Analísis Complejo

Hugo Del Castillo Mola

8 de septiembre de 2022

Índice general

	Análisis Complejo												2								
1.	. Preliminares														3						
	1.1.	El Plano Complejo .																			3
	1.2.	Función Exponencial																			5

Parte I Análisis Complejo

Capítulo 1

Preliminares

1.1. El Plano Complejo

Definición 1.1 (Plano Complejo). Definimos los números complejos como el conjunto $\mathbb{C}=\{(a,b):a,b\in\mathbb{R}\}$ junto con las operaciones suma y producto

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b) \cdot (c,d) = (ac-bd,bc+ad)$

Observación. $(\mathbb{C}, +, \cdot)$ es un cuerpo conmutativo.

- (I) La identidad de la suma es (0,0) y la identidad del producto es (1,0).
- (II) Se satisfacen la prorpiedad asociativa, la distributiba y la conmutativa.
- (III) Todo elemento distinto de cero tiene inverso en \mathbb{C} .

Observación. Consideramos los números reales $\mathbb R$ como el subconjunto de los números complejos $\mathbb C$ de la forma (a,0). Dado $(a,b)\in\mathbb C$ podemos escribir (a,b)=a(1,0)+b(0,1). Sea i=(0,1) entonces (a,b)=a+ib. Notese que $i=(0,1)\cdot(0,1)=(-1,0)\to 1\in\mathbb R$.

Observación. La parte real de $z=a+ib\in\mathbb{C}$ es a y se denota $\Re(z)=a$. La parte imaginaria de z es b y se denota $\Im(z)=b$.

Definición 1.2 (Módulo). Sea $z=a+ib\in\mathbb{C}$, el módulo de z es

$$|z| = \sqrt{a^2 + b^2}$$

Observación. El módulo de un número complejo es la distancia desde el punto del plano hasta el origen.

Definición 1.3 (Conjugado). Sea $z = a + ib \in \mathbb{C}$, el conjugado de z es

$$\overline{z} = a - ib$$

Observación. El conjugado de un número complejo es su simétrico respecto al eje de coordenadas.

Proposición 1.1. Se verifican las siguientes propiedades:

(I)
$$\overline{\overline{z}} = z \ y \ \overline{z} = z \Leftrightarrow z \in \mathbb{R}$$
.

(II)
$$z + \overline{z} = 2\Re(z)$$
 y $z - \overline{z} = 2\Im(z)$.

(III)
$$\overline{z+w} = \overline{z} + \overline{w}$$
 y $\overline{-z} = -\overline{z}$

(IV)
$$\overline{zw} = \overline{z} \cdot \overline{w}$$
 y si $z \neq 0$ entonces $\overline{z^{-1}} = \overline{z}^{-1}$

(v)
$$|z|^2 = z\overline{z} \ y \ z^{-1} = \frac{\overline{z}}{|z|^2}, \ \forall z \neq 0.$$

(VI)
$$|zw|=|z||w|$$
, $|\frac{z}{w}|=\frac{|z|}{|w|}$ si $(w\neq 0)$ y $|z|=|\overline{z}|$

(VII)
$$|z+w| \leq |z| + |w|$$
. Además, si $\exists t \geq 0: z=tw$ se tiene $|z+w| = |z| + |w|$.

Observación. El módulo permite definir una distancia en el plano complejo d(z,w)=|z-w|. De esta forma $\mathbb C$ y $\mathbb R$ son topológicamente iguales.

Definición 1.4 (Representación polar de un número complejo). Sea $z=a+ib\in\mathbb{C}$, z representa el punto (a,b) en el plano, cuya expresión en coordenadas polares es $(r\cos\theta,r\sin\theta)$. Y escribimos

$$z = r(\cos\theta + i\sin\theta) := re^{i\theta}$$

donde
$$r = |z|$$
 y $\theta = \arg(z) = \arg(\frac{b}{a})$.

Observación. Si $-\pi < \theta < \pi$ lo llamamos argumento principal y se denota (z). El conjunto de todos los posibles argumentos de z es $\{Arg(z) + 2k\pi : k \in \mathbb{Z}\}$.

Proposición 1.2. (I) $e^{i\theta} = e^{i(\theta + 2k\pi)} \forall k \in \mathbb{Z}$.

(II)
$$|e^{i\theta}| = 1, |\overline{e^{i\theta}}| = e^{-i\theta} = (e^{i\theta})^{-1}.$$

(III)
$$e^{i(\theta+\sigma)} = e^{i\theta}e^{i\sigma}$$
.

(IV)
$$\arg(zw) = \arg(z) + \arg(w)$$
 y $\arg(\overline{z}) = \arg(z^{-1}) = -\arg(z)$

Proposición 1.3. Si
$$z = re^{i\theta}$$
 entonces $z^n = r^n e^{in\theta} = |z|^n e^{in \arg(z)}$.

Observación. Una raíz n-esima de un número complejo w es número z que cumple $z^n = w$. Si w = 0 la única raíz es 0, si $w \neq 0$ entonces por el Teorema Fundamental del Álgebra tenemos que hay n raíces distintas.

