

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. (Electronics and Telecommunication Engineering)

Syllabus (Multidisciplinary Minor)

2023 Iteration (w.e.f. 2023-24)

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

2023 ITERATION: ELECTRONICS AND TELECOMMUNICATION ENGG.

Nomenclature of the Courses

Abbreviation	Course Category	
BSESC	Basic Science & Engineering Science Courses	
BSESEC	Basic Science & Engineering Science Elective Courses	
SEC	Skill Enhancement Course	
AEC	Ability Enhancement Course	
HSSMC	Humanities and Social Science in Management Courses	
CC	Cocurricular Courses	
IKS	Indian Knowledge System	
UHV	Universal Human Values	
PCC	Program Core Courses	
PEC	Program Elective Courses	
OEC	Open Elective Courses	
ELC	Experiential Learning Courses	
MDM	Multidisciplinary Minor	
CP	Community Project	
HC	Honor Courses	
DMC	Double Minor Course	

Abbreviations

L	Lecture Hour	О	Other Work (Self Study)
T	Tutorial Hour	Е	Total Engagement in Hours
P	Laboratory Hour	С	Credit Assigned

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course Category of Multidisciplinary Minor	MDM-I (Semester IV)	MDM-II (Semester V)	MDM-III (Semester VI)	MDM-IV (Semester VII)
Industrial IoT	M011: Fundamental of Internet of Things	M012: Embedded "C" and Micro Python for IoT	M013: IOT Communication and Network Layer Protocols	M014: IoT Applications and Security
Signal Processing and Communication	M021: Digital Signal Processing	M022: Principles of Communication Systems	M023: Digital Image Processing	M024: Wireless Communication
VLSI	M041: Hardware Description Language Programming	M042: Digital CMOS VLSI Design	M043: VLSI Physical Design	M044: ASIC Verification

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Multidisciplinary Minor -Industrial IoT

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name			Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		3	0	0	4	8	2	0	0	3
MDM-I			Examination Scheme							
	Fundamentals of	Component		ISE	ISE (%) MSI		E (%)	ESE	2 (%)	Total
MDEC11	Internet of Things	Theory		20		2	20	60		100
			Laboratory		-		-		-	-

Pre-requisite Course Codes, if any.

Course Objective: This course provides an in-depth understanding of the Internet of Things (IoT), covering its definition, impact, convergence of Information Technology (IT) and Operational Technology (OT), challenges, architecture, data management, and compute stack. It also explores the role of sensors, transducers, smart objects, and computational units in IoT.

Course Out	Course Outcomes (CO): At the End of the course students will be able to						
MDEC11.1	Demonstrate basic concepts, principles, and challenges in IoT						
MDEC11.2	Classify various sensing devices and actuator types used in the IoT domain						
MDEC11.3	Apply Computation and Communication Technologies for various real-life applications						
MDEC11.4	Illustrate IoT infrastructure for various IoT use cases						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDEC11.1	2	2	2									
MDEC11.2	2	2	2									
MDEC11.3	2	2	2									
MDEC11.4	2	2	2	2								

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand Apply Analyze @ Evaluate Create	Remember	Understand	Apply	Analyze @	Evaluate	Create
---	----------	------------	-------	-----------	----------	--------

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Theory Component

Modul	Unit	Topics	Ref.	Hr
e No.	No.	-	11011	S
1 1	Title	Introduction to IoT		
		Definition and fundamentals of IoT, Historical background and evolution, Impact of IoT on various industries, Convergence of IT and OT in IoT	1,2	5
2	Title	IoT Challenges and Opportunities		5
		Key challenges in implementing IoT solutions, Security and privacy	1,2,	
		concerns, Scalability and interoperability issues, Opportunities and potential applications of IoT.	3	
3	Title	IoT Architectures		5
		Overview of OneM2M IoT architecture, Introduction to IoT World Forum (IoTWF) architecture, Comparison of different IoT architectures	1,2	
4	T;4lo	Case studies of real-world implementations		5
4	Title	IoT Data Management and Compute Stack	1.2	3
		Importance of data management in IoT, Overview of IoT data lifecycle Introduction to compute stack in IoT, Edge computing vs. cloud computing in IoT	1,2	
5	Title	Layer-1 Things in IoT: Sensors and Transducers		9
		Introduction to Signals and Systems. Types of sensors and transducers used in IoT, Working principles and functionalities, Examples of sensor applications in different domains, Challenges and advancements in sensor technology	1,2	
6	Title	Things in IoT: Smart Objects		4
		Definition and characteristics of smart objects, Role of smart objects in IoT ecosystem, Interoperability standards for smart objects, Case studies of smart object deployments	1,2,	
7	Title	Things in IoT: Computation and Communication Units		9
		Introduction to Computational Units in IoT, Microcontrollers vs. microprocessors, Embedded Systems and their Applications. Need For Communication Interfaces, Serial& Parallel, I2C/ CAN Controller Area Network) – SPI (Serial Peripheral Interface) – Serial UART, MODBUS, HART, SCADA. Introduction to Programming using Microcontrollers Sensors and Actuators.	1,2	
8	Self	Practical Applications: Design and implementation of IoT solutions,	1,2,	4*
	Study	Solving industry-specific use cases: Manufacturing, Healthcare, Retail, Autonomous vehicles, Supply chain management, Smart Agriculture, Smart City, Tracking and monitoring livestock. Discussion on future trends and directions in IoT.	3	
			Total	42

Text Books

STITUTE OF TECHNO

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Sr. No	Title	Edition	Authors	Publisher	Year
1	Internet of Things-A Hands-	First	Arshdeep Bahga, Vijay	University	2015
	On Approach		Madisetti	Press	
2	Internet of Things:	First	Raj Kamal	McGraw	2017
	Architecture and Design			Hill	
	Principles			Education	
3	Introduction to Industrial	First	Sudip	CRC	2021
	Internet of Things and		Misra,Chandana	Press	
	Industry 4.0		Roy, Anadarup Mukherjee		

Reference Books

Sr. No	Title	Edition	Authors	Publishe	Year
				r	
1	From Machine-to-Machine	First	Jan Holler, VlasiosTsiatsis,	Academi	2014
	to the Internet of Things:		Catherine Mulligan, Stefan	c Press	
	Introduction to a New Age		Avesand, Stamatis Karnous		
	of Intelligence		kos, David Boyle		
2	The Internet of Things key	First	Olivier	Willey	2012
	applications and protocols		Hersent, David Boswarthick,		
			Omar Elloumi		
3	Designing the Internet of	-	Adrian McEwen	Wiley	2013
	Things				

Online references:

- 1. https://nptel.ac.in/courses/106/105/106105166/
- 2. https://nptel.ac.in/courses/108/108/108108098/
- 3. https://nptel.ac.in/courses/106/105/106105195/
- 4. https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs31/
- 5. https://onlinecourses.nptel.ac.in/noc21 cs17/preview
- 6. https://nptel.ac.in/courses/108108147
- 7. https://www.mooc-list.com/tags/wearable-technology

STITUTE OF BECH

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	O	E	L	T	P	Total
		2		2	5	9	2		1	3
MDM-II	Embedded "C" and	Examinatio				on Scheme				
	Micro Python for	Component			ISE		MSE		SE	Total
MDEC12	IoT	The	eory		20		20		60	100
WIDEC12		Labo	ratory		80				20	100

Pre-requisit	e Course Codes, if any.	CS101: Problem Solving using Imperative Programming				
		EC101: Digital Systems and Microprocessors				
EC201: Computer Architecture and Organization						
Course Objective: To impart students the fundamentals of Embedded "C" programming and Micro						
Python scripting for building IoT solutions, covering device driver creation, debugging, and optimization.						
Course Outo	comes (CO): After success	ful completion of the course, student will be able to				
MDEC12.1	Demonstrate Proficiency in	Embedded "C" Programming and Micro Python				
MDEC12.2	MDEC12.2 Understand Embedded Systems Concepts and Architecture					
MDEC12.3	DEC12.3 Develop Device Drivers and Hardware Abstraction Layers (HALs)					
MDEC12.4	IDEC12.4 Apply Embedded "C" and Micro Python for IoT Applications					
MDEC12.5	Implement Networking Pr	rotocols and Communication:				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
MDEC12.1	2	2	2	2	2							
MDEC12.2	2	2	2	2								
MDEC12.3	2	2	2	2	2							
MDEC12.4	2	2	2	2	2							
MDEC12.5	2	2	2	2	2							

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Theory Component

I heory Co				
Modul e No.	Unit No.	Topics	Ref.	Hrs
1	Title	Embedded C Programming:		06
	1.1	C Fundamentals: Data types, variables, operators, expressions,	1	
	1.1	Conditional Compilation, Functions, function calling, parameter	1	
		passing, arrays, string, pointers, Bit Operations - Packaging data,		
		unpacking data, bit manipulations, storage classes.		
	1.2	Memory Management in Embedded Systems: Stack and heap	1, 2	
		memory, Memory allocation techniques		
		Introduction to Integrated Development Environments (IDEs) for		
		embedded systems, Compilers, debuggers, and simulators for		
		embedded C		
2	Title	Input/Output (I/O) Operations:	1.0	08
	2.1	Interfacing with peripherals: GPIO (General Purpose	1,2	
		Input/Output), UART (Universal Asynchronous Receiver-		
		Transmitter), SPI (Serial Peripheral Interface), I2C (Inter-		
		Integrated Circuit), Analog-to-digital converters (ADC). Digital to Analog converters (DAC).		
	2.2	Using libraries for device drivers and hardware abstraction.	1,2	
	2.3	Interrupts and Timers: Interrupt handling mechanisms, Timer	1,2	
	2.5	programming for real-time applications	1,2	
3	Title	Introduction to Micro Python:		06
	3.1	Overview of Micro Python and its features.	4	
		Syntax, data types, variables, operators, Functions, modules,		
		libraries Lists, tuples, dictionaries, and sets.		
		Control flow: loops, conditionals, and exceptions in Micro Python		
		Setting up Micro Python environment for embedded development.		
	3.2	Python for Data Analysis: Introduction to libraries like NumPy and	4	
		pandas for data manipulation and analysis, Working with sensor		
		data collected from IoT devices		
	3.3	Python for Web Development and APIs:	4	
		Basics of web development using frameworks like Flask or Django		
4	T:41.	(optional)		06
4	Title	Micro Python for IoT Applications	2.4	06
	4.1	Interfacing with peripherals using Micro Python. Writing scripts	3,4	
	4.2	for sensor data acquisition and control.	2.4	
	4.2	Networking protocols and communication in Micro Python.	3,4	
		Implementing MQTT, HTTP, or other IoT protocols in Micro		
	4.2	Python.	2.4	
	4.3	Data Processing with Python: Data preprocessing techniques for	3,4	
		IoT data. Handling real-time and streaming data in Python.		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

		Data Visualization in Python: Introduction to data visualization libraries like Matplotlib and Seaborn. Visualizing IoT data for analysis and insights.		
5	Title	Case Studies in Embedded Systems and IoT		02
		Exploration of real-world case studies and applications of embedded systems and IoT like Smart Home Automation System, Industrial IoT (IIoT) Monitoring and Control System, Healthcare Monitoring Wearables, Smart Agriculture Solutions, Vehicle Tracking and Fleet Management, Energy Management Systems	3	
			Total	28

Laboratory Component

Sr. No.	Title of the Experiment
	Blinking LED (Hello World!!! Program):
1	Write a program to blink an LED connected to a GPIO pin of the microcontroller.
	Experiment with different blinking patterns (e.g., Morse code) by controlling the timing
	and sequence of GPIO operations.
	Push Button and LED Interaction:
2	Interface a push button and an LED to the microcontroller.
	Write a program to toggle the LED state when the button is pressed or released.
	Serial Communication:
3	Establish serial communication (UART) between the microcontroller and a computer.
	Write programs to send and receive data packets over UART, such as sending sensor
	readings or receiving commands.
4	PWM Output:
4	Generate PWM (Pulse Width Modulation) signals using the microcontroller.
	Control the brightness of an LED or the speed of a motor using PWM output.
_	Analog-to-Digital Conversion (ADC):
5	Interface an analog sensor (e.g., temperature sensor, light sensor) to the microcontroller.
	Write a program to read analog sensor values using the built-in ADC and display them.
6	Interrupt Handling:
U	Configure external interrupts to detect events (e.g., button press, sensor signal).
	Write interrupt service routines (ISRs) to handle interrupt events and perform appropriate
	actions.
7	Timers and Timed Operations:
,	Use timers to generate time delays and schedule periodic tasks.
	Implement timed operations, such as blinking LEDs at specific intervals or sampling
	sensors at regular intervals.
8	Communication Protocols:

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Implement communication protocols such as I2C or SPI to interface with external peripherals (e.g., sensors, displays).

Develop projects involving multiple devices communicating over a network using standard protocols (e.g., MQTT for IoT applications).

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Embedded C Programming and the Microchip PIC	-	Richard H. Barnett, Sarah Cox, and Larry O'Cull	Delmar Cengage Learning	2003
2	Embedded System: Real time Operating Systems for the ARM Cortex TM M3		Jonathan W. Valvano	Create Space Independent Publishing Platform	2012
3	Programming with MicroPython: Embedded Programming with Microcontrollers and Python		Nicholas H. Tollervey	Shroff / Oreilly Reprints	2017
4	Internet of Things, "A Hands on Approach		Vijay Madisetti, ArshdeepBahga	UniversityPress	2015.

STITUTE OF THE CHANGE OF THE C

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	T	P	O	E	L	T	P	Total	
MDM III		2		2	4	6	2		1	3	
MDM-III	IOT Communication		<u>'</u>		Exan	ninati	ion Sch	on Scheme			
	and Network Layer	Component Theory Laboratory		ISE (%)		M	MSE (%) 20		ESE (%)	Total	
MDEC13	Protocols				20				60	100	
				80					20	100	

Pre-requisit	e Course Codes, if any.	Computer Architecture and Organization						
		Computer Communication and Networks						
		Embedded Systems						
Course Obje	Course Objective: To provide the students a comprehensive understanding of communication							
protocols use	ed in the Internet of Things	(IoT) ecosystem. Students will learn about various						
protocols, the	eir features, advantages, and	l limitations, along with hands-on experience in						
implementing	g and optimizing communic	eation for IoT devices.						
Course Outo	comes (CO): After successi	ful completion of the course, student will be able to						
MDEC13.1	Understand the fundamen	tals of IoT communication and network layer protocols.						
MDEC13.2	Compare and contrast different IoT communication and network layer protocols.							
MDEC13.3	Implement and configure communication layer protocols for IoT devices.							
MDEC31.4	Analyze and optimize data	a and network layer protocols for efficiency and security.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDEC13.1	3											
MDEC13.2	3	2										
MDEC13.3		3				2						
MDEC31.4	3						2					

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs
1	Title	Introduction to IoT Communication		06
	1.1	Overview of IoT architecture	1,2,4	
		Importance of communication protocols in IoT		
		Types of IoT communication (Device-to-Device, Device-to-Cloud, etc.)		
	1.2	Wired Communication Protocols	1,2,4	
	1.2	Ethernet: Basics, protocols, and standards Power-line	1,2,1	
		Communication (PLC) Industrial Ethernet protocols (MODBUS		
		TCP/IP, EtherNet/IP)		
	1.3	Wireless Communication Protocols	1,2,4	
		Wi-Fi: Standards, security, and IoT applications Bluetooth and		
		Bluetooth Low Energy (BLE) Zigbee and Z-Wave protocols.LoRa		
		WAN.		
2	Title	IOT Data Link Layer Protocols		11
	2.1	Overview: IOT Communications Criteria, Range, Frequency	3,4	
		Bands, Power Consumption, Topology Constrained Devices,		
		Constrained-Node Networks, Data Rate and Throughput, Latency		
		and Determinism.Overhead and Payload		
	2.2	PHY/MAC Layer: 3GPP MTC, LTE-eMTC uplink and downlink	3,4	
		layers, Architecture of IEEE 802.11, Architecture of IEEE 802.15-		
		BLE, BLE power class classification and protocol stack		
	2.3	Data Link Protocols: WirelessHART-Architecture and protocol	3,4	
		stack, Z-Wave- Architecture and Protocol stack, DASH7-		
		Communication models, Zigbee Smart Energy-topology and		
		energy features, LoRaWAN Standardization and Alliances		
		Physical Layer MAC Layer Topology Security, Competitive		
2	Tial	Technologies LoRaWAN, NB-IoT and Other LTE Variations.		11
3	Title	IOT Network Layer Protocols	1	11
	3.1	Network Layer Routing Protocols: IPv4-Header format with	4	
		functions, IPv6-Header format with functions, Dynamic IP and		
		DHCP, ICMP, RPL, CORPL, CARP.		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	3.2	Network Layer Encapsulation Protocols: 6LoWPAN-IPv6 over Low power Wireless PAN, 6TiSCH, 6Lo, IPv6 over G.9959, IPv6 over BLE, RPL-Routing Protocol for Low Power and Lossy	4	
		Networks, RPL Routing attributes.		
Self		Edge Computing and Fog Networking		4
Study		IoT Device Provisioning and Management		
		IoT Interoperability and Standards		
			Total	28

Laboratory Component

	ory Component
Sr. No.	Title of the Experiment
	Setting up a Basic MQTT Communication Network
1	Objective: To understand the basics of MQTT protocol and set up a communication
	network for IoT devices.
	Equipment: MQTT broker (e.g., Mosquitto), IoT devices (e.g., Raspberry Pi,
	ESP8266/ESP32), MQTT client software (e.g., MQTT.fx, Eclipse Paho).
	Experiment Steps:
	Install and configure MQTT broker on a server or local machine.
	Set up IoT devices as MQTT clients and connect them to the broker.
	Publish and subscribe to MQTT topics to exchange messages between devices.
2	
2	Configuring Ethernet-Based Communication for IoT Devices
	Objective: To learn about Ethernet protocols and configure wired communication for IoT
	devices.
	Equipment: Ethernet switch, Ethernet cables, IoT devices with Ethernet ports (e.g.,
	Raspberry Pi with Ethernet adapter).
	Experiment Steps:
	Connect IoT devices to an Ethernet switch using Ethernet cables.
	Configure IP addresses, subnet masks, and default gateways for devices.
	Test communication between IoT devices using TCP/IP protocols.
	Implementing Bluetooth Low Energy (BLE) Communication
3	Objective: To implement BLE communication for IoT sensors and devices.
	Equipment: BLE-enabled devices (e.g., Raspberry Pi with BLE module, BLE sensors),
	BLE development tools (e.g., BlueZ library for Linux).
	Experiment Steps:
	Set up BLE peripherals and central devices.

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	Develop BLE applications for data transmission between devices.
	Analyze BLE communication characteristics such as range, data rate, and power
	consumption.
4	Connecting IoT Devices Using Cellular Communication
	Objective: To establish cellular communication for IoT devices using GSM, GPRS, or LTE-M/NB-IoT standards.
	Equipment: IoT devices with cellular modules (e.g., SIM800/SIM900 modules), SIM cards, cellular network access.
	Experiment Steps:
	Configure IoT devices with cellular network settings and APNs.
	Test data transmission over cellular networks using AT commands or APIs.
	Evaluate cellular communication performance and reliability for IoT applications.
5	Comparing and Analyzing IoT Messaging Protocols
	Objective: To compare and analyze the performance of different IoT messaging
	protocols such as MQTT, CoAP, and AMQP.
	Equipment: IoT devices with support for multiple messaging protocols, MQTT broker,
	CoAP server, AMQP server.
	Experiment Steps:
	Implement message exchange using MQTT, CoAP, and AMQP protocols.
	Measure message latency, throughput, and overhead for each protocol.
	Analyze protocol characteristics and suitability for different IoT scenarios.
6	Optimizing IoT Communication Protocols
0	Optimizing 101 Communication 110tocols
	Objective: To optimize IoT communication protocols for resource-constrained devices.
	Equipment: IoT devices with limited memory and processing capabilities.
	Experiment Steps:
	Implement protocol optimization techniques such as message compression, caching, and
	payload reduction.
	Measure the impact of optimizations on device performance, power consumption, and
1	
	network utilization.

