# Intro to Brain Connectivity Analysis



## **Biomarkers in Biological Brain Networks**



### Structural, functional & effective connectivity







#### Structural/anatomical connectivity

= presence of axonal connections / white matter tracks (eg, DWI, AAV tracers)

#### **Functional connectivity**

= statistical dependencies between regional time series (eg, Pearson correlation, ICA,...)

#### **Effective connectivity**

= causal (directed) influences between neuronal populations (eg, DCM, Granger C., etc)

Class A

Class B

Nobody cares about Morphological connectivity...









Oh. et al. 2014





Credit: MaxPlanck Society



$$ar{D} = egin{array}{cccc} D_{oldsymbol{x}oldsymbol{x}} & D_{oldsymbol{x}oldsymbol{y}} & D_{oldsymbol{x}oldsymbol{z}} \ D_{oldsymbol{x}oldsymbol{z}} & D_{oldsymbol{y}oldsymbol{z}} & D_{oldsymbol{y}oldsymbol{z}} \ D_{oldsymbol{x}oldsymbol{z}} & D_{oldsymbol{y}oldsymbol{z}} & D_{oldsymbol{z}oldsymbol{z}} \end{array}$$



$$FA = \sqrt{\frac{(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_1 - \lambda_3)^2}{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

(Alger 2012 J.Neurocience)









### Alzheimer, Schizophrenia,... Matched healthy control







# Functional MRI

Hemodynamic response: blood releases oxygen to firing neurons at a greater rate than to inactive neurons.

This causes a change of the relative levels of oxyhemoglobin and deoxyhemoglobin (oxygenated or deoxygenated blood) that can be detected on the basis of their differential magnetic susceptibility.



Gordon et al. (Cerebral Cortex 2014)

# Brush up on Functional Connectivity



Fox & Greicius 2010

# Functional connectivity



# Using Support Vector Machine



Crimi et al. Neuroimage 2021 (work done in 2014/2015)







(Elsheikh, Chimusa, Mulder & Crimi, Nature Scientific Reports 2020, Frontiers in Neuroscience 2021)

# Misfolded protein spread



(Crimi & Kara, ISBI 2020, Gherardini, Pestka, Pini, Crimi, to be submitted)

## Brain tumor recovery



























Glioma/Glioblastoma is the most common primary brain tumor among adults

Prognosis is really bad: 3-12 months (1-3 years only in few cases)

Surgery also leads to side effect: Aphasia, motor deficits, etc

## Overview of the Problem























### **Research Question**

sano

Given a series of Pre-op and Post-op brains

Can we predict how the brain graph will look like?

Also telling the surgeons whether their traditional Action will lead to aphasia or other disabilities of the patient (this is aid for surgical planning)







### **Challenges**



- Brain Graph Reconstruction Methods. They fail inside/around tumors!
- Heterogeneity of Brain Graphs. Even More in Brain Tumors!
- Small Dataset (19). Usual in brain tumors. Unique paired dataset!
- Large graphs ≈200, 300, ... nodes. Long-range and detailed rewiring!







### **Brief review of Graph Neural Networks**













Weight Sharing











$$H^{[i+1]} = \sigma(W^{[i]} H^{[i]} A^*)$$

## **Brief review of Graph Neural Networks**





**Spatial Domain** 

**Spectral Domain** 

**Spatial Domain** 

#### **Ideal Solutions**



#### **Graph Neural Networks**









Gürler, et al. 2020 Nebli, et al. 2020 Bessadok, et al. 2021 Faez, et al. 2021

••

#### The issue is known



Graph Neural Networks do not perform well on graphs with long range connections with several nodes, modular structures are needed (Dehmamy, Barabasi, Yu, NeurIPS 2019)

Modular structures are even more computational demanding than traditional GNN and also requires even more data (Gazzar et al., Arxiv 2022 https://arxiv.org/pdf/2211.08927.pdf)





5000 samples are required, We have 20... ouch



What if I tell you "you can do it without Graph Neural Networks"?

#### **Usable Solutions**



#### **Fully Connected Layers**



We define an edge as  $\lambda_k=1$  with strength  $\epsilon$ 

 $\lambda_k$  is Bernoulli distributed

$$P(y_{nk} = \epsilon, \lambda_k = 1 \mid x_n) = L(y_{nk} = \epsilon \mid x_n) P(\lambda_k = 1)$$

$$P(\lambda_k = 1) = \frac{1}{N_c} \sum_{n=1}^{N_c} \Theta(z_{nk} - \theta) - \frac{1}{N_c} \left( \frac{1}{N_c} - \frac{1}{N_c} \right) = \frac{1}{N_c} \left( \frac{1}{N_c} - \frac{1}{N$$

$$L(y_{nk} = \epsilon \mid x_n) = f(W, x_n)$$

MAP sampling from  $P(y_{nk} = \epsilon, \lambda_k = 1 \mid x_n)$ 

Falco-Roget & Crimi, MICCAI-GRAIL 2022
Falco-Roget, et al. submitted to Nature Comm Bio or
Biorxiv: https://www.biorxiv.org/content/10.1101/2022.11.14.516248v2



#### Results





| Model | MSE             | MAE             | PCC           | cs               | KL              | JS              |
|-------|-----------------|-----------------|---------------|------------------|-----------------|-----------------|
| FCNET | $0.61 \pm 0.02$ | $0.49 \pm 0.01$ | 0.892 ± 0.004 | 0.922 ± 0.003    | 8.19 ± 0.14     | $0.66 \pm 0.01$ |
| Huber | $0.66 \pm 0.03$ | $0.52 \pm 0.01$ | 0.878 ± 0.005 | 0.914 ± 0.004    | $8.09 \pm 0.11$ | $0.65 \pm 0.01$ |
| Null  | 4.59 ± 0.07     | 1.22 ± 0.02     | -0.00 ± 0.01  | $-0.00 \pm 0.01$ | 13.42 ± 0.04    | 0.82 ± 0.02     |

#### **Benchmarking**

- Weighted Linear approximator with Huber

Loss

Biorxiv:

- Weighted Untrained approximator with MSE

#### **Training**

- MSE loss
- Leave One Out Cross Validation
- 20% split validation steps



Falco-Roget, et al. submitted to Nature Comm Bio or

https://www.biorxiv.org/content/10.1101/2022.11.14.516248v2



#### Looking for a PostDoc, Collaborations & Partners!

https://sano.science/

https://bam.sano.science/











This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 857533 and from the International Research Agendas Programme of the Foundation for Polish Science No MAB PLUS/2019/13.











# Causality is a long story





- 1. There are several modalities to reconstruct the brain connectome
- 2. Once a brain is converted into a graph we can apply all knowledge we have from graph theory
- graph theory

  3. We can use what we know from HANKS!!!

  machine learning

Collaborations/Ideas: <u>a.crimi@sano.science</u> https://linktr.ee/alecrimi



@Dr\_Alex\_Crim



<u>@dr.alecrimi</u>