HOMEWORK-4 5.7 D = DEXEAS = no. A XI ... XNEA a) To estimate Pfx> Yy where x & Y are independent Poisson random variables with parameters 3 & 5 respectively. 1. Generate Random samples for the 2 Poisson distributions (Poisson (3) & Poisson (5) Row uniform random variables x= max { by k & U1. U2 - . . Uk >, e-3 } Y = max & K: V1, V2 - . . Vk7/e-53 2. For each pair in (1,4) the in XEY, check if x>y. IF x>y our condition is met if x>y 2=1 else R=0

Tor either distribution. This ratio is our estimate for the probability Paxyy

5.7	b)	Royal funch (aten, a jack, a queen, a king, an ace) of
		same color.
		To estimate the probability of a royal fush.
	10	Generate 5 numbers from a uniform (0,1) aistribution
	ચ,	Assign each card a value from 0 to 51.
	3.	For the 5 numbers generated, multiply each number by
		52 et take its foor. By doing so each eart is
		assigned a perincular card.
	4.	IF accept no. of unique cards is not 5, repeat steps
		1 to 3.
	5.	If 5 unique cards are generated, check if the
		5 cards march the 4 marches with any of the
		4 feasher present in me deck of cards.
		We can so assume cards numbered (0,1,2,3,4) (5,6,7,8,9)
		, (10,11,12,13,14) & (15,16,17,18,19) as the 4 fushes.
	6.	Repeat supps 1-5, N no. of times. & count the
		number of times a fush is achieved.
	7.	Find the ratio of success of N. This would give
		the entirete of the probability of achieving a royal fecision.

4

4

W

6

6

M

c) >1 = 5 hr -1

 $\lambda 2 = 20Nr^{-1}$

P1 = 1/5

P2 = 4/5

considering the probability of gening work done by mechanic 1 follows a Bernoulli diskibilion with probability 1/5.

And the semice time of each mechanic tollows a faxomential diskibilion with $x = 5 \, \text{hr}^{-1}$ el 20 hr

to To generate Random variable samples of this mode

- 10 If uniform random variable is less than equal 1/5
 generale samples from exponential distribution with
 parameter 5
- 2. if unitorn Random variable is greater man 115, generale lamples from exponential distribution with parameter 20.

if $U_1 \notin \frac{1}{5}$ $X = -\frac{1}{5} \ln (1 - U_2)$ 0.00000.0000

Frepeat 1-2, N limes and count the number of times me random variable is greater than 35/60 minutes have trave it to The valid of the count with N, gives the drimate of the probability P & X > 35/60 hry

a)
$$\xi = 0.005$$
 $1 - \alpha = 0.95$
 $\alpha = 0.05$
 $\alpha = 0.025$

In order to guarantee that Pf 1p-p1>E] < ~

 $N > p^{+}(1-p^{+}) \left(\frac{Z\alpha_{2}}{\varepsilon}\right)^{2}$ random variables where p^{+} is a pheliminary estimator n - p.

OY

N >, 0.25 (Zx/2) random variables, if no such estimator is available

For each (a,b,c) No estimator of P is given For each (a,b,c) N > 0.25 $(Za/2)^2$

 $N \ge 0.25 \left(\frac{20.025}{0.005}\right)^2$

 $N = 0.25 \left(\frac{-1.96}{0.005} \right)^{2}$

NO 38416

N=38416 should be enough to guarantee an error not exceeding 0.005 with probability = 0.95.