

Adaptado do material do Prof. José Elias Arroyo

- Avaliar um algoritmo consiste em:
 - Verificar se o algoritmo está correto:
 O algoritmo fornece uma solução válida para o problema?
 - Verificar sua eficiência:

Quanto tempo gasta?

Quanto de memória usa?

- Para resolver um problema podem ser projetados vários algoritmos diferentes.
- O fato de um algoritmo resolver (teoricamente) um problema não significa que seja aceitável na prática.
- Através da análise de algoritmos, podemos determinar o algoritmo mais eficiente (o melhor algoritmo).

- Como analisar a eficiência de um algoritmo?
- Existem dois tipos de eficiência:
- Eficiência de tempo: indica quão rápido um algoritmo é executado
- Eficiência de espaço: está relacionado com o espaço de memória que o algoritmo necessita.

- Inicialmente, ambos tipos de eficiência eram importantes.
- Depois, a quantidade de espaço requerido por um algoritmo deixou de ser tão importante.
- Atualmente, voltou a ser importante devido ao enorme volume de dados que vem sendo produzido por diversas fontes: gps, celulares, satélites
- O famoso problema de processamento de Big
 Data

Complexidade de Tempo

- Analisar um algoritmo com relação ao tempo consiste em calcular o "tempo de execução" sem implementá-lo em uma plataforma específica;
- O "tempo de execução" de um algoritmo depende do tamanho da entrada do algoritmo, ou seja, do tamanho do problema resolvido pelo algoritmo.
- "Quanto maior o tamanho da entrada do algoritmo maior será a tempo de execução do algoritmo"
- Assim, a eficiência de um algoritmo é determinada em função do tamanho da entrada (um parâmetro n).
- Ou seja, se n é o tamanho da entrada, a eficiência de tempo do algoritmo é dada por uma função T(n).

Complexidade de Tempo

- O tempo necessário para resolver um problema cresce a medida que o tamanho da entrada n cresce.
- Existem algoritmos cujo tempo de execução cresce <u>exponencialmente</u> enquanto o tamanho do problema cresce apenas linearmente.

Tempo de execução

Tamanho da entrada

Tamanho da Entrada

- O tamanho da entrada de um algoritmo, geralmente, é um parâmetro inteiro n que denota a quantidade de dados de entrada do problema que esta sendo resolvido.
- Em alguns algoritmos o tamanho da suas entradas são definidas por mais de um parâmetro.

<u>Exemplo 1</u>. Ordenar uma lista $L = \{a_1, a_2, ...a_n\}$ com n números.

 \Rightarrow tamanho da entrada é *n* (quantidade total dos elementos).

Exemplo 2. Calcular o fatorial de um número inteiro n.

O único dado deste problema é $n \Rightarrow$ O cálculo do fatorial de n consiste em multiplicar os números de 1 até $n \Rightarrow$ o tamanho da entrada de qualquer algoritmo para resolver o problema será n.

Tamanho da Entrada

- □ Exemplo 3: Multiplicar duas matrizes $A_{n\times m}$ e $B_{m\times p}$.
 - \Rightarrow o tamanho da entrada é n, m e p \Rightarrow a eficiência do algoritmo será dada por uma função com 3 variáveis: T(n, m, p).
- □ Exemplo 4: Multiplicar duas matrizes quadradas $A_{n\times n}$ e $B_{n\times n}$ ⇒ o tamanho da entrada é n.
- *Exemplo 5*: Calcular x^n .
 - \Rightarrow o tamanho da entrada é n.

Unidades para medir o tempo de execução de um algoritmo

- Unidade (física) de tempo: segundo, milissegundo, etc.
 - Neste caso, o tempo de execução depende do computador (hardware), compilador, sistema operacional, etc.
- Unidade que não depende de fatores externos: n° de operações
- V Número total de operações executadas pelo algoritmo. Identificar e contar todas as operações executadas pelo algoritmo é difícil e é desnecessário.
- Número de vezes que a operação mais importante (operação básica) do algoritmo é executada.
 - Basta identificar a operação que mais contribui para o tempo de execução total e contar o número de vezes que esta operação é executada.

Exemplos de operações básicas

- Problema da busca de uma chave em uma lista de n itens
 - ⇒ Operação básica: comparação de chaves
- □ Problema da ordenação de uma lista de *n* itens
 - ⇒ Operação básica: comparação de chaves
- Multiplicação de duas matrizes
 - ⇒ Operação básica: multiplicação de elementos
- □ Cálculo de xⁿ
 - ⇒ Operação básica: multiplicação da base x
- Cálculo do fatorial de n
 - ⇒ Operação básica: multiplicação de números (de 1 a *n*).

Eficiência de Algoritmos

- Para determinar a eficiência (tempo) de um algoritmo, basta determinar o número de vezes que a operação básica é executada. Este número é determinado em função do tamanho da entrada n.
 - T(n) = número de vezes que a operação básica é executada
- □ Exemplo: $T(n) = 2n^2 + n + 4$ vezes.
- □Geralmente, a operação básica (operação que consome mais tempo) está no laço (loop) mais interno
- □ *T*(*n*) é uma *estimativa* (aproximação) do *número total de operações* executadas pelo algoritmo.

Eficiência de Algoritmos

- □ Em alguns algoritmos, a eficiência (tempo) depende não apenas do tamanho da entrada, mas também da forma da entrada, ou seja, da instância do problema a ser resolvido.
- Exemplo: Problema de busca de uma chave x numa lista com n itens.

