

纳米光子学

Nanophotonics

第3讲:量子限域效应

光电科学与工程学院

上一讲内容回顾

- 1. 光子与电子
- 1.1 电子与光子异同:概念内涵、波长、特征值方程
- 1.2 自由空间传播:能量、动量
- 1.3 受限空间中的光子与电子:波函数(能级)—模式(频率)
- 1.4 在经典禁区中的传播: 隧穿
- 1.5 在周期势场下的定域化:带隙
- 1.6 光子间和电子间的相互作用
- 2. 纳米级光学相互作用:纵向与横向
- 3. 电子相互作用的纳米级限制

给出基本理论框架

课程内容

课程知识点

1. 研究内容

纳米光子学基础

电子与光子异同

纳米尺度下光与物质相互作用

2. 研究方法

计算方法: 电磁场数值模拟

特性描述: 近场光学

制备方法: 纳米加工

量子材料: 电子的限域引起光学效应

表面等离子体光学: 金属光学

光子晶体:周期性介质光学

亚波长共振: 在远场影响光传播和

偏振的周期性光学结构

超材料: 人工设计电磁材料

量子材料: 电子的限域引起光学效应

实例 理论 电子的限域效应 量子点(纳米晶) 波的基本属性 制备 激子 势场中的量子力学粒子 光吸收与光发射 周期势场中的量子力学粒子 光电性质与应用 量子阱、量子线、量子点

本讲内容:波的基本属性和量子力学粒子

- ▶ 波与色散曲线
- ▶ 态密度
- ▶ 波函数与薛定谔方程
- 势场中的量子力学粒子
 - ▶ 无限势垒
 - 有限势垒
 - ▶ 量子谐振子
 - 球对称中的粒子
 - 库仑势中的电子
- ▶ 周期结构中的电子与量子限域效应

详细讨论量子力学粒子特性

1. 波与色散曲线

经典力学中的波

周期:
$$T=\frac{1}{v}=\frac{2\pi}{\omega}$$
.

波数:
$$k = |\mathbf{k}| = \frac{2\pi}{\lambda}$$

相速度:
$$v = \frac{\lambda}{T} = \lambda v = \frac{\omega}{k}$$

群速度:
$$\mathbf{v}_{g} = \frac{d\omega}{d\mathbf{k}}$$

$$-维: v_g = \frac{d\omega}{dk}$$

色散关系:波长(波数)与频率的关系

色散曲线 $\omega(k)$

光(电子、声子、水波)的色散

相速与群速

Non-dispersive:

Frequency dispersion:

相速:振荡速度或等相位面速度(红点)

$$v_p = \frac{1}{\sqrt{\varepsilon_0 \mu_0 \varepsilon_r \mu_r}} = \frac{c}{n} = \frac{\omega}{k}$$

群速:波包络的速度或等幅面的速度(绿点)

$$v_g = \frac{d\omega}{dk}$$

色散曲线 $\omega(k)$

非色散介质中,相速度=群速度

相速与群速

以频率接近的两束平面光波构成的波包为例

$$E_1 \! = \! E_0 e^{\mathrm{i} \left[\left(k_0 - \Delta k/2
ight) \! x - \left(\omega_0 - \Delta \omega/2
ight) \! t
ight]}, \; E_2 \! = \! E_0 e^{\mathrm{i} \left[\left(k_0 + \Delta k/2
ight) \! x - \left(\omega_0 + \Delta \omega/2
ight) \! t
ight]},$$

$$\Delta k \ll k_0, \ \Delta \omega \ll \omega_0$$

$$E = E_1 + E_2 = E_0 e^{\mathrm{i}\left(k_0 x - \omega_0 t\right)} \bigg[e^{-\mathrm{i}\left(\frac{\Delta k}{2} x - \frac{\Delta \omega}{2} t\right)} + e^{\mathrm{i}\left(\frac{\Delta k}{2} x - \frac{\Delta \omega}{2} t\right)} \bigg]$$

$$=2E_{0}\cos\left(rac{\Delta k}{2}x-rac{\Delta\omega}{2}t
ight)\!e^{\mathrm{i}\left(k_{0}x-\omega_{0}t
ight)}$$

等振幅面

$$\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t = C$$

等相位面

$$k_0 x - \omega_0 t = C$$

两边对时间t做微分

$$rac{\Delta k}{2}rac{\mathrm{d}x}{\mathrm{d}t}-rac{\Delta\omega}{2}=0 \ \Rightarrow v_{\mathrm{g}}=rac{\Delta\omega}{\Delta k}=rac{\mathrm{d}\omega}{\mathrm{d}k} \qquad \quad k_{0}rac{\mathrm{d}}{\mathrm{d}t}$$

$$k_0 rac{\mathrm{d}x}{\mathrm{d}t} - \omega_0 = 0 \ \Rightarrow v_\mathrm{p} = rac{\omega_0}{k_0}$$

电子、光子、声子、激子、表面等离激元极化子

1. 波与色散曲线

经典力学中的波

周期:
$$T = \frac{1}{\nu} = \frac{2\pi}{\omega}$$
.

