数字逻辑

丁贤庆

ahhfdxq@163.com

通知 实验安排

数字逻辑电路课程有16个学时的实验,初步安排: 具体安排参见公共邮箱中的word文档。

本周开始进行实验环节,实验结束后16周周日(6月16号)晚23点前,各班学委要提交实验报告的电子版给我的邮箱ahhfdxq@163.com。不用收纸质报告了。

实验地点:综合实验楼306房间

关于实验报告

- □ 8次实验中,自己选择4次写到实验报告中就 可以了。
- □ 补充的实验不需要写到实验报告中。

第九章作业布置

- 1、本周有实验。
- 2、下次交作业第11周。
- 3、本周作业:从第9章课后习题中选2题写到作业本上。

第九章

脉冲波形的变换与产生

9 脉冲波形的变换与产生

- 9.1 单稳态触发器
- 9.2 施密特触发器
- 9.3 多谐振荡器
- 9.4 555定时器及其应用

9.1单稳态触发器

- 9.1.1 用门电路组成的微分型单稳态触发器
- 9.1.2 集成单稳态触发器
- 9.1.3 单稳态触发器的应用

9.1单稳态触发器

单稳态触发器的工作特点:

- ① 电路在没有触发信号作用时处于一种稳定状态。
- ② 在外来触发信号作用下, 电路由稳态翻转到暂稳态;
- ③ 由于电路中RC延时环节的作用, 暂稳态不能长保持, 经过一段时间后, 电路会自动返回到稳态。暂稳态的 持续时间仅取与RC参数值有关。

单稳态触发器的分类

按电路形式不同

·门电路组成的单稳态触发器

MSI集成单稳态触发器

用555定时器组成的单稳态触发器

工作特点划分

不可重复触发单稳态触发器

可重复触发单稳态触发器

9.1.1 用CMOS门电路组成的微分型单稳态触发器

1. 电路

CMOS或非门构成的微分型 单稳态触发器

稳态为0,暂稳态为1

CMOS与非门构成的微分型 单稳态触发器

稳态为1,暂稳态为0

补充知识: 常用的几种电容器

补充知识:

微分电路

注意: 电容两端电压不能突变! 其电压变化只能通过充放电完成!

微分电路的条件

(1) $\tau << t_p$ (一般 $\tau < 0.2t_p$);

(2) 从电阻R两端 输出电压V₀

补充知识: 电容元件

电容元件的定义是:如果一个二端元件在任一时刻,其电荷与电压之间的关系由u-q平面上一条曲线所确定,则称此二端元件为电容元件。

补充知识: RC充放电电路结构和分析

建立电路方程

求解电路方程

分析电路方程的解

时域分析法:涉及函数变量均为时间t

2019-5-6

建立电路方程

$$U_{c}(0^{-})=U_{0}$$

基尔霍夫电压定律

建立电路方程

元件伏安关系

$$RC\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = U_S$$
$$u_C(0^+) = U_0$$

求解电路方程

一阶常系数非齐次线性微分方程

$$RC\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = U_S$$

$$u_C(0^+) = U_0$$

$$U_{ph} = U_0$$

特解

通解

全解

对应齐次微分方程的通解

$$u_{ch}(t) = Ae^{-\frac{t}{RC}}$$

特解+通解 利用初始条件求待定系数

$$u_C(t) = U_S + (U_0 - U_S)e^{-\frac{t}{RC}}$$

$$i_C(t) = -\frac{(U_0 - U_S)}{R}e^{-\frac{t}{RC}}$$

- 9.2.1 用门电路组成的施密特触发器
- 9.2.2 集成施密特触发器
- 9.2.3 施密特触发器的应用

施密特触发器电压传输特性及工作特点:

施密特触发器特点:

施密特触发器有两个稳定的工作状态,所以是双稳态触发器的一种。但是又不同于一般的双稳态触发器,其两个稳态互相翻转所需的输入信号电平不相同,具有滞后电压传输特性,即回差特性。如下图所示其输出信号与输入信号关系的电压传输特性曲线图。

其中 V_{T+} 为正向阈值电压, V_{T-} 为负向阈值电压, ΔV 为滞后电压或回差电压。

施密特触发器电压传输特性及工作特点:

- ① 施密特触发器属于电平触发器件,当输入信号达到某一定电压值时,输出电压会发生突变。
- ② 电路有两个阈值电压。 输入信号增加和减少时,电路的阈值电压分别是正向阈值电压($V_{T_{\perp}}$)和负阈值电压($V_{T_{\perp}}$)。

