Devoir surveillé n° 5 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

- Critère spécial des séries alternées ou critère de Leibniz -

Soit (u_n) une suite de réels décroissante et de limite nulle. Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n (-1)^k u_k$. Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que (S_n) converge.

II. Une suite récurrente.

On considère la fonction

$$f : \mathbb{R}_{+}^{*} \to \mathbb{R} .$$

$$x \mapsto \frac{e^{-x}}{x} .$$

On considère aussi la suite u définie par récurrence de la manière suivante :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- 1) a) Dresser le tableau de variations de f, limites comprises.
 - b) Vérifier que la suite u est bien définie et à valeurs strictement positives.
- 2) À la fin de l'exécution de chacun de ces scripts, n a pour valeur 5 à gauche et 6 à droite.

Que peut-on en déduire quant aux valeurs de u_5 et u_6 ? Que peut-on conjecturer?

3) a) Étudier les variations de la fonction

$$g: \mathbb{R}_+ \to \mathbb{R}$$

$$x \mapsto e^{-x} - x^2$$

- b) En déduire que, sur \mathbb{R}_+^* , l'équation f(x) = x admet une unique solution, que l'on notera dorénavant α .
- c) Montrer que $\frac{1}{e} < \alpha < 1$.
- 4) a) Montrer que $u_2 > u_0$ et que $u_1 > u_3$.
 - b) En déduire les sens de variations des suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$.
- 5) On considère la fonction

$$h: \mathbb{R}_{+} \to \mathbb{R}$$

$$x \mapsto \begin{cases} (f \circ f)(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- a) Expliciter h(x) pour tout x > 0 et vérifier que h est continue en 0
- **b)** Résoudre sur \mathbb{R}_+ l'équation h(x) = x.
- c) En déduire la limite de la suite $(u_{2n+1})_{n\in\mathbb{N}}$
- d) Est-ce que la suite $(u_{2n})_{n\in\mathbb{N}}$ converge? Déterminer sa limite.
- e) Est-ce que la suite u converge? Admet-elle une limite?

III. Les quaternions de Hamilton.

On pose $\mathcal{H} = \mathbb{C}^2$ et on définit les deux lois + et \times sur \mathcal{H} par :

$$\forall \left(\left(z_{1}, z_{2} \right), \left(z_{1}', z_{2}' \right) \right) \in \mathcal{H}^{2}, \begin{cases} \left(z_{1}, z_{2} \right) + \left(z_{1}', z_{2}' \right) = \left(z_{1} + z_{1}', z_{2} + z_{2}' \right) \\ \left(z_{1}, z_{2} \right) \times \left(z_{1}', z_{2}' \right) = \left(z_{1}z_{1}' - z_{2}\overline{z_{2}'}, z_{1}z_{2}' + z_{2}\overline{z_{1}'} \right) \end{cases}$$

On pose enfin I = (1,0), J = (i,0), K = (0,1) et L = (0,i).

- 1) Montrer que $(\mathcal{H}, +, \times)$ est un anneau (on admettra que \times est associative et distributive par rapport à +). Préciser l'élément nul $0_{\mathcal{H}}$ et l'élément unité $1_{\mathcal{H}}$.
- 2) On pose $G = \{I, J, K, L, -I, -J, -K, -L\}$. Dresser la table de (G, \times) et montrer que (G, \times) est un groupe non commutatif.
- 3) Déterminer le centre du groupe (G, \times) , c'est à dire, l'ensemble des éléments de G qui commutent avec tous les autres éléments de G.
- **4)** On définit l'application $\sigma: \mathcal{H} \longrightarrow \mathcal{H}$ $(z_1, z_2) \longmapsto (\overline{z_1}, -z_2)$.
 - a) Montrer que σ est un automorphisme de $(\mathcal{H}, +)$.
 - b) Déterminer l'ensemble des points fixes de $\sigma : \mathcal{F} = \{A \in \mathcal{H}, \sigma(A) = A\}.$
 - c) Montrer que : $\forall (A, B) \in \mathcal{H}^2, \sigma(A \times B) = \sigma(B) \times \sigma(A)$.
- 5) a) Démontrer que si $A \in \mathcal{H}$, alors $A \times \sigma(A) = \sigma(A) \times A = (n(A), 0)$ où n(A) est un réel dont on précisera l'expression en fonction de A.
 - **b)** Démontrer que si $(A, B) \in \mathcal{H}^2$, alors, $n(A \times B) = n(A)n(B)$.
- **6)** Démontrer que tout élément non nul de \mathcal{H} est inversible (pour \times bien sûr). On dit que $(\mathcal{H}, +, \times)$ est un corps non commutatif.