Modality and Translation

Philosophy 109

Caley Howland

September 13, 2019

Administrative Stuff

- Reading and exercises for next time:
 - ► ForAllx Chapter 5.
 - Exercises A, B, and C: Even numbers only.
- Homework 1 is due Sept. 23rd
 - Posted to Sakai.
 - Upload the homework to sakai in .pdf or Word format.
 - Upload under the Assignments section.
 - Late Policy: no late work will be accepted without significant excuse; all extensions must be requested ahead of time.

Consider:

Consider:

P1 John is a bachelor.

- Consider:
 - P1 John is a bachelor.
 - C John is unmarried.

- Consider:
 - P1 John is a bachelor.
 - C John is unmarried.
- Is this argument valid?

- Consider:
 - P1 John is a bachelor.
 - C John is unmarried.
- Is this argument valid?
- It seems that it's impossible for the premise to be true while the conclusion is false.

- Consider:
 - P1 John is a bachelor.
 - C John is unmarried.
- Is this argument valid?
- It seems that it's impossible for the premise to be true while the conclusion is false.
- This is tricky: the validity here relies on knowing the meaning of bachelor.

- Consider:
 - P1 John is a bachelor.
 - C John is unmarried.
- Is this argument valid?
- It seems that it's impossible for the premise to be true while the conclusion is false.
- This is tricky: the validity here relies on knowing the meaning of bachelor.
- But logic is formal.

- Consider:
 - P1 John is a bachelor
 - P2 All bachelors are unmarried.
 - C John is unmarried.
- This time, even if you don't know the meaning of the terms, you can tell the argument is valid.
- We can check this by replacing the terms with nonsense ones:
 - P1 John is a bleep.
 - P2 All bleeps are bloops.
 - C John is bloop.
- Formal logic is concerned with this kind of validity.

- We want to determine which arguments are valid based merely on their form.
- Much of the course will focus on sentential logic (aka propositional logic).
- This allows us to represent the most basic formal features of arguments.

- Consider the following valid argument, argument 9:
 - P1 Lisa is a Californian
 - P2 If Lisa is a Californian, then Lisa is 10 feet tall.
 - C Therefore, Lisa is 10 feet tall

- Consider the following valid argument, argument 9:
 - P1 Lisa is a Californian
 - P2 If Lisa is a Californian, then Lisa is 10 feet tall.
 - C Therefore, Lisa is 10 feet tall
- Argument 9 has a valid form: any argument with the same form is valid.

- Consider the following valid argument, argument 9:
 - P1 Lisa is a Californian
 - P2 If Lisa is a Californian, then Lisa is 10 feet tall.
 - C Therefore, Lisa is 10 feet tall
- Argument 9 has a valid form: any argument with the same form is valid.
- Let's represent this form abstractly, as argument 9f:
 - P1 P
 - P2 If P, then Q
 - C :: Q

• Argument 9f:

```
P1 P
P2 If P, then Q
C ∴ Q
```

- In 9f, "P" and "Q" stand for any declarative statements whatsoever.
 - They are like variables in algebra class, except instead of numbers, they represent statements.
- No matter which statements you plug in for P and Q in 9f, you always get a valid argument out.

Sentential Form

Sentential Form

The **sentential form** of an argument is obtained by replacing each basic (aka atomic) sentence in the argument with a single letter.

- Basic or atomic sentences are sentences that don't have any other sentence as a part.
 - (a) Andy is a philosopher and Andy is a Packers fan.
 - (b) It is not the case that Amy is six feet tall.
 - (c) Grass is green.
 - (d) Either it will rain today or it will be sunny.
- (a), (b), and (d) are not basic/atomic. They are complex or compound.
- Only (c) is atomic.

Comprehension Check

Consider argument 10:

If Tom is in his Freemont home, then he's in California. Tom is in California. Therefore, Tom is in his Freemont home.

- What is the form of 10?
- is 10 valid?

11:

P1 *p*

C : q or not q

11:

P1 p
C ∴ q or not q

12:

P1 p and not p
C ∴ q

- 11:
 P1 p
 C ∴ q or not q
 12:
 - P1 p and not p C : q
- 11 is valid because q and not q is a logical truth.

- 11:
 P1 p
 C ∴ q or not q
 12:
 - P1 p and not p C : q
- 11 is valid because q and not q is a logical truth.
 - So it's impossible for the premise to be true and the conclusion false, since it's just plain impossible for the conclusion to be false.

- 11:
 - P1 p
 - C : q or not q
- 12:
 - P1 p and not p
 - C : q
- 11 is valid because q and not q is a logical truth.
 - So it's impossible for the premise to be true and the conclusion false, since it's just plain impossible for the conclusion to be false.
- 12 is valid because because p and not p is a logical falsehood.

