AN INTERPOLATION OF THE WEIL-SHALE REPRESENTATION

SOPHIE KRIZ

ABSTRACT. In this note, we exhibit new examples of semisimple pre-Tannakian categories generated by a simple object whose second symmetric and exterior powers are also simple.

1. Introduction

By a pre-Tannakian category, we mean a \mathbb{C} -linear abelian category with a \mathbb{C} -bilinear associative, commutative, unital tensor product, which is locally finite in the sense that Hom-sets are finite dimensional \mathbb{C} -vector spaces and is rigid in the sense that objects have strong duals [3]. An abelian category is semisimple if every object is a direct sum of finitely many simple objects. Examples of semisimple pre-Tannakian categories are, in general, difficult to construct, and their properties remain somewhat mysterious.

In this note, we prove the following result, answering a question of P. Deligne:

Theorem 1. For every natural number q which is a power of a prime not equal to 2 and every $t \in \mathbb{C}$ such that $q^t \neq \pm 1, \pm q$, there exists a semisimple pre-Tannakian category over \mathbb{C} generated by an object X of dimension q^t such that X, $\Lambda^2(X)$, $Sym^2(X)$ are simple and

(1)
$$dim(End(X^{\otimes 3})) = 2q + 2.$$

To prove Theorem 1, we use the Weil-Shale representation, whose definition and key properties are taken from R. Howe [4], N. M. Katz [5], A. Weil [10], and P. Deligne [2]. The main point of this note is noticing that these examples for $n \in \mathbb{N}$ can be "interpolated" to $t \in \mathbb{C} \setminus \mathbb{N}_0$ using the formalism of T-algebras [8, 9].

The construction of the classical Weil-Shale representation [10, 4, 5] goes as follows: For a q which is a power of a prime not equal to 2,

suppose V_N is a 2N-dimensional vector space over \mathbb{F}_q endowed with a symplectic form. Recall that the Heisenberg group is

$$\mathbb{H}_N(\mathbb{F}_q) = V_N \times \mathbb{F}_q$$

with the operation that for $v, w \in V_N$, $\lambda, \mu \in \mathbb{F}_q$,

$$(v,\lambda)(w,\mu) = (w+w,\lambda+\mu+\langle v,w\rangle)$$

(and therefore $0 \times \mathbb{F}_q$ is the center of $\mathbb{H}_N(\mathbb{F}_q)$). The symplectic group $Sp(V_N)$ acts on $\mathbb{H}_N(\mathbb{F}_q)$ by acting tautologically on the factor of V_N and trivially on the center. Consider the group

$$Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q).$$

For a non-trivial character

$$\psi: \mathbb{F}_q \to \mathbb{C}^{\times},$$

there is a unique q^N -dimensional irreducible $\mathbb{H}_N(\mathbb{F}_q)$ -representation ω_{ψ} (over \mathbb{C}). Then ω_{ψ} forms a representation of $Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q)$ called the Weil-Shale representation (a priori projective but an actual representation for a finite field \mathbb{F}_q , see [4]). For the remainder of this note, ψ will be fixed, and we will omit it from the notation.

Considering the usual inclusion $GL_N(\mathbb{F}_q) \subset Sp(V_N)$, the restriction of ω to $GL_N(\mathbb{F}_q)$ gives the permutation representation \mathbb{CF}_q^N where $GL_N(\mathbb{F}_q)$ acts on \mathbb{F}_q^N by matrix multiplication, tensored with

(2)
$$\epsilon(det)$$

where $det: GL_N(\mathbb{F}_q) \to \mathbb{F}_q^{\times}$ is the determinant map and $\epsilon: \mathbb{F}_q^{\times} \to \mathbb{C}^{\times}$ is the character of order 2.

Our method of proving Theorem 1 is based on "interpolating" the Weil-Shale representation to $t \in \mathbb{C} \setminus \mathbb{N}_0$.

The proof of Theorem 1 constitutes the remainder of this note. In Section 2, we describe the interpolation using the formalism of T-algebras [8, 9]. In Section 3, we prove our statements about the dimension of $End(X^{\otimes n})$, $n \leq 3$. In Section 4, we discuss the semisimplicity of the categories constructed.

