Feedback — XV. Anomaly Detection

You submitted this quiz on Fri 10 Apr 2015 1:17 PM CEST. You got a score of 5.00 out of 5.00.

Question 1

For which of the following problems would anomaly detection be a suitable algorithm?

Your Answer	Score	Explanation
Given data from credit card transactions, classify each transaction according to type of purchase (for example: food, transportation, clothing).	✔ 0.25	Anomaly detection is not appropriate for a traditional classification problem.
✓ In a computer chip fabrication plant, identify microchips that might be defective.	✔ 0.25	The defective chips are the anomalies you are looking for by modeling the properties of non-defective chips.
☐ Given an image of a face, determine whether or not it is the face of a particular famous individual.	✔ 0.25	This problem is more suited to traditional supervised learning, as you want both famous and non-famous images in the training set.
From a large set of primary care patient records, identify individuals who might have unusual health conditions.	✔ 0.25	Since you are just looking for unusual conditions instead of a particular disease, this is a good appliation of anomaly detection.
Total	1.00 / 1.00	

Question 2

You have a 1-D dataset $\{x^{(1)}, \dots, x^{(m)}\}$ and you want to detect outliers in the dataset. You first plot the dataset and it looks like this:

Suppose you fit the gaussian distribution parameters μ_1 and σ_1^2 to this dataset. Which of the following values for μ_1 and σ_1^2 might you get?

Your Answer	Score	Explanation
$ \bigcap_{\mu_1 = -3, \sigma_1^2 = 2} $		
$ \begin{array}{c} \bullet \\ \mu_1 = -3, \sigma_1^2 = 4 \end{array} $	✓ 1.00	This is correct, as the data are centered around -3 and tail most of the points lie in [-5, -1].
$ \bigcirc \\ \mu_1 = -6, \sigma_1^2 = 2 $		
$ \bigcirc \\ \mu_1 = -6, \sigma_1^2 = 4 $		
Total	1.00 / 1.00	

Question 3

Suppose you have trained an anomaly detection system for fraud detection, and your system that flags anomalies when p(x) is less than ε , and you find on the cross-validation set that it misflagging far too many good transactions as fradulent. What should you do?

Your Answer	Score	Explanation
\bigcirc Increase $arepsilon$		
lacktriangle Decrease $arepsilon$	1.00	By decreasing $arepsilon$, you will flag fewer anomalies, as desired.
Total	1.00 / 1.00	

Question 4

Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines. You model uses $p(x) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2)$. You have two features $x_1 = 1$ vibration intensity, and $x_2 = 1$ heat generated. Both x_1 and x_2 take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that $x_1 \approx x_2$. One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large x_1 , small x_2), even though the particular values of x_1 and x_2 may not fall outside their typical ranges of values. What additional feature x_3 should you create to capture these types of anomalies:

Your Answer	Score	Explanation
$ \begin{array}{c} \bigcirc\\ x_3 = x_1^2 \times x_2 \end{array} $		
$ \bigcirc \\ x_3 = x_1 \times x_2 $		
$ \bigcirc x_3 = x_1 + x_2 $		
	✓ 1.00	This is correct, as it will take on large values for anomalous examples and smaller values for normal examples.
Total	1.00 / 1.00	

Question 5

Which of the following are true? Check all that apply.

Your Answer		Score	Explanation
☑ In anomaly detection, we fit a model $p(x)$ to a set of negative $(y = 0)$ examples, without using any positive examples we may have collected of previously observed anomalies.	*	0.25	We want to model "normal" examples, so we only use negative examples in training.
☐ In a typical anomaly	~	0.25	It is the reverse: we have many normal

detection setting, we have a large number of anomalous examples, and a relatively small number of normal/non-anomalous examples.			examples and few anomalous examples.
When developing an anomaly detection system, it is often useful to select an appropriate numerical performance metric to evaluate the effectiveness of the learning algorithm.	~	0.25	You should have a good evaluation metric, so you can evaluate changes to the model such as new features.
When evaluating an anomaly detection algorithm on the cross validation set (containing some positive and some negative examples), classification accuracy is usually a good evaluation metric to use.	~	0.25	Classification accuracy is a poor metric because of the skewed classes in the cross-validation set (almost all examples are negative)
Total		1.00 / 1.00	