Figure 1: 121P1F1 SSH sequence of 254 nucleotides (SEQ ID:

- 1 GATCACAGTC TTTGTATTTT TCTACTTCTG CCTTTAGCTG TTCCCTTTGG TCTCGAAGTG
- 61 AAGAAAGCTC TTTTGCTAGC CTGGTTCGCT CTTCCGTTTC ACATCGGCCA ATTTTAGCTT
- 121 TCTCAATGCT TTTCTGTAGG CTTGCATGCT TTTGACTTCC CTCAGACAAC TGAGATTCCA
- 181 GAACCTCCAA CTTATGTTTC CTTGCATGAA GAGCTTTACT TGGAAAAGCC CAATAATAAT
- 241 TAGAAGTTCC GATC

Figure 2: The cDNA and Amino Acid Sequence(s)

Figure 2A. The cDNA (SEQ ID. NO.:___) and amino acid sequence (SEQ ID. NO.:___) of 121P1F1. The start methionine is underlined. The open reading frame extends from nucleic acid 82-699 including the stop codon.

- 1 ccaaaatcaaacgcgtccgggcctgtcccgccctctccccaagcgcgggcccggccagc
- 1 M S K K G L S A E E K R
- 61 ggaagccctgcgcccATGTCAAAGAAAAAGGACTGAGTGCAGAAGAAAAAGAGA
- 14 T R M M E I F S E T K D V F Q L K D L E
- 121 ACTCGCATGATGGAAATATTTTCTGAAACAAAAGATGTATTTCAATTAAAAGACTTGGAG
- 34 K I A P K E K G I T A M S V K E V L Q S
- 181 AAGATTGCTCCCAAAGAGAAAGGCATTACTGCTATGTCAGTAAAAGAAGTCCTTCAAAGC
- 54 L V D D G M V D C E R I G T S N Y Y W A
- ${\tt 241\ TTAGTTGATGGTTGACTGTGAGAGGATCGGAACTTCTAATTATTGGGCT}$
- 74 F P S K A L H A R K H K L E V L E S Q L
- 301 TTTCCAAGTAAAGCTCTTCATGCAAGGAAACATAAGTTGGAGGTTCTGGAATCTCAGTTG
- 94 S E G S Q K H A S L Q K S I E K A K I G 361 TCTGAGGGAAGTCAAAAGCATGCAAGCCTACAGAAAAGCATTGAGAAAGCTAAAATTGGC
- 114 R C E T E E R T R L A K E L S S L R D Q
- .421 CGATGTGAAACGGAAGAGCGAACCAGGCTAGCAAAAGAGCTTTCTTCACTTCGAGACCAA
- 134 R E Q L K A E V E K Y K D C D P Q V V E
- 481 AGGGAACAGCTAAAGGCAGAAGTAGAAAAATACAAAGACTGTGATCCGCAAGTTGTGGAA 154 E I R Q A N K V A K E A A N R W T D N I
- 541 GAAATACGCCAAGCAAATAAAGTAGCCAAAGAAGCTGCTAACAGATGGACTGATAACATA
- 174 F A I K S W A K R K F G F E E N K I D R
- 601 TTCGCAATAAAATCTTGGGCCAAAAGAAAATTTGGGTTTGAAGAAAATAAAATTGATAGA
- 194 T F G I P E D F D Y I D *
- 661 ACTTTTGGAATTCCAGAAGACTTTGACTACATAGACTAAAatattccatqqtqqtqaaqq
- 781 tcqtttqcctqtaactqtgtttatcattttattaatgttaaataaagtgtaaaatgcaaa
- 841 aaaaaaaaaaaaaaaaaaaaaaa

Figure 2B. The cDNA (SEQ ID. NO.:___) and amino acid sequence (SEQ ID. NO.:____) of 121P1F1 splice variant 1A. The start methionine is underlined. The open reading frame extends from nucleic acid 82-462 including the stop codon.

