

COPENHAGEN BUSINESS ACADEMY

DATA ENGINEERING

FLOW 3 – Data Engineering

- cityflow.dk API
 - Json-dataformat
 - https request
 - R request
 - File-persistence (json, csv)
 - Database-persistence
- Tooling
 - AWS EC2-instance (Ubuntu eller Windows?)

FLOW 3 – Data Engineering

- Oplæg om de to cases i Flow 3
 - cityflow.dk API
 - Json-dataformat
 - https request
 - python request
 - File-persistence (json, csv)
 - Database-persistence (MongoDB)
 - Bilbasen.dk WebScraping
 - HTML/CSS/JavaScript primer
 - Scrape static (python bs4)
 - Scrape dynamic (python selenium)
- Tooling
 - GitHub / GitBash
 - Python (Anaconda) & jupyter notebook
 - AWS EC2-instance (Ubuntu med MongoDB og MySQL)
 - Arduino with serial-port driver

FLOW 3 – User Stories

- Som underviser vil jeg gerne vide hvor meget den hvide bygning bliver brugt så jeg kan lægge aktiviteter i bygningen når den bliver mindst brugt
- Som studerende vil jeg gerne vide hvor det er bedst at lave en walk-and-talk i Århus i løbet af dagen på en hverdag
- Som ejer af en gammel Volvo vil jeg gerne kunne få en vurdering af hvor meget den er værd således at jeg kan planlægge hvornår jeg skal sælge den

Cityflow

Cityflow – REST API

What do I see at docs.cityflow.live?

Cityflow – REST API Data Format

- "The above command returns JSON structured like this"
- JSON JavaScript Object Notation

```
JSONLint - The JSON Validator
1 v
         "id": "e00fce68c573b4acca2089ce",
 3
         "type": 150,
         "location": 216,
        "latitude": 56.1632767,
        "longitude": 10.2105122,
        "location name": "Nørrebrogade",
        "city": "Aarhus",
        "country": "Denmark",
10 v
         "roles": [
             4
11
12
         "permissions": [],
13
        "tags": [
14 v
             "Randersvej"
16
17
```


Cityflow - REST API Request

- Http hvad er det?
 - Chrome dev-tools
- Shell hvad er det?
 - Intall Git Bash (windows)
 - Curl hvad er det?

```
http shell javascript

curl --request GET \
--url https://api.cityflow.live/devices \
--header 'authorization: Bearer {BEARER_TOKEN}'
```

```
curl --request POST \
    --url https://api.cityflow.live/users/login \
    --header 'content-type: application/json' \
    --data '{
        "email": <EMAIL>,
        "password": <PASSWORD>
}'
```


Cityflow – REST API Request

- Introduction
- 2. Protocols
- 3. Data Formats
- 4. Authentication, Part 1
- 5. Authentication, Part 2
- 6. API Design
- 7. Real-Time Communication
- 8. Implementation

To make a valid request, the client needs to include four things:

- 1 URL (Uniform Resource Locator) 1
- 2 Method
- 3 List of Headers
- 4 Body

Cityflow – REST API Get Data I


```
http
      shell
              javascript
  GET /devices HTTP/1.1
  Authorization: Bearer {BEARER_TOKEN}
  Host: api.cityflow.live
   id: e00fce689f02a96799f34fc2,
   type: 150,
   location: 190,
   latitude: 56.1770897,
   longitude: 10.2296247,
   location_name: Salonvejen,
   city: Risskov,
   country: Denmark,
   roles: [
   permissions: [],
   tags: [
     Risskov
```

```
"time": "2019-11-28T07:23:19.346Z",
"CityProbe 2",
                                                "b": 19.05.
"Particle Pollution (PM2.5)",
                                                "c": 163,
"Particle Pollution (PM4)",
                                                "firmware_version": "49",
"Particle Pollution (PM10)",
                                                "h": 0,
"Particle Pollution (PM1)",
                                                "1": 3353.
"Battery Level", -
                                                "location": "8",
"Temperature",
                                                "n": 170,
"Humidity",
                                                "p": 0,
"Luminosity",
                                                "p1": 0,
"Atmospheric Pressure",
                                                "p2": 0,
"Noise Average",
                                                "r.avg": -1673.1,
"Noise Minimum".
                                                "r.max": -757.
"Noise Maximum", —
                                                "r.min": -1772,
"Noise Standard Deviation".
                                                "r.sd": 169.71.
"Rain Average",
                                                "r.var": null,
"Rain Minimum",
                                                "s.avg": 81.16,
"Rain Maximum",
                                               "s.max": 81.65,
"Rain Standard Deviation",
                                                "s.min": 77.6,
"Particulate Concentration (PC1)",
                                                "s.sd": 0.89,
"Particulate Concentration (PC2.5)",
                                                "s.var": null,
"Particulate Concentration (PC4)",
                                                "seq": 1203,
"Particulate Concentration (PC10)",
                                                "t": 0,
"Average Particle Size",
                                                "uv": null,
                                                "device id":
                                         "49004d000d50483553343720"
```


Cityflow – hist measures

```
"time": "2019-11-27T08:20:00.000Z",
   "mean b": 32.98,
    "mean c": 144,
    "mean h": 0,
    "mean l": 502,
    "mean n": 172,
    "mean p": 0,
   "mean p1": 0,
    "mean p2": 0,
    "mean r.avg": -8.19,
    "mean r.max": 12,
    "mean r.min": -1311,
    "mean r.sd": 92.22,
    "mean r.var": null,
    "mean_s.avg": 41.08,
    "mean s.max": 79.05,
   "mean s.min": 36.6,
    "mean s.sd": 3.19,
    "mean s.var": null,
    "mean seq": 1142,
    "mean t": 0,
    "mean_uv": null,
    "device id":
"49004d000d50483553343720",
    "location": "8"
```


CityFlow - R

- 1. Get access-token
- 2. Get device-list
- 3. Get historic measurements from aarhus
 - 1. one week, 60 mins interval

AWS Windows Server

- Create Windows 2012 R2
- Connect via RDP
- Tilføj nøgle i Registry
- Åben powershell

CityFlow & DMI – vindretning og støj

Tesen er at støjen fra en vej er afhængig vindretning. Det skal undersøges.

- 1. Find locations i Aarhus som ligger umiddelbart vest for en større vej
- 2. Hent vind-data (retning og styrke) fra DMI's
 - 1. hvor vinden er fra vest og stærk men skifter på et tidspunkt
- 3. Hent fra samme tidsinterval støjdata fra cityflow

^	mt	dir [‡]	force [‡]
1	2022-11-14 00:00:00	118	4.8
2	2022-11-14 01:00:00	119	4.5
3	2022-11-14 02:00:00	123	3.9
4	2022-11-14 03:00:00	115	4.0
5	2022-11-14 04:00:00	116	3.8
6	2022-11-14 05:00:00	107	3.7
7	2022-11-14 06:00:00	119	3.6
8	2022-11-14 07:00:00	107	4.2
9	2022-11-14 08:00:00	113	4.5
10	2022-11-14 09:00:00	109	4.7
11	2022-11-14 10:00:00	114	4.5
12	2022-11-14 11:00:00	112	4.6

CityFlow & DMI – vindretning og støj

Wind_dir

The parameter wind_dir returns the direction from which the wind blows in degrees, where north is given as 360.

Code	Value
0	calm

