

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
21 November 2002 (21.11.2002)

PCT

(10) International Publication Number
WO 02/092015 A2

- (51) International Patent Classification⁷: A61K
- (21) International Application Number: PCT/US02/15982
- (22) International Filing Date: 17 May 2002 (17.05.2002)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
- | | | |
|------------|------------------------------|----|
| 60/291,311 | 17 May 2001 (17.05.2001) | US |
| 60/353,058 | 1 February 2002 (01.02.2002) | US |
| 60/361,293 | 4 March 2002 (04.03.2002) | US |
- (71) Applicants (*for all designated States except US*):
GENOME THERAPEUTICS CORPORATION [US/US]; 100 Beaver Street, Waltham, MA 02453 (US).
WYETH [US/US]; Five Giralda Farms, Madison, NJ 07928 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): **ALLEN, Kristina** [US/US]; 11 Oliver Lane, Hopkinton, MA 01748-3108
- (74) Agents: REA, Teresa, Stanek et al.; Burns, Doane, Swecker & Mathis L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: REAGENTS AND METHODS FOR MODULATING DKK-MEDIATED INTERACTIONS

- With Wnt1 the TCF-signal generated by LRP5 is greater than that of LRP6.
- LRP5/6 -Wnt1 induced TCF- is efficiently blocked by Dkk1

WO 02/092015 A2

- (57) Abstract: The present invention provides reagents, compounds, compositions, and methods relating to novel interactions of the extracellular domain of LRP5, HBM (a variant of LRP5), and/or LRP6 with Dkk, including Dkk-1. The various nucleic acids, polypeptides, antibodies, assay methods, diagnostic methods, and methods of treatment of the present invention are related to and impact on Dkk, LRP5, LRP6, HBM, and Wnt signaling. Dkk, LRP5, LRP6, HBM, and Wnt are implicated in bone and lipid cellular signaling. Thus, the present invention provides reagents and methods for modulating lipid levels and/or bone mass and is useful in the treatment and diagnosis of abnormal lipid levels and bone mass disorders, such as osteoporosis.

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *without international search report and to be republished upon receipt of that report*

REAGENTS AND METHODS FOR MODULATING DKK-MEDIATED INTERACTIONS

FIELD OF THE INVENTION

The present invention relates to signal transduction, bone development, bone loss disorders, modulation of lipid-related conditions, research reagents, methods of screening drug leads, drug development, treatments for bone and/or lipid disorders, screening and development of therapies, molecular, cellular, and animal models of bone and/or lipid development and maintenance, which are mediated by Dkk, including Dkk-1, and/or LRP5, LRP6, HBM or other members of the Wnt pathway.

10

BACKGROUND OF THE INVENTION

Two of the most common types of osteoporosis are postmenopausal and senile osteoporosis. Osteoporosis affects both men and women, and, taken with other abnormalities of bone, presents an ever-increasing health risk for an aging population. The most common type of osteoporosis is that associated with menopause. Most women lose between 20-60% of the bone mass in the trabecular compartment of the bone within 3-6 years after the cessation of menses. This rapid bone loss is generally associated with an increase of bone resorption and formation. However, the resorptive cycle is more dominant and the result is a net loss of bone mass. Osteoporosis is a common and serious disease among postmenopausal women. There are an estimated 25 million women in the United States alone who are afflicted with this disease. The results of osteoporosis are personally harmful, and also account for a large economic loss due to its chronicity and the need for extensive and long-term support (e.g., hospitalization and nursing home care) from disease sequelae. This is especially true in elderly patients. Additionally, while osteoporosis is generally not thought of as a life-threatening condition, a 20-30% mortality rate is related to hip fractures in elderly women. A large percentage of this mortality rate can be directly associated with postmenopausal osteoporosis.

The most vulnerable tissue in the bone to the effects of postmenopausal osteoporosis is the trabecular bone. This tissue is often referred to as spongy bone and is particularly concentrated near the ends of the bone, near the joints, and in the vertebrae of the spine. The trabecular tissue is characterized by small structures which inter-connect with each other as well as the more solid and dense cortical tissue which makes up the outer surface and central shaft of the bone. This criss-cross network of trabeculae gives lateral support to the outer cortical structure and is critical to the biomechanical strength of the overall structure. In postmenopausal osteoporosis, it is primarily the net resorption and loss of the trabeculae which lead to the failure and fracture of the bone. In light of the loss of the trabeculae in postmenopausal women, it is not surprising that the most common fractures are those associated with bones which are highly dependent on trabecular support, e.g., the vertebrae, the neck of the femur, and the forearm. Indeed, hip fracture, Colle's fractures, and vertebral crush fractures are indicative of postmenopausal osteoporosis. Osteoporosis affects cortical as well as trabecular bone. Alterations in endosteal bone resorption and Haversian remodeling with age affect cortical thickness and structural integrity contributing the increased risk for fracture.

One of the earliest generally accepted methods for treatment of postmenopausal osteoporosis was estrogen replacement therapy. Although this therapy frequently is successful, patient compliance is low, primarily due to the undesirable side-effects of chronic estrogen treatment. Frequently cited side-effects of estrogen replacement therapy include reinitiation of menses, bloating, depression, and, potentially, increased risk of breast or uterine cancer. In order to limit the known threat of uterine cancer in women who have not had a hysterectomy, a protocol of estrogen and progestin cyclic therapy is often employed. This protocol is similar to that used in birth control regimens, and often is not tolerated by women because of the side-effects characteristic of progestin. More recently, certain antiestrogens, originally developed for the treatment of breast cancer, have been shown in experimental models of postmenopausal osteoporosis to be efficacious. Among these agents is raloxifene (See, U.S. Patent No. 5,393,763; Black *et al.*, J.

Clin. Invest., 93:63-69 (1994); and Ettinger et al., *JAMA* 282:637-45 (1999)). In addition, tamoxifen, a widely used clinical agent for treating breast cancer, has been shown to increase bone mineral density in post menopausal women suffering from breast cancer (Love et al., *N. Engl. J. Med.*, 326:852-856 (1992)).

5 Another therapy for the treatment of postmenopausal osteoporosis is the use of calcitonin. Calcitonin is a naturally occurring peptide which inhibits bone resorption and has been approved for this use in many countries (Overgaard et al., *Br. Med. J.*, 305:556-561 (1992)). The use of calcitonin has been somewhat limited, however. Its effects are very modest in increasing bone mineral density, and the
10 treatment is very expensive. Another therapy for the treatment of postmenopausal osteoporosis is the use of bisphosphonates. These compounds were originally developed for treating Paget's disease and malignant hypercalcemia. They have been shown to inhibit bone resorption. Alendronate, a bisphosphonate, has been approved for the treatment of postmenopausal osteoporosis. These agents may be
15 helpful in the treatment of osteoporosis, but these agents also have potential liabilities which include osteomalacia, extremely long half-life in bone (greater than 2 years), and possible "frozen bone syndrome," e.g., the cessation of normal bone remodeling.

Senile osteoporosis is similar to postmenopausal osteoporosis in that it is
20 marked by the loss of bone mineral density and resulting increase in fracture rate, morbidity, and associated mortality. Generally, it occurs in later life, i.e., after 70 years of age. Historically, senile osteoporosis has been more common in females, but with the advent of a more elderly male population, this disease is becoming a major factor in the health of both sexes. It is not clear what, if any, role hormones
25 such as testosterone or estrogen have in this disease, and its etiology remains obscure. Treatment of this disease has not been very satisfactory. Hormone therapy, estrogen in women and testosterone in men, has shown equivocal results; calcitonin and bisphosphonates may be of some utility.

The peak mass of the skeleton at maturity is largely under genetic control.
30 Twin studies have shown that the variance in bone mass between adult monozygotic

twins is smaller than between dizygotic twins (Slemenda et al., *J. Bone Miner. Res.*, 6: 561-567 (1991); Young et al., *J. Bone Miner. Res.*, 6:561-567 (1995); Pocock et al., *J. Clin. Invest.*, 80:706-710 (1987); Kelly et al., *J. Bone Miner. Res.*, 8:11-17 (1993)). It has been estimated that up to 60% or more of the variance in skeletal mass is inherited (Krall et al., *J. Bone Miner. Res.*, 10:S367 (1993)). Peak skeletal mass is the most powerful determinant of bone mass in elderly years (Hui et al., *Ann. Int. Med.*, 111:355-361 (1989)), even though the rate of age-related bone loss in adult and later life is also a strong determinant (Hui et al., *Osteoporosis Int.*, 1:30-34 (1995)). Since bone mass is the principal measurable determinant of fracture risk, the inherited peak skeletal mass achieved at maturity is an important determinant of an individual's risk of fracture later in life. Thus, study of the genetic basis of bone mass is of considerable interest in the etiology of fractures due to osteoporosis.

Recently, a strong interest in the genetic control of peak bone mass has developed in the field of osteoporosis. The interest has focused mainly on candidate genes with suitable polymorphisms to test for association with variation in bone mass within the normal range, or has focused on examination of genes and gene loci associated with low bone mass in the range found in patients with osteoporosis. The vitamin D receptor locus (VDR) (Morrison et al., *Nature*, 367:284-287 (1994)), PTH gene (Howard et al., *J. Clin. Endocrinol. Metab.*, 80:2800-2805 (1995); Johnson et al., *J. Bone Miner. Res.*, 8:11-17 (1995); Gong et al., *J. Bone Miner. Res.*, 10:S462 (1995)) and the estrogen receptor gene (Hosoi et al., *J. Bone Miner. Res.*, 10:S170 (1995); Morrison et al., *Nature*, 367:284-287 (1994)) have figured most prominently in this work. These studies are difficult because bone mass (*i.e.*, the phenotype) is a continuous, quantitative, polygenic trait, and is confounded by environmental factors such as nutrition, co-morbid disease, age, physical activity, and other factors. Also, this type of study design requires large numbers of subjects. In particular, the results of VDR studies to date have been confusing and contradictory (Garnero et al., *J. Bone Miner. Res.*, 10:1283-1288 (1995); Eisman et al., *J. Bone. Miner. Res.*, 10:1289-1293 (1995); Peacock, *J. Bone Miner. Res.*, 10:1294-1297 (1995)).

Furthermore, thus far, the art has not determined the mechanism(s) whereby the genetic influences exert their effect on bone mass.

While it is well known that peak bone mass is largely determined by genetic rather than environmental factors, studies to determine the gene loci (and ultimately the genes) linked to variation in bone mass are difficult and expensive. Study designs which utilize the power of linkage analysis, e.g., sib-pair or extended family, are generally more informative than simple association studies, although the latter do have value. However, genetic linkage studies involving bone mass are hampered by two major problems. The first problem is the phenotype, as discussed briefly above.

Bone mass is a continuous, quantitative trait, and establishing a discrete phenotype is difficult. Each anatomical site for measurement may be influenced by several genes, many of which may be different from site to site. The second problem is the age component of the phenotype. By the time an individual can be identified as having low bone mass, there is a high probability that their parents or other members of prior generations will be deceased and therefore unavailable for study, and younger generations may not have even reached peak bone mass, making their phenotyping uncertain for genetic analysis.

Thus, there is a need in the art for additional research tools for the elucidation of the molecular mechanism of bone modulation, for the screening and development of candidate drugs, and for treatments of bone development and bone loss disorders. The present invention is directed to these, as well as other, important ends.

In addition to bone modulation, the present invention relates to modulation of lipid levels. Cardiovascular disease is the most common cause of mortality in the United States, and atherosclerosis is the major cause of heart disease and stroke. It is widely appreciated that cholesterol plays an important role in atherogenesis. Normally, most cholesterol serves as a structural element in the walls of cells, whereas much of the rest is in transit through the blood or functions as the starting material for the synthesis of bile acids in the liver, steroid hormones in endocrine cells and vitamin D in skin. The transport of cholesterol and other lipids through the

circulatory system is facilitated by their packaging into lipoprotein carriers. These spherical particles comprise protein and phospholipid shells surrounding a core of neutral lipid, including unesterified ("free") or esterified cholesterol and triglycerides. Risk for atherosclerosis increases with increasing concentrations of low density 5 lipoprotein (LDL) cholesterol, whereas risk is inversely proportional to levels of high-density lipoprotein (HDL) cholesterol. The receptor-mediated control of plasma LDL levels has been well-defined, and recent studies have now provided new insights into HDL metabolism.

The elucidation of LDL metabolism began in 1974 by Michael Brown and 10 Joseph Goldstein. In brief, the liver synthesizes a precursor lipoprotein (very low density lipoprotein, VLDL) that is converted during circulation to intermediate density lipoprotein (IDL) and then to LDL. The majority of the LDL receptors expressed in the body are on the surfaces of liver cells, although virtually all other tissues ("peripheral tissues") express some LDL receptors. After binding, the receptor- 15 lipoprotein complex is internalized by the cells via coated pits and vesicles, and the entire LDL particle is delivered to lysosomes, wherein it is dissembled by enzymatic hydrolysis, releasing cholesterol for subsequent cellular metabolism. This whole-particle uptake pathway is called "receptor-mediated endocytosis." Cholesterol-mediated feedback regulation of both the levels of LDL receptors and cellular 20 cholesterol biosynthesis help ensure cellular cholesterol homeostasis. Genetic defects in the LDL receptor in humans results in familial hypercholesterolemia, a disease characterized by elevated plasma LDL cholesterol and premature atherosclerosis and heart attacks. One hypothesis for the deleterious effects of excess plasma LDL cholesterol is that LDL enters the artery wall, is chemically 25 modified, and then is recognized by a special class of receptors called macrophage scavenger receptors, that mediate the cellular accumulation of the LDL cholesterol in the artery, eventually leading to the formation of an atherosclerotic lesion.

The major lipoprotein classes include intestinally derived chylomicrons that transport dietary fats and cholesterol, hepatic-derived VLDL, IDL, and LDL that can 30 be atherogenic, and hepatic- and intestinally-derived HDL that are antiatherogenic.

Apoprotein B (ApoB) is necessary for the secretion of chylomicrons (ApoB48) and VLDL, IDL, and LDL (ApoB100). Plasma levels of VLDL triglycerides are determined mainly by the rates of secretion in LDL lipolytic activity. Plasma levels of LDL cholesterol are determined mainly by the secretion of ApoB100 into plasma, the
5 efficacy with which VLDL are converted to LDL and by LDL receptor-mediated clearance. Regulation of HDL cholesterol levels is complex and is affected by rates of synthesis of its Apo proteins, rates of esterification of free cholesterol to cholesterol ester by LCAT, levels of triglyceride-rich lipoproteins and CETP-mediated transfer of cholesterol esters from HDL, and clearance from plasma of HDL lipids
10 and Apo proteins.

Normal lipoprotein transport is associated with low levels of triglycerides and LDL cholesterol and high levels of HDL cholesterol. When lipoprotein transport is abnormal, lipoprotein levels can change in ways that predispose individuals to atherosclerosis and arteriosclerosis (see Ginsburg, *Endocrinol. Metab. Clin. North*
15 *Am.*, 27:503-19 (1998)).

Several lipoprotein receptors may be involved in cellular lipid uptake. These receptors include: scavenger receptors; LDL receptor-related protein/α2-macroglobulin receptor (LRP); LDL receptor; and VLDL receptor. With the exception of the LDL receptor, all of these receptors are expressed in atherosclerotic lesions
20 while scavenger receptors are mostly expressed in macrophages, the LRP and VLDL receptors may play an important role in mediating lipid uptake in smooth muscle cells (Hiltunen et al., *Atherosclerosis*, 137 suppl.:S81-8 (1998)).

A major breakthrough in the pharmacologic treatment of hypercholesterolemia has been the development of the "statin" class of 3-hydroxy-3-methylglutaryl-CoA
25 reductase (HMG CoA reductase) inhibitory drugs. 3-hydroxy-3-methylglutaryl-CoA reductase is the rate controlling enzyme in cholesterol biosynthesis, and its inhibition in the liver stimulates LDL receptor expression. As a consequence, both plasma LDL cholesterol levels and the risk for atherosclerosis decrease. The discovery and analysis of the LDL receptor system has had a profound impact on cell biology,
30 physiology, and medicine.

HDL is thought to remove unesterified, or "free" cholesterol (FC) from peripheral tissues, after which most of the cholesterol is converted to cholesterol ester (CE) by enzymes in the plasma. Subsequently, HDL cholesterol is efficiently delivered directly to the liver and steroidogenic tissues via a selective uptake pathway and the HDL receptor, SR-BI (class B type I scavenger receptor) or, in some species, transferred to other lipoproteins for additional transport in metabolism (see Krieger, *Proc. Natl. Acad. Sci. USA*, 95:4077-4080 (1998)).

These issues illustrate a need in the art for additional research tools for the elucidation of the molecular mechanism of lipid modulation, for the screening and development of candidate drugs, and for treatments of lipid levels and lipid level modulation disorders. The present invention is directed to these, as well as other, important ends.

SUMMARY OF THE INVENTION

The present invention provides reagents, compounds, compositions and methods relating to novel interactions of the extracellular domain of LRP5, HBM (a variant of LRP5), and/or LRP6 with Dkk proteins. LRP5 is also referred to as Zmax1 or Zmax. Thus, when discussing methods, reagents, compounds, and compositions of the invention which relate to the interaction between Dkk and LRP5 (or Zmax1), the invention is also to be understood to encompass embodiments relating to interactions between Dkk and LRP6 and Dkk and HBM. Moreover, where Dkk is discussed herein, it is to be understood that the methods, reagents, compounds, and compositions of the present invention include the Dkk family members, including but not limited to Dkk-1, Dkk-2, Dkk-3, Dkk-4 and Soggy. Furthermore, the invention encompasses novel fragments of Dkk-1 which demonstrate a binding interaction between the ligand binding domain (LBD) of LRP5 and additional proteins and/or which can modulate an interaction between LRP5, or a variant or fragment thereof, and a Dkk protein. The invention provides assays, methods, compositions, and compounds relating to Dkk-Wnt signaling. Numerous Wnt proteins are compatible with the present invention, including Wnt1-Wnt19, and particularly, Wnt1, Wnt3,

Wnt3a, and Wnt10b. The present invention further provides reagents, compounds, compositions and methods modulating interactions between one or more other proteins and Dkk-1. The present invention also provides a series of peptide aptamers which bind to Dkk-1 or to LRP5 (or HBM and/or LRP6).

5 The polypeptides of the invention, for example in the form of peptide oligomers, aptamers, proteins, and protein fragments as well as the nucleic acids of the invention, for example in the form of nucleic acids which encode the polypeptides of the invention as well as antisense, or complimentary nucleic acids, are useful as reagents for the study of bone mass and lipid level modulation. The polypeptides and nucleic acids of the invention are also useful as therapeutic and diagnostic agents.

10 The present invention provides useful reagents for the modulation of Dkk proteins with LRP5, LRP6, and/or HBM, the modulation Dkk-1 and/or Dkk-1 interacting protein activity, and modulation of LRP5/Dkk-1, LRP6/Dkk1 and 15 HBM/Dkk-1 interactions and Dkk-1/Dkk-1 interacting protein interactions. The present invention provides a series of peptide aptamers which bind Dkk-1 or LRP5, LRP6, and/or HBM.

15 An object of the invention is to provide for a method of regulating LRP5/LRP6/HBM/HBM-like activity in a subject comprising administering a 20 therapeutically effective amount of a composition which modulates Dkk activity. The subject can be a vertebrate or an invertebrate organism, but more preferably the organism is a canine, a feline, an ovine, a primate, an equine, a porcine, a caprine, a camelid, an avian, a bovine, or a rodent organism. A more preferred organism is a human. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly 25 preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone 30 density, an increase in volumetric mineral bone density, an increase in trabecular

connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. The invention further provides such a method wherein the composition comprises a Dkk, Dkk-1 or a LRP5/LRP6/HBM binding fragment thereof, such as those depicted 5 in Figure 6 or a mimetic of those fragments depicted in Figure 6. The invention further provides such a method wherein the composition comprises one or more of the proteins which interact with Dkk, including Dkk-1, such as those depicted in Figure 5, or a Dkk-binding fragment thereof, or an antisense, siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding one or more Dkk 10 interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises an LRP5/LRP6/Zmax1 antibody, Dkk antibody, a Dkk-1 antibody or an antibody to a Dkk-1 interacting protein. The invention further provides such a method wherein the compositions comprise an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOS:171-188), 15 or a mimetic of such an aptamer. The method further provides that invention further provides such a method wherein the compositions comprise an aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer.

A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk to LRP5/LRP6/Zmax1, particularly Dkk-1, 20 or the binding of Dkk-1 to a Dkk-1 interacting protein, such as those shown in Figure 5. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NOS:189-192) (particularly, peptide (SEQ ID NO:191) and 13 (including SEQ IDNOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise 25 LRP5 antibodies.

Another aspect of the invention is to provide for a method of regulating Dkk-Wnt pathway activity in a subject comprising administering a therapeutically effective amount of a composition which modulates Dkk-Wnt pathway activity. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk- 30 1 activity is decreased. In another embodiment, Dkk activity modulates bone mass

and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral
5 bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. In another preferred embodiment, the Wnt is Wnt1-Wnt19. In a particularly preferred embodiment, the Wnt is Wnt1, Wn3, Wnt3a, or Wnt10b. Preferred compositions comprise Dkk-modulating or Dkk-1-
10 modulating compounds or one or more Dkk interacting or Dkk-1 interacting proteins, or a Dkk-binding fragment thereof. Other preferred Dkk modulating compositions comprise a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. Also contemplated are antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding one or more Dkk-1 interacting
15 proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk, including Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an
20 aptamer. A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk, including Dkk-1, to LRP5, LRP6, or HBM or the binding of Dkk, including Dkk-1, to a Dkk interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein the composition comprises an aptamer of Dkk or Dkk-1, such as those depicted. A
25 composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208). Preferred compositions of the present invention also comprise LRP5 antibodies.

A further aspect of the invention is to provide for a method of modulating Wnt signaling in a subject comprising administering a therapeutically effective amount of
30 a composition which modulates Dkk activity or modulates Dkk interaction with LRP5

(or LRP6 or HBM). In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another 5 preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content.

10 In another preferred embodiment, the Wnt is Wnt1-Wnt19. In a particularly preferred embodiment, the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b. Preferred Wnt modulating compositions comprise one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active or LRP5/LRP6/HBM binding fragment thereof. Also contemplated are antisense, siRNA, and shRNA molecules which recognize and

15 bind to a nucleic acid encoding one or more Dkk interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk or Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of

20 a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. A composition of the present invention may modulate activity either by enhancing or blocking the binding of Dkk, including Dkk-1, to LRP5, LRP6, or HBM or the binding of Dkk or Dkk-1 to a Dkk interacting or Dkk-1 interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein

25 compositions comprising an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such an aptamer. The invention further provides such a method wherein the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. The invention further provides such a method wherein compositions of an LRP5 peptide

30 aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NO:189-192

(particularly peptide (SEQ ID NO:191) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Additional preferred compositions of the present invention also comprise LRP5 antibodies.

Additionally, the invention provides for a method of modulating bone mass and/or lipid levels in a subject comprising administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5 in an amount effective to modulate bone mass and/or lipid levels, wherein bone mass and/or lipid levels are in need of modulation. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. Preferred bone mass and/or lipid modulating compositions comprise one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active or LRP5/LRP6/HBM binding fragment thereof. Also contemplated are antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding one or more Dkk interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk, including Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The invention further provides such a method wherein the composition comprises an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such an aptamer. A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk, including Dkk-1, to LRP5, LRP6,

or HBM or the binding of Dkk, including Dkk-1, to a Dkk interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. A composition of the present invention may comprise 5 an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NOs:189-192 (particularly peptide 13 (SEQ ID NO:191)) and 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise LRP5 antibodies. It is a further aspect of the invention that such lipid-modulated diseases include a cardiac condition, 10 atherosclerosis, familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and an elevated lipid level of unknown etiology.

15 Bone disorders contemplated for treatment and/or diagnosis by the methods and compositions disclosed herein include a bone development disorder, a bone fracture, age related loss of bone, a chondrodystrophy, a drug-induced bone disorder, high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's disease, osteoarthritis, and 20 rickets.

It is a further object of the invention to provide a method of screening for compounds or compositions which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

- (a) exposing Dkk or a LRP5/LRP6/HBM binding fragment thereof to a compound; and
- (b) determining whether said compound binds to Dkk or the LRP5/LRP6/HBM binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1. In a particularly preferred embodiment, the binding of Dkk-1 to LRP5/LRP6/HBM is decreased.

It is a further object of the invention to provide a method of screening compounds or compositions which modulate the interaction of DKK with LRP5, LRP6, HBM, or a DKK-finding fragment thereof comprising:

- (a) exposing DKK or a LRP5/LRP6/HBM binding fragment thereof to a compound; and,
- (b) determining whether said compound modulates the interaction of Dkk with LRP5, LRP6, or HBM, or the Dkk-binding fragment of LRP5/LRP6/HBM.

5

In a preferred embodiment, the Dkk is Dkk-1. In a particularly preferred embodiment, the interaction of Dkk-1 with LRP5/LRP6/HBM is decreased.

10

It is a further object of the invention to provide a method of screening for compounds or compositions which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

15

- (a) exposing Dkk or a LRP5/LRP6/HBM binding fragment thereof to a compound;
- (b) determining whether said compound binds to Dkk or the LRP5/LRP6/HBM binding fragment thereof; and,
- (c) further determining whether said compound modulates the interaction of Dkk with LRP5, LRP6, or HBM, or the Dkk-binding fragment of LRP5/LRP6/HBM.

20

25

In preferred embodiments of such methods, Dkk or a biologically active fragment thereof is attached to a solid substrate. In an alternative embodiment of the invention, LRP5/LRP6/HBM, or a biologically active fragment thereof (such as the ligand binding domain), is exposed to the compound. Another aspect of the invention provides for compounds and compositions identified by the disclosed methods. A preferred embodiment of the invention provides that the compound screened in an afore-mentioned method is one or more proteins which interact with Dkk, particularly Dkk-1, as depicted in Figure 5, or a LRP5/LRP6/HBM-binding fragment thereof. Another preferred embodiment provides that the compound comprises a Dkk or Dkk-1 peptide aptamer, such as those depicted in Figure 3 (SEQ

30

ID NOs:171-188), or a mimetic of such aptamers. The compound may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The method further provides that the compound comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk-1 interacting protein.

5 The invention further provides that the compound may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compounds of the present invention also comprise LRP5 antibodies.

10 It is a further object of the invention to provide a method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

- (a) exposing a Dkk interacting proteins or a Dkk-binding fragment thereof to a compound; and,
- 15 (b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

It is a further object of the invention to provide a method of screening for
20 compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

- (a) exposing Dkk interacting protein(s) or a Dkk-binding fragment thereof to a compounds; and,
- 25 (b) determining whether said compound modulates the interaction of Dkk and Dkk interacting proteins.

It is a further object of the invention to provide a method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

- (a) exposing a Dkk interacting proteins or a Dkk-binding fragment thereof to a compound;

- (b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof; and,
 - (c) further determining whether said compound modulates the interaction of Dkk and Dkk interacting proteins.

In a preferred embodiment, Dkk is Dkk-1.

5

In preferred embodiments of such methods, the Dkk interacting proteins, particularly Dkk-1 interacting proteins, or a Dkk-binding fragment thereof are attached to a solid substrate. Another aspect of the invention provides for compounds and compositions identified by the disclosed methods. A preferred embodiment provides that the compound comprises a Dkk or Dkk-1 peptide aptamer, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such aptamers. The compound may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The compound may also comprise an antibody to a Dkk interacting or Dkk-1 interacting protein.

10

15

22

25

30

It is another object of the invention to provide for a composition for treating bone mass disorders comprising a LRP5/LRP6/HBM modulating compound and a pharmaceutically acceptable excipient and/or carrier therefor. Preferred LRP5 (or LRP6 or HBM) modulating compounds include Dkk or Dkk-1 or a LRP5/LRP6/HBM binding fragment thereof. Also contemplated are compounds which comprise monoclonal or polyclonal antibodies or immunologically active fragments thereof which bind to Dkk, including Dkk-1, and a pharmaceutically acceptable excipient and/or carrier. Another preferred embodiment provides that the modulating compound comprises one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active fragment thereof. Also contemplated are compounds which comprise monoclonal or polyclonal antibodies or immunologically active fragments thereof which bind to Dkk interacting or Dkk-1 interacting proteins, or a biologically active fragment thereof, and a pharmaceutically acceptable excipient and/or carrier.

Another preferred embodiment provides that the modulating compound comprises an antisense, siRNA, and shRNA molecule which recognizes and binds to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. Another preferred embodiment provides that the modulating compound comprises a Dkk or Dkk-1 peptide aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer.

5 Another embodiment provides that the compound comprises an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compounds of the present invention also comprise

10 LRP5 antibodies.

It is a further object of the invention to provide a pharmaceutical composition for treating a Dkk-mediated disease or condition comprising a compound which modulates Dkk activity and a carrier therefor, including pharmaceutically acceptable excipients. Such compositions include those wherein the compound comprises an antisense, siRNA, and shRNA molecule or an antibody which binds to Dkk, including Dkk-1, and thereby prevents it from interacting with LRP5, LRP6, or HBM. Other such compositions include one or more of Dkk interacting or Dkk-1 interacting proteins, such as those depicted in Figure 5, or a Dkk-binding fragment thereof, or a monoclonal or polyclonal antibody, or immunologically active fragment thereof, which binds to a Dkk interacting or Dkk-1 interacting protein or Dkk-binding fragment thereof. Other contemplated compositions include antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. Further contemplated compositions include Dkk and Dkk-1 peptide aptamers, such as those depicted in Figure 3 (SEQ ID NOs:171-188), mimetics of such aptamers, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. Other contemplated compositions comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191))

and Figure 13 (including SEQ ID NO:204-214), or a mimetic of such an aptamer. Other preferred compositions of the present invention comprise LRP5 antibodies.

A further object of the invention to provide for a method of modulating the expression of a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein
5 in an organism, such as those shown in Figure 5, comprising the step of administering to the organism an effective amount of composition which modulates the expression of a nucleic acid encoding a Dkk-1 interacting protein. In a preferred embodiment, said composition comprises an antisense, siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding a Dkk interacting or Dkk-1
10 interacting protein.

One aspect of the invention provides for a method of modulating at least one activity of Dkk or a Dkk-1 interacting protein comprising administering an effective amount of a composition which modulates at least one activity of Dkk or a Dkk-1 interacting protein. The invention provides for a composition comprising a Dkk interacting or Dkk-1 interacting protein, such as those shown in Figure 5, or a biologically active fragment thereof. Other agents contemplated for this method are antisense, siRNA, or shRNA molecules which recognize and bind to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. The method further provides that the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. In another preferred embodiment, the composition comprises a Dkk or Dkk-1 peptide aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The method provides that a composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NO:189-192) (particularly peptide including (SEQ ID NO:191)) and Figure including (SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise LRP5 antibodies. In a further preferred embodiment, the modulated Dkk activity is lipid modulation or bone mass modulation.
20
25

In all of the testing/screening embodiments of the present invention discussed below to obtain compounds or compositions which ultimately impact LRP5/LRP6/HBM signaling, one skilled in the art will recognize that HBM can be used as a control in the absence of a test sample or compound. Further, the effect 5 of a test sample of compound on Wnt signaling through the interaction of Dkk with LRP5/LRP6/HBM does not necessarily require a direct measurement of an association or interaction of Dkk and LRP5/LRP6/HBM. Other positive phenotypes/activities established by the High Bone Mass phenotype or by using HBM as a control.

10 One aspect of the invention provides for a method of identifying binding partners for a Dkk protein comprising the steps of:

- (a) exposing the Dkk protein(s) or a LRP5/LRP6 binding fragment thereof to a potential binding partner; and
- (b) determining if the potential binding partner binds to a Dkk protein or 15 the LRP5/LRP6 binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

Another aspect of the invention is to provide for a method of identifying a compound that effects Dkk-mediated activity comprising

- (a) providing a group of transgenic animals having (1) a regulatable one or more Dkk interacting protein genes, (2) a knock-out of one or more Dkk interacting protein genes, or (3) a knock-in of one or more Dkk interacting protein genes;
- (b) providing a second group of control animals respectively for the group of transgenic animals in step (a); and
- (c) exposing the transgenic animal group and the control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid 25 levels; and

- (d) comparing the transgenic animal group and the control animal group and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.

5

In a preferred embodiment, the Dkk is Dkk-1.

It is another aspect of the invention to provide for a method for determining whether a compound modulates a Dkk interacting protein, said method comprising the steps of:

- 10 (a) mixing the Dkk interacting protein or a Dkk-binding fragment thereof with the ligand binding domain of Dkk in the presence of said at least one compound;

15 (b) measuring the amount of said binding domain of Dkk bound to said Dkk interacting protein or the Dkk-binding fragment thereof as compared to a control without said at least one compound; and

20 (c) determining whether the compound reduces the amount of said binding domain of Dkk binding to said Dkk interacting protein or Dkk-binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

In a preferred embodiment, the binding domain is attached to a solid substrate. The invention further provides for compounds identified by this method.

25 In a preferred embodiment, the invention provides that the Dkk interacting or Dkk-1 interacting protein is detected by antibodies. In another preferred embodiment, the solid substrate is a microarray. Another preferred embodiment provides that the ligand binding domain of Dkk and/or Dkk interacting protein is fused or conjugated to a peptide or protein. The invention also provides that the compounds include Dkk

and Dkk-1 peptide aptamers, mimetics of Dkk and Dkk-1 peptide aptamers, Dkk and Dkk-1 interacting proteins peptide aptamers, or mimetics of such aptamers.

An aspect of the invention provides a composition comprising one or more polypeptide sequences of one or more Dkk-1 interacting proteins, or a biologically active fragment thereof, one or more Dkk proteins, or a biologically active fragment thereof, or LRP5/LRP6/HBM polypeptide sequences or a biologically active fragment thereof (for example, the ligand binding domain) and a pharmaceutically acceptable excipient and/or carrier. Another aspect of the invention provides that the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein and a pharmaceutically acceptable excipient. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. A composition of the present invention may comprise a Dkk peptide aptamer, for example as shown in Figure 3 (SEQ ID NOs:171-188).

Preferred compositions of the present invention also comprise LRP5 antibodies.

Another aspect of the invention is to provide an antibody or immunologically active antibody fragment which recognizes and binds to a Dkk-1 amino acid sequence selected from the group consisting of: Asn34-His266 (SEQ ID NO:110), Asn34-Cys245 (SEQ ID NO:111), Asn34-Lys182 (SEQ ID NO:112), Cys97-His266 (SEQ ID NO:113), Val139-His266 (SEQ ID NO:114), Gly183-His266 (SEQ ID NO:115), Cys97-Cys245 (SEQ ID NO:116), or Val139-Cys245 (SEQ ID NO:117) of human Dkk-1. Additional antibodies may bind to any of the sequences depicted in Figures 3 (SEQ ID NOs:171-188) and Figure 4 (SEQ ID NOs:189-192). Another aspect of the invention is to provide for polyclonal antibodies to one or more amino acid sequences: Peptide 1 -GNKYQTIDNYQPYPC (SEQ ID NO:118), Peptide 2 - LDGYSRRTLSSKMYHTKGQEG (SEQ ID NO:119), Peptide 3 - RIQKDHHQASNSSLHTCQRH (SEQ ID NO:120), Peptide 4 - RGEIEETITESFGND (SEQ ID NO:121), and Peptide 5 - EIFQRCYCGEGLSCRIQKD (SEQ ID NO: 122).

It is a further object of the invention to provide a nucleic acid encoding a Dkk protein, e.g. Dkk-1, a Dkk interacting or Dkk-1 interacting protein aptamer, or an LRP5 aptamer comprising a nucleic acid encoding a scaffold protein in-frame with the activation domain of Gal4 or LexA that is in-frame with a nucleic acid which 5 encodes for a Dkk or Dkk-1 or Dkk interacting or Dkk-1 interacting protein amino acid sequence. Preferably the scaffold protein is thioredoxin (trxA), S1 nuclease from *Staphylococcus* or M13. Other preferable embodiments include Dkk-1 amino acid sequences selected from Figure 6.

It is yet a further object of the invention to provide a composition comprising a 10 polypeptide sequence of Figure 3 (SEQ ID NOs:171-188), Figure 4 (SEQ ID NO:189-192), or of Dkk-1 interacting proteins identified in Figure 5 and a pharmaceutically acceptable excipient and/or carrier.

Another aspect of the invention includes a method of detecting the modulatory activity of a compound on the binding interaction of a first peptide and a second 15 peptide of a peptide binding pair that bind through extracellular interaction in their natural environment, comprising:

- (i) culturing at least one eukaryotic cell, wherein the eukaryotic cell comprises:
 - a) a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a DNA binding domain of a transcriptional activation protein;
 - b) a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;

20 wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

c) a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element produces a selected phenotype;

- 5 (ii) incubating a compound with the eukaryotic cell under conditions suitable to detect the selected phenotype; and
(iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which produces the
10 selected phenotype;

wherein (1) said first peptide is a Dkk peptide and said second peptide is a peptide selected from LRP5, HBM, LRP6, and the Dkk-binding portion of LRP5/LRP6/HBM or (2) said first peptide is a Dkk-interacting protein or the Dkk-binding fragment thereof, and said second peptide is a Dkk peptide.

15 In one embodiment, the eukaryotic cell is a yeast cell. In a preferred embodiment, the yeast cell is *Saccharomyces*. In a particularly preferred embodiment, the *Saccharomyces* cell is *Saccharomyces cerevisiae*. The invention further provides that the compound may comprise a Dkk interacting or Dkk-1 interacting protein, or a biologically active fragment thereof. In one embodiment, the
20 Dkk interacting or Dkk-1 interacting protein, or a Dkk-binding fragment thereof, is added directly to the assay. In another embodiment, the Dkk interacting or Dkk-1 interacting protein, or a Dkk-binding fragment thereof, is recombinantly expressed by the eukaryotic cell in addition to the first and second peptides. In a preferred embodiment the compound comprises a Dkk or Dkk-1 aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a Dkk interacting or Dkk-1 interacting protein aptamer, or a mimetic of a Dkk-1 interacting protein aptamer. Other preferred embodiments provide that the compound comprises an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an
25 aptamer. Alternatively, the present invention also provides that the compound may
30

comprise LRP5 antibodies or Dkk antibodies. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter element, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion. In another embodiment, the peptide binding pair comprises a ligand and a receptor to which the ligand binds. In one embodiment, the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, 5 Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In another embodiment, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In one embodiment, the DNA binding domain comprises a heterologous DNA-binding domain of a transcriptional activation protein. In a preferred embodiment, the DNA 10 binding protein is selected from the group consisting of a mammalian steroid receptor and bacterial LexA protein. In another embodiment, the reporter element is selected from the group consisting of *lacZ*, a polynucleotide encoding luciferase, a polynucleotide encoding green fluorescent protein (GFP), and a polynucleotide encoding chloramphenicol acetyltransferase. In a particularly preferred embodiment, 15 the reporter element is *lacZ*

20

The invention further provides for a rescue screen for detecting the activity of a compound for modulating the binding interaction of a first peptide and a second peptide of a peptide binding pair, comprising:

- (i) culturing at least one yeast cell, wherein the yeast cell comprises;
 - a) a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a DNA binding domain of a transcriptional activation protein;
 - b) a nucleotide sequence encoding a second heterologous

fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

c) a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter gene prevents exhibition of a selected phenotype;

(ii) incubating a compound with the yeast cell under conditions suitable to detect the selected phenotype; and

(iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which prevents exhibition of the selected phenotype,

wherein said first peptide is a Dkk peptide and said second peptide is a peptide selected from LRP5, HBM, LRP6 and a Dkk-binding fragment of LRP5/LRP6/HBM.

In a preferred embodiment, the invention provides that the yeast cell is *Saccharomyces*. In a particularly preferred embodiment, the *Saccharomyces* cell is *Saccharomyces cerevisiae*. In one embodiment, the compound comprises one or more Dkk interacting or Dkk-1 interacting proteins, or a Dkk-binding fragment thereof. Compounds used in the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Alternatively, the compound may comprise LRP5 antibodies or Dkk antibodies. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a

transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter gene, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion. In another embodiment, the
5 transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In one embodiment, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In another embodiment, the DNA binding domain is a heterologous DNA-binding domain of a transcriptional activation protein.

10 The invention also provides for a rescue screen for detecting the modulatory activity of a compound on the binding interaction of a first peptide and a second peptide of a peptide binding pair, comprising:

- (i) culturing at least one yeast cell, wherein the yeast cell comprises:
 - a) a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a DNA binding domain of a transcriptional activation protein;
 - b) a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;
20 wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and
 - c) a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element prevents exhibition of a selected phenotype;
- (ii) incubating a compound with the yeast cell under conditions suitable to detect the selected phenotype; and

- (iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which prevents exhibition of the selected phenotype,

5 wherein said first peptide is a Dkk interacting or Dkk-1 interacting protein peptide and said second peptide is a Dkk or Dkk-1 peptide.

In a preferred embodiment of the rescue screen, the yeast cell is *Saccharomyces*. In a particularly preferred embodiment, the *Saccharomyces* cell is *Saccharomyces cerevisiae*. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of 10 a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter gene, wherein at least one of the endogenous nucleotide sequences is 15 inactivated by mutation or deletion. In one embodiment, the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In another embodiment of the rescue screen, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In another embodiment, the DNA binding domain 20 is a heterologous DNA-binding domain of a transcriptional activation protein.

The invention also provides for a method for identifying potential compounds which modulate Dkk activity comprising:

- a) measuring the effect on binding of one or more Dkk interacting protein, or a Dkk-binding fragment thereof, with Dkk or a LRP5/LRP6/HBM binding fragment thereof in the presence and absence of a compound; and
- b) identifying as a potential Dkk modulatory compound a compound which modulates the binding between one or more Dkk interacting proteins or Dkk-binding fragment thereof and Dkk or LRP5/LRP6/HBM fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

The invention further provides for any of the Dkk peptide aptamers of Figure 3 (SEQ ID NOs:171-188). The invention also provides for any of the LRP peptide aptamers of Figure 4 (SEQ ID NOs:189-192).

5 Another aspect of the invention provides for a method of identifying agents which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) injecting mRNA encoding Dkk and an agent into a *Xenopus* blastomere;
- (b) assessing axis duplication or analyzing marker gene expression; and
- (c) identifying agents which elicit changes in axis duplication or marker

10 gene expression as agents which modulate the interaction of Dkk with the Wnt signaling pathway. Wherein the agent may be chosen from among mRNA encoding Dkk interacting proteins, fragments thereof, siRNA, shRNA, antisense nucleotides, and antibodies. In a preferred embodiment, Dkk is Dkk-1. In a further embodiment, 15 mRNA of HBM, LRP5/6, any Wnt (including Wnt1-Wnt19, particularly Wnt1, Wnt3, Wnt3a, and Wnt10b), Wnt antagonist, or combination of these is co-injected into the *Xenopus* blastomere. In another embodiment, the marker gene analyzed could include Siamois, Xnr3, slug, Xbra, HNK-1, endodermin, Xlhbox8, BMP2, BMP4, XLRP6, EF-1, or ODC.

20 The present invention provides for a method for identifying agents which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) transfecting cells with constructs encoding Dkk and potential Dkk interacting proteins, mRNA fragments thereof, siRNA, shRNA, or antisense, antibodies to LRP5/HBM/LRP6/Dkk/Dkk-interacting protein;
- (b) assessing changes in expression of a reporter gene linked to a Wnt-responsive promoter; and,
- (c) identifying as a Dkk interacting protein any protein which alters reporter gene expression compared with cells transfected with a Dkk construct alone. In a further preferred embodiment, the cells may be HOB-03-30 CE6, HEK293, or U2OS cells.

In alternative embodiments, the Wnt-responsive promoter is TCF or LEF. In other preferred embodiments, the cells are co-transfected with CMV beta-galactosidase or tk-Renilla.

The present invention further provides for a LRP5/HBM monoclonal or polyclonal antibody to one or more peptides of amino acid sequences MYWTDWVETPRIE (SEQ ID NO:123), MYWTDWGETPRIE (SEQ ID NO:124), KRTGGKRKEILSA (SEQ ID NO:125), ERVEKTTGDKRTRIQGR (SEQ ID NO:126), or KQQCDSFPDCIDGSDE (SEQ ID NO:127).

Additionally, the present invention provides a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
- (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and
- (c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HBM using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag.

In one embodiment, the Dkk is Dkk-1. In a preferred embodiment, the epitope tag is alkaline phosphatase, histidine, myc, or a V5 tag.

Another embodiment of the present invention provides for a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) creating an LRP5, LRP6, or HBM fluorescent fusion protein using a first fluorescent tag;
- (b) creating a Dkk fusion protein comprising a second fluorescent tag;
- (c) adding a test compound; and,
- (d) assessing changes in the ratio of fluorescent tag emissions using Fluorescence Resonance Energy Transfer (FRET) or Bioluminescent Resonance Energy Transfer (BRET) to determine whether the compound modulates Dkk and LRP5/LRP6/HBM interactions.

In a preferred embodiment, the Dkk is Dkk-1.

The present invention also provides for a method of diagnosing low or high bone mass and/or low or high lipid levels in a subject comprising examining expression of Dkk, LRP5, LRP6, HBM or HBM-like variant in the subject and determining whether Dkk, LRP5, LRP6, or HBM or a HBM-like variant is over- or
5 under-expressed to determine whether subject has (a) high or low bone mass and/or (b) high or low lipid levels.

The invention further provides for a transgenic animal wherein Dkk is knocked out in a tissue-specific fashion. In a preferred embodiment, the Dkk is Dkk-1. In one preferred embodiment, the tissue specificity is bone tissue. In another preferred
10 embodiment, the tissue specificity is liver or other tissues or cells involved in regulating lipid metabolism or cancer tissue.

The present invention further provides a method of screening for compounds which modulate the interaction of Dkk with LRP5, LRP6, or HBM comprising:

- (a) exposing LRP5, LRP6, or HBM, or a Dkk-binding fragment of LRP5,
15 LRP6, or HBM to a compound; and
- (b) determining whether said compound bound to LRP5, LRP6, or HBM or the Dkk-binding fragment of LRP5, LRP6, or HBM and further determining whether said compound modulates the interaction of Dkk and LRP5, LRP6, or HBM.

In one embodiment, the Dkk is Dkk-1. In a preferred embodiment, the compound comprises an LRP5 peptide aptamer. Other preferred compositions include the peptide aptamer, OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer, and an LRP5 antibody.
20

The present invention also provides a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
- (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and

- (c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HBM using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag. In a preferred embodiment, the epitope tag is alkaline phosphatase, histidine, myc or a V5 tag.

In a preferred embodiment, the Dkk is Dkk-1.

The invention also provides for a method for identifying compounds which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) transfecting cells with constructs containing Dkk and Wnt proteins;
 - (b) assessing changes in expression of a reporter element linked to a Wnt-responsive promoter; and
 - (c) identifying as a Dkk/Wnt interaction modulating compound any compound which alters reporter gene expression compared with cells transfected with a Dkk construct alone.

In one embodiment, the Dkk is Dkk-1. In another embodiment, the Wnt is any of Wnt1-Wnt19. In a preferred embodiment, the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b. In a particularly preferred embodiment, the Wnt construct contains Wnt3a. In another particularly preferred embodiment, the Wnt construct contains Wnt1. In another preferred embodiment, the Wnt construct encodes for a Wnt that signals through the canonical Wnt pathway. In a particularly preferred embodiment, both Wnt3a and Wnt1 constructs are co-transfected into the cells. In another embodiment, the cells may be U2-OS, HOB-03-CE6, or HEK293 cells. In another embodiment, the reporter element used is TCF-luciferase, tk-Renilla, or a combination thereof.

The invention also provides for a method of testing compounds that modulate Dkk-mediated activity in a mammal comprising:

- (a) providing a group of transgenic animals having (1) a regulatable one or more Dkk genes, (2) a knock-out of Dkk genes, or (3) a knock-in of one or more Dkk genes;

- 5
- (b) providing a second group of control animals respectively for the group of transgenic animals in step (a); and
 - (c) exposing the transgenic animal group and control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid levels; and
 - (d) comparing the transgenic animals and the control group of animals and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.

In a preferred embodiment, the Dkk is Dkk-1.

10 The invention further provides variants of LRP5 which demonstrate HBM biological activity, i.e., that are "HBM-like." In preferred embodiments, variants G171F, M282V, G171K, G171Q, A65V, G171V, G171I, and A214V of LRP5 are provided. The invention further provides for the use any of these variants in the forgoing methods.

15

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a schematic of the components of the Wnt signal transduction pathway. Schematic obtained from:

<http://www.stanford.edu/~rnusse/pathways/cell2.html>

20 Figure 2 (A-C) show bait sequences (SEQ ID NOs:168-170) utilized in yeast two hybrid (Y2H) screens for protein-protein interactions.

Figure 3 shows a table of peptide aptamer insert sequences (SEQ ID NOs: 171-192) identified in Y2H screen with a Dkk-1 bait sequence.

25 Figure 4 shows a table of peptide aptamer insert sequences identified in a Y2H screen using a LRP5 ligand binding domain bait sequence.

Figure 5 shows a table of proteins identified in a Y2H screen using a Dkk-1 bait sequence. These proteins are identified by both their nucleic acid and amino acid accession numbers.

30 Figure 6 shows the results of a minimum interaction domain mapping screen of Dkk-1 with LRP5. At the top, a map of Dkk-1 showing the location of the signal

sequence, and cysteine rich domains 1 and 2. Below, the extent of domains examined using LRP5 LBD baits, LBD1 and LBD4, of Figure 2. To the right, scoring of the binding results observed in the experiment.

Figure 7 shows a diagram of the *Xenopus* Embryo Assay for Wnt activity.

5 Figure 8 shows the effects of Zmax/LRP5 and HBM on Wnt signaling in the *Xenopus* embryo assay.

Figure 9 shows the effects of Zmax/LRP5 and HBM on induction of secondary axis formation in the *Xenopus* embryo assay.

10 Figure 10 shows the effects of human Dkk-1 on the repression of the canonical Wnt pathway.

Figure 11 shows the effects of human Dkk-1 on Zmax/LRP5 and HBM-mediated Wnt signaling.

15 Figure 12 shows pcDNA3.1 construct names with nucleotide sequences (including SEQ ID NOS:193-203) for LRP5-binding peptide aptamers, Dkk-1 peptides and control constructs.

Figure 13 shows the amino acid sequences (including SEQ ID NOS:204-214) for the corresponding LRP5-binding peptides, Dkk-1 peptide aptamers and control constructs in Figure 12.

20 Figure 14 shows the effects of Dkk-1 and Dkk-2 on Wnt1 signaling with coreceptors LRP5, HBM, and LRP6 in HOB03CE6 cells.

Figure 15 shows the effects of Dkk-1 and Dkk-2 on Wnt3a signaling with coreceptors LRP5, HBM, and LRP6 in HOB03CE6 cells.

Figure 16 demonstrates that the LRP5-LBD peptide aptamer 262 activates Wnt signaling in the presence of Wnt3a in U2OS cells.

25 Figure 17 shows the differential binding of an antibody generated to a sequence (a.a. 165-177) containing the HBM mutation in LRP5 in LRP5 and HBM virus-infected cells.

Figure 18 shows data generated from a Y2H interaction trap where a mutant Dkk-1 (C220A) is unable to bind to LRP5 and demonstrating the window of capability 30 of detecting small molecule effects on LRP and Dkk interactions.

Figure 19 shows that Dkk-1 represses Wnt3a-mediated Wnt signaling in U2OS bone cells using the cell-based reporter gene assay for high throughput screening.

Figure 20 demonstrates that Wnt1-HBM generated signaling is not efficiently inhibited by Dkk-1 in U2OS bone cells while LRP5 and LRP6-mediated signaling are using the cell-based reporter gene assay for high throughput screening.

Figure 21 shows that the TCF signal in the cell-based reporter gene assay for high throughput screening can be modulated by Dkk-1 and Dkk-1-AP without Wnt DNA transfection.

Figure 22 shows the morphological results in the Xenopus assay using aptamers 261 and 262 from the LRP5-LBD to activate Wnt signaling.

Figure 23 demonstrates that LRP5-LBD aptamers 261 and 262 induce Wnt signaling over other LRP5 aptamers.

Figure 24 shows that the mutation G171F in LRP5 produces a greater activation of the Wnt pathway than LRP5 which is consistent with HBM activity.

Figure 25 shows that the mutation M282V in LRP5 produces an activation of the Wnt pathway which is consistent with HBM activity in U2OS cells.

Figure 26 shows the amino acid sequence of the various peptides of dkk-1 selected to generate polyclonal antibodies, their relationship to the Dkk-1 amino acid sequence and identities of polyclonal antibodies generated.

Figure 27 shows a Western blot demonstrating that polyclonal antibody #5521 to amino acids 165-186 of Dkk-1 was able to detect Dkk1-V5 and Dkk1-AP from conditioned medium.

Figure 28 shows a Western blot demonstrating that polyclonal antibody #74397 to amino acids 147-161 was able to detect Dkk1-V5 in both conditioned medium and immunoprecipitated conditioned medium.

DETAILED DESCRIPTION OF THE INVENTION

1. Definitions

In general, terms in the present application are used consistent with the manner in which those terms are understood in the art. To aid in the understanding 5 of the specification and claims, the following definitions are provided.

"Gene" refers to a DNA sequence that encodes through its template or messenger RNA a sequence of amino acids characteristic of a specific peptide. The term "gene" includes intervening, non-coding regions, as well as regulatory regions, and can include 5' and 3' ends.

By "nucleic acid" is meant to include single stranded and double stranded nucleic acids including, but not limited to DNAs, RNAs (e.g., mRNA, tRNAs, siRNAs), cDNAs, recombinant DNA (rDNA), rRNAs, antisense nucleic acids, oligonucleotides, and oligomers, and polynucleotides. The term may also include hybrids such as triple stranded regions of RNA and/or DNA or double stranded RNA:DNA hybrids. The term also is contemplated to include modified nucleic acids such as, but not limited to biotinylated nucleic acids, tritiated nucleic acids, fluorophor labeled nucleic acids, inosine, and the like.

"Gene sequence" refers to a nucleic acid molecule, including DNA which contains a non-transcribed or non-translated sequence, which comprises a gene.

The term is also intended to include any combination of gene(s), gene fragment(s), non-transcribed sequence(s) or non-translated sequence(s) which are present on the same DNA molecule.

The nucleic acid sequences of the present invention may be derived from a variety of sources including DNA, cDNA, synthetic DNA, synthetic RNA or combinations thereof. Such sequences may comprise genomic DNA which may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with promoter regions and/or poly (A) sequences. The sequences, genomic DNA or cDNA may be obtained in any of several ways. Genomic DNA can be extracted and purified from suitable cells by means well

known in the art. Alternatively, mRNA can be isolated from a cell and used to produce cDNA by reverse transcription or other means.

"cDNA" refers to complementary or copy DNA produced from an RNA template by the action of RNA-dependent DNA polymerase (reverse transcriptase).

5 Thus, a "cDNA clone" means a duplex DNA sequence for which one strand is complementary to an RNA molecule of interest, carried in a cloning vector or PCR amplified. cDNA can also be single stranded after first strand synthesis by reverse transcriptase. In this form, it is a useful PCR template and does not need to be carried in a cloning vector. This term includes genes from which the intervening
10 sequences have been removed. Thus, the term "gene", as sometimes used generically, can also include nucleic acid molecules comprising cDNA and cDNA clones.

15 "Recombinant DNA" means a molecule that has been engineered by splicing *in vitro* a cDNA or genomic DNA sequence or altering a sequence by methods such as PCR mutagenesis.

20 "Cloning" refers to the use of *in vitro* recombination techniques to insert a particular gene or other DNA sequence into a vector molecule. In order to successfully clone a desired gene, it is necessary to use methods for generating DNA fragments, for joining the fragments to vector molecules, for introducing the composite DNA molecule into a host cell in which it can replicate, and for selecting the clone having the target gene from amongst the recipient host cells.

25 "cDNA library" refers to a collection of recombinant DNA molecules containing cDNA inserts which together comprise the entire or a partial repertoire of genes expressed in a particular tissue or cell source. Such a cDNA library can be prepared by methods known to one skilled in the art and described by, for example, Cowell and Austin, "cDNA Library Protocols," *Methods in Molecular Biology* (1997).

30 "Cloning vehicle" refers to a plasmid or phage DNA or other DNA sequence which is able to replicate in a host cell. This term can also include artificial chromosomes such as BACs and YACs. The cloning vehicle is characterized by one or more endonuclease recognition sites at which such DNA sequences may be cut in

a determinable fashion without loss of an essential biological function of the DNA, which may contain a marker suitable for use in the identification of transformed cells.

"Expression" refers to the process comprising transcription of a gene sequence and subsequent processing steps, such as translation of a resultant mRNA to produce the final end product of a gene. The end product may be a protein (such as an enzyme or receptor) or a nucleic acid (such as a tRNA, antisense RNA, or other regulatory factor). The term "expression control sequence" refers to a sequence of nucleotides that control or regulate expression of structural genes when operably linked to those genes. These include, for example, the lac systems, the trp system, major operator and promoter regions of the phage lambda, the control region of fd coat protein and other sequences known to control the expression of genes in prokaryotic or eukaryotic cells. Expression control sequences will vary depending on whether the vector is designed to express the operably linked gene in a prokaryotic or eukaryotic host, and may contain transcriptional elements such as enhancer elements, termination sequences, tissue-specificity elements and/or translational initiation and termination sites.

"Expression vehicle" refers to a vehicle or vector similar to a cloning vehicle but which is capable of expressing a gene which has been cloned into it, after transformation into a host. The cloned gene is usually placed under the control of (i.e., operably linked to) an expression control sequence.

"Operator" refers to a DNA sequence capable of interacting with the specific repressor, thereby controlling the transcription of adjacent gene(s).

"Promoter" refers to a DNA sequence that can be recognized by an RNA polymerase. The presence of such a sequence permits the RNA polymerase to bind and initiate transcription of operably linked gene sequences.

"Promoter region" is intended to include the promoter as well as other gene sequences which may be necessary for the initiation of transcription. The presence of a promoter region is sufficient to cause the expression of an operably linked gene sequence. The term "promoter" is sometimes used in the art to generically indicate a promoter region. Many different promoters are known in the art which direct

expression of a gene in a certain cell types. Tissue-specific promoters can comprise nucleic acid sequences which cause a greater (or decreased) level of expression in cells of a certain tissue type.

"Operably linked" means that the promoter controls the initiation of expression of the gene. A promoter is operably linked to a sequence of proximal DNA if upon introduction into a host cell the promoter determines the transcription of the proximal DNA sequence(s) into one or more species of RNA. A promoter is operably linked to a DNA sequence if the promoter is capable of initiating transcription of that DNA sequence.

"Prokaryote" refers to all organisms without a true nucleus, including bacteria.

"Eukaryote" refers to organisms and cells that have a true nucleus, including mammalian cells.

"Host" includes prokaryotes and eukaryotes, such as yeast and filamentous fungi, as well as plant and animal cells. The term includes an organism or cell that is the recipient of a replicable expression vehicle.

The term "animal" is used herein to include all vertebrate animals, except humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages. Preferred animals include higher eukaryotes such as avians, rodents (e.g., mice, rabbits, rats, chinchillas, guinea pigs, hamsters and the like), and mammals. Preferred mammals include bovine, equine, feline, canine, ovine, caprine, porcine, buffalo, humans, and primates.

A "transgenic animal" is an animal containing one or more cells bearing genetic information received, directly or indirectly, by deliberate genetic manipulation or by inheritance from a manipulated progenitor at a subcellular level, such as by microinjection or infection with a recombinant viral vector (e.g., adenovirus, retrovirus, herpes virus, adeno-associated virus, lentivirus). This introduced DNA molecule may be integrated within a chromosome, or it may be extra-chromosomally replicating DNA.

"Embryonic stem cells" or "ES cells" as used herein are cells or cell lines usually derived from embryos which are pluripotent meaning that they are un-

differentiated cells. These cells are also capable of incorporating exogenous DNA by homologous recombination and subsequently developing into any tissue in the body when incorporated into a host embryo. It is possible to isolate pluripotent cells from sources other than embryonic tissue by methods which are well understood in
5 the art.

Embryonic stem cells in mice have enabled researchers to select for transgenic cells and perform gene targeting. This allows more genetic engineering than is possible with other transgenic techniques. For example, mouse ES cells are relatively easy to grow as colonies *in vitro*. The cells can be transfected by standard
10 procedures and transgenic cells clonally selected by antibiotic resistance. See, for example, Doetschman *et al.*, 1994, *Gene transfer in embryonic stem cells*. In Pinkert (Ed.) Transgenic Animal Technology: A Laboratory Handbook. Academic Press Inc., New York, pp.115-146. Furthermore, the efficiency of this process is such that sufficient transgenic colonies (hundreds to thousands) can be produced to
15 allow a second selection for homologous recombinants. Mouse ES cells can then be combined with a normal host embryo and, because they retain their potency, can develop into all the tissues in the resulting chimeric animal, including the germ cells. The transgenic modification can then be transmitted to subsequent generations.

Methods for deriving embryonic stem (ES) cell lines *in vitro* from early
20 preimplantation mouse embryos are well known. See for example, Evans *et al.*, 1981 *Nature* 29: 154-6 and Martin, 1981, *Proc. Nat. Acad. Sci. USA*, 78: 7634-8. ES cells can be passaged in an undifferentiated state, provided that a feeder layer of fibroblast cells or a differentiation inhibiting source is present.

The term "somatic cell" indicates any animal or human cell which is not a
25 sperm or egg cell or is capable of becoming a sperm or egg cell. The term "germ cell" or "germ-line cell" refers to any cell which is either a sperm or egg cell or is capable of developing into a sperm or egg cell and can therefore pass its genetic information to offspring. The term "germ cell-line transgenic animal" refers to a transgenic animal in which the genetic information was incorporated in a germ line
30 cell, thereby conferring the ability to transfer the information to offspring. If such

offspring in fact possess some or all of that information, then they, too, are transgenic animals.

The genetic alteration of genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual
5 recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene.

"Fragment" of a gene refers to any portion of a gene sequence. A "biologically active fragment" refers to any portion of the gene that retains at least one biological activity of that gene. For example, the fragment can perhaps
10 hybridize to its cognate sequence or is capable of being translated into a polypeptide fragment encoded by the gene from which it is derived.

"Variant" refers to a gene that is substantially similar in structure and biological activity or immunological characteristics to either the entire gene or to a fragment of the gene. Provided that the two genes possess a similar activity, they
15 are considered variant as that term is used herein even if the sequence of encoded amino acid residues is not identical. Preferentially, as used herein (unless otherwise defined) the variant is one of LRP5, HBM or LRP6. The variant preferably is one that yields an HBM-like phenotype (i.e., enhances bones mass and/or modulates lipid levels). These variants include missense mutations, single nucleotide
20 polymorphisms (SNPs), mutations which result in changes in the amino acid sequence of the protein encoded by the gene or nucleic acid, and combinations thereof, as well as com in the exon domains of the *HBM* gene and mutations in LRP5 or LRP6 which result in an HBM like phenotype.

"Amplification of nucleic acids" refers to methods such as polymerase chain reaction (PCR), ligation amplification (or ligase chain reaction, LCR) and amplification methods based on the use of Q-beta replicase. These methods are well known in the art and described, for example, in U.S. Patent Nos. 4,683,195 and 4,683,202. Reagents and hardware for conducting PCR are commercially available.
25 Primers useful for amplifying sequences from the HBM region are preferably complementary to, and hybridize specifically to sequences in the HBM region or in

regions that flank a target region therein. HBM sequences generated by amplification may be sequenced directly. Alternatively, the amplified sequence(s) may be cloned prior to sequence analysis.

"Antibodies" may refer to polyclonal and/or monoclonal antibodies and
5 fragments thereof, and immunologic binding equivalents thereof, that can bind to the HBM proteins and fragments thereof or to nucleic acid sequences from the HBM region, particularly from the HBM locus or a portion thereof. Preferred antibodies also include those capable of binding to LRP5, LRP6 and HBM variants. The term antibody is used both to refer to a homogeneous molecular entity, or a mixture such
10 as a serum product made up of a plurality of different molecular entities. Proteins may be prepared synthetically in a protein synthesizer and coupled to a carrier molecule and injected over several months into rabbits. Rabbit sera is tested for immunoreactivity to the HBM protein or fragment. Monoclonal antibodies may be made by injecting mice with the proteins, or fragments thereof. Monoclonal
15 antibodies will be screened by ELISA and tested for specific immunoreactivity with HBM protein or fragments thereof. Harlow et al., *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988) and *Using Antibodies: A Laboratory Manual*, Harlow, Ed and Lane, David (Cold Spring Harbor Press, 1999). These antibodies will be useful in assays as well as pharmaceuticals.
20 By "antibody" is meant to include but not limited to polyclonal, monoclonal, chimeric, human, humanized, bispecific, multispecific, primatized™ antibodies.

"HBM protein" refers to a protein that is identical to a Zmax1 (LRP5) protein except that it contains an alteration of glycine 171 to a valine. An HBM protein is defined for any organism that encodes a Zmax1 (LRP5) true homolog. For example, 25 a mouse HBM protein refers to the mouse Zmax1 (LRP5) protein having the glycine 170 to valine substitution.

By "HBM-like" is meant a variant of LRP5, LRP6 or HBM which when expressed in a cell is capable of modulating bone mass, lipid levels, Dkk activity, and/or Wnt activity.

In one embodiment of the present invention, "*HBM* gene" refers to the genomic DNA sequence found in individuals showing the HBM characteristic or phenotype, where the sequence encodes the protein indicated by SEQ ID NO: 4. The *HBM* gene and the *Zmax1* (*LRP5*) gene are allelic. The protein encoded by the 5 *HBM* gene has the property of causing elevated bone mass, while the protein encoded by the *Zmax1* (*LRP5*) gene does not. The *HBM* gene and the *Zmax1* (*LRP5*) gene differ in that the *HBM* gene has a thymine at position 582, while the *Zmax1* gene has a guanine at position 582. The *HBM* gene comprises the nucleic acid sequence shown as SEQ ID NO: 2. The *HBM* gene may also be referred to as 10 an "HBM polymorphism." Other *HBM* genes may further have silent mutations, such as those discussed in Section 3 below.

In alternative embodiments of the present invention, "*HBM* gene" may also refer to any allelic variant of *Zmax1* (*LRP5*) or *LRP6* which results in the HBM phenotype. Such variants may include alteration from the wild-type protein coding 15 sequence as described herein and/or alteration in expression control sequences of *Zmax1* (*LRP5*) or contains an amino acid mutation in *LRP5* or *LRP6*, such that the resulting protein produces a phenotype which enhances bone mass and/or modulates lipid levels. A preferred example of such a variant is an alteration of the 20 endogenous *Zmax1* (*LRP5*) promoter region resulting in increased expression of the *Zmax1* (*LRP5*) protein.

"Normal," "wild-type," "unaffected", "*Zmax1*", "*Zmax*", "*LR3*" and "*LRP5*" all refer to the genomic DNA sequence that encodes the protein indicated by SEQ ID NO: 3. *LRP5* has also been referred to *LRP7* in mouse. *Zmax1*, *LRP5* and *Zmax* may be used interchangeably throughout the specification and are meant to be the 25 same gene, perhaps only relating to the gene in a different organism. The *Zmax1* gene has a guanine at position 582 in the human sequence. The *Zmax1* gene of human comprises the nucleic acid sequence shown as SEQ ID NO: 1. "Normal," "wild-type," "unaffected", "*Zmax1*" and "*LRP5*" also refer to allelic variants of the genomic sequence that encodes proteins that do not contribute to elevated bone

mass. The *Zmax1* (*LRP5*) gene is common in the human population, while the *HBM* gene is rare.

"Bone development" generally refers to any process involved in the change of bone over time, including, for example, normal development, changes that occur during disease states, and changes that occur during aging. This may refer to structural changes and dynamic rate changes such as growth rates, resorption rates, bone repair rates, and etc. "Bone development disorder" particularly refers to any disorders in bone development including, for example, changes that occur during disease states and changes that occur during aging. Bone development may be progressive or cyclical in nature. Aspects of bone that may change during development include, for example, mineralization, formation of specific anatomical features, and relative or absolute numbers of various cell types.

"Bone modulation" or "modulation of bone formation" refers to the ability to affect any of the physiological processes involved in bone remodeling, as will be appreciated by one skilled in the art, including, for example, bone resorption and appositional bone growth, by, *inter alia*, osteoclastic and osteoblastic activity, and may comprise some or all of bone formation and development as used herein.

Bone is a dynamic tissue that is continually adapting and renewing itself through the renewal of old or unnecessary bone by osteoclasts and the rebuilding of new bone by osteoblasts. The nature of the coupling between these processes is responsible for both the modeling of bone during growth as well as the maintenance of adult skeletal integrity through remodeling and repair to meet the everyday needs of mechanical usage. There are a number of diseases that result from an uncoupling of the balance between bone resorption and formation. With aging there is a gradual "physiologic" imbalance in bone turnover, which is particularly exacerbated in women due to menopausal loss of estrogen support, that leads to a progressive loss of bone. As bone mineral density falls below population norms there is a consequent increase in bone fragility and susceptibility to spontaneous fractures. For every 10 percent of bone that is lost, the risk of fracture doubles.

Individuals with bone mineral density (BMD) in the spine or proximal femur 2.5 or

more standard deviations below normal peak bone mass are classified as osteoporotic. However, osteopenic individuals with BMD between 1 and 2.5 standard deviations below the norm are clearly at risk.

Bone is measured by several different forms of X-ray absorptiometry. All of the instruments measure the inorganic or bone mineral content of the bone. Standard DXA measurements give a value that is an areal density, not a true density measurement by the classical definition of density (mass/unit volume). Nevertheless, this is the type of measurement used clinically to diagnose osteoporosis. However, while BMD is a major contributing factor to bone strength, as much as 40% of bone strength stems from other factors including: 1) bone size (*i.e.*, larger diameters increase organ-level stiffness, even in the face of lower density); 2) the connectivity of trabecular structures; 3) the level of remodeling (remodeling loci are local concentrators of strain); and 4) the intrinsic strength of the bony material itself, which in turn is a function of loading history (*i.e.*, through accumulated fatigue damage) and the extent of collagen cross-linking and level of mineralization. There is good evidence that all of these strength/fragility factors play some role in osteoporotic fractures, as do a host of extraskeletal influences as well (such as fall patterns, soft tissue padding, and central nervous system reflex responsiveness).

Additional analytical instruments can be used to address these features of bone. For example, the pQCT allows measurement of separate trabecular and cortical compartments for size and density and the μ CT provides quantitative information on architectural features such as trabecular connectivity. The μ CT also gives a true bone density measurement. With these tools, the important non-BMD parameters can be measured for diagnosing the extent of disease and the efficacy of treatments. Current treatments for osteoporosis are based on the ability of drugs to prevent or retard bone resorption. Although newer anti-resorptive agents are proving to be useful in the therapy of osteoporosis, they are viewed as short-term solutions to the more definitive challenge to develop treatments that will increase bone mass and/or the bone quality parameters mentioned above.

Thus, bone modulation may be assessed by measuring parameters such as bone mineral density (BMD) and bone mineral content (BMC) by pDXA X-ray methods, bone size, thickness or volume as measured by X-ray, bone formation rates as measured for example by calcien labeling, total, trabecular, and mid-shaft
5 density as measured by pQCT and/or μ CT methods, connectivity and other histological parameters as measured by μ CT methods, mechanical bending and compressive strengths as preferably measured in femur and vertebrae respectively. Due to the nature of these measurements, each may be more or less appropriate for a given situation as the skilled practitioner will appreciate. Furthermore, parameters
10 and methodologies such as a clinical history of freedom from fracture, bone shape, bone morphology, connectivity, normal histology, fracture repair rates, and other bone quality parameters are known and used in the art. Most preferably, bone quality may be assessed by the compressive strength of vertebra when such a measurement is appropriate. Bone modulation may also be assessed by rates of
15 change in the various parameters. Most preferably, bone modulation is assessed at more than one age.

"Normal bone density" refers to a bone density within two standard deviations of a Z score of 0 in the context of the HBM linkage study. In a general context, the range of normal bone density parameters is determined by routine statistical
20 methods. A normal parameter is within about 1 or 2 standard deviations of the age and sex normalized parameter, preferably about 2 standard deviations. A statistical measure of meaningfulness is the P value which can represent the likelihood that the associated measurement is significantly different from the mean. Significant P values are P < 0.05, 0.01, 0.005, and 0.001, preferably at least P < 0.01.

25 "HBM" refers to "high bone mass" although this term may also be expressed in terms of bone density, mineral content, and size.

The "HBM phenotype" and "HBM-like phenotype" may be characterized by an increase of about 2 or more standard deviations, preferably 2, 2.5, 3, or more standard deviations in 1, 2, 3, 4, 5, or more quantitative parameters of bone
30 modulation, preferably bone density and mineral content and bone strength

parameters, above the age and sex norm for that parameter. The HBM phenotype and HBM-like phenotype are characterized by statistically significant increases in at least one parameter, preferably at least 2 parameters, and more preferably at least 3 or more parameters. The HBM phenotype and the HBM-like phenotype may also be
5 characterized by an increase in one or more bone quality parameters and most preferably increasing parameters are not accompanied by a decrease in any bone quality parameters. Most preferably, an increase in bone modulation parameters and/or bone quality measurements is observed at more than one age. The HBM phenotype and HBM-like phenotype also includes changes of lipid levels, Wnt activity and/or Dkk activity.
10

The terms "isolated" and "purified" refer to a substance altered by hand of man from the natural environment. An isolated peptide may be for example in a substantially pure form or otherwise displaced from its native environment such as by expression in an isolated cell line or transgenic animal. An isolated sequence
15 may for example be a molecule in substantially pure form or displaced from its native environment such that at least one end of said isolated sequence is not contiguous with the sequence it would be contiguous with in nature.

"Biologically active" refers to those forms of proteins and polypeptides, including conservatively substituted variants, alleles of genes encoding a protein or
20 polypeptide fragments of proteins which retain a biological and/or immunological activity of the wild-type protein or polypeptide. Preferably the activity is one which induces a change in Dkk activity, such as inhibiting the interaction of Dkk with a ligand binding partner (e.g., LRP5 or LRP6 or Dkk-1 with a Dkk-1 interacting protein such as those shown in Figure 5). By biologically active is also meant to include any
25 form which modulates Wnt signaling.

By "modulate" and "regulate" is meant methods, conditions, or agents which increase or decrease the wild-type activity of an enzyme, inhibitor, signal transducer, receptor, transcription activator, co-factor, and the like. This change in activity can be an increase or decrease of mRNA translation, mRNA or DNA transcription, and/or

mRNA or protein degradation, which may in turn correspond to an increase or decrease in biological activity.

By "modulated activity" is meant any activity, condition, disease or phenotype which is modulated by a biologically active form of a protein. Modulation may be
5 effected by affecting the concentration or subcellular localization of biologically active protein, i.e., by regulating expression or degradation, or by direct agonistic or antagonistic effect as, for example, through inhibition, activation, binding, or release of substrate, modification either chemically or structurally, or by direct or indirect interaction which may involve additional factors.

10 By "effective amount" or "dose effective amount" or "therapeutically effective amount" is meant an amount of an agent which modulates a biological activity of the polypeptide of the invention.

By "immunologically active" is meant any immunoglobulin protein or fragment thereof which recognizes and binds to an antigen.

15 By "Dkk" is meant to refer to the nucleic acids and proteins of members of the Dkk (Dickkopf) family. This includes, but is not limited to, Dkk-1, Dkk-2, Dkk-3, Dkk-4, Soggy, and related Dkk proteins. Dkk-1 is a preferred embodiment of the present invention. However, the Dkk proteins have substantial homology and one skilled in the art will appreciate that all of the embodiments of the present invention utilizing
20 Dkk-1 may also be utilized with the other Dkk proteins.

By "Dkk-1" is meant to refer to the Dkk-1 protein and nucleic acids which encode the Dkk-1 protein. Dkk-1 refers to Dickkopf-1, and in *Xenopus* it is related to at least Dkk-2, Dkk-3, and Dkk-4 (see Krupnik et al., *Gene* 238:301-313 (1999)).

25 Dkk-1 was first identified in *Xenopus* (Glinka et al., *Nature* 391:357-62 (1998)). It was recognized as a factor capable of inducing ectopic head formation in the presence of inhibition of the BMP pathway. It was then also found to inhibit the axis-inducing activity of several *Xenopus* Wnt molecules by acting as an extracellular antagonist of Wnt signaling. Mammalian homologs have been found including Dkk-1, Dkk-2, Dkk-3, Dkk-4 and soggy (Fedi et al., 1999 and Krupnick et al. 1999).

30 Human Dkk-1 was also referred to as sk (Fedi et al. 1999). As used herein, Dkk-1 is

meant to include proteins from any species having a Wnt pathway in which Dkk-1 interacts. Particularly preferred are mammalian species (e.g., murine, caprine, canine, bovine, feline, equine, primate, ovine, porcine and the like), with particularly preferred mammals being humans. Nucleic acid sequences encoding Dkk-1 include,
5 but are not limited to human Dkk-1 (GenBank Accession Nos. AH009834, XM_005730, AF261158, AF261157, AF177394, AF127563 and NM_012242), *Mus musculus* dickkopf homolog 1 (GenBank Accession No. NM_010051), and *Danio rerio* dickkopf-1 (GenBank Accession Nos. AF116852 and AB023488). The genomic sequences with exon annotation are GenBank Accession Nos. AF261157 and
10 AF261158. Also contemplated are homologs of these sequences which have Dkk-1 activity in the Wnt pathway. Dkk-1 amino acid sequences include, but are not limited to human dickkopf homolog 1 (GenBank Accession Nos. AAG15544, BAA34651, NP_036374, AAF02674, AAD21087, and XP_005730), *Danio rerio* (zebrafish) dickkopf1 (GenBank Accession Nos. BAA82135 and AAD22461) and murine
15 dikkopf-1 (GenBank Accession Nos. O54908 and NP_034181). Variants and homologs of these sequences which possess Dkk-1 activity are also included when referring to Dkk-1.

By "Dkk mediated" disorder, condition or disease is any abnormal state that involves Dkk activity. The abnormal state can be induced by environmental
20 exposure or drug administration. Alternatively, the disease or disorder can be due to a genetic defect. Dkk mediated diseases, disorders and conditions include but are not limited to bone mass disorders or conditions and lipid disorders and conditions. For example, bone mass disorders/conditions/diseases, which may be mediated by Dkk, include but are not limited to age related loss of bone, bone fractures (e.g., hip
25 fracture, Colle's fracture, vertebral crush fractures), chondrodystrophies, drug-induced disorders (e.g., osteoporosis due to administration of glucocorticoids or heparin and osteomalacia due to administration of aluminum hydroxide, anticonvulsants, or glutethimide), high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's
30 disease, osteoarthritis, and rickets.

Lipid disorders/diseases/conditions, which may be mediated by Dkk, include but are not limited to familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and elevated lipid levels of unknown etiologies

The term "recognizes and binds," when used to define interactions of antisense nucleotides, siRNAs (small inhibitory RNA), or shRNA (short hairpin RNA) with a target sequence, means that a particular antisense, siRNA, or shRNA sequence is substantially complementary to the target sequence, and thus will specifically bind to a portion of an mRNA encoding polypeptide. As such, typically the sequences will be highly complementary to the mRNA target sequence, and will have no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 base mismatches throughout the sequence. In many instances, it may be desirable for the sequences to be exact matches, i.e. be completely complementary to the sequence to which the oligonucleotide specifically binds, and therefore have zero mismatches along the complementary stretch. As such, highly complementary sequences will typically bind quite specifically to the target sequence region of the mRNA and will therefore be highly efficient in reducing, and/or even inhibiting the translation of the target mRNA sequence into polypeptide product.

Substantially complementary oligonucleotide sequences will be greater than about 80 percent complementary (or '% exact-match') to the corresponding mRNA target sequence to which the oligonucleotide specifically binds, and will, more preferably be greater than about 85 percent complementary to the corresponding mRNA target sequence to which the oligonucleotide specifically binds. In certain aspects, as described above, it will be desirable to have even more substantially complementary oligonucleotide sequences for use in the practice of the invention, and in such instances, the oligonucleotide sequences will be greater than about 90 percent complementary to the corresponding mRNA target sequence to which the oligonucleotide specifically binds, and may in certain embodiments be greater than about 95 percent complementary to the corresponding mRNA target sequence to

which the oligonucleotide specifically binds, and even up to and including 96%, 97%, 98%, 99%, and even 100% exact match complementary to the target mRNA to which the designed oligonucleotide specifically binds.

Percent similarity or percent complementary of any of the disclosed
5 sequences may be determined, for example, by comparing sequence information using the GAP computer program, version 6.0, available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (1970). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids)
10 which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess (1986), (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for
15 each symbol in each gap; and (3) no penalty for end gaps.

By "mimetic" is meant a compound or molecule that performs the same function or behaves similarly to the compound mimicked.

By "reporter element" is meant a polynucleotide that encodes a polypeptide capable of being detected in a screening assays. Examples of polypeptides
20 encoded by reporter elements include, but are not limited to, lacZ, GFP, luciferase, and chloramphenicol acetyltransferase.

2. Introduction

A polymorphism in LRP5 (Zmax), G171V, designated as HBM, has been
25 identified as conferring a high bone mass phenotype in a population of related subjects as described in co-pending applications International Patent Application PCT/US 00/16951, and U.S. Patent Application Nos. 09/543,771 and 09/544,398, which are hereby incorporated by reference in their entirety (Little *et al.*, *Am J Hum Genet.* 70:11-19 (2002)). LRP5 is also described in International Patent Application
30 WO 98/46743, which is incorporated by reference in its entirety. Loss of LRP5

function has been shown to have a deleterious effect on bone (Gong *et al.*, *Cell* 107:513-523 (2001)). Additionally, the HBM polymorphism and LRP5 may also be important in cardiac health and lipid-mediated disorders. Thus, methods of regulating their activity can serve as methods of treating and/or preventing cardiac

5 and lipid-mediated disorders.

Recent studies have indicated that LRP5 participates in the Wnt signal transduction pathway. The Wnt pathway is critical in limb early embryological development. A recently published sketch of the components of Wnt signaling is shown in Figure 1

10 (Nusse, 2001 <http://www.stanford.edu/~rnusse/pathways/cell2.html>) (see also, Nusse, *Nature* 411:255-6 (2001); and Mao *et al.*, *Nature* 411:321-5 (2001)). Briefly summarized, Wnt proteins are secreted proteins which interact with the transmembrane protein Frizzled (Fz). LRP proteins, such as LRP5 and LRP6, are believed to modulate the Wnt signal in a complex with Fz (Tamai *et al.*, *Nature* 407:530-5 (2000)). The Wnt pathway acts intracellularly through the Disheveled protein (Dsh) which in turn inhibits glycogen synthetase kinase-3 (GSK3) from phosphorylating β-catenin. Phosphorylated β-catenin is rapidly degraded following ubiquitination. However, the stabilized β-catenin accumulates and translocates to the nucleus where it acts as a cofactor of the T-cell factor (TCF) transcription

15 activator complex.

20 The protein dickkopf-1 (Dkk-1) is reported to be an antagonist of Wnt pathway. Dkk-1 is required for head formation in early development. Dkk-1 and its function in the Wnt pathway are described in e.g., Krupnik, *et al.*, *Gene* 238:301-13 (1999); Fedi *et al.*, *J. Biol. Chem.* 274:19465-72 (1999); see also for Dkk-1 and the Wnt pathway, Wu *et al.*, *Curr. Biol.* 10:1611-4 (2000), Shinya *et al.*, *Mech. Dev.* 98:3-25 17 (2000), Mukhopadhyay *et al.*, *Dev Cell* 1:423-434 (2001) and in PCT Patent Application No. WO 00/52047, and in references cited in each. It has been known that Dkk-1 acts upstream of Dsh, however the nature of the mechanism of inhibition by Dkk-1 is just beginning to be elucidated. Dkk-1 is expressed in the mouse 30 embryonic limb bud and its disruption results in abnormal limb morphogenesis, among

other developmental defects (Gotewold *et al.*, *Mech. Dev.* 89:151-3 (1999); and, Mukhopadhyay *et al.*, *Dev Cell* 1:423-434 (2001)).

Related U.S. provisional application 60/291,311 disclosed a novel interaction between Dkk-1 (GenBank Accession No. XM 005730) and LRP5. The interaction between Dkk-1 and LRP5 was discovered by a yeast two hybrid (Y2H) screen for proteins which interact with the ligand binding domain of LRP5, as described in Example 1. The two-hybrid screen is a common procedure in the art, which is described, for example, by Gietz *et al.*, *Mol. Cell. Biochem.* 172:67-79 (1997); Young, *Biol. Reprod.* 58:302-11 (1998); Brent and Finley, *Ann. Rev. Genet.* 31:663-704 (1997); and Lu and Hannon, eds., Yeast Hybrid Technologies, Eaton Publishing, Natick MA, (2000). More recently, other studies confirm that Dkk-1 is a binding partner for LRP and modulates the Wnt pathway via direct binding with LRP (R. Nusse, *Nature* 411:255-256 (2001); A. Bafico *et al.*, *Nat. Cell Biol.* 3:683-686 (2001); M. Seménov, *Curr. Biol.* 11:951-961 (2001); B. Mao, *Nature* 411:321-325 (2001), 10 Zorn, *Curr. Biol.* 11:R592-5 (2001)); and, L. Li *et al.*, *J. Biol Chem.* 277:5977-81 (2002)).

Mao and colleagues (2001) identified Dkk-1 as a ligand for LRP6. Mao *et al.* suggest that Dkk-1 and LRP6 interact antagonistically where Dkk proteins inhibit the Wnt coreceptor functions of LRP6. Using co-immunoprecipitation, the group verified that the Dkk-1/LRP6 interaction was direct. Dkk-2 was also found to directly bind LRP6. Contrary to data contained in provisional application 60/291,311, Mao *et al.* report that no interaction was detected between any Dkk protein and LRP5, as well as no interaction with LDLR, VLDLR, ApoER, or LRP. Additionally, Mao *et al.* demonstrated that LRP6 can titrate Dkk-1's effects of inhibiting Wnt signaling using the commercial TCF-luciferase reporter gene assay (TOPFLASH). A similar conclusion was drawn from analogous studies in *Xenopus* embryos. Deletion analyses of LRP6 functional domains revealed that EGF repeats (beta-propellers) 3 and 4 were necessary for Dkk-1 binding and that the ligand binding domains of LRP6 had no effect on Dkk-1 binding. The findings of Mao *et al.* contrast with data obtained by the present inventors indication that the ligand binding domains of LRP5

were necessary and sufficient for Dkk-1 binding in yeast. Using classical biochemical ligand-receptor studies, Mao *et al.* determined a $K_d=0.34$ nM for Dkk-1/LRP6 and a $K_d=0.73$ nM for Dkk-2/LRP6.

Semenov *et al.* (2001) verified the Mao group's results and confirmed by 5 coimmunoprecipitation that Dkk-1 does not directly bind to Wnt or Frizzled but rather interacts with LRP6. Their Scatchard analyses found a $K_d=0.5$ nM for Dkk-1/LRP6. Semenov *et al.* also demonstrated that Dkk-1 could abolish an LRP5/Frizzled8 complex implying that Dkk-1 can also repress Wnt signaling via interactions with 10 LRP5. A Dkk-1 mutant where cysteine 220 was changed to alanine abolished LRP6 binding and was unable to repress Wnt signaling. Studies in *Xenopus* embryos confirmed the results and revealed a functional consequence of Dkk-1/LRP6: repression of Wnt signaling. Their *Xenopus* work also suggested that LRP6/Dkk-1 may be specific for the canonical, β -catenin-mediated, Wnt pathways as opposed to the Wnt Planar Cell Polarity pathway.

15 Bafico *et al.* (2001) employed a ^{125}I -labeled Dkk-1 molecule to identify LRP6 as its sole membrane receptor with a $K_d=0.39$ nM. Again, the functional consequences of the Dkk-1/LRP6 interaction was a repression of the canonical Wnt signaling even when Dkk-1 was added at extremely low concentrations (30 pM).

Not wishing to be bound by theory, it is believed that the present invention 20 provides an explanation for the mechanism of Dkk-1 inhibition of the Wnt pathway and provides a mechanism whereby the Wnt pathway may be modulated. The present application and related provisional application 60/291,311 describe Dkk-1/LRP5 interactions and demonstrate that the interaction between LRP5/LRP6/HBM and Dkk can be used in a method as an intervention point in the Wnt pathway for an 25 anabolic bone therapeutic or a modulator of lipid metabolism.

As detailed below, in the section "Methods to Identify Binding Partners" and Examples 6 and 7, Dkk-1 is able to repress LRP5-mediated Wnt signaling but not HBM-mediated Wnt signaling. This observation is of particular interest because the HBM mutation in LRP5 is a gain of function or activation mutation. That is, Wnt 30 signaling, via the canonical pathway, is enhanced with HBM versus LRP5. The

present data suggest the mechanism of this functional activation: the inability of Dkk-1 to repress HBM-mediated Wnt signaling. Further investigations of other Wnt or Dkk family members show differential activities in the canonical Wnt pathway that demonstrate the complexity and variability in Wnt signaling that can be achieved
5 depending on the LRP/Dkk/Wnt/Frizzled repertoire that is expressed in a particular cell or tissue. This may attest to the apparent bone specificity of the HBM phenotype in humans and in the HBM transgenic animals.

Furthermore, the present data reveal the importance and functional consequence for the potential structural perturbation of the first beta-propeller domain of LRP5. Our data identified the ligand binding domain of LRP5 as the interacting region with Dkk-1 while the Mao *et al.* publication demonstrated the functional role of propellers 3 and 4 in their LRP6/Dkk-1 studies. In the present invention, we implicate the first beta propeller domain, via the HBM mutation at residue 171, as having a functional consequence in the Dkk-1-mediated Wnt pathway.
10 The involvement of position 171 of propeller 1 may be direct or indirect with Dkk-1. Direct involvement could arise from perturbations of the 3-dimensional structure of the HBM extracellular domain that render Dkk-1 unable to bind.
15 Alternatively, residue 171 of propeller 1 may directly interact with Dkk-1; however, by itself, it is insufficient to bind and requires other LRP5 domains. Potential indirect candidate molecules may be among the proteins identified the Dkk-1 yeast-two-hybrid experiments.
20

It may be that the disruption of Dkk activity is not necessarily mediated by enhancing or preventing the binding of Dkk to LRP5/LRP6/HBM. More than one mechanism may be involved. Indeed, the inventors have observed that Dkk-1 binds LRP5, LRP6, and HBM. It is able to effectively inhibit LRP6, and to a slightly lesser extent, LRP5 activity. Further, has been observed that different members of the Dkk family differentially affect LRP5/LRP6/HBM activity. For example, Dkk-1 inhibits LRP5/LRP6/HBM activity while another Dkk may enhance LRP5/LRP6/HBM activity.
25 An endpoint to consider is the modulation of the LRP5/LRP6/HBM activity, not simply binding.
30

The present disclosure shows that targeting the disruption of the Dkk-1/LRP5 interaction is a therapeutic intervention point for an HBM mimetic agent. A therapeutic agent of the invention may be a small molecule, peptide or nucleic acid aptamer, antibody, or other peptide/protein, etc. Methods of reducing Dkk-1 expression may also be therapeutic using methodologies such as: RNA interference, antisense oligonucleotides, morpholino oligonucleotides, PNAs, antibodies to Dkk-1 or Dkk-1 interacting proteins, decoy or scavenger LRP5 or LRP6 receptors, and knockdown of Dkk-1 or Dkk-1 interactor transcription.

In an embodiment of the present invention, the activity of Dkk-1 or the activity of a Dkk-1 interacting protein may be modulated for example by binding with a peptide aptamer of the present invention. In another embodiment, LRP5 activity may be modulated by a reagent provided by the present invention (e.g., a peptide aptamer). In another embodiment, the Dkk-1/LRP5 interaction may be modulated by a reagent of the present invention (e.g., a Dkk-1 interacting protein such as those identified in Figure 5). In another embodiment, the Wnt signal transduction pathway may be modulated by use of one or more of the above methods. In a preferred embodiment of the present invention, the Dkk-1 mediated activity of the Wnt pathway may be specifically modulated by one or more of the above methods. In another preferred embodiment of the present invention, the Wnt signal transduction pathway may be stimulated by down-regulating Dkk-1 interacting protein activity; such down-regulation could, for example, yield greater LRP5 activity. In a more preferred embodiment, by stimulating LRP5 activity, bone mass regulation may be stimulated to restore or maintain a more optimal level. In another preferred embodiment, by stimulating LRP5 activity, lipid metabolism may be stimulated to restore or maintain a more optimal level. Alternative embodiments provide methods for screening candidate drugs and therapies directed to correction of bone mass disorders or lipid metabolism disorders. And, preferred embodiments of the present invention provide drugs and therapies developed by the use of the reagents and/or methods of the present invention. One skilled in the art will understand that the present invention provides important research tools to develop an effective model of

osteoporosis, to increase understanding of bone mass and lipid modulation, and to modulate bone mass and lipid metabolism.

Previous investigation of a large family in which high bone mass is inherited as a single gene (autosomal dominant) trait (HBM-1) has provided important insight
5 into the mechanism by which bone density might be modulated. Members of this family have significantly increased spinal and hip BMD (>3 standard deviations above the norm) which affects young adults as well as elderly family members into the ninth decade. The bones of affected members, while appearing very dense radiographically, have normal external shape and outer dimensions. Cortical bone is
10 thickened on endosteal surfaces and "affected" individuals are asymptomatic without any other phenotypic abnormalities. Assays of biochemical markers that reflect skeletal turnover suggest that the disorder is associated with a normal rate of bone remodeling. Affected individuals have achieved a balance in bone turnover at a density that is significantly greater than necessary for normal skeletal stresses.
15 Importantly, the bones most affected are load-bearing bones which are subjected to the greatest mechanical and gravitational stresses (spine and hip). These are the most important bones to target for therapeutic interventions in osteoporosis. The gene identified as being responsible for this phenotype, Zmax or LRP5, was not previously associated with bone physiology. The fact that modification of this gene,
20 such as that produced by the polymorphism leading to the autosomal dominant inheritance of the HBM family phenotype, identifies Zmax/LRP5 and the pathway by which it is regulated, including Dkk/Wnt pathways discussed above, as an important target for developing modulators of bone density. Modulation of Zmax/LRP5 to mimic the gain in function provided by the HBM polymorphism would be expected to
25 provide an important therapy for bone wasting conditions. Additionally, such modulation in young adults could enhance peak bone mass and prevent or delay fracture risk later in life. Alternatively, modulation to reduce function could be employed to treat conditions where bone is being inappropriately produced.

3. Polypeptides

Polypeptides contemplated for use in this invention include those which modulate Dkk and Dkk interacting protein activities. Preferred polypeptides and peptides include those which modulate the Wnt pathway. Examples of preferred sequences include the Y2H baits exemplified in Figure 2, peptide aptamers of Figure 3 (SEQ ID NOs:171-188) and Figure 4 (SEQ ID NOs:189-192), the polypeptides of the Dkk-1 interacting proteins identified in Figure 5, those polypeptides shown in Figure 6, the LRP binding domain of Dkk (amino acids 138-266 of hDkk1), the cysteine-rich domain 2 (a.a. 183-245 of hDkk-1), the cysteine-rich domain 1 (a.a. 97-138 of hDkk), and LRP5 binding aptamers of Figure 13 (including SEQ ID NOs:204-213). Although Dkk-1 is exemplified, the other Dkk proteins contain substantially similar regions and may also be used according to the present invention.

For example, the baits depicted in Figure 2 were used in a yeast two hybrid (Y2H) screen. The Y2H screen was performed as described in Example 2 to determine the minimum required binding domain for Dkk-1 to bind LRP5. The minimum binding domain constructs (*i.e.*, residues 139-266 in bold below and residues 97-245 which are underlined, of Dkk-1) include the second cysteine rich domain which has sequence homology to a colipase fold.

20 *mmalgaagat rvfvamvaaa lgghpllgvs atlnsvlnsn aiknlppplg gaaghpgsav 60*
saapgilypg gnkyqtidny qpycpcaedee cgtdeycasp trqggdagvgqi clacrkrrkr 120
cmrhahmccpg nyckngicys sdgnhfrgei eetitesfgn dhstldgysr rttlsskmyh 180
tkgqeqgsval rssdcasqlc carhfwskic kpvylkeggvc tkhrrkgshq leifqrcyca 240
eqlsriqkd hhqgasnssrl htcqrh (GenBank Accession No. XP_005730) (SEQ ID
25 NO:128).

30 This homology suggests a lipid-binding function and may facilitate Dkk-1 interactions at the plasma membrane (van Tilburgh, H., *Biochim. Biophys. Acta.* 1441:173-84 (1999)). An interaction domain of Dkk-1 that is able to interact with the ligand binding domain (LBD) of LRP5 is a useful reagent in the modulation of LRP5 activity

and modulation of Dkk-1/LRP5 complex formation. Similar screens can be prepared for Dkk-1 and Dkk-1 interacting proteins or polypeptides.

A set of peptide aptamers was identified from a library of random peptides constrained and presented in a thioredoxin A (trxA) scaffold as described in Example 5. Peptide aptamers are powerful new tools for molecular medicine as reviewed by Hoppe-Seyler & Butz, *J. Mol. Med.*, 78:426-430 (2000); Brody and Gold, *Rev. Mol. Biotech.*, 74:5-13 (2000); and Colas, *Curr. Opin. in Chem. Biol.* 4:54-9 (2000) and the references cited therein. Briefly, peptide aptamers have been shown to be highly specific reagents capable of binding *in vivo*. As such, peptide aptamers provide a method of modulating the function of a protein and may serve as a substitute for conventional knock-out methods, knock-down or complete loss of function. Peptide aptamers are also useful reagents for the validation of targets for drug development and may be used as therapeutic compounds directly or provide the necessary foundation for drug design. Once identified, the peptide insert may be synthesized 10 and used directly or incorporated into another carrier molecule. References 15 reviewed and cited by Brody and Gold (2000, *supra*) describe demonstrated therapeutic and diagnostic applications of peptide aptamers and would be known to the skilled artisan.

The peptide aptamers of the present invention are useful reagents in the 20 binding of Dkk-1 to its ligands and thereby modulation of the Wnt pathway and may be used to prevent Dkk-1 from inhibiting LRP5 modulation or Dkk-1 interacting protein modulation of the Wnt pathway. The sequence of these peptide aptamers is shown in Figure 3 (SEQ ID NOs:171-188). The peptide aptamers refers to the peptide constrained by the thioredoxin scaffold. The aptamers are also 25 contemplated as therapeutic agents to treat Dkk-1 mediated diseases and conditions. Such aptamers are useful structural guides to chemists, for the design of mimetic compounds of the aptamers.

Peptide aptamers were likewise developed to the LRP5 ligand binding domain (LBD) bait sequences. The sequences of these peptide aptamers is shown in Figure 30 4 (SEQ ID NOs:189-192). These are useful reagents which may be used to disrupt

the Dkk-1/LRP5 binding interface while leaving Dkk-1 undisturbed. These can be used as comparative controls for Wnt signaling, thus, a control is provided for the specificity of any drug or therapy screened. The aptamers are also useful therapeutic agents to treat LRP mediated diseases and conditions. Such aptamers
5 may also be used as structural guides to chemists, for the design of mimetic compounds of the aptamers.

Thirty proteins were identified which interact with Dkk-1, Dkk-1 interacting proteins, were identified in a yeast-two-hybrid screen using the Dkk-1 bait and are shown in Figure 5. It was noted that these results suggest an interaction of Dkk-1 with Notch-2. It has been suggested that cross-talk exists between the Wnt and
10 Notch signaling pathways. For instance, Presenilin1 (Ps1) is required for Notch processing and inhibits the downstream Wnt pathway. The extracellular domain of Notch is thought to interact with Wnt. Furthermore, the Notch intracellular domain is thought to interact with disheveled and in signal induced processing, the intracellular
15 domain is thought to interact with presenilin. (Soriano et al., *J. Cell Biol.* 152:785-94 (2001)). For additional information regarding the relationships between Notch and Wnt signaling, see Wesley, *Mol. Cell. Biol.* 19:5743-58 (1999) and Axelrod et al.,
Science 271:1826-32 (1996).

An interaction between Dkk-1 and chordin has also been noted; suggesting
20 that cross-talk exists between the Wnt and TGF-beta/BMP signaling pathways (Letamendia et al., *J. Bone Joint Surg. Am.* 83A:S31 (2001); Labbe et al., *Proc. Natl. Acad. Sci. USA* 97:8358-63 (2000); Nishita et al., *Nature* 403:781-5 (2000); DeRobertis et al., *Int. J. Dev. Biol.* 45:1389-97 (2001); and Saint-Jeannet et al., *Proc. Natl. Acad. Sci. USA* 94:13713-8 (1997)). The BMP signaling pathway has an
25 established role in bone and connective tissue development, repair and homeostasis (review in Rosen and Wozney "Bone Morphogenetic Proteins" In: *Principles of Bone Biology*, 2nd Edition, Eds. J. Bilezikian, L. Raisz and G. Rodan, Academic Press, pp. 919-28 (2002)). Chordin is an important molecule during development which also modulates BMP signaling in adults by sequestering BMPs in latent complexes
30 (Piccolo et al., *Cell* 86:589-98 (1996) reviewed in Reddi, *Arthritis Res.* 3:1-5 (2001);

DeRobertis *et al.*, *Int. J. Dev. Biol.* 45:189-97 (2001)). It may be that Dkk effects bone mass modulation through both the Wnt signaling pathway via LRP and the BMP pathway via chordin.

Moreover, a number of putative growth factors, growth factor related proteins,
5 and extracellular matrix proteins have been identified as Dkk-1 interacting proteins.
Additional information regarding Dkk-1 interacting proteins identified in the Y2H
assay may be obtained from publicly available databases such as PubMed via the
use of the accession numbers provided in the present application. In a preferred
embodiment of the invention, the amino acid sequences of these Dkk-1 interacting
10 proteins or biologically active fragments thereof be used to modulate Dkk, Dkk-1,
LRP5, LRP6, HBM, or Wnt activity. Although these proteins were identified as
interacting with Dkk-1, due to the substantial homology between the various Dkk
proteins, such interacting proteins are contemplated to interact with the other Dkk
family members.

15

4. Aptamer Mimetics

The present invention further provides for mimetics of Dkk, particularly Dkk-1,
and LRP5 peptide aptamers. Such aptamers may serve as structural guides to
chemists for the design of mimetic compounds of the aptamers. The aptamers and
20 their mimetics are useful as therapeutic agents to treat LRP- or Dkk-mediated
diseases and conditions.

5. Nucleic Acid Molecules

The present invention further provides nucleic acid molecules that encode
25 polypeptides and proteins which interact with Dkk and Dkk interacting proteins,
and/or LRP5 (also LRP6 and HBM) to modulate biological activities of these
proteins. Preferred embodiments provide nucleic acids encoding for fragments of
Dkk-1 protein, including the nucleic acids of Figure 7, the Dkk-1 interacting proteins
listed in Figure 5, polypeptide aptamers of Dkk-1 (Figure 3 - SEQ ID NOs:171-188),
30 LRP5 (Figure 4 - SEQ ID NOs:189-192), Figure 13 peptide aptamers (including SEQ

ID NO:204-214) encoded by Figure 12 polynucleotides (including SEQ ID NO:193-203), LRP6 and HBM and the related fusion proteins herein described, preferably in isolated or purified form. As used herein, "nucleic acid" is defined as RNA, DNA, or cDNA that encodes a peptide as defined above, or is complementary to a nucleic acid sequence encoding such peptides, or hybridizes to either the sense or antisense strands of the nucleic acid and remains stably bound to it under appropriate stringency conditions. The nucleic acid may encode a polypeptide sharing at least about 75% sequence identity, preferably at least about 80%, and more preferably at least about 85%, with the peptide sequences; at least about 90%, 95%, 96%, 97%, 98%, and 99% or greater are also contemplated. Specifically contemplated are genomic DNA, cDNA, mRNA, antisense molecules, enzymatically active nucleic acids (e.g., ribozymes), as well as nucleic acids based on an alternative backbone or including alternative bases, whether derived from natural sources or synthesized. Such hybridizing or complementary nucleic acids, however, are defined further as being novel and nonobvious over any prior art nucleic acid including that which encodes, hybridizes under appropriate stringency conditions, or is complementary to a nucleic acid encoding a protein according to the present invention.

As used herein, the terms "hybridization" (hybridizing) and "specificity" (specific for) in the context of nucleotide sequences are used interchangeably. The ability of two nucleotide sequences to hybridize to each other is based upon the degree of complementarity of the two nucleotide sequences, which in turn is based on the fraction of matched complementary nucleotide pairs. The more nucleotides in a given sequence that are complementary to another sequence, the greater the degree of hybridization of one to the other. The degree of hybridization also depends on the conditions of stringency which include temperature, solvent ratios, salt concentrations, and the like. In particular, "selective hybridization" pertains to conditions in which the degree of hybridization of a polynucleotide of the invention to its target would require complete or nearly complete complementarity. The complementarity must be sufficiently high so as to assure that the polynucleotide of

the invention will bind specifically to the target nucleotide sequence relative to the binding of other nucleic acids present in the hybridization medium. With selective hybridization, complementarity will be about 90-100%, preferably about 95-100%, more preferably about 100%.

5 "Stringent conditions" are those that (1) employ low ionic strength and high temperature for washing, for example: 0.015 M NaCl, 0.0015 M sodium titrate, 0.1% SDS at 50°C; or (2) employ during hybridization a denaturing agent such as formamide, for example, 50% (vol/vol) formamide with 0.1% bovine serum albumin, 0.1% Ficoll, 0.1% polyvinylpyrrolidone, 50 mM sodium phosphate buffer at pH 6.5
10 with 750 mM NaCl, 75 mM sodium citrate at 42°C. Another example is use of 50% formamide, 5X SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5X Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2X SSC and 0.1% SDS. A skilled artisan can readily determine
15 and vary the stringency conditions appropriately to obtain a clear and detectable hybridization signal.

As used herein, a nucleic acid molecule is said to be "isolated" or "purified" when the nucleic acid molecule is substantially separated from contaminant nucleic acid encoding other polypeptides from the source of nucleic acid. Isolated or purified
20 is also meant to include nucleic acids which encode Dkk or fragments thereof which lack surrounding genomic sequences that flank the *Dkk* gene. Isolated or purified is further intended to include nucleic acids which encode Dkk interacting proteins or biologically active fragments thereof which lack surrounding genomic sequences that flank the Dkk interacting protein genes.

25 The present invention further provides fragments of the encoding nucleic acid molecule. As used herein, a fragment of an encoding nucleic acid molecule refers to a small portion of the entire protein encoding sequence. The size of the fragment will be determined by the intended use. For example, if the fragment is chosen so as to encode an active portion of the protein, the fragment will need to be large enough
30 to encode the functional region(s) of the protein. If the fragment is to be used as a

nucleic acid probe or PCR primer, then the fragment length is chosen so as to obtain a relatively small number of false positives during probing/priming.

Fragments of the encoding nucleic acid molecules of the present invention (i.e., synthetic oligonucleotides) that are used as probes or specific primers for the polymerase chain reaction (PCR), or to synthesize gene sequences encoding proteins of the invention can easily be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci *et al.* (*J. Am. Chem. Soc.* 103:3185-3191 (1981)) or using automated synthesis methods. In addition, larger DNA segments can readily be prepared by well known methods, such as synthesis of a group of oligonucleotides that define various modular segments of the gene, followed by ligation of oligonucleotides to build the complete modified gene.

The polypeptide encoding nucleic acid molecules of the present invention may further be modified to contain a detectable label for diagnostic and probe purposes. A variety of such labels are known in the art and can readily be employed with the encoding molecules herein described. Suitable labels include, but are not limited to, biotin, radiolabeled nucleotides and the like. A skilled artisan can employ any of the art known labels to obtain a labeled encoding nucleic acid molecule.

Modifications to the primary structure itself by deletion, addition, or alteration of the amino acids incorporated into the protein sequence during translation can be made without destroying the activity of the protein. Such substitutions or other alterations result in proteins having an amino acid sequence encoded by a nucleic acid falling within the contemplated scope of the present invention.

Antisense molecules corresponding to the polypeptide coding or complementary sequence may be prepared. Methods of making antisense molecules which bind to mRNA, form triple helices or are enzymatically active and cleave TSG RNA and single stranded DNA (ssDNA) are known in the art. See, e.g., Antisense and Ribozyme Methodology:Laboratory Companion (Ian Gibson, ed., Chapman & Hall, 1997) and Ribozyme Protocols: Methods in Molecular Biology (Phillip C. Turner, ed., Humana Press, Clifton, NJ, 1997).

Also contemplated is the use of compounds which mediate posttranscriptional gene silencing (PTGS), quelling and RNA interference (RNAi). These compounds typically are about 21 to about 25 nucleotides and are also known as short interfering RNAs or short inhibitory RNAs (siRNAs). The siRNAs are produced from an initiating double stranded RNA (dsRNA). Although the full mechanism by which the siRNAs function is not fully elucidated, it is known that these siRNAs transform the target mRNA into dsRNA, which is then degraded. Preferred forms are 5' phosphorylated siRNAs, however, hydroxylated forms may also be utilized. For additional background regarding the preparation and mechanism of siRNAs generally, see, e.g., Lipardi et al., *Cell* 107(3): 297-307 (2001); Boutla et al., *Curr. Biol.* 11(22): 1776-80 (2001); Djikeng et al., *RNA* 7(11): 1522-30 (2001); Elbashir et al., *EMBO J.* 20(23): 6877-88 (2001); Harborth et al., *J. Cell. Sci.* 114(Pt. 24): 4557-65 (2001); Hutvagner et al., *Science* 293(5531): 811-3 (2001); and Elbashir et al., *Nature* 411:494-98 (2001).

Also contemplated are short hairpin RNAs (shRNAs). shRNAs are a modification of the siRNA method described above. Instead of transfecting exogenously synthesized dsRNA into a cell, sequence-specific silencing can be achieved by stably expressing siRNA from a DNA template as a fold-back stem-loop, or hairpin. This approach is known as shRNA. This method permits the analysis of loss of function phenotypes due to sequence-specific gene silencing in mammalian cells by avoiding many of the problems associated with siRNAs, such as RNase degradation of the reagents, expensive chemical synthesis, etc. For additional background regarding the preparation and mechanism of shRNAs generally, see, e.g., Yu et al., *PNAS* 99:6047-6052 (2002); Paddison et al., *Genes and Devel.* 16:948-58 (2002); and Brummelkamp et al., *Science* 296:550-553 (2002). For additional background on the use of this method in mammalian gene knockdown methodologies, see Tuschl, *Nature Biotech.* 20:446-448 (2002) (and references therein).

In one preferred embodiment, the siRNA or shRNA is directed to a Dkk encoding mRNA, wherein a preferred Dkk is Dkk-1. In another embodiment, the

siRNA or shRNA is directed towards a protein which binds to and modulates the activity of or is modulated by a Dkk; these proteins include LRP5, LRP6 and HBM as well as other members of the Wnt pathway.

5 **6. Isolation of Other Related Nucleic Acid Molecules**

The identification of the nucleic acid molecule of Dkk allows a skilled artisan to isolate nucleic acid molecules that encode other members of the Dkk family (see, Krupnik *et al.*, 1999). Further, the presently disclosed nucleic acid molecules allow a skilled artisan to isolate nucleic acid molecules that encode Dkk-1-like proteins, in addition to Dkk-1. The presently disclosed Dkk-1 interacting proteins and their corresponding nucleic acid molecules allows a skilled artisan to further isolate other related protein family members which interact with Dkk-1.

A skilled artisan can readily use the amino acid sequence of Dkk and Dkk interacting proteins to generate antibody probes to screen expression libraries prepared from appropriate cells. Typically, polyclonal antiserum from mammals such as rabbits immunized with the purified protein (as described below) or monoclonal antibodies can be used to probe a mammalian cDNA or genomic expression library, such as a human macrophage library, to obtain the appropriate coding sequence for other members of the protein family. The cloned cDNA sequence can be expressed as a fusion protein, expressed directly using its own control sequences, or expressed by constructions using control sequences appropriate to the particular host used for expression of the desired protein.

Alternatively, a portion of the coding sequence herein described can be synthesized and used as a probe to retrieve DNA encoding a member of the protein family from any mammalian organism. Oligomers containing approximately 18-20 nucleotides (encoding about a 6-7 amino acid stretch) are prepared and used to screen genomic DNA or cDNA libraries to obtain hybridization under stringent conditions or conditions of sufficient stringency to eliminate an undue level of false positives.

Additionally, pairs of oligonucleotide primers can be prepared for use in a polymerase chain reaction (PCR) to selectively clone an encoding nucleic acid

molecule. A PCR denature/anneal/extend cycle for using such PCR primers is well known in the art and can readily be adapted for use in isolating other encoding nucleic acid molecules. For example, degenerate primers can be utilized to obtain sequences related to Dkk-1 or Dkk-1 interacting proteins. Primers can be designed that are not perfectly complementary and can still hybridize to a portion of a target sequence or flanking sequence and thereby provide for amplification of all or a portion of a target sequence. Primers of about 20 nucleotides or less, preferably have about one to three mismatches located at the 5' and/or 3' ends. Primers of about 20 to 30 nucleotides have up to about 30% mismatches and can still hybridize to a target sequence.

5 Hybridization conditions for primers with mismatch can be determined by the method described in Maniatis *et al.*, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982) or by reference to known methods. The ability of the primer to hybridize to a sequence of either Dkk-1, a Dkk-1 interacting protein, or a related sequence under varying conditions can be determined using this

10 method. Because a target sequence is known, the effect of mismatches can be determined by methods known to those of skill in the art. Degenerate primers would be based on putative conserved amino acid sequences of the Dkk-1 and Dkk-1 interacting protein genes.

15

20 7. rDNA Molecules for Polypeptide Expression

The present invention further provides recombinant DNA molecules (rDNAs) that contain a polypeptide coding sequence. As used herein, a rDNA molecule is a DNA molecule that has been subjected to molecular manipulation *in situ*. Methods for generating rDNA molecules are well known in the art, for example, see Sambrook *et al.*, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989). In the preferred rDNA molecules, a coding DNA sequence is operably linked to expression control sequences and/or vector sequences.

25 The choice of vector and/or expression control sequences to which one of the protein family encoding sequences of the present invention is operably linked depends directly, as is well known in the art, on the functional properties desired, e.g., protein

expression, and the host cell to be transformed. A vector contemplated by the present invention is at least capable of directing the replication and/or insertion into the host chromosome, and preferably also expression, of the structural gene included in the rDNA molecule.

5 Expression control elements that are used for regulating the expression of an operably linked protein encoding sequence are known in the art and include, but are not limited to, inducible promoters, constitutive promoters, secretion signals, and other regulatory elements. Preferably, the inducible promoter is readily controlled, such as being responsive to a nutrient in the host cell's medium. Preferred promoters include
10 yeast promoters, which include promoter regions for metallothionein, 3-phosphoglycerate kinase or other glycolytic enzymes such as enolase or glyceraldehyde-3-phosphate dehydrogenase, enzymes responsible for maltose and galactose utilization, and others. Vectors and promoters suitable for use in yeast expression are further described in EP 73,675A. Appropriate non-native mammalian
15 promoters might include the early and late promoters from SV40 (Fiers et al, *Nature*, 273:113 (1978)) or promoters derived from Moloney murine leukemia virus, mouse tumor virus, avian sarcoma viruses, adenovirus II, bovine papilloma virus or polyoma. In addition, the construct may be joined to an amplifiable gene (e.g., DHFR) so that multiple copies of the gene may be made. For appropriate enhancer and other
20 expression control sequences, see also Enhancers and Eukaryotic Gene Expression (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1983). Preferred bone related promoters include CMVbActin or type I collagen promoters to drive expression of the human HBM, Zmax1/LRP5 or LRP6 cDNA. Other preferred promoters for mammalian expression are from cytomegalovirus (CMV), Rous sarcoma virus (RSV), Simian virus
25 40 (SV40), and EF-1a (human elongation factor 1a-subunit).

In one embodiment, the vector containing a coding nucleic acid molecule will include a prokaryotic replicon, i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a prokaryotic host cell, such as a bacterial host cell, transformed therewith. Such replicons are well known in the art. In addition, vectors with a
30

prokaryotic replicon may also include a gene whose expression confers a detectable marker such as a drug resistance. Typical bacterial drug resistance genes are those that confer resistance to ampicillin or tetracycline.

Vectors that include a prokaryotic replicon can further include a prokaryotic or bacteriophage promoter capable of directing the expression (transcription and translation) of the coding gene sequences in a bacterial host cell, such as *E. coli*. A promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention.

Typical of such vector plasmids are pUC8, pUC9, pBR322 and pBR329 available from Biorad Laboratories, (Richmond, CA), and pPL and pKK223 available from Pharmacia (Piscataway, NJ).

Expression vectors compatible with eukaryotic cells, preferably those compatible with vertebrate cells, can also be used to form a rDNA molecule that contains a coding sequence. Eukaryotic cell expression vectors are well known in the art and are available from several commercial sources. Typically, such vectors are provided containing convenient restriction sites for insertion of a desired DNA segment. Typical of such vectors are pSVL and pKSV-10 (Pharmacia), pBPV-1/pML2d (International Biotechnologies, Inc.), vector systems that include Histidine Tags and periplasmic secretion, or other vectors described in the art.

Eukaryotic cell expression vectors used to construct the rDNA molecules of the present invention may further include a selectable marker that is effective in an eukaryotic cell, preferably a drug resistance selection marker. A preferred drug resistance marker is the gene whose expression results in neomycin resistance, i.e., the neomycin phosphotransferase (*neo*) gene (Southern et al., *J. Mol. Anal. Genet.* 1:327-341 (1982)). Alternatively, the selectable marker can be present on a separate plasmid, and the two vectors introduced by co-transfection of the host cell, and selected by culturing in the appropriate drug for the selectable marker.

8. Host Cells Containing an Exogenously Supplied rDNA Nucleic Acid Molecule

The present invention further provides host cells transformed with a nucleic acid molecule that encodes a polypeptide or protein of the present invention. The host cell
5 can be either prokaryotic or eukaryotic. Eukaryotic cells useful for expression of a protein of the invention are not limited, so long as the cell line is compatible with cell culture methods and compatible with the propagation of the expression vector and expression of the gene product. Preferred eukaryotic host cells include, but are not limited to, yeast, insect and mammalian cells, preferably vertebrate cells such as those
10 from a mouse, rat, monkey or human cell line but also can include invertebrates with, for example, cartilage. Preferred eukaryotic host cells include but are not limited to Chinese hamster ovary (CHO) cells (ATCC No. CCL61), NIH Swiss mouse embryo cells NIH/3T3 (ATCC No. CRL 1658), baby hamster kidney cells (BHK), HOB-03-CE6 osteoblast cells, and other like eukaryotic tissue culture cell lines.

15 Any prokaryotic host can be used to express a rDNA molecule encoding a protein of the invention. A preferred prokaryotic host is *E. coli*.

Transformation of appropriate cell hosts with a recombinant DNA (rDNA) molecule of the present invention is accomplished by well known methods that typically depend on the type of vector used and host system employed. With regard to
20 transformation of prokaryotic host cells, electroporation and salt treatment methods are typically employed; see, for example, Cohen *et al.*, *Proc. Natl. Acad. Sci. USA* 69: 2110 (1972); Maniatis *et al.* (1982); and Sambrook *et al.* (1989). With regard to transformation of vertebrate cells with vectors containing rDNAs, electroporation, cationic lipid or salt treatment methods are typically employed; see, for example,
25 Graham *et al.*, *Virol.* 52: 456 (1973); Wigler *et al.*, *Proc. Natl. Acad. Sci. USA* 76: 1373-76 (1979).

30 Successfully transformed cells, i.e., cells that contain a rDNA molecule of the present invention, can be identified by well known techniques including the selection for a selectable marker. For example, cells resulting from the introduction of an rDNA of the present invention can be cloned to produce single colonies. Cells from those

colonies can be harvested, lysed and their DNA content examined for the presence of the rDNA using a method such as that described by Southern, *J. Mol. Biol.* 98: 503 (1975), or Berent et al., *Biotech.* 3: 208 (1985). Alternatively, the cells can be cultured to produce the proteins encoded by the rDNA and the proteins harvested and assayed,

5 using for example, any suitable immunological method. See, e.g., Harlow et al., (1988).

Recombinant DNA can also be utilized to analyze the function of coding and non-coding sequences. Sequences that modulate the translation of the mRNA can be utilized in an affinity matrix system to purify proteins obtained from cell lysates that associate with the Dkk-1 or Dkk-1 interacting protein or expression control sequence.

10 Synthetic oligonucleotides would be coupled to the beads and probed with the lysates, as is commonly known in the art. Associated proteins could then be separated using, for example, a two dimensional SDS-PAGE system. Proteins thus isolated could be further identified using mass spectroscopy or protein sequencing. Additional methods would be apparent to the skilled artisan.

15

9. Production of Recombinant Peptides and Proteins using a cDNA or Other Recombinant Nucleic Acids

The invention also relates to nucleic acid molecules which encode a Dkk protein and polypeptide fragments thereof, and proteins and polypeptides which bind to Dkk (e.g., LRP5, LRP6 and HBM, Dkk interacting proteins such as the proteins of Figure 5) and molecular analogues. The polypeptides of the present invention include the full length Dkk and polypeptide fragments thereof, Dkk binding proteins and polypeptides thereof. Preferably these proteins are mammalian proteins, and most preferably human proteins and biologically active fragments thereof. Alternative embodiments include nucleic acid molecules encoding polypeptide fragments having a consecutive amino acid sequence of at least about 3, 5, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, or 200 amino acid residues from a common polypeptide sequence; amino acid sequence variants of a common polypeptide sequence wherein an amino acid residue has been inserted N- or C-terminal to, or within, the polypeptide sequence or its fragments; and amino acid sequence variants of the common

20

25

30

polypeptide sequence or its fragments, which have been substituted by another conserved residue. Recombinant nucleic acid molecules which encode polypeptides include those containing predetermined mutations by, e.g., homologous recombination, site-directed or PCR mutagenesis, and recombinant Dkk proteins or polypeptide

5 fragments of other animal species, including but not limited to vertebrates (e.g., rabbit, rat, murine, porcine, camelid, reptilian, caprine, avian, fish, bovine, ovine, equine and non-human primate species) as well as invertebrates, and alleles or other naturally occurring variants and homologs of Dkk binding proteins of the foregoing species and of human sequences. Also contemplated herein are derivatives of the commonly

10 known Dkk, Dkk interacting proteins, or fragments thereof, wherein Dkk, Dkk interacting proteins, or their fragments have been covalently modified by substitution, chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example a detectable moiety such as an enzyme or radioisotope) and soluble forms of Dkk. It is further contemplated that the present

15 invention also includes nucleic acids with silent mutations which will hybridize to the endogenous sequence and which will still encode the same polypeptide.

The nucleic acid molecules encoding Dkk binding proteins, the LRP5 binding domain fragment of Dkk, or other polypeptides of the present invention are preferably those which share a common biological activity (e.g., mediate Dkk activity such as its

20 interaction with LRP5, HBM or LRP6). The polypeptides of the present invention include those encoded by a nucleic acid molecule with silent mutations, as well as those nucleic acids encoding a biologically active protein with conservative amino acid substitutions, allelic variants, and other variants of the disclosed polypeptides which maintain at least one Dkk activity.

25 The amino acid compounds of the invention are polypeptides which are partially defined in terms of amino acid residues of designated classes. Polypeptide homologs would include conservative amino acid substitutions within the amino acid classes described below. Amino acid residues can be generally sub-classified into four major subclasses as follows:

Acidic: The residue has a negative charge due to loss of H⁺ ion at physiological pH, and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium, at physiological pH.

5 Basic: The residue has a positive charge due to association with H⁺ ion at physiological pH, and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.

10 Neutral/non-polar: The residues are not charged at physiological pH, but the residue is repelled by aqueous solution so as to seek the inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium. These residues are also designated "hydrophobic."

15 Neutral/polar: The residues are not charged at physiological pH, but the residue is attracted by aqueous solution so as to seek the outer positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.

20 It is understood, of course, that in a statistical collection of individual residue molecules some molecules will be charged, and some not, and there will be an attraction for or repulsion from an aqueous medium to a greater or lesser extent. To fit the definition of "charged", a significant percentage (at least approximately 25%) of the individual molecules are charged at physiological pH. The degree of attraction or repulsion required for classification as polar or nonpolar is arbitrary and, therefore, amino acids specifically contemplated by the invention have been classified as one or the other. Most amino acids not specifically named can be classified on the basis of known behavior.

25 Amino acid residues can be further subclassified as cyclic or noncyclic, and aromatic or non-aromatic, self-explanatory classifications with respect to the side chain substituent groups of the residues, and as small or large. The residue is considered small if it contains a total of 4 carbon atoms or less, inclusive of the carboxyl carbon. Small residues are, of course, always nonaromatic.

The gene-encoded secondary amino acid proline, although technically within the group neutral/nonpolar/large/cyclic and nonaromatic, is a special case due to its known effects on the secondary conformation of peptide chains, and is not, therefore, included in this defined group.

5 Other amino acid substitutions of those encoded in the gene can also be included in peptide compounds within the scope of the invention and can be classified within this general scheme according to their structure.

10 All of the compounds of the invention may be in the form of the pharmaceutically acceptable salts or esters. Salts may be, for example, Na^+ , K^+ , Ca^{+2} , Mg^{+2} and the like; the esters are generally those of alcohols of 1-6 carbons.

The present invention further provides methods for producing a protein of the invention using nucleic acid molecules herein described. In general terms, the production of a recombinant form of a protein typically involves the following steps.

15 First, a nucleic acid molecule is obtained that encodes Dkk, such as a nucleic acid molecule encoding human Dkk or any other Dkk sequence, or that encodes a Dkk binding protein, a Dkk aptamer or a biologically active fragment thereof. Particularly for Dkk binding peptides, the nucleotides encoding the peptide are incorporated into a nucleic acid in the form of an in-frame fusion, insertion into or appended to a thioredoxin coding sequence. The coding sequence (ORF) is directly suitable for expression in any host, as it is not interrupted by introns.

20 These DNAs can be transfected into host cells such as eukaryotic cells or prokaryotic cells. Eukaryotic hosts include mammalian cells and vertebrate (e.g., osteoblasts, osteosarcoma cell lines, *Drosophila S2* cells, hepatocytes, tumor cell lines and other bone cells of any mammal, as well as insect cells, such as *Sf9* cells using recombinant baculovirus). For example, a DNA expressing an open reading frame (ORF) under control of a type I collagen promoter, or such osteoblast promoters as 25 osteocalcin histone, type I collagen, $\text{TGF}\beta 1$, MSX2 , cfos/cJun and Cbfa1 , can be used to regulate the Dkk in animal cells. Alternatively, the nucleic acid can be placed downstream from an inducible promoter, which can then be placed into vertebrate or 30 invertebrate cells or be used in creating a transgenic animal model.

Alternatively, proteins and polypeptides of the present invention can be expressed in an heterologous system. The human cell line GM637, SV-40 transformed human fibroblasts, can be transfected, with a plasmid containing a Dkk ligand binding domain coding sequence under the control of the chicken actin promoter (Reis et al., 5 EMBO J. 11: 185-193 (1992)). Such transfected cells could be used as a source of Dkk binding domain in functional assays. Alternatively, polypeptides encoding only a portion of Dkk or any of the disclosed Dkk binding peptides Dkk aptamers or a polypeptide encoding a Dkk interacting protein can be expressed alone or in the form of a fusion protein. For example, Dkk derived peptides can be expressed in bacteria (e.g., 10 *E. coli*) as GST- or His-Tag fusion proteins. These fusion proteins are then purified and can be used to generate polyclonal antibodies or can be used to identify other Dkk ligands.

The nucleic acid coding sequence is preferably placed in operable linkage with suitable control sequences, as described above, to form an expression unit containing 15 the protein encoding open reading frame. The expression unit is used to transform a suitable host and the transformed host is cultured under conditions that allow the production of the recombinant protein. Optionally the recombinant protein is isolated from the medium or from the cells; recovery and purification of the protein may not be necessary in some instances where some impurities may be tolerated.

Each of the foregoing steps can be done in a variety of ways. For example, the 20 desired coding sequences may be obtained from genomic fragments and used directly in appropriate hosts. The construction of expression vectors that are operable in a variety of hosts is accomplished using appropriate replicons and control sequences, as set forth above. The control sequences, expression vectors, and transformation methods are dependent on the type of host cell used to express the gene and were 25 discussed in detail earlier. Suitable restriction sites can, if not normally available, be added to the ends of the coding sequence so as to provide an excisable gene to insert into these vectors. A skilled artisan can readily adapt any host/expression system known in the art for use with the nucleic acid molecules of the invention to produce 30 recombinant protein.

10. Methods to Identify Binding Partners

Another embodiment of the present invention provides methods for use in isolating and identifying binding partners of Dkk or Dkk interacting proteins. Dkk or a Dkk interacting protein or a polypeptide fragment thereof can be mixed with a potential binding partner or an extract or fraction of a cell under conditions that allow the association of potential binding partners with Dkk or with Dkk interacting proteins. After mixing, the peptides, polypeptides, proteins or other molecules that have become associated with Dkk or a Dkk interacting protein are separated from the mixture. The binding partner that bound to the polypeptide then can be purified and further analyzed.

- 5 Determination of binding partners of Dkk and Dkk interacting proteins as well as agents which prevent the interaction of Dkk with one of its interacting proteins (e.g., LRP5, LRP6, HBM, or those proteins listed in Figure 5) can be performed using a variety of different competition assays as are known in the art. For example, the minimal sequence of Dkk, as described herein, can be used to identify antibodies which
- 10 15 compete with LRP5 (or LRP6, HBM or other ligand binding partners) for binding to Dkk-1 and vice versa. The minimal Dkk sequence can be bound to the bottom of a 96-well plate (or other solid substrate), and antibodies or other potential binding agents (e.g., polypeptides, mimetics, homologs, antibody fragments and the like) can be screened in a competition assay to identify agents with binding affinities, for example, greater than
- 20 25 the natural ligand binding partner of Dkk.

In the present invention, suitable cells are used for preparing assays, for the expression of a LRP and/or Dkk or proteins that interact therewith. The cells may be made or derived from mammals, yeast, fungi, or viruses. A suitable cell for the purposes of this invention is one that includes but is not limited to a cell that can exhibit a detectable Dkk-LRP (or HBM) interaction, and preferably, the differential interaction between Dkk-1-LRP5 and Dkk-1-HBM. For the desired assay, the cell type may vary. In several embodiments, bone cells are preferred; for example, a human osteoblast cell (e.g. hOB-03-CE6) or osteosarcoma cell (e.g. U2OS). Additional hOB cells are hOB-03-C5, hOB-02-02 and, an immortalized pre-osteocytic cell line referred to as hOB-01-30 C1-PS-09 cells (which are deposited with American Type Culture Collection in

Manassas, Va. with the designation PTA-785), Examples of osteosarcoma cells would include SaoS2, MG63 and HOS TE85. Immortalized refers to a substantially continuous and permanently established cell culture with substantially unlimited cell division potential. That is, the cells can be cultured substantially indefinitely, i.e., for at least about 6 months under rapid conditions of growth, preferably much longer under slower growth conditions, and can be propagated rapidly and continually using routine cell culture techniques. Alternatively stated, preferred cells can be cultured for at least about 100, 150 or 200 population doublings. These cells produce a complement of proteins characteristic of normal human osteoblastic cells and are capable of osteoblastic differentiation. They can be used in cell culture studies of osteoblastic cell sensitivity to various agents, such as hormones, cytokines, and growth factors, or in tissue therapy. Certain non bone cells such as HEK 293 cells that exhibit detectable Dkk-LRP (or HBM) interaction are also be useful for the assays of this invention.

To identify and isolate a binding partner, the entire Dkk protein (e.g., human Dkk-1, GenBank Accession No. BAA34651) or a Dkk interacting protein (Genbank Accession Nos. for some Dkk-1 interacting proteins are given in Figure 5) can be used. Alternatively, a polypeptide fragment of the protein can be used. Suitable fragments of the protein include at least about 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150 or more contiguous amino acid residues of any Dkk or Dkk interactor sequence. Preferable sequences of Dkk include portions or all of one or both of the cysteine rich domains (e.g., Cys-1 and Cys-2 of Dkk-1) or the conserved sequences at the amino terminus of Dkk-1 (See Krupnik et al., Gene 238: 301-313 (1999)). Alternatively, portions of LRP5, LRP6, HBM and other Dkk interacting proteins such as those in Figure 5 that interact with Dkk-1 can be used to identify and isolate agents which modulate Dkk activity. Alternatively, peptide aptamers of LRP5, LRP6, HBM, Dkk and other Dkk interacting proteins such as those in Figure 5 that interact with Dkk-1 can be used to identify and isolate agents which modulate Dkk activity.

As used herein, a cellular extract refers to a preparation or fraction which is made from a lysed or disrupted cell. A variety of methods can be used to obtain cell

extracts. Cells can be disrupted using either physical or chemical disruption methods. Examples of physical disruption methods include, but are not limited to, sonication and mechanical shearing. Examples of chemical lysis methods include, but are not limited to, detergent lysis and enzyme lysis. A skilled artisan can readily adapt methods for preparing cellular extracts in order to obtain extracts for use in the present methods.

Once an extract of a cell is prepared, the extract is mixed with the protein of the invention under conditions in which association of the protein with the binding partner can occur. A variety of conditions can be used, the most preferred being conditions that closely resemble conditions found in the cytoplasm of a human cell. Features such as osmolarity, pH, temperature, and the concentration of cellular extract used, can be varied to optimize the association of the protein with the binding partner.

After mixing under appropriate conditions, the bound complex is separated from the mixture. A variety of techniques can be utilized to separate the mixture. For example, antibodies specific to a protein of the invention can be used to immunoprecipitate the binding partner complex. Alternatively, standard chemical separation techniques such as chromatography and density/sediment centrifugation can be used. For example, a protein of the invention is expressed with an affinity tag such as a His tag. The His labeled protein and any bound molecule may be retained and selectively eluted from a Ni-NTA column.

After removal of non-associated cellular constituents found in the extract, the binding partner can be dissociated from the complex using conventional methods. For example, dissociation can be accomplished by altering the salt concentration or pH of the mixture.

To aid in separating associated binding partner pairs from the mixed extract, the protein of the invention can be immobilized on a solid support. For example, the protein can be attached to a nitrocellulose matrix or acrylic beads. Attachment of the protein to a solid support aids in separating peptide/binding partner pairs from other constituents found in the extract. The identified binding partners can be either a single protein or a complex made up of two or more proteins.

Alternatively, the nucleic acid molecules of the invention can be used in a Y2H system. The Y2H system has been used to identify other protein partner pairs and can readily be adapted to employ the nucleic acid molecules herein described. Methods of performing and using Y2H systems are known. See, e.g., Finley et al., "Two-Hybrid Analysis of Genetic Regulatory Networks," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Meijia Yang, "Use of a Combinatorial Peptide Library in the Two-Hybrid Assay," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Gietz et al., "Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system," *Mol. & Cell. Biochem.* 172: 67-9 (1997); K. H. Young, "Yeast Two-Hybrid: So Many Interactions,(in) so Little Time," *Biol. Reprod.* 58: 302-311 (1998); R. Brent et al., "Understanding Gene and Allele Function with Two-Hybrid Methods," *Annu. Rev. Genet.* 31:663-704 (1997) and U.S. Patent No. 5,989,808. The Dkk-1 interacting proteins identified in Figure 5 were identified using the Y2H interacting system using Dkk-1 as bait.

One preferred *in vitro* binding assay for Dkk modulators would comprise a mixture of a LRP binding domain of Dkk and one or more candidate binding targets or substrates. After incubating the mixture under appropriate conditions, one would determine whether Dkk or a fragment thereof bound with the candidate modulator present. For cell-free binding assays, one or more of the components usually comprises or is coupled to a label. The label may provide for direct detection, such as radioactivity, luminescence, optical or electron density, etc., or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be employed to detect the label depending on the nature of the label and other assay components. For example, the label may be detected bound to the solid substrate or a portion of the bound complex containing the label may be separated from the solid substrate, and the label thereafter detected. Fluorescence resonance energy transfer may be utilized to monitor the interaction of two labeled molecules. For example, a fluorescence label on Dkk and another label on LRP5 or a soluble fragment thereof such as the extracellular domain will exchange fluorescence resonance energy when in close proximity indicating that the two molecules are bound. A preferred binding partner for Dkk will

increase or decrease the affinity between Dkk and LRP5 which will be readily observable in a fluorescence spectrometer. Alternatively, an instrument, such as a surface plasmon resonance detector manufactured by BIACore (Uppsala, Sweden), may be used to observe interactions with a fixed target. One skilled in the art knows of
5 many other methods which may be employed for this purpose.

Thereby, the present invention provides methods for screening candidates including polypeptides of the present invention for activity which identifies these candidates as valuable drug leads. Other suitable methods are also known in the art and are suitable for use herein, including *Xenopus* oocyte injection studies and TCF
10 luciferase assays.

Additional assays can be used to identify the activity of Dkk and Dkk interacting proteins in the Wnt pathway, as well as the impact of modulators of Dkk and Dkk interacting proteins on the Wnt pathway. These include, for example, a *Xenopus* embryo assay and a TCF-luciferase reporter gene assay to monitor Wnt signaling
15 modulation.

20 *Xenopus* embryos are an informative *in vivo* assay system to evaluate the modulation of Wnt signaling. Ectopic expression of certain Wnts or other activators of the Wnt signaling pathway results in a bifurcation of the anterior neural plate. This bifurcation results in a duplicated body axis, which suggests a role for Wnt signaling
25 during embryonic development (McMahon *et al.*, *Cell* 58: 1075-84 (1989); Sokol *et al.*, *Cell* 67: 741-52 (1991)). Since these original observations, the *Xenopus* embryo assay has been extensively used as an assay system for evaluating modulation of the Wnt signaling pathway. One preferred embodiment of the present invention is demonstrated in Example 6.

25 Constructs for *Xenopus* expression can be prepared as would be known in the art. For example, a variety of cDNAs have been engineered into the vector pCS2+ (Turner *et al.*, *Genes Devel.* 8: 1434-1447 (1994)) to facilitate the *in vitro* generation of mRNA for use in *Xenopus* embryo injection experiments. DNA inserts are subcloned in the sense orientation with respect to the vector SP6 promoter. Downstream of the
30 insert, the vector provides an SV40 virus polyadenylation signal and a T3 promoter

sequence (*i.e.*, for the generation of antisense mRNA). Constructs can be generated for various Dkk family members, LRP5, LRP6, HBM, Dkk-1 interactors, etc. Constructs could be generated in pCS2⁺ that contain the nucleic acid sequence encoding for the peptide aptamers that were identified in yeast screens. These sequences would be
5 fused to a 5' synthetic translation initiation sequence followed by a canonical signal sequence to ensure that the peptide aptamer would be translated and secreted from the cell.

Once these constructs are made then mRNA can be synthesized and injected into *Xenopus* oocytes. mRNA for microinjection into *Xenopus* embryos is generated by
10 *in vitro* transcription using the cDNA constructs in the pCS2⁺ vector described above as template. Various amounts of RNA can be injected into the ventral blastomere of the 4- or 8-cell *Xenopus* embryo substantially as described in Moon *et al.*, *Technique-J. of Methods in Cell and Mol. Biol.* 1: 76-89 (1989), and Peng, *Meth. Cell. Biol.* 36: 657-62 (1991).

15 Previous data has shown that expression of LRP5, in the presence of Wnt5a, results in a Wnt-induced duplicated axis formation in *Xenopus* embryos (Tamai *et al.*, *Nature* 407: 530-535 (2000)). The roles of Dkk-1 and Dkk-2, and Dkk-1 interacting proteins, in modulating the LRP5-mediated Wnt response *in vivo* can be analyzed using, for example, the *Xenopus* embryo. In addition, the peptide aptamers, Dkk
20 interacting proteins, or combinations of the above can be evaluated in a similar manner.

Experiments can also be conducted wherein RNA is injected into the dorsal blastomere to ensure the specificity of the observed phenotypes. Lineage tracing experiments can be performed where a marker gene such as green fluorescent protein (GFP) or LacZ is co-injected with the experimental RNAs. Detecting marker gene
25 expression would identify the targeted cells of the microinjection and aid in elucidating the mechanism of action. In addition to the Wnt signaling components listed above, the point at which HBM acts upon the Wnt pathway can also be analyzed. This can be done by co-injections of various dominant-negative constructs. For example, a dominant negative TCF-3 construct would be useful to demonstrate that the observed
30 axis duplication (and Wnt activation) is mediated via the β-catenin-TCF response. If so,

such a construct would be expected to abolish the observed duplicated axis phenotype. Another example would include a dominant negative Dsh construct. Since Dsh is far upstream in the Wnt signaling pathway, a dominant negative construct should abolish the activation of the Wnt response and the observed axis duplication. If it does not, this
5 would suggest that axis duplication is being induced via a different signaling pathway.

The marker genes of the injected *Xenopus* embryos can be analyzed as follows. Representative embryos are collected at stage 10.5 (11 hours post fertilization) for marker gene analysis. RNA is extracted and purified from the embryos following standard protocols (Sambrook *et al.*, 1989 at 7.16). Marker genes could include the
10 following: Siamois (*i.e.*, Wnt responsive gene), Xnr3 (*i.e.*, Wnt responsive gene), slug (*i.e.*, neural crest marker), Xbra (*i.e.*, early mesoderm marker), HNK-1 (*i.e.*, ectodermal/neural marker), endodermin (*i.e.*, endoderm), Xlhbox8 (*i.e.*, pancreatic), BMP2 and BMP4 (*i.e.*, early mesoderm), XLRP6 (*i.e.*, maternal and zygotic expression, it is also the LRP6 homolog in the frog), EF-1 (*i.e.*, control) and ODC (*i.e.*, control).
15 Induction of marker genes is analyzed and quantitated by RT-PCR/TaqMan®.

This type of marker analysis is excellent to monitor changes in gene expression that result very early in the embryo as a direct result of signaling perturbation. Other experiments could be designed that would monitor changes in gene expression in a more tissue or spatially-restricted fashion. Examples would include the generation of a
20 transgenic *Xenopus* model. For example, Zmax/LRP5 and HBM expression could be under the control of the brachyury or cardiac-actin promoters directing gene expression transiently in the mesoderm or in the somites, respectively. Phenotype analyses of these transgenic *Xenopus* animals would include marker gene analysis/transcriptional profiling (from a restricted tissue source) and histologic examination of the tissue.

A TCF-luciferase assay system such as that described in Example 7 can also be used to monitor Wnt signaling activity, Dkk activity and Dkk interacting protein activity. Constructs for the TCF-luciferase assays can be prepared as would be known in the art. For example, Dkk and Dkk interacting protein peptides, LRP5/LRP6, among others, can be expressed in pcDNA3.1, using Kozak and signal sequences to target
25 peptides for secretion.
30

5

Once constructs have been prepared, cells such as osteoblasts and HEK293 cells are seeded in well plates and transfected with construct DNA, CMV beta-galactosidase plasmid DNA, and TCF-luciferase reporter DNA. The cells are then lysed and assayed for beta-galactosidase and luciferase activity to determine whether Dkk, Dkk interacting proteins, or other molecules such as antibodies affect Wnt signaling.

Additional assays for monitoring Wnt signaling activity, Dkk activity, and Dkk interacting protein activity include:

10

Modulation of another Wnt-responsive transcription factor, LEF, as visualized by a reporter gene activity. One example includes the activation of the LEF1 promoter region fused to the luciferase reporter gene (Hsu *et al.*, *Mol. Cell. Biol.* 18: 4807-18 (1999)).

15

Alterations in cell proliferation, cell cycle or apoptosis. There are numerous examples describing Wnt-mediated cellular transformations including Shimizu *et al.*, *Cell. Growth Differ.* 8: 1349-58 (1997).

20

11. Methods to Identify Agents that Modulate the Expression of a Nucleic Acid Encoding the Dkk and/or LRP5 Proteins and/or Dkk interacting proteins

25

Another embodiment of the present invention provides methods for identifying agents that modulate the expression of a nucleic acid encoding Dkk. Such assays may utilize any available means of monitoring for changes in the expression level of the nucleic acids of the invention. As used herein, an agent is said to modulate the expression of Dkk, if it is capable of up- or down-regulating expression of the nucleic acid in a cell (e.g., mRNA).

30

In one assay format, cell lines that contain reporter gene fusions between the nucleic acid encoding Dkk (or proteins which modulate the activity of Dkk) and any

assayable fusion partner may be prepared. Numerous assayable fusion partners are known and readily available, including but not limited to the firefly luciferase gene and the gene encoding chloramphenicol acetyltransferase (Alam *et al.*, *Anal. Biochem.* 188: 245-254 (1990)). Cell lines containing the reporter gene fusions are then exposed to
5 the agent to be tested under appropriate conditions and time. Differential expression of the reporter gene between samples exposed to the agent and control samples identifies agents which modulate the expression of a nucleic acid encoding Dkk or other protein which modulates Dkk activity. Such assays can similarly be used to determine whether LRP5 and even LRP6 activity is modulated by regulating Dkk activity.

10 Additional assay formats may be used to monitor the ability of the agent(s) to modulate the expression of a nucleic acid encoding Dkk, alone or Dkk and LRP5, and/or Dkk interacting proteins such as those identified in Figure 5. For instance, mRNA expression may be monitored directly by hybridization to the nucleic acids of the invention. Cell lines are exposed to the agent to be tested under appropriate conditions
15 and time and total RNA or mRNA is isolated by standard procedures such those disclosed in Sambrook *et al.* (1989); Ausubel *et al.*, Current Protocols in Molecular Biology (Greene Publishing Co., NY, 1995); Maniatis *et al.*, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982); and Short Protocols in Molecular Biology: A Compendium of Methods from Current
20 Protocols in Molecular Biology (Frederick M. Ausubel *et al.*, April 1999).

Probes to detect differences in RNA expression levels between cells exposed to the agent and control cells may be prepared from the nucleic acids of the invention. It is preferable, but not necessary, to design probes which hybridize only with target nucleic acids under conditions of high stringency. Only highly complementary nucleic
25 acid hybrids form under conditions of high stringency. Accordingly, the stringency of the assay conditions determines the amount of complementarity which should exist between two nucleic acid strands in order to form a hybrid. Stringency should be chosen to maximize the difference in stability between the probe:target hybrid and potential probe:non-target hybrids.

Probes may be designed from the nucleic acids of the invention through methods known in the art. For instance, the G+C content of the probe and the probe length can affect probe binding to its target sequence. Methods to optimize probe specificity are commonly available. See for example, Sambrook *et al.* (1989) or 5 Ausubel *et al.* (Current Protocols in Molecular Biology, Greene Publishing Co., NY, 1995).

Hybridization conditions are modified using known methods, such as those described by Sambrook *et al.* (1989) and Ausubel *et al.* (1995), as suitable for each probe. Hybridization of total cellular RNA or RNA enriched for polyA RNA can be 10 accomplished in any available format. For instance, total cellular RNA or RNA enriched for polyA RNA can be affixed to a solid support and the solid support exposed to at least one probe comprising at least one, or part of one of the nucleic acid sequences of the invention under conditions in which the probe will specifically hybridize. Alternatively, nucleic acid fragments comprising at least one, or part of one of the 15 sequences of the invention can be affixed to a solid support, such as a porous glass wafer. The glass or silica wafer can then be exposed to total cellular RNA or polyA RNA from a sample under conditions in which the affixed sequences will specifically hybridize. Such glass wafers and hybridization methods are widely available, for example, those disclosed by Beattie (WO 95/11755). By examining for the ability of a 20 given probe to specifically hybridize to an RNA sample from an untreated cell population and from a cell population exposed to the agent, agents which up- or down-regulate the expression of a nucleic acid encoding Dkk, a Dkk interacting protein, and/or LRP5 can be identified.

Microarray technology and transcriptional profiling are examples of methods 25 which can be used to analyze the impact of putative Dkk or Dkk interacting protein modulating compounds. For transcriptional profiling, mRNA from cells exposed *in vivo* to a potential Dkk modulating agent, such as the Dkk interacting proteins identified in the present invention (e.g., those identified in Figure 5), agents which modulate Dkk interacting proteins, and mRNA from the same type of cells that were not exposed to 30 the agent could be reverse transcribed and hybridized to a chip containing DNA from

numerous genes, to thereby compare the expression of genes in cells treated and not treated with the agent. If, for example a putative Dkk modulating agent down-regulates the expression of Dkk in the cells, then use of the agent may be undesirable in certain patient populations. For additional methods of transcriptional profiling and the use of microarrays, refer to, for example, U.S. Patent No. 6,124,120 issued to Lizardi (2000).

5 Additional methods for screening the impact of Dkk and Dkk interacting protein modulating compounds or the impact of Dkk or Dkk interacting proteins on modulation of LRP5, LRP6, HBM or the Wnt pathway include the use of TaqMan PCR, conventional reverse transcriptase PCR (RT-PCR), changes in downstream surrogate 10 markers (*i.e.*, Wnt responsive genes), and anti-Dkk Western blots for protein detection. Other methods would be readily apparent to the artisan of ordinary skill.

12. Methods to Identify Agents that Modulate at Least One Activity of Dkk, a Dkk Interacting Protein, or LRP5/LRP6/HBM

15 Another embodiment of the present invention provides methods for identifying agents that modulate at least one activity of Dkk, Dkk interacting proteins, and/or LRP5/LRP6/HBM proteins or preferably which specifically modulate an activity of a Dkk/Dkk interacting protein complex or an LRP5(or LRP6/HBM)/Dkk complex, or a biologically active fragment of Dkk (*e.g.*, comprising the domain which binds 20 LRP5/LRP6/HBM) or a Dkk interacting protein complex. Such methods or assays may utilize any means of monitoring or detecting the desired activity as would be known in the art (See, *e.g.*, Wu *et al.*, *Curr. Biol.* 10:1611-4 (2000); Fedi *et al.*, *J. Biol. Chem.* 274:19465-72 (1991); Grotewold *et al.*, *Mech. Dev.* 89:151-3 (1999); Shibata *et al.*, *Mech. Dev.* 96:243-6 (2000); Wang *et al.*, *Oncogene* 19:1843-8 (2000); and Glinka *et al.*, *Nature* 391:357-62 (1998)). Potential agents which modulate Dkk include, for 25 example, p53, the tumor suppressor protein, which can induce Dkk-1. Damage to DNA has also been observed to up-regulate Dkk-1 expression via a stabilization and activation of p53 (Wang *et al.*, *Oncogene* 19:1843-48 (2000)); and, Shou *et al.*, *Oncogene* 21:878-89 (2002)). Additionally, Fedi *et al.* (1999) purportedly showed that 30 Dkk-1 can block the Wnt2-induced oncogenic transformation of NIH-3T3 cells.

Furthermore, it has been suggested that Dkk expression can be modulated by BMP signaling in the developing skeleton (Mukhopadhyay et al., *Dev. Cell.* 1:423-34 (2001); and Grotewold et al., *EMBO J.* 21:966-75 (2002)). Grotewold et al. additionally describe altered Dkk expression levels in response to stress signals including UV 5 irradiation and other genotoxic stimuli. They propose that Dkk expression is pro-apoptotic. In animals expressing HBM constructs conferring high bone mass, a reduced osteoblast apoptosis effect was observed. Thus, HBM and HBM-like variants may control/alter Dkk's role in programmed cell death. Other agents which potentially modulate Dkk activity include the Dkk interacting proteins identified in Figure 5.

10 In one embodiment, the relative amounts of Dkk or a Dkk interacting protein of a cell population that has been exposed to the agent to be tested is compared to an un-exposed control cell population. Antibodies can be used to monitor the differential expression of the protein in the different cell populations. Cell lines or populations are exposed to the agent to be tested under appropriate conditions and time. Cellular 15 lysates may be prepared from the exposed cell line or population and a control, unexposed cell line or population. The cellular lysates are then analyzed with the probe, as would be known in the art. See, e.g., Ed Harlow and David Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor, NY, 1988) and Ed Harlow and David Lane, Using Antibodies: A Laboratory Manual (Cold Spring Harbor, NY 1998).

20 For example, N- and C-terminal fragments of Dkk can be expressed in bacteria and used to search for proteins which bind to these fragments. Fusion proteins, such as His-tag or GST fusion to the N- or C-terminal regions of Dkk (or to biologically active domains of Dkk-1) or a whole Dkk protein can be prepared. These fusion proteins can be coupled to, for example, Talon or Glutathione-Sepharose beads and then probed 25 with cell lysates to identify molecules which bind to Dkk. Prior to lysis, the cells may be treated with purified Wnt proteins, RNA, or drugs which may modulate Wnt signaling or proteins that interact with downstream elements of the Wnt pathway. Lysate proteins binding to the fusion proteins can be resolved by SDS-PAGE, isolated and identified by, for example protein sequencing or mass spectroscopy, as is known in the art. See, 30 e.g., Protein Purification Applications: A Practical Approach (Simon Roe, ed., 2nd ed.

Oxford Univ. Press, 2001) and "Guide to Protein Purification" in *Meth. Enzymology* vol. 182 (Academic Press, 1997).

The activity of Dkk, a Dkk interacting protein, or a complex of Dkk with LRP5/LRP6/HBM may be affected by compounds which modulate the interaction between Dkk and a Dkk interacting protein (such as those shown in Figure 5) and/or Dkk and LRP5/LRP6/HBM. The present invention provides methods and research tools for the discovery and characterization of these compounds. The interaction between Dkk and a Dkk interacting protein and/or Dkk and LRP5/6/HBM may be monitored *in vivo* and *in vitro*. Compounds which modulate the stability of a Dkk - LRP5/LRP6/HBM complex are potential therapeutic compounds. Example *in vitro* methods include: Binding LRP5/6/HBM, Dkk, or a Dkk interacting protein to a sensor chip designed for an instrument such are made by Biacore (Uppsala, Sweden) for the performance of an plasmon resonance spectroscopy observation. In this method, the chip with one of Dkk, a Dkk interacting protein, or LRP5/6 is first exposed to the other under conditions which permit them to form the complex. A test compound is then introduced and the output signal of the instrument provides an indication of any effect exerted by the test compound. By this method, compounds may be rapidly screened. Another, *in vitro*, method is exemplified by the SAR-by-NMR methods (Shuker *et al.*, *Science*. 274:1531-4 (1996)). Briefly, a Dkk-1 binding domain and/or LRP 5 or 6 LBD are expressed and purified as ¹⁵N labeled protein by expression in labeled media. The labeled protein(s) are allowed to form the complex in solution in an NMR sample tube. The heteronuclear correlation spectrum in the presence and absence of a test compound provides data at the level of individual residues with regard to interactions with the test compound and changes at the protein-protein interface of the complex.

One of skill in the art knows of many other protocols, e.g. affinity capillary electrophoresis (Okun *et al.* *J Biol Chem* 276:1057-62 (2001); Vergun and Chu, *Methods*, 19:270-7 (1999)), fluorescence spectroscopy, electron paramagnetic resonance, etc. which can monitor the modulation of a complex and/or measure binding affinities for complex formation.

In vitro protocols for monitoring the modulation of a Dkk/LRP5/LRP6/HBM complex include the yeast two hybrid protocol. The yeast two hybrid method may be used to monitor the modulation of a complex in vivo by monitoring the expression of genes activated by the formation of a complex of fusion proteins of Dkk and LRP ligand binding domains. Nucleic acids according to the invention which encode the interacting Dkk and LRP LBD domains are incorporated into bait and prey plasmids. The Y2H protocol is performed in the presence of one or more test compounds. The modulation of the complex is observed by a change in expression of the complex activated gene. It will be appreciated by one skilled in the art that test compounds can be added to the assay directly or, in the case of proteins, can be coexpressed in the yeast with the bait and prey compounds. Similarly, fusion proteins of Dkk and Dkk interacting proteins can also be used in a Y2H screen to identify other proteins which modulate the Dkk/Dkk interacting protein complex.

Assay protocols such as these may be used in methods to screen for compounds, drugs, treatments which modulate the Dkk/Dkk interacting protein and/or Dkk/LRP5/6 complex, whether such modulation occurs by competitive binding, or by altering the structure of either LRP 5/6 or Dkk at the binding site, or by stabilizing or destabilizing the protein-protein interface. It may be anticipated that peptide aptamers may competitively bind, although induction of an altered binding site structure by steric effects is also possible.

12.1 Antibodies and Antibody Fragments

Polyclonal and monoclonal antibodies and fragments of these antibodies which bind to Dkk or LRP5/LRP6/HBM can be prepared as would be known in the art. For example, suitable host animals can be immunized using appropriate immunization protocols and the peptides, polypeptides or proteins of the invention. Peptides for use in immunization are typically about 8-40 residues long. If necessary or desired, the polypeptide immunogens can be conjugated to suitable carriers. Methods for preparing immunogenic conjugates with carriers such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), or other carrier proteins are well known in the art (See,

Harlow *et al.*, 1988). In some circumstances, direct conjugation using, for example, carbodiimide reagents, may be effective; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, may be desirable to provide accessibility to the polypeptide or hapten. The hapten peptides can be extended at 5 either the amino or carboxy terminus with a cysteine residue or interspersed with cysteine residues, for example, to facilitate linking to a carrier. Administration of the immunogens is conducted generally by injection over a suitable time period and with use of suitable adjuvants, as is generally understood in the art. During the immunization schedule, titers of antibodies are taken to determine adequacy of 10 antibody formation.

Anti-peptide antibodies can be generated using synthetic peptides, for example, the peptides derived from the sequence of any Dkk, including Dkk-1, or LRP5/LRP6/HBM. Synthetic peptides can be as small as 2-3 amino acids in length, but are preferably at least 3, 5, 10, or 15 or more amino acid residues long. Such peptides 15 can be determined using programs such as DNASTar. The peptides are coupled to KLH using standard methods and can be immunized into animals such as rabbits. Polyclonal anti-Dkk or anti-LRP5/LRP6/HBM peptide antibodies can then be purified, for example using Actigel beads containing the covalently bound peptide.

While the polyclonal antisera produced in this way may be satisfactory for some 20 applications, for pharmaceutical compositions, use of monoclonal preparations is preferred. Immortalized cell lines which secrete the desired monoclonal antibodies may be prepared using the standard method of Kohler and Milstein or modifications which effect immortalization of lymphocytes or spleen cells, as is generally known (See, e.g., Harlow *et al.*, 1988 and 1998). The immortalized cell lines secreting the desired 25 antibodies can be screened by immunoassay in which the antigen is the peptide hapten, polypeptide or protein. When the appropriate immortalized cell culture secreting the desired antibody is identified, the cells can be cultured either *in vitro* or by production in ascites fluid.

The desired monoclonal antibodies are then recovered from the culture 30 supernatant or from the ascites supernatant. Fragments of the monoclonal antibodies

which contain the immunologically significant portion can be used as agonists or antagonists of Dkk activity. Use of immunologically reactive fragments, such as the Fab, scFV, Fab', of F(ab')₂, fragments are often preferable, especially in a therapeutic context, as these fragments are generally less immunogenic than the whole immunoglobulin.

5 The antibodies or fragments may also be produced, using current technology, by recombinant means. Regions that bind specifically to the desired regions of Dkk or LRP5/LRP6/HBM can also be produced in the context of chimeras with multiple species origin. Antibody reagents so created are contemplated for use diagnostically or as
10 stimulants or inhibitors of Dkk activity.

In one embodiment, antibodies against Dkk, bind Dkk with high affinity, i.e., ranging from 10⁻⁵ to 10⁻⁹ M. Preferably, the anti-Dkk antibody will comprise a chimeric, primate, Primatized®, human or humanized antibody. Also, the invention embraces the use of antibody fragments, e.g., Fab's, Fv's, Fab's, F(ab)₂, and aggregates thereof.

15 Another embodiment contemplates chimeric antibodies which recognize Dkk or LRP5/LRP6/HBM. A chimeric antibody is intended to refer to an antibody with non-human variable regions and human constant regions, most typically rodent variable regions and human constant regions.

20 A "primatized® antibody" refers to an antibody with primate variable regions, e.g., CDR's, and human constant regions. Preferably, such primate variable regions are derived from an Old World monkey.

25 A "humanized antibody" refers to an antibody with substantially human framework and constant regions, and non-human complementarity-determining regions (CDRs). "Substantially" refers to the fact that humanized antibodies typically retain at least several donor framework residues (i.e., of non-human parent antibody from which CDRs are derived).

Methods for producing chimeric, primate, primatized®, humanized and human antibodies are well known in the art. See, e.g., U.S. Patent 5,530,101, issued to Queen *et al.*; U.S. Patent 5,225,539, issued to Winter *et al.*; U.S. Patents 4,816,397 and

4,816,567, issued to Boss *et al.* and Cabilly *et al.* respectively, all of which are incorporated by reference in their entirety.

The selection of human constant regions may be significant to the therapeutic efficacy of the subject anti-Dkk or LRP5/LRP6/HBM antibody. In a preferred 5 embodiment, the subject anti-Dkk or LRP5/LRP6/HBM antibody will comprise human, gamma 1, or gamma 3 constant regions and, more preferably, human gamma 1 constant regions.

Methods for making human antibodies are also known and include, by way of example, production in SCID mice, and *in vitro* immunization.

10 The subject anti-Dkk or LRP5/LRP6/HBM antibodies can be administered by various routes of administration, typically parenteral. This is intended to include intravenous, intramuscular, subcutaneous, rectal, vaginal, and administration with intravenous infusion being preferred.

15 The anti-Dkk or LRP5/LRP6/HBM antibody will be formulated for therapeutic usage by standard methods, e.g., by addition of pharmaceutically acceptable buffers, e.g., sterile saline, sterile buffered water, propylene glycol, and combinations thereof.

Effective dosages will depend on the specific antibody, condition of the patient, age, weight, or any other treatments, among other factors. Typically effective dosages will range from about 0.001 to about 30 mg/kg body weight, more preferably from about 20 0.01 to 25 mg/kg body weight, and most preferably from about 0.1 to about 20 mg/kg body weight.

Such administration may be effected by various protocols, e.g., weekly, bi-weekly, or monthly, depending on the dosage administered and patient response. Also, it may be desirable to combine such administration with other treatments.

25 Antibodies to Dkk-1 interacting proteins, such as those identified in Figure 5, are also contemplated according to the present invention, and can be used similarly to the Dkk-1 antibodies mentioned in the above methodology.

The antibodies of the present invention can be utilized in experimental screening, as diagnostic reagents, and in therapeutic compositions.

12.2 Chemical Libraries

Agents that are assayed by these methods can be randomly selected or rationally selected or designed. As used herein, an agent is said to be randomly selected when the agent is chosen randomly without considering the specific
5 sequences involved in the association of Dkk-1 alone, Dkk-1 interacting proteins alone, or with their associated substrates, binding partners, etc. An example of randomly selected agents is the use of a chemical library or a peptide combinatorial library, or a growth broth of an organism.

The agents of the present invention can be, as examples, peptides, small
10 molecules, vitamin derivatives, as well as carbohydrates. A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents of the present invention.

12.3 Peptide Synthesis

15 The peptide agents of the invention can be prepared using standard solid phase (or solution phase) peptide synthesis methods, as is known in the art. In addition, the DNA encoding these peptides may be synthesized using commercially available oligonucleotide synthesis instrumentation and produced recombinantly using standard recombinant production systems. The production of polypeptides using solid phase
20 peptide synthesis is necessitated if non-nucleic acid-encoded amino acids are to be included.

13. Uses for Agents that Modulate at Least One Activity of Dkk, a Dkk Interacting Protein, a Dkk/Dkk Interacting Protein Complex, or a Dkk/LRP5 or Dkk/LRP6 Complex

25 The proteins and nucleic acids of the invention, such as the proteins or polypeptides containing an amino acid sequence of LRP5, Dkk, and Dkk interacting proteins are involved in bone mass modulation and lipid modulation of other Wnt pathway mediated activity. Agents that modulate (*i.e.*, up and down-regulate) the expression of Dkk or Dkk interacting proteins, or agents, such as agonists and

antagonists respectively, of at least one activity of Dkk or a Dkk interacting protein may be used to modulate biological and pathologic processes associated with the function and activity of Dkk or a Dkk interacting protein.

As used herein, a subject can be preferably any mammal, so long as the
5 mammal is in need of modulation of a pathological or biological process modulated by a protein of the invention. The term "mammal" means an individual belonging to the class *Mammalia*. The invention is particularly useful in the treatment of human subjects.

As used herein, a biological or pathological process modulated by Dkk or a Dkk interacting protein may include binding of Dkk to a Dkk interacting protein, Dkk to
10 LRP5 or LRP6 or release therefrom, inhibiting or activating Dkk or a Dkk interacting protein mRNA synthesis or inhibiting Dkk or Dkk interacting protein modulated inhibition of LRP5 or LRP6 mediated Wnt signaling. Further bone-related markers may be observed such as alkaline phosphatase activity, osteocalcin production, or mineralization.

Pathological processes refer to a category of biological processes which produce a deleterious effect. For example, expression or up-regulation of expression of LRP5 or LRP6 and/or Dkk and/or a Dkk interacting protein may be associated with certain diseases or pathological conditions. As used herein, an agent is said to modulate a pathological process when the agent statistically significantly ($p < 0.05$)
15 alters the process from its base level in the subject. For example, the agent may reduce the degree or severity of the process mediated by that protein in the subject to which the agent was administered. For instance, a disease or pathological condition may be prevented, or disease progression modulated by the administration of agents which reduce or modulate in some way the expression or at least one activity of a
20 protein of the invention.

As LRP5/6 and Dkk are involved both directly and indirectly in bone mass modulation, one embodiment of this invention is to use Dkk or Dkk interacting protein expression as a method of diagnosing a bone condition or disease. Certain markers are associated with specific Wnt signaling conditions (e.g., *TCF/LEF* activation).
25 Diagnostic tests for bone conditions may include the steps of testing a sample or an

extract thereof for the presence of Dkk or Dkk interacting protein nucleic acids (i.e., DNA or RNA), oligomers or fragments thereof or protein products of TCF/LEF regulated expression. For example, standard *in situ* hybridization or other imaging techniques can be utilized to observe products of Wnt signaling.

5 This invention also relates to methods of modulating bone development or bone loss conditions. Inhibition of bone loss may be achieved by inhibiting or modulating changes in the LRP5/6 mediated Wnt signaling pathway. For example, absence of LRP5 activity may be associated with low bone mass. Increased activity LRP5 may be associated with high bone mass. Therefore, modulation of LRP5 activity will in turn
10 modulate bone development. Modulation of the Dkk/LRP5/6 or Dkk/Dkk interacting protein complex via agonists and antagonists is one embodiment of a method to regulate bone development. Such modulation of bone development can result from inhibition of the activity of, for example, a Dkk/LRP(5/6) protein complex, a Dkk/Dkk interacting protein complex, upregulated transcription of the *LRP5* gene or inhibited
15 translation of Dkk or Dkk interacting protein mRNA.

The agents of the present invention can be provided alone, or in combination with other agents that modulate a particular pathological process. As used herein, two agents are said to be administered in combination when the two agents are administered simultaneously or are administered independently in a fashion such that
20 the agents will act at the same time.

The agents of the present invention can be administered via parenteral, subcutaneous (sc), intravenous (iv), intramuscular (im), intraperitoneal (ip), transdermal or buccal routes. Alternatively, or concurrently, administration may be by the oral route. The dosage administered will be dependent upon the age, health, and weight of the
25 recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.

The present invention further provides compositions containing one or more agents which modulate expression or at least one activity of a protein of the invention. While individual needs vary, determination of optimal ranges of effective amounts of
30 each component is within the skill of the art. Typical dosages of the active agent which

mediate Dkk or Dkk interacting protein activity comprise from about 0.0001 to about 50 mg/kg body weight. The preferred dosages comprise from about 0.001 to about 50 mg/kg body weight. The most preferred dosages comprise from about 0.1 to about 1 mg/kg body weight. In an average human of 70 kg, the range would be from about 5 µg to about 3.5 g, with a preferred range of about 0.5 mg to about 5 mg.

In addition to the pharmacologically active agent, the compositions of the present invention may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically for delivery to the site of action.

Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, (e.g., ethyl oleate or triglycerides). Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol and/or dextran. Optionally, the suspension may also contain stabilizers. Liposomes and other non-viral vectors can also be used to encapsulate the agent for delivery into the cell.

The pharmaceutical formulation for systemic administration according to the invention may be formulated for enteral, parenteral, or topical (top) administration. Indeed, all three types of formulations may be used simultaneously to achieve systemic administration of the active ingredient.

Suitable formulations for oral administration include hard or soft gelatin capsules, pills, tablets, including coated tablets, elixirs, suspensions, syrups or inhalations and controlled release forms thereof.

Potentially, any compound which binds Dkk or a Dkk interacting protein or modulates the Dkk/LRP5 or Dkk/LRP6 or Dkk/Dkk interacting protein complex may be a therapeutic compound. In one embodiment of the invention, a peptide or nucleic acid aptamer according to the invention is used in a therapeutic composition. Such compositions may comprise an aptamer, or a LRP5 or LRP6 fragment unmodified or

modified. In another embodiment, the therapeutic compound comprises a Dkk-1 interacting protein, or biologically active fragment thereof.

Nucleic acid aptamers have been used in compositions for example by chemical bonding to a carrier molecule such as polyethylene glycol (PEG) which may facilitate uptake or stabilize the aptamer. A di-alkylglycerol moiety attached to an RNA will embed the aptamer in liposomes, thus stabilizing the compound. Incorporating chemical substitutions (i.e. changing the 2'OH group of ribose to a 2'NH in RNA confers ribonuclease resistance) and capping, etc. can prevent breakdown. Several such techniques are discussed for RNA aptamers in Brody and Gold (*Rev. Mol. Biol.* 74:3-13 (2000)).

Peptide aptamers may be used in therapeutic applications by the introduction of an expression vector directing aptamer expression into the affected tissue such as for example by retroviral delivery, by encapsulating the DNA in a delivery complex or simple by naked DNA injection. Or, the aptamer itself or a synthetic analog may be used directly as a drug. Encapsulation in polymers and lipids may assist in delivery. The use of peptide aptamers as therapeutic and diagnostic agents is reviewed by Hoppe-Syler and Butz (*J. Mol. Med.* 78:426-430 (2000)).

In another aspect of the invention. The structure of a constrained peptide aptamer of the invention may be determined such as by NMR or X-ray crystallography. (Cavanagh et al., Protein NMR Spectroscopy: Principles and Practice, Academic Press, 1996; Drenth, Principles of Protein X-Ray Crystallography, Springer Verlag, 1999) Preferably the structure is determined in complex with the target protein. A small molecule analog is then designed according to the positions of functional elements of the 3D structure of the aptamer. (Guidebook on Molecular Modeling in Drug Design, Cohen, Ed., Academic Press, 1996; Molecular Modeling and Drug Design (Topics in Molecular and Structural Biology), Vinter and Gardner Eds., CRC Press, 1994) Thus the present invention provides a method for the design of effective and specific drugs which modulate the activity of Dkk, Dkk interacting proteins, Dkk/Dkk interacting protein complex and the Dkk/LRP complex. Small molecule mimetics of the peptide aptamers of the present invention are encompassed within the scope of the invention.

In practicing the methods of this invention, the compounds of this invention may be used alone or in combination, or in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this invention may be co-administered along with other compounds typically prescribed for these conditions
5 according to generally accepted medical practice. For example, the compounds of this invention can be administered in combination with other therapeutic agents for the treatment of bone loss. Bone loss mediating agents include bone resorption inhibitors such as bisphosphonates (e.g., alendronic acid, clodronic acid, etidronic acid, pamidronic acid, risedronic acid and tiludronic acid), vitamin D and vitamin D analogs,
10 cathepsin K inhibitors, hormonal agents (e.g., calcitonin and estrogen), and selective estrogen receptor modulators or SERMs (e.g., raloxifene). And bone forming agents such as parathyroid hormone (PTH) and bone morphogenetic proteins (BMP).

Additionally contemplated are combinations of agents which regulate Dkk-1 and agents which regulate lipid levels such as HMG-CoA reductase inhibitors (*i.e.*, statins
15 such as Mevacor®, Lipitor® and other inhibitors such as Baycol®, Lescol®, Pravachol® and Zocor®), bile acid sequestrants (e.g., Colestid® and Welchol®), fibric acid derivatives (Atromid-S®, Lopid®, Tricor®), and nicotinic acid.

[0001] The compounds of this invention can be utilized *in vivo*, ordinarily in vertebrates and preferably in mammals, such as humans, sheep, horses, cattle, pigs, dogs, cats,
20 rats and mice, or *in vitro*.

14. Transgenic Animals

Transgenic animal models can be created which conditionally express Dkk and/or LRP5 or LRP6 and/or Dkk interacting proteins, such as those shown in Figure 5.
25 These animals can be used as research tools for the study of the physiological effects of the Dkk-1/Dkk-1 interacting protein interaction and/or the LRP5 / Dkk interaction. Alternatively, transgenic animals can be created which express a transgenic form of Dkk alone or in addition to a transgenic form of HBM or express Dkk interacting proteins alone or in addition to a transgenic form of Dkk. Transgenic animals
30 expressing HBM or LRP5 can be crossed with transgenic animals expressing Dkk or

Dkk interacting proteins to obtain heterozygote as well as homozygote animals which express both desired genes.

Animal models may be created to directly modulate the Dkk/Dkk interacting protein or Dkk/ LRP5 interaction activity *in vivo* to serve as a research tool for determining the efficacy of candidate compounds which modulate the Dkk/Dkk interacting protein or LRP5 / Dkk interaction activity *in vitro*. Animals, such as transgenic mice, can be created using the techniques employed to make transgenic mice that express for example, human Dkk or a Dkk interacting protein, or knockouts (KO), which may be conditional, of the gene encoding mouse Dkk or Dkk interacting protein. Knock-in animals include animals wherein genes have been introduced and animals wherein a gene that was previously knocked-out is reintroduced into the animal. Other transgenic animals can be created with inducible forms of Dkk or a Dkk interacting protein to study the effects of the gene on bone mass development and loss as well as lipid level regulation. These animals can also be used to study long term effects of Dkk or Dkk interacting protein modulation. Transgenic animals may be created to express peptide aptamers, or produce RNA aptamers. The transgenic vectors may direct expression in a tissue specific manner by the use of tissue specific promoters. In a preferred embodiment, a peptide aptamer fusion protein is expressed using a bone specific promoter. Such systems can provide a tissue specific knock-out of Dkk or Dkk interacting protein activity.

General methods for creating transgenic animals are known in the art, and are described in, for example, Strategies in Transgenic Animal Science (Glenn M. Monastersky and James M. Robl eds., ASM Press; Washington, DC, 1995); Transgenic Animal Technology: A Laboratory Handbook (Carl A. Pinkert ed., Academic Press 1994); Transgenic Animals (Louis Marie Houdebine, ed., Harwood Academic Press, 1997); Overexpression and Knockout of Cytokines in Transgenic Mice (Chaim O. Jacob, ed., Academic Press 1994); Microinjection and Transgenesis: Strategies and Protocols (Springer Lab Manual) (Angel Cid-Arregui and Alejandro Garcia-Carranca, eds., Springer Verlag 1998); and Manipulating the Mouse Embryo: A Laboratory Manual (Brigid Hogan et al., eds., Cold Spring Harbor Laboratory Press 1994).

15. Peptide and Nucleotide Aptamers and Peptide Aptamer Mimetics

Another embodiment contemplates the use of peptide and nucleotide aptamer technology to screen for agents which interact with Dkk, which block Dkk from interacting with LRP5 or LRP6, or which block any other Dkk ligand interaction, or
5 which interact with Dkk interacting proteins, such as those shown in Figure 5. Peptide aptamers are molecules in which a variable peptide domain is displayed from a scaffold protein. Thioredoxin A (trxA) is commonly used for a scaffold. The peptide insert destroys the catalytic site of trxA. It is recognized that numerous proteins may also be used as scaffolding proteins to constrain and/or present a peptide aptamer. Other
10 scaffold proteins that could display a constrained peptide aptamer could include staphylococcal nuclease, the protease inhibitor eglin C, the *Streptomyces tendae* alpha-amylase inhibitor Tendamistat, Sp1, and green fluorescent protein (GFP) (reviewed in Hoppe-Seyler et al., *J. Steroid Biochem Mol. Biol.* 78:105-11 (2001)), and the S1
15 nuclease from *Staphylococcus* or M13 for phage display. Any molecule to which the aptamer could be anchored and presented in its bioactive conformation would be suitable.

Aptamers can then specifically bind to a given target protein *in vitro* and *in vivo* and have the potential to selectively block the function of their target protein. Peptide aptamers are selected from randomized expression libraries on the basis of their *in vivo* binding capacity to the desired target protein. Briefly, a target protein (e.g., Dkk, a Dkk interacting protein, or LRP5/6) is linked to a heterologous DNA binding domain (BD) and expressed as bait in a yeast test strain. Concomitantly, a library coding for different peptides (e.g., 16-mers) of randomized sequence inserted in a scaffold protein sequence, which are linked to a heterologous transcriptional activation domain (AD) is expressed as prey. If a peptide binds to a target protein, a functional transcription factor is reconstituted, in which the BD and AD are bridged together by interacting proteins. This transcription factor is then able to activate the promoter of a marker gene which can be monitored by colorimetric enzymatic assays or by growth selection.
25 Additional variation, methods of preparing and screening methodologies are described in, for example, Hoppe-Seyler et al., *J. Mol. Med.* 78: 426-430 (2000).
30

Nucleotide aptamers are described for example in Brody *et al.*, *Trends Mol. Biotechnol.* 74: 5-13 (2000). Additional methods of making and using nucleotide aptamers include SELEX, *i.e.*, Systematic Evolution of Ligands by Exponential Enrichment. SELEX is a process of isolating oligonucleotide ligands of a chosen target molecule (see Tuerk and Gold, *Science* 249:505-510 (1990); U.S. Pat. Nos. 5,475,096, 5,595,877, and 5,660,985). SELEX, as described in Tuerk and Gold, involves admixing the target molecule with a pool of oligonucleotides (*e.g.*, RNA) of diverse sequences; retaining complexes formed between the target and oligonucleotides; recovering the oligonucleotides bound to the target; reverse-transcribing the RNA into DNA; amplifying the DNA with polymerase chain reactions (PCR); transcribing the amplified DNA into RNA; and repeating the cycle with ever increasing binding stringency. Three enzymatic reactions are required for each cycle. It usually takes 12-15 cycles to isolate aptamers of high affinity and specificity to the target. An aptamer is an oligonucleotide that is capable of binding to an intended target substance but not other molecules under the same conditions.

In another reference, Bock *et al.*, *Nature* 355:564-566 (1990), describe a different process from the SELEX method of Tuerk and Gold in that only one enzymatic reaction is required for each cycle (*i.e.*, PCR) because the nucleic acid library in Bock's method is comprised of DNA instead of RNA. The identification and isolation of aptamers of high specificity and affinity with the method of Bock *et al.* still requires repeated cycles in a chromatographic column.

Other nucleotide aptamer methods include those described by Conrad *et al.*, *Meth. Enzymol.* 267:336-367 (1996). Conrad *et al.* describe a variety of methods for isolating aptamers, all of which employ repeated cycles to enrich target-bound ligands and require a large amount of purified target molecules. More recently described methods of making and using nucleotide aptamers include, but are not limited to those described in U.S. Patent Nos. 6,180,348; 6,051,388; 5,840,867; 5,780,610, 5,756,291 and 5,582,981.

Potentially, any compound which binds Dkk or a Dkk interacting protein or modulates the Dkk/Dkk interacting protein or Dkk/LRP5 or Dkk/LRP6 complex may be

a therapeutic compound. In one embodiment of the invention, a peptide or nucleic acid aptamer according to the invention is used in a therapeutic composition. Such compositions may comprise an aptamer, or a LRP5 or LRP6 fragment unmodified or modified.

5 Nucleic acid aptamers have been used in compositions for example by chemical bonding to a carrier molecule such as polyethylene glycol (PEG) which may facilitate uptake or stabilize the aptamer. A di-alkylglycerol moiety attached to an RNA will embed the aptamer in liposomes, thus stabilizing the compound. Incorporating chemical substitutions (*i.e.*, changing the 2'-OH group of ribose to a 2'-NH in RNA
10 confers ribonuclease resistance) and capping, etc. can prevent breakdown. Several such techniques are discussed for RNA aptamers in Brody and Gold *Rev. Mol. Biol.* 74:3-13 (2000).

15 Peptide aptamers may be used in therapeutic applications by the introduction of an expression vector directing aptamer expression into the affected tissue such as for example by retroviral delivery, by encapsulating the DNA in a delivery complex or simple by naked DNA injection. Or, the aptamer itself or a synthetic analog may be used directly as a drug. Encapsulation in polymers and lipids may assist in delivery. The use of peptide aptamers as therapeutic and diagnostic agents is reviewed by Hoppe-Syler and Butz *J. Mol. Med.* 78:426-430 (2000).

20 In another aspect of the invention, the structure of a constrained peptide aptamer of the invention may be determined such as by NMR or X-ray crystallography. (Cavanagh et al., Protein NMR Spectroscopy : Principles and Practice, Academic Press, 1996; Drenth, Principles of Protein X-Ray Crystallography, Springer Verlag, 1999) Preferably the structure is determined in complex with the target protein. A
25 small molecule analog is then designed according to the positions of functional elements of the 3D structure of the aptamer. (Guidebook on Molecular Modeling in Drug Design, Cohen, Ed., Academic Press, 1996; Molecular Modeling and Drug Design (Topics in Molecular and Structural Biology), Vinter and Gardner Eds., CRC Press, 1994) Thus, a method is provided for the design of effective and specific drugs which modulate the activity of Dkk, Dkk interacting proteins, Dkk/Dkk interacting protein
30

complex, and the Dkk/LRP complex. Small molecule mimics of the peptide aptamers of the present invention are also encompassed within the scope of the invention.

16. Alternative Variants of LRP5/LRP6 Having HBM Activity

5 A structural model of the LRP5/Zmax1 first beta-propeller module was generated based on a model prediction in Springer et al., (1998) *J. Molecular Biology*, 283:837-862. Based on the model, certain amino acid residues were identified as important variants of LRP5/HBM/Zmax1. The following three categories provide examples of such variants:

10 The shape of the beta-propeller resembles a disk with inward-sloping sides and a hole down the middle. Residue 171 is in a loop on the outer or top surface of the domain in blade 4 of propeller module 1. Thus, variants comprising changed residues in structurally equivalent positions in other blades; as well as residues that are slightly more interior to the binding pocket, but still accessible to the surface, are important
15 embodiments of the present invention for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention. The following are examples of such variants:

20 A214V (a position equivalent to 171 in blade 5; alanine is not conserved in other propellers),

E128V (a position equivalent to 171 in blade 3; glutamate is not conserved in other propellers),

A65V (a position equivalent to 171 in blade 2; alanine is conserved in propellers 1-3 but not 4),

G199V (an accessible interior position in blade 5; glycine is conserved in propellers 1-3 but not 4), and

M282V (accessible interior position in blade 1; methionine is conserved in propellers 1-3 but not 4).

25 LRP5/Zmax1 has four beta-propeller structures; the first three beta-propeller modules conserve a glycine in the position corresponding to residue 171 in human
30

LRP5/Zmax1. Therefore, variants bearing a valine in the equivalent positions in the other propellers are important embodiments of the present invention. The following variants are useful for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention: G479V, G781V, and Q1087V.

5 The G171V HBM polymorphism results in "occupied space" of the beta-propeller 1, with the side-chain from the valine residue sticking out into an open binding pocket and potentially altering a ligand/protein interaction. The glycine residue is conserved in LRP5/Zmax1 propellers 1, 2 and 3 but is a glutamine in propeller 4. Therefore, the 10 following variants of LRP5/HBM are important embodiments of the present invention for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention:

15 G171K (which introduces a charged side-chain),
G171F (which introduces a ringed side-chain),
G171I (which introduces a branched side-chain), and
G171Q (which introduces the propeller 4 residue).

Furthermore, LRP6 is the closest homolog of LRP5/Zmax1. LRP6 has a beta-propeller structure predicted to be similar, if not identical to Zmax1. The position 20 corresponding to glycine 171 in human LRP5/Zmax1 is glycine 158 of human LRP6. Thus, corresponding variants of LRP6 are an important embodiment of the present invention for the study of the specificity of LRP5/Zmax1 versus its related family member, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention. Specifically, for example, a 25 glycine to valine substitution at the structurally equivalent position, residue 158, of human LRP6 and similar variants of other species' LRP6 homologs represent important research tools.

Site-directed mutants of LRP5 were generated in the full-length human LRP5 cDNA using the QuikChange XL-Site-Directed Mutagenesis Kit (catalog #200516,

Stratagene, La Jolla, CA) following the manufacturer's protocol. The mutant sequences were introduced using complementary synthetic oligonucleotides:

A65V: TGGTCAGCGGCCTGGAGGATGTGGCCGCAGTGGACTTCC (SEQ ID NO:129) and

5 GGAAGTCCACTGCGGCCACATCCTCCAGGCCGCTGACCA (SEQ ID NO:130)

E128V: AAGCTGTACTGGACGGACTCAGTGACCAACCGCATCGAGG (SEQ ID NO:131) and

10 CCTCGATGCGGTTGGTCACTGAGTCCGTCCAGTACAGCTT (SEQ ID NO:132)

G171K: ATGTACTGGACAGACTGGAAGGAGACGCCCGGATTGAGCG (SEQ ID NO: 133) and

CGCTCAATCCGGGGCGTCTCCTCCAGTCTGTCCAGTACAT (SEQ ID NO:134)

15 G171F: ATGTACTGGACAGACTGGTTGAGACGCCCGGATTGAGCG (SEQ ID NO:135) and

CGCTCAATCCGGGGCGTCTCAAACCAGTCTGTCCAGTACAT (SEQ ID NO:136)

G171I: ATGTACTGGACAGACTGGATTGAGACGCCCGGATTGAGCG (SEQ ID NO:137) and

20 CGCTCAATCCGGGGCGTCTCAATCCAGTCTGTCCAGTACAT (SEQ ID NO:138)

G171Q: ATGTACTGGACAGACTGGCAGGAGACGCCCGGATTGAGCG (SEQ ID NO:139) and

25 CGCTCAATCCGGGGCGTCTCCTGCCAGTCTGTCCAGTACAT (SEQ ID NO:140)

G199V: CGGACATTTACTGGCCAATGTACTGACCATGACCTGGAGG (SEQ ID NO:141) and

30 CCTCCAGGTCGATGGTCAGTACATTGGGCCAGTAAATGTCCG (SEQ ID NO:142)

A214V: AGCTCTACTGGGCTGACGTCAAGCTCAGCTTCATCCACCG (SEQ ID NO: 143) and

CGGTGGATGAAGCTGAGCTTACGTCAGCCCAGTAGAGCT (SEQ ID NO:144)

5 M282V: GAGTGCCCTACTCACCCGTGGACATCCAGGTGCTGAGCC (SEQ ID NO:145) and

GGCTCAGCACCTGGATGTCCACGGGTGAGTAGAGGGCACTC (SEQ ID NO:146)

10 G479V: CATGTACTGGACAGACTGGTAGAGAACCTAAAATCGAGTGTGC (SEQ ID NO:147) and

GCACACTCGATTITAGGGTTCTCTACCCAGTCTGTCCAGTACATG (SEQ ID NO:148)

G781V: CATCTACTGGACCGAGTGGTCGGCAAGCCGAGGATCGTGCG (SEQ ID NO:149) and

15 CGCACGATCCTCGGCTGCCGACCCACTCGGTCCAGTAGATG (SEQ ID NO:150)

Q1087V: GTACTTCACCAACATGGTGGACCAGCCAAGATCGAACG (SEQ ID NO:151) and

20 CGTCGATCTGGCTGCCCGGTCCACCATGTTGGTGAAGTAC (SEQ ID NO:152)

LRP6 G158V:

GTACTGGACAGACTGGTAGAAGTGCCAAAGATAGAACGTGC (SEQ ID NO:153) and

25 GCACGTTCTATCTTGGCACTTCTACCCAGTCTGTCCAGTAC (SEQ ID NO:154).

All constructs were sequence verified to ensure that only the engineered modification was present in the gene. Once verified, each variant was functionally evaluated in the TCF-luciferase assay in U2OS cells (essentially as described in Example 7. Other functional evaluations could also be performed, such as the Xenopus embryo assay (essentially as described in Example 6), or other assays to evaluate Wnt

signaling, Dkk modulation, or anabolic bone effect. Binding of these mutants to Dkk, LRP-interacting proteins, Dkk-interacting proteins, or peptide aptamers to any of the preceding could also be investigated in a variety of ways such as in a two-hybrid system (such as in yeast as described in this application), or other methods.

5 Figure 24 shows the effects of the G171F mutation in propeller 1 of LRP5. This mutation is at the same position as HBM's G171V substitution. Expression of G171F results in an HBM effect. That is, in the presence of Wnt, G171F is able to activate the TCF-luciferase reporter construct. In fact, it may activate the reporter to a greater extent than either LRP5 or HBM. Furthermore, in the presence of Dkk1 and Wnt1,
10 G171F is less susceptible than LRP5 to modulation by Dkk. These data exemplify that the G171F variant modulates Wnt signaling in a manner similar to HBM. In addition, this data confirms that HBM's valine residue at 171 is not the only modification at 171
that can result in an HBM effect. Together these data support an important role for
15 LRP5 propeller 1 in modulating Wnt pathway activity; in responding to Dkk modulation;
and, in the ability to generate an HBM effect.

Figure 25 shows the effects of the M282V mutation in propeller 1 of LRP5.
M282 expression results in an HBM-effect. That is, in the presence of Wnt, M282 is
able to activate the TCF-luciferase reporter construct. Furthermore, in the presence of
Dkk1 and Wnt1, M282V is less susceptible than LRP5 to modulation by Dkk. These
20 data show that the M282V variant modulates Wnt signaling in a manner similar to HBM.
In addition, this data confirms that modifications of other residues in propeller 1 of LRP5
can result in an HBM effect.

25 These data support an "occupied space" model of the HBM mutation in propeller
1 and show that multiple mutations of propeller 1 are capable of generating an HBM
effect; the original G171V HBM mutation is not unique in this ability. Moreover, various
perturbations in propeller 1 can modulate Dkk activity.

These data illustrate the molecular mechanism of Dkk modulation of LRP
signaling. Using the methods disclosed herein and in U.S. Application 60/290,071,
30 generation of a comprehensive mutant panel will reveal residues in LRP that function in
Dkk modulation of Wnt signaling. Such variants of LRP5 and LRP6 that modulate Dkk

activity and the residues which distinguish them from LRP5 and LRP6 are points for therapeutic intervention by small molecule compound, antibody, peptide aptamer, or other agents. Furthermore, models of each HBM-effect mutation/polymorphism may be used in rational drug design of an HBM mimetic agent.

5 These are only a few illustrative examples presented to better describe the present invention. Variants of LRP5 which have demonstrated HBM activity in assays include G171F, M282V, G171K, G171Q and A214V. Clearly, other variants may be contemplated within the scope of the present invention. Furthermore, wherever HBM is recited in the methods of the invention, it should be understood that any such alternative variant of LRP which demonstrates HBM biological activity is also encompassed by those claims.

10

17. Screening Assays

The two-hybrid system is extremely useful for studying protein:protein interactions. See, e.g., Chien *et al.*, *Proc. Natl Acad. Sci. USA* 88:9578-82 (1991);
15 Fields *et al.*, *Trends Genetics* 10:286-92 (1994); Harper *et al.*, *Cell* 75:805-16 (1993);
Vojtek *et al.*, *Cell* 74:205-14 (1993); Luban *et al.*, *Cell* 73:1067-78 (1993); Li *et al.*,
FASEB J. 7:957-63 (1993); Zang *et al.*, *Nature* 364:308-13 (1993); Golemis *et al.*, *Mol.*
Cell. Biol. 12:3006-14 (1992); Sato *et al.*, *Proc. Natl Acad. Sci. USA* 91:9238-42 (1994);
20 Coghlan *et al.*, *Science* 267:108-111 (1995); Kalpana *et al.*, *Science* 266:2002-6
(1994); Helps *et al.*, *FEBS Lett.* 340:93-8 (1994); Yeung *et al.*, *Genes & Devel.* 8:2087-
9 (1994); Durfee *et al.*, *Genes & Devel.* 7:555-569 (1993); Paetkau *et al.*, *Genes &*
Devel. 8:2035-45; Spaargaren *et al.*, 1994 *Proc. Natl. Acad. Sci. USA* 91:12609-13
(1994); Ye *et al.*, *Proc. Natl Acad. Sci. USA* 91:12629-33 (1994); and U.S. Patent Nos.
25 5,989,808; 6,251,602; and 6,284,519.

Variations of the system are available for screening yeast phagemid (see, e.g.,
Harper, Cellular Interactions and Development: A Practical Approach, 153-179 (1993);
Elledge *et al.*, *Proc. Natl Acad. Sci. USA* 88:1731-5 (1991)) or plasmid (Bartel, 1993
and Bartel, *Cell* 14:920-4 (1993)); Finley *et al.*, *Proc. Natl Acad. Sci. USA* 91:12980-4

(1994)) cDNA libraries to clone interacting proteins, as well as for studying known protein pairs.

The success of the two-hybrid system relies upon the fact that the DNA binding and polymerase activation domains of many transcription factors, such as GAL4, can be separated and then rejoined to restore functionality (Morin *et al.*, *Nuc. Acids Res.* 21:2157-63 (1993)). While these examples describe two-hybrid screens in the yeast system, it is understood that a two-hybrid screen may be conducted in other systems such as mammalian cell lines. The invention is therefore not limited to the use of a yeast two-hybrid system, but encompasses such alternative systems.

Yeast strains with integrated copies of various reporter gene cassettes, such as for example GAL.fwdarw.LacZ, GAL.fwdarw.HIS3 or GAL.fwdarw.URA3 (Bartel, in Cellular Interactions and Development: A Practical Approach, 153-179 (1993); Harper *et al.*, *Cell* 75:805-16 (1993); Fields *et al.*, *Trends Genetics* 10:286-92 (1994)) are co-transformed with two plasmids, each expressing a different fusion protein. One plasmid encodes a fusion between protein "X" and the DNA binding domain of, for example, the GAL4 yeast transcription activator (Brent *et al.*, *Cell* 43:729-36 (1985); Ma *et al.*, *Cell* 48:847-53 (1987); Keegan *et al.*, *Science* 231:699-704 (1986)), while the other plasmid encodes a fusion between protein "Y" and the RNA polymerase activation domain of GAL4 (Keegan *et al.*, 1986). The plasmids are transformed into a strain of the yeast that contains a reporter gene, such as lacZ, whose regulatory region contains GAL4 binding sites. If proteins X and Y interact, they reconstitute a functional GAL4 transcription activator protein by bringing the two GAL4 components into sufficient proximity to activate transcription. It is well understood that the role of bait and prey proteins may be alternatively switched and thus the embodiments of this invention contemplate and encompass both alternative arrangements.

Either hybrid protein alone must be unable to activate transcription of the reporter gene, the DNA-binding domain hybrid, because it does not provide an activation function, and the activation domain hybrid, because it cannot localize to the GAL4 binding sites. Interaction of the two test proteins reconstitutes the function of GAL4 and results in expression of the reporter gene. The reporter gene cassettes

consist of minimal promoters that contain the GAL4 DNA recognition site (Johnson *et al.*, *Mol. Cell. Biol.* 4:1440-8 (1984); Lorch *et al.*, *J. Mol. Biol.* 186:821-824 (1984)) cloned 5' to their TATA box. Transcription activation is scored by measuring either the expression of β-galactosidase or the growth of the transformants on minimal medium
5 lacking the specific nutrient that permits auxotrophic selection for the transcription product, e.g., URA3 (uracil selection) or HIS3 (histidine selection). See, e.g., Bartel, 1993; Durfee *et al.*, *Genes & Devel.* 7:555-569 (1993); Fields *et al.*, *Trends Genet.* 10:286-292 (1994); and U.S. Pat. No. 5,283,173.

Generally, these methods include two proteins to be tested for interaction which
10 are expressed as hybrids in the nucleus of a yeast cell. One of the proteins is fused to the DNA-binding domain (DBD) of a transcription factor and the other is fused to a transcription activation domain (AD). If the proteins interact, they reconstitute a functional transcription factor that activates one or more reporter genes that contain binding sites for the DBD. Exemplary two-hybrid assays which have been used for
15 Dkk-1 or Dkk-1/LRP5 are presented in the Examples below.

Additional methods of preparing two hybrid assay systems for Dkk-1 interactors would be evident to one of ordinary skill in the art. See for example, Finley *et al.*, "Two-Hybrid Analysis of Genetic Regulatory Networks," in The Yeast Two-Hybrid System (Paul L. Bartel *et al.*, eds., Oxford, 1997); Meijia Yang, "Use of a Combinatorial Peptide Library in the Two-Hybrid Assay," in The Yeast Two-Hybrid System (Paul L. Bartel *et al.*, eds., Oxford, 1997); Gietz *et al.*, "Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system," *Mol. & Cell. Biochem.* 172:67-9 (1997); K. H. Young, "Yeast Two-Hybrid: So Many Interactions,(in) so Little Time," *Biol. Reprod.* 58:302-311 (1998); R. Brent *et al.*, "Understanding Gene and Allele Function with Two-Hybrid Methods," *Annu. Rev. Genet.* 31:663-704 (1997). It will be appreciated that protein networks can be elucidated by performing sequential screens of activation domain-fusion libraries.
20
25

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize
30 the compounds of the present invention and practice the claimed methods. The

following working examples therefore, specifically point out preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.

5

EXAMPLES

The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well-known in the art or the techniques specifically described below were utilized:

10 For routine practice of the protocols referenced below, one of skill in the art is directed to the references cited in this application as well as the several Current Protocol guides, which are continuously updated, widely available and published by John Wiley and Sons, (New York). In the life sciences, Current Protocols publishes comprehensive manuals in Molecular Biology, Immunology, Human Genetics, Protein
15 Science, Cytometry, Neuroscience, Pharmacology, Cell Biology, Toxicology, and Nucleic Acid Chemistry. Additional sources are known to one of skill in the art.

Example 1

Yeast Two Hybrid Screen Using LRP5 Ligand Binding Domain (LBD) Bait Sequences

20 In a screen against human osteoblast library (i.e., HOB03C5, a custom Gibco generated Y2H compatible cDNA library from a human osteoblast cell line as described by Bodine and Komm, *Bone* 25:535-43 (1999)), an interaction with Dkk-1 was identified. The LRP5 ligand binding domain (LBD) baits used for this screen are depicted in Figures 2B and C. The basic protocol is as follows:

25 An overnight culture of the yeast strain containing the bait of interest is grown in 20 ml of appropriate selective medium containing 2% glucose at 30°C. The overnight culture is diluted by a 10 fold factor into YPDmedia supplemented with 40 mg/l of adenine, and grown for 4 hours at 30°C.

For each mating event, an aliquot of the frozen prey library is grown in 150 ml
30 YAPD medium for 5 hours at 30°C.

Appropriate volumes calculated by measuring the OD600 of each culture are combined into a tube. The number of diploids to be screened is typically ten times the number of clones originally present in the prey library of interest. Assuming a mating efficiency of 20% minimum, fifty times (*i.e.*, ten times coverage multiplied by 20%
5 mating efficiency) as many haploid cells containing the bait and as many cells containing the prey are used in any given mating event. The mixture is filtered over a 47 mm, 0.45 mm sterile Metricel filter membrane (Gelman).

Using sterile forceps, the filter is transferred onto a 100 mm² YAPD agar plate with the cell side up, removing all air bubbles underneath the filter. The plate is
10 incubated overnight at room temperature.

The filter is transferred into a 50 ml Falcon tube using sterile forceps and 10 ml SD medium containing 2% glucose are added to resuspend the cells. The filter, once free of cells, is removed and the cell suspension is spun for 5 min. at 2,000 xg.

15 The cells are resuspended in 10 ml SD medium containing 2% glucose. An aliquot of 100 µl is set aside for titration.

The cells are plated onto large square plates containing appropriate selective media and incubated at 30°C for three to five days.

To calculate the mating efficiency and to determine the total number of diploid cells screened, the 100 µl aliquot set aside for titration is diluted and plated onto
20 different selective media. The mating efficiency is calculated by dividing the number of diploids/ml by the lowest number of haploids/ml, either bait or prey, and multiplied by 100. For example, if 2 million diploids were obtained by mating 10 million of haploids containing a bait and 12 million of haploids containing a prey, then the mating efficiency is calculated by dividing 2 million by 10 million, which equals 0.2 and multiplied by 100
25 which equals 20%. Typical mating efficiencies under the above conditions are within about 20 to about 40%. The total number of diploids screened in a mating event is obtained by multiplying the number of diploids/ml by the total number of ml plated, typically about 10.

Isolation of colonies containing pairs of interacting proteins.

Yeast colonies from the interaction selection (large square) plates are picked with a sterile toothpick and patched onto plates containing the appropriate selective media and incubated at 30°C for two days.

- 5 To further ensure purity of the yeast, the plates are replicated onto another plate containing the same media and incubated at 30°C for another two days.

Yeast patches are scraped using a sterile toothpick and placed into a 96-well format plate containing 100 µl SD -L -W -H with 2% glucose liquid medium.

- 10 Half the volume of the plate is transferred to a 96-well plate containing 50 µl of 40% glycerol for storage. The other half is set aside for replication and galactosidase-activity assay (see below).

Cells are replicated onto a SD -L -W -H plate with 2% glucose plate to create a master plate, and incubated two days at 30°C. The master plate is replicated onto different selective media to score the strength of each interaction.

- 15 Cells are also replicated onto media selecting for the prey vector only for colony PCR and incubated two days at 30°C.

Galactosidase activity assay

- 20 Ten microliters from the 96-well plate (set aside from above) are transferred into another 96-well plate containing 100 µl SD and 2% glucose media. The cell density is measured at OD₆₀₀ using a spectrophotometer, the OD₆₀₀ is usually between 0.03 and 0.1. Fifty microliters of Galactosidase reaction mixture (Tropix) are added to

microplates (Marsh) specifically designed for the luminometer (Hewlett Packard Luminometer). Fifty microliters of the diluted cells are then added and mixed by pipetting.

- 25 The reaction is incubated sixty to one hundred twenty minutes at room temperature. Relative Light Units (RLUs) are read by the luminometer. Each plate contains a negative control, constituted by diploid yeast containing the bait of interest and an empty prey vector. To be scored as positive, the diploids tested have to have an RLU number at least twice as high as the negative control.

Example 2**Minimum interaction domain mapping**

Further analysis of yeast two hybrid (Y2H) interacting proteins includes the dissection of protein motifs responsible for the interaction. Sequence alignment of multiple clones identified in the Y2H screens can help identify the smallest common region responsible for the interaction. In the absence of appropriate clones, deletion mapping of interacting domains is necessary.

PCR primers containing restriction sites suitable for cloning are designed to cover multiple sub-domains of the protein of interest (bait or prey). The methods involved in cloning, sequencing, yeast transformation, mating, and scoring of interactions are readily performed by one of ordinary skill in the art of molecular biology and genetic engineering.

Materials and Methods

Minimum interaction domain: primers were designed for PCR of the Dkk-1 clone isolated by screening a primary osteoblast cell strain (HOB03C5) library with pooled Zmax1/LRP5 ligand binding domain (LBD) baits: LBD1 (Leu969-Pro1376) and LBD4 (Arg1070-Pro1376). The primers, which are presented in 5' to 3' orientation, were as follows:

<u>SEQ ID NO</u>	<u>Primer</u>	<u>Sequence</u>
155	Forward 1	TTTTTGTCGACCAATTCCAACGCTATCAAG
156	Forward 2	TTTTTGTCGACCTGCGCTAGTCCCACCCGC
157	Forward 3	TTTTTGTCGACCGTGTCTCTGATCAAATC
158	Forward 4	TTTTTGTCGACCGGACAAGAAGGTTCTGTTG
159	Reverse 1	TTTTTGCGGCCGCTTATTGGTGTGATAACATTTTG
160	Reverse 2	TTTTTGCGGCCGCTTAGCAAGACAGACCTCTCC
161	Reverse 3	TTTTTGCGGCCGCTTAGTGTCTGACAAGTGTG

PCR was performed using PfuTurbo® polymerase (Stratagene). The PCR products were gel purified, digested with *Sall*/ *NotI* and ligated to pPC86 (Gibco/BRL) which had been linearized with *Sall*/*NotI*. Clones were recovered and sequenced to ascertain that the structure was as expected and that the Gal4 activation domain and Dkk-1 were in-frame. The ORF of Dkk-1 was Met1-His266, as in human Dkk-1 (GenBank Accession No. XM_005730).

The clones used were as follows: D5 (F1/R3: Asn34-His266), D4 (F1/R2: Asn34-Cys245), D3 (F1/R1: Asn34-Lys182), D9 (F2/R3: Cys97-His266), D12 (F3/R3, val139-His266), D14 (F4/R3: Gly183-His266), D8 (F2/R2: Cys97-Cys245), and D11 (F3/R2: Val139-Cys245). F1, F2, F3 and F4 refer respectively to Forward primers 1, 2, 3 and 4. R1, R2 and R3 refer respectively to reverse primers 1, 2 and 3.

These clones were transformed into yeast and mated with each of three yeast strains containing pDBleu (Gibco/BRL), pDBleuLBD1, and pDBleuLBD4. Positive interactions were detected by growth of the hybrids on appropriate selective media.

15

Results

Minimum interaction domain: Figure 6 shows that while growth was observed in diploids of D4, D5, D8, D9, and D12, no growth was observed in hybrids of D3, D11, and D12. Carboxy terminal (C-terminal) deletions indicated that while the C-terminal amino acids of Dkk-1 containing the potential N-glycosylation site (Arg246-His266) are not required for interaction with Zmax1/LRP5 LBD baits, the Cys2 domain, Gly183-Cys245, is required. N-terminal deletions also demonstrated that the region between the two cysteine domains, *i.e.* Val139 to Lys182, is also required. Two minimum interaction domain constructs were isolated: D12 (Val139-His266) and D8 (Cys97-Cys245). Similar constructs could be prepared for Dkk-1 interactors.

Example 3

Yeast-2 Hybrid screen for peptide aptamer sequences to Dkk-1

Peptide aptamer library construction

A peptide aptamer library, Tpep, was constructed, which provides a means to identify chimeric proteins that bind to a protein target (or bait) of interest using classic yeast two hybrid (Y2H) assays. The Tpep library is a combinatorial aptamer library composed of constrained random peptides, expressed within the context of the disulfide loop of *E. coli* thioredoxin (trxA), and as C-termini fusion to the *S. cerevisiae* Gal4 activation domain. The Tpep library was generated using a restriction enzyme modified recombinant Y2H prey vector, pPC86 (Gibco), which contains the trxA scaffold protein.

Generation of aptamer-encoding sequences

Aptamer-encoding sequences were produced as follows. DNA encoding random stretches of approximately sixteen amino acids surrounded by appropriate restriction sites were generated by semi-random oligonucleotide synthesis. The synthetic oligonucleotides were PCR-amplified, restriction digested, and cloned into the permissive sites within the trxA scaffold protein. The cloning strategy was to insert the random oligonucleotide sequence is in-frame with the scaffold protein coding sequence, resulting in expression of a scaffold protein-aptamer chimera. The scaffold protein is itself in-frame with the activation domain of Gal4, within the pPC86 vector that is appropriate for the aptamer to be expressed and functional in a regular Y2H assay. Additional methods of preparing aptamers would be apparent to the skilled artisan.

Generation of a permissive recombinant pPC86 vector containing the trxA coding sequence

First the *Rsr*II restriction site located within the Gal4 activation domain of pPC86 (Gibco) was eliminated by site-directed mutagenesis (Quickchange™ kit, Stratagene). The amino acid sequence of the Gal4 activation domain was unchanged by this modification. The strength of different control interactions was verified to be unchanged by the modification.

Second, the *E. coli* trxA coding sequence was cloned into the *Sai*I and *Not*I sites of the *Rsr*II-modified pPC86. *Eco*RI and *Spel* sites were then introduced within the trxA

RsrII site. The oligonucleotides encoding the peptide aptamers were cloned into the EcoRI and SpeI sites of the resulting vector.

Example 4

5 **Yeast-2 Hybrid screen for Dkk-1 interacting proteins**

A Dkk-1 bait sequence was utilized in a yeast two hybrid screen to identify Dkk-1 interacting proteins. The procedure for the Y2H was carried out similarly to that employed in Example 1, except that the Dkk-1 bait from Figure 2C was used instead of 10 LRP baits. The screen was performed using Hela and fetal brain libraries (Invitrogen Corporation, Carlsbad, CA). Multiple libraries were used to identify additional Dkk-1 interacting proteins and to confirm interactions found in other libraries.

The list of Dkk-1 interacting proteins uncovered in these Y2H screens are listed in Figure 5.

15 The interacting proteins identified in the Dkk-1 bait screen can be used in other Y2H screens with LRP baits and other Dkk-1 interacting proteins to determine more complex interactions which may modulate Dkk-1/LRP interactions and/or Wnt signaling.

Example 5

20 **Generation of antibodies**

In each of the following antibody-generating examples, the synthesis of these linear peptides is followed by injection into two New Zealand Rabbits. Subsequent boosts and bleeds are taken according to a standard ten-week protocol. The end-user receives back 5 mgs of peptide, aliquots of pre-bleeds, roughly 80 ml of crude sera 25 from each of the two rabbits and, and ELISA titration data is obtained.

Generation of LRP5 Polymorphism-specific antibodies

Antibodies were generated to the following peptides to obtain antibodies which 30 distinguish the HBM polymorphism versus wild-type LRP5/Zmax: MYWTDWVETPRIE

(SEQ ID NO:123) (mutant peptide) and MYWTDWGETPRIE (SEQ ID NO:124) (wild-type peptide for negative selection). Immunofluorescence data confirmed that the antibody, after affinity purification, is specific for HBM and does not recognize LRP5 (Figure 17).

5

Generation of LRP5 Monospecific antibodies

LRP5 monospecific polyclonal antibodies were generated to the following amino acid sequences of LRP5: Peptide 1 (a.a. 265-277) - KRTGGKRKEILSA (SEQ ID NO:125), Peptide 2 (a.a. 1178-1194) - ERVEKTTGDKRTRIQGR (SEQ ID NO:126), and Peptide 3 (a.a. 1352-1375) - KQQCDSFPDCIDGSDE (SEQ ID NO:127).

10

Immunofluorescence confirmed that the antibody generated detects LRP5.

Generation of Dkk-1 monospecific polyclonal antibodies

Dkk-1 monospecific polyclonal antibodies were generated to the following amino acid sequences of Dkk-1: Peptide 1 (a.a. 71-85) - GNKYQTIDNYQPYPC (SEQ ID NO:118), Peptide 2 (a.a. 165-186) - LDGYSRRTTLSSKMYHTKGQEG (SEQ ID NO:119), Peptide 3 (a.a. 246-266) - RIQKDHHQASNSSLHTCQRH (SEQ ID NO:120), Peptide 4 (a.a. 147-161) - RGEIEETITESFGND (SEQ ID NO:121), and Peptide 5 (232-250) - EIFQRCYCGEGLSCRIQKD (SEQ ID NO:122) of human Dkk-1.

20

Figure 26 shows the location of the various peptides selected, their relationship to the Dkk-1 amino acid sequence and polyclonal antibodies generated.

25

Western blots demonstrated that the antibodies generated against peptides 2 (Antibody #5521) (Figure 27) and 4 (Antibody #74397) (Figure 28) are specific toward Dkk-1. Figure 27 shows Western blots using 500 µl of conditioned medium (CM) from non-transfected 293 cells or from 293 cells transfected with Dkk1-V5 that were immunoprecipitated by anti-V5 antibody. Bead elutes were separated by non-reducing SDS-PAGE (lanes #4, 5 of Figure 27). 20 µl of conditioned medium from both samples (lanes #2, 3 of Figure 27) and from Dkk1-AP transfected 293 cells (lane #6 of Figure 27) were additionally separated on the gel. The Western was performed using

antibodies Anti-V5/AP (1:10,000) and Ab#5521 (10 µg/ml). Ab#5521 detected Dkk1-V5 and Dkk1-AP from conditioned medium.

Figure 28 shows Western blot results using Ab#74397. Anti-V5/AP was tested at a 1:4000 dilution and Ab#74397 was tested at a 1:500 dilution. Ab#74397 was able to detect Dkk1-V5 in both conditioned medium and immunoprecipitated conditioned medium.

The results obtained with antibodies #5521 and #74397 are summarized in the following table:

Rabbit No.	Peptide Position	Peptide Sequence	Purified (Y/N)	Western	Immuno-precipitation	Location
5521	165-186	LDGYSR RTTLSSK MYHTKG QEG	Y (Protein G purified)	Y	N/A	Between Cy1 and Cys2 domain
74397	147-161	RGEIEETI TESFGN D	N	Y	N/A	Between Cy1 and Cys2 domain

Example 6

Effects of exogenous Dkk-1 on Wnt-mediated signaling in the Xenopus embryo assay

Xenopus embryos are an informative and well-established *in vivo* assay system to evaluate the modulation of Wnt signaling (McMahon et al., Cell 58: 1075-84 (1989); Smith and Harland, 1991; reviewed in Wodarz and Nusse 1998).

Modification of the Wnt signaling pathway can be visualized by examining the embryos for a dorsalization phenotype (duplicated body axis) after RNA injection into the ventral blastomere at the 4- or 8-cell stage. On the molecular level, phenotypes can be analyzed by looking for expression of various marker genes in stage 10.5 embryos. Such markers would include general endoderm, mesoderm, and ectoderm markers as well as a variety of tissue-specific transcripts.

Analysis can be done by RT-PCR/TaqMan® and can be done on whole embryo tissue or in a more restricted fashion (microdissection). Because this system is very flexible and rapid, by injecting combinations of transcripts, such as HBM and different Wnts or Wnt antagonists, the mechanism of HBM in the Wnt pathway can thereby be dissected. Furthermore, investigations are conducted to determine whether Zmax/LRP5 and HBM differentially modulate Wnt signaling either alone, or in combination with other components. Previous studies have demonstrated that LRP6 alone or LRP5 + Wnt5a were able to induce axis duplication (dorsalization) in this system (Tamai *et al.*, *Nature* 407: 530-35 (2000)).

10

Constructs for Xenopus Expression (Vector pCS2⁺)

Constructs were prepared using the vector pCS2⁺. DNA inserts were subcloned in the sense orientation with respect to the vector SP6 promoter. The pCS2⁺ vector contains an SV40 virus polyadenylation signal and T3 promoter sequence (for generation of antisense mRNA) downstream of the insert.

Full length Zmax/LRP5 and HBM ORF cDNA: Insert cDNA was isolated from the full length cDNA retrovirus constructs (with optimized Kozak sequences) by *Bg*II-*Eco*RI digestion and subcloned into the *Bam*HI-*Eco*RI sites of the pCS2⁺ vector.

Full length XWnt8: This cDNA was PCR amplified from a *Xenopus* embryo cDNA library using oligos 114484 (SEQ ID NO:162) (5'-CAGTGAATTCAACCATGCAAAACACCACCTTGTC-3') and 114487 (SEQ ID NO:163) (5'-CAGTTGCGGCCGCTCATCTCCGGTGGCCTCTG-3'). The oligos were designed to amplify the ORF with a consensus Kozak sequence at the 5' end as determined from GenBank #X57234. PCR was carried out using the following conditions: 96°C, 45 sec.; 63°C, 45 sec.; 72°C, 2 min. for 30 cycles. The resulting PCR product was purified, subcloned into pCRII-TOPO (Invitrogen Corp.), sequence verified, and digested with *Bam*HI/*Xba*I. This insert was subcloned into the vector at the *Bam*HI-*Xba*I sites.

Full length Wnt5a: A murine Wnt5a cDNA clone was purchased from Upstate Biotechnology (Lake Placid, NY) and subcloned into the *Eco*RI site of the vector. Sequencing confirmed insert orientation.

Full length human Dkk-1: A human cDNA with GenBank accession number AF127563 was available in the public database. Using this sequence, PCR primers were designed to amplify the open reading frame with a consensus Kozak sequence immediately upstream of the initiating ATG. Oligos 117162 (SEQ ID NO:164) (5'-
5 CAATAGTCGACGAATTACCATGGCTCTGGCGCAGCGG-3') and 117163 (SEQ
ID NO:165) (5'-GTATTGCGGCCGCTCTAGATTAGTGTCTGACAAGTGTGAA-3')
were used to screen a human uterus cDNA library by PCR. The resulting PCR product was purified, subcloned into pCRII-TOPO (Invitrogen Corp.), sequence verified, and digested with *Eco*RI/*Xba*I. This insert was subcloned into the pCS2⁺ vector at the
10 *Eco*RI-*Xba*I sites.

Full length human Dkk-2: A full length cDNA encoding human Dkk-2 was isolated to investigate the specificity of the Zmax/LRP5/HBM interaction with the Dkk family of molecules. Dkk-1 was identified in yeast as a potential binding partner of Zmax/LRP5/HBM. Dkk-1 has also been shown in the literature to be an antagonist of the Wnt signaling pathway, while Dkk-2 is not (Krupnik et al., 1999). The Dkk-2 full length cDNA serves as a tool to discriminate the specificity and biological significance of Zmax/LRP5/HBM interactions with the Dkk family (e.g., Dkk-1, Dkk-2, Dkk-3, Dkk-4, Soggy, their homologs and variant, etc.). A human cDNA sequence for Dkk-2 (GenBank Accession No. NM_014421) was available in the public database. Using this sequence, PCR primers were designed to amplify the open reading frame with a consensus Kozak sequence immediately upstream of the initiating ATG. Oligos 51409 (SEQ ID NO:166) (5'- CTAACGGATCCACCATGGCCGCGTTGATGCGG-3') and 51411 (SEQ ID NO:167) (5'-GATTCGAATTCTCAAATTTCTGACACACATGG-3')
15 were used to screen human embryo and brain cDNA libraries by PCR. The resulting PCR product was purified, subcloned into pCRII-TOPO, sequence verified, and digested with *Bam*HI/*Eco*RI. This insert was subcloned into the pCS2⁺ vector at the
20 *Bam*HI-*Eco*RI sites.
25

Full length LRP6 was isolated from the pED6dpc4 vector by *Xba*I-*Xba*I digestion. The full length cDNA was reassembled into the *Xba*I-*Xba*I sites of pCS2⁺. Insert
30 orientation was confirmed by DNA sequencing.

mRNA Synthesis and Microinjection Protocol

mRNA for microinjection into *Xenopus* embryos is generated by *in vitro* transcription using the cDNA constructs in the pCS2⁺ vector described above as template. RNA is synthesized using the Ambion mMessage mMachine high yield 5 capped RNA transcription kit (Cat. #1340) following the manufacturer's specifications for the Sp6 polymerase reactions. RNA products were brought up to a final volume of 50 µl in sterile, glass-distilled water and purified over Quick Spin Columns for 10 Radiolabelled RNA Purification G50-Sephadex (Roche, Cat. #1274015) following the manufacturer's specifications. The resulting eluate was finally extracted with phenol:chloroform:isoamyl alcohol and isopropanol precipitated using standard 15 protocols (Sambrook *et al.*, 1989). Final RNA volumes were approximately 50 µl. RNA concentration was determined by absorbance values at 260 nm and 280 nm. RNA integrity was visualized by ethidium bromide staining of denaturing (formaldehyde) agarose gel electrophoresis (Sambrook *et al.*, 1989). Various amounts of RNA (2 pg to 1 ng) are injected into the ventral blastomere of the 4- or 8-cell *Xenopus* embryo. These protocols are described in Moon *et al.*, *Technique-J. of Methods in Cell and Mol. Biol.* 1: 76-89 (1989), and Peng, *Meth. Cell. Biol.* 36: 657-62 (1991).

Screening for Duplicated Body Axis

20 *In vitro* transcribed RNA is purified and injected into a ventral blasomere of the 4- or 8-cell *Xenopus* embryo (approx. 2 hours post-fertilization). At stage 10.5 (approx. 11 hours post-fertilization), the injected embryos are cultured for a total of 72 hours and then screened for the presence of a duplicated body axis (dorsalization) (Figure 7). Using XWnt8-injected (2-10 pg) as a positive control (Christian *et al.* (1991)) and water-injected or non-injected embryos as negative controls, we replicated the published 25 observation that Zmax(LRP5) + Wnt5a (500 and 20 pg, respectively) could induce axis duplication. Wnt5a (20 pg) alone could not induce axis duplication (as previously reported by Moon *et al.* (1993)). We have also injected GFP RNA (100-770 pg) as a negative control to show that the amount of RNA injected is not perturbing embryo 30 development (not shown). Strikingly, HBM + Wnt5a (500 and 20 pg, respectively)

yielded an approximately 3.5 fold more robust response of the phenotype ($p=0.043$ by Fisher's exact test) compared to Zmax(LRP5) + Wnt5a, suggesting that the HBM mutation is activating the Wnt pathway (Figures 8 and 9). The HBM/Wnt5a embryos also appear to be more "anteriorized" than the Zmax(LRP5)/Wnt5a embryos, again
5 suggestive of a gain-of-function mutation.

The role of Dkk-1 as a modulator of Zmax/LRP5- and HBM-mediated Wnt signaling was investigated. Literature reports have previously characterized *Xenopus* and murine Dkk-1 as antagonists of the canonical Wnt pathway in the *Xenopus* system (Glinka et al., *Nature* 391:357-362 (1998)). Using the human Dkk-1 construct, a dose-response assay was performed to confirm that our construct was functional and to
10 identify the optimal amount of RNA for microinjection. Using 250 pg/embryo of hDkk-1 RNA, over 90% ($p<0.001$) of the embryos were observed to display enlarged anterior structures (big heads) as anticipated from the published reports (Figure 10).

The mechanism of hDkk-1 modulation of Wnt signaling in the presence of
15 Zmax/LRP5 or HBM was also investigated. Without any hDkk-1 present, it was confirmed that HBM + Wnt5a was a more potent activator of Wnt signaling than Zmax/LRP5 + Wnt5a ($p<0.05$). Interestingly, in the presence of hDkk-1 (250 pg), Zmax/LRP5-mediated Wnt signaling was repressed ($p<0.05$) but hDkk-1 was unable to repress HBM-mediated Wnt signaling ($p<0.01$) (Figure 11). The specificity of this
20 observation can be further addressed by investigating other members of the Dkk family, other Wnt genes, LRP6, additional Zmax/LRP5 mutants, and the peptide aptamers.

Example 7

Effects of exogenous Dkk and LRP5 on Wnt signaling in the TCF-luciferase Assay

25 Wnt activity can be antagonized by many proteins including secreted Frizzled related proteins (SFRPs), Cerberus, Wnt Inhibitory Factor-1 and Dkk-1 (Krupnik et al., 1999). The Dkk family of proteins consists of Dkk-1-4 and Soggy, a Dkk-3-like protein. Dkk-1 and Dkk-4 have been shown to antagonize Wnt mediated *Xenopus* embryo
30 development, whereas Dkk-2, Dkk-3, and Soggy do not. Unlike many of these proteins

that antagonize Wnt activity by directly interacting with Wnt proteins, Dkk-1 acts by binding to two recently identified Wnt coreceptors, LRP5 and LRP6. (Mao *et al.*, 2001; Bafico *et al.*, 2001). The details of this interaction have been examined by the present inventors and Mao *et al.* using deletion constructs of LRP6, which demonstrated that
5 EGF repeats 3 and 4 are important for Dkk-1 interaction. Accordingly, the activity of two Dkk proteins, Dkk-1 and Dkk-2, were investigated with various Wnt members, LRP5, LRP6, and the mutant form of LRP5, designated HBM. The present invention explores whether there is any functional difference between LRP5 and HBM with regard to Dkk action on Wnt mediated signaling. Various reagents were developed, including
10 Dkk-1 peptides, constrained LRP5 peptide aptamers, constrained Dkk-1 peptide aptamers and polyclonal antibodies to Dkk-1 (in Example 5 above) to identify factors that mimic HBM mediated Wnt signaling.

Methods

15 Various LRP5 constrained peptides were developed. Specifically, four peptides that interact with the LBD of LRP5 (Figure 4, constructs OST259-262 in Figure 12) and three peptides that interact with the cytoplasmic domain of LRP5 (constructs OST266-OST268 in Figure 12). In addition two Dkk-1 peptides were developed: constructs
20 OST264 and OST265 in Figure 12, corresponding to Dkk-1 amino acids 139-266 and 96-245, containing the smallest region of Dkk-1 that interacts with LRP5 (Figure 6). The cDNA clones encoding the LRP5 LBD interacting peptides and the Dkk-1 peptides were subcloned into pcDNA3.1 with the addition of a Kozak and signal sequence to target the peptide for secretion. The constructs encoding the three peptides interacting with the cytoplasmic domain of LRP5 were also subcloned into pcDNA3.1. However,
25 these latter constructs do not contain a signal sequence.

HOB-03-CE6 osteoblastic cells developed by Wyeth Ayerst (Philadelphia, PA) were seeded into 24-well plates at 150,000 cells per well in 1 ml of the growth media (D-MEM/F12 phenol red-free) containing 10% (v/v) heat-inactivated FBS, 1X penicillin streptomycin, and 1X Glutamax-1, and incubated overnight at 34°C. The following day,
30 the cells were transfected using Lipofectamine 2000® (as described by the

manufacturer, Invitrogen) in OptiMEM (Invitrogen) with 0.35 μ g /well of LRP5, HBM, or control plasmid DNA (empty vector pcDNA3.1) and either Wnt1 or Wnt3a plasmid DNA. Similar experiments were performed with LRP6 plasmid DNA (0.35 μ g/well) or a control pEDdpc4 empty vector. Furthermore, each of these groups were then divided
5 into three groups, those receiving 0.35 μ g/well Dkk-1, Dkk-2, or pcDNA3.1 control DNA. All wells were transfected with 0.025 μ g/well of CMV beta-galactosidase plasmid DNA and 0.35 μ g/well 16X TCF(AS)-luciferase reporter DNA (developed by Ramesh Bhat, Wyeth-Ayerst (Philadelphia, PA)). After 4 hours of incubation, the cells were rinsed and 10 1 ml of fresh growth media was added to each well. The cells were cultured overnight at 34°C, followed by a wash and a change of media. Cells were cultured for an additional 18-24 hours at 37°C. Cells were then lysed with 50 μ l/well of 1X lysis buffer. The extracts were assayed for beta-galactosidase activity (Galacto Reaction Buffer Diluent & Light Emission Accelerator, Tropix) using 5 μ l extract + 50 μ l beta-galactosidase diluent and luciferase activity (Luciferase Assay Reagent, Promega)
15 using 20 μ l extract.

U2OS human osteosarcoma cells were also utilized. U2OS cells (ATCC) were seeded into 96-well plates at 30,000 cells per well in 200ul of the growth media (McCoy's 5A) containing 10% (v/v) heat-inactivated FBS, 1X penicillin streptomycin, and 1X Glutamax-1, and incubated overnight at 37°C. The following day, the media
20 was replaced with OptiMEM (Invitroge) and cells were transfected using Lipofectamine 2000® (as described by the manufacturer, Invitrogen) with 0.005 μ g/well of LRP5, HBM, LRP6 or control plasmid DNA (empty vector pcDNA3.1) and either Wnt1 (.0025ug/well) or Wnt3a (.0025ug/well) plasmid DNA. In addition, the 16x-(AS) TCF-TK-firefly-luciferase (Ramesh Bhat, WHRI, Wyeth) and control TK-renilla luciferase (Promega Corp.) were co-transfected at 0.3ug/well and 0.06ug/well respectively in all
25 experiments. Furthermore, each of these groups was then divided into different groups, those receiving 0.05ug/well Dkk-1, Dkk-2, Dkk3, Dkk1-Alkaline Phosphatase (AP), mutant Dkk-1 (C220A), Soggy or pcDNA3.1 control DNA. In other experiments, cells were co-transfected with 0.005 μ g/well of LRP5, 0.0025 μ g/well of Wnt1 or Wnt3a (using
30 0.0025 μ g/well of a control pcDNA3.1) with LRP5-interacting aptamers (0.05ug/well).

Cells were cultured for an additional 18-20 hours at 37°C. Culture medium was removed. Cells were cultured for an additional 18-20 hours at 37°C. Culture medium was removed. Cells were then lysed with 100 µl/well of 1X Passive Lysis Buffer (PLB) of Dual Luciferase Reagent kit (DLR-kit-Promega Corp.) 20 µl of the lysates were
5 combined with LARII reagent of DLR-kit and assayed for TCF-firefly luciferase signal in Top Count (Packard) instrument. After measuring the Firefly readings, 100 µl of the "Stop and Glo" reagent of DLR kit that contains a quencher and a substrate for renilla luciferase was added into each well. Immediately the renilla luciferase reading was measured using the Top Count (Packard) Instrument. The ratios of the TCF-firefly
10 luciferase to control renilla readings were calculated for each well and the mean ratio of triplicate or more wells was expressed in all data.

Results

The results of these experiments demonstrate that Dkk-1, in the presence of
15 Wnt1 and LRP5, significantly antagonized TCF-luciferase activity (Figure 14). In marked contrast, Dkk-1 had no effect on HBM/Wnt1 mediated TCF-luciferase activity (Figure 14). In similar experiments, Dkk-1 was also able to antagonize LRP5/Wnt3a but not HBM/Wnt3a mediated TCF-luciferase activity (Figure 15). These results indicate that the HBM mutation renders Dkk-1 inactive as an antagonist of Wnt1 and
20 Wnt3a signaling in HOB03CE6 osteoblastic cells. In other experiments with Wnt1, Dkk-1 had no effect on LRP5 or HBM mediated TCF-luciferase activity (Figure 14). In contrast, with either LRP5 or HBM in the presence of Wnt3a, Dkk-2 was able to antagonize the TCF-luciferase activity (Figure 15). These latter results indicate that the HBM mutation has no effect on Dkk-2 action in the presence of Wnt3a. Experiments
25 were also performed using the closely related LRP6 cDNA in HOB-03-CE6 cells. In these experiments, LRP6/Wnt1 and LRP6/Wnt3a mediated TCF-luciferase were regulated in the same manner as LRP5. Specifically, Dkk-1 antagonized LRP6/Wnt1 mediated TCF-luciferase activity, whereas Dkk-2 had no effect (Figure 14). However, similar to the action of Dkk-2 with LRP5/Wnt3a, Dkk-2 was able to antagonize
30 LRP6/Wnt3a mediated TCF-luciferase activity (Figure 15).

The results in the U2OS cells show a robust effect of the OST262 LRP5 peptide aptamer activation of Wnt signaling in the presence of Wnt3a (Figure 16). These functional results are confirmed by the results shown below in Example 11 using LRP5 peptide aptamers in the Xenopus assay. Such results affirmatively demonstrate that
5 the effects of small molecules on LRP5/LRP6/HBM signaling can be detected using the TCF-luciferase assay.

These data demonstrate that there is a functional difference between LRP5 and HBM regarding the ability of Dkk-1 to antagonize Wnt1 and Wnt3a signaling. These data and previous data showing that Dkk-1 directly interacts with LRP5 suggests that
10 the inability of Dkk-1 to antagonize HBM/Wnt signaling may in part contribute to the HBM phenotype. These experiments further demonstrate the ability to test various molecules (e.g., small molecules, aptamers, peptides, antibodies, LRP5 interacting proteins or Dkk-1 interacting proteins, and the like) for a LRP5 ligand that mimics HBM mediated Wnt signaling or factors that block Dkk-1 interaction with LRP5.
15

15

Example 8

Yeast-2 Hybrid Interaction Trap

Small molecule inhibitors (or partial inhibitors) of the Dkk-LRP interaction may be an excellent osteogenic therapeutic. One way to investigate this important protein-
20 protein interaction is using Y2H techniques substantially as described above and as is well known in the art. Regions of LRP5, such as LRP5 LBD, have been found to functionally interact with Dkk. This interaction is quantitated using a reporter element known in the art, e.g., LacZ or luciferase, which is only activated when bait and prey interact. The Y2H assay is used to screen for compounds which modulate the LRP-
25 Dkk interaction. Such a modulation would be visualized by a reduction in reporter element activation signifying a weaker or disrupted interaction, or by an enhancement of the reporter element activation signifying a stronger interaction. Thus, the Y2H assay can be used as a high-throughput screening technique to identify compounds which disrupt or enhance Dkk interaction with LRP5/LRP6/HBM, which may serve as potential
30 therapeutics.

For example, the Interaction Trap methodology can be used as follows. The LRP5 LBD, for example, was fused with LexA and Dkk-1 was fused with either Gal4-AD or B42. With the LRP5LBD-LexA bait and the Gal4AD-Dkk prey, over a 20-fold activation of a lacZ reporter (under the control of a single LexA operator) was detected over the background. Using a Dkk-1 mutant (C220A) that is unable to bind to LRP, the interaction was reduced in yeast, showing the specificity of this interaction and system (Figure 18). As a result, small molecules may be identified that modulate this interaction between LRP and Dkk.

10

Example 9

Cell-Based Functional High-Throughput Assay

To develop a high throughput assay, the TCF-luciferase assay described in Example 7 was modified utilizing low level expression of endogenous LRP5/6 in U2OS and HEK293 cells. However, HOB-03-CE6 cells and any other cells which show a differential response to Dkk depending on whether LRP5, LRP6 or HBM are expressed. Using U2OS (human osteosarcoma) and HEK293 (ATCC) cells, the TCF-luciferase and tk-Renilla reporter element constructs were co-transfected along with Wnt3a/1 and Dkk. Wnt3a alone, by using endogenous LRP5/6, was able to stimulate TCF reporter gene activation. When Dkk, is co-transfected with Wnt3a/Wnt 1 and reporters (TCF-luci and tk-Renilla), Dkk represses reporter element activity. In addition, the TCF-luci signal is activated by Wnt3a/Wnt1 can be repressed by the addition of Dkk-enriched conditioned media to the cells containing Wnt3a/Wnt1 and reporters. The assay is further validated by the lack of TCF-reporter inhibition by a point mutant construct (C220A) of Dkk1.

The Dkk-mediated repression of the reporter is dependent upon the concentration of transfected Dkk cDNA or on the amount of Dkk-conditioned media added. In addition, the Dkk-mediated reporter suppression can be altered by the co-transfection of LRP5, LRP6, and HBM cDNAs in the U2OS or HEK293 cells. In general, U2OS cells show greater sensitivity to Dkk-mediated reporter suppression than that in HEK-293 cells. In U2OS cells, the transfection of LRP5/LRP6/HBM cDNA leads

to moderate activation of TCF-luci in the absence of Wnt3a/Wnt1 transfection. This activation presumably utilizes the endogenous Wnts present in U2OS cells. Under this condition, Dkk1 can repress TCF-luci and shows a differential signal between LRP5 and HBM. By co-transfected Wnt3a/Wnt1, there is a generalized increase in the TCF-luci signal in the assay. Further, one can detect Dkk-mediated differential repression of the reporter due to LRP5 and HBM cDNA expression as well as between LRP5 and LRP6 cDNA. The repression is maximal with LRP6, moderate with LRP5, and least with HBM cDNA expression. In addition, the assay can detect the functional impact of the LRP5 interacting peptide aptamers (Figure 4), Dkk1 interacting aptamers and binding domains of Dkk-1 (Figure 6; OST264 and OST265 of Figures 12 and 13).

Using this system with a suppressed Wnt-TCF signal due to the presence of both Dkk and Wnt3a, one can screen for compounds that could alter Dkk modulation of Wnt signaling, by looking for compounds that activate or the TCF-luciferase reporter, and thereby relieve the Dkk-mediated repression of the Wnt pathway. Such compounds identified may potentially serve as HBM-mimetics and be useful, for example, as osteogenic therapeutics. Data generated from this high throughput screen are demonstrated in Figures 19-21. Figure 19 shows that Dkk1 represses Wnt3a-mediated signaling in U2OS bone cells. Figure 20 demonstrates the functional differences between LRP5, LRP6, and HBM. Dkk-1 represses LRP6 and LRP5 but has little or no effect on HBM-generated Wnt1 signaling in U2OS cells. Figure 21 demonstrates the differential effects of various Dkk family members and modified Dkks, including Dkk-1, a mutated Dkk-1 (C220A), Dkk-1-AP (modified with alkaline phosphatase), Dkk-3, and Soggy.

25

Example 10

DKK/LRP5/6/HBM ELISA Assay

A further method to investigate Dkk binding to LRP is via ELISA assay. Two possible permutations of this assay are exemplified. LRP5 is immobilized to a solid surface, such as a tissue culture plate well. One skilled in the art will recognize that other supports such as a nylon or nitrocellulose membrane, a silicon chip, a glass slide,

beads, etc. can be utilized. In this example, the form of LRP5 used is actually a fusion protein where the extracellular domain of LRP5 is fused to the Fc portion of human IgG. The LRP5-Fc fusion protein is produced in CHO cell extracts from stable cell lines. The LRP5-Fc fusion protein is immobilized on the solid surface via anti-human Fc antibody
5 or by Protein-A or Protein G-coated plates, for example. The plate is then washed to remove any non-bound protein. Conditioned media containing secreted Dkk protein or secreted Dkk-epitope tagged protein (or purified Dkk or purified Dkk-epitope tagged protein) is incubated in the wells and binding of Dkk to LRP is investigated using antibodies to either Dkk or to an epitope tag. Dkk-V5 epitope tagged protein would be
10 detected using an alkaline phosphatase tagged anti-V5 antibody.

Alternatively, the Dkk protein could be directly fused to a detection marker, such as alkaline phosphatase. Here the detection of the Dkk-LRP interaction can be directly investigated without subsequent antibody-based experiments. The bound Dkk is detected in an alkaline phosphatase assay. If the Dkk-alkaline phosphatase fusion protein is bound to the immobilized LRP5, alkaline phosphatase activity would be detected in a colorimetric readout. As a result, one can assay the ability of small molecule compounds to alter the binding of Dkk to LRP using this system.
15 Compounds, when added with Dkk (or epitope-tagged Dkk) to each well of the plate, can be scored for their ability to modulate the interaction between Dkk and LRP based
20 on the signal intensity of bound Dkk present in the well after a suitable incubation time and washing. The assay can be calibrated by doing cold competition experiments with unlabeled Dkk or with a second type of epitope-tagged Dkk. Any small molecule that is able to modulate the Dkk-LRP interaction may be a suitable therapeutic candidate, more preferably an osteogenic therapeutic candidate.

25

Example 11

Functional Evaluation of Peptide Aptamers in Xenopus

The constrained peptide aptamers constructs OST258-263 (where 258 contains the signal sequence by itself and 263 contains an irrelevant constrained peptide)
30 (Figures 12 and 13) were used to generate RNA substantially as described in Example

7, except the vector was linearized by restriction endonuclease digestion and RNA was generated using T7 RNA polymerase.

Aptamer RNA was injected at 250 pg per blastomere using the protocol of Example 7. Wnt signaling was activated, as visualized by embryo dorsalization (duplicated body axis) with aptamers 261 and, more strongly, 262. The results of this assay are shown in Figures 22 and 23. These results suggest that aptamers 261 and 262 are able to activate Wnt signaling possibly by binding to the LBD of LRP, thereby preventing the modulation of LRP-mediated signaling by Dkk.

The aptamers of the present invention can serve as HBM-mimetics. In the Xenopus system they are able to induce Wnt signaling all by themselves. They may also serve as tools for rational drug design by enhancing the understanding of how peptides are able to interact with LRP and modulate Wnt signaling at the specific amino acid level. Thus, one would be able to design small molecules to mimic their effects as therapeutics. In addition, the aptamers identified as positives in this assay may be used as therapeutic molecules themselves.

Example 12

Homogenous Assay

An excellent method to investigate perturbations in protein-protein interactions is via Fluorescence Resonance Energy Transfer (FRET). FRET is a quantum mechanical process where a fluorescent molecule, the donor, transfers energy to an acceptor chromophore molecule which is in close proximity. This system has been successfully used in the literature to characterize the intermolecular interactions between LRP5 and Axin (Mao et al., *Molec. Cell Biol.* 7:801-809). There are many different fluorescent tags available for such studies and there are several ways to fluorescently tag the proteins of interest. For example, CFP (cyan fluorescent protein) and YFP (yellow fluorescent protein) can be used as donor and acceptor, respectively. Fusion proteins, with a donor and an acceptor, can be engineered, expressed, and purified.

For instance, purified LRP protein, or portions or domains thereof, fused to CFP and purified Dkk protein, or portions or domains thereof that interact with Dkk or LRP

respectively, fused to YFP can be generated and purified using standard approaches. If LRP-CFP and Dkk-YFP are in close proximity, the transfer of energy from CFP to YFP will result in a reduction of CFP emission and an increase in YFP emission. Energy is supplied with an excitation wavelength of 450 nm and the energy transfer is recorded at emission wavelengths of 480 nm and 570 nm. The ratio of YFP emission to CFP emission provides a gauge for changes in the interaction between LRP and Dkk. This system is amenable for screening small molecule compounds that may alter the Dkk-LRP protein-protein interaction. Compounds that disrupt the interaction would be identified by a decrease in the ratio of YFP emission to CFP emission. Such compounds that modulate the LRP-Dkk interaction would then be considered candidate HBM mimetic molecules. Further characterization of the compounds can be done using the TCF-luciferase or Xenopus embryo assays to elucidate the effects of the compounds on Wnt signaling.

While the above example describes a cell-free, solution-phase assay using purified components, a similar cell-based assay could also be performed. For example, LRP-CFP fusion protein can be expressed in cells. The Dkk-YFP fusion protein then could be added to the cells either as purified protein or as conditioned media. The interaction of LRP and Dkk is then monitored as described above.

All references cited herein are hereby incorporated by reference in their entirety for all purposes. The following applications are also incorporated by reference in their entirety herein for all purposes: U.S. Application No. 60/290,071, filed May 11, 2001; U.S. Application No. 09/544,398, filed on April 5, 2000; U.S. Application No. 09/543,771, filed April 5, 2000; 09/578,900; U.S. Application No. 09/229,319, filed January 13, 1999; U.S. Provisional Application 60/071,449, filed January 13, 1998; and International Application PCT/US00/16951, filed June 21, 2000; International PCT Application entitled "HBM Variants That Modulate Bone Mass and Lipid Levels," filed May 13, 2002; and International PCT Application entitled "Transgenic Animal Model of Bone Mass Modulation," filed May 13, 2002. Additionally, this application claims priority to U.S. provisional applications 60/291,311, filed May 17, 2001; 60/353,058, filed

February 1, 2002; and 60/361,293, filed March 4, 2002; the texts of which are herein incorporated by reference in their entirety for all purposes.

CLAIMS

We claim:

5 1. A method of regulating LRP5, LRP6, or HBM activity in a subject comprising administering a composition which modulates a Dkk activity in an amount effective to regulate LRP5, LRP6, or HBM activity.

10 2. The method of any of Claims 1, 24, 28, 33, 36, 37, 48, 64, 65, 93, 98, 101, 105, 107, 111, or 112, wherein the Dkk is Dkk-1.

15 3. The method of any of Claims 1, 24, 28, or 33, wherein the Dkk is Dkk-1 and the Dkk activity is inhibited.

20 4. The method of Claims 1 or 24, wherein the Dkk activity modulates bone mass and/or lipid levels.

25 5. The method of Claim 4, wherein bone mass is increased and/or lipid levels are decreased.

30 6. The method of Claim 5, wherein the increase in bone mass is determined via one or more of a decrease in fracture rate, an increase in bone strength, an increase in bone density, an increase in bone mineral density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density, an increase in bone diameter, and an increase in inorganic bone content.

7. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises one or more compounds selected from the group consisting of Dkk interacting proteins, or a Dkk-binding fragment thereof.

8. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises an antisense, a siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding one or more Dkk interacting proteins.

5

9. The method of any of Claims 1, 24, 28, or 33, and wherein said composition comprises a Dkk peptide aptamer.

10

10. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises a mimetic of a Dkk peptide aptamer.

15

11. The method of any of Claims 1, 24, 28, or 33, wherein said composition inhibits Dkk binding to LRP5, LRP6, or HBM.

20

12. The method of any of Claims 1, 24, 28, or 33, wherein said composition enhances binding of Dkk to LRP5, LRP6, or HBM.

13. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises a Dkk interacting protein peptide aptamer.

25

14. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises a mimetic of a Dkk interacting protein peptide aptamer.

25

15. The method of any of Claims 1, 24, 28 or 33, wherein said composition inhibits Dkk interacting protein or Dkk-binding fragment thereof binding to Dkk.

30

16. The method of any of Claims 1, 24, 28, or 33, wherein said composition enhances binding of Dkk interacting protein or Dkk-binding fragment thereof to Dkk.

17. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a vertebrate or an invertebrate organism.

5 18. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a mammal.

10 19. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a canine, a feline, an ovine, a primate, an equine, a porcine, a caprine, a camelid, an avian, a bovine, or a rodent.

15 20. The method of Claim 19, wherein said primate is a human.

21. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises an LRP5 peptide aptamer.

15 22. The method of Claim 21, wherein said peptide aptamer is OST262 (SEQ ID NO:208).

20 23. The method of any of Claims 1, 24, 28 or 33, wherein the composition comprises an LRP5 antibody or an immunologically active fragment thereof.

25 24. A method of regulating Dkk-Wnt pathway activity in a subject comprising administering a composition which modulates Dkk activity in an amount effective to regulate Dkk-Wnt pathway activity.

25. The method of Claims 24, 101, or 107, wherein the Wnt is one or more of Wnt1-Wnt19.

26. The method of Claim 25, wherein the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b.

5 27. The method of Claim 24 wherein said composition which modulates Dkk activity or modulates Dkk interaction with LRP5/LRP6/HBM is administered in an amount effective to modulate Wnt signaling.

10 28. A method of modulating bone mass in a subject comprising administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM in an amount effective to modulate bone mass in the subject.

29. The method of Claim 28, wherein bone mass is increased.

15 30. The method of the previous claim, wherein the increase in bone mass is determined via one or more of a decrease in fracture rate, an increase in bone strength, an increase in bone density, an increase in bone mineral density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density, an increase in bone diameter, and an increase in
20 inorganic bone content.

25 31. The method of Claims 28 or 36, wherein said subject has a bone mass disorder selected from the group consisting of a bone development disorder, a bone fracture, age-related loss of bone, chondrodystrophy, drug-induced bone disorder, high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's disease, osteoarthritis, and rickets.

30 32. The method of Claim 28, wherein the composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM is

administered in an amount effective to modulate the amount of trabecular and/or cortical tissue.

33. A method of modulating lipid levels in a subject comprising
5 administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM in an amount effective to modulate lipid levels in the subject.

34. The method of Claim 33, wherein lipid levels are decreased.

10

35. The method of Claim 33 or 36, wherein the subject has a lipid-modulated disorder and wherein the lipid-modulated disorder is selected from the group consisting of a cardiac condition, atherosclerosis, familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and elevated lipid levels of unknown etiology.

15

20

36. A method of diagnosing low or high bone mass and/or high or low lipid levels in a subject comprising examining expression of Dkk, LRP5, LRP6, HBM, or and HBM-like variant in the subject and determining whether Dkk, LRP5, LRP6, HBM, or an HBM-like variant is over- or under-expressed to determine whether subject has (a) high or low bone mass and/or (b) has high or low lipid levels.

25

37. A method of screening for a compound which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

- (a) exposing Dkk and a LRP5, LRP6, and/or HBM binding fragment thereof to a compound; and
- (b) determining whether said compound modulates Dkk interaction with the LRP5/LRP6/HBM binding fragment.

5

38. The method of Claim 37, wherein said modulation is determined by whether said compound binds to Dkk or the LRP5, LRP6, or HBM binding fragment thereof.

10

39. The method of Claim 37, wherein Dkk or a LRP-binding fragment thereof is attached to a substrate.

15

40. The method of Claim 37, wherein said compound comprises one or more compounds selected from the group consisting of Dkk interacting proteins, or a Dkk-binding fragment thereof.

41. The method of Claim 37 or 48, wherein said compound comprises a Dkk peptide aptamer.

20

42. The method of Claim 37 or 48, wherein said compound comprises a mimetic of a Dkk peptide aptamer.

43. The method of Claim 37 or 48, wherein said compound comprises a Dkk interacting protein peptide aptamer.

25

44. The method of Claim 37 or 48, wherein the compound comprises an LRP5 peptide aptamer.

30

45. The method of Claim 44, wherein the peptide aptamer is OST262
(SEQ ID NO:208).

46. The method of Claim 37 or 48, wherein the compound comprises an LRP5 antibody.

5 47. The method of Claim 37 or 48, wherein said compound is a mimetic of a Dkk interacting protein peptide aptamer.

48. A method of screening for a compound which modulates the interaction of Dkk with a Dkk interacting protein comprising:

- 10 (a) exposing a Dkk interacting protein or a Dkk-binding fragment thereof to a compound; and
(b) determining whether said compound bound to a Dkk interacting protein or the Dkk-binding fragment thereof; and
(c) further determining whether said compound modulates the interaction of Dkk interacting protein and Dkk.

15 49. The method of Claim 48, wherein the Dkk interacting protein or a Dkk-binding fragment thereof is attached to a substrate.

20 50. A composition comprising a LRP5, LRP6, or HBM activity-modulating compound and a pharmaceutically acceptable carrier therefor.

51. The composition of Claim 50, wherein said LRP5, LRP6, or HBM activity-modulating compound comprises a compound which binds to Dkk thereby modulating the interaction of Dkk with LRP5, LRP6, or HBM.

25 52. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises one or more Dkk interacting proteins and Dkk-binding fragments thereof.

53. The composition of Claim 50, wherein said LRP5, or LRP6, or HBM modulating compound is a monoclonal antibody or an immunologically active fragment thereof which binds to a Dkk interacting protein, or a Dkk-binding fragment thereof.

5

54. The composition of Claim 53, wherein the monoclonal antibody is human, chimeric, humanized, primatized®, or bispecific.

10 55. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises an antisense, a siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding one or more Dkk interacting proteins.

15 56. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a Dkk peptide aptamer.

20 57. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a mimetic of a Dkk peptide aptamer.

58. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a Dkk interacting protein peptide aptamer.

25 59. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a mimetic of a Dkk interacting protein peptide aptamer.

60. The composition of Claim 50, wherein the compound comprises an LRP5 peptide aptamer.

61. The composition of Claim 60, wherein the peptide aptamer is
OST262.

5 62. The composition of Claim 50, wherein the compound comprises
an LRP5 antibody.

10 63. A pharmaceutical composition comprising a compound which
modulates Dkk activity and a pharmaceutically acceptable carrier therefor.

15 64. A method for identifying compounds which modulate Dkk and
LRP5/LRP6/HBM interactions comprising:

(a) creating an LRP5, LRP6, or HBM fluorescent fusion protein using
a first fluorescent tag; and
(b) creating a Dkk fusion protein comprising a second fluorescent tag;
(c) adding a test compound; and
(d) assessing changes in the ratio of fluorescent tag emissions using
Fluorescence Resonance Energy Transfer (FRET) or Bioluminescence
Resonance Energy Transfer (BRET) to determine whether the compound
modulates Dkk and LRP5/LRP6/HBM interactions.

20 65. A method of identifying binding partners for a Dkk protein
comprising the steps of:

(a) exposing the Dkk protein(s) or a LRP5/LRP6 binding
fragment thereof to a potential binding partner; and
(b) determining if the potential binding partner binds to a Dkk
protein or the LRP5/LRP6 binding fragment thereof.

25 66. A nucleic acid encoding a Dkk interacting protein peptide aptamer
comprising a nucleic acid encoding a scaffold protein in-frame with the activation

domain of Gal4 or LexA that is in-frame with a nucleic acid that encodes a Dkk interacting protein amino acid sequence.

67. A vector comprising the nucleic acid of Claim 66.

5

68. The nucleic acid of Claim 66, wherein the scaffold protein is trxA.

10

69. A method of detecting a modulatory activity of a compound on the binding interaction of a first peptide and a second peptide of a peptide binding pair that bind through extracellular interaction in their natural environment, comprising:

(i) culturing at least one eukaryotic cell comprising:

a) a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a transcriptional activation protein DNA binding domain;

b) a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation protein transcriptional activation domain;

15 wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

c) a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element produces a selected phenotype;

20 (ii) incubating the eukaryotic cell in the presence of a compound under conditions suitable to detect the selected phenotype; and

25

(iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which produces the selected phenotype;

5 wherein (1) said first peptide is a Dkk peptide and the second peptide is a peptide selected from LRP5, HBM, LRP6 and the Dkk-binding portion of LRP5/LRP6/HBM or (2) said first peptide is a Dkk interacting protein or the Dkk-binding fragment thereof and said second peptide is a Dkk peptide.

10 70. The method of Claim 69, wherein the eukaryotic cell is a yeast cell.

71. The method of Claim 70, wherein the yeast cell is *Saccharomyces*.

15 72. The method of Claim 71, wherein the *Saccharomyces* cell is *Saccharomyces cerevisiae*.

20 73. The method of Claim 69, wherein the Dkk is Dkk-1 and wherein the compound comprises one or more Dkk interacting proteins or a Dkk-binding fragment thereof.

74. The method of Claim 73, wherein the compound is directly added to assay.

25 75. The method of Claim 73, wherein the compound is recombinantly expressed by said eukaryotic cell in addition to said first and second peptides.

30 76. The method of Claim 69, wherein the compound comprises a Dkk peptide aptamer.

77. The method of Claim 69, wherein the compound comprises a mimetic of a Dkk peptide aptamer.

5 78. The method of Claim 69, wherein the compound comprises a Dkk interacting protein peptide aptamer.

79. The method of Claim 69, wherein the compound comprises a mimetic of a Dkk interacting protein peptide aptamer.

10 80. The method of Claim 69, wherein the eukaryotic cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a 15 nucleotide sequence encoding the reporter element, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion.

20 81. The method of Claim 69, wherein the peptide binding pair comprises a ligand and a receptor to which the ligand binds.

82. The method of Claim 69, wherein the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor.

25 83. The method of Claim 69, wherein at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid.

84. The method of Claim 69, wherein the DNA binding domain is a heterologous DNA-binding domain of a transcriptional activation protein.

85. The method of Claim 84, wherein the DNA binding protein is selected from the group consisting of a mammalian steroid receptor and bacterial LexA protein.

5 86. The method of Claim 69, wherein the reporter element is selected from the group consisting of *lacZ*, a polynucleotide encoding luciferase, a polynucleotide encoding green fluorescent protein (GFP), and a polynucleotide encoding chloramphenicol acetyltransferase.

10 87. The method of Claim 86, wherein the reporter element is LacZ.

88. The method of Claim 69, wherein the test sample comprises an LRP5 peptide aptamer.

15 89. The method of Claim 88, wherein the peptide aptamer is OST262 (SEQ ID NO:208).

90. The method of Claim 69, wherein the test sample comprises an LRP5 antibody.

20 91. A transgenic animal wherein Dkk-1 is knocked out in a tissue-specific fashion.

25 92. The transgenic animal of Claim 91, wherein the tissue specificity is bone tissue, cancer tissue, or liver tissue.

93. A method for identifying potential compounds which modulate Dkk activity comprising:

30 a) measuring the effect on binding of one or more Dkk interacting proteins, or a Dkk-binding fragment thereof, with Dkk or a

fragment thereof in the presence and absence of a compound;
and

5 b) identifying as a potential Dkk modulatory compound a
compound which modulates the binding between one or more Dkk
interacting proteins or Dkk-binding fragment thereof and Dkk or
fragment thereof.

94. A peptide aptamer of Figure 3 (SEQ ID NOs:171-188) or Figure 4
(SEQ ID NOs:189-192).

10

95. An antibody or antibody fragment which recognizes and binds to
one or more peptides of amino acid sequences GNKYQTIDNYQPYPC (SEQ ID
NO:118), LDGYSRRTTLSSKMYHTKGQEG (SEQ ID NO:119),
RIQKDHHQASNSSRLHTCQRH (SEQ ID NO:120), RGEIEETITESFGND (SEQ
15 ID NO:121), EIFQRCYCGEGLSCRIQKD (SEQ ID NO:122),
MYWTDWVETPRIE (SEQ ID NO:123), MYWTDWGETPRIE (SEQ ID NO:124),
KRTGGKRKEILSA (SEQ ID NO:125), ERVEKTTGDKRTRIQGR (SEQ ID
NO:126), KQQCDSFPDCIDGSDE (SEQ ID NO:127), or a Dkk-1 amino acid
sequence selected from the group consisting Asn34-His266 (SEQ ID NO:110),
20 Asn34-Cys245 (SEQ ID NO:111), Asn34-Lys182 (SEQ ID NO:112), Cys97-
His266 (SEQ ID NO:113), Val139-His266 (SEQ ID NO:114), Gly183-His266
(SEQ ID NO:115), Cys97-Cys245 (SEQ ID NO:116), or Val139-Cys245 (SEQ ID
NO:117).

25

96. The antibody or antibody fragment of Claim 95, wherein the
antibody is a monoclonal antibody.

30

97. The antibody or antibody fragment of Claim 95, wherein the
antibody is a polyclonal antibody

98. A method of identifying Dkk interacting proteins which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) injecting Dkk and potential Dkk interacting protein mRNA into a *Xenopus* blastomere; and
- 5 (b) assessing axis duplication or analyzing marker gene expression; and
- (c) identifying compositions which elicit changes in axis duplication or marker gene expression as Dkk interacting proteins which modulate the interaction of Dkk with the Wnt signaling pathway.

10

99. The method of Claim 98, wherein the mRNA of HBM, LRP5/6, any Wnt, Wnt antagonist, Wnt pathway modulator, or combination of these is co-injected into the *Xenopus* blastomere.

15

100. The method of Claim 98, wherein the marker gene analyzed is Siamois, Xnr3, slug, Xbra, HNK-1, endodermin, Xlhbox8, BMP2, BMP4, XLRP6, EF-1, or ODC.

20

101. A method for identifying Dkk interacting proteins which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) transfecting cells with constructs containing Dkk and potential Dkk interacting proteins; and
- (b) assessing changes in expression of a reporter gene linked to a Wnt-responsive promoter; and
- 25 (c) identifying as a Dkk interacting protein any protein which alters reporter gene expression compared with cells transfected with a Dkk construct alone.

30

102. The method of Claim 101, wherein the cells are HOB-03-CE6, HEK293, or U2OS cells.

103. The method of Claim 101, wherein the Wnt-responsive promoter is TCF or LEF.

5 104. The method of Claim 101, wherein the cells are co-transfected with CMV β-galactosidase.

105. A method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
- (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and
- (c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HBM using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag.

15 106. The method of Claim 105, wherein the epitope tag is alkaline phosphatase, histidine, or a V5 tag.

20 107. A method for identifying compounds which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) transfecting cells with constructs containing Dkk and Wnt proteins;
- (b) assessing changes in expression of a reporter element linked to a Wnt- responsive promoter; and
- (c) identifying as a Dkk/Wnt interaction modulating compound any compound which alters reporter gene expression compared with cells transfected with a Dkk construct alone.

25 108. The method according to Claim 107, wherein Wnt3a and Wnt1 constructs are co-transfected into the cells.

109. The method according to Claim 107, wherein the cells are U2-OS, HOB-03-CE6, or HEK293 cells.

5 110. The method according to Claim 107, wherein the reporter element used is TCF-luciferase, tk-Renilla, or a combination thereof.

111. A method of testing compounds that modulate Dkk-mediated activity in a mammal comprising

- 10 (a) providing a group of transgenic animals having (1) a regulatable one or more Dkk genes, (2) a knock-out of Dkk genes, or (3) a knock-in of one or more Dkk genes;
- (b) providing a second group of control animals respectively for the group of transgenic animals in step (a); and
- 15 (c) exposing the transgenic animal group and control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid levels; and
- (d) comparing the transgenic animals and the control group of animals and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.

20

112. A method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

25

- (a) exposing a Dkk interacting proteins or a Dkk-binding fragment thereof to a compound; and
- (b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof.

113. The method of Claim 112, wherein said modulation is determined by whether said compound binds to the Dkk interacting protein or the Dkk-binding fragment thereof.

5 114. An antibody or antibody fragment which recognizes and binds to a sequence depicted in Figure 3 (SEQ ID NOs:171-188) or Figure 4 (SEQ ID NOs:189-192).

Model of Wnt signaling

FIG. 1

2/30

Sequence of baits used in Y2H screens

>DKK1 (SEQ ID N0: 168)

```
AATTCCAACGCTATCAAGAACCTGCCCCCACCGCTGGCGGCGCTG  
CGGGGCACCCAGGCTCTGCAGTCAGCGCCGCCGGAAATCCTGTA  
CCCAGGGCGGGATAAGTACCAAGACCATTGACAACCTACCAGCCGTAC  
CCGTGCGCAGAGGACGAGGAGTGCAGGCACTGATGAGTACTGCGCT  
AGTCCCACCCGCGGAGGGACGCAGGGCGTGCAAATCTGTCTCGCCT  
GCAGGAAGCGCCGAAAACGCTGCATCGTCACGCTATGTGCTGCC  
CGGGATTAACTGCAAAAATGGAATATGTGTCTTCTGATCAAAAT  
CATTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTGGTA  
ATGATCATAGCACCTGGATGGGTATTCCAGAAGAACCACTTGTCTC  
TTCAAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTTGTCTC  
CGGTCTAGACTGTGCCTCAGGATTGTGTGCTAGACACTTCTG  
GTCCAAGATCTGTAAACCTGTCTGAAAGAAGGTCAAGTGTGTACC  
AAGCATAGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTT  
GTTACTGTGGAGAAGGTCTGTCTGCCGGATACAGAAAGATCACCA  
TCAAGCCAGTAATTCTCTAGGCTCACACTTGTCAAGAGACACTAA
```

FIG. 2A

3/30

>zmax1 LBD1 (SEQ ID NO: 169)

CTCATCCTGCCCTGCATGGACTGAGGAACGTCAAAGCCATCGACTAT
GACCCACTGGACAAGTTCATCTACTGGGTGGATGGGCGCCAGAACATC
AAGCGAGCCAAGGACGACGGGACCCAGCCCTTGTTGACCTCTCTG
AGCCAAGGCCAAAACCCAGACAGGCAGCCCCACGACCTCAGCATCGA
CATCTACAGCCGGACACTGTTCTGGACGTGCGAGGCCACCAATACCAT
CAACGTCCACAGGCTGAGCGGGAAAGCCATGGGGTGGTGCCTGCGTG
GGGACCGCGACAAGCCCAGGCCATCGTCGTCAACGCGGAGCGAGGG
TACCTGTACTTCACCAACATGCAGGACCGGGCAGCAAGATCGAACGC
GCAGCCCTGGACGGCACCGAGCGCGAGGTCCCTTCACCACCGGCCCTC
ATCCGCCCTGTGGCCCTGGTAGACAACACACTGGCAAGCTGTT
TGGGTGGACCGGGACCTGAAGCGCATTGAGAGCTGTGACCTGTCAGG
GGCCAACCGCCTGACCTGGAGGACGCCAACATCGTCAGCCTCTGGG
CCTGACCATCCTGGCAAGCATCTACTGGATCGACCGCCAGCAGCA
GATGATCGAGCGTGTGGAGAAGACCACCGGGACAAGCGGACTCGCA
TCCAGGCCGTGTCGCCACCTCACTGGCATCCATGCAGTGGAGGAAG
TCAGCCTGGAGGAGTTCTCAGCCCACCCATGTGCCGTGACAATGGTG
GCTGCTCCCACATCTGTATTGCCAAGGGTGATGGGACACCACGGTGCT
CATGCCAGTCCACCTCGTGCTCCTGCAGAACCTGCTGACCTGTGGAG
AGCCGCCACCTGCTCCCCGGACCAGTTGCATGTGCCACAGGGAGA
TCGACTGTATCCCCGGGGCTGGCGCTGTGACGGCTTCCGAGTGC
ATGACCAGAGCGACGAGGAGGGCTGCCGTGCTCCGCCAGT
TCCCTGCGCGCGGGTCAGTGTGGACCTGCGCCTGCGCTGCGACG
GCGAGGCAGACTGTCAGGACCGCTCAGACGAGGCGGACTGTGACGCC
ATCTGCCTGCCAACAGTTCCGGTGTGCGAGCGGCCAGTGTGTC
ATCAAACAGCAGTGCAGCTCCTCCCCACTGTATCGACGGCTCCGAC
GAGCTCATGTGTGAAATACCCAAGCCGCC

FIG. 2B

4/30

>zmax1 LBD4 (SEQ ID NO: 170)

AGGGCCATCGTCGTCAACGCGGAGCGAGGGTACCTGTACTTCACCAA
CATGCAGGACCAGGGCAGCCAAGATCGAACCGCGAGCCCTGGACGGCA
CCGAGCGCGAGGTCTTCAACCACCGGCCATCCGCCGTGGCC
TGGTGGTAGACAACACACTGGCAAGCTGTTCTGGGTGGACGCGGAC
CTGAAGCGCATTGAGAGCTGTGACCTGTCAGGGCCAACCGCCTGAC
CCTGGAGGAACGCCAACATCGTCAGCCTCTGGCCTGACCATCCTTGG
CAAGCATCTACTGGATCGACCGCCAGCAGCAGATGATCGAGCGTG
TGGAGAAGACCACCGGGACAAGCGGACTCGCATCCAGGGCGTGTG
GCCACCTCACTGGCATCCATGCAGTGGAGGAAGTCAGCCTGGAGGA
GTTCTAGCCCACCCATGTGCCGTGACAATGGTGGCTGCTCCCACAT
CTGTATTGCCAAGGGTGATGGGACACCACGGTGCTCATGCCAGTCCA
CCTCGTGCCTGCAGAACCTGCTGACCTGTGGAGAGGCCACCTG
CTCCCCGGACCAGTTGCATGTGCCACAGGGAGATGACTGTATCCC
GGGGCCTGGCGCTGTGACGGCTTCCGAGTGCATGACAGAGCG
ACGAGGAGGGCTGCCCGTGTGCTCCGCCAGTTCCCTGCGCG
GGGGTCAGTGTGTGGACCTGCGCCTGCGCTGCGACGGCGAGGCAGAC
TGTCAAGGACCGCTCAGACGAGGCAGACTGTGACGCCATCTGCCTGCC
CAACCAGTTCCGGTGTGCGAGCGGCCAGTGTGTCTCATCAAACAGC
AGTGCAGCTCCTTCCCCGACTGTATCGACGGCTCCGACGAGCTCATGT
GTGAAATCACCAAGCCGCCCTAACGGGCCGC

FIG. 2C

5/30

Screen of DKK1 X
Peptide Library

name	motif	# hits	SEQ ID NO:
252-1	SVGCLLCAGLGWWSLS	3	171
252-2	WCCCGLFRGVCVWSCGAD D	2	172
252-3	GWRRCDWCGCVSWCWV	1	173
252-4	MPGSVSHCWGGICEAL	8	174
252-15	SCCAVDVCLRCGGWFR	1	175
252-16	SVLGTCCCCGGWILCE	2	176
252-17	VLSVCEVCGGVFVRRC	1	177
252-18	GMWYWWSGRDCALCWL	1	178
252-19	CTAVMWGVGSVAYLGE	1	179
252-20	WCWWCGCRGVVWR	1	180
252-21	CVCASFCCVCGLRLL	1	181
252-23	TYEVCEECGGRVRMWV	6	182
252-25	VVVCASCGQVWHGSGA	2	183
252-26	CCRCCHCWDCEWHMCV	1	184
252-27	FCASCCWCGCDCFGWV	2	185
252-32	CDYCWS CGVWCPSSWL	3	186
252-47	VYLCVWCGAARFGCYG	1	187
252-48	FCVCGCCWCWCAACWC	1	188

FIG. 3

peptide #	peptide seq	# hits	SEQ ID NO:
9	VVLCSRCGRLWRWSCG	1	189
12	EVRQVTCIRCRRGFLL	1	190
13	GGGGMWEAWSCYACG	1	191
14	GWRWCGRGCGALWWRRV	3	192

FIG. 4

6/30

Gene	Genbank Accession #	Protein Accession #
granulin	M75161	AAA58617
similar to cys/His rich protein	BC004544	AAH04544
IGF-BINDING PROTEIN 6	M69054	AAA88070
latent TGF β binding protein 4	AF051344	AAC39879
NOTCH 2	AF315356	AAG37073
fibulin 1	X53743	CAA37772
MDC15 (ADAM15)	U46005	AAC51112
DKFZp761G02121(notch1 Ca ⁺⁺ binding like)	AL137311	CAB70690
chordin	AF076612	AAC69835
fibronectin 1	U42594	AAD00019
MG50(melanoma associated antigen)	AF200348	AAF06354
unknown (notch 4-like)	AX068260	CAC27245
Slit 1	AB017167	BAA35184
tomoregulin (agarin repeat homology)	AB004064	BAA90820
sprouty 1	AF041037	AAC39566
sprouty 2	AF039843	AAC04258
NOV1	X96584	CAA65403
agrin	AF016903	AAC39776
fibrillin 1	L13923	AAB02036
thrombospondin1	X04665	CAA28370
ADAM19	AF134707	AAF22162
Nafl alpha	AJ011895	CAA09855
laminin alpha 5	Z95636	CAB09137
CRIM1	AF167706	AAF34409
nidogen	M30269	AAA59932
fibulin-2	X82494	CAA57876
thrombospondin 2	L12350	AAA03703
KIAA1323	AB037744	BAA92561
fibrillin-2	U03272	AAA18950
MEGF9	AB011542	BAA32470
integrin beta 1	X07979	CAA30790
matrilin-2 precursor	U69263	AAC51260
tenascin	X56160	A32160

FIG. 5

7/30

FIG. 6

8/30

FIG. 7

9/30

In the Presence of Wnt5a, HBM1 is More Potent than
Zmax as a Stimulator of Wnt Signaling

FIG. 8

10/30

Both Zmax and HBM1, in the presence of Wnt5a, induce secondary axis formation in Xenopus (photos at 48 hrs post-injection)

FIG. 9

11/30

Human Dkk-1 Represses the Canonical Wnt Pathway

FIG. 10

12/30

hDkk1 Represses Zmax- but Not HBM1-Mediated Wnt Signaling

scored at 72 hrs post injection.

$p < 0.05$

FIG. 11

Listed are the pcDNA3.1 construct names followed by the DNA sequence
OST258 (control for OST 259-OST262 and OST264,OST265)
AAGCTGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTGGTTCCAGGTTCCACTGGTGACGG
ATCC

OST259 . (SEQ ID NO: 193)

AAGCTTGCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTGGGTTCCAGGTTCCACTGGTACGG
ATTCATGAGCGATAAAATTATTCAACCTGACTGACGACAGTTTGACACGGATGTACTCAAAGCGGACGGGGCAGATCC
TCGTCGATTCTGGGAGAGTGGTGCAGGTCGAATTCCGTGGTTCTGTGTTCGCGTTGGGCGTTTGTGGGGTGG
TCGTGTGGGACTAGTGGTCCGTGAAAATGATGCCCGATTCTGGATGAAATCGCTGACGAATACTAGGGCAAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCTGGCACTGCAGGAAATATGGCATCCGTGGTATCCCAGCTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAAGTTGAAAGAGTTCCCTCGAC
GCTAACCTGGCGTAAGCGGGCCG

QST260 (SEQ ID NO: 194)

AAGCTTGCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGTTCCAGGTTCACTGGTGACGG
ATCCATGAGCGATAAAATTATTACCTGACTGACGACAGTTTGACACGGATGTACTCAAAGCGGACGGGGCAGATCC
TCGTCGATTTCTGGGAGAGTGGTGCAGTCGAATTCCGGGTGGCGGTGGTGTGGTGGGTGGGGCTTTGGTGGGG
CGGCGTGTACTAGTGGTCCGTGCAAATGATGCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAAC
GACCGTTGCAAAACTGACATCGATCAAAACCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAAGTGAAGAGTTCCCTGAC
GCTAACCTGGCGTAAGCGGGCCG

OST261 (SEQ ID NO: 195)

AAGCTTGCACCATGGAGACAGACACACTCTGCTATGGGTACTGCTGCTGGGTTCCAGGGTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACTGACTGACGCCAGTTTGACACGGATGACTCAAAGCGGACGGGGCAGTC
TCGTCGATTTCAGGGGTTCTGGGTTCCGAGGTGGCGGAGGTACGTGATTAGGTGTCGTCGGGT
TTTCTGTTGACTAGTGGTCCGTGCAAAATGATGCCCGATTCTGGATGAATCGCTGACGAATATCAGGGCAA
GACCGTTGCAAAACTGAACATCGATCAAAACCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAGTGGGTGCACTGTCTAAAGGTCAAGTGAAGAGTTCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST262 (SEQ ID NO: 196)

AAGCTTGGCACCATGGAGACAGACACACTCTGCTATGGGTACTGCTGCTGGGTTCCAGGTTCACTGGTGACGG
ATTCATGAGCGATAAAATTATTACACCTGACTGACGACAGTTTGACACGGATGTACTCAAAGCGGACGGGGCAGATCC
TCGTCGATTTCTGGGCAGAGTGGTGGCGGTCCGAATTCCGGTGGTGGGGGGATGATTGGGAGGCTGGAGTTGTAT
GCGTGGGACTAGTGGTCCGTGCAAAATGATGCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAAC
GACCGTTGCAAAACTGAACATCGATCAAAACCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCAAAGGTCAAGTGAAGAGTTCCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST263 (SEQ ID NO: 197)

AAGCTTGCACCATGGAGACAGACACACTCTGCTATGGGTACTGCTGCTGGGTTCCAGGTTCACTGGTGACGG
ATCCATGAGCATAAAATTATCACCTGACTGACGACAGTTTGACACGGATGACTCAAAGCGGACGGGGCAGATCC
TCGTCGATTCTGGGAGAGTGGTGGTCCGAATTCTTGTTGATTGGGGCGGGTGAATCAGGGTCTGTTCCGGCT
TTTGGTTTACTAGTGGTCCGTGCAAAATGATGCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAAC
GACCGTTGCAAAACTGAACATCGATCAAAACCCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAAGTGAAGAGTTCCCTCGAC
GCTAACCTGGCGTAAGGGGGCGC

FIGURE 12A

OST264 (SEQ ID NO: 198)

AAGCTGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTGGGTTCCAGGGTCCACTGGTGACGG
 ATCCGTGCTTCTGATCAAATCATTCCGAGGAGAAATTGAGGAAACCACATCAGTAAAGCTTGGTAATGATCATA
 GCACCTTGGATGGTATTCCAGAAGAACCAACCTGCTTCAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTT
 TGTCTCCGGTACAGACTGTGCCTCAGGATTGTGTGTGCTAGACACTTCTGGTCCAAGATCTGTAACCTGTCCT
 GAAAGAAGGTCAAGTGTGTACCAAGCATAGGAGAAAAGGCTCTAGGACTAGRAATATTCCAGCGTGTACTGTG
 GAGAAGGTCTGTCTTCCGGATACAGAAAGATCACCATCAAGCCAGTAATTCTCTAGGCTTCACACTTGTCAAGACA
 CACTAAGCGGCCG

OST265 (SEQ ID NO: 199)

AAGCTGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTGGGTTCCAGGGTCCACTGGTGACGG
 ATCCCTGGCTAGTCCCACCCGGAGGGACGCGGGCGTCAAAATCTGTCGCGCTGCAGGAAGCGCCGAAAACGCT
 GCATGCGTCACCGCTATGCTGCCCGGGAAATTACTGCAAAAATGAAATATGTGTCTCTGATCAAATCATTTC
 CGAGGAGAAATTGAGGAAACCACACTGAAAGCTTGGTAATGATCATAGCACCTTGGATGGTATTCCAGAAGAAC
 CACCTGTCCTCAAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTTGCTCCGGTACAGACTGTGCCTCAG
 GATTGTGTGTGCTAGACACTTCTGGTCAAGATCTGAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACCAAGCAT
 AGGAAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTGTACTGTGGAGAAGGTCTGTCTGCTAACGGCCCG

OST266 (SEQ ID NO: 200)

AAGCTTGCCACCATGGCGATAAAAATTATTACCTGACTGACGACAGTTTGACACGGATGTACTCAAAGCGGACGG
 GGCAGATCCTCGTCGATTTCTGGCAGAGTGGTGCCTCGAATTCTATGCCGTTGTTCTTGAGTAGGTGTA
 GGTGGTGGTTGCCCTGGACTAGTGGTCCGTGCAAAATGATGCCCGATTCTGGATGAAATCGCTGACGAATATCAG
 GGCAAACTGACCGTTGCAAAACTGAACATCGATCAAACCCCTGGACTGCCGAAATATGGCATCCGTGGTATCCC
 GACTCTGCTGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGACTGTCTAAAGGTCAAGTTGAAAGAGT
 TCCTCGACGCTAACCTGGCGTAAGCGGCCG

OST267 (SEQ ID NO: 201)

AAGCTTGCCACCATGGCGATAAAAATTATTACCTGACTGACGACAGTTTGACACGGATGTACTCAAAGCGGACGG
 GGCAGATCCTCGTCGATTTCTGGCAGAGTGGTGCCTCGAATTCTGAGGTTGTTGAGGTTGTTGAGTAGGTG
 ATCCCTGGCTGGGTGACTAGTGGTCCGTGCAAAATGATGCCCGATTCTGGATGAAATCGCTGACGAATATCAG
 GGCAAACTGACCGTTGCAAAACTGAACATCGATCAAACCCCTGGACTGCCGAAATATGGCATCCGTGGTATCCC
 GACTCTGCTGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGACTGTCTAAAGGTCAAGTTGAAAGAGT
 TCCTCGACGCTAACCTGGCGTAAGCGGCCG

OST268 (SEQ ID NO: 202)

AAGCTTGCCACCATGGCGATAAAAATTATTACCTGACTGACGACAGTTTGACACGGATGTACTCAAAGCGGACGG
 GGCAGATCCTCGTCGATTTCTGGCAGAGTGGTGCCTCGAATTCTGAGGTTGTTGACTAGTGGCTGTTGCTTGG
 CTGAGGCGGGTAGGTTTATTGTACTAGTGGTCCGTGCAAAATGATGCCCGATTCTGGATGAAATCGCTGACGAA
 TATCAGGGCAAACTGACCGTTGCAAAACTGAACATCGATCAAACCCCTGGACTGCCGAAATATGGCATCCGTGG
 TATCCGACTCTGCTGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGACTGTCTAAAGGTCAAGTTGA
 AAGAGTTCTCGACGCTAACCTGGCGTAAGCGGCCG

OST269 (SEQ ID NO: 203)
 (irrelevant control peptide for OST266-OST268)

AAGCTTGCCACCATGGCGATAAAAATTATTACCTGACTGACGACAGTTTGACACGGATGTACTCAAAGCGGACGG
 GGCAGATCCTCGTCGATTTCTGGCAGAGTGGTGCCTCGAATTCTGAGGTTGTTGACTAGTGGCTGTTGCTTGG
 TTGAGGCGGGTAGGTTTATTGTACTAGTGGTCCGTGCAAAATGATGCCCGATTCTGGATGAAATCGCTGACGAA
 TATCAGGGCAAACTGACCGTTGCAAAACTGAACATCGATCAAACCCCTGGACTGCCGAAATATGGCATCCGTGGTATCCC
 GACTCTGCTGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGACTGTCTAAAGGTCAAGTTGAAAGAGT
 TCCTCGACGCTAACCTGGCGTAAGCGGCCG

FIGURE 12B

Listed below are the amino acid sequences corresponding to the pcDNA3.1 constructs in Appendix 1A

OST258

METDTLLLWVLLWVPGSTGDGS

OST259 (SEQ ID NO: 204)

METDTLLLWVLLWVPGSTGDGSMSDKI IHLTDDSFDTDVLKADGAILVDFWAECGPNSVVLCSRCGRLWRWSCGT
SGPCKMIAPILDEIADEYQGKLTVAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

OST260 (SEQ ID NO: 205)

METDTLLLWVLLWVPGSTGDGSMSDKI IHLTDDSFDTDVLKADGAILVDFWAECGPNSGWRWCGRCGALWWRRVT
SGPCKMIAPILDEIADEYQGKLTVAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

OST261 (SEQ ID NO: 206)

METDTLLLWVLLWVPGSTGDGSMSDKI IHLTDDSFDTDVLKADGAILVDFWAECGPNSEVROVTCIRCRRGFLLT
SGPCKMIAPILDEIADEYQGKLTVAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

OST262 (SEQ ID NO: 207)

METDTLLLWVLLWVPGSTGDGSMSDKI IHLTDDSFDTDVLKADGAILVDFWAECGPNSGGGMIWEAWSCYACGT
SGPCKMIAPILDEIADEYQGKLTVAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

OST263 (SEQ ID NO: 208)

METDTLLLWVLLWVPGSTGDGSMSDKI IHLTDDSFDTDVLKADGAILVDFWAECGPNSLWIGPGDQGLFRRFVFT
SGPCKMIAPILDEIADEYQGKLTVAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

OST264 (SEQ ID NO: 209)

METDTLLLWVLLWVPGSTGDGSVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVCLRS
SDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYC GEGLSCRIQKDHHQASNSSRLHTCQRH

OST265 (SEQ ID NO: 210)

METDTLLLWVLLWVPGSTGDGSASCASPTRGGDAGVQICLACRKKRCMRHAMCCPGNYCKNGICVSSDQNHFRGEI
EEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKG
SHGLEI
FQRCYC GEGLSC.

OST266 (SEQ ID NO: 211)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAECGPNSYAWLFCSCRWLPWTSGPCKMIAPILDEIADEYQGKLT
VAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

OST267 (SEQ ID NO: 212)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAECGPNSICEVVRLWSRYPWSWVTSGPCKMIAPILDEIADEYQGKLT
VAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

OST268 (SEQ ID NO: 213)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAECGPNSGCTS A VCGAWAEAGR FYCTSGPCKMIAPILDEIADEYQGK
LTVAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

OST269 (SEQ ID NO: 214)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAECGPNSLWIGPGDQGLFRRFVFTSGPCKMIAPILDEIADEYQGKLT
VAKLNI DQNP GTAPKYGIRGIP TLLL FKNGEVAATKVGALSKGQLKEFL DANLA

FIGURE 13

Effect of Dkks on Wnt1 signaling
with Coreceptors LRP5, HBM or LRP6
HOB03CE6 Cells

FIG. 14

Effect of Dkks on Wnt3a Signalling
with Coreceptors LRP5, HBM or LRP6
HOBO3CE6 Cells

FIG. 15

FIG. 16

FIG. 17
Affinity Purified 69546/47

Antibody to: aa 165-177 (Mutation)

EGY188 strain, 1 LexAop:LacZ reporter

- A mutant DKK1,C220A, unable to bind to LRP5, was cloned in Gal4AD and B42 and tested for its ability to bind to LBD in Y2H
 - Interaction LBD-DKK1 20 fold above background
 - Interaction LBD-DKK1 C220A 2 to 3 fold above background
 - Interaction LBD-DKK1 10 fold above LBD-DKK1 C220A mutant

FIG. 18

FIG. 19

FIG. 20

Wnt1 - HBM generated TCF-luci is not efficiently inhibited by Dkk1 in U2-OS bone cells.

- With Wnt1 the TCF-signal generated by LRP5 is greater than that of LRP6.
- LRP5/6 -Wnt1 induced TCF- is efficiently blocked by Dkk1

FIG. 21

FIG. 22

Aptamers 261 and 262 from the LRP5-LBD Activate Wnt Signaling in Xenopus

261 - LBD-Binding Peptide

262 - LBD-Binding Peptide

263 - Negative Control

FIG. 23**LRP5 Peptide Aptamers 261 and 262 Induce Wnt Signaling**

- G171E mutation involves the ringed R group (F) alteration and leads to marginally greater TCF-luci activation than that with HBM1 mutation G171V.

FIG. 24

LRP5-blade1 Mutant M282V leads to HBM1 type TCF-signal
with Wnt1 and Dkk1 in U2-OS cells

- In blade 1, propeller 1, M282 is at the accessible interior position.
- It is conserved in propellers 1-3

FIG. 25

* Sigma/Genosys

† ResGen

FIG. 26

FIG. 27A

FIG. 27B

FIG. 28

032796-132.ST25

SEQUENCE LISTING

<110> Allen, Kristina M.
Anisowicz, Anthony
Bhat, Bheem
Damagnez, Veronique
Robinson, John
Yaworsky, Paul

<120> Reagents and Method for Modulating DKK-Mediated Interactions

<130> 032796-132

<150> US 60/291,311
<151> 2001-05-17

<150> US 60/353,058
<151> 2002-02-01

<150> US 60/361,293
<151> 2002-03-04

<160> 214

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 5120
<212> DNA
<213> Homo sapiens

<400> 1

actaaagcgc cggccggcg ccatggagcc cgagtggcg cggcgccggc ccgtccggcc	60
gccccacaac atg gag gca gcg ccc ggg ccg tgg ccg ctg ctg	109
Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu	
1 5 10	
ctg ctg ctg ctg ctg ctg gcg ctg tgc ggc tgc ccg gcc ccc gcc	157
Leu Leu Leu Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala	
15 20 25	
gcg gcc tcg ccg ctc ctg cta ttt gcc aac cgc cgg gac gta cgg ctg	205
Ala Ala Ser Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu	
30 35 40 45	
gtg gac gcc ggc gga gtc aag ctg gag tcc acc atc gtg gtc agc ggc	253
Val Asp Ala Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly	
50 55 60	
ctg gag gat gcg gca gtg gac ttc cag ttt tcc aag gga gcc gtg	301
Leu Glu Asp Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val	
65 70 75	
tac tgg aca gac gtg agc gag gag gcc atc aag cag acc tac ctg aac	349
Tyr Trp Thr Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn	
80 85 90	
cag acg ggg gcc gcc gtg cag aac gtg gtc atc tcc ggc ctg gtc tct	397

032796-132.ST25

Gln Thr Gly Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser				
95	100	105		
ccc gac ggc ctc gcc tgc gac tgg gtg ggc aag aag ctg tac tgg acg			445	
Pro Asp Gly Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr				
110	115	120	125	
gac tca gag acc aac cgc atc gag gtg gcc aac ctc aat ggc aca tcc			493	
Asp Ser Glu Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser				
130	135	140		
cgg aag gtg ctc ttc tgg cag gac ctt gac cag ccg agg gcc atc gcc			541	
Arg Lys Val Leu Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala				
145	150	155		
ttg gac ccc gct cac ggg tac atg tac tgg aca gac tgg ggt gag acg			589	
Leu Asp Pro Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Gly Glu Thr				
160	165	170		
ccc cgg att gag cgg gca ggg atg gat ggc agc acc cgg aag atc att			637	
Pro Arg Ile Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile				
175	180	185		
gtg gac tcg gac att tac tgg ccc aat gga ctg acc atc gac ctg gag			685	
Val Asp Ser Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu				
190	195	200	205	
gag cag aag ctc tac tgg gct gac gcc aag ctc agc ttc atc cac cgt			733	
Glu Gln Lys Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg				
210	215	220		
gcc aac ctg gac ggc tcg ttc cgg cag aag gtg gtg gag ggc agc ctg			781	
Ala Asn Leu Asp Gly Ser Phe Arg Gln Lys Val Val Glu Gly Ser Leu				
225	230	235		
acg cac ccc ttc gcc ctg acg ctc tcc ggg gac act ctg tac tgg aca			829	
Thr His Pro Phe Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr Trp Thr				
240	245	250		
gac tgg cag acc cgc tcc atc cat gcc tgc aac aag cgc act ggg ggg			877	
Asp Trp Gln Thr Arg Ser Ile His Ala Cys Asn Lys Arg Thr Gly Gly				
255	260	265		
aag agg aag gag atc ctg agt gcc ctc tac tca ccc atg gac atc cag			925	
Lys Arg Lys Glu Ile Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln				
270	275	280	285	
gtg ctg agc cag gag cgg cag cct ttc ttc cac act cgc tgt gag gag			973	
Val Leu Ser Gln Glu Arg Gln Pro Phe Phe His Thr Arg Cys Glu Glu				
290	295	300		
gac aat ggc ggc tgc tcc cac ctg tgc ctg tcc cca agc gag cct			1021	
Asp Asn Gly Gly Cys Ser His Leu Cys Leu Leu Ser Pro Ser Glu Pro				
305	310	315		
ttc tac aca tgc gcc tgc ccc acg ggt gtg cag ctg cag gac aac ggc			1069	
Phe Tyr Thr Cys Ala Cys Pro Thr Gly Val Gln Leu Gln Asp Asn Gly				
320	325	330		
agg acg tgt aag gca gga gcc gag gag gtg ctg ctg gcc cgg cgg			1117	
Arg Thr Cys Lys Ala Gly Ala Glu Glu Val Leu Leu Ala Arg Arg				
335	340	345		
acg gac cta cgg agg atc tcg ctg gac acg ccg gac ttc acc gac atc			1165	
Thr Asp Leu Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr Asp Ile				
350	355	360	365	
gtg ctg cag gtg gac atc cgg cac gcc att gcc atc gac tac gac			1213	
Val Leu Gln Val Asp Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp				
370	375	380		
ccg cta gag ggc tat gtc tac tgg aca gat gac gag gtg cgg gcc atc			1261	
Pro Leu Glu Gly Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile				
385	390	395		
cgc agg gcg tac ctg gac ggg tct ggg gcg cag acg ctg gtc aac acc			1309	

032796-132.ST25

Arg Arg Ala Tyr Leu Asp Gly Ser Gly Ala Gln Thr Leu Val Asn Thr	
400 405 410	
gag atc aac gac ccc gat ggc atc gcg gtc gac tgg gtg gcc cga aac	1357
Glu Ile Asn Asp Pro Asp Gly Ile Ala Val Asp Trp Val Ala Arg Asn	
415 420 425	
ctc tac tgg acc gac acg ggc acg gac cgc atc gag gtg acg cgc ctc	1405
Leu Tyr Trp Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu	
430 435 440 445	
aac ggc acc tcc cgc aag atc ctg gtg tcg gag gac ctg gac gag ccc	1453
Asn Gly Thr Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro	
450 455 460	
cga gcc atc gca ctg cac ccc gtg atg ggc ctc atg tac tgg aca gac	1501
Arg Ala Ile Ala Leu His Pro Val Met Gly Leu Met Tyr Trp Thr Asp	
465 470 475	
tgg gga gag aac cct aaa atc gag tgt gcc aac ttg gat ggg cag gag	1549
Trp Gly Glu Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly Gln Glu	
480 485 490	
cgg cgt gtg ctg gtc aat gcc tcc ctc ggg tgg ccc aac ggc ctg gcc	1597
Arg Arg Val Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala	
495 500 505	
ctg gac ctg cag gag ggg aag ctc tac tgg gga gac gcc aag aca gac	1645
Leu Asp Leu Gln Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp	
510 515 520 525	
aag atc gag gtg atc aat gtt gat ggg acg aag agg cgg acc ctc ctg	1693
Lys Ile Glu Val Ile Asn Val Asp Gly Thr Lys Arg Arg Thr Leu Leu	
530 535 540	
gag gac aag ctc ccg cac att ttc ggg ttc acg ctg ctg ggg gac ttc	1741
Glu Asp Lys Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Phe	
545 550 555	
atc tac tgg act gac tgg cag cgc cgc agc atc gag cgg gtg cac aag	1789
Ile Tyr Trp Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys	
560 565 570	
gtc aag gcc agc cgg gac gtc atc att gac cag ctg ccc gac ctg atg	1837
Val Lys Ala Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met	
575 580 585	
ggg ctc aaa gct gtg aat gtg gcc aag gtc gtc gga acc aac ccc tgt	1885
Gly Leu Lys Ala Val Asn Val Ala Lys Val Val Gly Thr Asn Pro Cys	
590 595 600 605	
gcg gac agg aac ggg ggg tgc agc cac ctg tgc ttc ttc aca ccc cac	1933
Ala Asp Arg Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro His	
610 615 620	
gca acc cgg tgt ggc tgc ccc atc ggc ctg gag ctg ctg agt gac atg	1981
Ala Thr Arg Cys Gly Cys Pro Ile Gly Leu Glu Leu Ser Asp Met	
625 630 635	
aag acc tgc atc gtg cct gag gcc ttc ttg gtc ttc acc agc aga gcc	2029
Lys Thr Cys Ile Val Pro Glu Ala Phe Leu Val Phe Thr Ser Arg Ala	
640 645 650	
gcc atc cac agg atc tcc ctc gag acc aat aac aac gac gtg gcc atc	2077
Ala Ile His Arg Ile Ser Leu Glu Thr Asn Asn Asn Asp Val Ala Ile	
655 660 665	
ccg ctc acg ggc gtc aag gag gcc tca gcc ctg gac ttt gat gtg tcc	2125
Pro Leu Thr Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser	
670 675 680 685	
aac aac cac atc tac tgg aca gac gtc agc ctg aag acc atc agc cgc	2173
Asn Asn His Ile Tyr Trp Thr Asp Val Ser Leu Lys Thr Ile Ser Arg	
690 695 700	
gcc ttc atg aac ggg agc tcg gtg gag cac gtg gtg gag ttt ggc ctt	2221

032796-132.ST25

Ala Phe Met Asn Gly Ser Ser Val Glu His Val Val Glu Phe Gly Leu		
705 710 715		
gac tac ccc gag ggc atg gcc gtt gac tgg atg ggc aag aac ctc tac	2269	
Asp Tyr Pro Glu Gly Met Ala Val Asp Trp Met Gly Lys Asn Leu Tyr		
720 725 730		
tgg gcc gac act ggg acc aac aga atc gaa gtg gcg cgg ctg gac ggg	2317	
Trp Ala Asp Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly		
735 740 745		
cag ttc cgg caa gtc ctc gtg tgg agg gac ttg gac aac ccg agg tcg	2365	
Gln Phe Arg Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser		
750 755 760 765		
ctg gcc ctg gat ccc acc aag ggc tac atc tac tgg acc gag tgg ggc	2413	
Leu Ala Leu Asp Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly		
770 775 780		
ggc aag ccg agg atc gtg cgg gcc ttc atg gac ggg acc aac tgc atg	2461	
Gly Lys Pro Arg Ile Val Arg Ala Phe Met Asp Gly Thr Asn Cys Met		
785 790 795		
acg ctg gtg gac aag gtg ggc cgg gcc aac gac ctc acc att gac tac	2509	
Thr Leu Val Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr		
800 805 810		
gct gac cag cgc ctc tac tgg acc gac ctg gac acc aac atg atc gag	2557	
Ala Asp Gln Arg Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu		
815 820 825		
tcg tcc aac atg ctg ggt cag gag cgg gtc gtg att gcc gac gat ctc	2605	
Ser Ser Asn Met Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu		
830 835 840 845		
ccg cac ccg ttc ggt ctg acg cag tac agc gat tat atc tac tgg aca	2653	
Pro His Pro Phe Gly Leu Thr Gln Tyr Ser Asp Tyr Ile Tyr Trp Thr		
850 855 860		
gac tgg aat ctg cac agc att gag cgg gcc gac aag act agc ggc cgg	2701	
Asp Trp Asn Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg		
865 870 875		
aac cgc acc ctc atc cag ggc cac ctg gac ttc gtg atg gac atc ctg	2749	
Asn Arg Thr Leu Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu		
880 885 890		
gtg ttc cac tcc tcc cgc cag gat ggc ctc aat gac tgt atg cac aac	2797	
Val Phe His Ser Ser Arg Gln Asp Gly Leu Asn Asp Cys Met His Asn		
895 900 905		
aac ggg cag tgt ggg cag ctg tgc ctt gcc atc ccc ggc ggc cac cgc	2845	
Asn Gly Gln Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg		
910 915 920 925		
tgc ggc tgc gcc tca cac tac acc ctg gac ccc agc agc cgc aac tgc	2893	
Cys Gly Cys Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys		
930 935 940		
agc ccg ccc acc acc ttc ttg ctg ttc agc cag aaa tct gcc atc agt	2941	
Ser Pro Pro Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser		
945 950 955		
cggtatgatccgcgacgacgacccgatctcatctgtcccctgt	2989	
Arg Met Ile Pro Asp Asp Gln His Ser Pro Asp Leu Ile Leu Pro Leu		
960 965 970		
cat gga ctg agg aac gtc aaa gcc atc gac tat gac cca ctg gac aag	3037	
His Gly Leu Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro Leu Asp Lys		
975 980 985		
ttc atc tac tgg gtg gat ggg cgc cag aac atc aag cga gcc aag gac	3085	
Phe Ile Tyr Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp		
990 995 1000 1005		
gac ggg acc cag ccc ttt gtt ttg acc tct ctg agc caa ggc caa aac	3133	

032796-132.ST25

Asp Gly Thr Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn	
1010 1015 1020	
cca gac agg cag ccc cac gac ctc agc atc gac atc tac agc cggtt aca	3181
Pro Asp Arg Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr	
1025 1030 1035	
ctg ttc tgg acg tgc gag gcc acc aat acc atc aac gtc cac agg ctg	3229
Leu Phe Trp Thr Cys Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu	
1040 1045 1050	
agc ggg gaa gcc atg ggg gtg gtg ctg cgt ggg gac cgcc gac aag ccc	3277
Ser Gly Glu Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro	
1055 1060 1065	
agg gcc atc gtc gtc aac gcg gag cga ggg tac ctg tac ttc acc aac	3325
Arg Ala Ile Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn	
1070 1075 1080 1085	
atg cag gac cgg gca gcc aag atc gaa cgc gca gcc ctg gac ggc acc	3373
Met Gln Asp Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr	
1090 1095 1100	
gag cgc gag gtc ctc acc acc ggc ctc atc cgc cct gtg gcc ctg	3421
Glu Arg Glu Val Leu Phe Thr Thr Gly Leu Ile Arg Pro Val Ala Leu	
1105 1110 1115	
gtg gtg gac aac aca ctg ggc aag ctg ttc tgg gtg gac gcg gac ctg	3469
Val Val Asp Asn Thr Leu Gly Lys Leu Phe Trp Val Asp Ala Asp Leu	
1120 1125 1130	
aag cgc att gag agc tgt gac ctg tca ggg gcc aac cgc ctg acc ctg	3517
Lys Arg Ile Glu Ser Cys Asp Leu Ser Gly Ala Asn Arg Leu Thr Leu	
1135 1140 1145	
gag gac gcc aac atc gtg cag cct ctg ggc ctg acc atc ctt ggc aag	3565
Glu Asp Ala Asn Ile Val Gln Pro Leu Gly Leu Thr Ile Leu Gly Lys	
1150 1155 1160 1165	
cat ctc tac tgg atc gac cgc cag cag atg atc gag cgt gtg gag	3613
His Leu Tyr Trp Ile Asp Arg Gln Gln Met Ile Glu Arg Val Glu	
1170 1175 1180	
aag acc acc ggg gac aag cgg act cgc atc cag ggc cgt gtc gcc cac	3661
Lys Thr Thr Gly Asp Lys Arg Thr Arg Ile Gln Gly Arg Val Ala His	
1185 1190 1195	
ctc act ggc atc cat gca gtg gag gaa gtc agc ctg gag gag ttc tca	3709
Leu Thr Gly Ile His Ala Val Glu Glu Val Ser Leu Glu Glu Phe Ser	
1200 1205 1210	
gcc cac cca tgt gcc cgt gac aat ggt ggc tgc tcc cac atc tgt att	3757
Ala His Pro Cys Ala Arg Asp Asn Gly Gly Cys Ser His Ile Cys Ile	
1215 1220 1225	
gcc aag ggt gat ggg aca cca cgg tgc tca tgc cca gtc cac ctc gtg	3805
Ala Lys Gly Asp Gly Thr Pro Arg Cys Ser Cys Pro Val His Leu Val	
1230 1235 1240 1245	
ctc ctg cag aac ctg ctg acc tgt gga gag ccg ccc acc tgc tcc ccg	3853
Leu Leu Gln Asn Leu Leu Thr Cys Gly Glu Pro Pro Thr Cys Ser Pro	
1250 1255 1260	
gac cag ttt gca tgt gcc aca ggg gag atc gac tgt atc ccc ggg gcc	3901
Asp Gln Phe Ala Cys Ala Thr Gly Glu Ile Asp Cys Ile Pro Gly Ala	
1265 1270 1275	
tgg cgc tgt gac ggc ttt ccc gag tgc gat gac cag agc gac gag gag	3949
Trp Arg Cys Asp Gly Phe Pro Glu Cys Asp Asp Gln Ser Asp Glu Glu	
1280 1285 1290	
ggc tgc ccc gtg tgc tcc gcc gcc cag ttc ccc tgc gcg ccg ggt cag	3997
Gly Cys Pro Val Cys Ser Ala Ala Gln Phe Pro Cys Ala Arg Gly Gln	
1295 1300 1305	
tgt gtg gac ctg cgc ctg cgc tgc gac ggc gag gca gac tgt cag gac	4045

032796-132.ST25

032796-132.ST25

Ser Ser
1615

aaatatatgaac aaagaaaaaaaa atatattttt tgatttaaaa aataaaatata attgggattt	5025
taaaaacatg agaaatgtga actgtgtatgg ggtggcagg gctgggagaa ctttgtacag	5085
tggagaata tttataaaact taattttgtt aaaca	5120

<210> 2
<211> 5120
<212> DNA
<213> Homo sapiens

<400> 2

actaaaggcgc cgccgcccgcg ccatggagcc cgagtgagcg cggcgcgggc ccgtccggcc	60
gccccacaac atg gag gca gca ccg ccc ggg ccg ccg tgg ccg ctg ctg	109
Met Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu	
1 5 10	
ctg ctg ctg ctg ctg ctg gcg ctg tgc ggc tgc ccg gcc ccc gcc	157
Leu Leu Leu Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala	
15 20 25	
gcg gcc tcg ccg ctc ctg cta ttt gcc aac ccg ccg gac gta ccg ctg	205
Ala Ala Ser Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu	
30 35 40 45	
gtg gac gcc ggc gga gtc aag ctg gag tcc acc atc gtg gtc agc ggc	253
Val Asp Ala Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly	
50 55 60	
ctg gag gat gcg gcc gca gtg gac ttc cag ttt tcc aag gga gcc gtg	301
Leu Glu Asp Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val	
65 70 75	
tac tgg aca gac gtg agc gag gag gcc atc aag cag acc tac ctg aac	349
Tyr Trp Thr Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn	
80 85 90	
cag acg ggg gcc gcc gtg cag aac gtg gtc atc tcc ggc ctg gtc tct	397
Gln Thr Gly Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser	
95 100 105	
ccc gac ggc ctc gcc tgc gac tgg gtg ggc aag aag ctg tac tgg acg	445
Pro Asp Gly Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr	
110 115 120 125	
gac tca gag acc aac ccg atc gag gtg gcc aac ctc aat ggc aca tcc	493
Asp Ser Glu Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser	
130 135 140	
cgg aag gtg ctc ttc tgg cag gac ctt gac cag ccg agg gcc atc gcc	541
Arg Lys Val Leu Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala	
145 150 155	
ttg gac ccc gct cac ggg tac atg tac tgg aca gac tgg gtt gag acg	589
Leu Asp Pro Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Val Glu Thr	
160 165 170	
ccc ccg att gag ccg gca ggg atg gat ggc agc acc ccg aag atc att	637
Pro Arg Ile Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile	
175 180 185	
gtg gac tcg gac att tac tgg ccc aat gga ctg acc atc gac ctg gag	685
Val Asp Ser Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu	
190 195 200 205	
gag cag aag ctc tac tgg gct gac gcc aag ctc agc ttc atc cac cgt	733
Glu Gln Lys Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg	

032796-132.ST25

210	215	220	
gcc aac ctg gac ggc tcg ttc cgg cag aag gtg gtg gag ggc agc ctg Ala Asn Leu Asp Gly Ser Phe Arg Gln Lys Val Val Glu Gly Ser Leu			781
225	230	235	
acg cac ccc ttc gcc ctg acg ctc tcc ggg gac act ctg tac tgg aca Thr His Pro Phe Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr Trp Thr			829
240	245	250	
gac tgg cag acc cgc tcc atc cat gcc tgc aac aag cgc act ggg ggg Asp Trp Gln Thr Arg Ser Ile His Ala Cys Asn Lys Arg Thr Gly Gly			877
255	260	265	
aag agg aag gag atc ctg agt gcc ctc tac tca ccc atg gac atc cag Lys Arg Lys Glu Ile Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln			925
270	275	280	285
gtg ctg agc cag gag cgg cag cct ttc ttc cac act cgc tgt gag gag Val Leu Ser Gln Glu Arg Gln Pro Phe Phe His Thr Arg Cys Glu Glu			973
290	295	300	
gac aat ggc ggc tgc tcc cac ctg tgc ctg tcc cca agc gag cct Asp Asn Gly Gly Cys Ser His Leu Cys Leu Leu Ser Pro Ser Glu Pro			1021
305	310	315	
ttc tac aca tgc gcc tgc ccc acg ggt gtg cag ctg cag gac aac ggc Phe Tyr Thr Cys Ala Cys Pro Thr Gly Val Gln Leu Gln Asp Asn Gly			1069
320	325	330	
agg acg tgt aag gca gga gcc gag gag gtg ctg ctg ctg gcc cgg cgg Arg Thr Cys Lys Ala Gly Ala Glu Glu Val Leu Leu Ala Arg Arg			1117
335	340	345	
acg gac cta cgg agg atc tcg ctg gac acg ccc gac ttc acc gac atc Thr Asp Leu Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr Asp Ile			1165
350	355	360	365
gtg ctg cag gtg gac atc cgg cac gcc att gcc atc gac tac gac Val Leu Gln Val Asp Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp			1213
370	375	380	
ccg cta gag ggc tat gtc tac tgg aca gat gac gag gtg cgg gcc atc Pro Leu Glu Gly Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile			1261
385	390	395	
cgc agg gcg tac ctg gac ggg tct ggg gcg cag acg ctg gtc aac acc Arg Arg Ala Tyr Leu Asp Gly Ser Gly Ala Gln Thr Leu Val Asn Thr			1309
400	405	410	
gag atc aac gac ccc gat ggc atc gcg gtc gac tgg gtg gcc cga aac Glu Ile Asn Asp Pro Asp Gly Ile Ala Val Asp Trp Val Ala Arg Asn			1357
415	420	425	
ctc tac tgg acc gac acg ggc acg gac ccc atc gag gtg acg ccc ctc Leu Tyr Trp Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu			1405
430	435	440	445
aac ggc acc tcc cgc aag atc ctg gtg tcc gag gac ctg gac gag ccc Asn Gly Thr Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro			1453
450	455	460	
cga gcc atc gca ctg cac ccc gtg atg ggc ctc atg tac tgg aca gac Arg Ala Ile Ala Leu His Pro Val Met Gly Leu Met Tyr Trp Thr Asp			1501
465	470	475	
tgg gga gag aac cct aaa atc gag tgt gcc aac ttg gat ggg cag gag Trp Gly Glu Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly Gln Glu			1549
480	485	490	
cggtgt gtc aat gcc tcc ctc ggg tgg ccc aac ggc ctg gcc Arg Arg Val Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala			1597
495	500	505	
ctg gac ctg cag gag ggg aag ctc tac tgg gga gac gcc aag aca gac			1645

032796-132.ST25

Leu Asp Leu Gln Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp	
510 515 520 525	
aag atc gag gtg atc aat gtt gat ggg acg aag agg cgg acc ctc ctg	1693
Lys Ile Glu Val Ile Asn Val Asp Gly Thr Lys Arg Arg Thr Leu Leu	
530 535 540	
gag gac aag ctc ccg cac att ttc ggg ttc acg ctg ctg ggg gac ttc	1741
Glu Asp Lys Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Phe	
545 550 555	
atc tac tgg act gac tgg cag cgc agc atc gag cgg gtg cac aag	1789
Ile Tyr Trp Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys	
560 565 570	
gtc aag gcc agc cgg gac gtc atc att gac cag ctg ccc gac ctg atg	1837
Val Lys Ala Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met	
575 580 585	
ggg ctc aaa gct gtg aat gtg gcc aag gtc gtc gga acc aac ccg tgt	1885
Gly Leu Lys Ala Val Asn Val Ala Lys Val Val Gly Thr Asn Pro Cys	
590 595 600 605	
gcg gac agg aac ggg ggg tgc agc cac ctg tgc ttc ttc aca ccc cac	1933
Ala Asp Arg Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro His	
610 615 620	
gca acc cgg tgt ggc tgc ccc atc ggc ctg gag ctg ctg agt gac atg	1981
Ala Thr Arg Cys Gly Cys Pro Ile Gly Leu Glu Leu Leu Ser Asp Met	
625 630 635	
aag acc tgc atc gtg cct gag gcc ttc ttg gtc ttc acc agc aga gcc	2029
Lys Thr Cys Ile Val Pro Glu Ala Phe Leu Val Phe Thr Ser Arg Ala	
640 645 650	
gcc atc cac agg atc tcc ctc gag acc aat aac aac gac gtg gcc atc	2077
Ala Ile His Arg Ile Ser Leu Glu Thr Asn Asn Asn Asp Val Ala Ile	
655 660 665	
ccg ctc acg ggc gtc aag gag gcc tca gcc ctg gac ttt gat gtg tcc	2125
Pro Leu Thr Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser	
670 675 680 685	
aac aac cac atc tac tgg aca gac gtc agc ctg aag acc atc agc cgc	2173
Asn Asn His Ile Tyr Trp Thr Asp Val Ser Leu Lys Thr Ile Ser Arg	
690 695 700	
gcc ttc atg aac ggg agc tcg gtg gag cac gtg gtg gag ttt ggc ctt	2221
Ala Phe Met Asn Gly Ser Ser Val Glu His Val Val Glu Phe Gly Leu	
705 710 715	
gac tac ccc gag ggc atq gcc gtt gac tgg atg ggc aag aac ctc tac	2269
Asp Tyr Pro Glu Gly Met Ala Val Asp Trp Met Gly Lys Asn Leu Tyr	
720 725 730	
tgg gcc gac act ggg acc aac aga atc gaa gtg gcg cgg ctg gac ggg	2317
Trp Ala Asp Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly	
735 740 745	
cag ttc cgg caa gtc ctc gtg tgg agg gac ttg gac aac ccg agg tcg	2365
Gln Phe Arg Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser	
750 755 760 765	
ctg gcc ctg gat ccc acc aag ggc tac atc tac tgg acc gag tgg ggc	2413
Leu Ala Leu Asp Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly	
770 775 780	
ggc aag ccg agg atc gtg cgg gcc ttc atg gac ggg acc aac tgc atg	2461
Gly Lys Pro Arg Ile Val Arg Ala Phe Met Asp Gly Thr Asn Cys Met	
785 790 795	
acg ctg gtg gac aag gtg ggc cgg gcc aac gac ctc acc att gac tac	2509
Thr Leu Val Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr	
800 805 810	
gct gac cag cgc ctc tac tgg acc gac ctg gac acc aac atg atc gag	2557

032796-132.ST25

Ala Asp Gln Arg Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu		
815	820	825
tcg tcc aac atg ctg ggt cag gag cgg gtc gtg att gcc gac gat ctc		2605
Ser Ser Asn Met Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu		
830	835	840
ccg cac ccg ttc ggt ctg acg cag tac agc gat tat atc tac tgg aca		2653
Pro His Pro Phe Gly Leu Thr Gln Tyr Ser Asp Tyr Ile Tyr Trp Thr		
850	855	860
gac tgg aat ctg cac agc att gag cgg gcc gac aag act agc ggc cgg		2701
Asp Trp Asn Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg		
865	870	875
aac cgc acc ctc atc cag ggc cac ctg gac ttc gtg atg gac atc ctg		2749
Asn Arg Thr Leu Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu		
880	885	890
gtg ttc cac tcc tcc ccg cag gat ggc ctc aat gac tgt atg cac aac		2797
Val Phe His Ser Ser Arg Gln Asp Gly Leu Asn Asp Cys Met His Asn		
895	900	905
aac ggg cag tgt ggg cag ctg tgc ctt gcc atc ccc ggc ggc cac cgc		2845
Asn Gly Gln Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg		
910	915	920
tgc ggc tgc gcc tca cac tac acc ctg gac ccc agc agc cgc aac tgc		2893
Cys Gly Cys Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys		
930	935	940
agc ccg ccc acc acc ttc ttg ctg ttc agc cag aaa tct gcc atc agt		2941
Ser Pro Pro Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser		
945	950	955
cgg atg atc ccg gac gac cag cac agc ccg gat ctc atc ctg ccc ctg		2989
Arg Met Ile Pro Asp Asp Gln His Ser Pro Asp Leu Ile Leu Pro Leu		
960	965	970
cat gga ctg agg aac gtc aaa gcc atc gac tat gac cca ctg gac aag		3037
His Gly Leu Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro Leu Asp Lys		
975	980	985
ttc atc tac tgg gtg gat ggg cgc cag aac atc aag cga gcc aag gac		3085
Phe Ile Tyr Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp		
990	995	1000
gac ggg acc cag ccc ttt gtt ttg acc tct ctg agc caa ggc caa aac		3133
Asp Gly Thr Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn		
1010	1015	1020
cca gac agg cag ccc cac gac ctc agc atc gac atc tac agc ccg aca		3181
Pro Asp Arg Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr		
1025	1030	1035
ctg ttc tgg acg tgc gag gcc acc aat acc atc aac gtc cac agg ctg		3229
Leu Phe Trp Thr Cys Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu		
1040	1045	1050
agc ggg gaa gcc atg ggg gtg gtg ctg cgt ggg gac cgc gac aag ccc		3277
Ser Gly Glu Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro		
1055	1060	1065
agg gcc atc gtc gtc aac gcg gag cga ggg tac ctg tac ttc acc aac		3325
Arg Ala Ile Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn		
1070	1075	1080
atg cag gac ccg gca gcc aag atc gaa cgc gca gcc ctg gac ggc acc		3373
Met Gln Asp Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr		
1090	1095	1100
gag cgc gag gtc ctc ttc acc acc ggc ctc atc cgc cct gtg gcc ctg		3421
Glu Arg Glu Val Leu Phe Thr Thr Gly Leu Ile Arg Pro Val Ala Leu		
1105	1110	1115
gtg gtg gac aac aca ctg ggc aag ctg ttc tgg gtg gac ggc gac ctg		3469

032796-132.ST25

Val Val Asp Asn Thr Leu Gly Lys Leu Phe Trp Val Asp Ala Asp Leu		
1120 1125 1130		
aag cgc att gag agc tgt gac ctg tca ggg gcc aac cgc ctg acc ctg	3517	
Lys Arg Ile Glu Ser Cys Asp Leu Ser Gly Ala Asn Arg Leu Thr Leu		
1135 1140 1145		
gag gac gcc aac atc gtg cag cct ctg ggc ctg acc atc ctt ggc aag	3565	
Glu Asp Ala Asn Ile Val Gln Pro Leu Gly Leu Thr Ile Leu Gly Lys		
1150 1155 1160 1165		
cat ctc tac tgg atc gac cgc cag cag atg atc gag cgt gtg gag	3613	
His Leu Tyr Trp Ile Asp Arg Gln Gln Met Ile Glu Arg Val Glu		
1170 1175 1180		
aag acc acc ggg gac aag cgg act cgc atc cag ggc cgt gtc gcc cac	3661	
Lys Thr Thr Gly Asp Lys Arg Thr Arg Ile Gln Gly Arg Val Ala His		
1185 1190 1195		
ctc act ggc atc cat gca gtg gag gaa gtc agc ctg gag gag ttc tca	3709	
Leu Thr Gly Ile His Ala Val Glu Glu Val Ser Leu Glu Glu Phe Ser		
1200 1205 1210		
gcc cac cca tgt gcc cgt gac aat ggt ggc tgc tcc cac atc tgt att	3757	
Ala His Pro Cys Ala Arg Asp Asn Gly Gly Cys Ser His Ile Cys Ile		
1215 1220 1225		
gcc aag ggt gat ggg aca cca cgg tgc tca tgc cca gtc cac ctc gtg	3805	
Ala Lys Gly Asp Gly Thr Pro Arg Cys Ser Cys Pro Val His Leu Val		
1230 1235 1240 1245		
ctc ctg cag aac ctg ctg acc tgt gga gag ccg ccc acc tgc tcc ccg	3853	
Leu Leu Gln Asn Leu Thr Cys Gly Glu Pro Pro Thr Cys Ser Pro		
1250 1255 1260		
gac cag ttt gca tgt gcc aca ggg gag atc gac tgt atc ccc ggg gcc	3901	
Asp Gln Phe Ala Cys Ala Thr Gly Glu Ile Asp Cys Ile Pro Gly Ala		
1265 1270 1275		
tgg cgc tgt gac ggc ttt ccc gag tgc gat gac cag agc gac gag gag	3949	
Trp Arg Cys Asp Gly Phe Pro Glu Cys Asp Asp Gln Ser Asp Glu Glu		
1280 1285 1290		
ggc tgc ccc gtg tgc tcc gcc ccc cag ttc ccc tgc gcg cgg ggt cag	3997	
Gly Cys Pro Val Cys Ser Ala Ala Gln Phe Pro Cys Ala Arg Gly Gln		
1295 1300 1305		
tgt gtg gac ctg cgc ctg cgc tgc gac ggc gag gca gac tgt cag gac	4045	
Cys Val Asp Leu Arg Leu Arg Cys Asp Gly Glu Ala Asp Cys Gln Asp		
1310 1315 1320 1325		
cgc tca gac gag gtg gac tgt gac gcc atc tgc ctg ccc aac cag ttc	4093	
Arg Ser Asp Glu Val Asp Cys Asp Ala Ile Cys Leu Pro Asn Gln Phe		
1330 1335 1340		
cgg tgt gcg agc ggc cag tgt gtc ctc atc aaa cag cag tgc gac tcc	4141	
Arg Cys Ala Ser Gly Gln Cys Val Leu Ile Lys Gln Gln Cys Asp Ser		
1345 1350 1355		
ttc ccc gac tgt atc gac ggc tcc gac gag ctc atg tgt gaa atc acc	4189	
Phe Pro Asp Cys Ile Asp Gly Ser Asp Glu Leu Met Cys Glu Ile Thr		
1360 1365 1370		
aag ccg ccc tca gac gac agc ccg gcc cac agc agt gcc atc ggg ccc	4237	
Lys Pro Pro Ser Asp Asp Ser Pro Ala His Ser Ser Ala Ile Gly Pro		
1375 1380 1385		
gtc att ggc atc atc ctc tct ttc gtc atg ggt ggt gtc tat ttt	4285	
Val Ile Gly Ile Ile Leu Ser Leu Phe Val Met Gly Gly Val Tyr Phe		
1390 1395 1400 1405		
gtg tgc cag cgc gtg tgc cag cgc tat gcg ggg gcc aac ggg ccc	4333	
Val Cys Gln Arg Val Val Cys Gln Arg Tyr Ala Gly Ala Asn Gly Pro		
1410 1415 1420		
ttc ccg cac gag tat gtc agc ggg acc ccg cac gtg ccc ctc aat ttc	4381	

032796-132.ST25

Phe Pro His Glu Tyr Val Ser Gly Thr Pro His Val Pro Leu Asn Phe		
1425 1430 1435		
ata gcc ccg ggc ggt tcc cag cat ggc ccc ttc aca ggc atc gca tgc	4429	
Ile Ala Pro Gly Gly Ser Gln His Gly Pro Phe Thr Gly Ile Ala Cys		
1440 1445 1450		
gga aag tcc atg atg agc tcc gtg agc ctg atg ggg ggc cgg ggc ggg	4477	
Gly Lys Ser Met Met Ser Ser Val Leu Met Gly Gly Arg Gly Gly		
1455 1460 1465		
gtg ccc ctc tac gac cgg aac cac gtc aca ggg gcc tcg tcc agc agc	4525	
Val Pro Leu Tyr Asp Arg Asn His Val Thr Gly Ala Ser Ser Ser		
1470 1475 1480 1485		
tcg tcc agc acg aag gcc acg ctg tac ccg ccg atc ctg aac ccg ccg	4573	
Ser Ser Ser Thr Lys Ala Thr Leu Tyr Pro Pro Ile Leu Asn Pro Pro		
1490 1495 1500		
ccc tcc ccg gcc acg gac ccc tcc ctg tac aac atg gac atg ttc tac	4621	
Pro Ser Pro Ala Thr Asp Pro Ser Leu Tyr Asn Met Asp Met Phe Tyr		
1505 1510 1515		
tct tca aac att ccg gcc act gcg aga ccg tac agg ccc tac atc att	4669	
Ser Ser Asn Ile Pro Ala Thr Ala Arg Pro Tyr Arg Pro Tyr Ile Ile		
1520 1525 1530		
cga gga atg gcg ccc ccg acg acc tgc agc acc gac gtg tgt gac	4717	
Arg Gly Met Ala Pro Pro Thr Thr Pro Cys Ser Thr Asp Val Cys Asp		
1535 1540 1545		
agc gac tac agc gcc agc cgc tgg aag gcc agc aag tac tac ctg gat	4765	
Ser Asp Tyr Ser Ala Ser Arg Trp Lys Ala Ser Lys Tyr Tyr Leu Asp		
1550 1555 1560 1565		
ttg aac tcg gac tca gac ccc tat cca ccc cca ccc acg ccc cac agc	4813	
Leu Asn Ser Asp Ser Asp Pro Tyr Pro Pro Pro Pro Thr Pro His Ser		
1570 1575 1580		
cag tac ctg tcg gcg gag gac agc tgc ccg ccc tcg ccc gcc acc gag	4861	
Gln Tyr Leu Ser Ala Glu Asp Ser Cys Pro Pro Ser Pro Ala Thr Glu		
1585 1590 1595		
agg agc tac ttc cat ctc ttc ccg ccc cct ccg tcc ccc tgc acg gac	4909	
Arg Ser Tyr Phe His Leu Phe Pro Pro Pro Ser Pro Cys Thr Asp		
1600 1605 1610		
tca tcc tgacctcgcc cgccccactc tggcttctct gtgccccgt aaatagttt	4965	
Ser Ser		
1615		
aaatatgaac aaagaaaaaa atatattta tgatttaaaa aataaatata attgggattt	5025	
taaaaacatg agaaatgtga actgtgatgg ggtggcagg gctgggagaa ctttgtacag	5085	
tggagaaata ttataaaact taatttgtaa aaaca	5120	

<210> 3
<211> 1615
<212> PRT
<213> Homo sapiens

<400> 3
Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu Leu Leu
1 5 10 15
Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala Ala Ser
20 25 30
Pro Leu Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu Val Asp Ala
35 40 45
Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly Leu Glu Asp

032796-132.ST25

50	55	60
Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val Tyr Trp Thr		
65	70	75
Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn Gln Thr Gly		80
85	90	95
Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser Pro Asp Gly		
100	105	110
Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr Asp Ser Glu		
115	120	125
Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser Arg Lys Val		
130	135	140
Leu Phe Trp Gln Asp Leu Asp Gln Pro Lys Ala Ile Ala Leu Asp Pro		
145	150	155
160		
Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Gly Glu Thr Pro Arg Ile		
165	170	175
Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile Val Asp Ser		
180	185	190
Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu Glu Gln Lys		
195	200	205
Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg Ala Asn Leu		
210	215	220
Asp Gly Ser Phe Arg Gln Lys Val Val Glu Gly Ser Leu Thr His Pro		
225	230	235
240		
Phe Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr Trp Thr Asp Trp Gln		
245	250	255
Thr Arg Ser Ile His Ala Cys Asn Lys Arg Thr Gly Gly Lys Arg Lys		
260	265	270
Glu Ile Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln Val Leu Ser		
275	280	285
Gln Glu Arg Gln Pro Phe Phe His Thr Arg Cys Glu Glu Asp Asn Gly		
290	295	300
Gly Trp Ser His Leu Cys Leu Leu Ser Pro Ser Glu Pro Phe Tyr Thr		
305	310	315
320		
Cys Ala Cys Pro Thr Gly Val Gln Met Gln Asp Asn Gly Arg Thr Cys		
325	330	335
Lys Ala Gly Ala Glu Glu Val Leu Leu Ala Arg Arg Thr Asp Leu		
340	345	350
Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr Asp Ile Val Leu Gln		
355	360	365
Val Asp Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp Pro Leu Glu		
370	375	380
Gly Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg Arg Ala		
385	390	395
400		
Tyr Leu Asp Gly Ser Gly Ala Gln Thr Leu Val Asn Thr Glu Ile Asn		
405	410	415
Asp Pro Asp Gly Ile Ala Val Asp Trp Val Ala Arg Asn Leu Tyr Trp		
420	425	430
Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu Asn Gly Thr		
435	440	445
Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro Arg Ala Ile		
450	455	460
Ala Leu His Pro Val Met Gly Leu Met Tyr Trp Thr Asp Trp Gly Glu		
465	470	475
480		
Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly Gln Glu Arg Arg Val		
485	490	495
Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala Leu Asp Leu		
500	505	510

032796-132.ST25

Gln Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp Lys Ile Glu
515 520 525
Val Ile Asn Val Asp Gly Thr Lys Arg Arg Thr Leu Leu Glu Asp Lys
530 535 540
Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Phe Ile Tyr Trp
545 550 555 560
Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Val Lys Ala
565 570 575
Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys
580 585 590
Ala Val Asn Val Ala Lys Val Val Gly Thr Asn Pro Cys Ala Asp Arg
595 600 605
Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro His Ala Thr Arg
610 615 620
Cys Gly Cys Pro Ile Gly Leu Glu Leu Ser Asp Met Lys Thr Cys
625 630 635 640
Ile Val Pro Glu Ala Phe Leu Val Phe Thr Ser Arg Ala Ala Ile His
645 650 655
Arg Ile Ser Leu Glu Thr Asn Asn Asp Val Ala Ile Pro Leu Thr
660 665 670
Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser Asn Asn His
675 680 685
Ile Tyr Trp Thr Asp Val Ser Leu Lys Asn Ile Ser Arg Ala Phe Met
690 695 700
Asn Gly Ser Ser Val Glu His Val Val Glu Phe Gly Leu Asp Tyr Pro
705 710 715 720
Glu Gly Met Ala Val Asp Trp Met Gly Lys Asn Leu Tyr Trp Ala Asp
725 730 735
Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly Gln Phe Arg
740 745 750
Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Ala Leu
755 760 765
Asp Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro
770 775 780
Arg Ile Val Arg Ala Phe Met Asp Gly Thr Asn Cys Met Thr Leu Val
785 790 795 800
Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr Ala Asp Gln
805 810 815
Arg Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu Ser Ser Asn
820 825 830
Met Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Pro His Pro
835 840 845
Phe Gly Leu Thr Gln Tyr Ser Asp Tyr Ile Tyr Trp Thr Asp Trp Asn
850 855 860
Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg Asn Arg Thr
865 870 875 880
Leu Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu Val Phe His
885 890 895
Ser Ser Arg Gln Asp Gly Leu Asn Asp Cys Met His Asn Asn Gly Gln
900 905 910
Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg Cys Gly Cys
915 920 925
Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys Ser Pro Pro
930 935 940
Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser Arg Met Ile
945 950 955 960
Pro Asp Asp Gln His Ser Pro Asp Leu Ile Leu Pro Leu His Gly Leu

032796-132.ST25

965	970	975
Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro Leu Asp Lys Phe Ile Tyr		
980	985	990
Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp Gly Thr		
995	1000	1005
Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn Pro Asp Arg		
1010	1015	1020
Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu Phe Trp		
1025	1030	1035
Thr Cys, Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu Ser Gly Glu		
1045	1050	1055
Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro Arg Ala Ile		
1060	1065	1070
Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp		
1075	1080	1085
Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu		
1090	1095	1100
Val Leu Phe Thr Thr Gly Leu Ile Arg Pro Val Ala Leu Val Val Asp		
1105	1110	1115
Asn Thr Leu Gly Lys Leu Phe Trp Val Asp Ala Asp Leu Lys Arg Ile		
1125	1130	1135
Glu Ser Cys Asp Leu Ser Gly Ala Asn Arg Leu Thr Leu Glu Asp Ala		
1140	1145	1150
Asn Ile Val Gln Pro Leu Gly Leu Thr Ile Leu Gly Lys His Leu Tyr		
1155	1160	1165
Trp Ile Asp Arg Gln Gln Met Ile Glu Arg Val Glu Lys Thr Thr		
1170	1175	1180
Gly Asp Lys Arg Thr Arg Ile Gln Gly Arg Val Ala His Leu Thr Gly		
1185	1190	1195
Ile His Ala Val Glu Glu Val Ser Leu Glu Glu Phe Ser Ala His Pro		
1205	1210	1215
Cys Ala Arg Asp Asn Gly Gly Cys Ser His Ile Cys Ile Ala Lys Gly		
1220	1225	1230
Asp Gly Thr Pro Arg Cys Ser Cys Pro Val His Leu Val Leu Leu Gln		
1235	1240	1245
Asn Leu Leu Thr Cys Gly Glu Pro Pro Thr Cys Ser Pro Asp Gln Phe		
1250	1255	1260
Ala Cys Ala Thr Gly Glu Ile Asp Cys Ile Pro Gly Ala Trp Arg Cys		
1265	1270	1275
Asp Gly Phe Pro Glu Cys Asp Asp Gln Ser Asp Glu Glu Gly Cys Pro		
1285	1290	1295
Val Cys Ser Ala Ala Gln Phe Pro Cys Ala Arg Gly Gln Cys Val Asp		
1300	1305	1310
Leu Arg Leu Arg Cys Asp Gly Glu Ala Asp Cys Gln Asp Arg Ser Asp		
1315	1320	1325
Glu Val Asp Cys Asp Ala Ile Cys Leu Pro Asn Gln Phe Arg Cys Ala		
1330	1335	1340
Ser Gly Gln Cys Val Leu Ile Lys Gln Gln Cys Asp Ser Phe Pro Asp		
1345	1350	1355
Cys Ile Asp Gly Ser Asp Glu Leu Met Cys Glu Ile Thr Lys Pro Pro		
1365	1370	1375
Ser Asp Asp Ser Pro Ala His Ser Ser Ala Ile Gly Pro Val Ile Gly		
1380	1385	1390
Ile Ile Leu Ser Leu Phe Val Met Gly Gly Val Tyr Phe Val Cys Gln		
1395	1400	1405
Arg Val Val Cys Gln Arg Tyr Ala Gly Ala Asn Gly Pro Phe Pro His		
1410	1415	1420

032796-132.ST25

Glu Tyr Val Ser Gly Thr Pro His Val Pro Leu Asn Phe Ile Ala Pro
 1425 1430 1435 1440
 Gly Gly Ser Gln His Gly Pro Phe Thr Gly Ile Ala Cys Gly Lys Ser
 1445 1450 1455
 Met Met Ser Ser Val Ser Leu Met Gly Gly Arg Gly Val Pro Leu
 1460 1465 1470
 Tyr Asp Arg Asn His Val Thr Gly Ala Ser Ser Ser Ser Ser Ser
 1475 1480 1485
 Thr Lys Ala Thr Leu Tyr Pro Pro Ile Leu Asn Pro Pro Pro Ser Pro
 1490 1495 1500
 Ala Thr Asp Pro Ser Leu Tyr Asn Met Asp Met Phe Tyr Ser Ser Asn
 1505 1510 1515 1520
 Ile Pro Ala Thr Ala Arg Pro Tyr Arg Pro Tyr Ile Ile Arg Gly Met
 1525 1530 1535
 Ala Pro Pro Thr Thr Pro Cys Ser Thr Asp Val Cys Asp Ser Asp Tyr
 1540 1545 1550
 Ser Ala Ser Arg Trp Lys Ala Ser Lys Tyr Tyr Leu Asp Leu Asn Ser
 1555 1560 1565
 Asp Ser Asp Pro Tyr Pro Pro Pro Pro Thr Pro His Ser Gln Tyr Leu
 1570 1575 1580
 Ser Ala Glu Asp Ser Cys Pro Pro Ser Pro Ala Thr Glu Arg Ser Tyr
 1585 1590 1595 1600
 Phe His Leu Phe Pro Pro Pro Ser Pro Cys Thr Asp Ser Ser
 1605 1610 1615

<210> 4
 <211> 1615
 <212> PRT
 <213> Homo sapiens

<400> 4

Met	Glu	Ala	Ala	Pro	Pro	Gly	Pro	Pro	Trp	Pro	Leu	Leu	Leu	Leu
1														15
Leu	Leu	Leu	Leu	Ala	Leu	Cys	Gly	Cys	Pro	Ala	Pro	Ala	Ala	Ser
														30
Pro	Leu	Leu	Leu	Phe	Ala	Asn	Arg	Arg	Asp	Val	Arg	Leu	Val	Asp
														45
Gly	Gly	Val	Lys	Leu	Glu	Ser	Thr	Ile	Val	Val	Ser	Gly	Leu	Asp
														60
Ala	Ala	Ala	Val	Asp	Phe	Gln	Phe	Ser	Lys	Gly	Ala	Val	Tyr	Trp
														80
Asp	Val	Ser	Glu	Glu	Ala	Ile	Lys	Gln	Thr	Tyr	Leu	Asn	Gln	Thr
														95
Ala	Ala	Val	Gln	Asn	Val	Val	Ile	Ser	Gly	Leu	Val	Ser	Pro	Asp
														110
Leu	Ala	Cys	Asp	Trp	Val	Gly	Lys	Lys	Leu	Tyr	Trp	Thr	Asp	Ser
														125
Thr	Asn	Arg	Ile	Glu	Val	Ala	Asn	Leu	Asn	Gly	Thr	Ser	Arg	Lys
														140
Leu	Phe	Trp	Gln	Asp	Leu	Asp	Gln	Pro	Lys	Ala	Ile	Ala	Leu	Asp
														160
Ala	His	Gly	Tyr	Met	Tyr	Trp	Thr	Asp	Trp	Val	Glu	Thr	Pro	Arg
														175
Glu	Arg	Ala	Gly	Met	Asp	Gly	Ser	Thr	Arg	Lys	Ile	Ile	Val	Asp
														190

032796-132.ST25

Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu Glu Gln Lys
 195 200 205
 Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg Ala Asn Leu
 210 215 220
 Asp Gly Ser Phe Arg Gln Lys Val Val Glu Gly Ser Leu Thr His Pro
 225 230 235 240
 Phe Ala Leu Thr Leu Ser Gly Asp Thr Leu Tyr Trp Thr Asp Trp Gln
 245 250 255
 Thr Arg Ser Ile His Ala Cys Asn Lys Arg Thr Gly Gly Lys Arg Lys
 260 265 270
 Glu Ile Leu Ser Ala Leu Tyr Ser Pro Met Asp Ile Gln Val Leu Ser
 275 280 285
 Gln Glu Arg Gln Pro Phe Phe His Thr Arg Cys Glu Glu Asp Asn Gly
 290 295 300
 Gly Trp Ser His Leu Cys Leu Leu Ser Pro Ser Glu Pro Phe Tyr Thr
 305 310 315 320
 Cys Ala Cys Pro Thr Gly Val Gln Met Gln Asp Asn Gly Arg Thr Cys
 325 330 335
 Lys Ala Gly Ala Glu Val Leu Leu Leu Ala Arg Arg Thr Asp Leu
 340 345 350
 Arg Arg Ile Ser Leu Asp Thr Pro Asp Phe Thr Asp Ile Val Leu Gln
 355 360 365
 Val Asp Asp Ile Arg His Ala Ile Ala Ile Asp Tyr Asp Pro Leu Glu
 370 375 380
 Gly Tyr Val Tyr Trp Thr Asp Asp Glu Val Arg Ala Ile Arg Arg Ala
 385 390 395 400
 Tyr Leu Asp Gly Ser Gly Ala Gln Thr Leu Val Asn Thr Glu Ile Asn
 405 410 415
 Asp Pro Asp Gly Ile Ala Val Asp Trp Val Ala Arg Asn Leu Tyr Trp
 420 425 430
 Thr Asp Thr Gly Thr Asp Arg Ile Glu Val Thr Arg Leu Asn Gly Thr
 435 440 445
 Ser Arg Lys Ile Leu Val Ser Glu Asp Leu Asp Glu Pro Arg Ala Ile
 450 455 460
 Ala Leu His Pro Val Met Gly Leu Met Tyr Trp Thr Asp Trp Gly Glu
 465 470 475 480
 Asn Pro Lys Ile Glu Cys Ala Asn Leu Asp Gly Gln Glu Arg Arg Val
 485 490 495
 Leu Val Asn Ala Ser Leu Gly Trp Pro Asn Gly Leu Ala Leu Asp Leu
 500 505 510
 Gln Glu Gly Lys Leu Tyr Trp Gly Asp Ala Lys Thr Asp Lys Ile Glu
 515 520 525
 Val Ile Asn Val Asp Gly Thr Lys Arg Arg Thr Leu Leu Glu Asp Lys
 530 535 540
 Leu Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Phe Ile Tyr Trp
 545 550 555 560
 Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Val Lys Ala
 565 570 575
 Ser Arg Asp Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys
 580 585 590
 Ala Val Asn Val Ala Lys Val Val Gly Thr Asn Pro Cys Ala Asp Arg
 595 600 605
 Asn Gly Gly Cys Ser His Leu Cys Phe Phe Thr Pro His Ala Thr Arg
 610 615 620
 Cys Gly Cys Pro Ile Gly Leu Glu Leu Leu Ser Asp Met Lys Thr Cys
 625 630 635 640
 Ile Val Pro Glu Ala Phe Leu Val Phe Thr Ser Arg Ala Ala Ile His

032796-132.ST25

	645	650	655
Arg Ile Ser Leu Glu Thr Asn Asn Asp Val Ala Ile Pro Leu Thr			
660	665	670	
Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Ser Asn Asn His			
675	680	685	
Ile Tyr Trp Thr Asp Val Ser Leu Lys Asn Ile Ser Arg Ala Phe Met			
690	695	700	
Asn Gly Ser Ser Val Glu His Val Val Glu Phe Gly Leu Asp Tyr Pro			
705	710	715	720
Glu Gly Met Ala Val Asp Trp Met Gly Lys Asn Leu Tyr Trp Ala Asp			
725	730	735	
Thr Gly Thr Asn Arg Ile Glu Val Ala Arg Leu Asp Gly Gln Phe Arg			
740	745	750	
Gln Val Leu Val Trp Arg Asp Leu Asp Asn Pro Arg Ser Leu Ala Leu			
755	760	765	
Asp Pro Thr Lys Gly Tyr Ile Tyr Trp Thr Glu Trp Gly Gly Lys Pro			
770	775	780	
Arg Ile Val Arg Ala Phe Met Asp Gly Thr Asn Cys Met Thr Leu Val			
785	790	795	800
Asp Lys Val Gly Arg Ala Asn Asp Leu Thr Ile Asp Tyr Ala Asp Gln			
805	810	815	
Arg Leu Tyr Trp Thr Asp Leu Asp Thr Asn Met Ile Glu Ser Ser Asn			
820	825	830	
Met Leu Gly Gln Glu Arg Val Val Ile Ala Asp Asp Leu Pro His Pro			
835	840	845	
Phe Gly Leu Thr Gln Tyr Ser Asp Tyr Ile Tyr Trp Thr Asp Trp Asn			
850	855	860	
Leu His Ser Ile Glu Arg Ala Asp Lys Thr Ser Gly Arg Asn Arg Thr			
865	870	875	880
Leu Ile Gln Gly His Leu Asp Phe Val Met Asp Ile Leu Val Phe His			
885	890	895	
Ser Ser Arg Gln Asp Gly Leu Asn Asp Cys Met His Asn Asn Gly Gln			
900	905	910	
Cys Gly Gln Leu Cys Leu Ala Ile Pro Gly Gly His Arg Cys Gly Cys			
915	920	925	
Ala Ser His Tyr Thr Leu Asp Pro Ser Ser Arg Asn Cys Ser Pro Pro			
930	935	940	
Thr Thr Phe Leu Leu Phe Ser Gln Lys Ser Ala Ile Ser Arg Met Ile			
945	950	955	960
Pro Asp Asp Gln His Ser Pro Asp Leu Ile Leu Pro Leu His Gly Leu			
965	970	975	
Arg Asn Val Lys Ala Ile Asp Tyr Asp Pro Leu Asp Lys Phe Ile Tyr			
980	985	990	
Trp Val Asp Gly Arg Gln Asn Ile Lys Arg Ala Lys Asp Asp Gly Thr			
995	1000	1005	
Gln Pro Phe Val Leu Thr Ser Leu Ser Gln Gly Gln Asn Pro Asp Arg			
1010	1015	1020	
Gln Pro His Asp Leu Ser Ile Asp Ile Tyr Ser Arg Thr Leu Phe Trp			
1025	1030	1035	1040
Thr Cys Glu Ala Thr Asn Thr Ile Asn Val His Arg Leu Ser Gly Glu			
1045	1050	1055	
Ala Met Gly Val Val Leu Arg Gly Asp Arg Asp Lys Pro Arg Ala Ile			
1060	1065	1070	
Val Val Asn Ala Glu Arg Gly Tyr Leu Tyr Phe Thr Asn Met Gln Asp			
1075	1080	1085	
Arg Ala Ala Lys Ile Glu Arg Ala Ala Leu Asp Gly Thr Glu Arg Glu			
1090	1095	1100	

032796-132.ST25

Val Leu Phe Thr Thr Gly Leu Ile Arg Pro Val Ala Leu Val Val Asp
1105 1110 1115 1120
Asn Thr Leu Gly Lys Leu Phe Trp Val Asp Ala Asp Leu Lys Arg Ile.
1125 1130 1135
Glu Ser Cys Asp Leu Ser Gly Ala Asn Arg Leu Thr Leu Glu Asp Ala
1140 1145 1150
Asn Ile Val Gln Pro Leu Gly Leu Thr Ile Leu Gly Lys His Leu Tyr
1155 1160 1165
Trp Ile Asp Arg Gln Gln Met Ile Glu Arg Val Glu Lys Thr Thr
1170 1175 1180
Gly Asp Lys Arg Thr Arg Ile Gln Gly Arg Val Ala His Leu Thr Gly
1185 1190 1195 1200
Ile His Ala Val Glu Glu Val Ser Leu Glu Glu Phe Ser Ala His Pro
1205 1210 1215
Cys Ala Arg Asp Asn Gly Gly Cys Ser His Ile Cys Ile Ala Lys Gly
1220 1225 1230
Asp Gly Thr Pro Arg Cys Ser Cys Pro Val His Leu Val Leu Leu Gln
1235 1240 1245
Asn Leu Leu Thr Cys Gly Glu Pro Pro Thr Cys Ser Pro Asp Gln Phe
1250 1255 1260
Ala Cys Ala Thr Gly Glu Ile Asp Cys Ile Pro Gly Ala Trp Arg Cys
1265 1270 1275 1280
Asp Gly Phe Pro Glu Cys Asp Asp Gln Ser Asp Glu Glu Gly Cys Pro
1285 1290 1295
Val Cys Ser Ala Ala Gln Phe Pro Cys Ala Arg Gly Gln Cys Val Asp
1300 1305 1310
Leu Arg Leu Arg Cys Asp Gly Glu Ala Asp Cys Gln Asp Arg Ser Asp
1315 1320 1325
Glu Val Asp Cys Asp Ala Ile Cys Leu Pro Asn Gln Phe Arg Cys Ala
1330 1335 1340
Ser Gly Gln Cys Val Leu Ile Lys Gln Gln Cys Asp Ser Phe Pro Asp
1345 1350 1355 1360
Cys Ile Asp Gly Ser Asp Glu Leu Met Cys Glu Ile Thr Lys Pro Pro
1365 1370 1375
Ser Asp Asp Ser Pro Ala His Ser Ser Ala Ile Gly Pro Val Ile Gly
1380 1385 1390
Ile Ile Leu Ser Leu Phe Val Met Gly Gly Val Tyr Phe Val Cys Gln
1395 1400 1405
Arg Val Val Cys Gln Arg Tyr Ala Gly Ala Asn Gly Pro Phe Pro His
1410 1415 1420
Glu Tyr Val Ser Gly Thr Pro His Val Pro Leu Asn Phe Ile Ala Pro
1425 1430 1435 1440
Gly Gly Ser Gln His Gly Pro Phe Thr Gly Ile Ala Cys Gly Lys Ser
1445 1450 1455
Met Met Ser Ser Val Ser Leu Met Gly Gly Arg Gly Gly Val Pro Leu
1460 1465 1470
Tyr Asp Arg Asn His Val Thr Gly Ala Ser Ser Ser Ser Ser Ser
1475 1480 1485
Thr Lys Ala Thr Leu Tyr Pro Pro Ile Leu Asn Pro Pro Pro Ser Pro
1490 1495 1500
Ala Thr Asp Pro Ser Leu Tyr Asn Met Asp Met Phe Tyr Ser Ser Asn
1505 1510 1515 1520
Ile Pro Ala Thr Ala Arg Pro Tyr Arg Pro Tyr Ile Ile Arg Gly Met
1525 1530 1535
Ala Pro Pro Thr Thr Pro Cys Ser Thr Asp Val Cys Asp Ser Asp Tyr
1540 1545 1550
Ser Ala Ser Arg Trp Lys Ala Ser Lys Tyr Tyr Leu Asp Leu Asn Ser

032796-132.ST25

1555	1560	1565
Asp Ser Asp Pro Tyr Pro Pro Pro Pro Thr Pro His Ser Gln Tyr Leu		
1570	1575	1580
Ser Ala Glu Asp Ser Cys Pro Pro Ser Pro Ala Thr Glu Arg Ser Tyr		
1585	1590	1595
Phe His Leu Phe Pro Pro Pro Ser Pro Cys Thr Asp Ser Ser		
1605	1610	1615

<210> 5
<211> 3096
<212> DNA
<213> Homo sapiens

<400> 5	catcttctca cacgatctct cgcttcgcac tccttccttt gattggaaaa caccatttac tcagacgacg gtccttccttc gatctttgca cattcttcta tcatctacta ctttcatacc cagctccgtc ccctaataatt catgcgcggg tggccatcc ctgtggtaaa attcccttct actctgtctaa tctgtgttc tctctccctc ccgtcggtt ctgtctctgc cacgttctcc cctctcccca ccaaaggctg gttttctt gtcagggtctc cttccccctt tggaagaagg ggggctgtat ggccttggtg cgaggccctc cagtgcacagg atccccatc acccagagt ccacaggccc tggtagggag gagggggagc agaagaggag gtgcacatctt tgcctgtgg ggaaggccag gggccaccca cacagagctc tcccatttgc tggaccctt gggccactg cccagttcct tccaaaggaa agccagctcc ccaggtgggt ggagagtgtat atggcttct cttaaactta gggatttgc tttgtgttttgc cttctaaatgc ctttgcacatc cgggagcgcc tcctggaaag agcctgcctg ccacagcgcc ctttaccctg gctgtgcctt cagatgtccc tggggccttc cgcctctgccc cggctctcttgc ggcctccccc ggtgtgggtt gggaaaagca cagcaaattt aaaaacaccc ccatctctgg ctttgcacatc atgcacatc acagccgaga gtgtaaaccc tggtagaaatgc tggtagtttgc agttttggggaa gaagcaggcc agagctgggg cttttgttacc cagggttcc aagagctcc gcctccctcg gctgggtctgg ccaggcccc ccgctgggac ctccagctgt aataggaaatgc gttttactgg tggctggcc actgtggact gccttcaagg gcagttatgc ctgcctttac ccgggttccc ctctgcctg gaagatacag cccatgggag gcctgttgc tggtagtttgc tccagatc gagacactgg ggccagcgcc tgcctggta ggtgcaggcc tggcaggccc ggtcccccac ctgcgttgc acccacggtg gtgggggctc gtcctctccc gagacaatct atgtcattgt tggccaaatgc agctaattt gagtagaaatgc ttccgtgtcc agtcccactc tggcggtgt ttagcagggg actctcggcc cgagactggg tccaccctgg tagggggact tcatggggcc tggcgacag cactgtgtat ttgtgtgtgt gtgtgtttgt gtgtgtgtgt gtctgaggag gtggaccatgc ttctcaaaag gcctgtgacc ccaagaacca aggaatttca gcctgggtgg atcacaccc tcaactgttgc tgggacaacgc tggggccctt cggccacaggaa gcagccaggcatggggccacttgc attcacaatgggata agtgcacatc gtcctggcc ccaggacatgc gagtggaaac acaccgtgtg ggggtgttgc gcctgggtg tgccgggttgc gtccttgc gttgtgttgc cacctgtttgc tgccaccatgc gcccctctgg tctcacacac aactcttgc ccagcgttgc ccctcttcgc cctcaggccct cagtgcgtgt tccgtctgg aaggccccatgc gagtgcctgc atcttggccgc tgatttgc tgcctgttgc acacccttcgc ggctggccatc tcatcttgc gtgcacatgc tggccaggacc tcctggtagc ggggtgttgc ctcccttgc gttgtgttgc cctggggccca gggacacttgc ctccctccctc actgagttgg gggacttgc tggccgggg ttgggggttgc tgcaggctgg tgggtgttgc tggccggggacttgc tggccgggg gagcagactgc ctcccccgc ccggggact tcacccgc gggacttgc cccatgc gggtgttgc ccccgaggct gggtaggggt ggagctggg tggcccttgc tggccgggg atagttgttgc ctttgcaccc tggatgttgc tggccatgc tggccgggg gcaggggatgc agatgcacatc ataaatgc tggccatgc tggccgggg caatgtccatc ttccgttgc tggccatgc tggccggggact tcacccgc tttttttttt tggatggag ttcgttgc tggccatgc tggccgggg tcagctcaacttgc tggccatgc tggccggggact tcacccgc tggccatgc	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400
---------	--	---

032796-132.ST25

ctagcagggg ttacaggcgt gagccaccac gcccagctaa ttttgtatt ttttagtagag	2460
gcaaggttc gtcatgttgg ccaggctggt ctcaaactcc tggcctaag tgatctgcc	2520
gcctcgccct cccaaagtgc tgagatgaca ggtgtgagcc accgtgcccc gcccagaact	2580
cttaattcc cacctgaaac tgcccgctt aagcaggctcc coagtctccc tcccctagtc	2640
cctggtccca ccattctgct ttctgtetca atgaatttgc ctaccgtaaag tacctcatat	2700
aaattgaatc ataaaagtatt tgcgttttta tatctggctt attcactta gcataacatt	2760
cttaagttc atccatgttg tagcatgtgt cagaatctct ctctttttt ttttttttt	2820
ttttttttt ttttgcagac agagtctcg tctgtcatct agactggagt tcagtggcac	2880
gatctcggtt cactgcaaca tctgcctc gggtccaagc aattctccctg cctcagcc	2940
cttagcagct ggaactacag ggcgtgcca ccatgcctt ctaattttg tattttatg	3000
tggaggcagg gtttaccat cttggccagg ctggctcga attcctggtc ttcaccacgg	3060
ggggccgaaag gaccgggca aagcgtggag gggagg	3096

<210> 6
<211> 26928
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (12044), (12489), (26433), (26434), (26435), (26436), (26439), (26441)
<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 6	
gaagaccaag ggcacacagc gaggcagttt cagggcgggc agcctggggc cccacggggc	60
ggcccccggac acttgttctc acctgtggag ggcagagaag ggaacaggga gagaagtggc	120
cggctgggg tggaggtggg tttgagggtt tactgtaaac taaatgtgtt ccctctaccc	180
tagttatgaa ttatgagaca cgaagactgc gaaacagaca cactccctcta aaagtgcctc	240
taggctgaca gggagaaagt cccgcaggc tcccagacgc caccctttagt tccttcaaca	300
agccgcacag ggcctcttc ccacccgggtt cagctcagcc actgaaccct ccaggaagaa	360
gacgtgttgg taggagaaga atctcacca ggcacagcc ggaaggggca cagaaggggc	420
tccggAACCA gcaagccaa gttggaaactc ccagttgtt actttctaga acgactgtgc	480
ccttggcggg tctaagttaga acctctccgc gcacttttc ctcctttgtt aagtggggac	540
agcaatggcc accttgcagg ttccagagagg gcttgcagta cctcacagaa ctgagtggcc	600
gtgaacgtgt gtgtccctcc agatttgtt cagcttgcg aggctggagt caggctgaac	660
gcctctgccc tcatgggtt tatattctag gaagaccaac aaaaacaaga agacggaaaa	720
ttaaaaacaac aaaagccca ttgacaggcc gtgaagaatg ccatgaaaaa tgaatggcgt	780
tgtgctcag tcttgggaa aacgggttta cgaaaagaag gacactttagt ctgcttacca	840
tgagcagccg tccgggtggg gggcaggta ggaagagcag acatccactg aggaggcgct	900
ggggcagagg gcagccctgtt cgctggattt gggggaggaa ccacatcagg ccatgagctg	960
gagctgttgg tagaatgtac aggagaggcc agccaggggcc agctcatgtc agacccaaag	1020
cggggaaat gaatcgagaa tgcacccac gagcaatggg aagccagtct acgatttaag	1080
cagaaaaat attttccctt cttccacccct gcacccatgtt ctaccacac agcctgggt	1140
tctatTTCA agatagaata gacccagact cccagctttt cttacactt tactactgcc	1200
acctgtcacc cactcatgcg tccccactt cagccctcgac ccccttccac ctgatctcat	1260
ggcagccagg gaagctccag ggctcgttag ggctgccatc tcaggaaaga agaaaaagcc	1320
ttcggcacct gcaggccctg ctccaaaccac acttttctt tgacctctca gtttcccttag	1380
ccactccctt cccacatctc accctgttcc agccacagtg gtgtctctgt gggttctcaa	1440
acacaccagg tgcactcctg ctcaggggcc tttgtgtttt ctgttctctg ctggactct	1500
ttttttttt tttttttt agacagggtc tcactctgtg gcccaggctg gagtgttagt	1560
gtgtgtatgtt agctcattgc aacctcaaac tcctggctc aagcaatcc cccacccat	1620
cctctcaagt agttagctt tgggttttgg ttttggatgt ggttctact ctgttggccca	1680
ggctggagtg cagttggggca atcttggctc accacaacct ctgcctccca ggctcaagca	1740
atttcctcgc ctcagccctcc caagtagctg ggattacagg catgtgccac cacggccacg	1800

032796-132.ST25

ttatTTTgt atTTTtagta gagacagggt ttcaccatgt tggTctggct ggtcttgaac	1860
tcctggcTC agatgatcca cctgcctcg cctccaaag tgctggatg acaggcatga	1920
gcctgtctc agtagttagg actacagaga ggggccatca tgcctggta tcctcccacc	1980
tTTTctgtc caactcttc accccactta gcctcgTgc tcaactctt acctcttcag	2040
cTcctcagtc aggcttgagg accccctgtt aaaattgcaa accacaccccc ccaccaccac	2100
caccactat tgccagact ttetactcca ttTtctctgt ttactttct cctttgtact	2160
catcaccacc tgactcatta catgtttacg tatctttctt ctctccacta gcatggaagc	2220
tccaggagag cagagagtgt agTTTtattc cctgatgtgt ttccTgtgcc cgtaccagg	2280
cctagcacac agtaggtgct cagtaaatgt gtgtggatg aacaaataca gtgaaaggat	2340
ctgatctaca ttTataaaaga aggactctg gctgctgagt ggggatgaga ctgtcaggag	2400
gaaagaggcc cctgtgggg cctggccagc aggtgggtac aatggtagca gccaggagag	2460
agggcctt ggactcaagt ggatggggcc tgctcaggc tccggccaca ggaacaaagg	2520
gaagggggcc caggatggcc tgcataagag gacacattac aactggccca aagtcaagt	2580
caggTTTcta aattggaa gggatacaga aaaactaaag actctactgg acagtcagtt	2640
attgaaatga ttacatagaa aatgtaccaa gaattaaaaaa aaaaaaaaaa aagcattatg	2700
aaggggccac cagagactcc cagagaggaa agggactatg ggctggatgc ggtgactcac	2760
acctataatc ccagcacTTT gggaggccga ggagggtgga tcacgaggc aggagtcaaa	2820
aaccagccta ggcaacatgg taaaaccccc ttTtctacta aaaatacAAA aaattagctg	2880
ggcatggcag catgtcctg taatcccagc tactcggag gctgaggcag gagagtgtc	2940
agaacccagg aggcaGAGGT tgcagtgagc cgagattgag ccactatgtt ccagcttgg	3000
cgacagagca agactccgtc tctaaaaaaa agaaaaaaaaa ggccagatga ggtggctcat	3060
gcctgtatc ccagcacTTT gggaggccga ggtgggtgga tcacgaggc aggagatcga	3120
gaccatcctg gctaacatgg tgaAAactcca tctctactta aaatacAAA aattagccgg	3180
gcgtggTgc gggcacctgt agtcccagt acttggggg ctgaggcagg agaatggcgt	3240
gaacctggga ggcggagett cagtgagcc gagattgcgc cactgcactc catccagcct	3300
ggcgcacaga gttagactcc gtctcaaaaa aaaaaaaaaa aaaaaaaattt gctgattagt	3360
tgggTTTgtt ggcgggCGCC tgaatccca actactcggg aggctgaggc gggagaatca	3420
cttgaacccg ggaggcagag gttcaatga gcccatacga cGCCactaca ctccagcctg	3480
ggcgacagag caagactcca tctcaaaaaa gaaaaaaaaa aagaaagggg ctgtgtgt	3540
gcctgggacc caaAGCACAC tactgcaagg tcccagggt cctgactcca accggagcct	3600
tgagaacatt cattgcaaa gaatgaatta aaattcagca ctatTTTatt ctgcaggatt	3660
ccagcacccc aaggacagtc atTTTtagac cttcaGTTA cgtataaagt aaccggagga	3720
tgtgtgtc acTCCacttcc ccagacggtt gcctgtcaca gtcatacgg ccaacaaact	3780
tttcttaggc ctcaaaatTTT gaaatgttca ctctcaGTTc gttcTTtaga tgcaagtcca	3840
tcccataatgaa gtaacagggg ctcagcacet gtccaaatctc attgttccg gggacagggg	3900
cccatgagga tgcgtttca gcccggTgac acttggggca aGtgcTTTt ggTTTccTc	3960
ccaggcTgg aCGTGTGGC tctgtgaagt tacgctggc acaagagccc ccccccaaccc	4020
ggcaggactg actgtgtgg tcagaggcgc ccctggggct ttgggagcca cagaatctc	4080
ctgaggcgcg cggccggagga gggcccagt agagtggcca ctgcccaggtt catcctcag	4140
gctgcccag gcctctcccc aaaacaggca atgcttctca gcaacactgc ccaggaggcag	4200
gccaggaaag gcccacatcg gcctacagt ctgggctctg gagggcttg ttggtaacag	4260
gccatggTTT ctatgagcca gctgggggtt gaaggacaca ggctggattt acctctctgg	4320
gcctcagTTT ctgeattcaa aaagtggaa tcatgatata tgcTTTattt ctatctctc	4380
agtgtgtatg tgaacctcca ataagactt taaaaatact ttTtctacct tactttatt	4440
tttcatttat tttaagataa tgcgttagctg tctcacccag gctggagtgc agtgggtgt	4500
ttacggcTca ctacagcTTT aacctcccag gctcaagtga tcctcctacc acagcctccc	4560
aagttagctgg aactacaggc atgcaccacc gcacccggat aatTTTtctt tttgagacaa	4620
ggTTTcaTc tgcgtggccag gctggagtgc agtgggtgc acTCCactac ttcaatTTT	4680
aacctccTc ggcttaggtt atcctcacac ttcaGTTcTca caagttagct ggactacagg	4740
tatgtgcccag tacacccagc taatTTTt gaaggatggg gtttcaactt attgcccagg	4800
ctggTctgtt actccagggt ttaagcaatc tacTTTcTc agcctgcca agtgcTTT	4860
ttataggtat gggccacccc ccggcctata atcctaccac tttaaaaaaa cctgtatTTT	4920
tagcacttta aaaaattttt ctaaattttt tatagagatg ggggacagct gttgtctcac	4980
tgcgtggccc aggtggTct tgaactccca ggtcaagcc atcctcctgg cctggcctcc	5040
caaagtgttgg ggttataag cataggcTTT accttacTTT ttttttttga gttgcagtTTT	5100
tgcgtggccc ggttataag cataggcTTT accttacTTT ttttttttga gttgcagtTTT	5160
tcccgggTtc aagcaattct cctgcctcag cttccggagt agtgggatt acaggcatgc	5220

032796-132.ST25

gccaccacac ccagctaatt ttgtatTTT agtagagatg gggTTTCTCT atataccTTA	5280
atTTTaaAGC actgcattca tgtaaATTGt gattaACATG gattCAAGAG aggGAgtGAG	5340
gatGAatGAG ccaggcAGTC acCTCGGCTG tcaccCTCCA cttCTCTCCT cttCTGACA	5400
gtcatCGTCC atCCGTTCT gcAGCTGTT gTTGACTCT cCTGATCATT ttGCTTGCCA	5460
cataactTGC ctCCtGGAA agaATGCCt gggcAGGCC ACATGAGTAG tGAAAATAA	5520
tctGcAGTGA aaaATAAAAC taAGTAGTCT gGTCCACAGA gCAgTCTTAT tTTTCACTG	5580
cAGATGAAGG AGTTGACATT CAGGCTTCAt tCTCATTAT aAGTGTtTA aAGACACATA	5640
cAGTGGATTG AACAGTGGCC TtCaaaAAGA tGTATCTACA tCCTAATCCC tGGGACCTGT	5700
gaATGTTAAC CAAGTTAGGA AAAGGGTCTT CCCGGGTGTC ATTAAGTTAG AGATCTTGAG	5760
atGAGGAGCT CATCGTGGAT TATCCAGGTG GACCCtGCAt CCAAGGACAA ATGGTCTTA	5820
gAAAAGAAAAA GcAGAGGCTG ggcACAGTGG CTCAAGCCTG TAATCCCAGC ACTTTGAGAG	5880
gCCGAGGGTGG GTGGATCACC TAAGGTCTAG AGTTGAGAG CAGCCTGGCC AACATGATGA	5940
aATCCCATCT CTACTAAAAA TACAAAATT AGCAAGGCAt GGTGGCGGGT GCCTATAATC	6000
CCAGCTACTC AGGAAGCTGA ggcAGGAGAA TGGCTGCAc CTGGGAGGCG GAGGTTGAG	6060
TGAGCCAAGA TCGGCCACT GCACTCCAGC CTGAGGGAGA AAAGTGAACAC TCTGTCTCAT	6120
AAAAGAAAAAG AAAAGCAGAC AGAGATCTGA GACAGAAGAG GAGAGTGAAG GAAAAAAAGGC	6180
CATGTGAAGA TGAGGAGAG GTTGGAGCCA TGCAGGCCA AGCCAAGGAA TACCTGGAGC	6240
CCCAGAAGTT GCAAGAGGTA GGAAGAAGCC TCCCCTAGAG CCTCCAGACG GAGCACAGCC	6300
CTGCCAACAC CTCCACCTCA GACTTCTGGC CTCCAGCACT GTGAGATAAT CAACTGCTGT	6360
TGTTTAAGC CACCAgATTt GTGGTAATTt GTTATGGCAG CCACAGGAAA CTAATACAGT	6420
ACCTAATCTT CACAAACCCCA TCTTACAGAA AAGGAAACTG AAGTCAAGA GGTAGTGGCT	6480
TGTGcAGTGT GTAGGCCAT TCTTGTATTA CTATAAGAA ATACCTGAGG CGGGCAGATGG	6540
TGGCTCACGC CTGTAATCCC AGCACTTTGG GAGGCCAAGG TGAGTGGATC ACTTGAGGTC	6600
AGGAGTTCAA GACCAGCCTG GACAACATGG TGAACACCCCA TTCTACTGA AAATATGAAA	6660
ATTAGCCAGG CATGGTGGCG TGCATCTGTA GTCCCAgCTA CTCAGGAGGC TGAGGAGGA	6720
GAATCACTT CGCCCGGGAG GAGGAGGTT TAGTGAAGCA AGATTGTGCC ACTGCACTCC	6780
AGCCTGGAG ACAAGAGAGA AACCCtGTCT CAAAATAAT AAAAACACAAA TAAACACCTG	6840
AGACTGGTA GTTATAAAG AAAGGGGTTA ACTGGCTCC GGTTCtGCAG GCTGTACAAG	6900
CATGGTGGCG GCACTGCTT GTTGTCTGGG AAGGCTTCAG GGAGTTTAC TCACTGTGGA	6960
AGGCAGAGCC AGAGCAGGTG CATCACACAG CAAAAGCAGG AGCAGAGAG AGAGAGAGCA	7020
GggAGGTGTG CACACTTTA AATGAGCAGA TCTCACGAGA ACTCACCACT GCAAGGACAG	7080
CACCAAGCCA CGAGGGGTCT GCCCCCATGA CCCAAACCTC CCACCTAGGCC CCACCCCCAA	7140
CATTGGGAAT TACAGTTCAA CATGAGGTTT GGGGGACAA ATATCCAAC TATATCATTc	7200
CACCCCTGGC CCCCCAGATC TCACTGTCTT CTCACTATTGc AAAATATAGT CATGCCTTCC	7260
CAGTAGCCCC CCAAAGTCTT AACTCATCCC AGCATTAACT CAAAATCCC ATTCCAAAGT	7320
CCAACGTCTC ATCTGAAGAT GAGTTCCTT CACCTACAG ACTGTAAAAA TGAACACAGT	7380
TATTTACTGC TGAGATAcaa TGGGGGCATA GGCATTAGGT AACACATTCT GTTCCAAAAG	7440
GGAGAAATCG GTCAAAGAA AGGGGCTATA GGCCCCAAGC AAGTCCAAA CCCCAGCAGAG	7500
CAATCATCA ATCTTAAAGC TCCAAAATAA CCTCCTTAA CTCCATGTCC CATAGCCAGG	7560
GCACACTGGT GCAAGGGGCA GGCTCCCAAG GCCTTGGCA GCTCTATTCC TGCGGCTTTG	7620
CAGAATTCTAG TCCCCATGGC TGCTCTTACA GATTGGAGAT GAGGGCCTGC GGCTTTCCA	7680
GGTGCAGGGT GCAAGCTGCT GGTGATCTAC CATTCTGGG TGTGGATGGT GGCGGCCCCG	7740
TCCCCAGCT CCACCTAGGC TAATGGCCAGT GGGGACTCTA TGTGGGGCCT CCAACCCCCAC	7800
ATTTCCCTC CAATGGGAAG GCTCTGCCCT TGCAcAGGCC TTCTTCTTGG GCTCCAGGC	7860
TTTCTCATAc ATCCCTGTAC ATCTAGGTGG ATGGTGTCAA GCTTCCTTCA CTCTGTCACT	7920
CTGCACACCT ACAGGCTAA CACCAACATGG AAGCTGCCA GGTGTATGGC TGGAACCCCTC	7980
TGAAGCAGCA GCCTGAGCTG TGACTATGGC CCTTGTAGCC AAGGCTGGAG CTGGAACAGT	8040
CTAGATGCAG CGAGGGAGCA GTGTCTCTGAG GCTGTGAGA GCAAGCAGGGC CCTGTGCTG	8100
GACAATGAAA CCATTCTTC CTCCCTCATCC TCTGGCCTG TGTGGAGG GTTGTGAG	8160
ATCTCTGAAA TGCCCTTGAG GCCTTTTGC CTCTGAGGCC TATTTCTTAT TGTCTCAGTT	8220
ATTGGCAGTC GGCTCTTTT TAGTTATGCA AACCTCTAG CAAGAGGTTA CTCCACTGCC	8280
GGCTTGAAct CCTCTCTGA AAAAGCTTT TCTTCTTGC TCACTGGCC AGGCTGAAA	8340
TTTCCAAAC TTTTATGCTC GTTTTACCT TAAATATAA CTCTAACTT TAATTCTATT	8400
ATTTGCTCT GCAATTGAGC ATAGGGAATT CAAAGAAGCT GGGCCACATC TTGAATGCTT	8460
TGCTGCTCA AAATTATGG CCACGCTTGG TGGCTCACAC CTGTAATCCC AGCACTTGG	8520
GAGGCCTAGG TGGCAGATC ACAGAGATCAG GAGATCAGA CCATCCTGGT CAACATGGT	8580
AAACCCATCT CTACTAAAAA TACAAAAAAA TTAGCTTGGT GTGGTGGCGC AGACCTGTAG	8640

032796-132.ST25

tcccagctac tggagaggct gaggcaggag aattacttga acctgggagg cagagggtgc	8700
agtgagccca gatcatgcca ctgcactcca gcctgtgac agaataagat ttgatctcgaa	8760
aaggaaaggaa ggaaggagga agggaaagaaa tgtctcccc ccagatgtcc tgggtcatcc	8820
ctcttatgtt caaacttcaa cagatcccta gggcatgaaa ataatacagc caaattattt	8880
gctaaggcat aacgaaagtgc acctttgctc cagttccaa taagttcctc atttccatct	8940
gagactcatc accctggcct tggcttgc atatcaactgt cagcattttg gtcacaatca	9000
ttaaccagc taatcggag gctgaggcaa gaggatcaact tgaacccagg aggttgaggc	9060
tgcagtgagc tgtgatcaca tcactgcagt ccagcttggg caacagagca agatcctgca	9120
tcaataaaata aataaaataaa tacataaata acttaagttt atttaaagct gcatcttgc	9180
caccatggag aaaggccagg ccagctcctt ctctcttct gcacgtgttc ctcccacetc	9240
agctgcctct gtcctcaag gaggAACAGA gggagtagga aaggccatcc caggagcccc	9300
agcaccccat gacctggctc tggggcctt tgggtttagt gatccccagt gctgagtc	9360
ccctcAACAGG ctcttgtgg caccttggac attggcaga agcatgtggt ccccccggaa	9420
acacccccc ctgatcatct gggAAAGGGCA gcttgcctt gtcacgtgtcc ctgttca	9480
ccacggcccc ccagacagct gcagccacag ccttgcctt gtcacgtgtcc aacaccagac	9540
atgtgtgtca tgcccccaac ccattccag gggacacatg tccttcttgc ccaggcctgaa	9600
gatgaacaag agaggacaa gtccccaaagc ctctctctcc ttccctgcctc accccactccg	9660
ctgttagatt ctcaagggtgg atgggtggct aacttagggca accgaccatc ctgggttacc	9720
tagaactgag gggcattttt caggaataaa actgcacaaag tctggagcaaa acaggagca	9780
tttgggtcaact ctggggctgg tggagtcaagg ttcccttctg caggccccctt ccccgcaagc	9840
atgggtggaa cccaggacag gaacacagag caggccccctt gaccgggctt gtcacttaca	9900
agtctttttt tttttttttt tttttagatg gagtcttgc ctgtcatcag ggctggagta	9960
cagtgggtgc atcttagctc actgcacaccc ctgccttctg gttcaagtg atccccctgc	10020
ctcagccctcc tgagtagctg ggactacagg tggcaccacc acgcccagct aattttttgt	10080
atttctagta gagatgagat ggccaggctg gtcttgcact cttgcacccatc agtgcacgtc	10140
ccgccttgc ctcccaaagt gctgggattt caggtgtgag ccactgtgtcc tggccccact	10200
cacaagtctt aaaccatgcc tcagcacatc aatgcacattt aaaaaaaaggta agagggattt	10260
tccaggcaaa aatagatgaa agacatagga tgattgtca tgcctgtt aaacataggt	10320
ctgatgttat taagaatttga gggctgggag cggtgtgtca cgcctgtat cccagcactt	10380
tgggaggccg aggccggccgg atcacgggtt cagggatcg agaccatccctt ggctaacacg	10440
gtgaaaccccc atctacta aaaatacaaa aatggccgc ggcgggtgac tcacgcctgt	10500
aatccccagca ctgggggggg ccaaggccggg cggatcacga ggtcaggaga tcgagaccat	10560
cctggctaac acatgtaaac cccgtctcta ctaaaaaata aaaaaaaaaat tagccaggca	10620
tggggcgggg cgcctgttagt cccagcaact tggggggctg aggcaggaga agaatgggt	10680
gaacctggga ggtggagctt ccagtgagcc gagatcacac cactgcactc cagcctggc	10740
gacagagtgaa aactccatct aaaaaaaaaaaa ataaataat aataaaaat tggtagtatt	10800
ttgcagggtgt gacaaatgtat tctgtttctg tggcagaatg ttctcaggag atctcttttgc	10860
aactctcatg gaaagcatca tgctgttggc aacatcacat ttatTTTtat ttatTTTtta	10920
tttttttagatg acagggtctt gctctgttgc ccaggcttggc gtgcagtggc acaatcacag	10980
ctcaactgcac cctcaacccctc ctgggctcaa gcaatccctcc tgcctcagcc tcccaaagta	11040
gctgggacca caggcgtgag ccactgcact cagcccaatg taccttcaat atttacattt	11100
ctggccaaagg tagaaaaacc ttaacaaattt ttgaatcttag ataataaaat tatgaggctg	11160
gggtgcagtgg ccctgacagg gatggctcac atctgtatc tcaacatTTT gggaggccaa	11220
ggtagggcggta tcacctgagg ccaggagttt gagaccagcc tggccaaacat ggtgtacccc	11280
tgtctctaaac aaaaatacaaa aaaaatttgc cagacgtggt ggtgcacgtc tgcataccca	11340
gctacttaggg aggctgaggc aggagaattt cttgaaccccg agaggcagag gttgtatga	11400
gccgagatcg cgtcattgca ctccagccctg ggcaaaagca agagcggaaac tctctctcc	11460
aaaaataaaaaa aaaaaataaa ttaatgtatc aattaaaata aataaaaata atggatagtc	11520
actgtaaaga aaaaataaaat gtatatatca gccaacaatg gatggatag agcacccttcc	11580
ctccctggct ggacagatac atcccacaac acctgttggc cggctccatc tagaactttc	11640
tggactgtt gaggtgtgtt gctggagcac ggtgacagag gagctggacc atggacttcc	11700
cccgcccccc accaaggccgg aggtccccctt gtgggggtc tgagggaggc atccgtatgg	11760
cctctgcggc ttggcagggtt aatttgggtt ccaagttactt ggtcacaagc ctggaaagag	11820
ggtttgggtt ctggggcat atcccctggg ccacatgggg gcaaaatggg ggccccctga	11880
agcttggagt cctggggcagg ggcacatctt ttgtgttgc aggccttgc tacttgcac	11940
aaaatggagg cagaatgtcc caccttaatg cccctgttcc ctccaaacca attccagaga	12000
cagcaaggc cagaacagggtt atggccctgc ccagggtcat gcancgagga agtggccagg	12060

032796-132.ST25

ctgggatctg aaccaggct aatcccctcc	cttgtectcc tccagggccct caccctgc	12120
tagagccctc cagtcactc atcctcgcc	agtcacatct cctcagctt gaaacccccc	12180
cgggattttc cttttaaaa aaacaaaggc	ttggccagge acgggtggctc acgcctgtac	12240
tttgggggtg gtcggcagca ctttgggagg	ccaagggtgg cgatcatga ggtcaagaga	12300
ttgagaccat tctgccagc atggtaaac	cctgtattta ctaaaaaaaaaaaa aaaaattaac	12360
tgggcattgtt ggctagctac tttaggaggct	gaggcaggag aatcgcttga acctgggaga	12420
aagaggttgc agtgagccaa gatecgccca	ctccacttta acctggcaac agaacaagat	12480
tccgtttna aaaacaaaaca aacaaaacaaa	taaacaaaaaa aaggcgggagc gcgtggctc	12540
gcgcctgcaa tcccagact ttgggaggct	gaggcgggagc gatcacttga ggttaggagt	12600
ttgagaccag cttggccaaat atggtaaac	cccatttcca ctaaaagtac aaaaatcagc	12660
caggtgttgtt ggtgggtgcc tgtaatcccc	gctactcagg aggctgaggc aggagaatcg	12720
cttgaaccctt gtagctggag gctacagtga	gctgagattt cgccactgtt ctccagcttg	12780
ggcaacaaga tttgtttctc taaaaaaaaaa	aaaaaaaaaaa ctggcccttc cccttcagct	12840
cttcctcagg gtccctgagc actctacacc	cccgtctaca ctgagcactc caccctgtg	12900
tctacactga gcactccacc ctgccatcta	cactgaggac tccacccac tgcataact	12960
ggctgcctcc cgccctcacc tcctgctaag	gccattcccc getgcatttg tcttcttagat	13020
tctgcagcct tcagcacgct gggccctcc	tttgccttcc ttgcccaccc ccagcctccc	13080
cctgagctgc tactccttcc ccagcagcc	ccacccaaagc ccctccagtc cccaaagctgt	13140
cccttgcatc cagcaactgccc ttccacgtt	ccccctccct ccagcttccac agcagggtgg	13200
ggcctccagg ccctgcccac tggcccatcc	cacaagttgt ggtgggagct cggaggggag	13260
gcaggggtgt gcatggactt gggacgttcca	agtctggac cagggggagc tgggtggtgg	13320
agtgtggagg gggataggta cttcaggta	gagaggctgt aggggcaaga tcgggacggc	13380
ggatgtccct aaggagggtt ctgacctggg	aaatatttgc cagcttctc tttccatcc	13440
ctggagctca gacactggcc ggctctcacc	ccgcccattcc tgcaaggacac agctccatcc	13500
cagttagttc ctatgttgc catctccagc	agcacggatg gaaaaggaaat tcataaaagg	13560
tgcctcaggac cggaggctt ttctggaggt	ggcagaggag ggtgtgggtc tcagggctct	13620
ggctgaggggc aagctggga ggttttaggt	ctgcaccaccc cccgtgaagg cccctctgc	13680
tccctgggtt agtcttagag ggaacagcag	ccccctaggct etagcaggag tggtagggg	13740
cttttctggc ttctactgt gccagcagga	tagctggcc tggcaacttgc cccaaagatc	13800
acatggccgg gcatggcgc agtggaaac	agacccttgc caaagctggc aaagaagacc	13860
ccatgggggtt cagctggta agctgagac	tcaatgtttt ggggagccctg gaaaaagggg	13920
tcctccccc cctctgcagg ccaggatcgc	aggttttcc tacatgttgg taattctcaa	13980
acaatcccat gcccacttgg gcaaaagatca	cagtggccgg cggcctcggg agcagtggac	14040
agggcacgca gtgccttga tgccagagcc	ctgcctccaa agtcaacaaa ctctgcacgc	14100
gactttgcac ccggactttt tttcaccat	acaaggaaag ggacagatca caggccctct	14160
cgctgccttc gctgagccgg aagctgcagc	gtgagctctc tcaagccccc tttcttaggt	14220
ccccaggccgc accctgagc ccctactcgc	ctattaagtt ctcttaatag cccttcaagg	14280
tcttaatgtt tgcatttag acagagggga	aaactgaggc gagggcaagt gacttgaccg	14340
aggttctcg gcgagcaggg cgtggagctg	agaacacctgt tattactgtt ccccacacaa	14400
ccctctggcc gttttggaa gaaggctgag	ccccgggggg gccagagtga cccaaacacc	14460
atggggccgc tgcgttaaca cgtcgccca	cgaaggggca gcagttccc gccccggccgg	14520
gctctctcg gcgctcagta tccgtccca	gccaagaaga agaaactcg ggaggaggggc	14580
ggaggggggtt gctgtggagg gctgtggaa	tggacgtggc caggggagtg gcagctgcac	14640
acagtggatg ctgttaagat gaaggaaag	aacgtggctt ccagatcac tggacacgg	14700
tccaccttcc ttccctgtca ctgcattggcc	ctggccgggt ttttgcaccc ttggaaacct	14760
gtttttccctt ttttctttt ttttgcaccc	agggtcttgc tctgtggccc agactggagt	14820
gcccgtggcac gatctggct cactgcttcc	ccccagggtt aagtgtatcc cccagctcag	14880
cctctcgct agctggacc ccaggatgt	gtcaccacag ccggctaatt tttgtatttt	14940
tttgcatttgc cggatattcc cctgttgc	caggctggtc tcaaaacttgc gagttcaccg	15000
gatcttcctg cctcagccctc ccaaaatgtct	gggattactg gcatgagcc cccgacccag	15060
cagagacccctc agttttctaa cctgtccag	caggaataat gatactgttgc tagttggct	15120
gtgtctggaa ttaagtaaga tgaccggta	gcaaatatga agtattactg gacacagagg	15180
gccccaggct gggtagcag cgggtggtag	ggctgtgtct tcttgcctg agctcgaagg	15240
agggccctca ttaccaccc ggtgtgttcc	cgtccaaagcc tggcaacttgc gctgtggaaat	15300
aacttctgcc acccaagttt gcaattttgtt	tgcaaaatgtt agtcttgcact ctgtgggtt	15360
gacttcgagg cctcttcatc ggacctgtt	ccgggtactt cattcgccacc ttccctgtt	15420
cctggtttaa cacagccag ctccctccct	gctgagccct ccctggccct gctgtcaccc	15480

032796-132.ST25

tcgtgccgt	gtgcctcgca	gtgccactcc	ctgtacccctg	aataactttgc	cctgcctctc	15540
caccaggctg	agagtcaaggg	ccccctgtgag	gctctgccc	gccccgtc	cgggttctg	15600
cctctgtga	gcacttccct	gcatgattgc	ttctgagagt	ccccccagcc	tgtgagctc	15660
tcaggactgg	gacagcttct	caggaccgag	gcttcctgg	ctgcttgca	tttacaggc	15720
ggcacat	tcccttggcc	aacatcagag	actggacatc	tgcagatctg	tgctagccac	15780
tgagcacca	ggcacccca	caggtagctc	tgtaaccaac	ccattctgt	aagctgaggc	15840
tcagagaggt	gaagcgcctg	gcctggggcc	acagcctgcg	tca	agcgtgcag	15900
tgagatatgc	acctgcggct	ctgctcacag	ggtcctgcac	agactgctgc	tggagccacc	15960
tatgttaggt	caagagagtt	catgttaact	cccttcaca	tccctcagcc	agggtggggg	16020
ctgacgatag	acactcaggg	atggcctacc	ctccccaa	accccccgtca	ggttgcggg	16080
atctcctgg	aagaaaagtt	ctgggcagaa	ttccaccgtt	ggcctggcc	acactctcct	16140
tagtggctta	ggaccctcag	cggtggataa	gttggggca	gaagagatgc	aatcaggatt	16200
tcacccact	cacccttgc	cagccccaa	aagctcaata	agctgggctc	ggtctgagga	16260
agtgtccagg	aaatgtcaa	atggcctgg	acagccctgt	gttccttca	gtaagggtgc	16320
tgaagggtgag	gctgaaaagtt	ggagaaaacag	aagccagtgc	ttatggttt	aattaagata	16380
atggaatgt	tgtatgtatg	tatgtatgt	tgtatgtatt	tatgtattt	tcttttagaga	16440
tagtgtctca	ctctgttgc	caggctggaa	tgcggtgaca	caatcatgc	tccttgagc	16500
ctcgactcc	tatgccccaa	tgatcctct	acctcagct	cctgagtagc	tggactaca	16560
gacacacgcc	aactatgcct	agctaattt	tatttctatt	tttggggag	actgggtct	16620
cactttgtt	cccaggctgg	tcttgaaccc	ctagcttcaa	gcaatcctcc	tgccctcagcc	16680
tcccaaagt	gagggattac	aggtgtgagc	caccacacct	ggcctggaa	ttatggat	16740
tctgcttata	aaattaatac	atttttattt	cagaaaaagtt	tgaaaataaa	agaaaggaca	16800
aagaacaaaa	agcgatata	atttcacagc	tca	ctgctattaa	catttttattt	16860
tactttcagg	cttttttctt	tctaggtaca	tatgcagaga	ttatggattt	ttatggattt	16920
tatggatatt	tttattttat	atttttattt	tcattttttt	attttattt	attttattt	16980
tttttagagac	agggcctcac	tctgtcaccc	aggctggagt	acaatggagt	gatcatagct	17040
caactgcagcc	tcaaaacacct	gggctcaagc	aatcccccca	ctcagccttc	tgagtagtt	17100
ggactaaagt	gtgagcttgg	ctaatttttt	ttacttttg	tattgacaga	ggtctacta	17160
tgttgcggc	gctgatctca	aactcctgg	ttcaagcgt	cctcccac	tggactccca	17220
aagtgtctgg	attacaggca	ttagccacca	tgccctggct	aaaatgccac	ttttgtcat	17280
ttactaaaat	cccatggaca	cttgcacatg	tctgtatttct	atgctatttga	tctgactgtt	17340
ggcatctaca	tcattatggc	catctatcat	ctatcataat	ccattttaac	attaaaattt	17400
tgctgtct	tagatttttc	ttggctgtct	cctatttgt	ttcttccaga	taaatttttag	17460
aatcatttta	tcaaaattccc	cttgcagaaa	aagccctatt	ggattttgg	tgaaaataac	17520
tgaattttta	cattaactta	ggaaaagggt	ggcacgggt	gtcacgcct	gtaatccct	17580
cacttttcga	ggccaaggca	ggtggatcac	ttgaggttgg	gagtttgaga	ccagcctggc	17640
caacatggtg	aaactcggtc	tttactaaaa	ataaaaaat	tgccaggcgc	attggctcac	17700
ctgtatcccc	agcactttgg	gaggccgagg	tgggtggatc	acgagggtcag	gagatagaga	17760
ccatcctggc	taaacacggt	caaccccg	tctctttaaaa	ataaaaaaaa	ttagccaggc	17820
gtgggtgtgg	gcccctgtgg	tctcgtctac	ttaggaggct	gaggcaggag	aatgggtgt	17880
acccaggagg	cgagcttgc	agtggccaa	gatcgccca	ctgcacttca	gcctggcga	17940
cagagtgaga	ctccatctca	aaaaaaaaata	ataataataa	tacaaaaatt	agccgggggt	18000
cgtggcggtc	acctataatc	ccagttaactt	gggaggctga	ggcaggagaa	tcgcttgaat	18060
ccaggagggt	gaggttgca	ttagccaga	tcgtgccact	gtactccagc	ctgggtgaca	18120
gagtgcacact	ctgtaaaaaa	aaaaaaaaaa	ttctgaagga	ttgagactct	tagacttta	18180
ggtcttccta	tccaagagca	caatataat	tttcatgtat	tcaagcctt	ttcaatgc	18240
caacagaatt	ttacagttt	tttcatgata	tcctgtatt	tcttataaaa	tgtatttct	18300
gatattctgc	atgtttccg	gttgggtt	aataaatatt	tttcattttt	cattatttcc	18360
taattggctg	ttatggat	atatgacatc	tgttgaattt	tttgattact	ttgaaaatgg	18420
ccattcttt	gtgtttttt	ttaactttt	atttttagat	aatttttagt	tacagaagat	18480
ttgcaaaaat	agtacagaga	gttccgtt	ccccctttag	ttaaccagg	ttcttcctt	18540
gttaacatct	tacataacta	cagaacaatt	gtcaaatcta	agaatcaacc	tggcacaat	18600
gctattaaact	aaactgcaga	agctgttca	atctcaccag	ttcttctact	gctccccc	18660
tctcttcag	tgttcaatcc	gaaatcc	attatattt	gttgcattt	cttttgg	18720
tcttccaatc	tgtgacagtt	cctcgtt	tctttgtt	tcatgactt	catttttta	18780
tacttttggaa	aaatactggc	cgggtgtttt	gtagaacgc	ctcagtttgg	ttttgcct	18840
agttttttgt	gattagatcg	aggtcatgca	ttatggaga	gggtgc	ccacc	18900

032796-132.ST25

gcaagctcaa	tgcacatata	cagagggttt	gtaatgtcag	tttataccgc	cgagaccct	18960
aacctggagc	atttcgtgaa	ggtgcgtct	gccaggattc	tccactagaa	agttactatt	19020
tttcccttt	taattactga	atgtctgagg	ggaaatactt	tgagactatg	caaataccct	19080
gtttctgctt	taacttcggc	tcactaagtt	tagcattcat	ctatggatct	cgcttatagc	19140
aagtattact	gtggagttct	aatggtaatt	ttctgtttct	ctcattccctt	caacctttat	19200
taatatgctt	cttcctca	tattcatttt	gtttcagttt	tttataccaa	catggatttg	19260
tggatattgg	ttttattctt	tggttgcaaa	ttgaatccca	tcattat	ttttagtca	19320
tgttccatcc	gacettggtc	attaggagcc	cttgaatattt	ggctcccatg	cctttttttt	19380
ttttttttag	accgagtctc	actctgtcac	ccaggttga	gtgcagtggc	atgatcttgg	19440
cttccctgca	cctccgectc	ccaggttcaa	gcaattctcc	tgccctcagcc	tcctgagtag	19500
ctggatttat	aggcgtcca	ccacccgtcc	cggctaattt	tttgtat	ttttagagat	19560
ggggtttat	tatgttgccc	aggctggct	caaactcctg	acctcagggt	atctgcccgc	19620
ctcggcctcc	caaagtctg	ggactacagg	cgtgagccac	cacacctggc	ctcctatgcc	19680
attttaacat	gcccgttctt	tcttttctt	tcctacttcc	tgtgactgt	agaagctcca	19740
ggatacattt	ttgtgtccct	agacttagcc	tcaatcagtt	ctcagaaaag	ctctgttct	19800
tttatggga	tacttagaaa	actagctctg	tatggcctgg	cgcgggtggct	cacgcctgt	19860
atcccagtag	tttggggagc	cgaggtgggc	agatcacaga	tcacgaagtc	aggagatcaa	19920
gaccatctg	gtaaacatgg	tgaaactctg	tctctactaa	acatacaaaa	aattagtcca	19980
ggcgccgtgg	cgggccctg	tagtcccagc	tactcaggag	gtcgaggcag	gagaacggca	20040
tgaacccggg	aggccggagct	tgcagtgagc	cgagatcgcc	agccactgca	ctccagcctg	20100
ggccacagag	cgagactccg	tctcaaaaaaa	aaaaaaaaa	aaaagaaaaaa	agaaaactag	20160
ctctgtatgc	tagttttttt	ttaagacag	ggtctctt	gccccagctg	gagtgttagca	20220
gcacgatc	agctactgt	agcctcaacc	ttctggctc	aagcaatcct	cctgcctca	20280
tctcctaagt	agctgggtct	acaggcatgc	accaccgtac	gtggcaat	ttaaaaactg	20340
ttttagaga	tggagtctcc	ctatgttgc	ttgtctggaa	ctccctggct	caagtgtatcc	20400
tcctgcctcg	gcctcccaaa	gtgctgagat	tacaggcatg	agccactgta	cctggcctgg	20460
ccaaggctcg	tcttttttta	aaagaagttt	ttgtatagtt	ttttttttt	ttat	20520
ttctgagacg	gagtctcgct	ctgtcgcccc	ggctggagtg	cagtggtgcg	atctcgctc	20580
actgcaagct	ccgcctccca	gttca	ccgcctcc	ctcagcctcc	cgagtagctg	20640
ggcctacagg	cgcccgctac	cacgccccggc	taatttttgc	catttttagt	agagacgggg	20700
tttcaccgtg	ttagccagga	ttgtctcgat	ctcctgaccc	cgtgatccgc	ccgcctcgcc	20760
ctcccaaagt	gctgggatta	caggcgtgag	ccaccgcgc	cgccctgtt	tatagttt	20820
atctcgagtt	ttctagcgat	ttaatcatat	ttgttacaaa	aaaggatgtat	tttactacct	20880
cctttccaaat	gtttctacat	atttttcat	tttatactaa	tgcattttaa	aataaaacttt	20940
taattttaga	atgggttcat	atttacagaaa	aatgtcaaa	gatagtacag	agagtccctg	21000
tgtactccac	accgggttcc	tttattat	tcttaacgt	atacacaatt	aataaaaccag	21060
taacattatt	attca	gtccacactt	tctttttttt	tttttctgag	acggagtc	21120
cttctgtcac	ccaggctgga	gtgcagtggc	gcaatctgg	ctcactgca	cctccacctc	21180
ctgggttcag	gcaattctgt	ggctcagcat	cccaagtagc	tggaaataca	ggtcccgc	21240
accacgcccc	gctaattttt	tgtagagatgg	ggtttcacca	tgttagccag		21300
gatggtctt	aactctcgac	ctcgtgatct	gcctgcctca	gcctcccaaa	gtgctgggat	21360
tacaggcgtg	agccaccgcg	cccgccgtcc	atacttctt	tagatatctt	tccttttac	21420
ctaacgtcct	tcttctgggt	caggatccca	tccagaaagc	aacattaccc	ctgcacatca	21480
cgtcttcaca	ggctccctt	gacggaaaga	gttccat	tttttctgt	ttttgttgac	21540
tttgacagtt	ttgaggagga	ctggatctt	agtctgttt	gtgctgctat	cacagactag	21600
ctgagaccga	tacatgatac	atgaaaaaaa	atgtattctt	acagttgtgg	aggctggaa	21660
gttcaagacg	aagtgtcg	ttgggttgg	ctctgttcc	aagatggcgc	cttgcgtctg	21720
cattcctctgg	agaagaagaa	tgcgtgtcc	tctactgca	gaagatggaa	cgctaaaag	21780
gaatgaactc	ccttgc	ccat	aatggcatt	aatccacaaa	ggatgaaacc	21840
ctgagaaaca	tcaagcttta	aagca	tctcaaccc	tttggtctca	ggagccctt	21900
atactcttaa	aacgtttga	ggatcccaaa	aaaagcttc	tacaggttcc	atctttat	21960
atttaccata	tcaaaaattt	aactgaaaaa	atttaaatt	atttattcat	ttaaaaataac	22020
aaggataaaac	ccattacatg	cta	tatgtat	tatgaaaaat	agctatattt	22080
atcaaaaaca	aaatttagtga	gaagagtggc	atgtataatt	tttttctt	ttttttgtt	22140
tttagatgga	atcttattct	gtcgcccagg	ctggagtgc	ttttgtgtat	ctcggtc	22200
tgcaagctct	gcctccagg	ttcacaccat	tctcctgcct	cagcctctg	agtagctgg	22260
actgcaggtg	cctgccacca	cgcccggtca	atttttgt	tttttagtag	agatggagtt	22320

032796-132.ST25

tcaccgtgtt agccaggatg gtcttgatct cctgacacctg tgatccaccc gcctcagcct	22380
cccaaagtgc tgggattaca ggcttggacc actgcgtctg gcttaaaattt ttgtgaatgt	22440
ctttaatgcc tgccttctca tatttggttc tgcattcaag ttattgcaaa atgttgtgtt	22500
ggttgaagtt tgtaaagaaa atgtggcctc atacagttgt gttagttggaa aggcaagagt	22560
attttggatc tctttcaaa caactatgga caacctgctg ttacaaaacc agaatgcaaa	22620
aagtttagt aaatacaggt taggtgttagt gtggaatctg aaagcatgtg aatgaacttt	22680
ctgagtttg taacattaaa gtccagttgc gttaagctac tttgtatagca tatagcattg	22740
tcctaatact ggaatttagta tcagaagtgg ggtgcatactg ttaataaaata aaaagaata	22800
aataaaatcat gtgatactgg ctcagaagtc aggcaatgg tagtggatggaa cctgacatca	22860
cgcctatgtaa tacattggca accatttgat ccagctgtct gtcatgtatca cttggaaagt	22920
caaccacata cttacagagc ctgttagacat agggaaaat agtataaaac agaataactaa	22980
cagtggacct tggttcttgc cagttgcatt tagccaaata ttaaacaaaaa gagatattct	23040
tgggcagcaa ctggaccatc ttcaagtaaa agtggaaaggta aataaaacaga gtccagacat	23100
ttgtgcccatt gcggtttaag aaaaatccag ttgttcttag acaccgtata tgaaaacaac	23160
gctgaaaaca agccttggag tggtaaaggc cgattaacac tcagcgcgg aacaaagacc	23220
aggtgggcta acccggaaatg aatgagaag cctgtgtga tgaggaggca gagaagtaaa	23280
atcaagtttgc agcatttcgt tttaggagat ttgggtctgt attacttgc catgcaaacg	23340
aactggaaac aaacagatca gatgtctacc acttcttgcg gggaaatttgc ttgccaaga	23400
agtcatgaaa gcagactcta tactgattag gcattaaaac aaaaacaatc tttaggcccc	23460
taaacttgc tggcaggaa gtgggctgtc aaagctgttc atcctctaag gtggacttag	23520
ttccctagttcc ccagttatca ttccagatgtt ggcctggag gacactggac atggaggacc	23580
tcccagagga tgaggtctagg gtttcatttc tccaatgacc tcagctgcct ctatcccc	23640
ttcttcctt ggaagtccta tcatcgttat tattattatt atcatcattt ttatggtag	23700
ataaggcttc gctctgtgc ccaggcttgc gtgcagtgc atgatcatgg ctcactgcag	23760
ccctcccaagg ctcaagtgtat ctcctgcct cagcctcctg agtagctggg agtacaggca	23820
catgccacca tgcttggca ttttttttt cagtagagat agggctctca ctatgttgc	23880
agggctgtatc tcaaccttgc gggttcaaga gatccttgc ctcagctcc tgagtatgt	23940
ggattcgggt gcacaccacc atgccaacta attttaatt tttttttgt tggacaggat	24000
gtacagtgtt agaaatggat tgcttgcaga ggcaggagga tcacttgcg ccaggagttt	24060
gatcacactg tgaaccatga tgcacccct gcactccaat ctggcaaca gagtggacc	24120
ttgtctcaaa aaaaaaaaaa aagagagaga gagagagact caaagatagg caaaaaagtg	24180
ggaaagcttt atagtgacca aaaaaggaaacg ctctaaatgtt gccctatttg catggtgc	24240
aagggtggct aactagagat agggggtaact atgtgggtga ctatgggtgc atctttggct	24300
ttccctgggt gatcctaagt tggaaaggcagg gacaaaaattt agggaaagctg tttagttattc	24360
atcacgttgc ggcagtagtgc gactgggtt gatagaagttt attgttttg ccaggtgcgg	24420
tggctcatgc ctgtatccat agccctttca gagttcaacg tgggtggatc aggaaggagg	24480
gaggatttgg gaggtcagga gttagcttgc ctaacctggc gaaatcccattt ctctactaaa	24540
aatacaaaaaa ttagctgggc tgggtgggtc atgcctataa tcccagctac tcgggacgct	24600
gaggcaggag aatcaatgttgc acctggggag gcccgggttg cagtggacca agatcgtgcc	24660
caatttcatc tcaaaaaaaaaa aaaaaaaaggat atcgatgttgc ttccctcgatt gttacttggac	24720
gtagtaatct ggcttgcctgc aagtctaaat ttcagcagac tggctacatgt ggctgtgtac	24780
tgttagataag gcaatgttgc aagcaaaaaat tgatagagca tcaaggatata atagaaaaatc	24840
cgtaatcaag cagaagatttt gaacacttca ctttcgttgc ctgataaaac aagtagacaa	24900
aaaaaaaaatcg taaggatgttgc acaacgtat taacaaactt gacttgattt	24960
acacgtcttag aaccctgcag aacacacact tttcaagca tactcagaac atttatataa	25020
agtgaccata tgggtggacca taaaggcattt tcaacaaatc tcacaggatg aaaataacag	25080
accgtgtttt ctgaccgttgc gtacagttaa ccttagaaattt gaaaacaaaaa agctagaaaa	25140
accccatgtt tctggaaattt ttaatataca ctttggaaata acaaattggat cagagattaa	25200
ttcaaaatagg aatttagaaa taccttgcac tgaaaaataa tgagaataact atacccaaa	25260
actgtgggggt gcaatgttgc acgtatataa cggaaaaatgtt actcatatgtt gcataccctt	25320
aggagcgggg aggattggaaa gttaatggga ggcaaaagca ggtggatcac ttgaggttag	25380
gagttcaaga tcagcttgc taacagggtt aaacccatc tttttttttt atacaaaaaa	25440
ttatccaggc gtatgttgc tgaggcaaga gaatgttgc aaccctggag gcaatgttgc	25500
cagtggccg cgttgcgttgc actgcacccccc agectggggag acagagcggacttccatctc	25560
aagaaagaaa aaaaaaaaaa aaaaaggccat gcccgggttgc tcatgttgc aatcccacca	25620
ttttggggagg ccgagggtggg cggatcaca ggttggggag tttttttttt aatcccacca	25680
acggtgaaac cccgccttca cttttttttt aaaaaattttt gcccgggttgc gtggcgggtt	25740

032796-132.ST25

cctgttagtcc cagctactca ggaggctgaa	gcaggagaat gtcataacc caggaggcag	25800
agcttgcagt gagccgagat cgcgccactg tactccagcc tggcaacag agagagactc	25860	
tgtctcaaaa aaaaaaaaaa tttaatggga taaacatcca tctcaagaag ttagaaagga	25920	
atgacaaata aaccaaaaaa aaaaaaatca aaagaagaaa atcataaggt caagactata	25980	
aagagagtgg ctgggtgcag tggctcaggg ctgtaatctc acgattttgg gaagcagagg	26040	
tgggcagatc acttgagccc aggagttcaa gaccgcctg agtaacatag agagaccta	26100	
tctttgctga aaataaaaaat aaaaaattag ccaggcatgg tgtactgag gtgggaggat	26160	
cacttgagcc taggaggttg aggctgcagt aagccatgt tggccactg cacttcagcc	26220	
tgggtgacag agtgggaccc tggctctaaa aaactaaaat aaggctggc gcggtggctc	26280	
aatatctgtaa tcccaccact ttgggaggcc aaggctgagg tcagcagttt gagaacagct	26340	
tggccaacaa gatgaaacct catctctact aaaaatacaa aaaattagtt gggtgtggtg	26400	
gcatgtgcct gtaatcccag ctacttagga ggnnnnctnt ngattatatt ttctcettcc	26460	
tacgtcgutta ttggactgaa ttcagaatga tgactctcat tgagctt cctgtctcc	26520	
aactacagtg gttccgacc ccactctgg tttcaactca ccctctgtc gtcatacga	26580	
gtagatactt ctttcctt ttcacttg ttgcttcc tcaaaaaaaaaa ccgttgggt	26640	
cccccteectt ttatttttt ctgcgcacac ctgcgttctc ttgcctt atcatccctt	26700	
tctcgaggcg gtccttcct ttatccagct taaatacctt ctctctgtt tatttgggg	26760	
ttgggtttt atcttcacc ctccctctaa ttcttcctt cttcgcac ccatcaagcc	26820	
tctcggtt tcttccttc tactctcggt tccccccctt ctccctt ttttttcc	26880	
aaaaaaaaaa ggcgtttgcc tttttttctt ttgccttta ttcccccc	26928	

<210> 7
<211> 29430
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (4336), (4345), (4349), (4392), (4447), (4490)
<223> Identity of nucleotide sequences at the above locations are unknown.

aggggaaggg ccggctccgt agtcacacc tataatccca gcactttccg aggagagagg	60
atcatctca gcccagggtt caagaccgc ctggcaaca cagcaagacc gcatctcac	120
aaaaacttct tttaaagctt aaaaaaaaaa aaaaaagcaa agaggacagt tcaggagaaa	180
agcctgtaga ggcagcacac taaggaggag acgcagccca ggcaccagga ggggctggcc	240
atgggcactc actcctccag caggcgagtg cccagcacca gctggccac ccagacaccc	300
aggacacggc ctgaatggct ccgtattcac gtgggtgta ataaacaagc aatacacata	360
gccaataagg acaccttagt aatgttacat cataaacgtc gcaagatcagg gaaatggtc	420
agggtgaagt gggttgggg gctgcatgct acatgagaag tgggtcgggg ggctgcatgc	480
tacctgagac agagcaggcc ttgctggaa agaaggagcc ggcaggcctg gcaaaaggc	540
ctgggggtggg agcacactgg agcagagtgt ggggttagca tggcggtgc tggctctcg	600
ggcgccttcc caccacgtca tggcccatg tgcccaaggt ctctcgttt acagccccc	660
gaagctcagg ggtcacagct acacaccccc cagataacctt ggctgcccc aggtcattcc	720
atccagtgtat ggacctgctg acctctagcc tgacctctgg gcaagctaat ttgagaagga	780
ggagaaggaa gggcaacaga cttggggcga tgaggatgc acagggtggc agacacctga	840
ggctgcacct tggagcctca gttctgggtg tgggtgggg atggacaggc tgagggtgt	900
agcagctggg cccggccacc atcacacccc aggacccacc agatcaccat gaaaaaccga	960
atgtcaactg gcagccaga gtgcagaaca aaccttcag aaacacgggt gtactgccc	1020
catcatgaac ataaaaataat tacggccctt ccccaaggat caccctgtca ggagttgtc	1080
ccaagaaaca ccagaaagaa gaaaaacgtc tgagtcacaa tatttgcgt ggccttattt	1140
gtaatagcaa aaaaaaaaaa aaaaaaaagaa caatctccag cggcagggggt aactagacta	1200
ttgtctccgt gggaaaggtag caccaattaa ctagtaacaa aatgactgct gtaacaacaa	1260
acgttcgac atgtcaacac caaaaaccac acaccagca taaccgtgaa ccatgatttc	1320

