Rajalakshmi Engineering College

Name: Navaneetha Krishnan

Email: 241901067@rajalakshmi.edu.in

Roll no: 241901067 Phone: 8939010233

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 6_PAH_Updated

Attempt : 1 Total Mark : 50 Marks Obtained : 50

Section 1: Coding

1. Problem Statement

You are working on an optimization task for a sorting algorithm that uses insertion sort. Your goal is to determine the efficiency of the algorithm by counting the number of swaps needed to sort an array of integers.

Write a program that takes an array as input and calculates the number of swaps performed during the insertion sort process.

Example 1:

Input:

5

21312

Output:

4

Explanation:

Step 1: [2, 1, 3, 1, 2] (No swaps)

Step 2: [1, 2, 3, 1, 2] (1 swap, element 1 shifts 1 place to the left)

Step 3: [1, 2, 3, 1, 2] (No swaps)

Step 4: [1, 1, 2, 3, 2] (2 swaps; element 1 shifts 2 places to the left)

241901061

Step 5: [1, 1, 2, 2, 3] (1 swap, element 2 shifts 1 place to the left)

Total number of swaps: 1 + 2 + 1 = 4

Example 2:

Input:

7

12 15 1 5 6 14 11

Output:

10

Explanation:

Step 1: [12, 15, 1, 5, 6, 14, 11] (No swaps)

Step 2: [12, 15, 1, 5, 6, 14, 11] (1 swap, element 15 shifts 1 place to the left)

Step 3: [12, 15, 1, 5, 6, 14, 11] (No swaps)

Step 4: [1, 12, 15, 5, 6, 14, 11] (2 swaps, element 1 shifts 2 places to the left)

Step 5: [1, 5, 12, 15, 6, 14, 11] (1 swap, element 5 shifts 1 place to the left)

Step 6: [1, 5, 6, 12, 15, 14, 11] (2 swaps, element 6 shifts 2 places to the left)

Step 7: [1, 5, 6, 12, 14, 15, 11] (1 swap, element 14 shifts 1 place to the left)

Step 8: [1, 5, 6, 11, 12, 14, 15] (3 swaps, element 11 shifts 3 places to the

```
left)
```

Total number of swaps: 1 + 2 + 1 + 2 + 1 + 3 = 10

Input Format

The first line of input consists of an integer n, representing the number of elements in the array.

The second line of input consists of n space-separated integers, representing the elements of the array.

Output Format

The output prints the number of swaps performed during the insertion sort process.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 5
21312
Output: 4
```

```
Answer
    // You are using GCC
   #include<stdio.h>
int main(){
      int n,count=0;
      scanf("%d",&n);
      int arr[n];
      for(int i=0;i<n;i++)
      scanf("%d",&arr[i]);
    for(int i=1;i<n;i++){
      int temp=arr[i];
      int j=i-1;
      while(j>=0 && arr[j]>temp){
        arr[j+1]=arr[j];
        count++:
```

```
arr[j+1]=temp;
printf("%d",count);
}
```

Status: Correct Marks: 10/10

2. Problem Statement

Vishnu, a math enthusiast, is given a task to explore the magic of numbers. He has an array of positive integers, and his goal is to find the integer with the highest digit sum in the sorted array using the merge sort algorithm.

You have to assist Vishnu in implementing the merge sort algorithm.

Input Format

The first line of input consists of an integer N, representing the number of elements in the array.

The second line consists of N space-separated integers, representing the array elements.

Output Format

The first line of output prints "The sorted array is: " followed by the sorted array, separated by a space.

The second line prints "The integer with the highest digit sum is: " followed by an integer representing the highest-digit sum.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 5

123 456 789 321 654

Output: The sorted array is: 123 321 456 654 789 The integer with the highest digit sum is: 789

```
241901061
     Answer
You are using GCC
       #include <stdio.h>
     #include <stdlib.h>
     int digitSum(int n) {
       int sum = 0;
       while (n > 0) {
          sum += n % 10;
          n = 10;
       }
       return sum;
void merge(int arr[], int l, int m, int r) {
       int i, j, k;
       int n1 = m - l + 1;
       int n2 = r - m;
       int L[n1], R[n2];
       for (i = 0; i < n1; i++)
          L[i] = arr[l + i];
       for (j = 0; j < n2; j++)
          R[i] = arr[m + 1 + i];
\sum_{i=0}^{\infty} i = 0;
       k = I;
       while (i < n1 \&\& j < n2) {
          if (L[i] <= R[j]) {
            arr[k] = L[i];
            j++;
          } else {
            arr[k] = R[j];
            j++;
                              241901061
                                                            241901061
       while (i < n1) {
```

241901067

241901067

241901061

