FIT VUT Brno - IMS

2. Doprava zboží nebo osob Správa vícepatrového skladu

Daniel Dolejška, xdolej08@stud.fit.vutbr.cz

7. prosince 2018

Obsah

1	Úvo	od	3
	1.1	Zdroje faktů	3
	1.2	Ověření validity	3
2	Rozbor tématu a použitých metod/technologií		4
	2.1	Použité postupy	4
	2.2	Původ postupů	5
3	Kor	ncepce - modelářská témata	5
	3.1	Popis konceptuálního modelu	5
		3.1.1 Chod skladu	5
		3.1.2 Vstupy a výstupy pracovníků skladu	6
	3.2	Konceptuální model	6
4	${f Architektura\ simula\ cniho\ modelu/simula\ toru}$		8
	4.1	Mapování abstraktního modelu	8
5	Pod	lstata simulačních experimentů a jejich průběh	8
	5.1	Postup experimentování	8
	5.2	Jednotlivé experimenty	9
		5.2.1 Vytížení vozíku a jeho dopad na práci	9
		5.2.2 Nahrazení vozíku výtahem	9
		5.2.3 Prostor pro rozšíření - vozík X výtah	11
	5.3	Závěry experimentů	
6	\mathbf{Shr}	nutí simulačních experimentů a závěr	12
Reference			13

1 Úvod

Tato práce se zaobírá modelováním[6, str. 8] vícepatrového skladu. Klíčovým prvkem tohoto systému[6, str. 7] je pohyb palet se zbožím mezi jednotlivými patry.

Přesun palet mezi patry je možný pouze za pomoci vysokozdvižných vozíků. Pro účely přesunu palet mezi patry je vyhrazen jeden vysokozdvižný vozík.

S vozíky mají z bezpečnostních důvodů oprávnění pracovat pouze určití zaměstnanci. Další podrobnosti systému viz Kapitola 2.

Cílem této práce je zjistit následující:

- kolik času je ztraceno v průběhu přesunu palet vozíkem mezi patry?
- jak se zvýší efektivita při nahrazení vozíku výtahem?
- jak je systém rozšiřitelný?

1.1 Zdroje faktů

Fakta o tomto systému jsou původem z několika zdrojů - prvním je osobní zkušenost a pozorování. Mezi další zdroje informací a faktů pak patří zaměstnanci firmy, pracující přímo na skladě.

1.2 Ověření validity

Validita byla ověřena několika prvotními experimenty. Výstupní hodnoty byly porovnávány s očekávanými výstupními hodnotami dle specifikací fakt o systému a s dalšími podrobnostmi získanými od odborných konzultantů práce.

2 Rozbor tématu a použitých metod/technologií

- 1. Sklad se nachází na třech podlažích¹
 - Přízemí práce s vysokozdvižnými vozíky není nutná
 - 1. a 2. podlaží paletu je nutné vždy dostat o patro níže
- 2. Ve skladě je jeden vozík vyhrazen pro přesun palet mezi patry¹
 - 20% ze zaměstnanců s vozíky pracovat nemůže a musí proto požádat jiného zaměstnance o pomoc, hledání trvá 30s - 2 minuty¹
- 3. Příchody zaměstnanců²
 - 8 pracovníků přichází v 6 hodin
 - 12 dalších pracovníků přichází v 9 hodin
- 4. Pracovní doba zaměstnanců²
 - 8 hodin pracovní doby
 - Po 4 hodinách si pracovníci berou 30 min pauzu, přičemž rozpracované zakázky jsou vždy dokončeny
- 5. Za den je průměrně zpracováno (vyskladněno) 310 zakázek²
 - 75% začíná ve 2. patře, následně pokračuje do prvního patra
 - 20% začíná v 1. patře, následně pokračuje do přízemí
 - 5% pouze z přízemí

Na základě poskytnutých statistických údajů² bylo zjištěno, že délka zpracování jedné zakázky se řídí normálním rozdělením[6, str. 93] se středem 30 minut a rozptylem 6 minut.¹ Tyto hodnoty byly upraveny na základě několika prvotních experimentů.

