Multi-Asset Portfolio Construction and Return Prediction with Dynamic Features

Applied Finance Project

Masters of Financial Engineering, UC Berkeley

Goals

I Robust Multi-Asset Return & Variance Prediction

II Economic Intuition: Understanding Key Drivers

III Utility Maximization

Roadmap

I <u>Data & Factor Construction</u>
Macro, Technical, Pattern, CSA & Regime

Prediction Models

Returns: Methodology, Results

Variance: Methodology, Results

Portfolio Optimization

Mean-Variance, Sharpe Maximisation Trading Cost, Frequency Assumptions

Asset Space

Daily Data from January, 2000 to December 2023

In Sample: Till 2016

Out of Sample: 2017 to 2023*

What will we try to do?
Weekly Prediction: Returns and
Variances

Actual Out of Sample period is last ~330 weeks

Portfolio Construction

Portfolio Construction

Macro

- Inflation
- Industrial Production
- Unemployment
- Economic Policy
 Uncertainty
- BBB-AAA yield spread
- Consumption-Wealth ratio
- Fama-French 5 factors
- Risk Free rate
- M1/M2 money supply

Technical

- Lagged Returns
- Denoised Returns
- Return Momentum
- Return Reversals
- Return Skew/Kurtosis/ Volatility
- RSI/MACD/ADX

Pattern

- Doji Star
- Breakaway
- Shooting star
- Harami cross
- Short Line Candle

Cross Section

- Returns (R) &
- lagged returns (L.R) of other assets

Regime

- Macro/ Technical/CSA all features used in determination
- 3 state and 5 state
 models were decided

Regime

- Macro/ Technical/CSA all features used in determination
- 3 state and 5 state
 models were decided

Two Approaches:

- 1. K-Means
- 2. Hidden Markov Models

Both models were trained on historical data, using our base feature universe and lagged features as our state-observations. Once trained, they were then used to predict the states for the training data that we will use in return prediction.

1. K-Means

Advantages:

- Simplicity
- Quick and Scalable Disadvantages:
- Static
- Sphericity of Clusters

Optimal number of clusters, k found using elbow method

2. <u>Hidden Markov Models</u>

Advantages:

- Temporal Dynamics
- Flexibility in Model Distributions
- Predictive Insights

Disadvantages:

- Complexity
- Markov Assumption

Optimal number of clusters found using AIC, BIC

i) <u>Data</u> & Factor Construction

Regime

- Macro/ Technical/CSA all features used in determination
- 3 state and 5 state
 models were decided

Hidden Markov Models

A is transition probability

 π is emission probability

Since x cannot be directly observed, one makes educated guesses based on observations y.

In our case, each y is our entire feature universe and x are the market regime states

With HMMs, you can answer three fundamental questions:

- 1. Evaluation: Given Y and $\lambda = (A, \pi)$, what is $P(Y | \lambda)$?
- 2. <u>Training</u>: Given Y, how do we learn the model parameters $\lambda = (A, \pi)$ to maximize $P(Y|\lambda)$?
- 3. Recognition: Given Y and $\lambda = (A, \pi)$, what is the best hidden state sequence X that best explains Y?

These problems are solved using a <u>Foward-Backward algorithm</u>, <u>Baum-Welch algorithm</u>, and <u>Viterbi algorithm</u> respectively.

i) <u>Data</u> & Factor Construction

Regime

- Macro/ Technical/CSA all features used in determination
- 3 state and 5 state
 models were decided

Hidden Markov Models: Gaussian

$$\lambda = (A, \pi)$$

$$\downarrow$$

$$\lambda = (A, \theta, \pi)$$

Same as before but with an added parameter for the distribution of our observation/emission probabilities, which here are assumed Gaussian.

$$ullet A = egin{bmatrix} 0.7 & 0.3 \ 0.4 & 0.6 \end{bmatrix} \ ullet heta = [\mathcal{N}(1,1), \mathcal{N}(5,1)] \ ullet \pi = [0.6,0.4] \ \end{pmatrix}$$

The Curse of Dimensionality

Macro

75 features:

- I. Levels **(15)**
- II. Monthly differences (15)
- III. 1/2/3-month lags (15 * 3)

Technical

28 features for each assets:

- I. Lagged Daily Differences(15)
- I. RSI, MACD, ADX (3)
- III. Return Momentums for past 7, 15, 30, 45-day cumulative returns (4)
- IV. Return Reversals using 7 &30-day (2)
- V. Skewness, Kurtosis, Volatility using 22-day lookback window (3)
- VI. Denoised return (1)

Pattern

61 features:

Categorical labels to convey presence/absence of certain patterns in the price/return historical time series

Cross Section

~1000 features

Cross sectional features, including lagged returns, patterns and technical features of other assets

Regime

2 features

We considered 3 state and 5 state models

Hidden Markov Models and k-Means Clustering utilized for determination of regimes

Framework Overview

II Predicting Returns

ii Prediction Models: Return Prediction

Approach: Kitchen-sink OOS explained variance loss

- Rolling: 600:1 weeks train-test window (OOS 2017 to 2023)
- Feature Reduction: PCA vs Lasso(OOS vs IS)
- Stability with number of features
- Linear vs Non-Linear
- Why weekly?
- What else did we try?

 Feature importance was determined using a step-by-step feature-removed regression/model.

^{*}M = Macro, T = Technical, P = Pattern, R = Regimes, C = Cross-sectional Returns

OOS R²

^{*}M = Macro, T = Technical, P = Pattern, R = Regimes, C = Cross-sectional Returns

ii Prediction Models: Return Prediction

Adding variables reduces OOS R squared?

<u>Univariate Lasso of Top Factors</u>

ii Prediction Models: Return Prediction

II Predicting Variance

ii Prediction Models: Variance Prediction

ii Prediction Models: <u>Variance Prediction</u> <u>Results</u>

22 days training: R Square						200 day training: R Square			
Asset	GARCH	Linear Regression on Garch	Linear Regression on GARCH and Regime	Linear Regression with feature selection		GARCH	Linear Regression on Garch	Linear Regression on GARCH and Regime	Linear Regression with feature selection
REITS	0.171	0.491	0.434	0.330	REITS	0.171	-0.010	-0.047	-0.212
EURUSD	-5.698	0.261	0.103	0.268	EURUSD	-5.698	0.128	0.111	-0.162
USDJPY	-2.054	-0.141	-0.253	0.080	USDJPY	-2.054	0.120	0.103	-0.031
GBPUSD	-2.150	-3.536	-5.108	0.073	GBPUSD	-2.150	0.033	0.019	-0.005
10Y Treasury	0.027	-1.171	-1.571	-0.006	10Y Treasury	0.027	0.026	0.028	-0.006
Equity Index	0.201	0.341	-9.37E+23	0.081	Equity Index	0.201	0.192	0.200	-0.032
Commodity Index	-0.362	0.166	0.038	0.221	Commodity Index	-0.362	0.215	0.214	-0.137
Oil	0.000	-0.122	-0.136	-0.049	Oil	0.000	-0.032	-0.040	-0.003
Soy	0.120	0.033	-4.30E+26	0.077	Soy	0.120	0.159	0.155	-0.112
Silver	0.090	-0.151	-1.92E+24	0.066	Silver	0.090	0.113	0.101	-0.107
Gold	-0.301	-0.397	-1.395	0.137	Gold	-0.301	0.091	0.059	-0.327
Corn	0.048	-0.028	-8.19E+24	-0.010	Corn	0.048	0.056	0.017	-0.062

Figure 6: R Square Gain for Volatilities

III Portfolio Optimization

Framework Overview

iii Portfolio Optimization

Methodology

- Mean Variance Optimization
- Sharpe Maximization

Weight constraints:

-Long-only: [0, 0.2]

-Long-short [-0.2, 0.2]

Transaction costs:

-60 bips per transaction (to account for futures margin holding, short selling and transactions)

iii Portfolio Optimization

Results

Conclusion

1. Patterns have good predictive power and significantly improve OOS R Square

2. Model is sensitive to training. If Lasso is not able to reduce the features sufficiently, the OOS Prediction is not good

3. Non-Linear movement of features can be better captured with CNN (short term) and LSTM(for inter-temporal relationship). We need to further explore that aspect.

4. GARCH, when added with other features, adds value in Variance Prediction.

Thank You