Devoir à la maison n°04 : corrigé

Solution 1

- **1. a.** Soit $(z, z') \in (\mathbb{C} \setminus \{-i\})^2$ tel que f(z) = f(z'). Alors $\frac{iz+1}{z+i} = \frac{iz'+1}{z'+i}$ donc (iz+1)(z'+i) = (iz'+1)(z+i). En développant, on obtient izz' + z' z + i = izz' + z z' + i puis z = z' donc f est injective.
 - **b.** Soit $Z \in Imf$. Il existe donc $z \in \mathbb{C} \setminus \{-i\}$ tel que Z = f(z). Supposons Z = i. Alors $\frac{iz+1}{z+i} = i$ puis iz+1 = i(z+i) = iz i, ce qui est absurde. Ainsi $Z \neq i$ de sorte que $Imf \subset \mathbb{C} \setminus \{i\}$. Réciproquement, soit $Z \in \mathbb{C} \setminus \{i\}$. Posons $z = \frac{1-iZ}{Z-i}$. Alors z(Z-i) = 1-iZ puis Z(z+i) = iz+1. En particulier, $z \neq -i$ puisqu'alors on aurait $0 = i \times (-1) + 1 = 2$. Ainsi $Z = \frac{iz+1}{z+i} = f(z)$ de sorte que $Z \in Imf$. Par conséquent, $\mathbb{C} \setminus \{i\} \subset Imf$. Par double inclusion, $Imf = \mathbb{C} \setminus \{i\}$. En particulier, f n'est pas surjective puisque $Imf \neq \mathbb{C}$.
 - **c.** Soit $Z \in f(\mathcal{P})$. Il existe donc $z \in \mathcal{P}$ tel que Z = f(z). Remarquons alors que

$$|iz+1|^2 - |z+i|^2 = (iz+1)\overline{iz+1} - (z+i)\overline{z+i}$$

$$= (iz+1)(-i\overline{z}+1) - (z+i)(\overline{z}-i)$$

$$= (z\overline{z}+iz-i\overline{z}+1) - (z\overline{z}-iz+i\overline{z}+1)$$

$$= 2i(z-\overline{z}) = -4\operatorname{Im}(z) < 0$$

On en déduit donc que

$$|Z| = |f(z)| = \frac{|iz+1|}{|z+i|} < 1$$

Ceci signifie que $Z \in \mathcal{D}$. Finalement, $f(\mathcal{P}) \subset \mathcal{D}$.

d. Soit $Z \in \mathcal{D}$. Alors $Z \neq i$ donc Z admet un unique antécédent z par f par injectivité de f. On a déjà montré à la question **1.b** que cet unique antécédent était $z = \frac{1-iZ}{Z-i}$. Il s'agit alors de montrer que $z \in \mathcal{P}$.

$$\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z})$$

$$= \frac{1}{2i} \left(\frac{1 - iZ}{Z - i} - \overline{\left(\frac{1 - iZ}{Z - i}\right)} \right)$$

$$= \frac{1}{2i} \left(\frac{1 - iZ}{Z - i} - \frac{1 + i\overline{Z}}{\overline{Z} + i} \right)$$

$$= \frac{1}{2i} \cdot \frac{(1 - iZ)(\overline{Z} + i) - (1 + i\overline{Z})(Z - i)}{(Z - i)(\overline{Z} + i)}$$

$$= \frac{1}{2i} \cdot \frac{\left(Z + \overline{Z} + i - iZ\overline{Z}\right) - \left(Z + \overline{Z} - i + iZ\overline{Z}\right)}{(Z - i)\overline{Z} - i}$$

$$= \frac{1}{2i} \cdot \frac{2i - 2iZ\overline{Z}}{|Z - i|^2} = \frac{1 - |Z|^2}{|Z - i|^2}$$

Or $Z \in \mathcal{D}$ donc |Z| < 1 de sorte que $\mathrm{Im}(z) > 0$ i.e. $z \in \mathcal{P}$. On a donc prouvé que tout élément de \mathcal{D} admettait un unique antécédent par f dans \mathcal{P} . Puisqu'on sait également que $f(\mathcal{P}) \subset \mathcal{D}$, f induit une bijection de \mathcal{P} sur \mathcal{D} .

e. Soit $z \in \mathbb{C} \setminus \{i\}$. Alors

$$z \in f^{-1}(\mathbb{U})$$

$$\Leftrightarrow \qquad f(z) \in \mathbb{U}$$

$$\Leftrightarrow \qquad f(z)\overline{f(z)} = 1$$

$$\Leftrightarrow \qquad \frac{iz+1}{z+i} \cdot \frac{-i\overline{z}+1}{\overline{z}-i} = 1$$

$$\Leftrightarrow \qquad (iz+1)(-i\overline{z}+1) = (z+i)(\overline{z}-i)$$

$$\Leftrightarrow \qquad z\overline{z}+iz-i\overline{z}+1 = z\overline{z}+i\overline{z}-iz+1$$

$$\Leftrightarrow \qquad z = \overline{z}$$

$$\Leftrightarrow \qquad z \in \mathbb{R}$$

Ainsi
$$f^{-1}(\mathbb{U}) = \mathbb{R}$$
.

