Gebrauchstauglichkeit

N. Egger

3. August 2018

Inhaltsverzeichnis

1	Riss	ge
	1.1	Zugelement
	1.2	Ouerschnittsanalysen, reine Biegung
		1.2.1 Rechteckquerschnitt ohne Druckbewehrung
		1.2.2 Rechteckquerschnitt mit Druckbewehrung
		1.2.3 Plattenbalkenquerschnitt
	1.3	Biegung mit Normalkraft
		1.3.1 Druck, kleine Exzentrizität
		1.3.2 Zug mit kleiner Ausmitte
		1.3.3 Druck und Zug, grosse Exzentrizität
2		wingungen
	2.1	Eigenfrequenz
2	Dia	htheit
3		Weisse Wanne
	3.1	weisse wanne
4	Veri	formungen
	4.1	Verformung am Zugstab
	4.2	

1 Risse

Ursachen:

- zu rasches Austrocknen
- Temperatureinwirkungen
- Schwinden
- Lasteinwirkung
- Aufgezwungene oder behinderte Verformung
- Frosteinwirkung

Anforderungen

• Normale Anforderungen: bei Erreichen von f_{ctd} : $\sigma_s \leq f_{sd} \rightarrow$ sprödes Versagen verhindern (Mindestbewehrung) & aufgezwungene und behindernde Verformungen begrenzen

1.1 Zugelement

• Erhöhte Anforderungen (gute Rissverteiung): $\sigma_s \le$
$f_{sd} \rightarrow \text{Mindestbewehrung \& } \sigma_s \leq f_{sd} - 80N/mm^2 \rightarrow$
Fliessen der Bewehrung häufiger Lastfälle verhin-
dern & $\sigma_s \leqslant \sigma_{s,adm} \rightarrow \text{um Rissbreiten (w}_{nom} =$
0.5 mm) aufgezwungener und behinderter Verfor-
mungen oder qs Lasten begrenzen
TT 1

• Hohe Anforderungen (Rissbreitenbegrenzung für ständige & qs Lastfälle): $\sigma_s \leqslant f_{sd} \rightarrow$ Mindestbewehrung & $\sigma_s \leqslant f_{sd} - 80N/mm^2 \rightarrow$ Fliessen der Bewehrung häufiger Lastfälle verhindern & $\sigma_s \leqslant \sigma_{s,adm} \rightarrow$ um Rissbreiten ($w_{nom} = 0.2$ mm) aufgezwungener und behinderter Verformungen oder qs Lasten begrenzen

1.1 Zugelement			Ubu-tragung and Biegung W = Esm. Sm & seder Bench rungs-
Bemerkung	Formel	Einheit	$W = \varepsilon_{sm}^{V} \cdot S_{rm}$ brieder Bewehrlungs- stab = 200 stab
Bewehrungsquerschnitt	$A_s = n_s \cdot \pi \cdot \frac{\emptyset^2}{4}$	[mm]	h _{eff} = s
Bewehrungsgehalt	$\rho = \frac{A_s}{A}$		5
Betonquerschnitt	$A_c = A - A_s = A \cdot (1 - \rho)$	[mm]	$A_c = s \cdot h_{eff} \approx s \cdot s$
Querschnittsbeiwert	$n = \alpha = \frac{E_s}{E_c}$		\rightarrow je höher f_{ck} (f_{ct}) ,
Ideellerquerschnitt	$\begin{vmatrix} A_i = (A - A_s) + n \cdot A_s = \\ A_c + n \cdot A_s = A \cdot (1 + \rho \cdot (n - 1)) \end{vmatrix}$	[mm]	desto höher $A_{s,min}$ $(A_{s,Riss})$
Rissbreite	$w = \int (\varepsilon_s - \varepsilon_c) dx \approx \frac{\emptyset}{8 \cdot \rho} \frac{f_{ct}}{E_s}$	[mm]	Rissbildung an der schwächsten Stelle
$ ightarrow$ mit $ ho = rac{f_{ct}}{\sigma_{ ext{S}}^{ ext{II}}}$	$w = \frac{\emptyset}{8} \frac{\sigma_s^{\text{Li} \cdot 2}}{f_{ct} \cdot E_s}$	[mm]	\rightarrow mehr Bewehrung \Rightarrow kleienr l_h , kleiner
	$\Rightarrow \sigma_S = \sqrt{\frac{8 \cdot f_{ck} \cdot E_s \cdot w}{\oslash}}$	$\left[\frac{kN}{mm^2}\right]$	w, mehr kleine Risse
Rissabstand	$ 1l_b \leqslant S_r \leqslant 2l_b $	[mm]	pro Meter grosse ⊘ weniger ef-
Risslast	$N_r = f_{ct} \cdot A_i$	[kN]	fektiv → gr. Rissbreite
\rightarrow erf. $A_{s,min}$			