THUTE OF THE CHANGE OF THE CHA

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	Evaluate trade-offs between optimization techniques and protocol functionality.
7	IoT Communication Protocol Implementation
	Objective: To design and implement a communication protocol for a specific IoT application.
	Equipment: IoT devices relevant to the chosen application, communication protocol
	libraries or frameworks.
	Project Steps:
	Define the communication requirements and constraints for the IoT application.
	Design a custom communication protocol or adapt existing protocols to meet the
	requirements.
	Implement the protocol on IoT devices and test its functionality, efficiency, and security.
	Present the project findings, including protocol design rationale, implementation details,
	and performance evaluation.

Reference Books

Sr. No	Title	Edition	Author	Publisher	Year
1	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things		David Hanes, Gonzalo Salgueiro, Patrick Grossetete Robert Barton, Jerome Henry	CISCO press	June 2017
2	Internet of Things:Architectures, Protocols and Standard		Simone Cirani, Gianluigi Ferrari, Marco Picone, Luca Veltri	WILEY Publication	2019
3	FromMachine-to-Machine to the of Things: Introduction to a New Age of Intelligence	First	Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnousk os, David Boyle	Elsevier AP	2014

THUTE OF THE CHAPTER OF THE CHAPTER

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

4	The Internet of Things:Key	Hersent, Olivier,	Wiely	2011
	Applications and Protocols	David		
		Boswarthick, and		
		Omar Elloumi		

OnLine References:

- 1. https://www.nabto.com/guide-iot-protocols-standards/
- 2. https://azure.microsoft.com/en-in/solutions/iot/iot-technology-protocols
- 3. https://www.datamation.com/applications/iot-protocols-and-standards/
- 4. https://onlinecourses.nptel.ac.in/noc22_cs53/preview
- 5. https://archive.nptel.ac.in/courses/108/108/108108098/

STITUTE OF TECHNOLOGY

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name	Teaching Scheme (Hrs/week) Credits Assigne				ned				
Code		L	T	P	О	E	L	T	P	Total
MDM-IV		3		2	4	7	3		1	4
14112141-1 4			Examination Scheme							
	IOT Applications	Component ISE (%) M			ASE (%)	ESE	Total		
MDEC14	and Security	Component 132 (70)				(70	<u> </u>	(%)	Total	
MIDEC 14		Theory			20		20		60	100
		Labo	ratory		80				20	100

Pre-requisit	e Course Codes, if any.	Computer Architecture and Organization				
		Computer Communication and Networks				
		Embedded Systems				
Course Obje	ective: To provide the stud	ents a comprehensive understanding of communication				
protocols use	ed in the Internet of Things	(IoT) ecosystem. Students will learn about various				
protocols, the	eir features, advantages, and	d limitations, along with hands-on experience in				
implementing	g and optimizing communic	cation for IoT devices.				
Course Outo	comes (CO): After success:	ful completion of the course, student will be able to				
MDEC14.1	Understand IoT design pri	inciples and technology fundamentals				
MDEC14.2	Implement secure commu	nication and security mechanisms in IoT systems through				
	various protocols					
MDEC14.3	4.3 Design and development of typical IoT Applications					
MDEC14.4	Implement data analytics	with supporting services				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDEC14.1	3											
MDEC14.2	3	2										
MDEC14.3		3					2					
MDEC14.4	3			2								

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs	
1	Title	IoT Technology overview		04	
	1.1	Overview of design principles:	3		
		overview of the architecture for IoT, including the			
		overall design principles and needed capabilities, standards			
		considerations			
	1.2	IoT Technology Fundamentals:	3		
		Devices and Gateways, Local and wide area networking, Data			
		management, Business process in IoT			
2					
	2.1	HTTP and CoAP protocols for IoT applications, Security mechanisms for HTTP and CoAP (e.g., HTTPS, DTLS)	1,2,4		
	2.2	MQTT Protocol: Architecture, Security considerations, MQTT	1,2,4		
		Deployment, MQTT based IoT Solution			
	2.3	CoAP Protocol: Protocol Architecture, Comparison with	1,2,4		
		MQTT,Secure communication using CoAP, considerations, CoAP			
		based IoT Solution including CoAP client-server interactions and			
		message exchanges.			
3	Title	IoT Security Fundamentals		10	
	3.1	Security threats in IoT environments, Introduction to	6		
		cryptographic techniques (symmetric/asymmetric encryption,			
		hashing, digital signatures), Authentication and access control			
		mechanisms for IoT devices, Secure bootstrapping and			
		provisioning of IoT devices			
	3.2	IoT Communication Security Protocols:	5		
		Overview of TLS/SSL (Transport Layer Security/Secure Sockets			
		Layer) and its relevance in IoT,Introduction to DTLS (Datagram			
		Transport Layer Security) for secure communication over			
		UDP, Securing MQTT communication using TLS, CoAP security			
		considerations and usage of DTLS			
4	Title	IoT Applications and Development with Data Analytics		12	
	4.1	Design and Development: Design Methodology, Back-end	4,7		
		Application Designing Apache for handling HTTP Requests,			

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

		MongoDB Object type Database, HTML, CSS & jQuery for UI		
		Designing, JSON lib for data processing, Security & Privacy		
		during development		
	4.2	Data Analytics and Supporting Services: Introduction, Structured Versus Unstructured Data, Data in Motion versus Data at Rest, IoT Data Analytics Challenges, Data Acquiring, Organizing in IoT/M2M, Supporting Services: Computing Using a Cloud Platform for IoT/M2M Applications/Services, Everything as a service and Cloud Service Models.	4,7	
5	Title	Case studies/Industrial Applications		6
Self		IoT applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, Smart Applications, Four Aspects in your Business to Master IoT, Value Creation from Big Data and Serialization, IoT for Retailing Industry, IoT for Oil and Gas Industry, Opinions on IoT Application and Value for Industry, Home Management, eHealth Data analytics tools such as Python with libraries like Pandas,	7,8	
Study		NumPy, and Scikit-learn for data analysis and visualization. Learn about applying machine learning algorithms to IoT data for predictive analytics and anomaly detection.		
	1		Total	42

Laboratory Component

Sr. No.	Title of the Experiment
1	Implementing IoT Data Encryption
	Equipment/Software Needed:
	IoT Devices
	OpenSSL library
	Python IDE
	Experiment Steps:
	Generate public and private keys using OpenSSL.

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	2. Implement encryption and decryption functions in Python using the generated keys.
	3. Modify previous IoT application to encrypt sensor data before transmission.
	4. Ensure that data is decrypted at the receiving end.
2	Securing IoT Device Boot Process
	Equipment/Software Needed:
	Raspberry Pi or similar IoT device
	Secure Boot software (e.g., U-Boot)
	Computer with Linux OS
	Experiment Steps:
	1. Install U-Boot bootloader on the IoT device.
	2. Configure U-Boot to verify the integrity of the boot image.
	3. Implement secure boot process using cryptographic signatures.
	4. Test the secure boot process by attempting to boot with a modified image.
3	IoT Network Security Analysis
	Equipment/Software Needed:
	Wireshark or similar network analysis tool
	IoT devices connected to a local network
	Router or network switch
	Experiment Steps:
	1. Capture network traffic using Wireshark.
	2. Analyze the captured packets to identify potential security threats.
	3. Implement network segmentation to isolate IoT devices from other network segments.
	4. Configure firewall rules to restrict unauthorized access to IoT devices.

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

4	Implementing Secure Firmware Updates					
	Equipment/Software Needed:					
	 IoT devices with firmware update capability Digital signatures generation tool Firmware update server 					
	Experiment Steps:					
	 Generate digital signatures for firmware updates using cryptographic algorithms. Implement firmware update mechanism in IoT devices to verify the authenticity of firmware images. Set up a firmware update server to distribute signed firmware updates. Test the firmware update process and verify the integrity of the updated firmware. 					
5	Implementing Access Control for IoT Devices					
	Equipment/Software Needed:					
	 IoT devices with user authentication capabilities Authentication server (e.g., LDAP server) Python IDE 					
	Experiment Steps:					
	 Configure an authentication server (LDAP) to manage user credentials. Implement user authentication mechanism in IoT devices using Python. Create access control policies to restrict access based on user roles and permissions. Test the access control mechanism by attempting to access IoT devices with different user credentials. 					
6	IoT Device Hardening					
	Equipment/Software Needed:					

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

- IoT devices (e.g., Raspberry Pi, BeagleBone)
- Secure shell (SSH) client
- Linux OS

Experiment Steps:

- 1. Disable unnecessary services and ports on the IoT device.
- 2. Configure firewall rules to block incoming and outgoing traffic.
- 3. Enable secure shell (SSH) access and disable password-based authentication.
- 4. Install security updates and patches to mitigate known vulnerabilities.

7 Implementing Secure Communication with TLS/SSL

Equipment/Software Needed:

- IoT devices with network connectivity
- Web server with TLS/SSL support (e.g., Apache, Nginx)
- OpenSSL library

Experiment Steps:

- 1. Generate SSL/TLS certificates for the web server and IoT devices.
- 2. Configure the web server to enable HTTPS communication with SSL/TLS certificates.
- 3. Implement SSL/TLS client in IoT devices to establish secure connections with the server.
- 4. Test the secure communication by exchanging data between IoT devices and the server.

8 IoT Device Monitoring and Intrusion Detection

Equipment/Software Needed:

- IoT devices with logging capabilities
- Intrusion detection system (e.g., Snort)
- Monitoring software (e.g., Nagios)

Experiment Steps:

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

1. Configure logging on IoT devices to record system activities and network traffic. 2. Set up an intrusion detection system (IDS) to monitor network traffic for suspicious activities. 3. Configure alerting mechanisms to notify administrators of potential security breaches. 4. Deploy monitoring software to track the health and performance of IoT devices. 9 **Collecting and Analyzing IoT Sensor Data Equipment/Software Needed:** • IoT devices with sensors (e.g., temperature, humidity) Raspberry Pi or similar IoT platform Python IDE Pandas and Matplotlib libraries for data analysis and visualization **Experiment Steps:** 1. Connect sensors to the IoT device and collect real-time data. 2. Write Python scripts to read sensor data and store it in a CSV file or a database. 3. Use Pandas library to perform basic data analysis such as mean, median, and standard deviation. 4. Visualize sensor data using Matplotlib library to identify trends and patterns. 10 **Anomaly Detection in IoT Sensor Data Equipment/Software Needed:** IoT devices with sensors Historical sensor data with known anomalies Python IDE Statistical libraries such as NumPy and SciPy **Experiment Steps:** 1. Collect historical sensor data containing both normal and anomalous behavior. 2. Calculate statistical measures such as mean, standard deviation, and z-score for the sensor data.

