Solid State Physics

[PHAS 1030]

Johan Mattsson

Soft Matter Physics Group

k.j.l.mattsson@leeds.ac.uk

Module outline

L1 Intro, bond potentials	w14 (w1)
L2 Electron structure in atoms	w14 (w1)
W1 Bond potentials	w15 (w2)
L3 The periodic system, bonding	w15 (w2)
L4 Bonding	w16 (w3)
W2 General bonding	w16 (w3)
L5 X-ray diffraction, crystal structure	w17 (w4)
L6 Bravais lattice, general unit cell properties	w17 (w4)
W3 X-ray diffraction and crystal structure	w18 (w5)
L7 Structure of solids, unit cells	w18 (w5)
W4 Unit cells	w19 (w6)
L8 Crystal planes, Miller indices	w19 (w6)
W5 Miller indices and lattice planes	w20 (w7)
L9 Stacking of planes, ionic bonding	w20 (w7)
L10 Ionic crystals, allotropy, bond hybridisation (pre-recorded)	w21 (w8)
L11 Mechanical properties of solids	w22 (w9)
L12 Mechanical properties (macro-micro)	w22 (w9)
W6 Ionic crystals and mechanical properties of solids	w22 (w9)
L13 Disordered solids (glasses)	w23 (w10)
L14 Scattering (x-ray, neutron, electron)	w23 (w10)
W7 Revision material across the solid state content	w24 (w11)
L15 Revision	w24 (w11)

Literature

- Callister WD & Rethwisch, D.G., Fundamentals of Materials Science and Engineering
- Turton, R., The Physics of Solids, (Oxford University Press, 2006)
- Holgate SA, *Understanding Solid State Physics* (Taylor & Francis, 2010)

- Understanding Chemistry in a Physics Context

- Tipler PA & Mosca, G., Physics for Scientists and Engineers

More advanced texts

- Hofmann, P., Solid State Physics an introduction (Wiley, 2008)
- Ashcroft, N.W. & Mermin, N.D., Solid State Physics
- Kittel, C, Introduction to Solid State Physics (Wiley)

What is a solid?

Criteria for a solid:

- i) Can sustain a shear stress without yielding
- ii) The building blocks such as atoms or molecules have well defined average positions (atoms or molecules however undergo vibrations centered on these sites)

shearing a solid

shear stress:
$$\tau = \frac{F}{A}$$

atomic motion over time

ice

metal

emulsion

glassy polymer foam

colloidal solid

Examples of solids

composite

glass

foam

salt

glassy metal

gel

Solids with ordered crystalline structures

metal

ice

silicon wafer

semi-crystalline polymer

salt

Solids with disordered glassy structures

polymer glass as foam

network glass

glassy paste

glassy medication

colloidal glass

water in comets

water in clouds

emulsion glass

foam

Ordered - disordered structures

crystalline metal (atomic order)

glassy metal (atomic disorder)

ionic bonding

covalent bonding

metallic bonding

van der Waals bonding

hydrogen bonding

General form of the bond potential energy

- the potential energy should approach zero for large inter-particle distances, r.
- For small inter-particle distances, the potential energy should be large and positive since two atoms/ molecules can not be superimposed (due to the Pauli exclusion principle).
- For a bond to form between two atoms/molecules there must be a minimum (negative value) in the potential energy at some characteristic separation corresponding to the equilibrium bond length, r_0 . The depth of the minimum below zero corresponds to the bond energy (or bond strength), U_0 .

General form of the bond potential energy

 r_0 : equilibrium bond distance

 U_0 : bond energy

The bond potential energy

Taylor expansion around r_0 :

$$U(r) = U(r_0) + \frac{dU(r_0)}{dr}(r - r_0) + \frac{1}{2}\frac{d^2U(r_0)}{dr^2}(r - r_0)^2 + \dots \text{ terms of order (r-r_0)}^3$$
 [\$\approx\$ 0 for small (r-r_0)]

$$U(r) \approx U(r_0) + \frac{1}{2}k(r - r_0)^2$$

$$rac{1}{2}k(r-r_0)^2$$
 (potential energy of a spring) $k=rac{d^2U(r_0)}{dr^2}$ (spring constant)

The bond potential energy

$$F(r) = -\frac{dU(r)}{dr}$$

$$k = \frac{d^2U}{dr^2} \mid r_0$$

For a spring:
$$dF=-kdr$$
 (Hooke's law)
$$r\approx r_0$$

$$k=-\frac{dF}{dr}$$

Any interaction (with a minimum) acts like a spring for small deformations

Thermal expansion

$$\frac{\Delta L}{L} = \alpha \Delta T$$

lpha thermal expansivity

	α (x10-5 K-1)
glass	0.9
steel	1.1
invar	0.09
Al	2.4
brass	1.9
copper	1.7

Thermal expansion

- Sufficiently close to the minimum in the potential energy, U(r) can be described as a parabola, i.e. $U(r) \propto (r r_0)^2$. As one moves off the minimum higher order terms will come into play and U(r) will in general be anharmonic.
- As temperature is increased we move towards higher energy values within the potential well.
- For a harmonic system, the average bond-length is constant with thermal energy. For an anharmonic system, the average bond-length increases.

Before next lecture read through:

Appendix C: "Revision of Atomic Physics" from the book "Understanding Solid State Physics" by Holgate SA. The chapter is on the VLE