

 $a_1 = 0.151 \,\mathrm{mm}$

Diffraction due to Helical Structure¹

Part A: Determination of geometrical parameters of a helical spring

Tasks	Part A: Determination of geometrical parameters of a helical spring Description			
A1	Number of attached pattern marking sheet(s) for Part A: 2 with label(s): P1, P2 (patterns on page 7)			
A2	Table A1: Observations from pattern P1 Sr. No. Order (n) $(x_n - x_{-n})$ in mm 1 1 24.40 2 2 47.24 3 3 70.69 4 4 94.08 5 5 117.53 6 6 6 140.28	0.5		
A3	Graph A1 160.00 140.00 120.00 100.00 100.00 20.00 0.00 100 1	0.7		

¹ Praveen Pathak (HBCSE-TIFR, Mumbai), Charudatt Kadolkar (IIT, Guwahati), and Manish Kapoor (Christ Church College, Kanpur) were the principal authors of this problem. The contributions of the Academic Committee, Academic Development Group and the International Board are gratefully acknowledged.

0.8

0.6

A4

A5

S E-I

Table A2:	Observations	from	pattern	P	1
-----------	--------------	------	---------	---	---

Sr. No.	m	$(x_m - x_{-m})$ in mm
1	1	9.39
2	2	13.43
3	3	17.53
4	6	28.98
5	7	33.53
6	8	37.66
7	9	41.61
8	12	52.93
9	13	56.76
10	14	61.03
11	15	64.74

Graph A2 for determination of d_1 : m versus $(x_m - x_{-m})$ Slope of the graph A2 = 3.95 mm

Calculation of
$$d_1$$
:

$$d_1 = 2 \times \lambda \times \frac{D}{\text{Slope}} = 2 \times 0.000635 \times \frac{2770}{3.95}$$

$$d_1 = 0.89 \text{ mm}$$

 $d_1=0.89\,mm$

A6
$$\alpha_1 = 10.96^{\circ}$$
 0.2

Expression of P in terms of d_1 and α_1 : A7 0.2

S E-I

Page 3 of 6

0.5

$$P = \frac{d_1}{\cos \alpha_1} = \frac{0.89}{\cos 10.96}$$

$$P = 0.91 \text{ mm}$$

A8	Expression of R in terms of P and α_1 : $\tan \alpha_1 = \frac{P}{2\pi R}$ $R = \frac{P}{2\pi R} = \frac{0.91}{2\pi R}$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	R = 0.75 mm		
	Total	3.9	

Part B: Determination of geometrical parameters of double-helix-like pattern

Tasks	Description				Marks	
B1	Attached pattern marking sheet number(s): 2 with label(s): P3, P4 (patterns on page 7)			on page 7)	1.1	
	Table B1: Observations from pattern P3					
	S	Sr. No.	Order (n)	$(x_n - x_{-n})$ in mm		
		1	1	21.24		
		2	2	41.12		
B2		3	3	62.41		0.5
		4	4	84.40		
		5	5	104.41		
		6	6	124.25		

Page 4 of 6

Slope of the graph B1 = 20.8 mm

Calculation of a_2 : $a_2 = 2 \times \lambda \times \frac{D}{\text{Slope}} = 2 \times 0.000635 \times \frac{795}{20.8}$

 $a_2 = 0.049 \text{ mm}$

Table B2: Observations from pattern P3

Sr. No.	m	$(x_m - x_{-m})$ in mm
1	1	5.84
2	2	10.29
3	3	14.83
4	4	18.84
5	6	26.44
6	7	30.65
7	8	35.26
8	9	38.34

1.2

m

B5

B4

0.5

Graph B2 for determination of s: m versus $(x_m - x_{-m})$ Slope of the graph B2 = 4.07 mm Calculation of s: $s = 2 \times \lambda \times \frac{D}{\text{Slope}} = 2 \times 0.000635 \times \frac{795}{4.07}$

s = 0.248 mm

B6

B7

E-I

Page **5** of **6**

Sr. No.	Order (l)	$(x_l - x_{-l})$ in mm
1	1	11.64
2	2	15.77
3	3	19.71
4	5	26.33
5	6	30.14
6	7	33.69
7	9	39.62
8	10	43.70
9	11	47.75

1.6

0.5

Graph B3 for determination of d_2 : l versus $(x_l - x_{-l})$ Slope of the graph B3 = 3.52 mm Calculation of d_2 : $d_2 = 2 \times \frac{\lambda \times D}{\text{Slope}} = 2 \times 0.000635 \times \frac{2770}{3.52}$

 $d_2 = 1.00 \text{ mm}$

B8 $\alpha_2=9.88^\circ$ 0.2 **Total** 6.1

Reference for Part A: G. Braun, D. Tierney and H. Schmitzer, Phys. Teach. 49, 140 (2011).

Page **6** of **6**

Pattern P - 2

Pattern P1 (D = 2770 mm)

Pattern P2

 $\tan 2\alpha_2 = \frac{36.67}{102.04}$ $\alpha_2 = 9.88^{\circ}$

Pattern P - 4

Pattern P3 (D = 795 mm)

Pattern P4 (D = 2770 mm)