```
arr[k] = L[i];
i++;
k+
                                                            241901061
        while (j < n2) {
           arr[k] = R[i];
          j++;
          k++;
        }
     }
      void mergeSort(int arr[], int I, int r) {
        if (1 < r) {
          int m = I + (r - I) / 2;
           mergeSort(arr, I, m);
           mergeSort(arr, m + 1, r);
          merge(arr, I, m, r);
     }
     int main() {
        int N;
        scanf("%d", &N);
                                                            241901061
      int *arr = (int *)malloc(N * sizeof(int));
        for (int i = 0; i < N; i++) {
          scanf("%d", &arr[i]);
        }
        mergeSort(arr, 0, N - 1);
        printf("The sorted array is: ");
        for (int i = 0; i < N; i++) {
           printf("%d", arr[i]);
          if (i < N - 1) {
             printf(" ");
                              241901061
                                                            241901061
        printf("\n");
```

241901067

241901061

241901061

241901061

```
int maxDigitSum = -1;
  int highestDigitSumNumber = -1;
  for (int i = 0; i < N; i++) {
    int currentDigitSum = digitSum(arr[i]);
    if (currentDigitSum > maxDigitSum) {
       maxDigitSum = currentDigitSum;
      highestDigitSumNumber = arr[i];
    } else if (currentDigitSum == maxDigitSum) {
      if (arr[i] > highestDigitSumNumber) {
         highestDigitSumNumber = arr[i];
  printf("The integer with the highest digit sum is: %d\n",
highestDigitSumNumber);
  free(arr);
  return 0;
Status: Correct
                                                                    Marks: 10/10
```

3. Problem Statement

You're a coach managing a list of finishing times for athletes in a race. The times are stored in an array, and you need to sort this array in ascending order to determine the rankings.

You'll use the insertion sort algorithm to accomplish this.

Input Format

The first line of input contains an integer n, representing the number of athletes.

The second line contains n space-separated integers, each representing the finishing time of an athlete in seconds.

Output Format

The output prints the sorted finishing times of the athletes in ascending order.

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 5
   75 89 65 90 70
   Output: 65 70 75 89 90
   Answer
  // You are using GCC
#include<stdio.h>
```

```
int main(){
  int n;
  scanf("%d",&n);
  int a[n];
  for (int i=0;i<n;i++)
  scanf("%d ",&a[i]);
  for(int i=1;i<n;i++){
     int temp=a[i];
    int j=i-1;
    while(j \ge 0 \&\& a[j] > temp){
       a[j+1]=a[j];
     a[j+1]=temp;
  for(int i=0;i<n;i++)
  printf("%d ",a[i]);
```

Status: Correct Marks: 10/10

4. Problem Statement

Alex is working on a project that involves merging and sorting two arrays.

He wants to write a program that merges two arrays, sorts the merged array in ascending order, removes duplicates, and prints the sorted array without duplicates.

Help Alex to implement the program using the merge sort algorithm.

Input Format

The first line of input consists of an integer N, representing the number of elements in the first array.

The second line consists of N integers, separated by spaces, representing the elements of the first array.

The third line consists of an integer M, representing the number of elements in the second array.

The fourth line consists of M integers, separated by spaces, representing the elements of the second array.

Output Format

The output prints space-separated integers, representing the merged and sorted array in ascending order, with duplicate elements removed.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 4
1 2 3 4
3
3 4 5
Output: 1 2 3 4 5

Answer

// You are using GCC
#include <stdio.h>
#include <stdlib.h>
```

void merge(int arr[], int left, int mid, int right) {

