EE270 Large scale matrix computation, optimization and learning

Instructor: Mert Pilanci

Stanford University

Tuesday, Feb 2 2020

Randomized Linear Algebra Lecture 8: Randomized Least Squares Bias and Variance, Streaming Data

Least Squares Problems and Random Projection

- Find the best linear fit $Ax \approx b$ according to $\min_{x \in \mathbb{R}^d} \|Ax b\|_2^2 + 0 \times 1$
- ightharpoonup no regularization, i.e., $\lambda = 0$
- ► If A is full column rank then

 $= \underset{x \in \mathbb{R}^d}{\min} \| \widetilde{A}x - \widetilde{b} \|_2^2$ $\widetilde{A} = SA$ \widetilde{S}

Left sketching

Faster Least Squares Optimization: Random Projection

Left-sketching

Form SA and Sb where $S \in \mathbb{R}^{m \times n}$ is a random projection matrix

Solve the smaller problem

$$\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

using any classical method.

Direct method complexity md²

Approximation Result

- ▶ Suppose that $n \gg d$
- lackbox Let $S \in \mathbb{R}^{m imes d}$ be a Johnson-Lindenstrauss Embedding

$$x_{LS} = \arg\min_{x \in \mathbb{R}^d} \underbrace{\|Ax - b\|_2^2}_{f(x)} \qquad \qquad \bigcap$$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$
 fork (4) $\leq d$

- ٨
- ▶ **Lemma** If $m \ge \text{constant} \times \frac{\text{rank}(A)}{\epsilon^2}$ then,
- $f(x_{LS}) \le f(\tilde{x}) \le (1 + \epsilon^2) f(x_{LS})$
- $\|A(x_{LS} \tilde{x})\|_2^2 \le \epsilon^2$ with high probability

error prob. is expandially small.

Application: Streaming data ▶ Suppose that $n \gg d$ Let $S \in \mathbb{R}^{m \times d}$ be a Johnson-Lindenstrauss Embedding ,

Randonized liner Algebra and) space + and ampute per fine instant

arg
$$\min_{x\in\mathbb{R}^d}$$

 $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$

Update SA L SA +SD \triangleright A and b are dynamically updated and we need to find x_{LS} at any time

$$Sb\|_2^2$$

$$Sb\|_2^2$$

and Sbe-Sb+SS

x = (AA)Ab $A_{t+1} = A_t + \Delta_t$ and $y_{t+1} = y_t + \Delta_t$ Can we form and update $A_t^T A_t \in \mathbb{R}^{d \times d}$? (A+D)(A+D) = AA + DA +-Classical Linear Algebra space and O(nd1) compute per time instant

Application: Streaming data

- ▶ Suppose that $n \gg d$
- Let $S \in \mathbb{R}^{m \times d}$ be a Johnson-Lindenstrauss Embedding

$$x_{LS} = \arg\min_{x \in \mathbb{R}^d} \underbrace{\|Ax - b\|_2^2}_{f(x)}$$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

ightharpoonup A and b are dynamically updated and we need to find x_{LS} at any time

$$A_{t+1} = A_t + \Delta_t$$
 and $y_{t+1} = y_t + \Delta_t$
Can we form and update $A_t^T A_t \in \mathbb{R}^{d \times d}$?

Linear sketch can be updated on the fly $SA_{t+1} = SA_t + S\Delta_t$ and $Sy_{t+1} = Sy_t + S\Delta_t$

Gaussian Sketch

Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$ $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$

▶ Is $\mathbb{E}\left[\tilde{x}\right]$ equal to x_{LS} ?

Gaussian Sketch

▶ Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$ $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$

- Is $\mathbb{E}[\tilde{x}]$ equal to x_{LS} ? Yes \bigcup They Gaussian.

 Assuming $A^T S^T S A$ is invertible, we have

$$\tilde{x} = (A^T S^T S A)^{-1} A^T S^T S b$$
let $b = A x_{LS} + b^{\perp}$ where $b^{\perp} \perp Range(A)$

$$\tilde{x} = (A^T S^T S A)^{-1} A^T S^T S (A x_{LS} + b^{\perp})$$

$$= x_{LS} + (A^T S^T S A)^{-1} A^T S^T S b^{\perp}$$

 \blacktriangleright $\mathbb{E}(A^TS^TSA)^{-1}A^TS^TSb^{\perp}=0$ since Sb^{\perp} and SA are uncorrelated zero mean Gaussian.

Gaussian Sketch: Variance

▶ Let *S* be i.i.d. Gaussian

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \frac{\|SAx - Sb\|_2^2 = x_{LS} + (A^T S^T SA)^{-1} A^T S^T Sb^{\perp}}{\int \mathcal{S} \rangle}$$

$$= x_{LS} + (SA)^{\dagger} Sb^{\perp}$$

- ▶ Analyzing the variance $\mathbb{E}\|A\tilde{x} x_{LS}\|_2^2$
- Lemma (a) Conditioned on the matrix SA

$$\tilde{x} \sim N\left(x_{LS}, \frac{f(x_{LS})}{m}(A^T S^T S A)^{-1}\right)$$

Gaussian Sketch: Variance ASS=I

$$485=7$$
Let S be i.i.d. Gaussian:

Let
$$S$$
 be i.i.d. Gaussian $\times \frac{1}{\sqrt{n}}$

$$\tilde{x} = \arg \min ||SAx - Sb||_2^2 = x_L$$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2 = x_{LS} + (A^T S^T SA)^{-1} A^T S^T Sb^{\perp}$$

$$x \in \mathbb{R}^d$$

$$= x_{L}$$

Analyzing the variance
$$\mathbb{E}\|A\tilde{x} - x_{LS}\|_2^2$$

 $ightharpoonup Sb^{\perp} \sim N\left(0, rac{\|b^{\perp}\|_2^2}{m}I
ight)$

 $= \#(A^T S^T S A)^{-1} A^T S^T S b^{\perp} ((A^T S^T S A)^{-1} A^T S^T S b^{\perp})^{\top}$

