Class CS 6903, Lecture n. 1

- Welcome to the class!
- Please check the syllabus online (it should contain all you need to know about this class)

Summary of Lecture 1

- Cryptography: main problem + history
- Some Probability Background
- Some Background on Algorithms
- Classical Cryptography
- Encryption with Perfect Secrecy

Cryptography: context

- Fundamental and critical part of larger security systems
- Cryptography is only the beginning towards solving your security problems
- Cryptography is a very difficult topic
- We made cryptography much easier
- Thinking like a cryptographer makes you a better security expert

Cryptography: main problem

- Main problem statement: Two parties, commonly referred as Alice and Bob, want to exchange messages
 - privately from any unauthorized parties that are allowed to eavesdrop the exchanged communication
- Modern Cryptography studies this problem (solved using encryption) + many more related ones

Cryptography: history

- Need for cryptography was recognized since ancient times:
 - ◆ About 4000 years ago egyptians "seemed to encrypt" some hieroglyphic writings (1st documented use of cryptography)
 - Roman emperor Julius Ceasar used "some encryption" to communicate with his commanders
 - Etc...
 - See Kahn's book, The Codebreakers, for a detailed non-technical history
- History of Cryptography can be divided into Classical Cryptography and Modern Cryptography
 - Historically: classical cryptography was used by military and intelligence organizations
 - Today: modern cryptography is everywhere, in most computer systems, used by most computer users (often unknowingly)

Applications and Definition

Application scenarios:

- Imagine {Allies, politicians, business people, lovers...} communicating during {battles, negotiations, deals, all of the above...}, respectively
- User revealing credit card number, password, PIN
- User accessing e-mail stored on a website
- Multiple users communicating via phone, video, chats, etc

Cryptography definitions:

- Concise Oxford Dictionary: art of writing and solving codes
- Merriam-Webster Dictionary: the computerized encoding and decoding of information
- [KL] (variant): scientific study of techniques for securing digital information as well as multi-party computations and transactions

Summary of Lecture

- Cryptography: main problem + history
- Some Probability Background
- Some Background on Algorithms
- Classical Cryptography
- Encryption with Perfect Secrecy

Discrete Probability Distributions

- An experiment is a procedure that yields one of a given set of outcomes
- The individual possible outcomes are called simple events
- The set of all possible outcomes is called the sample space
- Unless otherwise specified, we only consider discrete sample spaces S; that is, sample spaces with only finitely many possible outcomes, labeled $s_1,...,s_n$
- A probability distribution P on S is a sequence of numbers p₁,..., p_n that are all non-negative and sum to 1
 - The number p_i is interpreted as the probability of s_i being the outcome of the experiment
- An event E is a subset of the sample space S
- The probability that event E occurs, denoted Pr(E), is the sum of the probabilities p_i of all simple events s_i which belong to E

Probability of Events

- lacksquare If E is an event, let E denote its complement; that is, the event E that does not happen
- If E_1, E_2 are events, let $E_1 \vee E_2$ denote their disjunction; that is, the event that at least one of them happens
- If E_1, E_2 are events, let $E_1 \wedge E_2$ denote their conjunction; that is, the event that both of them happen
- We have that:
 - $Pr[E] = 1 Pr[\overline{E}]$
 - ullet Pr [$E_1 \lor E_2$] <= Pr [E_1] + Pr [E_2] (union bound)
 - ◆ Let $F, E_1...E_n$ be events such that $\Pr\left[E_1 \lor ... \lor E_n\right] = 1$ and $\Pr\left[E_i \land E_j\right] = 0$ for all i,j. Then $\Pr\left[F\right] = \sum_{i=1}^n \Pr\left[F \land E_i\right]$

