Scilab Textbook Companion for Electronic Measurements And Instrumentation by P. Sharma¹

Created by
Priya Bardhan Kumar
B.Tech
Electrical Engineering
College of engineering Roorkee
College Teacher
Rahul Ranjan
Cross-Checked by
Madhu N.belur

May 23, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Measurements And Instrumentation

Author: P. Sharma

Publisher: Umesh Publications, New Delhi

Edition: 3

Year: 2008

ISBN: 8188114715

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Measurement measurement units and standards and standards	5
2	Errors and their analysis	7
3	Transducers	21
4	Bridge measurement	27
5	Analog meters	37
6	data converters	48
7	Display devices and digital systems	55
8	cathode ray oscilloscope	61

List of Scilab Codes

Exa 1.3	find system accuracy system precision	5
Exa 1.5	Find resolution of the meter	6
Exa 2.1	Find maximum and minimum value of resistor	7
Exa 2.2	Find limiting error in percentage	7
Exa 2.3	Find unknown resistance relative limiting error in per-	
	centage and in ohms	8
Exa 2.4	Find limiting error	Ö
Exa 2.5	Find magnitude of limiting error fot R1 and R2	Ö
Exa 2.6	Find error in computed value of power dissipation	10
Exa 2.7	find the limiting error for the power calculated	11
Exa 2.8	Find limiting error	11
Exa 2.9	Find limiting error when measured voltage is a V1 b V2	12
Exa 2.10	Find volume percentage error and absolute error	13
Exa 2.11	Find unknown resistance percent error and error in ohm	13
Exa 2.12	Find arithmetic mean	14
Exa 2.13	Find deviation	15
Exa 2.14	Find deviation	16
Exa 2.15	find arithmetic mean standard deviation and probable	
	error of onereading	17
Exa 2.16	Find a arithmetic mean b deviation of each value c al-	
	gebric sum of deviation d average deviation e standard	
	deviation	18
Exa 2.17	find a arithmetic mean b deviation from mean c aver-	
	age deviation d standard deviation e variance f probable	
	reading of one error	19
Exa 3.2	Find change in resistance	21
Exa 3.3	Find output voltage of an ac LVDT for a minus point 3	
	inch b minus point 25 inch	21

Exa 3.4	Find sensitivity of LVDT
Exa 3.5	Find output voltage
Exa 3.6	Find a Sensitivity of LVDT b sensitivity of entire setup
	c resolution of the instrument
Exa 3.7	Find value of capacitance after application of pressure
Exa 3.8	Find thermoelectric sensitivity and emf developed
Exa 3.9	Find value of protection resistance
Exa 4.1	Find value of unknown resistance and fractional uncer-
	tainty in its value
Exa 4.2	Find output voltage
Exa 4.3	Find temperature at which the venin voltage is 50mV .
Exa 4.4	Find deflection of the galvenometer
Exa 4.5	Find limiting value of unknown resistance
Exa 4.6	Find magnitude and phase angle of Z4 arm
Exa 4.7	find value of unknown inductance resistance and Q for
	maxwell bridge
Exa 4.8	find relative permittivity of specimen
Exa 4.9	Find equivalent parallel resistance and capacitance
Exa 4.10	find value of arm CD
Exa 4.11	find value of arm CD
Exa 4.12	find value of arm AD
Exa 4.13	find value of frequency of the bridge arm resistance of
	arm AD
Exa 5.1	Find terminal voltage when load impedance is a 10 ohm
	b 20 ohm c 40 ohm
Exa 5.2	Find load current when varible load are a 100 ohm b10
	ohm
Exa 5.3	Find equivalant voltage source of the ac current source
Exa 5.4	Find equivalant current source
Exa 5.5	Find value of shunt resistance for ammeter
Exa 5.6	Find value of shunt resistance for the range a 0 to 1A b
	0 to 5A c 0 to 10A
Exa 5.8	Find the value of multiplier resistance for the range a 0
	to 10V b 0 to 50V c 0 to 100V d 0 to 200V \dots
Exa 5.9	Find the value of multiplier resistance for the range a
	0 to 10V b 0 to 50V c 0 to 100V d 0 to 200V using
	sensitivity method

Exa 5.10	Find reading of voltmeter and percentage error when
	a sensitivity of voltmeter is 100 kilo ohm per volt b
	sensitivity of voltmeter is 500 kilo ohm per volt
Exa 5.11	Find a value of R1 and R2 b change in value of R2 c
	half scale deflection
Exa 5.12	Find R1 and Rsh
Exa 5.13	Find value of required multiplier resistance
Exa 5.14	Find value of multiplier resistance
Exa 5.15	Find value of multiplier resistance
Exa 6.1	Find output voltage for a binary input a 1111 b 1100.
Exa 6.2	Find output voltage
Exa 6.3	Find output voltage if input is 101101111
Exa 6.4	Find values of a LSB b MSB c full scale output
Exa 6.5	Find resolution and voltage
Exa 6.6	Find conversion time required for invertor
Exa 6.9	Find total number of pulses and display reading
Exa 6.10	Find input voltage
Exa 6.11	Find a output voltage after 1 sec b fall time of reference
	voltage waveform
Exa 7.1	convert 1101 into decimal
Exa 7.2	convert 17 octal into decimal
Exa 7.3	convert 1E hexadecimal into decimal
Exa 7.20	Find input frequency applied to the system
Exa 7.21	find frequency of the system
Exa 7.22	find frequency time period of the system
Exa 7.23	Find a resolution of the voltmeter b display of point
	6368 in voltmeter on the 10V range c display of point
	6368 in voltmeter on the 1V range
Exa 7.24	Find a resolution of the voltmeter b display of 16 point
	58 in voltmeter on the 10V range c display of point 7254
	in voltmeter on the 1V and 10V range
Exa 7.25	find out range of measured reading
Exa 8.1	find deflection sensitivity of CRO
Exa 8.2	Find peak to peak amplitude of the signal and frequency
	of the signal
Exa 8.3	Find amplitude of the waveform
Exa 8.4	Find rms value of signal under test
Exa 8.5	Find value of current

Exa 8.6	Find value of current	64
Exa 8.7	Find peak amplitude and frequency of the signal	64
Exa 8.8	Find frequency of horizontal signal	65
Exa 8.9	Find frequency of the waveform	66
Exa 8.10	what will be the setting of time base knob	66
Exa 8.11	Find ratio of frequencies of vertical and horizontal signals	67
Exa 8.12	find phase angle	68
Exa 8.13	Find bandwidth of CRO	68

Chapter 1

Measurement measurement units and standards and standards

Scilab code Exa 1.3 find system accuracy system precision

```
1 //caption: find (a) system accuracy (b) system precision
\frac{2}{2} / \text{Ex1.3}
3 clc
4 clear
5 close
6 Tmin=100.3//minimum measured temperature at true
      value (in degree centigrate)
7 Tmax=100.5//maximum measured temperature at true
      value (in degree centigrate)
8 T1=100.4//measured temperature at true value(in
      degree centigrate)
9 T2=100.3//measured temperature at true value(in
      degree centigrate)
10 Tt=100//true value(in degree centigrate)
11 A = ((Tmax - Tt)/Tt) * 100
12 disp(A, '(a) system accuracy (in \%)=')
13 M=(T1+Tmin+Tmax+T2)/4
```

```
14 Md=Tmax-M
15 disp(Md, '(b)system precision(in %)=')
```

