Uma indústria, desejando melhorar o desempenho de seus 30 funcionários da área administrativa, montou 3 cursos experimentais de inglês utilizando 3 metodologias distintas (MA, MB e MC). Os conceitos, A, B, C, obtidos pelos funcionários em cada curso são mostrados a seguir:

Método A (MA): BABBAACBAA Método B (MB): CBCACCCC Método C (MC): CABBCCCBCBC

- (a) Identifique as variáveis em estudo. Classifique-as.
- (b) Construa uma tabela de contingência para as variáveis 'Conceito' e 'Metodologia'.
- (c) Podemos dizer que há indícios da existência de associação entre conceito e metodologia? Justifique.
- (a) Método do curso: qualitativa nominal

Conceito: qualitativa ordinal

(b) Tabela de Contingência entre Método e Conceito (% em linhas)

` '	-			·
Método		Tatal		
	A	В	<i>C</i>	Total
MA	5 (50%)	4 (40%)	1 (10%)	10 (100%)
MB	1 (11,1%)	1 (11,1%)	7 (77,8%)	9 (100%)
MC	1 (9,1%)	4 (36,4%)	6 (54,5%)	11 (100%)
Total	7 (23,3%)	9 (30%)	14 (46,7%)	30 (100%)

(c) Obter % em linha a mão (na tabela acima) e via Rcmd a partir da tabela de dupla entrada

Estatísticas -> Tabelas de Contingência -> Digite e analise tabela de dupla entrada

Saída Rcmdr

> .Table # Counts

A B C

MA 5 4 1

MB 1 1 7

MC 1 4 6

> rowPercents(.Table) # Row Percentages

A B C Total Count
MA 50.0 40.0 10.0 100 10
MB 11.1 11.1 77.8 100 9
MC 9.1 36.4 54.5 100 11

Sim, há indícios de associação entre o método do curso e o conceito alcançado: o método B apresenta uma proporção alta de funcionários com grau C (77,8%), enquanto que o Método A uma baixa proporção de funcionários com esse grau C (10%); o método C apresenta uma proporção baixa (9,1%) de funcionários com grau A; a maioria teve grau B ou C. O Método que aparenta ter melhor desempenho é o Método A.

Os dados abaixo correspondem aos valores do comprimento (em cm) da asa e a idade (em dias) de 13 pardais, com o objetivo de investigar possível associação entre essas medidas das aves, após a eclosão.

X: Idade (em dias)	Y: Tamanho da asa (em cm)
3	1,4
4	1,5
5	2,2
6	2,4
8	3,1
9	3,2
10	3,2
11	3,9
12	4,1
14	4,7
15	4,5
16	5,2
17	5,0

- (a) Construa (a mão) o diagrama de dispersão entre as variáveis idade (X) e tamanho da asa (Y). O que o gráfico sugere?
- (b) Calcule o coeficiente de correlação linear de Pearson entre X e Y.
- (c) Ajuste uma reta de regressão para descrever a relação entre as variáveis X e Y. Qual é a interpretação do coeficiente angular estimado b?
- (d) De quanto é a variação média no tamanho da asa entre pardais com diferença de idade de 4 dias no período inicial de vida após a eclosão?
- (e) Considerando a reta estimada em (c), estime o tamanho médio da asa correspondente a pardais com 1 semana de vida e com 2 semanas de vida.

(a)

(b)
$$r = \frac{\sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}}{(n-1)S_Y S_Y} \quad \text{e} \quad S_X^2 = \frac{\sum_{i=1}^{n} X_i^2 - n \overline{X}^2}{n-1}.$$

X (Idade em anos)	Y (Tamanho da Asa em cm)	χ^2	Y^2	X.Y
3	1,4	9	1,96	4,2
4	1,5	16	2,25	6
5	2,2	25	4,84	11
6	2,4	36	5,76	14,4
8	3,1	64	9,61	24,8
9	3,2	81	10,24	28,8
10	3,2	100	10,24	32
11	3,9	121	15,21	42,9
12	4,1	144	16,81	49,2
14	4,7	196	22,09	65,8
15	4,5	225	20,25	67,5
16	5,2	256	27,04	83,2
17	5	289	25	85
130	44,4	1562	171,3	514,8

$$\bar{x} = \frac{130}{13} = 10 \quad \bar{y} = \frac{44.4}{13} = 3,42$$

$$S_X^2 = \frac{1562 - 13 \times 10^2}{13 - 1} = \frac{262}{12} = 21,8333 \Rightarrow S_X = \sqrt{21,8333} \cong 4,673$$

$$S_Y^2 = \frac{171.3 - 13 \times 3,42^2}{13 - 1} = \frac{19,2468}{12} = 1,604 \Rightarrow S_X = \sqrt{1,604} \cong 1,266$$

Página 4

Assim,
$$r = \frac{\sum_{i=1}^{n} X_i Y_i - n \overline{XY}}{(n-1)S_x S_y} = \frac{514.8 - 13 \times 10 \times 3.421}{12 \times 4.673 \times 1,266} = \frac{70.2}{70.992} \cong 0.9888$$

(c) Reta ajustada: $\hat{Y} = a + bX$, sendo

$$b = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{(n-1) S_{X}^{2}} \quad e \quad a = \overline{Y} - b \overline{X}$$

Assim, substituindo temos:
$$b = \frac{514.8 - 13 \times 10 \times 3.42}{12 \times 21.8333} = \frac{70.2}{261.9996} \cong 0,268$$

$$a = 3.42 - 0.268 \times 10 = 3.42 - 2.68 = 0,740$$

Logo, a reta ajustada é: $\hat{Y} = 0.740 + 0.268X$

Interpretação de b: A cada aumento de 1 dia na idade do pardal, o comprimento da asa aumenta, <u>em média</u>, 0,268 cm.

