四.一维谐振子

1. 势能函数

$$U(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$$

m — 振子质量, ω — 固有频率, x — 位移

2. 定态薛定谔方程 $\Psi''(x) + \frac{2m}{\hbar^2} (E - \frac{1}{2}m\omega^2 x^2)\Psi(x) = 0$

3. 能量量子化

$$E_n = (n + \frac{1}{2})h\nu$$
 $(n = 0, 1, 2, \dots)$

说明

普朗克量子化假设

量子力学结果

$$E_n = nhv$$

$$E_n = (n+1/2)hv$$

$$E_0 = 0$$

$$E_0 = 0$$
 零点能 $E_0 = hv/2$

五. 隧道效应(势垒贯穿)

势垒

$$U(x)=0$$

$$x \leq 0$$

$$II \boxtimes$$

$$\coprod \boxtimes U(x) = U_0 \quad 0 \le x \le a$$

$$0 \le x \le a$$

$$\mathbf{X}$$

$$U(x) = 0$$

$$x \ge a$$

U_0 Ш E0 a

定态薛定谔方程:

$$\frac{d^2 \Psi_1(x)}{dx^2} + k_1^2 \Psi_1(x) = 0$$

$$k_1^2 = \frac{2mE}{\hbar^2}$$

$$\frac{\mathrm{d}^2 \Psi_2(x)}{\mathrm{d}x^2} - k_2^2 \Psi_2(x) = 0$$

$$k_2^2 = \frac{2m(U_0 - E)}{\hbar^2}$$

$$\frac{d^2 \Psi_3(x)}{dx^2} + k_1^2 \Psi_3(x) = 0$$

$$k_1^2 = \frac{2mE}{\hbar^2}$$

三个区域的波函数分别为

$$I \boxtimes \Psi_1(x) = A_1 e^{ik_1 x} + B_1 e^{-ik_1 x}$$

II
$$\boxtimes \Psi_2(x) = A_2 e^{k_2 x} + B_2 e^{-k_2 x}$$

$$III \boxtimes \qquad \Psi_3(x) = A_3 e^{ik_1 x} + B_3 e^{-ik_1 x}$$

波函数在 x=0, x=a 处连续

$$x = 0$$
 处: $\Psi_1(0) = \Psi_2(0)$

$$x = a \ \text{M}$$
: $\Psi_2(a) = \Psi_3(a)$

$$\left. \frac{\mathrm{d} \mathcal{Y}_1}{\mathrm{d} x} \right|_{x=0} = \left. \frac{\mathrm{d} \mathcal{Y}_2}{\mathrm{d} x} \right|_{x=0}$$

$$\frac{\mathrm{d}\mathcal{Y}_2}{\mathrm{d}x}\bigg|_{x=a} = \frac{\mathrm{d}\mathcal{Y}_3}{\mathrm{d}x}\bigg|_{x=a}$$

得到4个方程,求出常数 A_1 、 B_1 、 A_2 、 B_2 和 A_3 间关系,从而得到反射系数 $R=\mid B_1\mid^2/\mid A_1\mid^2$ 和透射系数 $T=\mid A_3\mid^2/\mid A_1\mid^2$

$$T + R = 1$$

入射粒子一部分透射到达III 区, 另一部分被势垒反射回I 区

∳讨论

- $(1)E > U_0$, $R \neq 0$,即使粒子总能量大于势垒高度,入射粒子并非全部透射进入 III 区,仍有一定概率被反射回 I 区。
- $(2)E < U_0$, $T \neq 0$,虽然粒子总能量小于势垒高度,入射粒子仍可能穿过势垒进入 III 区 隧道效应

(3) 透射系数T 随势垒宽度a、粒子质量m 和能量差变化,随着势垒的加宽、加高透射系数减小。

粒子类型	粒子能量	势垒高度	势垒宽度	透射系数
电子	1eV	2eV	5×10^{-10} m	0.024
	1eV	2eV	2×10^{-10} m	0.51
质子	1eV	2eV	2×10 ⁻¹⁰ m	3×10 ⁻³⁸

六. 氢原子

$$\begin{cases} (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})\Psi + \frac{2m}{\hbar^2} (E - V)\Psi = 0\\ V = -\frac{e^2}{4\pi\varepsilon_0 r} \end{cases}$$

球坐标的定态薛定谔方程

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}(r^{2}\frac{\partial \Psi}{\partial r}) + \frac{1}{r^{2}}\frac{\partial}{\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\Psi}{\partial\theta})$$

$$+ \frac{1}{r^{2}}\frac{\partial^{2}\Psi}{\sin^{2}\theta}\frac{\partial^{2}\Psi}{\partial\varphi^{2}} + \frac{2m}{\hbar^{2}}(E + \frac{e^{2}}{4\pi\varepsilon_{0}r})\Psi = 0$$

1. 能量量子化

能量

$$E_n = -\frac{1}{n^2} \left(\frac{me^4}{8\varepsilon_0^2 h^2} \right) = -\frac{E_1}{n^2}$$