1 ccaaaatcaaacgcgtccgggcctgtcccgccctctccccaagcgcgggcccggccagc 1 MSKKKGLSAEEKR 61 qqaaqccctqcqccqcqccATGTCAAAGAAAAAGGACTGAGTGCAGAAGAAAAGGAGA 14 T R M M E I F S E T K D V F Q L K D L E 121 ACTCGCATGATGGAAATATTTTCTGAAACAAAAGATGTATTTCAATTAAAAGACTTGGAG 34 K I A P K E K G I T A M S V K E V L Q S 181 AAGATTGCTCCCAAAGAGAAAGGCATTACTGCTATGTCAGTAAAAGAAGTCCTTCAAAGC 54 L V D D G M V D C E R I G T S N Y Y W A 241 TTAGTTGATGGTATGGTTGACTGTGAGGGGATCGGAACTTCTAATTATTGGGCT 74 F P S K A L H A R K H K L E V L E S Q D 301 TTTCCAAGTAAAGCTCTTCATGCAAGGAAACATAAGTTGGAGGTTCTGGAATCTCAGGAC 94 P G C C F H E I I K V S Y Y R K F W L 114 A V A H A C N P S T L G G 421 GCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAggcgggcagatcacgagg 481 tgactttcccccaccccacatgaagtgcaagatggagttgtctgagggaagtcaaaagc 541 atqcaaqcctacaqaaaaqcattqaqaaaqctaaaattgqccqatqtqaaacqqaaqaqc 601 qaaccaqqctaqcaaaaqagctttcttcacttcgagaccaaagggaacagctaaaggcag 661 aaqtaqaaaaatacaaaqactqtqatccgcaagttgtggaagaaatacgccaagcaaata 721 aagtagccaaagaagctgctaacagatggactgataacatattcgcaataaaatcttggg 781 ccaaaagaaaatttgggtttgaagaaaataaaattgatagaacttttggaattccagaag 841 actttqactacatagactaaaatattccatggtggtgaaggatgtacaagcttgtgaata 901 tgtaaattttaaactattatctaactaagtgtactgaattgtcgtttgcctgtaactgtg 1021 aaaaaaaa

Figure 2C. The cDNA (SEQ ID. NO.:___) and amino acid sequence (SEQ ID. NO.:___) of 121P1F1 splice variant 1B. The start methionine is underlined. The open reading frame extends from nucleic acid 501-860 including the stop codon.

1 ccaaaatcaaacqcqtccqqqcctqtcccqccctctccccaaqcqcqqqcccqqccaqc 61 qqaaqcccctqcqccqcqccatqtcaaaqaaaaaqqactqaqtqcaqaaqaaaaagaqa 121 actogcatgatgqaaatattttotgaaacaaaagatgtatttcaattaaaagacttggag 181 aaqattqctcccaaaqaqaaaqqcattactqctatqtcaqtaaaaqaaqtccttcaaaqc 241 ttagttgatgatggtatggttgactgtgagaggatcggaacttctaattattattgggct 301 tttccaagtaaagctcttcatgcaaggaaacataagttggaggttctggaatctcaggac 421 qcaqtqqctcacqcctgtaatcccaqcactttgggaggctgaggggggggagatcacgagg M K C K M E L S E G S Q K H 1 481 tqactttccccaccccacATGAAGTGCAAGATGGAGTTGTCTGAGGGAAGTCAAAAGC LQKSIEKAKIGRCETEER 541 ATGCAAGCCTACAGAAAAGCATTGAGAAAGCTAAAATTGGCCGATGTGAAACGGAAGAGC T R L A K E L S S L R D Q R E Q L K A E 35 601 GAACCAGGCTAGCAAAAGAGCTTTCTTCACTTCGAGACCAAAGGGAACAGCTAAAGGCAG V E K Y K D C D P Q V V E E I R Q A N K 661 AAGTAGAAAAATACAAAGACTGTGATCCGCAAGTTGTGGAAGAAATACGCCAAGCAAATA V A K E A A N R W T D N I F A I K S W A 75 721 AAGTAGCCAAAGAAGCTGCTAACAGATGGACTGATAACATATTCGCAATAAAATCTTGGG 95 KRKFGFEENKIDRTF 781 CCAAAAGAAATTTGGGTTTGAAGAAAATAAAATTGATAGAACTTTTGGAATTCCAGAAG FDYID* 841 ACTTTGACTACATAGACTAAaatattccatggtggtgaaggatgtacaagcttgtgaata 901 tgtaaattttaaactattatctaactaagtgtactgaattgtcgtttgcctgtaactgtg 1021 aaaaaaaa

Figure 2D. The cDNA (SEQ ID. NO.:____) and amino acid sequence (SEQ ID. NO.:____) of 121P1F1 splice variant 2. The start methionine is underlined. The open reading frame extends from nucleic acid 82-450 including the stop codon.