Entradas (instâncias) de tamanho n = 6 e x = 5:

$$L_1 = \{5, 9, 1, 20, 4, 7\}$$

 $L_2 = \{2, 5, 14, 8, 22, 10\}$
 $L_3 = \{6, 9, 1, 20, 5, 7\}$
 $L_4 = \{3, 7, 1, 10, 4, 5\}$

 Note que o tempo do algoritmo de busca não é o mesmo para as diferentes entradas

- Seja um algoritmo para resolver um certo problema e sejam E₁, E₂,..., E_m, as m possíveis entradas de tamanho n.
- □Suponha que $T_1(n)$, $T_2(n)$, ..., $T_m(n)$ sejam, respectivamente, os tempos para resolver cada uma das entradas.
- □ Daí, a eficiência (tempo) de:
 - Melhor Caso: $T_B(n) = min \{T_i(n), i=1,...,m\}$
 - Pior Caso: $T_W(n) = \max \{Ti(n), i=1,...,m\}$
 - Caso Médio:

 $T_M(n) = p_1 \times T_1(n) + p_2 \times T_2(n) + + p_m \times T_m(n)$ onde p_i é a probabilidade da entrada E_i ocorrer.

□ <u>Exemplo 1</u>: Algoritmo de busca seqüencial para encontrar uma chave x em uma lista de n itens.

```
int BuscaSequencial(int L[], int n, int x){
int i = 0;
while(i < n && L[i] != x)
   i++;
if (i < n)
   return i; //retorna o índice do 1° elemento x encontrado
else return -1; //retorna -1 caso x não seja encontrado
}</pre>
```

□ A operação básica do algoritmo é L[i]!= x.

```
T_B(n) = 1 (ou seja, no melhor caso, será executada 1 vez)

T_W(n) = n (ou seja, no pior caso, será executada n vezes)

TM(n) = ???
```


Calculando o caso médio:

 Para o problema da busca podemos ter (n+1) entradas distintas:

$$L_1,..., L_n, L_{n+1}$$
 (todas a listas de tamanho n)

Probabilidade p_i de cada lista entrada ocorrer:

$$p_i = 1/(n+1), \forall i = 1,..., n+1$$

 Tempo do algoritmo para cada entrada (número de comparações):

$$T_i(n) = i, \forall i = 1,...,n+1.$$

Calculando o caso médio:

$$T_{M}(n) = \sum_{i=1}^{n+1} p_{i} \times T_{i}(n) = \sum_{i=1}^{n+1} \frac{1}{(n+1)} \times i =$$

$$= \frac{1}{(n+1)} \times \sum_{i=1}^{n+1} i = \frac{1}{(n+1)} \times \frac{(n+1)(n+2)}{2} = \frac{n+2}{2}$$

 <u>Exemplo2</u>: Determinar o maior e o menor elemento de uma lista L com n elementos inteiros.

Obs. min e max são retornados por referência.

Operação básica: comparações entre elementos da lista
 L[i] > max ou L[i] < min

No algoritmo MaxMin1: para qualquer entrada de tamanho n, a operação básica será executada 2(n-1) vezes. Ou seja,

$$T_B(n) = T_W(n) = T_M(n) = 2(n-1)$$
, para n>0.

- No algoritmo MaxMin2:
 - O melhor caso ocorre quando os elemento de L estão em ordem crescente. Neste caso, T_B(n) = n − 1.
 - ordem decrescente. Neste caso, $T_w(n) = 2 (n 1)$.
 - No caso médio, podemos supor que L[i] é maior do que max a metade de vezes. Neste caso,

$$T_M(n) = (n-1) + (n-1)/2 = 3n/2-3/2,$$

- <u>Exemplo 3</u>: Dada n elementos, ordená-los em ordem crescente.
- Algoritmo de Ordenação por Inserção:
 - A lista é "dividida" em duas partes: parte ordenada e parte nãoordenada.
 - No início, a parte ordenada é formada somente pelo primeiro elemento da lista. A parte não-ordenada é formada pelos outros elementos (a partir da segunda posição).
 - Um a um os elementos da parte não-ordenada são inseridos na posição correta da parte ordenada, fazendo o deslocamento necessário de elementos.
 - O algoritmo termina quando não há mais elementos na parte não-ordenada.


```
void Isertion_Sort ( T L[], int n )
{
   T x; int i;
   for (int j = 1; j<n; j++) { x =
    L[j]; i = j - 1;
     while (i >= 0 && L[i] > x) {
        L[i+1] = L[i];
        i--;
    }//fim while
    L[i+1] = x;
}//fim for
}
```

Operação básica:

- Melhor Caso: ocorre quando a lista já está em ordem crescente (lista ordenada). Neste caso, T_B(n) = n.
- □ Pior Caso: ocorre quando os elemento da lista estão em ordem decrescente. Neste caso, $T_W(n) = n(n-1)/2$.

