

1

Taller

Implementación del Lasso y Selección de λ vía Validación Cruzada

Objetivo

Implementar el estimador Lasso utilizando el algoritmo de descenso por coordenadas para ajustar modelos de regresión penalizados, y seleccionar el parámetro de regularización λ óptimo mediante validación cruzada K-fold.

Parte 1: Preparación de datos

- Simular un conjunto de datos de regresión con matriz de diseño $X \in \mathbb{R}^{n \times p}$ y respuesta $y \in \mathbb{R}^n$, donde n = 100 y p = 20. Incluir correlación entre las variables predictoras.
- Generar un vector β^{true} esparso (algunos coeficientes exactamente cero).
- Generar $y = X\beta^{\text{true}} + \varepsilon$, con $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$.

Parte 2: Implementación del Lasso

Implementar en R o Python el Algoritmo 1 de descenso por coordenadas para resolver el problema:

$$\hat{\beta}^{\lambda} = \arg\min_{\beta} \left\{ \frac{1}{2n} \|y - X\beta\|_{2}^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}| \right\}$$

Algoritmo 1. Descenso por coordenadas para el estimador Lasso

- 1: Entrada: Matriz de diseño $X \in \mathbb{R}^{n \times p}$, vector de respuesta $y \in \mathbb{R}^n$, parámetro de regularización $\lambda > 0$
- 2: Preprocesamiento:
- 3: Centrar $y \leftarrow y \bar{y}$
- 4: Para cada columna j: centrar y escalar $X_j \leftarrow \frac{X_j \bar{X}_j}{\|X_j\|_2}$
- 5: **Inicializar:** $\beta^{(0)} = 0$, tolerancia ϵ , t = 0
- 6: repeat
- 7: for cada coordenada $j=1,\ldots,p$ do
- 8: Calcular el residuo parcial:

$$r_i^{(j)} = y_i - \sum_{k \neq j} x_{ik} \beta_k^{(t)}$$

9: Calcular:

$$\langle x, r_i^{(j)} \rangle = \frac{1}{n} \sum_{i=1}^n x_{ij} r_i^{(j)}$$

10: Actualizar coeficiente:

$$\beta_i^{(t+1)} = S_{\lambda}(\langle x, r_i^{(j)} \rangle), \quad \text{donde } S(z, \lambda) = \text{sign}(z) \cdot \text{máx}(|z| - \lambda, 0)$$

- 11: end for
- 12: $t \leftarrow t + 1$
- 13: **until** convergencia: $\|\beta^{(t)} \beta^{(t-1)}\|_2 < \epsilon$
- 14: Recuperar la media original de y: \bar{y} , y de cada columna X_j : \bar{x}_j
- 15: Calcular el intercepto:

$$\hat{\beta}_0 = \bar{y} - \sum_{j=1}^p \bar{x}_j \cdot \beta_j^{(t)}$$

16: **Salida:** $(\hat{\beta}_0, \beta^{(t)})$

Dr. Iván González

Parte 3: Validación cruzada

- Implementar en R o Python el Algoritmo 2 de validación cruzada K-fold
- Usar K = 10 y una grilla de al menos 100 valores de λ para seleccionar el valor óptimo de λ .
- Seleccionar el λ^* que minimice el error cuadrático medio de validación.

Algoritmo 2. Validación cruzada K-fold para seleccionar λ óptimo en Lasso

- 1: Entrada: Datos (X, y), número de folds K, número de puntos L en la grilla de λ
- 2: Calcular:

$$\lambda_{\max} = \max_{j} \left| \frac{1}{n} X_{j}^{\top} y \right|$$

3: Construir grilla logarítmica:

$$\lambda_1, \ldots, \lambda_L \in [0.0001 \cdot \lambda_{\text{máx}}, \lambda_{\text{máx}}]$$

equispaciada en escala log:

$$\lambda_{\ell} = \lambda_{\text{máx}} \cdot (0.0001)^{\frac{\ell-1}{L-1}}$$
 para $\ell = 1, \dots, L$

- 4: Dividir los datos en K folds D_1, \ldots, D_K
- 5: for cada $\lambda_{\ell} \in \{\lambda_1, \dots, \lambda_L\}$ do
- 6: Inicializar error acumulado $E_{\ell} = 0$
- 7: **for** cada fold k = 1, ..., K **do**
- 8: Definir entrenamiento $D_{\text{train}} = \bigcup_{j \neq k} D_j$, validación $D_{\text{val}} = D_k$
- 9: Ejecutar **Algoritmo 1** con $\lambda = \lambda_{\ell}$ sobre $D_{\text{train}} \to \text{obtener } \hat{\beta}^{(\ell,k)}$
- 10: Calcular error en validación:

$$ECM^{(\ell,k)} = \frac{1}{|D_k|} \sum_{(x_i, y_i) \in D_k} (y_i - x_i^{\top} \hat{\beta}^{(\ell,k)})^2$$

- 11: Acumular $E_{\ell} \leftarrow E_{\ell} + \text{ECM}^{(\ell,k)}$
- 12: end for
- 13: Promediar: $E_{\ell} \leftarrow \frac{1}{K} E_{\ell}$
- 14: **end for**
- 15: Selectionar $\lambda^* = \arg\min_{\lambda_\ell} E_\ell$
- 16: Salida: λ^*

Parte 4: Resultados y visualización

- Graficar el error de validación promedio contra $\log(\lambda)$.
- Mostrar la trayectoria de los coeficientes β_i conforme varía λ (trayectoria regularizada).
- Comparar el estimador final con β^{true} y discutir:
 - ¿Se identificaron correctamente las variables relevantes?
 - ξ Qué ocurre si no se estandariza X? ξ Y si no se centra y?

Dr. Iván González

Bonus (opcional) Comparar su implementación con glmnet (en R) o LassoCV (en Python).

Entregables

- Código bien comentado (en R o Python).
- Breve informe explicando cada paso, los resultados obtenidos y reflexiones finales.

Dr. Iván González