PART 1 – Single Dataset Engineering Tasks

Task 1: Initial Exploration and Summary

April 29, 2025

Abstract

This report presents an analysis of engineering materials based on Task 1 (Initial Exploration & Summary) of a comprehensive materials dataset. We examine key mechanical properties including ultimate tensile strength (Su), yield strength (Sy), and elongation at break (A5) across 1,225 unique materials subjected to 44 different heat treatment processes. The analysis provides insights on material selection criteria, highlights data quality considerations, and demonstrates the critical impact of heat treatment on material performance. This information serves as a foundation for engineering decision-making in material selection for various applications.

1 Introduction

What is Materials Engineering?

Materials selection is a critical aspect of engineering design, requiring a systematic understanding of mechanical, physical, and chemical properties. This report focuses on the initial exploration of a materials dataset containing 1,552 entries, providing valuable insights for engineering decisions such as material selection, product design, and performance trade-offs.

2 Dataset Overview

The dataset analyzed contains detailed information on engineering materials with the following characteristics:

Table 1: Dataset Summary Statistics

Characteristic	Count	Notes
Total Records	1,552	Complete entries in dataset
Unique Materials	1,225	Distinct material types
Heat Treatment Types	44	Distinct processing methods
Heat-Treated Samples	802	51.7% of total samples

The dataset includes the following key properties:

- Material identifier (Material)
- Heat treatment method (Heat treatment)
- Ultimate tensile strength (Su) in MPa
- Yield strength (Sy) in MPa
- Elongation at break (A5) in %
- Brinell hardness (Bhn)
- Young's modulus (E) in MPa
- Shear modulus (G) in MPa
- Poisson's ratio (mu)
- Density (Ro) in kg/m³
- pH value
- Description (Desc)
- Vickers hardness (HV)

3 Material Selection Insights

3.1 Distribution of Mechanical Properties

The analysis of key mechanical properties reveals important considerations for material selection:

Table 2: Statistical Summary of Key Mechanical Properties

Property	Min	25%	Median	Mean	75%	Max	Std Dev
Su (MPa)	69	340	500	572.8	705	2220	326.8
Sy (MPa)	28	205	305	387.0	470	2048	289.5
A5 $(\%)$	0.5	12	16	18.9	22	70	11.6

3.2 Strength-Ductility Relationship

Key Material Selection Trade-offs

The dataset reveals important trade-offs between strength and ductility that engineers must consider when selecting materials:

- High Strength Materials (Su > 1000 MPa): Typically exhibit lower elongation values (A5 < 10%), making them suitable for high-stress applications where deformation must be minimized.
- High Ductility Materials (A5 > 30%): Generally have moderate strength values (Su between 300-500 MPa), making them appropriate for applications requiring formability and energy absorption.
- Balanced Materials (Su = 500 MPa, Sy = 305 MPa, A5 = 16%): Represent a compromise between strength and ductility suitable for general-purpose applications.

3.3 Impact of Heat Treatment

Heat treatment significantly modifies material properties, as demonstrated by the example of Steel SAE 1030:

Table 3: Effect of Heat Treatment on Steel SAE 1030

Heat Treatment	Su (MPa)	Sy (MPa)	A5 (%)
As-rolled	552	345	32.0
Normalized	517	345	32.0
Annealed	464	341	31.0
Tempered at 400°F	848	648	17.0

Heat Treatment Applications

This example illustrates how heat treatment can be leveraged to optimize material performance for specific engineering requirements:

- **Tempering** dramatically increases strength (Su and Sy) at the expense of ductility (lower A5)
- Annealing reduces strength while maintaining good ductility
- Normalizing provides a balanced property profile

4 Data Quality Assessment

4.1 Missing Values Analysis

Missing data presents challenges for comprehensive material comparison and selection:

Table 4: Missing Values by Property

Property	Missing Values	Percentage (%)
Heat treatment	750	48.3
A5 (elongation)	206	13.3
Bhn (Brinell hardness)	1,089	70.2
рН	1,359	87.6
Desc (description)	571	36.8
HV (Vickers hardness)	1,387	89.4

4.2 Data Inconsistencies

Data Quality Concerns

Several data inconsistencies were identified during the analysis:

- String-based values: Yield strength (Sy) values contained string entries with qualifiers (e.g., "280 max", "240 max") that required preprocessing
- Extreme outliers: Some material property values showed extreme outliers, potentially indicating specialized materials or measurement errors
- Incomplete correlations: Missing relationships between related properties (e.g., Bhn and HV) due to incomplete data

4.3 Outlier Analysis

After applying 5th-95th percentile capping to manage outliers:

Table 5: Property Ranges Before and After Outlier Capping

Property	Original Range	Capped Range (5th-95th)
Su (MPa)	69-2220	179–1226
Sy (MPa)	28 - 2048	97–980
A5 (%)	0.5 – 70.0	4.0 – 45.0

The capped ranges represent more typical values for standard engineering materials, while values outside these ranges may indicate specialized high-performance materials or potential data errors.

5 Conclusions and Recommendations

5.1 Key Findings

Major Insights

The initial exploration of the materials dataset reveals:

- A wide range of material properties supporting diverse engineering applications
- Significant impact of heat treatment on material performance
- Clear trade-offs between strength and ductility that must be considered in material selection
- Data quality issues that require careful consideration when using the dataset for decision-making

6 Appendix: Data Processing Methodology

Analysis Process

Data processing for this analysis followed these steps:

- 1. **Initial data loading** and exploration
- 2. Data cleaning Conversion of string-based values to numeric format
- 3. Missing value handling through appropriate imputation methods
- 4. Statistical analysis of key mechanical properties
- 5. Outlier management through percentile capping
- 6. Visualization creation for property distributions

7. Insights from the Plot (Before & After 5th–95th Percentile Capping)

This plot shows the distribution of three key mechanical properties — Ultimate Tensile Strength (Su), Yield Strength (Sy), and Elongation at Break (A5) — after applying capping at the 5th and 95th percentiles to reduce the influence of extreme outliers.

Property-wise Interpretation:

- Su (Ultimate Tensile Strength)
 - Range: \sim 190 MPa to \sim 1240 MPa
 - **Distribution:** Fairly spread out, with clustering between ~ 340 to ~ 705 MPa.

Figure 1: Distribution of Su, Sy, A5

- **Implication:** Allows material selection across low- to high-strength applications depending on load-bearing needs.

• Sy (Yield Strength)

- Range: \sim 120 MPa to \sim 980 MPa
- **Distribution:** More concentrated between ~ 200 to ~ 470 MPa.
- Implication: Many materials begin plastic deformation at moderate stress critical for avoiding permanent shape change in service.

• A5 (Elongation at Break)

- **Range:** $\sim 5\%$ to $\sim 30\%$
- **Distribution:** Narrower and skewed; most materials are moderately ductile.
- **Implication:** Aids in selecting materials that offer sufficient formability, especially useful in forming or energy absorption zones.

Engineering Takeaways:

- Su and Sy span a broad range, enabling design flexibility for both lightweight and high-stress applications.
- A5 helps differentiate ductile versus brittle materials, guiding choices in applications needing elongation before fracture.
- The boxplot visualization effectively highlights where the majority of material values lie making it easier to shortlist candidates during preliminary material selection.