

Instrukcijski set

TEME

- ✓ Aritmetičke instrukcije
- ✓ Logičke instrukcije
- ✓ Pomeračke instrukcije
- ✓ Instrukcije prenosa
- ✓ Instrukcije skoka

Uvod

Instrukcijski set je skup instrukcija kojima se specificiraju operacije koje procesor može da izvrši.

- Izbor instrukcija zavisi od namene računara.
- Procesori opšte namene uglavnom podržavaju <u>standardne instrukcije</u>, dok procesori specijalne namene rade i sa <u>nestandardnim</u> <u>instrukcijama</u>

Primeri nestandardnih instrukcija:

- instrukcije nad celobrojnim veličinama promenljive dužine
- string instrukcije...

Standardni instrukcijski set

- ✓ Aritmetičke instrukcije
- ✓ Logičke instrukcije
- ✓ Pomeračke instrukcije
- ✓ Instrukcije prenosa
- ✓ Instrukcije skoka

Aritmetičke instrukcije

Realizuju standardne aritmetičke operacije:

- sabiranje
- oduzimanje
- množenje
- deljenje

Instrukcije sabiranja

Kod operacije: ADD (sabiranje)

ADD a, b, c 3-adr. a i b izvor. c odr. c nije neposr.

ADD a, b 2-adr. a i b izvor. a (ili b) odr. a nije neposr.

ADD a 1-adr. ACC izvor. a izvor. ACC odr.

ADD 0-adr. SP izvor. SP izvor. SP odr.

Kod operacije: INC (inkrementiranje = sabiranje sa 1)

INC a, b 2-adr. a izvor. b odr. b nije neposr.

INC a 1-adr. a izvor. a odr. a nije neposr.

INC 0-adr. SP izvor. SP odr.

egenda

n-adr. = n-adresna instrukcija ACC – akumulator

izvor. = izvorišni operand SP – vrh steka

odr. = odredišni operand neposr. – neposredno zadat u instrukciji

Instrukcije oduzimanja

Kod operacije: SUB (oduzimanje)

SUB a, b, c 3-adr. a i b izvor. c odr. c nije neposr.

SUB a, b 2-adr. a i b izvor. a (ili b) odr. a nije neposr.

SUB a 1-adr. ACC izvor. a izvor. ACC odr.

SUB 0-adr. SP izvor. SP izvor. SP odr.

Kod operacije: DEC (dekrementiranje = oduzima se 1)

DEC a, b 2-adr. a izvor. b odr. b nije neposr.

DEC a 1-adr. a izvor. a odr. a nije neposr.

DEC 0-adr. SP izvor. SP odr.

egenda

n-adr. = n-adresna instrukcija ACC – akumulator

izvor. = izvorišni operand SP – vrh steka

odr. = odredišni operand neposr. – neposredno zadat u instrukciji

Instrukcije oduzimanja

Kod operacije: CMP (aritmetičko upoređivanje)

CMP a, b, c 3-adr. a i b izvor. c se ne koristi

CMP a, b 2-adr. a i b izvor.

CMP a 1-adr. ACC izvor. a izvor.

CMP 0-adr. SP izvor. SP izvor.

<u>Izvršavanje CMP instrukcije</u>:

- od prvog izvorišnog operanda se <u>oduzima</u> drugi i dobija rezultat
- rezultat operacije se <u>nigde ne upisuje</u>, već se samo vrši njegova provera i <u>postavljaju indikatori</u> u *PSW* registru

Indikatori dobijaju vrednost 1 ako je:

N (rezultat negativan) C (bilo pozajmice)

Z (rezultat nula) V (perkoračen opseg)

Instrukcije oduzimanja

Kod operacije: CMP (aritmetičko upoređivanje)

- Svrha postavljanja flegova je da se omogući rad mehanizma za realizaciju <u>uslovnih skokova</u> u programu.
- Instrukcija uslovnog skoka <u>proverava flegove</u> i utvrđuje da li je <u>uslov za skok ispunjen ili nije</u>.
- Ako je uslov ispunjen, ostvaruje se skok, a ako nije, nastavlja se sa sekvencijalnim izvršavanjem instrukcija.

