

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour und Prof. Dr.-Ing. Rüdiger Dillmann

Lösungsblätter zur Klausur

Robotik I: Einführung in die Robotik

am 10. April 2017, 14:00 - 15:00 Uhr

Name:	Vorname:		Matrikelnummer:	
Aufgabe 1			von	6 Punkten
Aufgabe 2			von	11 Punkten
Aufgabe 3			von	7 Punkten
Aufgabe 4			von	9 Punkten
Aufgabe 5			von	7 Punkten
Aufgabe 6			von	5 Punkten
Gesamtpunktzahl:				
		Note:		

Aufgabe 1 Rotationen

1. Homogene Transformationsmatrix ${}^{WKS}T_{OKS}$:

2. Transformation von p in das lokale Koordinationsystem OKS:

3. Quaternion q:

4. Konjugiertes Quaternion q^* :

Aufgabe 2 Kinematik

1. DH-Parameter des Roboters:

Gelenk	$oldsymbol{ heta}_i \ [^\circ]$	$d_i \ [mm]$	$a_i \ [mm]$	$lpha_i$ [°]
G1	$ heta_1$	250	0	90
G2	$ heta_2$			0
G3	θ_3			
G4	θ_4			
G5	θ_5	105	0	-90
G6	θ_6	90	0	0

2. Anzahl der Rotationsgelenke:

Anzahl der Translationsgelenke:

3. Arbeitsraum:

4. Transformation zwischen (x_6, y_6, z_6) und (x_7, y_7, z_7) :

$$y_6$$
 X_6

Name: Vorname: Matr.-Nr.: 4

5. Jacobi-Matrix:

Dimension:

Aufgabe 3 Motion Planning

- 1. Zellzerlegung mit Line-Sweep
 - (a) Zellzerlegung mittels Line-Sweep:

(b) Adjazenzgraph der ermittelten Zellen:

(c) Kürzester Pfad von q_{start} zu $q_{ziel}\colon$

2. Unterschiede oder Eigenschaften von RRT und RRT*:

Aufgabe 4 Bildverarbeitung

1. Prewitt-X Filter:

Prewitt-Y Filter:

2. Gradientenbetrag M:

- 3. Visual Servoing
 - (a) Unterschied zwischen positions- und bildbasiertem Visual Servoing:

(b) Die Interaction Matrix:

4. Was ist SLAM? Wozu und Vorgehensweise:

Aufgabe 5 Programmieren durch Vormachen

1. Die Hauptfragestellungen (die vier Ws) beim PdV:

8

Aufgabe 6 Symbolisches Planen mit STRIPS

1. Aktionssequenz zum Erreichen des Zielzustands:

2. Annahme zur Weltabgeschlossenheit (Closed World Assumption):