1 ccaaaatcaaacgcgtccgggcctgtcccgccctctccccaagcgcgggcccggccagc 1 M S K K G L S A E E K R 61 ggaagcccttgcgcccqcccATGTCAAAGAAAAAGGACTGAGTGCAGAAGAAAAAGAGA 14 T R M M E I F S E T K D V F O L K D L E 121 ACTCGCATGATGGAAATATTTTCTGAAACAAAAGATGTATTCAATTAAAAGACTTGGAG 34 K I A P K E K G I T A M S V K E V L O S 181 AAGATTGCTCCCAAAGAGAAAGGCATTACTGCTATGTCAGTAAAAGAAGTCCTTCAAAGC 54 L V D D G M V D C E R I G T S N Y Y W A 241 TTAGTTGATGGTATGGTTGACTGTGAGAGGATCGGAACTTCTAATTATTGGGCT 74 F P S K A L H A R K H K L E V L E S Q L 301 TTTCCAAGTAAGCTCTTCATGCAAGGAAACATAAGTTGGAGGTTCTGGAATCTCAGTTG 94 S E G S Q K H A S L Q K S I E K A K I G 361 TCTGAGGGAAGTCAAAAGCATGCAAGCCTACAGAAAAGCATTGAGAAAGCTAAAATTGGC 114 R C E T A K Q I K * 421 CGATGTGAAACGGCCAAGCAAATAAAGTAGccaaagaagctgctaacagatggactgata 481 acatattcgcaataaaatcttgggccaaaagaaaatttgggtttgaagaaaataaaattg 541 atagaacttttggaattccagaagactttgactacatagactaaaatattccatggtggt 721 gcaaaaaaaaaaaaaaaaaaaaaaaaa

Figure 2E. The cDNA (SEQ ID. NO.:___) and amino acid sequence (SEQ ID. NO.:___) of 121P1F1 splice variant 3. The start methionine is underlined. The open reading frame extends from nucleic acid 82-654 including the stop codon.

1 ccaaaatcaaacgcgtccgggcctgtcccgccctctccccaagcgcgggcccggccagc 1 MSKKKGLSAEEKR 61 ggaagcccttgcgcccgcgccATGTCAAAGAAAAAAGGACTGAGTGCAGAAGAAAAAGAGA 14 T R M M E I F S E T K D V F Q L K D L 121 ACTCGCATGATGGAAATATTTTCTGAAACAAAAGATGTATTTCAATTAAAAGACTTGGAG 34 K I A P K E K G I T A M S V K E V L O 181 AAGATTGCTCCCAAAGAGAAAGGCATTACTGCTATGTCAGTAAAAGAAGTCCTTCAAAGC 54 L V D D G M V D C E R I G T S N Y Y W 241 TTAGTTGATGATGGTTGACTGTGAGAGGATCGGAACTTCTAATTATTATTGGGCT 74 F P S K A L H A R K H K L E V L E S O L 301 TTTCCAAGTAAGCTCTTCATGCAAGGAAACATAAGTTGGAGGTTCTGGAATCTCAGTTG 94 S E G S Q K H A S L Q K S I E K A K I 361 TCTGAGGGAAGTCAAAAGCATGCAAGCCTACAGAAAAGCATTGAGAAAGCTAAAATTGGC 114 R C E T E E R T R L A K E L S S L R D Q 421 CGATGTGAAACGGAAGAGCGAACCAGGCTAGCAAAAGAGCTTTCTTCACTTCGAGACCAA 134 R E Q L K A E V E K Y K D C D P Q V 481 AGGGAACAGCTAAAGGCAGAAGTAGAAAAATACAAAGACTGTGATCCGCAAGTTGTGGAA 154 E I H N I F A I K S W A K R K F G F E E 541 GAAATACATAACATATTCGCAATAAAATCTTGGGCCAAAAGAAAATTTGGGTTTGAAGAA 174 N K I D R T F G I P E D F D Y I D * 601 AATAAAATTGATAGAACTTTTGGAATTCCAGAAGACTTTGACTACATAGACTAAaatatt 661 ccatggtggtgaaggatgtacaagcttgtgaatatgtaaatttttaaactattatctaact 721 aagtgtactgaattgtcgtttgcctgtaactgtgtttatcattttattaatgttaaataa

1000000

Figure 2F. The cDNA (SEQ ID. NO.:___) and amino acid sequence (SEQ ID. NO.:___) of 121P1F1 splice variant 4. The start methionine is underlined. The open reading frame extends from nucleic acid 281-853 including the stop codon.

