Лекция 12. Предел функции по Гейне

12.1. Определение предела функции по Гейне

Пример 12.1. Рассмотрим функцию f(x) на области определения X (рис. 1). Пусть x=a — предельная точка¹ множества X, не принадлежащая этому множеству. Выберем какуюнибудь последовательность значений $\{x_n\}$, сходящуюся к $a, x_n \neq a$. Видим, что соответствующие значения $\{y_n\}$ рассматриваемой функции при этом сходятся к числу A.

Рис. 1: На оси Ox отмечены члены последовательности $\{x_n\}$, на оси Oy — члены $\{f(x_n)\}$.

Очевидно, что в этом примере для любой последовательности значений $\{x_n\}$ из множества X такой, что $x_n \to a$ при $n \to \infty$, $x_n \neq a$, соответствующая последовательность значений функции $\{y_n\}$ будет сходится к A.

Пример 12.2. Рассмотрим функцию $f(x) = \operatorname{sgn} x$ (рис. 2). Область определения этой функции $X = \mathbb{R}$. Точка x = 0 является предельной точкой этого множества, так как в любой ε -окрестности этой точки содержатся точки из X, не совпадающие с x = 0.

Выберем последовательность значений $\{x_n\}$, сходящуюся к 0: $x_n = \frac{1}{n}$. Видим, что соответствующие значения $\{y_n\}$ рассматриваемой функции при этом сходятся к числу 1.

Рис. 2: На оси Ox отмечены члены $\{\frac{(-1)^n}{n}\}$, на оси Oy — члены $\{\operatorname{sgn}\left(\frac{(-1)^n}{n}\right)\}$.

Выбрав последовательность значений $\{x_n\}$, сходящуюся к 0: $x_n = -\frac{1}{n}$, видим, что соответствующие значения $\{y_n\}$ рассматриваемой функции при этом сходятся к числу -1. Если последовательность, стремится к нулю с разных сторон, например, $x_n = \frac{(-1)^n}{n}$, то последовательность соответствующих значений функции $\{(-1)^n\}$ предела не имеет.

 $^{^1}$ Точка a- предельная точка множества X, если в любой ε -окрестности точки a содержится хотя бы одна точка из X, не совпадающая с a. При этом точка a может принадлежать X, а может и не принадлежать.

Таким образом, в этом примере существуют последовательности $\{x_n\}$ из множества X такие, что $x_n \to 0$ при $n \to \infty$, а соответствующие последовательности значений функции $\{y_n\}$ сходятся к разным числам или вообще расходятся.

Интуитивно мы можем сказать, что в первом примере пределом функции при $x \to a$ должно быть число A, а во втором примере — предел функции не существует при $x \to 0$.

Определение 12.1. Пусть a — предельная точка области определения функции f. Число A называется пределом функции f в точке a по Γ е й н е, если для каждой последовательности точек $\{x_n\}$ из области определения функции f, сходящихся к a и отличных от a, последовательность $\{f(x_n)\}$ значений функции сходится к A, т. е. $A = \lim_{n \to \infty} f(x_n)$.

В этом случае пишут $A = \lim_{x \to a} f(x)$ или $f(x) \to A$ при $x \to a$. Вместо "предел функции в точке a" говорят также "предел функции при $x \to a$ ". Определение предела функции по Гейне называют также определением на языке последовательностей.

Пример 12.3. Доказать, что $\lim_{x\to 0} f(x) = 1$, если

$$f(x) = |\operatorname{sgn} x| = \begin{cases} 1, & \text{если } x \neq 0; \\ 0, & \text{если } x = 0. \end{cases}$$

 \diamond Заметим, что x=0 — предельная точка D(f). Очевидно, что для любой последовательности точек $\{x_n\}$ из области определения D(f), сходящихся к точке x=0 и отличных от 0, последовательность соответствующих значений функции $\{f(x_n)\}=\{1\}$ является стационарной и сходится к единице. Согласно определению 12.1 $\lim_{x\to 0} f(x)=1$.

