Rough paths programming test

Tuesday 23rd October, 2018

We will work with 2-dimensional paths $X_t = \left(X_t^{(1)}, X_t^{(2)}\right) \in \mathbb{R}^2$, and use the notation $X_{a,b} := X_b - X_a$. For fixed times $t_0 < t_1 < \ldots < t_n$, and (n+1) data points

$$X_{t_0}, X_{t_1}, \ldots, X_{t_n},$$

write code in Python to

- (i) Plot the path X_t obtained from the piecewise linear interpolation of the data points.
- (ii) Compute members of the level 2 signature of X_t , i.e. $S(X)_{t_i,t_j}^{1,1}, S(X)_{t_i,t_j}^{1,2}, S(X)_{t_i,t_j}^{2,1}$, or $S(X)_{t_i,t_j}^{2,2}$, for any $t_i < t_j$.
- (iii) Apply your code to plot the path X_t and compute $S(X)_{t_0,t_8}^{1,2}-S(X)_{t_0,t_8}^{2,1}$ for the following data

t_0	t_1	t_2	t_3	t_4	t_5	t_6
(1, 0)	(0.707, 0.707)	(0, 1)	(-0.707, 0.707)	(-1, 0)	(-0.707, -0.707)	(0, -1)

t_7	t_8	
(0.707, -0.707)	(1, 0)	

Hint: Use the following formulas

$$\int_{t_i}^{t_j} X_{t_i,r}^{(k)} \, \mathrm{d}X_r^{(l)} = \sum_{m=i}^{j-1} \int_{t_m}^{t_{m+1}} X_{t_i,r}^{(k)} \, \mathrm{d}X_r^{(l)}, \quad k, l \in \{1, 2\},$$

and

$$\int_{t_m}^{t_{m+1}} X_{t_i,r}^{(k)} dX_r^{(l)} = \int_{t_m}^{t_{m+1}} \left[X_{t_m}^{(k)} - X_{t_i}^{(k)} + \frac{r - t_m}{t_{m+1} - t_m} (X_{t_{m+1}}^{(k)} - X_{t_m}^{(k)}) \right] \left(\frac{X_{t_{m+1}}^{(l)} - X_{t_m}^{(l)}}{t_{m+1} - t_m} \right) dr$$

$$= \left(X_{t_{m+1}}^{(l)} - X_{t_m}^{(l)} \right) \left[\left(X_{t_m}^{(k)} - X_{t_i}^{(k)} \right) + \frac{1}{2} \left(X_{t_{m+1}}^{(k)} - X_{t_m}^{(k)} \right) \right].$$