考研数学笔记 以姜晓千强化课讲义为底本

Weary Bird

2025年7月29日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月29日

目录

第一章	多元函数微分学	1
1.1	多元函数的概念	1
1.2	多元复合函数求偏导数与全微分	3
1.3	多元隐函数求偏导数与全微分	4
1.4	变量代换化简偏微分方程	6
1.5	求无条件极值	7
1.6	求条件极值 (边界最值)	9
1.7	闭区域最值	11

第一章 多元函数微分学

1.1 多元函数的概念

Remark. 多元函数微分学的概念

可微的概念 设二元函数 f(x,y) 在点 (x_0,y_0) 的某领域内有定义, 且其全增量可以写成

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + o(\rho)$$

其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$ 其中 A, B 为不依赖于 $\Delta x, \Delta y$, 而仅与 x_0, y_0 有关, 则其在 (x_0, y_0) 可微

全微分 若 f(x,y) 在 (x_0,y_0) 可微,则其全微分为

$$\mathrm{d}z = A\Delta x + B\Delta y$$
 = 可微的必要条件 $f_x'(x_0, y_0)\mathrm{d}x + f_y'(x_0, y_0)\mathrm{d}y$

可微的必要条件 若 f(x,y) 在点 (x_0,y_0) 可微,则 f(x,y) 在该点连续,且两个偏导数都存在可微的充分条件 若 f(x,y) 在点 (x_0,y_0) 处偏导数存在,且作为二元函数在该点连续,则 f(x,y) 在点 (x_0,y_0) 可微

1. 例 1 求下列重极限:

$$(1) \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^{\alpha} y^{\beta}}{x^2 + y^2} \quad (\alpha \ge 0, \beta \ge 0);$$

(2)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(x^2 - y^2)}{x^2 + y^2};$$

$$(3) \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}}$$

Solution. (1) 即总结

(2) 重极限也满足极限的四则运算故

原式 =
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 y}{x^2 + y^2} - \lim_{\substack{x \to 0 \ y \to 0}} \frac{xy^3}{x^2 + y^2}$$

由结论可知 原式 = 0

(3)

原式 =
$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(\frac{x^{\frac{4}{3}}y^{\frac{4}{3}}}{x^2 + y^2} \right)^{\frac{3}{2}} = 0$$

求重极限的技巧

若需要计算重极限, 考虑极坐标换元通常比较简单. 对于形如

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^{\alpha} y^{\beta}}{x^2 + y^2}$$

只需要做极坐标换元即可

原式 =
$$\lim_{r \to 0^+} \frac{r^{\alpha+\beta}\cos^{\alpha}\theta\sin^{\beta}\theta}{r^2}$$
, $(\theta \in [0, 2\pi])$
= $\begin{cases} 0, & \alpha+\beta-2 > 0 \\ \text{不存在}, & \alpha+\beta-2 \leq 0 \end{cases}$

- 2. (2012, 数一) 如果函数 f(x,y) 在点 (0,0) 处连续, 那么下列命题正确的是
 - (A) 若极限 $\lim_{\substack{x\to 0 \ y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在, 则f(x,y)在点(0,0)处可微
 - (B) 若极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在,则f(x,y)在点(0,0)处可微
 - (C) 若f(x,y)在点(0,0)处可微,则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在
 - (D) 若f(x,y)在点(0,0)处可微, 则极限 $\lim_{\substack{x\to 0 \ x\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在

Solution. (方法一) 证明 B 选项正确

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2} \exists, 且 f(x,y)$$
连续 $\Longrightarrow f(0,0)=0$

脱极限号有

$$f(x,y) = o(\rho)$$

由可微的定义有

$$f(x,y) - f(0,0) = 0 \cdot \Delta x + 0 \cdot \Delta y + o(\rho)$$

从而 f(x,y) 在 (0,0) 可微

(方法二) 特殊值证明 ACD 不正确

对于 A 选项, 当 f(x) = |x| + |y| 不可微

对于 CD 选项, 当 $f(x,y) = C \neq 0$ 的时候, 极限不存在

3. (2012, 数三) 设连续函数 z = f(x, y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$$

