Indice

L. Cinematica	
1.1. Punto materiale unidimensionale	
1.2. Punto materiale bidimensionale	
1.3. Moto circolare	
1.4 Principio di relatività	5

1. Cinematica

1.1. Punto materiale unidimensionale

Il modello piú semplice per descrivere un moto é quello **unidimensionale**, ovvero di un punto materiale che si muove lungo una linea retta. Il punto al centro della retta indica il punto zero, detto **origine**. La direzione positiva della retta é quella in cui le coordinate della posizione del punto aumentano, mentre quella negativa é quella in cui le coordinate diminuiscono. Il segno piú e meno indica in quale delle due direzioni il punto si trova; il segno piú viene in genere sottinteso.

La **posizione** é una quantitá $\vec{x}(t)$ in funzione del tempo, un vettore che ha punto iniziale nell'origine e punto finale nella coordinata che corrisponde a dove si trova il punto materiale nel dato istante di tempo.

Lo **spostamento** $\Delta \vec{x}$ é il vettore differenza fra una posizione di partenza $\vec{x}(t)$ ed una posizione di arrivo $\vec{x}(t_0)$. Una differenza di tempo Δt é la differenza tra un tempo finale t ed un tempo iniziale t_0 . É pertanto possibile scrivere:

$$\Delta \vec{x} = \vec{x}(\Delta t + t_0) - \vec{x}(t_0)$$

Si indica invece con **distanza** la lunghezza complessiva che é stata percorsa dal punto materiale. Questa non é una quantitá vettoriale, bensí uno scalare, ed é sempre positiva, mentre lo spostamento puó essere sia positivo che negativo.

Esercizio 1.1.1: Un punto materiale si muove in linea retta a partire dall'origine e da un tempo iniziale $t_0=0$. Dopo un certo tempo t_1 si trova a L metri dall'origine; dopo un ulteriore tempo t_2 si trova di nuovo nell'origine. Calcolare spostamento e distanza al tempo t_1+t_2 .

Soluzione:
$$\Delta t = t_1 + t_2 - t_0 = t_1 + t_2 - 0 = t_1 + t_2.$$

$$\Delta \vec{x} = \vec{x}(\Delta t + t_0) - \vec{x}(t_0) = \vec{x}(t_1 + t_2 + t_0) - \vec{x}(t_0) = \vec{x}(t_1 + t_2) - \vec{x}(0) = \vec{0} - \vec{0} = \vec{0}$$

$$d(\Delta t + t_0) = \parallel L + L \parallel = 2L$$

La rapiditá con cui uno spostamento é compiuto é inversamente proporzionale al tempo impiegato. Ovvero, se uno stesso spostamento viene compiuto in meno tempo, la rapiditá di tale spostamento é piú alta. La **velocitá media** fornisce una prima informazione su quanto rapidamente avvenga lo spostamento di un corpo, da una situazione di partenza ad una di arrivo:

$$\vec{v}_{\mathrm{media}} = \frac{\Delta \vec{x}}{\Delta t} = \frac{\vec{x}(t + \Delta t) - \vec{x}(t)}{\Delta t} \big[\mathrm{m \, s^{-1}} \big]$$

Essendo la velocitá media un rapporto tra un vettore ed uno scalare, é anch'essa un vettore. Inoltre, essendo il tempo una quantitá non negativa, il segno della velocitá media é necessariamente lo stesso dello spostamento. É possibile associare una velocitá anche alla distanza, chiamata **velocitá scalare media**. Tale grandezza é data dal rapporto fra la distanza percorsa in un intervallo di tempo Δt e l'intervallo di tempo stesso.

$$\vec{s}_{\mathrm{media}} = \frac{d(x)}{\Delta t} = [\mathrm{m} \, \mathrm{s}^{-1}]$$

Cosí come la distanza, anche la velocitá scalare media é (come da nome) uno scalare, ed é sempre positiva. La velocitá media non é ancora sufficiente a descrivere il concetto di rapiditá dello spostamento, perché non é in grado di descrivere cosa accade istante per istante, ma soltanto ció che accade in due istanti (partenza e arrivo); tutto ció che avviene nel mezzo é perduto.

