LC 312 J. 5019

SESSION 2003
Filière MP (groupes M/MP/MI)
Épreuve commune aux ENS de Lyon et Cachan

Filière MP (groupe I)

Épreuve commune aux ENS de Paris, Lyon et Cachan

Filière PC (groupe I)

Épreuve commune aux ENS de Paris et Lyon

MATHÉMATIQUES

Durée : 4 heures

L'usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d'accompagnement, est autorisé. Cependant, une seule calculatrice à la fois est admise sur la table ou le poste de travail, et aucun échange n'est autorisé entre les candidats.

Introduction

Soit n un entier naturel non-nul. On note $\mathcal{M} = M_{n,n}(\mathbf{C})$ l'espace vectoriel de dimension n^2 des matrices carrées $n \times n$ a coefficients dans le corps \mathbf{C} des nombres complexes. On note $\mathcal{C} = M_{n,1}(\mathbf{C})$ l'espace vectoriel de dimension n des matrices colonne à coefficients dans \mathbf{C} , et $\mathcal{L} = M_{1,n}(\mathbf{C})$ l'espace vectoriel de dimension n des matrices ligne. Enfin, on note \mathcal{R}_1 le sous-ensemble de \mathcal{M} constitué des matrices de rang 1.

Si P et Q sont deux éléments du groupe linéaire $GL_n(\mathbf{C})$, on note $\varphi_{P,Q}$ l'endomorphisme de l'espace vectoriel \mathcal{M} défini, pour $A \in \mathcal{M}$, par

$$\varphi_{P,Q}(A) = PAQ.$$

On note T l'endomorphisme transposition de \mathcal{M} , c'est-à-dire l'endomorphisme de \mathcal{M} défini par $T(A) = {}^t A$ pour $A \in \mathcal{M}$. On note alors

$$G = \{ \varphi_{P,Q}; P, Q \in GL_n(\mathbf{C}) \},$$

$$G' = \{ T \circ \varphi_{P,Q}; P, Q \in GL_n(\mathbf{C}) \},$$

et

$$G = G \cup G'$$
.

Première partie

On va montrer dans cette partie que les endomorphismes f de l'espace vectoriel \mathcal{M} , tels que $f(\mathcal{R}_1) \subset \mathcal{R}_1$, sont précisément les éléments de \mathcal{G} .

- 1) Montrer que si $f \in \mathcal{G}$, et si $A \in \mathcal{R}_1$, alors $f(A) \in \mathcal{R}_1$.
- 2) Montrer que toute matrice de rang 1 est produit d'un élément de $\mathcal C$ par un élément de $\mathcal L$.
- 3) Soient $X, X' \in \mathcal{C}$ et $V, V' \in \mathcal{L}$. On suppose que XV + X'V' est de rang ≤ 1 , et que V et V' sont linéairement indépendants dans \mathcal{L} .
 - **3-a)** Montrer qu'il existe $Y, Y' \in \mathcal{C}$, tels que VY = 1, V'Y = 0, VY' = 0 et V'Y' = 1.
 - **3-b)** En déduire que X et X' sont liés dans C.
- **4)** Soient F, F_1, F_2 trois sous-espaces vectoriels d'un espace vectoriel E. On suppose que $F \subset F_1 \cup F_2$. Montrer que $F \subset F_1$ ou $F \subset F_2$.
- **5)** Si $X \in \mathcal{C} \{0\}$, on note $X\mathcal{L} = \{XV; V \in \mathcal{L}\}$. De même, on note $\mathcal{C}V = \{XV; X \in \mathcal{C}\}$ pour $V \in \mathcal{L} \{0\}$.
- 5-a) Montrer qu'il s'agit là de sous-espaces vectoriels de \mathcal{M} , de dimension n et constitués de matrices de rang inférieur ou égal à 1.
- **5-b)** Soit F un sous-espace vectoriel de \mathcal{M} , de dimension n, et constitué de matrices de rang inférieur ou égal à 1. Montrer que F est soit de la forme $X\mathcal{L}$ pour $X \neq 0$, soit de la forme $\mathcal{C}V$ pour $V \neq 0$.
- **5-c)** Calculer, pour $X, X' \in \mathcal{C} \{0\}$ et $V, V' \in \mathcal{L} \{0\}$, les intersections $X\mathcal{L} \cap X'\mathcal{L}$, $\mathcal{C}V \cap \mathcal{C}V'$ et $X\mathcal{L} \cap \mathcal{C}V$.

On se donne, jusqu'à la fin de cette partie, un endomorphisme f sur l'espace vectoriel \mathcal{M} , tel que $f(\mathcal{R}_1) \subset \mathcal{R}_1$.

