Shates = $S_t = (y_t, 2_t, c_t)$ where y_t represents the debt we have (be the other bank) Zt is our investment in the risky asset. Ct is the cash our bank has.

Suppose we have $(y_{t+1}, z_{t+1}, c_{t+1})$ at the end of the (t-1)th day. We will show how the following day can be shaped. Suppose we have d_t deposit, we withdrowal in the day t. Also, suppose we have the other bank in day t. Also, suppose we invest 2t in the risky asset in day t. (y_t) and z_t can be negative, meaning we make a payment to to other bank and take cash from the risky asset, respectively.

Then the next day state become:

So our actions become + of = (yt', zt') adjusting the debt and the hirestment.

When it comes to the reword; $R(s_{i,1},q_i,s_i) = -K.\cot(\frac{\pi c_i}{2C})$ if $c_i \leq C$.

If $c_t > C > R(s_{t-1}, a_{t-1}, s_t) = 0$. Also, for the last time step;

R(S_{T1}, 9_{T-1}, 5_T) = C_T - Y_T + Z_T. (All money we have).

When it comes to the transition probabilities we need to say it depends on the de, we, and $p(z_{t-1}) \Rightarrow$ $P(s_{t-1}, a_{t-1}, s_t) = Prob(d_t) Prob(w_t) Prob(p_t(z_{t-1}))$

To solve this MDP, as the state function space is huge we can use ADP. Also, as every voriable is continuous, I would use function approximation, to solve the MDP. (Neural Network or a linear function)

$$\frac{\partial \Omega}{\partial s} = \rho \int_{S}^{\infty} (x-s) f(x) dx + h \int_{S}^{\infty} (S-x) f(x) dx = \rho \int_{S}^{\infty} x f(x) dx - \rho s \int_{S}^{\infty} f(x) dx + h \int_{S}^{\infty} (S-x) f(x) dx = \rho \int_{S}^{\infty} x f(x) dx - h \int_{S}^{\infty} x f(x) dx$$

$$\Rightarrow \text{ like will take } \frac{\partial}{\partial s} \text{ and equek to } 0.$$

$$\frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx \right) = \frac{\partial}{\partial s} \left(\rho \int_{S}^{\infty} x f(x) dx$$