# Bioinformatics carpentry utilizing Galaxy: An Introduction to Machine Learning

Maximilian Hillemanns

de.NBI Training — 15<sup>th</sup> April 2021 www.sbi.uni-rostock.de





# What is Machine Learning?





# What is Machine Learning?





# **ML** and supervision



#### supervised:

- all data is labeled
- algorithms learns to predict output from input
- classification, regression

#### semi-supervised:

- some data is labeled
- real-life scenarios
- mixture of (un)supervised methods

#### unsupervised:

- all data is unlabeled
- algorithms learns to represent structure in the input
- clustering

#### **ML** terms



|          | height | no. of legs | fluffy? | can be kept<br>as a pet? | pet factor |
|----------|--------|-------------|---------|--------------------------|------------|
| dog      | 60 cm  | 4           | yes     | yes                      | 100        |
| elephant | 320 cm | 4           | no      | no                       | 15         |
| bird     | 20 cm  | 2           | kinda   | yes                      | 70         |

- data
- data point
- numerical feature
- categorical feature
- target value/label/ground truth (categorical for classification, numerical for regression)

#### **ML** terms



|          | height | no. of legs | fluffy? | can be kept as a pet? | pet factor |
|----------|--------|-------------|---------|-----------------------|------------|
| dog      | 60 cm  | 4           | yes     | yes                   | 100        |
| elephant | 320 cm | 4           | no      | no                    | 15         |
| bird     | 20 cm  | 2           | kinda   | yes                   | 70         |





model/algorithm



results/predictions



#### **ML** terms



- training data: data used to train and validate the model
- testing data: data used to test and evaluate the model
- loss (function): the error of our model, commonly defined as the difference between the ground truth and the predicted output
- optimizer: the way the loss is minimized
- (hyper)parameters/weights: the details of our model

#### supervised training principle:

- create a model (random/zero-weights/...)
- plug a training example into the model and create an prediction
- compare the prediction to the ground truth
- change the model according to this comparison
- repeat until a certain criteria is met (accuracy/number of iterations/...)

# What is Machine Learning?



Regression





(+ Reinforcement Learning)

# What is Clustering?



#### Clustering is the grouping of data points



... to find patterns in the data.

... to make classifications easy.

... to see how the data is distributed.

...

### k means clustering



- 1. Select *k*, the number of clusters and a distance metric, for example *euclidean*
- 2. Randomly initialize *k* cluster centers
  - completely random OR
  - on random data points
- Calculate the distance between each data point and cluster center
- 4. Assign a data point to the nearest cluster center
- 5. Move the cluster centers to the mean of its assigned data points
- 6. repeat steps 3-5 until the clusters do not change anymore or another criterion is met (number of iterations, etc.)

# Cluster B Cluster B

#### DEMO:

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

| Advantages      | Disadvantages  |
|-----------------|----------------|
| Fast            | Selection of k |
| Easy to compute | not consistent |

# **Hierarchical clustering**



- Start by treating each data point as its own cluster
- Combine the two clusters with the smallest distance between them
  - i.e. average euclidean distance between data points in the first and data points in the second cluster
- 3. Repeat step 2 until only one cluster containing all the data points is left
- 4. Choose the number of clusters best fitting to your data

DEMO: <a href="https://live.yworks.com/demos/analysis/clustering/index.html">https://live.yworks.com/demos/analysis/clustering/index.html</a>

#### **Example: Hierarchical Agglomerative Clustering**



| Advantages                                                              | Disadvantages |
|-------------------------------------------------------------------------|---------------|
| no prior<br>knowledge of data<br>set needed                             | slow          |
| not sensitive to the used metric                                        |               |
| number of clusters<br>can be arbitrarily<br>chosen after<br>computation |               |

#### **DBSCAN**



#### Density Based Spatial Clustering of Applications with Noise

- 1. Define a neighborhood  $\varepsilon$  and a number of points *minPoints*
- 2. Start by "visiting" a random data point
- 3. If there are at least minPoints in the  $\varepsilon$  neighborhood of this data point, it is marked as part of a cluster, otherwise as noise
  - o it is marked as "visited" nonetheless
- 4. If a data point is part of a cluster, all data points in the  $\varepsilon$  neighborhood are also added to this cluster
- 5. Then the first data point that has just been added to the cluster is visited and steps 3 and 4 are repeated
- 6. Steps 3-5 are repeated until all data points in the cluster are determined
- 7. Then, a data point outside of this cluster is visited and the process is repeated until every point has been visited

#### DEMO: <a href="https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/">https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/</a>

| Advantages                                          | Disadvantages                                                              |
|-----------------------------------------------------|----------------------------------------------------------------------------|
| clusters of arbitrarily size and shape can be found | poor performance on clusters with varying density                          |
| incorporation of noise                              | algorithm parameters are not trivial to choose (esp. in higher dimensions) |
| does not require a pre-set number of clusters       |                                                                            |



# **DEMO**

# **k Nearest Neighbors**



- the simplest classification algorithm not called "guessing"
- needs just one parameter: k, the number of nearest neighbors in distance metric of choice
- a point is automatically assigned to the class, which is more prominent in the neighborhood



#### **Decision Tree**



- relatively simple classifier
  - regression is possible, but not feasible
- works well for categorical data
- to obtain a prediction
  - start at the root node
  - follow the decision or internal nodes
  - end up at a leaf node