Conditioning Probability

- If E_1, E_2 are events such that $\Pr[E_2] \neq 0$, the conditional probability of event E_1 given E_2 , denoted as $\Pr[E_1 \mid E_2]$, is defined as $Pr[E_1 | E_2] = \frac{Pr[E_1 \wedge E_2]}{Pr[E_2]}$
- Note that $\Pr[E_1 \wedge E_2] = \Pr[E_1 \mid E_2] \cdot \Pr[E_2]$
- If E_1, E_2 are independent, then $\Pr[E_1 \land E_2] = \Pr[E_1] \cdot \Pr[E_2]$
- The conditioning rule says the following:
 - let $F, E_1...E_n$ be events such that Prob $[E_1 \lor ... \lor E_n] = 1$ and $\Pr[E_i \wedge E_j] = 0$ for all i,j. Then $\Pr[F] = \sum_{i=1}^{n} \Pr[F \mid E_i] \cdot \Pr[E_i]$
- The Bayes Theorem says that if E_1, E_2 are events such that $\Pr[E_2]
 eq 0$, it holds that $\Pr[E_1 \mid E_2] = \frac{\Pr[E_1] \cdot \Pr[E_2 \mid E_1]}{\Pr[E_2]}$ cure 1 $\Pr[E_2 \mid E_2]$ Lecture 1

Estimating probabilities

- Assume a discrete sample space S with outcomes s₁,..., s_n
- How do we estimate $p_1,..., p_n$?
 - Recall: p_i is the probability of s_i being the outcome of the experiment
- Basic approach:
 - Run the experiment many (i.e., m) times
 - ◆ Record the number of occurrences o_i with outcome s_i, for i=1,...,n
 - Define $p'_i = o_i / m$, for i=1,...,n
- Results from statistics imply:
 - ◆ If m is large enough, then p'_i is a good enough estimate for p_i

Summary of Lecture

- Cryptography: main problem + history
- Some Probability Background
- Some Background on Algorithms
- Classical Cryptography
- Perfect Secrecy for Encryption

Defining Algorithms

- Definition: finite sequence of "primitive" instructions, expressed in an "unambiguous" language, that start from a (possibly variable) input value and end with a (possibly variable) output value
- Note: Definition implies that if primitive instructions compute a (mathematical) function, then entire algorithm computes a related (mathematical) function
- Example 1:

 Example 2: on input value x, scan all elements of n-element array until you find one equal to x

Algorithms in Encryption

- Alice uses an encryption algorithm to send an encrypted message to Bob
 - On input plaintext and other inputs, this algorithm returns a ciphertext
- Bob uses a decryption algorithm to receive the message sent by Alice
 - On input ciphertext and other inputs, this algorithm returns a plaintext
- The adversary himself uses an algorithm to process the ciphertext returned by the encryption algorithm (and try to derive the plaintext)
 - On input ciphertext + other inputs, it returns a candidate plaintext or a failure symbol

Summary of Lecture

- Cryptography: main problem + history
- Some Probability Background
- Some Background on Algorithms
- Classical Cryptography
- Perfect Secrecy for Encryption

Classical Cryptography: one early cipher

Problem: design "cipher" algorithms to encrypt messages into ciphertext (and

Plaintext

key

decrypt ciphertext back into original messages)

- Julius Ceasar's cipher:
 - ◆ Ex. 1: "easy" → "hdvb"
 - Encryption algorithm: shift message letters by 3 forward positions
 - Decryption algorithm: shift ciphertext letters by 3 backward positions
 - Message secrecy properties: very limited secrecy
 - ★ any adversary knowing the algorithm can decrypt immediately
 - ★ secrecy, if any, is based on obscurity
 - ROT-13 (a variant with a shift of 13 positions) is used today in online forums to prevent accidental decryption

Ciphertext

Cipher

A second cipher

- Preliminary observation:
 - In ciphers like Ceasar's cipher encryption is always the same
 - There was no random (or real) key

- A second cipher let us introduce:
 - some randomness in the algorithm (using a random key k); here, set k=11:

A second cipher – the shift cipher

The shift cipher:

- Let k be a random number in {0,...,25}
- Encryption algorithm: shift message letters by k forward positions
- Decryption algorithm: shift ciphertext letters by k backward positions
- Ex.: k=11, message="easy class", ciphertext="qmel oxmee"
- Message secrecy properties: very limited secrecy
 - ★ Secrecy based on the randomness of the key
 - ★ <u>But</u> any adversary knowing the algorithm can try all 26 values for k and find the one for which it can easily decrypt into a meaningful plaintext
- The large key space principle:
 - The above was an exhaustive (or brute-force) search attack
 - ◆ Key space being small → attack was efficient
 - Necessary (but not necessarily sufficient) principle: a secure encryption scheme must have a key space not vulnerable to exhaustive search

A third cipher

- Preliminary observations:
 - Key space in the shift cipher was small
 - In particular, all message characters were shifted by the same (secret) amount
 - What happens if this amount differs for each character?
- A third cipher let us add:
 - More randomness in the algorithm (and a large key space); here, consider the following permutation:

A third cipher - description

- The mono-alphabetic substitution cipher:
 - Let k[0],...,k[25] be distinct random numbers in {0,...,25}
 - Encryption algorithm: for each message letter, if the letter is equal to the i-th alphabet letter, where i is in {0,...,25}, map it to letter k[i]
 - Decryption algorithm: decrypt analogously by computing the inverse (random) permutation; i.e., for each ciphertext letter, if the letter is equal to the k[i]-th alphabet letter, where i is in {0,...,25}, map it to letter i.
 - Ex.: k permutation from previous slide, m="easy class", c="hywv uoyww"
 - Message secrecy properties: very limited secrecy
 - ★ Secrecy based on key randomness + high key space (26!)
 - ★ But the mapping of each letter is fixed, and the probability distributions of individual letters in the English language is known (prob[e]>prob[t]>prob[a]>...)
 - ★ Thus, the adversary uses average letter frequencies in English language to derive k[i] values (see previous approach to estimate probabilities from occurrences) and decrypt ciphertexts into meaningful plaintext

Conclusion:

A fourth cipher

- Preliminary observation:
 - In the mono-alphabetic cipher any message character was mapped to the same (secret) value
 - what if we impose that particular mapping to differ over time?
- A fourth cipher let us add:
 - Mapping different instances of the same plaintext character to different ciphertext characters
 - More randomness in the algorithm using a (short) random key; here, set as "mykey":

A fourth cipher – definition

- The Vigenere (poly-alphabetic substitution) cipher:
 - ◆ Let k[1],...,k[t] be random numbers in {1,...,26}, for some small t
 - ◆ Encryption algorithm: for each group of t consecutive message letters, the letter in the i-th position in the group is shifted by k[i] forward positions, for i=1,...,t
 - Decryption algorithm: shift analogously by k[i] backward positions
 - Message secrecy properties:
 - ★ previous attack is now not possible, because the same English letter is shifted by different characters;
 - ★ however, all ciphertext characters c[j], c[j+t],... at distance t from each other are shifted using the same random number k[j] for some j in {1,..,t};
 - ★ this number can be found by studying the frequency of ciphertext characters for each value of j (see previous approach to estimate probabilities from occurrences) and check which value for k[j] gives "right" probability distribution
 - ⋆ once all k[j] are found, the adversary can easily decrypt the ciphertext
 - ★ That assumed t was known; when unknown, try for all t=1,...,max key length
- Conclusion: The above cipher had large key space but was still insecure

Conclusions on classical cryptography

Current view of classical Cryptography:

- Originally considered as an art of designing and breaking "secrecy codes"
- Art built on heuristic techniques (i.e., techniques with minimal, if at all, rigorously formulated security guarantees)
- Based on predecessors of today's popular concepts such as "confusion"
- Based on today's less popular concepts such as "obscurity"
- Only worked for a very limited set of applications and adversary scenarios
- Only worked until someone was able to break the scheme

Lessons learned:

- Large key space principle
- A large key space is necessary but not sufficient
- Designing secure encryption schemes is a hard task

Question set 1

- Why is ROT-13 a better or worse choice than Ceasar's cipher when the choice criteria is making accidental decryption harder?
- Assume a meaningful plaintext is encrypted using the shift cipher. How many decryption attempts are sufficient for an exhaustive (or brute-force) search attack to find the plaintext with probability 1? How does the number change if we only require probability 1/2 of success?
- How would you estimate the probability that a given English letter appears in an unencrypted message? What would you expect about the probability that a given English letter appears in an encrypted message, when a "secure" encryption scheme is used?

Summary of Lecture

- Cryptography: main problem + history
- Some Probability Background
- Some Background on Algorithms
- Classical Cryptography
- Perfect Secrecy for Encryption

Perfectly-secret encryption: introduction

- Historically speaking, we are on a transition from classical cryptography to modern cryptography
 - Some features of this area are in common with each one of the two
- Perfectly-secret encryption:
 - Was developed before the modern cryptography revolution of mid-70s and 80s
 - Can be based on precise mathematical definitions
 - Can be accompanied with rigorous proofs of properties
 - Has limitations that will be later overcome by modern cryptography methods
 - Will be useful to understand modern cryptography
 - Will provide useful tools for some modern cryptography solutions

