

Eşdizimlilik(Collocation)

Prof.Dr. Banu Diri

Eşdizimlilik(Collocation) Nedir?

- İki veya daha fazla kelimenin bir araya gelerek farklı bir şeyi ifade etmesidir (ağır abi).
- Kelimeler birlikte kullanıldıklarında daha farklı anlamlar içerebilirler (disk drive, hot dog, mother in law).
- Kelimeler üzerinde çalışırken onları bulundukları bağlamdan bağımsız olarak düşünmek imkansızdır. Kelimeler bağlam içerisinde çıplak anlamlarından farklı anlamlar alabilir.
- Metin içerisinde neyin kaç kez göründüğündense neyle beraber göründüğü önemlidir (Türkiye Büyük Millet Meclisi, Türk Hava Yolları, vs.).

Eşdizimlilik iki ilkeye sahiptir.

- Açık seçim ilkesi
- Deyim ilkesi

Açık seçim ilkesi: Birbirleriyle bağlantılı kelimelerin seçiminde herhangi bir zorlanma yoktur (Mavi gökyüzü).

Deyim ilkesi: Kelimelerin ayrı ayrı anlamlarından farklı bir anlam çıkarılır (Tefe koymak).

- İngilizceden örnek
 - noun phrases strong tea not powerful tea
 - phrasal verbs to make up and the rich and powerful
- Geçerli bir eşdizimlilik mi (collacation)?
 - a stiff breeze (sert esen rüzgar) but not a stiff wind
 (a strong breeze or a strong wind is okay)
 - broad daylight (güpegündüz) (but not bright daylight or narrow darkness)

Eşdizimlilik(Collocations) kriterleri

Eşdizimlilik sınırlı sayıda kelime ile karakterize edilir.

- Eşdizimlilikte 3 farklı kriter vardır.
 - non-compositionality (bir araya getirilemez)
 - non-substitutability (yeri değiştirilemez)
 - non-modifiability (değiştirilemez)
- Eş dizimlik hiç bir zaman bir dilden diğer dile kelime kelime tercüme edilemez.
- Eşdizimlilik için kelimeler arka arkaya gelmek zorunda değildir (*knock...door*).

Non-Compositionality

- Kelimelerin herbirinin anlamından birleştirilmiş ifadenin anlamı tahmin edilebiliyorsa bu ifade compositional'dır.
 - new companies
- Kelimelerin herbirinin anlamından birleştirilmiş ifadenin anlamı tahmin edilemiyorsa bu ifade non-compositional'dır.
 - hot dog
- Kelimelerin herbirinin anlamından birleştirilmiş ifadenin anlamı yakın olarak tahmin edilebilir.
 - strong tea, powerful drug, not powerful tea
- non-compositional için en uç örnekler deyimlerdir.
 - "it rains cats and dogs", "etekleri zil çalmak"

Non-Substitutability

- Collocation'nın bir elemanı olarak yakın anlamlı (near-synonyms) bir kelimeyi kullanamayabiliriz.
 - Beyaz şarabın rengini iyi tanımlasa bile white wine yerine yellow wine kullanılamaz
- Collocation'ların çoğu gramatik olarak bir dönüşüm veya ek bir kelime ile yeniden düzenlenemezler (**Non-modifiability**).
 - white wine, but not whiter wine
 - mother in law, but not mother in laws

Collocation'da alt sınıflar

- Light verbs
 - make, take ve do gibi fiilerin kullanımı
 - make lunch, take easy
- Fiil Edat yapıları
 - to go down
- Özel isimler (proper nouns)
 - Mustafa Kemal Atatürk
- Teknik terimler, teknik alandaki nesne ve kavramlar
 - Hidrolik yağ filtresi (Hydraulic oil filter)

Collocation'ları bulmak için genel yaklaşım

<u>Bir text içerisinde yer alan collocation'lar nasıl bulunur ?</u>

- En basit method: *Frekans*'a dayalı collocation seçimi
- Eşdizimliliği oluşturan kelimeler arsındaki uzaklığın ortalama ve varyansına dayalı seçim (mean and variance)
- Hipotez testi (Hypothesis testing)
- Karşılıklı bilgi (Mutual information)

Frekans yaklaşımı (Frequency)

- Meydana gelme sıklığına göre collocation'nın bulunması.
- Size window'a ihtiyaç vardır.
- Döndürülen sonuçlar içerisinde Function word'ler (stop words) olabilir. Bunların filtrelenmesi gerekir.
- Bu filtreden geçen yapılar collocation'a adaydır.

$C(w^1 \ w^2)$	w^1	w^2
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said
9775	as	a
9231	is	a
8753	has	been
8573	for	a

Örnek Corpus'daki en sık kullanılan bigram'lar (biword) çıkarılır

> New York hariç, listedeki bigram'ların hepsi function word'dür

Tag Pattern Example A: adjective (sıfat)

A N linear function N: noun (isim)

N N regression coefficients

A A N Gaussian random variable P: preposition

ANN cumulative distribution function (edat)

NAN mean squared error

N N N class probability function

N P N degrees of freedom

Part of speech tag patterns for collocation filtering (Justesen and Katz).

$C(w^1\;w^2)$	w^1	w^2	tag pattern
11487	New	York	AN
7261	United	States	A .
5412	Los	Angeles	Eğer collocation'ı
3301	last	year	oluşturan kelimeler
3191	Saudi	Arabia	arası sabit ise Frekans
2699	last	week	tabanlı yöntem iyi sonuç
2514	vice	president	\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim
2378	Persian	Gulf	A Nonceverir. as' a filtre
2161	San	Francisco	NN uygulandıktan sonra,
2106	President _O	Bush	
2001	Middle	East	AN geride kalan en yüksek
1942	Saddam	Hussein	NN kullanım sıklığına sahip
1867	Soviet	Union	A N ifadeler
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	A N Slide 12

	w	C (strong,w)	w	C(powerful,w
	support	50	force	13
	safety	22	computers	10
İ	sales	21	position	8
	opposition	19	man	8
ľ	showing	18	computer	8
	sense	18	man	7
	message	15	symbol	6
	defense	14	military	6
	gains	13	machines	6
	evidence	13	country	6
	criticism	13	weapons	5
Ī	possibility	11	post	5
	feelings	11	people	5
	demand	11	nation	5
Ī	challenges	11	forces	5
ĺ	challenge	11	chip	5
	case	11	Germany	5
	supporter	10	senators	4
ſ	signal	9	neighbor	4
ſ	man	Ω	magnat	Л

Strong challenge, powerful computer

Not powerful challenge, strong computer

Collocational Window

Çoğu collocation farklı değişken uzunluklarda bulunabilir.

Bu tip collocation'ların bulunmasında *Frekans Tabanlı* yaklaşımlar kullanılmaz.

she knocked on his door distance=3
they knocked at the door distance=3
100 women knocked on Donaldson's door distance=5
a man knocked on the metal front door distance=5

Sentence: she knocked on his door

Bigrams:

she knocked she on she his

knocked on knocked his knocked door

on his on door

his door

3 kelimelik collocation window kullanılarak bigram'lar çıkarılır.

Genelde 3, 4 kelimelik window'lar kullanılır.

Mean and Variance

Knocked and door arasındaki ilişkiyi keşfetmenin bir yolu, corpus içerisinde yer alan iki kelime arasındaki ofsetin (işaretli uzaklık) mean (ortalama) ve variance (varyans) hesaplamaktır.

Ortalama(mean= µ), iki kelime arasındaki ofsetin ortalamasıdır.

she knocked on his door they knocked at the door 100 women knocked on Donaldson's door

a man knocked on the metal front door

Mean?
$$\mu = \frac{1}{4} (3+3+5+5) = 4.0$$

Bazen distance negatif bir sayı olabilir. *The door that she knocked*

on

Mean and Variance

- Varyans : Değerlerin ortalamanın çevresindeki dağılımını ölçmek için kullanılan bir niceliktir. Ortalamanın örneklem değerlerinden çıkarılmasıyla bulunan sapmaların karelerinin ortalaması alınarak hesaplanır.
- $\sigma^2 = S$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (d_i - \mu)^2}{n - 1}$$

– n iki kelimenin birlikte kullanılma sayısı, d_i i. birlikte görülmenin uzaklık değeri, ve μ ortalama

- Ortalama ve varyans, iki kelime arasındaki mesafenin dağılımını karakterize eder.
- Yüksek varyansın anlamı, birlikteliklerin şans eseri gerçekleştiğidir.
 - Düşük varyansın anlamı, birlikteliklerin aynı uzaklıklara sahip olduğudur.

$$\sigma = \sqrt{\frac{1}{3}} \left((3 - 4.0)^2 + (3 - 4.0)^2 + (5 - 4.0)^2 + (5 - 4.0)^2 \right) \approx 1.15$$

Ortalama ve varyansa dayalı Collocation'ların bulunması

S	ā	Count	Word 1	Word 2
0.43	0.97	11657	New	York
0.48	1.83	24	previous	games
0.15	2.98	46	minus	points
0.49	3.87	131	hundreds	dollars
4.03	0.44	36	editorial	Atlanta
4.03	0.00	78	ring	New
3.96	0.19	119	point	hundredth
3.96	0.29	106	subscribers	by
1.07	1.45	80	strong	support
1.13	2.57	7	powerful	organizations
1.01	2.00	112	Richard	Nixon
1.05	0.00	10	Garrison	said

- •σ küçük, μ 1'e yakın ise NY frekans tabanlı yöntem ile bulunur.
- σ küçük, μ, 1'den büyük ise üzerinde durulması gereken ilginç bir durumdur.

The pair *previous* / games (distance 2) corresponds to phrases like *in the previous 10 games* or *in the previous 15 games*; *minus* / *points* corresponds to phrases like *minus 2 percentage points, minus 3 percentage points* etc; *hundreds* / *dollars* corresponds to *hundreds of billions of dollars* and *hundreds of millions of dollars*.

- Eğer σ çok büyük ise bu kelime çiftleri ile ilgilenilmez.
- strong {business} support,
 powerful {lobbying}
 organizations, Richard
- {M.} Nixon, and Garrison said / said Garrison (remember that we tokenize Richard M. Nixon four

Şansın bertaraf edilmesi...

- İki kelime şans eseri birlikte olabilir.
 - Frekansı yüksek ve varyansı düşük ise
- **Hipotez Testini (Hypothesis Testing)** kullanarak bu birlikteliğin gerçek mi yoksa şans eseri mi olduğu ölçümlenebilir.

Hipotez

 Örneklemeye dayalı bir popülasyon parametesinin değeri hakkında ileri sunulan iddia

Örnekler:

- 1.İstatistik Vize sınıvanın ortalaması 50'nin altındadır.
- 2. Televizyon izleyicilerin %70 i günlük haber programlarını izlemektedir.
- 3. Firestone ve Lassa tatafından üretilen lastiklerinin ömrü aynıdır.

Hipotez Testleri

 Bir popülasyon hakkında ileri sunulan hipotezinin kabul edilip edilmeyeceğini belirlemek için örneklemeye dayalı sistematik izlenen bir seri işlemler.

5 aşamadan oluşur.

1. Null ve alternatif hipotezin belirlenmesi

Null hipotezi: Bir popülasyon parametresi hakkında ileri sürülen varsayım. Genellikle bu varsayımda popülasyon parametresinin belli bir değeri olduğu varsayılır.

H₀= null hipotezi yada sıfır hipotez

Alternatif hipotez: Örneklemeye ait veriler null hipotezonin yanlış olduğuna ait deliller sunduğu durumlarda kabul edilen hipotezdir

H_A = alternatif hipotez

Hipotez Testinin Aşamaları

Önem veya Risk Derecesinin
 Belirlenmesi(α): Aslında doğru olan Null
 hipotezinin rededilme olasılığı:

Risk derecesinin seçimi tercihe dayalı

 Genelde 0.05 yani % 5 ve % 1 risk dereceleri araştırmalarda kullanılmakta

Hata Tipleri

- I. tip hata: Null hipotezi doğru iken reddedilir.
- I. Tip hata yapma olasılığı α olarak bilinmektedir.
- II. tip hata: Null hipotezi yanlış iken rededilmez.
- II. Tip hata yapma olasılığı β olarak bilinmektedir.
- Daima bu hatalardan birini yapma ihtimali vardır. Bu ihtimalleri risk derecesini belirleyerek azaltmak isteriz.

Hipotez Testinin Aşamaları

3. Istatistiksel test metodunun belirlenmesi: Null hipotezin rededilip edilmeyeceğinin belirlenmesinde kullanılan ve popülasyon örneklemesinden elde edilen değer

örnek: t, F,ve ki kare istatistik testleri

- 4. Null hipotezinin hangi koşullarda kabul ve hangi koşullarda rededileceğinin belirlenmesi
- Karar verilmesi: Null hipotezinin alınan risk derecesi doğrultusunda reddi yada kabülü.

1: Null ve Alternatif hipotezleri ileri sürmek

- Farzedelim ögrençilerin ders geçmek için 60 almaları gerekmekte.
- Rastgele 40 ögrenci secelim ve onların ortalamalarının 64 olduğunu varsayalım
- Araştırma sorusu: Popülasyonun gerçek ortalaması 60 ın üzerinde midir?
 - H₀: μ ≤ 60
 - H_Δ: μ >60

3: Hipotez testinin 1 veya 2 yönlü olup olmadığının belirlenmesi

- Eğer alternatif hipotez ortalamanın belli bir değere eşit yada ondan büyük olduğunu ifade ediyor ise hipotez tek yönlüdür.
- Örnek: H_A: μ ≥ 60

● ● 102% ▼

Find

5: Test istatistiğini belirlemek ve kritik değerle karşılaştırmak

Popülasyonun standart sapması bilniyor ise z= kritik değer sağdaki formül vasıtasıyla hesaplanır.

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

 \overline{X} = orneklemenin ortalamasi

μ = populasyon ortalamasi

σ = populasyonun standart sapmasi

- Popülasyonun standart sapması bilinmiyorsa ve n ≥ 30, örneklemenin standart sapması (s) popülasyonun standart sapması yerine kullanılabilir.
- Populasyon normal dağılım sergilemekte
- Hipotez testinde kullanıcak değer:

$$z = \frac{\overline{X - \mu}}{\sqrt[s]{\sqrt{n}}}$$

Hipotez Test Aşamalarını Özetlersek

- Null ve Alternatif Hipotezleri Belirlemek: H₀, H_a
- Önem yada Risk Derecesini Belirlemek: α
- Hipotezin tek mi çift mi yönlü olduğunu belirlemek
- 4. Kritik değerleri belirlemek
- Test istatistik değerlerini hesaplamak ve kritik değerle karşılaştırmak

Örnek 1

$$H_0$$
: $\mu = 50$

$$H_1: \mu \neq 50$$

Örnek ortalaması 49, örneklemedeki veri sayısı da 36dır. Popülasyonun standart sapması ise 5 dir. Hipotez testinde % 5 risk alırsak

- a) Hipotez testi tek mi yoksa çift mi yönlüdür
- b) Null hipotezi hakkındaki kararınız nedir
- c) Bu kararı almaktda nekadar kendinize güveniyorsunuz yani p değeri nedir.

Örnek 1. Çözüm

- a) Hipotez testi iki taraflı bir hipotezdir çünkü alternatif hipotezin yönü yoktur yada belli değildir. Popülasyon ortalaması 50 den farklı olabilir ifadesi büyükte olabilir ve küçükte olabilir gibi 2 ihtimal içermektedir. Bu nedenle hipoteze 2 taraflı hipotez denilmektedir.
- b) %5 riskle taralı alanlar hipotezin rededildiği alanları ifade etmektedir.

$$z = \frac{49 - 50}{5 / \sqrt{36}} = -1.2$$

Hesaplanan z değeri bu taralı alanlar dışında kalan bölgeye düştüğüne göre Null hipotezini kabul edebiliriz

Örnek 1. Çözüm (Devam)

c) Null hipotezini kabul etmede ne kadar eminiz ? Bunu belirleye bilmek için hesaplanan z değerinin o değerinin üzerinde bulunma olasılığını yani p değerini hesaplamamız gerekecektir.

-1.2 ve altında bir değer olma olasılığı 0,1151dir (0.5-0.3849). p değerini hesaplayabilmek için z değerinin -1.2 den az ve 1.2 den fazla olma ihtimalini hesaplamamız gerekmektedir çünkü hipotez iki taraflı olup iki farklı red bölgesi içermektedir. Bu nedenle p değeri 2 x 0,1151di r. p değeri risk derecesinden 0.05 büyük olduğundan null hipotezi kabul edilir. p değeri popülasyonun ortalmasının 50 nin üzerinde veya altında olma olasılığının %11.51 olduğunu ifade eder.

Örnek 2: Tek yönlü z testi

- Bir kutu mısır gevreği 368 gramın üzerinde midir?
- •Ratgele seçilen 25 kutunun ortalaması \overline{X} = 372.5 gr.
- Üretiçi firma ürün miktarı için standart sapmayı σ 15 gram olarak belirlemiştir.
- Hipotezi 0.05 önem derecesi ile test edelim.

Tek yönlü hipotez test çözümü

Test İstatistiği:

Ho:
$$\mu \le 368$$

Ha: $\mu > 368$ $z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{3725 - 368}{\frac{15}{\sqrt{25}}} = +1.50$

n = 25, σ bilinmekte

Kritik değerler

Karar:

Null hipotez α = 0.05 ile rededilmez

Sonuç:

Ortalamanın 368 gr üzerinde olduğuna ait yeterli delil yoktur.

Çift yönlü z Testi Çözümü

H₀: $\mu = 368$

Ha: $\mu \neq 368$

 $\alpha = 0.05$

n = 25, σ bilinmekte

Kritik değerler

Test İstatistiği:

$$z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{3725 - 368}{\frac{15}{\sqrt{25}}} = +1.50$$

Karar:

Null hipotezi $\alpha = 0.05$ ile red edilmez

Sonuç:

Ortalama miktarın 368 olduğu hakkında yeterli bir delil yoktur

z-testi and t-testi karşılaştırılması

- z-test istatistiği
 - Normal dağılıma dayalı
 - Popülasyonun varyansı bilindiğinde yada örneklemedeki veri sayısı büyük olduğunda örneklerin ortalamaları hakkındaki hipotezleri test etmek için kullanılır
- t-test istatistiği
 - t dağılımına dayalı
 - t dağılımının şekli örneklemedeki veri sayısına bağlı olarak değişmektedir
 - Serbestlik derecesine bağlıdır df :n-1
 - Örneklemedeki veri sayısı artıkca t dağılımı normal dağılıma yaklaşır
 - Popülasyonun varyansı yada standart sapması bilinmediğinde ve örneklemedeki veri sayısı küçük olduğunda (n<30) örneklerin ortalamaları hakkındaki hipotezleri test etmek için kullanılır

t-testleri

Varyans hakkında kesin bir bilgiye sahip olmadığımız için (sadece tahmin), t dağılımını kullanırız

t-testinin ortalaması

$$t = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}$$

 \overline{X} = örnek ortalaması

 μ = test edilen popülasyonun ortalaması

s = örnek standart sapması

 $n = \ddot{o}rneklemedeki$ veri sayisi

1 & 2: Hipotezleri belirle, önem derecesini α belirle

- Sınıfın ortalama notu 70 ve üstüdür:
 - H_0 : μ ≤ 70
 - H_A : $\mu > 70$
- $\alpha = 0.05$

t= 2.015 [serbestlik derecesi d.f. =5] için

5: Test istatistklerini hesapla & değerlendir

- küçüktür. Null
- t değeri kritik değerinden $x = \frac{475}{6} = 79.17$
- Hipotezi kabul edilir s = 13.17

$$t = \frac{79.17 - 70}{\frac{13.17}{\sqrt{6}}} = 1.71$$

Örnek: 2 yönlü t testi

- Kuzey Kıbrıstaki seçim noktalarının her birinde <u>az yada çok</u> 368 seçmen oy kullanmışmıdır?
- 36 rastgele seçim noktasındaki ortalama seçmen sayısı 372.5 ve standart sapma 12 seçmendir.
- Hipotezi 0.05 önem derecesi ile test edelim

Çift yönlü t Testi: Çözüm

Test İstatistiği:

Ho:
$$\mu = 368$$

H₁: $\mu \neq 368$ $t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{372.5 - 368}{\frac{12}{\sqrt{36}}} = +2.25$
 $\alpha = .05$

$$df = 36 - 1 = 35$$

Kritik değerler

Karar:

Null hipotezi α = 0.05 ile red edilir Sonuç:

Popülasyonun ortalamasının 368 olmadığına ait delil vardır

Örnek: Tek yönlü t testi

- Kuzey Kıbrıstaki seçim noktalarının her birinde 368 den fazla seçmen oy kullanmış mıdır?
- 36 rastgele seçim noktasındaki ortalama seçmen sayısı 372.5 ve standart sapma 12 seçmendir.
- Hipotezi 0.05 önem derecesi ile test edelim

Tek yönlü t testi - Çözüm

H₀: μ ≤368

H₁: $\mu > 368$

$$\alpha = .05$$

$$df = 36 - 1 = 35$$

Kritik değerler

Test İstatistiği:

$$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{372.5 - 368}{\frac{12}{\sqrt{36}}} = +2.25$$

Karar:

Null hipotezi α = 0.05 red edilir Sonuç:

368 den fazla seçmenin ortalama oy sandıklarında oy kullandığına ait delil vardır

t-Test: Örnek

• Corpus içerisinde, *new* kelimesi 15,828 kez, *companies kelimesi de* 4,675 kez geçmiş olsun, ve corpusta toplam 14,307,668 kelime olsun.

Null hipotez bu iki kelimenin bağımsız olarak meydana geldiği olsun.

 $H_o: P(new\ companies) = P(new)P(companies)$

$$= \frac{15828}{14307668} \times \frac{4675}{14307668} \approx 3.615 \times 10^{-7}$$

Eğer bu null hipotez doğru ise rasgele Bigram'lar üretelim. *New company* gelirse 1, diğer durumlarda 0 olsun (Bernoulli trial – sadece iki durum söz konusu)

t-Test: Örnek

$$P = 3.615 \times 10^{-7}$$

 $\mu = 3.615 \times 10^{-7}$
 $\sigma^2 = p(1-p) \cong p$

• 14,307,668 adet bigram içerisinde *new companies* kelimesi ile 8 kez karşılaşılsın

$$\overline{X} = \frac{8}{14307668} \approx 5.591 \times 10^{-7}$$

$$t = \frac{\overline{x} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \approx \frac{5.59110^{-7} - 3.61510^{-7}}{\sqrt{\frac{5.59110^{-7}}{14307668}}} \approx 0.999932$$

α = 0.005 için kritik
değer 2,576 olsun,
(df=sonsuz)
t<2,576 null
hipotez kabul edilir.
New company
collocation değildir.

t	$C(w^1)$	$C(w^2)$	$C(w^1w^2)$	W^1	W^2
4.4721	42	20	20	Ayatollah	Ruhollah
4.4721	41	27	20	Bette	Midler /
4.4720	30	117	20	Agatha	Christie
4.4720	77	59	20	videocassette	recorder
4.4720	24	320	20	unsalted	butter
2.3714	14907	9017	20	first	made
2.2446	13484	10570	20	over	many
1.3685	14734	13478	20	into	them
1.2176	14093	14776	20	like	people
0.8036	15019	15629	20	time	last

Hipotez red ediliyor. İlk 5 bigram collocation için adaydır.

 H_o : bu ikililer birbirlerinden bağımsızdır.

 α =0.005 için değer 2,576 ise

Hipotez kabul ediliyor. Son 5 bigram collocation'a aday değildir.

Hypothesis testing of differences-İki ortalama Farkın Testi (Church and Hanks, 1989)

Bazı durumlarda iki popülasyonun ortalamalarının karşılaştırılması gerekebilir. Amaç, 2 örnek ortalamasının aynı ortalamalı 2 popülasyondan gelip gelmediğini test etmektir.

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 H_0 =farkların ortalaması sıfırdır. $\mu = 0$

$$\bar{x} - \mu = \bar{x} = \frac{1}{n} \sum (x_{1i} - x_{2i}) = \bar{x}_1 - \bar{x}_2$$

$$t \approx \frac{C(v^1 w) - C(v^2 w)}{\sqrt{C(v^1 w) + C(v^2 w)}}$$

$$\overline{x}_1 = s_1^2 = P(v^1 w)$$

$$\overline{x}_2 = s_2^2 = P(v^2 w)$$

$$s^2 = p - p^2 \approx p$$

Örnek: 2 popülasyonun ortalamalarının karşılaştırılması

2 farklı hastanenin acil servisine gelen hastalara müdahele süresi aşağıda sunulmaktadır. Bu araştırmaya göre %1 riskle numune hastanin acil servisi, sigorta hastanesinin acil servisinden daha mı hızlı hastalara ilk müdaheleyi yapmaktadır?

Hastane	Ortalama süre	Örnek standart	Örnek sayısı
	lo o	sapması	
numune	5.5 dak	0.4 dak	50
sigorta	5.3 dak	0.3 dak	100

Null ve alternatif hipotez:

$$H_0$$
: μ_1 = μ_2

$$H_1: \mu_1 \rangle \mu_2$$

Örnek: Devam

$$z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{5.5 - 5.3}{\sqrt{\frac{0.4^2}{50} + \frac{0.3^2}{100}}} = 3.12$$

z = 3.12 > 2.33

13 / 20 🕞 🖲 100% 🕶 拱 🔂 Find

null hipotezi red edilir, alternatif hipotez %1 riskle kabul edilir.

p değeri bu büyüklükte yada onun üzerinde bir değer bulma olasılığıdır. 3.12 ve üzerinde bir z değeri alma olasılığı 0.499(Tabloda 3.12 değeri olmadığından en yakın 3.09 değerine karşılık gelen olasılık esas alınmıştır.

Buna göre 3.12 ve üzeri bir değer olma olasılığı: 0.5-0.499=0.001 Bu değer 0.01 risk derecesinden küçük olduğundan null hipotezinin doğru olmama ihtimali çok yüksektir.

Örnek : *strong* ve *powerful* kelimeleri ile birlikte görülen kelimeleri bulmak isteyebiliriz.

t	C(w)	C(strong w)	C(powerful w)	Word
3.16	933	О	10	computers
2.82	2337	O	8	computer
2.44	289	O	6	symbol
2.44	588	O	5	Germany
2.23	3745	O	5	nation
7.07	3685	50	О	support
6.32	3616	58	7	enough
4.69	986	22	O	safety
4.58	3741	21	O	sales
4.02	1093	19	1	opposition

