FACULTE DES SCIENCES D'ALGER DEPARTEMENT DE MATHEMATIQUES

SEMINAIRES 1965 – 1966

Introduction au Langage Fonctoriel

Rédigé par M. Karoubi d'après un cours de Monsieur A. Grothendieck.

Ce texte a été transcrit et édité par Mateo Carmona. La transcription est aussi fidèle que possible au typescript. Cette édition est provisoire. Les remarques, commentaires et corrections sont bienvenus.

https://agrothendieck.github.io/

TABLE DE MATIÈRES

0. Cadre logique	5
I. Généralités sur les catégories	8
1. Type de diagramme	8
2. Catégorie	9
3. Exemples de catégories	12
4. Produit de catégories, somme de catégories	17
5. Équivalence de catégories	19
6. Limite projective, limite inductive	23
7. Catégorie filtrante	35
II. Catégorie abélienne	37
1. Catégorie additive	37
2. Catégorie abélienne	42
3. Exactitude dans une catégorie abélienne	42
4. Diagrammes dans une catégorie abélienne	42
5. Objet injectif. Objet projectif	42
III. Foncteurs représentables	43
1. Définition et propriétés	43
2. Application	45
3. Structures algébriques dans les catégories	46

Ce fascicule contient une rédaction succincte d'une série d'exposés que Monsieur A. Grothendieck a bien voulu venir faire à Alger au cours du mois de Novembre 1965. Il a pour but de familiariser un débutant avec les éléments du langage fonctoriel, langage qui sera utilisé par la suite dans les divers séminaires : Algèbre Homologique dans las catégories abéliennes, Fondement de la *K*-théorie...

Les propositions non démontrées sont de deux types : des sorites dont la démonstration tiendra lieu d'exercices, des propositions moins évidentes (signalés par une astérisque) dont on trouvera les démonstrations dans les ouvrages de références.

§ 0. — CADRE LOGIQUE

Lorsque l'on définit une catégorie, il y a des inconvénients à supposer que les forment une classe, au sens de la théorie des ensembles de Gödel-Bernays. En effet, si l'on sait définir les applications d'une classe dans une autre, ces applications ne forment cependant pas elles-mêmes une classe. En particulier on ne saurait parler de la catégorie des foncteurs d'une catégorie dans une autre. Aussi se placera-on dans le cadre de la théorie des ensembles de Bourbaki pour définir les *Univers*.

Univers:

On appelle univers un ensemble U vérifiant les axiomes suivants :

- (U_1) Si Y appartient à X et si X appartient à \mathfrak{U} , alors Y appartient à \mathfrak{U} .
- (U_2) Si X et Y sont des éléments de $\mathfrak U$ alors $\{X,Y\}$ est un élément de $\mathfrak U$.
- (U_3) Si X est un ensemble appartenant à \mathfrak{U} , l'ensemble $\mathfrak{P}(X)$ des parties de X est un élément de \mathfrak{U} .
- (U_4) Si $(X_i)_{i\in I}$ est une famille d'ensembles appartenant à \mathfrak{U} , et si I est un élément de \mathfrak{U} , alors $\bigcup_{i\in I} X_i$ appartient à \mathfrak{U} .

On déduit de ces axiomes les propositions suivantes :

(1) Si X est un élément de \mathfrak{U} , $\{X\}$ est un élément de \mathfrak{U} .

- (2) X et Y sont des éléments de \mathfrak{U} si et seulement si le couple¹ (X,Y) est un élément de \mathfrak{U} .
- (3) L'ensemble vide est un élément de \mathfrak{U} (puisque c'est un élément de $\mathfrak{P}(X)$ pour tout ensemble X de l'univers \mathfrak{U}).
- (4) Si Y est contenu dans X et si X appartient à \mathfrak{U} alors Y appartient à \mathfrak{U} .
- (5) Si $(X_i)_{i\in I}$ est une famille d'ensembles de $\mathfrak U$ et si I appartient à $\mathfrak U$, alors $\prod_{i\in I} X_i$ appartient à $\mathfrak U$.
- (6) Si X est un ensemble appartenant à \mathfrak{U} , Card(X) < Card (\mathfrak{U}) .
- (7) L'univers $\mathfrak U$ n'est pas un élément de $\mathfrak U$. En effet si $\mathfrak U$ appartient à $\mathfrak U$, alors $\mathfrak V(\mathfrak U)$ appartient à $\mathfrak U$. Soit E appartenant à $\mathfrak V(\mathfrak U)$ (donc E appartient à $\mathfrak U$) défini ainsi: $E = \{X \in \mathfrak U | X \notin X\}$

On aurait alors : E appartient à E si et seulement si E n'appartient pas à E!

(8) L'intersection d'une famille quelconque d'univers est un univers. En particulier si E est un ensemble et s'il existe un univers contenant E, alors il existe un plus petit univers contenant E qu'on appelle l'univers engendré par E.

Si E_0 est un ensemble quelconque, on se propose de chercher s'il existe un plus petit univers \mathfrak{U} contenant E_0 . Il apparaît naturel de plonger E_0 dans un ensemble E_1 par le procédé suivant :

Soit
$$G_0$$
 l'ensemble ainsi défini : $X \in G_0 \iff (\exists Y)(Y \in E_0 \text{ et } X \in Y)$ et $F_1 = E_0 \cup G_0$

Soit
$$G_1: X \in G_1 \iff (\exists Y)(\exists Z)(Y \in F_1, Z \in F_1 \text{ et } X = \{Y, Z\}) \text{ et } F_2 = F_1 \cup G_1$$

Soit
$$G_2: X \in G_2 \iff (\exists Y)(Y \in F_2 \text{ et } X = \mathcal{V}(Y)) \text{ et } F_3 = F_2 \cup G_2$$

Soit
$$G_3: X \in G \iff (\exists I)(\exists (X_i)_{i \in I})(I \in F_3, \forall i \in I, X_i \in F_3 \text{ et } X = \bigcup_{i \in I} X_i)$$
 et $F_4 = F_3 \cup G_3$.

 $^{^{1}}$ On rappelle que le couple (X,Y) est l'ensemble $\{X,\{X,Y\}\}$

On pose alors $E_1 = F_4 \cup \{E_0\}$

En itérant cette opération eçon forme une suite transfinie d'ensembles :

$$E_0 \subset E_1 \subset ... \subset E_{\alpha} \subset E_{\alpha+1} \subset ...$$

Pour qu'il existe un plus petit univers contenant E_0 , il faut et il suffit que cette suite devienne stationnaire 'partir d'un certain rang (c'est-à-dire qu'il existe α tel que $E_{\alpha+1}=E_{\alpha}$) E_{α} sera précisément l'univers $\mathfrak U$ recherché.

En particulier si l'on prend $E_0 = \emptyset$, on montre que $\mathfrak{U} = E_\omega = \bigcup_{n \in \mathbb{N}} E_n$. Lorsqu'on part d'un ensemble E_0 infini, on ne peut prouver l'existence d'un univers \mathfrak{U} contenant E_0 . Il convient donc d'ajouter aux axiomes de la théorie des ensembles l'axiome suivant :

(a_1) Axiome des univers :

Pour tout ensemble X, il existe un univers \mathfrak{U} , tel que X soit élément de \mathfrak{U} .

De plus comme on ne souhaite pas sortir d'un univers $\mathfrak U$ par l'usage du symbole τ de Hilbert on introduit l'axiome supplémentaire :

 (a_2) Si R est une relation, x une lettre figurant dans R, et s'il existe un élément X d'un univers $\mathfrak U$ tel que (X|x)R soit vrai alors l'objet $\tau_x(R(x))$ est un élément de $\mathfrak U$.

§ I. — GÉNÉRALITÉS SUR LES CATÉGORIES

1. Type de diagramme

1.1 Définition

Un type de diagramme D est la donnée d'un quadruple D = (Fl, Ob, s, b) où : Fl et Ob sont des ensembles respectivement appelés ensemble des flèches (ou des morphismes...), ensemble des *objets* (ou des sommets)

s et b sont des applications de Fl dans Ob respectivement appelés source, but.

• Un type de diagrammes sera souvent noté :

• Exemples : On peut représenter certains types de diagramme :

1.2 Morphisme d'un type de diagrammes dans une autre :

Si $D=(\operatorname{Fl}_D,\operatorname{Ob}_D,s_D,b_D)$ et $D'=(\operatorname{Fl}_{D'},\operatorname{Ob}_{D'},s_{D'},b_{D'})$ sont deux types de diagramme, un *morphisme F de D dans D'* est un couple d'applications $F=(F_0,F_1)$: $F_0:\operatorname{Ob}_D\longrightarrow\operatorname{Ob}_{D'},F_1:\operatorname{Fl}_D\longrightarrow\operatorname{Fl}_D$, tel que les diagrammes suivants commutent .

$$\begin{array}{ccc} \operatorname{Fl}_D & \xrightarrow{F_1} & \operatorname{Fl}_{D'} & & \operatorname{Fl}_D & \xrightarrow{F_1} & \operatorname{Fl}_{D'} \\ s_D \downarrow & & \downarrow s_{D'} & & b_D \downarrow & \downarrow b_{D'} \\ \operatorname{Ob}_D & \xrightarrow{F_0} & \operatorname{Ob}_{D'} & & \operatorname{Ob}_D & \xrightarrow{F_0} & \operatorname{Ob}_{D'} \end{array}$$

si D'' est un troisième type de diagrammes et $F'=(F_0',F_1')$ un morphisme de D' dans D'', on définit le composé des morphismes F et F', c'est le morphisme $F''=(F_0'',F_1'')$ de D dans D'' ou $F_0''=F_0'F_0$, $F_1''=F_1'F_1$. Le morphisme noté $1_D=(1_{\operatorname{Fl}_D},1_{\operatorname{Ob}_D})$ de D sur D est le morphisme identique de D.

1.3 Sous-type de diagramme d'un type de diagrammes.

Soit $D = (\mathrm{Ob}_D, \mathrm{Fl}_D, s_D, b_D)$ un type de diagrammes. On dit que $D' = (\mathrm{Ob}_{D'}, \mathrm{Fl}_{D'}, s_{D'}, b_{D'})$ est un sous-type de diagrammes de D si $\mathrm{Ob}_{D'}$ est inclus dans Ob_D , $\mathrm{Fl}_{D'}$ est inclus dans Fl_D et si $s_{D'}$ (respectivement $b_{D'}$) est la restriction à $\mathrm{Fl}_{D'}$ de s_D (respectivement b_D).

1.4. Si $D = (\mathrm{Ob}_D, \mathrm{Fl}_D, s_D, b_D)$ est un type de diagrammes le type de diagramme noté $D^{\circ} = (\mathrm{Ob}_D, \mathrm{Fl}_D, b_D, s_D)$ est appelé type de diagrammes opposé de D.

Un morphisme contravariant de types de diagrammes de D dans D' est un morphisme de type de diagramme de D° dans D'

2. Catégorie

Définition (2.1). — Une catégorie C est la donnée :

- (i) d'un type de diagramme (Fl,Ob,s,b) appelé type de diagramme sous-jacent à C, noté (Fl $_C$,Ob $_C$, s_C , b_C)
- (ii) d'une application du produit fibré $(Fl_C, b_C) \times_{Ob_C} (Fl_C, s_C)$ dans Fl_C , appelé loi de composition des flèches, notée $\mu_C : (f, g) \longrightarrow g \circ f = gf$ et vérifiant les propriétés :

- (a) (gf)h = g(fh) pour tous les éléments f, g, h de Fl_C tels que cette écriture ait un sens.
- (aa) pour tout objet X il existe une flèche 1_X telle que $s_C(1_X) = b_C(1_X) = X$, appelée flèche identique de X vérifiant $1_X f = f$, $f 1_X = f$ pour toute flèche f telle que cette écriture ait un sens.

On remarque que pour tout objet X, la flèche 1_X est unique.

Notations. Chaque fois que l'on écrit gf, il est entendu que la composition a un sens, c'est-à-dire que b(f) = s(g).

