Computation Theory Note

Ran Xie

March 19, 2023

1 Regular Languages

state diagram of finite automaton M. q_0, q_1, q_2 are states. q_0 is start state. q_1 is accept state. Arrows are called **transitions**. Input is string of 0s and 1s. The output is either **reject** or **accept**.

(**Deterministic**) Finite Automaton (DFA) M is 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- 1. Q is a finite set called the states
- 2. Σ is a finite set called the alphabet
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states.

Language of machine M, A is the set of all strings that M accepts and write L(M) = A. We say M accepts A or M recognizes A.

Language operations: Let A and B be languages

- 1. Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- 2. Concatenation: $A \circ B = \{xy | x \in A, y \in B\}$
- 3. Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and } x_i \in A\}$

Regular Language is a language accepted by some finite automatons. The class of regular language is closed under union, concatenation and star operation.

Nondeterministic finite automaton (NFA) is 5-tuple $(Q, \Sigma, \delta, q_0, F)$.

- 1. Q is finite set of states
- 2. Σ is finite alphabet
- 3. $\delta: Q \times \Sigma_{\epsilon} \longrightarrow P(Q)$
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states

Remark: ϵ is empty string. The transition function maps current input or ϵ and the current state to produce a set of next states (in the power set P(Q)) rather than a single next state in DFA. NFA accepts $w=y_1y_2\dots y_m$ if $y_i\in \Sigma_\epsilon$ for all i and a sequence of states $r_0,\dots,r_m\in Q$ exists such that

- $r_0 = q_0$
- $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, \dots, m-1$
- $r_m \in F$

This means even NFA branches out but if one sequence of states exists such that the last state is in F, the NFA accepts the input.

Result 1 Two automatons are equivalent if they recognizes the same language. Every NFA has an equivalent DFA. It follows that a language is regular if some NFA recognizes it.

R is **Regular Expression** if R is

- 1. a for some a in the alphabet Σ
- $2. \epsilon$
- 3. Ø
- 4. $(R_1 \cup R_2)$ (Union)
- 5. $(R_1 \circ R_2)$ (Concatenation)
- 6. (R_1^*) (Star)

where R_1 and R_2 are regular expressions. This type of definition is called **Inductive definition** (not a circular one).

Result 2 A language is regular iff some regular expression describes it.

A Generalized nondeterministic finite automaton (GNFA) is a 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ where

- 1. Q is the finite set of states
- 2. Σ is the input alphabet
- 3. $\delta: (Q \{q_{\text{start}}\}) \times (Q \text{accept}) \longrightarrow R$ is the transition function.
- 4. q_{start} is the start state and q_{accept} is the accept state.

2 Context Free Grammar

Finite automata and regular expressions are methods to describe languages. Context-Free grammar is a more powerful method of describing languages. Languages described as called Context Free Languages.

A grammar consists of a collection of substitution rules also called productions. E.g.:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

 $\{A,B\}$ are variable symbols. $\{0,1,\#\}$ are terminal symbols. A is the start variable. We say A yields 0A1 written $A\Rightarrow 0A1$. A derives 0#1 written $A\stackrel{*}{\Rightarrow} 0\#1$ because there exists $A\Rightarrow 0A1\Rightarrow 0B1\Rightarrow 0\#1$

Formally, A Context Free Grammar is a 4-tuple (V, Σ, R, S) where

- 1. V is a finite set called the variables
- 2. Σ is a finite set, disjoint from V called the terminals
- 3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals
- 4. $S \in V$ is the start variable.

Example: $G = (\{S\}, \{a,b\}, R, S)$ The set of rules R is $S \to aSb|SS|\epsilon$

 $\text{Example: } G = (V, \Sigma, R, \langle \text{EXPR} \rangle) \text{ where } V = \{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle\} \text{ and } \Sigma = \{a, +, \times, (,)\}$

$$\begin{split} \langle \text{EXPR} \rangle &\to \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle | \langle \text{TERM} \rangle \\ \langle \text{TERM} \rangle &\to \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle | \langle \text{FACTOR} \rangle \\ \langle \text{FACTOR} \rangle &\to (\langle \text{EXPR} \rangle) | a \end{split}$$

The rule produces $a + a \times a$, $(a + a) \times a$.

A string w is a **leftmost derivation** if every derivation step the leftmost variable is the one that gets substituted. If a context-free grammar G has two or more different leftmost derivation, then it is **ambiguous**. (Some CFGs are inherently ambiguous)

A context-free grammar is in **Chomsky normal form** if every rule is of the form

$$A \to BC$$
$$A \to a$$

where a is terminal and A, B, C are variable (B, C cannot be start variables).

Result 3 Any context-free language is generated by a context-free grammar in **Chomsky normal** form.