Part I Exam Cheatsheets: Probability and Statistics Theory

Eric Ordoñez

April 2025

1 Common distributions

Distribution	Mean	Variance	PMF/PDF
$\mathrm{Unif}\left([a,b] ight)$	$\frac{a+b}{2}$	$\frac{(b-a)(b-a+2)}{12}$	$\frac{1}{b-a+1}$
$\mathrm{Ber}(p)$	p	p(1-p)	$p^x(1-p)^{1-x}$
$\mathrm{Bin}(n,p)$	np	np(1-p)	$\binom{n}{k}p^k(1-p)^{n-k}$
$\mathrm{Geom}(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p(1-p)^{k-1}$
$\mathrm{Poiss}\left(\lambda\right)$	λ	λ	$\frac{\lambda^k e^{-\lambda}}{k!}$
$\mathrm{Unif}\left([a,b]\right)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{b-a}$
$\mathcal{N}\left(\mu,\sigma^2\right)$	μ	σ^2	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
$\mathrm{Exp}\left(\lambda ight)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\lambda e^{-\lambda x}$
$\mathrm{Beta}\left(\alpha,\beta\right)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$
$\operatorname{Gamma}\left(\alpha,\beta\right)$	$\frac{lpha}{eta}$	$rac{lpha}{eta^2}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$

2 Conditioning, independence, and counting

2.1 Conditional probability

Multiplication rule: Given a countable set of events $\{A_i\}$,

$$\mathbb{P}\left(\bigcap_{i=1}^{n}A_{i}\right)=\mathbb{P}\left(A_{1}\right)\mathbb{P}\left(A_{2}\mid A_{1}\right)\mathbb{P}\left(A_{3}\mid A_{1}\cap A_{2}\right)\cdots\mathbb{P}\left(A_{n}\mid\bigcap_{i=1}^{n-1}A_{i}\right)$$

Law of total probability: Given a mutually exclusive, collectively exhaustive, and countable set of events $\{A_i\}$, $\mathbb{P}(B) = \sum_i \mathbb{P}(A_i) \mathbb{P}(B \mid A_i)$.

2.2 Independence

A countable set of events $\{A_i\}$ is independent if $\mathbb{P}\left(\bigcap_{i\in S}A_i\right)=\prod_{i\in S}\mathbb{P}\left(A_i\right)$ for every subsets S of the enumeration of $\{A_i\}$.

Some facts about independence:

- A and B are independent iff $\mathbb{P}(A | B) = \mathbb{P}(A)$.
- If A and B are independent, so are A and B^c (and so are A^c and B^c).
- Independence implies pairwise independence, but not vice versa.
- Independence does not imply conditional independence, and vice versa.
- If X and Y are independent r.v.s, then $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$ for any functions g, h, and Var(X + Y) = Var(X + Var(Y)).

2.3 Counting

Number of...

- Permutations of n objects: n!
- k-permutations of n objects: n!/(n-k)!
- Combinations of k out of n objects: n!/(k!(n-k)!)
- Partitions of n objects into r groups with the i-th group having n_i objects: $n!/(n_1!n_2!\cdots n_r!)$

3 Random variables

3.1 Properties of expectation and variance

Law of iterated expectations: $\mathbb{E}\left[\mathbb{E}\left[X\,|\,Y\right]\right] = \mathbb{E}\left[X\right]$

Law of total expectation: $\mathbb{E}[X] = \int_{Y} \mathbb{E}[X|Y=y] f_{Y}(y) dy$

Law of total variance: $\operatorname{Var} X = \mathbb{E} \left[\operatorname{Var} \left(X \, | \, Y \right) \right] + \operatorname{Var} \mathbb{E} \left[X \, | \, Y \right]$

3.2 Derived distributions

How to find the distribution of a function Y = g(X) of a continuous r.v. X with known distribution f_X :

$$f_Y\!(y) = \frac{\mathrm{d} F_Y\!(y)}{\mathrm{d} y} = \frac{\mathrm{d}}{\mathrm{d} y} \, \mathbb{P}\left[g(X) \le y\right] = \frac{\mathrm{d}}{\mathrm{d} y} \int_{\{x \mid g(x) \le y\}} f_X\!(x) \, \mathrm{d} x$$

Two important cases:

• A linear transformation Y = aX + b:

$$f_Y\!(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

• A monotonic transformation Y = g(X), where $h(y) = g^{-1}(y)$:

$$f_{Y}(y) = f_{X}(h(y)) \left| \frac{\mathrm{d}h(y)}{\mathrm{d}y} \right|$$

3.3 Sum of independent random variables

The PDF of the sum of two independent r.v.s is the convolution of their PDFs. If Z = X + Y, then $f_Z(z) = \int_{\mathbb{D}} f_X(x) f_Y(z - x) dx$.