波数:
$$k = |\mathbf{k}| = \frac{2\pi}{\lambda}$$

相速度:
$$v = \frac{\lambda}{T} = \lambda v = \frac{\omega}{k}$$

群速度:
$$\mathbf{v}_{g} = \frac{d\omega}{d\mathbf{k}}$$

$$-维: v_{g} = \frac{d\omega}{dk}$$

量子力学中的粒子

德布罗意关系:
$$\mathbf{p} = h\mathbf{k}, \quad \lambda = \frac{h}{p}$$
 波动性

约化普朗克常数: $\hbar \equiv h/2\pi$.

$$\hbar \equiv h/2\pi$$
.

真空中的平面波

电磁波

德布罗意物质波

真空中:
$$\omega=ck$$

$$v=\frac{\omega}{k}=\frac{d\omega}{dk}=c$$

真空中:
$$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$
 $\omega = \frac{\hbar k^2}{2m}$ 注: 低速牛顿力学

介质中:??? 金属、介质、、、 $\omega(k)$

介质中: 半导体能带

E(k)

相对论: $E^2 = (mc^2)^2 + (pc)^2$

1. 波与色散曲线

自由电子:

色散曲线:
$$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$

$$\omega = \frac{\hbar k^2}{2m}$$

色散曲线:
$$\omega = ck$$
 真空中 $\omega = ck/n(\omega)$ 介质中

- 每一种波在有限空间或者有限范围(频率、波矢、波长)内模式数有限
- •量子力学粒子被看作一种波,在有限空间,粒子存在有限数目的态 (State)
- •这些态是能量、动量、波长、波数的函数 D(k), D(E), D(p), $D(\lambda)$

限制在有限空间中稳定存在的波满足**驻波条件** 一维:

$$L = \frac{1}{2}\lambda_n n \ (n = 1, 2, 3, \cdots) \Rightarrow \lambda_n = \frac{2L}{n}$$

对应离散的波矢k,:

$$k_n=rac{2\pi}{\lambda_n}=rac{\pi}{L}n \quad (n=1\,,2\,,3\,,\,\cdots)$$

每一个 k_n 代表一种状态,在k空间占据的体积为:

$$V_k = \Delta k = rac{\pi}{L}$$

因此, k-k+dk区间的状态数为:

$$\frac{\mathrm{d}k}{V_k} = \frac{L}{\pi} \, \mathrm{d}k$$

同理,对于二维(边长为L的正方形)、三维(边长为L的立方体)有:

$$k_x\!=\!n_xrac{\pi}{L},\;k_y\!=\!n_yrac{\pi}{L}$$

$$k$$
取值: $k_x=n_xrac{\pi}{L},\;k_y=n_yrac{\pi}{L}$ $k_x=n_xrac{\pi}{L},\;k_y=n_yrac{\pi}{L},\;k_z=n_zrac{\pi}{L}$

k空间离散 单元长度

$$\Delta k_x \!=\! \Delta k_y \!=\! rac{\pi}{L}$$

$$\Delta k_x \!=\! \Delta k_y \!=\! \Delta k_z \!=\! rac{\pi}{L}$$

单个模式k空间体积:

$$V_k\!=\!rac{\pi^2}{L^2}$$

$$V_k = \frac{\pi^3}{L^3}$$

$$k-k+\mathrm{d}k$$
 的状态数

$$\frac{1}{4} \cdot \frac{2\pi k \, \mathrm{d}k}{V_k} = \frac{kL^2}{2\pi} \, \mathrm{d}k$$
极坐标

$$\frac{1}{8} \cdot \frac{4\pi k^2 \mathrm{d}k}{V_k} = \frac{k^2 L^3}{2\pi^2} \mathrm{d}k$$

球坐标

单位体积、单位波数对应的态的数量称为态密度(k空间态密度),记为D(k)

一维:
$$D(k) dk = \frac{1}{\pi} dk$$

$$D_{\mathrm{1D}}(k) = rac{1}{\pi}$$

令
$$L=1$$

二维:
$$D(k)dk = \frac{k}{2\pi}dk$$
 $D_{2D}(k) = \frac{k}{2\pi}$

$$D_{\mathrm{2D}}(k) = rac{k}{2\pi}$$

三维:
$$D(k) dk = \frac{k^2}{2\pi^2} dk$$
 $D_{3D}(k) = \frac{k^2}{2\pi^2}$

$$D_{
m 3D}(k)\!=\!rac{k^2}{2\pi^2}$$

态密度衍生:

$$D(\omega) = D(k) \frac{\mathrm{d}k}{\mathrm{d}\omega}, \ D(E) = D(k) \frac{\mathrm{d}k}{\mathrm{d}E}, \ D(p) = D(k) \frac{\mathrm{d}k}{\mathrm{d}p}, \ D(\lambda) = D(k) \frac{\mathrm{d}k}{\mathrm{d}\lambda}$$

思考题:周期性边界条件如何推导?

$$k_x\!=\!rac{2\pi}{L}n_x, \quad \Delta k_x\!=\!rac{2\pi}{L} \;?$$

对自由空间光, $\omega = ck$

$$\omega = ck$$

考虑线偏振光的两种偏振方向,需要对态密度乘以2:

$$D(k) dk = \frac{k^2}{\pi^2} dk$$

$$\Rightarrow k^2 = \frac{\omega^2}{c^2}, dk = \frac{1}{c} d\omega$$

$$D(\omega) = \frac{\omega^2}{\pi^2 c^3}$$

光子态密度:

对自由空间电子,考虑电子自旋:
$$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$

$$E=rac{p^2}{2m}=rac{\hbar^2 k^2}{2m}$$

$$\Rightarrow k = \sqrt{\frac{2mE}{\hbar^2}}, dk = \frac{1}{\hbar}\sqrt{\frac{m}{2E}}dE, k = \frac{p}{\hbar}, dk = \frac{1}{\hbar}dp$$

电子态密度:

$$D^e(E)\!=\!rac{8\sqrt{2}\,\pi m^{rac{3}{2}}E^{rac{1}{2}}}{h^3}, \quad D^e(p)\!=\!rac{8\pi p^2}{h^3}.$$

$$D(E)\!=\!rac{8\pi m^{rac{3}{2}}E^{rac{1}{2}}}{\sqrt{2}\,h^3}, \quad D(p)\!=\!rac{4\pi p^2}{h^3}$$

在频率为 d ω 能量密度:

$$U(\omega) d\omega = E(\omega) D(\omega) F(\omega) d\omega$$

单个光子能量

$$E = \hbar \omega$$

态密度

$$D(\omega) = \frac{\omega^2}{\pi^2 c^3}$$

分布函数

$$F(\omega) = \left(\exp\frac{\hbar\omega}{k_{\rm B}T} - 1\right)^{-1}$$

玻色-爱因斯坦分布函数

光子能量密度:

$$U(\omega) = \hbar \omega \frac{\omega^2}{\pi^2 c^3} \frac{1}{\exp \frac{\hbar \omega}{k_{\rm B} T} - 1}$$

黑体辐射公式

不同维度的态密度(微观粒子)

自由空间
$$D_3(E) = \frac{8\pi m^{\frac{3}{2}}E^{\frac{1}{2}}}{\sqrt{2}h^3}$$
 1维空间 $D_1(E) = D_1(k)\frac{\mathrm{d}k}{\mathrm{d}E} = \frac{\sqrt{2}m^{1/2}E^{-1/2}}{h}$ 2维空间 $D_2(E) = D_2(k)\frac{\mathrm{d}k}{\mathrm{d}E} = \frac{2\pi m}{h^2}$.

量子力学粒子态密度:

$$D_d(E) = \operatorname{const} \frac{m^{\frac{d}{2}} E^{\frac{d}{2} - 1}}{h^d}.$$

波的基本属性和量子力学粒子

- 波长与色散曲线
- ▶ 态密度
- ▶ 波函数与薛定谔方程
- 势场中的量子力学粒子
 - ▶ 无限势垒
 - ▶ 有限势垒
 - ▶ 量子谐振子
 - 球对称势场中的粒子
 - 库仑势中的电子
- ▶ 周期结构中的电子与量子限域效应

