HW2

Name: XXXXX Student ID: XXXXX Date: October 11, 2025

PROBLEM 1: Let C be convex and let $\operatorname{int}(C) \neq \phi$. Then (i) $\overline{\operatorname{int}(C)} = \bar{C}$ and (ii) $\operatorname{int}(C) = \operatorname{int}(\bar{C})$ and then $\partial C = \partial \bar{C}$. Hint: $\operatorname{int}(C) \cup \partial C = \bar{C} = \bar{C} = \operatorname{int}(\bar{C}) \cup \partial \bar{C}$ and $\operatorname{int}(C) \cap \partial C = \phi$.

◄. WRITE YOUR ANSWER HERE ▶

PROBLEM 2: Show that the following functions are convex:

- 1. $e^{x_1+x_2} + (x_1-x_2)^2 + x_1^4$;
- 2. $e^{x_1} + e^{x_2} + (x_1 4x_2)^4 5$.
- **◄.** WRITE YOUR ANSWER HERE ▶

PROBLEM 3: Consider the minimal-objective function of **b** for fixed A and **c**:

$$z(\mathbf{b}) = \min \mathbf{c}^{\mathbf{t}} \mathbf{x}$$

s.t. $A\mathbf{x} = \mathbf{b}$,
 $\mathbf{x} > \mathbf{0}$.

Show that $z(\mathbf{b})$ as a function of **b** is a convex function in **b** for all feasible **b**.

◄. WRITE YOUR ANSWER HERE ▶

PROBLEM 4: Let X be a nonempty compact set and let $f : \mathbb{R}^n \to \mathbb{R}$, and $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^m$. Denote $\theta(\lambda) = \inf\{f(\mathbf{x}) + \langle \lambda, \mathbf{g}(\mathbf{x}) \rangle : \mathbf{x} \in X\}$. Prove that $\theta(\lambda)$ is concave over \mathbb{R}^m .

◄. WRITE YOUR ANSWER HERE ▶

PROBLEM 5: Prove that every local solution of the following problem is a global solution as well:

$$\min_{x_1, x_2, x_3 \in \mathbb{R}} \quad e^{x_1 - 2x_2 + x_3} + (x_1 - 5x_2 + 6x_3)^2 + (-x_1 + 2x_2 + 3x_3)^6$$
s.t.
$$x_1 + x_2 - 7x_3 = 1$$

$$x_1^2 + x_2^2 + e^{x_1 - 2x_2 - x_3} \le 2$$

$$x_1 \ge 0$$

$$x_3 \ge 0$$

◄. WRITE YOUR ANSWER HERE ▶

PROBLEM 6: Consider the optimization problem

$$\min_{x \in \mathbb{R}} \quad 2x^2 - x^3$$
 s.t. $x \in \{-2, -1, 0, 1, 2\}$

- 1. Convert the above problem to an optimization problem with a linear objective.
- 2. Draw the feasible set of the reformulated problem.
- 3. Convexify the reformulated problem and draw the feasible set of the resulting convex problem.
- **◄**. WRITE YOUR ANSWER HERE ▶

PROBLEM 7: Employ AI to evaluate the benefits of studying convex programming and to provide a concrete example illustrating how convex programming can be applied to solve practical problems.

◄. WRITE YOUR ANSWER HERE ▶