1.2 Querschnittsanalysen, reine Biegung

1.2.2 Rechteckquerschnitt mit Druckbeweh- 1.2.3 Plattenbalkenquerschnitt rung

EISCHIIII			
rmel			

1.2.1	Rechteckquerschnitt	ohne	Druckbe-
	wehrung		

1.2.1 Reclitectique	ischilitt offic Blue	RDC	I
wehrung		Bemerkung	Form
Bemerkung	Formel	Spannungsberech-	$E_{cm\infty}$
Spannungsberechnung	$E_{cm\infty} = \frac{E_{cm,0}}{1+\varphi}$ und $n = \frac{E_s}{E_{cm\infty}}$	nung $\left[\frac{kN}{mm^2}\right]$ Statisches Moment	$ \begin{aligned} n &= \frac{1}{2} \\ S_i &= \\ A'_s(x) \end{aligned} $
Statisches Moment	$S_i = 0 = b \cdot x \cdot \frac{x}{2} - $	[mm ³]	$n \cdot A_s$
S_i der ideellen Fläche muss bez. der neutralen Achse	$(d-x)\cdot n\cdot A_s$	S _i der ideellen Fläche muss bez. der neutralen Achse Null sein	
Null sein		Druckzonenhöhe	x
Druckzonenhöhe	$\begin{array}{c} x = n \\ \frac{A_s}{b} \left(\sqrt{1 + \frac{2bd}{nA_s}} - 1 \right) \end{array}$	[mm]	$\frac{A_s + A_s'}{b}$
\rightarrow aus Bedigung $S_i=0$		\rightarrow aus Bedigung $S_i=0$	
Flächenmoment	$I_{Rechteck,i} = \frac{b \cdot x^3}{3} + nA_s(d-x)^2$	[mm ⁴] Flächenmoment	$\begin{vmatrix} I_{Rechte} \\ A'_s(x-x)^2 \end{vmatrix}$
Verträglichkeitsbe-	$\left \begin{array}{ccc} \frac{\varepsilon_s}{\varepsilon_c} &=& \frac{d-x}{x} & \Rightarrow & \varepsilon_s &= & \end{array}\right $		$(x)^2$

 $\sigma_{s} = n \frac{M}{I_{i}} (d - x)$ $\sigma_{s} = \frac{M}{0.9 \cdot d \cdot A_{s}}$

	Formel
۱-	$E_{cm\infty} = \frac{E_{cm,0}}{1+\varphi}$ und $n = \frac{E_s}{E_{cm\infty}}$ $S_i = 0 = b \cdot x \cdot \frac{x}{2} + n$
	$n = \frac{E_s}{E_{cm\infty}}$
	$S_i = 0 = b \cdot x \cdot \frac{x}{2} + n \cdot$
	$\begin{vmatrix} A_s'(x-d') - (\bar{d-x}) \cdot \\ n \cdot A_s \end{vmatrix}$
	$n \cdot A_s$
i-	
er	
e	
	x = n
	$A + A'$ $A_0 + A' \frac{d'}{d'}$
	$\frac{x}{\frac{A_s + A_s'}{b}} = \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s' \frac{d'}{d}}{(A_s + A_s')^2}}}} - \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{d}{n}}}}$
g	

