6.006	Lecture 23	Dec. 8, 2011
TODAY: Comp	utational Compl	lexity
-P $+XP$	K	
- most prob	lems are uncom	pulable
- hardness	& completeness	
- reductions	5	a h
P = {problems	solvable in pol	ynomial time?
- (who	t this class is a	ynomial time? all about) exponential time?
EXY = garable	ems solvable in	exponential times
$R = $ {problems	Solvable in fin [Turing 1936; Chi	ite time 3
"recursive"	[Turing 1936; Chi	urch 1941]
		_> computational difficulty
EXP		
LAT	RIDOFYDG	uncomputable/ R undecidable
Examples:	PÇEXPŞ	
- negative-u	reight cycle detectes	fion EP
- nxn Ch	vins from given box	ard config.?
- Tetris € E	XP but don't kno	ow whether EP
4 survil	le given pieces from	n given board

Halting problem: given a computer program,
does it ever halt (stop)?

- uncomputable (&R): no algorithm solves it

(correctly in finite time on all inputs)

- decision problem: answer is YES or No Most decision problems are uncomputable: - program \approx binary string \approx nonneg. integer $\in \mathbb{N}$ - decision problem = a function from binary strings to EYES, NOZ = nonneg, integers = {0.13 ≈ infinite sequence of bits ≈ real number ETR - IN/< IR/: no assignment of unique nonneg.

integers to real numbers (IR uncountable)

not nearly enough programs for all problems - each program solves only one problem ⇒ almost all problems cannot be solved

P = AIP:	bia con	ecture	(worth	\$ 1.00	0,000)
≈ Cav	n't engin	neer 0	uck		
P≠NP: ≈ cav ≈ gen ho	erating	(proofs	of) 50	lutions	can be
ho	urder the	an che	ecking t	hem	
			0		
Claim:	if P + N	Pa ther	Tetris	ENP -	P
Breukelo	aar, Demaine.	Hohenber	gev. Huosel	oom. Kosters	Liber-Novell -
Why? -	Tetris is	NP-ho	ard 9	•	2004]
<u> </u>	_	"as ha	rd as" e	very pro	blem ENP P-hard
— j	n fact 1	JP-com	olete =	NP N	P-hard
	EXP-comple	to NP	-hard		
NP.	-complete		EXP-ha	va i	
	7			Con	nputational
P	Y	7		1 dit	nputational ficulty
		Tetris	Chess		
	VP		1	un	computable/ decidable
	EXP) una	decidable '
	Ř				
Similarly	y: Ches	s is t	EXP-co	nplete	
		= {	EXP o E	XP-har	d
a	f NP ≠ E	every	problem	in EXP	
⇒ j·	f NP = E	EXP. H	hen Ch	ess & E)	KP-NP
	also o	peny bu	t less fo	imous/"i)	mportant"
		' '			

Reductions: convert your problem into a
problem you already know how to solve
problem you already know how to solve (instead of solving from scratch)
- most common algorithm design technique
- unweighted shortest path > weighted
set weights = 1
- min-product path > shortest path
take logs LPSG-1
-longest path - shortest path
négate weights Quiz 2, P1k(
- shortest ordered tour - shortest path
k copies of the graph [Quiz 2, P5]
-cheapest leaky-tank path -shortest path graph reduction [Quiz 2, P6]
graph reduction [Quiz 2, P6]
Thise are all.
These are all: One-call reductions: A problem -> B problem Cooler
cooler
A solution ED Solution
Multicall reductions: solve A using free calls to B
— in this sense, every algorithm reduces
Multicall reductions: solve A using free calls to B in this sense, every algorithm reduces problem -> model of computation
- NP-complete problems are all interreducible
 NP-complete problems are all interreducible using polynomial—time reductions (same difficulty) ⇒ can use reductions to prove NP-hardness e.g. 3-Partition → Tetris
⇒ can use reductions to prove NP-hardness
e.g. 3- Partition -> letris

Examples of NP-complete problems:

- Knapsack (pseudopolya not poly) - 3-Partition: given n integers, can you divide them into triples of equal sum? - Traveling Salesman Problem: shortest path that visits all vertices of a given graph -decision version: is min weight < x? -longest common subsequence of k strings - Minesweeper, Sudoku, & most puzzles -SAT: given a Boolean formula (and or not), is it ever true? x and not x > NO -shortest paths amidst obstacles in 30 -3-coloring a given graph
-find largest clique in a given graph

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.