#### PROGRAM STUDI TEKNIK INFORMATIKA – S1

FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO



<a href='https://www.freepik.com/vectors/technology'>Technology vector created by sentavio - www.freepik.com</a>

# DATA MINING "Klastering"

TIM PENGAMPU DOSEN DATA MINING
2023

### **Kontak Dosen**

- Junta Zeniarja, M.Kom
- Email: junta@dsn.dinus.ac.id
- Youtube : <a href="https://www.youtube.com/JuntaZeniarja">https://www.youtube.com/JuntaZeniarja</a>
- Scholar : <a href="http://bit.do/JuntaScholar">http://bit.do/JuntaScholar</a>







#### Introduction

• Clustering berkaitan dengan pengelompokan bersama objek yang mirip satu sama lain dan berbeda dengan objek milik cluster lain (Bramer, 2020).

TEKNIK INFORMATIKA – S1

PROGRAM STUDI

- Analisis cluster adalah metode data mining deskriptif yang paling terkenal.
  Dengan adanya matriks data yang terdiri dari n pengamatan (baris) dan variabel
  p (kolom), tujuan dari analisis cluster adalah untuk mengelompokkan
  pengamatan menjadi kelompok-kelompok yang secara internal homogen
  (kohesi internal) dan heterogen dari kelompok ke kelompok (pemisahan
  eksternal). (Guidici, 2009).
- Yang kami maksud dengan pengelompokan adalah metode untuk membagi sekumpulan data (catatan / tuple / vektor / instance / objek / sampel) menjadi beberapa kelompok (cluster), berdasarkan kesamaan tertentu yang telah ditentukan sebelumnya. (Goronescu, 2011).

### **Introduction [2]**

- Pengelompokan mengacu pada pengelompokan rekaman, observasi, atau kasus ke dalam kelas objek serupa. Cluster adalah kumpulan record yang serupa satu sama lain, dan berbeda dengan record di cluster lain.
- Algoritma pengelompokan berusaha untuk menyegmentasikan seluruh kumpulan data menjadi subkelompok atau cluster yang relatif homogen, di mana kesamaan catatan dalam cluster dimaksimalkan dan kesamaan dengan catatan di luar cluster diminimalkan (Larose, 2005).



#### **Algoritma Klastering**

- Klastering adalah pengelompokkan data, hasil observasi dan kasus ke dalam class yang mirip.
- Suatu klaster (cluster) adalah koleksi data yang mirip antara satu dengan yang lain, dan memiliki perbedaan bila dibandingkan dengan data dari klaster lain.
- Perbedaan utama algoritma klastering dengan klasifikasi adalah klastering tidak memiliki target/class/label, jadi termasuk unsupervised learning.
- Klastering sering digunakan sebagai tahap awal dalam proses data mining, dengan hasil klaster yang terbentuk akan menjadi input dari algoritma berikutnya yang digunakan.

#### **Jenis – Jenis Klastering**

William membagi algoritma clustering ke dalam kelompok besar seperti berikut:

- 1. Partitioning algorithms: algoritma dalam kelompok ini membentuk bermacam partisi dan kemudian mengevaluasinya dengan berdasarkan beberapa kriteria.
- 2. Hierarchy algorithms: pembentukan dekomposisi hirarki dari sekumpulan data menggunakan beberapa kriteria.
- 3. Density based: pembentukan cluster berdasarkan pada koneksi dan fungsi densitas.
- 4. Grid-based: pembentukan cluster berdasarkan pada struktur multiple level granularity
- 5. Model-based: sebuah model dianggap sebagai hipotesa untuk masing-masing cluster dan model yang baik dipilih diantara model hipotesa tersebut.

# **Contoh Klastering Bunga Iris**

| Row No. | id    | label       | a1    | a2    | a3    | a4    |
|---------|-------|-------------|-------|-------|-------|-------|
| 1       | id_1  | Iris-setosa | 5.100 | 3.500 | 1.400 | 0.200 |
| 2       | id_2  | Iris-setosa | 4.900 | 3     | 1.400 | 0.200 |
| 3       | id_3  | Iris-setosa | 4.700 | 3.200 | 1.300 | 0.200 |
| 4       | id_4  | Iris-setosa | 4.600 | 3.100 | 1.500 | 0.200 |
| 5       | id_5  | Iris-setosa | 5     | 3.600 | 1.400 | 0.200 |
| 6       | id_6  | Iris-setosa | 5.400 | 3.900 | 1.700 | 0.400 |
| 7       | id_7  | Iris-setosa | 4.600 | 3.400 | 1.400 | 0.300 |
| 8       | id_8  | Iris-setosa | 5     | 3.400 | 1.500 | 0.200 |
| 9       | id_9  | Iris-setosa | 4.400 | 2.900 | 1.400 | 0.200 |
| 10      | id_10 | Iris-setosa | 4.900 | 3.100 | 1.500 | 0.100 |
| 11      | id_11 | Iris-setosa | 5.400 | 3.700 | 1.500 | 0.200 |
| 12      | id_12 | Iris-setosa | 4.800 | 3.400 | 1.600 | 0.200 |
| 13      | id_13 | Iris-setosa | 4.800 | 3     | 1.400 | 0.100 |
| 14      | id_14 | Iris-setosa | 4.300 | 3     | 1.100 | 0.100 |
| 15      | id_15 | Iris-setosa | 5.800 | 4     | 1.200 | 0.200 |
| 16      | id_16 | Iris-setosa | 5.700 | 4.400 | 1.500 | 0.400 |
| 17      | id_17 | Iris-setosa | 5.400 | 3.900 | 1.300 | 0.400 |
| 18      | id_18 | Iris-setosa | 5.100 | 3.500 | 1.400 | 0.300 |
| 19      | id_19 | Iris-setosa | 5.700 | 3.800 | 1.700 | 0.300 |
| 20      | id_20 | Iris-setosa | 5.100 | 3.800 | 1.500 | 0.300 |
| 21      | id_21 | Iris-setosa | 5.400 | 3.400 | 1.700 | 0.200 |
| 22      | id_22 | Iris-setosa | 5.100 | 3.700 | 1.500 | 0.400 |
| 23      | id_23 | Iris-setosa | 4.600 | 3.600 | 1     | 0.200 |
| 24      | id 24 | Iris-setosa | 5.100 | 3.300 | 1.700 | 0.500 |

