### LABORATORIUM 14. ZŁOŻONE TYPY DANYCH. PLIKI.

#### Cel laboratorium:

Zaznajomienie z obsługą plików do przechowywania danych w zewnętrznej pamięci. Nabycie praktycznych umiejętności pracy z plikami tekstowymi i binarnymi.

### Zakres tematyczny zajęć:

- pojęcie pliku,
- rodzaje plików,
- algorytm przetwarzania plików,
- funkcje otwarcia i zamknięcia pliku,
- zapis do pliku i odczyt z pliku.

### Kompendium wiedzy:

**Plik** to wydzielony fragment pamięci (najczęściej dyskowej), posiadający nazwę (ciąg bajtów).

#### Rodzaje plików:

- *Tekstowe* dane w postaci znakowej (konwersja liczb na znaki),
- *Binarne* dane w postaci wewnętrznej reprezentacji (brak konwersji, dokładne dane).

### Obsługa plików:

• Niskopoziomowa – obsługa poprzez funkcje:

```
read(), open(), write(), close() - <io.h>
```

Wysokopoziomowa – obsługa poprzez funkcje:

```
fopen(), fclose(), fread(), fprintf(),...- <stdio.h>
```

#### Przetwarzanie plików metodą wysokopoziomową:

- 1. Otwarcie pliku: fopen().
- 2. Wykonanie operacji na pliku (zapis, odczyt, szukanie, obliczanie, ...).
- Funkcje zapisu:

```
putc(), fputs(), fprintf(), fwrite()
```

• Funkcje odczytu:

```
getc(), fgets(), fscanf(), fread()
```

• Funkcje pomocnicze:

```
feof(); fseek(), rewind(), ftell(),...
```

3. Zamkniecie pliku: fclose().

Otwarcie pliku – zwraca wskaźnik na strukturę typu FILE (identyfikator pliku) lub wskaźnik zerowy (NULL).

**Zamknięcie pliku** – zwraca 0, jeśli operacja się powiodła, lub EOF, jeśli nie.

fopen(nazwa\_pliku, tryb\_otwarcia);//otwarcie
fclose(wskaźnik pliku); //zamkniecie







```
Tryb otwarcia dla plików tekstowych:
 "r"
         - odczyt,
 " w
         - zapis (nadpisywanie lub tworzenie),
 "a"
         – zapis na końcu (dopisywanie lub tworzenie),
         - odczyt i zapis,
 "r+"
         - odczyt i zapis (nadpisywanie lub tworzenie),
 "w+"
         – odczyt i zapis na końcu (dopisywanie lub tworzenie).
 "a+"
 Tryb otwarcia dla plików binarnych:
 "rb"; "wb"; "ab" ; "rb+"; "r+b"; "wb+" ; "w+b"
 "ab+"; "a+b"
 FILE *fp;
 fp=fopen("test.txt", "w");
 fclose(fp);
 Zapis do pliku:
  putc(znak, wskaźnik pliku);
  fputs( *tekst, wskaźnik pliku);
  fprintf(wskaźnik pliku, format, dane);
  fwrite(adres w pamięci, rozmiar bloku, ilość bloków,
wskaźnik pliku);
 FILE *fp; char ch; char * slowo; int dane;
 putc(ch,fp);//zapis znaku
 fputs(slowo, fp); // zapis łańcucha znaków
 fprintf(fp,"%d",dane);//zapis z formatem
 Odczyt z pliku:
 getc(wskaźnik pliku);
 fgets ( *tekst, dlugosc, wskaźnik pliku);
 fscanf(wskaźnik pliku, format, dane);
 fread(adres w pamięci, rozmiar bloku, ilość bloków,
wskaźnik pliku);
 ilość bloków, wskaźnik pliku);
 FILE *fp; char ch; char buf[256]; int dane;
 ch= getc(fp);//odczyt znaku
 fgets(buf, 256,fp); // odczyt łańcucha znaków
 fscanf(fp,"%d",dane);//odczyt z formatem
 Funkcje pomocnicze:
 • Przesuwanie wskaźnika w pliku:
 int fseek(wskaźnik_pliku, pozycja, tryb);
 gdzie: tryb – sposób liczenia pozycji/przesunięcia (0/1/2),
      pozycja – pozycja wskaźnika w pliku uzależniona od trybu:
```







- o Jeśli tryb=SEEK SET (0) => pozycja liczona jest od początku.
- Jeśli tryb=SEEK\_CUR (1) => pozycja jest liczona jako przesunięcie od aktualnej pozycji,
- o Jeśli tryb=SEEK\_END (2) => pozycja jest liczona jako przesunięcie od końca pliku (wskaźnik pliku jest przesuwany do pozycji <EOF> + pozycja).

```
FILE *fp;
...
fseek(fp, 10, 0); // dziesiąta pozycja, licząc od początku
fseek(fp, 10, 1);// dziesiąta pozycja, licząc od bieżącej
fseek(fp, -10, 2);// dziesiąta pozycja, licząc od końca pliku
```

• Ustawienie wskaźnika na początek pliku:

## rewind(wskaźnik pliku);

```
"
rewind(fp);
```

• Pobranie aktualnej pozycji z pliku:

## ftell (wskaźnik pliku);

```
fseek (fp, 0, SEEK_END);
long size=ftell (pFile);
```

• Informowanie o osiągnięciu/nie osiągnięciu pozycji końca pliku (prawda – koniec pliku, fałsz – brak końca pliku:

```
feof(wskaźnik pliku);
```

```
...
while(!feof(fp)) {//odczyt}
...
```

## Pytania kontrolne:

- 1. Co to jest plik?
- 2. Jakie sa rodzaje plików?
- 3. Podaj algorytm przetwarzania plików metoda wysokopoziomowa.
- 4. Podaj funkcje otwarcia i zamknięcia pliku.
- 5. Podaj funkcje zapisu danych do pliku.
- 6. Podaj funkcje odczytu danych z pliku.
- 7. Jak przesuwać wskaźnik w pliku?
- 8. Jak uzyskać informację gdzie znajduje się wskaźnik w pliku?

### Zadania do analizy

# Zadanie 14.1. Imiona przyjaciół w pliku tekstowym

Przeanalizuj przykład programu wykorzystującego pliki tekstowe.







### • Podaj tekst w komentarzach.

```
#include <stdio.h>
2
  #include <stdlib.h>
3
 int zapisT1(char nazwa[20], FILE *fplik); //???
 int odczytT1(char nazwa[20], FILE *fplik); //???
7 int main(int argc, char *argv[])
8 { char nazwa1[]="lista.txt";
                                 //???
9 FILE *f;
                                //333
10 int wynik;
11 wynik=zapisT1(nazwa1,f);
                                //???
12 if(wynik==0)printf("Operacja zapisu ok\n");
                                              //???
13 wynik=odczytT1(nazwa1,f);
                                //???
14 if(wynik==0)printf("Operacja odczytu ok\n");
15 system("PAUSE");
16 return EXIT SUCCESS;
17 }
19 int zapisT1(char nazwa[20], FILE *fplik) //???
20 {char nazwisko[25]; int i=0;
21 if((fplik=fopen(nazwa, "a"))==NULL) //???
22
    {printf("Blad otwarcia\n");
23
     system("PAUSE"); abort();}
24 printf("Podaj nazwiska kończąc enterem\n");
25 while(gets(nazwisko)!=NULL && nazwisko[0]!='\0')
26 {fprintf(fplik, "%s\n", nazwisko);i++;
                                              //???
27 }
28 if (fclose (fplik) !=0) {exit(2);}
                                              //???
29 printf("Do pliku zapisano %d nazwisk\n",i);
30 return 0;
31 }
32 //----
33 int odczytT1(char nazwa[20], FILE *fplik)
                                              //???
34 {char nazwisko[25]; int i=0;
35 if((fplik=fopen(nazwa, "r"))==NULL)
                                              //???
36
      {printf("blad otwarcia\n");
37
       system("PAUSE"); abort();}
38 printf("\nZawartosc pliku %s\n", nazwa);
39 while(fscanf(fplik,"%s",nazwisko)==1)
                                              //???
40 {puts(nazwisko);i++;
                                //???
41 }
42 if(fclose(fplik)!=0){exit(2);} //???
43 printf("\nZ pliku odczytano %d nazwisk\n",i);
44 return 0;
45 }
```







