The Riemann-Stieltjes Integral: 6.1, 2, 3, 4, 5, 8, Baby Rudin

Huan Q. Bui

6.1 *Proof:* f is clearly bounded on [a,b] and is discontinuous at exactly the point x_0 , where α is continuous. Theorem 6.10 says these conditions imply $f \in \mathcal{R}(\alpha)$. So, for any partition P of [a,b], we have $\int_a^b f \, d\alpha = \sup L(P,f,\alpha) = \sup \sum_{i=1}^n \Delta \alpha_i \inf_{x \in [x_{i-1},x_i]} f$. Look at each interval, $[x_{i-1},x_i]$. If the interval has nonzero length then $\inf f$ on it is zero. If the interval is just the point x_0 then $\Delta \alpha_i$ is zero. So in any case, $\sup L(P,f,\alpha) = 0$, which means $\int f \, d\alpha = 0$.

6.2 *Proof:* We have $f \ge 0$ continuous on [a,b] and $\int_a^b f \, dx = 0$. We first note that for $c,d \in [a,b]$ such that $c \le d$, $\int_c^d f \, dx \ge 0$ because $f \ge 0$ for all $x \in [a,b]$. Now, suppose $f(x_0) > 0$ for some $x_0 \in [a,b]$. Let $\epsilon = f(x_0)/2 > 0$ be given. By continuity, there exists a small enough $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon = f(x_0)/2 \implies f(x) > f(x_0)/2$ for some x in $(x_0 - \delta, x_0 + \delta)$. With this, we write

$$\int_{a}^{b} f \, dx = \int_{a}^{x_{0} - \delta} f \, dx + \int_{x_{0} - \delta}^{x_{0} + \delta} f \, dx + \int_{x_{0} + \delta}^{b} f \, dx \ge 0 + \delta f(x_{0}) + 0 > 0,$$

which is a contradiction. So f = 0 on [a, b].

6.3 *Proof:* Define three functions β_1 , β_2 , β_3 as: $\beta_j(x) = 0$ if x < 0, $\beta_j(x) = 1$ if x > 0 for j = 1, 2, 3; and $\beta_1(0) = 0$, $\beta_2(0) = 1$, $\beta_3(0) = 1/2$. f is a bounded function on [-1, 1].

- 1. We want to show $f \in \mathcal{R}(\beta_1) \iff \lim_{x \to 0+} f(x) \equiv f(0+) = f(0)$ and that then $\int f d\beta_1 = f(0)$.
 - (a) (\rightarrow) Suppose $f \in \mathcal{R}(\beta_1)$. To prove the implication we want to look at what happens to f as $x \to 0+$. Since $f \in \mathcal{R}(\beta_1)$ on [-1,1], $f \in \mathcal{R}(\beta_1)$ on [0,1] as well. Let $\epsilon > 0$ be given. Theorem 6.6. says that $f \in \mathcal{R}(\beta_1)$ on $[0,1] \iff \forall \epsilon > 0 \exists$ a partition P such that $U(P,f,\beta_1) L(P,f,\beta_1) < \epsilon$. For any $x \in [0,\delta]$ where $0 < \delta < 1$, we have that

$$L(P,f,\beta_1) \leq f(x) \leq U(P,f,\beta_1).$$

Further, since $0 \in [0, 1]$

$$L(P,f,\beta_1) \leq f(0) \leq U(P,f,\beta_1).$$

So, $|f(x) - f(0)| \le U(P, f, \beta_1) - L(P, f, \beta_1) < \epsilon$. Since ϵ and δ can be made arbitrarily small, we have that $\lim_{x\to 0+} f(x) = f(0+) = f(0)$.

(b) (\leftarrow) Let $\epsilon > 0$ be given. Suppose $\lim_{x \to 0+} f(x) = f(0)$, then there exists $\delta > 0$ such that whenever $0 \le x < \delta$, $\left| f(x) - f(0) \right| < \epsilon$. Okay, fix any $y \in (0, \delta)$, set $M = \sup_{y \in (0, \delta)} f(y)$, $m = \inf_{y \in (0, \delta)} f(y)$. Then clearly, for any $y \in (0, \delta)$, $M \ge f(y)$ and $m \le f(y)$. This combines with f(0+) = f(0) mean we can remove the absolute value sign and write $M - f(y) < \epsilon$ and $f(y) - m < \epsilon$. This imply

$$M-m<2\epsilon$$
.

Let a partition P of [-1,1] be given. Then we immediately have $U(P,f,\beta_1)=M$ and $L(P,f,\beta_1)=m$ (because $\beta_1(x)=0$ for all x<0, which means there's no contribution from $d\beta_1$ from x<0). So, because the following holds for any arbitrary P of [-1,1]

$$U(P, f, \beta_1) - L(P, f, \beta_1) = M - n < 2\epsilon$$

 $f \in \mathcal{R}(\beta_1)$ on [-1,1]. So we're done.

