

LogiCORE IP Adder/Subtracter v11.0

DS214 March 1, 2011 Product Specification

Introduction

The Xilinx[®] LogiCORE™ IP Adder/Subtracter core provides LUT and single XtremeDSP™ slice add/sub implementations. The Adder/Subtracter module can create adders (A+B), subtracters (A-B), and dynamically configurable adder/subtracters that operate on signed or unsigned data. The function can be implemented in a single XtremeDSP slice or LUTs (but currently not a hybrid of both). The module can be pipelined.

Features

- Drop-in module for Virtex[®]-7 and KintexTM-7, Virtex-6, Virtex-5, Virtex-4, Spartan[®]-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA FPGAs
- Backwards compatible with version 9.1
- Generates adder, subtracter and adder/subtracter functions
- Supports two's complement-signed and unsigned operations
- Supports fabric implementation inputs ranging from 1 to 256 bits wide
- Supports XtremeDSP slice implementations with inputs ranging from 1 to 36 or 48 bits wide (varies with device family)
- Optional carry input and output
- Optional clock enable and synchronous clear
- Optional bypass (load) capability
- Option to set the B Value to a constant
- Optional pipelined operation
- For use with Xilinx CORE Generator™ software and Xilinx System Generator for DSP 13.1

LogiCORE IP Facts Table						
	Core Specifics					
Supported Device Family ⁽¹⁾	S	Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA				
Supported User Interfaces				No	ot Applicable	
		Resc	ources ⁽²⁾		Frequency	
Configuration	LUTs	FFs	DSP Slices	Block RAMs	Max. Freq.	
Virtex-5, 32-bit input width, latency = 3	70	91	0	0	410 MHz	
	Pro	vided v	with Cor	·e		
Documentation		Product Specification				
Design Files		Netlist				
Example Design				1	Not Provided	
Test Bench				1	Not Provided	
Constraints File				No	ot Applicable	
Simulation Model	VHDL behavioral model in the xilinxcorelib library VHDL UniSim structural model Verilog UniSim structural model					
	Test	ted Des	sign Too	ls		
Design Entry Tools						
Simulation	Mentor Graphics ModelSim 6.6d Cadence Incisive Enterprise Simulator (IES) 10.2 Synopsys VCS and VCS MX 2010.06 ISIM 13.1					
Synthesis Tools	Tools N/A					
Support						
Provided by Xilinx, Inc.						

- For a complete listing of supported devices, see the <u>release notes</u> for this core.
- 2. For more complete performance data, see Performance and Resource Utilization, page 7

Pinout

Figure 1: Core Symbol

Signal names for the core are shown in Figure 1 and described in Table 1. Note that Figure 1 shows the SSET and SINIT pins which appear only on fabric implementations. The XtremeDSP slice implementations do not support SSET and SINIT.

Table 1: Core Signal Pinout

Name	Direction	Description
A[N:0]	Input	A Input bus
B[M:0] ⁽¹⁾	Input	B Input bus
ADD	Input	Controls the operation performed by an Adder/Subtracter (High = Addition, Low = Subtraction)
C_IN	Input	Carry Input
C_OUT	Output	Carry Output
S[P:0]	Output	Output bus
BYPASS	Input	Bypass control signal loads B port onto S port
CE	Input	Active high Clock Enable
CLK	Input	Clock signal: rising edge
SCLR	Input	Synchronous Clear: forces outputs to a low state when driven high
SINIT ⁽²⁾	Input	Synchronous Initialization - forces outputs to a user defined state when driven high
SSET ²	Input	Synchronous Set - forces outputs to a high state when driven high

^{1.} B port is not present if Constant Input = true and Bypass = false. A user-defined core-internal constant is applied in place of the B operand.

2. Available only for **Implementation** = Fabric.

CORE Generator Software Graphical User Interface Parameters

Following are the descriptions of the CORE Generator software GUI parameters for this module:

- Implement using: Sets the implementation type to Fabric or DSP48.
- **A Input Width**: Sets the width of the Port A input. Note that mixed signed/unsigned input types can require a bit growth of 2 bits on the output in some cases. See Table 3.
- A Input Type: Sets the type of the Port A data to Signed or Unsigned.
- **B Input Width**: Sets the width of the Port B input. The B input is the concatenated A:B input of the DSP48 variant and its width is family dependent. (The Virtex-4 DSP48 is limited to 36 bits on the B input; all others can reach 48 bits on the B input). Note that mixed signed/unsigned input types can require a bit growth of 2 bits on the output in some cases. See Table 3.
- **B Input Type**: Sets the type of the Port B data to Signed or Unsigned.
- Constant Input and Constant Value: When Constant Input is true, Port B is set to the value that is specified with the parameter Constant Value. Constant Value must be entered in binary format and must not exceed B Input Width. In most cases specifying Port B to be a constant creates a module without Port B. The only exception to this is when bypass functionality is requested, as Port B is needed to provide the bypass data in this case. The default setting is for the Port B value to be provided via Port B.
- Output Width: Sets the output width. The valid range varies depending on the settings of A Input Width, A Input Type, B Input Width, and B Input Type, as shown in Table 3. See Output Widths for more information about sufficiency and warning messages.
- Add Mode: Sets the mode of operation of the module. Valid values are Add, Subtract, and Add/Subtract. If an adder/subtracter is specified, the ADD pin sets the mode of operation.
- Carry In: When this parameter is set to true, a C_IN port is created. This is an active-high, carry-in port for adders and a programmable (active-high/active-low with **Borrow In/Out Sense**) carry-in port for subtracters and adder/subtracters in subtract mode.
- Carry Out: When set to true, this parameter creates port C_OUT which is the synchronous active-high carry-out from the adder and adder/subtracter in add mode and the programmable (active-high/active-low with Borrow In/Out Sense) borrow-out from the subtracter or adder/subtracter in subtract mode. See Table 3 for information about when these outputs are permitted.
- **Bypass**: When set to true, creates a BYPASS pin. Activating the BYPASS pin sets the output to be the value given on Port B. This functionality is used for creating loadable counters and accumulators.
- **Bypass and Clock Enable (CE) Priority**: This parameter controls whether or not the BYPASS input is qualified by **Clock Enable**. When set to Bypass_Overrides_CE, the activation of the BYPASS signal also enables the register. When set to CE_Overrides_Bypass, the register must have CE active to load the B port data.
- Bypass Sense: When set to Active_Low, the BYPASS pin is active low. BYPASS has a parameter to control its active sense because an historical implementation made significant speed gains with an active-low BYPASS, instead of active-high BYPASS. This is no longer necessarily the case, as sometimes active-high is as efficient, or more so. The details depend on the exact set of parameters.
- **Borrow In/Out Sense**: When set to Active_Low, the C_IN and C_OUT pins are active low for subtraction. This conforms to the legacy fabric implementation where this was an optimal setting. By setting **Borrow In/Out Sense** to Active_High, an active high C_IN and C_OUT on subtraction is obtained.
- Clock Enable: When set to true, the module is generated with a clock enable input.
- Power on Reset Init Value: Specifies (in hex) the value the S register initializes to during power-up reset.
- **Synchronous Clear**: Specifies if an SCLR pin is to be included.
- **Synchronous Set**: Specifies if an SSET pin is to be included. SSET pin is not valid in DSP48 implementations. See **Synchronous Set and Clear (Reset) Priority** for SCLR/SSET priorities.

- Synchronous Init: Specifies if an SINIT pin is to be included which, when asserted, synchronously sets the output value to the value defined by Init Value. Note that if SINIT is present, then neither SSET nor SCLR may be present. SINIT pin is not valid in DSP48 implementations.
- **Init Value**: Specifies in hex the value the output initializes to when SINIT is asserted. Ignored if **Synchronous Init**= false.
- Synchronous Controls and Clock Enable (CE) Priority: This parameter controls whether or not the SCLR (and if fabric: SSET and SINIT) inputs are qualified by CE. When set to Sync_Overrides_CE, the synchronous controls override the CE signal. When set to CE_Overrides_Sync, the control signals have an effect only when CE is high. Note that on the fabric primitives, the SCLR and SSET controls override CE, so choosing CE_Overrides_Sync generally results in extra logic.
- Sync Set and Clear (Reset) Priority: Controls the relative priority of SCLR and SSET. When set to Reset_Overrides_Set, SCLR overrides SSET. The default is Reset_Overrides_Set, as this is the way the primitives are arranged. Making SSET take priority requires extra logic.
- Latency Configuration: Automatic sets optimal latency for maximum speed; Manual allows user to set Latency to one of the allowed values.
- Latency: Value used for latency when Latency Configuration is set to Manual. See the section, Pipelined Operation for more information.

