Datenstrukturen und effiziente Algorithmen

Markus Vieth, David Klopp, Christian Stricker

8. Dezember 2015

Inhaltsverzeichnis

I.	Sortieren	4
1.	Vorlesung 1	5
	1.1. Bubblesort	,
	1.1.1. Pseudocode	ļ
	1.1.2. Laufzeitanalyse	ļ
	1.2. Heapsort	(
	1.2.1. Heap-Eigenschaft	(
2.	Vorlesung 2	7
	2.0.1. Pseudocode	7
	2.0.2. Korrektheitsbetrachtung	7
	2.0.3. Laufzeitanalyse	7
3.	Vorlesung 12	8
•	3.1. (a,b)-Suchbäume	8
	3.1.1. Aufspaltung bei Einfügen	8
	3.1.2. Verschmelzen von Knoten beim Löschen	8
	3.2. Amortisierte Analyse	8
	3.2.1. Bankkonto-Methode	8
4.	Vorlesung 13	10
	4.1. Hashing	10
	4.1.1. Universelles Hashing	11
5.	Vorlesung 14	13
	5.0.1. Definition	13
	5.0.2. Beispiel	13
	5.0.3. Abschätzung nach oben	14
	5.1. Perfektes Hashing	14
	5.1.1. Definition	14
	5.1.2. Nachteil	16
6.	Vorlesung 15	17
	6.1. Graphen-Algorithmen	17
	6.1.1. Einführung	17
	6.1.2 RFS (Breadth-First Search) Breitensuche	10

Teil I. Sortieren

1.1. Bubblesort

1.1.1. Pseudocode

```
void bubblesort (int[] a) {
  int n = a.length;
  for (int i = 1; i < n; i++) {
    for (int j = 0; j < n-i; j++) {
      if (a[j] < a[j+1])
        swap (a, j, j+1);
    }
  }
}</pre>
```

Schleifen-Invariante: Nach dem Ablauf der i-ten Phase gilt:

Die Feldpositionen n-i,...,n-i enthalten die korrekt sortierten Feldelemente

Beweis durch Induktion nach i $\stackrel{i=n-1}{\Longrightarrow}$ Sortierung am Ende korrekt.

1.1.2. Laufzeitanalyse

```
1. Phase n-1
2. Phase n-1
3. Phase n-1
\vdots
i. Phase n-1
\vdots
(n-1). Phase n-1
1+2+3+\ldots+(n+1)
```

$$T(n) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \in O(n^2)$$

n	T_{real}
2^{10}	8ms
2^{11}	$11 \mathrm{ms}$
2^{12}	$26 \mathrm{ms}$
÷	
2^{16}	5,819s
2^{17}	23,381s
÷	
2^{20}	16min
÷	
2^{26}	52d

$$T_{real}(n) \approx cn^2 \ c \approx 10^{-6}$$

1.2. Heapsort

z.B. 21 6 4 7 12 5 3 11 14 17 19 8 9 10 42

Skizze

1.2.1. Heap-Eigenschaft

Heapsort (Fortsetzung)

2.0.1. Pseudocode

```
heapify ( int[] a, int i, int n) {
                                //linkes Kind von i existiert
  while (2i + 1 < n) {
    int j = 2i + 1;
    if (2i +2 < n)
                                //rechtes Kind von i existiert
      if (a[j] < a[j+1])
        j = j + 1;
                                //j steht für Indes des größten Kindes
    if (a[i] > a[j])
                                //Vater größer als Kind
                                //Abbruch, weil heap bereits erfüllt
      break;
    swap(a,i,j);
                                //Tausch zwischen Vater und Kind
    i = j;
}
```

1. Phase: Bottom-up Strategie zum Heapaufbau

```
for ( int i = n/2; i >= 0; i--)
heapify(a,i,n);
```

2. Phase: Sortierphase

```
for ( int i = n-1; i >= 0; i--) {    swap(a,0,i);    heapify(a,0,i); }
```

2.0.2. Korrektheitsbetrachtung

Invariante beim Heapaufbau: Beim Durchlauf der for-Schleife wird die Heapeigenschaft vom unteren Baumlevel bis zur Wurzel hergestellt.

Invariante für Sortierphase: Nach jedem weiteren Durchlauf der for-Schleife findet ein weiteres Element am Feldende seinen "richtigen Platz".

2.0.3. Laufzeitanalyse

T(n) = Zahl der Elementvergleiche.

Analyse Heapaufbau:

3.1. (a,b)-Suchbäume

Blattorientierte Speicherung der Elemente

Innere Knoten haben mindestens a und höchstens b Kinder und tragen entsprechende Schlüsselwerte, um die Suche zu leiten.

Beispiel:

$$h$$
êTiefe $\Rightarrow a^h \le n \le b^h \Rightarrow \log_b n \le h \le \log_a n$

3.1.1. Aufspaltung bei Einfügen

3.1.2. Verschmelzen von Knoten beim Löschen

Aufspalte- und Verschmelze-Operationen können sich von der Blattebene bis zur Wurzel kaskadenartig fortpflanzen. Sie bleiben aber auf den Suchpfad begrenzt.

 \Rightarrow Umbaukosten sind beschränkt durch die Baumtiefe $= O(\log n)$

3.2. Amortisierte Analyse

	000		
	001	Kosten(1) = 1	
	010	=2	
	011	=1	
Beispiel: Binärzähler	100	=3	Kosten der Inkrement-Operation $\hat{=}$ Zahl der Bit-Flips
	101	=1	
	110	=2	
	111	=1	
		$\overline{11}$	

Naive Analyse $2^k = n$

$$1 \cdot \frac{n}{2} + 2 \cdot \frac{n}{4} + 3 \cdot \frac{n}{8} + \dots + k \cdot \frac{n}{2^k} = \frac{n}{2} \sum_{i=1}^k i(\frac{1}{2})^{i-1} = 2^{k+1} - k - 2 = 2n - k - 2$$

Von 0 bis n im Binärsystem zu zählen kostet $\leq 2n$ Bit-Flips

Sprechweise: amortisierte Kosten einer Inkrement-Operation sind 2 Folge von n-Ops kostet 2n

3.2.1. Bankkonto-Methode

$$\operatorname{Konto}(i+1) = \operatorname{Konto}(i) - \operatorname{Kosten}(i) + \operatorname{Einzahlung}(i)$$

$$\sum_{i=1}^n \operatorname{Kosten}(i) = \operatorname{tats\"{a}chliche} \operatorname{Gesamtkosten} = \sum_{i=1}^n (\operatorname{Einzahlung}(i) + \operatorname{Konto}(i - \operatorname{Konto}(i+1))$$

$$= \sum_{i=1}^{n} \operatorname{Einzahlung}(i) + \operatorname{Konto}(1) - \operatorname{Konto}(n+1)$$

000	
001€	Kosten(1) = 1
01€0	=2
$01 \in 1 \in$	=1
$1 \in 00$	=3
$1 \in 01 \in$	=1
$1 \in 1 \in 0$	=2
$1 \in 1 \in 1 \in$	=1
	$\overline{11}$

Kontoführungsschema: für Binärzähler

1 €pro1in der Binärdarstellung

Jeder Übergang $1 \in \to 0$ kann dann mit dem entsprechenden Euro Betrag auf dieser 1 bezahlt werden. Es gibt pro Inkrement Operation nur einen $0 \to 1$ Übergang

2 € Einzahlung für jede Inc-Operation reichen aus um:

- 1. diesen $0 \to 1$ Übergang zu bezahlen
- 2. die neu entstanden
e $1_{\mbox{\ensuremath{\in}}}$ mit einem Euro zu besparen.

$$GK = 2(2^k - 1) + 0^I - k^{II} = 2n - k - 2$$

 $^{^{\}rm I}$ Zählerstand (000)

 $^{^{\}rm II}$ Zählerstand $(111\dots 1)$

Satz: Ausgehend von einem <u>leeren</u> 2-5-Baum betrachten wir die Rebalancierungskosten C (Split- und Fusionsoperationen) für eine Folge von m Einfüge- oder Löschoperationen. Dann gilt: $C \in O(m)$ d.h. Amortisierte Kosten der Split- und Fusionsopeartionen sind konstant.

! Dies bezieht sich nicht auf die Suchkosten, die in $O(\log n)$ liegen.

Beweisidee:

Kontoführung:	1	2	3	4	5	6
	2€	1€	0€	0€	1€	2€

regelmäßige Einzahlung: 1€

Durch eine Einfüge- oder Löschoperation steigt oder fällt der Knotengrad des direkt betroffenen Knotens um höchstens $1. \Rightarrow 1 \in$ Einzahlung reicht zur Aufrechterhaltung dieses Sparplanes.

Jetzt Beseitigung der temporären 1- und 6-Knoten:

Ein 6-Knoten nutzt $1 \in$ um seinen Split zu bezahlen. Die beiden neu entstehenden 3-Knoten benötigen kein Kapital. Der Vaterknoten des gesplitteten 6-Knotens benötigt ggf. den zweiten verfügbaren \in . Analoge Betrachtung für Fusion eines temp. 1-Knotens.

4.1. Hashing

 $U\subseteq \mathbb{N}$ z.B. 64-Bit-Integer

n = Zahl dr zu verwaltenden Schlüssel

Hashfunktion h:

$$h: U \rightarrow [0, \ldots, m-1]$$

z.B.
$$k \mapsto k \mod m$$

Einfache Annahme: (einfaches uniformes Hashing)

$$\forall k_i, k_j \in U : Pr(h(k_i) = h(k_j)) = \frac{1}{m}$$

Analyse der Laufzeit zum Einfügen eines neuen Elementes k

- h(k) berechnen $\longrightarrow O(1)$
- Einfügen am Listenanfang in Fach h(k). $\longrightarrow O(1)$

Analyse der Suchzeit für einen Schlüssel k

- $h(k) \longrightarrow O(1)$
- Listenlänge zum Fach h(k) sei $n_{h(k)}$ also beim Durchlauf der kompletten Liste $\longrightarrow O(n_{h(k)})$

$$E(n_{h(k)}) = \frac{n}{m} = \alpha^{\mathrm{I}}$$

Suchzeit(Einfügen) $\in O(1 + \alpha)$

Laufzeit beim Löschen von Schlüssel k

- $\bullet \ h(k) \longrightarrow O(1)$
- Durchlaufen der Liste $\longrightarrow 0(n_{h(k)})$
- Löschen durch "Pointer-Umbiegen" $\longrightarrow O(1)$

4.1.1. Universelles Hashing

Idee Arbeite nicht mit einer festen Hashfunktionm sondern wähle am Anfang eine zufällige Hashfunktion aus einer Klasse von Hashfunktionen aus.

z.B.

$$h_{a,b}(k) = ((a \cdot k + b) mod p) mod m$$

p sei eine hinreichend große Primzahl $0 < a < p, 0 \leq b < p$

$$\mathcal{H}_{p,m} = \{ h_{a,b}(k) | 0 < a < p, \ 0 \le b < p \}$$

$$|\mathcal{H}_{p,m}| = p(p-1)$$

Definition \mathcal{H} heißt universell $\Leftrightarrow \ \forall \ k,l \in U: \ Pr(h(k)=h(l)) \leq \frac{1}{m}$

^IBelegungsfaktor

Suchzeit

$$\chi_{k,l} = \begin{cases} 1 & \text{für } h(k) = h(l) \\ 0 & \text{sonst} \end{cases}$$

$$E(n_{h(k)}) = E\left(\sum_{l \in T, l \neq k}\right) = \sum_{l \in T, l \neq k} E(X_{k,l}) = \sum_{l \in T, l \neq k} Pr(h(k) = h(l)) = \sum_{l \in T, l \neq k} \frac{1}{m} = \frac{n-1}{m} = \alpha$$

Universelles Hashing (Fortsetzung)

Könnte ein boshafter Mitspieler
n Schlüssel bei gegebener fester Hashfunktion wählen, so würde er solche wählen, die auf den gleichen Slot unter gegebener Hashfunktion abgebildet werden. \rightsquigarrow Durchschnittliche Ablaufzeit von O(n)

Idee zufällige Wahl der Hashfunktion aus einer Familie von Funktionen derart, dass die Wahl unabhängig von den zu speichernden Schlüssel ist (universelles Hashing).

5.0.1. Definition

Sei \mathcal{H} eine endliche Menge von Hashfunktionen, welche ein gegebenes Universum U von Schlüsseln auf $\{0,\ldots,m-1\}$ abbildet. Sie heißt universell, wenn für jedes Paar von Schlüsseln $k,l\in U$ $l\neq k$ die Anzahl der Hashfunktionen $h\in\mathcal{H}$ mit h(l)=h(k) höchstens $\frac{|\mathcal{H}|}{m}$. Anders: Für ein zufälliges $h\in\mathcal{H}$ beträgt die Wahrscheinlichkeit, dass zwei unterschiedliche Schlüssel k,l kollidieren nicht mehr als $\frac{1}{m}$ ist.

5.0.2. Beispiel

p Primzahl, so groß, dass alle möglichen Schlüssel $k \in U$ im $0, \ldots, p-1$ liegen. $\mathbb{Z}/p\mathbb{Z}$ bezeichnet den Restklassenring mod p (weil p prim, ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper). $\mathbb{Z}/p\mathbb{Z}^*$ ist die Einheitengruppe.

Annahme: Die Menge der Schlüssel im Universum U ist größer als die Anzahl der Slots in der Hashtabelle. Für $a \in \mathbb{Z}/p\mathbb{Z}^*$ und $b \in \mathbb{Z}/p\mathbb{Z}$ betrachte:

$$h_{a,b}(k) := (a \cdot k + b \mod p) \mod m \quad (*)$$

Damit ergibt sich die Familie

$$\mathbb{Z}/p\mathbb{Z}^* = \{1, \dots, p-1\} \ \mathbb{Z}/p\mathbb{Z} = \{0, \dots, p-1\} \ \mathcal{H}_{p,m} = \{h_{a,b} | a \in \mathbb{Z}/p\mathbb{Z}^*, b \in \mathbb{Z}/p\mathbb{Z}^{(*)} \ |\mathcal{H}| = p(p-1)\}$$

Satz Die in (*) eingeführte Klasse von Hashfunktionen ist universell.

Beweis Seien k, l Schlüssel auf $\mathbb{Z}/p\mathbb{Z}$ mit $k \neq l$

Für $h_{a,b} \in \mathcal{H}_{p,m}$ betrachten wir

$$r = (a \cdot k + b) \mod p$$

$$s = (a \cdot l + b) \mod p$$

Es ist $r \neq s$

Dazu:

$$r - s = a \cdot (k - l) \mod p \quad (*2)$$

Angenommen r - s = 0

$$0 = a \cdot (k - l) \mod p$$
, aber $a \in \mathbb{Z}/p\mathbb{Z}^* \Rightarrow a \neq 0$ und $k \neq l \Rightarrow k - l \neq 0$

Da pprim ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper \Rightarrow kein Nullteiler $\Rightarrow a\cdot (k-l)\neq 0 \Rightarrow r\neq s$

Daher bilden $h_{a,b} \in \mathcal{H}_{p,m}$ unterschiedliche Schlüssel k, l auf unterschiedliche Elemente ab. ("Auf dem level mod p" gibt es keine Kollisionen).

Aus (*2) folgt:

$$(r-s)(k-l)^{-1} = a \mod p$$

$$r - a \cdot k = b \mod p$$
 Bijektion zwischen (k,l) und (a,b)

Daher ist die Wahrscheinlichkeit, dass zwei Schlüssel $h \neq l$ kollidieren, gerade die Wahrscheinlichkeit, dass $r \equiv s \mod m$, falls $r \neq S$ zufällig gewählt (aus $\mathbb{Z}/p\mathbb{Z}$).

Für gegebenes r gibt es unter den übrigen p-1 Werten für s höchstens $\lceil \frac{p-1}{m} \rceil \leq \lceil \frac{p}{m} \rceil - 1$ Möglichkeiten, sodass $s \neq r \mod p$ aber $r = s \mod m$

5.0.3. Abschätzung nach oben

$$\lceil \frac{p}{m} \rceil - 1 \leq \frac{(p+m-1)}{m} - 1 = \frac{p-1}{m}$$
Kollisionsmöglichkeiten

Die Wahrscheinlichkeit, dass r und s kollidieren $\mod m$ Kollisionsmöglichkeiten / Gesamtzahl der Werte

$$= \frac{p-1}{m} \cdot \frac{1}{p-1} = \frac{1}{m}$$

 \Rightarrow Für ein Paar von Schlüssel
n $k,l\in\mathbb{Z}/p\mathbb{Z}$ mit $k\neq l$

$$P[h_{a,b}(k) = h_{a,b}(l)] \le \frac{1}{m} \Rightarrow \mathcal{H}_{p,m}$$
 universell!

