COMP90038 Algorithms and Complexity

Lecture 20: Greedy Algorithms – Prim and Dijkstra (with thanks to Harald Søndergaard & Michael Kirley)

Andres Munoz-Acosta

munoz.m@unimelb.edu.au

Peter Hall Building G.83

Recap

- We have talked a lot about dynamic programming:
 - DP is bottom-up problem solving technique.
 - Similar to divide-and-conquer; however, problems are overlapping, making tabulation a requirement.
 - Solutions often involve recursion.
- We applied this idea to two graph problems:
 - Computing the transitive closure of a directed graph; and
 - Finding shortest distances in weighted directed graphs.

A practice challenge

- Can you solve the problem in the figure?
 - W = 15
 - w = [1 1 2 4 12]
 - v = [1 2 2 10 4]
- Because it is a larger instance, memoing is preferable.
 - How many states do we need to evaluate?
- FYI the answer is \$15 {1,2,3,4}

The table

			j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
W	,	V	i																	
				0																
	1	-	L	1		1	1	1	-1	-1	-1	-1	1	1	1	1	1	1	1	1
	1	-	2	2		2	-1	3	-1	-1	-1	-1	-1	3	-1	3	-1	3	-1	3
	2	2	2	3		-1	-1	4	-1	-1	-1	-1	-1	-1	-1	5	-1	-1	-1	5
	4	10)	4		-1	-1	4	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	15
	12	4	ļ	5		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	15

• We know that we include all the elements up to 4 because the last column (15) is the cumulative sum of the values.

- Warshall's algorithm computes the transitive closure of a directed graph.
 - An edge (a,d) is in the transitive closure of graph G iff there is a path in G from a to d.
- Is there a path from node i to node j using nodes [1 ... k] as "stepping stones"?

- step from i to j using only nodes [1 ... k-1], or
- step from *i* to *k* using only nodes [1 ... *k*-1], and then step from *k* to *j* using only nodes [1 ... *k*-1].

0	1	1	0
1	0	0	1
0	0	0	0
	0	0	0

- Warshall's algorithm computes the transitive closure of a directed graph.
 - An edge (a,d) is in the transitive closure of graph G iff there is a path in G from a to d.
- Is there a path from node i to node j using nodes [1 ... k] as "stepping stones"?

- step from i to j using only nodes [1 ... k-1], or
- step from *i* to *k* using only nodes [1 ... *k*-1], and then step from *k* to *j* using only nodes [1 ... *k*-1].

0	1	1	1
1	0	0	
0	0	0	0
1	0	0	0

• If G's adjacency matrix is A then we can express the recurrence relation as:

$$R[i,j,0] = A[i,j]$$

$$R[i,j,k] = R[i,j,k-1] \ \mathbf{or} \ (R[i,k,k-1] \ \mathbf{and} \ R[k,j,k-1])$$

• We examined the simplest version of the algorithm.

for
$$k \leftarrow 1$$
 to n do
for $i \leftarrow 1$ to n do
if $A[i, k]$ then
for $j \leftarrow 1$ to n do
if $A[k, j]$ then
 $A[i, j] \leftarrow 1$

• Let's visualize the steps.

Using node 2 (k=2), we can reach node 3 from nodes 1 and 5.

• Let's visualize the steps.

Using node 2 (k=2), we can reach node 3 from nodes 1 and 5.

Let's visualize the steps.

Using node 2 (k=2), we can reach node 3 from nodes 1 and 5.

 Using node 3 (k=3) we can reach: Nodes [6 7] from nodes [1,2,5]

- Floyd's algorithm solves the **all-pairs shortest-path** problem for weighted graphs with **positive weights**.
 - It works for directed as well as undirected graphs.
- What is the shortest path from node *i* to node *j* using nodes [1 ... *k*] as "stepping stones"?

- Such path will exist if and only if we can:
 - step from *i* to *j* using only nodes [1 ... *k*-1], or
 - step from *i* to *k* using only nodes [1 ... *k*-1], and then step from *k* to *j* using only nodes [1 ... *k*-1].

- Floyd's algorithm solves the **all-pairs shortest-path** problem for weighted graphs with **positive weights**.
 - It works for directed as well as undirected graphs.
- What is the shortest path from node *i* to node *j* using nodes [1 ... *k*] as "stepping stones"?