则 $dz|_{(0,1)} =$

Solution. (方法一) 和上面的题目比较相似, 由题设可知 f(0,1)=1, 脱极限号有

$$f(x,y) - 2x + y - 2 = o(\rho)$$

由可微的定义有

$$f(x,y) - 1 = 2x - (y-1) + o(\rho) = 2\Delta x - \Delta + o(\rho)$$

即

$$d\big|_{(0,1)} = 2\mathbf{d}x - \mathbf{d}y$$

(方法二) 特殊值令 f(x,y) = 2x - y + 2, 可以直接求出 $d|_{(0,1)} = 2dx - dy$

1.2 多元复合函数求偏导数与全微分

Remark. 本质是计算题, 仔细计算即可. 注意点

- (一)链式法则
- (二)一阶全微分形式不变性
- (三)二阶混合偏导数若连续则相等
- 4. (2021, 数一、数二、数三) 设函数 f(x,y) 可微, 且 $f(x+1,e^x)=x(x+1)^2, f(x,x^2)=2x^2\ln x$ 则 df(1,1)=

$$(A) dx + dy$$
 $(B) dx - dy$ $(C) dy$ $(D) dy$

Solution. 第一个等式两边同时对x 求导有

$$f_1'(x+1,e^x) + f_2'(x+1,e^x)e^x = (x+1)^2 + 2x(x+1)$$

$$f_1'(1,1) + f_2'(1,1) = 1$$

同理, 第二个等式两边同时对 x 求导有

$$f_1'(x, x^2) + f_2'(x, x^2) \cdot 2x = 4x \ln x + 2x$$

<math> <math>

$$f_1'(1,1) + 2f_2'(1,1) = 2$$

联立可以解出

$$\begin{cases} f_1'(1,1) = 0 \\ f_2'(1,1) = 1 \end{cases}$$

故 $\mathrm{d}f(1,1)=\mathrm{d}y$

5. (2011, 数一、数二) 设 z = f(xy, yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导,

且在
$$x=1$$
 处取得极值 $g(1)=1$, 求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{x=1,y=1}$ 。

Solution. 由题设可知 g'(1) = 0, g(1) = 0 且

$$\frac{\partial z}{\partial x} = f_1' \cdot y + f_1' \cdot yg'(x)$$

这种求值的题目先带入可以化简

$$\frac{\partial z}{\partial x}\big|_{(x=1)} = f_1' \cdot y$$

$$\frac{\partial^2 z}{\partial x \partial y}\big|_{(x=1)} = f_{11}'' \cdot y + f_1' + f_{12}'' \cdot g(x)$$

带入y=1有

$$\frac{\partial^2 z}{\partial x \partial y}\big|_{(x=1,y=1)} = f_{11}''(1,1) + f_1'(1,1) + f_{12}''(1,1)$$

1.3 多元隐函数求偏导数与全微分

Remark. 三个方法

(方法一) 代入求偏导 z = z(x, y)

(方法二) 公式法
$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}; \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}$$

(方法三) 全微分

- 6. (2005, 数一) 设有三元方程 $xy z \ln y + e^{xz} = 1$, 根据隐函数存在定理, 存在点 (0,1,1) 的 一个邻域, 在此邻域内该方程
 - (A) 只能确定一个具有连续偏导数的隐函数z = z(x, y)
 - (B) 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - (C) 可确定两个具有连续偏导数的隐函数y = y(x, z)和z = z(x, y)
 - (D) 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

Solution. 由题设有 $F(x,y,z) = xy - 2 \ln y + e^{xz} - 1$ 分别对 x,y,z 求导有

$$\begin{cases} F'_x(0,1,1) = 2 \neq 0 \\ F'_y(0,1,1) = -2 \neq 0 \\ F'_z(0,1,1) = 0 \end{cases}$$

由隐函数存在定理可知仅x,y可以作为因变量

隐函数存在定理

(隐函数存在定理) 如果二元函数 F(x,y) = 0, 满足如下三个条件

- (1) 函数 F(x, y) 在点 (x_0, y_0) 某邻域内有连续偏导数
- (2) $F(x_0, y_0) = 0$
- (3) F; $(x_0, y_0) \neq 0$

则方程 F(x,y) = 0 在点 (x_0,y_0) 某邻域内恒能<mark>唯一</mark>确定一个连续函数 y = y(x), 且

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'}$$

简单来说对谁的偏导数不为零,谁能表示为其余变量的函数(作为因变量)

7. (1999, 数一) 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 所确定的函数, 其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数, 求 $\frac{dz}{dz}$ 。

Solution. 记

$$z = xf(x+y) \tag{1}$$

$$F(x, y, z) = 0 (2)$$

分别对 (1) 和 (2) 的两端对 x/v 求导有

$$\frac{\mathrm{d}z}{\mathrm{d}x} = f(x+y) + xf'(1 + \frac{\mathrm{d}y}{\mathrm{d}x}) \tag{3}$$

$$F_1' + F_2' \frac{\mathrm{d}y}{\mathrm{d}x} + F_3' \frac{\mathrm{d}z}{\mathrm{d}x} = 0 \tag{4}$$

