10

15

20

25

30

Claims

- 1. A method for classification of cancer in an individual having contracted cancer comprising
 - i) in a sample from the individual having contracted cancer determining the microsatellite status of the tumor and
 - ii) in a sample from the individual having contracted cancer, said sample comprising a plurality of gene expression products the presence and/or amount which forms a pattern, determining from said pattern a prognostic marker, wherein the microsatellite status and the prognostic marker is determined simultaneously or sequentially
 - iii) classifying said cancer from the microsatellite status and the prognostic marker.
 - 2. The method according to claim 1, wherein the prognostic marker is the hereditary or sporadic nature of said cancer the determination of which comprises the steps of
 - i) in a sample from the individual having contracted cancer, said sample comprising a plurality of gene expression products the presence and/or amount of which forms a pattern that is indicative of the hereditary or sporadic nature of said cancer
 - ii) determining the presence and/or amount of said gene expression products forming said pattern,
 - iii) obtaining an indication of the hereditary or sporadic nature of said cancer in the individual based on step ii).
 - 3. The method of claims 1 or 2, wherein the determination of microsatellite status comprises the steps of
 - in a sample from the individual having contracted cancer, said sample comprising a plurality of gene expression products the presence and/or amount of which forms a pattern that is indicative of the microsatellite status of said cancer,
 - ii) determining the presence and/or amount of said gene expression products forming said pattern,

WO 2005/064009

91

iii) obtaining an indication of the microsatellite status of said cancer in the individual based on step ii).

PCT/DK2004/000914

- 4. The method according to claims 1, 2 or 3, wherein the cancer is colon cancer.
- 5. The method of any of the preceding claims, wherein a plurality of gene expression products are analysed using solid support, having binding partners (hybridisation partners) for said plurality of gene expression products forming a pattern.
- 6. The method of any of the preceding claims, wherein a plurality of gene expression products are analysed using binding partners (hybridisation partners) for said plurality of gene expression products forming a pattern.
- 7. The method of claims 1,2 or 3, wherein at least two of said plurality of gene expression products forming a pattern are used to determine said microsatellite status are selected individually from a group of genes indicative of microsatellite status.
- 8. The method of claims 1, 2 or 3, wherein at least two of said plurality of gene expression products used to determine the hereditary or sporadic nature of said colon cancer are selected individually from a group of genes indicative for the hereditary or sporadic nature of the cancer.
- 9. The method of claims 1, 2 or 3, wherein at least two of said plurality of gene expression products forming a pattern used to determine said microsatellite status are selected individually from the group consisting of the genes listed below

Gene name	Ref seq	Gene symbol	SEQ ID NO.:
chemokine (C-C motif) ligand 5	NM 002985	CCL5	1
Tryptophanyl-tRNA synthetase	NM 004184	WARS	2
Proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)	NM_006263	PSME1	3
Bone marrow stromal cell antigen 2	NM 004335	BST2	4
ubiquitin-conjugating enzyme E2L 6	NM_004223	UBE2L6	5