Scilab code Exa 1.5 Find resolution of the meter

```
//caption:Find resolution of the meter
//Ex1.5
clc
clear
close
Rmax=100//maximum range of voltmeter(in V)
D=200//division on scale
Sd=0.5//divisions which can be read
V=Rmax/D
R=Sd*V
disp(R, 'resolution of the meter is(in V)=')
```

Chapter 2

Errors and their analysis

Scilab code Exa 2.1 Find maximum and minimum value of resistor

```
//caption:Find maximum and minimum value of resistor
//Ex2.1
clc
clear
close
R=100//magnitude of resistor(in ohm)
Lmin=-5//minimum limiting error(in %)
Lmax=5//maximum limiting error(in %)
Le=(R*Lmax)/100
Rmax=R+Le
disp(Rmax, 'maximum value of resistor(in ohm)=')
Rmin=R-Le
disp(Rmin, 'minimum value of resistor(in ohm)=')
```

Scilab code Exa 2.2 Find limiting error in percentage

```
//caption:Find limiting error in percentage
//Ex2.2
clc
close
V=150//maximum range of voltmeter(in V)
A=0.02//magnitude of accuracy(in V)
Vm=83//voltage measured
A=A*V
Ver=(dA/Vm)*100
disp(%er, 'limiting error(in %)=')
```

Scilab code Exa 2.3 Find unknown resistance relative limiting error in percentage and in ohms

```
1 //caption: Find unknown resistance, relative limiting
             in percentage and in ohms
      error
2 / Ex2.3
3 clc
4 clear
5 close
6 R1=90//resistance of arm wheatstone bridge (in ohm)
7 Rle1=0.5//limiting error for R1(in %)
8 R2=900//resistance of arm wheatstone bridge (in ohm)
9 Rle2=0.8//limiting error for R2(in %)
10 R3=825//resistance of arm wheatstone bridge(in ohm)
11 Rle3=0.6//limiting error for R3(in %)
12 Rx = (R2*R3)/R1
13 disp(Rx, 'unknown resistance(in ohm)=')
14 dR1 = (R1 * Rle1) / 100
15 dR2 = (R2 * R1e2) / 100
```

```
16 dR3=(R3*Rle3)/100
17 dR=((dR2/R2)+(dR3/R3)+(dR1/R1))*100
18 disp(dR, 'relative limiting error(in %)=')
19 Le=(dR*Rx)/100
20 disp(Le, 'limiting error(in ohm)=')
```

Scilab code Exa 2.4 Find limiting error

```
//caption:Find limiting error
//Ex2.4
clc
clear
close
V1=500//referance reading of voltmeter(in V)
V2=150//Voltage at which limiting error to be calculated(in V)
Ar=0.015//magnitude of accuracy limit
A=Ar*V1
er=(dA/V2)*100
disp(er, 'limiting error(in %)=')
```

Scilab code Exa 2.5 Find magnitude of limiting error fot R1 and R2

```
1 // caption: Find magnitude of limiting error fot R1 and R2
```

```
2 //Ex2.5
3 clc
4 clear
5 close
6 R1=36//resistance(in ohm)
7 R2=75//resistance(in ohm)
8 er=0.005//limiting error(in ohm)
9 dR1=R1*er
10 disp(dR1, 'magnitude of limiting error for R1(in ohm)
=')
11 dR2=R2*er
12 disp(dR2, 'magnitude of limiting error for R2(in ohm)
=')
```

Scilab code Exa 2.6 Find error in computed value of power dissipation

```
//caption:Find error in computed value of power
    dissipation
//Ex2.6
clc
close
R=100//resistor(in ohm)
Rer=0.2//error in current measurment(in ohm)
I=2//current(in A)
Ier=0.01//error in current measurment(in ohm)
dR=(Rer/R)*100
dI=(Ier/I)*100
P=(I^2)*R
dPo=2*dI+dR
dP=(P*dPo)/100
```

```
15 disp(dP, 'error in computed value of power dissipation (in W)=')
```

Scilab code Exa 2.7 find the limiting error for the power calculated

```
1 //caption: find the limiting error for the power
      calculated
2 / Ex2.7
3 clc
4 clear
5 close
6 A=0.01//magnitude of accuracy
7 V=150//range of voltmeter(in V)
8 Vr=100//Reading of voltmeter (in V)
9 I=100//range of ammeter(in mA)
10 Ir=55//ammeter reading (in mA)
11 dV = A * V
12 dEv = (dV/Vr) * 100
13 \quad dA = A * I
14 dEi = (dA/Ir) * 100
15 dE = (dEv + dEi)
16 disp(dE, 'limiting error for the power calculated (in
     \%) = ')
```

Scilab code Exa 2.8 Find limiting error

```
1 //caption:Find limiting error
2 //Ex2.8
3 clc
4 clear
5 close
6 dP=1.5//limiting error in power(in %)
7 dI=1//limiting error in current(in %)
8 dR=(dP+2*dI)
9 disp(dR, 'limiting error (in %)=')
```

Scilab code Exa 2.9 Find limiting error when measured voltage is a V1 b V2

```
1 //caption: Find limiting error when measured voltage
      is (a) V1(b) V2
2 / Ex2.9
3 clc
4 clear
5 close
6 Ar=0.01//magnitude of accuracy(in V)
7 V1=50//measured voltage(in V)
8 V2=25//measured voltage(in V)
9 Vmax=100//maximum range of voltage
10 \quad dA = Ar * Vmax
11 er1 = (dA/V1) *100
12 disp(er1, 'limiting error when measured voltage is V1
      (in \%)=')
13 er2=(dA/V2)*100
14 disp(er2, 'limiting error when measured voltage is V2
      (in \%)=')
```

Scilab code Exa 2.10 Find volume percentage error and absolute error

```
//caption:Find volume, percentage error and absolute
error
//Ex2.10
clc
close
a=0.80//side of the cube(in m)
rer=0.5//possible error in measurement(in %)
V=(a*a*a)
disp(V, 'volume(in meter^3)=')
%er=3*er
disp(%er, 'percentage error(in %)=')
Aer=(%er*V)/100
disp(Aer, 'absolute error(in meter^3)=')
```

Scilab code Exa 2.11 Find unknown resistance percent error and error in ohm

```
1 //caption:Find unknown resistance, percent error and
     error in ohm
2 //Ex2.11
3 clc
```

```
4 clear
5 close
6 P=100//resistance of arm of wheatstone bridge (in ohm
7 ep=0.5//error in P(in \%)
8 Q=50//resistance of arm of wheatstone bridge (in ohm)
9 eq=0.5//error in Q(in \%)
10 S=75.5//resistance of arm of wheatstone bridge (in
      ohm)
11 es=0.5//error in S(in \%)
12 X = (P*S)/Q
13 disp(X, 'unknown resistance(in ohm)=')
14 \text{ xo1=ep+es-eq}
15 disp(xo1, 'percent error when Q is taken positive (in
      \%)=,
16 \text{ ex1} = (\text{xo1} * \text{X}) / 100
17 disp(ex1, 'error in ohm(in ohm)=')
18 \text{ xo2=ep+es+eq}
19 disp(xo2, 'percent error when Q is taken negative (in
      \%)=,
20 \text{ ex2} = (xo2*X)/100
21 disp(ex2, 'error in ohm(in ohm)=')
```

