quotient)
print(-12//5)
```

In [4]:

```
# How to plot:
## create two arrays seperately for x and y values
## now use plot command from matplotlib.pyplot

x=[2,3,3.4]
y=[3,4,5]
plt.plot(x,y,'o')
plt.title("3 Radom Points")
plt.xlabel("X")
plt.ylabel("Y")
```

Out[4]:

Text(0, 0.5, 'Y')

In [6]:

```
#evenly spaced time at 200ms intervals
t=np.arange(0,5,0.2)

## red dashes , blue squares and green triangles
plt.plot(t,2*t,'k--',t,t,'bo',t,t**2,'g3',t,t**3,'c^')
plt.title("Coustomizing Plots")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
```


In [8]:

```
nyc_temp=[53,56,56.8,53.4,54.7,55.8,55.3,54,56.7]
py.plot(nyc_temp,'c^',color="skyblue")
plt.title("Changed Line Width")
plt.xlabel("X")
plt.ylabel("Y")
py.plot(nyc_temp,marker="*",color="skyblue",linewidth=5)
```

Out[8]:

[<matplotlib.lines.Line2D at 0x1becda5e208>]

In [10]:

```
plt.style.use("classic")
x=np.linspace(-10,4*np.pi,400)
plt.plot(x,np.sin(x),'c',x,np.cos(x),'s')
plt.xlabel("X-axis")
plt.xlim(-5,5)
plt.title("Sine and Cos")
plt.ylim(-1,1)
plt.ylabel("Y-Axis")
plt.legend(["Sine","Cosine"])
plt.show()
```


In [13]:

```
x=np.linspace(0,10,50)
plt.style.use('seaborn-dark')
y=x*(1-x)
plt.title("Seabor-Dark style demonstration")
plt.xlim(1,13)
plt.xlabel("X")
plt.ylabel("Y")
plt.plot(x,y)
```

Out[13]:

[<matplotlib.lines.Line2D at 0x1becdbac668>]


```
In [14]:
```

```
plt.style.available
Out[14]:
['bmh',
 'classic',
 'dark_background',
 'fast',
 'fivethirtyeight',
 'ggplot',
 'grayscale',
 'seaborn-bright',
 'seaborn-colorblind',
 'seaborn-dark-palette',
 'seaborn-dark',
 'seaborn-darkgrid',
 'seaborn-deep',
 'seaborn-muted'
 'seaborn-notebook',
 'seaborn-paper',
 'seaborn-pastel',
 'seaborn-poster',
 'seaborn-talk',
 'seaborn-ticks',
 'seaborn-white',
 'seaborn-whitegrid',
 'seaborn',
 'Solarize_Light2',
 'tableau-colorblind10',
 '_classic_test']
```

Conclusion:

Some of the basic opertaions such as linspace and floor function were applied. Graph manipulation was done to some extent

Plot and Subplot

18.06.2019

Aim: To explore matplotlib.plot and its attributes

```
In [2]:
```

```
import matplotlib.pyplot as plt
import math
import numpy as np
import sympy as sp
from pylab import *
from scipy import *
```

```
In [78]:
```

```
x=[2,3,4,5,6,7,8]
y=[1,2,3,4,5,6,7]
y2=[7,6,5,4,3,2,1]
plt.plot(x,y,color="blue")
plt.plot(x,y2,color="green")
plt.title("plot")
plt.legend(["line1","Line2"])
```

Out[78]:

<matplotlib.legend.Legend at 0xe587ac8>


```
In [56]:
```

```
x=arange(-np.pi,np.pi,0.1)
```

```
In [49]:
```

```
X
```

Out[49]:

```
array([-3.14159265, -3.14059265, -3.13959265, ..., 3.13940735, 3.14040735, 3.14140735])
```

In [6]:

```
plot(np.tan(x)-x)
plt.xlabel("X")
plt.ylabel("Y")
plt.title("tan(x)-x")
```

Out[6]:

Text(0.5, 1.0, 'tan(x)-x')

In [5]:

```
x=np.linspace(-2*np.pi,2*np.pi,1000)
plot(np.sin(x)+np.cos(x))
plot(np.sin(x)-np.cos(x))
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Sin(x)+- Cos(x)")
plt.legend(["sin(x)+cos(x)","sin(x)-cos(x)"])
```

Out[5]:

<matplotlib.legend.Legend at 0x15c84cab550>