STITUTE OF THE CHANGE

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

- 3. Identify thresholds for anomaly detection based on statistical measures.
- 4. Implement anomaly detection algorithms using Python and NumPy/SciPy libraries.
- 5. Evaluate the performance of the anomaly detection system using precision, recall, and F1-score metrics.

Reference Books

Sr.					
No	Title	Edition	Author	Publisher	Year
•					
1	IoT Fundamentals:		David Hanes,	CISCO press	June
	Networking Technologies,		Gonzalo Salgueiro,		2017
	Protocols, and Use Cases for		Patrick Grossetete		
	the Internet of Things		Robert Barton,		
			Jerome Henry		
2	Internet of		Simone Cirani,	WILEY Publication	2019
	Things:Architectures,		Gianluigi Ferrari,		
	Protocols and Standard		Marco Picone, Luca		
			Veltri		
3	FromMachine-to-Machine to	First	Jan Holler,	Elsevier AP	2014
	the of Things: Introduction to		VlasiosTsiatsis,		
	a New Age of Intelligence		Catherine Mulligan,		
			Stefan Avesand,		
			StamatisKarnousko		
			s, David Boyle		
4	The Internet of Things:Key		Hersent, Olivier,	Wiley	2011
	Applications and Protocols		David Boswarthick,		
			and Omar Elloumi		
5	Implementing SSL / TLS		Joshua Davies	Wiley	2010
	Using Cryptography and PKI				

THUTE OF THE CH

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

6	Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations	First	Fei Hu	CRC Press	2016
7	Internet of Things – A hands- on approach		Arshdeep Bahga, Vijay	Universities Press	2017
8	Rethinking the Internet of Things: A Scalable Approach to Connecting Everything	First	Francis daCosta	Apress Publications	2016

Online resources:-https://onlinecourses.nptel.ac.in/noc22_cs52/preview Introduction to Industry 4.0 and Industrial Internet of Things OnLine References:

- 1. https://www.nabto.com/guide-iot-protocols-standards/
- 2. https://azure.microsoft.com/en-in/solutions/iot/iot-technology-protocols
- 3. https://www.datamation.com/applications/iot-protocols-and-standards/
- 4. https://onlinecourses.nptel.ac.in/noc22 cs53/preview
- 5. https://archive.nptel.ac.in/courses/108/108/108108098/

THUTE OF THE CHANGE OF THE CHA

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Multidisciplinary Minor - Signal Processing and Communication

TECHNOLOGY OF THE CHANGE OF TH

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name	,	heme k)	Credits Assigned						
Code		L	T	P	0	E	L	T	P	Total
		2	0	2	5	8	2	0	1	3
MDM-I		Examination Scheme								
	Digital Signal Processing	Component ISE (%)				MSE	E (%)	ESE	Total	
	Processing	Theory		2	20		20	60		100
MDEC21		Laboratory		8	80				20	100

Pre-requisit	e Course Codes, if any.							
Course Obj	ective: The primary objective of this course is to provide a thorough understanding and							
working know	wledge of Discrete Time Signal operation and implementation of DSP Algorithms.							
Course Outo	Course Outcomes (CO): At the end of the course students will be able to							
MDEC21.1	Sample and describe Discrete time signals							
MDEC21.2	Classify and Perform signal operations							
MDEC21.3	Apply DFT properties							
MDEC21.4	Illustrate FFT algorithm							
MDEC21.5	Design FIR filter							
MDEC21.6	Implement DSP Algorithms							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
MDEC21.1	3	3							2			
MDEC21.2	3	3		2	2				2			
MDEC21.3	3	3							2			
MDEC21.4	3	3							2			
MDEC21.5	3	3	2	2	2				2			
MDEC21.6	3	3	2	2	3				2			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember 🗸	Understand ✓	Apply	Analyze	Evaluate	Create

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Theory Component

Modul	Unit	Topics	Ref	Hrs.	
e No.	No.	Discusts Time Cional	1 2	8	
1	Title	Discrete-Time Signal	$\begin{bmatrix} 1, 2, \\ 2 \end{bmatrix}$	ð	
	1.1	Introduction: Signals and Systems, Continuous Time signal,	3		
		Discrete - Time signal and representation, Digital signal, The			
	1.2	Sampling theorem, Classification of Discrete - Time Signals	-		
	1.2	Operations on Discrete - Time Signals: Linear Convolution,			
		Circular Convolution, Matrix Representation of Circular			
		Convolution, Linear Convolution using Circular Convolution,			
		Auto and Cross Correlation			
	1.3	Discrete - Time systems: Representation of system using impulse			
		response, Finite Impulse Response (FIR) and Infinite Impulse			
		Response (IIR) system, Response of the FIR system using			
		convolution			
2	Title	Discrete Fourier Transform	1, 2	6	
	2.1	Introduction to DTFT, Relation between DFT and DTFT, DFT of			
		DT signal, Inverse DFT. Computations in DFT	_		
	2.2	Properties of DFT			
3	Title	Fast Fourier Transform	1,2	6	
	3.1	Need of FFT, Radix-2 DIT-FFT algorithm,			
		Flow graph for N=4 and N=8 using Radix-2 DIT-FFT	_		
	3.2	Inverse FFT algorithm, Computations in FFT			
4	Title	Digital FIR Filter Design	1,2,	04	
	4.1	Linear Phase Concept	3		
	4.2	Linear Phase Low Pass/High Pass/Band Pass FIR filter design			
		using Windowing Method			
5	Title	DSP Algorithms	1,2	04	
	5.1	Fast Linear and Circular Convolution using FFT]		
	5.2	Linear FIR filtering]		
	5.3 Signal Matching using Carl's Correlation Algorithm				
6	Self	Composite FFT, FFT Flowgraph for N=6 and N=9	1,2	06	
	Study	Linear Phase Realization of FIR Filter			
			Total	28	

A THOUSE OF THE CHANGE OF THE

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Sampling and Reconstruction
2	Digital Signal Operations
3	Discrete Convolution
4	Discrete Correlation
5	Discrete Fourier Transform
6	Fast Fourier Transform
7	FIR Filter Design
8	Linear Convolution using FFT
9	Circular Convolution using FFT
10	Linear Filtering using Overlap Add Method
11	Linear Filtering using Overlap Save Method
12	Audio Signal Matching using Carl's Correlation Algorithm

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing	Forth Edition	John Proakis and Dimitris Monolakis	Pearson Publication	2007
2	Digital Signal Processing	Second Edition	S.Salivahanan, A Vallavaraj	Tata McGraw Hill	2010
3	Analog and Digital Signal Processing	Second Edition	Ashok Ambardar	Brooks/Cole Publishing	1999

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing	Forth Edition	P. Ramesh Babu	Scitech Publication Pvt Ltd	2011
2.	Digital Signal Processing	First Edition	M. H. Hayes	The McGraw Hill	2007
3	Digital Signal Processing	Second Edition	Nagoor Kani	Tata McGraw Hill	2012

Web References:

NPTEL Courses

- 1. Digital Signal Processing and Applications by Prof. V. M. Gadre, IIT Bombay https://onlinecourses.nptel.ac.in/noc21 ee20/preview
- 2. Digital Signal Processing by Prof. S.C.Dutta Roy IIT Delhi https://nptel.ac.in/courses/117102060

MIT OpenCouseWare

1. Digital Signal Processing by Prof. Alan V. Oppenheim https://ocw.mit.edu/courses/res-6-008-digital-signal-processing-spring-2011/

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course		Teachi	ng Sch	eme (I		Credits Assigned					
(Category) Code	Course Name	L	T	P	O	E	L	T	P	Total	
	Principles of Communication Systems	2	0	2+2	5	10	2	0	1+1	4	
MDM-II		Examination Scheme									
		Component		ISE	2 (%)	MSI	E (%)	ESE (%)		Total	
MDEC22		Theo	Theory		20		20	60		100	
		Labora	Laboratory-I		80			20		100	
		Laborat	1	80			2	20	100		

Pre-requisite	e Course Codes, if any. MDM-I: Analog Electronics and Circuits							
Course Obje	ective: The objective is to equip the students with basic knowledge for analyzing analog and							
digital comm	nunication systems ranging from data networks and internet to mobile data communication							
systems such as cellular and WiFi systems. Specifically, the students will learn how to manage								
communicati	on system resources including bandwidth and power by selecting a proper signaling and/or							
analog/pulse/	/digital modulation scheme							
Course Outo	comes (CO): At the end of the course students will be able to							
MDEC22.1	Explain, compare, and distinguish between the components of analog, pulse, and digital							
	communication systems.							
MDEC22.2	Analyze the behavior of modulated signals in time domain, frequency domain, and signal							
	space.							
MDEC22.3	Create different source coding and error correction codes.							
MDEC22.4	Examine the performance of different analog and digital modulation schemes.							
MDEC22.5	Everying and calculate everteen manfamman as matrice like hit note and handwidth for different							
MDEC22.3	Examine and calculate system performance metrics like bit rate and bandwidth for different							
	digital modulation techniques, as well as for source and error correction codes.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDEC22.1	3				-				-	-		1
MDEC22.2	2	2			3				3	3		
MDEC22.3	2	2			3				3	3		1
MDEC22.4	3	3			3				3	3		1
MDEC22.5	2	2			3				3	3		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
MDEC22.1	2	2			
MDEC22.2	2	2		2	1
MDEC22.3	2	2		2	1
MDEC22.4	2	2		2	1
MDEC22.5	2	2			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember✓	Understand✓	Apply√	Analyze√	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics		Hrs.
1	Title	Analog and Pulse modulation		
	1.1	Introduction to Signals, fourier analysis, Classification of		
		Frequency spectrum, Need for modulation, Block diagram of an		
		analog and digital communication system.		
	1.2	DSB-FC: Principle of working, Waveforms and power relations		
		and power spectrum, Single and multitone, Types of AM		
		FM:Mathematical analysis, Armstrong method of FM generation,		
		Block diagram of Superheterodyne receiver		
	1.3	Sampling theorem, Types of Sampling, Pulse Amplitude		
		modulation, Pulse Width Modulation, Pulse code modulation		
-	1 /	(PCM)		
	1.4	Delta modulation, Time Division multiplexing	07	
2	Title	Source coding and Channel Coding		
	2.1	Uncertainty, Information, Entropy, Source coding theorem,		
		Huffman encoding, Shannon Fano coding		
	2.2	Channel capacity Theorem, Linear block codes, Cyclic codes-Shift		
		register method and Polynomial division method, Convolutional		
		codes- Shift Register approach, State diagram, Trellis, Viterbi		
		decoding		
3	Title	Digital Modulation Techniques		
	3.1	Line coding and Power spectral density (PSD) of line codes		

