Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (canceled)
- 2. (currently amended) Printing element-dot for simulating tonal values on a printing substrate having printing elements distributed over the area of a-the printing dot, characterised in that each of a plurality of the printing elements is bounded by S-shaped lines alone and the lines include an angle ≤ 90° at all the corners of the printing element, the printing element having at least three lines forming its sides.
- 3. (currently amended) Printing element-dot for simulating tonal values on a printing substrate having printing elements distributed over the area of a the printing dot, characterised in that each of a plurality of the printing elements is bounded by S-shaped lines alone and the lines include an angle ≤ 90° at all the corners of the printing element, and in that each line forming a side starts at the corner with a line descending into a valley as-and ends with a line descending from a hump or, the other way round, starts with a line ascending to a hump and ends with a line ascending from a valley.
- 4. (currently amended) Printing element dot according to claim 2 or 3, characterised in that the lines forming the sides of the each of the plurality of printing element elements are all the same length.

- 5. (currently amended) Printing element-dot according to claim 2 or 3, characterised in that a each of the plurality of printing element elements is bounded by four lines forming sides.
- 6. (currently amended) Printing element_dot according to claim 5, characterised in that the each of the plurality of printing element_elements is in the form of a four-bladed propeller.
- 7. (currently amended) Printing element particularly dot according to claim 2 or 3, characterised in that if the printing element is mirrored in a direction transverse to an axis (X X) running through the centre and the points of reversal and between the opposing sides, such as S shaped lines, a printing element of the same size and shape is obtained.
- 8. (currently amended) Printing-element-A process of using the printing dot according to claim 7, characterised in that in a comprising conducting a first printing process involving a plurality of colours the using the printing dot having printing elements of a first colour, and conducting a second printing process using the printing dot having printing elements of a second colour, wherein the first printing dot comprises printing elements which are each a mirrored form is in each case coloured of each printing element of the second printing dot in a different colour.
- 9. (currently amended) Printing element Process according to claim 8, for four-colour printing in the colours black, cyan, magenta and yellow, characterised in that

a printing element added to by mirroring is produced by two printing elements of the colours cyan and yellow and on the other hand of the colours magenta and black.

- 10. (currently amended) Printing element Process according to claim 8, for four-colour printing in the colours black, cyan, magenta and yellow, characterised in that a printing element added to by mirroring is produced by two printing elements of the colours cyan and magenta and on the other hand of the colours yellow and black.
- 11. (currently amended) Printing element Process according to claim 8, for four-colour printing in the colours black, cyan, magenta and yellow, characterised in that a printing element added to by mirroring is produced by the two printing elements of the colours cyan and black and on the other hand of the colours magenta and yellow.

12. (canceled)

13. (currently amended) Printing element dot according to claim 2 or 3, characterised in that the printing elements which are arranged next to one another in the printing element dot - without being arranged in a chessboard pattern - are so associated with one another that, at any tonal value, and even when the tonal value varies, the distances between the two adjoining S-shaped lines forming sides and the next printing element are constant along the length of the S-shaped line forming a side.

14. (currently amended) Printing element_dot_according to claim $\underline{5}$ _2 or 3, characterised in that the four lines forming the sides obey the following formulas relating to the unit area of dimensions $x \in [-E;E]$ and $y \in [-E;E]$ where $E \in [0;+\infty]$, where the zero point (0;0) is the centre of the unit area.

```
for all the radiuses ri:
i ε [1;2;3;4;5;6;7;8]
rl=r2 =r3 =r4 =r5=r6=r7=r8
r<sub>i</sub> ε [E/2;+∞]
for point (x_1, y_1):
x_1 = E - \sqrt{(r_i 2 - (E/2)^2)}
y_1 = E/2
for point (x_2; y_2):
x_2 = E/2
y_2 = E = \sqrt{(r_i 2 - (E/2)^2)}
for point (x_3;y_3):
x_3 = -E/2
y_3 = E - \sqrt{(r_i 2 - (E/2)^2)}
for point (x_4; y_4):
x_4 = E - \sqrt{(r_i 2 - (E/2)^2)}
y4 = E/2
for point (x_5; y_5)
x_5 = -E + \sqrt{(r_i 2 - (E/2)^2)}
y_5 = -E/2
for point (x_6; y_6):
x_6 = -E/2
y_6 = -E - \sqrt{(r_i 2 - (E/2)^2)}
for point (x_7;y_7)
```

$$x_7 = -E/2$$

$$y_7 = -E + \sqrt{(r_i 2 - (E/2)^2)}$$

for point $(x_8;y_8)$:

$$x_8 = E + \sqrt{(r_i 2 - (E/2)^2)}$$

$$y_8 = -E/2$$

points $(x_i; y_i)$ are the centres of the respective radiuses

for all points (x_i;y_i):

$$x_i \ \epsilon[-\infty;+\infty]$$

the formulas being correct for a printing element as shown below:

- 15. (currently amended) Printing element_dot_according to claim 3, characterised in that the each of the plurality of printing element_elements has at least three lines forming its sides.
- 16. (currently amended) Printing element_dot_according to claim 5, characterised in that the each of the plurality of printing element_elements has blades all of the same shape.