Fórmula de Newton

Rafael Renó Corrêa

2 de dezembro de $2023\,$

Teoria:

 $D_{
m ados}$ valores medidos:

x	f(x)
x_0	$f(x_0)$
x_1	$f(x_1)$
x_{n-1}	$f(x_{n-1})$

Para n tuplas medidas, é o polinômio de Newton:

$$P(x) = D_0 + D_1 * (x - x_0) + \dots + D_{n-1} * (x - x_0) * (x - x_1) * \dots * (x - x_{n-1}).$$

$$P(x) = f(x_0) + f[x_1, x_0] * (x - x_0) + \dots + f[x_{n-1}, x_0] * (x - x_0) * (x - x_1) * \dots * (x - x_{n-1}) + \dots + f[x_{n-1}, x_n] * (x - x_n) * \dots * (x - x_{n-1}) + \dots * (x - x_n) * \dots * (x - x$$

$$P(x) = f(x_0) + f[x_1, x_0] * (x - x_0) + \dots + f[x_{n-1}, x_0] * (x - x_0) * (x - x_1) * \dots * (x - x_{n-1}).$$
 E para fazê-lo,
$$f[x_0] = f(x_0), f[x_1, x_0] = \frac{f(x_1) - f(x_0)}{x_1 - x_0},$$

$$f[x_2, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0}, \dots, f[x_{n-1}, x_0] = \frac{f[x_{n-1}, x_{\frac{n}{2} - 1}] - f[x_{\frac{n}{2} - 1}, x_0]}{x_{n-1} - x_0}.$$
 Parasa sanfusa mana rasalyan da numa ta hala feat intrivitad.

Parece confuso, mas resolvendo numa tabela fica intuitivo!

Exemplo:

$$\begin{array}{c|cc}
x & f(x) \\
1 & 1 \\
2 & 8 \\
3 & 27 \\
4 & 64
\end{array}$$

	D_0	D_1	D_2	D_3
x_0	$f[x_0]$			
		$f[x_1, x_0]$		
x_1	$f[x_1]$		$f[x_2, x_0]$	
		$f[x_2, x_1]$		$f[x_3, x_0]$
x_2	$f[x_2]$		$f[x_3, x_1]$	
		$f[x_3, x_2]$		
x_3	$f[x_3]$			

	D_0	D_1	D_2	D_3
x_0	1			
		7		
x_1	8		6	
		19		1
x_2	27		9	
		37		
x_3	64			

$$\begin{split} P(x) &= 1 + 7(x-1) + 6(x-1)(x-2) + 1(x-1)(x-2)(x-3) \\ P(x) &= 1 + 7x - 7 + 6(x^2 - 2x - x + 2) + (x^2 - 2x - x + 2)(x-3) \\ P(x) &= 1 + 7x - 7 + 6x^2 - 18x + 12 + x^3 - 3x^2 + 2x - 3x^2 + 9x - 6 \end{split}$$

$$P(x) = x^3.$$

$$P(5) = 125$$
, por exemplo.