Producto Escalar:

Ejercicio 1

Dados los vectores $\vec{a}(1, -1, 0), \vec{b}(0, 1, -1)$ y $\vec{c} = m\vec{a} - \vec{b}$

- a) Halla el valor de m para que \vec{a} y \vec{c} sean perpendiculares.
- b) Para m=2, halla el ángulo que forman b y c.

Ejercicio 2

Dados los vectores $\vec{a}=2\vec{i}-\vec{j}; \ \vec{b}=\vec{i}+2\vec{j}-\vec{k}$; halla x e y de forma que $\vec{c}=x\vec{i}+y\vec{j}$ i j sea perpendicular a b y tenga el mismo módulo que a.

Ejercicio 3

Sean u y v dos vectores que forman un ángulo de 45° y que tienen el mismo módulo, $|\vec{u}| = |\vec{v}| = 2$.

- a) ¿Cuál es el módulo de $\vec{u} + \vec{v}$? ¿Y el de $\vec{u} \vec{v}$?
- b) Demuestra que u+v y u-v son perpendiculares.

Ejercicio 4

Dados dos vectores $\vec{u}(1,0,0)$ y $\vec{v}(1,1,0)$

- a) Halla la proyección de \vec{u} sobre \vec{v} , así como el ángulo que forman \vec{u} y \vec{v} .
- b) Encuentra un vector $(x, y, z) \neq (0, 0, 0)$, que sea combinación lineal de \vec{u} y \vec{v} , y que sea perpendicular a (1, 0, 0).

Ejercicio 5

Dados dos vectores $\vec{u}(2,-1,3)$, $\vec{v}(4,2,-2)$ y $\vec{w}(1,2,x)$

- a) Halla $|\vec{u}| = |\vec{v}|$ y el ángulo que forma u y v.
- b) Obtén el valor de x para que $|\vec{u}|$ y $|\vec{w}|$ formen un ángulo de 60°.

Producto Vectorial

Ejercicio 1

Dados dos vectores $\vec{u}(1,3,0)$ y $\vec{v}(2,1,1)$

- a) Halla un vector, w, de módulo 1, que sea perpendicula a $|\vec{u}| y a |\vec{v}|$
- b) ¿Cuál es el área del paralelogramo deerminado por $|\vec{u}| y |\vec{v}|$?

Ejercicio 2

Halla el área de un paralelogramo determinado por los vectores $|\vec{u}| \cdot |\vec{v}| \ y \ |\vec{u}| \cdot |\vec{w}|$, siendo: u(2,-1,1), v(0,1,-1) y w(1,0,1)

Ejercicio 3

- a) Halla un vector unitario que sea perpendicular a (3,-1-1) y a (1, -2-0).
- b) ¿Es cierto que $(u \cdot v)3W = u \cdot (v \cdot w)$? Pon un ejemplo.

Ejercicio 4

- a) Demuestra que, si $|\vec{u}| y |\vec{v}|$ son dos vectores cualesquiera, se tiene que: (u-v)·(u+v) = 2(u·v)
- b) halla un vector perpendicular a $\vec{u}(2,-1,1)$ y a $\vec{v}(3,0,-1)$

Ejercicio 5

Halla el valor de m para que el área del paralelogramo determinado por u(2,0,1) y v (0,m,1) sea 2.

Producto mixto

Ejercicio 1

- a) Demuestra que los vecotres $\vec{u}(k,-3,2)$ y $\vec{v}(k,3,2)$ y $\vec{w}(1,0,0)$ son linealmente independientes, cualquiera que sea el valor de k.
- b) ¿Cuál es el volumen del paralelepípedo determinado por \vec{u} , \vec{v} y \vec{w} ??

Ejercicio 2

- a) Calcula el volumen del paralelepípedo determinado por los vectores $\vec{u}(2,-1,1), \vec{v}(3,0,-2)$ y $\vec{w}(2,-3,0).$
- b) ¿Cuánto valen cada uno de los siguientes productos mixtos? [2u, v, w]; [u, v, u + v]

Ejercicio 3

- a) Halla los valores de m para que los vectores $\vec{u}(0,1,1), \vec{v}(-2,0,1)$ y $\vec{w}(m,m-1,1)$ sean linealmente independientes.
- b) Estudia si el vector (2,1,0) depende linealmente de \vec{u} , \vec{v} y \vec{w} para el caso m=3.

Ejercicio 4

Dados los vectores $\vec{u}(1,2,3), \vec{v}(1,1,1)$ y $\vec{w}(1,\lambda,5)$; halla el valor de λ para que:

- a) Determinen un paralelepípedo de volumen 10
- b) Sean linealmente dependientes

Ejercicio 5

Dados los vectores $\vec{u}(1,0,-1), \vec{v}(0,2,-1)$ y $\vec{w}(2,-2,1)$ sepide:

El volumen del paralelepípedo determinado por ellos.

Halla, si existe, el valor de α para que el vector $(\alpha, \alpha, -6)$ se pueda expresar como combinación lineal de \vec{u} \vec{y} \vec{v} .