

- 图像分类
- 目标检测
- 语义分割/实例分割
- 场景文字识别
- 图像生成
- 人体关键点检测
- 视频分类
- 度量学习

- 图像分类
- 目标检测
- 语义分割/实例分割
- 场景文字识别
- 图像生成
- 人体关键点检测
- 视频分类
- 度量学习

Person Hammer

🗘 百度智能云

- 图像分类
- 目标检测
- 语义分割/实例分割
- 场景文字识别
- 图像生成
- 人体关键点检测
- 视频分类
- 度量学习

(a) Image classification

(c) Semantic segmentation

(b) Object localization

(d) Instance segmentation

- 图像分类
- 目标检测
- 语义分割/实例分割
- 场景文字识别
- 图像生成
- 人体关键点检测
- 视频分类
- 度量学习

- 图像分类
- 目标检测
- 语义分割/实例分割
- 场景文字识别
- 图像生成
- 人体关键点检测
- 视频分类
- 度量学习

- 图像分类
- 目标检测
- 语义分割/实例分割
- 场景文字识别
- 图像生成
- 人体关键点检测
- 视频分类
- 度量学习

🗘 百度智能云

- 图像分类
- 目标检测
- 语义分割/实例分割
- 场景文字识别
- 图像生成
- 人体关键点检测
- 视频分类
- 度量学习

- 图像分类
- 目标检测
- 语义分割/实例分割
- 场景文字识别
- 图像生成
- 人体关键点检测
- 视频分类
- 度量学习

使用卷积神经网络的原因和效果

>> 图像分类的样例


```
Response
    "log_id": "7275343294157017980",
    "result_num": 5,
    "result": [
            "score": 0.860755,
            "root": "植物-果实/种子",
            "baike_info": [],
            "keyword": "蒲公英图片"
            "score": 0.669319,
            "root": "自然风景-天空",
            "keyword": "天空"
            "score": 0.488238,
            "root": "植物-菊科",
            "keyword": "蒲公英"
            "score": 0.294248,
```


图像识别技术的发展

ImageNet 图像分类错误率(top-5)

>> 回忆一下神经网络结构

来一张神经网络:

单个神经元

○ 百度智能云

卷积神经网络与计算机视觉

· 视觉类任务大部分都需要使用 CNN 技术

思考:为什么必须使用 CNN 呢?直接使用 DNN 可以吗?

>> 全连接神经网络: 维度灾难

- 以200x200图像为例
 - 全连接网络
 - 输入层: 40000维
 - 隐藏层: 400000 神经元
 - 参数数目: 160亿参数

单个神经元 $f(\mathbf{w}\mathbf{x}+\mathbf{b})$

内存消耗巨大 计算量巨大 训练时间过长

>> 来个感性认识: CNN网络整体结构

使用卷积操作提取特征

>> CNN网络整体结构

>> Conv层 (卷积层)

二维卷积适用于图片存储矩阵

敲黑板:

二维卷积核相当于计算窗口 在窗口内做两个向量的内积

>> 图片经卷积后效果

原图 (灰度图)

灰度图是一个二维矩阵,每一个像素值都是 0-255 的整数

0 代表黑色, 255 代表白色

-1	-1	0
-1	0	1
0	1	1

浮雕

>> 图片经卷积后效果

1	1	1
1	-7	1
1	1	1

iπ	缘
\(\frac{1}{2}\)	-1

	71>	

-1	-1	-1
-1	8	-1
-1	-1	-1

边缘

在线 Flash 示例:

https://graphics.stanford.edu/courses/cs178/applets/convolution.html

>> 卷积层的具体工作过程

>> 卷积层的具体工作过程

特征图

>> 多个卷积层

通过卷积操作提取特征

>>

通过卷积操作提取特征

卷积核的分析与计算

卷积操作的参数——步长

步长stride: 反映了filter滑动一次的距离

7 x 7 Input Volume 步长为1

5 x 5 Output Volume

3 x 3 Output Volume

卷积操作的参数——填充

Padding: 边界填充

特征图体积的计算

输入大小为: W1 x H1 x D1

需要指定的超参数: filter个数(K), filter大小(F), 步长(S), 边界填充(P)

输出:

$$W_2 = (W_1 - F + 2P)/S + 1$$

 $H_2 = (H_1 - F + 2P)/S + 1$
 $D_2 = K$

一个例子:

输入: 32x32x3

filters:5x5 10↑

stride 1, pad 2

输出:

