→ seaborn

• https://seaborn.pydata.org/api.html

```
import warnings
warnings.filterwarnings('ignore')
```

▼ 실습파일 구성

- PII.csv
- pandas Package

```
import pandas as pd
```

• .read_csv()

```
url = 'https://raw.githubusercontent.com/rusita-ai/pyData/master/PII.csv'

DF = pd.read_csv(url)

DF.head()
```

	Name	Gender	Age	Grade	Picture	BloodType	Height	Weight
0	송태섭	남자	21	3	무	В	179.1	63.9
1	최유정	여자	23	1	유	Α	177.1	54.9
2	이한나	여자	20	1	무	Α	167.9	50.2
3	김소혜	여자	23	3	무	Ο	176.1	53.5
4	서태웅	남자	24	4	무	В	176.1	79.8

▼ seaborn Package

```
import seaborn as sns
import matplotlib.pyplot as plt
```

▼ I. 선 그래프

 $\bullet \ \underline{https://seaborn.pydata.org/generated/seaborn.lineplot.html \#seaborn.lineplot}$

▼ II. 막대 그래프

▼ 1) 연속형 - .barplot()

 $\bullet \ \underline{https://seaborn.pydata.org/generated/seaborn.barplot.html \#seaborn.barplot}$

▼ 2) 명목형 - .countplot()

 $\bullet \ \underline{https://seaborn.pydata.org/generated/seaborn.countplot.html \#seaborn.countplot}$

▼ III. 히스토그램

 $\bullet \ \ \, \underline{https://seaborn.pydata.org/generated/seaborn.histplot.html \#seaborn.histplot}$

▼ IV. 상자 그래프

 $\bullet \ \underline{https://seaborn.pydata.org/generated/seaborn.boxplot.html \#seaborn.boxplot}$

▼ V. 산점도

• https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot

▼ VI. 바이올린 그래프

• https://seaborn.pydata.org/generated/seaborn.violinplot.html

▼ VII. Histograms

→ 2) Multiple Plots

```
fig, ax = plt.subplots(nrows = 2, ncols = 2, figsize = (15, 10))
sns.barplot(data = DF, x = 'Grade', y = 'Age',
               hue = 'Gender', ci = None, ax = ax[0, 0])
sns.histplot(data = DF, x = 'Weight',
                bins = 6, alpha = 0.3, ax = ax[0, 1])
sns.boxplot(data = DF, x = 'BloodType', y = 'Height',
              order = ['A', 'B', 'O', 'AB'], ax = ax[1, 0])
sns.scatterplot(data = DF, x = 'Height', y = 'Weight', hue = 'Grade', style = 'BloodType', s = 50, ax = ax[1, 1])
# 'best', 'upper right', 'upper left', 'lower left', 'lower right'
# 'right', 'center left', 'center right', 'lower center', 'upper center', 'center'
ax[0, 0].legend(labels = ['Male', 'Female'], loc = 'upper left', title = 'Gender')
ax[0, 0].set_title('Bar Plot')
ax[0, 1].set_title('Histogram')
ax[1, 0].set_title('Box Plot')
ax[1, 1].set_title('Scatter Plot')
ax[0, 0].set_xlabel('Grade')
ax[0, 1].set_xlabel('Weight')
ax[1, 0].set_xlabel('Blood Type')
ax[1, 1].set_xlabel('Height')
ax[0, 0].set_ylabel('Age Mean')
ax[0, 1].set_ylabel('Frequency')
ax[1, 0].set_ylabel('Height')
ax[1, 1].set_ylabel('Weight')
plt.show()
```


#

#

#

The End

#

#

#