## Text embeddings

Ilya Fedorov

Lomonosov Moscow State University

November 5, 2020

Transformer

**BERT** 

Text similarity

# The first successful non-recurrent architecture for machine translation



Figure 1: The Transformer - model architecture.

Attention Is All You Need - Vaswani et al. 2017



#### **Details**



The Illustrated Transformer - Jay Alammar



# Bidirectional Encoder Representations from Transformers



The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning) - Jay Alammar



## Illustration from the original paper



BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding - Devlin et al. 2018

## **BERT Pre-Training**

#### Two tasks:

- 1. Masked Language Modeling (MLM)
- 2. Next Sentence Prediction (NSP)



## **Input Format**



Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

- Token Embeddings fixed derived from elsewhere word embeddings (e.g. WordPiece, Word2Vec, FastText, Glove etc)
- Segment Embeddings learnabembeddingsle distinguisher between two sentences in the input
- Position Embeddings to put the information about the word's position in the sentence

## Fine-Tuning

- Transfer learning
- Plug in the taskspecific inputs and outputs into BERT and finetune all the parameters end-to-end
- Compared to pre-training, fine-tuning is relatively inexpensive (All of the results in the main paper can be replicated in at most 1 hour on a single Cloud TPU, or a few hours on a GPU)

## The General Language Understanding Evaluation GLUE benchmark

| System           | MNLI-(m/mm) | QQP  | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE  | Average |
|------------------|-------------|------|------|-------|------|-------|------|------|---------|
|                  | 392k        | 363k | 108k | 67k   | 8.5k | 5.7k  | 3.5k | 2.5k |         |
| Pre-OpenAI SOTA  | 80.6/80.1   | 66.1 | 82.3 | 93.2  | 35.0 | 81.0  | 86.0 | 61.7 | 74.0    |
| BiLSTM+ELMo+Attn | 76.4/76.1   | 64.8 | 79.8 | 90.4  | 36.0 | 73.3  | 84.9 | 56.8 | 71.0    |
| OpenAI GPT       | 82.1/81.4   | 70.3 | 87.4 | 91.3  | 45.4 | 80.0  | 82.3 | 56.0 | 75.1    |
| BERTBASE         | 84.6/83.4   | 71.2 | 90.5 | 93.5  | 52.1 | 85.8  | 88.9 | 66.4 | 79.6    |
| BERTLARGE        | 86.7/85.9   | 72.1 | 92.7 | 94.9  | 60.5 | 86.5  | 89.3 | 70.1 | 82.1    |

Table 1: GJUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard/ The number below each lask denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set." BERT and OpenAI GPT are singlemodel, single task. FI scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other task. We exclude entries that we BERTs as one of their components.

|   | Rank | Name                               | Model                                        | URL | Score | CoLA | SST-2 | MRPC      | STS-B     | QQP       | MNLI-m MNL | l-mm | QNLI | RTE  | WNLI |      |
|---|------|------------------------------------|----------------------------------------------|-----|-------|------|-------|-----------|-----------|-----------|------------|------|------|------|------|------|
|   | 1    | HFL IFLYTEK                        | MacALBERT + DKM                              |     | 90.7  | 74.8 | 97.0  | 94.5/92.6 | 92.8/92.6 | 74.7/90.6 | 91.3       | 91.1 | 97.8 | 92.0 | 94.5 | 52.6 |
| + | 2    | Alibaba DAMO NLP                   | StructBERT + TAPT                            | C.  | 90.6  | 75.3 | 97.3  | 93.9/91.9 | 93.2/92.7 | 74.8/91.0 | 90.9       | 90.7 | 97.4 | 91.2 | 94.5 | 49.1 |
| + | 3    | PING-AN Omni-Sinitic               | ALBERT + DAAF + NAS                          |     | 90.6  | 73.5 | 97.2  | 94.0/92.0 | 93.0/92.4 | 76.1/91.0 | 91.6       | 91.3 | 97.5 | 91.7 | 94.5 | 51.2 |
|   | 4    | ERNIE Team - Baidu                 | ERNIE                                        | C.  | 90.4  | 74.4 | 97.5  | 93.5/91.4 | 93.0/92.6 | 75.2/90.9 | 91.4       | 91.0 | 96.6 | 90.9 | 94.5 | 51.7 |
|   | 5    | T5 Team - Google                   | T5                                           | C.  | 90.3  | 71.6 | 97.5  | 92.8/90.4 | 93.1/92.8 | 75.1/90.6 | 92.2       | 91.9 | 96.9 | 92.8 | 94.5 | 53.1 |
|   | 6    | Microsoft D365 AI & MSR AI & GATEC | HMT-DNN-SMART                                | C.  | 89.9  | 69.5 | 97.5  | 93.7/91.6 | 92.9/92.5 | 73.9/90.2 | 91.0       | 90.8 | 99.2 | 89.7 | 94.5 | 50.2 |
| + | 7    | Zihang Dai                         | Funnel-Transformer (Ensemble B10-10-10H1024) | C'  | 89.7  | 70.5 | 97.5  | 93.4/91.2 | 92.6/92.3 | 75.4/90.7 | 91.4       | 91.1 | 95.8 | 90.0 | 94.5 | 51.6 |
| + | 8    | ELECTRA Team                       | ELECTRA-Large + Standard Tricks              | C'  | 89.4  | 71.7 | 97.1  | 93.1/90.7 | 92.9/92.5 | 75.6/90.8 | 91.3       | 90.8 | 95.8 | 89.8 | 91.8 | 50.7 |

