CSC 680: Artificial Intelligence

Fall 2012

Assignment #5 (60 Points)

Due date: Monday 11/26/2012 (in class)

Objective: To gain programming experience using Evolutionary Algorithms

Machine Learning with Genetic Algorithms (GA)

In this assignment you will implement a complete GA algorithm to perform engineering design optimization for an <u>I-beam</u> as shown below:

Figure 2. The frontal and side views of the I-beam

The general optimization goal for the I-Beam problem is to **minimize** $F = [f_1, f_2]^T$ where the cross section area (f_1) and the static deflection (f_2) of the I-beam, which are defined as:

$$f_1(X) = 2x_2x_4 + x_3(x_1 - 2x_4)$$

$$f_2(X) = \frac{60,000}{x_3(x_1 - 2x_4)^3 + 2x_2x_4[4x_4^2 + 3x_1(x_1 - 2x_4)]}$$

Subject to the bending stress constraint:

$$\begin{split} f_3(X) &= \frac{180,000x_1}{x_3(x_1 - 2x_4)^3 + 2x_2x_4\Big[4x_4^2 + 3x_1(x_1 - 2x_4)\Big]} \\ &+ \frac{15,000x_2}{(x_1 - 2x_4)x_3^3 + 2x_4x_2^3} \leq 16 \end{split}$$

The geometric side constraints are:

$$10 \le x_1 \le 80$$
, $10 \le x_2 \le 50$, $0.9 \le x_3 \le 5.0$, $0.9 \le x_4 \le 5.0$

Programming Guidelines

- Given the boundaries of the feasible design region as shown above, a linear search of the problem space can determine which extrema in the objectives space are simultaneously attainable.
- The table shown below depicts the computed ranges of responses for the two objective functions and the bending stress constraint. It is evident that f_1 is in conflict with f_2 and that the ideal solution $F^* = [25.380.0059]^T$, where the two objectives are simultaneously minimized, can never be attained.

x ₁	x ₂	х ₃	х ₄	f ₁	f ₂	f ₃
10	10	0.9	0.9	25.38 _{min}	12.04 _{max}	444.31 _{max}
80	50	5	5	850.00 _{max}	0.0059 _{min}	2.01 _{min}

- The fix for the above problem is to use the concept of <u>Pareto optimality</u>, but you are not expected to perform multi-objective optimization in this assignment. However, do test your GASolver on both f₁ and f₂ to make sure they are both optimized correctly in isolation from each other.
- Use the following population parameters:
 - o numGenerations=100, populationSize=50, P_c=0.75, P_m=0.001

However, feel free to experiment with the above parameters and vary them to observe their effect on the algorithm's convergence.

Input/Output Guidelines

• Your program is to be called GASolver.java and compiled/run from the command line as follows:

javac GASolver.java java GASolver

• Your program must output two types of graph for each of the two objective functions – the best fitness of each particle in each generation and the average population fitness:

• In addition to the two graphs, have your program display in the console area the best obtained solution for each generation using the format:

• For plotting your results, use the following freely available PlotPackage API which can very easily be set up as shown below:

```
import jahuwaldt.plot.*;
import java.awt.*;
import javax.swing.*;

//*** Create a Simple 2D XY plot window.
double[] xArr = new double[numGenerations];
double[] yArr = new double[numGenerations];
for (int i=0; i<numGenerations; i++){
```

```
xArr[i] = i+1;
   yArr[i] = avgPopulationFitness[i]; // your GASolver should fill up this array
}
Plot2D aPlot = new SimplePlotXY(xArr, yArr, "Static Deflection", "Generation No.", "Avg. Population Fitness", null, null, null);
//
       Make the horizontal axis a log axis.
PlotAxis xAxis = aPlot.getHorizontalAxis();
xAxis.setScale(new LinearAxisScale());
PlotPanel panel = new PlotPanel(aPlot);
panel.setBackground( Color.white );
PlotWindow window = new PlotWindow("SimplePlotXY Plot Window", panel);
window.setSize(500, 300);
window.setLocation(250,250); // location on screen
window.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
window.show();
```

Grading Guidelines

- I do not accept multiple submissions
- Read my policy on late submissions

Techi	90%	
•	Program compiles and executes correctly	
•	Proper error checking is performed on input file, if applicable, and during execution	
•	Assignment objectives are met	
•	Specified I/O guidelines are followed	
Codir	10%	
•	Opening comments (author name, assignment number, date,	

purpose, etc.) are included

- General comments appear in code
- Code is properly indented and spaced
- Meaningful variable names are used
- Code is properly modularized

Submission Guidelines

- 1. Place your program files (**GASolver.java**) in a directory called **YourName-HW5** and archive it using Winzip or any other compression utility that you might have available on your PC. Include any special instructions to run your code in a **README** file.
- 2. Email me the zipped archive on or before the due date using the following subject line for your email message:

 Your Name Al HW5

In addition, submit a **printout of all your program files** in class on the due date.