The stochastic heat equation with multiplicative Lévy noise: Existence, moments, and intermittency

Carsten Chong Department of Statistics

Joint work with Quentin Berger (Sorbonne) and Hubert Lacoin (IMPA)

https://arxiv.org/abs/2111.07988

AMS 2021 Fall Southeastern Virtual Sectional Meeting

Heat equation with Lévy noise

Stochastic heat equation with Lévy noise:

$$\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \dot{\underline{L}}(t,x), \quad t \ge 0, x \in \mathbb{R}^d,$$

$$u(0,\cdot) = u_0$$
(SHE)

where \dot{L} is a Lévy space-time white noise, σ is a globally Lipschitz function and u_0 is some initial condition.

Heat equation with Lévy noise

Stochastic heat equation with Lévy noise:

$$\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \dot{\underline{L}}(t,x), \quad t \ge 0, \ x \in \mathbb{R}^d,$$

$$u(0,\cdot) = u_0$$
 (SHE)

where \dot{L} is a Lévy space-time white noise, σ is a globally Lipschitz function and u_0 is some initial condition.

In this talk: L is a pure-jump Lévy noise:

$$L(\mathrm{d}t,\mathrm{d}x) = \lim_{a\to 0} L_a(\mathrm{d}t,\mathrm{d}x) = \lim_{a\to 0} \left(\sum_{(t,x,z)\in\omega, |z|\geq a} z\delta_{(t,x)} - \kappa_a \operatorname{Leb} \right),$$

where

- \triangleright ω is a Poisson point process with intensity $dt dx \lambda(dz)$;
- \blacktriangleright λ is a Lévy measure (i.e., $\int_{\mathbb{R}} (1 \wedge z^2) \lambda(\mathrm{d}z) < \infty$);

Strong moment condition: Existence and uniqueness of solutions if

$$\exists p \in (1, 1 + \frac{2}{d}): \qquad \int_{\mathbb{R}} |z|^p \, \lambda(\mathrm{d}z) < \infty.$$
 (GLOBAL-p)

Saint Loubert Bié (1998), Applebaum & Wu (2000), Peszat & Zabczyk (2006)

Strong moment condition: Existence and uniqueness of solutions if

$$\exists p \in (1, 1 + \frac{2}{d}): \qquad \int_{\mathbb{R}} |z|^p \, \lambda(\mathrm{d}z) < \infty.$$
 (GLOBAL-p)

Saint Loubert Bié (1998), Applebaum & Wu (2000), Peszat & Zabczyk (2006)

- Stable noise:
 - ▶ Bounded domains: Balan (2014)

Strong moment condition: Existence and uniqueness of solutions if

$$\exists
ho \in (1, 1 + rac{2}{d}): \qquad \int_{\mathbb{R}} |z|^p \, \lambda(\mathrm{d}z) < \infty.$$
 (GLOBAL-p)

Saint Loubert Bié (1998), Applebaum & Wu (2000), Peszat & Zabczyk (2006)

- Stable noise:
 - ▶ Bounded domains: Balan (2014)
 - Non-Lipschitz $\sigma(x) = x^{\beta}$, $\beta < 1$: Mueller (1991), Mytnik (2002)

Strong moment condition: Existence and uniqueness of solutions if

$$\exists
ho \in (1, 1 + rac{2}{d}): \qquad \int_{\mathbb{R}} |z|^{
ho} \, \lambda(\mathrm{d}z) < \infty.$$
 (GLOBAL-p)

Saint Loubert Bié (1998), Applebaum & Wu (2000), Peszat & Zabczyk (2006)

- Stable noise:
 - ▶ Bounded domains: Balan (2014)
 - Non-Lipschitz $\sigma(x) = x^{\beta}$, $\beta < 1$: Mueller (1991), Mytnik (2002)
 - Lipschitz σ (C., 2017): Existence of solutions if

$$\exists \frac{p}{2+2/d-p} < q < p < 1 + \frac{2}{d}: \quad \int_{[-1,1]} z^p \, \lambda(\mathrm{d}z) + \int_{\mathbb{R}\setminus[-1,1]} z^q \, \lambda(\mathrm{d}z) < \infty$$

Carsten Chong SHE with Lévy noise November 2021

Theorem (Berger & Lacoin 2021a):

Assume that

$$\sigma(x) = \beta x, \qquad \lambda((-\infty, 0)) = 0, \qquad u_0 = \delta_0.$$

