

Entity-Relationship model Weaknesses

13070250 - Trần Đức Nghĩa

Contents

- 1. Introduction
 - **2. Relation Constraints**
 - **3.** Attribute Constraints
 - **4.** Conclusion

1. ER model - An example

1. ER model

❖ What? Why?

- A basic tool in database design : a conceptual data model is independent of physical or implemental details.
- Easily understood by ordinary users : capturing the basic semantics
- Limited expressive power vs formality, simplicity and wide application

1. ER model

Database requirements

- Supporting more complex applications.
- Capturing more domain semantics.
- →Enhancements and extensions to ER model: very important.
- **Addition properties:**
 - Motivated
 - Minimal
 - At the conceptual level
 - Powerful

1. ER model weaknesses

- **ER** model = Entities + Relationships + Attributes
 - Combined in certain ways, not freely
- **Relation constraints:** information expressed by relationships on relationships. (e.g connection traps)
- *Attribute constraints: information expressed by relationships on attributes.
- **Lack of information** about entities and relationships.

1. Lack of information

Rules:

- Every client must have a representative.
- Every representative must assist several clients.

Not express :

 Representative must have the <u>same</u> number of clients.

Contents

- **1. Introduction**
 - **2. Relation Constraints**
 - **3.** Attribute Constraints
 - **4.** Conclusion

Ternary relation

Meaning:

- <u>A</u> dealer can distribute <u>several</u> products in <u>several</u> states.
- A product can be sold by <u>many</u> dealers, but in each state, a product must be sold by only one dealer.

Ternary relation

❖ Mapping:

- State(<u>Sta-id</u>, Sta-capital)
- Product(Pro-id, Pro-type)
- Dealer(<u>Dea-id</u>, Deaaddress)
- Concession(<u>Pro-id</u>, <u>Sta-id</u>, Dea-id, Con-date)

*Add 2 new rules:

- Each product is distributed by a single dealer. (Pro-id
 → Dea-id)
- Only one dealer in each state. (Sta-id → Dea-id)

♦ Availabe:

- A product can still be sold in several states.
- A state can be distributed several products.

A valid set of instances:

Sprite : FreeDrink (only one)

Kansas : FreeDrink (only one)

<u>Pro-id</u>	Sta-id	Dea-id	Con-date
Cocacola	Idaho	Smith&Sons	1996
Cocacola	Texas	Smith&Sons	1994
Fanta	Idaho	Smith&Sons	1994
Sprite	Kansas	FreeDrink	1998
Cocacola	Kansas	Smith&Sons	2000
Sprite	Idaho	Smith&Sons	2000

A solution:

```
CHECK (
(UNIQUE (SELECT Pro-id FROM
      (SELECT DISTINCT Pro-id, Dea-id
      FROM Concession)
AND
(UNIQUE (SELECT Sta-id FROM
      (SELECT DISTINCT Sta-id, Dea-id
      FROM Concession)
```


An university

*Add a rule:

 Teachers can only teach classes offered by department in which they are faculty.

Solution:

NOT EXISTS (SELECT *

FROM Teacher T, Class C

WHERE T.Teacher-id = C. Teacher-id

AND T.Dept-id <> C.Dept-id)

Recursive relationship

Rules:

- Not all employees are managers.
- All employees have a manager.

Not express:

- Irreflexive : no one can be his/her own manager.
- Asymmetric: A is the manager of B, B is not the manager of A.
- Transitive : higher-level managers.
- → Combination : no cycles in Employee.

2. Example 4 (Fan trap)

At which branch office does staff number SG37 work?

2. Example 4 (Fan trap)

Fan trap:

- Pathway between certain entity occurrences is ambiguous.
- Two or more 1:N relationships fan out from the same entity.

Solution: restructuring

2. Example 4 (Fan trap)

2. Example 5 (Chasm Trap)

At which branch office is property PA14 available?

2. Example 5 (Chasm Trap)

Chasm trap:

 Pathway does not exist between certain entity occurrences.

Solution:

2. Example 5 (Chasm Trap)

A Company:

- **Rule:** an employee can't work in 2 projects at the same time.
- *EMP-PROJ(emp-id, start-day, end-day, project_id)
 - FD: emp_id, start-day, end-day -> project_id

Contents

- 1. Introduction
 - **2. Relation Constraints**
 - **3. Attribute Constraints**
 - **4.** Conclusion

3. Attribute Constraints

A Company

- **Rule**: $\min \le \text{salary} \le \max$
- Solution:
 - NOT EXISTS (SELECT * FROM Employee E, Rank R WHERE E.Rank-id = R.Rank-id
 AND (Salary < Minimum OR Salary > Maximum))

3. Attribute Constraints

- Limit: inability to sharing information
- Heterogeneous information integration:
 - 2 Restaurants : attribute "meal-cost"
 - Include taxes vs no taxes
 - US \$ vs VietNam Dong
 - 2 Colleges : attribute "grade"
 - "A,B,C,D,F" vs "1-10"

4. Conclusion

- Semantics can't be completely captured in any conceptual model.
- **❖** Database design : E-R model + requirement specification document (adding checks and assertions)

Balance expressiveness and complexity.

References

* Antonio Badia, Entity-Relationship modeling Revisited, SIGMOD Record, Vol.33, No.1 March 2004.

* Camps Pare, R. From Ternary Relationships to Relational Tables: A case Against Common beliefs, SIGMOD record, v.31, n.2 June 2002.

Thank You?