(d) Pardais com diferença de 4 dias, tem diferença no comprimento da asa de $4 \times b = 4 \times 0,268$ = 1,072 cm.

(e) Para
$$x = 7$$
, $\hat{Y} = 0.740 + 0.268 \times 7 = 2.616 cm$

Para
$$x = 14$$
, $\hat{Y} = 0.740 + 0.268 \times 14 = 4.492$ cm

Um estudo foi realizado para comparar vinho *Pinot Noir* produzido em três diferentes regiões. Amostras de cada região foram tomadas e avaliadas por um painel de juízes em uma série de características. Quanto maior a pontuação, melhor o vinho. Os dados estão no arquivo **Wine.xls**.

- (a) Construa o gráfico de dispersão para Aroma e Flavor (Sabor). Identifique no mesmo gráfico as amostras quanto à região. Comente sobre a relação entre estas variáveis em cada região.
- (b) Suponha que a qualidade dos vinhos é classificada como "1" se 'Quality' < 11, como "2" se 'Quality' estiver entre 11 e 12; e como "3" se for superior a 12. Construa uma tabela de contingência com a distribuição das amostras de acordo com a qualidade e a região. Há indicação de associação entre as variáveis? Justifique.

Leitura dos dados:

Dados -> Importar arquivos de dados -> do arquivo Excel

(a) Primeiro converter (Region) Região para Fator:

Dados -> Modificação de variáveis ...-> Converter variável numérica para fator-> Escolher Region e dar nome para a nova variável (exemplo: RegFat)->Ok-> Dar nomes para as regiões (Região 1, Regiao 2, Regiao 3)-> Ok

Fazer Diagrama, por grupo, com a nova Região;

Gráficos -> Diagrama de dispersão -> X= Aroma; Y=Flavor -> Gráficos por grupos -> RegFat

Página 6

O gráfico sugere a existência de relação próxima de linear e crescente entre as notas de Aroma e Sabor nas três regiões; quanto maior a pontuação para Aroma, há tendência de maior pontuação para Sabor. Observa-se ainda que na Região 3 ("+") a pontuação nessas características apresenta valores maiores quando comparada às das outras regiões

(b) Construir a nova variável chamada, por ex., QualidFat, com a categorização proposta para 'Quality'

Dados -> Modificacao de var. no conj. de dados -> recodificar variáveis Novo nome de variável = QualidFat Definição p/ codificação

0:10.99 = 1

11:12 = 2

12.01:99 = 3

Construir tabela de frequência entre RegFat (linha) e QualidFat (coluna)

Estatisticas -> Tabelas de Contingência-> Tabela de dupla entrada- > RegFat e QualidFat (em Estatística, escolher Percentual nas linhas)

Saída do Rcmdr:

Frequency	' tab	ole	:	Row perc	entage	es:			
	Qua	lid	Fat		Qua	alidFa	t		
RegiFat	1	2	3	RegFat	1	2	3	Total	Count
Região 1	3	5	9	Região 1	17.6	29.4	52.9	99.9	17
Região 2	6	2	1	Região 2	66.7	22.2	11.1	100.0	9
Região 3	0	0	11	Região 3	0.0	0.0	100.0	100.0) 11

Os resultados sugerem existência de associação entre Região e Qualidade do Vinho: 100% das amostras da Região 3 obtiveram pontuação na faixa mais alta de qualidade (3); A Região 2 apresentou uma grande proporção (66,7%) de amostras de vinho com pontuação baixa de qualidade (1) (e apenas 11% das amostras tiveram com pontuação alta). A Região 3 parece ser a que produz vinho de melhor qualidade, seguido da Região 1.

No artigo intitulado "Estimativas do Valor Energético a partir de Características Químicas e Bromatológicas dos Alimentos" (Rev. Bras. Zootec., 30(6):1837-1856, 2001) estudou-se a disponibilidade de energia dos alimentos, considerando os nutrientes digestíveis totais (NDT) e também as análises químicas e metabólicas das dietas. Nele se apresentam os seguintes gráficos:

Figura 3 - Relação entre o NDT e a fibra em detergente ácido (FDA) nas dietas totais. A linha contínua representa a reta obtida pela equação de regressão NDT=77,13-0,4250FDA (r²=0,59; P<0,01).

Figura 4 - Relação entre o NDT e a digestibilidade da matéria seca (DMS) nas dietas totais. A linha contínua representa a reta obtida pela equação de regressão NDT=-3,84+1,064DMS (r²=0,96; P<0,01).</p>

- (a) Para qual variável observou-se uma correlação linear maior com o NDT? Justifique.
- (b) Calcule o valor esperado de NDT se o valor de porcentagem da digestibilidade da matéria seca for 47.
- (a) DMS (digestibilidade da matéria seca), pq observou-se uma correlação maior entre NDT e DMS em relação à correlação entre NDT e FDA.

FDN:
$$r^2 = 0.59 \Rightarrow r = -\sqrt{0.59} = -0.7681$$

DMS:
$$r^2 = 0.96 \Rightarrow r = \sqrt{0.96} = 0.9798$$

(b) $NDT^{-} = -3.84 + 1.064x47 = 46.168$, ou seja, aproximadamente 46%.