1. The SHE with truncated Lévy noise L_a has a finite solution u_a if and only if

$$\int_{[1,\infty)} (\log z)^{\frac{d}{2}} \, \lambda(\mathrm{d}z) < \infty. \tag{LARGE}$$

Theorem (Berger & Lacoin 2021a):

Assume that

$$\sigma(x) = \beta x, \qquad \lambda((-\infty, 0)) = 0, \qquad u_0 = \delta_0.$$

1. The SHE with truncated Lévy noise L_a has a finite solution u_a if and only if

$$\int_{[1,\infty)} (\log z)^{\frac{d}{2}} \, \lambda(\mathrm{d}z) < \infty. \tag{LARGE}$$

2. Under (LARGE), if there is $p \in (1, 1 + \frac{2}{d})$ such that

$$\int_{(0,1)} z^p \, \lambda(\mathrm{d}z) < \infty, \tag{SMALL-p}$$

then $u_a \rightarrow u$ a.s. for some finite and strictly positive limit u.

Theorem (Berger & Lacoin 2021a):

Assume that

$$\sigma(x) = \beta x, \qquad \lambda((-\infty, 0)) = 0, \qquad u_0 = \delta_0.$$

1. The SHE with truncated Lévy noise L_a has a finite solution u_a if and only if

$$\int_{[1,\infty)} (\log z)^{\frac{d}{2}} \, \lambda(\mathrm{d}z) < \infty. \tag{LARGE}$$

2. Under (LARGE), if there is $p \in (1, 1 + \frac{2}{d})$ such that

$$\int_{(0,1)} z^p \, \lambda(\mathrm{d}z) < \infty, \tag{SMALL-p}$$

then $u_a \rightarrow u$ a.s. for some finite and strictly positive limit u.

3. Conversely, still under (LARGE), we have that $u_a \rightarrow 0$ a.s. if

$$\int_{(0,1)} z^2 |\log z| \, \lambda(\mathrm{d}z) = \infty \quad (d=2) \quad \text{or} \quad \int_{(0,1)} z^{1+\frac{2}{d}} \, \lambda(\mathrm{d}z) = \infty \quad (d \geq 3).$$

Carsten Chong SHE with Lévy noise November 202

Theorem (Berger & Lacoin 2021b):

Given iid $(\eta_{i,x})_{i\in\mathbb{N},x\in\mathbb{Z}^d}$ with $\mathbb{E}[\eta_{1,0}]=0$ and $\mathbb{P}(\eta_{i,x}\geq -1)=1$ and independent SSRW on \mathbb{Z}^d with law P, the partition function

$$Z_{N,\beta} = E\left[\prod_{i=1}^{N} (1 + \beta \eta_{i,S_i})\right]$$

satisfies

$$Z_{N,\beta_N} \stackrel{\mathrm{d}}{\longrightarrow} U(t) = \int_{\mathbb{R}^d} u(t,x) \,\mathrm{d}x$$

if $\mathbb{P}(\eta_{i,\mathsf{x}}>z)=z^{-lpha}(1+o(1))$ for some $lpha\in(0,2\wedge 1+2/d)$ and

$$\beta_N = C(\beta, \alpha, d) N^{-d(1+2/d-\alpha)/(2\alpha)}$$
.

Theorem (Berger & Lacoin 2021b):

Given iid $(\eta_{i,x})_{i\in\mathbb{N},x\in\mathbb{Z}^d}$ with $\mathbb{E}[\eta_{1,0}]=0$ and $\mathbb{P}(\eta_{i,x}\geq -1)=1$ and independent SSRW on \mathbb{Z}^d with law P, the partition function

$$Z_{N,\beta} = E\left[\prod_{i=1}^{N}(1+\beta\eta_{i,S_i})\right]$$

satisfies

$$Z_{N,\beta_N} \stackrel{\mathrm{d}}{\longrightarrow} U(t) = \int_{\mathbb{R}^d} u(t,x) \,\mathrm{d}x$$

if $\mathbb{P}(\eta_{i,\mathsf{x}}>z)=z^{-lpha}(1+o(1))$ for some $lpha\in(0,2\wedge 1+2/d)$ and

$$\beta_N = C(\beta, \alpha, d) N^{-d(1+2/d-\alpha)/(2\alpha)}.$$

Recall: $\beta_N = CN^{-1/4}$ for Gaussian noise in dimension 1 (Alberts, Khanin and Quastel, 2004).

