

COMP7640 Database Systems & Administration

Course Review & Key Points for the Final Exam

Examination Topics

- * Lec. 1 & 2: ER Model
- ❖ Lec. 2 & 3: Relational Model
- ❖ Lec. 4 & 5: SQL & Advanced SQL
- Lec. 6: Decomposition & FD

Examination Topics

- Lec. 7: Data Storage & Access Methods
- Lec. 8: Tree-structured Indexing
- Lec. 9: Hash-based Indexing
- Lec. 10: Query Evaluation
- Lec. 11: Query Optimization
- Lec. 12: Transactions & Concurrency Control
- Lec. 13: Crash Recovery

Lectures 1 & 2: ER Model

- Entity set, Attributes, Key
- Relationship set
- Constraints on relationship sets
 - one-to-one (1-1)
 - one-to-many (1-m)
 - many-to-one (m-1)
 - many-to-many (m-m)

Lectures 2 & 3: Relational Models

- Schema, Instance
- Basic SQL for creating tables, inserting and deleting tuples
- Integrity constraints
- Mapping ER models to relational models
 - cardinality constraints
 - participation constraints

Lectures 4 & 5: SQL

- Basic SQL for selection
 - WHERE, AND/OR, ORDER BY, JOIN
 - INTERSECT, UNION, EXCEPT
- Advanced SQL
 - Aggregation function
 - Nested query
 - All/Some
 - Exists/ Not Exists
 - In/ Not in

Lecture 6: Decomposition & FD

- Legal/Illegal decomposition
- Functional dependency rules
 - A Candidate Key Determines All
 - Reflexivity
 - Union (Combining)
 - Transitivity
 - Augmentation
 - Splitting
- Prove & Disprove
 - Prove an FD with the rules
 - Disprove an FD with counterexamples.

Lecture 7: Data Storage & Access Methods

- Components of a Disk
- Strategies for arranging pages on disks
 - Store records randomly
 - Store records by "next"
- File organizations
 - Heap files, sorted files, and hashed files
- Indexes and data entries

Lecture 8: Tree-structured Indexing

* ISAM

- Index structure
- Search I/O Cost
 - excluding reading records and assuming no overflow pages

❖ B+ tree

- Index structure
- Draw updated B+ trees
 - How to deal with insertions, particularly overflow
 - How to deal with deletions, particularly underflow

Lecture 9: Hash-based Indexing

Basics

- Hash functions
- Binary formats of numbers

Extendible hashing

- Index structure: buckets, directory
- How to search
- Draw updated extendible hashing index
 - How to deal with insertions
 - How to deal with deletions

Lecture 10: Query Evaluation

- Access Paths for Selection
 - Scan, B+ tree, Hash index
 - I/O cost analysis
- Access Paths for Join
 - Simple Nested Loops Join
 - How to achieve smaller I/O cost
 - Page-oriented Nested Loops Join
 - How to achieve smaller I/O cost
 - I/O cost analysis

Lecture 11: Query Optimization

- Rules for deriving equivalent relational algebra expressions
 - Selection: decomposition & commutative rules
 - Projection: omission rule
 - Selection & Projection: commutative rule
 - Selection & Join: distributive rules 1 & 2
- Drawing QEPs
 - Relational algebra trees
 - Access paths

- ACID properties
- 2PL protocol
- Deadlock prevention
 - Wait-die approach
 - Wound-wait approach

Lecture 13: Crash Recovery

- Deferred-Modification Recovery Method
- Immediate-Modification Recovery Method

Tips

- * Exam:
 - Time: 19:00 22:00 May 08, 2025
 - Venue: SHSH (Dr. Stephen Hui Sports Hall)
 - 10 Questions
- Sample questions
 - In-class questions
 - Assignment questions
- Better to use a pencil
- Bring your calculator

Good Luck!

* Do the CFQ:

https://cfq-student.hkbu.edu.hk/

Section 00001

Section 00002

Contact

- Email: renchi@comp.hkbu.edu.hk
- Office: DLB 644