Property 1. The K types of resources are allocated sequentially, i.e., $r_{k'}(t) = B_{k'}, \forall k' < k$ is a necessary condition for $r_k(t) > 0$.

Proof. The KKT conditions are given as:

$$Ma_k(t)h'(C(t) + \mathbf{a}^{\mathsf{T}}(t)\mathbf{r}(t)) + Q_k(t) + \tau_k - v_k = 0,$$
 (1)

$$v_k r_k(t) = 0, \quad (2)$$

$$\tau_k[B_k - r_k(t)] = 0, \quad (3)$$

$$v_k > 0$$
, (4)

$$\tau_k > 0.$$
 (5)

Assume that the optimal resource allocation policy $oldsymbol{r}(t)$ satisfies

$$-\frac{1}{p_{k+1}(t)} < M \cdot h' \left(C(t) + \boldsymbol{a}^{\mathsf{T}}(t) \boldsymbol{r}(t) \right) \le -\frac{1}{p_k(t)}$$
 (6)

then for k'=1,2,...,k-1, $\tau_{k'}$ has to be positive to satisfy Eqs. [(1),(4),(5),(6)], then $r_{k'}$ must equal to $B_{k'}$ given Eq. (3). Meanwhile, for k'=k,k+1,...,K, $v_{k'}$ has to be positive to satisfy Eqs. [(1),(4),(5),(6)], then $r_{k'}$ must equal to zero given Eq. (2).

Property 2. If $M \cdot h'\left(C(t) + \sum\limits_{k'=1}^{k-1} a_{k'}(t)r_{k'}(t)\right) < -\frac{1}{p_k(t)}$ and $B_k > 0$, the k-th resource will be allocated, i.e, $r_k(t) > 0$. Moreover, if $0 < Q_k(t) \leq \frac{Ma_k(t)}{4}$, then $r_k(t)$ satisfies

$$r_k(t) = min \left\{ \frac{\gamma(t) - C(t) - \sum_{k'=0}^{k-1} a_{k'}(t) B_{k'}}{a_k(t)}, B_k \right\}, \quad (7)$$

where $\gamma(t) = \ln(-1 + \frac{Ma_k(t) + \sqrt{M^2a_k(t)^2 - 4Ma_k(t)Q_k(t)}}{2Q_k(t)})$; if $Q_k(t) = 0$, we have $r_k(t) = B_k$.

Proof. If $M \cdot h'\left(C(t) + \sum\limits_{k'=1}^{k-1} a_{k'}(t) r_{k'}(t)\right) < -\frac{1}{p_k(t)}$ and $B_k > 0$, then $r_k(t)$ has to be positive given Eqs. [(1),(2),(3),(4),(5)], otherwise τ_k will be zero and Eq. (1) is not satisfied.

Moreover, according to Eqs. [(2),(3),(4),(5)], when $0 < r_k(t) < B_k$, i.e., $\tau_k = v_k = 0$, r_k satisfies

$$Q_k(t) + Ma_k(t)h'\left(C(t) + \boldsymbol{a}^{\mathsf{T}}(t)\boldsymbol{r}(t)\right) = 0.$$
 (8)

By calculating, we have

$$h'\left(C(t) + \boldsymbol{a}^{\mathsf{T}}(t)\boldsymbol{r}(t)\right) = \frac{-\exp(C(t) + \sum_{k'=0}^{k-1} a_{k'}(t)B_{k'} + a_{k}(t)r_{k}(t))}{\left(1 + \exp\left(C(t) + \sum_{k'=0}^{k-1} a_{k'}(t)B_{k'} + a_{k}(t)r_{k}(t)\right)\right)^{2}}.$$

Let S denote $\exp\bigg(C(t)+\sum\limits_{k'=0}^{k-1}a_{k'}(t)B_{k'}+a_k(t)r_k(t)\bigg).$ Then Eq. (8) becomes:

$$Q_k(t)s^2 + (2Q_k(t) - Ma_k(t))s + Q_k(t) = 0.$$
 (9)

As a further step, we define the left side of the above equation as function $\beta(s)$. If $Q_k(t) > \frac{Ma_k(t)}{4}$, i.e, there is no solution to Eq. (9) and $Q_k(t) + Ma_k(t)h'\left(C(t) + \boldsymbol{a}^{\mathsf{T}}(t)\boldsymbol{r}(t)\right) \geq 0$. Then the minimum of $Q_k(t)r_k(t) + M \cdot h\left(C(t) + \boldsymbol{a}^{\mathsf{T}}(t)\boldsymbol{r}(t)\right)$ appears at $r_k(t)=0$. If $Q_k(t)\leq \frac{Ma_k(t)}{4}$, i.e., Eq. (9) has two solutions $s1,s2=-1+\frac{Ma_k(t)}{2Q_k(t)}\pm$ $\sqrt{M^2 a_k(t)^2 - 4M a_k(t) Q_k(t)}$ (assuming s1 < s2). From s1, s2, it can be easily get two $r_k(t)$ -s, which are denoted by $r_k^{\ 1}(t)$ and $r_k^{\ 2}(t)$ respectively. By calculating the gradient of $\beta(s)$, It can be observed that $r_k^{-1}(t)$ is local maxima and $r_k^2(t)$ is local minima. Therefore, $r_k^2(t)$ is the optimal solution which ensures that the objective function $Q_k(t)r_k(t) + M \cdot h\left(C(t) + \boldsymbol{a}^{\mathsf{T}}(t)\boldsymbol{r}(t)\right)$ is the smallest when $Q_k(t) \le \frac{Ma_k(t)}{4}$. When $Q_k(t)=0$ and $r_k(t)>0$, we have $v_k=0$ given Eq. (2), and Eq. (1) can be simplified to $Ma_k(t)h\left(C(t)+\boldsymbol{a}^{\mathsf{T}}(t)\boldsymbol{r}(t)\right)+\tau_k=0$, then $\tau_k=$ $-Ma_k(t)h'\left(C(t)+\boldsymbol{a}^{\mathsf{T}}(t)\boldsymbol{r}(t)\right)\neq 0$. Therefore, according to Eq. (3), we have $r_k(t) = B_k$ when $Q_k(t) = 0$.