Si X et Y sont deux objets d'un type de diagramme D (resp. d'une catégorie C), l'ensemble des flèches de source X, de but Y est noté $\operatorname{Hom}_D(X,Y)$ ou $\operatorname{Fl}_D(X,Y)$ (resp. $\operatorname{Hom}_C(X,Y)...$)

Une flèche de source X et de but Y est aussi notée $f: X \longrightarrow Y$.

2.2 Foncteurs.

Soient C et C' deux catégories dont D et D' sont respectivement les types de diagrammes sous-jacents. Un foncteur de C dans C' est un morphisme $F = (F_0, F_1)$ du type de diagramme D dans le type de diagramme D', compatible avec la composition des flèches, c'est-à-dire tel que $F_1(f g) = F_1(f)F_1(g)$.

Pour tout X, $F_1(1_X)$ est alors la flèche identique de $F_0(X)$. Si C'' est une troisième catégorie de type de diagramme D'', F' un foncteur de C' dans C'', le foncteur composé des foncteurs F et F', F'' = F'F est le composé des morphismes de type de diagramme sous-jacent 1.2. On vérifie que F'' est compatible avec la composition des flèches. Pour tout catégorie C, de type de diagramme D, on définie un foncteur identique $1_C = 1_D$.

2.3. Soit C une catégorie de type de diagramme sous-jacent D. La catégorie opposée de C, notée C° , est la catégorie de type de diagramme D° , et dont la loi de composition des flèches $\mu_{C^{\circ}}$ est définie par $\mu_{C^{\circ}}(f,g) = \mu_{C}(g,f)$.

On remarque que $C^{\circ\circ} = C$.

Un foncteur contravariant de C dans C' on lui associe canoniquement un foncteur F° de C° dans C'° :

$$\begin{array}{ccc}
C & \longrightarrow & C^{\circ} \\
\downarrow^{F^{\circ}} & & \downarrow^{F^{\circ}} \\
C' & \longrightarrow & C'^{\circ}
\end{array}$$

On remarque que $(FG)^{\circ} = F^{\circ}G^{\circ}$, $1_C^{\circ} = 1_{C^{\circ}}$, $F^{\circ \circ} = F$

2.4 Monomorphisme - Epimorphisme.

2.4.1. On dit qu'une flèche $f: X \longrightarrow Y$ d'une catégorie C est un monomorphisme si pour tout objet T de C l'application naturelle qui à $u: T \longrightarrow X$, fait correspondre fu de $\operatorname{Hom}(T,X)$ dans $\operatorname{Hom}(T,Y)$ est injective. Une flèche $f: X \longrightarrow Y$ d'une catégorie C est un épimorphisme si f est un monomorphisme en tant que flèche de C° ou, ce qui est équivalent, si pour tout objet T de C l'application naturelle de $\operatorname{Hom}(Y,T)$ dans $\operatorname{Hom}(X,T)$ est injective.

Une flèche est un *bimorphisme* si c'est un monomorphisme et un épimorphisme.

2.4.2. Une flèche f de C est inversible à gauche (ou *rétractable*) s'il existe une flèche $g:b(f)\longrightarrow s(f)$ telle que $gf=1_{s(f)}$; g est une *rétraction* de f.

Une flèche f de C est *inversible* à droite (ou sectionnable) s'il existe une flèche $g:b(f)\longrightarrow s(f)$ telle que f $g=1_{b(f)}$; g est une section de f.

Une flèche rétractable et sectionnable est appelée un *isomorphisme*, il existe alors un $g:b(f)\longrightarrow s(f)$ unique tel que $fg=1_{b(f)}$ et $gf=1_{s(f)}$, g est *l'inverse* de f.

2.4.3. Une flèche rétractable est un monomorphisme. Une flèche sectionnable est un épimorphisme. Donc un isomorphisme est un bimorphisme. Les réciproques sont *fausses*.

2.5 Sous-objet, objet quotient.

Soit X un objet quelconque d'une catégorie C, on définit sur l'ensemble des monomorphismes de but X une relation de préordre: $i \le i'$ si et seulement si ii' se factorise par i c'est-à-dire si et seulement si il existe un morphisme u tel que le

diagramme suivant soit commutatif:

c'est-à-dire tel que i' = i u.

On remarque que u est un monomorphisme, et est déterminé de façon unique. On considère la relation d'équivalence associée à cette relation de préordre. Dans chaque classe d'équivalence on choisit (par exemple grâce au symbole τ) un monomorphisme que l'on appelle sous objet de X. Par abus du langage on appellera aussi sous-objet de X la source d'un tel monomorphisme. On notera (B,i) un sous objet de X, ou simplement B. La relation de préordre ci-dessus induit donc une relation d'ordre sur l'ensemble des sous objets de X. Si B, B' sont deux sous objets de X, la borné inférieure (resp. la borne supérieure) lorsqu'elle existe, est notée $B \wedge B'$ (resp. $B \vee B'$). Par exemple, dans la catégorie des ensembles, notée Ens, $B \wedge B' = B \cap B'$, $B \vee B' = B \cup B'$.

Dualement on définit les *objets quotients* d'un objet X, et une relation d'ordre sur leur ensemble.

2.6 Sous catégorie d'une catégorie.

Soit C une catégorie de type de diagramme sous-jacent D, on dit que C', de type de diagramme D' est une sous catégorie si D' est un sous-type de diagramme de D et si de plus $\mu_{C'}$ (loi de composition des flèches dans C') est la restriction de μ_C au produit fibre $(\operatorname{Fl}_{C'}, b_{C'}) \times_{\operatorname{Ob}_{C'}} (\operatorname{Fl}_{C'}, s_{C'})$.

On remarque que pour tout couple X, Y d'objets de C' on a : $\mathrm{Fl}_{C'}(X,Y) \subset \mathrm{Fl}_{C}(X,Y)$. Si de plus on a l'égalité on dit que C' est une sous-catégorie pleine de C.

3. Exemples de catégories

3.1. Soit une catégorie dont l'ensemble des objets se réduit à un seul élément, alors l'ensemble des flèches se trouve naturellement muni d'une structure de monoïde unitaire. Soit M une telle catégorie, C une catégorie quelconque, un foncteur $F = (F_0, F_1)$ de M dans C est essentiellement un homomorphisme de monoïde

de Fl_M dans $\operatorname{Hom}(X,X)$, où X est l'image par F_0 de l'unique objet de M. On appelle groupoïde une catégorie dans laquelle toute flèche est inversible ; si de plus l'ensemble des objets se réduit à un seul élément, l'ensemble des flèches est muni alors d'une structure de groupe.

3.2. Soit I un ensemble préordonné, on appelle *catégorie associée* à I, la catégorie notée Cat(I), dont l'ensemble des objets est I, et dont l'ensemble des flèches est le graphe de la relation de préordre ; si (i,j) est une flèche s(i,j) = j, b(i,j) = i, la composition des flèches se définit évidemment par (i,j)(j,k) = (i,k)(i,i) est la flèche identité de i. Les propriétés (a) et (a a) se vérifient immédiatement.

Inversement, pour toute catégorie C on peut définir sur $\operatorname{Ob} C$ une relation de préordre, à savoir : $X \leq Y \Leftrightarrow \operatorname{Hom}_C(X,Y) \neq \emptyset$. Une catégorie C est isomorphe à une catégorie $\operatorname{Cat}(I)$ si et seulement si toute flèche de $\operatorname{Fl} C$ est un monomorphisme. Il suffit de prendre $I = \operatorname{Ob} C$ muni de la relation de préordre précédente.

3.3 Catégories de types de diagramme, catégories de catégories

Dans cette section, on choisit une fois pour toute un univers \mathfrak{U} , et tous les ensembles utilisés sont des éléments de \mathfrak{U} .

Soit l'ensemble des "types de diagramme dans $\mathfrak U$ ", notée $\operatorname{Diag}_{\mathfrak U}$, (resp. l'ensemble des "catégories dans $\mathfrak U$ ", noté $\operatorname{Cat}_{\mathfrak U}$) c'est-à-dire des types de diagramme D (resp. des catégories C) tels que les ensembles Ob_D , Fl_D (resp. Ob_C , Fl_C) soient des éléments de $\mathfrak U$. En considérant 1.2 (resp. 2.2) on définit la catégorie des types de diagramme dans $\mathfrak U$ notée $\operatorname{\underline{Diag}}_{\mathfrak U}$ (resp. la catégorie des catégories dans $\mathfrak U$ notée $\operatorname{\underline{Cat}}_{\mathfrak U}$).

Explicitons par exemple $\underline{Cat}_{\mathfrak{U}}$, le type de diagramme est le suivant : l'ensemble des objets est $Cat_{\mathfrak{U}}$, l'ensemble des flèches est l'ensemble des triples (F,C,C') où F est un foncteur de la catégorie C dans la catégorie C', s(F,C,C')=C, b(F,C,C')=C'. La loi de composition des flèches est la compositions des foncteurs définie en **2.2**. On vérifie les propriétés (a) et (aa).

3.4 Catégorie des morphismes de type de diagramme d'un type de diagramme dans une catégorie, catégorie des foncteurs d'une catégorie dans une autre

Soient $D=(\mathrm{Ob}_D,\mathrm{Fl}_D,s_D,b_D)$ un type de diagramme et C' une catégorie de

type de diagramme sous-jacent $(Ob_{C'}, Fl_{C'}, s_{C'}, b_{C'})$. Un morphisme de type de diagramme D dans C' est aussi appelé diagramme de type D dans C'.

On considère l'ensemble des morphismes de type de diagramme de D dans C' noté $\operatorname{Diag}(D,C')$. Soient $F=(F_0,F_1),\ G=(G_0,G_1)$ deux morphismes de type de diagramme de D dans C'. Une flèche de source F de but G est une application u de Ob_D dans $\operatorname{Fl}_{C'}(u(x)$ sera souvent noté u_X) telle que pour toute flèche $f:X\longrightarrow Y$ de D, le diagramme suivant soit commutatif :

$$F_{0}(X) \xrightarrow{F_{1}(f)} F_{0}(Y)$$

$$\downarrow^{u(X)} \qquad \qquad \downarrow^{u(Y)}$$

$$G_{0}(X) \xrightarrow{G_{1}(f)} G_{0}(X)$$

Si u et v sont deux flèches, $u: F \longrightarrow G$, $v: G \longrightarrow H$, la flèche composée $vu: F \longrightarrow H$ est définie vu(X) = v(X)u(X) pour tout X de Ob_D .

La flèche identique de F notée 1_F est définie par $1_F(X) = 1_{F_0}(X)$ pour tout X de Ob_D . On vérifie les propriétés (a) et (a a). On a alors défini la catégorie des morphismes de type de diagramme de D dans C', encore appelée catégorie des diagrammes de type D dans C' et notée $\mathrm{Diag}(D,C')$.

Si C et C' sont deux catégories de types de diagrammes sous-jacents D et D', on défini également la catégorie des foncteurs de C dans C' notée $\underline{\text{Hom}}(C,C')$.

C'est par définition une sous-catégorie pleine de Diag(D, C').

- 3.5 Exemples de catégories de diagramme de type donné dans une catégorie
- **3.5.1.** Si D est tel que Ob_D se réduit à un seul élément et si l'ensemble des flèches est vide, alors $\operatorname{Diag}(D, C')$ est canoniquement isomorphe à la catégorie C'.
- **3.5.2**. Si D est du type suivant : $\bullet \longrightarrow \bullet$, alors la catégorie $\underline{\text{Diag}}(D, C')$ est appelée catégorie des flèches de C', notée $\underline{Fl}(C')$.