Perfectly-secret encryption: setting and goal

- Setting:
 - Alice and Bob have computers that can run encryption and decryption algorithms
 - ◆ Alice and Bob somehow share a secret key k
- Goal: exchange messages that remain private against an adversary that can eavesdrop and run powerful algorithms

Syntax and requirements

- Syntax of perfectly-secret encryption:
 - Message space M
 - Key space K, ciphertext space C
 - Key-generation algorithm Gen
 - Encryption algorithm Enc
 - Decryption algorithm Dec
 - Gen is a probabilistic algorithm that generates a key k in K with some distribution
 - On input message m from M, and k from K, Enc returns ciphertext c in C
 - On input ciphertext c, and k from K, Dec returns message m' or a failure symbol

Requirements:

- (Perfect) Correctness: For any k,m,m', it holds that Prob [m'=m] = 1
- (Perfect) Secrecy: for any m in M, and any c in C such that Prob[c] > 0, it holds that Prob [m|c] = Prob[m]

Perfect secrecy: intuition

- Recall: Prob [m|c] = Prob[m]
- Intuition behind perfect secrecy:
 - Consider an a priori probability distribution D₀ on the message space (i.e., defining the probability that a message is chosen for encrypted communication)
 - ◆ Consider an a posteriori probability distribution D₁ on the message space conditioned by the ciphertext (i.e., defining the probability that a message was chosen for encrypted communication given the ciphertext)
 - Perfect secrecy requires that D_0 and D_1 are identical \rightarrow ciphertext does not change the probability of the original message

One equivalent formulation

Theorem: An encryption scheme over message space M is perfectly secret if and only if for any distribution over M, any m in M and any ciphertext c with prob[c]>0, it holds that Prob [c|m] = Prob[c]

Proof:

- Need to show two statements:
 - ★ "if" statement: Prob [c|m] = Prob[c] implies Prob [m|c] = Prob[m] (original formulation) and
 - ★ "only if" statement: viceversa; i.e., original formulation → new one
- Assume Prob [c|m] = Prob[c], multiply both sides by Prob[m]/Prob[c], and obtain
 Prob [c|m] * Prob[m] / Prob[c] = Prob[m]
- ♦ By Bayes Theorem, lhs is = $Prob[m|c] \rightarrow perfect secrecy ("if" statement) follows$
- Viceversa ("only if" statement) is proved in essentially the same way

A second equivalent formulation (perfect indistinguishability)

Theorem: A symmetric encryption scheme over message space M is perfectly secret if and only if for any distribution over M, any m₀, m₁ in M and any ciphertext c with prob[c]>0, it holds that Prob [c|m₀] = Prob[c|m₁]

Proof:

- Need to show: Prob [m|c] = Prob[m] (original definition) implies Prob $[c|m_0] = Prob[c|m_1]$ and viceversa
- "only if" statement:
 - ★ Use first equivalent formulation to obtain that perfect secrecy implies that Prob [c|m_b] = Prob[c] for b=0,1
 - ★ Then observe that Prob [c|m₀] = Prob[c] = Prob[c|m₁]
- See [KL] for other direction ("if" statement)
 - ★ Intuition: rewrite Prob[c] via conditioning rule with Prob[m] and use again first equivalent formulation

A third equivalent formulation (adversarial indistinguishability)

- This formulation is based on a probability experiment involving an adversary A and formalizes A's (lack of) success in distinguishing the encryptions of two plaintexts
- Theorem: A symmetric encryption scheme over message space M is perfectly secret if and only if

Prob [adversary Adv succeeds in the following experiment] = 1/2

- Experiment:
 - Adv chooses two messages m₀,m₁ from M
 - Random key k is generated using Gen
 - Random bit b \leftarrow {0,1} is chosen
 - ◆ Ciphertext c ← Enc(k, m_b) is computed
 - Given c, Adv outputs b'
 - Adv succeeds if b'=b
- See [KL] for proof

Perfect secrecy: one time pad

- A fundamental cryptographic protocol
 - invented by Vernam in 1918
 - apparently used very often in real-life since then
- Main Properties:
 - Satisfies perfect secrecy
 - Has optimal key length (Shannon, 1948)
 - Has essentially optimal efficiency

One-time pad definition

C = m xor k

Alice (k)

Bob (k)

Definition

- ◆ Message space, key space, ciphertext space are = {0,1}^L for some integer L>0
- Gen generates a random string k from the key space
- To encrypt L-bit message m, Enc returns C = k XOR m
- ◆ To decrypt ciphertext C, Dec returns m' = C XOR k

Example

- Key = 1011010001, message = 0000011111, ciphertext = 1011001110
- Properties
 - Key length = message length
 - Simple encryption and decryption operations
 - Xor properties: what is b xor b, b xor 0, b xor 1, for all values of bit b?