- Such path will exist if and only if we can:
 - step from *i* to *j* using only nodes [1 ... *k*-1], or
 - step from *i* to *k* using only nodes [1 ... *k*-1], and then step from *k* to *j* using only nodes [1 ... *k*-1].

 If G's weight matrix is W then we can express the recurrence relation as:

$$D[i, j, 0] = W[i, j]$$

$$D[i, j, k] = \min (D[i, j, k - 1], D[i, k, k - 1] + D[k, j, k - 1])$$

• A simpler version updating D:

```
\begin{aligned} & \textbf{function} \  \, \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

- For *k*=2
 - We can go $1 \rightarrow 2 \rightarrow 3$, the distance $1 \rightarrow 3$ is 9 + 5 = 14
 - We can go $5 \rightarrow 2 \rightarrow 3$, the distance of $5 \rightarrow 3$ is 4 + 5 = 9

- For *k*=2
 - We can go $1 \rightarrow 2 \rightarrow 3$, the distance $1 \rightarrow 3$ is 9 + 5 = 14
 - We can go $5 \rightarrow 2 \rightarrow 3$, the distance of $5 \rightarrow 3$ is 4 + 5 = 9
- The distance matrix gets updated to:

Greedy Algorithms

- A problem solving strategy is to take the <u>locally best</u> choice among all feasible ones.
 - Once we do this, our decision is **irrevocable**.
- We want to change 30 cents using the smallest number of coins.
 - If we assume coin denominations of {25, 10, 5, 1}, we could use as many 25-cent pieces as we can, then do the same for 10-cent pieces, and so on, until we have reached 30 cents (25+5).
 - This **greedy** strategy would not work for denominations {25, 10, 1} (25+1+1+1+1+1 compared to 10+10+10).

Greedy Algorithms

- In general, it is unusual that **locally best** choices yield **global best** results.
 - However, there are problems for which a greedy algorithm is correct and fast.
 - In some other problems, a greedy algorithm serve as an acceptable approximation algorithm.
- Here we shall look at:
 - Prim's algorithm for finding minimum spanning trees
 - Dijkstra's algorithm for single-source shortest paths

What is an Spanning Tree?

- Recall that a tree is a connected graph with no cycles.
- A spanning tree of a graph $\langle V,E\rangle$ is a tree $\langle V,E'\rangle$ where E' is a subset of E
- For example, the graph on the left has eight different spanning trees:

Minimum Spanning Trees of Weighted Graphs

- For a weighted graph, some spanning trees are more desirable than others.
 - For example, suppose we have a set of "stations" to connect in a network, and also some possible connections, each with its own **cost**.
- This is the problem of finding a spanning tree with the smallest possible cost.
 - Such tree is a **minimum spanning tree** for the graph.

Minimum Spanning Trees of Weighted Graphs

- For a weighted graph, some spanning trees are more desirable than others.
 - For example, suppose we have a set of "stations" to connect in a network, and also some possible connections, each with its own **cost**.
- This is the problem of finding a spanning tree with the smallest possible cost.
 - Such tree is a **minimum spanning tree** for the graph.

- Prim's algorithm is an example of a greedy algorithm.
 - It constructs a sequence of subtrees *T*, by **adding to the latest tree the closest node not currently on it**.
- A simple version:

```
function PRIM(\langle V, E \rangle)
V_T \leftarrow \{v_0\}
E_T \leftarrow \emptyset
for i \leftarrow 1 to |V| - 1 do
find a minimum-weight edge (v, u) \in V_T \times (V \setminus V_T)
V_T \leftarrow V_T \cup \{u\}
E_T \leftarrow E_T \cup \{(v, u)\}
return E_T
```

• But how to find the **minimum-weight edge** (*v*,*u*)?

• A standard way to do this is to organise the nodes that are not yet included in the spanning tree *T* as a **priority queue**, organised in a **min-heap** by edge **cost**.

• The information about which nodes are connected in T can be captured by an array *prev* of nodes, indexed by V. Namely, when (v,u) is included, this is captured by setting prev[u] = v.

• The complete algorithm is:

```
function PRIM(\langle V, E \rangle)
    for each v \in V do
        cost[v] \leftarrow \infty
        prev[v] \leftarrow nil
    pick initial node v_0
    cost[v_0] \leftarrow 0
    Q \leftarrow \text{InitPriorityQueue}(V)
                                                              > priorities are cost values
    while Q is non-empty do
        u \leftarrow \text{EJECTMIN}(Q)
        for each (u, w) \in E do
            if weight(u, w) < cost[w] then
                 cost[w] \leftarrow weight(u, w)
                prev[w] \leftarrow u
                UPDATE(Q, w, cost[w])
                                                             > rearranges priority queue
```

On the first loop, we only create the table

