COMP 760 Week 6: Extrinsic view of Riemannian Geometry

By Joey Bose and Prakash Panangaden

Admin stuff week 6

Project Advice

- Start immediately. Don't wait till the last few weeks.
- Try to fail fast. If its empirical get a minimum working example asap. Usually Google Collab is good at this.
- Try to visualize results as much as possible. Plot loss curves, generated samples, ELBO.
- Think about as many sanity checks as possible. For example, are generated samples actually on the manifold?

Extrinsic View

Review: Smooth Manifolds

\mathcal{M} – smooth

- $lue{d}$ -dim topological space (paracompact, Haussdorf, and second countable).
- $\{(U_i, \psi_i)\}$ collection of charts that satisfy a compatibility condition.
- lacksquare A smooth function f on ${\mathscr M}$ is the map $f \circ \phi^{-1}: {\mathbb R}^d o {\mathbb R}$
- lacksquare The set of smooth functions on ${\mathscr M}$ is denoted by $C^\infty({\mathscr M})$

Review: Tangent Spaces

$$D(fg) = f(x)D(g) + g(x)D(f)$$
 Derivation

 $\qquad \qquad \text{The set of all derivations at } x \in \mathcal{M} \text{ is called the tangent space } \mathcal{T}_x \mathcal{M}$

$$\mathcal{T}_{x}\mathbb{R}^{d} = \operatorname{span}\left\{\frac{\partial}{\partial x_{1}}, \dots, \frac{\partial}{\partial x_{d}}\right\}$$

Pushforward Maps (Differentials)

- If X is a vector field on \mathcal{M} then we can define a new function point wise X(f)(x) = X(x)(f) for some $f \in C^{\infty}(\mathcal{M})$.
- Now let $f: \mathcal{M} \to \mathcal{N}$, the differential df is a map $\mathcal{TM} \to \mathcal{TN}$. Note df is a co-vector.
- If f^{-1} exists the corresponding map df^{-1} is called the pullback.
- The pullback in coordinates satisfies $(df_x)^{-1} = (df^{-1})_{f(x)}$

Tangent Space Basis

- Let $\tilde{x} = (\tilde{x}_1, \dots, \tilde{x}_d) = \phi(x)$ be local coordinates and $d\phi_x: \mathcal{T}_x \mathcal{M} \to \mathcal{T}_{\phi(x)} \mathbb{R}^d$ be an isomorphism.
- Then we can define basis vectors on \tilde{E}_i on $\mathcal{T}_x\mathcal{M}$ as:

$$\tilde{E}_i = (d\phi_x)^{-1} \left(\frac{\partial}{\partial \tilde{x}_i}\right)$$

$$= (d\phi^{-1})_{\phi(x)} \left(\frac{\partial}{\partial \tilde{x}_i}\right)$$

Tangent Space Basis

- The tangent space $\mathcal{T}_x\mathcal{M}$ of \mathcal{M} at x is spanned by $\{\tilde{E}_1,\cdots,\tilde{E}_d\}$.
- Any tangent vector V can be represented by $\sum_{i=1}^{d} \tilde{v}_i \tilde{E}_i$ for some coordinate-dependent coefficients \tilde{v}_i .

Embeddings

• A manifold is embedded in \mathbb{R}^m if there is an inclusion map $\iota:\mathcal{M}\to\mathbb{R}^m$, where m>d.

$$\iota(x) = x \in \mathbb{R}^m \quad \forall x \in \mathcal{M}$$

The Nash Embedding Theorem guarantees that every smooth manifold can be embedded for a suitable m.

Embeddings Example

Embeddings Example

Tangent Space Basis in Extrinsic Coordinates

$$\begin{split} \tilde{E}_i &= (d\phi^{-1})_{\phi(x)} \left(\frac{\partial}{\partial \tilde{x}_i}\right) \\ &= (d\iota^{-1})_{\iota(x)} (d\iota \circ \phi^{-1})_{\phi(x)} \left(\frac{\partial}{\partial \tilde{x}_i}\right) \\ &= \sum_{i=1}^m \frac{\partial \phi_j^{-1}}{\partial \tilde{x}_i} \frac{\partial}{\partial x_i} \longrightarrow \text{ Ambient Space basis} \end{split}$$

A Tangent Vector in Extrinsic Coordinates

$$\sum_{i=1}^{d} \tilde{v}_{i} \tilde{E}_{i} = \sum_{i=1}^{d} \sum_{j=1}^{m} \tilde{v}_{i} \frac{\partial \phi_{j}^{-1}}{\partial \tilde{x}_{i}} \frac{\partial}{\partial x_{j}} \quad \text{Note that } \iota \circ (\phi^{-1}) \text{ is a map} \\ \text{from } \mathbb{R}^{d} \to \mathbb{R}^{m}.$$

$$= \sum_{j=1}^{m} \bar{v}_j \frac{\partial}{\partial x_j}$$

It takes
$$\phi(x) \to \iota(x)$$
 which is ϕ_j^{-1} for the j -th coordinate.

