Definitions of ψ -Functions Available in Robustbase

Manuel Koller and Martin Mächler

July 25, 2013

Contents

1	Monotone ψ -Functions 1.1 Huber	
	Redescenders	
	2.1 Bisquare	
	2.2 Hampel	
	2.3 GGW	
	2.4 LQQ	
	2.5 Optimal	
	2.6 Welsh	

Preamble

Unless otherwise stated, the following definitions of functions are given by Maronna et al. (2006, p. 31), however our definitions differ sometimes slightly from theirs, as we prefer a different way of *standardizing* the functions. To avoid confusion, we first define ψ - and ρ -functions.

Definition 1 A ψ -function is a piecewise continuous function $\psi: \mathbb{R} \to \mathbb{R}$ such that

- 1. ψ is odd, i.e., $\psi(-x) = -\psi(x) \forall x$,
- 2. $\psi(x) \ge 0$ for $x \ge 0$, and $\psi(x) > 0$ for $0 < x < x_r := \sup\{\tilde{x} : \psi(\tilde{x}) > 0\}$ $(x_r > 0, possibly x_r = \infty)$.
- 3^* Its slope is 1 at 0, i.e., $\psi'(0) = 1$.

Note that '3*' is not strictly required mathematically, but we use it for standardization in those cases where ψ is continuous at 0. Then, it also follows (from 1.) that $\psi(0) = 0$, and we require $\psi(0) = 0$ also for the case where ψ is discontinuous in 0, as it is, e.g., for the M-estimator defining the median.

Definition 2 A ρ -function can be represented by the following integral of a ψ -function,

$$\rho(x) = \int_0^x \psi(x)dx \,, \tag{1}$$

which entails that $\rho(0) = 0$ and ρ is an even function.

A ψ -function is called redescending if $\psi(x) = 0$ for all $x \geq x_r$ for $x_r < \infty$. Corresponding to a redescending ψ -function, we define the function $\tilde{\rho}$, a version of ρ standardized such as to attain maximum value one. Formally,

$$\tilde{\rho}(x) = \rho(x)/\rho(\infty). \tag{2}$$

Note that $\rho(\infty) = \rho(x_r) \equiv \rho(x) \ \forall |x| >= x_r$. $\tilde{\rho}$ is a ρ -function as defined in Maronna et al. (2006) and has been called χ function in other contexts.

1 Monotone ψ -Functions

Montone ψ -functions lead to convex ρ -functions such that the corresponding M-estimators are defined uniquely.

Historically, the "Huber function" has been the first ψ -function, proposed by Peter Huber in Huber (1964).

1.1 Huber

The family of Huber functions is defined as,

$$\rho_k(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| \le k \\ k(|x| - \frac{k}{2}) & \text{if } |x| > k \end{cases},$$

$$\psi_k(x) = \begin{cases} x & \text{if } |x| \le k \\ k & \text{sign}(x) & \text{if } |x| > k \end{cases}.$$

The constant k for 95% efficiency of the regression estimator is 1.345.

> plot(huberPsi, x., ylim=c(-1.4, 5), leg.loc="topright", main=FALSE)

Figure 1: Huber family of functions using tuning parameter k = 1.345.

2 Redescenders

For the MM-estimators and their generalizations available via lmrob(), the ψ -functions are all redescending, i.e., with finite "rejection point" $x_r = \sup\{t; \psi(t) > 0\} < \infty$. From lmrob, the psi functions are available via lmrob.control,

> formals(lmrob.control) \$ psi

c("bisquare", "lqq", "welsh", "optimal", "hampel", "ggw")

and their ψ , ρ , ψ' , and weight function $w(x) := \psi(x)/x$, are all computed efficiently via C code, and are defined and visualized in the following subsections.

2.1 Bisquare

Tukey's bisquare (aka "biweight") family of functions is defined as,

$$\tilde{\rho}_k(x) = \begin{cases} 1 - (1 - (x/k)^2)^3 & \text{if } |x| \le k \\ 1 & \text{if } |x| > k \end{cases}$$

with derivative $\tilde{\rho}_k'(x) = 6\psi_k(x)/k^2$ where,

$$\psi_k(x) = x \left(1 - \left(\frac{x}{k} \right)^2 \right)^2 \cdot I_{\{|x| \le k\}} .$$

The constant k for 95% efficiency of the regression estimator is 4.685 and the constant for a breakdown point of 0.5 of the S-estimator is 1.548.

Figure 2: Bisquare family functions using tuning parameter k = 4.685.

