Machine Learning for Healthcare 6.871Jx

Survival Modeling

David Sontag

Survival modeling

We focus on <u>right-censored</u> data:

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Survival modeling

- Why not use classification, as before?
 - Less data for training (due to exclusions)
 - Pessimistic estimates due to choice of window
- What about regression, e.g. minimizing mean-squared error?
 - T is non-negative, may want long tails
 - If we just naively removed censored events, we would be introducing bias

Notation and formalization

- Data are (x, T, b)=(features, time, censoring), where b=0,1 denotes whether time is of censoring or event occurrence
- Let f(t) = P(t) be the probability of death at time t
- Survival function: the probability of an individual surviving beyond time t,

$$S(t) = P(T > t) = \int_{t}^{\infty} f(x)dx$$

Notation and formalization

Fig. 2: Relationship among different entities f(t), F(t) and S(t).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Kaplan-Meier estimator

 Example of a non-parametric method; good for unconditional density estimation

Observed event times

$$y_{(1)} < y_{(2)} < \cdots < y_{(D)}$$

 $d_{(k)}$ = # events at this time

 $n_{(k)}$ = # of individuals alive and uncensored

$$\widehat{S}_{K-M}(t) = \prod_{k: y_{(k)} \le t} \left\{ 1 - \frac{d_{(k)}}{n_{(k)}} \right\}$$

[Figure credit: Rebecca Peyser]

Maximum likelihood estimation

Commonly parametric densities for f(t):

Table 2.1 Useful parametric distributions for survival analysis

Distribution
Exponential $(\lambda > 0)$
Weibull $(\lambda, \phi > 0)$
Log-normal
$(\sigma > 0, \mu \in R)$
Log-logistic
$(\lambda > 0, \phi > 0)$
Gamma $(\lambda, \phi > 0)$
Gompertz
$(\lambda, \phi > 0)$

(parameters can be a function of x)

Survival function $S(t)$	Density function $f(t)$
$\exp(-\lambda t)$	$\lambda \exp(-\lambda t)$
$\exp(-\lambda t^{\phi})$	$\lambda \phi t^{\phi-1} \exp(-\lambda t^{\phi})$
$1 - \Phi\{(\ln t - \mu)/\sigma\}$	$\varphi\{(\ln t - \mu)/\sigma\}(\sigma t)^{-1}$
$1/(1+\lambda t^{\phi})$	$(\lambda \phi t^{\phi - 1})/(1 + \lambda t^{\phi})^2$
$1 - I(\lambda t, \phi)$	$\{\lambda^{\phi}/\Gamma(\phi)\}t^{\phi-1}\exp(-\lambda t)$
$\exp\{\frac{\lambda}{\phi}(1-e^{\phi t})\}$	$\lambda e^{\phi t} \exp\{\frac{\lambda}{\phi}(1-e^{\phi t})\}$

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

Maximum likelihood estimation

Two kinds of observations: censored and uncensored

Uncensored likelihood

$$p_{\boldsymbol{\theta}}(T=t\,|\,\mathbf{x})=f(t)$$

Censored likelihood

$$p_{\theta}^{\text{censored}}(t \mid \mathbf{x}) = p_{\theta}(T > t \mid \mathbf{x}) = S(t)$$

• Putting the two together, we get:

$$\sum_{i=1}^{n} b_i \log p_{\theta}^{\text{censored}}(t \mid \mathbf{x}) + (1 - b_i) \log p_{\theta}(t \mid \mathbf{x})$$

Optimize via gradient or stochastic gradient ascent!

Evaluation for survival modeling

• Concordance-index (also called C-statistic): look at model's ability to predict *relative* survival times:

$$\hat{c} = \frac{1}{num} \sum_{i:b_i = 0} \sum_{j:y_i < y_j} I[S(\hat{y}_j | X_j) > S(\hat{y}_i | X_i)]$$

• Illustration – blue lines denote pairwise comparisons:

Black = uncensored Red = censored

Equivalent to AUC for binary variables and no censoring

Final thoughts on survival modeling

- Could also evaluate:
 - Mean-squared error for uncensored individuals
 - Held-out (censored) likelihood
 - Derive binary classifier from learned model and check calibration

 Partial likelihood estimators (e.g. for cox-proportional hazards models) can be much more data efficient