CSC410 tutorial: SAT for problem solving

Encoding problems to SAT problems

- Boolean satisfiability problem (SAT): Given formula e.g. $(x \lor y \lor z) \land (\neg x \lor \neg y) \land (\neg y \lor \neg z)$, is there an assignment that makes the formula true?
- Efficient algorithm to solve SAT problems.
- Solver, e.g. Z3 (demo).

You have a problem to solve, e.g. need to write a Sudoku solver.

	1			7	8			
	8			4		9		
		5	6				1	
1				6				5
	4		9	1	5		7	5 2
	4 6	7		8		4		
			3			1		
	7		8	9			2	3
					4			

A 9x9 grid, with **81** variables: $0 < i, j \le 9$, x_{ij} is the value (**digit from 1 to 9**) of cell i, j.

Constraints: each row, column an block of 3x3 contains all the digits from 1 to 9. Some digits are already assigned.

• is it a boolean SAT problem? No.

You have a problem to solve, e.g. need to write a Sudoku solver.

- is it a boolean SAT problem? No.
- Solution 1: design a specialized algorithm and optimize it.

You have a problem to solve, e.g. need to write a Sudoku solver.

- is it a boolean SAT problem? No.
- Solution 1: design a specialized algorithm and optimize it.
- Solution 2: encode it into a SAT problem, use off-the-shelf optimized solver.

SAT encoding

- Original problem: non-boolean variables and constraints.
- SAT encoding: boolean variables and clauses.

SAT encoding

- Original problem: non-boolean variables and constraints.
- SAT encoding: boolean variables and clauses.
 - variables: find an interpretable boolean representation of the original variables.

Ex: binary representation of integers.

SAT encoding

- Original problem: non-boolean variables and constraints.
- SAT encoding: boolean variables and clauses.
 - variables: find an interpretable boolean representation of the original variables.
 - Ex: binary representation of integers.
 - clauses: express the constraints as a conjunction of clauses.

Sudoku

A 9x9 grid, with **81** variables:

 $0 < i, j \le 9$, x_{ij} is the value (digit from 1 to 9) of cell i, j.

	1			7	8			
	8			4		9		
		5	6				1	
1			Г	6				5
	4		9	1	5		7	2
	4 6	7		8		4		
			3			1		
	7		8	9			2	3
					4			

Constraints:

- each row contains all the digits from 1 to 9,
- each column contains all the digits from 1 to 9,
- each block of 3x3 contains all the digits from 1 to 9,
- initial grid specifies values of some cells.

			8	7			1	
		9		4			8	
	1				6	5		
5				6				1
2	7		5	1	9		4	
		4		8		7	4 6	
		1			3			
3	2			9	8		7	
			4					

A 9x9 grid, with 9x81 variables: $0 < i \le 9, 0 < j \le 9, 0 < k \le 9$, $b_{i,j,k}$ is true iff the value of cell i,j is k.

	1			7	8			
	8			4		9		
		5	6				1	
1			Г	6				5
	4		9	1	5		7	2
	4 6	7		8		4		
			3			1		
	7		8	9			2	3
					4			

Constraints:

• each row contains all the digits:

$$\forall 0 < k \le 9, 0 < i \le 9, \sum_{j=1}^{9} b_{i,j,k} = 1$$

	1			7	8			
	8			4		9		
		5	6				1	
1			Г	6				5 2
	4		9	1	5		7	2
	6	7		8		4		
			3			1		
	7		8	9			2	3
					4			

Constraints:

• each row contains all the digits: $\forall 0 < k \le 9, 0 < i \le 9, \sum_{j=1}^{9} b_{i,j,k} = 1$

Exactly one

Exactly one $\{x_i\}_{i=1..n}$ is true: $\sum_{i=1}^n x_i = 1$. $\binom{N}{2} + 1$ clauses:

- At least one: $x_1 \lor x_2 \lor \ldots \lor x_n$.
- At most one (no pair with both x_i , x_j true): $\neg x_i \lor \neg x_j$, for i, j = 1..n and $i \neq j$.

	1			7	8			
	8			4		9		
		5	6				1	
1			Г	6				5 2
	4		9	1	5		7	2
	6	7		8		4		
			3			1		
	7		8	9			2	3
					4			

Constraints:

• each column contains all the digits:

$$\forall 0 < k \le 9, 0 < j \le 9, \sum_{i=1}^{9} b_{i,j,k} = 1$$

	1			7	8			
	8			4		9		
		5	6				1	
1			Г	6				5
	4 6		9	1	5		7	2
	6	7		8		4		
			3			1		
	7		8	9			2	3
					4			Г

Constraints:

• each block of 3x3:

$$\forall 0 < k \le 9, 0 < a, b \le 3,$$

 $\sum_{r=1}^{3} \sum_{l=1}^{3} b_{3a+r,3b+l,k} = 1$

	1			7	8			
	8			4		9		
		5	6				1	
1				6				5
	4		9	1	5		7	2
	4 6	7		8		4		
			3			1		
	7		8	9			2	3
					4			

Constraints:

• initial grid specifies values of some cells.