 $H_0: \mu_{1=} \mu_2$

 $[\]alpha$ =0.005 için değer 2,576 ise

Pearson'nın ki-kare (chi-square) testi

- İki değişkenin birbirine bağımlı olup olmadığı veya bir değişkenin başka bir değişkenle ilişkili olup olmadığını test etmek için kullanılır.
- Popülasyon içerisindeki dağılım bilindiği halde bazen de bilinmeyebilir veya örneklem dağılımının popülasyon dağılımına uyup uymadığı kontrol edilmek istenebilir.
- 2 x 2'lik bir matris kullanılır. Matrisin hücrelerinde *gözlemlenen* (observed) değerler vardır. Bu matris yardımıyla beklendik (expected) değerler hesaplanır.
- Sonrasında ki-kare değeri hesaplanır.

$$X^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

χ² Test: örnek

	$w_1 = new$	$w_1 \neq new$	
$w_2 = companies$	8	4667	4675
	(new companies)	(e.g., old companies)	
$w_2 \neq companies$	15820	14287181	14303001
	(e.g., new machines)	(e.g., old machines)	
	15828	14291848	14307676

E_{ij}=((satır_toplamı) x (sütun_toplamı)) / toplam N

$$X^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \qquad \chi 2 \cong 1.55$$

5.17	4669.8
15822.8	14287178.2

H_o: bu ikililer birbirlerinden bağımsızdır.

 $\chi 2$ tablosundan df(degree of freedom)=n-1 (n=2 df=1) için α = 0.05 değeri 3.8 olup, 1.55 < 3.8 null hypothesis kabul edilir. new companies collocation değildir.

χ2 nin farklı kullanım alanları

	cow	^cow
vache	59	6
^vache	8	570934

İki farlı corpus'tan yararlanarak çeviri yaparken uygun kelimenin bulunması.

H_o= cow, vache birbirinden bağımsızdır.

 $\chi 2 = 456400$ bulunur ve H_o red edilir

Mutual Information

- Mutual Information, bir kelimenin diğer kelimeler hakkında bize ne söylediğini kabaca anlatır.
- Bazı problemleri mevcuttur.

İki olay arasındaki benzerliğin ölçümünde her zaman iyi değildir.

Bağımlılığın ölçümünde kötüdür.

Sparse data'da kötüdür.

$$I(x', y') = \log_2 \frac{P(x'y')}{P(x')P(y')}$$

$$= \log_2 \frac{P(x'|y')}{P(x')}$$

$$= \log_2 \frac{P(y'|x')}{P(y')}$$

I(w1,w2)	C(w1)	C(w2)	C(w1,w2)	w1	w2
18.38	42	20	20	Ayatollah	Ruhollah
17.98	41	27	20	Bette	Midler
16.31	30	117	20	Agatha	Christie
15.94	77	59	20	videocassette	recorder
15.19	24	320	20	unsalted	butter
1.09	14907	9017	20	first	made
1.01	13484	10570	20	over	many
0.53	14734	13478	20	into	them
0.46	14093	14776	20	like	people
0.29	15019	15629	20	time	last

$$I(Ayatollah, Ruhollah) = \log_2 \frac{\frac{20}{14307668}}{\frac{42}{14307668}} \approx 18.38$$

	Chambre	^chambre	MI	$\chi 2$
House	31,950	12,004	4.1	553610
^house	4,793	848,330		
	Communes	^communes		
House	4,974	38,980	_	
^house	441	852,682	4.2	88405

Kanada parlementosundaki anayasa hem Ingilizce hem de Fransızca olarak hazırlanmış.

$$\log \frac{P(house \mid chambre)}{P(house)} = \log \frac{31950}{31950 + 4793} \approx \log \frac{0.87}{P(house)}$$

$$< \log \frac{0.92}{P(house)} \approx \log \frac{4974}{4974 + 441} = \log \frac{P(house \mid communes)}{P(house)}$$

Collocation'nın Kullanım Alanları ...

- Corpus Analizlerinde
- Information Retrieval
- Cross-language Information Retrieval