

Distributed Training

MIPT 18.03.2021 Oleh Shliazhko

Today

- Why distributed training?
- Process Communication 101

- Pytorch Distributed Data Parallel
- Practice: Pytorch DDP
- Beyond DDP: Deepspeed and Model Parallel

- Training speed samples/second
- Bottleneck batch size, due to GPU Memory
- Solution
 - split batch between GPUs
 - copy model to all GPUs
 - update master parameters from all gradients
 - copy updated parameters back to GPUs

Data Parallelism

Single node case - master copy of weights in RAM

- Bottleneck number of GPUs on a single node
- Solution:
 - GET MOAR NODES
 - split batch between GPUs on many servers
 - sync weight updates for all models in some way

1. Load data from disk into page-locked memory on the host. Use multiple worker processes to parallelize data load. Distributed minibatch sampler ensures that each process loads non-overlapping data h

2. Transfer minibatch data from page-locked memory to each GPU concurrently. No data broadcast is needed. Each GPU has an identical copy of the model and no model broadcast is needed either

GPU 1
sub-minibatch 1
Model

GPU 0 sub-minibatch 0 Model GPU 2 sub-minibatch 2 Model

3. Run forward pass on each GPU, compute output

GPU 1
Output 1

GPU 0 Output 0 GPU 2 Output 2

GPU 2

4. Compute loss, run backward pass to compute gradients. Perform gradient all-reduce in parallel with gradient computation

GPU 1 gradient allreduce reduce Gradients Gradients

5. Update Model parameters. Because each GPU started with an identical copy of the model and gradients were all-reduced, weights updates on all GPUs are identical.

GPU 1
Updated Model

GPU 0
Updated Model

GPU 2
Updated Model

Could we get rid of single parameter server?

Let's try put all gradients on all workers.

Pros:

- No single point of failure
- Nice identical code in each process (SIMD)

Cons:

A lot of networking

Single node algorithm

- 1. Get batch from dataloader
- 2. Forward pass
- 3. Backward pass
- 4. Get gradients from all GPUS
- 5. Compute gradients average
- 6. Update local weights

Point-to-Point Communication

Source: send(tensor, dest_rank)

Destination: recv(tensor, src_rank)

Collective Communication

Scatter Gather

Collective Communication

Reduce

All-Reduce

Collective Communication

Broadcast

All-Gather

Pytorch Distributed Data Parallel

Backend-agnostic API

Broadcast/Gather/Reduce operations

Convenient Data Parallel Wrapper

Pytorch Distributed Data Parallel

Glossary:

- world_size total number of GPUs. Also a number of processes, assuming 1 process per GPU
- global_rank global process id, unsigned int from [0, world_size)
- local_rank local process id for current node, unsigned int from [0, number_of_GPUs_per_node)

```
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group(backend='nccl', init_method='env://')
torch.cuda.set_device(local_rank)

# Split dataset into world_size parts and read part number global_rank
dataloader = get_dataset_part(global_rank, world_size)

model = DDP(model, device_ids=[local_rank])
```

Practice: Pytorch DDP

Beyond DDP: Deepspeed & Model Parallel GOTO: train_large_scale_gpt3

Questions