经验

 <

探究平加运动的特点

有问题直接发评论区

实验过程

描点→画轨迹→计算v₀或vy

实验器材

小球、斜槽、带坐标或格子的纸板、重垂线

描点方法

方法1: 接球槽+复写纸

描点方法

方法2: 铅笔或带孔纸带

描点方法

方法3: 频闪相机

画轨迹

要用平滑的曲线,而不是折线

要舍去误差较大的点

描点+画轨迹注意事项总结

- 1.斜槽末端必须水平
- 2.木板/纸板必须竖直
- 3.每一次小球必须从同一位置静止释放 (不需要斜槽光滑)
- 4.小球密度尽量大
- 5.运动尽量靠近坐标纸但不接触
- 6.平抛起点/坐标原点不是斜槽末端,而是槽口处球心
- 7.必须用平滑曲线连接各位置点
- 8.不是连接所有点,要舍去误差较大的点

在'	'探究平抛运动的运动规'	津"的实验中,	可以描绘出小	球平抛运动的	执迹,
实验	简要步骤如下:				
Α.	让小球多次从	位置上滚下,	记下小球碰到	铅笔笔尖的一	系列位
置。					
В.	安装好器材,注意	,记下平抛初	D位置 O点和过	O点的竖直线。	
C.	取下白纸,以O为原点,	以竖直线为y轴	建立坐标系,	用平滑曲线画-	平抛运
动物	/体的轨迹。				
(1) 完成上述步骤,将正确的答案填在横线上。					
(2)上	述实验步骤的合理顺序是	<u>.</u> o			

- 在做"研究平抛物体的运动"这一实验时,下面哪些说法是正确()
- A.安装弧形槽时, 必须使槽的末端的切线方向保持水平
- B. 进行实验时,每次都要让小球从同一位置由静止释放
- C. 小球与槽的摩擦不可避免, 但这不影响实验结果
- D.为了得到实验结果,不要忘记用天平称出小球的质量

计算

情况1: 直接给出从抛出点开始的水平位移xo、竖直位移yo

$$y_0 = \frac{1}{2}gt^2$$

$$t = \sqrt{\frac{2y_0}{g}}$$

$$v_0 = \frac{x_0}{t} = x_0 \sqrt{\frac{g}{2y_0}}$$

计算

情况2: 只给几个点, 相邻点水平距离相等

要先判断第一个点是不是抛出点

判断方法: 假设是,看第一、二段竖直距离是否满足零点推论

计算

如果第一个点不是抛出点。不能用 $y = \frac{1}{2}gt^2$ 求时间!

先求时间间隔T: $y_2 - y_1 = gT^2$

求
$$\mathbf{v_0}$$
: $\mathbf{v_0} = \frac{x}{T}$

求B点竖直方向瞬时速度v_{вv}:

$$v_{By} = \frac{y_1 + y_2}{2T}$$

求B点瞬时速度:

$$v_B = \sqrt{v_0^2 + v_{By}^2}$$

(2022•浙江•统考高考真题)在"研究平抛运动"实验中,以小钢球离开轨道末端时球心位置为坐标原点0,建立水平与竖直坐标轴。让小球从斜槽上离水平桌面高为h处静止释放,使其水平抛出,通过多次描点可绘出小球做平抛运动时球心的轨迹,如图所示。在轨迹上取一点A,读取其坐标(xo,yo)。

- ①下列说法正确的是____。
- A. 实验所用斜槽应尽量光滑
- B. 画轨迹时应把所有描出的点用平滑的曲线连接起来
- C. 求平抛运动初速度时应读取轨迹上离原点较远的点的数据
- ②根据题目所给信息,小球做平抛运动的初速度大小vo=____。

③在本实验中要求小球多次从斜槽上同一位置由静止释放的理由是____。

在做"研究平抛物体的运动"的实验时:

- (1)为使小球水平抛出,必须调整斜槽,使其末端的切线_____.
- (2) 小球抛出点的位置必须及时记录在白纸上,然后从这一点画水平线和竖直线作为x轴和y轴,竖直线是用_____来确定的.
- (3)某同学通过实验得到的轨迹如图所示,判断O点是否是抛出点:_____(填"是"或"否").
- (4)该同学在轨迹上选取间距较大的几个点,测出其坐标,并在直角坐标系内绘出了 $y-x^2$ 图象,则此平抛物体的初速度 $v_0 = _____mm/s$. ($\mathbb{R} = 10 \text{ m/s}^2$)

做题时,不能想当然认为坐标系原点就是抛出点

(2021•全国•高考真题)某同学利用图 (a) 所示装置研究平抛运动的规律。实验时该同学使用频闪仪和照相机对做平抛运动的小球进行拍摄,频闪仪每隔0.05s发出一次闪光,某次拍摄后得到的照片如图 (b) 所示 (图中未包括小球刚离开轨道的影像)。图中的背景是放在竖直平面内的带有方格的纸板,纸板与小球轨迹所在平面平行,其上每个方格的边长为5cm。该同学在实验中测得的小球影像的高度差已经在图(b) 中标出。

完成下列填空: (结果均保留2位有效数字)

- (1) 小球运动到图(b) 中位置A时,其速度的水平分量大小为____m/s,竖直分量大小为____m/s;
 - (2) 根据图 (b) 中数据可得, 当地重力加速度的大小为_____m/ s^2 。

《研究平抛运动》的实验装置如图(甲)所示。

- (1) 为减少空气阻力对小球的影响, 应选择的小球是____。
- A. 实心小铁球 B. 实心小木球
- C. 空心小铁球 D. 以上三种球都可以
- (2) 用小锤打击弹性金属片, A球就水平飞出; 同时B球被松开, 做自由落体运动。 把这个装置放在不同高度进行实验, 结果两小球总是同时落地: 这个实验说明了A球
- A. 水平方向的分运动是匀速直线运动 B. 水平方向的分运动是匀加速直线运动
- C. 竖直方向的分运动是自由落体运动 D. 竖直方向的分运动是匀速直线运动

- (3) 某同学描出了的小钢球做平抛运动的轨迹如图乙所示。他以抛出点为坐标原点 O,取水平向右为x轴,竖直向下为y轴,在轨迹上取两点 $A(x_1,y_1)$ 和 $B(x_2,y_2)$,且使 $y_1: y_2 = 1:4$,若测量发现 $x_1: x_2$ 为______,则说明小钢球在水平方向做匀速直线运动。
- (4) 另一个同学研究物体做平抛运动的规律,他以 v_0 的水平初速度抛出一小球,如图丙所示为一小球做平抛运动的闪光照相照片的一部分,图中背景方格的边长表示实际长度0.1m,如果取 $g=10m/s^2$,则物体经过a点时的速度大小是____m/s(结果可用根号表示)。

在"研究平抛运动"实验中,某同学只记录了小球运动途中的A、B、C三点的位置,取A点为坐标原点,则各点的位置坐标如图所示,当 $g=10~m/s^2$ 时,下列说法正确的是()

- A.小球抛出点的位置坐标是(0, 0)
- B.小球抛出点的位置坐标是(-10, -5)
- C.小球平抛初速度为2m/s
- D.小球平抛初速度为1m/s

打卡时刻

最重要注意事项:

斜槽末端要水平,不要求光滑 每次从同一高度,由静止释放

打卡时刻

直接给出从抛出点开始的水平、竖直位移"已打卡"

评论

$$y = \frac{1}{2}gt^2$$
, $t = \sqrt{\frac{2y}{g}}$, $v_0 = \frac{x}{t} = x\sqrt{\frac{g}{2y}}$

只给几个点,相邻点水平距离相等:要先判断第一个点是不是抛出点!如果不是,则不能用 $y = \frac{1}{2}gt^2$ 求时间!

先求时间间隔T: $y_2 - y_1 = gT^2$

求 $\mathbf{v_0}$: $\mathbf{v_0} = \frac{x}{T}$

求B点竖直方向瞬时速度 \mathbf{v}_{By} : $v_{By} = \frac{y_1 + y_2}{2T}$

求B点速度: $v_B = \sqrt{v_0^2 + v_{By}^2}$