032796-132.ST25

tactagaatg aatggcagtt atgagaaaagc accagcggag acaaagattg aaaaagtaaa	1380
ggtggccctca ttagggagac aagtctctgg gtaatatatt gtaatactgg taaatatata	1440
gttttaata tatttttaa ttccaaattc catatatgtt cctatgaagc tatttctgca	1500
aatattttt tcaggaccgt acatcacaaa ggcaaaaggg ccaggtcagc tctccagctg	1560
agagtgcacca cttcagagca gacggcagac tccagggta gcaagcctgg ctgagacctg	1620
gccccatgaca atcaactaac ccctctgacc tcaacatcct gtctgtgaaa tggggataat	1680
tactgcaccc ccacatcaca gagtgcgagg cttaaacagg atgcttcata gaaaagcgct	1740
caagaggtaa cagccggag ggggtgtgg ttttcatcaa ttaaatgttg ctttcatcca	1800
gcccctggcc agctccaaca caaagcacac accatccact cagactcagt tgccctggatt	1860
caaagccccc cctggccctc agctgtgaga ttccggcag gatttcccat ctcccagagc	1920
ctcagtttcc tcattcatga aacaggaagt gatcatctt ttatttttt ttttattttt	1980
tatTTTgaga cggagtttca ctctagttgc ccaggtgga gtatgtatggc gcaatctcag	2040
ctcaactgca cctcggctc ccagtttcaa gcgattctcc cacctcagtc tcctgagtag	2100
ctgggattac aggcacacgc caccacgccc agctaatttt gtatTTTtag tagagacggg	2160
gttttgcatt gttggcagg ctggctcga actcctgacc tcaggtgate cgccccctt	2220
ggcatcccaa agtgcgtggg ttacaggtgt gagccaccaa gccagttga caactgttt	2280
taaagacacc tctggctgt gtggaaaaca gcctgttagt gcctcaaaaa gttacacata	2340
gaatgtatct atgaccagta attccactcc tacatatata cccaaaagaa ctgaacccct	2400
ctactcatgt atgtacacat acaggtacac gcatgttaac agcagtgttc acaaagccaa	2460
aacatggaaa cagctcaaattt gtcataacc gatgaacgga taatgaaac gtatgttatt	2520
caccacctga cggaggtgag agggggccata aaaagaatg atgcataaaa acgaatattta	2580
tggccaggtt tggggctca cgcctgtat cccagactt tggaggctg aggcggcgg	2640
atcacgaggt aaggagttcg agaccagctt ggcacacag gtgaaacccc atctctacta	2700
aaaatacaca aattagctgg gcatggtggg gggccctgt aataccagct actccggagg	2760
ctgaggcaag agaattccctt gaacctggg aacagagggt gcagttagt gagattgcac	2820
caactgcactc cagcctggc gacagaccaa aactccgtt cggaaaaaaaaa agaaaaaatt	2880
agccaggtgt ggtggcgggt gggccctgt aatccagct ctacttggg tactgaggca	2940
ggagaaccac ttgaaccccg gagggtggagg tagcgttagt ctgagattgt gccactgcgc	3000
tccagcctgt gtgacagaag gagactctgt ctctaaaaaa caaaaacaaa aaaggccccga	3060
cgcgggtgtct tacacctgtt atgcaacac tttggaaagc caaggcaggg agatcatctg	3120
aggtcaggag tttgagagca gcctggcaaa cacggtaaa ccccatctct actaaaaata	3180
cagaaaattag ccaggtgtgg tggcacatgc ctgtatccc agtactcgg gaggctgagg	3240
caggagaatc gcttgaaccc aggaagcggg gttgcagtgc agccgacatt gcaccattat	3300
actccagctt ggggtacaga gtgagattct gtctcaaaaa aaaaaaaaaa aaaaaaaaaa	3360
ctaaacaaaaa gcaaaaaaac caatgagtaa tttgtcaag tgaacttcat cccatggaa	3420
atgcagataa tttttttaaa aggcaccatg cacactggc aggtggctt cccctggaa	3480
cgtttttttt tgcctggatt cccagttggt ttaatgggc gttagaacact tttttcaatc	3540
cgggatttcag gcacccctgc ttagcacaaa ctcagtagac cccgactct gctgtgggtt	3600
cttggacta ttaggagaat gtgaggggtt gattcagatc tatctctagt ggggtcatgt	3660
ctgccactcc caggaacgccc cacttctggc aagtcaagtgc agagaaaagg ccagctcg	3720
gccccctctg ccttgcgtcc caggaccgtt gatcaatcctt accccggagca gaatcaggag	3780
tttggaaaacc caagtgccaa caatctcatt ttaacccatg taagcatatc caatatttat	3840
atatagaatt cataacagat gtctggcattt ccattccat agcctatattt ttacactgtt	3900
tatTTTcatgt gttacaccaa acaagactca attcaaggta acccaatcct ttgtctactat	3960
accaaaaataa gcaacattttt cagtccatgc ttatataat ttcaccaagc attacactag	4020
gcctccaact gctcatcgga gcaagctgca gcctggacac aagctagaga ttaatcagtc	4080
aggaatgatc ctgcgtccag tgccagcatg atggaaagaga agagaaaaca gaagacatca	4140
gggctccaga gtcaaggagc ctgcagggtt gttggcagg atatacacac atacacacac	4200
acacgcacac acaaaaaccac ccaagaagaaa aagggtggat gaatgcattt acaggtaatg	4260
cctggagccct ggggatggat aagctgactt cagggtggccc aggcaggctt cctggaggaa	4320
gaagacctgg ctgtangtgg ggtangcang ctttctaaat gggaaaatc tggctgtggg	4380
tggagttggc angttccga aagaagaaa agctgactat ggttacaccc ggtctgtgg	4440
ggaacangca ggcttcttgg aagaagaaaa tctggctgtt ggtggatcan gcaagcttct	4500
tggaaagaatg aaacctgact atgggtggac caggcaggct tcctagagga agaagaccgg	4560
ctgtgggtga accaggcagg cttccatagac agaggaagat ctggctgcgg ttagatggg	4620
caggcttcta agaagaggaa gggctgactt tggtagacc tggctgtggg tagactggc	4680
aggcttcctt gaggaggaag agctggagca ttgaaaaaca aacatgactt ggtaatgtt	4740

032796-132.ST25

gagcatgcc	aggcctgatc	cccagaggca	attacgcact	caagttactt	aattctactc	4800
acaatgcctc	acaacaact	tctctgacac	ctaacacagc	tctgggcacc	ttctagcttc	4860
agctcccaa	agcagttatt	cacgctacta	ccctgcacac	ctcctcacac	ccaaacccca	4920
gggacaggag	ttctgcca	tgccaaagct	cctgatgcca	aagcctgggt	ctgctccgg	4980
gtcccttgc	gtctactgt	ccaccccgca	tcggcatgat	gtgcaaaaac	aaggcttgc	5040
aatctgcct	gatgcctggc	ggagcgagtc	cctcccgatt	cgtctccctt	agaaaacacct	5100
gggctgcct	ggtctgtta	taccccaac	acatttaca	gtcagctccg	caagttccac	5160
aaagatcaac	gctgctgtt	ttatggcatt	ttatttacag	tttttacaat	ataaaaaaagg	5220
aaggatgcca	cagctcagcc	agcaggacag	acagagatct	atgatgcttc	tgctgcacca	5280
ttgtttgtgg	tcaagaaagt	ctgtttcaa	tgatttatta	aatttgtggt	ggagatggat	5340
ggtggcagt	gttaccagca	acatgaatgt	tcttaatgcc	actgaacttc	acacttacaa	5400
atggttacga	cgataagtgt	tatatgtatt	ttaccacaat	taaaaacagg	taaatgcagg	5460
ccggggcacgg	tggctcacga	ctgtaatctc	agcactttgg	gaggccaagg	caggcagatc	5520
acctgaggtc	agggttca	gaccagtctc	gccaacacgg	tggaaactctg	tctctattaa	5580
aaatacaaaa	attagccaga	tgtgtgtgg	catgcctgta	atcccagctt	ctcaggaggc	5640
tgaggcagga	aaatagctt	aaaccgggag	gcagaggtt	ccatgagctg	agattgtacc	5700
attgcactcc	agcctgggt	acaaaagcaa	aactctgtct	caaaaaaaaata	aaataaaaata	5760
aaaataggtt	aatgcaaca	tatgttatag	taatattatg	ggttattatg	agctacaaaaa	5820
aagaatgact	tgggactaca	gttacagccc	tcattcagg	atttgtttt	aatgtgggtt	5880
ggtcgtaag	gcatgtacac	acattttga	cgttcaaata	ttcttagatt	tggacagtga	5940
gcacccctct	aagctggctc	ttctgtccca	gagggtcccc	ccagtcctcc	agaacttctt	6000
tgctttctta	cacaataaga	tgcggccatgc	tcggcttgc	ccttccttgc	ccccagccct	6060
agaaccagct	tcttcgtgga	caagctctga	ctccttggg	tggagaatgg	tattcagaaaa	6120
ccagacccgt	ggctctgg	tgctcactgc	tacttgggt	cattgtttct	aggcctctct	6180
gtgtatggag	gttagatata	cacgtacagt	cttcccttct	ccagattcc	gtacttgagc	6240
tcgcctactt	gctaacattt	atttatatcc	cccaaattaa	acctcacagc	acttctgcaa	6300
tcactcactg	acttgcagag	tgtaaaaaaa	ctgagtcacc	atcacacg	ccaaacttag	6360
gtcaactgag	gccacaacgc	cccatcttct	tgctccggct	gtcgagatgt	aagcaagtgt	6420
ccttctctcg	gtctagctag	tgcctatgc	tccacatcac	tgtgttttt	gtggcaatt	6480
ttgctgtata	aaatgtcccc	tgcacatatg	ctgctgtgc	gtgctccctag	gtgcataagg	6540
ctgccccacg	ccttacagag	agaatatgca	tgagaggctt	tattcaggt	ttagttatag	6600
cgttagttggc	catgaattca	atgttaatga	atcaacaata	tacagtaaat	aagggttttt	6660
tttagagacag	ggtctca	tgtcacc	gtttagagt	ccagtggt	gaccttggct	6720
caactggcc	tcaacctcct	gggctcaagt	gatcctccca	cctcagcctc	ccaaactgtt	6780
gggattacag	gcgtgagcta	ctgcactcag	cctaataag	gtgtttaga	aacacacata	6840
agacaagtt	atgggctgag	tgcgggt	catgcctgta	atccaaacac	tttgggaggc	6900
caaggtgg	ggttca	aggccagaag	tttgagacta	gcctgggca	catggcaaga	6960
cctcatctgt	atattttttt	aaatcagaca	ggtgtgtgt	tgcata	tagtccca	7020
tactggagag	gctgaggcag	gaaaatggc	tgagcccagg	aggtcaaggc	tgcagtgacc	7080
catgattgt	ccactgcatt	ccagcctgg	gtgacacagc	aagacgctgt	cttaaaaaaaa	7140
aaaaaaaaaa	aagccaggc	aggatcgaa	cagttggca	aaacgttgc	acctgaggct	7200
cacaggaacc	tagcccgt	tttccctag	gagcaatgt	tca	ataattcagg	7260
gttcccagtg	actttatgg	gcataactt	caagaataac	aagaaccaac	tgtacgtgt	7320
tatgtataact	cacacttta	tttttatttt	tttttatttt	tgagacagag	tctcactctg	7380
tcacccaggc	tggataaaa	tggcgtgatc	tcgactcact	gcaacctcc	cctccctagg	7440
tcaagtgtt	ctcagcctcc	caagtagctg	ggattacagg	tgtgtccccca	caaccggct	7500
atttctgtat	tttttagtaga	gacggagtt	cgccacattt	gccacgctgg	tctcaaactc	7560
ctaaccctaa	gtgatccacc	cacctcagcc	tccaaagtg	ctggattac	aggcatgagc	7620
tgcctgtcc	agcctacata	cactttata	cacacatgc	tctatgacta	tttctctatt	7680
tctgtgcatt	tgtgcgtgg	agtacctaca	gtttagtca	tgtgtctggg	tactgtctcg	7740
tccaaatgg	taagcacctt	ctccaaagtg	caaagctgg	cttgcgttac	tatccatatg	7800
tttacttatt	tgctcaatca	attacttat	tagtccata	accagttcc	catctgctcc	7860
atgtacccct	gtgtcagtc	acctctgcac	cctacccac	cttgcctcc	gatgctggat	7920
gccaatcacc	cccgacaccc	ctacatagca	ccaccctcga	catgctg	tttatttct	7980
tatattat	tttgagatgg	agtcttactc	tgttgccttgc	gttggagtgc	agtggcacga	8040
tccaggcgtca	ctgcaacgtc	cgccctctgg	gttcaagtga	ttctcctgc	tca	8100
aaatagctgg	gattacaggt	gcccaccacc	acgcccagct	aatttttgt	tttttagtag	8160

032796-132.ST25

agatggggtt tcaccatgtt ggccaggctg gtctcgaaact cctgacacctca agtgatccac	8220
cttggcctct caaatgtctg ggattacagg tttgagccac cgccgcctgg ctgtttttttt	8280
aaatgccagg caccacatt ttgtcaatgg ggtgggagga aagaacaggagg aggagagcac	8340
actgcccggcc cctgcactga atccactgtat caatctgggg gcaactgcca tctccatctc	8400
ctgtcttcct atccgtgaac atctactgca gtcctctcca atgtcttctt gtaaaagggtt	8460
attatgtttt gcatacaggc cttgcatatt agttctcaga tataatccat atactttata	8520
taaaaattcaa accacattta aaaaataaaa actagcatga ctataacggga gtctgcaaca	8580
ttctcacaga ctttatgata aacatgaaa cttcaagat acttaggggtt gggcaggagac	8640
aatgtttaag gctgcctgga agcctccccca tccctgagcc agaaaagtctt atctccctt	8700
caagggggaaa tgctgaaaaa agcactgatc aggctaaaat gacagggatc agggagtaat	8760
caaagtacaa gtgagctggt ctccctccatt ctgagcacag caaagttcag tctctccaag	8820
tccaaagaatc atacacctgt ttgccaagaaa tgaaggctcag gtgtctacaa gtggctgaaa	8880
atattcattt ctggccatt aacaacattt ttggcaaaaac cataccttag ctctctgtgg	8940
aaatttctta aggtagaaga aacaggaaac acccaggctc gottttatgt agacaggttcc	9000
atgaaggccag ggaccccccacatccacg tttcaatttac ctgcacgcag ctcacagtgt	9060
attcaaacatc tacgcgtctc tcctacttggg gtggcgggtgg coactcaaacc cctcatgcag	9120
ctacgtgac cgcaattttt gcaacataat ttcatgtttt tccttgggtt tttacccaag	9180
tcagtgacac aattctgcag ttgtctaaag attcaaaaatg aggacttga catttacaac	9240
aataataaaaaa tcttgggtt cttaacca agcatactt gtcacccatc gagaaagctc	9300
tgcaaaactca agctggagtg ggataacttgc tgacatcttc aagcaccccc ggaataagctc	9360
tactcccccata ttccacccctt ggctgaacca tctatatccc accaatttccc ccaacatccc	9420
tccatccgtc catccatcca cccaggacc tgctaagcca ggaggctctt cccatctacc	9480
ccacagcctg gcctcagccca acaagggtctc tctctacatg aatcccaccc caccagagta	9540
gaccaagtct cccgttagact ccacccctgac cacccatcgat cccctcagcca ttcccccaccc	9600
taaaaacccct ccctggcttc tacaccacccatc tgatgaataac ttggctgaat gtgacccgttgc	9660
ctccctggacc caggtgaagcc acacgtcttc cgtaagcccg ccagctcacc ctgcctctgc	9720
accttcaactg gagagagccca gcaacttcacc tcctcaggcc aggcatggct gatgccaccc	9780
agtggaatct ggtcaaaagc agggcccggt gcagagcagg gtcgtctgca gagcaaggcc	9840
ctgggtctgg ggccgagcac ctccaatgtt ggccgtggaa ccatccctcc catccaggt	9900
gctgtctcca tcaagaatga gcgagctgtt gacatttgc tgacaataat gaataaatac	9960
catattttc ttcaaatcca gaatagatgt ggccagggtt ggcataatgac tttttggaaa	10020
ggacagtttgc cctttccca aaccaacttgc gattataaaa agtctttttt aacgaccaca	10080
agagcggagg agctcagggg cagacaaaag gaaggctggc tgcaagaaggc gggagagtg	10140
ggcccttcagg ggcgggtggg gagagagaaa gcctggagct gcaaccacc ggtctgtta	10200
catcagggtgc tacagaataa caccacccatc tccagcttgc ccccccacccctg ccctctccca	10260
gcccagtctac ccagacagca cccactccc cacacacacc teacatctgc ccgcctcaca	10320
ctcaccatgc tcggctctca atgcaaccctg gaaaccttgc ttggctctc agctcagccca	10380
ccccccatcc ttgttggccccc tggcccccacca tcgaatttctc tctaatacttca atgcacacac	10440
ttgcacactc aaacacacac acacacacac acacacacac cccagaggaa aaccataatt	10500
gactgagtc caggcaagtt tcccgagcag ggaccacatt tcaaaggctca gggaaaggcagg	10560
cgaacagaa acatacaggc ggcacgtttt ggggtggagc agggaaataag aaatcacttg	10620
aaaaagataaa aaagaaaaatg aggtatgtt gtttcaacac ctcggagcac acagaacagg	10680
acaggccctt ccgggtcttc cctcaacacccatc gagatggcc aggcaggctc ctgctgtcc	10740
accgcagacatc tggggcttat ggcctgaca ccaaggccctt gggccaggcc gggaggccgc	10800
tgtttctctt cctgtctcc cgggcaggcc ctggcccccac aaggaaactg gcccggct	10860
ctgtttgtt actccggaaa gtcctggag acaagcaaaatg gacttgcattt gtcactccaa	10920
acggcccaaaa tttgtgacaact gtgaagaaggc cacacccaaatg caaggtgaca gaacaatgtt	10980
gttgacgtca ggttatcgc ttacgtctca ctccacttac ccggactcac ccgtaaaccttgc	11040
ccgtctcttc ccaaccatgtt aaggatgcctt aggtatgttgc gcaacaggcc tggagcataa	11100
ttaccatttt aaaggctctt agaaggctctt cggtgaggaa gcttagttca ctttctctcc	11160
ccttaggatttt cccaaacttgcg cctgtatcaca gaacatccccatc tcaaggaaaca	11220
tattttggaaa aacactggcc tagaggcaga agtggaaatgg aaaacacaaa agtaaaactg	11280
aacaggagggc actggggcaga gaaacgggtca aggcggccctg aatccctggac cggtggagat	11340
ccccagcttgc gcatgtctcc ctcctggcc ccagaccggcc tcccccattt tcctggataa	11400
gaaggctaat ggcgtatcagg gtgaagggtt gtcctgggtt acaccccccac gtcgcacccca	11460
caccaatccgc gtcctctgcgagccactgtt ctttcttgc ttggctactg tggaaatgtt	11520
tgcaactaac caccacccatc acagatacaa atgcacaggat gatcagatgt aaaggaccca	11580

032796-132.ST25

caggtctctg tgatacggct tcatgcagcc agcatggcta gtgccgtgca gaatgagaat	11640
gacccccaggc aagtecttgc ctccccagacc cagaacccca tggagcccac cagggctgg	11700
tcacaagcac tgtctgggtc gggcagagat tccagcaaga ggagggaaaca tccatgcacc	11760
ggagccagtt accagaagca atacgcctt tccaaaaccc aggttattaa tggagtcac	11820
tgttgagtgg tagctatggg atactgcaca gcagagatct tcctgagaga	11880
aacagttt ccctgaaagc catgtgtctt ccactaactg tggtaattt gggcgaacgt	11940
ctgttatctca ttgcgtggc cgccatgtg ctgacaaggc gctggggcg gggggggag	12000
cagaagctca ggggctggg agggaaaggaa acaggccacc agggctcccc agaaggcatg	12060
tatctctc acaaacacac gcatgcacac acacgtgcac acatactctg caagccctga	12120
gttagcaact gtggaatgtg accagctca gtagtcccagg acaagctgtc agggaaatatg	12180
acatttgatt gatgtctgca aatgtgcgtt ttcaattt agaaggtaa gggcagagca	12240
gagaaaaata tgtatttcag agtcccagg ttagtgcctt gaaaccagcc cattactaac	12300
attcttattt tcaacaaaat atagcatttctt gattacatac catcttgggtt ccacgcctcc	12360
tgccttgcctt agccccccgg agcggcccaa ggccatggca aatagtgaga gaaacagttc	12420
cagggtggag actgactca ggggtgtcagt cagtggggcg ctgatggccg gtggggggcc	12480
agcagtcata accctcttcc tgggacagtt gagtagctt ccccccaggcatgtggcc	12540
ctcagggttca tatgggaggc gagaggagt gcagagtcca ggagagtggc tccgaagtca	12600
ctgttccctc caggcctcag tgccttcattt cattaaatgg gtggctgag gtctggatg	12660
acaaggaggg ctgcacttta ctgaaacccca tgggaggctt ttcggccattt tcttttattt	12720
atggaaagaaa acactcgat aattcaagta ccaattaaaa ggcaggcact ggaaccaccc	12780
tctgccaattt cctagttttt cctataccaa atttgagca gtttatttgc ctctccagc	12840
ctcagtttct tcgtctgtt aatggggta gggatggccc ccagccacca gggcagctgg	12900
aaggattttt gaaatcaaaat atctctttaga gcccacctgg cacactgtga tacacaacaa	12960
atgttagctt tttttgtcta tgaagtctt atttatatac ttgggtgttc taaagcagga	13020
tacattttttaaaaaacaag gatttttattt aaacacgtac cccacagacca gcaacccat	13080
ggagactgtt cttaatttcag gccagatcttccaa acacgactt aactacaacg tttatacagg	13140
tctcttggct gtccttcaaa tccactaag gtggacttca tgaagcactg tgcacatgtg	13200
tgtgtgcattt cacacgtgtg ggaaggggcg gtcacggat ccctcaggta ccccccac	13260
gcagtctcaa gtcacaaagc gacagagcag ccgaggaagg tctgtgcccc actggaccct	13320
cgtgaaggcca ccaactctac ctctgcgcgg tgcctgtcag actggctac ccttgggtg	13380
gggaccagca tttgtatgca gaaaggcaga cagaaaaggaa aaaggcaag ttcgactcca	13440
gataacacacg acatgttccaa gccccagggtt ccataatgc cacgcagatg gaagcattta	13500
ctgcggaggcc acacagcaaa cgcacggatc caggacggg ggtgcagact ggggtggccc	13560
tgagccatgtt ccctgcaaat taccacccatg ggaaaggagg ctgccaacc cccgcacagt	13620
cggtggctt ggcacagact cgtggtttcc atcgaggtgg gaggaggtgg gacgtcccg	13680
ccccccccccatcg cagagggaag cggccgttcc cctgtgttgg ttacaaggat	13740
ctcattgttc ttccctcacag ggaggaaact ggaggaccga gtcagaacg cattttat	13800
ctggcagaaaa agaacatctg gggaggaaa cacatttcag aaacaaacat acctttgtac	13860
cagttttat ttcttttaag tggtaaaaaataataataaa taaagacatg ccaattttat	13920
catcgctcta caaaatccctt tatttgcataa acacgtggca gtcactt caaatgatta	13980
ctgttccctgg aaaatttgcag caacgtggat gccaaggccc gaaggccgccc atcagcagcc	14040
aaacaaaaga tgccacctcg ggctccgcga cactgtacca tgccaggaa ctggacagat	14100
ttggggaaatg ccacgggttcc ctttaaccctt cttgcctctt ggtctcttgc tgcacatgt	14160
aggctaacat tctttgagga actggcattt cttagttgtt aatatgcattt tgggttggg	14220
agtcgttgcac aaagtccatg gttgacgatc agctttgattt tccttggat caagtttacg	14280
tgtcgatctt ggaagttaaag aagaatttttgg agaagcttag cactatgggtt tggcaggccc	14340
tgggtgaact ctgcacccaa gcatcttgcattt tggactgaca gctgtgcgagg ggctctgcag	14400
gcaggtgcac aggacgaaac acattccgtc cggggaaac ctgcaggaaa gctccctt	14460
cttcctaagg tgccggccctt agcttcatgg gtcccttacccttccacgcctt tcacacttcc	14520
tgtgtctcat gtggggatctt cttctgggttgc ctgacttccat tcagtcctca taggaggtgg	14580
aactactgttcc accccatccat acagatgggg agactggcaca caaggggacc aagaaacccaa	14640
tgcaaaatgttca cacttgtggg atcagtgcata gggggatca atccccaggat tctttcttgc	14700
agagttaaat tgggttcatg ctgcctaaagg gggggcaact gaaagaccac tgcataatctt	14760
tgccaaaagg gtcaagcaca ggagccgcag ccagttggc agatccgcag aggccgtgg	14820
gtgaccctcc ccataccctgg agggatgtt gtccttccctt ggccttcactt gggccctt	14880
atgaccgtgg cctccctggc ctcagcaca atcccggttcc tggctccat gacaaggccct	14940
ccgtccccaa gactgtgaggaa aatggaaacg aagagggtt gctgtgcagcc cagcaccac	15000

032796-132.ST25

actgccccctt	ctcaggggc	agaaccgtcc	tggaggactt	ggctttggag	ggggagccctg	15060
ggaggcccagt	aagtcaacaa	gcctctactg	ctcatgggt	ggatcccacc	gcaggcccc	15120
acctgctggg	gcgggcaggg	acqqqcgcca	cagcttggcc	agggcagata	accccccacct	15180
tggccagggc	gaaggcagga	cacgtggct	ccagcttgc	cccacccatcc	ctgcacaaca	15240
ctgggcaaag	tccacgttt	cctcaactgg	gtgttacat	ctgcaggaca	ggggcatgga	15300
gttacagagc	gctgaagcca	cacagcaacc	taggagcag	actccatgcc	tccccgggga	15360
ccccctccccca	ccatgaggac	catgaaggct	tcccattgtgc	cgcaaggact	ctggtgtgga	15420
gacacacgtc	tcctacacag	ccaggcctaa	cgcttgc	actgggtgg	cccacccctgg	15480
ctcacagctg	gagggccagg	agctcaaggc	ttcgcaagggt	ctgctctcat	cccagaggcg	15540
atggggagcc	acaggaggct	gcaggagaga	gggtggggcc	cctccacttc	agaggcccc	15600
tctggcccac	agactggaga	gcacatctct	cagcaaccac	ggagcgccaa	ctgcgcacag	15660
ggcctggctcg	tcagagcggg	gcaaaggcac	tgaccgtcac	ggccaggccg	agggaaagacg	15720
ggtgggcagg	gaccttggc	agagggggaa	gaaccttgg	cccaggctgg	ccctgccttc	15780
agcagtgaag	ctgagtgggg	aggcgctgtat	gcagggggcc	agaaaagggt	gctggtcagc	15840
cgggaggaggc	cccccacaga	gqaaggcagcc	agcccagacq	caqatggcag	gttccctca	15900
acaatgtct	ctgaaaagga	gaggcgggg	ctgcttgc	gacacctaca	aatagatagt	15960
cagccctcag	ccccctgcca	tacttctgac	aaagcagagg	ccccccagggg	aggcgccaccc	16020
gaaggtactt	gcacctgtcc	cccagactcc	tagagccac	ctgaccccat	cccaccagg	16080
ctccagctac	aaaataaaatg	ccqaggccag	ctaggcaagg	acgcacactc	gttaccgact	16140
gaataggctc	cacgttgc	tgagcgcac	ccacaggc	ccaggccaca	ctatgcagag	16200
ctgagatgg	ttcgccaag	cagcctctca	gctgagctga	acaagtccag	agtccccggg	16260
gggtcgctac	tatgagtaa	caatttgcgtat	gcatgtttaa	ccctaacacg	taaccgtcac	16320
tgagccagggc	cctgagctag	gtactttca	acgctgc	tctgcage	caggacgagc	16380
ctgtgggagc	ataaaagatca	ttccctatca	cggatggg	aactgagctc	tgaagcagt	16440
aacgtgctt	tcccagaccg	cagagctagg	agcaggacac	aacagcagg	caggcaggaa	16500
cgggtgaggg	gggcctgcat	ggccttctct	ggaggctgc	catacacg	accccccagg	16560
ccccgaccct	gcacctgcag	ctcgctactg	ccccctcagt	gactccag	aacctgggg	16620
taggggaagg	aggctggaa	tacctcggt	gtccgaaaaca	gcagcttctg	cttggaggcc	16680
actgctgcat	aatgttgct	gcccagcaca	ccccaa	cctgtgc	ctgtgggtac	16740
cttccagcat	gccttggta	ccaagctggc	cttaggtgt	gtggcagcc	aagaatagaa	16800
cagggccac	ccctctt	cacactaaca	caaagcaaga	ggcgggact	tcgactgagt	16860
gcatccct	agctcaagg	cctcacggat	cacagggtc	agggcaagat	cccaattctg	16920
cattcccg	tc	catttcat	cctgtctgc	caacaacagc	cagtgggt	16980
ctgaacctgt	ttctcac	aaacacatca	taccattgg	cccccagcc	ccggggagagg	17040
ccctaattcc	tgactgtgt	gagatcagat	cactgtttaa	gtacccagaa	ggcccttgg	17100
caggggctcc	aggggtgggg	gtgtatggc	gtgggttat	cccgctctgg	gctatagtcc	17160
accctgatgg	aggaggctg	ttgtcagaac	cggtctgtc	agggcacagg	agcccagagg	17220
gaccccccaga	gctcacctgg	ttgtctctga	gcaggctcc	ctcaaccctc	agagaaaagc	17280
acagcaagga	ggcccccag	agcccagcgc	ctagcacca	gtggcgtg	agacctgcct	17340
ggatcctgga	gatctctat	caccctccaa	gtcagtcat	cccaacc	ggaccacag	17400
cccacggggc	cgttaagg	tgctgagtc	aagaaggct	tcgacactgg	gaagccaagt	17460
ggcacctcc	ggtgtggagc	aggcggaaatc	ccaccagct	ctgctctgc	agtgggcaca	17520
gctggacgat	gagcagaagg	gtctgttgc	taataaacgt	catttctt	agaggataaa	17580
accttcaaa	acagatggaa	atttttttt	aattaaaact	gttggccaaa	gagatgaaa	17640
gcacccctt	tgccctcc	ccatcg	ccatctct	cacacctca	gctgttc	17700
gcccagggtt	ctcctgag	actggggc	gttggaaatc	cgtgagcc	cgccagcc	17760
tggctctgt	gagctctg	ccaggccatc	agggcacacg	ccggc	tggggccac	17820
acagggcaga	gccca	gtcagcac	agggcc	ttggcaca	agtctctg	17880
cctccctgt	ggacgc	ctcactatcc	cacccacta	gttgggg	atctgtcc	17940
cagggtata	tgctgtcaca	gaccactacc	agagccatgg	cctgtgtt	cgcccg	18000
caggtagtca	tttgc	aggagcaggc	aacgcgc	tttgggg	ctctgcgg	18060
ggactagagc	tccagcag	cagccct	gagaaggaga	actccatgc	ctaaggagg	18120
gacgcagcgg	acggc	acccaccaca	agcccacgg	gccctgc	gcaggtcagg	18180
atccctgac	cactcg	ttgttacc	agctgc	gagtctac	ggcaaggact	18240
gtggcggca	gtggc	caaatgaat	agtgtcc	ggagcagg	ggctgggg	18300
aggcacagcc	gggaccc	aggcctcc	cactgc	aactcc	tggccat	18360
cagcgacc	gtgg	caatg	cgccg	accc	ttgggagg	18420

032796-132.ST25

tttcgtgttc aaattcttga gaacgcatta aaaatatac tcagtcaccc actctatagt	18480
tttaactcaa aagtaccaaa gtagccaggc gcgggtggctc acgcctataa tcccagtact	18540
ttgggaagct gaggcaagag gatcacttaa gcccaggagt tccaaatgaa cctggcaac	18600
atggagggac cccatttcta caaaaaaagt gttttaaaaa attacctggg cctgggttg	18660
tgtgcctgta gtccagcta ctcaaggaggc tgaggcgga gaaccacatg aacccagggg	18720
aggttagaggc tgcagtaggc tgtatggca ccactgcact ccagcctggg taacagatc	18780
agactctata tcaaaaataa tttaaaaaggc accaagccag gcttgggtgc tcacacctgt	18840
aatcccagca ctcagggagg ctgaggcaag tggatcacct gagtcagaag ttcgagacca	18900
gcccagccaa catggtaaa ctccatctcc actaaaaata caaaaattac ccaggcgtgg	18960
tggcggtgc ctgtaatccc agctactcag gaagctgagg caggagaact gcttgaaccc	19020
aggaggcaga gtttcagtg agccaagact gtgctactgc actcaagcct gggagacaga	19080
acgagactcc atctaaaaa ataaataaaat caatcaaaaac caccaagact ttttatata	19140
aacatttatt attccataat tccttttttgc catgattaaa aatgtttata taaagttcc	19200
tgaaaatggt aagaatgcca agtgaaggct gcaaatgccc aagccccac cgtagcatct	19260
cacggagttt gggccttagg aggctgggtgg gtaccacgtg gaccggagac ttacagtc	19320
agtccttttgggttacactg gttttccac accccagaaa tatggctct tactcagga	19380
ccatgggggtt cctcacactt ggcccagaag ctgtcacata gccagacagg tgttctacaa	19440
cctaggctag agggagctca tgctccagca gaattcgagc cagaggaggt aaaagatggg	19500
taagatctgc tccctggaca gatgaggccct tggcctcaga acagttactg atcatctacc	19560
agacatcaca cttagggcag agggggcgcag acgaagacag cccctgtcct caaggccctc	19620
ccaggttggg tggaccatgg aagggtccag acagatctgg caagagaagt gcccacacca	19680
ggggcagaag atggcaggt ctgctcaggc cgacacggcc tggcaggcca aaaagtcca	19740
acttcagatg ctggagaatg ggcacgactg tctgagaaag ggaaggatgt gataaaaact	19800
acttggagaa aaattatct ggcagagca taagataat gggcaaaaggg gaggttccag	19860
aaagcaagga gaccaagtaa aagctgatgt cattgctct gaatctaggc tttcaactgaa	19920
tatgcaccgc agggcctgta gtaaaagcct cagagcccg ggagtctgag tggaggagag	19980
ggcaggggac agagctgggg cctgtgtcta cagtgcctag gaggaatagg catggacgtc	20040
agctcggagg ctccagctga agtggaggagg cggccaggc acacacggca cgcccgatc	20100
cagactcctt ttggaaagca agttcgctct gggggaaagt ttggagaaat ggccttacc	20160
cgcagaagca agccccagaa catatcttc tccaaaacta tctcgtacag tgaggacgtt	20220
aagcttcagg tcccttagag gagacagtct gtccttcct gggcagaac ccaaggtggc	20280
cagagcctgg aaggcaccca gcacccaggc tgggtgttc cagcccaggc cacacgtca	20340
gatagctatt aatccccgt tgagcaattt cctgagagct ttgccaggca ggtaccgcct	20400
ccccatctga actaatacag gggtacatcc caaggaagaa atgaaagggtg cccacattt	20460
gctctggat taacttaggga gggggatgt aattaactca gtaattatat ttgcacatgg	20520
gctaattgtca aaattatgt gtcatttgcatttttgc acagacacc ggagtggat	20580
gggcaggcagg agtgctcggt gcaagtcggc acaaaaggca cttccagggc cttccacaaa	20640
tgtcagcaaa acccacaat gtcaaggccc gtcactgc acccagcaga tgaattcact	20700
tccacagccct gagaccgcca gtcatcgaa ggccatttaa aatccagccc tctgacaccc	20760
gctggatatac accatttacc gtccttcaggat caagagatca aagggtggaa cctgatagga	20820
cggtctgtaa gttcaccaca aaagcataaa cgtcaagca gagccaatac gtctttgaa	20880
aaggacaatg aggtggaaat ttacataact gatctaaaa tatgttctga tgcttcagag	20940
atggagacag cagcattccg gtacacaaag acactcacag gcaatggagc acagtgaagg	21000
gtctggaaatc aggacccagg tgcgtgttgc cactacacat aaaagagcag catttacaa	21060
aatggatag gatggaccat cccaccaagg tggcggacaa cttccatttc actggccaga	21120
cccctaccc ataccatata caaaaaaaaaa aaaaaaaaaa aaacccagac agaataatgt	21180
ctgaatgtaa aacataaaaactgtaacatgc ctggagaaaa ataatggagg atatattat	21240
aatctggaga tggagtaaca agggataga aaaaagccat agggaaaaag tagagttatg	21300
attatatgaa gcttcttaat atctttatga taatgtacca ccagaaacaa ggatgaagga	21360
ctagctacag accacgactg aaacctggaaa caaacagaac aaagaattaa agtccatacc	21420
aaataaaagac ctcccacaaa tctataagaa aaagataaac aggctggcac cgtagctt	21480
gtctgtatcc ccacactt gggaggcga gatggtagg tcacttgcgg tcaggatcc	21540
gagaccagcc tggccaaacat ggtggaaaccc tgcgtctacc aaaaatacaa aaattagcca	21600
ggcgtgggg cgcatgcctg tagtccacgc tacttggag gctgagccag gagaacagct	21660
ggaacccccc aggcagaggt tgcagtgaaac caagatggca atcgcgcac tgcactccag	21720
cctggagac acacgcgagac tctgtctcaa aaaaaaaaaa aaaagaagaa gaagaaaaaa	21780
aaaaagaaaa agacaacaga aaaaatggcc aaggataagt tgcagaaaaag	21840

032796-132.ST25

taaataccaa taaaccagaa atgagggttg tgcaaatcaa aagggtttat aatttttaac	21900
caaactggac caaagaaaac accaaaaacc aaaatcttgc aattgccagc atcagagagg	21960
atataggaaa gtgtgtttc tcgttagatgc ttgcaggtat gaactgctac agccttttag	22020
gagttatgta tgtatgtatg cttgtatgta tgtatttgc acagggtctc gctctgtgc	22080
ccaggctaga tctgtgcag tgctgtgatc atggcttact gcagccttga ctcctgagc	22140
tcaatagatt ttcccaccc tcgccttcaa gtagctgaga ctacaggagt gtgcaatcat	22200
actcagctaa ttttttaat tttttgtaga catgggggt ctcccaattt tgcccaggct	22260
ggtctcgaa tcctggactc aagtgtatcc cctgcctcaa cctcccaaag tgctggatt	22320
acctggatga gccactgtgc ccggcctcaa tatctttaaa aacagaaaatg gacacactct	22380
ttgacttaga atgtatccat taaaaacact tatacacatg cagagacaca cgagcaagca	22440
tgctttgtaa tagcaatgaa gqctggaaaa actcctcaat caggtaaatg ctgtcaagt	22500
cacctgtgtatc tataaaaaatg gcacttggct ttttacaaga gcaaagacag aaaagcaaaa	22560
gtacaaaatg ggggtgtatg gcacatgcct gcagtcctcag ctactcagga ggctgaggca	22620
ggaagatctt ttgagccctg gagttggagg ccaggagctg gccaatagtg agaaaaaata	22680
aaattaaata ataataataa taaaataggc tgggcacacgc ggctcatgcc tgtaatccca	22740
acactttggg aggctgaggt gggaggatcg cttgatccccca ggagttcaag gccagccctgg	22800
gcagcaaaagc aagacacccca tctcaacgc aaattttaaa aaatcagccca ggcaggctgg	22860
gcatgggtggc tcacgcctgt aatcccagca ctttggggagg ccggaggcagg cagatcaact	22920
gaggtcagga gttcgagacc agcctggcca acgtggcaaa accctgtctc tactaaaaat	22980
acaaaaaatta gctggcatg gtggcagatg cctgtatgtcc cagctactga ggcacaagaa	23040
tcgcttgaac cagggtggca gaagtttacag tgagccgaga tcgtgccacc gcactccatc	23100
ctgggcgtga gtgagactcc tttctcaaaa aaaaaaaaaa aaaaaaaaaa aggagccagg	23160
cacgggtgggg tgagggaggg cacagaagca ggcgccttcc tggggcacc cccaatctct	23220
agcgatccag aggcttcagg atcctgaagg gagaaaaaac gtgaagctcc gtgctagaag	23280
agaccataga gatttggaaatc agctggttctt attttacaaa aaaagggaaaac tgaggccctc	23340
agaaggttag tgccttcaa tggcccaacaa ggaggcaggg agagggtctc gagccctgca	23400
ggggccctgga ttcttgcattt ggggtggatgg ggagctgtg cccggccac caggcacctt	23460
ctcaggagag gagccgttgtt catacccttg aaggggtctc tgagccctc aaaaggctaa	23520
aaaccactt ctccttgag tgaacccatc cctcagttt accacaagaa aaactacatt	23580
aaggcccacgc gcagtggtctc atgtctgtaa tcccagcact ttggggaggct gagggtgggt	23640
gatcgcttgc gcccaggagt tcaagaccag cttggcaac atagtgaaac cctgtctca	23700
caaaaaacaa caaaatcagc tggcggtt ggtgcacacc tgaggtccca actacttgc	23760
ggctgaggtt agaggattgc ttcagccctg gaggttagagg ctgcagtaag cggtgactga	23820
atactgcac tccagccctca gcaacagacg aagactcaaa aaaaaaaaaa aaagcaggcc	23880
gggtgtgggt gctcaacgc ttaatcccaag caccttggga ggcgcaggcagg gaggatcagg	23940
agatggagac catccctggc aacacgggtt aaccccccgtt ctactaaaaat tgcaaaaaat	24000
tagccggcg tgggtggcg tgcctgtatg tccagctact caggaggctg aggcaggaga	24060
aaggcgtgac cctggggaggt ggagcttgc gtagactgatg attacaccgc tgcaactccag	24120
cctgggcac agacaagac tccatctcaaa aaaaaaaaaa attaaatctc aaaaaaaaaatt	24180
acattaaggc aaactaaaaat atgtttaaaaa tatatatatt aaattaaata cactccaaata	24240
gagcaaatc gaaaataccca agaaaaacaca atccccgcac ccccaaggaca acctccctagg	24300
gggtccacag caagagaccc caagcacgag agacagagaa cagtgcctt gtagccggAAC	24360
ctctggccca tcagctcta tttagaaaata aggcttgc cactgagaga aagaggcaca	24420
gtcgccccacgc agccacgggc tctggcacac cacgagtcg ggcagcaag tgtcaactgc	24480
ccccctacaag gtgacaaactt aggacaaactt ggaaaccaga ggctggaccc ggagcacagg	24540
gaccaccaca tggggctggg gaatgggcag ggacccatc ggcgcacccca catgcctaa	24600
agcagcgcgt atgcgcattgc ctctgcattt ctttagggaca cagggagctc ccccccaccc	24660
caacccaggaa aggccaggccc cactacccat gtagggacg gataggacca gcaacccgtt	24720
ctgctcgtaa ctcaggctc caggccccctt cggggccac cagcacagag ctcagaccc	24780
aaatatctc acccacctcc tggcccccattt ctggacaagg gtagctggggta ctggctctca	24840
gtcacacccctt cggggacttc ttcaaaaggac agctggatgc cccaggccag gaggctttgg	24900
ccccccaggctc ctcacccca gacaccagctt cttggaccc caccagcatg ggcaagggtgg	24960
acaccatcgat cccgattttgc cagatggatg aactggggctt gagggtgtgg acacggctct	25020
ccagagctga agagaatgca gagagcagcc ggagccagcc ggtgggtccc tgaggccggc	25080
tcgttagcaag ccacagctgc ctccggccat cacacttggc cttcaactggc cccaggacag	25140
ccctccagggg cggccctggca cagagccac accctgtgc ttccctgaaca aataagtgaa	25200
caaggccacc aagccgagga cctggatgta gccccggctc cggccaggcacc ctcccaaca	25260

032796-132.ST25

gactccccat ttggagagcg cattaagtgt ttccaaagcc tcacaaaacca cagatgtccg	25320
gctgtctcac ggcttctgtc acctgaacct ggccctcaact ctgcctccc agcactcctc	25380
tcagggccca ggcccttcct ctgagatgcc agcactgact ccccaacttg tccccatcac	25440
ctggctcgtt cctgaacctc ggcaggagag tctcaggcca gatectccca ccagccacct	25500
ccaccaggat gcaggaggca tgagacctgc tcgtgccggc tggagatgc aaccaaccaa	25560
gatcaatcca atcagcggat gaactgacaa atataatgtg gtccctccac acaatggaat	25620
attattcagc cacaaaaagg gctgaaatag gccggcgtg atggctcaca cctgtaatcc	25680
cagcacttgc ggaggccgag gccggcagct cacttgggt caggagttca agaccagcct	25740
ggccaacatg gtgaaatccc gtctctacta aaaataaaaa aattagctgg gcgtggggc	25800
gggcacctgt aatgcaagct acttgggagc ctgaggcagg agaatcactt aaacccagga	25860
ggcagaagtt gcagtgagcc aagatcgac caccgcactc caacctggc aacagagcaa	25920
gactccatTTT caaaaaaaaaaa ataaaaggct gaaacaccca tacgtggta tacttggatg	25980
actcctgaaa acgttacagt aaccaaggaa gtcagccacg aagacgcatt gtaagattcc	26040
cttcatgaa aatgcccaga acaggcagaa ccacagaggc agaaagtcga ctgggttca	26100
ccaggggatc cggggagagg gaacgggaag tcaccgtgt atgggtatgg gttttatTTT	26160
gggggtatgg aaatcttta taacttgata gaagagaggg ttgtaaacac tgtgaatgt	26220
ccaaatgcct gccttctata cttaatatt ttatattata taagtttacat ctcaattaa	26280
aaaaaaaaaca actcgacacc tttcacctag gaaagatctg gettagtctt gcatttctg	26340
taactcctgc ctAAAAGCCTT ccagaagctt ccgctgcctt gtggatcaca accagactcc	26400
acaccatgat ctggcctcta agggcctctc gcaggacacc ccgggggtga aggagcaccc	26460
gtggggccac ctctgcatacg ctgcaaagct tcttccctg tccctccctc tacatggaa	26520
gctctcccg cagggggcggg gccttatctg ccattctatc gcaactcaacc ctgcacttc	26580
actcggtage agacacccaa gcaaaacagc aacagcatta taccgggcca ggtgcacgtt	26640
aactcactga attcatggta ggaaggattc tattccatt ttacaggtga gaaaactgag	26700
gcacacaaag gtagcatcag cttectaagc ctcccagcac aggaagccgc caggctggaa	26760
ttagacccctg ggcgcagggg ctctgtccac agtgcataact aactactctt gccccccagg	26820
gctgcagccg tgagtgagtg agtttgtcag tggactggat gtccaaaggc atacagggaaa	26880
aatccagact attgtataaa cagcctctag accggctggg gccagaaaaga tcgaggacgc	26940
tgacacacaa ctgcgctcac tgcagctctg ccagggatgg ggctaaagggt ctcacacagg	27000
gcagtttaggg ctccccatag cttggggagag gaacgggggtg agataacaga aacttaggtat	27060
gttgcccgaa gtcaaacagc cactgagcat gtAAACCCAG gtgggtctgt ccccaaacc	27120
ctccacccccc atcagccctg caacccgtcg ctgcaaggga gaaagcaact cagaggcctc	27180
acctgcctac atccccccacc cgtgtgtgt agttctacta aatgcctgatc cagtgcacaca	27240
gcacggctga aattaaacgg gttccaaaaa cgacaggaag cacgaatgtg atctcccaag	27300
gaaagtgtcg aacaaatgtt ggatcggtt caccggcgaa ttctttggaa ctgaagaggg	27360
gagctaaaca cacggggccc tgctttggag gggactctt cagggtgtc cacacagcac	27420
ttgggtaacc ccactcagcc ctctctgggt ctcccagagg gcccggcctt ggccttggc	27480
atctacagga ggaacctcca gggggagagg ggggtgcctgg acaggccggc cttggaccaa	27540
gcacttggcc cccgaggaga gaggacttagg gcttggggagc tggggaaatggt ctgcactg	27600
ggaccactag aacaaagcca ttccgtcg ttcacagctt ccaattgca caggaagcaa	27660
ttagggaaaa taattagcgg cccacttact ggcttcgtg aggtccgagg catgtatTTT	27720
acacagtaaa accaggata taacatcaa accgtctgc agaaagattc ctcccttcc	27780
ttccattttt ggcctggatc accacattca ctggggctcc caggccttgc tgcctaatgt	27840
taaaataatc aactctatTTT ttgcctcaca cacaactgaa ctctacagct ataattctt	27900
ctccctcaggc gctcgaacca catggacgac aggcatgttgc ctccagcaac atcaccacca	27960
aacgtgcaca aaacccaaaa ctgcaatgag gtgaaaggca acgggtcg cctagaaaacc	28020
ccccctttaa aacaaacagt ttcccaaaaa cccctttgc ctccctgacc caggcatttc	28080
cggaaaaagg agcggcgctg gcctgtactc cccagatact gtcgtgttt tgtcttcacc	28140
ttgttttgtt agctccagac aaggccccac aatgtaaaca cgctctgtaa agaggcagat	28200
ttgggggtgaa actgtccata gaatctctag gcttgggtca gaggcaggag gacgtgaaac	28260
aaactccaag ctccctcgtt tccccgtgt ccccccacacc tccaaagcaga ggctgcagcc	28320
tggggatct gactacaggg ccaccccgct gcaccattca cactggaaat attcaggag	28380
acagctgttt gccttaagga ggcccgacaa aaggggcccc aggtccctcc cgctaaactg	28440
ccacaaaacag aacaggagcc gcggcgtgca caggcacttgc cggccgtgcc acttggccag	28500
ccatactcca gaaaaacaaa acacgcacat ccgaagagaa tgatTTTggatg agcaagaggc	28560
ttgcttggaaa aaccacatgg caatctccaa attaaaagaa catgtgtac gtttcacgac	28620
tgcttaagtt tcctgagtcc tcctgaccc aactccaccc cctggaaac accaaaagtt	28680

032796-132.ST25

ggatgagaaa	gttccccccgc	cctacctctc	cccacgggag	tgtacaactg	aggcacaagc	28740
ctgcctcccc	caactgccccg	cgatctggga	ccacgtctcc	tccgcgttagc	cgaccggggg	28800
atggacacta	tctggggacc	cggcggccac	acggggcatt	cgggtcgccc	gggcacctgg	28860
cagggtgtcag	tccgcggcgg	aacccacagc	cacgcggctc	acaggaggcag	cgccacccgc	28920
taggcggccc	cgccggccgg	ctcagaactt	tctcgctgcc	acttcagccc	gtcctcgag	28980
cacgcggggc	ggccgcgcgg	ccgctggaaa	caggcttgcg	aaccggctcc	ccggggccagg	29040
cccgccctcg	cgccccaagt	ccccgctcg	tgccccggcc	gggcacacg	ggcccaagcgc	29100
gggcgtcggt	cggctcccg	cttcccgccg	gctcgggcag	gtgaggaccc	gcccgcgcg	29160
cacctggccg	agcggggcgc	ctctcgcca	gcccgggacg	cagcgtcccc	ggggaggggc	29220
cgggtgggaa	gacaaagggc	ccgcgcgtgg	cggggacgccc	ggggacggca	gggggatccc	29280
gggcgcgcgc	cccaactcgc	tcccaactcg	ccaagtcgt	tccgagacgg	cgccggcgcc	29340
cgcgcacttg	gccgcggggc	cgcccgccgc	attgtccgag	caacccgcgg	cccgctttac	29400
acgcggggcg	cgggaaggta	tcgaatcagg				29430

<210> 8
<211> 33769
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (33739), (33749), (33758)
<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 8						
cttcccccta	caactggtcct	tcgacccgcc	tcggatgaaa	actgaatggg	tttagcctta	60
gaggctctcg	gtctctaagg	gaggtgggtc	aggatgccgg	ggacagggtc	ctcttcctgg	120
ggcaacgtgg	gggaacgcgc	cacctacccc	tccactgaat	tgccctgggg	tgtgggtacc	180
gacggctcat	tcgggttcca	gggtctgaga	tgtgttgaca	ggaagaatga	aaggggatgg	240
gagggatggg	gcgaaagaag	ccacctgcag	ccccaggaac	tatctggcca	gcacaccgtc	300
acccagcggc	ctgagccacc	cctgcccagag	ccaggaggag	accctgccaa	tgggtcacca	360
gtgtgcagga	actcagaagg	tcatcacagt	taataccctc	catgccccaa	tgtggaaaaa	420
caggttttt	cacaacaaac	aagataattt	ttgttatttt	ggcaaaagga	ggcaggggcag	480
ccccggacac	ctccatccca	cctcatcacc	cagccgcagg	gccccggcca	tccctgcaga	540
cagagtggat	gtcacaacct	ccctgcaccc	aaccaagtgc	agctcccagg	ccacaggcca	600
cccaggaaag	gtccagtggc	ccccggagcc	tcccaccgca	ggcctcccac	cacagccggc	660
accaacccag	gatacgtgt	ttctcctggc	ttcttttac	acgggttagca	gaaagctgag	720
atccgggaa	agctgagatc	cagggaaagc	tgagaatcgg	cctctgtgc	ccggacgccc	780
accccccacgt	ctgtctccag	ctccaggggcc	tccttctcag	gtgccttac	aggaggcaga	840
gggcttgagc	cacccctctgg	gcctggggca	cgcaggatga	acggggtac	ggtgcaggcc	900
actgtccact	gcgcagatcc	caaggccata	aacagctgg	ccacagtggc	ttcccaagctg	960
gcaggccggcc	agattatttt	tgttgttag	caattgatta	agtttctccg	ctgccccca	1020
gggttaagtgg	tggggcaa	gcgcaccc	cagcatttga	ccggggatcc	tgtgccttac	1080
gaccataggg	tcacaaagca	caagggaaat	ggctggccc	gatgtgtggct	ctgtgttgc	1140
ctgaggccgg	ccactgtcac	ctgcacgggt	cctgggaccc	tccagcaagc	acagagaagc	1200
tatggccctc	caggagcgc	tggcaggcac	cttggcctgc	agtcaggggc	tctgtctgc	1260
cagctctaaa	acagggaaat	cgctgtctg	cctgggtca	ggcagccag	agagtgcacca	1320
agtca	gtcc	ccatccctcg	aggcgttgc	aggcgggtcc	tttccctctcc	1380
tgccagccag	ccccctctgt	ggcccccac	tgcctgcctc	tgcccccattg	ccccaccaca	1440
acctcagggcc	catggctgca	tggccactcc	ccaggcaggc	agtggggatg	ggatttcacc	1500
atgttggcca	ggctggtctc	gaactcttga	cctcaggta	ggagttctta	aagtgttgg	1560
attacagggc	tgagccaccg	cgcccagccct	ccctgtggta	ctaaacactc	acacccctt	1620
gctggggacc	ctggtgaggg	aacacagcct	cacaagtgaa	gtgtggttt	gttgagcaaa	1680
tgacgcctgg	gcagccctct	catctttgcc	taaaactgaa	gaatttaggg	gcgtggatgt	1740

032796-132.ST25

ataaaaacagt	tggtgactta	aatgaaaaag	aaggccacac	tccccccctt	aggcaggcgg	1800
cctaattttt	taaaagccag	cacagggtgc	ctttctgaac	ccaggcacac	agttaggttt	1860
caatggacag	cagcggttac	ttgtactgt	catgacaccc	tgtctgtggc	ctctgcagct	1920
ggctccagcc	tgacgcattgg	ctgcgcctt	ccgcaaggcc	accccggtat	acatggaaac	1980
tctgtggaga	aggccttggg	ggccggccag	gacgcagggc	ccagatccca	tctgcgcctt	2040
tcctccatag	acctcagcga	getctegga	ccatgtgcct	caggcccatt	taagaagtag	2100
ggccggccag	gcatggtggc	tcatgcctgt	aatcccagca	cttgggagg	cccaaggtgg	2160
gtggatcag	agatggtcag	gagatcgaga	ccatctggc	taacacggtg	aaacccatc	2220
tctactaaaa	atacaaaaaa	taagccagt	gtggggcgg	gtgcctata	tccaagctac	2280
tcggggagct	gaggcaggat	aatcgcttga	gctcagcagg	cagaggttgc	agttagcgga	2340
gatcgccca	ttgcaactcca	gccttaggtga	cagagagaga	ctctgtctca	attaaaaaaaa	2400
aaaaaaaaataa	aaaaaaaagaag	cagggccagc	cacggacgc	ccctcacaca	gctcccagga	2460
cgcgtgcctg	ggtataggc	tcaaggaccat	gaccgcgtca	gtggggccca	agaaacgtta	2520
cttttgtcac	ccacccccc	tcaagtggcag	tagccaaat	aacggattag	aatggAACCA	2580
tgtgacaatg	ccactgcctt	aactgacaga	agatggctat	cagcagttca	cgccggccca	2640
cctatcacaa	gtgcaggggca	ctctacaact	tatgcacatct	tccccagaca	ccgtcctttc	2700
gaccctccca	ggtcagcaag	gcacacaggg	cctacatttc	acagccacac	agcagaggc	2760
tgaggctgga	actcggatgc	tctgatattcc	gttcaatcac	atccccagag	gtggcacaga	2820
gacggggggc	ttctcttgac	aaagtcaaga	aagtcaactgc	cagctccact	gaagacaaa	2880
gaacctcagc	tctcaaacc	tcttgaagg	gttaccgaac	tctccagcc	tgtttcttgg	2940
gtcccgtatgt	tggtccctgt	ggacacacgga	agaggaagaa	gtccctaga	gcagagcc	3000
gtgcacctgc	cacactctca	gagggctgcg	cacgggcgg	ggagccgtgt	gcaggagtgg	3060
ggtctggatg	gagggcgcgt	gtgggggggg	gcagggggca	ggggaaagggt	gctccaggtg	3120
gtgggcacag	cacgagcagg	ggcagggagg	tccacactca	gatgtgcaca	gggagaaaca	3180
aatcgtgcat	ttccatttgg	ataggcggta	aaaggttagaa	aaacagagt	ggggccagga	3240
agggagtcgg	agccttctag	tgtctctctg	caggtagcgt	gcagcccgag	gtgtcaagctc	3300
agcagacttg	gggtccaggg	gccgtgtctt	ctatcaactga	ccccagggca	cacggactg	3360
gggaggggaga	gcagaggcac	agggcacgt	cagtggaaacg	aaacaaggag	tcatcacaa	3420
atgcggaaag	ggcaaggagt	gccccgcaggc	gcacaagggt	tctgtctgg	caacgtggc	3480
gtcccacca	gccccgcacc	ctgcaagcgc	aaagctcgc	actgaagata	aaggaaagct	3540
gttggagctg	cggagctgg	ctggggctcg	catggagctg	ggcttatgt	gcagtccaaa	3600
ggggggacatg	gaagaggctg	caggggacaa	aaccagtgc	cacagtctaa	ctctgagcct	3660
gtggaaaggc	gccccacagca	ttcacccatc	ccagagatgc	cattccccct	gtggggccgc	3720
tccacgggt	cagcgttctc	caggaatatg	atgcgcctt	ctctcttgc	atcagccctg	3780
acagtggat	ttcaggccaa	aaagcagaag	agcacagctg	cgtgggttca	tttccatgt	3840
gttctggaaac	aggcaacgct	aatccaagt	gatagaagtc	aggagagtgg	tgggggggc	3900
gggggtttag	gatggcaaag	gggcaccggg	aactttccca	gtggtagaaa	tgttctctgt	3960
ctggaccgtg	tggtagttat	gcagacatat	gcagctgtca	aagttaatcc	aatgtacac	4020
gttaaaatgt	gtgcgtttt	ttgcctgca	gttatacctc	attaaaaaaa	ataaagttag	4080
cactcaggt	tcttccacaa	cttcttgcac	cgtgtgagct	gattttctt	ctattaaaa	4140
ttcacgggtc	atggctgaga	acagcagctg	ccttctgttt	gcaaaagtca	cgccaaatcac	4200
tgcggggcc	cggcagactc	ggccccacag	gacccctttt	cttttttccc	tttgacctac	4260
tteccctgata	agtgacaaga	cagccagact	ctgggaaacaa	acgcccgtt	ttccggcccg	4320
agctgaggcgg	gcccgttcc	ctgagctaat	ccgcccggac	agacggaggg	acgtgagggg	4380
ctttggcgtc	ggctccagct	gtcagtcgtc	ccgtcagact	cgacagtggc	ccccctctgtt	4440
cctcccgctg	cccccaactcc	atccccact	tcttttctt	tcctgtccct	gacagacgaa	4500
catctgtta	aactctgtct	gggtgagctg	tggccagcgg	ccccacaaatc	cccaagccgc	4560
accccagct	catctggggc	ctggggggag	cactgcctgg	ccaccctctg	gacatacgctc	4620
tgagagccac	cggccaggc	acgtgtggcc	cgagttggcat	gttgcacgc	gctaaggccca	4680
ctgccccaaag	gcccccaagc	aggagggatg	tgcaggagac	aaaagtcaaa	agaaacagggg	4740
cacgttccac	agaggatggg	gtgggggggg	tggcagttag	gaacagcgc	ttccggggat	4800
ggcggtggca	actcccaaata	aaggcctcac	tcctgtgtt	tttagctcat	tccacataat	4860
tggaaaaaca	tggcagaaac	cgaagccagc	tgctgcctt	gtctggggc	tgtgtggagg	4920
gggtggggag	gccccggggc	caggctctgc	actcgactgc	tggggatgg	agtgactctg	4980
agctgcagag	agcagcatcg	cagccgcat	gttccattt	agccccggcc	acgctggcg	5040
gcagaggcgc	gtggatata	cctgcctgt	ctcatgggg	tcacttcagg	agggggccggg	5100
gagccaggac	acagccagg	gctagcggtc	accctgcagc	tcaggggcca	cgtaaatagt	5160

032796-132.ST25

gccaccccttga	aggcacacag	cagtgcgggg	cccccccccgc	caccaacgca	tccctaacctc	5220
taggaggccg	cctgtgtgcc	cctggaaacg	ctgctccctg	tcccttgggg	tcctgggttg	5280
accaccctct	cagcccttc	cttgggaaag	gcacctgact	ccctacaccc	agctggcttt	5340
catttgctca	aaatcaggaa	aaagcagaat	tcaagacate	acagaaaatgt	cttcgcctgt	5400
aactccatga	aagataaaacg	gtcagacacc	caggagggag	tcccaggac	ccttgagtct	5460
cacctgaggc	tctgcttca	aacctcgaga	tgtttccagc	catgttagcg	ccggccccca	5520
caacctgccc	cacacagtcc	tcccttggga	actcacagat	ttggccccca	cctgccccgt	5580
ttcttcttgtt	ggagtgggtg	cgttgggttg	gggtggggct	ggggactctg	gatgtgtctt	5640
aagagtctga	gtgattctga	cacagccagg	ccctggggcc	cttctgacct	tcgccccaca	5700
ggaaaggggag	ccacacgcct	gaagcggcca	gcacacccccc	cttccgtctc	cccaggtcac	5760
ccgctggccg	tgtgagccgt	gtctcccact	gccccttca	ccacccccc	tccttcgtgc	5820
agcacccacg	cttggaaagct	acttctgatt	acaacccgc	aaggaagact	cgctccctcg	5880
gcactgaccc	agacagccctg	caccatca	ctgctcagca	caacccacac	agccttcctc	5940
caaaccctat	ggagcgggg	gtataatcac	ccccttcta	ccaacggaca	aactgaagca	6000
cagagaggtt	aagtca	cttaagctcc	caacacgatg	acaaaaaaa	gaaggtcagc	6060
ccgcaagttt	aacttaggtgc	tccaaagtccc	cggtctgcct	gacactgcac	cttctcgccg	6120
ccacggtccc	gggtccgcct	gacactgcac	cttctcgccg	ccacggtccc	gggtccgcct	6180
gacactgcac	cttctcgccg	ccacggtccc	gggtccgcct	gacactgcac	cttctcgccg	6240
ccacggtccc	gggtccgcct	gacactgcac	cttctcgccg	ccacggtccc	gggtccgcct	6300
gacactgcac	cttctcgccg	ccacggtccc	gggtccgcct	gacactgcac	cttctcgccg	6360
ccacggtccc	gggtccgcct	gacactgcac	cttctcaaca	ccaccacgg	ccgggtctg	6420
cctgacactg	cacccctca	ccaccaccac	agtccgggt	ctgcctgaca	ctgcatttcc	6480
tcatcaccac	agtccgggt	ctgcctgaca	ctgcatttcc	tcatcaccac	ggtccgggt	6540
ctgcctgaca	ctgcacccct	tcacccggcc	ggtccgggt	ctgcctgaca	ctgcacttcc	6600
tcaacaccac	tccttggcc	gtctccaa	acaaaccaag	ccatgtctt	catcttgaat	6660
cctcttggcc	taaacatcac	tcacaatgcc	tcccttggga	acaggcaca	gtcccccac	6720
cacagccccc	ttcggttac	gcgttccgc	tagcccgagg	ccagctccag	agccctcacc	6780
acagagccct	tatccctc	ccccggacac	tggacccatc	caacccatag	cctggaggag	6840
atccctgtgt	gaccccgagg	cctccctctc	ccgactctga	atttca	ctgcacgtac	6900
acctcgaa	gctctctggg	cactggcage	cetccatggg	cacccgtct	tctggccagc	6960
tctgacatcc	cggtcggtga	ggtcgccctc	acgaggcctc	tgcccactgg	gacctcacag	7020
ccgtgtgtc	agctcaaca	agcgacagaaa	tttcacgtt	tottcacgtt	gcccctgggt	7080
gagcagctcc	aggtatgtt	cagtcgaggc	gaggcgctcc	gtcagcagcc	aggccggaca	7140
gctaatttcat	gccccccccc	cgcacggcc	caataccat	ggcacctgc	agcctggaaa	7200
gccacagagg	aaccgagaac	agcgactgt	ctcagggtac	aggactgtgg	tctttttaaca	7260
aaacatttc	ctttaacgt	atatttac	gcaagaatg	aaacctggag	ggcaggacat	7320
ttggatacta	aagccccagg	ctgcccgt	gtctgttt	tgaagtctga	agcccgcc	7380
ccattcttgc	cccgctcaca	ggtccggctc	tgactccca	gcttcaatgc	tagccgtc	7440
ctgtccctca	accagaacat	gacttccctt	aggacaaac	cgtttctc	ccatccccat	7500
ctccctctgg	attaagaaat	atggaaagat	tttctagaac	cacccat	ttcagagag	7560
ccatcttgc	gacaaaccct	tgaatgtt	ctaagaagag	tttaggttt	ttctcaactc	7620
taaaacctct	agaaaactct	atttccacac	cagtcgcccc	tggAACACTT	cagttcaaa	7680
aggcccagg	gcagggagac	ggaggagcca	gatccacac	cgagcaccag	cctgttaatt	7740
aacggaa	gggtggggcc	catctccagg	cagctctgag	gtcagactgg	ggaaccatgc	7800
ttacaaaaaa	aagtgaactg	aaacgctac	gtcctcatgc	aaaaccagac	tcccagtgc	7860
atcttctgt	ctcattgagg	agcttttcc	tcccttgc	agaaacaccc	acacacggca	7920
tctggaa	aagcagaa	attcaggctc	agagaaaaac	agtccccaca	ctggctgc	7980
gtggacgtt	ccggccaga	gtctcgcc	agcaggcc	ataaaatgaca	aaaaatgttt	8040
ttctcctgc	tgccagtc	gtctcaactg	agttatgtgt	aaaatgcct	ctcacgc	8100
agggcaaaaa	cagttccac	aagactagag	aaaggtgacc	cctgacggct	gagtctctag	8160
ggagcgttga	gctcggtgt	cagccctgc	gccctgacgg	ctctggat	aaaaagctat	8220
ccaaactgaa	gggcaggcc	cgctgtat	ccagcggtcc	aaacccacag	gtgtctgtgg	8280
tgtcagctcc	atgcacaga	gcccaaggct	ggggccagag	ccaccaggcc	ccctgc	8340
ctgcaggccc	ctcctccct	gggtagctt	accacccct	gtgagcgc	gcagccct	8400
ctaattcaca	caggccctgt	ccccccctt	ccccccctt	caggaaaatg	agccctgagg	8460
actcccaagg	gctgtctgg	gcctggacat	ggagactggg	aattacattt	gcagaaggag	8520
cgcaatcccc	ttgaaggct	cagccacgag	cagccagtcc	ccaggcc	gaaggcc	8580

032796-132.ST25

ctgttagaac	cctgggagcc	accaaaagagc	caggggctcc	acctaagtct	atagccccctg	8640
cctttctgg	ttggggaaaaga	aatcaacgc	cctttaactgg	ctcccaactga	cagcccaactc	8700
ccccaggat	gggaggattc	tgggacgat	cagggaaacc	tggaccctga	gtgaacctgc	8760
cccagcttc	acgggcctgg	caccagccac	agcacctaag	gcccgggtca	tggtgacaac	8820
atgaaggta	taagggcatg	gacagtggac	atggcagctg	gacactggc	acccactgga	8880
tgccaggcac	ccagcacggc	tccgtcaccc	ctggatgagc	agtggccctt	tgcaagccag	8940
gttagctgg	gcaagtattt	tgggggtctc	caagcttgtc	cagctgtcg	acttcaactga	9000
gccatgagtc	tggattttt	tcagggccca	caccgttcc	tggaactctg	atacgtgagg	9060
gagccacaca	gggaccctta	acaaaagctc	ccagggcaac	atgttcttt	gcctcagtct	9120
cccaaatagc	tggattaca	ggcgcacgac	taccggccgg	ctaattttt	tatTTTtagt	9180
agagacaggg	tttacccatg	ttggccaggc	tggtttgaa	cccctgaccc	caaatgatcc	9240
ttccactgtt	aggcaaggc	acctgacagg	cacgactgca	cgatctgctt	gttgggggt	9300
gtgtccatcc	cccaactcctt	cgacaaatgt	ccacacccag	ctttgctt	acaccccaag	9360
aacagagatg	gtgacacctg	cttcctacat	gcccattgct	ctcccaaggc	agacatcccc	9420
agcagatgca	acacagtgtt	taggcagaca	tcaccaatcg	atgggtggcaa	cagacaccag	9480
gcccgtc	ctctaactcc	agtggccagg	ccccaaagcca	gctctcacct	gcccactccc	9540
aacccacagc	agcaagactc	agaaatggca	aaaacacaaa	gagaacagaa	acgccccata	9600
gcgggagggat	gactaaaaga	catgttttga	taagatattt	ttcaggcata	ggccaggcac	9660
agtggctcat	gcctgtgatc	ctagaactt	aggaggctga	gttaggtgga	tcacctgagg	9720
ttaggatgtt	aagaccagcc	tagccaacat	ggtgaaaccc	catctctact	aaacatacaa	9780
aaatttagcca	gacatagtag	cgggcgcctt	taatcccagc	tgcttgggag	gctgaggcag	9840
gagaatttgc	tgaacctggg	aggtggaaagc	tgctgtgagc	cactgtactc	caacctggac	9900
aacagagcaa	gactctgtct	caaaaaaaaaa	aaaaaaaaaa	gatatcctc	actaaaaactc	9960
atgttcttga	tacatatttta	cctctgtca	tcgcaaatgc	ttctgcagtg	cataaagtga	10020
aataaatagc	aggaagcctt	acggttcgat	cacccacaca	gacacacagt	catatcacagg	10080
aaaaacgcag	ggggggctgg	ggaacaaaaaa	aacagaagat	aaaatgtgga	gacagacaca	10140
ccaagagagt	aagagaccac	ctccagac	cccttcagct	tctcaaacac	acgagccggg	10200
cccggtacag	aatttgcggg	gaccgctgca	aatatggaa	gtggacagcc	ccttaactcaa	10260
aaggtaggaa	tttcagggtca	acaacagagc	tcacccatca	tgactacaca	ggtcacacag	10320
cccggtgaagt	cgggtccaaac	accagcatgc	tcctgcctca	aagccgctgc	acgtgtcttt	10380
ccttctcgcc	tttcccttctt	ttagtcctt	agatctcagg	cctcttgaga	gagacctctg	10440
acctgcccgc	tcaggcggcc	acaccccccag	tacaggagtc	tcgggctca	ccctctgtgt	10500
gttccgtacc	cgatccaggt	ctgtcttat	tccatctgtg	tgccggcttg	cttcctgaca	10560
tggcccccac	cacacgtgtg	cctcggggca	ggggaaacagg	cccgctctcat	taactgtctt	10620
cttctcagat	attttctgga	atatttgcgg	atattggca	acatatatgc	tcaccccttt	10680
tcagacttagc	caggacgagc	tgcatttttt	ttttttttt	tttgagacag	ggtctca	10740
tgttgccca	gctggagttat	agcggcatga	tcttgcctca	gtgcaaccc	cgccctcttag	10800
gctcaagcaa	ttctcctgcc	tcagttctcc	aagtagctgg	gattacaggc	ccgtgcccact	10860
actgcccagc	taatttttat	attttttagt	gagatggagt	ttcaccatgt	tgccaggt	10920
ggtcttgaac	tcctgaccc	aatatgatca	cctgccttgg	actcccaat	tgttgggatt	10980
acaggcgtga	gccactgcgc	ccggcccgag	ctgcctgtt	tacacctt	ccatattccg	11040
gtgattctct	ctccccctcg	tccccccg	ctgactgtgg	tggccactcc	ctgcccgtat	11100
gagcccgat	gtccctactc	tttccctt	cgccaggact	tcaaccaaca	ctgcagagcg	11160
cagggtccag	ctccagcact	gagttcagcc	tcttctcacc	aacagacagg	caggaaagaa	11220
aacaaactct	gagaaggcca	aggttcccg	gcagccagca	agccaagcat	ccttctccgc	11280
tgaggcttgt	gcagccgagg	cacccctcc	tccagggagc	aggcagcgtc	ctggggcagt	11340
ctgcgaggga	gaccaggggc	tttgctccac	cagggccca	ggtatgggg	cagcagcaa	11400
ctcatggctc	tgggagccag	accccac	ctagaaccta	ctatgccacc	tgctgtggc	11460
aacccca	ttggacttg	ccctggctc	ctctgtaaac	aaaggctca	tccaaacctgg	11520
tcaaaccact	cctcccttc	aagggtctat	aatcctccct	taacctgtt	ggtccaaacc	11580
cctgtgtcg	ccaggtca	caggaggcag	ctcatctgg	ctcttccct	gggtccagtt	11640
tctctctcaa	cattgcctt	gaggccgagg	tgaacggtca	acagcgaagg	gccccagagg	11700
tgatggagga	gcgggtgtcc	aagacactca	cccttctaa	tgcactgact	ccctctgtga	11760
ctcaacttgt	ccgtctcccc	cacccacca	gccccagagc	ccagagtgc	agcggccagag	11820
gcccgggatt	ctgtctgcac	cgccgggtcc	ccagtgcctc	ggagcaatgc	cagcacccgg	11880
caagtgttcg	acaaatgcct	gctgaatgag	caaatggatg	gatgaacgaa	tgaatgagca	11940
agcagatgaa	tgaatgggt	gctgtccaga	gccgtgagga	ctaggccggc	caagccccca	12000

032796-132.ST25

tttctcaat ttcctttc cgcacttggg aaacaagatg ctggtcggg gaggctctcc	12060
aaccatcccc tgcagcagcc ggcacagcg acagaccctt tgatgtaaaca gccatgttt	12120
cattaaagat gccctgtct cagaaagaga aagacaaaata caaaccttggaaaatcctcac	12180
caaacgcagg accctgtcca gggagcagag aaaagaccca cacgccacgg gcgcacgcac	12240
cacacacaca ccccagccgc tgcacacaaa cacagaccct agccagcaag aacaggggaa	12300
ccagggaaact gttcttaaag tcaggacccc catgtgtca gacagcagtg agagcaagga	12360
cacttctcca tccacccggat gccaggagag tccttttagg gggccccaca ccgagactct	12420
gccccttagga ctgttccgtga gtgttggaaagc cagccactt ggaagcccccc tgccctcccg	12480
agtgggacac cggcacagga agcaggccct gtccccacc actttctgtca agctgggccc	12540
catcacgtca cagaaacggg gaggactgtt cccaggatg gcgccttcct gacacctctc	12600
gttacccctt cgcttgccag gccccagggt cagccccaga gccagactg gctatcccg	12660
gccccgggac atccccgaag gcgagctgca tcctgaacgt gtgtgatttc ccgaaggggcc	12720
cgccccgaac cgacacccgtt aaagaaaagat cctcagccgg tgccccagag gagaagagcc	12780
atgcctcaact gcaacacagt cccaggaagc accaagtgtcc tgaggaccas ggccggagagt	12840
aaaaaaagtgg aaaatatactg gggcaaaaat aaaacaaaac aaaacaggat tgaccttcgt	12900
ggctcaagca atcctcccaa ctcagcttcc cagtagctg ggaccacaga cttgaatcac	12960
cacacccggcc aagtggatca ttctgaacgg gtttggcggat gttcttcgt gggcacccccc	13020
ggccggccgca acccattttcc gccaggcccc gccccccccc cccgccccgt ccgtcccac	13080
ccgcctcactt gcttacacg ttctggcgtt gtctgtcagc tgacaccccg tggggcaggc	13140
gcatgtgttag aaaggtcgcc ttggggacag caggcacagg tgggagcgc cggcattgtc	13200
ctccttcacag cgagtgttga ctgagaaaac caggacacac tgagagaagg ttccagaaga	13260
ggaccgtcact ttgtttctgtatgatcaca tcctgcctcg tccccctgtga cagctccag	13320
tgtgtccctc tgcccaaaca tcggcctcaa gtggcatcag ggacccccc gccccggcc	13380
ttccacccctgc ctcatcgctg gccccgtcca catggggccc tcagccttgc cagacggcct	13440
gcaattttccc caaaaccaggc cgtgacccctc ctggccaccc tcacacccag atgtgacctg	13500
cccatggagt gacatccctc ccatctgttt cctcccaacca agctcttatg actagaacac	13560
cctccccccage tcctcgagc ccccaaaagga caccctctg caaaggctgc ccccccacgct	13620
ccaatggggc gggtcaggac ctgcctgtgt ggtatgtacg ggaaccccccag agacaatggg	13680
ctcctgggca aaaggcttgtt ctgttgccttgc tgctatgtgt ggacccagca gttccatag	13740
gaacactgtc cttttgtgtt ggtatggccaa gcttgcact ctcccaagcc ctccatgtac	13800
caacagcaat tgaacggaaac tcgataaaatg ctccacgc ctcattcaaa ccaggggaaa	13860
gctgggtgtta gcagcccaa aatacggata taactggaaac aacaaactca tcaaaatgaa	13920
cctctccctc ctcatcgctg ccccaagtgtt agatgggttt tggaccacg actttctcac	13980
caggaaacag ctccagagag ccccacccctc ctgtgtcctcg ctctggaaac agctggcacc	14040
ccttagggcccc acattcaat tcaaaagtccaa aacccctcat aatggccttgg ccagaatct	14100
ccatccctgg tccctgtggg agtggggccac tgcctccaga gccgcagccc cactgtcaca	14160
gaagctgggtt cattttccca tcaggacact ctgtcacaac ccagcgtggc ccccgaggctg	14220
agaactgtt attctggca gattattcat tgataaaatac ggcacttgca gggccaagca	14280
tgggtggctca tacctgttgc cccagcactt tgggaaagtca agtgtgtgagg atcaactggag	14340
cccacgggtt tgagacaaggc ctggggcaacg tggcaaaatc ttcacatctt attaaaaata	14400
catacacaca cacacacaca cacacacaca cacatatata tgtatataata aataaccata	14460
tatataatata cacacatacg tttatgtgttataaaatata tatacacaca cacacagaca	14520
acttcttcgtt ggccttggaaa acgaggcaac ctcccttggaa atcccttgg ccactgtca	14580
gcctgaaata gccccatga gctctgcaga ggggtctct gcaaggccctgt gttcccccagc	14640
cagccacaca ctccttcctca ttgcagcagg tacccttta gagagggggc ccccccacgac	14700
atgggttttgc aggggggggg gtcaccttgc cccccacccccc acccacccccc ggcacccccc	14760
acgccccccgc atcccccac tccctgtccc cgcgcggccg ctcccccacag ccccttcacc	14820
ctctccccccg tgcccaacc ggcactcaca aaaagctgc cgcttcgtgc tcagcacctg	14880
gatgtccatg ggtgagttt gggactca gatcttcctc ctctttcccc cagtcgtcgtt	14940
gttgccggca tggatggagc gggctgtccaa gtctgtccag tacagagtgtt ccccgagag	15000
cgtcaggccg aagggtgtcg tcaaggcttgc ctccaccacc ttctgcctgc agtcaaggaa	15060
gcgggggtggaa ggagccatca ggagggtccc ccgacagtca ttgtgtctga cccaaatata	15120
ttctttttttttttt gata tggatgttgc gtcacccctca caggctggag tgcagtgtatg	15180
taatctcagc tcactgcaac ctccgcctcc cgggttcaag caattatcct gcctcagcct	15240
cccgagtagc tggatcaact gatcccacc actacccca gatgatttt gtattttag	15300
tagagacagg gtttcatcat gttggcaagg ctggctcga actcctgacc tcaggtgatc	15360
caccacccctc agcctctcaa agcgtgggat ttacaggcgt gcgcaccat gccaggcttc	15420

032796-132.ST25

032796-132.ST25

tgccaggcgt	ggtggcgggc	acctgtatc	ccagctactt	gggaggctga	ggcaggagaa	18900
tagttagaac	ttgggaggtg	gagggttag	ttagccaaga	tggtcccgct	gcactccagc	18960
cagggggaca	gagcaagact	ccatccccaa	aaaaaaaaaa	acaaaacaac	aaacaaaaaa	19020
agaggtcaag	gctgcagtga	accatgattt	tgccaatgca	ctccagccctg	ggtgacaaag	19080
tgagaccctg	cctcaaaaaca	ataaaaat	aaataaaaat	aaaacataat	agcaaacgtt	19140
tcatagaggt	ggtatgagca	ttaaatgaac	tgataaacgt	ccctggaaaa	cagtaagtgc	19200
tatggaagga	ttcgctcccg	ccaccggccac	caccattagc	atgtttcaac	ctccatcacc	19260
ctcaactgtcc	cctgtcacca	tcctttgacc	agggcactcc	cagctgcagc	ctttctatcc	19320
tcttgcacac	ccttcataac	tgtaagatca	ctcagctccc	aagaaccaca	gtctacaggg	19380
taaccacatt	tccaaatctc	aaaccagacc	cgctggctcg	cacttccagg	gacaacagga	19440
tattttcaaa	ccagccaaa	agagatgtgt	ggctcagcat	aagaggaaca	ggagaaactg	19500
aggcctcttgc	ccctgagaat	gagcttggaa	gtggatgtcc	cggcctcaact	caaaccctca	19560
gatgactgag	gcccgccag	gagcttgagt	gtaccctcg	gtcataccct	gagccagaag	19620
cacccagcta	atccactctt	catcaactgac	tccctccca	taaaaaacct	gtttgtgtt	19680
tcaggctgtt	aagtgtggg	ctgtttgtt	acacagcaat	ggataactaa	cacacgaggc	19740
ctggcaagtgt	tggagcaaaag	ctgcccuaagc	cctcaagtct	gttcatgtgg	gtgttggcct	19800
gtgtttgcag	aaatccagcc	actgagtcct	cccatgcagt	cactactgccc	ctctgcacag	19860
acacctgcca	catccctgcc	tggggccagga	gctccactag	tgcaggaatg	gggtctgccc	19920
tcccaggagg	atccctgaca	cctagcacag	ggctagcagc	aggcagcaact	tggtagtga	19980
ataaaactgccc	cttcacctgt	acacagaagg	gatgtttcta	taaggggtaa	ttaagtacag	20040
agctggaaag	ctatgtgac	cagaaggctc	taaaagcaat	taaccaacga	ggggaaaaacc	20100
cttcctactc	atttcggcc	cattttattt	agcaactgacc	atgttggaaagg	ccccctgggt	20160
agactgggaa	atgcaccaat	aactgagaca	gcttcggct	gttgcctca	ggatgcctga	20220
gctggatag	ggccagggtg	gggggtggtgc	gtgtgacagg	gttactgttc	acaaccctgc	20280
cggggccataa	gccctccca	acaattccaa	aatccaaaac	gctctgaaga	tggaaagctt	20340
ttgttgccta	tctggtgaca	aaacctcatt	tggtgcatgg	gcccgggtgcg	gtggctcacg	20400
cctgtatcc	cagcaactctg	ggagccgagg	ggaaggatcc	cttgagctta	ggagtttgag	20460
accagectga	gcaacatgtg	agacccctgc	tctacaaaaa	atacaaaaaat	tagccaggtg	20520
ttgtggcgca	ctccctgttagt	cccagctact	cgggaggctg	aggcggggagg	atcgcttgag	20580
cctggggaggt	gggggctgca	gtgagcttag	attatgacat	tgcactccag	cctgggtgaa	20640
agagtggagac	tctgtctcaa	aaaaacaaaag	ttaaaaaaaa	aaaaactgtg	catgggtgtg	20700
gctacagat	agtctttct	gcccctactta	gaatgaacgt	gccacatttgc	ctatagaaat	20760
attcaaggggc	ttggggcaaa	tgcacacag	accctgcacgc	tgttccaagt	tctgagaagt	20820
cctgcattcc	tcagggcccc	agagttttag	agaagagtct	gtaggcctga	gttaagaagg	20880
aacgccttca	aaagccctgg	ggacaaaagg	gaaaggggtg	ccccaggact	gcgtgggtac	20940
ctaccggaaac	gagccgtcca	gttggcactg	gtggatgaag	ctgagcttgg	cgtcagccca	21000
gttagacttc	tgctccctca	ggtcgatgtt	cagtccatttgc	gcccagtaaa	tgtccgagtc	21060
cacaatgatc	ttccgggtgc	tgcacatccat	ccctggccgc	tcaatccggg	gcgtctcacc	21120
ccagtcgtc	cagtacatgt	acctgtgacg	ggggcaggggc	aagagaagca	gctaacacag	21180
atctgttttt	tgtttttgtc	tgcatacgat	cagacatgaa	acaacagaca	gtgaacttgc	21240
cctaaaatct	caccatcggt	aaataaccaa	caggtatgg	ttcaggtatt	cctgccttaa	21300
gctgggcaat	caaaatatac	tatttccaaat	ttgttctcg	ttaacagtaa	attctggca	21360
ccttccttc	ttgtggatag	aaagattctt	tttttttttgc	atgattgcct	agtgtactct	21420
gctgtaaat	ttttaaagaa	cttcagggtt	tttctgtattt	ttttgttacc	atgaaaatgc	21480
tgtaaatgaa	cctctaaaag	gcaattcaaa	acactcagga	tggaaatatta	tttagtggt	21540
taaagaaatg	agctatccgc	tggggccagt	ggctcacacc	tcaatccca	gcactttggg	21600
aggccaaggc	gggtggatca	cgaggtcggg	agatcaagac	catcctggct	aacacagtga	21660
aacccctgc	ctactaaaaaa	tacaaaacat	tagccaggcg	ttgttagttag	cacctgttagt	21720
cccagctact	taggaggctg	aggcaggaga	atcatttgc	cccgggagg	ggaggttgca	21780
gtgagcagaa	atcgcaccat	tgcactccat	cctggcgcac	agagcgagac	tccatctcaa	21840
aaaaaaaaaa	aagaaaagaa	aagaaaatgt	ctatcaagcc	atgaaaagac	atggagaaaa	21900
cttaaatgca	tgttagtgg	tgaaagagcc	aatctgtatg	agtccagttc	taaacactct	21960
ggaaaaagca	aatacacaga	gacagtaaaag	catcgttgg	tgccaggagt	tggagaggag	22020
agggatgaaat	gagtggagca	cagaaaatca	gggcagtgg	actatccgt	atgacatgg	22080
atgggggtg	catgtcctta	ctcatctgtc	taaaccacaa	atgtacaaat	caagggcgaa	22140
ccctcggttca	aacgtggatt	ttgggtgtat	gtgcgtcagc	cagtttcat	cagttgtac	22200
aaatgtacca	ccctgcacag	gatgctgaca	gttgggaagg	ctgtgtgggt	gtgaggacag	22260

032796-132.ST25

ggatgtata	gaactcagta	cctgctgctc	atcaattttg	ctgtgaacct	acaactgtt	22320
aaaaaaatta	agtctat	aaaacaacaa	aacatggcca	ggcacgatgg	cttgacac	22380
taattccagt	acttcgggag	gctgagg	gtgggtca	ttagccaccc	tgggcaacat	22440
ggcaaaatcc	cacc	taca	aaaaataaaa	ataaaaaaa	agttagctgg	22500
acactcttgc	agtcccag	cttgggagg	ctgac	aggatccctt	cagccctggg	22560
aggtcgaggc	tgc	actgtgagc	tgtgactgt	ccactgcact	ccagectgg	22620
agaccctg	cc	aaaaaaa	aaaaaaaagg	ctgggtgcgg	tggctcatgc	22680
agcgcttgg	gagg	ccgaga	tgggcggatc	acgaggtcag	gagatcgaga	22740
taacacgg	tt	aaaccccg	tctactaaa	gtacaaa	aaaattagc	22800
ggcggacacc	tgt	actcg	ggg	aggctgaggc	aggagaatgg	22860
ggaggcggag	ctt	gc	actgt	ccactgc	ctctcagct	22920
aacactccgt	ctc	aaaaaaa	aaaagaataaa	acccatgg	gggatggacc	22980
agctgcag	gtt	cctggg	gtt	ggc	ac	23040
agagaca	atc	ccccatc	catgagaa	aagcacat	tcagggcg	23100
ctctggccaa	tga	accaaga	caaagt	gagc	agacaccagg	23160
ccccacc	g	cc	actgt	gg	tctggatgg	23220
ggcg	gt	act	cc	gg	cagg	23280
atcccag	cc	g	ctggat	cc	ctc	23340
ccacc	c	cc	cc	cc	ctt	23400
ca	c	cc	cc	cc	cc	23460
ctcttgg	c	cc	ttt	gg	cc	23520
gcaaa	cc	cc	cc	cc	cc	23580
atcaaca	atc	atc	atc	atc	atc	23640
tccattc	ag	aa	gg	gg	gg	23700
tctgc	c	cc	gg	gg	gg	23760
atc	tt	cc	cc	cc	cc	23820
tgact	cc	cc	cc	cc	cc	23880
tc	cc	cc	cc	cc	cc	23940
catct	cc	cc	cc	cc	cc	24000
tgagaa	cc	cc	cc	cc	cc	24060
tct	cc	cc	cc	cc	cc	24120
tcg	cc	cc	cc	cc	cc	24180
ggc	cc	cc	cc	cc	cc	24240
gt	cc	cc	cc	cc	cc	24300
cag	cc	cc	cc	cc	cc	24360
gggg	cc	cc	cc	cc	cc	24420
cat	cc	cc	cc	cc	cc	24480
tc	cc	cc	cc	cc	cc	24540
g	cc	cc	cc	cc	cc	24600
ct	cc	cc	cc	cc	cc	24660
cc	cc	cc	cc	cc	cc	24720
cc	cc	cc	cc	cc	cc	24780
cc	cc	cc	cc	cc	cc	24840
cc	cc	cc	cc	cc	cc	24900
cc	cc	cc	cc	cc	cc	24960
cc	cc	cc	cc	cc	cc	25020
cc	cc	cc	cc	cc	cc	25080
cc	cc	cc	cc	cc	cc	25140
cc	cc	cc	cc	cc	cc	25200
cc	cc	cc	cc	cc	cc	25260
cc	cc	cc	cc	cc	cc	25320
cc	cc	cc	cc	cc	cc	25380
cc	cc	cc	cc	cc	cc	25440
cc	cc	cc	cc	cc	cc	25500
cc	cc	cc	cc	cc	cc	25560
cc	cc	cc	cc	cc	cc	25620
cc	cc	cc	cc	cc	cc	25680

032796-132.ST25

ctcgagaga ttagtcggc aaaggccagct cagatctgag catgggaaag actactccc	25740
accaagggcc cagcatctcc caaccaagca ccaagtacct cccaacccaa tgccaagcac	25800
ctcccaatca aatacctccc aaccaagcac ctgcaccc tcaactggac accaactact	25860
cccaaccagg caccaagtac ctcccaacca agtgccaagc acctcccaac caagtaccaa	25920
ttacctccca accaagcgcc tagcacctcc caactgagca tcacactgcaccc cccaaacagag	25980
catctagcac ctcccaactg atcaccctccc aacctagcac cgagcaccc ccaaccaagt	26040
gcagagcacc tcccaaccaa gtgccaagca cctcccaatc aaatacctcc caaccaagca	26100
cctagcacct ctcaacttggc caccaacaac tcccaaccaa gogccaagca cctccataaca	26160
aagtaccaat cacccctccaa ccgagcacct agcaccctccc aactgagcat catgcaccc	26220
ccaaacaaatc acctagcacc tcccgactga tcacccctcc acctagcact gagcactcc	26280
caaccaacat agaaaaagcc ataaaagaagt aaaaagacaa aaccacgtag gcatggagac	26340
tggacttctg gtggcgagga aagggcatt ttattataac gacagctaacttggtaaa	26400
ctcacaacta gttttttgtt ttttctcat gacatgcagc atggtcacgc ctctgtacag	26460
acaaggatac tgaggcagag agtggcaccc tgccaaacctt gtctcatctt tttatcgaac	26520
ctacatgcag agtggccagca aatccagctg tctttctct tcagaacacaa tcccaaatct	26580
cgccactctt tacccccaca agtgagggtt ccccgctgtc gctttctgtc gccaggatcc	26640
cggtaataac cgtggagagg qtcctgccc ccacccacc cccccccacag ctcactctcg	26700
ctccagccac caggggatgc cttccagcac gagtcagac tggcacccctc tctgctcgag	26760
acccatgttgc tcccttcctc acacccctgg ccctgttcc ctacattctg ctacagcccc	26820
tcaaacagggc cccggcccaa accagccac ggccttgcg cttggctgtc cctctgcctg	26880
gaccgcgtc ccccccagaca gccacacggc tctcggcttc atctgcttcc agtctcgact	26940
caaaaagtca c aagaggcct tcccgaccc tgagtcggc cggaaagcccc tcgcccacagc	27000
acccaaagcac tgcttatcc ccctacgcac acgtcccttt caaataactat tcatttacca	27060
tctcctccca ctcaactgaaa gggccagaga ctgggctata cccgctgcgt ggggagcagg	27120
accaggcgca agggctcaca aatgcagttt atgcctggg gggaggttggag ggagctcgag	27180
cgaccacgc tgggaggggaa cgcaatgaca ggaggagcgc aggtcttggc gacacgttgg	27240
ccatggcagc cgctgttggag caacccgcagg ccggccctgg gagagggctt ctacagact	27300
gtatatctca gcctctccga ctactgcaga tgccccctcc tagccagaga cactgttaca	27360
ccagccgacc cttccaaaaaa gaaggctca gtttccctccgcg cttctggcgc cacagtgcag	27420
ggggagaggg ctgagagggc aacagttcac caagcggAAC agaggctgc ccggaggtca	27480
gtggcttccca cgccagctgc aggggttggc agggactcg gagggcagcgg agggcatacg	27540
aggggcttca gggatgagtg gtttccctccgc acagcaccccc tgggaggccg ggggacttc	27600
tcaggttagt ggggcacggag gtttccctccgc cttccatca gggactcaaa atactttggc	27660
gataaaattcc accgtgtccc accccctctg gtacccata cttacacacaa gactgttca	27720
gatgcagaca ctctcgcgca catactgcgt cacacggca catacacacgt cacacacagt	27780
cacatgcgca cactcataca cacacaaata tccactcaca cgcacatgcgt cacacacacg	27840
gacacacaca ggctcacacgc tatgcacgc tatgcgtgc acgcacaca cacacacaca	27900
cgctcacatc ctccactcc cacactca gtttccctccgc tggctctcac	27960
acaaacctgt tggctctga aaggctccag ccctttccat gtcgtcaga agccagtcaa	28020
tggcttccca agtcaaccaca cagatcaaag aggtgaactt ggccacatgg cactctgtt	28080
cctgagctcc caaacaccag ctttggttag gacagaccct cccctccatcc cctcatcc	28140
actaccctgg gcaggcccaag aggagggca tctcggat ctggcaacca gcccctcccg	28200
ccggcttccct gcaggccggca ccatgggagt cagggggagg tcactgcataa gggcaacagc	28260
aagttgggg ccccaaggact agagcccaagg ggttccatg cttactccag agtttggaca	28320
ctgtcccaaca gggcatggcc aagggaaggg cttccatggc ctttccatcc gggaggaggg	28380
caggcggcgt ctttccatggc gcttggatgc atggccccc actccctggg ctttccatcc	28440
tagaatatct aggtcaggct ggggtcaggc gtttccatggc gcaatccaa cactttggg	28500
ggccgaggag ggttggatcc ttgaggttag gtttggaga ccagccctgg caacatggcg	28560
aaaccctgtt ctactaaaa atacaaaacc tagccatggc tggtagtgc cgcctgtat	28620
cacagctact caggaggctg aggaggaga atcacttcaa cttccggagggt ggagggttgc	28680
gtgagcttagt atcgttccat tggcggccaa agatcttaggc cggccctca accgggttgg	28740
tccaggctgg gaggctgttag agactgttgt gacactgaat gaactaacag gcaaaaggct	28800
tccaaactgag cttccatggcgt gttggaaatg gtttccatggc ttttccatcc acctctggca	28860
accagttctg acactgaccc agcacacaac ctgcacggc agcaaggcc agggcttagc	28920
acagcccaagg taagggtgtg ttttccatggc ccagaggc acactgttccct ttttccatcc gtttccatcc	28980
gacaaaggag ggacaagggg tggccaaagca aactgttccct ttttccatcc gtttccatcc	29040
gacccctggcct agctggccag tggagctggg ccacccctcc ttttccatcc caccggac	29100

032796-132.ST25

ttcgactcca aagctttcct gccacccacg ctctccccac ctgggatcac ggccaggccc	29160
tgagcctca agggcccagg tgaactcaacg cagacttagga gctgaggagg acacaggca	29220
gcttccagaa cgagcccgag aaccactccc agcaggttct gcttccagac aaggagctgc	29280
acttttcag ccaatgcaat tagaaagcca ggagaaggtg caaaattccac ctgcctgagc	29340
gtccgactt cccaggccgc ccaccataca cacagcaaag atgtgtttaa ccattcaaac	29400
ccatggccaa ccacatcggt tgccctcagac atgcaagttt taaaaggaa cataactatg	29460
ggccaggcac ggtgttacac gtctgtatc ccagcacttt gggaggccga ggtgggtgga	29520
tcacctgagg tcagagatc gagaccagcc tagacaccat ggtgaaaccc catctgtacc	29580
aaaactacaa aaattagctg ggcgtgggg tgggcgcctg taatcccacg tacttggaa	29640
gctgaggcgag gagaatcaact tgaacccggg aggcgaaggt tgcaagtggc cgagatttg	29700
ccactgcaact ccagcctggg caacaagggaa gactccatct caattaaaaaaa aaaaaaaaaa	29760
aaaaaggAAC ataactatgg agtctcaagg ggaagtaatt ccttcaacaa taacaatct	29820
tgaaagctga gctctttttt tttttgaga caggatctcc tcactttgtc gcccaggctg	29880
gagtgcagtg gtggatcac agctcaactgc agcctcgatc tcccaggctc aaatgatcct	29940
cctacctcag cctcccaaga agctgggatt acaggtgcat accatcacac ccgattcatt	30000
tttgtatact ttgaagagat ggggtctcac catgtgccc agtgtggctc tgaattcctg	30060
gactcagtg atctgcggc cttggcctcc cagagtgcgt ggattacagg cctgagccaa	30120
caccccaacg gttcattttt cagagtcgca ccgagtgcgt gggttacagg cctgagccaa	30180
cccccccaacg gttcattttt aagagtgaca ccgagtgcgt gggttacagg cctgagccaa	30240
cccccccaacg agttcattttt cagagtcgca ccgagtgcgt gggttacagg cctgagccaa	30300
cccccccaacg gttcattttt aagagtgaca ccgagtgcgt gggttacagg cctgagccaa	30360
cccccccaacg gttcattttt cagagtcaca ccgagtgcgt gggttacagg cctgagccaa	30420
cccccccaacg gttcattttt cagagtcaca ccctttttt gaaaaacaac ttgggctcat	30480
gcaaattcga gagagagatg gtgacactcc ccggccctg gacccagggt gagtgcgcagc	30540
agggttacc cgtgagcggg gtccaaaggcg atggccctcg gctggtaag gtcctgcag	30600
aagagcacct tccggatgt gccattgagg ttggccaccc cgatgcggtt ggtctctgag	30660
tccgtccagt acagttctt gcccacccag tcgcaggcga ggcgtcggy agagaccagg	30720
ccggagatga ccacgttctg cacggcggcc cccgtctgg tcaggttaggt ctgcttgatg	30780
gcctcctcgc tcacgtctgt ccagtcacg gtccttgg aaaactggaa gtccactgcg	30840
gcccgcattct ccaggccgcg gaccacgtg gtggactcca gcttgcactcc gccggcgtcc	30900
accagccgta cgtcccgccg gttggcaaat agcaggagcg gcgaggctgt gggcagaag	30960
caaaccgtga gggccactgg ctaagccacg aagatacaca gcccgggat ggagcactat	31020
gcccagagca ctcctggtag tgcctgcctt atgccaaga cttccagttc cttcctccca	31080
cccctaaggc gttgtcagga agttgcctgg gcagccccgg cccgcatcat tcagaggctc	31140
ctgcagcgcgca gcaaacagcc ttcttccac attcgtgtac agcacctgtt tgtttacca	31200
ctgttagtc tgttcccca gatatgggtg acccttcctg ccatgccccaa aacctccac	31260
atcgctcccttcc agaggctaca ggggcctgtt cctgtctgc agagaagcca catccccctt	31320
gttggctga cacagggat ggggacatgc aggcacagca ctggccatgc tgctcgctac	31380
agacccagcc acaggggccac atttttttag gggttcagag cccaggccag acagagcc	31440
aagattccct tacaagtctt tgaccactgt ccaagtcag gcccgttcc ttggccgtgg	31500
catcagcttc ccattccaccc ctgtattcca tggttctccc accctgttcc tggacattcc	31560
tacattnaa gggtcactt ggaatgccac cccttggctc agacaccttc cacagctccc	31620
tgtgccagt ccatgcagaa caaggtcaga ccccttagcc tggcctccaa ggccttggcc	31680
tctggctca cctacacttc tctccaccac cccaccccaa gcattcctga tctgcctgcg	31740
gccaggctgg ctccctcacc tccctgtcga ccgcagccct cagcccttc tgcctgtcga	31800
agaaggctca tctcacagac aacggctctca ttcccacaac gggctcaatg agaaatcagg	31860
agaggccctc agaccatcac cccaccagac acctcagacg tcggaccagg agggccagc	31920
aaccccaac acagactcaag agggactaag aagccacatg aggagtgaac acaagatgt	31980
gacaggagga ggttaagggc ctccaggag ctccatcgt ccgtgttctg ctgtcagcag	32040
ggttaggtcg ggctggccac aaacacccccc aaaaaacatc tgaaggcttg gcttgaacaca	32100
gctgacatcc ctcataaaaa ctgcagaccc ctgggtccctc ctgcgcagat gggggagccc	32160
agccaacccc acactccac cttcaccaag aaagagaaaag caaaaacaaa ctcaactcag	32220
ccaatgacaa tcacagaact gaatcctgtt gttagttcag ttgggttcat ttcaagcaggg	32280
gaaagatttg cagcctctat gagggttagct gggacacaaa agggccagag catggccag	32340
gagaccccaag cgcaatgggg tagatgggtc cgagcacagg cttccctgc aagacaagca	32400
ctggctcaaa tcctggcccc tcccattccc aggagacatg ctccacagga tgggaggaca	32460
cacagaggac ctgaggccag gaaaatgaca gcggcgcctc cggccccc cccgtctgt	32520

032796-132.ST25

catcatctta	ggtctacagt	tctttgtggc	aacgagggac	actgtgaaag	tcaaacaaca	32580
ggaaggcata	ggccacaaat	aaagacaaac	gggacttcat	gggaagctaa	agattttg	32640
catcaaaaaga	cactatcgag	agagtaaaaa	ggcaacccac	agaatgagag	aaaatatttc	32700
caaatacatag	atctactaag	agattaatat	ccatgaaata	cagagaactc	ctaaaactca	32760
acaatgagaa	aacaactaag	ccaactcaaa	aatggcataa	caacttgaac	agacattct	32820
ccaaagatga	catataaatg	gccaataaac	acatcaaaac	aggcttataa	tatcccta	32880
catcaggaa	atgcaaatac	aaactacaat	aagataccat	cttgcaccaa	tttaggacggc	32940
tactatcaa	aaaacaaaat	agcaagtgtt	ggtgaggatc	tggagcaact	ggaacccttg	33000
tgcaccactg	gcaaaaatgt	gaaatggtgc	agctactatg	gaaaacagca	tggcagtcc	33060
ccaaaaactt	aaacacagaa	ttaccatatg	acccagcaat	ttcgcttgg	gttatatacc	33120
caaagaact	gaaaacaggg	acacaatcag	atatgcatac	accttggatc	acagcagcat	33180
ccttcccaac	agctaaaaca	ttggaggcagc	caggcatgtt	ggctcacgccc	tgtatccca	33240
gcactttggg	aggctgagge	gggtggatca	cctgaggtca	ggagttcgag	accagcctgg	33300
ccaacatggt	gaaaccccg	ctctactaaa	atacaaaaat	tagctggcg	tagtgcacggg	33360
cacctgtat	cccagctact	cacaagtctg	aggcaggaga	attacttga	cccttggaaat	33420
ggacgttgca	gtgagccaag	attgcgccac	tgcattccag	cctgggtgac	acagcggagac	33480
tctgtctcaa	aaaacagcaa	aacaaaaaca	aaaaaaca	caaacatgga	agcaacccaa	33540
gctccctct	actgaggat	gaatagcggg	gaaaatctg	ctccatccac	acaatggagt	33600
actattcagt	ctcaaaaagg	aaaaagattt	ttgtcaggca	cggtggctca	tgcctgtat	33660
cccagcactt	ggggaggctg	aggcgggtgg	atcacctgaa	gtcaggaatt	caaggccccgc	33720
ctggccaaga	ctggcaccna	gctacacana	aagtatangg	ccccggaaa		33769

<210> 9
<211> 72049
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (8356),(8385),(38585)
<223> Identity of nucleotide sequences at the above locations are unknown.

<400> 9

tataccttgc	gcccaccc	ggctcctgt	gtgaagacaa	tatgaagaaa	atagaatatta	60
cccatataat	tgccacacag	acttagttt	gtccatgtat	cttgtgcacc	ttttttctgt	120
ttacggatca	aaatcgactt	ttagggtcag	gcccgggtggc	tcacacctgt	aatcccaaca	180
ctttgggagg	ctggagttgg	gtttgggggg	tggatcactg	aatgcgggaa	gtttggagacc	240
agccgtggca	acatggcgaa	actccatctc	tactaaaaat	aaaagatgg	ccaggcgtgg	300
tggtgggtgc	ctctaatccc	agctactccg	gaggctgagg	caggagaatc	gtttgaaccc	360
aggagacaga	gtttgcagt	agccaggatc	acgcccactgc	actccagcct	ggcaacagag	420
cgagactctg	tctcaaaaaaa	aaaaataaaaa	ataaaaataaa	taaatacata	aattgacttt	480
taggagattt	gttcaaacaa	tgtgtgtat	gttgcgtctg	agtgtttttc	atttatcgat	540
catgcaaaatt	ccgacatcat	tcacttctt	ccagagtgt	ctgttttcc	gcctgtgtca	600
tcacccgtca	ccttgaatgc	cctcgtttag	gtaaaaataag	tacattttat	tcaaaaatata	660
ttgaggacat	ttgggttgc	tccaggatct	ttgtctttag	ttttgtgtt	cttgcggagc	720
catgggtgt	tctgttgca	gaaacctcca	tgcgttccag	ctgctgttcc	tgcctgtgtt	780
cttagagagg	aaatgtggg	gtcccggtt	cccggtgtgc	tgaccaggaa	gcctgcgggt	840
ctttacggcc	tttccagaag	cgggagatgc	ccccacttaa	gtgtcagaca	ggccttcca	900
cctcaactggc	agctctgagc	ggctcccttc	tatggcaga	tgactgagaa	gttaccaatt	960
tccacgttta	ctgactgtg	tttctctgt	taattttgtat	ttatagtctt	cgctaattta	1020
ttgcttaggt	tttgggtgtt	tccctattga	cttgcgtatcc	ttttaatttt	ttaaacaaca	1080
ttaataatact	tcatttttt	agagcgttt	taagttaca	ggaaaattaa	gggacaagta	1140
cagaggttc	tttccaccc	ctgtcctcc	tcctccctcc	ccacccccc	tcctccct	1200
attgtactt	tctttctgtat	attataaaaag	tcactcatgg	ctggcgtgg	tggctcacgc	1260

032796-132.ST25

ctgtaatccc	agcacgttgg	gaggcagagg	caggcagatc	accttgaggc	aggagttcca	1320
gaccagctg	gccaacatgg	tgaaaaccccg	tctctactaa	aaacacaaaa	agtttagccag	1380
gcgtgggtgc	gggcacctgt	aatcccagct	actcaggagg	ctgaggcgagg	agaatggcgt	1440
gaacctggga	ggcagagggtt	acagtggatc	gagatcgcc	cactgcactc	cagccctggc	1500
aataagagt	aagttcgtc	tcaaaaacaa	agtcacacac	gcttcttgc	cgagggtcat	1560
ttggccgagg	ggccagatgg	ctcaccatct	agttggaca	ggccatgago	tcggaatgt	1620
ttttacatat	ttacatggtt	gagaagaaaa	tcaggagaat	aatgttttg	gacatggaa	1680
aatgacatgg	aatttgcatt	ttagtgtcca	taaatgaagt	tttgtttgct	cccagctgt	1740
ttgactgagg	caggetggct	tcctacagct	gccccagagc	tgaggaggcg	ggaaggagac	1800
cgtgcaggcc	gcagcaccga	aatatattgc	tctctggccc	ttcccaagat	gcttgccgac	1860
ctctgtccga	cagctagaag	gaaggatagg	accctgtccga	cgataaccac	tgttgacatt	1920
tgagcgcgtt	tcctcccg	cttttgcgt	agagtggcag	tctgtttgct	tttgtggcgt	1980
ggatctgtcg	cacgcacggc	gggctgttt	catgaggctt	cctggaggat	agggctggc	2040
tcggagctgc	acgcgtggg	gcgtgtcc	catgcgtgg	ggccctcagaa	gagagctgt	2100
gtggggcgccc	cagtgcacac	gctgggtgggt	gccaggcctc	cacgctcaga	tcagccccgg	2160
cgacagggtt	gggcacccct	ctctctggcc	tctgtcagt	ggcccaggcc	gtctgctctg	2220
cctggcacac	ttgcctctgt	ccttccactg	aagcgtctct	cttaccctct	gtctccggct	2280
gggtacgtt	aatttgc	ctcaaggaga	tatgtctaa	gtctaa	cccccaggat	2340
gtatgtgatc	taatttggaa	acagggtctt	ggctgtatgt	atcaagcgag	gatgaggatca	2400
ccctagagta	ggggccttat	atccacgggt	ctgggtcct	catgagagca	ggtgagcaga	2460
caactgacact	cagggtgaa	ggctgcacgg	agtcagaaca	gggcttagt	cgatggccgc	2520
cacaagccaa	ggaactccaa	gtatccctg	caacaccaga	agctggaaaga	tgccaggaaag	2580
gatectgccc	tggagccttc	ggagggagtc	tgtccctgca	gacgtcttgc	cttttgattg	2640
cagggatgca	tgtcttaggg	tgtgtgggg	ggtgcat	tgtgtttaga	agccacccctgg	2700
tttgtggcga	tgtgtcacgg	gagccctctg	cagggtctgc	gtgtccatgt	gttgtgggac	2760
agaggtgggc	agggacggac	ggtgcgagc	tggacatgtc	catgacgtcg	gccatccctt	2820
gggatggctt	ttttgtttt	aggataaggc	tgcctgcag	gaagctgtc	ctgtgcctggc	2880
ccttgcucca	agccctggc	ctgtgcctgg	cctcgccgaa	gggatgtcgc	ccttctctcc	2940
tgcatgcgtg	cagggaggaa	ggggagaggt	cagcagcccg	cctggaggag	gtctggcgcga	3000
ggggaaagggtt	tcactttcag	gcaatgtt	ggggctgttt	aaacaacccc	aaagaaaaacc	3060
atttggccaa	actgttagtt	tccaaacatt	ttacttcctt	ggtgtttaaa	taaatttccta	3120
ccaagactct	gtagctggc	ccagggaaagg	agttggcctc	tcttctttat	agcccgac	3180
agtcagtccc	ctgcacctgc	ccctcccaac	cccagccctg	cttccccgt	gccatggct	3240
ctgcccggac	ctctctacac	acagaaccc	ctggaggc	gctgtggca	ccagccttgg	3300
cagggctgtg	gccccggcc	ggctgcgtgt	actctctctg	cagctgcctc	ctgtgcct	3360
ggctggacac	cgtccccacc	accactgggg	tcacccctgt	gctggtcaca	gctcactcag	3420
acccctcaggc	aaatgggtt	gatcctgcct	cttcccagg	tgtctcagtc	tctgc	3480
tcaaaaaaccc	cagggccctt	gcagcctgag	gggtgcaga	gacacccct	tcaatcagt	3540
aaacacccat	agattcacc	cagcgtgaa	aggactgctt	cgccacacag	gtttgattt	3600
ctcttaagta	atttggaaagg	atgcccggaaa	taggttc	atgggtggac	tagggccct	3660
ctgctgaccc	agtttacaga	gggcttaggg	tgggtgtgt	cagcccccgt	aggttctagg	3720
cccatattgg	acacccccc	agaacccgtcc	acaacccgtcc	atgtgtgtac	agcttacccaa	3780
atcccacagg	ctcttgatgt	ggagagcaga	cctctcaatc	tcaagcaggcc	ccccacacag	3840
acccctataac	cctagctgc	cttcacagta	cagttcgtgg	ctatgtgttc	acggatggtg	3900
ttgttcaccc	aaggctctg	ccctgtgacc	ccaaggccgt	cctgaggggca	gattccaaat	3960
ctgtttcg	cacccttc	tccctagcag	cggttccagg	gctgtggct	aactagctt	4020
ccacagagat	actggggaa	tgtgaagc	agccaggccg	caagtaaaa	acgcacttcc	4080
tgcatgtgt	ggctccctgg	attgaagt	ttgaggaaagc	aaagtgaagt	gagcttc	4140
cttgcggct	tgtgtctt	ggccggggagc	ctacccttc	tgagcgttgg	ggtcctgtc	4200
agtagaaatgg	ggcattcctca	tagctcaagg	ggtgggtgt	aaaaattgt	ctattgttt	4260
actttatgt	ttttttttt	ttcgagacaa	agtctcacc	caacgcgcag	gctggagtgc	4320
agtggcgca	tctcagctca	ttgcaaccc	tccttcctgg	gttcaagt	tttcctgtcc	4380
tcagcctccc	aagttagctgg	aattacagga	gtgcgcacc	aggccccggca	tattttcta	4440
tttttagtag	agaggggtt	ttaccatgtt	ggctaggct	gtcttgaact	cctgacccctca	4500
ggtgatccac	ctgcctcg	ctcccaaagt	gctgggatta	caagcatgag	ccaccgcgc	4560
cgccctactt	tagtattt	ttaggaggac	agagggaaacg	ggctggcaag	acaggcttgg	4620
aatgtgtttt	gggatcaagt	gccggtttct	gtctggcact	ggcgttct	gtggggccat	4680

032796-132.ST25

gatggacaca	ctgctgaggt	caagcgtgat	tcgtcttgcg	ctgtgcctgg	cagtctcatt	4740
ggaaagtct	gtagacatcg	tgtggatggg	gctctcccg	gccaaggccct	tggggacctt	4800
ccaggactgt	gatccccca	cagtggctgt	taagcaggga	ccttcgtga	agtggagtc	4860
ctggtcccc	ccaagtata	gctagacagg	gactcggca	tcgccaagcc	tggctgatta	4920
ttcaactggat	gaggagacag	gcccagagag	ggcaggaac	ctgcccggagg	tcacccagca	4980
ggccccagag	gttccggct	cgattctcc	ctgctcatcc	ctggatgtag	tgctgctgt	5040
gatgtggttc	tgtgtgggg	qctgtggaga	gcagggggct	tgtgccagga	ccccagtagag	5100
ggtggcgccc	tcgccccat	gcccactgtt	ggtatggggc	ggccatccac	tggggtgtgg	5160
ggaggaacag	ctttccctgag	gaggaggtgg	cgggaggaac	agttccctg	aggaggaggt	5220
ggcgggtctg	tgtgacctgg	gccttgaagg	acaggccat	tgtcaacacga	acattttggg	5280
agtggagcct	agagggagaa	aatttggta	aattcagatt	cccttcccccc	taccaataca	5340
caccaaatac	gatccccctg	accagatcta	aatttggctc	tcagagattt	ccattgttagc	5400
tgggcacttg	gggaaccttc	taagtgtgc	ctctgcctct	ccccagccctg	cctgcctcag	5460
tttccccacg	cctggggcccg	tgtcgctgtt	gccccatccac	ggggccctc	tagtggagga	5520
atcagattat	qcactccggg	gcttggagca	ggagtcagga	ggggctctg	tcttccttg	5580
aaacgttgg	tgccgggatc	ctggAACAGT	ctctgcattc	cttctggcga	gaaccagagc	5640
ctgggcacag	gggaccatct	gttggggaaa	ggctgcagcc	tggcagggca	ctcaggagat	5700
ctggcagttg	gctgcagggc	caggcttagg	ggccaggggca	tcagggaggg	tctggctgg	5760
ttcagccccg	ggcccccTTG	cagattgtga	cctggggccc	tgtgcaggggg	catggccaca	5820
ggatgttggg	aggggtctct	gaccctgacc	ttcttggtctc	tgtgcatacct	ttagagaccaga	5880
aagggtctgg	acaatagtgt	agacgatgcc	ctaacctggg	gagggagccaa	catcctgatc	5940
ccagcaacct	cgggaaggat	ctgtcaggat	tatggggcac	cctggggggcc	ccaaagtctgc	6000
atgggtctcc	acttgcattt	tctgttaggaa	gctctgataa	atccaaactg	ggggtcttag	6060
gacacagtc	gaaatgtga	taccgttgc	tgtggagct	cgggccctgg	gggtcaggag	6120
catgtggagg	gtgggcacg	gggggttcaga	agagaatctt	gttaacccccc	acccccc.aaa	6180
ctgaagccca	cttggggcc	atggctgaaa	gggtgggggg	tctccgtgc	tctgtggag	6240
tgggtgggt	ggagtccctg	gtttgcacg	cctctggggcc	ttagcggcgg	gacccctgtcc	6300
acagcggatc	cctggggccct	gttgcata	tgctctcaga	gttgcgtgt	ggccacaggag	6360
ggagcctgag	ttaagcttct	cttgcgcgg	ttgtacgttgc	tcaggtcaca	ctgggtgagtt	6420
aggcaggggca	cagatgccc	gagcagaggg	aactttccctt	ggggattcaa	cacgtcaag	6480
tctttaggggc	tggccaaatcc	tgccctcagc	tagagaggg	gcttttattt	gagaccagaa	6540
tcacctgagc	atccctctgt	ccccagctgt	gtccagccct	tctgcaggga	catcctgaga	6600
ggaccaggct	ctccctcat	ccacctgcct	aagtgcact	ctgaaccctg	tccacctgt	6660
ccgtggagggg	gcgtgacctc	aagctgtca	gccagcagca	ggcttggccc	tgggggcag	6720
cagagaccca	ggtgctgtg	gggtgggtgc	ttctgtggct	ggttctgaaa	cttcgttgg	6780
agtgtgtgg	cagtgcctt	cctgttctct	gtgggaccct	atttagaaac	gagggtctgag	6840
ttactggggg	tcatactgt	gttctgtatgg	cccagctgt	ttagggccgc	ggtgcagccc	6900
catccaagg	gccagggccc	tgggtctagc	cgtgaccaga	atgcatgccc	cggagggttt	6960
tctcatctcg	cacctgtgtt	ggctgggtgt	tcaagtggtc	gtgaaactct	gtgttagctc	7020
ttgggtttcc	tgaaagtgc	cccggttctc	aggcctcaga	accagggttt	cccttcatct	7080
cggtggctcg	ggagcatctg	ggcagttgag	caaagaggcc	gattcacttgc	aaggatgtgt	7140
ctggccctgc	ctaggagccc	cccggtacgg	tgtctggggcc	tgaagctg	ctcgggtgt	7200
ggagaggagg	gagcgtatgaa	gtggcgtcga	gctggcagg	aagggtgagc	ccctgtcaagg	7260
tgggcattgt	ggggacgctg	agcagcatgg	ccagcagctg	ggtctgcagc	ctgggtacccg	7320
gcgggacttg	tgggtgggc	ttgtttgtgg	ccaggagagg	ggtctggcagg	agacaagggg	7380
gactgtgagg	cagctccac	ccagcagctg	aagcccaatg	gcttggctgt	gtggctctca	7440
gctgcgtgca	taacctctca	gtgttgcgt	tctctcat	gtaaaatgag	gaaacaaaca	7500
tgccagccct	cccagagggt	tcatgaggat	gaacgagtga	ccatgttagc	tgggtgggt	7560
gcgtgtcacc	taacatcacc	agccttgc	aggagagccc	tggggccctg	gctgagtt	7620
tcccttgc	ggcccaaaaa	aggccttagac	ttgtgcctgc	tgcaggccc	tgaccctgt	7680
ccccattgtca	cctgtctcca	caggagccg	ggaggtgt	ctgtggccc	ggcggacgg	7740
cctacggagg	atctcgctgg	acacgcccgg	ttcacccgac	atcgtgtgc	agggtggacga	7800
catccggcac	gccattgcca	tgcactacga	cccgcttagag	gctatgtct	actggacaga	7860
tgacgagggt	cggggccatcc	gcagggcgt	cctggacggg	tctggggcgc	agacgttgt	7920
caacaccgg	atcaacgacc	ccgatggcat	cgcggtcgc	tgggtggccc	gaaacctcta	7980
ctggaccgg	acggcaccgg	accgcatcga	ggtgcgcgc	ctcaacggca	cctccgcaa	8040
gatccctgg	tcggaggacc	tggacgagcc	ccgagccatc	gcactgcacc	ccgtatggg	8100

032796-132.ST25

gtaagacggg	cggggctgg	ggcctggagc	caggcccagg	ccaagcacag	gcgagagggga	8160
gattgacctg	gacctgtcat	tctggacac	tgtcttgc	cagaaccgg	aggagggctt	8220
gttaaaacac	cggcagctgg	gccccacccc	cagacgggt	attcaggagc	tccagggcg	8280
ggctgaagac	ttgggttct	aacaagcacc	ccagtggtcc	ggtgctgctg	ctgggtccat	8340
gcgttagaaag	ccctgnaaac	tgaggggagc	cctttgtccc	cctgncttca	gttcctcat	8400
ctgtagaatg	gaacggtcca	tctgggtat	ttccaggatg	acagtagtga	cagaaggc	8460
agectctgtg	acactgacca	cagtacagge	caggcetett	ttttctttt	tttttttag	8520
atggagtttc	actctgtcgc	ccaggctgga	gtcagtgtt	gtgatctcag	ctcaactacaa	8580
cctctgcctc	ctggctcaa	gtgattctcc	tgcctcagcc	tcctgagtag	ctgggattac	8640
aggtgcctc	cactgtcctt	ggctaattgtt	tgtatTTT	gtagagatgg	ggtttcaccg	8700
tcttggccag	gctgtcgca	aactcctgac	ctcagggtat	ccacctgcct	cagcctccca	8760
aagtgtctgg	attacaggca	tgagccacca	cggccgtca	ggccaggcct	ctttgaaca	8820
cttgcacac	catgggtctt	tcatccagg	gggttagta	cagttgtaca	gttgaggaca	8880
ctgaagccca	gagaggctca	gggacttgc	cagggtcaca	cagcaggatg	ttgcagggt	8940
ggggctgggc	ctggcagcgt	ggctccagct	ttccagcata	gaaatctgt	aaagcagata	9000
gtttgtcggt	cggtagggg	gactttctga	gaccggcccc	agcggctcag	agggtagtag	9060
ccaggggcct	tcctggggc	tcataaccca	gaacactgaa	tggaaaacc	ctgatggagg	9120
aggcgca	gagctttcc	tgcaagtgg	ctgggtctta	ggagccagca	tgtcaggcag	9180
gggtgctgccc	tctgtggagc	acttagtggg	caccaggtgt	gttccaggt	tcatggccct	9240
gggacactgaa	gctcagaagg	tgaagtaact	tgcccaggc	accgcgtcgg	cagcggcg	9300
cagaggattt	gtggctgtg	gagcctgtgc	tcgtggccca	gccctgggg	tttgagtagt	9360
gctggccggg	gagctttcc	tgcaagtgg	ctgggtctta	ggagccagca	tgtcaggcag	9420
caggcagcgg	gagtgcagca	ggcagcgggg	gcacagcagg	cagaggcgg	ggctcgagca	9480
gccatccgt	gaccctgggg	cacggaggca	tgtggagag	ggctgtccca	ttgcagtgg	9540
tgaagggctg	ggttgtgccc	cgaggagggt	ggatgagggt	aagaagtggg	gtccccaggg	9600
gctttagcaa	gaggaggccc	aggaactgg	tgccagctac	agtgaaggga	acacggccct	9660
gaggctcagga	gcttggtcaa	gtcactgtct	acatggccct	cgggtcctc	atctgtaaaa	9720
aaggaaggg	tggggaaagct	gactccaagg	cccttcttag	ccctggttt	atgagtcgt	9780
ggatcccagg	gacatgggct	ttgcagtctg	acctgtgagg	tcgtgggg	cagggagggg	9840
caccgagctg	gaagcgggg	gcagaggggg	ttggccggct	ggtcagacac	agctgaagca	9900
gaggctgtga	tttggggcct	cagaaccttc	accctgagc	tgccacccca	ggatctgg	9960
tccctccctt	ggggccccc	ggaaacaagt	cacctgtct	ttgcataaggg	gagcccttca	10020
gctatgtc	gaagggtctg	ctctgccc	tcctccctt	aggtgtcag	ctcctccagc	10080
ccactagtc	gatgtgaggc	tgccccagac	cctggcagg	gtcatttctg	tccactgacc	10140
tttgggatgg	gagatgagct	tttggggcct	gagatccaa	gggctgggt	ggtgaaaccc	10200
gcacagggt	gaagtggca	ttccctgtccc	aggggagccc	ccaggactc	ttgtcactgg	10260
gcttgcgc	ggcatgctca	gtcctccagc	acttactgac	accagcatct	actgacacca	10320
acatttacaa	acaccgacat	tgaccgacac	cgacatttac	cgacactgac	atttaccaac	10380
actgtttacc	aacactgaca	tctactgaca	ctggcatcta	ccaacactga	catttaccga	10440
cactgacatt	taccaacact	atttaccaac	actgacatct	actgacattt	gcatctacca	10500
acaccaacat	ttaccgacac	caacatttac	caacactgaa	atttaccgac	accgacattt	10560
accgacaccc	tttaccaaca	ccgacgttta	ccgacaccga	catttaccga	cactgatatt	10620
taccaacact	gacatctact	gacgctggca	tctactgaca	ccgatgccag	catctacca	10680
caccgacatt	taccaacact	gacatttacc	aacactgaca	tttaccgaca	ttgacattt	10740
ctgacactga	catctactga	cactggcattc	tactgacact	gacgtttacc	gacactagca	10800
tctactgaca	ctgacatttta	ccaacaccag	catctacca	caccgacatt	taccaacact	10860
gacatttact	gacactgata	tctactgaca	ctggcatcta	ctgacaccaa	catttacca	10920
caccgacatc	taccaacacc	gacatttacc	aacaccagca	tttaccaaca	ccgatgttta	10980
ccaaacgcga	cgttaccga	cgccagcatc	taccaacact	gacatttacc	gacaccgaca	11040
tttacccgaca	ctgacatttta	ctgacactga	catctactga	tactggcattc	tacccgacact	11100
gatatttacc	aaccccagca	tctactgaca	ctgatgttta	ccaacaccga	catttacgag	11160
caccgacatt	tactgacacc	aatatttact	gacatcaaca	tttagccatg	tgatggggc	11220
cggcttgggg	gcaggcctt	ctcttggcac	ttgggatgt	gcagagacca	gacagactca	11280
tggggtcatg	gacttctgt	tcttctccag	cctcatgtac	tgacagact	ggggagagaa	11340
ccctaaaatc	gagttgtc	acttggatgg	gcaggagcgg	cgtgtctgg	tcaatgcctc	11400
cctcgggtgg	cccaacggcc	tggccctgg	cctgcaggag	ggaaagctct	actggggaga	11460

032796-132.ST25

cgccaagaca gacaagatcg aggtgaggct cctgtggaca tggatcc aggaggccag	11520
gcccagccac cccctgcagc cagatgtacg tattggcgag gcaccgatgg gtgcctgtgc	11580
tctgcttatt ggccacatgg aatgttttagaaaataacttcaatacttcttgacaaaaac	11640
gccttgagag ggtagcgcta tacaacgtcc tgggttacg taagatgtta tcattcgcc	11700
aggtgcctgt agacacagct acttggagac tgaggtggga ggtcgctgg agtccaagag	11760
tttgaggcca gccccggcaa aggggacaca ggaatctct gcaactgctt tgccacttac	11820
tgtgagattt aaattatttc acaatacaca attaagacaa aaagttaatc acatattccac	11880
tgcctgttt aagacagaaa acatgggtgt tggtaagcc agaggcagct gctggctga	11940
gttttgtat tggttctaa gcagttgaag gcagttttgt tttccatag atgtctgttc	12000
tcccttgct gggcagcc tcgcccgtct gctgtgtcg ggttcagtg gcctcgccc	12060
gtggacgcag cctcgccctg ccgctgtggt cggtttagtgc tggctcgcc cctggacgc	12120
agcctcgccc tggcgtgtg gtcgggttc agtggctcg tcccggtggac gcagcctcg	12180
cctggcgtg tggcgggtt tcaatggcct cgtccgtgg acccagccctc gcccgtccgc	12240
tgtggtcggg tttcaatggc ctgcgtctgt ggacgcagcc tggccctgccc gctgtgtcg	12300
ggtttcaatgt gcctcgccc atggggcgtc ttggcagct tttgtctac ctgtggagcc	12360
tctcttgac tttttgtt gttgtttgtt ttgtttgtat ttgtttgtat ttgtttgttt	12420
tgttgtcgat ttttgtgcgg aggctggagt gcagttgcgc gatctcagct cactgaaacc	12480
tctgcctct tgggttcatg ccattctctt gcctcagctt cccacatagc tgggattaca	12540
agtggccgc accacgcgtt gtaaaatgtt gtatttttag tagacaggggg gtttccat	12600
gttggtcagg ctggcttggaa actccgtgtc tcacatgtac cacctgcctc ggcctccaa	12660
agtggggaa ttacaggcgt qagccaccgc gcccagccct ctgttgagca tattttgagg	12720
ttctcttggt gccaatgtata tttacatgtg tcccatcgcc accatcgta cccattgggg	12780
tgacatttggt gcctctctc ggggtggatg cctccctctg ttccagcaat tttctgtgg	12840
attttccatgt gctgcattcag tccttggta cgtcaccatc ggggtcacct ttgtctctt	12900
cagggtctcc aggggaggcc cgaatcagcc agcttgcagg gcagggcagg atggagaaca	12960
cgagttgtgtg tctgtgttc aggatttcag accctgttcc tgagcggggag gagtttcagc	13020
accttcaggg tggggaaaccc agggatgggg gaggctgagt ggacgcctt cccacgaaaa	13080
cccttagggac tgcagggtgtg gccatttctt gctggagctc ctgttaaatg ttttttttt	13140
ggcaaggccc atgtttcggtt gccgttggagg atgatttgc ttcaacgcattt cccgttaccc	13200
gtggggaggg gtcaggact cgcgtgtctg tggcacacca ggcgtgtgac aggctgttt	13260
ccatgtactg tctcagcgtt gtttttctt agacagggtc tcgcgtcgctc acccaggcga	13320
gagtgcagtg ggcacatcac ggctcgctgt agcctcaatc tccctgggtt caggtgtatcc	13380
tcctgcctca ccctctgtgtt agctggggact acagacacat accaccacac ccagcttagtt	13440
ttttgttatt ttttttttttgggg gggatgggg tttcgtgttgc gtggccaaatc tgatctcaaa	13500
tcctctgtggc acaacgcgtt cacctgcctc ggcctccaa agtgcgtggg tgacaggcat	13560
cagccgttac acgcagctca atgattttat tggtaaaaaaaaatacatagc aaaaaattgt	13620
tgtttttaac cattttaaatg tgaacagttc aggctggcg tgggtggctt tgcttgcatt	13680
cccaatgtt tgagaggctg aggtggggcag atcacctgt gtcaggagtt tgagaccagc	13740
ctggccaaaca tgatggaaatc cagttcttac taaaatataaaaatttgc gggcatgg	13800
gcaggtgcct gtaatcccac ctactcggtt ggctgaggca ggagaatcgc ttgagccgg	13860
gagggtggagg ttgcaggatgtt ctgagatcat gccactgcac tccaaatctgt gtgacagagc	13920
aagactctgt ttttttttttgggg gggatgggg tttcgtgttgc gtggccatcc tccatagcat	13980
cattttagat gaggacaatgt tgggtgcaggat atctctgttca ctatctactt ctggacact	14040
tttttcttgc ctggaaaggaaa cccatgcctt accggcactt acggccatcc tccctctt	14100
cccaatgtt gtcacccactt aatctactt ctgtctcttgg ggggttactt cttctggacgt	14160
ttttgttgc tggaaatctt gcaatatgtt gtcaggactt gtcaggactt tccatagcat	14220
tgtgttttcc agatttcaccc acacattgtc gcacgttac agaatctcat tccctgtactgg	14280
gtgcagggttttggg ttaggcctgtt aatcttacaa ttctggggagg ccaaggccgg acgatcactt	14340
gaggcgaggatggg tttgagatcat gcaatgttgc tccatgttgc gtcaggactt tccatagcat	14400
taaaaatgtt ttttttttttgggg gggatgggg tttcgtgttgc gtggccatcc tccatagcat	14460
gagggttgggg gatcgcttac gcccaggagg tcaaggctgc agtgcaggat ttttgcacca	14520
ctgcacttca ggcctggacaa cagacgttacaa ccctgttgc aaaaaaaaaaaaaaaa	14580
tttttcttgc ttttttttttgggg gggatgggg tttcgtgttgc gtggccatcc tccatagcat	14640
tgtgttttcc ggggtgggg gatcgcttac gcccaggagg tcaaggctgc agtgcaggat ttttgcacca	14700
gtgaacatccat ttttttttttgggg gggatgggg tttcgtgttgc gtggccatcc tccatagcat	14760
gttaggggttgggg gatcgcttac gcccaggagg tcaaggctgc agtgcaggat ttttgcacca	14820
aaactgtttt caacagtcgttgc tgcgttgc tgcgttgc tgcgttgc tgcgttgc tgcgttgc	14880

