Statistical analysis of Agrobacterium infiltrated leaves

Absorbance 470 nm

pL2HS01 vs. pL2HS02

Treatment 1 – pL2HS01	Treatment 2 – pL2HS02
N ₂ : 4	N ₂ : 5
$df_2 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
M ₂ : 3.52	M ₂ : 6.45
SS ₂ : 2.14	SS ₂ : 2.95
$s^2_2 = SS_2/(N-1) = 2.14/(4-1) = 0.71$	$s^2_2 = SS_2/(N-1) = 2.95/(5-1) = 0.74$

T-value Calculation

$$s_{p}^{2} = ((df_{1}/(df_{1} + df_{2})) * s_{1}^{2}) + ((df_{2}/(df_{2} + df_{2})) * s_{2}^{2}) = ((3/7) * 0.71) + ((4/7) * 0.74) = 0.73$$

$$s_{M1}^2 = s_p^2/N_1 = 0.73/4 = 0.18$$

 $s_{M2}^2 = s_p^2/N_2 = 0.73/5 = 0.15$

$$t = (M_1 - M_2)/\sqrt{(s_{M1}^2 + s_{M2}^2)} = -2.93/\sqrt{0.33} = -5.13$$

The t-value is -5.12852. The **p-value is .000678**. The result is significant at p < .05.

pL2HS01 vs. pL2SG2

Treatment 1 – pL2HS01	Treatment 2 – pL2SG2
N ₂ : 4	N ₂ : 5
$df_2 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
M ₂ : 3.52	M ₂ : 3.8
SS ₂ : 2.14	SS ₂ : 1.26
$s^2 = SS_2/(N-1) = 2.14/(4-1) = 0.71$	$s^2_2 = SS_2/(N-1) = 1.26/(5-1) = 0.31$

T-value Calculation

$$s^{2}_{p} = ((df_{1}/(df_{1} + df_{2})) * s^{2}_{1}) + ((df_{2}/(df_{2} + df_{2})) * s^{2}_{2}) = ((3/7) * 0.71) + ((4/7) * 0.31) = 0.48$$

$$s_{M1}^2 = s_p^2/N_1 = 0.48/4 = 0.12$$

 $s_{M2}^2 = s_p^2/N_2 = 0.48/5 = 0.1$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -0.29/\sqrt{0.22} = -0.61$$

The t-value is -0.61406. The p-value is .279299. The result is not significant at p < .05.

pL2HS01 vs. pL2SG4

Treatment 1 – pL2HS01	Treatment 2 – pL2SG4
N ₂ : 4	N ₂ : 5
$df_2 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
M ₂ : 3.52	M ₂ : 5.21
SS ₂ : 2.14	SS ₂ : 10
$s^2_2 = SS_2/(N-1) = 2.14/(4-1) = 0.71$	$s^2_2 = SS_2/(N-1) = 10/(5-1) = 2.5$

T-value Calculation

$$S^{2}_{p} = ((df_{1}/(df_{1} + df_{2})) * S^{2}_{1}) + ((df_{2}/(df_{2} + df_{2})) * S^{2}_{2}) = ((3/7) * 0.71) + ((4/7) * 2.5) = 1.73$$

$$s_{M1}^2 = s_p^2/N_1 = 1.73/4 = 0.43$$

 $s_{M2}^2 = s_p^2/N_2 = 1.73/5 = 0.35$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -1.7/\sqrt{0.78} = -1.92$$

The *t*-value is -1.92123. The *p*-value is .048078. The result is significant at p < .05.

pL2HS01 vs. pL2SG5

Treatment 1 – pL2HS01	Treatment 2 – pL2SG5
N ₂ : 4	N ₂ : 5
$df_2 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
M ₂ : 3.52	M ₂ : 7.11
SS ₂ : 2.14	SS₂: 4.98
$s^2_2 = SS_2/(N-1) = 2.14/(4-1) = 0.71$	$s_2^2 = SS_2/(N-1) = 4.98/(5-1) = 1.24$

T-value Calculation

$$s_{p}^{2} = ((df_{1}/(df_{1} + df_{2})) * s_{1}^{2}) + ((df_{2}/(df_{2} + df_{2})) * s_{2}^{2}) = ((3/7) * 0.71) + ((4/7) * 1.24) = 1.02$$

$$s_{M1}^2 = s_p^2/N_1 = 1.02/4 = 0.25$$

 $s_{M2}^2 = s_p^2/N_2 = 1.02/5 = 0.2$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -3.6/\sqrt{0.46} = -5.32$$

The *t*-value is -5.32. The *p*-value is .00055. The result is significant at p < .05.

