LLM을 활용한 실전 AI 애플리케이션 개발 6장

sLLM 을 이용한 Text2SQL 애플리케이션 개발

Jae-ik Shin 2025.03.22

Contents

- 1. Text2SQL
- 2. 데이터셋
- 3. 평가 파이프라인 구축
- 4. sLLM 사용법
- 5. 모델 파인튜닝

TEXT2SQL 플로우

Text2SQL 데이터셋

- WikiSQL
- https://github.com/salesforce/WikiSQL
- Spider
- https://github.com/taoyds/spider

Trend	Dataset	Best Model	Paper	Code	Compare
201 NO 200 Min Am	spider	XiYan-SQL	•	C	See all
Dair Jair Jair Jair	BIRD (Blg Bench for LaRge-scale Database Grounded Text-to-SQL Evaluation)	XiYan-SQL	•	C	See all
B B B B B B B B B B B B B B B B B B B	Spider 2.0	Spider-Agent + o1- preview	•		See all
de air air air air air	SParC	RASAT+PICARD	•	C	See all
5 + 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SPIDER	RASAT+PICARD	•	C	See all
2	KaggleDBQA	RAT-SQL	•	C	See all
6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SEDE	T5-Large	•	C	See all
	SQL-Eval	XiYan-SQL	•	C	See all
a	Text-To-SQL	Orange-mini	•	C	See all
	20.4771.2		•	_	

Text-To-SQL on spider

Filter: untagged

Edit Leaderboard

Rank	Model	Execution† Accuracy (Test)	Exact Match Accuracy (Test)	Execution Accuracy (Dev)	Exact Match Accuracy (Dev)	Extra Training Data	Paper	Code	Result	Year	Tags
1	XiYan-SQL	89.65				×	A Preview of XiYan-SQL: A Multi- Generator Ensemble Framework for Text-to-SQL	O	Ð	2024	
2	PET-SQL	87.6	66.6			×	PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text- to-SQL with Cross-consistency	O	Ð	2024	
3	DAIL-SQL + GPT-4 + Self- Consistency	86.6		84.4	74.4	×	Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation	C	Ð	2023	
4	DIN-SQL + GPT-4	85.3	60			×	DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self- Correction	C	Ð	2023	
5	MSc-SQL	84.7				×	MSc-SQL: Multi-Sample Critiquing Small Language Models For Text- To-SQL Translation	O	Ð	2024	
6	MARLO + Claude 2.1	84.0		83.6		×	Learning Metadata-Agnostic Representations for Text-to-SQL In-Context Example Selection		Ð	2024	

Text2SQL 한글(질문)-SQL 데이터셋

- 자연어 기반 질의(NL2SQL) 검색 생성 데이터
- https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&to pMenu=100&dataSetSn=71351
- 저자가 생성한 데이터셋?
- https://huggingface.co/datasets/shangrilar/ko_text2sql
- 38000개 생성 -> 29000개 정제

db_id 분야

Context (테이블 컬 럼 정보)

Question Answer


```
CREATE TABLE players (
player_id INT PRIMARY KEY AUTO_INCREMENT,
username VARCHAR(255) UNIQUE NOT NULL,
email VARCHAR(255) UNIQUE NOT NULL,
password_hash VARCHAR(255) NOT NULL,
date_joined DATETIME NOT NULL,
last_login DATETIME
);
```

Context (테이블 컬럼 정보)

Question

Answer

CREATE TABLE players (player_id INT PRIMARY KEY AUTO_INCREMENT, username VARCHAR(255)...

유저네임이 'archer'로 끝나는 플레이어들을 최신 가입 순 | SELECT username FROM players WHERE username 으로 나열해줘.