032796-132.ST25

tgc	tttacc	tcctcacaaa	cgcttctttt	ccatttaaaa	aatattcag	ccagggtgctc	14940
tgg	ctacgc	ctgttatccc	agcaacttgg	gaggccgtgg	cgggcggatc	acctgagtc	15000
agg	agttcg	gacgagcctg	gccaacatgg	tgtaacccca	tctctaccaa	aatataaaa	15060
at	tagccgg	tgtggcagcg	ggcgcctgta	atcccagcta	cttgggagggc	tgaggcagga	15120
ga	atcactt	aaccgggag	gcagagggtg	cagttagcca	agatcgcgcc	actacactcc	15180
ag	cctgggt	acaagagtga	aactccatct	aaaataaaac	aaaataaaaa	ataaataaaa	15240
at	tattaaa	acattcatca	cagccagcct	agtgggtgtc	ccatgtggct	ttgcctcgca	15300
tt	ttccctgt	aactaggatg	ctgagcgct	tgtcccaggc	ttgccacacc	tcagcacttt	15360
ga	gatacgtc	gcacagtccc	catttgcgaa	cgagaaaatga	gtttaggga	acagcagctg	15420
tg	tgcatgtc	cacagcgagc	agggggtctc	tgagccgtct	gaccccacag	ccgaccaagc	15480
tcc	aatcctt	accgcctct	agtgttgtgg	atgtagccca	gggtgctccc	acattttca	15540
ga	tgagaaca	ccgaagctca	aaacaggagc	gttttgtcca	cattggat	acgatgtctg	15600
tg	gttgggtc	ctgaagtcac	tttatatctc	agtggtccag	actggagtag	gacaggggg	15660
tct	gggaaat	ggggaggtg	tctcaggtga	aaggaaggaa	ttccagattc	tccatactgt	15720
cct	ttggaaag	ttagaagact	cagagggtct	ggcaagtca	gacaaagcaa	gagaatgc	15780
gt	caggagga	agcggagctg	tccaggaaca	gggggtcgc	aggagctcac	ccccaggaac	15840
ta	caacttgct	ggggcctcg	tgtcacaatg	acgtgagcac	tgcgtgttga	ttaccactt	15900
ttt	ttttttt	tttgaggtgg	agtctcgetc	tcttgcctag	tctggagtg	agtggcacga	15960
tct	cggtc	ctgcaagtc	tgccctcccg	gttcatgcca	ttctctg	tcagctccc	16020
gc	gttagctgg	gactacaggc	gcctgc	cccccggct	atttttga	tttttagtag	16080
ag	atgggatt	tcactacatt	gcgc	ggcccccgg	agccaggat	gtctcgatct	16140
gt	ctcggtct	cccaaagtgc	ttggattaca	ggcgtgagcc	accgcgccc	gcccgcattc	16200
cc	actttaag	aatctgtctg	tacatcctca	aagccctata	cacagtgt	gttgcgtata	16260
gg	aaatatga	ggcttacagg	ccatgggt	ggacacacag	aaggacg	gtcaggagg	16320
ta	gaagggcg	gagagaggga	acaggcggag	gtcacatcct	tggcttcaa	aatggccag	16380
gg	gagagacac	cctctgagca	tggtaggaca	gaaagcaag	attggAACAC	attgagagca	16440
ac	ccggaggtgg	ctggcgtgg	tggcttacgc	ctgtatccc	aacactttgg	aaagctgagg	16500
tg	gggtggatt	gtttgagcc	aggagttcaa	gaccagctg	gccaacatgg	tgagaccccg	16560
tc	tctactaa	atataaaaa	attagccagg	cgtgtatgt	catacctgt	atcccagctg	16620
tt	ttggggaggc	tgaggcagga	gaattgttca	aacctggag	gcccgggtt	cagttagccg	16680
ag	atccgc	actgcactcc	agcctggcc	acagagt	actccatctc	aaaaaaaaaa	16740
aa	aaaaaaaga	taaaaagacc	aaccggagaa	ttgaagtggg	ggggcgtc	agtagcagaa	16800
gg	ggggatcg	ggagcaggcc	accctgtgtt	catgcactgg	aagctcatt	cctgacgatt	16860
tg	gagctcat	cactggggc	ctaaggagaa	tagtactga	aggatgagga	gtgatggc	16920
gg	gggcacggg	tgtctttgtt	ggccagaact	tgggactgc	ttgggtgcct	cactgcaggc	16980
ct	tctcagcg	cccttataat	gtttacacag	gtctttcta	agagggggat	acattgcata	17040
ag	cgtttca	gactacctca	tcatgggtcc	cttttttac	cctctgtggc	cctgggtggcg	17100
ca	cactctctgg	gaaggtgcag	gtggatgccc	agacccgccc	tgccatccac	ctgcacgtcc	17160
ag	agactgact	tagcctcgag	attgtctgt	gcacccctg	ccccgggaca	cctcgatgt	17220
gg	ccgtggag	atgtgtgtc	tgtgtttct	gtctggat	tttgcgtt	ttctctctgc	17280
aa	agtggccac	cgcttgggg	tatgtctca	ggcttctgcg	agtcatgt	gttctcagg	17340
tc	tcttgccca	gcccaggag	caaaccctcc	tggacttttgc	ttcaggggt	gtgcgc	17400
tg	tctctgtct	gtggaccgc	atctcacatg	agggtcttgg	gcctgcagc	tcgttca	17460
aa	acacccgct	gagtatgcag	tgtgtccag	ctgtgtccca	ggcaatggc	gggacagtgg	17520
ct	gtgtgtctgg	gtttgtgggt	gtttctgggg	actctggg	cagctgaggt	gcaaggagcc	17580
ac	gggctcctt	gagatgcag	ttggacttca	ggtgaaggg	atgggtggg	gaggatataaa	17640
tg	gggggtcagg	gaggagacac	atttggaaaca	atggaaacat	ttttaagatg	ctatgtcg	17700
ag	ggcaacaag	gtggccaacc	cagggtctga	ggagccca	ccagccctgg	acgtgttttgc	17760
cc	cgctcacct	ttgtgtggga	gtgggtggag	agaggattcc	gttccacgt	gtgggtgtcg	17820
ca	gctgggt	gtgtggagct	gggcgtctagg	aggaagggtc	tttctgc	gctaggccgg	17880
ct	tctgcctt	gaacacaatc	aggctccagg	tttctcagcat	ccagtgc	agaggacttc	17940
ac	cgggcagct	gtggctgatc	ccttgcgtaa	ttgggagaag	aacaaagg	tatgaaatga	18000
gg	ttttcatgt	agatggcatt	agagacccc	acaacagatt	tacagagt	agcggagac	18060
cg	gggatgggt	ctgggaggcc	cctcctgt	gcctgcact	tgacagct	cctggaaatc	18120
ag	cttccagg	ccgccccagc	agcctgact	acacacacag	gggttttagc	cccatcctgc	18180
g	accagctgt	tgccatc	agtgacagct	gggagtgccg	gtgggtccag	ccctgggcac	18240
c	cctccccacc	tgctggggcc	caccgcaggc	agtcc	tgcaca	cctacaggtt	18300

032796-132.ST25

gcatccgagt cctccccac cacgtgtcaa gccccgagtgg tcgtggcgtg aggtccccgt	18360
attgcacccc cactccctt ctgcttcaca tagctgcctc ttctcacccgt tttccagcc	18420
tcctgggcta ggaattccag tttgtgctg gctttccccc agacacccctc cttagccctc	18480
ttctgagtc tagagccccg ggggttggaa gtcctggccc ctggacacc tgccagccaca	18540
ctcagcttct cctgtgagcc tccagcatgt ccccttagga ccaagccctc acgttcttgc	18600
ctcccccccc acctgggctc agccaggaaa aggctggct ggagcgctc cccctctgcc	18660
ctggcccttc cccctctac ctcgtcccttc tctctctgc cccgcctatgg cttttatata	18720
ctgtgccaca agacatggct gtgtgtgaaa gtggcagggt ctggcatctc tttgggtctc	18780
tgaggcccac gtcctcgtgc cactcttcccc accccgtggc cgtccctca tgctggaggg	18840
acagccccagc cctctccca accccagccc catgtccca gtcgtccccccg gccctctccc	18900
ctgaaagccg gggtaactcc agccgtatgc catgggggg acatctgtc tcttggcct	18960
tccaggaaag gtcctcttc caaatggcga cacctggcc ctgcctggag gctggaaagct	19020
gtggcccttgc tatccccctc cagggtctgt gcgcctgggtt gccccgagtt cccatcacccg	19080
tcatcatcac catcatcatt gtcatttcgc ttgtctgtga gccggcctgg tctcccagag	19140
cagagacccct ctgaggttca gcctgagttt gggctccgt gtcgtacccct gacgggact	19200
caggacgtac caggcttggg tcaggagtga cccccaacc tacgtccctt tgacaggcac	19260
ccctgacttt tgctaaatggg gtggaggtga catcaattac acggggagtg atggacagg	19320
gtctgttggc tgcactgtgc tcccaaggat ctggggagag gctatatccc tgggctttgg	19380
caactgcagag ctgtgtgtt ttgtgtgtt gtgtgtgtt gtgtgtgtt gtgtgtgtt	19440
gtgtgtgtt gctgtcgccg acatgtgtat aagatcttt ttattacat gaagcaagat	19500
aactgttgc ttttcccttt gggttttgtt ttcaacagag tgggtactt ctccctcag	19560
acaacagaac tctcccccatt aaacacgtgc tgcagaggg tgggtcttgg gctcatgtct	19620
gtttgcacac ccgagtcaga gaaaaacacag gtttcttcat aaaaacactg cacagcaggc	19680
gactgtccag agtcagccgtc caggacggca gtcagccctgc cccctcagagc acagctagg	19740
tgggctgtt tggatctcc cgtcattcccc tcccaagctgg cagccggccgg ccggccatt	19800
ccttggtgtt ctggcaggg gggcggtgcgc ctgcctctgtt caccctggaa atggacaga	19860
agctggcagc tcggagagga cagggtggaa ccctttgggt gctctgttgc ggaccatctc	19920
attgtccca gacacagccct ctcgggtcta gtttcatc ctaaaaaacata agtgcacaga	19980
actagagcag gagtcagagc ctacggcccc cggccagat ccagccctgc caccttttt	20040
cacaccatgc tcaagctgag tgggttttac atttttaat tactgaaaa aaaaaaagcc	20100
aaaggaggtt tcatgaccca taaaaattat atggattca aaaaaaaaaa attatatgga	20160
attcaaaat tcaatgtccat aaataatttc ttgagacagg gtcctcgct gtcacccagg	20220
ctggagtgca gtctatggc atggctcgct gtacccttga cttcccaggc tcaagcgatc	20280
ctccctgtctc agcctcctga gtactgggat ctacgggtt gtccacccaa gcccggctaa	20340
tttttttttta atttttagaa agacagggtt ttctatgtt gcccagggtt ttctggact	20400
ccatcttggc cttccaaatgt gctggattt caggctcgag ccacggagcc cagcctgttt	20460
ttgttttttc actgataaaat ttttgggggg tttgtgttagt gttgtctcta gcgatttggg	20520
aggctgaggt gggaggatcg cttaaagccca ggagtttagt gctgggctca agtgcacagg	20580
aggtgaacta tgatcatgtc attgcattcc agcctgggtt acagagcaag aacctatctc	20640
ttaaaaaat atattaaaa agtattgggt gtggggctc acgcctgtgg tcccaactac	20700
ttaggcacatc gaggtggag gatggcttga gcccaggagt ttgaggttgc agcgacccaa	20760
gatcgtgtca ctacactcta gcctgggttga cagagcccg accctgcctc tttttttttt	20820
aaaaacaaaa aacatgtatt gaaacacacg catgcgtt cagtcacgtt ctctccatgc	20880
tgctttctgc tccagagacc ctatggctt gaaagctgaa atatatttct atccttaca	20940
aaaaagtttgc ctgacccctgc tccctggaaaa ttcatctccc aagttcttcc cccgcactgg	21000
cgttccctggg ttttttttttgc ttggcccttgc ttatttttgc atctgtttt ggctctgttc	21060
cctcccaaggaa gccaggacag gcacgttctc tgcatctgtt cccctgacgc ccagaggctt	21120
ggctcggttc aggccattttt gaaaaatatct ggctccaggaa aaggccagg cccctcgagt	21180
cgccccccaggaa ggaacctgcg ccaggctgg gggaggccctg accccagcaga gtggcttttgc	21240
ccgatgggtt gggccggctca agatgtgttcc aaagttgtcc tccagaaggcc accttggat	21300
tcccttccatcc agtatttagag caactgtggag ctgcttccatgc caagcctgtt gttttccatgc	21360
ttggccgggtt ccaccgggtt ccctggattt ctggatctg ggtggaaatggggcttg	21420
ggggaggttc ctgggttctg gaatccagttt ggcaagttgtt gagggttgc gatgtgttgc	21480
ttaggcacca tggggatctc ttttttttttggggcccttgc tccatccatgc caggatcc cgcaggccct	21540
ggccggcccttgc agccagccgtc ttgcgttgc cgaggctaca gcaagccca gcccgggttgc	21600
acagccccgtc gcctcccttc acttttttttggggcccttgc gggaggttgc agcaagggttgc	21660
gagaggaggagg aagtggctgc cggccgttgc ccagcacccctt gggccctctgc	21720

032796-132.ST25

tgggctcctt	tttattgctc	ttcaatgaag	ccagggaaat	ggacttcctt	gcctcaactc	21780
agttcaacat	gtctggaagt	ttggattaa	aattaagaaa	gtgtgaaat	agagcaagaa	21840
gagaaaaatc	tctccaagag	ataatagtga	cctctgagct	gggcgcggtg	gctcacgcct	21900
gttaaatccca	gtactttggg	aggctgaggc	gggcagatca	cctgaggtcg	ggagtttgcg	21960
accggcctga	ccaagatgga	aaaaccccg	ctctactaaa	aataaataaa	taaataaata	22020
aataaaataca	aaattagcca	ggcatggtg	cgcctgccta	taatcccagc	taaggcagga	22080
gaatcgctg	aacctggggag	gcaaagggtt	cagtgagcc	agatcacgc	attgcactc	22140
agtctggca	acaagagtga	aactccgtc	caaaaaaaaaat	aaataaataa	aaaataaaaa	22200
tagtgaccc	tggccagggt	tggcagctca	tacccgtaat	cccagcactt	tggaaaggaag	22260
gccgagatgg	gcagattgct	ttagcacagg	agtttgagac	cagcctggcc	aacatgggt	22320
aaccccatct	ctacaaaaat	agaataaaaat	ttaagaggt	atagtgcac	tttggtagat	22380
cgaaacctgg	attgtttct	ttttcttaat	gctgattctt	ttctttgtgg	ttttgtgtt	22440
ctgtgccat	gtcccccccc	cagccctgtt	attgtgagtg	gaagaagggg	aaagggttcg	22500
cccgctactg	tgagccccctc	ctctcacgc	gggtgtcctt	ggagaagcct	gcacttc	22560
attgtacgcc	aggggctgggt	ccctccctgg	agtggtctg	tgctgctggg	atggggccaa	22620
cccctcagat	gttttctgag	tgtcacacac	aggtgtgtc	attcatggcc	tttgcgtgtc	22680
ttcctgttgt	ggaggcaaaa	atgtgaagaa	ccctagatga	tttgggacc	agggctccat	22740
cacctgctgt	tcattgcaca	ccggagcattc	caggcatggg	tggagagctc	agacttccag	22800
gcacggctgc	agggggctgggt	ctaaccatgt	tcccgcgcgc	ctgctcgtca	gaaccgcctg	22860
ttgggagctg	ttatcatgat	accatacctg	ggccctgggc	tatccgattc	tgacttaatt	22920
gctccaggtt	ggggccaggc	cgttgttgc	tgttttgc	tttcttctgt	gacgttagcc	22980
actgggctaa	tctgagcccc	ttagttacag	gtggagaaac	ttagacccat	gggggtgcaa	23040
ggacttgccg	aggacccaga	gcccccttggg	ggcagagctg	aggcggggcc	tggctttggg	23100
tcccagagct	tccatcccc	ttcccgctct	cctaacagct	ttttttttt	agacaagatc	23160
tcaccctgtc	acccaggctg	gagtgcata	gcatgatctc	ggctca	aattttcgt	23220
agctgcgttc	cagcattct	cctgcctc	cctcccgagc	agctggatt	acaggtgt	23280
gccgcatgc	ccagctcg	ttttttgt	cttttagtag	agatagggtt	tcaccatgtt	23340
ggccaggctg	atctcgaact	cctgacctca	aatgatccgc	ctgcctcg	ctcccaaagt	23400
gctaggatta	caggctggg	tcacactgt	cctggcccta	gcagcttgc	cctgtgccat	23460
ccaacaacag	atgaccgaag	tctttgttc	ttaacatgc	ttccatctc	cttacagtt	23520
tgccacctgc	aaaacagagg	acttgtcgt	tttctggta	gtggaaatg	taatctggta	23580
gcaggaggcc	tgtggaaagct	tgccttaat	ggccttgc	ctctttc	ctgtcctgag	23640
agccggagaa	cttggatgtt	gcacctaact	caacccct	gttaacatac	agttctgcag	23700
gctcatggat	catcagaacc	acgtcctatc	tcacgcgg	gtatgc	tttgcgt	23760
gttggatgtt	tttgacagta	ttttctc	gggtgg	tttgcgt	ttttatca	23820
gcattgaetc	ttcaagaaaa	atatttatc	gtcatactc	agaggagaca	gggtggaaag	23880
catctgagac	ctgcaggctc	agacttagaa	ccagaatgc	cctcagat	catccggccc	23940
tgacccagcg	ggaaatgagt	tcacagagaa	gcgggagaac	tttgc	ccctgcgt	24000
tgctcataac	tgccccaggt	cattacatt	gtccagg	ctgccccagg	ccctgcgt	24060
gctcataact	gccccagg	tttatattt	ctccagg	tgc	cgt	24120
ctctgtgtgg	ttgggtgtat	ctggagccct	ccgcccatt	ctgcac	tttgc	24180
gctaattgtat	cccaggactc	tttc	agcacccct	gttctcc	gcagccgt	24240
cctgtcagcc	tgc	actgtgtt	cgggagagga	cac	ttgtctgt	24300
gcttctcatc	ccagcacagg	taggggtgc	tatggaaag	gatc	tttgc	24360
cactgtetca	tcagtcgggg	acgtggatc	ctagtgaaa	catcatggc	ggcgcgg	24420
gctcacgcct	ggaatcccag	cacttgggg	ggctgaggag	gttggatc	ttgagg	24480
aagttcgaga	ccagctgg	caacatgg	aaacccatct	ctactaaa	tacaaaatt	24540
cgccagggt	ggtgcgggt	acctgtatc	cgagctact	gggaggctg	ggcaggagaa	24600
tcgcttgaac	ctggaggt	gagttgc	tgagcc	tcttgc	actc	24660
ctggggcaaca	gagtggagac	ctgtctca	aaa	atctcaaaca	aacaaacaa	24720
acaaaacaaag	cgtcatttat	ccagc	cccc	tgggaa	acc	24780
tacctggca	ggtgcagg	aagtgc	tcttgg	cat	tgaaccc	24840
cagctcaggc	cccaggcagg	gtccgggtt	gtctc	gttgc	ccact	24900
gacctatatt	tctggcgtcc	tgcagg	gtatgt	gggac	gaga	24960
cctggaggac	aagctcccgc	acat	tttc	gttca	cgct	25020
gactgactgg	cagcgcgc	gatc	cgag	ggtgc	cacaag	25080
catcattgac	cagtc	cccc	acct	gtatgt	ggg	25140
gctcaaagct	gtgaatgt	ggg	gctca	aaag	gtcgt	

032796-132.ST25

cggtgagtcc	ggggggtccc	aagccatggc	tcagccatgc	agacttgcac	gaggaggaag	25200
tgacgggtcc	atgcctggc	ataagtgtt	agctcaggt	ccccgacctg	ggaaaggc	25260
ggacagaaaa	ggtgacagta	tctggccaag	gacagatgg	aaggacc	ggagctgat	25320
tagggagtgg	ttatggacta	gaaatgtcg	taacaatgtt	tagaaagtga	ctaacattt	25380
tttagcacc	gctgtgtgcc	cgccctggc	cgggagcctt	cgtccccaca	gtgacc	25440
ctgcaaatgt	agttccttgc	cctactcgca	ctggggagca	ggacgcagag	ccgtgcaact	25500
cacaggtgcc	aagctcagga	ctccctcctt	ggtctgcctt	ggctgggctg	tgcttgg	25560
ccctgtggcc	cacgcacgt	cacccctccac	ctgaaagcca	ggatcttcag	gacgc	25620
gaggaggtcg	ttgtctggca	caatgattt	tctcttcctt	aaaagggtac	agagttacac	25680
tggagagagc	agcatccagg	tgcggcaggg	acaggcctgg	ggctcg	caggactct	25740
gtgtctgccc	ggggtcccac	actgcacctt	cttgcagag	gcaactcagtc	aatcttgc	25800
gatgaaggat	gagaggacag	aggacgtgt	gcttgcgt	gcattgcctt	cagtcc	25860
tgagatgccc	gggttgactc	tgctgcccgt	cgggtggat	tgatgtcaga	tccccgg	25920
taaaatacga	gggagctggg	aattgaggg	gcaggtgg	gcagaaagca	cagccc	25980
gaagcctgga	gctgaggcag	tgtggcgcac	ccctggagca	gtgagtgctt	ccttcatgg	26040
cttcatcgca	ccctgcagtc	ctcatgtagg	ggatgcac	catgaattt	gttttccc	26100
cctccattaa	aaacgcgttc	atgcggggc	cggggcagtg	cagtggctca	catctgaaat	26160
cccaccactt	tgggaggccg	aggcgggtgg	atcatgaggt	caggagatcg	agaccatcct	26220
ggctaacaag	gtgaaacccc	gtctctacta	aaaatacaaa	aaattagccg	ggtgcgt	26280
cgggcgcctg	tagtcccagc	tactcgggag	gctgaggcag	gagaatggcg	tgaacc	26340
aagcggagct	tgcagtgagc	cgagattgc	ccactgcagt	ccgcagtcc	gcctgg	26400
cagacgaga	ctccgtctca	aaaaaaaaaa	aaaaagtaca	aaaaaaaaaa	aattgtctg	26460
gtgttgttat	cacgcgccta	taatctcact	actcgagagg	ctgaggcgg	gaattgtt	26520
aacccaggag	gtagagggtt	tagtgagccc	gtatcgacc	actgcctcc	acctgg	26580
tagagcgaga	ctctgtctca	aaaagaaaaa	aaaaaaaaga	acatttatgc	caggtgt	26640
ggctcatgcc	tgaaatccca	gaactttgg	agactgaggc	aggaggatca	cttgc	26700
gaaattttag	agtgtttcc	ctgggcaaca	tagagagacc	tcatctctac	cagaaaaaa	26760
aaaatttagcc	cggcatggt	gcatatccc	gtggccctt	ctacttaggg	ggctgac	26820
gcaggatcac	ctgagtcgtt	aggcagagg	tgaagtgagc	tgagatcatg	ccactgc	26880
ccagcctgg	tgacagacag	agaccctgtc	tcaaaaaaa	aaaaaaaaaa	aagcattac	26940
tatccaccat	ggaaggtag	actgcac	gagtgtt	tcaaaagaaca	aaaaataaac	27000
cccagagata	agacaaaagg	gtgcctccat	gggggtgt	ttaaagctg	agaaattgg	27060
cttctccccc	ctccctctc	accccggtt	ttgctaaagg	agatggaaa	aaggatttt	27120
tttttggctg	aaatatttaa	cactaaatta	aagccattt	taacagcact	ttgttgat	27180
agtgaaat	acagactggc	aaaaataaaa	cgaacgg	gtactatgt	aaaaagaggc	27240
agcttggcc	atgcggcc	aatgtgagg	ttcagggtt	ctgggatgt	ctgtgaa	27300
gaggaagggc	ctagctgg	ctctcaggag	ccaaggcc	gaggggcaac	ttgcctgg	27360
cctgcctg	ggcgttact	gtttctcc	tggccagat	cacaggccc	gaggctgg	27420
caactggctg	gcactcttgc	cgagctg	cctgacttcc	tgaccatgt	ccttcagca	27480
gccttgctc	actttagtt	ccttgaatg	aaaatggg	tgagaatagc	tcctacctcc	27540
aaggtaat	gagtgtttc	ggacagggt	ctccctgg	ccagtgc	gcgcctg	27600
agg	ccatc	agagccgca	ctgctgttac	tgatacc	ggggagaact	27660
ttggtgc	cat	tgccagggt	tctccacca	ccccactac	tgtccctgtt	27720
cgaaaataaa	gctgtcaca	ttggagctt	ttgcacatcc	tgctttcag	gtgaaagg	27780
cgtgtgtt	tgaggttta	gcctggccaa	cccagccat	agtcggacc	tgac	27840
gtgagtctg	agctcggac	ccctgagct	tgtggctc	ggcagcattt	attgtgt	27900
ttggccgca	cccccttccc	tgctggct	ttgatgtt	gactggagcc	tctgttt	27960
cttccagaa	ccaacccgt	tgccggacagg	aacgggggt	gcagccac	gtgttct	28020
acacccca	caacccgt	tggtgttcc	atcgccctt	agtcgt	tgacatg	28080
acctgcac	tgcctgaggc	tttcttgg	ttcacc	gagcc	ccacagatc	28140
tccctcgaga	ccaataacaa	cgacgtgg	atcccgtc	cgggcgt	ggaggc	28200
gccctggact	ttgatgtgt	caacaaccac	atctactgg	ca	gacgtc	28260
gcgtggccca	gaacgtgcac	acaggcagcc	ttttagggaa	aaccttgc	ctgttct	28320
ctcaaagct	tcagacactt	ttctttaa	actatgtat	ttattgt	ac	28380
ctaatacaat	atgagcaagc	ctat	aaaaaaaaga	tgattataat	gagca	28440
ggtagacaca	cataagg	tttgt	aaat	gctgtgt	atgtgaa	28500
gtttagctt	acttcagaca	ccccacccac	tccctgtc	gtgccc	gctcagcaga	28560

032796-132.ST25

ctctttcttc	atttatagtg	caaatgtaaa	catccaggac	aaatacagga	agacttttt	28620
ttttttttt	tgagacagag	tcttactctg	ttgcccgac	tgaggataccg	tagcgtgac	28680
tcaagctca	gcaacctccg	cctcccaagg	tcaagcgatt	cttctgcctc	agcctctga	28740
gtagctggg	ctacagacat	gcaccaccac	acccagctaa	tttttttat	attttagta	28800
gagacaggg	ttcatcatgt	tgccaggdt	ggtcttgaac	tccgtacctc	aggggaacag	28860
acgggggttgg	cctccaaag	ggcgaaata	acaggggtga	gccaccgttc	ccggcctagg	28920
aaaactttt	gccttctaaa	gaagagttt	gcaactagt	ctgtgggctg	gccttctgat	28980
tctgttaaaga	aagtttgatt	ggtggctggg	tgccgtggct	cacacctgt	atcccagcac	29040
tttgggaggg	cgaggtggc	agatcacctg	aggtcgggag	ttcgagacca	gcctcaccaa	29100
cgtggagaaa	ccccgtctct	actaaaaata	caaaaaaaaa	attaaccggg	catggccgcg	29160
cctgcctgt	atcgcagcta	ctcaggaggc	tgaagcagga	gaattgttt	aacctggag	29220
gcggagggtt	tggtgagctg	agatggcacc	attgcactcc	agcctggca	acaaaagtga	29280
aactccgtct	cagaaaaaaaa	aaagtttgat	tggtgttacc	aaagcgcatt	tgtttatgga	29340
ttgtctgtgg	cagctttgt	tctggcggaga	tgagttgtga	cagatctgt	tgggctctaa	29400
agcctaaaac	atgtgccatc	cgccccctta	cagaaaaagt	gtgctgacct	ctgttctaaa	29460
gtattggaca	actacaatgt	ttgctcattt	attattctat	gatttgttt	ctgcttttg	29520
tttgttgtt	tgttgtttag	atagggtttc	cctctgtcac	tcaggcttgg	gtgcagtgg	29580
gtatatttcag	ctcactgcag	cctcgacctc	ctgggtctca	gtgatcctct	catctcagcc	29640
tcccttagtag	ctggactac	aggcacacac	caccactct	ggtgtat	ttttttttt	29700
ttttttttt	gtggagacag	ggtttccgca	tgttgcggag	gctgggttca	aactcctagg	29760
ctcaaacacc	cacccagcc	tccaaagtg	ctgggattac	aggcgtgagc	caccatgccc	29820
agcctattct	actgtttgt	ttacatagct	ttaaaagatt	tttatgact	ttaagtcaca	29880
agggttctt	gtagaaaaaa	atatatata	agggaaagtat	aaaaagaaag	taaaaattgt	29940
ccataacc	tccagccaga	gacgaccgtt	gctgacac	cagcatattt	cctttaagtc	30000
tttttctct	aagatagcat	ttctcttcat	cacagtata	tgttacgcag	aattctgtat	30060
cctgattttt	tcacttgaca	ttacaacagg	tatttgatgg	cgtgtgaca	aactcttgg	30120
cacaatctt	taaatgtatg	aaataactcca	ctgcacagat	gtttgtttt	aggcttaact	30180
gttctttat	tttgcgtgt	ctgggttacag	ccgggcacag	tggctcatgc	ctgtatcac	30240
aacacttta	gaggttgagg	caggaggatc	acttgagccc	agaagtttg	gaccggcctg	30300
ggcaacatag	tgagacccca	tctctacaaa	aaacttttt	aataagtcgg	gctgtgttgg	30360
gcatacgct	agtcccagcc	accaaggagg	ctgagggtgg	agatttgctt	gagcccccagg	30420
aggttgcgt	tgcagtgacc	tgagattact	ccactgtact	ccaaacctgag	cgacagagca	30480
agacttgc	ggggaaaaaa	aaaaaaaaaa	tatatatata	tatatatata	tatatacata	30540
tatacataca	cgcacacaca	cataatataa	aaatatata	ttataaatat	ataatata	30600
atataaaaaat	atataattt	aaataaaaatt	tataaattt	atttataat	aaatataaa	30660
tatataat	aaaaatata	attatataat	atataataa	atataataa	taaaaatata	30720
tatttataaa	taatataaa	tacatactta	taagtatata	tttaaaatata	atgtatgt	30780
tattttttaa	tgtatgat	ataatataca	tttataata	cacattata	ttattttata	30840
taaaatataat	ataaaatctc	caagttgtt	tttccaaaaa	ggtgtcttgc	tgcatttcaa	30900
acattcattt	aaaaacttga	atgtggtga	tctggccag	aatgtgttca	gtagctgctg	30960
ccagtggcca	agcatctcg	gagatgtcta	caaaacacgc	tgttctggc	ctggcggt	31020
ggctcacgcc	tgtatctca	gcactttgg	aggctgaggc	aggtggatca	actgaggtct	31080
ggatttcgag	accagcctt	ccagcttgt	gaaacccat	ctctactaat	aataaaaaaa	31140
aattagccag	gcgtgggtgc	atgtgcgtt	aatccac	acttgggagg	ctaaggctgg	31200
agaatcgctt	gaaccagg	ggcagagg	gcagtgagcc	gagatcgac	cattgcactc	31260
caggctggc	aagaagagcg	aaactccgtc	tcaaaaaaaa	aaaaaaagat	gctggtcct	31320
aaaatgtggc	cctttctc	ctcacctgt	gccagaccat	cagccgcgc	ttcatgaacg	31380
ggagctcggt	ggagcacgt	tggtggat	cccttgacta	ccccgggggc	atggccgttg	31440
actggatgg	caagaac	tactggccg	acactggac	caacagaatc	gaagtggcgc	31500
ggctggacgg	gcagttccgg	caagtcccg	tgtggaggg	cttggacaac	ccgaggcgc	31560
tggcccttgg	tcccaccaag	gggttaagtgt	ttgcctgtcc	cgtgcgttct	tgtgttacc	31620
tctgtatgaga	cagtgcgggg	gtgccaactg	ggcaagg	caggctgtcc	gtgtggccct	31680
cagtgat	agctgtactg	atgtcattag	ccttgcgtt	ggccaggact	ggtagggccc	31740
tcaaggg	tggagttcc	tcgtggaggg	ggtgcgttgg	ctgtatcagg	cacagtgt	31800
gctgettca	cctggccgt	ctcaccgaag	tgtccatgga	gcctgcgtt	ggtgggttate	31860
tgtgtcgatt	ttacagatgc	agaaacag	tcagagaaac	cgagtgtact	ccctaagg	31920
acataacccag	ttagagcaga	gctggccag	gaagtgt	ctcaggctcc	tgaccagg	31980

032796-132.ST25

tccttgctt gcactttgc caaaaccatg atccagaact gactttgagg tccccggacc	32040
tcaggctcct ccgaatggc ctcttgagg ctgctgagcc acagcttagg acccacctcg	32100
agaggcaaat gtgtttgag ctgccaggcg tcctggggc cctgccttgg gcacggggtt	32160
cagacaggcc ccagatgtgt gggcgcttct tctggacttg agtttctt tctgtgttgt	32220
ggacacagtg ctcacccctt aaagcacctg tgatgtgtc acagccaa tccctgcctg	32280
tcgcctgttc tgctaggaa gaaaggata cttcaggatg gcaggacaac agaaagaggta	32340
ccaggttta gageaaggc aggtcaaaact tagaaaattc tgaatgaggatgtgcattt	32400
cctttctgg atctgtaaa agaagaggaa aggaggggct gctggggag gagcccagag	32460
ccgagttac atccggatcc cgcaaggccct cccctgcctt gaggcttgc ttgtgtatgt	32520
gcttgtgtcc atcctgggtt ctgcgtgtc cccacatcc gccaagctt aggtggatgt	32580
tccagcacac actcaccctg tctgtgcacc tggtttgtg tccgtaaatgt ggtatttact	32640
caccttacga gtgagccact gtgggattt cggagggtgg cgcaatgtacc accccctggag	32700
ggatatgtgt gtggcagggg tcgagggtct cgccttccc tgcttctgc gcgtggctt	32760
ctccaggacg gggagggtcg agctgaagag gtggggacag ttgcgtcccc cggccaccca	32820
ctgtctgtcg gtgagagcag actcactgag cctgccttc tcccttgc tttccagcta	32880
catctactgg accgagtggg gcccgaagcc gaggatcg tggccttca tggacggac	32940
caactgcatg acgctgggg acaagggtggg cggggccaaac gacctcacca ttgactacgc	33000
tgaccagcgc ctctactgga ccgacctggaa caccaacatg atcgagtcgtt ccaacatgt	33060
gggtgaggc cgggctgggg cttctggc atggaggggc ggcagccgg gcgttgcca	33120
cctcccagcc tcgcgcacg taccctgtgg cctcaagtt ccccaacctg gcaggagctg	33180
tggccacacc cacactgccc cagcagccctt accctctgtt gttggagttt tccccgtcca	33240
ccccctgggtg ctttgcgtc atttatgtcg ggagaggctc tggcgtacacgc ttgttctgt	33300
gcacctgtgtt ggcacttagt cccagctaat ccctgtccca ggcacttaat ttcacccctaa	33360
cacacatggt gttttcatt gctggggaaat ctgaggcctt gacacatgac ttgccttagg	33420
tcacatagtc ggtgagttca gatccccca gagataccat gcccagact cgtccccac	33480
ccagccctga accccaccat gtgctggat tggcgtgggat gttccacac gcctggacc	33540
ccaggcgtgg tgctctcatc tcccttttcc agatcatgag aatgaggctc agggaaat	33600
aaaaaaacc tatccaaatg cacacagcaa caggagcagg atttgaaccc agaaaagggg	33660
acccgcacact ctgttctgtc agagtagttt gctgttctgg gttatgttgc aggtgacagg	33720
ggcaactgtg cttacaacaaag gaaccccccattt cccctgc aatggggag actagaaggt	33780
cagggggcaga agctctgaag ggcagggtgc agtggctgac acctctaaatccagactt	33840
gtgaggccaa ggcggcaga tgatttgagc ccaggagttt aagatcagcc tggtaatgt	33900
agtgagacgc catctctaca aaaaaattttt taaaaattt gctggcgtat gttttcatg	33960
cctgttagtcc aagctacttg ggaggctcag gtgggaggat tggcgtggcc caggagttt	34020
agtttgtgtt gagctgtat catgccactg cactccagcc tggcaatag agtgagaccg	34080
tctccaaaaaaa aaaaaaaaaga agaagaaaaaa gaagctctga ggttccaaatg cccagccac	34140
cccttggctt gaggcagac aaggggaggag agggtcacct gggcagccct gactttgtc	34200
ccctggcaaa gggaccttca gtgaccttgg ccctaggaga gctctgtggc acgtcagcca	34260
tgtcaaccg ctcaggaagg gcaacaagaa ttggcttgc gacctctgc tctctactc	34320
ccatctgtca ctgggtgtgg ttgttccat tttacagatg aggaggctgg ggcacatgcacc	34380
agctgaatgc ctgttccatg tttactgtca ggcagactg gcatgttgcac cccgtgtcct	34440
gtttgtcgct ggggggtggc tgcacccctga ctgttgcggc cagtagcaag gtttgcacgt	34500
gacttcgtga ccgtcaccctt gctctgtggc acatccgtt acccagacta tccaggccgc	34560
atgcaaacctt gtttccaggc gagaaccatg tcaccgcaca gtttgcgttgc cctgttgc	34620
ttaagctcat taatcccccc ggagtggaga cagactcaga tggaaaccatg caaaaccctt	34680
ggaaactctat gtgacccctgc caatggggc ggcacatgtgc attgcagctt ggcgtcact	34740
cctcggtacg tttttggac taaaacgttcc cggatgtttt ctgtgtgtt gattaataac	34800
atgaaaggcc tggtctcatt gtttgcgttgc tgaaggatgc acagccaggc ctgacatgtat	34860
gagaacaaga acctggagtc tcgctgcctt gtttgcgttgc ctggccctgc cacttagcaa	34920
ctgtgtgtact gtggccaggat cacttaattt tggcgtatcc tggcgtgtc tcaatgtgt	34980
ttgtgtgttt tccaaagggtgg cccaaacactt taaggcattt atgtggcgtc taggctgcag	35040
gtttaaccc tggctcaccctt cgcaggccgc cgtgtgtctt gtttgcgttgc tggccttgc	35100
ctgacaccgt gcccgtgtgt gtttgcgttgc gtcaggagcc ggttgcgttgc gccgacatc	35160
tcccgccaccctt gtttgcgttgc acgtcacttca gcgattatat ctactggaca gactggaaat	35220
tgcacagcat tgacccggcc gacaagacta gcccggggaa cccgacccctt atccaggcc	35280
acctggactt cgtgtatggac atcctgggtt tccactcttcc cccggccaggat ggcctcaatg	35340
actgtatgca caacaacccggc cgtgtggc agctgtgcctt ggcacatcccc ggcggccacc	35400

032796-132.ST25

gctgcggctg	cgcctcacac	tacaccctgg	accccagcag	ccgcaactgc	agccgtaagt	35460
gcctcatgg	cccccgacc	tcactccctc	gttagatcg	gctggttctg	ggagctgacg	35520
ctgaaaggag	cttctcatct	ggggttcctg	gggtacata	gatggttggg	tagtttgtgc	35580
actgcacaag	ctgcatgatg	ctacctgggg	gtccaggctc	aggtctggatg	gactttgtgc	35640
ttcatcagga	catagataaa	tggccaaaac	tcctcagctg	gaaggtcctg	ggcaggatct	35700
ttgggtgtga	aaaccagtca	caggggaagg	gtgctgctc	atactgccag	cacagtgcgt	35760
agtgccttcc	atagcgctcg	tttactcctc	aagcctggag	ggtggggagt	agcatggtcc	35820
catttcacgt	acaaggaacc	cgatgcacag	agaggtgtgg	caacccatcc	aaggccatac	35880
aactggggtg	ggttgagccg	gggttgactg	tggcaggctg	gctcaagagt	ccctgcctcct	35940
gaacccttgc	caggcagcct	ggcatcagct	cgggaaattt	ttgcctgtac	ccttggaaagc	36000
aagtgggcct	cttttgtctc	atgtcagtga	tgagaagagt	gactttctta	tggccctct	36060
ggagtagcagg	tgtttccctgt	ttggcgggctc	ttccccatg	acatcagcag	cgagctggtt	36120
atgattccct	acgcagaact	tgatagttt	taaagctt	tgtcatccag	gccccgttgg	36180
agtctcacgc	agacctggtc	gcaggcgggg	ctggcttgc	ctgtcccgac	tgcatggatg	36240
gggaacttga	ggctgcaaa	ggttaagggg	ctgttcgagg	cccacgctgg	caggagatgg	36300
gcctggggca	gagtcggg	cttcccatgc	ctggctgtc	ttggctctg	ttgctcacca	36360
tccctccctg	gggcattgac	cttagagagc	caaattggagg	tgcaggtaac	ccacggcaag	36420
gaggggttgc	catgactca	agtccccgtc	ctgtggccgg	cagtacctgg	tgcaacgact	36480
tggatttcag	accagccact	gtagccccgt	gacggtgccg	tgcgggtcc	acagcttctg	36540
aagccaggca	ggactcaggc	caggagactc	tgtagctgt	tgagagggag	aggccaacgg	36600
atgttcttgt	tctgttagag	agctgggtct	tcggatctg	gtaccagtgc	actgagagga	36660
ggcccagctt	gattctgggg	ctgccttgc	gtggcatgtg	ctgctactg	acaccctcga	36720
ggagtgctt	ctctgggct	tgttgactgt	gccccgtttt	cccgaggatca	ctgggtcaca	36780
cataggcaca	tagcaaaccg	cacacacagt	cgtggtatg	agtttcacta	cattccacca	36840
ccagtggtca	ctaccattac	ctgccttccg	tcttaagtgt	tcatcattta	aaaataaatt	36900
tattgggctg	gacgcgggtgg	ctcatgactg	ttatcccagc	actttgggg	gctgaggcgg	36960
gcagatcacc	tgaggtcagg	agttcaagac	cagcctggcc	aatatggta	aactccatct	37020
ctactaaaaaa	tacaaaatta	gctgggcatg	gtggggcatg	cctataatcc	cagctactca	37080
ggaggctgag	gcaggagaat	ggcgtgaacc	cgagaggcag	agcttacagt	gagcccagat	37140
agcaccactg	cagtcacgc	tgggcaacag	tgcggactc	catctcaaaa	aaaaataaaa	37200
taaataaaaag	aaaaataaaat	ttatgtatca	tttcaaaaat	aacacatgt	ctttgaaca	37260
gcagagacac	atatgacacg	gagaatgaaa	ttccccatag	cgcaccccca	agagacagcc	37320
ctggcccccc	cgtttttccc	gtggacctcc	agcggggcag	atgctgagcc	gcctgtgtc	37380
gagtggcatg	ctatcccgtc	ctccagctcc	tctgtggctt	acagacaccc	acctgcagcc	37440
ctgtcttgc	ctccctctagc	gccaccacc	ttcttgctgt	tcaaggccagaa	atctgcac	37500
agtcggatga	tccoggacga	ccagcacagc	ccggatctca	tcctgcccct	gcatggactg	37560
aggaacgtca	aagccatcg	ctatgaccca	ctggacaagt	tcatctactg	ggtggatgg	37620
cgccagaaca	tcaagcgac	caaggacgac	gggaccagg	cagggtccct	gtgggaaggg	37680
tgcgggtgt	gctttccaag	gchgctct	tgctgtttc	caggctgctg	ccccctgtcct	37740
tagcagaggg	aggaaacaga	ggatggct	gggtgaatga	tgacttgggc	ttcgattatg	37800
tagtcacagg	gtatgaccct	gagatgcgt	gaaccccgag	actgtgat	tatgtagaaa.	37860
ctgggttcc	ccgttgttta	agtagtcatg	gtggggtcag	accccacagg	acttttgtct	37920
tttcaagaaa	gaaaatggtc	gtgtgtcatg	caggggtagt	ttgtactgtt	taatccaggt	37980
ttatcctta	ttttgtggga	actgtacat	catttctgt	acaatgtgt	atatgcctt	38040
ctgaaagaca	cctatgc	aaaatgcac	aaaatgaca	caactctat	ggaaagcggg	38100
gccaggccac	agccctcaaa	atctccatca	atgacatgt	agaaaagaga	ggaacctggg	38160
aaatagcaaa	gtgccttttgc	cacattaaat	ggttagctat	atcccacaat	actgtgcatt	38220
cgtaaacgtt	aatgtctgaa	taaatacgc	acttcac	ggaaagatct	ggagttggct	38280
tatgagtgt	gaaggggtgt	gcfgatgat	ttttgtggaa	cactggaaagg	aggattgtgg	38340
gaaatcaaat	ggaaaggatct	caccccgagc	gtggagaaga	gtgggtcatg	cccccagcag	38400
tgageccagg	gaggctcagag	acggaggtgt	gtgtgtgggt	gtgaccctgc	gcagttccct	38460
gccggctgt	gttttttgc	ttcgcttaat	ttttctcg	gaggaaattt	tgcgtacgca	38520
aatgtgaaac	cgtgtgtgc	tcaaattgtc	ctaatac	attgcattgg	aacagattgg	38580
cttttttttt	tttttttttt	ttttaatgg	agtctcactc	tgtcacc	tgtaatccca	38640
ctggagtgca	gtggcatgt	tttggctcac	tgcaac	tttgcctat	ttcaagtgt	38700
tttcctgcct	cagcctcctg	agtaactggg	attacaggc	atgagccacc	gcccggcc	38760
agatttgcat	ttttgaaaca	actgttaggc	ttggcgcgg	ggctcacacc	tgtaatccca	38820

032796-132.ST25

gcactgtgggg aggccgagga aggtggatca cctgagggtca ggggttcgag accagcctgg
ccaacatggt gaaaccccgt ctctactcaa tataaaaaaa tcagctgggt gtggcgccg 38880
gtgcctgtaa tcccagctac tcaggaggt gaggcaggag aattgttga acccagagg 38940
cagagggtgc ggtgagccga gatcacacca ttgcactcca gcctgggcaa caagagaaa 39000
actccatctc aaaaaataaa aaatagaaaa acaagtgcgt tagcggaaat gagcactttg 39060
cgaggtcagg cttgtgtggc ctgttccaca aatgtgtgc tcacgggtgc ctcaggcc 39120
cttggagttc gcagcatggg qcacaacagg ttcatgtg tagaatttca ggacaggcct 39180
ggctcctaag cagccttctt ttacaaaaac tgcaagcccc gcctgtatcg tagcactttg 39240
ggggccgaa gtgggtggat cacgagggtca ggagttcaag accagcctgg ccaacatgg 39300
gaaacccat ctctactaaa tatacgaaaa tttagtgggt gtggtgac cgcctgttag 39360
tcccagctac tcggaggct gaggcagaat tgcttgaacc tgggaggtgg aggtgcagg 39420
gatctgagac catgtcattt cactccagcc tggcaacag agcgagacgc catctaaaa 39480
aaaaaaaaacc tacagagcca cacggccctt ttctccaccc agtgttgggt tgggagctt 39540
tgttattgtg gtgaaatctt ggtactttt tgaggcagag agaggcttag cgccctgaga 39600
gactttcaca tgggtcgcctt tggccgggt cggttcgtc gtgtgtctcc ccatctgaag 39660
gctgggtccg tccagacagg ctggacgcce ctttccacca gatccttctt cccgcagcag 39720
tttcttagtta cgtttagtgc tgagggtctgt gtccttgggt gatggcaaaa gtcagccaa 39780
ttgaaatcca gagccatgcc tggctccctt gagcttctt cctggggcagc tggatcatt 39840
gcctctgtc tgggtgtgggt ggtggaaatg gattccttcc atcttgcgtt ctacagtgaa 39900
ctgtcacgtg gactctttt gagagagggc cgtgttaatt gatggatgt gctccatgc 39960
tgagaaagct cctggcgta cattgcctt gagttcatt ggagctgcgt tcttttatgg 40020
tgtctcttagt gcaagactg tgaagactt gaaagaaaacc cagaagggtt tccacttaat 40080
ttggaaaatg tgctttccc ctccctgttc ttttgcataag gtcctggcctc ctgcagcc 40140
cccgctctgt ggactctggc tttgattttt tattaggat cccctgtc ccccaaaaga 40200
tgggtctaa attatcatcc aattggccga gttttgttt tctattaaatt gtttttattt 40260
tttattgtgg taaatttata taacataaaaa ttgcattt taattgtttt gttattgttg 40320
ttttttagac agggtctcac cccagtgccc aggctggagt gcaaggtgtc gatcatggc 40380
caactgcagcc tcagctccca gggctccagt gatcctctca cctcagcctc tctagtagcc 40440
gggactacag gcatacacta ccacatctgg ctgattttt gtattttttt tttattgttag 40500
agacccgcta tggcccggc gtcggctca actcctggac tcaagccatc cttccaccc 40560
accctccaa agtgcgggaa ttacaggcat gagccacaac acccagccat ttaattttt 40620
ttttttttt ttagagatggc gtcactt atcgcggcagg ctggagtgca gtggcggtt 40680
atcaactcac tgcaacactt gcctcccaagg ttcaagcgac ttcctgcct cagccctcc 40740
ccgagtagct gggattacag gtgcctcatca ctatgcctgg ctaattttt tatttttag 40800
cagagacggg gtttccat gttggccagg ctggcttgc actcctaacc tggatcctcg 40860
ccgcctcg cctccaaaaa tgctgagatt acagggtgtca gccacccgtc cggccctttt 40920
tttggttttt agacagggtc ttgcctgtc acccagactg gagtgcataatg gtggcgcttt 40980
ggetcaactgc agcctccggc tcccagggtc aagttgtgc cttccacacc tggctaaactg 41040
tattttatgt agagacagat ttccatgt tgccctgggt gggcttgaaa tggactcaag 41100
cagtcacccc acctcagcct cccaaaggtc tgagattaca ggcgcgagcc accgcaccca 41160
gcccattta cctattctgc agttgacagt tcagttggcat tcagttgtc caccggat 41220
ccatcaactgc cattcatctc cagactactt caccctctcg gcagatgtcc gaaactgtcc 41280
gcattgaaca cactcctcat ctccctctga cagccacccat ttactttt atctcttct 41340
gccttctta ggtacccat gtaagtggaa ttataccat atttgcctt gtgtactgg 41400
cttcttccat gtgacatggt gtccctcaagg ttcatctgtt ttatagcctg tgcagaatt 41460
tccttcctta aagcctgaat aataaccgt tgtaaaggct gggcgccgggt gctcacaccc 41520
tctaattccca gcattttggg agtccgaggt gggcagatca ttgagggtca ggagtttag 41580
accagcctgg ccaacatagt gaaaccctgg ctctactaaa agtacaaaat tagctgggt 41640
tgggtggcgccg cacctgtat cccagttact caggaggctg aggccaggaga atcgctgt 41700
cccgccggc agaggttgc atgaaccaag attgtgcctc tgcagttccag cctgggtaac 41760
agagtgagac ttccctgtctc aaaaaaaaaaaa aaaatcatcg gatggatggc cggaccactt 41820
cttggttattt atccatccac ggggtcttagg ttcttccac ctttgggtgt cgtgaataag 41880
gccactatga acatttcctt ccgtgggtgaa gttttgtac tagtgaggaa aaggcgtgtt 42000
tgggtgttg cataggattc tggtaagaaa gtttgcacta accataagta ttgtactac 42060
attaaaatga aagctcaggg gcccggcgccg gtggctcactc cctgtaatcc cagcactttg 42120

032796-132.ST25

gaaaccccg	ctctactaaa	aataccaaaa	aactagccag	gtgtggtggc	ggcacctgt	42240
agtcccagct	acttgggagg	ctgaggcagg	agaatggcg	gaaccggga	ggcgagctt	42300
gcggtgagcc	gagatcgctt	cactgcactc	gagcctggc	aacagagcaa	gactccgtct	42360
cacgcaaaac	tctgtctcac	gcaagactcc	gtctaaaaaa	aaaaaagagt	tcagggttta	42420
tgaaactggc	cagccgcgt	aagttgctg	tgttgggg	tgccccggga	ggagtgtggc	42480
cagggtgtca	cgtcacacag	tacacgtttc	tcagatggtg	gtctccaga	ctgctgtccc	42540
aaagtctgtt	tttgcacat	gttcccacag	acccaccctc	cacggtgagc	ctgattttgg	42600
ccagggtagc	tggaatctt	cttgtcttt	agccggcg	ctgtaccagt	ccagggtcca	42660
cagctagtgg	cttttaggaa	gaaatttgg	cagttggctt	tgacacatgg	ccccctaggg	42720
tccacagctc	tgttagtgtat	tggtatgtgt	tatctacaaa	gacacatgtat	ccttcgtgtc	42780
cagatgaaag	tgatgtatgtc	tttgcagctg	cccacaagg	ctgtgtgtgt	gtgtgtgtgt	42840
gtgtgtgtgt	gtgtgtgtgg	tgtgtgtgt	gtgtgtgtgt	gtgtatgggg	gagggaggca	42900
ccctttccat	ctgggggtgt	gtgtgtgtgg	gtgtgtgtgt	tgtgtgtgcg	cgtgtgtgt	42960
gtgtgtgtgt	tgtgtgtgt	tatgggggg	gcacccttc	catctgggtc	caagagactg	43020
ggcctgggg	agacacttct	ttttatctac	tttagagactt	tgttttattt	gtatffff	43080
gagacagggt	ctcactctgt	cacccaggct	ggggatgggt	gatatgagca	tagctcaet	43140
cagcctcgcc	ctcccaggct	gaagcgatcc	tcccacctca	gcctctgaa	tagctggac	43200
tgttaggcgt	cgtcaccata	ctgagctatt	gtttttttt	tttgggttgg	ttaattttt	43260
ttgatacaga	tggagtctt	ctatgttgc	cagactagtc	tcaaactcct	gaactcaagt	43320
gattctccca	cctcagttt	ccgacattt	gggatcacag	gtgtgagcca	ctgctgtctc	43380
cctgttttat	taactgctga	aagacctaga	taaagaaaagt	ctgaaaagac	ttactatcag	43440
agcaccatcc	taagatgatt	ccctctgact	caatggagag	ggaggggg	tttccttca	43500
ggcctgggg	gcaggagccc	aggtgctcca	ggcccccattt	gccccaggcc	aaatcactcg	43560
ggaacttgg	tgcagctgtc	tttcagggt	acccaaagg	accagatccc	cgcaggcagt	43620
aggcttctgg	gctgtcctct	cctcttacgt	cagctcagta	agagcccttc	gaagggatgc	43680
tgtgtcggag	gccccaaaag	cccaggctca	tccctgagat	gcacagggtg	ggctggctt	43740
aggcagcgct	cgagcatctc	ctggacgggt	accccaagaga	gtgtggagac	ggagagtcct	43800
tgagagtcac	tgagagacgt	ggctgccc	ccttcccaag	agggctctg	agtcatcccc	43860
cacactcacc	tgcccctacc	caccctcacc	tggccccc	cctcacctac	ccccacatct	43920
gtaccgatcc	cttacccgc	accttcccta	cccacccctca	cctccctgt	acccatcacct	43980
cccccaactca	cccggccctg	caccctcacc	tgtcccccac	cttcacctaa	ccccacccct	44040
cacctgcct	cccctcacct	gccccttcc	cggtggggaa	ggggttgtaa	ggggcgcccc	44100
ccaaactgtc	tgtctctgg	ccctgcagag	aaaacagttac	gtgagggccg	cagtccaaaa	44160
gctttagtcc	tggaaggtgg	aggagacagg	gatgtgttgg	gaagggcccc	atggtcttgg	44220
atcccttc	gactgtcaat	ggggccttca	tggagcgc	agtctagtg	tgcacagctg	44280
ggtgcggc	gggtggctga	ggaggcttaa	agtccggc	ggcaagagct	cttccagagg	44340
ctgtgtctt	aatcgctctg	gcatactcag	gcgggcacgt	atgttagggc	tgattggaga	44400
ggagagaccc	ccacaccaat	actgggatti	gactttcagg	ctaaacttga	gaagtgtggc	44460
ctctgtgtc	ctgcagagc	tctccagcca	gtgcccagg	cttcacagcc	agtgcgggg	44520
ggtctccacc	agtgcgggg	ggtctccccc	agtgcaggg	gttccgcca	gtgcccagg	44580
gttccgcca	gtgtcagga	gtttgggtt	ctttgttta	cagccctttt	tittgacctc	44640
tctgagccaa	ggccaaaacc	cagacaggca	gccccacgc	ctcagcatcg	acatctacag	44700
ccggacactg	ttctggacgt	gggaggccac	caataccatc	aacgtccaca	ggctgagcgg	44760
ggaagccatg	gggggtgg	tgcgtgggg	ccgcgacaag	cccaaggcc	tcgtcgtaa	44820
cgccggagcg	gggtaggagg	ccaaacgggt	ggtgggggt	ctgcccgtcc	aggcgtgccc	44880
gccgtgtct	ctgccaat	ccagcccttc	acaggctgg	gagactttcc	accctggga	44940
tccaatgggt	ggcttccag	gttccaaaaa	gcaaacacag	gtctttcac	agccccctca	45000
ggaaagcaga	aagccccaa	ggctgaaagg	gaagggggag	ctctgtctg	aggttacaag	45060
gcagcgctgg	ccgacgggg	ttgcagtt	tagttttgt	atccatcttgc	ttaaaacttga	45120
accctgtca	gaaatccctt	ccacggcat	ggggctgcct	gttgcactcg	tcctgttcca	45180
ccacaggagg	ctccgggt	tttccccc	agagggcccc	gacgtcccca	cctgtgggtc	45240
gtcagagctt	ctgggtgg	gaaaggcacc	caggaccc	aggtctccag	agagaaaaagc	45300
caggaaaga	gggagaccga	aacccatgt	acatgaaact	caggctccaa	actgagcacc	45360
ggaacgttt	gggacaggag	cgcgatgg	ttcctcagat	agctgggggg	ctggcatgaa	45420
gacggggagct	acagccagca	caggcttgg	gccgggagcc	cagagattga	gccctgactc	45480
tgtcaacttac	tggccacgt	accttgggg	ggtggcatag	cctcttggag	actcagg	45540
ctcattggta	ggagtgacgg	ccacagtgg	gcccctctg	cagcacacgg	ggggctcggt	45600

032796-132.ST25

gggcggaaagc	cccggtctta	taaggcggct	gtgcaggagc	cagccgagct	ggtctccaa	45660
cagccaggc	tccgggtcc	ttagcagctg	tgggggcct	gcacctgtt	cccatggctg	45720
ctgtcagaaa	ttaccagaag	ccaggtggct	gagagaatg	gacacttgtt	ctctcacagt	45780
tcctgagggc	tgaagcccga	gatcgaggtg	tggcagggc	cctgcgcctt	ctgaaggctc	45840
tgagggAAC	tttggcttc	ttgtggctcc	aggcacccct	tgacttgtgg	tcctgtcact	45900
ccagtctctc	tgtctggctg	cacatggcgt	ggcctttct	gtaccattga	aggacacttc	45960
agttggattt	aggcctacc	ctcaccatt	gtggcgttat	cttgatcctt	catgacattt	46020
gtaaagaccc	tgctccaaa	taagctcaca	ttctgaggtt	ctgggggtgag	cggaaatttg	46080
gagagcattt	ttcaactagt	atagaatgtt	acctgtcagc	ctcgggcagc	cctgagaggc	46140
aggggcttc	cacagcccag	ctgggtgcc	tggctccgt	gtgtccgag	gagacccat	46200
ccccacaccc	gtccttcacc	cgccacccctc	ccgcaggatc	ctgtacttca	ccaacatgca	46260
ggaccgggca	gccaagatcg	aacgcgcagc	cctggacggc	accgagcgcg	aggcctctt	46320
caccacccgc	ctcatccgcc	ctgtggccct	ggtgggtggac	aacacactgg	gcaagctgtt	46380
ctgggtggac	gcccacactga	agcgcattga	gagctgtgac	ctgtcaggta	cgcgccccgg	46440
ggcctgcctt	aaccgcagac	acccggcctt	cattgtcagt	aatggcagca	gctgccacat	46500
tgtccgagac	ctgccgtag	cccagtgcgg	cgccaggggc	tttgtgtgt	gcgttttt	46560
tcctcacact	gacagctgtt	ggctgggggtt	ctgagtgagc	cccacagggc	agaggcagaa	46620
aatgagtc	agagagggtt	agcgcattgc	ttggggcccc	acagcaggag	atggagcagg	46680
actgcagctt	agcctctgcc	cccagcacct	gcccacactt	ctgtctgtt	ctggactgtg	46740
ttaggctcg	aggcgtggag	agaaatgaga	gttgggtctt	agagaggggg	cgcaggccc	46800
catggctttt	ccttttatga	tgaggttagt	gggtgaaggg	aggggcccatt	cttgcaggggg	46860
ccagtgaccg	aggcccgc	ttggacttga	tggccttcat	cccgagccca	gcccaggtgg	46920
gagcagggtt	ttccgagggc	ttgtcttggg	tcggcctgtt	tccaggggact	ctgctgcagc	46980
tcccacccct	gtccaaagca	ttgaatcccc	caggctccct	ggcagtcctt	tcaacctctt	47040
tcctcccaag	ctgagtgtgg	ggcaagttct	ggaggtcagc	actgctcagg	ggggccca	47100
ggctgctgc	agggccaac	cgcctgaccc	tggagacgc	caacatgtt	cagcctctgg	47160
gcctgaccat	ccttggcaag	catctctact	ggatcgaccg	ccagcagcag	atgatcgagc	47220
gtgtggagaa	gaccaccggg	gacaagcgg	ctcgcatcca	ggggcgtgtc	gcccacatca	47280
ctggcatcca	tgcagtggag	gaagttagcc	tggagaggtt	ctgtacgtgg	gggctgcag	47340
tgggggtggc	agggtggctt	ctaaacccga	cccctggagg	agctggagg	ccagtcaag	47400
atcctgtgtt	gcctcagcca	ggcgggtggc	tctgcagat	gccaactgtt	gcccgtggg	47460
gttcagcgac	atgtccgaat	gtcccgaggc	ctctgaggtt	gtttctttt	gccgcagaac	47520
aaatcaccac	gaacagcgat	ttaagacaac	accaactttt	ttttttttt	ttttttttt	47580
gtcaggatct	tgctctgtt	cccaggctgg	ggtgccttgg	tgc当地acaca	gttcaactgca	47640
gcctcgaccc	ctggcttaa	ttaagtgaac	accttgcctc	agcctccca	gtagctggg	47700
ctacagggtt	gcaccaccac	acctggctaa	ttttttttt	tagagacggg	gtttcccat	47760
gttgccttgg	ctggcttgc	actcttggc	acaagctatc	tgc当地ctgtt	ggcctccaa	47820
agtgttagga	ttataagggtt	gagccactgg	cctgacaaca	ccacaggatt	gtctctcgt	47880
tctgttaaggc	aaagtccagg	cacagcgtgg	ctcacttggg	ttctctgttct	agggtctcac	47940
ggggccagaa	tcaagggttc	aggaacgctg	ggccctcagc	ggaggctctg	tggagaaatt	48000
agttcccttgc	ctcactcagc	aggttagcagt	tgtggatcg	agtttctgtt	ttctctctgg	48060
ttattggctg	gggaccactc	ttagctctta	gaggccaccc	caggcttgc	ccccgtggcc	48120
ctctctgttct	cagcgtggg	ggctcccttc	gtcagtcctt	cccgacaccc	gagtcttct	48180
gatttgcctt	taaaggccc	tgtgattcgg	ctcaggccacc	tttagattt	gttagcttcc	48240
cctttatgtt	actccaagtc	ggctgattaa	taaccttact	cacatgttca	gaatcccttc	48300
tgccacataaa	ggtcatgacg	ccgtgttggg	gactgggtt	ggaaatttac	gggtcatat	48360
ggatttgcctt	tgccacttgc	ttgctgttgc	ccagggttt	ggggaggggg	ctccacagct	48420
gggaccacac	tccttcctcc	cctccatgtt	aaccatctga	ggattacttg	agaccaccc	48480
ggcaacatcg	gtgagaaccc	atccctacaa	aaaatacaaa	aaaaaaggga	ccaggctggg	48540
cttgggtgtt	catgctata	atcccacac	tttggagac	caagggtggc	tgatcaact	48600
aggttgggg	ttcggagacca	gcctggccaa	catagtgaaa	tccctgttct	actaaaaata	48660
aaaaatattt	ctgggtgtgg	ttgcaggcgc	ctgtattttt	agctactggg	gaggtgtgg	48720
tgggagaatt	acttgaacct	gggaggcgg	agttgcagtg	agccaaaatt	acgcccactgc	48780
actccagcc	aggcaataga	gtgagactcc	gtctcaaaaa	aaaaaaagggg	ccaggggtgg	48840
tagtacatgg	gagaccctat	ccaaaaaaa	ccgaacactg	aatcccttgg	actgagtaag	48900
gacactgttga	aatttttctg	ggtggggcag	ggaacagac	gttctctgtc	atttcttcca	48960
cctgggtgttgc	gtcagcttcc	cctccaaatgt	gcctccctt	tttctcattt	tccgggttt	49020

032796-132.ST25

032796-132.ST25

aacctggact tttagggccaa agaggccagg gttcaaattcc tggctctgtc acttcccagt	52500
tgagtgaccc tggctggtgc ctgaatctct gtgagccctcc acttcctcct ctgtaaatt	52560
gagagcactt acctggcagg ctgtcatggg catcaagtaa cagggcactc cacctggacc	52620
ctgacacgtg atgcacagga atgccagctg ctatgccatg ggtgtggcag tagtaataaa	52680
gtgaccatct gtatccctac cacagtgaag cctgtccagg gcttctctc ctatcccccc	52740
atgcctccag gtggccttgg atcctgttgg ttctgtgtc tgctcagcga ccttcctccc	52800
gtgggagttc ctgggggttc agcttcatcc tacagacagc agcacacact ggctgtgcac	52860
cctttttttt tttttttttt ttttttttga gatggagtct cgctttttc gcgcaggctg	52920
aagtgcagtg gtgtgatctt ggctcaactgc aaccttacc tcctgggttc aagtgtttt	52980
cctgcctcac cctcccaagt agctgggatt acaggtccc accaccacgc ccggctaatt	53040
tttgttattt cagtagagat ggttttccatcatgttggcc agatggtct tgaactctg	53100
acctcagggt atcccccac ctcagccccc caaatgcag ggttacagg cgtgaggccac	53160
cacacccgga gtgcgggtt ttttagcag tttgtttgtc tcctggagag actggctcct	53220
gcccaggagc tcggggagta gggccgcggg gtgtgcctc acacctcgag ttggccgta	53280
agcagagggg acatttgtg actgtccccc tcctgagctt cccagcagct ttctccaag	53340
ttacagccca aaagctcagg tggatttgc acccaacggt gctgtgcac ctccactga	53400
tgcccgaaact gccctggcca agaaacgggg ccgtcagaac gctgcactaa ctgcagccct	53460
gggcctccat gccagaggcc atgccttcc atccaccacc ccttggctg gcccctggcc	53520
ctcctggctc gggactcca gggcccttcc tcacgatcg agagacgtgt attaccgca	53580
caggtgcttgc tcattcttgc tggcccttctt ctccaggag atcacagaag gacagggcct	53640
caactgagtc tcggacatgg accctttgtat agtggcagga gccaggctgg gcaagaggcg	53700
gccacagtca cctcagcagt gccatcacca cccgattca gcccctccct gagccggcg	53760
cgcccccggc tctggccca gttcccagt tacagtccatc agagcttgc ggtgcccagc	53820
ggctgttctt gatttgcggg cggatgtggg ggctttggg ggttgcgggg ctgtcggtt	53880
tcacaactgc tgaggagac tgggtctcca tctcaggatc gcccattgtc gcccctaacc	53940
tccagccacc ggtctccgt gttccatgt gccaggcactc gtttgcagac atctgtcggt	54000
ggctctctc agccgtcg ggttgcacctt ggcacgtctt cctgtggctg agccagttgg	54060
ggacagctgc ttcccttat tacccttagaa ctctcgctt tgcattggcc ccctccctaa	54120
tgccacacag tccctgtcac tcgggtgagc ccagtagtca tggggaaaggc ctgggggttc	54180
caaacatcca aaggcttgcg tgcagcatga cagcttggaaa ccgtgtttt ttacattgtat	54240
cagatttcag tttgggggg gtttgcata gtttgcgttgc aggcctgggg cgattttcca	54300
gcattccctc ctgaggccag cttctgtttt ctgtgatttt ctgcacaaag tggggaggag	54360
gagtcttagg aaatgggggg ccacctcgaa accttaggcctt cctctggctt ctctgtgcca	54420
gtgccccac gctttgttc tttgtccca gcccattggg ctgtgttatt ccgtgtgtc	54480
tgccgcatgc ccagcccgca ctgaggacgt ggagcccgaa gggccaggat ggctccatg	54540
gtcacacgtt ggaagtggcc tccaccctcc gatgtatc tccccccttc ctttcagcg	54600
ccttccccgg ggggtgtcatc agccctcttgc cttgtgtttt gttccgttctt ctgcagcgc	54660
atgggacgtt ctgacaggcc ctgtgcggg ttctgtgttgc gatatgcgcg cgtgtgtc	54720
cacagaggcc tggcccttct tctgtgttgc tcccacaccc gaaacagggt tggctgtga	54780
ccacctgtt tctggccctc tggctcttgc gagggcccgag tggccactca ggcgtgtgt	54840
agcagatgtt tggttgggg aggagggagg actgtccatc tcaaggctgtt gatattccacc	54900
cgagcattt ctgtgttatt tgggtgttgc cttgtgttgc aaagctctgtt ttccctgttgc	54960
gcacccttc cttctgtat taaaaacat acggatgtat gtttcttgc agtgaatgtt	55020
tattctccca gcctcttttcc tgggttgggg ctggagggttgg agccggcacac aggagccca	55080
gcgtatggagg atgtcggtt gcaacccccc gtacagcagg gatgcacaaac ccgcgtgt	55140
tccctcttca cttctgtttt gaagccatgt cacgcatttgc cttgggtttt gttggccgg	55200
gtgtcatgtt atgttcttgc tttgttgcacctt cccagaggcc cccacctgtt cccggacca	55260
ttttgtcatgtt gccacagggg agatcgactt tattttttttt gcttggcgct gtacgtgtt	55320
tccctgtgc gatgaccaga ggcgcgggg gggcttccccc gtgtgttgc cccggatgtt	55380
ccctctgtgc cgggttgcgtt gtgtgttgc ggcgcgttgc tgcgcaggcg aggccatgt	55440
tcaaggccgc tcaagacgagg tggactgttgc cgggttgcaggcc cttttttttt gtttctgtcc	55500
aagaccctgg cccttgcctc cgggatcaga gcttggggctt gcttccggcc tcacagatgt	55560
agggggcttgc aaaaccttttgc ttgcaggaa gatttgcacaaatgtt gatgttttcccaaca	55620
agggaaaacttc tgcagttcca cccatctgtt cccaccatgtt agtgcggctt gatgttgc	55680
tgtgagggttgc tatctcacct tcttgcattt ggttgcaggat ttacacagaaa ccttggccac	55740
attcagggttgc gggcttgcaga ggttccatggc tcacaccctt gaaaatccgc ccccaaaaga	55800
cagtgttgc tccactgacc agtctgtggg atagtgttta agcctgttgc gtttcttatca	55860

032796-132.ST25

acatgtagaa tcaggaggta taaagagatt tgctcaggca tcctggccc tctctgacca 55920
 gcaggatctt ccttagatc ttgacagtga aacacatctc ttctgtccc cctgtgagtt 55980
 ttcttcatt cattcattca ttcattcatt cattcattca ttccgagacag agtottgctc 56040
 tgtcaccctcg gctgagtgcc cctgggttaa tctcgctca ctgcacactc tgcctccagg 56100
 gttcaatcga ttctctgcc tcagcctccc gagtagctgg gatgacaggt ggcacaccacc 56160
 atgcctggct aattttgtta ttttagtag agacagggtt tcaccatgtt ggccaggctg 56220
 gtctcgaact cctgaccta ggtatccgc ccgcctcagc ctccccaaagt gctgggatta 56280
 caggcatgag ccaccgcgc cggcctgagt ttcccttta tgaaggacct gctgggttgg 56340
 ttgcctgcca catgttgtca gcaccatggg cccaggactg ctgaggagct gttatgtccc 56400
 tcgcctctccc agagccaccc gctctgttag ataattcaca tgcagtcgttgg ccactgtct 56460
 acgtcctcat tcacaaaagag cagacatttc gttagaagatg agggcttggg agtaaccc 56520
 ctgcatgttt ttctataaaag gcatatgtgtt taagtccctc cagctcattt accattggag 56580
 aattttatgg aggctgtaga cttagggctg gtaaactaag gcccaggggg ccaaattccag 56640
 cctgccacct actttgtaa ataaagttt cttgggtcac accatgtccc attcattcat 56700
 ttgcacaatg tctgtggctg ctttcatgcc aaaagcagga gaactgatg gttatgtgg 56760
 agacctaaccg cttccaaagc cccagaccc acgtctggcc ctgcacagac agagcttccc 56820
 cagccctgct gcgcattctg gcccagcatg tgctgtgtgt gtgatccatg ctgcaggag 56880
 ccgtggtagt gaattgtccc tgggtgggtc cattttcat tgctatgaag ggcacactg 56940
 ggccgggttag attatgaagg aaagaggctt gtcgtctca tggttctgtt ggcagcacca 57000
 gtatggcacc cgcatctgct cagttcttag tgaggctca ggaagctttt actcatggg 57060
 gaagtcgaag cgggaggcagg tgcatcacat ggtgagagag ggagcaacgg agagagagag 57120
 agagagagag agagccctc tcccttgc ctcacactt agaggagatg ccaggctcc 57180
 ttaagtaacc agctccatg tgaactcaca tgagagaccc atttgcattt gggagagagg 57240
 caccaggcat ctgcctccat gacccaaaca ctgcccacca gcccctaccc ccaaccc 57300
 ggtcatattt tattctgttc tatgttatgc tatgttatgc catgcatttc catgcatttc 57360
 tattcctatt ctattattt agacagaatc tgcattttt gcccaggctg gagtgactg 57420
 gcatgatctt ggctacttc acacccatcc tcccaggatcc aacgcattt cctgcctc 57480
 cctcccgagt agctggattt acaggcacac accaccacac cccggtaattttt 57540
 caatagagat ggggttcac catgttgcc aggctggctt caaactccctg gcctcaatg 57600
 atccacttac ctcggccctcc caaatgtccca tgattacaga tgggtgtcac tgcgtccctg 57660
 gagggtcaca ttccgttga gattttgggg ggcagacgtt ggagccatct gggccctc 57720
 gtcccgctt agcttcttcc cccgtgtcc cccgggtctt ggtggcaggc ctttaccc 57780
 gttctggctg cacgtctgtt tccagaagct ttcttccctg ctgggttacc agaaaatcat 57840
 cccatccatt acaaggacag gttccctta tctccattt ccaggccagg acaccggggg 57900
 cagggcagggt ggggaaactgaa gcaagttctc tggggcagg cgtggctatg gtcctctg 57960
 ggtgggcgtc tggggggggg tggaggcaggc cgtcagccctt ctgggttgc ctccctcc 58020
 ggccagagac tggcccttgc tgctgtccc gtgtggctg ctgcacccctc cagtggttg 58080
 tgctccctcc cctccctcc cctcaagctc tgctgacac cactgccttcc cacagcccc 58140
 actctcggtt ggegaggctc ctgcgtggccca ttccgttctt tgccacccac ccccccacca 58200
 acctggtaga gccttggcg gggctgttta ctccctgtcat ggcgttagacc tccccacagt 58260
 aggcaccta cacataccctc ctggggggcc ggcaggagggt gcgttggatg ctcaaccctg 58320
 gcagtccttc ccctgcgtgg cataggccctc gccacagggt catcgagggt ggggtggagac 58380
 tgtaactagac cactccccc tgggtcttaga aagggtccca tctgtctgtt ctctgtttgg 58440
 agtccagacc ttgggtgttgc tgccctgtcat ggtgggttgg ggggcacccct ccagccctc 58500
 tgagtgcattt gccttcctt gcagccatctt gcctggccaa ccagttccgg tggcgtcg 58560
 gcccagtgtt cctcatcaaa cagcagtgcg actccccc cgtactgtatc gacggctcc 58620
 acgagctcat gtgtggtagt ccagttctg gcacggggaa gggcgtccg ggctgggttcc 58680
 ccccaaggaaac gtggagtttta gggggaggaga cgtgccttc cagcggggctt gggggctgtg 58740
 tggggagactc aggccgctgg gaggctccctt gggggaggca gggaaaggctt tcccaaggca 58800
 gcccggccaggaa ggacagactg tgagctgtgg gtcggccgc tacagagtct gcctcagtgg 58860
 gggggctgtt ggggttccag gtgcctgcag cacgcaccca cccacgggac ctggctgagc 58920
 aacgtctgtc aggcaag attaccggag ggctgcagggt gtcctgttcc ctggcagctt 58980
 actgtctgtc tgaggaggatg tgatgttccat atatgcacac atgtcatgtg cacacacatg 59040
 tacatgacaa catccacat gtcctcaaaa tagcatgacc tggatcgtca cggatataagg 59100
 gccttagggga taggaggcca agacagtcag ggaagacttt ccagaggcag tggctctga 59160
 aaggctgtt gattcaggca ggaaggggagc tgagttcaga taggaagtagt caatgagtca 59220
 ttgtgtctgg ggacatggcc actccttcgc tgcagaggga cctggctga gagctccctt 59280

032796-132.ST25

cttatggctg cagtcggag agaagtctgt tggggggaga agggggcttc ctcaaggac	59340
tccctgtgcc ctttgcacc ttctgtccag gtcaggctt aggccctgaag gcagtgggtgg	59400
gggcaccaa ggtcgccctc ctctgtggg caagttccca gtctgacggg cctgtgccgt	59460
ggggccccagc tgtggggcg ctgttgatgc gcagccaggc ctcgcccggca gagccgcac	59520
gtttccattc cgctgacttc atcgacgccc tcaggatcgc tggggggcc ctgtgggaga	59580
gtaatgtgg ctttgccaa agttgagtct ggagcttggaa aacttcccta tggcagcct	59640
tgatagtggaa gtggcccaag gagcccacccc agccgaccct gcccctcccg tggctgggtgg	59700
gcggcaccag gggctgcctg getttgtcg ttccacaaca tcaccgggc tgccaggc	59760
gcgcctactt ctgcaccac cgagggccct gggcgaagga gtatcacca ggctgccttg	59820
gcaggatgtgt gttgagggtgt gttggggatgc ggacagcggc gggggtcaga ggaggaggag	59880
ggtgcaccgt gcaggtgaa gggccacgtt accctgaggt tggccaggct ccccaaggct	59940
agccctccag ctcccccaact ttctccccac cctccaccag tggcaaaagcc agcccttca	60000
ggggcgaacgg tgtctggccc caaggaggcc ccattccgtt ggggttaatg ttggccaccc	60060
ctttctgttt gtctctggca gaaatcacca agcccccctc agacgacago cccggccaca	60120
gcagtgcacat cggggccgtc attggcatca ttctctctct ctctgtcatg ggtgtgtct	60180
attttgtgtg ccagcgcgtg gtgtgcggc gctatgcggg gcccaacggg cccttcccg	60240
acgagtagtgt cagcgggacc cccgacgtgc ccctcaattt catagccccg ggccgttccc	60300
agcatggccc cttcacaggt aaggagccctg agatatggaa tggatctggag gaggcaggag	60360
agtagtctgg gcagcttgg ggagtgaggc agggatgtgc taccggcagcc ccttgcac	60420
atgtggcaga cattgtataat cgatcacagc attcagcattt tcccactgag cctgtgtttg	60480
gcatcagaat cttcaacac agaggcctgc atggctgttag caaccaccc ttggcactg	60540
taggtgtgga gaaagctctt tggacttgc ctcatattt tagtaggaca tggctgtgt	60600
tgtccacaaaa tcctcatgtt cccttagaaaat gaatgtgggg gggctgggc tctctccaga	60660
gctgaaggaa tcactctgtt ccatacagca gctttgtctt gaggcagct gggatttg	60720
gctgagcagt tacaattccct acgtggccca ggcaccagga acgcaggctg tggtttaga	60780
tggctggca gccgcaccgc agagctgcac catgtgggtt tgatcacat ggggtaccat	60840
ggtatgtcta agaaggtgga gtccctgtga ggtctgcagg tggcccccaca gctccaggcc	60900
accttggagga ttgcctctgc ctgcggccctt ctgagttccc tctccctgt cctgtcccac	60960
tgtcaccacca agccggccctc attggggagcc tggatggatgg cagggtatag atgtaacctg	61020
attctctctg gggagcgggg ttatctggct tctcaagac tccctaggagc ccacagttgt	61080
ggcaccatca cagtcgcagc agcccccaaga gaacgcggcc ctgtctgttc ctggcgtgt	61140
ctgtgtgtcc cgcctgggt tccctggccc agtgcaggc cccttggagg aggtaccatg	61200
tgtctccctgt ttcacagatg agccccgggg agtcactt agtagtggcc agagaggcct	61260
gcggcgtcagg gagcggggca catttccaac aggacacacc gcctggct gaggctcgtg	61320
ggtagtggga gcagaggaga ggcggctatg tctgtgggc ggcttggctg agcctggaa	61380
ccacctgacc tccccctgtcc tccctgtcc accatcgtca tgcggaaagt ccatgtatgag	61440
ctccgtgagc ctgtatgggg gccgggggg ggtgccttc tacgaccggc accacgtcac	61500
agggggctcg tccagcagct cgtccagcac gaagggccacg ctgtaccggc cggtgagggg	61560
cggggccggg gagggccggg gggggatggg gctgtggcc cctccaccgg tcagtgttg	61620
ccacccggagg cttccctgggt tccctggggc tggccaccg cctctgaggc atgcttgc	61680
tcttcccttt tcaaaccctt ctgttctt ctttaatgac atgtttgatt gtggataatc	61740
tggaaactac acaaaaatat aaagagccaa aatctcaccc aatccaccc cctagagtgg	61800
ctgttgggtt ccgtcagcat ccaggcggcc gtctgtgtt cgcacggccc agccatcg	61860
tagccgcctg caccaggcct gtctgcctc tggagcctc cccacagggt tccctccaca	61920
aacaccctgt tctcccaccc agggctggct gttccctggaa aaacagctgg atggttttgt	61980
gcatgacaga caaacacagg gtgatttcg tggctaaaat actccctggaa gctttggca	62040
gggtgagggg ctggctccag ctgagccacg ccttgagtga aatgactgtg aggagaataa	62100
actgcgcgtg ccctccagga tcaactggggc tggctggggc gaaccccggt ttctggagc	62160
acagttcccaag gatgccaagg cgagcttggt gcccagatgt gaactcctga gtgtaaacag	62220
cggggctgta cttgacatgc ttgttatgtt tttcatttgc tccctgagct gtatgcct	62280
aagggtgagtc cagccccctt ctgttcttc tggggctcg ccagtgagcc ccacccctgt	62340
ggggctgggtt cctctgtccc ttctgggtat ccctcacatc tggggcttc tttcttgc	62400
ttatttttct ttttttttgg agacggagtt tcaactttgt tggccaggct tcaatgtcaat	62460
ggtgtgatct cttagctcac cgcaacctct gcctccagg ttcaggcgt tctctgtc	62520
cagccctccct agtagtggg attacaggca tggccacca cggccagcta atttgtatt	62580
tttagtagag atggggtttc tccatgttgg tcaggctgtat ctgaactcc ctacccctagg	62640
tgatccgccc accttggcct cccaaagtgc tggattaca ggcgtgagcc accgcaccc	62700

032796-132.ST25

gcctttttct tttcttttct tttctttttt ctgagacagg gtctcgctct gtcaccagg	62760
ctggagtgca atgggtcat catggctaac tgcagcctct accttcttagg ctcagaacaat	62820
cctcccatct cagcccctaa gtagcttagga ctgcacgcat gcatacccat gcccagctaa	62880
tatttacatt tttttagag atgaagtttc actatattgc ccaggctgg ctccaaactcc	62940
tggactcgag cgatcctct gcctcgccct ccccagggtc tggattaca ggcgtgagcc	63000
accgtgcctg gcctgggta ttgtcttctt atggcacctg actgtgggtgg gcccctggaa	63060
ggaagtagca gaagagggtt cttcttggtt tcctggacag taactgagtg ttctggaggc	63120
cccaggggct ggcttgggtt agggacaaag ggaactggta accagaagcc gagagttaa	63180
acaccacatg cccttcttcc ctgctcctgc tgctgcaacc cagcttaacc agccaggagt	63240
gctaggaacc caagcaggc ccccgagcac acagcaggca gtcacgaaat tcttttcc	63300
tgttctccct tggagctgg gaggatctta atcaggcaat aagagatggc actgagcagc	63360
cagctaattt tttaaatcac ttattttttt aaccatatga ctacccact taaaaaagg	63420
tacagtttag tgggttttag ttttccata gatgtgtca accctcacca cagttattt	63480
tagaacattt tcctgcccct aaaagaaaact ctgcatgaag ccagctgttt taaaattagc	63540
aaagttattt tgcatccctt aaatataatgt tcatggtaca aattcaaaa gatacagaag	63600
agtctgcagt ccaaagagac tccggcccca tgacgccaag caggactccc tggaggcat	63660
ggcctcctgc agtgttttc ttctatgtcc ccccagggtt catctgtaca tatgcaagca	63720
tacaagagcg tggactttgt ttccaagcc agaagataat ttagattta tgcagtttg	63780
tgagaaagag cacagaccca ttatccctc gcctggttt ccccagggtc gcctgcac	63840
ttgcattgact tccattccta tcataagcaa gacactgata acattttt cacattattc	63900
agattgacat aagtttttt tttttttt tgagacaaac ttctctgtc acccagtgg	63960
agtgcagttgg cacaatcaca gtcactgca gcctcaaact cttgggtca agcgattctc	64020
ctgcctcaagt cccctcaagt agctcagatg gcagggtgtc accatcatgc caggtaatt	64080
tttaatttt ttgtggaggt gaggcctcac taaaatttctt ggcttagtct tgaactcctg	64140
agctaaagtg atcctcctgc ctgcgcctcc caaagtggta ggattacagg catgaggcac	64200
tgcgcctggg ctgacatatg tttttcgta agccgaaag atagcatctg aagagtaac	64260
attgagccct gcctttgtct gtaatgatg tataaaagct gctgttctga gcatttcgga	64320
ggctcccagc tgccgtgtgc accctgccta gagcttacc gtaacccatc tccggagga	64380
ggtgttattt ttttccat tttcaacaa ggaggctgaa gaactgagca tgaaccactg	64440
gcctgggtcg ttccgttggt aggcaatggg gccaggccat ccaactcaca accacccct	64500
actctgcctc ccccccaccc tgaagttgt tctgtttga ggacacagcc gtcacattct	64560
tggtggctga acagcactcc ttgtcagggt tggctggcc cccactggag ggcattatgg	64620
tcctctctcc tgctcggtt gaaccttggc ttttcaacc actcctgca agtggccctc	64680
tgaaggccgg gagtttgaga ccagcctggc caacatggag aaaccccttc tctagtaaaa	64740
atttaaaaat tagccggta tggtgatccc agtacttgg gagtctgaag catgagaatt	64800
gcttgaacat gggaggcgg gtttcagtg agccgagatc ggcgcattgc actccagcct	64860
gggcgcacaga gcgagactct gtctcacaaa aaaaaaaaaa aaagaaaaaga aaagaaatta	64920
tcaatctctt ctttatggc atatataat atatataat atatataat ttattccct	65220
ttcttgggta ttttccat ttttgcctt gctctgtca taaaaccaat ttatccat	65280
cactctctt cttttttttt tgagacagag ttttgcctt gtggccagg ctggagtgtca	65340
gtggcgcaat ctgcgtcac ttttgcctt gcctccggg ttttgcctt tacgttccata ttttgcct	65400
tacccccc agtagctggg attataggca ttttgcctt ttttgcctt tacgttccata ttttgcct	65460
tttagtagag acgggggtt ttttgcctt gttttttt gttttttt gttttttt gttttttt	65520
gtgtccacc caccccgcc tccaaatgtt ctggattac agacgtgagc caccatccc	65580
agccacact ctcttctt acgtccctt ctttgcctt tacgttccata ttttgcct	65640
ttcttggatg taatttagatt ttttgcctt gttttttt gttttttt gttttttt gttttttt	65700
ggcttatggg tggcgatg ttttgcctt gttttttt gttttttt gttttttt gttttttt	65760
tgaacagaga aagtccgtc tacaggctt ttttgcctt gttttttt gttttttt gttttttt	65820
cagtggatg tacagagaac ttttgcctt gttttttt gttttttt gttttttt gttttttt	65880
ctgtcatccc agcactttgg gagaccaagg cgggtggatc acctgagggtc aggagttcg	65940
gaccagccctg gccaacatag ttttgcctt gttttttt gttttttt gttttttt gttttttt	66000
gggtgtgggg cggatcgctt ttttgcctt gttttttt gttttttt gttttttt gttttttt	66060
tgaacccctggg aggcagaggt ttttgcctt gttttttt gttttttt gttttttt gttttttt	66120

032796-132.ST25

caacaagagc	gagactcagt	caaaacaaca	acaacgcagg	aatagcagat	gagccgaggt	66180
ggggcctccc	cagcccccac	ccccccacccc	gcaccctggg	ccgagatcca	gtcctcttgc	66240
aatagggcct	ggcgctggtt	cacgggacat	ctgagacatt	gccgaggcgc	tgcactggtg	66300
gatcttgcct	gaagtctgcc	cagtgcagat	ttggcagaa	tctcaaactg	ccttgggatg	66360
taggagagaa	accaggcctg	gtcaagttca	tggaaagagg	tggaaacaga	ccccataggc	66420
tggggcttgg	gcagctgttag	gaagccctct	ctgctgcctc	cctgcctgtct	ctctgtttgc	66480
aagcatcttc	cccagtgcctc	ccagtcctat	gccctctcaa	cgttggggtc	aaatccttag	66540
gaatacccg	actggctctc	tgggccaaag	aggaccctct	ccagaaaagag	cagggcccg	66600
tgcggcttcc	taaaggcag	gggaaggggcc	tggccactcc	ccagaggcta	ctcaccagcc	66660
atcaggatag	ccccaggaag	cagggcttct	cgagcccatt	ttattacttt	attttattat	66720
tttatttaat	tttaaattta	tttttgaga	cagagtctca	ctctgttgcct	caggctggag	66780
tgcagtggtg	cgatctcaac	ccactgcagc	ctctgcctcc	agggttcaag	ggattctccc	66840
acctcagct	cccaagtagc	tgggattaca	ggtggccgccc	accacaccccg	gctaattttc	66900
atatttttag	tagagacgag	gtttcacccat	gttggccagg	ctggctctcg	actcctgacc	66960
tcaagtgate	cggccgcctc	ggcctcccaa	agtgttaggt	caagcccatt	ttaaagttga	67020
agaaactgag	gctgaggtaa	atccccctcc	caggatccct	gctgcagcca	gaagggtggta	67080
aaacaggact	tcacccgggt	ctgtctggcg	tgaaaggcag	tgttcttgc	ccacccctagg	67140
gggcctgaga	gaactgagtc	cctcgggcat	aactgacagt	tctgttccca	ttattccgca	67200
ggggctcgg	tctggctgt	tctttccag	gatggccttgc	gagaccacca	taagccctac	67260
accccttggg	aagctgcatg	ttgggttggg	gtgcccgtc	ttgcactttgt	ggaaggtgca	67320
gacctgtgt	ggtgtgtggg	cccagggccc	ctggccctt	cctcccttgc	tagggctgg	67380
tgtgtctgc	ctggacctgg	ggggcacgtt	cacgtggta	atttgcata	ttactatccc	67440
cgccttgggg	ctggtgcctag	cacaggccct	tgtgaagggg	gtgcctttgt	ctggagtg	67500
actgtggccc	ctccctcagc	gtgtgtactt	ctgtgtcagg	gttcagcag	ggacgcagag	67560
ccctctgatg	ttcggaaacaa	gggcgtcatt	gcaggagtt	gactgtgtgt	gatggaggg	67620
ggagggccag	gaggaaaggt	cagaaggaga	gttccctgg	aggccctgt	ggagcctgg	67680
gagggtctaa	ctgggtgtga	ggacactcag	ggcctgtgg	gacatctct	actgtctgg	67740
gccagccaca	aaggaaactg	gccgaagtcc	tgtccccggc	ttcacagccc	agcatctgtt	67800
cacaaggccag	gtacttggaa	gggcgcgggc	acctggccca	aaagtgcctg	ggttcccttgc	67860
gcctttaact	gagatgacct	tcggggcagg	tggctgtc	ctccccctct	gtccccaggt	67920
tttgcctact	ggccagagga	aggggtctgc	ggaagcaggg	ggcccagaag	ccctctctgc	67980
aaggaaagcc	cgaggggtgt	gggaggaagg	aaggaatgcc	caggctggcg	aggetctaa	68040
tcacccctggc	ttggctctcc	tcagatcc	aaccgcgc	cctcccccgc	cacggacccc	68100
tccctgtaca	acatggacat	gttctactct	tcaaacattc	cgcccaactgc	gagaccgtac	68160
aggttaggaca	tcccctgcag	ccctccatgg	ccattgggtt	ccggccagcc	cgtgttgg	68220
gggcctaatac	cccatgcccac	tgatgagggg	aggtattctg	ggtgttagt	ggcaggtg	68280
gggcccagcc	ctgctccct	ctgctctg	aaccacacta	ggctgcctcc	ccagacaagc	68340
tcagcggca	ctgatgtt	gttcaaaaa	tcagcagaac	tccacgtt	gagctgtct	68400
tcaagtgt	cctatgggg	ttactttaa	gctggaaat	ggtgtgg	tgcaggggg	68460
gggggcttgg	gtcccaaact	ctgactgtgt	gtttgagttc	ggtgtggaa	acctagccat	68520
tgagatggcc	cctcttggtg	gtctgtct	cttaggatgg	gacaagtctg	tgaaggctgc	68580
tgcagcaccc	accttagacc	cctaattgt	tgacgttacc	aggatgttcc	gggctgtct	68640
cttgcacag	tggctgttt	gagcccggga	agccaacggg	gtgtctc	tggacaccag	68700
ccccccgagc	tgcccatgtt	ggggtacacag	gccccaccc	cctgggttgg	gagggcaac	68760
tgagagtgt	gagagggtgg	acccagggt	gtgtgtctcc	gcaggggt	gatcagagcc	68820
tgggatgggc	agggtgagcc	tcctgacett	taaccctgt	gtgtcaggca	acgtggccca	68880
cccgccagcc	gcaccaggcc	ccacccccc	aggtgaagg	gtgggatagg	ctgggcctgg	68940
gccaggacac	ctctggacca	cgattcttc	attgttggg	tccctgg	agcaggccct	69000
cccgagtg	gtggccctg	ccacctagtg	gccatttcca	cgaactccca	ggectggctg	69060
gggagccgga	actgcagct	ccatttccac	cccaactccgg	gtcgggcccac	ctccctgtat	69120
cctcagtatt	atatacaaact	gtcacagtt	gtccctacage	tttacagacc	actgtctcca	69180
gaatggtcc	atccacactg	ggcagccctag	tctcgttagt	tcctcgtccc	acctctgtcc	69240
tttgcctat	cccgctctgc	tctggggcca	ccggggacac	atctcccc	cgccccccgt	69300
ctgacccctac	agcagctgg	ccccaagagg	agtatctgt	cctgtgcac	ttttctcaac	69360
acccgggtt	ggctgcaccc	tcccacccat	tgcaggcccc	tctgtgacag	gacggggg	69420
cctaaacaca	ccacagttcc	gagtctgaac	tcacacagtg	ggatgcggcg	tttctgggg	69480
acagttgggt	gcaggttagcc	tctggggagga	tggaggtca	ggagccatct	tgcgagtc	69540

032796-132.ST25

gttgcttcaa	ctcaggatgg	aagtgttccg	ggcccattgg	ttgctgtatt	agcctgttct	69600
cacgctgcta	ataaaagacat	acccaagact	ggtaattgt	aaaggaaaaga	ggttaacgg	69660
actcacagtt	ccacccgcct	gggggtggcct	cacaatcatg	gtagaagaca	aggaggagca	69720
agtcacatct	tacatggcct	cagggAACAG	acagcatgag	aaccaAGCGA	aaggggttc	69780
cccttgtaaa	accatcagt	ctagttagat	ttatttacta	ccacgagaac	agtatgggg	69840
gaaccacccc	catgattcaa	tcatctccca	ctgggtccct	cccacacgcac	gtgggaatta	69900
tgggagtaca	attcaagatg	agatttgggt	ggggacacag	ccaaacccctaa	tcgggttgc	69960
acatTTACAG	taacagtgtt	aggtgaacag	ttgtccagtc	tcctgttttgc	tcggacactg	70020
tttctagcac	cttcaggca	aatctcatg	tatccttcac	tttgc	aaatgttgc	70080
cateccccact	tttatcaatg	agaaaactaaa	gctcgaaag	gtcaagtaag	ttcctggcca	70140
aggtcagta	gcaggtctta	gaggcctcg	tctcctttaga	ggcagccttgc	ccagggccca	70200
ggcttggcag	gctgcaggc	aggtgcgggc	atgcccattgg	tagagggtggg	accatttgggg	70260
ctcagagagg	gtaagtgtatg	agccctgggc	acacagcggg	gtgggtccag	agtccggcct	70320
gcatcttctg	gagctggcca	gtggacagggc	cttcccggtt	cacagccccgg	gggctgtgt	70380
gcccaccagg	gcccaccagg	gtggatgtgc	ctaccgaatc	ccactcttct	gtgtgtgtcc	70440
ctacatcatt	cgaggaatgg	cgccccccgac	gacgccc	tttgc	tttgc	70500
cgactacagc	gccagccgct	gaaaggccag	caagtactac	ctggatttgc	actcgactc	70560
agacccttat	ccaccccccac	ccacgccccca	cagccagttac	ctgtcgccgg	aggacagctg	70620
cccgccctcg	cccggccaccc	agagggatca	cttccatctc	ttcccgcccc	ctccgtcccc	70680
ctgcacggac	tcatctgac	ctcggccggg	ccactcttgc	ttctctgtgc	ccctgttaat	70740
agttttaaat	atgaacaaag	aaaaaaaat	attttatgt	ttaaaaaata	aatataattg	70800
ggattttaaa	aacatgagaa	atgtgaactg	tgtatgggtg	ggcaggcgt	ggagaacttt	70860
gtacagtgg	gaaatattta	taaacttaat	tttgc	aaaac	agaactgc	70920
ccctgtgtgc	atttgcgttgc	tggagggaaat	ggcggaccccc	ggaccacccat	70980	
gagagtcc	ctgcacccgg	ggctccctct	gtccggctcc	tgcaggaaag	ggctggggcc	71040
ttgggcagag	gtggatatct	ccccctggat	gcatccctga	gtgcaggcc	ggggccggctt	71100
tatgtcgctg	ttgcctgtgc	cgtaaaaaag	ggccctgggc	ttcatcacgc	tgttgcgtt	71160
cgtcttc	agattcttag	tctttttttt	ttttttttt	tttgc	tttgc	71220
ctgtcatcca	ggctggagtg	cagtggata	atctcagctc	actgc	actccca	71280
ggttcaagtg	agtccctgc	ctcagccccc	cgagtagctg	ggactacagg	tgcgc	71340
cacaccggcc	cagctaattt	ttgtatttt	agtagagatg	gggttcacc	atgttgc	71400
ggatgatctc	gatcttttgc	cctcgttgc	cgccccaccc	ggcctccca	agtgc	71460
ttataggcat	gagccactgt	acccagctg	ctttagtca	ctttaagaa	ggggactgt	71520
ccttcatttt	tcactggcc	ctgcagaata	tatgcctgg	ctctggc	ttctgaac	71580
gtgttgc	ccatctgacc	tctctgtgc	agcccaaggc	tgc	tttgc	71640
aggagccca	tgactgcgt	ttgactcgt	ggatggggct	gtcgaccc	ctctgc	71700
ccacgtggcc	ctggcaggga	ggaaatccct	gggtc	ctc	ccac	71760
acctgaccc	tgctgtggc	ccatccctgc	ggtgctggag	aagacagaca	aggcctgg	71820
actgcctctg	cagggtcccc	agtccgtg	aggagacagt	aatctaggca	tttcgg	71880
ggaagctgag	ctgttctcg	gtcctgaagg	ccaggcggg	acagccgt	tca	71940
gggagaaaat	gcacatcg	tca	gggac	ttccctc	agg	72000
gaggtcagaa	aacagtcaag	tttgcgtt	ccat	actaaata	ac	72049

<210> 10
<211> 8705
<212> DNA
<213> Homo sapiens

<400> 10						
ggactcagg	gcaggcagg	ggtacaccca	tggtagtgg	gcccggaccata	gggggttaatg	60
agagggtgaa	tcgatggaa	ctgggggaca	caatcgaat	ggtccagag	tcgggtgt	120
ctaattaaag	agacggggca	gtggacaggc	attttcgtt	gactgc	ccag	180
gcccacagg	gaggatatgc	gtacagaatc	atactcgatc	agcatgagtc	caattcagac	240
cgtacatcg	tggagatatg	ggtcccccga	tgactccgt	gaacactgat	gtttgt	300
ggggagtaca	gcaccagcca	tca	ggcagg	ccat	ggac	360

032796-132.ST25

tca	gaccccg	atccaccctg	accgacgtcc	caagccccca	ccccccaccc	cccaccatgg	420
gc	cgagatcc	agtcccttt	gaataggggc	tggccgttgt	tcacgggaca	tctgagacat	480
t	gcccaggcg	ctgcatttgtt	gatcttgc	agaagttgc	ccagtgcaga	tttgggcaga	540
a	tctcaaact	gccttggat	gttaggagaga	aaccaggct	ggtcaagttc	atgggaagag	600
g	tggaaacag	acccatagg	ctggggcttg	ggcagctgt	ggaagccctc	tctgtgcct	660
c	ccctgcctgc	tctctgttt	gaagcatctt	ccccagtgc	cccagtctca	tgccctctca	720
c	acgttgggtt	caaatcctga	gaaataccca	gactggctt	ctggggccaaa	gaggaccctc	780
t	ccagaaaga	gcagggccca	gtgcggcttc	ctaaaggca	ggggaaaggc	ctggccactc	840
c	ccca	gaggct	actcaccagc	catcaggata	gccccaggaa	gcaggccctc	900
t	tttattactt	tattttatta	ttttatattaa	tttaaattt	attttttag	acagagtctc	960
t	actctgttgc	ccagggcttga	gtgcagtttgtt	gcatcttca	cccaactgcag	cctctgcctc	1020
c	agggttcaa	gggattctcc	cacccatggcc	tcccaagtag	ctgggattac	agggtccgc	1080
a	caccacaccc	ggctaatttt	catatttta	gtagagatga	ggttccacca	tgttggccag	1140
c	gtgttctcg	aactcctgac	ctcaagtgat	ccgccccct	cgccctccca	aagtgtctt	1200
t	tcaagcccat	tttaaagttt	aagaaactga	ggctgaggta	aattccctcc	ccagggatcc	1260
g	tgctgcagcc	agaagggttgtt	aaaacaggac	ttcacccggg	tctgtctggc	tgaaaggca	1320
g	gtgttcttgtt	accaccctag	ggggcctgag	agaactgagt	ccctcgggca	taactgacag	1380
t	ttctgttccc	attatccgc	aggggctegg	atctggctgt	atgtttcca	gatggccctt	1440
t	ggagaccac	ataagcccta	caccctttgg	gaagctgcat	gttgggttgg	gttgcgtca	1500
g	gtggacttgc	ttgaagggtgc	agacctgtgt	gggtgtgtgg	gcccaaggccc	cctggccctt	1560
t	tcctccctt	gtagggctgg	ttgtgtgt	cctggacctg	gggggcacgt	tcacgttgg	1620
t	aatttgcata	tttactatcc	ccgctttggg	gttgggtcca	gcacaggccc	ttgtgaaggg	1680
t	gttgccttttgc	tctggagtgg	gactgtggcc	cetccctcag	cgtgggtact	tctgtgtcag	1740
g	ggcttcagca	gggacgcaga	ccccctgagt	gttcggaaaca	agggcgtcat	tgcaggagtt	1800
g	agactgtgt	tgtatggaggg	aggagggggca	ggagggaaagg	tcaaggagag	agttccttgg	1860
a	agggtccctg	aggagccctgg	tgaggtgtca	actgggtgtgg	aggacactca	ggccctgtgg	1920
g	ggacatctcc	tactgttggg	ggccagccac	aaagggaaact	ggccgaagtc	ctgtccccgc	1980
c	cttcacagcc	cagcatctgg	tcacaaggca	ggtaacttgg	agggcgcggg	cacctggcc	2040
a	aaaagtgcct	gggttccctt	tgccttcac	ttagatgacc	ttcggggcag	gtggctgt	2100
a	cctccccc	tgtccccagg	tttgccaaac	tggccagagg	aaggggtcct	gggaagcagg	2160
g	ggggccagaa	gccctctctg	caagggaaagc	ccgaggggtg	tgggaggaag	gaaggaatgc	2220
g	ccaggctggc	gaggctctaa	gtcacccctgg	cttggctctc	cttcagatcct	gaacccgcgg	2280
c	ccctcccccgg	ccacggaccc	ctccctgtac	aacatggaca	tgttctactc	ttcaaaccatt	2340
c	ccggccactg	cgagaccgta	caggtaggac	atcccctgca	gccctccatg	gccattgggt	2400
t	tcccacccgc	ccgttggtgg	ggggcctaat	ccccatgcca	ctgtgaggg	gaggtattct	2460
t	gggtgcta	gggcagggtgc	cgggcccagc	cctgcctccc	tctgctctgc	caaccacact	2520
g	aggctgcctc	cccagacaag	ctcagcgggc	actgcatgtt	gggttcagaa	atcagcagaa	2580
g	tcacacgttc	ttagctgtc	tcaagttgc	tcctatgggg	gttacttttta	agctggaaaa	2640
t	tggctgtggc	gtcgaggggc	cgggggcttg	ggctccagag	tctgactgtg	tgtttgagtc	2700
c	cggtctgtgg	aacctagcca	ttgagatgcc	cccttttgg	ggctctgtcc	tcttaggatg	2760
g	ggacaagtct	gtgaaggctg	ctgcagcacc	caccgttagac	ccctaatacg	gtgacgtcac	2820
a	caggatggtc	cgggctgtc	acttgcacaa	gtggcttgtt	tgagcccccgg	aagccaaacgg	2880
g	ggctgtctcg	ctggacacca	gccccccgag	ctgcccattgt	tggggtcaca	ggccccaccc	2940
c	ccctgggtgg	ggagggccaa	ctgagagtgt	ggagaggtgg	gaccagggtg	tgctggctc	3000
c	cgcaggggct	ggatcagage	ctgggatggg	cagggtgagc	cttcctgacct	ttaaccagg	3060
t	ggtgtcaggc	aacgtggccc	acccgcacg	cgcaccag	ccaccccccgg	caggtgaagg	3120
t	gttgggatag	gttgggcctg	ggccaggaca	cctctggacc	acgcattct	cattgttgg	3180
g	gtccctggag	cagcaggggc	tcccgagtgt	ggtgcgcct	gccacctagt	ggccatttcc	3240
a	acgaactccc	aggcctggct	ggggagccgg	aactgcaccc	tccatttcca	ccccactccg	3300
g	gttcggggca	cctccctgtat	gttgcgttat	tatataaaac	tgtcacagtc	tgtcccacag	3360
c	ccttacagac	caactgtctcc	agaatggta	catccacact	ggcagccca	gttcgtctag	3420
t	tcctctgtcc	cacccctgtc	tttgcgtcat	gcccgtctg	ctctggggcc	accgcggaca	3480
c	catcttcccc	ccgccccccg	tctgacccat	cagcagctgg	gccccaaagag	gagtatctg	3540
t	tcctgtgtca	ttttctca	cacccgggtt	tggctgcacc	ttcccaacca	ttgcaggccc	3600
c	ctctgtgaca	ggacggggc	tcctaaacac	accacagt	cgagtctgaa	ctcacacagt	3660
g	ggatgcggc	gtttctggc	cacagttggg	tgcaggtagc	ctctgggagg	atggggaggc	3720
g	aggagccatc	ttgcgagtc	ggttgcttga	actcaggatg	gaagtgttcc	ggcccccattg	3780

032796-132.ST25

gttgctgtat tagcctgttc tcacgctgct aataaagaca tacccaagac tggtaattg	3840
taaaggaaag aggtttaacg gactcacagt tccacctgcc tggggtggcc tcacaatcat	3900
ggtagaagac aaggaggagc aagtcacatc ttacatggct tcagggaca gacagcatga	3960
gaaccaagcg aaagggggtt ccccttgtaa aaccatcaag tctagtgaga ttatttact	4020
accacgagaa cagtatgggg ggaaccaccc ccatgattca atcatctccc actgggtccc	4080
tcccacagca cgtggaaatt atgggagtt aattcaagat gagatttggg tggggacaca	4140
gccaaacccct atcggttgcc aacatttaca gtaacagtgt taggtgaaca gtgtccagt	4200
ctcctgtttt gtcggacact gtttctagca ctttcaggc agaatctcat gtatcctca	4260
cttctgaaat gggtaactatt tcatccccac ttttatcaat gagaaaactaa agctcgaaga	4320
ggtcaagtaa gttcctggcc aaggteagct agcaggctct agaggcctcg ttctccttag	4380
aggcagcctt gccagggccc aggcttggca ggctgcaggc caggtgcggg catgcccatt	4440
gtagaggtgg gaccatttggag gtcagagag ggtaagtgtat gagccctggc gacacagcgg	4500
ggtgggtcca gagtccggcc tgcattttt ggagctggcc agtggacagg ctcttccgt	4560
tcacagcccc ggggtctgtg tgcccaccag ggcggatgtg cttaccgaat cccactctc	4620
tgtgtgtgtc ctttcagge cttacatcat tcgaggaatg ggcggcccgca cgacgcctg	4680
cagcaccgac gtgtgtgaca ggcactacag cgccagccgc tggaaaggcca gcaagtacta	4740
cctggatttg aactcggact cagaccccta tccacccca cccacgcggc acagccagta	4800
cctgtcgccg gaggacagct gcccggccctc gcccggccacc gagaggagct acttccatct	4860
cttcccggcc cttccgtccc cttgcacggc ctatcttgc cttcggccgg gcaactctgg	4920
cttctctgtg cccctgtaaa tagttttaaa tatgaacaaa gaaaaaaaata tattttatga	4980
tttaaaaaat aaatataatt gggattttaa aaacatgaga aatgtgaact gtgtatgggt	5040
gggcagggct gggagaactt tgtacagtgg agaaatattt ataaacttaa ttttgtaaaa	5100
cagaactgcc atttttcgt gccctgtgtg cattttagtt gtgtgtcccc gtggagggaa	5160
tgccgacccc cggaccacca tgagagtcct cttgcacccg ggcgtccctc tgcggcgtc	5220
ctgcagggaa gggctggggc ttgggcaga ggtggatatc tcccctggga tgcattccctg	5280
agctgcaggc cggggccgct ttatgtgcgt gtggcctgtg ccgtcagaaa gggccctggg	5340
cttcatcaag ctgtgtctgt tgcattttctt cagattttaa gttttttttt tttttttttt	5400
ttttttgaga cggagtcctt ctctgtcattc caggctggag tgcagtggtt caatctcagc	5460
tcactgcaag ctccgactcc cagggtcaag tgagttctt gcctcagccct cccgagtagc	5520
tgggactaca ggtgcgcgcc accacacccg cccagctaat ttttgtattt ttagtagaga	5580
tggggtttca ccattttggc caggatgtatc tgcattttttt gacctcgtga tccggccacc	5640
tcggcctccc aaagtgtgg gattataggc atgagccact gtacccagct gactcttagt	5700
cacttttaag aaggggactg tgcatttcatt tttcaacttggg ccctgcagaa tatatgcctg	5760
ggctctgggc tcttctgaac ctgtgttggc ttccatctga cttctctgtg ccagcccaag	5820
gtgtgtgtc ttcttgaggc caaggagccc catgactgcg ttttgactcg ctggatgggg	5880
ctgctgagcc cactctgcca caccacgtgc ccctggcagg gagggatcc ctgggtccctc	5940
acaggaacag tcagcaagcc acacctgaatc cctgtgtgg gcccattccct gcggtgtgg	6000
agaagacaga caaggtctgg tcactgcctc tgcagggtcc ccagtccgtg gaaggagaca	6060
gtaatctagg cattttcggt ggggaaagctg agcttttcgt gtgttctgtaa ggccaggcgg	6120
gaacagccgt cttaggggg aaggagaaaa atgcacatcg catcagtggaa gaaggccctg	6180
acttccctca gcatgtggaa gggaggtcag aaaacagtca agcttggatc tgggtgacag	6240
tgcatttaat aatcaaaaata taggtgtggt acgggtggctc atgcctgtaa tcccagcact	6300
ttggggagct gaggcagggtg gtcacttgc ggcaggaggt ttgagacccgg cttggccaac	6360
atggcaaaaact ctcactact aaaataaaaaa aactagccgg gctgtgtggt gcacgcctgt	6420
aatcccagct acttggggagg ctgaggcagg agaattgtttt gacactgggg ggcggaggct	6480
gcagtgagcc gagattgtgc cactgcactc cagcctggcc aacagagcaa gactctgtct	6540
aaaaaaaaaaaaaaa aaaaaaaaaaaaaa gcaataaaaaaa atacaaatata cactttcact aaaagaagg	6600
atggaaagacc caaaaacaaac agaaaaacaac aaaatggcag gatgttgc ccacttatca	6660
ataataaataat tgactgtaaa taggtcaatc tctgcattca aaagagtggg ccaggagcgg	6720
tggctcacgc ctgtatattcc aacgcctttgg gaggctgagg cggatggatc atttgcgtc	6780
acgagttta agaccagcct gccaacaag gtgaaacccc atctgtacta aaaataaaaa	6840
aatttagccag gcggttagtgg cacgcacccg taatccacgc tacttggatc gctgaggcag	6900
gagaatcaat ggaggctggg aagcgagggt tgctgtgagc caagatgggg ccactgcact	6960
cccacctggg cgacagagtg agatcctgtc ttaagaaaaaa aaagagtggaa tgaatggatc	7020
aaaaaaacaag acccaaccat ctcttgcata caagaaacac actttaccta taaaaacaca	7080
ctaggccagg tgggtggct cacacctgtatc atcccagcccttggggaggc ctgactggca	7140
gtcacctga ggccaggagt ttcagaccag ctgcacccgac atggcaaaaac cccatcttc	7200

032796-132.ST25

ctaaaaatac	aaaaaaacaa	aaaaaaagaaa	aaggctggaa	gtagtatgt	gtgcctgtag	7260
ccccagctac	ttgggaggct	gaggcaggag	aattgttga	atccggaaag	tggaggttgc	7320
agttagccag	gatgtgcca	ctgcactcca	gcctgggtga	cagagcgaga	ccctgtcata	7380
aaaaaaaaaa	gaaaagaaaa	aaaaaacgag	aaaaacaac	acaaaattag	tagaagaaaa	7440
gaaataataa	agatcagaac	aggccaggt	catggcaca	gtggctcaac	tcctacctgc	7500
tcaggagtt	gagaccagtc	tggccaacat	ggcaaaaccc	catctctcct	aaaaatatga	7560
aaaaaaaaaa	ataggctgga	tgtggtgatg	tgtgtgtgc	tgtagccca	gctacttggg	7620
aggctgaggt	gggagaatca	cttgagccca	ggaagtggag	gctgcagcga	gtcatgaatq	7680
caccctgcac	tctagctggg	taactggagt	gagattctgt	ctcaaaaaaag	caaagaccag	7740
agcagaataa	aatgaaatgg	aatgaaga	aacaatgca	aatgatacaa	aaagttttt	7800
cgaaaaagata	aacaaaatca	acaaacctt	agccagatta	agaaaaaaaag	agagaagacc	7860
caaataaata	aaatccgaga	ttaaaaagga	gacattacca	ctgataccac	agaaattcaa	7920
aggatcatta	gaggaacta	tgtgcaacta	tatgctaattg	aactggaaaa	cctagaagaa	7980
ctgggtaaat	ttctagacac	atacaaccta	tcaagattga	accatgaaga	aatccaaaac	8040
ctgaacaggc	cggcacggt	ggcttacgcc	tgtatccc	gcaacttggg	aggcctgaga	8100
tcaggagttc	gagaccagcc	tggccaacat	ggtgaaaccc	catctctact	aaaaaaatat	8160
aaaaatttagc	cggcgtggt	ggcggtgtcc	tctaattgtca	gccactcggg	aggctgaggc	8220
agggaaatca	cttgaacctg	ggaggcatag	gttgcagcga	gccgagggtt	caccactgca	8280
ctccagccct	ggcagacagag	ccagactcca	tctaaaaaa	attaaaataa	aaaaacctg	8340
aacagaccaa	taacaagtaa	tgcgatgaaa	actgtatataa	aatgttttccc	aacaaagaaa	8400
gcccaggaac	aataggcttc	actgctgaat	tttaccaaac	atttttttt	tttgagacg	8460
gagtctcgct	ctgtcgccc	ggctggagt	cagtgtgt	acctcggttc	gctggtaact	8520
tatgcctc	aggctgcaag	tgatttct	gcttcaaggcc	ccccgagtgg	ctggaaatta	8580
gatggactt	gtcaaacaag	gcctggctaa	atttctatat	ttccttcaag	tagaagatgt	8640
gcttccaaca	aaggtgggt	tacggctggc	ttctgaaaat	cttggatttc	aaggctcccc	8700
aaaaag						8705

<210> 11
<211> 66933
<212> DNA
<213> Homo sapiens

<400> 11						
tataatcaag	cgcgttccgt	ccagtcgt	gggaagattt	tcgatatgct	tcgtgatctg	60
ctcaagaacg	ttgatcttaa	agggttcgag	cctgtatgtac	gtattttgtct	taccaaatac	120
agcaatagta	atggctctca	gtccccgtgg	atggaggagc	aaattcggga	tgcctggga	180
agcatggttc	aaaaaaaaatgt	tgtacgtgaa	acggatgaag	ttggtaaagg	tcagatccgg	240
atgagaactg	ttttgaaca	ggccattgtat	caacgtctt	caactgggtc	ctggagaaat	300
gctcttcta	tttgggaacc	tgtctgcaat	gaaattttcg	atcgtctgtat	taaaccacgc	360
tgggagat	gataatgaag	cgtgcgcctg	ttattccaaa	acatacgtctc	aataactcaac	420
cgggtgaaga	tacttcgtt	tcgacaccag	ctgccccgt	ggtggattcg	ttaattgcgc	480
gcgttaggat	aatggctgc	ggtaatgc	ttacttgc	tgtatgtgg	cgggatgtga	540
agtttactct	tgaagtgtc	cgggggtata	gtgttgagaa	gacctctc	gtatggtcag	600
gtaatgaacg	tgaccaggag	ctgcttactg	aggacgcact	ggatgtatctc	atcccttctt	660
ttctactgac	tggtcaacag	acaccggcg	tcggcgtcaag	agtatctgtt	gtcatagaaa	720
ttgccatgg	gagtcgtccgt	cgtaaagctg	ctgcacttac	cgaaagtgtat	tatcggttgc	780
tggttggcga	gctggatgtat	gagcagatgg	ctgcatttac	cagatgggt	aacgattatc	840
gcccacaacg	tgcttatgaa	cggtgtcagc	gttatgc	ccgattgcag	aatgaatttg	900
ctggaaatat	ttctgcgt	gctgtatgcgg	aaaatatttc	acgtaaagatt	attaccgc	960
gtatcaacac	cgcacaaattt	cctaaatcag	ttgttgc	ttttctcac	cccggtgaac	1020
tatctgc	gtcagggtat	gcacttcaa	aagccttac	agataaaagag	gaattactta	1080
agcagcaggc	atctaaccctt	catgagcaga	aaaaagctgg	ggtgtatattt	gaagctgaag	1140
aagtatcac	tcttttaact	tctgtgtt	aaacgtc	tgc	catcaaga	1200
gctcacgaca	tcagtttgt	cctggagcga	cagtattgt	taagggc	gataaaatgtgc	1260
ttaacctgga	caggtctcg	gttccaactg	agtgtataga	gaaaattt	gag	1320

032796-132.ST25

aggaacttga aaaggccagca ccctgatgcg accacgtttt agtctacgtt tatctgtctt	1380
tacttaatgt ccttggttac aggccagaaaa gcataactgg cctgaatatt ctctctggc	1440
ccactgttcc acttgtatcg tcggctctgt aatcagactg ggaccacggg cccactcgta	1500
tcgtcggtct gattattagt ctgggaccac ggtcccaactc gtatcgctgg tctgattatt	1560
agtctggac cacgtcccc ctcgtatcg cggctcgata atcagactgg gaccacggc	1620
ccactcgat cgtcggtctg attattagtc tgggaccatg gtcccactcg tatcgctgg	1680
ctgattatta gtctgggacc acggtcccc tcgtatcgta ggtctgatta ttatcgatgg	1740
accacgggcc cactcgatc gtccgtctga ttattagtct gggaccacgg tcccactcg	1800
atcgtcggtc tgattattag tctgggacca cgatcccact cgtgttgcg gtctgattat	1860
cggctcgatggaa ccacggtcccc acttgttattt tcgatcgac tatcagcggtg agactacgat	1920
tccatcaatg cctgtcaagg gcaagtattt acatgtcgta gtaacctgtta gaacggagta	1980
acctcggtgt gcggttgat gcctgtgtg gattgtctgt gtgtctgtt tatccacaac	2040
attttgcga cggttatgtg gacaaaatac ctggttaccc agggccgtgcc ggcacgtttaa	2100
ccgggctgca tccgtatgcaaa gtgtgtcgct gtgcacgacg tcgcagactc ggacatgagg	2160
ttgccccgtt ttcagtgctg ctgatttgta ttgtctgaaag ttgtttttac gttaaggatgt	2220
tgtagatcaa ttaatacgat acctcgatc taatttgat tttgacgtgg tttgtatggcc	2280
tccacgcacg ttgtatgtg tagatgataa tcattatcac ttacgggtc ctttccgg	2340
atccgacagg ttacggggcg ggcacctcg gggtttgc tatattgaa aattttccgg	2400
tttaaggcgt ttccgttctt ctccgtcata acttaatgtt ttatattaaa ataccctctg	2460
aaaagaaaagg aaacgacagg tgctgaaagc gagcttttg gcctgtgtcg ttcccttct	2520
ctgttttgcgatc cccgtggatg acaatggaa gtccgagctc atcgctaata acttcgtata	2580
gcatacatttta tacgaaggtt tattcgatgc ggccgcagg ggttgcgtc agcgggtgtt	2640
ggcgggtgtc ggggctggct taactatcg gcatcagacg agattgtact gagagtgcac	2700
catatcggt gtgaaatacc gcacagatgc gtaaggagaa aataccgcatt caggccat	2760
tcgcccattca ggctcgcaaa ctgttggaa gggcgatcg tgccggctc ttgcgttata	2820
cgccagctgg cggaaagggggg atgtgtcgca aggcgattaa gtgggttaac gccagggttt	2880
tcccagtcac gacgttgtaa aacgacggcc agtgaattgt aatacgactc actataggc	2940
gaattcgagc tcggtaccccg gggatcctct agagtcgacc tgccaggatc caagcttctc	3000
ttgtccgggt tgcgtctgt caggtcacaac ttgttagtta ggcaggccac agatgccag	3060
agcagagagga actttccctg gggattcaac acgtgcagaat cttaggggtt gccaatctt	3120
gccctcagct agagaggggg cttttattt agaccagaat cacctgagca tcctctgtc	3180
cccagctgtg tccagcctgt ctgcaggac atcctgagag gaccaggctc tcccctcatc	3240
cacctgccta agtgcactc tgaaccctgt ccacctgtc cgtgggggg cgtgacctca	3300
agctgtctcg ccagcagcag gcttggccct gggggccac agagaccacg gtggctgtgg	3360
ggtgggtgtc tcgtggctg gttctgaaac ttcgttggaa gtgtgtggac agtgccttgc	3420
ctgttctctg tgggacccta tttagaaacg aggtctgagt tactgggggt catcaactgt	3480
ttctgtatggc ccagctgtgt gggggcccg gtgcagcccc atccaaggag ccagggccct	3540
gggtctagcc gtgaccagaa tgcattcccc ggaggtgtt ctatctcgc acctgtgtt	3600
cctgggtgtgt caagtggtcg tggaaactctg tggtagctct tggtagtgc gaaagtgc	3660
ccgggtctca ggcctcagaa ccagggtttc cttcatctc ggtggctgg gacatctgg	3720
gcagttgagc aaagaggccg attcaatttga aggatgtgc tggccctgcc taggagcc	3780
ccggcacggcgt gctggggccct gaagctgcc tcgggtggg gagaggagg agcgtatgaa	3840
tggcgtcgag ctggcagga agggtgagcc cctgcacggt gggcatctg gggacgctga	3900
gcagcatggc cagcagctgg gtctgcagcc ttgttacccgg cggacttgt ggtggggct	3960
ggtttggc caggagagg gctggcagga gacaaggggg actgtgaggc agctccacc	4020
cagcagctga agccaatgg cttggctgtg tggctctcg ctgcgtgcac aacctctcag	4080
tgcttcagtt ctctcattttaaaaatgagg aaacaaacag tggccaggctc ccagagggt	4140
catgaggatg aacgagtgc catgtatcat gggctgggt cgtgtcaccc aacatcacca	4200
gcctttgcaaa ggagggccct gggggccctgg ctgagatattt cccttgcctt gcccacccca	4260
ggccttagact tgcgtctgtc gcaaggccctt gacccctgcac ccattgcac ctgtctccac	4320
aggagccgag gaggtgtc tgcgtggcccg gggacggac ctacggagga tctcgctgg	4380
cacgcccggac ttacccgaca tcgtgtcgca ggtggacgac atccggcactc ccattccat	4440
cgactacgac ccgcttagagg gctatgtcta ctggacagat gacgagggtgc gggccatccg	4500
cagggcgtac ctggacgggt ctggggccca gacgctggc aacaccgaga tcaacgaccc	4560
cgatggcatac gcggtcgact ggggtggccccc aaacctctac tggaccgaca cgggcacgg	4620
ccgcacatcgag gtgacgcgc tcaacggcac ctcccgcag atcctgggtt cggaggac	4680
ggacgagcccc cgaccatcg cactgcaccc cgtatgggg taagacggc gggggctgg	4740

032796-132.ST25

gcctggagcc	agggccaggc	caagcacagg	cgagagggag	attgacactgg	acctgtcatt	4800
ctgggacact	gtctgcatac	agaacccgga	ggagggcttg	ttaaaacacc	ggcagctggg	4860
ccccacccccc	agagcggtga	ttcaggagct	ccagggcggg	gctgaagact	tggtttcta	4920
acaaggacccc	cagtggtcg	gtgctgctc	tgggtccatg	cgtagaaaac	cctggagacc	4980
tggagggagc	ccttgttcc	cctggcttc	gtttccat	ctgtagaatg	gaacggtcca	5040
tctgggtat	ttccaggatg	acagtagtga	cagtaagggc	agcctctgtg	acactgacca	5100
cagtagcaggc	caggcctctt	tttttctttt	tttttttttg	agatggagtc	tcactctgtc	5160
gcccaggctg	gagtgcagtg	gtgtgatctc	agctcaactac	aacctctgc	tcctgggctc	5220
aagtgattct	cctgcctca	cctcctgagt	agctggatt	acagggtgc	gccactgtgc	5280
ttggctaatg	tttgatffff	ttgttagagat	ggggtttac	cgtctggcc	aggctggtcg	5340
caaactcctg	acctcagggt	atccacctgc	ctcagcctcc	caaagtgtctg	ggattacagg	5400
catgagccac	cacccccggt	caggccaggc	ctctttgaa	cacttgcac	accatggtc	5460
ttttcatcca	gggggttagg	tacagttgt	cagttgagga	cactgaagcc	cagagaggct	5520
cagggacttgc	cccagggtca	cacagcagg	tgtggcaggt	gtggggctgg	gcctggcagc	5580
gtggctccag	ctttccagca	tagaaatctg	tgaaagcaga	tagttgtcg	gtcggtaggg	5640
gagacttct	gagacccgccc	ccagcggctc	agagggtagt	agccaggggc	cttcctgggg	5700
gctcataacc	cagaacactg	aatggggaaa	ccctgatgga	ggaggcgcag	tggagctgt	5760
ggtgccgatg	ggaagtccca	gaggagctgg	gaggtcagta	gcccgtctgc	cctctgtgga	5820
gcacttagtgc	ggcaccaggt	gtgtttccag	gttcatggcc	ctgggacatgc	aagctcagaa	5880
ggtgaagtaa	cttggccagg	gcacccgtcg	ggcagcggcg	ggcagaggat	tttgtggctg	5940
tggagccctgt	gctcgtggcc	cagccctggg	gttgtgagt	gtgtggcc	gggagcttt	6000
cctgcaagtg	gactgggtgc	taggagccag	catgtcaggc	agcaggcgc	gggagtgca	6060
caggcagcgg	gagcacagca	ggcagagggc	ggggctcgag	cagccatccg	tggaccctgg	6120
ggcacggagg	catgtggag	agggctgctc	catggcagtg	gtcgaagggc	tgggttgtc	6180
cccgaggagg	gtggatgagg	gtaagaagt	gggtccccag	gggcatttgc	aagaggaggc	6240
ccaggaactg	gttgcagct	acagtgaagg	gaacacggcc	ctgaggtcag	gagcttggc	6300
aagtcaactgt	ctacatgggc	ctcgggtgtcc	tcatctgt	aaaaggaagg	gatggggaa	6360
ctgactccaa	ggccctccct	agccctgggt	tcatgagtct	gaggatccca	gggacatggg	6420
cttggcagtc	tgacctgtga	gtcgtgggg	tccaggagg	ggcaccgagc	tggaaaggcgg	6480
aggcagaggg	gctggccggc	tgggtcagac	acagctgaag	cagaggctgt	gacttgggc	6540
ctcagaacct	tcacccctga	gctgccaccc	caggatctgg	gttccctcc	tggggggccc	6600
caggaaacaa	gtcacctgtc	cttgcata	gggagccctt	cagctatgt	cagaaggttc	6660
tgctctgtcc	cttcctccct	ctaggtgtc	agctctcca	gcccactagt	cagatgtgag	6720
gtctccctcg	accctggca	gggtcattt	tgtccactga	cotttggat	gggagatgag	6780
ctcttggccc	ctgagagtcc	aagggctgtt	gtggtaaac	ccgcacagg	tggaaagtgg	6840
catccctgtc	ccaggggagc	ccccaggagc	tctggta	gggcttgc	ctggcatgt	6900
cagtcttcca	gcacttactg	acaccagcat	ctactgacac	caacatttac	aaacaccgac	6960
attgaccgac	accgacattt	accgacactg	acatttacca	acactgttta	ccaacactga	7020
catctactga	cactggcatc	taccaacact	gacatttacc	gacactgaca	tttaccaaca	7080
ctattnacca	acactgacat	ctactgacat	tggcatctac	caacaccaac	atttaccgac	7140
accaacacattt	accaacactg	aaattnaccc	acaccgacat	ttaccgacac	cgtttacca	7200
cacccgacgtt	tacccgacacc	gacatttacc	gacactgata	ttaccaaca	ctgacatcta	7260
ctgacgtctgg	catctactga	caccgatgcc	agcatctacc	aacaccgaca	tttaccaaca	7320
ctgacatttacca	ctgacactga	tatctactga	cactggcatc	tactgacacc	aacatttacc	7380
acacccagca	tctaccaaca	ccgacattt	ccaacaccag	catttacca	caccgatgtt	7440
taccaacggcc	gacgtttacc	gacgcccaga	tctaccaaca	ctgacattt	ccgacaccg	7500
catttacca	cactgacatt	tactgacact	gacatctact	gatactggca	tctaccgaca	7560
ctgatatttacca	ccaacggccag	catctactga	cactgatgtt	taccaacacc	gacatttacg	7620
agcaccgacat	tttactgaca	ccaatattt	ctgacatcaa	catttagcca	tgtgtatgggg	7680
ggccggcttgg	ggccggccct	tgctcttggc	actggggatg	ctgcagagac	cagacagact	7740
catggggtca	tggacttctg	cttcttctcc	agcctcatgt	actggacaga	ctggggagag	7800
aaccctaaaa	tcgagtgtgc	caacttggat	ggcaggagc	ggcgtgtgt	ggtcaatgcc	7860
tccctcggtt	ggcccaacgg	cctggccctg	gacctgcagg	aggggaagct	ctactggga	7920
gacgccaaga	cagacaagat	cgaggtgagg	ctcctgtgga	catgtttat	ccaggaggcc	7980
aggcccagcc	acccctgtca	gccagatgt	cgtattggcg	aggcaccgat	gggtgcctgt	8040
gctctgcttat	ttggccacat	ggaatgctt	agaaaatagt	tacaataactt	tctgacaaaa	8100
acgccttgag	aggtagcgc	tatacaacgt	cctgtggta	cgtaagatgt	tatcattcg	8160

032796-132.ST25

ccaggtgcct	gtagacacag	ctacttggag	actgaggatgg	gaggatcgct	ggagtccaag	8220
agtttgaggc	cagccccggc	aaaggggaca	caggaatcct	ctgcactgct	tttgcacctt	8280
actgtgagat	ttaaattatt	tcacaataca	aaattaagac	aaaaagttaa	tcacatatcc	8340
actgccctgc	ttaagacaga	aaacatgggt	gttggtaag	ccagaggcag	ctgctggcct	8400
gagtttggtg	attggttcct	aagcagttga	aggcagttt	gttttccat	agatgtctgt	8460
tctcccttgc	ctgggtgcag	cctcgccctg	ctgctgtgg	cgggtttcag	tggcctcgtc	8520
ccgtggacgc	agcctcgccc	tcccgctgt	gtcgggttc	agtggcctcg	tcccggtggac	8580
gcagcctcgc	cctgctgcgt	ttgtcggtt	tcagtgcc	cgtcccgtgg	acgcaggcctc	8640
gccctgcgc	tgtggtcggg	tttcagtgcc	ctcgccccgt	ggacgcagcc	tgcctcgcc	8700
gctgtggtcg	ggtttcagtg	gcctcgccc	atggcgtgc	tttggcagct	ttttgtcac	8760
ctgtggagcc	tcttttgcgc	ttttttgtt	gttggttgtt	tttggttgtat	tttggttgtat	8820
tgtttgttt	tgttgcgtt	gttgggtccc	aggctggagt	gcagtggcgc	gatctcagct	8880
caetgaaacc	tctgcctcct	ttgggttcatg	ccatttcct	gcctcagcct	cccacatagc	8940
tgggattaca	agtccccgcc	accacgcctg	gttaaatttt	gtattttag	tagacagggg	9000
gtttcaccat	gttggtcagg	ctggctctgg	actcctggc	tcacatgate	cacctgcctc	9060
ggcctcccaa	agtgttggg	ttacaggcgt	gagccaccgc	gcccaggcctc	tggttgcgc	9120
atttttaggt	tcttttgcgt	ccagtgat	gtacatgtgt	ccccatcgca	ccatcgctac	9180
ccattttaggt	gacatttgcgt	cctcttcctcg	gggtggatgc	ctccctctgt	ttccagcaac	9240
ttcttgcgtt	tttttgcgt	ctgcgtcgt	ccttggtgac	gtcaccateg	gggtcacctt	9300
tgccttcctc	agggtccca	ggggaggccc	gaatcaggca	gttgcagggg	cagggcagga	9360
tggagaacac	gagtgtgtgt	ctgtgttgc	ggatttcaga	ccctgtttct	gagcgggagg	9420
agtctcagca	ccttcagggt	ggggaaaccc	gggatgggg	aggctgagtg	gacgccttc	9480
ccacgaaaac	ccttaggagct	gcaggtgtgg	ccatttcctg	ctggagctcc	ttgttaatgt	9540
tttgggtttt	gcaaggccca	tttttgcggg	ccgctgagga	tgatttgcc	tcacgcac	9600
ccgcatacccg	'tgggagcagg	tcaaggactc	gcgtgtctgt	ggcacaccag	gcctgtgaca	9660
ggcggtgttc	catgtactgt	ctcagcgtg	tttttcttgc	gacagggctc	cgctcgctca	9720
cccaaggcag	agtgcagtgg	cgcaatcact	gtcgcgtgt	gcctcaatct	ccctggctc	9780
agggtatcct	cctgcctcac	cctctgagta	gttggacta	cagacacata	ccaccacacc	9840
cagcttagttt	tttgttattt	tttgggggg	gagatgggt	ttcgtgtgg	tgcccaagct	9900
gatctcaaac	tccttgcgtt	caagcgatcc	acctgcctcg	gcctcccaa	gtgctggat	9960
gacaggcata	agccgtcaca	cgcagctcaa	tgatttatt	ttggtaaaat	aaacatagca	10020
caaaaatttgc	gatttttacc	atttttaagt	gaacagttca	ggctggcggt	ggtggcttat	10080
gtttgtatc	ccagactt	gagaggctga	ggtggcaga	tcacctgagg	tcaggagtt	10140
gagaccagcc	tggccaacat	gtgaaatcc	agtctctact	aaaaatacaa	aaattagccg	10200
ggcatgggtt	cagggtcctg	taatcccagc	tactcggag	gtcggaggcag	gagaatcgct	10260
tgagccccgg	agggtggaggt	tgcgtgtatc	tgagatcatg	ccactgcact	ccaatctgt	10320
tgacagagca	agactctgtc	ttgaaaata	aataaataaa	aaaaattttt	aaaagtgaac	10380
aattcaggc	atttagtatg	aggacaatgt	gttgcaggta	tctctgtctac	tatctacttc	10440
tagaacactt	tcttcgtccc	tgaaggaaac	ccatgccc	ccggcactca	cgcccattct	10500
cccccttcctc	ccagcctctg	tcaaccacta	atctactt	tgtctctggg	ggttcacttc	10560
ttcttgcgtt	tttgcgtac	tggaaatcctg	caatatgtgg	tccctgcgtg	tggcttctt	10620
ccatagcatt	gtgtttcca	gattcacc	cacattgtcg	cacgttatca	aatctcatt	10680
cctgactggg	tgcagtgggt	taggcctgt	atccta	tctgggaggc	caaggcggga	10740
cgatcactt	aggcaggagt	ttgagaccag	cctggccagc	ctagcaagac	cccagctacc	10800
aaaaaaattt	aaaagttaac	tgaacgtgg	ggtgggggc	acttgtgggt	cccagctacc	10860
tgggaggctg	agggtgggagg	atcgcttaag	cccagaggt	caaggctgca	gtgagctatg	10920
atcgaccac	tgcactccag	cctggacaaac	agagcaagac	cctgtctgaa	aaaaaaaaca	10980
aaaaaaaaaa	ttcccttctt	tttgcgttgc	gtgacatcc	cattgtatgg	ccacagcaca	11040
ttttgtttgt	ctgtttatcg	gttgcgtgg	agtgggttcc	accttttgc	tcctgtgaat	11100
aatgtctgt	tgaacatttgc	attcaagtt	tttgcgttgc	cacctgttgc	gaattatttg	11160
gatatatgtt	tagggtagg	attgtgtgt	cctatgttgc	tgttaggtt	gacttactga	11220
ggaaaccatta	aaacttttgc	aacagtgggt	gcccgttct	gcatccccac	cgccagtg	11280
tgagggttct	gacttac	cctcacaaac	gttcttttc	cattaaaaaa	aatattcagc	11340
caggtgcct	ggctcacgccc	tgtatccca	gcacttggg	aggccgtggc	ggccggatca	11400
cctgagggtca	ggaggcgttgc	acgagcctgg	ccaacatgtt	gtaaacccat	ctctacc	11460
aatataaaaa	ttaggccgggt	gtggcagcgg	gcccgtgtaa	tcccagctac	ttgggaggct	11520
gaggcaggag	aatcacttgc	acccgggagg	cagagggtgc	agtgagccaa	gatcgccca	11580