1.2.3 Plattenbalkenquerschnitt		
Bemerkung	Formel	rauc
abklären ob $x \le h_f$ oder $x > h_f$	h².	Gebrauchstauglichkeit (VI.I)
	$S_i(x = h_f) = b \cdot \frac{h_f^2}{2} + n \cdot A_s'(h_f - d') - n \cdot A_s(d - h_f)$	hkeit
1 S_i (x = h _f) > 0 → Berechnen am Rechteck QS		(V1.1)
2 S_i (x = h _f) < 0 → Berechnen am Plattenbalken QS (Druck bis in Steg)		
falls Plattenbalken: Statisches Moment	$S_i = 0 = (b - b_w)h_f\left(x - \frac{h_f}{2}\right) + \frac{b_w \cdot x^2}{2} + n \cdot A_s'(x - d') - n \cdot A_s(d - x) \rightarrow x$	
Flächenmoment	$I_{i} = (b - b_{w}) \frac{h_{f}^{3}}{12} + (b - b_{w}) h_{f} \left(x - \frac{h_{f}}{2}\right)^{2} + \frac{b_{w} \cdot x^{3}}{3} + n \cdot A_{s}(x - d')^{2} + n \cdot A_{s}(d - x)^{2}$	
Verträglichkeitsbedingung	$\frac{\varepsilon_s}{\varepsilon_c} = \frac{d-x}{x} \Rightarrow \varepsilon_s = \frac{d-x}{x} \varepsilon_c$	
	$E_s \cdot \varepsilon_s = \sigma_s = E_s \cdot \varepsilon_c \frac{d-x}{x} = n \cdot \sigma_c \frac{d-x}{x}$	
Stahlspannung	$\sigma_{s} = n \frac{M}{I_{i}} (d - x)$	
T d'i	h, X	

Stahlspannung

dingung

Verträglichkeitsbe-

dingung

 $\left[\frac{kN}{mm^2}\right]$

Seite 3 von 7

Biegung mit Normalkraft 1.3

Kernweiten:
$$k_{1/2} = \frac{I_i}{A_i \cdot y_{2/1}} = \frac{W_y}{A} = \frac{\frac{b \cdot h^2}{6}}{b \cdot h}$$
 [m]
Exzentrizität: $e = -\frac{M}{N}$ [mm]

1.3.1 Druck, kleine Exzentrizität

Greift N im Kern an, kann die Ausmitte vernachlässigt werden \rightarrow zentrischer Druck

Bemerkung	Formel	Einheit
Spannung	$ \sigma_c = \varepsilon_c \cdot E_c = \frac{N}{A_i} \pm \frac{M}{I_i} y $	$\left[\frac{kN}{mm^2}\right]$
	$ \begin{array}{ccc} \sigma_s &=& \varepsilon_s \cdot E_s &=& \\ n \cdot \sigma_c &&& \end{array} $	$\left[\frac{kN}{mm^2}\right]$
Steifigkeit	$EI = E_{cm} \cdot I_i = EI^1$	

1.3.2 Zug mit kleiner Ausmitte

falls N innerhalb Bewehrungslagen → Steifigkeit allein durch Stahl bestimmt

Bemerkung	Formel	Einheit
Steifigkeit	$EI = E_s \cdot I_s = EI^{II}$	
Spannung	$\sigma_s = \frac{N}{A_s} \frac{a'}{a+a'}$	$\left[\frac{kN}{mm^2}\right]$
	$\sigma_s' = \frac{N}{A_s'} \frac{a'}{a+a'}$	$\left[\frac{kN}{mm^2}\right]$

