Examen 2do parcial

Ingeniería en Inteligencia Artificial

Valeria Pimentel Sosa

Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala, Instituto Politécnico Nacional, Tlaxcala, Tlaxcala, México 9000

24 de abril de 2023

1. Proponga el problema de optimización asociado al problema de dieta enunciado

Selección de variables para el diseño del problema.

- x(1) =Leche
- $x(2) = \mathbf{Jugo}$
- $x(3) = \mathbf{Pescado}$
- x(4) =Papas fritas
- $x(5) = \mathbf{Pollo}$

Costo total a minimizar es:

$$FO = 1,1 * x_1 + 1,2 * x_2 + 2 * x_3 + 1,3 * x_4 + 3 * xx_5$$

Con las siguientes restricciones:

Proteína

$$g_1(x_1, x_2, x_3, x_4, x_5) = 60 - 8 * x(1) - 2 * x(2) - 15 * x(3) - 4 * x(4) - 30 * x(5) <= 0$$

Vitaminas

$$g_2(x_1, x_2, x_3, x_4, x_5) = 100 - 9 * x(1) - 3 * x(2) - 3 * x(3) - x(4) - 9 * x(5) < 0$$

Calcio

$$g_3(x_1, x_2, x_3, x_4, x_5)) = 120 - 35 * x(1) - 3 * x(2) - 17 * x(3) - x(4) - 16 * x(5) <= 0$$

Calorias

$$g_4(x_1, x_2, x_3, x_4, x_5) = 2100 - 100 * x(1) - 90 * x(2) - 350 * x(3) - 200 * x(4) - 410 * x(5) <= 0$$

Carbohidratos

$$g_5(x_1, x_2, x_3, x_4, x_5) = 400 - 10 * x(1) - 20 * x(2) - 40 * x(3) - 25 * x(4) - 40 * x(5) <= 0$$

$$g6 = x_1, x_2, x_3, x_4, x_5 > 0$$

2. Indique el algoritmo, sintonización y manejador de restricciones

■ Algoritmo: Evolución diferencial: rand/1/exp

```
■ Parametros: CR = 0.7195, F = 0.7190

NP = 15

F = 0.6

CR = 0.6
```

Generaciones = 680

■ Manejador de restricciones: Reglas de DEB

3. Ejecute 30 corridas independientes y muestre la estadística paramétrica básica

	X1	X2	X3	X4	X5	FO
1	8.48480571037469	0.00043088764268	7.87838495711895	0.00030087049367	0.00001081617310	25.09099684098230
2	8.48485893876230	0.00001870030955	7.87871896340386	0.00008319500786	0.00000567508836	25.09093037859300
3	8.48481895085494	0.00012453430990	7.87852482248980	0.00023135060734	0.00006632213301	25.09099965428050
4	8.48476047160172	0.00102300891834	7.87810773203318	0.00028516816174	0.00001314501037	25.09108974717170
5	8.48488583486305	0.00019283071141	7.87844832769269	0.00037060238762	0.00002319488284	25.09105383834080
6	8.48445804473324	0.00357158141989	7.87701547168626	0.00012653806162	0.00004766447678	25.09152818319340
7	8.48484991143078	0.00000253659287	7.87878462204725	0.00000222700055	0.00000037404953	25.09091120782910
8	8.48476807608297	0.00016052353344	7.87836026967243	0.00037565747789	0.00014380374196	25.09107781722340
9	8.48469548868537	0.00010747194362	7.87807533518276	0.00068927861210	0.00029967792589	25.09123977022520
10	8.48478596966828	0.00005312969484	7.87872248603520	0.00002883129526	0.00006823115065	25.09101546847510
11	8.48480074723689	0.00036320605948	7.87850032835754	0.00016471982168	0.00001932457195	25.09098943543110
12	8.48486225168735	0.00000064070730	7.87875446683136	0.00004601368098	0.00000108175418	25.09092124241540
13	8.48436467220577	0.00072399928573	7.87784640930899	0.00030208868643	0.00056423618516	25.09144818103500
14	8.48479568357503	0.00027709546100	7.87859373592762	0.00007408735848	0.00002739855970	25.09097374758610
15	8.48480557998606	0.00026129121922	7.87856544842268	0.00010817890307	0.00003608666245	25.09097947685450
16	8.48483590888592	0.00019971989308	7.87866081719146	0.00005219563372	0.00000175202390	25.09095390842470
17	8.48485428304635	0.00000779862733	7.87875752793929	0.00003811838962	0.00000240534274	25.09092089551710
18	8.48484760372112	0.00005463464134	7.87873760600813	0.00002803892737	0.00000685556800	25.09093015498870
19	8.48488243200356	0.00005296642476	7.87870603900180	0.00006908723596	0.00000705245288	25.09095728368260
20	8.48484173182639	0.00003826591248	7.87876060547181	0.00001072385498	0.00000339727997	25.09091716789900
21	8.48477720462903	0.00028571520646	7.87840453532819	0.00026243834114	0.00009567504617	25.09103504897810
22	8.48485317547061	0.00000782141429	7.87873906940102	0.00006324266789	0.00000440911760	25.09092146033790
23	8.48486040104220	0.00006680685987	7.87870951008511	0.00007513594590	0.00000045312869	25.09094466566420
24	8.48497011256294	0.00010617946399	7.87836451458926	0.00055007101051	0.00001587770760	25.09108629379100
25	8.48482693431070	0.00000135818857	7.87874731954632	0.00002147885574	0.00003277315636	25.09093213864220
26	8.48481403212232	0.00016042293999	7.87864275339166	0.00004941664284	0.00006124023276	25.09102141197980
27	8.48465235319593	0.00100260240001	7.87831466346188	0.00002360057966	0.00002076401516	25.09104301111840
28	8.48484905268191	0.00007018986420	7.87867194683747	0.00011030846427	0.00001510642408	25.09095079973790
29	8.48484261132335	0.00010971827579	7.87864496265824	0.00013325051855	0.00000732156703	25.09094365007830
30	8.48484687543032	0.00001286064951	7.87878180442041	0.00000007855165	0.00000029118834	25.09091158027570

Figura 1: 30 corridas independientes.

Mejor	25.09091120782910
Peor	25.09152818319340
Media	25.09102081535840
Mediana	25.09097661222030
Desviación Estandar	1.46E-04

Figura 2: Estadística paramétrica básica.

■ Valor de la FO:

Mejor corrida: 25.09091120782910 Peor corrida: 25.09152818319340 Corrida promedio: 25.09102081535840

■ Desviación Estándar: 1.46E-04

 \blacksquare Costo computacional mínimo obtenido: 10,215 (evaluaciones de FO)