Sean $w=|w|e^{i\theta}$ y $z=|z|e^{i\alpha}$, tenemos que

$$|w|e^{i\theta} = |z|^n e^{in\alpha}$$

y por tanto $|z|=|w|^{\frac{1}{n}}$ y $e^{i\theta}=e^{in\alpha}$, lo cual implica que $n\alpha=\theta+2k\pi$ para $k\in\mathbb{Z}$. Los valores de α son

$$\frac{\theta}{n}, \frac{\theta+2\pi}{n}, \cdots, \frac{\theta+2\pi(n-1)}{n}$$

Proposición 1.4. Sea $w \in \mathbb{C}$ entonces w tiene n raíces n-simas distintas.

Observación. Estas n raíces son los vértices de un polígono regular de n lados inscritos en la circunferencia de centro 0 y radio $|w|^{\frac{1}{n}}$.

1.2. Función Exponencial

Definición 1.5 (Función polinómica). Sea $P: \mathbb{C} \to \mathbb{C}: z \mapsto a_0 + a_1z + \cdots + a_nz^n$ donde $a_0, \cdots, a_n \in \mathbb{C}$.

Observación. Como $f(z)=z^k$ es continua (de $\mathbb{R}^2\to\mathbb{R}^2$) se tiene que f es continua de $\mathbb{C}\to\mathbb{C}$.

Definición 1.6 (Función Exponencial). *Definimos la función exponencial como la solución de la ecuación diferencial*

$$f'(z) = f(z)$$

con el valor inicial f(0) = 1. Haciendo

$$f(z) = a_0 + a_1 z + \dots + a_n z^n + \dots$$

$$f'(z) = a_1 + 2a_2z + \dots + na_nz^{n-1} + \dots$$

se tiene que $a_{n-1}=na_n$ y $a_0=1$ y por inducción $a_n=\frac{1}{n!}.$

La solución se denota

$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots$$

que es una serie convergente.

Proposición 1.5 (Propiedades Exponencial). *Se verfican las siguientes propiedades:*

- (I) Si $z \in \mathbb{R}$ entonces e^z coincide con la exponencial real.
- (II) $|e^z| = e^x \ y \arg(e^z) = y$.
- (III) $e^{\overline{z}} = \overline{e^{\overline{z}}}$.
- (IV) $e^z \neq 0$ y $(e^z)^{-1} = e^{-z}$.
- (v) $e^{z+w} = e^z e^w, \forall z, w \in \mathbb{C}$.
- (VI) $e^{2k\pi i} = 1, \forall k \in \mathbb{Z}.$
- (VII) es periódica, $e^z=e^{z+2\pi i}$
- (VIII) es continua, Sea $(z_n)_{n\in\mathbb{N}}$ una sucesión de números complejos, si $z_n \xrightarrow[n\to\infty]{} z_0 \Rightarrow e^{z_n} \xrightarrow[n\to\infty]{} e^{z_0}$.
 - (IX) No es inyectiva, exiten infinitos $z \in \mathbb{C}$ tal que $e^x = 1$.

Observación. En el plano la exponencial compleja transforma las rectas horizontales de la forma z=x+ib en semirectas de radio e^x y ángulo b. Y rectas verticales de la forma z=a+iy a circunferenciasde radio e^a y ángulo y.

Definición 1.7 (Funciones Trigonométricas). Se definene las funciones sen y cos como

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}, \ \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

Proposición 1.6 (Propiedades cos y sen). (I) Son funciones continuas.

(II) Sobre los números reales coinciden con las correspondientes funciones reales.

6

(III)
$$\cos(z) = \cos(-z)$$
 $y \sin(z) = -\sin(-z), \forall z \in \mathbb{C}$.

(IV)
$$\cos(z) = 0 \Leftrightarrow z = \frac{\pi}{2} + k\pi \ \text{y} \ \text{sen}(z) = 0 \Leftrightarrow z = k\pi \ \text{para} \ k \in \mathbb{Z}.$$

- (v) $\forall z, w \in \mathbb{C}$, se tien $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$ y $\sin(z+w) = \sin(z)\cos(w) + \sin(w)\cos(z)$.
- (VI) El coseno y el seno son funciones periódicas de periodo 2π .

(VII)
$$\cos(z)^2 + \sin(z)^2 = 1, \forall z \in \mathbb{C}.$$

Demostración (ii). Veamos que si $z \in \mathbb{R}$ entonces la exponencial compleja coincide con la real

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2} =$$

$$= \frac{1}{2} (\cos(x) + \sin(x) + \cos(-x) + i \sin(-x)) = \cos(x)$$

Demostración. (iv) $\cos(z) = 0 \Leftrightarrow e^{iz} + e^{-iz} = 0 \Leftrightarrow e^{iz}(e^{iz} + e^{-iz}) = e^{2iz} + 1 = 0 \Leftrightarrow e^{2iz} = -1 \Rightarrow z \in \mathbb{R}$. Si $y \neq 0$ entonces $e^{2iz} = e^{2ix-2y} \Rightarrow |e^{2iz}| \neq -1$.

Definición 1.8 (Función Tangente). A partir de las funciones seno y coseno se define la tangente,

$$\tan(z) = \frac{\sin(z)}{\cos(z)} = -i\frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}$$

Observación. Todas las funciones trigonométricas son funciones de e^{iz} .

Observación. También podemos definir las funciones

$$\operatorname{senh}(z) = \frac{e^z - e^{-z}}{2} \ \mathbf{y} \ \cosh(z) = \frac{e^z + e^{-z}}{2}$$