Les objets s'identifient aux éléments de FlC' et un morphisme de la flèche $f: X \longrightarrow Y$, dans la flèche $f': X' \longrightarrow Y'$ est défini par un couple de flèche (u, v)

tel que le diagramme suivant soit commutatif :

$$\begin{array}{ccc} X & \longrightarrow Y \\ \downarrow \downarrow & & \downarrow v \\ X' & \longrightarrow Y'. \end{array}$$

3.5.3. Si *D* est du type suivant :

les objets de $\underline{\text{Diag}}(D, C')$ sont essentiellement les "carrés" (non nécessairement commutatifs) de C':

$$\begin{array}{c} X \longrightarrow Y \\ \downarrow & \downarrow \\ Z \longrightarrow T, \end{array}$$

et un morphisme d'un tel carré dans un autre est défini par un quadruple de flèches (u, v, r, s) tel que tous les côtés latéraux de "cube" suivant, où interviennent ces flèches, soient commutatifs :

3.6 Diagramme avec relations de commutation

3.6.1. Soit D un type de diagramme, on appelle *chemin* une suite finie $f_1, f_2, ... f_n$ de flèches de D formellement composable, c'est-à-dire telle que $s(f_{i+1}) = b(f_i)$ pour i = 1, ..., n-1. On considère le type de diagramme dont les objets sont ceux de D, dont les flèches sont les chemins $c = (f_i)_{1 \le i \le n}$ avec $s(c) = s(f_1)$ et

 $b(c) = b(f_n)$. Sur ce type de diagramme en définit la composition des chemins, elle consiste à mettre "bout à bout" deux chemins s'ils sont formellement composables. On obtient ainsi une catégorie notée \hat{D} , appelée catégorie libre engendré par le type de diagramme D.

Soit C une catégorie, pour tout morphisme de type de diagramme $\varphi: D \longrightarrow C$, il existe un foncteur et un seul $\hat{\varphi}: \hat{D} \longrightarrow C$ tel que pour tout chemin $c = (f_i)_{1 \le i < n}$, $\hat{\varphi}_1(c) = \varphi_1(f_1)...\varphi_1(f_{n-1})$.

3.6.2. On appelle *donnée de commutation* sur D, la donnée d'un ensemble R de couples de flèches de \hat{D} , (c,c') tels que s(c)=s(c') et b(c)=b(c').

Soit C une catégorie, on dit qu'un diagramme φ de type D dans C vérifie les relations de commutation R si pour tout couple (c,c') de R, $\hat{\varphi}_1(c) = \hat{\varphi}_1(c')$. On note $\underline{\operatorname{Diag}}_R(D,C)$ la sous-catégorie pleine de $\underline{\operatorname{Diag}}(D,C)$ formée par les diagrammes de type D vérifiant R.

3.6.3. Dans $Fl\hat{D}$ on définit la relation d'équivalence R suivante :

R(c,c') si et seulement si s(c)=s(c') et b(c)=b(c'), la classe de c sera notée \overline{c} .

Soit \widetilde{D} la catégorie telle que $\mathrm{Ob}(\widetilde{D}) = \mathrm{Ob}(D) = \mathrm{Ob}(D)$ et $\mathrm{Fl}(\widetilde{D}) = \mathrm{Fl}(D)/R$ avec $s(\overline{c}) = s(c)$ et $b(\overline{c}) = b(c)$. La catégorie $\underline{\mathrm{Hom}}(\widetilde{D},C)$ est appelée catégorie des diagrammes de $type\ D$ commutatifs dans C et notée $\mathrm{Diagcomm}(D,C)$.

Exemple

Soit D le type de diagramme représenté par

$$\begin{array}{ccc}
& \xrightarrow{f_1} & \bullet \\
& \xrightarrow{f_3} & \bullet
\end{array}$$

Alors $Ob\hat{D} = Ob(D)$, $Fl\hat{D} = \{f_1, f_2, f_3, f_4, (f_2, f_1), (f_3, f_4)\}$ chemin vide, dans \widetilde{D} on identifie (f_2, f_1) et (f_3, f_4) on peut donc représenter \widetilde{D} par

4. Produit de catégories, somme de catégories

4.1 Produit de catégories

Soit $(C_i)_{i \in I}$ une famille de catégories, I un ensemble.

- **4.1.1.** La catégorie produit des catégories C_i , notée $C = \prod_{i \in I} C_i$ est ainsi définie:
 - Ob $C = \prod_{i \in I} \text{Ob } C_i$, Fl $C = \prod_{i \in I} \text{Fl } C_i$, $s = \prod_{i \in I} s_i$, $b = \prod_{i \in I} b_i$.
 - Si $f = (f_i)_{i \in I}$ et $g = (g_i)_{i \in I}$) sont deux flèches, la flèche composé gf est la flèche $(g_i f_i)_{i \in I}$; la flèche identique sur $\prod_{i \in I}$ est la flèche $\prod_{i \in I} 1X_i$.

On définit une famille de foncteurs notée $(\operatorname{pr}_i)_{i\in I}$, $\operatorname{pr}_i:\prod_{i\in I}C_i\longrightarrow C_i$ est tel que $\operatorname{pr}_i((X_i)_{i\in I})=X_i$, $\operatorname{pr}_i((f_i)_{i\in I})=f_i$.

Proposition **4.1.2**. — Pour tout catégorie T, l'application de $\operatorname{Hom}(T, \prod_{i \in I} C_i)$ dans $\prod_{i \in I} \operatorname{Hom}(T, C_i)$ qui à u fait correspondre $(\operatorname{pr}_i \circ a)_{i \in I}$ est bijective.

4.2 Multifoncteurs

- **4.2.1**. On considère une famille $(C_i)_{i \in I}$ de catégories, deux sous-ensembles J et K de I tels que $I = J \cup K$, $J \cap K \neq \emptyset$. Soit C la catégorie produit de $\prod_{i \in I} C_i$ et de $\prod_{i \in I} C_i^{\circ}$. Un multifoncteur de $\prod_{i \in I} C_i$ dans une catégorie C', covariant par rapport aux indices i de J et contravariant par rapport aux indices i de K est un foncteur de K dans K'.
- **4.2.2.** Exemples. Si C, C', C'' sont trois catégories on considère le *produit* de catégories $\underline{\operatorname{Hom}}(C,C') \underline{\Pi} \, \underline{\operatorname{Hom}}(C',C'')$ l'application de $\operatorname{Hom}(C,C') \underline{\Pi} \, \operatorname{Hom}(C',C'')$ dans $\operatorname{Hom}(C,C'')$ qui à (F,G) fait correspondre GF permet de définir un *bifoncteur*, deux fois covariant de $\underline{\operatorname{Hom}}(C,C') \underline{\Pi} \, \underline{\operatorname{Hom}}(C',C'')$ dans $\operatorname{Hom}(C,C'')$. Soient F et F' deux foncteurs de C dans C', G et G' deux foncteurs de G' dans G'', G'', G'' et G'' de flèche on fait correspondre la flèche notée G'' G'' définie pour tout objet G'' de G'' de flèche on mutatif

suivant:

$$G_{\circ}F_{\circ}(X) \xrightarrow{G_{1}(u(X))} G_{\circ}F'_{\circ}(X)$$

$$v(F_{\circ}(X)) \downarrow \qquad \qquad \downarrow v(F'_{\circ}(X))$$

$$G'_{\circ}F_{\circ}(X) \xrightarrow{G'_{1}(u(X))} G'_{\circ}F'_{\circ}(X)$$

On vérifiera que v^*u est bien un morphisme fonctoriel, c'est-à-dire que pour toute $f: X \longrightarrow Y$ de C le diagramme suivant est commutatif :

et que l'application qui à (u, v) fait correspondre v^*u respecte la composition des flèches.

Si l'on fixe F appartenant à $\underline{\operatorname{Hom}}(C,C')$ (resp. $\underline{\operatorname{Hom}}(C',C'')$) on obtient un foncteur de $\underline{\operatorname{Hom}}(C',C'')$ dans $\underline{\operatorname{Hom}}(C,C'')$ (resp. $\underline{\operatorname{Hom}}(C,C')$ dans $\underline{\operatorname{Hom}}(C,C'')$) noté F_* (resp. F^*).

4.2.3. Si C' et C'' sont deux catégories, définissons un bifoncteur φ de $C' \prod \underline{Hom}(C',C'')$ dans C''.

A l'objet (X, G) on fait correspondre $\varphi_{\circ}(X, G) = G_{\circ}(X)$.

A la flèche (f,v), où $f:X\longrightarrow Y,\,v:G\longrightarrow G'$ on ait correspondre $\varphi_1(f,v)$ définie par le diagramme suivant :

Si A est une catégorie ponctuelle (Ob $A = \{\emptyset\}$, $\operatorname{Fl}_A = 1_{\{\emptyset\}}$), pour toute catégorie C, $\operatorname{\underline{Hom}}(A,C)$ est canoniquement isomorphe à C, et le bifoncteur cidessus peut s'interpréter comme un foncteur de $\operatorname{\underline{Hom}}(A,C')\prod\operatorname{\underline{Hom}}(C',C'')$ dans $\operatorname{Hom}(A,C'')$; ce n'est autre que celui définie en **4.2.2**.

4.3 Somme de catégories

- **Rappel**. Soit $(X_i)_{i \in I}$ une famille d'ensembles, $S = \coprod_{i \in I} X_i$ sa somme. Pour tout x élément de S on sait qu'il existe un unique indice noté i(x) et un élément $x_{i(x)}$ dans $X_{i(x)}$ tels que $x = (x_{i(x)}, i(x))$.
- **4.3.1.** Soit $(C_i)_{i \in I}$ une famille de catégories, I un ensemble. La catégorie somme de la famille $(C_i)_{i \in I}$ notée $S = \coprod C_i$ est définie par le type de diagramme suivant : Ob $S = \coprod_{i \in I} C_i$, $Fl S = \coprod_{i \in I} Fl C_i$, $s = \coprod_{i \in I} s_i$, $b = \coprod_{i \in I} b_i$, et la composition des flèches suivante : deux flèches $f = (f_{i(f)}, i(f))$ et $g = (g_{i(g)}, i(g))$ sont composables si et seulement si b(f) = s(g) si et seulement si i(f) = i(g) = i et $b_i(f_i) = s_i(g_i)$, on a alors $gf = (g_i f_i, i)$, l'identité pour un objet X est la flèche $1_X = (1_{X_{i(x)}, i(x)})$.

On définit une famille de foncteurs notée $(inj_i)_{i\in I}$, $inj_i: C_i \longrightarrow S$, tel que $inj_i(X_i) = (X_i, i)$, $inj_i(f_i) = (f_i, i)$.

Proposition **4.3.2**. — Pour toute catégorie T, l'application de $\operatorname{Hom}(\coprod_{i\in I} C_i, T)$ dans $\prod_{i\in I} \operatorname{Hom}(C_i, T)$, qui à u fait correspondre $(u \circ \operatorname{inj}_i)_{i\in I}$, est bijective.

4.3.3. Soit $\prod_{i \in I} C_i$ (resp. $\coprod_{i \in I} C_i$) la catégorie produit (resp. somme) d'une famille $(C_i)_{i \in I}$ de catégories, alors pour tout catégorie T, la bijection naturelle de $\operatorname{Hom}(T, \prod_{i \in I} C_i)$ dans $\prod_{i \in I} \operatorname{Hom}(T, C_i)$ (resp. $\operatorname{Hom}(\coprod_{i \in I} C_i)$, T dans $\prod_{i \in I} \operatorname{Hom}(C_i, T)$) est un isomorphisme de $\operatorname{Hom}(T, \prod_{i \in I} C_i)$ dans $\prod_{i \in I} \operatorname{Hom}(T, C_i)$ (resp. $\operatorname{Hom}(\coprod_{i \in I} C_i, T)$ dans $\prod_{i \in I} \operatorname{Hom}(C_i, T)$).