Table 2 is a cross-reference table from the GUI parameters listed above to the XCO parameter names in the XCO file.

Table 2: CORE Generator Tool GUI and XCO Parameters

GUI Name	Default Value	Valid Range	XCO Parameter
Component Name	AddSub		Component_Name
Implement using	Fabric	Fabric, DSP48	Implementation
A Input Type	Signed	Signed, Unsigned	A_Type
B Input Type	Signed	Signed, Unsigned	B_Type
A Input Width	15	1 to 255 (unsigned fabric) 2 to 256 (signed fabric) 1 to 47 (unsigned DSP48) 2 to 48 (signed DSP48)	A_Width
B Input Width	15	1 to 255 (unsigned fabric) 2 to 256 (signed fabric) 1 to 35 or 47 (unsigned DSP48) 2 to 36 or 48 (signed DSP48)	B_Width
Output Width	16	see Table 3	Out_Width
Latency Configuration	Manual	Manual, Automatic (Automatic sets optimal Latency for max speed)	Latency_Configuration
Latency	1	0 to min of Output Width or 64 (fabric) 0, 1, 2 (DSP48)	Latency
Clock Enable	true		CE
Synchronous Clear	false		SCLR
Synchronous Set	false		SSET
Synchronous Init	false		SINIT
Bypass	false		Bypass
Bypass Sense	Active_High	Active_High, Active_Low	Bypass_Sense

Table 2: CORE Generator Tool GUI and XCO Parameters (Cont'd)

GUI Name	Default Value	Valid Range	XCO Parameter
Carry In	false		C_In
Carry Out	false		C_Out
Borrow In/Out Sense	Active_Low		Borrow_Sense
Add Mode	Add	Add, Subtract, Add_Subtract	Add_Mode
Constant Input	false		B_Constant
Constant Value ⁽¹⁾	1		B_Value
Synchronous Set and Clear (Reset) Priority	Reset_Overrides_Set	Reset_Overrides_Set, Set_Overrides_Reset	Sync_Ctrl_Priority
Synchronous Controls and Clock Enable (CE) Priority	Sync_Overrides_CE	Sync_Overrides_CE, CE_Overrides_Sync	Sync_CE_Priority
Bypass and Clock Enable (CE) Priority	CE_Overrides_Bypass	CE_Overrides_Bypass, Bypass_Overrides_CE	Bypass_CE_Priority
Power on Reset Init Value	0	$0~{ m to}~2^{ m Output}$ Width _ 1	AINIT_Value
Init Value	0	0 to 20utput Width - 1	SINIT_Value

^{1.} See the list above for an explanation of the allowed range on Constant Value.

Core Use through CORE Generator Software

The CORE Generator tool GUI performs error-checking on all input parameters. Resource estimation and latency information are also available.

Several files are produced when a core is generated, and customized instantiation templates for Verilog and VHDL design flows are provided in the .veo and .vho files, respectively. For detailed instructions, see the CORE Generator software documentation.

Simulation Models

The core has a number of options for simulation models:

- VHDL behavioral model in the xilinxcorelib library
- VHDL UniSim structural model
- Verilog UniSim structural model

Xilinx recommends that simulations utilizing UniSim-based structural models are run using a resolution of 1 ps. Some Xilinx library components require a 1 ps resolution to work properly in either functional or timing simulation. The UniSim-based structural models might produce incorrect results if simulation with a resolution other than 1 ps. See the "Register Transfer Level (RTL) Simulation Using Xilinx Libraries" section in the *Synthesis and Simulation Design Guide* for more information. This document is part of the ISE® Software Manuals set available at www.xilinx.com/support/software_manuals.htm.

Core Use through System Generator

The Adder/Subtracter core is available through Xilinx System Generator for DSP, a design tool that enables the use of The MathWorks model-based design environment Simulink® software for FPGA design. The Adder/Subtracter core is one of the DSP building blocks provided in the Xilinx blockset for the Simulink software. The core can be found in the Xilinx Blockset in the Math section. The block is called "AddSub". See the System Generator for DSP User Guide for more information.

Migrating to Adder/Subtracter v11.0 from Earlier Versions

Updating from Adder/Subtracter v9.0 and Later

The CORE Generator tool update feature may be used to update an existing Adder/Subtracter XCO file to version 11.0 of the core. The core may then be regenerated to create a new netlist. See the CORE Generator software documentation for more information on this feature.