15

5

10

20

25

A kinase (PRKA) anchor protein 1 Proteasome (prosome, macropain) activa- tor subunit 2 (PA28 beta)	NM_003488 NM_002818	AKAP1 PSME2	6 7
carcinoembryonic antigen-related cell adhesion molecule 5	NM 004363	CEACAM5	8
FERM, RhoGEF (ARHGEF) and pleck- strin domain protein 1 (chondrocyte- derived)	NM_005766	FARP1	9
myosin X	NM_012334	MYO10	10 11
heterogeneous nuclear ribonucleoprotein	NM_001533	HNRPL	
Autocrine motility factor receptor dimethylarginine dimethylaminohydrolase	NM_001144	AMFR	12 13
2 tumor necrosis factor, alpha-induced pro-	NM_013974	DDAH2	14
tein 2 mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli)	NM 006291 NM 000249	TNFAIP2 MLH1	15
thymidylate synthetase intercellular adhesion molecule 1 (CD54),	NM 001071 NM 000201	TYMS ICAM1	16 17
human rhinovirus receptor general transcription factor IIA, 2, 12kDa Rho-associated, coiled-coil containing	NM 004492 NM 004850	GTF2A2 ROCK2	18 19
protein kinase 2 ATP binding protein associated with cell	NM_005783	TXNDC9	20
differentiation NCK adaptor protein 2 phytanoyl-CoA hydroxylase (Refsum dis-	NM_003581	NCK2	21 22
ease) metastais-associated gene family, mem-	NM 006214	PHYH	23
ber 2	NM 004739	MTA2	
amiloride binding protein 1 (amine oxidase (copper-containing))	<u>NM_001091</u>	ABP1	24
Biliverdin reductase A	NM 000712 NM 000933	BLVRA PLCB4	25 26
phospholipase C, beta 4	NM_0024 <u>16</u>	CXCL9	27
chemokine (C-X-C motif) ligand 9 purine-rich element binding protein A	NM 005859	PURA	28
quinolinate phosphoribosyltransferase (nicotinate-nucleotide pyrophosphorylase (carboxylating))	NM 014298	QPRT	29
retinoic acid receptor responder (tazarotene induced) 3	NM 004585	RARRES3	30
chemokine (C-C motif) ligand 4	NM 002984	CCL4	31
forkhead box O3A	NM_001455	FOXO3A	32
interferon, alpha-inducible protein (clone	NM_002038	G1P3	34 123
IFI-6-16)	NM_022873	CXCL10	35
chemokine (C-X-C motif) ligand 10	NM_001565 NM_005950	MT1G	36
metallothionein 1G	NM_005950		37
tumor necrosis factor receptor super-	NM_000043 NM_152877	TNFRSF6	133
family, member 6	NM_152876		132
monibol o	NM_152875		134
	NM_152872		130 33
	NM_152873 NM_152871		129
	MINI_1020/1		

WO 2005/064009

131

NM_152874

endothelial cell growth factor 1 (platelet-	NII 004070	50054	38
derived) SCO cytochrome oxidase deficient ho-	NM 001953 NM 005138	ECGF1 SCO2	39
molog 2 (yeast) chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant)	NM 006419	CXCL13	40
Granulysin	NM_006433	GNLY	41
CD2 antigen (p50), sheep red blood cell			42
receptor	NM 001767	CD2	40
splicing factor, arginine/serine-rich 6	NM 006275	SFRS6	43 44
Teratocarcinoma-derived growth factor 1	NM 003212	TDGF1 MT1H	4 4 45
metallothionein 1H cytochrome P450, family 2, subfamily B,	NM 005951 NM 000767	CYP2B6	46
polypeptide 6 tumor necrosis factor (ligand) superfamily,	NM 003811	TNFSF9	47
member 9	NIM 000047	DDM40	48
RNA binding motif protein 12	NM_006047 NM_006047	RBM12	40
heat shock 105kDa/110kDa protein 1	NM_006644	HSPH1	49
staufen, RNA binding protein (Drosophila)	NM_004602	STAU	50
	NM_017452 NM_017453		125 126
lymphocyte antigen 6 complex, locus G6D calcium binding protein P22	NM 021246 NM 007236	LY6G6D CHP	51 52
CDC14 cell division cycle 14 homolog B	NM 003671	CDC14B	53
(S. cerevisiae)	NM_033331		115
Epiplakin 1	XM_372063	EPPK1	54
metallothionein 1X	NM_005952	MT1X	55
Transforming growth factor, beta receptor II (70/80kDa)	<u>NM_003242</u>	TGFBR2	56
protein kinase C binding protein 1	NM_012408	PRKCBP1	57
	NM_183047		124
Transmembrane 4 superfamily member 6	NM 003270	TM4SF6	58
pleckstrin homology domain containing, family B (evectins) member 1	NM_021200	PLEKHB1	59
apolipoprotein L, 1	NM_003661	APOL1	60
	NM_145343		120
Indoleamine-pyrrole 2,3 dioxygenase	NM_002164	INDO	61

