```
# showing the data:
head(data)
```

```
##
         V1 session_starts treatment
                                          team handed_out passed_by
                                                     <int>
##
      <int>
                      <num>
                                 <int> <char>
                                                                <int>
                           7
## 1:
          0
                                      1
                                                          1
                                            js
## 2:
          1
                                      1
                                                         3
                                                                    11
                         127
                                            js
## 3:
           2
                                                         5
                         247
                                      1
                                            js
                                                                    18
## 4:
          3
                                      1
                                                         7
                                                                   29
                         367
                                            js
## 5:
           4
                                      1
                                                         6
                         487
                                                                    17
                                            js
## 6:
           5
                         607
                                                                    20
                                      0
                                            js
##
      session_within_session success_rate
                                                day person session
##
                         <int>
                                       <num> <int> <char>
                                                              <num>
## 1:
                             0
                                   0.2500000
                                                  0
## 2:
                             1
                                   0.2727273
                                                  0
                                                                  0
## 3:
                             2
                                   0.2777778
                                                  0
                                                                  0
## 4:
                             3
                                   0.2413793
                                                  0
                                                                  0
## 5:
                             4
                                   0.3529412
                                                  0
                                                                  0
## 6:
                             0
                                   0.0000000
                                                  0
                                                                  1
```

```
model_not_interacted = data[, lm(success_rate ~ treatment + factor(team) + factor(per
son))]
model_interacted_person = data[, lm(success_rate ~ treatment*factor(person))]
model_interacted_team = data[, lm(success_rate ~ treatment*factor(team))]

stargazer(model_not_interacted, model_interacted_person, model_interacted_team, type
= "text")
```

## ##	Dependent variable:		
 ##	success_rate		
!# !#	(1)	(2)	(3)
# treatment	0.007	0.008	-0.050
## 	(0.039)	(0.075)	(0.062
## ## factor(team)vw ##	0.383*** (0.082)		-0.004 (0.058
" !#	(0.002)		(0.038
## factor(person)j ##	0.121* (0.070)	0.044 (0.094)	
t# factor(porcon)s	0.026	-0.009	
## factor(person)s ## ##	(0.071)	(0.101)	
# factor(person)v	-0.408***	-0.156*	
##	(0.081)	(0.080)	
## factor(person)w	-0.320***	-0.011	
!# !#	(0.081)	(0.080)	
## ## treatment:factor(person)j		-0.042	
#		(0.146)	
t#		0.124	
<pre>## treatment:factor(person)s ##</pre>		-0.124 (0.146)	
" !#		(01140)	
# treatment:factor(person)v		0.068	
## ##		(0.112)	
# treatment:factor(person)w		-0.038	
##		(0.112)	
## ## treatment:factor(team)vw			0.069
##			(0.082
##			
## Constant ##	0.271*** (0.045)	0.365*** (0.052)	0.335** (0.042
++ ++ ++			
 ## Observations	179	179	179
## R2	0.144	0.046	0.007
# Adjusted R2	0.114	-0.005	-0.010
# Residual Std. Error .75)	0.256 (df = 172)	0.2/3 (df = 169)	0.274 (df =

```
for (pers in data[, unique(person)]) {
  ate = data[(treatment == 1 & person == pers ), mean(success_rate)] - data[(treatmen
t == 0 & person == pers ), mean(success_rate)]
  print(paste("The ATE for person", pers, "is", ate))
}
```

```
## [1] "The ATE for person is 0.00753246958875192"
## [1] "The ATE for person v is 0.0759355185148529"
## [1] "The ATE for person w is -0.0303782389108476"
## [1] "The ATE for person j is -0.033988633127565"
## [1] "The ATE for person s is -0.116818783250665"
```

```
for (tm in data[, unique(team)]) {
  ate = data[(treatment == 1 & team == tm ), mean(success_rate)] - data[(treatment ==
0 & team == tm ), mean(success_rate)]
  print(paste("The ATE for team", tm, "is", ate))
}
```

```
## [1] "The ATE for team js is -0.0499080368127092"
## [1] "The ATE for team vw is 0.0192059636860158"
```

```
# This is making sure, that each minute within a session is assigned to the same trea
tment
rel_data = data[team == "js"]
real_ate = mean(rel_data[treatment == 1, success_rate]) - mean(rel_data[treatment ==
0, success_rate])
sessions = unique(rel_data[, .(session, day)])
ates = c()
n = nrow(sessions)
for (i in 1:1000) {
  treatments <- if (n %% 2 == 0) {
    rep(c(0, 1), length.out = n)
  } else {
    c(rep(c(0, 1), length.out = n - 1), sample(c(0, 1), 1)) # If odd, add one extra
random assignment
  }
  sessions[, treatment_ri := sample(treatments)]
  # merge by session and day
  merged = merge(rel_data, sessions, by = c("session", "day"))
  ate = mean(merged[treatment_ri == 1, success_rate]) - mean(merged[treatment_ri ==
0, success_rate])
  ates = c(ates, ate)
# plot hist with vertical line for real_ate and print p value
ggplot() + geom_histogram(aes(x = ates), bins = 30) + geom_vline(xintercept = real_at
e, color = "red") + theme_minimal()
```


print(paste("The p-value is", sum(abs(ates) >= abs(real_ate)) / length(ates)))

[1] "The p-value is 0.604"

```
# This will assign every minute at random but at least being balanced
rel_data = data[team == "js"]
real_ate = mean(rel_data[treatment == 1, success_rate]) - mean(rel_data[treatment ==
0, success_rate])
ates = c()
n = nrow(rel_data)
for (i in 1:1000) {
  treatments <- if (n %% 2 == 0) {
    rep(c(0, 1), length.out = n)
  } else {
    c(rep(c(0, 1), length.out = n - 1), sample(c(0, 1), 1)) # If odd, add one extra
random assignment
  rel_data[, treatment_ri := sample(treatments)]
  # merge by session and day
  ate = mean(rel_data[treatment_ri == 1, success_rate]) - mean(rel_data[treatment_ri
== 0, success_rate])
  ates = c(ates, ate)
ggplot() + geom_histogram(aes(x = ates), bins = 30) + geom_vline(xintercept = real_at)
e, color = "red") + theme_minimal()
```


(p_value = sum(abs(ates) <= abs(real_ate)) / length(ates))</pre>

[1] 0.621