Mathematica - Maple 常用命令对照表

更新日期: 2007-8-29

FAQ:

Mathematica-Maple 转换器

> 如何在 Maple 中发现对应的 Mathmatica 函数命令以及打开 notebooks?

Mathematica Translator in Maple

介绍:

Mathematica 用户使用 Maple 中内置的 MmaTranslator 函数包将 Mathematica notebooks 和函数命令转换为 Maple,这种功能对下列用户非常有用,包括:

- 1. 教育工作者,他们原来使用 Mathematica,现在他们所属的学校改用 Maple,使用这个工具,可以自动将基于 Mathematica 的教学材料转换为 Maple 教程。
- 2. Mathematica 的用户可以快速学习 Maple, 无须反复的试验就可以找到 Mathematica 函数命令对应的 Maple 命令。
- 3. 软件测试者可以快速的对 Mathematica 和 Maple 关于基准测试题输出结果的对比。

您也可以在帮助系统中找到详细信息。

>? MmaTranslator

Mathematica到Maple转换器可以在我们的应用程序库中找到:

Centre:http://www.maplesoft.com/applications/app_center_view.aspx?AID=1483

更多内容,请访问www.cca-es.com

	Mathematic 命令	Maple 命令	命令描述
1	N[2/3]	evalf(2/3);	数值化 2/3
2	Length[IntegerDigits[1000!]]	length(1000!);	1000! 的长度
3	FactorInteger[60]	ifactor(60);	素数因数分解
4	Quotient[7,3]	iquo(7,3);	整数商
5	Prime[11]	ithprime(11);	第 1 个素数
6	PrimeQ[13]	isprime(13);	验证素数
7	<pre>Integrate[Sin[x],x]</pre>	<pre>int(sin(x),x);</pre>	不定积分
8	D[Sin[x],x]	<pre>diff(sin(x),x);</pre>	符号微分
9	Mod[12,7]	modp(12,7) 或者 12 mod 7;	模数计算
10	Apply[Times, {a,b,c}]	<pre>convert([a,b,c],`*`);</pre>	列表元素相乘
11	Rationalize[1.23456]	<pre>convert(1.23456, fraction);</pre>	变为有理数
12	Series[Sin[x],{x,0,3}]	taylor(sin(x),x,3);	级数展开 (泰勒级数展开)
13	Sum[k^2,{k,1,n}]	sum(k^2,k=1n);	符号和计算

If you touch math ... You need Maple.

14	Factor[x^2-1]	factor(x^2-1);	因数分解
15	Expand[(x+1)^2]	expand((x+1)^2);	展开
16	f[x_]:=x^2+1	f := x->x^2+1;	函数定义
17	Length[{1,2,3}]	nops({[1,2,3]);	列表元素的个数
18	plist={3,1,2};plist[[2]]	plist:=[3,1,2]:plist[2];	提取列表中的元素
19	Plot[Sin[x], {x,-3,3}]	plot(sin(x),x=-33);	二维绘图
20	Plot3D[x*y,{x,0,1},{y,0,1}]	plot3d(x*y,x=01,y=01);	三维绘图
21	var = 2	var := 2;	变量赋值
22	Union[{1,2,3},{2,3,4}]	{1,2,3} union {2,3,4};	集合的并集
23	Simplify[Sin[x]^2+Cos[x]^2]	<pre>simplify(sin(x)^2+cos(x)^2);</pre>	简化
24	Map[f,{a,b,c}]	map(f, [a,b,c]);	映射f
25	Map[#^2&,{a,b,c}]	map(x->x^2,[a,b,c]);	映射程序
26	Solve[x^2+a*x+b==0,x]	solve(x^2+a*x+b=0,x);	求解方程
27	FindRoot[Sin[x]==0,x] 或 NSolve[Sin[x]==0,x]	fsolve(sin(x)=0,x);	求方程的数值解
28	无对应命令	isolve(3*x-4*y=7);	整数上求解方程
29	Solve[{3*x-4*y==1,7*x+y==2,Modul us==17}, {x,y},Mode -> Modular]	msolve({3*x-4*y=1,7*x+y=2});	Mod m 上求解方程
30	x^2+1 /. x->1	eval(x^2+1,x=1);	求表达式在指定点上的值
31	PolynomialRemainder[x^3+x+1,x^2+2,x]	rem(x^3+x+1,x^2+2,x);	多项式余数
33	< <dicretemath =="1,f[1]==1},f[n],n]</td" rsolve="" rsolve[{f[n]="=f[n-1]+f[n-2],f[0]"><td>rsolve({f(n)=f(n-1)+f(n-2),f(0)=1,f(1)=1}, f(n));</td><td>递归公式求解</td></dicretemath>	rsolve({f(n)=f(n-1)+f(n-2),f(0)=1,f(1)=1}, f(n));	递归公式求解
34	<pre>Integrate[Exp[-a*t]*Log[t],{t, 0, Infinity},Assumptions -> {a > 0}]</pre>	<pre>int(exp(a*t)*ln(t),t=0infin ity)assuming a>0;</pre>	含有假设前提的积分
35	<pre>data = {1.2, 3.1, 0.3, 7.2};StandardDeviation[data]</pre>	<pre>data := [1.2, 3.1, 0.3, 7.2];with(Statistics):Standar dDeviation(data);</pre>	列表数据的标准偏差
36	Mean[data]	Mean(data);	计算列表数据的算术平均值
37	Variance[data]	Variance(data);	方差计算
38	<pre>data = {Sqrt[Pi], 2*Pi, Exp[Pi]}Select[data, # > 2 &]</pre>	<pre>data := [sqrt(Pi),2*Pi,exp(Pi)];selec t(x->is(x>2),data);</pre>	提取满足条件的列表元素
39	DeleteCases[data, x_ /; x > 2]	remove(x->is(x>2),data);	消去满足条件的列表元素
40	<pre>f[t_]:=Module[{tmp},tmp = Random[];tmp = Sin[t]+tmp;tmp]</pre>	<pre>f:=proc(t)local tmp;tmp := rand();tmp := sin(t)+tmp;return(tmp);end</pre>	用户程序定义

