Day 15 – Relations and Functions

Definitions

- Relation—A relation is a set of ordered pairs.
- Function—A function is a relation in which, for each value of the first component of the ordered pairs, there is exactly one value of the second component.
- If the value of the variable y depends on the value of the x variable, then y is the dependent variable and x is the independent variable. (x, y)

Domain and Range

• In a relation, the set of all values of the independent variable (x) is the **domain**; the set of all values of the dependent variable (y) is the **range**.

Finding Domains and Ranges from Graphs

Definitions

- Agreement on Domain
 - Unless specified otherwise, the domain of a relation is assumed to be all real numbers that produce real numbers when substituted for the independent variable.
- Vertical Line Test

If each vertical line intersects a graph in at most one point, then the graph is that of a function.

Function Notation

- y = f(x) is called function notation
- We read f(x) as "f of x" (The parentheses do not indicate multiplication.) The letter f stand for function.
- f(x) is just another name for the dependent variable y.
- **Example**: We can write y = 10x + 3 as f(x) = 10x + 3

Variations of the Definition of Function

- A function is a relation in which, for each value of the first component of the ordered pairs, there
 is exactly one value of the second component.
- A function is a set of ordered pairs in which no first component is repeated.
- A function is a rule or correspondence that assigns exactly one range value to each domain value.

Increasing, Decreasing, and Constant Functions

- Suppose that a function f is defined over an interval I. If x_1 and x_2 are in I,
- (a) f increases on l if, whenever $x_1 < x_2$, $f(x_1) < f(x_2)$;
- (b) f decreases on I if, whenever $x_1 < x_2$, $f(x_1) > f(x_2)$;
- (c) f is **constant** on I if, for every x_1 and x_2 , $f(x_1) = f(x_2)$.

Whenever $x_1 < x_2$, and $f(x_1) < f(x_2)$, f is increasing.

(a)

Whenever $x_1 < x_2$, and $f(x_1) > f(x_2)$, f is decreasing.

(b)

For every x_1 and x_2 , if $f(x_1) = f(x_2)$, then f is **constant**.

(c)

Symmetry with Respect to an Axis

- The graph of an equation is **symmetric with respect to the y-axis** if the replacement of x with -x results in an equivalent equation.
- The graph of an equation is **symmetric with respect to the** x**-axis** if the replacement of y with -y is an equivalent equation.

Symmetry with Respect to the Origin

The graph of an equation is symmetric with respect to the origin if the replacement of both x with -x and y with -y results in an equivalent equation.

Even and Odd Functions

- A function f is called an **even function** if f(-x) = f(x) for all x in the domain of f. (Its graph is symmetric with respect to the y-axis.)
- A function f is called an **odd function** if f(-x) = -f(x) for all x in the domain of f. (Its graph is symmetric with respect to the origin.)