# Podstawy uczenia maszynowego - Projekt 5 Damian Wasilenko, Dawid Macek; pn. 14:40, B

## 1 Cel projektu

Celem projektu jest porównanie trzech klasyfikatorów:

- AdaBoost bazującego na drzewach decyzjnych
- Głębokiej sieci neuronowej bez warstw konwolucyjnych MLP
- Głębokiej sieci neuronowej z warstwami konwolucyjnymi CNN

# 2 Zbiór danych

FMNIST, obrazki 28x28, 10 klas, 70 tysięcy próbek.



Rysunek 1: Wizualizacja FMNIST

# 3 Modele

#### 3.1 AdaBoost

 $\bullet\,$ Bazuje na drzewach decyzyjnych

• Przyjęliśmy głębokość drzewa równą 10

### 3.2 Multi Layer Perceptron - bez konwolucji

• Około 300 tysięcy parametrów

• Funkcja strat: binary crossentropy

• Metryka: accuracy

• Optimizer: Adam

| Typ                      | Parametr | Aktywacja                |  |
|--------------------------|----------|--------------------------|--|
| Wejśce                   | 28*28    | -                        |  |
| $_{ m Dense}$            | 64       | Relu                     |  |
| $\operatorname{Dropout}$ | 0.2      | -                        |  |
| $_{ m Dense}$            | 128      | Relu                     |  |
| $\operatorname{Dropout}$ | 0.2      | -                        |  |
| $_{ m Dense}$            | 256      | Relu                     |  |
| $\operatorname{Dropout}$ | 0.2      | -                        |  |
| $_{ m Dense}$            | 512      | Relu                     |  |
| Dropout                  | 0.2      | -                        |  |
| $_{ m Dense}$            | 256      | Relu                     |  |
| Dropout                  | 0.2      | -                        |  |
| Wyjście                  | 10       | $\operatorname{Softmax}$ |  |

Tablica 1: Architektura MLP

### 3.3 Convolutional Neural Network

• Około 300 tysięcy parametrów

• Funkcja strat: binary crossentropy

• Metryka: accuracy

• Optimizer: Adam

| Typ                      | Opis           | Kernel | Strides | Aktywacja                |
|--------------------------|----------------|--------|---------|--------------------------|
| Wejście                  | (28, 28, 1)    | -      | -       | -                        |
| $\operatorname{Conv2D}$  | 32             | (3, 3) | (1, 1)  | $\operatorname{Relu}$    |
| BatchNormalization       | . <del>-</del> | -      | -       | -                        |
| $\operatorname{Conv2D}$  | 32             | (3, 3) | (1, 1)  | $\operatorname{Relu}$    |
| BatchNormalization       | <b>,</b>       | -      | -       | -                        |
| Conv2D                   | 32             | (5, 5) | (2, 2)  | -                        |
| BatchNormalization       | _              | -      | -       | -                        |
| $\operatorname{Dropout}$ | 0.4            | -      | -       | -                        |
| Conv2D                   | 64             | (3, 3) | (1, 1)  | $\operatorname{Relu}$    |
| BatchNormalization       | _              | -      | -       | -                        |
| Conv2D                   | 64             | (3, 3) | (1, 1)  | $\operatorname{Relu}$    |
| BatchNormalization       | _              | -      | -       | -                        |
| $\operatorname{Conv2D}$  | 64             | (5, 5) | (2, 2)  | Relu                     |
| BatchNormalization       | <del>-</del>   | -      | _       | -                        |
| $\operatorname{Dropout}$ | 0.4            | -      | -       | -                        |
| Conv2D                   | 128            | (4, 4) | (1, 1)  | $\operatorname{Relu}$    |
| BatchNormalization       | _              | -      | -       | -                        |
| ${ m Flatten}$           | -              | -      | _       | -                        |
| $\operatorname{Dropout}$ | 0.4            | -      | -       | -                        |
| Dense                    | 10             | -      | _       | $\operatorname{Softmax}$ |

Tablica 2: Architektura CNN

### 4 Jakość w zależności od ilości uczących

W ogólności im więcej danych tym lepsze wyniki [Rysunek 2].

Warte uwagi jest to, że modele ćwiczone dla dużej ilości danych szkolone były krócej(około 10 epok dla sieci) niż w kolejnym zadaniu. A mimo to najwyższy uzyskany wynik jest lepszy niż przy wydłużonym treningu.

AdaBoost zachowuje się dziwnie, ale może to wynikać ze zbyt małej liczy słabych klasyfikatorów(około 100).

#### 5 Jakość klasyfikatorów w zależności od czasu treningu

Ze względu na to, że sieci trenujemy na karcie graficznej, a AdaBoosta na procesorze nie możemy porównać dokładnie obu metod. Wynika to z tego, że jeden model otrzymuje znacznie więcej mocy obliczeniowej w jednostce czasu.

Dlatego dla AdaBoosta mierzymy czas rzeczywisty, a dla sieci liczbę epok.

#### 5.1 AdaBoost

Czas treningu jest zwiększany poprzez dodowanie kolejnych klasyfikatorów do boostowania. Model wykazuje poprawę metryk wraz z czasem, ale widać tendencję do spłaszczania się z czasem [Rysunek 4]

#### 5.2 Sieci neuronowe

Sieci neuronowe także wydają się osiągać szczyt swoich możliwości od pewnej liczby epok. Z tym, że ten szczyt jest znacznie wyżej niż dla AdaBoosta [Rysunek 3].

### 6 Ocena mocy klasyfikatorów

Wszystkie klasyfikatory tracą dokładność wraz ze zwiększaniem zaszumienia danych treningowych. Jedynym wyjątkiem jest klasyfikator MLP, w którym pojawiają się dziwne fluktuacje dokładności, ale może wynikać to z niestarannie dobranej architektury sieci. Finalnie każdy klasyfikator osiąga dokładność 10%, czyli staje się klasyfikatorem losowym [Rysunek 5].

#### 7 Wnioski

- Porównywanie metod szkolonych na różnych platformach sprzętowych jest trudne.
- Sieci neuronowe osiągają znacznie lepsze wyniki od AdaBoosta, ale nie można jednoznacnzie stwierdzić, że to drugie jest gorsze. Ponieważ AdaBoosta można próbować poprawić na przykład przez zwiększenie skomplikowania klasyfikatorów bazowych.
- Im więcej danych tym model daje lepsze rezultaty.
- Od pewnego momentu modele osiągają pewną dokładność, gdzie przedłużanie szkolenia nie daje żadnych
  rezultatów. W przypadku modeli o bardzo dużej liczbie parametrów i zbyt długim czasie treningu można
  doprowadzić do overfittingu.
- Zwiększanie ilości danych daje lepszy efekt niż zwiększanie długości trenowania.
- Wszystkie modele reagują podbnie na zaszumienie danych treningowych.



Rysunek 2: Miary jakości klasyfikatorów w zależności od ilości przykładów uczących.



Rysunek 3: Miary jakości sieci w zależności od ilości epok



Rysunek 4: Miary jakości AdaBoosta w zależności od czasu treningu.



Rysunek 5: Miary jakości klasyfikatorów ze względu na stopień zaszumienia danych treningowych.