```
In [22]:
```

```
x=arange(-5,5,0.1)
plt.subplot(2,2,1)
plt.plot(x,x)
plt.title("X")
plt.xlabel("x")
plt.ylabel("y")
plt.subplot(2,2,2)
plt.plot(x,x**2)
plt.title("X**2")
plt.xlabel("x")
plt.ylabel("y")
plt.subplot(2,2,3)
plt.plot(x,x**3)
plt.title("X**3")
plt.xlabel("x")
plt.ylabel("y")
plt.subplot(2,2,4)
plt.plot(x,x**4)
plt.title("X**4")
plt.xlabel("x")
plt.ylabel("y")
plt.gcf().subplots_adjust(hspace=1)
plt.gcf().subplots_adjust(wspace=1)
```


Conclusion:

Attributes of matplotlib.pyplot were explored , their basic understanding was obta ined.

Finding Roots

25-06-2019

Aim: To solve and equation and plot the same along with its roots

In [17]:

8/21/2019

```
x=np.linspace(-20,20,10000)
plt.plot(x,x**3-2*x**2+3*x-1)
plt.grid(color='r')
plt.plot(0,0,'g*')
plt.ylim(-1000,1000)
```

Out[17]:

(-1000, 1000)

In [16]:

from scipy import optimize
help(optimize)

Help on package scipy.optimize in scipy:

NAME

scipy.optimize

DESCRIPTION

Optimization and Root Finding (:mod:`scipy.optimize`)

.. currentmodule:: scipy.optimize

SciPy `optimize` provides functions for minimizing (or maximizing) objective functions, possibly subject to constraints. It includes solvers for nonlinear problems (with support for both local and global optimization algorithms), linear programing, constrained and nonlinear least-squares, root finding and curve fitting.

Common functions and objects, shared across different solvers, are:

In [11]:

```
def func(x):
    # a=input("Enter coeff for x**3")
    # b=input("Enter coeff for x**2")
    # c=input("Enter coeff for x")
    # d=input("Enter the constant")
    a=1
    b=-7
    c=5
    d=13
    return a*x**3+b*x**2+c*x+d
```

In [21]:

```
x=np.linspace(-2,10,1000)
sol=optimize.root(func,[-2,2,10])
plt.plot(x,func(x))
plt.plot(sol.x,func(sol.x),'d')
plt.axhline(0,-2,2,color="gray")
plt.title("Roots of x**3+-7*x**2+5*x+13")
plt.show()
```


Conclusion:

Introduced to scipy.optimize to find roots of an equation Plotted Roots along with its function

Lab 2: Solutions of algebraic and transcendental equations

Bisection Method

25-06-2019

AIM: To find an approximate root of an equtaion using Bisection Menthod

```
In [15]:
```

8/21/2019

```
absol=[]
def func(x):
    return x**3-26
dash = '-' * 75
def bisection():
    a=int(input("Enter a"))
    b=int(input("Enter b"))
    if (func(a) * func(b) >= 0):
        print("You have not assumed right a and b\n")
        return
    c = a
    i=0
    if(i==0):
        \#print("No\t\ A\t\tB\t\tApproximation\t\t\t\tf(c)")
        print(dash)
        print('{:>12s}{:>12s}{:>12s}{:>12s}{:>12s}{:>12s}'.format('iteration','a','b','abs(
        print(dash)
   while ((b-a) >= 0.0001):
        #print(i+1,"\t\t",end=" ")
        #print("%.3f"%a,"\t\t\t",end=" ")
        #print("%.3f"%b,"\t\t",end=" ")
        # Find middle point
        c = (a+b)/2
        absol.append(abs(b-a))
        #print("%.6f"%c,"\t\t\ ",end=" ")
        i=i+1
        #absol.append(abs(b-a))
        print('{:>12d}{:>12.6f}{:>12.6f}{:>12.6f}{:>12.6f}'.format(i+1,a,b,abs(b-a
        # Check if middle point is root
        if (func(c) == 0.0):
            break
        else:
            #print("%.6f"%func(c))
        # Decide the side of the interval to repeat the next steps
            if (func(c)*func(a) < 0):
                b = c
            else:
                a = c
    return c
    #print("The value of root is : ","%.4f"%c)
    #print(func(c))
root=bisection()
print("The root using bisection method is %.6f"%root)
from scipy import optimize
rangex=np.linspace(0,5,100)
plt.subplot(2,2,1)
plt.plot(absol)
plt.xlabel("Iterations")
plt.ylabel("Error")
```