Scilab code Exa 2.12 Find arithmetic mean

```
1 //caption:Find arithmetic mean
2 //Ex2.12
3 clc
4 clear
5 close
6 x1=25.65//first reading(in W)
```

```
7 x2=24.39//second reading(in W)
8 x3=23.75//third reading(in W)
9 x4=26.42//fourth reading(in W)
10 x5=24.92//fifth reading(in W)
11 X=(x1+x2+x3+x4+x5)/5
12 disp(X, 'arithmetic mean(in W)=')
```

Scilab code Exa 2.13 Find deviation

```
1 //caption: Find deviation
2 / Ex2.13
3 clc
4 clear
5 close
6 x1=25.65//first reading(in W)
7 \text{ x2=24.39//second reading (in W)}
8 x3=23.75//third reading (in W)
9 \text{ x4=26.42//fourth reading (in W)}
10 x5=24.92//fifth reading (in W)
11 X = (x1+x2+x3+x4+x5)/5
12 d1 = x1 - X
13 disp(d1, 'deviation=')
14 d2 = x2 - X
15 disp(d2, 'deviation=')
16 d3 = x3 - X
17 disp(d3, 'deviation=')
18 d4 = x4 - X
19 disp(d4, 'deviation=')
20 d5 = x5 - X
21 disp(d5, 'deviation=')
```

Scilab code Exa 2.14 Find deviation

```
1 //caption: Find deviation
2 / Ex2.14
3 clc
4 clear
5 close
6 x1=25.65//first reading(in W)
7 \text{ x2=24.39//second reading (in W)}
8 x3=23.75//third\ reading(in\ W)
9 x4=26.42//fourth reading (in W)
10 x5=24.92//fifth reading (in W)
11 n=5//number of readings
12 X = (x1+x2+x3+x4+x5)/5
13 d1 = x1 - X
14 d2 = x2 - X
15 d3 = x3 - X
16 d4 = x4 - X
17 d5 = x5 - X
18 D1=d1//mod of d1
19 D2 = -(d2) / mod of d2
20 D3 = -(d3) / mod of d3
21 D4 = d4 / / mod of d4
22 D5=-(d5)//mod of d5
D = (D1+D2+D3+D4+D5)/n
24 disp(D, 'deviation(in W)=')
```

Scilab code Exa 2.15 find arithmetic mean standard deviation and probable error of onereading

```
1 //caption: find arithmetic mean, standard deviation
      and probable error of onereading
2 / Ex2.15
3 clc
4 clear
5 close
6 \text{ x1=30.30//level of liquid (in mm)}
7 x2=30.25//level of liquid (in mm)
8 \times 3=30.40//level of liquid (in mm)
9 \times 4=30.00//level of liquid (in mm)
10 n=4//number of readings
11 x=(x1+x2+x3+x4)/n
12 disp(x, 'arithmatic mean(in mm)=')
13 d1 = x1 - x
14 d2 = x2 - x
15 d3 = x3 - x
16 d4 = x4 - x
17 S=((d1^2+d2^2+d3^2+d4^2)/(n-1))^0.5
18 disp(S, 'standard deviation (in mm)=')
19 P = 0.6745 * S
20 disp(P, 'probable error(in mm)=')
```

Scilab code Exa 2.16 Find a arithmetic mean b deviation of each value c algebric sum of deviation d average deviation e standard deviation

```
1 //caption: Find (a) arithmetic mean (b) deviation of each
        value(c) algebric sum of deviation(d) average
      deviation (e) standard deviation
2 / Ex2.16
3 clc
4 clear
5 close
6 x1=10//first reading
7 x2=11//second reading
8 x3=9//third reading
9 \text{ x4=10.5//fourth reading}
10 \text{ x5=9.5}//\text{fifth reading}
11 n=5//number of reading
12 x = (x1+x2+x3+x4+x5)/n
13 disp(x, '(a) arithmetic mean=')
14 d1 = x1 - x
15 d2 = x2 - x
16 d3 = x3 - x
17 d4 = x4 - x
18 d5 = x5 - x
19 \operatorname{disp}(d5,d4,d3,d2,d1,'(b)) value of \operatorname{deviation}=')
20 d = d1 + d2 + d3 + d4 + d5
21 disp(d, '(c) algebric sum of deviation=')
22 D=((d1)+(d2)+(-d3)+(d4)+(-d5))/n//taking mod of
      deviation value
23 disp(D, '(d) average deviation=')
24 S = ((d1^2+d2^2+d3^2+d4^2+d5^2)/(n-1))^(0.5)
```

Scilab code Exa 2.17 find a arithmetic mean b deviation from mean c average deviation d standard deviation e variance f probable reading of one error

```
1 //caption: find (a) arithmetic mean(b) deviation from
      mean(c) average deviation(d) standard deviation(e)
       variance (f) probable reading of one error
\frac{2}{2} / \text{Ex2.17}
3 clc
4 clear
5 close
6 \text{ x1=12.8// first reading (in V)}
7 x2=12.2//second reading (in V)
8 x3=12.5//third reading(in V)
9 \times 4=13.1/fourth reading (in V)
10 x5=12.9// fifth reading (in V)
11 x6=12.4//sixth value (in V)
12 n=6//number of reading
13 x = (x1+x2+x3+x4+x5+x6)/n
14 \operatorname{disp}(x, '(a) \operatorname{arithmetic mean}(\operatorname{in V})=')
15 d1 = x1 - x
16 d2 = x2 - x
17 d3 = x3 - x
18 d4 = x4 - x
19 d5 = x5 - x
20 d6 = x6 - x
21 disp(d6,d5,d4,d3,d2,d1,'(b) value of deviation(in V)=
22 D=((d1)+(-d2)+(-d3)+(d4)+(d5)+(-d6))/n//taking mod
```

of deviation value 23 disp(D,'(c) average deviation=') 24 S=((d1^2+d2^2+d3^2+d4^2+d5^2)/(n-1))^(0.5) 25 disp(S,'(d) standard deviation(in V)=') 26 V=S^2 27 disp(V,'(e) variance(in V)=') 28 P=0.6745*V 29 disp(P,'(f) probable error of one reading(in V)=')

Chapter 3

Transducers

Scilab code Exa 3.2 Find change in resistance

```
//caption:Find change in resistance
//Ex3.2
clc
clear
close
G=2//gauge factor
S=500//stress applied(in Kg/cm^2)
v=2*10^6//modulus of elasticity(in Kg/cm^2)
e=(S/v)
R=(e*G)*100
disp(R,'change in resistance(in %)=')
```

Scilab code Exa 3.3 Find output voltage of an ac LVDT for a minus point 3 inch b minus point 25 inch

Scilab code Exa 3.4 Find sensitivity of LVDT

```
1 //caption:Find sensitivity of LVDT
2 //Ex3.4
3 clc
4 clear
5 close
6 R=1.2//rms value of output voltage(in V)
7 d=0.6//displacement(in micro meter)
8 S=(R/d)
9 disp(S, 'sensitivity of LVDT(in volt per micro meter)
=')
```

Scilab code Exa 3.5 Find output voltage

```
//caption:Find output voltage
//Ex3.5
clc
close
V=5//secondary voltage(in V)
d=10//displacement(in mm)
D=8//displcement at which output voltage to be calculated(in mm)
S=(V/d)
O=S*D
disp(O, 'output voltag(in V)=')
```

