## Sea-Bird Electronics, Inc.

## 13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2489 CALIBRATION DATE: 19-Nov-15 SBE 4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

## **COEFFICIENTS:**

| g = | = | -1.03359391e+001 | CPcor = | -9.5700e-008 | (nominal) |
|-----|---|------------------|---------|--------------|-----------|
| h = | = | 1.61773079e+000  | CTcor = | 3.2500e-006  | (nominal) |
| 2   |   | 0 01570610- 000  |         |              |           |

i = -2.81578619e-003j = 3.11628647e-004

| BATH TEMP<br>(° C) | BATH SAL<br>(PSU) | BATH COND<br>(S/m) | INSTRUMENT<br>OUTPUT (kHz) | INSTRUMENT<br>COND (S/m) | RESIDUAL<br>(S/m) |
|--------------------|-------------------|--------------------|----------------------------|--------------------------|-------------------|
| 0.0000             | 0.0000            | 0.00000            | 2.53170                    | 0.00000                  | 0.00000           |
| -1.0001            | 34.4102           | 2.77488            | 4.86151                    | 2.77486                  | -0.00002          |
| 0.9999             | 34.4102           | 2.94453            | 4.96861                    | 2.94455                  | 0.00003           |
| 14.9999            | 34.4111           | 4.22712            | 5.71311                    | 4.22710                  | -0.00002          |
| 18.4999            | 34.4107           | 4.57032            | 5.89630                    | 4.57033                  | 0.00001           |
| 28.9999            | 34.4086           | 5.64300            | 6.43491                    | 5.64300                  | 0.00000           |
| 32.4999            | 34.3992           | 6.01141            | 6.60966                    | 6.01141                  | -0.00000          |

f = Instrument Output (kHz)

 $t = temperature \ (^{\circ}C); \quad p = pressure \ (decibars); \quad \delta = CTcor; \quad \epsilon = CPcor;$ 

Conductivity (S/m) = (g + h \*  $f^2$  + i \*  $f^3$  + j \*  $f^4$ ) /10 (1 +  $\delta$  \* t +  $\epsilon$  \* p)

Residual (Siemens/meter) = instrument conductivity - bath conductivity