Where
$$\bar{v}_j = \sum_{i=1}^d \tilde{v}_i \frac{\partial \phi_j^{-1}}{\partial \tilde{x}_i}$$

Riemannian Metric

$$g_x: \mathcal{T}_x \mathcal{M} \times \mathcal{T}_x \mathcal{M} \to \mathbb{R} \quad \forall x \in \mathcal{M}$$

- Since g is an inner product, we also write $g(u, v) = \langle u, v \rangle_g$
- Euclidean metric: \bar{g} for \mathbb{R}^m is:

$$\left\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right\rangle = \delta_{ij}$$

Riemannian Metric Continued

For any $U, V \in \mathcal{T}_{x}\mathcal{M}$ inner product with the Euclidean metric is:

$$\langle U, V \rangle_{\bar{g}} = \left\langle \sum_{i=1}^{m} \bar{u}_i \frac{\partial}{\partial x_i}, \sum_{j=1}^{m} \bar{v}_j \frac{\partial}{\partial x_j} \right\rangle_{\bar{g}} = \sum_{i=1}^{m} \bar{u}_i \bar{v}_i = \bar{u}^{\mathsf{T}} \bar{v}$$

Riemannian Metric in Local Coordinates

• Given a set of basis vectors (e.g. \tilde{E}_i) we can write this in matrix form:

$$\langle U, V \rangle_{g} = \sum_{i,j} \tilde{u}_{i} \tilde{v}_{j} \langle \tilde{E}_{i}, \tilde{E}_{j} \rangle_{g} = \sum_{i,j} \tilde{u}_{i} \tilde{v}_{j} g_{ij} = \tilde{u}^{\mathsf{T}} G \tilde{v}$$

Where we used the fact $g_{ij} := \langle \tilde{E}_i, \tilde{E}_j \rangle_g$

Riemannian Metric via the Inclusion Map

Consider \mathcal{M} embedded in a higher dimensional Euclidean space then $g=\iota^*\bar{g}$ (we pullback the metric).

$$g_{x}(u, v) = \bar{g}(d\iota_{x}(u), d\iota_{x}(v))$$

We push forward the tangent vectors to the ambient space.

Riemannian Metric via the Inclusion Map

lacksquare Expanding this out explicitly for g_{ij} :

$$g_{ij} = \left\langle d\iota_{x}(\tilde{E}_{i}), d\iota_{x}(\tilde{E}_{j}) \right\rangle_{\bar{g}}$$

$$= \left\langle \sum_{k=1}^{m} \frac{\partial \phi_{k}^{-1}}{\partial \tilde{x}_{i}} \frac{\partial}{\partial x_{k}}, \sum_{k'=1}^{m} \frac{\partial \phi_{k'}^{-1}}{\partial \tilde{x}_{j}} \frac{\partial}{\partial x_{k'}} \right\rangle_{\bar{g}}$$

$$= \sum_{k=1}^{m} \frac{\partial \phi_{k}^{-1}}{\partial \tilde{x}_{i}} \frac{\partial \phi_{k}^{-1}}{\partial \tilde{x}_{j}}$$

Riemannian Metric via the Inclusion Map

• If we let $\psi = \phi^{-1}$, then we can write:

$$G = \frac{d\psi^{\top} d\psi}{d\tilde{x}}$$

Riemannian Gradient

Similar to the definition of coordinate-free definition of Gradient in Euclidean spaces we define: $\nabla_g: f \in C^\infty(\mathcal{M}) \mapsto \nabla_g f \in \mathfrak{X}(\mathcal{M})$

$$\left\langle \nabla_g f, V \right\rangle_g = V(f)$$
 For any $V \in \mathfrak{X}(\mathcal{M})$

Directional Derivative

Riemannian Gradient: Explicit Coordinates

$$\left\langle \nabla_{g} f, V \right\rangle_{g} = V(f)$$

$$= \sum_{i,j=1}^{d} \widetilde{u_{i}} \widetilde{v_{j}} g_{ij}$$

$$V \text{ coordinates}$$

Gradient coordinates

Recall
$$V(f) = \sum_{j=1}^{d} \tilde{v}_j \frac{\partial}{\partial \tilde{x}_j} f \circ \phi^{-1}$$

