3. Théorèmes asymptotiques. Tests, Théorème de Neyman-Pearson

Objectifs: Savoir appliquer la loi des grands nombres, le théorème central limite, la méthode delta et le Lemme de Slutsky. Savoir appliquer le théorème de Neyman-Pearson pour des test d'hypothèses simples. Les exercices 3.1 à 3.2 sont à faire pendant le TD, les 3.3 à 3.6 sont à chercher de votre côté.

Exercice 3.1 (Théorèmes asymptotiques). Supposons que X_1, \ldots, X_n sont i.i.d., centrées, de variance finie $\sigma^2 > 0$ inconnue. On note classiquement \bar{X} la moyenne empirique et $\hat{\sigma}^2$ l'estimateur non biaisé de la variance.

- 1. Écrire $\hat{\sigma}^2$ en fonction des X_i .
- 2. Étudier la convergence presque sûre de \bar{X} et de $\hat{\sigma}^2$.
- 3. Montrer que

$$\frac{\sqrt{n}\bar{X}}{\sqrt{\hat{\sigma}^2}} \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,1)$$
.

.

4. On suppose ici que $\sigma^2 = 1$ et qu'il est connu. Donner la limite en loi de

$$\sqrt{n}(e^{\bar{X}/2}-1)$$
.

.

Exercice 3.2 (Test optimal pour la loi exponentielle). Soient X_1, \ldots, X_n des variables aléatoires i.i.d. de loi exponentielle de paramètre² $\lambda > 0$. On souhaite tester les hypothèses simples $\mathcal{H}_0: \lambda = \lambda_0$ contre $\mathcal{H}_1: \lambda = \lambda_1$ avec $\lambda_1 > \lambda_0$.

On rappelle la propriété suivante : la somme de n variables aléatoires indépendantes de loi exponentielle de paramètre $\lambda=1$ suit une loi Gamma $\Gamma(n,1)$, dont on notera $q_{\beta}^{\Gamma,n}$ le quantile d'ordre β .

1. Déterminer un test uniformément plus puissant (UPP) de niveau $\alpha \in]0,1[$ pour ce problème. Montrer que c'est un test dont la région de rejet peut s'écrire

$$R = \left\{ \sum_{i=1}^{n} X_i < \frac{u(\alpha)}{\lambda_0} \right\},\,$$

où $u(\alpha)$ est une constante dépendant de α dont on ne demande pas l'expression dans cette question.

- 2. Montrer que sous \mathcal{H}_0 , $\lambda_0 X_1 \sim \text{Exp}(1)$. En déduire la valeur de $u(\alpha)$.
- 3. On notera F_n la fonction de répartition de la loi $\Gamma(n,1)$. Exprimer la puissance $\pi(\lambda_1)$ du test précédent pour toute valeur de $\lambda_1 > \lambda_0$, en fonction de F_n . Commenter sa monotonie en λ_1 .
- 4. Montrer par ailleurs que le test précédent est uniformément plus puissant (UPP) pour tester $\mathcal{H}_0: \lambda = \lambda_0$ contre $\mathcal{H}_1: \lambda > \lambda_0$.

Exercice 3.3 (Asymptotique du maximum de vraisemblance). Reprenons le modèle où les X_1, \ldots, X_n sont i.i.d. et dont la loi est à densité sur \mathbb{R} donnée par

$$x \mapsto \mathbb{1}_{x \ge 1} \frac{a-1}{x^a}$$

²on rappelle que c'est loi à densité $x \mapsto \mathbb{1}_{x>0} \lambda e^{-\lambda x}$.

avec a>1 un paramètre. On a établi que l'estimateur du maximum de vraisemblance de a est donné par

$$\hat{a}_{MV} = 1 + \left(\frac{1}{n} \sum_{i=1}^{n} \log X_i\right)^{-1}$$

dans l'exercice 2.3.

- 1. Etudier la distribution de $\log X_1$ en calculant sa fonction de répartition, et en déduire que \hat{a}_{MV} est également consistant.
- 2. Calculer l'information de Fisher $I_1(a)$ de X_1 . En admettant que le modèle est régulier, montrer que \hat{a}_{MV} est asymptotiquement normal et donner ses caractéristiques.

Exercice 3.4 (Test de variance symétrique à deux échantillons). On admettra dans cet exercice que si Z_1, Z_2 sont deux variables i.i.d. gaussiennes standard, alors Z_1/Z_2 suit une loi de Cauchy de densité sur \mathbb{R} donnée par $x \mapsto \frac{1}{\pi(1+x^2)}$.

On travaille avec deux échantillons indépendants, X_1 et X_2 . On suppose que $0 < \sigma_1^2 < \sigma_2^2$, et on souhaite tester

$$\mathcal{H}_0: X_1 \sim \mathcal{N}(0, \sigma_1^2), \ X_2 \sim \mathcal{N}(0, \sigma_2^2)$$

contre

$$\mathcal{H}_1: X_1 \sim \mathcal{N}(0, \sigma_2^2), \ X_2 \sim \mathcal{N}(0, \sigma_1^2).$$

On souhaite travailler avec des tests symétriques ϕ , tels que $\phi(x_1, x_2) = 1 - \phi(x_2, x_1)$ presque partout.

- 1. Montrer que si ϕ est un test symétrique de niveau α et de puissance β , alors $\alpha = 1 \beta$.
- 2. Écrire le rapport de vraisemblance L, et construire un estimateur symétrique ϕ_0 basé sur L pour ce problème.
- 3. Montrer que le niveau $\alpha(\phi_0)$ et la puissance $\beta(\phi_0)$ de ϕ_0 vérifient :

$$\alpha(\phi_0) = 1 - \beta(\phi_0) = \frac{2}{\pi} \tan^{-1} \left(\frac{\sigma_1}{\sigma_2}\right).$$

Exercice 3.5 (Plus vite que \sqrt{n} ?). Reprenons l'exercice 3.1, en supposant que $\sigma^2 = 1$ et qu'il est connu.

- 1. Quelle est la limite en loi de $\sqrt{n}(\cos(\bar{X}) 1)$?
- 2. Trouver une suite $(a_n)_{n\geq 1}$ telle que $a_n(\cos(\bar{X})-1)$ converge en loi vers une v.a. Z qui n'est pas presque sûrement constante, dont on précisera la loi.

Exercice 3.6. Reprenons l'exercice 3.2.

- 1. Sous quelle condition sur a ces variables sont-elles d'espérance finie?
- 2. Sous la condition de la question 1, donner un estimateur \hat{a}_{MM} de a via la méthode des moments. Prouver qu'il est consistant.
- 3. On suppose dans toute la suite que la condition de la question 1 est vérifiée. A l'aide du TCL et de la méthode Delta, montrer que $\hat{\alpha}_{MM}$ est asymptotiquement normal et donner ses caractéristiques.
- 4. Pour n grand, quel est l'estimateur à privilégier selon vous, entre \hat{a}_{MM} et \hat{a}_{MV} ?