Scilab code Exa 3.6 Find a Sensitivity of LVDT b sensitivity of entire setup c resolution of the instrument

```
1 //caption:Find (a) Sensitivity of LVDT(b) sensitivity
      of entire setup(c) resolution of the instrument
2 //Ex3.6
3 clc
4 clear
5 close
```

```
6 V=5//LVDT connection voltage(in V)
7 Vo=2//output voltage of LVDT(in mV)
8 D=0.5//displacement(in mm)
9 A=250//amplification factor
10 Do=100//divisions of scale
11 Ds=0.2//reading capacity of LVDT division
12 S=Vo/D
13 disp(S,'(a) sensitivity of LVDT(in mV/mm)=')
14 So=A*S
15 disp(So,'(b) sensitivity of entire setup(in mV/mm)=')
16 C=V/Do
17 M=Ds*C
18 R=M/S
19 disp(R,'(c) resolution of the instrument(in mm)=')
```

Scilab code Exa 3.7 Find value of capacitance after application of pressure

```
13 disp(Co, 'capacitance(in F)=')
```

Scilab code Exa 3.8 Find thermoelectric sensitivity and emf developed

```
1 //caption: Find thermoelectric sensitivity and emf
       developed
2 / Ex3.8
3 clc
4 clear
5 close
6 T=50//temperature difference (in degree centigrate)
7 Scp=7.4*10^-6//sensitivity of copper against
       platinum (in Voli per degree centigrate)
8 Sccp=-34.8*10^-6//sensitivity of constantan against
       platinum (in Voli per degree centigrate)
9 \operatorname{Sccc} = (\operatorname{Scp}) - (\operatorname{Sccp})
10 disp(Sccc, 'sensitivity (in Volt per degree centigrate
       )=,
11 E = Sccc * T
12 \operatorname{disp}(E, '\operatorname{emf} \operatorname{developed}(\operatorname{in} V)=')
```

Scilab code Exa 3.9 Find value of protection resistance

```
1 //caption: Find value of protection resistance 2 //Ex3.9
```

```
3 clc
4 clear
5 close
6 I=0.01//current through LDR(in A)
7 R=15//Resistance of LDR(in ohms)
8 V=9//supply voltage(in V)
9 Vo=I*R
10 Vp=V-Vo
11 R=Vp/I
12 disp(R,'value of protection resistance(in ohm)=')
```

Chapter 4

Bridge measurement

Scilab code Exa 4.1 Find value of unknown resistance and fractional uncertainty in its value

```
1 //caption: Find value of unknown resistance and
      fractional uncertainty in its value
\frac{2}{2} / \frac{Ex4.1}{}
3 clc
4 clear
5 close
6 R1=500//resistance of first arm of wheatstone bridge
      (in ohm)
7 dR1=0.5//uncertanity of first arm (in ohm)
8 R2=1000//resistance of arm of wheatstone bridge (in
9 dR2=0.5//uncertanity of second arm(in ohm)
10 R3=600//resistance of third arm of wheatstone bridge
      (in ohm)
11 dR3=0.5//uncertanity of third arm(in ohm)
12 R4 = (R2 * R3) / R1
13 disp(R4, 'unknown resistance(in ohm)=')
14 d4 = ((dR1/R1)^2 + (dR2/R2)^2 + (dR3/R3)^2)^1/2
```

```
15 dR4=R4*d4
16 disp(dR4, 'fractional uncertainty(in ohm)=')
```

Scilab code Exa 4.2 Find output voltage

```
1 //caption:Find output voltage
2 / Ex4.2
3 clc
4 clear
5 close
6 R1=1000//resistance of first arm(in ohm)
7 R2=1000//resistance of second arm(in ohm)
8 R3=1000///resistance of third arm(in ohm)
9 V=10//applied voltage (in V)
10 T=20//temperature of thermometer (in degree
      centigrate)
11 Ro=1020//resistance of thermometer(in ohm)
12 V1 = (R2/(R1+R3)) *V
13 V2 = (Ro/(R2 + Ro)) * V
14 Vo=V2-V1
15 disp(Vo, 'output voltage(in V)=')
```

Scilab code Exa 4.3 Find temperature at which thevenin voltage is 50mV

```
1 //caption:Find temperature at which the
venin voltage is 50 \mathrm{mV} 2 //Ex4.3
```

Scilab code Exa 4.4 Find deflection of the galvenometer

```
//caption:Find deflection of the galvenometer
//Ex4.4
clc
clear
close
R1=80//resistance of first arm(in ohm)
R2=800//resistance of second arm(in ohm)
R3=160//resistance of third arm(in ohm)
R4=1605//resistance of fourth arm(in ohm)
S=4//battery voltage(in V)
S=8//galvenometer sensitivity(in milimeter per micro ampere)
Ro=80//internal resistance of the galvenometer(in
```

```
ohm)

13 Eth=E*(R1/(R1+R3)-R2/(R2+R4))

14 Rth=R1*R3/(R1+R3)+R2*R4/(R2+R4)

15 Ig=Eth/(Rth+Ro)

16 D=S*Ig

17 disp(D, 'deflection of the galvenometer(in m)=')
```

Scilab code Exa 4.5 Find limiting value of unknown resistance

```
1 //caption: Find limiting value of unknown resistance
\frac{2}{2} / \frac{\text{Ex4.5}}{}
3 clc
4 clear
5 close
6 R1=100//value of resistance (in ohm)
7 R2=100//value of resistance (in ohm)
8 R3=230//value of standard arm resistance (in ohm)
9 dR1=0.02//ratio arms accuracy range(in %)
10 dR2=0.02//ratio arms accuracy range (in %)
11 dR3=0.01//standard ratio arm accuracy range (in %)
12 Rx = (R2*R3)/R1
13 dRx = dR1 + dR2 + dR3
14 Rx1=R3-((R3*dRx)/100)
15 Rx2=R3+((R3*dRx)/100)
16 disp(Rx1, 'lower value of limiting resistance (in ohm)
17 disp(Rx2, 'upper value of limiting resistance (in ohm)
     = ')
```

Scilab code Exa 4.6 Find magnitude and phase angle of Z4 arm

```
//caption:Find magnitude and phase angle of Z4 arm
//Ex4.6
clc
clear
close
Z1=200//impedance of first arm(in ohm)
Za=30//phase angle of first arm(in degree)
Z2=250//impedance of second arm(in ohm)
Zb=-40//phase angle of second arm(in ohm)
Z3=150//impedane of third arm(in ohm)
Cz=0//phase angle of third arm(in degree)
Z4=(Z2*Z3)/Z1
disp(Z4, 'magnitude of Z4 arm(in ohm)=')
Zd=Zb+Zc-Za
disp(Zd, 'phase angle of Z4 arm(in degree)=')
```

Scilab code Exa 4.7 find value of unknown inductance resistance and Q for maxwell bridge

```
clc
close
frield resistance of first arm(in ohm)
cl=0.22*10^-6//capacitance of first arm(in F)
R2=1000//resistance of second arm(in ohm)
R3=1000//resistance of third arm(in ohm)
f=1000//frequency of arm(in Hz)
w=2*%pi*f
R=(R2*R3)/R1
disp(R, 'resistance(in ohm)=')
L=R2*R3*C1
disp(L, 'inductance(in H)=')
Q=w*R1*C1
disp(Q, 'Q value of the bridge=')
```

