1 Essancielle

Nous commençons par faire un ajustement le profil de déformation bord avec des sumulations GDH. La temperature est le paramètre ajustable. Le potentiel chimique μ est parametrés avec la temperature T et la densité initiale spatiale du nuage n_p . Le potentiel chimique μ est une fonction de T et de la densité initiale spatiale du nuage n_p , aillant T on ajuste μ pour avec un modele de thermique Yang-Yang, trouver une densité spatiale initiale de n_p . n_p est mesuré à 56.6 μm^{-1} . le meilleure ajustement de la déformation du bord est pour une temperature T=558.9~nK soit une potentiel chimique $\mu=64~nK$ 4.

FIGURE 1 – [Bleu] Donnée de Déformation du bord t=18~ms, [Orange] Ajustement avec T=558.939~nK et $\mu(T=1.556.939)$ $558.939 \ nK, n_p = 56.6 \ \mu m^{-1}) = 64.529 \ nK$

On veux extraire une distribution locale de rapidité. Pour cela avant de faire une expantion unidimentionnel nous faisont on selection une tranche du nuage?. Tranche $[x_0 - \ell/2, x_0 + \ell/2]$ dont on veux extraire sa distribution de rapidité $\Pi_{x_0,\ell}$. Où x_0 est le centre de la tranche et ℓ est la largeur de la tranche.

[Version 1] Pour avoir x_0 et ℓ j'ajuste les donnés d'expension à $\tau=1$ ms avec un modelle de fonction porte convoluée avec une gaussienne $\left[f(x;A,x_0,\sigma)=\frac{A}{2}\left(\operatorname{erf}\left(\frac{x+\frac{A}{2}-x_0}{\sqrt{2}\sigma}\right)-\operatorname{erf}\left(\frac{x-\frac{A}{2}-x_0}{\sqrt{2}\sigma}\right)\right)\right]$ et ℓ et la largeur à demis hauteur : $\ell = 2\sqrt{2\ln(2)}\sqrt{\sigma^2 + \left(\frac{A}{2}\right)^2}$. On trouve $x_0 = 18.34~\mu m$ et $\ell = 33.51~\mu m$ 2a. Puis on fait une expansion unidimentionnelle pentan $\tau = 30~ms$. Les sumulation GHD aplique à la petite tranche nous

donne une profile lois des donné 2b

(a) [Bleu] Donnée de Selection après expansion $\tau=1\ ms$, [Orange] Simulation de l'expansion pour $\tau=0\ ms$, avec $x_0=18.4\ \mu m$ et $\ell=33.5\ \mu m$, $(T=558.9\ nK)$ et $\mu(T=558.9\ nK, n_p=56.6\ \mu m^{-1})=64.529\ nK)$ et [Vert] Simulation de l'expansion pour $\tau=0\ ms$, avec $x_0=18.4\ \mu m$ et $\ell=33.5\ \mu m$, $(T=558.9\ nK)$ et $\mu(T=558.9\ nK, n_p=56.6\ \mu m^{-1})=64.529\ nK)$

(b) [Bleu] Donnée expansion $\tau=30~ms$, [Orange] Simulation de expansion $\tau=30~ms$ avec $n_p=56.6~\mu m^{-1}$, T=558.9~nK, $\mu=64.529~nK$, $x_0=18.4~\mu m$, et $\ell=33.5~\mu m$, [Vert] Distribution de rapidité en $x=x_0$ pour T=558.9~nK, $\mu=64.529~nK$ et [Rouge] Distribution de rapidité dans la tranche $[x_0-\ell/2,x_0+\ell/2]$ pour T=558.9~nK, $\mu=64.529~nK$

Figure 2

[Version 2] Pour avoir x_0 onajuste les donnés d'expension à $\tau=1$ ms avec un modelle de fonction porte convoluée avec une gaussienne $\left[f(x;A,x_0,\sigma)=\frac{A}{2}\left(\mathrm{erf}\left(\frac{x+\frac{A}{2}-x_0}{\sqrt{2}\sigma}\right)-\mathrm{erf}\left(\frac{x-\frac{A}{2}-x_0}{\sqrt{2}\sigma}\right)\right)\right]$. J'obtiens $x_0=18.34~\mu m$. Puis on multiplie le profile de bord par une fonction prote de centre x_0 et de diametre ℓ . On ajuste ℓ pour avoir dans la tranche le meme nombre d'atome que mesuré dans le donné à $\tau=1~ms$. On trouve $\ell=28.1~\mu m$ 3a.

