CSMA-CA vs TSCH Orchestra

IMAD MESBIH & MAARTEN DEQUANTER

Project

- Goal Compare two MAC protocols in WSN
 - Unslotted CSMA-CA
 - TSCH with Orchestra Scheduler
- FOCUS metrics
 - Packet Delivery Ratio (PDR)
 - Latency
 - o Throughput
- Objective

Evaluate performance and breaking point under increasing network load.

EXPERIMENTAL WSN SETUP

Multi-tier star, acting as a Mesh WSN

- .20 senders
- . (6 receivers)
- .1 sink
- .1 root

Problem!

Networks start sending @ 20 x messages per sending node

Role of Relay nodes

- Relay Nodes
 (3, 6, 25 and 26)
- 1 sink node 16

Predefined Requirements for Measurements

- 100% correct time measurements
 - unique message strings
- Netto vs bruto msg. Receiving
 - Confirmed message transmission
- Random and statistically correct
 - At least 100 messages per sendersnode/bin
- Realistic uniform sending pattern
 - 100% JITTER
- Full process, including steady state
 - Steady state monitoring

Fully Automated process

INPUT

TSCH or CSMA, sendingrates ex. 1,2,5,10, Testbins ex. 1-30, project-conf and Makefile, gui or not, logs save or not

QUEUEBUF CONF NUM = **64**MAX PACKETS PER NEIGHBOR = **16**

SETUP TESTBIN

Sender-node.c (sending rate) Coojalogger.js (simulation time)

COMPILE/RUN TESTBIN

cooja.testlog logging

ANALYSE TESTLOG

Extract PDR, latency, Throughput, etc...

SAVE RESULTS

Analyses to CSV line(a), logfiles

Repeat sending rate/bin

Live Dashboard

Next: Why 80% critical breaking point

- PDR (Packet delivery ratio) in % and its critical breaking point 80%
 - Latency (ms)
 - Throughput in bits/second

IMPORTANT NOTE:

All measured values are per sender node (20x)

CSMA at near saturation (ex.60 msgs/min)

PDR CSMA (package delivery ratio)

Critical Breaking Point @ 80%
 65 msgs/min per sender node

Max PDR

+99%

TSCH PDR(%) by send rate

PDR TSCH(package delivery ratio)

Critical Breaking Point @ 80%
 7 msgs/min per sender node

Max PDR

81,3% (6 msgs/min per sender node)

Latency (ms)

Minimal Latency

- CSMA: 228, 57ms @ 40 msgs/min*
- TSCH: 540,13ms @ 3 msgs/min*

At breaking point (80% PDR)

- CSMA: ~4,3 seconds @ 65 msgs/min*
- TSCH: ~1.8 seconds @ 7 msgs/min*

Throughput CSMA with 95% CI

Throughput TSCH with 95% CI

Throughput (bits/second)

Throughput (bits/s) =
$$\frac{\text{Total received bytes} \times 8}{\text{Time span (s)}}$$

CSMA

- 169,97 bits/s @ 60 msgs/min*
- => effective delivery ratio: 84,99%

TSCH

- Theoretical MAX (**bruto**): 20 nodes x 25 bytes
- => **20** bits/second @ 6msgs/min
- Measured: 18,96 bits/s. @ 6 msgs/min*
- =>94.8% ideally tuned VS netto 81.3% (PDR @ 7)

^{*} per sender node and payload +/- 25 bytes or 200 bits)

Conclusion

Aspect	CSMA	TSCH
PDR breaking point 80%	65 msgs/min/sender	7 msgs/min/sender
PDR (Mean)	+99% at low rate	81,3%
PDR(Median)	-	94%
Queue sensitivity	Lower then TSCH	Sensitive to overflow at high send rates
Energy efficiency	low	Very high
Conclusion	Better for high throughput scenarios	Offers energy efficiency if well-tuned

5. Behaviour under disturbance

What are disturbances?