WO 2005/064009 PCT/DK2004/000914

forkhead box A2	NM_021784	FOXA2	62
granzyme H (cathepsin G-like 2, protein h-CCPX)	NM 033423	GZMH	63
baculoviral IAP repeat-containing 3	NM_001165	BIRC3	64
Homo sapiens metallothionein 1H-like protein		AF333388 (Hs 382039)	135
KIAA0182 protein	NM_014615	KIAA0182	117
G protein-coupled receptor 56	NM_005682	GPR56	65 116
metallothionein 2A	NM_201524 NM_005953	MT2A	66
F-box only protein 21	NM_015002	FBXO21	67
erythrocyte membrane protein band 4.1-like 1	NM_012156, NM_012156	EPB41L1	68
hypothetical protein MGC21416	NM_173834	MGC21416	69
protein O-fucosyltransferase 1	NM_015352,	POFUT1	70
metallothionein 1E (functional)	NM_015352 NM_175617	MT1E	71
troponin T1, skeletal, slow	NM_003283	TNNT1	72
chimerin (chimaerin) 2	NM_004067	CHN2	73
heterogeneous nuclear ribonu cleoprotein H1 (H)	NM 005520	HNRPH1	74
ATP synthase, H+ transporting, mito- chondrial F1 complex, alpha subunit, iso- form 1, cardiac muscle	NM_004046	ATP5A1	75
eukaryotic translation initiation factor 5A	NM 001970	EIF5A	76
perforin 1 (pore forming protein)	NM 005041 NM 014965	PRF1	77 78
OGT(O-Glc-NAc transferase)-interacting protein 106 KDa	<u>NW_014965</u>	OIP106	70
DEAD (Asp-Glu-Ala-Asp) box polypeptide 27	NM 017895	DDX27	79
vacuolar protein sorting 35 (yeast)	NM 018206	VPS35	80
tripartite motif-containing 44	NM_017583	TRIM44	81
transmembrane, prostate androgen induced RNA	NM_020182 NM_199169	TMEPAI	82 127
INIVA	NM_199170		128
dynein, cytoplasmic, light polypeptide 2A	NM_014183	DNCL2A	83
	NM_177953		122
leucine aminopeptidase 3 Chromosome 20 open reading frame 35	NM 015907 NM 018478	LAP3 C20orf35	84 85
omomosome 20 open reading traine 30	-	02001100	
solute carrier family 38, member 1	NM_033542 NM_030674	SLC38A1	118 86
obtate darrier farmly ob, member 1	14IVI 00007-4	JEGOOA!	

CGI-85 protein death associated transcription factor 1	NM_016028 NM_022105,	CGI-85 DATF1	87 88
hepatocellular carcinoma-associated anti- gen 112	NM_080796 NM_018487	HCA112	121 89
sestrin 1 hypothetical protein FLJ20315 hypothetical protein FLJ20647 membrane protein expressed in epithelial- like lung adenocarcinoma	NM 014454 NM 017763 NM 017918 NM 024792	SESN1 FLJ20315 FLJ20647 CT120	90 91 92 93
DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide	NM 014314	RIG-I	94
keratin 23 (histone deacetylase inducible)	NM_015515,	KRT23	95
UDP-N-acetyl-alpha-D- galactosamine:polypeptide N- acetylgalactosaminyltransferase 6 (Gal- NAc-T6)	NM 007210	GALNT6	96
aryl hydrocarbon receptor nuclear translo- cator-like 2	NM 020183	ARNTL2	97
apobec-1 complementation factor	NM_014576,	ACF	98
hypothetical protein FLJ20232 apolipoprotein L, 2	NM_138932 <u>NM_019008</u> NM_030882, NM_145343	FLJ20232 APOL2	119 99 100 120
mitochondrial solute carrier protein hypothetical protein FLJ20618 SET translocation (myeloid leukaemia- associated)	NM_016612 <u>NM_017903</u> <u>NM_003011.</u> 1	MSCP FLJ20618 SET	101 102 103
ATPase, class II, type 9a	<u>Xm_030577.</u> 9	ATP9a	104

10. The method of claims 1, 2 or 3, wherein at least two of said plurality of gene expression products forming a pattern used to determine said microsatellite status are selected individually from the group consisting of the genes listed below

Gene name	Ref seq	Gene symbol	SEQ NO.:	ID
heterogeneous nuclear ribonucle oprotein L	NM 001533	HNRPL	11	
metastais-associated gene family, member 2	NM 004739	MTA2	23	
chemokine (C-X-C motif) ligand 10	NM 001565	CXCL10	35	
splicing factor, arginine/serine-rich 6	NM 006275	SFRS6	43	

protein kinase C binding protein 1	NM_012408 NM_183047	PRKCBP1	57 124
hepatocellular carcinoma-associated antigen 112	NM_018487	HCA112	89
hypothetical protein FLJ20618 SET translocation (myeloid leukaemia- associated)	NM 017903 NM 003011.1	FLJ20618 SET	102 103
ATPase, class II, type 9a	Xm_030577.9	ATP9a	104