One-time pad secrecy

Theorem:

the one-time pad encryption scheme satisfies perfect secrecy

Proof:

- We have that Prob[C=c | M=m] = Prob[M xor K = c | M=m]
- ◆ Note that Prob[M xor K = c | M = m] = Prob[m xor K = c]
- Then note that Prob[m xor K = c] = Prob[K = m xor c]
- ◆ The latter is 1/2^L
- The above holds for any m, thus we obtain that

$$Prob[c | m_0] = 1/2^{L} = Prob[c | m_1],$$

which implies perfect indistinguishability and thus implies perfect secrecy

Limitations:

- Key space is at least as large as message space
- Secrecy does not hold if key is used more than once
 - \star e.g. from $c_0 = k$ xor m_0 and $c_1 = k$ xor m_1 one can easily find m_0 xor m_1
- The Venona U.S. project used this fact to decrypt foreign communication during WWII and, among other things, uncover spies on US territory

Perfect secrecy limitations

- One-time pad limitation on the key length is inherent
- Theorem: any perfectly-secret encryption scheme with message space M and key space K satisfies |K|>=|M|
- Proof:
 - We prove the (equivalent) contrapositive statement:
 - if |K|<|M| then scheme is not perfectly secret
 - Consider uniform distribution over M, let c be a ciphertext occurring with probability > 0, and define

$$M(c) = \{m' \mid m' = Dec(k',c) \text{ for some } k' \text{ in } K\}$$

- Note that |M(c)|<=|K|
- ◆ Thus, if |K|<|M|, there is m" in M such that m" is not in M(c)</p>
- Then Prob[m" | c] = 0 while Prob[m"] is not
- Thus, there exists a value m" in M for which the perfect secrecy condition does not hold

Shannon's theorem

- Fundaments of perfect secrecy are due to a pioneering paper by C. Shannon
- He also provided a characterization of perfectly-secret encryption schemes
- Theorem: an encryption scheme (Gen,Enc,Dec) with message space M, key space K and ciphertext space C such that |M|=|K|=|C| is perfectly secret if and only if
 - Gen returns every key in K with probability 1/|K|
 - For every m in M and c in C, there is exactly one key k in K such that Enc(k,m)=c
- See [KL] for proof
- Significance:
 - ◆ (1) characterization of perfectly-secret encryption scheme
 - ◆ (2) tool for easily proving or disproving perfect secrecy: the first condition is easy to work with and the second does not involve probabilities, and none of them involves the probability distribution over M

37

Question set 2

- Consider the one-time pad encryption scheme for message space, key space and ciphertext space equal to {0,1}. Assume message m is chosen with uniform distribution from the message space and let c denote the ciphertext. Compute the following probabilities:
 - ◆ Prob[m = 0], Prob[c = 1 | m = 0], Prob[c = 0], Prob[m = 0 and c = 0]
- Consider using the shift cipher on message space {A,...,Z}. Analyze the security of the resulting encryption scheme.
- Consider an extension of the shift cipher where a random and independent shift (taken from the shared key) is applied for each message character. Analyze the security of this encryption scheme.
- Can you define a modification of the poly-alphabetic substitution cipher (without changing the algorithms, and based on setting a single parameter) so that the resulting schemes satisfies perfect secrecy?
- Consider modifying the XOR operation in the one-time pad into another arbitrary operation and check if the resulting scheme satisfies decryption correctness and perfect secrecy

Class CS 6903, End of Lecture n. 1

Reference → Topic ↓	[KL]	[MOV]	[FSK]
Cryptography, main problem + history	1.1	1.4	1
Some probability background	A.1, A.3	2.1	
Some background on algorithms			
Classical cryptography	1.1, 1.2, 1.3	2.2, 7.3	
Encryption with perfect secrecy	2		
	See https://www.nytimes.com/books/99/05/09/reviews/990509.09issermt.html for a review on a book on the Venona project		