Per ottenere questa forma di velocitá é possibile calcolare la velocitá media in un lasso di tempo sempre piú piccolo. L'idea é che se é possibile calcolare la velocitá media in un lasso di tempo infinitesimo, si avrebbe la conoscenza della velocitá istante di tempo per istante di tempo, ovvero una **velocitá istantanea**¹:

¹In realtá, questa é una semplificazione. Infatti, non é davvero possibile considerare un istante di tempo infinitesimo, perché al di sotto di una certa scala diventa impossibile osservare lo scorrere del tempo. Pertanto, si dovrebbe parlare di "lasso di tempo arbitrariamente piccolo" piú che infinitesimo.

$$\vec{v}_{\text{istantanea}} = \lim_{\Delta t \rightarrow 0} \vec{v}_{\text{media}} = \lim_{\Delta t \rightarrow 0} \frac{\vec{x}(t + \Delta t) - \vec{x}(t)}{\Delta t} = \frac{d}{dt} \vec{x}(t) \big[\text{m s}^{-1}\big]$$

Si noti infatti come l'espressione nel penultimo termine dell'uguaglianza corrisponda perfettamente alla definizione di derivata. Inoltre, riportando la funzione posizione-tempo su un piano cartesiano, é evidente come la velocitá istantanea non sia altro che un vettore lungo la tangente in quel punto.

Oltre alla variazione della posizione in funzione del tempo, potrebbe essere d'interesse a conoscere la variazione della velocitá in funzione del tempo. Tale variazione é descritta dall'accelerazione media:

$$ec{a}_{ ext{media}} = rac{\Delta ec{v}}{\Delta t} = rac{ec{v}(t + \Delta t) - ec{v}(t)}{\Delta t} [ext{m s}^{-2}]$$

Cosí come per la velocitá, é possibile definire una accelerazione istantanea:

$$\vec{a}_{\text{istantanea}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} = \frac{d}{dt} \vec{v}(t) = \frac{d^2}{dt} \vec{x}(t) \big[\text{m s}^{-2}\big]$$

La velocitá istantanea e l'accelerazione istantanea sono le quantitá che vengono indicate come "velocitá" e "accelerazione" in senso stretto. Pertanto, se non specificato diversamente, si tende ad indicare la velocitá e l'accelerazione istantanea semplicemente con "velocitá" e "accelerazione".

In genere, l'accelerazione é nota (per altri mezzi) cosí come lo é il tempo, mentre non lo é la velocitá. Per tale motivo, é ragionevole esplicitare la formula rispetto alla velocitá. Questo comporta di invertire una derivata, ovvero calcolare un integrale:

$$\int_{t_0}^t \vec{a}(t')dt' = \int_{t_0}^t \frac{d}{dt} \vec{v}(t') = \vec{v}(t) - \vec{v}(t_0) \qquad \qquad \int_{t_0}^t \vec{v}(t')dt' = \int_{t_0}^t \frac{d}{dt} \vec{x}(t') = \vec{x}(t) - \vec{x}(t_0)$$

Una espressione di questo tipo necessita peró di descrivere interamente la funzione con cui varia l'accelerazione. Questo puó essere fatto solamente se la funzione accelerazione é una funzione nota.

Il caso piú semplice da esaminare si ha quando l'accelerazione non cambia mai, ovvero quando la funzione accelerazione é una funzione costante. In altri termini, $\vec{a}(t) = \vec{a}$ per qualsiasi istante di tempo t. Recuperando la formula, si ha:

$$\vec{v}(t) - \vec{v}(t_0) = \int_{t_0}^t \vec{a}(t')dt' = \int_{t_0}^t \vec{a}dt' = \vec{a} \int_{t_0}^t dt' = \vec{a} \cdot (t - t_0) = \vec{a}t - \vec{a}t_0$$

É poi possibile fare lo stesso rispetto alla posizione, sostituendo nell'espressione della velocitá la formula appena ricavata:

$$\vec{x}(t) - \vec{x}(t_0) = \int_{t_0}^t v(t')dt' = \int_{t_0}^t \vec{v}(t_0) + \vec{a}t - \vec{a}t_0dt' = \int_{t_0}^t \vec{v}(t_0)dt' + \int_{t_0}^t \vec{a}tdt' - \int_{t_0}^t \vec{a}t_0dt' = \\ \vec{v}(t_0) \int_{t_0}^t dt' + \vec{a} \int_{t_0}^t tdt' - \vec{a} \int_{t_0}^t t_0dt' = \vec{v}(t_0)(t-t_0) + \vec{a} \left(\frac{1}{2}t^2\right) - \vec{a} \left(\frac{1}{2}t_0^2\right) = \vec{v}(t_0)(t-t_0) + \frac{1}{2}\vec{a}(t-t_0)^2$$

