



## SISTEMAS EMPOTRADOS 3º Grado en Ingeniería Informática

# PRÁCTICA 1

# INICIACIÓN A LA HERRAMIENTA KEIL µVision 5

### 1.1. Objetivos

Los objetivos que se persiguen con la realización de esta práctica pueden resumirse en los siguientes puntos:

- Que el alumnado aprenda a instalar el software Keil μVision 5 con el pack que se va a utilizar en la placa Keil MCB2300, y los ejemplos que proporciona el fabricante.
- Familiarizarse con el entorno de programación cargando en la placa un ejemplo de los proporcionados por el propio software.
- Que conozcan las características básicas de la placa de desarrollo MCB2300 y la forma de conectar la placa y el adaptador ULINK a un ordenador.
- Aprender los pasos básicos para crear un proyecto en Keil μVision5 y simularlo en la herramienta software.

#### 1.2. Material utilizado

El material, tanto hardware como software, que se va a utilizar en esta práctica y, como mínimo, en las restantes prácticas de la asignatura se enumera a continuación:

- · Ordenador personal con Windows XP (mínimo).
- Fichero de instalación de la herramienta software *Keil μVision5*: mdk512.exe y el *pack* mdk79v512.exe para nuestra placa.
- Placa de desarrollo Keil MCB2300 (Figura 1-1) que da soporte a la familia ARM
  LPC23xx de Philips y permite crear programas de prueba para trabajar con

Curso 2020–2021 Página 1 de 5





arquitecturas más avanzadas. El Keil MCB2300 se puede conectar al PC usando el puerto serie o la interfaz JTAG. Esta tarjeta consta de dos interfaces CAN y dos interfaces serie que hacen de ésta el punto de partida para futuros proyectos ARM.



Figura 1-1: Placa de desarrollo MCB2300.

• Adaptador USB–JTAG de la familia ULINK™ de Keil (Figura 1-2). Permite conectar el puerto USB a la tarjeta de hardware de la computadora (por medio de JTAG o ACDS) para realizar la depuración de los programas mientras estos se están ejecutando. Este puede ser usado para: corrección de errores *on–chip* y para programar la memoria flash. Usando el *Keil uVision IDE/Debugger* con el adaptador UNLINK, es mucho más fácil crear, descargar, y probar aplicaciones integradas en hardware de tarjetas actuales.



Figura 1-2: Adaptador ULINK2 de Keil.

Curso 2020–2021 Página 2 de 5





 Dos cables USB A–B conectados a dos puertos USB disponibles del ordenador: uno para suministrar energía a la placa y el otro para cargar y depurar el programa conectado al adaptador ULINK2.

Figura 1-3: Cable USB tipo A a tipo B.

## 1.3. Desarrollo de la práctica

#### 1.3.1. Instalación del software

Ejecutar la instalación del programa Keil  $\mu$ Vision 5 como administrador con el fichero mdk512.exe. Seguidamente instalar el pack autoejecutable para nuestra placa mdk79v512.exe.

Con estas dos instalaciones tendremos configurado el software para el desarrollo de todas las prácticas a realizar en nuestra asignatura.

## 1.3.2. Proyecto de ejemplo

A continuación abriremos un proyecto sencillo de ejemplo suministrado por Keil para nuestra placa, llamado Blinky (guiños) que está situado por defecto en la siguiente ruta:

### C:\Keil\ARM\Boards\Keil\MCB2300\Blinky

Lo haremos a partir de la barra de menú:

Curso 2020–2021 Página 3 de 5





A continuación conoceremos los rasgos generales del entorno y aprendremos a compilar, cargar, depurar y ejecutar un programa en dicha placa. Cerrar el proyecto de forma que en el programa quede todo configurado para las características de nuestra placa.



Figura 1-4: Vista general del entorno Keil µVision 5.

Cerrar el proyecto de forma que en la herramienta software quede todo configurado para las características de nuestra placa.

### 1.3.3. Creación de un programa de aplicación

Crear un nuevo proyecto (practica1) en una carpeta personalizada para cada práctica. Copiar en esa carpeta del ejemplo Blinky anterior los ficheros siguientes:

- LPC2300.s: donde se encuentran todas las características del microcontrolador de nuestra placa.
- · retarget.c: para configurar el microcontrolador, entradas/salidas, estándar de C, stdio.h, etc.
- serial.c : para la configuración del puerto serie.

Crear un nuevo fichero fuente La imagen del entorno debe quedar como en la siguiente figura:

Curso 2020–2021 Página 4 de 5







Figura 1-5: Programa "hola mundo" en Keil μVision 5.

A continuación guardaremos (*save all*), compilaremos (*rebuild*) y lo ejecutaremos en el simulador/depurador (*Start/Stop Debug session*). Cuando lo ejecutemos (*run*) observaremos en el menú View Serial Windows UART #2 que el programa se ejecuta correctamente.



Figura 1-6: Ventana del resultado de la simulación en Keil µVision 5.

Curso 2020–2021 Página 5 de 5