Aprendizaje automático 2

Introducción a Redes Neuronales (2)

 $w_1x_1 + w_2x_2 = 0$

Perceptrón simple con 2 entradas

 $y = \operatorname{sgn}(w_1 x_1 + w_2 x_2)$

$$w_1x_1 + w_2x_2 > 0$$
?

• Perceptrón simple con 2 entradas

- Algoritmo Backpropagation (retropropagación del error):
 - Cálculo de función de costo
 - Cambio iterativo de pesos en función del gradiente descendente en la curva de error $\rightarrow \mathbf{w}(n+1) = \mathbf{w}(n) \mu \nabla_w \xi(\mathbf{w}(n))$

• ¿Puede resolver el problema del XOR?

- Perceptrón multicapa:
 - Capa de entrada: 2 neuronas (o nodos)
 - Capa de salida: 1 nodo

Perceptrón multicapa

- Regiones de decisión:
 - o Combinación de regiones de cada nodo

Estructura	Tipos de regiones de decisión	Problema XOR	Separación en clases	Formas regiones más generales
Una capa	hemiplano limitado por hiperplano	ABA	B	
Dos capas	Regiones convexas abiertas o cerradas	A B A	BSA	
Tres capas	Arbitrarias (Complejidad limitada por N°. de Nodos)	(A) (B) (B) (A)	B	

http://playground.tensorflow.org/

Sobre-entrenamiento

Regularización

Appropriate fitting

Overfitting

Drop-out

- Redes tipo Perceptron:
 - o 2 ó 3 capas
 - Extracción de características muy laboriosa

Stance phase Swing phase - Double support

- Single

support Cadence

Stride time Stride length - % Stride

length Gait Speed Pelvic Tilt - Pelvic

Obliquity
- Pelvic

Rotation - HR ap

- HR ml - HR v - CV

RQArec_ap RQArec_ml RQArec_v

RQAdet_ap RQAdet_ml ROAdet v

Detección de Parkinson a través del análisis de la marcha

- Redes profundas:
 - Múltiples capas
 - Miles de nodos
 - Extracción de características dentro de la red (!!!)
 - Necesidad de corpus numerosos

Machine Learning

Deep Learning

Feature extraction + Classification

Bibliografía

- S. Haykin, "Neural Networks and Learning Machines". Pearson, 2009. [Link]
- Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning". MIT, 2016. [Link]
- F. Chollet, "Deep learning with Python", 2nd ed. Manning, 2021. [Link]
- J. Patterson, A. Gibson, "Deep Learning. A practitioner's approach". O'Reilly, 2017.
- T. Hope et. al, "Learning Tensorflow", O'Reilly, 2017. [Link]
- W. Ballard, "Deep Learning for Images with Tensorflow -Hands on-". Packt, 2018. [Link]