Ordem de Crescimento

- O processo de análise da eficiência de algoritmos leva em conta apenas um número pequeno de operações básicas
- Ou seja, estabelece apenas uma medida aproximada que deve ser usada de forma comparativa
- Neste processo, as constantes multiplicativas, aditivas e termos de mais baixa ordem são ignorados.
- O objetivo central é determinar apenas a ordem ou taxa de crescimento da operação básica
- □ Por exemplo: $T(n) = 2n^2 + n + 4 \Rightarrow T(n) \approx n^2$

Ordem de Crescimento

- O tempo de um algoritmo aumenta com o tamanho da entrada n.
- Para valores pequenos de n, em geral, os algoritmos executam em pouco tempo
- Assim, a análise de algoritmos é realizada considerando valores grandes de n
- Ou seja, é analisado apenas a taxa de crescimento assintótico das funções de tempo.

Crescimento assintótico de funções

Considere dois algoritmos:

• A1:
$$T1(n) = 3n^2 + 4n + 50$$

• A2:
$$T_2(n) = n^3$$

	n = 1	n=2	n = 10
$T_1(\mathbf{n})$	57	70	390
$T_2(\mathbf{n})$	1	8	1000

Para n suficientemente grande o algoritmo A1 é assintoticamente mais eficiente do que o algoritmo A2.

Notações Assintóticas

- □ Para comparar e classificar a ordem de crescimento de funções são utilizadas as notações assintóticas: O, Ω e Θ
- Definições informais:
 - O(f(n)) é o conjunto de todas as funções com ordem de crescimento menor ou igual a f(n).
 - Exemplos:

$$n \in O(n^2)$$
, $100n + 5 \in O(n^2)$, $1/2n(n-1) \in O(n^2)$
 $n^3 \notin O(n^2)$, $0,00001n^3 \notin O(n^2)$, $n^4+n+1 \notin O(n^2)$

Notações Assintóticas

- $\Omega(f(n))$ é o conjunto de todas as funções com ordem de crescimento maior ou igual a f(n).
 - Exemplos:

$$n^3 \in \Omega(n^2)$$
, $1/2n(n-1) \in \Omega(n^2)$, $100n + 5 \notin \Omega(n^2)$

- - Exemplo: $an^2 + bn + c \in \Theta(n^2)$, a>0

Notação Assintótica O

Definição (Limite Superior)
 Uma função T(n) ∈ O(f(n)) se e somente se existem constantes positivas c e n₀ tais que

$$0 \le T(n) \le c.f(n), \forall n \ge n_0.$$

- Ou seja, a partir de n_0 , f(n) "majora" T(n)
- □ f(n) é um *limitante assintótico* superior para T(n).

Notação Assintótica O

Exemplo: $T(n) = 3n^2 + 4n + 50 \in O(n^2)$

Dem: Basta exibir duas constantes c e n_0 tais que

$$T(n) \leq c. \ n^2, \ \forall n \geq n_0.$$

Se fizermos c = 57, temos

$$3n^2 + 4n + 50 \le 57n^2$$
, $\forall n \ge 1 = n_0$.

Pode-se mostrar também que

$$T(n) = 3n^2 + 4n + 50 \in O(n^3)$$
 ou $O(n^4)$

entretanto estamos interessados no *menor limite superior* possível.

Notação Assintótica Ω

Definição (Limite Inferior)

Uma função $T(n) \in \Omega(f(n))$ se e somente se existem constantes positivas c e n_0 tais que

$$T(n) \geq c.f(n), \forall n \geq n_0.$$

- Ou seja, a partir de n_0 , f(n) "minora" T(n)
- f(n) é um limitante assintótico inferior para T(n).

Notação Assintótica Ω

Exemplo: $T(n) = n^4 - n \in \Omega(n^4)$

Dem: Basta exibir duas constantes $c e n_0$ tais

$$n^4 - 8n \geq c. n^4, \forall n \geq n_0.$$

Para c = 1/2, temos

$$n^4 - 8n \ge 1/2n^4$$
, $\forall n \ge 3 = n_0$.

Pode-se mostrar também que

$$T(n) = n^4 - n \in \Omega(n^3) \text{ ou } \Omega(n^2)$$

entretanto estamos interessados no maior limite inferior.

Notação Assintótica @

Definição (Limite Exato)
 Uma função T(n) ∈ θ(f(n)) se e somente se

$$T(n) \in \Omega(f(n)) \in T(n) \in O(f(n)).$$

Ou seja, $T(n) \in \theta(f(n))$ se e somente se existem existem constantes c_1 , c_2 e n_0 tais que

$$c_2.f(n) \leq T(n) \leq c_1.f(n), \forall n \geq n_0.$$

- $\Box f(n)$ é um limite inferior e superior para T(n) apenas alterando as constantes.
- $\neg T(n)$ e f(n) possuem a mesma ordem de crescimento.

Notação Assintótica @

■ **Exemplo**: $T(n) = n^2 + n \in \Theta(n^2)$ Dem: Pois, tomando $c_1 = 2$, $c_2 = 1$, $n_0 = 1$ temos $n^2 + n \le 2 \cdot n^2$, $\forall n \ge 1 \implies n^2 + n \in O(n^2)$ $n^2 + n \ge 1 \cdot n^2$, $\forall n \ge 1 \implies n^2 + n \in O(n^2)$

Abuso de notação:

É muito comum se escrever

$$T(n) = O(f(n))$$

$$T(n) = \Omega(f(n))$$

$$T(n) = \theta(f(n))$$

Para indicar que T(n) pertence a uma das classes de comportamento assintótico

Usando Limites para Comparar Ordens de Crescimento de funções

- □ Suponha que o limite $\lim_{n\to\infty} T(n)/f(n)$ exista. Assim,
 - Se $\lim_{n\to\infty} T(n)/f(n) = 0$, então T(n) possui ordem de crescimento menor do que $f(n) \Rightarrow T(n) \in O(f(n))$.
 - Se $\lim_{n\to\infty} T(n)/f(n) = \infty$, então T(n) possui ordem de crescimento > que $f(n) \Rightarrow T(n) \in \Omega(f(n))$
 - Se $\lim_{n \to \infty} T(n)/f(n) = c > 0$ (constante), então T(n) possui o mesmo ordem de crescimento que $f(n) \Rightarrow T(n) \in O(f(n)), T(n) \in \Omega(f(n))$ ou $T(n) \in \Theta(f(n))$.

