НИУ ВШЭ СПБ

ПАДИИ, 2 курс

Отчёт об исследовательской работе: «Применение случайных графов для проверки гипотезы согласия»

Студенты: Пожидаев Филипп, Афоничев Артемий

Оглавление

1 Введение		едение	2				
2	Опи	исание кода	3				
	2.1						
		стиками	3				
		2.1.1 KNN-граф	3				
		2.1.2 Дистанционный граф	3				
		2.1.3 Характеристики	3				
	2.2	Распараллеливание метода Монте-Карло	3				
		2.2.1 monte_carlo_step()	4				
		2.2.2 monte_carlo_multiprocessing()	4				
	2.3	Параллельная генерация датасета	4				
		2.3.1 generate_row(idx, seed)	4				
		2.3.2 generate_dataset(num_samples, seed)	4				
3	Опи	исание экспериментов	5				
	3.1	3.1 Исследование, как ведет себя числовая характеристика графа в зависи-					
	мости от параметров процедуры построения графа						
	3.2						
	мости от параметров распределения						
		$3.2.1$ Exp(λ), LogNormal(0, σ)	5				
		3.2.2 Normal(0, σ), SkewNormal(α)	6				
	3.3						
		$3.3.1$ Exp(λ), LogNormal(0, σ)	7				
		3.3.2 Normal(0, σ), SkewNormal(α)	9				
		3.3.3 Общие наблюдения	10				
		3.3.4 Выводы	10				
	3.4	Применение нескольких классификационных алгоритмов для фиксиро-					
		ванного п	11				
		3.4.1 $n = 25$	11				
		$3.4.2 n = 100 \dots \dots$	11				
		$3.4.3 n = 500 \dots \dots \dots \dots \dots$	12				
4	Рез	ультаты	14				
5	Зак	лючение	15				

Введение

Отчёт работы по исследованию свойств случайных графов (КNN и дистанционных), построенных на основе различных вероятностных распределений.

Цель работы: исследовать поведение числовых характеристик случайных графов в зависимости от параметров распределений и параметров построения графов. Задачи:

- 1. Изучить поведение числа треугольников, хроматического и кликового числа в зависимости от параметров распределений;
- 2. Исследовать влияние параметров процедуры построения графа и размера выборки;
- 3. Провести эксперименты с ML классификаторами.

Описание кода

В данной главе мы рассмотрим алгоритмы и реализованные функции для проведения экспериментов.

2.1 Построение KNN-графа и дистанционного графа, работа с их характеристиками

2.1.1 КММ-граф

Функция build_knn_graph(k, vertices) реализует алгоритм построения KNN-графа на основе заданного набора вершин vertices и параметра k, определяющего количество ближайших соседей для каждой вершины.

Используется алгоритм NearestNeighbors из библиотеки scikit-learn, который для каждой вершины находит k+1 ближайших соседей (включая саму вершину). Создаётся граф с помощью библиотеки networkx (nx.Graph()).

2.1.2 Дистанционный граф

Функция build_distance_graph(d, vertices) строит граф, в котором вершины соединяются рёбрами, если расстояние между ними не превышает заданного порога d. Для каждой пары вершин (i,j) проверяется условие $|\mathbf{v}[i] - \mathbf{v}[j]| \leq d$. Если условие выполняется, между вершинами добавляется ребро.

2.1.3 Характеристики

Функция compute_stats(arr) вычисляет основные статистики массива данных: среднее значение, дисперсию, стандартное отклонение и стандартную ошибку.

Функции, предназначенные для вычисления минимальной степени, количества треугольников, хроматического числа, кликового числа, размера максимального независимого множества, числа доминирования, минимального размера кликового покрытия являются обёрткой над существующими в networkx методами класса nx.Graph.

2.2 Распараллеливание метода Монте-Карло

В данном разделе описывается реализация метода Монте-Карло с использованием параллельных вычислений для эффективного статистического анализа графовых структур. Предложенный подход позволяет ускорить проведение множественных экспери-

ментов за счёт распределения вычислений между несколькими ядрами процессора. Алгоритм состоит из двух основных функций. Они принимают следующий набор аргументов — n, distr_param, graph_param, gen_func, graph_func, res_func (однако, второй в самом начале на вход ещё подаётся параметр M).

2.2.1 monte_carlo_step()

Выполняет отдельное испытание (одно повторение метода Монте-Карло). Является атомарной операцией для параллелизации.

Выполняет следующие шаги для одного испытания:

- 1. Генерирует набор вершин с помощью функции gen_func с заданными параметрами распределения distr_param;
- 2. Строит граф указанным методом (graph_func) с параметром graph_param;
- 3. Вычисляет и возвращает требуемую характеристику графа с помощью функции res_func.

2.2.2 monte_carlo_multiprocessing()

Организует параллельное выполнение множества испытаний. Использует библиотеку joblib для распараллеливания, задействует все доступные ядра процессора, а результат всех испытаний собирает в единый массив.