Instrukcija	Relacija	Uslov	
BEQL	=	Z = 1	
BGRTU	>	C v Z = 0	
BLSSU	<	C = 1	

Instrukcija	Relacija	Uslov
BNEQ	≠ PRI	VATZ = 0
BGREU	2	C = 0
BLEQU	₹	C v Z = 1

Instrukcije množenja i deljenja

Kod operacije: MUL (množenje)

MUL a, b, c MUL a, b MUL a MUL

Kod operacije: DIV (deljenje)

DIV a, b, c DIV a, b DIV a DIV

Logičke instrukcije

Realizuju standardne logičke operacije: I, ILI, ekskluzivno ILI i NE.

Kod operacije: AND

AND a, b, c

AND a, b

AND a

AND

Kod operacije: OR

OR a, b, c

OR a, b

OR a

OR

Kod operacije: EXOR

EXOR a, b, c

EXOR a, b

EXOR a

EXOR

Kod operacije: NOT

NOT a, b

NOT a

NOT

Logičke instrukcije

Kod operacije: TST (logičko upoređivanje)

TST a, b, c 3-adr. a i b izvor. c se ne koristi

TST a, b 2-adr. a i b izvor.

TST a 1-adr. ACC izvor. a izvor.

TST 0-adr. SP izvor. SP izvor.

<u>Izvršavanje TST instrukcije:</u>

- izvršava se / operacija nad operandima i dobija rezultat
- rezultat operacije se <u>nigde ne upisuje</u>, već se samo vrši njegova provera i <u>postavljaju indikatori</u> u *PSW* registru

Indikatori se postavljaju na sledeći način:

N (najstariji bit rezultata) C (fiksna vrednost 0)

Z (1 ako je rezultat nula) V (fiksna vrednost 0)

Logičke instrukcije

Kod operacije: TST (logičko upoređivanje)

- Svrha postavljanja flegova je da se omogući rad mehanizma za realizaciju uslovnih skokova u programu.
- Od instrukcija uslovnog skoka, imaju smisla samo: jednako i nejednako (rezultat je 0 ili različit od 0).

Relacija	Uslov
П	Z = 1
≠	Z = 0

Realizuju pomeranje binarne reči za jedno mesto ulevo ili udesno.

f	Instrukcija	
a _{n-1}	aritmetičko pomer.	
0	logičko pomeranje	
a_0	rotiranje	
С	rotiranje kroz ind. C	

f	Instrukcija	
0	aritmetičko pomer.	
0	logičko pomeranje	
a _{n-1}	rotiranje	
С	rotiranje kroz ind. C	

Kod operacije: ASR (aritmetičko pomeranje udesno)

```
ASR a, b, c 3-adr. a izvor. b odr. c se ne koristi
ASR a, b 2-adr. a izvor. b odr.
ASR a 1-adr. a izvor. a odr.
```

ASR 0-adr. SP izvor. SP odr.

Izvršavanje ASR instrukcije: izvorišni operand se pomeri udesno i smesti na odredište

Na osnovu dobijenog rezultata postavljaju se indikatori PSW registra:

N (najstariji bit rezultata)
 C (najniži bit izvorišnog operanda)
 Z (1 ako je rezultat 0)
 V (fiksna vrednost 0)

Kod operacije: LSR (logičko pomeranje udesno)

LSR a, b, c

LSR a, b

LSR a

LSR

Kod operacije: ROR (rotacija udesno)

ROR a, b, c

ROR a, b

ROR a

ROR

Kod operacije:

RORC (rotacija udesno kroz ind. C)

RORC a, b, c

RORC a, b

RORC a

RORC

Kod operacije: ASL (aritmetičko pomeranje ulevo)

```
ASL a, b, c 3-adr. a izvor. b odr. c se ne koristi
```

ASL a, b 2-adr. a izvor. b odr. ASL a 1-adr. a izvor. a odr.

