编译原理第二次作业

201300035 方盛俊

Ex. 3.7.3 (2)

将正则表达式 (a*|b*)* 转为 NFA 有:

通过子集构造法将 NFA 转换为 DFA 有:

- A: ε-closure(0) = { 0, 1, 2, 3, 4, 6, 7, 9, 10, 11 }
- B: Dtran[A, a] = ε-closure(move(A, a)) = ε-closure({ 5 }) = { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 }
- C: Dtran[A, b] = ε-closure(move(A, b)) = ε-closure({ 8 }) = { 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 }
- Dtran[B, a] = ε-closure({ 5 }) = B
- Dtran[B, b] = ε-closure({ 8 }) = C
- Dtran[C, a] = ε-closure({ 5 }) = B
- Dtran[C, b] = ε-closure({ 8 }) = C

则有 DFA:

• 开始状态: A

• 接受状态: A, B, C

NFA 状态	DFA 状态	а	b
{ 0, 1, 2, 3, 4, 6, 7, 9, 10, 11 }	A	В	С
{ 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 }	В	В	С
{ 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 }	С	В	С

作图即可得:

Ex. 4.2.1

(1)

$$S \Longrightarrow_{lm} SS* \Longrightarrow_{lm} SS + S* \Longrightarrow_{lm} aS + S* \Longrightarrow_{lm} aa + S* \Longrightarrow_{lm} aa + a*$$

(2)

$$S \underset{rm}{\Longrightarrow} SS* \underset{rm}{\Longrightarrow} Sa* \underset{rm}{\Longrightarrow} SS + a* \underset{rm}{\Longrightarrow} Sa + a* \underset{rm}{\Longrightarrow} aa + a*$$

(3)

(4)

不是二义性的.

证明:

令 G 为文法 $S \rightarrow SS + |SS*|a$.

首先我们证明 L(G) 是 p-表达式组成的集合.

我们称由 $\{a,+,*\}$ 组成的符号串 ω 为 p-表达式,等且仅当:

- ω 不是空串;
- 对于任何 ω 的一个真后缀 φ 来说, 符号 a 的个数小于或等于操作符 $\{+,*\}$ 的个数, 不妨记作 $|\varphi|_a \leq |\varphi|_+$;

- ω 中符号 α 的个数恰好比操作符的个数多一个, 记作 $|\omega|_{\alpha} |\omega|_{+} = 1$;
- 除 $\omega = a$ 的情况外, ω 以 aa 开头, 且以任意一个操作符结尾.

我们使用数学归纳法证明 L(G) 是 p-表达式组成的集合.

归纳基础: 当 $\omega=a$ 或 $\omega=aa+$ 或 $\omega=aa*$ 时, 易见以上三个条件均满足, 此时 ω 是 p-表达式.

归纳假设: 当 $|\omega| < n$ 时, ω 是 p-表达式.

归纳步骤:

当 $|\omega|=n$ 时,不失一般性,我们认为 ω 是由 $S\to SS+$ 推导得到的, $S\to SS*$ 同理,则 ω 有形式 $\omega_1\omega_2+$,其中 $\omega_1,\omega_2\in L(G)$.

由归纳假设可得, ω_1 和 ω_2 是 p-表达式.

对于第一个条件, 易见由于 $|\omega|=n$, 有 ω 不是空串.

对于第二个条件, 令 φ + 是 $\omega = \omega_1 \omega_2$ + 的一个真后缀:

- 若 $\varphi = \varepsilon$, 则 $\varphi + = +$ 满足 $|\varphi + |_a = 0 \le |\varphi + |_+ = 1$.
- 若 φ 是 ω_2 的真后缀,则由于 ω_2 是 p-表达式,我们可知 $|\varphi|_a \leq |\varphi|_+$,则 $|\varphi + |_a = |\varphi|_a \leq |\varphi|_+ < |\varphi + |_+$ 同样满足 $|\varphi + |_a \leq |\varphi + |_+$.
- 若 $\varphi = \omega_2$, 则由于 ω_2 是 p-表达式,我们可知 $|\omega_2|_a = |\omega_2|_+ + 1$, 则 $|\varphi + |_a = |\omega_2|_a = |\omega_2|_+ + 1 = |\omega_2 + |_+ = |\varphi + |_+$, 满足 $|\varphi + |_a \leq |\varphi + |_+$.
- 若 $\varphi = \varphi_1 \omega_2$, 我们可知 $\varphi_1 \omega_2 +$ 中 a 的个数与操作符个数的差值,等于 φ_1 中 a 的个数与操作符个数的差值,即 $|\varphi_1 \omega_2 +|_a |\varphi_1 \omega_2 +|_+ = |\varphi_1|_a |\varphi_1|_+$. 由于 φ_1 是 ω_1 的真后缀(由 φ 是 ω 的真后缀可知 $\varphi_1 \neq \omega_1$),且 ω_1 是 p-表达式,因此 $|\varphi_1|_a |\varphi_1|_+ \leq 0$,则有 $|\varphi_1 \omega_2 +|_a |\varphi_1 \omega_2 +|_+ \leq 0$ 满足 $|\varphi|_a \leq |\varphi|_+$.