If you touch math ... You need Maple.

			ou touch math You need Maple.
		proc;	
41	GroebnerBasis[{3*x+4*y,2*x+y},{x	with(Groebner):Basis({3*x+4*y	Groebner基计算
	, y}]	,2*x+y},plex(x,y));	
42	<pre>Import["C:\\temp\\data.xls"]</pre>	with(ExcelTools):Import("C:/t	输入Excel文件
		emp/data.xls");	和八EXCEI文件
4.0	<pre>Export["C:\\temp\\data.xls",data</pre>	<pre>Export(data, "C:/temp/data.xls</pre>	<i>t</i> ∧ → //.
43	1	");	输出Excel文件
		identify(2.461411113569692794	
44	无对应命令	95590318530);	发现数的精确形式
		with(LinearAlgebra):MatrixInv	
45	Inverse[data]	erse(data);	逆矩阵
		with(CurveFitting):LeastSquar	
46	<pre>FindFit[data,</pre>	es(data,	最小二乘法形式的曲线拟合
40	$a*v^2+b*v+c,{a,b,c}, v$	v,model=a*v^2+b*v+c);	取小二米宏ル式的曲线拟音
47	Table[k,{k,1,10,0.2}]	seq(k, k=110, 0.2);	生成等差序列
48	无对应命令	realroot(x^3+10*x+27,1/100);	计算表达式实根存在区间
49	工业产人人/- 以	$mtaylor(sin(x^2+y^2), [x,y],$	多元泰勒级数展开
49	无对应命令(Series 嵌套使用)	8);	多几条朝级数战开
F 0	T-12-6-6-7 (1.86)	convert((s+2)/(s^2+3*s-3),par	有理函数在实数上的部分分式
50	无对应命令(Apart 失败)	<pre>frac,real);</pre>	展开
	无对应命令(Table, Random 命令组合)	randpoly([x,y],degree=2,dense	
51);	生成随机多项式
		with(VectorCalculus):Gradient	
52	无对应命令	(r^2, 'polar'[r,theta]);	计算指定坐标系上斜率
		with(VectorCalculus):Tangent(
53	无对应命令	<pre></pre>	计算指定点上的切线
			15日本人動物 生日動物立子
54	无对应命令	<pre>with(numtheory):sum2sqr(17);</pre>	返回两个整数,满足整数平方
			和相加等于给定数
55	<pre>LaplaceTransform[t^2+Sin[t]==y[t</pre>	with(inttrans):laplace(t^2+si	拉普拉斯符号变换
], t, s]	n(t)=y(t), t, s);	
56	FourierTransform[Sin[t],t,w]	with(inttrans):fourier(sin(t)	傅立叶符号变换
30	Fourier framsform[Sin[C],C,W]	,t,w);	[4五·11] 1文[X
57	<pre>Table[Plot[Sin[k*t],{t,0,2*Pi}],</pre>	<pre>with(plots):animate(sin(k*t),</pre>	生成动画
57	{k,1,2,0.1}]	t=02*Pi,k=12);	生风幼园
F.0	NIntegrate[Exp[- x^2],{x,0,1},Wor	evalf(Int(exp(-x^2),x=01,di	₩, 法 和八
58	kingPrecision->30]	gits=30));	数值积分
	<pre>dsol = NDSolve[{y'[t] == t*y[t],</pre>	dsol :=	
59	$y[0] == 1$, y , $\{t, 0, 2\}$	<pre>dsolve({diff(y(t),t)=-t*y(t),</pre>	微分方程的数值近似解
		y(0)=1},numeric);	NAVA /4 (ITHAN ITY DINI)
	Plot[(y /. dsol[[1]])[t],{t, 0,	with(plots):odeplot(dsol,[t,y	
60	•		绘图微分方程的数值近似解
	1}]	(t)],t=01);	