BASIC EQUATIONS FOR ME 200

Mass Conservation, 1st Law and 2nd Law Relations

$$\begin{split} \left. \frac{dm}{dt} \right|_{system} &= \sum_{in} \dot{m}_{in} - \sum_{out} \dot{m}_{out} \\ \left. \frac{dE}{dt} \right|_{system} &= \sum_{in} \dot{m}_{in} \left(h + ke + pe \right)_{in} - \sum_{out} \dot{m}_{out} \left(h + ke + pe \right)_{out} + \dot{Q} - \dot{W} \\ \left. \frac{dS}{dt} \right|_{system} &= \sum_{in} \dot{m}_{in} \, s_{in} - \sum_{out} \dot{m}_{out} \, s_{out} + \sum_{j} \frac{\dot{Q}_{j}}{T_{j,boundary}} + \dot{\sigma}_{generation} \end{split}$$

Work and Heat Transfer Relations

$$W_{boundary} = \int p \, dV \qquad W_{electrical} = \int \varepsilon \, i \, dt \qquad W_{spring} = \int k_{spring} \, x \, dx \qquad W_{rot} = \int \tau \, d\theta$$
$$W_{int,rev,flow} = -\int_{1}^{2} v \, dp + (V_{1}^{2} - V_{2}^{2})/2 + g(z_{1} - z_{2}) \qquad q_{int,rev} = \int T \, ds$$

PROPERTY RELATIONS FOR ME 200

General Relations

$$h = u + pv$$
 $c_v = \left(\frac{\partial u}{\partial T}\right)_v$ $c_p = \left(\frac{\partial h}{\partial T}\right)_p$ $E = m(u + ke + pe), ke = V^2/2, pe = gZ$
 $Tds = du + pdv$ $Tds = dh - vdp$ $z_{mixture} = x z_g + (1 - x)z_f, z = property$

Models

$$pV = mRT R = \bar{R}/MW R = c_p - c_v k = \frac{c_p}{c_v}$$

$$du = c_v dT dh = c_P dT ds = c_v \frac{dT}{T} + R \frac{dv}{v} ds = c_p \frac{dT}{T} - R \frac{dp}{p} s_2 - s_1 = s_2^o - s_1^o - R \ln(\frac{p_2}{p_1})$$

$$\left(\frac{p_2}{p_1}\right)_s = \left(\frac{p_{r2}}{p_{r1}}\right)_s \left(\frac{v_2}{v_1}\right)_s = \left(\frac{v_{r2}}{v_{r1}}\right)_s \left(\frac{T_2}{T_1}\right)_s = \left(\frac{p_2}{p_1}\right)_s^{(k-1)/k} \left(\frac{T_2}{T_1}\right)_s = \left(\frac{v_1}{v_2}\right)_s^{k-1}$$

$$du = cdT dh = cdT + vdP ds = c \frac{dT}{T} h_{comp \ liq}(p, T) = h_f(T) + v_f(T)[p - p_{sat}(T)]$$

EFFICIENCY AND CYCLE RELATIONS FOR ME 200

$$\begin{split} \eta_{turbine} &= \frac{w_{act}}{w_s} & \eta_{compressor} = \eta_{pump} = \frac{w_s}{w_{act}} & \eta_{nozzle} = \frac{V_{2,act}^2}{V_{2,s}^2} \\ \eta_{th} &= \frac{W_{net,out}}{Q_H} & COP_R &= \frac{Q_C}{W_{net,in}} & COP_{HP} &= \frac{Q_H}{W_{net,in}} \\ \eta_{th,rev} &= 1 - \frac{T_C}{T_H} & COP_{R,rev} &= \frac{T_C}{T_H - T_C} & COP_{HP,rev} &= \frac{T_H}{T_H - T_C} & \left(\frac{T_C}{T_H}\right)_{rev} = \left(\frac{Q_C}{Q_H}\right)_{rev} \end{split}$$

UNIT CONVERSION RELATIONS

Density	$1 g/cm^3 = 10^3 kg/m^3$
Length	$10^2 cm = 1 m$
Velocity	1 km/h = 0.621 mile/h
Volume	$10^6 cm^3 = 1 m^3$
	$1 L = 10^{-3} m^3$
Force	$1 N = 1 kg-m/s^2$
Pressure	$1 Pa = 1 N/m^2$
	$1 bar = 10^5 N/m^2$
Energy	1 <i>J</i> = 1 <i>N-m</i>

_	1 W = 1 J/s
Energy Transfer Rate	1 kW = 1.34 hp
Specific Heat	1 kJ/(kg-K) = 0.239 kcal/(kg-K)
Universal Gas Constant	\bar{R} =8.314 kJ/(kmol-K)
Standard Gravity Acceleration	g=9.81 m/s ²
Standard Atmospheric Pressure	1 atm = 1.01 bar
	$T(^{\circ}R) = 1.8T(K)$
Temperature Relations	$T(^{\circ}C) = T(K) - 273.15$
	$T(^{\circ}F) = T(^{\circ}R) - 459.67$