Name:	per:_	

Worksheet- Reaction Rates

Use this reaction for the questions below: $C_6H_{12}O_6$ (s) + 6 O_2 (g) \rightarrow 6 H_2O (g) + 6 CO_2 (g)

1. What happens to the concentrations of:

a. $C_6H_{12}O_6 & O_2$ as the reaction proceeds \Rightarrow ?

b. $H_2O + CO_2$ as the reaction proceeds \rightarrow ?

decreases

increases

- 2. According to the collision theory, what $\underline{\mathbf{3}}$ circumstances are needed for $C_6H_{12}O_6$ & O_2 to react? the particles must collide, they must collide with sufficient kinetic energy, and they must collide in the correct orientation
- 3. What is the <u>activation energy</u> for a chemical reaction? it is the amount of kinetic energy needed for a reaction to occur between particles
- 4. Use the equation & the collision theory to explain:

$$C_6H_{12}O_6$$
 (s) + 6 O_2 (g) \rightarrow 6 H_2O (g) + 6 CO_2 (g)

	Change in condition:	Does this <u>increase</u> or <u>decrease</u> the rate of reaction?	Explain why
a.	<u>Increasing</u> the temperature	Ex: Increases (speeds up)	Ex: Molecules move faster & collide more = Increased rxn rate
b.	Increasing the concentration of $C_6H_{12}O_6$	increase	more particles will collide - increased rate
C.	Decreasing the concentration of O2	decrease	less particles will collide - decreased rate
d.	Increase the surface area by chewing up food in your mouth	increase	more area for the reaction to occur
e.	<u>Decreasing the temperature</u>	decrease	particles will have less kinetic energy
f.	<u>Increasing the pressure</u> in the container	increase	more collisions will occur
g.	Decreasing the concentration of H2O	decrease	less collisions will occur
h.	<u>Increasing the volume</u> of the container the reaction occurs in	decrease	collisions will occur less frequently
i.	Increasing the concentration of CO2	increase	more collisions occur/they will happen more often
j.	<u>Using a catalyst</u> (like salivary amylase)	increase	will lower the minimum activation energy

- 5. <u>On</u> the accompanying energy diagram, <u>label</u> the following terms:
 - a. reactants
- b. products
- c. activation energy
- On the graph to the right, <u>draw</u> and <u>label</u> what this diagram would look like if a <u>catalyst</u> was added to the reaction.
- 7. Graph reading
 - a. How much energy (#) do the reactants have?
 20 units of energy
 - b. How much energy (#) do the products have? roughly 35 units of energy
 - c. How much energy (#) is required to activate this un-catalyzed reaction? roughly 45 units of energy
 - d. Is this reaction endothermic or exothermic? How do you know?

Equilibrium & Le Chatelier's Principle

- 1. What 2 characteristics define a system at equilibrium?
 - when there are balanced products and reactants, and when there is no change in things like pressure or temperature
- 2. What 3 factors are considered to be stresses on an equilibrium system? a change in the amount of reactants/products, a change in temperature, and a change in pressure/concentration
- 3. According to Le Chatelier, how does a system at equilibrium respond to a stress? by making an adjustment or shift to restore equilibrium

4. Complete the chart below: Reaction	Products of → (forward) reaction	Products of ← (reverse) reaction	Is the → (forward) reaction endothermic/ exothermic?
a. CH ₄ + O ₂ <> CO ₂ + H ₂ O + heat (890.3 kJ)	CO2 + H2O + heat	CH4 + O2	exothermic
b. NaCl (s) + heat <> Na+ Cl-	Na + Cl	NaCl (s) + heat	endothermic
c. H ₂ O(1) + heat <> H ₂ O(g)	H2O(g)	H2O(I) + heat	endothermic

Using Le Chatelier's principle, predict how each of the changes would affect the equilibrium systems Ex: Shifts to right (towards products), shifts to left (towards reactants), or No change occurs

5. N ₂ (g) + 3 H ₂ (g) <> 2 NH ₃ (g) + 92 kJ	6. CH ₃ OH (I) + 18 kJ <> CO (g) + 2 H ₂ (g)
a. <u>Stress:</u> Adding extra H ₂	a. <u>Stress:</u> Adding CO
Relief: use excess H₂ How: Shifts →	Relief: use excess CO How: shift <
b. <u>Stress:</u> Extra NH ₃ (ammonia) is added	b. <u>Stress:</u> Removing heat
Relief: use excess NH3 How: shift <	Relief: produce more CH30H How: shift <
c. <u>Stress:</u> Adding extra N ₂	c. <u>Stress:</u> Removing CH3OH
Relief: use excess N2 How: shift ->	Relief: produce more CH30H How: shift <
d. <u>Stress:</u> Removing H ₂	d. <u>Stress:</u> Decrease the volume of the container
Relief: produce more H2 How: shift <	Relief: produce more products How: shift ->
e. <u>Stress:</u> The pressure is increased	e. <u>Stress:</u> Adding Heating
Relief: produce more NH3 How: shift>	Relief: produce more reactants How: shift <-
f. <u>Stress:</u> Increase the volume of the container	f. <u>Stress:</u> Decreasing the pressure
Relief: produce more N2 and H2 How: shift <	Relief: produce more reactants How: shift <
g. <u>Stress:</u> Heating the system	g. <u>Stress:</u> Removing H ₂
Relief: produce more N2 ands H2 How: shift <	Relief: produce more H2 How: shift ->

7. $C_2H_4(g) + H_2(g) \leftarrow C_2H_6(g) + heat$

What stresses would force the reaction to shift \rightarrow (to the right)?

- a) Pressure (increase/decrease):
- b) Temperature:
- c) Concentrations (of C2H6, C2H4, H2)