https://gluebenchmark.com/leaderboard



#### Conclusion

#### **BERT**

- Bidirectional model
- Can be pre-trained on a huge amount of unlabeled data
- Can be fine-tuned for the specific task and reach SOTA results
- There exists a lot of BERT modifications: ALBERT, RoBERTa, DistilBERT etc

## Semantic Textual Similarity

Semantic textual similarity deals with determining how similar two pieces of texts are. This can take the form of assigning a score from 1 to 5 (or be continuous in range [0, 1]). Related tasks are paraphrase or duplicate identification.

## Semantic Textual Similarity



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

The original BERT can be used for that task, but...



## Computational overheads

 $\dots$  finding the most similar pair in a collection of 10,000 sentences requires about 50 million inference computations ( 65 hours with modern V100) with BERT

What is the solution? The answer is - sentence embeddings.



#### Sentence-BERT



Figure 1: SBERT architecture with classification objective function, e.g., for fine-tuning on SNLI dataset. The two BERT networks have tied weights (siamese network structure).



Figure 2: SBERT architecture at inference, for example, to compute similarity scores. This architecture is also used with the regression objective function.

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks - Nils Reimers and Iryna Gurevych, 2019

## Pooling strategies

- Mean
- Embedding of CLS token
- Max-Over-Time pooling

### Objective functions

- ► Classification Objective Function  $o = softmax(W_t(u, v, |u v|))$
- Regression Objective Function. The cosine similarity between the two sentence embeddings *u* and *v* is computed. We use mean squared-error loss as the objective function
- ► Triplet Objective Function. Given an anchor sentence a, a positive sentence p, and a negative sentence n, triplet loss tunes the network such that the distance between a and p is smaller than the distance between a and n. So we minimize:  $max(|s(a) s(p)| |s(a) s(n)| + \varepsilon$ , 0)

## **Training Dataset**

- SNLI (Stanford Natural Language Inference)
- Multi-Genre NLI



https://nlp.stanford.edu/projects/snli/

#### **Evaluation**

| Model                      | STS12 | STS13 | STS14 | STS15 | STS16 | STSb  | SICK-R | Avg.  |
|----------------------------|-------|-------|-------|-------|-------|-------|--------|-------|
| Avg. GloVe embeddings      | 55.14 | 70.66 | 59.73 | 68.25 | 63.66 | 58.02 | 53.76  | 61.32 |
| Avg. BERT embeddings       | 38.78 | 57.98 | 57.98 | 63.15 | 61.06 | 46.35 | 58.40  | 54.81 |
| BERT CLS-vector            | 20.16 | 30.01 | 20.09 | 36.88 | 38.08 | 16.50 | 42.63  | 29.19 |
| InferSent - Glove          | 52.86 | 66.75 | 62.15 | 72.77 | 66.87 | 68.03 | 65.65  | 65.01 |
| Universal Sentence Encoder | 64.49 | 67.80 | 64.61 | 76.83 | 73.18 | 74.92 | 76.69  | 71.22 |
| SBERT-NLI-base             | 70.97 | 76.53 | 73.19 | 79.09 | 74.30 | 77.03 | 72.91  | 74.89 |
| SBERT-NLI-large            | 72.27 | 78.46 | 74.90 | 80.99 | 76.25 | 79.23 | 73.75  | 76.55 |
| SRoBERTa-NLI-base          | 71.54 | 72.49 | 70.80 | 78.74 | 73.69 | 77.77 | 74.46  | 74.21 |
| SRoBERTa-NLI-large         | 74.53 | 77.00 | 73.18 | 81.85 | 76.82 | 79.10 | 74.29  | 76.68 |

Table 1: Spearman rank correlation  $\rho$  between the cosine similarity of sentence representations and the gold labels for various Textual Similarity (STS) tasks. Performance is reported by convention as  $\rho \times 100$ . STS12-STS16: SemEval 2012-2016, STSb: STSbenchmark, SICK-R: SICK relatedness dataset.

More of them in the original paper...



### Open source and easy to use

First download a pretrained model.

```
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('distilbert-base-nli-mean-tokens')
```

Then provide some sentences to the model.

```
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.',
    'The quick brown fox jumps over the lazy dog.']
sentence_embeddings = model.encode(sentences)
```

https://github.com/UKPLab/sentence-transformers

