1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
70	21.4	21.4
36	-12.6	12.6
59	10.4	10.4
50	1.4	1.4
28	-20.6	20.6
======	======	======
$\sum_{\bar{X}} x = 243$ $\bar{x} = 48.6$		$\sum x - \bar{x} = 66.4$

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{66.4}{5}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
146	3	9
146	3	9
140	-3	9
143	0	0
140	-3	9
======	=======	=======
$\sum x = 715$ $\bar{x} = 143$		$\sum (x - \bar{x})^2 = 36$

We are ready for the formula.

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{36}{5 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$