(a) [Bleu] Donnée de Selection après expansion $\tau=1~ms$, [Orange] Simulation de l'expansion pour $\tau=0~ms$, avec $x_0=18.4~\mu m$ et $\ell=28.1~\mu m$, (T=558.9~nK) et $\mu(T=558.9~nK,n_p=56.6~\mu m^{-1})=64.529~nK)$ et [Vert] Simulation de l'expansion pour $\tau=0~ms$, avec $x_0=18.4~\mu m$ et $\ell=28.1~\mu m$, (T=558.9~nK) et $\mu(T=558.9~nK,n_p=56.6~\mu m^{-1})=64.529~nK)$

(b) [Bleu] Donnée expansion $\tau=30~ms$, [Orange] Simulation de expansion $\tau=30~ms$ avec $n_p=56.6~\mu m^{-1}$, T=558.9~nK, $\mu=64.529~nK$, $x_0=18.4~\mu m$, et $\ell=28.1~\mu m$, [Vert] Distribution de rapidité en $x=x_0$ pour T=558.9~nK, $\mu=64.529~nK$ et [Rouge] Distribution de rapidité dans la tranche $[x_0-\ell/2,x_0+\ell/2]$ pour T=558.9~nK, $\mu=64.529~nK$

FIGURE 3

[Version 3] Pour avoir x_0 onajuste les donnés d'expension à $\tau=1$ ms avec un modelle de fonction porte convoluée avec une gaussienne $\left[f(x;A,x_0,\sigma)=\frac{A}{2}\left(\mathrm{erf}\left(\frac{x+\frac{A}{2}-x_0}{\sqrt{2}\sigma}\right)-\mathrm{erf}\left(\frac{x-\frac{A}{2}-x_0}{\sqrt{2}\sigma}\right)\right)\right]$. J'obtiens $x_0=18.34~\mu m$. Puis on multiplie le profile de bord par une fonction prote de centre x_0 et de diametre ℓ . On ajuste ℓ pour avoir dans la tranche le meme nombre d'atome que mesuré dans le donné à $\tau=30~ms$. On trouve $\ell=22.2~\mu m$ 4

(a) [Bleu] Donnée de Selection après expansion $\tau=1\ ms$, [Orange] Simulation de l'expansion pour $\tau=0\ ms$, avec $x_0=18.4\ \mu m$ et $\ell=28.1\ \mu m$, $(T=558.9\ nK)$ et $\mu(T=558.9\ nK, n_p=56.6\ \mu m^{-1})=64.529\ nK)$ et [Vert] Simulation de l'expansion pour $\tau=0\ ms$, avec $x_0=18.4\ \mu m$ et $\ell=28.1\ \mu m$, $(T=558.9\ nK)$ et $\mu(T=558.9\ nK, n_p=56.6\ \mu m^{-1})=64.529\ nK)$

GHD: μ = 64.529 nK, T = 558.939 nK, x_0 = 18.339 μ m, ℓ = 22.176 μ m ρ^* : μ = 64.529 nK, T = 558.939 nK, x_0 = 18.339 μ m Π^* : μ = 64.529 nK, T = 558.939 nK, x_0 = 18.339 μ m, ℓ = 22.176 μ m