11. The method of claims 1, 2 or 3, wherein at least two of said plurality of gene expression products forming a pattern used to determine said microsatellite status are selected individually from the group consisting of the genes listed below

Gene name	Ref seq	Gene symbol	SEQ NO.:	ID
heterogeneous nuclear ribonucleoprotein L	NM_001533	HNRPL	11	
metastais-associated gene family, member 2	NM 004739	MTA2	23	
chemokine (C-X-C motif) ligand 10	NM 001565	CXCL10	35	
splicing factor, arginine/serine-rich 6	NM 006275	SFRS6	43	
protein kinase C binding protein 1	NM_012408	PRKCBP1	57	
	NM_183047		124	
hepatocellular carcinoma-associated antigen 112	NM 018487	HCA112	89	
hypothetical protein FLJ20618	NM_017903	FLJ20618	102	
SET translocation (myeloid leukaemia-associated)	NM_003011. 1	SET	103	
ATPase, class II, type 9a	Xm_030577. 9	ATP9a	104	

10

5

12. The method of claims 1, 2 or 3, wherein

i) at least one of said plurality of gene expression products forming a pattern used to determine said microsatellite status is selected from the group of genes consisting of

Gene name	Ref seq	Gene symbol	SEQ NO.:	ID
heterogeneous nuclear ribonucleoprotein L metastais-associated gene family, member	NM_001533	HNRPL	11 23	
metastais-associated gene family, member 2	NM_004739	MTA2	20	

Chemokine (C-X-C motif) ligand 10 NM 001565 CXCL10 35 splicing factor, arginine/serine-rich 6 NM 006275 SFRS6 43

and

ii) at least one of said plurality of gene expression products forming a pattern used to determine said microsatellite status is selected from the group of genes consisting of

5

Gene name	Ref seq	Gene symbol	SEQ IE NO.:
protein kinase C binding protein 1	NM_012408 NM_183047	PRKCBP1	57 124
hepatocellular carcinoma-associated anti- gen 112	NM_018487	HCA112	89
hypothetical protein FLJ20618 SET translocation (myeloid leukaemia- associated)	NM 017903 NM 003011.1	FLJ20618 SET	102 103
ATPase, class II, type 9a	Xm_030577.9	ATP9a	104

13. The method of claims 1, 2 or 3, wherein

10

15

i) at least one of said plurality of gene expression products forming a pattern used to determine said microsatellite status is selected from the group of genes that are down regulated in MSS colon cancers compared to MSI colon cancers consisting of

Gene name	Ref seq	Gene symbol	SEQ ID NO.:
heterogeneous nuclear ribonucleoprotein L.	NM 001533	HNRPL	11
metastais-associated gene family, member 2	NM 004739	MTA2	23
chemokine (C-X-C motif) ligand 10 Splicing factor, arginine/serine-rich 6	NM 001565 NM 006275	CXCL10 SFRS6	35 43

and

ii) at least one of said plurality of gene expression products forming a pattern used to determine said microsatellite status is selected from the group of genes that are up regulated in MSS colon cancers compared to MSI colon cancers consisting of

Gene name	Ref seq	Gene symbol	SEQ ID NO.:
protein kinase C binding protein 1	NM_012408 NM_183047	PRKCBP1	57 124
hepatocellular carcinoma-associated	NM 018487	HCA112	89
antigen 112 hypothetical protein FLJ20618 SET translocation (myeloid leukaemia- associated)	NM 017903 NM 003011.1	FLJ20618 SET	102 103
ATPase, class II, type 9a	Xm_030577.9	ATP9a	104

14. The method of claim 13, wherein the difference in the level of the gene expression products forming a pattern is at least one-fold.