Main results: Existence vs non-existence

Theorem (Berger, C. & Lacoin 2021)

Assume (LARGE) and that

$$\sigma(x) = \beta x, \qquad \lambda((-\infty, 0)) = 0, \qquad u_0 = \delta_0.$$

1. If d = 2, u_a converges to a finite strictly positive limit u if and only if

$$\int_{(0,1)} z^2 |\log z| \, \lambda(\mathrm{d}z) < \infty.$$

Main results: Existence vs non-existence

Theorem (Berger, C. & Lacoin 2021)

Assume (LARGE) and that

$$\sigma(x) = \beta x, \qquad \lambda((-\infty, 0)) = 0, \qquad u_0 = \delta_0.$$

1. If d=2, u_a converges to a finite strictly positive limit u if and only if

$$\int_{(0,1)} z^2 |\log z| \, \lambda(\mathrm{d}z) < \infty.$$

2. If $d \ge 3$, u_a converges to a finite strictly positive limit u if

$$\int_{(0,1)} z^{1+2/d} |\log z| \, \lambda(\mathrm{d}z) < \infty; \tag{SMALL}$$

 u_a converges to 0 if, for some $\varepsilon > 0$,

$$\int_{(0,1)} z^{1+2/d} |\log z|^{1-\varepsilon} \, \lambda(\mathrm{d}z) = \infty.$$

Carsten Chong SHE with Lévy noise November 2021

Main results: Existence vs non-existence

Theorem (Berger, C. & Lacoin 2021)

Assume (LARGE) and (SMALL) and let $u(y;\cdot,\cdot)$ be the limit obtained in the previous theorem with initial condition δ_y . If

$$\limsup_{r \to \infty} r^{-2} \log \left(|u_0|([-r, r]^d) \right) < \frac{1}{2T}$$
 (INIT)

for some T > 0, then

$$u(t,x) := \int_{\mathbb{R}^d} u(y;t,x) \, u_0(\mathrm{d}y)$$

is a mild solution to the SHE on [0,T], that is, for all $(t,x)\in (0,T] imes \mathbb{R}^d$,

$$u(t,x) = \int_{\mathbb{R}^d} \rho(t,x-y) \, u_0(\mathrm{d}y) + \beta \int_0^t \int_{\mathbb{R}^d} \rho(t-s,x-y) u(s,y) \, L(\mathrm{d}s,\mathrm{d}y) \quad \text{a.s.},$$

where ρ is the Gaussian density.

Main results: Uniqueness

Theorem (Berger, C. & Lacoin 2021)

Furthermore, under the stronger condition (SMALL-p), the solution u is unique (up to modifications) among all predictable random fields that satisfy

$$\begin{cases} \mathbb{E}_{<}[|u(t,x)|^p] < \infty & \mathbb{P}_{\geq}\text{-a.s.,} \\ \int_{(0,t)\times\mathbb{R}^d} \rho(\theta(t-s),x)^p \mathbb{E}_{<}[u(s,x)|^p] \,\mathrm{d}s \,\mathrm{d}x < \infty & \mathbb{P}_{\geq}\text{-a.s..} \end{cases}$$

for all $(t,x) \in (0,T] \times \mathbb{R}^d$ and some $\theta > 1$. Here, $\mathbb{E}_{<}$ denotes conditional expectation given jumps ≥ 1 .

Main results: Uniqueness

Theorem (Berger, C. & Lacoin 2021)

Furthermore, under the stronger condition (SMALL-p), the solution u is unique (up to modifications) among all predictable random fields that satisfy

$$\begin{cases} \mathbb{E}_{<}[|u(t,x)|^p] < \infty & \mathbb{P}_{\geq}\text{-a.s.,} \\ \int_{(0,t)\times\mathbb{R}^d} \rho(\theta(t-s),x)^p \mathbb{E}_{<}[u(s,x)|^p] \,\mathrm{d}s \,\mathrm{d}x < \infty & \mathbb{P}_{\geq}\text{-a.s.} \end{cases}$$

for all $(t,x) \in (0,T] \times \mathbb{R}^d$ and some $\theta > 1$. Here, $\mathbb{E}_{<}$ denotes conditional expectation given jumps ≥ 1 .

