ST/02 Week 19

Analysis of Variance (ANOVA)

One-way ANOVA

Given k independent random samples, i.e. for $j \in [k]$, i.i.d. random sample $\{X_{ij}\}_{i=1}^{n_j}$ from $N(\mu_j, o^2)$. Test:

Ho: M1 = M2 = ... = Mk

HI: not all uj's are the same

Some definitions:

1) The j-th sample mean: $\overline{X}_{ij} := \frac{n_j}{n_j} \sum_{i=1}^{n_j} X_{ij}$

2) Overall sample mean: $\overline{X} := \frac{1}{n} \stackrel{K}{\underset{j=1}{\text{i}}} \stackrel{n_j}{\underset{i=1}{\text{i}}} \stackrel{K}{\underset{j=1}{\text{i}}} \stackrel{K}{\underset{$

where
$$n := \sum_{j=1}^{k} n_j$$

3) Total variation: $\sum_{j=1}^{k} \sum_{i=1}^{n_j} (X_{ij} - \overline{X})^2$ with df = n-1

4) Between-groups variation: $B := \sum_{j=1}^{k} n_j (\overline{X}_{:j} - \overline{X}_j)^2$, df = k-1

5) Within-groups variation (residual sum of squares): $W := \sum_{j=1}^{n} \sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{ij})^2, df = n-k$

8) Equivalent forms: Total variation =
$$\sum_{j=1}^{k} \frac{n_j}{i=1} \cdot X_{ij}^2 - n \overline{X}^2$$

$$B = \sum_{j=1}^{k} n_j \overline{X}_{j}^{2} - n\overline{x}^{2}$$

$$W = \sum_{j=1}^{K} \sum_{i=1}^{N_j} X_{ij}^2 - \sum_{j=1}^{K} N_j X_{ij}^2$$

Under Ho, it can be shown that:

$$F := \frac{\sum_{j=1}^{k} n_{j}(\bar{X}_{j} - \bar{X})^{2}/(k-1)}{\sum_{j=1}^{k} n_{j}(\bar{X}_{j} - \bar{X}_{j})^{2}/(n-k)} = \frac{B/(k-1)}{W/(n-k)} \sim \frac{F_{k-1}, n-k}{W/(n-k)}$$

Reject Ho if f > Fk-1, n-k, 2 (Fd > k-1, n-k).

One-way ANOVA table:

Source	DF	SS	MS	F	p-value
- Factor	k-1	В	B/CK-1)	B/(K-1) W(n-K)	Р
Error	n-k	W	w/(n-k)		·
Total	n-1	B+W			

Without further assumptions, ue also have:

1) estimator of
$$\alpha^2$$
: $\delta := S := \sqrt{\frac{W}{n-K}}$

2) 2.100% - confidence interval for uj:

$$\frac{1}{X_{j}} \pm t_{\frac{1}{2}, n-k} \cdot \frac{S}{\sqrt{n_{j}}}$$
 for $j \in [k]$

A system view of one-way ANOVA

with $\mathcal{E}_{ij} \wedge N(0, 0^2)$, all independent. $\mathcal{E}_{j} \beta j = 0$ is required for identifiability.

N is the average effect and B; the j-th keel treatment effect.

Tuo-way ANOVA

$$X_{ij} = M + \delta i + \beta j + \epsilon_{ij}$$
 for $i \in \epsilon_{r}$ and $j \in \epsilon_{c}$.

n: overage treatment effect

βj: treatment (column) levels

di: different block (row) keels

Eij: follow N(0,02), all independent

Conditions for identifiability: { Tr = { } sj = 0.

Tuo directions

Some definitions:

1) i-th block sample mean:
$$X_i := C_{j=1}^{C} X_{ij}$$

3) overall sample mean:
$$\overline{X} := \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{n} X_{ij}$$

6) between-treatments variation: Bod:
$$r_{j=1}^{C}(\overline{X}_{j}-\overline{X}_{j})^{2}$$
, $df=C-1$

7) residual sum of squares: Residual SS:=
$$\sum_{i=1}^{r}\sum_{j=1}^{r} (X_{ij}-\overline{X}_{i}-\overline{X}_{j}+\overline{X}_{j})^{2}$$

$$df = (r-1)(c-1)$$

Equivalent forms: Total
$$SS = \sum_{i=1}^{r} \sum_{j=1}^{r} X_{ij}^{2} - rc \overline{X}^{2}$$
 $Srow = c \sum_{i=1}^{r} \overline{X}_{i}^{2} - rc \overline{X}^{2}$
 $Scol = r \sum_{j=1}^{r} \overline{X}_{ij}^{2} - rc \overline{X}^{2}$
 $Scol = r \sum_{j=1}^{r} \overline{X}_{ij}^{2} - rc \overline{X}^{2}$
 $SS = Total SS - Srow - Scol$

Case I: $SS = Total SS - Srow - Scol$

$$F := \frac{Srow}{(r-1)} = \frac{(c-1)Srow}{Residual SS}$$
 $SS = Total SS - Srow - Scol$
 $SS = Total SS$

$$F := Bcol/(c-1)$$
 = $(r-1)Bcol$
Residual SS/ $(c-1)(c-1)$ 3 Residual SS

Under Ho, F~ Fc-1, (+-1)(c-1). Reject Ho if f > Fd; c-1, (r-1) cc-1)

Two-way ANOVA table

Source	DF	<i>SS</i>	MS	F	p-value
Row factor	r-1	Brow	Brow/(r-1)	(C-1) Brow/RSS	P,
Column factor	C-1	Bcol		(r-1) Bad/RSS	• •
Residual	(r-1) (C-1)	Residual SS	(r-1) (c-1)	-	
Total	rc-1	Total SS			

Remark on residuals:

By model we have Xij = M+ Ti + Bj + Eij .

While from clata we have the decomposition:

$$X_{ij} = \overline{X} + (\overline{X}_i - \overline{X}) + (\overline{X}_j - \overline{X}) + (X_{ij} - \overline{X}_i - \overline{X}_j + \overline{X})$$

$$=>$$
 $\hat{x}=\bar{x}$

$$\hat{\chi}_i = \overline{\chi}_i - \overline{\chi}$$

$$\beta_j = \overline{X}_j - \overline{X}$$

$$\mathcal{E}_{ij} = X_{ij} - \overline{X}_{i} - \overline{X}_{j} + \overline{X}_{i}$$

© Tao Ma All Rights Reserved