032796-132.ST25

ctacactcca	gcctgggtga	caagagtcaa	actccatcta	aaataaaaaca	aaaataaaaa	11640
taaataaaaa	tttattaaaa	cattcatcac	agccagccta	gtgggtgtcc	catgtggctt	11700
tgcctcgcat	ttccctgata	actaggatgc	tgagcgtctt	gtcccaggct	tgccacacct	11760
cagcacttg	agatacgtcg	cacagtcccc	atttgcgaac	gagaatagag	gtttagggaa	11820
cagcagctgt	gtcatgtcac	acagcgagca	gggggtctct	gagccgtctg	accccacagc	11880
cgaccaagct	ccaatcctta	ccgcctccta	gtttgtgga	ttagccag	ggtgctccca	11940
catttttcag	atgagaacac	cgaagctcaa	aacaggagcg	tttgcac	attggatata	12000
cgatgtctgt	ggttggtcc	tgaagtca	ttatatctca	gtggtccaga	ctggagtagg	12060
acagggggtt	ctgggaatg	gggaagggtt	ctcagtgaa	aggaaggaat	tccagattct	12120
ccatactgtc	cttggaaatg	tagaagactc	agaggtctg	gcaaagtca	acaaagcaag	12180
agaaatgcag	tcaggaggaa	gcccggctgt	ccaggaacag	gggggtcgca	ggagctcacc	12240
cccaggaact	acacttgctg	gggcctcg	gtcacaatga	cgtgagca	gcgtgtgat	12300
tacccactt	ttttttttt	ttgaggtgaa	gtctcgctct	ctgcccagt	ctggagtgca	12360
gtggcacat	ctcgctcac	tgcaagctct	gcctccggg	ttcatgccc	tctcctgcct	12420
cagcctcccg	cgtagctggg	actacaggcg	cctgcacccg	cgccggctaa	attttgttat	12480
tttttagtga	gatgggattt	caactacatta	gccagatgg	tctcgatctc	ctgacccat	12540
gatccgcgg	tctccgcctc	ccaaagtct	gggattacag	gcgtgagca	ccgcgcgg	12600
cccgatttcc	cacttaaga	atctgtctgt	acatctcaa	agccctatac	acagtgtgg	12660
gttgctatag	ggaatatgag	gcttacaggc	catggtctg	gacacacaga	agggacggag	12720
gtcaggaggt	agaagggcgg	agagaggaa	caggcggagg	tcacatcctt	ggcttcaaa	12780
atggccagg	gagagacacc	ctctgagcat	gttaggacag	gaaagcaaga	ttgaaacaca	12840
ttgagagaa	ccgaggtggc	tggcgtgtt	ggcttacgccc	tgtatccca	acacttgg	12900
aagctgaggt	gggtggattt	tttggaggca	ggagtcaag	accagcctgg	ccaacatgg	12960
gagaccctgt	ctctactaaa	tataaaaaaa	ttagccaggc	gtatggtgc	atacctgtaa	13020
tcccagctgc	ttgggaggct	gaggcaggag	aattgtttaa	acctgggagg	cgaggttgc	13080
agtgagccg	gatccgcgc	ctgcactcca	gcctggcc	cagagtgaga	ctccatctca	13140
aaaaaaaaaa	aaaaaaaaaa	taaaaagacc	aaccgaggaa	tttggatggg	ggggcgctac	13200
agtagcagaa	ggggatcg	ggagcaggcc	accctgtgg	catgcactgg	aagctcatta	13260
cctgacgatt	tggagctcat	caactggggc	ctaaggagaa	tagatactga	aggatgagga	13320
gtgatggcgc	ggggcacggg	tgtctttgt	ggccagaact	tggggactgc	tgggggtgcct	13380
cactgcaggc	cttctcagcg	ccctttat	gcttacacag	gtgtttctt	agagggggat	13440
acattgcata	agcggtttca	gactacctca	tcatggtcc	cttctttac	cctctgtggc	13500
cctgggtggc	cactctctgg	gaaaggcgcag	gtggatgccc	agacccgccc	tgccatccac	13560
ctgcacgtcc	agagctgact	tagcctcgag	attgctgctg	gcacccctgg	ccccgggaca	13620
cctcgatgt	gcccgtggag	atgctggctc	tgtttttt	gtggagttt	gttgcgtctt	13680
ttccctctgc	aagtggccac	cgcttctgg	tatgtctca	ggcttctgc	agtcatggct	13740
gtttctcagg	tccttgc	gcccaggag	caaaccctcc	tggactttt	ttcagggtt	13800
gatgcgcac	tgttctctgt	gtggacccccc	atctcacat	agggttctt	gcctgcaggc	13860
tcgttctcagg	aacaccccg	gagtacgcag	tgtgtccag	ctgtgtccca	ggcaatggcg	13920
gggacagtgg	ctgtgtctgg	ggttgggtt	gtttctgggg	actctgggg	cagctgaggt	13980
gcaaggagcc	acggctcctt	gaggatgcag	ttggactcca	ggttggaaagg	atggttgggg	14040
gaggatataa	tgggttcagg	gaggagacac	atttggaaaca	atggaaacat	ttttaaagat	14100
ctatgtcg	aggcaacaag	gtggccaacc	cagggtctga	ggagcccaaca	ccagccctgg	14160
acgtgtttt	ccgctcac	ttgttgggg	gtgggtggag	agaggattcc	gttccacgt	14220
gtgggtgtcg	cagctgggt	gtgtggact	gggcgtttag	aggaagggtgc	tttctgcggg	14280
cttagccgg	ctctgcctt	gaacacaatc	aggctccagg	ttttcagcat	ccagtgcac	14340
agaggactt	acggcagct	gtggctgatc	ccttgcata	tttggagaag	aacaaagg	14400
tatgaaatga	ggttcatgt	agatggcatt	agagacgc	acaacagatt	tacagagtgg	14460
agcggagac	gcggatgggt	ctgggaggcc	cctctcgctg	gccttactg	tgacagctgt	14520
cctgggaatc	agctccagg	ccgcggcc	agcctactg	acacacacag	gggttttag	14580
cccatctgc	gaccagctgt	tgccatcatc	agtgcac	gggagtgccg	gtgggtccag	14640
ccctgggcac	cctcccccacc	tgctggggcc	caccoaggcc	agtcctgaca	cctacaggtt	14700
gcttggagcc	gcatccg	cctgcccac	cacgtgtgaa	gcccggatgg	tcgtgggt	14760
aggcccctg	attgcac	cacttccctt	ctgcttcaca	tagctgcctc	ttctcaccgt	14820
tttccagcc	tccttggct	ggaattccag	tgttgc	gttttgc	aggacac	14880
cttagccctc	ttcttgagtc	tagagccccc	gggggtggaa	gttctggccc	ctggacacc	14940
tgcagccaca	ctcagctct	cctgtgagcc	tccagcatgt	cccctcagga	ccaagccctc	15000

032796-132.ST25

acgttcttgc	ctccccgccc	acctgggctc	agccagggga	aggcctggct	gggagcgtct	15060
cccctctgcc	ctgcctttct	cccccttacc	ctgccccttct	ctcctctgccc	ccgccatggc	15120
tttatatacc	tgtgccacaa	gacatggctg	tgtgtaaaag	tggcagggtc	tggcatctct	15180
gtgggtctct	gagggccacg	ctccagtgcc	actctccca	cccgctggcc	gtgcctcat	15240
gctggaggg	cagcccagcc	ctctcccgaa	ccccagcccc	atgtgcccag	ctgccccccgg	15300
ccctctcccc	tggaaagccgg	ggtcaactcca	gccgtatgcc	atggtgggggaa	catecctgctt	15360
ccttggcctt	ccagggaaagg	tcctctttcc	aatggcgcac	acctggtccc	tgcctggagg	15420
ctggaaagctg	tggcccttgt	atgcccctcc	agggtctgtg	cgctcggttg	gcccggattc	15480
ccatcacccgt	catcatcacc	atcatcatgg	tcatttcgt	tgtctgtgag	ccggcctggt	15540
ctcccagagc	agagaccctc	ttaggtccag	cctgagttgg	ggtctccgtg	ctgaccctg	15600
acggggactc	aggacgtacc	aggctctgggt	caggagtac	ccccaaaccc	cgtgcctt	15660
gacaggcacc	cctgactttt	gctaagtggg	tggaggtac	atcacttaca	gcggggagtga	15720
tgggacaggg	tctttggct	gcactgtgt	cccaggatc	tggggagagg	ctataccct	15780
gggctttggc	actcagagc	tgtgtgtgtt	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	15840
tgtgtgtgtg	tgtgtgtgtg	tttgcgtgcg	cgcacatgtg	tataagatct	tttttatta	15900
catgaagcaa	gataactgtt	gctgtttcct	tttgggtttt	gtgttcaaca	gagtgggta	15960
cttcttcct	cagacaacag	aactctcccc	tttaaacacg	tgtgtcaga	gggtgggtct	16020
tgggctcatg	tcttttgca	cagccggatc	agagggaaaca	cagggttctt	cataaaaaaca	16080
ctgcacagca	ggcgaactgtc	cagagtacgc	ctgcaggacg	gcagcagccc	tgcccctcag	16140
agcacagcta	gggtgggctg	ctttgggatc	tcccgtcatt	ccctcccccgc	tggcaggccgg	16200
cggccggccc	attccttgggt	gtgctggta	ggggggcgtg	cgcctgtct	gctcacccctg	16260
ggaatggac	agaagctggc	agctcggaga	ggacagggtc	ggacccttgg	gtggcctctg	16320
gctggaccat	ctcattgtcc	tcagacacag	cctctcgggt	ctagttcat	ttcctgaaaaa	16380
acaagtgcac	agaactagag	caggagtca	gagctacggc	ccccgggcca	gatccagccc	16440
tgccacctgt	tttcacacca	tgctcaact	gagtgggtt	tacatttttt	aattacttga	16500
aaaaaaaaaa	gccaaaggag	tttcatgac	ccatggaaat	tatatggaaat	tcaaaaaaaaa	16560
aaaattatat	ggaattcaaa	tttcagtgtc	cataaataat	ttcttgagac	agggtctcgc	16620
tctgtcaccc	aggctggagt	gcagtgctat	ggcatggctc	gtctgtaccct	tgaccccttca	16680
ggctcaagcg	atccctctgt	ctcagccccc	tgagtagctg	ggactacggg	tgtgtccac	16740
caagccccc	taattttttt	taattttag	taaagacagg	gtctttctat	gttgcggcagg	16800
cttttcttgc	actccatctt	ggcctcccaa	agtgtggga	ttacaggctc	gagccacgg	16860
gcccagccgt	ttttgtttt	ttcactgtata	aagtttgcc	gggtgtggta	gtgtgtgcct	16920
ctagcgattt	gggaggctga	gggtggagga	tcgcttaagc	ccaggagtt	gaggctggc	16980
tcaagtgtatc	aggaggtgaa	ctatgtatcat	gtcattgtat	tccagccctgg	gtgacagagc	17040
aagaacctat	ctctaaaaaa	tatatattta	aaaagtattt	gggtgtgggg	ctcacccctg	17100
tggtcccaagc	tacttaggca	tctgagggtt	gaggatggct	tgagccagg	agtttgaggt	17160
tgcaagcgagc	caagatcg	tcactacact	ctagctggg	tgacagagcc	cagaccctgc	17220
ctctttaaaa	aaaaaaacca	aaaaacatgt	attggAACAC	agccatgcct	gttcagtcac	17280
gtgtcttcca	tgctgtttc	tgctccagag	acccttatgg	cctgaaagct	gaaaatattt	17340
tctatccctt	acaaaaaaat	ttgtctgaccc	ctgtcttgc	aaattcatct	cccaaggct	17400
cttccggcac	tgggtttccct	gggtgtccca	aatttggccc	ctgttatttc	tgaactctgt	17460
tttggctctg	ttccctccca	ggagccagga	caggcacgtt	ctctgcacatct	tgtcccttgc	17520
cggccagagg	cttggctcgg	ctcaggcatt	cttggaaata	tctggctcca	ggaaaggcag	17580
aggcctccgt	agtcaagccca	gagggaaacct	gccccagggtc	tgggggaggc	ctgaccaggc	17640
agagtggctt	ttgcccattgg	gttggggccgg	tcaagatgt	ctgaaaagg	tcctcagaag	17700
cccaacttgg	gatttcttcc	tccagatatta	gagcaactga	gagctgtctca	ttgcaagcct	17760
gatgtttcc	cagtggcccg	ggtccaccgg	gtgcccctgg	attctgggt	ctgggtggaa	17820
agttaggggc	ttgggggagt	gtcctgggtt	ctggaaatcca	ggtggcaag	ggtgaggttc	17880
agggagttggc	ttctgagccca	ccatagggtt	ctctgtggg	ggctctgccc	atccaggaga	17940
ttccgcaggc	cctggccggcc	cagagccagc	gtcttgcgt	tgcccgggt	acagccagcc	18000
ccagccgggt	ggaacagcccc	gtgcctccct	ctcacccctt	tttggggcca	cctggggatg	18060
tggagcaagg	gtagagaggg	aggaagtggc	tgccggccgc	tgcccaggac	ccttgcgttgc	18120
cttggccct	ctgtgggctc	ctttttattt	ctcttcaatg	aagccaggga	aatggacttc	18180
cttgccctcac	ttcagttcaa	catgtctgt	agtttggat	taaaatataa	aaagtgtgg	18240
aatagagcaa	gaagagaaaa	atctctccaa	gagataatag	tgacctctga	gctggccgcg	18300
gtggctcaag	cctgttaatc	ccagttactt	gggaggctga	ggccggccaga	tcacctgagg	18360
tcgggagttt	tgaccggcc	tgaccaagat	ggagaaaccc	cgtctctact	aaaataaat	18420

032796-132.ST25

aaataaataa ataaataaat acaaaaattag ccaggcatgg tggcgccctgc ctataatccc	18480
agctaaggca ggagaatcgc ttgaacctgg gaggcaaagg ttgcagttag ccaagatcac	18540
gccattgcac tctagtctgg gcaacaagag tgaaactccg tctaaaaaaa aataaataaa	18600
taaaaaataa aaatagtac ctctggccag gtgtggcagc tcatacccg aatcccagca	18660
crttggagg aaggccgaga tggcagatt gctttagcac aggagtttg gaccagccctg	18720
gccaacatgg tggaaaccca tctctacaaa aatagaataa aatttaagag gtaatagtga	18780
ccttttgta gatgaaacc tggattgctt tcttttcta aatgctgatt cttttcttg	18840
tggtgtttgt gttctgtgcc gatgtccctc cccccagccct gtattgtga gtggaagaag	18900
gggaaagggt tcgccccta ctgtgagccc ctcccttcac gctgggtgtc cttggagaag	18960
cctgcacttc ttcatgtac gccagggtctg ggtccctccc tggagttgtt ctgtgtct	19020
gggatggggc caaccctca gatgtttct gagtgtcaca cacaggtgtg tgcattcatg	19080
gccttgcgt gtcttcctgt tggaggca aaaatgtaa gaaccctaga tgattttggg	19140
accagggtc catcacctgc ttttcattgc acacccggagc atccaggcat gggggagag	19200
ctcagacttc caggcacggc cgccagggtct ggtctaaacc tttcccccgc cgcctgtcg	19260
tcagaacccg ctgttggag ctgttatcat gataccatac ctggggccctg ggctatccga	19320
ttctgactta attgtccag gttggggcca ggccgttgg tctgttttgc ttgttttttc	19380
tgtgacgta gccactggc taatctgagc ccctcagtttta caggtggaga aactgagacc	19440
catgggggtg caaggacttg ccgaggacc agagccctt gggggcagag ctgaggcggg	19500
gcctggctt ggtcccaaga gttccctgtc ccctcccccgc ttcctaaaca gtttttttt	19560
tttagacaag atctcaccct gtcacccagg ctggagtgc atggcatgat ctgcgtcac	19620
tgcaatcttc gtagctgcg ttccagcgt ttcctgcct cagcctcccg agcagctggg	19680
attacagggtg tggccgcca tggccagctc gttttttttt gtacttttag tagagatagg	19740
gtttcacat gttggccagg ctgatctcg actccgtacc tcaaataatgatc cgcctgcctc	19800
ggcctcccaa agtgcgttca ttacaggctg ggatcacact gtgcctggcc ctgcgcgtt	19860
tgtcctgtgc catccaacaa cagatgaccg aagtctttgt ttcttaacat gcattccatc	19920
tgccttacag ttttgcacc tggccaaacag aggacttgc gctttctgg taagctggaa	19980
atgtaatctg gtagcaggag gctgtggaa gcttgcctt aatggccctg tgccttttc	20040
atcctgtcct gagagccgga gaaacttggat gttcaccta actcaacctt cctgttaaca	20100
tacagttctg caggtctatg gatcatcaga accacgtctt atctcacgcg gctgtatgt	20160
tccgttgggtt caggtgtttt taccttgaca gtattttctc ctgggtggct tttgcgtgg	20220
ttgcttttaa tcagcattga ctcttcaaga aaaatattta gctgctacat ctgcaggag	20280
acagggtgga aagcatctga gacgtgcagg ctgcactta gaaccagaag tggccctcaga	20340
gttcatccgg ccctgaccctt gggggaaatg agttcacaga gaagcggggag aactttggcc	20400
caggccctgc cgttgcctat actgccccca ggtcccttaca ttgcctccag gtcctgcccc	20460
aggccctgca gttgcctata actgccccca gtccttatat ttgcctccagg tccctgcccc	20520
ggcctgcag ttgcctgtg tgggtggat gatctggcgc ccccccgc ttcgtgcacc	20580
tggggcagggc attgtaattt gatcccaggta ctcccttcctg cgagcacgc cctggttctc	20640
caggcaggcc ctgcctgtca gctgcagtg gttcgggaga ggacacctgc ttgcctggc	20700
tgttccaaat ctgccttc atcccagcac agtaggggg tgcataatggaa aagggtatct	20760
cagttggccc tgcactgtc ttttgcgttgc gggacttgc atccatgtaa aacatcatgt	20820
ggccggcgcg gtggctcagc cttggaaatcc cagcacattt ggaggctgag gagggtggat	20880
cacttgaggc tggacttcg agaccagcc ggtcaacatg gtaaaacccca tctctactaa	20940
aaatacaaaaa attcgccagg tgggtggcg ggtacccgtt atccgagctt ctcggaggc	21000
tgaggcaggaa gaatcgctt aacctggggat gtggagctt cagtgcgcg agatcttgc	21060
actgcactcc agcctggca acagactgtg acgtgtctc aaaatctcaa acaaacaac	21120
aaacaaaaaaa caaacaaaca aagcgtcatt tatccagcac ccctggggaa ccatgttacc	21180
tggtgttttta tggtaatctgg caaggtgcag gtgaagttgc tgcctttggg cattgaaccc	21240
gtcttgcattt gggcagctca gccccccaggc agggcccccggg ttggctctcg ttgggtggc	21300
cctggcccat ccagacctat atttctgcctg tccctgcaggat gatcaatgtt gatggacga	21360
agaggcggac cctctggag gacaagctcc cgcacattt cgggttcacg ctgctgggg	21420
acttcatctc ctggactgc tggcagccgc gcaagcatgc gcccgggtgcac aagggtcaagg	21480
ctagccggga cgtcatcatt gaccagctgc cgcacccgtt gggctcaaa gctgtgaatg	21540
tggccaaggc cgtcggtgag tccggggggat cccaaatccat ggtcagccca tgcagacttg	21600
catgaggagg aagtgcacggg tccatgcctg ggcataatgtt tgagctcag gtgcggccac	21660
ctggggagg gcaaggacagg aaagggtgaca gtatctggcc aaggacagat gggaggag	21720
caaggagct gattaggag tggatgttgc ctagaaatgtt cgtaacaat ggttagaaag	21780
tgactaacat ttgttgcgttgc cccggccctt gcccggggagc cttcgccccc	21840

032796-132.ST25

acagtgaccc	cgtctgcaaa	tgttagttcct	tgcctactc	gcaactgggga	gcaggacgca	21900
gagccgtgca	tctcacaggt	gccaaagctca	ggactccctc	ctgggtctgc	ctgggctggg	21960
ctgtgttgt	tgccctgtg	gcccacgcat	gtgcaccttc	cacctgaaag	ccaggatctt	22020
caggacgctc	cccgaggagg	tcgttgtctg	gcacaatgat	ttgtctcttc	ctgaaaaggt	22080
gacagagta	cactggagag	agcagcatcc	aggtgcggca	gggacaggcc	tgggctcgc	22140
gggcaggggac	tctgtgtcct	gccgggggtcc	cacactgcac	ctgcttgtca	gaggcactca	22200
gtcaatctt	gctgatgaag	gatgagagaga	cagagacgt	gatgcttgct	gctgcattgc	22260
ctgcagtcc	gggtgagatg	cccggttga	ctctgctgcc	cgtcggttgg	atgtgatgtc	22320
agatccccgg	ctttaaaaata	cgagggagct	ggaaatttag	ggagcagggtt	ggggcagaaaa	22380
gcacagcccc	gtgaaagcct	ggagctgagg	cagtgtggc	gacccttgg	gcagttagtgc	22440
tttccttcat	ggccttcatc	gcaccctgca	gtcctcatgt	agggatgcc	atccatgaat	22500
ttagtttcc	cagccctc	taaaaacgcg	ttcatgctgg	ggccggggca	gtgcagtggc	22560
tcacatctga	aatccacca	cttgggagg	ccgaggcggg	tgatcatga	ggtcaggaga	22620
tcgagaccat	cttgctaac	aaggtaaac	ccgtctcta	ctaaaaatac	aaaaaattag	22680
ccgggtgcgg	tggcggcgc	ctgttagtccc	agtaactcgg	gaggctgagg	caggagaatg	22740
gcgtgaaccc	gggaagcgg	gcttgcagtg	agccgagatt	gcgccactgc	agtccgcagt	22800
ccggcctggg	cgacagagcg	agactccgtc	tcaaaaaaaaa	aaaaaaaaagt	acaaaaaaaa	22860
aaaaaattag	ctgggtgtgg	tatcacgcgc	ctataatctc	actactcgag	aggctgaggc	22920
ggagaattgc	ttgaacccag	gaggtagagg	ttgttagttag	cccgatcgt	accactgccc	22980
tccacactgg	caatagagcg	agactctgtc	tcaaaaaagaa	aaaaaaaaaa	agaacat	23040
tgccagggt	ggtggctcat	gcctgaaatc	ccagaacttt	ggaagactga	ggcaggagga	23100
tcacttgagc	ccagaaaattt	gagagtgtct	tccctggca	acatagagag	acctcatctc	23160
taccagaaaa	aaaaaattta	gcccggcatg	gtggcata	cctgtggtcc	cagctactta	23220
gggggctgac	gtggcaggat	cacctgagtc	tggaggcaga	ggttgaagt	agctgagatc	23280
atgccactgc	actccagcct	gggtgacaga	cagagaccct	gtctcaaaaa	aaaaaaaaaa	23340
aaaaaaggatt	tactatccac	catgaaaggt	gagactgacc	tgtgagtgt	tgttcaaaga	23400
acaaaaaaaaa	aaccccagag	ataagacaaa	agggtgcctc	catgggggt	tgatttaaag	23460
ctgagaaaaatt	gggcttcttc	ccctccccc	ctcacccgt	ggttgc	aggagatgg	23520
aaaaaaggatt	ctttttttgg	ctgaaatatt	taacactaa	ttaaagccaa	tttaacagc	23580
actttgggtt	atgagtaaa	ttaacagact	ggccaaaaat	aaacgaacgg	tctgtactat	23640
gtaaaaaaga	ggcagcttt	gccatgctgg	gccaatgtga	gtttcaggg	ttgctggaa	23700
tgtctgtgaa	tggaggaag	ggcctagctg	ggactctcg	gagccaaggc	cctgaggggc	23760
aacttgcctg	gtccctgccc	tgaggcg	actgcttct	tccctggcc	gatcacaggg	23820
ccggaggctg	gaccactggg	ctggcactct	tgccgagctg	ctccctgact	tcctgaccat	23880
gtcccttca	gcagcc	tgcactttag	ttccctgaa	tggaaatgg	ggatgagaat	23940
agctcc	tccaaagg	atggagttag	ttcgacagg	tgactccctg	ggaccagtgc	24000
ctggcgcctg	acaagg	tccaa	gtcagagcc	gcaactgt	tactgatacc	24060
ccagggggaga	acttgggt	cattgccc	tgttctcc	ccaccccccac	tactgtccct	24120
gtttgatgt	tggcgg	aaagctgtgc	acattggac	tttggcaca	tcctggctt	24180
caggtgaaag	gtgcgtgt	gtttgagg	ttagcc	caacccagcc	atgaggtcg	24240
acctgac	gggg	tgatc	cacccctg	ctgtgtgg	cacggcagca	24300
ttcattgtgt	ggcttggcc	cacccctt	cctgtggc	tgtt	gatgtgg	24360
cctctgtgt	cgcttcc	caccaacc	tgtg	ggaca	ggacgggg	24420
ctgtgttct	tcacac	cccaaccc	tgtgg	ccatcg	ggagctgt	24480
agtgcacat	gggg	ccgg	ccatcg	ggact	ccgc	24540
atccacagga	tctcc	cccaata	ccatcg	ggact	ccgc	24600
aaggaggc	caccc	ccatcg	ccatcg	ggact	ccgc	24660
agcctgaa	tagc	ccatcg	ccatcg	ggact	ccgc	24720
ctctgttct	gcct	ccatcg	ccatcg	ggact	ccgc	24780
acgcagtt	actt	ccatcg	ccatcg	ggact	ccgc	24840
atgagca	ccgg	ccatcg	ccatcg	ggact	ccgc	24900
tat	ccgtt	ccatcg	ccatcg	ggact	ccgc	24960
ttgctc	gact	ccatcg	ccatcg	ggact	ccgc	25020
gaagactt	tttt	ccatcg	ccatcg	ggact	ccgc	25080
cgtacgt	gtc	ccatcg	ccatcg	ggact	ccgc	25140
tcagcc	gat	ccatcg	ccatcg	ggact	ccgc	25200
atat	ttt	ccatcg	ccatcg	ggact	ccgc	25260

032796-132.ST25

tcaggtgatc tgccgcctc ggcctccaa agtgctgaga taacagggtg gagccaccgt	25320
tcccggcata gaaaaacttt ttgccttcta aagaagagtt tagcaaacta gtctgtggc	25380
tggccttcg attctgtaaa gaaagttga ttgttgctg ggtgcggtgg ctcacacctg	25440
taatccccatc actttggag gcccacgtgg gcataatcacc tgatgtcggg acttcgagac	25500
cagcctcacc aacgtggaga aaccccgctc ctactaaaaa tacaaaaaaaaa aaattaaccg	25560
ggcatggcgg cgccgcctg taatcgac tactcaggag gctgaagcag gagaattgt	25620
tgaacctggg aggccggaggt tttgttgagc tgagatggca ccattgcact ccagcctggg	25680
caacaaaagt gaaactccgt ctcagaaaaa aaaaagttt atgggtgtaa ccaaagcgc	25740
tttgtttatg gattgtctgt ggcagctttt gttctgcga gatgagttgt gacagatctg	25800
tatgggctct aaagcctaaa acatgtgcca tccgcctt tacagaaaaa gtgtgctgac	25860
ctctgttcta aagtatttga caactacaat gtttgcacat ttattattct atgattttt	25920
ttctgcctttt tttttttttt ttgtggagac agggttccg catgttgcac aggctggttt	25980
caaactccata ggctaaaca cccacccatc cctcccaaag tgctgggatt acaggcgtga	26040
gccaccatgc ccagcctattt ctactgtttt tattacatag cttaaaaaga ttttttatga	26100
ctttaagtca caagggttct ttgttagaaaaaa aaatatataat ataggaaagt ataaaaagaa	26160
agtaaaaattt gtccataacc tcccaagcca gagacgaccg ttgctgacac ctcagcatat	26220
tgcctttaag tctttttct ctaagatagc atttcttc attcacagtc tatgtacgc	26280
agaattctgt atccgtattt tttcacttga cattacaaca ggtatttgat ggcgtgtga	26340
caaactctttt ggcacaatct tttaaatgtt taaaataactc cactgcacag atgtttgtt	26400
ttaggcttaa ctgttctttt attttgcgtg tgctgttac agccgggcac agtggctcat	26460
gcctgtatc acaacacttt gagagggtga ggcaggagga tcacttgagc ccagaagttt	26520
gagaccggcc tggcaacat agtggagacc catcttaca aaaaactttt ttaataagtc	26580
gggcgttagtg gtgcatactg ttagtcccaag ccaccaagga ggctgagttg ggaggattgc	26640
ttgagccca ggaggttgc gtcgactga cctgagatta cttcaactgtt ctccaaacctg	26700
agcgacagag caagacttgt ctggggaaaaaaa aaaaaaaaaaaaaatataatataatata	26760
tatataatataca tatatacata cacgcacaca cacataatata aaaaatataat attataaaat	26820
atataatata taatataaaaa atatataattt ataaataaaa ttataaaattt atatataaa	26880
gtaaatataat aatataataat ataaaaatataat atattatata atatataataa aatataataa	26940
tataaaaata tatattata aataatataat aatacataact tataagtata tatttaaaat	27000
atatgtatg tatattttt aatgtatgat atataatata catttataaa tacacattha	27060
tattatttttata tataaaatataat atataaaatc tccaaatgtc tttttccaaa aaggtgtt	27120
gctgcatttc aaacattcat taaaaactt gaatgttgc gatctggtcc agaatgtt	27180
cagtagctgc tgccagtggc caagcatctc gggagatgtc taaaacacac gctggttctg	27240
gcctggcggtg gtggctcacg cctgtatct cagcacttgc ggaggctgag gcagggtggat	27300
caactgaggt ctggatttcg agaccagcc tggcaacttgc tgaaaccccc atctctacta	27360
agaatacataaa aaaatttagcc aggctgggtg gcatgtgcct gtaatcccac ctacttggga	27420
ggctaaagct ggagaatcgc ttgaacccag gggcagagg ttgcagtgag ccgagatcgc	27480
accattgcac tccaggctgg gcaagaagag cgaaactccg tctaaaaaaa aaaaaaaaaaag	27540
atgctgggttc cttaaatgtt gccccttcc tcctcacctg ctgcacgacc atcagccgc	27600
ccttcatgaa cggagctcg gtggagcacc tggtggagtt tggccttgac taccggagg	27660
gcatggccgt tgactggatg ggcaagaacc tctactggc cgacactggg accaacagaa	27720
tcgaagtggc gggctggac gggcagttcc ggcaagtctt cgtgtggagg gacttgac	27780
acccggagtc gctggccctg gateccacca agggtaagt ttgcctgt cccgtgcgt	28020
cttgcgttca ctcgtatga gacagtgcgg gggtgcaac tggcaaggt ggcaggctgt	28080
ccgtgtggcc ctcagtgtt agagctgtac tgatgtcatt agccttgatg gtggccagga	28140
ctggtagggc ctcagaggt catggatcc ctgcgtggag cgggtgctga ggctgtatca	28200
ggcacagtc tggctgtttt cacctggcc gtcacccatc agtgcctatc gacgcctgcgt	28260
agggtgggtt tctgtgtca ttatcagat gcaaaaaacag gtcagagaa accgagtgc	28320
tcccttaagg tcacataacc agtagagca gagctggcc aggaagtgt gtcctcaggct	28380
cctgaccagg ttccttgc ttgcacttcc gccaaacca tgatccagaa ctgactttga	28440
ggtccccggg ctcaggctc ctccgaaatg gctcttgg ggcgtgtgag ccacagctt	28500
ggacccaccc ctgagaggaa atgtgtttt agctgccagg ctcctgggg gcccgcctt	28560
gggcacgggg ttcaagacagg cccagatgt gtggccgtc ttctggact ttagtttct	28620
tttctgtgtg tgggacacag tgctcaccctt taaaagcacc tgcgtatgtt gcaagcggcc	28680

032796-132.ST25

aatccctgcc	tgtcgctgt	tctgcttaggg	aaggaaggaa	gacttcagga	tggcaggaca	28740
acagaaaagag	gtccagggtt	tagagcaagg	gcaggtcaaa	cttagaaaaat	tctggaatga	28800
ggatgtgcat	ttccctttct	ggatctgcta	aaagaagagg	gaaggaggggg	ctgctggggg	28860
aggagccag	agccaggtt	acatccggat	cccgcaaggc	ctccccctgce	ctgaggtctt	28920
gttttgtat	gtgttgtgt	ccatcctgtt	ttctgccgtg	tccccaacat	ccggccaagc	28980
ttaggtggat	gttccagcac	acactcaccc	tgtctgtca	cctgtttttt	tgtccgttaag	29040
tgggtattta	ctcacettac	gagtgagcca	ctgtggaat	tcagggaggt	ggcgaagtga	29100
ccacccctgg	aggatatagt	gtgtggcagg	ggtcgagggt	ctcgcccttc	cctgttttct	29160
gcgcgtggct	ttctccagga	cggggagggc	tgagctgaag	aggtggggac	agttgcgtcc	29220
ccccgcacc	caactgcctg	cggtgagagc	agactactg	agcctgcct	tctcccttgt	29280
gccttccagc	tacatctact	ggaccgagtg	gggcgcgaag	cogaggatcg	tgcgggcctt	29340
catggacggg	accaactgca	tgacgcttgt	ggacaagggt	ggccgggcca	acgacccac	29400
cattgactac	gctgaccagc	gcctctactg	gaccgacctg	gacaccaaca	tgatcgagtc	29460
gtccaacatg	ctgggtgagg	gccgggctgg	ggcctctgg	tcatggaggg	cggggcagcc	29520
gggcgttggc	caccccccag	cctcgccgca	cgtaccctgt	ggcctgcaag	ttcccccaacc	29580
tggcaggagc	tgtgcccaca	cccacgactg	cccacgagcc	tcaccctctg	ctgtggaggt	29640
tgtccccgtc	cacccctggg	tgcctttgt	gcagttatgt	cgggagaggc	tctggtaca	29700
gtgttttct	gtcacccctgc	tgggcactag	gtcccagcta	atccctgtgc	caggactcta	29760
atttcaccc	aacacacatg	gtggtttca	ttgctggga	agctgaggcc	tgagcacatg	29820
acttgccta	ggtcacatag	ctggtgaggt	caggatcccc	cagagatacc	agggccagca	29880
ctcgatcccc	acccagccct	gaacccccc	atgtgtggg	attgtgtgg	gagtgtccac	29940
acgcctggg	ccccaggcgt	ggtgctctca	tctccctttt	ccagatcatg	agaatgaggc	30000
tcagggaaat	ttgaaaaaaaaa	cctatcccaa	gtcacacagc	aacaggagca	ggatttgaac	30060
ccagaaaagg	ggaccgcaca	ctctgttctg	ctagagtagt	tagctgtct	gggtgatatg	30120
gcaggtgaca	ggggcaactg	tgcttaacaa	aggaaccccc	atccccctctg	ccaagttggg	30180
agactagaag	gtcaggggca	qaagctctg	agggccaggt	gcagtggctg	acacctctaa	30240
tcccagcact	ttgtgaggcc	aaggcgggca	gatgattta	gcccaggagt	tcaagatcag	30300
cctgggtaat	gtagtgagac	gccatctcta	aaaaaaaaatt	ttttaaaaat	tagctggca	30360
tggtggttca	tgcctgttagt	ccaaagctact	tgggaggctc	aggtggggagg	attgtctgag	30420
cccaggaggt	tgagttgtg	gtgagctgt	atcatccac	tgcactccag	cctggcaat	30480
agagttagac	cgtctccaaa	aaaaaaaaaaa	gaagaagaaa	aagaagctct	gaggctccaa	30540
gtccccagge	accccttggc	ttgagggcag	acaaggagg	agagggcac	ctggcagcc	30600
ctgactttt	tcccctggca	aagggacctt	cagtgacctt	ggcccttagga	gagcctctga	30660
gcacgtcage	catgtcgaac	cgctcaggaa	ggcagcaag	aattttggctt	ctgacctctg	30720
cctctcttac	tcgccccatctg	cactgggtgt	ggttggccc	attttacaga	tgaggaggct	30780
ggggcatcga	ccagctgaat	gccttgtccc	aggtactgcg	taggcagagc	tggcaggta	30840
accccggtc	ctggttgcg	ctgggggtgg	gctgcaccc	gacttgtgag	gccagtagca	30900
agggttgcac	gtgacttcgt	gaccgtcacc	cagctctgca	gcacatcccg	tgacccagct	30960
catccagcc	gcatgcaaac	ctgttgcag	gcgagaaacc	agtcacccgc	cagctgttgt	31020
tgcctgaaat	gattaagctc	attaatcacc	ccggagtgag	gacagactca	gatgaaaacc	31080
agcaaaagcc	ctggaaaactc	atgtgaccct	gccaatgagg	gccccatgt	gcattgcagc	31140
ctggccgtca	ctcctcggta	cgtgttttg	acttaaacgc	tccggatgtt	tactgaatgc	31200
ttgattaata	acatggaaagg	cctggtctca	ttgctgtggg	agtgaaaggat	gcacaggccag	31260
gcctgacatg	atgagaacaa	gaacctggag	tctcgctgca	tgggtggtaa	tcctggccct	31320
gccacttagc	aactgtgtga	ctgtagccag	gtcaacttaat	tttgcctagat	cctgcctgcg	31380
cttcagtgga	tcttgcgtgt	tttccaaggt	ggccaaacac	ttaaggcat	tcatgtggc	31440
gctaggctgc	agggttgaac	cctggctcac	cccgccaggcc	gccgtgtgc	ctgtggctg	31500.
gctgtgcctt	tgctgacacc	gtgcccgtgt	gtgttcatgc	aggtcaggag	cgggtcgtga	31560
ttgcccacga	tctcccgac	ccgttccggc	tgacgcagta	cagcgattat	atctactgga	31620
cagactggaa	tctgcacagc	attgagcggg	ccgacaaagac	tagccggccgg	aaccgcaccc	31680
tcatccaggg	ccacccggac	ttcgtgatgg	acatcttgtt	gttccactcc	tcccgcagg	31740
atggcetcaa	tgactgtatg	cacaacaacg	ggcagtgtgg	gcagctgtgc	tttgcctatcc	31800
ccggccggca	ccgcgtcggc	tgcgcctcac	actacaccct	ggacccccc	agccgcacact	31860
gcagccgtaa	gtgcctcatg	gtccccccca	cctcactccc	tcgttagatc	aggctgggtc	31920
tgggagctga	cgctgaaagg	agcttctcat	ctggggttcc	tgggtgtaca	tagatgggt	31980
gtaggttgt	gactgcaca	agctgcata	tgctacccgg	gggtccaggt	ccaggctgga	32040
tggacttgg	gcttcatcag	gacatagata	aatggccaaa	actcctcagc	tggaaagggtcc	32100

032796-132.ST25

tgggcaggat	ctttgggtgt	gaaaaccagt	cacagggaa	gggtgcttc	tcataactgcc	32160
agcacagtgc	tgagtgtt	ccatagcgct	cgtttactcc	tcaagcctgg	agggtgggaa	32220
gtagcatgg	cccattcac	gtacaaggaa	cccgatgcac	agagagggtgt	ggcaacccat	32280
ccaaggccat	acaactgggg	tggttgagc	ccccgttgac	tgtggcaggc	tggctcaaga	32340
gtccctgctc	ctgaaccctt	gccaggcage	ctggcatcag	ctcggggaaat	tttgcctg	32400
acccttggaa	gcaagtggc	ctctttgttc	tcatgtcagt	gatgagaaga	gtgactttcc	32460
tatggccctt	ctggagtaca	gtgtttctt	gttgggggc	tcttccccc	tgacatcagc	32520
agcgagctgg	ttatgattcc	ctacgcagaa	cttgatagtt	tataaagctc	tttgtcatcc	32580
aggccccgtt	ggagtcac	gcagacctgg	tcgcaggcgg	ggctggctt	gcctgtccca	32640
gctgcatgga	tggggaaactt	gaggcttgc	aaggtaagg	ggctgttgc	ggcccaggt	32700
ggcaggagat	gggcctggc	cagagtctgg	gacttccat	gcttgggctg	tcttggtcc	32760
tgttgcac	catccctccc	tggggccatg	accttagaga	gc当地atgg	ggtgcaggt	32820
acccacggca	aggaggggtt	ccatgactc	agagtcccg	tctgtggcc	ggcagttac	32880
ggtgcaacga	cttgatttc	agaccagcca	ctgtagcccg	ctgacgggtc	gctcgaagt	32940
ccacagcttc	tgaagccagg	caggactca	gccaggagac	tctgttagct	gtttagaggg	33000
agaggccaaac	ggatgttctg	gttctgtctag	agagctgg	cttcggatcc	ttgttaccagt	33060
gcactgagag	gaggcccagc	tgatttctgg	ggctgcctt	tgtggcatg	tgctgctcac	33120
tgacaccctc	gaggagtgtc	ttctctcg	cttggact	gtccccgtt	ttccgcagtt	33180
caetggtgca	cacataggca	catagcaa	cgacacacaca	gtcgtggta	ttagttcac	33240
taattccac	caccgtgtt	cactaccatt	acccgttcc	cgcttaagt	tttcatcatt	33300
taaaaataaa	tttattggc	tgacgcgg	ggctcatgac	tgttatccca	gcactttgg	33360
aggctgagggc	gggcagatca	cctgaggtca	ggagttcaag	accagcctgg	ccaatatgg	33420
gaaactccat	ctctactaaa	aataaaaaat	tagctggca	tgttgggca	tgcctataat	33480
cccagctact	caggaggctg	aggcaggaga	atggcgtgaa	cccgagagc	agagcttaca	33540
gtgagccag	atagcaccac	tgcagtccag	cgiggcaac	atgtcgagac	tccatctcaa	33600
aaaaaaaaata	aataaaaaata	agaaaaataa	atttatgatc	tatttcaaaa	ataacacatg	33660
tactttgaaa	cagcagagac	acatatgaca	cgagaaatga	atttcccat	agcgcacccc	33720
caagagacag	ccctggccc	cccgctttt	ccgtgaccc	ccagcggggc	agatgttag	33780
ccgccttt	tcgagtggcg	tgtatcccg	tcctccagct	ccctgtggc	ttacagacac	33840
ccacctgcag	ccctgtctt	cccteetcta	gcgcacca	cccttctgtct	gttcagccag	33900
aatctgcca	tcagtcggat	gatccggac	gaccagcaca	gcccgatct	catctgccc	33960
ctgcatggac	tgagaaacgt	caaagccatc	gactatgacc	cactggacaa	tttcatctac	34020
tgggtggat	ggcgcagaa	catcaagcg	gccaaggac	acgggaccca	ggcaggtg	34080
ctgtggaaag	gggtgggggt	gtgttccca	aggcgtctt	ctgtgtgtt	tccaggtgc	34140
tggccctgtc	cttagcagag	ggagggaaaca	gaggatggct	ctgggtgaat	gttacttgg	34200
gtttcgat	tgttagtaca	gggtatgacc	ctgagatgc	tgaaccccg	agactgtat	34260
tatatgtaga	aactgggtt	ccccgtt	taagtgtca	tgttgggtc	agacccaca	34320
ggactttgt	ctttcaaga	aagaaaatgg	tcgtgtgtc	tgcaggggt	gttggact	34380
gttaatccag	gtttatccctt	tatTTTGTG	gaactgtaca	gtcatttctg	ctacaatgt	34440
gtatatgttc	ttctgaaaga	cacctatgca	aaatcgaca	gtaaaaatga	cacaactcat	34500
agggaaacgc	gggcaggcgc	acagccctca	aaatccat	caatgacat	taagaaaaga	34560
gaggaacctg	ggaaatagca	aagtgcctt	tgcacattaa	atgttagct	atatcccaca	34620
atactgtca	ttcgtaaacg	ttaatgtgc	aataatacg	gcaacttcc	ttggaaagat	34680
ctggagttgg	ttatgtgt	tgaaagggt	tagcgcata	gttttgc	aacactggaa	34740
ggaggattgt	ggaaatcaa	atggaaatgt	ctcacccag	gctggagaa	gagtgggtca	34800
tggcccccagc	agtggccca	gggaggtc	agacggaggt	gtgtgtgt	gtgtgaccct	34860
gctcgttcc	ctgcccgt	tagttttt	cattgc	atgttctcg	tggagggaaat	34920
tgtcatgag	caaatgtaa	accgtgt	gtcaattt	tcataata	tcattgcatt	34980
gaaacagatt	ggctttttt	tttttttt	tttttgc	ggatgttc	tcac	35040
tctgtcacca	gcctggat	cagtggat	atcttgc	actgcaac	ttgccttca	35100
tgttcaatgt	atttctgc	ctcagcc	tgtact	ggattacagg	catgagccac	35160
cggcccccgc	cagatttgc	ttttgaaac	aactgtagg	ctggcgcgg	tggctcac	35220
ctgtatccc	agcaactgt	gaggccagg	cagggtggat	acgtggatc	aggggttc	35280
gaccagctg	gccaacatgg	tgaaccccg	tctact	atataaaaa	atcaatgtgg	35340
tgtggtggcg	ggtgcctgt	atcccagct	ctcaggag	tgaggcagga	gaattgtt	35400
aacccagag	gcagagggt	cggtgagcc	agatcacacc	attgcactc	agcctggca	35460
acaagagcaa	aactccatct	aaaaataaa	aaaatagaa	aacaatgt	gtagcggaa	35520

032796-132.ST25

tgagcactt	gccccggatcg	gctttgtgtgg	cctgttccac	aaatgtatgt	ctcacgggtgg	35580
cctcaggccc	acctggggatc	tgcagcatgg	ggcacaaacag	gttcattatgt	gtagaattcc	35640
aggacaggcc	tggctcttaa	gcagccttct	tttacaaaaaa	ctgcagagcc	cgcctgtatc	35700
ctagcaactt	gggaggccga	agtgggtgg	tcacgaggtc	aggagttcaa	gaccagcctg	35760
gccaacatgg	tgaaaacccca	tctctactaa	ataacgaaa	attagctggg	tgtggtggca	35820
cgcgcctgt	gtcccagcta	ctcggggaggg	tgaggcagaa	ttgcttgaac	ctgggaggtg	35880
gaggttgcag	ggatctgaga	ccatgtcatt	gcactccagc	ctgggcaaca	gagcggagacg	35940
ccatctcaaa	aaaaaaaaaac	ctacagagcc	acacggccctc	tttctccacc	gagtgttgg	36000
gtggggagtt	gtgttattgt	gtgttattgt	tggtacttcc	ttgaggcaga	gagaggctga	36060
gcccgcctgg	agactttcac	atgggtcgcc	atgtccggcg	tegggttcgc	tgttgtgctc	36120
cccatctgaa	ggctggtgcc	gtccagacag	gctggaccc	ccttccacc	agatccttcc	36180
tcccgcagca	gttttagtt	acgttgcact	gtgaggctcg	tgtccttgg	tgtatggcaaa	36240
agtcaagccg	attgaaaattc	agagccatgc	ctggctccct	ggagcttctc	tcctgggcag	36300
ctgtgtatcat	tgcctctgt	gtgggtgtgg	tggtggaaat	ggattccctt	catcttgctt	36360
gctacaggtg	actgtcacgt	ggagtcctt	ggagagaggg	acgtgttaat	tgtatggatgt	36420
ggctcccatg	ctgagaaagc	tcctgggcgt	acattgcctt	agagttcat	tggagctgcg	36480
ttcttttatg	gtgtctgcta	gcaagatgt	atgaagactt	ggaagaaaac	ccagaaggtt	36540
ttccacttaa	tttggaaaat	gtgttttcc	cctcctgtgt	ctttgtctaa	gttccagcct	36600
cctgcagcct	ccccgcctg	tgactctgg	cttgcattct	ttattaggg	tccccctgt	36660
cccccaaaag	atgggtctta	attatcatc	caattggccg	agttttgtt	ttcttattaaat	36720
tgtttttatt	ttttattgt	gtaaatttt	ataacataaa	atttgcatt	ttaattgttt	36780
tgttattgtt	gttttgaga	cagggtctca	ccccagtgcc	caggctggag	tgcagtgg	36840
cgatcatggc	tcactgcagc	ctcagcctcc	agggtccag	tgcacttctc	acctcagcct	36900
ctctagtagc	cgggactaca	gcatacact	accacatctg	gtgtatttt	tgtattttt	36960
ttttattgt	gagaccgcgt	atgttgccta	ggctggctc	aactcttgc	ctcaagccat	37020
cctccacact	caccctccca	agtgtctgg	attacaggca	tgcacccacaa	caccagcca	37080
tttaatttt	ttttttttt	tttgcatttt	tttgcatttt	tatgcctccag	gttggagtg	37140
agtggcgtgg	tatcaactca	ctgcaaccc	tgcctccag	gttcaagcga	ctctcctg	37200
tcagcctct	cccgagtagc	tgggattaca	gggtccatc	actatgcctg	gctaattttt	37260
gtattttttta	gcagagacgg	gttttacca	tgttgcctag	gttggcttgc	aactccta	37320
ctgggtatcc	gcccgcctg	gcctcccaaa	atgtctgat	tacaggtgt	agccaccgt	37380
cccgccctt	ttttttttt	gagacagggt	cttgcctgt	caccagact	ggagtgc	37440
gggtggctct	tggctactg	cgcctccgc	ctcccaggt	caagttgt	acctccacac	37500
ctggctact	gtatttatg	tagagacaga	tttgcatttgc	tttgccttgc	tgggcttgc	37560
atggactcaa	gcagtcacc	cacccatggc	tcccaagtg	ctgagattac	aggcgcgagc	37620
caccgcaccc	ageccatttt	acctattctg	cagttgcac	ttcagtg	ttcagtcagt	37680
tcacgaggt	accatcactg	ccattcatc	ccagactact	tcacccctc	ggcagatgt	37740
cggaaactgtc	cgcattgaac	acactctca	tctccctctg	acagccacca	ttctacttt	37800
tatctctctc	tgccttctct	aggtaactca	tgtaagtgc	attataccaa	tatttgcct	37860
tgtgtactg	gttttttca	tgtgacatgg	tgtcctcaag	gttcattct	gttatacgct	37920
gtgtcagaat	ttccttctt	aaagcctgaa	taataaccc	ttgtaaaggc	tgggcgcgt	37980
ggctcacacc	ctctaattccc	agcattttgg	gagtccgagg	tgggcagatc	acttgagg	38040
aggagtttg	gaccagctg	gccaacatag	tggaaaccc	gtctactaa	aagtacaaa	38100
ttagctgggt	gtggggcgc	gcacctgt	tcccagttac	tcaggaggct	gaggcaggag	38160
aatcgttgt	acccgggagg	cagaggttgc	agtgaacca	atttgcct	ctgcagtc	38220
gcctggtaa	cagagtgaga	tttgcatttgc	aaaaaaa	aaaatcatc	ggatggatgg	38280
acggaccact	tcttgcattt	tatccatca	cggtgtct	gtttcttca	ccttgcgtt	38340
tcgtgaataa	ggccactatg	aacatttct	tccgtgt	agttttgt	ctgtgagga	38400
aaaggcgtgt	tttgtgtgtt	gtataggatt	ctggtaagaa	atttgcact	aaccataagt	38460
atttgcattt	cattaaaatg	aaagctcagg	ggccgggcgc	gttggctac	gcctgtatc	38520
ccagcactt	gggaggccag	ggcggggcga	tcatgggtc	aggagatcaa	gaccatctg	38580
gccaacatgg	tggaaaccc	tctctactaa	aaataccaa	aaactagcc	ggtgtgtgg	38640
cgggcactt	tagtccage	tacttggag	gtcaggcag	gagaatggcg	tgaacccgg	38700
aggcggagct	tgcgtgt	cgagatcgt	tcactgcact	cgagcttgg	caacagagca	38760
agactccgtc	tcaccaaaa	ctctgtctca	cgcaagactc	cgtctcaaaa	aaaaaaagag	38820
ttcagggttt	atgaaactgg	ccagccgcgt	aaagtttgc	gttgcgtt	tgtgcgg	38880
aggagtgtgg	ccaggggtgc	acgtcacaca	gtacacgtt	ctcagatgt	ggttctccag	38940

032796-132.ST25

actgctgtcc caaagtctgt ttttgcacatc ggttcccaca gaccacccct ccacggtgag	39000
cctgattttg gccaggtag ctggaatctt gcttgcctt cagccccgca gctgtaccag	39060
tccagggtcc acagctatgt gcttttagga aggaatttgt tcagttggct ttgacacatg	39120
gccccctagg gtccacagct ctgttagtgcgtt gttatctacaa agacacatga	39180
tccttcgtgt ccagatgaaa gtgatgatgt ctgtcagct gcccagcaag gctgtgtgt	39240
tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tggtgtgtgt gttgtgtgtg tgtgtgtatg	39300
ggggagggag gcacccttgc catctggggg tgtgtgtgtg tggtgtgtgt gttgtgtgt	39360
gccccgtgtgt gtgggtgtgt gtgtgtgtg gttgtatgggg gaggcacccct ttccatctgg	39420
gtccaagaga ctggcctgg ggaagacgct tcttttatac tacttagaga ctttgtttta	39480
tttgtatccc tttgagacag ggtctcactc tgcacccag gctggggtat ggtatatga	39540
gcatacgctca ctgcacgcctc ggcctccca gctgaagcga tcctcccaacc tcagcctct	39600
gaatagctgg gactgttaggc gtgcgtcacc atactgagct atgtttttt ttgtttggtt	39660
ggtttaattt tttttgatac agatggagtc ttgtatgtt gcccagacta gtctcaaact	39720
cctgaactca agtGatttctc ccacctcagt ttcggacat tctggatca caggtgttag	39780
ccactgctgt ctccctgttt tattaactgc tgaaagacct agataaaagaa agtctgaaaa	39840
gacttactat cagagcacca tcctaagatg attccctctg actcaatggg gaggagggg	39900
agcttttctc tcaggcctgg gtggcaggag cccaggtgtc ccaggccccca ttggccca	39960
gccaaatcac tcggaaactt ggatgcagct gtcttcagg gtaacccaaa ggaaccagat	40020
cccccgaggc agtaggcttc tgggctgtcc ttccttcata cgtcagctca gtaagagccc	40080
ttcgaaggga tgctgtgtcg gaggccccaa aagccaggc tcateccctga gatgcacagg	40140
gtgggctggg ctttaggcgc gtcgagcat ctccctggacg gtgaccccaag agagtgtga	40200
gacggagagt ctttggagat cactgagaga cgtggctgccc ctgccttccc aagagggct	40260
ctgagtcatt ccccacactc acctggccct acccaccctc acctggcccc cagcctcacc	40320
taccccccaca tctgtaccga tcccttacc cgcacccctc ctacccaccc tcacccccc	40380
tgtacettca cctccccccac tcaccccgcccc ctgcacccctc acctgtcccc cacccatcacc	40440
taaccccccac ctcacactc ctcacccctca cctggcctcc ttccgttggg gaaggggttg	40500
taagggcggg ccccaaaact gtctgttgcgt gtgccttgcg gagaacacag tacgtgaggg	40560
ccgcagttca aaagcttgag tccttggagg tggaggagac aggatgtgt tggaaaggc	40620
cccatggct tggatccctt ctgcactgtc aatggggct toatgggagc gccagtc tag	40680
tgtatgcacag ctgggtgccc ggcgggtggc tgaggaggcc taaagtccga ggcggcaaga	40740
gtcttcctcagg aggctgtgtc tctaatacgct ctggcataact caggcgggca cgtagttagg	40800
agctgattgg agaggagaga ccccacacc aatactggg tttgactttc aggctaaact	40860
tgagaagtgt ggcctctgtc gtcttgcac agcttcacg ccagtgcaca gggctctcca	40920
gccagtgccc ggggtctcc accagtgcac ggggtctcc gccagtgcca ggggtctcc	40980
ccagtgccca ggggtctccg ccagtgcata gtagtcttgg ttctttgtc ttacaggccct	41040
ttgttttgc acctctgtgca caaggccaaa acccagacag gcaagccccac gacctcagca	41100
tcgacatcta cagccggaca ctgttctggc cgtgcggac caccataacc atcaacgtcc	41160
acaggcttag cggggaaagcc atgggggtgg tgctgcgtgg ggaccgcgac aagcccagg	41220
ccatctgtgt caacccggag cgagggttagg aggccaaacgg gtgggtgggg gtgcgtcccc	41280
tccaggcggtg cccggcgtgt ttatgcgcg atgcccgcct ctcacaggct ggggagactt	41340
tccacccctgg gatccatgg gtggctttcc agggttccaa aagccaaacac agttttca	41400
cagccccgtcc gggaaagcag aaagccccaa ggggctggaa ggggaaaggg ggagctctgc	41460
tgagaggitta caaggcagcg ctggccgacg ggagttgcag ttataggtt ttgtatcatc	41520
tttgttaaac ttgaaccctg tgcagaaatc cttccacgg catggggctt gcctgtgtac	41580
tcgtctctgt tccacccacag ggagctccctg ggcttcttcc tcccagaggc ccccgacgct	41640
cccacctgtt ggtctgtcaga gttctgtgtt ggtggaaagg caccaggac cttgaggtct	41700
ccagagagaa aagccaggaa aagagggaga ccgaaacccca tgcacatga aactcaggct	41760
ccaaactcgag cacggaaacg ttggggaca ggagcgcgat ggccttcctc agatagctgg	41820
ggggctgca tgaagacggg agctacagcc agcacaggc ctggggccggg agcccaagaga	41880
tttgagccctg actctgtcactt ttaactggccca cgtgacccctt ggcgggtggc atagccctt	41940
ggagacttag tttcccttattt ggtaggatg acggccacag tgggtggcc tctgcacgac	42000
acggggggctt cgggtggccgg aagccccggg tctataaggc ggctgtgcag gagccaggc	42060
agctgtgttc ccaacagccca gggctccggg gtccttagca gctgtggggg gcctgcaccc	42120
gtttccatgt gctgtgtca gaaattacca gaagccagggt ggctgagatg aatggacact	42180
tgttctctca cagttccatgt gggctgaagc ccgagatcga ggtgtggca gggccctgcg	42240
ccctctgtcaag gctctgaggg aacctttggg cttctgtgtt ctccaggac cccttgactt	42300
gtggtcctgt cactccatgt tctctgtctg gtcacatgc gctgcacccctc ttctgtacca	42360

032796-132.ST25

032796-132.ST25

ccacgcacct	cggcctccca	aagtgctggg	attacaggca	tgagccacca	cgcctggcac	45840
catttgcata	ttaattccc	atgtgttatta	gtgtcccacg	gotgctgtaa	caaatgacca	45900
caaactggat	ggcttaaagc	aacagaaaatg	gattccccca	atgtgtgga	gaccagaagc	45960
ctgcgaccaa	actgttggga	ggctgtgtct	tcctctgggg	gctccagggg	ggatctattt	46020
gttggccctt	ccagtgtgt	gggtgccagc	gttccacact	tgtggatgcg	ccgcctcaac	46080
ctctgccccat	cttcatgtgt	ccatctcctt	tgtgtctgcg	tcttacctc	tttcttctgt	46140
ctgtgttgc	tcttataagg	acgtttgtca	ttgggttag	ggcccaccca	aatcatccga	46200
gatgacctcg	tctttagatc	cttaacactgc	aaagaccctt	tttccaaaaaa	aaggttatgc	46260
tcacagattc	taggccttaa	gacatgggt	tatctttctg	gggggcacta	tccaaccctt	46320
tataacaatga	aagacgggaa	gagggccagg	tgtggtagtt	cacgcctgt	atctcagcac	46380
tttaggaagc	tgaagcggga	ggatcacttg	agcccaggag	tttacaagta	gctaggcaac	46440
atgatgagac	cccatttcta	caaaaaagtga	aaaaaaaaaa	aaaaaaaaaa	aagccaggtg	46500
tggtggctca	cacctgtaat	cccagcactt	tgggaggctg	aggcaggcag	atcacgaggt	46560
caggagattt	agaccatctt	ggctaacacg	gtgaaacccc	gtctctacta	aaaatacaaa	46620
aaattatggc	cgggcgcagt	ggctcccgcc	tgtatccca	gactttggg	aggccgaggt	46680
gggtgaatta	caagtc当地	agatcgagac	catctggct	aacacgggtga	aacccatca	46740
agatcacaag	gtcaagagat	ggagaccatc	ctggctaaca	cgtgaaacc	ccgtctctac	46800
aaaaatataca	aaaatttagc	cgggcatgg	agcggcgc	tgtatccca	gctgctcgg	46860
aggctgaggg	aggagaatgg	cgtgaaccc	ggaggcggag	cttgcgg	gccgagatcg	46920
ctccatgcca	ctgcaactcca	gcctgggtga	cagagtgaga	ctccgtctca	aaaaaaaaaa	46980
aaaaaaaaaa	aaaaaaaaaa	attagccag	gcacagtgc	aggtgcctat	tgtcccagct	47040
acttgggagg	ctaaggcagg	agaatggcat	gaacccggg	ggtggagttt	gcagtgagcc	47100
gagatcatgc	cactgcgctc	cagcctgggc	gatagagca	gactctgtct	aaaaaaaaaa	47160
agccaggcat	ggtgtgcat	gcctgttagt	ccagctactc	aagaggctga	ggcaggaggg	47220
ttgttcgacc	cacggagatc	aggctacag	tgagccatga	tcgcaccact	gccctccagc	47280
ctgggtgaca	gagtgtgacc	ctgtctcaaa	gtaagtaat	aggaggagag	acaagtggc	47340
agttcagact	gatgttatgg	gcacagtaga	gactgtgc	gacaggctgg	cctgtatgt	47400
caagcaactt	ctgtatattgt	ttccggcatc	catttgtgt	tcaatttccg	tgtcagtagg	47460
aagactctgt	aggctgccaa	gaggaataag	tgggaggatc	ctccagaga	ggccgggcct	47520
gcaggagggc	cagttctcat	gagttctcat	ttggccctta	ccctccaggc	tgtggttctg	47580
aggtgggaga	cagagcctga	cctctgttt	tcttgtttt	tcttgcgc	agccaccca	47640
tgtggccctg	acaatggtgg	ctgctccac	atctgtattt	ccaagggtga	tgggacacca	47700
cggtgtctat	gcccagtcca	cctctgtctc	ctgcagaacc	tgtgcac	tggaggtagg	47760
tgtgacctag	gtgctccctt	gggggtatgg	acaggtacct	gattctctgc	ctgcttaggct	47820
gctgccttgc	atcccttaa	aatcacagtc	cctgtggcat	ccagtttcca	aagctgattt	47880
tgtcttcctt	tgccttcctt	tctttctac	tatgtcatt	cgggtctat	aattttccctc	47940
taagtactgc	gtttcctgca	tctcacaat	tttgttacat	tttcattttc	aggtagttt	48000
aatatttta	cactctcct	gagatgacat	cttgcgtca	tgtgttattt	agaagtgtt	48060
cttagttct	aaagagtgg	ggctttcca	gctgtctctc	tgcaactgt	ttctaattt	48120
attctactgt	agtctgagag	tttattttat	atgattctg	ttattttaaa	tgtgttgggt	48180
gtgggtttt	tgtgttattt	ttttttgtt	ctttttgtt	ttttttgtt	cgttttttt	48240
ttttttgaga	cagtgtctt	ctctgtact	caggctggag	tgcaatggcg	cgatctcagc	48300
tcaccgcaac	ctctgcctcc	cgggttcaag	tgatctctt	gcctcagct	cctgagtagc	48360
tgggatttaca	ggtgcacgccc	accataccca	gctaattttt	gtatttttag	tagagacggg	48420
gtttcaccat	gttggtcagg	ctggctctca	actcctgacc	tcgtgatccg	cccacccctgg	48480
cctcccaaag	tgctgggatt	ataggcgt	gccactgtgc	ctggccattt	ggtgttttt	48540
atcacccacg	atcatgcagt	ttatcttgg	gaatgtctg	tgtactctt	aaaagaatgt	48600
ggattctgt	gttgggggt	ggagtgttcc	agaaacatca	attagatcca	gttggtaat	48660
agtgcctatc	aggtgtctc	tatccttcct	tcctgactgc	ctgcttgagc	tgtcagttat	48720
tgacagggggt	gtggagtctc	caactcta	ggtgatttt	tttattttctc	ctagtagttc	48780
tatcttttc	tctccttc	cccttgcattt	tcttctcccc	ctagggtctt	ctgggtttag	48840
tgggggaga	gtggggtagt	gaagaacctg	gactttaggg	ccaaagaggg	cagggttcaa	48900
atcctggctc	tgtcaacttcc	cagttgatgt	accctggct	gtgcctgaat	ctctgtgagc	48960
ctccacttcc	tcctctgtga	aattgagagc	acttacctgg	caggctgtca	tgggcataa	49020
gtAACACGGGC	actccaccc	gaccctgaca	cgtgatgcac	aggaatgcca	gctgctatgc	49080
catgggtgt	gcagtagtaa	taaagtgacc	atctgtatcc	tcaccacagt	gaagcctgtc	49140
caggctttc	tctcctatgc	ccccatgcct	ccaggtggcc	ttggatcctg	ttgggttctgt	49200

032796-132.ST25

gctctgtc	gcgaccc	tttc	tcccgtgg	gttc	cctggg	gttc	cagctt	atc	cata	caga	49260	
cac	gagc	caca	ca	ctgg	ctgt	gcac	cc	ttt	ttt	ttt	tgagat	49320
t	tc	cg	ttt	tc	cg	cg	cc	ttt	ttt	ttt	tgat	49380
ac	ct	c	tt	ca	ag	gt	gg	tg	tg	tg	ca	49440
cc	ac	cc	ca	tt	tt	tt	cc	cc	cc	cc	cc	49500
gg	ag	cc	cc	tt	tt	tt	cc	cc	cc	cc	cc	49560
at	tt	cc	cc	tt	tt	tt	cc	cc	cc	cc	cc	49620
tt	cc	cc	cc	tt	tt	tt	cc	cc	cc	cc	cc	49680
tt	cc	cc	cc	tt	tt	tt	cc	cc	cc	cc	cc	49740
cc	cc	cc	cc	tt	tt	tt	cc	cc	cc	cc	cc	49800
cc	cc	cc	cc	tt	tt	tt	cc	cc	cc	cc	cc	49860
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	49920
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	49980
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50040
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50100
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50160
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50220
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50280
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50340
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50400
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50460
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50520
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50580
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50640
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50700
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50760
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50820
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50880
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	50940
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51000
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51060
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51120
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51180
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51240
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51300
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51360
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51420
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51480
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51540
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51600
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51660
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51720
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51780
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51840
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51900
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	51960
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52020
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52080
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52140
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52200
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52260
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52320
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52380
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52440
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52500
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52560
gg	gg	gg	gg	tt	tt	tt	cc	cc	cc	cc	cc	52620

032796-132.ST25

agggtttcac catgtggcc aggctggct cgaactcctg acctcaggtg atccgcccgc	52680
ctcagcctcc caaatgtctg ggattacagg catgagccac cggccccggc ctgagtttc	52740
cttttatgaa ggacctgtt gttgggtgc ctgccacatg ttgtcagcac catggggca	52800
ggactgctga ggactgttg atgcctcg tctccagag ccaccggctc tgtagataa	52860
ttcacatgca gtctggccac tgtctacgt ctcattcac aaagagcaga catttcgtag	52920
aagatgaggg cctggagta acctccctgc atgttttct ataaaggcat agtggtaag	52980
tccttccac tcattgacca ttggagaatt ttatgaggg ttagactag gggctgtaa	53040
actaagggcc cagggccaa atccagcctg ccacctactt ttgtaaataa agttttcttg	53100
gtgcacagcc atgccttgc attcattgc acaatgtctg tgctgcttt catgaaaaaa	53160
gcaagagaac ttagtggta tgctggagac ctacggcctt caaagccccca gacccacgt	53220
ctggccctt acagacagag cttcccccage cctgtgcgc atccctggccc agcatgtct	53280
gtgtgtgtga ttcaagttt caggagccgt gtttaggaat tgccctgtg ttggccatt	53340
ttgcattgtct atgaaggagc acctgaggcc gggtagatta tgaaggaaag aggtctgtct	53400
ggctcatgg tctgtaggca gcaccagtat ggcacccgca tctgctcagc ttctagtgag	53460
gtctcaggaa gctttactc atggtaaag tcgaagcggg agcagggtqca tcacatggtg	53520
agagagggag caacggagag agagagagag cgccctctcc tcttgcctc accttgagag	53580
gagatgcccag gtcctttaa gtaaccagct cccatgtgaa ctcacagtga gagccattt	53640
gctactgcgg agagggcacc aggcacatctgc tcccatgacc caaacactgc ccaccaggcc	53700
ctacctccaa cttttttttt atattttatt ctgttctatg ctatgtatg ctatgcattt	53760
ccatgcattt ccatgttatt cttttttat tattttagac agaatctcg tctgttgc	53820
aggctggagt gcagtggcat gatctggct cactgcaacc tccacctccc aggttcaagc	53880
gattctctg ttcacggctc ccgagtagct gggattacag gcacacacca ccacacccgg	53940
ctaattttt tattttcaat agagatgggg ttccaccatg ttggccaggc tggctctaaa	54000
ctcctggctt caagtgtatcc acctacactcg gcctccaaa gtgcattgat tacagatgtg	54060
agtcaactcgccc ccaagtgggg gtcacatttc cgtttagatt tggagggggca gacgttggag	54120
ccatctgacccc cccctcgcc cgctctagct tctcttcccg tctgttgc ggtgttgg	54180
gcaggccctt acgcccgttc tggctgcattt ctcttttcca gaagtttct tccctgttgc	54240
gttaccagaa aatcatccca tccattacaa ggacagggtc cccttatctc ccattccag	54300
ggcaggacac cggggccagg gcagggtggg aactgagcaa gttctctggg ggcaggcgtg	54360
gctatggcte cctctgggtt ggcgtctggg gaggggtgg ggcagccgtc agcgccttgg	54420
cttgctcttc ctccctggcc agagactgtg gccttgcgt gctccctgtt gggcttgc	54480
cacctccagt gggttgttgc ccctccccc tccctccctc aagctctgtt gaggcaccat	54540
gccttccaca gcccccaactc tcgggaggcc aggcctctcg tgccattcc tgccttggc	54600
acccacccccc ccaccaaccc ggttagaccc tgggggggt ctgttactcc ttgcattggcg	54660
tagacctccc cacagtaggc acctgacaca tacctcttgg gggcaggca ggagggtcg	54720
tgaggtctca gcccggcag tccctccctt gctgtgcata ggcctcgcca cagggtcatc	54780
gaggggtgggt ggagactgtt ctagaccact ccccgcttgtt cttttttttt gtccttgc	54840
tctgtctctt gttttggatc cagaccttgg ttgtgtgc ctgcattgtt ggctgggggg	54900
caccctccag cctctctgag tgcattggcc ctccctgttccat gcatctgc gccaaccag	54960
ttccgggtgtt cgaggccca gtgtgttgc atcaaacagg agtgcgactc ctccccggac	55020
tgtatcgacg gtcctcgacga gtcattgtt ggtgagccag ctcttggc ac gggaaagg	55080
cgtccggctt gggttccccc aggaacgtgg agtttagggg aggagacgtg cttttccagc	55140
ggggcttgggg gctgtgtggg agactcaggc ggctggggagg ctccctgttccat gaggcagg	55200
agccctttccc agggcaggcc ccaggaggac agactgttagt ctgtgggtt ggcggctaca	55260
gagtctgcctt cagttggccgg ggctgtatggt gtccagggtgc ctgcaggccac caccacccca	55320
cgggacccctt ctgagcaggc tctgtcaggc agcaagatca cccggaggctt gcaagtgg	55380
tgttccctgg cagttacttgc tctgttgcag gaggagtgtt gttcacatat gacatgtt	55440
catgtgcaca cacatgtaca tgacaacatc ccacatgttccat gtcattgtt gtcacatgt	55500
cagtcaacggata tataggccctt agggggatagg aggccaaagac agtcaggaa gactttccag	55560
aggcagttgc tccctaaagg ctgtctgtt caggcaggaa gggagcttagt ttcagatagg	55620
aagttagcaat gagtctttgtt gtcctggggac atggccactc cttcgatgtt gaggacccgt	55680
ggctgtggggc tcctcttta tggctgttggt cggggagagaa gtcgtttttt gggagaagg	55740
ggcttcctca agggactccc tgcctttt ggcacccctt gtcctgttca ggcttgggg	55800
ctgaaggccat tggggggggc caccacgggtt cgccttctt gtcggggcaag ttccctgtt	55860
gacggccctt tgccgtgggc cccagctgtt gggggctgtt gatgtgcac gcaaggccctt	55920
ccggccacggc ccgcacgcctt ccattccgtt gacttcatcg acggccctcg gatgcgttgg	55980
ccggccctgtt gggagactgtt tgccaaatgtt gaggcttggag cctggaaact	56040

032796-132.ST25

caccaggggc	tgcctggctt	tgctcggtca	ccaacatcac	56100
tcacttctgc	caccaccgag	ggccctgggc	gaaggagtga	56160
ggatgtttg	agggtctgtt	ggagtctggac	agcggcgggg	56220
caccgtgcag	gctgaagggc	cacgttaccc	tgaggttggc	56280
tcccagetcc	cccacttct	ccccacccctc	caccagtggc	56340
gcacgggtgc	tgcccccaag	gagggcccat	tccgtgggg	56400
ctgttgtct	ctggcagaaa	tcaccaagcc	gcccctcagac	56460
tgccatcggt	cccgtcattt	gcatcatctt	ctctcttctc	56520
tgtgtgcag	cgcgtgggtt	gccagcgcta	tgccgggggccc	56580
gtatgtcage	gggaccccccgc	acgtgcccct	caatttcata	56640
tggcccttc	acaggttaagg	agcctgagat	atggaatgtat	56700
gtctgggcag	ctttggggag	tggagcaggg	atgtgttacc	56760
ggcagacatt	gctaattcgat	cacagcattt	agcctttccc	56820
cagaatctt	caacacagag	gcctgcattt	ctgttagcaac	56880
tgtggagaaa	gctccttggaa	cttgacccctt	atattctagt	56940
cacaatctt	catgtaccct	agaaatgaat	gtggggggcgg	57000
aaggaatcac	tctgttccat	acagcagctt	tgtcttgagt	57060
agcagttaca	attcttacgt	ggcccaggca	ccaggaacgc	57120
tgggcagccg	caccgcagag	ctgcaccatg	ctgggttgtt	57180
tgtctaagaa	ggtggagttcc	ctgtgaggtt	tgccagggtcc	57240
tgaggatttc	ctctgccttc	ccagcccttga	gttccctctc	57300
accccaagcc	ggcccttattt	ggagectttt	ggatggcagg	57360
tctctgggg	gccccgttat	ctgggttctc	aagagctctt	57420
ccatcacagt	cgcagcagcc	cccagagaac	gccccctgt	57480
gctgccccgc	ctgggttccc	tggcccagtc	gcaggcccc	57540
teccgttca	cagatgagcc	ccggggagct	cactctagta	57600
ctcaggggac	ggggcacattt	tccaacagga	cacaccggcc	57660
tggctgttgt	ctcggttggta	gtgggagcag	aggagagcgc	57720
tggctgagcc	tggaaagccac	ctgacccccc	ctgtcccttc	57780
gaaagtccat	gatgagctcc	gtgagcctga	tggggggccg	5840
acccgaacca	cgtcacaggg	gcctcggtca	gcagtcgttc	57900
acccggccgt	gaggggcggg	gcccgggagg	gatggggctg	57960
ccaccgtcag	tgtggccac	cgggaggttc	ggccggggcgg	58020
tgagggatgc	ttgttttctt	cccttttcaa	ccaccccttc	58080
ttgattgtgg	ataatctgaa	accccttctgc	ttccttcttt	58140
aactacacaa	aaatataaaag	ttccttcttt	aatgacattt	58200
ccacctcta	gagtggctgt	ttggctccgt	ttggccgtt	58260
cggcccaagcc	catcgatagc	cagcatccag	gtgtccgc	58320
cagggttccc	tccacaaaaca	cgccctgcacc	ccctctgtt	58380
agctggatgg	ttttgtgtat	aggcctgtt	ccctctgtt	58440
cctggagctt	ttggcagggt	ttggctccgt	ttggccgtt	58500
actgtgagga	gaataaaactg	ccgctgcctt	ttggccgtt	58560
ccccgtttct	gggagcacag	ccaggatcac	ttggccgtt	58620
tcctgagttt	aaacagcggg	tcccaggat	ttggccgtt	58680
gcagctgtat	gcccctaagg	ttggccgtt	ttggccgtt	58740
tgagccccac	tttgctgggg	ttggccgtt	ttggccgtt	58800
gtcttgcctt	tttggtttctt	tttttttttt	tttttttttt	58860
caggcttcag	tgcaatgggt	tttttttttt	tttttttttt	58920
agcagttccc	ctggctcagc	tttttttttt	tttttttttt	58980
cagctaattt	tgtatttttt	tttttttttt	tttttttttt	59040
aactccctac	ctcaagggtat	tttttttttt	tttttttttt	59100
tgagccaccc	cacctggccct	tttttttttt	tttttttttt	59160
cgctctgtca	cccaaggctgg	tttttttttt	tttttttttt	59220
tctaggtctca	agcaatccctc	tttttttttt	tttttttttt	59280
ccccatgccc	agctaataattt	tttttttttt	tttttttttt	59340
gctgggtctcc	aactccttggaa	tttttttttt	tttttttttt	59400
attacaggcg	tgagccaccc	tttttttttt	tttttttttt	59460

032796-132.ST25

tggggggccc tgggaaggaa gtacgagaag agggttcttc ttggtttcct ggacagtaac 59520
tgagtgttct ggaggccccca gggctggct ttgttaggg acaaaggaa ctggtaacca 59580
gaagccgaga gtttaaacac ccactgcct tcttcctgc tcctgtgct gcaaccagc 59640
ttaaccagcc aggagtgcta ggaacccaag cagggccccca gggcacacag caggcagctc 59700
acgaaatttc ttttctgtt ctcccttggg agctgggagg atcttaatca ggcataaaga 59760
gatggactg agcagccagc taattttta aatcactta ttgttaacc atatgactca 59820
cccactaaa aaagggtaca gtcagtggg ttttagtcta ttccacatgt tgtaacccc 59880
tcaccacagt taattttaga acatttctt gcccctaaaaa gaaactctgc atgaagccag 59940
ctgttttaa attagcaaag ttatttgca tcctttaaat atatgttcat ggtacaaaat 60000
tcaaaaagata cagaagagtc tgcaagtccaa agagactccg ccccccattgac gccaaggcagg 60060
catccctggg aggcattggcc tcctgcagtg tggtttttct atgtcccccc aggggtcattc 60120
tgtacatatg caagcataca agagcgtgga ctttggggca caagccagaa gataattgta 60180
gatttatgtg cagttgtgag aaagagcaca gaccattta tcctctgcct ggtttcccc 60240
agtgcgtgcct gccatcttgc atgacttcca ttccatcat aagcaagaca ctgataacga 60300
ttcttcacc ttattcagat tgacataagt gttttttgt tggttttagg acaaacttcc 60360
tctgtcaccc agtgggagtg cagttggcaca atcacagctc actgcagccct caaactcttg 60420
ggctcaagcg attctcctgc ctcagcccc tcaagtagct cagatggcag gtgtgcacca 60480
tcatgccagg ctaatttta aatttttggg ggaggtgagg ctcactaaa ttccctggc 60540
tagtcttggaa ctccctgagct aaagtgtatcc tcctgcctca gcctcccaaa gtggtaggat 60600
tacaggcattg agccactgctg cctgggctga catatgttgc ttctgttgc cggaaagatag 60660
catctgaaga gtcaacatttgc tttgtgtctt acgtgtata aaagctgtg 60720
ttctgagcat ttccggggct cccagctgcc gtgtgcaccc tgcttaggc tctaccgtaa 60780
cccatctccg ggaggagggtg ctattttttt ctcatttttgc caacaaggag gctgaagaac 60840
tgagcatgaa ccactggcct ggttgcgttgc ttggtaggc agtggggcca ggcattccaa 60900
ctcacaacca ccttctactc tgctcccccc gcaccctgaa gtttgcgttgc ttttgggac 60960
acagccgtca catttttggg ggttgcacag cactcttgc cggcgtggc tggggcccc 61020
ctggagggca tcatggctt ctctcttgc tggttgcac ac ctttttttgc tcaaccactc 61080
ctgccaagtg gcccatttgc agggacatgc catcttttgc cagcagaggcc acactctggc 61140
aaaacgggtcc ctggcaccct ttctcttccac ctgtctaata tagataaaaa atggatcat 61200
gttaagatct tcattttat ttattttgc atgaatgtatg taagcatcat tttgtgttgc 61260
taagaacctt tggggccaggc gtgttgcctt gcatgttgc ttctcagact ttggggact 61320
gagatgagcg gatcaatttgc ggcggggact ttgagaccag cttggccaaat atggagaaac 61380
cccgctctca gtaaaaaattt aaaaatttgc cgggtatggt gatcccagct acttggggact 61440
ctgaagcatg agaatttgc ttccggggact ggcggggact gcatgttgc gagatcgcgc 61500
cattgcactc cagccctggc gacagagcga gactctgtct caaaaaaaaaa aaaaaaaaaaag 61560
aaaagaaaaa aatttatcaa tctctctt tatggcatat atatatat atatatat 61620
atatatat atatatat tttttttttgc gttatgttca gaaaggccctt ccctgtctg 61680
atcataaaaaa acaacttattt ttcacactct ctctttttt tttttggagac agagtttgc 61740
tcctgttgc caggctggag tgcagtggcg caatctcgc tcactgttac ctccgcctcc 61800
cggttggag tgattcttgc gccttacccccc cccgagtagc tgggattata ggcattgcacc 61860
accatgcctg gctaatttttgc tacttttagt agagacgggg gtttgccttgc ttttttttttgc 61920
ctggctctca actcgcgacc tcagggtgatc caccacccctc ggcctcccaaa agtgcgtggc 61980
ttacagacgt gagccaccat gcccagccca cactctttt ctttacgttcc tcctcccttc 62040
gttttagtgc cacattttgc attcttgc gatgttgc gatgttgc gcaaggtggg 62100
catccagctt gtttcttggc tgatggctt ggggtggcgt gaatttagtgc ggggtctatca 62160
ggagggcagaa actctatgatg aatttgcacca gagaaggatcc cgttctacagg cttattacca 62220
gggactggaa tagcagaaat tgaacagtgc gatgtacaga gaactctaaat aatgcaggaa 62280
tagggccaggc atggggcttccac acacctgttca tcccttgcact ttttttttttgc 62340
gatcacctga ggttgcaggact tcggagaccag cctggccaaat atgttgc ggggtctatca 62400
ctaaaaatac aaaaaatttgc gtcgggtgtg tggttgcac tgcttgc ttttttttgc 62460
ggaggctggc gcaaggat cacttgcacc tggggaggcag aggttgcact gggccaggat 62520
catggccactg tactccagcc tgggtggaaat gggggactc ttttttttgc 62580
aacaagaatg tcaacttgc gggaaaaatg cctggccaaat atgttgc ggggtctatca 62640
agggcactgatg ccatccagg ctggcgttgc tccacgggctt gggggggc ttttttttgc 62700
gaggacatgc cagggaggc ttggctgggtt ttcaggagcc caggccaggat cagggttcaaga 62760
gggttggagg ctggacgggaa gggccaggat aggggttgc ttttttttgc 62820
ccatttcaac gtggaaactg agtcttttgc ttttttttgc ttttttttgc 62880

032796-132.ST25

caataccgct tgggaagcag gtatcccct tcctataaaag gatggttggg agcctgagtg	62940
ttgggagaaa gtgttagccgc tgagttacta acaactaggg ctggcgtaa gcctatgggg	63000
aaagagagaa gaggacattt ggaaggagag agatcaagct gtggcacccct gggagaggac	63060
cacagaaaaag aggccagtga gggggttccc cggtgccatc tgaagggtgtg gcccaaccag	63120
gaggtccaga ggctgccgc cgagtggccc aggagggga acctcacagg ggctgagtgg	63180
gacccaagcc ctatccaccg tcctaaccac ccacattct cgggaacaag acctccaca	63240.
gtggcctccc cggcagtggaa aatagccaaa ctggcaacat ggactttctt caactgccc	63300
ggcgatgtcg cctcagtgcc ccaggggcagg caggaagctc ccacacccat tctggaatga	63360
gggggttggag gaaggctgag ctgagcaaag gaccatctc tgctctgggtt ggtggggagg	63420
gagccccatta tacaagagac ccctcaggggc tcagtgggg gtgacagaga cttggggagt	63480
agtggctgtc actgcagagg tgagagggtt tggagagaag gtacatgcct ttttggcac	63540
attgagtagc acctggtagc cagttagtaa cgtgtattgg ataaacaaaa gattaaacgg	63600
atgaaaaaaaaaa aaatgtggc ttgtcttctt ttacccaaa cctcagtttcc ctcaagtaga	63660
ttctgggaac accccctacc tggctggact gttgtgaagt ttaaataagc caggttaact	63720
tcaccccttc cttaagaca cagctcagac actgcctctt ccaagaagcc ccctctggct	63780
tcctgtgtga atatgacggc cctctgggtc cttagggtata ttagaacaat gtttccttat	63840
ggctttggaa ccccgctgtc tcctggattt ggagcaaatg caggggagga gccacacctg	63900
actaatctct gggctccca gcacataagt ggcataaggg cagggctgtg cccgcttcag	63960
gcacttactg aaggatgtac ttggcagagg gttaggcagcc ggccggatgag cccctcactc	64020
tccccagctg actgcgtggg cggggaaaggc gggttcagga gacccagcct ccctggctg	64080
tcaccaccc tcacatcca gccccattga tcaagggttc aattttttggg gtccctgtgg	64140
gaggccagga gactctctcc aggcaatttc tccaggttt tggttaggg tgggtgtgt	64200
tgtgtgtgtg tgggtgtgtg tggtgtgttt gtttattttt atttattttt ttattttattt	64260
atttattttt ttattttttt tgagacgcag ttcgcetctg ttgcccagggt tggaggggtgg	64320
tggcatgate tggctcaact gcaagctccg cctccgggt tcaacgcatt ctccctgcctc	64380
actcttcctg agtagccgga ttacaggcgc acgcacccatg cttggctaat tattttgttt	64440
tttttagtaga gacaggggtt cggccacgttt cccaggtgg tttgaatcc ctggcctcaa	64500
gcgatccgccc cgcctcagcc tcccaaagtg ctgggattac aggcgtgagc caccgtgccc	64560
gcccagccata ggggtacatg aaactttttt tttttttttt ttgagacaga gtttcaactct	64620
gtcctcagggc tggagtgcag tggcgtgatc tggcgtact gcaatctccg cttccgggtt	64680
caagcgattc tcctgcctca gcctcccgag tagctggat tgcaggccacg cggcaccaca	64740
cccaagctaaat ttttgtatttt ttagtagaga cgggcttca ccatgtggga caggatggc	64800
tcgatctctt gacctcgta tccgcccccc tcagcctccg aaagtgtgg gattacaggc	64860
ctgagccacc gtgcccagcc atgatgtttt gatacaggca tataacgtat aataatcaca	64920
tcagggtaaa tgatgttaacc atcacatcaa gcatttatcc ttgtgttac aaaaaaaaaat	64980
ctaattatac ttccctactt attctttttt tttttttttt ttgagacggc gtctccctca	65040
gtcgccccagg ctggagtgcg gtggcatgat ctcagttcac tcaagctct gcctccatgc	65100
tctgcctctt ggggtcatgc cattctctt ttcagcctcc gcgagtagct gggactacag	65160
gcgcctgcca cggcgtccgg ctaatttttt tttttgtatt ttggtagag acagggtttc	65220
accgtgttag ccaggatggc ttcgcattcc tgacccata atccggccgt ctcggcctcc	65280
caaagtgtcg ggattacagg catgagccac cggcccccagc ctatttattt taaaatgtac	65340
aataaaattat tggtgactcc agtcaccctg ctgtgttacc aaatacggat ttttttcatt	65400
ctatctaact gtatttctgt acctgttaac catctctctt ccacccatcacc ccccaaaaccc	65460
actacccttc tcagcctctg gtaaccatcc ttctactctc tatctctatg agttcaattt	65520
tattaatttt tagctccccg gcccggcacg gtggctcacg cctgtatcc cagcacttca	65580
ggaggcttag gcaagggtggat cacgagggtca ggagtttag accagcctgg ccaacatgg	65640
ggaaccccat ctctactaaa aacacaaaaaa ttagctgggc gtgggtgtgg ggcgtttag	65700
tcccagctac ttgggaggct gaggcaggag aatcgctga aactgggagg cagaggttgc	65760
agtgagccaa gattgcgcca ctgcactcca gtctgggtga cagagtaaga ttccatcccg	65820
aaaaaaaaaaaa agtttagctc ccacaaaataa gtgagaacac gtgaagttt tctttctgt	65880
cctcgctgt ttcaactaac ataatgacct ccagttccat ccacgttggt gtttttttat	65940
aatgacagg atctggtca ggcgcagtgg ctcatgcctg taatcccgac actttgggag	66000
gctgagggtgg actgatcatg aggtcaagag atcgagacca tcctggctaa cacagtggaa	66060
cccgctctt actaaaaata caagaaattt gcccggcgtg gtgggtggca cccattccg	66120
cccccttcgg qgacgctgat gcacgacata ttacccatcc cccggaaagact aatccccc	66180
cactctatata tggactctt cttttctctt ccacgcgatt ccccgagtaa cccgtttcc	66240
ctccctcctc ggattacgct caccttcgg cttcaatcac gttgctccgt ccccttcccc	66300

032796-132.ST25

attcgtacca ctcctcaactt tcgtttccct acccccacta tcccttttag tcctcttat	66360
tccttactta ctcccccc ttctttcat acttcattcc ctccgcctt cccactcgcg	66420
cteccacttt cacctagttg ccctcaccta cgttgccatc tcgcccccttc tttagcttc	66480
ggcctctcac ccatctgtcc tctctttac ctctcttc atctcgctca gacatcttc	66540
tagactatcc ctcaacttac ttctcagtc gtcttttcc tattttcgat tctccatgat	66600
cttcacgtcg ccatctttt tcgccccctt catatgttc tttcatgtt ctcactatca	66660
ttctcatgat cactatcgat ctcactactt atcactcccc ttttttca tcaattcttc	66720
tccgtcattc tcgtttctt cttacaaccc cttcccttgat gatatctaac tcaaccatgc	66780
ctctctact ctctcttat cccccctcca tcgcttatgc atcccttttattgcacacc	66840
cggcccttcca tcgcttatgc atcccttttattgcacacc gccccctccat cgcttatgca	66900
ttcttttcta ttgcacatcc ttttttattt cac	66933

<210> 12
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 12
ctgagcgaa ttcgtgagac c

21

<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 13
ttggtctcac gtattccgct cga

23

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 14
ctcgagaatt ctggatcctc

20

<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

032796-132.ST25

<400> 15
ttgaggatcc agaattctcg ag

22

<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 16
tgtatgcgaa ttcgctgcgc g

21

<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 17
ttcgcgcagc gaattcgcata aca

23

<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 18
gtccactgaa ttctcagtga g

21

<210> 19
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 19
ttgtcactga gaattcagtg gac

23

<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence

032796-132.ST25

<220>
<223> Primer

<400> 20
gaatccgaat tcctggtcag c

21

<210> 21
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 21
ttgctgacca ggaattcgg a ttc

23

<210> 22
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 22
cuacuacuac uactgagcgg aattcgtgag acc

33

<210> 23
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 23
cuacuacuac uactcgagaa ttctggatcc tc

32

<210> 24
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 24
cuacuacuac uatgtatgcg aattcgctgc gcg

33

<210> 25

032796-132.ST25

<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 25
cuacuacuac uagtccactg aattctcagt gag

33

<210> 26
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 26
cuacuacuac uagaatccga attcctggtc agc

33

<210> 27
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 27
aactggaaga attcgccggcc gcaggaattt tttttttttt ttttt

45

<210> 28
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 28
aattcggcac gag

13

<210> 29
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 29
ctcgtgccg

9

032796-132.ST25

<210> 30
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 30
gtacgacggc cagt

14

<210> 31
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 31
aacagctatg accatg

16

<210> 32
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 32
ccaaggttcttg agaagtcc

18

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 33
aataacctgaa accatacctg

20

<210> 34
<211> 57
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

032796-132.ST25

<400> 34
agctgctcgt agctgtctct ccctggatca cgggtacatg tactggacag actgggt 57

<210> 35
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 35
tgagacgccc ggattgagcg ggcaggata gcttattccc tggcccat tacggc 56

<210> 36
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 36
agctgctcgt agctgtctct ccctgg 27

<210> 37
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 37
gccgtaatgc ggcacaggga ataagct 27

<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 38
gagaggctat atccctgggc 20

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

032796-132.ST25

<220>

<223> Primer

<400> 39

acagcacgtg tttaaagggg 20

<210> 40

<211> 163

<212> DNA

<213> Homo sapiens

<400> 40

actaaagcgc cgccgcccgcg ccatggagcc cgagttagct cggcgccggc ccgtccggcc
gccggacaac atggaggcag ctccgccccgg gcccgcgtgg ccgtgtctgc tgctgtctgc
gtctgtctgc gcgctgtgcg gtcgtccggc ccccgccgcg gcc 60
120
163

<210> 41

<211> 419

<212> DNA

<213> Homo sapiens

<400> 41

gcccccacagc ctcgcccgtc ctgttatgg ccaaccggcg ggacgtacgg ctggtgacg 60
ccggcggagt caagctggag tccaccatcg tggtcagcg cctggaggat gcggccgcag 120
tggacttcca gtttccaag ggagccgtgt actggacaga cgtgagcggag gaggccatca 180
agcagaccta cctgaaccag acggggggccg ccgtcagaa cgtggtcata tcggcctgg 240
tctctcccca cggccctcgcc tgcgactggg tggcaagaa gctgtactgg acggacttag 300
agaccaaccg catcgaggtg gccaacctca atggcacatc ccggaaagggtg ctcttctggc 360
aggaccttga ccagccgagg gccatcgcc tggacccgc tcacggtaa accctgtg 419

<210> 42

<211> 221

<212> DNA

<213> Homo sapiens

<400> 42

ccccgtcaca ggtacatgtt ctggacacac tgggtgaga cccccggat tgagcggca 60
gggatggatg gcagcacccg gaagatcatt gtggactcg acatatactg gccaatgga 120
ctgaccatcg acctggagga gcagaagctc tactggctg acgccaagct cagttcatc 180
caccgtgcca acctggacgg ctcgttccgg tagtaccca c 221

<210> 43

<211> 221

<212> DNA

<213> Homo sapiens

<400> 43

tccctgactg caggcagaag gtggtgagg gcagctgac gcaccccttc gccctgacgc 60
tctccgggga cactctgtac tggacagact ggcagacccg ctccatccat gcctgcaaca 120
agcgcactgg gggaaagagg aaggagatcc tgagtccct atactcaccc atggacatcc 180
agggtgctgag ccaggagcgg cagcctttt gtgagtgccg g 221

032796-132.ST25

<210> 44
<211> 156
<212> DNA
<213> Homo sapiens

<400> 44
tttctcagtc cacactcgct gtgaggagga caatggcgcc tggtcccacc tgtgcctgct 60
gtcccccaagc gaggcctttt acacatgcgc ctgccccacg ggtgtgcaga tgcaggacaa 120
cggcaggacg tgtaaggcag gtgaggcggt gggacg 156

<210> 45
<211> 416
<212> DNA
<213> Homo sapiens

<400> 45
ctcccacagga gccgaggagg tgctgctgct ggcccgccgg acggacctac ggaggatctc 60
gctggacacg cggacttca ccgacatcggt gctgcagggt gacgacatcc ggcacccat 120
tgccatcgac tacgaccgcg tagagggtta tgtctactgg acagatgacg aggtgcgggc 180
catccgcagg gcgtacctgg acgggtctgg ggcgcagacg ctggtaaca cccgagatcaa 240
cgaccccgat ggcacatcgccg tcgactgggt ggcccggaaac ctctactggaa cccgacacggg 300
cacggaccgc atcgaggta cgccctcaa cggcacctcc cgcaagatcc tggtgtcgga 360
ggacctggac gagccccgag ccatcgcaact gcaccccggt atgggttaag acgggc 416

<210> 46
<211> 198
<212> DNA
<213> Homo sapiens

<400> 46
ttcttctcca gcctcatgta ctggacagac tggggagaga accctaaaat cgagtgtgcc 60
aacttggatg ggcaggagcg gcgtgtgctg gtcaatgcct ccctcggtg gcccaacggc 120
ctggccctgg acctgcagga gggaaagctc tactggggag acgccaagac agacaagatc 180
gaggtgaggc tcctgtgg 198

<210> 47
<211> 244
<212> DNA
<213> Homo sapiens

<400> 47
ccgtcctgca ggtgatcaat gttgatggga cgaagaggcg gaccctcctg gaggacaagc 60
tccccgcacat ttccgggttc acgctgtgg gggacttcat ctactggact gactggcagc 120
ggccgcagcat cgagcgggtg cacaaggta aggccagccg ggacgtcattt attgaccagc 180
tgccccgaccc tgcgtggctc aaagctgtga atgtggccaa ggtcgtcggt gagtccgggg 240
ggtc 244

<210> 48
<211> 313
<212> DNA
<213> Homo sapiens

032796-132.ST25

<400> 48

gttcgcctcc	aggaaccaac	ccgtgtcg	acaggaacgg	gggggtgc	cacctgtg	ct	60
tctgcacacc	ccacgc	acc	ccgtgtgg	get	ccccatcg	cttgag	60
tgaagac	ctcg	ccct	gaggc	ttt	tgtcac	cagcag	120
ggatct	ccct	cg	agac	aat	aacaac	gacg	180
cctcag	ccct	gg	actt	tgat	gtgtcca	accacat	300
aggtagcgt	g	gc	ttt	gat	aca	atcta	313

<210> 49

<211> 255
<212> DNA
<213> Homo sapiens

<400> 49

cctgctgcca	gaccatc	agc	cgcgc	cttca	tgaac	aggag	ctcggtgg	cacgtgg	60
agtttggc	ct	tgact	acccc	gagg	ggcat	gg	ccgtt	actg	120
ggccgac	ac	tg	ggac	aa	aa	atc	gat	gggca	180
tcc	tcgt	tg	ggact	tt	gaca	accc	gtgt	ggc	240
aagt	tttgc	c	tg	tc	tttgc	cc	cttggat	ccc	255

<210> 50

<211> 210
<212> DNA
<213> Homo sapiens

<400> 50

gtgccttcca	gctacatcta	ctggacc	gag	tggggcg	ca	gcccagg	at	cgtgcgg	60
ttcatggac	g	gac	caact	tg	atgac	cg	tggaca	agg	120
accattgact	ac	gct	gac	cc	tc	atcc	tggacc	gacc	180
tcttccaaca	t	g	cttgg	tg	gac	atc	ttggat	ccaa	210

<210> 51

<211> 352
<212> DNA
<213> Homo sapiens

<400> 51

gtgttcatgc	agg	tca	ggag	cgg	gt	tg	tcc	cgac	60
tgacgc	ag	ta	tt	cc	at	tc	cc	cg	120
ccgaca	ag	at	tc	cc	at	tc	cc	cg	180
acatctt	gtt	ccact	cc	tcc	cc	tgg	atgg	cata	240
ggcag	tg	gt	tc	cc	at	cc	cc	cc	300
actacac	cc	tt	gg	cc	cc	cc	cc	cc	352

<210> 52

<211> 225
<212> DNA
<213> Homo sapiens

<400> 52

gcctcctcta	cgccc	acc	ac	ctt	tt	gtc	cc	at	tc	ggat	60	
atcccggac	g	cc	ac	ac	at	cc	cc	cc	tc	tgat	120	
aaagccatc	g	cc	at	at	gac	cc	at	tt	ca	tt	ggat	180

032796-132.ST25

atcaaggcgag ccaaggacga cgggaccagg gcaggtgcc 60 tgtgg 225

<210> 53
<211> 235
<212> DNA
<213> Homo sapiens

<400> 53
ctttgtctta cagccctttg ttttgcaccc tctgagccaa ggc当地aaacc cagacaggca
ggcccccacac ctcagcatcg acatctacag ccggacactg ttctggacgt gcgaggccac
caataccatc aacgtccaca ggctgagcgg ggaaggccatg ggggtgggtgc tgcgtgggga
ccgcgacaaag cccagggcca tcgtcgtcaa cgccggacgca gggtaggagg ccaac 60
120
180
235

<210> 54
<211> 218
<212> DNA
<213> Homo sapiens

<400> 54
ccaccctccc gcaggtaccc gtacttcacc aacatgcagg accgggcagc caagatcgaa
cgccgcagcc tggacggcac cgagcgcgag gtccttca ccaccggcct catccgcct
gtggccctgg tggtgacaa cacactgggc aagctgttct gggtaggacgc ggacactgaag
cgatttgcata gctgtgaccc gtcaggtacg cgccccgg 60
120
180
218

<210> 55
<211> 234
<212> DNA
<213> Homo sapiens

<400> 55
ggctgcttc agggggcaac cgcctgaccc tggaggacgc caacatcg 60
gcctgaccat ctttgcaag catctctact ggatcgaccc ccaggcagc atgatcgac
gtgtggagaa gaccaccggg gacaagcgg a ctcgcata gggccgtgtc gcccaccta
ctggcatcca tgcagtggag gaagtca gggtaggagtt ctgtacgtgg gggc 120
180
234

<210> 56
<211> 157
<212> DNA
<213> Homo sapiens

<400> 56
ttgtcttgc agcagccac ccatgtgccc gtgacaatgg tggctgctcc cacatctgt
ttgccaagg tgatggaca ccacgggtct catgcccagt ccacctcg 60
acctgctgac ctgtggaggt aggtgtgacc taggtgc 120
157

<210> 57
<211> 272
<212> DNA
<213> Homo sapiens

<400> 57
gttctcctct gtcctcccc cagagccgccc cacctgctcc ccggaccagt ttgcata 60
gtgc

032796-132.ST25

cacagggggag atcgactgta tccccggggc ctggcgctgt gacggcttc ccgagtgcga	120
tgaccagagc gacgaggagg gctccccgt gtgcggcc gcccagttcc cctgcgcgcg	180
gggtcagtgt gtggacctgc gcctgcgctg cgacggcgag gcagactgtc aggaccgctc	240
agacgaggtg gactgtgacg gtgaggccct cc	272

<210> 58
<211> 134
<212> DNA
<213> Homo sapiens

<400> 58	
tctccttgca gccatctgcc tgcccaacca gttccggtgt gcgagcggcc agtgtgtcct	60
catcaaacag cagtgcact cttccccga ctgtatcgac ggctccgacg agctcatgtg	120
tggtagccca gttt	134

<210> 59
<211> 274
<212> DNA
<213> Homo sapiens

<400> 59	
gtttgtctct ggcagaaaatc accaagccgc ctcagacga cagccggcc cacagcagt	60
ccatcggggcc cgtcattggc atcatcctct ctctttcgatgggtgggt gtctattttg	120
tgtgccagcg cgtgggtgtgc cagcgctatg cggggccaa cggggcccttc ccgcacagat	180
atgtcagcgg gacccgcac gtgcccctca attcatagc cccggggcggt tcccagcatg	240
gccccttcac aggttaaggag cctgagatat ggaa	274

<210> 60
<211> 164
<212> DNA
<213> Homo sapiens

<400> 60	
cttccctgcc aggcatcgca tgcggaaagt ccatgatgag ctccgtgagc ctgatgggg	60
gcccggggcggt ggtccccctc tacgaccggaa accacgtcac aggggcctcg tccagcagct	120
cggtccagcac gaagccacg ctgtacccgc cggtgagggg cgaa	164

<210> 61
<211> 130
<212> DNA
<213> Homo sapiens

<400> 61	
ttggctctcc tcagatcctg aacctccgc cttcccgcc cacggacccc tccctgtaca	60
acatggacat gttctactct tcaaacattc cggccactgc gagaccgtac agttaggaca	120
tccctgtcag	130

<210> 62
<211> 496
<212> DNA
<213> Homo sapiens

032796-132.ST25

<400> 62

tcaaacattc	cggccactgc	gagaccgtac	aggccctaca	tcattcgagg	aatggcgc	ccc	60
ccgacgacgc	cctgcagcac	cgacgtgtgt	gacagcgact	acagcgccag	ccgctgaa	gag	120
gccagcaagt	actaccttgg	tttgaactcg	gactcagacc	cctatccacc	cccaccac	g	180
ccccacagcc	agtacctgtc	gcccggaggac	agctgcccgc	cctcgcccgc	caccgagagg	240	
agctacttcc	atctcttccc	gccccctccg	tcccccgtca	cgactcatc	ctgacctcg	300	
ccggggccact	ctggcttctc	tgtccccctg	taaatagttt	taaatatgaa	caaagaaaaaa	360	
aatatatttt	atgatttaaa	aaataaataat	aattgggatt	ttaaaaacat	gagaaatgtg	420	
aactgtgtat	gggtgggcag	ggctgggaga	acttttata	gtggagaaat	atttataaac	480	
ttaattttgt	aaaaca						496

<210> 63

<211> 3081
<212> DNA
<213> Homo sapiens

<400> 63

cccgccagcc	cagcccagcc	caaccctact	ccctccccac	gccagggcag	cagccgttgc		60
tcagagagaa	ggtgaggaa	aaaatccaga	cccttagcagc	cgcgccacat	catggaccat		120
tatgatttcc	agcaaaacaa	cgattacatg	cagccagaag	aggactggga	ccggggac	ctg	180
ctcctggacc	cggtctgg	gaagcagcag	agaaagacat	tcacggcatg	gtgtaa	ctcc	240
cacctccgga	aggcggggac	acagatcag	aacatcgaag	aggacttccg	ggatggc	ctg	300
aagctcatgc	tgtctgttgg	gttcatctca	gttgaacgt	tggccaagcc	agagc	gaggc	360
aagatgagag	tgcacaagat	ctccaaacgtc	aacaaggccc	tgattttcat	agccag	caaa	420
ggcgtcaaac	tgggttccat	cgagccgaa	aaaatctgg	atgggaatgt	gaagatgacc		480
ctgggcatga	tctgaccat	catcctgcgc	tttgcacatcc	aggacatctc	cgtgg	aaagag	540
acttcagcca	aggaaggc	gtctctgtgg	tgtcaagaaa	agacagcccc	ttaca	aaaaat	600
gtcaacatcc	agaacttcca	cataagctgg	aaggatggcc	tccgttctc	tgtt	tgatc	660
cacccgacacc	ggcccgagct	gattgactac	gggaagctgc	ggaaggatga	tccactc	caca	720
aatctgaata	cggcttttga	cgtggcagag	aagtacatgg	acatccccaa	gatgtt	ggat	780
gccgaagaca	tcgttggaa	tggccgacc	gatgagaaag	ccatcatgac	ttac	gtgtct	840
agcttctacc	acgccttctc	tggagcc	aaggccgaga	cagcagccaa	tgc	atctgc	900
aagggttgg	ccgtcaacca	ggagaacgag	cagcttatgg	aagactacga	gaag	ctggcc	960
agtgtatctgt	tggagtggat	ccggcgcaca	atccctgtgc	tggagaaccc	gttgc	cccgag	1020
aacaccatgc	atgcacatgc	acagaagctg	gaggacttcc	gggactaccg	g	gcgc	1080
aagccgccc	agggtcagga	aaagtgc	ctggagatca	acttcaacac	gt	gcagacc	1140
aagctgcggc	tcagcaacc	gcctgccttc	atccctctg	agggcaggat	gtt	ctcg	1200
atcaacaatg	cctggggctg	cctggagcag	gtggagaagg	gctatgagga	gtt	gttgc	1260
aatgagatcc	ggaggttgg	gcgactggac	cacccgttgc	agaagttccg	gc	agaaggcc	1320
tccatccac	aggcttgg	tgacggcaaa	gaggccatgc	tgcgacagaa	gg	actatgag	1380
acccgcaccc	tctcgagat	caaggcc	ctcaaga	atgaggcc	cg	agatgtac	1440
ctggcttccc	accaggacc	tgtggagcag	attgc	tccgcacagga	g	ctcaat	1500
ctggactatt	atgactcacc	cagtgtcaac	gcccgttgc	aaaagatctg	t	gaccagtgg	1560
gacaatctgg	gggccta	tcagaagcga	agggaa	tggagcggac	cg	agaaactg	1620
ctggagatca	ttgaccag	gtacttgg	tatgcca	gggctgc	acc	cttcaaca	1680
tggatgggg	ggccat	ggacctgcag	gacac	tgtgcacac	catt	gaggag	1740
atccaggac	tgacc	ccatgagcag	ttcaagg	ccctccctg	t	gccgaca	1800
gagcgc	ctt	catccaca	gagg	tcc	tg	ccgaca	1860
gtcaatatgg	cgcc	ccctacaca	accat	ctc	at	ggc	1920
tgggaccac	tgc	gagct	ggtgc	agg	tc	tgcac	1980
cgac	cc	acaat	gttgg	ccca	gt	tcat	2040
ccctggatcc	agacca	agat	ggagg	ggat	ca	atgggacc	2100
ctggaggacc	agctc	agcc	ggat	ccat	gt	atcgta	2160
aagattgtat	actacacc	ggac	ggat	ggat	ca	tacagcc	2220
aagcacacca	ggac	accac	ggat	ggat	tc	tgcaca	2280
atcgccagga	ccat	caat	ggat	ggat	ca	aggccatc	2340

032796-132.ST25

agccaggagc agatgaatga gttccgggcc tccttcaacc actttgaccg ggatcactcc	2400
ggcacactgg gtcccggagga gttcaaagcc tgcctcatca gcttgggtta tgatattggc	2460
aacgaccccc agggagaagc agaatttgcc cgcatcatga gcattgtgga ccccaaccgc	2520
ctggggtag tgacattcca ggcatttcatt gacttcatgt ccccgagac agccgacaca	2580
gatacagcag accaagtcat gcttccttc aagatccctgg ctggggacaa gaactacatt	2640
accatggacg agctgcggc cgagctgcca cccgaccagg ctgagtaactg catgcgcgg	2700
atggccccc acaccggccc cgactccgtg ccaggtgctc tgactacat gtccttctcc	2760
acggcgctgt acggcgagag tgacctctaa tccacccgc cccgcccgc tcgtcttgc	2820
cggcgtgccc acagatgtga aatgaatgta atctaata gacctaata gcccaccatg	2880
ttctccactg aaaaatcctc ttctttggg gttttcttt ct当地tggca 2940	
ctggacggtg acgtcagcct gtacaggctc ccaggggtgg cgtcaaatgc tattgaaatt	3000
gcgctgaatc gtatgtttt tcctttgat aaataaaca tgaaaaatg ttcaaaaac	3060
ctaataaaat aaataaatac g	3081

<210> 64
<211> 1324
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(1324)
<223> n = A,T,C or G

<400> 64

ggccgccccgg cgcccccagc agnccgagcc ggggcgcaca gnccgggcgc agcccgcc	60
ccccggcccg attgacatga tgtttccaca aaggcat tcgggctcct cgcacccacc	120
ccagcaactc aaattccacca cctcgactc ctgcgaccgc atcaaagacg aatttcagct	180
actgcaagct cagtaaccaca gcctcaagct cgaatgtac aagttggca gtgagaagtc	240
agagatgcag cgtcaactatg tgatgtacta cgagatgtcc tacggcttga acatcgagat	300
gcacaaacag gctgagatcg taaaaggctt gaaacggatt tggccagg tcctgcctta	360
cctctcccaa gagcaccagc agcaggctt gggaggcatt gagagggcca agcaggctac	420
cgctcccgag ctgaactcta tcatccgaca gcagctccaa gcccaccagc tggccagct	480
gcaggccctg gccctgcctt tgacccactt acccggtggg ctgcagccgc ttgcgtgcc	540
ggcggtcagc gcaggcaccgc gcctcctc tctgtccgc ctgggttccc aggcccac	600
ctccaaggaa gacaagaacg ggcacatgg tgacacccac caggaggatg atggcgagaa	660
gtcggattag cagggggccg ggacagggag gttggaggg gggacagagg ggagacagag.	720
gcacggagag aaagaatgt ttagcacaag acacagcggc gctcgggatt ggctaatctc	780
ccatagtatt tatgtggcg cggcgggggc cccagccag ctgcaggcc acctctagct	840
ttcttcctac cccatcccg ctccctcct cctccctgc agcctggta ggtggataacc	900
tgcctgcaca tgtgaggcaa gctaaggctt ggagggttag atgggagacc aggtcccaag	960
ggagcaagac ctgcgaagcg cagcagcccc ggccttccc ccgtttgaa catgtgtaac	1020
cgacagtctg ccctggccca cagccctcacc accctgtac tgcacgcacg caatgttagc	1080
tgccttccttc cctgtctggg caccggagt ctcccccgc cccgggtccc aggtatgtctc	1140
ccacccctccac ctgccttact caccacctct gtagttcca gacacctcca cggccac	1200
gtccttcctcc atcgccccaca aaaggggggg cacgagggac gagcttagct gagctggag	1260
gagcagggtg agggtggcg acccaggatt cccctcccc ttcccaaata aagatgagggt	1320
tact	1324

<210> 65
<211> 2377
<212> DNA
<213> Homo sapiens

<400> 65

ggtgacaaag agccaacaga gacaatagga gacttgtcaa ttgtcttga tggctacag	60
---	----

032796-132.ST25

ttagagtctg aagtgttac caatggtaa actacatgtt cagaaagtgc ttctcagaat	120
gtatgtggct ccagatccaa ggtgaaaca agagtggca caaatggatc agatgaccct	180
gaagatgcag gagctggta aaataggaga gtcagtgga ataattctcc atcaactctca	240
aatgggtt ttaaaccttc tagacctca agacccatc gaccaccacc acccacccta	300
cgttagaccag catctgtcaa tggttcacca tctgcactt ctgaaaatgtga tgggtctagt	360
acaggcttc tgcccccac aaatacaaat acaaatacat ctgaggaggc aacatctgga	420
ttaataattc ctcttactat atctggaggc tcagggcccta ggccattaaa tcctgtact	480
caagctccct tgccacctgg ttgggagcag agagtggacc agcaccggcg agttaactat	540
gttagatcatg ttgagaaaag aacaacatgg gatagaccag aacctctacc tcctggctgg	600
gaacggccggg ttgacaacat gggacgtatt tattatgtt accatccac aagaacaaca	660
acgtggcaga ggccaaacact ggaatccgtc cggaactatg aacaatggca gctacagcgt	720
agtccatc aaggagcaat gcagcgtt aaccagagat tcatttatgg gaatcaagat	780
ttatggctt catcacaaag taaagaattt gatcccttgc ttccattgcc acctggatgg	840
gagaagagaa cagacagcaa tggcagaga tatttcgtca accacaacac acgaattaca	900
caatgggaag accccagaag tcaaggtaa ttaaatgaaa agcccttacc tgaagggtgg	960
gaaatggat tcacagtggta tggaaattcca tattttgtgg accacaatag aagaactacc	1020
acctatatag atccccgcac aggaaaatct gcccata gatggacccatc gatagctat	1080
gttcgggact tcaaagcaaa gtttcgttat ttccgttct ggtgtcagca actggccatg	1140
ccacagcaca taaagattac agtgcacaaga aaaacattgt ttgaggattc cttcaacag	1200
ataatggact tcagccccca agatctgcgaa agacgtttgt ggggtgattt tccaggagaa	1260
gaagggttag attatggagg tggtagcaaga gaatggttt ttctttgtc acatgaagt	1320
ttgaacccaa tggtagccct gtttgaatattt gcaagggagg ataactactg cttgcagata	1380
aaccccgctt cttacatcaa tccagatcac ctgaaatattt ttctttttt tggcagattt	1440
atttgcatttgc ctctgttcca tggggaaattt atagacacgg gtttttctt accattctat	1500
aagcgatct tgaacaaacc agttggactc aaggatttag aatctattga tccagaattt	1560
tacaattctc tcatctgggt taaggaaaac aatattgagg aatgtgattt gggaaatgtac	1620
ttctccgtt acaaagaaat tcttaggtgaa attaagagtc atgatctgaa acctaatttgt	1680
ggcaatattt ttgttacaga agaaaataaaa gggaaataca tcagaatggt agctgagtgg	1740
agggtgtctc gaggtgttga agaacaagaca caagcttctt ttgaaggctt taatgaaatt	1800
tttcccccagc aatatttgca atactttgtt gcaaaaggaat tagaggctt tttatgtgg	1860
atgcaagaga ttgatttgaa tgactggcaa agacatgcca tctaccgtca ttatgcaagg	1920
accagcaaac aaatcatgtg gtttggcag tttgttaaag aatattgataa tgagaagaga	1980
atgagacttc tgcagtttgc tactggaaacc tgccgattgc cagtagggg atttgctgtat	2040
ctcatgggaa gcaatggacc acagaaaattc tgcatggaa aatgtggaa agaaaattgg	2100
ctacccagaa gtcataccctg ttttgcattc ctggacccctc caccatacaa gagctatgag	2160
caactgaagg aaaagctgtt gtttgcata gaagaaacag aaggatttg acaagagtaa	2220
tttctcgagaa cttgcaccat gaatgggcaa gaacttattt gcaatgtttt tccttcctg	2280
cctgttgcac atctgtaaa attggacaat ggctctttag agagttatct gagtgtaaat	2340
aaatgt tctcattaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa	2377

<210> 66

<211> 1295

<212> DNA

<213> Homo sapiens

<400> 66

ggccgcgc ccacccgggc cttgcctcta ctcagtcgt tgccccccga ttttcggctg	60
gagccacgg cccggccct cagccccccgc tcatacttcg ccagtagctc ggcacgcac	120
gcgcgcacgc cgtcccgcccc cccggggcagc ctgctgtgg acggggcggg ggctggcgg	180
gctggagata gcccggccctg cagcaatcgc accagccgc tcagcatggg ctacgaccag	240
cgccacggc gcccccttgcg agcggggccg tgcctgtttt gcccaccctt ggccggagca	300
ccggcagct atttcccccgg aggggtcccg tccgcctacc cggagctcca cgccgcctg	360
gaccgattgt acgctcagcg gcccgggggg ttccgtgtcc agggaaagccg ccactcgat	420
ccccccggcc tggcagccctt gggagctcta gcccggggccc gagtgggagc ggcggggccc	480
ttggagagac gggggccgca accccggacga cactctgtga cccgctacgg ggactgcgc	540
gtggggccccc ggtaccagga cgagctaaca gctttgcctc gcctgacggt gggcaccgg	600
gggcgagaag ccggagcccg cgagaaaccc tcggggattt agccgtcggt tctggaggag	660

032796-132.ST25

ccaccaggc	c	tttcgttcc	ggaggccg	cc	cgcccgg	tgccggag	cc	agaggccagg	720
gaggactact	t	tcggcacctg	tatcaagtgc	aacaaggc	a	tcatggca	g	gacaaatgcc	780
tgccaggccc	t	ggcacagect	ctaccacacc	cagtgtt	t	ttgtctgtc	t	ttgtggcga	840
actttgcgtt	g	caaggctt	ctacagtgtc	aatggctctg	t	tgtactgtga	g	gaagattat	900
ctgtttcag	g	tttcagga	ggcagctgag	aatgtctgt	t	tctgtggtca	c	ttgattttg	960
gagaagatcc	t	tacaagcaat	ggggaaagtcc	tatcatccag	g	ctgtttccg	a	tgcattgtt	1020
tgcaacaagt	g	gcctggatgg	catcccccttc	acagtggact	t	tctccaacca	a	gtataactgt	1080
gtcacccgact	a	accacaaaaa	ttatgctct	aagtgtgcag	c	cctgtggcca	a	cccatcc	1140
ccctctgagg	g	gtgtgagga	catcgtaggg	gtatatatca	t	tgaccggga	t	ttatcactt	1200
gagtgttacc	a	actgtgagga	ctgcccggat	cagctgagtg	a	tgaggaagg	c	tgctgtgt	1260
ttccctctgg	t	atggcactt	gtctgtccat	ggtgt					1295

<210> 67

<211> 3411

<212> DNA

<213> Homo sapiens

<400> 67

ggggccgggg	t	ccccccacc	accgcgcgcg	ggacagattt	a	ttcactttt	g	agctgttaag	60
tactgtat	t	taggtgca	gcgccttatt	t	tcatgtacg	c	agagtccca	aaatgaat	120
ccaagagcag	g	ttcccttccot	ttggacctcg	agcaagttt	a	cccaagatg	c	tcccccacc	180
cccagtgcct	g	gttggagg	gagaactgtt	gtccacagac	c	ccaggccccg	c	ccagctacag	240
tttctgttcc	g	ggaaagggt	ttggcattaa	aggtgagact	t	tgcacggcca	c	tccgaggcg	300
ctcggatctg	g	acctggggt	atgagctgt	gggcagtgc	t	tcccccaccc	c	caccatactt	360
gaagtgggt	t	gagtcactgc	atcccctgt	ggatgaccaa	g	atgggataa	g	ccctgttcag	420
gactttctg	a	tcggagg	gtgtgccc	tttgcgtgg	t	ttctggttt	c	tctgcactgg	480
cttcaggaaag	c	ctggagccct	gtgactcgaa	cgaggagaag	a	aggctgaagc	t	ttggcagagc	540
catctaccg	a	aatcacattt	ttgataacaa	tggcatcg	t	tcccgccaga	c	ccaagccagc	600
caccaagagc	t	tccataaaagg	gtgcacat	gaagcagctg	a	tgcacatct	c	ccatgtttga	660
ccaggcccg	a	accggaaatcc	aggccactat	ggaggaaaac	a	ccatatccct	c	cttcctttaa	720
gtctgtat	t	tatttggat	atacgaggac	aggctcgag	a	gccccaaag	t	tctgttagtga	780
ccagagctt	c	gggtcaggga	cagggaaagg	catacttgc	t	tccctgcga	c	ccttaaatga	840
agatgaggaa	t	ttggaaagtgt	accaggacat	ggacgaggac	g	atggcagag	a	cgctgtcc	900
ccccggaaaga	c	ctccctcaga	agctgttct	ggagacagct	g	cccccgggg	t	tctccttccag	960
tagacggta	c	agcgaaggca	gagagttcag	gtatggatcc	t	ttggcgggagc	c	cagtcaaccc	1020
ctattatgtc	a	atggccgct	atgccttgc	cccaggcacc	a	tgcccaacg	a	acagcagca	1080
gcagagctct	t	tccagcgat	cagacaccc	gtccctcacc	g	acagcagcg	t	ttggatggat	1140
ccccccat	c	aggatccgta	agcagcaccc	caggagatg	c	aggagagcg	c	cgcaggtaa	1200
tggcgggt	c	ccccctacctc	acatcccc	cacgtaccgg	t	ttggccgaagg	a	gggtccgcgt	1260
ggaggcctcg	a	aatgtcg	aggagctcat	ccaccgcct	g	aggctgtgc	a	gcgcacgcg	1320
ggaggcccg	g	gagaagctgg	aggagcggt	gaagcgcgt	c	ccatggagg	a	ggaaagggt	1380
ggacggcgat	c	ccatcg	ggccccccagg	gccgtgtc	a	agctgcctc	c	ccgccccccgc	1440
ttggcaccac	t	ttccccc	gtttgtgt	gacatgggt	t	ttggccgggc	t	ccggatgc	1500
acacgaggag	a	accctgaga	gatcccttgc	cgagcacgt	c	agcgtgtgc	t	tgaggacaac	1560
tggcccgcc	c	tcgccttggc	ctggccatcg	ctccccggac	a	gtgggcac	t	tgcccaagat	1620
cccaagtggca	t	ctgggggg	ccgcctcg	gcacgggaag	c	cacgttacca	a	gtcaggggc	1680
gaagctggac	g	ccggccggcc	tgcaccacca	ccgacacgtc	c	caccaccac	t	tccaccacag	1740
cacagcccg	cc	ccaaaggagc	agggtggaggc	cgagggccacc	c	cgcaggccc	a	agagcagctt	1800
cgcctgggg	c	ctggaaaccac	acagccatgg	ggcaagg	c	cgaggctact	c	cagagatgt	1860
tggcgctgc	c	cccaacgca	gtatggct	cgcccacat	g	ggaaagggt	g	cgctgtcg	1920
.aaaaagaaat	g	cccaagaagg	ctgagtcgg	gaagagcgcc	a	gcaccggag	t	tgccagtg	1980
ctcgaggat	g	cgggagaaga	accagaaaat	catcg	a	tatttgg	g	ggaaaaggaa	2040
gatcagcagg	c	caccgcagg	ccggccacgg	gtcttgggg	a	cgagggaaac	c	cacagcccc	2100
tgagaactcc	a	agaccyttgt	cccttgaga	cccctgggg	g	cccttgc	c	tccggac	2160
cgtgcagcc	t	tccoaac	tct	tcatccaaga	c	ccccaccat	c	cagctccaa	2220
ccccctaacc	c	cagctggagg	aggcgcccg	acgtctggag	g	gaggaagaaa	a	agagccag	2280
ccgagcaccc	t	tccaaggcaga	ggtatgt	ggaggtat	c	ggcggggac	g	gcgcctcg	2340

032796-132.ST25

caggccagcg	tgcgcgcccgg	tgctgcacgt	ggtaccagcc	gtgtcggaca	tggagctctc	2400
cgagacagag	acaagatcgc	agaggaaggt	gggcgcgccc	agtgcggcagc	cgtgtacag	2460
catcgttgt	gcgtactact	tctgcgggg	accatcccc	taccgcaccc	tggtgagggg	2520
ccgcgcgtgc	accctggcc	agttcaagga	gctgctgacc	aaaaaggcga	gtacagata	2580
ctacttcaag	aaagtgagcg	acgagttga	ctgtgggtg	gttttgagg	aggttcgaga	2640
ggacgaggcc	gtcctgccc	tcttgagga	gaagatcatc	ggcaaagtgg	agaagggtga	2700
ctgataggtct	ggtgggctgg	ccgctgtgcc	aggcgaggcc	cttggcgggc	acgggtgtca	2760
cggccaggca	gatgacctcg	tactcaggag	cccgatgggg	aacagtgtt	ggtgttaccac	2820
ccatccctgt	ggtctacccg	tgtctagagg	caggtaggg	gtccctccaa	gtggtccaca	2880
agtttctgtc	ctgcccccaa	ggagggcagcc	tggaccactc	ctcatagcaa	tacttgagg	2940
gcccagccca	agtgaggcag	ccgaggtccc	tgctgccagc	ttcaggtgac	cccccccat	3000
ccccccggcac	ctcccttggg	cacgtgtgt	gggatctact	ttccctctgg	gatttgcaca	3060
cgtacccagg	tctggctggg	gcccaggccc	ggatgcagag	gcctgcagg	cctctgtcaa	3120
ttgtacgcgc	caccaagtgc	cttcaacaca	gcttgcctct	tgcctgcac	tgtgtgaatc	3180
ggcgacggag	cactgcacct	gcctccagcc	gcccgtgt	cagtcctggg	tcctcccttc	3240
tgagggcccg	tgtaaatatg	tacatttctc	aggctaggc	cagcaggggc	tgcccagtc	3300
tgttttcat	gcgtatgacac	ttgtacaatt	atctttcaa	agtaacttgg	ataataatga	3360
aataaaaactg	ttttgaacc	tgaataaaaa	aaaaaaaaa	aaaaaaaaa	a	3411

<210> 68

<211> 3140

<212> DNA

<213> Homo sapiens

<400> 68

ggctgcgagt	acctccatgg	tcccggtggc	tgtgacggcg	gcagtggcgc	ctgtccctgtc	60
cataaacagc	gatttctca	atttgcggga	aattaaaaag	caactgctgc	ttattgcggg	120
ccttaccgg	gagccccggcc	tactacacag	tagcaatgg	tcggcggagt	tggcttctc	180
tctccctgca	ttgcctctgg	ccgagctgca	accgcctccg	cctattacag	aggaagatgc	240
ccaggatatg	gatgcctata	ccctggccaa	ggcctacttt	gacgtaaag	agtatgatcg	300
ggcagcacat	ttccctgcatg	gctgcaatag	caagaaagcc	tatttctgt	atatgtattc	360
cagatatctg	tctggagaaa	aaaagaagga	cgatgaaaca	gttgatagct	taggccccct	420
ggaaaaaagga	caagtgaaaa	atgaggcgct	tagagaattt	agagtggagc	tcagcaaaaa	480
acaccaagct	cgagaacttg	atggatttgg	actttatctg	tatggtgtgg	tgcttcgaaa	540
actggacttgc	gttaaagagg	ccatttgatgt	gtttgtggaa	gtctactcatg	ttttgcctt	600
gcattgggga	gcctgggttag	aactctgtaa	cctgatcaca	gacaaagaga	tgctgaagtt	660
cctgtcttt	ccagacaccc	ggtgaaaga	gtttttctg	gtctatata	acacagagtt	720
gcagttgata	gaggaggccc	tgcaaaagta	tcagaatctc	attgtatgtgg	gtttctctaa	780
gagctcgat	attgtttccc	aaattgcagt	tgcctatcac	aatatcagag	atattgacaa	840
agccctctcc	attttaatg	agctaaggaa	acaagaccct	tacaggattt	aaaatatgg	900
cacattctcc	aaccttcttt	atgtcaggag	catgaaatcg	gagttgagtt	atctggctca	960
taacctctgt	gagattgata	aataccgtgt	agaaacgtgc	tgtgtaattt	gcaattatta	1020
cagtttacgt	tctcagcatg	agaaagcagc	cttataattt	cagagagccc	tgaatataaa	1080
tcctcggtat	cttggtgccct	ggacactaat	gggacatgag	tacatggaga	tgaagaacac	1140
gtctgctgt	atccaggcctt	atagacatgc	cattgagtc	aacaaacggg	actacagagc	1200
ttggtatggc	ctcgggcaga	cctatgaaat	ccttaagatg	ccatttact	gcctttatta	1260
ttatagacgg	gcccaccagc	tgcacccaa	tgattctcg	atgctgggtt	ctttaggaga	1320
atgttacgag	aaactcaatc	aactagtgg	agccaaaag	tgttatttgg	gagcttacgc	1380
cgtgggagat	gtggagaaaa	tggctctgg	gaaactggc	aaatctatcg	aacagttgac	1440
tgagtcaagaa	caggtgcggc	agtgttacat	caaataatatc	caagatatct	atccctgtgg	1500
ggaaatagta	gaacacttgg	aggaaagcac	tgccttcgc	tatctggccc	agtactattt	1560
taagtgc当地	ctgtgggatg	aagcttcaac	ttgtgcacaa	aagtgttgg	cattaaatga	1620
tacccgggaa	gaaggttaagg	ccttactccg	gcaaatccta	cagttcgg	accaaggcga	1680
gactcctacc	accgagggtgc	ctgctccctt	ttccctacct	gttcactct	ctgctaacaa	1740
taccccccaca	cgcagagttt	ctccactcaa	ttgtcttct	gtcacgccc	atgtggctac	1800
tctcaaggcca	gcacattgtt	agacccatct	taattaagcc	ttacctccat	gtaaagaaca	1860
gcacgtctgt	tccaaggacc	ttagcttctc	ttgtttctac	agatggcaac	agctccatag	1920

032796-132.ST25

ggcagacccgtt	tataatttacc	tttcaggagggcc	aactgacaca	atccctggca	gaacagacat	1980
tatcttgcca	gttagaaagta	cttctgtctc	acttatgtcc	aaagagtggc	tatagatctt	2040
ggccttttcc	cctgaatgtc	tttttttttt	ggcccccaag	aaagtccctt	ttatagcact	2100
tttagcacagg	caatgttaca	ggaaacaaagt	ttcaatgtc	ctgagagtga	aagaaggag	2160
gaaagtctgc	cactctaccc	tgagctggca	gtagggca	gaggatccctt	aggaagaagt	2220
cagagcaatg	gatacaaattg	accttgc	tggatttgc	gagcatgatc	cctattctga	2280
tgtcagagat	taggtttaaa	tggaaatagag	ctatccattt	gttcttactc	tctagggaga	2340
caatcttcca	aaacagttt	gggggggtct	tctaaagctt	tcaaatttgg	agtaacttta	2400
ttcaactaga	gttgaataaa	agaagggca	aaataatctc	acagagctt	gaactgctga	2460
tagcccttac	tgagggcaaa	agatggctat	atttttagct	atactcctac	caaagcaagc	2520
aaggagatag	gattatagat	aatttca	acatttggaa	ataacatttg	tgattataca	2580
gacaagaata	aactcactt	aagctggct	gttttaataa	attttcaacg	taatttgtcta	2640
tttttttccc	tcccatctgc	aacagaatac	attttttca	gcctttatct	agatgaggt	2700
aagggaatca	ttcttatgtt	gctcttggag	agtttcaggc	ctgtgc	atgtacagca	2760
ggaggttaata	tgctataatg	tctgctgtaa	tatatttgc	cagtagatgc	tatggatcat	2820
tctgagctca	gggtccagac	tttatttctt	ttcccagaat	tttgggttac	gtttttacct	2880
cctaacatata	gacacttcat	cttatattaa	ggaaggttt	gaatatctaa	tacgacttga	2940
attcatttgt	tactaagct	tctcaggccaa	gctgtatact	agttactgtt	ctccactgccc	3000
atgccttttc	aaggttccca	tggtccagaa	tgatgttga	ttcttaattt	ttctgtccct	3060
tttataattt	gttttaatga	tttgctaca	tttggaaattc	aataaaaaat	gtgaacaata	3120
aaaaaaaaaa	aaaaaaaaaa					3140

