實驗六 中斷 (Interrupt)

1. 學習重點

- 認識 8051 的中斷源以及與中斷相關之暫存器,並熟悉中斷流程。
- 分別用負緣觸發以及低準位觸發,兩種方式觸發中斷。

2. 材料清單

數量 器材名稱 AT89S51 1 12MHz 石英震盪器 1 LED 二極體 8 按壓開關 3 1kΩ 10 電阻 $10k\Omega$ 1 20pF 2 電容 1 10μF

表 6-1、材料清單

3. 元件原理

中斷 Interrupt 與輪詢 Polling

MCU 服務周邊裝置的方法有兩種。一種是中斷 (Interrupt)·當中斷訊號產生時,主程式會暫停執行,並跳去執行中斷服務程式 (ISR · Interrupt Service Routines)·若同時有很多中斷訊號產生,則會依照優先權決定順序;另一種是輪詢 (Polling)·程式不斷詢問某個條件是否達成,當條件達成,就去執行使用者需求。

中斷之基本流程

中斷發生時 PC 值會被 push 進 stack 並會被設成相對應的中斷向量位址。 當進入中斷服務程式後,依照應用情況,必要時會將主程式的資料 push 進 stack (例 如:PSW、ACC 等)。若中斷服務程式中會使用到同樣的暫存器,也會在進入中斷服務程式後切換暫存器庫。結束中斷服務程式前,須將原本主程式的狀態從 stack 中 pop 出來。最後會執行 RETI 來結束中斷服務程,此時 return address 會被從 stack 中 pop 到 PC 並繼續執行中斷前的主程式。

圖 6-1、中斷之基本流程

8051 的中斷源

8051 單晶片中提供 5 個中斷源,分別為:

• INTO:外部中斷,由 8051 單晶片 Pin 12 輸入。

• Timer0:計時/計數器中斷。

• INT1:外部中斷,由 8051 單晶片 Pin 13 輸入。

• Timer1:計時/計數器中斷。

• UART:串列埠中斷。

圖 6-2、8051 的中斷源

中斷向量

中斷源在 8051 中都有相對應的旗標,當中斷條件產生時,中斷源就會使其相對應的旗標值設定為 1。8051 的 CPU 會在每一個 machine cycle 檢查這些旗標的狀態,若系統允許相對的中斷源產生中斷,且該中斷相對應的旗標值亦為1時,則 CPU 會在執行完目前正在執行的指令後,將程式在記憶體中的位址存入堆疊中,並產生中斷服務副程式的呼叫,跳到該中斷所對應之中斷向量位址去執行,CPU 執行該中斷服務副程式,直到「RETI」指令後才結束中斷副程式,再從堆疊中取出先前存入的位址值繼續執行被中斷的程式。

表 6-2、8051 的中斷向量與中斷相關暫存器

中斷源	中斷向量	旗標	所屬暫存器	
INT0	03H	IEO	TCON.1	
Timer0	ОВН	TFO TO		
INT1	13H	IE1	TCON.3	
Timer1	1BH	TF1	TCON.7	
UART (TXD)	(TXD) 23H TI		SCON.1	
UART (RXD)	UART (RXD) 23H		SCON.0	

中斷致能暫存器(IE 暫存器)

IE 暫存器為一個 8 位元的定址暫存器,其中各位元如下表格所示:

表 6-3、IE 暫存器

 7
 6
 5
 4
 3
 2
 1
 0

 IE
 EA
 ET2
 ES
 ET1
 EX1
 ET0
 EX0

• IE.0: INTO 之中斷開關。

EX0=1 時, 啟用 INTO 中斷功能。

EX0=0 時, 停用 INTO 中斷功能。

• IE.1:TFO 之中斷開關。

ET0=1 時, 啟用 TF0 中斷功能。

ET0=0 時, 停用 TF0 中斷功能。

• IE.2: INT1 之中斷開關。

EX1=1 時, 啟用 INT1 中斷功能。

EX1=0 時, 停用 INT1 中斷功能。

• IE.3:TF1 之中斷開關。

ET1=1 時, 啟用 TF1 中斷功能。

ET1=0 時, 停用 TF1 中斷功能。

• IE.4: 串列埠之中斷開關。

ES=1 時, 啟用串列埠中斷功能。

ES=0 時,停用串列埠中斷功能。

• IE.5 (8052 才有): TF2 之中斷開關。

ET2=1 時, 啟用 TF2 中斷功能。

ET2=0 時,停用 TF2 中斷功能。

• IE.6 :保留。

• IE.7:中斷總開關。

EA=1 時, 啟用所有中斷功能。

EA=0 時,停用所有中斷功能。

外部中斷

8051 的訊號的採樣方式可分為低準位觸發以及負緣觸發(每一個 machine cycle 採樣一次)。進入中斷服務程式後·IEO(TCON.1)與 IE1(TCON.3)的值會被 CPU 清除。

準位觸發 (level-triggered),又分為高準位觸發 (high level-triggered)以及低準位觸發 (low level-triggered)。

圖 6-3 \ level-triggered

邊緣觸發(edge-triggered),又分為正緣觸發(rising edge-triggered)與負緣觸發(falling edge-triggered)。

CPU 會透過 INTO、INT1 接腳來接受外部中斷需求。INTO 接腳 (Pin12,與Port3.2 共用) 接收到 low level 或 falling edge 訊號時,IEO 會被 CPU 自動設為 1,產生外部中斷;INT1 接腳 (Pin13,與 Port3.3 共用)接收到 low level 或 falling edge 訊號時,IE1 會被 CPU 自動設為 1,產生外部中斷。控制流程如下:

計時/計數器控制暫存器(TCON 暫存器)

計時器控制為 CPU 將計數內部的時鐘脈波·提出中斷;計數器控制為 CPU 將計數外部的脈波·提出中斷。

TCON 暫存器為一個 8 位元的定址暫存器,其中各位元如下表格所示:

表 6-4、TCON 暫存器

	7	6	5	4	3	2	1	0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

• TCON.0: INTO 之信號種類。

IT0=1 時, 負緣觸發。

IT0=0 時,低準位動作。

• TCON.1: INTO 之中斷旗標。

INTO 中斷時, CPU 設定 IEO=1。

INTO 中斷結束時, CPU 設定 IEO=O。

• TCON.2:INT1 之信號種類。

IT1=1 時,負緣觸發。

IT1=0 時,低準位動作。

• TCON.3: INT1 之中斷旗標。

INT1 中斷時, CPU 設定 IE1=1。

INT1 中斷結束時, CPU 設定 IE1=0。

• TCON.4~7:計時/計數器功能(實驗七詳細說明)。

串列埠中斷(UART)

CPU 透過 RXD、TXD 接腳接受或傳送中斷需求。RXD 接腳(Pin10,與 Port3.0 共用),其對應旗標為 RI(Receive Interrupt),接受中斷需求;TXD 接腳(Pin11,與 Port3.1 共用),其對應旗標為 TI(Transfer Interrupt),傳送中斷需求。

當其對應旗標 TI 或 RI 設定為 1 後,中斷服務程式將會執行。RXD 與 TXD 共用一個向量,ISR 必須自己判斷是 TI 或 RI 造成中斷。TI 變成 1 表示資料傳完;RI 變成 1 表示接收到資料,且 CPU 不會自動清除 TI 與 RI。

圖 6-6 \ UART 中斷

中斷優先等級暫存器(IP暫存器)

IP 暫存器為一個 8 位元的定址暫存器,其中各位元如下表格所示:

表 6-5、IP 暫存器

	7	6	5	4	3	2	1	0
IP	-	-	PT2	PS	PT1	PX1	PT0	PX0

• IP.0: INTO 之中斷優先等級。

PX0=1 時, INT0 具高優先等級。

PX0=0 時, INTO 不具高優先等級。

• IP.1: TFO 之中斷優先等級。

PT0=1 時,TF0 具高優先等級。

PT0=0 時,TF0 不具高優先等級。

• IP.2: INT1 之中斷優先等級。

PX1=1 時, INT1 具高優先等級。

PX1=0 時, INT1 不具高優先等級。

• IP.3:TF1 之中斷優先等級。

PT1=1 時, TF1 具高優先等級。

PT1=0 時, TF1 不具高優先等級。

• IP.4: 串列埠之中斷優先等級。

PS=1 時,串列埠具高優先等級。

PS=0 時, 串列埠不具高優先等級。

• IP.5 (8052 才有): TF2 之中斷優先等級。

PT2=1 時, TF2 具高優先等級。

PT2=0 時, TF2 不具高優先等級。

• IP.6、IP.7:保留。

Reset 後 IP 值均為 0,代表為相同的低層次優先權,若設定為 1 則會 變為高層次優先權。相同層次仍有預設優先順序:INTO>TFO>INT1>TF1>RI/TI 。且 IP 暫存器為可位元定址 (bit addressable)。

