

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

I, J, P need confirmation.

In the quark model Σ_b^+ , Σ_b^0 , Σ_b^- are an isotriplet (*uub*, *udb*, *ddb*) state. The lowest Σ_b ought to have $J^P=1/2^+$. None of I, J, or P have actually been measured.

Σ_h MASS

Σ_{h}^{+} MASS

VALUE (MeV DOCUMENT ID TECN COMMENT

 $5811.3^{+0.9}_{-0.8}\pm 1.7$

¹ AALTONEN 12F CDF $p\overline{p}$ at 1.96 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $5807.8^{+2.0}_{-2.2}\pm 1.7$

² AALTONEN 07K CDF Repl. by AALTONEN 12F

Σ_h^- MASS

DOCUMENT ID TECN VALUE (MeV) COMMENT

 $5815.5^{+0.6}_{-0.5}\pm1.7$

¹ AALTONEN 12F CDF $p\overline{p}$ at 1.96 TeV

• • • We do not use the following data for averages, fits, limits, etc. • •

 $5815.2 \pm 1.0 \pm 1.7$

² AALTONEN 07K CDF Repl. by AALTONEN 12F

$m_{\Sigma_b^+} - m_{\Sigma_b^-}$

 $-4.2^{+1.1}_{-1.0}\pm0.1$

¹ AALTONEN 12F CDF $p\overline{p}$ at 1.96 TeV

Σ_b WIDTH

Σ_h^+ WIDTH

DOCUMENT ID TECN COMMENT

9.7 + 3.8 + 1.2

³ AALTONEN 12F CDF $p\overline{p}$ at 1.96 TeV

Σ_b^- WIDTH

 $\frac{DOCUMENT\ ID}{}$ $\frac{TECN}{}$ $\frac{COMMENT}{}$ AALTONEN 12F CDF $p\overline{p}$ at 1.96 TeV

Created: 5/30/2017 17:22

 $^{^1}$ Measured using the fully reconstructed $\varLambda_b^0 \to \varLambda_c^+ \pi^-$ and $\varLambda_c^+ \to \kappa^- \pi^+$ decays.

 $^{^2}$ Observed four $\varLambda_b^0\pi^\pm$ resonances in the fully reconstructed decay mode $\varLambda_b^0\to~\varLambda_c^+\pi^-$, where $\Lambda_c^+ \to p K^- \pi^+$.

 $^{^3}$ Measured using the fully reconstructed $\varLambda_b^0\to~\varLambda_c^+\pi^-$ and $\varLambda_c^+\to~K^-\pi^+$ decays.

Σ_b DECAY MODES

Mode			Fraction (Γ_i/Γ)			
$\Gamma_1 \qquad \Lambda_b^0 \pi$			dom	dominant		
Σ_b Branching ratios						
$\frac{\Gamma(\Lambda_b^0\pi)/\Gamma_{\text{total}}}{\frac{VALUE}{\text{dominant}}}$			<u>DOCUMENT ID</u> AALTONEN 071	<i>TECN</i>	Γ ₁ <u>COMMENT</u> p p at 1.96 TeV	<u>ι</u> /Γ
Σ_b REFERENCES						
AALTONEN AALTONEN	12F 07K	PR D85 092011 PRL 99 202001	T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i>		(CDF Collab.) (CDF Collab.)	

Created: 5/30/2017 17:22