Scilab code Exa 4.8 find relative permittivity of specimen

```
//caption:find relative permittivity of specimen
//Ex4.8
clc
clear
close
C1=120//capacitance of first arm without specimen(in pF)
C3=150//capacitance of third arm without specimen(in pF)
R1=5000//resistance of first arm without specimen(in ohm)
R2=5000//resistance of second arm without specimen(in ohm)
```

Scilab code Exa 4.9 Find equivalent parallel resistance and capacitance

```
//caption:Find equivalent parallel resistance and
capacitance.
//Ex4.9
clc
clear
close
R1=3.1//resistance(in kilo ohm)
R2=25//resistance(in kilo ohm)
C1=5.2*10^-6//capacitance(in F)
R4=100//resistance(in kilo ohm)
f=2500//frequency (in Hz)
w=2*%pi*f
R3=(R4/R2)*((R1)+1/(w^2)*R1*(C1^2))
disp(R3, 'equivalent parallel resistance(in kilo ohm)
=')
C3=1/((w^2)*C1*R1*R3)
```

```
15 disp(C3, 'equivalent parallel capacitance(in F)=')
```

Scilab code Exa 4.10 find value of arm CD

```
1 //caption: find value of arm CD
\frac{2}{2} //Ex4.10
3 clc
4 clear
5 close
6 R1=2000//resistance of arm AB(in ohm)
7 C1=0.047*10^-6//capacitance of arm AB(in F)
8 R2=1000//resistance of arm BC(in ohm)
9 C2=0.47*10^--6//capacitance of arm BC(in F)
10 C3=0.5*10^-6//capacitance of arm AD(in F)
11 f=1000//frequency of bridge(in Hz)
12 w = 2 * \%pi * f
13 Y1 = (1/R1) + (\%i*w*C1)
14 Z2=R2-(\%i/(w*C2))
15 \quad Z3 = -\%i/(w*C3)
16 \quad Z4 = Y1 * Z2 * Z3
17 disp(Z4, 'value of arm CD=')
```

Scilab code Exa 4.11 find value of arm CD

```
1 //caption:find value of arm CD
```

```
2 //Ex4.11
3 clc
4 clear
5 close
6 C1=0.2*10^-6//capacitance of arm AB(in F)
7 R2=500//resistance of arm BC(in ohm)
8 R3=300//resistance of arm BC(in ohm)
9 C3=0.1*10^-6//capacitance of arm AD(in F)
10 f=1000//frequency of bridge(in Hz)
11 w=2*%pi*f
12 Z1=-%i/(w*C1)
13 Z2=R2
14 Z3=1/((1/R3)+%i*w*C3)
15 Z4=(Z2*Z3)/Z1
16 disp(Z4, 'value of arm CD=')
```

Scilab code Exa 4.12 find value of arm AD

```
//caption:find value of arm AD
//Ex4.12
clc
clear
close
R1=1000//resistance of arm AB(in ohm)
C1=0.5*10^-6//capacitance of arm AB(in F)
R3=1000//resistance of arm BC(in ohm)
C3=0.5*10^-6//capacitance of arm BC(in F)
R4=200//resistance of arm BC(in ohm)
L4=30*10^-3//inductance of arm(in henery)
f=1000//frequency of bridge(in Hz)
w=2*%pi*f
```

```
14 Z1=1/((1/R1)+(%i*w*C1))

15 Z3=R3+(1/(%i*w*C3))

16 Z4=R4+(%i*w*L4)

17 Z2=(Z1*Z4)/Z3

18 disp(Z2, 'value of arm CD=')
```

Scilab code Exa 4.13 find value of frequency of the bridge arm resistance of arm AD

```
//caption:find value of frequency of the bridge arm
    resistance of arm AD

//Ex4.13

clc

clear

close
R1=1000//resistance of arm AB(in ohm)

C1=0.159*10^-6//capacitance of arm AB(in F)

R2=1000//resistance of arm BC(in ohm)

C3=0.636*10^-6//capacitance of arm BC(in F)

R4=500//resistance of arm BC(in ohm)

R3=R1*((R4/R2)-(C1/C3))

disp(R3, 'resistance of the arm AD(in ohm)=')

f=1/(2*%pi*sqrt(C1*C3*R1*R3))

disp(f, 'frequency of the bridge(in Hz)=')
```

Chapter 5

Analog meters

Scilab code Exa 5.1 Find terminal voltage when load impedance is a 10 ohm b 20 ohm c 40 ohm

```
1 //caption: Find terminal voltage when load impedance
      is (a) 10 ohm (b) 20 ohm (c) 40 ohm
\frac{2}{2} / \text{Ex5.1}
3 clc
4 clear
5 close
6 Vs=5//source voltage(in V)
7 Zi=10//internal imedance of load(in ohm)
8 Z1=10//load impedance(in ohm)
9 Z2=20//load impedance(in ohm)
10 Z3=40//load impedance(in ohm)
11 Vt1 = (Vs/(Zi+Z1))*Z1
12 disp(Vt1, '(a) internal voltage at load impedance 10
     ohm(in ohm)=')
13 Vt2=(Vs/(Zi+Z2))*Z2
14 disp(Vt2, '(b) internal voltage at load impedance 20
     ohm(in ohm)=')
15 Vt3 = (Vs/(Zi+Z3))*Z3
16 disp(Vt3, '(c) internal voltage at load impedance 40
     ohm(in ohm)=')
```

Scilab code Exa 5.2 Find load current when varible load are a 100 ohm b10 ohm

```
1 //caption: Find load current when varible load are (a)
      100 ohm (b) 10 ohm
\frac{2}{2} //Ex5.2
3 clc
4 clear
5 close
6 Zs=100//current source impedance(in ohm)
7 Zl1=100//load impedance(in ohm)
  Z12=10//load impedance(in ohm)
9 Is=10//current source value(in A)
10 Il1=(Is/(1+(Zl1/Zs)))
11 disp(Il1, '(a) load current when variable load is 100
     ohm(in ohm)=')
12 I12=(Is/(1+(Z12/Zs)))
13 disp(Il2, '(b) load current when variable load is 10
     ohm(in ohm)=')
```

Scilab code Exa 5.3 Find equivalant voltage source of the ac current source

Scilab code Exa 5.4 Find equivalant current source

```
//caption:Find equivalant current source
//Ex5.4
clc
clear
close
Vs=5//source voltage(in V)
Rs=1//source resistance(in ohm)
I=Vs/Rs
disp(I, 'equivalant current source(in A)=')
```

Scilab code Exa 5.5 Find value of shunt resistance for ammeter

```
1 //caption: Find value of shunt resistance for ammeter
```

```
2 //Ex5.5
3 clc
4 clear
5 close
6 Im=2//ammeter current(in mA)
7 I=50//max range of ammeter(in mA)
8 Rm=100//internal ammeter resistance(in ohm)
9 Rs=(Rm/((I/Im)-1))
10 disp(Rs, 'shunt resistance(in ohm)=')
```