联立(3)和(4)可以解出

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{(f + xf')F_2' - xf'F_1'}{F_2' + xf' \cdot F_3'}$$

多元函数组确认函数的情况

本质是方程组思想

- 一个三元方程可以确定一个二元函数 二个三元方程可以确定两个二元函数

参考线性代数的方程组的解, 就很容易明白

变量代换化简偏微分方程 1.4

8. (2010, 数二) 设函数 u = f(x, y) 具有二阶连续偏导数, 且满足等式

$$4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$$

确定 a,b 的值, 使等式在变换 $\xi=x+ay, \eta=x+by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta}=0$ 。

Solution. 有题设有

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \\ \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} \\ \frac{\partial^2 u}{\partial y^2} = a^2 \frac{\partial^2 u}{\partial \xi^2} + 2ab \frac{\partial^2 u}{\partial \xi \partial \eta} + b^2 \frac{\partial^2 u}{\partial \eta^2} \\ \frac{\partial^2 u}{\partial x \partial y} = a \frac{\partial^2 u}{\partial \xi^2} + (a+b) \frac{\partial^2 u}{\partial \xi \partial \eta} + b \frac{\partial^2 u}{\partial \eta^2} \end{cases}$$

带入题设等式有

$$\begin{cases} a=2 \\ b=-\frac{2}{5} \end{cases} \qquad \stackrel{\text{pl}}{\bowtie} \begin{cases} a=-\frac{2}{5} \\ b=-2 \end{cases}$$

1.5 求无条件极值

Remark. 两个方法

(一) 多元函数微分学的定义

是极值, 一般使用保号性证明 不是极值, 一般取不同路径

(二) $AC - B^2$ 判别法, 若 $f'_x = f'_y = 0$ 且其二阶偏导数存在, 记

$$\begin{cases} A = f''_{xx} \\ B = f''_{xy} \end{cases} \implies AC - B^2 \begin{cases} > 0, & \begin{cases} A > 0, & \text{极小值} \\ A < 0, & \text{极大值} \end{cases} \\ < 0, & \text{不是} \\ = 0, & \text{判别法失效, 无法判断} \end{cases}$$

9. (2003, 数一) 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续,且

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y) - xy}{(x^2 + y^2)^2} = 1$$

则

- (A) 点(0,0)不是f(x,y)的极值点
- (B) 点(0,0)是f(x,y)的极大值点
- (C) 点(0,0)是f(x,y)的极小值点
- (D) 根据所给条件无法判别点(0,0)是否为f(x,y)的极值点

Solution. 有题设可知 f(0,0) = 0

方法一: 选特殊路径证明, 脱极限号有 $f(x,y) = xy + o(x^2 + y^2)$

$$\Rightarrow y = x, f(x, x) = x^2 + o(x^2) > 0$$

$$\Rightarrow y = -x, f(x, -x) = -x^2 + O(x^2) < 0$$

故点 (0,0) 不是 f(x,y) 的极值点

方法二: 特殊值用判别法证明, 不妨假设
$$f(xy) = xy + (x^2 + y^2)^2$$
 且 $\frac{\partial f}{\partial x}\big|_{(0,0)} = \frac{\partial f}{\partial y}\big|_{(0,0)} = 0$ 而 $A = 0, B = 1, C = 0 \implies AC - B^2 = -1 < 0$ 故 $(0,0)$ 不是极值

10. (2004, 数一) 设 z = z(x,y) 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数, 求 z = z(x,y) 的极值点和极值。

Solution. 对于这种题分两步, 第一步求驻点, 第二步求二阶偏导数并用判别法判断所有驻点. 题目等式两边分别对 x,y 求导有

对
$$x$$
求导 $2x - 6y - 2y\frac{\partial z}{\partial x} - 2z\frac{\partial z}{\partial x} = 0$ (1)

对y求导
$$-6x + 20y - 2z - 2y\frac{\partial z}{\partial y} - 2z\frac{\partial z}{\partial y} = 0$$
 (2)

令
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$$
 有
$$\begin{cases} x = 3y \\ y = z \end{cases}$$
 带入题设等式有可以解出

$$\begin{cases} x = 9 \\ y = z = 3 \end{cases} \quad \stackrel{\text{R}}{\Rightarrow} \begin{cases} x = -9 \\ y = z = -3 \end{cases}$$

