English Contrastive Learning Can Learn Universal Cross-lingual Sentence Embeddings

Authors: Yau-Shian Wang, Ashley Wu, Graham Neubig

Venue: EMNLP 2022

1. Introduction

- Universal cross-lingual sentence embedding은 여러 언어의 문장들을 공유 임베딩 공간으로 매핑함
 - 이 때, 언어 간에 의미적으로 유사한 문장은 서로 가까이에 있음
 - 다국어 문서 검색, 다국어 질의응답, 비지도적인 기계 번역, zero-shot transfer 에 활용됨
- 아래 그림 (a)에서 미세조정 하지 않은 XLM-R 은 임베딩 공간에서 각 언어의 임베딩을 서로 다른 클러스터로 분리함
- 그래서 이전 연구들에서는 다국어 언어 모델을 수십억 개의 병렬 데이터로 미세조정해서 분리했음 → 아래 그림 (b)
 - XLM-R은 사전 학습된 다국어 언어 모델
 - 병렬 데이터는 예를 들어 같은 의미를 가진 다른 언어 데이터 (ex. 영어-한국어)

(a) XLM-R without finetun- (b) XLM-R fintuned on Ening.

glish NLI data.

1. Introduction

- 하지만 모든 언어에 대해 수많은 병렬 데이터를 얻는 것이 중요한 것은 아님
 - 병렬 데이터의 필요성을 완화하기 위한 방법으로 문장 임베딩의 cross-lingual transfer을 향상시키면 됨
- Cross-lingual transfer?
 - labeled data가 풍부한 언어의 data를 이용해서 labeled data가 희소한 언어에 대한 성능을 보완하는 것
 - Source language로 미세조정한 모델이 target language에서 일반화가 가능하게 함
- 이전 연구에서 사전 학습된 다국어 언어 모델이 cross-lingual transfer에서 좋은 성능을 보였었음
 - → downstream task에서 미세조정 된 표현이 다양한 언어에 보편적이라는 것을 의미함
- 이 논문에서의 제안
 - 영어 data만 사용하는 방법으로 문장 검색 task에서의 다양한 cross-lingual transfer 방법을 연구
 - SimCSE를 다국어로 확장해 cross-lingual transfer를 할 수 있도록 multilingual-SimCSE(mSimCSE)를 제안
 - SimCSE는 대조학습 프레임워크
 - 대조학습
 - 입력 문장(anchor)와 의미적으로 유사한 것(positive)과는 가깝게, 유사하지 않은 것 (negative)과는 멀어지게 학습하는 방법
 - SimCSE
 - 입력 문장(anchor)에 서로 다른 dropout mask를 적용하여 positive를 생성하여 높은 성능을 보임

2. Method

- 아래 그림은 mSimCSE를 학습하는 4가지 방법임
 - Unsupervised mSimCSE (a)
 - English NLI supervised mSimCSE (c)
 - Cross-lingual NLI supervised mSimCSE (c)
 - Supervised mSimCSE (b)

2. Method

- Unsupervised mSimCSE
 - Wikipedia data를 사용
 - SimCSE와 동일하게 anchor에 서로 다른 dropout mask를 적용하여 positive 생성
- English NLI supervised mSimCSE
 - NLI dataset 사용
 - 'entailment' label인 문장을 positive로, 'contradiction' label인 문장을 hard negative로 사용
- Cross-lingual NLI supervised mSimCSE
 - XNLI dataset 사용 (NLI dataset을 여러 언어로 번역한 dataset)

premise (string)	힌두어(hi)	hypothesis (string)	label (class label)
"Conceptually cream skimming	g has two basic dimensions - product and geography ."	"Product and geography are what make cream skimming work ."	1 (neutral)
premise (string)	영어(en)	hypothesis (string)	label (class label)
"Conceptually क ् रीम एंजलिस	में दो मूल आयाम हैं - उत _् पाद और भूगोल ।"	"उत _् पाद और भूगोल क _् या क _् रीम एंजलिस काम बनाते हैं ."	1 (neutral)

