Using Deep Learning for Photon Pulse Construction from PolariX TDS images.

Arjun Radha Krishnan

DELTA Center for Synchrotron Radiation, TU Dortmund

Transverse Deflecting Cavity (TDC)

- TDCs use RF fields to impart a timedependent transverse kick to a bunch, converting the longitudinal coordinate to transverse coordinates.
- Allows for bunch length and longitudinal phase space measurements

PolariX TDS

Conventional TDS: streaking in a fixed polarization (i. e. vertical or horizontal)

POLARIzable X-band Transverse
Deflection Structure – POLARIX TDS

Diagnose multidimensional phase space of electron bunches

PolariX TDS at FLASH

POLARIzable X-band Transverse Deflection Structure – POLARIX TDS

An example from the PolariX TDS

An example from the PolariX TDS

$$\Delta E(t_i) = E_{\rm on}(t_i) - E_{\rm off}(t_i)$$

$$P(t_i) = \Delta E(t_i) \cdot \frac{I(t_i)}{e}$$

- The difficulty is in finding the lasing-off reference that matches closely with the lasing-on images.
- Imperfect matching or lasing-off reference can create artifacts in the resulting photon profile.

Using U-nets for photon profile construction

- The idea is to use a deep neural network to generate a lasing-off reference image given a lasing-on image.
- This avoids the need to suppress the lasing to take lasing-off references.
- This approach ensures a one-to-one correspondence between the lasing-on and generated lasing-off images, which avoids the need to carefully match and align the images.

Using U-nets for photon profile construction

U-Net deep neural network was used for this task.

The network was trained on pairs of lasing-off images and artificially augmented lasing-off images,

designed to resemble *lasing-on* images.

Trying to mimic Lasing-ON images

Two methods are used for augmentation...

- 1. Subtract and add Gaussians.
- 2. Convolving with an asymmetric function

Two methods are used for augmentation...

- Subtract and add Gaussians.
- 2. Convolving with an asymmetric function

1. Subtract and add Gaussians.

1. Subtract and add Gaussians.

1. Subtract and add Gaussians.

Subtract and add Gaussians.

Subtract and add Gaussians.

Two methods are used for augmentation...

- 1. Subtract and add Gaussians.
- 2. Convolving with an asymmetric function

2. Convolving with an asymmetric function

The U-Net architecture

The U-Net architecture

Trained the model with 7332 synthetic training samples

The U-Net architecture

The question is, does it work well with real lasing-on images?

FLASH2_USER2_stream_2_run50626_file1_20240125T035250.1.h5 index: 0

FLASH2_USER2_stream_2_run50630_file1_20240125T043029.1.h5 index: 0

The model works best with short pulses.

Long pulses

Examples where it doesn't work so well

FLASH2_USER2_stream_2_run49484_file1_20231121T220209.1.h5 index: 10

 Sharp features in the phase space are mistaken for SASE.

Mistakes these two features as SASE

Examples where it doesn't work so well

FLASH2_USER2_stream_2_run44525_file13_20230302T132027.1.h5 index: 1

 Model struggles with long SASE pulses.

Examples where it doesn't work so well

FLASH2_USER2_stream_2_run44527_file19_20230302T144837.1.h5 index: 1

 Model struggles with long SASE pulses.

Examples where it doesn't work so well

FLASH2_USER2_stream_2_run44525_file17_20230302T132416.1.h5 index: 1

 Model struggles with long SASE pulses.

Comparison between the standard and U-net based method

Comparison between the standard and U-net based method

Comparison between the standard and U-net based method

• In general, a good correlation between the standard method and U-net method.

Conclusion

- This method works best for short pulses. Shows a good correlation with the GMD measurements.
- Works with a relatively low number of training samples.
- Any sharp features in the phase space are mistaken for lasing.
- For longer pulses, the results show a large spread, mainly underestimating the pulse energy.
- Needs fine-tuning when using for bunch shapes the model hasn't encountered.

Conclusion

- This method works best for short pulses. Shows a good correlation with the GMD measurements.
- Works with a relatively low number of training samples.
- Any sharp features in the phase space are mistaken for lasing.
- For longer pulses, the results show a large spread, mainly underestimating the pulse energy.
- Needs fine-tuning when using for bunch shapes the model hasn't encountered.

Special thanks to Gesa Goetzke, Stefan Düsterer and Christopher Gerth for helping me access the Maxwell computational resources at DESY.

Thank you!

November 21, 2023

FLASH2_USER2_stream_2_run49484_file1_20231121T220209.1.h5 index: 10

Shows little correlation: Model not suitable for long SASE pulses

Mistakes these two features as SASE

FLASH2_USER2_stream_2_run44522_file2_20230302T122138.1.h5 index: 4

FLASH2_USER2_stream_2_run44525_file17_20230302T132416.1.h5 index: 1

FLASH2_USER2_stream_2_run44525_file13_20230302T132027.1.h5 index: 1

FLASH2_USER2_stream_2_run44525_file13_20230302T132027.1.h5 index: 1

FLASH2_USER2_stream_2_run44526_file1_20230302T134353.1.h5 index: 1

FLASH2_USER2_stream_2_run44527_file19_20230302T144837.1.h5 index: 1