Finally, after years of search I found a real tree



#### **Decision Tree**



- key to good decision trees: know the worth of the features
- the feature with the highest information gain goes into the root node and so on
- this does not change anything about the classification itself, but the tree is smaller/simpler
  - Occam's Razor (prefer the simplest hypothesis that fits the data)
- what happens if there a tons of features? OVERFITTING
  - especially if some of them do not have a real benefit for the prediction
  - big problem in machine learning

the model loses its generalization ability because it practically memorizes the

training data

poor performance on new data



#### **Random Forest**



- consists of multiple decision trees
- principle:
  - grow several uncorrelated trees
  - take into account the classification of all trees (aggregation)
- but how to make the trees uncorrelated?
  - bootstrapping: create new subsamples of the data by leaving out data points/features and/or duplicating some
  - grow one decision tree on each subsample
  - nice side effect: out of bootstrap (OOB) data points can be used to determine the OOB error, which is a good indicator for the quality of a Random Forest
- this technique is called bagging (bootstrapping + aggregation)
- Random Forests can also be used for regression







#### **Linear Regression**



- very simple regression model
- implies a linear relationship between data points and target value
- surprisingly, often a good estimate

find a linear representation of the type

$$y = c_0 + c_1 x_1 + c_2 x_2 + \dots$$
 or  $y = Xc$ 

where *X* is our data points matrix, *y* is the output and *c* are the parameters we search that minimizes the function

$$f(c) = ||Xc - y||^2$$



# **Support Vector Machines**



- find a classification/regression curve, which maximizes the margin between the curve and the nearest (or farthest) data points
  - these data points are the so called support vector
- SVMs project the data into a higher dimension (kernel trick)
  - n data points are linearly separable in n-1 dimensions



# **Support Vector Machines**





# **Deep Learning - The artificial neuron**





#### **Activation Functions**



#### Comparing activation functions



- each one has their own use case
  - o **linear** for regression output
  - ReLU for image classification
  - o **softmax** for classification output
  - 0 ...

# **Neural networks**





Input Hidden Layers Output

#### **The Neural Network Zoo**





#### The Neural Network Zoo





#### The Neural Network Zoo







# **Convolutional Neural Networks (CNNs)**



#### Source layer

| 5                                                                                  | 2 | 6 | 8 | 2 | 0 | 1 | 2 | Convolutional |           |
|------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---------------|-----------|
| 4                                                                                  | 3 | 4 | 5 | 1 | 9 | 6 | 3 | kernel        |           |
| 3                                                                                  | 9 | 2 | 4 | 7 | 7 | 6 | 9 | Destinat      | ion layer |
| 1                                                                                  | 3 | 4 | 6 | 8 | 2 | 2 | 1 | 2 1 2         |           |
| 8                                                                                  | 4 | 6 | 2 | 3 | 1 | 8 | 8 | 1 -2 0        |           |
| 5                                                                                  | 8 | 9 | 0 | 1 | 0 | 2 | 3 |               |           |
| 9                                                                                  | 2 | 6 | 6 | 3 | 6 | 2 | 1 |               |           |
| 9                                                                                  | 8 | 8 | 2 | 6 | 3 | 4 | 5 |               |           |
|                                                                                    |   |   |   |   |   |   |   |               |           |
| $(-1\times5) + (0\times2) + (1\times6) +$                                          |   |   |   |   |   |   |   |               |           |
| $(2\times4) + (1\times3) + (2\times4) + (1\times3) + (-2\times9) + (0\times2) = 5$ |   |   |   |   |   |   |   |               |           |



https://www.researchgate.net/figure/Schematic-illustration-of-a-convolutional-operation-The-convolutional-kernel-shifts-over\_fig2\_332190148



# **DEMO**

# **Should I use Machine Learning?**



The definite answer: mhm, maybe, depends on...





#### The User & the Machine

What you should bring to the table:

- (some) experience does not hurt
- good understanding of your data
- an open mind
  - for new algorithms
  - to see your data from a new perspective
- time

What your machine should have:

- enough computational power
  - especially RAM is important
- GPU (server) is the optimum

#### The data



- machine readable
  - tables in proper formatting
  - images as matrices
  - words as vectors
- uniform
  - no missing values (or at least have a plan on how to handle them)
  - numerical and categorical values don't mix that well
- reproducible
  - your algorithm will probably be very narrow
  - new data has to look exactly like the training data
- decent size
  - rule of thumb: the more complex the data and the algorithm, the more data is needed
  - also: enough data to justify a ML approach
- good representation
  - make sure you have enough examples of each class (oversampling or data augmentation if needed)

# **How to do Machine Learning**



- check your data
  - benefit of ML (new insights, unbiased decisions, ...)
  - is it suitable for ML?
- make it suitable for ML
- identify the problem you want to tackle with ML
- choose a model
  - make an educated guess
  - when in doubt, choose the simpler model
- train your algorithm
- evaluate your model
- if it performs well on the first try
  - it never does
- if not
  - fine tune the hyperparameters of your model or choose another model
  - repeat
- if you went through some trial and error and the model looks good
  - deploy on some new data
  - add AI researcher on your LinkedIn profile
- make your code (+ data) accessible



I hope you enjoyed the training, now it's time to test it out yourself:)

The hands-on session is available at github

Any questions?

E-mail me: maximilian.hillemanns@uni-rostock.de