3. 波函数与薛定谔方程

薛定谔方程:
$$\hat{H}\Psi=i\hbar\frac{\partial\Psi}{\partial t}$$

不含时哈密顿量即为能量算符:
$$\hat{H}=-rac{\hbar^2}{2m}
abla^2+U(m{r})$$

静态问题:
$$\Psi(\xi,t) = \psi(\xi)\varphi(t)$$
 $\varphi(t) = \exp\left(-i\frac{E}{\hbar}t\right)$

$$\hat{H}\psi(\xi) = E\psi(\xi)$$

3. 波函数与薛定谔方程

对一维U势场中
$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + U_0\psi(x) = E\psi(x)$$

$$\diamondsuit: \qquad k^2 = \frac{2m(E - U_0)}{\hbar^2}$$

$$\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + k^2\psi(x) = 0$$

$$\psi(x) = A \exp(ikx) + B \exp(-ikx)$$
. $\mathbf{\Psi}$ \mathbf{m} \mathbf{w} !

粒子性: 恒定势场中的德布罗意波长

$$\lambda = \frac{2\pi}{k} = \frac{2\pi\hbar}{\sqrt{2m(E - U_0)}}$$

$$E-U_0$$
 对应粒子的动能

自由空间量子力学粒子运动规律

受限空间量子力学粒子运动规律

波的基本属性和量子力学粒子

- 波长与色散曲线
- ▶ 态密度
- ▶ 波函数与薛定谔方程
- ▶ 势场中的量子力学粒子
 - 无限势垒
 - ▶ 有限势垒
 - ▶ 量子谐振子
 - 球对称势场中的粒子
 - 库仑势中的电子
- ▶ 周期结构中的电子与量子限域效应

4.1 无限势场中的量子力学粒子

薛定谔方程:
$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + U(x)\psi(x) = E\psi(x).$$

$$U(x) = \begin{cases} 0 & \text{for } |x| < a/2\\ \infty & \text{for } |x| > a/2 \end{cases}$$

势场对称:

$$U(x) = U(-x)$$

$$\psi(x) = \pm \psi(-x)$$

几率对称:

$$\psi(x) = U(-x)$$

率对称:
 $|\psi(x)|^2 = |\psi(-x)|^2$ $\psi^- = \frac{\sqrt{2}}{a} \cos \frac{\pi n}{a} x$ $(n = 1, 3, 5, ...)$,
 $\psi^+ = \frac{\sqrt{2}}{a} \sin \frac{\pi n}{a} x$ $(n = 2, 4, 6, ...)$.

分离能级:
$$E_n = \frac{\pi^2 \hbar^2}{2ma^2} n^2$$
, $(n = 1, 2, 3, ...)$.

4.2 有限势垒中的量子力学粒子

- 1. 波函数扩展到经典禁区
- 2. 随着n增加波函数扩展增加
- 3. 色散曲线变为离散的点、线
- 4. 在势阱中发现粒子的几率总是小于1,并且随能量增加而减小

势阱内的总态个数 n 满足:

$$E_n - U_0 < 0 \implies a\sqrt{2mU_0} > \pi\hbar(n-1).$$

n=1 该式总是成立,至少有一个态在势阱中

4.3 量子谐振子

A harmonic oscillator is a quantum particle moving in a field with potential being a square function of coordinate. In a one-dimensional problem this means (Fig. 2.5),

$$U(x) = \frac{1}{2}m\omega^2 x^2. \tag{2.81}$$

The steady-state Schrödinger equation has the form, $k^2 = 2mE/\hbar^2$, $\lambda = m\omega/\hbar$

$$\nabla^2 \psi(x) + (k^2 - \lambda^2 x^2) \psi(x) = 0, \qquad (2.82)$$

$$\psi_n(x) = u_n(x) \exp(-\lambda x^2/2), \quad u_n(x)$$
: 厄密多项式

$$\psi_0(x) = \exp\left(-\lambda x^2/2\right),\,$$

$$\psi_1(x) = \sqrt{2\lambda} \cdot x \exp\left(-\frac{1}{2}\lambda x^2\right),$$

$$\psi_2(x) = \frac{1}{\sqrt{2}} \left(1 - 2\lambda x^2 \right) \exp\left(-\frac{1}{2} \lambda x^2 \right).$$

$$E_n = \hbar \omega (n + \frac{1}{2}), \text{ where } n = 0, 1, 2, \dots$$

$$E_0 = \hbar \omega/2$$

4.3 量子谐振子

- 量子谐振子模型在量子物理中非常重要。
- 可以作为对复杂的势分布在局域极小值的一种近似。
- 将势函数在极小值x₀附近做级数展开

$$U(x) = U(x_0) + \frac{1}{2} \frac{d^2 U}{dx^2} (x - x_0)^2 + \cdots$$

- 忽略高阶项,和量子谐振子的势函数一致 $U(x) = \frac{1}{2}m\omega^2x^2$
- 晶体中原子的振动可以看做是在这种势能下的振动,这种振动的量子称为声子。
- 晶格振动的能量永远不为零
- 轻原子He难以液化,永远不能形成固体

液氦: 4.2K

4.4 球对称势垒中的粒子

$$H=-rac{\hbar^{\,2}}{2m}
abla^2+U(r)$$

$$x = r \sin \theta \cos \varphi$$

 $y = r \sin \theta \sin \varphi$
 $z = r \cos \theta$

Spherical coordinates.