Riemannian Gradient: Explicit Coordinates

lacksquare Since v is arbitrary, this means for all j

$$\left\langle \nabla_g f, V \right\rangle_g = V(f)$$

$$\left\langle \nabla_g f, V \right\rangle_g = \sum_{i,j=1}^d \tilde{u}_i \tilde{v}_j g_{ij}$$

$$\sum_{i=1}^d \tilde{u}_i g_{ij} = \frac{\partial}{\partial \tilde{x}_j} f \circ \phi^{-1} \implies \tilde{u}_i = \sum_{j=1}^d \underbrace{g^{ij}}_{\partial \tilde{x}_j} \frac{\partial}{\partial \tilde{x}_j} f \circ \phi^{-1} .$$

Riemannian Divergence

Theorem: For any compactly supported $f \in \mathfrak{X}(\mathcal{M}), \int_{\mathcal{M}} \nabla_g \cdot f d\mu_g = 0.$

Divergence Theorem

Regular Vector Calculus

$$\int_{\Omega} \nabla \cdot X dA = \int_{\partial \Omega} n \cdot X dl$$

Divergence Theorem

Regular Vector Calculus

$$\int_{\Omega} \nabla \cdot X dA = \int_{\partial \Omega} n \cdot X dl$$

$$\int_{\Omega} d \star \alpha = \int_{\partial \Omega} \star \alpha$$

Integrating the normal component of a field.

Affine Connection

- An affine connection allows us to compare a vector field at nearby points and is denoted using the operator $\nabla: \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \to \mathfrak{X}(\mathcal{M})$.
- We use the notation $U, V \mapsto \nabla_U V$ for $U, V \in \mathfrak{X}(\mathcal{M})$

Linearity in ULinearity in VProduct Rule

An affine connection satisfies the following properties.

Euclidean Connection

 $lackbox{lack}$ If $U,V\in\mathfrak{X}(\mathbb{R}^m)$, the Euclidean connection $ar{
abla}$ is defined as

$$\bar{\nabla}_U V = \sum_{i=1}^m \sum_{j=1}^m \bar{u}_j \frac{\partial \bar{v}_i}{\partial x_j} \frac{\partial}{\partial x_i}$$

Tangential Connection

Consider \mathcal{M} embedded in a higher dimensional Euclidean space. The Tangential connection is:

$$\nabla_U^\top V = \mathbf{P} \bar{\nabla}_{\bar{U}} \bar{V}$$

Tangential Projection

$$(PV)(x) = \sum_{j=1}^{m} (P_x \bar{v})_j \frac{\partial}{\partial x_j}$$

Spherical Geometry

Spherical Geometry

• An d-sphere is $\mathbb{S}^d = \{x \in \mathbb{R}^{d+1} : ||x||_2 = 1\}$

Spherical Geometry

- Alternatively, for K > 0, $\mathbb{S}_K^d = \{x \in \mathbb{R}^{d+1} \mid \langle x, x \rangle = 1/K\}$
- For d=2 and K=1 we can use polar coordinates to represent any $x \in \mathbb{S}^2$. Let $\theta \in [0,\pi)$ and $\psi \in [0,2\pi)$ then $r(\theta, \psi) = (\sin(\theta)\cos(\psi), \sin(\theta)\sin(\psi), \cos(\theta))$
- The volume form is then $\sqrt{\det |G(\theta, \psi)|} = \sin(\theta)$

Distances on a Sphere

- For K = 1, $d(x, y) = \cos^{-1}(\langle x, y \rangle_2)$
- lacksquare Intuitively, as $K \to 0$ the space gets flatter and since $\langle x, x \rangle_2 = 1/K$ for a point on the sphere we see that $\lim \langle x, x \rangle_2 = \infty$ —i.e. all points $K\rightarrow 0^+$ go to infinity.

Tangential Connection: Example Sphere

We can derive the Tangential projection by any incremental change in x, denoted by dx, will need to leave the norm $||x||_2$ unchanged.

$$d||x||_2^2 = 2x \, dx = 0$$

This means x is normal to the tangential linear subspace and the orthogonal projection can be found by subtracting the normal component.

$$P_{x} = I - \frac{xx^{\top}}{\|x\|_{2}^{2}}$$

Sphere: Closest Point Projection

• The closest point onto a sphere is given by $\pi(x)$

$$\pi(x) = \frac{x}{||x||_2}$$

One can verify this is the point on \mathbb{S}^d that minimizes the Euclidean distance from $x \in \mathbb{R}^{d+1} \setminus \{0\}$.