SPIT/UG Syllabus/2023-24/pg. 33

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

U	Study	Analog and Digital communication techniques		00
6	5.3 Self	OFDM Applications and health, safety, and environment aspects of		06
	5.2	Frequency hopping spread spectrum		
	5.1	Direct sequence spread spectrum		
5	Title	Spread Spectrum and OFDM	04	
		various modulations		
	3.4	Digital Modulation tradeoffs:Probability of Error evaluations of		
	3.3	Inter symbol Interference, Eye diagram,		
		and Signal space analysis.WLAN specific		
	3.2	BPSK,8-QAM,16-QAM,BFSK,MSK- Principle of working, PSD		

PCS-I Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implementation of double sideband full carrier for various modulation index and demodulation
2	Implement the frequency modulation circuit to obtain FM waveforms and calculate modulation index
3	Implementation of natural sampling and reconstruction of waveforms
4	Implementation of pulse amplitude modulation.
5	LBC encoder and decoder
6	Implementation of Binary Phase Shift Keying
7	Implementation of Binary Frequency shift keying
8	Signal space analysis of QAM
9	PSD and ISI analysis of BPSK
10	BER analysis of BPSK without and with Convolutional codes

PCS -II Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Sr. No	Title of the Experiment				
1	Getting Started with ARM Microcontrollers				
	Objective: Learn the basics of ARM microcontrollers and set up the development environment.				
	• Experiments:				
	• Install ARM development tools (e.g., Keil, GCC, STM32CubeIDE, or others).				
	 Write and execute a simple "Hello, World!" program with onboard LED blinking. 				
2	GPIO and Basic Peripherals				
	Objective: Understand General Purpose Input/Output (GPIO) and basic peripherals.				
	• Experiments:				
	 Control an LED using a GPIO pin. 				
	• Read input from a push-button or switch.				
	• Implement Pulse Width Modulation (PWM) to control an LED's brightness.				
3	Analog-to-Digital Conversion (ADC)				
	Objective: Learn to read analog signals with ADC.				
	• Experiments:				
	• Read a value from a potentiometer.				
	 Connect a temperature sensor (e.g., LM35, TMP36) and read temperature data. 				
4	UART/Serial Communication				

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	Objective: Establish communication between the microcontroller and other devices via UART.				
	• Experiments:				
	Set up a UART connection and send/receive data to/from a computer.				
	 Connect a serial-based sensor (e.g., GPS module) and extract information. 				
5	Interfacing with Digital Sensors				
	Objective: Learn to connect and read data from digital sensors.				
	• Experiments:				
	• Connect a digital temperature/humidity sensor (e.g., DHT11/DHT22).				
	• Connect a motion sensor (e.g., PIR sensor).				
	• Connect a distance sensor (e.g., ultrasonic HC-SR04).				
	Interfacing with Analog Sensors				
	Objective: Connect and read data from analog sensors.				
	• Experiments:				
6	• Connect an analog temperature sensor (e.g., LM35, TMP36).				
	• Use a photoresistor (LDR) to measure light intensity.				
	Connect an analog accelerometer to measure acceleration.				
	Communication Protocols: I2C and SPI				
	Objective: Learn to use I2C and SPI for sensor communication.				
7	• Experiments:				
,	 Connect and read data from an accelerometer (e.g., MPU6050) using I2C. 				
	 Connect and control an OLED display via SPI. 				

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	Wi-Fi Communication
	Objective: Establish Wi-Fi connectivity for IoT applications.
	• Experiments:
8	Connect an ESP8266 or ESP32 module to the ARM microcontroller for basic Wi-Fi communication.
	Implement a simple HTTP server on the microcontroller to serve data.
	 Send data to a cloud platform (e.g., ThingSpeak, AWS IoT, Google Cloud IoT).
	Bluetooth/BLE Communication
	Objective: Explore Bluetooth connectivity for short-range communication.
	• Experiments:
9	Connect a Bluetooth module (e.g., HC-05/HC-06) and send/receive data to/from a smartphone.
	Implement BLE communication with a smartphone or another BLE-capable device.
	Integration with IoT Platforms
	Objective: Connect the microcontroller to an IoT platform for data monitoring and control.
10	• Experiments:
	Send sensor data to an IoT platform and visualize it.
	 Set up IoT triggers to control microcontroller outputs (e.g., control an LED from a remote platform).

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Principles of	2nd	Taub H. and	Tata McGraw	2001
	Communication Systems		Schilling D.L	Hill	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

2	Communications Systems	4th	Haykin S	John Wiley	2001
				and Sons	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital and Analog Communication	4th	B.P.Lathi	Oxford	2017
2.	Communication Systems Engineering	4th	Proakis J. G. and Salehi M.	Pearson Education	2002.
3.	Digital Communication	3rd	Haykin S	John Wiley and Sons	2001

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		2	1	2	5	10	3	0	1	4
MDM-III		Examination Scheme								
	Digital Image and Video Processing	Comp	onent	ISE	(%)	MSE	2 (%)	ESE	(%)	Total
MDEC23		The	eory	2	20	2	0	6	50	100
		Laboratory		8	30	-	-	2	20	100

Pre-requisit	e Course Codes, if any.							
Course Obje	Course Objective: The primary objective of Image Processing Course is to understand and apply image							
processing tools to process the Digital image								
Course Outo	comes (CO): At the end of the course students will be able to							
MDEC23.1	apply image enhancement technique							
MDEC23.2	apply image segmentation technique							
MDEC23.3	perform binary image processing Operation							
MDEC23.4	develop fast image transform flowgraph							
MDEC23.5	solve image compression and decompression							
MDEC23.6	develop image processing application							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDEC23.1	3	3	2	3	3				2			
MDEC23.2	3	3	2	3	3				2			
MDEC23.3	3	3	2	3	3				2			
MDEC23.4	3	3	2	3	3				2			
MDEC23.5	3	3	2	3	3				2			
MDEC23.6	3	3	2	3	3				2			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ✓	Understand ✓	Apply ✓	Analyze √	Evaluate	Create

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Modul e No.	Unit No.	Topics	Ref	Hrs.				
1	Title	Fundamentals of Digital Image and Video	1,2	2				
	1.1	Sampling and Quantization, Digital Image Representation						
	1.2	Introduction of Coordinate representation and Pixel, Neighbors of pixel adjacency connectivity Image Enhancement Gray Level Transformations, Zero Memory Point Operations Histogram Processing Spatial Filtering: Smoothing and Sharpening Filters Spatial Filtering: Smoothing and Sharpening Filters Image Segmentation Introduction of Operation of Discontinuities, Point Detection, Filters Image Segmentation Introduction of Discontinuities, Point Operation of Discontinuities, Point Detection, Filters Image Segmentation Edge Linking using Local processing and Global Processing Hough Transform, Graph Theoretic Method Region based Segmentation, Image growing by pixel aggregation, Split and Merge Technique Binary Image Processing						
2	Title		1,2	6				
	2.1	Gray Level Transformations, Zero Memory Point Operations						
	2.2	Histogram Processing						
	2.3							
	2.4	Spatial Filtering: Smoothing and Sharpening Filters						
3	Title	Image Segmentation	1,2,	6				
	3.1	Detection of Discontinuities, Point Detection, Line Detection	4					
		and Edge Detection						
	3.2							
		Hough Transform, Graph Theoretic Method						
	3.3	Region based Segmentation, Image growing by pixel						
		aggregation, Split and Merge Technique						
4	Title	Binary Image Processing	1,2	6				
	4.1	Representation and Description, Chain Code, Shape Number,						
		Moments.						
	4.2	Binary Morphological Operators: Dilation, Erosion,						
		Opening and Closing, Boundary Extraction, Region Filling,						
		Hit or Miss Transform, Corner Detection, Thinning and						
	T:41.	Thickening algorithm	1 2	1				
5	Title	Image Transform and Compression	1,3	4				
	5.1	Introduction to Unitary Transform, Discrete Fourier						
		Transform(DFT) and Fast Fourier Transform (FFT), Discrete						
		Hadamard Transform(DHT), Fast Hadamard Transform, Discrete Cosine Transform (DCT)						
	5.2	Introduction, Redundancy, Fidelity Criteria, Lossless						
	3.2	Compression Techniques: Run Length Coding, Arithmetic						
		Coding, Huffman Coding, Differential PCM,						
		Lossy Compression Techniques: Improved Gray Scale						
		Quantization, Vector Quantization, JPEG						
	5.3	2-D Motion Estimation : Pixel based motion estimation,						
		Block Matching Algorithm, Region based Motion						

THE ONLY SECHAL

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

		Estimation, Multi resolution Motion Estimation. Block based		
		transform coding, MPEG		
6	Self	Connected Component Labeling, Gray Scale Morphology and		
	Study	Colour Image Enhancement, Image restoration		
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Image Enhancement using zero memory point processing
2	Image Enhancement using Histogram Processing
3	Image Enhancement using Spatial Filtering
4	Image Segmentation based on discontinuity property
5	Image Segmentation based on similarity property
6	Morphological Image Processing
7	Thinning and Thickening Algorithm
8	Image representation using Chain code, Shape Number and Moments
9	Fast Image Transform
10	Image Compression using Lossless Compression techniques
11	Image Compression using Lossy Compression techniques
12	Application of Image Processing

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Image	Third	Rafel C.	Pearson	2009
	Processing	Edition	Gonzalez and	Educatio	
			Richard E.	Asia	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

