Statistical Graphics: What is Exploratory Data Analysis?

Objective

Objective
Describe
exploratory
data analysis

Exploratory Data Analysis

Approach to analyzing data sets to summarize main characteristics

Exploratory
Data
Analysis

Elements include:

- Data visualization
- Residual analysis
- Data transformations/ re-expression
- Resistance procedures

Data Visualization

Data visualization facilitates advanced data analysis

Checks distributional and other assumptions

Observes timebased processing

Spots outliers

Examines relationships

Discriminates clusters

Compares mean differences

Data Distributions

The type of data distribution affects

- How it should be analyzed
- How it should be visualized

Key step is preconditioning data

The Normal Distribution

Normal (Gaussian) Distribution

- Popular
- Fully characterizes with two parameters
- Probability is determined knowing distance from mean
- Many measures and tests are designed for this

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean and Standard Deviation

For sample population $X = \{x_1, ..., x_n\}$ the mean is defined as:

$$\mu = \frac{1}{N} \sum_{i=0}^{N} x_i$$

The standard deviation is defined as:

$$\sqrt{\frac{1}{N}\sum_{i=0}^{N}(x_i-\mu)^2}$$

Skewness

Measure of the asymmetry of the probability distribution

Skewed Data

For a sample of N values, the sample skewness is:

$$\gamma = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^3}{\left(\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2\right)^{3/2}}$$

Statistical Graphics: Designing Pie Charts

When to Use a Pie Chart

Categorical data

 Each slice can represent a different category

How many categories do you have?

Good rule of thumb is ~7 categories maximum

Pie Charts

Use:

- Angle
- Area
- Arc Length

to encode values

Interpreting Pie Charts

Pie charts lead to an overestimation of small values and underestimation of large ones.

Perceptual research shows that error is high when estimating values.

Pie charts should be presented with values as pie slice labels.

Visual Variables

Angle is not a key visual clue

Arc Length and Area are important

Doughnut charts are just as effective

Interpreting Pie Chart Variants

Exploded Pie

Bar and Line Charts

Ross Maciejewski, Ph.D

Associate Professor

Arizona State University

Which Type of Graph Should I Use?

Pie Charts

Comparing parts of a whole

Bar Charts

Comparing between groups or over time

Line Chart

Changes over time

Non-Time Series Data

Time Series Data

When to Not Use Bar Charts

Car Nationality for 1979

Graph Aspect Ratios

Perception of trends and patterns is heavily influenced by the aspect ratio.

Aspect ratios affects:

- Densities
- relative distances orientations

Aspect ratio: a = width/height

Arc Length-Based Aspect Ratio

$$max_a \frac{\sum_{i} \sum_{j} |\sin \theta_{ij}| l_i(a) l_j(a)}{\sum_{i} \sum_{j} l_i(a) l_j(a)}$$

Arc Length-Based Aspect Ratio Selection

Aspect Ratios

Ross Maciejewski, Ph.D

Associate Professor

Arizona State University

Statistical Graphics: Non Data Components of Graphs

Objective

Objective

Define design principles for bar charts and line charts

Axes, Legends and Scales

Heckbert's Labeling Algorithm

Data range

105 - 543

Data range

2.03-2.17

Nice Numbers

```
const ntick ← 5;
                                           desired number of tick marks
loose_label: label the data range from min to max loosely.
  (tight method is similar)
procedure loose_label(min, max: real);
nfrac: int;
d: real;
                                           tick mark spacing
graphmin, graphmax: real;
                                           graph range min and max
range, x: real;
begin
  range ← nicenum(max - min, false);
  d ← nicenum(range / (ntick - 1), true);
  graphmin ← floor(min/d)*d;
  graphmax ← ceiling(max/d)*d;
  nfrac \leftarrow max(-floor(log10(d)), 0);
                                           number of fractional digits to show
  for x \leftarrow \text{graphmin to graphmax} + .5*d step d do
    put tick mark at x, with a numerical label showing nirac fraction digits
    endloop:
  endproc loose_label;
nicenum: find a "nice" number approximately equal to x.
Round the number if round = true, take ceiling if round = false.
function nicenum(x: real; round: boolean): real;
exp: int;
                                           exponent of x
                                           fractional part of x
f: real:
                                           nice, rounded fraction
nf: real;
begin
  exp \leftarrow floor(log10(x));
  f \leftarrow x/\exp(10., \exp);
                                           between 1 and 10
```

```
if round then if f < 1.5 then nf \leftarrow 1.; else if f < 3. then nf \leftarrow 2.; else if f < 7. then nf \leftarrow 5.; else nf \leftarrow 10.; else if f \le 1. then nf \leftarrow 1.; else if f \le 2. then nf \leftarrow 2.; else if f \le 5. then nf \leftarrow 5.; else nf \leftarrow 10.; return nf*expt(10., exp); endfunc nicenum;
```

