Ant colony optimization (ACO)

BABEŞ-BOLYAI UNIVERSITY, CLUJ NAPOCA, ROMÂNIA FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

March 21, 2022

Agenda

- Aspecte teoretice
- Algoritm
- Exemplu
- Proprietati
- Aplicatii

State-of-the-art

- Furnicile au un comportament social ce influenteaza in mod direct cautarea unui drum intre cuib si sursa de hrana
- Acest comportament se remarca prin:
 - o activitate/munca colectiva aproape perfect coordonata indiferent de dimensiunea populatiei (cateva sau milioane de furnici)
 - diviziunea muncii
 - interactiune sociala complexa
- Colorni si Dorigo (1991) propun un algoritm inspirat din acest comportament pentru rezolvarea probemelor de optimizari ca si alternativa a algoritmilor genetici (AG)

State-of-the-art

- ACO face parte din familia de algoritmi ce implica o cautare cooperativa, ghidata de calitatea relativa a indivizilor.
- ACO presupune de asemenea si cautare constructiva se porneste de la o solutie initiala, si se adauga elemente in solutie la fiecare iteratie.

Elemente speciale

- ACO are nevoie de transformarea problemei de optimizare intr-o problema de identificare a drumului optim intr-un graf.
- De ce?
 - Furnicile vor construi solutia plimbandu-se prin graf si depunand pe muchii
- Cum?
 - Colonii de furnici care cauta solutia optima prin intermediul cooperarii
 - Diferente cu AG: avem populatii de cromozomi care sunt in competitie.
 - cooperare vs competitie

Elemente speciale

• Ce face o furnica ?

- Se deplaseaza in spatiul de cautare, lasand in urma sa o cantitate de feromon
- Retine drumul parcurs (memorie proprie)
- Alege drumul pe care sa-l urmeze in functie de:
 - feromonul existent pe drum
 - euristica asociata acelui drum
- Foloseste feromonul ca si mecanism de comunicare si cooperare astfel incat:
 - acesta are o intensitate corelata cu calitatea solutiei
 - se evapora odata cu trecerea timpului

Furnici naturale

Ne putem imagina cum:

- O colonie de furnici pleaca in cautarea hranei
- In drumul lor apare in obstacol ce implica aparitia a doua rute, A respectiv B.
- Conform imaginii de mai jos ruta A este mai scurta, astfel ca furnicile de pe acel drum il vor parcurge de mai multe ori (ture), deci vor lasa mai multe feromon.
- Concentratia de fernomon de pe ruta A va creste mai accelerat decat pe ruba B, astfel ca dupa cateva parcurgeri furnicile de pe ruta B vor alege ruta A
- Dupa un anumit numar de parcurgeri datorita concentratiei de feromon care creste pe ruta A si descreste pe ruta B. toate furnicile vor folosi ruta A.

Furnici artificiale

Asemanarile furnicilor artificiale cu cele reale:

- navigheaza de la o sursa catre o destinatie
- descopera drumul cel mai scurt pe baza concentratiei de feromon, tinand cont ca:
 - poate executa miscari aleatoare
 - depoziteaza feromon pe drumul parcurs
 - poate detecta drumul urmat de o anumita furnica (sefa), incliand sa-l urmeze
 - persistand feromon pe un drum, automat creste probablitatea ca acel drum sa fie urmat si de alte furnici

Furnici artificiale

Imbunatatiri ale furnicilor artificiale fata de cele reale:

- au memorie (retin actiunile efectuate sub forma unui istoric)
- nu sunt complet oarbe, pentru ca pot aprecia calitatea spatiului vecin
- depun feromon si in functie de calitatea solutiei identificate

Feromon

In reprezentarea artificiala feromonul are rolul unei memorii colective dinamice distribuita intre furnici, unde sunt inmagazinate cele mai recente experiente de cautare a solutiei de catre furnici.

Putem spune ca furnicile **pot comunica indirect si se pot influenta reciproc prin acest mecanism** in vederea obtinerii solutiei dorite.