			Woods		
2	Digital Image	First	S.Jayaraman,	TataMcGraw	2009
	Processing	Edition	E.Esakkirajan and T.	Hill Education	
			Veerkumar	Private Ltd	
3	Digital Image	First	S. Sridhar	Oxford	2011
	Processing	Edition			
4	Digital Image	First	B. Chanda	PHI	2003
	Processing	Edition	D. Dutta Majumdar		

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Fundamentals and	Third	Anil K. Jain	Prentice Hall	
	Digital Image	Edition		of India	
	Processing			Private Ltd	
2.	Digital Image	First	Milan Sonka,	Cengage	2008
	Processing and	Edition	Vaclav Hlavac and	Learning	
	computer Vision	Roger Boyle			
3	Multidimensional	Second	John W Woods	Elsevier	2012
	Signal, Image and	Edition			
	Video Processing				
	and Coding				
4	Digital Image	Third	William Pratt	John	2003
	Processing	Edition		Wiley &	
				Sons	

Web References:

NPTEL Courses

1. Digital Image Processing by Prof. Prabir Kumar Biswas, IIT Kharagpur https://onlinecourses.nptel.ac.in/noc22 ee116/preview

Online Video Course:

1. Digital Image Processing by Prof. Rich Radke ,Rensselaer Polytechnic Institute https://sites.ecse.rpi.edu/~rjradke/improccourse.html

ALTUTE STATE OF THE CHANGE OF

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name		Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total		
		2	0	4	5	7	2	0	2	4		
MDM	Wireless		Examination Scheme									
MIDIVI		Com	IS	ISE (%) MS		E (%)) ESE (%)		Total			
	Communication									%		
		Th		_		-	40		40			
IV		La	Lab-I		25		-	5		30		
M024		Pr	Project		25	5		5	30			

Pre-requi	isite Course Codes, if any.									
Course O	bjective:									
Course Outcomes (CO): At the end of the course students will be able to										
M024.1	Comprehend wireless communication concepts, system capacity and service provided.									
M024.2	Evaluate various path loss and fading effects and propagation path loss models									
M024.3	Analyze losses, multipath effects and doppler spread.									
M024.4	Describe working and analyze emerging wireless communication technologies understanding their key features, potential applications									

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
M024.1	3	2			2				2	2		
M024.2	3	2			2				2	2		
M024.3	3	2			2				2	2		
M024.4	3	2			2				2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember✓	Understand✓	Apply✓	Analyze√	Evaluate	Create

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Modul	Unit	Topics	Ref	Hrs.			
e No.	No.	-	•				
1	Title	The Cellular Concept-System Design Fundamentals		8			
2	1.1	Introduction, Frequency Reuse, Channel Assignment Strategies, Handoff Strategies- Prioritizing Handoffs, Practical Handoff Considerations,,					
	1.2	Interference and system capacity — Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference					
	1.3	Power Control for Reducing interference, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular Systems-Cell Splitting, Sectoring.					
2	Title	Radio Propagation Models		8			
	2.1	Large-Scale Path Losses due to reflection, diffraction, Scattering					
	 2.2 Outdoor Propagation Models- Longley-Ryce Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model 2.2 Indoor Propagation Models-Partition losses (Same Floor), 						
	2.2	Indoor Propagation Models-Partition losses (Same Floor), Partition losses between Floors, Log-distance path loss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling					
3	Title	Mobile Radio Propagation		6			
	3.1	Small Scale Multipath propagation Factors influencing small scale fading, Doppler shift, Relationship between Bandwidth and Received power, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time,					
	3.2	Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model					
4	Title	Wireless Technologies and Standards		6			
	4.1	Introduction to CDMA, GSM and LTE, Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11 Comparison of IEEE 802.11 a,b,g and n standards, IEEE 802.16					

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	LAN	 Total	28	
	and its enhancements, Wireless PANs: bluetooth, zigbee, Hiper			

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communications,	Second	Theodore,	PHI	2002
	Principles, Practice		S.Rappaport		
2	Fundamentals of Wireless		David Tse and	Cambridge	2005
	Communication		Pramod	University	
			Viswanath	Press	
3	Wireless Communication	Fifth	Upen Dalal	Oxford Univ.	2013
				Press	

Additional Resources:

- National Telecommunications and Information Administration (NTIA): https://www.ntia.gov/
- IEEE 802.11 standard: https://standards.ieee.org/beyond-standards/the-evolution-of-wi-fitechnology-and-standards/
- Bluetooth website: https://www.bluetooth.com/
- WiMAX Forum website: https://wimaxforum.org/
- 3GPP website: https://www.3gpp.org/
- LTE white paper: http://lightspeedt.com/wp-content/uploads/2015/10/LTE-Brochure.pdf

Lab-I

https://ns3simulation.com/how-to-implement-wireless-communication-in-ns3/

- 1. Virtual lab:To study the effect of handover threshold and margin on SINR and call drop probability and handover probability
- 2. Virtual lab: Frequency re-use
- 3. GSM modem interfacing and sending text messages.
- 4. Basic client server paradigm. Reading peap traces.
- 5. TCP internals and the difference between each of the variants. NS-3 tracing mechanism.
- 6. To analyze how Radio channel models (indoor, outdoor, LoS, NLoS etc) affect transmission and an insight to correctly model the channel.

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

- 7. Configure settings of a simple LTE network, and to explore the performance evaluation of a long-running TCP flow from an Internet server to the UE.
- 8. Case studies on real-world deployments of wireless communication technologies

Lab-II Project (1 credit)

Group projects on designing and simulating wireless applications using software tools and hardware boards such as ESP -32, STM-32, etc

Presentation of project findings and discussions on current trends and future directions in wireless communication and networks

• Group Project Evaluation:

- > Assessment Criteria:
- 1. Design and simulation of wireless networks using software tools.
- 2. Application of theoretical concepts to practical scenarios
- 3. Collaboration and teamwork within the group
- > Evaluation Method:
- 1. Group project report detailing the design, implementation, and simulation results.
- 2. Evaluation rubric assessing technical accuracy, creativity, teamwork, and presentation quality.
- 3. Peer evaluation component to assess individual contributions within the group.

• Presentation and Discussion Evaluation:

- > Assessment Criteria:
- 1. Presentation of project findings and analysis
- 2. Engagement and participation in discussions
- > Evaluation Method:
- 1. Individual or group presentations of project findings
- 2. Evaluation rubric assessing clarity, depth of analysis, engagement, and contributions to discussions
- 3. Instructor-led or peer-led discussions assessing understanding of current trends and ability to articulate insights

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Multidisciplinary Minor -VLSI

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name	,	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total		
		2	0	2	5	9	2	0	1	3		
MDM-I	Hardware Description Language (HDL)	Examination Scheme										
		Comp	onent	ISE	ISE (%)		E (%)	ESE (%)		Total		
	Programming	Theory Laboratory		2	20		20	60		100		
MDEC31				8	30			20		100		

		Double Colored Division Division					
Pre-requisite	e Course Codes, if any.	Problem Solving using Imperative, Programming, Digital					
•		Systems and Microprocessors, Problem Solving using OOPs.					
Course Obje	ective: The course aims to	familiarize students with the syntax, semantics, and constructs					
of Verilog H	DL to design, simulate, ar	nd verify of digital logic design, including combinational and					
sequential log	gic, finite state machines, a	nd synchronous circuits. This includes understanding synthesis					
process, when	re HDL descriptions are tra	anslated into actual hardware implementations. Students learn					
about synthesis tools, timing constraints, and optimizing designs for area, power, and performance. The							
course also a	ims to provide students w	with insights into industry practices, standards, and emerging					
trends in digi	tal hardware and emerging	technologies (e.g., hardware accelerators for AI/ML).					
Course Outo	comes (CO): At the end of	the course students will be able to					
MDEC31.1	Demonstrate understandi	ng of basic FPGA design flow and FPGA architecture					
MDEC31.2	Write Verilog code for a	a given digital design using fundamental concepts of Verilog					
	language						
MDEC31.3	Construct combinational	and sequential circuits in different modelling styles using					
	Verilog HDL.						
MDEC31.4	Implement a given digita	l design problem using Verilog on FPGA platform					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDEC31.1	3		3		3			1	3	1		1
MDEC31.2	3		3		3			1	3	1		1
MDEC31.3	3		3		3			1	3	1		1
MDEC31.4	3		3		3			1	3	1		1

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understan	Apply√	Analyze	Evaluate	Create
√	đ√				

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Modul e No.	Unit No.	Topics	Ref.	Hrs.	
	Title	FPGA Design Flow			
1	1.1	India Semiconductor Industry and GoI policies.			
1	1.2	Need of HDL, FPGA Design Flow and EDA tools	1,2	8	
	1.3	FPGA Architecture Fundamentals, Different FPGAs available in the market and their applications			
	Title	Fundamentals of Verilog			
2	2.1 Verilog Program Structure and concept of testbench		1,2	4	
	2.2	Language constructs, Verilog datatypes, Operators etc.			
	Title	Design abstractions and Modeling Styles			
3	3.1	Design Abstractions, Behavioral, Data flow, Gate level and Switch level modelling	1,2	8	
	3.2	Procedural Assignment and Continuous Assignment			
4	Title	Finite State Machines	1.2	8	
4	4.1	Verilog code for both Mealy & Moore FSM	1,2	0	
5	Self Study	Verilog Models for Memories and Buses: Static RAM Memory, a simplified 486 Bus Model, UART Design, Datapath and Controller Design	Online Resource 2	*5	
	- 	Total (*Not in	cluded)	28	

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Design, simulate and synthesize any combinational digital design using structural modelling and carry out physical verification on a given FPGA. a. Logic Gates b. 4-bit Ripple Carry Full Adder by instantiating one-bit full adder c.2:1 Mux: Using case Statement
2	Design, simulate and synthesis any sequential digital design with behavioral modelling and carry out physical verification on a given FPGA. a. D Flip Flop using gates b. S-R Flip Flop c. 8-Bit Up Counter with Load
3	Create an ALU module capable of performing basic arithmetic and logical operations like addition, subtraction, AND, OR, XOR, etc.
4	Implement a floating-point arithmetic unit capable of performing operations on floating-point numbers following IEEE 754 standards.

