少人数クラス

中村 薫

2022年10月7日

目次

1	\mathbf{Coq} による q -類似の形式化	1
	1.1 Coq	1
	1.2 q-類似	2
	1.3 形式化	2
2	HoTT	5
3	coqgen プロジェクト	5

1 Coq による *q*-類似の形式化

1.1 Coq

 Coq とは、定理証明支援系の 1 つであり、数学的な証明が正しいかどうか判定するプログラムである。 人間がチェックすることが難しい複雑な証明でも正しさが保証され、また証明付きプログラミングにも応用される。 例えば、命題 P,Q について、 $P\Longrightarrow Q$ かつ P であれば、 Q が成り立つということは、 Coq では

From mathcomp Require Import ssreflect.

Theorem modus_ponens (P Q : Prop) : (P \rightarrow Q) \wedge P \rightarrow Q. Proof.

move⇒ [] pq p.
by apply pq.
Qed.

と表現できる.

Coq による証明は、Curry-Howard 同型と呼ばれる、

命題 ↔ 型

証明 ↔ 型に要素が存在する

という対応関係に基づいている.また,各論理演算子について,以下のように対応している

PならばQ $P \rightarrow Q$ PかつQ $P \times Q$ PまたはQ P + Q この同型をもとに上記の証明をもう一度考えてみると, $P \to Q$ と P という型に要素が存在することから, Q という型の要素を構成すればよいということである.

まず, 前提の要素それぞれに pq, p と名前をつける. これがプログラム中の $move \Rightarrow []$ pq p のことである. ここで, $P \to Q$ という型は, 入力する値の型が P, 出力する値の型が Q であるような関数の型であるため, P の要素 p に pq を適用することで, Q の要素を構成することができる. この関数適用がプログラム中の apply pq のことである.

1.2 *q*-類似

q-類似とは, $q \to 1$ とすると通常の数学に一致するような拡張のことである. 例えば, 自然数 n の q-類似 [n] は

$$[n] = 1 + q + q^2 + \cdots + q^{n-1}$$

であり, $(x-a)^n$ の q-類似 $(x-a)_a^n$ は

$$(x-a)_q^n := \begin{cases} 1 & (n=0) \\ (x-a)(x-qa)\cdots(x-q^{n-1}a) & (n \ge 1) \end{cases}$$

である. 本章では, $D_q(x-a)_q^n=[n](x-a)_q^{n-1}$ (ここで, D_q は微分の q-類似) が, n を整数に拡張しても成り立つことの形式化を目標とする.

1.3 形式化

様々な q-類似を考えるにあたって、まずは微分の q-類似から始める. 以下, q を 1 でない実数と する

Definition 1.3.1 ([1] p1 (1.1), p2 (1.5)) 関数 $f: \mathbb{R} \to \mathbb{R}$ に対して, f(x) の q 差分 $d_a f(x)$ を,

$$d_q f(x) := f(qx) - f(x)$$

と定める. 更に, f(x) の q 差分を $D_a f(x)$ を,

$$D_q f(x) := \frac{d_q f(x)}{d_q x} = \frac{f(qx) - f(x)}{(q-1)x}$$

と定める.

この定義を形式化すると,

From mathcomp Require Import all_ssreflect all_algebra. Import GRing.

Section q_analogue.

Local Open Scope ring_scope.

Variable (R : rcfType) (q : R).

Hypothesis Hq : $q - 1 \neq 0$.

Notation "f // g" := (fun x \Rightarrow f x / g x) (at level 49).

Definition dq (f : $R \rightarrow R$) x := f (q * x) - f x.

Definition Dq f := dq f // dq id.

となる. このコードの意味は大まかに以下のとおりである.

- 最初の2行で必要なライブラリの指定をしている.
- Variable でそのセクション内で共通して使う変数を宣言している. R が Coq における実数の 役割を果たす.
- Hypothesis で, q が 1 でないという仮定をしている. 使いやすさのため, $q \neq 1$ ではなく $q-1\neq 0$ という形にしている.
- Notation で関数同士の割り算の記法を定義している.
- 2つの Definition で q-差分と q-微分をそれぞれ定義している. := 以前に定義の名前と引数, 以後に具体的な定義が書いてある. 例えば q-差分についてであれば, d-q が名前, f と x が引数, f (q * x) f x が定義である. (f の後ろの: $R \to R$ は f の型である. 一方, もう一つの引数である x には型を書いていない. これは, C q には強力な型推論があるため, 推論できるものであれば型を書く必要がないためである.) D_q の定義の中の id は恒等関数のことである.

Remark 1.3.2 *f* が微分可能であるとき,

$$\lim_{q \to 1} D_q f(x) = \frac{d}{dx} f(x)$$

が成り立つが、本稿においては極限操作に関しての形式化は扱わない.

次に, $x^n(n \in \mathbb{N})$ を g-微分した際にうまく振る舞うように自然数の g-類似を定義する.

Definition 1.3.3 ([1] p2 (1.9)) $n \in \mathbb{N}$ に対して, $n \circ q$ -類似 [n] を,

$$[n] := \frac{q^n - 1}{q - 1}$$

と定義する.

この [n] に対して, $(x^n)' = nx^{n-1}$ の g-類似が成り立つ.

Lemmma 1.3.4 ([1] p2 Example (1.7)) $n \in \mathbb{Z}_{>0}$ について,

$$D_q x^n = [n] x^{n-1}$$

が成り立つ.

Proof. 定義に従って計算すればよく,

$$D_q x^n = \frac{(qx)^n - x^n}{(q-1)x} = \frac{q^n - 1}{q-1} x^{n-1} = [n] x^{n-1}$$

この定義と補題の形式化は以下のとおりである.

Definition qnat $n : R := (q ^n - 1) / (q - 1)$.