2.3 Параллельная генерация датасета

В данном разделе описывается алгоритм параллельной генерации датасета для исследования характеристик случайных графов. Реализация использует многопоточные вычисления для эффективного создания большого объема данных.

2.3.1 generate_row(idx, seed)

Генерирует дистанционный граф на n вершинах (n выбирается случайно из заданного набора N), считает ключевые характеристики.

2.3.2 generate_dataset(num_samples, seed)

Использует все ядра процессора, автоматически распределяет задачи, выводит прогресс бар с помощью модуля tqdm, собирает результат в единый pd.DataFrame.

Описание экспериментов

Теперь перейдем к самим экспериментам.

3.1 Исследование, как ведет себя числовая характеристика графа в зависимости от параметров процедуры построения графа

В случае с дистанционным графом было установлено, что при росте n и d числовая характеристика и метрики качества растут, но у d есть критический порог, после которого метрики растут незначительно или же вовсе не растут, этот порог для большинства n равен d=0.8. Это касается всех распределений (Exp, LogNormal, Normal, SkewNormal), но при анализе Normal и SkewNormal был замечен сдвиг порога ближе к единице.

Дальнейшее исследование проводилось с фиксированным d, равным:

- 0.8 для Exp, LogNormal;
- 0.9 для Normal, SkewNormal.

В КNN-графе было замечено, что метрики качества сильно зависят от n, а при больших n качество оказалось не хуже, чем в дистанционном графе, поэтому именно он будет участвовать в дальнейших экспериментах, начиная с исследования важности характеристик для классификации.

Стоит отметить, что изначальные попытки извлечения какой-то информации о KNN-графе из его минимальной степени вершины являются артефактом условия исследовательской работы, поэтому было принято решение рассмотреть количество треугольников для всех распределений.

3.2 Исследование, как ведет себя числовая характеристика графа в зависимости от параметров распределения

3.2.1 Exp(λ), LogNormal(0, σ)

КИИ-граф:

• λ особо не влияет на характеристику KNN-графа, при фиксированном σ и изменении λ метрики качества остаются примерно равными;

• σ довольно сильно влияет на результат, чем больше σ , тем «левее» значения $\text{Exp}(\lambda)$ и «правее» значения LogNormal(0, σ) \Rightarrow мы можем классифицировать их с большей точностью.

Дистанционный граф:

- Чем больше λ и σ , тем меньше мощность;
- λ влияет на характеристику дистанционного графа значительнее, чем σ ;
- При достаточно больших λ , то есть $\lambda > 1$ мощность нулевая.

3.2.2 Normal(0, σ), SkewNormal(α)

КИИ-граф:

• Мощность больше зависит от α , чем от σ . Ошибка первого рода почти везде одинаковая.

Дистанционный граф:

- Чем больше α и σ , тем больше мощность. Обе переменные вносят хороший вклад в рост характеристик;
- Можно заметить, как увеличение α сдвигает график для SkewNormal(α) «правее», а увеличение σ сдвигает график для Normal(0, σ) «левее». Этот факт может помочь в будущем с точностью классификации.

3.3 Исследование важности характеристик, как признака классификации

3.3.1 Exp(λ), LogNormal(0, σ)

Посмотрим на распределение таргета относительно признаков:

Выводы:

- Самые важные признаки для классификации: chromatic_number и clique_number (в нашем случае это одно и то же), они достаточно хорошо разделяют данную выборку на два класса при всех n;
- ullet При росте n важность характеристик не меняется, по-прежнему самый важный chromatic_number.

Между признаками прослеживаются зависимости:

- domination_number линейно зависит от chromatic_number;
- max_independent_set_size и min_clique_cover_size (в нашем случае это одно и то же) квадратично зависят от domination_number;

• max_independent_set_size квадратично зависит от chromatic_number.

Посмотрим на корреляции признаков:

Выводы:

- В целом, тут мы можем найти подтверждения нашим выводам по pair plot;
- Больше всего с таргетом distribution коррелируют chromatic_number и clique_number;
- domination_number имеет сильную корреляцию со всеми остальными признаками и очень слабую с таргетом;
- max_independent_set_size и min_clique_cover_size имеют слабую корреляцию с таргетом, но довольно сильно зависят от других характеристик.

${\bf 3.3.2}$ Normal(0, σ), SkewNormal(lpha)

Посмотрим на распределение таргета относительно признаков:

Аналогичные наблюдения.

Посмотрим на корреляции признаков:

Выводы:

- Получилось, что самая сильная корреляция с таргетом у max_independent_set_size и min_clique_cover_size;
- domination_number имеет сильную корреляцию со всеми остальными признаками и очень слабую с таргетом.

