Delaunay约束三角剖分: Delaunay稳定算法

L. Rognant*, J.M. Chassery**, S. Goze*, J.G Planès*

(*) 阿尔卡特航天工业公司 26 AV。J. F. Champollion B. P. 1187 31037图卢兹Cedex— 法国电话:33 (5) 34356950 Loic.Rognant@space.alcatel.fr

(**) 时间/图像 (格勒诺布尔信息与应用数学研究所) 阿尔贝·博尼奥研究所 约瑟夫·傅立叶大学-格勒诺布尔 38706 La Tronche Cedex-法国

摘要

Delaunay三角剖分因其在几何设计中的应用而广 为人知。该结构的衍生版本,即Delaunay约束三角剖 分,考虑了存在直线约束的三角网格问题。

Delaunay约束三角剖分在计算机辅助设计、地形测绘和有限元分析中非常有用。这项技术仍在发展中。我们提出了这种几何结构的分类。首先,我们描述用于介绍问题的不同工具。然后,我们介绍了不同的方法,突出了问题的不同观点。

我们将集中讨论Delaunay稳定方法。Delaunay稳定方法保留了约束三角剖分的Delaunay性质。每种方法都详细介绍了其算法、性能和属性。例如,我们展示了这些方法如何逼近构型的广义Voronoi图。

Delaunay稳定算法用于2.5维DEM设计。这项工作的目的是证明在规则DEM中使用地形约束而不添加新点可以保持地形形状。因此,生成的DEM可以更容易地解释,因为它的真实性被保留,并且网格仍然拥有所有的Delaunay三角剖分属性。

关键词: Delaunay三角网, Delaunay约束三角网,表面模型, Delaunay稳定算法, DEM应用。

1. 介绍

在Delaunay约束的表示之后

在三角剖分问题中,我们定义了工具来描述工作区域和算法行为分类。然后,我们揭示了不同的方法,从问题的基本重新定义到完全保留方法。其中,对Delaunay稳定方法进行了详细的算法描述。

最后,我们使用这些稳定的算法在重采样过程中以最低的成本提高和保持DEM的真实性。

2. 那个问题

约束三角剖分的问题是生成一个由约束边描述的 约束图。因此,每个约束边都是三角形的一部分。我 们将使用Delaunay三角形结构。让我们定义约束元素。

定义2.1 (约束字段)

约束域C_m是所有约束边的集合,除了在其末端与 其他顶点或边相交外,没有交点。

图2.1数据和约束字段示例

定义2.2 (多边形三角剖分)

多边形的三角剖分通过以下方式执行

2.1 工具和定义

定义2.3 (符合Delaunay的边)

Delaunay相容边是这样一条边:在Delaunay三角 剖分中插入其端点可确保该边显示为Delaunay边。

定义2.4 (约束管)

三角剖分T (S) 中的约束边E的管是T的被该边直接穿过的三角形的集合。

Tu (E) 三角形T T T E

该区域是约束合并方法的直接三角剖分影响的极限。这有助于保持Delaunay三角剖分(马尔可夫行为)的局部方面。

定义2.5 (约束域的精确验证) 如果C®特的每个元素都作为三角剖分的元素出现,则三角剖分T精确验证约束域。

因此,我们可以定义第一类合并方法:

约束强制方法:

该方法的原理是在不修改约束边的情况下,通过 修改直接邻域三角剖分来避免约束交叉边。

定义2.6 (约束字段验证不佳)

如果Comp的每个元素按原样或作为三角剖分中的分 区出现,则三角剖分T很难验证约束域。

这就引出了第二类合并方法。

约束打破方法:

约束打破原理是通过将约束边划分为Delaunay柔顺边来转换约束边。相应的算法主要是Delaunay稳定的。

定义2.7 (Delaunay稳定合并方法)如果得到的 三角剖分仍然是Delaunay三角剖分,则称Delaunay三 角剖分中的约束合并方法是稳定的。

命颢2.1 (Delaunay不稳定方法)

