Module 6: Introduction to Metropolis

Rebecca C. Steorts

knitr::opts_chunk\$set(cache=TRUE)

Agenda

- Motivation
- ► Markov chain Monte Carlo (MCMC)
- ► Hard Discs in a Box Example
- Metropolis Algorithm
- Example Applied to Normal-Normal
- Practice Excerise (Hoff 10.3)

Intro to Markov chain Monte Carlo (MCMC)

Goal: sample from f(x), or approximate $E_f[h(X)]$.

Recall that f(x) is very complicated and hard to sample from.

How to deal with this?

- 1. What's a simple way?
- 2. What are two other ways?
- 3. What happens in high dimensions?

High dimensional spaces

- In low dimensions, IS and RS works pretty well.
- ▶ But in high dimensions, a proposal g(x) that worked in 2-D, often doesn't mean that it will work in any dimension.
- ▶ Why? It's hard to capture high dimensional spaces!

Figure 1: A high dimensional space (many images).

We turn to Markov chain Monte Carlo (MCMC).

Intuition

Figure 2: Example of a Markov chain and red starting point

Intuition

Figure 3: Example of a Markov chain and moving from the starting point to a high probability region.

What is Markov Chain Monte Carlo

- Markov Chain where we go next only depends on our last state (the Markov property).
- ► Monte Carlo just simulating data.

The Markov property

Suppose that we have just visited states x_1, \ldots, x_{n-1} . The Markov property says the following:

$$P(X_n = x_n \mid X_1 = x_1, \dots, X_{n-1} = x_{n-1}) = P(X_n = x_n \mid X_{n-1} = x_{n-1}).$$

Why MCMC?

- (a) the region of high probability tends to be "connected"
 - ► That is, we can get from one point to another without going through a low-probability region, and
- (b) we tend to be interested in the expectations of functions that are relatively smooth and have lots of "symmetries"
 - That is, one only needs to evaluate them at a small number of representative points in order to get the general picture.

Advantages/Disadvantages of MCMC:

Advantages:

- applicable even when we can't directly draw samples
- works for complicated distributions in high-dimensional spaces, even when we don't know where the regions of high probability are
- relatively easy to implement
- ► fairly reliable

Disadvantages:

- slower than simple Monte Carlo or importance sampling (i.e., requires more samples for the same level of accuracy)
- can be very difficult to assess accuracy and evaluate convergence, even empirically

Figure 4: Example of a phase diagram in chemistry.

Many materials have phase diagrams that look like the picture above.

To understand this phenoma, a theoretical model was proposed: Metropolis, Rosenbluth, Rosenbluth, and Teller, 1953

Figure 5: Example of N molecules (hard discs) bouncing around in a box.

Called hard discs because the molecules cannot overlap.

Have an X = (u, v) coordinate for each molecule.¹

The total dimension of the space is \mathbb{R}^{2N} .

Figure 6: Example of N molecules (hard discs) bouncing around in a box.

 $^{^{1}\}mathrm{For}$ the rest of the lecture, X will denote the two coordinate vectors of the molecule.

 $X \sim f(x)$ (Boltzman distribution).

Goal: compute $E_f[h(x)]$.

Since X is high dimensional, they proposed "clever moves" of the molecules.

Metropolis algorithm: For iterations i = 1, ..., n, do:

- 1. Consider a molecule and a box around the molecule.
- 2. Uniformly draw a point in the box.
- 3. According to a "rule", you accept or reject the point.
- 4. If it's accepted, you move the molecule.

Uniformly = pick a point at random with equal probability to all other points in the box

Consider a molecule and a box around the molecule.

Figure 7: This illustrates step 1 of the algorithm.

Uniformly draw a point in the box.

Figure 8: This illustrates step 2 of the algorithm.

According to a "rule", you accept or reject the point.

Here, it was accepted, so we move the molecule.

Figure 9: This illustrates step 3 and 4 of the algorithm.

Here, we show one entire iteration of the algorithm.

Figure 10: This illustrates one iteration of the algorithm.

After running many iterations n (not N), we have an approximation for $E_f(h(X))$, which is $\frac{1}{n}\sum_i h(X_i)$.