对(1)两侧对 x, y 求导有, 且带入 $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$

$$2 - 2y\frac{\partial^2 z}{\partial x^2} - 2z\frac{\partial^2 z}{\partial x^2} = 0 \tag{3}$$

$$-6 - 2y \frac{\partial^2 z}{\partial x \partial y} - 2z \frac{\partial^2 z}{\partial x \partial y} = 0 \tag{4}$$

对(2)两测对 y 求导有, 且带入 $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$

$$20 - 2y\frac{\partial^2 z}{\partial y^2} - 2z\frac{\partial^2 z}{\partial x \partial y} = 0 \tag{5}$$

综上可以解出

$$\begin{cases} \frac{\partial^2 z}{\partial x^2} = \frac{1}{y+z} \\ \frac{\partial^2 z}{\partial x \partial y} = \frac{-3}{y+z} \\ \frac{\partial^2 z}{\partial y^2} = \frac{10}{y+z} \end{cases}$$

带入题设条件可知

$$\begin{cases}
对于点(9,3,3)AC - B^2 > 0, 且A > 0, 故z(9,3)为极小值 \\
对于点(-9,-3,-3)AC - B^2 > 0, 且A < 0, 故z(-9,-3)为极大值 \end{cases}$$

1.6 求条件极值(边界最值)

Remark. (方法一)lagrange 乘数法

构造辅助函数 $L(x, y, \lambda) = f(x, y) + \lambda \cdot \varphi(x, y)$ 然后求解

$$\begin{cases} L'_x = \frac{\partial f}{\partial x} + \lambda \cdot \frac{\partial \varphi}{\partial x} = 0 \\ L'_x = \frac{\partial f}{\partial y} + \lambda \cdot \frac{\partial \varphi}{\partial y} = 0 \\ L'_\lambda = \varphi(x, y) = 0 \end{cases}$$

拉格朗日乘数法的关键在于乘非零因子消去 λ 所有满足上述方程的解 (x, y, λ) 中的 (x, y) 都有可能是条件极值,对于不封闭曲线要和端点比较.

(方法二) 解 $\varphi(x,y) = 0 \implies y = y(x)$ 带入 f(x,y) 转换为一元函数

(方法三) 极坐标变化

(方法四)均值不等式,柯西不等式

对于两个整数 a 和 b, 均值不等式为

$$\sqrt{\frac{a^2 + b^2}{2}} \ge \frac{a + b}{2} \ge \sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

柯西不等式的实数形式,对于任意实数 a_1, a_2, \ldots, a_n 和 b_1, b_2, \ldots, b_n 有

$$\left(\sum_{i=0}^{n} a_i b_i\right)^2 \ge \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

- 11. (2006, 数一、数二、数三) 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数, 且 $\varphi'_y(x,y) \neq 0$ 。已知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y) = 0$ 下的一个极值点, 下列选项正确的是

- $(D) \stackrel{*}{\approx} f'_x(x_0, y_0) \neq 0, \quad M f'_y(x_0, y_0) \neq 0$

Solution. 使用拉格朗日乘数法, 令 $L(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y)$ 则

$$L_x' = f_x' + \lambda \varphi_x' = 0 \tag{1}$$

$$L_y' = f_y' + \lambda \varphi_y' = 0 \tag{2}$$

$$L_{\lambda}' = \varphi = 0 \tag{3}$$

拉格朗日乘数法的关键在于**乘非零因子消去** λ , 由题设可知 $\varphi_y' \neq 0$ 通过 (2) 式可以求出 $\lambda = -\frac{f_y'}{\varphi_{x}'}$, 代入 (1) 式有

$$f_x' - \frac{f_y'}{\varphi_y'} \cdot \varphi_x' = 0$$

考虑选项, 只有当 $f'_x \neq 0$ 的时候可以确定 $f'_y \neq 0, \varphi_x \neq 0$

12. (2013, 数二) 求曲线 $x^3 - xy + y^3 = 1 (x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