2. The T-Algebra Structure

Recall that a C-linear additive category with a C-bilinear associative, commutative, unital tensor product and strong duality which is

generated by a basic object X can be axiomatized by its T-algebra

$$\mathcal{T}(S,T) = Hom(X^{\otimes S}, X^{\otimes T})$$

(see [8, 9], following [1], Chapter 10):

A T-algebra \mathcal{T} is a universal algebra structure which consists of the data of vector spaces $\mathcal{T}(S,T)$ corresponding (functorially) to pairs of finite sets S,T, along with the data of partial trace operations

(3)
$$\tau_{\phi}: \mathcal{T}(S,T) \to \mathcal{T}(S \setminus S', T \setminus T')$$

corresponding (functorially) to bijections $\phi: S' \to T'$ for subsets $S' \subseteq S$, $T' \subseteq T$, the data of *product* operations

$$\pi: \mathcal{T}(S_1, T_1) \otimes \mathcal{T}(S_2, T_2) \to \mathcal{T}(S_1 \coprod S_2, T_1 \coprod T_2)$$

for finite sets S_1, S_2, T_1, T_2 , and the data of two types of "units" $1 \in \mathcal{T}(\emptyset, \emptyset)$ and $\iota \in \mathcal{T}(\{1\}, \{1\})$ satisfying suitable axioms (see [8, 9] for details).

For a T-algebra \mathcal{T} , we may conversely construct an additive \mathbb{C} -linear category $\mathscr{C}(\mathcal{T})$ with a \mathbb{C} -bilinear associative, commutative, unital tensor product and strong duality which is generated by a basic object X, by first constructing a category $\mathscr{C}(\mathcal{T})_0$ with objects

$$Obj(\mathscr{C}(\mathcal{T})_0) = \{ X^{\otimes S} \otimes (X^{\vee})^{\otimes T} \mid S, T \text{ finite sets} \}$$

and morphisms

$$Hom_{\mathscr{C}(\mathcal{T})_0}(X^{\otimes S_1} \otimes (X^{\vee})^{\otimes T_1}, X^{\otimes S_2} \otimes (X^{\vee})^{\otimes T_2}) = \mathcal{T}(S_1 \coprod T_2, S_2 \coprod T_1).$$

We construct $\mathscr{C}(\mathcal{T})$ by formally adding direct sums to $\mathscr{C}(\mathcal{T})_0$ and taking a pseudo-abelian envelope (for more details, see [8, 9]).

Recall from F. Knop [6, 7] that there is an interpolation $Rep(GL_t(\mathbb{F}_q))$ of the category of representations $Rep(GL_N(\mathbb{F}_q))$, which is generated by a basic object X of dimension q^t (interpolating \mathbb{CF}_q^N), which is semisimple and pre-Tannakian for $t \in \mathbb{C} \setminus \mathbb{N}_0$. One may consider the spaces of morphisms

for finite sets S, T. As a vector space, note that (4) is isomorphic to

(5)
$$Hom_{Rep(GL_N(\mathbb{F}_q))}((\mathbb{CF}_q^N)^{\otimes S}, (\mathbb{CF}_q^N)^{\otimes T}),$$

for N >> 0. Let us denote by

(6)
$$\mathcal{V}(S,T)$$

the subspace of (5) of morphisms that preserve the action of $Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q)$ (taking V_N to be a symplectic space of dimension 2N), for N >> 0.

We claim that $\mathcal{V}(S,T)$, considered as a subspace of (4), forms a sub-T-algebra of the T-algebra corresponding to $Rep(GL_t(\mathbb{F}_q))$ generated by X.

The T-algebra $\mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}$ corresponding to $Rep(GL_t(\mathbb{F}_q))$ generated by X is defined by taking spaces (4), describing partial trace by using the strong duality of X and composition with evaluation and coevaluation morphisms, and taking product to be the tensor product of morphisms (the two "units" then being $\iota = Id_X$ and $1 = Id_1$).

To describe this approach in more detail, we can identify the vector space $\mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}(S,T)$, for finite sets S,T, with the free \mathbb{C} -vector space generated by equivalence classes of quotients

(7)
$$f: \mathbb{F}_q^{S \coprod T} = \mathbb{F}_q \{ e_i \mid i \in S \coprod T \} \to V$$

with the equivalence relation that f is equivalent to any composition of f with an automorphism of the target.

The product π of two quotient maps is a sum of all possible "amalgamations" of the target vector spaces. For more detail, see [9].

Partial trace can be defined by, for subsets $S' \subseteq S$, $T' \subseteq T$, and a bijection $\phi: S' \to T'$, describing $\tau_{\phi}(f)$ for f as in (7), and extending linearly.

