d) Introdução de uma nova variável de decisão

O problema original transforma-se em:

$$\max \left\{z = \sum_{j=1}^{n} c_{j}x_{j} + c_{n+1}x_{n+1}\right\}$$
sujeito a
$$\sum_{j=1}^{n} a_{ij}x_{j} + a_{i(n+1)}x_{n+1} \le b_{i}$$

$$j=1$$

$$x_{j} \ge 0$$

$$x_{n+1} \ge 0; j = 1, 2, ..., n; i = 1, 2, ..., m$$

A solução ótima do problema original com $x_{n+1}=0$ (variável não básica) é uma solução admissível.

- Calcula-se $\mathbf{X}_{n+1} = \mathbf{B}^{-1}\mathbf{P}_{n+1}$
- Introduz-se esta coluna no quadro
- Calcula-se z_{n+1} - c_{n+1} :
 - Se ≥ 0, solução ótima mantém-se
 - Senão, aplica-se algoritmo simplex (colocando x_{n+1} na base) para determinar a nova solução ótima.

Exemplo

Considere novamente o exemplo anterior (pág. I-8).

Suponha que a empresa decidiu analisar a implicação da produção de um novo produto: <u>mesas</u>.

Estudos das condições de produção indicam que a produção de uma mesa requer 3 horas/máquina na UE e 2 horas/máquina na UMA, não estando prevista qualquer limitação de mercado.

O lucro unitário estimado para as mesas é de 5 unidades monetárias (UM).

Seja o quadro ótimo *simplex* (antes da introdução das mesas):

riesas). Ci	6	3	0	0	0		
$x_B c_B^{X_i}$	X 1	X 2	X 3	X 4	X 5	b	
X 3 0	0	0	1	-1	2	160	$\mathbf{x_1} = 16$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	$\mathbf{X2} = 60$
\mathbf{x}_1 6	1	0	0	0	1	160	X3 = 10
Z _j - C _j	0	0	0	3/4	3	1140	$\mathbf{X4} = 0$
- -	ı					•	$\mathbf{X5} = 0$
							Z = 114

A formalização do problema, já incluindo o novo produto e na forma aumentada, é:

maximizar
$$z = 6 x_1 + 3 x_2 + 5 x_6$$

sujeito a
 $2 x_1 + 4 x_2 + x_3 + 3 x_6 = 720$
 $4 x_1 + 4 x_2 + x_4 + 2 x_6 = 880$
 $x_1 + x_5 = 160$
 $x_i \ge 0$; $i = 1, 2, ..., 6$

$$\mathbf{P}_6 = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$

$$\mathbf{X}_6 = \mathbf{B}^{-1}\mathbf{P}_6 = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1/4 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/2 \\ 0 \end{bmatrix}$$

O quadro simplex, depois da introdução de x6, é:

	$\mathbf{c_{i}}$	6	3	0	0	0	5	
ХB	$c_B^{X_i}$	X 1	X 2	X 3	X4	X 5	X 6	b
X 3	0	0	0	1	-1	2	1	160
← X2	3	0	1	0	1/4	-1	<u>1/2</u> *	60
$\mathbf{x_1}$	6	1	0	0	0	1	0	160
	c _i	0	0	0	3/4	3	-7/2	1140
J	y	l					^	I

A solução anterior deixa de ser ótima, ou seja, é vantajoso produzir mesas.

Aplica-se o algoritmo *simplex* até se encontrar o novo ótimo.