P. Heckbert. Nice numbers for graph labels. In A. Glassner, editor, Graphics Gems, pages 61–63 657–659. Academic Press, Boston, 1990.

Heckbert's Labeling Algorithm

Problem

For small numbers, the range of labels can be much larger than the data range.

Solution

Drop labels which overlap or fall outside the data range

This leads to unevenly spaced labels or axes with only one label

Extension of Wilkinson's Algorithm

Extension of Wilkinson's Algorithm

Coverage =
$$1 - \frac{1}{2} \frac{(d_{max} - l_{max})^2 + (d_{min} - l_{min})^2}{[.1(d_{max} - d_{min})]^2}$$

Legibility =
$$\frac{format + font_{size} + orientation + overlap}{4}$$

Statistical Graphics: Creating Histograms

Objective

Objective

Define design principles for Histograms and the impact of parameter choices on the visualization.

Histograms

Histogram Binning

Number of bins (k) can be user-specified or chosen from a suggested bin width (h) such that:

$$k = \left\lceil \frac{\max x - \min x}{h} \right\rceil$$

Histogram Binning

Common choices for k include the square-root choice where:

$$k = \sqrt{N}$$

Histogram Binning

Sturge's formula

Scott's choice

Freedman-Diaconis rule

$$k = [\log N + 1]$$

$$h = \frac{3.5\sigma}{\frac{1}{N^{\frac{1}{3}}}}$$

$$h = 2IQR(x)N^{-\frac{1}{3}}$$

Histogram Example

- Plot a histogram of 1000 book lengths.
- Use all four common choices for k or h.
- All x-axis labels indicate the center of the histogram bin.

Square-Root Choice

Sturge's Formula

Scott's Choice

Freedman-Diaconis Rule

Histograms

Statistical Graphics: Understanding Quantiles

Objective

Objective

Understand how to create and use Box-plots and Q-Q Plots

Quantiles

Quantiles – points taken at regular intervals from the cumulative distribution function of a random variable

Calculating Quantiles

Distribution of at-bats

Calculate Quantiles

Quantiles

Useful measures because they are less susceptible to long-tailed distributions and outliers.

May be more descriptive statistics than means and other moment-related statistics.

Quantiles of a random value are preserved under increasing transformations.

Can be used where only ordinal data are available.

Statistical Graphics: Box and Whisker Plots

Objective

Objective

Understand how to create and use Box-plots and Q-Q Plots

Box and Whisker Plot

Summaries

Alternate forms of Box and Whisker Plots

Width of the box

- mapped to the size of the group
- can make width proportional to the square root of the group size

Notched box plot

Width of notches is proportional to IQR

Notched Box Plot

Box and Whisker Plots: Baseball Example

RBI	Batting Ave
117	0.336
113	0.324
47	0.321
95	0.315
103	0.312
118	0.312
66	0.307
85	0.307
103	0.304
41	0.3

A: 1-10

Box and Whisker Plots: Baseball Example

RBI	Batting Ave
76	0.3
52	0.298
101	0.298
85	0.296
66	0.293
82	0.292
69	0.29
86	0.29
59	0.288
105	0.287

B: 11-20

Statistical Graphics: Q-Q Plots

Objective

Objective

Understand how to create and use Box-plots and Q-Q Plots

Q-Q Plots

QQ Plot

More powerful comparing two distributions than histograms

Sample sizes do not need to be equal

Alternative is a probability plot

Creating a Q-Q Plot

RBI	Batting Ave
117	0.336
113	0.324
47	0.321
95	0.315
103	0.312
118	0.312
66	0.307
85	0.307
103	0.304
41	0.3

A: 1-10