# **Contoh: Klastering Bunga Iris (Plot)**



## **Contoh: Klastering Bunga Iris (Table)**

| Row No. | id    | label       | cluster   | a1    | a2    | a3    | a4    |
|---------|-------|-------------|-----------|-------|-------|-------|-------|
| 1       | id_1  | Iris-setosa | cluster_0 | 5.100 | 3.500 | 1.400 | 0.200 |
| 2       | id_2  | Iris-setosa | cluster_0 | 4.900 | 3     | 1.400 | 0.200 |
| 3       | id_3  | Iris-setosa | cluster_0 | 4.700 | 3.200 | 1.300 | 0.200 |
| 4       | id_4  | Iris-setosa | cluster_0 | 4.600 | 3.100 | 1.500 | 0.200 |
| 5       | id_5  | Iris-setosa | cluster_0 | 5     | 3.600 | 1.400 | 0.200 |
| 6       | id_6  | Iris-setosa | cluster_0 | 5.400 | 3.900 | 1.700 | 0.400 |
| 7       | id_7  | Iris-setosa | cluster_0 | 4.600 | 3.400 | 1.400 | 0.300 |
| 8       | id_8  | Iris-setosa | cluster_0 | 5     | 3.400 | 1.500 | 0.200 |
| 9       | id_9  | Iris-setosa | cluster_0 | 4.400 | 2.900 | 1.400 | 0.200 |
| 10      | id_10 | Iris-setosa | cluster_0 | 4.900 | 3.100 | 1.500 | 0.100 |
| 11      | id_11 | Iris-setosa | cluster_0 | 5.400 | 3.700 | 1.500 | 0.200 |
| 12      | id_12 | Iris-setosa | cluster_0 | 4.800 | 3.400 | 1.600 | 0.200 |
| 13      | id_13 | Iris-setosa | cluster_0 | 4.800 | 3     | 1.400 | 0.100 |
| 14      | id_14 | Iris-setosa | cluster_0 | 4.300 | 3     | 1.100 | 0.100 |
| 15      | id_15 | Iris-setosa | cluster_0 | 5.800 | 4     | 1.200 | 0.200 |
| 16      | id_16 | Iris-setosa | cluster_0 | 5.700 | 4.400 | 1.500 | 0.400 |
| 17      | id_17 | Iris-setosa | cluster_0 | 5.400 | 3.900 | 1.300 | 0.400 |
| 18      | id_18 | Iris-setosa | cluster_0 | 5.100 | 3.500 | 1.400 | 0.300 |
| 19      | id_19 | Iris-setosa | cluster_0 | 5.700 | 3.800 | 1.700 | 0.300 |
| 20      | id_20 | Iris-setosa | cluster_0 | 5.100 | 3.800 | 1.500 | 0.300 |

#### **Cluster Model**

Cluster 0: 50 items Cluster 1: 39 items Cluster 2: 61 items

Total number of items: 150

### **Latihan Soal (Kuis)**

 Carilah 3 paper tentang perkembangan aplikasi Data Mining menggunakan Klastering minimal 5 tahun terakhir (terbit antara thn 2017 – 2022), kemudian review paper tersebut, selanjutnya tuliskan kedalam paper A4 1 halaman penuh.

#### Referensi

- 1. Kusrini, Taufiq Emha, Algoritma Data Mining, *Penerbit Andi*, 2009.
- Ian H. Witten, Frank Eibe, Mark A. Hall, Data mining: Practical Machine Learning Tools and Techniques 4th Edition, *Elsevier*, 2017.
- 3. Budi Santosa, Ardian Umam, Data Mining dan Big Data Analytics, Penebar Media Pustaka, 2018.
- 4. Yaya Heryadi, Teguh Wahyono, Machine Learning: Konsep dan Implementasi, Penerbit Gava Media, 2020.
- 5. Sumber gambar: <a href="www.freepik.com">www.freepik.com</a>.



# THANKS

**ANY QUESTIONS?** 

