CSE-303: COMPUTER GRAPHICS

PROFESSOR DR. SANJIT KUMAR SAHA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JAHANGIRNAGAR UNIVERSITY, SAVAR, DHAKA

SCAN CONVERSION IV

CURVE GENERATION

- In computer graphics, we often need to draw different types of objects onto the screen.
- Objects are not flat all the time and we need to draw curves many times to draw an object.

CURVE

• A curve is an infinitely large set of points. Each point has two neighbors except endpoints in specific direction.

BEZIER CURVE

Bezier curve is discovered by the french engineer Pierre
 Bézier. These curves can be generated under the control of other points.

BEZIER CURVE

- The simplest Bézier curve is the straight line from the point P0 to P1.
- A quadratic Bezier curve is determined by three control points.
- A cubic Bezier curve is determined by four control points.

PROPERTIES OF BEZIER CURVES

- They always pass through the first and last control points.
- The degree of the polynomial is one less that the number of defining polygon point. Therefore, for 4 control points, the degree of the polynomial is 3, i.e. Cubic polynomial.

PROPERTIES OF BEZIER CURVES

- A Bezier curve generally follows the shape of the defining polygon.
- The direction angle of the end points is same as that of the first and last segments
- A given Bezier curve can be subdivided into two Bezier segments which join together to form a new shapes.

- Fractals are very complex pictures generated by a computer from a single formula.
- They are created using iterations.
- This means one formula is repeated with slightly different values over and over again, taking into account the results from the previous iteration.

FRACTALS ARE USED IN MANY AREAS

• Astronomy:

For analyzing galaxies,

Rings of saturn

For depicting bacteria

Cultures, chemical

Reactions,

Human anatomy,

Molecules,

Plants etc

C CURVE

- A line by itself is a first-order C curve, denited by C_0 .
- The modification rule:
 - Replace a line by two shorter, equal length lines joining each other at a 90° angle, with the original line and the two lines forming a right-angled triangle.

C CURVE...

• Pseudo-code:

```
C-curve (float x, y, len, alpha; int n)
  if (n > 0) {
     len = len/sqrt(2.0);
     C-curve(x, y, len, alpha + 45, n - 1);
    x = x + len*cos(alpha + 45);
    y = y + \text{len*sin(alpha + 45)};
    C-curve(x, y, len, alpha -45, n-1);
   } else
     line(x, y, x + len*cos(alpha), y + len*sin(alpha));
```

THE KOCH CURVE

- A line by itself is a first-order Koch curve, denoted by K_0 .
- Modification rule:
 - divide a line into three equal segments and replace the middle segment with two lines of the same length.
 - the replaced segment and the two added lines form an equilateral triangle.

KOCH FRACTALS (SNOWFLAKES)

FRACTAL TREE

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

FRACTAL FERN

Iteration 0 Iteration 1

Iteration 2

Iteration 3

GENERATION OF FRACTALS

Fractals can be generated by repeating the same shape over and over again as shown in the following figure. In figure (a) shows an equilateral triangle.

Fig: (a)

In figure (b), we can see
that the triangle is repeated
to create a star-like shape.

Fig: (b)

In figure (c), we can see that the star shape in figure (b) is repeated again and again to create a new shape.

Fig: (c)