Descriere generala

- 1 Initializare (cu valori random)
- 2 Cat timp nu s-a parcurs numarul necesar de pasi pentru identificarea solutiei, fiecare furnica:
 - executa o mutare
 - modifica local urma de fermonom corespunzator ultimului element adaugat in solutie
- Se modifica urma de feromon de pe drumurile parcurse, fie de toate furnicile, fie de cea mai buna furnica
- Se returneaza solutia gasita de cea mai buna furnica

Versiuni ACO

Exista 3 versiuni principale in functie de:

- Regulile de deplasare a furnicilor
- Momentul la care furnicile depun feromon (pe parcursul constructiei solutiei vs la sfarsitul crearii unei solutii)
- Cine depune feromonul: toate furnicile vs cea mai buna furnica

Versiuni ACO

- AS Ant system
 - Toate furnicile depun feromon dupa construirea unei solutii complete (modificare globala colectiva)
- MMAS MaxMin Ant System
 - doar cea mai buna furnica depune feromon dupa construirea unei solutii complete (modificare globala a liderului)
 - feromonul este limitat la un interval dat
- 3 ACO Ant Colony System
 - toate furnicile depun feromon la fiecare pas in constructia solutiei (modificare locala colectiva)
 - doar cea mai buna furnica depune feromon dupa construirea unei solutii complete (modificarea globala a liderului)

Problema comisului voiajor

Sa se gaseasca un drum care sa treaca prin n orase, astfel incat costul sa fie minim si fiecare oras sa fie vizitat o singura data.

Structura de date: graf unde nodurile reprezinta orasele, iar drumurile dintre orase sunt encodate ca si muchii intre nodurile corespondente.

Initializare

- t := 0 (timpul)
- fiecare muchie (i, j) este initializata cu:

$$\gamma_{ij}^{(t)} = c$$

(intensitatea urmei de feromon pe muchia (i, j) la momentul t)

$$\Delta \gamma_{ij} = 0$$

(cantitatea de feromon lasata pe muchia (i, j) de catre toate furnicile)

- pornim cu m furnici plasate aleaturi pe cele n noduri ($m \le n$)
- fiecare furnica isi modifica memoria (lista de noduri vizitate),
 adaugand in lista nodul din care pleaca in cautare.

Parcurgere

Pentru un numar de pasi \mathbf{n} , fiecare furnica \mathbf{k} din colonie:

• isi mareste solutia partiala cu un element (executa o mutare), alegand un oras (i) fiind pozitionata pe orasul i astfel:

$$j = \begin{cases} argmax_{l \in permis_k} \{ [\gamma_{il}]^{\alpha} [\eta_{il}]^{\beta} \}, q \leq q_0 \\ J, altfel \end{cases}$$

- unde:
 - q numar aleator uniform distribuit in [0, 1]s
 - q_0 parametru, $0 \le q_0 \le 1$ ($q_0 = 0$ pentru AS/MMAS, altfel pentru ACO)
 - J este un oras selectat cu probabilitatea:

$$p_{ij}^k(t) = egin{cases} rac{[\gamma_{ij}^{(t)}]^{lpha}[\eta_{ij}]^{eta}}{\sum_{s-permis_k(t)}[\gamma_{is}^{(t)}]^{lpha}[\eta_{is}]^{eta}}, j-permis \ 0, altfel \end{cases}$$

Parcurgere

Pentru un numar de pasi **n**, fiecare furnica **k** din colonie:

• J este un oras selectat cu probabilitatea:

$$p_{ij}^k(t) = \begin{cases} \frac{[\gamma_{ij}^{(t)}]^\alpha [\eta_{ij}^{(t)}]^\beta}{\sum_{s-\textit{permis}_k(t)} [\gamma_{ij}^{(t)}]^\alpha [\eta_{ij}^{(t)}]^\beta}, j-\textit{permis} \\ 0, \textit{altfel} \end{cases}$$

- unde:
 - $p_{ij}^{k}(t)$ probabilitatea de tranizitie a furnicii k situatia in orașul i spre orașul j
 - $\eta_{ij} = \frac{1}{d_{ii}}$ vizilitatea din orașul i spre orașul j (distanta)
 - permis_k- orasele pe care le mai poate vizita a k furnica la momentul t
 - α controleaza importanta urmei/feromonului (cate furnici au mai trecut prin muchia respectiva)
 - β controleaza importanta vizibilitatii (cat de aproape se afla urmatorul oras

