

## Data Preprocessing —About data—

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

## **Data Preprocessing**



- About data
- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation
- Summary



## What is Data?



- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
  - Examples: eye color of a person, temperature, etc.
  - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
  - Object is also known as record, point, case, sample, cts entity, or instance

**Attributes** 

| 1   |        |                   |                   | ,     |
|-----|--------|-------------------|-------------------|-------|
| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

3

## **Attribute Values**



- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
  - Same attribute can be mapped to different attribute values
    - Example: height can be measured in feet or meters
  - Different attributes can be mapped to the same set of values
    - Example: Attribute values for ID and age are integers
    - But properties of attribute values can be different
      - ID has no limit but age has a maximum and minimum value



## **Types of Attributes**



- There are different types of attributes
  - ◆ Nominal (名称性的)
    - Examples: ID numbers, eye color, zip codes
  - ◆ Ordinal (顺序的)
    - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
  - ◆ Interval (区间型的)
    - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
  - ◆ Ratio (比率型的)
    - Examples: temperature in Kelvin, length, time, counts

5

## **Properties of Attribute Values**



- The type of an attribute depends on which of the following properties it possesses:
  - ◆ Distinctness:
    = ≠
  - ♦ Order: < >
  - ◆ Addition: + ·
  - Multiplication: \* /
  - Nominal attribute: distinctness
  - Ordinal attribute: distinctness & order
  - ◆ Interval attribute: distinctness, order & addition
  - Ratio attribute: all 4 properties



# Discrete and Continuous Attributes Discrete Attribute Has only a finite or countably infinite set of values Examples: zip codes, counts, or the set of words in a collection of documents Often represented as integer variables. Note: binary attributes are a special case of discrete attributes Continuous Attribute Has real numbers as attribute values Examples: temperature, height, or weight. Practically, real values can only be measured and represented using a finite number of digits. Continuous attributes are typically represented as floating-point variables.

## Types of data sets Record Data Matrix Document Data Transaction Data Graph World Wide Web Molecular Structures Ordered Spatial Data Temporal Data Sequential Data Genetic Sequence Data





## **Record Data**



 Data that consist of a collection of records, each of which consists of a fixed set of attributes

| Tid | Refund | Marital<br>Status |      |     |
|-----|--------|-------------------|------|-----|
| 1   | Yes    | Single            | 125K | No  |
| 2   | No     | Married           | 100K | No  |
| 3   | No     | Single            | 70K  | No  |
| 4   | Yes    | Married           | 120K | No  |
| 5   | No     | Divorced          | 95K  | Yes |
| 6   | No     | Married           | 60K  | No  |
| 7   | Yes    | Divorced          | 220K | No  |
| 8   | No     | Single            | 85K  | Yes |
| 9   | No     | Married           | 75K  | No  |
| 10  | No     | Single            | 90K  | Yes |



11

## **Data Matrix**



- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

| Projection of x Load | Projection<br>of y load | Distance | Load | Thickness |
|----------------------|-------------------------|----------|------|-----------|
| 10.23                | 5.27                    | 15.22    | 2.7  | 1.2       |
| 12.65                | 6.25                    | 16.22    | 2.2  | 1.1       |



## **Document Data**



- Each document becomes a 'term' vector,
  - each term is a component (attribute) of the vector,

• the value of each component is the number of times the corresponding term occurs in the document.

| iment.     | team | coach | pla<br>y | ball | score | game | ⊐ <u>¥</u> . | lost | timeout | season |
|------------|------|-------|----------|------|-------|------|--------------|------|---------|--------|
| Document 1 | 3    | 0     | 5        | 0    | 2     | 6    | 0            | 2    | 0       | 2      |
| Document 2 | 0    | 7     | 0        | 2    | 1     | 0    | 0            | 3    | 0       | 0      |
| Document 3 | 0    | 1     | 0        | 0    | 1     | 2    | 2            | 0    | 3       | 0      |

13

## **Transaction Data**



- A special type of record data, where
  - each record (transaction) involves a set of items.
  - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |







## Ordered Data Genomic (染色体) sequence data GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCGCGCCCT GAGAAGGGCCCGCCTGCCGGCCG GGGGAAGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGGCCCAGGGG





