Metody Numeryczne - Sprawozdanie 8

Piotr Moszkowicz 9 maja 2019

Spis treści

1	Wstęp Teoretyczny	1
	1.1 Interpolacja funkcjami sklejanymi poprzez wyznaczanie drugich pochodnych w węzłach	1
2	Opis problemu	1
3	Wyniki	3
	3.1 $n = 5 \dots \dots$	3
	$3.2 n = 8 \dots \dots$	4
	3.3 $n = 21$	5
	3.4 Wnioski	6

Wstęp Teoretyczny 1

Na ósmych zajęciach zajęliśmy się interpolacją funkcjami sklejonymi poprzez wyznaczanie drugiej pochodnej w węzłach.

1.1 Interpolacja funkcjami sklejanymi poprzez wyznaczanie drugich pochodnych w węzłach

Aby nasza interpolacja była poprawna szukamy funkcji: $m_i = s^{(2)}(x_i)$ dla j = 0,1, ..., n.

Wprowadzając odpowiednie dane otrzymujemy macierzowy układ równań, który należy rozwiązać:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \mu_{1} & 2 & \lambda_{1} & 0 & 0 & 0 \\ 0 & \mu_{2} & 2 & \lambda_{2} & 0 & 0 \\ & & \ddots & \ddots & \ddots & \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m_{0} \\ m_{1} \\ \vdots \\ m_{n-2} \\ m_{n-1} \end{bmatrix} = \begin{bmatrix} \alpha \\ d_{1} \\ \vdots \\ d_{n-2} \\ \beta \end{bmatrix}$$
(1)

Gdzie:

 α, β - w naszym przypadku 0.

 $m_0 = \alpha, m_{n-1} = \beta$ - warunki brzegowe.

$$\lambda_i = \frac{h_{i+1}}{h_i + h_{i+1}}$$

$$\mu_i = 1 - \lambda_i$$

$$\mu_i = 1 - \lambda_i$$

h - kolejne położenia węzłów - wzór w opisie problemu.

 $d_i=\frac{6}{h_i+h_{i+1}}(\frac{y_{i+1}-y_i}{h_{i+1}}-\frac{y_i-y_{i-1}}{h_i})$ - elementy wektora wyrazów wolnych y- wartości funkcji w węzłach

Po jego rozwiazaniu jesteśmy w stanie wyznaczyć wartości funkcji z poniższego wzoru:

$$s_{i-1}(x) = m_{i-1} \frac{(x_i - x)^3}{6 \cdot h_i} + m_i \frac{(x - x_{i-1})^3}{6 \cdot h_i} + A_i(x - x_{i-1}) + B_i$$
 (2)

Gdzie:

$$A_i = \frac{y_i - y_{i-1}}{h_i} - \frac{h_i}{6} (m_i - m_{i-1})$$

$$B_i = y_{i-1} - m_{i-1} \cdot \frac{h_i^2}{6}$$

to stałe całkowania. W ten sposób otrzymujemy interpolację funkcji.

Opis problemu 2

Na zajęciach naszym zadaniem było wykonać interpolację funkcjami sklejanymi dla funkcji $f_1(x) = \frac{1}{1+x^2}$ oraz $f_2(x) = cos(2x)$ w przedziałe $x \in [-5, 5]$ Proces wykonujemy dla różnej liczby węzłów n - 5, 8, 21. Z tego powodu na początku programu alokujemy trzy tablicę dla każdego n (wymiar tablicy n+1). Jedna przechowuje położenia wezłów, druga wartości w tych położeniach, natomiast trzecia zawiera wektor drugich pochodnych.

Pozycję węzłów wyznaczamy następującym wzorem:

$$x[i] = x_{min} + (\frac{x_{max} - x_{min}}{n - 1}) * i$$
(3)

gdzie $x_{min}=-5, x_{max}=5,$ n - ilość węzłów, i - kolejny numer iteracji.

Następnie wstawiamy odpowiednie wartości do macierzy oraz wektorów i dokonujemy interpolacji z pomocą biblioteki GSL. Finalnie wyznaczamy wartości interpolacji ze wzoru nr 2 Wyniki zapisujemy do plików oraz sporządzamy odpowiednie wykresy.

3 Wyniki

Na wykresach jako f(x) oznaczono funkcję interpolowaną, natomiast jako W(x) interpolację funkcjami sklejonymi.

$3.1 \quad n = 5$

Rysunek 1: Wykres funkcji f_1 oraz jej interpolacji dla n=5

Rysunek 2: Wykres funkcji f_2 oraz jej interpolacji dla n=5

3.2 n = 8

Rysunek 3: Wykres funkcji f_1 oraz jej interpolacji dla n $=\,8\,$

Rysunek 4: Wykres funkcji f_2 oraz jej interpolacji dla n $=\,8\,$

3.3 n = 21

Rysunek 5: Wykres funkcji f_1 oraz jej interpolacji dla n=21

Rysunek 6: Wykres funkcji f_2 oraz jej interpolacji dla n=21

3.4 Wnioski

Jak widać powyżej, większa ilość węzłów pozwala nam osiągnąć dokładniejsza interpolację funkcji. Mimo wszystko przy funkcji f_2 nie byliśmy w stanie dokonać bardzo dokładnej interpolacji - widać na początku oraz na końcu cosinusa rozbieżność wartości. Porównanie wykresów funkcji bardzo dokładnie obrazuje jaką ilość węzłów należy zastosować dla danej funkcji, oraz to, czy metoda jest akceptowalna.