FONCTIONS EXPONENTIELLES

Partie 1 : Définition et propriété

1) Définition

On considère la suite géométrique de raison a définie par $u_n = a^n$.

Elle est définie pour tout entier naturel n. En prolongeant son ensemble de définition pour tout réel positif, on définit la fonction exponentielle de base a.

Ainsi par exemple:

Pour une suite géométrique de raison a=2 et de premier terme 1, on a par exemple : $u_4=2^4$.

Pour la fonction correspondante, on a : $f(4) = 2^4$ mais on a également : $f(1,3) = 2^{1,3}$.

Et de façon générale, $f(x) = 2^x$ pour tout réel x positif.

La fonction f est appelée fonction exponentielle de base 2.

L'ensemble de définition des fonctions exponentielles peut ainsi être étendu aux valeurs de x négatives.

<u>Définition</u>: La fonction $x \mapsto a^x$ définie sur \mathbb{R} , avec a > 0, s'appelle **fonction exponentielle de base** a.

Exemple:

La fonction exponentielle de base 1,2 est définie sur \mathbb{R} par $x \mapsto 1,2^x$.

Remarque: Avec la calculatrice, il est possible de calculer des valeurs d'une fonction exponentielle.

Propriété : La fonction exponentielle de base a est strictement positive sur \mathbb{R} .

2) Propriétés

Propriétés:

a)
$$a^0 = 1$$
 et $a^1 = a^2$

b)
$$a^x \times a^y = a^{x+y}$$

a)
$$a^0 = 1$$
 et $a^1 = a$ b) $a^x \times a^y = a^{x+y}$ c) $\frac{a^x}{a^y} = a^{x-y}$

$$d) a^{-x} = \frac{1}{a^x}$$

e)
$$(a^x)^n = a^{nx}$$
, avec n un entier relatif.

Méthode: Simplifier une expression

Vidéo https://youtu.be/PHTOZid0kzM

Simplifier les expressions suivantes :

$$A = 4^{-3} \times 4^{-5}$$

$$B = \frac{3^3 \times 3^{-2,5}}{9^5}$$

$$C = (4.8^{-2.1})^3 \times 4.8^{6.2}$$

Correction

$$A = 4^{-3} \times 4^{-5}$$

$$B = \frac{3^3 \times 3^{-2,5}}{9^5}$$
$$3^3 \times 3^{-2,5}$$

$$C = (4.8^{-2.1})^3 \times 4.8^{6.2}$$

$$A = 4^{-3 + (-5)}$$

$$B = \frac{3^3 \times 3^{-2,5}}{(3^2)^5}$$

$$B = \frac{3^{3-2,5}}{3^{2\times 5}}$$

$$B = \frac{3^{0,5}}{3^{10}}$$

$$C = 4.8^{-2.1 \times 3} \times 4.8^{6.2}$$

$$A = 4^{-8}$$

$$B = \frac{3^{3-2,5}}{3^{2\times 5}}$$

$$C = 4,8^{-6,3} \times 4,8^{6,2}$$

$$B = \frac{3^{0.5}}{3^{10}}$$

$$=\frac{1}{3^{10}}$$

$$C = 4.8^{-6.3+6.2}$$

$$B = 3^{0,5-10}$$
$$B = 3^{-9,5}$$

$$C = 4.8^{-0.1}$$

$$B = \frac{1}{3^{9,5}}$$

$$C = \frac{1}{4,8^{0,1}}$$

Partie 2 : Variations de la fonction exponentielle

Vidéo https://youtu.be/YQoR7CFM_1U

Exemples:

Fonction	$a = \cdots$	Variation de	$N = \cdots$	Variation de	Variation de
$N \times a^x$		a^x		$N \times a^x$	f
$f(x) = -2 \times 4^x$	a = 4	4 ^x est croissante	N = -2	-2×4^x	f est
		car a > 1	est négatif	est décroissante	décroissante
$f(x) = 3 \times 0.5^x$	a = 0.5	0,5 ^x est décroissante	N = 3	3×0.5^x	f est
		$\operatorname{car} a < 1$	est positif	est décroissante	décroissante
$f(x) = -4 \times 0.2^x$	a = 0.2	$0,2^x$ est décroissante	N = -4	-4×0.2^{x}	f est
		car a < 1	est négatif	est croissante	décroissante
$f(x) = 7^x$	a = 7	7^x est croissante car			f est
		a > 1			croissante
$f(x) = 0,4^x$	a = 0.4	0,4 ^x est décroissante			f est
		car a < 1			décroissante
$f(x) = 9 \times 8^x$	a = 8	8^x est croissante car	N = 9	9×8^x	f est
		a > 1	est positif	est croissante	croissante

Remarques:

- On retrouve les résultats établis pour la variation des suites géométriques.
- Si a=1 alors la fonction exponentielle est constante. En effet, dans ce cas, $a^x=1^x=1$
- Quel que soit a, la fonction exponentielle passe par le point (0 ; 1). En effet, $a^0=1$.

Méthode: Étudier les variations d'une fonction exponentielle

On considère les fonctions f et g définies par : $f(x) = 0.9^x$ et $g(x) = -3 \times 5^x$ Étudier les variations de f et g.

Correction

- f est de la forme $f(x) = a^x$ avec a = 0.9 < 1, donc f est décroissante.
- g est de la forme $g(x) = N \times a^x$ avec a = 5 > 1, donc $x \mapsto 5^x$ est croissante. Et N = -3 est négatif donc g est décroissante.

Méthode: Utiliser une fonction exponentielle

Vidéo https://youtu.be/maK64g-y3gA

Par suite d'une infection, le nombre de bactéries contenues dans un organisme en fonction du temps (en heures) peut être modélisé par la fonction f définie sur [0; 10] par : $f(x) = 50\,000 \times 1,15^x$.

- a) À l'aide de la calculatrice, donner un arrondi au millier près du nombre de bactéries après 3h puis 5h30.
- b) Déterminer les variations de f sur [0; 10].
- c) À l'aide de la calculatrice, déterminer au bout de combien de temps le nombre de bactéries a doublé ?

Correction

a) $f(3) = 50\,000 \times 1{,}15^3 \approx 76\,000$ $f(5.5) = 50\,000 \times 1.15^{5.5} \approx 108\,000$ 50000*1.15³ 50000*1.15^{5.5}

b) On pose $u(x) = 1.15^{x}$. u est de la forme $u(x) = a^x$ avec a = 1.15 > 1, donc u est croissante. Or, $g(x) = 50\,000 \times 1{,}15^x = 50\,000 \times u(x)$, donc f est croissante sur [0 ; 10].

c) Le nombre de bactéries a doublé à partir de 100 000 bactéries, soit au bout d'environ 5h.

Résumé schématique pour les variations :

1. Si a > 1, la fonction a^x est **croissante** Si 0 < a < 1, la fonction a^x est **décroissante**

2. Si N > 0, la fonction $N \times a^x$ garde le sens de variation de **1.** Si N < 0, la fonction N $\times a^x$ change le sens de variation de 1.

Exemple:

1. 0 < a = 0.3 < 1: la fonction 0.3^x est **décroissante**

 $-2 \times 0,3^{x}$ 2. N = -2 < 0 : la fonction $-2 \times 0,3^{x}$ change le sens de variation de 1. Elle est donc croissante.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales