Automaten und Berechenbarkeit - Übung 02

FELIX TISCHLER, MARTRIKELNUMMER: 191498

Aufgabe 1

(a) $L_1 = \{w \in \{0,1\}^* : w \text{ enthält } 110 \text{ nicht als Teilwort}\}$

$$G_{1} = (\{0, 1\}, \{S, E, F\}, S, R)$$

$$\text{mit } R : \begin{cases} S & \to S0 \mid E1 \mid \lambda \mid 0 \mid 1 \\ E & \to F1 \mid S0 \mid 1 \mid 0 \\ F & \to F1 \mid 1 \mid \lambda \end{cases}$$

Beweis. " \subseteq " Jedes Wort startet bei S. In S können beliebig viele Nullen entstehen, oder abgebrochen werden mit λ , 0 oder 1. Wenn eine 1 erstellt wird und nicht abgebrochen wird, dann ist man in E. In E kann man mit 0,1 abbrechen oder beliebig Nullen erstellen. Sollte man in E eine Null erstellen und nicht abbrechen, dann landet man in F. In F sind keine Nullen mehr erlaubt, da jetzt das Wort die Form $(a,b)^*11$ besitzt. Somit ist 110 nicht als Teilwort erzeugbar. In F kann entweder mit λ oder 1 abgebrochen werden. Oder man kann beliebig viele Einsen erzeugen bevor man abbricht.

Beweis. " \supseteq " "jedes Wort ist erzeugbar" Siehe Anhang Automat zu Aufgabe 1 (a)

(b) $L_2 = \{w \in \{a, b\}^* : \text{der erste und der letzte Buchstabe sind in w sind gleich}\}$

$$G_{2} = (\{a, b\}, \{S, A_{1}, A_{2}, B_{1}, B_{2}\}, S, R)$$

$$\text{mit } R : \begin{cases} S & \rightarrow aA_{1} \mid bB_{1} \\ A_{1} & \rightarrow aA_{1} \mid bB_{2} \mid a \\ A_{2} & \rightarrow b \mid bB_{1} \mid aA_{2} \\ B_{1} & \rightarrow bB_{1} \mid aA_{2} \mid b \\ B_{2} & \rightarrow a \mid aA_{1} \mid bB_{2} \end{cases}$$

Beweis. " \subseteq " Alle Wörter starten in S. Wenn a der erste Buchstabe ist geht es in A_1 weiter. Andernfalls in B_1 . Von A_1 kann mit a beendet werden, oder ein weiteres a erzeugt werden oder ein b hinzugefügt werden. Wenn letzteres passiert geht man in B_2 die 2 in B_2 signalisiert, dass das b nicht der orginale Buchstabe war. Somit kann nur mit beendet werden oder ein b reproduziert werden (wobei man in B_2 dann wieder ist) oder mit einem a zu A_1 wieder gelangen. Die Argumentation gilt analog wenn man mit b starten würde.

Beweis. " \supseteq " Siehe Anhang Automat zu Aufgabe 1 (b)

(c) $L_3 = \{w \in \{a, b\}^* : \text{unter den ersten drei Buchstaben in w ist mindestens ein a} \}$

$$\operatorname{mit} R : \begin{cases} S & \rightarrow aE \mid bB_1 \\ B_1 & \rightarrow aE \mid bB_2 \\ B_2 & \rightarrow aE \\ E & \rightarrow a \mid b \mid \lambda \mid aE \mid bE \end{cases}$$

Beweis. " \subseteq " Alle Wörter starten bei S. Da die ersten 3 Buchstaben direkt in den ersten 3 Iterationen entstehen ist es notwendig die Bedingung mindestens ein a zu haben in diesen zu erfüllen. Somit kann man in S mit einem a beenden, oder mit einem a in E gelangen oder mit einem b zu B_1 gelangen. In E ist die Bedingung erfüllt, da man beim ersten Übergang in E immer ein a Benötigt und innerhalb der ersten 3 Iterationen zwingend in E landet. Somit kann man in E mit einem a, b oder λ beenden, oder beliebig a und b reproduzieren. Wenn man in B_1 ist, dann ist der erst Buchstabe b. Entweder beendet man mit einem a, oder man erzeugt ein a und geht dabei in E, oder man erzeugt ein weiteres b und gelangt in B_2 . In B_2 muss man zwingend ein a erzeugen beim Übergang in E oder mit einem a beenden. Da die ersten 2 Buchstaben ein b sind.