

CHITTILAPPILLY, THRISSUR

Sixth Semester B. Tech Degree Sessional II April 2020

CS 302 DESIGN AND ANALYSIS OF ALGORITHMS

Time: - 2 Hour Maximum Marks: 50

PART A(Answer all questions)

Q.No	Questions	Marks	CO	BTL
1	Multiply the matrix using Strasssens Matrix Multiplication. $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$	5	CO4	2
2	Consider the following matrix and its dimensions. Matrix Dimensions A1 30 * 35 A2 35 * 15 A3 15 * 5 A4 5 * 10 A5 10 * 20 A6 20 * 25 Find the optimal cost of m[2,5].	5	CO4	3
3	Analyze the Bellman – Ford Algorithm.	5	CO4	2
4	Compare and contrast Divide and Conquer algorithm with Dynamic Programming.	5	CO5	2
5	Find the optimal solution to the knapsack. Capacity W=20.	5	CO5	2

6	Consider the given graph. Construct the minimum spanning tree for the below graph using Kruskal's algorithm. Also write Kruskal's algorithm. Analyze its complexity.	5	CO5	3
7	State and Explain N Queen Problem. Write the backtracking algorithm for solving N-Queen problem.	5	CO6	3
8	Solve the TSP.	5	CO6	3
9	State the steps used to show a given problem is NP complete. Write notes on polynomial time reducibility. Give examples.	5	CO6	2
10	Prove that HAM-CYCLE is NP Complete.	5	CO6	3

All the Best