		Tipo de prova Teste Modelo	Ano letivo 2024/2025	Data
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática e Redes de	Hora	
	E GESTÃO	Unidade Curricular Sistemas Operativos	Duração	

Observações:

- Exame com consulta de documentação própria.
- A cotação atribuída a cada pergunta é apresentada entre parêntesis reto.

Parte I (Teórica)

Questão I [3,0 valores]

Considere que <u>apenas deverá selecionar uma das opções apresentadas</u>, sendo atribuído <u>um valor por cada resposta certa</u> e cada resposta errada dará origem <u>a uma penalização de 0,5 (um meio) valores</u>.

Questão I.I: A concorrência em Sistemas Operativos baseia-se nos pressupostos que:

- a) cada processo em execução tem a sua própria memória e recursos (não partilhados);
- b) há a possibilidade de sincronização em diferentes níveis de abstração;
- c) há alocação justa de tempo de CPU por diferentes processos;
- d) todas as anteriores.

Questão I.II: Os algoritmos de escalonamento do tipo preemptivo são utilizados em sistemas operativos:

- a) para que não exista interrupções na execução de processos ou tarefas;
- b) <u>de modo a acomodar diferentes prioridades em tarefas em que o tempo de execução é crítico;</u>
- c) permitindo que um processo termine o mais rapidamente possível, dando-lhe os recursos necessários para que execute sem a existência de interrupções;
- d) para permitir que os processos ou tarefas executem com total controlo até alterarem para o estado de espera ou terminarem.

ESTG-PR05-Mod013V2 Página 1 de5

		Tipo de prova Teste Modelo	Ano letivo 2024/2025	Data
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática e Redes de	Hora	
	E GESTÃO	Unidade Curricular Sistemas Operativos		Duração

Questão I.III: No que concerne a princípios de segurança em sistemas operativos, a proteção da memória prevê:

- a) o recurso à não hierarquização de pontos de entrada, ou seja, de chamadas de sistema, na transição de um modo de utilizador para um modo de sistema;
- b) a não utilização de chaves na organização da memória paginada e na distribuição dinâmica de recursos em programação concorrente;
- c) que um processo não aceda a memória não alocada, limitando que um programa ganhe controlo sob uma quantidade não necessária de memória e impacte outros programas em execução;
- d) a utilização de discos não voláteis como uma estratégia de segurança para o armazenamento temporário de operações.

Questão II [2,0 valores]

"Os page fault não degradam o desempenho geral do sistema operativo pois é da responsabilidade dele que, perante uma exceção lançada pela unidade de gestão de memória, aloque imediatamente os recursos necessários para que o processo que lançou a exceção aceda a uma página na memória adequadamente mapeada na memória virtual".

Comente a afirmação, indicando as vantagens e desvantagens das técnicas de gestão de memória nos sistemas operativos modernos.

A resposta a esta questão terá de considerar os seguintes tópicos:

- Afirmação falsa, pois a falhas de página têm impacto no desempenho do sistema operativo;
- Definir os conceitos de page fault e MMU;
- Referir o processo de tratamento de exceções ou falhas;
- Referir que o MMU e o Sistema Operativo têm de tratar as falhas indo buscar recursos para o mapeamento acontecer;
- Dar um exemplo como se pode evitar a degradação de desempenho: e.g., algoritmos de paginação ou aumentar o tamanho da memória virtual.

Questão III [1,5 valores]

Assuma um sistema com **128 KB** de memória virtual por **paging**, com páginas de **16 KB**. Indique, recorrendo à técnica de *Memory Management Unit* (MMU) e à tabela seguinte:

110	1

ESTG-PR05-Mod013V2 Página 2 de5

		Tipo de prova Teste Modelo	Ano letivo 2024/2025	Data
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática e Redes de	Hora	
	E GESTÃO	Unidade Curricular Sistemas Operativos		Duração

101	1
001	0
001	1
000	0
110	1

- a) A que endereço físico (em decimal) corresponde o endereço virtual **25820** [0,75 valores]; **91356**
- b) A que endereço físico (em decimal) corresponde o endereço virtual **10000** [0,75 valores]. **108304**

Este é o procedimento seguido: endereço virtual em decimal \rightarrow converter para virtual em binário \rightarrow converter para físico/real binário \rightarrow passar de binário para decimal.

Primeiro passo:

Calcular os bits mais significativos a considerar, pois sabemos, na técnica de paging, que o endereço virtual é composto pelo "número da página virtual – que é um índice numa tabela de páginas" + "offset". Sabemos, também, que o espaço de memória virtual do exercício é 128 K. Logo, 2^17 e que o tamanho da página é 16 K. Portanto, 2^14.

O número de bits significativos encontra-se subtraindo os dois valores, logo $2^17 - 2^14 = 2^3$. O número de bits significativos é dado pelo valor da potência de base dois, neste caso 3.