2. a. Soit $z \in \mathcal{P}$.

$$\operatorname{Im}(g(z)) = \frac{1}{2i}(g(z) - \overline{g(z)}) = \frac{1}{2i}\left(\frac{1}{\overline{z}} - \frac{1}{z}\right) = \frac{1}{2i} \cdot \frac{z - \overline{z}}{2i|z|^2} = \frac{\operatorname{Im}(z)}{|z|^2} > 0$$

donc $g(z) \in \mathcal{P}$. L'application g est par conséquent bien définie.

- **b.** Il suffit de vérifier que g est une involution. En effet, pour tout $z \in \mathcal{P}$, g(g(z)) = z donc $g \circ g = \mathrm{Id}_{\mathcal{P}}$. Puisque g est une involution, elle est bijective.
- 3. **a.** Soit $z \in \mathcal{P}$. Supposons $z \sin \theta + \cos \theta = 0$. Alors $\operatorname{Im}(z \sin \theta + \cos \theta) = 0$ et donc $\sin \theta \cdot \operatorname{Im}(z) = 0$. Puisque $\operatorname{Im}(z) > 0$, $\sin \theta = 0$. Or $z \sin \theta + \cos \theta = 0$ donc $\cos \theta = 0$. On a donc $\sin \theta = \cos \theta = 0$, ce qui est absurde puisque $\sin^2 \theta + \cos^2 \theta = 1$. Finalement $z \sin \theta + \cos \theta \neq 0$, ce qui prouve que $A_{\theta}(z)$ est bien défini. Montrons maintenant que $A_{\theta}(z) \in \mathcal{P}$.

$$\begin{split} \operatorname{Im}(\mathsf{A}_{\theta}(z)) &= \frac{1}{2i} \left(\mathsf{A}_{\theta}(z) - \overline{\mathsf{A}_{\theta}(z)} \right) \\ &= \frac{1}{2i} \left(\frac{z \cos \theta - \sin \theta}{z \sin \theta + \cos \theta} - \frac{\overline{z} \cos \theta - \sin \theta}{\overline{z} \sin \theta + \cos \theta} \right) \\ &= \frac{1}{2i} \cdot \frac{(z \cos \theta - \sin \theta)(\overline{z} \sin \theta + \cos \theta) - (\overline{z} \cos \theta - \sin \theta)(z \sin \theta + \cos \theta)}{|z \sin \theta + \cos \theta|^2} \\ &= \frac{1}{2i} \cdot \frac{(z\overline{z} \cos \theta \sin \theta + z \cos^2 \theta - \overline{z} \sin^2 \theta - \sin \theta \cos \theta) - (z\overline{z} \cos \theta \sin \theta - z \sin^2 \theta + \overline{z} \cos^2 \theta - \sin \theta \cos \theta)}{|z \sin \theta + \cos \theta|^2} \\ &= \frac{1}{2i} \cdot \frac{z(\cos^2 \theta + \sin^2 \theta) - \overline{z}(\cos^2 \theta + \sin^2 \theta)}{|z \sin \theta + \cos \theta|^2} \\ &= \frac{z - \overline{z}}{2i|z \sin \theta + \cos \theta|^2} = \frac{\operatorname{Im}(z)}{|z \sin \theta + \cos \theta|^2} \end{split}$$

Or $z \in \mathcal{P}$ donc Im(z) > 0. Ainsi $\text{Im}(A_{\theta}(z)) > 0$ i.e. $A_{\theta}(z) \in \mathcal{P}$.

- **b.** On vérifie immédiatement que $A_0(z) = z$ pour tout $z \in \mathcal{P}$. Autrement dit, $A_0 = \mathrm{Id}_{\mathcal{P}}$.
- **c.** Soit $z \in \mathcal{P}$. Alors