Absorbance 540 nm

pL2HS01 vs. pL2HS02

Treatment 1 – pL2HS01	Treatment 2 – pL2HS02
N ₁ : 4	N ₂ : 5
$df_1 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
<i>M</i> ₁: 0.09	M₂: 8.51
SS₁: 0.01	SS₂: 11.96
$s^2_1 = SS_1/(N-1) = 0.01/(4-1) = 0$	$s^2_2 = SS_2/(N-1) = 11.96/(5-1) = 2.99$

T-value Calculation

$$s_{p}^{2} = ((df_{1}/(df_{1} + df_{2})) * s_{1}^{2}) + ((df_{2}/(df_{2} + df_{2})) * s_{2}^{2}) = ((3/7) * 0) + ((4/7) * 2.99) = 1.71$$

$$S^2_{M1} = S^2_p/N_1 = 1.71/4 = 0.43$$

$$s_{M2}^2 = s_p^2/N_2 = 1.71/5 = 0.34$$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -8.42/\sqrt{0.77} = -9.6$$

The t-value is -9.59602. The **p-value is .000014**. The result is significant at p < .05.

pL2HS01 vs. pL2SG2

Treatment 1 – pL2HS01	Treatment 2 – pL2SG2
N ₁ : 4	N ₂ : 5
$df_1 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
M₁: 0.09	M ₂ : 1.08
SS₁: 0.01	SS₂: 0.31
$s^2_1 = SS_1/(N-1) = 0.01/(4-1) = 0$	$s^2_2 = SS_2/(N-1) = 0.31/(5-1) = 0.08$

T-value Calculation

$$S_p^2 = ((df_1/(df_1 + df_2)) * S_1^2) + ((df_2/(df_2 + df_2)) * S_2^2) = ((3/7) * 0) + ((4/7) * 0.08) = 0.05$$

$$s^2_{M1} = s^2_p/N_1 = 0.05/4 = 0.01$$

$$s^2_{M2} = s^2_p/N_2 = 0.05/5 = 0.01$$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -0.99/\sqrt{0.02} = -6.97$$

The *t*-value is -6.97131. The *p*-value is .000109. The result is significant at p < .05.

pL2HS01 vs. pL2SG4

Treatment 1 – pL2HS01	Treatment 2 – pL2SG4
N ₁ : 4	N₂: 5
$df_1 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
<i>M</i> ₁: 0.09	M ₂ : 0.08
SS₁: 0.01	SS₂: 0.01
$s^2_1 = SS_1/(N-1) = 0.01/(4-1) = 0$	$s^2_2 = SS_2/(N-1) = 0.01/(5-1) = 0$

T-value Calculation

$$s^{2}{}_{p} = ((df_{1}/(df_{1} + df_{2})) * s^{2}{}_{1}) + ((df_{2}/(df_{2} + df_{2})) * s^{2}{}_{2}) = ((3/7) * 0) + ((4/7) * 0) = 0$$

$$s^2_{M1} = s^2_D/N_1 = 0/4 = 0$$

$$s^2_{M2} = s^2_p/N_2 = 0/5 = 0$$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = 0/\sqrt{0} = 0.14$$

The t-value is 0.13723. The p-value is .447357. The result is not significant at p < .05.

pL2HS01 vs. pL2SG5

Treatment 1 – pL2HS01	Treatment 2 – pL2SG5
N₁: 4	N ₂ : 5
$df_1 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
<i>M</i> ₁: 0.09	M ₂ : 0.15
SS₁: 0.01	SS ₂ : 0.01
$s^2_1 = SS_1/(N-1) = 0.01/(4-1) = 0$	$s^2_2 = SS_2/(N-1) = 0.01/(5-1) = 0$

T-value Calculation

$$s_{p}^{2} = ((df_{1}/(df_{1} + df_{2})) * s_{1}^{2}) + ((df_{2}/(df_{2} + df_{2})) * s_{2}^{2}) = ((3/7) * 0) + ((4/7) * 0) = 0$$

$$s^2_{M1} = s^2_p/N_1 = 0/4 = 0$$

$$s^2_{M2} = s^2_p/N_2 = 0/5 = 0$$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -0.06/\sqrt{0} = -1.71$$

The t-value is -1.70604. The p-value is .065883. The result is not significant at p < .05.