Druck und Zug, grosse Exzentrizität

Greift N nicht im Kern an, kann die Ausmitte nicht vernachlässigt werden \rightarrow e>k

Bemerkung	Formel	Einheit
Lage der Nullachse	$r + x = \frac{I_i}{S_i}$	[mm]
	→ Gleich nach x auflösen,	
	so dass $S_i = 0$	
Für Rechteck	$r + x = \frac{\frac{b \cdot x^3}{3} + n \cdot A_s (d - x)^2}{\frac{b \cdot x^2}{2} - n \cdot A_s (d - x)}$	[mm]
Spannung	$\sigma_{c} = \varepsilon_{c} \cdot E_{c} = \frac{N(r+x)}{I_{i}} \cdot x$ $\sigma_{s} = \varepsilon_{s} \cdot E_{s} = n \cdot \frac{N(r+x)}{I_{i}} \cdot (d-x)$ $EI = E_{cm} \cdot I_{i} = EI^{II}$	$\left[\frac{kN}{mm^2}\right]$
	$\sigma_s = \varepsilon_s \cdot E_s = n \cdot \frac{N(r+x)}{I_i} \cdot (d-x)$	$\left[\frac{kN}{mm^2}\right]$
Steifigkeit	$EI = E_{cm} \cdot I_i = EI^{II}$	

2 Schwingungen

2.1 Eigenfrequenz

Balken mit konstanter Biegesteifigkeit

Balken mit gleichmässig verteilter Masse

1. Schwingungsform

2. Schwingungsform

Balken mit verteilter Masse und konzentrierter Einzelmasse

- + Eigenfrequenz, je mehr Freiheitsgrade der Auflager blockiert
- Systemlänge geht quadratisch ein → Verkürzung des Systems = höhere Eigenfrequenz
- Biegesteifigkeit geht als Wurzel ein → höhere Biegesteifigkeit EI = nur kleine Erhöhung der Eigenfrequenz

SIA 260, Anhang A Tab. 5 & C Tab. 10

N. Egger 3. August 2018

3 Dichtheit

TUNNELBAU

SIA 272

endungsgebiet gemäss Norm SIA 270. Tabelle 3

Dichtungsschicht

Tabelle 4 Dichtigkeitsklassen

RECHTECKPROFIL

B SIA 272

SIA 272

Dichtigkeitsklasse	Beschrieb
1	Vollständig trocken Keine Feuchtstellen an den trockenseitigen Bauwerksoberflächen zugelassen.
2	Trocken bis leicht feucht Einzelne Feuchtstellen zugelassen. Kein tropfendes Wasser an den trockenseitigen Bauwerksoberflächen zugelassen.
3	Feucht Örtlich begrenzte Feuchtstellen und einzelne Tropfstellen an den trockenseitigen Bauwerksoberflächen zugelassen.
4	Feucht bis nass Feucht- und Tropfstellen zugelassen.

Abdichtungskonzepte

Ableitungskonzept gegen nicht drückendes Wasser

- Wasserdruck tem. < 0.5 bar
- Massnahmen gegen Wasserdruck
 - Hohlräume. Kontrollen, Unterhaltungsplan
- Ableitungs- und Entwässerungskonzept

Verdrängungskonzept gegen drückendes Wasser

- Drückendes Wasser
- Konzept für ganzes Bauwerk
- Für Tunnel u.ä.
- Keine Drainage oder Entwässerung ผูนมนา hald

Weisse Wanne 3.1

Wasserdichte Betonkonstruktion (WDB) - weisse Wanne

Wasserdichte Betonkonstruktion

- Beton: XC2, Wassereindringwiderstand e_w<50 mm, w/z< 0.55
- Bauteil
 - Rissbreitenbegrenzung nach SIA 272 (Risse können ab 0.1mm Wasser führen)
 - Mindestabmessungen nach SIA 272
- Gesamte Konstruktion
 - Zwängungsarme Konstruktion

