Dual Latent Variable Model for Low-Resource Natural Language Generation in Dialogue Systems

Dialogue system

SHOPPER: Hello

AGENT: Hello, is there anything i can help you with today?

SHOPPER: show me some espadrilles in beige/blue within \$200.

AGENT: Sure. let me just quickly browse through my catalogue

Dialogue system

- Input recognizer/decoder
- Natural language understanding
- Dialog manager
- Task managers
- Output generator
- Output renderer

Dialogue system

- Input recognizer/decoder
- Natural language understanding
- Dialog manager
- Task managers
- Output generator
- Output renderer

Natural-language generation

generating **natural language** from a machine-representation system such as a **knowledge base** or a **logical** form

Natural-language generation

- Weather forecasts
- Automated journalism
- Chatbots
- Summarising medical records
- Product descriptions
- Enhancing accessibility

Dialogue Act and Utterance

Dialogue Act: inform(name='ABC'; area='XYZ')

Utterance: The hotel ABC is in XYZ area

Scarce Data

- Domain adaptation
- Model designing for *low-resource* setting

Dual Latent Variable Model

$$p(\mathbf{u}|\mathbf{d}) = \int_z p(\mathbf{u},z|\mathbf{d})\mathbf{d}_z = \int_z p(\mathbf{u}|z,\mathbf{d})p(z|\mathbf{d})\mathbf{d}_z$$

Variational Inference Network

Neural Posterior Approximator

$$\begin{aligned} \mathbf{h}_z' &= g(\mathbf{W}_z[\mathbf{h}_{\mathbf{D}}; \mathbf{h}_{\mathbf{U}}] + b_z) \\ q_{\phi}(z|\mathbf{d}, \mathbf{u}) &= \mathcal{N}(z; \mu_1(\mathbf{h}_z'), \sigma_1^2(\mathbf{h}_z')\mathbf{I}) \\ \mu_1 &= \mathbf{W}_{\mu_1}\mathbf{h}_z' + b_{\mu_1}, \log \sigma_1^2 = \mathbf{W}_{\sigma_1}\mathbf{h}_z' + b_{\sigma_1} \end{aligned}$$

Dual Latent Variable Model

Variational Inference Network

Neural Prior

$$p_{\theta}(z|\mathbf{d}) = \mathcal{N}(z; \mu'_1(\mathbf{d}), {\sigma'}_1^2(\mathbf{d})\mathbf{I})$$

$$\mathbf{h}_z = \mu_1 + \sigma_1 \odot \epsilon \text{ where } \epsilon \sim \mathcal{N}(0, \mathbf{I}).$$