- 'entailment' label인 문장을 positive로, 'contradiction' label인 문장을 hard negative로 사용
- 하지만 랜덤하게 선택하기 때문에 언어가 다를 수도 있고 같을 수도 있음
- Supervised mSimCSE
 - 1) 병렬 데이터를 positive로 사용 (English Swahili)
 - 2) 추가적으로 영어 NLI dataset을 섞어 같이 사용한 모델도 실험 → 즉, (English, Swahili) + (English, English(with dropout mask))를 positive로 사용 → 기존 supervised와 달리 병렬 데이터가 상대적으로 적음

- 실험 세팅
 - Learning rate: 1e-5, Epoch: 1, Batch size: 128
 - Backbone model: XLM-Roberta-large
 - 그 외는 SimCSE와 동일

3-1. Sentence Retrieval

- source language 문장과 target language 문장을 매칭하는 작업
- BUCC, Tatoeba dataset으로 평가

Models	BUCC	Tatoeba-14	Tatoeba-36				
Unsupervised							
XLM-R	66.0	57.6	53.4				
INFOXLM	-	77.8	67.3				
DuEAM	77.2	-	-				
XLM-E	-	72.3	62.3				
HiCTL	68.4	-	59.7				
$mSimCSE_{en}$	87.5	82.0	78.0				
English NLI supervised							
(Phang et al., 2020)	71.9	-	81.2				
$mSimCSE_{en}$	93.6	89.9	87.7				
Cross-lingual NLI supervised							
$mSimCSE_{en,fr}$	94.2	90.8	88.8				
$mSimCSE_{en,fr,sw}$	94.3	93.3	90.3				
$mSimCSE_{all}$	95.2	93.2	91.4				
DuEAM	81.7	-	-				
Fully Supervised							
LASER	92.9	95.3	84.4				
LaBSE	93.5	95.3	95.0				
$mSimCSE_{sw}$	86.8	87.7	86.3				
$mSimCSE_{fr}$	87.1	87.9	85.9				
$mSimCSE_{sw,fr}$	88.8	90.2	88.3				
$mSimCSE_{sw,fr}$ +NLI	93.6	91.9	90.0				

3-1. Sentence Retrieval

- High resource language: Hindi(hi), French(fr), German(de), Afrikaans(af), Swahili(sw)
- Row resource language: Telugu(te), Tagalog(tl), Irish(ga), Georgian(ka), Amharic(am)

Models	hi	fr	de	af	te	tl	ga	ka	am	SW
Unsupervised										
CRISS	92.2	92.7	98.0	-	-	-	-	-	-	-
DuEAM	83.5	-	93.4	79.9	78.6	56.8	35.0	70.7	46.4	-
$mSimCSE_{en}$	86.9	87.2	94.1	76.0	78.8	49.7	39.2	75.2	48.8	29.4
	English NLI supervised									
$mSimCSE_{en}$	94.4	93.9	98.6	85.6	92.9	70.0	54.8	89.2	79.5	42.1
	Cross-lingual NLI supervised									
DuEAM	92.9	-	96.0	84.8	90.6	60.6	42.0	76.4	56.0	-
$mSimCSE_{en,fr}$	95.1	94.4	98.8	88.9	94.2	73.4	59.4	91.3	79.5	44.5
$mSimCSE_{en,fr,sw}$	95.7	94.2	98.4	87.9	94.4	75.6	62.1	90.5	82.7	75.5
$mSimCSE_{all}$	96.2	94.8	98.8	90.6	96.2	80.9	65.1	92.4	82.4	67.8
			Fully	supervi	sed					
LASER	94.7	95.7	99.0	89.4	79.7	-	5.2	35.9	42.0	42.4
$mSimCSE_{sw}$	94.3	91.6	97.6	85.2	88.5	76.3	60.8	85.5	65.2	47.6
$mSimCSE_{fr}$	94.1	92.6	97.3	84.6	89.3	70.8	54.6	86.3	63.4	43.6
$mSimCSE_{sw,fr}$	95.1	93.8	97.8	86.1	91.2	75.8	59.6	88.9	74.4	51.5
$mSimCSE_{sw,fr}$ +NLI	95.8	94.7	98.6	89.8	95.7	77.8	63.9	91.7	81.0	57.1

3-2. Cross-lingual STS

- 두 문장 사이의 예측된 의미론적 유사성과 인간의 판단이 상관관계가 있는지를 평가함 (스피어만 상관계수)
- 두 문장은 같은 언어일수도 있고 다른 언어일수도 있음