5. Équivalence de catégories

- **5.1 Définition**. Soit $F = (F_0, F_1)$ un foncteur d'une catégorie C dans une catégorie C'.
- **5.1.1.** Le foncteur est dit *fidèle* (resp. *pleinement fidèle*) si pour tout couple d'objets (X, Y), $F_1|_{\text{Hom}(X,Y)}$, restriction de F_1 à Hom(X,Y), est *injectif* (resp. *bijectif*).
- Si F_1 est injectif (resp. bijectif) alors F est fidèle (resp. pleinement fidèle). Les réciproques sont fausses.
- **5.1.2**. Le foncteur F est dit essentiellement surjectif si pour tout objet X' de C', il existe un objet X de C tel que $F_0(X)$ soit isomorphe à X'.
- **5.1.3**. Un foncteur *F* est appelé une équivalence de catégories s'il est pleinement fidèle et essentiellement surjectif.

- **5.1.4**. Ces propriétés se conservent par la composition de foncteurs.
- **5.1.5**. On dit que la catégorie C est équivalente à la catégorie C', s'il existe un foncteur $F: C \longrightarrow C'$ qui soit une équivalence de catégories ; on définit ainsi une relation d'équivalence sur $Cat_{\mathfrak{U}}$. En effet la relation est évidemment réflexive, elle est transitive **5.1.4**, elle est symétrique du fait de la proposition suivante :

Proposition **5.1.6**. — Le foncteur F de C dans C' est une équivalence de catégories si et seulement si il existe un foncteur G de C' dans C, tel que GF soit isomorphe à $1_{C'}$. Un tel foncteur G est appelé un quasi-inverse de F.

Alors que l'inverse d'un morphisme lorsqu'il existe est unique, un foncteur peut avoir plusieurs quasi-inverses qui sont isomorphes entre eux.

Démonstration. Supposons que F soit une équivalence de catégories. Puisque F est essentiellement surjectif, pour tout objet X' de C', l'ensemble des objets de C tels que l'image par F_0 soit isomorphe à X' est non vide. On en choisit un (grâce au symbole τ !) X et l'on note u_x , un isomorphisme de $F_0(X)$ sur X'.

On pose alors $G_{\circ}(X') = X$.

Pour toute flèche $f': X' \longrightarrow Y'$, on a le diagramme suivant :

$$F_{\circ}(X) \xrightarrow{u_{X}} X'$$

$$\downarrow^{f'}$$

$$F_{\circ}(Y) \xrightarrow{u_{Y}} Y'$$

Il existe une unique flèche de $F_0(X)$ dans $F_0(Y)$ rendant le diagramme commutatif $(u_y^{-1}f'u_x)$. Puisque F est pleinement fidèle, cette flèche est l'image par F_1 d'une unique flèche $f:X\longrightarrow Y$.

On pose $G_1(f') = f$.

Par construction de $G = (G_0, G_1)$ on a les deux diagrammes commutatifs suivants :

$$X \xrightarrow{\approx} G_{\circ}F_{\circ}(X) \qquad X' \xrightarrow{\approx} F_{\circ}G_{\circ}(X')$$

$$\downarrow \qquad \qquad \downarrow G_{1}F_{1}(f) \qquad \qquad \downarrow F_{0}G_{0}(f')$$

$$Y \xrightarrow{\approx} G_{\circ}F_{\circ}(Y) \qquad Y' \xrightarrow{\approx} F_{\circ}G_{\circ}(Y')$$

ce qui montre que GF est isomorphe à 1_C , et FG isomorphe à $1_{C'}$.

Réciproquement supposons que F possède un quasi-inverse G; alors F est évidement essentiellement surjectif, d'autre part $F_1|_{\operatorname{Hom}(X,Y)}$ est une bijection de $\operatorname{Hom}(X,Y)$ sur $\operatorname{Hom}(F_0(X),F_0(Y))$ pour tout couple d'objets (X,Y). En effet $F_1|_{\operatorname{Hom}(X,Y)}$ est une surjection sur $\operatorname{Hom}(F_0(X),F_0(Y))$. C'est aussi une injection, soient deux flèches, f et g de X dans Y telles que $F_1(f) = F_1(g)$, alors $G_1F_1(f) = G_1F_1(g)$, comme il g a une seule flèche de g dans g rendant le diagramme ci-dessus commutatif, on a g = g.

$$\begin{array}{ccc} X & \stackrel{\approx}{\longrightarrow} & G_0 F_0(X) \\ f & & \downarrow_{G_0 F_0(f) = G_0 F_0(g)} \\ Y & \stackrel{\approx}{\longrightarrow} & G_0 F_0(Y) \end{array}$$

5.2

Proposition 5.2.1. — Si F est un foncteur d'une catégorie C dans une catégorie C', les propositions suivantes sont équivalentes :

- (a) F est pleinement fidèle;
- (b) Il existe une sous-catégorie pleine C'_1 de C' telle que F se factorise par C'_1 au moyen d'un foncteur qui est une équivalence de catégories.

Si F est pleinement fidèle, il suffit de prendre C_1' l'image par F de C, ou l'image essentielle de F par C (c'est-à-dire l'ensemble des objets de C' isomorphes à F(X) X variant dans Ob_C).

Réciproquement si F se factorise par C'_1 sous-catégorie pleine de C', le foncteur inj : $C'_1 \longrightarrow C$ est pleinement fidèle, et la composition avec une équivalence de catégorie donne un foncteur pleinement fidèle.

Proposition **5.2.2**. — Soit F un foncteur de C dans C', T une catégorie, F_* le foncteur de $\underline{\operatorname{Hom}}(C',T)$ dans $\underline{\operatorname{Hom}}(C,T)$ **4.2.1** on a les propriétés suivantes :

- (i) Si F est fidèle alors F_* est fidèle;
- (ii) Si F est pleinement fidèle alors F_* est pleinement fidèle ;

(iii) Si F est une équivalence de catégories alors F_{*} est une équivalence de catégories.

Si l'on considère F^* le foncteur $\underline{\text{Hom}}(T,C)$ dans $\underline{\text{Hom}}(T,C')$, seule le propriété (iii) est vraie.

Proposition 5.2.3. — Soit F un foncteur de C dans C' pleinement fidèle ; alors une flèche f de C est inversible si et seulement si $F_1(f)$ est inversible.

Proposition **5.2.4**. — Soit dans $Cat_{\mathfrak{U}}$ une famille de foncteurs $(F_i)_{i\in I}$, I élément de \mathfrak{U} , $F_i:C_i\longrightarrow C_i'$, et soit $\prod_{i\in I}F_i:\prod_{i\in I}C_i\longrightarrow\prod C_i'$, on a les propriétés suivantes:

- (i) Si pour tout i élément de I, F_i est fidèle alors $\prod_{i \in I} F_i$ est fidèle.
- (ii) Si pour tout i élément de I, F_i est pleinement fidèle alors $\prod_{i \in I} F_i$ est pleinement fidèle.
- (iii) Si pour tout i élément de I, F_i est une équivalence de catégories alors $\prod_{i \in I} F_i$ est une équivalence de catégories.

On énoncera la proposition duale.

5.3 Exemple

Soient X un espace topologique, connexe par arc, localement simplement connexe par arc, x un élément de X. On note Rev(X), la catégorie des revêtements de X éléments d'un univers $\mathfrak U$ donné, $\Pi = \Pi_1(X,x)$, $\text{Ens}(\Pi)$ la catégorie des ensembles de $\mathfrak U$ sur lesquels Π opère.

Proposition. — Les catégories Rev(X) et $Ens(\Pi)$ sont équivalentes.

Au revêtement E, X, p on fait correspondre la fibre $F = p^{-1}(x)$, Π opère sur F; si E', X, p' est un revêtement et $f: E \longrightarrow E'$ un morphisme de revêtement, à f on fait correspondre $f_{|p^{-1}(x)}: F \longrightarrow F'$ qui est compatible avec Π . On a ainsi défini un foncteur $\alpha: \operatorname{Rev}(X) \longrightarrow \operatorname{Ens}(\Pi)$.

Construisons un foncteur quasi-inverse. Soit F un ensemble sur lequel Π opère. La revêtement universel \widetilde{X} de X est un fibré principal de groupe Π , on considère le fibré associé $\widetilde{X} *_{\Pi} F$ de fibre F, c'est un revêtement de X, on défini ainsi un foncteur β : Ens $(\Pi) \longrightarrow \operatorname{Rev}(X)$. On vérifiera que $\beta \alpha \simeq 1_{\operatorname{Rev}(X)}$ et $\alpha \beta \simeq 1_{\operatorname{Ens}(\Pi)}$.

6. Limite projective, limite inductive

6.1. Soit I un type de diagramme, C une catégorie et φ un morphisme de type de diagramme de I dans C (c'est-à-dire un diagramme de type I dans C).

6.1.1. Une famille $(u_i)_{i \in ObI}$ de morphismes de C, de source X, $u_i : X \longrightarrow \varphi_0(i)$ est dite *admissible pour* φ , si pour toute flèche $f : i \longrightarrow j$, le diagramme suivant est commutatif :

Une telle famille est notée $(X, (u_i)_{i \in ObI})$.

6.1.2. On appelle *limite projective* du diagramme φ , une famille admissible pour $\varphi:(X,(u_i)_{i\in ObI})$, qui est "universelle" dans le sens suivant : pour toute famille admissible pour $\varphi:(Y,(v_i)_{i\in ObI})$, il existe un unique morphisme $u:Y\longrightarrow X$ tel que pour tout élément i de ObI, le diagramme suivant soit commutatif :

Deux limites projectives du diagramme φ sont canoniquement isomorphes. Si l'ensemble des limites projectives d'un diagramme φ n'est pas vide, on en choisit une que l'on note $\varprojlim_I \varphi$ (ou si aucune confusion n'est possible $\varprojlim_I \varphi$).

Si $\varprojlim_I \varphi = (X, (u_i)_{i \in \mathrm{Ob}I})$, par abus de langage on dira que X est la limite projective de φ , il est alors sous entendu qu'on s'est donné avec X la famille $(u_i)_{i \in \mathrm{Ob}I}$ qu'on n'explicite pas sans doute parce qu'elle est évidente.

6.1.3. Si F est un foncteur de la catégorie C de type de diagramme sous-jacent D, dans la catégorie C', la limite projective du foncteur F est la limite projective du morphisme de type de diagramme sous-jacent à F (c'est-à-dire du morphisme $F:D\longrightarrow C'$).

6.1.4 Exemples.

Si C est la catégorie $\operatorname{Ens}_{\mathfrak{U}}$ des ensembles d'un univers \mathfrak{U} , I un type de diagramme, $\varphi: I \longrightarrow \operatorname{Ens}_{\mathfrak{U}}$, $\varprojlim_{I} \varphi$ est un sous ensemble du produit $\prod_{i \in \operatorname{Ob}I} \varphi_0(i)$ défini ainsi :

$$(X_i)_{i \in \text{Ob} I} \in \varprojlim \varphi \iff (\forall f)(f \in \text{Fl} I, f : i \longrightarrow j, X_j = \varphi_1(f)X_i)$$

En particulier:

- a) Si I est un type de diagramme discret (c'est-à-dire tel que $\operatorname{Fl}_I = \emptyset$) on récupère pour $\varprojlim \varphi$ le produit $\prod_{i \in \operatorname{Ob} I} \varphi_0(i)$
- b) Si I est la catégorie associé à un ensemble préordonné, un diagramme φ est essentiellement un "système projectif d'ensembles" (Bourbaki, Théorie des Ensembles) et l'on retrouve la notion classique de limite projective.
- **6.2.** Soit C une catégorie, I un type de diagramme et φ un morphisme de I dans C. A tout objet Y de C on associe le morphisme φ^Y de I dans $\underline{\operatorname{Ens}}_{\mathfrak{U}}$ ainsi défini :

Si *i* appartient à
$$\operatorname{Ob}_I$$
, $\varphi_0^Y(i) = \operatorname{Hom}(Y, \varphi_0(i))$

Si α appartient à Fl_I , $\alpha: i \longrightarrow j$, $\varphi_1^Y(\alpha)$ est l'application de $\mathrm{Hom}(Y, \varphi_0(i))$ dans $\mathrm{Hom}(Y, \varphi_0(j))$ qui à f correspondre $\varphi_1(\alpha)f$.

