0D numerical solution

andreapiccolo89

September 2022

1 Introduction

I take the work done during the coding friday and expanding a bit.

- Setting up the equations starting from the definition of necking;
 - 1. Rheological consideration;
 - 2. Introduction of the main Forces $(F_B \text{ and } F_D)$
 - 3. Definition of $\tau_{B,0}$ and τ ;
 - 4. Definition of the dimensional equation to solve, with the characteristic scaling
- Definition of the characteristic dimensions and additional relation
- Derivation of the τ
 - 1. Rearranging the equation associated with the force balance;
 - 2. Introduction of the following a dimensional number: Λ,Ψ and γ
 - 3. Definition of τ as a function of $\frac{dD}{dt}$, τ_B and Λ , Ψ and γ .
- Final equation and introduction of the therminology

2 Derivation 0D numerical equations

2.1 Main reference equation and introductory definitions

We have:

$$\dot{\varepsilon} = -\frac{1}{D} \frac{dD}{dt} \tag{1}$$

and

$$\dot{\varepsilon} = B_n \tau^n + B_d \tau \tag{2}$$

this can be expressed as:

$$\dot{\varepsilon} = B_n \tau^n \left[1 + \frac{B_d}{B_n} \tau^{1-n} \right] \tag{3}$$

transition stress:

$$\tau_t^{n-1} = \frac{B_d}{B_n} \tag{4}$$

Put that in the equation above:

$$\dot{\varepsilon} = B_n \tau^n \left[1 + \left(\frac{\tau}{\tau_t} \right)^{1-n} \right] \tag{5}$$

Now, I would like to add a further definition. In my numerical approach I imposed that η_d is $\eta_d = \Xi \eta_n$ at τ_B (the buoyancy stress imposed by the stalled slab). Where Ξ is the viscosity contrast between the two mechanisms at the reference condition (i.e. τ_B).

From this reference condition, I can derived $B_{n|d}$. Therefore, this strategy allows me to do the following:

$$B_d = \frac{1}{2\eta_n \Xi} \tag{6}$$

$$B_n = \frac{\tau_B^{1-n}}{2\eta_n \Xi} \tag{7}$$

then:

$$\tau_t^{n-1} = \frac{\frac{1}{2\eta_n \Xi}}{\frac{\tau_B^{1-n}}{2\eta_n}} \tag{8}$$

doing some arrangments:

$$\sqrt[n-1]{\tau_t^{n-1}} = \sqrt[n-1]{\frac{\tau_B^{n-1}}{\Xi}} \tag{9}$$

and by conveniently introducing $\xi = \Xi^{\frac{1}{1-n}}$

$$\tau_t = \xi \tau_B \tag{10}$$

So, let's come back to the equation 1 and rearrange it to describe the problem that I want to solve:

$$\frac{dD}{dt} = -D\left\{B_n \tau^n \left[1 + \left(\frac{\tau}{\xi \tau_B}\right)^{1-n}\right]\right\}$$
 (11)

The stress in the necking region is given by:

$$\tau = \frac{1}{2} \frac{F_B + F_D}{D} \tag{12}$$

where:

$$F_B = \Delta \varrho g L_0 D_0 \tag{13}$$

$$F_D = -2\frac{dD}{dt}\eta_{eff,0}^{UM} \left(\frac{D_0}{D}\right)^2 \frac{L_0\alpha}{s} \tag{14}$$

The equation from which I would like to start the derivation is the following

$$0 = -D^* l_c \left\{ (B_n^* \tau_c^{-n} t_c^{-1}) (\tau^* \tau_c)^n \left[1 + \left(\frac{(\tau^* \tau_c)}{\xi(\tau_{B,0}^* \tau_c)} \right)^{1-n} \right] \right\} - \left(\frac{dD^*}{dt^*} \frac{l_c}{t_c} \right)$$
(15)

Where $\tau^* = \tau/\tau_c$ represents the not dimensional effective stress. While D^* represents the not dimensional thickness.

2.2 Characteristic value and additional relations

Now let's start defining additional and important relation and what I believe are the most important characteristic length:

$$l_c = D_0 \tag{16}$$

$$\tau_c = \tau_{B,0} \tag{17}$$

$$=\frac{F_B}{2D_0}\tag{18}$$

$$=\frac{F_B}{2D_0} \tag{18}$$

$$=\frac{\Delta \varrho g L_0 D_0}{2D_0} \tag{19}$$

$$=\frac{\Delta\varrho gL_0}{2}\tag{20}$$

$$t_c = \frac{1}{\dot{\varepsilon}_c} \tag{21}$$

$$\dot{\varepsilon}_c = \left\{ B_n \tau_c^n \left[1 + \left(\frac{\tau_c}{\xi \tau_B} \right)^{1-n} \right] \right\} \tag{22}$$

$$\frac{dD}{dt}_{c} = l_{c}\dot{\varepsilon}_{c} \tag{23}$$

$$=\frac{l_c}{t_c}\tag{24}$$

Additionally, it can be possible define an other quantity $\eta_{eff,0}^{S}$. This quantity is the effective viscosity of the slab at given reference condition (i.e. $\tau = \tau_{B,0} =$ τ_c). This quantity allows to define the $\tau_{B,0}$ in this alternative manner:

$$\tau_c = \tau_{B,0} = 2\eta_{eff,0}^S \dot{\varepsilon}_c \tag{25}$$

Then, we can tackle the problem represent by τ and introducing other useful relation for the derivation:

$$\tau_B = \frac{\tau_{B,0} D_0}{D} [Pa] \tag{26}$$

$$\tau_B^* = \frac{D_0}{D} \tag{27}$$

2.3 Derivation of the effective stress

The basic equation are set up. In the following part I derive a definition for τ , the effective stress (12), using the relations in (14).

$$\tau = \frac{F_B}{2D} \left(1 + \frac{F_D}{F_B} \right) \tag{28}$$

$$= \frac{\tau_{B,0}D_0}{D} \left(1 + \frac{-2\frac{dD}{dt}\eta_{eff,0}^{UM} \left(\frac{D_0}{D}\right)^2 \frac{L_0}{s}}{2\tau_{B,0}D_0} \right)$$
(29)

(30)

The next part of the derivation is exploitivng some relation that I wrote above $(\tau_{B,0}=2\eta^S_{eff}\dot{\varepsilon_c}$ and $\frac{dD}{dt}_c=\dot{\varepsilon_c}D_0)$

$$\tau = 2\eta_{eff,0}^{S} \dot{\varepsilon}_{c} \frac{D_{0}}{D} \left(1 + \frac{-\frac{dD}{dt} \eta_{eff,0}^{UM} \left(\frac{D_{0}}{D} \right)^{2} \frac{L_{0}}{s}}{2\eta_{eff,0}^{S} \dot{\varepsilon}_{c} D_{0}} \right)$$
(31)

$$\left(1 - \frac{\Psi L_0 \alpha}{2s} \left(\frac{D_0}{D}\right)^2 \frac{dD}{dt} \left(\frac{dD}{dt}_c\right)^{-1}\right)$$
(32)

then the equation for the effetive stress becomes

$$\tau = \tau_{B,0} \frac{D_0}{D} \left(1 - \frac{\Psi L_0 \alpha}{2s} \left(\frac{D_0}{D} \right)^2 \frac{dD}{dt} \left(\frac{dD}{dt}_c \right)^{-1} \right)$$
(33)

which is properly not dimensionalized with $\tau_c = \tau_{B,0}$, and using additional characteristic value defined above:

$$\frac{\tau}{\tau_c} = \tau_B^* \left(1 - \frac{\Psi L_0 \alpha}{2s} \left(\tau_B^* \right)^2 \frac{dD^*}{dt^*} \right) \tag{34}$$

Additionally i can introduce the following term:

$$\gamma = \frac{L_0 \alpha}{2s} \tag{35}$$

Which represent adimensional group concerning the characteristic wavelegnth of deformation w.r.t the length of the slab and the scale of the convection. Yielding:

$$\frac{\tau}{\tau_c} = \tau_B^* \left(1 - \gamma \Psi \tau_B^{*2} \frac{dD^*}{dt^*} \right) \tag{36}$$

or introducing $\Lambda = \gamma \Psi$:

$$\frac{\tau}{\tau_c} = \tau_B^* \left(1 - \Lambda \tau_B^* \frac{dD^*}{dt^*} \right) \tag{37}$$

Final equation 3

$$0 = -D^* \left\{ B_n^* \left(\tau^* \right)^n \left[1 + \left(\frac{\tau^*}{\xi} \right)^{1-n} \right] \right\} - \left(\frac{dD^*}{dt^*} \right)$$

$$= -D^* \left\{ B_n^* \left(\tau_B^* \left(1 - \Lambda \tau_B^{*2} \frac{dD^*}{dt^*} \right) \right)^n \left[1 + \left(\frac{\tau_B^* \left(1 - \Lambda \tau_B^{*2} \frac{dD^*}{dt^*} \right)}{\xi} \right)^{1-n} \right] \right\} - dD^* dt^*$$
(38)

since we define $\xi = \frac{1}{n-\sqrt[4]{\Xi}}$ which is equivalent to $\xi = \Xi^{\frac{1}{1-n}}$. Then $\frac{1}{\xi} = \frac{1}{\Xi^{\frac{1}{1-n}}}$ which allows to extract $\frac{1}{\Xi}$

$$0 = -D^* \left\{ B_n^* \left(\tau_B^* \left(1 - \Lambda \tau_B^{*2} \frac{dD^*}{dt^*} \right) \right)^n \left[1 + \frac{1}{\Xi} \left(\tau_B^* \left(1 - \Lambda \tau_B^{*2} \frac{dD^*}{dt^*} \right) \right)^{1-n} \right] \right\} - \frac{dD^*}{dt^*}$$
(40)

$$B_n^* = \frac{B_n}{(\tau_{B,0})^{-n} \dot{\varepsilon}_c} \qquad \tau_B^* \qquad = \frac{\tau_B}{\tau_{B,0}} = \frac{D_0}{D}$$
 (41)

$$D^* = \frac{D}{D_0} \qquad \frac{dD^*}{dt} \qquad = \frac{\frac{dD}{dt}}{D_0 \dot{\varepsilon}_c} \tag{42}$$

$$\Lambda = \gamma \Psi \qquad \qquad \gamma \qquad \qquad = \frac{L_0 \alpha}{s} \tag{43}$$

$$D^* = \frac{D}{D_0} \qquad \frac{dD^*}{dt} \qquad = \frac{\frac{dD}{dt}}{D_0 \dot{\varepsilon}_c} \qquad (42)$$

$$\Lambda = \gamma \Psi \qquad \gamma \qquad = \frac{L_0 \alpha}{s} \qquad (43)$$

$$\Psi = \frac{\eta_{eff,0}^{UM}}{\eta_{eff,0}^{S}} \qquad \Xi \qquad = \frac{\eta_{d,0}^{S}}{\eta_{d,0}^{S}} \qquad (44)$$