We will talk about the details later of why this is a "good approximation"

Some food for thought

We just covered the Metropolis algorithm (1953 paper).

- We did not cover the exact procedure for accepting or rejecting (to come).
- Are the X_i's independent?
- Our approximation holds by The Ergodic Theorem for those that want to learn more about it.
- ▶ The ergodic theorem says: "if we start at a point x_o and we keeping moving around in our high dimensional space, then we are guaranteed to eventually reach all points in that space with probability 1."

Metropolis Algorithm

Setup: Assume pmf π on \mathcal{X} (countable).

Have $f: \mathcal{X} \to \mathbb{R}$.

Goal:

- a) sample/approximate from π
- b) approximate $E_{\pi}[f(x)], X \sim \pi$.

The assumption is that π and or f(X) are complicated!

Why things work!

Big idea and why it works: we apply the ergodic theorem.

"If we take samples $X=(X_0,X_1,\ldots,)$ then by the ergodic theorem, they will eventually reach π , which is known as the stationary distribution (the true pmf)."

Metropolis Algorithm

The approach is to apply the ergodic theorem.

- 1. If we run the Markov chain long enough, then the last state is approximately from π .
- 2. Under some regularity conditions,

$$\frac{1}{n}\sum_{i=1}^n f(X_i) \xrightarrow{a.s} E_{\pi}[f(x)].$$

Terminology

1. Proposal matrix = stochastic matrix.

Let

$$Q = (Q_{ab} : a, b \in \mathcal{X}).$$

Note: I will use $Q_{ab} = Q(a, b)$ at times.

2. Note:

$$\pi(x) = \tilde{\pi}(x)/z, z > 0.$$

What is known and unknown above? (Think back to rejection sampling)

Metropolis Algorithm

- Choose a symmetric proposal matrix Q. So, $Q_{ab} = Q_{ba}$.
- ▶ Initialize $x_0 \in X$.
- ▶ for $i \in {0, 1, 2, ..., n-1}$:
 - Sample proposal x from $Q(x_i, x)$ if x is discrete, otherwise, $p(x \mid x_i)$.
 - ightharpoonup Sample r from Uniform(0,1).
 - ► If

$$r<rac{ ilde{\pi}(x)}{ ilde{\pi}(x_i)},$$

accept and $x_{i+1} = x$.

▶ Otherwise, reject and $x_{i+1} = x_i$.

Output: x_0, x_1, \ldots, x_n

Comment: r is the rule for uniformly drawing a point in the box (slide 18).

You do not need to know the general proof of this.

Metropolis within a Bayesian setting

Goal: We want to sample from

$$p(\theta \mid y) = \frac{f(y \mid \theta)\pi(\theta)}{m(y)}.$$

Typically, we don't know m(y).

The notation is a bit more complicated, but the set up is the same.

We'll approach it a bit differently, but the idea is exactly the same.

Building a Metropolis sampler

We know $\pi(\theta)$ and $f(y \mid \theta)$, so we can can draw samples from these.

Our notation here will be that we assume parameter values $\theta_1, \theta_2, \dots, \theta_s$ which are drawn from $\pi(\theta)$.

We assume a new parameter value comes in that is θ^* .

Building a Metropolis sampler

Similar to before we assume a symmetric proposal distribution, which we call $J(\theta^* \mid \theta^{(s)})$.

- ▶ What does symmetry mean here? $J(\theta_a \mid \theta_b) = J(\theta_b \mid \theta_a)$.
- That is, the probability of proposing $\theta^* = \theta_a$ given that $\theta^{(s)} = \theta_b$ is equal to the probability of proposing $\theta^* = \theta_b$ given that $\theta^{(s)} = \theta_a$.
- Symmetric proposals include:

$$J(\theta^* \mid \theta^{(s)}) = \mathsf{Uniform}(\theta^{(s)} - \delta, \theta^{(s)} + \delta)$$

and

$$J(\theta^* \mid \theta^{(s)}) = \text{Normal}(\theta^{(s)}, \delta^2).$$

Metropolis algorithm

The Metropolis algorithm proceeds as follows:

- 1. Sample $\theta^* \sim J(\theta \mid \theta^{(s)})$.
- 2. Compute the acceptance rule (r):

$$r = \frac{p(\theta^*|y)}{p(\theta^{(s)}|y)} = \frac{p(y \mid \theta^*)p(\theta^*)}{p(y \mid \theta^{(s)})p(\theta^{(s)})}.$$

3. Let

$$\theta^{(s+1)} = \begin{cases} \theta^* & \text{with prob min(r,1)} \\ \theta^{(s)} & \text{otherwise.} \end{cases}$$

Remark: Step 3 can be accomplished by sampling $u \sim \text{Uniform}(0,1)$ and setting $\theta^{(s+1)} = \theta^*$ if u < r and setting $\theta^{(s+1)} = \theta^{(s)}$ otherwise.

Exercise: Convince yourselves that step 3 is the same as the remark!

A Toy Example of Metropolis

Let's test out the Metropolis algorithm for the conjugate Normal-Normal model with a known variance situation.

$$X_1, \dots, X_n \mid \theta \stackrel{iid}{\sim} \mathsf{Normal}(\theta, \sigma^2)$$

 $\theta \sim \mathsf{Normal}(\mu, \tau^2).$

Recall that the posterior of $\theta \mid X_1, \dots, X_n$ is Normal (μ_n, τ_n^2) , where

$$\mu_n = \bar{x} \frac{n/\sigma^2}{n/\sigma^2 + 1/\tau^2} + \mu \frac{1/\tau^2}{n/\sigma^2 + 1/\tau^2}$$

and

$$\tau_n^2 = \frac{1}{n/\sigma^2 + 1/\tau^2}.$$

Toy Example

In this example:
$$\sigma^2=1,\, \tau^2=10,\, \mu=5,\, n=5,\, {\rm and}$$

$$x=(9.37,10.18,9.16,11.60,10.33).$$

For these data, $\mu_n=10.03$ and $\tau_n^2=0.20$.

Note: this is a toy example for illustration.

Toy example

We need to compute the acceptance rule r.

$$r = \frac{p(\theta^*|x)}{p(\theta^{(s)}|x)} \tag{1}$$

$$=\frac{p(x|\theta^*)p(\theta^*)}{p(x|\theta^{(s)})p(\theta^{(s)})}$$
(2)

$$= \left(\frac{\prod_{i} \operatorname{dnorm}(x_{i}, \theta^{*}, \sigma)}{\prod_{i} \operatorname{dnorm}(x_{i}, \theta^{(s)}, \sigma)}\right) \left(\frac{\operatorname{dnorm}(\theta^{*}, \mu, \tau)}{\operatorname{dnorm}(\theta^{(s)}, \mu, \tau)}\right)$$
(3)

Toy example

In many cases, computing the rule r directly can be numerically unstable, however, this can be modified by taking $\log r$.

This results in

$$\begin{split} \log r &= \sum_{i} \left[\log \mathsf{dnorm}(x_i, \theta^*, \sigma) - \log \mathsf{dnorm}(x_i, \theta^{(s)}, \sigma) \right] \\ &+ \left[\log \mathsf{dnorm}(\theta^*, \mu, \tau) \right] - \log \mathsf{dnorm}(\theta^{(s)}, \mu, \tau). \end{split}$$

Then a proposal is accepted if $\log u < \log r$, where u is sampled from the Uniform(0,1).

Toy example

We generate 500 iterations of the Metropolis algorithm starting at $\theta^{(0)}=0$ and using a normal proposal distribution, where

$$\theta^{(s+1)} \sim \text{Normal}(\theta^{(s)}, 1).$$

We will then generate 10,000 iterations since 500 will not be sufficient.

Figure~12 shows a traceplot for this run as well as a histogram for the Metropolis algorithm compared with a draw from the true normal density.

Traceplot

What is a traceplot? A traceplot is a convergence diagnostic.

It's a plot of the parameter of interest versus the number of MCMC iterations.

What does it tell us?

- 1. It can tell us when we have not run our MCMC long enough.
- It can tell us when we migth be in a situation of multimodality (we will see this in future lectures).
- If the plots looks stable, then it tells us that we do not see anything to warrant issues with a lack of convergence of the chain.

What does it not tell us?

It cannot tell us that our MCMC has converged!