```
function PRIM(\langle V, E \rangle)
    for each v \in V do
        cost[v] \leftarrow \infty
        prev[v] \leftarrow nil
    pick initial node v_0
    cost[v_0] \leftarrow 0
    Q \leftarrow \text{InitPriorityQueue}(V)
    while Q is non-empty do
        u \leftarrow \text{EjectMin}(Q)
        for each (u, w) \in E do
             if weight(u, w) < cost[w] then
                 cost[w] \leftarrow weight(u, w)
                 prev[w] \leftarrow u
                 UPDATE(Q, w, cost[w])
```


Tree T		a	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil

• Then we pick the first node as the initial one

```
function PRIM(\langle V, E \rangle)
    for each v \in V do
        cost[v] \leftarrow \infty
        prev[v] \leftarrow nil
    pick initial node v_0
    cost[v_0] \leftarrow 0
    Q \leftarrow \text{InitPriorityQueue}(V)
    while Q is non-empty do
        u \leftarrow \text{EjectMin}(Q)
        for each (u, w) \in E do
             if weight(u, w) < cost[w] then
                 cost[w] \leftarrow weight(u, w)
                 prev[w] \leftarrow u
                 UPDATE(Q, w, cost[w])
```


Tree T		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil

 We take the first node out of the queue and update the costs

```
function PRIM(\langle V, E \rangle)

for each v \in V do

cost[v] \leftarrow \infty

prev[v] \leftarrow nil

pick initial node v_0

cost[v_0] \leftarrow 0

Q \leftarrow INITPRIORITYQUEUE(V)

while Q is non-empty do
```

```
u \leftarrow \operatorname{EJECTMIN}(Q)

for each (u, w) \in E do

if weight(u, w) < cost[w] then

cost[w] \leftarrow weight(u, w)

prev[w] \leftarrow u

UPDATE(Q, w, cost[w])
```


Tree T		a	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost		5	6	4	∞	∞
а	prev		a	a	a	nil	nil

 We eject the node with the lowest cost and update the queue.

```
function PRIM(\langle V, E \rangle)

for each v \in V do

cost[v] \leftarrow \infty

prev[v] \leftarrow nil

pick initial node v_0

cost[v_0] \leftarrow 0

Q \leftarrow INITPRIORITYQUEUE(V)

while Q is non-empty do
```

```
u \leftarrow \text{EJECTMIN}(Q)
\textbf{for } \text{each } (u, w) \in E \textbf{ do}
\textbf{if } weight(u, w) < cost[w] \textbf{ then}
cost[w] \leftarrow weight(u, w)
prev[w] \leftarrow u
\text{UPDATE}(Q, w, cost[w])
```


Tree T		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
2	cost		5	6	4	∞	∞
a	prev		a	a	a	nil	nil
2 d	cost		2	2		∞	4
a,d	prev		d	d		nil	d

We eject the next node based on alphabetical order.
 Why is f not updated?

```
function PRIM(\langle V, E \rangle)

for each v \in V do

cost[v] \leftarrow \infty

prev[v] \leftarrow nil

pick initial node v_0

cost[v_0] \leftarrow 0

Q \leftarrow INITPRIORITYQUEUE(V)

while Q is non-empty do
```

```
\begin{aligned} u &\leftarrow \text{EJECTMIN}(Q) \\ \textbf{for } \text{each } (u, w) &\in E \textbf{ do} \\ &\textbf{if } weight(u, w) &< cost[w] \textbf{ then} \\ &cost[w] \leftarrow weight(u, w) \\ &prev[w] \leftarrow u \\ &\text{UPDATE}(Q, w, cost[w]) \end{aligned}
```


Tree T		а	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost		5	6	4	∞	∞
a	prev		а	а	а	nil	nil
a d	cost		2	2		∞	4
a,d	prev		d	d		nil	d
a d b	cost			1		∞	4
a,d,b	prev			b		nil	d

We now update f