Delaunay中的一种约束合并方法 如果三角剖分的结果不再是关于空圆的三角剖分,则 称其为Delaunay不稳定的。 准则。

2.2语义

稳定与不稳定的区别

方法可以按其命名方式进行翻译。 必须强调的是,Delaunay约束

三角剖分 (DCT) 不同于约束Delaunay三角剖分 (CDT)。产生CDT

用Delaunay不稳定方法。相反, DCT是

Delaunay稳定算法的结果。

3. 带约束的Delaunay三角剖分

其原理是重新定义Delaunay三角网的建立准则。 因此,考虑到配置的可见性图形,我们定义了约束空 圆准则。由于保留了边的完整性,因此可以准确地验 证约束场。

定义3.1 (相互可见性)

如果没有约束边穿过它们的连接段,则两个顶点 vi和VJ是相互可见的。

定义3.2 (约束空圆标准)

T的三角形T (Vi, VJ, VK) 遵守约束空圆当且仅 当不存在T的其他顶点V, 使得:

- V包含在T的外接圆中。
- V不能同时从三个顶点Vi、VJ、VK看到。

图3.1:约束空圆标准 (V2, V3为约束边)

定义3.3 (约束下的Delaunay三角剖分)

如果所有三角形都遵守约束空圆准则,则该三角 剖分是约束Delaunay三角剖分。

因此,定义的三角剖分包含约束图作为其自身的 一部分。对约束字段进行精确验证。

重新定义了Voronoi图,并证明了约束Voronoi图 与约束Delaunay三角剖分之间的对偶性仍然存在。

定义3.4 (约束欧几里德距离)

如果d (V, V') 是从V到V'的欧几里德距离,则约束域的约束欧几里德距离由下式定义:

$$d_{C_{\text{gliff}}}(v,v') = \begin{cases} d_{C} & (V, V') 如果V和V'相互可见 \\ & |_{\infty} \end{cases}$$

定义3.5 (约束Voronoi图)

 $C_{\#\#}$ 的约束Voronoi图被定义为CVOR单元的集合。该计划被划分为受约束的Voronoi单元,其中每个I域由以下定义:

$$\begin{array}{c|cccc} \textit{CVOR} & \textit{(V)} & \textit{V} | & & 2 & |d_{\text{Shift}} & (\boldsymbol{\Xi}, \; \boldsymbol{\wedge}) \; \boldsymbol{\pi} \boldsymbol{\Pi} & & \\ & |DC_{\text{Shift}} & (\textit{V}, \; \textit{VI}) \; DC_{\text{Shift}} \; (\textit{V}, \; \textit{V} \; \boldsymbol{J}) \; \boldsymbol{V} \\ & & & & J \; \boldsymbol{V} \end{array}$$

4. 不稳定方法

首先,我们计算顶点和约束端点的Delaunay三角剖分。然后,我们合并缺少的约束边。主要原理是在保持边完整性的同时,对约束边的管进行重新分角。因此,生成的三角剖分精确地验证了约束场,但不再是Delaunay类型。

边缘两侧分别处理。使用相同的定理提出了许多 OFT方法,以保证该问题的现有解决方案。

定理4.1 (无内点的三角剖分)[5]对于每个边界 为简单不相交折线的区域,存在一个无内点的三角剖 分。

算法基于约束边的每一侧上的边交换。基本方法 测试每个解,而优雅方法随机交换边,从而利用问题 的有限规模来收敛到一个解。

图4.1 Delaunay不稳定强迫法

5. 稳定方法

Delaunay稳定方法是基于构造新的Delaunay柔顺边的截断方法。生成的三角剖分是Delaunay类型,但对约束场的验证效果不佳。

5.1 致密化

这种方法表明,约束不会出现在三角剖分中,因为它的采样不适合邻域。[8]中提出的方法分析了约束管,以计算自适应采样距离来离散约束边。

命题5.1 (采样距离)

设d (V, e) 为管顶点与约束边之间的距离。 因此,该集合的最佳采样距离为:

> P (E, T) 2*最小D (VI, E) 六土 (东)

定理5.1 (通过致密化进行边缘合并)

用采样距离p (e, t) 划分约束边使得边Delaunay 相容。

证明:约束边不会出现在三角剖分中,因为它不满足空圆标准。新的边尊重它,因为圆的直径不包含其他顶点。因此,我们确信划分的边是Delaunay相容的。□

5.2 二分法

该方法使用经典的分割约束边的原则,直到所有的新边都符合Delaunay规范。

定理5.2 (二分法的边合并)