Tomemos o endereço de memória virtual em decimal proposto na alínea a: 25820. Vamos convertê-lo para binário -> 110 0100 1101 1100 (15 bits), acrescentamos dois zeros à esquerda para caber no tamanho do endereço (17 bits), ficando 0 0110 0100 1101 1100 (17 bits), Os três bits mais significativos (mais à esquerda) são: 001 que corresponde ao decimal 1 (índice na tabela que começa em 0!). Logo, ao verificar a tabela dada temos o seguinte: 101 | 1. Ao verificar o bit mais à direita (1) sabemos que há, efetivamente, um mapeamento num endereço de memória física. Assim, realizamos a substituição dos três bits mais significativos por 101 e o número binário resultante é o seguinte: 1 0110 0100 1101 1100 (em decimal é 91356).

Para alínea b, temos 10000 que em 17 bits fica representado como 0 0010 0111 0001 0000 (ao qual devemos acrescentar consultando a tabela o índice 0) verificamos que há correspondência com um endereço de memória física. Ao fazer a substituição dos três bits mais significativos obtemos o número binário resultante: 1 1010 0111 0001 0000, 108304 em decimal.

Fica um outro exemplo:

ESTG-PR05-Mod013V2 Página 3 de5

		Tipo de prova Teste Modelo	Ano letivo 2024/2025	Data
2 20270	ESCOLA	Curso Licenciatura em Engenharia Informática	Hora	
P.PORTO	SUPERIOR DE TECNOLOGIA	Licenciatura em Segurança Informática e Redes de		
	E GESTÃO	Unidade Curricular	Duração	
		Sistemas Operativos		

Questão IV [2,0 valores]

Considere o seguinte conjunto de processos. Instante de chegada e duração são indicados na tabela seguinte:

Processo	Instante de chegada	Duração
P0	0.0	0.2
P1	0.0	0.1
P2	0.1	0.1
Р3	0.1	0.5
P4	0.5	0.2
P5	0.5	0.3

Calcule o tempo médio de espera de *turnaround*, considerando que o algoritmo de escalonamento é o **SRTF** (*Shortest Remaining Time First*). Fundamente a sua resposta com todos os cálculos que sentir necessidade de efetuar.

ESTG-PR05-Mod013V2 Página 4 de5

Ī	P. PORTO ESCOLA SUPERIOR DE TECNOLOGÍA		Lic	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática e Redes de Computadores						idores	Hora						
				ESTÃO		nidade	Curric	ular							Duração		
					Si	sten	nas ()pera	tivos						,		
	20				1												
F	21																
	93									_		_					
	24				_	_											
	5																
	0.1	0.2	0.3 0.4	0.	.5 0.	6 0	.7 0	.8 0.9	1.0	1.1	1.2	1.3	1.4				
Tt(P0)	0,4-0	0,4 u.t.															
Tt(P1)	0,1-0,0	0,1 u.t.	Tempo T	urnaround	d médio:	0,4333	33 u.t.										
Tt(P2)	0,2-0,1	0,1 u.t.															
Tt(P3)	1,4-0,1	1,3 u.t.															
Tt(P4)	0,7-0,5	0,2 u.t.	Notas:														
Tt(P5)	1,0-0,5	0,5 u.t.							instante de	chegada d	o processo	(ao contr	ário do referido nos slides) → esta correçã	o foi feita durant	e as aulas te	óricas
			Tempo d	e turnarou	und e tamb	em desigr	ado tempo	de vida									

Tipo de prova

Teste Modelo

Ano letivo

2024/2025

Data

De seguida, comente se realizando os mesmos cálculos utilizando o algoritmo **Round-Robin**, com um *quantum* de 0.6, a sequência de execução dos processos e o tempo de espera médio turnaround seriam diferentes do obtido com aplicação do algoritmo **SRTF**.

Segue a aplicação do RR e calculando o turnaround (para poder comparar os algoritmos preemptivos):

Em conclusão, o RR um quantum de 0,6 u.t. tem um desempenho pior (um turnaround maior) e a sequência de execução é diferente à da aplicação do SRTF.

Questão V [1,5 valores]

Considere um computador com 1 MB de memória que utiliza um sistema operativo que faz a gestão de memória pelo algoritmo *buddy*. Apresente uma representação de como a memória ficaria dividida considerando a lista de eventos apresentados de seguida:

- 1. Novo processo (P1) com 200K de tamanho;
- 2. Novo processo (P2) com 140K de tamanho;
- 3. Novo processo (P3) com 64K de tamanho;
- 4. Novo processo (P4) com 200K de tamanho;
- 5. Término e libertação dos processos (P1 e P2);
- 6. Novo processo (P5) com 65K de tamanho;
- 7. Término e libertação dos processos (P3).

	0	128	256	512	640	768	896	1024
								1 Segmento livre
Entra P1 (200k)		P1						2 Segmentos livre
Entra P2 (140k)		P1	P2					1 Segmento livre
Entra P3 (64K)		P1	P2	P3				3 Segmentos livre
Entra P4 (200K)		P1	P2	P3			P4	2 Segmentos livr
Término P1 e P2				P3			P4	3 Segmentos livre
Entra P5 (65K)				P3	P5		P4	2 Segmentos livre
Término de P3					P5		P4	2 Segmentos livre

ESTG-PR05-Mod013V2 Página 5 de5