1 gttttctgtattgtaatatgtagagcacattccagaactgctcagtttcgagttacctaa 61 tggatcttcactgtgtgccaattagtcgatttctgtgaaaacgccccggtttctqccaaa 121 gggcaggagtcgctgctcttgtgccgggtgctgctggttgtgtgtagggcgctgttqctttt 181 ttaaggacgctctgcactgaattaggcttcctcqtqqqtcatqatcaqttaaqtcctqtc MMEIFSE 241 aaagaaaaaaggactgagtgcagaagaaaagagaactcgcATGATGGAAATATTTTCTGA TKDVFQLKDLEKIAPKEKGI 301 AACAAAAGATGTATTTCAATTAAAAGACTTGGAGAAGATTGCTCCCAAAGAGAAAGGCAT AMSVKEVLQSLVDDG 361 TACTGCTATGTCAGTAAAAGAAGTCCTTCAAAGCTTAGTTGATGATGGTATGGTTGACTG I G T S N Y Y W A F P S K A L H A R 421 TGAGAGGATCGGAACTTCTAATTATTATTGGGCTTTTCCAAGTAAAGCTCTTCATGCAAG K H K L E V L E S Q L S E G S Q K H A S 481 GAAACATAAGTTGGAGGTTCTGGAATCTCAGTTGTCTGAGGGAAGTCAAAAGCATGCAAG LOKSIEKAKIGRCETEERTR 541 CCTACAGAAAAGCATTGAGAAAGCTAAAATTGGCCGATGTGAAACGGAAGAGCGAACCAG LAKELSSLRDQREQLKAEVE 601 GCTAGCAAAAGAGCTTTCTTCACTTCGAGACCAAAGGGAACAGCTAAAGGCAGAAGTAGA K Y K D C D P O V V E E I R O A N K 661 AAAATACAAAGACTGTGATCCGCAAGTTGTGGAAGAAATACGCCAAGCAAATAAAGTAGC K E A A N R W T D N I F A I K S W A 721 CAAAGAAGCTGCTAACAGATGGACTGATAACATATTCGCAATAAAATCTTGGGCCAAAAG K F G F E E N K I D R T F G I P E 781 AAAATTTGGGTTTGAAGAAAATAAAATTGATAGAACTTTTGGAATTCCAGAAGACTTTGA 841 CTACATAGACTAAaatattccatggtggtgaaggatgtacaagcttgtgaatatgtaaat 901 tttaaactattatctaactaagtgtactgaattgtcgtttgcctgtaactgtgtttatca 961 ttttattaatqttaaataaaqtqtaaaatqcaqatqttcttcaccccttttqqtaqaaca 1021 aaaqcaqqatqataaccatatcccccaqtqctcatcaaaqtaqqacactaaaaatccat 1081 ccatctcagtcaaagtcgagcggcgcgaatttagtagtagtagcggccgctctagagga 1141 tccaagettacgtacgcgtgcatgcgacgtcatagctcttctatagtgtcacctaaattc 1201 aagtt

Figure 3:

Figure 3A. Amino acid sequence of 121P1F1 (SEQ ID. NO.:____). The 121P1F1 protein has 205 amino acids.

- 1 MSKKKGLSAE EKRTRMMEIF SETKDVFQLK DLEKIAPKEK GITAMSVKEV LQSLVDDGMV
- 61 DCERIGTSNY YWAFPSKALH ARKHKLEVLE SQLSEGSQKH ASLQKSIEKA KIGRCETEER
- 121 TRLAKELSSL RDQREQLKAE VEKYKDCDPQ VVEEIRQANK VAKEAANRWT DNIFAIKSWA
- 181 KRKFGFEENK IDRTFGIPED FDYID

Figure 3B. Amino acid sequence of 121P1F1 splice variant 1A (SEQ ID. NO.:____). The 121P1F1 splice variant 1A protein has 126 amino acids.