5

10

- 15. The method of claim 13, wherein the difference of the level of the gene expression products forming a pattern is at least 1.5 fold.
- 16. The method of claim 1, 2 or 3, wherein at least one of said plurality of gene expression products used to determine the hereditary or sporadic nature of said colon cancer are selected individually from the group consisting of the genes as listed below

Gene name	Ref seg	Gene symbol	SEQ ID
Gene name	110,004	1	NO.:
Homeo box C6	NM_004503	HOXC6	105
Piwi – like 1	NM_004764.	2PIWIL1	106
Mut L homolog 1	NM_00249.2	MLH1	107
Collapsin response mediator protein 1	NM 001313.	2CRMP1	108
Homeo box B2	NM 002145.	2HOXB2	109
TIOTHOU BOX DZ	NM 002860.	2PYCS/ADH18	3 1 1 0
Pyrroline-5-carboxylate synthetase (glutamate gamma-semialdehyd synthetase)		A1	
TGFB inducible early growth response	NM 005655.	1TIEG	111
Checkpoint with forkhead and ring fingedomains??	erNM_018223.	1CHFR	112
Hypothetical protein FLJ13842	NM 024645.	1 FLJ13842	113
Phosphoprotein regulated by mitogeni pathways			114

10

15

20

25

30

17. The method of claim 1, 2 or 3, wherein at least two of said plurality of gene expression products forming a pattern used to determine said hereditary or sporadic nature of colon cancer are the two genes as listed below

Gene name	Ref seq	Gene symbol	SEQ ID
	·	1	NO.:
Piwi – like 1	NM_004764.2	PIWIL1	106
Mut L homolog 1	NM_00249.2	MLH1	107

18. The method according to claims 1, 2 or 3, wherein the microsatellite status in an individual having contracted colon cancer is microsatellite instable.

- 19. The method according to any of the preceding claims, wherein said colon cancer is of Duke's B or Duke's C stage.
- 20. The method according to any of the preceding claims, wherein said colon cancer is an adenocarcinoma, a carcinoma, a teratoma, a sarcoma, and/or a lymphoma.
- 21. The method according to any of the preceding claims, wherein the sample is a biopsy of the tissue.
- 22. The method according to any of the preceding claims, wherein the sample is a cell suspension made from the tissue.
- 23. The method according to any of the preceding claims, wherein the expression level is determined by determining mRNA of the sample.
- 24. The method according to any of the preceding claims, wherein the expression level is determined by determining expression products, such as peptides and/or protein in the sample.

25. The method according to any of the preceding claims, wherein the microsatellite status of the colon cancer in an individual has been determined prior to the determination of the presence and/or amount of gene expression products

5

26. The method according to any of the preceding claims, wherein the sporadic or hereditary nature of a colon cancer has been determined prior to the determination of the presence and/or amount of gene expression products.

10

27. A method for classification of cancer in an individual having contracted cancer, wherein the microsatellite status is determined by a method comprising the steps of

15

 i) in a sample from the individual having contracted cancer, said sample comprising a plurality of gene expression products the presence and/or amount of which forms a pattern that is indicative of the microsatellite status of said cancer,

20

iii) obtaining an indication of the microsatellite status of said cancer in the individual based on step ii).

ii) determining the presence and/or amount of said gene expression

25

28. A method for classification of cancer in an individual having contracted cancer, wherein the hereditary or sporadic nature of the cancer is determined by a method comprising the steps of

products forming said pattern,

 i) in a sample in a sample from the individual having contracted cancer, said sample comprising a plurality of gene expression products the presence and/or amount of which forms a pattern that is indicative of the hereditary or sporadic nature of said cancer,

- ii) determining the presence and/or amount of said gene expression products forming said pattern,
- iii) obtaining an indication of the hereditary or sporadic nature of said cancer in the individual based on step ii).

- 29. The method according to claim 28, wherein the microsatellite status of said cancer is determined simultaneously or sequentially therewith.
- 5 30. A method for treatment of an individual comprising the steps of
 - i) selecting an individual having contracted a colon cancer, wherein the microsatellite status is stable, determined according to the method of claims 1, 2, 3, 27 or 28
 - ii) treating the individual with anti cancer drugs

- 31. The method of treatment according to claim 30, wherein the anti cancer drug is selected from the group of fluorouracil-based drugs.
- 32. The method of treatment according to claim 31, wherein the anti cancer drug is selected from 5-fluorouracil, N-methy-N'-nitro-N-nitro-soguanidine and/or 6-thioguanine.
- 33. The method of treatment according to claim 30, wherein the anti cancer drug is selected from the group of non-fluorouracil based drugs.