If there exists an $i \in S'$ such that $f(e_i) \neq f(e_{\phi(i)})$, then take $\tau_{\phi}(f) = 0$.

If for every $i \in S'$ we have $f(e_i) = f(e_{\phi(i)})$, then we take $\tau_{\phi}(f)$ to be a multiple of the restriction of $f|_{\mathbb{F}_q^{(S \coprod T) \setminus (S' \coprod T')}}$, where the coefficient is determined by the difference of dimensions

$$\ell = \dim(V) - \dim(Im(f|_{\mathbb{F}_q^{(S\amalg T)\smallsetminus (S'\amalg T')}})),$$

by being 1 if $\ell = 0$, and

$$(q^t - q^{dim(V)-1}) \cdot \cdot \cdot \cdot (q^t - q^{dim(V)-\ell})$$

if $\ell \neq 0$. This formula for general t is obtained by polynomially (in q^t) interpolating the respective formulas for N >> 0.

For the purposes of this paper, we may restrict attention to the Homspaces $Hom_{\mathscr{C}}(X^{\otimes S}, X^{\otimes T})$ where |S| = |T| (the graded context – we can

set the other $Hom_{\mathscr{C}}(X^{\otimes S}, X^{\otimes T})$ to 0.) We shall assume this convention throughout the rest of this paper.

Now recall the space $\mathcal{V}(S,T)$ of (6).

Lemma 2. For $t \in \mathbb{C} \setminus \mathbb{N}_0$, the restriction of the partial trace maps

$$\tau_{\phi}: \mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}(S,T) \to \mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}(S \setminus S', T \setminus T')$$

for finite sets $S' \subseteq S$, $T' \subseteq T$, and bijections $\phi : S' \to T'$ (|S| = |T|, |S'| = |T'|), and the product maps

$$\pi: \mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}(S_1, T_1) \otimes \mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}(S_2, T_2) \to \mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}(S_1 \coprod S_2, T_1 \coprod T_2)$$

for finite sets S_1, S_2, T_1, T_2 , to $\mathcal{V}(S, T)$ and $\mathcal{V}(S_1, T_1) \otimes \mathcal{V}(S_2, T_2)$, respectively, have images contained in $\mathcal{V}(S \setminus S', T \setminus T')$ and $\mathcal{V}(S_1 \coprod S_2, T_1 \coprod T_2)$, respectively.

Proof. The statement holds for N >> 0 (note that tensoring with (2) can be neglected for our purposes since we are only considering the graded part of the T-algebra for $Rep(GL_t(\mathbb{F}_q))$). Therefore, it holds for a general t since the constants involved are polynomial in q^t for t = N.

Write \mathcal{V}_t for the T-algebra formed by the vector spaces $\mathcal{V}(S,T)$ and the partial trace and product maps of $\mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}$.

We may therefore consider the category $\mathscr{C}(\mathcal{V})$, which can be considered as generated by an interpolation ω of the Weil-Shale representation. We write

$$\mathscr{C}_{Sp(V_t)\ltimes\mathbb{H}_t(\mathbb{F}_q)}:=\mathscr{C}(\mathcal{V}_t).$$

Since \mathcal{V}_t forms a sub-T-algebra of $\mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}$, the category $\mathscr{C}_{Sp(V_t)\ltimes\mathbb{H}_t(\mathbb{F}_q)}$ forms a subcategory of $Rep(GL_t(\mathbb{F}_q))$.

3. The Counting Argument

In this section, we prove that, for N > 1

(8)
$$\dim(End_{Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q)}(\omega^{\otimes 2})) = 2$$

and

(9)
$$\dim(End_{Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q)}(\omega^{\otimes 3})) = 2q + 2.$$

To calculate $dim(End_{Sp(V_N)\ltimes\mathbb{H}_N(\mathbb{F}_q)}(\omega^{\otimes n}))$, consider the object

$$\Omega := \omega \otimes (\omega^{\vee}) \in \mathscr{C}_{Sp(V_t) \ltimes \mathbb{H}_t(\mathbb{F}_q)}$$

For every $k \in \mathbb{N}$, there is an isomorphism

(10)
$$Res_{Sp(V_N)}^{Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q)}(\Omega^{\otimes k}) \cong (\Omega^{\otimes k+1})^{\mathbb{H}_N(\mathbb{F}_q)}$$

as representations of $Sp(V_N)$ for N >> 0 (taking Ω to denote $\omega_{\psi} \otimes (\omega_{\psi})^{\vee}$), since by [4] Proposition 2 (i-ii), their characters are equal. In fact, we have the following