```
plt.grid(color='r')
plt.title("Errors")
sol=optimize.root(func,[0,5])
plt.subplot(2,2,4)
plt.plot(rangex,func(rangex))
plt.grid(color='r')
plt.plot(sol.x,func(sol.x),'d')
plt.ylim(-100,100)
plt.xlabel("X")
plt.ylabel("F(X)")
plt.title("Function")
```

Enter a-5 Enter b5

8/21/2019

						_
iteration	a	b	abs(b-a)	С	f(c)	
2	-5.000000	5.000000	10.000000	0.000000	-26.000000	-
3	0.000000	5.000000	5.000000	2.500000	-10.375000	
4	2.500000	5.000000	2.500000	3.750000	26.734375	
5	2.500000	3.750000	1.250000	3.125000	4.517578	
6	2.500000	3.125000	0.625000	2.812500	-3.752686	
7	2.812500	3.125000	0.312500	2.968750	0.165009	
8	2.812500	2.968750	0.156250	2.890625	-1.846767	
9	2.890625	2.968750	0.078125	2.929688	-0.854290	
10	2.929688	2.968750	0.039062	2.949219	-0.348016	
11	2.949219	2.968750	0.019531	2.958984	-0.092350	
12	2.958984	2.968750	0.009766	2.963867	0.036117	
13	2.958984	2.963867	0.004883	2.961426	-0.028170	
14	2.961426	2.963867	0.002441	2.962646	0.003961	
15	2.961426	2.962646	0.001221	2.962036	-0.012108	
16	2.962036	2.962646	0.000610	2.962341	-0.004074	
17	2.962341	2.962646	0.000305	2.962494	-0.000057	
18	2.962494	2.962646	0.000153	2.962570	0.001952	

The root using bisection method is 2.962570

Out[15]:

Text(0.5, 1.0, 'Function')

In [7]:

8/21/2019

```
import numpy as np
import matplotlib.pyplot as plt
absol=[]
def func(x):
    return x**5-5*x+1
dash = '-' * 75
def bisection():
    a=int(input("Enter a"))
    b=int(input("Enter b"))
    if (func(a) * func(b) >= 0):
        print("You have not assumed right a and b\n")
    c = a
    i=0
    if(i==0):
        \#print("No\t\ A\t\tB\t\tApproximation\t\t\t\tf(c)")
        print(dash)
        print('{:>12s}{:>12s}{:>12s}{:>12s}{:>12s}{:>12s}'.format('iteration','a','b','abs(
        print(dash)
   while ((b-a) >= 0.0001):
        #print(i+1,"\t\t",end=" ")
        #print("%.3f"%a,"\t\t\t",end=" ")
        #print("%.3f"%b,"\t\t",end=" ")
        # Find middle point
        c = (a+b)/2
        absol.append(abs(b-a))
        #print("%.6f"%c,"\t\t\ ",end=" ")
        i=i+1
        #absol.append(abs(b-a))
        print('{:>12d}{:>12.6f}{:>12.6f}{:>12.6f}{:>12.6f}{:>12.6f}'.format(i+1,a,b,abs(b-a
        # Check if middle point is root
        if (func(c) == 0.0):
            break
        else:
            #print("%.6f"%func(c))
        # Decide the side of the interval to repeat the next steps
            if (func(c)*func(a) < 0):
                b = c
            else:
                a = c
    return c
    #print("The value of root is : ","%.4f"%c)
    #print(func(c))
root=bisection()
print("The root using bisection method is %.6f"%root)
from scipy import optimize
rangex=np.linspace(0,5,100)
plt.subplot(2,2,1)
plt.plot(absol)
```