Models	ar-ar	ar-en	es-es	es-en	tr-en		
Unsupervised							
XLM-R	53.5	26.2	68.1	10.7	10.5		
mBERT	55.2	28.3	68.0	23.6	17.3		
$mSimCSE_{en}$	72.3	48.4	83.7	57.6	53.4		
Engl	ish NLI	supervise	ed				
$mSimCSE_{en}$	81.6	71.5	87.5	79.6	71.1		
Cross-lingual NLI supervised							
DuEAM	69.7	54.3	78.6	56.5	58.4		
$mSimCSE_{all}$	79.4	72.1	85.3	77.8	74.2		
F	Fully Supervised						
LASER	79.7	-	57.9	-	72.0		
LaBSE	80.8	-	65.5	-	72.0		
SP	76.7	78.4	85.6	77.9	79.5		
$mSimCSE_{sw,fr}$ +NLI	77.7	72.4	86.3	79.7	72.5		

3-3. Unsupervised Classification

- 영어 이외에 언어에서 의미론적으로 유사한 문서를 함께 클러스터 할 수 있는지 실험
- CLUE benchmark에 Tnews dataset 사용
 - Tnews dataset은 중국 뉴스 분류 데이터셋으로 15개의 category를 가지고 있음.
- Sentence embedding으로 k-means clustering을 진행
 - k는 category수만큼으로 지정
 - 각 클러스터의 평균 정확도를 측정

Models	Purity					
Unsupervised						
Random	6.7					
mBERT	15.2					
XLM-R	13.7					
$mSimCSE_{en}$	30.3					
English NLI supervision						
$mSimCSE_{en}$	40.3					
Cross-lingual NL	I supervision					
$mSimCSE_{all}$	41.6					
Supervised Classification Model						
BERT	56.6					

- 3-4. Zero-shot Cross-lingual Transfer of Sentence Classification
 - Cross-lingual zero-shot transfer을 평가하기 위해 PAXS-X 문장 분류 task를 평가
 - PAXS-X는 두 문장이 paraphrase인지, 즉 다른 말로 바꾸어 표현한 것인지를 분류하는 작업

Models	Accuracy					
Unsupervised						
mBERT	81.9					
XLM-R	86.4					
XLM-E	87.1					
$mSimCSE_{en}$	88.1					
English NLI supervised						
(Phang et al., 2020)	87.9					
$mSimCSE_{en}$	88.2					

4. Analysis

- 4-1. The effect of Parallel Sentences Number
 - English-French dataset과 English NLI data를 섞음
 - 점차 병렬 데이터의 수를 늘려가며 실험

Parallel data	BUCC	Tatoeba14	Tatoeba36
0	91.4	90.4	88.0
10k	92.6	90.6	88.5
100k	93.5	90.8	88.6
1M	94.4	90.6	88.5
5M	94.5	90.7	88.2

- 4-2. Can Contrastive Learning Removes Language Identity?
 - 두 개의 언어 분류기 학습하여 Sentence embedding이 들어오면 어떤 언어인지 분류
 - XNLI dataset 사용

Models	en,de,fr,hi	en,tr,ar,bg
XLM-R	99.2	99.8
$mSimCSE_{en}$	91.1	95.3

4. Analysis

4-3. Hyperparameters

• mSimCSE가 stable하고 hyperparameter에 민감하지 않다는 것을 보여줌

epoch	bs	lr	BUCC	Tatoeba-14	Tatoeba-36
1	128	1e-5	93.6	89.9	87.7
2	128	1e-5	94.4	90.0	87.8
3	128	1e-5	93.5	90.0	87.4
1	256	1e-5	93.3	90.0	87.9
1	128	2e-5	93.7	90.0	87.4

5. Conclusion

- SimCSE를 다국어로 확장한 mSimCSE를 제안함
- Unsupervised, English NLI supervised, Cross-lingual NLI supervised, supervised로 총 4가지 학습 방법의 mSimCSE를 제안함
- English NLI supervised 방법이 supervised 방법과 거의 동등한 수준의 성능을 달성함을 보임
- 오직 영어 데이터만 사용하는 것이 보편적인 sentence embedding을 학습하는데 효율적임을 보임
- 이 논문은 단일 언어 말뭉치에서 문장의 의미적 관계를 학습하는 대조학습을 사용하는 것이 유망한 방법이라는 것을 제안함

Thank You

감사합니다.