Note: This gives uniqueness for the SHE with a multiplicative α -stable noise.

Main results: Moments

Theorem (Berger, C. & Lacoin 2021)

Under (SMALL), (INIT) and

$$\int_{(1,\infty)} z^p \, \lambda(\mathrm{d}z) < \infty, \tag{LARGE-p}$$

for some $p \in (1, 1+2/d)$, we further have

$$\mathbb{E}[u(t,x)^p]<\infty$$

for all $(t,x) \in (0,T] \times \mathbb{R}^d$.

Under (SMALL), (INIT) and

$$\int_{(1,\infty)} z^p \, \lambda(\mathrm{d}z) < \infty, \tag{LARGE-p}$$

for some $p \in (1, 1 + 2/d)$, we further have

$$\mathbb{E}[u(t,x)^p]<\infty$$

for all $(t,x) \in (0,T] \times \mathbb{R}^d$.

Note: This is nontrivial unless $\int_{(0,\infty)} z^p \, \lambda(\mathrm{d}z) < \infty!$ In fact, for the SHE driven by an α -stable noise with $\alpha \in (1,1+\frac{2}{d})$, it was open until now whether the solution has a finite pth moment for $p \in (1,\alpha)$.

Main results: Intermittency

Moment Lyapunov exponents:

Assume (LARGE-p) for some $p \in (1, 1+2/d)$ and define

$$\gamma_{\beta}(p) := \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}[\overline{u}(t, x)^p] > 0,$$

where $\overline{u}(t,x) = e^{-\mu t}u(t,x)$, μ is the mean of the noise and u is the solution to SHE with initial condition 1.

Question: Do we have

$$0<|\gamma_{\beta}(p)|<\infty$$
?

If so, we say that u is intermittent of order p.

- Discrete-space Gaussian/finite variance Lévy noise:
 - ▶ d = 1, 2: Intermittency for all integer $p \ge 2$ and all β
 - ▶ $d \ge 3$: Intermittency for integer $p \ge 2$ if and only if $\beta > \beta_c > 0$.

Carmona & Molchanov (1994), Ahn et al. (1992)

- Discrete-space Gaussian/finite variance Lévy noise:
 - ▶ d = 1, 2: Intermittency for all integer $p \ge 2$ and all β
 - ▶ $d \ge 3$: Intermittency for integer $p \ge 2$ if and only if $\beta > \beta_c > 0$.

Carmona & Molchanov (1994), Ahn et al. (1992)

- Continuous-space Gaussian noise:
 - ► *d* = 1:

$$\gamma_{\beta}(p) = \frac{\beta^4 p(p^2-1)}{24}, \qquad p \in (0,\infty).$$

Bertini & Cancrini (1995), ..., Ghosal & Lin (2020).

- Discrete-space Gaussian/finite variance Lévy noise:
 - d=1,2: Intermittency for all integer $p\geq 2$ and all β
 - ▶ $d \ge 3$: Intermittency for integer $p \ge 2$ if and only if $\beta > \beta_c > 0$.

Carmona & Molchanov (1994), Ahn et al. (1992)

- Continuous-space Gaussian noise:
 - ► *d* = 1:

$$\gamma_{eta}(p) = rac{eta^4 p(p^2-1)}{24}, \qquad p \in (0,\infty).$$

Bertini & Cancrini (1995), ..., Ghosal & Lin (2020).

- ▶ $d \ge 2$ (with a compactly supported spatial noise correlation):
 - d=1,2: Intermittency for all integer $p\geq 2$ and all β
 - $d \ge 3$: Intermittency for integer $p \ge 2$ iff $\beta > \beta_c > 0$. Chen & Kim (2019), Lacoin (2011)

Carsten Chong

- Discrete-space Gaussian/finite variance Lévy noise:
 - d=1,2: Intermittency for all integer $p\geq 2$ and all β
 - ▶ $d \ge 3$: Intermittency for integer $p \ge 2$ if and only if $\beta > \beta_c > 0$.

Carmona & Molchanov (1994), Ahn et al. (1992)

- Continuous-space Gaussian noise:
 - ► *d* = 1:

$$\gamma_{eta}(p) = rac{eta^4 p(p^2-1)}{24}, \qquad p \in (0,\infty).$$

Bertini & Cancrini (1995), ..., Ghosal & Lin (2020).

