Michael Chan

Accuracies for N=30 and C=10

	Set 1 Accuracy	Set 2 Accuracy	Set 3 Accuracy	Set 4 Accuracy	Set 5 Accuracy
Eigenfaces trained on subset 1 N=30	1.00	0.9417	0.5750	0.2357	0.1316
Eigenfaces trained on subset 1 and 5 N=30	1.00	0.9083	0.2917	0.6571	1.00
Fisherfaces trained on subset 1 C=10	1.00	0.9833	0.5750	0.1929	0.1368
Fisherfaces trained on subset 1 and 5 C=10	1.00	0.8667	0.4667	0.50	1.00

Error Rates for N=30 and C=10

result =

0 0.0583 0.4250 0.7643 0.8684

result15 =

0 0.0917 0.7083 0.3429 0

resultF =

0 0.0167 0.4250 0.8071 0.8632

resultF15 =

0 0.1333 0.5333 0.5000 0

	Set 1 Error	Set 2 Error	Set 3 Error	Set 4 Error	Set 5 Error
Eigenfaces trained on subset 1 N = 30	0	0.0583	0.4250	0.7643	0.8684
Eigenfaces trained on subset 1 and 5 N = 30	0	0.0917	0.7083	08071	0
Fisherfaces trained on subset 1 C= 10	0	0.0167	0.4250	0.8071	0.1368
Fisherfaces trained on subset 1 and 5 C = 10	0	0.1333	0.5333	0.500	0

Accuracies for N=9 and C=31

result =

1.0000 0.9167 0.4667 0.1929 0.1211

result15 =

1.0000 0.5750 0.1917 0.3357 1.0000

resultF =

1.0000 0.9833 0.5750 0.1929 0.1368

resultF15 =

1.0000 0.8667 0.4667 0.5000 1.0000

	Set 1 Accuracy	Set 2 Accuracy	Set 3 Accuracy	Set 4 Accuracy	Set 5 Accuracy
Eigenfaces trained on subset 1 N = 9	1.0	0.9167	0.4667	0.1929	0.1211
Eigenfaces trained on subset 1 and 5 N = 9	1.0	0.5750	0.1917	0.3357	1.0
Fisherfaces trained on subset 1 C= 31	1.0	0.9833	0.5750	0.1929	0.1368
Fisherfaces trained on subset 1 and 5 C = 31	1.0	0.8667	0.4667	0.5	1.0

Error Rate for N=9 and C=31

result =

0 0.0833 0.5333 0.8071 0.8789

result15 =

0 0.4250 0.8083 0.6643 0

resultF =

0 0.0167 0.4250 0.8071 0.8632

resultF15 =

0 0.1333 0.5333 0.5000 0

	Set 1 Error	Set 2 Error	Set 3 Error	Set 4 Error	Set 5 Error
Eigenfaces trained on subset 1 N = 9	0	0.0833	0.5333	0.8071	0.8789
Eigenfaces trained on subset 1 and 5 N = 9	0	0.4250	0.8083	0.6643	0
Fisherfaces trained on subset 1 C= 31	0	0.0167	0.4250	0.8071	0.8632
Fisherfaces trained on subset 1 and 5 C = 31	0	0.1333	0.5333	0.500	0

Eigenface Algorithm

1) Find mean face

$$uj = \frac{1}{n} * \sum (subset)$$

2) Subtract mean from each column of subset

$$x = subset(i) - uj$$

3) Now that data is preprocessed, solve for eigenvectors of the preprocessed data.

$$[U, S, V] = svd(x)$$

4) Now that we have the largest eigenvectors of the data, reduce it to k eigenvectors.

$$ureduce = U(:,1:k)$$

5) We now have our the top eigenfaces for the subset, to project it onto our eigenspace w, we use the equation

$$w_{train} = ureduce' * x$$

6) We can then apply the ureduce to any new subset x to test on

$$w_{test} = ureduce' * x_{test}$$

7) Then we compare the training eigenspace and the test eigenspace against each other using nearest neighbors algorithm.

Top 9 Eigenvectors after training on subset 1

Reconstructed Eigenfaces

D = 9

D = 30

Fisherfaces Algorithm

1) Do the eigenface algorithm as shown above. We ended with our eigenspace w.

$$w_{train} = ureduce' * x$$

2) FLD requires us to calculate the different scatters of the data. First, we calculate the scatter of each individual class.

$$S_i = \sum (x_k - u_i) * (x_k - u_i)'$$

Where u_i = the local mean of the class i and x_k is the subset for class i.

3) Now that we have the scatter of each individual class, we can then calculate for the within class scatter using the equation

$$S_w = \sum S_i$$

4) In addition to this, we also need to calculate our between class scatter, which requires the mean of the whole dataset.

$$S_b = \sum N_i (u_i - u)(u_i - u)'$$

5) Now that we have Sw and Sb, we then solve the generalize eigenvector problem associated through the use of Sw and Sb.

$$[V, D, W_{fld}] = eig(Sb, Sw)$$

6) Now that we have the FLD of the data, we can now compute Wopt by applying our FLD to our PCA.

$$W'_{opt} = W_{fld}' * ureduce$$

Extra:

Accuracies when cutting out the top 3 eigenvectors for Eigenfaces

result =

1.0000 1.0000 0.7667 0.2929 0.1211

result15 =

1.0000 1.0000 0.9333 0.8929 1.0000