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

5	Design of greatest common divisor using both data-path and control path implementation in Verilog HDL.
6	Design and simulate Round Robin arbiter using behavioral modelling.
7	Design, simulate and synthesis Verilog code using FSM for any one of the following: i. Elevator operation with 4x4 hex key pad input and display the output in LCD. ii. Traffic Light controller using Finite State machine.
8	Develop a Verilog code for any of the concepts of computer organizations like: Implement an I2C controller module for communication with I2C-compatible devices like sensors, EEPROMs, and RTCs. ii. Develop a controller module for interfacing with SPI flash memory chips commonly used for program storage in embedded systems. iii. Design a module to convert UART serial data to Ethernet frames for network communication.
9	Develop a Verilog code for algorithms in the areas like machine learning or cryptography using specialized hardware, such as SoC for faster processing.
10	Mini projects as an application of Verilog programming.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Design and Computer Architecture	1 st	David Money Harris, Sarah L. Harris	Elsevier Science	2013
2	Verilog HDL: A Guide to Digital Design and Synthesis	2 nd	Samir Palnitkar	Pearson Education	2009
3	Advanced Digital Design with Verilog HDL	2 nd	Michel D. Ciletti	PHI	2009

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital System Design with FPGA: Implementation Using Verilog and VHDL	1 st	By Cem Unsalan, Bora Tar	Mc Graw Hill Publication	2017
2	Verilog HDL Primer	3 rd	Bhasker J	BSP	2001
3	Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog	6 th	Michel D. Ciletti	Pearson Education	2018

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

4 Design through Verilog	2 nd	Padmanabhan, Tripura Sundari	Wiley	2016
--------------------------	-----------------	---------------------------------	-------	------

Online Resources:

1. Digital System design with PLDs and FPGAs

Prof. Kuruvilla Varghese, IISc Bangalore

Link: https://nptel.ac.in/courses/117108040

2. Hardware modeling using Verilog,

Prof. Indranil Sengupta, IIT Kharagpur

 $Link: \underline{https://nptel.ac.in/courses/106/105/106105165/}$

Course (Category)	Course Name	•	Геасhi (Hı	ng Sc s/wee			C	redits	s Assign	ned
Code		L	T	P	0	E	L	T	P	Total

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

		3	0	2	5	10	3	0	1	4
MDM-II			Examination Scheme							
	Digital CMOS VLSI	Component		ISE	(%)	MSE	E (%)	ESE	2 (%)	Total
	Design	The	ory	2	20	2	20	6	50	100
MDEC32		Labor	atory	8	80	-		2	20	100

Pre-requisite	e Course Codes, if any.	Basic Electrical Engineering, Electronic Devices and Circuits						
		(EDC), Analog Signal Integrated Circuits, Hardware						
		Description Language (HDL) Programming						
Course Obje	ctive: Today's growth in e	lectronic sector is due to improvements in semiconductor chip						
design. VLSI	course is the foundation co	urse introduced to teach fundamentals of MOSFET based logic						
circuit design	n. The primary objective of	of this course is to impart basic knowledge required to study						
advanced cou	rses in VLSI domain.							
Course Outc	omes (CO): At the end of	the course students will be able to						
MDEC32.1	Discuss structure, operati	on, scaling theory for MOSFET						
MDEC32.2	MDEC32.2 Design MOSFET based inverter circuits with given constraints							
MDEC32.3	EC32.3 Analyze MOSFET based combinational and sequential logic circuits							
MDEC32.4	Realize MOSFET based l	ogic circuits with different design styles						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
MDEC32.1	3			3	3			1	3	1		
MDEC32.2	3	3		3	3			1	3	1		
MDEC32.3	3		3	3	3			1	3	1		
MDEC32.4	3		3	3	3			1	3	1		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understan	Apply√	Analyze√	Evaluate	Create
√	đ√				

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Modul e No.	Unit No.	Topics	Ref.	Hrs.		
	Title	Review of MOSFET Physics				
1	1.1	Threshold Voltage Equation, MOSFET Structure and Operation	1	8		
	1.2	MOSFET Scaling, Types of scaling and small geometry effects				
	Title	MOSFET Inverters				
2	2.1	2.1 Static Characteristics of resistive load and CMOS Inverter, comparison of all types of MOS inverters				
	2.2	Dynamic Characteristics of inverters, design of CMOS inverters with constraints				
	Title	Combinational MOS Logic Circuits				
	2.1	MOS Logic Circuits with Depletion NMOS Loads and CMOS				
3	3.1	Logic Circuits	1,2	10		
	3.2	Complex Logic Circuits and Concept of equivalent CMOS inverter				
	Title	Dynamic Logic Circuits				
4	4.1	Static CMOS, pass transistor logic, transmission gate	1	10		
•	4.2	Pseudo NMOS, Domino, NORA, Zipper, C ² MOS	1	10		
	Title	Sequential MOS Logic Circuits				
5	5.1	Behavior of Bi-stable Elements	1,2	4		
	5.2	Circuit Realization: SR Latch, JK FF, D FF				
	Title	Semiconductor Memories				
6	Self Study ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits), DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits), Flash (mechanism, NOR flash, NAND flash), Peripheral Circuits: Sense amplifier, decoder		Online Resource 1	5*		
		Total (*Not i	ncluded)	42		

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To develop a program using any programming language to plot the NMOS and PMOS
1	Transistor VI characteristics.
2	To analyze NMOS and PMOS Transistor VI characteristics.
3	To simulate Resistive Load Inverter and CMOS Inverter, verify the VTC. Compare both the
3	topologies. Comment on the Noise Margins.
4	Implement CMOS NAND, NOR, AND, OR using Static CMOS Logic.
5	Design and implement 2:1 Mux using different CMOS Logic styles.
6	Design and implement given Boolean equation using different CMOS Logic styles.
7	Simulate Pseudo NMOS Inverter and comment on the result.

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

8	Design and implement given equation using Pseudo NMOS, Domino Logic and C ² MOS Logic
9	To design, analyze and simulate the ring oscillator.
10	Simulate Clocked JK and D Flip Flop using Static CMOS Logic.

Text Books

Sr. No	Title	Publisher	Year		
1	Electronic circuits: analysis and design	. 314 1		Tata McGraw Hill	2006
2	CMOS Digital Integrated Circuits Analysis and Design	4 th	Sung-Mo Kang, Yusuf Leblebici	Tata McGraw Hill	2003

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Integrated Circuits: A Design Perspective	2 nd	Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic	Pearson Education	2019
2	Introduction to VLSI Circuits and Systems	Student Edition	John P. Uyemura	Wiley	2013

Online Resource: 1. https://onlinecourses.nptel.ac.in/noc21_ee09

Course (Category)	Course Name	r	Teachi (Hı	ing Sc s/wee			C	redit	s Assign	ned
Code		L	T	P	0	E	L	T	P	Total

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

		2	0	2	5	9	2	0	1	3
MDM-III			Examination Scheme							
	VLSI Physical Design	Component		ISE	(%)	MSF	E (%)	ESE	2 (%)	Total
MDEC33		The	ory	2	20	2	20	6	50	100
		Labor	atory	8	30	-	-	2	20	100

		Basic Electrical Engineering, Electronic Devices and Circuits
Dra raquisit	Course Codes if any	(EDC), Analog Signal Integrated Circuits, Basic CMOS
rre-requisite	e Course Codes, if any.	VLSI Design, Hardware Description Language (HDL)
		Programming
Course Obje	ective: The objectives of th	e course to entail a basic understanding of CMOS technology,
transistor-lev	el design, and circuit imple	mentation enough to navigate through the physical design flow.
It focuses on	understanding algorithms u	used for floorplanning, placement, routing, clock tree synthesis,
and final ver	ification using DRC and I	LVS checks while optimizing performance, power, and area
metrics along	side introduction to industr	ry-standard CAD tools for VLSI physical design.
Course Outo	comes (CO): At the end of	the course students will be able to
MDEC33.1	Sketch the layout of CMO	OS VLSI circuits.
MDEC33.2	Understand physical d	esign techniques, including partitioning, chip planning,
	placement, and routing to	optimize performance, power, and area in VLSI circuits.
MDEC33.3	Understand the principles	s and techniques of Static Timing Analysis (STA), analyze and
	ensure that synchronous	circuits meet timing requirements, including setup, hold, and
	clock-to-q delays.	
MDEC33.4	Apply optimization algor	ithms to efficiently partition chips, plan layouts, and place and
	route VLSI circuits, as w	ell as clock routing algorithms for analyzing performance and
	area utilization of VLSI d	lesign.
MDEC33.5	Effectively utilize Electro	onic Design Automation (EDA) tool for physical design tasks,
	static timing analysis, and	l verification.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDEC33.1	2		3		3			1	1	1		1
MDEC33.2	2		3		3			1	1	1		1
MDEC33.3	2		3		3			1	1	1		1
MDEC33.4	2		3		3			1	1	1		1
MDEC33.5	2		3		3			1	1	1		1

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understan	Apply√	Analyze√	Evaluate	Create
√	đ√				

