Question

Consider a quantum system made of one qubit. The system is in the initial state $|\psi\rangle = |1\rangle$. A T gate is applied on $|\psi\rangle$. Can you describe the action of this gate on the system? Can you give a graphical representation of the circuit? What is the final state of the system?

Answer 1

The T gate, also known as the $\pi/8$ gate, is a single-qubit gate in quantum computing. It is represented by the following matrix:

$$T = [[1, 0],$$

 $[0, e^{(i\pi/4)}]$

When the T gate is applied to the initial state $|1\rangle$, the action of the gate can be described as follows:

```
T|1\rangle = [[1, 0],

[0, e^(i\pi/4)]] * [[0],

[1]]

= [[0],

[e^(i\pi/4)]]

= e^(i\pi/4) * |1\rangle
```

So, the final state of the system after applying the T gate to $|1\rangle$ is $e^{(i\pi/4)} * |1\rangle$. Note that $e^{(i\pi/4)}$ is a complex number representing a phase shift.

To represent this operation graphically, we can use a quantum circuit diagram. In this case, we have a single qubit, and the T gate is applied to it. Here's the circuit diagram:

The initial state $|1\rangle$ is represented by a vertical line, and the T gate is denoted by a box labeled with T. The output of the gate is the final state of the system, which is $e^{(i\pi/4)} |1\rangle$.

Answer 2

The T gate is a quantum gate that maps the quantum state $|\psi\rangle$ to the state obtained by applying a rotation of $\pi/4$ radians about the Z-axis of the Bloch

sphere. Mathematically, the T gate can be represented as:

$$T = [[1, 0], [0, e^{(i\pi/4)}]]$$

where $e^{(i\pi/4)}$ is a complex number with magnitude 1 and argument $\pi/4$.

The circuit diagram for applying a T gate on a single qubit is shown below:

$$|\psi\rangle$$
 — — T —

To apply the T gate on the state $|1\rangle$, we simply apply the T gate matrix to the column vector representing the state:

$$T|1\rangle = [[1, 0], [0, e^{(i\pi/4)}]] |1\rangle = [0, e^{(i\pi/4)}]^{T}$$

So the final state of the system is the quantum state represented by the column vector $[0, e^{(i\pi/4)}]^{T}$. Geometrically, this state corresponds to a qubit with a probability amplitude of 1 at the $|0\rangle$ state and a probability amplitude of $e^{(i\pi/4)}$ at the $|1\rangle$ state on the Bloch sphere.

Answer 3

The T gate is one of the single-qubit gates in quantum computing, which is represented by the following matrix:

$$T = [[1, 0],$$

[0, e^(i\pi/4)]],

where $e^{(i\pi/4)}$ represents a complex number with a phase of $\pi/4$.

When the T gate is applied to the initial state $|\psi\rangle = |1\rangle$, the action can be represented by the following circuit:

In this circuit, the T gate is applied to the qubit in the initial state $|1\rangle$, resulting in the final state:

$$T|1\rangle = [[1, 0],$$

$$[0,e^{\wedge}(i\pi/4)]] |1\rangle = [[0], \\ [e^{\wedge}(i\pi/4)]],$$

The final state can be written as:

$$|\psi'\rangle = [[0],$$
$$[e^{(i\pi/4)}].$$

So, the final state of the system after applying the T gate to the initial state $|\psi\rangle=|1\rangle$ is $|\psi'\rangle=[[0],[e^{(i\pi/4)}]]$.