Variable Table

Construct	Short Name	Scale Level	Range/ Values	Anchors	Distribution	Formulas/Parameter-Anchors
Distribution of prior knowledge in the group	GPK	continuous	[0, 1]	Für eine Realisation pk gilt: 0 = kein Vorwissen 1 = Absoluter Experte	truncnorm(n, a=0 b=1, mean = µ, sd = 1) wobei µ für das erwartete Vorwissen in der Gruppe steht und in der Simulation variiert wird	
A person's prior knowledge regarding the estimation task	PK	continuous	[0,1]	0 = kein Vorwissen 1 = Absoluter Experte	Keine Verteilung	
Individual Confidence in First Estimate	CONF	continuous	[0,1]	0 = Kein Vertrauen in die eigene Schätzung 1 = Totales Vertrauen in die eigene Schätzung	Keine Verteilung	Simple Case: CONF = PK Dunning-Kurger: Uses cubic polynomial: a + bPK + cPK² + d*PK³ with coefficients a=0.4, b=1.0, c=-1.2, d=0.7 Calibrated to match key percentile points from original study Low knowledge individuals (bottom quartile) overestimate their abilities High knowledge individuals (top quartile) slightly underestimate their abilities

						Function transforms actual knowledge (PK) into perceived knowledge
Individual Distribution of independent First Estimates of a quantity	IFE	continuous (da eine quantity geschätzt wird)	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	IFE ~ Lognormal(μ , σ) μ = In(T) - σ^2 /2 Für PK = 0 ist σ = 1 und für PK = 1 ist σ = 0.05 σ = -0,95 * PK + 1	Orientierung an Jayles für PK = 0 und aufgrund fehlender Literatur haben wir für uns plausible Werte bei PK = 1 angenommen Lognormalverteilung (siehe Madirolas, Jayles)
Distribution of independent First Estimates in the Group	GFE	continuous (da eine quantity geschätzt wird)	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	Calculated via first estimates	
Social Information a person receives	SI	continuous	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	Keine Verteilung	mean of i-1 first estimates, where i is the index of the person receiving the social information
Individual Distribution of revised second estimate of a quantity	ISE	continuous	(0, +Inf)	Keine Anker, weil numerische Schätzung	truncnorm(n, a=0, mean = μ, sd = 1)	IFE realisiert sich für eine Person in ife μ = WOA * SI + (1 - WOA) * ife (aus Jayles, Madirolas)
Distribution of Second Estimates in the Group	GSE	continuous	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	Calculated via first estimates	
Weight of Advice	WOA	continuous	[0,1]	0 = Bleiben bei erster Schätzung 1 = Übernehmen der sozialen Information	Keine Verteilung	The log-based distance creates a symmetrical measure that treats ratios equivalently (e.g., SI being double or half the first estimate). The hyperbolic

						tangent (tanh) function smoothly scales the influence of divergent estimates, approaching but never quite reaching its maximum for extremely different values. Low confidence (close to 0) leads to high weight of advice, near 1 High confidence (close to 1) results in minimal influence, even for divergent estimates As distance increases, weight increases but plateaus, preventing complete adoption for high-confidence individuals When estimates match exactly
						(distance = 0), weight equals 1 - confidence
True Value	Т	continuous	(-Inf, +Inf)	Keine Anker, weil numerische Schätzung	Keine Verteilung	
Collective Accuracy	ACC	continuous	(0, +Inf)	0 = Maximale Accuracy, alle Estimates stimmen mit T überein	Keine Verteilung	mean(abs(c(D1, D2, D3,))) D = T - FE or T - SE