Lemma 3. For N > 1, as a representation of $Sp(V_N) \ltimes V_N$, Ω is isomorphic to the space of functions on V_N :

$$Res^{Sp(V_N)\ltimes \mathbb{H}_N(\mathbb{F}_q)}_{Sp(V_N)\ltimes V_N}(\Omega)\cong \{f:V_N\to \mathbb{C}\}$$

where an element $(A, w) \in Sp(V_N) \ltimes V_N$ acts on a function $f: V_N \to \mathbb{C}$ by sending it to the function

$$(A, w)[f]: V_N \to \mathbb{C}$$

where for $v \in V_N$

$$((A, w)[f])(v) = \psi(\langle v, w \rangle) \cdot f(A(v)).$$

Proof. First note that we may write

$$\Omega = \bigoplus_{v \in V_N} \Omega_v$$

for lines Ω_v such that an element $w \in V_N = V_N \times \{0\} \subset \mathbb{H}_N(\mathbb{F}_q)$ preserves each Ω_v and acts by multiplication by the character

$$x \mapsto \psi(\langle v, w \rangle) \cdot x.$$

 Ω can then be considered as the space of global sections of an $Sp(V_N)$ -equivariant line bundle Ω_v over V_N (as a discrete set) where the action of $Sp(V_N)$ on Ω induces an action of $Sp(V_N)$ on the line bungle, i.e. for $\gamma \in Sp(V_N)$,

$$\gamma(\Omega_v) = \Omega_{\gamma(v)}.$$

However, Ω_v forms a trivial $Sp(V_N)$ -equivariant line bundle, meaning that for every $v \in V_N$, the stabilizer subgroup $Sp(V_N)^v \subseteq Sp(V_N)$ fixing v acts trivially on Ω_v : At v = 0, for N > 0, $Sp(V_N)^0 = Sp(V_N)$, which is a perfect group (meaning that it has no non-trivial abelian quotients), and therefore acts trivially on Ω_0 . For $v \neq 0$, taking W_v to be the

quotient of the orthogonal space $V_N^{\perp v}$ of vectors perpendicular to v by \mathbb{F}_q -multiples of v,

$$Sp(V_N)^v = Sp(W_v),$$

which again is a perfect group (for N > 0).

Therefore, Ω is the space of global sections of the trivial $Sp(V_N)$ -equivariant line bundle, i.e. a space of functions

(11)
$$\Omega = \{ f : V_N \to \mathbb{C} \},$$

and the action of $Sp(V_N) \ltimes V_N \subset Sp(V_N) \ltimes \mathbb{H}_n(\mathbb{F}_q)$ on a function f in (11) is given by $Sp(V_N)$ acting by composition, and $w \in V_N$ acting by sending f to the function

$$V_N \to \mathbb{C}$$

 $v \mapsto \psi(\langle v, w \rangle) \cdot f(v)$

By Lemma 3, we have

$$Res_{Sp(V_N)\ltimes V_N}^{Sp(V_N)\ltimes \mathbb{H}_N(\mathbb{F}_q)}(\Omega^{\otimes k})\cong \{f:V_N^k\to\mathbb{C}\},$$

which is generated by the character functions $\mathbb{1}_{(v_1,\ldots,v_{k+1})}$ for $v_i \in V_N$ (which is 1 at (v_1,\ldots,v_{k+1}) and 0 at all other elements of V_N^{k+1}).

The fixed points

$$(12) \qquad (\Omega^{\otimes k+1})^{\mathbb{H}_N(\mathbb{F}_q)} \cong (Res_{Sp(V_N) \ltimes V_N}^{Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q)}(\Omega^{\otimes k+1}))^{V_N}$$

(the isomorphism follows since $\mathbb{F}_q \subset \mathbb{H}_N(\mathbb{F}_q)$ acts trivially on Ω) are then generated by $\mathbb{1}_{(v_1,\ldots,v_{k+1})}$ for $v_i \in V_N$ such that for every $u \in V_N$,

$$\mathbb{1}_{(v_1,\dots,v_{k+1})} = u(\mathbb{1}_{(v_1,\dots,v_{k+1})}) =
\psi(\langle u, v_1 \rangle) \cdot \dots \cdot \psi(\langle u, v_{k+1} \rangle) \cdot \mathbb{1}_{(v_1,\dots,v_{k+1})} =
\psi(\langle u, v_1 + \dots, v_{k+1} \rangle) \cdot \mathbb{1}_{(v_1,\dots,v_{k+1})}$$

meaning that for every $u \in V_N$

$$\langle u, v_1 + \dots, v_{k+1} \rangle = 0,$$

which is equivalent to $v_1 + \cdots + v_{k+1} = 0$.