Proposition. — La famille admissible $(X,(u_i)_{i\in ObI})$ est limite projective de φ si et seulement si pour tout Y l'application naturelle $*_Y$ de $\operatorname{Hom}(Y,X)$ dans $\prod_{i\in ObI}\operatorname{Hom}(Y,\varphi_0(i))$ induit une bijection de $\operatorname{Hom}(Y,X)$ sur $\varprojlim \varphi^Y$.

La famille admissible $(X, (u_i)_{i \in \mathrm{Ob}I})$ est limite projective de φ si et seulement si $*_Y$ est une bijection dont l'image est l'ensemble des familles admissibles pour φ de source Y. Or ce sous-ensemble de $\prod_{i \in \mathrm{Ob}I}(Y, \varphi(i))$ est par définition $\varprojlim_I \varphi^Y$ **6.1.4**.

6.3. Exemples de limites projectives dans une catégorie quelconque.

6.3.1. Soit I un type de diagramme discret, et φ un morphisme de I dans C. Si la limite projective de φ existe, $\varprojlim \varphi = (P,(p_i)_{i \in \mathrm{Ob}I})$, on dit que la famille $(p_i)_{i \in \mathrm{Ob}I}$ représente P comme produit des $X_i = \varphi(i)$, P est noté $\prod_{i \in \mathrm{Ob}I} X_i$.

Le produit vérifie donc la propriété suivante :

Pour tout objet Z l'application de $\operatorname{Hom}(Z, \prod_{i \in \operatorname{Ob} I} X_i)$ dans $\prod_{i \in \operatorname{Ob} I} \operatorname{Hom}(Z, X_i)$ qui à f fait correspondre $(p_i f)_{i \in \operatorname{Ob} I}$ est une bijection.

La famille de morphisme $(p_i f)_i$ est appelée quelque fois famille des *composantes* du morphisme f.

Considérons par exemple $X \prod X$, il existe un unique morphisme de X dans $X \prod X$ de composantes 1_X , 1_X noté diag $_X$.

Dans le cas particulier où I est le type de diagramme vide $((\emptyset,\emptyset,\emptyset,\emptyset)!)$ la limite projective d'un morphisme de I dans C est appelée *objet final* de la catégorie. C'est un objet Ω de C tel que pour tout objet Y de C, il existe un morphisme et un seul de Y dans Ω .

- **6.3.2**. Si I est le type de diagramme suivant: $\bullet \Longrightarrow \bullet$, la limite projective d'un diagramme de type I dans $C: X \Longrightarrow Y$ s'appelle, lorsqu'elle existe, noyau du couple de morphismes (f,g). C'est la donnée d'un objet Z et d'un morphisme $u: Z \longrightarrow X$ possédant les propriétés suivantes :
 - (i) f u = g u
 - (ii) pour tout objet Z' et tout morphisme $u': Z' \longrightarrow X$ tel que f u' = g u', il existe un morphisme unique v de Z' dans Z tel que u factorise u'.

$$Z \xrightarrow{u} X \xrightarrow{g} Y$$

$$Z' \xrightarrow{u'} X \xrightarrow{g} Y$$

Le morphisme u (quelque fois aussi l'objet Z) sera noté Ker(f, g).

Remarque: *u* est un monomorphisme.

Un diagramme du type $Z \xrightarrow{u} X \xrightarrow{g} Y$ est dit exact s'il fait de u le noyau du couple (f,g).

Proposition. — *Le diagramme*

$$Z \longrightarrow X \Longrightarrow Y$$

est exact si et seulement si pour tout objet M, le diagramme $\operatorname{Hom}(M,Z) \longrightarrow \operatorname{Hom}(M,X) \xrightarrow{\alpha} \operatorname{Hom}(M,Y)$ de $\operatorname{\underline{Ens}}_{\mathfrak{U}}$ est exact, c'est-à-dire la première flèche est injective et son image est le sous ensemble de $\operatorname{Hom}(M,X)$ des coïncidences de α et β .

6.3.3. Soit le type de diagramme *I* :

La limite projective d'un diagramme de type *I* dans *C* :

si elle existe est appelée *produit fibré* de (X, f) et (Y, g) au dessus de Z; il est noté $(X, f) \prod_{Z} (Y, g)$. C'est la donnée d'un *objet* P et de *deux*² *morphismes*, $u : P \longrightarrow X$, $v : P \longrightarrow Y$ vérifiant les propriétés suivantes :

(i)
$$f u = g v$$

²Il est inutile de se donner $r: P \longrightarrow Z$ tel que r = f u = g v.

(ii) pour tout objet P' et tout couple de morphismes $u': P' \longrightarrow X$, $v': P' \longrightarrow Y$, tels que f u' = g v' il existe un morphisme et un seul w de P' dans P tel que le diagramme suivant soit commutatif:

Remarque: Si f (resp. g) est un monomorphisme, v (resp. u) est un monomorphisme.

- **6.4.** Soit C une catégorie, telle que pour tout couple d'objets (X, Y), Hom(X, Y) soit élément d'un univers \mathfrak{U} .
- **6.4.1.** Soit $(I_{\alpha})_{\alpha}$ une famille de type de diagrammes, I_{α} appartenant à \mathfrak{U} pour tout α , on dit que dans C les limites *projectives de type* $(I_{\alpha})_{\alpha}$ *existent* si, pour tout α , tout $\varphi: T_{\alpha} \longrightarrow C$ admet une limite projective.

Cette définition donne un sens aux locutions : Dans C les limites projectives existent (la famille $(I_{\alpha})_{\alpha}$ est formée de tous les types de diagrammes appartenant à \mathfrak{U}), les limites projectives finies existent (la famille $(I_{\alpha})_{\alpha}$ est formée de tous les types de diagrammes finis, c'est-à-dire tels que l'ensemble $\mathrm{Ob}\,I_{\alpha}$ soit fini), les produits existent (la famille $(I_{\alpha})_{\alpha}$ est formée de tous les types de diagrammes discrets...), les noyaux existent ($(I_{\alpha})_{\alpha}$ se réduit au type de diagramme suivant : \bullet \Longrightarrow \bullet), etc...

6.4.2. On vérifiera les assertions suivantes :

Dans la catégorie C les *limites projectives finies* existent si et seulement si les deux conditions suivantes sont vérifiées :

- (a) Les produits finis existent
- (b) Les produits fibrés existent.

La condition (a) est équivalente à la condition (a') les deux-produits existent et il existe un objet final.

De plus le couple de conditions (a) (b) est équivalente au couple (a) (b') avec (b') les noyaux existent.

Dans la catégories C, les *limites projectives* existent si et seulement si les conditions suivantes sont vérifiées :

- (a_1) Les produits existent
- (b) Les produits fibrés existent.

Le couple de conditions $(a_1)(b)$ est équivalente au couple $(a_1)(b')$.

Évoquons la démonstration de l'équivalence de (a)(b) et (a)(b').

Supposons (a) et (b') vérifiés et considérons deux morphismes $f: X \longrightarrow Z$, $g: Y \longrightarrow Z$. Soient $X \prod Y$ le produit de X et de Y, $p_X: X \prod Y \longrightarrow X$, $p_Y: X \prod Y \longrightarrow Y$, les morphismes canoniques, et $k: K \longrightarrow X \prod Y$ le noyau de couple de morphismes $(p_X f, p_Y g)$; $(K, u = p_X k, v = p_Y k)$ définissent le *produit fibré* de (X, f) et (Y, g) au dessus de Z. En effet :

- (i) Par définition du noyau, f u = g v.
- (ii) Soient un objet K' et deux morphismes, $u': K' \longrightarrow X$, $v': K' \longrightarrow Y$ tels que fu' = gv'. Par définition du produit il existe un morphisme unique $k': K' \longleftrightarrow X \prod Y$ tel que $u' = P_X k', v' = p_Y k'$. Puisque $f p_X k' = g p_Y k'$ par définition du noyau il existe un unique morphisme $w: K' \longrightarrow K$ tel que k' = kw, donc tel que u' = uv et v' = vw.

Réciproquement supposons (a) et (b) vérifiés, et considérons deux morphismes $f: X \longrightarrow Y, g: X \longrightarrow Y$. Soient le morphisme $\varphi: X \longrightarrow Y \prod Y$ de composantes (f,g), et le morphisme diag: $Y \longrightarrow Y \prod Y$; on considère alors le produit fibré, (K,k,k'), de (X,φ) et (Y,diag) au dessus de $Y \prod Y$ et l'on vérifie que $k:K \longrightarrow X$ possède les propriétés de noyau du couple de morphismes (f,g).

6.4.3. Soient un type de diagramme I, un morphisme de type de diagramme $\varphi: I \longrightarrow C$ et un foncteur F de la catégorie C dans une catégorie C'. Si

 $(Y,(u_i)_{i\in \mathrm{Ob}\,I})$ est une famille admissible pour φ alors $(F_0(Y),(F_1(u_i)_{i\in \mathrm{Ob}\,I}))$ est une famille admissible pour $F\varphi:I\longrightarrow C'$.

Si la limite projective de φ existe, $\varprojlim_I \varphi = (X, (v_i)_i)$ et si la limite projective de $F \varphi$ existe, $\varprojlim_I F \varphi = (X', (v_i')_i)$ il existe alors un unique morphisme $\hat{\varphi} : F_0(X) \longrightarrow X'$ tel que pour tout élément i de ObI le diagramme suivant soit commutatif :

On dit que le foncteur F commute aux limites projectives de type I, si pour toute $\varphi: I \longrightarrow C$ admettant une limite projective, et tel que $F\varphi: I \longrightarrow C'$ admettons une limite projective, le morphisme $\hat{\varphi}$ est un isomorphisme. Ce qui traduit par la formule :

$$F(\varprojlim_{I} \varphi) \simeq \varprojlim_{I} F \varphi$$

Soit $(I_{\alpha})_{\alpha}$ une famille de type de diagramme, I_{α} appartenant à $\mathfrak U$ pour tout α , on dit que le foncteur F commute aux limites projectives de types $(I_{\alpha})_{\alpha}$ si pour tout α , F commute aux limites projectives de type I_{α} .

Ces définitions donnent un sens aux locutions : le foncteur *F commute aux limites projectives, commute aux limites projectives finies, commute aux produits, commute aux noyaux*, etc...

Exemple : Si C est une catégorie définie par des espèces de structures algébriques, ou topologiques, ou algébro-topologiques, on définit un foncteur oubli le structure noté Oub de C dans Ens, qui à un objet de C associe l'ensemble sous-jacent, et à un morphismes e C associe l'application d'ensembles sous-jacente. Pour ce catégories, le foncteur Oub commute généralement aux limites projectives. Par exemple considérons la catégorie notée $\overline{\text{Top}}$, des espaces topologiques, un type de diagramme I et un morphisme de type de diagramme, φ , de I dans C. On sait que $\varprojlim_I \text{Oub } \varphi$ existe, c'est un sous-ensemble de $\prod_{i \in \text{Ob} I} \text{Oub } \varphi_0(i)$, lequel peut être muni canoniquement d'une structure topologique (topologie initiale). On vérifie alors que le sous-espace topologique $\varprojlim_I \text{Oub } \varphi$ satisfait à la propriété universelle de la limite projective de φ dans Top. On en déduit que dans Top, les

limites projectives existent et que de par leur construction même, le foncteur Oub commute aux limites projectives.

- **6.4.4.** Soient C et C' deux catégories et F un foncteur de C dans C'. Le foncteur F est dit exact à guache, s'il commute aux limites projectives finies, où ce qui est équivalent lorsque dans C les limites projectives finies existent, s'il vérifie les deux conditions suivantes :
 - (a) F commute aux produits finis.
 - (b) F commute aux produits fibrés.

La condition (a) est équivalente à

- (a') F commute aux deux-produit et transforme objet final en objet final. Le couple de condition (a)(b) est équivalente au couple (a)(b') avec
- (b') *F* commute aux noyaux.

De plus si dans C les limites projectives existent, F commute aux limites projectives si et seulement si les deux conditions suivantes sont vérifiées :

- (a_1) F commutes aux produits
- (b) F commute aux produits fibrés (ou aux noyaux).

