Reproducibility Report for Self-Supervised Quality Estimation for Machine Translation

Chahyon Ku, Daniel Cheng, Sherry Zhao, Shubhkarman Singh

MAIN TAKEAWAYS

Quality estimation (QE) is the task of estimating the quality of machine translated text. While the state-of-the-art machine translation systems have achieved surprising accuracy over the past years, it is still far from perfect and often need human evaluation and post-editing to reach sufficient quality. The quality estimation task aims to locate sentences and words that are more likely to have errors, direct the attention of human experts to specific words or sentences, and ultimately allow human experts to fix errors more efficiently.

The authors of Self-Supervised Quality
Estimation for Machine Translation proposes
a novel self-supervised approach to solving
the QE task. To specify, the authors fine-tune
cased multilingual BERT (mBERT), a
multilingual transformer model pretrained
using a masked language modelling objective,
by concatenating the text of the original
sentence and the translated sentence,
masking out 15% of the translated sentence's
words, and training on the typical masked
language modeling objective, i.e. maximizing
the probability of recovering the masked
tokens.

RESULTS

	En-De								
Models	Sent-Level		Word-Level						
	Dev	Test	Dev			Test			
	Pear-Cor	of HTER	f1_ok	f1_bad	f1_mul	f1_ok	f1_bad	f1_mul	
Paper's Single	0.504	0.463	х	х	0.381	х	х	0.383	
Paper's Ensemble	0.518	0.462	х	х	0.395	х	х	0.38	
SyntheticQE Baseline	0.508	0.460	х	х	0.373	х	х	0.362	
Ours 1 (seed 42)	0.534	0.460	0.925	0.423	0.391	0.907	0.4	0.363	
Ours 2 (seed 43)	0.541	0.460	0.921	0.414	0.381	0.904	0.397	0.358	
Ours 3 (seed 44)	0.536	0.462	0.919	0.413	0.38	0.902	0.399	0.359	
Ours 4 (seed 45)	0.539	0.461	0.919	0.419	0.386	0.901	0.404	0.364	
Ours 5 (seed 46)	0.544	0.464	0.917	0.414	0.38	0.899	0.395	0.35	
Mean	0.539	0.461	0.920	0.4166	0.3836	0.9026	0.399	0.3598	
Standard Deviation	0.003962	0.001673	0.003033	0.004278	0.004827	0.003050	0.003391	0.003701	
Ours Ensemble (1, 2)	0.542	0.464	0.914	0.421	0.385	0.897	0.407	0.36	
Ours Ensemble (1 ~ 5)	0.546	0.468	0.899	0.413	0.371	0.881	0.413	0.364	

	En-De							
Models	Sent-Level		Word-Level					
	Dev	Test	Dev			Test		
	Pear-Cor	of HTER	f1_ok	f1_bad	f1_mul	f1_ok	f1_bad	f1_mul
Paper's Single	0.504	0.463	х	х	0.381	X	X	0.383
Paper's Ensemble	0.518	0.462	х	х	0.395	x	x	0.385
Ours (n = 40, m = 2)	0.525	0.439	0.921	0.406	0.374	0.902	0.396	0.357
Ours (n = 40, m = 4)	0.518	0.451	0.928	0.407	0.378	0.909	0.387	0.351
Ours (n = 40, m = 6)	0.533	0.460	0.925	0.422	0.391	0.906	0.400	0.363
Ours (n = 40, m = 8)	0.551	0.463	0.923	0.431	0.397	0.901	0.402	0.363
Ours (n = 40, m = 10)	0.544	0.487	0.923	0.435	0.402	0.905	0.417	0.378
Ours (n = 40, m = 12)	0.549	0.487	0.923	0.440	0.406	0.904	0.420	0.380
Ours (n = 40, m = 14)	0.533	0.482	0.918	0.434	0.399	0.899	0.421	0.378
Ours (n = 40, m = 16)	0.529	0.478	0.923	0.428	0.395	0.905	0.414	0.374
Ours (n = 40, m = 18)	0.523	0.475	0.911	0.430	0.392	0.893	0.425	0.379
Ours (n = 40, m = 20)	0.510	0.468	0.920	0.422	0.389	0.902	0.412	0.372
Standard Deviation	0.013	0.016	0.005	0.011	0.010	0.004	0.012	0.010
stdev of baseline seeds(ref)	0.004	0.002	0.003	0.004	0.005	0.003	0.003	0.004

EVALUATION METRICS

	Prediction		
Label	Bad	Ok	
Bad	1114	155	
Ok	1751	1458	

Negative Labels	Negative Labels						
Precision	Recall	F-Score					
38.9	41.8	40					

Metric	Formula
Precision-OK	$\frac{TP}{TP+FP}$
Recall-OK	$rac{TP}{TP+FN}$
Precision-BAD	$rac{TN}{TN+FN}$
Recall-BAD	$rac{TN}{TN+FP}$
F1-OK	Precision-OK \times Recall-OK
F1-BAD	Precision-OK \times Recall-OK
F1-MUL	$F1-OK \times F1-BAD$