20

15

- 34. The method according to claim 33, wherein the anti cancer drug is selected from leucovorin, irrinotecan, oxaliplatin, cetuximab.
- 35. A method for treatment of an individual comprising the steps of

25

- i) selecting an individual having contracted a colon can cer, wherein the microsatellite status is instable, determined according to the method of claims 1, 2, 3, 27 or 34
- ii) treating the individual with anti cancer drugs.

30

- 36. The method according to claim 35, wherein the anti cance ${\bf r}$ drug is selected from campothecin or irinotecan.
- 37. The method according to claim 30 or 35, wherein the microsatellite status has been determined by microsatellite analysis, ELISA, antibody-based histochemical staining, immuno histo chemistry.

38. The method according to claim 30 or 35 wherein the sporadic or hereditary nature of colon cancer has been examined prior to determining the sporadic or hereditary nature of colon cancer by gene expression products forming a pattern.

39. The method according to claim 30 or 35 wherein the sporadic or hereditary nature of colon cancer has been examined by histological examination of the sample.

10

5

40. The method according to claim 30 or 35 wherein the sporadic or hereditary nature of colon cancer has been examined by genotyping the sample.

15

41. A method for reducing malignancy of a cell, said method comprising contacting a tumor cell in question with at least one peptide expressed by at least one gene selected from genes being expressed in an at least two-fold higher in tumor cells than the amount expressed in said tumor cell in question.

20

42. The method according to claim 41, wherein the at least one peptide is selected individually from genes comprising a sequence as identified below

Gene name	Ref seq	Gene symbol	SEQ NO.:	ID
heterogeneous nuclear ribonucleoprotein L metastais-associated gene family, member 2 chemokine (C-X-C motif) ligand 10	NM 001533 NM 004739 NM 001565	HNRPL MTA2 CXCL10	11 23 35 43	
splicing factor, arginine/serine-rich 6	NM_006275	SFRS6	43	

25

43. The method according to claim 41, wherein the at least one peptide is selected individually from genes comprising a sequence as identified below

Gene name	Ref seq	Gene	SEQ ID

10

15

		symbol	NO.:
protein kinase C binding protein 1	NM_012408 NM_183047	PRKCBP1	57 124
hepatocellular carcinoma-associated	NM 018487	HCA112	89
antigen 112 hypothetical protein FLJ20618 SET translocation (myeloid leukaemia- associated)	NM 017903 NM 003011.1	FLJ20618 SET	102 103
ATPase, class II, type 9a	Xm_030577.9	ATP9a	104

- 44. The method according to claim 41 or 42, wherein the tumor cell is contacted with at least two different peptides.
- 45. A method for reducing malignancy of a tumor cell in question comprising,
 - i) obtaining at least one gene selected from genes being expressed in at least one fold higher in tumor cells than the amount expressed in the tumor cell in question,
 - ii) introducing said at least one gene into the tumor cell in question in a manner allowing expression of said gene(s).

46. The method according to claim 45, wherein the at least one gene is selected from genes comprising a sequence as identified below

Gene name	Ref seq	Gene symbol	SEQ NO.:	ID
Heterogeneous nuclear ribonucleoprotein L metastais-associated gene family, member		HNRPL	11 23	
2	NM 004739	MTA2		
Chemokine (C-X-C motif) ligand 10	NM 001565	CXCL10	35	
splicing factor, arginine/serine-rich 6	NM 006275	SFRS6	43	

47. The method according to claim 45, wherein the at least one gene is selected from genes comprising a sequence as identified below

Gene name	Ref seq	Gene symbol	SEQ NO.:	ID
Protein kinase C binding protein 1	NM_012408 NM_183047	PRKCBP1	57 129	
hepatocellular carcinoma-associated anti-	NM_018487	HCA112	89	
gen 112 hypothetical protein FLJ20618	NM 017903	FLJ20618	102	

10

15

20

SET translocation (myeloid leukaemia-associated)	NM_003011.1	SET	103
ATPase, class II, type 9a	Xm 030577.9	ATP9a	104

- 48. The method according to claim 45, 46 or 47, wherein at least two different genes are introduced into the tumor cell.
- 49. A method for reducing malignancy of a cell in question, said method comprising

obtaining at least one nucleotide probe capable of hybridising with at least one gene of a tumor cell in question, said at least one gene being selected from genes being expressed in an amount at least one-fold lower in tumor cells than the amount expressed in said tumor cell in question, and

introducing said at least one nucleotide probe into the tumor cell in question in a manner allowing the probe to hybridise to the at least one gene, thereby inhibiting expression of said at least one gene.