它总是存在通过二分法的边划分,导致Delaunay 相容边。

证明:加密方法保证了收敛性。有一个台阶,从该台阶开始,所有的边缘尺寸都低于先前定义的致密化距离。所以它们是Delaunay兼容的。□

5.3 垂首投影

管的每个顶点都正交投影到约束边上。

定理5.3 (正交管投影合并)

通过插入管顶点的所有正交投影对约束边进行离 散化,使其符合Delaunay。

(简短)证明:在约束边上插入正交投影干扰了管三角形的空圆准则。因此,一步一步地,从约束边的开始到结束,我们将其分割为Delaunay兼容边。

提案5.2 (ARC成本)

用于将边缘与正交投影合并的弧的成本与边缘管 配置直接相关。

成本卡 (Tu (E)) 1

5.4 交叉合并

我们通过插入管与其相应约束边之间的所有交点 来分割约束边。

定理5.4 (管约束交点合并)

通过插入边与其管三角部分之间的所有交点来划 分约束边,使其符合Delaunay。

证明:每条相交的边属于两个Delaunay圆。因此,插入交点会干扰Delaunay准则,并产生Delaunay柔顺边。□

提案5.3 (ARCS成本)

插入管-边相交方法的弧的成本取决于管配置: 成本卡 (Tu (E))

5.5 对Voronoi图的影响

稳定方法产生Delaunay三角剖分。因此,这些DCT仍然具有作为对偶图的Voronoi图。

图5.1密实化方法对Voronoi图的影响

在图5.1中,我们注意到新的Voronoi图在合并到原始Voronoi图之后的轨迹。其典型形状显示了对应于约束边的广义Voronoi图的近似。近似的质量取决于划分距离(定理5.5)。

我们提出了定义广义Voronoi图所需的原则。因此,我们可以检查与DCT相关的Voronoi图和广义Voronoi图之间的联系。

定义5.1 (对象)

点、开线段和开多边形被视为简单元素。对象是 一组简单元素。

定义5.2 (广义Voronoï图)

广义Voronoi图是一组对象的最近邻域单元划分。

图5.2:多边形内部的广义Voronoï图示例。

"经典" Voronoï图被称为处理顶点的点状 Voronoï图。在图5.2中,我们可以看到广义Voronoï 图由圆弧和抛物线截面组成。

定理5.5 (点状图收敛于广义Voronoi图)[1]

设S是一组对象, S (H) 是S的离散化, 当离散化 步长减小到0时, S (H) 的点状Voronoi图收敛于S的 广义Voronoi图。

定理5.6 (Voronoi图与

Delaunay稳定方法)

对应于Delaunay稳定方法的三角剖分的Voronoï 图是构型的广义Voronoï图的点状近似。

5.6 性能分析

性能分析通过两种方式进行。首先,我们使用主观标准来比较这些方法。然后,我们对十种不同配置的增益进行了定量评估。

内 三角测量。

致密化是一种可靠的方法,但成本较高。正交投 影或相交插入方法也是可靠的,并且改进了弧成本, 因为它与管配置直接相关。二分法提供了最低的弧成 本,但我们无法预测最终的成本。

方法	确定性	弧成本
致密化	+	=
正交的	+	+/-
十字路口	+	+/-
二分法	-	+

表1:确定性/成本

方法	弧成本
致密化	(距离 (Tu (E), E)
二分法	-
正交投影	= $+1$
十字路口	=卡片 (T _u (E))

表2:Delaunay稳定方法的弧成本的界限

下表显示了在十个不同配置上计算的新ARC的平均成本。

		增益			
方法	МРЗД	登斯。	奥托。	因特斯。	迪乔。
登斯。	104,00		-209,52%	-219,02%	-336,97%
奥托。	33,60	67,69%		-3,07%	-41,18%
因特斯。	32,60	68,65%	2,98%		-36,97%
迪乔。	23,80	77,12%	29,17%	26,99%	

表1:10种不同配置的平均弧增益

5.7 例子

我们给出了不同的Delaunay稳定算法在相同配置上的行为。在下图中我们有:

- 1. 原始配置。
- 2. 增密法。
- 3. 二分法。

4. 正交投影法

5. 相交法。

图5.3

第一个晕影中的粗线勾勒出约束边管边界。图5.1是与密实化方法配置相关的Voronoï图。

6. 申请DEM

6.1 DEM设计

[7]中的Rippa表明,Delaunay三角剖分使网格的弯曲能量最小。因此,Delaunay三角剖分提供了最好的近似曲面重建。此属性对于来自一组散乱数据的地形曲面非常有用。此外,Delaunay三角剖分与Voronoï图的对偶性为开发DEM提供了许多新的视角。例如,在[8]中,Voronoï单元用于扩展在不同点测量的地面粗糙度。因此,使用2D Delaunay三角剖分来构建2.5D曲面。