9.2.1 用门电路组成的施密特触发器

1、电路组成

2、工作原理

假定:
$$V_{\text{TH}} \approx \frac{V_{DD}}{2} R_1 < R_2$$
 $v_{\text{I}} \Rightarrow \hat{R}_{1} = \frac{R_2}{R_1 + R_2} \cdot v_1 + \frac{R_1}{R_1 + R_2} \cdot v_0$

补充知识: N沟道增强型MOS管的结构和工作原理

补充知识: N沟道增强型MOS管的结构和工作原理

- (1) V_{GS} 控制沟道的导电性
- □ $v_{GS}=0, v_{DS}\neq 0$,等效背靠背连接的两个二极管, $i_{D}\approx 0$ 。
- □ $\nu_{GS}>0$,建立电场 →反型层 → $\nu_{DS}>0$, $i_D\neq 0$ 。
- \square 沟道建立的最小 ν_{GS} 值称为开启电压 V_{T} .

N沟道增强型MOS管

N沟道增强型MOS管符号如图。

补充知识: N沟道增强型MOS管的结构和工作原理

- $\square \nu_{GS} > V_{T}$,导通。
- □ 当v_{GS}≤V_T,截止。

补充知识:MOS管开关电路

当v_I < V_T : MOS管截止, 输出高电平

当v」>VT: MOS管导通, 輸出低电平

补充知识:MOS管开关电路

□当 v,为低电平时:

MOS管截止,相当于开关"断开",输出为高电平。

□当 v₁为高电平时:

MOS管导通,相当于开关"闭合",输出为低电平。

□MOS管相当于一个由V_{CS}控制的无触点开关。

补充知识: P沟道增强型MOS管

- □开启电压以力负值
- □ 结构与NMOS管相反。
- □ v_{GS}、v_{DS} 电压极性与NMOS管相反。

P沟道增强型MOS管

P沟道增强型MOS管。 符号如图所示。

补充知识: CMOS或非门

L=A+B

两个PMOS管串联,

两个NMOS管并联

两个输入端A、B分别与一个NMOS和一个PMOS管的栅极相连。

工作原理:

A=B=0时: T_{P1}、T_{P2}导通, T_{N1}、T_{N2}截止, 输出高电平。

CMOS或非门

L=A+B

两个PMOS管串联,

两个NMOS管并联

两个输入端A、B分别与一个NMOS和一个PMOS管的栅极相连。

工作原理:

A、B中有一个为1时, T_{P1} 、 T_{P2} 中有一个截止, T_{N1} 、 T_{N2} 中有一个导通,输出低电平。

下图中G1和G2这两个MOS管中必有一个截止, 另一个为导通。

当
$$v_{11}=0$$
, $v_{0}=0$ V

G1截止,G2导通。

- (1) v_I上升 只要v_{II} <V_{TH},则保持v_O =0V
- (2)当U₁₁=V_{TH}, 电路发生正反馈:

$$v_{\rm I} \uparrow -v_{\rm II} \uparrow -v_{\rm OI} \downarrow -v_{\rm O} \uparrow \rightarrow v_{\rm O} = V_{\rm OH}$$

正向阈值电压 (V_{T+}) : U_I 值在增加过程中,使输出电压产生跳变时所对应 U_I 的值。

$$\upsilon_{\text{I}_1} = \frac{R_2}{R_1 + R_2} \cdot \upsilon_{\text{I}} + \frac{R_1}{R_1 + R_2} \cdot \upsilon_{\text{O}}$$

$$v_{\rm I1} = V_{\rm TH} = \frac{R_2}{R_1 + R_2} V_{\rm T+}$$

$$V_{\text{T+}} = (1 + \frac{R_1}{R_2})V_{\text{TH}}$$

(3) v_{II} > V_{TH} 时,电路维持 $v_{O} = V_{OH}$ 不变。 G1导通,G2截止。

(4) 当 v₁下降, v₁₁ 也下降, 只要 v₁₁> V_{TH},则保持 v_Λ=V_{OH}

$$\rightarrow v_0 = V_{OL}$$

$$V_{T-} = (1 - \frac{R_1}{R_2})V_{TH}$$

$$V_{T-} = (1 - \frac{R_1}{R_2})V_{TH}$$

$$\Delta V_T = V_{T+} - V_{T-} \approx 2 \frac{R_1}{R_2} V_{TH} = \frac{R_1}{R_2} V_{DD}$$

9.2.2 集成施密特触发器

当 v_{\parallel} =0时, v_{\parallel} 0时, v_{\parallel} 0时, v_{\parallel} 1N1,TN2截止,TP1,TP2导通。