Massnahmen für Fugen (Arbeits- und Bewegungsfugen) und Durchdringungen

- Fugenbänder, Fugenbleche, Injektionsschläuche, Dichtungsbänder (-> Verformung beachten)
- Manschetten
- Instandsetzung bei Lecks -- schadliche Risse
 - Konner nicht Injektionen vermiller worden
 - Aufgeklebte Fugenbänder

Wasserdichter Beton

- Beton:
- Langsames Erhärten _bonhmierliges Abbidom = kleinere Lise
- Geringe Wassereindringtiefe (Prüfung WLF)
- w/z < 0.55 Vorgate-Receptur eingriff

Einbau:

- Keine starken Niederschläge
- Temperatur > 5°C
- Keine Erschütterungen des jungen Betons (z.B. Spundwände ziehen)
- Gute Nachbehandlung

4 Verformungen

4.1 Verformung am Zugstab

Gerissen: $(N > N_r)$

Dehnung (Grenzfall im Riss):

$$\varepsilon^{II} = \frac{N}{A_s \cdot n \cdot E_c}$$

Verformung (obere Schranke):

$$\Delta l = l_0 \varepsilon^{II}$$

Mitwirkung zwischen den Rissen

Kriechen:

kein Einfluss, da keine Druckbeanspruchung im Beton

Ungerissen: $(N < N_r)$

Dehnung: $\varepsilon = \frac{N}{A_i \cdot E_c}$

Verformung: $\Delta l = l_0 \varepsilon$

Schwinden: Verformung

4.2	Berechnung von	Verformung
	Detectificating voic	VCIIOIIIIMII

SIA 262 4.4.3.2.4/5 (vereinfachte Durchbiegung), SIA 260 Anhang

Bild 5.27 Momenten- Durchbiegungs- Diagramm Grenzzustand Funktionstüchtigkeit:

$$w_{\text{eff}}^{\psi_{0,1} \cdot q_k} \le w_{\text{adm}}^{\text{Lastfall selten}} \text{ oder } w_{\text{adm}}^{\text{Lastfall häufig}}$$

Grenzzustand Komfort:

$$w_{eff}^{(\psi_1 \cdot q_k)} \le w_{adm}^{LastfallI häufig}$$

Grenzzustand Aussehen:

$$w_{eff}^{(\psi_2 \cdot \, q_k)} \le w_{adm}^{\text{LastfallI quasi-st\u00e4ndig}}$$

Kriechen (Zustand 1)	$EI^{I} = I^{I} \frac{E_{cm0}}{1+\varphi}$	$\varphi \approx 2 \text{ (SIA 262)}$
Schwinden(Zustand 1)		Verkürzung, Krümmung bei nicht- symmetrischem As
Randspannungen	$\sigma_{co,u} = \frac{F}{A_{i\infty}} \mp \frac{F \cdot y_s}{I_{i\infty}^I} y_{o,u}$	
Schwindkrümmung	$egin{array}{lll} \Delta arepsilon_0 &=& rac{\sigma_{co}}{E_{c\infty}}; \Delta arepsilon_u &=& \ rac{\sigma_{cu}}{E_{c\infty}}; \kappa_s &=& rac{ \Delta arepsilon_o + \Delta arepsilon_o }{h} \end{array}$	Durchbiegung infolge Schwin- den, kann häufig vernachlässigt werden
Durchbiegung	$w = \int_0^l \frac{M}{El} \bar{M} \cdot dx$	\bar{M} = Moment aus virtuellem Belastungszustand $\frac{M}{EI} = \kappa$ = Durchbiegung
Durchbiegung - vollständig geris- sen	$w_m = \frac{F \cdot l^3}{48EI_{II}}$	extrem Fall, wenn i.O. \rightarrow alles i.O.
Durchbiegung - Bereich gerissen/ungerissen	$w_m = \frac{F \cdot I^3}{48EI_{II}} (1 - \zeta^3 (1 - \frac{EI_{II}}{EI_I}))$	