Persistarea feromonului

Dupa ce o furnica k isi mareste solutia partiala cu un element (executa o mutare), se modifica local urma de feromon lasata de fiecare furnica pe ultimul element adaugat in solutie.

$$\gamma_{ij}^{(t+1)} = (1 - \varphi)\gamma_{ij}^{(t)} + \varphi * \gamma_0$$

unde:

- φ coeficient de degradare a feromonului cu valori intre [0, 1]. $\varphi = 0 \to \text{AS/MMAS}$, altfel ACO
- γ_0 valoarea initiala a feromonului
- (i, j) ultima muchie parcursa de furnica

Persistarea feromonului

Feromonul se modifica:

- pe drumurile parcurse de toate furnicile (AS)
- pe cel mai bun drum (ACO)
- pe cel mai bun drum pacurs de cea mai buna furnica (MMAS)

Persistarea feromonului - AS

(AS) - pe drumurile parcurse de toate furnicile, pentru fiecare muchie:

 se calculeaza canitatea unitara de feromon lasat de a k furnica pe muchia ij:

$$\Delta \gamma_{ij}^k = \begin{cases} \frac{Q}{L_k}, \text{daca a k furnica a folosit muchia (i, j)} \\ 0, \textit{altfel} \end{cases}$$

- unde
 - ullet Q canitatea de feromon lasata de o furnica
 - L_k lungimea (costului) turul efectual de a k-a furnica
- canitatea totala de feromon de pe muchia (ij) se calculeaza: $\Delta \gamma_{ii} = \sum_{k=1}^{m} \Delta \gamma_{ii}^{k}$

 intensitatea urmei de feromoni se calculeaza ca suma intre evaporarea feromonilor vechi si feromonul nou lasat:

$$\gamma_{ij}^{(t+n)} = (1-\varphi) * \gamma_{ij}^{(t)} + \Delta \gamma_{ij}$$

Persistarea feromonului - AS

(ACO-MMAS) - cel mai bun drum:

 se calculeaza cantitatea unitara de feromon lasat de cea mai buna furnica pe muchia ij:

$$\Delta \gamma_{ij} = \frac{1}{L_{best}}$$

- unde
 - L_{best} lungimea (costum) celui mai bun drum:
 - din iteratia curenta
 - din toate iteratiile executate pana atunci
- cantitatea totala de feromon de pe muchia (ij) se calculeaza: $\Delta \gamma_{ij} = \sum_{k=1}^m \Delta \gamma_{ij}^k$
- intensitatea urmei de feromoni:

$$\gamma_{ij}^{(t+n)} = [(1-arphi) * \gamma_{ij}^{(t)} + arphi * \Delta \gamma_{ij}^{best}]_{\gamma_{min}}^{\gamma_{max}}$$

- ullet unde arphi (0 < arphi < 1) coeficientul de evaporare a urmei de feromon intre 2 cururi complete
- $\qquad \qquad \gamma_{\mathit{min}} \mathit{si} \gamma_{\mathit{max}} \mathsf{limitele} \,\, \mathsf{feromonului}, \,\, \gamma_{\mathit{min}} \to -\infty, \, \gamma_{\mathit{max}} \to \infty \, \mathit{pentruACO}, \, \mathit{altfelMMAS}$

Proprietati

- Algoritm iterativ, stocastic
- Algoritm care construieste progresiv solutia pe baza informatiilor euristice si a urmei de feromoni

Avantaje

- solutie compatibila cu modificari dinamice in timp real a datelor de intrare
- Euristica greedy ajusta la gasirea unei solutii acceptabile inca din primele stadii ale cautarii
- calculul distribuit evita convergenta prematura, prin interactiunea colectiva a indivizilor

Dezavantaje

- Converge incet fata de alte cautari euristice
- Eficienta scazuta pentru exemple cu mai mult de 75 de orase in problema comisului-voiajor
- Inexistenta unui mecanism central de ghidare catre solutiile bune

Aplicatii

- Probleme de identificare al unui drum optim in grafe
- Probleme de optimizari in retele
- Probleme de transport

Referinte

Informatiile prezentate au fost colectate din diferite surse, cea mai importanta dintre ele fiind:

• Prof. Dr. Diosan Laura - Inteligenta artificiala 2021-2022