Riassumendo le due formule trovate ed esplicitando rispetto a $\vec{x}(t)$ e $\vec{v}(t)$ si ottiene la legge oraria per un punto materiale con accelerazione costante. Tale tipo di moto viene anche detto **moto uniformemente accelerato**:

$$\vec{v}(t) = \vec{v}(t_0) + \vec{a}(t-t_0) \\ \vec{x}(t) = \vec{x}(t_0) + \vec{v}(t_0)(t-t_0) + \frac{1}{2}\vec{a}(t-t_0)^2$$

Un esempio di moto uniformemente accelerato é il **moto in caduta libera**. Questo é tipo di moto che descrive i corpi lasciati liberi di subire l'effetto della forza di gravitá del pianeta Terra. Tale accelerazione é indipendente da qualsiasi caratteristica del corpo che compie il moto, come la sua massa o la sua forma (Il motivo per cui questo non sempre avviene é perché la forma di un corpo subisce l'attrito dell'aria).

Tale accelerazione varia a seconda dell'altitudine: piú ci si trova vicino al livello del mare e piú é intensa. Tuttavia, per le applicazioni pratiche il suo valore é approssimativamente costante, ed é pari a $\pm 9.8 \mathrm{m \ s^{-2}}$.

1.2. Punto materiale bidimensionale

Per analizzare un moto in due dimensioni, non é sufficiente considerare posizioni, velocitá e accelerazioni esclusivamente in termini del loro valore assoluto e del loro segno. Diventa pertanto necessario associarvi un vettore, il cui modulo rappresenta il valore in sé associato alla quantitá e la direzione rappresenta come questo si orienta nello spazio bidimensionale.

Un punto materiale che si muove in due dimensioni puó essere decomposto come somma di un moto unidimensionale in orizzontale ed un moto unidimensionale in verticale. É allora possibile descrivere una posizione in due dimensioni \vec{r} in un certo tempo fissato t_0 come una somma vettoriale:

$$\vec{r}(t_0) = \vec{x}(t_0) + \vec{y}(t_0) = \hat{i}x(t_0) + \hat{j}y(t_0)$$

Essendo le due direzioni completamente indipendenti, per costruire dei vettori velocitá é sufficiente calcolare separatamente velocitá per ciascuna direzione ed operare una somma vettoriale:

$$v_x(t) = \cos(\theta)v(t) = \frac{d}{dt}x(t) \qquad \qquad v_y(t) = \sin(\theta)v(t) = \frac{d}{dt}y(t) \qquad \qquad \vec{v}(t) = \hat{i}v_x(t) + \hat{j}v_y(t)$$

Lo stesso puó essere fatto per l'accelerazione:

$$a_x(t) = \cos(\theta) a(t) = \frac{d^2}{dt} x(t) \qquad \qquad a_y(t) = \sin(\theta) a(t) = \frac{d^2}{dt} y(t) \qquad \qquad \vec{a}(t) = \hat{i} a_x(t) + \hat{j} a_y(t)$$

Si assuma che sia l'accelerazione rispetto alla componente orizzontale che quella rispetto alla componente verticale siano costanti. Diventa allora possibile scrivere delle leggi orarie per la posizione rispetto ad entrambe le componenti:

$$x(t) = x(t_0) + v_x(t_0)(t - t_0) + \frac{1}{2}a_x(t - t_0)^2 \\ y(t) = y(t_0) + v_y(t_0)(t - t_0) + \frac{1}{2}a_y(t - t_0)^2$$

Un caso di studio particolarmente interessante é quello del **moto parabolico**, ovvero di un oggetto che si muove nello spazio unicamente sottoposto all'attrazione gravitazionale.

Un corpo di questo tipo si muove lungo la direzione orizzontale con accelerazione costante pari a 0, mentre si muove lungo la direzione verticale con accelerazione costante pari a -g, essendo influenzato dalla gravitá della Terra (il segno meno é dovuto al fatto che la gravitá va dall'alto al basso). Fintanto che la distanza percorsa é sensibilmente piú piccola del raggio terreste, é possibile approssimare la Terra come un piano ed é quindi giustificato considerare l'accelerazione di gravitá uniforme ovunque. Un moto di questo tipo puó quindi essere descritto lungo le due direzioni come:

$$x(t) = x(t_0) + v_x(t_0)(t-t_0) \\ y(t) = y(t_0) + v_y(t_0)(t-t_0) - \frac{1}{2}g(t-t_0)^2$$

