

INSTITUT SUPÉRIEUR D'INGENIERIE ET DES AFFAIRES

- 27, rue OQBA, Agdal, RABAT - Tél: 05 37 77 14 68 / 69 / 70

Semestre 1 – Contrôle 1

Année universitaire 2020/2021

CLASSE	1 FI	DATE	Décembre 2020
MATIERE	Logique Combinatoire	DUREE	01H30
PROFESSEUR	EL AIMANI HIND	DOCUMENTS AUTORISES	Non

Exercice 1 : Système de numération (6 pts)

Calculer les conversions suivantes :

$$A_{1}=(456)_{8}==>()_{2}==>()_{10}$$
 $A_{2}=(1DF)_{16}==>()_{10}==>()_{8}$
 $A_{3}=(759)_{10}==>()_{2}==>()_{16}$
 $A_{4}=(100100111010101)_{2}==>()_{8}==>()_{16}$

Soient les bases de numération suivantes, on demande de compter de 0 à 15 (15 en décimal) présenter le résultat dans un tableau.

- Dans la base 3
- Dans la base 5

Exercice 2: Opérations arithmétiques en binaire (4 pts)

Calculer les opérations suivantes et vérifier le résultat par conversion en décimal (l'utilisation de la retenue et l'emprunt est exigée)

 $B_1=1010111101 + 10111011$

B₂=110111110 + 11110001

B₃=110100010 - 11110001

B₄=100110 - 11110001

Exercice 3: MUX / décodeur (10 pts)

On désire faire l'étude d'un transcodeur 3 bits binaire-code GRAY.

- 1. Etablir la table de vérité.
- 2. Calculer les équations simplifiées.
- 3. Tracer le logigramme du circuit.
- 4. Rappeler la TV d'un MUX 8 vers 1.
- 5. Proposer une solution du transcodeur à base du circuit MUX 8 vers 1.
- 6. Rappeler la TV d'un MUX 4 vers 1.
- 7. Proposer une solution à base du circuit MUX 4 vers 1.
- 8. Rappeler la TV d'un décodeur 3 vers 8.
- 9. Proposer une solution à base du circuit décodeur.