COMPUTER SCIENCE

Database Management System

FD's & Normalization

Vijay Agarwal sir

11 Keys Concept

12 Finding Candidate keys

RDBMS Concept

Row (Tube | Record)

Relation (Table)

Column (Attoible | field)

Degree | Arity: # Attoible

Corelinality: # Tubles

Relational Schema: STUDENT (RULINO, Name Branch, CGPA)
Relational Instance extension: Set of Record

FD (Functional Dependency)

X > if tix=to:x then tix = tox must be some.

Trivial FD

Won Tovial FD

Semi Non Trivial FD

Super key

Attribute closure

A-B, B-HC

@ R does not Bunctionally determine C.

Condude (1) Rule out the FD Bossed on the Table.
(2) Trivial FD are always blid.

Keys Concept

SUPER KEY (Assume 6 C.K) Minimal Gudidate key 1 select og Remain CK Scrondal

except Pk

(5cr

Keys Concept

Cornelidate key: Minimal of Suber key IB Any (Proper Subset) of (Suber key) is also Super key than that Prober Subset is Called Candidate key (2 30 om)

RIARCOE) [AB-C, C-D, B-EA] (ABCDE) Prime | Cey = (B) Parper subset 15 is Candidate

RIABODEI (AB-)C, C+D, B>E) (ABCDE) AR is suber lay Proposer SUDSET $(A)^{\dagger} = (A)$ Prime low - (A,B) (B) - (BE) Non Prime | Non Pay = [CIDIE]

AB is Candidate key

· Bis Candidate key.

By Any Super Set of B

Bis Super key.

Any Super Set of Super key is also super key.

BBBCACE, BACDE

Suber Key

If AB is Candidate ky

Keys Concept

Suber key.
Ly Any Suber set of suber key is also suber key.

Comolidate key: minimal ab Super key

· Every Goodidate key is a Subset key.

(Note) But every Super key is Not a Candidate key.

Recourse Candidate key is a Minimal of Subser key

Prime key Attribute: Set at Attributes that Present/belongs to Any Some Candidate |cext.

Non Prime Non key Attribute: Set of Attribute

that Not Present/

Not belongs to Any Candidate key

Finding Candidate key:

AB is Candidate key.

The Attorbute which Is Not Present in Right Hond Side (R.M.S) that Attrobute Must be Pregent in Candidate (cy

Finding Multiple candidate key:

Procedure:

First Final Any One Candidate key, then that Attoibute (which Present is called Prime Attoibute.

Prime Attribute) than multiple

Candidate key are there.

D-13 Prime key Attribute = (B, Assume (Assume)

B is Candidate key. $\mathcal{D} \longrightarrow \mathcal{B}$ $\begin{array}{cccc}
D & \longrightarrow B \\
DE & \longrightarrow B \\
DE & \longrightarrow B
\end{array}$

R(ABCDEF) $\{A \rightarrow B, B \rightarrow C, D \rightarrow CEF\}$

Find candidate keys for the relation R?

$$(A)^{+} = (ABC)$$

$$(D)^{+} = (DCEF)$$

$$(AD)^{+} = (ABCDEF)$$

No Multiple Candidate key Only One C.K

R(ABCDE) {AB
$$\rightarrow$$
 C, C \rightarrow D, D \rightarrow E, B \rightarrow A, C \rightarrow B}

$$\subseteq \to \mathbb{B}$$

R(ABCD) $\{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$

Find candidate keys for the relation R?

$$D \rightarrow A$$

$$(D)^{+} - (DARC)$$

R(ABCDEF) $\{A \rightarrow BCDE, BC \rightarrow AD, D \rightarrow EF\}$

$$(B)^{\dagger} = (B)$$

$$(B)^{\dagger}=(B)$$
 $(C)^{\dagger}=(C)$
 $(B)^{\dagger}=(B)$
 $(B)^{\dagger}=(B)$
 $(C)^{\dagger}=(C)$
 $(C)^{\dagger}=(C)$
 $(C)^{\dagger}=(C)$
 $(C)^{\dagger}=(C)$

R(ABCD) F: $\{AB \rightarrow C, B \rightarrow D, C \rightarrow B, D \rightarrow B\}$

$$(B)^{+} = (B)$$

$$\frac{D}{A} = [ADBc]$$

$$\frac{D}{A} = [A]$$

$$\frac{D}{A} = [A]$$

$$\frac{D}{A} = [A]$$

ABValready taken

ABValready taken

already taken

Consider the following relational schema R(ABCDEF) with \bigcup functional dependency {AB \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow B} The number of candidate keys for relation R?

 $R(ABCDE) : \{AB \rightarrow C, BC \rightarrow D\}$

Find Candidate keys for the Relation R?

Any Doubt?

