Modular Operation(Math.floorMod(), %)

Code:

System.out.println("-17 mod 12 = " + Math.floorMod(-17, 12)); System.out.println("-17 mod 12 = " + (-17 % 12)); System.out.println("-5 mod 2 = " + Math.floorMod(-5, 2)); System.out.println("-5 mod 2 = " + (-5 % 2)); System.out.println("-5 mod 2 = " + Math.abs(-5 % 2));

Output:

- $-17 \mod 12 = 7$
- $-17 \mod 12 = -5$
- $-5 \mod 2 = 1$
- $-5 \mod 2 = -1$
- $-5 \mod 2 = 1$

Modular Arithmetic in Java

Expression	Dividend	Divisor	Result	Calculation
17 % 12	17	12	5	$17 \div 12 = 1$ (truncated).
				Remainder = $17 - (1 \times 12) = 5$.
				Positive dividend \rightarrow positive result.
Math.floorMod(17, 12)	17	12	5	$17 \div 12 = 1$ (floor = 1).
				Remainder = $17 - (1 \times 12) = 5$.
				Matches %for positive dividend.
-17 % 12	-17	12	-5	$-17 \div 12 = -1$ (truncated toward 0).
				Remainder = $-17 - (-1 \times 12) = -5$.
				Sign follows dividend.
Math.floorMod(-17, 12)	-17	12	7	$-17 \div 12 = -2$ (floor = -2).
				Remainder = $-17 - (-2 \times 12) = 7$.
				Always non-negative if divisor > 0 .
-5 % 2	-5	2	-1	$-5 \div 2 = -2$ (truncated).
				Remainder = $-5 - (-2 \times 2) = -1$.

Key Takeaways

- For **positive dividends**, % and floorMod give the **same result**.
- For **negative dividends**, % keeps the sign of the dividend, while floorMod ensures the result stays **non-negative** (if divisor > 0).

Works here, but fails if divisor is negative.

• Never rely on Math.abs(a % b) as a replacement for floorMod.

Use-Cases

- $\% \rightarrow$ signed remainder (useful for *profit/loss type calculations*).
- Math.floorMod() → **true modulus** (useful for *clock arithmetic, array wrapping, parity checks*).

Demo:

```
public class ModulusDemo {
   public static void main(String[] args) {
       // ===========
       // 1. Profit/Loss Example (% is correct)
       // ===========
       int profitLoss = -17 % 12; // the remainder keeps sign
       System.out.println("Profit/Loss calculation:");
       System.out.println("-17 % 12 = " + profitLoss);
       // Output: -5 \rightarrow means loss of 5
       System.out.println();
       // ==========
       // 2. Clock Arithmetic (floorMod is correct)
       // ==========
       System.out.println("Clock calculation (2 o'clock - 5
hours):");
       int hour = Math.floorMod(2 - 5, 12);
```

Output:

Profit/Loss calculation:

```
-17\% 12 = -5
```

Clock calculation (2 o'clock - 5 hours):

Math.floorMod(2-5, 12) = 9

Array index wrapping:

Math.floorMod(-1, 10) = 9

Java floorMod() Logic

```
public static int floorMod(int x, int y) { final int r = x \% y; // if the signs are different and modulo not zero, adjust result if ((x \land y) < 0 \&\& r != 0) { return r + y; } return r; }
```

What is XOR?

- ^ in Java is **bitwise XOR** (exclusive OR).
- Rule: For each bit, result is 1 if bits differ, 0 if bits are same.
- So:

$$1 \land 1 = 0$$

 $0 \land 0 = 0$
 $1 \land 0 = 1$
 $0 \land 1 = 1$

Example 1: floorMod(-17, 12)

- Step 1: r = -17 % 12 = -5
- Step 2: $(x \land y) < 0 \rightarrow (-17 \land 12)$ is negative \rightarrow signs differ
- Step 3: $r != 0 \rightarrow -5 != 0$
- Step 4: return r + y = -5 + 12 = 7

Result: 7

Example 2: floorMod(17, 12)

- Step 1: r = 17 % 12 = 5
- Step 2: $(17 ^ 12)$ is positive \rightarrow signs same
- Skip adjustment.
- Return r = 5

Result: 5

Example 3: floorMod(-20, 5)

- Step 1: r = -20 % 5 = 0
- Step 2: $(x \wedge y)$ negative \rightarrow signs differ
- Step 3: But r == 0
- Return 0

Result: 0 (divides evenly, no adjustment needed)