PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: H04Q 7/22

(11) International Publication Number:

WO 97/26765

(43) International Publication Date:

24 July 1997 (24.07.97)

(21) International Application Number:

PCT/SE97/00040

(22) International Filing Date:

14 January 1997 (14.01.97)

(30) Priority Data:

08/591,234

18 January 1996 (18.01.96)

US

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (publ) [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventors: HAUDE, Michel; 1570 Fillion, St.-Laurent, Quebec M4L 4E8 (CA). BOUDREAU, Alain; 123 Debussat, Le Gardeur, Quebec J5Z 4L8 (CA).

(74) Agents: BOHLIN, Björn et al.; Telefonaktiebolaget LM Ericsson, Patent and Trademark Dept., S-126 25 Stockholm (SE).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: FORMATTING OF SHORT MESSAGE SERVICE MESSAGES IN A CELLULAR TELEPHONE NETWORK

(57) Abstract

Air interface independent bearer data is provided in short message service delivery point-to-point (SMSDPP) invoke communications. The bearer data (52) of the SMSDPP invoke communication includes a portion (52(1), 52(2)) formatted for each of the different types of cellular network supported air interfaces (82). The particular portion of the bearer data corresponding to the air interface currently being used by that addressee mobile station is then processed to recover the included short message service message. Alternatively, the bearer data of the SMSDPP invoke communication is generically formatted (62), with the generic bearer data converted (90) by the cellular network to be compatible with the specific one of the plurality of different types of air interfaces (82) supported by the cellular telephone network based on an identification made by the cellular telephone system as to which air interface is currently being used by the addressee mobile station. Upon receipt, that addressee mobile station (78) processes the converted beared data to recover the included short message service message.

WO 97/26765 PCT/SE97/00040

FORMATTING OF SHORT MESSAGE SERVICE MESSAGES IN A CELLULAR TELEPHONE NETWORK

BACKGROUND OF THE INVENTION

5

10

15

20

25

30

Technical Field of the Invention

The present invention relates to cellular telephone networks and, in particular, to cellular telephone networks supporting short message service message delivery.

Description of Related Art

Reference is now made to FIGURE 1 wherein there is shown a block diagram of a conventional digital cellular telephone network 10. Many such networks 10 support a short message service (SMS) for use by subscribers in conjunction with the conventional cellular telephone service. The purpose of the short message service is to provide a means for transferring textual messages between short message entities (SMEs) 12 using the communications environment provided by the cellular telephone network 10.

The short message entities 12 participating in the short message service comprise short message terminals (SMT) 14 connected to the fixed telephone network 16 (comprising a public switched telephone network (PSTN) or other equivalent telephone network). The short message entities 12 further comprise the subscriber mobile stations (MS) 18 operating within the cellular telephone network 10. Short message service messages must originate with or terminate at one of the subscriber mobile stations 18.

A short message service center or message center (MC) 20 is connected to the fixed telephone network 16 and to

10

15

20

25

30

communication includes a number of other parameters 40 well known to those skilled in the art, specifically shown, including an identification of the addressor and addressee short message service entities 12 for the message. The teleservice identifier 34 identifies cellular messaging, cellular teleservice (e.g., paging) to be used in delivering the message, as well as the type of air interface (e.g., time division multiple access (TDMA), or code division multiple access (CDMA)) 26 used in carrying the message. The bearer data 36 comprises the short message service message received from the addressor short message service entity 12), and is pre-formatted specifically to conform to the identified teleservice and air interface type that are believed by the message center 20 to be subsequently used in conveying the message to the addressee short message service entity 12.

With particular reference now to a short message service message addressed for delivery to a mobile station 18 as the addressee short message service entity 12, following generation of the SMSDPP invoke communication, the communication is transmitted from the message center 20 to the mobile switching center 30. At the mobile switching center 30, the addressee information processed in the home location register 42 and perhaps the visitor location register 44 to determine routing information for the SMSDPP invoke communication to the addressee mobile station 18. Although not shown, the processing to determine the routing information may in fact occur in plural mobile switching centers 30 as the communication is relayed through the network 10 towards