Analyzing the variance
$$\mathbb{E}\|A\tilde{x} - x_{LS}\|_2^2$$

Lemma (a) Conditioned on the matrix \widehat{SA}

$$=x_{LS}$$
Analyzing the variance $\mathbb{E}\|A\widetilde{x}-x_{LS}\|$

$$= x_{LS} + x_{LS}$$
variance $\mathbb{E} \| A \widetilde{x} - x_{LS} \|$

$$= x_{LS} + (SA)^{\dagger}Sb^{\perp}$$

$$= x_{LS} + (SA)^{\dagger}Sb^{\perp}$$

$$= x_{LS} + (SA)^{\dagger}Sb^{\perp}$$

 $\mathbb{E}(\tilde{x} - x_{LS})(\tilde{x} - x_{LS})^T = (SA)^{\dagger}((SA)^{\dagger})^T = (A^T S^T SA)^{-1} \frac{\|b^{\perp}\|_2^2}{m}$

$$\delta b^{\perp}$$

Gaussian Sketch: Variance Let S be i.i.d. Gaussian

$$\tilde{x} = arg$$

$$ilde{x} = \mathsf{arg}$$

$$ilde{x} = \mathsf{arg}$$

$$\ddot{x} = \arg x$$

$$ilde{x} = rg \min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

$$x = arg$$

$$ilde{x} = \mathsf{arg}$$

$$\tilde{x} = \operatorname{arg} r$$

 $\tilde{x} \sim N\left(x_{LS}, \frac{f(x_{LS})}{m}(A^T S^T S A)^{-1}\right)$

 $A(\tilde{x} - x_{LS}) \sim N(0, \frac{f(x_{LS})}{m} A(A^T S^T S A)^{-1} \tilde{A})$

 $\times \sim N(0, \mathbb{Z})$

AxNN(O,AZA')

E. Axx A' = A. ZA')

$$\tilde{x} = \arg m$$

Gaussian Sketch: Variance

▶ Let *S* be i.i.d. Gaussian

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

- ► Analyzing the variance $\mathbb{E}\|A\tilde{x} x_{LS}\|_2^2$
- ▶ **Lemma (a)** Conditioned on the matrix *SA*

$$\tilde{x} \sim N\left(x_{LS}, \frac{f(x_{LS})}{m} (A^T S^T S A)^{-1}\right)$$

$$A(\tilde{x} - x_{LS}) \sim N\left(0, \frac{f(x_{LS})}{m} A (A^T S^T S A)^{-1} \tilde{A}\right)$$

$$2 A(\tilde{x} - x_{LS}) \sim N\left(0, \frac{f(x_{LS})}{m} A (\tilde{x} - x_{LS})^{-1} \tilde{A}\right)$$

Lemma (b) (removing conditioning) for m > d + 1

Inverse motions $\mathbb{E}\left[(A^TS^TSA)^{-1}\right] = (A^TA)^{-1} \frac{m}{m-d-1}$ the Gaussia they are predictable $\mathbb{E}\left[(A^TS^TSA)^{-1}\right] = (A^TA)^{-1} \frac{m}{m-d-1}$ the Gaussia distribution,

Gaussian Sketch: Variance ▶ Let S be i.i.d. Gaussian

SA = IF ICIL

#. ||x||2= E+xx= E+xx

X~N(0,Z)

= tr. Exx

 $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$

 $A(\tilde{x} - x_{LS}) \sim N\left(0, \frac{f(x_{LS})}{m} A(A^T S^T S A)^{-1} A\right)_{1}$

 $\mathbb{E}[(A^{T}S^{T}SA)^{-1}] = (A^{T}A)^{-1} \frac{m}{m - d - 1} \int_{A^{T}}^{A} \frac{d}{m - d - 1} \int_{A^{T}}^{A} \mathbb{E}[(A^{T}S^{T}SA)^{-1}] = (A^{T}A)^{-1} \frac{m}{m - d - 1} \int_{A^{T}}^{A} \mathbb{E}[(A^{T}S^{T}SA)^{-1}A^{T}] \cdot \mathbb{E}[(A^{T}S^{T}SA)^{T$

tower prop. Lemma (a) Conditioned on the matrix SA

 $\tilde{\mathbf{x}} \sim N\left(\mathbf{x}_{LS}, \frac{f(\mathbf{x}_{LS})}{m} (A^T S^T S A)^{-1}\right)$

► Analyzing the variance $\mathbb{E}\|A\tilde{x} - x_{LS}\|_2^2$

Lemma (b) (removing conditioning) for m > d + 1

Expected Inverse of a Random Matrix
$$\mathcal{L}$$
 \mathcal{L} \mathcal{L}

E (A'SSA) = ATA.8

Where does the formula

$$\mathbb{E}\left[(A^T S^T S A)^{-1}\right] = (A^T A)^{-1} \underbrace{m \choose m - d - 1}$$

come from? inverse chi-squae dict.

Set
$$m = d \cdot d$$

$$\mathcal{T} = \frac{\alpha J}{(\alpha - 1)d - 1} \frac{\alpha J}{\alpha - 1}$$

Randomized algorithm to estimate the inverse!

Which sketching matrices are good? $\frac{defourtifle}{fast}$ $\frac{defour$

 $S = A^T$ (optimal but

/ 13