6.5. Limite inductive:

Soit un type de diagramme I, une catégorie C, et un morphisme de type de diagramme $\varphi: I \longrightarrow C$.

- **6.5.1**. Une famille de morphisms de C est dite *coadmissible* pour φ si elle est admissible pour φ° .
- **6.5.2.** On appelle *limite inductive* de φ , une limite projective de φ° . Une limite inductive de φ , $(X,(u_i)_{i\in \mathrm{Ob}I})$, est donc "universelle" au sens suivant ; pour toute famille coadmissible pou φ , $(Y,(v_i)_{i\in \mathrm{Ob}I})$ il existe un morphisme unique $u:X\longrightarrow Y$ tel que pour tout élément i de $\mathrm{Ob}\,I$ le diagramme suivant soit commutatif :

Deux limites inductives de φ étant canoniquement isomorphes, si l'ensemble des limites inductives de φ , n'est pas vide on en choisit une que l'on note $\varinjlim_I \varphi$. On peut alors écrire : $\varinjlim_I \varphi \simeq \varprojlim_I \varphi^\circ$.

6.6. Exemples de limites inductives

6.6.1. Soit I un type de diagramme discret, et $\varphi: I \longrightarrow C$. Si la limite inductive de φ existe, $\varprojlim_I \varphi = (S, (e_i)_{i \in \mathrm{Ob}\,I})$ on dit que la famille $(e_i)_i$ représente S comme somme directe des $X_i = (i)$. On note $S = \coprod_{i \in \mathrm{Ob}\,I} X_i$.

Le somme directe vérifie donc la propriété suivante :

Pour tout objet Z l'application de $\text{Hom}(\coprod_{i \in \text{Ob} I} X_i, Z)$ dans $\prod_{i \in \text{Ob} I} \text{Hom}(X_i, Z)$ qui à f fait correspondre $(f e_i)_{i \in \text{Ob} I}$ est une bijection.

Dans le cas particulier où le type de diagramme I est vide, la limite inductive est appelée *objet initial* de la catégorie C. Donc ε est un objet initial si et seulement si pour tout objet Y de C, Card Hom $(\varepsilon, Y) = 1$.

Un objet initial et final est appelé un objet nul il est souvent noté O_C .

6.6.2. Si I est le type de diagramme : $\bullet \Longrightarrow \bullet$, la limite inductive d'un diagramme de type I dans $C: X \Longrightarrow Y$ s'appelle, lorsqu'elle existe, le *conoyau* du couple de morphisme (f,g). C'est la donnée d'un objet Z et d'un morphisme $u: Y \longrightarrow Z$ tel que :

(i)
$$uf = ug$$

(ii) pour tout objet Z' et tout morphisme $u': Y \longrightarrow Z'$ tel que u'f = u'g, il existe un morphisme unique v de Z dans Z' tel que v factorise u':

Le morphisme u, (et quelque fois par abus de langage l'objet Z) sera noté $\operatorname{Coker}(f,g)$.

Remarque: u est un épimorphisme.

6.6.3. Soit le type de diagramme *I* :

la limite inductive d'un diagramme de type *I* dans *C*:

si elle existe est appelée somme amalgamée de (X, f) et (Y, g) au-dessus de Z, elle est notée $(X, f) \coprod_Z (U, g)$. C'est donc la donnée d'un objet S et de deux morphismes $u: X \longrightarrow S, v: Y \longrightarrow S$ vérifiant les propriétés... que le lecteur précisera.

Remarque: Si f (resp. g) est un épimorphise, v (resp. u) est un épimorphisme.

Exemple:

Dans la catégorie des anneaux commutatifs avec élément unité, on considère trois annaux X, Y, Z et les morphismes $f:Z \longrightarrow X$, $g:Z \longrightarrow Y$. Grâce à f on munit X d'une structure de Z-module, l'application de $Z \times X$ étant définie par $(xy) \leadsto f(x)y$.

On procède de même pour Y avec g, et Z avec l'application identique. On montera que le Z-module $X \otimes_Z Y$ muni de la multiplication $(x \otimes y)(x' \otimes y') = xx' \otimes yy'$ et les homomorphismes d'anneaux $u: X \longrightarrow X \otimes_Z Y$ tel que $u(x) = x \otimes e_Y$ (où e_Y est l'élément unité de y) et $v: Y \longrightarrow X \otimes_Z Y$ tel que $v(y)e_X \otimes y$, définissent la somme amalgamée $(X, f) \coprod_Z (Y, g)$.

6.6.4. Dans les catégories définies par des espèces de structures algébriques, *les limites inductives existent*, mais l'exemple qui précède montre que leur construction n'est pas aussi simple que dans le cas projectif. Cependant dans le cas particulier de la catégorie Top, on constate que le foncteur Oub commute aux limites

inductives. Soit $\varphi: I \longrightarrow \underline{\mathrm{Top}}$ un morphisme de type de diagramme, on considère la limite inductive de Oub. $\varphi: I \longrightarrow \underline{\mathrm{Ens}}, (E, (u_i)_{i \in \mathrm{Ob}\, I})$. On munit E de la topologie la plus fine rendant les u_i continues ; il suffit de prendre pour ouverts de E, les éléments U de $\mathfrak{P}(E)$ tels que pour tout $i \varphi_i^{-1}(U)$ soit un ouvert de $\varphi(i)$. On vérifie que l'espace topologique E est bien la limite inductive cherchée. Mais cette construction n'est valable qu'exceptionnellement, on montrera par exemple qu'elle est en échec dans le cas Topcomp, catégorie des espaces topologiques compacts.

- **6.7**. On énoncera les définitions et propriétés duales de celles développées dans le paragraphe **6.4**. On établira des conditions nécessaires et suffisantes d'existence des limites inductives (resp. finies) dans une catégorie C. On définira un foncteur F de C dans C' commutant aux limites inductives de type I...On définira un foncteur exact à droite.
 - **6.7.1**. Un foncteur exact est un foncteur exact à gauche et exact à droite.
- **6.7.2.** Bien qu'il n'y ait théoriquement rien à ajouter pour un foncteur contravariant F de C dans C', il faut cependant remarquer que F commute aux limites projectives (resp. inductives) de type I, si pour tout $\varphi: X \longrightarrow C$ admettant une limite inductive (resp. projective) et tel que $F\varphi$ admette une limite projective (resp. inductive) on a $\varprojlim_I (F\varphi) \simeq F(\varprojlim_I \varphi)$ (resp. $\varinjlim_I (F\varphi) \simeq F(\varprojlim_I \varphi)$).

6.8. Propriétés générales des limites inductives et projectives.

6.8.1. Soit C une catégorie, I un type de diagramme. Les diagrammes de type I dans C qui admettent une limite projective forment une sous catégorie strictement pleine de $\underline{\operatorname{Diag}}(I,C)$, notée $\underline{\operatorname{Diag}}p(I,C)$. L'application qui à φ fait correspondre $\varprojlim_{I} \varphi$, de $\overline{\operatorname{Diag}}p(I,C)$ dans $\overline{\operatorname{Ob}}C$, définit un foncteur de $\underline{\operatorname{Diag}}p(I,C)$ dans C. En effet si φ et φ sont deux objets de $\underline{\operatorname{Diag}}p(I,C)$, u une flèche de φ dans φ , par définition de $\varprojlim_{I} \varphi$, $\varprojlim_{I} \varphi$ et de u, pour tout couple (i,j) d'objets de I et toute flèche $f:i\longrightarrow j$ on a le diagramme commutatif suivant :

$$\varprojlim \varphi \xrightarrow{u_{i}} \varphi_{\circ}(i) \xrightarrow{u(i)} \psi_{\circ}(i) \xleftarrow{v_{i}} \varprojlim \psi$$

$$\varphi_{\circ}(f) \xrightarrow{v(j)} \psi_{\circ}(j)$$

La famille $(\underline{\lim} \varphi, (u(i)u_i)_{i \in ObI})$ est admissible pour ψ , il existe donc une flèche

unique de $\varprojlim \varphi$ dans $\varprojlim \psi$, que l'on note $\varprojlim u$, et telle que $v_i \varprojlim u = u(i)u_i$ pour tout $i \in \operatorname{Ob} I$.

Le foncteur ainsi défini se note $\varprojlim(I,C)$ ou $\varprojlim: \underline{\mathrm{Diag}}\,p(I,C) \longrightarrow C$.

Proposition. — Pour tout type de diagramme I, et toute catégorie C, le foncteur $\lim(I,C)$ commute aux limites projectives.

Dualement on définit un foncteur de $\underline{\text{Diag}}i(I,C)$ dans C, noté $\underline{\underline{\text{lim}}}(I,C)$ qui commute aux limites inductives.

Il n'y a aucun énoncé, valable pour toute catégorie, sur la commutativité entre les limites projectives et injectives.

Proposition 6.8.2. — Soit I un type de diagramme, C' un catégorie où les limites projectives (resp. injectives) de type I existent. Alors pour tout type de diagramme D, (resp. toute catégorie C) les limites projectives (resp. injectives) de types I existent dans $\operatorname{Diag}(D,C')$ (resp. $\operatorname{Hom}(C,C')$).

Soit φ un diagramme de type I dans $\underline{\operatorname{Diag}}(D,C')$. A tout objet d de D, l'application $i\leadsto \varphi(i)d$ associe un morphisme $\Phi_d:I\longrightarrow C'$ $(\Phi_d(i)=\varphi(i)(d))$. Soit $X_d=\varprojlim \Phi_d$ l'application $d\leadsto X_d$ définit un morphisme Φ de D dans C

$$\begin{array}{ccc} d & \longrightarrow X_d & & \delta) = \varprojlim_I \varphi(i)(\delta) \\ \downarrow^{\Phi_1} & & \downarrow^{\Phi_1} \\ d' & \longrightarrow X_{d'} & & \end{array}$$

Soit une famille admissible $(\Omega, (v_i)_{i \in \mathrm{Ob}I})$ pour le morphisme φ . Pour tout objet d de D, il existe alors un morphisme v_d unique de $\Omega(d)$ dans X_d tel que pour tout i de $\mathrm{Ob}\,I$ le diagramme suivant soit commutatif :

$$\Omega(d) \xrightarrow{v_i(d)} \varphi(i)(d) = \Phi_d(i)$$

$$X_d$$

Donc $\Phi = \underline{\lim}_{I} \varphi$.

6.8.3. Dans $\underline{\text{Cat}}\mathfrak{U}$, pour tout type de diagramme I élément de \mathfrak{U} , les limites

projectives (resp. inductives) de type I existent. Si I est discret on retrouve le produit (resp. la somme) de catégories.

7. Catégorie filtrante

7.1 Définitions:

- **7.1.1.** Une catégorie *I* est *pseudo-filtrante* à gauche si les deux propriétés suivantes sont vérifiées :
 - a) Pour tout diagramme de *I* de type

il existe un objet M et deux morphismes, $f: M \longrightarrow X$, $g: M \longrightarrow Y$.

b) Pour tout diagramme de I du type $X \xrightarrow{u} Y$ il existe un morphisme $h: T \longrightarrow X$ tel que uh = vh.

Une catégorie I est pseudo filtrante à droite si I° est pseudo filtrante à gauche. On écrira les conditions a'), b') correspondantes.

- **7.1.2**. Une catégorie *I* est connexe si la propriété suivante est vérifiée :
- c) Pour tout couple (P,Q) d'objets, il existe une suite finie d'objets : $P_0 = P$, $P_1, \ldots, P_i, P, \ldots P_n = Q$, telle que $\operatorname{Hom}(P_i, P_{i+1}) \neq \emptyset$, où $\operatorname{Hom}(P_{i+1}, P_i) \neq \emptyset$ pour $i = 0, \ldots, n-1$.
- **7.1.3**. Une catégorie *I* est *filtrante* à *guache* (resp. à droite) si les conditions a), b), c) (resp. a'), b'), c')) sont vérifiées.

