

Universidade Federal do Acre

Padrões de Herança

Profa. Leila P Peters

Rio Branco - AC

O que veremos hoje?

- ➤ Conceitos genéticos;
- ➤ Leis de Mendel;
- ➤ Herança monogênica;

≻Genoma

Conjunto de toda a informação genética do organismo.

≻Genoma

Principais diferenças entre o genoma nuclear e mitocondrial

	Nuclear	Mitocondrial	
Tamanho	3.300 Mb	16.6 kb	
No. de moléculas de DNA	23 (em XX) ou 24 (em XY), linear	Um molécula de DNA circular	
No. total de mol. DNA/células	23 Crom.: Cels. haplóides, 46 Crom.: Cels. Diplóides	Milhares de genomas em uma célula	
Proteínas associadas	Várias classes de histonas e proteínas não-histonas	Ausência de histonas	
Número de genes	~ 25.000 - 30.000	37	
Densidade gênica	~ 1/40 kb	1/0.45 kb	
DNA repetitivo	Grande porção	Muito pouca	
Transcrição	Os genes são transcritos individualmente	Transcrição contínua de muitos genes	
Introns	Encontrado em muitos genes	Ausente	
Percentagem de DNA codificador	~ 3%	~ 93%	
Recombinação	Pelo menos uma vez por cada par de homólogos	Transcrição contínua de muitos genes	
Herança	Mendeliana no cromossomo X e autossomos, paternal no cromossomo Y	Exclusivamente materna	

≻Genoma

O DNA mitocondrial consiste em uma pequena molécula de DNA circular com alta densidade gênica

➤ Genótipo x fenótipo

Genótipo

Refere-se a todos os pares de alelos que compõem de forma coletiva a constituição genética de um indivíduo ao longo de todo o genoma;

Fenótipo

É a expressão do genótipo com um traço morfológico, clínico, celular ou bioquímico (ex: glicemia; índice da massa corporal).

Alelo: formas alternativas do mesmo gene

Locus: posição ocupado pelo gene (alelo) no cromossomo.

➤ Heterozigoto x Homozigoto

Homozigoto

Quando uma pessoa tem um par de alelos idênticos em um locus de DNA nuclear;

Heterozigoto

Quando uma pessoa tem um dos alelos diferente (mutante) e um deles é do tipo selvagem.

Dominância completa ou dominância total

Um alelo dominante será expresso no fenótipo quando apenas uma cópia estiver presente, como em um heterozigoto, enquanto o alelo alternativo será totalmente recessivo.

Um dose do alelo A já o suficiente para causar a doença.

> Dominância completa

Acondroplasia - nanismo

a) Recém-nascido

Macrocefalia;

Hipoplasia do terço médio da face;

Tórax pequeno;

Encurtamento de todos os membros;

Dobras cutâneas redundantes;

b) Radiografia

Todos os ossos tubulares são curtos, mas a fíbula é relativamente longa em comparação com a tíbia;

c) Criança de 3 anos

As dobras cutâneas redundantes não estão mais presentes. O encurtamento das extremidades é acompanhado por arqueamento tibial.

> Explicar como funciona a acondroplasia

É provocada por mutações no gene codificante do receptor de crescimento dos fibroblastos 3;

A acondroplasia é causada por mutações no gene FGFR3.

Esse gene codifica a proteína fator de crescimento de fibroblasto receptor 3, a qual inibe o crescimento ósseo e, portanto, essa mutação resulta na inibição anormal ou excessiva do crescimento.

> Ideias de herança pré-Mendel

Pré-formismo

Diagrama de homúnculo dentro de um espermatozoide.

Herança por mistura

Mistura das características parentais.

> Gregor Mendel

✓ Estudou em um Monastério (padre)

contato com a botânica e fisiologia vegetal

- Gregor Mendel (1822–1884)
- ✓ Pai da genética moderna;
- ✓ Descreveu os padrões de herança monogênica (herança mendeliana);
- ✓ 8 anos realizando experimentos utilizou características contrastantes;

1ª Lei de Mendel: cada característica é condicionada por dois fatores que se separam na formação dos gametas

2ª Lei de Mendel: uma característica é herdada independentemente de outra (segregação independente)

EXPERIMENTS IN PLANT HYBRIDIZATION (1865)

GREGOR MENDEL

Read at the February 8th, and March 8th, 1865, meetings of the Brünn Natural History Society

Mendel, Gregor. 1866. Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn. Bd. IV für das Jahr

Características analisadas

Ervilha – *Pisum sativum* — racterísticas

Axial ou terminal

> Pergunta de Mendel - Hipótese

1. Quando ervilhas com uma característica diferente (sementes lisas e rugosas) são cruzadas, sua prole exibirá uma dessas características, ambas ou uma característica de mistura?

➤ 1^a Lei de Mendel

2. Será que a geração F1 teria traços (características) de sementes rugosas de alguma forma oculta?

Palavra filial vem do grego filia (filha) e filius (filho)

➤ 1ª Lei de Mendel

3⁄4 de sementes lisas e 1⁄4 sementes rugosas

Proporção 3:1

Conclusão de Mendel

As características das plantas parentais não se misturam. Em F1, as plantas apresentam somente um fenótipo de um genitor, mas ambas as características são passadas para a prole F2 na proporção de 3:1.

1 ^a lei de Mendel: os dois alelos de **um par de gene segregam** (se separam) um do outro na formação dos gametas com igual probabilidade.

Princípio de Herança proposto por Mendel

> Princípio da segregação

"As partículas" (alelos) que determinam as características são separadas na formação dos gametas (durante a meiose).

