Folha 1 – Cálculo Vectorial

Questões:

- 1. Considere o vector $\vec{a} = 3\hat{i} + 4\hat{j}$.
 - a) Calcule o módulo do vector \vec{a} .
 - b) Determine analiticamente os vectores $-0.5\vec{a}$, $2\vec{a}$ e \hat{a} .
 - c) Represente graficamente, no plano XY, os vectores \vec{a} , $-0.5\vec{a}$, $2\vec{a}$ e \hat{a} .
 - d) Determine os ângulos que o vector \vec{a} forma com o eixo horizontal e com o eixo vertical.
- 2. Considere os vectores $\vec{a} = 3\hat{i} + 4\hat{j}$ e $\vec{b} = -\hat{i} + 2\hat{j}$.
 - a) Determine, analiticamente, os vectores $\vec{a} + \vec{b}$ e $\vec{a} \vec{b}$.
 - b) Calcule os módulos $\left| \vec{a} + \vec{b} \right|$ e $\left| \vec{a} \vec{b} \right|$.
 - c) Represente graficamente os vectores \vec{a} , \vec{b} , $\vec{a} + \vec{b}$ e $\vec{a} \vec{b}$
 - d) Qual o ângulo formado entre os vectores \vec{a} e \vec{b} ?
- 3. Indique em que condições se verificam as seguintes proposições:
 - a) $\vec{a} + \vec{b} = \vec{c}$ e a + b = c
 - b) $\vec{a} + \vec{b} = \vec{c}$ e |a b| = c
 - c) $\vec{a} + \vec{b} = \vec{a} \vec{b}$
 - d) $\vec{a} + \vec{b} = \vec{c}$ e $a^2 + b^2 = c^2$
 - e) $\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \vec{b} \right|$

Nota: $a = |\vec{a}|, \ b = |\vec{b}| \ e \ c = |\vec{c}|.$

- 4. Calcule os seguintes produtos escalares:

- a) $\hat{i} \cdot \hat{i}$ d) $\hat{i} \cdot \hat{j}$ g) $\hat{j} \cdot \hat{k}$ b) $\hat{j} \cdot \hat{j}$ e) $\hat{i} \cdot \hat{k}$ h) $\hat{k} \cdot \hat{i}$ c) $\hat{k} \cdot \hat{k}$ f) $\hat{j} \cdot \hat{i}$ i) $\hat{k} \cdot \hat{j}$

- 5. Sendo \vec{a} e \vec{b} vectores não nulos, indique em que condições se verifica:

 - a) $\vec{a} \cdot \vec{b} = 0$ c) $\vec{a} \cdot \vec{b} = -ab$
- e) $\vec{a} \cdot \vec{b} < 0$
- b) $\vec{a} \cdot \vec{b} = ab$ d) $\vec{a} \cdot \vec{b} > 0$
- 6. Dados dois vectores $\vec{a} = 3\hat{i} + 2\hat{j} \hat{k}$ e $\vec{b} = 2\hat{i} 2\hat{j} + 3\hat{k}$, determine:
 - a) O produto escalar $\vec{a} \cdot \vec{b}$.
 - b) O menor ângulo formado entre os vectores.
 - c) O versor \hat{b} .
 - d) A projecção do vector \vec{a} na direcção de \vec{b} .

- 7. Um vector \vec{a} tem 4 m de módulo e faz um ângulo de 60° com o sentido positivo do eixo dos XX, medido no sentido contrário ao dos ponteiros do relógio.
 - a) Determine as componentes do vector \vec{a} no sistema de eixos cartesiano XY.
 - b) Qual será a direcção de um vector \vec{b} , de módulo igual a 3 m, para que o vector soma destes dois vectores $(\vec{a} + \vec{b})$ tenha 5 m de módulo?
- Determine os seguintes produtos vectoriais:

a)
$$\hat{i} \times \hat{i}$$

d)
$$\hat{i} \times \hat{j}$$

g)
$$\hat{j} \times \hat{l}$$

b)
$$\hat{j} \times \hat{j}$$

e)
$$\hat{i} \times \hat{k}$$

h)
$$\hat{k} \times \hat{i}$$

c)
$$\hat{k} \times \hat{k}$$

f)
$$\hat{i} \times \hat{i}$$

a)
$$\hat{i} \times \hat{i}$$
 d) $\hat{i} \times \hat{j}$ g) $\hat{j} \times \hat{k}$
b) $\hat{j} \times \hat{j}$ e) $\hat{i} \times \hat{k}$ h) $\hat{k} \times \hat{i}$
c) $\hat{k} \times \hat{k}$ f) $\hat{j} \times \hat{i}$ i) $\hat{k} \times \hat{j}$