Therefore, (12) is identified with the space of functions on V_N^{k+1} with support on

(13)
$$\{(v_1, \dots, v_{k+1}) \in V_N^{k+1} \mid v_1 + \dots + v_{k+1} = 0 \in V_N\}.$$

Therefore, the isomorphism (10) follows from Lemma 3 the isomorphism between (13) and V_N^k .

Now, by duality,

$$End_{Sp(V_N)\ltimes \mathbb{H}_N(\mathbb{F}_q)}(\omega^{\otimes k+1}) \cong Hom_{Sp(V_N)\ltimes \mathbb{H}_N(\mathbb{F}_q)}(1,\Omega^{\otimes k+1}),$$

which is identified with the fixed points

$$(14) \qquad (\Omega^{\otimes k+1})^{Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q)} \cong ((\Omega^{\otimes k+1})^{\mathbb{H}_N(\mathbb{F}_q)})^{Sp(V_N)}.$$

By (10), (14) is isomorphic to the $Sp(V_N)$ fixed points

$$(Res_{Sp(V_N)}^{Sp(V_N)\ltimes\mathbb{H}_N(\mathbb{F}_q)}(\Omega^{\otimes k}))^{Sp(V_N)},$$

which are isomorphic to

$$Hom_{Sp(V_N)}(1,\Omega^{\otimes k}).$$

Therefore, for $t \in \mathbb{C} \setminus \mathbb{Z}$, for N >> 0,

$$End_{\mathscr{C}_{Sp(V_N)\ltimes\mathbb{H}_N(\mathbb{F}_q)}}(\omega^{\otimes k+1})\cong$$

$$Hom_{Sp(V_N) \ltimes \mathbb{H}_N(\mathbb{F}_q)}(1,\Omega^{\otimes k+1}) \cong Hom_{Sp(V_N)}(1,\Omega^{\otimes k})$$

the dimension of which, by Lemma 3, can be calculated as the number of orbits of $Sp(V_N)$ on V_N^k .

For example, we can verify that

$$End_{Sp(V_N)\ltimes\mathbb{H}_N(\mathbb{F}_q)}(\omega)=1$$

(the number of $Sp(V_N)$ orbits of $V_N^0=0$), and therefore that $\omega\in\mathscr{C}_{Sp(V_t)\ltimes\mathbb{H}_t(\mathbb{F}_q)}$ is simple.

We get (8) since the dimension of

$$End_{Sp(V_N)\ltimes\mathbb{H}_N(\mathbb{F}_q)}(\omega^{\otimes 2})=2$$

because V_N has two $Sp(V_N)$ -orbits: 0 and $V_N \setminus 0$.

Finally, we get (9) since

$$End_{Sp(V_N)\ltimes\mathbb{H}_N(\mathbb{F}_q)}(\omega^{\otimes 3}) = 2q + 2$$

because V_N^2 has $2q + 2 Sp(V_N)$ -orbits, which are as follows:

(A) 1 orbit of the form

$$\{(0,0)\},\$$

(B) q+1 orbits of the form

$$\{(v,0) \mid v \in V_N\}, \ \{(0,v) \mid v \in V_N\},$$

 $\{(v,\lambda \cdot v) \mid v \in V_N\}, \text{ for } \lambda \in \mathbb{F}_q^{\times}$

corresponding to "slopes" $\lambda \in \mathbb{P}^1(\mathbb{F}_q)$.

(C) q orbits of the form

$$\{(v,w) \mid \langle v,w \rangle = \mu, \ v,w \text{ linearly independent}\}, \text{ for } \mu \in \mathbb{F}_q.$$

4. Semisimplicity

In this section, we address the semisimplicity statement of Theorem 1. We will begin with some general observations.

In an algebra \mathcal{A} of the form

(15)
$$\mathcal{A} = \prod_{k=1}^{n} M_k(\mathbb{C}),$$

the general trace is of the form

$$\widetilde{tr}(A) = \sum_{k=1}^{n} b_k \cdot tr(A_k),$$

for $A = (A_1, ..., A_n) \in \mathcal{A}$ with $A_k \in M_k(\mathbb{C})$, for some $b_k \neq 0$.