Il nome moto parabolico viene dal fatto che risolvendo la prima equazione rispetto a $(t-t_0)$ e sostituendo nella seconda, si ottiene l'equazione di una parabola:

$$\begin{split} y(t) &= y(t_0) + v_y(t_0) \bigg(\frac{x(t) - x(t_0)}{v_x(t_0)} \bigg) - \frac{1}{2} g \bigg(\frac{x(t) - x(t_0)}{v_x(t_0)} \bigg)^2 = \\ y(t_0) &+ \frac{\sin(\theta) v(t_0) [x(t) - x(t_0)]}{\cos(\theta) v(t_0)} - \frac{g [x^2(t) + x^2(t_0) - 2x(t) x(t_0)]}{2(\cos(\theta) v(t_0))^2} = \\ y(t_0) &+ \tan(\theta) [x(t) - x(t_0)] - \frac{g x^2(t) + g x^2(t_0) - 2g x(t) x(t_0)}{2\cos^2(\theta) v^2(t_0)} = \\ y(t_0) &+ \tan(\theta) x(t) - \tan(\theta) x(t_0) - \frac{g x^2(t)}{2\cos^2(\theta) v^2(t_0)} - \frac{g x^2(t_0)}{2\cos^2(\theta) v^2(t_0)} + \frac{\mathcal{Z}g x(t) x(t_0)}{\mathcal{Z}\cos^2(\theta) v^2(t_0)} = \\ \bigg(\frac{-g}{2\cos^2(\theta) v^2(t_0)} \bigg) x^2(t) + \bigg(\tan(\theta) + \frac{g x(t_0)}{\cos^2(\theta) v^2(t_0)} \bigg) x(t) + y(t_0) - \tan(\theta) x(t_0) - \frac{g x^2(t_0)}{2\cos^2(\theta) v^2(t_0)} \bigg) x(t_0) + \frac{g x^$$

Dove A, B e C sono costituite da valori noti.

A partire da tale equazione é possibile calcolare il range orizzontale, ovvero la posizione in cui il corpo si trova orizzontalmente alla stessa altezza di quando il corpo é stato lanciato. Per farlo é sufficiente imporre $y(t) = y(t_0)$; dato che le due quantitá si trovano da parti opposte dell'equazione, le due si elidono, ottenendo:

$$\left(\frac{-g}{2\cos^2(\theta)v^2(t_0)}\right)x^2(t) + \left(\tan(\theta) + \frac{gx(t_0)}{\cos^2(\theta)v^2(t_0)}\right)x(t) - \left(\tan(\theta)x(t_0) + \frac{gx^2(t_0)}{2\cos^2(\theta)v^2(t_0)}\right) = 0$$

1.3. Moto circolare

Una classe di moti bidimensionali di particolare interesse é quella dove la traiettoria descritta dal punto materiale é una circonferenza. Un moto di questo tipo prende il nome di **moto circolare**.

Imponendo un sistema di assi cartesiani al centro di tale circonferenza, la posizione in ogni momento del punto materiale é data dal vettore che unisce il centro con un punto lungo tale circonferenza, che per definizione é un raggio, ed é quindi di modulo costante nel tempo. Tale vettore forma un angolo θ con l'asse orizzontale, ed é pertanto possibile scomporre la posizione di un punto $\vec{p}(t)$ nelle due componenti:

$$\vec{p}(t) = \begin{cases} \vec{p_x}(t) = |\vec{r}| \cos(\theta(t)) \\ \vec{p_y}(t) = |\vec{r}| \sin(\theta(t)) \end{cases}$$

La posizione di un punto materiale che si muove di moto circolare puó anche essere determinata dalla lunghezza dell'arco di circonferenza che ha per estremi il punto in questione ed il punto di coordinate $(|\vec{r}|,0)$. Le due descrizioni sono equivalenti, perché l'arco di circonferenza x(t) descritto dal punto all'istante t ed il modulo del vettore $\vec{p}(t)$ che congiunge il punto con il centro della circonferenza sono legati da un rapporto: Essendo |r| una costante, x(t) e $\theta(t)$ sono proporzionali.

