CHAPITRE

Cette annexe regroupe des données complémentaires mentionnées dans le ?? page ??. Il n'est pas nécessaire de les retenir par cœur mais ces informations constituent un support appréciable pour toutes précisions concernant ce chapitre.

1.1 Méthodes de dimensionnement des protections et des sections des conducteurs

1.1.1 Méthode conventionelle

La série de tableaux suivants, applicables au SLT TN, ont été calculés selon la méthode conventionnelle (?? page ??). Si les longueurs détaillées ci-dessus sont dépassées pour un seuil de déclenchement donné, la résistance du conducteur limitera l'appel d'intensité à un niveau inférieur à celui nécessaire pour déclencher le disjoncteur protégeant le circuit dans les conditions de rapidité requises pour assurer la protection des personnes.

Ces tableaux prennent compte de différents critères :

- type de protection (disjoncteur ou fusible);
- réglages des seuils de courants de déclenchements ;
- section des conducteurs de phase et des conducteurs de protection ;
- type de SLT ;
- courbe de déclenchement des disjoncteurs (B, C ou D).

1.1.1.1 Facteur de correction m

Le facteur de correction m est à appliquer sur les données des tableaux suivants et correspond au rapport entre la section du conducteur de phase S_{ph} et la section du conducteur de protection S_{PE} (voir ?? page ??).

Circuit	Matériau conducteur	$m = S_{ph}/S_{PE(N)}$								
		m = 1	m = 2	m = 3	m = 4					
3P + N ou $P + N$	cuivre aluminium	$^{1}_{0,62}$	$0,67 \\ 0,42$	$0,50 \\ 0,31$	$0,40 \\ 0,25$					

Fig. 1.1: Facteur de correction m à appliquer aux abaques des longueurs maximales des câbles L_max

1.1.1.2 L_{max} des conducteurs protégés par des disjoncteurs industriels

Pour les disjoncteurs industriels, on peut appliquer une tolérance de $\pm 20\%$ pour le calcul du seuil de déclenchement réel I_a par rapport au seuil de déclenchement magnétique I_m du disjoncteur. Dans les abaques, cette tolérance est incluse dans les calculs prenant en compte le cas le plus défavorable, à savoir $I_a = I_m \times 1, 2$.

TAB. 1.1: L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs industriels

Section des	Re	églage	e du	seuil	de de		chem	ent n	nagn	étiqu	$e I_m c$	des di	isjono	cteurs	s (A)	
$ m conducteurs \ (mm^2)$	00	છ	Q _o	40	Ž,	⁷ 66	200	250	Sy.	\$	ŝ	560	650	Ýg.	go	873
1,5	100	79	63	50	40	31	25	20	16	13	10	9	8	7	6	6
2,5	167	133	104	83	67	52	42	33	26	21	17	15	13	12	10	10
4	267	212	167	133	107	83	67	53	42	33	27	24	21	19	17	15
6	400	317	250	200	160	125	100	80	63	50	40	36	32	29	25	23
10			417	333	267	208	167	133	104	83	67	60	53	48	42	38
16					427	333	267	213	167	133	107	95	85	76	67	61
25							417	333	260	208	167	149	132	119	104	95
35								467	365	292	233	208	185	167	146	133
50									495	396	317	283	251	226	198	181
70												417	370	333	292	267
95														452	396	362
120																457
	9007	430	795	00°,	₆₀₀	300	4500		,	900*	ŝoo	639	Son			45500
1,5	5	4		4												
2,5	8	7	1	7	5	4										
4	13	12	1	1	8	7	5	4	Ŀ							
6	20	18	1	.6	13	10	8	6	j	5	4					
10	33	30	2	27	21	17	13	1	0	8	7	5	4			
16	53	48	4	3	33	27	21	1	7	13	11	8	7		5	4
25	83	74	6	57	52	42	33	2	6	21	17	13	10)	8	7
35	117	104	1 9	3	73	58	47	3	6	29	23	19	15	5 1	12	9
50	158	141	l 1:	27	99	79	63	4	9	40	32	25	20)]	16	13
70	233	208	3 1	87	146	117	93	7	3	58	47	37	29) 2	23	19
95	317	283	3 2	63	198	158	127	99	9	79	63	50	40) :	32	25
120	400	357	7 3	20	250	200	160	12	25	100	80	63	50) 4	40	32
150	435	388	3	48	272	217	174	13	3 6	109	87	69	54	1 4	43	35
185		459) 4	11	321	257	206	16	51	128	103	82	64	1 5	51	41
240					400	320	256	20	00	160	128	102	80) (34	51

1.1.1.3 L_{max} des conducteurs protégés par des disjoncteurs domestiques

Pour les disjoncteurs domestiques, on n'applique pas cette tolérance de $\pm 20\%$ pour le calcul du seuil de déclenchement réel I_a par rapport au seuil de déclenchement magnétique I_m du disjoncteur. La valeur du courant de court-circuit est donc égale à I_m sans aucune tolérance.