- 6) Montrer que l'image par f d'un sous-espace vectoriel de \mathcal{M} , de dimension n, et constitué de matrices de rang inférieur ou égal à 1, est du même type.
- 7) On suppose qu'il existe $X_1, X_2 \in \mathcal{C} \{0\}$, non colinéaires, tels que $f(X_1\mathcal{L}) = Y_1\mathcal{L}$ et $f(X_2\mathcal{L}) = Y_2\mathcal{L}$ avec $Y_1, Y_2 \in \mathcal{C} \{0\}$.
- 7-a) Montrer qu'il existe $Q \in GL_n(\mathbf{C})$, telle que $f(X_1V) = Y_1VQ$ pour tout $V \in \mathcal{L}$. [Indication : définir Q sur une base de \mathcal{L} .]
 - 7-b) Montrer que $f(X_1\mathcal{L}) \neq f(X_2\mathcal{L})$. [Indication : raisonner par l'absurde.]
 - **7-c)** Montrer que pour tout $V \in \mathcal{L} \{0\}$, $f(\mathcal{C}V)$ est de la forme $\mathcal{C}U$ avec $U \in \mathcal{L} \{0\}$.
 - **7-d)** Que dire de $f(X\mathcal{L})$ pour $X \in \mathcal{C} \{0\}$?
- **7-e)** Montrer que pour tout $X \in \mathcal{C} \{0\}$, il existe $Y \in \mathcal{C} \{0\}$, telle que pour tout $V \in \mathcal{L}$, on ait

$$f(XV) = YVQ$$

pour la matrice Q obtenue en 7-a).

- **7-f)** Montrer que $f \in G$.
 - 8) Conclure.

Deuxième partie

On va montrer qu'un endomorphisme d'espace vectoriel f de \mathcal{M} vérifie $f(GL_n(\mathbf{C})) \subset GL_n(\mathbf{C})$ si, et seulement si, il est dans \mathcal{G} .

- 1) Montrer que si $f \in \mathcal{G}$, et si $A \in GL_n(\mathbf{C})$, alors $f(A) \in GL_n(\mathbf{C})$.
- **2)** Soit $A \in \mathcal{M}$, de rang $r \leq n 1$.
- **2-a)** Montrer qu'il existe $M \in GL_n(\mathbf{C})$, telle que $M \lambda A \in GL_n(\mathbf{C})$ pour tout $\lambda \in \mathbf{C}$. [Indication : on commencera par traiter le cas où A est la matrice par blocs $\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$.]
- **2-b)** Montrer qu'il existe $N \in GL_n(\mathbf{C})$, telle que $N \lambda A$ soit non inversible pour exactement r valeurs distinctes de λ .
 - 3) Soit f un endomorphisme de \mathcal{M} , tel que $f(GL_n(\mathbf{C})) \subset GL_n(\mathbf{C})$.
 - **3-a)** Montrer que si A n'est pas inversible, alors f(A) non plus.
 - **3-b)** Montrer que pour $A \in \mathcal{M}$, on a

$$\operatorname{rang} f(A) \ge \operatorname{rang} A$$
.

- 3-c) En déduire que f préserve le rang.
- **3-d)** Conclure.

Troisième partie

On note $\mathcal{U}_n(\mathbf{C})$ le groupe unitaire, c'est-à-dire le groupe des éléments de \mathcal{M} préservant le produit scalaire hermitien standard $(x,y) = \sum_{i=1}^n x_i \overline{y_i}$ de $E = \mathbf{C}^n$. Si u est un endomorphisme de E, on note u^* l'adjoint de u, c'est-à-dire l'unique endomorphisme de E vérifiant $(x,u(y)) = (u^*(x),y)$ pour tout $x,y \in E$.

Soit f un endomorphisme de \mathcal{M} , tel que $f(\mathcal{U}_n(\mathbf{C})) \subset \mathcal{U}_n(\mathbf{C})$. On va montrer qu'alors $f \in \mathcal{G}$.

1) Montrer que pour tout endomorphisme u sur E, $u^* \circ u$ est un endomorphisme hermitien positif de même rang que u.

Soient u et v deux endomorphismes de E, tels que $u + \lambda v$ soit unitaire pour tout nombre complexe λ de module 1. Montrer que $u^* \circ v = 0$ et que $u^* \circ u + v^* \circ v = Id_E$.

- 2) Soient u_1, \ldots, u_p des endomorphismes de E, tels que $\sum_{i=1}^p \lambda_i u_i$ soit unitaire pour tous $\lambda_1, \ldots, \lambda_p$ complexes de module 1.
 - **2-a)** Montrer que $u_i^* \circ u_j = 0$ pour $i \neq j$, et que $\sum_{i=1}^p u_i^* \circ u_i = Id_E$.
 - **2-b)** Montrer que les espaces vectoriels Im u_i sont deux à deux orthogonaux.
 - **2-c)** Montrer que $\sum_{i=1}^{p} \operatorname{rang} u_i = n$.
 - **2-d)** Montrer que pour tout endomorphisme unitaire $w \in \mathcal{U}_n(\mathbf{C})$, on a

$$\sum_{i=1}^{p} \operatorname{rang} f(u_i \circ w) = n.$$

- **2-e)** En déduire que pour tout $1 \leq i \leq p$, le rang de $f(u_i \circ w)$ reste constant lorsque w décrit $\mathcal{U}_n(\mathbf{C})$. On admettra que pour tout $w \in \mathcal{U}_n(\mathbf{C})$, il existe une application continue $\varphi : [0,1] \to \mathcal{M}$, telle que $\varphi(0) = Id_E$, $\varphi(1) = w$, et $\varphi(t) \in \mathcal{U}_n(\mathbf{C})$ pour tout $t \in [0,1]$.
- **2-f**) Montrer que pour tous endomorphismes unitaires w_1 et w_2 , on a rang $f(w_1 \circ u_i \circ w_2) = \operatorname{rang} f(u_i)$.
- 3) Montrer qu'il existe un entier p, et des endomorphismes u_1, \ldots, u_p de rang 1, tels que l'hypothèse de la question 2) ci-dessus soit satisfaite.
 - 4) Montrer que $f \in \mathcal{G}$.