1	1. Check all the problem(s) that admit sparse solution(s):		1 point
	$egin{array}{c c} min & \ \mathbf{x}\ _1 & subject\ to\ A\mathbf{x} = \mathbf{b} \end{array}$	<u></u>	
	$egin{array}{cccc} \min_{\mathbf{x}} \ \ \mathbf{x}\ _2 \ \ subject \ to \ A\mathbf{x} = \mathbf{b} \end{array}$	<u> </u>	
	$egin{array}{c c} min & \ \mathbf{x}\ _0 & subject \ to \ A\mathbf{x} = \mathbf{b} \end{array}$	<u></u>	
	$\ \mathbf{x}\ _{p} subject\ to\ A\mathbf{x} = \mathbf{b} \ (p\ ext{is between 0 and 1})$	÷	
2	2. Natural image patches (unlike random noise) cannot be sparsely represented over a DCT dictionary.		1 point
	○ True		
	False		
3	3. In video surveillance applications, background is modeled as a matrix and moving parts are modeled	via a	1 point
	matrix.		
	○ sparse, low-rank ○ low-rank, low-rank		
	sparse, sparse		
	low-rank, sparse		
4.	Which one of the greedy algorithms discussed in class is designed to solve the following problem?	•	1 point
	$\min_{A,X} \ AX - B\ _F$		
	$subjectto\left\ X(:,i) ight\ _{0}\leq korall i$	~	
	Matching Pursuit		
	Method of Optimal Directions		
	This problem has a closed form solution and hence doesn't need to be solved in a greedy fashion.		
	Orthogonal Matching Pursuit		
5.	Check all the norms that are convex functions.		1 point
	$oxed{\ }$ The LO norm ($f(\mathbf{x}) = \ \mathbf{x}\ _0$)	*	
	$lacksquare$ The L1 norm ($f(\mathbf{x}) = \ \mathbf{x}\ _1$)	÷	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	÷	
	$lacksquare$ The L2 norm ($f(\mathbf{x}) = \ \mathbf{x}\ _2$)	•	

6. Which one of the following statements is true regarding the basis pursuit problem given by

Which one of the following statements is true regarding the basis pursuit problem given by
$$\mathbf{x}^* = \mathop{argmin}_{\mathbf{x}} \|\mathbf{x}\|_1 \quad subject\ to\ A\mathbf{x} = \mathbf{b}$$
?

- \bigcirc If one of the columns in A is identical to $\mathbf{b}
 eq \mathbf{0}$, then $\|\mathbf{x}^*\|_1 = 1$.
- \bigcirc If $\mathbf{b}=\mathbf{0}$ and A is full rank, then the problem has no solution since the constraint set becomes empty.
- $\bigcirc \mathbf{x}^*$ also minimizes the corresponding LASSO problem given by $min \|A\mathbf{x} \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1$.
- one of the above.
- 7. The singular value decomposition of the n imes n square matrix A is given by $A = U \Sigma V^T$. Check all correct

1 point

1 point

- $\$ The nuclear norm of A (given by the sum of absolute values of entries on the diagonal of Σ) is an upper bound on the rank of A.
- ightharpoonup If Σ has only one non-zero entry, then A is definitely a rank-1 matrix.
- ightharpoonup Matrices U and V are orthonormal bases for the n-dimensional space.
- 8. In this MATLAB assignment you will code-up the orthogonal matching pursuit (OMP) algorithm, as discussed in the lecture, to solve the following optimization problem:

1 point

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2 \quad subject \ to \ \|\mathbf{x}\|_0 \leq S.$$

In this exercise A=D+I , where $D_{ij}=sin(i+j)$ for $1\leq i,j\leq 10$ and I is the 10 imes 10 identity matrix. Use A along with $\mathbf{b}=[-2,-6,-9,1,8,10,1,-9,-4,-3]^T$, and S=3 to find the solution to the problem given above.

Your solution \mathbf{x}^* uses three columns of A in order to approximate \mathbf{b} . Type in the sum of the indices of these three columns. For example, if you find that your solution uses the first, third, and fifth columns of A then you must enter 9. (Hint: normc(A) normalizes the columns of A to a length of 1 in MATLAB.)