Lemma 4. For $A \in \mathcal{A}$, if $\widetilde{tr}(A) \neq 0$, then for every $N \in \mathbb{N}$, there exists an M > N such that $\widetilde{tr}(A^M) \neq 0$.

Proof. Write $A = (A_1, \ldots, A_n) \in \mathcal{A}$, for $A_k \in M_k(\mathbb{C})$. Without loss of generality, the matrices A_k are in Jordan form. Thus, our statement reduces to the following:

Claim: Let $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$ be different numbers. If, for some numbers $\alpha_1, \ldots \alpha_m \in \mathbb{C}$

$$\alpha_1 \lambda_1 + \dots + \alpha_m \lambda_m \neq 0$$
,

then for all N, there exists an M > N such that

$$\alpha_1 \lambda_1^M + \dots + \alpha_m \lambda_m^M \neq 0.$$

Without loss of generality $\lambda_1, \ldots, \lambda_m \neq 0$. Then the matrix

$$\Lambda = \begin{pmatrix} \lambda_1^N & \lambda_1^{N-1} & \dots & \lambda_1^{N+m-1} \\ \vdots & \vdots & & \vdots \\ \lambda_m^N & \lambda_m^{N-1} & \dots & \lambda_m^{N+m-1} \end{pmatrix}$$

is non-singular by the Vandermonde determinant.

Thus, there exists a vector $v = (v_1, \dots v_m)^T$ such that $(\lambda_1, \dots, \lambda_m)^T = \Lambda \cdot v$. Thus, if

$$(\alpha_1,\ldots,\alpha_m)\cdot\Lambda=0,$$

then

$$\alpha_1 \lambda_1 + \dots + \alpha_m \lambda_m = (\alpha_1, \dots, \alpha_m) \Lambda v = (\alpha_1, \dots, \alpha_m) 0 = 0.$$

Contradiction.

Recall that, for a locally finite, \mathbb{C} -linear additive category with a \mathbb{C} -bilinear associative, commutative, unital tensor product and strong duality, one can form the *semisimplification* (see [1], Section 6.1) by quotienting out *negligible* morphisms (i.e. morphisms $f: X \to Y$ such that for every morphism $g: Y \to X$, the trace $tr(g \circ f)$ is 0).

Lemma 4 then gives the following

Proposition 5. The (pseudo-abelian envelope of the) semisimplification of a locally finite, \mathbb{C} -linear additive category \mathscr{C} with a \mathbb{C} -bilinear associative, commutative, unital tensor product and strong duality which is generated by an object X, is semisimple if and only if for every $a \in End(X^{\otimes n})$,

(16)
$$tr(a) \neq 0 \Rightarrow \forall N \in \mathbb{N} \exists M > N \ tr(a^M) \neq 0.$$

Proof. Necessity follows from Lemma 4 (since this is a general form of a trace in a semisimple algebra).

To prove sufficiency, given the assumption, if $a \in End(X^{\otimes n})$ is non-negligible, say, $tr(ab) \neq 0$ for a $b \in End(X^{\otimes n})$, then for every $N \in \mathbb{N}$ there exists an M > N such that

$$tr((ab)^M) \neq 0,$$

and hence $a \notin Jac(End(X^{\otimes n}))$. Thus, the semisimplification of $\mathscr C$ is semisimple.

This implies the following

Proposition 6. If the category $\mathscr{C}(\mathcal{T})$ for a T-algebra \mathcal{T} is semisimple (pre-Tannakian), then for every sub-T-algebra $\mathcal{V} \subseteq \mathcal{T}$, the (pseudo-abelian envelope of the) semisimplification of $\mathscr{C}(\mathcal{V})$ is semisimple pre-T-annakian.

Proof. The condition (16) remains true in \mathcal{V} .

Applying this to our sub-T-algebra \mathcal{V}_t (corresponding to the Weil-Shale representation) of the T-algebra $\mathcal{T}_{Rep(GL_t(\mathbb{F}_q))}$ corresponding to $Rep(GL_t(\mathbb{F}_q))$, we obtain that the semisimplification

$$\widetilde{\mathscr{C}}_{Sp(V_t)\ltimes\mathbb{H}_t(\mathbb{F}_q)}$$

of $\mathscr{C}_{Sp(V_t) \ltimes \mathbb{H}_t(\mathbb{F}_q)}$ is a semisimple category, giving the existence of a semisimple pre-Tannakian category as claimed in Theorem 1.