对于第三个条件, $|\omega|_a - |\omega|_+ = |\omega_1\omega_2 + |_a - |\omega_1\omega_2 + |_+ = (|\omega_1|_a - |\omega_1|_+) + (|\omega_2|_a - |\omega_2|_+) - 1 = 1 + 1 - 1 = 1$ 满足条件.

对于第四个条件,若 $\omega_1=a$,则 $\omega_1\omega_2+=a\omega_2+$ 必然以 aa 开头,以 + 结尾. 若 $\omega_1\neq a$,则 $|\omega_1|\geq 3$,且由 ω_1 为 p-表达式,则 ω_1 也是以 aa 开头的,则 $\omega_1\omega_2+=a\omega_2+$ 必然以 aa 开头,以 + 结尾.

由以上归纳证明可知, L(G) 是 p-表达式组成的集合.

接着我们使用数学归纳法证明 G 是无二义性的, 其中 $\omega \in L(G)$.

归纳基础: 当 $\omega=a$ 时, 易见 $S\to a$ 是 ω 唯一的推导, ω 有着唯一的语法树.

归纳假设: 当 $|\omega| < n$ 时, ω 有着唯一的语法树.

归纳步骤:

当 $|\omega|=n$ 时,不失一般性,我们认为 ω 是由 $S\to SS+$ 推导得到的, $S\to SS*$ 同理,则 ω 有形式 $\omega_1\omega_2+$,其中 $\omega_1,\omega_2\in L(G)$.

如果 ω 没有唯一的语法树,则我们会有多个符合条件的 $\omega_1\omega_2$ 对,以 ω_2 为例,不同的 ω_2 有着不同的长度 $|\omega_2|$,我们要证明的就是 $\omega_1\omega_2$ 对是唯一的,即 $|\omega_2|$ 是唯一的.

从右到左,我们逐个扫描符号,获取当前的真后缀 $\varphi+$,我们始终追踪 $|\varphi+|_a-|_{\varphi}+|_+$ 的值:

- 若 $\varphi = \varepsilon$,则 $|\varphi + |_a |\varphi + |_+ = -1$
- 若 φ 是 ω_2 的真后缀, 则 $|\varphi + |_a |\varphi + |_+ = |\varphi|_a |\varphi|_+ 1 \le -1$.
- $\Xi \varphi = \omega_2$, $\mathbb{M} |\varphi + |_a |\varphi + |_+ = |\omega|_a |\omega|_+ 1 = 1 1 = 0$.
- 若 $\varphi = \varphi_1 \omega_2$,
 - 。 若 $\omega_1 = a$, 则已经扫描了所有真后缀 φ + 了, 已经终止了.
 - 。 若 $\omega_1 \neq a$, 则 ω_1 以 aa 开头,
 - 若 φ_1 是 ω_1 的真后缀且不包括 ω_1 开头的 aa 中的 a, 则 $|\varphi + |_a |\varphi + |_+ = |\varphi_1|_a |\varphi_1|_+ < 0$.
 - 若 φ_1 是 ω_1 的真后缀且包括 ω_1 开头的 aa 中的一个 a, 则 $|\varphi + |_a |\varphi + |_+ = |\varphi_1|_a |\varphi_1|_+ = 0$.

可以看出,扫描真后缀 $\varphi+$ 时,最多只有两次 $|\varphi+|_a-|\varphi+|_+=0$,且只有第一次 $|\varphi+|_a-|\varphi+|_+=0$ 时,我们有 $\varphi=\omega_2$.

因此我们证明了 $\omega_1\omega_2$ 对是唯一的, 说明 $|\omega_2|$ 是唯一的, 即 ω_2 是唯一的, 因此 ω_1 也是唯一的, ω 有着唯一的语法树.

由以上归纳证明可知, $S \to SS + |SS*|a$ 是无二义性的.

(5)

包含加法 "+", 乘法 "*" 和操作数 "a" 的后缀表达式.

Ex. 4.2.3 (1)

该文法应该对应正则表达式 1*(01+)*,则文法为

- S -> 1S | A
- A -> 0BA | ε
- B -> 1B | 1