ITU AI/ML 5G Challenge

Theme 1 from KDDI

Analysis on route information failure in IP core networks by NFV-based test environment

UT-NakaoLab-AI Team

2020-11-11 (15:00 ~15:20)

Team Members: Fei Xia (M1), Aerman Tuerxun (M1), Jiaxing Lu (D1), Ping Du

Introduction

Objective

 Detect network and device failures from huge amount of unstructured log files in real-time.

Our Approach

- Feature Extraction: Extract 997 features from 28GB/day unstructured log files.
- Feature Refinement: Use the differential data between normal and abnormal data as features
- Feature Reduction: Identify and use top 15 most important features without obvious performance degradation

Results

- Achieve almost 100% accuracy when detecting network and device failures.
- Achieve 86% accuracy when detecting packet loss and delay.
- Total average: 92% accuracy

Comparative Analyses

Our work extends KDDI's NOMS2020 paper as follows:

Our Work	NOMS2020 paper	
Six failure events	Three failure events	
One unified model	Two separated models	
 Multiple-layer Perceptron (MLP) Random Forest (RF) Support Vector Machine (SVM) Decision Tree (DT) XGBoost (XGB) 	 Multiple-layer Perceptron (MLP) Random Forest (RF) Support Vector Machine (SVM) 	

01

Feature Extraction

Feature Refinement

Feature Reduction

Training and Evaluation

Contributions

Agenda

Feature Extraction

Extract features from unstructured log files and merges tagged features into CSV files.

Key Points in Feature Extraction

- For all log files, we utilize **paths like** "key1/key1-1/key1-1-1..." **as keys** to extract features from physical-infrastructure, virtual-infrastructure, and network-device JSON log files.
- For **BGP** related entries, we use **the number of next-hops** in each array and their **prefixes** as features.

Differential Data as Input

To highlight the difference between normal and abnormal data sets to derive metrics which have changed since the occurrence of a failure, we use

Differential data = Abnormal data - Normal data as features.

Feature Refinement

Merge diverse datasets

To train a unified model for diverse network events, we merge all datasets into one CSV file for training and evaluation separately.

Feature Reduction

Feature Importance Analysis (with XGBoost)

Our trained XGBoost model can automatically calculate importance score of each feature.

Feature Reduction

- Use different numbers of features to train the data and observe the changes in accuracy.
 - When the number of features is more than 57, we get the highest accuracy, which is 92%.
 - o If use only top 15 most important features, we can achieve an accuracy of 89%, without obvious performance degradation.

Training & Validation with Learning Data and Validation Data

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

No.	Method	Accuracy
1	Random Forest	0.92
2	XGBoost	0.92
3	Decision Tree	0.88
4	SVM	0.74
5	MLP	0.73

Validation accuracy during training

*In our training, 80% data set as training data set while the left 20% as validation data set.

Evaluation

Evaluation By Precision

- Network and device failures (Type 1, 3, 9, 11): almost 100% accuracy.
- Packet loss and delay (Type 5, 7), achieve 86% accuracy.
- Totally Average: 92% inference accuracy. $\frac{1}{TP}$

 $Precision = \frac{T}{TP + FP}$ (True Positive (TP), False Positive (FP))

Label Type	DT	RF	XGB
1: node-down	1.00	1.00	0.98
3: interface-down	0.69	1.00	0.93
5, 7: tap-loss (delay)	0.83	0.86	0.86
9: ixnetwork-bgp-injection	0.99	0.98	0.99
11: ixnetwork-bgp-hijacking	0.99	0.98	1.00
Total Average	0.88	0.92	0.92

Evaluation

Evaluation By Time

- Random Forest and Decision Tree outperform others in terms of training and inference time
- All of them can detect the failure events in real-time.

No.	Method	Training time (s)	Test time (s)
1	Random Forest	1.09	0.04
2	XGBoost	21.12	0.11
3	Decision Tree	0.55	0.03
4	SVM	89.63	0.69
5	MLP	2.61	0.01

Contributions

- Our training model can achieve
 - almost 100% accuracy when detecting network and device failures.
 - 86% accuracy when detecting packet loss and delay.
 - total average 92% accuracy
- Technical Details
 - Feature Extraction: Extract 997 features from 28GB/Day unstructured log files.
 - Feature Refinement: Use the differential data between normal and abnormal data as features
 - Feature Reduction: Identify and use top 15 most important features without obvious performance degradation
- To community
 - We will open source all our work after presentation.
 (https://github.com/xiafei571/itu-ml-challenge)