- Unexpected changes in the network environment that can disrupt normal communication patterns.
- ► Examples:
 - ▶ Interference from external source
 - Mobility of nodes
 - **...**
- ► Impact?
 - ▶ Latency increase
 - Reduced PDR (Packet delivery ratio)
 - ▶ Low throughput

CSMA and TSCH vs Disturbance

► CSMA:

- Reacts with exponential backoff
- Can adapt fast but suffers under load

TSCH:

- Uses predetermined time slots and channel hopping
- Avoid collisions in normal conditions
- ▶ But adapt less quickly

Aspect	CSMA (Unslotted)	TSCH with Orchestra
Adaptability to Topology Change	High	Low
Reaction Mechanism	Exponential backoff on collision	Schedule-based, limited fallback in shared slots
Collision Avoidance	Reactive (after collision occurs)	Proactive (via scheduling and channel hopping)
Recovery Speed	Fast – reattempts quickly after interference	Slow – schedule doesn't change dynamically

First disturbance experiment

- Moving away one node (initially near the sink)
 - ▶ Node 25
 - ► After 300s (After network stabilization)

95% Confidence Intervals by Send Rate (CSMA) End-to-End Latency per Send Rate (msgs/min) 10000.00 8000.00 6000.00 4000.00 2000.00 0.00 Throughput (%) per Send Rate (msgs/min) 100.00 PDR (%) 80.00 60.00 40.00 Bitrate (bits/s) per Send Rate (msgs/min) 200.00 Throughput (bits/s) 180.00 160.00 140.00 120.00 50 60 70 80 90 100 Send Rate (messages/min)

First disturbance experiment

Observations:

- Surprisingly, no significant performance drop in either CSMA or TSCH
- ▶ PDR and latency remained stable
- In some test runs, performance even slightly improved

First disturbance experiment

► Possible Explanation:

- ▶ Node 25 may not have been a critical relay
- ► RPL adapted quickly
- ▶ Since there a are 4 different senders near the node, removing only 1 node may have reduced local congestion near the sink

- Moving away 3 nodes (initially near the sink)
 - ▶ Node 25, 6, 26
 - ► After 300s (After network stabilization)
 - Node 3 is the only sender still near the sink
- Goal: simulate a stronger disruption, to see more effects

- **▶** Observations:
- ► CSMA:
 - ► Performance dropped severely
 - Many packets were lost entirely

- Observations:
- ▶ TSCH with Orchestra:
 - Severe performance drop, lower PDR and Throughput, higher latency
 - ▶ Some messages were still able to arrive in comparison with CSMA
 - ▶ PDR 15% to 45%

▶ Grafiek resultaten

Possible explanation:

► CSMA

- ▶ The removed nodes were important
- Remaining 1 node linked with receiver caused a lot of traffic
- ▶ This leads the network to collapse entirely

► TSCH

- ▶ More resilient than CSMA, but still negative impact
- Fixed slotframe schedule
- Only senders whose slots matched Node 3 receive slots could transmit.

6. Exponential Backoff

What is exponential backoff?

- Used to avoid repeated collisions
- When collision happens, the sender waits a random 'wait time' before sending again
- ► The range of the wait time grows exponentially after each failed send
- Formula of the range of the wait time: [0, 2^BE-1]
 - ▶ BE = Backoff exponent

Backoff in CSMA and TSCH

CSMA (unslotted):

- ▶ It always checks if the channel is free
- ▶ If it is busy, it uses exponential backoff
- Backoff is the key method to avoid collision in CSMA

► TSCH (Orchestra):

- Uses predefined schedules
- ▶ No backoff needed in normal slots
- ls only used in **shared slots** (slots that are used by multiple senders)

Impact on performance

Positive:

- ► Helps reduce repeated collisions
- More fairness, random time give a fair chance to all nodes to send

Negative:

- Increased latency: Each attempt leads to a longer wait time
- While waiting the channel is not used
- ▶ In very busy situations a channel may have to wait too long and never be able to send

7. Impact of Slotframe Size on TSCH Performance

What is a Slotframe?

- Repeating sequence of time slots used for scheduling communication
- ► Each time slot can be dedicated for receiving, transmitting or both
- Each device knows when to wake up or sleep
- ▶ Benefits:
 - Energy efficient
 - ▶ Predictable
- ▶ Used in TSCH

Choosing the right slotframe

- ► Small slotframe:
 - Quicker access to the channel
 - Sends more often
 - Lower latency
 - ▶ But higher risk of collision!!!!!
- Larger slotframes
 - ► Less competition, less collision
 - ► Lower energy use, wakes up less often
 - ► Higher Latency!!!!!!!!!

Choosing the right slotframe

- Make a balanced choice between speed and risk of collision.
- ► Dependent on:
 - Network density
 - ▶ Traffic load
 - Energy constraints