Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки: 09.03.04 — Программная инженерия, Системное и прикладное программное обеспечение

Дисциплина: Информатика

Лабораторная работа №2 Синтез помехоустойчивого кода Вариант №62

Выполнил:

Карнажицкий Максим Романович

Группа: Р3111

Проверил: Доцент факультета ПИиКТ Малышева Татьяна Алексеевна

Оглавление

Оглавление	1
Задание	2
Выполнение работы	4
Часть 1	4
Последовательность 44	5
Последовательность 81	5
Последовательность 6	6
Последовательность 43	7
Часть 2	8
Последовательность 57	9
Часть 3	10
Дополнительное задание №1	11
Вывод	12
Список литературы	13

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Таблица 1 – Задание варианта 62

	2.			
44	81	6	43	57

Выполнение работы

Часть 1

Рисунок 1 – схема декодирования классического кода Хэмминга (7; 4)

Последовательность 44

Исходное сообщение: 0001011

	1	2	3	4	5	6	7	
	0	0	0	1	0	1	1	
2^x	r1	r2	i1	r3	i2	i3	i4	S
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Таблица 2 – Последовательность 44

$$\begin{split} s_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 \\ s_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 \\ s_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 \end{split}$$

$$s_1 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

 $s_2 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$
 $s_3 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

Синдром последовательности: (1, 0, 1). Ошибка в бите і2.

Верное сообщение: 0001111

Последовательность 81

	1	2	3	4	5	6	7	
	1	1	0	0	1	0	1	
2^x	r1	r2	i1	r3	i2	i3	i4	S
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Таблица 3 – Последовательность 81

$$s_{1} = r_{1} \oplus i_{1} \oplus i_{2} \oplus i_{4}$$

$$s_{2} = r_{2} \oplus i_{1} \oplus i_{3} \oplus i_{4}$$

$$s_{_{3}}=\ r_{_{3}}\oplus i_{_{2}}\oplus i_{_{3}}\oplus i_{_{4}}$$

$$s_1 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$s_2 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$s_3 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

Синдром последовательности: (1, 0, 0). Ошибка в бите $\mathbf{r1}$.

Верное сообщение: 0100101

Последовательность 6

	1	2	3	4	5	6	7	
	0	1	1	0	0	0	0	
2^x	r1	r2	i1	r3	i2	i3	i4	S
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Таблица 4 – Последовательность 6

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4$$
$$s_2 = r_1 \oplus i_2 \oplus i_4$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4$$

$$s_1 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$s_2 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$s_3 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$$

Синдром последовательности: (1, 0, 0). Ошибка в бите $\mathbf{r1}$.

Верное сообщение: 1110000

Последовательность 43

	1	2	3	4	5	6	7	
	0	0	0	0	0	1	1	
2^x	r1	r2	i1	r3	i2	i3	i4	S
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Таблица 5 – Последовательность 43

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4$$

$$s_1 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$s_2 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$s_3 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

Синдром последовательности: (1, 0, 0). Ошибка в бите $\mathbf{r1}$.

Верное сообщение: 1000011

Часть 2

Рисунок 2 – схема декодирования классического кода Хэмминга (15; 11)

Последовательность 57

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	0	1	0	0	0	1	1	1	0	0	1	0	0	1	1	
2^x	r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11	S
1	X		X		X		X		X		X		X		X	s_{1}
2		X	X			X	X			X	X			X	X	s_2
4				X	X	X	X					X	X	X	X	s_3
8								X	X	X	X	X	X	X	X	S_4

Таблица 6 – Последовательность 57 (часть 2)

$$\begin{split} s_1 &= \ r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} \\ s_2 &= \ r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} \\ s_3 &= \ r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} \\ s_4 &= \ r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} \end{split}$$

$$\begin{split} s_1 &= 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1 \\ s_2 &= 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 0 \\ s_3 &= 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0 \\ s_4 &= 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0 \end{split}$$

Синдром последовательности: (1, 0, 0, 0). Ошибка в бите $\mathbf{r1}$.

Верное сообщение: 110001110010011

Часть 3

$$i = (44 + 81 + 6 + 43 + 57) * 4 = 924$$

Минимальное число разрядов: $2^r \ge r + i + 1$

$$2^r \ge r + 925$$

$$r_{min} = 10$$

Коэффициент избыточности: $k = \frac{r}{i+r} = \frac{10}{924+10} = 0.010707...$

Дополнительное задание №1

Код на ЯП Python:

```
NAME = [
     "i4",
def haming(msg: list) -> dict:
    s1 = msg[0] ^ msg[2] ^ msg[4] ^ msg[6]
s2 = msg[1] ^ msg[2] ^ msg[5] ^ msg[6]
s3 = msg[3] ^ msg[4] ^ msg[5] ^ msg[6]
     err pos = s1 + s2 * 2 + s3 * 4
     if err pos > 0:
         msg[err_pos - 1] ^= 1
          "correct_haming": "".join(list(map(str, msg))),
"correct_value": "".join(list(map(str, [msg[2], msg[4], msg[5], msg[6]]))),
          "err pos": err_pos,
          "err type": BIT NAME[err pos],
     s = list(map(int, list(input())))
          print("Некорректный ввод: введите 5 символов 0 или 1")
                     print("Некорректный ввод: только 0 и 1")
                h = haming(s)
               if h["err_pos"] == 0:
    print("CORRECT!")
                     print("ERROR!")
                for key, val in h.items():
    if key == "err_pos" and val == 0:
        continue
                     print(f"{key}: {val}")
except ValueError:
     print("Некорректный ввод: только 0 и 1")
```

Рисунок 3 – Решение доп. задания №1

Вывод

В ходе лабораторной работы я узнал, как работает кодирование и декодирование кода Хэмминга (7, 4) и (15, 11). Научился с его помощью определять и исправлять информационные биты, переданные с ошибкой.

Список литературы

- 1. Балакшин П. В., Соснин В. В. Информатика: методическое пособие. г. Санкт-Петербург: Университет ИТМО, 2015 Режим доступа: https://picloud.pw/media/resources/posts/2018/02/19/%D0%9C%D0%B5%D1%8 2%D0%BE%D0%B4%D0%B8%D1%87%D0%BA%D0%B0.pdf
- 2. Балакшин П.В., Соснин В.В., Калинин И.В., Малышева Т.А., Раков С.В., Рущенко Н.Г., Дергачев А.М. Информатика: лабораторные работы и тесты. СПб: Университет ИТМО, 2019. 56 с. Режим доступа: https://books.ifmo.ru/file/pdf/2464.pdf