Dále přiřazení nové zakázky (výběr, tisk, . . .) trvá průměrně 1 minutu. 1

2.1 Použité postupy

Hlavním použitým postupem je vytvoření konceptuálního modelu $[6, \, str. \, 48]$ pomocí P/T Petriho sítě $[6, \, str. \, 123]$. Ta byla využita především proto, že pomocí ní je vytvoření modelu systému hromadné obsluhy $[6, \, str. \, 136]$ snadné

¹Zdroj: Osobní měření

²Zdroj: Zaměstnanec firmy

a srozumitelné. Petriho síť v tomto případě popisuje především chování pracovníků v rámci skladu, jejich vstup do systému a dále i výstup.

Simulační model je naprogramován v jazyce C++ a využívá knihovny SIMLIB[4].

2.2 Původ postupů

Postupy pro modelování a simulování jsou převzaty z kurzu "Modelování a simulace" [3] z Fakulty informačních technologií, VUT v Brně[2].

Dále při implementaci byla použita nejen dokumentace knihovny SIMLIB[5] ale i dokumentace jazyka C++[1].

3 Koncepce

Některé vlastnosti reálného systému jsou pro účely vytvoření simulačního modelu zanedbány, např.:

Pozdní, či brzké příchody pracovníků jsou zcela zanedbávány, simulační model vždy pracuje s včasným příchodem zaměstnanců. Pokud se odchylky drží v určitých mezích (+/-5 minut) nehrají v simulačním modelu téměř žádnou roli.

3.1 Popis konceptuálního modelu

Model je popsán dvěma vizuálně oddělenými Petriho sítěmi, které dohromady tvoří jedinou síť. Obě sítě obsahují stav PR-V - ten reprezentuje jeden jediný stav, který spojuje obě sítě.

3.1.1 Chod skladu

Chod skladu je znázorněn na obrázku 1 (strana 7).

Ze stavu, kdy pracovník vstoupil do systému, vrátil se z pauzy či dokončil zakázku (PR-V) po 1 minutu přijímá zakázku novou (ZAK). Po přijetí nové zakázky existuje 75% pravděpodobnost, že se objednávka musí začít připravovat v druhém patře (ZAK-P2), 20% v prvním patře (ZAK-P1) a 5% v přízemí (ZAK-P0). Následně se objednávka v daných patrech po danou dobu zpracovává (PRAC-P2/P1/P0). Doba zpracování je určena normálním rozdělením se středem 30 minut a rozptylem 6 minut. Model předpokládá, že

pracovník na všech patrech pracuje stejně dlouhou dobu (třetinu z celkového času zpracování objednávky).

Po dokončení zpracování zakázky v prvním či druhém patře (PR-P2/P1-H) existuje 20% šance (P2/P1-V0-N), že daný pracovník nemůže operovat s vysokozdvižným vozíkem a musí proto požádat jiného zaměstnance o pomoc při přesunu palety o patro níže. Hledání odpovídajícího pracovníka trvá 30 sekund až 2 minuty (P2/P1-V0-H).

Pro přesun palet mezi patry a do přízemí je vyhrazen jeden vozík (VOZIK). Samotný přesun palety trvá 30 sekund až minutu (P2/P1-V0-U). Po přesunutí palety do nižšího patra probíhá práce na daném patře a celý proces přesunu palety se opakuje, dokud paleta nedorazí do přízemí (PR-P0).

V přízemí se po dokončení práce (PRAC-PO) paleta zanechá na určeném místě a pracovník se vrací do výchozího stavu (PR-V).

3.1.2 Vstupy a výstupy pracovníků skladu

Vstupy a výstupy procesů jsou znázorněny na obrázku 2 (strana 7).

Bezprostředně na začátku do systému vstupuje 8 pracovníků (PR-P). Po 3 hodinách (PRCH-DOP) do skladu vstupuje 12 dalších pracovníků (DOP).

Každý z nich ve skladě pracuje 8 hodin (PRACE, 30 min kompenzuje délku přestávky). Po čtyřech hodinách (PRES-PRAC) práce pracovník odchází (PRES-VS) na třicetiminutovou přestávku (PRES) (jakékoli rozpracované zakázky nejdříve dokončí), poté se do systému vrací a pokračuje v práci (PR-V).