Usando Limites para Comparar Ordens de Crescimento de funções

■ **Exemplo 1:** Provar que T(n) = 1/2n(n-1) e $f(n) = n^2$ possuem a mesma ordem de crescimento.

$$\lim_{n \to \infty} \frac{1/2n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

Como o valor do limite é uma constante >0, conclui-se que $1/2n(n-1) \in \Theta(n^2)$.

Exemplo 2: Compare a ordem de crescimento de log_2n e \sqrt{n}

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{(\sqrt{n})'} = \lim_{n \to \infty} \frac{(\log_2 e) \frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2\log_2 e \lim_{n \to \infty} \frac{\sqrt{n}}{n} = 0$$
Daí, temos que $\log_2 n \in O(\sqrt{n})$

Uso das Notações Assintóticas em Análise de Algoritmos

- A notação O é usada frequentemente para descrever o limite superior do tempo de execução do pior caso de um algoritmo.
- Este limite superior (descrito pela notação O) é calculado analisando apenas a estrutura global de um algoritmo.
 - Por exemplo, no trecho de código, a estrutura do loop aninhado produz um limite superior O(n²) sobre o tempo de pior caso.
- Para cada valor de i=1, ..., n-1, a operação L[j-1] > L[j] é executada j vezes sendo que j=n, n-1, ...,i+1

```
for (i=1; i<n-1; i++)
  for (j=n; i>=i+1; i--)
    if(L[j-1] > L[j]) {
      temp = L[j-1]
      L[j-1] = L[j]
      L[j] = temp;
}
```


Uso das Notações Assintóticas em Análise de Algoritmos

- Quando dizemos que um algoritmo, no pior caso, é O(f(n)) estamos dizendo que o tempo de execução do algoritmo nunca gasta mais do que O(f(n))
- Mas é importante mostrar que este limite superior não é (muito) folgado
- Uma forma de fazer isto é mostrar que existe pelo menos um caso que exige que o algoritmo atinja aquele limite.
- Assim, podemos dizer que o algoritmo nunca gasta mais do que O(f(n))
 e também que não podemos abaixar este limite superior.
- □ Logo, podemos dizer que o algoritmo é $\Theta(f(n))$.

Uso das Notações Assintóticas em Análise de Algoritmos

- \square Por exemplo, o algoritmo de ordenação por inserção é $O(n^2)$.
- Se a entrada estiver em ordem decrescente serão realizadas n(n-1)/2 comparações.
- □ Portanto, o algoritmo de ordenação por inserção, no pior caso, é $\Theta(n^2)$.

Regra das Somas

Se
$$T_1(n) \in O(f(n))$$
 e $T_2(n) \in O(g(n))$ então $T_1(n) + T_2(n) \in O(\max\{f(n), g(n)\}).$

Dem:

Se
$$T_1(n) \in O(f(n))$$
, então existem $c_1 \in n_1 : T_1(n) \le c_1 f(n)$, $\forall n \ge n_1$ (1)

Se
$$T_2(n) \in O(g(n))$$
, então existem c_2 e n_2 : $T_2(n) \le c_2 g(n)$, $\forall n \ge n_2$ (2)

Queremos provar que existem c₃ e n₃ tais que

$$T_1(n) + T_2(n) \le c_3 \max\{f(n), g(n)\}, \forall n \ge n_3.$$

Sejam
$$c_3 = c_1 + c_2$$
, $n_3 = \max\{n_1, n_2\}$ e $h(n) = \max\{f(n), g(n)\}$

Para todo
$$n \ge n_3$$
, temos $T_1(n) + T_2(n) \le c_1 f(n) + c_2 g(n) \le c_1 h(n) + c_2 h(n)$
= $(c_1 + c_2)h(n) = c_3 \max\{f(n), g(n)\}.$

Logo,
$$T_1(n) + T_2(n) \in O(\max\{f(n), g(n)\}).$$

Regra do Produto

Se
$$T_1(n) \in O(f(n))$$
 e $T_2(n) \in O(g(n))$ então $T_1(n).T_2(n) \in O(f(n).g(n))$
Dem: Exercício. Considere $c_3 = c_1.c_2$ e $n_3 = \max\{n_1, n_2\}$

Em análise de algoritmos, a regra das somas é utilizada da seguinte maneira:

Se um algoritmo \mathbf{A} se divide em duas partes independentes \mathbf{A}_1 e \mathbf{A}_2 , onde o tempo de \mathbf{A}_1 é $T_1(n) \in O(f(n))$ e o de \mathbf{A}_2 é $T_2(n) \in O(g(n))$ então o tempo de \mathbf{A} é $T_1(n) + T_2(n) \in O(\max\{f(n), g(n)\})$.