One application of this is that the sum of finitely many independent normal variables is normal: $\sum_{i=1}^{n} \mathcal{N}(\mu_i, \sigma_i^2) \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$.

Correlation and covariance

The correlation coefficient measures the linear association between variables:

$$\rho_{XY} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}_n}{\sigma_X} \right) \left(\frac{Y_i - \overline{Y}_n}{\sigma_Y} \right) = \frac{\operatorname{Cov}\left(X, Y\right)}{\sigma_X \sigma_Y} \in [-1, 1]$$

Properties of covariance:

- Cov(aX + b, Y) = a Cov(X, Y)
- $\operatorname{Cov}(X, Y + Z) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(Y, Z)$
- $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var} X_{i} + \sum_{\{(i,j) \mid i \neq j\}} \operatorname{Cov}\left(X_{i}, X_{j}\right)$

Stochastic processes

Start with a sequence of independent geometric (exponential) random variables (T_n) with common parameter $p(\lambda)$. (Let these be the interarrival times). Then the sequence (Y_n) of arrival times is a Bernoulli (Poisson) process defined $Y_k = \sum_{i=1}^k T_i$.

If Bernoulli, the PMF of Y_k is the Pascal PMF of order k:

$$p_{Y_k}(t) = \binom{t-1}{k-1} p^k (1-p)^{t-k} \qquad t = k, k+1, \dots$$

If Poisson, the PDF of Y_k is the Erlang PDF of order k:

$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}$$

For a Bernoulli process with parameter p over n steps, the number of arrivals is $S \sim$ Bin (n, p). For a Poisson process with rate λ over an interval of length τ , the number of arrivals is $N_{\tau} \sim \text{Poiss}(\lambda \tau)$.

Splitting a Bernoulli (Poisson) process with parameter $p(\lambda)$:

- 1. Keep with probability q and get a Bernoulli process with parameter pq.
- 2. Keep with probability p and get a Poisson process with rate λp .

Merging two independent Bernoulli (Poisson) processes with parameters p and q (λ_1 and λ_2), respectively:

- 1. Get a Bernoulli process with parameter 1 (1 p)(1 q) = p + q pq.
- 2. Get a Poisson process with rate $\lambda^* = \lambda_1 + \lambda_2$, with arrival probabilities λ_1/λ^* and λ_2/λ^* of originating from the first and second process, respectively.

Convergence and limit theorems

Useful inequalities

Markov: For X > 0 with $\mathbb{E}[X] > 0$ and t > 0, $\mathbb{P}[X > t] < \mathbb{E}[X]/t$.

Chebyshev: For X with $\mathbb{E}[X] < \infty$ and t > 0, $\mathbb{P}[|X - \mathbb{E}[X]| \ge t] \le (\operatorname{Var} X)/t^2$.

Hoeffding: Given $X_{i \in [n]} \stackrel{\text{i.i.d.}}{\sim} X$ that are a.s. bounded, i.e., there exist a < b such that $\mathbb{P}[X_i \notin [a,b]] = 0$, then $\mathbb{P}[|\overline{X}_n - \mathbb{E}[X]| \ge \epsilon] \le 2 \exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right)$ for all $\epsilon > 0$.

Modes of convergence

Let (T_n) be a sequence of r.v.s and T another r.v., all in \mathbb{R} .

- 3. Convergence in distribution: $T_n \stackrel{\mathrm{d}}{\longrightarrow} T \iff \mathbb{E}\left[f(T_n)\right] \to \mathbb{E}\left[f(T)\right]$ for all continuous and bounded f

(1) implies (2) implies (3), but (3) implies (2) only if the limit T has a density: $T_n \stackrel{\mathrm{d}}{\longrightarrow}$ $T \implies \mathbb{P}\left[a \le T_n \le b\right] \to \mathbb{P}\left[a \le T \le b\right].$

Continuous mapping theorem: Continuous functions preserve limits.

5.3 Limit theorems

Let $X_{i\in[n]}\overset{\mathrm{i.i.d.}}{\sim}X$ with finite mean μ and sample mean \overline{X}_n .

- Strong LLN: $\overline{X}_n \xrightarrow{\text{a.s.}} \mu$, i.e., $\mathbb{P}\left[\lim_{n \to \infty} \overline{X}_n = \mu\right] = 1$.
- Weak LLN: If $\operatorname{Var} X < \infty$, then $\overline{X}_n \xrightarrow{\mathbb{P}} \mu$, i.e., $\mathbb{P}[|\overline{X}_n \mu| \ge \epsilon] \to 0$ for all $\epsilon > 0$.

Central limit theorem: If, in addition, $\operatorname{Var} X = \sigma^2 < \infty$, then the sample mean is asymptotically normal, i.e., $\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2)$.