(32+2*2-5)/1+1=32

32x32x10

Inp			me ((+pa	d 1)	(7)	(7x3)		ter WO	(3x3x3)	Filter w1[:,		3x3x3)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	put Vo:	lume	(3x3x2)
0	0	0	0	0	0	0			1 -1		-1 -1			1			
0	0	1	1	2	2	0		-1		i	-1 1	0		-6	1 1		
0	0	1	1	0	0	0		-1	-1 0		-1 1	0		4	-3 1		
0	1	1	0	1	0	0			:,:,1]		w1[:,				,:,1]		
0	1	0	1	1	1	0					1 -1				-6 -4		
0	0	2	0	1	0	0		0	0 -1		-1 0				-3 -4		
0	0	0	0	0	0	0		1	-1 0		-1 0	0		-1	-3 -3		
×	<i>,</i> :,	1]					/		1 2		w1[:,						
0	0	0	0	0	0	0	1	0	1 9	4	-1 0						
0	1	1	1	2	0	0	/		0 1	4	1 0						
0	0	2	1	1	2	0	/	O	-1 1	J	0 -1	. 0					
0	1	2	0	0	2	0	///	Bia	s ,b0 (1	1x1x1)	Bias b	1 (1x	1x1)				
0	0	2	1/	2	1	0/	//		:,:,0		b1[:,						
0	2	0/	1	2	9/	6	/	1			0						
0	9	0	0	9/	6	0											
*/:	,:,	2]	//			\overline{Z}											
0	0	0	6	0	0/	0											
0	2/	0	2	0/	2	0											
9	0	0	1	2	1	0											
0	1	0	2	2	1	0											
0	2	0	2	0	0	0											
0	0	0	1	1	2	0											
0	0	0	0	0	0	0											

			me ((+pa	d 1)	(7:	(7x3)		er WO (3x3x3)				3x3x3)	Outpu		lume	(3x	3x2)	
	,:,	0]	_					w0[:	,:,0]		w1[:,:,	0]		0[:,	:,0]				
0	0	0	0	0	0	0		1	1 -1		-1	-1	0		1 () -3	3			
0	0	1	1	2	2	0		-1	0 1		-1	1	0		-6	1 1				
0	0	1	1	0	0	0		-1	-1 0		-1	1	0		4 -	-3 1				
0	1	1	0	1	A COL	0	X		,:,1]		w1[0[:,					
0	1	0	1	1	1	0		-1				-1				-6 -4				
0	0	2	0	1	0	0		0	0 -1		-1	0	-1		-2 -	-3 -4	Ł			
0	0	0	0	0	0	0		1	-1 0		-1	0	0		-1 -	-3 -3	3			
v- f	,:,	11						10w	12]		w1[:,:,	2]							
0	0		0	0	0	0	//	0	1 9/		-1	0	1							
0	1	1	1	2	0	0	/	1	0/1		1	0	1							
0	0	2	1	1	2	6/	/	0/	-1 1		0	-1	0							
0	1	2	0	0	2	6	//	/	/											
0	0	2	1	2	1	0			b0 (1x	1x1)	Bias b1[1x1)						
0	2	0	1	6	0	0/	//	1	,,,,,,		0	.,.,	0]							
0	0		ø	0	0 /	16														
		/	~	0	//	/0														
	,:,	-		_/																
0	0	0	0	0	0	0														
0	2	0	2	0	2	ø														
0	0	9	1	2	1	0														
0	1	0	2	2	1	0														
0	2	0	2	0	0	0														
0	0	0	1	1	2	0														
0	0	0	0	0	0	0														

_	ut \		me ((+pa	d 1)	(7x	7x3)		ter W(3x3x3)		er W1	(3x3x3)	Output		e (3x3x2)
0	0	0	0	0	0	0			1 -						1 0		
0	0	1	1	2	2	0			0 1				1 0		-6 1	1	
0	0	1	1	0	0	0		-1	-1 0)		-1	1 0		4 -3	1	
0	1	1	0	1	0	0		w0[:,:,1	1]		w1[:,:,1		0[:,:		
0	1	0	1	1	1	0		-1	0 -	1		1	-1 0		-1 -€	-4	
0	0	2	0	1	0	0		0	0 -	1		-1	0 -	1	-2 -3	-4	
0	0	0	0	0	0	0		1	-1 0)		-1	0 0		-1 -3	-3	
x[:	·-,	Iï			_				:,:,2				11,2				
0	0	0	0	0	0	0		0	10	_	$-\!\!/$	-1	0 1				
0	1	1	1	2	0	0		1	0 1	-		Y	0 1				
0	0	2	1	1	2	0		0	-1 1			0	-1 0				
0	1	2	0	0	2	0		Di a	s 60	(1	11	Di 🛫	h1 1	(1x1x1)			
0	0	2	1	2	1	0			د. ناو: ر:		1,11)		:,:,0				
0	2	0	1	2	0	0		1				0					
0	0	9	0	0	0	0											
x L	<i>,</i> :,	21		/				/									
0	0	0	0	0	0	0	/										
0	2	0	2	0	2	0											
0	0	0	1	2	1	0											
0	1	0	2	2	1	0											
0	2	0	2	0	0	0											
0	0	0	1	1	2	0											
0	0	0	0	0	0	0											

卷积核 = 神经

$$z = x_1 w_1 + x_2 w_2 + ... + x_r w_r + b$$

$$a = g(z)$$

局部连接 权值共享

>> 权值共享

权值共享极大的减少了参数的数量 大大提高了计算速度,减少内存消耗

输入: 32x32x3

filters:5x5 10↑

• 使得原始图片的尺寸变小了

• 使得原始图片的尺寸变小了 max

池化层的运算

>> 最大池化

7	9
8	

• 通常池化操作是不重叠的

- 即 size = stride

• 通常使用 max-pooling

最大池化: 相当于计算窗口 在窗口内取最大值

Feature map = 10 * 10 * 1

CNN网络整体结构

>>>