- 1 MSKKKGLSAE EKRTRMMEIF SETKDVFQLK DLEKIAPKEK GITAMSVKEV LQSLVDDGMV
- 61 DCERIGTSNY YWAFPSKALH ARKHKLEVLE SQDPGCCFHE IIKVSYYRKF WLGAVAHACN
- 121 PSTLGG

Figure 3C. Amino acid sequence of 121P1F1 splice variant 1B (SEQ ID. NO.:____). The 121P1F1 splice variant 1B protein has 119 amino acids.

- 1 MKCKMELSEG SQKHASLQKS IEKAKIGRCE TEERTRLAKE LSSLRDQREQ LKAEVEKYKD
- 61 CDPQVVEEIR QANKVAKEAA NRWTDNIFAI KSWAKRKFGF EENKIDRTFG IPEDFDYID

Figure 3D. Amino acid sequence of 121P1F1 splice variant 2 (SEQ ID. NO.:____). The 121P1F1 splice variant 2 protein has 122 amino acids.

- 1 MSKKKGLSAE EKRTRMMEIF SETKDVFQLK DLEKIAPKEK GITAMSVKEV LQSLVDDGMV
- 61 DCERIGTSNY YWAFPSKALH ARKHKLEVLE SQLSEGSQKH ASLQKSIEKA KIGRCETAKQ
- 121 IK

UP - SPECE

Figure 3E. Amino acid sequence of 121P1F1 splice variant 3 (SEQ ID. NO.:____). The 121P1F1 splice variant 3 protein has 190 amino acids.

- 1 MSKKKGLSAE EKRTRMMEIF SETKDVFQLK DLEKIAPKEK GITAMSVKEV LQSLVDDGMV
- 61 DCERIGTSNY YWAFPSKALH ARKHKLEVLE SQLSEGSQKH ASLQKSIEKA KIGRCETEER
- 121 TRLAKELSSL RDQREQLKAE VEKYKDCDPQ VVEEIHNIFA IKSWAKRKFG FEENKIDRTF
- 181 GIPEDFDYID

Figure 3F. Amino acid sequence of 121P1F1 splice variant 4 (SEQ ID. NO.:____). The 121P1F1 splice variant 4 protein has 190 amino acids.

- 1 MMEIFSETKD VFQLKDLEKI APKEKGITAM SVKEVLQSLV DDGMVDCERI GTSNYYWAFP
- 61 SKALHARKHK LEVLESQLSE GSQKHASLQK SIEKAKIGRC ETEERTRLAK ELSSLRDQRE
- 121 OLKAEVEKYK DCDPOVVEEI ROANKVAKEA ANRWTDNIFA IKSWAKRKFG FEENKIDRTF
- 181 GIPEDFDYID

Figure 4A

Amino Acid Alignments.

Alignment of 121P1F1 protein and its variants.

A) CLUSTAL W alignment of 121P1F1 and variants 1-3.

121P1F01 sv1A sv1B sv-2 sv-3	mskkkglsaeekrtrmmeifsetkdvfqlkdlekiapkekgitamsvke mskkkglsaeekrtrmmeifsetkdvfqlkdlekiapkekgitamsvke
121P1F01 sv1A sv1B sv-2 sv-3	VLQSLVDDGMVDCERIGTSNYYWAFPSKALHARKHKLEVLESQLSEGSQK-HASLQKS-I VLQSLVDDGMVDCERIGTSNYYWAFPSKALHARKHKLEVLESQDP-GCCF-HEIIKVSYY QLKAEVEK-YKDCDPQVVEEIRQANKVAKEAANRWTDNIFAIKSWAKRKFGFEENKID VLQSLVDDGMVDCERIGTSNYYWAFPSKALHARKHKLEVLESQLSEGSQK-HASLQKS-I VLQSLVDDGMVDCERIGTSNYYWAFPSKALHARKHKLEVLESQLSEGSQK-HASLQKS-I
121P1F01 sv1A sv1B sv-2 sv-3	EKAKIGRCETEERTRLAKELSSLRDQREQLKAEVEKYKDCDPQVVEEIRQANKVAKEAAN RKFWLGAVAHACNPSTLGG
121P1F01 sv1A sv1B sv-2 sv-3	RWTDNIFAIKSWAKRKFGFEENKIDRTFGIPEDFDYID

Figure 4B

Clustal alignment of 121P1F1 and variants 1A and 4

					46 60		
-	121P1F01	MSKKKGLSAEEKRTR	MMEIFSETKDVFQLK	DLEKIAPKEKGITAM	SVKEVLQSLVDDGMV	DCERIGTSNYYWAFP	SKALHARKHKLEVLE
1	2 sv-4		MMEIFSETKDVFQLK	DLEKIAPKEKGITAM	SVKEVLQSLVDDGMV	DCERIGTSNYYWAFP	SKALHARKHKLEVLE
:	3 sv-1A	MSKKKGLSAEEKRTR	MMEIFSETKDVFQLK	DLEKIAPKEKGITAM	SVKEVLQSLVDDGMV	DCERIGTSNYYWAFP	SKALHARKHKLEVLE
-	-						
		91 105	106 120	121 135	136 150	151 165	166 180
	1 121P1F01	SOLSEGSOKHASLOK	SIEKAKIGRCETEER	TRLAKELSSLRDQRE	QLKAEVEKYKDCDPQ	VVEEIRQANKVAKEA	ANRWTDNIFAIKSWA
	2 sv-4		SIEKAKIGRCETEER				
	3 sv-lA	SQDPGCCFHEIIKVS	YYRKFWLG		AVAHACNPS	TLGG	
	_						
		181 195	196 210	211			
	1 121P1F01	KRKFGFEENKIDRTF	GIPEDFDYID 205				
	2 sv-4						
	3 sv-1A		126				

Figure 4C

C) Alignment with human GAJ

Identities = 205/205 (100%), Positives = 205/205 (100%)

121P1:	1	MSKKKGLSAEEKRTRMMEIFSETKDVFQLKDLEKIAPKEKGITAMSVKEVLQSLVDDGMV MSKKKGLSAEEKRTRMMEIFSETKDVFOLKDLEKIAPKEKGITAMSVKEVLOSLVDDGMV	60
Sbjct:	1	MSKKKGLSAEEKRTRMMEIFSETKDVFQLKDLEKIAPKEKGITAMSVKEVLQSLVDDGMV	60
121P1:	61	DCERIGTSNYYWAFPSKALHARKHKLEVLESQLSEGSQKHASLQKSIEKAKIGRCETEER DCERIGTSNYYWAFPSKALHARKHKLEVLESQLSEGSQKHASLQKSIEKAKIGRCETEER	120
Sbjct:	61	DCERIGTSNYYWAFPSKALHARKHKLEVLESQLSEGSQKHASLQKSIEKAKIGRCETEER	120
121P1:	121	TRLAKELSSLRDQREQLKAEVEKYKDCDPQVVEEIRQANKVAKEAANRWTDNIFAIKSWA TRLAKELSSLRDQREQLKAEVEKYKDCDPQVVEEIRQANKVAKEAANRWTDNIFAIKSWA	180
Sbjct:	121	TRLAKELSSLRDQREQLKAEVEKYKDCDPQVVEEIRQANKVAKEAANRWTDNIFAIKSWA	180
121P1:	181	KRKFGFEENKIDRTFGIPEDFDYID 205 KRKFGFEENKIDRTFGIPEDFDYID	
Sbict:	181	KRKFGFEENKIDRTFGIPEDFDYID 205	

Figure 4D

D) Alignment with closest mouse homolog, a hypothetical 24.2 KDa protein. Identities = 183/205 (89%), Positives = 193/205 (93%)

Sbjct: 181 KRKFGFEESKIDKNFGIPEDFDYID 205

121P1:	1	MSKKKGLSAEEKRTRMMEIFSETKDVFQLKDLEKIAPKEKGITAMSVKEVLQSLVDDGMV MSKK+GLS EEKRTRMMEIF ETKDVFQLKDLEK+APKEKGITAMSVKEVLQSLVDDGMV	60
Sbjct:	1	MSKKRGLSGEEKRTRMMEIFFETKDVFQLKDLEKLAPKEKGITAMSVKEVLQSLVDDGMV	60
121P1:	61	DCERIGTSNYYWAFPSKALHARKHKLEVLESQLSEGSQKHASLQKSIEKAKIGRCETEER DCERIGTSNYYWAFPSKALHARK KLE L SQLSEGSQKHA LQKSIEKA++GR ETEER	120
Sbjct:	61	DCERIGTSNYYWAFPSKALHARKRKLEALNSQLSEGSQKHADLQKSIEKARVGRQETEER	120
121P1:	121	TRLAKELSSLRDQREQLKAEVEKYKDCDPQVVEEIRQANKVAKEAANRWTDNIFAIKSWA LAKEL S RDQR+QLKAEVEKY++CDPQVVEEIR+ANKVAKEAANRWTDNIFAIKSWA	180
Sbjct:	121	AMLAKELFSFRDQRQQLKAEVEKYRECDPQVVEEIREANKVAKEAANRWTDNIFAIKSWA	180
121P1:	181	KRKFGFEENKIDRTFGIPEDFDYID 205	