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Modul e No.	Unit No.	Topics	Ref.	Hrs.
	Title	Introduction to VLSI Physical Design & Static Timing Analysis Introduction, Physical Design flow, Physical Verification, EDA		
1	1.1		8	
	1.2	Necessity of Design rules and Lambda based design rules, Layout of inverters and basic gates.	1	0
	1.3	Introduction (STA, DTA, Behavior of synchronous circuit, Timing Arcs and Unateness, Definitions – Setup, Hold, Latch, Flipflop, STA for Flipflop and Latch		
	Title	Partitioning, Chip Planning and Placement		
	2.1	Introduction and Optimization goals, KL-Algorithm, Extensions of KL-Algorithm, FM-Algorithm, Multilevel Partitioning		
2	2.2	Introduction and Optimization goals, Floor planning Representations, Floor planning Algorithms	1	8
	2.3	Introduction and Optimization goals, Min-cut placement, Analytic Placement, Simulated Annealing, Modern Placement Algorithms		
	Title	Routing: Global and Detailed		
3	3.1	Introduction and optimization goals, Single net routing (Rectilinear routing), Global routing in the connectivity graph, finding shortest paths with Dijkstra's Algorithm, Horizontal and vertical constraint graphs, Channel Routing Algorithms, Switch box routing algorithms, Over the cell routing algorithms, Power and Ground routing, Unified Power Format and Special cells used for Power Planning	1,2	6
	Title	Routing: Clock Routing		
4	4.1	Clocking Schemes and Design Considerations, Clock Routing algorithms – 1 (H-tree based and MMM algorithms), Clock Routing algorithms – 2 (Geometric matching and Weighted center algorithms), Clock Routing algorithms – 3 (Exact zero skew and DME algorithm), Skew, Latency, Uncertainty, and Jitter	1	6
	Self Study	Machine Learning for Physical Design: Machine Learning Models, Predict Path-Based Slack from Graph-Based Timing Analysis, Data collection, Model creation and predicting data	Online Resource	5*
		Total (*Not i	ncluded)	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Sr. No	Title of the Experiment
1	Sketch the circuit and Layout for CMOS inverter using CAD tool.
2	Sketch the circuit and Layout for CMOS AND/OR gate using CAD tool.
3	Sketch the circuit and Layout for Flip Flop using CAD tool.
	Use Electronic Design Automation (EDA) tool for physical design tasks including partitioning,
4	chip planning, placement, and routing to optimize performance, power, and area in any VLSI
	circuit.
5	Use Electronic Design Automation (EDA) tool to perform Static Timing Analysis for latch and
	flip-flop using CAD tool.
6	Develop a program for chip partitioning algorithm and simulate VLSI chip partitioning
7	Develop a program for chip planning algorithm and simulate VLSI chip planning
8	Develop a program for placement algorithm and simulate placement of circuit modules
9	Simulate algorithm for global and detailed routing to simulate exact pathways for
	interconnecting standard cells, macros, and I/O pins.
10	Develop a program for clock routing algorithm to simulate interconnection of multiple clocked
	cells to a single clock generator.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	VLSI Physical Design: From Graph Partitioning to Timing Closure	1 st	Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.	Springer	2014
2	Algorithm for VLSI Physical Design Automation	2 nd	Sherwani, N.A.	Kluwer	2012

Reference Books

Ittiti	IICC DOOKS				
Sr. No	Title	Edition	Authors	Publisher	Year
1	Static Timing Analysis for Nanometer Designs: A Practical Approach	1 st	J. Bhasker and Rakesh Chadha	Springer	2009
2	Advanced ASIC Chip Synthesis: Using Synopsys Design Compiler Physical Compiler and Prime Time	2 nd	Bhatnagar, H.	Kluwer Academic Publishers : New York	2013

Online Resource: 1. https://onlinecourses.nptel.ac.in/noc21 cs12/preview

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		3		2	5	10	3		1	4
MDM-IV		Examination Scheme								
	ASIC Verification	Component		onent ISE (%) M		MSE	2 (%)	ESE	(%)	Total
MDEC34		Theory		2	20		0	6	50	100
		Laboratory		8	30			2	20	100

	Basic Electrical Engineering, Problem Solving using	ng
Pre-requisite Course Codes, if any.	Imperative, Programming, Problem Solving using OOP	s,
Tre-requisite Course Coues, if any.	Hardware Description Language (HDL) Programming, Bas CMOS VLSI Design, VLSI Physical Design	sic
	CWO3 VLSI Design, VLSI Filysical Design	

Course Objective: The course aims to familiarize students and select the verification methodology like simulation-based verification, formal verification, and hardware emulation based on their strengths, weaknesses, and when to use each approach. It would lead to build proficiency in hardware description System Verilog, as well as verification languages like System Verilog Assertions (SVA) and Universal Verification Methodology (UVM). Learners will be able to develop comprehensive testbenches that thoroughly exercise the ASIC design under various conditions to identify bugs and ensure functional correctness. Proficiency in using industry-standard verification tool, formal verification tools and debugging tools.

Course Outc	Course Outcomes (CO): At the end of the course students will be able to						
MDEC34.1	Recognise trends in ASIC verification						
MDEC34.2	Apply System Verilog constructs for verification						
MDEC34.3	Create testbenches, threads and show interprocess communication						
MDEC34.4	Create test cases under constrained environment						
MDEC34.5	Validate design with System Verilog assertions and functional coverage						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDEC34.1	1							1	1	1		2
MDEC34.2	3		3	3	3			1	1	1		1
MDEC34.3	3		3	3	3			1	1	1		1
MDEC34.4	3		3	3	3			1	1	1		1
MDEC34.5	3		3	3	3			1	1	1		1

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Remember	Understan	${\tt Apply} {\it \checkmark}$	Analyze√	Evaluate√	Create√
	đ√				

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.	-		
1	Title 1.1	Basics of System VerilogVerificationBasics:Technologychallenges,Verificationmethodology,Testbenchcreation,Verificationlanguages,Verification IP reuse,Verification approaches,Verification plans	1 (T), 5 (R)	4
	Title	Data types, procedural statements and testbench		
2	2.1	Data Types: Built in, Fixed size array, dynamic array, queues, associative array, linked list, array methods, choosing a storage type, creating new types with typedef, creating user-defined structures, type conversion, enumerated types, constants, strings, expression width	1 (T), 1 (R),	8
	2.2	Procedural Statements and Routines: Procedural statements, tasks, functions and void functions, task and function overview, routine arguments, returning from a routine, local data storage, time values	3 (R)	
	2.3	Connecting the Testbench and Design: Separating the testbench and design, the interface construct, stimulus timing, interface driving and sampling, top-level scope, program-module, interactions	1 (T), 1 (R), 3 (R)	
	Title	OOP and Randomization		
	3.1	Basic OOP: Class, creating new objects, Object deallocation, using objects, variables, class methods, defining methods outside class, scoping rules, using one class inside another, understanding dynamic objects, copying objects, public Vs local, building a testbench		
3	3.2	Randomization: Randomization in system Verilog, constraint details, solution probabilities, controlling multiple constraint blocks, valid constraints, In-line constraints, pre-randomize and post-randomize functions, Random number functions, Constraints tips and techniques, common randomization problems, Iterative and array constraints, Atomic stimulus generation Vs scenario generation, random control, random number generators, random device configuration	1 (T), 1 (R), 3 (R)	10
4	Title	IPC and advanced OOP	1 (T),	12

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

		Threads and Interprocess Communication: working with	1 (R),	
	4.1	threads, disabling threads, interprocess communication, events,	3 (R)	
	4.1	semaphores, mailboxes, building a testbench with threads and		
		IPC		
		Advanced OOP and Testbench Guidelines: Inheritance,		
	4.2	Blueprint pattern, downcasting and virtual methods, composition,		
	4.2	inheritance and alternatives, copying an object, abstract classes		
		and pure virtual methods, callbacks, parameterized classes		
	Title	Assertions and Functional Coverage		
		System Verilog Assertions: Assertions in verification	1 (T), 1 (R), 2 (R), 4 (R)	
	5.1	methodology, understanding sequences and properties, System		
	3.1	Verilog Assertions in the Design Process, Formal Verification		
5		Using Assertions and System Verilog Assertions Guidelines		8
		Functional Coverage: Coverage types, strategies, examples,		
	5.2	anatomy of a cover group, triggering a cover group, data sampling,		
	3.2	cross coverage, generic cover groups, coverage options, analyzing		
		coverage data, measuring coverage statistics during simulation.		
		Advanced Interfaces: Virtual interfaces with the ATM router,		
		connecting to multiple design configurations, procedural code in an	1 (T),	
	C 16	interface, A complete System Verilog Testbench: Design blocks,	1 (R),	
	Self	testbench blocks, alternate tests, Interfacing with C: Passing	2 (R),	5*
	Study	simple values, connecting to a simple C routine, connecting to C++, simple array sharing, open arrays, sharing composite types, pure	4 (R)	
		and context imported methods, communicating from C to system		
		Verilog, connecting other languages		
		Total (*Not incl	luded)	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Design MUX and D-FF modules with parameters to enable students to understand how different parameters influence module behavior and functionality.
2	Familiarization of simulation tool for verification of design using System Verilog. Simulate MUX and D-FF.
3	Complete the given task on literals and data types in System Verilog. Also write the simulation output for the given Procedural Statements
4	Write the simulation output for the given Interprocess Communication
5	Write the simulation output for the given randomization code
6	Write the simulation output for the given Interfaces, Program and Clocking Blocks

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

7	Write the simulation output for the given Processes
8	Write the simulation output for the given Functional Coverage
9	Write the simulation output for the given Assertions
	Open-ended problem: Apply System Verilog concepts to any real-life application and its execution/implementation.
	i. Designing and Verifying Peripheral Interfaces: Design, verify, and simulate interfaces like UART, SPI, I2C, or PCIe using SystemVerilog to ensure compatibility and reliability in ASIC designs.
	ii. Developing Verification IP (VIP): Create Verification IP (VIP) for popular protocols or interfaces, such as USB, Ethernet, or HDMI, to be used in larger ASIC verification environments.
10	iii. Verifying ASIC Components for IoT Devices: Verify ASIC components like sensors, communication modules, or processing units for Internet of Things (IoT) devices, ensuring low power consumption, reliability, and interoperability.
	iv. ASIC Verification for Automotive Electronics: Verify ASIC components used in automotive electronics, such as engine control units, safety systems, or infotainment systems, to ensure compliance with industry standards and safety requirements.
	v. ASIC Verification for Consumer Electronics: Verify ASIC components for consumer electronics devices like smartphones, tablets, or gaming consoles, ensuring functionality, performance, and compatibility with diverse hardware and software environments.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	System Verilog for Verification: A guide to learning the testbench language features	2 nd	Chris Spear	Springer	2010

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	System Verilog for Design: A guide to using system Verilog for hardware design and modeling	2 nd	Stuart Sutherland, Simon Davidmann, and Peter Flake	Springer	2006
2	System Verilog Assertions Handbook	4 th	Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper	VhdlCohen Publishing	2015

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

3	System Verilog Language Reference manual				
4	System on Chip Verification Methodologies and Techniques	1 st	S Prakash Rashinkar, Peter Paterson and Leena Singh	Kluwer Academic	2003

Online Resource:

https://elearn.nptel.ac.in/shop/iit-workshops/completed/workshop-on-soc-verification/?v = c86ee0d9d7ed