Solution. 边界条件的函数图像如下

这题的关键在于转换目标函数若考虑题设其目标函数为 $\sqrt{x^2+y^2}$ 显然根号不好做, 此时需要将目标函数做等价变化即求 x^2+y^2 的条件极值, 则设拉格朗日函数为

$$L(x, y, \lambda) = x^{2} + y^{2} + \lambda(x^{3} - xy + y^{3} - 1)$$

分别对 x, y, λ 求导有

$$L_x' = 2x + \lambda(3x^2 - y) = 0 \tag{1}$$

$$L_y' = 2y + \lambda(3y^2 - x) = 0 (2)$$

$$L_{\lambda}' = x^3 - xy + y^3 - 1 = 0 \tag{3}$$

 $x \ge 0, y \ge 0$ 可知 $3x^2 - y \ne 0, 3y^2 - x \ne 0$, 将 $(1) \times (3y^2 - x) - (2) \times (3x^2 - y)$ 有

$$-x^{2} + 3xy^{2} - 3x^{2}y + y^{2} = 0 \implies (y + x + 3xy)(y - x) = 0$$

即 y + x + 3xy = 0或y = x 由于 $x \ge 0, y \ge 0$ 故 y + x + 3xy = 0 不合理舍去, 将 y = x 带入 (3) 式有 $2x^3 - x^2 - 1 = 0 \implies (1.1)$ 由于曲线不封闭, 需要考虑曲线端点即 (0,1)(1,0) 比较可知曲线上距离原点的最大/最小距离为

1.7 闭区域最值

Remark. 闭区域最值分两步做

- (一) 求内部驻点
- (二) 求边界的条件极值
- 12. (2014, 数二) 设函数 u(x,y) 在有界闭区域 D 上连续, 在 D 的内部具有二阶连续偏导数, 且满足 $\frac{\partial^2 u}{\partial x \partial y} \neq 0$ 及 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 则
 - (A) u(x,y)的最大值和最小值都在D的边界上取得
 - (B) u(x,y)的最大值和最小值都在D的内部取得
 - (C) u(x,y)的最大值在D的内部取得,最小值在D的边界上取得
 - (D) u(x,y)的最小值在D的内部取得,最大值在D的边界上取得

Solution. 若 $A = \frac{\partial^2 u}{\partial^2 x} \ge 0 \implies C = \frac{\partial^2 u}{\partial^2 y} \le 0$ 且仅当 A = 0 时 C = 0,有 $\frac{\partial^2 u}{\partial x \partial y} = B \ne 0$ 由此可知 $AC - B^2 < 0$,同理当 $A = \frac{\partial^2 u}{\partial^2 x} < 0$,亦有 $AC - B^2 < 0$ 故 u(x,y) 在区域内部无极值点,有由于连续函数在有界闭区间必然有最大/最小值,此时 u(x,y) 的最值均在边界取得.

13. (2005, 数二) 已知函数 z = f(x,y) 的全微分 dz = 2xdx - 2ydy, 且 f(1,1) = 2, 求 f(x,y)在椭圆域 $D = \{(x,y)|x^2 + \frac{y^2}{4} \le 1\}$ 上的最大值和最小值。

Solution. 由题设全微分可以求出 $z=x^2-y^2+2$, 这种题第一步先求区域内最值, 在求条 件极值,区域图像如下所示

令
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = 0$$
 即
$$\begin{cases} 2x = 0 \\ 2y = 0 \end{cases} \implies x = y = 0$$
 故在内部仅有唯一驻点 $(0,0)$, 且 $z\big|_{(0,0)} = 2$ 求条件权值

求条件极值

(方法一) 设拉格朗日函数为 $L(x,y,\lambda) = x^2 - y^2 + 2 + \lambda(x^2 + \frac{y^2}{4} - 1)$ 分别对 x,y,λ 求导 有

$$L_x' = 2x + 2x\lambda = 0 \tag{1}$$

$$L_y' = 2y + 2y\lambda = 0 \tag{2}$$

$$L_{\lambda}' = x^2 + \frac{y^2}{4} - 1 = 0 \tag{1.1}$$

此时有

$$\begin{cases} x = 0, & y = \pm 2, f(0, \pm 2) = -2 \\ y = 0, & x = \pm 1 f(\pm 1, 0) = 3 \end{cases}$$

而当 $x \neq 0$ 或 $y \neq 0$ 时候与题设矛盾, 综上可知闭区间最值为

(方法二) 有题设可知 $y^2 = 4(1-x^2)$ 带入 $f(x,y) \implies f(x) = x^2 - 4(1-x^2) + 2 = x^2 + 4(1-x^2) + 2 =$ $5x^2 - 2, x \in [-1, 1]$ 显然当 $x = 0, f_{min}(x) = -2; x = \pm 1, f(x) = 3$

(方法三) 令
$$\begin{cases} x = \cos \theta \\ y = \cos \theta \end{cases}$$
 其中 $\theta \in [0, 2\pi]$, 此时 $f(\theta) = \cos^2 \theta - 4\sin^2 \theta + 2 = 3 - 5\cos^2 \theta$ 容易得出 $f_{max} = 3$; $f_{min} = -2$