1. Considerem os vetores

$$\vec{v}_1 = \mathbf{i} \ \vec{v}_2 = \mathbf{i} + \mathbf{j} \in \vec{v}_3 = \mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

- Prove que $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ é LI
- Escreva os vetores \mathbf{i} e \mathbf{j} como combinação linear de $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$
- Escreva o vetor $2\mathbf{i} 3\mathbf{j} + 5\mathbf{k}$ como combinação linear de $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$
- Prove que $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ é uma base.

Solução Este foi o único que fizemos na aula. Para a primeira parte vamos mostrar que se

$$\vec{0} = a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3$$

então devemos ter a = b = c = 0.

Reescrevemos a fórmula acima usando os vetores canônicos: mathbfi, \mathbf{j} e \mathbf{k} e as definições de $\vec{v_i}$ temos:

$$\vec{0} = (a+b+c)\mathbf{i} + (b+c)\mathbf{j} + 3c\mathbf{k}$$

daí concluímos que:

$$3c = 0 \implies c = 0$$

$$b + c = 0 \implies b + 0 = 0 \implies b = 0$$

$$a + b + c = 0 \implies a = 0$$

que era o que precisávamos mostrar.

Para a segunda parte vemos que $\mathbf{i} = \vec{v}_1$ e $\mathbf{j} = \vec{v}_2 - \vec{v}_1$ e só para completar temos que $\mathbf{k} = \frac{1}{3}(\vec{v}_3 - \vec{v}_2)$

Assim o vetor $2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ é o mesmo que $2(\vec{v}_1) - 3(\vec{v}_2 - \vec{v}_1) + \frac{5}{3}(\vec{v}_3 - \vec{v}_2)$ que simplificando se escreve

$$5\vec{v}_1 - \frac{14}{3}\vec{v}_2 + \frac{5}{3}\vec{v}_3$$

A última parte do exercício pede para provar que o conjunto é uma base. Para ser base precisa mostrar que é um conjunto LI, o que já fizemos, e que o conjunto gera o espaço, isto é que todo vetor de V_3 se escreve como combinação linear de \vec{v}_i . Mas simplesmente fazemos como no último exercício.

$$a\mathbf{i} + b\mathbf{j} + c\mathbf{k} = a(\vec{v}_1) + b(\vec{v}_2 - \vec{v}_1) + \frac{c}{3}(\vec{v}_3 - \vec{v}_2)$$

etc.

2.

- Mostre que os vetores $(\sqrt{3},1,0), (1,\sqrt{3},1)$ e $(0,1,\sqrt{3})$ são LI.
- Mostre que os vetores $(\sqrt{2}, 1, 0)$, $(1, \sqrt{2}, 1)$ e $(0, 1, \sqrt{2})$ são LD.
- Encontre todos os valores reais possíveis de t para que os vetores (t, 1, 0), (1, t, 1) e (0, 1, t) sejam LD.

Solução: Vamos mostrar que o primeiro conjunto de vetores é LI. Então

$$\vec{0} = a(\sqrt{3}, 1, 0) + b(1, \sqrt{3}, 1) + c(0, 1, \sqrt{3})$$

Então

$$\sqrt{3}a + b = 0$$
$$a + \sqrt{3}b + c = 0$$
$$b + \sqrt{3}c = 0$$

Note que da primeira e terceira equações concluímos que a=c. A segunda equação fica: $2a+\sqrt{3}b=0$ podemos multiplicar esta equação por $\frac{\sqrt{3}}{2}$ obtendo $\sqrt{3}a+\frac{3}{2}b=0$. Agora subtraindo a primeira equação original temos $\frac{1}{2}b=0$. Então b=0 acarreta que a=0 e portanto também c=0. Pronto. Porque o outro conjunto é LD. Procedemos como anteriormente com a única diferença de que no lugar de $\sqrt{3}$ temos $\sqrt{2}$. as equações anteriores ficam assim:

$$\sqrt{2}a + b = 0$$
$$a + \sqrt{2}b + c = 0$$
$$b + \sqrt{2}c = 0$$

Novamente concluimos rapidamente que a=c da mesma forma que antes. Então a segunda equação fica: $2a+\sqrt{2}b=0$ se multiplicamos esta equação por $\frac{\sqrt{2}}{2}$ vemos que esta é exatamente a primeira equação. Ou seja para qualquer valor de b que escolhemos obtemos soluções para a e c. Por exemplo, a=-1 $b=\sqrt{2}$ e c=-1 é uma solução do sistema e a combinação linear dos vetores com estes coeficientes produz o vetor nulo.

3. Se três vetores de V_n , \vec{a} , \vec{b} e \vec{c} são LI. Verifique se cada uma das afirmações abaixo é verdadeira ou falsa.

- $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ e $\vec{c} + \vec{a}$ formam um conjunto LI.
- $\vec{a} \vec{b}$, $\vec{b} + \vec{c}$ e $\vec{c} + \vec{a}$ formam um conjunto LI.

Solução Vamos começar verificando que o segundo item é falso pois o primeiro vetor do conjunto $\vec{a}-\vec{b}$ é combinação linear dos outros dois. Então os vetores serão LD.

$$\vec{a} - \vec{b} = (\vec{c} + \vec{a}) - (\vec{b} + \vec{c})$$

O primeiro ítem é verdadeiro pois se

$$\vec{0} = \alpha(\vec{a} + \vec{b}) + \beta(\vec{b} + \vec{c}) + \gamma(\vec{c} + \vec{a}) = (\alpha + \gamma)\vec{a} + (\alpha + \beta)\vec{b} + (\beta + \gamma)\vec{c}$$

por causa da hipótese de independência de $\{\vec{a},\vec{b},\vec{c}\}$. Isto nos dá as equações:

$$\alpha + \gamma = 0$$

$$\alpha + \beta = 0$$

$$\beta + \gamma = 0$$

o que trivialmente implica que todos devem ser zero, provando que estes vetores são LI. Mais prá frente veremos alguns resultados que nos permitirão decidir mais rapidamente sobre a dependência linear dos conjuntos.