EE2703 : Applied Programming Lab Week4 : Fourier Approximations

> Aditya Suresh EE20B004

March 11, 2022

AIM

- To plot and visualise fourier transform of e^x and cos(cos(x))
- To plot the corresponding graphs of true function and fourier approximation
- Obtain 51 coefficients (26 a_n 's and 25 $b'_n s$)
- find the above coefficient via **Least Squares approach** and compare them with true coefficients
- plot the function formed by the fourier transform via the coefficients

Input short summary of the question here which

Theory

We will fit two functions, e^x and cos(cos(x)) over the interval [0,2) using the fourier series

$$a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + b_n sin(nx)$$

where,

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx$$

Define Python functions for e^x and cos(cos(x))

1. The following code is used as a function for the functions e^x and $\cos(\cos(x))$:

Figure 1: e^x

Figure 2: cos(cos(x))

- 2. The blue straight line represents the true value of e^x whereas the green dots represent the fourier approximation with 51 coefficients
- 3. As can be seen e^x is **Non periodic** and cos(cos(x)) is **periodic** so are the graphs of their respective fourier transforms.

Obtaining fourier transforms:

1. We obtain the 51 fourier coefficients $(26a'_n sand 25b'_n s)$ via the following code :

```
fcosine_1 = lambda x : exp(x) * cos(i*x)
fsine_1 = lambda x : exp(x) * sin(i*x)

fcosine_2 = lambda x : coscos(x) * cos(i*x)
fsine_2 = lambda x : coscos(x) * sin(i*x)

for i in range(n): # finding an's and bn's of coscos and exp via quad an = (quad(fcosine_1 , 0.0, 2*PI)[0]) / PI
    bn = (quad(fsine_1 , 0.0, 2*PI)[0]) / PI
```

```
an_1 = (quad(fcosine_2 , 0.0, 2*PI)[0]) / PI
bn_1 = (quad(fsine_2 , 0.0, 2*PI)[0]) / PI
An_exp.append(an)
Bn_exp.append(bn)
An_coscos.append(an_1)
Bn_coscos.append(bn_1)
```

Plots of fourier coefficients of e^x and cos(cos(x))

1. The following are the corresponding plots of coefficients in semilog and loglog

Figure 3: Coefficients of e^x on semilog

The bottom graph corresponds to a_n and the above to b_n The bottom graph corresponds to a_n and the above to b_n

Figure 4: Coefficients of e^x on loglog

Figure 5: Coefficients of cos(cos(x)) on semilog

Figure 6: Coefficients of cos(cos(x)) on loglog

- 2. As can be seen, the values of b_n is nearly zero for cos(cos(x)) as it should be as the function is even(even function have zero b_n). The reason they are not exactly zero is probably because the integration is not precise enough.
- 3. The coefficients in first case dont decay as rapidly as second case because in case of $\cos(\cos(x))$ as the frequency of consideration is pi
- 4. The loglog graph looks linear in Figure 4 because of the fact the the fourier coefficients of e^x depend linearly on n.

Evaluating fourier coefficients via Least Squares approach

The following method via least square is used to calculate the fourier coefficients (NOTE - an and bn are calculated and stored separately).

x=linspace(0,2*pi,401) x=x[:-1] # drop last term to have a proper periodic integral b=f(x) # f has been written to take a vector

```
A=zeros((400,51)) # allocate space for A A[:,0]=1 # col 1 is all ones for k in range(1,26): A[:,2*k-1]=cos(k*x) # cos(kx) column A[:,2*k]=sin(k*x) # sin(kx) column #endfor c1=lstsq(A,b)[0] # the '[0]' is to pull out the # best fit vector. lstsq returns a list.
```

Best fit via fourier tranform from Least Squares approach

Figure 7: Coefficients of e^x (loglog)

Figure 8: Coefficients of e^x (semilog)

Figure 9: Coefficients of cos(cos(x))

Figure 10: Coefficients of cos(cos(x))

Deviation between coefficients obtained via least squares and by the direct integration.

1. The following code has been used to find it:

```
#for expx
A_diff = np.abs(A_temp - np.array(An_exp))
print("The max deviation is found for a", np.where( A_diff == np.amax(A_diff))
B_diff = np.abs(B_temp - np.array(Bn_exp))
print("The max deviation is found for b", np.where( B_diff == np.amax(B_diff))
#for coscosx
A_diff = np.abs(A_temp - np.array(An_coscos))
print("\nThe max deviation is found for a", np.where( A_diff == np.amax(A_diff))
```

print("The max deviation is found for b", np.where(B_diff == np.amax(B_dif:

B_diff = np.abs(B_temp - np.array(Bn_coscos))

 $b_new_coscos = np.dot(A,c1)$

2. The maximum deviation are

- (a) In e^x 's a_n coefficients: The max deviation is found for a [1] = 1.3327308703353395
- (b) In e^x 's b_n coefficients: The max deviation is found for b [25] = 0.08768050912536829
- (c) In cos(cos(x))'s a_n coefficients: The max deviation is found for a [15] = 1.7175489006562513e-15
- (d) In cos(cos(x))'s a_n coefficients: The max deviation is found for b [25] = 2.7586698812539523e-15

Plotting the graph of fourier tranform obtained via least square method:

1. The required plot is obtained as follows:

Figure 11: Fourier transform along with true graph of e^x

Figure 12: Fourier transform along with true graph of cos(cos(x))

2. As seen the transform of e^x has a lot more deviation when compared to cos(cos(x)). One reason for this could be the fact that since e^x is aperiodic so need very high number of coefficients too get good approximation. Whereas, cos(cos(x)) is periodic with period of π making its dependence on higher harmonics very low.

Conclusions

From this assignment we learnt the various methods as well deviations in using fourier transform. While cos(cos(x)) has a fourier transform giving very good approximation while the aperiodic e^x has higher deviations and more dependence on higher harmonics.