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

采用分离变量法求解薛定谔方程,令 $\Psi = R(r)\Theta(\theta)\Phi(\varphi), \ R(r) = \frac{u(r)}{r}$

解的形式为:
$$\Psi_{n,l,m}=rac{u_{n,l}(r)}{r}Y_{lm}(heta,arphi)$$

 $Y_{lm}(heta,arphi)$ 为球贝塞尔函数

u(r) 满足方程:

$$-rac{\hbar^2}{2m}rac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[U(r) + rac{\hbar^2}{2mr^2}l(l+1)
ight]u = Eu$$

4.4 球对称势垒中的粒子

系统的状态由三个量子数表征:

n: 主量子数; l: 轨道量子数; m: 磁量子数

角动量满足:

$$L^2 = l(l+1)\hbar^2, \ l = 0, 1, 2, 3, \cdots$$

角动量 z 分量满足:

$$L_z = m\hbar, \ m = 0, \pm 1, \pm 2, \cdots, \pm l$$

对于确定的 l, 简并度 2l+1

系统的能量由势函数U(r)决定,考虑无限深球形势阱:

$$U(r) = \begin{cases} 0, & r \leq a \\ \infty, & r > a \end{cases}$$

对应的能量表达式为:

$$E_{nl}\!=\!rac{\chi_{nl}^2\hbar^2}{2ma^2}$$

 χ_{nl}^2 为球贝塞尔函数的根,n 表示第几个根,l 为对应的阶数

4.4 球对称势垒中的粒子

$$E_{nl}\!=\!rac{\chi_{nl}^2\hbar^2}{2ma^2}$$

L=0, 同一维无限深势阱一致

Table 2.1. Roots of the Bessel functions χ_{nl}			
1	n = 1	n = 2	n = 3
0	$3.142(\pi)$	6.283 (2π)	9.425 (3π)
1	4.493	7.725	10.904
2	5.764	9.095	12.323
3	6.988	10.417	
4	8.183	11.705	
5	9.356		
6	10.513		
7	11.657		

n=2

n = 1

l=0,1,2,3 对应字母标记 s, p, d, f

除了量子数n, l, m 外,考虑电子自旋,引入s: 自旋量子数

球对称势, 氢原子, 其它:

原子中的电子 固体中的杂质中心 晶体中的激子 量子点中的电子

29

n = 3

4.5 库仑势场中的电子

一个电子同具有相同电荷量带正电的粒子间的库仑势为:

$$U(r) = -\frac{e^2}{r}$$

对应波函数的径向部分满足方程:

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \varepsilon + \frac{2}{\rho} - \frac{l(l+1)}{\rho^2}\right] u(\rho) = 0$$

其中引入了无量纲的长度和能量:

$$ho = rac{r}{a^0}, \;\; arepsilon = rac{E}{E^0}$$

其中 a^0 和 E^0 分别称为单位原子长度和单位原子能量:

$$a^{0}=4\piarepsilon_{0}rac{\hbar^{2}}{m_{0}e^{2}}pprox5.292 imes10^{-2} \; \mathrm{nm}$$

$$E^{0}\!=\!rac{e^{2}}{2a^{0}}\!pprox\!13.6~{
m eV}$$

能级满足:

$$arepsilon=-rac{1}{\left(n_r+l+1
ight)^2}=-rac{1}{n^2}$$

 n_r 波函数节点数

4.5 库仑势场中的电子

对于 n=1, l=0 的1s态,波函数具有球对称性,且 a^0 是找到电子概率最大

的壳层半径。这个球近似为真实的原子,该半径称为波尔半径

考虑最简单的原子: 氢原子。两体问题, 对应的哈密顿量:

$$H = - \, rac{\hbar^{\,2}}{2 M_0}
abla_{
m p}^2 - rac{\hbar^{\,2}}{2 m_0}
abla_{
m e}^2 - rac{e^{\,2}}{|m{r}_{
m p} - m{r}_{
m e}|} \, .$$

