Part 2h: Discrete Markov chains

Textbook: pp. 51-54

Inti	odu	ıctic	on t	o D	iscr	ete	Mar	rkov	/ ch	ains							
•	The	cup	nor	t of	χ. ic	ا د	Accr	oto	cot								
	The										has	tic v	ecto	or.			
•	The	trar	nsiti	on p	rob	abili	ty fr	om	X_{i-}	₁ to	X_i i	s a s	tocl	nast	ic m	atri	х.
									,		,						

Stochas	tic vec	.013						
Definitio			\mathbb{R}^S is call	led a <i>pro</i>	bability	vector,	if $\pi_x \geq$	≥ 0 f
$x \in S$ and								
S =	{ '	2,36						
TT =	0	1						
1 1	0							
-	12/0							
11 -	2/0							
T =	5/	9						
Definition do not de			probabili ⁄Iarkov ch		-	_		
Definitio do not de			_		-	_		
			_		-	_		
			_		-	_		
			_		-	_		
			_		-	_		
			_		-	_		
			_		-	_		
			_		-	_		
			_		-	_		

Stoc																	
			.21 hastic				hich	satis	sfies	the	two	conc	litior	ıs fro	om 1	lemm	a
Len The	1ma n <i>P</i>	2.19 = (<i>I</i>	$\sum_{xy} L\epsilon$	et P^S	$^{\prime} \times ^{S}$ b	e the	e tran ollov	nsition	n ma prop	ıtrix pertic	of a l	Mark	cov c	hain	with	n state	3 S
			<u>•</u> 0 fo														
							$x \in S$										
				1/2	<u>_</u>	1/	2	0 1/-									
F	>_	=		0		ι/	2	1/-	2								
•				1/	5	0)	41	5								

Simulation of a discrete Markov process

Algorithm 2.22 (Markov chains with discrete state space)

input:

a finite or countable state space S

a probability vector $\pi \in \mathbb{R}^S$

a stochastic matrix $P = (p_{xy})_{x,y \in S} \in \mathbb{R}^{S \times S}$

randomness used:

samples from discrete distributions on S

output:

a path of a Markov chain with initial distribution π and transition matrix P

1: generate $X_0 \in S$ with $P(X_0 = x) = \pi_x$ for all $x \in S$

2: output X_0

3: **for** $j = 1, 2, 3, \dots$ **do**

4: generate $X_j \in S$ with $P(X_j = x) = p_{X_{j-1},x}$ for all $x \in S$

5: output X_i

6: end for

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/5 & 0 & 4/5 \end{pmatrix}, \quad T = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$X_0 = 2$$

$$X_1 = 3$$

$$X_2 = 3$$

$$X_3 = 1$$

$$\vdots$$

The time-lag transition matrix

Lemma 2.23 Let X be a time-homogeneous Markov chain with finite state space and transition matrix P. Then

$$P\left(X_{j+k} = y \middle| X_j = x\right) = \left(P^k\right)_{xy}$$

for all $j, k \in \mathbb{N}_0$ and $x, y \in S$, where $P^k = P \cdot P \cdot \cdot \cdot P$ is the kth power of the transition matrix P.

transition matrix
$$P$$
.

$$P(x_{2} = y \mid X_{0} = x)$$

$$= \sum_{x_{1}} P(x_{2} = y \mid X_{1} = x_{1}, X_{0} = x) P(x_{1} = x_{1} \mid X_{0} = x)$$

$$= \sum_{x_{2}} P(x_{2} = y \mid X_{1} = x_{1}) P(x_{1} = x_{1} \mid X_{0} = x)$$

$$= \sum_{x_{1}} P(x_{2} = y \mid X_{1} = x_{1}) P(x_{1} = x_{1} \mid X_{0} = x)$$

$$= \sum_{x_{1}} P(x_{2} = y \mid X_{1} = x_{1}) P(x_{2} = x_{1} \mid X_{0} = x)$$

$$= \sum_{x_{1}} P(x_{2} = y \mid X_{2} = x_{2}) P(x_{2} = x_{1} \mid X_{0} = x)$$

$$= \sum_{x_{2}} P(x_{3} = y \mid X_{2} = x_{2}) P(x_{2} = x_{1} \mid X_{0} = x)$$

$$= \sum_{x_{2}} P(x_{3} = y \mid X_{2} = x_{2}) P(x_{2} = x_{1} \mid X_{0} = x)$$

 $= \sum_{x_{2}} P_{x_{2},y} \left(P^{2} \right)_{x,x_{2}} = \left(P^{3} \right)_{xy}$

The time-lag marginal	distribution	
	ime-homogeneous Markov chain with initial distribution π . Then we have	n finite state space
	$P(X_j = y) = (\pi^{\top} P^j)_y$	(2.3)
for all $y \in S$.		
$P(x_3 = y) =$	$\sum_{x_{o}} P(X_{j} = y X_{o} = x_{o})$ $\sum_{x_{o}} (P^{j})_{o(x_{j})} \cdot \prod_{x_{o}} x_{o}$	$z_o)P(x_o=x_o)$
=	$\sum_{x_0} \Pi_{x_0}(P^{5})_{x_0,y}$	= (11 17)