10

15

20

25

air interface as well as a CDMA air interface. Similarly, the cellular network 10 may include base stations 24 operable in accordance with either or both a TDMA or CDMA communications protocol. At the point in time when the SMSDPP invoke communication is generated at the message center 20, the message center has no actual knowledge of the air interface type currently being used by the network 10 to communicate with the addressee mobile station 18. This information is maintained in the home location register 42 and/or visitor location register 44 of the mobile switching center(s) 30 within the network 10, but it is not communicated to the message center 20. Instead, the message center 20 assumes mobile station operation in accordance with one of the supported air interfaces and formats the bearer data according to that assumption. Upon receipt of the SMSDPP invoke communication, mobile switching center 30 simply forwards the communication over the air interface 26 currently being used by the addressee mobile station 18 without giving any consideration as to whether the air interface type specified in the teleservice identifier 34 matches the type of air interface actually being used by the mobile station. manipulation or reformatting of communication is made by the mobile switching center 30. If the air interface 26 over which the SMSDPP invoke communication is transmitted does not match the air interface type specified in the teleservice identifier parameter 34, short message service message delivery fails because the bearer data cannot be recovered.

There is accordingly a need for an improved method of formatting short message service messages for delivery

10

15

processing and recovery of the short message service message.

The foregoing embodiments are equally applicable with respect to the origination of a short message service message at a mobile station for transmission to the message center. In accordance with the first embodiment then, a short message service origination communication having bearer data formatted to match the air interface over which the message is transmitted from the mobile station is reformatted to include bearer data formatted for each of the various air interfaces supported by the cellular telephone network. Similarly, in accordance with embodiment, the second short message origination communication is reformatted to include bearer data formatted in a generic manner. Following receipt of the origination message at the message center, the message is retransmitted as an SMSDPP invoke communication for delivery to the addressee destination.

20 BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:

25 FIGURE 1 is a block diagram of a prior art cellular telephone network;

FIGURE 2 is a diagram illustrating the prior art format used for short message service message transmissions;

30 FIGURE 3A is a diagram illustrating a first embodiment of the format used for short message service

10

15

20

25

30

Referring now to FIGURE 3B, there is shown a diagram illustrating a second embodiment of the format 60 for a short message service delivery point-to-point (SMSDPP) invoke communication in accordance with the present invention. The format 60 for the SMSDPP communication includes bearer data 62 (comprising the short message service message received from the addressor short message service entity) formatted in a generic fashion to be generally applicable to each of the plural types of air interfaces (i.e., independent of the air interfaces) supported by the cellular telephone network. The generic bearer data 62 in the generated SMSDPP invoke communication is then subsequently converted to air interface specific bearer data by the cellular telephone network prior to completing the transmission of the SMSDPP invoke communication over the air interface to the addressee mobile station. The converted bearer data thus conforms to the type of air interface then actually being used to carry the communication. The format 60 for the SMSDPP invoke communication further includes a number of other parameters 64 well known to those skilled in the art.

Reference is now made to FIGURE 4 wherein there is shown a block diagram of a digital cellular telephone network 70 supporting a short message service (SMS) for use by subscribers in conjunction with the conventional cellular telephone service. Such networks 70 comprise a time division multiple access (TDMA) type communications network (like that specified by the Global System for Mobile (GSM) communications or the TIA IS-136 Specification) and/or a code division multiple access

WO 97/26765 PCT/SE97/00040

5

10

15

20

25

30

-11-

ones of the air interfaces 82 supported by the network (i.e., multi-mode mobile stations).

While the cellular telephone system 70 is illustrated as having only two base stations 80, it will, of course, be understood that such a system 70 would typically include many more base stations, and that the depiction only two base stations is to be taken as illustration of, rather than a limitation on, operation of the present invention. It will further be understood that cellular telephone systems like the system 70 typically include far more than three mobile stations 78 operating within the system 70 at any one time. depiction of only three mobile stations 78 then is to be taken as an illustration of, rather than a limitation on, the operation of the present invention. Finally, although only two different types of air interfaces 82 illustrated as being supported by the network 70, it will be understood that any number of different types of air interfaces may be utilized by the network in connection with the present invention.