引入相对坐标r和质心坐标R:

$$m{r} = m{r}_{
m p} - m{r}_{
m e}, \; m{R} = rac{m_0 m{r}_{
m e} - M_0 m{r}_{
m p}}{m_0 + M_0}$$

引入总质量和约化质量:

$$M=m_0+M_0,\; \mu=rac{m_0M_0}{m_0+M_0}$$

 m_0 电子静质量, M_0 中心质子质量

哈密顿量可改写为:

$$\mathbf{H} = -\frac{\hbar^2}{2M} \nabla_R^2 - \frac{\hbar^2}{2\mu} \nabla_r^2 - \frac{e^2}{r}.$$

4.5 库仑势场中的电子

二体的内部状态, 球形势场

$$E_n = -\frac{\mathrm{Ry}}{n^2} \quad \text{for } E < 0$$

$$Ry = \frac{e^2}{2a_B}, \quad a_B = \frac{\hbar^2}{\mu e^2}.$$

 $a_{\rm B}$ 里德伯常数 —— 最低能量状态的离化能 $a_{\rm B}$ 氢原子的玻尔半径

用处: 库伦势场—电子/空穴在纳米晶的建模 氢原子模型—纳米晶中的激子的建模 自由空间量子力学粒子运动规律

受限空间量子力学粒子运动规律

周期势场中量子力学粒子运动规律

波的基本属性和量子力学粒子

- 波长与色散曲线
- ▶ 态密度
- ▶ 波函数与薛定谔方程
- 势场中的量子力学粒子
 - ▶ 无限势垒
 - ▶ 有限势垒
 - ▶ 量子谐振子
 - 球对称势场中的粒子
 - 库仑势中的电子
- ▶ 周期结构中的电子与量子限域效应

布洛赫波

薛定谔方程:
$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + U(x)\psi(x) = E\psi(x)$$

周期势场:
$$U(x) = U(x+a)$$

第一布里渊区:
$$-\frac{\pi}{a} < k < \frac{\pi}{a}$$

$$\psi(x) = e^{ikx} u_k(x), \ u_k(x) = u_k(x+a),$$
$$\psi(\mathbf{r}) = e^{ik\bullet\mathbf{r}} u_k(\mathbf{r}), \ u_k(\mathbf{r}) = u_k(\mathbf{r}+\mathbf{T})$$

第二布里渊区:
$$-\frac{2\pi}{a} < k < -\frac{\pi}{a}$$
, $\frac{\pi}{a} < k < \frac{2\pi}{a}$

在布里渊区中心和边界

$$k_n = \frac{\pi}{a}n; \quad n = \pm 1, \pm 2, \pm 3, \dots$$

$$\frac{\mathrm{d}E(p)}{\mathrm{d}p(k)}\Big|_{k} = 0.$$

$$E(k) = E_0 + (k - k_0) \left. \frac{dE}{dk} \right|_{k=k_0} + \frac{1}{2} (k - k_0)^2 \left. \frac{d^2 E}{dk^2} \right|_{k=k_0} + \cdots$$

$$E_0 = 0, k_0 = 0$$

$$E(k) = \frac{1}{2}k^2 \frac{d^2 E}{dk^2} \Big|_{k=0}$$

$$E(k) = \frac{1}{2}k^2 \frac{\mathrm{d}^2 E}{\mathrm{d}k^2} \bigg|_{k=0} \qquad \frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\mathrm{d}^2 E}{\mathrm{d}k^2} \equiv \frac{\mathrm{d}^2 E}{\mathrm{d}p^2} = \text{const}$$

平移: 2π/a

周期势场中的粒子运动规律

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\mathrm{d}^2 E}{\mathrm{d}k^2} \equiv \frac{\mathrm{d}^2 E}{\mathrm{d}p^2} = \text{const} \qquad E = \frac{p^2}{2m}$$

位于周期势场中的粒子"质量"可以"重"或"轻"于其位于自由空间 甚至是负质量(粒子动量在外加势场中减小)例如:势磊,传递给晶体中正离子

- 粒子在周期势场中的运动用调制的平面波描述
- ▶ 粒子态用准动量描述,相隔一个倒格矢的动量是等效的
- 能量谱具有间隙的准连续带
- 无外力作用下,周期势场中的粒子显示准自由运动
- 外力作用下,粒子行为用有效质量描述即质量重整化