Scilab code Exa 5.6 Find value of shunt resistance for the range a 0 to 1A b 0 to 5A c 0 to 10A

```
1 //caption: Find value of shunt resistance for the
        range (a) 0-1A(b)0-5A(c)0-10A
 \frac{2}{2} //Ex5.6
 3 clc
 4 clear
 5 close
 6 Im=0.001//meter current(in A)
 7 I1=1//maximum range(in A)
 8 I2=5//maximum range(in A)
9 I3=10//maximum range(in A)
10 R=100//internal resistance (in ohm)
11 Rs1 = (R/((I1/Im)-1))
12 \operatorname{disp}(\operatorname{Rs1}, '(a) \operatorname{shunt} \operatorname{resistance}(\operatorname{in} \operatorname{ohm})=')
13 Rs2=(R/((I2/Im)-1))
14 disp(Rs2, '(b) shunt resistance (in ohm)=')
15 Rs3=(R/((I3/Im)-1))
16 \operatorname{disp}(\operatorname{Rs3}, '(c) \operatorname{shunt} \operatorname{resistance}(\operatorname{in} \operatorname{ohm})=')
```

Scilab code Exa 5.8 Find the value of multiplier resistance for the range a 0 to 10V b 0 to 50V c 0 to 100V d 0 to 200V

```
1 //caption: Find the value of multiplier resistance
      for the range (a) 0-10V(b)0-50V(c)0-100V(d)0-200V
\frac{2}{2} / \text{Ex5.8}
3 clc
4 clear
5 close
6 V1=10//maximum voltage range(in V)
7 V2=50//maximum voltage range(in V)
8 V3=100//maximum voltage range (in V)
9 V4=200//maximum voltage range(in V)
10 I=0.002//deflection current(in A)
11 R=100//internal resistance (in ohm)
12 Rt1=V1/I
13 R1=Rt1-R
14 disp(R1, '(a) multiplier resistance (in ohm)=')
15 Rt2=V2/I
16 R2 = Rt2 - (R1 + R)
17 disp(R2, '(b) multiplier resistance (in ohm)=')
18 Rt3=V3/I
19 R3=Rt3-(R2+R1+R)
20 disp(R3, '(c) multiplier resistance (in ohm)=')
21 Rt4=V4/I
22 R4 = Rt4 - (R1 + R2 + R3 + R)
23 disp(R4, '(d) multiplier resistance(in ohm)=')
```

Scilab code Exa 5.9 Find the value of multiplier resistance for the range a 0 to 10V b 0 to 50V c 0 to 100V d 0 to 200V using sensitivity method

```
1 //caption: Find the value of multiplier resistance
      for the range (a) 0-10V(b)0-50V(c)0-100V(d)0-200V
      using sensitivity method
\frac{2}{2} //Ex5.9
3 clc
4 clear
5 close
6 V1=10//maximum voltage range(in V)
7 V2=50//maximum voltage range(in V)
8 V3=100//maximum voltage range (in V)
9 V4=200//maximum voltage range(in V)
10 I=0.002//deflection current(in A)
11 R=100//internal resistance (in ohm)
12 S = 1/I
13 R1 = (S * V1) - R
14 disp(R1, '(a) multiplier resistance (in ohm)=')
15 R2 = (S*V2) - (R1+R)
16 disp(R2, '(b) multiplier resistance (in ohm)=')
17 R3 = (S*V3) - (R2+R1+R)
18 disp(R3, '(c) multiplier resistance (in ohm)=')
19 R4 = (S*V4) - (R1+R2+R3+R)
20 disp(R4, '(d) multiplier resistance (in ohm)=')
```

Scilab code Exa 5.10 Find reading of voltmeter and percentage error when a sensitivity of voltmeter is 100 kilo ohm per volt b sensitivity of voltmeter is 500 kilo ohm per volt

```
1 //caption: Find reading of voltmeter and percentage
      error when (a) sensitivity of voltmeter is 100 kilo
       ohm per volt(b) sensitivity of voltmeter is 500
      kilo ohm per volt
\frac{2}{2} //Ex5.10
3 clc
4 clear
5 close
6 R1=50000//load resistance(in ohm)
7 S1=10000//sensitivity (in kilo ohm per volt)
8 S2=50000//sensitivity (in kilo ohm per volt)
9 Vi=10//input voltage(in V)
10 R=5//range of voltmeter (in V)
11 V1 = (R1/(S1+R1)) * Vi
12 \text{ Vo} = R * S1
13 Rth=((R1*Vo)/(R1+Vo))
14 V1 = (Rth/(Rl+Rth)) * Vi
15 \operatorname{disp}(V1, '(a) \text{ reading of voltmeter}(in V)=')
16 e = ((R-V1)/R)*100
17 disp(e, '(a) error (in \%)=')
18 \text{ Vc} = \text{R} \times \text{S2}
19 Rt = ((R1*Vc)/(R1+Vc))
20 V2 = (Rt/(R1+Rt)) * Vi
21 disp(V2, '(b) reading of voltmeter(in V)=')
22 \text{ eo} = ((R-V2)/R)*100
23 disp(eo, '(b) error (in \%)=')
```

Scilab code Exa 5.11 Find a value of R1 and R2 b change in value of R2 c half scale deflection

```
1 //caption: Find (a) value of R1 and R2(b) change in
      value of R2(c) half scale deflection
\frac{2}{2} / \frac{\text{Ex5.11}}{2}
3 clc
4 clear
5 close
6 Ifsd=0.001//current(in A)
7 Rm=100//internal resistance(in ohm)
8 E=9//battery voltage(in V)
9 Rh=5000//half scale deflection (in ohm)
10 R1=Rh-((Ifsd*Rm*Rh)/E)
11 \operatorname{disp}(R1, '(a) \text{ value of } R1(\text{in ohm})=')
12 R2=(Ifsd*Rm*Rh)/(E-Ifsd*Rh)
13 disp(R2, '(a) value of R2(in ohm)=')
14 \text{ Eo} = \text{E} - 0.9
15 Ro=(Ifsd*Rm*Rh)/(Eo-Ifsd*Rh)
16 disp(Ro, '(b) change in value of R2(in ohm)=')
17 Rh2=R1+((Ro*Rm)/(Ro+Rm))
18 disp(Rh2, '(c) half scale deflection (in ohm)=')
```

Scilab code Exa 5.12 Find R1 and Rsh

```
1 //caption:Find R1 and Rsh
\frac{2}{2} //Ex5.12
3 clc
4 clear
5 close
6 Ifsd=0.001//current value(in A)
7 Rm = 100 / / resistance (in ohm)
8 E=3//\text{voltage} (in V)
9 Rh=1//deflection resistance (in ohm)
10 Im=Ifsd/2
11 Ish=Im*((Rm-Rh)/Rh)
12 Rsh = (Im*Ish)/(Ish)
13 disp(Rsh, 'value of Rsh(in ohm)=')
14 It=2*Im*(Rm/Rh)
15 R1 = (E-Im*Rm)/It
16 \operatorname{disp}(R1, 'value \ of \ R1(in \ ohm)=')
```

Scilab code Exa 5.13 Find value of required multiplier resistance

```
//caption:Find value of required multiplier
    resistance
//Ex5.13
clc
clear
close
Iav=100*10^-6//current value(in A)
Rm=100//internal resistance(in ohm)
Vrms=100//maximum rms range(in V)
Rs=0.45*(Vrms/Iav)-Rm
disp(Rs,'value of multiplier resistance(in ohm)=')
```

