MC numbers and data benchmark for absolute efficiency

Wenqiang Gu (SJTU)

All efficiencies in one table (MC)

	M14A (Guofu doc-9844, %)	M14A (Wenqiang, %)	M13B (Wenqiang, %)	M14A+(W enqiang,%)	Free-gas (Wenqiang, %)	Suggested
Capture time cut	98.7 (0.12)	98.9	98.8	98.5	98.3	98.7 (0.2)
Prompt energy cut	99.81 (0.10)	99.87	99.89	99.87	99.85	99.87 (0.10)
Gd capture fraction	84.17 (0.95)	84.2	83.8	84.1	85.9	83.8 (0.95)
Delayed energy cut	92.7 (0.97)	92.4	90.3	92.2	92.2	92.7 (0.97)
Spill-in	104.9 (1.00)	104.9	105.1	106.1	107.1	106.1 (1.0)
Combined	80.6 (1.76)	80.6	78.5	80.9(1)	83.2(2)	81.2 (1.7)

- M14A+: IBD simulation with M14A script and the neutron transportation bug fixed
- Uncertainties are in the parentheses

Problems

- Efficiency of **capture time** changes among MC samples, but the uncertainty is only 0.1%, is it sufficient? How about the central value?
- **Gd capture fraction** changes from m13b (83.8%) to m14a (84.2%), what makes the difference?
- **Spill-in** changes one sigma with the bug in neutron transportation fixed.
- Guofu's efficiency extracted from m14a differ from Wenqiang's in some components although the final number is identical.
- Shall we change the number in the coming reactor long paper?

(I) Capture time: Data vs. MC

 Capture time tail (>100us) changes the efficiency significantly among MC samples

• Free-gas: 98.3 %

M14a: 98.9 %

• M14a+: 98.5 %

By looking at the agreement with data, M14A should be the best one.

(I) Capture time: data-driven efficiency

- One can predict the efficiency with a best tuned MC, or extract it from data itself.
- Select IBD events with (1,400)us
 - Ep>3MeV to remove accidental background
- Fit to time range (20,400)us with two exponential function, which indicates efficiency below 200us is 99.02%
- By taking in account 0.1% loss below 1us, the efficiency for (1,200)us is 98.9%

MC validation (with m14a, m13b)

- However, MC shows that if one only fit capture time up to 400us (red line), it brings ~0.1% overestimation
- The efficiency from this data driven method is 98.8%, close to M14A prediction (98.9%)

Supplementary

• IBD events < 1us

M14a: 0.10%

Free-gas: 0.13%

(II) Gd capture fraction

TABLE VI: Source results

		AmC	AmBe	PuC PR	PuC nC*	PuC O*
$\epsilon_{Gd-combined}$	Data	$84.45\% \pm 0.10\%$	$84.63\% \pm 0.04\%$	$84.68\% \pm 0.01\%$	$84.62\% \pm 0.02\%$	$84.14\% \pm 0.02\%$
	MC	$84.51\% \pm 0.12\%$	$84.47\% \pm 0.11\%$	$84.44\% \pm 0.03\%$	$84.21\% \pm 0.09\%$	$84.02\% \pm 0.08\%$

FIG. 5: All source results data vs MC. A 0.4% uncertainty band can cover the biggest difference between data and MC.

- In the tech note, the neutron source validation is done at AD center with NuWa-3.9.2 (the version for m13b)
- However, it changes from m13b (3.9.2) to m14a (3.11.0)

Data vs. MC

• Take the event fraction in delayed spectrum: (6,12)MeV / (1.8,12)MeV

	Data (ligs)	MC (3.9.2)	MC(3.9.2 ⁺)	MC(3.9.2 ⁺⁺)	MC (3.11.0)
AmC	84.45(10) %	84.5(1)	84.8(1)	85.1(1)	85.2(1)
AmBe	84.63(04)	84.7(1)			85.4(1)

3.9.2+: NuWa-3.9.2 with ticket# 1393 (the order of cross section data)

3.9.2⁺⁺: NuWa-3.9.2 with 1) ticket# 1393; 2) G4 nCapture γ spectrum

 Although NuWa-3.11.0 has a better agreement on capture time (benefit from ticket #1393), NuWa-3.9.2 agrees better for AD center Gd capture fraction.