倒空间

$$m{b}_1\!=\!rac{2\pi}{V_0}m{a}_2\! imes\!m{a}_3,\;m{b}_2\!=\!rac{2\pi}{V_0}m{a}_1\! imes\!m{a}_3,\;m{b}_3\!=\!rac{2\pi}{V_0}m{a}_2\! imes\!m{a}_1$$

$$V_0 = oldsymbol{a}_1 \cdot (oldsymbol{a}_2 imes oldsymbol{a}_3)$$

$$V_b = oldsymbol{b}_1 \cdot (oldsymbol{b}_2 \! imes oldsymbol{b}_3) \!=\! rac{8\pi^3}{V_0}$$

三维周期势场中:波矢差值为倒空间格子矢量是等效的

有效质量:

$$m_{ij}^{*-1} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_i \partial k_j}$$
 二阶张量 $m_{ij}^* = m_{ji}^*$ $m_{ij}^* \mathbf{a} = \mathbf{F}$

面心立方

面心立方第一布里渊区

固体中能带

存在未完全填充的能带:导体

满带不导电: 半导体绝缘体

实际材料能带结构复杂,有效 质量不是常数

重要的物理事件往往发生在导 带底与价带顶附近,可以近似 用恒定有效质量描述。

实际能带:三维

作图:沿高对称点连线展开为一维

间接带隙

Splitting of atomic energy levels into bands

Formation of energy bands: Let's consider, a solid made up of a substance that involves only one type of atomic orbital.

Splitting of atomic energy levels into bands

Formation of energy bands: Let's now consider, a solid made up of a substance that involves two atomic orbital; s and p.

Crystals of group IV elements			Crystals of III-V compounds		
Crystal	Band gap energy E_g	Light wavelength corresponding to $E_{\rm g}$	Crystal	Band gap energy $E_{\rm g}$	Light wavelength corresponding to $E_{\rm g}$
Si*	1.14 eV	1.1 μm	GaN	3.50 eV	354 nm
Ge*	0.67 eV	1.85 μm	GaP*	2.26 eV	550 nm
			GaAs	1.43 eV	870 nm
			InAs	0.42 eV	2.95 μm
			InSb	0.18 eV	6.9 μm
Crystals of II-VI compounds			Crystals of I-VII compounds		
Crystal	Band gap energy $E_{\rm g}$	Light wavelength corresponding to $E_{\rm g}$	Crystal	Band gap energy $E_{\rm g}$	Light wavelength corresponding to $E_{\rm g}$
ZnS	3.68 eV	337 nm	LiF	12 eV	100 nm
ZnSe	2.80 eV	440 nm	NaCl	>4 eV	<300 nm
ZnTe	2.25 eV	550 nm	CuCl	3.2 eV	390 nm
CdS	2.58 eV	480 nm	CuBr	2.9 eV	420 nm
CdSe	1.84 eV	670 nm	Crystals of IV–VI compounds		
CdTe	1.6 eV	770 nm	PbS	0.41 eV	3.0 µm
HgTe	0.15 eV	8.2 μm	PbSe	0.28 eV	4.4 μm
* Indirect-gap materials					

- •同一族内,随原子序数的增加,带隙减小 (高原子序数,库伦屏蔽)
- •不同族间,共价键到 离子键 (离子键—强库伦势场)

自由空间量子力学粒子运动规律

态密度

受限空间量子力学粒子运动规律

库伦势场中导出玻尔半径

周期势场中量子力学粒子运动规律

有效质量

量子阱、量子线、量子点

固体中的量子限域效应

限域效应

电子:几何尺度——电子德布罗意波长

激子:几何尺度——激子波尔半径

假定电子的动能用温度度量

$$k_{\mathrm{B}}T=rac{p^{2}}{2m_{\mathrm{e}}^{st}},\;p=rac{h}{\lambda_{\mathrm{e}}}$$

电子的德布罗意波长 $\lambda_e = \frac{h}{\sqrt{2m_e^* k_B T}}$

Table 4.3. Lattice constants and electron de Broglie wavelengths at room temperature for different semiconductor crystals

Material	Electron mass	Electron de Broglie wavelength λ_e (nm)	Lattice constant $a_{\rm L}$ (nm)
SiC	$0.41 m_0$	11	0.308
Si	$0.08 m_0$	26	0.543
GaAs	$0.067 m_0$	28	0.564
Ge	$0.19 m_0$	16	0.564
ZnSe	$0.15 m_0$	19	0.567
InSb	$0.014 m_0$	62	0.647
CdTe	$0.1 m_0$	23	0.647
In vacuum	m_0	7.3	

