KEY_Practice19_Scatterplots

May 25, 2020

1 Scatterplots

Let's start by importing seaborn and loading/previewing our iris data

```
[1]: # import seaborn
import seaborn as sns
# set up for inline plotting
%matplotlib inline
```

```
[2]: # load iris and preview the data
iris = sns.load_dataset("iris")
iris.head(10)
```

[2]:	sepal_length	${\tt sepal_width}$	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa

In the last lesson we examined the relationship between sepal_length and sepal_width. Now let's look at this relationship for petal_length and petal_width using a scatterplot.

```
[3]: # plot petal_length vs petal_width sns.scatterplot('petal_length', 'petal_width', data=iris)
```

[3]: <matplotlib.axes._subplots.AxesSubplot at 0x10e16e0f0>

This relationship is definitely more clear without any stratification than our last example in the lesson. Let's create this plot with a **correlation trendline** to visualize the trend even better.

```
[4]: | # plot petal_length vs petal_width with trendline sns.lmplot('petal_length', 'petal_width', data=iris)
```

[4]: <seaborn.axisgrid.FacetGrid at 0x103598da0>

Now let's *stratify* the plot by the **species** variable, using **both** color and marker shape.

[5]: <matplotlib.axes._subplots.AxesSubplot at 0x111594cf8>

We can very clearly see the separation of our three species across these two variables.

Now, let's color our graph using the sepal_length variable (no marker shape). What do you notice about the way the graph is colored now?

```
[6]: # plot petal_length vs petal_width sns.scatterplot('petal_length', 'petal_width', hue='sepal_length', data=iris)
```

[6]: <matplotlib.axes._subplots.AxesSubplot at 0x11181b588>

Notice that sepal_length is a *continuous* variable, compared to the *categorical* variable species we originally used to color our plot. Seaborn can tell the difference by examining the type of the stratifying variable - int and float variables are *continuous* and string and boolean variables are seen as *categorical*.

It is important to consider variable type when choosing the color palette to use in our plots. *Continuous* variables require *sequential* color palettes (that go from light to dark shades, for example) and *categorical* variables require *qualitative* color palettes. You can find built-in seaborn color palettes here: https://seaborn.pydata.org/tutorial/color_palettes.html

After looking through the link above, choose a new appropriate color palette for the plot above.

```
[7]: # plot petal_length vs petal_width
sns.scatterplot('petal_length', 'petal_width', hue='sepal_length',
→palette="BuGn",data=iris)
```

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x111860b70>

Based on this plot, what can you tell about the relationship of sepal_length compared to petal_length, petal_width?