Dual Latent Variable Model

Experiments

	Model	Hotel		Restaurant		Tv		Laptop	
		BLEU	ERR	BLEU	ERR	BLEU	ERR	BLEU	ERR
scr100	HLSTM	0.8488	2.79%	0.7436	0.85%	0.5240	2.65%	0.5130	1.15%
	SCLSTM	0.8469	3.12%	0.7543	0.57%	0.5235	2.41%	0.5109	0.89%
	ENCDEC	0.8537	4.78%	0.7358	2.98%	0.5142	3.38%	0.5101	4.24%
	RALSTM	0.8965	0.58%	0.7779	0.20 %	0.5373	0.49 %	0.5231	0.50%
	R-VNLG (Ours)	0.8851	0.57%	0.7709	0.36%	0.5356	0.73%	0.5210	0.59%
	C-VNLG (Ours)	0.8811	0.49 %	0.7651	0.06%	0.5350	0.88%	0.5192	0.56 %
	DualVAE (Ours)	0.8813	0.33%	0.7695	0.29%	0.5359	0.81%	0.5211	0.91%
	CrossVAE (Ours)	0.8926	0.72%	0.7786	0.54%	0.5383	0.48%	0.5240	0.50%
scr10	HLSTM	0.7483	8.69%	0.6586	6.93%	0.4819	9.39%	0.4813	7.37%
	SCLSTM	0.7626	17.42%	0.6446	16.93%	0.4290	31.87%	0.4729	15.89%
	ENCDEC	0.7370	23.19%	0.6174	23.63%	0.4570	21.28%	0.4604	29.86%
	RALSTM	0.6855	22.53%	0.6003	17.65%	0.4009	22.37%	0.4475	24.47%
	R-VNLG (Ours)	0.7378	15.43%	0.6417	15.69%	0.4392	17.45%	0.4851	10.06%
	C-VNLG (Ours)	0.7998	8.67%	0.6838	6.86 %	0.5040	5.31%	0.4932	3.56%
	DualVAE (Ours)	0.8022	<i>6.61</i> %	0.6926	7.69%	0.5110	<i>3.90</i> %	0.5016	2.44 %
	CrossVAE (Ours)	0.8103	6.20%	0.6969	4.06%	0.5152	2.86%	0.5085	2.39%
scr30	HLSTM	0.8104	6.39%	0.7044	2.13%	0.5024	5.82%	0.4859	6.70%
	SCLSTM	0.8271	6.23%	0.6825	4.80%	0.4934	7.97%	0.5001	3.52%
	ENCDEC	0.7865	9.38%	0.7102	13.47%	0.5014	9.19%	0.4907	10.72%
	RALSTM	0.8334	4.23%	0.7145	2.67%	0.5124	3.53%	0.5106	2.22%
	C-VNLG (Ours)	0.8553	2.64%	0.7256	0.96%	0.5265	0.66%	0.5117	2.15%
	DualVAE (Ours)	0.8534	<i>1.54</i> %	0.7301	2.32%	0.5288	1.05%	0.5107	0.93 %
	CrossVAE (Ours)	0.8585	1.37%	0.7479	0.49%	0.5307	0.82%	0.5154	0.81%

Examples

Model	Generated Responses from TV Domain
DA 1	compare(name='typhon 45'; hdmiport='2'; family='l2'; name='hades 48'; hdmiport='4'; family='l7')
Reference 1	Compared to typhon 45 which has 2 hdmi port -s and is in the L2 product family, hades 48 has 4 hdmi port -s and is in the L7
	product family. Which one do you prefer?
ENCDEC-10	the typhon 45 is in the 12 product family and has 2 hdmi port -s and is in the 17 product family with 4 hdmi port -s, the hades 48 is
	in the SLOT_FAMILY product family with a SLOT_AUDIO.
HLSTM-10	the typhon 45 is a great eco rating, the hades 48 is in the 12 family with 2 hdmi port -s. [17 family] [4 hdmi port -s]
SCLSTM-10	the typhon 45 is the hades 48 with 2 hdmi port in the l2 family, the SLOT_NAME has 4 hdmi port -s and SLOT_HDMIPORT hdmi
	port. [17 family]
C-VNLG-10	the typhon 45 has 2 hdmi port -s and the hades 48 is in the 12 family and has 4 hdmi port -s. [17 family]
DualVAE-10	the typhon 45 has 2 hdmi port -s and is in the l2 family while the hades 48 has 4 hdmi port -s and is in the l7 family. [OK]
CrossVAE-10	the typhon 45 is in the l2 family with 2 hdmi port -s while the hades 48 has 4 hdmi port -s and is in the l7 family. [OK]
ENCDEC-30	the typhon 45 has 2 hdmi port -s, the hades 48 has 4 hdmi port -s, the SLOT_NAME has SLOT_HDMIPORT hdmi port. [12 family]
	[17 family]
HLSTM-30	the typhon 45 is in the l2 product family with 2 hdmi port -s, whereas the hades 48 has 4 hdmi port. [17 family]
SCLSTM-30	the typhon 45 has 2 hdmi port -s, the hades 48 is in the l2 product family. [17 family] [4 hdmi port -s]
C-VNLG-30	the typhon 45 has 2 hdmi port -s, the hades 48 is in the l2 product family and has 4 hdmi port -s in l7 family.
DualVAE-30	which do you prefer, the <i>typhon 45</i> in the <i>l2 product family</i> with 2 hdmi port -s. [OK]
CrossVAE-30	the typhon 45 has 2 hdmi port -s and in the 12 family while the hades 48 has 4 hdmi port -s and is in the 17 family. which item do vou prefer. [OK]

References

https://arxiv.org/pdf/1811.04164.pdf - Dual Latent Variable Model for Low-Resource Natural Language Generation in Dialogue Systems