La velocitá di un punto materiale che si muove di moto circolare puó essere definita anche come variazione istantanea (in istanti di tempo infinitesimi) dell'angolo θ formato dal vettore posizione con l'asse orizzontale. Tale velocitá prende il nome di **velocitá angolare**.

$$\omega(t) = \lim_{\Delta t \to 0} \frac{\theta(t + \Delta t) - \theta(t)}{\Delta t} = \frac{d}{dt} \theta(t) [\operatorname{rad} \mathbf{s}^{-1}]$$

La velocitá in senso stretto (la velocitá istantanea) rimane comunque definita come la variazione istantanea della posizione del punto materiale. Per quanto appena stabilito, tale velocitá puó anche essere espressa come prodotto fra la velocitá angolare ed il raggio del cerchio descritto dal punto materiale:

$$\vec{v}(t) = \frac{d}{dt}\vec{x}(t) = \begin{cases} \frac{d}{dt}(|r|\cos(\theta(t))) \\ \frac{d}{dt}(|r|\sin(\theta(t))) \end{cases} = \begin{cases} |r| \frac{d}{dt}\cos(\theta(t)) \\ |r| \frac{d}{dt}\sin(\theta(t)) \end{cases} = \begin{cases} -|r|\sin(\theta(t))\frac{d}{dt}\theta(t) \\ |r|\cos(\theta(t))\frac{d}{dt}\theta(t) \end{cases} = \begin{cases} -|r|\sin(\theta(t))\omega(t) \\ |r|\cos(\theta(t))\omega(t) \end{cases}$$

Il punto materiale potrebbe avere anche una accelerazione rispetto alla velocitá angolare, ovvero potrebbe percorrere sezioni di circonferenza di uguale lunghezza in tempi diversi. Tale accelerazione prende il nome di **accelerazione angolare** $\alpha(t)$, ed in analogia con l'accelerazione in senso stretto é data dalla derivata seconda dell'angolo descritto dal vettore posizione del punto materiale in funzione del tempo.

$$\alpha(t) = \lim_{\Delta t \to 0} \frac{\omega(t + \Delta t) - \omega(t)}{\Delta t} = \frac{d}{dt}\omega(t) = \frac{d^2}{dt}\theta(t)$$

L'accelerazione in senso stretto é quindi data da:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\vec{v}(t+\Delta t) - \vec{v}(t)}{\Delta t} = \frac{d}{dt} \vec{v}(t) = |r| \ \frac{d^2}{dt} \theta(t) = \begin{cases} |r| \ \frac{d}{dt} (-\sin(\theta(t))\omega(t)) \\ |r| \ \frac{d}{dt} (\cos(\theta(t))\omega(t)) \end{cases} =$$

$$\begin{cases} -|r| \, \left((\cos(\theta(t))\omega(t))\omega(t) + \sin(\theta(t)) \frac{d}{dt}\omega(t) \right) \\ -|r| \, \left((\sin(\theta(t))\omega(t))\omega(t) - \cos(\theta(t)) \frac{d}{dt}\omega(t) \right) \end{cases} = \begin{cases} -|r| \, \left(\cos(\theta(t))\omega^2(t) + \sin(\theta(t))\alpha(t) \right) \\ -|r| \, \left((\sin(\theta(t))\omega(t))\omega(t) - \cos(\theta(t)) \frac{d}{dt}\omega(t) \right) \end{cases}$$

In genere, l'accelerazione é nota (per altri mezzi) cosí come lo é il tempo, mentre non lo é la velocitá. Per tale motivo, é ragionevole esplicitare la formula rispetto alla velocitá. Questo comporta di invertire una derivata, ovvero calcolare un integrale:

Come é stato fatto per il moto unidimensionale, é possibile esplicitare le formula per l'accelerazione angolare rispetto alla velocitá angolare calcolando un integrale:

$$\int_{t_0}^t \alpha(t')dt' = \int_{t_0}^t \frac{d}{dt}\omega(t') = \omega(t) - \omega(t_0) \qquad \qquad \int_{t_0}^t \omega(t')dt' = \int_{t_0}^t \frac{d}{dt}\theta(t') = \theta(t) - \theta(t_0)$$

Un caso di studio di moto circolare é il **moto circolare uniforme**, ovvero un moto circolare dove oltre al modulo del vettore posizione anche la velocitá angolare é costante nel tempo. Naturalmente, essendo la velocitá proporzionale alla velocitá angolare, anche la velocitá sará costante in modulo nel tempo.

