

2

WHAT IS CLAIMED IS:

1	A method for alerting the pilot of an aircraft to a potentially hazardou		
2	condition comprising the steps of:		
3	estimating a deceleration required to stop the aircraft on a runway of intende		
4	landing;		
5	comparing said deceleration to a maximum deceleration of the aircraft; and		
6	asserting an alert signal when said deceleration is greater than said maximum		
7	deceleration.		
1	2. The method of claim 1 wherein said step of estimating deceleration		
1	1		
2	further includes the step of including a gain factor in said deceleration to account for at least		
one of a plurality of runway surface conditions.			
1	3. The method of claim 1 wherein said step of estimating deceleration		
2	further includes the step of including a gain factor in said deceleration to account for at leas		
3	one atmospheric condition.		
1	4. The method of claim 1 wherein said step of asserting an alert signal		
2	includes the step of commanding an autopilot go-around manouevre.		
1	5. A method for alerting the pilot of an aircraft to a potential go-around		
2	condition comprising the steps of:		
3	monitoring a plurality of parameters indicative of an unstabilized approach;		
4	assigning a risk of go-around value according to each of said parameters; and		
5	asserting an alert signal when said value exceeds a predetermined threshold		
6	amount.		
1	6. The method of claim 5 wherein said step of monitoring a plurality of		
2	parameters includes the step of monitoring a change in a speed of the aircraft.		
1	7 The method of claim 5 wherein said step of monitoring a plurality of		

parameters includes the step of monitoring a runway wind condition.

2	parameters includes the step of monitoring a flight path angle of the aircraft.
1 2	The method of claim 5 wherein said step of monitoring a plurality of parameters includes the step of monitoring a position of the aircraft.
1	
1 2	10. The method of claim 5 wherein said step of monitoring a plurality of
2	parameters includes the step of monitoring a track of the aircraft.
1	The method of claim 5 wherein said step of asserting an alert signal
2	comprises the step of commanding an autopilot go-around manouevre.
1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12. The method of claim 5 wherein said step of asserting an alert signal
1 2	further comprises the steps of:
# 3	asserting a go-around caution alert signal when said value exceeds a first
u 4	threshold amount and is less than a second threshold amount; and
≅ 5 ፫1	asserting a go-around warning signal when said value exceeds said second
	threshold amount.
1 1	13. A method of alerting the pilot of an aircraft to a potential go-around
2	condition comprising the steps of:
3	monitoring a plurality of parameters indicative of a runway landing length
4	required;
5	assigning a risk of runway overrun value based on said plurality of parameters;
6	and
7	asserting an alert signal when said risk value exceeds a predetermined
8	threshold value.
1	14. The method of claim 13 wherein said step of monitoring a plurality of
2	parameters includes the step of monitoring a deceleration required to stop the aircraft.

The method of claim 5 wherein said step of monitoring a plurality of

1

8.

2	parameters includes the step of monitoring a runway surface condition.			
1	16. The method of claim 13 wherein said step of monitoring a plurality of			
2	parameters includes the step of monitoring at least one atmospheric condition.			
1	The method of claim 13 wherein said step of asserting an alert signal			
2	further comprises the steps of:			
3	asserting a go-around caution alert signal when said value exceeds a first			
4	threshold amount and is less than a second threshold amount; and			
5	asserting a go-around warning signal when said value exceeds said second			
6	threshold amount.			
1	18. The method of claim 13 wherein said step of asserting an alert signal			
2				
1 2	19. A computer program product for alerting the pilot of an aircraft to a			
12	potentially hazardous condition comprising:			
¹ 3	a computer readable storage medium having computer readable program code			
4	means embodied in said medium, said computer readable program code means having:			
5 6	a first computer instruction means for estimating a deceleration required to			
6	stop the aircraft on a runway of intended landing;			
- <u>-</u> 7	a second computer instruction means for comparing said deceleration to a			
8	maximum deceleration of the aircraft; and			
9	a third computer instruction means for asserting an alert signal when said			
10	deceleration is greater than said maximum deceleration.			
1	20. The computer program product of claim 19 further including a fourth			
2	instruction means for asserting an autopilot go-around command when said alert signal is			
3	asserted.			

1

1

2

21.

potential go-around condition comprising:

15.