9. Sendo \vec{a} e \vec{b} vectores não nulos, indique em que condições se verifica:

a)
$$\vec{a} \times \vec{b} = \vec{0}$$

b)
$$\left| \vec{a} \times \vec{b} \right| = ab$$

- 10. Sabendo que o vector \vec{a} tem o sentido positivo da direcção do eixo dos XX e mede 2, e que o vector \vec{b} tem o sentido negativo do eixo dos ZZ e mede 5, determine:
 - a) O módulo do produto vectorial entre os vectores $(|\vec{a} \times \vec{b}|)$.
 - b) Qual a direcção do produto vectorial $\vec{a} \times \vec{b}$?
 - c) Qual o sentido do produto vectorial $\vec{a} \times \vec{b}$?
- 11. Dados dois vectores $\vec{a} = 3\hat{i} + 2\hat{j} \hat{k}$ e $\vec{b} = 2\hat{i} 2\hat{j} + 3\hat{k}$, determine o produto vectorial $\vec{a} \times \vec{b}$, através:
 - a) Da propriedade distributiva do produto vectorial relativamente à adição.
 - b) Do determinante da matriz de 3×3:

$$\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix}$$

- 12. Dados os vectores \vec{a} e \vec{b} tais que: $\vec{a} = 3\hat{j} + 4\hat{k}$, $\vec{a} \cdot \vec{b} = 5$, $|\vec{a} \times \vec{b}| = 6$ e $(\vec{a} \times \vec{b}) \cdot \hat{i} = 0$, determine:
 - a) O menor ângulo formado entre os dois vectores.
 - b) As componentes do vector \vec{b} .

Soluções:

1.

- a) 5
- b) $-0.5\vec{a} = -1.5\hat{i} 2\hat{j}$; $2\vec{a} = 6\hat{i} + 8\hat{j}$; $\hat{a} = 0.6\hat{i} + 0.8\hat{j}$

c)

d) 53,13° com a parte positiva do eixo dos XX; 36,87° com a parte positiva do eixo dos YY

2.

- a) $\vec{a} + \vec{b} = 2\hat{i} + 6\hat{j}$; $\vec{a} \vec{b} = 4\hat{i} + 2\hat{j}$
- b) $|\vec{a} + \vec{b}| = 6.32$; $|\vec{a} \vec{b}| = 4.47$

c)

d) 63,4°

3.

- a) Quando \vec{a} e \vec{b} têm a mesma direcção e o mesmo sentido
- b) Quando \vec{a} e \vec{b} têm a mesma direcção e sentidos opostos
- c) Quando $\vec{b} = \vec{0}$
- d) Quando \vec{a} e \vec{b} são perpendiculares
- e) Quando \vec{a} e \vec{b} são perpendiculares

4.

- a) 1
- d) 0
- **g**) 1

- b) 1c) 1
- e) 0f) 0
- h) 0 i) 0

5.

- a) Quando os vectores \vec{a} e \vec{b} são perpendiculares
- b) Quando os vectores \vec{a} e \vec{b} têm a mesma direcção e o mesmo sentido
- c) c) \vec{a} e \vec{b} têm a mesma direcção e sentidos opostos
- d) O menor ângulo formado pelos vectores \vec{a} e \vec{b} pertence a $[0^{\circ}, 90^{\circ}]$
- e) O menor ângulo formado pelos vectores \vec{a} e \vec{b} pertence a $]90^{\circ},180^{\circ}]$

6.

- a) -1
- b) 93,72°
- c) $\hat{b} = 0.485 \hat{i} 0.485 \hat{j} + 0.728 \hat{k}$
- d) $-0.118\hat{i} + 0.118\hat{j} 0.170\hat{k}$

7.

- a) $\vec{a} = 2,00\hat{i} + 3,46\hat{j}$ (m)
- b) \vec{b} é perpendicular a \vec{a}

8.

- a) (
- d) \hat{k}
- g) i

- b) $\vec{0}$
- e) j
- h) \hat{j}

- c) $\vec{0}$
- f) $-\hat{k}$
- i) $-\hat{i}$

9.

- a) Quando $\vec{a} = \vec{0}$, $\vec{b} = \vec{0}$, ou \vec{a} e \vec{b} têm a mesma direcção
- b) Quando \vec{a} e \vec{b} são perpendiculares

10.

- a) 10
- b) Do eixo dos YY
- c) Sentido positivo do eixo dos YY
- 11. $4\hat{i} 11\hat{j} 10\hat{k}$

12.

- a) 50,2°
- b) $\vec{b} = 1, 2\hat{i} + 0, 6\hat{j} + 0, 8\hat{k}$