Modelo de mezclas Gaussianas (GMM)

Rafael Pérez Torres

Tópicos Selectos en Reconocimiento de Patrones Profesor: Dr. Wilfrido Gómez Flores LTI Cinvestav

AGENDA

Introducción Introducción

GMM

El modelo de mezclas Gaussianas (GMM)

PARÁMETROS DEL GMM Estimación de los parámetros GMM Descripción del método de máxima verosimilitud

EL ALGORITMO EM

Descripción del algoritmo EM

Introducción

- ► Normalmente, la naturaleza de una distribución refleja características intrínsecas en los datos.
- Las técnicas de agrupamiento basadas en distribución intentan crear un modelo parametrizado que describa a los datos.
- ► Con el modelo es posible realizar inferencias que sean útiles para labores de identificación agrupamiento

Introducción

- ► El modelo que describe a una distribución puede ser conocido a través de una *PDF* (Probability Density Function).
- Normalmente, los datos que provienen del mundo real obedecen a una distribución normal o gaussiana, definida como

$$g(x|\mu_i, \Sigma_i) = \frac{1}{(2\pi)^{(l/2)}} \exp\left(-\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i)\right)$$
 (1)

Esta PDF es parametrizada por las medias μ y covarianzas Σ de los datos.

Introducción

000

- ► En general, las técnicas de agrupamiento asumen que los datos han sido generados por una mezcla de distribuciones (PDF).
- ► Cada componente de la mezcla define a cada uno de los grupos.

EL ALGORITMO EM

EL MODELO DE MEZCLAS GAUSSIANAS (GMM)

► El GMM es una suma ponderada de *M* PDFs Gaussianas, expresado como

$$p(x|\omega_i, \Sigma_i) = \sum_{i=1}^{M} \omega_i g(x|\mu_i, \Sigma_i)$$
 (2)

Donde $g(x|\mu_i, \Sigma_i)$ es la PDF gaussiana de cada grupo y ω_i es el vector de coeficientes mixtos que se encuentra sujeto a la restricción $\sum_{i=1}^{M} \omega_i = 1$.

Figura: Una combinación de PDFs Gaussianas

► Entonces, el GMM es parametrizado por los vectores de medias, covarianzas y coeficientes de cada grupo:

$$\lambda = \{\omega_i, \mu_i, \Sigma_i\}$$

► El resto del trabajo consiste en encontrar los valores adecuados para dichos parámetros.

ESTIMACIÓN DE LOS PARÁMETROS DEL GMM

- \blacktriangleright Existen varios métoos para estimar λ de un GMM.
- ► El más utilizado es el método de estimación de máxima verosimilitud (ML).
- ► El objetivo del método de ML es maximizar la verosimilitud del GMM dado el conjunto de datos de entrenamiento.

El algoritmo EM

EL MÉTODO DE MÁXIMA VEROSIMILITUD

Sea \mathcal{X} una variable aleatoria con función de probabilidad $p(\mathcal{X}; \theta)$ donde θ es un parámetro desconocido. Además, sean x_1, x_2, \dots, x_N los valores observados en una muestra aleatoria de tamaño N de la misma variable. La función de verosimilitud de la muestra (o función de densidad conjunta) es:

$$\mathcal{L}(\theta) = p(\mathcal{X}; \theta) = p(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{N} p(x_i; \theta)$$
 (3)

EL MÉTODO DE MÁXIMA VEROSIMILITUD, EJEMPLO

- ► Se desea estimar la probabilidad p de que salga cara en el lanzamiento de una moneda (no necesariamente regular).
- \blacktriangleright Se lanza cinco veces la moneda y se obtiene: C + CC +

►
$$p(C + CC+) = p * (1-p) * p * p * (1-p) = p^3(1-p)^2$$

Valor de p	Probabilidad de la muestra observada
0.0	0.0000
0.1	0.0008
0.2	0.0051
0.3	0.0132
0.4	0.0230
0.5	0.0313
0.6	0.0346
0.7	0.0309
0.8	0.0205
0.9	0.0073
1.0	0.0000

Cuadro: Valores obtenidos para distintos valores de p

EL MÉTODO DE MÁXIMA VEROSIMILITUD, EJEMPLO

$$p(k \text{ caras en} n \text{ lanzamientos}) = \binom{n}{k} p^k (1-p)^{n-k} = \mathcal{L}(p)$$
 (4)

Derivando e igualando a 0

$$\frac{\partial \ln(\mathcal{L}(p))}{\partial p} = \frac{k}{p} - \frac{n-k}{1-p} \tag{5}$$

$$\frac{k}{\hat{p}} - \frac{n-k}{1-\hat{p}} = 0 \to k(1-\hat{p}) - \hat{p}(n-k) = 0 \to \hat{p} = \frac{k}{n}$$
 (6)

El estimador máximo verosimil de la probabilidad de un suceso es la frecuencia relativa.

