Nuclear Fuel Cycle

NUGN506 - Homework

By

GUILLAUME L'HER

Department of Nuclear Engineering COLORADO SCHOOL OF MINES

Homework submitted for the Nuclear Fuel Cycle class at the Colorado School of Mines.

FALL 2017

TABLE OF CONTENTS

																		Pa	ge
1	Nuc	elear F	uel Fabric	atio	1														1
	1.1	Proble	em 4-3			 	 												1
		1.1.1	Problem			 													1
			Solution																
	1.2		em 4-4																
		1.2.1	Problem			 	 												2
		1.2.2	Solution			 	 					•						•	2
Bi	ibliog	graphy																	3

CHAPTER

NUCLEAR FUEL FABRICATION

everal problems related to the fuel fabrication are tackled in this fourth homework. These are the problems 4-3 and 4-4 from the textbook.

1.1 Problem 4-3

1.1.1 Problem

Calculate the cost of nuclear fuel fabricated and delivered on-site using the following data: Cost of natural uranium, 60\$/lb; U3O8 enrichment, 4.2%; conversion, \$11.50/kgU; tails, 0.25%; price of SWU, \$110; conversion loss, 0.6%; fabrication and transportation cost, \$230/kgU; fabrication loss, 0.7%.

1.1.2 Solution

Equation 4.1 in the book states that:

$$(1.1) \hspace{1cm} FF = \left[\frac{PU}{(1-l_c)(1-l_f)} + \frac{PC}{(1-l_f)} \right] \frac{F}{P} + \frac{PS}{(1-l_f)} * SF + PF$$

In the data, PU is given in \$/lbU3O8. PU = \$60/lbU3O8 = \$156/kgU.

Plugging the numbers in, we obtain the cost of nuclear fuel fabricated and delivered on-site FF = \$2375.

1.2 Problem 4-4

1.2.1 Problem

If the enrichment changes by 0.4%, that is, goes from 4.2% to 4.6%, by what percentage does the cost of fuel in problem 4-3 change?

1.2.2 Solution

We can change the enrichment to 4.6% in Equation 4.1 (present in the factor F/P, itself present in the factor SF. This causes the cost of nuclear fuel fabricated and delivered on-site to increase to FF = \$2615. This represents a change of 10.1%.

BIBLIOGRAPHY