Scilab code Exa 5.14 Find value of multiplier resistance

```
//caption:Find value of multiplier resistance
//Ex5.14
clc
clear
close
Vrms=10//rms voltage of the voltmeter(in V)
Ifsd=2*10^-3//ammeter reading(in A)
Rm=100//internal resistance(in ohm)
Sdc=1/Ifsd
Rs=(Sdc*0.45*Vrms)-Rm
disp(Rs,'value of multiplier resistance(in ohm)=')
```

Scilab code Exa 5.15 Find value of multiplier resistance

```
1 //caption:Find value of multiplier resistance
2 //Ex5.15
3 clc
4 clear
5 close
6 Vrms=20//voltmeter range(in V)
7 Ifsd=2*10^-3//ammeter reading(in A)
8 Rm=500//internal resistance(in ohm)
```

```
9 Sdc=1/Ifsd
```

- 10 Sac=0.9*Sdc
- $11 \quad Rs = Sac * Vrms Rm$
- 12 disp(Rs, 'value of multiplier resistance(in ohm)=')

Chapter 6

data converters

Scilab code Exa 6.1 Find output voltage for a binary input a 1111 b 1100

Scilab code Exa 6.2 Find output voltage

```
//caption:Find output voltage
//Ex6.2
clc
clear
Lo=0//input voltage logic0(in V)
L1=20//input voltage logic1(in V)
V1msb=L1/2
V2msb=L1/4
V3msb=L1/8
V4msb=L1/16
Va=V1msb+V2msb+V3msb+V4msb
disp(Va, 'output voltage(in V)=')
```

Scilab code Exa 6.3 Find output voltage if input is 101101111

```
1 //caption:Find output voltage if input is 101101111
2 //Ex6.3
3 clc
4 clear
5 close
6 V=10.3*10^-3//input voltage of DAC convertor(in V)
7 Vo=(V)
    *(1*2^8+0*2^7+1*2^6+1*2^5+0*2^4+1*2^3+1*2^2+1*2^1+1*2^0)
```

```
8 disp(Vo, 'output voltage(in V)=')
```

Scilab code Exa 6.4 Find values of a LSB b MSB c full scale output

```
1 //caption: Find values of (a) LSB(b) MSB(c) full scale
      output
2 / Ex6.4
3 clc
4 clear
5 close
6 N=8//bit of the DAC convertor
7 Rmin=0//minimum range(in V)
8 Rmax=10//maximum range(in V)
9 LS=1/(2^N)
10 LSB=Rmax*LS
11 disp(LSB, '(a)LSB(in V)=')
12 MSB=Rmax/2
13 disp(MSB, '(b)MSB(in V)=')
14 \quad F = Rmax - LSB
15 disp(F, '(c) full scale output(in V)=')
```

Scilab code Exa 6.5 Find resolution and voltage

```
1 //caption: Find resolution and voltage
```

```
2 //Ex6.5
3 clc
4 clear
5 close
6 N=3//bit of D/A convertor
7 V=5//full scale voltage(in V)
8 A=0.001//magnitude of accuracy
9 R=1/2^N
10 disp(R, 'resolution(in V)=')
11 Ac=A*V
12 disp(Ac, 'accuracy(in V)=')
```

Scilab code Exa 6.6 Find conversion time required for invertor

Scilab code Exa 6.9 Find total number of pulses and display reading

```
//caption:Find total number of pulses and display
    reading
//Ex6.9
clc
clear
close
V=10//input voltage(in V)
S=0.001//ramp slope(in V/second)
F=1000000//clock frequency(in Hz)
T=1/F
t=V*S
P=t/T
disp(P,'total number of pulses=')
disp(P,'display reading=')
```

Scilab code Exa 6.10 Find input voltage

```
6 Vref=5//reference voltage(in V)
7 t1=0.2//coumts when input voltage is applied(in sec)
8 R=100*10^3//resistance(in ohm)
9 C=10^-6//capacitance(in F)
10 t2=R*C
11 Vin=(t2/t1)*Vref
12 disp(Vin, 'input voltage(in V)=')
```

Scilab code Exa 6.11 Find a output voltage after 1 sec b fall time of reference voltage waveform

```
1 //caption: Find (a) output voltage after 1 sec (b) fall
      time of reference voltage waveform
\frac{2}{2} / \text{Ex6.11}
3 clc
4 clear
5 close
6 R=100000//resistance of DVM(in ohm)
7 C=10^--6//capacitance (in F)
8 Vin=1//input voltage(in V)
9 t1=1//rise time of reference voltage waveform at
      output of integrator (in second)
10 Vref=5//reference voltage(in V)
11 Vo=Vin*(t1/(R*C))
12 disp(Vo, '(a) output voltage after 1 \sec (in V) = ')
13 t2=(Vin/Vref)*t1
14 disp(t2, '(b) fall time reference voltage waveform(in
      second = ')
```

Chapter 7

Display devices and digital systems

Scilab code Exa 7.1 convert 1101 into decimal

```
1 //caption:convert 1101 into decimal
2 //Ex7.1
3 clc
4 clear
5 close
6 decimal=1*2^3+1*2^2+0*2^1+1*2^0
7 disp(decimal, 'decimal conversion=')
```

Scilab code Exa 7.2 convert 17 octal into decimal

```
1 //caption:convert 17 octal into decimal 2 //Ex7.2
```

```
3 clc
4 clear
5 close
6 decimal=1*8^1+7*8^0
7 disp(decimal, 'decimal conversion=')
```

Scilab code Exa 7.3 convert 1E hexadecimal into decimal

```
//caption:convert 1E hexadecimal into decimal
//Ex7.3
clc
clear
close
E=14
decimal=1*16^1+E*16^0
disp(decimal, 'decimal conversion=')
```

Scilab code Exa 7.20 Find input frequency applied to the system

```
1 //caption:Find input frequency applied to the system 2 //Ex7.20  
3 clc  
4 clear  
5 close  
6 F=1//frequency of crystal oscillator(in kilo Hz)
```

```
7 p=10//pulses
8 f=F*p
9 disp(f,'input frequency applied to the system(in kilo Hz)=')
```

Scilab code Exa 7.21 find frequency of the system

```
//caption:find frequency of the system
//Ex7.21
clc
clear
close
n=45//reading of digital frequency counter
T=10*10^-3//gate time period(in second)
F=1/T
f=n*F
disp(f, 'frequency of the system(in Hz)=')
```

Scilab code Exa 7.22 find frequency time period of the system

```
1 //caption:find frequency time period of the system 2 //Ex7.22  
3 clc  
4 clear  
5 close
```

```
6 n=30//reading of digital frequency counter
7 F=10^6//gate time period(in second)
8 T=1/F
9 t=n*T
10 disp(t, 'frequency time period of the system(in second)=')
```

Scilab code Exa 7.23 Find a resolution of the voltmeter b display of point 6368 in voltmeter on the 10V range c display of point 6368 in voltmeter on the 1V range

```
1 //caption: Find (a) resolution of the voltmeter (b)
      display of 0.6368 in voltmeter on the 10V range (c
      ) display of 0.6368 in voltmeter on the 1V range
2 / Ex7.23
3 clc
4 clear
5 close
6 n=4//precise digit value of voltmeter
7 Va=10//range(in V)
8 Vb=1//range(in V)
9 R=1/10^n
10 \operatorname{disp}(R, '(a) \operatorname{resolution} \text{ of the voltmeter}(\operatorname{in} V)=')
11 Vo=Va*R
12 d=0.636
13 disp(d, '(b) display of 0.6368 in voltmeter on the 10V
       range (in V)=')
14 V = Vb * R
15 \text{ do} = 0.6368
16 disp(do,'(c) display of 0.6368 in voltmeter on the 1V
       range (in V)=')
```