50. The method according to claim 49, wherein the nucleotide probe is selected from probes capable of hybridising to a nucleotide sequence comprising a sequence as identified below

Gene name	Ref seq	Gene symbol	SEQ II NO.:	D
protein kinase C binding protein 1	NM_012408 NM_183047	PRKCBP1	57 124	
hepatocellular carcinoma-associated antigen 112	NM_018487	HCA112	89	
hypothetical protein FLJ20618 SET translocation (myeloid leukaemia- associated)	NM 017903 NM 003011.1	FLJ20618 SET	102 103	
ATPase, class II, type 9a	Xm_030577.9	ATP9a	104	

51. The method according to claim 46, wherein the nucleotide probe is selected from probes capable of hybridising to a nucleotide sequence comprising a sequence as identified below

Gene name	Ref seq	Gene symbol	SEQ NO.:	ID
heterogeneous nuclear ribonucleoprotein L metastais-associated gene family, member 2 chemokine (C-X-C motif) ligand 10 splicing factor, arginine/serine-rich 6	NM 001533 NM 004739 NM 001565 NM 006275	HNRPL MTA2 CXCL10 SFRS6	11 23 35 43	

5

52. The method according to claim 49, 50 or 51, wherein at least two different probes are introduced into the tumor cell.

10

53. A method for producing antibodies against an expression product of a cell from a biological tissue, said method comprising the steps of

obtaining expression product(s) from at least one gene said gene being expressed as defined in any of claims 1-29,

15

immunising a mammal with said expression product(s) obtaining antibodies against the expression product.

54. A method for treatment of an individual comprising the steps of

20

i) selecting an individual having contracted a colon cancer, wherein the microsatellite status is stable, determined according to the method of claims 1, 2, 3, 27 or 28 and wherein the hereditary nature of said cancer has been determined according to the method of claims 1, 2 or 3

25

ii) introducing at least one gene into the tumor cell in a manner allowing expression of said gene(s).

30

55. The method according to claim 54, wherein the at least one gene is selected from MSH2, MLH1, PMS1, PMS2 or MSH6.

Gene name	Ref seq	Gene symbol	SEQ NO.:	ID
Homo sapiens mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)	NM_000251	MSH2	136	
Mut L homolog 1 Homo sapiens PMS1 postmeiotic segregation increased 1 (S. cerevisiae)	NM_00249.2 NM_000534	MLH1 PMS1	107 137	
Homo sapiens PMS2 postmeiotic segregation increased 2 (S. cerevisiae) (PMS2), mRNA	NM_000535	PMS2	138	
Homo sapiens mutS homolog 6 (E. coli)	NM_000179	MSH6	139	

- 56. The method according to claim 54 or 55, wherein at least two different genes are introduced.
- 57. Pharmaceutical composition for the treatment of a classified cancer comprising at least one antibody as defined in claim 53.
- 58. Pharmaceutical composition for the treatment of a classified cancer comprising at least one polypeptide as defined in any of the claims 41-44.
- 59. Pharmaceutical composition for the treatment of a classified cancer comprising at least one nucleic acid and/or probe as defined in any of the claims 45-52.
- 60. The use of a method as defined in any of claims 1- 37 for producing an assay for classifying cancer in animal tissue.
- 61. The use of a peptide as defined in any of claims 41-44 for preparation of a pharmaceutical composition for the treatment of a cancer in animal tissue.
- 62. The use of a gene as defined in any of claims 45–52 for preparation of a pharmaceutical composition for the treatment of cancer in animal tissue.

15

WO 2005/064009 PCT/DK2004/000914

5

10

15

20

107

63. The use of a probe as defined in any of claims 49-52 for preparation of a pharmaceutical composition for the treatment of cancer in animal tissue.

64. An assay for classification of cancer in an individual having contracted cancer, comprising

at least one marker capable of determining the microsatellite status in a sample and

at least one marker in a sample determining the prognostic marker, wherein the microsatellite status and the prognostic marker is determined simultaneously or sequentially.

- 65. The assay according to claim 64, wherein the marker is a nucleotide probe.
- 66. The assay according to claim 64, wherein the marker is an antibody.
- 67. The assay according to claim 64, wherein the genes are as defined in any of claims 9-13 or 16-17.