Database Assignment1

Qinglin Li, 5110309074

Problem 1

- 1. Data redundancy and inconsistency: multiple file formats, duplication of information in different files
- 2. Difficulty in accessing data: need to write a new program to carry out each new task
- 3. Data isolation —multiple files and formats
- 4. Integrity problems

Problem 2

- 1. Cost of Hardware and Software
- 2. Cost of Data Conversion
- 3. Cost of Staff Training
- 4. Appointing Technical Staff
- 5. Database Damage

Problem 3

	and unknown	or unknown	not
true	unknown	true	false
false	false	unknown	true
unknown	unknown	unknown	unknown

Problem 4

- a. minimum: $\max(r, s)$. $R \subset S$ or $S \subset R$ maximum: r + s. $R \cap S = \emptyset$
- b. minimum: $0. R.B \cap S.B = \emptyset$ maximum: $r \times s$. All elements in R.A and S.C are distinct and All elements in R.B and S.B are the same.
- c. minimum: $0. R.B \cap S.B = \emptyset$ maximum: min(r, s). All elements in R.B are distinct and one relation's B attribute is a subset of another
- d. That relation equals to R minimum: r maximum: r
- e. minimum: 0. All tuples have A = B maximum: r. All tuples have $A \neq B$

Problem 5

- a. $\pi_{employee_name,city}$ (employee $\bowtie \sigma_{company_name="First Bank Corporation"}(works)$)
- b. $\pi_{employee_name,street,city} \left(employee \bowtie \sigma_{company_name="First Bank Corporation"} \land salary > 10000 (works) \right)$
- c. $\pi_{name} \Big(\sigma_{number = \mathcal{G}_{max(number)}(c)} \Big(\rho_{c(name,number)} \Big(company_name \mathcal{G}_{count(employee_name)}(works) \Big) \Big) \Big)$
- $\text{d. } \sigma_{avg_sly} >_{\pi_{avg_sly}(\sigma_{name=\text{``First Bank Corporation''}}(c))} \bigg(\rho_{c(name,avg_sly)} \left(\left(company_name \mathcal{G}_{avg(salary)}(works) \right) \right) \bigg)$

Problem 6

- a. $\pi_{name} \Big(\sigma_{publisher = \text{``McGraw-Hill''}} (employee \bowtie loan \bowtie books) \Big)$
- b. $\pi_{name}\Big((employee \bowtie loan) \div \pi_{isbn}\big(\sigma_{publisher=\text{``McGraw-Hill''}}(books)\big)\Big)$
- c. $\pi_{name} \Big(employee \bowtie \sigma_{n>5} \left(\rho_{l(empno,n)} \left(empno \mathcal{G}_{count(isbn)} \left(loan \bowtie \sigma_{publisher=\text{``McGraw-Hill''}} (books) \right) \right) \Big) \Big)$
- d. $\pi_{name,pub}\left(employee \bowtie \sigma_{n>5}\left(\rho_{l(empno,pub,n)}\left(empno,publisher\mathcal{G}_{count(isbn)}(loan\bowtie books)\right)\right)\right)$