Remarque:

On considère la condition suivante :

 α) Pour tout couple d'objets (X,Y) de I, il existe un objet M et deux morphismes $f: M \longrightarrow X$, $g: M \longrightarrow Y$.

La condition α) est équivalente au couple de conditions (a), c)).

Donc une catégorie I est filtrante à gauche (resp. à droite) si les conditions α), b) (resp. α') b')) sont vérifiées.

Une catégorie I est filtrante si elle est filtrante à gauche et à droite.

7.2 Exemples

- **7.2.1**. Si dans une catégorie *C*, pour tout couple d'objets le produit (resp. la somme) existe, et si pour tout couple de morphismes le noyau (resp. le conoyau) existe, alors *C* est filtrante à gauche (resp. filtrante à droite).
- **7.2.2**. La catégorie associée à un ensemble préordonné I est filtrante si et seulement si I est filtrante.
- **7.2.3**. Dans la catégorie des ensembles, des groupoïdes, des modules sur un anneau..., *les limites inductives filtrantes*, c'est-à-dire les limites inductives de foncteurs d'une catégorie filtrante dans la catégorie en question, sont des foncteurs exacts à gauche, donc *exacts*, puisqu'on sait qu'ils sont exacts à droite.

§ II. – CATÉGORIE ABÉLIENNE

1. Catégorie additive

On peut donner deux versions de la définition d'une catégorie additive, l'une consiste à se donner sur les ensembles $\operatorname{Hom}(X,Y)$ une structure de groupe abélien, cette structure supplémentaire étant soumise à certaines conditions ; l'autre consiste à construire canoniquement une loi de groupe sur tout $\operatorname{Hom}(X,Y)$ en termes d'axiomes convenables sur la catégorie C.

1.1 Version 1

Une catégorie additive est une catégorie C où pour tout couple d'objets (X,Y) de C est donnée une structure de groupe abélien sur $\operatorname{Hom}(X,Y)$, les axiomes suivants étant vérifies :

- CA_1 . pour tout triplet d'objets (X,Y,Z) de C, l'application $(u,v) \leadsto vu$ de $Hom(X,Y) \times Hom(Y,Z)$ dans Hom(X,Z) est bilinéaire.
- CA_2 . Les sommes directes finies existent, ou ce qui est équivalent il existe un objet initial *et* pour tout couple d'objets la somme existe.

L'axiome C A_2 est équivalent à l'axiome C A'_2 . Les produits finis existent ou ce qui est équivalent il existe un objet final et pour tout couple d'objets le produit existe.

1.1.1. Tout objet initial est final. En effet si ε est un objet initial, $\operatorname{Hom}(\varepsilon, X)$ se réduit à un seul élément noté 0 (puisque c'est l'élément neutre pour le groupe

 $\operatorname{Hom}(\varepsilon,X)$ en particulier $\operatorname{Hom}(\varepsilon,\varepsilon)=1_{\varepsilon}=0$, donc pour tout élément f de $\operatorname{Hom}(Y,\varepsilon), f=1_{\varepsilon}f=0$; $\operatorname{Hom}(Y,\varepsilon)$ se réduit, à l'élément 0).

Il y a donc équivalence entre les propositions suivantes :

 ε est un objet initial

 ε est un objet final

$$1_{s} = 0$$

Dans une catégorie additive il existe donc un *objet nul*, deux objets nuls étant canoniquement isomorphes, parmi les objets nuls on en choisit un que l'on note aussi 0.

Remarque: Dans une catégorie C à objet nul 0, pour tout couple d'objet (X, Y) on définit un morphisme nul de X dans Y qui est le composé de $X \longrightarrow 0$ et $0 \longrightarrow Y$. Dans le cas où C est additive ce morphisme nul est évidemment l'élément neutre du groupe Hom(X,Y).

1.1.2. Si pour tout couple d'objets (X,Y), la somme $X \coprod Y$ existe, alors le produit existe et $X \coprod Y \simeq X \prod Y$, on peut *choisir* $X \prod Y = X \coprod Y$, on note cet objet $X \oplus Y$. Si (e_X, e_Y) représentent $X \coprod Y$ comme somme de X et Y le diagramme suivant :

montre qu'il existe un unique morphisme $p_X: X \coprod Y \longrightarrow X$ tel que $p_X e_X = 1_X$ et $p_X e_Y = 0$. De même il existe un unique morphisme $p_X: X \coprod Y \longrightarrow Y$ tel que $p_y e_Y = 1_Y$ et $p_Y e_X = 0$. On vérifie que les applications $e_X p_X + e_Y p_Y$ et $1_{X \coprod Y}$ ont les mêmes composantes donc $e_X p_X + e_Y p_Y = 1_{X \coprod Y}$. Alors p_X et p_Y représentent $X \coprod Y$ comme produit de X et de Y, en effet pour tout objet Z de C et tout couple de morphismes $u: Z \longrightarrow X$, $v: Z \longrightarrow Y$, l'application $e_X u + e_Y v: Z \longrightarrow X \coprod Y$

rend le diagramme suivant commutatif, et c'est la seule.

1.2 Version 2

Soit C une catégorie satisfaisant aux axiomes suivants :

 CA'_1 Il existe un objet nul

 CA_2' Pour tout couple (X,Y) d'objets de C, le produit et la somme existent.

La catégorie C admettant un objet nul, il existe un unique morphisme $C_{XY}: X \coprod Y \longrightarrow X \prod Y$ tel que les diagrammes suivants soient commutatifs.

 CA'_3 Pour tout couple d'objets (X,Y), C_{XY} est un isomorphisme.

A tout couple (u,v) de morphismes de X dans Y on fait correspondre alors un morphisme de X dans Y défini par le diagramme suivant :

$$X \xrightarrow{(u,v)} Y \prod X \xrightarrow{C_{XY}^{-1}} X \coprod Y \xrightarrow{\text{Codiag}} Y$$

On obtient ainsi sur $\operatorname{Hom}(X,Y)$ une structure de monoïde commutatif avec élément unité. L'application naturelle de $\operatorname{Hom}(X,Y) \times \operatorname{Hom}(Y,Z)$ dans $\operatorname{Hom}(X,Z)$ est bilinéaire.

 CA'_4 Pour tout couple d'objets (X,Y), le monoïde Hom(X,Y) construit ci-dessus est un *groupe*.

On montre le lemme suivant : Soit C une catégorie, il existe au plus une fonction qui à tout couple d'objets (X,Y) de C associe une structure de monoïde associatif sur Hom(X,Y) tel que la composition des morphismes soit bilinéaire³. On en déduit que les définitions 1.1 et 1.2 d'une catégorie additive sont équivalentes.

1.3 Noyau et conoyau d'un morphisme

Dans une catégorie avec objet nul on considère un morphisme $f: X \longrightarrow Y$.

1.3.1. Le *noyau* (resp. conoyau) de f est, lorsqu'il existe, le *noyau* (resp. conoyau) du couple de morphismes (f,0).

Le noyau de f est donc un morphisme $u: K \longrightarrow X$ tel que :

- (i) f u = 0
- (ii) pour tout morphisme $u': K' \longrightarrow X$, tel que f(u') = 0, il existe un morphisme unique $v: K' \longrightarrow K$ tel que le diagramme suivant soit commutatif :

Le morphisme u (et quelque fois aussi l'objet K) est noté $\operatorname{Ker} f$. On rappelle que le noyau de f est un monomorphisme.

Dualement on écrira la définition du conoyau de f, noté Coker f, qui est un épimorphisme.

Sous la seule hypothèse de l'existence d'un objet nul dans une catégorie C, tout monomorphisme (resp. épimorphisme) a un noyau (resp. un conoyau) nul.

³Ce lemme est un cas particulier d'une proposition que l'on trouvera dans : Eckmann-Hilton. Group-like structures in general categories. Math. Ann. (62-63)

1.3.2. Dans une catégorie additive, la réciproque est vraie, et l'on a la :

Proposition. — Un morphisme est un monomorphisme (resp. un épimorphisme) si et seulement si son noyau (resp. conoyau) est nul.

1.4 Foncteur additif

- **1.4.1.** Soient C et C' deux catégories additives, F un foncteur de C dans C', les conditions suivantes sont équivalentes
 - (a) Pour tout couple d'objets (X,Y) de C, l'application $F_{\circ}|_{\text{Hom}(X,Y)}$: $\text{Hom}(X,Y) \longrightarrow \text{Hom}(F(X),F(Y))$ est un morphisme de groupe abélien.
 - (b) Le foncteur *F* commute aux sommes finies.
 - (c) Le foncteur *F* commute aux produits finis.

On appelle *foncteur additif* un foncteur vérifiant l'une de ces conditions.

1.4.2. Exemples :

Soit C une catégorie additive; pour tout objet X de C, le foncteur $\operatorname{Hom}(X,.)$ de C dans la catégorie des groupes abéliens $\operatorname{\underline{Ab}}$, défini par $Y \leadsto \operatorname{Hom}(X,Y)$ et le foncteur contravariant $\operatorname{Hom}(.,X)$, sont additifs.

Soit $\underline{\mathrm{Mod}}_A^S$ la catégorie des modules à guache sur un anneau A, pour tout module à droite X sur A le foncteur $X \otimes_A$. de $\underline{\mathrm{Mod}}_A^S$ dans $\underline{\mathrm{Ab}}$ défini par $Y \rightsquigarrow X \otimes_A Y$ et $f \rightsquigarrow 1_X \otimes f$ est additif.

Plus généralement un foncteur exact à droite ou à guache, d'une catégorie additive dans une autre est additif.

1.5 Image, coimage d'un morphisme

Dans une catégorie avec objet nul, soit f un morphisme admettant un noyau et un conoyau. Si le conoyau de Kerf (resp. le noyau de Cokerf) existe, on l'appelle coimage de f, on le note Coimf (resp. image de f, Imf). Si Imf, Coimf existent, soit \hat{f} l'unique morphisme de X dans K' tel que Imf $\hat{f} = f$, Imf est un

mono, donc \hat{f} Ker f=0 et il existe un *unique morphisme* \overline{f} de K' dans C' tel que $f=\mathrm{Im}f\overline{f}$ Coim f.

- 2. Catégorie abélienne
- 1.1 Version 1
 - 1.1 Version 1
- 3. Exactitude dans une catégorie abélienne
- 1.1 Version 1
 - 1.1 Version 1
 - 1.1 Version 1
- 4. Diagrammes dans une catégorie abélienne
- 1.1 Version 1
 - 1.1 Version 1
- 5. Objet injectif. Objet projectif
- 1.1 Version 1
 - 1.1 Version 1
 - 1.1 Version 1

§ III. — FONCTEURS REPRÉSENTABLES

1. Généralités

1.1 Définition

Soit $\mathfrak U$ un univers, C une catégorie telle que pour tout couple (X,Y) d'objets de C, $\operatorname{Hom}(X,Y)$ appartient à $\mathfrak U$. On rappelle que $\operatorname{Hom}(.,.)$ est un bifoncteur de $C \times C$ dans $\operatorname{Ens}_{\mathfrak U}$ contravariant par rapport à la première variable, covariant par rapport à la seconde.

1.1.1. On appelle *catégorie des préfaisceaux* sur C, la catégorie $\underline{\text{Hom}}(C^o, \text{Ens}_{\mathfrak{U}})$, que l'on note \hat{C} .

On définit un foncteur ε de C dans \hat{C} . A tout objet Y de C, ε fait correspondre le foncteur contravariant de C dans $\operatorname{Ens}_{\mathfrak{U}}$: Hom(.,Y), que l'on note h_Y .

Tout morphisme $f: Y \longrightarrow Y'$, ε associe le morphisme fonctoriel naturel de $\operatorname{Hom}(.,Y)$ dans $\operatorname{Hom}(.,Y')$.