这些性质引导我们寻找约束Delaunay三角剖分,保持其性质和性质。因此,我们使用开发的算法来设计DEM并提高其真实感。

约束线描述有助于绘制最终DEM的地形线(山脊、山谷)。

6.2 重采样问题

规则DEM的问题在于其采样方法遗漏了尺寸低于 采样率距离的地形特征。我们希望通过使用三角形设 计并在重新采样之前合并遗漏的地形约束来改进这些 DEM。

定义6.1 (地形链接)

地形连接是连接属于同一地形要素且相互可见的两个点(例如,同一地形要素中的两个点)的约束边

河流)。

地形连接不需要花费任何成本,因为沿其合并边缘所需的信息是从其末端的高度插入的。

6.3 应用

在这个例子中,我们在地形上使用了一个规则的 网格。它的采样率已经错过了谷值。因此,当以更好 的比例执行重采样时,将不再看到谷值。对于水文计 算或驾驶车辆时,这是一个相当大的问题。

图8.1展示了我们为提高DEM真实性而开发的三种策略。第一种是经典的方法,对网格进行重新采样以生成另一个网格。第二个添加了地形链接,最后一个我们在添加地形链接之前纠正(移动)了几个点。

图8.2显示了这些策略的结果。我们可以验证主谷的外观,而次谷仍然缺失。在最好的方法中,以非常低的成本(修改了整个DEM点的1.25%)很好地描述了两个山谷。

7. 结论和展望

我们已经表明,我们可以在约束Delaunay三角剖分的不同哲学之间进行选择。表3对此进行了总结。

我们已经特别描述了Delaunay稳定方法,该方法保持了所得到的三角剖分的Delaunay性质,并且保持了与Voronoï图的对偶性。这些方法的成本可以被评估和限制。

因此,我们不再受设计算法的限制来利用网格信息。

我们给出了DEM重采样的一个实际应用。结果表明,Delaunay约束三角剖分可以以很低的代价提高DEM的真实性,并在重采样过程中保持DEM的真实性。

8. 参考文献

- [1] Bertin E., 《Voronoï2D和3D图解: 图像分析应用》, 博士论文, TIMC-IMAG, 约瑟夫·傅立叶-格勒诺布尔大学1, pp。163, 1994
- [2] Chew L.P., "约束 Delaunay 三角剖分", Algorithmica, Vol. 4不。第1页97-108, 1989
- [3] De Floriani L., Falcidieno B., 和Pienovi C., "在任意形状域上定义的曲面的基于Delaunay的表示", 《计算机视觉、图形和图像处理》,第32页,127-140,1985
- [4] Edelsbrunner, H., "组合几何中的算法", 施普 林格出版社, 1988年
- [5] George P.L.和Borouchaki H., "Delaunay和邮寄的三角测量-成品应用", 爱马仕, 1997年
- [6] Preparata F.P. 和Shamos M.I., "计算几何-导论", 施普林格出版社, 1985年

- [7] Rippa S., "Delaunay三角剖分的最小粗糙度",论文,DEA de mathématiques appliquées,蒂姆西《计算机几何设计》,第7页,489-497,1990 马克-约瑟夫·傅立叶·格勒诺布尔大学,86,24 1994
- [8] Rognant L., 《自然中的模式化与有伤风化》, M.S。

图8.1 DEM重采样的不同策略

图8.2使用不同策略的重采样过程的结果

三角测量			对偶图	元素
名字	德劳内自然	的验证 _续		
准时Delaunay三角剖分	0	-	准时的沃罗诺伊	分
带约束的Delaunay三角剖分	n	精确的	受约束的Voronoï	点,弧
-	-	-	广义沃罗诺伊	点,弧,多边形
约束Delaunay三角剖分 (不稳定) - CDT	n	精确的	-	点,弧
Delaunay约束三角剖分(稳定)- DCT	0	贫穷的	广义Voronoï图的点状逼近	点,弧

表3约束Delaunay不同方法的总结