数学分析作业

2025年4月18日

目录

1	第八	章作业	2
	1.1	简答题	
		1.1.1 1	2
2	第 9) 章作业	3
	2.1	1	3
	2.2	2	4
	2.3	3	4
	2.4	4	4
		5	
	2.6	6	5
		7	
		8	
	2.9	9	5
	2.10	10	6
	9 11	11	6

1 第八章作业

1.1 简答题

1.1.1 1

1. 求下列不定积分1:

1).
$$\int (x - \frac{1}{\sqrt{x}})^2 dx$$

2).
$$\int (2^x + 3^x)^2 dx$$

3).
$$\int \frac{3}{\sqrt{4-4x^2}} \, dx$$

证明.

$$\int (x - \frac{1}{\sqrt{x}})^2 dx \qquad \int (2^x + 3^x)^2 dx \qquad \int \frac{3}{\sqrt{4 - 4x^2}} dx$$

$$= \int (x^2 - 2\sqrt{x} + \frac{1}{x}) dx \qquad = \int (4^x + 9^x + 2 \cdot 6^x) dx \qquad = \int (\frac{3}{2} \frac{1}{\sqrt{1 - x^2}}) dx$$

$$= \frac{x^3}{3} - \frac{4}{3}x^{\frac{3}{2}} + \ln(|x|) + C \qquad = \frac{4^x}{\ln(4)} + \frac{9^x}{\ln(9)} + \frac{2 \cdot 6^x}{\ln(6)} + C \qquad = \frac{3}{2}\arcsin(x) + C$$

2. 1). $\int \frac{x^2}{3(1+x^2)} dx$

2).
$$\int \tan^2(x) dx$$

3).
$$\int \sin^2(x) dx$$

4).
$$\int \frac{\cos(2x)}{\cos(x) - \sin(x)} \, \mathrm{d}x$$

证明.

$$\int \frac{x^2}{3(1+x^2)} dx \qquad \int \tan^2(x) dx \qquad \int \frac{\cos(2x)}{\cos(x) - \sin(x)} dx$$

$$= \int \frac{1}{3} (1 - \frac{1}{1+x^2}) dx \qquad = \int \sec^2(x) - 1 dx \qquad = \int \cos(x) + \sin(x) dx$$

$$= \frac{1}{3} x - \arctan(x) + C \qquad = \sin(x) - \cos(x) + C$$

3. 证明.

$$\int \frac{\cos(2x)}{\cos^2(x)\sin^2(x)} dx \qquad \qquad \int \sqrt{x}\sqrt{x}\sqrt{x} dx \qquad \qquad \int (\sqrt{\frac{1+x}{1-x}} + \frac{1-x}{1+c}) dx$$

$$= 2x - \frac{1}{2}\sin(2x) - \tan(x) + C \qquad \qquad = \frac{8x^{15/8}}{15} + C \qquad \qquad = 2\arcsin(x) + C$$

$$\int \cos(2x)\cos(x) dx \qquad \qquad \int \frac{\sqrt{x^4 + x^{-4} + 2}}{x^3} dx$$

$$= \frac{1}{2}(\sin(x) + \frac{\sin(3x)}{3}) + C \qquad \qquad = \ln(x) + \frac{1}{-4x^4} + C$$

¹以上所以题目均可在 mathematica 或者https://www.wolframalpha.com/找到答案

4. 证明.

$$\int e^{-|x|} dx$$

$$= -sgn(x) \cdot e^{|x|} + C$$

5. $f'(\arctan(x)) = x^2, \ \ \ \ \ \ \ \ \ f(x) :$

证明.
$$f' = \tan^2(x) \to f' = \sec^2(x) - 1 \to f = \tan(x) - x + C$$

6. 证明.

$$\int \frac{dx}{1+2x} \qquad \int \left(\frac{1}{3-x^2} + \frac{1}{1-3x^2}\right) dx \qquad \int 2^{(2x+3)} dx
= \frac{\ln(2x+1)}{2} + C \qquad = \arcsin\left(\frac{x}{\sqrt{3}}\right) + \frac{\arcsin(\sqrt{3}x)}{\sqrt{3}} + C \qquad = \frac{2^{2x+2}}{\ln(2)} + C
= -\frac{3 \cdot (7-5x)^{\frac{2}{3}}}{10} + C$$

7. 证明.

$$\int \frac{\mathrm{d}x}{\sin^2(2x + \frac{\pi}{4})} \qquad \int \frac{\mathrm{d}x}{1 + \cos x} \qquad \int \csc x \, \mathrm{d}x$$

$$= -\frac{\cot(2x + \frac{\pi}{4})}{2} + C \qquad = \tan(\frac{x}{2}) + C \qquad = -\tanh^{-1}(\cos(x)) + C$$

$$\int \frac{x}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

$$= -\sqrt{1 - x^2} + C$$

2 第 9 章作业

2.1 1

$$\int_0^1 e^x dx = \sum_{k=0}^n e^{\frac{k}{n}} \cdot \frac{1}{n}$$
$$= \frac{1-e}{1-e^{\frac{1}{n}}} \cdot \frac{1}{n}$$
$$= e-1$$

2.2 2

1.

$$\int_0^1 \frac{1 - x^2}{1 + x^2} dx = \int_0^1 \frac{2}{1 + x^2} - 1 dx$$
$$= 2 \arctan(1) - 1$$
$$= \frac{\pi}{2} - 1$$

2.

$$\int_0^1 \frac{e^x - e^{-x}}{2} dx = frace^x + e^{-x} 2\Big|_0^1$$
$$= \frac{e + \frac{1}{e} - 2}{2}$$

3.

$$\int_{4}^{9} (\sqrt{x} + \frac{1}{\sqrt{x}}) dx = \frac{3}{2} x^{\frac{3}{2}} - 2\sqrt{x} \Big|_{4}^{9}$$
$$= \frac{77}{2}$$

4.

$$\int_{\frac{1}{e}}^{e} \frac{1}{x} (\ln(x))^{2} dx = \frac{\ln(x)^{3}}{3} \Big|_{\frac{1}{e}}^{e}$$
$$= \frac{8}{3}$$

2.3 3

1.

$$\lim_{n \to \infty} \frac{1 + 2^3 + \dots + n^3}{n^4} = \int_0^1 x^3 \, dx$$
$$= \frac{x^4}{4} \Big|_0^1$$
$$= \frac{1}{4}$$

2.

$$\lim_{n \to \infty} n \left(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2^2} + \dots + \frac{1}{n^2 + n^2} \right) = \int_0^1 \frac{1}{1 + x^2} dx$$

$$= \arctan(x) \Big|_0^1$$

$$= \frac{\pi}{4}$$

2.4 4

证明. 证明: 若 T' 是 T 增加若干分点后所得的分割,则 $\sum_{T'} \omega_i' \Delta x_i' \leq \sum_{T} \omega_i' \Delta x_i$. 我们不妨设 T' 增加的点在 x_i, x_{i+1} 之间,如果取到边界相当于没增加分点,不妨设这个点为 y_i ,先假设

只增加这一个点,后面我们会证明,增加一个点,那么这个 doubour 和会下降,因此我们可以先假定为一个点, 那么与原先不同的 doubour 和只有 x_i, y_i, x_{i+1} 这三点, 我们只需要证明:

$$w_i'(y_i - x_i) + w_{i+1}'(x_{i+1} - y_i) \le \omega_i(x_{i+1} - x_i)$$

然后我们又有 $w_i', w_{i+1}' \le \omega_i$,以及 $(y_i - x_i) + (x_{i+1} - y_i) = (x_{i+1} - x_i)$,所以这就证明完了。因此每增加一个分点这个 doubour 和会缩小,因此增加若干分点后,会比增加一个分点还小。这就是我们的证明。 \square

2.5 5

证明. 任取 $\varepsilon>0$,由于 f 在 [a,b] 可积,存在一个分割 T,使得 $\sum_T \omega_i \Delta x_i < \varepsilon$,如果这个分割点形成的区间包含了 α 或者 β ,我们根据上一个命题,我们可以选取 α 以及 β 为分点。就有分割 T':

$$\sum_{[\alpha,\beta]} \omega_i \Delta x_i \le \sum_{T'} \omega_i \Delta x_i \le \sum_{T} \omega_i \Delta x_i \le \varepsilon$$

2.6 6

证明. 我们不妨设 h = f - g,根据题意 h 在 [a,b] 只有有限个点 (不妨设为 N) 不为 0,但是有界 (不妨设为 M), 对任意 $\varepsilon > 0$,取等距分割 $T = \{x_0, x_1, \cdots, x_n\}$,使得 $\Delta x_i = \frac{b-a}{n}$,那么我们有

$$\sum_{T} \omega_i \Delta x_i \le \frac{b-a}{n} NM$$

对于 $n \to \infty$ 时右侧是为 0 的,所以对于 $\varepsilon > 0$,存在一个 N' 当 n > N' 就小于 ε .

2.7 7

- 1. $\int_0^{\frac{\pi}{2}} x \, \mathrm{d}x = \frac{1}{2} \left(\frac{\pi^2}{4} \right) = \frac{\pi^2}{8}$
- 2. $\int_0^{\frac{\pi}{2}} \sin(x) \, \mathrm{d}x = 1$
- 3. 我们又有在 $[0,\frac{\pi}{2}]$ 上, $x \ge \sin(x)$, 所以我们有 $\frac{\pi^2}{8} > 1$

2.8 8

- 1. e^{x^2} 在 [0,1] 是单调的,取两边就得到答案
- 2. $g(x) = \frac{\ln(x)}{\sqrt{x}}$,我们有 $g'(x) = \frac{1 \frac{1}{2} \ln(x)}{x^{\frac{3}{2}}}$ 。所以 $g \leq g(e^2) = \frac{2}{e}$,右侧就完成了。左侧的话,求出 g 在这个区间的最小值 (端点 e) $\frac{1}{\sqrt{e}}$,然后完成。

2.9 9

我们先给出一个结论:

$$\frac{\mathrm{d} \int_0^{h(x)} g(x,t) \, \mathrm{d}t}{\mathrm{d}x} = \int_0^{h(x)} g'_x(x,t) \, \mathrm{d}t + g(x,h(x))h'(x)$$

$$F'(x) = \int_0^x f(t) dt$$
$$F''(x) = f(x)$$

所以完成了。

2.10 10

- 1. 求导, 1
- 2. 求导, 0

2.11 11

- 1. 把 $\sin(2x)$ 拆出来,然后把 $\sin(x)$ 放到 d 里面,答案是 $\frac{2}{7}$
- 2. 換元 $x = 2\sin(t), \frac{\pi}{3} + \frac{\sqrt{3}}{2}$
- 3. $\frac{2}{3} \left(\sqrt{3} 1 \right)$
- 4. $\arctan(e) \frac{\pi}{4}$
- 5. $\frac{1}{2}(\pi-2)$
- 6. $\frac{1}{2} \left(1 + e^{\pi/2} \right)$
- 7. e
- 8. 2
- 9. $\frac{\pi}{4}$