Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}}^{\#2}\alpha$	0	0	0	0	0	0	0
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{-}}^{\#1}{}_{lpha}$	0	0	0	$\frac{1}{k^2 r_5}$	0	0	0
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_{1+}^{#2} +^{\alpha\beta}$	$\tau_{1+}^{\#1} +^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$f_{1^-}^{\#2}\alpha$	0	0	0	0	0	0	0
c_1^*1	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$)	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+^2$	$\frac{\sqrt{2} t_2}{3}$	3 3	$\left -\frac{1}{3} ikt_2 \right $	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{#2} + \alpha^{\beta}$	$f_1^{\#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{#2} + \alpha$

$\omega_{0^{+}}^{\#1} f_{0^{+}}^{\#1} f_{0^{+}}^{\#2} \omega_{0^{-}}^{\#1}$								
$\omega_{0}^{\sharp1}$ †	0	0	0	0				
$f_{0}^{#1}\dagger$	0	0	0	0				
$f_{0+}^{#2}\dagger$	0	0	0	0				
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$				

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$							
$\omega_2^{\#1} \dagger^{lphaeta}$	0	0	0				
$f_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	0	0	0				
$\omega_2^{\sharp 1} \dagger^{\alpha \beta \chi}$	0	0	0				

Source constraints/ga	auge generators
SO(3) irreps	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} == 0$	1
$\sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	3
$\tau_1^{\#1}{}^{\alpha} == 0$	3
$\sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\#1\alpha\beta}==0$	5
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5
Total constraints:	30

	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$	
$\sigma_{0}^{\#1} \dagger$	0	0	0	0	
$\tau_{0}^{\#1}$ †	0	0	0	0	
$ \tau_{0}^{#1} + \tau_{0}^{#1} + \tau_{0}^{#2} + $	0	0	0	0	
σ ₀ -1 †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	

$\sigma_{2}^{\#1}{}_{\alpha\beta} \ \tau_{2}^{\#1}{}_{\alpha\beta} \ \sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	0	0	0
$\tau_{2}^{\#1}{}_{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	0	0	0
,	$\int_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

Massive and massless spectra

(No massless particles)

Unitarity conditions