Lecture 4: Bellman Equations and Dynamic Programming

B. Ravindran

Value Functions (Recall)

The **value of a state** is the is the expected return when starting in state s and following π thereafter

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s\right]$$

Bellman Equation for a Policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \right]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

- Linear equation in |S| variables
- An unique solution exists

$$q_{\pi}(s, a) \doteq \sum_{s', r} p(s', r|s, a) [r + \gamma \sum_{a'} \pi(a'|s') q(s', a')]$$

An Example

- ☐ Actions: north, south, east, west (deterministic)
- ☐ If action would take agent off the grid: no move but reward = -1
- ☐ Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.

State-value function for equiprobable random policy; $\gamma = 0.9$

Optimal Value Functions

☐ For finite MDPs, policies can be partially ordered:

$$\pi \geq \pi$$
 if and only if $v_{\pi}(s) \geq v_{\pi}$, (s) for all $s \in S$

- There is always at least one (and possibly many) policies that is better than or equal to all the others. This is an optimal policy. We denote them all π_*
- Optimal policies share the same optimal state-value function:

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$
 for all $s \in \mathbb{S}$
 $q_*(s, a) \doteq \max_{\pi} q_{\pi}(s, a)$ for all $s \in \mathbb{S}$ and $a \in \mathcal{A}(s)$

Example

$$M = \langle S, A, p, r \rangle$$

Many optimal policies but only one optimal value function

Bellman Optimality Equation for v_*

The value of a state under an optimal policy must equal the expected return for the best action from that state:

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s, a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_{*}(s')].$$

Bellman Optimality Equation for q_*

The expected return for taking action *a* in state *s* and thereafter following an optimal policy

$$q_*(s, a) = \mathbb{E} \Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a \Big]$$
$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma \max_{a'} q_*(s', a') \Big].$$

Why Optimal State-Value Functions are Useful?

- Any policy that is greedy with respect to v_* is an optimal policy.
- ☐ Therefore, given v_* , one-step-lookahead search produces the long-term optimal actions.

E.g. back to the gridworld:

0.0	-14.0	-20.0	-22.0
-14.0	-18.0	-20.0	-20.0
-20.0	-20.0	-18.0	-14.0
-22.0	-20.0	-14.0	0.0

c) π*

Why Optimal Action-Value Functions are More Useful?

☐ Given q*, the agent does not even have to do a one-step-ahead search.

$$\pi_*(s) = argmax_{a \in A(s)} \ q_*(s, a)$$

$$\pi_*(s) = argmax_{a \in A(s)} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

Dynamic Programming

Dynamic Programming

- DP is the solution method of choice for MDPs
 - □ Requires complete knowledge of system dynamics (transition matrix and rewards)
 - Computationally expensive
 - Curse of dimensionality
 - Guaranteed to converge!

Policy Evaluation

 \Box For a given policy π , compute the state value function v_{π}

 \square Recall Bellman equation for v_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

- ☐ A system of |S| simultaneous linear equations
- Solve iteratively

Iterative Policy Evaluation

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s) arbitrarily, for s \in \mathcal{S}, and V(terminal) to 0 Loop: \Delta \leftarrow 0 Loop for each s \in \mathcal{S}: v \leftarrow V(s) V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \Delta \leftarrow \max(\Delta,|v-V(s)|) until \Delta < \theta
```

The Bellman Operator $\,T_{\pi}$

☐ In the previous algo, the update to *V(s)* can be interpreted as an operator acting on a vector *V*

$$T_{\pi}: \mathbb{R}^{|S|} \to \mathbb{R}^{|S|}$$

$$(T_{\pi}v)(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

Example of Policy Evaluation

Policy Improvement

- Suppose we have computed v_{π} for an arbitrary deterministic policy π
- Question: For a given state s, would it be better to choose an action $a \neq \pi(s)$?
- \Box The value of doing a in state s is:

$$q_{\pi}(s, a) \doteq \sum_{s', r} p(s', r|s, a)[r + \gamma V(s')]$$

It is better to switch to action a for state s if and only if $q_{\pi}(s,a)>v_{\pi}(s)$

Policy Improvement Cont.

Do this for all states to get a new policy π' that is greedy with respect to \mathbf{v}_{π}

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$$

$$Then, v_{\pi'} \ge v_{\pi}$$

Policy Improvement Cont.

What if $v_{\pi'} = v_{\pi}$? Then, for all $s \in \mathcal{S}$, we have

$$v_{\pi'}(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a) [r + \gamma v_{\pi}(s')]$$

But this is the Bellman Optimality equation.

So $v_{\pi'} = v_*$ and both π and π' are optimal policies.

Policy Iteration

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*$$

$$\text{Policy Evaluation} \qquad \qquad \text{Policy Improvement} \qquad \qquad \text{(greedification)}$$

Policy Iteration Algo.

1. Initialization $V(s) \in \mathbb{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ arbitrarily for all } s \in \mathcal{S}; V(terminal) \doteq 0$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s', r | s, \pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Value Iteration

- ☐ Policy evaluation step of policy iteration can be truncated without losing convergence.
- ☐ If policy evaluation step is stopped after one update of each state, we get value iteration
- Can also be interpreted as turning the Bellman optimality equation into an update rule.

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s'r} p(s', r | s, a) \Big[r + \gamma v_k(s') \Big],$$

Value iteration Algo.

```
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
```

```
Loop:
```

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until
$$\Delta < \theta$$

Output a deterministic policy, $\pi \approx \pi_*$, such that

$$\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

Asynchronous DP

- Disadvantage of algorithms discussed is we have to do the updates over the entire state set
- ☐ In asynchronous DP, the updates are not done over the entire state set at each iteration
- □ Have to ensure that every state is visited sufficiently often for convergence
- ☐ Gives flexibility to choose order of updates
- Can intertwine real time interaction with the environment and DP updates
- Can focus updates on parts of state space relevant to agent

Real-Time DP (RTDP)

- On-policy trajectory-sampling version of value-iteration algorithm.
- Updates values of states visited in the actual trajectory

- 1. Take action according to π
- 2. Update $V_{\pi}(s)$
- 3. Update $\pi(a|s)$
- Unlike asynchronous-DP, no requirement to update every state infinitely often.

Generalized Policy Iteration

GPI refers to the idea of letting policy evaluation and policy improvement interact, independent of their granularity.

GPI

- ☐ Almost all RL methods can be viewed as GPI.
- Policy iteration has evaluation running to completion before improvement begins.
- In value iteration, only one step of evaluation is done before the improvement step.
- In Asynchronous DP, the two are interleaved at a finer granularity.

