

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

Laboratorio de Microcomputadoras

Práctica 4. Puertos Paralelos E/S

Grupo de Laboratorio: 4

Sanjuan Aldape Diana Paola Grupo de Teoría: 5

Esparza Fuentes Jorge Luis Grupo de Teoría: 4

> Muñoz Tenorio Ricardo Grupo de Teoría: 3

Fecha de realización: 8 de marzo del 2022

DESARROLLO

Para cada uno de los siguientes apartados, realizar los programas solicitados y comprobar el funcionamiento de ellos.

1.- Empleando dos puertos paralelos del microcontrolador PIC, uno de ellos configurado como entrada y el otro como salida; realizar un programa que de acuerdo al valor del bit menos significativo del puerto A, se genere la acción indicada en el puerto B.

Valor PA0	Acción puerto B
0	00000000
1	11111111

```
PROCESSOR 16F877
    INCLUDE <P16F877.INC>
AUX EQU 0X20
   ORG 0
    GOTO INICIO
   ORG 5
INICIO:
                  ;Limpia PORTA
   CLRF PORTA
   BSF STATUS ,RP0 ;Cambia a Banco 1
   BCF STATUS, RP1
   CLRF TRISB
   MOVLW 0X07
                  ;Define puertos A y E como digitales
   MOVWF ADCON1
   MOVLW 0X3F
                  ;Configura puerto A como entrada
   MOVWF TRISA
   BCF STATUS, RPO ; Cambia al banco 0
   MOVLW 0X00
   MOVWF PORTB
                  ;Pone en 0 PORTB
;CASO 0, CUANDO EL PUERTO A VALE 000000
LOOP:
   MOVE PORTA, W
                  ; Se guarda lo que se tiene del Puerto A
   MOVWF AUX
   MOVE AUX , F
   BTFSS STATUS, Z ;if(z==1) {Salta}
   GOTO LOOP2
                  ;else {se va a LOOP2}
   CALL CASOO
;CASO 1, CUANDO EL PUERTO A VALE 000001
LOOP2:
   MOVE AUX , W
   SUBLW 0X01
                  ;W = 0X01 - W
   BTFSS STATUS, Z ;if(z==1) {Salta}
   GOTO LOOP3
                  ;else {se va a LOOP3}
   CALL CASO1
LOOP3:
   GOTO LOOP
```

11111111

CASOO:

MOVUW 0X00

MOVWF PORTB ;Se apagan los Leds poniendo 0 en PORTB

RETURN

CASO1:

MOVUW 0XFF ;Se prenden todos los Leds poniendo FF en PORTB

MOVWF PORTB

RETURN

END

2.- Escribir un programa, el cuál realice las siguientes acciones de control indicadas, para lo cuál requiere trabajar un puerto de entrada y otro puerto de salida, usar los sugeridos en el ejercicio anterior; generar retardos de ½ seg., en las secuencias que lo requieran.