固体中的量子限域效应

量子時
$$\psi(\mathbf{r}) = \sqrt{\frac{2}{L_x L_y L_z}} \sin(k_n z) \exp(i \mathbf{k}_{xy} \cdot \mathbf{r}), \ k_n = \frac{\pi}{L_z} n, \quad n = 1, 2, 3, \dots$$

$$E = \frac{\hbar^2 k_{xy}^2}{2m_e^*} + \frac{\pi^2 \hbar^2}{2m_e^* L_z^2} n^2, \quad n = 1, 2, 3, \dots$$

$$\psi(\mathbf{r}) = 2\sqrt{\frac{1}{L_x L_y L_z}} \sin\left(k_n^{(z)} z\right) \sin\left(k_m^{(y)} y\right) \exp(i k_x x)$$

$$k_n^{(z)} = \frac{\pi}{L_z} n, \quad n = 1, 2, 3, \dots, \quad k_m^{(y)} = \frac{\pi}{L_y} m, \quad m = 1, 2, 3, \dots$$

$$E = \frac{\hbar^2 k_x^2}{2m_e^*} + \frac{\pi^2 \hbar^2}{2m_e^* L_z^2} n^2 + \frac{\pi^2 \hbar^2}{2m_e^* L_y^2} m^2, \quad n = 1, 2, 3, \dots, m = 1, 2, 3, \dots$$

$$\psi(\mathbf{r}) = 2\sqrt{\frac{2}{L_x L_y L_z}} \sin\left(k_n^{(z)} z\right) \sin\left(k_m^{(y)} y\right) \sin\left(k_\ell^{(x)} x\right), \quad n, m, \ell = 1, 2, 3, \dots$$

$$E = \frac{\pi^2 \hbar^2}{2m_e^* L^2} (n^2 + m^2 + \ell^2), \quad n, m, \ell = 1, 2, 3, \dots$$

不同维度的态密度(微观粒子)

自由空间
$$D_3(E) = \frac{8\pi m^{\frac{3}{2}}E^{\frac{1}{2}}}{\sqrt{2}h^3}$$
 1维空间 $D_1(E) = D_1(k)\frac{\mathrm{d}k}{\mathrm{d}E} = \frac{\sqrt{2}m^{1/2}E^{-1/2}}{h}$ 2维空间 $D_2(E) = D_2(k)\frac{\mathrm{d}k}{\mathrm{d}E} = \frac{2\pi m}{h^2}$.

量子力学粒子态密度:

$$D_d(E) = \operatorname{const} \frac{m^{\frac{d}{2}} E^{\frac{d}{2} - 1}}{h^d}.$$

不同维度的态密度(微观粒子)

自由空间
$$D_3(E) = \frac{8\pi m^{\frac{3}{2}}E^{\frac{1}{2}}}{\sqrt{2}h^3}$$
 1维空间 $D_1(E) = D_1(k)\frac{\mathrm{d}k}{\mathrm{d}E} = \frac{\sqrt{2}m^{1/2}E^{-1/2}}{h}$ 2维空间 $D_2(E) = D_2(k)\frac{\mathrm{d}k}{\mathrm{d}E} = \frac{2\pi m}{h^2}$.

量子力学粒子态密度:

$$D_{d}(E) = \operatorname{const} \frac{m^{\frac{d}{2}} E^{\frac{d}{2} - 1}}{h^{d}}$$

量子阱,量子线,量子点

Electron density of states in a quantum well, in a quantum wire and calculated probabilities for optical transitions in a realistic GaAs quantum dot with size 10 nm. Data for GaAs dots are taken from Ref. [20].

量子阱

A heterostructure containing a narrow-band quantum well between two crystalline materials with wider band gaps (left) and the corresponding potential profile for an electron.

量子线

量子电导率: $G = \frac{e^2}{\pi \hbar}$.

量子点

液相合成的胶体量子点

气相制备的量子点 GaN Quantum dot on AlN buffer layer

总结

- 态密度:为某一能量(波矢)附近每单位能量(波矢) 区间里微观状态的数目,又叫做能(波矢)态密度。 在物理学中,具有同一能量的微观状态被称为简并的。
- ▶ 玻尔半径: 粒子最可能被发现(最低占据态)的距离
- ▶ 有效质量:引入经典力学牛顿第二定律描述量子力学 粒子的一种近似。它近似认为电子受到原子核的周期 性势场(这个势场和晶格周期相同)以及其他电子势 场综合作用的结果。在数学处理上采用在能带极值点 处用泰勒展开,这样略去三阶及以上项。另外,有效 质量与能带形状、位置有关。有效质量把晶体中电子 准经典运动的加速度与外力直接联系起来。