A regra do produto é utilizada da seguinte maneira:

Se um algoritmo \boldsymbol{A} contém dois "aninhamentos" \boldsymbol{A}_1 e \boldsymbol{A}_2 , onde o tempo de \boldsymbol{A}_1 é $T_1(n) \in O(f(n))$ e o tempo de \boldsymbol{A}_2 é $T_2(n) \in O(g(n))$ então, o tempo de \boldsymbol{A} será $T_1(n).T_2(n) \in O(f(n).g(n))$

Outras propriedades:

- $f(n) \in O(f(n))$ (reflexiva). Também válidas para $\Omega \in \Theta$.
- Se $f(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$ (transitiva). Também válidas para Ω e Θ .
- ∘ f(n) ∈ Θ(g(n)) se e somente se g(n) ∈ Θ(f(n)) (simetria)
- $f(n) \in O(g(n))$ se e somente se $g(n) \in \Omega(f(n))$
- Se f(n)∈O(g(n)) então f(n)+g(n) ∈ O(g(n))
- c.O(f(n)) = O(f(n)), c = constante
- o O(f(n)) + O(f(n)) = O(f(n))
- $\circ \quad O(O(f(n))) = O(f(n))$
- f(n).O(g(n)) = O(f(n).g(n))

Funções Assintóticas Básicas

A eficiência (tempo) de um grande número de algoritmos recaem nas seguintes classes de funções:

1	Constante*	
$\log n$	logarítmica	
n	linear	
$n \log n$	$n \log n$	
n^2	quadrática	
n^3	cúbica	
2^{n} ,	exponencial	
n!	Fatorial	
n^n	exponencial	

^{*}Um algoritmo é *O*(1) se ele contém apenas um número constante de "comandos simples".

Valores de várias funções importantes em análise de algoritmos

n	Log_2n	n	$n \log_2 n$	n^2	n^3	2^n	n!	n^n
10	3,3	10	3,3×10	10^2	10^{3}	10^{3}	$3,6\times10^6$	10^{10}
10^{2}	6,6	10^{2}	$6,6 \times 10^2$	104	10^{6}	$1,3\times10^{30}$	9,3×10 ¹⁵⁷	10^{200}
10^{3}	10	10^{3}	$1,0\times10^4$	10^{6}	109			
104	13	104	1,3×10 ⁵	108	1012			
10^{5}	17	10 ⁵	$1,7 \times 10^6$	1010	10^{15}			
10 ⁶	20	10^{6}	$2,0\times10^7$	1012	10^{18}			

- A função logarítmica log₂ n cresce mais lentamente
- As funções exponencial $(2^n e n^n)$ e fatorial (n!) crescem rapidamente

Exemplo de Tempos num computador Atual

	Tempo	Tamanho da entrada			
Algoritmo		n = 20	n = 40	n = 60	
A1	n	0,0002 seg	0,0004 seg	0,0006 seg	
A2	n.logn	0,0009 seg	0,0021 seg	0,0035 seg	
A3	n^2	0,004 seg	0,016 seg	0,036 seg	
A4	n^3	0,08 seg	0,64 seg	2,16 seg	
A5	2^n	10 seg	127 dias	3660 séculos	

Uma operação é executado em 0,00001seg (10 micro-segundos

Suponha que temos dois computadores novos X e Y.
 Computador X é 100 vezes mais rápido do que o computador atual
 Computador Y é 1000 vezes mais rápido do que o computador atual

Aumento do tamanho da entrada

A 1	Tempo	Maior problema solucionável em 1 hora			
Algoritmo		Computador Atual	Computador X	Computador Y	
A1	n	N_1	100N ₁	1000N ₁	
A2	n.logn	N_2	22,5N ₂	140,2N ₂	
A3	n^2	N_3	10N ₃	31,62N ₃	
A4	n^3	N_4	4,64N ₄	10N ₄	
A5	2^n	N_5	N ₅ + 4	$N_5 + 10$	

Conceitos e Fórmulas Matemáticas usados em **Análise de Algoritmos**

Somas

Progressões aritméticas

$$1 + 2 + 3 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \left| \sum_{i=k}^{n} 1 = n - k + 1, \quad (k \le n) \right|$$

$$a_1 + a_2 + a_3 + \dots + a_n = \frac{a_1(q^n - 1)}{q - 1}, \quad \left| \sum_{i=1}^n 1 = n \right|$$

onde q é o fator, ou seja $a_i.q = a_{i+1}$

$$\sum_{i=k}^{n} 1 = n - k + 1, \quad (k \le n)$$

$$\left| \sum_{i=1}^{n} 1 = n \right|$$

Progressões geométricas

$$\left| c^{0} + c^{1} + c^{2} + \dots + c^{n} \right| = \sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, \quad c \neq 1 \quad \left| \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \right|$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

Conceitos e Fórmulas Matemáticas usados em **Análise de Algoritmos**

Outras fórmulas

$$\sum_{i=0}^{n} i^{k} = 1^{k} + 2^{k} + 3^{k} \dots + n^{k} \approx \frac{1}{k+1} n^{k+1}$$

$$\sum_{i=1}^{n} i2^{i} = 1.2 + 2.2^{2} + \dots + n2^{n} = (n-1)2^{n+1} + 2$$

$$\sum_{i=1}^{n} \log i \approx n \log n$$

$$\sum_{i=1}^{n} \log i \approx n \log n \left| n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^{n} \right| \text{ quando}$$

$$\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + 3^{2} \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n + \gamma$$

