1 Linear Algebra

1.1 Matrices

Definition 2.1 (Matrix). With $m,n\in\mathbb{N}$ a real-valued (m,n) matrix A is an $m\cdot n$ -tuple of elements $a_{ij}, i=1,\ldots,m, j=1,\ldots,n$, which is ordered according to a rectangular scheme consisting of m rows and n columns:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R}.$$
 (2.11)

By convention (1,n)-matrices are called rows and (m,1)-matrices are called columns. These special matrices are also called row/column vectors.

Properties

Associativity:

$$\forall A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q} : (AB)C = A(BC)$$
 (2.18)

Distributivity:

$$\forall A, B \in \mathbb{R}^{m \times n}, C, D \in \mathbb{R}^{n \times p} : (A + B)C = AC + BC$$
 (2.19a)
 $A(C + D) = AC + AD$ (2.19b)

Multiplication with the identity matrix:

$$\forall \mathbf{A} \in \mathbb{R}^{m \times n} : \mathbf{I}_m \mathbf{A} = \mathbf{A} \mathbf{I}_n = \mathbf{A}$$
 (2.20)

Note that $I_m \neq I_n$ for $m \neq n$.

Matrix Inverse

Definition 2.3 (Inverse). Consider a square matrix $A \in \mathbb{R}^{n \times n}$. Let matrix $B \in \mathbb{R}^{n \times n}$ have the property that $AB = I_n = BA$. B is called the *inverse* of A and denoted by A^{-1} .

Unfortunately, not every matrix A possesses an inverse A^{-1} . If this inverse does exist, A is called regular/invertible/nonsingular, otherwise singular/noninvertible. When the matrix inverse exists, it is unique. In Sec-

Transpose and Symmetry

Definition 2.4 (Transpose). For $A \in \mathbb{R}^{m \times n}$ the matrix $B \in \mathbb{R}^{n \times m}$ with $b_{ij} = a_{ji}$ is called the *transpose* of A. We write $B = A^{\top}$.

In general, A^{\top} can be obtained by writing the columns of A as the rows of A^{\top} . The following are important properties of inverses and transposes:

$$AA^{-1} = I = A^{-1}A (2.26)$$

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \tag{2.27}$$

$$(\mathbf{A} + \mathbf{B})^{-1} \neq \mathbf{A}^{-1} + \mathbf{B}^{-1}$$
 (2.28)

$$(\boldsymbol{A}^{\top})^{\top} = \boldsymbol{A} \tag{2.29}$$

$$(\boldsymbol{A} + \boldsymbol{B})^{\top} = \boldsymbol{A}^{\top} + \boldsymbol{B}^{\top} \tag{2.30}$$

$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top} \tag{2.31}$$

Definition 2.5 (Symmetric Matrix). A matrix $\pmb{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\pmb{A} = \pmb{A}^{ op}$.

1.2 Solving System of Linear Equations

Row-Echelon Form and Gaussian Elimination

Definition 2.6 (Row-Echelon Form). A matrix is in row-echelon form if

- All rows that contain only zeros are at the bottom of the matrix; correspondingly, all rows that contain at least one nonzero element are on top of rows that contain only zeros.
- Looking at nonzero rows only, the first nonzero number from the left (also called the pivot or the leading coefficient) is always strictly to the right of the pivot of the row above it.

Remark (Reduced Row Echelon Form). An equation system is in reduced row-echelon form (also: row-reduced echelon form or row canonical form) if

- It is in row-echelon form.
- · Every pivot is 1.
- The pivot is the only nonzero entry in its column.

Remark (Gaussian Elimination). Gaussian elimination is an algorithm that performs elementary transformations to bring a system of linear equations into reduced row-echelon form.

Example 2.7 (Reduced Row Echelon Form)

Verify that the following matrix is in reduced row-echelon form (the pivots are in **bold**):

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & 3 & 0 & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 & 9 \\ 0 & 0 & 0 & \mathbf{1} & -4 \end{bmatrix} . \tag{2.49}$$

The key idea for finding the solutions of Ax=0 is to look at the *non-pivot columns*, which we will need to express as a (linear) combination of the pivot columns.

Example 2.8 (Minus-1 Trick)

Let us revisit the matrix in (2.49), which is already in REF:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix} . \tag{2.53}$$

We now augment this matrix to a 5×5 matrix by adding rows of the form (2.52) at the places where the pivots on the diagonal are missing and obtain

$$\tilde{\boldsymbol{A}} = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} . \tag{2.54}$$

From this form, we can immediately read out the solutions of Ax = 0 by taking the columns of \tilde{A} , which contain -1 on the diagonal:

$$\left\{\boldsymbol{x} \in \mathbb{R}^5 : \boldsymbol{x} = \lambda_1 \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 0 \\ 9 \\ -4 \\ -1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R} \right\}, \quad (2.55)$$

which is identical to the solution in (2.50) that we obtained by "insight".

Then, the columns of \tilde{A} that contain the -1 as pivots are solutions of the homogeneous equation system Ax = 0. To be more precise, these columns form a basis (Section 2.6.1) of the solution space of Ax = 0, which we will later call the *kernel* or *null space* (see Section 2.7.3).

Calculation of Inverse

To compute the inverse A^{-1} of $A \in \mathbb{R}^{n \times n}$, we need to find a matrix X that satisfies $AX = I_n$. Then, $X = A^{-1}$. We can write this down as a set of simultaneous linear equations $AX = I_n$, where we solve for $X = [x_1|\cdots|x_n]$. We use the augmented matrix notation for a compact representation of this set of systems of linear equations and obtain

$$[A|I_n] \longrightarrow \cdots \longrightarrow [I_n|A^{-1}].$$
 (2.56)

This means that if we bring the augmented equation system into reduced row-echelon form, we can read out the inverse on the right-hand side of the equation system. Hence, determining the inverse of a matrix is equivalent to solving systems of linear equations.