HE PRIME

Figure 4E

- E. >gi|1175412|sp|Q09739|YA53_SCHPO HYPOTHETICAL 24.2 KD PROTEIN C13A11.03 IN CHROMOSOME I
 - gi|7490680|pir||T37610 hypothetical coiled-coil protein fission yeast (Schizosaccharomyces pombe)
 - $gi \mid 984224 \mid emb \mid CAA90804.1 \mid$ (Z54096) hypothetical coiled-coil protein [Schizosaccharomyces pombe]

Length = 210

- Score = 121 bits (305), Expect = 5e-27
 Identities = 81/202 (40%), Positives = 115/202 (56%), Gaps = 6/202 (2%)
- Query: 5 KGLSAEEKRTRMMEIFSETKDVFQLKDLEKIAPKEKGITAMSVKEVLQSLVDDGMVDCER 64 KGLS EKR R+ IF ++KD FQLK++EK+ K K I +VK+VLQSLVDD +V E+
- Sbjct: 4 KGLSLAEKRRLEAIFHDSKDFFQLKEVEKLGSK-KQIVLQTVKDVLQSLVDDNIVKTEK 62
- Query: 65 IGTSNYYWAFPSKALHARKHKLEVLESQLSEGSQKHASLQKSIEKAKIGR----CETEER 120 IGTSNYYW+FPS A +R+ L L++QL + QK +L ++I K R E +
- Sbjct: 63 IGTSNYYWSFPSDAKRSRESVLGSLQAQLDDLKQKSKTLDENISFEKSKRDNEGTENDAN 122
- Query: 121 TRLAKELSSLRDQREQLKAEVEKYKDCDPQVVEEIRQANKVAKEAANRWTDNIFAIKSWA 180 + L + + + LK ++ C+P+ E + K EAAN WTD I + ++
- Sbjct: 123 QYTLELLHAKESELKLLKTQLSNLNHCNPETFELKNENTKKYMEAANLWTDQIHTLIAFC 182
- Query: 181 KRKFGFEENKIDRTFGIPEDFD 202
 - R G + N+I IPED D
- Sbjct: 183 -RDMGADTNQIREYCSIPEDLD 203

Her gipe

Figure 5A 121P1F1 Hydrophilicity profile

(Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828)

sd-80689

ingige its

Figure 5B
121P1F1 variant 1a Hydrophilicity profile
(Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828)

Figure 6A 121P1F1 Hydropathicity Profile

(Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132)

Figure 6B 121P1F1 variant 1a Hydropathicity Profile (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132)

HOUSTIO LIFESON

Figure 7A 121P1F1 % Accessible Residues Profile (Janin J., 1979. Nature 277:491-492)

Figure 7B 121P1F1 variant 1a % Accessible Residues Profile (Janin J., 1979. Nature 277:491-492)

Figure 8A 121P1F1 Average Flexibility Profile

(Bhaskaran R., Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255)

Figure 8B
121P1F1 variant 1a Average Flexibility Profile

(Bhaskaran R., Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255)

Figure 9A 121P1F1 Beta-turn Profile

(Deleage, G., Roux B. 1987. Protein Engineering 1:289-294)

sd-80689

10007

Figure 9B 121P1F1 variant 1a Beta-turn Profile

(Deleage, G., Roux B. 1987. Protein Engineering 1:289-294)

sd-80689

112.1.2.2

Figure 10

Note: Numbers in "()" correspond to those of the original sequence. Black box shows the same sequence as the original one. SNPs are indicated above the box.

Figure 11

Note: Numbers in "()" correspond to those of the original sequence. Black box shows the same sequence as the original one. Single amino acid variations are indicated above the box.

sd-80689

....

