CPU Processi

Schedule

Mono-tasking

Multi-tasking

Round-Robin

Sommario

CONSEGNA ESERCIZIO 1	2
SVOLGIMENTO ESERCIZIO 1	2
CONSEGNA ESERCIZIO 2	3
	_
SVOLGIMENTO CONSEGNA 2	4
Scheduling processi con politica Round Robin time slice di 12 millisecondi	4
Round Robin	4
Time Sharing	4
Calcolo del tempo di attesa e del turnaround (durata) medi	6
Tempo di attesa medio	6
Tempo di turnaround medio	

Consegna esercizio 1

L'esercizio di oggi verte sui meccanismi di pianificazione dell'utilizzo della CPU (o processore). In ottica di ottimizzazione della gestione dei processi, abbiamo visto come lo scheduler si sia evoluto nel tempo per passare da approccio mono-tasking ad approcci multi-tasking.

Traccia:

Si considerino 4 processi (P1, P2, P3, P4) con i tempi di esecuzione e di attesa input/output dati in tabella. I processi arrivano alle CPU in ordine P1, P2, P3, P4.

<u>Individuare il modo più efficace</u> per la gestione e l'esecuzione dei processi, **tra i metodi già visti a lezione**. Abbozzare un diagramma che abbia sulle ascisse il tempo passato da un instante «0» e sulle ordinate il nome del Processo.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	1 secondo	1 secondo
P2	1 secondo	2 secondi	-
Р3	2 secondi	-	-
P4	4 secondi	1 secondo	-

Svolgimento esercizio 1

Si corregge la parola efficace nella consegna in quanto, il termine efficace significa raggiungere l'obbiettivo.

Probabilmente chiede il metodo più efficiente, in questo caso è da escludere il mono-tasking, ma il multitasking il quale ottimizza i momenti di attesa.

La sequenza è

P1 che utilizza 0-3 sec., 4-5 sec attesa (rimane 1 sec.);

P2 2-3 sec. e 4-6 sec. attesa (completato);

P3 4-6 sec. (completato);

P4 6-10 sec. e 10-11 sec. attesa (completato);

P1 torniamo per terminare il processo 10-11 sec.

Consegna esercizio 2

 Considerare un insieme di cinque processi P1, P2, P3, P4, P5 con i seguenti tempi di arrivo e di esecuzione (in millisecondi):

Processo	Tempo di arrivo (t ₀)	Tempo di esecuzione (\underline{T}_x)
P1	0	14
P2	30	16
P3	6	40
P4	46	26
P5	22	28

- Descrivere lo scheduling di questi processi con politica Round Robin (time slice di 12 millisecondi).
- Calcolare i tempi di attesa e di turnaround (durata) medi.

	to	T _x
P1	0	14
P2	30	16
Р3	6	40
P4	46	26
P5	22	28

time slice	Inizio	Fine	Processo
1	0	12	P1
2	12	24	P3
3	24	26	$P1 \rightarrow FINE$
4	26	38	P5
5	38	50	P3

continuare da soli!

Svolgimento consegna 2

Scheduling processi con politica Round Robin time slice di 12 millisecondi

Vediamo brevemente le differenze principali.

Round Robin

Utilizza un metodo di scheduling FIFO (First In, First Out) in cui ogni processo ottiene un quantum di tempo di esecuzione fisso, senza priorità specifiche basate sullo stato del processo o sul tempo residuo di CPU.

Time Sharing

Assegna priorità ai processi in base a vari criteri, inclusi quelli che possono essere definiti dal sistema operativo per garantire una gestione efficiente delle risorse. Questo può comportare l'assegnazione di più tempo di CPU ai processi che sono considerati più urgenti o importanti in base alle politiche di scheduling definite.

Quindi, mentre entrambi i metodi mirano a gestire equamente l'uso della CPU tra i processi, il Time Sharing introduce il concetto di priorità per influenzare l'ordine di esecuzione dei processi, mentre il Round Robin si concentra sulla condivisione equa del tempo della CPU senza favorire processi specifici in base a parametri come il tempo rimanente di esecuzione.

Processo	Tempo di arrivo (t0)	Tempo di esecuzione (Tx)
P1	0	14
P2	30	16
P3	6	40
P4	46	26
P5	22	28

time slice	Inizio	Fine	Processo
1	0	12	P1
2	12	24	P3
3	24	26	P1 FINE
4	26	38	P5
5	38	50	P3
6	50	62	P5
7	62	74	P3
8	74	78	P5 FINE
9	78	82	P3 FINE
10	82	94	P2
11	94	106	P4
12	106	110	P2 FINE
13	110	122	P4
14	122	124	P4 FINE

Entrando nella logica dell'algoritmo di Round Robin, si è dato priorità al tempo di arrivo nel nostro caso, quindi parte P1 0-12 ms con resto di 2ms, poi arriva P3 perché arriva prima degli altri processi 6ms, quindi occupa 12-24 ms al 24-esimo ms la priorità è quella di terminare i processi già iniziati, pertanto torna al P1 per terminarlo da 24-26ms. Continuando con questa logica l'esercizio termina a 124ms dal P1 a eseguire tutti i processi.

		time slice	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Processo	t0	tx		SOTTRAENDO							Residuo						
P1	0	14	-12		-2	FINE											0
P2	30	16										-12		-4	FINE		0
P3	6	40		-12			-12		-12		-4	FINE					0
P4	46	26											-12		-12	-2	0
P5	22	28				-12		-12		-4	FINE						0

M1 W4 D3 CPU SCHEDULE YILEI WU

Calcolo del tempo di attesa e del turnaround (durata) medi

Prendendo i dati dal grafico della pagina precedente, otteniamo la seguente tabella. Per ottenere il tempo della prima esecuzione guardiamo il ms corrispondente all'avvio per la prima volta di ogni processo sottraendo il tempo di arrivo. Per ottenere il tempo di turnaround facciamo la differenza fra il ms corrisponde alla conclusione e il tempo di arrivo di ogni processo.

Processo	Tempo di arrivo (t0)	Tempo di esecuzione (Tx)	Tempo di attesa per prima esecuzione	Tempo di turnaround
P1	0	14	0	26
P2	30	16	52	80
P3	6	40	6	76
P4	46	26	48	78
P5	22	28	4	56

Tempo di attesa medio

Il tempo di attesa per un processo è il tempo totale che trascorre in coda aspettando di essere eseguito. Il tempo di attesa medio è la somma dei tempi di attesa di tutti i processi diviso per il numero totale di processi. Si può calcolare come:

		Tempo di attesa medio
Somma dei tempi di attesa di tutti i processi	Somma tempo di attesa	110
Tempo di attesa medio = Numero totale di processi	Numero totale di processi	5
	media	22

Applicando la formula il totale è 110 la somma del tempo di attesa (0+52+6+48+4) diviso 5 il numero dei processi, siamo a una media di 22 ms per ogni processo.

Tempo di turnaround medio

Il tempo di turnaround per un processo è il tempo totale che trascorre dal momento in cui viene sottomesso fino al momento in cui termina, compreso il tempo di attesa. Il tempo di turnaround medio è la somma dei tempi di turnaround di tutti i processi diviso per il numero totale di processi. Si può calcolare come:

			medio
Somma d	ei tempi di turnaround di tutti i processi	Somma t. turn	316
Tempo di turnaround medio $=$	Numero totale di processi	Numero	_
		totale di processi	5

Applicando la formula il totale è 316 la somma del tempo di turnaround (26+80+76+78+56) diviso 5 il numero di processi, siamo a una media di 63,2 ms per ogni processo.

Tempo di

63,2

media