3.2 Konceptuální model

PR-ZAK 1 PR-P2 PRAC-P2 1 PR-P2-H P2-VO-N P2-VO-NH 1P2-VO-H P2-VO

| PR-P2 | PRAC-P2 | PRAC-P2 | PR-P2-H | P2-VO-N P2-VO-NH 1P2-VO-H | P2-VO-H | P2-VO-NH 1 | PR-P2 | P

Obrázek 1: Petriho síť popisující chod skladu

Obrázek 2: Petriho síť popisující vstup a výstup pracovníků do/ze systému

4 Architektura simulačního modelu/simulátoru

Simulační model využívá především funkcionalitu pro diskrétní simulace[6, str. 119] z knihovny SIMLIB[4].

Podle specifikace konceptuálního modelu se v simulačním modelu pohybují procesy[6, str. 121] (které v tomto případě reprezentují především pracovníky skladu) v různých stavech, zabírají obslužné linky[6, str. 146] a simulují činnost. Objekty sbírají v průběhu simulace důležité statistické informace, ze kterých je možné zjistit klíčové vlastnosti modelovaného systému.

4.1 Mapování abstraktního modelu

Simulační model je založen na Petriho síti z Obrázku 1 (strana 7). Obsahuje tři obslužné linky typu sklad[6, str. 146] reprezentující jednotlivá patra a jednu obslužnou linku zařízení[6, str. 146] reprezentující vozík pro přesun palet mezi patry. Tyto obslužné linky jsou zabírány procesy, které reprezentují pracovníky skladu.

5 Podstata simulačních experimentů a jejich průběh

Cílem této studie je pomocí experimentů zjistit jaké je vytížení vysokozdvižného vozíku pro přesun palet mezi patry a jaký to má dopad na zpracování zakázek.

Dále také porovnat existující systém s modelem, ve kterém byl vysokozdvižný vozík nahrazen výtahem spojující všechna patra skladu.

5.1 Postup experimentování

Prvotní experimenty se simulačním modelem byly nejprve cíleny na ověření správné činnosti modelu (kontrola správných počtů přestávek, pracovní doby a rychlosti zpracovávání zakázek) a na základě výsledků byly opraveny chyby, které byly experimenty odhaleny.

Nejprve je zkoumáno chování modelu s výchozími parametry dle specifikací systému. Následně se zkoumá, jak se systém chová pří zvýšení či snížení těchto hodnot. V poslední řadě se zjišťuje chování systému s extrémními hodnotami (v rámci validity modelu).

5.2 Jednotlivé experimenty

Pokud není v uvedeno jinak byly tyto simulační experimenty prováděny s výchozím počtem pracovníků skladu a jediným vysokozdvižným vozíkem (dle specifikovaných fakt o systému). Simulován byl dlouhodobý provoz skladu - přesněji 261 dní (počet pracovních dní v roce).

5.2.1 Vytížení vozíku a jeho dopad na práci

Na základě simulačních experimentů bylo zjištěno, že samotný vysokozdvižný vozík zpožďuje každým přesunem každou zakázku o průměrně 1 minutu a v rušných chvílích až o 7 minut.

Celý proces přesunu palet v rámci všech pater zpožďuje zakázky v průměru o téměř 3 minuty a v extrémních případech až o 10-13 minut. Tento proces zahrnuje hledání pracovníků pro přesun palety, čekání ve frontě i samotný přesun.

Graf 1: Maximální celkové zpoždění zakázky přesuny palet

5.2.2 Nahrazení vozíku výtahem

Výtah v simulačním modelu má následující parametry:

- výtah se přesune z jednoho patra do druhého za 8 vteřin
- do výtahu se vejde pouze jedna paleta a smí jej použít kdokoliv

V modelu, kde byl vozík nahrazen výtahem bylo zpoždění zakázek přesunem palety mezi patry značně sníženo. Průměrné zpoždění zakázky přesunem nedosahuje ani 15 vteřin, s maximálním zpožděním 1 minutu a 40 vteřin.