ASL 0-adr. SP izvor. SP odr.

<u>Izvršavanje ASL</u> <u>instrukcije</u>: izvorišni operand se pomeri ulevo i smesti na odredište

Na osnovu dobijenog rezultata postavljaju se indikatori PSW registra:

```
N (najstariji bit rezultata) C (najviši bit izvorišnog operanda) Z (1 ako je rezultat 0) V (fiksna vrednost 0)
```


Kod operacije: LSL (logičko pomeranje ulevo)

LSL a, b, c LSL a, b LSL a LSL

Kod operacije: ROL (rotacija ulevo)

ROL a, b, c ROL a, b ROL a ROL Kod operacije:

ROLC (rotacija ulevo kroz ind. C)

ROLC a, b, c
ROLC a, b
ROLC a
ROLC

Realizuju prenos podataka sa jednog mesta u računaru na drugo.

Podaci se mogu naći na različitim mestima:

- ✓ u memorijskim lokacijama (ML)
- √ u procesorskim registrima (PR)
- ✓ u instrukciji (neposredno adresiranje) (NA)
- ✓ u registrima kontrolera periferija
 - registri imaju isti tretman kao memorijske lokacije (*RKP*) (U/I adresni prostor je memorijski preslikan)
 - registri se posebno tretiraju (RKR)
 (U/I i memorijski adresni prostori su razdvojeni)
- √ u akumulatoru (kod 1-adresnih instrukcija) (AK)
- √ na steku (kod 0-adresnih instrukcija) (ST)

Instrukcija: MOV a, b

a izvor. (ML, PR, RKP, NA)

b odr. (ML, PR, RKP)

Izvršavanje instrukcije: izvorišni operand se prenosi na odredište

Instrukcije: kod 2-adr. procesora sa razdvojenim U/I i M adr.prostorima

IN regper, regproc prenos $RKR \rightarrow PR$ OUT regproc, regper prenos $PR \rightarrow RKR$

adresa registra kontrolera periferije

adresa procesorskog registra

Instrukcije: kod 1-adr. procesora sa razdvojenim U/I i M adr.prostorima

IN regper prenos $RKR \rightarrow AK$

OUT regper prenos $AK \rightarrow RKR$

Instrukcije: kod 1-adr. procesora

LOAD a prenos a (izvor.) $\rightarrow AK$

STORE b prenos $AK \rightarrow b$ (odr.)

Instrukcije: kod 0-adr. procesora

PUSH a prenos a (izvor.) $\rightarrow ST$

POP b prenos $ST \rightarrow b$ (odr.)

Za sve navedene instrukcije važi:

a (ML, PR, RKP, NA)

b (ML, PR, RKP)

Instrukcije skoka

- Program se izvršava <u>sekvencijalno</u> ukoliko u njemu nema instrukcija skoka.
- Kada treba odstupiti od sekvencijalnosti, koristi se instrukcija skoka.
- Instrukcija skoka modifikuje sadržaj programskog brojača (PC).

Klasifikacija instrukcija skoka

- instrukcije bezuslovnog skoka
- instrukcije uslovnog skoka
- instrukcije skoka na potprogram (sa povratkom)
- instrukcije skoka na prekidnu rutinu (sa povratkom)

Instrukcije bezuslovnog skoka

Instrukcija: JMP adr

□ *adr* je adresa mem.lok. u kojoj je instrukcija na čije izvršavanje treba preći (koristi se kada je u vreme kompajliranja ova <u>adresa poznata</u>)

