1 point

1.

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

- Given a database of information about your users, automatically group them into different market segments.
- Given sales data from a large number of products in a supermarket, figure out which products tend to form coherent groups (say are frequently purchased together) and thus should be put on the same shelf.
- Given historical weather records, predict the amount of rainfall tomorrow (this would be a real-valued output)
- Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.

1 point

2.

Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}-2\\1\end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?

- $oldsymbol{O}$ $c^{(i)}=1$
- $oldsymbol{\mathsf{O}}$ $c^{(i)}$ is not assigned
- $oldsymbol{O} \quad c^{(i)} = 2$

0	$c^{(i)}$	=	3
O	$c^{(i)}$	=	3

1 point

3.

K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?

- Test on the cross-validation set.
- Randomly initialize the cluster centroids.
- lacksquare The cluster assignment step, where the parameters $c^{(i)}$ are updated
- Move the cluster centroids, where the centroids μ_k are updated.

1 point

4.

Suppose you have an unlabeled dataset $\{x^{(1)},\dots,x^{(m)}\}$. You run K-means with 50 different random

initializations, and obtain 50 different clusterings of the

data. What is the recommended way for choosing which one of

these 50 clusterings to use?

O Use the elbow method.

Unsupervised Learning

Quiz, 5 questions

Plot the data and the cluster centroids, and pick the clustering that gives the most "coherent" cluster centroids.

Manually examine the clusterings, and pick the best one.

O Compute the distortion function $J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_k)$, and pick the one that minimizes this.

1 point

5.

Which	of the following statements are true? Select all that apply.			
	A good way to initialize K-means is to select K (distinct) examples from the training set and set the cluster centroids equal to these selected examples.			
	On every iteration of K-means, the cost function $J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_k)$ (the distortion function) should either stay the same or decrease; in particular, it should not increase.	if you stuck in some weird local minimam, the J can increase, you should use		
	Once an example has been assigned to a particular centroid, it will never be reassigned to another different centroid		different initial condition and try again!	
	K-Means will always give the same results regardless of the initialization of the centroids.			
✓	I, Jun-Chieh Wang , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code	у		

Submit Quiz

Unsupervised Learning

Quiz, 5 questions