

Suppose that we gathered data from last year's final chemistry exam and found that it followed a normal distribution with a mean of 60 and a standard deviation of 10. What proportion of students scored less than 49 on the exam?

$$P(X < 49) = ?$$

$$z = \frac{x - 60}{10}$$

STANDARD NORMAL DISTRIBUTION

EXAMPLE

Suppose that we gathered data from last year's final chemistry exam and found that it followed a normal distribution with a mean of 60 and a standard deviation of 10. What proportion of students scored less than 49 on the exam?

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379

EXAMPLE

When measuring the heights of all students at a local university, it was found that it was normally distributed with a mean height of 5.5 feet, and a standard deviation of 0.5 feet. What proportion of students are between 5.81 feet, and 6.3 feet tall?

EXAMPLE

When measuring the heights of all students at a local university, it was found that it was normally distributed with a mean height of 5.5 feet, and a standard deviation of 0.5 feet. What proportion of students are between 5.81 feet, and 6.3 feet tall?

5.81 6.3

P (0.62 < Z < 1.6) = 0.2128

PRACTICE QUESTIONS

The normal distribution below has a what area is contained between 70 or co

$$\mu = 70$$

$$\sigma = 10$$

PRACTICE QUESTIONS

2 For the normal distribution below, appetition below, appetition between -2 and 1?

$$\mu = 0$$

 $\sigma = 1$

PRACTICE QUESTIONS

3 For the uniform distribution below, what proportion of values are located between 12.3 and 18.6?

Probability Distribution

Probability Distribution

Graphical representation of variable & respective probabilities of variable.

Types of Probability Distribution

- > Discrete Probability Distribution
- > Continuous Probability Distribution

Discrete Probability Distribution

The daily sales of large flat panel TVs at a store (X)

	×	P(X=x)			
	0	0.40			
L	1	0.25			
	2	0.20			
	3	0.05			
	4	0.10			

What is the probability of a sale?

What is the probability of selling at least three TVs?

, Data

Probability

Variable:

- Chance of occurrence.
- Ex: rolling a die, tossing a coin

Random Variable:

A random variable is probability associated each possibility of variable .

It is a random because there is some chance associated with each possible value.

Probability = No. of interested events/total no. of outcomes

- · Always probability value lies between 0 to1.
- Sum of all Probabilities =1

Suppose you have randomly picked a card from the card deck. What is the probability that this card will be?

- Bigger than 10?
- Equal to or Bigger than 10?
- Smaller than 3
- Greater than 4 and less than 8

If A & B are two independent events

$$P(A \& B) = P(A) * P(B)$$

Ex: probability of getting Red & 9

$$P(A \text{ or } B) = P(A) + P(B) - P(A \& B)$$

Ex: probability of getting Red or 9

scilence solven

COVARIANCE

$$COV(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (n-1)}$$

CORRELATON

$$ho_{X,Y} = rac{ ext{cov}(X,Y)}{\sigma_X \sigma_Y}$$

where:

- · cov is the covariance
- ullet σ_X is the standard deviation of X
- ullet σ_Y is the standard deviation of Y

CORRELATON

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

r = correlation coefficient

 x_i = values of the x-variable in a sample

= mean of the values of the x-variable

 y_i = values of the y-variable in a sample

 \bar{y} = mean of the values of the y-variable

Range	Strength of association
0	No association
0 to ±0.25	Negligible association
±0.25 to ±0.50	Weak association
±0.50 to ±0.75	Moderate association
±0.75 to ±1	Very strong association
±1	Perfect association