Lemma qderiv_of_pow n x :

 $x \neq 0 \rightarrow Dq$ (fun $x \Rightarrow x \hat{n}$) $x = qnat n * x \hat{n}$ (n - 1). Proof.

 $move \Rightarrow Hx$.

rewrite /Dq /dq /qnat.

rewrite -{4}(mul1r x) -mulrBl expfzMl.

rewrite -add_div.

```
rewrite [in x ^ n](_ : n = (n -1) +1) //.
    rewrite expfzDr // expr1z.
    rewrite mulrA -mulNr !red_frac_r //.
    rewrite add_div //.
    rewrite -{2}[x ^ (n - 1)]mul1r.
    rewrite -mulrBl mulrC mulrA.
    by rewrite [in (q - 1)^-1 * (q ^ n - 1)] mulrC.
    by rewrite subrK.
    by apply mulf_neq0.
Qed.
```

ここでも、コードについて少し説明を加える.

- Definition と同様, Lemma について、 = の前に補題の名前と引数が、後に補題の主張が書いてある。 今回であれば、 qderiv_of_pow が補題の名前で、 n と x が引数である.
- Proof. 以下が補題の証明である.
- defが定義のとき, rewrite /defで定義を展開している.
- lem が A = B という形の補題のとき, rewrite lem で結論に出現する A を B に書き換えている.
- red_frac_r は、

red_frac_r : \forall x y z : R, z \neq 0 \rightarrow x * z / (y * z) = x / y

という補題である。この補題を使うため、もともとはなかった $x \neq 0$ という前提を加えている。 実際、 D_q の定義において分母に x が出現するので、x が 0 でないという前提は妥当である.

Remark 1.3.5 qnat という名前であるが、実際には n の型は nat ではなく R にしている。また、qderiv_of_powの n の型は int である.

[1]では証明は1行で終わっているが,形式化する場合には何倍もかかっている. これは, 積の交換法則や指数法則などの, 通常の数学では「当たり前」なことが自動では計算されず, rewrite mulrCや rewrite expfzDr というように rewrite での書き換えを明示的に行わなければならないからである.

続いて $(x-a)^n$ の q-類似を定義し, その性質を調べる.

Definition 1.3.6 ([1] p8 Definition (3.4)) $x, a \in \mathbb{R}, n \in \mathbb{Z}_{\geq 0}$ に対して, $(x - a)^n$ の q-類似 $(x - a)^n_q$ を,

$$(x-a)_q^n = \begin{cases} 1 & \text{if } n = 0\\ (x-a)(x-qa)\cdots(x-q^{n-1}a) & \text{if } n \ge 1 \end{cases}$$

と定義する.

Proposition 1.3.7 $n \in \mathbb{Z}_{>0}$ に対し,

$$D_q(x-a)_q^n = [n](x-a)_q^{n-1}$$

が成り立つ.

Proof. n についての帰納法により示される.

まず, $(x-a)_a^n$ の定義を形式化すると,

```
Fixpoint qpoly_nonneg a n x :=
  match n with
  \mid 0 \Rightarrow 1
  \mid n.+1 \Rightarrow (qpoly_nonneg a n x) * (x - q ^ n * a)
となる. Fixpoint を用いて再帰的な定義をしており, match を使って n が 0 かどうかで場合分けし
ている. 補題の証明については
Theorem qderiv_qpoly_nonneg a n x :
  x \neq 0 \rightarrow Dq (qpoly_nonneg a n.+1) x = qnat n.+1 * qpoly_nonneg a n x.
Proof.
  move \Rightarrow Hx.
  elim: n \Rightarrow [|n|].
  - rewrite /Dq /dq /qpoly_nonneg /qnat.
    rewrite !mul1r mulr1 expr1z.
    rewrite opprB subrKA !divff //.
    by rewrite denom_is_nonzero.
  - rewrite (_ : Dq (qpoly_nonneg a n.+2) x =
                 Dq ((qpoly_nonneg a n.+1) **
                  (fun x \Rightarrow (x - q (n.+1) * a))) x) //.
    rewrite qderiv_prod' //.
    rewrite [Dq (+%R^{-} (- (q ^{n} n.+1 ^{*} a))) x] /Dq /dq.
    rewrite opprB subrKA divff //.
      rewrite mulr1 exprSz.
      rewrite -[q * q ^ n * a] mulrA -(mulrBr q) IH.
      rewrite -[q * (x - q ^ n * a) * (qnat n.+1 * qpoly_nonneg a n x)] mulrA.
      rewrite [(x - q \hat{n} * a) * (qnat n.+1 * qpoly_nonneg a n x)] mulrC.
      rewrite -[qnat n.+1 * qpoly_nonneg a n x * (x - q ^ n * a)] mulrA.
      rewrite (_ : qpoly_nonneg a n x * (x - q ^ n * a) = qpoly_nonneg a n.+1 x) //.
      rewrite mulrA.
      rewrite -{1}(mul1r (qpoly_nonneg a n.+1 x)).
      rewrite -mulrDl addrC.
      rewrite -(@divff_{(q-1)}) //.
      rewrite [qnat n.+1] /qnat.
      rewrite [q * ((q ^n.+1 - 1) / (q - 1))] mulrA.
      rewrite (add_div _ _ (q -1)) //.
      by rewrite mulrBr -exprSz mulr1 subrKA.
    by apply denom_is_nonzero.
Qed.
```

となる. ここで elim: n は n の帰納法に対応している.

2 HoTT

3 coqgen プロジェクト

参考文献

- [1] Victor Kac, Pokman Cheung, Quantum Calculus, Springer, 2001.
- [2] The Univalent Foundations Program, *Homotopy Type Theory: Univalent Foundations of Mathematics*