中斷的應用

設置中斷向量

8051 的中斷向量為上述表格之介紹,各中斷向量之間只有 8 個位址的記憶體空間,一般來說不會在這短短的 8 個位址中撰寫副程式,通常會以 JMP 之指令跳至特定的中斷副程式。

中斷的設定

• 開啟中斷開關(即設定 IE 暫存器)

範例:

要開啟總開關、INTO 開關可使用以下指令:

MOV IE, #10000001B

或使用以下指令:

SETB IE.7

SETB IE.O

若不清楚位置,也可使用直接指定開關名稱的方式使用以下指令:

SETB EA

SETB EXO

• 設定中斷優先等級(即設定 IP 暫存器)

範例:

要把 INTO 中斷的優先等級提高可使用以下指令設定中斷信號(即設定 TCON 暫存器):

SETB PX1

• 設定中斷信號(即設定 TCON 暫存器)

範例:

要 INTO 採負緣觸發可使用以下指令:

SETB ITO

• 設定新的堆疊位置

程式的預設堆疊指標是指向 07H 位置(從 08H 開始存放資料)·而 08H 為暫存器庫 1(即 RB1)的位置,為避免衝突,會將堆疊指標改至其他地方。 範例:

要把堆疊移到 30H 可使用以下指令:

MOV SP, #30H

中斷副程式

跟其他副程式之差異為,其結尾要使用 RETI。

4. 實驗內容

利用一顆外接按鈕實現外部中斷,並藉由 LED 之閃爍呈現結果。

5. 實驗電路圖

圖 6-7、實驗六基礎題參考電路圖

6. 軟體流程圖

圖 6-8、實驗六基礎題參考軟體流程圖

7. 範例程式碼

```
1
                  ORG 00H
                                          ; code start from 000h
 2
                  SJMP MAIN
                                          ; jump to MAIN
 3
                  ORG 03H
                                          ; vector address for INTO
 4
                  SJMP INTO_ISR
                                          ; jump to INTO_ISR
 5
                                          ;after vector table space
                  ORG 030H
 6
   MAIN:
                                          ; enable EA and EXO
                  MOV IE, #10000001B
 7
                  MOV SP, #30H
                                          ; stack start from #30H
 8
                  SETB ITO
                                          ; falling edge-triggered
                  MOV A, #00000000B
 9
                                          ; set ACC as 0000000B
10
    LOOP:
                  MOV P2, A
                                          ; P1 = A(LED output)
11
                  CALL DELAY
                                          ; call delay function
12
                                          ; reverse A
                  CPL A
13
                  SJMP LOOP
                                          ; infinite loop
14
    INTO ISR:
                  PUSH PSW
                                          ; push PSW into stack
15
                  PUSH ACC
                                          ; push ACC into stack
16
                  SETB RSO
                                          ; switch to RB1
                                          ; set ACC as 11111110B
17
                  MOV A, #11111110B
18
                  MOV R0,#24
                                          ; loop counter = 24
    ROTATE L:
                                          ; P1 = A(LED output)
19
                  MOV P2, A
20
                  CALL DELAY
                                          ; call delay function
21
                  RLA
                                          ; rotate left
22
                  DJNZ RO, ROTATE_L
                                          ; loop until RO is O
23
                  POP ACC
                                          ; pop out ACC from stack
24
                  POP PSW
                                          ; pop out PSW from stack
25
                  RETI
                                          ; return from ISR
                  MOV R7, #200
26
   DELAY:
27
    D1:
                  MOV R6, #250
28
                  DJNZ R6, $
29
                  DJNZ R7, D1
30
                  RET
                                          ; return
                  END
                                          ; end the code
```

8. 整理的題目,選擇/是非題