Лабораторная работа №2. Моделирование потоков событий

Задание

В соответствии с вариантом разработать приложение для моделирования потока событий.

Платформа

Любая среда программирования.

Вариант задания соответствует номеру бригады. В задачу можно вносить изменения (дополнения), менять значения параметров по согласованию с преподавателем.

Максимальное допустимое количество человек в бригаде – 3.

Отчет оформлять необязательно.

Защита лабораторной работы – по соответствующим разделам: характеристики потока событий, интенсивность потока событий, Пуассоновский поток событий, поток Эрланга, простейший поток событий, суперпозиция потоков событий, потоки с последействием; практические задания: рассчитать вероятность появления заданного количества событий в простейшем потоке; определить интенсивность простейшего потока событий, если известна вероятность появления заданного количества событий; определить порядок потока Эрланга; описать параметры распределения времени между появлениями событий при заданной интенсивности потока; определить параметры потока событий, если известны характеристики интервалов между появлениями событий; определить интенсивность потока событий, сформированного из нескольких простейших потоков событий; определить интенсивности потоков при разделении простейшего потока.

Варианты

1. Пуассоновский поток событий.

Поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом — в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час]). Необходимо исследовать этот процесс в течение $T_{\rm H}$ = 100 часов (интервал может задаваться пользователем). Выходная информация - диаграмма появления событий (таблица моментов появления событий). Входные данные: интенсивность (задается пользователем).

2. Неординарный поток событий.

Простой оборудования.

Исследовать среднее время суточного простоя оборудования технологического узла, если узел обрабатывает каждое изделие случайное время, заданное интенсивностью потока случайных событий λ_2 . При этом

экспериментально установлено, что привозят изделия на обработку тоже в случайные моменты времени, заданные потоком λ_1 партиями по 8 штук, причем размер партии колеблется случайно по нормальному закону с m=8, $\sigma=2$. До начала моделирования T=0 на складе изделий не было. Необходимо промоделировать этот процесс в течение $T_{\rm H}=100$ часов (все числовые данные могут быть изменены пользователем).

Входные данные: интенсивность. Выходные - диаграмма, иллюстрирующая движение изделий через узел обработки; время простоя.

3. Потоки Эрланга.

Выход из строя лампочек. Время наблюдения 100 лет. Из паспортных данных на эти изделия известно, что среднее время работы изделия на отказ составляет 1.5 года; среднеквадратическое отклонение — 0.5 года (т. е. M_k = 1.5, σ_k = 0.5). Все параметры может задать пользователь.

Входные данные: параметры распределения. Выходные - диаграмма потока.

4. Неординарные потоки.

Процесс появления вагонов на железнодорожной станции.

Вагоны на железнодорожную станцию прибывают в составе поезда в случайные моменты времени. Поток поездов ординарный. В составе поезда несколько вагонов (разное случайное количество вагонов). Известно, что число вагонов распределено по нормальному закону, со средним Mk = 10, и среднеквадратическим отклонением $\sigma = 4$ (в среднем в 68 случаях из 100 приходит от 6 до 14 вагонов в составе поезда). Создать модель потока событий с указанными параметрами.

5. Нестационарные потоки.

Интенсивность появления посетителей в магазине непостоянна, в самые оживленные часы интенсивность увеличивается с 10 раз (например, с 8 до 10 часов утра в среднем приходят 20 человек в час, с 10 до 17 ч – 10 человек в час, с 17 до 19 ч – 100 человек в час, с 19 до 21 ч – 5 человек в час; соотношение можно изменить). Создать модель потока событий с указанными параметрами; рассчитать основные показатели.

6. Случайный поток.

Процесс изготовления деталей на предприятии требует выполнения трех операций на определенных видах станков. Известно среднее время, через которое детали поступают в систему на изготовление – 23 мин, а также отклонение от среднего времени ±3 мин. Известно среднее время, затрачиваемое на выполнение каждой операции, и возможные отклонения от среднего времени, которые соответственно равны: 24±1, 29±3 и 12±3 мин. Известно среднее время для передачи детали от одного станка к другому и возможные отклонения от среднего времени, которые соответственно равны 5±2 и 6±1 мин. Требуется создать модель

системы с указанными параметрами, определить основные характеристики системы:

- коэффициенты использования всех станков;
- среднее время пребывания детали у каждого станка (канала);
- максимальное число деталей, ожидающих изготовления у каждого станка;
- средний размер очереди, то есть среднее число деталей, ожидающих изготовления;
- общее число входов в очередь, то есть общее число поступлений деталей на обслуживание в течение смены;
- среднее время пребывания деталей в очередях.

Примечание. Задание на 2-ю и 4-ю лабораторные работы, объем работы согласовывается с преподавателем.

7. Суперпозиция простейших потоков.

Рассматривается поток автомобилей по трехполосному шоссе, интенсивность движения по каждой полосе постоянна и равна λ_i (i=1, 2, 3), потоки простейшие. Человек, путешествующих автостопом, может остановить первую попавшуюся машину в любой из полос. Определить закон распределения времени t, которое придется ждать путешественнику (найти математическое ожидание m_t , среднеквадратическое отклонение σ_t). Создать модель для описанной задачи. Входные данные: интенсивности потоков автомобилей λ_i ; выходные данные: интенсивность суперпозиции потоков; моменты появления машины на любой из трех полос; параметры распределения времени ожидания первого автомобиля (m_t , σ_t , функция плотности распределения).

8. Поток с последействием.