1.3 Vector Spaces

Groups

Definition 2.7 (Group). Consider a set \mathcal{G} and an operation $\otimes : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ defined on G. Then $G := (G, \otimes)$ is called a group if the following hold:

- 1. Closure of \mathcal{G} under \otimes : $\forall x, y \in \mathcal{G} : x \otimes y \in \mathcal{G}$
- 2. Associativity: $\forall x, y, z \in \mathcal{G} : (x \otimes y) \otimes z = x \otimes (y \otimes z)$
- 3. Neutral element: $\exists e \in \mathcal{G} \, \forall x \in \mathcal{G} : x \otimes e = x \text{ and } e \otimes x = x$
- 4. Inverse element: $\forall x \in \mathcal{G} \exists y \in \mathcal{G} : x \otimes y = e \text{ and } y \otimes x = e.$ We often write x^{-1} to denote the inverse element of x.

Remark. The inverse element is defined with respect to the operation \otimes and does not necessarily mean $\frac{1}{x}$.

If additionally $\forall x, y \in \mathcal{G} : x \otimes y = y \otimes x$, then $G = (\mathcal{G}, \otimes)$ is an Abelian group (commutative).

Definition 2.8 (General Linear Group). The set of regular (invertible) matrices $oldsymbol{A} \in \mathbb{R}^{n imes n}$ is a group with respect to matrix multiplication as defined in (2.13) and is called general linear group $GL(n, \mathbb{R})$. However, since matrix multiplication is not commutative, the group is not Abelian.

Vector Spaces

When we discussed groups, we looked at sets $\mathcal G$ and inner operations on \mathcal{G} , i.e., mappings $\mathcal{G} \times \mathcal{G} \to \mathcal{G}$ that only operate on elements in \mathcal{G} . In the following, we will consider sets that in addition to an inner operation + also contain an outer operation \cdot , the multiplication of a vector $oldsymbol{x} \in \mathcal{G}$ by a scalar $\lambda \in \mathbb{R}$. We can think of the inner operation as a form of addition, and the outer operation as a form of scaling. Note that the inner/outer operations have nothing to do with inner/outer products

Definition 2.9 (Vector Space). A real-valued vector space $V=(\mathcal{V},+,\cdot)$ is a set V with two operations

$$+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$
 (2.62)

$$\cdot$$
: $\mathbb{R} \times \mathcal{V} \to \mathcal{V}$ (2.63)

where

- 1. $(\mathcal{V},+)$ is an Abelian group
- 2. Distributivity:

1.
$$\forall \lambda \in \mathbb{R}, \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V} : \lambda \cdot (\boldsymbol{x} + \boldsymbol{y}) = \lambda \cdot \boldsymbol{x} + \lambda \cdot \boldsymbol{y}$$

2. $\forall \lambda, \psi \in \mathbb{R}, \boldsymbol{x} \in \mathcal{V} : (\lambda + \psi) \cdot \boldsymbol{x} = \lambda \cdot \boldsymbol{x} + \psi \cdot \boldsymbol{x}$

- 3. Associativity (outer operation): $\forall \lambda, \psi \in \mathbb{R}, x \in \mathcal{V} : \lambda \cdot (\psi \cdot x) = (\lambda \psi) \cdot x$
- 4. Neutral element with respect to the outer operation: $\forall x \in \mathcal{V} : 1 \cdot x = x$

Example 2.11 (Vector Spaces)

Let us have a look at some important examples:

- $V = \mathbb{R}^n, n \in \mathbb{N}$ is a vector space with operations defined as follows:
- Addition: $\boldsymbol{x}+\boldsymbol{y}=(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$
- Multiplication by scalars: $\lambda x = \lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$ for all $\lambda \in \mathbb{R}, \boldsymbol{x} \in \mathbb{R}^n$
- $\mathcal{V} = \mathbb{R}^{m \times n}, m, n \in \mathbb{N}$ is a vector space with

mentwise for all
$$A, B \in \mathcal{V}$$

- Multiplication by scalars: $\lambda A = \begin{bmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{bmatrix}$ as defined in Section 2.2. Remember that $\mathbb{R}^{m \times n}$ is equivalent to \mathbb{R}^{mn} .

• $\mathcal{V} = \mathbb{C}$, with the standard definition of addition of complex numbers.

Vector Subspaces

Definition 2.10 (Vector Subspace). Let $V=(\mathcal{V},+,\cdot)$ be a vector space and $\mathcal{U}\subseteq\mathcal{V}$, $\mathcal{U}\neq\emptyset$. Then $U=(\mathcal{U},+,\cdot)$ is called *vector subspace* of V (or linear subspace) if U is a vector space with the vector space operations +and \cdot restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathbb{R} \times \mathcal{U}$. We write $U \subseteq V$ to denote a subspace U of V.

If $\mathcal{U} \subseteq \mathcal{V}$ and V is a vector space, then U naturally inherits many properties directly from V because they hold for all $x \in \mathcal{V}$, and in particular for all $x \in \mathcal{U} \subseteq \mathcal{V}$. This includes the Abelian group properties, the distributivity, the associativity and the neutral element. To determine whether $(\mathcal{U}, +, \cdot)$ is a subspace of V we still do need to show

- 1. $\mathcal{U} \neq \emptyset$, in particular: $\mathbf{0} \in \mathcal{U}$
- 2. Closure of U:
 - a. With respect to the outer operation: $\forall \lambda \in \mathbb{R} \ \forall x \in \mathcal{U} : \lambda x \in \mathcal{U}$.
 - b. With respect to the inner operation: $\forall x, y \in \mathcal{U} : x + y \in \mathcal{U}$.