5.1. Perfektes Hashing

Wichtig Menge der Schlüssel ist im Vorhinein bekannt und ändert sich nicht mehr.

Beispiele reserved words bei Programmiersprachen, Dateinamen auf einer CD

5.1.1. Definition

Eine Hashmethode heißt perfektes Hashing, falls O(1) Speicherzugriffe benötigt werden, um die Suche nach einem Element durchzuführen.

Idee Zweistufiges Hashing mit universellen Hashfunktionen.

- 1. Schritt n Schlüssel, m Slots durch Verwendung der Hashfunktion h, welche aus einer Familie universeller Hashfunktionen stammt.
- 2. Schritt Statt einer Linkedlist im Slot anzulegen, benutzen wir eine kleine zweite Hashtabelle S_j mit Hashfunktion h_j

Bild Schlüssel $k = \{10, 22, 37, 49, 52, 60, 72, 75\}$ Äußere Hashfunktion $h(k) = ((a \cdot b) \mod p) \mod m$

$$a = 3, b = 42, p = 101, m = 9$$

$$h(10) = \underbrace{(3 \cdot 10 + 42 \mod 101)}_{=72} \mod 9 = 0$$

Um zu garantieren, dass keine Kollision auf der zweiten Ebene auftreten, lassen wir die Größe von S_i

Abbildung 5.1.: Perfekte Hashtabelle

gerade n_i^2 sein $(n_i \neq \#Schl\ddot{u}ssel \mapsto jSlot)$.

Wir verwenden für die Hashfunktion der ersten Ebene eine Funktion aus $\mathcal{H}_{p,m}$. Schlüssel die im j-ten Slot werden in der sekundären Hashtabelle S_j der Größe m_j mittels h_j gehasht. $h_j \in \mathcal{H}_{p,m}$

Wir zeigen: 2 Dinge:

- 1. Wie versichern wir, dass die zweite Hashfunktion keine Kollision hat.
- 2. Der erwartete Speicherbedarf ist O(n)

zu 1.

 ${\sf Satz}\;$ Beim Speichern von n Schlüsseln in einer Hashtabelle der Größe $m=n^2$ ist die Wahrscheinlichkeit, dass eine Kollision auftritt < $\frac{1}{2}$

Beweis: Es gibt $\binom{n}{2}$ mögliche Paare, die kollidieren können. Jedes kollidiert mit der Wahrscheinlichkeit $\leq \frac{1}{m}$, falls $h \in \mathcal{H}$ zufällig gewählt wurde.

Sei X eine zufallsvariable(ZV), X zählt Kollisionen:

Für $m = n^2$ ist die erwartete Zahl der Kollisionen:

$$E[X] = \binom{n}{2} \cdot \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{n^2} = \frac{n!}{2!(n-2)!n^2} = \frac{(n-1)}{2n} \le \frac{1}{2}$$

Anwenden der Markow-Ungleichung (a=1):

$$P[X \ge 1] \le \frac{E[X]}{1} = \frac{1}{2} \Rightarrow$$
 Wahrscheinlichkeit für irgendeine Kollision ist $< \frac{1}{2}$

q.e.d

5.1.2. Nachteil

Für große n ist $m = n^2$ nicht haltbar!

zu 2. Wenn die Größe der primären Hashtabelle m=n ist, dann ist der Platzverbrauch in $O(n) \curvearrowright$ Betrachte Platzverbrauch der sekundären Hashtabellen.

Satz Angenommen wir wollen n Schlüssel in einer Hashtabelle der Größe m=n mit Hashfunktion $h\in\mathcal{H}$. Dann gilt:

$$E\left[\sum_{j=0}^{m-1} n_j^2\right] < 2n$$

Beweis

Betrachte

$$a^{2} = a + 2 \cdot {a \choose n} = a + 2 \cdot \frac{a^{2} - a}{2} \quad (*3)$$

Betrachte

$$E\left[\sum_{j=0}^{m-1} n_j^2\right] \stackrel{(*3)}{=} E\left[\sum_{j=0}^{m-1} \left(n_j + 2\binom{n_j}{2}\right)\right]$$

$$\stackrel{lini.desEW}{=} E \left[\sum_{j=0}^{m-1} n_j \right] + 2E \left[\sum_{j=0}^{m-1} \binom{n_j}{2} \right] = n + 2E \left[\sum_{j=0}^{m-1} \binom{n_j}{2} \right] \# \text{ der Kollisionen}$$

