Final Assessment Test (FAT) - APRIL/MAY 2023

Programme	B.Tech	Semester	Winter Semester 2022-23
Course Title	COMPLEX VARIABLES AND LINEAR ALGEBRA	Course Code	BMAT201L
Faculty Name	Prof. Dr.Manigandla	Slot	D1+TD1+TDD1
	Prasannalakshmi	Class Nbr	CH2022235001054
Time	3 Hours	Max. Marks	100

Part A (10 X 10 Marks) Answer <u>any 10</u> questions

- 01. Show that the real part of a complex valued function $u(x, y) = e^x(x \cos y y \sin y)$ is harmonic and also find its harmonic conjugate. [10]
- 02. If f(z) = U + iV is an analytic function of z and $U V = (x y)(x^2 + 4xy + y^2)$ then find f(z) in terms of z.
- 03. Find the bilinear transformation w = f(z) which maps the points $z = 0, 1, \infty$ into the points w = -5, -1, 3 respectively. Hence find the invariant points and critical points of this transformation.
- 04. (i) Find the image of the strip 1 < x < 2 under the transformation $w = \frac{1}{z}$ and sketch the regions. (5 Marks)
 - (ii) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by T(x, y) = (x + 2y, x y). Show that $\ker(T) = \ker(T^2)$. (5 Marks)
- 05. Evaluate $\int_P \bar{z}^2 dz$ where P represents the path comprises of two segments L_1 and L_2 . Let L_1 be a line segment along the real axis from z = 0 to z = 2 and L_2 be a line parallel to y axis from z = 2 to z = 2 + i.
- 06. Evaluate $\oint_C \frac{7z-1}{z^2-3z-4} dz$, where C is the ellipse $x^2+4y^2=4$ using (i) Cauchy Integral formula [10] (ii) Cauchy Residue theorem
- 07. Let u = (1, 4, 3, 1), v = (3, 8, 5, 2) and w = (2, 0, 1, 0) [10]
 - (i) Show that b = (3, 16, 10, 4) is a linear combination of u, v, w. (5 Marks)
 - (ii) Show that the vector b' = (3, 2, 1, 1) is not a linear combination of u, v, w. (5 Marks)
- (i) Construct a 5 × 5 matrix of rank 2 without repeating a row or column and with all non-zero real entries. Also describe a general procedure for constructing such matrices. (5 Marks)
 (ii) Show that there are infinitely many non-zero vectors with 4 real entries satisfying simultaneously the following two properties:
 - **Property 1:** The sum of real entries in even positions is equal to the sum of real entries in the odd positions.
 - Property 2: The sum of first two real entries is double the sum of the remaining real entries: (5 Marks)
- 09. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x,y,z) = (x+y,y-z,x+y-z). [10] Show that T is an invertible linear transformation and also find the inverse linear transformation.
- 10. Apply Gram-Schmidt orthogonalization process to find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors: $v_1 = (1, 1, 1, 1)$, $v_2 = (1, 1, 2, 4)$ and $v_3 = (1, 2, -4, -3)$.
- 11. Solve the following system of equations by Gauss- Elimination method: [10]

$$3p - q + 2r - 2s = 0$$

 $2p + 2q - r + s = 1$
 $2p - q - 2r - s = 2$
 $p + 3q - 2r + 4s = 2$

Find the eigen values and eigen vectors of
$$A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$$
.

[10]