Code No: R161207

SET - 1

I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2019 APPLIED PHYSICS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70			
		Note: 1. Question paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is Compulsory 3. Answer any FOUR Questions from Part-B	
<u>PART –A</u>			
1.	a)	Why is central fringe a dark spot in Newton's rings?	(2M)
	b)	Michelson interferometer experiment is performed with a source which consists of two wavelengths 4882 Å and 4886 Å. Through what distance does the mirror have to be moved between two positions of disappearance of fringes.	(2M)
	c)	Explain essential requirement for the production of laser action.	(2M)
	d)	Define gradient of a vector field.	(2M)
	e)	Define Fermi factor.	(2M)
	f)	What is de-Broglie's hypothesis?	(2M)
	g)	How energy bands are formed in Solids?	(2M)
		PART -B	
2.	a)	Explain why Newton's rings are circular in shape. Prove that in reflected system, diameters of bright rings are proportional to square root of odd natural number.	(10M)
	b)	In Newton's rings experiment, the diameters of 10 th dark ring are reduced to half of its value on introducing a liquid below the convex surface. Calculate refractive index of liquid.	(4M)
3.	a)	Discuss Fraunhofer diffraction of light at a single slit.	(10M)
	b)	Diffraction pattern of a single slit of width 0.5 cm is formed by a lens of focal length 40 cm. Calculate the distance between the first dark and the next bright fringe from the axis. Given the wavelength is 5000Å.	(4M)
4.	a)	Explain construction and working of a Laurent's half-shade polarimeter.	(10M)
	b)	Distinguish between the spontaneous emission and stimulated emission.	(4M)
5.	a)	Derive Maxwell's equations from the basic laws of electromagnetism.	(10M)
	b)	Discuss Stoke's and Gauss's theorems.	(4M)
6.	a)	Write down the Schrödinger's time dependent wave equation and derive	(10M)
	b)	Schrödinger's time independent wave equation from it. Explain properties of matter waves.	(4M)
7.	a)	On the basis of band theory how the crystalline solids are classified into metals,	(10M)
	b)	semiconductors and insulators? Explain Hall effect.	(4M)