LIKE '%archer' ORDER BY date_joined DESC;

Player_id	Username	email	password	date_joined	last_login
23423	A_swordman	as@a.com	****		
54364	A_archer	aa@b.com	****	2025.01.23 10:30:20	2025.02.21 11:32:23
32226	B_archer	ba@c.com	****	2024.01.23 12:10:34	2025.01.11 01:30:30
34235	B_wizard	bw@c.com	****		

Text2SQL 평가파이프라인

- Exact Match (EM)
- 동일한 SQL쿼리문 작성 -> 똑같은 문자열이 아니면 틀림
- 실행 정확도 Execution Accuracy (EX)
- 작성한 SQL문이 동일한 결과를 출력 -> 결과획득을 위한 실행 필요
- 다른LLM(GPT-4)이 LLM의 생성결과를 평가
- 평가데이터셋: 유_id=1 (게임관련 특화된 컬럼 명칭) 112개

2. Generate Answer Sheets

3. Generate Grading

Prompt template: Text2SQL

```
llm > ch6 > 💠 ex1.py > ...
      def make prompt(ddl, question, query=''):
          prompt = f"""당신은 SQL을 생성하는 SQL 봇입니다.
          DDL의 테이블을 활용한 Question을 해결할 수 있는 SQL 쿼리를 생성하세요.
         ### DDL: {ddl}
          ### Question: {question}
         ### SQL: {query}"""
          return prompt
      a=make prompt("context", "question", "answer")
      print(a)
 10
 11
      # 당신은 SOL을 생성하는 SOL 봇입니다.
 12
          DDL의 테이블을 활용한 Question을 해결할 수 있는 SQL 쿼리를 생성하세요.
 14
      # ### DDL: context
 15
      # ### Question: question
      ##
 16
          ### SOL: answer/
 17
```

GPT-4 를 이용한 평가 파이프라인

- GPT-4에게 보낼 평가용 프롬프트 작성
- 사용량제한을 피하기 위해서 자동으로 순차적으로 프롬프트 전달하 도록 코드 작성
- 평가 요청 JSONL (JSON Line) 포멧으로 작성 {Key:value, key:value, ... } ₩n {Key:value, key:value, ... } ₩n ... Line by line 으로 읽고 쓸수 있어서 편리함
- 평가 결과 JSONL 포멧으로 받음
- 평가결과를 모아서 테이블로 변환(pandas로 CSV만듬)

Prompt template: judging GT vs Gen. by GPT-4

```
"""Based on below DDL and Question, evaluate gen sql can resolve Question.
If gen_sql and gt_sql do equal job, return "yes" else return "no".
Output JSON Format: {"resolve yn": ""}"""
 DDL: { row['context']}
  Question: {row['question']}
  gt_sql: {row['answer']}
                               정답
  gen_sql: {row['gen_sql']}
                               LLM 답변
```

GPT4 에 순차적으로 보내서 평가하는 예제

```
result filepath = "text2sql result.jsonl"
# GPT-4 평가 수행
!python api request parallel processor.py \
--requests filepath results/{eval filepath} \
--save filepath results/{result filepath} \
--request url https://api.openai.com/v1/chat/completions \
--max requests per minute 100 \
--max tokens per minute 20000 \
--token encoding name cl100k base \
--max attempts 5 \
--logging level 20
```

https://github.com/openai/openai-cookbook/blob/main/examples/api_request_parallel_processor.py

sLLM

- 01-ai/Yi-6B : 영어-중국어 모델
- https://huggingface.co/01-ai/Yi-6B
- beomi/Yi-Ko-6B : 한국어 확장 모델
- https://huggingface.co/beomi/Yi-Ko-6B

모델 생성

```
# PyTorch와 Transformers 라이브러리 임포트
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# 추론 파이프라인 생성 함수 정의
def make inference pipeline(model id):
 # 토크나이저 로드
  tokenizer = AutoTokenizer.from pretrained(model id)
 # 4비트 양자화를 적용한 모델 로드
 model = AutoModelForCausalLM.from pretrained(model id, device map="auto",
                load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16)
 # 텍스트 생성 파이프라인 생성
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
  return pipe
# Yi-Ko-6B 모델 ID 설정
model id = 'beomi/Yi-Ko-6B'
# 추론 파이프라인 생성
hf pipe = make inference pipeline(model id)
```

