B. C. A. (Sem. III) Examination October/November – 2017 Statistics & Optimization Technique

303 - Statistics & Optimization Technique

Time: 3 Hours]

[Total Marks 70

8

10

Instructions:

- (1) Figure to the right indicate full marks.
- (2) Be precise and to the point in your answer.
- 1 (a) Answer the following questions:

•(1) Define: Arithmetic Mean.

- (2) Find the co-efficient of Range of 9,8,2,7,10,18,12 and 15.
- (3) What is the standard deviation of first n natural numbers?
 - (4) State the empirical relationship among mean, median and mode.
- (5) Find mean of 3,5,6,10,2,8,11.
- (6) Define: Standard deviation.
- (7) What is the use of co-efficient of variation?
- (8) Which measure of central tendency is ideal?

(b) Attempt any two:

(1) Find the mean from the following frequency distribution.

Age in years:	15-19	20 – 24	25 – 29	30 - 34	35 – 44	45 - 59	Total	
No of persons	37	81	43	24		6		

(2) Find the standard deviation for the following table

X	5	15	25	35	45	55	65	75
f	3	7	9	23	15	8	6	4

(3) Given the following results relating to two groups containing 20 and 30 observations, calculate the co-efficient of variation of all the 50 observations by combining both the groups:

	Groups				
	1	//			
$\sum x$	45	55			
$\sum x^2$	118	132			

2 (a) Do as directed:

(1) What is correlation? List different types of correlation.

(2) Define: Regression co-efficient of Y on X, regression co-efficient of X on Y.

(3) Prove that the geometric mean of regression co-efficient is the correlation co-efficient.

(b) Attempt any two:

(1) Find the co-efficient of correlation for the following data:

X	65	63	67	64	68	62	70	66
Y	68	66	68	65	69	66	68	65

(2) In a contest, two judges ranked seven candidates in order of their performance as in the following table:

Candidate	A	В	C	D	E	F	G
Ranks by Judge - 1	2	1	4	5	3	7	6
Ranks by Judge - 2	3	4	2	5	1	6	7

Calculate the rank correlation co-efficient.

(3) The following result were obtained from records of age(x) and systolic blood pressure(y) of a group of 10 women:

	x	y
Mean	53	142
Variance	130	165
$\sum (x-\overline{x})(y-\overline{y})$	12	20

Find the appropriate regression equation and use it to estimate the blood pressure of a women whose age is 45.

8

10

3 (a) Answer the following:

(1) Define: Slack variable, Surplus variable.

(2) State the mathematical model of general linear programming problem.

(3) Explain: Duality in LPP.

(4) What is the full form of CPM and PERT.

(b) Attempt any two:

(1) Solve the following LPP using Graphical method.

Maximize $Z = 3X_1 + 5X_2$ Subject to constraints

$$X_1 + X_2 \le 5$$
, $2X_1 + X_2 \le 8$, $X_1 + 2X_2 \le 10$
and X_1 , $X_2 \ge 0$.

(2) Solve the following LPP using simplex method.

Max $Z = 6X_1 + 8X_2$ Subject to constraints $5X_1 + 10X_2 \le 60$, $4X_1 + 4X_2 \le 40$ and $X_1, X_2 \ge 0$.

(3) Draw a network diagram for following information.

Activity	A	В	C	D	E	F	G	H	1	J	K
Predecessor activity			- 7	A, B, C	A, B, C	D	D, E	D, E	F	G	Н

- (a) Answer the following:

 (1) What is transportation problem?

 Give mathematical model of general transportation problem.

 (2) How to convert maximization assignement 2
 - problem into minimization?

 (3) What is degeneracy in transportation problem? How to resolve it?

10

(b) Attempt the following:
 (l) Obtain an initial basic feasible solution for the following transportation problem using NWCM and LCM.

	<i>D</i> 1	D2	D3	D4	Supply
01	5	1	3	4	300
02	4	2	9	7	400
03	8	7	6	2	500
Demand	250	350	400	200	1200

(2) Assign salesman to different sales region such that total sales will be maximum.

		S	Sales region						
		1	II	111	IV				
,	A	10	22	12	14				
Calaam	В	16	18	22	10				
Salesman	C	24	20	12	18				
	D			24					