	Name: J Math 255-,	Assignme	nt 2			•		
Q1.	χ_i	6	0 14	18 2	4 28	30		
	fi	2 4	7	12	8 4	3		
	Answer Answer $ x_i f_i f_i \chi_i (x_i - \bar{x}) f_i (x_i - \bar{x}) = \frac{1}{N} \sum_{i=1}^{N} f_i \chi_i $ 6 2 12 -13 169 338 = $\frac{760}{40}$							
	χi	fi	fixi	$(\chi_i - \bar{\chi})$	$(x_i - \bar{x})$	$f_i(x_i-\bar{x})$	$=\frac{1}{N}\sum_{i=1}^{N}f_{i}\chi_{i}$	
	6	2	12	-13	169	338	$=\frac{760}{40}$	
	10	4	40	-9	81	324	= 19	
	14	7	98	-5	25	175	Variance = 62	
	18	12	216	-1	1	12	$= \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$ $= \frac{1736}{40}$	
	24	8	192	5	25	200	= 1736	
	28	4	112	9	81	324	= 43.4	
	30	3	90	11	121	363		
		∑ti=N =40	∑ f:X; = 760			21;(2:-2) =1736	Hence, Hean = 19 and Variance = 43.	
	Let B P(Stud	be to lent st	he eve udy bon	nt tho th mas	it stu th and	Physic)	udys physic. $P(B) = \frac{80}{100} = 0.8$ = $P(AUB)$ $P((AUB)') = \frac{5}{100} = 0.95$ = $1 - 0.05 = 0.95$ $P(AUB) = 0.95$	
	P(AVB) = P(A) + P(B) - P(A \cap B) P(A \cap B) = 0.75							
	VI. HUIN	P(ANB) = P(A) + P(B) - P(AVB)						
) + P(1)/- //				
		= P(A				1.75		
	P(ANB)	= P(A = 0.9	+ 0.8	- 0.	95 = 0		ut he orshe studies physics.	
(4	P(ANB)	= P(A = 0.9	+ 0.8	- 0.	95 = 0		ut he orshe studies physics.	
	P(ANB) a) Student: P(AIB	= P(A = 0.9 s stud) = P(B	+ 0.8 lies M (A) =	0.75 0.8	95 = 0 dics g = 0,	given tha 9375 y		
	P(ANB) a) Student: P(AIB	= P(A = 0.9 s Stud) = P(B p does	$+ 0.8$ lies M $\frac{AA}{A} =$ not S	uthemo 0.75 0.8	95 = 0 dics g = 0,	given tha 9375 y	nt he orshe studies physics. t he orshe studies Mathematics	
	P(A NB) a) Student: P(A 1B) b) Students	= P(A = 0.9 s stud) = P(B Des	+ 0.8 lies /(nA) = not s)-P(A)	(– 0. luthemo 0.75 0.8 ludy p	95 = 0 tics g = 0, physic g	given that 43.75 pt given that	t he orshe studies Mathematics	

03. P(M) = 30% = 0.3 P(M) = 45% = 0.45 P(M3) = 25% = 0.25 P(DIM,) = 0.02 A probability that a product made by Machine I is defective P(DIM,) = 0.03 & probability that a product made by Machine 2 is detective P(D/M3)=0.02 A probability that a product made by Machine3 is defective $P(\Pi_3|D) = \frac{P(D|\Pi_3) \cdot P(\Pi_3)}{P(D|\Pi_1) \cdot P(\Pi_3) \cdot P(\Pi_3) \cdot P(\Pi_3) \cdot P(\Pi_3) \cdot P(\Pi_3) \cdot P(\Pi_3)}$ = (0.02 x 0.30) + (0.03 x 0.45) + (0.02 x 0.25) = 0.204081 × 0.204 (3.54) Q4. O Verity that f(x) is a valid PDF PDF conditions, (a) f(x) ≥0 all x and (b) total area under the curve must be equal 1, f. = f(x) dx=1 (a) For $X \in (0,1)$, $5X^4$ is positive so $f(X) \ge 0$ holds true. (b) $f_0' 5X^4 dX = \left[\frac{5X^{441}}{4+1}\right]_0' = \left[\frac{5X^5}{5}\right]_0' = \frac{5(0)^5}{5} = \frac{5(0)^5}{5} = 1$ @ Find P(0.1 L X < 0.9) $F(x) = \int_{0}^{x} 5t^{4} dt = 5\left[\frac{t^{5}}{5}\right] = \left[t^{5}\right]_{0}^{x} = \chi^{5} - 0^{5} = \chi^{5}$ SO, the CDF is F(z)=x5 $F(0.9) = 0.9^{5} = 0.59049$ $F(0.1) = 0.1^{5} = 0.00001$ P(0.1 < X < 0.9) = F(0.9) - F(0.1) = 0.59049 - 0.00001 = 0.59048 Hence f(x) is a valid PDF and the probability of P(0.12x20.9) is 0.5 9048/ Q5. Z= 2-1 Z = 42-50 = -0.8 Z = 62-50 = 1.2 P(42 < X < 62) = P(-0.8 < Z < 1.2) $p(24-0.8) = \frac{p(2>0.8)}{p(2<1.2)=1-p(2>1.2)}$ = 0.2119 = 1 - 0.1151 = 0.8844