What remains to show is that (1) holds for values of q^t not equal to $\pm 1, \pm q$:

Lemma 7. For all t with $q^t \neq \pm 1, \pm q$,

(17)
$$dim(End_{\widetilde{\mathscr{C}}_{Sv(V_{\bullet}) \ltimes \mathbb{H}_{\epsilon}(\mathbb{F}_{q})}}(\omega^{\otimes 3})) = 2q + 2.$$

Proof. Since we have proved that the semisimplification of $\mathscr{C}_{Sp(V_t)\ltimes\mathbb{H}_t(\mathbb{F}_q)}$ is semisimple, it suffices to prove that

$$(18) det(tr(a_i \circ a_i))$$

is non-zero, where a_1, \ldots, a_{2q+2} is a basis of $End_{\mathscr{C}_{Sp(V_t) \ltimes \mathbb{H}_t(\mathbb{F}_q)}}(\omega^{\otimes 3})$.

The generators a_1, \ldots, a_{2q+2} can be identified with the orbits of types (A), (B), (C) at the end of Section 3. The number

$$(19) tr(a_i \circ a_j)$$

can be non-zero when the orbit a_i contains a vector

$$(u,v) = \left(\begin{array}{c|c} u_1 & v_1 \\ u_2 & v_2 \end{array}\right)$$

(where $u_1, u_2, v_1, v_2 \in \mathbb{F}_q^N$) and the orbit a_j contains the vector

$$\left(\begin{array}{c|c} u_2 & v_2 \\ u_1 & v_1 \end{array}\right).$$

In that case, the number (19) is equal to the number of vectors in the orbit a_i (equivalently a_j). We shall refer to the orbits a_i , a_j as contragradient. We find that each orbit of type (A), (B) is contragradient to iteself, while the orbit of type (C) corresponding to λ is contragradient to the orbit of type (C) corresponding to $-\lambda$.

The number of elements of the orbit of type (A) is 1. The number of elements of an orbit of type (B) is equal to

$$q^{2n} - 1$$
.

The number of elements of the orbit of type (C) corresponding to a $\lambda \neq 0$ is equal to

$$(q^{2n} - 1)q^{2n-1}.$$

The number of elements of the orbit of type (C) corresponding to $\lambda = 0$ is

$$(q^{2n} - 1)(q^{2n-1} - q).$$

Thus, the number (18) is a polynomial in q^{2n} with factors q^{2n} , $q^{2n} - 1$, $q^{2n} - q^2$. Therefore, its zeros in $x = q^n$ are $x = 0, \pm 1, \pm q$. The statement follows.

References

- [1] P. Deligne. La catégorie des représentations du groupe symétrique S_t , lorsque t n'est pas un entier naturel. Algebraic groups and homogeneous spaces, 209-273, Tata Inst. Fund. Res. Stud. Math., 19, Tata Inst. Fund. Res., Mumbai, 2007.
- [2] P. Deligne: Letter to S. Kriz, November 22, 2023.
- [3] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik: *Tensor categories*. Math. Surveys Monogr., 205 American Mathematical Society, Providence, RI, 2015, xvi+343 pp.
- [4] R. Howe. On the character of Weil's representation, Trans. A. M. S. 177 (1973), 287-298.
- [5] N. M. Katz. Larsen's alternative, moments, and the monodromy of Lefschetz pencils. *Contributions to automorphic forms, geometry, and number theory*, 521-560. Johns Hopkins University Press, Baltimore, MD, 2004.
- [6] F. Knop. A construction of semisimple tensor categories. C. R. Math. Acad. Sci. Paris C. 343, 2006.
- [7] F. Knop. Tensor Envelopes of Regular Categories. Adv. Math. 214, 2007.
- [8] S. Kriz. Arbitrarily High Growth in Quasi-Pre-Tannakian Categories, 2023. Available at https://krizsophie.github.io/ACUCategoryFinal23123.pdf
- [9] S. Kriz. Quantum Delannoy Categories, 2023. Available at https://krizsophie.github.io/SquaredGrowth23088.pdf
- [10] A. Weil. Sur certains groupes d'operateurs unitaires, Acta Math. 111 (1964), 143-211.