Data for OOPSLA

Sara Achour Martin Rinard

1 Data

- 1.1 Predicted Error Table
- 1.2 Outlier Detector Quality Table
- 1.3 Output Quality Table
- 1.4 Energy Table
- 1.4.1 Raw Data
- 1.5 Control System Based Outlier Detector

PID control:

1.5.1 Initial Step: Seeding the Outlier Detector

- 1. Reject the first n tasks find the mean and standard deviation of the outputs (μ, σ)
- 2. update the $mean = \mu, l = \sigma, r = \sigma$. the effective bounds this detector accepts is: $[\mu l, \mu + r]$
- 3. After n tasks have been used to get an initial l, r and m for the control system, we move to the control phase.

1.5.2 Control System

We have two distinct control systems, the left-bound control system, which impacts bound parameter l and the right bound control system, which impacts bound parameter r.

Continuous version:

$$\mu(t) = K_p r_e + K_i \int r_e + K_d \frac{\delta}{\delta t} r_e$$

Discretized version:

given new re-execution rate error r_e , previous state (r_e^*, r_d^*, r_i^*) , the error, error derivative, error integral. Also given decay D=0.99.

$$\mu(t) = K_p r_e + K_i (r_e + D \cdot r_i^*) + (r_e - r_e^*)$$

Benchmark	Predicted Accepted Errors (p)	Actual Accepted Errors	Output	Maximum Output Error (E)	Predicted Output Error $p \cdot e$
	(2)	<u> </u>	red	25	25
scale	22	22	green	25	25
			blue	25	25
blackscholes	22	22	price	25	25
		22	vel[0]	25	25
			vel[1]	25	25
			vel[2]	25	25
hamaa	00		acc[0]	25	25
barnes	22	22	acc[1]	25	25
			acc[2]	25	25
			siz	25	25
			phi	25	25
			res1[0]	25	25
			res1[1]	25	25
		22	res1[2]	25	25
			res1[3]	25	25
			res1[4]	25	25
	22		res1[5]	25	25
			res1[6]	25	25
. /• . 1			res1[7]	25	25
water/intermol			res1[8]	25	25
			res2[0]	25	25
			res2[1]	25	25
			res2[2]	25	25
			res2[3]	25	25
			res2[4]	25	25
			res2[5]	25	25
			res2[6]	25	25
			res2[7]	25	25
			res2[8]	25	25
		22	res[0]	25	25
water/poteng	22		res[1]	25	25
, 1			res[2]	25	25

	Accepted	Rejected	Accepted	Rejected	
Benchmark	Correct	Correct	Error	Error	Re-Executed
scale	97.875%	0.915%	0.091%	1.118%	2.034%
blackscholes	98.611%	0.997%	0.134%	1.254%	1.254~%
water	96.578%	0.788%	1.166%	1.467~%	2.25%
barnes	96.704%	3.028%	0.134%	0.134%	3.162%

Table 1: control-based outlier detector quality

benchmark	no outlier detector	outlier detector/re-execution	outlier detector/discard
scale [PSNR]	28.1601	43.9167	23.1269
blackscholes [portfolio error]	$6.042 \cdot 10^{34}\%$	$8.075 \cdot 10^{-2} \%$	0.513~%
water [position error]	nan*	$7.100 \cdot 10^{-4} \%$	$2.415 \cdot 10^{147}\%$ **
barnes [position error]	0.699%	0.125%	0.046%

Table 2: output quality without, with control outlier detector. (*) after the first time step, all positions go to nan. (**) spurious nans as positions, a few bad values badly skew the output.

benchmark	% main computation	% reliable re-execution	% unreliable tasks (0.85* something)	total
scale	22	23	24	25
blackscholes	32	33	34	35
water	42	43	44	45
barnes	42	43	44	45

Table 3: Energy Savings