In questa particolare situazione, il numero di rivoluzioni che il punto compie é necessariamente costante, pertanto per descrivere il suo moto é sufficiente conoscere il tempo che il punto materiale impiega per compiere un giro completo. Il numero di rivoluzioni che un punto materiale compie in un secondo prende il nome di **frequenza**, mentre il tempo necessario per compiere un giro completo prende il nome di **periodo**:

$$\nu = \frac{\text{numero di giri}}{1\text{s}}[\text{Hz}] \qquad \qquad T = \frac{1}{\nu}[\text{s}]$$

Diventa pertanto possibile esprimere la velocitá e la velocitá angolare in termini di frequenza e periodo:

$$\omega(t) = \omega = 2\pi\nu = \frac{2\pi}{T} \qquad v(t) = v = \omega r = \frac{2\pi r}{T}$$

Sebbene il moto abbia una velocitá costante in modulo, la sua direzione varia costantemente, pertanto il vettore velocitá (ovvero, se si considera sia la direzione del moto che il suo modulo) non é costante. É quindi possibile associare a questo moto una accelerazione, derivando la velocitá. Il verso di questo vettore accelerazione punta sempre verso il centro, pertanto prende il nome di accelerazione centripeta.

Per ricavare il modulo, é possibile approcciare il problema descrivendo il moto usando come sistema di riferimento un sistema di assi rotanti, dove il primo versore \hat{u}_r si trova sulla retta che congiuge il punto con il centro del cerchio descritto mentre il secondo versore \hat{u}_{θ} é a questo perpendicolare.

Il sistema di riferimento cosí descritto cambia la direzione dei suoi versori in ogni istante di tempo, ma ha il vantaggio di avere il vettore velocitá sempre parallela al versore \hat{u}_r e sempre perpendicolare al versore \hat{u}_{θ} mentre il vettore spostamento é sempre parallelo al versore \hat{u}_{θ} e sempre perpendicolare al vettore \hat{u}_r . É allora possibile scrivere:

$$ec{v} = \hat{u}_{ heta} v$$
 $ec{r} = \hat{u}_r r$

Il versore \hat{u}_{θ} puó essere scomposto lungo due componenti, una orizzontale ed una verticale, rispetto ad un secondo sistema di riferimento centrato nel centro del cerchio. In ogni istante di tempo, il versore descrive un diverso angolo θ con l'orizzontale, pertanto le due componenti sono dipendenti dal tempo. É pertanto possibile decomporre il vettore come:

$$\hat{u}_{\theta} = \hat{i}u_{\theta}^x(t) + \hat{j}u_{\theta}^y(t) = \hat{i} \cdot 1 \cdot \cos\left(\left(\theta + \frac{\pi}{2}\right)(t)\right) + \hat{j} \cdot 1 \cdot \cos\left(\left(\theta + \frac{\pi}{2}\right)(t)\right) = \hat{j}\cos(\theta(t)) - \hat{i}\sin(\theta(t))$$

П

Dove il fattore 1 deriva dal fatto che \hat{u}_{θ} é un versore e ha quindi modulo 1. La quantitá $\frac{\pi}{2}$ deriva invece dal fatto che l'angolo che si sta considerando é quello formato dal versore \hat{u}_r , che é perpendicolare a quello formato da \hat{u}_{θ} , ed é quindi "spostato" di $\frac{\pi}{2}$ radianti.

Derivando la velocitá rispetto al tempo, si ha il modulo dell'accelerazione centripeta:

$$\begin{split} |a| &= \left| \frac{d}{dt} \vec{v} \right| = \left| \frac{d}{dt} \hat{u}_{\theta} v \right| = v \left| \frac{d}{dt} \hat{u}_{\theta} \right| = v \left| \frac{d}{dt} \left(\hat{j} \cos(\theta(t)) - \hat{i} \sin(\theta(t)) \right) \right| = v \left| \frac{d}{dt} \hat{j} \cos(\theta(t)) - \frac{d}{dt} \hat{i} \sin(\theta(t)) \right| = v \left| -\hat{j} \sin(\theta(t)) \frac{d}{dt} \theta(t) - \hat{i} \cos(\theta(t)) \frac{d}{dt} \theta(t) \right| = v \left| \hat{j} \sin(\theta(t)) \omega + \hat{i} \cos(\theta(t)) \omega \right| = v \omega \left| \hat{j} \sin(\theta(t)) + \hat{i} \cos(\theta(t)) \right| = v \omega \sqrt{\sin^2(\theta(t)) + \cos^2(\theta(t))} = v \omega \cdot 1 = \omega r \cdot \omega = \omega^2 r \end{split}$$

Che é anch'essa costante, dato che nella sua espressione non vi é una dipendenza dal tempo.

Esercizio 1.3.1: Il moto di rivoluzione di un pianeta attorno alla sua stella puó essere approssimato ad un moto circolare uniforme². Sapendo che la Terra dista circa $1.496 \times 10^{11} \mathrm{m}$ dal Sole, qual'é il valore della velocitá angolare che ha la Terra nel suo moto di rivoluzione attorno al Sole? E quello dell'accelerazione centripeta?