POP bazic™

p(Z<1.2)-p(ZZ-0.8)

= 0.8849 - 0.2119

= 0.6730 x

DATE:..

06 6=7 Men= 74 N=100 P(ZZz) = 0.123 Ans: Lowest Possible A is 83 P(ZL1.16) = 0.123 4 z= 6.16 Highest Possible B is 82 x X=N+20 = 74+ (1.16 x7) = 82.12

283

Q7 Step 1: Hypothesis + H; N=0 H=N +0 step 2: Significant level -0 0 = 0.001

test is approximately 3.09 Step 3: Critical value and Rejection region - The critical Z-value for $\alpha = 0.001$ is a one-tailed ,

Step 4! Test Statisfic -> $Z_7 = \frac{2.00}{6/15} = \frac{1.4-0}{3.6/100} = \frac{1.4}{0.36} = 3.89$ step 5: Conclusion

Since 3.89 > 3.09, we shall reject the null hypothesis.

step 6: State and Conclude in words

There is sufficient evidence to conclude that the drug increase heart rate, the

company should considered marketing the drug as it appears to be efficient.

Z= (59+62+59+74+70+61+62+66+62+75) = 65 08

Somple standard deviation $S = \sqrt{\frac{x_i(x_i - x_i)^2}{h-1}}$ (75-65)27 $\int = \int \left[(59-65)^2 + (62-65)^2 + (59-65)^2 + (74-65)^2 + (70-65)^2 + (61-65)^2 + (62-65)^2 + (66-65)^2 + (62-65)$

≈ 5.98 df=n-1 = 10-1=9, X=0.05

ta/2 = to.024 = 2.262

Z + tay2 5 = 65 + 2.262 5.98 + 60.72 < 0 < 69.28

Henre the 95% t-confidence internal for the mean score 0 is (60.72, 69.28) &

09 N(N, 25), a=0.05 Varience 62 = 25 Standard deviation 6=125 = 5 Zo.osp = 1.96 Width = $2 \frac{Z_{a/2}}{\sqrt{10}} = \frac{5}{\sqrt{10}} = 1$ $\frac{1}{2 \times 1.96} = \frac{5}{\sqrt{10}} = \frac{5}{$ $n = 5 \times 3.92$ n = 384.16 x 385x Sugar 010 4 5 6 7 8 Days \(\sum_{\text{X:Y:}} = (0 \times 7.9) + (1 \times 12.0) + (3 \times 9.5) + (4 \times 11.3) + (5 \times 11.8) + (6 \times 11.3) + (7 \times 4.2) + (8 \times 0.4) 5xi = 0+1+3+4+5+6+7+8=34 Z = 34-8 = 4.25 \$\frac{1}{2}y: = 7.9+12+9.5+11.3+11.8+11.3+4.2+0.4=68.4 \qquad \tilde{y}:68.4:8:85 £x2 = 7.92+12+4.52+11.32+11.82+11.32+422+0.42=704.08 $\frac{1}{\beta} = \frac{\sum_{i=1}^{n} \chi_{i} y_{i}}{\sum_{i=1}^{n} \chi_{i}^{2} y_{i}} = \frac{245.1 - 290.7}{709.08 \times 144.5} = -4.45 \times 10^{-4}$ $\frac{1}{\beta} = \frac{\sum_{i=1}^{n} \chi_{i} y_{i}}{\sum_{i=1}^{n} \chi_{i}^{2}} = \frac{245.1 - 290.7}{709.08 \times 144.5} = -4.45 \times 10^{-4}$ $\frac{1}{\beta} = \frac{1}{\beta} = \frac{1$ = 4.55 - (-0.000445)(4.25) = 8.55 : 9=8.55 +-0.000445Xx