Each base station 80 is connected through a mobile switching center (MSC) 84 to the fixed telephone network 76. The mobile switching center 84 operates to control base station 80 operation, maintain a record (in its home location register 86 and visitor location register 88) of mobile station operating parameters and switch, with the fixed telephone network 76, those cellular telephone calls originated by or terminated at the mobile stations 78. The mobile station parameters stored in the mobile switching center 84 include current cell location for each mobile station and an identification of the particular one

10

15

20

25

30

includes bearer data 52 comprising a plurality of portions formatted to conform to each of the plural types of air interfaces 82 supported by the cellular telephone network The generated communication is routed by the mobile switching center 84 via the appropriate base station interface (I/F) 90 over the air interface 82 to the addressee mobile station 78. Because the SMSDPP invoke communication includes bearer data 52 portions formatted in accordance with each of the supported air interfaces 82, including that specific air interface actually being used by the addressee mobile station 78, sufficient and proper bearer data is provided to the addressee mobile station to allow for the recovery of the short message The bearer data 52 is accordingly usable service message. in short message service message transmissions independent of the type of air interface actually being used by the addressee mobile station 78.

The second format 60 for the SMSDPP invoke communication, on the other hand, includes generic bearer data 62 with respect to the plural types of air interfaces 82 supported by the cellular telephone network 70. communication cannot be routed directly to the addressee mobile station 78 because the generic bearer data provides insufficient information to allow for the recovery of the short message service message. Instead, the SMSDPP invoke communication with its generically formatted bearer data 62 is processed in the mobile switching center 84 to convert the generic bearer data to bearer data formatted specifically for use in accordance with the air interface currently being used by the addressee mobile station 78. The processing of the SMSDPP invoke communication to

WO 97/26765

5

10

15

20

25

30

for the TDMA air interface 82(1) and a bearer data portion 52(2) formatted for the CDMA air interface 82(2). SMSDPP invoke communication is then transmitted to the mobile switching center 84 where a determination is made from a review of the mobile station air interface information stored in the home location register 86 and/or visitor location register 88 that the addressee mobile station 78(1) operates over the TDMA air interface 82(1). Using the TDMA base station interface 90(1), the SMSDPP communication is then transmitted via appropriate base station 80 to the addressee mobile station 78(1) over the TDMA air interface 82(1). station 78(1) recovery of the included short message service message is made by processing the included bearer data portion 52(1) formatted for the TDMA air interface 82(1).

If the message is instead addressed for delivery to the second (CDMA) mobile station 78(2), the same SMSDPP invoke communication is advantageously generated by the message center 86 and transmitted to the mobile switching center 84. From a review of the mobile station air interface information stored in the home location register 86 and/or visitor location register 88, it is determined that the addressee mobile station 78(2) operates over the CDMA air interface 82(2). The communication is then transmitted to the addressee mobile station 78(2) over the CDMA air interface 82(2) using the CDMA base station interface 90(2) and the appropriate base station 80. The short message service message is then recovered by the mobile station 78(2) by processing the included bearer

10

15

20

25

30

communication is generated including the generic bearer The SMSDPP invoke communication is then transmitted to the mobile switching center 84 where a determination is made from a review of the home location register 86 and/or visitor location register 88 that the addressee mobile station 78(1) operates over the TDMA air interface 82(1). Although the generic bearer data 62 does not include enough information to allow for the recovery of the short message service message, there is enough information present for the MSC processor (perhaps the adjunct processor 92) to convert the generic bearer data to air interface specific bearer data. In this particular case, the conversion is to TDMA air interface specific bearer data. Using the TDMA base station interface 90(1), the SMSDPP invoke communication with the converted bearer data is transmitted to the addressee mobile station 78(1) over the TDMA air interface 82(1) via the appropriate base station 80. Mobile station 78(1) recovery of the included short message service message is made by processing the converted bearer data formatted for the TDMA air interface 82(1).

If the message is instead addressed for delivery to the second (CDMA) mobile station 78(2), the same SMSDPP invoke communication having generic bearer data is advantageously generated by the message center 86 and transmitted to the mobile switching center 84. Following the determination made from a review of the home location register 86 and/or visitor location register 88 that the addressee mobile station 78(2) operates over the CDMA air interface 82(2), the MSC processor (adjunct processor 92) converts the generic bearer data to CDMA air interface

10

15

20

25

30

converted bearer data is used to recover the short message service message.

