Attorney Docket No.: O83593

Application No.: 10/510.684

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (previously presented): A process for producing a modified polymer, comprising a

first and second modification process,

the first modification process comprising modifying a polymer produced by anionic

polymerization using an alkaline metal compound and/or an alkaline earth metal compound as a

polymerization initiator and having an active site of an organometal in a molecule by reacting the

site thereof with a hydrocarbyloxysilane compound, and

the second modification process comprising adding a condensation accelerator to the

reaction system in the middle of the above reaction, or adding a condensation accelerator to the

reaction system in the middle of the above reaction and after the completion thereof,

the condensation accelerator accelerates condensation of the modified polymer resulting

in a condensed polymer,

the condensed polymer being recovered from the system,

where in the polymer described above is a polymer obtained by homopolymerizing a

conjugated diene compound or copolymerizing a conjugated diene compound with at least one

additional monomer, and the hydrocarbyloxysilane compound described above used for the

modification is at least one selected from a hydrocarbyloxysilane compound represented by

Formula (I) and/or a partial condensation product thereof;

Attorney Docket No.: Q83593 Application No.: 10/510,684

(wherein A<sup>1</sup> represents a monovalent group having at least one functional group selected from (thio)epoxy, (thio)isocyanate, (thio)ketone, (thio)aldehyde, imine, amide, trihydrocarbyl isocyanurate, (thio)carboxylates, metal salts of (thio)carboxylates, carboxylic anhydrides, carboxylic halides and dihydrocarbyl carbonate; R<sup>1</sup> represents a single bond or a divalent inactive hydrocarbon group; R<sup>2</sup> and R<sup>3</sup> each represent independently a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms; n is an integer of 0 to 2, and when a plurality of OR<sup>3</sup> is present, a plurality OR<sup>3</sup> may be the same as or different from each other; and an active proton and an onium salt are not contained in the molecule), and a hydrocarbyloxysilane compound represented by Formula (II) and/or a partial condensation product thereof;

(wherein A<sup>2</sup> represents a monovalent group having at least on functional group selected from cyclic tertiary amine, non-cyclic tertiary amine, nitrile, pyridine, sulfide and multisulfide; R<sup>4</sup> represents a single bond or a divalent inactive hydrocarbon group; R<sup>5</sup> and R<sup>6</sup> each represent independently a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms; m is an integer of 0 to 2, and when a plurality of OR<sup>6</sup> is present, a plurality OR<sup>6</sup> may be the same as or different from each other; and an active proton and an onium salt are not contained in the molecule).

Attorney Docket No.: Q83593

Claim 2 (canceled).

3. (currently amended): The process for producing a modified polymer as described in

Application No.: 10/510,684

claim 1, wherein the metal in the active site described above is at least one selected from alkaline

metals and alkaline earth metals.

4. (previously presented): The process for producing a modified polymer as described in

claim 1, wherein the at least one additional monomer is an aromatic vinyl compound.

5. (currently amended): The process for producing a modified polymer as described in

claim 4, wherein the active site described above is present at an end of the polymer, and at least a

part thereof stays in an active state.

Claim 6 (canceled).

7. (currently amended): The process for producing a modified polymer as described in

claim 1, wherein the hydrocarbyloxysilane compound for modification is added to the polymer

having an active site of an organometal in a molecule in a stoichiometric amount or an excess

amount thereover based on the above active site to react the above active site with the

hydrocarbyloxysilane compound.

Attorney Docket No.: Q83593

Application No.: 10/510,684

8. (currently amended): The process for producing a modified polymer as described in claim 1, wherein the condensation accelerator described above—comprises combination of carboxylic acid salt of tin and/or titanium alkoxide with water.

9. (currently amended): The process for producing a modified polymer as described in claim 8, wherein the carboxylic acid salt of tin described above is a tin compound having an oxidation number of 2 represented by the following Formula (IV):

(wherein R<sup>9</sup> is an alkyl group having 2 to 19 carbon atoms) or a tin compound having an oxidation number of 4 represented by the following Formula (V):

$$R^{10}_{\nu}SnA^{3}_{\nu}B^{1}_{4-\nu-\nu}$$
 (V)

(wherein  $R^{10}$  is an aliphatic hydrocarbon group having 1 to 30 carbon atoms; x is an integer of 1 to 3; y is 1 or 2;  $A^3$  is a group selected from a carboxyl group having 2 to 30 carbon atoms, an  $\alpha, \gamma$ -dionyl group having 5 to 20 carbon atoms, a hydrocarbyloxy group having 3 to 20 carbon atoms and a siloxy group tri-substituted with a hydrocarbyl group having 1 to 20 carbon atoms and/or a hydrocarbyloxy group having 1 to 20 carbon atoms; and  $B^1$  is a hydroxyl group or halogen), and the titanium alkoxide described above is a titanium compound by the following Formula (VI):

$$A_z^4 TiB_{4-z}^2$$
 (VI)

(wherein  $A^4$  is a group selected from an alkoxy group having 3 to 20 carbon atoms and a siloxy group tri-substituted with an alkyl group having 1 to 20 carbon atoms and/or an alkoxy group having 1 to 20 carbon atoms;  $B^2$  is an  $\alpha, \gamma$ -dionyl group having 5 to 20 carbon atoms; and z is 2 or 4).