Теорема 12.1.1. Функция имеет предел в точке а тогда и только тогда, когда на любой последовательности точек $\{x_n\}$ из ее области определения, сходящихся к а и отличных от а, последовательность соответствующих значений функции $\{f(x_n)\}$ сходится.

Доказательство. Необходимость. Если функция f(x) имеет предел в точке a (обозначим его A), то из определения 12.1 следует, что на каждой последовательности точек $\{x_n\}$ из области определения функции f, сходящихся к a и отличных от a, последовательность $\{f(x_n)\}$ значений функции сходится к A.

Достаточность. Пусть на любой последовательности точек $\{x_n\}$ из области определения X функции f, сходящихся к точке a и отличных от a, последовательность соответствующих значений функции $\{f(x_n)\}$ сходится.

Предположим, что существуют две последовательности $\{\bar{x}_n\}, \{\bar{\bar{x}}_n\}$ такие, что

$$\lim_{n \to \infty} f(\bar{x}_n) = A, \quad \lim_{n \to \infty} f(\bar{x}_n) = B, \quad B \neq A.$$

Пусть для определенности B > A. Рассмотрим последовательность $\{x_n\}$ точек из множества X, составленную их точек последовательностей $\{\bar{x}_n\}$ и $\{\bar{x}_n\}$:

$$\{x_n\} = \{\bar{x}_1, \ \bar{x}_1, \ \bar{x}_2, \ \bar{x}_2, \ \bar{x}_3, \ \bar{x}_3, \ \ldots\}.$$

Естественно, $x_n \to a$ и $x_n \neq a$. Тогда последовательность $\{f(x_n)\}$ соответствующих значений функции: $\{f(x_n)\} = \{f(\bar{x}_1), f(\bar{x}_1), f(\bar{x}_2), f(\bar{x}_2), f(\bar{x}_3), f(\bar{x}_3), \dots\}$ имеет верхний предел $\overline{\lim_{n\to\infty}} f(x_n) = B$ и нижний предел $\lim_{n\to\infty} f(x_n) = A$. Из связи верхнего и нижнего предела последовательности с ее сходимостью следует, что $\{f(x_n)\}$ предела не имеет, но

это противоречит условию теоремы: на любой последовательности точек $\{x_n\}$ из X, сходящихся к a и отличных от a, последовательность соответствующих значений функции $\{f(x_n)\}$ сходится.

Значит, наше предположение неверно и на любых последовательностях точек из X, сходящихся к предельной точке a множества X и отличных от a, последовательности соответствующих значений функции f сходятся к одному и тому же числу. Согласно определению 12.1 это число называется пределом функции f(x) при $x \to a$. Теорема доказана.

Следствие 12.1.2. Если существуют последовательности $\{\bar{x}_n\}$ и $\{\bar{x}_n\}$ точек из области определения функции f, сходящихся κ точке a и отличных от a, для которых последовательности $\{f(\bar{x}_n)\}$ и $\{f(\bar{x}_n)\}$ соответствующих значений функции сходятся κ разным пределам, то функция f(x) при $x \to a$ предела не имеет.

Пример 12.4. Доказать, что не существует предел функции $f(x) = \sin \frac{1}{x}$ при $x \to 0$.

 \diamond Заметим, что x=0 — предельная точка D(f). Выберем последовательности $\{\bar{x}_n\}$, $\{\bar{x}_n\}$, стремящиеся к нулю, не совпадающие с ним, такие, что $f(\bar{x}_n)=1, f(\bar{x}_n)=0$. Последовательности

$$\bar{x}_n = \frac{1}{\pi/2 + 2\pi n}, \quad \bar{\bar{x}}_n = \frac{1}{\pi n}, \quad n \in \mathbb{N},$$

удовлетворяют этим требованиям. Соответствующие им последовательности $\{f(\bar{x}_n)\}$ и $\{f(\bar{x}_n)\}$ значений функции — стационарные и сходятся к разным значениям. Это доказывает отсутствие предела функции $f(x)=\sin\frac{1}{x}$ при $x\to 0$.