2.2 Hampel

The Hampel family of functions (Hampel et al., 1986) is defined as,

$$\tilde{\rho}_{a,b,r}(x) = \begin{cases} \frac{1}{2}x^2/C & |x| \le a \\ \left(\frac{1}{2}a^2 + a(|x| - a)\right)/C & a < |x| \le b \\ \frac{a}{2}\left(2b - a + (|x| - b)\left(1 + \frac{r - |x|}{r - b}\right)\right)/C & b < |x| \le r \\ 1 & r < |x| \end{cases},$$

$$\psi_{a,b,r}(x) = \begin{cases} x & |x| \le a \\ a & \text{sign}(x) & a < |x| \le b \\ a & \text{sign}(x) \frac{r - |x|}{r - b} & b < |x| \le r \\ 0 & r < |x| \end{cases}$$

where $C := \rho(\infty) = \rho(r) = \frac{a}{2} (2b - a + (r - b)) = \frac{a}{2} (b - a + r)$.

As per our standardization, ψ has slope 1 in the center. The slope of the redescending part $(x \in [b, r])$ is -a/(r-b). If it is set to $-\frac{1}{2}$, as recommended sometimes, one has

$$r = 2a + b$$
.

Here however, we restrict ourselves to a = 1.5k, b = 3.5k, and r = 8k, hence a redescending slope of $-\frac{1}{3}$, and vary k to get the desired efficiency or breakdown point.

The constant k for 95% efficiency of the regression estimator is 0.9016 and the one for a breakdown point of 0.5 of the S-estimator is 0.212.

Figure 3: Hampel family of functions using tuning parameters $0.902 \cdot (1.5, 3.5, 8)$.

2.3 **GGW**

The Generalized Gauss-Weight function, or ggw for short, is a generalization of the Welsh ψ function (below). In Koller and Stahel (2011) it is defined as,

$$\psi_{a,b,c}(x) = \begin{cases} x & |x| \le c \\ \exp\left(-\frac{1}{2}\frac{(|x|-c)^b}{a}\right)x & |x| > c, \end{cases}.$$

The constants for 95% efficiency of the regression estimator are a=1.387, b=1.5 and c=1.063. The constants for a breakdown point of 0.5 of the S-estimator are a=0.204, b=1.5 and c=0.296.

Figure 4: GGW family of functions using tuning parameters a = 1.387, b = 1.5 and c = 1.063.

2.4 LQQ

The "linear quadratic quadratic" ψ -function, or lqq for short, was proposed by Koller and Stahel (2011). It is defined as,

$$\psi_{b,c,s}(x) = \begin{cases} x & |x| \le c \\ \operatorname{sign}(x) \left(|x| - \frac{s}{2b} (|x| - c)^2 \right) & c < |x| \le b + c \\ \operatorname{sign}(x) \left(c + b - \frac{bs}{2} + \frac{s-1}{a} \left(\frac{1}{2} \tilde{x}^2 - a \tilde{x} \right) \right) & b + c < |x| \le a + b + c \\ 0 & \text{otherwise,} \end{cases}$$

where $\tilde{x} = |x| - b - c$ and a = (bs - 2b - 2c)/(1 - s). The parameter c determines the width of the central identity part. The sharpness of the bend is adjusted by b while the maximal rate of descent is controlled by s ($s = 1 - |\min_x \psi'(x)|$). The length a of the final descent to 0 is determined by b, c and s.

The constants for 95% efficiency of the regression estimator are $b=1.473,\ c=0.982$ and s=1.5. The constants for a breakdown point of 0.5 of the S-estimator are $b=0.402,\ c=0.268$ and s=1.5.

Figure 5: LQQ family of functions using tuning parameters b = 1.473, c = 0.982 and s = 1.5.

2.5 Optimal

The optimal ψ function as given by Maronna et al. (2006, Section 5.9.1),

$$\psi_c(x) = \operatorname{sign}(x) \left(-\frac{\varphi'(|x|) + c}{\varphi(|x|)} \right)_+,$$

where φ is the standard normal density, c is a constant and $t_+ := \max(t, 0)$ denotes the positive part of t.

The constant for 95% efficiency of the regression estimator is 1.060 and the constant for a breakdown point of 0.5 of the S-estimator is 0.405.

Figure 6: 'Optimal' family of functions using tuning parameter c = 1.06.

2.6 Welsh

The Welsh ψ function is defined as,

$$\tilde{\rho}_k(x) = 1 - \exp(-(x/k)^2/2)$$

$$\psi_k(x) = k^2 \tilde{\rho}'_k(x) = x \exp(-(x/k)^2/2)$$

$$\psi'_k(x) = (1 - (x/k)^2) \exp(-(x/k)^2/2)$$

The constant k for 95% efficiency of the regression estimator is 2.11 and the constant for a breakdown point of 0.5 of the S-estimator is 0.577.

Figure 7: Welsh family of functions using tuning parameter k = 2.11.

References

Hampel, F., E. Ronchetti, P. Rousseeuw, and W. Stahel (1986). Robust Statistics: The Approach Based on Influence Functions. N.Y.: Wiley.

Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35, 73–101.

Koller, M. and W. A. Stahel (2011). Sharpening wald-type inference in robust regression for small samples. *Computational Statistics & Data Analysis* 55(8), 2504–2515.

Maronna, R. A., R. D. Martin, and V. J. Yohai (2006). Robust Statistics, Theory and Methods. N.Y.: Wiley.