Soluzione: La Terra impiega (circa) 1 anno a compiere una rivoluzione completa attorno al Sole, ed é pertanto questo il periodo del moto in esame:

$$1 \text{ anno} = 365 \text{ giorni} = 8760 \text{ ore} = 525600 \text{ minuti} = 31536000 \text{s}$$

Noto il periodo, é possibile calcolare la velocitá angolare:

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{3.15 \times 10^7 \text{s}} = 2.00 \times 10^{-7} \text{rad s}^{-1}$$

Nota la velocitá angolare, é possibile calcolare l'accelerazione centripeta:

$$a = \omega^2 r = (2.00 \times 10^{-7} \text{rad s}^{-1})^2 \cdot 1.496 \times 10^{11} \text{m} = 5.93 \times 10^{-3} \text{rad s}^{-2}$$

Un modo alternativo per derivare l'accelerazione centripeta é quello di osservare la formula dell'accelerazione per un moto circolare. Essendo il moto rettilineo uniforme privo di accelerazione angolare e dalla velocitá (angolare) costante, sostituendovi $\alpha(t)=0$ e $\omega(t)=\omega$ si ha:

$$\begin{cases} -|r| \; (\cos(\theta(t))\omega^2(t) + \sin(\theta(t)) \cdot 0) \\ -|r| \; (\sin(\theta(t))\omega^2(t) - \cos(\theta(t)) \cdot 0) \end{cases} = \begin{cases} -|r| \cos(\theta(t))\omega^2 \\ -|r| \sin(\theta(t))\omega^2 \end{cases} = \sqrt{(-|r|\cos(\theta(t))\omega^2)^2 + (-|r|\sin(\theta(t))\omega^2)^2} = \sqrt{(-|r|\cos(\theta(t))\omega^2)^2 + (-|r|\cos(\theta(t))\omega^2)^2} = \sqrt{(-|r|\cos(\theta(t))\omega^2)^2 + (-|r|\cos(\theta($$

La proiezione di un moto circolare uniforme lungo un asse viene detta **moto armonico**. Di fatto, ciascuna delle due componenti dimensionali di un moto circolare uniforme, se presa singolarmente, descrive un moto armonico.

$$\vec{p_r}(t) = |\vec{r}|\cos(\theta(t)) \qquad \qquad \vec{p_u}(t) = |\vec{r}|\sin(\theta(t)))$$

Per semplicitá, si consideri un moto lungo la componente x, e si introduca uno sfasamento ϕ di modo che non vi sia differenza fra seno e coseno (essendo l'una la traslazione dell'altra).

$$x(t) = r\cos(\omega t + \phi)$$

²Questo é vero solamente se il pianeta in questione si trova sufficientemente vicino alla stella. Piú é lontano, piú l'orbita che descrive si fa ellittica.

r viene detta **ampiezza**, ed indica l'altezza massima che la traiettoria descritta dal punto riesce a raggiungere. ϕ viene detta **fase iniziale** ed indica l'altezza al tempo iniziale. ω viene detta **frequenza angolare**.

Il tempo che un punto materiale impiega per percorrere un giro completo in un moto circolare uniforme corrisponde al tempo che un punto materiale impiega per passare da un punto ad una certa altezza ad un punto con la medesima altezza in un moto armonico. Ricordando che la formula per il calcolo della velocitá angolare di un moto circolare uniforme é $\omega=2\pi/T$, il periodo $T=2\pi/\omega$ viene detto **periodo di oscillazione** per il moto armonico.

Un altro caso di studio di moto circolare é il **moto circolare uniformemente accelerato**, in cui l'accelerazione angolare é costante. In questo caso, é effettivamente possibile risolvere l'integrale in maniera semplice:

$$\omega(t) - \omega(t_0) = \int_{t_0}^t \alpha(t') dt' = \int_{t_0}^t \alpha dt' = \alpha \int_{t_0}^t dt' = \alpha \cdot (t - t_0) = \alpha t - \alpha t_0$$

Da cui si ha:

$$\theta(t) - \theta(t_0) = \int_{t_0}^t \omega(t') dt' = \int_{t_0}^t \omega(t_0) + \alpha t - \alpha t_0 dt' = \int_{t_0}^t \omega(t_0) dt' + \int_{t_0}^t \alpha t dt' - \int_{t_0}^t \alpha t_0 dt' = \omega(t_0) \int_{t_0}^t dt' + \alpha \int_{t_0}^t t dt' - \alpha \int_{t_0}^t t_0 dt' = \omega(t_0) (t - t_0) + \alpha \left(\frac{1}{2}t^2\right) - \alpha \left(\frac{1}{2}t_0^2\right) = \omega(t_0) (t - t_0) + \frac{1}{2}\alpha (t - t_0)^2$$

