CNOS (PROJECT) - Amazon Data Center in Iasi

Step I - Analysis of the organization's requirements

- How many physical subnets are needed today?
 - ➤ 6 subnets
- How many physical subnets are expected to be needed in the near future?
 - > 8 subnets
- How many hosts must have the largest subnet today?
 - ➤ The total number of employees in the company is 200 who have 5 subnets divided among them which gives 40 hosts per subnet and 1 extra subnet for wireless devices.
- How many hosts must have the largest subnet in the near future?
 - ➤ 64 hosts
- To which address classes does the IP address belong?
 - ➤ Class C

Step II - Partition of bits in the host ID

Class C network: 192.168.0.0

As we have predicted, 8 subnets with 64 hosts/subnet

Number of subnet bits: $2^S >= 8 \longrightarrow S = 3$ bits

The number of host bits: $2^H - 2 >= 32$ \longrightarrow Because with 3 subnet bits, only 30 host addresses can be achieved so we proposed to choose 5 host bits in this case. Therefore, H = 5 ($2^5 - 2 = 30$) which leads to 8 subnets with 30 hosts/subnet.

Step III - Determining the custom subnet mask

Class C network: 192.168.0.0

3 bits for the subnet ID

Subnet mask (in binary): 111111111 . 111111111 . 111100000

Subnet mask (in decimal): 255 . 255 . 254

In CIDR notation: /27

Step IV - Determining the subnet identifier and IP address of the subnets

Class C network: 192.168.0.0

3 bits for the subnet ID

CIDR: /27

8 subnets: #0 - #7

Subnet	Subnet ID (binary)	IP address of the subnet
#0	000	11000000 . 10101000 . 00000000 . <mark>000</mark> 00000 192 . 168 . 0 . 0
#1	001	11000000 . 10101000 . 00000000 . <mark>001</mark> 00000 192 . 168 . 0 . 32
#2	010	11000000 . 10101000 . 00000000 . <mark>010</mark> 00000 192 . 168 . 0 . 64
#3	011	11000000 . 10101000 . 00000000 . <mark>011</mark> 00000 192 . 168 . 0 . 96
#4	100	11000000 . 10101000 . 00000000 . <mark>100</mark> 00000 192 . 168 . 0 . 128
#5	101	11000000 . 10101000 . 00000000 . <mark>101</mark> 00000 192 . 168 . 0 . 160
#6	110	11000000 . 10101000 . 00000000 . <mark>110</mark> 00000 192 . 168 . 0 . 192
#7	111	11000000 . 10101000 . 000000000 . <mark>111</mark> 00000 192 . 168 . 0 . 224

Step V - Allocating the host addresses for each subnet

The IP address: 192.168.0.0 /27

5 bits for host ID (32 - 27 = 5)

 $2^5 - 2 = 30$ hosts/subnet

Subnet	IP address of the subnet	Host Address Range	Broadcast address
#0	192 . 168 . 0 . 0	192 . 168 . 0 . 1 – 192 . 168 . 0 . 30	192.168.0.31
#1	192 . 168 . 0 . 32	192 . 168 . 0 . 33 – 192 . 168 . 0 . 62	192.168.0.63
#2	192 . 168 . 0 . 64	192 . 168 . 0 . 65 – 192 . 168 . 0 . 94	192.168.0.95
#3	192 . 168 . 0 . 96	192 . 168 . 0 . 97 – 192 . 168 . 0 . 126	192.168.0.127
#4	192 . 168 . 0 . 128	192 . 168 . 0 . 129 – 192 . 168 . 0 . 158	192.168.0.159
#5	192 . 168 . 0 . 160	192 . 168 . 0 . 161 – 192 . 168 . 0 . 190	192.168.0.191
#6	192 . 168 . 0 . 192	192 . 168 . 0 . 193 – 192 . 168 . 0 . 222	192.168.0.223
#7	192 . 168 . 0 . 224	192 . 168 . 0 . 225 – 192 . 168 . 0 . 254	192.168.0.255

<u>Step VI - Assigning of host addresses in each subnet – creation structure of the subnet network</u>

Class C network: 192.168.0.0

3 bits for the subnet ID

CIDR: /27

8 subnets: #0 - #7

Subnet	IP address of the subnet	Host Address Range
#0	192 . 168 . 0 . 0	192 . 168 . 0 . 1 – 192 . 168 . 0 . 30
#1	192 . 168 . 0 . 32	192 . 168 . 0 . 33 – 192 . 168 . 0 . 62
#2	192 . 168 . 0 . 64	192 . 168 . 0 . 65 – 192 . 168 . 0 . 94
#3	192 . 168 . 0 . 96	192 . 168 . 0 . 97 – 192 . 168 . 0 . 126
#4	192 . 168 . 0 . 128	192 . 168 . 0 . 129 – 192 . 168 . 0 . 158
#5	192 . 168 . 0 . 160	192 . 168 . 0 . 161 – 192 . 168 . 0 . 190
#6	192 . 168 . 0 . 192	192 . 168 . 0 . 193 – 192 . 168 . 0 . 222
#7	192 . 168 . 0 . 224	192 . 168 . 0 . 225 – 192 . 168 . 0 . 254