主量子数 n=1, 2, 3,

电子云 电子云密度 \longleftarrow 概率密度 $\psi_{nlm}^2(r,\theta,\varphi)$

$$r_1 = 0.529 \times 10^{-10} m$$

基态电子在这些地方 出现的概率最大

非轨道运动

2. 角动量量子化

电子绕核转动的角动量工的大小

$$L = \sqrt{l(l+1)}\hbar$$

角量子数 l=0,1,2,,n-1

3. 角动量空间量子化

角动量 \vec{L} 的在外磁场方向Z的投影

$$L_z = m_l \hbar$$

磁量子数
$$m_l = 0$$
, ± 1 , ± 2 ,, $\pm l$

I=2 电子角动量的大小及空间取向? 例如

 \vec{L} 的大小

磁量子数

$$L = \sqrt{2(2+1)}\hbar = \sqrt{6}\hbar$$

$$m_1 = 0, \pm 1, \pm 2$$

$$L$$
在 Z 方向的投影 $L_z = 2\hbar, \hbar, 0, -\hbar, -2\hbar$

$$l=1$$
 $L=\sqrt{2}\hbar$

4. 塞曼效应

- (1) 实验现象
- (2)解释

$$\vec{\mu} = -e \cdot \frac{\omega}{2\pi} \pi r^2 \vec{n}$$

$$\vec{L} = mr\omega^2 \vec{n}$$

$$\vec{\mu} = -\frac{e}{2m_e}\vec{L}$$

z轴(外磁场方向)投影

$$\mu_{z} = -\frac{e}{2m_{e}}L_{z} = -\frac{e\hbar}{2m_{e}}m_{l} = -m_{l}\mu_{B}$$

• 磁场作用下的原子附加能量

$$\Delta E = -\vec{\mu} \cdot \vec{B} = -\mu_z B = m_l \mu_B B$$

其中
$$m_l = 0, \pm 1, \pm 2, ..., \pm l$$

• 能级分裂

§ 15.7 电子自旋 四个量子数

一. 斯特恩—革拉赫实验

2022-12-15

2022-12-15

其轨道磁矩在外磁场的投影_{LZ}取(21+1)个值,

原子沉积线条数是两条。

实验观察到的磁矩 μ_Z 是不是由轨道磁矩产生的。

2022-12-15

二. 电子自旋 (1925年乌伦贝克等)

• 电子自旋角动量大小

$$S = \sqrt{s(s+1)} \; \hbar$$

s——自旋量子数

• S 在外磁场方向的投影

$$S_Z = m_{\scriptscriptstyle S} \hbar$$

自旋磁量子数 m_s 取值个数为

$$2s + 1 = 2$$

S = 1/2 , $m_{\rm s} = \pm 1/2$

$$S = \sqrt{\frac{1}{2}(\frac{1}{2}+1)}\hbar = \sqrt{\frac{3}{4}} \hbar$$

电子自旋角动量在 外磁场中的取向

三. 四个量子数(表征电子的运动状态)

1.主量子数 *n* (1,2,3,.....)

大体上决定了电子能量

2. 角量子数 *l* (0, 1, 2,, n-1) 决定电子的轨道角动量大小, 对能量也有稍许影响。

3. 磁量子数 m_l (0, ±1, ±2,, ± l)

决定电子轨道角动量空间取向

4.自旋磁量子数 m_s (1/2, -1/2)

决定电子自旋角动量空间取向

2022-12-15

§ 15.8 原子的电子壳层结构

一. 泡利不相容原理(1925年)

在一个原子中,不能有两个或两个以上的电子处在完全相同的量子态 ,即它们不能具有一组完全相同的量子数

$$(n, l, m_l, m_s)$$
.

n	1	2				3								
l	0	0	0 1			0	1			2				
m_l	0	0	-1	0	1	0	-1	0	1	-2	-1	0	1	2
m_{s}														
Z	2	8			18									

容纳电子的最大数目
$$Z_n = \sum_{0}^{n-1} 2(2l+1) = 2n^2$$
 2022-12-15

二. 能量最小原理

原子处于正常状态时,每个电子都趋向占据可能的最低能级

2022-12-15

		1 <i>s</i>	2 <i>s</i>	2 <i>p</i>	3 <i>s</i>	3 <i>p</i>	3 <i>d</i>	4s
1 氢 2 氦	H He	1 2						
3 锂 4 铍	Li Be	2 2	1 2		D:	= n +	0.7 <i>l</i>	
5 硼 6 碳 10 氖	B C Ne	2 2 2	2 2 2	1 2 6			4s á 低	能级 于
13 铝 14 硅 18 氩	Al Si Ar	2 2 2	2 2 2	6 6 6	2 2 2	1 2 6	3d f	
19 钾 20 钙 21 钪	K Ca Sc	2 2 2	2 2 2	6	2 2 2	6	1	1 2 2

部分原子的电子排列