- ▶ $d \ge 2$ (with a compactly supported spatial noise correlation):
 - d=1,2: Intermittency for all integer $p\geq 2$ and all β
 - $d \ge 3$: Intermittency for integer $p \ge 2$ iff $\beta > \beta_c > 0$. Chen & Kim (2019), Lacoin (2011)
- Continuous-space Lévy noise: Under (GLOBAL-p),
 - ▶ d = 1: Intermittency for all $p \in (1,3)$ and $\beta > 0$
 - ▶ $d \ge 2$: Intermittency for large p (= close to 1 + 2/d) or large β . C. & Kevei (2019)

Open questions in the Lévy case

- ▶ What happens in $d \ge 2$ if both p > 1 and $\beta > 0$ are small?
- ▶ What happens with $p \in (0,1)$?
- ▶ What happens if (GLOBAL-p) is not satisfied (e.g., stable noise)?

Open questions in the Lévy case

- ▶ What happens in $d \ge 2$ if both p > 1 and $\beta > 0$ are small?
- ▶ What happens with $p \in (0,1)$?
- ▶ What happens if (GLOBAL-p) is not satisfied (e.g., stable noise)?

First guess: Based on the previous results, one may conjecture:

- There is intermittency for all $p \in (0, 1 + \frac{2}{d})$ [for which the noise has a pth moment] and for all β if d = 1, 2;
- There is intermittency for all $p \in (0, 1 + \frac{2}{d})$ [for which the noise has a pth moment] in $d \ge 3$ if and only if β is larger than a critical value.

Open questions in the Lévy case

- ▶ What happens in $d \ge 2$ if both p > 1 and $\beta > 0$ are small?
- ▶ What happens with $p \in (0,1)$?
- ▶ What happens if (GLOBAL-p) is not satisfied (e.g., stable noise)?

First guess: Based on the previous results, one may conjecture:

- There is intermittency for all $p \in (0, 1 + \frac{2}{d})$ [for which the noise has a pth moment] and for all β if d = 1, 2;
- There is intermittency for all $p \in (0, 1 + \frac{2}{d})$ [for which the noise has a pth moment] in $d \ge 3$ if and only if β is larger than a critical value.

This turns out to be a fallacy.

Main results: Intermittency

Theorem (Berger, C. & Lacoin 2021)

With any non-trivial Lévy noise, we have intermittency

- ▶ for all $p \in (1, 1 + \frac{2}{d}) \setminus \{1\}$ [for which the noise has a pth moment]
- for all $\beta > 0$
- ▶ for all dimensions d > 1.

Main results: Intermittency

Theorem (Berger, C. & Lacoin 2021)

With any non-trivial Lévy noise, we have intermittency

- ▶ for all $p \in (1, 1 + \frac{2}{d}) \setminus \{1\}$ [for which the noise has a pth moment]
- for all $\beta > 0$
- ▶ for all dimensions d > 1.

Remarks:

- ▶ We could also show $|\gamma_{\beta}(p)| > 0$ for $p \in (0, 1)$.
- This fact, which we call **strong intermittency** automatically implies full intermittency (i.e., $\gamma_{\beta}(p) > 0$ for all p > 1).
- ▶ In addition, **strong intermittency** plus ergodicity implies *physical intermittency* of the solution.

In fact, we can show:

1. d=1: for small β , if $\int_{[1,\infty)} z^2 \, \lambda(\mathrm{d}z) < \infty$,

$$C_p'\beta^4 \leq \gamma_\beta(p) \leq C_p\beta^4$$

$$C_p'\beta^4 \leq \gamma_\beta(p) \leq C_p'$$

In fact, we can show:

1.
$$d=1$$
: for small β , if $\int_{[1,\infty)} z^2 \lambda(\mathrm{d}z) < \infty$,

$$C_p'\beta^4 \le \gamma_\beta(p) \le C_p\beta^4$$

2.
$$d \geq 2$$
: if $\int_{[1,\infty)} z^{1+2/d} \lambda(\mathrm{d}z) < \infty$, then

2. If
$$\int_{[1,\infty)} 2^{-x-y-x} \lambda(\mathrm{d}z) < \infty$$
, the

$$\lim_{eta o 0} rac{\log |\log \gamma_{eta}(p)|}{|\log eta|} = 1 + rac{2}{d}.$$

In fact, we can show:

1.
$$d=1$$
: for small β , if $\int_{[1,\infty)}z^2\,\lambda(\mathrm{d}z)<\infty$,

$$C_p' \beta^4 \le \gamma_\beta(p) \le C_p \beta^4$$

2.
$$d \geq 2$$
: if $\int_{[1,\infty)} z^{1+2/d} \lambda(\mathrm{d}z) < \infty$, then

$$J[1,\infty)$$
 2 $\mathcal{N}(\mathrm{d} \mathbb{Z})$ \mathbb{Z} \mathbb{Z}

$$\lim_{\beta \to 0} \frac{\log |\log \gamma_{\beta}(p)|}{|\log \beta|}$$

3. For any
$$d$$
, if $\lambda((u,\infty)) \sim u^{-\alpha}$ (as $u \to \infty$) where $\alpha \in (1, 2 \land (1+\frac{2}{d}))$,
$$\lim_{\beta \to 0} \frac{\log \gamma_{\beta}(\rho)}{\log \beta} = \frac{\alpha}{1 - \frac{d}{d}(\alpha - 1)}.$$

$$\lim_{eta o 0}rac{\log |\log \gamma_eta(oldsymbol{p})|}{|\log eta|}=1+rac{2}{d}.$$

A word or two about the proofs

Upper bounds:

- Chaos decomposition: analysis of multiple Poisson integrals
- ▶ Main tool: Decoupling for Poisson stochastic integrals:

$$\mathbb{E}\left[\left(\int \cdots \int_{t_1 < \cdots < t_k} f(t_1, \ldots, t_k) L(\mathrm{d}t_1) \cdots L(\mathrm{d}t_k)\right)^p\right]$$

$$\approx \mathbb{E}\left[\left(\int \cdots \int_{t_1 < \cdots < t_k} f(t_1, \ldots, t_k) L_1(\mathrm{d}t_1) \cdots L_k(\mathrm{d}t_k)\right)^p\right]$$

where L_1, \ldots, L_k are independent copies of L.

- After decoupling, we are free to choose the order of integration (without losing important properties of Itô integrals)!
- ► For us, $f(t_1, ..., t_k) = \rho(t_k t_{k-1}) \cdots \rho(t_2 t_1) \rho(t_1)$
- ▶ Main difficulty: identify an optimal order of integration!

Carsten Chong SHE with Lévy noise November 2021

A word or two about the proofs

Lower bounds:

➤ Size-bias representation (Berger & Lacoin 2021): under the size-biased measure

$$\widetilde{\mathbb{P}}_{\beta,t}(\omega \in A) := \mathbb{E}[\overline{u}(t,0)\mathbf{1}_A],$$

the distribution of ω (the point process) is the same as $\widehat{\omega}$, which is obtained by adding to ω an independent point process ω' with intensity $\beta z \, \mathrm{d} t \, \lambda(\mathrm{d} z)$ on the path of an independent standard Brownian motion.

A word or two about the proofs

Lower bounds:

• One can prove intermittency (or degeneracy of the limit u) if one can find a random variable $f(\omega)$ such that

$$\widetilde{\mathbb{E}}_{\beta,t}[f(\widehat{\omega})] \geq C_d \max\{\operatorname{Var}(f)^{1/2}, \ \widetilde{\operatorname{Var}}_{\beta,t}(f)^{1/2}\}$$

for some constant C_d that only depends on d.

A typical f:

$$f(\omega) = \int_{([0,T]\times\mathbb{R}^d\times[a,b))^k} \mathbf{1}_{\{t_1\leq \frac{T}{2}, \forall i=2,\dots,k-1: \Delta t_i\in[T^{-\kappa'},T^{-\kappa}]\}}$$

$$\times \mathbf{1}_{\{\|\mathbf{x}_1\|_{\infty}\leq R\sqrt{T}, \forall i=2,\dots,k: \|\Delta \mathbf{x}_i\|_{\infty}\leq R\sqrt{\Delta t_i}\}}$$

$$\times \mathbf{1}_{\{T^{-d/2}\prod_{i=2}^k (t_i-t_{i-1})^{-d/2}\geq M\beta^{-k}\}}$$

$$\times \prod_{i=1}^k \delta_{\omega}(\mathrm{d}t_i,\mathrm{d}\mathbf{x}_i,\mathrm{d}\mathbf{z}_i).$$

November 2021

THANK YOU!