Comb	son6 inatorics;	
Principles	of Countin	3
Cwitho	out countin	9!)
Probability	calculations	often involne
counting	especially	when

and finite seto. In such

situations, the probability of

an event is just the "size"

(Cardinality) of that event

measuring the size of countable

events.

Principle

The Multiplication Water

Consider a two-stage experiment.

to perform the first and the

second stage sequentially is

the number of possible (aibj)

pairs, Which is my

possible results, the number

foll possible results is

[n_1 n_2 n_3 -- n_r] = [n_i]

Example: Telephone numbers

are I digits in Springfield.

The first digit cannot be

1 or 0. How many different

telephone numbers can we have?

Ø 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2×2×2×	XzXZ	22
2 1 1 1 1 1	Ø	0 0 0	0-0	-
	Ω		1	

The multiplication principle helps
no understand ordered sampling
with replacement.
Example: Assume that we have
n objects, and we would like to

sample ke objects from them
with replacement Each time, we
draw an object, make a note of it,

put the object back MA and
select the next object.

Permutations: The when k objects

are selected from a plurality of

n objects, and order matters,

K-permutations are constructed.

(9)
In other words, k-permutations
one subsequences of length k, selected
from sequences of length n
places white X/m
n n-1 n-2 ···· m-k+1=
n(n-1)(n-2) (n-k+1)(n-k)(n-k-1)-+- n;
In other words, permutations can-
be considered as results et ordered
be considered as results et ordered sampling without replacement
Sampling without replacement $\Omega = Ax(A-\{\omega_1\})x(A-\{\omega_1,\omega_2\})xx$
sampling without replacement
Sampling without replacement $\Omega = Ax(A-\{\omega_1\})x(A-\{\omega_1,\omega_2\})xx$
Sampling without replacement $\Omega = Ax(A-\{\omega_1\})x(A-\{\omega_1,\omega_2\})xx$

Example: Assume that
we would like to enumerate
all possible soscequences of that
Can be crented using (0,0,1,1).
m=4
K23
$\omega_1 = \omega_2 =$
_ω ₃ = ω ₄ =
$\omega_g = \omega_q =$ Observe that ω_i is a

Combinations: when we selection
k objects from n objects, and
order does not matter for us,
we are considering combinations
Order does not matter." This
means that any re-arrangements
of a sequence of longth
of a sequence of length

rearrangements of a sequence of length k exist?
K places K K-1 K-2 1: = Kl. K objects
Therefore, the number of
Combinations of length le from n objects is
$\binom{n}{k} = \frac{\# permutations}{k!} = \frac{n!}{k! \cdot (n-k)!}$

Combinations are useful

in understanding "unondered

sampling without replacement"

(") is also called the

binomial coefficient, because it

appears in the binomial theorem.

(a+b)=(aa+A(n)ab+(a)ab+(a)ab

(n-1)ab+(n)b=X=0(a)

The coefficients (n) can

be read from the so-called

Example: We have 5 novels,
3 Sci-fibooks, 4 magazines,
and 8 college textbooks.
In how many different ways
can they be arranged so that

books of the same genre

are placed together?

5! 3! 4! 8! one
nove sufi mag coll. _____ instance

answer: 41 x5! x3!x4! x8!

Partitions A combination is
a partition of m objects
into k and m-k objects.
We can generalize this discussion
to assisting dividing

n objects into r partitions,
given that the ith partition
has mi elements.

Obviously

Mi+M2+...+Nr = M

 nterestingly, there
 $\binom{n_1}{n_1}$ $\binom{n_2}{n_2}$ $\binom{n_2}{n_r}$
called a "multinomial
 oefficient," be cause it appears
The multi-nomial theorem

$\left(\frac{a_{1+}a_{2}}{k}\right) = \sum_{k} \left(\frac{n}{k, n-k}\right) \frac{k}{a_{1}} \frac{n-k}{a_{2}} \left(\frac{n}{k}\right)$
(a1+ a2+ + am) = 5 (K, K2-, Km (K1,, Km)
$\frac{a_1 a_2 \cdots a_m}{K_1 + K_2 + \cdots + K_m = m}$

	Example (Anagrams)
	How many different words
RA)	(letter sequences) can be
	obtained by rearranging
	the letters in the word

BANGER TATTOO?
$\frac{3}{4} \left(\frac{3}{4} \right) \left(\frac{3}{4} \right)$
6! = 6×5×4×8! = 60 312!!! = 31×21×1!