Fluorescence 470/510 nm

pL2HS01 vs. pL2HS02

Treatment 1 – pL2HS01	Treatment 2 – pL2HS02
N ₁ : 4	N₂: 5
$df_1 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
<i>M</i> ₁: 5161.75	<i>M₂</i> : 7038.6
SS₁: 3048208.69	SS ₂ : 21563008.12
$s^2_1 = SS_1/(N-1) = 3048208.69/(4-1) =$	$s^2_2 = SS_2/(N-1) = 21563008.12/(5-1)=5390752.03$
1016069.56	

T-value Calculation

$$s_p^2 = ((df_1/(df_1 + df_2)) * s_1^2) + ((df_2/(df_2 + df_2)) * s_2^2) = ((3/7) * 1016069.56) + ((4/7) * 5390752.03) = 3515888.12$$

$$s_{M1}^2 = s_p^2/N_1 = 3515888.12/4 = 878972.03$$

 $s_{M2}^2 = s_p^2/N_2 = 3515888.12/5 = 703177.62$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -1876.85/\sqrt{1582149.65} = -1.49$$

The t-value is -1.49213. The p-value is .089648. The result is not significant at p < .05.

pL2HS01 vs. pL2SG2

Treatment 1 – pL2HS01	Treatment 2 – pL2HS02
N ₁ : 4	N ₂ : 5
·	_
$df_1 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
<i>M</i> ₁: 5161.75	M ₂ : 4179.87
SS₁: 3048208.69	SS ₂ : 1279037.37
$s^{2}_{1} = SS_{1}/(N-1) = 3048208.69/(4-1) =$	$s_2^2 = SS_2/(N-1) = 1279037.37/(5-1) = 319759.34$
1016069.56	

T-value Calculation

$$s_{p}^{2} = ((df_{1}/(df_{1} + df_{2})) * s_{1}^{2}) + ((df_{2}/(df_{2} + df_{2})) * s_{2}^{2}) = ((3/7) * 1016069.56) + ((4/7) * 319759.34) = 618178.01$$

$$s_{M1}^{2} = s_{p}^{2}/N_{1} = 618178.01/4 = 154544.5$$

$$s_{M2}^{2} = s_{p}^{2}/N_{2} = 618178.01/5 = 123635.6$$

$$t = (M_1 - M_2)/\sqrt{(s_{M1}^2 + s_{M2}^2)} = 981.88/\sqrt{278180.1} = 1.86$$

The *t*-value is 1.86164. The *p*-value is .052479. The result is *not* significant at p < .05.

pL2HS01 vs. pL2SG4

Treatment 1 – pL2HS01	Treatment 2 – pL2SG4
N₁: 4	<i>N</i> ₂ : 5
$df_1 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
<i>M</i> ₁: 5161.75	<i>M</i> ₂ : 141297.73
SS₁: 3048208.69	SS ₂ : 20816203335.99
$s^2_1 = SS_1/(N-1) = 3048208.69/(4-1) =$	$s^2_2 = SS_2/(N-1) = 20816203335.99/(5-1) =$
1016069.56	5204050834

T-value Calculation

$$s_p^2 = ((df_1/(df_1 + df_2)) * s_1^2) + ((df_2/(df_2 + df_2)) * s_2^2) = ((3/7) * 1016069.56) + ((4/7) * 5204050834) = 2974178792.1$$

$$s_{M1}^2 = s_p^2/N_1 = 2974178792.1/4 = 743544698.02$$

 $s_{M2}^2 = s_p^2/N_2 = 2974178792.1/5 = 594835758.42$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -136135.99/\sqrt{1338380456.44} = -3.72$$

The t-value is -3.7212. The p-value is .003722. The result is significant at p < .05.

pL2HS01 vs. pL2SG5

T	T / /0 10005
Treatment 1 – pL2HS01	Treatment 2 – pL2SG5
N ₁ : 4	N ₂ : 5
$df_1 = N - 1 = 4 - 1 = 3$	$df_2 = N - 1 = 5 - 1 = 4$
<i>M</i> ₁: 5161.75	M ₂ : 235344.4
SS ₁ : 3048208.69	SS ₂ : 592701093.86
$s^2_1 = SS_1/(N-1) = 3048208.69/(4-1) =$	$s^2_2 = SS_2/(N-1) = 592701093.86/(5-1) =$
1016069.56	148175273.46

T-value Calculation

$$s_p^2 = ((df_1/(df_1 + df_2)) * s_1^2) + ((df_2/(df_2 + df_2)) * s_2^2) = ((3/7) * 1016069.56) + ((4/7) * 148175273.46) = 85107043.22$$

$$s^2_{M1} = s^2_p/N_1 = 85107043.22/4 = 21276760.81$$

 $s^2_{M2} = s^2_p/N_2 = 85107043.22/5 = 17021408.64$

$$t = (M_1 - M_2)/\sqrt{(s^2_{M1} + s^2_{M2})} = -230182.65/\sqrt{38298169.45} = -37.19$$

The *t*-value is -37.19492. The *p*-value is < .0001. The result is significant at p < .05.