Some key concepts explained

By Afshine Amidi and Shervine Amidi

Use a distribution table to compute a probability

Let $X \sim N(\mu, \sigma)$ with μ, σ known and $a, b \in R$.

□ **Question:** Compute $P(a \le X \le b)$.

 \square Step 1 — Standardize X

We introduce Z, such that

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 \square Step 2 — Express the probability in terms of Z

We have:

$$P(a \le X \le b) = P(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}) = P(Z \le \frac{b-\mu}{\sigma}) - P(Z \le \frac{a-\mu}{\sigma})$$

 \square Step 3 — Find each term using the distribution table

Given that the values of $\frac{a-\mu}{\sigma}$ and $\frac{b-\mu}{\sigma}$ are known, we just have to look them up in a distribution table similar to this one.

Summing upWe just computed the value of the probability by standardizing the normal variable to be able to look up the values in a standard normal distribution table.

Confidence intervals

Compute the confidence interval for μ

<u>Note</u>: the example below is specific to the case where the variance is known and n is large. The following reasoning can be reproduced for other cases in a similar fashion.

Let $X_1, ..., X_n$ be a random sample with mean μ and standard deviation σ where **only** σ is **known**, and let $\alpha \in [0, 1]$.

 \square Question: Compute a confidence interval on μ with confidence level $1-\alpha$, that we note $CI_{1-\alpha}$.

 \square Step 1 — Write in mathematical terms what we are seaching for

We want to find a confidence interval $CI_{1-\alpha}$ of confidence level $1-\alpha$ for μ :

$$P(\mu \in CI_{1-\alpha}) = 1 - \alpha$$

 \square Step 2 — Consider the sample mean of X

We consider \overline{X} , which is such that:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \square Step 3 — Standardize \overline{X}

We introduce Z, such that:

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \underset{n \gg 1}{\sim} N(0, 1)$$

In general, this relationship is valid for large n but it is always true in the particular case when the X_i are normal.

 \square Step 4 — Use Z to find the quantiles

We can find the quantiles of Z which are such that:

$$P(-z_{\frac{\alpha}{2}} \le Z \le z_{\frac{\alpha}{2}}) = 1 - \alpha$$

Given that Z follows a standard normal distribution, the quantity $z_{\frac{\alpha}{2}}$ can be found in the distribution table.

 \square Step 5 — Re-write Z in terms of \overline{X}

Knowing that $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$, we can re-write the previous expression:

$$P\left(\overline{X}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}} \leq \mu \leq \overline{X}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right) = 1-\alpha$$

☐ Step 6 — Deduce the confidence interval

By taking into account steps 1 and 5, we can now deduce the confidence interval for μ :

$$CI_{1-\alpha} = [\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}]$$

Compute the confidence interval for σ^2

Let $X_1, ..., X_n$ be a random sample with mean μ and standard deviation σ where σ is **unknown**, and let $\alpha \in [0, 1]$.

 \square Question: Compute a confidence interval on σ^2 with confidence level $1-\alpha$, that we note $CI_{1-\alpha}$.

\square Step 1 — Write in mathematical terms what we are seaching for

We want to find a confidence interval $CI_{1-\alpha}$ of confidence level $1-\alpha$ for σ^2 :

$$P(\sigma^2 \in CI_{1-\alpha}) = 1 - \alpha$$

\square Step 2 — Consider the sample variance of X

We consider s^2 , which is such that:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

□ Step 3 — Standardize s^2

We introduce K, such that:

$$K = \frac{s^2(n-1)}{\sigma^2} \sim \chi_{n-1}^2$$

Here, K follows a χ^2 distribution with n-1 degrees of freedom.

\square Step 4 — Use K to find the quantiles

We can find the quantiles χ_1^2 , χ_2^2 of K which are such that:

$$P(\chi_1^2 \le K \le \chi_2^2) = 1 - \alpha$$

Given that K follows a χ^2 distribution with n-1 degrees of freedom, the quantiles can be found in the distribution table.

□ Step 5 — Re-write K in terms of s^2

Knowing that $K = \frac{s^2(n-1)}{\sigma^2}$, we can re-write the previous expression:

$$P\left(\frac{s^2(n-1)}{\chi_2^2} \le \sigma^2 \le \frac{s^2(n-1)}{\chi_1^2}\right) = 1 - \alpha$$

☐ Step 6 — Deduce the confidence interval

By taking into account steps 1 and 5, we can now deduce the confidence interval for σ^2 :

$$CI_{1-\alpha} = \left[\frac{s^2(n-1)}{\chi_2^2}, \frac{s^2(n-1)}{\chi_1^2}\right]$$