```
241901067
                                                               241901061
int n1 = mid - left + 1;
int n2 = right - mid
        int L[n1], R[n2];
        for (i = 0; i < n1; i++)
           L[i] = arr[left + i];
        for (j = 0; j < n2; j++)
           R[i] = arr[mid + 1 + i];
        i = 0;
        i = 0;
                                                                                              241901067
      while (i < n1 && j < n2) {
    if (L[i] <= R[i]) {
              arr[k] = L[i];
              j++;
           } else {
              arr[k] = R[i];
              j++;
           k++;
        }
arr[k] = L[i];
i++;
k+
        while (i < n1) {
        while (j < n2) {
           arr[k] = R[i];
           j++;
           k++;
        }
      }
      void mergeSort(int arr[], int left, int right) {
                                                                                              241901061
                                                               241901067
int mid = left + (right - left) / 2;
```

```
241901061
                                                        241901061
       mergeSort(arr, left, mid);
         mergeSort(arr, mid + 1, right);
         merge(arr, left, mid, right);
    }
    int removeDuplicates(int arr[], int n) {
      if (n == 0 || n == 1)
         return n;
      int temp[n];
      int_i = 0;
                                                                                     241901067
                                                        24,190,1061
    for (int i = 0; i < n - 1; i++) {
         if (arr[i] != arr[i + 1]) {
           temp[j++] = arr[i];
         }
      temp[j++] = arr[n-1];
      for (int i = 0; i < j; i++) {
         arr[i] = temp[i];
      }
       return j;
                                                        241901061
                                                                                     24,190,1061
int main() {
      int N, M;
      scanf("%d", &N);
      int arr1[N];
      for (int i = 0; i < N; i++) {
         scanf("%d", &arr1[i]);
      }
      scanf("%d", &M);
      int arr2[M];
                                                                                     24,190,1061
                                                        241901061
      for (int i = 0; i < M; i++) {
       scanf("%d", &arr2[i]);
```

```
int total_size = N + M;
  int *merged_array = (int *)malloc(total_size * sizeof(int));
  for (int i = 0; i < N; i++) {
    merged_array[i] = arr1[i];
  for (int i = 0; i < M; i++) {
    merged_array[N + i] = arr2[i];
  }
  mergeSort(merged_array, 0, total_size - 1);
  int new_size = removeDuplicates(merged_array, total_size);
  for (int i = 0; i < new_size; i++) {
    printf("%d", merged_array[i]);
    if (i < new_size - 1) {
       printf(" ");
  printf("\n");
  free(merged_array);
  return 0;
Status: Correct
                                                                         Marks: 10/10
```

5. Problem Statement

You are working as a programmer at a sports academy, and the academy holds various sports competitions regularly.

As part of the academy's system, you need to sort the scores of the participants in descending order using the Quick Sort algorithm.

Write a program that takes the scores of n participants as input and uses the Quick Sort algorithm to sort the scores in descending order. Your

program should display the sorted scores after the sorting process.

Input Format

The first line of input consists of an integer n, which represents the number of scores.

The second line of input consists of n integers, which represent scores separated by spaces.

Output Format

Each line of output represents an iteration of the Quick Sort algorithm, displaying the elements of the array at that iteration.

After the iterations are complete, the last line of output prints the sorted scores in descending order separated by space.

Refer to the sample outputs for the formatting specifications.

Sample Test Case

```
Input: 5
78 54 96 32 53

Output: Iteration 1: 78 54 96 53 32

Iteration 2: 96 54 78

Iteration 3: 78 54

Sorted Order: 96 78 54 53 32

Answer

// You are using GCC
#include <stdio.h>

int iteration = 1;

void quickSort(int arr[], int low, int high) {
  if (low >= high) return;
  int pivot = arr[high], i = low - 1;
```

for (int j = low; j < high; j++) {

if (arr[i] >= pivot) {

j++:

```
241901061
            int tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp;
       int tmp = arr[i + 1]; arr[i + 1] = arr[high]; arr[high] = tmp;
       printf("Iteration %d: ", iteration++);
       for (int k = low; k \le high; k++)
          printf("%d ", arr[k]);
       printf("\n");
       quickSort(arr, low, i);
       quickSort(arr, i + 2, high);
     }
     int main() {
scanf("%d", &n);
int scores<sup>1-1</sup>
       for (int i = 0; i < n; i++)
          scanf("%d", &scores[i]);
       quickSort(scores, 0, n - 1);
       printf("Sorted Order: ");
       for (int i = 0; i < n; i++)
          printf("%d ", scores[i]);
       return 0;
Status : Correct
                                                                                   Marks: 10/10
```

241901061

241901061

24,190,1061

24,190,1061