- 11:
 - P1 p
 - C : q or not q
- 12:
 - P1 p and not p
 - C : q
- 11 is valid because q and not q is a logical truth.
 - So it's impossible for the premise to be true and the conclusion false, since it's just plain impossible for the conclusion to be false.
- 12 is valid because because p and not p is a logical falsehood.
 - so it's impossible for the premises to be true and the conclusion false, because its impossible for the premise to be true.

9/4/19

A Few Valid and Invalid Sentential Forms

Sentential Form	Name	Valid/Invalid
p		.,
If p then q	Modus Ponens	Valid
∴ q		
q		
If p then q	Affirming the Consequent	Invalid
∴ p		
not q		
if p then q	Modus Tollens	Valid
∴ not p		

A Few Valid and Invalid Sentential Forms

Sentential Form	Name	Valid/Invalid
Not p		
If p then q	Denying the Antecedent	Invalid
∴ not q		
If p then q		
If q then r	Hypothetical Syllogism	Valid
∴ if <i>p</i> then <i>r</i>		
Not p		
Either p or q	Disjunctive Syllogism	Valid
∴ q		

• The focus of the first part of the course is on *sentential* or *truth-functional* validity.

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.
 - P2 Socrates is a human.

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.
 - P2 Socrates is a human.
 - C ∴ Socrates is Mortal.

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.
 - P2 Socrates is a human.
 - C ∴ Socrates is Mortal.
- Argument 13 is valid, but its sentential form is not.

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.
 - P2 Socrates is a human.
 - C ∴ Socrates is Mortal.
- Argument 13 is valid, but its sentential form is not.

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.
 - P2 Socrates is a human.
 - C ∴ Socrates is Mortal.
- Argument 13 is valid, but its sentential form is not.
 13f P1 p

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.
 - P2 Socrates is a human.
 - C ∴ Socrates is Mortal.
- Argument 13 is valid, but its sentential form is not.
 - 13f P1 p

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.
 - P2 Socrates is a human.
 - C ∴ Socrates is Mortal.
- Argument 13 is valid, but its sentential form is not.
 - 13f P1 p P2 q
 - C :. r

Beyond Sentential Form

- The focus of the first part of the course is on sentential or truth-functional validity.
- But not even all formally valid arguments have valid sentential forms.
 - 13 P1 All humans are mortal.
 - P2 Socrates is a human.
 - C ∴ Socrates is Mortal.
- Argument 13 is valid, but its sentential form is not.
 - 13f P1 p P2 q C ∴ r
- In this course we will stick with sentential logic, which we will more formally call truth-functional logic (TFL). You can take Philosophy 201 to learn about more advanced kinds of logic.

• We might call the general notion of validity "absolute validity".

- We might call the general notion of validity "absolute validity".
- The notion we will develop, of sentential validity, is not so general.

- We might call the general notion of validity "absolute validity".
- The notion we will develop, of sentential validity, is not so general.
 - Basically, what is sententially valid is what we can prove to be valid using our formal system of truth-functional logic.

- We might call the general notion of validity "absolute validity".
- The notion we will develop, of sentential validity, is not so general.
 - Basically, what is sententially valid is what we can prove to be valid using our formal system of truth-functional logic.
- The formal language of truth-functional logic we will call TFL for short.

- We might call the general notion of validity "absolute validity".
- The notion we will develop, of sentential validity, is not so general.
 - Basically, what is sententially valid is what we can prove to be valid using our formal system of truth-functional logic.
- The formal language of truth-functional logic we will call TFL for short.
- Note: Even if an argument fails to be sententially valid, it could be valid according to a richer logical theory.

TFL

- We will develop a precise theory of sentential validity, and a few techniques for deciding whether a sentential form is valid or not.
- We will do this using the formal language of TFL.

TFL

- TFL is a formal language that comes with its own special symbols.
- We will use upper-case letters to stand for atomic (or simple) sentences.
 - ► *A*,*B*,*C*,...
- Special symbols, called *connectives* (or sometimes *operators*) put sentences together.
- And we will use parentheses to group sentences together.

Logical Form

- We want to determine which arguments are valid based merely on their form.
- Much of the course will focus on sentential logic (aka propositional logic).
- This allows us to represent the most basic formal features of arguments.

TFL

- We will develop a precise theory of sentential validity, and a few techniques for deciding whether a sentential form is valid or not.
- We will do this using the formal language of TFL.

TFL

- TFL is a formal language that comes with its own special symbols.
- We will use upper-case letters to stand for atomic (or simple) sentences.
 - ► A,B,C,...
- Special symbols, called connectives (or sometimes operators) put sentences together.
- And we will use parentheses to group sentences together.

