Chamblandes 2012 — Problème 2

Désignons respectivement par x et y la longueur et la largeur de l'enclos rectangulaire.

Il s'agit de minimiser le coût de l'enclos; ce dernier vaut :

$$x \cdot 20 + y \cdot 20 + x \cdot 20 + y \cdot 140 = 40 x + 160 y$$

On a en outre la condition portant sur l'aire de l'enclos :

$$xy = 2500$$

On en tire $y = \frac{2500}{x}$ que l'on substitue dans la formule du coût :

$$f(x) = 40 x + 160 \cdot \frac{2500}{x} = 40 x + \frac{400\ 000}{x}$$

Étudions la croissance de la fonction f, afin de déterminer son minimum :

$$f'(x) = (40 x)' + \left(\frac{400\ 000}{x}\right)' = (40 x)' + (400\ 000 x^{-1})' = 40 - 400\ 000 x^{-2}$$
$$= 40 - \frac{400\ 000}{x^2} = \frac{40 x^2 - 400\ 000}{x^2} = \frac{40 (x^2 - 10\ 000)}{x^2} = \frac{40 (x - 100)(x + 100)}{x^2}$$

	-100 (100	
40	+	+	+	+
x - 200	_	_	- (+
x + 200	- () +	+	+
x^2	+	+	+	+
f'	+ () –	- () +
\overline{f}	7 m	ax 📐	\ m	in 7

On en conclut que le coût de l'enclos est minimal si sa longueur x mesure 100 m.

Dans ce cas, la largeur y mesure $\frac{2500}{100}=25~\mathrm{m}.$

Quant au coût, il s'élève à $f(100) = 40 \cdot 100 + \frac{400\ 000}{100} = 8000$ fr.