<210> 69

<211> 3513

<212> DNA

<213> Homo sapiens

<400> 69

ccgtgtatcca ggtgctgcta gtgggaagca cgctgtgaa ggaagtgcct tccggcgtgc
actggagca gttgccttct cagagcctgc tgaccacat cccaacggcg gggctccca
cttcgctagg aggaggcctg cttactgcc accaggcctg gctggatttc cgaaggcgc
tggaaagctct actacagaac tgccaggcag cttgtccct gctccagggg gccatcgaaa
gtgtgaaggc tggccccag cccatggagc ctggggaggt cggtcagctg ctacagcaga
cagaggctct gatgcagcag gtgcttagact cgccatggct ggcattggcta caatgccagg
ggggccggga gctgacatgg ctgaagcaag aggtcccaga ggtgaccctg agcccagact
acaggacggc aatggacaag gctgacgagc tatatgaccg gttggatgga ttgtgcacc
aactgacctt gcagagcaac cagcgaatac aggcctaga gttgtccaa acactggagg
cccgggaaag cggactgcac cagattgaag tgtgctgca gcagggtggc tggccagcac
tggaggaggc tggggagcc tcgctggaca tgctgtcca gccccaaaggc tctttcagg
agctgtatcca ggttggccag gacgggtca ggcaaggggaaagtttctg cagccgctga
ctggctggga ggcggctgaa ctggacccccc ctggggcacg ctttctggcc ctgcgagccc
agctgactga attctctagg gctttggccc agcgggtgcca ggggctggcg gatgtgaga
ggctgtttca gctttcagg gaggccttga cgtgggtgaa gggggccag cgagtgttgg
cagagctggc gcaggaacgc cgggggggtt tgttcagca gctcagctg cactgacca
ggcacccctga cttgcctctt gcccacttcc gaaagatgtg ggctctggcc acgggctgg
gctcagaggc catccggccag gagtgccgct gggcctggc ggggtccag gacacctggc
tggcccttggc cccaaagctt gaggcttac tgaagctacc accgggtggc agcacagcta
gcctgtgtgt cagccaggtc cccgctgcac ctgcccaccc tcccctgagg aaggcctaca
gttcgatcg gaatctgggg ccactattgc tgctgcccgc agaccagagg ctggaggagg tgccctgccc caggcatccc
ctactgtgcc tccaccaggc agctctgacc ccaggagcct caacaggcta cagctgtgc
tggcagagat ggtggccacg gagcgggagt atgtccggc tctagagtac actatggaga
actatcccc cgagctggat cggcccgatg tgcccccaggc cttccgcgtt cagcgtgccc
acctttttgg caacctggag aagctgcggg actttcactg caacttcttc ctgcgtgagc
tggaggcttg cacccggcac ccaccacggag tggcctatgc ttccctgccc cataggggtgc
agtttgggat gtacgcgttc tacagcaaga ataagcctcg ctccgatgcc ctgatgtcaa
gctatggca caccttcttc aaggacaagc agcaagcact gggggaccac ctggacccctgg

032796-132.ST25

cctcctaccc	gctaaagccc	atccagcgca	tgggcaagta	cgcactgctg	ctgcaggagc	1800
tggcacgggc	ctgcggggc	cccacgcagg	agctcagtgc	gctgcgggag	gcccagagcc	1860
ttgtcaactt	ccagctgcgg	cacggaaacg	acctgtggc	catggacgccc	atccagggtc	1920
gtgatgttaa	cctcaaggaa	caggggcagc	tggtgcgaca	ggatgagttt	gtggtgcgca	1980
ctgggcggca	caagtccgtg	cgccgcacatc	tccttttga	ggagctgctg	ctcttcagca	2040
agectcgcca	tggggccaca	gggggttgaca	catttgcccta	caagcgctcc	ttcaagatgg	2100
cagaccttgg	tctcaactgag	tgctgtggga	acagcaacct	gcgcgttcgag	atctgggtcc	2160
gcccggccaa	ggccaggggac	acctttgtgc	tgcaggcctc	cagcctggct	atcaagcagg	2220
cctggacacgc	tgacatctcc	cacctgtttt	ggaggcaggc	cgccccacaac	aaggagggtgc	2280
gcatggctga	gatgtgtcc	atgggtgtgg	ggaacaaggc	cttccgagac	attgtctcca	2340
gcgaggaagc	catcaacgac	cgcaccgtca	actatgtctt	gaagtgccga	gaagttcgct	2400
ctcgggcgtc	cattggcgta	gccccgtttt	accatgacag	cctctacctg	ggggcctcgaa	2460
actcccttcc	tggagacccct	gcctcttget	ctgttctggg	gtccctcaac	ctgcacccctgt	2520
acagagaccc	agctcttctg	ggtctccgt	gtccctgtta	tcccagcttc	ctagaggaag	2580
cagcacttgg	ggctgaggca	gagctggggc	gccaggccctc	tttgcactgt	gaggactcag	2640
agatctcgtc	ccaatgccc	tcagccagtg	gctccagtgg	ctctgacagc	agctgtgtgt	2700
cagggcaggc	cctgggttag	gcccctgggg	acttaccctg	tgtctgagcc	cgggactgg	2760
cgagcagtag	atccagcagc	ctgcagctcc	aaggAACATT	gcctctctgg	atctgtgtg	2820
accagggtgt	ggctgacacc	tgggtctaccc	ccaaacctaca	tgtgcaacgc	tgttactac	2880
cctttctgtat	gtgtgtggcc	attggactaa	ctggcacggg	gcctctctag	ggaagtctgg	2940
tttagagcc	tgaataggct	cctggccccc	tgacccttc	tctgtcccc	agctcccatc	3000
ccagttgtgg	gtaagaata	ggctagagca	gacattgggt	gttccatgc	tgttaggtgg	3060
tgggggacca	tgtgcctcta	ggcagtgact	agggtgcccc	caccctcag	gaagaacaca	3120
gggtggctcc	tagcagctga	tcccaatgc	ctggccttaa	agccgagetc	agttaccata	3180
ggcacaggtc	cacctctact	ggccctcat	gcttgcctt	cctggccccc	aggcccagcc	3240
ccttttact	ggggcagttt	cgttatTTT	acttgcattcc	tttgcataaa	ctttcaatag	3300
aattgtctaa	aattatctta	ctgggtgtta	ggccttgg	gtctcagaga	aggagtctag	3360
gtctttgtat	tgtgatttaa	tcttttattt	gtttataata	aaaaatagac	tgatttgtaa	3420
aaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	3480
aaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	3513

<210> 70

<211> 3597

<212> DNA

<213> Homo sapiens

<400> 70

catgccagtt	acttcctcag	aaaaatattt	tcttccttc	ttctttcagt	atggtttaa	60
atttgggaaac	agtggataac	ccaaagtgtcc	cacaggccaa	ggtatattcc	aatggcagca	120
tgatccctgc	acccaaagcc	agccccctaaa	gcctaccctt	tgtgcaccgc	cagcctggta	180
agttagcttgc	gctgttgg	aggagctaca	agtggaaagag	aaatgttttt	aaataaatcc	240
caaagtgttga	ggcagactgt	ccaggactgt	tcccaggaag	aagcaggagt	tacccacagg	300
aaaagtctct	gacctggtcc	cctcaggccc	agctacctgc	gcccaccagg	agtgaagg	360
gatgtactgg	cccacgtatc	ccacccccc	catgcacca	ggcccttgc	accgtgtctc	420
ccgttgcacat	tctggcttct	gcctgtgtc	ctccgtccac	gagcatcc	cctgtccctc	480
ctcattccac	cgtgtctctc	ctgcacacat	agcctctgtc	ccagggcgat	ttatccactt	540
gagtagacca	gctgtcaga	cctctcagcc	cagccctctg	tgcactgcccc	agccccatcc	600
taccccccaccc	aaagctgcct	tcctggctgt	aggagctccc	tcgtctagcc	aaggccctat	660
gggtccccc	ccgaggatcc	acaagcaatg	acttccaaa	tgacccctcc	tgcaagaaga	720
atcccttacca	ctgtttccag	agccgtgaac	gatgtgtga	tggcccagg	ctcagcacc	780
ccctctgtga	cctaaaaaga	aaagctcaat	ttccatctgt	cttcttccc	aggaccaagg	840
ggacacagta	atgtgaagtc	aaataacttaa	ccgagcaaa	ggccagtgtt	gttatcagtc	900
aaggacaaac	ctcccaccc	acagacagcc	aagcagtgg	ggaaagacag	acagacatag	960
gttaggaaggt	gctctgcagg	cacaaggccc	agagaagccc	ctctccggga	acttccctg	1020
ctcccttccag	gaacagttag	cccagtgg	agtccca	agctcttca	ggccttcaag	1080
gggtcttcc	atgactgat	cacctccagg	agctcacctg	accccccagag	aagacctacc	1140
ccaggcagct	ccgtgccc	gttctcccc	atgccccaa	tccccccag	ccatccctcc	1200

032796-132.ST25

tggtcctcgt	ctacatcaag	ggcctttcc	ccttcctc	ccagctctca	ggacaggta	1260
ctggagacc	ttgaaccctc	agcctttcc	tttaaaaaaaaa	acaaaacaaa	acaaaactgt	1320
gggcattta	tttgggattt	tgagttgtt	tggttttgt	tttatatct	taatagttcg	1380
aaagtaagaa	gggagccctg	ctatggatgt	taagtccaaa	ttactcggtt	agtggagca	1440
aacacctatga	cttccaaggg	gtgaggaga	gttcaaggg	acaggaggag	cctccccat	1500
tgaaaaaaaaaa	aaaatgggtc	aggacattcc	ctggatgagg	acaatgctag	gggtggcata	1560
tcacatggct	gctgttattc	ctggtgcttc	cccacactt	tgacagatgg	agtcccttc	1620
ctaccgcctc	ctgcacccctc	accctacagg	cattctctat	taggaaacaca	agagccttat	1680
cttatacgat	ggggagctga	gacacagct	caggtAACAC	tgacacagct	cccgaatgag	1740
gctgggacac	tctcaAAACC	tctcctcatg	gtgctaaggg	tgcgtgc	ttgacaggaa	1800
acctaataatga	ccactccctc	catttggaaa	gtatccact	gcagtaaaag	ttcagacat	1860
gcaagagaga	gtttttttt	ttttttacta	caaattttt	ctccccata	aaattatTTT	1920
tttatttagag	ggagatcca	agttttaaaaa	gtatataaaaa	tttttgggtt	gttagagaaaa	1980
tacataactca	tttagatccc	gattaaattc	tttgagtaga	ctgggtccta	ccagaaagca	2040
aagcaaagt	aaacaaaacg	aaacaaaatc	cttcatatac	aaaaagaact	ttctgtttgt	2100
attggcagag	gtatggaggt	gattcaggt	ggctgaaaat	cctgggtgc	gggagcctca	2160
ctttatttcca	ttcccaccccg	ctttagatgtc	tatgtttggc	tctctggct	gcccctggta	2220
ctgccgaatc	ctacacatct	tttatcagct	ttctccaaac	ttttaaggagg	ctctgtgagg	2280
gatgggtcat	gggaagaccc	aagttttccc	tccgcagga	ttgcaaaagc	aagtagactt	2340
ggtctatgca	gcttttcttc	caacaatttc	tttatttga	attagaactt	ccttttttag	2400
tatctttgtat	cttttgcactc	aagcacattt	ttgaagggt	cccttacaaa	agtagaattt	2460
aaaacagagg	atacagttaa	agagcaaccc	aaaggacgt	taagaaaccc	agaccacttc	2520
accgaacagg	actaaggaac	actttcgtgc	acagaagtca	gccgcaatcc	aggcacagga	2580
cgaagatggg	atacacgtgc	tcatctgtct	gtccctctt	cctctccctc	cccgacgttc	2640
tagtttagctt	gtttagttgt	taaaccttct	tttctttaaa	tggaaagctt	gtttacccatca	2700
aagaatcttgc	tttccattcg	gaaaccaacg	attttgggtt	tttagaatgg	cagccctccc	2760
ctcaccactc	cctaccttgg	cctgggtgtcc	ttgagacata	cgtctttgc	ttagtctgt	2820
tttggctgt	tttggcagga	acgaggccctc	caggccctga	gggtggagg	aaggatttgg	2880
tgccactgcc	ctcccccac	ctttagcatg	tagggccag	cccatctctt	ccagcagggt	2940
cctgctgagt	taccatagca	accagcaact	ccaggttacc	acaacagaca	atggctcagc	3000
gagccgacgt	gtggggatga	tgcagggggtt	ttggcccagc	caaggaccc	agagttgagc	3060
ttcaaatgt	agagaagggg	agaaacagga	ttgaagggt	ttttaaggaa	ctggcagggg	3120
tcttttagtc	acatagagaa	gcccgttgaag	gaggttagggc	agtttatctc	tgttccagtc	3180
accccttcc	agcccccattcc	cacttctgtt	tcaaactaaa	gtcccaccc	cgaacattga	3240
ccctttgtt	gaacaaagca	aagcatatct	ttaaacaaca	gtttttaaaat	gagcctcaaa	3300
tgtatgttgc	tgagatctc	aagaagagg	tcttctgtt	tttatttttta	aagaagagta	3360
tccttagtaaa	atattaaaaa	aaaattaaaaa	agttttaaa	aaggaaaccc	atgttatttta	3420
aattggagcc	cagtgttaac	ttggtaaagg	caagttctg	tacctttgtt	ataattaatt	3480
gtataacctgt	gtatgttaat	ataaggcatt	cctattttgc	agttcagaac	aaaaaaaact	3540
tatttgtat	atagaataaa	gttttattaaa	aaataagaaa	aaaaaaaaaa	aaaaaaaaaa	3597

<210> 71
<211> 855
<212> DNA
<213> Homo sapiens

<400> 71						
cgctcaatta	tctactcgag	tcttagactcg	aggcgccgc	ccatttgtca	ctaaagcagg	60
ggatagcaac	ggcgtcccte	ctcccccgtc	agctgcagcc	cgcagtcctc	acagtgtaa	120
catgccacgt	ggtagtctct	gtccatggac	accacacgg	tgttgtctc	gcagccctgt	180
gcagggagga	taggacggc	acaggaggcg	cattttgggt	aaaaaccgt	gtgatagtct	240
cgcacgcagt	agatgttgtt	ctccacgtcc	acggtgaagg	gaaccccg	caggcactca	300
ttgcacacgg	agcacccggaa	gcagcctgg	tggtaggact	tgcggagg	ctgcaggatc	360
atttccatga	tgagatgtcc	acacacgtg	cattttgtgg	ccgtctgt	gaacccggag	420
tacaggaagt	cctccctggca	gtacacttc	tcacccacgt	tgttagaacgc	cttcccacgg	480
agtctgttcc	cacacgagtc	gcaggtgaag	cagtcaagt	gataaagact	ccccatgcc	540
tggcacgcct	gctgggctcc	gtagatgcca	agcccacact	tgtacaaat	gccgaagtag	600

032796-132.ST25

tcccgccgcg	tgcgcgcctc	gagcgcccgc	tccagctccc	gggtgagcgc	ctccagccgc	660
cgctcgccgc	cgcttgggcc	gccctcccg	ccagggggca	gcggggagtgc	aggcagcggg	720
aaggggggcc	gccccgcagg	ctccggggag	cgagcggcgc	cggggcaggc	gccggccgg	780
aggaagttag	cgtaggctt	agtgcacaat	ggaaattcgg	atccggtcga	actagttct	840
aggatcttt	ttttt					855

<210> 72

<211> 3791

<212> DNA

<213> Homo sapiens

<400> 72

acagacggcg	ggtaaacatg	gcgtcctcga	cttggctga	gacgtgatag	gcctgccttc	60
tggtaaga	tgtggcgagt	aaaaaaaactg	agcctcagcc	tgtcgccctc	gccccagacg	120
ggaaaaaccat	ctatgagaac	tcctctccgt	gaacttaccc	tgcagcccg	tgccctcacc	180
acccctgaa	aaagatcccc	cgcttgcctc	tcgctgaccc	catcaactgtg	caagctgggg	240
ctgcaggaag	gcagcaacaa	ctcgctccta	gtggattttg	taaataacaa	gaggacagac	300
ttatcttcag	aacatttcag	tcatctccta	aagtggctag	aaacttgtca	gcatgaatca	360
gatgagcgc	ctctagatcc	aattccccaa	attagctcta	ctccctaaaac	gtctgaggaa	420
gcagtagacc	cactggcaa	ttatatgggt	aaaaccatcg	tccctgtacc	atctccactg	480
gggcagcaac	aagacatgtat	atttgaggcc	cgtttagata	ccatggcaga	gacaaacagc	540
atattttaa	atggaccttt	gagaacagac	gatctgtga	gagaggaggt	ggcacccctgc	600
atgggagaca	ggtttcaga	agttgctgt	gtatctgaga	aaccttatctt	tcaaggaatct	660
ccgtcccatc	tcttagagga	gtctccacca	aatccctgtt	ctgaacaact	acattgtcc	720
aaggaaagcc	tgagcagtag	aactgaggt	gtgcgtgagg	atttagtacc	ttctgaaagt	780
aacgccttct	tgccttcctc	tgttctctgg	ctttccctt	caactgcctt	ggcagcagat	840
ttccgtgtca	atcatgtgga	cccagaggag	gaaattgttag	agcatggcgt	tatggaggaa	900
agagaaatga	ggttccac	acatcctaag	gagtcgtaaa	cagaagatca	agcactgtc	960
tcaagtgtgg	aagatattct	gtccacatgc	ctgacaccaa	attctagtaga	aatggaatcc	1020
caagaagtc	caggcccage	agtagaaagat	gttggtagga	ttcttggctc	tgatacagag	1080
tcttggatgt	ccccactggc	ctggctggaa	aaagggtgtaa	atacctccgt	catgctggaa	1140
aatctccgc	aaagcttatac	cttccctcg	atgctcggg	atgctgcaat	tggcactacc	1200
cctttctcta	cttgcctcggt	ggggacttgg	tttactcctt	cagcaccacaca	ggaaaagagt	1260
acaaacacat	cccagacagg	cctgggttggc	accaagcaca	gtacttctga	gacagagcag	1320
c ^t ccctgtgt	gccggcctcc	agatctact	gccttgcctc	gacatgactt	ggaagataac	1380
ctgctgagct	ctctgtcat	tgtggagttt	ctctccggc	agcttcggg	ctggaagagc	1440
cagctggctg	tccctcaccc	agaaacccag	gacagtagca	cacagactga	cacatctcac	1500
agtggatata	ctaataaaact	tcaagcatctt	aaggagagcc	atgagatggg	acaggcccta	1560
cagcaggcca	gaaatgtcat	gcaatcatgg	gtgcttatct	ctaaagagct	gatatccttg	1620
cttcacccat	ccctgttgca	ttttagaagaa	gataagacta	ctgtgaatca	ggagtctcg	1680
cgtcagaaa	cattggctcg	ttgctgtttt	gatttgcgtga	agaaattttag	ggcaaagctc	1740
cagagcctca	aagcagaaag	ggaggaggca	aggcacagag	aggaaatggc	tctcagaggc	1800
aaggatgccc	cagagatagt	gttggaggt	ttctgtgcac	acgcccagca	gfcgcatac	1860
cagctggAAC	aggaccttagc	atccatcgcc	gaattcagag	gcctctgaa	ggatgcccag	1920
acccaactgg	taggcttca	tgccaagcaa	gaagagctgg	ttcagcagac	agtgatctt	1980
acttctacct	tgcaacaaga	ctggagggtcc	atgcaactgg	attatacaca	atggacagct	2040
ttgctgagtc	ggtcccggaca	actcacagag	aaactcacag	tcaagagcca	gcaagccctg	2100
caggaacgt	atgtggcaat	tgaggaaaag	caggagggtt	ctaggggtct	ggaacaagtc	2160
tctggccagt	tagaggagt	caaaggccaa	acagaaacaac	tggagttggaa	aaacatctgt	2220
ctagcaacag	atctccgggc	tcagttcgag	attctggcca	acatggacag	ccagctaaaa	2280
gagctacaga	gtcagcatac	ccattgtgcc	caggacctgg	ctatgaagga	tgagttactc	2340
tgccagctt	cccaagagcaa	tgaggaggcag	gctgctcaat	gcgtaaaggaa	agagatggca	2400
ctaaaacaca	tgcaggcaga	actgcagcag	caacaagctg	tccctggccaa	agaggtgcgg	2460
gacctgaaag	agaccttggg	gtttgcagac	caggagaatc	aggttgcgtca	cctggagctg	2520
ggtcaggtt	agtgtcaatt	gaaaaccaca	ctggaaagtgc	tccggggagcg	cagcttgcag	2580
tgtgagaacc	tcaaggacac	tgtagagaac	ctaaccggcta	aactggccag	caccatagca	2640
gataaccagg	agcaagatct	ggagaaaaca	cggcagtaact	ctcaaaagct	agggctgctg	2700

032796-132.ST25

actgagcaac tacagagcct gactctctt ctacagacaa aactaaagga gaagactgaa	2760
caagagaccc ttctgtcgag tacagcctgt cctcccaccc agaacacccc tctgcctaatt	2820
gacaggacct tcctggaaag catttgaca gcagtgccag atgaagagcc agaatcaact	2880
cctgtccct tgcttggaaag tgacaagagt gcttcaccc gagtagcatc aatggttcc	2940
cttcagcccg cagagacccc aggcatggag gagagcctgg cagaaatgag tattatact	3000
actgagctc agagtcttgc ttccctgcta caagagtcta aagaagaagc catcaggact	3060
ctgcagcgaa aaatttgta gtcgcaagct aggctgcagg cccaggaaga acagcatcag	3120
gaagtccaga aggcaaaaaga agcagacata gagaagctga accaggcctt gtgcttgcgc	3180
tacaagaatg aaaaggagct ccaggaagtg atacagcaga atgagaagat cctagaacag	3240
atagacaaga gtggcgagct cataaggcctt agagaggagg tgacccaccc taccgcctca	3300
cttcggcggt cgagacaga gaccaaagtg ctccaggagg cctggcaggc cagctggact	3360
ccaaactgcca gcctatggcc accaatttggta tccaggagaa agtgtggctc tctcaggagg	3420
tggacaaact gagagtgtat ttcttggaga tgaaaaatga gaaggaaaac tcctgatcaa	3480
gttccagagc ccatagaaat atccataggag agaaccttcg gcgcctctgac aaggagttag	3540
aaaaactaga tgacattgtt cagcatattt ataagaccc tctctcttatt ccagaggtgg	3600
tgaggggatg caaagaacta caggattgc tggatttctt gagctaagaa actgaaagcc	3660
agaatttgtt tcaccttctt ttacctgcaa tacccttta ccccaataacc aagaccaact	3720
ggcatagagc caactgagat aaatgctatt taaataaagt gtatTTATG aaaaaaaaaaa	3780
aaaaaaaaaa a	3791

<210> 73

<211> 1683

<212> DNA

<213> Homo sapiens

<400> 73

ctctgagttt ccagtggta gttccccag gatggggacc acagccagag cagccttgg	60
cttgacctat ttggctttt ctctgtgtc ctctgaggga ggcttcacgg ctacaggaca	120
gaggcagctg agggcagagc actttcaaga agttgtctac gcagctccc cctcccccacc	180
cctatcccgaa agcctccccca tggatcaccc tgacttctt cagcatggcc ctcccttga	240
gggacagagt caagtgcagc cccctccctc tcaggaggcc acccctctcc aacagggaaa	300
gctgtctactt gcccaacttcc ctgtgtaaaaa ggaagtgggt cccctctcc ctcaggaagc	360
tgtccccctc caaaaagagc tggccctctt ccagcacccc aatgaacaga aggaaggaac	420
gccagcttca tttggggacc agagccatcc agaaccttgag tcttggatgg cagccagca	480
ctgccaacag gaccgttccc aagggggctg gggccacccg ctggatggct tcccccttgg	540
gcggcccttcc ccagacaatc tgaaccaaattt ctgccttcc aaccgtcagc atgtggata	600
tggcccttgg aaccttaccac agtccagcta ctcccacccctc actcgccagg gtgagaccct	660
caatttcttgc gagattggat attccctgtc ctgccactgc cgcagccaca caaaccgcct	720
agagtgtgcc aaacttgtt gggaggaagc aatgagccga ttctgttgggg cctgatgttcc	780
ggtaagacc cgacccactt ggtgtgtcac gggccacccgg gaggctcggt tctctgtctt	840
ccaggagggaa gtcctccacg cacaactacca gtcctggggcc tggcccttgcctt atcagctga	900
tatcccttgc ggtcttggcc tgcctttccc tcctgggggtt cccacattgg acaatataaa	960
gaacatctgc cacctgagggc gttccgtc tggccacccg aacctgcccacttgcaccc	1020
cctacaaaagg gagctgtgg cactgtatcca gctggagagg gagttccacgc gctgtgtccg	1080
ccaggggaaac aatcacaccc tgcatacgaaa ggcctgggg gatacccttgc acaaataactg	1140
tgaccggggat tatgtgtga agacccacca ccacttgttgc tggcccccacc ctccctgg	1200
tactcggtt gaggcttttgc cccgtgggc tccttacccc aactatgacc gggacatctt	1260
gaccattggac atcagtcgag tcaccccaat cctcatgggc caccctgttgc gaaacccaaag	1320
agttcttccacc aagcataaaac atattcttgg gctgtatccac aacatgactt cccgtgtctg	1380
tgaccccttgc tttccagaac aggctgtctg tgcagaggag gagaattaa ctttcatcaa	1440
tgtatgtgtt ggtccccccgac gtaacatctg gcgcagaccctt gccctctgttgc tttaccttgg	1500
tcctggggat gaacaggtca actgtttcaaa catcaattt ctgagggaccc tggctcttagt	1560
gtctggagac actgagaacg ccaagggcca gggggagccag ggctcaactt gggaaacaaa	1620
tatcagctcc acctctgtacg ccaagggaaatc atgagtcacc ccagagccctt agagggtcag	1680
atg	1683

<210> 74

032796-132.ST25

<211> 1696

<212> DNA

<213> Homo sapiens

<400> 74

cacctaataaag	ccaaaatggg	aaaggaaaaag	actcatatca	acattgtcgt	cattggacac	60
gttagattcg	gcaagtccac	cactactggc	catctgatct	ataaaatgcgg	tggcatcgac	120
aaaagaacca	ttgaaaaatt	tgagaaggag	gctgctgaga	tggaaaggg	ctccttcaag	180
tatgcctggg	tcttgataa	actgaaagct	gagcgtgaac	gtggtatcac	cattgatatac	240
tccttgcgga	aatttgagac	cagcaagtac	tatgtacta	tcattgtatgc	cccaggacac	300
agagacttta	tcaaaaacat	gattacaggg	acatctcagg	ctgactgtgc	tgtcctgatt	360
gttgctgctg	gtgttgtga	atttgaagct	ggtatctcca	agaatgggc	gaccggagag	420
catgcccttc	tggcttacac	actgggtgt	aaacaactaa	ttgtcggtgt	taacaaaatg	480
gattccactg	agccacccta	cagccagaag	agatatgagg	aaattgttaa	ggaagtcagc	540
acttacatta	agaaaattgg	ctacaacccc	gacacagtag	catttgc	aatttctggt	600
tggaatgggt	acaacatgct	ggagccaagt	gctaacatgc	cttgggtcaa	gggatggaaa	660
gtcaccggta	aggatggcaa	tgccagtgg	accacgtgc	ttgaggctgt	ggactgcac	720
ctaccaccaa	ctcgcccaac	tgacaagccc	ttgcgcctgc	ctctccagga	tgtctacaaa	780
attgggtgta	tttgtactgt	tcctgttggc	cgagtgaga	ctgggttct	caaaccgg	840
atgggtgtca	ccttgc	agtcaacgtt	acaacggaa	taaaatctgt	cgaaatgcac	900
catgaagctt	tgagtgaagc	tcttctggg	gacaatgtgg	gcttcaatgt	caagaatgtg	960
tctgtcaagg	atgtcg	tggcaacgtt	gctgggtgaca	gcaaaaaatga	cccaccaatg	1020
gaagcagctg	gcttca	tcaagggtatt	atcctgaacc	atccaggcca	aataagcgcc	1080
ggctatgccc	ctgtattgg	ttgccccac	gctcacattt	catgcaagtt	tgctgagctg	1140
aaggaaaaa	ttgatcgcc	ttctggtaaa	aa	gctggaa	atggccctaa	1200
tctggtgat	ctgcattt	tgatatgg	cctggca	ccatgtgtgt	tgagagctc	1260
tcagactatc	caccc	ttgttgc	gttcgtgata	tgagacagac	agttgcgg	1320
gggtgtcatca	aagcgtg	caagaaggct	gctggagctg	gcaagg	caagtctg	1380
cagaaaagtc	agaaggctaa	atgaatattt	tccctaa	ctggccac	actcttaatc	1440
agtgggtgaa	gaacggctc	agaactgttt	gttcaattt	gccatttaa	tttagtagta	1500
aaagacttgt	taatgataac	aatgcac	aaaac	tttca	gaaggaaagg	1560
gtggaccact	ttggtttct	ttttgcgt	ttggcgttt	tttttattt	ttttaaaat	1620
cagtacttt	taatggaaac	aacttgcac	aaaatttgc	acagaattt	gagacc	1680
aaaaaaagtt	aatgag					1696

<210> 75

<211> 7680

<212> DNA

<213> Homo sapiens

<400> 75

gaagagcaag	aggcaggctc	agcaaatggt	tcagccccag	tcccccgtgg	ctgtca	60
aagcaagccc	ggttttat	acaatggaaa	acactatcg	ataaaatcaac	agtggagcg	120
gacctacca	ggttatgt	ttgtttgtac	ttgttatgg	ggaagccag	gttttaact	180
cgaaagtaaa	cctgaagctg	aagagactt	cttgcac	tacactgg	acacttacc	240
agtgggtgac	acttatgagc	gtcctaaaga	ctccatgatc	tggactgt	cctgcac	300
ggctggccg	ggggataaa	gctgtaccat	cgcaaaaccgc	tgccatgaa	gggg	360
ctacaagatt	ggtgacac	ggaggagacc	acatgagact	ggtgg	tac	420
tgtgtgtctt	ggttatggaa	aaggagaat	gac	ccatagct	agaagtgtt	480
tgatcatgt	gctgggactt	cctatgtgt	cg	ggagaac	tggagaac	540
ctggatgtat	gtagattgt	ttgcctgg	agaaggc	gac	ccat	600
tagaaataga	tgcaacgatc	aggacaca	gacatctt	agaattgg	acac	660
caagaaggat	aatcgaggaa	acctgctc	gtgc	catctgc	acagg	720
gtggaaagtgt	gagaggcaca	cctctgt	gaccacat	agcggat	gccc	780
cgatgttcgt	gcagctgtt	accaacc	gcct	cacccc	cac	840
ctgtgtcaca	gacagtgg	ttgtctact	tgtgggat	cagtgg	ttga	900
aaataagcaa	atgc	ttgc	caacgg	gatc	agacag	960

032796-132.ST25

aaccaggact tacggtgca acttaaatgg agagccatgt gtcttaccat tcacctacaa	1020
tggcaggacg ttctactcct gcaccacgga agggcgacag gacggacatc tttggtcag	1080
cacaacttcg aattatgagc aggaccagaa atactcttc tgacacagacc acactgttt	1140
ggttcagact caaggaggaa attccaatgg tgccttgc cacttcccct tcctatacaa	1200
caaccacaat tacactgatt gcacttctga gggcagaaga gacaacatga aagtgggtgg	1260
gaccacacag aactatgatg ccgaccagaa gtttgggttc tgccccatgg ctgcccacga	1320
ggaaatctgc acaaccaatg aaggggtcat gtaccgcatt ggagatcagt gggataaagca	1380
gcatgacatg ggtcacatga tgaggtgcac gtgtgttggg aatggtcgtg gggaaatggac	1440
atgcattgcc tactcgcaac ttgcagatca gtgcattgtt gatgacatca cttacaatgt	1500
gaacgcacaca ttccacaagc gtcatgaaga ggggcacatg ctgaactgtt catgcttcgg	1560
tcagggtcgg ggcaggtgga agtgtgatcc cgtagcaccatg tggcaggatt cagagactgg	1620
gacgttttat caaattggag attcatggga gaagtatgtt catggtgtca gataccatgt	1680
ctactgctat ggccgtggca ttggggagtg gcattgccaat cctttacaga cctatccaag	1740
ctcaagtggc cctgtcgaag tatttatcac tgagactccg agtcagccca actccccc	1800
catccagtgg aatgcaccac agccatctca catttccaag tacattctca ggtggagacc	1860
taaaaattct gtaggccgtt ggaaggaaagg taccatacca gcccacttaa actcctcac	1920
catcaaaggc ctgaagcctg gtgtggataa cgagggccatg cttcatcagca tccagcgt	1980
cggccacccaa gaagtgactc gcttgcattt caccaccacc accaccacgca cacctgtgac	2040
cagcaacacc gtgacaggag agacgactcc ctttttcctt ctgtggcca cttctgaatc	2100
tgtgaccgaa atcacagcca gtagctttgtt ggtctcctgg gtctcagctt cccacaccgt	2160
gtcgggattt cgggtggaaat atgagctgag tgaggaggaa gatgagccac agtacctgga	2220
tcttccaagc acagccactt ctgtgaacat ccctgacccat cttcctggcc gaaaatacat	2280
tgtaaatgtc tatcagatat ctgaggatgg ggagcagatg ttgatcctgtt ctacttcaca	2340
aacaacagcg cctgatgcccc ctcctgaccc gactgtggac caagttgtt acacccat	2400
tgttggtcgc tggagcagac cccaggctcc catcacaggg tacagaatag tctattcgcc	2460
atcagtagaa ggttagcagca cagaactcaa ctttccgttactt ccgtcaccct	2520
cagtgcatttgc caacctgggtt ttcagtataa catcaactatc tatgtgtgg aagaaaatca	2580
agaaaagtaca cctgttgc tcaacaaga aaccactggc acccccacgct cagatacagt	2640
gcctctccc agggacctgc agtttgcggaa agtgcacagac gtgaagggtca ccatcatgt	2700
gacaccgcct gagagtgcag tgaccggcta ccgtgtggat gtatcccccg tcaacctgccc	2760
tggcgagcac gggcagaggc tgcccatcag caggaacacc ttgcagaag tcaaccggc	2820
gtccccctggg gtcacccattt acttcaaaatgtt ctttgcagtg agccatgggaa gggagagcaa	2880
gcctctgact gtcacacaga caacccaaact ggatgtccc actaacctcc agtttgc	2940
tgaaactgtat tctactgtcc ttgtggatg gactccaccc tggggcccaaa taacagata	3000
ccgactgacc gtggcccttta cccgaagagg ccagcccccagg cagtacaatg tgggtccctc	3060
tgtctccaag tacccttgc ggaatctgca gcctgcattt gaggatcaccg tattccctgt	3120
ggccataaaag ggcaaccaag agagccccaa agccactggaa gtctttacca cactgcaccc	3180
tgggagctt attccacccat acaacaccgc ggtgactgag accaccatcg tgatcacatg	3240
gacgcctgtt ccaagaattt gtttaagctt ggggttacgaa ccaagccagg gaggagaggc	3300
accacgagaa gtgacttcag actcaggaaatg catcgttgc tccggcttgc ctccaggagt	3360
agaatacgtc tacaccatcc aagtccctgag agatggacag gaaagagatg cgccaattgt	3420
aaacaaaatgtt gtgacaccat tgcctccacc aacaacttgc catctggagg caaaccctga	3480
caactggatgt ctcacaggatc ctttggagatc gggcaccacc ccagacattt ctggatata	3540
aattaccaca accccatcaa acggccacca gggaaattttt ttggagaag tggtccatgc	3600
tgtatcagac tcttcactt ttgataacatc ggttccggc ctggagatc atgtcaatgt	3660
ttacactgtc aaggatgaca agggaaatgtt ccctatcttctt gataccatca tcccacgtt	3720
tcctcctccc actgacccatc gattcaccaat cattgttcca gacaccatgc gtgtccatgc	3780
ggctccaccc ccatccattt attaaccaa cttccctggt cgttactcac ctgtaaaaaa	3840
tgaggaagat gttgcagatg tgcattttc tccttcagac aatgcgttgg tcttaacaaa	3900
tcttcctgcct ggtacagaat atgttagttag tgcctccatgt gtctacgaaac aacatgagag	3960
cacacccctt agaggaaagac agaaaaacagg tcttgcatttcc ccaactggca ttgactttc	4020
tgtatattact gccaacttcc ttactgttca ctggattgtt cctcgacccca ccatcactgg	4080
ctacaggatc cgcctccatc ccgacccatc cagtgggaga cctcgacccca atcgggttgc	4140
ccactctccgg aattccatca ccctcacccaa cctcacttcca ggcacacagat atgtggtcag	4200
catcgatgtt cttaatggca gagagggaaatg tcccttattt gatggccaaat aatcaacatgt	4260
ttctgtatgtt ccgagggacc ttggaaatgtt tgctgcgacc cccaccacgacc tactgtatc	4320
ctggatgtt cctgtgtca cagtgcata ttacaggatc acttacggag aaacaggagg	4380

032796-132.ST25

aaatagccct	gtccaggagt	tcactgtgcc	tgggagcaag	tctacagcta	ccatcagcg	4440
ccttaaacct	ggagggttatt	ataccatcac	tgtgtatgt	gtcactggcc	gtggagacag	4500
ccccgcgaac	agcaagccaa	tttccattaa	ttacccaaca	gaaattgaca	aaccatccc	4560
gatgcaagt	accgatgtt	aggacaacag	cattagtgtc	aagtggctgc	cttcaagttc	4620
ccctgttact	ggttacagag	taaccaccac	tcccaaaaat	ggaccaggac	caacaaaaac	4680
taaaactgca	ggtcagatc	aaacagaaat	gactattgaa	ggcttgcagc	ccacagtgg	4740
gtatgtggtt	agtgtctatg	ctcagaatcc	aagcggagag	agtcaagctc	tggttcagac	4800
tgcagtaacc	aacattgtatc	gccctaaagg	actggcattc	actgtatgtgg	atgtcgattc	4860
catcaaaaatt	gcttggaaa	gcccacaggg	gcaagtttcc	aggtacaggg	tgacctactc	4920
gagccctgag	gatgaaatcc	atgagctatt	ccctgcacct	gatggtgaag	aagacactgc	4980
agagctgca	ggcctcagac	cgggttctga	gtacacagtc	agtgttgtt	ccttgcacga	5040
tgatatggag	agccagcccc	tgattggAAC	ccagttccaca	gctattcctg	caccaactga	5100
cctgaagttc	actcaggatc	cacccacaag	cctgagcgc	cagtggacac	cacccaatgt	5160
tcagctca	ggatatcgag	tgccgggtgac	cccccaaggag	aagaccggac	caatgaaaga	5220
aatcaaccc	gtccctgaca	gctcatccgt	ggttgtatca	ggacttatgg	tggccaccaa	5280
atataa	atgtgtctatg	ctcttaagg	cactttgaca	agcagaccag	ctcagggtgt	5340
tgtcaccact	ctggagaatg	ttagcccccacc	aagaaggct	cgtgtgacag	atgctactga	5400
gaccaccatc	accattagct	ggagaaccaa	gactgagacg	atcaactggct	tccaaaggta	5460
tgccgttcca	gccaatggcc	agactccaaat	ccagagaacc	atcaagccag	atgtcagaag	5520
ctacaccatc	acaggttac	aaccaggcac	tgactacaag	atctacctgt	acacccatgaa	5580
tgacaatgt	cgagatccc	ctgtggatcat	cgacccctcc	actgcccatt	atgcaccatc	5640
caacctgcgt	ttccctggca	ccacacccaa	ttcctgtctg	gtatcatggc	agccgcacg	5700
tgccaggatt	accgctaca	tcatcaagta	tgagaaggct	gggtctcc	ccagagaagt	5760
ggtccctcgg	ccccccctg	gtgtcacaga	ggctactatt	actggcctgg	aaccggaaac	5820
cgaatataca	atttatgtca	ttgcctgaa	gaataatcg	aagagcgagc	ccctgattgg	5880
aaggaaaaaa	acagacgagc	ttccccaact	ggtaaccctt	ccacacccaa	atcttcatgg	5940
accagagatc	ttggatgttc	cttccacagt	tcaaaagacc	cttctegtc	cccaccctgg	6000
gtatgacact	ggaaatggta	ttcagtttcc	ttggacttct	ggtcagcaac	ccagtgttgg	6060
gcaacaaatg	atcttggagg	aacatggttt	taggcccacc	acaccggccca	caacggccac	6120
ccccataagg	cataggccaa	gaccatacc	gccgaatgt	ggacaagaag	ctctctctca	6180
gacaaccatc	tcatggcccc	cattccagga	cacttctgag	tacatcattt	catgtcatcc	6240
tgttggcact	gatgaaagaa	ctttacagtt	cagggttctt	ggaacttcta	ccagtgcac	6300
tctgacaggc	cttaccagag	gtgccaccta	caacatcata	ttggaggac	tgttggactt	6360
gcagaggcat	aagggttccgg	aagaggttgc	taccgtggc	aactctgtca	acgaaggctt	6420
gaaccaacct	acggatgact	ctgtcttgc	cccctacaca	gtttccatt	atgcccgttgg	6480
agatgagttt	gaacgaatgt	ctgaatcagg	ctttaaactg	tttgccagt	gtttaggctt	6540
tggaaagtgt	catttcagat	gtgatttc	tagatgtgc	catgacaatg	gtgtgaacta	6600
caagatttgg	gagaagtggg	accgtcaggg	agaaaaatggc	cagatgtat	gctgcacatg	6660
tcttggaaac	ggaaaaggag	aattcaagt	tgaccctcat	gaggcaacgt	gttacgatga	6720
tggaaagaca	taccacgtag	gagaacagt	gcagaaggaa	tatctcggt	ccatttgc	6780
ctgcacatgc	tttggaggcc	agcggggctg	gcgtctgtac	aactgccc	gacctgggg	6840
tgaacccagt	cccgaggca	ctactggcca	gtcttacaa	cagtatttc	agagatacca	6900
tcagagaaca	aacactaatg	ttaattggcc	aattgagtgc	ttcatgcctt	tagatgtaca	6960
ggctgacaga	gaagattccc	gagagtaaat	catcttcca	atccagagga	acaagcatgt	7020
ctctctgc	agatccatct	aaactggagt	gatgttagca	gaccctcg	agagttttcc	7080
tttcttctt	aaggcccttgc	ctctggagga	agttcc	cttca	actcacagct	7140
tctccaa	tcaccctggg	agtttctgt	gggtttctc	ataaaatgagg	gctgcacatt	7200
gcctgttctg	tttcaagta	ctcagtttt	taaatgaa	gattctaa	ga	7260
tttgggttgg	gatcaatagg	aaagcatatg	cagccaa	agatgcaat	gtttgaaat	7320
gatatgacca	aaattttaa	tagggaaatgc	acccaa	acac	ttctgtttc	7380
ctggcccgca	atactgttag	aacaagcat	atcttgc	tat	gtgtatatt	7440
cagtactcac	ttttccaaa	tgatcctag	aattgcctag	aaatatctt	cttac	7500
ttatattatca	attttccca	gtatattttat	acggaaaaaa	ttgtattgaa	aacacttagt	7560
atgcagttga	taagaggaat	ttggatataat	tatgggggt	gattat	ttttataactgtat	7620
gtgc	aa	actgtttaa	taaaagaggatt	acattccaca		7680

032796-132.ST25

<210> 76
<211> 1316
<212> DNA
<213> Homo sapiens

<400> 76

tcctaatacg actcaactata gggctcgagc ggccgccccgg gcaggtcgaa tgcaggcgac	60
ttgcgagctg ggagcgattt aaaacgcttt ggattcccccc ggcttggtg gggagagcga	120
gctgggtgcc ccctagattc cccggccccgg cacctcatga gccgaccctc ggctccatgg	180
agcccccggcaa ttatgccacc ttggatggag ccaaggatat cgaaggcttgc tggtggagcgg	240
gagggggggcg gaatctggtc gcccactccc ctctgaccag ccacccagcg gcccctacgc	300
tgtatgcctgc tgtcaactat gcccccttgg atctgccagg ctccggcgag cgcggccaaagc	360
aatgccaccc atgccttggg gtggcccagg ggacgtcccc agctcccggt ccttatgggt	420
actttggagg cgggtactac tcctgcccgg tgcgtccggag ctccgtgaaa ccctgtgccc	480
aggcagccac cctggcccgcg taccggccgg agactcccac gggccggggaa gtagtacccca	540
gtcgccccac tgagggttgc ttctatccgg gatatccggg aacctaccac gctatggcca	600
gttaccttggg cgtgtctgtg gtgcagactc tgggtctcc tgagaaccg cgacatgact	660
ccctgttgcgc tgtggacagt taccagtctt gggctctcgc tgggtggctgg aacagccaga	720
tgtgttgcgc gggagaacag aaccaccagg gtcccttttgg gaaggcagca tttgcagact	780
ccagcggggca gcacccttgc gacgccttgcg cctttcgtcg cgccgcgaag aaacgcattc	840
cgtacagccaa ggggcagttt cggggagctgg agcggagta tgccgcttaac aagttcatca	900
ccaaaggacaa gaggcgcaag atctcgccag ccaccagcct ctcggagcgc cagattacca	960
tctggtttca gaaccggccgg gtcaaaagaga agaagttct cggcaagggtg aagaacagcg	1020
ctacccttta agagatctcc ttgccttggg gggaggagcg aaagtggggg tggcttgggg	1080
agaccagaaaa cctggcaagc ccaggctggg gccaaggact ctgctgagag gcccctagag	1140
acaacacccct tcccaaggcca ctggctgtc gactttctt caggagcggc ctgggtaccc	1200
agtatgtgca gggagacgga accccatgtg acaggcccac tccaccaggg ttcccaaaga	1260
acctggccca gtcataatca ttcataatcata cagtggcaat aatcacgata accagt	1316

<210> 77
<211> 566
<212> DNA
<213> Homo sapiens

<400> 77

cccacccaaac ccataaaagag ggtgggtcga cccacgcgtc cgccggacgcg tggaaatta	60
ttgaatttga aacagaaaata gaaaagtttta aagctgagaa cgcattttta gctaaacttc	120
gcatttgaac agaaaagtgcc ttggaaaaac tcagggaaaaga aatttgcagac ttgcacaac	180
agaaaagccaa agaatttagct cgaatagaag agttaaaaaa ggaggagatg aggaagctac	240
aaaaggaaacg taaagttttt gaaaagtata ctacagctgc aagaactttt ccagataaaa	300
aggaacgtga agaaatacag actttaaaac agcaaatagc agatttacgg gaagattga	360
aaagaaaagga gaccaaattgg tcaagtacac acagccgtct cagaagccag atacaatgt	420
tagtcagaga gaacacagac ctccggggaaag aaataaaagt gatggaaaga ttccgactgg	480
atgcctggaa gagagcagaa gccatagaga gcagctcga ggtggagaag aaggacaagc	540
ttgcgaacac atctgttgcga tttcaa	566

<210> 78
<211> 5067
<212> DNA
<213> Homo sapiens

<400> 78

gccccggacac ctgtctgcag catggataag tatgacgacc tgggccttgg ggcaggtaaa	60
ttcatcgagg acctgaacat gtatgaggcc tctaaggatg ggcttcccg agtggacaag	120
ggtgtcaggca acaaccccgaa gtttggggaa actcgacggg tttcgccac caagatggcc	180
aaaatccacc tccagcagca gcagcagcag ctcctgcagg aggagactct gcccaggggg	240
agtagaggcc ctgtcaatgg agggggccgc ctggccac agggccgttg ggaagtttg	300

032796-132.ST25

ggcagcaagc tgactgtgga tggtgctgcc aaggcccttc ttgctgcctc gacaggggca	360
cctggggcag tcaccaccct cgctgctggg cagccccgt acccaccgca ggagcaaga	420
tccaggccat acctgcatgg cacgaggcat ggcagccagg actgtggttc cagggagagc	480
ctggcgactt ctgagatgtc tgcttccac cagccaggcc cctgtgagga tccttcctgc	540
ctcaactcatg gagactatta tgacaacctc tccttgcca gcccaaagtg gggtgacaaa	600
ccaggagtgt cccccagcat cggccctgagt gtagggagtg ggtggcctag ctccccggg	660
agtgaccac cactgccccaa accctgcggg gaccatcccc taaatcaccc agagctctcc	720
ctgagctcca gcaggtttc tgagggttagc ctgggtgtc agaatagtgg cattgggtgc	780
cgcagcagcg agaagccaac aggcccttgg tccactgcct cctcccagcg ggtgagccct	840
ggcctgcctt ccccaaactt ggagaacgga gcaccagctg tggggcctgt tcagcccaagg	900
actccttcgt tgtcagcacc ctggccctg agctgccccca ggcaaggagg tcttccaaga	960
tcaaaactcgg ggctgggggg tgagggttca ggtgtatgt ccaaacccaa tgtggacccc	1020
caacccttgtt tccaggatgg gcccaaatact taccttcca gtctggcccc gtcatccctcg	1080
ccagctgccc tggacgggtc acagcagggt ggggtccctg ggctggggcc gaagcctggc	1140
tgcacagacc ttggactctgg tcccaagctc agccccacca gtettgttca tccagtgtatg	1200
tccaccctgc ctgagtttac ttgttaaagag ggtccctgg gctggcttc tgatggtagc	1260
ctgggatctg tgctcttgg cagccccagc tccccttaggg taaggctgcct ctggcagccc	1320
ctcgccccag gtccctgagct gagaccctct gctgtgtatg taaaattttaga agcccttacc	1380
caacgtctgg agcgagagat ggatgtctcac ccgaaggctg attactttgg agcctgtgtg	1440
aaatgcagca aagggtgtt tggggctggc caggccgtc aggccatggg gaaccttac	1500
catgacacat gcttccatcg tgcagcttc agccgaaagc tgagaggaaa agcctttat	1560
tttgtcaacg gcaaagtgtt ttgtgaagaa gacttctgt actctgggtt ccagcagtcg	1620
gctgacaggt gtttctttg tggacatctg atcatggaca tgatccctgcga agccctgggg	1680
aagtccctacc accccggctg ttccctgtgt gtcatctgtatgatgtt ggatgggtg	1740
cccttcacccg tggactcaga gaacaagatc tactgtgtcc gagattacca caaggtctg	1800
gcccccaagt gtgcagccctg tgggttccc atccctccac ctgagggtctc agatgagacc	1860
atccgtgtcg tgtccatggc cagagactac cacgtggagt gttaccactg cgaggactgt	1920
ggtctggcgc tcaatgtatg agatggccac cgctgttata cgctggagga ccacctgttc	1980
tgtcaactctt gccacgtgaa gaggctggag aagagaccct catctacagc ctttcaccag	2040
caccacttct agccagagcc acttgcagac atcacggcag gggatgagga gccggggttgc	2100
ctgctgtgc ttccctggc ccctgggggtg gaagtgggggt aggggaagag gagggccagg	2160
agggagagtt cctgtgagca tgggggggtt gccttcctt taaccaggga ggtgaacact	2220
acctgcctcc tgcgtgtatt ttccaagtg tttctctgt tgccacattt tcctcagggtt	2280
actcaggaaa atgcctccagc atgtgcgagc acatgacactg aggttgcatc atagcaccaa	2340
aggaatcttc ctgtcccttc tgggaacatt tcatgcttca gagggagagg tttttattga	2400
gcttgcattca caatatcccc ttgaaggagc agctcagctg ccaatacatt caacccttcc	2460
tcttccttca gaaaaatacc tatacccaa tggcccttcc cccgacatatt atcatggcat	2520
gacttaaggc ttctttcac ctgagagctt cagttcttgc gcaaatggc tgcaattta	2580
attgcattaa ggcaagaagg aagctctaatt gtgtgttttgc tatcctaaga taaaatttgc	2640
tagaaaaacca gagtcaagat ttgaaatagg tgaggcagggtt cccttcctt agacactgac	2700
agcattctcc gtacccttc aaatccctac tctcctaaag gcaagctgatg ccgcacacg	2760
aatttgcctt atgggagtaa aacatactt gggagaagaa ctgggtgcag gcaccaggat	2820
ttttttttt gcccacgtgt ttgcgtgtt tttctctggc gttctcaaga gttgggtact	2880
tggaaaggccg cttctgcaag gcaagtcata ggaaccatgc caggatcatac gcttgcaccc	2940
tttttttagt tatttaatga cgggttttgc ggaagagctg cccgcatact gagagacagc	3000
ttcttataaa caaggagatg ttttgtgtt gcgagatctc taagccagcg tggggaggag	3060
cgcctcagga taagtttata tattcatttc gttgggttct ctccctgcctt attcttggca	3120
caggcattat gtttgaagaa accaggataa ggtacactgc ttttgtctgt ttaattttt	3180
tagttgttcc ctttcactt cagtcttcca cacacaaaaa atacctcaca gagcttcacc	3240
aaatcacaga ttccaggagga atttggctt cacactggac tcaagatact tcttcagtgt	3300
gttggaaatc actggcttca cacaggccca actccaaactg gtcaggccag agtgatcgta	3360
actaaagtc agtggggat agatccgatt cagtgtttt gccttatgc tttcagccatc	3420
ctggctcccc aggggtggcag gagctgagga agggccacac actggcaaga tttcaagacc	3480
actctctgtca ctgaagaggt aaaatttgcac tgcagatctc catccctgag gccagaggctc	3540
agtacccttt ggtatttcga tttagaagaag ctgcaaaaaga aaggcagccc attttaccat	3600
tgccagccag gcccgggaca caggagccgg tgggtgcact ctgccttcata acattgcacc	3660
cagagcaaga ggactgggtg ctggctgca gaggccggc agtggagccc ctgcacgtg	3720

032796-132.ST25

tgaactcagg	ctttcattg	ggcccggctc	cacttctagg	ccatgttttgc	actcatttg	3780
taaccattgc	ctgttaagcag	cacagaatttgc	gtgccatgg	ttatcttttc	catgttgatg	3840
gaattcattc	tttgttgcattc	cttggccag	atgtcaactc	agccagggtg	tgcatacatca	3900
ttgggttctt	ttcacaggct	gagcctccctg	aaaaccatg	aacgctgggg	ctggggaaagt	3960
gaaccctgag	gtggggaccc	tctcttcccc	tcaaatacatc	cagctcagtg	tggggcgtgg	4020
caggggggta	aatgaagcca	gccaatgtgt	taacctgtct	ctgtcaacct	aagaatgttgc	4080
gccttactga	cacacccatttgc	ctccatgttc	aagaccagaa	gtagctggga	tttggttgca	4140
aattgggtaa	tttagtttaaa	aatctgtat	tacatttttta	aatgaaaattt	tcaaagtggc	4200
ctagattgag	gtgattcaga	taggtttgcg	aatataccat	tttatattgt	tgagaaaagaa	4260
caaaaaggaa	atttccagat	gtcctagaaa	tcctagcaac	agatttctct	ggttgtcagt	4320
ttccctggag	aaggcgccag	ataggaatct	ccaatcagtt	gttttctct	tcgcttcagg	4380
cccttacaca	aaagccatga	agagatgttc	acctacccgg	tatTTTAAAT	gttctgtaaa	4440
ttatttagcca	aatagaactg	taatgggggt	gtatttatgg	gcccctagaa	agaaaaacaca	4500
aggacttgg	aggccaggaa	gaaaagattt	taaaatttag	aatgaatago	ccttctgggt	4560
tttcttttttgc	acaattcttgc	gacttgaggt	aaaacaagga	ggattgtggc	cggatttcag	4620
atcccaaagc	cagcctccat	tttaggccttgc	tgccctcatttgc	tgcccttttag	gttttcttac	4680
ccaccgtctc	ctgttttgc	ttttttttct	tttctccat	ccctatcttgc	ggacattcag	4740
aaactgcctg	ggtggttga	gaagagacaa	cccagtttgc	tctgcaatac	aaggatccat	4800
tcgtaatctc	tctctcaactg	atgttatttcc	cccatctgc	gtcttgggttgc	atctcaccac	4860
agaagggcatt	tttagcctac	ccagccatcg	gctgcggat	gacagcagga	tggcacttcc	4920
catttctctg	tggtagtgc	tgcgtgaaa	accttcttca	gctgagtcc	ctgagggttgc	4980
gctgtttagt	cctgggtggc	tgttggat	attgaggagg	tctggtcacc	ctcaagcgcc	5040
gtcatcgcc	ttttccatgc	ggttttgc				5067

<210> 79
<211> 950
<212> DNA
<213> Homo sapiens

<400> 79

tcgaccggat	ccgaatttccc	attgtcaact	aaagcgtctc	cctgctccgc	ggcccgggct	60
ggcggggcggg	cgctcggtg	ggggctgcag	cagcagaggg	agacccggg	caacccggc	120
aacccagggc	tcggcgtcgc	tgccaccatg	acgggaagca	atatgtcgga	cgccctggcc	180
aacgcccgtgt	gccagcgtg	ccagggccgc	ttctccccgc	cogagcgc	tgtcaacagc	240
aatggggagc	tgtaccatga	gcaactgc	gtgtgtgccc	agtgttccg	gccctttccc	300
gaggggctt	tctatgagtt	tgaaggccgg	aagtactgc	aacacgactt	ccaaatgctg	360
tttgctccgt	gctgtggatc	ctgcgggtgag	ttcatcatttgc	gcccgtcat	caaggccat	420
aacaacaact	ggcacccggg	ctgcttccgc	tgcgagctgt	gtatgttgc	gctggctgac	480
ctgggcttgc	tgaagaatgc	ccgcaggcat	ctctggcgc	ctgcccacaa	ccgtgagaag	540
gccaaggggcc	tggcaagta	catctgc	cggtgccacc	tgttcatcga	cgagcagccc	600
ctcatgttca	ggagcgcacgc	ctaccaccct	gaccacttca	actgcacccca	ctgtggaaag	660
gagctgacag	ccgaggcccg	cgagctgaag	ggtgagcttgc	actgcctgc	ctgccatgac	720
aagatggggc	ttcccatctg	cggggcctgc	cgccgccc	tgcagggccg	agtggtcaac	780
gctgtggc	agcagtggca	cgtggagcac	tttgttgc	ccaaatgttgc	gaagccattc	840
ctggggcacc	ggcactatga	gaagaaggcc	ctggcctact	gcaatgttgc	gtgcacaatg	900
ggcggccgccc	tcgagtc	actcgagtag	ataatttgc	ggaatttcttgc		950

<210> 80
<211> 2346
<212> DNA
<213> Homo sapiens

<400> 80

ccggccgtcgc	ccccgcctcc	ccctgcctca	gcccgtgccc	ccgcccgg	gccgcccgc	60
ccccccggcc	ttgcagcggg	ccccggcccg	gctggaggg	ccccgacccc	agctctgg	120
gcggccagca	gcgcggcgcc	ccccctccct	cacggggact	cgccctgaa	cgagcaggag	180

032796-132.ST25

aaggagttgc	agcggcggt	gaagcgtctc	tacccggccg	tggacgaaca	agagacgccg	240
ctgcctcggt	cctggagccc	gaaggacaag	ttcagctaca	tcggcctctc	tcagaacaac	300
ctgcgggtgc	actacaaagg	tcatggcaaa	acccaaaag	atgccgcgtc	agttcgagcc	360
acgcatccaa	taccagcagc	ctgtggatt	tattatttg	aagtaaaaat	tgtcagtaag	420
ggaagagatg	gttacatggg	atttgtctt	tctgctcaag	gtgtgaacat	aatagacta	480
ccaggttggg	ataagcattc	atatggttac	catggggatg	atggacattc	gttttggct	540
tctggaaactg	gacaaccta	tggaccaact	ttcactactg	gtgatgtcat	tggctgtgt	600
gttaatctta	tcaacaatac	ctgctttac	accaagaatg	gacatagttt	aggtagtgc	660
ttcactgacc	taccgccaaa	tttgtatcct	actgtgggc	tccaaacacc	aggagaagtg	720
gtcgatgcca	attttggca	acatccttc	gtgttgata	tagaagacta	tatgcgggag	780
tggagaacca	aaatccaggc	acagatagat	cgattccta	tcggagatcg	agaaggagaa	840
tggcagacca	tgatacaaaa	aatggttca	tcttatttag	tccaccatgg	gtactgtgcc	900
acagcagagg	ccttgccag	atctacagac	cagaccgttc	tagaagaatt	agcttccatt	960
aagaatagac	aaagaattca	gaaattggta	ttagcagggaa	gaatgggaga	agccattgaa	1020
acaacacaac	agttatacc	aagtttactt	gaaagaaatc	ctaattctcct	tttcacatta	1080
aaagtgcgtc	agttataga	aatggtaat	ggtacagata	gtgaagtacg	atgtttggga	1140
ggccgaagtc	caaagtctca	agacagttat	cctgttagtc	ctcgacctt	tagtagtcca	1200
agtatgagcc	ccagccatgg	aatgaatatc	cacaatttag	catcaggccaa	aggaagcacc	1260
gcacatttt	cagtttga	agttgttagt	aatgggtaa	tatcaaataa	agcacatcaa	1320
tcatattgcc	atagtaataa	acaccagtca	tccaaactga	atgtaccaga	actaaacagt	1380
ataaaatatgt	caagatcaca	gcaagttaat	aacttcacca	gtatgtatgt	agacatggaa	1440
acagatca	actccaatgg	agttggagaa	acttcattca	atggttcct	aatggtagc	1500
tctaaacatg	accacgaaat	ggaagattgt	gacaccgaaa	tgaagttga	ttcaagtgc	1560
ttgagacgcc	agttgtgtgg	aggaagtcag	gccgcctatag	aaagaatgtat	ccactttgga	1620
cgagagctgc	aagcaatgag	tgaacagcta	aggagagact	gtggcaagaa	cactgcaaacc	1680
aaaaaaaaatgt	tgaaggatgc	attcagtcata	ctagcatatt	cagatccctg	gaacagccca	1740
gttggaaatc	agcttgaccc	gattcagaga	gaacctgtgt	gctcagtc	taacagtgc	1800
atatttagaaa	cccacaatct	gccaaagcaa	cctccacttg	ccttagcaat	gggacaggcc	1860
acacaatgtc	tagtactgt	ggctcgatca	ggaattggat	cctgcgcatt	tgccacagt	1920
gaagacttacc	tacattagct	atgcatttca	agagctcaca	cttatattgt	ggcatatagt	1980
caacatggaa	gtagaccagc	tctgctgatt	tgaattttag	atttttaaa	ttatgtactg	2040
gggacagggtt	tttgcgtt	tacattgtct	cctagtttac	agcatgtatgc	aaatgatttt	2100
ctaacttagt	gttaggagaa	attattttcc	atctttaacc	tcttagttgt	ctaagagtt	2160
aatattactg	aatttcagac	gttcaaattt	atcatcaca	atccctttaaa	acaattacct	2220
aaaagaaacc	aaaaatctg	ccttctttgt	gggggagggg	ggagagaggg	gaaggaaatg	2280
gaacaagttg	ttttgtgtt	agcatgtggg	tgtatgtaaac	tccaaattgg	gagatgttcc	2340
gaccccc						2346

<210> 81
<211> 2512
<212> DNA
<213> Homo sapiens

<400> 81						
caatgcactg	acggatatga	gtgggatcct	gtgagacagc	aatgcaaaga	tattgtatgaa	60
tgtgacattg	tcccagacgc	ttgttaaagg	ggaatgaagt	gtgtcaacca	ctatggagga	120
tacctctgcc	ttccgaaaac	agcccagatt	attgtcaata	atgaacagcc	tcagcaggaa	180
acacaaccag	cagaaggaac	ctcaggggca	accacgggg	ttttagtgc	cagcagcatg	240
gcaaccagt	gagtgtgtcc	cggggggttgt	ttttagtgc	gtgctgtgc	agtgcgcaggc	300
cctgaaatgc	agactggccg	aaataactt	gtcatccgc	ggaacccagc	tgaccctcag	360
cgcattccct	ccaaacccttc	ccaccgtatc	cagtgtgcag	caggctacga	gcaaagtgaa	420
cacaacgtgt	gccaagacat	agacgagtgc	actgcaggga	cgacacaactg	tagagcagac	480
caagtgtca	tcaatttacg	gggatcctt	gcatgtcagt	gcctccctgg	atatcagaag	540
cgagggggagc	agtgcgtaga	catagatgaa	tgtaccatcc	ctccatattt	ccaccaaaga	600
tgcgtgaata	caccaggctc	attttattgc	cagtgcagtc	ctgggtttca	attggcagca	660
aacaactata	cctgcgtaga	tataaatgaa	tgtatgtcc	gcaatcaatg	tgctcagcag	720
tgctacaaca	ttcttggttc	attcatctgt	cagtgcata	aaggatatga	gctaaggcagt	780

032796-132.ST25

gacaggctca	actgtgaaga	cattgatgaa	tgcagaacct	caagctacct	gtgtcaatat	840
caatgtgtca	atgaacctgg	gaaattctca	tgtatgtgcc	cccagggata	ccaagtggtg	900
agaagtagaa	catgtcaaga	tataaatgag	tgtgagacca	caaataatg	ccgggaggat	960
gaaatgttt	ggaattatca	tgccggcttc	cgttggatc	cacgaaatcc	ttgtcaagat	1020
ccctacatc	taacaccaga	gaaccgatgt	gtttgcccag	tctcaaatgc	catgtgccga	1080
gaactgccc	agtcaatagt	ctacaaatac	atgagcatcc	gatctgatag	gtctgtgcca	1140
tcagacatct	tccagataca	ggccacaact	atttatgcca	acaccatcaa	tactttcg	1200
attaaatctg	gaaatgaaaa	tggagagttc	tacctacgac	aaacaagtcc	tgtaaatgca	1260
atgcttgc	tcgtgaagt	attatcagga	ccaagagaac	atatctgga	cctggagatg	1320
ctgacagtca	gcagtatagg	gacccctcgc	acaagctctg	tgttaagatt	gacaataata	1380
gtggggccat	tttcattta	gtctttcta	agagtcaacc	acaggcattt	aagtcaagcca	1440
aagaatattg	ttaccttaaa	gcaactattt	atttatagat	atatctgat	catctacatc	1500
tctatactgt	acactcaccc	ataacaaaca	attacaccat	ggtataaaagt	gggcatttaa	1560
tatgtaaaga	ttcaaagttt	gtctttatta	ctatatgtaa	attagacatt	aatccactaa	1620
actggctctc	ttcaagagag	ctaagtatac	actatctgg	gaaacttgg	ttctttctta	1680
taaaagtgg	accaagcaat	gatgtatcc	tgtggtgctt	aaggaaactt	actagagctc	1740
cactaaca	ctcataagga	ggcagccatc	ataaccattt	aatagcatgc	aagggttaaga	1800
atgagtttt	aactgcttt	taagaaaatg	gaaaaggctca	ataaagat	atttctttag	1860
aaaatggga	tctgccccat	ttgtgttgg	ttttattttc	atatccagcc	taaagggttgt	1920
tgttattat	atagtaataa	atcattgct	tacaacatgc	tgtttctgt	agggtatttt	1980
taattttgtc	agaaatttt	gattgtgaat	attttgtaaa	aaacagtaag	caaaattttc	2040
cagaattccc	aaaatgaacc	agataccccc	tagaaaatta	tactattgag	aatctatgg	2100
ggaggatatg	agaaaataaaa	ttccttctaa	accacattgg	aactgacctg	aagaagcaaa	2160
ctcggaaaat	ataataacat	ccctgaattc	aggcattcac	aagatgcaga	acaaaatgg	2220
taaaaggtat	ttcactggag	aagttttat	ttctaaat	aattttaaatc	ctaacacttc	2280
actaatttt	aactaaaatt	tctcatcttc	gtacttgat	ctcacagagg	aagaaaatga	2340
tgtatggttt	tattcctggc	atccagagtg	acagtgaact	taagcaaatt	accctctac	2400
ccaattctat	ggaatatttt	atacgtctcc	ttgtttaaaa	tctgactgct	ttactttgat	2460
gtatcatatt	tttaaataaaa	aataaatatt	cctttagaa	atcactctaa	aa	2512

<210> 82

<211> 2306

<212> DNA

<213> Homo sapiens

<400> 82

gggcgggagc	tgcacgcgcc	gtggctccgg	atctcttcgt	cttgcagcg	tacgcccag	60
tcggtcagcg	ccggaggacc	tcagcagcca	tgtcgaagcc	ccatagtgaa	gccgggactg	120
ccttcattca	gaccagcag	ctgcacgca	ccatggctga	cacattcctg	gagcacatgt	180
gccgcctgga	cattgattca	ccacccatca	cagcccgaa	cactggcato	atctgtacca	240
ttggccca	ttcccgatca	gtggagacgt	tgaaggagat	gattaagtct	ggaatgaatg	300
tggctcgct	gaacttctct	catggaaatc	atgagatcca	tgcggagacc	atcaagaatg	360
tgcgcacagc	cacggaaagc	tttgcttctg	acccttacct	ctaccggccc	tttgctgtgg	420
ctctagacac	taaaggacct	gagatccgaa	ctgggctcat	caagggcago	ggcactgcag	480
agctggagct	gaagaaggga	gccactctca	aatcacgt	ggataacgcc	tacatggaaa	540
agtgtgacga	gaacatcctg	tggctggact	acaagaacat	ctgcaaggtg	gtggaagtgg	600
gcagcaagat	ctacgtggat	gatgggctta	tttctctcca	ggtgaagcag	aaaggtgccc	660
acttccgtt	gacggaggtg	gaaaatggtg	gctccttggg	cagcaagaag	ggtgtgaacc	720
ttcctggggc	tgctgtggac	ttccctgct	tgtcggagaa	ggacatccag	gatctgaagt	780
ttggggtcga	gcaggatgtt	gatatgggt	ttgcgtcatt	catccgcaag	gcatctgtat	840
tccatgaagt	taggaaggctc	ctgggagaga	agggaaagaa	catcaagatt	atcagcaaaa	900
tcgagaatca	tgaggggtt	cgaggatgtt	atgaaatctt	ggaggccagt	gatggatca	960
tggtggctcg	tggtgatcta	gcaatggata	ttccctgaga	gaaggcttc	tttgctcaga	1020
agatgtatgt	tggacgggtc	aaccgagctg	ggaagcctgt	catctgtct	actcagatgc	1080
tggagagcat	gatcaagaag	ccccgccccca	ctcggctga	agcagtgtat	gtggccaatg	1140
cagtccctgga	tggagccgac	tgcattatgc	tgtctggaga	aacagccaaa	ggggactatc	1200
ctctggaggc	tgtgcgcatg	cagcacctga	ttgcccgtga	ggcagaggct	gccatctacc	1260

032796-132.ST25

acttgcaatt	atttgaggaa	ctccgcccgc	tggcgccttac	taccagcgac	cccacagaag	1320
ccaccgcgt	gggtgccgt	gaggcctcct	tcaagtgtc	cagtggggcc	ataatgtcc	1380
tcaccaagtc	tggcagggtct	gctcaccagg	tggccagata	ccgcacgt	gccccatca	1440
ttgctgtac	ccgaaatccc	cagacagctc	gtcagccca	cctgtaccgt	ggcatettcc	1500
ctgtgtgt	caaggaccca	gtccaggagg	cctggctga	ggacgtggac	ctccgggtga	1560
actttgcct	aatgtttggc	aaggcccgg	gcttctcaa	gaaggagat	gtggtcat	1620
tgtgtacccg	atggcgcctt	ggctccggct	taccaaacac	catgcgtgtt	gttctgtgc	1680
cgtgtggac	cccagagccc	ctcctccagc	ccctgtccca	cccccttccc	ccagccatc	1740
cattaggcca	gcaacgctt	tagaactcac	tctggctgt	aacgtggcac	tggtagttg	1800
ggacaccagg	gaagaagatc	aacgcctcac	tgaaacatgg	ctgtgttgc	agcctgtct	1860
agtgggacag	cccagagcct	ggctgcccatt	catgtggccc	cacccaatca	aggaaagaag	1920
gaggaatgt	ggactggagg	ccccctggagc	cagatggca	gagggtgaca	gttcccttcc	1980
ctgtgtgtac	tctgtccagt	tccttttagaa	aaaatggatg	ccagaggac	tcccaaccct	2040
ggcttgggt	caagaaacag	ccagcaagag	ttagggcct	tagggactg	ggctgtgtt	2100
ccattgaagc	cgactctggc	cctggccctt	acttgcctt	ctagctctct	aggcctctcc	2160
agtttgcacc	tgtccccacc	ctccactca	ctgtcctgca	gcaaacactc	caccctccac	2220
cttccattt	cccccaactac	tgcagcacct	ccaggcctgt	tgcatacgt	cctacctgta	2280
tgtcaataaa	caacagctga	agcacc				2306

<210> 83

<211> 2656

<212> DNA

<213> Homo sapiens

<400> 83

gaattcgcgg	ccgcagagtc	cccgccccaa	gatggctgca	cggtgctcca	cacgctggtt	60
gctgggtggtt	gtggggaccc	cgccgctgcc	ggctatatcg	ggttagagggg	cccgcccccc	120
caggaggcgc	gtgggggggg	catggcttag	ccgcaagctg	agcgcccccc	ccttgcgtc	180
ttccctgacc	tcttgcggcc	cccgagcgt	gctgacattt	agacctgggt	tcagccttac	240
aggaacaaaa	cataaccctt	tcatttgtac	tgcctccttc	cacacgagt	ccccttggc	300
caaagaagat	tattatcaga	tattaggagt	gcctcgaaat	gccagccaga	aagagatcaa	360
gaaaggctat	tatcagctt	ccaagaagta	tcaccctgac	acaataagg	atgatccaa	420
agccaaggag	aagtctccc	agctggcaga	agcctatgag	gttttgatg	atgaggtgaa	480
gaggaagcag	tacgatgcct	acggctctgc	aggcttcgt	cctggggcca	gcggctccca	540
gcatacgat	tggaaaggag	gccccactgt	ggaccccgag	gagctgtca	ggaagatctt	600
tggcgagttc	tcatcttctt	catttggaga	tttccagacc	gttttgatc	agcctcaagga	660
atacttcatg	gagttgacat	tcaatcaagc	tgcaaagggg	gtcaacaagg	atgttaccgt	720
gaacatcatg	gacacgtgt	agcgtcgaa	cgcaagggg	aacgagcccc	gcaccaaggt	780
gcagcatgtc	cactactgt	gccccctccgg	catggaaacc	atcaacacag	gccctttgt	840
gatgcgttcc	acgtgttag	gatgtgggt	ccgcgcgtcc	atcatcatat	cgccctgtgt	900
ggctctgcagg	ggagcaggac	aagccaagca	aaaaaagcga	gtgtatgtcc	ctgtgcctgc	960
aggagtctgag	gatggccaga	ccgtgaggat	gcctgtggg	aaaaggggaa	ttttcattac	1020
gttcagggt	cagaaaagcc	ctgtgttccg	gaggacggc	gcagacatcc	actccgacct	1080
ctttatttct	atagttcagg	ctttcttgg	ggaaacagcc	agagccccgg	gcctgtacga	1140
gacgatcaac	gtgacgatcc	ccccctggac	tcagacagac	cagaagattc	ggatgggtgg	1200
gaaaggcatac	ccccggatta	acagctacgg	ctacggagac	cactacatcc	acatcaagat	1260
acgagttcca	aagaggctaa	cgagccggca	gcagacgt	atctcgat	acgcccggaa	1320
cgagacagat	gtggagggg	cggtgaacgg	cgtcaccctc	accagctctg	gtggcagcac	1380
catggatagc	tccgcaggaa	gcaaggctag	gcgtgaggct	ggggaggacg	aggagggatt	1440
cctttccaaa	cttaagaaaa	tgtttacctt	atgatatccc	agccgaggaa	aaagatccac	1500
tggaaactag	gccgggaagc	agcagccctt	ccaaggccca	gggcacctgg	gagacgggag	1560
gattccagaa	cagcagcact	gagctccac	ccgcagagcc	tctggacggc	cttggcaaca	1620
gaaaaatcat	gggacaacac	ctctctccac	ggaaaggctca	cagtggacag	cccgccccgt	1680
aggatcgac	cccagaggct	ggtggcagg	tcctgtccat	tggtaggtg	cgccccctg	1740
gtcagcagag	gagaggttag	atcttgcagg	ctaaaactct	aatttggaaat	tgaatattgt	1800
ggatatctt	gttaaaggcc	atgcttacag	cttagaaatg	aagccttaag	ctgcataca	1860
ttacgaagtg	attaatttcc	ttctcagcaa	acctccggga	ggttccagaa	tgagttcttc	1920

032796-132.ST25

ctgacagggtt	gtttcactg	ggagcgtgg	gccccaggc	cccaccagca	ccgtccccc	1980
ctaattgggg	gcctgccga	ggcatcagt	gctctgtca	gttagtttt	atccccggg	2040
taccaagcg	ctgacacagtc	ggtgcttgg	aagcacgtta	aaggcccaga	gagatcctgg	2100
gggtctgt	ctgaccgtgt	gggtgggtat	ccttgcagg	atgtacagtc	cttgcctcca	2160
ccccatccgg	gatggccgccc	tgtccctgac	tattgatcc	tgttgggtga	agccaggcat	2220
ggagggctcc	tgcccttctg	ctgagccaca	gcccattgca	gcactgtgt	ggccagactt	2280
cagctgcctt	gggaactgaa	gcctgcccac	tgttgttagt	caggggcttg	gttctccac	2340
ttacactgtt	gacatctatt	ttctgaagt	tgtttaatt	attcagtgt	aatcatgtt	2400
tttccttgc	taaatgttga	ttagaaaaag	gaaagcacag	gctaaggcgt	tgaaggtcc	2460
ccaccattca	gtgagagcag	aaccccccatt	ccccagcctc	tgctggtagc	atgtcgcagt	2520
ttccatgtgt	ttcaggatct	tcgggctgtc	gttagacagg	ttaatgaaga	acacttctca	2580
acagttcct	tttgtttgc	cttataatt	cactaaaata	aagcatctat	tagtgtctga	2640
aaaaaaaaaaaa						2656

<210> 84

<211> 2217

<212> DNA

<213> Homo sapiens

<400> 84

gcggaccgg	cgccgaggcg	gccacccgag	acgcggcg	cacgctccgg	cctgcgcagc	60
ccggcccg	catggcgcc	ccccggccgt	ctcccgcat	ctccgttgc	gtctcgctc	120
cggtttta	cgccccgag	aagaagttcg	gcccgtgt	ggccccaaag	cccaaagtga	180
atcccttccg	gccccgggac	agcgagcctc	ccccggcacc	cggggcccaag	cgcgacacaga	240
tggccgggt	gggcgagatt	ccccggccgc	ccccgaaaga	cttccctgt	cctccacctc	300
cccttgcgttgg	ggatggcgac	gatgcagagg	tgctctggg	aggtgccttc	ccggccggccc	360
ctcccccgat	cgagaatca	tttccccctg	cgccctgtgg	ggaggagatc	ttcccttccc	420
cgccgcctcc	tccggaggag	gagggagggc	ctgaggcccc	cataccgccc	ccaccacagc	480
ccagggagaa	ggtgagcgt	attgatttg	agatcactc	tctgtctca	ctgctgatg	540
acatgaccaa	aatgatcct	ttcaaagccc	gggtgtcata	tggatatgt	ccccccaccag	600
tggccactcc	attcagtttc	aagtccagta	ccaaggctgc	agccgggggc	acagcacccc	660
tgcctccttg	gaagtccccct	tccagctccc	agcctctgc	ccaggttccg	gtctcgctc	720
agagccagac	acagttccat	gttcagcccc	agccccagcc	caagcctcag	gtccaactcc	780
atgtccagtc	ccagaccagg	cctgtgtctt	tggctaacac	ccagccccga	ggggccccag	840
cctcatctcc	ggctccagcc	cttaagttt	ctccagtgac	tcctaagttt	actcctgtgg	900
cttccaagtt	cagtcttgaa	gccccaggtg	gatctgggtc	acaaccaa	aaaaattgg	960
ggcaccccg	agcttttct	gttggcacag	gtccctctca	acctcccgac	ttcacctatg	1020
cccagcagag	ggagaagccc	cgagtgcagg	agaagcagca	ccccgtgccc	ccaccggctc	1080
agaaccaaaa	ccagtgccgc	tcccctggg	ccccagggcc	cctgactctg	aaggaggtgg	1140
aggagcttga	gcagctgacc	cagcagctaa	tgcaggacat	ggagcatct	cagaggcaga	1200
atgtggctgt	caacaactc	tgccggccat	gccatcaacc	cctggcccg	gcmcagccag	1260
ccgtccgcgc	tctagggcag	ctgttccaca	tcgcctgtt	cacctgcccac	cagtgtgcgc	1320
agcagcttca	gggcagcag	ttctacagt	tggaggggc	gccgtactgc	gagggctgtt	1380
acactgacac	cctggagaag	tgtaacacct	gcggggagcc	catactgac	cgcacgttgc	1440
gggcccacgg	caaggcctat	cacccgact	gttccacctg	tgtggctgc	gcccgcggcc	1500
tggagggcac	ctcccttcata	gtggaccagg	ccaacgggcc	ccactgtgtc	cccgactacc	1560
acaagcagta	cgccccgagg	tgctccgtt	gtcttgatc	catcatgcct	gagcctggcc	1620
gagatgagac	tgtgcgagtg	gtcgccttgg	acaagaactt	ccacatgaag	tgttacaagt	1680
gtgaggactg	cggaagcccc	ctgtcgatt	aggcagatga	caatggctgc	ttcccttgg	1740
acggtcacgt	gtctgtcgg	aagtgcaca	ctgtctagac	ccagacactga	gtgaggacag	1800
gccccttca	gaccgcagtc	catgccccat	tgtggaccac	ccacactgag	accacctgcc	1860
cccacctcag	ttatgtttt	gatgtctagc	ccctccatt	tccaaacccct	ccctagatc	1920
ccaggtgccc	tgaccaggaa	cccaacatgg	tctaggatg	caggatcccc	gcccctgggt	1980
ctggccctcg	cccatccctgc	agggattgcc	caccgtcttc	cagacacccc	acctgagggg	2040
ggcaccaggt	ttagtgcgtc	tgcttca	gtgcacccg	cgccctcgcc	cgcccccccg	2100
agcagcctt	gtactctgt	tgccggagggc	tgggagaccc	tccaggacat	tcccacccctc	2160
ccccatgtgt	ccaagttgt	gctatagcta	caaataaaaa	aaaacccctt	tttccag	2217

032796-132.ST25

<210> 85
<211> 8906
<212> DNA
<213> Homo sapiens

<400> 85	
gaggcggcca aggacatggc cgacatcgcg gccttcttcc gatccgggtt tcgaaaaaac	60
gatgaaatga aagctatgga ttttttacca attttgaagg aaaaagtgc ataccttca	120
gttgggagag ataaacgtgg aggtcccatt ttaacgttc cggcccgac caatcatgac	180
agaatacgc aggaggatct caggagactc atttcttatac tagcctgtat tcccagcgag	240
gaggctgtca agcgtggctt cacggtgatc gtggacatgc gtgggtccaa gtggactcc	300
atcaagcccc ttctgaagat cctgcaggag tccttccct getgcattca tgtggccctg	360
atcatcaagc cagacaactt ctggcagaaa cagaggacta attttggcag ttctaaattt	420
gaatttgaga caaatatggt ctcttagaa ggccttacca aagttagtga tccttctcag	480
ctaactcctg agttgtatgg ctgcctggaa tacaaccacg aagaatggat taaaatcaga	540
tttgctttt aagactacat tagcaatgcc acccacatgc tgcgtcgct ggaggaactt	600
caggacatcc tagctaagaa ggagctgcct caggattnag agggggctcg gaatatgatc	660
gaggaacatt ctcagctgaa gaagaagggtt attaaggccc ccatcgagga cctggatttg	720
gaggacaga agctgttca gaggatacag agcagtggaa gctttccaa aaagaactca	780
ggctcaggca atgcggaccc tcagaacatc ttgcccagg tgccaccat gctggaccgg	840
ctgcactcga cacggcagca tctgcaccag atgtggcatg tgaggaagct gaagctggac	900
cagtgttcc agctgaggct ttttgaacag gatgtcgaga agatgttga ctggatcaca	960
cacaacaaag gccttcttca aacacgttac acagagatttgg acccgagcca ccctcatgcc	1020
atggagcttc agacgcagca caatcactt gccatgtact gtatgttgc gtatgttgc	1080
ataaaaccgca tcatgtcggt ggccatcgat ctgggtggat ctggccacta tgcctcgac	1140
cagatcaggc agatcgcgag tcagctggag caggagtggaa aggcttgc ggcagccctg	1200
gatgagcggc gcacattgttgc ggacatgtcc tccattttcc accagaaggc cggaaatgtat	1260
atgagcaacg tggattcatg tggtttaatgc tgccgtgagg tagaccttcc ctcagagctg	1320
caggacctttag aagatgccat tcatcaccac caggaaatat atgaacatata cactctgt	1380
tattctgagg tcagccaaga tgggaagtcg ctcttgaca agtccagcg gcccggact	1440
ccggcagct ccgattccct gacagccctt gccaactact ccaaggccgt gcaccatgtc	1500
ctggatgtca tccacggatgt gtcgcaccac cagcggcagc tgagaacaat ctggcaacac	1560
cgcaagggtcc ggctgtcatca gaggctgcag ctgtgttgc tccagcggag agttcagcag	1620
gtgtctagact ggatcgagaa ccacggagaa gcatttctga gcaaacatac aggtgtgggg	1680
aaatcttttc atcggccag agcattgcag aaacgtcatg aagattttgc agaagtggca	1740
cagaacacat acaccatgc ggataaaatca ctggaaagcag cagaacagct ggctcagact	1800
ggggatgtg accccgaaga gatttatcag gtcgccttcc agctggaaaggccggatcaa	1860
gatttcgttc ggctgttgc gcagcggaaatcacttgc acatgttgc gtccttcac	1920
accatgtga aagagctgtg gacgtggctg gaggagctgc agaaggagct gctggacgc	1980
gtgtatggcc agtcgtggaa ggccgtgcag gacccatca agcgttttgc ccaggcagc	2040
cagaccaccc tgcagggtac tgcacacgttgc atcaaggaag gggaggacccatccagcag	2100
ctcaggact ctgcacatctc cagtaacaag acccccccaca acagctccat caaccacatt	2160
gagacggcgc tgcaggact ggacggggc cagtcgcaga tggaggagct ctccaggag	2220
cgcaagatca agctggagct ctccctgcac gtgcgcatttc tgcaggaggaa cgcacatgc	2280
attatcttcac acctcgatgc ttggatgtat gagcttctc agcaaatggaa tgacttcac	2340
acagaagatc tcacattgc agacgcgc ctcacgcacc atgcagacaa agccttgc	2400
atgaacaaact tgacttttgc cgtcatccac caaggcgaat atcttctca gtatgttcaat	2460
gagggtccagg cctctgggtt ggagctgtg tgcgtatggat atgttagacat ggcaactcg	2520
gtccaggacc tgctggagtt tcttcatggaa aaacagcagg aattggattt agccgcagag	2580
cagcatcgga aacacctggaa gcagtgcgtg cagctgcgc acctgcaggc agaagtggaaa	2640
cagggtctgg gttggatccg caacggagag tccatgttac atgcggact tattcaca	2700
agctcgatgc aagaggcaga gcagctccat cggaggcactc agcgttcca gcatgcatt	2760
gagaaaaacac atcagagcgc gtcgcaggat cagcagaagg cagaagccat gtcacaggcc	2820
aaccactacg acatggacat gatccggac tgcgcggaga aggtggcgtc tcaactggca	2880
cagctcatgc tcaagatggaa agatcgccctc aagctgtca acgcctctgt cgcttctac	2940
aaaaccttcag agcaggctcg cagctgcctc gagaggctgg aacaggagta caagagagaa	3000

032796-132.ST25

gaagacttgt	gtggcgggc	ggataagctg	ggcccaaact	ctgagacgga	ccacgtgacg	3060
cccatgatca	gcaagcacct	ggagcagaag	gaggcattcc	tgaaggcttgc	cacccttgct	3120
cggaggaatg	cagacgttcc	cctgaaatac	ctgcacagga	acacgtgaa	catgccagga	3180
atggtgacgc	acatcaaagc	tcctgaacag	caagtaaaa	atatcttgc	tgaactcttc	3240
caacgggaga	acagggtatt	gcattactgg	accatgagga	agagacggct	ggaccagtgt	3300
cagcagtacg	tggttttga	gaggagtgcc	aaggcaggctt	tgaatggat	ccatgacaat	3360
ggcgagttct	accttccac	acacacctcc	acggctcca	gtatacagca	cacccaggag	3420
ctcctgaaag	agcacgagga	gttccagata	actgcaaagc	aaaccaaaga	gagagtgaag	3480
ctattgatac	agctggctga	tggctttgt	aaaaaaggc	atgcccattgc	ggcagagata	3540
aaaaaatgtg	ttactgctgt	gataaagagg	tacagagatt	tctctctgcg	gatggagaag	3600
tacaggacct	ctttggaaaa	agccctgggg	atttcttcag	attccaacaa	atcgagtaaa	3660
agtctccagc	tagatatcat	tccagccagt	atccctggct	cagaggtgaa	acttcgagat	3720
gctgctcatg	aacttaatga	agagaagcgg	aaatctcccc	gcaggaaaga	gttcataatg	3780
gctgagctca	ttcaactga	aaaggcttat	gtaagagacc	tccggaaatg	tatggatac	3840
tacctgtggg	aatgaccag	tggcgtggaa	gagattccac	ctggcattgt	aaacaaagaa	3900
ctcatcatct	tcgaaaacat	gcaagaaatc	taacaaatttc	ataataaacat	attcctaaag	3960
gagctggaaa	aatatgaaca	gttgcagag	gatgttggac	attgtttgt	tacttggca	4020
gacaagtttc	agatgtatgt	cacatattgc	aaaaataaagc	ctgattctac	tcagctgata	4080
ttggAACATG	caggtccta	ttttgacgag	atacagcagc	gacatggatt	agccaaattcc	4140
atttcttcct	accttattaa	accagttcag	cgaataaacga	aatatcagct	ccttttaaaa	4200
gagctgctga	cgtgctgtga	gaaaggaaag	ggagagatta	aagatggct	ggaggtgatg	4260
ctcagcgtgc	cgaagcgcgc	caatgacccc	atgcacctca	gcatgctgga	agggtttgat	4320
aaaaacatttgc	agtctcaggg	agaactcatc	ctacaggaat	ccttcaagt	gtgggaccca	4380
aaaaccttaa	ttcggaaagg	tcgagaacgg	catcttcc	ttttgaaat	gtccttagta	4440
tttagtaaa	aagtggaaa	ttccagttgg	agaagcaagt	accttataa	aagcaatttgc	4500
tttacctcag	agttgggtgt	cacagaacat	gttgaaggag	acccttgca	atttgcactg	4560
tgggtgggg	gaacaccaac	ttcagataat	aaaattgtcc	ttaaggcttc	cagcatagag	4620
aacaaggcagg	actggataaa	gcatatccgc	gaagtcatcc	aggagcggac	gatccacctg	4680
aaggggcccc	tgaaggagcc	cattcacatc	cctaagaccg	ctccggccac	aagacagaag	4740
ggaaggaggg	atggagagga	tctggacagc	caaggagacg	gcaagcggca	gcctgatac	4800
atttccatcg	cctcacggac	gtctcagaac	acgctggaca	gogataagct	ctctggtgc	4860
tgtgagctga	cagtggat	ccatgacttc	accgcttgc	acagcaacga	gctgaccatc	4920
cgacggggcc	agaccgtgga	agttctggag	cggccgcattgc	acaagcctga	ctgggtctg	4980
gtgcggacca	ctgaccgctc	cccagcggca	gaaggcctgg	tcccctgtgg	ttcactgtgc	5040
atcgcccaact	ccagaagtag	catggaaatg	gaggcattct	toaaccacaa	agactcgctc	5100
tccgtctcca	gcaatgacgc	cagtccacc	gcatccgtgg	ctcccttcca	gccccacatg	5160
atcgggggcc	agagctcgcc	gggcccccaag	cggccggca	acaccctgc	caagtggctc	5220
accagcccc	tgcggcggt	cagcagcggc	aaggccgacg	ggcacgtgaa	gaagctggcg	5280
cacaagcaca	agaagagccg	cgaggtccgc	aagagcggcc	acgcccggctc	gcagaaggac	5340
tccgacgaca	gtgcggccac	cccgcaggac	gagacggctg	aggagagagg	ccggaacgag	5400
ggcctgagca	gcccgtactct	ctccaaatcc	tcctctcg	ggatgcagag	ctgtggagaa	5460
gaggaaggcg	aggagggggc	cgacgcccgt	cccctccgc	cacccatggc	catccagcag	5520
cacagcctcc	tccagccaga	ctcacaggat	gacaaggct	ctctcggtt	attagttccgc	5580
cccaccagct	ccgaaacacc	gagtgcagcc	gagctcgta	gtcaatttg	ggaactcg	5640
aaaagcaaga	tggcactgga	ggatcgcccc	agctcactcc	ttgttgacca	gggagatagt	5700
agcagccctt	ccttcaaccc	ttcggataat	tccctctct	cttcctcc	gcccattgtat	5760
gagatggaaag	aaagaaatc	cagcttttta	aagagaagac	actacgtttt	gcaagaacta	5820
gtggagacag	agcgtgacta	tgtgcgggac	cttggctatg	ttgttgaggg	ctacatggca	5880
tttatgaaag	aatatgggtt	tcctctgtac	atgaaaggaa	aagacaaaat	tgtgttgc	5940
aacatccatc	agattacga	ctggcacaga	gactttttt	taggagagt	agagaagtgc	6000
tttgaagatc	cagaaaaact	aggatccctt	tttgtaaac	acgagagaga	gttgcacat	6060
tacatagctt	attgtcaaaa	taaaccacaa	tctgagcaca	ttgtctcaga	atacatgtat	6120
accttttttgc	aggactaaa	gcagcgttcc	ggccacaggt	tacagctcac	agatctgttgc	6180
atcaaaccatc	tgcagagaat	catgaagtat	cagctgttac	tgaaggactt	cctcaagtat	6240
tccaaaaagg	ccagcctgga	tacatcaga	tttagagag	ctgtggaaat	catgtgcata	6300
gtacccaggg	ggtgcacacg	catgatgaac	gtggggcggc	tgcaggatt	cgacggaaaa	6360
atcggttgc	aggtaaact	gcttttgcag	gacacattct	ttgtcacaga	ccaagatgc	6420

032796-132.ST25

ggacttctgc ctcgctgcag agagaggcgc atcttcctct ttgagcagat cgtcatattc	6480
agcgaaccac ttgataaaaa gaagggcttc tccatgccgg gattcctgtt taagaacagt	6540
atcaagggtga gttgccttg cctggaggaa aatgtggaaa atgatccctg taaatttgct	6600
ctgacatcga ggacgggtga cgtggtagag accttcattt tgcatccatc tagtccaagt	6660
gtccggcaaa cttgatcca taaaaatcaac caaattttag aaaaccagcg caattttta	6720
aatgccttga catgccaa atcgtaccag aggaaccaca gccccggcgg cggcggcgc	6780
ggcagcgggg cagccgggg ggtggggca gcggccgggg cggggcccccc agtggcggca	6840
gcggccacag tggccggccc agcagctgcg gcggccccc cagcacgagc aggagccgc	6900
cctcccgat cccccagcct gtccgacacc acccccccgt gctggctcc tctgcagcct	6960
cgagccaggc agagcagac aagatgtca agtggaaagca gcagcagtag caacatctcc	7020
accatgttgg tgacacacga ttacacggca gtgaaggagg atgagatcaa cgtctaccaa	7080
ggagagggtcg ttcaaaattct gcgcagcaac cagcagaaca tggggctgggt gttccgagcc	7140
gccactgacc agtgcggccgc agctgagggc tggattccag gctttgtcct gggccacacc	7200
agtgcagtca tcgtggagaa cccggacggg actctcaaga agtcaacatc ttggcacaca	7260
gcactccgtt taagaaaaaa atctgagaaa aaagataaaag acggcaaaag ggaaggcaag	7320
ttagagaacg gttatcgaa gtcacggaa ggactcagca acaaggatc tggaaagctt	7380
ctcaatccca actacattt tgacgttccc ccagaattcg tcattccatt gagtgaggc	7440
acgtgtgaga caggggagac ctttgggtt agatgtcgag tctgtggccg cccaaagcc	7500
tcaattaccc ggaaggggccc tgaacacaac accttgcgaa acatggtca ctacagcatc	7560
tcctacagtg acctgggaga gcgcacgctg aagattgtgg gcgtgaccac ggaagatgac	7620
ggcatctaca cgtgcacgc tgcataatgac atgggttcag ctcacatcatc gcgcacgc	7680
agggtcctag gtccagggtat ggtggatc atgggtaccc gggaaagacaa ctttgactcc	7740
ttctacagtg aagtggctga gttggcagg ggcagattct ctgtcgtaa gaaatgtgat	7800
cagaaaggaa ccaagcgagc agtggccact aagttgtga acaagaagtt gatgaagcgc	7860
gaccagggtca cccatgagct tggcattctg cagggctcc agcaccggc gttgtcgcc	7920
ctcctcgaca cctttgagac cccaccaggc tacatccctgg tcttagaaat ggctgaccag	7980
ggtcgcctcc tggactgcgt ggtgcgttgg ggaaggctca ctgaaggggaa gatcaggcg	8040
cacctggggg aggttctgga agctgtccgg tacctgcaca actgcaggat agcacacctg	8100
gacctaagc ctgagaatat ctttgtggat gagatgtttag ccaagccaaac catcaaactg	8160
gctgactttt gagatgtctgt tcaagtcac acgactact acatccacca gttactgggg	8220
aaccctgaat tcgcagcccc tggaaatcatc ctggaaacc ctgtctccct gacctcgat	8280
acgtggagtg ttggagtgtt cacatacgta ctcttagtg gcgtgtcccc ctccctggat	8340
gacagtgtgg aagagacctg cttgaacatt tgccgttag actttagctt cccagatgac	8400
tactttaaag gagtgagcca gaaggccaag gagttctgt gttccctct gcaggaggac	8460
cccgccaaagc gtccctcgcc tgcgtggcc ctccaggagc agtggctgca ggcggcaac	8520
ggcagaagca cggcgtccct gcacacgtcc agactgactt ctttcattga gcggcgc当地	8580
caccagaatg atgttcgacc tatccgtagc attaaaaact ttctgcagag caggctctg	8640
ccttagagtt gacctatcca gaagttttt ctcatctt ttcacctgaa aatcagctgt	8700
taatctgaat ttcaagaga aaacaagcaa acataactga tcaagtcggc gtatgttcat	8760
cgtgtgaaat tgcattccaa gtgagctgtg ctcaagctgt ctggacacaca gagctgcaag	8820
ctgcgtggg gtggaggacc gtcacttaca ctctgccaag gacggaggc gcattgtgt	8880
atcacagttat ttttacgga tttctg	8906

<210> 86
<211> 1204
<212> DNA
<213> Homo sapiens

<400> 86	
tcggcggcgg tggatcgcc ggcagctgtg aggggttcc gggaaatgg tgctgtatcaa	60
ggaattccgt gtgggttgc catgttctgt tcaaggatcat cagggtggc agcttactc	120
tgttgagaa gctagtaaga atgagactgg tggtgagaa ggaattgtaa tcttaagaa	180
tgaaccttat gagaaggatg gagaaggagg acagtatacg cacaatattt atcaccataa	240
gagcaaagtg ctcgcattcg tgaggatcat tgctccggc ggctccctgg tggatcgat	300
gaaaggctgg aatgcgtacc cttactgtat aacaattgtat accaatgtat atatgaaaga	360
tgtatccatc attaaaaatcg aaacatggca caaaccagac ttggaaacat tagaaaatgt	420

032796-132.ST25

acatggttta gatccaaaca catggaaaac tggtaaatt gtccatatacg atattgcaga	480
tagaagtcaa gttgaaccag cagactacaa agctgatgaa gacccagcat tattccagtc	540
agtcaagacc aagagaggcc ctttgggacc caactggaag aaggagctgg caaacagccc	600
tgactgtccc cagatgtgtg cctataagct ggtgaccatc aaattcaagt ggtggggact	660
gcaaagcaaa gtagaaaaact tcattcaaaa gcaagaaaaa cgatattta caaacttcca	720
tcgcccagctt ttttgttga ttgacaagtg gatcgatctc acgatggaag acattaggag	780
aatggaaagac gagactcaga aagaactaga aacaatgcgt aagaggggtt ccgttcgagg	840
cacgtccgct gctgatgtct agatgagtcc cctgttaggtt cagagacaat gtcaaactgt	900
ttacgtaaatc aaggtaagt gaggggaaaca agcgcagcca gtgatgagtq aacaacaatc	960
tgaccagtat cttgcagtgt tgacgtttcc cagatgtgtg ctgtgtatga tacacacaca	1020
tgcacaggtt ctcaaccacg tgttatata ttttatgtgtg catatgtctg tagctgtata	1080
taaagcgcat gttagagctac agatccagat acacacactt gtgttatatat gtacatacag	1140
acatactgaa gggattagta caatttctcc aaagtactgt acctatcttc agcaagaatg	1200
caaa	1204

<210> 87

<211> 892

<212> PRT

<213> Homo sapiens

<400> 87

Met Asp His Tyr Asp Ser Gln Gln Thr Asn Asp Tyr Met Gln Pro Glu			
1	5	10	15
Glu Asp Trp Asp Arg Asp Leu Leu Leu Asp Pro Ala Trp Glu Lys Gln			
20	25	30	
Gln Arg Lys Thr Phe Thr Ala Trp Cys Asn Ser His Leu Arg Lys Ala			
35	40	45	
Gly Thr Gln Ile Glu Asn Ile Glu Glu Asp Phe Arg Asp Gly Leu Lys			
50	55	60	
Leu Met Leu Leu Leu Glu Val Ile Ser Gly Glu Arg Leu Ala Lys Pro			
65	70	75	80
Glu Arg Gly Lys Met Arg Val His Lys Ile Ser Asn Val Asn Lys Ala			
85	90	95	
Leu Asp Phe Ile Ala Ser Lys Gly Val Lys Leu Val Ser Ile Gly Ala			
100	105	110	
Glu Glu Ile Val Asp Gly Asn Val Lys Met Thr Leu Gly Met Ile Trp			
115	120	125	
Thr Ile Ile Leu Arg Phe Ala Ile Gln Asp Ile Ser Val Glu Glu Thr			
130	135	140	
Ser Ala Lys Glu Gly Leu Leu Leu Trp Cys Gln Arg Lys Thr Ala Pro			
145	150	155	160
Tyr Lys Asn Val Asn Ile Gln Asn Phe His Ile Ser Trp Lys Asp Gly			
165	170	175	
Leu Gly Phe Cys Ala Leu Ile His Arg His Arg Pro Glu Leu Ile Asp			
180	185	190	
Tyr Gly Lys Leu Arg Lys Asp Asp Pro Leu Thr Asn Leu Asn Thr Ala			
195	200	205	
Phe Asp Val Ala Glu Lys Tyr Leu Asp Ile Pro Lys Met Leu Asp Ala			
210	215	220	
Glu Asp Ile Val Gly Thr Ala Arg Pro Asp Glu Lys Ala Ile Met Thr			
225	230	235	240
Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly Ala Gln Lys Ala Glu			
245	250	255	
Thr Ala Ala Asn Arg Ile Cys Lys Val Leu Ala Val Asn Gln Glu Asn			
260	265	270	
Glu Gln Leu Met Glu Asp Tyr Glu Lys Leu Ala Ser Asp Leu Leu Glu			
275	280	285	

032796-132.ST25

Trp Ile Arg Arg Thr Ile Pro Trp Leu Glu Asn Arg Val Pro Glu Asn
290 295 300
Thr Met His Ala Met Gln Gln Lys Leu Glu Asp Phe Arg Asp Tyr Arg
305 310 315 320
Arg Leu His Lys Pro Pro Lys Val Gln Glu Lys Cys Gln Leu Glu Ile
325 330 335
Asn Phe Asn Thr Leu Gln Thr Lys Leu Arg Leu Ser Asn Arg Pro Ala
340 345 350
Phe Met Pro Ser Glu Gly Arg Met Val Ser Asp Ile Asn Asn Ala Trp
355 360 365
Gly Cys Leu Glu Gln Val Glu Lys Gly Tyr Glu Glu Trp Leu Leu Asn
370 375 380
Glu Ile Arg Arg Leu Glu Arg Leu Asp His Leu Ala Glu Lys Phe Arg
385 390 395 400
Gln Lys Ala Ser Ile His Glu Ala Trp Thr Asp Gly Lys Glu Ala Met
405 410 415
Leu Arg Gln Lys Asp Tyr Glu Thr Ala Thr Leu Ser Glu Ile Lys Ala
420 425 430
Leu Leu Lys Lys His Glu Ala Phe Glu Ser Asp Leu Ala Ala His Gln
435 440 445
Asp Arg Val Glu Gln Ile Ala Ala Ile Ala Gln Glu Leu Asn Glu Leu
450 455 460
Asp Tyr Tyr Asp Ser Pro Ser Val Asn Ala Arg Cys Gln Lys Ile Cys
465 470 475 480
Asp Gln Trp Asp Asn Leu Gly Ala Leu Thr Gln Lys Arg Arg Glu Ala
485 490 495
Leu Glu Arg Thr Glu Lys Leu Leu Glu Thr Ile Asp Gln Leu Tyr Leu
500 505 510
Glu Tyr Ala Lys Arg Ala Ala Pro Phe Asn Asn Trp Met Glu Gly Ala
515 520 525
Met Glu Asp Leu Gln Asp Thr Phe Ile Val His Thr Ile Glu Glu Ile
530 535 540
Gln Gly Leu Thr Thr Ala His Glu Gln Phe Lys Ala Thr Leu Pro Asp
545 550 555 560
Ala Asp Lys Glu Arg Leu Ala Ile Leu Gly Ile His Asn Glu Val Ser
565 570 575
Lys Ile Val Gln Thr Tyr His Val Asn Met Ala Gly Thr Asn Pro Tyr
580 585 590
Thr Thr Ile Thr Pro Gln Glu Ile Asn Gly Lys Trp Asp His Val Arg
595 600 605
Gln Leu Val Pro Arg Arg Asp Gln Ala Leu Thr Glu Glu His Ala Arg
610 615 620
Gln Gln His Asn Glu Arg Leu Arg Lys Gln Phe Gly Ala Gln Ala Asn
625 630 635 640
Val Ile Gly Pro Trp Ile Gln Thr Lys Met Glu Glu Ile Gly Arg Ile
645 650 655
Ser Ile Glu Met His Gly Thr Leu Glu Asp Gln Leu Ser His Leu Arg
660 665 670
Gln Tyr Glu Lys Ser Ile Val Asn Tyr Lys Pro Lys Ile Asp Gln Leu
675 680 685
Glu Gly Asp His Gln Leu Ile Gln Glu Ala Leu Ile Phe Asp Asn Lys
690 695 700
His Thr Asn Tyr Thr Met Glu His Ile Arg Val Gly Trp Glu Gln Leu
705 710 715 720
Leu Thr Thr Ile Ala Arg Thr Ile Asn Glu Val Glu Asn Gln Ile Leu
725 730 735
Thr Arg Asp Ala Lys Gly Ile Ser Gln Glu Gln Met Asn Glu Phe Arg

032796-132.ST25

740	745	750
Ala Ser Phe Asn His Phe Asp Arg Asp His Ser Gly Thr Leu Gly Pro		
755	760	765
Glu Glu Phe Lys Ala Cys Leu Ile Ser Leu Gly Tyr Asp Ile Gly Asn		
770	775	780
Asp Pro Gln Gly Glu Ala Glu Phe Ala Arg Ile Met Ser Ile Val Asp		
785	790	795
Pro Asn Arg Leu Gly Val Val Thr Phe Gln Ala Phe Ile Asp Phe Met		800
805	810	815
Ser Arg Glu Thr Ala Asp Thr Asp Thr Ala Asp Gln Val Met Ala Ser		
820	825	830
Phe Lys Ile Leu Ala Gly Asp Lys Asn Tyr Ile Thr Met Asp Glu Leu		
835	840	845
Arg Arg Glu Leu Pro Pro Asp Gln Ala Glu Tyr Cys Ile Ala Arg Met		
850	855	860
Ala Pro Tyr Thr Gly Pro Asp Ser Val Pro Gly Ala Leu Asp Tyr Met		
865	870	875
Ser Phe Ser Thr Ala Leu Tyr Gly Glu Ser Asp Leu		880
885	890	

<210> 88

<211> 197

<212> PRT

<213> Homo sapiens

<400> 88

Met Met Phe Pro Gln Ser Arg His Ser Gly Ser Ser His Leu Pro Gln		
1	5	10
Gln Leu Lys Phe Thr Thr Ser Asp Ser Cys Asp Arg Ile Lys Asp Glu		15
20	25	30
Phe Gln Leu Leu Gln Ala Gln Tyr His Ser Leu Lys Leu Glu Cys Asp		
35	40	45
Lys Leu Ala Ser Glu Lys Ser Glu Met Gln Arg His Tyr Val Met Tyr		
50	55	60
Tyr Glu Met Ser Tyr Gly Leu Asn Ile Glu Met His Lys Gln Ala Glu		
65	70	75
Ile Val Lys Arg Leu Asn Gly Ile Cys Ala Gln Val Leu Pro Tyr Leu		80
85	90	95
Ser Gln Glu His Gln Gln Val Leu Gly Ala Ile Glu Arg Ala Lys		
100	105	110
Gln Val Thr Ala Pro Glu Leu Asn Ser Ile Ile Arg Gln Gln Leu Gln		
115	120	125
Ala His Gln Leu Ser Gln Leu Gln Ala Leu Ala Leu Pro Leu Thr Pro		
130	135	140
Leu Pro Val Gly Leu Gln Pro Pro Ser Leu Pro Ala Val Ser Ala Gly		
145	150	155
Thr Gly Leu Leu Ser Leu Ser Ala Leu Gly Ser Gln Ala His Leu Ser		160
165	170	175
Lys Glu Asp Lys Asn Gly His Asp Gly Asp Thr His Gln Glu Asp Asp		
180	185	190
Gly Glu Lys Ser Asp		
195		

<210> 89

<211> 739

<212> PRT

<213> Homo sapiens

032796-132.ST25

<400> 89

Gly Asp Lys Glu Pro Thr Glu Thr Ile Gly Asp Leu Ser Ile Cys Leu
1 5 10 15
Asp Gly Leu Gln Leu Glu Ser Glu Val Val Thr Asn Gly Glu Thr Thr
20 25 30
Cys Ser Glu Ser Ala Ser Gln Asn Asp Asp Gly Ser Arg Ser Lys Asp
35 40 45
Glu Thr Arg Val Ser Thr Asn Gly Ser Asp Asp Pro Glu Asp Ala Gly
50 55 60
Ala Gly Glu Asn Arg Arg Val Ser Gly Asn Asn Ser Pro Ser Leu Ser
65 70 75 80
Asn Gly Gly Phe Lys Pro Ser Arg Pro Pro Arg Pro Ser Arg Pro Pro
85 90 95
Pro Pro Thr Pro Arg Arg Pro Ala Ser Val Asn Gly Ser Pro Ser Ala
100 105 110
Thr Ser Glu Ser Asp Gly Ser Ser Thr Gly Ser Leu Pro Pro Thr Asn
115 120 125
Thr Asn Thr Asn Thr Ser Glu Gly Ala Thr Ser Gly Leu Ile Ile Pro
130 135 140
Leu Thr Ile Ser Gly Gly Ser Gly Pro Arg Pro Leu Asn Pro Val Thr
145 150 155 160
Gln Ala Pro Leu Pro Pro Gly Trp Glu Gln Arg Val Asp Gln His Gly
165 170 175
Arg Val Tyr Tyr Val Asp His Val Glu Lys Arg Thr Thr Trp Asp Arg
180 185 190
Pro Glu Pro Leu Pro Pro Gly Trp Glu Arg Arg Val Asp Asn Met Gly
195 200 205
Arg Ile Tyr Tyr Val Asp His Phe Thr Arg Thr Thr Trp Gln Arg
210 215 220
Pro Thr Leu Glu Ser Val Arg Asn Tyr Glu Gln Trp Gln Leu Gln Arg
225 230 235 240
Ser Gln Leu Gln Gly Ala Met Gln Gln Phe Asn Gln Arg Phe Ile Tyr
245 250 255
Gly Asn Gln Asp Leu Phe Ala Thr Ser Gln Ser Lys Glu Phe Asp Pro
260 265 270
Leu Gly Pro Leu Pro Pro Gly Trp Glu Lys Arg Thr Asp Ser Asn Gly
275 280 285
Arg Val Tyr Phe Val Asn His Asn Thr Arg Ile Thr Gln Trp Glu Asp
290 295 300
Pro Arg Ser Gln Gly Gln Leu Asn Glu Lys Pro Leu Pro Glu Gly Trp
305 310 315 320
Glu Met Arg Phe Thr Val Asp Gly Ile Pro Tyr Phe Val Asp His Asn
325 330 335
Arg Arg Thr Thr Tyr Ile Asp Pro Arg Thr Gly Lys Ser Ala Leu
340 345 350
Asp Asn Gly Pro Gln Ile Ala Tyr Val Arg Asp Phe Lys Ala Lys Val
355 360 365
Gln Tyr Phe Arg Phe Trp Cys Gln Gln Leu Ala Met Pro Gln His Ile
370 375 380
Lys Ile Thr Val Thr Arg Lys Thr Leu Phe Glu Asp Ser Phe Gln Gln
385 390 395 400
Ile Met Ser Phe Ser Pro Gln Asp Leu Arg Arg Arg Leu Trp Val Ile
405 410 415
Phe Pro Gly Glu Glu Gly Leu Asp Tyr Gly Gly Val Ala Arg Glu Trp
420 425 430
Phe Phe Leu Leu Ser His Glu Val Leu Asn Pro Met Tyr Cys Leu Phe

032796-132.ST25

435	440	445
Glu Tyr Ala Gly Lys Asp Asn Tyr Cys Leu Gln Ile Asn Pro Ala Ser		
450	455	460
Tyr Ile Asn Pro Asp His Leu Lys Tyr Phe Arg Phe Ile Gly Arg Phe		
465	470	475
Ile Ala Met Ala Leu Phe His Gly Lys Phe Ile Asp Thr Gly Phe Ser		
485	490	495
Leu Pro Phe Tyr Lys Arg Ile Leu Asn Lys Pro Val Gly Leu Lys Asp		
500	505	510
Leu Glu Ser Ile Asp Pro Glu Phe Tyr Asn Ser Leu Ile Trp Val Lys		
515	520	525
Glu Asn Asn Ile Glu Glu Cys Asp Leu Glu Met Tyr Phe Ser Val Asp		
530	535	540
Lys Glu Ile Leu Gly Glu Ile Lys Ser His Asp Leu Lys Pro Asn Gly		
545	550	555
Gly Asn Ile Leu Val Thr Glu Glu Asn Lys Glu Glu Tyr Ile Arg Met		
565	570	575
Val Ala Glu Trp Arg Leu Ser Arg Gly Val Glu Glu Gln Thr Gln Ala		
580	585	590
Phe Phe Glu Gly Phe Asn Glu Ile Leu Pro Gln Gln Tyr Leu Gln Tyr		
595	600	605
Phe Asp Ala Lys Glu Leu Glu Val Leu Leu Cys Gly Met Gln Glu Ile		
610	615	620
Asp Leu Asn Asp Trp Gln Arg His Ala Ile Tyr Arg His Tyr Ala Arg		
625	630	635
Thr Ser Lys Gln Ile Met Trp Phe Trp Gln Phe Val Lys Glu Ile Asp		
645	650	655
Asn Glu Lys Arg Met Arg Leu Leu Gln Phe Val Thr Gly Thr Cys Arg		
660	665	670
Leu Pro Val Gly Gly Phe Ala Asp Leu Met Gly Ser Asn Gly Pro Gln		
675	680	685
Lys Phe Cys Ile Glu Lys Val Gly Lys Glu Asn Trp Leu Pro Arg Ser		
690	695	700
His Thr Cys Phe Asn Arg Leu Asp Leu Pro Pro Tyr Lys Ser Tyr Glu		
705	710	715
Gln Leu Lys Glu Lys Leu Leu Phe Ala Ile Glu Glu Thr Glu Gly Phe		
725	730	735
Gly Gln Glu		

<210> 90
<211> 431
<212> PRT
<213> Homo sapiens

<400> 90			
Gly Pro Pro Pro Thr Arg Ala Leu Pro Leu Pro Gln Ser Leu Pro Pro			
1	5	10	15
Asp Phe Arg Leu Glu Pro Thr Ala Pro Ala Leu Ser Pro Arg Ser Ser			
20	25	30	
Phe Ala Ser Ser Ser Ala Ser Asp Ala Ser Lys Pro Ser Ser Pro Arg			
35	40	45	
Gly Ser Leu Leu Leu Asp Gly Ala Gly Ala Gly Gly Ala Gly Gly Ser			
50	55	60	
Arg Pro Cys Ser Asn Arg Thr Ser Gly Ile Ser Met Gly Tyr Asp Gln			
65	70	75	80
Arg His Gly Ser Pro Leu Pro Ala Gly Pro Cys Leu Phe Gly Pro Pro			

032796-132.ST25

	85		90		95
Leu Ala Gly Ala Pro Ala Gly Tyr Ser Pro Gly Gly Val Pro Ser Ala					
100		105		110	
Tyr Pro Glu Leu His Ala Ala Leu Asp Arg Leu Tyr Ala Gln Arg Pro					
115		120		125	
Ala Gly Phe Gly Cys Gln Glu Ser Arg His Ser Tyr Pro Pro Ala Leu					
130		135		140	
Gly Ser Pro Gly Ala Leu Ala Gly Ala Arg Val Gly Ala Ala Gly Pro					
145		150		155	
Leu Glu Arg Arg Gly Ala Gln Pro Gly Arg His Ser Val Thr Gly Tyr					
165		170		175	
Gly Asp Cys Ala Val Gly Ala Arg Tyr Gln Asp Glu Leu Thr Ala Leu					
180		185		190	
Leu Arg Leu Thr Val Gly Thr Gly Arg Glu Ala Gly Ala Arg Gly					
195		200		205	
Glu Pro Ser Gly Ile Glu Pro Ser Gly Leu Glu Glu Pro Pro Gly Pro					
210		215		220	
Phe Val Pro Glu Ala Ala Arg Ala Arg Met Arg Glu Pro Glu Ala Arg					
225		230		235	
Glu Asp Tyr Phe Gly Thr Cys Ile Lys Cys Asn Lys Gly Ile Tyr Gly					
245		250		255	
Gln Ser Asn Ala Cys Gln Ala Leu Asp Ser Leu Tyr His Thr Gln Cys					
260		265		270	
Phe Val Cys Cys Ser Cys Gly Arg Thr Leu Arg Cys Lys Ala Phe Tyr					
275		280		285	
Ser Val Asn Gly Ser Val Tyr Cys Glu Glu Asp Tyr Leu Phe Ser Gly					
290		295		300	
Phe Gln Glu Ala Ala Glu Lys Cys Cys Val Cys Gly His Leu Ile Leu					
305		310		315	
Glu Lys Ile Leu Gln Ala Met Gly Lys Ser Tyr His Pro Gly Cys Phe					
325		330		335	
Arg Cys Ile Val Cys Asn Lys Cys Leu Asp Gly Ile Pro Phe Thr Val					
340		345		350	
Asp Phe Ser Asn Gln Val Tyr Cys Val Thr Asp Tyr His Lys Asn Tyr					
355		360		365	
Ala Pro Lys Cys Ala Ala Cys Gly Gln Pro Ile Leu Pro Ser Glu Gly					
370		375		380	
Cys Glu Asp Ile Val Arg Val Ile Ser Met Asp Arg Asp Tyr His Phe					
385		390		395	
Glu Cys Tyr His Cys Glu Asp Cys Arg Met Gln Leu Ser Asp Glu Glu					
405		410		415	
Gly Cys Cys Cys Phe Pro Leu Asp Gly His Leu Leu Cys His Gly					
420		425		430	

<210> 91
<211> 900
<212> PRT
<213> Homo sapiens

<400> 91
Gly Pro Gly Ser Arg His His Arg Ala Arg Asp Arg Leu Ile His Phe
1 5 10 15
Gly Ala Val Ser Thr Asp Val Leu Gly Cys Ser Ala His Cys Ser Leu
20 25 30
Thr Gln Ser Pro Lys Met Asn Ile Gln Glu Gln Gly Phe Pro Leu Asp
35 40 45
Leu Gly Ala Ser Phe Thr Glu Asp Ala Pro Arg Pro Pro Val Pro Gly

032796-132.ST25

50	55	60
Glu	Glu	Gly
Glu	Glu	Glu
Leu	Val	Ser
Thr	Asp	Pro
Pro	Arg	Pro
Ala	Ser	Tyr
Ser	Tyr	Ser
65	70	75
Phe	Cys	Gly
Ser	Gly	Lys
Gly	Val	Gly
Ile	Lys	Gly
85	90	95
Thr	Pro	Arg
Arg	Ser	Asp
Leu	Asp	Leu
Gly	Tyr	Glu
100	105	110
Thr	Pro	Arg
Arg	Ser	Asp
Leu	Asp	Leu
Gly	Tyr	Glu
115	120	125
Ala	Ser	Pro
Pro	Thr	Pro
Pro	Tyr	Leu
Lys	Trp	Ala
Glu	Ser	Leu
His	Ser	
130	135	140
Leu	Leu	Asp
Asp	Gln	Asp
Gly	Ile	Ser
Leu	Phe	Arg
145	150	155
Gln	Glu	Gly
Cys	Ala	Asp
Leu	Leu	Asp
Phe	Trp	Phe
160	165	170
Ala	Cys	Thr
Phe	Arg	Lys
Leu	Glu	Pro
Cys	Asp	Ser
Asn	Glu	Glu
Lys	Arg	Leu
175	180	185
Leu	Ala	Arg
Ala	Ile	Tyr
Arg	Lys	Tyr
Ile	Leu	Asp
Asn	Asn	Gly
Ile	190	
Val	Ser	Arg
Gln	Thr	Lys
Pro	Ala	Thr
Lys	Ser	Phe
Ile	Lys	Gly
205	195	200
Ile	Met	Lys
Gln	Leu	Ile
Leu	Asp	Pro
Pro	Ala	Met
Phe	Asp	Gln
220	210	215
Glu	Ile	Gln
Ala	Thr	Met
Glu	Glu	Asn
Thr	Tyr	Pro
Pro	Ser	Phe
Leu	Lys	
240	225	230
Ser	Asp	Ile
Tyr	Leu	Glu
Tyr	Thr	Arg
Thr	Gly	Ser
Glu	Ser	Pro
Lys	245	250
255	260	265
Val	Cys	Ser
Asp	Gln	Ser
Ser	Ser	Gly
Gly	Thr	Gly
Lys	Gly	Ile
270	275	280
Ser	Tyr	Leu
Leu	Pro	Thr
Asn	Leu	Glu
Asp	Glu	Asp
Glu	Trp	Lys
Cys	Asp	Gln
285	280	285
Asp	Met	Asp
Glu	Asp	Asp
Gly	Arg	Asp
Ala	Ala	Pro
Pro	Pro	Gly
Gly	Arg	Leu
290	295	300
Pro	Gln	Lys
Leu	Leu	Leu
Glu	Thr	Ala
305	310	315
Ala	Ala	Pro
Pro	Arg	Val
Arg	Ser	Ser
Ser	Ser	Ser
320	325	330
Arg	Arg	Tyr
Tyr	Ser	Glu
Gly	Arg	Arg
Glu	Glu	Phe
335	325	330
Arg	Tyr	Arg
Ser	Trp	Arg
340	345	350
Pro	Val	Asn
Asn	Pro	Tyr
Tyr	Val	Asn
Ala	Gly	Tyr
345	340	350
Ala	Tyr	Ala
355	360	365
Thr	Ser	Ala
Ala	Asn	Asp
Asp	Ser	Glu
Gln	Gln	Ser
365	355	365
Ser	Leu	Ser
370	375	380
Thr	Asp	Val
Asp	Ser	Gly
380	370	380
Ile	Arg	Lys
Gln	His	Arg
385	390	395
Arg	Arg	Glu
Glu	Met	Gln
395	385	400
Gly	Arg	Arg
400	405	410
Val	Pro	Ile
Leu	Pro	Pro
His	His	Arg
410	405	415
Arg	Pro	Arg
415	410	415
Glu	Val	Arg
420	420	430
Val	Glu	Pro
425	425	430
Gln	Lys	Glu
430	430	430
Arg	Leu	Arg
435	440	445
Val	Arg	Val
440	440	445
Arg	Leu	Arg
445	445	445
Val	Arg	Met
450	455	460
Glu	Glu	Gly
460	460	460
Gly	Glu	Asp
465	470	475
Ser	Ser	Gly
Gly	Pro	Pro
475	475	480
Pro	Cys	His
480	480	480
Trp	His	His
Phe	Phe	Pro
485	485	490
Pro	Arg	Leu
490	490	495
Cys	Trp	Trp
495	495	495
Ala	Ala	Cys
Cys	Cys	Ala
500	505	510
Asp	Glu	Gly
His	Asn	Pro
510	510	510

032796-132.ST25

Val Gln Arg Val Leu Arg Thr Thr Gly Arg Gln Ser Pro Gly Pro Gly
515 520 525
His Arg Ser Pro Asp Ser Gly His Val Ala Lys Met Pro Val Ala Leu
530 535 540
Gly Gly Ala Ala Ser Gly His Gly Lys His Val Pro Lys Ser Gly Ala
545 550 555 560
Lys Leu Asp Ala Ala Gly Leu His His His Arg His Val His His His
565 570 575
Val His His Ser Thr Ala Arg Pro Lys Glu Gln Val Glu Ala Glu Ala
580 585 590
Thr Arg Arg Ala Gln Ser Ser Phe Ala Trp Gly Leu Glu Pro His Ser
595 600 605
His Gly Ala Arg Ser Arg Gly Tyr Ser Glu Ser Val Gly Ala Ala Pro
610 615 620
Asn Ala Ser Asp Gly Leu Ala His Ser Gly Lys Val Gly Val Ala Cys
625 630 635 640
Lys Arg Asn Ala Lys Lys Ala Glu Ser Gly Lys Ser Ala Ser Thr Glu
645 650 655
Val Pro Gly Ala Ser Glu Asp Ala Glu Lys Asn Gln Lys Ile Met Gln
660 665 670
Trp Ile Glu Gly Glu Lys Glu Ile Ser Arg His Arg Arg Thr Gly
675 680 685
His Gly Ser Ser Gly Thr Arg Lys Pro Gln Pro His Glu Asn Ser Arg
690 695 700
Pro Leu Ser Leu Glu His Pro Trp Ala Gly Pro Gln Leu Arg Thr Ser
705 710 715 720
Val Gln Pro Ser His Leu Phe Ile Gln Asp Pro Thr Met Pro Pro His
725 730 735
Pro Ala Pro Asn Pro Leu Thr Gln Leu Glu Ala Arg Arg Arg Leu
740 745 750
Glu Glu Glu Lys Arg Ala Ser Arg Ala Pro Ser Lys Gln Arg Tyr
755 760 765
Val Gln Glu Val Met Arg Arg Gly Arg Ala Cys Val Arg Pro Ala Cys
770 775 780
Ala Pro Val Leu His Val Val Pro Ala Val Ser Asp Met Glu Leu Ser
785 790 795 800
Glu Thr Glu Thr Arg Ser Gln Arg Lys Val Gly Gly Ser Ala Gln
805 810 815
Pro Cys Asp Ser Ile Val Val Ala Tyr Tyr Phe Cys Gly Glu Pro Ile
820 825 830
Pro Tyr Arg Thr Leu Val Arg Gly Arg Ala Val Thr Leu Gly Gln Phe
835 840 845
Lys Glu Leu Leu Thr Lys Lys Gly Ser Tyr Arg Tyr Tyr Phe Lys Lys
850 855 860
Val Ser Asp Glu Phe Asp Cys Gly Val Val Phe Glu Glu Val Arg Glu
865 870 875 880
Asp Glu Ala Val Leu Pro Val Phe Glu Glu Lys Ile Ile Gly Lys Val
885 890 895
Glu Lys Val Asp
900

<210> 92
<211> 591
<212> PRT
<213> Homo sapiens

<400> 92

032796-132.ST25

Met Val Pro Val Ala Val Thr Ala Ala Val Ala Pro Val Leu Ser Ile
 1 5 10 15
 Asn Ser Asp Phe Ser Asp Leu Arg Glu Ile Lys Lys Gln Leu Leu Leu
 20 25 30
 Ile Ala Gly Leu Thr Arg Glu Arg Gly Leu Leu His Ser Ser Lys Trp
 35 40 45
 Ser Ala Glu Leu Ala Phe Ser Leu Pro Ala Leu Pro Leu Ala Glu Leu
 50 55 60
 Gln Pro Pro Pro Pro Ile Thr Glu Glu Asp Ala Gln Asp Met Asp Ala
 65 70 75 80
 Tyr Thr Leu Ala Lys Ala Tyr Phe Asp Val Lys Glu Tyr Asp Arg Ala
 85 90 95
 Ala His Phe Leu His Gly Cys Asn Ser Lys Lys Ala Tyr Phe Leu Tyr
 100 105 110
 Met Tyr Ser Arg Tyr Leu Ser Gly Glu Lys Lys Asp Asp Glu Thr
 115 120 125
 Val Asp Ser Leu Gly Pro Leu Glu Lys Gly Gln Val Lys Asn Glu Ala
 130 135 140
 Leu Arg Glu Leu Arg Val Glu Leu Ser Lys Lys His Gln Ala Arg Glu
 145 150 155 160
 Leu Asp Gly Phe Gly Leu Tyr Leu Tyr Gly Val Val Leu Arg Lys Leu
 165 170 175
 Asp Leu Val Lys Glu Ala Ile Asp Val Phe Val Glu Ala Thr His Val
 180 185 190
 Leu Pro Leu His Trp Gly Ala Trp Leu Glu Leu Cys Asn Leu Ile Thr
 195 200 205
 Asp Lys Glu Met Leu Lys Phe Leu Ser Leu Pro Asp Thr Trp Met Lys
 210 215 220
 Glu Phe Phe Leu Ala His Ile Tyr Thr Glu Leu Gln Leu Ile Glu Glu
 225 230 235 240
 Ala Leu Gln Lys Tyr Gln Asn Leu Ile Asp Val Gly Phe Ser Lys Ser
 245 250 255
 Ser Tyr Ile Val Ser Gln Ile Ala Val Ala Tyr His Asn Ile Arg Asp
 260 265 270
 Ile Asp Lys Ala Leu Ser Ile Phe Asn Glu Leu Arg Lys Gln Asp Pro
 275 280 285
 Tyr Arg Ile Glu Asn Met Asp Thr Phe Ser Asn Leu Leu Tyr Val Arg
 290 295 300
 Ser Met Lys Ser Glu Leu Ser Tyr Leu Ala His Asn Leu Cys Glu Ile
 305 310 315 320
 Asp Lys Tyr Arg Val Glu Thr Cys Cys Val Ile Gly Asn Tyr Tyr Ser
 325 330 335
 Leu Arg Ser Gln His Glu Lys Ala Ala Leu Tyr Phe Gln Arg Ala Leu
 340 345 350
 Lys Leu Asn Pro Arg Tyr Leu Gly Ala Trp Thr Leu Met Gly His Glu
 355 360 365
 Tyr Met Glu Met Lys Asn Thr Ser Ala Ala Ile Gln Ala Tyr Arg His
 370 375 380
 Ala Ile Glu Val Asn Lys Arg Asp Tyr Arg Ala Trp Tyr Gly Leu Gly
 385 390 395 400
 Gln Thr Tyr Glu Ile Leu Lys Met Pro Phe Tyr Cys Leu Tyr Tyr Tyr
 405 410 415
 Arg Arg Ala His Gln Leu Arg Pro Asn Asp Ser Arg Met Leu Val Ala
 420 425 430
 Leu Gly Glu Cys Tyr Glu Lys Leu Asn Gln Leu Val Glu Ala Lys Lys
 435 440 445
 Cys Tyr Trp Arg Ala Tyr Ala Val Gly Asp Val Glu Lys Met Ala Leu

032796-132.ST25

450	455	460
Val Lys Leu Ala Lys Leu His Glu Gln Leu Thr Glu Ser Glu Gln Ala		
465	470	475
Ala Gln Cys Tyr Ile Lys Tyr Ile Gln Asp Ile Tyr Ser Cys Gly Glu		480
485	490	495
Ile Val Glu His Leu Glu Glu Ser Thr Ala Phe Arg Tyr Leu Ala Gln		
500	505	510
Tyr Tyr Phe Lys Cys Lys Leu Trp Asp Glu Ala Ser Thr Cys Ala Gln		
515	520	525
Lys Cys Cys Ala Phe Asn Asp Thr Arg Glu Glu Gly Lys Ala Leu Leu		
530	535	540
Arg Gln Ile Leu Gln Leu Arg Asn Gln Gly Glu Thr Pro Thr Thr Glu		
545	550	555
560		
Val Pro Ala Pro Phe Phe Leu Pro Ala Ser Leu Ser Ala Asn Asn Thr		
565	570	575
Pro Thr Arg Arg Val Ser Pro Leu Asn Leu Ser Ser Val Thr Pro		
580	585	590

<210> 93
<211> 914
<212> PRT
<213> Homo sapiens

<400> 93		
Val Tyr Gln Val Leu Leu Val Gly Ser Thr Leu Leu Lys Glu Val Pro		
1	5	10
Ser Gly Leu Gln Leu Glu Gln Leu Pro Ser Gln Ser Leu Leu Thr His		15
20	25	30
Ile Pro Thr Ala Gly Leu Pro Thr Ser Leu Gly Gly Leu Pro Tyr		
35	40	45
Cys His Gln Ala Trp Leu Asp Phe Arg Arg Arg Leu Glu Ala Leu Leu		
50	55	60
Gln Asn Cys Gln Ala Ala Cys Ala Leu Leu Gln Gly Ala Ile Glu Ser		
65	70	75
80		
Val Lys Ala Val Pro Gln Pro Met Glu Pro Gly Glu Val Gly Gln Leu		
85	90	95
Leu Gln Gln Thr Glu Val Leu Met Gln Gln Val Leu Asp Ser Pro Trp		
100	105	110
Leu Ala Trp Leu Gln Cys Gln Gly Arg Glu Leu Thr Trp Leu Lys		
115	120	125
Gln Glu Val Pro Glu Val Thr Leu Ser Pro Asp Tyr Arg Thr Ala Met		
130	135	140
Asp Lys Ala Asp Glu Leu Tyr Asp Arg Val Asp Gly Leu Leu His Gln		
145	150	155
160		
Leu Thr Leu Gln Ser Asn Gln Arg Ile Gln Ala Leu Glu Leu Val Gln		
165	170	175
Thr Leu Glu Ala Arg Glu Ser Gly Leu His Gln Ile Glu Val Trp Leu		
180	185	190
Gln Gln Val Gly Trp Pro Ala Leu Glu Ala Gly Glu Pro Ser Leu		
195	200	205
Asp Met Leu Leu Gln Ala Gln Gly Ser Phe Gln Glu Leu Tyr Gln Val		
210	215	220
Ala Gln Glu Gln Val Arg Gln Gly Glu Lys Phe Leu Gln Pro Leu Thr		
225	230	235
240		
Gly Trp Glu Ala Ala Glu Leu Asp Pro Pro Gly Ala Arg Phe Leu Ala		
245	250	255
Leu Arg Ala Gln Leu Thr Glu Phe Ser Arg Ala Leu Ala Gln Arg Cys		