Scilab code Exa 7.24 Find a resolution of the voltmeter b display of 16 point 58 in voltmeter on the 10V range c display of point 7254 in voltmeter on the 1V and 10V range

```
1 //caption: Find (a) resolution of the voltmeter (b)
      display of 16.58 in voltmeter on the 10V range(c)
      display of 0.7254 in voltmeter on the 1V and 10V
      range
2 / Ex7.24
3 clc
4 clear
5 close
6 n=4//precise digit value of voltmeter
7 Va=10//range(in V)
8 Vb=1//range(in V)
9 R=1/10^n
10 \operatorname{disp}(R, '(a) \operatorname{resolution} \text{ of the voltmeter}(\operatorname{in} V)=')
11 Vo=Va*R
12 d=16.58
13 disp(d, '(b) display of 16.58 in voltmeter on the 10V
      range (in V)=')
14 V = Vb * R
15 \, do = 0.7254
16 disp(do,'(c) display of 0.7254 in voltmeter on the 1V
       range (in V)=')
```

Scilab code Exa 7.25 find out range of measured reading

```
//caption:find out range of measured reading
//Ex7.25
clc
clear
close
V=50//reading of voltmeter(in V)
A=0.02//accracy magnitude
Vo=V*A
Rmin=V-Vo
Rmax=V+Vo
disp(Rmax,Rmin,'range(in V)=')
```

Chapter 8

cathode ray oscilloscope

Scilab code Exa 8.1 find deflection sensitivity of CRO

```
//caption:find deflection sensitivity of CRO
//Ex8.1
clc
clear
close
l=20*10^-3//axial length of deflection plate(in meter)
L=0.2//distance from the centre of the deflection plates to the screen(in meter)
s=5*10^-3//spacing between two plates(in meter)
V=2500//accelerating voltage(in Volt)
S=(1*L)/(2*s*V)
disp(S, 'deflection sensitivity of CRO(in m/V)=')
```

Scilab code Exa 8.2 Find peak to peak amplitude of the signal and frequency of the signal

```
//caption:Find peak to peak amplitude of the signal
and frequency of the signal
//ex8.2
clc
close
V=0.5//vertical attenuation(in V/division)
n=4//number of divisions of vertical axis
P=V*n
disp(P,'peak to peak amplitude of the signal(in V)='
)
T=P*n
f=1/T
disp(f,'frequency of the signal(in Hz)=')
```

Scilab code Exa 8.3 Find amplitude of the waveform

```
//caption:Find amplitude of the waveform
//ex8.3
clc
clear
close
V=5//vertical attenuation(in V/division)
n=2.5//number of divisions/cycle
P=V*n
disp(P, 'amplitude of the waveform(in V)=')
```

Scilab code Exa 8.4 Find rms value of signal under test

```
//caption:Find rms value of signal under test
//ex8.4
clc
clear
close
S=100//Y sensitivity(in mV/division)
n=5//number of divisions of vertical axis
P=S*n
Vrms=P/(2*sqrt(2))
disp(Vrms, 'rms value of signal under test(in V)=')
```

Scilab code Exa 8.5 Find value of current

```
1 //cption:Find value of current
2 //Ex8,5
3 clc
4 clear
5 close
6 V=10//voltage across resistor(in V)
7 R=1000//resistance(in ohm)
8 i=V/R
9 disp(i,'value of current(in A)=')
```

Scilab code Exa 8.6 Find value of current

```
//caption:Find value of current
//ex8.6
clc
clear
close
S=100//Y sensitivity(in mV/division)
n=5//number of divisions of vertical axis
R=4.7*10^3
P=S*n
Vrms=P/(2*sqrt(2))
i=Vrms/R
disp(i,'value of current(in A)=')
```

Scilab code Exa 8.7 Find peak amplitude and frequency of the signal

```
6 V=0.5//vertical attenuator(in V/division)
7 Vo=10^-6//horizontal attenuator(in second/division)
8 n=6//number of divisions on vertical axis
9 N=5//number of division for complete one cycle
10 V1=V*n
11 Vp=V1/2
12 disp(Vp, 'peak amplitude(in V)=')
13 T=Vo*N
14 f=1/T
15 disp(f, 'frequency of the signal(in Hz)=')
```

Scilab code Exa 8.8 Find frequency of horizontal signal

```
//caption:Find frequency of horizontal signal
//Ex8.8
clc
clear
close
Y=2//number of Y peaks
X=1//number of X peaks
fv=2//vertical signal frequency(in kilo Hz)
fh=(X/Y)*fv
disp(fh, 'frequency of horizontal signal(in kilo Hz)=
')
```

Scilab code Exa 8.9 Find frequency of the waveform

```
//caption:Find frequency of the waveform
//Ex8.9
clc
clear
close
t=0.5//time base(in microecond/division)
d=2//divisions/cycle
T=t*d
F=1/T
disp(F, 'frequency of the waveform(in MHz)=')
```

Scilab code Exa 8.10 what will be the setting of time base knob

```
//caption:what will be the setting of time base knob
//Ex8.10
clc
clear
close
f=1//frequency of sine wave(in kHz)
n=10//number of divisions in a cycle
T=1/f
To=T/n
disp(To, 'setting of time base knob(in ms)=')
```

Scilab code Exa 8.11 Find ratio of frequencies of vertical and horizontal signals

```
1 //caption: Find ratio of frequencies of vertical and
      horizontal signals
\frac{2}{2} / \text{Ex} \cdot 8.11
3 clc
4 clear
5 close
6 P1=1//positive Y peaks in pattern
7 P2=1//positive X peaks in pattern
8 f1=P1/P2
9 disp(f1, 'ratio of frequencies of vertical and
      horizontal signals=')
10 P3=1//positive Y peaks in pattern
11 P4=3//positive X peaks in pattern
12 f2=P3/P4
13 disp(f2, 'ratio of frequencies of vertical and
      horizontal signals=')
14 P5=4.5//positive Y peaks in pattern
15 P6=1//positive X peaks in pattern
16 f3=P5/P6
17 disp(f3, 'ratio of frequencies of vertical and
      horizontal signals=')
```

Scilab code Exa 8.12 find phase angle

```
//caption: find phase angle
//Ex8.12
clc
clear
close
Y1=4//vertical pattern
Y2=8//vertical pattern
o=Y1/Y2
Y=asind(o)
disp(Y, 'phase angle(in degree)=')
Y3=4//vertical pattern
Y4=4//vertical pattern
o=Y3/Y4
Ya=asind(oo)
disp(Ya, 'phase angle(in degree)=')
```

Scilab code Exa 8.13 Find bandwidth of CRO

```
1 //caption:Find bandwidth of CRO
2 //Ex8.13
3 clc
4 clear
5 close
6 tr=20*10^-9//rise time(in second)
```

```
7 B=0.35/tr
8 disp(B, 'bandwidth of CRO(in Hz)=')
```