 $(\gamma \approx 0.5772...$ Constante de Euler)

$$\sum_{i=k}^{n} ca_i = c \sum_{i=k}^{n} a_i$$

$$\sum_{i=k}^{n} (a_i \pm b_i) = \sum_{i=k}^{n} a_i \pm \sum_{i=k}^{n} b_i$$

$$\sum_{i=k}^{n} a_i = \sum_{i=k}^{m} a_i + \sum_{i=m+1}^{n} a_i$$
onde, $k \le m \le n$

$$\sum_{i=k}^{n} (a_i - a_{i-1}) = a_n - a_{k-1}$$

Conceitos e Fórmulas Matemáticas usados em Análise de Algoritmos

<u>Logaritmos</u>

Definição: Log $_b n = x \Leftrightarrow b^x = n$

$$b^{Log_b n} = n$$

$$n = m \iff Log_b n = Log_b m$$

Logaritmo de um produto:

$$Log_b(n.m) = Log_b n + Log_b m$$

Logaritmo de uma divisão:

$$Log_b(\frac{n}{m}) = Log_b n - Log_b m$$

Logaritmo de uma potência:

$$Log_b n^x = x.Log_b n$$

Troca de base:

$$Log_b n = \frac{Log_a n}{Log_a b}$$

 A estratégia principal da análise de algoritmos não-recursivos é estabelecer um somatório que representa o tempo de execução.

Passos para Analisar um Algoritmo Não-Recursivo

- 1. Escolha o parâmetro *n* indicando o tamanho da entrada;
- 2. Identifique a operação básica do algoritmo
- 3. Verifique se o tempo do algoritmo (número de vezes que a operação básica é executada) é depende somente de *n*. Ou seja, verifique se existem tempos de melhor, pior e médio caso;
- 4. Estabeleça um *somatório* expressando o número de vezes que a operação básica é executada;
- 5. Utilize fórmulas e regras para manipulação de somas, encontre uma fórmula final (função T(n)) e estabeleça sua ordem de crescimento.

INF213 - Estrutura de Dados Prof. Marcus V. A. Andrade

<u>Exemplo 1</u>: Encontrar o maior elemento de uma lista (arranjo) com n elementos.

```
T MaxElement(T L[],int n ) {
   T max = L[0];
   for (int i = 1; i < n; i + +)
       if( L[i] > max )
       max = L[i];
   return max;
}
```

- 1. Tamanho da entrada: n
- 2. Operação básica: L[i]>max
- **3.** O número de execuções da operação básica será o mesmo para qualquer entrada (lista de tamanho *n*), ou seja, não existem casos: melhor, pior e médio.
- **4.** Seja T(n) o número de vezes que a operação básica é executada. Note que a operação básica é executada 1 vez em cada execução do loop for. Ou seja, para cada valor da variável i, a operação básica é executado 1 vez (i = 1, ..., n-1). Portanto, temos o seguinte somatório: $T(n) = \sum_{i=1}^{n-1} 1 = n-1$
- **5.** Tempo do algoritmo: $T(n) = n-1 = \Theta(n)$

<u>Exemplo 2</u>: Verificar se todos os elementos em uma lista são diferentes ou não.

Se dois elementos são iguais, o algoritmo retorna *false*. Caso contrário, se todos os elementos são diferentes, retorna *true*.

A operação básica *L[i]==L[j]* será executada 1 vez para cada par de valores de i/e j (no pior caso). Assim,

$$T(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} [(n-1) - i] = (n-1) \sum_{i=0}^{n-2} 1 - \sum_{i=0}^{n-2} i$$

$$T(n) = (n-1) \sum_{i=0}^{n-2} 1 - \sum_{i=0}^{n-2} i = (n-1)(n-1) - \frac{(n-2)(n-1)}{2} = \frac{(n-1)n}{2} = \Theta(n^2)$$

INF213 - Estrutura de Dados Prof. Marcus V. A. Andrade

<u>Exemplo 3</u>: Calcular a multiplicação de duas matrizes A e B, ambos de ordem n×n.

```
void MultiplicaM(T **A, T **B, T **C, int n) {
  for (int i = 0; i<n; i++)
    for (int j = 0; j<n; j++) {
        C[i][j] = 0;
        for (int k = 0; k<n; k++)
        C[i][j] += A[i][k]*B[k][j];
}</pre>
```

Operação básica A[i][k]*B[k][j] será executada 1 vez para cada combinação de valores de i, j e k (para qualquer caso).

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{i=0}^{n-1} n^2 = n^3 \in \Theta(n^3)$$

 A análise deste tipo de algoritmos consiste em determinar um tipo especial de equação chamada relação de recorrência.

Relações de Recorrências

Uma relação de recorrência ou simplesmente *recorrência* é uma forma de definir uma função através de uma expressão que contém a mesma função.