Attorney Docket No.: Q83593

Application No.: 10/510,684

10. (currently amended): The process for producing a modified polymer as described in

claim 1, wherein the conjugated diene compound described above is 1,3-butadiene or isoprene.

11. (currently amended): The process for producing a modified polymer as described in

claim 4, wherein the aromatic vinyl compound described above is styrene.

12. (previously presented): A modified polymer obtained by the production process as

described in claim 1, where the modified polymer is condensed at a modified moiety of said

polymer.

13. (currently amended): The modified polymer as described in claim 12, having a

Mooney viscosity (ML<sub>1+4</sub>/100°C) of 10 to 150.

14. (original): A rubber composition comprising the modified polymer as described in

claim 12 or 13.

Claims 15-18 (canceled).

19. (currently amended): The rubber composition as described in claim 14, comprising

100 parts by weight of (A) a rubber component containing at least 15 % by weight of the

modified polymer described above and 10 to 100 parts by weight of (B) an inorganic filler and/or

carbon black.

Attorney Docket No.: Q83593

Application No.: 10/510,684

20. (currently amended): The rubber composition as described in claim 19, comprising

10 to 100 parts by weight of silica as the inorganic filler-described above.

21. (previously presented): A tire using the rubber composition as described in claim 14.

22. (previously presented): The process for producing a modified polymer as described

in claim 1, wherein the anionic polymerization is conducted in the presence of a randomizer.

23. (previously presented): The process for producing a modified polymer as described

in claim 8, wherein the carboxylic acid salt of tin is tin bis(2-ethylhexanoate) and the titanium

alkoxide is titanium tetrakis(2-ethylhexyl oxide).

24. (previously presented): The modified polymer as described in claim 12, having a

weight average molecular weight (Mw) of 55.4 x 10<sup>4</sup> to 62.3 x 10<sup>4</sup>.

Claims 25 to 35 (canceled).

36. (new): A process for producing a modified polymer, comprising a first and second

modification process,

the first modification process comprising modifying a polymer produced by anionic

polymerization using an alkaline metal compound and/or an alkaline earth metal compound as a

polymerization initiator and having an active site of an organometal in a molecule by reacting the site thereof with a hydrocarbyloxysilane compound, and

the second modification process comprising adding a condensation accelerator to the reaction system after the completion thereof,

the condensation accelerator accelerates condensation of the modified polymer resulting in a condensed polymer.

the condensed polymer being recovered from the system,

where in the polymer described above is a polymer obtained by homopolymerizing a conjugated diene compound or copolymerizing a conjugated diene compound with at least one additional monomer, and the hydrocarbyloxysilane compound described above used for the modification is at least one selected from a hydrocarbyloxysilane compound represented by Formula (I) and/or a partial condensation product thereof;

$$A^{1}$$
  $R^{1}$   $S^{1}$   $(OR^{3})_{3-n}$   $\cdots$   $(I)$ 

(wherein  $A^1$  represents a monovalent group having at least one functional group selected from (thio)epoxy, (thio)isocyanate, (thio)ketone, (thio)aldehyde, imine, amide, trihydrocarbyl isocyanurate, (thio)carboxylates, metal salts of (thio)carboxylates, carboxylic anhydrides, carboxylic halides and dihydrocarbyl carbonate;  $R^1$  represents a single bond or a divalent inactive hydrocarbon group;  $R^2$  and  $R^3$  each represent independently a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms; n is an integer of 0 to 2, and when a plurality of  $OR^3$  is present, a plurality  $OR^3$  may be the same as or different from each other; and an active proton and an

onium salt are not contained in the molecule), and a hydrocarbyloxysilane compound represented by Formula (II) and/or a partial condensation product thereof;

(wherein A<sup>2</sup> represents a monovalent group having at least on functional group selected from cyclic tertiary amine, non-cyclic tertiary amine, nitrile, pyridine, sulfide and multisulfide; R<sup>4</sup> represents a single bond or a divalent inactive hydrocarbon group; R<sup>5</sup> and R<sup>6</sup> each represent independently a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms; m is an integer of 0 to 2, and when a plurality of OR<sup>6</sup> is present, a plurality OR<sup>6</sup> may be the same as or different from each other; and an active proton and an onium salt are not contained in the molecule).

