Let $\mathbf{D}_j = \mathbf{\Phi}_j^C$ and consider the adjustment matrices

$$\mathbf{A}_j = \mathbf{D}_j' \mathbf{B}_j^{+/2} \mathbf{D}_j,$$

where $\mathbf{B}_{j} = \mathbf{D}_{j} (\mathbf{I} - \mathbf{H})_{j} \Phi (\mathbf{I} - \mathbf{H})_{j}' \mathbf{D}_{j}'$ and $\mathbf{B}_{j}^{+/2}$ denotes the symmetric square root of the Moore-Penrose inverse of \mathbf{B}_{j} . Then in order for \mathbf{V}^{R} to be exactly model-unbiased, we must have that

$$\mathbf{X}_{i}'\mathbf{W}_{j}\mathbf{D}_{i}'\mathbf{B}_{i}^{+/2}\mathbf{B}_{j}\mathbf{B}_{i}^{+/2}\mathbf{D}_{j}\mathbf{W}_{j}\mathbf{X}_{j} = \mathbf{X}_{i}'\mathbf{W}_{j}\mathbf{D}_{j}'\mathbf{D}_{j}\mathbf{W}_{j}\mathbf{X}_{j}$$

or equivalently that

$$\mathbf{X}_{j}'\mathbf{W}_{j}\mathbf{D}_{j}'\mathbf{B}_{j}^{+}\mathbf{B}_{j}\mathbf{D}_{j}\mathbf{W}_{j}\mathbf{X}_{j} = \mathbf{X}_{j}'\mathbf{W}_{j}\mathbf{D}_{j}'\mathbf{D}_{j}\mathbf{W}_{j}\mathbf{X}_{j},$$

where \mathbf{B}_{j}^{+} is the Moore-Penrose inverse of \mathbf{B}_{j} . Now consider the rank-decomposition of $(\mathbf{I} - \mathbf{H})_{j} = \mathbf{C}\mathbf{R}$ for $n_{j} \times r$ matrix \mathbf{C} with full column-rank and \mathbf{R} is $r \times N$ with full row-rank. Then it can be verified that

$$\mathbf{B}_{j}^{+} = \mathbf{D}_{j} \mathbf{C} \left(\mathbf{C}' \mathbf{D}_{j}' \mathbf{D}_{j} \mathbf{C} \right)^{-1} \left(\mathbf{R} \boldsymbol{\Phi} \mathbf{R}' \right)^{-1} \left(\mathbf{C}' \mathbf{D}_{j}' \mathbf{D}_{j} \mathbf{C} \right)^{-1} \mathbf{C}' \mathbf{D}_{j}'$$

and therefore that

$$\mathbf{B}_{j}^{+}\mathbf{B}_{j} = \mathbf{D}_{j}\mathbf{C}\left(\mathbf{C}'\mathbf{D}_{j}'\mathbf{D}_{j}\mathbf{C}\right)^{-1}\mathbf{C}'\mathbf{D}_{j}'.$$

Thus, the question is to identify conditions on \mathbf{X}_j under which the following equality holds:

$$\mathbf{X}_{i}'\mathbf{W}_{j}\mathbf{D}_{i}'\mathbf{D}_{j}\mathbf{C}\left(\mathbf{C}'\mathbf{D}_{i}'\mathbf{D}_{j}\mathbf{C}\right)^{-1}\mathbf{C}'\mathbf{D}_{i}'\mathbf{D}_{j}\mathbf{W}_{j}\mathbf{X}_{j} = \mathbf{X}_{i}'\mathbf{W}_{j}\mathbf{D}_{i}'\mathbf{D}_{j}\mathbf{W}_{j}\mathbf{X}_{j}.$$

It seems like to answer this question, we need to find an explicit expression for C in terms of the components of $(\mathbf{I} - \mathbf{H})_i$. Not sure how to do that....