Formelsammlung Robotik

Vektoren

Skalare Multipl.	$\lambda \cdot ec{a}$	$egin{pmatrix} \lambda \cdot a_1 \ \lambda \cdot a_2 \ \lambda \cdot a_3 \end{pmatrix}$
Abstand PUrpsr.		
Betrag (Norm)	$ \vec{a} $	$ \vec{a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$
Skalarprodukt	$ec{a}\cdotec{b}$	$a_1 \cdot b_1 + \ldots + a_n \cdot b_n = x$
Winkel		$\cos lpha = rac{ec{a} \cdot ec{b}}{ ec{a} \cdot ec{b} }$

Matrizen

Gleich	A = B	$ (a_{ij}) = (b_{ij}) $
Addition	C = A + B	$(c_{ij}) = (a_{ij}) + (b_{ij})$
Differenz	C = A - B	$(c_{ij}) = (a_{ij}) - (b_{ij})$
Multiplikation Skalar	$c \cdot A$	$cA \in R^{m \times n}$
Multiplikation Matrizen	$A \cdot B$	$AB = \sum_{j} a_{ij} b_{ij}$

Multiplikation

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + a_{13} \cdot b_{31} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

Koordinatensysteme

Objekt in 3D (OKS)
$$\begin{vmatrix} \vec{v} & = \\ (x, y, z, \alpha, \beta, \gamma) \end{vmatrix} \alpha, \beta, \gamma = Drehwinkel$$

Senkrechte

Rotationsmatrizen

Rotation um X	$R_x(\alpha) =$	$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$	=	$\begin{bmatrix} 1 & 0 \\ 0 \cos \alpha \\ 0 \sin \alpha \end{bmatrix}$	$0 \\ -\sin\alpha \\ \cos\alpha$		$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$	
Rotation um Y	$R_y(\alpha) =$	[x']	=	$\cos \alpha$	$0 \sin \alpha$ $1 0$		$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$	
Rotation um Z	$R_z(\alpha) =$	$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$		$\begin{bmatrix} \cos \alpha - \\ \sin \alpha & c \\ 0 \end{bmatrix}$			$\left[egin{array}{c} x \ y \ z \end{array} ight]$	
Vormultipl. (Roll-pitch-yaw)	$R = (R_n(R_{n-1} \dots (R_2R_1) \dots))$							
Nachmultipl. (Euler- Winkel)	$R = ((\dots (R_n R_{n-1}) \dots R_2) R_1)$							
$\frac{\text{Homogene}}{4 \times 4\text{-Matrix}}$	$ \left(\begin{array}{c c} R_{3\times3} & u_{3\times1} \\ f_{1\times3} = 0 & 1\times1 \end{array}\right) = \left(\begin{array}{ccc} n_{x\downarrow z} & o_{x\downarrow z} & a_{x\downarrow z} & u_{x\downarrow z} \\ 0 & 0 & 0 & 1 \end{array}\right) $							
$ \begin{array}{c c} \text{Homogene} \\ 4 \times 4\text{-Matrix} & \left(\frac{R_{3 \times 3}}{f_{1 \times 3} = 0} \frac{ u_{3 \times 1} }{1 \times 1} \right) = \begin{pmatrix} n_{x \downarrow z} & o_{x \downarrow z} & a_{x \downarrow z} & u_{x \downarrow z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ \hline \text{Invertierung} \\ 4 \times 4 & T^{-1} = \begin{pmatrix} n_x & n_y & n_z - n^T \cdot \vec{u} \\ o_x & o_y & o_z - o^T \cdot \vec{u} \\ o_x & o_y & o_z - o^T \cdot \vec{u} \\ 0 & 0 & 0 & 1 \end{pmatrix} $								
Translation um x, y, z	$ \left(\begin{array}{c} 1\ 0\ 0\ x \\ 0\ 1\ 0\ y \\ 0\ 0\ 1\ z \\ 0\ 0\ 0\ 1 \end{array}\right) $							
Verkettete Lagebeschr.	$^{BKS}H_{B} = ^{BKS}H_{A} \cdot ^{A}H_{B}$ (H = Homo. Matr.)							

Quaternionen

$$\begin{aligned} a,b,c,d &\in \Box \text{Quaternion } q \Rightarrow q = a+b \cdot i + c \cdot *j + d \cdot k \\ & a \in \mathbb{R}, u = (b,c,d)^T \in \mathbb{I} \\ & q = (a,b,c,d)^T \text{ bzw. } q = (a,u)^T \\ & i^2 = j^2 = k^2 = ijk = -1 \\ & ij = -ji = k \\ & jk = -kj = i \\ & ki = -ik = j \end{aligned}$$

Gegeben	$q = (a_q, u_q), r = (a_r, u_r)$
Addition	$q + r = (a_q + a_r, u_q + u_r)$
Skalar	$q \cdot r = a_q a_r + \langle u_q, u_r \rangle = a_q a_r + b_q b_r + c_q c_r + d_q d_r$
quatern.	q * r =
Multipl.	$(a_q + i \cdot b_q + j \cdot c_q + k \cdot d_q) \cdot (a_r + i \cdot b_r + j \cdot c_r + k \cdot d_r)$
konjugiert	$q^* = (a_q, -u_r)$
Norm	$ q = \sqrt{qq^*} = \sqrt{q^*q} = \sqrt{a^2 + b^2 + c^2 + d^2}$
inverses	$q^{-1} = \frac{q^*}{ q ^2}$
Element	$q - \frac{1}{ q ^2}$

Rotation mit Quaternionen

Vektor als Quaternion	$p = (x, y, z)^T \Leftrightarrow q_p = (0, p)^T$
Skalar als Quaternion	$s \Leftrightarrow q_s = (s, 0, 0, 0)^T$
Einheitsquaternion	q = 1
Rotation um θ , Achse u	$q_r = (\cos(\frac{\theta}{2}), u \cdot \sin(\frac{\theta}{2}))$
Rotation Punkt p	$q_{p'} = q_r q_p q_r^* = q_r q_p q_r^{-1}$

Sinus

a°	0	30	45	60	90	120	135	150
$\sin a$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\cos a$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
a°	180	210	225	240	270	300	315	330
$\sin a$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
$\cos a$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$

Trigonometrie

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha$$
$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$