3.3.3 Общие наблюдения

Были предприняты попытки сгенерировать больше признаков путём нормирования, деления, возведения в квадрат и других операций, которые показались логичными в контексте конкретных признаков и их зависимости. В итоге особого прироста эффективности данная эвристика не дала, поэтому было принято решение обучать модели на изначальном датасете, взяв n в качестве гиперпараметра модели.

3.3.4 Выводы

- С поставленной задачей лучше всего справляется листанционный граф с параметром d=0.8 для $Exp(\lambda)$, LogNormal(0, σ) и d=0.9 для Normal(0, σ), SkewNormal(α);
- Значимость признаков не зависит от n, но при больших n разделение становится более явным.

3.4 Применение нескольких классификационных алгоритмов для фиксированного n

В данном исследовании строился дистанционный граф с параметром d=0.8 для $\text{Exp}(\lambda)$, LogNormal(0, σ) и d=0.9 для Normal(0, σ), SkewNormal(α), затем считались его характеристики и для фиксированного n применялись три модели:

- LogisticRegression
- SVM
- RandomForestClassifier

3.4.1 n = 25

 $\text{Exp}(\lambda)$, LogNormal(0, σ)

Таблица 3.1: Метрики разных моделей

модель	мощность	ошибка первого рода
LogisticRegression	0.86	0.15
SVM	0.86	0.14
RandomForest	0.79	0.16

В таблице 3.1 приведены метрики для $Exp(\lambda)$, LogNormal(0, σ), выводы:

- Лучшие метрики показала SVM;
- Самый важный признак хроматическое число.

Normal(0, σ), SkewNormal(α)

Таблица 3.2: Метрики разных моделей

модель	мощность	ошибка первого рода
LogisticRegression	0.59	0.23
SVM	0.64	0.28
RandomForest	0.68	0.32

В таблице 3.2 приведены метрики для Normal(0, σ), SkewNormal(α), выводы:

- Лучшие метрики показала логистическая регрессия;
- Самый важный признак хроматическое число.

$3.4.2 \quad n = 100$

 $\text{Exp}(\lambda)$, LogNormal(0, σ)

В таблице 3.3 приведены метрики для $Exp(\lambda)$, LogNormal(0, σ), выводы:

- Лучшие метрики показала SVM;
- Самый важный признак хроматическое число.

Таблица 3.3: Метрики разных моделей

модель	мощность	ошибка первого рода
LogisticRegression	0.92	0.05
SVM	0.94	0.06
RandomForest	0.92	0.07

Normal(0, σ), SkewNormal(α)

Таблица 3.4: Метрики разных моделей

модель	мощность	ошибка первого рода
LogisticRegression	0.80	0.19
SVM	0.81	0.22
RandomForest	0.79	0.19

В таблице 3.4 приведены метрики для Normal(0, σ), SkewNormal(α), выводы:

- Лучшие метрики показала логистическая регрессия с новыми признаками;
- Самый важный признак минимальное кликовое покрытие разделить на хроматическое число.

$3.4.3 \quad n = 500$

 $\text{Exp}(\lambda)$, LogNormal(0, σ)

Таблица 3.5: Метрики разных моделей

модель	мощность	ошибка первого рода
LogisticRegression	1.0	0
SVM	1.0	0
RandomForest	1.0	0

В таблице 3.5 приведены метрики для $Exp(\lambda)$, LogNormal(0, σ), выводы:

- При достаточно больших n=500 все алгоритмы могут определить гипотезу с очень хорошей вероятностью;
- Самый важный признак хроматическое число.

Normal(0, σ), SkewNormal(α)

В таблице 3.6 приведены метрики для Normal(0, σ), SkewNormal(α), выводы:

- Лучшие метрики показала логистическая регрессия с новыми признаками;
- Самый важный признак минимальное кликовое покрытие разделить на хроматическое число.

Таблица 3.6: Метрики разных моделей

модель	мощность	ошибка первого рода
LogisticRegression SVM	0.98 0.98	0.02 0.02
RandomForest	0.96	0.03

Результаты

Сделаем небольшие сводные таблицы с наилучшими результатами.

Таблица 4.1: Результаты измерений для $\mathrm{Exp}(\lambda)$, LogNormal(0, σ)

n	мощность	ошибка первого рода
25	0.86	0.14
100	0.94	0.06
500	1.0	0

Таблица 4.2: Результаты измерений для Normal(0, σ), SkewNormal(α)

n	мощность	ошибка первого рода
25	0.59	0.23
100	0.80	0.19
500	0.98	0.02

Заключение

В ходе работы было установлено, что числовые характеристики случайных графов достаточно сильно влияют на распределение первоначальной выборки.

Основные выводы:

- Рост n значительно влият на качество классификатора, при больших n мы можем делать более точные предсказания;
- Для некоторых распределений помогает преобразование старых и генерация новых признаков;
- Основные характеристики хроматическая число и ее производные.