

Photorealistic Style Transfer via Wavelet Transforms

Team: Framed

Objective

- Given a pair of images S : Style image and C : Content image, perform photorealistic style transfer
- Leveraging wavelet transform to overcome limitations of spatial distortions, and introduction of unrealistic artifacts in the final image.
- The paper proposes to perform this via an end-to-end photorealistic style transfer model that allows to remove the additional post-processing steps

Content Image (C)

Style Image (S)

Style Transfer Output

How WCT² is Different

Goals

 Given a photograph as a reference style, transfer the style to a photo so that the stylized photo preserves the content of the original photo but carries the style of the reference photo.

Deliverables (March)

- Implement first part of Wavelet Corrected Transfer i.e. Haar Wavelet Pooling and Unpooling by March.
- Design model architecture of pre-trained VGG-19 network.

Method

Overview of the method

- → Use the **VGG19** model's feature extraction layers as the encoder and its corresponding mirror as the decoder
- → Replace the max pooling and unpooling layers with Haar Wavelet Pooling.
- → Apply WCT after each scale (conv1 X, conv2_X, conv3 X and conv4 X). This is referred to as progressive stylisation.

VGG-19 Model

Fig. 3. VGG-19 network architecture

 For our use case, we use the layers upto conv4_1 for our encoder. We use the mirror of this model as our decoder.

WCT Procedure

- We first extract the features for both the content (c) and style (s) images. Let us denote this as f_c and f_s.
- We now apply WCT (Whitening and Coloring Transforms).
- We take the output (denoted by f_{cs}) of WCT and pass it to the next layer of the architecture

Whitening and Color Transforms

Whitening Transform

- We first center f_c by subtracting its mean vector.
- Then we transform f_c linearly such that the feature maps are uncorrelated.

$$\hat{f}_c = E_c \; D_c^{-\frac{1}{2}} \; E_c^\top \; f_c$$

 D_c is a diagonal matrix with the eigenvalues of the covariance matrix. E_c is the corresponding orthogonal matrix of eigenvectors.

Color Transform

- We first center f_s by subtracting its mean vector.
- We now carry out the coloring transform as follows to obtain f_{cs} .

•

$$\hat{f_{cs}} = E_s \ D_s^{\frac{1}{2}} \ E_s^{\top} \ \hat{f_c}$$

 D_s is a diagonal matrix with the eigenvalues of the covariance matrix. E_s is the corresponding orthogonal matrix of eigenvectors.

Haar Wavelet Pooling

- Haar wavelet pooling has four kernels, { LL^T LH^T HL^T HH^T}
- The low (L) and high (H) pass filters are-

$$L^{\top} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad H^{\top} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \end{bmatrix}.$$

- Here, the low-pass filter captures smooth surface and texture while the highpass filters extract vertical, horizontal, and diagonal edgelike information
- One important property of the wavelet pooling is that the original signal can be exactly reconstructed by mirroring its operation
- Thanks to this favorable property, our proposed model can stylize an image with minimal information loss and noise amplification.

Final Model

Figure 11: Overview of the proposed progressive stylization. For the encoder, we perform WCT on the output of convX_1 layer and skip connections. For the decoder, we apply WCT on the output of convX_2 layer, which is optional.