Построить модель ординарного потока, интервал времени между возникновением событий в котором имеет плотность:

$$f(t) = \begin{cases} \lambda e^{-\lambda(t-t_0)} & npu \ t > t_0, \\ 0 & npu \ t < t_0. \end{cases}$$

Определить интенсивность такого потока (λ^*). Входные данные: λ , t_0 , интервал моделирования T, количество повторений эксперимента n. Выходные данные: интенсивность потока λ^* моменты возникновения событий в потоке (таблица значений, график накопления – для одного эксперимента), среднее количество событий на интервале моделирования T (усредненное по количеству экспериментов).

9. Поток Эрланга.

На вход некоторой системы поступает простейший Пуассоновский поток с интенсивностью λ . Выходной поток – поток Эрланга порядка k. Определить интенсивность выходного потока λ_k , среднее значение промежутка времени между событиями во входном потоке M, среднее значение M_k и дисперсию σ_k временного промежутка между событиями в выходном потоке. Построить модель системы, входные данные: λ , k, интервал моделирования T, выходные данные:

 λ_k , M_k , σ_k ; моменты появления событий входного и выходного потоков (таблицы, диаграммы).

10. Случайный поток.

Процессор обрабатывает поступающие сигналы прерывания от нескольких устройств (k). На каждом из устройств появление события, послужившего основой для отправки сигнала прерывания, рассматривается как простейший поток с интенсивностью λ_i (i=1,2,3,...,k). Каждый сигнал обрабатывается случайное время, в среднем m мс со среднеквадратическим отклонением σ . Создать модель сигналов прерывания, получаемых процессором в течение интервала T. Входные данные: интервал моделирования T, количество устройств k, параметры распределения времени обработки сигнала m, σ , интенсивности λ_i . Выходные данные: моменты появления сигналов прерывания для каждого из устройств, моменты поступления сигналов прерывания для процессора, интенсивность потока событий (для процессора), количество сигналов за время моделирования, доля времени работы процессора, в течение которого обрабатывались сигналы прерывания.

11. Разъединение простейшего потока.

Поток коробок на конвейере представляет собой простейший поток с интенсивностью λ шт. в минуту. В конце конвейера расположена поворотная платформа и далее путь разветвляется по k направлениям. Вероятность движения в каждом из направлений равна p_i , i = 1, ... k. Определить интенсивность движения коробок в каждом направлении λ_i , i = 1, ... k; рассчитать среднее количество коробок по каждому направлению за время моделирования $\it T$. Входные данные: интенсивность λ , количество направлений k, вероятности p_i , i = 1, ... k, время моделирования Т. Выходные данные: моменты появления коробок перед развилкой (время на поворотной платформе не учитывается), интенсивность движения коробок в каждом направлении λ_i , i = 1, ... k; среднее количество коробок по каждому направлению; среднее количество коробок, поступивших на конвейер.

12. Поток Эрланга.

В результате статистической обработки промежутков между заявками в получены оценки ДЛЯ математического ожидания среднеквадратического отклонения o_t . Подобрать поток Эрланга, обладающий приблизительно теми же характеристиками. Определить плотность распределения потока Эрланга, построить графики плотности распределения исходного потока и сформированного потока Эрланга. Построить графики вероятности появления хотя бы одного события для исходного потока и потока Эрланга. Построить графики вероятности непоявления ни одного события для исходного потока и потока Эрланга. Исходный поток считать простейшим. Входные данные: m_t и σ_t , интервал T (для отображения графиков). Выходные данные: порядок потока Эрланга, интенсивность потока Эрланга, интенсивность простейшего потока, порождающего поток Эрланга, функция плотности распределения потока Эрланга, графики плотности распределения исходного потока и сформированного потока Эрланга, графики вероятности появления хотя бы одного события для исходного потока и потока Эрланга, графики вероятности непоявления ни одного события.

13. Простейший поток.

Кредитная организация рассматривает поступающие платежи по ссудам как простейший поток. Ожидаемое число платежей в день – a шт. Размер платежа в среднем составляет k руб. со среднеквадратическим отклонением d руб. Определить вероятность того, что в течение недели (или T дней) поступит не менее n платежей. Определить вероятность того, что интервал времени между двумя платежами менее h ч (платежи принимаются круглосуточно). Входные данные: ожидаемое число платежей a, параметры платежа (k, d), интервал T, пороговое значение платежей n, интервал между платежами n. Выходные данные: интенсивность поступления платежей n, вероятности описанных событий.

14. Нестационарный поток.

простейший Рассматривается поток заявок С непостоянной интенсивностью, изменяющейся по закону $\lambda(t) = a + b \cdot \sin(\omega \pi t)$. Определить среднее число событий на отрезке $[t_1, t_2]$. Найти вероятность отсутствия требований на отрезке $[t_1, t_2]$. Найти вероятность появления k событий на указанном интервале. Определить закон распределения промежутка времени т между соседними событиями (функцию плотности распределения, построить график). Входные данные: параметры a, b, ω, k ; границы интервала t_1, t_2 ; интервал моделирования T, момент появления первого события t_0 . Выходные данные: график изменения интенсивности; вероятность отсутствия заявок и появления kна отрезке $[t_1, t_2]$; функция плотности распределения интервалов между соседними событиями (формула, график).

Справочные материалы

Потоки случайных событий.

http://stratum.ac.ru/education/textbooks/modelir/lection28.html,

http://stratum.ac.ru/education/textbooks/modelir/lection29.html,

http://ermak.cs.nstu.ru/mmsa/glava5/glava5_3.htm,

https://dep_vipm.pnzgu.ru/files/dep_vipm.pnzgu.ru/books/cherusheva_2021_teoria_masobsl.pdf