Da unsere Hashfunktion universell ist, ist die erwartete Zahl dieser Paare:

$$\binom{n}{2}\frac{1}{m}=\frac{n(n-1)}{2m}=\frac{n-1}{2},$$
da $m=n$

Somit

$$E\left[\sum_{j=0}^{m-1} n_j^2\right] \le n + 2\frac{n-1}{2} = 2n - 1 < 2n$$

Korollar Speichern wir n Schlüssel in einer Hashtabelle der Größe m=n mit einer zufälligen universellen Hashfunktion und setzen die Größe der Hashtabellen der zweiten Ebene auf $m_j=n_j^2$ für j=0, m=1, so ist der Platzverbrauch des perfekten Hashings weniger als 2n. Die Wahrscheinlichkeit, dass der Platzverbrauch der zweiten Hashtabellen $\geq 4n$ ist, ist $\leq \frac{1}{2}$ ohne Beweis.

Bei n Elementen sollte die Hashtabelle $m=n^2$ groß sein.

Für die universellen Hashfunktionen $\mathcal{H}_{p,m} = h_{a,b}(k) = (a \cdot k + b) \mod p \mod m | 0 < a < p, \ 0 \le b < p \binom{n}{1}$ Schlüsselpaare (k,l) mit $k \ne l$

$$E(\# \text{Kollisionen}) \leq \binom{n}{2} \cdot \frac{1}{m} \mathbf{I} = \frac{n(n-1)}{2} \cdot \frac{1}{n^2} \leq \frac{1}{2}$$

Idee Zweistufiges Verfahren:

ullet primäre Hashfunktion für Tabelle der Größe m=n

Abbildung 6.1.: Perfektes Hashing

6.1. Graphen-Algorithmen

6.1.1. Einführung

$$G = (V, E)$$
 V vertices, E edges $E \subseteq V \times V$

Planare Graphen können ohne Überkreuzung der Kanten in die Ebene eingebettet werden.

Eulerische Polyederformel

$$|V| + |F| = |E| + 2$$

 $8 + 6 = 12 + 2$

Es gilt:

$$2 \cdot |E| \ge 3 \cdot |F|$$

 $^{^{\}rm I}$ Universalität von $\mathcal H$

Abbildung 6.2.: Gerichteter Graph

Abbildung 6.3.: Würfel

#gerichtete Kanten =
$$2 \cdot |E| = \sum_{i=1}^{|F|} \# \text{Kanten}(f_i)^{\text{II}} \ge 3 \cdot |F|$$

$$|F| \le \frac{2}{3}|E|, \quad |V| + |F| = |E| + 2 \le |V| + \frac{2}{3}|E| \Rightarrow \frac{1}{3}|E| + 2 \le |V|$$

$$text \Rightarrow |E| \le 3 \cdot |V| - 6$$

Adjazenzmatrix

$$a \in B^{|V| \times |V|}$$

falls G ungerichtet $\Rightarrow A = A^T$

Adjazenzlisten Repräsentation

Platzbedarf

$$\mathcal{O}(|V| + |E|) = \mathcal{O}\left(|V| + \sum_{i=0}^{|V|-1} \text{outdeg}(v_i)\right)$$

II Jedes f_i hat mindestens 3 Kanten

Abbildung 6.4.: Placeholder

6.1.2. BFS (Breadth-First Search) Breitensuche

```
for all ( v in V \setminus \{S\}) {
 pi[v] = NULL; // pi ist Vorgänger
col[s] = grey;
                // s ist Startknoten
d[s] = 0;
pi[s] = null;
    Queue
                      Stack
              vs
                     Stapel
    Schlange
                       "
    empty()
    push()
     pop()
     FIFO
                      FILO
First-In-First-Out
                 First-In-First-Out
Queue Q;
Q. push(s);
while (!Q.empty()) {
 u = Q. pop();
  forall((u,v) in E) {
    if (col[v] = white) {
     col[v] = grey;
     d[v] = d[u]+1;
     pi[v] = u;
     Q. push(v);
```


Abbildung 6.5.: Beispiel

```
col[u] = black;
```


Abbildung 6.6.: Adjazenzliste

Abbildung 6.7.: indeg und outdeg

Abbildung 6.8.: Grafik zum Beispielcode