Slutsky's theorem: Let (T_n) and (U_n) be sequences of r.v.s such that $T_n \stackrel{d}{\longrightarrow} T$ and $U_n \stackrel{\mathbb{P}}{\longrightarrow} u \in \mathbb{R}$. Then

- $T_n + U_n \xrightarrow{d} T + u$ $T_n U_n \xrightarrow{d} Tu$
- $\frac{T_n}{U_n} \xrightarrow{d} \frac{T}{u}$ if $u \neq 0$.

Statistical inference

6.1 Models and estimation

For a statistical model $(E, \{\mathbb{P}_{\theta}\}_{\theta \in \Theta})$:

- The model is parametric if $\Theta \subset \mathbb{R}^m$ and $\mathbb{P}_{\mathfrak{a}}$ is uniquely specified by θ .
- θ is *identifiable* if the map $\theta \mapsto \mathbb{P}_{\theta}$ is injective.

For an associated i.i.d. sample $X_{i \in [n]}$ drawn from a distribution $\mathbb{P}_{\theta} \colon$

- A statistic is any measurable function of the sample.
- An estimator of θ is a statistic whose expression does not depend on θ .
- An estimator $\hat{\theta}_n$...
 - is weakly consistent if $\hat{\theta}_n \stackrel{\mathbb{P}}{\longrightarrow} \theta$.
 - is asymptotically normal if $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}\left(0, \sigma^2\right)$, with asymptotic variance σ^2 .
 - has bias equal to $\mathbb{E}\left[\hat{\theta}_n\right] \theta$.
 - has quadratic risk equal to $\mathbb{E}[|\hat{\theta}_n \theta|^2] = \text{variance} + \text{bias}^2$.

6.2 Delta method

Let (Z_n) be a sequence of r.v.s that are asymptotically normal around θ with variance σ^2 . If the function g is continuously differentiable at θ , then $g(Z_n) \stackrel{\mathbb{P}}{\longrightarrow} g(\theta)$ and $g(Z_n)$ is asymptotically normal around $q(\theta)$ with variance $q'(\theta)^2 \sigma^2$.

Bayesian inference

Recall Bayes' theorem:

$$\mathbb{P}\left(A_i \,|\, B\right) = \frac{\mathbb{P}\left(A_i\right)\mathbb{P}\left(B \,|\, A_i\right)}{\sum_i \mathbb{P}\left(A_j\right)\mathbb{P}\left(B \,|\, A_j\right)} = \frac{\mathbb{P}\left(A\right)\mathbb{P}\left(B \,|\, A\right)}{\mathbb{P}\left(B\right)} \quad \text{if only one event } A$$

Let $\pi(\theta)$ and $\pi(\theta|X)$ be the prior and posterior distributions, respectively.

- Bayes estimate: $\hat{\theta}^{(\pi)} = \int_{\Theta} d\pi (\theta | X)$
- Maximum a posteriori estimate: $\hat{\theta}^{MAP} = \operatorname{argmax}_{\theta \in \Theta} \pi(\theta \mid X)$.
- Least mean squares estimate: $\hat{\theta}^{LMS} = \mathbb{E}[\Theta \mid X = x].$

Ways to evaluate a Bayesian estimator (can be unconditional or conditional):

- Probability of error: $\mathbb{P}\left[\hat{\theta} \neq \theta\right]$
- Mean squared error: $\mathbb{E}\left[(\hat{\theta} \hat{\theta})^2\right]$

On prior and posterior distributions:

- If the PDF of X can be written $f(x) = ce^{-(\alpha x^2 + \beta x + \gamma)}$ with $\alpha > 0$, then X is normal with mean $-\beta/2\alpha$ and variance $1/2\alpha$.
- An *improper prior* is measurable, nonnegative, but not integrable.
- Example: Bernoulli experiment with a beta prior parameterized (α, β) has a beta posterior with updated parameters $\left(\alpha + \sum_{i=1}^{n} X_{i}, \beta + n - \sum_{i=1}^{n} X_{i}\right)$.

 • Jeffreys prior: A non-informative prior, i.e., lacking prior information about a
- parameter, defined $\pi_I(\theta) \propto \sqrt{\det I(\theta)}$.

Hypothesis testing

8.1 Confidence intervals

The quantile of order $1-\alpha$ of a r.v. X is the number q_{α} such that $\mathbb{P}[X \leq q_{\alpha}] = 1-\alpha$.

A confidence interval of (asymptotic) level $1-\alpha$ for θ is any random (dependent upon the random sample) interval \mathcal{I} , whose boundaries do not depend on θ , such that $(\lim_{n\to\infty}) \mathbb{P}[\mathcal{I}\ni\theta] \geq 1-\alpha \text{ for all } \theta\in\Theta.$

8.2 Errors and p-values

The *p-value* is the smallest significance level at which H_0 is rejected.