Exemplos:

$$\bullet f(n) = 2f(n-1) + 1$$

$$\bullet f(n) = f(n-1) + f(n-2)$$

$$\bullet f(n) = f(n/2) + 1$$

$$\bullet f(n) = n.f(n-1)$$

$$\bullet f(n) = n + f(n-1)$$

Passos para Analisar um Algoritmo Recursivo

- 1. Escolha o parâmetro *n* indicando o tamanho da entrada;
- 2. Identifique a operação básica do algoritmo;
- 3. Verifique se o tempo do algoritmo (número de vezes que a operação básica é executada) pode variar para diferentes entradas do mesmo tamanho. Caso o tempo dependa da entrada, calcule separadamente os tempos de melhor caso, pior caso e caso médio;
- 4. Estabeleça uma *relação de recorrência* para o número de vezes que a operação fundamental é executada. Identifique o *caso base* ou *condição de parada* do algoritmo (tempo para o menor valor de *n*);
- 5. Resolva a relação de recorrência obtendo o tempo T(n) do algoritmo ou encontrar a ordem de crescimento de T(n).

<u>Exemplo 1</u>: Calcular o fatorial de um número n.

```
int FAT(int n) {
    if (n == 0) return 1;
    else {
      return n * FAT(n - 1);
    }
}
```

- 1. Tamanho da entrada: n
- 2. Operação básica: multiplicação *n**FAT(*n*–1)
- 3. Existe só um caso para o tempo de execução. Isto é, não há melhor caso ou caso médio
- 4. Seja T(n) a complexidade do algoritmo para uma entrada de tamanho n. Para n>0, o algoritmo executará a operação básica 1 vez e em seguida fará a chamada (recursiva) para n-1. Assim,

$$T(n) = 1 + T(n-1) \quad n > 0$$
$$T(0) = 0$$

5. Resolvendo a relação de recorrência

Método da Substituição:

$$T(n) = 1 + T(n-1)$$
, substituir $T(n-1) = 1 + T(n-2)$

$$T(n) = 1 + 1 + T(n-2)$$
, substituir $T(n-2) = 1 + T(n-3)$

$$T(n) = 1 + 1 + 1 + T(n - 3)$$

Generalizando (depois de *k* passos):

$$T(n) = 1+1+....+1 + T(n-k) = k + T(n-k).....(*)$$

Condição de parada: T(0) = 0,

Para finalizar fazemos $n - k = 0 \Rightarrow k = n$

Substituindo $k \in \mathbb{C}^*$: $T(n) = n + T(0) = n \in \Theta(n)$.

Exemplo 2: Problema das Torres de Hanói

Deslocar *n* discos do pino **A** para o pino **C** usando o pino **B**.

- Só um disco pode ser movimentado de cada vez;
- Um disco maior no pode ser colocado sobre um disco menor;
- Realizar o menor número de movimentos.


```
void HANOI (int n, char A, char B, char C) {
  if ( n == 1)
    cout<<" mova disco"<< n <<"de"<<A<<"para"<< C<<endl;
  else {
      HANOI ( n-1, A, C, B );
      cout<<" mova disco"<< n <<"de"<<A<<"para"<< C<<endl;
      HANOI ( n-1, B, A, C);
}</pre>
```

A operação básica corresponde a um movimento realizado.

Seja T(n) o tempo de execução do algoritmo.

Para o caso base (n=1) é feito 1 movimento (ou seja, T(1) = 1).

Para *n*>1, são realizadas duas chamadas recursivas para *n*-1 e além disso é feito 1 movimento. Assim, temos a seguinte recorrência:

$$T(n) = \begin{cases} 1, & \text{se } n = 1 \\ 2.T(n-1) + 1, & \text{se } n > 1 \end{cases}$$

Resolvendo a recorrência (método da substituição):

$$T(n) = 2.T(n-1) + 1,$$
 Substituir $T(n-1) = 2.T(n-2) + 1$
 $T(n) = 2(2.T(n-2) + 1) + 1,$ Substituir $T(n-1) = 2.T(n-2) + 1$
 $T(n) = 2^2.T(n-2) + 2 + 1,$ Substituir $T(n-2) = 2.T(n-3) + 1$
 $T(n) = 2^3.T(n-3) + 2^2 + 2 + 1$

Generalizando (depois de *k* passos):

$$T(n) = 2^k \cdot T(n-k) + 2^{k-1} + 2^{k-2} + \dots + 2+1$$
 (*)

Usando a condição parada: $n - k = 1 \Rightarrow k = n - 1$

Substituindo o valor de *k* em (*):

$$T(n) = 2^{n-1}T(1) + 2^{n-2} + ... + 2^1 + 2^0 = \sum_{i=0}^{n-1} 2^i = 2^n - 1$$

 $T(n) = 2^n - 1 \in \Theta(2^n)$

<u>Exemplo 3</u>: Algoritmo recursivo para determinar os dígitos da representação binária de um numero decimal inteiro n>0.

```
void Binario(int n) {
   if (n == 1) cout<<1;
   else {
    Binario(n/2);
   cout<<n%2; //imprime o resto
   }
}</pre>
```

A operação básica corresponde à impressão de um dígito.

Seja T(n) a complexidade do algoritmo. Para o caso base (n=1), T(1) = 1.

Para *n*>1, é feito uma chamada recursiva para *n*-1 e em seguida é feito 1 impressão. O tempo de cada chamada recursiva é *T*(*n*-1).

