

$$P\{X-Y \leq t\} = \int dG(\gamma) \frac{P\{X \leq t+\gamma\}}{F(t+\gamma)}$$

$$\eta \in [0,\infty)$$

Untitled.notebook January 22, 2020

Det. The counting process {N(t)} is a Poisson process with rate \(\) o iff

1) N(0) = 0

2) The process has independent increments

3) For t, s \(\) o, P(N(t+s)-N(t) = n\) = e (\(\) s)/n!

For any t, s \(\) o, N(t+s)-N(t) is independent of {N(u); u \in t}

A stationary property

Det. Counting process is Poisson

- 3) PEN(h) = i] = xh+o(h) 1) N(0) =0
- 4) P{ N(h) > 2 } = o(h)

where a function $f(\cdot)$ is said to be o(h) if fine f(h)/h = 0

Note
$$\{x, >t\} = \{N(t) = 0\}$$

P $\{x, >t\} = \{N(t) = 0\} = e^{-\lambda t}$

(N(t)) be Poisson process

We have an item with expenential life

with $\lambda = 0.0002$ /hr.

I. What is $E[S_3]$ and $St. dev. (S_3)$ squared coefficient of variation of S_3 e

$$X + Y = a = (x) + b = (y)$$

$$Vai(ax + by) = a^{2} Vai(x) + b^{2} Vai(y)$$

Superposition

{ N(t)} and { M(t)} be two independent Poisson processer with rates λ , and λ_2 For each t, let $Y(t) = N_t + M_t$, thun $\{Y(t)\}$ is a Poisson process with rate $\{Y(t)\}$ is a Poisson process.

Decomposition
Let {N(t)} be Poisson with rate \
Let {N(t)} be i.i.d. with Y, being a Bernoull:

R.V. with P{Y,=1}=p.

Form the process {M(t)} where the n arrival to
{N(t)} is also an arrival to {M(t)} if Yn=1.

Then {M(t)} is Poisson with rate λp .

The counting process
$$\{N(t)\}$$
 with

i) $N(0) = 0$

2) $\{N(t)\}$ has independent increments

3) $P\{N(t+s) - N(t) \ge 2\} = o(s)$

4) $P\{N(t+s) - N(t) = 1\} = \lambda(t) \cdot s + o(h)$

is celled a non-stationary Poisson process.

Let $m(t) = \int_{-\infty}^{t} \lambda(u) du$ for $t \ge 0$
 $P\{N(t) = k\} = e^{-m(t)} (m(t))^{k}/k!$ for $k = 0,1, \dots$
 $E[N(t+s) - N(t)] = \int_{t}^{t+s} \lambda(u) du = m(t+s) - m(t)$

Untitled.notebook January 22, 2020