➤ 2ª Lei de Mendel

Cruzamento di-híbridos

2º Lei de Mendel

Geração F2

Proporção fenotípica
9:3:3:1

> 2ª Lei de Mendel: princípio da segregação independente

Uma característica é herdada independentemente de outra (segregação independente)

Esse princípio diz que alelos em loci diferentes separam-se independentemente uns dos outros

- Herança monogênica > Tipo de herança determinada por um único gene
- Padrão mendeliano

- Padrão mendeliano

	Dominante	Recessivo
Autossômico	Autossômico Dominante Autossômico Recessi	
Ligado ao X	Dominante ligado ao X	Recessivo ligado ao X

Distúrbios monogênicos -> são caracterizados pelo seus padrões de transmissão nas famílias - qual o primeiro passo a ser realizado?

Representação gráfica de uma árvore familiar, usando símbolos padronizados;

A extensão familiar retratada em um heredograma é uma genealogia.

FIGURA 7-2 Símbolos comumente utilizados em heredogramas.

Embora não haja um sistema uniforme de notação para os heredogramas, os símbolos usados aqui estão de acordo com as recomendações recentes feitas por profissionais no campo do aconselhamento genético.

Genealogia

Herança monogênica autossômica dominante

- ✓ O fenótipo geralmente aparece em todas as gerações (exceções – mutações novas);
- ✓ A partir de um genitor afetado, qualquer criança tem o risco de 50% de herdar a característica;
- ✓ Homens e mulheres são afetados em proporções aproximadamente iguais;

Herança monogênica autossômica recessiva

- ✓ Homens e mulheres são afetados em proporções aproximadamente iguais;
- ✓ Os pais de uma criança afetada são portadores assintomáticos dos alelos mutados;
- ✓ Os pais de uma pessoa afetada podem, em alguns casos, ser consanguíneos;
- ✓ O risco de recorrência para a irmandade de um probando é de 1 em 4 (25%);
- ✔ Pulo de gerações.

Herança monogênica – ligado ao X dominante

Diferente da autossômica dominante, pois não se tem a transmissão homem a homem

- ✓ Homens afetados casados com mulheres normais, tem todas as filhas afetadas;
- ✓ Mulheres afetadas acontecem em uma frequência aproximadamente duas vezes maior do que homens afetados;

➤ Herança monogênica — ligado ao X recessiva

- ✓ As características fenotípicas incide muito mais em homens;
- ✓ As mulheres heterozigotos não são afetadas;
- ✓ O gene responsável pela condição é transmitido de um homem afetado para todas as suas filhas;
- ✓ Um proporção significativa dos casos isolados se deve a mutações novas.;

Variações das leis de Mendel – Dominância incompleta

Cada alelo do tipo selvagem produz uma dose estabelecida de seu conteúdo proteico.

Boca-de-leão

CRCR → duas doses produz a maior parte do transcrito

proteína = pigmento

C^RC^W → uma dose produz menos pigmento

C^wC^w → dose zero, não produz pigmento

Variações das leis de Mendel – Codominância

Grupo sanguíneo Fenótipo	Genótipo	Proteínas (aglutinogênios)	Anticorpos (aglutininas)
Sangue A	I ^A I ^A i	Condicionado pelo gene l ^A	Anti-B
Sangue B	I ^B I ^B	Condicionado pelo gene I ^B	Anti-A
Sangue AB	I A I B	7 1	Sem anticorpos.
Sangue O	ii	Sem aglutinogênios.	Anti-A e Anti-B

É a expressão de ambos os alelos de um heterozigoto;

Os alelos determinam a presença de uma molécula (antígeno) complexa sobre a superfície do eritrócito. Antígeno é reconhecido pelo sistema imune;

Alelos I^A e I^B são codominantes.

Variações das leis de Mendel – Genes letais ^{Acondroplasia}

Um alelo que é capaz de causar morte do indivíduo;

A herança de um alelo de acondroplasia pode causar a doença, a herança de dois alelos letais recessivos é fatal.

Variações das leis de Mendel – pleitropia

Único gene pode produzir múltiplos fenótipos em vários sistemas, com uma diversidade de sinais e sintomas acontecendo em diferentes momentos da vida.

Síndrome de Marfan

Na Síndrome de Marfan, o gene *FBN1* que codifica a proteína Fibrilina-1 sofre mutação e traz efeitos múltiplos, por exemplo: no tecido conjuntivo, coração, pulmões, ossos e olhos - A característica mais marcante desta síndrome rara é o aumento do comprimento dos ossos longos.

O esterno é empurrado para fora

Variações das leis de Mendel – Herança multifatorial

- Múltiplos genes
- ☐ Interação com o meio ambiente
 - Produção da diversidade fenotípica
 - Quanto maior o número de genes envolvidos, menor a discrepância fenotípica

Exemplos

- ☐ Sistema imunológico, cor dos olhos, altura
 - Cor da pele
 - a, b, c = produção mínima de melanina
- A, B, C = intensificam a produção de melanina

Variações das leis de Mendel – Herança mitocondrial

Variações das leis de Mendel – Herança mitocondrial

Neuropatia óptica hereditária de Leber

Figura 7-24 Heredograma da neuropatia óptica hereditária de Leber, uma forma de cegueira de início na vida adulta, causada por defeitos no DNA mitocondrial. A herança é dada apenas pela linhagem materna, seguindo o padrão conhecido de herança do DNA mitocondrial. Note que nenhum homem afetado transmite a doença.

Variações das leis de Mendel – herança epigenética

