Real Analysis I Homework Solution 6

Jian-An Wang

↑ https://jiananwang1007.wordpress.com · ☑ jiananwang1007@gmail.com

Problem 1

Give an example to show that $\phi \circ f$ may not be measurable, where ϕ is measurable and finite and f is continuous and finite.

Proof. Let F be the Cantor-Lebesgue function and define the function g on [0,1] by

$$g(x) = F(x) + x$$

Clearly, the function g is continuous since it's the sum of two continuous functions and is strictly increasing since it's the sum of a monotone increasing and a strictly increasing function. Moreover, we know

$$g([0,1]) = [0,2]$$

since we have

$$g(0) = 0$$
 and $g(1) = 2$

We know

$$[0,1] \setminus \mathcal{C} = \bigsqcup_{n \in \mathbb{N}} (a_n, b_n)$$

where (a_n, b_n) is the interval deleted in the construction of C. Furthermore, we have

$$|g((a_n, b_n))| = g(b_n) - g(a_n) = b_n - a_n = |(a_n, b_n)|$$

Hence, we know

$$\begin{aligned} \left| [0,2] \setminus g(\mathcal{C}) \right| &= \left| g\left(\bigsqcup_{n \in \mathbb{N}} (a_n, b_n) \right) \right| \\ &= \left| \bigsqcup_{n \in \mathbb{N}} g\left((a_n, b_n) \right) \right| = \sum_{n=1}^{\infty} \left| g\left((a_n, b_n) \right) \right| = \sum_{n=1}^{\infty} \left| (a_n, b_n) \right| = 1 \end{aligned}$$

Since we have

$$|[0,2] \setminus g(\mathcal{C})| = |[0,2]| - |g(\mathcal{C})| = 2 - |g(\mathcal{C})|$$

it follows that

$$|g(\mathcal{C})| = 1$$

Since any set of real numbers with positive outer measure contains a subset that fails to be measurable, there exists a non-measurable set \mathcal{N} such that $\mathcal{N} \subseteq g(\mathcal{C})$. Let

$$M = q^{\text{pre}}(\mathcal{N})$$

Then we know

$$g(M) = \mathcal{N}$$

Obviously, we have $M \subseteq \mathcal{C}$. Therefore, M is measurable since we know |M| = 0. Define

$$f = g^{-1}$$
 $\phi = \chi_M$

Clearly, f is continuous and finite, and ϕ is measurable and finite. Moreover, $\phi \circ f$ is non-measurable since there exists a measurable set $\{1\}$ such that

$$(\phi \circ f)^{\operatorname{pre}}(\{1\}) = f^{\operatorname{pre}}(M) = \mathcal{N}$$

Problem 2

Let $\chi_{[0,1]}$ be the characteristic function of [0,1]. Show that there is no everywhere continuous function f on \mathbb{R} such that

$$f(x) = \chi_{[0,1]}(x)$$
 almost everywhere

Proof. Suppose for the sake of contradiction that there is an everywhere continuous function f on \mathbb{R} such that

$$f(x) = \chi_{[0,1]}(x)$$
 almost everywhere

Let $\epsilon = \frac{1}{2}$. Then we know there exists $0 < \delta_{\epsilon} < 1$ such that

$$|x| < \delta_{\epsilon} \Longrightarrow |f(x) - f(0)| < \epsilon$$

Since $f(x) = \chi_{[0,1]}(x)$ almost everywhere, it follows that there exist $x_0 \in (-\delta_{\epsilon}, 0)$ and $x_1 \in [0, \delta_{\epsilon})$ such that

$$f(x_0) = \chi_{[0,1]}(x_0)$$
 $f(x_1) = \chi_{[0,1]}(x_1)$

otherwise we have

$$0 < 2\delta_{\epsilon} = \left| (-\delta_{\epsilon}, \delta_{\epsilon}) \right| \le \left| \left\{ x \in \mathbb{R} : f(x) \neq \chi_{[0,1]}(x) \right\} \right| = 0$$

which is a contradiction. Hence, we obtain

$$1 = |f(x_0) - f(x_1)| \le |f(x_0) - f(0)| + |f(0) - f(x_1)| < 2\epsilon = 1$$

which is clearly a contradiction. Therefore, there is no everywhere continuous function f on $\mathbb R$ such that

$$f(x) = \chi_{[0,1]}(x)$$
 almost everywhere

Problem 3

Since we know

Let $\Gamma \subset \mathbb{R}^d \times \mathbb{R}$, $\Gamma = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : y = f(x)\}$, and assume f is measurable on \mathbb{R}^d . Show that Γ is a measurable subset of \mathbb{R}^{d+1} , and $|\Gamma| = 0$.

Proof. It suffices to prove that $|\Gamma|_e = 0$. Since \mathbb{R}^d is a countable union of almost disjoint cubes of side length 1, it is enough to show that $|\Gamma'|_e = 0$, where

$$\Gamma' = \{(x, y) \in [0, 1]^d \times \mathbb{R} : y = f|_{[0, 1]^d}(x)\}$$

Since we know $\mathbb{R} = \bigsqcup_{k \in \mathbb{Z}} [k, k+1)$, it follows that

$$\Gamma' = \bigsqcup_{k \in \mathbb{Z}} \left\{ (x, y) \in [0, 1]^d \times [k, k + 1) : y = f|_{[0, 1]^d}(x) \right\}$$

Again, it is sufficient to prove that $|\Gamma''|_e = 0$, where

$$\Gamma'' = \left\{ (x, y) \in [0, 1]^d \times [0, 1) : y = f|_{[0, 1]^d}(x) \right\}$$

For every $n \in \mathbb{N}$, we have $[0,1) = \bigsqcup_{j=1}^{n} I_j$, where $I_j = \left[\frac{j-1}{n}, \frac{j}{n}\right)$ for all $j \in [n]$.

$$\Gamma'' = \bigsqcup_{j=1}^{n} \left\{ (x, y) \in [0, 1]^d \times I_j : y = f|_{[0, 1]^d} (x) \right\}$$

and $f|_{[0,1]^d}$ is measurable on $[0,1]^d$, it follows that

$$\begin{split} |\Gamma''|_{e} &\leq \sum_{j=1}^{n} \left| \left\{ (x,y) \in [0,1]^{d} \times I_{j} : y = f|_{[0,1]^{d}} (x) \right\} \right|_{e} \\ &\leq \sum_{j=1}^{n} \left| f|_{[0,1]^{d}}^{\text{pre}} (I_{j}) \times I_{j} \right|_{e} \\ &\leq \sum_{j=1}^{n} \left| f|_{[0,1]^{d}}^{\text{pre}} (I_{j}) \right| \cdot |I_{j}| \\ &= \frac{1}{n} \cdot \sum_{j=1}^{n} \left| f|_{[0,1]^{d}}^{\text{pre}} (I_{j}) \right| \\ &= \frac{1}{n} \cdot \left| \prod_{j=1}^{n} f|_{[0,1]^{d}}^{\text{pre}} (I_{j}) \right| = \frac{1}{n} \cdot \left| f|_{[0,1]^{d}}^{\text{pre}} \left([0,1) \right) \right| \leq \frac{1}{n} \cdot \left| [0,1]^{d} \right| = \frac{1}{n} \end{split}$$

for all $n \in \mathbb{N}$. Hence, we have

$$|\Gamma''|_e \le \lim_{n \to \infty} \frac{1}{n} = 0$$

Therefore, we obtain

$$|\Gamma''|_e = 0$$