It is recognized that it is likely that multiple service operators will be authorized to provide cellular communications services in any one given geographic area. These service providers may choose to utilize only one of a plural number of available air interfaces 82 which would support the use of short message service messaging. Often times the air interfaces chosen by the providers will be different. For example, one service provider may choose to use a TDMA protocol for its digital cellular communications, while another service provider may instead elect to use a CDMA protocol. For the subscriber, the fact that different digital protocols are used in the service area is of no concern until subscribers with different cellular providers desire to exchange short message service message communications. In such a case the originated short message service message (formatted specifically for the originating air interface) may be undeliverable in the destination providers cellular network absent the presence in the destination cellular network of the processing capabilities described previously.

Thus, in accordance with yet another embodiment of the present invention, the originating short message service message, which is formatted in an air interface specific manner, is processed following transmission from a mobile station over the air interface to allow for delivery as an SMSDPP invoke communication in any destination cellular network. Thus, if the destination cellular network does not include the functionality of

10

15

of the mobile switching center 84 in the destination cellular network to convert the generic bearer data to air interface specific bearer data prior to completion of the transmission to the addressee mobile station. This particular alternative would require the presence of short message service format processing capabilities in the destination cellular network.

Although embodiments of the method and apparatus of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.

25

30

plurality of different types of air interfaces over which the short message service delivery communication was transmitted and the addressee mobile station is currently operating.

- 5 4. The method as in claim 1 wherein the plurality of different types of air interfaces include a time division multiple access (TDMA) air interface and a code division multiple access (CDMA) air interface and the bearer data portions of the short message service delivery communication comprise TDMA formatted bearer data and CDMA formatted bearer data, respectively.
 - 5. In a cellular telephone network supporting short message service, a method for handling short message service message delivery to an addressee mobile station comprising the steps of:

generating a short message service delivery communication including bearer data formatted in a generic fashion;

transmitting the generated short message service delivery communication with generic bearer data over a first portion of the cellular telephone network;

converting the generic bearer data of the transmitted short message service delivery communication to air interface specific bearer data formatted for a certain air interface currently being used by the addressee mobile station; and

transmitting the short message service delivery communication with air interface specific bearer data over a second portion of the cellular telephone network to the addressee mobile station, the second portion including the

WO 97/26765

5

10

15

a first base station for effectuating radio frequency communications with mobile stations over a first air interface;

a second base station for effectuating radio frequency communications with mobile stations over a second air interface;

a mobile switching center connected to the first and second base stations; and

a message center connected to the mobile switching center for storing and forwarding short message service messages to mobile stations, the short message service messages transmitted by a short message service delivery communication generated by the message center and sent to an addressee mobile station via the mobile switching center and either the first or second base station, the short message service delivery communication including a first bearer data portion formatted in accordance with the first air interface and a second bearer data portion formatted in accordance with the second air interface.

20

25

- 10. The system of claim 9 wherein the mobile switching center includes means for identifying on which of the first or second air interfaces the addressee mobile station is currently operating, the short message service delivery communication being routed through the base station corresponding to the identified one of the first or second air interfaces.
- 11. The system as in claim 9 wherein the addressee 30 mobile station is operable over only the first air interface and functions to recover the short message

10

15

20

25

30

a second base station for effectuating radio frequency communications with mobile stations over a second air interface;

a message center for storing and forwarding short message service messages to mobile stations, the short message service messages transmitted by a short message service delivery communication generated by the message center and sent in the direction of an addressee mobile station, the short message service delivery communication including bearer data formatted in a generic fashion; and

means connected between the message center and the first and second base stations for converting the generic bearer data of the transmitted short message service delivery communication to first air interface specific bearer data if the addressee mobile station is currently operating on the first air interface and routing the communication to the addressee mobile station through the first base station and over the first air interface, and for converting the generic bearer data of the transmitted short message service delivery communication to second air interface specific bearer data if the addressee mobile station is currently operating on the second air interface and routing the communication to the addressee mobile station through the second base station and over the second air interface.

16. The system of claim 15 wherein the means for converting includes means for identifying on which of the first or second air interfaces the addressee mobile station is currently operating.

second air interface comprises a code division multiple access (CDMA) air interface and the second air interface specific bearer data comprises CDMA formatted bearer data.