- 37. (new): The process for producing a modified polymer as described in claim 36, wherein the metal in the active site is at least one selected from alkaline metals and alkaline earth metals.
- 38. (new): The process for producing a modified polymer as described in claim 36, wherein the at least one additional monomer is an aromatic vinyl compound.
- 39. (new): The process for producing a modified polymer as described in claim 38, wherein the active site is present at an end of the polymer, and at least a part thereof stays in an active state.

Attorney Docket No.: Q83593

Application No.: 10/510,684

40. (new): The process for producing a modified polymer as described in claim 36, wherein the hydrocarbyloxysilane compound for modification is added to the polymer having an active site of an organometal in a molecule in a stoichiometric amount or an excess amount thereover based on the active site to react the active site with the hydrocarbyloxysilane compound.

41. (new): The process for producing a modified polymer as described in claim 36, wherein the condensation accelerator comprises combination of carboxylic acid salt of tin and/or titanium alkoxide with water.

42. (new): The process for producing a modified polymer as described in claim 41, wherein the carboxylic acid salt of tin is a tin compound having an oxidation number of 2 represented by the following Formula (IV):

(wherein  $\mathbb{R}^9$  is an alkyl group having 2 to 19 carbon atoms) or a tin compound having an oxidation number of 4 represented by the following Formula (V):

$$R_{x}^{10}SnA_{y}^{3}B_{4-y-x}^{1}$$
 (V)

(wherein  $R^{10}$  is an aliphatic hydrocarbon group having 1 to 30 carbon atoms; x is an integer of 1 to 3; y is 1 or 2;  $A^3$  is a group selected from a carboxyl group having 2 to 30 carbon atoms, an  $\alpha$ , $\gamma$ -dionyl group having 5 to 20 carbon atoms, a hydrocarbyloxy group having 3 to 20 carbon atoms and a siloxy group tri-substituted with a hydrocarbyl group having 1 to 20 carbon

Automory Docket No. (03333

atoms and/or a hydrocarbyloxy group having 1 to 20 carbon atoms; and B<sup>1</sup> is a hydroxyl group or halogen), and the titanium alkoxide is a titanium compound by the following Formula (VI):

$$A_z^4 Ti B_{4-z}^2$$
 (VI)

(wherein  $A^4$  is a group selected from an alkoxy group having 3 to 20 carbon atoms and a siloxy group tri-substituted with an alkyl group having 1 to 20 carbon atoms and/or an alkoxy group having 1 to 20 carbon atoms;  $B^2$  is an  $\alpha, \gamma$ -dionyl group having 5 to 20 carbon atoms; and z is 2 or 4).

- 43. (new): The process for producing a modified polymer as described in claim 36, wherein the conjugated diene compound is 1,3-butadiene or isoprene.
- 44. (new): The process for producing a modified polymer as described in claim 38, wherein the aromatic vinyl compound is styrene.
- 45. (new): A modified polymer obtained by the production process as described in claim 36, where the modified polymer is condensed at a modified moiety of said polymer.
- 46. (new): The modified polymer as described in claim 45, having a Mooney viscosity (ML)+4/100°C) of 10 to 150.
- (new): A rubber composition comprising the modified polymer as described in claim
  or 46.

SUPPLEMENTAL AMENDMENT UNDER 37 C.F.R. § 1.114(c) Attorney Docket No.: Q83593

Application No.: 10/510,684

48. (new): The rubber composition as described in claim 47, comprising 100 parts by

weight of (A) a rubber component containing at least 15 % by weight of the modified polymer

and 10 to 100 parts by weight of (B) an inorganic filler and/or carbon black.

49. (new): The rubber composition as described in claim 48, comprising 10 to 100 parts

by weight of silica as the inorganic filler.

50. (new): A tire using the rubber composition as described in claim 47.

51. (new): The process for producing a modified polymer as described in claim 36.

wherein the anionic polymerization is conducted in the presence of a randomizer.

52. (new): The process for producing a modified polymer as described in claim 41,

wherein the carboxylic acid salt of tin is tin bis(2-ethylhexanoate) and the titanium alkoxide is

titanium tetrakis(2-ethylhexyl oxide).

53. (new): The modified polymer as described in claim 45, having a weight average

molecular weight (Mw) of  $55.4 \times 10^4$  to  $62.3 \times 10^4$ .