Ovvero:

$$\omega(t) = \omega(t_0) + \alpha(t-t_0)$$

$$\theta(t) = \theta(t_0) + \omega(t_0)(t-t_0) + \frac{1}{2}\alpha(t-t_0)^2$$

Che corrisponde al risultato trovato per il moto uniformemente accelerato in una dimensione.

1.4. Principio di relativitá

Siano A e B due sistemi di riferimento, dove uno dei due si sta muovendo rispetto all'altro di moto rettilineo uniforme. Se si osserva la situazione dal punto di vista di A, il sistema di riferimento A é fermo mentre B si sta muovendo di moto rettilineo uniforme con velocitá v rispetto a questo. Se si osserva la situazione dal punto di vista di B, il sistema di riferimento B é fermo mentre A si sta muovendo di moto rettilineo uniforme con velocitá -v rispetto a questo. Entrambe le esperienze sono equamente valide.

Questo sta a significare che non esiste alcun modo di determinare in senso "assoluto" se un sistema di riferimento é fermo oppure in moto rettilineo uniforme, ma é possibile farlo solamente rispetto ad un secondo sistema di riferimento. Questa osservazione prende il nome di **principio di relativitá**. Sistemi di riferimento che sono fermi l'uno rispetto all'altro o in moto rettilineo uniforme l'uno rispetto all'altro si dicono **inerziali**.

Le descrizioni compiute da piú sistemi di riferimento inerziali del moto di uno stesso punto materiale possono essere messe in relazione fra di loro. Siano A e B due sistemi di riferimento con origine coincidente, e sia P un punto materiale. Si osservi la situazione dal punto di vista di A, e si supponga che B si stia muovendo di moto rettilineo uniforme rispetto a questo con velocitá \vec{v}_{BA} . Entrambi i sistemi di riferimento osserveranno P muoversi, ma non necessariamente alla stessa velocitá e non necessariamente compiendo la stessa traiettoria. In questo scenario vi sono tre vettori posizione, $\vec{r}_{BA}(t)$, $\vec{r}_{PA}(t)$ e $\vec{v}_{PB}(t)$. Questi indicano, rispettivamente: la posizione di P rispetto ad A, la posizione di P rispetto a P0 e la posizione di P1 rispetto ad P2. Tali vettori cambiano di direzione e/o di modulo in ogni istante, da cui la dipendenza dal tempo. Il vettore $\vec{r}_{BA}(t)$ ha origine nell'origine di P3 e punto di applicazione nell'origine di P4 e punto di applicazione del primo coincidente con l'origine del secondo, la loro somma avrá origine nell'origine di P4 e punto di applicazione in P5, ma questo vettore é precisamente $\vec{r}_{PA}(t)$. In altre parole, i reciproci vettori posizione sono componibili semplicemente per somma:

$$\vec{r}_{PA}(t) = \vec{r}_{BA}(t) + \vec{r}_{PB}(t)$$

Essendo poi la velocitá la derivata della posizione, si osserva che anche questa puó essere composta per somma:

$$\frac{d}{dt}(\vec{r}_{PA}(t)) = \frac{d}{dt}(\vec{r}_{BA}(t) + \vec{r}_{PB}(t)) \Rightarrow \frac{d}{dt}\vec{r}_{PA}(t) = \frac{d}{dt}\vec{r}_{BA}(t) + \frac{d}{dt}\vec{r}_{PB}(t) \Rightarrow \vec{v}_{PA}(t) = \vec{v}_{BA} + \vec{v}_{PB}(t)$$

Derivando ulteriormente l'espressione, si ottiene che l'accelerazione di P non dipende dal sistema di riferimento, dato che \vec{v}_{BA} é una costante.

$$\frac{d}{dt}(\vec{v}_{PA}(t)) = \frac{d}{dt}(\vec{v}_{BA} + \vec{v}_{PB}(t)) \Rightarrow \frac{d}{dt}\vec{v}_{PA}(t) = \frac{d}{dt}\vec{v}_{BA} + \frac{d}{dt}\vec{v}_{PB}(t) \Rightarrow \vec{a}_{PA}(t) = \vec{a}_{PB}(t)$$