입력 예제

```
# SQL 생성을 위한 예제 프롬프트
example = """당신은 SQL을 생성하는 SQL 봇입니다.
DDL의 테이블을 활용한 Question을 해결할 수 있는 SQL 쿼리를 생성하세요.
### DDL:
CREATE TABLE players (
 player id INT PRIMARY KEY AUTO INCREMENT,
 username VARCHAR(255) UNIQUE NOT NULL,
 email VARCHAR(255) UNIQUE NOT NULL,
 password_hash VARCHAR(255) NOT NULL,
 date joined DATETIME NOT NULL,
 last login DATETIME
);
### Question:
사용자 이름에 'admin'이 포함되어 있는 계정의 수를 알려주세요.
### SQL:
***
```

실행

```
# 모델을 사용하여 SQL 쿼리 생성
hf_pipe(example, do_sample=False,
return_full_text=False, max_length=512, truncation=True)
```

https://huggingface.co/docs/ transformers/en/main classes /pipelines

실행결과에 템플릿에 정한 내용만 있지 않음

모델의 기본성능 평가

- 평가데이터셋 받기
- 데이터셋에서 내모델용 평가용 prompt생성(질문) -> 답변 받기
- GPT4 평가용 prompt 생성(내모델의 답변과 정답)
- GPT4 에 순차적으로 보내서 평가

모델 파인튜닝

- 훈련데이터 받기
- 훈련용 프롬프트 생성 (질문+답변)
- Autotrain-advanced 라이브러리 이용해서 파인튜닝
- https://huggingface.co/docs/autotrain/tasks/llm_finetuning

파인튜닝 A100 1시간?

```
base model = 'beomi/Yi-Ko-6B'
finetuned model = './models/yi-ko-6b-text2sql'
!autotrain llm \
--train \
                                                    No code!
--model {base model} \
--project-name {finetuned model} \
--data-path data/ \
--text-column text \
--lr 2e-4 \
--batch-size 8 \
--epochs 1 \
--block-size 1024 \
--warmup-ratio 0.1 \
--lora-r 16 \
                                             LoRA 설정
--lora-alpha 32 \
--lora-dropout 0.05 \
--weight-decay 0.01 \
--gradient-accumulation 8 \
--mixed-precision fp16 \
                                              PEFT 사용
--use-peft \
--quantization int4 \
--trainer sft
```

모델 업데이트

- PERF 이용해서 파인튜닝된 모델과 기존 모델을 합친다
- https://huggingface.co/docs/peft/tutorial/peft_integrations#tr ansformers

```
# 필요한 라이브러리 임포트
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, PeftModel
# 모델 이름과 디바이스 설정
model name = base model
finetuned_model = './models/yi-ko-6b-text2sql'
device map = {"": 0} # GPU 0번 디바이스 사용
# 기초 모델 불러오기
# - low cpu mem usage: CPU 메모리 사용량 최소화
# - return dict: 모델 출력을 딕셔너리 형태로 반환
# - torch dtype: FP16 정밀도 사용
# - device map: GPU 디바이스 매핑
base model = AutoModelForCausalLM.from pretrained(
   model name,
   low cpu mem usage=True,
   return dict=True,
   torch dtype=torch.float16,
   device map=device map,
# LoRA 어댑터를 기초 모델에 결합
```

model = PeftModel.from_pretrained(base_model, finetuned_model)
model = model.merge_and_unload() # Lora 가중치를 기초 모델에 병합

PEFT 사용

파인튜닝 모델 평가

• 파인튜닝한 모델에 테스트하면 **SQL문만** 출력함

• GPT-4 의 평가 결과 확인

성능 개선 방향

- 파인튜닝 파라미터에 따른 결과 변화 확인
 - LoRA 관련: lora_r, lora_alpha 등
- 데이터셋: 데이터셋 정제, 평가데이터 추가, 학습데이터 추가,
- 모델 변경 : 더 **큰** 모델

• 4장 Direct Preference Optimization(DPO) 방법 적용

Thank you for attention!