← x ₃ 0	0	-2	1	-3/2	<u>4</u> *	0	40
x ₆ 5	0	2	0	1/2	-2	1	120
$\mathbf{x_1}$ 6	1	0	0	0	1	0	160
Zj - Cj	0	7	0	5/2	-4	0	1560
J	1				^		1
X 5 0	0	-1/2	1/4	-3/8	1	0	10
\mathbf{x}_{6} 5	0	1	1/2	-1/4	0	1	140
\mathbf{x}_1 6	1	1/2	-1/4	3/8	0	0	150
Zj - Cj	0	5	1	1	0	0	1600

A solução ótima do problema, depois da introdução da nova variável, é:

$$\mathbf{x}^* = (150, 0, 0, 0, 10, 140)$$
 com $\mathbf{z}^* = 1600$

Ou seja, devem produzir-se 150 secretárias e 140 mesas, deixando de se produzir estantes, resultando um lucro total de 1600 UM.

e) Introdução de uma nova restrição

Não altera a função objetivo, mas pode restringir a região admissível.

O primeiro passo é verificar se a solução ótima do problema original satisfaz a restrição adicional

- Se satisfizer, a solução ótima mantém-se
- Senão, surge nova solução ótima que é necessário determinar.
 - Introduzir no quadro ótimo uma linha (correspondente à restrição) e uma coluna (variável folga e/ou artificial)
 - Fazer as operações de condensação necessárias (para reconstruir a matriz identidade). Se a solução obtida for não admissível efetuar nova iteração (pelo método dual do *simplex*) para determinar a nova solução ótima.

Exemplo

Retome-se o exemplo anterior (pág. I-8).

Estudos de mercado mostram que a produção de estantes deve ser pelo menos de 100. Adiciona-se a restrição $x2 \ge 100$.

Seja o quadro ótimo:

	c_i 6	3	0	0	0		
XB CE	$\mathbf{x_i}$ $\mathbf{x_1}$	X 2	X 3	X 4	X 5	b	
X3 0	0	0	1	-1	2	160	$X_1 = 160$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	$\mathbf{X2} = 60$
x ₁ 6	1	0	0	0	1	160	X3 = 160
Z j - Cj	0	0	0	3/4	3	1140	$\mathbf{Z} = 1140$

Esta solução não satisfaz a nova restrição pois $x_2 = 60$.

Transformando $x_2 \ge 100$ em $-x_2 \le -100$ e adicionando uma "slack", obtém-se:

$$-x2 + x6 = -100$$

O novo quadro aumentado será:

	ci	6	3	0	0	0	0	
ХB	$c_B^{X_i}$	x ₁	X 2	X 3	X4	X 5	X 6	b
X 3	0	0	0	1	-1	2	0	160
X 2	3	0	1	0	1/4	-1	0	60
X 1	6	1	0	0	0	1	0	160
x6	0	0	-1 ⇐	0	0	0	1	-100
Zj -	cj	0	0	0	3/4	3	0	1140

Fazendo as operações de condensação necessárias:

X3 0	0	0	1	-1	2	0	160
$\begin{array}{ccc} \mathbf{x_3} & 0 \\ \mathbf{x_2} & 3 \end{array}$	0	1	0	1/4	-1	0	60
x ₁ 6 ← x ₆ 0	1	0	0	-1 1/4 0 1/4	1	0	160
← x ₆ 0	0	0	0	1/4	<u>-1</u> *	1	-40
Zj - Cj	0	0	0	3/4	3	0	1140
J	I				^		I

O quadro já não é ótimo devido ao aparecimento de um valor negativo na coluna b. Tem que se aplicar o método dual do *simplex*:

X 3 0	0	0	1	-1/2	0	2	80	
$\mathbf{x_2}$ 3	0	1	0	0	0	-1	100	
$\mathbf{x_1}$ 6	1	0	0	1/4	0	1	120	$X_1 = 120$
\mathbf{x}_{5} 0	0	0	0	-1/4	1	-1	40	$X_1 = 120$ $X_2 = 100$
Zj - Cj	0	0	0	3/2	0	3	1020	Z = 1020

A introdução da nova restrição levou a que a anterior solução ótima deixasse de ser admissível e o ótimo passasse a ser atingido num outro ponto:

$$x^* \rightarrow x'^* = (120, 100, 80, 0, 40, 0)$$

com $z^* = 1020$.