```
plt.xlabel("Iterations")
plt.ylabel("Error")
plt.grid(color='r')
plt.title("Errors")
sol=optimize.root(func,[0,5])
plt.subplot(2,2,4)
plt.plot(rangex,func(rangex))
plt.grid(color='r')
plt.plot(sol.x,func(sol.x),'d')
plt.xlabel("X")
plt.ylabel("F(X)")
plt.title("Function")
```

Enter a0 Enter b1

a	b	abs(b-a)	С	f(c)	
0.000000	1.000000	1.000000	0.500000	-1.468750	
0.000000	0.500000	0.500000	0.250000	-0.249023	
0.000000	0.250000	0.250000	0.125000	0.375031	
0.125000	0.250000	0.125000	0.187500	0.062732	
0.187500	0.250000	0.062500	0.218750	-0.093249	
0.187500	0.218750	0.031250	0.203125	-0.015279	
0.187500	0.203125	0.015625	0.195312	0.023722	
0.195312	0.203125	0.007812	0.199219	0.004220	
0.199219	0.203125	0.003906	0.201172	-0.005530	
0.199219	0.201172	0.001953	0.200195	-0.000655	
0.199219	0.200195	0.000977	0.199707	0.001783	
0.199707	0.200195	0.000488	0.199951	0.000564	
0.199951	0.200195	0.000244	0.200073	-0.000046	
0.199951	0.200073	0.000122	0.200012	0.000259	
	0.000000 0.000000 0.000000 0.125000 0.187500 0.187500 0.187500 0.195312 0.199219 0.199219 0.199219 0.199707 0.199707	0.000000 1.000000 0.000000 0.500000 0.000000 0.250000 0.125000 0.250000 0.187500 0.250000 0.187500 0.218750 0.187500 0.203125 0.195312 0.203125 0.199219 0.203125 0.199219 0.201172 0.199219 0.200195 0.199707 0.200195 0.199951 0.200195	0.000000 1.000000 1.000000 0.000000 0.500000 0.500000 0.000000 0.250000 0.250000 0.125000 0.250000 0.125000 0.187500 0.250000 0.062500 0.187500 0.218750 0.031250 0.187500 0.203125 0.015625 0.195312 0.203125 0.007812 0.199219 0.203125 0.003906 0.199219 0.201172 0.001953 0.199707 0.200195 0.000488 0.199951 0.200195 0.000244	0.000000 1.000000 1.000000 0.500000 0.000000 0.500000 0.500000 0.250000 0.000000 0.250000 0.250000 0.125000 0.125000 0.250000 0.125000 0.187500 0.187500 0.250000 0.062500 0.218750 0.187500 0.218750 0.03125 0.203125 0.187500 0.203125 0.015625 0.195312 0.195312 0.203125 0.007812 0.199219 0.199219 0.203125 0.003906 0.201172 0.199219 0.201172 0.001953 0.200195 0.199707 0.200195 0.000488 0.199951 0.199951 0.200195 0.000244 0.200073	0.000000 1.000000 1.000000 -1.468750 0.000000 0.500000 0.500000 -0.249023 0.000000 0.250000 0.125000 -0.249023 0.000000 0.250000 0.125000 0.375031 0.125000 0.250000 0.187500 0.062732 0.187500 0.250000 0.062500 0.218750 -0.093249 0.187500 0.218750 0.031250 0.203125 -0.015279 0.187500 0.203125 0.015625 0.195312 0.023722 0.195312 0.203125 0.007812 0.199219 0.004220 0.199219 0.203125 0.003906 0.201172 -0.005530 0.199219 0.201172 0.001953 0.200195 -0.000655 0.199707 0.200195 0.000488 0.199951 0.000564 0.199951 0.200195 0.000244 0.200073 -0.000046

The root using bisection method is 0.200012

Out[7]:

Text(0.5, 1.0, 'Function')

Cocnlusion:

The Bisection method was used to find the approximate roots of the given equtaions

Newton Raphson Method

069-07-2109

In [20]:

```
import math
import numpy as np
def func( x ):
    return (5*x**3+x**2-4)
    #return x*math.sin(x)+math.cos(x)
def derreturn(x):
    #return x*math.sin(x)
    return (15*x**2+2*x)
hlist=[]
def newtonR(x):
    h= func(x)/derreturn(x)
    i=0
    while abs(h) >= 0.0001:
        i+=1
        #print("X: ",x)
        \#print('F(x) : ',func(x))
        #print("f'(x)",derreturn(x))
        h= (func(x)/derreturn(x))
        hlist.append(h)
        print('{:>12d}{:>12.6f}{:>12.6f}'.format(i,x,func(x),derreturn(x)),end=" "
        x = x - h
        print('{:>12.6f}'.format(x))
    print("Value of Root is : ",x)
X=float(input("Enter Approximate Root "))
print('{:>12s}{:>12s}{:>12s}{:>12s}\displayship. format('iteration','x','f(x)',"f'(x)"," X calcu
newtonR(X)
rangex=np.linspace(-10,10,100)
sol=optimize.root(func,[0,5])
plt.subplot(2,2,4)
plt.plot(rangex, func(rangex))
plt.grid(color='r')
plt.plot(sol.x,func(sol.x),'d')
plt.ylim(-100,100)
plt.xlabel("X")
plt.ylabel("F(X)")
plt.title("Function")
plt.subplot(2,2,1)
plt.plot(hlist)
plt.grid(color='r')
plt.xlabel("Iteration")
plt.ylabel("Error")
plt.title("Error vs Iteration")
Enter Approximate Root 2
   iteration
                                            f'(x) X calculated
                                 f(x)
                2.000000
                           40.000000
                                        64.000000
                                                      1.375000
           2
                1.375000
                           10.888672
                                        31.109375
                                                      1.024987
           3
                1.024987
                            2.434855
                                        17.808964
                                                      0.888267
           4
                0.888267
                            0.293309
                                        13.611800
                                                      0.866719
           5
                                                      0.866211
                0.866719
                            0.006601
                                        13.001454
                0.866211
                            0.000004
                                        12.987241
                                                      0.866211
Value of Root is: 0.866210602253048
Out[20]:
Text(0.5, 1.0, 'Error vs Iteration')
```


In [8]:

```
import math
import numpy as np
def func( x ):
    return (x**2-5*x-29)
    #return x*math.sin(x)+math.cos(x)
def derreturn(x):
    #return x*math.sin(x)
    return (2*x-5)
hlist=[]
def newtonR(x):
    h= func(x)/derreturn(x)
    i=0
    while abs(h) >= 0.0001:
        i+=1
        #print("X: ",x)
        #print('F(x) : ',func(x))
        #print("f'(x)",derreturn(x))
        h= (func(x)/derreturn(x))
        hlist.append(h)
        print('{:>12d}{:>12.6f}{:>12.6f}'.format(i,x,func(x),derreturn(x)),end=" "
        x = x - h
        print('{:>12.6f}'.format(x))
    print("Value of Root is : ",x)
X=float(input("Enter Approximate Root "))
print('{:>12s}{:>12s}{:>12s}{:>12s}\displayship. format('iteration','x','f(x)',"f'(x)"," X calcu
newtonR(X)
rangex=np.linspace(-10,10,100)
sol=optimize.root(func,[0,5])
plt.subplot(2,2,4)
plt.plot(rangex, func(rangex))
plt.grid(color='r')
plt.plot(sol.x,func(sol.x),'d')
plt.ylim(-100,100)
plt.xlabel("X")
plt.ylabel("F(X)")
plt.title("Function")
plt.subplot(2,2,1)
plt.plot(hlist)
plt.grid(color='r')
plt.xlabel("Iteration")
plt.ylabel("Error")
plt.title("Error vs Iteration")
Enter Approximate Root 8.5
   iteration
                                            f'(x) X calculated
                                 f(x)
                8.500000
                            0.750000
                                        12.000000
                                                      8.437500
           2
                                                      8.437171
                8.437500
                            0.003906
                                        11.875000
           3
                8.437171
                            0.000000
                                        11.874342
                                                      8,437171
Value of Root is: 8.437171043518958
Out[8]:
Text(0.5, 1.0, 'Error vs Iteration')
```


Cocnlusion:

The Newton Raphson method was used to find the approximate roots of the given equt aions

16-07-2019

A bungee jumper with the mass og 68.1 Kg leaps froma stationary hot air balloon. Use equation to compute velocity for the first 12s of free fall. Also detrmine the terminal velocity that will be attained for an infinitely long cord. Use drag coefficient of .25Kg/m

```
In [2]:
time=[1,2,3,4,5,6,7,8,9,10,11,12]
import math
import numpy as np
def velocity(m,t,cd):
    vel=[]
    for i in range(1,t+1):
            g = 9.8
            ans=math.sqrt(g*m/cd)*np.tanh(math.sqrt(g*cd/m)*i)
            vel.append(ans)
    return vel
m=float(input("Enter Mass: "))
t=int(input("Enter How many seconds we take in consideration "))
cd=float(input("Enter drag coefficient"))
veloc=velocity(m,t,cd)
print("Time (S)\t Velocity(m/s)")
print(" ")
for i in range(t):
    print(time[i],end=" ")
    print("\t\t",veloc[i])
Enter Mass: 68.1
Enter How many seconds we take in consideration 12
Enter drag coefficient.25
Time (S)
                 Velocity(m/s)
                 9.684143706522294
1
2
                 18.71095473908489
3
```

```
26.59022791243773
4
                  33.08315003389213
5
                  38.18457821708906
6
                  42.04464933704515
7
                  44.88304249226504
8
                  46.92655847112579
9
                  48.37553317803714
10
                  49.39186909226721
11
                  50.09933795182978
12
                  50.58919926157048
Out[2]:
Text(0, 0.5, 'Velcoity')
```

In [3]:

```
import matplotlib.pyplot as plt
plt.plot(time,veloc,marker="o")
plt.title("Numerical Approximation")
plt.xlabel("Time")
plt.ylabel("Velcoity")
```

Out[3]:

Text(0, 0.5, 'Velcoity')

Use bisection method to determine the drag coefficient needed so that an 80 - kg bungee jumper has a velocity of 36 m/s after 4s of free fall.Note: The acceleration of gravity is 9.81 m/s 2 . Start with an initial guesses of x(l) = 0.1 and x(u) = 0.2 iterate until the approximate relative error falls below 2%.

$$v(t) = \sqrt{\frac{gm}{cd}} tanh \sqrt{\frac{gcd}{m}} t$$

$$f(cd) = \sqrt{\frac{9.81*80}{cd}} \tanh(\sqrt{\frac{9.81cd}{80}} 4) - 36$$

8/21/2019

In [3]:

```
from scipy import optimize
import math
import numpy as np
import matplotlib.pyplot as plt
def fun(x)->float:
    return math.sqrt(9.81*80/x)*np.tanh(math.sqrt(9.81*x/80)*4)-36
def nextapprox(a, b)->float:
    return (a+b)/2
if __name__=="__main__":
    a=float(input("Enter lower limit: "))
    b=float(input("Enter upper limit: "))
    X=np.linspace(a-1,b+1,1000)
    print()
    print("a={0}".format(a))
    print("b={0}".format(b))
    neg=0.0
    pos=0.0
    count=0
    print("f(a)={0}\\nf(b)={1}\\n\n".format(round(fun(a),6),round(fun(b),6)))
    error=[]
    funlist=[]
    if fun(a)*fun(b)<0.0:</pre>
        dash = '-' * 113
        print(dash)
        print("x\t\t
                                    b\t\t
                                              Aprroximation\t\t f(approx)\tRel err")
                       a\t\t
        print(dash)
        print()
        if fun(a)<0.0:
            neg=a
            pos=b
        else:
            neg=b
            pos=a
        print("{0}\t{1:.6f}\t{2:.6f}\t{4:.6f}\t{5:.6f}".format(count+1,round)
        while True:
            count=count+1
            if fun(neg)*fun(pos)<0.0:</pre>
                print()
                x0=nextapprox(neg, pos)
                funlist.append(fun(x0))
                if fun(x0)<0:
                    neg=round(x0, 6)
                else:
                    pos=round(x0, 6)
                x1=nextapprox(neg, pos)
                error.append(abs(pos-neg)/abs(pos+neg))
                #sol=optimize.root(fun,[1,4])
                print("{0}\t\t{1:.6f}\t\t{2:.6f}\t\t{3:.6f}\t\t{4:.6f}\t\5:.6f}".format(col
            #if math.trunc(10**3 * x0) / 10**3==math.trunc(10**3 * x1) / 10**3:
            if(abs(pos-neg)/abs(pos+neg) < 0.02) :</pre>
                print("Approximate root is {0}".format(round(x1,6)))
                funlist.append(fun(x0))
                break
    else:
```

```
print()
    print("Invalid interval entered")

plt.subplot(1,2,1)
plt.title("Function vs iteration")
plt.plot(funlist)
plt.xlabel("Iteration")
plt.ylabel("F(x)")
plt.subplot(1,2,2)
plt.title("Errors vs iteration")
plt.xlabel("Iteration")
plt.xlabel("Iteration")
plt.ylabel("Error")
plt.plot(error)
plt.plot(error)
plt.gcf().subplots_adjust(hspace=1)
plt.gcf().subplots_adjust(wspace=1)
```

Enter lower limit: 0.1 Enter upper limit: 0.2 a=0.1 b=0.2

f(a)=0.860291 f(b)=-1.19738

x f(approx)	a Rel err	b	Aprroximation
1 -0.204516	0.200000 -0.100000	0.100000	0.150000
2 0.318407	0.150000 0.050000	0.100000	0.125000
3 0.054639	0.150000 0.025000	0.125000	0.137500
4 -0.075508	0.150000 0.012500	0.137500	0.143750
5 -0.010578	0.143750 0.006250	0.137500	0.140625
6 0.021995	0.140625 0.003125	0.137500	0.139063

Approximate root is 0.139063

The volume of liquid V in a hollow horizontal cylinder of radius r and length L is related to the depth of the liquid h by

$$V = [r^{2}cos^{-1}(\frac{r-h}{r}) - (r-h)\sqrt{2rh - h^{2}}]L$$

Determine h given r=2m,L=5m and V=8

In [28]:

```
import math
import matplotlib.pyplot as plt
import numpy as np
def func( x ):
             #if ((2-x)/x)>1 or (2-x)/x<-1:
                            return 0
             #else:
             # return ((4*math.acos((2-x)/x)-(2-x)*math.sqrt(4*x-x**2))*5-8)
                          return ((2**2)*math.acos((2-x)/2)-(2-x)*math.sqrt(2*2*x-x*x))*5-8
def derreturn(x):
             #return 5*((4/math.sqrt(-(x**2)+4*x))-(2*(x**2)-8*x+4)/math.sqrt(4*x-x**2))
             return (((2**2)*(1/np.sqrt(1-((2-x)/2)**2))+np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2-2*x)/2*np.sqrt(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x**2)-(2-x)*(2*x-x*2)-(2-x)*(2*x-x*2)-(2-x)*(2*x-x*2)-(2-x)*(2*x-x*2)-(2-x)*(2
hlist=[]
def newtonR(x):
             h= func(x)/derreturn(x)
             while abs(h) >= 0.0001:
                         i+=1
                         h= (func(x)/derreturn(x))
                         hlist.append(h)
                         print('{:>12d}{:>12.6f}{:>12.6f}'.format(i,x,func(x),derreturn(x)),end=" "
                         x = x - h
                         print('{:>12.6f}'.format(x))
             print("Value of Root is :{:>12.6f}".format(x))
X=float(input("Enter Approximate Root "))
print('{:>12s}{:>12s}{:>12s}{:>12s}\data format('iteration','x','f(x)',"f'(x)"," X calcu
newtonR(X)
Enter Approximate Root 2
         iteration
                                                                                                     f(x)
                                                                                                                                        f'(x) X calculated
```

```
2.000000
                23.415927
                             30.000000
                                            1.219469
1
2
     1.219469
                 8.211162
                             25.320389
                                            0.895179
3
     0.895179
                 2.501374
                             22.154013
                                            0.782270
4
     0.782270
                 0.663416
                             21.381523
                                            0.751243
5
     0.751243
                 0.174894
                             21.234646
                                            0.743006
6
     0.743006
                 0.046496
                             21.201582
                                            0.740813
7
     0.740813
                  0.012400
                             21.193224
                                            0.740228
8
     0.740228
                  0.003310
                             21.191026
                                            0.740072
     0.740072
                  0.000884
                             21.190441
                                            0.740030
```

Value of Root is: 0.740030

You buy a 35000 vehicle for no down payment and 8500 per year for 7 years. Use the bisection function to determine the interest rate that you pay . employ initial guesses for the interest rate of 0.01 and 0.3, the stoppin criteria of 0.00005 the formula relating the present worth(P), annual payments(A), no. of years(n) and rate(i) is $\frac{P(G(i+1)^n)}{P(G(i+1)^n)}$

```
given by A = \frac{P(i(i+1)^n)}{(1+i)^n-1}
```

```
In [52]:
```

```
from scipy import optimize
import math
import numpy as np
import matplotlib.pyplot as plt
def fun(x)->float:
    return ((35000*(x*(1+x)**7))/(((1+x)**7)-1))-8500
def nextapprox(a, b)->float:
    return (a+b)/2
if __name__=="__main__":
    a=float(input("Enter lower limit: "))
    b=float(input("Enter upper limit: "))
    X=np.linspace(a-1,b+1,1000)
    print()
    print("a={0}".format(a))
    print("b={0}".format(b))
    neg=0.0
    pos=0.0
    count=0
    print("f(a)={0}\\nf(b)={1}\\n\n".format(round(fun(a),6),round(fun(b),6)))
    error=[]
    funlist=[]
    if fun(a)*fun(b)<0.0:</pre>
        dash = '-' * 113
        print(dash)
        print("x\t\t
                                   b\t\t
                                              Aprroximation\t\t f(approx)\tRel err")
                       a\t\t
        print(dash)
        print()
        if fun(a)<0.0:
            neg=a
            pos=b
        else:
            neg=b
            pos=a
        print("{0}\t{1:.6f}\t{2:.6f}\t{4:.6f}\t{5:.6f}".format(count+1,round)
        while True:
            count=count+1
            if fun(neg)*fun(pos)<0.0:</pre>
                print()
                x0=nextapprox(neg, pos)
                funlist.append(fun(x0))
                if fun(x0)<0:
                    neg=round(x0, 6)
                else:
                    pos=round(x0, 6)
                x1=nextapprox(neg, pos)
                error.append(abs(pos-neg)/abs(pos+neg))
                #sol=optimize.root(fun,[1,4])
                print("{0}\t\t{1:.6f}\t\t{2:.6f}\t\t{3:.6f}\t\t{4:.6f}\t\5:.6f}".format(col
            #if math.trunc(10**3 * x0) / 10**3==math.trunc(10**3 * x1) / 10**3:
            if(abs(pos-neg)/abs(pos+neg) < 0.00005):
                print("Approximate root is {0}".format(round(x1,6)))
                funlist.append(fun(x0))
                break
    else:
```

