TASK 1: Data Analysis Project Using Python.

→ CODING.....

-> import pandas as pd import numpy as np import matplotlib.pyplot as plt

Load the dataset

df = pd.read_csv('student-mat.csv')

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	D
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 4	3	4	
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	
2	GP	F	15	U	LE3	T	1	1	at_home	other	 4	3	2	
3	GP	F	15	U	GT3	Т	4	2	health	services	 3	2	2	
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	3	2	

Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
at_home	teacher	 4	3	4	1	1	3	6	5	6	6
at_home	other	 5	3	3	1	1	3	4	5	5	6
at_home	other	 4	3	2	2	3	3	10	7	8	10
health	services	 3	2	2	1	1	5	2	15	14	15
other	other	 4	3	2	1	2	5	4	6	10	10

#Display the first few rows

print("First few rows of the dataset:") print(df.head())

	Hours_Studied	Attendance	Sleep_Hours	Previous_Scores	Tutoring_Sessions	Phy
count	6607.000000	6607.000000	6607.00000	6607.000000	6607.000000	
mean	19.975329	79.977448	7.02906	75.070531	1.493719	
std	5.990594	11.547475	1.46812	14.399784	1.230570	
min	1.000000	60.000000	4.00000	50.000000	0.000000	
25%	16.000000	70.000000	6.00000	63. <mark>0</mark> 00000	1.000000	
50%	20.000000	80.000000	7.00000	75.000000	1.000000	
75%	24.000000	90.000000	8.00000	88.000000	2.000000	
max	44.000000	100.000000	10.00000	100.000000	8.000000	

Check for missing values

print("\nMissing values in the dataset:")
print(df.isnull().sum

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 6607 entries, 0 to 6606

Data columns (total 20 columns):

Column Non-Null Count Dtype

--- ----- -----

0 Hours_Studied 6607 non-null int64

1 Attendance 6607 non-null int64

2 Parental_Involvement 6607 non-null object

3 Access_to_Resources 6607 non-null object

4 Extracurricular_Activities 6607 non-null object

5 Sleep_Hours 6607 non-null int64

6 Previous_Scores 6607 non-null int64

7 Motivation_Level 6607 non-null object

8 Internet_Access 6607 non-null object

9 Tutoring_Sessions 6607 non-null int64

10 Family_Income 6607 non-null object

11 Teacher_Quality 6529 non-null object

12 School_Type 6607 non-null object

13 Peer_Influence 6607 non-null object

14 Physical_Activity 6607 non-null int64

15 Learning_Disabilities 6607 non-null object

16 Parental_Education_Level 6517 non-null object

17 Distance_from_Home 6540 non-null object

18 Gender 6607 non-null object

19 Exam_Score 6607 non-null int64

dtypes: int64(7), object(13)

memory usage: 1.0+ MB

Display column data types

print("\nData types of the columns:")
print(df.dtypes)

Hours_Studied int64

Attendance int64

Parental_Involvement object

Access_to_Resources object

Extracurricular_Activities object

Sleep_Hours int64

Previous_Scores int64

Motivation_Level object

```
object
Internet Access
Tutoring_Sessions
                         int64
Family_Income
                       object
Teacher_Quality
                       object
School_Type
                      object
Peer Influence
                      object
Physical_Activity
                       int64
Learning_Disabilities
                         object
Parental Education Level
                             object
Distance_from_Home
                            object
Gender
                   object
Exam Score
                      int64
dtype: object
# Understand the dataset's size
print(f"\nDataset size: {df.shape}")
# Handle missing values (if any)
for col in df.columns:
 if df[col].dtype == np.float64 or df[col].dtype == np.int64:
   df[col] = df[col].fillna(df[col].median())
Index(['Hours_Studied', 'Attendance', 'Parental_Involvement',
   'Access_to_Resources', 'Extracurricular_Activities',
'Sleep_Hours',
   'Previous_Scores', 'Motivation_Level', 'Internet_Access',
   'Tutoring_Sessions', 'Family_Income', 'Teacher_Quality',
'School_Type',
```

```
'Peer_Influence', 'Physical_Activity',
'Learning_Disabilities',
   'Parental_Education_Level', 'Distance_from_Home',
'Gender',
   'Exam_Score'],
  dtype='object')
# Remove duplicate entries
df = df.drop_duplicates()
# Calculate average score in math (G3)
average_score = df['G3'].mean()
print(f"\nAverage score in math (G3): {average_score}")
# Count students who scored above 15
students_above_15 = df[df['G3'] > 15].shape[0]
print(f"Number of students scored above 15:
{students_above_15}")
# Calculate correlation between study time and final grade
correlation = df['studytime'].corr(df['G3'])
print(f"Correlation between study time and final grade:
{correlation}")
# Calculate average final grade by gender
```

```
average_grade_by_gender = df.groupby('sex')['G3'].mean()
print(f"Average final grade by gender:
\n{average_grade_by_gender}")
```

Plot histogram of final grades

```
plt.hist(df['G3'], bins=10, edgecolor='black')
plt.xlabel('Final Grade')
plt.ylabel('Frequency')
plt.title('Histogram of Final Grades')
plt.show()
```


Create scatter plot between study time and final grade

```
plt.scatter(df['studytime'], df['G3'])
plt.xlabel('Study Time')
plt.ylabel('Final Grade')
```

plt.title('Scatter Plot Between Study Time and Final Grade') plt.show()

Create bar chart comparing average scores of male and female students

```
average_scores = df.groupby('sex')['G3'].mean()
average_scores.plot(kind='bar')
plt.xlabel('Gender')
plt.ylabel('Average Score')
plt.title('Average Scores by Gender')
plt.show()
```

