LINEAR CONGRUENTIAL GENERATORS

Contents

- 1. Conditions for large period
- 2. Relevant examples

1

2

We consider a finite dynamical system on $\{0, 1, ..., m\}$

$$X_{n+1} = aX_n + c \quad \mod m. \tag{0.1}$$

for some $a, c, m \in \mathbb{Z}$. Clearly, any orbit of the dynamical system (0.1) will be **eventually periodic**.

Question: How to choose a, c, m so that orbits of (0.1) look like random sequences?

- First choose m so that mod-m operation is computationally simple.
- Requirements on a, c so that **period** is as **large** as possible.
- Requirements on a so large potency.
- Spectral tests

Remark 1. These are only necessary conditions in the sense that small period and potency give sequences with **poor statistical behavior**.

1. Conditions for large period

1.1. **Period length** m**.** Iff conditions for period m.

Theorem 1.1 (Theorem A pg.17 in Knuth). The LCG (X_0, a, c, m) has period m iff

- gcd(c, m) = 1.
- Writing $m = \prod_i p_i^{e_i}$ we have $a = 1 \sim p_i$ for all i.

Proof. Step 1: (Reduction to the case where $m = p^e$): Suppose that $m = m_1 m_2$ with $gcd(m_1, m_2) = 1$. We form the sequences

$$Y_n = X_n \sim m_1 \qquad Z_n = X_n \sim m_2.$$

Then, if $X_n = X_k \sim m$

$$Y_n = \underbrace{(X_k + qm_1m_2)}_{X_n} + rm_1 = X_k + m_1(qm_2 + r)$$

so we must have $Y_n = Y_k \sim m_1$. Similarly $Z_n = Z_k$. A similar reasoning shows $X_n = X_k \sim m$ iff $Y_n = Y_k \sim m_1$ and $Z_n = Z_k \sim m_2$. Thus, the period λ of X_n satisfies $\lambda = \gcd(\lambda_1, \lambda_2)$.

Step 2: (Proof for $m = p^e$): W.l.o.g take $X_0 = 0$. An elementary computation shows that

$$X_n = \frac{a^n - 1}{a - 1}c \sim m$$

- We must have $gcd(c, m) \neq 1$: If not we cannot have $X_n = 1$ (write m = cm').
- $\lambda = p^e$ iff

$$a = 1 \sim p$$
 (if $p > 2$) $a = 1 \sim 4$ (if $p = 2$)

 \Rightarrow suppose $\lambda = p^e$. If $a \neq 1 \mod p$ is easy to see that $(a^n - 1)/(a - 1) = 0 \sim p^e$ iff $a^n - 1 = 0 \sim p^e$. finish this direction

 \Leftarrow Suppose $a = 1 + qp^f$ with $q \notin \mathbb{Z}p$ and f < e:

(p^e is a multiple of λ): By the auxiliary lemma below for any $g \in \mathbb{N}$

$$a^{p^g} = 1 \sim p^{f+g} \qquad \qquad \text{but} \qquad \qquad a^{p^g} \neq 1 \sim p^{f+g+1}.$$

Thus, for any $g \in \mathbb{N}$

$$(a^{p^g} - 1)/(a - 1) = 0 \sim p^g$$
 but $(a^{p^g} - 1)/(a - 1) \neq 0 \sim p^{g+1}$ (1.1)

In particular holds for g = e and (key:)

$$(a^{p^e} - 1)/(a - 1) = 0 \sim p^e$$
.

Hence, p^e must be a multiple of λ (the period). In particular, since p is prime, we must have $\lambda = p^{\tilde{g}}$ for some $\tilde{g} \leq e$.

 $(p^e = \lambda)$: On the other hand, from the definition of the period $\lambda = p^{\tilde{g}}$, it must satisfy

$$(a^{p^{\tilde{g}}} - 1)/(a - 1) = 0 \sim p^e.$$

But writing $p^e = p^{\tilde{g}} p^{e-\tilde{g}}$ the second inequality in (1.1) implies that $\tilde{g} = e$.

Step 3: (Proof auxiliary lemma): We want to show that for p prime, if

$$x = 1 \sim p^e \qquad \qquad x \neq 1 \sim p^{e+1}$$

then

$$x^p = 1 \sim p^{e+1} \qquad \qquad x^p \neq \sim p^{e+2}.$$

This is easy if we write $x = 1 + qp^e$ with gcd(q, p) = 1.

1.2. Maximal period length if c = 0.

Theorem 1.2 (Theorem B pg. 20 in Knuth).

We now give iff conditions to find primitive elements mod m.

Theorem 1.3 (Theorem C pg. ... in Knuth).

2. Relevant examples

• L'Ecuver:

$$m=2^{64}$$
 $a=3202034522624059733$ $c=1.$