Кафедра ВМСС

по лабораторной работе № 01 Прохождение сигналов через RC-цепи

Выполнил:

Студент: Иванов

И.И.

A-12-24 Группа:

Dama:

Проверия:

Преподаватель: Петров П.П.

Dama:

Подготовка к работе.

Для схемы (рис. 1) получить выражение для

амплитудно-частотной $H(f) = \frac{U_{\text{вых}}(f)}{U_{\text{---}}(f)}$ и переходной

 $h(t) = \frac{U_{\text{вых}}(t)}{U_{\text{rx}}(t)}$ характеристик.

Puc. 1

 $H(f) = \frac{U_{\text{вых}}(f)}{U_{\text{вх}}(f)} =$ получить выражение для амплитудно частотной характеристики

Амлитудно-частотная характеристика схемы рис. 1

f	Таблица с расчетами
Н	

График АЧХ с указанием (построением), как определить граничную частому

$$h(t) = \frac{U_{_{
m BbIX}}(t)}{U_{_{
m BX}}(t)} =$$
 получить выражение для переходной характеристики схемы рис. 1

Переходная характеристика схемы рис. 1

t	Таблица с расчетами
h	

График перехоной характеристики с указанием (построением), как определить спад плоской вершины

Dля схемы (рис. 2) получить выражение для $\mathrm{амплиту}\mathrm{дно-частотной} \qquad H(f) = \frac{U_{\scriptscriptstyle \mathrm{BbK}}(f)}{U_{\scriptscriptstyle \mathrm{RX}}(f)} \qquad \mathrm{u} \qquad \mathrm{nepexo}\mathrm{дной}$

$$h(t) = \frac{U_{\text{вых}}(t)}{U_{\text{rx}}(t)}$$
 характеристик.

Puc. 2

 $H(f) = \frac{U_{\text{вых}}(f)}{U_{\text{вх}}(f)} =$ получить выражение для амплитудночастотной характеристики схемы рис. 2

Амлитудно-rастотная характеристика схемы рис. 1

f	Таблица с расчетами
Н	

График АЧХ с указанием (построением), как определить граничную частоту

$$h(t) = \frac{U_{_{
m BbIX}}(t)}{U_{_{
m BX}}(t)} =$$
 получить выражение для переходной характеристики схемы рис. 2

Переходная характеристика схемы рис. 1

t	Таблица с расчетами
h	

График переходной характеристики с указанием (построением), как определить длительность фронта выходного сигнала

Рабочее задание

Исследование частотных характеристик КС-цепей

1. Снять амплитудно-частотную характеристику RC-цепи с разделительным конденсатором.

f, KTU,	0,046	0,1	0,22	0,46	1	2,2	4,6	10	22	46	100	220
U _{8x} , B						6						
UBUX, B												
$\gamma = U_{_{ m BMX}}/U_{_{ m BX}}$												
<i>L</i> γ, <i>δ5</i>								5				

График АЧХ с указанием (построением), как определить граничную частоту

Нижная граничная частота $f_H = _{----}$ Гу.

2. Снять амплитудно-частотную характеристику RC-цепи с интегрирующим конденсатором

f, KTU,	0,046	0,1	0,22	0,46	1	2,2	4,6	10	22	46	100	220
U _{8x} , B												
UBBER, B												
$\gamma = U_{_{ m BMX}}/U_{_{ m BX}}$												
<i>L</i> γ, <i>δ5</i>												

График АЧХ с указанием (построением), как определить граничную частоту

Верхная граничная частота $f_8 =$ ____ к Γ и.

<u>Исследование импульсных характеристик RC-цепей</u>

1. Снять переходную характеристику RC-цепи с интегрирующим конденсатором. Определить длительность фронта t_p и среза t_c при длительности входного сигнала 100мкс.

Осциплограммы входного и выходного сигналов с указанием осей и дополнительными построениями для определения длительности фронта to и среза to 2. Снять переходную характеристику RC-цепи с разделительным конденсатором. Dля выходного импульса (при длительности входного импульса 30мкс) определить амплитуду U_m и спад плоской вершины ΔU . По этим данным рассчитать относительный спад плоской вершины δU .

$$U_{m} = \Delta U = \Delta U =$$

Осциплограммы входного и выходного сигналов с yказанием осей и дополнительными построениями для определения амплитуду U_m и спад плоской вершины ΔU .

3. Снять переходную характеристику RC-цепи с дифференцирующим конденсатором. Dля этого увеличить длительность входного сигнала до 2 мс. По

уровню 0,5 определить длительности положительного и отрицательного импульсов выходного сигнала.

Осциплограммы входного и выходного сигналов с указанием осей и дополнительными построениями для определения длительности положительного и отрицательного импульсов выходного сигнала.

Провести теоретический расчет длительности импульсов, исходя из параметров схемы, и сравнить с экспериментом.

Схема	интегр	ирующим сатором	RC-цепь с разделительным конденсатором			
Параметр	fo, KT y	to, ukc	fu, Tu,	δ, %		
Pacrem						
Эксперимент						