<u>Izvršavanje instrukcije</u>: vrednost *adr* se upisuje u *PC*

<u>Instrukcija</u>: <u>JMPIND</u> *a*

a je polje sa specifikacijom adrese memorijske lokacije u kojoj se nalazi instrukcija na čije izvršavanje treba preći (koristi se kada u vreme kompajliranja nije poznata adresa instrukcije na koju treba skočiti, već se ona računa tokom izvršavanja programa)

Izvršavanje instrukcije: računa se adresa i rezultat upisuje u PC

Instrukcije uslovnog skoka

Opšti oblik instrukcije uslovnog skoka je: KO p

- KO je kod operacije instrukcije uslovnog skoka.
- p je <u>pomeraj</u> sa kojim treba napraviti <u>relativan skok</u> u odnosu na tekući sadržaj *PC*, ukoliko je uslov za skok ispunjen.
- Pomeraj p je u drugom komplementu, pa skok može biti unapred ili unazad.
- Uslov za skok se specificira kodom operacije, a proverava osnovu vrednosti indikatora PSW registra (N, Z, C i V).

Izvršavanje instrukcije:

- sadržaj PC se sabira sa p i izračunava adresa memorijske lokacije
- na osnovu indikatora PSW, proverava se uslov za skok
- ako je uslov ispunjen, izračunata adresa se upisuje u PC

Instrukcije uslovnog skoka

Instrukcija	Opis	Uslov
BEQL p	skok na jednako	Z=1
BNEQ p	skok na nejednako	Z=0
BGRTU p	skok na veće od (bez znaka)	$C \vee Z = 0$
BGREU p	skok na veće od ili jednako (bez znaka)	C = 0
BLSSU p	skok na manje od (bez znaka)	<i>C</i> = 1
BLEQU p	skok na manje od ili jednako (bez znaka)	C v Z = 1
BGRT p	skok na veće od (sa znakom)	$(N \oplus V) \vee Z = 0$
BGRE p	skok na veće od ili jednako (sa znakom)	$N \oplus V = 0$
BLSS p	skok na manje od (sa znakom)	<i>N</i> ⊕ <i>V</i> = 1
BLEQ p	skok na manje od ili jednako (sa znakom)	$(N \oplus V) \vee Z = 1$
BNEG p	skok na $N=1$	PN=1NI
BNNG p	skok na $N = 0$	N = 0
BOVF p	skok na $V = 1$	V = 1
BNVF p	skok na $V = 0$	V = 0

Instrukcije za rad sa potprogramom

Instrukcija skoka na potprogram: JSR adr

adr je adresa memorijske lokacije u kojoj se nalazi <u>prva instrukcija</u> <u>potprograma</u>

Izvršavanje instrukcije:

- tekući sadržaj PC se stavlja na stek
- vrednost adr se upisuje u PC

Instrukcija povratka iz potprograma: RTS

instrukcija RTS mora da bude poslednja instrukcija potprograma

<u>Izvršavanje instrukcije</u>:

- sadržaj sa vrha steka se upisuje u PC
- ovaj sadržaj mora da odgovara vrednosti koju je instrukcija JSR stavila na stek

Instrukcija skoka na prekidnu rutinu

<u>Instrukcija</u>: INT adr

adr je adresa memorijske lokacije u kojoj se nalazi prva instrukcija prekidne rutine

<u>Izvršavanje instrukcije</u>:

- tekući sadržaj PC i PSW se stavlja na stek
- vrednost adr se upisuje u PC
- U nekim realizacijama prekidnog mehanizma,
 adrese prekidnih rutina se nalaze u tabeli prekida.
 U tom slučaju, adr je broj ulaza u tabeli prekida iz koga treba pročitati adresu prekidne rutine i smestiti je u PC.

Instrukcija povratka iz prekidne rutine

<u>Instrukcija</u>: RTI

instrukcija RTI mora da bude poslednja instrukcija prekidne rutine

Izvršavanje instrukcije:

- uzimanje sadržaja sa steka i upis u PSW i PC
- ovaj sadržaj mora da odgovara vrednostima koje je instrukcija INT stavila na stek