21. In a cellular telephone network supporting short message service transmission over a plurality of different types of air interfaces, a method for handling short message service messages sent from an addressor mobile station comprising the steps of:

generating a short message service origination communication including bearer data formatted only for one specific air interface;

transmitting the generated short message service origination communication from the addressor mobile station over the specific air interface; and

converting the transmitted short message service origination communication to include one bearer data portion correspondingly formatted for each one of a plurality of different types of air interfaces.

20

25

30

10

15

22. The method as in claim 21 further including the steps of:

identifying a certain one of the plurality of different types of air interfaces as currently being used for cellular communication by an addressee mobile station; and

transmitting the short message service delivery communication to the addressee mobile station over the identified certain one of the plurality of different types of air interfaces.

26. The method of claim 25 further including the steps of:

converting the generic bearer data to air interface specific bearer data formatted for a certain air interface currently being used by an addressee mobile station; and

transmitting the short message service origination message with air interface specific bearer data over the certain air interface currently being used by the addressee mobile station.

10

15

5

27. The method as in claim 26 wherein the step of converting the generic bearer data comprises the steps of:

identifying a certain one of a plurality of different types of available air interfaces as currently being used for cellular communication by the addressee mobile station; and

changing the generic bearer data format to a format compatible with the identified certain one of the plurality of different types of air interfaces.

20

25

- 28. The method as in claim 27 wherein the plurality of different types of air interfaces include a time division multiple access (TDMA) air interface and a code division multiple access (CDMA) air interface and the air interface specific bearer data of the short message service delivery communication comprises TDMA formatted bearer data and CDMA formatted bearer data, respectively.
- 29. The method as in claim 27 further including the step of recovering the short message service message from the transmitted short message service origination message

10

15

20

25

32. A cellular telephone system, comprising:

a first base station for effectuating radio frequency communications with mobile stations over a first air interface;

a second base station for effectuating radio frequency communications with mobile stations over a second air interface;

a message center for storing and forwarding short message service messages; and

means for processing short message service messages transmitted from mobile stations with air interface specific bearer data to a short message service communication including bearer data formatted in a generic fashion for subsequent conversion prior to delivery to an addressee mobile station to first air interface specific bearer data if the addressee mobile station is currently operating on the first air interface or conversion to second air interface specific bearer data if the addressee mobile station is currently operating on the second air interface.

33. The system of claim 32 wherein the first air interface comprises a time division multiple access (TDMA) air interface and the first air interface specific bearer data comprises TDMA formatted bearer data, and wherein the second air interface comprises a code division multiple access (CDMA) air interface and the second air interface specific bearer data comprises CDMA formatted bearer data.

Interr sal Application No
PCT/SE 97/00046

PCT/SE 97/00040 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 H04Q7/22 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 H04Q H04L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electromic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X,P WO 96 26616 A (NOKIA MOBILE PHONES LTD 5,8 ; NOKIA TELECOMMUNICATIONS OY (FI): SIPILAE) 29 August 1996 see page 4, line 18 - line 32 see page 7, line 31 - page 8, line 36; 15 figures 3,4,6,7 Α EP 0 665 659 A (MATSUSHITA ELECTRIC IND CO 30-33 LTD) 2 August 1995 see column 4, line 55 - column 5, line 27 see column 8, line 31 - line 56; figures 1,4A,4B A,P WO 96 21999 A (NOKIA TELECOMMUNICATIONS OY 30,32 ; DURCHMAN ELINA (US); LAATU JUHO (FI);) 18 July 1996 see page 5, line 19 - page 6, line 34; figure 1

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
* Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance. 'E' earlier document but published on or after the international filling date. 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). 'O' document referring to an oral disclosure, use, exhibition or other means. 'P' document published prior to the international filing date but later than the priority date claimed.	To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 12 June 1997	Date of mailing of the international search report 27.06.97
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijrwijk Tel. (+31-70) 340-2040, Tz. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Schut, G

Intern al Application No PCT/SE 97/00040

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9626616 A	29-08-96	FI 950783 A AU 4719796 A DE 19602449 A FR 2730889 A GB 2298339 A NL 1002398 A SE 9600185 A	21-08-96 11-09-96 22-08-96 23-08-96 28-08-96 22-08-96 21-08-96
EP 0665659 A	02-08-95	JP 7222227 A CA 2141370 A US 5572516 A	18-08-95 01-08-95 05-11-96
WO 9621999 A	18-07-96	AU 4439996 A	31-07-96