Gd capture fraction for IBD(MC truth)

- Gd fraction at AD center
 - Free-gas: 87.8(2) % (stats.)
 - M13b: 85.4(2) %
 - M14a: 85.8(1) %
- Gd fraction in full volume
 - Free-gas: 85.9 %
 - M13b: 83.8 %
 - M14a: 84.2 %
- If normalized with m13b at AD center, Gd fraction in full volume is
 - Free-gas: **83.6** %
 - M13b: 83.8 %
 - M14a: **83.8%**
- → Very small difference due to neutron scattering modeling once the Gd fraction is settled at AD center

(III) Spill-in

The MC prediction on spill-in

M14A: 4.9%

M14A+: 6.1%

Free-gas: 7.1%

- It seems that 6.1% with 1% uncertainty is enough.
- However, M14A+ doesn't agree data better for the capture time (as shown in the previous slides).
 - Not a better modeling?
 - Although we do see some indications that there should be more spill-in events from top and bottom boundary (see next slides)

High purity spill-in sample

• According to M14A, with a capture time cut (250us, 400)us and recon. vertex cut Rp>1.4m, we can have a set of IBD events with very high purity (>70%) of spill-in events, although the efficiency is only 4%

MC vs data

- It looks like we do have more spill-in events from top and bottom once we fix the z-bug (m14a \rightarrow m14a⁺)
- M14a⁺ is closer to data

One more word about the neutron transportation bug in z (ticket# 1443)

- The culprit **G4UHadronElasticProcess** is no longer available in the later version of geant4 (current version in NuWa: G4.9.2)
- Answer from geant4 group: now they don't provide technical support for versions < 4.9.6
- Liang suggests to upgrade the NuWa-geant4 to the latest version 4.10.2
 - To be clear, it's not an attempt to have a precise modeling on neutron scattering, but to avoid some problems (if any) in the old version of geant4.

Summary and questions

- Capture time efficiency doesn't change too much from M14A with a datadriven estimation, but the uncertainty (0.12%) seems to be a little underestimated
- Gd capture fraction seems to be overestimated in M14A sample. M13B agrees neutron source better at AD center
- Spill-in has shifted 1 sigma from M14A with the neutron transportation fixed.
- Wenqiang's absolute efficiency from M14A is identical with Guofu's number, however, some components are not identical (capture time and delayed energy cut), why? Due to different definition?
- The final change on M14A is about 0.6% by following the slides above, which is still covered by the uncertainty (1.76%). After a discussion with Bryce and Jianglai, we all prefer to keep the current value.

The next thing to do

- The next update on absolute efficiency will come after the new special calibration hopefully this year.
- Meanwhile, the study of the combined efficiency with all neutron calibrations (including MCS) is ongoing.

Backup (improved spill-in selection)

A high-purity spill-in sample?

May be hopeless to measure spill-in absolute rate

- 1) 5% spill-in \rightarrow 3.2% (after delayed energy cut)
- 2) $3.2\% \rightarrow 0.4\%$ (250us < dt < 1000us), or $3.2\% \rightarrow 0.2\%$ (250us < dt < 400us)

- According to M14A, only capture time and reconstructed vertex is sensitive to spill-in events
- Practice with M14A, select IBD events with
 - Edelayed > 6MeV (has to use it to avoid LS IBD)
 - dt > 300us
 - Rp² >2 (Actually this cut doesn't improve the selection too much since we use dt>300, most of them are already near boundary.)

What does the data say? With IBD time window (1,400us)

 By looking at the prompt-delayed distance, a lot of accidentals

{dt>300 && dt<400 && en>6 && en<12 && distance<1}

- Prompt energy, accidentals removed by cutting distance < 1m
- By comparing with M14A, seems more 1MeV gamma, more IAV? Or residual accidental?

MC vs. data: Rp^2

• MC peaks at 2.55

Rp2 {dt>250 && dt<400 && en>6 && en<12 && distance<1}

- Data peaks at 2.65
- Indicates more spill-in from top and bottom