Замечание 12.1. Еще раз обратим внимание, что в точке a функция может быть не определена. a — предельная точка множества X, может принадлежать ему, а может и не принадлежать. Это неважно, так как существование предела функции f(x) при $x \to a$ — это локальное свойство функции, определяющее ее поведение в некоторой достаточно малой проколотой окрестности² точки a. x стремится к a, но не достигает a, так как рассматриваются последовательности значений x_n из X такие, что $\lim_{n\to\infty} x_n = a$, но $x_n \neq a$.

Замечание 12.2. Из определения 12.1 и единственности предела последовательности следует, что функция не может иметь двух различных пределов в одной точке.

12.2. Арифметические свойства предела функции

Рассмотрим арифметические действия над функциями, имеющими пределы в точке.

Теорема 12.2.1. Пусть для функций f(x) и g(x) существуют пределы

$$\lim_{x \to a} f(x) \quad u \quad \lim_{x \to a} g(x).$$

Тогда существуют указанные ниже пределы и справедливы равенства

$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x);$$

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x);$$

²Напомним, что проколотой называется окрестность точки, из которой исключена сама эта точка.

если, кроме того, $\lim_{x\to a}g(x)\neq 0$, то

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

Доказательство. Докажем последнее утверждение. Обозначим $B = \lim_{x \to a} g(x)$. Так как $B \neq 0$, то согласно определению 12.1 для каждой последовательности $\{x_n\}$ точек из проколотой окрестности точки a, сходящихся к a,

$$\lim_{n \to \infty} g(x_n) = B \neq 0,$$

поэтому³ в некоторой проколотой окрестности точки a для достаточно больших n выполняется соотношение $g(x_n) \neq 0$.

Из проколотой окрестности точки a, в которой определены функции f и g, выбираем произвольную последовательность точек x_n , сходящуюся к a. В силу арифметических свойств пределов последовательностей имеем

$$\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \frac{\lim_{n \to \infty} f(x_n)}{\lim_{n \to \infty} g(x_n)}.$$

При этом для любой такой последовательности $\{x_n\}$ пределы в правой части этого равенства не зависят от выбора последовательности, так как существуют пределы функций f(x) и g(x) при $x \to a$, значит, и в левой части равенства получаем одно и то же значение предела для любой последовательности $\{x_n\}$. Таким образом, существует предел частного функций f(x) и g(x) при $x \to a$, равный частному пределов функций f(x) и g(x) при $x \to a$.

Д/З: Остальные арифметические свойства доказать самостоятельно.

Благодаря определению предела функции на языке последовательностей на случай функций легко переносятся такие свойства предела последовательности, как предельные переходы в неравенствах, свойства бесконечно малых, связь сходимости и ограниченности, теорема "о двух милиционерах". Сформулируем последнюю.

Теорема 12.2.2. Если функция f(x) такая, что

$$\varphi(x) \leqslant f(x) \leqslant \psi(x)$$

для всех x в некоторой окрестности точки a, причем функции $\varphi(x)$ и $\psi(x)$ имеют одинаковый предел при $x \to a$, то существует предел функции f(x) при $x \to a$, равный этому же значению, то есть

$$\left(\lim_{x\to a}\varphi(x)=\lim_{x\to a}\psi(x)=A\quad \wedge\quad \varphi(x)\leqslant f(x)\leqslant \psi(x)\right)\quad \Rightarrow\quad \lim_{x\to a}f(x)=A.$$

Д/З: Доказательство этой теоремы и упомянутых свойств провести самостоятельно.

 $[\]overline{^3}$ Если $\lim_{n\to\infty}a_n=a\neq 0$, то $\exists\,N\in\mathbb{N}:\quad\forall\,n>N\quad \frac{1}{2}|a|<|a_n|<\frac{3}{2}|a|.$