芯片74HC14逻辑符号

其基本逻辑功能仍是输入低电平输出为高电平,输入高电 平输出为低电平,但具有回差,其负压传输特性同前所 述。

9.2.3 施密特触发器的应用

1. 波形变换

施密特触发器利用其迟滞翻转的传输特性可以将三角波、正弦波、锯齿波等变换为矩形波。

2. 波形的整形

当其他脉冲信号通过导 线间的分布电容或公共 电源线叠加到矩形信号 上时,产生附加噪声干 扰的整形过程

3. 消除干扰信号

合理选择回差电压,可 消除干扰信号。

 V_{OL}

o $V_{\mathrm{T}+}$

 $V_{\mathrm{T}^{-}}$

4. 幅度鉴别

将一系列幅度各异的脉冲信号加到 施密特触发器的输入端时,只有那 些幅度大于 \mathbf{v}_{T+} 的脉冲才会在输出端 产生输出信号,即将幅度大于 \mathbf{V}_{T+} 的 脉冲选出,叫做鉴幅。

9.3 多谐振荡器

- 9.3.1 门电路组成的多谐振荡器
- 9.3.2 用施密特触发器构成多谐振荡器
- 9.3.3 石英晶体多谐振荡器

9.3 多谐振荡器

多谐振荡器是能产生矩形脉冲的自激振荡器,它产生的脉冲具有高、低两种状态并交替转换,称为两个暂态。故又称为无稳态电路。由于矩形脉冲波形是由基波和许多高次谐波组成的,故称为多谐振荡器。

反馈延迟环节(RC电路):利用RC电路的充放电特性实现延时,输出电压经延时后,反馈到开关器件输入端,改变电路的输出状态,以获得对应的脉冲波形输出。

9.3.1 门电路组成的多谐振荡器

不同于触发器,多谐振荡器 没有信号输入端,只要接上 直流电源,就有如下图的波 形信号输出。

- 1. 电路组成
- υ₀₁与υ₀反相,电容接在υ0与υ₁之间:
- . v o1 =1, v o=0 时,电容充电, v 增加;
 - υ₀₁=0, υ₀=1 时, 电容放电, υ₁下降;

CMOS门组成的多谐振荡器

2. 工作原理

(1) 第一暂稳态(初态) 电容充电, 电路自动翻转到第二暂稳态

 v_{O1} =0 v_{O2} =1 电路进入第二暂态 v_{O1} =0 v_{O} =1

2. 工作原理

(2) 第二暂稳态电容放电, 电路自动翻转到第一暂稳态

3. 振荡周期的计算

$$T_1: \quad v_{\mathrm{I}}(0+) \approx 0; \quad v_{\mathrm{C}}(\infty) \approx V_{\mathrm{DD}} \quad \tau = RC, \quad t = t_2 - t_1$$

$$T_1 = RC \ln \frac{V_{\mathrm{DD}}}{V_{\mathrm{DD}} - V_{\mathrm{TH}}}$$

$$T_2$$
: $v_I(0+) \approx V_{DD}$; $v_C(\infty) \approx 0 \tau = RC$, $t = t_3 - t_2$

$$T_2 = RC \ln \frac{V_{\rm DD}}{V_{\rm TH}}$$
 $T = T_1 + T_2 = RC \ln \left[\frac{V_{\rm DD}^2}{(V_{\rm DD} - V_{\rm TH}) \cdot V_{\rm TH}} \right]$

T = RC1n4 $\approx 1.4RC$

由门电路组成的多谐振荡器的振荡周期T取决于R、C电路和 V_{TH} ,频率稳定性较差。

9.3.2 用施密特触发器构成多谐振荡器

$$V_{\text{T+}}$$
 $V_{\text{T-}}$
 V_{OH}
 V_{OL}
 V_{OL}

$$T = T_1 + T_2$$

$$=RC\ln\frac{V_{\rm DD}-V_{\rm T-}}{V_{\rm DD}-V_{\rm T+}}+RC\ln\frac{V_{\rm T+}}{V_{\rm T-}}=RC\ln(\frac{V_{\rm DD}-V_{\rm T-}}{V_{\rm DD}-V_{\rm T+}}\cdot\frac{V_{\rm T+}}{V_{\rm T-}})$$

9.3.3 石英晶体振荡器

1、石英晶体电路符号和选频特性

石英晶体的选频特性非常好,只有在频率为f₀的信号最容易通过,而其他频率的信号均会被晶体所衰减。 石英晶体的谐振频率是由它的大小、几何形状及材料所决定的。

电路符号

当 $f = f_0$ 时,

电抗X=0

阻抗特性

2、石英晶体振荡器

 R_1 和 R_2 : 使对应门工作在线性区

 C_1 : 耦合电容 C_2 : 抑制高次谐波

3、双相脉冲产生电路