## Zadanie 14.2. Dane studenta w pliku binarnym

- Przeanalizuj przykład programu wykorzystującego pliki binarne.
- Podaj tekst w komentarzach.

```
#include <stdio.h>
 #include <stdlib.h>
3 struct student {char nazwisko[25]; int ocena;};
4 int zapisB(char nazwa[20], FILE *fplik);
 int odczytB(char nazwa[20], FILE *fplik);
7 int main(int argc, char *argv[])
8 { char nazwa2[]="studenci.txt";
9 FILE *f;
10 int wynik;
11 wynik=zapisB(nazwa2,f);
                                              //???
12 if(wynik==0)printf("operacja zapisu ok\n");
13 wynik=odczytB(nazwa2,f);
                                              //???
14 if(wynik==0)printf("operacja odczytu ok\n");
                                              //???
15 system("PAUSE");
16 return EXIT SUCCESS;
17 }
19 int zapisB(char nazwa[20], FILE *fplik)
                                              //???
20 {struct student st; int i;
                                              //???
  int rozmiar=sizeof(struct student);
21
                                              //???
22 int licznik=1; //liczba zapisów
23
  if ((fplik=fopen(nazwa, "ab"))==NULL)
                                              //???
24
      { printf ("bład"); exit(1); }
25 printf("Podaj liczbe zapisów ");
26 scanf("%d", &licznik);
27 for(i=1;i<=licznik;i++)
28 {printf("Podaj nazwisko %d: ",i);
29 scanf("%s", st.nazwisko);
                                     //???
30 printf("Podaj ocene %d: ",i);
31 scanf("%d", &st.ocena);
                                     //???
   fwrite(&st, rozmiar, 1, fplik);
32
                                     //???
33
34 if (fclose(fplik) !=0) {printf ("Blad "); } //???
35 return 0;
36 }
37 //----
38 int odczytB(char nazwa[20], FILE *fplik)
                                              //???
39 { struct student st;
                                              //???
  int rozmiar=sizeof(struct student);
40
                                              //???
41
   int licznik=0;
   if ((fplik=fopen(nazwa, "rb"))==NULL)
42
43
        { printf ("błąd"); exit(1); }
44
    printf("Zawartość pliku %s\n", nazwa);
```







```
45
     while(fread(&st,rozmiar,1,fplik)==1)
                                                    //???
46
        {printf("student: %s ocena: %d\n",
47
         st.nazwisko, st.ocena);
                                                    //???
48
         licznik++;}
      printf("liczba pozycji: %d\n",licznik);
49
50
      if (fclose(fplik) !=0)
                                                    //???
         {printf ("Blad przy zamykaniu pliku"); }
51
52 return 0;
53 }
```

#### Zadania do wykonania

## Zadanie 14.3. Płaca pracownika w pliku tekstowym

Oblicz płacę pracownika fizycznego i zapisz ją do pliku tekstowego. Zadeklaruj strukturę o polach: imię, nazwisko, liczba godzin, stawka, premia w % i do wypłaty (pole wyliczane). Napisz funkcje zapisu i odczytu z pliku. Wywołaj te funkcje kilkakrotnie. Odczytaj plik.

## Zadanie 14.4. Płaca pracownika w pliku binarnym

Oblicz płacę pracownika fizycznego i zapisz ją do pliku binarnego. Zadeklaruj strukturę o polach: imię, nazwisko, liczba godzin, stawka, premia w % i do wypłaty (pole wyliczane). Napisz funkcje zapisu i odczytu z pliku. Wywołaj te funkcje kilkakrotnie. Odczytaj plik. Wyświetl dane pracowników, których kwota do wypłaty przekracza podaną wartość.