DATO	ACCION	Ejecución
PUERTO A	PUERTO B	
0x00	Todos los leds apagados	00000000
0x01	Todos los leds encendidos	11111111
0x02	Corrimiento del bit más significativo hacia	10000000
	la derecha	01000000
		00100000
		00000001
0x03	Corrimiento del bit menos significativo hacia la izquierda	00000001
		00000010
		00000100
		10000000
0x04	Corrimiento del bit más significativo hacia	10000000
	la derecha y a la izquierda	01000000
		00000001
		00000010
		10000000
0x05	Apagar y encender todos los bits.	00000000


```
processor 16f877
   include<pl6f877.inc>
;Variables para el retardo
valor1 egu H'21'
valor2 egu H'22'
valor3 egu H'23'
      equ H'10'
ctel
      equ H'50'
cte2
     equ H'60'
cte3
;Constantes para comparar la combinación entrante
c0 equ H'00'
cl equ H'01'
c2 equ H'02'
c3 equ H'03'
c4 equ H'04'
c5 equ H'05'
   org 0
   goto inicio
   org 5
inicio:
   clrf
         PORTA
                      ;Limpia el puerto A
          STATUS, RPO ; Cambio al Banco 1
   bsf
         STATUS, RP1
   bcf
   movlw H'00'
                       ;Mueve Oh a w
   movwf TRISB
                       ;Configura Puerto B como salida
          H'06'
   movlw
          ADCON1
   movwf
                      ;Configura puertos A y E como digitales
          H'3F'
   movlw
          TRISA
   movwf
                      ;Configura el Puerto A como entrada
           STATUS, RPO ; Regresa al Banco O
   bcf
   clrf
          PORTE
                       ;Limpia los bits de Puerto B (los apaga)
ciclo:
   ; COMBINACION PARA APAGAR LEDS
   movlw c0
                      ;Mueve 0 a w
                     ;Verifica si la entrada es 00
           PORTA, w
   xorwf
   btfsc
          STATUS, Z
                      ;Verifica el resultado de la xor
                       ;La combinacion es 00 y procede a la rutina
   goto
           apg
   ; COMBINACION PARA ENCENDER LEDS
   movlw cl
                    ;Mueve 0 a w
   xorwf PORTA, w
                     ;Verifica si la entrada es 01
   btfsc STATUS, Z ; Verifica el resultado de la xor
          enciende ;La combinacion es 01 y procede a la rutina
   ; COMBINACION PARA CORRIMIENTO A LA DERECHA
   movlw c2
                     ;Mueve 0 a w
   xorwf PORTA, w
                     ;Verifica si la entrada es 02
   btfsc STATUS, Z ; Verifica el resultado de la xor
         derecha
                      ;La combinacion es 02 y procede a la rutina
   ; COMBINACION PARA CORRIMIENTO A LA IZQUIERDA
                     ;Mueve 0 a w
   movlw c3
   xorwf PORTA, w
                     ;Verifica si la entrada es 03
   btfsc STATUS, Z ; Verifica el resultado de la xor
        izquierda ;La combinacion es 03 y procede a la rutina
   goto
```



```
; COMBINACION PARA CORRIMIENTO DE DERECHA A IZQUIERDA
                      ;Mueve 0 a w
   xorwf
           PORTA, w
                       ;Verifica si la entrada es 04
   btfsc
          STATUS, Z
                      ;Verifica el resultado de la xor
           der izq
                      ;La combinacion es 04 y procede a la rutina
   ; COMBINACION PARA ENCENDIDO Y APAGADO DE LEDS
                     ;Mueve 0 a w
   movlw c5
           PORTA, w
                       ;Verifica si la entrada es 05
           STATUS, Z
                       ;Verifica el resultado de la xor
                      ;La combinacion es 05 y procede a la rutina
   goto
           enc apg
           ciclo
                       ; Vuelve a preguntar por una combinacion valida
   goto
                       ;Loop que enciende y apaga los
enc_apg:
   movlw h'00'
                       ;bits del puerto B
           PORTE
   call
           retardo
           h'FF'
   movlw
           PORTE
   movwf
   call
           retardo
   goto
           ciclo
                       ;Apaga los bits del puerto B
apg:
   movlw h'00'
           PORTE
   movwf
   goto
           ciclo
enciende:
                       ;Enciende los bits del puerto B
   movlw h'FF'
   movwf
           PORTB
           ciclo
   goto
derecha:
                       ;Realiza corrimiento a la derecha
   movlw h'80'
   movwf
           PORTB
   call
           retardo
derechal:
           PORTB.1
   rrf
   call
           retardo
   btfss PORTB, 0
           derechal
   goto
           ciclo
   goto
izquierdal:
   rlf
          PORTE, 1
   call.
           retardo
   btfss PORTB,7
   goto
           izquierdal
   goto
          ciclo
der_izq:
                       ;Realiza corrimiento a la derecha y
   movlw
          h'80'
                       ;luego a la izquierda
   movwf PORTB
           retardo
   call
derecha2:
   rrf
           PORTE, 1
   call
           retardo
   btfss PORTE, 0
   goto
           derecha2
          h'01'
   movlw
   movwf PORTB
   call
           retardo
```



```
izquierda2:
   rlf
          PORTB, 1
   call
          retardo
          PORTB, 7
   btfss
          izquierda2
   goto
          ciclo
   goto
retardo:
   movlw
                  ;Rutina que genera un retardo
          valorl
   movwf
   movwf
          valor2
   movlw
   movwf
          valor3
   decfsz valor3
   goto
           uno
   decfsz valor2
          dos
   goto
   decfsz valorl
   goto
           tres
   return
   end
```

CONCLUSIONES

Sanjuan Aldape Diana Paola

Con esta práctica aprendí a configurar los puertos paralelos como entrada y como salida. Para ambos casos es imprescindible limpiar el puerto usando, ya sea el mnemónico CLRF PORTX, o bien, asignando un 0 al puerto.

Esparza Fuentes Jorge Luis

En esta práctica se logró desarrollar soluciones a los problemas propuestos con base en el control de los puertos paralelos en la modalidad de salida y ahora también en la modalidad de entrada, a partir del datasheet del controlador se diseñaron las soluciones, de esta forma se obtuvieron los resultados esperados y de forma óptima.

Muñoz Tenorio Ricardo

Esta práctica nos ayudó a entender mejor las configuraciones de los puertos paralelos para poder lograr llegar a la solución deseada en cada ejercicio de esta practica, aprendimos a que debemos de resetear el puerto con diferentes comandos utilizando estos en la salida y entrada a través del controlador.