1.1.2. On dit que le foncteur h_Y est le foncteur représenté par Y.

On dit qu'un préfaisceau F est représentable, s'il existe un objet Y de C et un isomorphisme φ de h_Y sur F. On dit alors que F est représenté par le couple (Y, φ) ou encore que le couple (Y, φ) est une donnée de représentation de F.

1.2 Propriétés

Théorème 1.2.1. — Si F est un préfaisceau sur C, Y un objet de C, il existe une bijection de Hom (h_Y, F) sur F(Y), fonctorielle en Y, F.

- a. Soit u un morphisme de h_Y dans F. On rappelle (Chap. 1, 3.4) qu'à tout objet X de C u fait correspondre une application u(X) de $\operatorname{Hom}(X,Y)$ dans F(X) que l'on notera u_X . Soit $\alpha: \operatorname{Hom}(h_Y,F) \longrightarrow F(Y)$ telle que $\alpha(u) = u_Y(1_Y)$
- b. Soit $\beta: F(Y) \longrightarrow \operatorname{Hom}(h_Y, F)$, qui à tout élément v de F(Y) fait correspondre le morphisme $\beta(v): h_Y \longrightarrow F$, tel que pour tout objet X et tout morphisme $f: X \longrightarrow Y$ on ait $\underline{\beta(v)}_X(f) = F(f)(v)$. On vérifie en effet que pour tout morphisme $g: X \longrightarrow X'$ le diagramme suivant est commutatif

$$\begin{array}{ccc} \operatorname{Hom}(X',Y) = h_Y(X') & \xrightarrow{h_Y(g)} & \operatorname{Hom}(X,Y) = h_Y(X) \\ & & & \downarrow \underline{\beta(v)}_X \\ & & & F(X') & \xrightarrow{F(g)} & F(X) \end{array}$$

c. Pour tout morphisme fonctoriel u de h_Y dans F et tout morphisme $f: X \longrightarrow Y$ on a $u_X h_Y(f) = F(f)u_Y$, en particulier $F(f)u_Y(1_Y) = u_X(f)$, donc $\beta \alpha(u) = u$. Inversement pour tout élément v de F(Y), $\alpha \beta(v) = \underline{\beta(v)}_Y(1_Y) = F(1_Y)(v) = 1_F(Y)(v) = v$.

Corollaire 1.2.2. — Si F est un préfaisceau représentable, représenté par (X, φ) Y un objet de C, il existe une bijection de $\operatorname{Hom}(Y, X)$ sur $\operatorname{Hom}(h_Y, h_X)$.

C'est dire que le foncteur canonique ε est pleinement fidèle, ce qui permet de "plonge" canoniquement toute catégorie C dans la catégorie \hat{C} des préfaisceaux sur C.

Aussi nous arrivera-t-il d'identifier un objet Y de C à h_Y , un morphisme fonctoriel de h_Y dans F à l'élément de f(Y) correspondant. Une donnée de représentation de F est définie à un isomorphisme unique près : en effet, si (X,φ) , (X',φ') sont deux données de représentation de F, h_X et h_X' sont isomorphes, comme ε est pleinement fidèle X et X' sont isomorphes ainsi que φ et φ' .

Proposition 1.2.3. — Soit F un préfaisceau sur C.

Le couple (X, α) , où X est un objet de C, α un élément de F(X) définit une donnée de représentation de F si et seulement si pour tout couple (Y, β) où Y est un objet de C, β un élément de F(Y), il existe un unique morphisme $v: Y \longrightarrow X$ tel que $\beta = F(v)\alpha$.

Si (X,α) définit une donnée de représentation de F, α s'identifie à un isomorphisme de h_X sur F, β s'identifie à un morphisme de h_Y dans F, et un morphisme v s'identifie à un morphisme de h_Y dans h_X . Pour tout objet Y, et tout morphisme $\beta: h_Y \longrightarrow F$, il existe bien un unique morphisme $h_Y \longrightarrow h_Y$ tel que $\beta = \alpha u$, à savoir $u = \alpha^{-1}\beta$

Réciproquement si (X,α) jouit d'une telle propriété universelle, pour tout Y il existe une bijection de $\operatorname{Hom}(Y,X)=h_X(Y)$ sur $\operatorname{Hom}(h_Y,F)\simeq F(Y)$, donc α est un isomorphisme fonctoriel, et (X,α) définit une donnée de représentation de F.

2. Application

De nombreuses notions peuvent s'interpréter avantageusement en langage de foncteurs représentables.

2.1. Soit C une catégorie, D un type de diagramme et $\varphi: D \longrightarrow C$. Pour tout objet Y de C, on définit le diagramme constant C_Y : pour tout objet i de D $C_Y(i) = Y$, pour toute flèche f de D $C_Y(f) = 1_Y$. Pour tout objet Y de C, l'ensemble des systèmes admissibles $(Y, u_i)_{i \in ObD}$ de φ est l'ensemble $Hom(C_Y, \varphi)$.

Soit F le préfaisceau sur C défini par $F(Y) = \operatorname{Hom}(C_Y, \varphi)$. En appliquant 1.2.3 on obtient la

Proposition 2.1.1. — La limite projective de φ existe si et seulement si le foncteur F est représentable.

Si φ ne possède pas de limite projective dans C, on utilise souvent le procédé suivant on plonge C dans \hat{C} au moyen du foncteur ε et on appelle limite projective de φ la limite projective de $\varepsilon \varphi$, qui existe toujours puisque $\hat{C} = \operatorname{Hom}(C^o, \operatorname{Ens}_{\mathfrak{U}})$.

2.2. On considère la catégorie des modules sur un anneau commutatif A, Mod_A . Soient M et N deux modules, le foncteur de Mod_A dans Ens qui à tout module P fait correspondre l'ensemble $\operatorname{Bil}_A(M \times N, P)$ des applications bilinéaires

de $M \times N$ dans P est représentable, et le module qui le représente est le produit tensoriel $M \otimes_A N$.

2.3. On peut définir dualement un foncteur $\varepsilon': C^o \longrightarrow \underline{\text{Hom}}(C, \text{Ens})$. On définira alors un foncteur représentable et l'on vérifiera que cette notion recouvre celle de limite inductive.

3. Structures algébriques dans les catégories

On se propose de *définir* une structure algébrique par exemple une structure de groupe sur un objet X d'une catégorie C. On peut procéder de deux façons.

3.1. La plus naturelle consiste à généraliser dans la catégorie C, la notion habituelle de structure algébrique sur un ensemble.

Supposons que dans C le produit $X \prod X$ existe, une loi de composition interne sur X est la donnée d'un morphisme $m_X : X \prod X \longrightarrow X$.

Les axiomes définissant sur X une structure de C-groupe vont s'exprimer en terme de commutativité de diagrammes. Supposons que $X \prod X \prod X$ existe, on a les isomorphismes canoniques : $(X \prod X) \prod X \simeq X \prod X \prod X \simeq X \prod (X \prod X)$.

3.1.1. La loi est associative si le diagramme suivant est commutatif :

$$\begin{array}{ccc}
X \prod X \prod X & \xrightarrow{m_X \prod 1_X} & X \prod X \\
\downarrow^{1_X \prod m_X} & & & \downarrow^{m_X} \\
X \prod X & \xrightarrow{m_X} & X
\end{array}$$

Supposons de plus qu'il existe dans C un objet final E, il existe alors un unique morphisme $e: X \longrightarrow E$.

3.1.2. *Il existe un morphisme* $w: E \longrightarrow X$ tel que les diagrammes suivants soient commutatifs :

On montre que w est alors déterminé de façon unique.

3.1.3. Il existe un *morphisme* $s: X \longrightarrow X$ tel que le diagramme suivant soit commutatif

$$\begin{array}{ccc}
X & \xrightarrow{(s,1_X)} & X \prod X \\
\downarrow & & \downarrow \\
E & \xrightarrow{\omega} & X
\end{array}$$

ainsi que celui obtenu en permettant s et 1_X . On montre que le morphisme s est déterminé de façon unique.

On pourrait de façon duale définir une structure de C-cogroupe.

3.2. Sans faire d'hypothèses sur la catégorie C, on peut définir une structure sur X en se ramenant au cas ensembliste. Les limites projectives existent dans \hat{C} , ainsi pour deux éléments F, F' de \hat{C} , pour tout objet X de C, $F \prod F'(X) = F(X) \prod F'(X)$.

Une loi de composition interne sur X est la donnée d'un morphisme M_X : $h_X \prod h_X \longrightarrow h_X$. Cela revient à se donner pour tout objet Y de C, une loi de composition interne sur l'ensemble $h_X(Y)$ qui soit fonctorielle, c'est-à-dire telle que pour tout $u: Y \longrightarrow Y'$, $h_X(u): h_X(Y') \longrightarrow h_X(Y)$ soit un morphisme au sens de la structure considérée.

- 3.3. Dans le cas particulier où le produit $X \prod X$ existe dans C, $h_X \prod h_X$ est canoniquement isomorphe à $h_{X \prod X}$, une loi de composition interne sur X peut donc être considérée comme un morphisme $M_X: h_{X \prod X} \longrightarrow h_X$ il lui est donc canoniquement associé (III, 1.2.2) un morphisme $m_X: X \prod X \longrightarrow X$ tel que $\varepsilon(m_X) = h_{m_X} = M_X$.
- **3.3.1**. Si l'on suppose que $X \prod X \prod X$ existe, $X \prod X \prod X$ étant canoniquement identifié à $(X \prod X) \prod X$ l'application $M_X(Y) \prod 1_{b_X(Y)}$ s'identifie pour tout objet Y de C à $h_{m_X \prod 1_Y}(Y)$. Il est donc *équivalent* de dire que la loi M_X est asso-

ciative, c'est-à-dire que pour tout Y le diagramme suivant est commutatif :

$$\begin{array}{ccc} h_X(Y) \prod h_X(Y) \prod h_X(Y) & \xrightarrow{M_X(Y) \prod 1} & h_X(Y) \prod h_X(Y) \\ & & \downarrow^{M_X(Y)} & & \downarrow^{M_X(Y)} \\ & & h_X(Y) \prod h_X(Y) & \xrightarrow{M_X(Y)} & h_X(Y) \end{array}$$

ou que le diagramme 3.1.1 est commutatif.

3.3.2. S'il existe dans *C* un objet final...

E, h_E est objet final de \hat{C} , le morphisme $\Omega: h_E \longrightarrow h_X$ induit un morphisme $w: E \longrightarrow X$ qui vérifie la propriété **3.1.2**.

- **3.3.3.** Pour tout Y de C il existe un morphisme $S(Y): h_X(Y) \longrightarrow h_X(Y)$ fonctoriel par rapport à Y, soit $S: h_X \longrightarrow h_X$ est un morphisme auquel est canoniquement associé un morphisme $s: X \longrightarrow X$ tel que $\varepsilon(s) = h_s = S$, et tel que le diagramme **3.1.3** correspondant soit commutatif.
- **3.4.** Il faut remarquer qu'il y a des structures que l'on ne peut définir de cette façon, par exemple si leur définition fait intervenir des limites inductives, car ε : $C \longrightarrow \hat{C}$ ne commute pas aux limites inductives.

QUELQUES OUVRAGES DE RÉFÉRENCES

- [1] ECKMANN HILTON Group-like structure in general categories. I. Math. Ann. 145 (1962) 227-255; II. Math. Ann. 151 (1963), 150-186; III. Math. Ann. 150 (1963) 165-187.
- [2] EHRESMANN Catégories et structures. (Dunod 1965).
- [3] FREYD Abelian categories. Harter et Row Publishers N-Y 1964.
- [4] GABRIEL Des catégories abéliennes. Thèse. Bulletin Société Mathématique de France (1962) 323 448.
- [5] GROTHENDIECK —

 Sur quelques points d'algèbre homologique. Tohoku Math. Journal. Vol. 9 p.
 119 221 (1977).

 Éléments de géométrie algébrique. I.H.E.S Publications mathématiques (1961 62).
- [6] HILTON Catégories non abéliennes. Séminaire d'été de Montreal (1964).
- [7] MITCHELL *Theory of categories*. Academic Press (1965).