Code

```
# setting values
set.seed(1)
s2<-1
t2<-10
mu < -5;
n<-5
# defining the data
x < -c(9.37, 10.18, 9.16, 11.60, 10.33)
# mean of the normal posterior
mu.n < -(mean(x)*n/s2 + mu/t2)/(n/s2+1/t2)
# variance of the normal posterior
t2.n < -1/(n/s2 + 1/t2)
```

```
##S = total num of simulations
theta<-0; delta<-1; S<-500; THETA<-NULL
set.seed(1)
for(s in 1:S){
## simulating our proposal
theta.star<-rnorm(1,theta,sqrt(delta))
##taking the log of the ratio r
log.r<-( sum(dnorm(x,theta.star,sqrt(s2),log=TRUE)) +</pre>
dnorm(theta.star,mu,sqrt(t2),log=TRUE) ) -
( sum(dnorm(x,theta,sqrt(s2),log=TRUE)) +
dnorm(theta,mu,sqrt(t2),log=TRUE) )
if(log(runif(1))<log.r) {</pre>
  theta<-theta.star
}
# These are only the accepted THETA values
THETA<-c(THETA, theta) ##updating THETA
## contains theta's that are accepted and rejected
```

```
length(THETA)

## [1] 500

head(THETA)
```

[1] 0.000000 1.329799 2.925080 2.925080 3.412509 3.41250

```
## pdf
## 2
```

```
## pdf
## 2
```

Traceplot and Histogram

Figure 11: Left: trace plot of the Metropolis sampler. Right: Histogram versus true normal density for 500 iterations.

Traceplot and Histogram

Figure 12: Left: trace plot of the Metropolis sampler. Right: Histogram versus true normal density for 10,000 iterations.

Traceplot

Given that we have looked at n = 500 iterations of the Metroplis sampler, does it seem that our approximation is a good one?

What about n = 10,000 iterations?

Questions you should be able to answer!

- What is the goal of Metropolis?
- What is known and unknown?
- What are good proposals?
- What does the ergodic theorem say in words?
- Are good proposals always easy to choose?
- ► When would we use Metropolis over Importance sampling and Rejection sampling?
- What is a simple diagnostic of a Markov chain?
- Are we guaranteed convergence of the Markov chain?

Exam II

- Same format as exam I
- ▶ Material covers Modules 4 7
- You will still need to know material from past modules, i.e, calculating a posterior, marginal distribution, etc
- ► These emphasis will be on the material from Modules 4 7.
- ▶ Please make sure that you have reviewed the updated policy regarding exams on the syllabus https://github.com/resteorts/modern-bayes/blob/master/ syllabus/syllabus-sta602-spring19.pdf

Topics to Review

- Normal-Normal model
- ► Normal-Gamma model
- Objective Bayes (Default Bayes)
- Uniform Prior
- Jeffreys' Prior
- ► Monte Carlo
- Numerical integration
- Importance sampling
- Rejection sampling
- Metropolis sampling
- Differences between the methods
- Homework problems and labs
- Practice exercises
- ► There are exercises in the PhD lectures notes that you might find helpful as well

Expectations for Exam II

- 1. I expect that you know all derivations that we have done in class. Examples, Normal-Normal, Normal-Uniform, etc.
- 2. I expect that you would be able to do similar derivations to what we have done in class, homworks, labs, and in the PhD lectures notes.
- 3. I expect you to be able to write down the Normal-Normal posterior or the Normal-Uniform without doing the derivation.
- I expect that you are able to calculate integrals, derivatives, and remember concepts from calculus on the examination. (If you're rusty with calculus).
- 5. I expect that you can quickly calculate posteriors, marginals, posterior predictive distributions and know that these are and what these mean.

Expectations for Exam II

- 6. I expect that you know why we would turn to sampling algorithms such as Monte Carlo.
- 7. I expect that you know the inverse CDF method.
- 8. I expect that you know rejection and importance sampling.
- 9. I expect that you know the difference between the uniform prior and Jeffreys' prior (and properties of Jeffreys' prior)
- 10. I expect that you know the Metropolis algorithm, how it works, and to write down the algorithm if asked.

Remark: This is not a complete list of what you should know, but I hope it will give you some guidance regarding Exam II and what's expected of you.