Celý proces přesunu v rámci všech pater byl snížen na průměrně 40 vteřin, s maximálním registrovaným zpožděním 3-4 minut. Viz Graf 2 na straně 10.

Efektivně to vede ke snížení času nutného ke zpracování každé zakázky a k celkovému zvýšení efektivity modelovaného systému. Model vykazuje zvýšení zpracovaných zakázek o více než 7%.

Na Grafu 3 na straně 10 lze pro výsledky modelu "Výtah" pozorovat vyšší počty zakázek s nižším časem

Graf 2: Maximální celkové zpoždění zakázky přesuny palet, model s výtahem

pro jejich zpracování než pro výsledky modelu "Vozík".

Graf 3: Porovnání maximálních časů zpracování zakázek

5.2.3 Prostor pro rozšíření - vozík X výtah

V tomto experimentu bylo sledováno jednoho zaměstnance na celkovém počtu zpracovaných zakázek při změně počtu pracovníků na skladě.

Na Grafu 4 na straně 11 jsou zobrazeny průměrné počty zpracovaných objednávek jedním pracovníkem za rok (levá osa Y) při daných počtech pracovníků na skladě (osa X) spolu s celkovým počtem zpracovaných zakázek za rok (pravá osa Y).

Graf 4: Průměrný počet zakázek na pracovníka za rok

Z grafu lze poznat, že se jakékoliv rozšíření řad pracovníků v případě skladu s vozíkem velmi negativně podepisuje na celkovém počtu zpracovaných objednávek za rok - to je způsobeno značným zpožděním každé zakázky vozíkem pro přesun palet.

Při 26 pracovnících na skladě se průměrná doba zpoždění každým přesunem vyšplhala na 2 minuty (oproti 20 zaměstnancům došlo k 91% zvýšení)

a více než 25% zakázek bylo při zpracování zpožděno o více než 6 minut.

Oproti tomu ve skladě s výtahem došlo při 30 zaměstnancích ke zvýšení průměrného zpoždění pouze o 32% - z přibližně 15 sekund na 20.

5.3 Závěry experimentů

Každý z experimentů přinesl důležitá data a informace o modelovaném systému, díky kterým je možné jasně zodpovědět původní otázky této práce.

6 Shrnutí simulačních experimentů a závěr

V rámci experimentů bylo zjištěno, že každá zakázka je přesunem palet mezi patry celkově zpožděna o průměrně 3 minuty. V extrémních případech (tj. přibližně 0.5% zakázek) je při zpracování zpožděno o více než 8 minut.

Rozšíření řad zaměstnanců skladu se nedoporučuje za předpokladu, že přesun palet bude záviset na jediném vysokozdvižném vozíku. Zvýšením počtu zaměstnanců v takovémto případě by znamenalo snížení efektivity práce ve skladě.

Z experimentů dále vyplývá, že nahrazením vozíku výtahem (odpovídajícím specifikacím experimentu z Kapitoly 5.2.2) dojde k nárůstu dlouhodobé efektivity až o 7%. Nábor nových zaměstnanců je v této situaci doporučen.

Reference

- [1] C++ reference. https://en.cppreference.com/w/cpp, 2018. [Online].
- [2] Fakulta informačních technologií, VUT v Brně. http://www.fit.vutbr.cz/.cs, 2018. [Online].
- [3] Kurz Modelování a simulace. http://www.fit.vutbr.cz/study/course-l.php.cs?id=12760, 2018. [Online].
- [4] Petr Peringer. SIMLIB simulation library for C++. https://www.fit.vutbr.cz/~peringer/SIMLIB/, 1991. [Online; zobrazeno 28. listopadu 2018].
- [5] Petr Peringer. SIMLIB dokumentace. https://www.fit.vutbr.cz/~peringer/SIMLIB/doc/html-cz/, 1997. [Online; zobrazeno 28. listopadu 2018].
- [6] Martin Hrubý Petr Peringer. Modelování a simulace. http://www.fit. vutbr.cz/study/courses/IMS/public/prednasky/IMS.pdf, 2018. [Online; zobrazeno 2. října 2018].