```
function PRIM(\langle V, E \rangle)

for each v \in V do

cost[v] \leftarrow \infty

prev[v] \leftarrow nil

pick initial node v_0

cost[v_0] \leftarrow 0

Q \leftarrow INITPRIORITYQUEUE(V)

while Q is non-empty do
```

```
u \leftarrow \operatorname{EJECTMIN}(Q)

for each (u, w) \in E do

if weight(u, w) < cost[w] then

cost[w] \leftarrow weight(u, w)

prev[w] \leftarrow u

UPDATE(Q, w, cost[w])
```


Tree T		а	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
2	cost		5	6	4	∞	∞
a	prev		a	a	a	nil	nil
a d	cost		2	2		∞	4
a,d	prev		d	d		nil	d
a d b	cost			1		∞	4
a,d,b	prev			b		nil	d
a d b a	cost					5	3
a,d,b,c	prev					C	C

• We reach the last choice

```
function PRIM(\langle V, E \rangle)

for each v \in V do

cost[v] \leftarrow \infty

prev[v] \leftarrow nil

pick initial node v_0

cost[v_0] \leftarrow 0

Q \leftarrow INITPRIORITYQUEUE(V)

while Q is non-empty do
```

```
u \leftarrow \operatorname{EJECTMIN}(Q)

for each (u, w) \in E do

if weight(u, w) < cost[w] then

cost[w] \leftarrow weight(u, w)

prev[w] \leftarrow u

UPDATE(Q, w, cost[w])
```


Tree T		a	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
2	cost		5	6	4	∞	∞
a	prev		a	a	a	nil	nil
a d	cost		2	2		∞	4
a,d	prev		d	d		nil	d
a d b	cost			1		∞	4
a,d,b	prev			b		nil	d
a d b c	cost					5	3
a,d,b,c	prev					С	C
adbaf	cost					4	
a,d,b,c,f	prev					f	

• The resulting tree is {a,d,b,c,f,e}

```
function PRIM(\langle V, E \rangle)

for each v \in V do

cost[v] \leftarrow \infty

prev[v] \leftarrow nil

pick initial node v_0

cost[v_0] \leftarrow 0

Q \leftarrow INITPRIORITYQUEUE(V)

while Q is non-empty do
```

 $u \leftarrow \operatorname{EJECTMIN}(Q)$ **for** each $(u, w) \in E$ **do if** weight(u, w) < cost[w] **then** $cost[w] \leftarrow weight(u, w)$ $prev[w] \leftarrow u$ UPDATE(Q, w, cost[w])

Tree T		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
2	cost		5	6	4	∞	∞
a	prev		a	a	a	nil	nil
2 d	cost		2	2		∞	4
a,d	prev		d	d		nil	d
2 d b	cost			1		∞	4
a,d,b	prev			b		nil	d
a,d,b,c	cost					5	3
a,u,b,c	prev					С	С
a d b c f	cost					4	
a,d,b,c,f	prev					f	
a,d,b,c,f,e	cost						
م,۵,۵,۵,۲,۳	prev						

Analysis of Prim's Algorithm

- First, a crude analysis: For each node, we look through the edges to find those incident to the node, and pick the one with smallest cost. Thus we get $O(|V| \times |E|)$. However, we are using cleverer data structures.
- Using adjacency lists for the graph and a min-heap for the priority queue, we perform |V| 1 heap deletions (each at cost $O(\log |V|)$) and |E| updates of priorities (each at cost $O(\log |V|)$).
- Altogether $(|V|-1+|E|) O(\log |V|)$.
- Since, in a connected graph, $|V|-1 \le |E|$, this is $O(|E| \log |V|)$.

- Another classical greedy weighted-graph algorithm is **Dijkstra's** algorithm, whose overall structure is the same as Prim's.
- Recall that Floyd's algorithm gave us the shortest paths, for every pair of nodes, in a (directed or undirected) weighted graph. It assumed an adjacency matrix representation and had complexity $O(|V|^3)$.
- <u>Dijkstra's</u> algorithm is also a <u>shortest-path</u> algorithm for (<u>directed or undirected</u>) weighted graphs. It finds all shortest <u>paths</u> from a fixed <u>start node</u>. Its complexity is the same as that of Prim's algorithm.

• The complete algorithm is:

```
function Dijkstra(\langle V, E \rangle, v_0)
    for each v \in V do
        dist[v] \leftarrow \infty
        prev[v] \leftarrow nil
    dist[v_0] \leftarrow 0
    Q \leftarrow \text{InitPriorityQueue}(V)
                                                                > priorities are distances
    while Q is non-empty do
        u \leftarrow \text{EJECTMIN}(Q)
        for each (u, w) \in E do
            if dist[u] + weight(u, w) < dist[w] then
                dist[w] \leftarrow dist[u] + weight(u, w)
                prev[w] \leftarrow u
                UPDATE(Q, w, dist[w])
                                                             ▷ rearranges priority queue
```

On the first loop, we only create the table

```
function DIJKSTRA(\langle V, E \rangle, v_0)
   for each v \in V do
         dist[v] \leftarrow \infty
        prev[v] \leftarrow nil
    dist[v_0] \leftarrow 0
    Q \leftarrow \text{InitPriorityQueue}(V)
    while Q is non-empty do
        u \leftarrow \text{EJECTMIN}(Q)
        for each (u, w) \in E do
             if dist[u] + weight(u, w) < dist[w] then
                 dist[w] \leftarrow dist[u] + weight(u, w)
                 prev[w] \leftarrow u
                 UPDATE(Q, w, dist[w])
```


Covered		a	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil

• Then we pick the first node as the initial one

```
function Dijkstra(\langle V, E \rangle, v_0)
    for each v \in V do
        dist[v] \leftarrow \infty
        prev[v] \leftarrow nil
    dist[v_0] \leftarrow 0
    Q \leftarrow \text{InitPriorityQueue}(V)
    while Q is non-empty do
        u \leftarrow \text{EJECTMIN}(Q)
        for each (u, w) \in E do
             if dist[u] + weight(u, w) < dist[w] then
                 dist[w] \leftarrow dist[u] + weight(u, w)
                 prev[w] \leftarrow u
                 UPDATE(Q, w, dist[w])
```


Covered		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil

• Then we pick the first node as the initial one

```
function DIJKSTRA(\langle V, E \rangle, v_0)
for each v \in V do
dist[v] \leftarrow \infty
prev[v] \leftarrow nil
dist[v_0] \leftarrow 0
Q \leftarrow INITPRIORITYQUEUE(V)
```

```
while Q is non-empty do u \leftarrow \operatorname{EJECTMIN}(Q) for each (u,w) \in E do if \operatorname{dist}[u] + \operatorname{weight}(u,w) < \operatorname{dist}[w] then \operatorname{dist}[w] \leftarrow \operatorname{dist}[u] + \operatorname{weight}(u,w) \operatorname{prev}[w] \leftarrow u \operatorname{UPDATE}(Q,w,\operatorname{dist}[w])
```


Covered		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost		∞	4	1	∞	∞
а	prev		nil	a	a	nil	nil

• Then eject the node with the shortest distance from the queue. Then, we update all the paths by adding 1.

```
function DIJKSTRA(\langle V, E \rangle, v_0)
for each v \in V do
dist[v] \leftarrow \infty
prev[v] \leftarrow nil
dist[v_0] \leftarrow 0
Q \leftarrow INITPRIORITYQUEUE(V)
```

```
while Q is non-empty do u \leftarrow \operatorname{EJECTMIN}(Q) for each (u,w) \in E do if \operatorname{dist}[u] + \operatorname{weight}(u,w) < \operatorname{dist}[w] then \operatorname{dist}[w] \leftarrow \operatorname{dist}[u] + \operatorname{weight}(u,w) \operatorname{prev}[w] \leftarrow u UPDATE(Q,w,\operatorname{dist}[w])
```


Covered		a	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost		∞	4	1	8	∞
а	prev		nil	a	а	nil	nil
م ما	cost		3	2		5	6
a,d	prev		d	d		d	d

 Our next node will be the one with the shortest path in overall (b)

```
function DIJKSTRA(\langle V, E \rangle, v_0)
for each v \in V do
dist[v] \leftarrow \infty
prev[v] \leftarrow nil
dist[v_0] \leftarrow 0
Q \leftarrow INITPRIORITYQUEUE(V)
```

```
while Q is non-empty do u \leftarrow \operatorname{EJECTMIN}(Q) for each (u,w) \in E do if \operatorname{dist}[u] + \operatorname{weight}(u,w) < \operatorname{dist}[w] then \operatorname{dist}[w] \leftarrow \operatorname{dist}[u] + \operatorname{weight}(u,w) \operatorname{prev}[w] \leftarrow u \operatorname{UPDATE}(Q,w,\operatorname{dist}[w])
```


Covered		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost		∞	4	1	∞	∞
а	prev		nil	a	a	nil	nil
a d	cost		3	2		5	6
a,d	prev		d	d		d	d
2 d c	cost		3			4	5
a,d,c	prev		d			С	С

Now, we continue evaluating from (c)