```
print()
    print("Invalid interval entered")
plt.subplot(1,2,1)
plt.title("Function vs iteration")
plt.plot(funlist)
plt.xlabel("Iteration")
plt.ylabel("F(x)")
plt.subplot(1,2,2)
plt.title("Errors vs iteration")
plt.xlabel("Iteration")
plt.ylabel("Error")
plt.ylabel("Error")
plt.plot(error)
plt.gcf().subplots_adjust(hspace=1)
plt.gcf().subplots_adjust(wspace=1)
```

Enter lower limit: 0.01
Enter upper limit: 0.3

a=0.01 b=0.3

f(a)=-3298.010098 f(b)=3990.57729

x f(approx)	a Rel err	b	Aprroximation
1 39.163831	0.010000 0.290000	0.300000	0.155000
2 -1719.879252	0.010000 0.145000	0.155000	0.082500
3 -861.252456	0.082500 0.072500	0.155000	0.118750
4 -416.049835	0.118750 0.036250	0.155000	0.136875
5 -189.667160	0.136875 0.018125	0.155000	0.145937
6 -75.560624	0.145937 0.009063	0.155000	0.150469
7 -18.267314	0.150469 0.004531	0.155000	0.152734
8 10.423166	0.152734 0.002266	0.155000	0.153867
9 -3.933100	0.152734 0.001133	0.153867	0.153301
10 3.250195	0.153301 0.000566	0.153867	0.153584

11 -0.335412	0.153301 0.000283	0.153584	0.153442
12 1.450983	0.153442 0.000142	0.153584	0.153513
13 0.551433	0.153442 0.000071	0.153513	0.153477
14 0.095337	0.153442 0.000035	0.153477	0.153459
15 -0.132708	0.153442 0.000017	0.153459	0.153450
16 -0.031355	0.153450 0.000009	0.153459	0.153454

Approximate root is 0.153454

Regular Falsi Method

To find the approximate root of the given equation using Method of False Position/ Regula-Falsi Method

In [2]:

```
import math
def fun(x)->float:
    return round((x*math.exp(x)-3), 6)
def nextapprox(a, b)->float:
    return (a*fun(b)-b*fun(a))/(fun(b)-fun(a))
if __name__=="__main__":
    a=float(input("Enter lower limit: "))
    b=float(input("Enter upper limit: "))
    print()
    print("x1={0}".format(a))
    print("x2={0}".format(b))
    neg=0.0
    pos=0.0
    count=0
    if fun(a)*fun(b)<0.0:</pre>
        if fun(a)<0.0:
            neg=a
            pos=b
        else:
            neg=b
            pos=a
        while True:
            count=count+1
            if fun(neg)*fun(pos)<0.0:</pre>
                print()
                x0=nextapprox(neg, pos)
                print("Approximation {1} is x{2}={0}".format(round(x0,6), count, count+2))
                print("f(\{0\}) is \{1\}".format(round(x0, 6), round(fun(x0), 6)))
                if fun(x0)<0:
                     neg=round(x0, 6)
                else:
                     pos=round(x0, 6)
                print("Now root lies in ({0}, {1})".format(neg, pos))
                x1=nextapprox(neg, pos)
                print("Next approximation will be x=\{0\}".format(round(x1, 6)))
            if math.trunc(10**3 * x0) / 10**3==math.trunc(10**3 * x1) / 10**3:
                print()
                print("Approximate root is {0}".format(math.trunc(10**3 * x1) / 10**3))
                break
    else:
        print()
        print("Invalid interval entered")
Enter lower limit: 0
Enter upper limit: 5
```

```
Enter lower limit: 0
Enter upper limit: 5

x1=0.0
x2=5.0

Approximation 1 is x3=0.020214
f(0.020214) is -2.979373
Now root lies in (0.020214, 5.0)
Next approximation will be x=0.040208

Approximation 2 is x4=0.040208
f(0.040208) is -2.958142
```

	-	
Now root lies in (0.040208, 5.0) Next approximation will be x=0.059981		
Approximation 3 is x5=0.059981 f(0.059981) is -2.936312 Now root lies in (0.059981, 5.0)		•
In []:		
In []:		