Computational Physics

Name: Sumit Ghosh Roll No.: 20201222

Assignment – II

Year - 2023

By trapezoidal method calculate $\int_0^1 \frac{4}{1+x^2} dx$

timus@timus-Vostro-3590:~/Desktop/Computational Physics/assign 2\$ gfortran trapz_pi.f90
timus@timus-Vostro-3590:~/Desktop/Computational Physics/assign 2\$./a.out

Program to evaluate $I = Int_0_1 (4/(1+x^2))dx$ - by trapezoidal method

Value of the integral = 3.1415926535897927

timus@timus-Vostro-3590:~/Desktop/Computational Physics/assign 2\$

Trapezoidal method, Actual value = π			
No. of grid points (n)	Value of the integral	Absolute_error	
10	3.000000000000	0.141592653589793	
100	3.13992598890716	0.00166666468263443	
1000	3.14157598692313	1.66666666641113E-05	
10000	3.14159248692312	1.66666668910409E-07	
100000	3.14159265192314	1.66665303780178E-09	
1000000	3.14159265357315	1.66404667822917E-11	

Q1b. log-log graph of error vs. 1/n: $Integral = \int_0^1 \frac{4}{1+x^2} dx = \pi$

By trapezoidal method integrate Sin(x) within limits 0 to π .

Trapezoidal method, Actual value = 2

dx	Value of the integral	Absolute_error
0.314159265358979	1.98352353750945	0.0164764624905454
0.0314159265358979	1.99983550388744	0.000164496112556423
0.00314159265358979	1.99999835506566	1.64493433763013E-06
0.000314159265358979	1.99999998355066	1.64493392240672E-08
3.14159265358979E-05	1.9999999983548	1.64520841394733E-10
3.14159265358979E-06	1.999999999841	1.5922818619174E-12

Q1c. log-log graph of error vs. 1/n: $Integral = \int_0^{\pi} sin(x) dx = 2$

By using trapezoidal mathod we integrate the normalized gaussian function :

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Limits -3 to +3		
No. of gridpoints (n)	Value of the integral	
10	0.026591090471628	
100	0.996530893052922	
1000	0.99729222948119	
10000	0.997300124163754	
100000	0.997300203139005	
1000000	0.997300203928767	

Limits -5 to +5		
No. of grid points (n)	Value of the integral	
10	1.4867195147343E-05	
100	0.999998506461016	
1000	0.999999414352764	
10000	0.999999426572969	
100000	0.999999426695614	
1000000	0.999999426696839	

Q2a. Distribution of the 1st set of 10⁶ Random numbers

Q2a. Distribution of the 2nd set of 10⁶ Random numbers

Q2b. Scatter plot between 1st and 2nd set of 10⁴ random numbers

Scatter plot of two sets 10^4 exponentially(e^{-2x}) distributed random numbers

Gaussian distributed 10° random numbers

Scatter plot of two sets 10⁴ gaussian distributed random numbers

Using Monte Carlo Brute Force method			
No. of iterations (n)	Value of the integral	Standard deviation	
10	9.02253710014757E-07	8.5522350007934E-07	
100	7.84976850971433E-06	7.80992654121664E-06	
1000	1.61975432572342	1.36019921262025	
10000	5.12100379571561	2.22879424933112	
100000	5.89670067916585	1.29868842683667	
1000000	10.8418267299382	0.981605377194319	
10000000	10.7817305203506	0.362123705348325	
10000000	11.0877487072685	0.116524406634294	

Using Monte Carlo importance sampling method			
No. of iterations (n)	Value of the integral	Standard deviation	
10	11.069117498493	2.46316962021154	
100	11.3767831158921	0.734888003541454	
1000	11.0686458897031	0.259392925244426	
10000	10.8941871973983	0.0806824124643543	
100000	10.9798037967382	0.0255159419141156	
1000000	10.9710404351189	0.0080550620720396	
10000000	10.959848601345	0.00254577821592316	
10000000	10.9610982518212	0.000805196403344519	

Comparison of errors from different MC methods

