VAR 101 – A Toolbox for Multivariate Time Series Modelling

Why Multivariate Models?

- Real-world systems: many variables evolve together.
- Example: in finance, order flow and returns are intertwined.
- Need to model interactions and feedback loops across time.

What Is a VAR Model?

A Vector AutoRegression model of order p:

$$Y_t = A_1 Y_{t-1} + A_2 Y_{t-2} + \dots + A_p Y_{t-p} + \epsilon_t$$

- Y_t : a vector of k time series
- A_i : a matrix of k x k coefficients
- ϵ_t : White noise

When to Use a VAR?

- When all variables are:
 - Endogenous
 - Stationary
- Examples:
 - Macroeconomic indicators
 - Asset returns and volatilities
 - Trade, quote, and order flow variables

VAR Workflow Overview

- Data preparation
- Stationarity checks (ADF test, differencing)
- Lag selection (AIC, BIC, HQIC)
- Model estimation
- Diagnostics
- Forecasting or impulse response analysis

Stationarity & Preprocessing

- Time series must be stationary
- Check with:
 - Augmented Dickey-Fuller (ADF) test
 - KPSS test
- Transform if needed: differencing, log transform, detrending

Choosing the Lag Order

- Use Information Criteria:
 - AIC: Akaike Information Criterion
 - BIC: Bayesian Information Criterion
 - HQIC: Hannan-Quinn
- Trade-off: fit vs complexity

Model Diagnostics

- Check:
 - Residuals → white noise?
 - Stability → eigenvalues inside unit circle?
 - Autocorrelation → Ljung-Box test
- Plot: residuals, ACF/PACF, impulse responses