Updating from Versions Prior to Adder/Subtracter v9.0

It is not currently possible to automatically update versions of the Adder/Subtracter core prior to v9.0. Xilinx recommends that customers use the Adder/Subtracter v11.0 GUI to customize a new core. Note that some features and configurations may be unavailable in Adder/Subtracter v11.0. Also, some port names may differ between versions.

Table 3: Availability of Carry Outputs and Output Data Type/Size vs. Input Data Type

Input types	Output Type	Conditions	Valid Output Widths	Carry Out
		Add Mode =Add, Subtract	Q ⁽¹⁾	Available
Both Unsigned	Unsigned		Q + 1	Not Available
Botti Offsigned	Orisigned	Add Mode =Add_Subtract	Q + 1	Available
One Unsigned, One Signed	ne Signed	Signed input wider	Q,	Not Available
			Q + 1	
	Oigned	Inputs equal width or	Q + 1,	Not Available
		unsigned input wider	Q + 2	
Dath Cianad	Cianad	None	Q	Not Available
Both Signed	Signed		Q + 1	Not Available

^{1.} Q = Max(A Input Width, B Input Width).

Output Widths

Caution must be exercised when choosing output widths to accommodate input widths and sign types, as described in Table 3. The error trapping of inadequate output width is disabled to allow the System Generator tool to zero pad or sign-extend inputs and to allow input and output widths to be equal. Warnings are given when an inadequate output width is chosen but the CORE Generator tool *does not error*. It assumes that the appropriate padding has been added to allow for bit growth and only issues a warning.

Pipelined Operation

The Adder/Subtracter module can be optionally pipelined to improve speed. The pipelined operation is controlled by the latency parameters. Set **Latency Configuration** to Automatic to achieve optimal pipelining for maximum speed. Set Latency Configuration to Manual to allow a valid number of pipeline stages to be entered in the **Latency** parameter.

DSP48

For XtremeDSP slice (DSP48) implementations, the single DSP48 macro can be pipelined with 0, 1, or 2 stages of registers. **Latency Configuration =** Automatic optimizes the latency for speed. For Latency = 1, only output registers are present. For Latency = 2, output and input registers are present.

Fabric

For Fabric implementations, pipelining is achieved by splitting the input buses into a number of bus-slices (that equals the number of pipelining stages), and doing as much work as possible on each bus-slice in the first stage; adding them together and storing the results and the carry-out of each. In the second stage, the carry-out from the least-significant slice is then fed into the next-higher result, which produces a carry-out that is fed into the next result in the following stage, until the carry has propagated to the top.

Because less data needs to be stored, this is more efficient than the more intuitive technique which simply stores the inputs for each slice until the carry-in for that slice is generated. Additionally, the design is smaller and more easily routed.

After power up or reset, the pipelined module takes a number of clock cycles, specified by the latency control, for the outputs to become valid.

If bypass is requested on a pipelined module, the bypass value appears on the outputs after the number of clock cycles specified by the latency control. Note that if both bypass and clock enable are requested, bypass priority must be set so that bypass does not override clock enable. For pipelined modules, the resource usage is roughly **Latency** times bigger than the non-pipelined equivalent.

Note: Pipelining results in a significant increase in area usage in order to increase clock speed. If latency is required but area is more important than speed, add an SRL16-based shift register to the S output of this module for optimal area usage. See the RAM-based Shift Register core for this functionality.

Performance and Resource Utilization

Tables 4 to 7 provide Addsub performance and resource usage for a number of different Adder/Subtracter configurations.

The maximum clock frequency results were obtained by double-registering input and output ports to reduce dependence on I/O placement. The inner level of registers used a separate clock signal to measure the path from the input registers to the first output register through the core.

The resource usage results do not include the above "characterization wrapper" registers and represent the true logic used by the core. LUT counts include SRL16s or SRL32s (according to device family).

The map options used were: "map -pr b -ol high."

The par options used were: "par -ol high."

Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter specification.

The maximum achievable clock frequency and the resource counts may also be affected by other tool options, additional logic in the FPGA device, using a different version of Xilinx tools, and other factors. The Xilinx Xplorer script can be used to find the optimal settings.