- (c) Showing $\int f d\beta_1 = f(0)$ is easy. Since we have shown that for any partition P of [-1,1] and $\epsilon > 0$, $U(P,f,\beta_1) L(P,f,\beta_1) < \epsilon$. And because $L(P,f,\beta_1) \le f(0) \cdot (\beta_1(x_j > 0) \beta_1(0)) = f(0) \le U(P,f,\beta_1)$, we must have that $f(0) = U(P,f,\beta_1) = L(P,f,\beta_1) = \int f d\beta_1$.
- 2. For β_2 , the statement becomes $f \in \mathcal{R}(\beta_2) \iff f(0-) = f(0)$ and that then $\int f \, d\beta_2 = f(0)$. The proof is very similar to that in the previous item, except that we look at what happens when $x \to 0-$. The difference comes from the fact that $\beta_1(0) = 0$ while $\beta_2(0) = 1$, that is the "jump" occurs at a different location.
- 3. We want to prove $f \in \mathcal{R}(\beta_3) \iff f$ is continuous at 0, i.e., f(0-) = f(0) = f(0+).
 - (a) (\rightarrow) Suppose $f \in \mathcal{R}(\beta_3)$, then Theorem 6.6. says there is a partition P such that $U(P, f, \beta_3) L(P, f, \beta_3) < \epsilon$. Consider the numbers $\gamma < 0 < \rho$ in the partition P. For $u \in (\gamma, 0]$ and $v \in [0, \rho)$, we have that

$$L(P, f, \beta_3) \leq f(u)(\underbrace{\beta_3(0) - \beta_3(\gamma)}_{1/2}) + f(0)(\underbrace{\beta_3(\rho) - \beta_3(0)}_{1/2}) \leq U(P, f, \beta_3)$$

$$L(P, f, \beta_3) \leq f(v)(\underbrace{\beta_3(\rho) - \beta_3(0)}_{1/2}) + f(0)(\underbrace{\beta_3(0) - \beta_3(\gamma)}_{1/2}) \leq U(P, f, \beta_3).$$

In a similar fashion we also have

$$L(P, f, \beta_3) \le \frac{1}{2}f(0) + \frac{1}{2}f(0) = f(0) \le U(P, f, \beta_3).$$

Combining these we have

$$|f(u) - f(0)| \le 2|U(\dots) - L(\dots)| < \epsilon$$

$$|f(v) - f(0)| \le 2|U(\dots) - L(\dots)| < \epsilon.$$

So,
$$f(0-) = f(0) = f(0+)$$
.

(b) (\leftarrow) Suppose f(0-) = f(0) = f(0+). Then we just have f(0) = f(0-) and f(0) = f(0+) (duh). But this allows us to repeat the proof in part (a) and (b) to get $f \in (R)(\beta_3)$.

4. If *f* is continuous at 0 then (c) holds. Parts (a) and (b) hold automatically. So we're done.

6.4 *Proof:* Let f(x) = 0 for all irrational x, f(x) = 1 for all rational x. We want to show $f \notin \mathcal{R}$ on [a,b] for any a < b. Well, let a partition P be given. Both the rationals

and irrationals are dense in [a,b]. So, for every little interval $[x_i,x_{i+1}]$, sup f=1. So, $U(P,f)=\sum_{i=1}^n\sup_{[x_i,x_{i+1}]}f(x)\Delta x_i=b-a$. Also, for every little interval $[x_i,x_{i+1}]$, inf f=0, so $L(P,f)=\sum_{i=1}^n\inf_{[x_i,x_{i+1}]}f(x)\Delta x_i=0$. Obviously, $\underline{\int} f=\sup_P L=0<\inf_P U=b-a=\overline{\int} f$, so $f\notin \mathcal{R}$ on [a,b].

6.5 *Proof:* Suppose f is a bounded real function on [a, b] and $f^2 \in \mathcal{R}$ on [a, b].

1. $f \notin \mathcal{R}$, because we can't "invert" f^2 to get f back. Consider the counter example:

$$f(x) = \begin{cases} 1, x \in [a, b] \cap \mathbb{Q} \\ -1, x \in [a, b] \cap \mathbb{Q}^c \end{cases}$$

Then $f^2 = 1 \in \mathcal{R}$. However, similar to last problem, we can show L(P, f) = -1 and U(P, f) = 1 for any partition P of [a, b]. So, $f \notin \mathcal{R}$.

2. $f \in \mathcal{R}$ if $f^3 \in \mathcal{R}$. In this case we can "invert" f^3 . Consider the continuous function ϕ on [a,b] defined by $\phi(x)=x^{1/3}$. Since f is bounded, Theorem 6.11., the function $h(x)=\phi(f^3(x))=f(x)\in \mathcal{R}$ on [a,b].

6.8 *Proof:* Suppose $f(x) \ge 0$ and that f decreases monotonically on $[1, \infty)$. We want to show $\int_1^\infty f \, dx$ converges $\iff \sum_{n=1}^\infty f(n)$ converges.

1. (\rightarrow) Suppose $\int_1^\infty f \, dx$ converges, that is, $\lim_{b\to\infty} \int_1^b f \, dx$ exists. We want to show $\sum_{n=1}^\infty f(n)$ converges, i.e., $\sum_{n=1}^k f(n)$ is bounded (f is monotonic & Theorem 3.14). Well.

$$\sum_{n=1}^{k} f(n) = f(1) + \sum_{n=2}^{k} f(n) \le f(1) + \int_{1}^{k} f(x) \, dx.$$

We note that $\lim_{k\to\infty} \int_1^k f\,dx$ exists, so $\sum_{n=1}^k f(n)$ is bounded for all k. And so, $\sum_{n=1}^\infty f(n)$ converges.

2. (\leftarrow) We also have that

$$\sum_{n=1}^{k} f(n) = f(1) + \sum_{n=2}^{k} f(n) \le f(1) + \int_{1}^{k} f(x) \, dx \le \sum_{n=1}^{k-1} f(n)$$

which means if $\int_1^\infty f \, dx$ diverges, $\sum_{n=1}^\infty f(n)$ diverges as well. So, by contraposition, if $\sum_{n=1}^\infty f(n)$ converges, the integral $\int_1^\infty f \, dx$ also converges.