TAB. 1.2: L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type B

Section des					Cour	ant a	ssign	é (A))							
$ m conducteurs \ (mm^2)$	~	9	က	>	Ø	40	97	8	35	જે	9	50	છુ	80	70	Ş
1,5	1200	600	400	300	200	120	75	60	48	37	30	24	19	15	12	10
2,5		1000	666	500	333	200	125	100	80	62	50	40	32	25	20	16

Page suivante

Section des				(Cour	ant a	ssign	é (A))							
$ m conducteurs \ (mm^2)$	~	9	იე	>	9	\$	46	89	₹\$,	3	\$	ŝ	જુ	\$	907	\$
4			1066	800	533	320	200	160	128	100	80	64	51	40	32	26
6				1200	800	480	300	240	192	150	120	96	76	60	48	38
10						800	500	400	320	250	200	160	127	100	80	64
16							800	640	512	400	320	256	203	160	128	102
25									800	625	500	400	317	250	200	160
35										875	700	560	444	350	280	224
50												760	603	475	380	304

TAB. 1.3: L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type C

Section des					Cour	ant a	ssign	é (A))							
$ m conducteurs \ (mm^2)$	~	n	က	>	Ó	\$	97	8	Ş,	3	\$	Ŝ	જે	Ş	400	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1,5	600	300	200	150	100	60	37	30	24	18	15	12	9	7	6	5
2,5		500	333	250	167	100	62	50	40	31	25	20	16	12	10	8
4			533	400	267	160	100	80	64	50	40	32	25	20	16	13
6				600	400	240	150	120	96	75	60	48	38	30	24	19
10					677	400	250	200	160	125	100	80	63	50	40	32
16						640	400	320	256	200	160	128	101	80	64	51
25							625	500	400	312	250	200	159	125	100	80
35							875	700	560	437	350	280	222	175	140	112
50									760	594	475	380	301	237	190	152

TAB. 1.4: L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type D

Section des					Cour	ant a	ssign	é (A))							
$ m conducteurs \ (mm^2)$	~	~	იე	>	0	40	97	200	Ş,	3	\$	50	જુ	000	907	Ş
1,5	429	214	143	107	71	43	27	21	17	13	11	9	7	5	4	3
2,5	714	357	238	179	119	71	45	36	29	22	18	14	11	9	7	6
4		571	381	286	190	114	71	57	46	36	29	23	18	14	11	9
6		857	571	429	286	171	107	86	69	54	43	34	27	21	17	14
10			952	714	476	286	179	143	114	89	71	57	45	36	29	23
16					762	457	286	229	183	143	114	91	73	57	46	37
25						714	446	357	286	223	179	143	113	89	71	57
35							625	500	400	313	250	200	159	125	100	80
50								679	543	424	339	271	215	170	136	109

1.1.2 Méthode des impédances

Cette méthode consiste en la détermination de toutes les résistances et réactances présentes dans la boucle de défaut, pour pouvoir calculer le courant de court-circuit selon la formule suivante :

Formule 1.1 (Courant de défaut I_d selon la méthode des impédances)

$$I_d = \frac{U_0}{\sqrt{(\sum R)^2 + (\sum X)^2}}$$

$$I_d = Z_S$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
U_0 : tension	volt (V)	Tension nominale simple
R: résistance	ohm (Ω)	Résistance présente dans le circuit en défaut
X: réactance	ohm (Ω)	Réactance présente dans le circuit en défaut
Z_S : impédance	ohm (Ω)	Impédance totale de la boucle de défaut

L'application de cette méthode n'est pas forcément évidente car il faut implique de connaître toutes les caractéristiques électriques de chaque élément de la boucle de défaut. Dans la pratique, cela est réalisé par des logiciels qui vont certifier le dimensionnement.

1.1.3 Méthode de composition

Cette méthode permet la détermination du courant de court-circuit en fin de circuit I_d en connaissant le courant de court-circuit I_{cc} à l'origine du même circuit selon la formule suivante :

Formule 1.2 (Courant de défaut I_d selon la méthode de composition)

$$I_d = \frac{U_0 \times I_{cc}}{U_0 + ZS \times I_{cc}}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
U_0 : tension	volt (V)	Tension nominale simple
I_{cc} : intensité	ampère (A)	Intensité de court-circuit à l'origine du circuit en
Z_S : impédance	ohm (Ω)	défaut Impédance totale de la boucle de défaut

Cette méthode consiste à ajouter les impédances, ce qui abaisse la valeur du courant de défaut I_d par rapport à la méthode des impédances. Ainsi, si les paramètres de surintensité sont basés sur cette valeur calculée, le fonctionnement du disjoncteur est assuré.

