In the Abstract:

Following the claims, please insert the following Abstract of the Disclosure:

-- ABSTRACT OF THE DISCLOSURE

Methods, devices and test kits for determination of an analyte in a sample in a flow matrix employ a transport flow of one or more biospecific affinity reactants, at least of one of which is analytically detectable (Reactant*) and one of which is firmly anchored in the matrix (Reactant I). The flow matrix has at least two application zones for liquid:

$$LZ_m \dots LZ_l$$
 DZ flow direction

wherein LZ_n is an application zone for liquid, n is the position of the application zone LZ_n , m is the total number of application zones in which flow is initiated and is greater than or equal to 2, and DZ is the detection zone. One LZ_n is an application zone for sample (LZ_n,S) and one LZ_n is for Reactant' (LZ_n,R^*) , wherein n" is greater than or equal to n'. Flow is initiated by adding liquid to each zone $LZ_n ... LZ_1$ in such a way that liquid $_{n+1}$, added to the application zone LZ_{n+1} is transported through the matrix immediately after liquid $_n$, added to the nearest downstream application zone LZ_n .