Figure 12 Specific recognition of 121P1F1 antigen by anti-121P1F1 pAb

1. Pre-immune	1:100
2. Pre-immune	1:1,600
3. Anti-121P1F1 serum	1:100
4. Anti-121P1F1 serum	1:400
5. Anti-121P1F1 serum	1:1,600

Figure 13 Expression of 121P1F1 in various cancer cells

Figure 14 Expression of epitope tagged 121P1F1 in 293T cells

Figure 15 121P1F1 Androgen Regulation In Vivo

LAPC-9AD Day 0
 LAPC-9AD Day 0
 LAPC-9AD Day 7
 LAPC-9AD Day 7
 LAPC-9AD Day 7
 LAPC-9AD Day 15
 LAPC-9AD Day 15
 LAPC-9AD Day 15
 LAPC-9AD Day 15
 LAPC-9AD Day 15

TMPRSS2

Figure 16A

Secondary structure prediction of 121P1F1

70	
09	
20	
40	
30	
20	_
10	_

YWAFPSKALHARKHKLEVLESQLSEGSQKHASLQKSIEKAKIGRCETEERTRLAKELSSLRDQREQLKAE MSKKKGLSAEEKRTRMMEIFSETKDVFQLKDLEKIAPKEKGITAMSVKEVLQSLVDDGMVDCERIGTSNY VEKYKDCDPQVVEEIRQANKVAKEAANRWTDNI FAIKSWAKRKFGFEENKIDRTFGI PEDFDYID

Alpha helix (h): 61.95% Extended strand (e): 1.95% Random coil (c): 36.10%

Figure 16B

Secondary structure prediction of variant 1a

70	
09	
20	
40	_
30	
20	
10	

сссссссирунтинтинтинтинтинтинтинтинтинтессссинтинтинтинтинтессссин MSKKKGLSAEEKRTRMME1FSETKDVFQLKDLEK1APKEKGITAMSVKEVLQSLVDDGMVDCERIGTSNY YWAFPSKALHARKHKLEVLESQDPGCCFHEIIKVSYYRKFWLGAVAHACNPSTLGG

Alpha helix (h): 50.79% Extended strand (e): 7.94% Random coil (c): 41.27%

Figure 17 Expression of 121P1F1 by RT-PCR

A. Human normal tissues

- 5) Small Int. 1) Colon
- 6) Spleen 2) Ovary
- 7) Testis 3) Leuk.
- 8) Thymus 4) Prost.

B. Patient tumor specimens

- 6) Bladder cancer pool 2) VP2 1) VP1
 - 7) Kidney cancer pool
- 8) Colon cancer pool 4) Normal prostate

3) XP

- 9) Lung tumor
- 5) Prostate cancer pool 10) H2O

Figure 18 Expression of 121P1F1 in normal human tissues

- 1. Spleen
- 2. Thymus 3. Prostate

Heart
 Brain
 Placenta

- 4. Testis5. Ovary6. Small Intestine7. Colon8. Leukocytes

4. Lung5. Liver6. Skeletal Muscle7. Kidney8. Pancreas

Figure 19 Expression of 121P1F1 in Multiple Cancer Cell lines

Figure 20 Expression of 121P1F1 in Patient Prostate Cancer Samples

Patient sample numbers

NP = Normal Prostate N = Normal T = Tumor

Figure 21 Expression of 121P1F1 in Kidney, Breast, Cervical and Stomach Patients Samples as well as Cancer Cell lines

kidney Z H

cervix breast

T = tumor RNA

N = normal adjacent tissue RNA

Cell Lines

Cancer cell lines are: (from left to right)

Daudi (Burkitt's lymphoma) HeLa (cervical carcinoma) HL-60 (PML) K562 (CML)

G361 (melanoma)

SW480 (colorectal carcinoma) A549 (lung carcinoma) MOLT-4 (lymphoblastic leuk.)

Raji (Burkitt's lymphoma)

Figure 22 Androgen Regulation of 121P1F1

S 3 ~

- LAPC-4² FBS LAPC-4² charcoal-stripped FBS, 14 hrs LAPC-4² charcoal-stripped FBS, 14 hrs + mib LAPC-4² charcoal-stripped FBS, 24 hrs LAPC-4² charcoal-stripped FBS, 24 hrs

121P1F1

TMPRSS2