## Zadanie 14.5. Baza danych książek

Załóż plik, będący prostą kartotekową bazą danych książek. Zadeklaruj strukturę opisującą pozycję bibliograficzną. Napisz funkcje zapisu i odczytu z pliku. Zapis pozycji (liczba zapisów nie jest określona) zakończ umownym znakiem (np. \* zamiast nazwiska autora). Napisz funkcję wyświetlającą tytuły książek podanego autora.

### Zadanie 14.6. Pomiary temperatur w pliku

Załóż plik z pomiarami temperatur (liczby rzeczywiste). Napisz funkcje zapisu i odczytu z pliku. Wywołaj te funkcje. Odczytaj plik. Oblicz średnią arytmetyczną z pomiarów przechowywanych w pliku.

#### Zadania dodatkowe

### Zadanie 14.7. Dostęp swobodny do elementu pliku

Załóż plik z n wylosowanymi liczbami całkowitymi. Napisz funkcje zapisu i odczytu z pliku. Wywołaj te funkcje. Odczytaj plik. Wyświetl element pliku na podanej pozycji.

Wskazówka: wykorzystaj funkcję fseek ().







## Zadanie 14.8. Zawody sportowe

Załóż plik z wynikami zawodów sportowych. Nazwa pliku to nazwa konkurencji. Zawartość pliku to: imię, nazwisko i wynik zawodnika. Napisz funkcje zapisu i odczytu z pliku. Wywołaj te funkcje. Odczytaj plik. Wyświetl trzy najlepsze wyniki i dane zawodników, którzy je otrzymali.

## Zadanie 14.9. Eksport towarów

Załóż plik z danymi o eksportowanych za granicę towarach zawierający dane: nazwa towaru, kraj eksportu i wielkość eksportu w sztukach. Wyświetlić listę krajów, które eksportują podany towar i podać ogólną wielkość importu.

Napisz program, w którym wczytane są dane, wywołane odpowiednie funkcje, wyświetlone wyniki.

## Zadanie 14.10. Kopiowanie plików

Napisz program kopiujący co trzeci znak z jednego pliku do drugiego. Wyświetl zawartość obydwu plików.

## Zadanie 14.11. Pobieranie danych o plikach z argumentów wiersza poleceń

Napisz program, który do pliku o podanej nazwie wpisuje n kolejnych liczb całkowitych (od 1), a następnie wyświetla zawartość podanego pliku i średnią arytmetyczną liczb z pliku. Informację o nazwie pliku i informację ile liczb należy zapisać w pliku program pobiera z linii poleceń. W przypadku braku argumentów linii poleceń nazwa pliku to dane.txt, a n=10.

#### Wskazówka:

Funkcja main posiada dwa argumenty:

- argument argc (typu całkowitego) przechowuje liczbę słów wpisanych w linii poleceń, uwzględniając nazwę programu,
- tablica łańcuchów argy [], przechowuje słowa wpisane w linii poleceń:
  - o argv[0] jest nazwą programu,
  - o argv[1] jest pierwszym argumentem wywołanego programu (tylko wtedy, gdy w linii poleceń wpiszemy coś więcej niż tylko nazwę programu),
  - o argy[2] kolejnym argumentem, itd...
- wykorzystaj funkcję konwersji tekstu na liczbę.

Poniższy program wyświetla wszystkie argumenty podane w linii poleceń:

```
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 int i;
6 for(i=0;i<argc;i++)
7 printf("%s\n",argv[i]);
8 return 0;
9 }</pre>
```







Przykładowe działanie programu, o nazwie argumenty.exe, uruchomionego z wiersza poleceń w oknie konsoli cmd:



wygląda następująco:



### Interpretacja wyniku:

Argc = 3

Argv [0] – argumenty.exe – nazwa uruchamianego pliku

Argv[1] - danePomiarow.txt

Argv[2] - 100