Connectives of TFL

Symbol	Name/Function	Translation
¬ or ∼	negation	not
& or ∧	conjunction	and
V	disjunction	or
\rightarrow	conditional	lf, then
\leftrightarrow	biconditional	if and only if

The Five Kinds of Non-Basic TFL Sentences

Conjunctions: $p \land q$. Constituents p and q are called conjuncts.

Disjunctions: $p \lor q$. Constituents p and q are called disjuncts

Conditionals: $p \rightarrow q$. p is the antecedent. q is the consequent

Biconditionals: $p \leftrightarrow q$. p is the left-hand side, q is the right-hand side

Negations: $\neg p$. The sentence p is called the negated sentence

The Five Kinds of Non-Basic TFL Sentences

Conjunctions: $p \land q$. Constituents p and q are called conjuncts.

Disjunctions: $p \lor q$. Constituents p and q are called disjuncts

Conditionals: $p \rightarrow q$. p is the antecedent. q is the consequent

Biconditionals: $p \leftrightarrow q$. p is the left-hand side, q is the right-hand side

Negations: $\neg p$. The sentence p is called the negated sentence

- Note: p and q need not be atomic sentences.
 - e.g., $(A \land B) \lor \neg C$ is a disjunction.

21/30

Translation to TFL

- The first step in evaluating arguments is translating them into TFL.
- Later, we will get a clearer understanding of what these connectives mean.
- Each of these connectives are what we call "truth functional": their meaning is exhausted by their truth functions.
- All of the logical structure in sentential logic comes from these connectives.

The Meaning of the Connectives

- The connectives are truth functional.
 - ► This means their meaning is exhausted by their effect on the truth values.
- They are functions in the mathematical sense:
 - ► Input the truth values of the constituent sentences, and the connective outputs a truth function for the whole sentence.
- So we can give the meanings with something called a "truth table".

• "Not" sentences, i.e. negations: $\neg p$.

- "Not" sentences, i.e. negations: $\neg p$.
- A negation is true just when the negated sentence p is false.

- "Not" sentences, i.e. negations: $\neg p$.
- A negation is true just when the negated sentence p is false.
- Otherwise, it is false.

- "Not" sentences, i.e. negations: $\neg p$.
- A negation is true just when the negated sentence p is false.
- Otherwise, it is false.
- Truth table for negation:

- "Not" sentences, i.e. negations: $\neg p$.
- A negation is true just when the negated sentence p is false.
- Otherwise, it is false.
- Truth table for negation:

- "Not" sentences, i.e. negations: $\neg p$.
- A negation is true just when the negated sentence p is false.
- Otherwise, it is false.
- Truth table for negation:

р	$\neg p$
Т	F
Т	F
F	Т
F	Т

• "And" sentences, i.e. conjunctions: $p \land q$.

- "And" sentences, i.e. conjunctions: $p \land q$.
- A conjunction is true just when both conjucts are true.

- "And" sentences, i.e. conjunctions: $p \land q$.
- A conjunction is true just when both conjucts are true.
- Otherwise, it is false.

- "And" sentences, i.e. conjunctions: $p \land q$.
- A conjunction is true just when both conjucts are true.
- Otherwise, it is false.
- Truth table for conjunction:

- "And" sentences, i.e. conjunctions: $p \land q$.
- A conjunction is true just when both conjucts are true.
- Otherwise, it is false.
- Truth table for conjunction:

- "And" sentences, i.e. conjunctions: $p \land q$.
- A conjunction is true just when both conjucts are true.
- Otherwise, it is false.
- Truth table for conjunction:

р	q	$p \wedge q$
Τ	Т	Т
Τ	F	F
F	Τ	F
F	F	F

• "or" sentences, i.e. disjunctions $p \lor q$.

- "or" sentences, i.e. disjunctions $p \lor q$.
- A disjunction is true just when either disjunct is true.

- "or" sentences, i.e. disjunctions $p \lor q$.
- A disjunction is true just when either disjunct is true.
- Otherwise, it is false.

- "or" sentences, i.e. disjunctions $p \lor q$.
- A disjunction is true just when either disjunct is true.
- Otherwise, it is false.
- Disjunctions are "inclusive ors", that is, both *p* and *q* can be true, and the disjunction will be true.

