Exercise Sheet 2

Handout: September 16th — Deadline: September 23rd, 4pm

Question $2.1 \quad (0.3 \text{ marks})$

Express the following running times in Θ -notation. Justify your answer by referring to the definition of Θ (i. e. work out suitable c_1, c_2, n_0).

- a) $3n^2 + 5n 2$
- b) 42
- c) $4n^2 \cdot (1 + \log n) 2n^2$

Question 2.2 (0.7 marks)

(a) Indicate for each pair of functions f(n), g(n) in the following table whether f(n) is O, o, Ω , ω , or Θ of g(n) by writing "yes" or "no" in each box.

f(n)	g(n)	0	0	Ω	ω	Θ
$\log n$	\sqrt{n}					
n	\sqrt{n}					
n	$n \log n$					
n^2	$n^2 + (\log n)^3$					
2^n	n^3					
$2^{n/2}$	2^n					
$\log_2 n$	$\log_{10} n$					

Hints: the book states that every polynomial of $\log n$ grows strictly slower than every polynomial n^{ε} , for constant $\varepsilon > 0$. For example, $(\log n)^{100} = o(n^{0.01})$. Likewise, every polynomial grows slower than every exponential function $2^{n^{\varepsilon}}$, for example $n^{100} = o(2^{n^{0.01}})$.

To convert the base of a logarithm, use $\log_x(n) = \log_y(n)/\log_y(x)$.

Question $2.3 \quad (0.3 \text{ marks})$

State the number of "foo" operations for each of the following algorithms in Θ -notation. Pay attention to indentation and how long loops are run for. Justify your answer by stating constants $c_1, c_2, n_0 > 0$ from the definition of $\Theta(g(n))$ in your answer.

Example: Line 1 is executed once and line 3 is executed n-4 times. So the number of foos is $1+n-4=n-3=\Theta(n)$ as $c_1n \leq n-3 \leq c_2n$ for all $n \geq n_0$ when choosing, say, $n_0=6, c_1=1/2, c_2=1$.

EXAMPLE ALGORITHM					
1:	foo				
2:	for $i = 1$ to $n - 4$ do				
3:	foo				

Algorithm A		Algorithm B		Algor	Algorithm C		
1: foo		1: foo		1: foo	1: foo		
2: for $i = 1$ to n do		2: for $i = 1$ to n do		2: for	2: for $i = 1$ to n do		
3:	for $j = 1$ to $n - 2$ do	3:	foo	3:	for $j = 1$ to i do		
4:	foo	4: for	i = 1 to n/2 do	4:	foo		
5:	foo	5:	foo	5:	foo		
6:	foo	6:	foo	6: foo			

Question 2.4 (0.3 marks)

Recall from Lecture 2 that a statement like $2n^2 + \Theta(n) = \Theta(n^2)$ is true if no matter how the anonymous functions are chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right of the equal sign to make the equation valid. You might want to think of the $\Theta(n)$ on the left-hand side being a placeholder for some (anonymous) function that grows as fast as n.

For each of the following statements, state whether it is true or false. Justify your answers.

```
1. O(\sqrt{n}) = O(n)
2. n + o(n^2) = \omega(n)
3. 3n \log n + O(n) = \Theta(n \log n)
```

Also, explain why the statement "The running time of Algorithm A is at least $O(n^2)$ " is meaningless.

Question 2.5 (0.3 marks)

The following algorithm computes the product C of two $n \times n$ matrices A and B, where A[i,j] corresponds to the element in the i-th row and the j-th column.

```
MATRIX-MULTIPLY (A, B)

1: for i = 1 to n do

2: for j = 1 to n do

3: C[i, j] := 0

4: for k = 1 to n do

5: C[i, j] := C[i, j] + A[i, k] \cdot B[k, j]

6: return C
```

Give the running time of the algorithm (number of operations in a RAM machine) in Θ -notation. Justify your answer. Feel free to use the rules on calculating with Θ -notation from the lecture.

Question 2.6 (marks 0.75)

BUBBLESORT is a popular, but inefficient, sorting algorithm. It works by repeatedly swapping adjacent elements that are out of order. The effect is that small elements "bubble" to the left-hand side of the array, accumulating to form a growing sorted subarray. (You might want to work out your own example to understand this better.)

Bubble-Sort(A)

```
1: for i = 1 to A.length -1 do

2: for j = A.length downto i + 1 do

3: if A[j] < A[j-1] then

4: exchange A[j] with A[j-1]
```

Prove the correctness of BubbleSort and analyse its running time as follows. Try to keep your answers brief.

- 1. The inner loop "bubbles" a small element to the left-hand side of the array. State a loop invariant for the inner loop that captures this effect and prove that this loop invariant holds, addressing the three properties initialisation, maintenance, and termination.
- 2. Using the termination condition of the loop invariant for the inner loop, state and prove a loop invariant for the outer loop in the same way as in part 1. that allows you to conclude that at the end of the algorithm the array is sorted.
- 3. State the runtime of BubbleSort in asymptotic notation. Justify your answer.

Programming Question 2.7 (0.1 marks)

Implement Matrix-Multiply(A,B) and BubbleSort on the new Judge system.