```
function DIJKSTRA(\langle V, E \rangle, v_0)

for each v \in V do

dist[v] \leftarrow \infty

prev[v] \leftarrow nil

dist[v_0] \leftarrow 0

Q \leftarrow INITPRIORITYQUEUE(V)
```

```
while Q is non-empty do u \leftarrow \operatorname{EJECTMIN}(Q) for each (u,w) \in E do if \operatorname{dist}[u] + \operatorname{weight}(u,w) < \operatorname{dist}[w] then \operatorname{dist}[w] \leftarrow \operatorname{dist}[u] + \operatorname{weight}(u,w) \operatorname{prev}[w] \leftarrow u UPDATE(Q,w,\operatorname{dist}[w])
```


Covered		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
2	cost		∞	4	1	∞	∞
a	prev		nil	a	а	nil	nil
2 d	cost		3	2		5	6
a,d	prev		d	d		d	d
2 d c	cost		3			4	5
a,d,c	prev		d			С	С
a d a b	cost					4	5
a,d,c,b	prev					C	C

We arrive at our last decision.

```
function DIJKSTRA(\langle V, E \rangle, v_0)
for each v \in V do
dist[v] \leftarrow \infty
prev[v] \leftarrow nil
dist[v_0] \leftarrow 0
Q \leftarrow INITPRIORITYQUEUE(V)
```

```
while Q is non-empty do u \leftarrow \operatorname{EJECTMIN}(Q) for each (u,w) \in E do if \operatorname{dist}[u] + \operatorname{weight}(u,w) < \operatorname{dist}[w] then \operatorname{dist}[w] \leftarrow \operatorname{dist}[u] + \operatorname{weight}(u,w) \operatorname{prev}[w] \leftarrow u UPDATE(Q,w,\operatorname{dist}[w])
```


Covered		a	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	8	8	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost		8	4	1	∞	∞
a	prev		nil	a	а	nil	nil
م ما	cost		3	2		5	6
a,d	prev		d	d		d	d
a d a	cost		3			4	5
a,d,c	prev		d			С	С
	cost					4	5
a,d,c,b	prev					С	С
a,d,c,b,e	cost						5
	prev						С

• Our complete tree is {a,d,c,b,e,f}

```
function DIJKSTRA(\langle V, E \rangle, v_0)
for each v \in V do
dist[v] \leftarrow \infty
prev[v] \leftarrow nil
dist[v_0] \leftarrow 0
Q \leftarrow INITPRIORITYQUEUE(V)
```

```
while Q is non-empty do u \leftarrow \operatorname{EJECTMIN}(Q) for each (u,w) \in E do if \operatorname{dist}[u] + \operatorname{weight}(u,w) < \operatorname{dist}[w] then \operatorname{dist}[w] \leftarrow \operatorname{dist}[u] + \operatorname{weight}(u,w) \operatorname{prev}[w] \leftarrow u \operatorname{UPDATE}(Q,w,\operatorname{dist}[w])
```


Covered		a	b	С	d	e	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	0	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
2	cost		∞	4	1	∞	∞
а	prev		nil	a	а	nil	nil
2 d	cost		3	2		5	6
a,d	prev		d	d		d	d
2 4 6	cost		3			4	5
a,d,c	prev		d			С	С
a d a b	cost					4	5
a,d,c,b	prev					С	С
a,d,c,b,e	cost						5
	prev						С
a,d,c,b,e,f	cost						
	prev						

Tracing paths

• The array prev is not really needed, unless we want to retrace the shortest paths from node a

• This tree is referred as the shortest-path tree

Spanning trees and Shortest-Path trees

 The shortest-path tree that results from Dijkstra's algorithm is very similar to the minima spaning tree.

- Exercise:
 - Which edge is missing in the minimal spanning tree?

 a,b,e,d, c (b,c)
 - Which edge is missing from the shortest-path tree? a, b, e, c, d (c,d)
 - Assume that you always started from node a.

Next lecture

• We will have a look to Huffman encoding for data compression