Temos a seguinte recorrência:
$$T(n) = \begin{cases} 1, & \text{se } n = 1 \\ T(\mid n/2 \mid) + 1, & \text{se } n > 1 \end{cases}$$

Resolvendo a recorrência (método da substituição):

Sem perda de generalidade, podemos supor que n é potência de 2 e portanto $\lfloor n/2 \rfloor = n/2$

$$T(n) = T(n/2) + 1$$

$$T(n) = T(n/4) + 1 + 1 = T(n/2^2) + 2$$

$$T(n) = T(n/8) + 1 + 1 + 1 = T(n/2^3) + 3$$

Após de *k* passos (generalizando):

$$T(n) = T(n/2^k) + k \dots (*)$$

Condição parada: $n/2^k = 1 \implies 2^k = n$

Aplicando \log_2 : $\log_2 2^k = \log_2 n \Rightarrow k = \log_2 n$

Substituindo k em (*):

$$T(n) = T(n/2^k) + k = T(1) + \log_2 n = 1 + \log_2 n \in \Theta(\log_2 n).$$

Se $T(n) \in \Theta(\log_2 n)$ para n potencia de 2 então, $T(n) \in \Theta(\log_2 n)$, $\forall n > 1$.

Resolver a seguinte relação de recorrência:

$$T(n) = n^2 + T(n-1), T(1) = 1$$

$$T(n) = n^2 + (n-1)^2 + \underline{T(n-2)}$$

$$T(n) = n^2 + (n-1)^2 + (n-2)^2 + \underline{T(n-3)}$$

Generalizando:

$$T(n) = n^2 + (n-1)^2 + (n-2)^2 + + T(n-k)$$

Utilizando a condição de parada, fazemos $n - k = 1 \Rightarrow k = n - 1$

$$T(n) = n^2 + (n-1)^2 + (n-2)^2 + ... + T(1)$$

$$T(n) = n^2 + (n-1)^2 + (n-2)^2 + ... + 1^2$$
 $\Rightarrow T(n) = \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

$$T(n) \in \Theta(n^3)$$

Método da Árvore de Recursão

Exemplo1: T(n) = 2T(n-1) + 1, T(1) = 1 (Algoritmo HANOI)

Devemos mostrar a árvore das chamadas realizadas pelo algoritmo recursivo. No algoritmo HANOI, na chamada para n (chamada principal) são feitas 2 chamadas para n-1, depois 4 chamadas para n-2, daí 8 chamadas para n-3, etc. Para n = 1 não é feita nenhuma chamada. A cada chamada é executado 1 movimento (operação básica).

Note que para cada nó da árvore é executado 1 movimento (ou 1 chamada).

■ Exemplo 2: Resolver $T(n) = n + T(n/3) + T(2n/3), n \ge 1$

Nesta recorrência, a primeira chamada executa n operações e são feitas duas chamadas para entradas de tamanhos n/3 e 2n/3.

Na chamada para n/3 serão executadas n/3 operações e serão feitas duas chamadas para entradas de tamanhos n/9 e 2n/9 (T(n/3) = n/3 + T(n/9) + T(2n/9)). E assim sucessivamente.

A cada nível da árvore de recursão são executadas *n* operações.

Queremos saber qual é o número de níveis da árvore. Para isto analisemos o caminho mais longo da raiz até uma folha:

n, (2/3)n, (2/3)²n, ...,(2/3)^kn, ...,1.

Deve-se determinar o valor de k tal que $(2/3)^k$ n = 1 \Leftrightarrow $(3/2)^k$ = n.

Aplicando $log_{3/2}$: $k = log_{3/2} n \Rightarrow O$ número de níveis da árvore é: $log_{3/2} n$

Logo número total de operações é $T(n) = (log_{3/2}n) n \in O(n \lg n)$

Método Mestre

Usado para determinar um limitante assintótico de recorrências da forma: T(n) = aT(n/b) + f(n).

Teorema Mestre: Seja a recorrência

$$T(n) = aT(n/b) + f(n)$$
, (com n potencia de b)

$$T(1) = c \ge 0$$

onde: a ≥ 1, b≥2 e f(n) é uma função positiva tal que

$$f(n) \in \Theta(n^d)$$
 com d ≥ 0 . Então,

- 1) Se a < bd então, $T(n) \in \Theta(n^d)$
- 2) Se a = bd então, $T(n) \in \Theta(n^d \log_b n)$
- 3) Se a > bd então, $T(n) \in \Theta(n^{\log_b a})$

1) Encontre um limite assintótico para

$$T(n) = 9T(n/3) + n$$
, $T(1) = 1$.
 $a = 9$, $b = 3$ e $f(n) = n \in \Theta(n^1)$, $d = 1$
Como $a > b^d$ então aplica-se o caso 3 do teorema mestre:
 $T(n) \in \Theta(n^{\log_3 9}) = \Theta(n^2)$

- 2) Resolver T(n) = T(n/4) + 1, T(1) = 1. a = 1, b = 4 e $f(n) = 1 \in \Theta(n^0)$, d=0Como $a = b^d$ (1 = 4°), então $T(n) \in \Theta(n^0 \log_4 n) = \Theta(\log_4 n)$
- 3) Resolver $T(n) = 2T(n/2) + n \log n$, T(1) = 1. a = 2, b = 2 e $f(n) = n \log n \in \Theta(n^{\log_n(n \log n)})$, $d = \log_n(n \log n)$ $a < b^d$, então $T(n) \in \Theta(n^{\log_n(n \log n)}) = \Theta(n \log n)$.