$$\begin{split} A_{\theta}(A_{\varphi}(z)) &= \frac{A_{\varphi}(z)\cos\theta - \sin\theta}{A_{\varphi}(z)\sin\theta + \cos\theta} \\ &= \frac{\frac{z\cos\varphi - \sin\varphi}{z\sin\varphi + \cos\varphi} \cdot \cos\theta - \sin\theta}{\frac{z\cos\varphi - \sin\varphi}{z\sin\varphi + \cos\varphi} \cdot \sin\theta + \cos\theta} \\ &= \frac{(z\cos\varphi - \sin\varphi)\cos\theta - (z\sin\varphi + \cos\varphi)\sin\theta}{(z\cos\varphi - \sin\varphi)\sin\theta + (z\sin\varphi + \cos\varphi)\cos\theta} \\ &= \frac{z(\cos\varphi - \sin\varphi)\sin\theta + (z\sin\varphi + \cos\varphi)\cos\theta}{(z\cos\varphi\sin\theta - \sin\varphi\sin\theta) - (\sin\varphi\cos\theta + \cos\varphi\sin\theta)} \\ &= \frac{z(\cos\varphi\cos\theta - \sin\varphi\sin\theta) - (\sin\varphi\cos\theta + \cos\varphi\sin\theta)}{z(\cos\varphi\sin\theta + \sin\varphi\cos\theta) + \cos\varphi\cos\theta - \sin\varphi\sin\theta} \\ &= \frac{z\cos(\theta + \varphi) - \sin(\theta + \varphi)}{z\sin(\theta + \varphi) + \cos(\theta + \varphi)} \\ &= A_{\theta + \varphi}(z) \end{split}$$

On en déduit que $A_{\theta} \circ A_{\varphi} = A_{\theta + \varphi}$.

d. Il suffit de remarquer

$$A_{\theta} \circ A_{-\theta} = A_{-\theta} \circ A_{\theta} = A_{\theta-\theta} = A_0 = \mathrm{Id}_{\mathcal{P}}$$

Ainsi A_{θ} est bijective et $A_{\theta}^{-1} = A_{-\theta}$.

Solution 2

1. On a donc $z = e^{i\theta}$. Tout d'abord,

$$1 + z = 1 + e^{i\theta} = 2\cos\left(\frac{\theta}{2}\right)e^{\frac{i\theta}{2}}$$

de sorte que

$$|1+z| = 2\left|\cos\left(\frac{\theta}{2}\right)\right|$$

Remarquons que pour $z \neq -1$ i.e. $\theta \not\equiv \pi[2\pi]$,

$$z^{2} - z + 1 = \frac{1 + z^{3}}{1 + z} = \frac{1 + e^{3i\theta}}{1 + e^{i\theta}} = \frac{2\cos\left(\frac{3\theta}{2}\right)e^{\frac{3i\theta}{2}}}{2\cos\left(\frac{\theta}{2}\right)e^{\frac{i\theta}{2}}}$$

Ainsi

$$|z^2 - z + 1| = \left| \frac{\cos\left(\frac{3\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} \right|$$

De plus, pour tout $x \in \mathbb{R}$,

$$\cos(3x) = \cos(2x)\cos(x) - \sin(2x)\sin(x)$$

$$= (2\cos^2(x) - 1)\cos(x) - 2\sin^2(x)\cos(x)$$

$$= 2\cos^3(x) - \cos(x) - 2(1 - \cos^2(x))\cos(x)$$

$$= 4\cos^3(x) - 3\cos(x)$$

On en déduit donc que

$$|z^2 - z + 1| = \left| 4\cos^2\left(\frac{\theta}{2}\right) - 3\right|$$

Remarquons que cette égalité est encore valable lorsque z=-1 i.e. $\theta \equiv \pi[2\pi]$ puisqu'alors, $\cos\left(\frac{\theta}{2}\right)=0$. Finalement,

$$f(z) = 2\left|\cos\left(\frac{\theta}{2}\right)\right| + \left|4\cos^2\left(\frac{\theta}{2}\right) - 3\right|$$

2. La fonction g étant paire, on peut se contenter de déterminer ses extrema sur [0, 1].

Pour
$$t \in \left[0, \frac{\sqrt{3}}{2}\right]$$
,

$$g(t) = -4t^2 + 2t + 3$$

Ainsi g est croissante sur $\left[0, \frac{1}{4}\right]$ puis décroissante sur $\left[\frac{1}{4}, \frac{\sqrt{3}}{2}\right]$.

Pour
$$t \in \left[\frac{\sqrt{3}}{2}, 1\right]$$
,

$$g(t) = 4t^2 + 2t - 3$$

Ainsi g est croissante sur $\left[\frac{\sqrt{3}}{2}, 1\right]$.

On peut résumer la situation par un tableau de variations.

On en déduit que g admet pour maximum $\frac{13}{4}$ et pour minimum $\sqrt{3}$ sur l'intervalle [0,1]. Puisque g est paire, il s'agit également du maximum et du minimum de g sur l'intervalle [-1,1].

3. Remarquons que pour $z \in \mathbb{U}$

$$f(z) = g\left(\cos\left(\frac{\theta}{2}\right)\right)$$

où θ désigne un argument de z. Comme cos est à valeurs dans [-1, 1], la question précédente montre que

$$\forall z \in \mathbb{U}, \ \sqrt{3} \le f(z) \le \frac{13}{4}$$