The method of claim 13 wherein said step of monitoring a plurality of

A computer program product for alerting the pilot of an aircraft to a

3	a computer readable storage medium having computer readable program code			
4	means embodied in said medium, said computer readable program code means having:			
5	a first computer instruction means for accessing and monitoring a plurality of			
6	parameters indicative of an unstabilized approach;			
7	a second computer instruction means for assigning a risk of go-around value			
8	according to each of said parameters; and			
9	a third computer instruction means for asserting an alert signal when said			
10	value exceeds a predetermined threshold amount.			
1	22. The computer program product of claim 21 further comprising a fourth			
2	instruction means for asserting an autopilot go-around command when said alert signal is			
3	asserted.			
1	23. A computer program product for alerting the pilot of an aircraft to a			
2	potential go around condition comprising:			
3	a computer readable storage medium having computer readable program code			
4	means embodied in said medium, said computer readable program code means having:			
5	a first computer instruction means for accessing and monitoring a plurality of			
6	parameters indicative of a runway landing length required;			
7	a second computer instruction means for assigning a risk of runway overrun			
8	value based on said plurality of parameters; and			
9	a third computer instruction means for asserting an alert signal when said risk			
10	value exceeds a predetermined threshold value.			
1	24. The computer program product of claim 23 further including a fourth			
2	computer instruction means for asserting an autopilot go-around command when said alert			
3	signal is asserted.			
	<i></i>			
1	25. An apparatus for alerting the pilot of an aircraft to a potential go-			
2	around condition comprising:			
3	an input coupled to receive a plurality of parameters useful as indicators of an			
4	unstabilized approach;			
5	an output; and			

0	a signal processing device, coupled to said input, and to said output for:	
7	assigning a risk of go-around value according to each of said parameters; and	
8	asserting an alert signal when said value exceeds a predetermined threshold	
9	amount.	
1	26. The apparatus of claim 25 wherein said apparatus comprises an	
2	Enhanced Ground Proximity Warning computer.	
1	27. The apparatus of claim 25 wherein said alert signal further includes	
2	signals useful for driving a display.	
1	28. The apparatus of claim 25 wherein said alert signal further includes an	
2	aural alert signal.	
1	29. The apparatus of claim 25 wherein said parameters include a change in	
2	a speed of the aircraft.	
1	30. The apparatus of claim 25 wherein said parameters include a runway	
2	wind condition.	
1	31. The apparatus of claim 25 wherein said parameters include a flight	
2	path angle of the aircraft.	
1	32. The apparatus of claim 25 wherein said parameters include a position	
2	of the aircraft.	
1	33. The apparatus of claim 25 wherein said parameters include a track of	
2	the aircraft.	
1	34. The apparatus of claim 25 wherein said alert signal comprises an	
2	autopilot go-around manouevre command.	

Enhanced Ground Proximity Warning computer.

The apparatus of claim 25 further including a database of runway data.

The apparatus of claim 25 wherein said parameters include runway

1

1

1

2

35.

36.

The apparatus of claim 38 wherein said apparatus comprises an

1	43. The apparatus of daim 38 wherein said alert signal further includes		
2	signals useful for driving a display.		
1	44. The apparatus of claim 38 wherein said alert signal further includes an		
2	aural alert signal.		
_			
1	45. The apparatus of claim \(\frac{3}{8} \) wherein said alert signal comprises an		
2	autopilot go-around manouevre command.		
1	46. The apparatus of claim 38 further including a database of runway data		
1	47. The apparatus of claim 38 wherein said parameters include runway		
2	data.		
-	<u> </u>		
•			
1	748. The apparatus of claim 38 wherein said parameters include terrain		
2	data.		
1	49. An apparatus for alerting the pilot of an aircraft to a potentially		
2	hazardous condition comprising:		
3	an input coupled to receive runway data and at least one aircraft performance		
4	data;		
5	an output; and		
6	a signal processing device coupled to said input and to said output for:		
7	estimating a deceleration required to stop the aircraft on a runway of		
8	intended landing;		
9	comparing said deceleration to a maximum deceleration of the aircraft		
10	· and		
11	asserting an alert signal when said deceleration is greater than said		
12	maximum deceleration.		

1	50.	The apparatus of claim 49 wherein said runway data includes at least
2	one runway surface	condition.
		·
1	51.	The apparatus of claim 49 wherein said input is further coupled to
2	receive at least one a	atmospheric condition.
1	52.	The apparatus of claim 49 wherein said input is further coupled to
2	receive a runway end	d point data.
		\
1	60° 753.	The apparatus of claim 49 wherein said alert signal includes an manouevre command.
2	autopilot go-around	manouevre command.
1	54.	The apparatus of claim 49 wherein said alert signal further includes
2	signals useful for dri	ving a display.
		\
1	55.	The apparatus of claim 49 wherein said alert signal further includes an
2	aural alert signal.	
		·
1	56.	The apparatus of claim 49 further including a database of runway data
	.)_	
1	50 PI 757.	The apparatus of claim 49 wherein said apparatus comprises an
2	,	oximity Warning computer.
1	58.	The apparatus of claim 56 wherein said database further includes
2	terrain data.	
		•
1	59.	The apparatus of claim 46 wherein said database further includes
2	terrain data.	