The utility of the Artificial Stomach Duodenum system in *in vivo* oral absorption modeling

Kaoutar Abbou Oucherif

Advanced Modeling Forum, London, April 2016

Outline

- Study objectives
- Experimental setup
- gCOAS ASD in silico model
- Simulation results
- Oral absorption simulations
- Conclusions

Study Objectives

- Understand the extent of precipitation for different salts of a Lilly molecule in the GI tract
- Extract precipitation kinetic parameters from the ASD in vitro experiments to be used in the in vivo oral absorption model

Experimental setup

All experiments were done under dog fasted conditions

volume of 30 mL

Nucleation Models

Classical nucleation:

$$- J_{prim} = \ln A_0 \left(\frac{-16\pi (\alpha \sigma)^3 v_0^2}{3k^3 T^3 \ln S^2} \right)$$

 Parameters to be estimated: pre-exponential factor and the surface energy correction factor.

Power law kinetics:

$$-J_{prim} = lnk_n \left(\frac{\Delta C}{\rho_c}\right)^n \exp\left(\frac{-E_{A,n}}{RT}\right)$$

 Parameters to be estimated: nucleation coefficient, nucleation order, and the activation energy.

Custom kinetics:

- E.g., extracting nucleation rates from probability distribution functions of induction time $P(t) = 1 \exp(jV(t t_g))$
- Input nucleation rate as a function of physiological parameters : J_{prim} = fcn(pH, C_{bile})

Growth model

Surface integration limited growth:

$$\Phi_{diss} = k_g (1 - S_{rel})^n$$

 ϕ_{diss} : flux of an individual specie leaving the solid due to dissolution k_a : surface integration rate constant

 S_{rel} : relative supersaturation $\frac{C}{C^{sat^{MW}}}$

n: surface integration order

Dissolution

At the solid-liquid interface:0 = {dissolution} + {reaction} + {diffusion}

$$K_{j} = \prod_{i=1}^{NC} (C_{i}^{s})^{\nu_{ij}}, j = 1,...,NR$$

$$C_{i^{*}}^{s} = S_{0}$$

$$0 = R_{i^{*}} \delta_{i,i^{*}} + \sum_{j=1}^{NR} \nu_{ij} r_{j} - \frac{D_{i}}{h} (C_{i}^{s} - C_{i}^{b}), \qquad i = 1,...,NC$$

7

gCOAS ASD in silico model

Simulation setup

Experimental Results: concentration profiles

Gastric concentration profiles

Case studied: compound + citric acid

Duodenal concentration profiles

Time (sec)

10

Experimental Results: pH profiles

Experimental Results: pH profiles

Estimating precipitation kinetics

Simulation results

Lack of fit test:

Weighted residual	χ ² value (95%)
42.33	52.19

Model parameter	Final value	Initial guess	95% C.I	Standard deviation
Growth constant	0.55	0.36	1.42	0.70
Growth order	1.60	0.81	2.29	1.13
Nucleation coefficient	14.01	13.85	974.9	481.2
Nucleation order	2.61	2.77	399.3	197.1

Work flow of oral absorption modeling using gCOAS

A gPROMS-based Computational Oral Absorption Simulation Framework

K. Sugano, Expert Opin. Drug Metab. Toxicol. (2009) 5(3), pp. 259-293

Incorporating ASD results in gCOAS GI model

Final remarks

- The gCOAS ASD framework allows to extract quantitative precipitation kinetic parameters from ASD data
- The kinetic parameters for precipitationin can be integrated in the gCOAS oral absorption model to better understand the impact of precipitation on bioavailability
- The ASD setup along with the gCOAS tools can further help investigate the impact of bile salts and pH on precipitation
- Custom precipitation kinetics can allow to account for changes in physiology (pH, bile concentration) on nucleation and growth