EL253 - Sistemas Digitales

Semestre 2020-2 Profesor Kalun José Lau Gan Sesión de Teoría Semana 1

1

Preguntas previas

Agenda

- Revisión de circuitos digitales
- Jerarquía en el diseño digital
- El VHDL
- Características del VHDL y sus estándares
- Estructura de un código en VHDL

3

Ejercicio

• Obtener la función lógica simplificada de lo siguiente:

7

Revisión de circuitos digitales

- Circuitos MSI combinacionales
 - Sumadores/Restadores
 - Decodificadores/Codificadores
 - Comparadores de magnitud
 - Multiplexores y demultiplexores
 - ALU

Revisión de circuitos digitales

• Restador empleando FAdd:

Restador Restador Restador Borrow

Revisión de circuitos digitales

Comparadores de magnitud

Comp

A 2 B A 2 B A 2 B A 2 B A 2 B A 2 B A 2 B A 2 B A 2 B A 2 B A 2 B A 2 B A 3 B 2 A 2 A 1 B 1 A 3 B 2 A

Jerarquía de diseño digital

NOBULE

NOBULE

NOBULE

NOBULE

NOBULE

NOBULE

NOBULE

SYSTEM

SYSTEM

NOBULE

SYSTEM

SYSTEM

NOBULE

SYSTEM

SYSTEM

SYSTEM

NOBULE

SYSTEM

S

Metodología TOP-DOWN

• Especifica el funcionamiento desde lo mas genérico hacia lo mas específico.

15

El VHDL

- Las siglas: VHSIC-HDL (Very High Speed Integrated Circuit Hardware Description Language)
- Fue orientado a la describir funcionalmente **de manera formal** el cómo funciona un circuito integrado.
- ¿Cuándo se concibieron los HDL (VHDL y Verilog) y por que?

1981 por el US Department of Defense

1983 se formalizó el equipo de trabajo

1985 VHDL revisión 7.2 (IBM y TI)

1987 Estándar IEEE 1076 - 1987

EI VHDL

Sinkeris

• Inicialmente para describir

• Altera Corporation (1983)

(VHDL)

JEM PC

· Fase de simulación

· Fase de implementación (sintais lógica)

FPG14-1990

(Xilimx)

17

El VHDL - Características

- Actualmente se usa para modelado (descripción), simulación y síntesis (implementación) de circuitos.
- Estándar IEEE 1076, primera revisión en 1987, última revisión 2019(*) pero los desarrolladores soportan el 2008.
- Adoptado por los fabricantes de IC
- Lenguaje de naturaleza concurrente ——
- Modela retardos
- Modularidad (componentes RTL)
- Diferentes estilos para describir
- · Independiente del fabricante y la tecnología

(*) https://standards.ieee.org/standard/1076-2019.html

19

Estándar IEEE 1164

- Multivalue Logic System for VHDL Model Interoperability
- Establece los niveles lógicos presentes en un circuito
- (5 minutos) ¿Cuántos niveles lógicos contempla?

std-logic

on an actor	value
'U'	uninitialized
'x'	strong drive, unknown logic value
'0'	strong drive, logic zero
'1'	strong drive, logic one
'Z'	high impedance
'W'	weak drive, unknown logic value
'L'	weak drive, logic zero
'H'	weak drive, logic one
1_1	don't care

Modelo de la AND en VHDL:

```
library IEEE;

use IEEE. etd_logic_arith.all;

use IEEE. std-logic_arith.all;

use IEEE. std-logic-uneigned.all;

entity AND_Z is

port (IN-A, IN-B: in etd-logic;)

end AND_Z;

end AND_Z;

arditedure Flujo of AND_Z is

begin

OUT-C <= IN-A and IN-B;

de le arquitature

end Flujo;
```

21

Fin de la sesión de teoría