032796-132.ST25

260	265	270
Gln Arg Leu Ala Asp Ala Glu Arg	Leu Phe Gln Leu Phe Arg Glu Ala	
275	280	285
Leu Thr Trp Ala Glu Glu Gly Gln Arg Val	Leu Ala Glu Leu Glu Gln	
290	295	300
Glu Arg Pro Gly Val Val Leu Gln Gln Leu Gln	Leu His Trp Thr Arg	
305	310	315
320		
His Pro Asp Leu Pro Pro Ala His Phe Arg Lys	Met Trp Ala Leu Ala	
325	330	335
Thr Gly Leu Gly Ser Glu Ala Ile Arg Gln Glu Cys	Arg Trp Ala Trp	
340	345	350
Ala Arg Cys Gln Asp Thr Trp Leu Ala Leu Asp Gln	Lys Leu Glu Ala	
355	360	365
Ser Leu Lys Leu Pro Pro Val Gly Ser Thr Ala Ser	Leu Cys Val Ser	
370	375	380
Gln Val Pro Ala Ala Pro Ala His Pro Pro Leu Arg	Lys Ala Tyr Ser	
385	390	395
400		
Phe Asp Arg Asn Leu Gly Gln Ser Leu Ser Glu Pro	Ala Cys His Cys	
405	410	415
His His Ala Ala Thr Ile Ala Ala Cys Arg Arg Pro	Glu Ala Gly Gly	
420	425	430
Gly Ala Leu Pro Gln Ala Ser Pro Thr Val Pro Pro	Gly Ser Ser	
435	440	445
Asp Pro Arg Ser Leu Asn Arg Leu Gln Leu Val	Leu Ala Glu Met Val	
450	455	460
Ala Thr Glu Arg Glu Tyr Val Arg Ala Leu Glu	Tyr Thr Met Glu Asn	
465	470	475
480		
Tyr Phe Pro Glu Leu Asp Arg Pro Asp Val Pro	Gln Gly Leu Arg Gly	
485	490	495
Gln Arg Ala His Leu Phe Gly Asn Leu Glu Lys	Leu Arg Asp Phe His	
500	505	510
Cys His Phe Phe Leu Arg Glu Leu Glu Ala Cys	Thr Arg His Pro Pro	
515	520	525
Arg Val Ala Tyr Ala Phe Leu Arg His Arg Val	Gln Phe Gly Met Tyr	
530	535	540
Ala Leu Tyr Ser Lys Asn Lys Pro Arg Ser Asp	Ala Leu Met Ser Ser	
545	550	555
560		
Tyr Gly His Thr Phe Phe Lys Asp Lys Gln Gln	Ala Leu Gly Asp His	
565	570	575
Leu Asp Leu Ala Ser Tyr Leu Leu Lys Pro Ile	Gln Arg Met Gly Lys	
580	585	590
Tyr Ala Leu Leu Leu Gln Glu Leu Ala Arg Ala	Cys Gly Gly Pro Thr	
595	600	605
Gln Glu Leu Ser Ala Leu Arg Glu Ala Gln Ser	Leu Val His Phe Gln	
610	615	620
Leu Arg His Gly Asn Asp Leu Leu Ala Met Asp	Ala Ile Gln Gly Cys	
625	630	635
640		
Asp Val Asn Leu Lys Glu Gln Gly Gln Leu Val	Arg Gln Asp Glu Phe	
645	650	655
Val Val Arg Thr Gly Arg His Lys Ser Val Arg	Arg Ile Phe Leu Phe	
660	665	670
Glu Glu Leu Leu Leu Phe Ser Lys Pro Arg His	Gly Pro Thr Gly Val	
675	680	685
Asp Thr Phe Ala Tyr Lys Arg Ser Phe Lys Met	Ala Asp Leu Gly Leu	
690	695	700
Thr Glu Cys Cys Gly Asn Ser Asn Leu Arg Phe	Glu Ile Trp Phe Arg	
705	710	715
		720

032796-132.ST25

Arg Arg Lys Ala Arg Asp Thr Phe Val Leu Gln Ala Ser Ser Leu Ala
 725 730 735
 Ile Lys Gln Ala Trp Thr Ala Asp Ile Ser His Leu Leu Trp Arg Gln
 740 745 750
 Ala Val His Asn Lys Glu Val Arg Met Ala Glu Met Val Ser Met Gly
 755 760 765
 Val Gly Asn Lys Ala Phe Arg Asp Ile Ala Pro Ser Glu Glu Ala Ile
 770 775 780
 Asn Asp Arg Thr Val Asn Tyr Val Leu Lys Cys Arg Glu Val Arg Ser
 785 790 795 800
 Arg Ala Ser Ile Ala Val Ala Pro Phe Asp His Asp Ser Leu Tyr Leu
 805 810 815
 Gly Ala Ser Asn Ser Leu Pro Gly Asp Pro Ala Ser Cys Ser Val Leu
 820 825 830
 Gly Ser Leu Asn Leu His Leu Tyr Arg Asp Pro Ala Leu Leu Gly Leu
 835 840 845
 Arg Cys Pro Leu Tyr Pro Ser Phe Leu Glu Glu Ala Ala Leu Glu Ala
 850 855 860
 Glu Ala Glu Leu Gly Gly Gln Pro Ser Leu Thr Ala Glu Asp Ser Glu
 865 870 875 880
 Ile Ser Ser Gln Cys Pro Ser Ala Ser Gly Ser Ser Gly Ser Asp Ser
 885 890 895
 Ser Cys Val Ser Gly Gln Ala Leu Gly Arg Gly Leu Glu Asp Leu Pro
 900 905 910
 Cys Val

<210> 94
 <211> 277
 <212> PRT
 <213> Homo sapiens

<400> 94
 Leu Asn Tyr Leu Leu Glu Ser Arg Leu Glu Ala Ala Ala His Cys Ala
 1 5 10 15
 Leu Lys Gln Gly Ile Ala Thr Ala Ser Leu Leu Pro Ala Gln Leu Gln
 20 25 30
 Pro Ala Val Leu Thr Val Val Thr Cys His Val Val Val Ser Val His
 35 40 45
 Gly His His Thr Asp Gly Cys Leu Ala Ala Leu Cys Arg Glu Asp Arg
 50 55 60
 Thr Gly Thr Gly Gly Ala Phe Trp Cys Lys Asn Arg Val Ile Val Ser
 65 70 75 80
 His Ala Val Asp Val Val Leu His Val His Gly Glu Gly Asn Pro Val
 85 90 95
 Gln Ala Leu Ile Ala His Gly Ala Pro Glu Ala Ala Trp Val Val Gly
 100 105 110
 Leu Ala Gln Gly Leu Gln Asp His Phe His Asp Glu Met Ser Thr His
 115 120 125
 Ala Ala Phe Val Gly Arg Leu Leu Glu Pro Gly Val Gln Glu Val Leu
 130 135 140
 Leu Ala Val His Phe Leu Thr His Val Val Glu Arg Leu Pro Thr Glu
 145 150 155 160
 Ser Ser Pro Thr Arg Val Ala Gly Glu Ala Val Ser Val Ile Lys Thr
 165 170 175
 Pro His Cys Leu Ala Arg Leu Leu Gly Ser Val Asp Ala Lys Pro Thr
 180 185 190

032796-132.ST25

Leu Asp Ala Asn Ala Glu Val Val Pro Arg Arg Ala Arg Leu Glu Arg
 195 200 205
 Pro Leu Gln Leu Pro Gly Glu Arg Leu Gln Pro Pro Leu Gly Arg Ala
 210 215 220
 Trp Ala Ala Leu Pro Ala Arg Gly Gln Arg Glu Cys Arg Gln Arg Glu
 225 230 235 240
 Gly Gly Arg Pro Arg Arg Leu Arg Gly Ala Ser Gly Arg Gly Ala Gly
 245 250 255
 Ala Gly Arg Glu Glu Val Ser Val Gly Phe Ser Ala Gln Trp Glu Phe
 260 265 270
 Gly Ser Gly Arg His
 275

<210> 95

<211> 1120

<212> PRT

<213> Homo sapiens

<400> 95

Met Trp Arg Val Lys Lys Leu Ser Leu Ser Leu Ser Pro Ser Pro Gln
 1 5 10 15
 Thr Gly Lys Pro Ser Met Arg Thr Pro Leu Arg Glu Leu Thr Leu Gln
 20 25 30
 Pro Gly Ala Leu Thr Thr Ser Gly Lys Arg Ser Pro Ala Cys Ser Ser
 35 40 45
 Leu Thr Pro Ser Leu Cys Lys Leu Gly Leu Gln Glu Gly Ser Asn Asn
 50 55 60
 Ser Ser Pro Val Asp Phe Val Asn Asn Lys Arg Thr Asp Leu Ser Ser
 65 70 75 80
 Glu His Phe Ser His Ser Ser Lys Trp Leu Glu Thr Cys Gln His Glu
 85 90 95
 Ser Asp Glu Gln Pro Leu Asp Pro Ile Pro Gln Ile Ser Ser Thr Pro
 100 105 110
 Lys Thr Ser Glu Glu Ala Val Asp Pro Leu Gly Asn Tyr Met Val Lys
 115 120 125
 Thr Ile Val Leu Val Pro Ser Pro Leu Gly Gln Gln Asp Met Ile
 130 135 140
 Phe Glu Ala Arg Leu Asp Thr Met Ala Glu Thr Asn Ser Ile Ser Leu
 145 150 155 160
 Asn Gly Pro Leu Arg Thr Asp Asp Leu Val Arg Glu Glu Val Ala Pro
 165 170 175
 Cys Met Gly Asp Arg Phe Ser Glu Val Ala Ala Val Ser Glu Lys Pro
 180 185 190
 Ile Phe Gln Glu Ser Pro Ser His Leu Leu Glu Glu Ser Pro Pro Asn
 195 200 205
 Pro Cys Ser Glu Gln Leu His Cys Ser Lys Glu Ser Leu Ser Ser Arg
 210 215 220
 Thr Glu Ala Val Arg Glu Asp Leu Val Pro Ser Glu Ser Asn Ala Phe
 225 230 235 240
 Leu Pro Ser Ser Val Leu Trp Leu Ser Pro Ser Thr Ala Leu Ala Ala
 245 250 255
 Asp Phe Arg Val Asn His Val Asp Pro Glu Glu Glu Ile Val Glu His
 260 265 270
 Gly Ala Met Glu Glu Arg Glu Met Arg Phe Pro Thr His Pro Lys Glu
 275 280 285
 Ser Glu Thr Glu Asp Gln Ala Leu Val Ser Ser Val Glu Asp Ile Leu
 290 295 300

032796-132.ST25

Ser Thr Cys Leu Thr Pro Asn Leu Val Glu Met Glu Ser Gln Glu Ala
305 310 315 320
Pro Gly Pro Ala Val Glu Asp Val Gly Arg Ile Leu Gly Ser Asp Thr
325 330 335
Glu Ser Trp Met Ser Pro Leu Ala Trp Leu Glu Lys Gly Val Asn Thr
340 345 350
Ser Val Met Leu Glu Asn Leu Arg Gln Ser Leu Ser Leu Pro Ser Met
355 360 365
Leu Arg Asp Ala Ala Ile Gly Thr Thr Pro Phe Ser Thr Cys Ser Val
370 375 380
Gly Thr Trp Phe Thr Pro Ser Ala Pro Gln Glu Lys Ser Thr Asn Thr
385 390 395 400
Ser Gln Thr Gly Leu Val Gly Thr Lys His Ser Thr Ser Glu Thr Glu
405 410 415
Gln Leu Leu Cys Gly Arg Pro Pro Asp Leu Thr Ala Leu Ser Arg His
420 425 430
Asp Leu Glu Asp Asn Leu Leu Ser Ser Leu Val Ile Val Glu Phe Leu
435 440 445
Ser Arg Gln Leu Arg Asp Trp Lys Ser Gln Leu Ala Val Pro His Pro
450 455 460
Glu Thr Gln Asp Ser Ser Thr Gln Thr Asp Thr Ser His Ser Gly Ile
465 470 475 480
Thr Asn Lys Leu Gln His Leu Lys Glu Ser His Glu Met Gly Gln Ala
485 490 495
Leu Gln Gln Ala Arg Asn Val Met Gln Ser Trp Val Leu Ile Ser Lys
500 505 510
Glu Leu Ile Ser Leu Leu His Leu Ser Leu Leu His Leu Glu Glu Asp
515 520 525
Lys Thr Thr Val Asn Gln Glu Ser Arg Arg Ala Glu Thr Leu Val Cys
530 535 540
Cys Cys Phe Asp Leu Leu Lys Lys Leu Arg Ala Lys Leu Gln Ser Leu
545 550 555 560
Lys Ala Glu Arg Glu Glu Ala Arg His Arg Glu Glu Met Ala Leu Arg
565 570 575
Gly Lys Asp Ala Ala Glu Ile Val Leu Glu Ala Phe Cys Ala His Ala
580 585 590
Ser Gln Arg Ile Ser Gln Leu Glu Gln Asp Leu Ala Ser Met Arg Glu
595 600 605
Phe Arg Gly Leu Leu Lys Asp Ala Gln Thr Gln Leu Val Gly Leu His
610 615 620
Ala Lys Gln Glu Glu Leu Val Gln Gln Thr Val Ser Leu Thr Ser Thr
625 630 635 640
Leu Gln Gln Asp Trp Arg Ser Met Gln Leu Asp Tyr Thr Thr Trp Thr
645 650 655
Ala Leu Leu Ser Arg Ser Arg Gln Leu Thr Glu Lys Leu Thr Val Lys
660 665 670
Ser Gln Gln Ala Leu Gln Glu Arg Asp Val Ala Ile Glu Glu Lys Gln
675 680 685
Glu Val Ser Arg Val Leu Glu Gln Val Ser Ala Gln Leu Glu Glu Cys
690 695 700
Lys Gly Gln Thr Glu Gln Leu Glu Leu Asn Ile Arg Leu Ala Thr
705 710 715 720
Asp Leu Arg Ala Gln Leu Gln Ile Leu Ala Asn Met Asp Ser Gln Leu
725 730 735
Lys Glu Leu Gln Ser Gln His Thr His Cys Ala Gln Asp Leu Ala Met
740 745 750
Lys Asp Glu Leu Leu Cys Gln Leu Thr Gln Ser Asn Glu Glu Gln Ala

032796-132.ST25

755	760	765
Ala Gln Cys Val Lys Glu Glu Met Ala Leu Lys His Met Gln Ala Glu		
770	775	780
Leu Gln Gln Gln Ala Val Leu Ala Lys Glu Val Arg Asp Leu Lys		
785	790	795
Glu Thr Leu Glu Phe Ala Asp Gln Glu Asn Gln Val Ala His Leu Glu		800
805	810	815
Leu Gly Gln Val Glu Cys Gln Leu Lys Thr Thr Leu Glu Val Leu Arg		
820	825	830
Glu Arg Ser Leu Gln Cys Glu Asn Leu Lys Asp Thr Val Glu Asn Leu		
835	840	845
Thr Ala Lys Leu Ala Ser Thr Ile Ala Asp Asn Gln Glu Gln Asp Leu		
850	855	860
Glu Lys Thr Arg Gln Tyr Ser Gln Lys Leu Gly Leu Leu Thr Glu Gln		
865	870	875
Leu Gln Ser Leu Thr Leu Phe Leu Gln Thr Lys Leu Lys Glu Lys Thr		880
885	890	895
Glu Gln Glu Thr Leu Leu Leu Ser Thr Ala Cys Pro Pro Thr Gln Glu		
900	905	910
His Pro Leu Pro Asn Asp Arg Thr Phe Leu Gly Ser Ile Leu Thr Ala		
915	920	925
Val Ala Asp Glu Glu Pro Glu Ser Thr Pro Val Pro Leu Leu Gly Ser		
930	935	940
Asp Lys Ser Ala Phe Thr Arg Val Ala Ser Met Val Ser Leu Gln Pro		
945	950	955
Ala Glu Thr Pro Gly Met Glu Glu Ser Leu Ala Glu Met Ser Ile Met		960
965	970	975
Thr Thr Glu Leu Gln Ser Leu Cys Ser Leu Leu Gln Glu Ser Lys Glu		
980	985	990
Glu Ala Ile Arg Thr Leu Gln Arg Lys Ile Cys Glu Leu Gln Ala Arg		
995	1000	1005
Leu Gln Ala Gln Glu Glu Gln His Gln Glu Val Gln Lys Ala Lys Glu		
1010	1015	1020
Ala Asp Ile Glu Lys Leu Asn Gln Ala Leu Cys Leu Arg Tyr Lys Asn		
1025	1030	1035
Glu Lys Glu Leu Gln Glu Val Ile Gln Gln Asn Glu Lys Ile Leu Glu		
1045	1050	1055
Gln Ile Asp Lys Ser Gly Glu Leu Ile Ser Leu Arg Glu Glu Val Thr		
1060	1065	1070
His Leu Thr Arg Ser Leu Arg Arg Ala Glu Thr Glu Thr Lys Val Leu		
1075	1080	1085
Gln Glu Ala Trp Gln Ala Ser Trp Thr Pro Thr Ala Ser Leu Trp Pro		
1090	1095	1100
Pro Ile Gly Ser Arg Arg Lys Cys Gly Ser Leu Arg Arg Trp Thr Asn		
1105	1110	1115
		1120

<210> 96
<211> 540
<212> PRT
<213> Homo sapiens

<400> 96
Met Gly Thr Thr Ala Arg Ala Ala Leu Val Leu Thr Tyr Leu Ala Val
1 5 10 15
Ala Ser Ala Ala Ser Glu Gly Gly Phe Thr Ala Thr Gly Gln Arg Gln
20 25 30
Leu Arg Pro Glu His Phe Gln Glu Val Gly Tyr Ala Ala Pro Pro Ser

032796-132.ST25

35	40	45
Pro Pro Leu Ser Arg Ser	Leu Pro Met Asp His	Pro Asp Ser Ser Gln
50	55	60
His Gly Pro Pro Phe Glu	Gly Gln Ser Gln Val	Gln Pro Pro Pro Ser
65	70	75 80
Gln Glu Ala Thr Pro Leu	Gln Glu Lys Leu	Leu Pro Ala Gln Leu
85	90	95
Pro Ala Glu Lys Glu Val	Gly Pro Pro Leu Pro	Gln Glu Ala Val Pro
100	105	110
Leu Gln Lys Glu Leu Pro	Ser Leu Gln His Pro Asn	Glu Gln Lys Glu
115	120	125
Gly Thr Pro Ala Pro Phe	Gly Asp Gln Ser His	Pro Glu Pro Glu Ser
130	135	140
Trp Asn Ala Ala Gln His	Cys Gln Gln Asp Arg	Ser Gln Gly Gly Trp
145	150	155 160
Gly His Arg Leu Asp	Gly Phe Pro Pro Gly	Arg Pro Ser Pro Asp Asn
165	170	175
Leu Asn Gln Ile Cys Leu	Pro Asn Arg Gln His	Val Val Tyr Gly Pro
180	185	190
Trp Asn Leu Pro Gln Ser	Ser Tyr Ser His Leu	Thr Arg Gln Gly Glu
195	200	205
Thr Leu Asn Phe Leu Glu	Ile Gly Tyr Ser Arg	Cys Cys His Cys Arg
210	215	220
Ser His Thr Asn Arg	Leu Glu Cys Ala Lys	Leu Val Trp Glu Glu Ala
225	230	235 240
Met Ser Arg Phe Cys	Glu Ala Glu Phe Ser	Val Lys Thr Arg Pro His
245	250	255
Trp Cys Cys Thr Arg	Gln Gly Glu Ala Arg	Phe Ser Cys Phe Gln Glu
260	265	270
Glu Ala Pro Gln Pro His	Tyr Gln Leu Arg Ala Cys	Pro Ser His Gln
275	280	285
Pro Asp Ile Ser Ser Gly	Leu Glu Leu Pro Phe	Pro Pro Gly Val Pro
290	295	300
Thr Leu Asp Asn Ile Lys	Asn Ile Cys His	Leu Arg Arg Phe Arg Ser
305	310	315 320
Val Pro Arg Asn Leu	Pro Ala Thr Asp	Pro Leu Gln Arg Glu Leu
325	330	335
Ala Leu Ile Gln Leu	Glu Arg Glu Phe	Gln Arg Cys Cys Arg Gln Gly
340	345	350
Asn Asn His Thr Cys	Thr Trp Lys Ala Trp	Glu Asp Thr Leu Asp Lys
355	360	365
Tyr Cys Asp Arg Glu	Tyr Ala Val Lys	Thr His His His Leu Cys Cys
370	375	380
Arg His Pro Pro Ser	Pro Thr Arg Asp	Glu Cys Phe Ala Arg Arg Ala
385	390	395 400
Pro Tyr Pro Asn Tyr	Asp Arg Asp Ile	Leu Thr Ile Asp Ile Ser Arg
405	410	415
Val Thr Pro Asn Leu	Met Gly His	Leu Cys Gly Asn Gln Arg Val
420	425	430
Thr Lys His Lys His	Ile Pro Gly	Leu Ile His Asn Met Thr Ala Arg
435	440	445
Cys Cys Asp Leu Pro	Phe Pro Glu Gln	Ala Cys Cys Ala Glu Glu Glu
450	455	460
Lys Leu Thr Phe Ile	Asn Asp Leu Cys	Gly Pro Arg Arg Asn Ile Trp
465	470	475 480
Arg Asp Pro Ala Leu	Cys Cys Tyr	Leu Ser Pro Gly Asp Glu Gln Val
485	490	495

032796-132.ST25

Asn Cys Phe Asn Ile Asn Tyr Leu Arg Asn Val Ala Leu Val Ser Gly
 500 505 510
 Asp Thr Glu Asn Ala Lys Gly Gln Gly Glu Gln Gly Ser Thr Gly Gly
 515 520 525
 Thr Asn Ile Ser Ser Thr Ser Glu Pro Lys Glu Glu
 530 535 540

<210> 97
<211> 462
<212> PRT
<213> Homo sapiens

<400> 97
 Met Gly Lys Glu Lys Thr His Ile Asn Ile Val Val Ile Gly His Val
 1 5 10 15
 Asp Ser Gly Lys Ser Thr Thr Gly His Leu Ile Tyr Lys Cys Gly
 20 25 30
 Gly Ile Asp Lys Arg Thr Ile Glu Lys Phe Glu Lys Glu Ala Ala Glu
 35 40 45
 Met Gly Lys Gly Ser Phe Lys Tyr Ala Trp Val Leu Asp Lys Leu Lys
 50 55 60
 Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe
 65 70 75 80
 Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg
 85 90 95
 Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala
 100 105 110
 Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser
 115 120 125
 Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly
 130 135 140
 Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro
 145 150 155 160
 Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr
 165 170 175
 Tyr Ile Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro
 180 185 190
 Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met
 195 200 205
 Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser
 210 215 220
 Gly Thr Thr Leu Leu Glu Ala Val Asp Cys Ile Leu Pro Pro Thr Arg
 225 230 235 240
 Pro Thr Asp Lys Pro Leu Arg Leu Pro Leu Gln Asp Val Tyr Lys Ile
 245 250 255
 Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu
 260 265 270
 Lys Pro Gly Met Val Val Thr Phe Ala Pro Val Asn Val Thr Thr Glu
 275 280 285
 Val Lys Ser Val Glu Met His His Glu Ala Leu Ser Glu Ala Leu Pro
 290 295 300
 Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val
 305 310 315 320
 Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu
 325 330 335
 Ala Ala Gly Phe Thr Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln
 340 345 350

032796-132.ST25

Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile
 355 360 365
 Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly
 370 375 380
 Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala
 385 390 395 400
 Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser
 405 410 415
 Asp Tyr Pro Pro Leu Gly Arg Phe Ala Val Arg Asp Met Arg Gln Thr
 420 425 430
 Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala
 435 440 445
 Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys
 450 455 460

<210> 98

<211> 2328

<212> PRT

<213> Homo sapiens

<400> 98

Lys Ser Lys Arg Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val
 1 5 10 15
 Ala Val Ser Gln Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr
 20 25 30
 Gln Ile Asn Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val
 35 40 45
 Cys Thr Cys Tyr Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro
 50 55 60
 Glu Ala Glu Glu Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg
 65 70 75 80
 Val Gly Asp Thr Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys
 85 90 95
 Thr Cys Ile Gly Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn
 100 105 110
 Arg Cys His Glu Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg
 115 120 125
 Arg Pro His Glu Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly
 130 135 140
 Asn Gly Lys Gly Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe
 145 150 155 160
 Asp His Ala Ala Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys
 165 170 175
 Pro Tyr Gln Gly Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly
 180 185 190
 Ser Gly Arg Ile Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp
 195 200 205
 Thr Arg Thr Ser Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn
 210 215 220
 Arg Gly Asn Leu Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu
 225 230 235 240
 Trp Lys Cys Glu Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser
 245 250 255
 Gly Pro Phe Thr Asp Val Arg Ala Ala Val Tyr Gln Pro Gln Pro His
 260 265 270
 Pro Gln Pro Pro Pro Tyr Gly His Cys Val Thr Asp Ser Gly Val Val
 275 280 285

032796-132.ST25

Tyr Ser Val Gly Met Gln Trp Leu Lys Thr Gln Gly Asn Lys Gln Met
290 295 300
Leu Cys Thr Cys Leu Gly Asn Gly Val Ser Cys Gln Glu Thr Ala Val
305 310 315 320
Thr Gln Thr Tyr Gly Gly Asn Leu Asn Gly Glu Pro Cys Val Leu Pro
325 330 335
Phe Thr Tyr Asn Gly Arg Thr Phe Tyr Ser Cys Thr Thr Glu Gly Arg
340 345 350
Gln Asp Gly His Leu Trp Cys Ser Thr Thr Ser Asn Tyr Glu Gln Asp
355 360 365
Gln Lys Tyr Ser Phe Cys Thr Asp His Thr Val Leu Val Gln Thr Gln
370 375 380
Gly Gly Asn Ser Asn Gly Ala Leu Cys His Phe Pro Phe Leu Tyr Asn
385 390 395 400
Asn His Asn Tyr Thr Asp Cys Thr Ser Glu Gly Arg Arg Asp Asn Met
405 410 415
Lys Trp Cys Gly Thr Thr Gln Asn Tyr Asp Ala Asp Gln Lys Phe Gly
420 425 430
Phe Cys Pro Met Ala Ala His Glu Glu Ile Cys Thr Thr Asn Glu Gly
435 440 445
Val Met Tyr Arg Ile Gly Asp Gln Trp Asp Lys Gln His Asp Met Gly
450 455 460
His Met Met Arg Cys Thr Cys Val Gly Asn Gly Arg Gly Glu Trp Thr
465 470 475 480
Cys Ile Ala Tyr Ser Gln Leu Arg Asp Gln Cys Ile Val Asp Asp Ile
485 490 495
Thr Tyr Asn Val Asn Asp Thr Phe His Lys Arg His Glu Glu Gly His
500 505 510
Met Leu Asn Cys Thr Cys Phe Gly Gln Gly Arg Gly Arg Trp Lys Cys
515 520 525
Asp Pro Val Asp Gln Cys Gln Asp Ser Glu Thr Gly Thr Phe Tyr Gln
530 535 540
Ile Gly Asp Ser Trp Glu Lys Tyr Val His Gly Val Arg Tyr Gln Cys
545 550 555 560
Tyr Cys Tyr Gly Arg Gly Ile Gly Glu Trp His Cys Gln Pro Leu Gln
565 570 575
Thr Tyr Pro Ser Ser Ser Gly Pro Val Glu Val Phe Ile Thr Glu Thr
580 585 590
Pro Ser Gln Pro Asn Ser His Pro Ile Gln Trp Asn Ala Pro Gln Pro
595 600 605
Ser His Ile Ser Lys Tyr Ile Leu Arg Trp Arg Pro Lys Asn Ser Val
610 615 620
Gly Arg Trp Lys Glu Ala Thr Ile Pro Gly His Leu Asn Ser Tyr Thr
625 630 635 640
Ile Lys Gly Leu Lys Pro Gly Val Val Tyr Glu Gly Gln Leu Ile Ser
645 650 655
Ile Gln Gln Tyr Gly His Gln Glu Val Thr Arg Phe Asp Phe Thr Thr
660 665 670
Thr Ser Thr Ser Thr Pro Val Thr Ser Asn Thr Val Thr Gly Glu Thr
675 680 685
Thr Pro Phe Ser Pro Leu Val Ala Thr Ser Glu Ser Val Thr Glu Ile
690 695 700
Thr Ala Ser Ser Phe Val Val Ser Trp Val Ser Ala Ser Asp Thr Val
705 710 715 720
Ser Gly Phe Arg Val Glu Tyr Glu Leu Ser Glu Glu Gly Asp Glu Pro
725 730 735
Gln Tyr Leu Asp Leu Pro Ser Thr Ala Thr Ser Val Asn Ile Pro Asp

032796-132.ST25

740	745	750
Leu Leu Pro Gly Arg Lys Tyr Ile Val Asn Val Tyr Gln Ile Ser Glu		
755	760	765
Asp Gly Glu Gln Ser Leu Ile Leu Ser Thr Ser Gln Thr Thr Ala Pro		
770	775	780
Asp Ala Pro Pro Asp Pro Thr Val Asp Gln Val Asp Asp Thr Ser Ile		
785	790	795
Val Val Arg Trp Ser Arg Pro Gln Ala Pro Ile Thr Gly Tyr Arg Ile		800
805	810	815
Val Tyr Ser Pro Ser Val Glu Gly Ser Ser Thr Glu Leu Asn Leu Pro		
820	825	830
Glu Thr Ala Asn Ser Val Thr Leu Ser Asp Leu Gln Pro Gly Val Gln		
835	840	845
Tyr Asn Ile Thr Ile Tyr Ala Val Glu Glu Asn Gln Glu Ser Thr Pro		
850	855	860
Val Val Ile Gln Gln Glu Thr Thr Gly Thr Pro Arg Ser Asp Thr Val		
865	870	875
Pro Ser Pro Arg Asp Leu Gln Phe Val Glu Val Thr Asp Val Lys Val		
885	890	895
Thr Ile Met Trp Thr Pro Pro Glu Ser Ala Val Thr Gly Tyr Arg Val		
900	905	910
Asp Val Ile Pro Val Asn Leu Pro Gly Glu His Gly Gln Arg Leu Pro		
915	920	925
Ile Ser Arg Asn Thr Phe Ala Glu Val Thr Gly Leu Ser Pro Gly Val		
930	935	940
Thr Tyr Tyr Phe Lys Val Phe Ala Val Ser His Gly Arg Glu Ser Lys		
945	950	955
960		
Pro Leu Thr Ala Gln Gln Thr Thr Lys Leu Asp Ala Pro Thr Asn Leu		
965	970	975
Gln Phe Val Asn Glu Thr Asp Ser Thr Val Leu Val Arg Trp Thr Pro		
980	985	990
Pro Arg Ala Gln Ile Thr Gly Tyr Arg Leu Thr Val Gly Leu Thr Arg		
995	1000	1005
Arg Gly Gln Pro Arg Gln Tyr Asn Val Gly Pro Ser Val Ser Lys Tyr		
1010	1015	1020
Pro Leu Arg Asn Leu Gln Pro Ala Ser Glu Tyr Thr Val Ser Leu Val		
1025	1030	1035
1040		
Ala Ile Lys Gly Asn Gln Glu Ser Pro Lys Ala Thr Gly Val Phe Thr		
1045	1050	1055
Thr Leu Gln Pro Gly Ser Ser Ile Pro Pro Tyr Asn Thr Glu Val Thr		
1060	1065	1070
Glu Thr Thr Ile Val Ile Thr Trp Thr Pro Ala Pro Arg Ile Gly Phe		
1075	1080	1085
Lys Leu Gly Val Arg Pro Ser Gln Gly Glu Ala Pro Arg Glu Val		
1090	1095	1100
Thr Ser Asp Ser Gly Ser Ile Val Val Ser Gly Leu Thr Pro Gly Val		
1105	1110	1115
1120		
Glu Tyr Val Tyr Thr Ile Gln Val Leu Arg Asp Gly Gln Glu Arg Asp		
1125	1130	1135
Ala Pro Ile Val Asn Lys Val Val Thr Pro Leu Ser Pro Pro Thr Asn		
1140	1145	1150
Leu His Leu Glu Ala Asn Pro Asp Thr Gly Val Leu Thr Val Ser Trp		
1155	1160	1165
Glu Arg Ser Thr Thr Pro Asp Ile Thr Gly Tyr Arg Ile Thr Thr Thr		
1170	1175	1180
Pro Thr Asn Gly Gln Gln Gly Asn Ser Leu Glu Glu Val Val His Ala		
1185	1190	1195
		1200

032796-132.ST25

Asp Gln Ser Ser Cys Thr Phe Asp Asn Leu Ser Pro Gly Leu Glu Tyr
 1205 1210 1215
 Asn Val Ser Val Tyr Thr Val Lys Asp Asp Lys Glu Ser Val Pro Ile
 1220 1225 1230
 Ser Asp Thr Ile Ile Pro Ala Val Pro Pro Pro Thr Asp Leu Arg Phe
 1235 1240 1245
 Thr Asn Ile Gly Pro Asp Thr Met Arg Val Thr Trp Ala Pro Pro Pro
 1250 1255 1260
 Ser Ile Asp Leu Thr Asn Phe Leu Val Arg Tyr Ser Pro Val Lys Asn
 1265 1270 1275 1280
 Glu Glu Asp Val Ala Glu Leu Ser Ile Ser Pro Ser Asp Asn Ala Val
 1285 1290 1295
 Val Leu Thr Asn Leu Leu Pro Gly Thr Glu Tyr Val Val Ser Val Ser
 1300 1305 1310
 Ser Val Tyr Glu Gln His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys
 1315 1320 1325
 Thr Gly Leu Asp Ser Pro Thr Gly Ile Asp Ser Asp Ile Thr Ala
 1330 1335 1340
 Asn Ser Phe Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly
 1345 1350 1355 1360
 Tyr Arg Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu
 1365 1370 1375
 Asp Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr
 1380 1385 1390
 Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg Glu
 1395 1400 1405
 Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp Val Pro
 1410 1415 1420
 Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu Leu Ile Ser
 1425 1430 1435 1440
 Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg Ile Thr Tyr Gly
 1445 1450 1455
 Glu Thr Gly Asn Ser Pro Val Gln Glu Phe Thr Val Pro Gly Ser
 1460 1465 1470
 Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys Pro Gly Val Asp Tyr Thr
 1475 1480 1485
 Ile Thr Val Tyr Ala Val Thr Gly Arg Gly Asp Ser Pro Ala Ser Ser
 1490 1495 1500
 Lys Pro Ile Ser Ile Asn Tyr Arg Thr Glu Ile Asp Lys Pro Ser Gln
 1505 1510 1515 1520
 Met Gln Val Thr Asp Val Gln Asp Asn Ser Ile Ser Val Lys Trp Leu
 1525 1530 1535
 Pro Ser Ser Pro Val Thr Gly Tyr Arg Val Thr Thr Pro Lys
 1540 1545 1550
 Asn Gly Pro Gly Pro Thr Lys Thr Lys Thr Ala Gly Pro Asp Gln Thr
 1555 1560 1565
 Glu Met Thr Ile Glu Gly Leu Gln Pro Thr Val Glu Tyr Val Val Ser
 1570 1575 1580
 Val Tyr Ala Gln Asn Pro Ser Gly Glu Ser Gln Pro Leu Val Gln Thr
 1585 1590 1595 1600
 Ala Val Thr Asn Ile Asp Arg Pro Lys Gly Leu Ala Phe Thr Asp Val
 1605 1610 1615
 Asp Val Asp Ser Ile Lys Ile Ala Trp Glu Ser Pro Gln Gly Gln Val
 1620 1625 1630
 Ser Arg Tyr Arg Val Thr Tyr Ser Ser Pro Glu Asp Gly Ile His Glu
 1635 1640 1645
 Leu Phe Pro Ala Pro Asp Gly Glu Glu Asp Thr Ala Glu Leu Gln Gly

032796-132.ST25

1650	1655	1660
Leu Arg Pro Gly Ser Glu Tyr Thr Val Ser Val Val Ala Leu His Asp		
1665	1670	1675
Asp Met Glu Ser Gln Pro Leu Ile Gly Thr Gln Ser Thr Ala Ile Pro		1680
1685	1690	1695
Ala Pro Thr Asp Leu Lys Phe Thr Gln Val Thr Pro Thr Ser Leu Ser		
1700	1705	1710
Ala Gln Trp Thr Pro Pro Asn Val Gln Leu Thr Gly Tyr Arg Val Arg		
1715	1720	1725
Val Thr Pro Lys Glu Lys Thr Gly Pro Met Lys Glu Ile Asn Leu Ala		
1730	1735	1740
Pro Asp Ser Ser Ser Val Val Val Ser Gly Leu Met Val Ala Thr Lys		
1745	1750	1755
Tyr Glu Val Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg Pro		1760
1765	1770	1775
Ala Gln Gly Val Val Thr Thr Leu Glu Asn Val Ser Pro Pro Arg Arg		
1780	1785	1790
Ala Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile Ser Trp Arg		
1795	1800	1805
Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln Val Asp Ala Val Pro Ala		
1810	1815	1820
Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys Pro Asp Val Arg Ser		
1825	1830	1835
Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr Asp Tyr Lys Ile Tyr Leu		
1845	1850	1855
Tyr Thr Leu Asn Asp Asn Ala Arg Ser Ser Pro Val Val Ile Asp Ala		
1860	1865	1870
Ser Thr Ala Ile Asp Ala Pro Ser Asn Leu Arg Phe Leu Ala Thr Thr		
1875	1880	1885
Pro Asn Ser Leu Leu Val Ser Trp Gln Pro Pro Arg Ala Arg Ile Thr		
1890	1895	1900
Gly Tyr Ile Ile Lys Tyr Glu Lys Pro Gly Ser Pro Pro Arg Glu Val		
1905	1910	1915
Val Pro Arg Pro Arg Pro Gly Val Thr Glu Ala Thr Ile Thr Gly Leu		1920
1925	1930	1935
Glu Pro Gly Thr Glu Tyr Thr Ile Tyr Val Ile Ala Leu Lys Asn Asn		
1940	1945	1950
Gln Lys Ser Glu Pro Leu Ile Gly Arg Lys Lys Thr Asp Glu Leu Pro		
1955	1960	1965
Gln Leu Val Thr Leu Pro His Pro Asn Leu His Gly Pro Glu Ile Leu		
1970	1975	1980
Asp Val Pro Ser Thr Val Gln Lys Thr Pro Phe Val Thr His Pro Gly		
1985	1990	1995
Tyr Asp Thr Gly Asn Gly Ile Gln Leu Pro Gly Thr Ser Gly Gln Gln		2000
2005	2010	2015
Pro Ser Val Gly Gln Gln Met Ile Phe Glu Glu His Gly Phe Arg Arg		
2020	2025	2030
Thr Thr Pro Pro Thr Thr Ala Thr Pro Ile Arg His Arg Pro Arg Pro		
2035	2040	2045
Tyr Pro Pro Asn Val Gly Gln Glu Ala Leu Ser Gln Thr Thr Ile Ser		
2050	2055	2060
Trp Ala Pro Phe Gln Asp Thr Ser Glu Tyr Ile Ile Ser Cys His Pro		
2065	2070	2075
Val Gly Thr Asp Glu Glu Pro Leu Gln Phe Arg Val Pro Gly Thr Ser		2080
2085	2090	2095
Thr Ser Ala Thr Leu Thr Gly Leu Thr Arg Gly Ala Thr Tyr Asn Ile		
2100	2105	2110

032796-132.ST25

Ile Val Glu Ala Leu Lys Asp Gln Gln Arg His Lys Val Arg Glu Glu
 2115 2120 2125
 Val Val Thr Val Gly Asn Ser Val Asn Glu Gly Leu Asn Gln Pro Thr
 2130 2135 2140
 Asp Asp Ser Cys Phe Asp Pro Tyr Thr Val Ser His Tyr Ala Val Gly
 2145 2150 2155 2160
 Asp Glu Trp Glu Arg Met Ser Glu Ser Gly Phe Lys Leu Leu Cys Gln
 2165 2170 2175
 Cys Leu Gly Phe Gly Ser Gly His Phe Arg Cys Asp Ser Ser Arg Trp
 2180 2185 2190
 Cys His Asp Asn Gly Val Asn Tyr Lys Ile Gly Glu Lys Trp Asp Arg
 2195 2200 2205
 Gln Gly Glu Asn Gly Gln Met Met Ser Cys Thr Cys Leu Gly Asn Gly
 2210 2215 2220
 Lys Gly Glu Phe Lys Cys Asp Pro His Glu Ala Thr Cys Tyr Asp Asp
 2225 2230 2235 2240
 Gly Lys Thr Tyr His Val Gly Glu Gln Trp Gln Lys Glu Tyr Leu Gly
 2245 2250 2255
 Ala Ile Cys Ser Cys Thr Cys Phe Gly Gln Arg Gly Trp Arg Cys
 2260 2265 2270
 Asp Asn Cys Arg Arg Pro Gly Gly Glu Pro Ser Pro Glu Gly Thr Thr
 2275 2280 2285
 Gly Gln Ser Tyr Asn Gln Tyr Ser Gln Arg Tyr His Gln Arg Thr Asn
 2290 2295 2300
 Thr Asn Val Asn Cys Pro Ile Glu Cys Phe Met Pro Leu Asp Val Gln
 2305 2310 2315 2320
 Ala Asp Arg Glu Asp Ser Arg Glu
 2325

<210> 99
<211> 188
<212> PRT
<213> Homo sapiens

<400> 99
 His Gln Thr His Lys Glu Gly Gly Ser Thr His Ala Ser Ala Asp Ala
 1 5 10 15
 Trp Glu Ile Ile Glu Leu Glu Thr Glu Ile Glu Lys Phe Lys Ala Glu
 20 25 30
 Asn Ala Ser Leu Ala Lys Leu Arg Ile Glu Arg Glu Ser Ala Leu Glu
 35 40 45
 Lys Leu Arg Lys Glu Ile Ala Asp Phe Glu Gln Gln Lys Ala Lys Glu
 50 55 60
 Leu Ala Arg Ile Glu Glu Phe Lys Glu Glu Met Arg Lys Leu Gln
 65 70 75 80
 Lys Glu Arg Lys Val Phe Glu Lys Tyr Thr Thr Ala Ala Arg Thr Phe
 85 90 95
 Pro Asp Lys Lys Glu Arg Glu Glu Ile Gln Thr Leu Lys Gln Gln Ile
 100 105 110
 Ala Asp Leu Arg Glu Asp Leu Lys Arg Lys Glu Thr Lys Trp Ser Ser
 115 120 125
 Thr His Ser Arg Leu Arg Ser Gln Ile Gln Met Leu Val Arg Glu Asn
 130 135 140
 Thr Asp Leu Arg Glu Glu Ile Lys Val Met Glu Arg Phe Arg Leu Asp
 145 150 155 160
 Ala Trp Lys Arg Ala Glu Ala Ile Glu Ser Ser Leu Glu Val Glu Lys
 165 170 175

032796-132.ST25

Lys Asp Lys Leu Ala Asn Thr Ser Val Arg Phe Gln
 180 185

<210> 100

<211> 284

<212> PRT

<213> Homo sapiens

<400> 100

Met Glu Pro Gly Asn Tyr Ala Thr Leu Asp Gly Ala Lys Asp Ile Glu
 1 5 10 15
 Gly Leu Leu Gly Ala Gly Gly Arg Asn Leu Val Ala His Ser Pro
 20 25 30
 Leu Thr Ser His Pro Ala Ala Pro Thr Leu Met Pro Ala Val Asn Tyr
 35 40 45
 Ala Pro Leu Asp Leu Pro Gly Ser Ala Glu Pro Pro Lys Gln Cys His
 50 55 60
 Pro Cys Pro Gly Val Pro Gln Gly Thr Ser Pro Ala Pro Val Pro Tyr
 65 70 75 80
 Gly Tyr Phe Gly Gly Tyr Tyr Ser Cys Arg Val Ser Arg Ser Ser
 85 90 95
 Leu Lys Pro Cys Ala Gln Ala Ala Thr Leu Ala Ala Tyr Pro Ala Glu
 100 105 110
 Thr Pro Thr Ala Gly Glu Glu Tyr Pro Ser Arg Pro Thr Glu Phe Ala
 115 120 125
 Phe Tyr Pro Gly Tyr Pro Gly Thr Tyr His Ala Met Ala Ser Tyr Leu
 130 135 140
 Asp Val Ser Val Val Gln Thr Leu Gly Ala Pro Gly Glu Pro Arg His
 145 150 155 160
 Asp Ser Leu Leu Pro Val Asp Ser Tyr Gln Ser Trp Ala Leu Ala Gly
 165 170 175
 Gly Trp Asn Ser Gln Met Cys Cys Gln Gly Glu Gln Asn Pro Pro Gly
 180 185 190
 Pro Phe Trp Lys Ala Ala Phe Ala Asp Ser Ser Gly Gln His Pro Pro
 195 200 205
 Asp Ala Cys Ala Phe Arg Arg Gly Arg Lys Lys Arg Ile Pro Tyr Ser
 210 215 220
 Lys Gly Gln Leu Arg Glu Leu Glu Arg Glu Tyr Ala Ala Asn Lys Phe
 225 230 235 240
 Ile Thr Lys Asp Lys Arg Arg Lys Ile Ser Ala Ala Thr Ser Leu Ser
 245 250 255
 Glu Arg Gln Ile Thr Ile Trp Phe Gln Asn Arg Arg Val Lys Glu Lys
 260 265 270
 Lys Val Leu Ala Lys Val Lys Asn Ser Ala Thr Pro
 275 280

<210> 101

<211> 676

<212> PRT

<213> Homo sapiens

<400> 101

Met Asp Lys Tyr Asp Asp Leu Gly Leu Glu Ala Ser Lys Phe Ile Glu
 1 5 10 15
 Asp Leu Asn Met Tyr Glu Ala Ser Lys Asp Gly Leu Phe Arg Val Asp
 20 25 30
 Lys Gly Ala Gly Asn Asn Pro Glu Phe Glu Glu Thr Arg Arg Val Phe

032796-132.ST25

35	40	45
Ala Thr Lys Met Ala Lys Ile His Leu Gln Gln Gln Gln Gln Leu		
50	55	60
Leu Gln Glu Glu Thr Leu Pro Arg Gly Ser Arg Gly Pro Val Asn Gly		
65	70	75
Gly Gly Arg Leu Gly Pro Gln Ala Arg Trp Glu Val Val Gly Ser Lys		80
85	90	95
Leu Thr Val Asp Gly Ala Ala Lys Pro Pro Leu Ala Ala Ser Thr Gly		
100	105	110
Ala Pro Gly Ala Val Thr Thr Leu Ala Ala Gly Gln Pro Pro Tyr Pro		
115	120	125
Pro Gln Glu Gln Arg Ser Arg Pro Tyr Leu His Gly Thr Arg His Gly		
130	135	140
Ser Gln Asp Cys Gly Ser Arg Glu Ser Leu Ala Thr Ser Glu Met Ser		
145	150	155
160		
Ala Phe His Gln Pro Gly Pro Cys Glu Asp Pro Ser Cys Leu Thr His		
165	170	175
Gly Asp Tyr Tyr Asp Asn Leu Ser Leu Ala Ser Pro Lys Trp Gly Asp		
180	185	190
Lys Pro Gly Val Ser Pro Ser Ile Gly Leu Ser Val Gly Ser Gly Trp		
195	200	205
Pro Ser Ser Pro Gly Ser Asp Pro Pro Leu Pro Lys Pro Cys Gly Asp		
210	215	220
His Pro Leu Asn His Arg Gln Leu Ser Leu Ser Ser Arg Ser Ser		
225	230	235
240		
Glu Gly Ser Leu Gly Gly Gln Asn Ser Gly Ile Gly Gly Arg Ser Ser		
245	250	255
Glu Lys Pro Thr Gly Leu Trp Ser Thr Ala Ser Ser Gln Arg Val Ser		
260	265	270
Pro Gly Leu Pro Ser Pro Asn Leu Glu Asn Gly Ala Pro Ala Val Gly		
275	280	285
Pro Val Gln Pro Arg Thr Pro Ser Val Ser Ala Pro Leu Ala Leu Ser		
290	295	300
Cys Pro Arg Gln Gly Gly Leu Pro Arg Ser Asn Ser Gly Leu Gly Gly		
305	310	315
320		
Glu Val Ser Gly Val Met Ser Lys Pro Asn Val Asp Pro Gln Pro Trp		
325	330	335
Phe Gln Asp Gly Pro Lys Ser Tyr Leu Ser Ser Ser Ala Pro Ser Ser		
340	345	350
Ser Pro Ala Gly Leu Asp Gly Ser Gln Gln Gly Ala Val Pro Gly Leu		
355	360	365
Gly Pro Lys Pro Gly Cys Thr Asp Leu Gly Thr Gly Pro Lys Leu Ser		
370	375	380
Pro Thr Ser Leu Val His Pro Val Met Ser Thr Leu Pro Glu Leu Ser		
385	390	395
400		
Cys Lys Glu Gly Pro Leu Gly Trp Ser Ser Asp Gly Ser Leu Gly Ser		
405	410	415
Val Leu Leu Asp Ser Pro Ser Ser Pro Arg Val Arg Leu Pro Cys Gln		
420	425	430
Pro Leu Val Pro Gly Pro Glu Leu Arg Pro Ser Ala Ala Glu Leu Lys		
435	440	445
Leu Glu Ala Leu Thr Gln Arg Leu Glu Arg Glu Met Asp Ala His Pro		
450	455	460
Lys Ala Asp Tyr Phe Gly Ala Cys Val Lys Cys Ser Lys Gly Val Phe		
465	470	475
480		
Gly Ala Gly Gln Ala Cys Gln Ala Met Gly Asn Leu Tyr His Asp Thr		
485	490	495

032796-132.ST25

Cys Phe Thr Cys Ala Ala Cys Ser Arg Lys Leu Arg Gly Lys Ala Phe
 500 505 510
 Tyr Phe Val Asn Gly Lys Val Phe Cys Glu Glu Asp Phe Leu Tyr Ser
 515 520 525
 Gly Phe Gln Gln Ser Ala Asp Arg Cys Phe Leu Cys Gly His Leu Ile
 530 535 540
 Met Asp Met Ile Leu Gln Ala Leu Gly Lys Ser Tyr His Pro Gly Cys
 545 550 555 560
 Phe Arg Cys Val Ile Cys Asn Glu Cys Leu Asp Gly Val Pro Phe Thr
 565 570 575
 Val Asp Ser Glu Asn Lys Ile Tyr Cys Val Arg Asp Tyr His Lys Val
 580 585 590
 Leu Ala Pro Lys Cys Ala Ala Cys Gly Leu Pro Ile Leu Pro Pro Glu
 595 600 605
 Gly Ser Asp Glu Thr Ile Arg Val Val Ser Met Asp Arg Asp Tyr His
 610 615 620
 Val Glu Cys Tyr His Cys Glu Asp Cys Gly Leu Glu Leu Asn Asp Glu
 625 630 635 640
 Asp Gly His Arg Cys Tyr Pro Leu Glu Asp His Leu Phe Cys His Ser
 645 650 655
 Cys His Val Lys Arg Leu Glu Lys Arg Pro Ser Ser Thr Ala Leu His
 660 665 670
 Gln His His Phe
 675

<210> 102
<211> 296
<212> PRT
<213> Homo sapiens

<400> 102
 Ser Thr Gly Ser Glu Phe Pro Leu Cys Thr Lys Ala Ser Pro Cys Ser
 1 5 10 15
 Ala Ala Arg Ala Gly Gly Arg Ala Leu Gly Trp Arg Leu Gln Gln Gln
 20 25 30
 Arg Glu Thr Arg Gly Asn Pro Gly Asn Pro Gly Leu Gly Val Ala Ala
 35 40 45
 Thr Met Thr Gly Ser Asn Met Ser Asp Ala Leu Ala Asn Ala Val Cys
 50 55 60
 Gln Arg Cys Gln Ala Arg Phe Ser Pro Ala Glu Arg Ile Val Asn Ser
 65 70 75 80
 Asn Gly Glu Leu Tyr His Glu His Cys Phe Val Cys Ala Gln Cys Phe
 85 90 95
 Arg Pro Phe Pro Glu Gly Leu Phe Tyr Glu Phe Glu Gly Arg Lys Tyr
 100 105 110
 Cys Glu His Asp Phe Gln Met Leu Phe Ala Pro Cys Cys Gly Ser Cys
 115 120 125
 Gly Glu Phe Ile Ile Gly Arg Val Ile Lys Ala Met Asn Asn Asn Trp
 130 135 140
 His Pro Gly Cys Phe Arg Cys Glu Leu Cys Asp Val Glu Leu Ala Asp
 145 150 155 160
 Leu Gly Phe Val Lys Asn Ala Gly Arg His Leu Cys Arg Pro Cys His
 165 170 175
 Asn Arg Glu Lys Ala Lys Gly Leu Gly Lys Tyr Ile Cys Gln Arg Cys
 180 185 190
 His Leu Val Ile Asp Glu Gln Pro Leu Met Phe Arg Ser Asp Ala Tyr
 195 200 205

032796-132.ST25

His Pro Asp His Phe Asn Cys Thr His Cys Gly Lys Glu Leu Thr Ala
 210 215 220
 Glu Ala Arg Glu Leu Lys Gly Glu Leu Tyr Cys Leu Pro Cys His Asp
 225 230 235 240
 Lys Met Gly Val Pro Ile Cys Gly Ala Cys Arg Arg Pro Ile Glu Gly
 245 250 255
 Arg Val Val Asn Ala Leu Gly Lys Gln Trp His Val Glu His Phe Val
 260 265 270
 Cys Ala Lys Cys Glu Lys Pro Phe Leu Gly His Arg His Tyr Glu Lys
 275 280 285
 Lys Gly Leu Ala Tyr Cys Glu Leu
 290 295

<210> 103

<211> 500

<212> PRT

<213> Homo sapiens

<400> 103

Met Gly Ile Gly Leu Ser Ala Gln Gly Val Asn Met Asn Arg Leu Pro
 1 5 10 15
 Gly Trp Asp Lys His Ser Tyr Gly Tyr His Gly Asp Asp Gly His Ser
 20 25 30
 Phe Cys Ser Ser Gly Thr Gly Gln Pro Tyr Gly Pro Thr Phe Thr Thr
 35 40 45
 Gly Asp Val Ile Gly Cys Cys Val Asn Leu Ile Asn Asn Thr Cys Phe
 50 55 60
 Tyr Thr Lys Asn Gly His Ser Leu Gly Ile Ala Phe Thr Asp Leu Pro
 65 70 75 80
 Pro Asn Leu Tyr Pro Thr Val Gly Leu Gln Thr Pro Gly Glu Val Val
 85 90 95
 Asp Ala Asn Phe Gly Gln His Pro Phe Val Phe Asp Ile Glu Asp Tyr
 100 105 110
 Met Arg Glu Trp Arg Thr Lys Ile Gln Ala Gln Ile Asp Arg Phe Pro
 115 120 125
 Ile Gly Asp Arg Glu Gly Glu Trp Gln Thr Met Ile Gln Lys Met Val
 130 135 140
 Ser Ser Tyr Leu Val His His Gly Tyr Cys Ala Thr Ala Glu Ala Phe
 145 150 155 160
 Ala Arg Ser Thr Asp Gln Thr Val Leu Glu Glu Leu Ala Ser Ile Lys
 165 170 175
 Asn Arg Gln Arg Ile Gln Lys Leu Val Leu Ala Gly Arg Met Gly Glu
 180 185 190
 Ala Ile Glu Thr Thr Gln Gln Leu Tyr Pro Ser Leu Leu Glu Arg Asn
 195 200 205
 Pro Asn Leu Leu Phe Thr Leu Lys Val Arg Gln Phe Ile Glu Met Val
 210 215 220
 Asn Gly Thr Asp Ser Glu Val Arg Cys Leu Gly Gly Arg Ser Pro Lys
 225 230 235 240
 Ser Gln Asp Ser Tyr Pro Val Ser Pro Arg Pro Phe Ser Ser Pro Ser
 245 250 255
 Met Ser Pro Ser His Gly Met Asn Ile His Asn Leu Ala Ser Gly Lys
 260 265 270
 Gly Ser Thr Ala His Phe Ser Gly Phe Glu Ser Cys Ser Asn Gly Val
 275 280 285
 Ile Ser Asn Lys Ala His Gln Ser Tyr Cys His Ser Asn Lys His Gln
 290 295 300

032796-132.ST25

Ser Ser Asn Leu Asn Val Pro Glu Leu Asn Ser Ile Asn Met Ser Arg
 305 310 315 320
 Ser Gln Gln Val Asn Asn Phe Thr Ser Asn Asp Val Asp Met Glu Thr
 325 330 335
 Asp His Tyr Ser Asn Gly Val Gly Glu Thr Ser Ser Asn Gly Phe Leu
 340 345 350
 Asn Gly Ser Ser Lys His Asp His Glu Met Glu Asp Cys Asp Thr Glu
 355 360 365
 Met Glu Val Asp Ser Ser Gln Leu Arg Arg Gln Leu Cys Gly Ser
 370 375 380
 Gln Ala Ala Ile Glu Arg Met Ile His Phe Gly Arg Glu Leu Gln Ala
 385 390 395 400
 Met Ser Glu Gln Leu Arg Arg Asp Cys Gly Lys Asn Thr Ala Asn Lys
 405 410 415
 Lys Met Leu Lys Asp Ala Phe Ser Leu Leu Ala Tyr Ser Asp Pro Trp
 420 425 430
 Asn Ser Pro Val Gly Asn Gln Leu Asp Pro Ile Gln Arg Glu Pro Val
 435 440 445
 Cys Ser Ala Leu Asn Ser Ala Ile Leu Glu Thr His Asn Leu Pro Lys
 450 455 460
 Gln Pro Pro Leu Ala Leu Ala Met Gly Gln Ala Thr Gln Cys Leu Gly
 465 470 475 480
 Leu Met Ala Arg Ser Gly Ile Gly Ser Cys Ala Phe Ala Thr Val Glu
 485 490 495
 Asp Tyr Leu His
 500

<210> 104
 <211> 387
 <212> PRT
 <213> Homo sapiens

<400> 104
 Met Ala Thr Ser Gly Val Leu Pro Gly Gly Phe Val Ala Ser Ala
 1 5 10 15
 Ala Ala Val Ala Gly Pro Glu Met Gln Thr Gly Arg Asn Asn Phe Val
 20 25 30
 Ile Arg Arg Asn Pro Ala Asp Pro Gln Arg Ile Pro Ser Asn Pro Ser
 35 40 45
 His Arg Ile Gln Cys Ala Ala Gly Tyr Glu Gln Ser Glu His Asn Val
 50 55 60
 Cys Gln Asp Ile Asp Glu Cys Thr Ala Gly Thr His Asn Cys Arg Ala
 65 70 75 80
 Asp Gln Val Cys Ile Asn Leu Arg Gly Ser Phe Ala Cys Gln Cys Pro
 85 90 95
 Pro Gly Tyr Gln Lys Arg Gly Glu Gln Cys Val Asp Ile Asp Glu Cys
 100 105 110
 Thr Ile Pro Pro Tyr Cys His Gln Arg Cys Val Asn Thr Pro Gly Ser
 115 120 125
 Phe Tyr Cys Gln Cys Ser Pro Gly Phe Gln Leu Ala Ala Asn Asn Tyr
 130 135 140
 Thr Cys Val Asp Ile Asn Glu Cys Asp Ala Ser Asn Gln Cys Ala Gln
 145 150 155 160
 Gln Cys Tyr Asn Ile Leu Gly Ser Phe Ile Cys Gln Cys Asn Gln Gly
 165 170 175
 Tyr Glu Leu Ser Ser Asp Arg Leu Asn Cys Glu Asp Ile Asp Glu Cys
 180 185 190

032796-132.ST25

Arg Thr Ser Ser Tyr Leu Cys Gln Tyr Gln Cys Val Asn Glu Pro Gly
 195 200 205
 Lys Phe Ser Cys Met Cys Pro Gln Gly Tyr Gln Val Val Arg Ser Arg
 210 215 220
 Thr Cys Gln Asp Ile Asn Glu Cys Glu Thr Thr Asn Glu Cys Arg Glu
 225 230 235 240
 Asp Glu Met Cys Trp Asn Tyr His Gly Gly Phe Arg Cys Tyr Pro Arg
 245 250 255
 Asn Pro Cys Gln Asp Pro Tyr Ile Leu Thr Pro Glu Asn Arg Cys Val
 260 265 270
 Cys Pro Val Ser Asn Ala Met Cys Arg Glu Leu Pro Gln Ser Ile Val
 275 280 285
 Tyr Lys Tyr Met Ser Ile Arg Ser Asp Arg Ser Val Pro Ser Asp Ile
 290 295 300
 Phe Gln Ile Gln Ala Thr Thr Ile Tyr Ala Asn Thr Ile Asn Thr Phe
 305 310 315 320
 Arg Ile Lys Ser Gly Asn Glu Asn Gly Glu Phe Tyr Leu Arg Gln Thr
 325 330 335
 Ser Pro Val Ser Ala Met Leu Val Leu Val Lys Ser Leu Ser Gly Pro
 340 345 350
 Arg Glu His Ile Val Asp Leu Glu Met Leu Thr Val Ser Ser Ile Gly
 355 360 365
 Thr Phe Arg Thr Ser Ser Val Leu Arg Leu Thr Ile Ile Val Gly Pro
 370 375 380
 Phe Ser Phe
 385

<210> 105

<211> 531

<212> PRT

<213> Homo sapiens

<400> 105

Met Ser Lys Pro His Ser Glu Ala Gly Thr Ala Phe Ile Gln Thr Gln
 1 5 10 15
 Gln Leu His Ala Ala Met Ala Asp Thr Phe Leu Glu His Met Cys Arg
 20 25 30
 Leu Asp Ile Asp Ser Pro Pro Ile Thr Ala Arg Asn Thr Gly Ile Ile
 35 40 45
 Cys Thr Ile Gly Pro Ala Ser Arg Ser Val Glu Thr Leu Lys Glu Met
 50 55 60
 Ile Lys Ser Gly Met Asn Val Ala Arg Leu Asn Phe Ser His Gly Thr
 65 70 75 80
 His Glu Tyr His Ala Glu Thr Ile Lys Asn Val Arg Thr Ala Thr Glu
 85 90 95
 Ser Phe Ala Ser Asp Pro Tyr Leu Tyr Arg Pro Val Ala Val Ala Leu
 100 105 110
 Asp Thr Lys Gly Pro Glu Ile Arg Thr Gly Leu Ile Lys Gly Ser Gly
 115 120 125
 Thr Ala Glu Leu Glu Leu Lys Gly Ala Thr Leu Lys Ile Thr Leu
 130 135 140
 Asp Asn Ala Tyr Met Glu Lys Cys Asp Glu Asn Ile Leu Trp Leu Asp
 145 150 155 160
 Tyr Lys Asn Ile Cys Lys Val Val Glu Val Gly Ser Lys Ile Tyr Val
 165 170 175
 Asp Asp Gly Leu Ile Ser Leu Gln Val Lys Gln Lys Gly Ala Asp Phe
 180 185 190

032796-132.ST25

Leu Val Thr Glu Val Glu Asn Gly Gly Ser Leu Gly Ser Lys Lys Gly
 195 200 205
 Val Asn Leu Pro Gly Ala Ala Val Asp Leu Pro Ala Val Ser Glu Lys
 210 215 220
 Asp Ile Gln Asp Leu Lys Phe Gly Val Glu Gln Asp Val Asp Met Val
 225 230 235 240
 Phe Ala Ser Phe Ile Arg Lys Ala Ser Asp Val His Glu Val Arg Lys
 245 250 255
 Val Leu Gly Glu Lys Gly Lys Asn Ile Lys Ile Ile Ser Lys Ile Glu
 260 265 270
 Asn His Glu Gly Val Arg Arg Phe Asp Glu Ile Leu Glu Ala Ser Asp
 275 280 285
 Gly Ile Met Val Ala Arg Gly Asp Leu Gly Ile Glu Ile Pro Ala Glu
 290 295 300
 Lys Val Phe Leu Ala Gln Lys Met Met Ile Gly Arg Cys Asn Arg Ala
 305 310 315 320
 Gly Lys Pro Val Ile Cys Ala Thr Gln Met Leu Glu Ser Met Ile Lys
 325 330 335
 Lys Pro Arg Pro Thr Arg Ala Glu Gly Ser Asp Val Ala Asn Ala Val
 340 345 350
 Leu Asp Gly Ala Asp Cys Ile Met Leu Ser Gly Glu Thr Ala Lys Gly
 355 360 365
 Asp Tyr Pro Leu Glu Ala Val Arg Met Gln His Leu Ile Ala Arg Glu
 370 375 380
 Ala Glu Ala Ala Ile Tyr His Leu Gln Leu Phe Glu Glu Leu Arg Arg
 385 390 395 400
 Leu Ala Pro Ile Thr Ser Asp Pro Thr Glu Ala Thr Ala Val Gly Ala
 405 410 415
 Val Glu Ala Ser Phe Lys Cys Cys Ser Gly Ala Ile Ile Val Leu Thr
 420 425 430
 Lys Ser Gly Arg Ser Ala His Gln Val Ala Arg Tyr Arg Pro Arg Ala
 435 440 445
 Pro Ile Ile Ala Val Thr Arg Asn Pro Gln Thr Ala Arg Gln Ala His
 450 455 460
 Leu Tyr Arg Gly Ile Phe Pro Val Leu Cys Lys Asp Pro Val Gln Glu
 465 470 475 480
 Ala Trp Ala Glu Asp Val Asp Leu Arg Val Asn Phe Ala Met Asn Val
 485 490 495
 Gly Lys Ala Arg Gly Phe Phe Lys Lys Gly Asp Val Val Ile Val Leu
 500 505 510
 Thr Gly Trp Arg Pro Gly Ser Gly Phe Thr Asn Thr Met Arg Val Val
 515 520 525
 Pro Val Pro
 530

<210> 106

<211> 480

<212> PRT

<213> Homo sapiens

<400> 106

Met Ala Ala Arg Cys Ser Thr Arg Trp Leu Leu Val Val Val Gly Thr
 1 5 10 15
 Pro Arg Leu Pro Ala Ile Ser Gly Arg Gly Ala Arg Pro Pro Arg Glu
 20 25 30
 Gly Val Val Gly Ala Trp Leu Ser Arg Lys Leu Ser Val Pro Ala Phe
 35 40 45

032796-132.ST25

Ala Ser Ser Leu Thr Ser Cys Gly Pro Arg Ala Leu Leu Thr Leu Arg
 50 55 60
 Pro Gly Val Ser Leu Thr Gly Thr Lys His Asn Pro Phe Ile Cys Thr
 65 70 75 80
 Ala Ser Phe His Thr Ser Ala Pro Leu Ala Lys Glu Asp Tyr Tyr Gln
 85 90 95
 Ile Leu Gly Val Pro Arg Asn Ala Ser Gln Lys Glu Ile Lys Lys Ala
 100 105 110
 Tyr Tyr Gln Leu Ala Lys Lys Tyr His Pro Asp Thr Asn Lys Asp Asp
 115 120 125
 Pro Lys Ala Lys Glu Lys Phe Ser Gln Leu Ala Glu Ala Tyr Glu Val
 130 135 140
 Leu Ser Asp Glu Val Lys Arg Lys Gln Tyr Asp Ala Tyr Gly Ser Ala
 145 150 155 160
 Gly Phe Asp Pro Gly Ala Ser Gly Ser Gln His Ser Tyr Trp Lys Gly
 165 170 175
 Gly Pro Thr Val Asp Pro Glu Glu Leu Phe Arg Lys Ile Phe Gly Glu
 180 185 190
 Phe Ser Ser Ser Phe Gly Asp Phe Gln Thr Val Phe Asp Gln Pro
 195 200 205
 Gln Glu Tyr Phe Met Glu Leu Thr Phe Asn Gln Ala Ala Lys Gly Val
 210 215 220
 Asn Lys Glu Phe Thr Val Asn Ile Met Asp Thr Cys Glu Arg Cys Asn
 225 230 235 240
 Gly Lys Gly Asn Glu Pro Gly Thr Lys Val Gln His Cys His Tyr Cys
 245 250 255
 Gly Gly Ser Gly Met Glu Thr Ile Asn Thr Gly Pro Phe Val Met Arg
 260 265 270
 Ser Thr Cys Arg Arg Cys Gly Gly Arg Gly Ser Ile Ile Ile Ser Pro
 275 280 285
 Cys Val Val Cys Arg Gly Ala Gly Gln Ala Lys Gln Lys Lys Arg Val
 290 295 300
 Met Ile Pro Val Pro Ala Gly Val Glu Asp Gly Gln Thr Val Arg Met
 305 310 315 320
 Pro Val Gly Lys Arg Glu Ile Phe Ile Thr Phe Arg Val Gln Lys Ser
 325 330 335
 Pro Val Phe Arg Arg Asp Gly Ala Asp Ile His Ser Asp Leu Phe Ile
 340 345 350
 Ser Ile Ala Gln Ala Leu Leu Gly Gly Thr Ala Arg Ala Gln Gly Leu
 355 360 365
 Tyr Glu Thr Ile Asn Val Thr Ile Pro Pro Gly Thr Gln Thr Asp Gln
 370 375 380
 Lys Ile Arg Met Gly Gly Lys Gly Ile Pro Arg Ile Asn Ser Tyr Gly
 385 390 395 400
 Tyr Gly Asp His Tyr Ile His Ile Lys Ile Arg Val Pro Lys Arg Leu
 405 410 415
 Thr Ser Arg Gln Gln Ser Leu Ile Leu Ser Tyr Ala Glu Asp Glu Thr
 420 425 430
 Asp Val Glu Gly Thr Val Asn Gly Val Thr Leu Thr Ser Ser Gly Gly
 435 440 445
 Ser Thr Met Asp Ser Ser Ala Gly Ser Lys Ala Arg Arg Glu Ala Gly
 450 455 460
 Glu Asp Glu Glu Gly Phe Leu Ser Lys Leu Lys Lys Met Phe Thr Ser
 465 470 475 480

<210> 107

<211> 572

032796-132.ST25

<212> PRT
<213> Homo sapiens

<400> 107

Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ser Ala
1 5 10 15
Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro
20 25 30
Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Pro
35 40 45
Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro
50 55 60
Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Leu Ala Gly
65 70 75 80
Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro
85 90 95
Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu Glu
100 105 110
Ile Phe Pro Ser Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu
115 120 125
Ala Pro Ile Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile
130 135 140
Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys
145 150 155 160
Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro
165 170 175
Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly
180 185 190
Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Ser Gln Pro
195 200 205
Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val
210 215 220
Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser
225 230 235 240
Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro
245 250 255
Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys
260 265 270
Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser
275 280 285
Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala
290 295 300
Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg
305 310 315 320
Glu Lys Pro Arg Val Gln Glu Lys Gln His Pro Val Pro Pro Pro Ala
325 330 335
Gln Asn Gln Asn Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr
340 345 350
Leu Lys Glu Val Glu Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln
355 360 365
Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val Asn Glu Leu Cys
370 375 380
Gly Arg Cys His Gln Pro Leu Ala Arg Ala Gln Pro Ala Val Arg Ala
385 390 395 400
Leu Gly Gln Leu Phe His Ile Ala Cys Phe Thr Cys His Gln Cys Ala
405 410 415
Gln Gln Leu Gln Gly Gln Gln Phe Tyr Ser Leu Glu Gly Ala Pro Tyr

032796-132.ST25

420	425	430
Cys Glu Gly Cys Tyr Thr Asp Thr Leu Glu Lys Cys Asn Thr Cys Gly		
435	440	445
Glu Pro Ile Thr Asp Arg Met Leu Arg Ala Thr Gly Lys Ala Tyr His		
450	455	460
Pro His Cys Phe Thr Cys Val Val Cys Ala Arg Pro Leu Glu Gly Thr		
465	470	475
Ser Phe Ile Val Asp Gln Ala Asn Arg Pro His Cys Val Pro Asp Tyr		
485	490	495
His Lys Gln Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met		
500	505	510
Pro Glu Pro Gly Arg Asp Glu Thr Val Arg Val Val Ala Leu Asp Lys		
515	520	525
Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Lys Pro Leu		
530	535	540
Ser Ile Glu Ala Asp Asp Asn Gly Cys Phe Pro Leu Asp Gly His Val		
545	550	555
Leu Cys Arg Lys Cys His Thr Ala Arg Ala Gln Thr		
565	570	

<210> 108

<211> 2861

<212> PRT

<213> Homo sapiens

<400> 108

Met Lys Ala Met Asp Val Leu Pro Ile Leu Lys Glu Lys Val Ala Tyr		
1	5	10
Leu Ser Gly Gly Arg Asp Lys Arg Gly Gly Pro Ile Leu Thr Phe Pro		
20	25	30
Ala Arg Ser Asn His Asp Arg Ile Arg Gln Glu Asp Leu Arg Arg Leu		
35	40	45
Ile Ser Tyr Leu Ala Cys Ile Pro Ser Glu Glu Val Cys Lys Arg Gly		
50	55	60
Phe Thr Val Ile Val Asp Met Arg Gly Ser Lys Trp Asp Ser Ile Lys		
65	70	75
Pro Leu Leu Lys Ile Leu Gln Glu Ser Phe Pro Cys Cys Ile His Val		
85	90	95
Ala Leu Ile Ile Lys Pro Asp Asn Phe Trp Gln Lys Gln Arg Thr Asn		
100	105	110
Phe Gly Ser Ser Lys Phe Glu Phe Glu Thr Asn Met Val Ser Leu Glu		
115	120	125
Gly Leu Thr Lys Val Val Asp Pro Ser Gln Leu Thr Pro Glu Phe Asp		
130	135	140
Gly Cys Leu Glu Tyr Asn His Glu Glu Trp Ile Glu Ile Arg Val Ala		
145	150	155
Phe Glu Asp Tyr Ile Ser Asn Ala Thr His Met Leu Ser Arg Leu Glu		
165	170	175
Glu Leu Gln Asp Ile Leu Ala Lys Lys Glu Leu Pro Gln Asp Leu Glu		
180	185	190
Gly Ala Arg Asn Met Ile Glu Glu His Ser Gln Leu Lys Lys Lys Val		
195	200	205
Ile Lys Ala Pro Ile Glu Asp Leu Asp Leu Glu Gly Gln Lys Leu Leu		
210	215	220
Gln Arg Ile Gln Ser Ser Glu Ser Phe Pro Lys Lys Asn Ser Gly Ser		
225	230	235
Gly Asn Ala Asp Leu Gln Asn Leu Leu Pro Lys Val Ser Thr Met Leu		240

032796-132.ST25

	245	250	255
Asp Arg Leu His Ser Thr Arg Gln His	Leu His Gln Met Trp His Val		
260	265	270	
Arg Lys Leu Lys Leu Asp Gln Cys Phe Gln Leu Arg Leu Phe Glu Gln			
275	280	285	
Asp Ala Glu Lys Met Phe Asp Trp Ile Thr His Asn Lys Gly Leu Phe			
290	295	300	
Leu Asn Ser Tyr Thr Glu Ile Gly Thr Ser His Pro His Ala Met Glu			
305	310	315	320
Leu Gln Thr Gln His Asn His Phe Ala Met Asn Cys Met Asn Val Tyr			
325	330	335	
Val Asn Ile Asn Arg Ile Met Ser Val Ala Asn Arg Leu Val Glu Ser			
340	345	350	
Gly His Tyr Ala Ser Gln Gln Ile Arg Gln Ile Ala Ser Gln Leu Glu			
355	360	365	
Gln Glu Trp Lys Ala Phe Ala Ala Leu Asp Glu Arg Ser Thr Leu			
370	375	380	
Leu Asp Met Ser Ser Ile Phe His Gln Lys Ala Glu Lys Tyr Met Ser			
385	390	395	400
Asn Val Asp Ser Trp Cys Lys Ala Cys Gly Glu Val Asp Leu Pro Ser			
405	410	415	
Glu Leu Gln Asp Leu Glu Asp Ala Ile His His His Gln Gly Ile Tyr			
420	425	430	
Glu His Ile Thr Leu Ala Tyr Ser Glu Val Ser Gln Asp Gly Lys Ser			
435	440	445	
Leu Leu Asp Lys Leu Gln Arg Pro Leu Thr Pro Gly Ser Ser Asp Ser			
450	455	460	
Leu Thr Ala Ser Ala Asn Tyr Ser Lys Ala Val His His Val Leu Asp			
465	470	475	480
Val Ile His Glu Val Leu His His Gln Arg His Val Arg Thr Ile Trp			
485	490	495	
Gln His Arg Lys Val Arg Leu His Gln Arg Leu Gln Leu Cys Val Phe			
500	505	510	
Gln Gln Glu Val Gln Gln Val Leu Asp Trp Ile Glu Asn His Gly Glu			
515	520	525	
Ala Phe Leu Ser Lys His Thr Gly Val Gly Lys Ser Leu His Arg Ala			
530	535	540	
Arg Ala Leu Gln Lys Arg His Glu Asp Phe Glu Glu Val Ala Gln Asn			
545	550	555	560
Thr Tyr Thr Asn Ala Asp Lys Leu Leu Glu Ala Ala Glu Gln Leu Ala			
565	570	575	
Gln Thr Gly Glu Cys Asp Pro Glu Glu Ile Tyr Gln Ala Ala His Gln			
580	585	590	
Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val Glu Gln Arg Lys			
595	600	605	
Ile Leu Leu Asp Met Ser Val Ser Phe His Thr His Val Lys Glu Leu			
610	615	620	
Trp Thr Trp Leu Glu Glu Leu Gln Lys Glu Leu Leu Asp Asp Val Tyr			
625	630	635	640
Ala Glu Ser Val Glu Ala Val Gln Asp Leu Ile Lys Arg Phe Gly Gln			
645	650	655	
Gln Gln Gln Thr Thr Leu Gln Val Thr Val Asn Val Ile Lys Glu Gly			
660	665	670	
Glu Asp Leu Ile Gln Gln Leu Arg Asp Ser Ala Ile Ser Ser Asn Lys			
675	680	685	
Thr Pro His Asn Ser Ser Ile Asn His Ile Glu Thr Val Leu Gln Gln			
690	695	700	

032796-132.ST25

Leu Asp Glu Ala Gln Ser Gln Met Glu Glu Leu Phe Gln Glu Arg Lys
705 710 715 720
Ile Lys Leu Glu Leu Phe Leu His Val Arg Ile Phe Glu Arg Asp Ala
725 730 735
Ile Asp Ile Ile Ser Asp Leu Glu Ser Trp Asn Asp Glu Leu Ser Gln
740 745 750
Gln Met Asn Asp Phe Asp Thr Glu Asp Leu Thr Ile Ala Glu Gln Arg
755 760 765
Leu Gln His His Ala Asp Lys Ala Leu Thr Met Asn Asn Leu Thr Phe
770 775 780
Asp Val Ile His Gln Gly Gln Asp Leu Leu Gln Tyr Val Asn Glu Val
785 790 795 800
Gln Ala Ser Gly Val Glu Leu Leu Cys Asp Arg Asp Val Asp Met Ala
805 810 815
Thr Arg Val Gln Asp Leu Leu Glu Phe Leu His Glu Lys Gln Gln Glu
820 825 830
Leu Asp Leu Ala Ala Glu Gln His Arg Lys His Leu Glu Gln Cys Val
835 840 845
Gln Leu Arg His Leu Gln Ala Glu Val Lys Gln Val Leu Gly Trp Ile
850 855 860
Arg Asn Gly Glu Ser Met Leu Asn Ala Gly Leu Ile Thr Ala Ser Ser
865 870 875 880
Leu Gln Glu Ala Glu Gln Leu Gln Arg Glu His Glu Gln Phe Gln His
885 890 895
Ala Ile Glu Lys Thr His Gln Ser Ala Leu Gln Val Gln Gln Lys Ala
900 905 910
Glu Ala Met Leu Gln Ala Asn His Tyr Asp Met Asp Met Ile Arg Asp
915 920 925
Cys Ala Glu Lys Val Ala Ser His Trp Gln Gln Leu Met Leu Lys Met
930 935 940
Glu Asp Arg Leu Lys Leu Val Asn Ala Ser Val Ala Phe Tyr Lys Thr
945 950 955 960
Ser Glu Gln Val Cys Ser Val Leu Glu Ser Leu Glu Gln Glu Tyr Lys
965 970 975
Arg Glu Glu Asp Trp Cys Gly Gly Ala Asp Lys Leu Gly Pro Asn Ser
980 985 990
Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys
995 1000 1005
Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val
1010 1015 1020
Phe Leu Lys Tyr Leu His Arg Asn Ser Val Asn Met Pro Gly Met Val
1025 1030 1035 1040
Thr His Ile Lys Ala Pro Glu Gln Gln Val Lys Asn Ile Leu Asn Glu
1045 1050 1055
Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys
1060 1065 1070
Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala
1075 1080 1085
Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser
1090 1095 1100
Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu
1105 1110 1115 1120
Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg
1125 1130 1135
Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His
1140 1145 1150
Ala His Ala Ala Glu Ile Lys Lys Cys Val Thr Ala Val Asp Lys Arg

032796-132.ST25

1155	1160	1165
Tyr Arg Asp Phe Ser Leu Arg Met Glu Lys Tyr Arg Thr Ser Leu Glu		
1170	1175	1180
Lys Ala Leu Gly Ile Ser Ser Asp Ser Asn Lys Ser Ser Lys Ser Leu		
1185	1190	1195
Gln Leu Asp Ile Ile Pro Ala Ser Ile Pro Gly Ser Glu Val Lys Leu		1200
1205	1210	1215
Arg Asp Ala Ala His Glu Leu Asn Glu Glu Lys Arg Lys Ser Ala Arg		
1220	1225	1230
Arg Lys Glu Phe Ile Met Ala Glu Leu Ile Gln Thr Glu Lys Ala Tyr		
1235	1240	1245
Val Arg Asp Leu Arg Glu Cys Met Asp Thr Tyr Leu Trp Glu Met Thr		
1250	1255	1260
Ser Gly Val Glu Glu Ile Pro Pro Gly Ile Val Asn Lys Glu Leu Ile		
1265	1270	1275
Ile Phe Gly Asn Met Gln Glu Ile Tyr Glu Phe His Asn Asn Ile Phe		1280
1285	1290	1295
Leu Lys Glu Leu Glu Lys Tyr Glu Gln Leu Pro Glu Asp Val Gly His		
1300	1305	1310
Cys Phe Val Thr Trp Ala Asp Lys Phe Gln Met Tyr Val Thr Tyr Cys		
1315	1320	1325
Lys Asn Lys Pro Asp Ser Thr Gln Leu Ile Leu Glu His Ala Gly Ser		
1330	1335	1340
Tyr Phe Asp Glu Ile Gln Gln Arg His Gly Leu Ala Asn Ser Ile Ser		
1345	1350	1355
Ser Tyr Leu Ile Lys Pro Val Gln Arg Ile Thr Lys Tyr Gln Leu Leu		
1365	1370	1375
Leu Lys Glu Leu Leu Thr Cys Cys Glu Glu Gly Lys Gly Glu Ile Lys		
1380	1385	1390
Asp Gly Leu Glu Val Met Leu Ser Val Pro Lys Arg Ala Asn Asp Ala		
1395	1400	1405
Met His Leu Ser Met Leu Glu Gly Phe Asp Glu Asn Ile Glu Ser Gln		
1410	1415	1420
Gly Glu Leu Ile Leu Gln Glu Ser Phe Gln Val Trp Asp Pro Lys Thr		
1425	1430	1435
Leu Ile Arg Lys Gly Arg Glu Arg His Leu Phe Leu Phe Glu Met Ser		
1445	1450	1455
Leu Val Phe Ser Lys Glu Val Lys Asp Ser Ser Gly Arg Ser Lys Tyr		
1460	1465	1470
Leu Tyr Lys Ser Lys Leu Phe Thr Ser Glu Leu Gly Val Thr Glu His		
1475	1480	1485
Val Glu Gly Asp Pro Cys Lys Phe Ala Leu Trp Val Gly Arg Thr Pro		
1490	1495	1500
Thr Ser Asp Asn Lys Ile Val Leu Lys Ala Ser Ser Ile Glu Asn Lys		
1505	1510	1515
Gln Asp Trp Ile Lys His Ile Arg Glu Val Ile Gln Glu Arg Thr Ile		
1525	1530	1535
His Leu Lys Gly Ala Leu Lys Glu Pro Ile His Ile Pro Lys Thr Ala		
1540	1545	1550
Pro Ala Thr Arg Gln Lys Gly Arg Arg Asp Gly Glu Asp Leu Asp Ser		
1555	1560	1565
Gln Gly Asp Gly Ser Ser Gln Pro Asp Thr Ile Ser Ile Ala Ser Arg		
1570	1575	1580
Thr Ser Gln Asn Thr Leu Asp Ser Asp Lys Leu Ser Gly Gly Cys Glu		
1585	1590	1595
Leu Thr Val Val Ile His Asp Phe Thr Ala Cys Asn Ser Asn Glu Leu		1600
1605	1610	1615

032796-132.ST25

Thr Ile Arg Arg Gly Gln Thr Val Glu Val Leu Glu Arg Pro His Asp
 1620 1625 1630
 Lys Pro Asp Trp Cys Leu Val Arg Thr Thr Asp Arg Ser Pro Ala Ala
 1635 1640 1645
 Glu Gly Leu Val Pro Cys Gly Ser Leu Cys Ile Ala His Ser Arg Ser
 1650 1655 1660
 Ser Met Glu Met Glu Gly Ile Phe Asn His Lys Asp Ser Leu Ser Val
 1665 1670 1675 1680
 Ser Ser Asn Asp Ala Ser Pro Pro Ala Ser Val Ala Ser Leu Gln Pro
 1685 1690 1695
 His Met Ile Gly Ala Gln Ser Ser Pro Gly Pro Lys Arg Pro Gly Asn
 1700 1705 1710
 Thr Leu Arg Lys Trp Leu Thr Ser Pro Val Arg Arg Leu Ser Ser Gly
 1715 1720 1725
 Lys Ala Asp Gly His Val Lys Lys Leu Ala His Lys His Lys Lys Ser
 1730 1735 1740
 Arg Glu Val Arg Lys Ser Ala Asp Ala Gly Ser Gln Lys Asp Ser Asp
 1745 1750 1755 1760
 Asp Ser Ala Ala Thr Pro Gln Asp Glu Thr Val Glu Glu Arg Gly Arg
 1765 1770 1775
 Asn Glu Gly Leu Ser Ser Gly Thr Leu Ser Lys Ser Ser Ser Gly
 1780 1785 1790
 Met Gln Ser Cys Gly Glu Glu Gly Glu Glu Gly Ala Asp Ala Val
 1795 1800 1805
 Pro Leu Pro Pro Pro Met Ala Ile Gln Gln His Ser Leu Leu Gln Pro
 1810 1815 1820
 Asp Ser Gln Asp Asp Lys Ala Ser Ser Arg Leu Leu Val Arg Pro Thr
 1825 1830 1835 1840
 Ser Ser Glu Thr Pro Ser Ala Ala Glu Leu Val Ser Ala Ile Glu Glu
 1845 1850 1855
 Leu Val Lys Ser Lys Met Ala Leu Glu Asp Arg Pro Ser Ser Leu Leu
 1860 1865 1870
 Val Asp Gln Gly Asp Ser Ser Ser Pro Ser Phe Asn Pro Ser Asp Asn
 1875 1880 1885
 Ser Leu Leu Ser Ser Ser Pro Ile Asp Glu Met Glu Glu Arg Lys
 1890 1895 1900
 Ser Ser Ser Leu Lys Arg Arg His Tyr Val Leu Gln Glu Leu Val Glu
 1905 1910 1915 1920
 Thr Glu Arg Asp Tyr Val Arg Asp Leu Gly Tyr Val Val Glu Gly Tyr
 1925 1930 1935
 Met Ala Leu Met Lys Glu Asp Gly Val Pro Asp Asp Met Lys Gly Lys
 1940 1945 1950
 Asp Lys Ile Val Phe Gly Asn Ile His Gln Ile Tyr Asp Trp His Arg
 1955 1960 1965
 Asp Phe Phe Leu Gly Glu Leu Glu Lys Cys Leu Glu Asp Pro Glu Lys
 1970 1975 1980
 Leu Gly Ser Leu Phe Val Lys His Glu Arg Arg Leu His Met Tyr Ile
 1985 1990 1995 2000
 Ala Tyr Cys Gln Asn Lys Pro Lys Ser Glu His Ile Val Ser Glu Tyr
 2005 2010 2015
 Ile Asp Thr Phe Phe Glu Asp Leu Lys Gln Arg Leu Gly His Arg Leu
 2020 2025 2030
 Gln Leu Thr Asp Leu Leu Ile Lys Pro Val Gln Arg Ile Met Lys Tyr
 2035 2040 2045
 Gln Leu Leu Lys Asp Phe Leu Lys Tyr Ser Lys Lys Ala Ser Leu
 2050 2055 2060
 Asp Thr Ser Glu Leu Glu Arg Ala Val Glu Val Met Cys Ile Val Pro

032796-132.ST25

2065	2070	2075	2080
Arg Arg Cys Asn Asp Met Met Asn Val Gly Arg Leu Gln Gly Phe Asp			
2085	2090	2095	
Gly Lys Ile Val Ala Gln Gly Lys Leu Leu Leu Gln Asp Thr Phe Leu			
2100	2105	2110	
Val Thr Asp Gln Asp Ala Gly Leu Leu Pro Arg Cys Arg Glu Arg Arg			
2115	2120	2125	
Ile Phe Leu Phe Glu Gln Ile Val Ile Phe Ser Glu Pro Leu Asp Lys			
2130	2135	2140	
Lys Lys Gly Phe Ser Met Pro Gly Phe Leu Phe Lys Asn Ser Ile Lys			
2145	2150	2155	2160
Val Ser Cys Leu Cys Leu Glu Glu Asn Val Glu Asn Asp Pro Cys Lys			
2165	2170	2175	
Phe Ala Leu Thr Ser Arg Thr Gly Asp Val Val Glu Thr Phe Ile Leu			
2180	2185	2190	
His Ser Ser Ser Pro Ser Val Arg Gln Thr Trp Ile His Glu Ile Asn			
2195	2200	2205	
Gln Ile Leu Glu Asn Gln Arg Asn Phe Leu Asn Ala Leu Thr Ser Pro			
2210	2215	2220	
Ile Glu Tyr Gln Arg Asn His Ser Gly Gly Gly Gly Gly Ser			
2225	2230	2235	2240
Gly Ala Ala Ala Gly Val Gly Ala Ala Ala Ala Gly Pro Pro Val			
2245	2250	2255	
Ala Ala Ala Ala Thr Val Ala Ala Pro Ala Ala Ala Ala Pro Pro			
2260	2265	2270	
Ala Arg Ala Gly Ala Gly Pro Pro Gly Ser Pro Ser Leu Ser Asp Thr			
2275	2280	2285	
Thr Pro Pro Cys Trp Ser Pro Leu Gln Pro Arg Ala Arg Gln Arg Gln			
2290	2295	2300	
Thr Arg Cys Gln Ser Glu Ser Ser Ser Ser Asn Ile Ser Thr Met			
2305	2310	2315	2320
Leu Val Thr His Asp Tyr Thr Ala Val Lys Glu Asp Glu Ile Asn Val			
2325	2330	2335	
Tyr Gln Gly Glu Val Val Gln Ile Leu Ala Ser Asn Gln Gln Asn Met			
2340	2345	2350	
Phe Leu Val Phe Arg Ala Ala Thr Asp Gln Cys Pro Ala Ala Glu Gly			
2355	2360	2365	
Trp Ile Pro Gly Phe Val Leu Gly His Thr Ser Ala Val Ile Val Glu			
2370	2375	2380	
Asn Pro Asp Gly Thr Leu Lys Lys Ser Thr Ser Trp His Thr Ala Leu			
2385	2390	2395	2400
Arg Leu Arg Lys Lys Ser Glu Lys Lys Asp Lys Asp Gly Lys Arg Glu			
2405	2410	2415	
Gly Lys Leu Glu Asn Gly Tyr Arg Lys Ser Arg Glu Gly Leu Ser Asn			
2420	2425	2430	
Lys Val Ser Val Lys Leu Leu Asn Pro Asn Tyr Ile Tyr Asp Val Pro			
2435	2440	2445	
Pro Glu Phe Val Ile Pro Leu Ser Glu Val Thr Cys Glu Thr Gly Glu			
2450	2455	2460	
Thr Val Val Leu Arg Cys Arg Val Cys Gly Arg Pro Lys Ala Ser Ile			
2465	2470	2475	2480
Thr Trp Lys Gly Pro Glu His Asn Thr Leu Asn Asn Asp Gly His Tyr			
2485	2490	2495	
Ser Ile Ser Tyr Ser Asp Leu Gly Glu Ala Thr Leu Lys Ile Val Gly			
2500	2505	2510	
Val Thr Thr Glu Asp Asp Gly Ile Tyr Thr Cys Ile Ala Val Asn Asp			
2515	2520	2525	

032796-132.ST25

Met Gly Ser Ala Ser Ser Ser Ala Ser Leu Arg Val Leu Gly Pro Gly
 2530 2535 2540
 Met Asp Gly Ile Met Val Thr Trp Lys Asp Asn Phe Asp Ser Phe Tyr
 2545 2550 2555 2560
 Ser Glu Val Ala Glu Leu Gly Arg Gly Arg Phe Ser Val Val Lys Lys
 2565 2570 2575
 Cys Asp Gln Lys Gly Thr Lys Arg Ala Val Ala Thr Lys Phe Val Asn
 2580 2585 2590
 Lys Lys Leu Met Lys Arg Asp Gln Val Thr His Glu Leu Gly Ile Leu
 2595 2600 2605
 Gln Ser Leu Gln His Pro Leu Leu Val Gly Leu Leu Asp Thr Phe Glu
 2610 2615 2620
 Thr Pro Thr Ser Tyr Ile Leu Val Leu Glu Met Ala Asp Gln Gly Arg
 2625 2630 2635 2640
 Leu Leu Asp Cys Val Val Arg Trp Gly Ser Leu Thr Glu Gly Lys Ile
 2645 2650 2655
 Arg Ala His Leu Gly Glu Val Leu Glu Ala Val Arg Tyr Leu His Asn
 2660 2665 2670
 Cys Arg Ile Ala His Leu Asp Leu Lys Pro Glu Asn Ile Leu Val Asp
 2675 2680 2685
 Glu Ser Leu Ala Lys Pro Thr Ile Lys Leu Ala Asp Phe Gly Asp Ala
 2690 2695 2700
 Val Gln Leu Asn Thr Thr Tyr Tyr Ile His Gln Leu Leu Gly Asn Pro
 2705 2710 2715 2720
 Glu Phe Ala Ala Pro Glu Ile Ile Leu Gly Asn Pro Val Ser Leu Thr
 2725 2730 2735
 Ser Asp Thr Trp Ser Val Gly Val Leu Thr Tyr Val Leu Leu Ser Gly
 2740 2745 2750
 Val Ser Pro Phe Leu Asp Asp Ser Val Glu Glu Thr Cys Leu Asn Ile
 2755 2760 2765
 Cys Arg Leu Asp Phe Ser Phe Pro Asp Asp Tyr Phe Lys Gly Val Ser
 2770 2775 2780
 Gln Lys Ala Lys Glu Phe Val Cys Phe Leu Leu Gln Glu Asp Pro Ala
 2785 2790 2795 2800
 Lys Arg Pro Ser Ala Ala Leu Ala Leu Gln Glu Gln Trp Leu Gln Ala
 2805 2810 2815
 Gly Asn Gly Arg Ser Thr Gly Val Leu Asp Thr Ser Arg Leu Thr Ser
 2820 2825 2830
 Phe Ile Glu Arg Arg Lys His Gln Asn Asp Val Arg Pro Ile Arg Ser
 2835 2840 2845
 Ile Lys Asn Phe Leu Gln Ser Arg Leu Leu Pro Arg Val
 2850 2855 2860

<210> 109

<211> 271

<212> PRT

<213> Homo sapiens

<400> 109

Met Val Leu Ile Lys Glu Phe Arg Val Val Leu Pro Cys Ser Val Gln
 1 5 10 15
 Glu Tyr Gln Val Gly Gln Leu Tyr Ser Val Ala Glu Ala Ser Lys Asn
 20 25 30
 Glu Thr Gly Gly Glu Gly Ile Glu Val Leu Lys Asn Glu Pro Tyr
 35 40 45
 Glu Lys Asp Gly Glu Lys Gly Gln Tyr Thr His Lys Ile Tyr His Leu
 50 55 60

032796-132.ST25

Lys Ser Lys Val Pro Ala Phe Val Arg Met Ile Ala Pro Glu Gly Ser
 65 70 75 80
 Leu Val Phe His Glu Lys Ala Trp Asn Ala Tyr Pro Tyr Cys Arg Thr
 85 90 95
 Ile Val Thr Asn Glu Tyr Met Lys Asp Asp Phe Phe Ile Lys Ile Glu
 100 105 110
 Thr Trp His Lys Pro Asp Leu Gly Thr Leu Glu Asn Val His Gly Leu
 115 120 125
 Asp Pro Asn Thr Trp Lys Thr Val Glu Ile Val His Ile Asp Ile Ala
 130 135 140
 Asp Arg Ser Gln Val Glu Pro Ala Asp Tyr Lys Ala Asp Glu Asp Pro
 145 150 155 160
 Ala Leu Phe Gln Ser Val Lys Thr Lys Arg Gly Pro Leu Gly Pro Asn
 165 170 175
 Trp Lys Lys Glu Leu Ala Asn Ser Pro Asp Cys Pro Gln Met Cys Ala
 180 185 190
 Tyr Lys Leu Val Thr Ile Lys Phe Lys Trp Trp Gly Leu Gln Ser Lys
 195 200 205
 Val Glu Asn Phe Ile Gln Lys Gln Glu Lys Arg Ile Phe Thr Asn Phe
 210 215 220
 His Arg Gln Leu Phe Cys Trp Ile Asp Lys Trp Ile Asp Leu Thr Met
 225 230 235 240
 Glu Asp Ile Arg Arg Met Glu Asp Glu Thr Gln Lys Glu Leu Glu Thr
 245 250 255
 Met Arg Lys Arg Gly Ser Val Arg Gly Thr Ser Ala Ala Asp Val
 260 265 270

<210> 110

<211> 233

<212> PRT

<213> Homo sapiens

<400> 110

Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu
 1 5 10 15
 Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly
 20 25 30
 Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln
 35 40 45
 Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys
 50 55 60
 Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala
 65 70 75 80
 Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro
 85 90 95
 Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His
 100 105 110
 Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp
 115 120 125
 His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys
 130 135 140
 Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser
 145 150 155 160
 Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile
 165 170 175
 Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg
 180 185 190

032796-132.ST25

Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu
195 200 205
Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser
210 215 220
Ser Arg Leu His Thr Cys Gln Arg His
225 230

<210> 111
<211> 212
<212> PRT
<213> Homo sapiens

<400> 111
Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu
1 5 10 15
Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly
20 25 30
Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln
35 40 45
Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys
50 55 60
Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala
65 70 75 80
Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro
85 90 95
Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His
100 105 110
Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp
115 120 125
His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys
130 135 140
Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser
145 150 155 160
Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile
165 170 175
Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg
180 185 190
Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu
195 200 205
Gly Leu Ser Cys
210

<210> 112
<211> 149
<212> PRT
<213> Homo sapiens

<400> 112
Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu
1 5 10 15
Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly
20 25 30
Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln
35 40 45
Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys

032796-132.ST25

50	55	60
Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala		
65	70	75 80
Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro		
85	90	95
Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His		
100	105	110
Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp		
115	120	125
His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys		
130	135	140
Met Tyr His Thr Lys		
145		

<210> 113
<211> 170
<212> PRT
<213> Homo sapiens

<400> 113	113	113
Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu		
1	5	10 15
Ala Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys		
20	25	30
Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn		
35	40	45
His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn		
50	55	60
Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser		
65	70	75 80
Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser		
85	90	95
Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys		
100	105	110
Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg		
115	120	125
Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly		
130	135	140
Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn		
145	150	155 160
Ser Ser Arg Leu His Thr Cys Gln Arg His		
165	170	

<210> 114
<211> 128
<212> PRT
<213> Homo sapiens

<400> 114	114	114
Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile		
1	5	10 15
Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg		
20	25	30
Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly		
35	40	45

032796-132.ST25

Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala
 50 55 60
 Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gln
 65 70 75 80
 Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile Phe
 85 90 95
 Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp
 100 105 110
 His His Gln Ala Ser Asn Ser Arg Leu His Thr Cys Gln Arg His
 115 120 125

<210> 115
<211> 84
<212> PRT
<213> Homo sapiens

<400> 115
 Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly
 1 5 10 15
 Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu
 20 25 30
 Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly
 35 40 45
 Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys Arg
 50 55 60
 Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Arg Leu His Thr
 65 70 75 80
 Cys Gln Arg His

<210> 116
<211> 149
<212> PRT
<213> Homo sapiens
<400> 116
 Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu
 1 5 10 15
 Ala Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys
 20 25 30
 Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn
 35 40 45
 His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn
 50 55 60
 Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser
 65 70 75 80
 Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser
 85 90 95
 Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys
 100 105 110
 Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg
 115 120 125
 Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly
 130 135 140
 Glu Gly Leu Ser Cys
 145

032796-132.ST25

<210> 117
<211> 107
<212> PRT
<213> Homo sapiens

<400> 117
Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile
1 5 10 15
Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg
20 25 30
Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly
35 40 45
Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala
50 55 60
Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gln
65 70 75 80
Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile Phe
85 90 95
Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys
100 105

<210> 118
<211> 15
<212> PRT
<213> Homo sapiens

<400> 118
Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys
1 5 10 15

<210> 119
<211> 22
<212> PRT
<213> Homo sapiens

<400> 119
Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His
1 5 10 15
Thr Lys Gly Gln Glu Gly
20

<210> 120
<211> 21
<212> PRT
<213> Homo sapiens

<400> 120
Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Ser Arg Leu His
1 5 10 15
Thr Cys Gln Arg His
20

032796-132.ST25

<210> 121
<211> 15
<212> PRT
<213> Homo sapiens

<400> 121
Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp
1 5 10 15

<210> 122
<211> 19
<212> PRT
<213> Homo sapiens

<400> 122
Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys Arg Ile
1 5 10 15
Gln Lys Asp

<210> 123
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> LRP5/HBM amino acid sequence

<400> 123
Met Tyr Trp Thr Asp Trp Val Glu Thr Pro Arg Ile Glu
1 5 10

<210> 124
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> LRP5/HBM amino acid sequence

<400> 124
Met Tyr Trp Thr Asp Trp Gly Glu Thr Pro Arg Ile Glu
1 5 10

<210> 125
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> LRP5/HBM amino acid sequence

032796-132.ST25

<400> 125
Lys Arg Thr Gly Gly Lys Arg Lys Glu Ile Leu Ser Ala
1 5 10

<210> 126
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> LRP5/HBM amino acid sequence

<400> 126
Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg Thr Arg Ile Gln Gly
1 5 10 15
Arg

<210> 127
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> LRP5/HBM amino acid sequence

<400> 127
Lys Gln Gln Cys Asp Ser Phe Pro Asp Cys Ile Asp Gly Ser Asp Glu
1 5 10 15

<210> 128
<211> 266
<212> PRT
<213> Homo sapiens

<400> 128
Met Met Ala Leu Gly Ala Ala Gly Ala Thr Arg Val Phe Val Ala Met
1 5 10 15
Val Ala Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser Ala Thr
20 25 30
Leu Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro
35 40 45
Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro
50 55 60
Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr
65 70 75 80
Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr
85 90 95
Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu
100 105 110
Ala Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys
115 120 125
Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn
130 135 140

032796-132.ST25

His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn
145 150 155 160
Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser
165 170 175
Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser
180 185 190
Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys
195 200 205
Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg
210 215 220
Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly
225 230 235 240
Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn
245 250 255
Ser Ser Arg Leu His Thr Cys Gln Arg His
260 265

<210> 129

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> complementary synthetic oligonucleotide

<400> 129

tggtcagcgg cctggaggat gtggccgcag tggacttcc

39

<210> 130

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> complementary synthetic oligonucleotide

<400> 130

ggaagtccac tgcgccaca tcctccaggc cgctgacca

39

<210> 131

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> complementary synthetic oligonucleotide

<400> 131

aagctgtact ggacggactc agtgaccaac cgcatcgagg

40

<210> 132

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> complementary synthetic oligonucleotide

032796-132.ST25

<400> 132
cctcgatgcg gttggtaact gagtccgtcc agtacagctt 40
<210> 133
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 133
atgtactgga cagactggaa ggagacgccc cggttggagc g 41
<210> 134
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 134
cgctcaatcc gggcggtctc cttccagtct gtccagtaca t 41
<210> 135
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 135
atgtactgga cagactggtt tgagacgccc cggttggagc g 41
<210> 136
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 136
cgctcaatcc gggcggtctc aaaccaggct gtccagtaca t 41
<210> 137
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 137

032796-132.ST25

atgtactgga cagactggat tgagacgccc cgatttgc g 41
<210> 138
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide
<400> 138
cgctcaatcc gggcgtctc aatccagtct gtccagtaca t 41

<210> 139
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 139
atgtactgga cagactggca ggagacgccc cgatttgc g 41

<210> 140
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 140
cgctcaatcc gggcgtctc ctgccagtct gtccagtaca t 41

<210> 141
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 141
cggacattta ctggcccaat gtactgacca tcgacctgga gg 42

<210> 142
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 142
cctccaggc gatggtcagt acattggcc agtaaatgtc cg 42

<210> 143

032796-132.ST25

<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 143
agctctactg ggctgacgtc aagctcagct tcatccaccg

40

<210> 144
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 144
cggtggatga agctgagctt gacgtcagcc cagtagagct

40

<210> 145
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 145
gagtgccttc tactcaccccg tggacatcca ggtgctgagc c

41

<210> 146
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 146
ggctcagcac ctggatgtcc acgggtgagt agagggcact c

41

<210> 147
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 147
catgtactgg acagactggg tagagaaccc taaaatcgag tgtgc

45

<210> 148
<211> 45
<212> DNA
<213> Artificial Sequence

032796-132.ST25

<220>
<223> complementary synthetic oligonucleotide

<400> 148
gcacactcga ttttagggtt ctctacccag tctgtccagt acatg

45

<210> 149
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 149
catctactgg accgagtggg tcggcaagcc gaggatcgtg cg

42

<210> 150
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 150
cgcacgatcc tcggcttgcc gacccactcg gtccagtaga tg

42

<210> 151
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 151
gtacttcacc aacatggtgg accgggcagc caagatcgaa cg

42

<210> 152
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> complementary synthetic oligonucleotide

<400> 152
cgttcgatct tggctgccccg gtccaccatg ttggtaagt ac

42

<210> 153
<211> 42
<212> DNA
<213> Artificial Sequence

<220>

032796-132.ST25

<223> complementary synthetic oligonucleotide

<400> 153

gtactggaca gactggtag aagtgcaa gatagaacgt gc

42

<210> 154

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> complementary synthetic oligonucleotide

<400> 154

gcacgttcta tcttggcac ttctacccag tctgtccagt ac

42

<210> 155

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 155

tttttttcg accaattcca acgcttatcaa g

31

<210> 156

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 156

tttttttcg acctgcgcta gtcccacccg c

31

<210> 157

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 157

tttttttcg accgtgtctt ctgatcaaaa tc

32

<210> 158

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

032796-132.ST25

<400> 158
tttttgcg accggacaag aagggtctgt ttg 33

<210> 159
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 159
tttttgcgg ccgcattatgg ggtgtgatac atttttg 37

<210> 160
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 160
tttttgcgg ccgcatttagca agacagaccc tctcc 35

<210> 161
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 161
tttttgcgg ccgcatttagtg tctctgacaa gtgtg 35

<210> 162
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 162
cagtgaattc accatgcaaa acaccactttt gttc 34

<210> 163
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 163
cagttgcggc cgctcatctc cggtgtggcctc tg 32

032796-132.ST25

<210> 164
<211> 39
<212> DNA
<213> Homo sapiens

<220>
<223> primer

<400> 164
caatagtcga cgaattcacc atggctctgg ggcgacgg

39

<210> 165
<211> 42
<212> DNA
<213> Homo sapiens

<220>
<223> primer

<400> 165
gtattgcggc cgctctagat tagtgtctct gacaagtgtg aa

42

<210> 166
<211> 32
<212> DNA
<213> Homo sapiens

<220>
<223> primer

<400> 166
ctaacggatc caccatggcc gcgttcatgc gg

32

<210> 167
<211> 33
<212> DNA
<213> Homo sapiens

<220>
<223> primer

<400> 167
gattcgaatt ctcaaatttt ctgacacacaca tgg

33

<210> 168
<211> 690
<212> DNA
<213> Homo sapiens

<400> 168
aattccaacg ctatcaagaa cctggccca ccgtggcg ggcgtgcggc gcacccaggc 60
tctgcagtc ggcggcgcc gggatcctg taccggcg ggaataagta ccagaccatt 120
gacaactacc agccgtaccc gtgcgcagag gacgaggagt gcggcactga tgagtactgc 180
gctagtccca cccggagg ggacgcggc gtgcaaatct gtctcgctg caggaagcgc 240
cgaaaacgct gcatgcgtca cgctatgtgc tgccccggga attactgcaa aaatggata 300
tgtgtgtctt ctgatcaaaa tcatttccga ggagaaattt aggaaaccat cactgaaagc 360
tttggtaatg atcatagcac cttggatggg tattccagaa gaaccacctt gtcttcaaaa 420

032796-132.ST25

atgttatcaca ccaaaggaca agaagggtct gtttgcctcc ggtcatcaga ctgtgcctca 480
 ggattgtgtt gtgcttagaca cttctggctcc aagatctgtta aacctgtctt gaaagaaggt 540
 caagtgtgtt ccaagcatag gagaaaaggc ttcctatggac tagaaatatt ccagcggtt 600
 tactgtggag aaggctgttc ttgcggata cagaaagatc accatcaagc cagtaattct 660
 tcttaggcttc acacttgtca gagacactaa 690

<210> 169
 <211> 1226
 <212> DNA
 <213> Homo sapiens

<400> 169
 ctcatcctgc ccctgcatgg actgaggaac gtcaaagcca tcgactatga cccactggac 60
 aagttcatctt actgggtgga tgggcgcgg aacatcaagc gagccaagga cgacgggacc 120
 cagcccttttgc ttttgacctc tctgagccaa ggccaaaacc cagacaggca gccccacgac 180
 ctcagcatcg acatctacag ccggacactg ttctggacgt gcgaggccac caataccatc 240
 aacgtccaca ggctgagcgg ggaagccatg ggggtgggtgc tgctgtggga cccgcacaag 300
 cccagggcaca tcgtcgtcaa cgcggagcga gggtaacctgt atttcaccaa catgcaggac 360
 cgggcagcaca agatcgaacg cgcagccctg gacggcaccg agcgcgaggt cctcttacc 420
 accggcctca tccggccctgt gcccctgggtg gtagacaaca cactggccaa gctgttctgg 480
 gtggacgcgg acctgaagcg cattgagacg tggacactgt cagggggccaa cccctgcacc 540
 ctggaggacg ccaacatcgt gcagcctctg ggcctgacca tccttggcaa gcatetctac 600
 tggatcgacc gccagcagca gatgatcgag cgtgtggaga agaccaccgg ggacaagcgg 660
 actcgcatcc agggccgtgt cccccaccc actggcatcc atgcagtgg agaagtgc 720
 ctggaggagt tctcagccca cccatgtgcc cgtgacaatg tggtctgc ccacatctgt 780
 attgccaagg gtatgggac accacgggtgc tcatgcccac tccacctcgt gtcctgcag 840
 aacctgctga cctgtggaga gcccggccacc tgctccccgg accagttgc atgtgcacaca 900
 ggggagatcg actgtatccc cggggccctgg cgctgtgacg gtttcccga gtgcgtatgac 960
 cagagcgcacg aggagggtctg cccctgtgtc tccgcgcggcc agttccctg cggcgggggt 1020
 cagtgtgggtg gacctgcgc tgcgtgcga cggcgaggca gactgtcagg accgctcaga 1080
 cgaggcggac tgcgtgcgc tctgcgtgcga caaccatcc cgggtgtgcga gggccactg 1140
 tgcctcatc aaacagccag tgcacttcc tcccgactg tatcgacggc tccgacgacg 1200
 tcatgtgtga aatcaccaag ccggcc 1226

<210> 170
 <211> 934
 <212> DNA
 <213> Homo sapiens

<400> 170
 agggccatcg tcgtcaacgc ggagcgaggg tacctgtact tcaccaacat gcaggaccgg 60
 gcagccaaga tcgaacgcgc agccctggac ggcacccgc gcgaggctct cttcaccacc 120
 ggcctcatcc gcccgtggc cttgggtgtt gacaacacac tggcaagct gttctgggtg 180
 gacgcggacc tgaagcgcatt tgagactgt gacctgtcag gggccaaaccg cctgaccctg 240
 gaggacgcaca acatctgtca gcctctggc ctgaccatcc ttggcaagca tctctactgg 300
 atcgaccgc accagcagat gatcgagcgt gtggagaaga ccaccggggca caagcgact 360
 cgcattccagg gccgtgtcgc ccacccact ggcattccatg cagtggaggaa agtcaggctg 420
 gaggagttct cagcccaccc atgtgcctgt gacaatggtg gctgctccca catctgtatt 480
 gccaagggtg atggacacc acgggtgtca tgcccagtcc acctcgtgtc cctgcagaac 540
 ctgctgaccc ttggagagcc gcccacccgc tcccccggacc agtttgcatg tgccacaggg 600
 gagatcgact gtatccccgg ggcctggcgc tgcgtgcggc ttcccgactg cgtgacccgg 660
 agcgacgagg agggtgtcccg cttggcgcctc cggccggccag ttcccccgtcg cgggggtca 720
 gtgtgtggac ctgcgcctgc gtcgtgcacgg cggaggcagac tgcaggacc gtcagacga 780
 ggcggactgt gacccatct ggcctgccc accagttccg gtgtgcgcgc ggcctgtgt 840
 tcctcatcaa acagcagtgc gactccttcc cggactgtat cgcggcgtcc gacgagctca 900
 tgcgtgaaat caccaagccg ccctaagccg ccgc 934

032796-132.ST25

<210> 171
<211> 16
<212> PRT
<213> Homo sapiens

<400> 171
Ser Val Gly Cys Leu Leu Cys Ala Gly Leu Gly Val Trp Ser Leu Ser
1 5 10 15

<210> 172
<211> 19
<212> PRT
<213> Homo sapiens

<400> 172
Trp Cys Cys Cys Gly Leu Phe Arg Gly Val Cys Val Trp Ser Cys Gly
1 5 10 15
Ala Asp Asp

<210> 173
<211> 16
<212> PRT
<213> Homo sapiens

<400> 173
Gly Trp Arg Arg Cys Asp Trp Cys Gly Cys Val Ser Trp Cys Trp Val
1 5 10 15

<210> 174
<211> 32
<212> PRT
<213> Homo sapiens

<400> 174
Met Pro Gly Ser Val Ser His Cys Trp Gly Gly Ile Cys Glu Ala Leu
1 5 10 15
Ser Cys Cys Ala Val Asp Val Cys Leu Arg Cys Gly Gly Trp Phe Arg
20 25 30

<210> 175
<211> 16
<212> PRT
<213> Homo sapiens

<400> 175
Ser Cys Cys Ala Val Asp Val Cys Leu Arg Cys Gly Gly Trp Phe Arg
1 5 10 15

<210> 176
<211> 16
<212> PRT

032796-132.ST25

<213> Homo sapiens

<400> 176

Ser Val Leu Gly Thr Cys Cys Cys Cys Gly Gly Trp Ile Leu Cys Glu
1 5 10 15

<210> 177

<211> 16

<212> PRT

<213> Homo sapiens

<400> 177

Val Leu Ser Val Cys Glu Val Cys Gly Gly Val Phe Val Arg Arg Cys
1 5 10 15

<210> 178

<211> 15

<212> PRT

<213> Homo sapiens

<400> 178

Gly Met Trp Tyr Trp Ser Gly Arg Asp Cys Ala Leu Cys Trp Leu
1 5 10 15

<210> 179

<211> 16

<212> PRT

<213> Homo sapiens

<400> 179

Cys Thr Ala Val Met Trp Gly Val Gly Ser Val Ala Tyr Leu Gly Glu
1 5 10 15

<210> 180

<211> 13

<212> PRT

<213> Homo sapiens

<400> 180

Val Val Cys Trp Trp Cys Gly Cys Arg Gly Trp Trp Arg
1 5 10

<210> 181

<211> 16

<212> PRT

<213> Homo sapiens

<400> 181

Cys Val Cys Ala Ser Phe Cys Cys Cys Val Cys Gly Leu Arg Leu Leu
1 5 10 15

032796-132.ST25

<210> 182
<211> 16
<212> PRT
<213> Homo sapiens

<400> 182
Thr Tyr Glu Val Cys Glu Glu Cys Gly Gly Arg Val Arg Met Trp Val
1 5 10 15

<210> 183
<211> 16
<212> PRT
<213> Homo sapiens

<400> 183
Val Val Val Cys Ala Ser Cys Gly Gln Val Trp His Gly Ser Gly Ala
1 5 10 15

<210> 184
<211> 16
<212> PRT
<213> Homo sapiens

<400> 184
Cys Cys Arg Cys Cys His Cys Trp Asp Cys Glu Trp His Met Cys Val
1 5 10 15

<210> 185
<211> 16
<212> PRT
<213> Homo sapiens

<400> 185
Phe Cys Ala Ser Cys Cys Trp Cys Gly Cys Asp Cys Phe Gly Trp Val
1 5 10 15

<210> 186
<211> 16
<212> PRT
<213> Homo sapiens

<400> 186
Cys Asp Tyr Cys Trp Ser Cys Gly Val Trp Cys Pro Ser Ser Trp Leu
1 5 10 15

<210> 187
<211> 16
<212> PRT
<213> Homo sapiens

<400> 187
Val Tyr Leu Cys Val Trp Cys Gly Ala Ala Arg Phe Gly Cys Tyr Gly

032796-132.ST25

1

5

10

15

<210> 188

<211> 16

<212> PRT

<213> Homo sapiens

<400> 188

Phe Cys Val Cys Gly Cys Cys Trp Cys Trp Cys Ala Ala Cys Trp Cys
1 5 10 15

<210> 189

<211> 16

<212> PRT

<213> Homo sapiens

<400> 189

Val Val Leu Cys Ser Arg Cys Gly Arg Leu Trp Arg Trp Ser Cys Gly
1 5 10 15

<210> 190

<211> 16

<212> PRT

<213> Homo sapiens

<400> 190

Glu Val Arg Gln Val Thr Cys Ile Arg Cys Arg Arg Gly Phe Leu Leu
1 5 10 15

<210> 191

<211> 15

<212> PRT

<213> Homo sapiens

<400> 191

Gly Gly Gly Gly Met Trp Glu Ala Trp Ser Cys Tyr Ala Cys Gly
1 5 10 15

<210> 192

<211> 16

<212> PRT

<213> Homo sapiens

<400> 192

Gly Trp Arg Trp Cys Gly Arg Cys Gly Ala Leu Trp Trp Arg Arg Val
1 5 10 15

<210> 193

<211> 485

<212> DNA

<213> Homo sapiens

032796-132.ST25

<400> 193

aagcttgcacccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtacggatc catgagcgat aaaattttt acctgactga cgacagtttt 120
gacacggatg tactcaaaggc ggacggggcg atcctcgat atttctgggc agagtggc 180
ggtccgaatt ccgtggttct gtgttcgcgt tggggcggtt tggggcggtt gtcgtgtggg 240
actagtggc cgtcaaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaaactga ccgttgcaaa actgaacatc gatcaaaaacc ctggcactgc gccgaaatata 360
ggcatccgtg gtatcccac tctgctgctg ttcaaaaacg gtgaagtggc ggcaacccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgttaagcg 480
ggcgc 485

<210> 194

<211> 485

<212> DNA

<213> Homo sapiens

<400> 194

aagcttgcacccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtacggatc catgagcgat aaaattttt acctgactga cgacagtttt 120
gacacggatg tactcaaaggc ggacggggcg atcctcgat atttctgggc agagtggc 180
ggtccgaatt ccgtgggtcg tgggtgtgtt cgggtgggg ctttgggtt gggcggtt 240
actagtggc cgtcaaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaaactga ccgttgcaaa actgaacatc gatcaaaaacc ctggcactgc gccgaaatata 360
ggcatccgtg gtatcccac tctgctgctg ttcaaaaacg gtgaagtggc ggcaacccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgttaagcg 480
ggcgc 485

<210> 195

<211> 485

<212> DNA

<213> Homo sapiens

<400> 195

aagcttgcacccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtacggatc catgagcgat aaaattttt acctgactga cgacagtttt 120
gacacggatg tactcaaaggc ggacggggcg atcctcgat atttctgggc agagtggc 180
ggtccgaatt ccgtgggtcg cgggttacg tgggtttt gtcgtgtggg ttttctgtt 240
actagtggc cgtcaaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaaactga ccgttgcaaa actgaacatc gatcaaaaacc ctggcactgc gccgaaatata 360
ggcatccgtg gtatcccac tctgctgctg ttcaaaaacg gtgaagtggc ggcaacccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgttaagcg 480
ggcgc 485

<210> 196

<211> 485

<212> DNA

<213> Homo sapiens

<400> 196

aagcttgcacccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtacggatc catgagcgat aaaattttt acctgactga cgacagtttt 120
gacacggatg tactcaaaggc ggacggggcg atcctcgat atttctgggc agagtggc 180
ggtccgaatt ccgtgggtgg ggggttattt tgggggggtt gggttttta tgggtgtggg 240
actagtggc cgtcaaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaaactga ccgttgcaaa actgaacatc gatcaaaaacc ctggcactgc gccgaaatata 360
ggcatccgtg gtatcccac tctgctgctg ttcaaaaacg gtgaagtggc ggcaacccaaa 420

032796-132.ST25

gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gcccgc 485

<210> 197
<211> 485
<212> DNA
<213> Homo sapiens

<400> 197
aagcttgcac ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgatc atttctgggc agagtggc 180
ggtccgaatt ccttggat tggccgggt gatcagggtc ttttcggcg ttttgtttt 240
actagtggtc cgtcaaaaat gatecccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaaactga ccgttgcaaa actgaacatc gatcaaaaacc ctggcactgc gccgaaaat 360
ggcatccgtg gtatccgac tctgtgtctg ttcaaaaacg gtgaagtggc ggcaacccaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gcccgc 485

<210> 198
<211> 476
<212> DNA
<213> Homo sapiens

<400> 198
aagcttgcac ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc cgtgttttc gatcaaaaatc atttccgagg agaaaatttag 120
gaaaccatca ctgaaagctt tggtaatgat catagcacct tggatggta ttccagaaga 180
accaccttgc cttcaaaaat gtatcacacc aaaggacaag aagggtctgt ttgtctccgg 240
tcatcagact gtgctcagg attgtgtgt gctagacact tctggtccaa gatctgtaaa 300
cctgtcctga aagaaggta aagtgttacc aagcatagga gaaaaggctc tcatggacta 360
gaaatattcc agcgttgtta ctgtggagaa ggtctgtctt gccggataca gaaagatcac 420
catcaagcca gtaattcttc taggcttcac acttgcaga gacactaagc ggccgc 476

<210> 199
<211> 539
<212> DNA
<213> Homo sapiens

<400> 199
aagcttgcac ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc ctgcgttagt cccaccgcg gaggggacgc gggcgtgca 120
atctgtctcg cctgcaggaa gcggcggaaa cgctgcgtgc gtcacgctat gtgctgcccc 180
gggaattact gcaaaaatgg aatatgtgt tttctgatc aaaatcattt ccgaggagaa 240
attgaggaaa ccatcactga aagtttggt aatgatcata gcaccttggta tgggtattcc 300
agaagaacca ctttgcgttc aaaaatgtat cacaccaaaag gacaagaagg ttctgtttgt 360
ctccggatcat cagactgtgc ctcaggattg tttgtgtca gacacttctg gtccaaagatc 420
tgtaaacctg tcctgaaaga aggtcaagtg tgtaccaagc ataggagaaaa aggctctcat 480
ggactagaaaa tattccagcg ttgttactgt ggagaaggcgt tgcttgctca agcggccgc 539

<210> 200
<211> 416
<212> DNA
<213> Homo sapiens

<400> 200
aagcttgcac ccatggcga taaaattatt cacctgactg acgacagttt tgacacggat 60

032796-132.ST25

gtactcaaag cggacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tcctatgcgt gttgttttc ttgttagtagg ttttagtggt ggttgccttg gactagtgg 180
ccgtgaaaa tgatcgcccc gattctggat gaaatcgctg acgaatatca gggcaactg 240
accgttgc aaactgaacat cgatcaaaac cctggactg cggcggaaata tggcatccgt 300
ggtatcccgta ctctgtgtct gttcaaaaac ggtgaagtgg cggcaaccaa agtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc 416

<210> 201

<211> 416

<212> DNA

<213> Homo sapiens

<400> 201

aagcttgc caatggcgta taaaattttt cacctgactg acgacagttt tgacacggat 60
gtactcaaac gcccggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tccatttgtt ggtgtgtgag gttgtggagt cggatccctt ggtcttgggt gactagtgg 180
ccgtgaaaa tgatcgcccc gattctggat gaaatcgctg acgaatatca gggcaactg 240
accgttgc aaactgaacat cgatcaaaac cctggactg cggcggaaata tggcatccgt 300
ggtatcccgta ctctgtgtct gttcaaaaac ggtgaagtgg cggcaaccaa agtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc 416

<210> 202

<211> 422

<212> DNA

<213> Homo sapiens

<400> 202

aagcttgc caatggcgta taaaattttt cacctgactg acgacagttt tgacacggat 60
gtactcaaag cggacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tccgggtgtt ctatgtcggt gtgtgggtct tgggtgagg cgggttaggtt ttattgtact 180
agtgggtccgt gcaaatgtat cggcccgatt ctggatgaaa tcgctgacga atatcaggc 240
aaactgaccg ttgcaaaaact gaacatcgat caaaacctg gcaactgcggc gaaatatggc 300
atccgtggta tcccactct gctgtgttc aaaaacgggt aagtggcgcc aaccaaagtg 360
ggtgcactgt ctaaaggta gttgaaagat ttccctcgacg ctaacactggc gtaagcggcc 420
gc

<210> 203

<211> 416

<212> DNA

<213> Homo sapiens

<400> 203

aagcttgc caatggcgta taaaattttt cacctgactg acgacagttt tgacacggat 60
gtactcaaag cggacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tccgggtgtt ttggccggg tgatcagggtt ctgtttcgcc gttttgttt tactagtgg 180
ccgtgaaaa tgatcgcccc gattctggat gaaatcgctg acgaatatca gggcaactg 240
accgttgc aaactgaacat cgatcaaaac cctggactg cggcggaaata tggcatccgt 300
ggtatcccgta ctctgtgtct gttcaaaaac ggtgaagtgg cggcaaccaa agtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc 416

<210> 204

<211> 154

<212> PRT

<213> Homo sapiens

<400> 204

032796-132.ST25

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15
 Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr
 20 25 30
 Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu
 35 40 45
 Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Val Val Leu Cys
 50 55 60
 Ser Arg Cys Gly Arg Leu Trp Arg Trp Ser Cys Gly Thr Ser Gly Pro
 65 70 75 80
 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln
 85 90 95
 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr
 100 105 110
 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys
 115 120 125
 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln
 130 135 140
 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala
 145 150

<210> 205
<211> 154
<212> PRT
<213> Homo sapiens

<400> 205

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15
 Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr
 20 25 30
 Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu
 35 40 45
 Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Gly Trp Arg Trp
 50 55 60
 Cys Gly Arg Cys Gly Ala Leu Trp Trp Arg Arg Val Thr Ser Gly Pro
 65 70 75 80
 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln
 85 90 95
 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr
 100 105 110
 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys
 115 120 125
 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln
 130 135 140
 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala
 145 150

<210> 206
<211> 154
<212> PRT
<213> Homo sapiens

<400> 206

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15

032796-132.ST25

Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr
 20 25 30
 Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu
 35 40 45
 Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Glu Val Arg Gln
 50 55 60
 Val Thr Cys Ile Arg Cys Arg Arg Gly Phe Leu Leu Thr Ser Gly Pro
 65 70 75 80
 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln
 85 90 95
 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr
 100 105 110
 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys
 115 120 125
 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln
 130 135 140
 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala
 145 150

<210> 207
<211> 154
<212> PRT
<213> Homo sapiens

<400> 207
 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro
 1 5 10 15
 Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr
 20 25 30
 Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu
 35 40 45
 Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Gly Gly Gly
 50 55 60
 Met Ile Trp Glu Ala Trp Ser Cys Tyr Ala Cys Gly Thr Ser Gly Pro
 65 70 75 80
 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln
 85 90 95
 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr
 100 105 110
 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys
 115 120 125
 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln
 130 135 140
 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala
 145 150

<210> 208
<211> 154
<212> PRT
<213> Homo sapiens

<400> 208
 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro
 1 5 10 15
 Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr

032796-132.ST25

20	25	30
Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu		
35	40	45
Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Leu Trp Ile Gly		
50	55	60
Pro Gly Asp Gln Gly Leu Phe Arg Arg Phe Val Phe Thr Ser Gly Pro		
65	70	75
Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln		
85	90	95
Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr		
100	105	110
Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys		
115	120	125
Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln		
130	135	140
Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala		
145	150	

<210> 209

<211> 151

<212> PRT

<213> Homo sapiens

<400> 209

1	5	10	15
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro			
20	25	30	
Gly Ser Thr Gly Asp Gly Ser Val Ser Ser Asp Gln Asn His Phe Arg			
35	40	45	
Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser			
50	55	60	
Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr			
65	70	75	80
His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys			
85	90	95	
Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys Lys			
100	105	110	
Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg Lys Gly			
115	120	125	
Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu			
130	135	140	
Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Ser Arg			
145	150		
Leu His Thr Cys Gln Arg His			

<210> 210

<211> 172

<212> PRT

<213> Homo sapiens

<400> 210

1	5	10	15
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro			
20	25	30	
Gly Ser Thr Gly Asp Gly Ser Cys Ala Ser Pro Thr Arg Gly Gly Asp			
Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Arg Lys Arg Cys			

032796-132.ST25

50	55	60
Leu	Asp	Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys
65		70 75 80
Leu	Asn	Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg
		85 90 95
Gly	Ile	Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr
		100 105 110
Lys	Val	Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala
		115 120 125
Asn	Leu	Ala
		130

<210> 213
<211> 133
<212> PRT
<213> Homo sapiens

<400>	213	
Met	Gly	Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp
1		5 10 15
Val	Leu	Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp
		20 25 30
Cys	Gly	Pro Asn Ser Gly Cys Thr Ser Ala Val Cys Gly Ala Trp Ala
		35 40 45
Glu	Ala	Gly Arg Phe Tyr Cys Thr Ser Gly Pro Cys Lys Met Ile Ala
		50 55 60
Pro	Ile	Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val
65		70 75 80
Ala	Lys	Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly
		85 90 95
Ile	Arg	Gly Ile Pro Thr Leu Leu Phe Lys Asn Gly Glu Val Ala
		100 105 110
Ala	Thr	Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu
		115 120 125
Asp	Ala	Asn Leu Ala
		130

<210> 214
<211> 131
<212> PRT
<213> Homo sapiens

<400>	214	
Met	Gly	Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp
1		5 10 15
Val	Leu	Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp
		20 25 30
Cys	Gly	Pro Asn Ser Leu Trp Ile Gly Pro Gly Asp Gln Gly Leu Phe
		35 40 45
Arg	Arg	Phe Val Phe Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile
		50 55 60
Leu	Asp	Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys
65		70 75 80
Leu	Asn	Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg
		85 90 95

032796-132.ST25

35	40	45
Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile		
50	55	60
Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr		
65	70	75
Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser		80
85	90	95
Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu		
100	105	110
Gly Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys		
115	120	125
Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly		
130	135	140
Gln Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile		
145	150	155
Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys		160
165	170	

<210> 211
<211> 131
<212> PRT
<213> Homo sapiens

<400> 211	211	211
Met Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp		
1	5	10
Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp		15
20	25	30
Cys Gly Pro Asn Ser Tyr Ala Trp Leu Phe Ser Cys Ser Arg Cys Arg		35
40	45	
Trp Trp Leu Pro Trp Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile		
50	55	60
Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys		
65	70	75
Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg		80
85	90	95
Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr		
100	105	110
Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala		
115	120	125
Asn Leu Ala		
130		

<210> 212
<211> 131
<212> PRT
<213> Homo sapiens

<400> 212	212	212
Met Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp		
1	5	10
Val Leu Lys Arg His Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp		15
20	25	30
Cys Gly Pro Asn Ser Ile Cys Glu Val Val Arg Leu Trp Ser Arg Tyr		
35	40	45
Pro Trp Ser Trp Val Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile		

032796-132.ST25

35	40	45
Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile		
50	55	60
Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr		
65	70	75
Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser		
85	90	95
Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu		
100	105	110
Gly Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys		
115	120	125
Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly		
130	135	140
Gln Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile		
145	150	155
Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys		
165	170	

<210> 211

<211> 131

<212> PRT

<213> Homo sapiens

<400> 211

Met Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp		
1	5	10
Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp		
20	25	30
Cys Gly Pro Asn Ser Tyr Ala Trp Leu Phe Ser Cys Ser Arg Cys Arg		
40	45	
Trp Trp Leu Pro Trp Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile		
50	55	60
Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys		
65	70	75
Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg		
85	90	95
Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr		
100	105	110
Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala		
115	120	125
Asn Leu Ala		
130		

<210> 212

<211> 131

<212> PRT

<213> Homo sapiens

<400> 212

Met Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp		
1	5	10
Val Leu Lys Arg His Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp		
20	25	30
Cys Gly Pro Asn Ser Ile Cys Glu Val Val Arg Leu Trp Ser Arg Tyr		
35	40	45
Pro Trp Ser Trp Val Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile		

032796-132.ST25

50	55	60	
Leu	Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys	Leu Thr Val Ala Lys	
65	70	75	
Leu	Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg	80	
	85	90	95
Gly	Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr		
	100	105	110
Lys	Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala		
	115	120	125
Asn	Leu Ala		
	130		

<210> 213
<211> 133
<212> PRT
<213> Homo sapiens

<400> 213	213			
Met	Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp			
1	5	10	15	
Val	Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp			
	20	25	30	
Cys	Gly Pro Asn Ser Gly Cys Thr Ser Ala Val Cys Gly Ala Trp Ala			
	35	40	45	
Glu	Ala Gly Arg Phe Tyr Cys Thr Ser Gly Pro Cys Lys Met Ile Ala			
	50	55	60	
Pro	Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val			
	65	70	75	80
Ala	Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly			
	85	90	95	
Ile	Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala			
	100	105	110	
Ala	Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu			
	115	120	125	
Asp	Ala Asn Leu Ala			
	130			

<210> 214
<211> 131
<212> PRT
<213> Homo sapiens

<400> 214	214			
Met	Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp			
1	5	10	15	
Val	Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp			
	20	25	30	
Cys	Gly Pro Asn Ser Leu Trp Ile Gly Pro Gly Asp Gln Gly Leu Phe			
	35	40	45	
Arg	Arg Phe Val Phe Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile			
	50	55	60	
Leu	Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys			
	65	70	75	80
Leu	Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg			
	85	90	95	

032796-132.ST25

Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr
100 105 110
Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala
115 120 125
Asn Leu Ala
130