- Type I error: Reject H_0 when H_0 is true.
- Type II error: Fail to reject H_0 when H_1 is true.
- Significance level α : $\mathbb{P}(\text{Type I error}) \leq \alpha$.
- *Power:* $1 \mathbb{P}$ (Type II error).

8.3 Wald test vs t-test

- The t-test requires the data to be Gaussian and can only be performed on expected values.
- The Wald test is asymptotic; the t-test can compute non-asymptotic p-values.
- For large sample sizes, the quantiles of the T distribution converge to those of the standard normal distribution.
- In general, the Wald test is more flexible and leads to lower p-values.

9 Methods of estimation

9.1 Maximum likelihood estimation

Minimize an estimate of the KL divergence between an observed distribution and a hypothesized distribution defined by a true parameter θ^* :

$$\mathrm{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}\right) = \int_{E} f_{\theta}(x) \log \left(\frac{f_{\theta}(x)}{f_{\theta'}(x)}\right) \mathrm{d}x$$

Under some technical conditions, the MLE is a weakly consistent estimator for θ^* :

- θ^* is identifiable.
- θ^* is in the interior of Θ .
- The support of \mathbb{P}_{θ} does not depend on θ .

9.2 Fisher information

Define the log-likelihood for one observation as $\ell(\theta) = \log L(X, \theta)$ and assume ℓ is twice differentiable. Under some regularity conditions, the *Fisher information* is

$$I(\theta) = \operatorname{Var} \ell'(\theta) = -\mathbb{E} \left[\ell''(\theta)\right]$$

and, if $I(\theta) \neq 0$ in a neighborhood of θ^* , then the MLE is asymptotically normal with variance $I(\theta^*)^{-1}$.

Use it to construct the Wald test statistic for the MLE: $W = \sqrt{nI(\hat{\theta}^{\text{MLE}})}(\hat{\theta}^{\text{MLE}} - \theta^*)$.

9.3 M-estimation

Let $X_{i\in[n]}$ be i.i.d. with some unknown distribution \mathbb{P} and associated parameter μ^* on a sample space E. An M-estimator $\hat{\mu}$ of μ^* is the minimizer of an estimator of a function $\mathcal{Q}(\mu)$ such that:

- $\mathcal{Q}(\mu) = \mathbb{E}\left[\rho(X,\mu)\right]$ for some function $\rho: E \times \mathcal{M} \to \mathbb{R}$, where \mathcal{M} is the set of all possible values for μ^* .
- $Q(\mu)$ attains a unique minimum at μ^* .

The goal is to find a loss function ρ that satisfies these properties. MLE is a special case of M-estimation where ρ is negative (log-)likelihood.

10 Linear regression

Solve $\min_{\beta} \|y - X\beta\|_2^2$ to get $\hat{\beta} = (X^\top X)^{-1} X^\top y$. If X is not full rank, regularize the objective by adding $\lambda \|\beta\|_n^2$ with hyperparameter $\lambda > 0$.

- If p=2, this is ℓ_2 regularization that penalizes large values of β_j .
- If p = 1, this is ℓ_1 (lasso) regularization that prefers sparse β .

11 Generalized linear models

Relax the assumptions of linear regression: Assume that Y|X=x is distributed according to some \mathbb{P} and that $g(\mu(x))=x^{\top}\beta$, where g is the link function and $\mu(x)=\mathbb{E}\left[Y|X=x\right]$ is the regression function.

k-parameter exponential family: A family of distributions $\{\mathbb{P}_{\theta} \mid \theta \in \Theta \subset \mathbb{R}^k\}$ such that there exist real-valued functions $\eta_1, \eta_2, \dots, \eta_k$ and B of θ and T_1, T_2, \dots, T_k and h of $y \in \mathbb{R}^q$ such that the density of \mathbb{P}_{θ} can be written

$$f_{\theta}(y) = \exp\left[\sum_{i=1}^k \eta_i(\theta) T_i(y) - B(\theta) \right] h(y)$$

The canonical exponential family $(k = 1, y \in \mathbb{R})$ for some known functions b and c is

$$f_{\theta}(y) = \exp\left[\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right]$$

If the dispersion parameter ϕ is known, then this is a one-parameter exponential family with θ the canonical parameter. It can be derived from log-likelihood that $\mathbb{E}[Y] = b'(\theta)$ and $\operatorname{Var} Y = b''(\theta)\phi$.

If g is monotone increasing and differentiable, then $\mu = g^{-1}(X^{\top}\beta)$. The canonical link is $g(\mu) = \theta = (b')^{-1}(\mu)$ for the canonical parameter θ .