CS5330: Assignment for Week 7

Due: Tuesday, 24th Mar 2020.

Here are solution sketches to the Week 7 problems. If anything is unclear, please talk to me or your TA.

1. Chebyshev's inequality shows that when n items are hashed into n bins using a hash function from a 2-universal family, the maximum load is at most $1 + \sqrt{2n}$ with probability at least 1/2. Generalize this argument to k-universal hash functions. That is, find a value such that the probability that the maximum load is larger than that value is at most 1/2.

We first count the number of k-wise collisions. For any $S \subseteq [n]$ of size k, the probability that all elements in S hash to the same value is $\leq \frac{1}{n^{k-1}}$ by k-universality. Hence, the expected number of k-wise collisions is $\leq {n \choose k} \frac{1}{n^{k-1}} \leq \frac{e^k n}{k^k}$ using the inequality ${n \choose k} \leq \left(\frac{en}{k}\right)^k$. Now, if L is the maximum load, the number of k-wise collisions is at least ${L \choose k}$. Therefore, $\Pr\left[{L \choose k} \geq \frac{2e^k n}{k^k}\right] \leq \frac{1}{2}$. Since ${L \choose k} \geq {L \choose k}^k$, with probability at least 1/2, $L^k \leq 2e^k n$ or $L \leq e(2n)^{1/k}$. [This is roughly what I was looking for, but your argument could be a little different.]

2. Suppose $M = \{0,1\}^m$ and $N = \{0,1\}^n$. Let $\mathcal{M} = \{0,1\}^{(m+1)\times n}$ denote the space of Boolean matrices with m+1 rows and n columns. For any $x \in M$, let $x^{(1)}$ denote the (m+1)-bit vector obtained by appending a 1 to the end of x. For $A \in \mathcal{M}$, define $h_A(x) = x^{(1)}A \pmod{2}$. Show that $H = \{h_A : A \in \mathcal{M}\}$ is a 2-universal hash family. Is it also strongly 2-universal?

H is both 2-universal and strongly 2-universal. Let's first argue universality. Take any two distinct $x,y\in\{0,1\}^m$, and suppose $h_A(x)=h_A(y)$. In particular, $\langle x^{(1)}-y^{(1)},A_j\rangle=0\pmod{2}$ for any $j\in[n]$ where A_j is the j'th column of A. Since $x^{(1)}-y^{(1)}\neq 0$, this is a non-trivial linear constraint on A_j , so you can argue that $\Pr_{A_j\sim\{0,1\}^{m+1}}[\langle x^{(1)}-y^{(1)},A_j\rangle=0\pmod{2}]=\frac{1}{2}$ for every j. Since the A_j 's are independent, it follows that $h_A(x)=h_A(y)$ with probability $\frac{1}{2^n}=\frac{1}{|N|}$.

For strong universality, fix any $u,v\in\{0,1\}^n$. We need to argue that $\Pr[h_A(x)=u,h_A(y)=v]=\frac{1}{2^{2n}}$ for any $x\neq y$. As above, let A_j be the j'th column of A. It's clear that $\Pr[\langle x^{(1)},A_j\rangle=u_j]=\frac{1}{2}$

as $x^{(1)} \neq 0$ (I am assuming $\mod 2$ everywhere). Also because $x^{(1)}$ and $y^{(1)}$ are linearly independent, $\Pr[\langle y^{(1)}, A_j \rangle = v_j \mid \langle x^{(1)}, A_j \rangle = u_j] = \Pr[\langle y^{(1)}, A_j \rangle = v_j] = \frac{1}{2}$. Hence, $\Pr[\langle x^{(1)}, A_j \rangle = u_j, \langle y^{(1)}, A_j \rangle = v_j] = \frac{1}{4}$. Using the independence of the A_j 's proves our claim.

Here, I assumed the useful fact that if $\alpha, \beta \in \{0,1\}^n$ are linearly independent, and if x is drawn uniformly from $\{0,1\}^n$, the random variables $\langle \alpha, x \rangle \pmod 2$ and $\langle \beta, x \rangle \pmod 2$ are independent as random variables. Prove this.

3. For any hash function $h: M \to N$, say it is ϵ -good for two sets $A \subseteq M$ and $B \subseteq N$ if for x drawn uniformly from M:

$$\left| \Pr[x \in A, h(x) \in B] - \frac{|A|}{|M|} \frac{|B|}{|N|} \right| \le \epsilon$$

Suppose h is drawn uniformly from a strongly 2-universal hash family \mathcal{H} . Show that for any $\epsilon > 0, A \subseteq M, B \subseteq N$, the probability that h is not ϵ -good for A and B is at most:

$$\frac{|A|/|M|\cdot|B|/|N|}{\epsilon^2|M|}.$$

Let G_x be the indicator that $h(x) \in B$. By strong 2-universality, $\Pr[G_x = 1] = \frac{|B|}{|N|}$. The key observation is that additionally, G_x and G_y are independent because of strong 2-universality. Hence, if $G = \sum_{x \in A} G_x$, $\mathbb{E}[G] = \sum_{x \in A} \Pr[G_x = 1] = \frac{|A| \cdot |B|}{|N|}$, and $\operatorname{Var}[G] = \sum_{x \in A} \operatorname{Var}[G_x] \leq \sum_{x \in A} \mathbb{E}[G_x^2] = \sum_{x \in A} \mathbb{E}[G_x] = \frac{|A| \cdot |B|}{|N|}$. Using Chebyshev's inequality, $\Pr[|G - |A| \cdot |B|/|N|] > \varepsilon |M|] \leq \left(\frac{|A| \cdot |B|}{|N|}\right)/(\varepsilon^2 M^2) = \frac{|A|/|M| \cdot |B|/|N|}{\varepsilon^2 |M|}$.