Evaluation of Attribution Bias in Retrieval-Augmented Large Language Models

Amin Abolghasemi ¹ Leif Azzopardi ²

¹Leiden University, Netherlands ²University of Strathclyde, UK

Research Gap

Prior work on RAG has primarily focused on improving and evaluating the quality of attribution by LLMs. However, this focus may overlook or even **induce biases** in how LLMs attribute answers. This paper addresses the gap by defining and examining two under-explored aspects: **attribution sensitivity** (how LLM output changes with author information) and **attribution bias** (whether LLMs favor human-written or Al-generated sources) with respect to authorship information in RAG pipelines. It specifically investigates if LLMs exhibit a bias towards explicit human authorship, contrasting with some findings that LLMs might prefer LLM-generated content.

Main Contributions

- Defines and studies attribution sensitivity and bias with respect to authorship information as a novel aspect of trustworthiness and brittleness in retrieval-augmented LLMs.
- Proposes a systematic evaluation framework for measuring attribution sensitivity and bias based on counterfactual evaluation.
- Highlights attribution bias and sensitivity as a novel aspect of brittleness in LLMs.

Method Overview

The study employs a counterfactual evaluation framework. The researchers designed an experimental setup with three RAG modes to analyze LLM behavior:

- Vanilla RAG: LLMs receive documents without authorship information.
- Authorship Informed RAG: LLMs are informed of the actual author (Human or LLM) of each document.
- Counterfactual-Authorship Informed RAG: LLMs are given deliberately incorrect authorship labels (e.g., a human-written document is labeled as LLM-generated, and vice-versa). This approach allows for measuring the model's reliance on, bias towards, or sensitivity to authorship information by observing changes in attribution patterns across these modes. Three LLMs (Mistral, Llama3, GPT-4) were tested.

Key Findings

- Adding authorship information to source documents can **significantly change the attribution quality** of LLMs by 3% to 18%.
- All three LLMs were more likely to attribute their answers to documents explicitly labeled as human-written, even when this information was counterfactual (i.e., an LLM-written document labeled as human-written). This bias was observed regardless of the actual origin of the documents.
- All three tested LLMs (Mistral, Llama3, and GPT-4) show **sensitivity** to the inclusion of authorship information. Mistral and Llama3 showed higher sensitivity and bias than GPT-4.
- LLMs generally showed higher confidence when attributing to relevant documents compared to non-relevant ones, irrespective of authorship labels or RAG modes. This suggests low attribution confidence could signal a document's irrelevance.

Strengths and Weaknesses

Strengths:

- Introduces novel concepts: **attribution sensitivity and bias** related to authorship.
- Proposes a systematic counterfactual evaluation framework.
- Provides empirical evidence of authorship bias in tested LLMs.

Weaknesses:

- Does not propose or explore solutions for mitigating the observed bias.
- Evaluated only three specific LLMs.
- Experiments used queries with only one relevant document in the top-k list.
- Limited to English datasets and prompts.

Future Directions

- Investigate sensitivity and bias towards **other metadata** (e.g., gender and race of authors).
- Incorporate methodology into trustworthiness benchmarks.
- Adapt the methodology to use other attribution quality metrics.
- Investigate attribution sensitivity and bias on other LLMs.

Core Equation

Counterfactually-estimated Attribution Sensitivity (CAS):

$$\mathsf{CAS}(Q) = \frac{1}{|Q|} \sum_{q \in Q} |M_q^{\mathsf{Informed}} - M_q^{\mathsf{Vanilla}}|$$

Where M_q represents attribution quality metrics (precision and recall) for query q.

Counterfactually-estimated Attribution Bias (CAB):

$$\mathsf{CAB}(Q) = \omega \frac{1}{|Q|} \sum_{q \in Q} (M_q^{\mathsf{Informed}} - M_q^{\mathsf{CF-informed}})$$

Where M_q represents attribution quality metrics for query q, and ω aligns the direction of bias based on the actual authorship.

List of Quality of attribution and answer correctness

Answer generator	Relevant documents	Non-relevant documents	RAG mode	Attribution quality		Correctness
				Precision	Recall	EM
NQ						
Mistral	LLM	Human	Vanilla	47.6	76.6	0.722
			Informed	42.1	68.2	0.730
			CF-informed	52.7^{\dagger}	77.8^{\dagger}	0.738
	Human	LLM	Vanilla	51.0	78.4	0.776
			Informed	53.4^{\dagger}	77.8^{\dagger}	0.774
			CF-informed	44.0	70.2	0.772
Llama3	LLM	Human	Vanilla	49.2	69.2	0.742
			Informed	45.4	69.6	0.730
			CF-informed	57.2^{\dagger}	77.6^{\dagger}	0.748
	Human	LLM	Vanilla	53.5	71.0	0.766
			Informed	59.9 [†]	77.8^{\dagger}	0.790
			CF-informed	44.8	69.2	0.762
GPT-4	LLM	Human	Vanilla	63.3	68.8	0.736
			Informed	59.7	64.6	0.740
			CF-informed	65.9 [†]	72.2^{\dagger}	0.742
	Human	LLM	Vanilla	64.1	68.8	0.760
			Informed	66.1	72.2^{\dagger}	0.776
			CF-informed	60.3	65.0	0.758

Mixed RAG Mode

Figure 2. Mixed RAG mode for the setting where we use original human-authored documents. In this example, we have "Informed" mode for relevant documents and "CF-Informed" for non-relevant documents.

Figure 1. Three RAG modes.