ML EN DISTRIBUCIONES NORMALES

Al aplicar ML a distribuciones Gaussianas, se observa que los estimadores máximos verosímiles coinciden con la μ y la Σ .

$$\mathcal{L}(\mu, \sigma^2) = \ln \prod_{i=1}^{N} p(x_i; \theta)$$
 (7)

$$= \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sqrt{\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
 (8)

$$= -\frac{N}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x-\mu)^2$$
 (9)

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$
 (10)

EL ALGORITMO EM

- El algoritmo Expectation-Maximization se basa en el método de estimación de máxima verosimilitud para determinar los valores *óptimos* de los parámetros (λ) de un GMM.
- ► Se deben calcular las derivadas de los parámetros de la función de log-verosimilitud ($\lambda = \{\mu_k, \Sigma_k, \omega_k\}$):

$$\ln p(x|\lambda) = \sum_{i=1}^{N} \ln \left\{ \sum_{k=1}^{M} \omega_k g(x_i|\mu_k, \Sigma_k) \right\}$$

EL ALGORITMO EM

Pasos del algoritmo EM

- 1. Selección de valores iniciales para λ .
- 2. Paso E: Evaluar probabilidades a posteriori utilizando el actual conjunto de valores λ .
- 3. Paso M: Reestimar λ utilizando las probabilidades a posteriori obtenidas.
- 4. Criterio de parada atendiendo a los resultados de la función de verosimilitud de la iteración t y t-1.

EM: PASO 1

Paso 1: Selección de valores iniciales

- ▶ El algoritmo EM requiere la cantidad de *M* componentes Gaussianas a considerar en el GMM y el valor inicial de λ
- Normalmente, se utiliza k-means para obtener el valor de las medias iniciales.
- Σ_k se calcula en base a todos las instancias pertenecientes al grupo k.
- ▶ Los coeficientes se calculan como $\omega_k = N_k/N$ donde N_k es la cantidad de instancias del grupo y N es la cantidad total de instancias.

EM: PASO 2, E

Paso 2: Expectation

Para la *i*-ésima muestra se calculan las probabilidades a posteriori para la k-ésima componente, o en otras palabras, se calcula la probabilidad de que cada muestra pertenezca a cada clúster, mediante:

$$p(k|x_i, \lambda) = \frac{w_k g(x_i|\mu_k, \Sigma_k)}{\sum_{k=1}^{M} w_k g(x_i|\mu_k, \Sigma_k)}$$
(11)

Parámetros del GMM

donde
$$g(x|\mu_i, \Sigma_i) = \frac{1}{(2\pi)^{(l/2)}} \exp\left(-\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i)\right).$$

Este paso puede ser considerado similar al paso de asignación de clúster en el algoritmo k-means.

EM: PASO 3, M

INTRODUCCIÓN

Paso 3: Maximization

Se reestiman los valores del parámetro λ , es decir, μ_k , Σ_k , ω_k , a través de:

$$\hat{\omega_k}^{t+1} = \frac{1}{N} \sum_{i=1}^{N} p(k|x_i, \lambda)$$
 (12)

$$\hat{\mu_k}^{t+1} = \frac{\sum_{i=1}^{N} p(k|x_i, \lambda) x_i}{\sum_{i=1}^{N} p(k|x_i, \lambda)}$$
(13)

$$\hat{\Sigma_k}^{t+1} = \frac{\sum_{i=1}^{N} p(k|x_i, \lambda) \left(x_i - \hat{\mu}_k^{t+1}\right) \left(x_i - \hat{\mu}_k^{t+1}\right)^T}{\sum_{i=1}^{N} p(k|x_i, \lambda)}$$
(14)

Este paso puede ser considerado similar al paso de recálculo de clústers en el algoritmo k-means.

EL ALGORITMO EM 0000

0

EM: PASO 4

Paso 4: Criterio de parada

Se evalúa la función de log-verosimilitud utilizando los valores estimados de λ :

$$\mathcal{L}(\lambda) = \sum_{i=1}^{N} \sum_{k=1}^{M} p(k|x_i, \lambda) \left(-\frac{1}{2} (x_i - \hat{\mu}_k)^T \Sigma_k^{-1} (x_i - \hat{\mu}_k) + \ln P(\hat{w}_k) + c_k \right)$$
(15)

La convergencia puede ser medida por la diferencia entre las evaluaciones de la función de verosimilitud que debería ser menor a la de un umbral determinado:

$$|\mathcal{L}(\lambda)_{t-1} - \mathcal{L}(\lambda)_t| < \epsilon \tag{16}$$

Otro mecanismo consiste en observar μ y detener la ejecución ante la ausencia de cambios o variaciones menores a un umbral.