All characterization was done using the following parameter settings unless otherwise noted:

- Add Mode = 2
- CE = 1
- Borrow In/Out Sense = Active_Low
- **Latency Configuration** = Automatic
- all else = default

Table 4: Fabric Addsub: Virtex-5 FPGA (Part = XC5VSX50T-1)

Description	Small	Medium	Large	No Pipelining ⁽¹⁾	Bypass ⁽²⁾	Carry Out ⁽³⁾
A Input Width, B Input Width	8	32	100	32	32	32
Latency	1	3	9	0	3	3
Max Clock Frequency (MHz)	452	410	340	388	319	415
LUT6-FF pairs	8	93	393	32	97	96
LUTs	8	70	362	32	72	72
Flip-flops	0	91	384	0	94	94
DSP48Es	0	0	0	0	0	0

^{1.} Latency Configuration = Manual and Latency = 0.

Table 5: XtremeDSP Slice Addsub: Virtex-5 (Part = XC5VSX50T-1)

Description	Small	Medium	Large	No Pipelining	Bypass ⁽¹⁾	Carry Out ⁽²⁾
A Input Width, B Input Width	8	32	48	32	32	32
Latency	2	2	2	0	2	2
Max Clock Frequency (MHz)	450	450	450	241	450	450
LUT6-FF pairs	0	0	0	0	1	0
LUTs	0	0	0	0	1	0
Flip-flops	0	0	0	0	0	0
DSP48Es	1	1	1	1	1	1

^{1.} **Bypass** = true and **Bypass Sense** = Active_High.

^{2.} Bypass = true and Bypass Sense = Active_High.

^{3.} Carry Out = true, A Input Type = Unsigned, and B Input Type = Unsigned.

^{2.} Carry Out = true, A Input Type = Unsigned, and B Input Type = Unsigned.

Table 6: Fabric Addsub: Spartan-3A DSP FPGA (Part = XC3SD3400A-4)

Description	Small	Medium	Large	No Pipelining ⁽¹⁾	Bypass ⁽²⁾	Carry Out ⁽³⁾
A Input Width, B Input Width	8	32	100	32	32	32
Latency	1	4	13	0	4	4
Max Clock Frequency (MHz)	251	230	197	188	191	230
LUTs	8	85	541	32	99	88
Flip-flops	0	105	601	0	108	108
DSP48As	0	0	0	0	0	0

^{1.} Latency Configuration = Manual and Latency = 0.

Table 7: XtremeDSP Slice Addsub: Spartan-3A DSP FPGA (Part = XC3SD3400A-4)

Description	Small	Medium	Large	No Pipelining	Bypass ⁽¹⁾	Carry Out ⁽²⁾
A Input Width, B Input Width	8	32	48	32	32	32
Latency	2	2	2	0	2	2
Max Clock Frequency (MHz)	251	251	251	86	251	251
LUTs	1	1	1	1	2	1
Flip-flops	0	0	0	0	0	0
DSP48As	1	1	1	1	1	1

^{1.} Bypass = true and Bypass Sense = Active_High.

Support

Xilinx provides technical support for this LogiCORE product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

Refer to the IP Release Notes Guide (XTP025) for further information on this core. There is a link to all the DSP IP and then to each core. For each core, there is a master Answer Record that contains the Release Notes and Known Issues list for each core. The following information is listed for each version of the core:

- New Features
- Bug Fixes
- Known Issues

^{2.} Bypass = true and Bypass Sense = Active_High.

^{3.} Carry Out = true, A Input Type = Unsigned, and B Input Type = Unsigned.

^{2.} Carry Out = true, A Input Type = Unsigned, and B Input Type = Unsigned.

Ordering Information

This LogiCORE IP module is included at no additional cost with the Xilinx ISE Design Suite software and is provided under the terms of the Xilinx End User License Agreement. Use the CORE Generator software included with the ISE Design Suite to generate the core. For more information, please visit the core page.

Please contact your local Xilinx <u>sales representative</u> for pricing and availability of additional Xilinx LogiCORE modules and software. Information about additional Xilinx LogiCORE modules is available on the Xilinx <u>IP Center.</u>

Revision History

Date	Version	Description of Revisions
4/28/05	8.0	Updated to ISE Tools 7.1
4/24/09	11.0	Updated to ISE Tools 11.1; added XtremeDSP slice implementations and support for Virtex-6 and Spartan-6 devices
3/1/11	11.1	Support added for Virtex-7 and Kintex-7. ISE Design Suite 13.1

Notice of Disclaimer

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.