- "or" sentences, i.e. disjunctions $p \lor q$.
- A disjunction is true just when either disjunct is true.
- Otherwise, it is false.
- Disjunctions are "inclusive ors", that is, both *p* and *q* can be true, and the disjunction will be true.
- Truth table for disjunction:

- "or" sentences, i.e. disjunctions $p \lor q$.
- A disjunction is true just when either disjunct is true.
- Otherwise, it is false.
- Disjunctions are "inclusive ors", that is, both p and q can be true, and the disjunction will be true.
- Truth table for disjunction:

- "or" sentences, i.e. disjunctions $p \lor q$.
- A disjunction is true just when either disjunct is true.
- Otherwise, it is false.
- Disjunctions are "inclusive ors", that is, both p and q can be true, and the disjunction will be true.
- Truth table for disjunction:

р	q	$p \lor q$
Т	Т	Т
Τ	F	Т
F	Τ	Т
F	F	F

The Meaning of the Conditional

• "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.

- "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:

- "lf..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - When the antecedent is false.

- "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - When the antecedent is false.
 - When the consequent is true.

- "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - ▶ When the antecedent is false.
 - When the consequent is true.
- A conditional is only false when the antecedent p is true, and the consequent q is false.

- "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - ▶ When the antecedent is false.
 - When the consequent is true.
- A conditional is only false when the antecedent p is true, and the consequent q is false.
- For now, pretend it is like a conditional promise:

- "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - ▶ When the antecedent is false.
 - When the consequent is true.
- A conditional is only false when the antecedent p is true, and the consequent q is false.
- For now, pretend it is like a conditional promise:
 - ▶ If you do p, then I will do q

- "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - When the antecedent is false.
 - When the consequent is true.
- A conditional is only false when the antecedent p is true, and the consequent q is false.
- For now, pretend it is like a conditional promise:
 - ▶ If you do p, then I will do q
 - ► This promise is only broken if you do p but I don't do q.

- "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - When the antecedent is false.
 - When the consequent is true.
- A conditional is only false when the antecedent p is true, and the consequent q is false.
- For now, pretend it is like a conditional promise:
 - ► If you do p, then I will do q
 - ► This promise is only broken if you do p but I don't do q.
- Truth table for conditional:

- "If..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - When the antecedent is false.
 - When the consequent is true.
- A conditional is only false when the antecedent p is true, and the consequent q is false.
- For now, pretend it is like a conditional promise:
 - ► If you do p, then I will do q
 - ► This promise is only broken if you do p but I don't do q.
- Truth table for conditional:

- "lf..., then..." sentences, i.e. conditionals: $p \rightarrow q$.
- A conditional is true:
 - When the antecedent is false.
 - When the consequent is true.
- A conditional is only false when the antecedent p is true, and the consequent q is false.
- For now, pretend it is like a conditional promise:
 - ▶ If you do p, then I will do q
 - ► This promise is only broken if you do p but I don't do q.
- Truth table for conditional:

р	q	$p \rightarrow q$
Т	Т	Т
Τ	F	F
F	Τ	Т
F	F	Т

"And" sentences, i.e. conjunctions.

- "And" sentences, i.e. conjunctions.
- A conjunction is true just when both conjucts are true.

- "And" sentences, i.e. conjunctions.
- A conjunction is true just when both conjucts are true.
- Otherwise, it is false.

- "And" sentences, i.e. conjunctions.
- A conjunction is true just when both conjucts are true.
- Otherwise, it is false.
- Truth table for conjunction:

- "And" sentences, i.e. conjunctions.
- A conjunction is true just when both conjucts are true.
- Otherwise, it is false.
- Truth table for conjunction:

- "And" sentences, i.e. conjunctions.
- A conjunction is true just when both conjucts are true.
- Otherwise, it is false.
- Truth table for conjunction:

р	q	$p \wedge q$
Τ	Т	Т
Τ	F	F
F	Τ	F
F	F	F

• "Iff" sentences, i.e. biconditionals.

- "Iff" sentences, i.e. biconditionals.
- A biconditional is true just when both sides have the same truth value.

- "Iff" sentences, i.e. biconditionals.
- A biconditional is true just when both sides have the same truth value.
- Otherwise, it is false.

- "Iff" sentences, i.e. biconditionals.
- A biconditional is true just when both sides have the same truth value.
- Otherwise, it is false.
- Truth table for biconditional:

- "Iff" sentences, i.e. biconditionals.
- A biconditional is true just when both sides have the same truth value.
- Otherwise, it is false.
- Truth table for biconditional:

- "Iff" sentences, i.e. biconditionals.
- A biconditional is true just when both sides have the same truth value.
- Otherwise, it is false.
- Truth table for biconditional:

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Τ	F
F	F	Т

Meanings

- We will talk much more about meanings or "semantics" next week.
- Truth tables turn out to be essential for sentential logic.
- For now, I just want you to have a basic understanding so that you can do translations.