(b) [Bleu] Donnée expansion $\tau=30~ms$, [Orange] Simulation de expansion $\tau=30~ms$ avec $n_p=56.6~\mu m^{-1}$, T=558.9~nK, $\mu=64.529~nK$, $x_0=18.4~\mu m$, et $\ell=28.1~\mu m$, [Vert] Distribution de rapidité en $x=x_0$ pour T=558.9~nK, $\mu=64.529~nK$ et [Rouge] Distribution de rapidité dans la tranche $[x_0-\ell/2,x_0+\ell/2]$ pour T=558.9~nK, $\mu=64.529~nK$

Figure 4

centre bouge entre $\tau=0$ et $\tau=1$ ms et mon mesure une diference de 17% de nombre d'atome sentre $\tau=1$ ms et $\tau=30$ ms sur les données d'expension

FIGURE 5 – les profiles du 24-04-2024:

2 Les données

Date: 2024-04-24 Scan: 89-97-102-108

Paramètres: With1, DeadtimeDMD, With1_bis, Deadti-

meDMD bis

FIGURE 6 – Les profils du 24-04-2024

- a) "Deformation bord $\tau = 1 \ ms$ " (5) : Profil longitudinal des données $1 \ ms$ après la sélection en x = 0.
- b) "Deformation bord $\tau=18~ms$ " (5) : Profil longitudinal des données après 18 ms de déformation du bord.
- c) "Expansion 1D $\tau=1~ms$ " (5) : Profil longitudinal des données après 1 ms d'expansion.
- d) "Expansion 1D $\tau = 30 \ ms$ " (5) : Profil longitudinal des données après 30 ms d'expansion.

- A) Système semi-infinie pour $x \ge 0$:
 - a) Système dans une potentiel quartique :
 - fréquence transverse : $\omega_{\perp} \stackrel{exp}{=} 2\pi * 2.56 \text{ } KHz$
 - la densité spatial : $n_0 = n_p$ sur les données "deformation bord $\tau = 1$ ms" (5), je mesure $n_p \stackrel{exp}{=} 56.6 \ \mu m^{-1}$.
 - b) Selection de $x \ge 0$:
 - la densité spatial théorique : $n_0 = n_p \Theta(x)$
 - garde le potentiel transverse
- B) Deformation du bord :
 - o "deformation bord $\tau=1~ms$ (5) : le profile longitudinale des données apres 1 ms de déformation du bord
 - o "deformation bord $\tau=18~ms$ (5) : le profile longitudinale des données apres 18~ms de déformation du bord
 - garde le potentiel transverse
 - temps de déformation du bord $\tau = 18 \ ms$
- C) Mesure locale de distribution de rapidité , Expansion 1D :
 - a) Local : selection de la tranche $[x_0 \ell/2, x_0 + \ell/2]$:
 - $x_0 = 19.6 \,\mu m$ (trouvé avec un ajustement gaussien sur "expansion 1D $\tau = 1 \,ms$ " (5))
 - $\ell = 24.78~\mu m$ (trouvé en faisant la différence des positions des extremums du gradient de s données "expansion 1D $\tau = 1~ms$ " (5))
 - b) Expansion:
 - o "expansion 1D $\tau=1~ms$ " : profile longitudinale des données après 1 ms d'expansion.
 - o "expansion 1D $\tau=30~ms$ " : profile longitudinale des données après 30 ms d'expansion.
 - $\bullet\,$ temps de déformation du bord $\tau=18\;ms$
 - garde le potentiel transverse

3 Simulation GHD

3.1 Méthode 1 (Ajustement sur la déformation du bord ($\mu(T, n_p = 56.6 \ \mu m^{-1}), T, x_0 = 19.6 \ \mu m, \ell = 24.78 \ \mu m$) :

(a) [Bleu] Donnée de Déformation du bord t=18~ms, [Vert] Ajustement avec T=556.975~nK et $\mu(T=556.975~nK, n_p=56.6~\mu m^{-1})=64.554~nK$, [Orange] Donnée de Selection après expansion $\tau=1~ms$ et [Rouge] Simulation de l'expansion pour $\tau=1~ms$, avec $x_0=19.6~\mu m$ et $\ell=24.78~\mu m$

(c) [Bleu] Donnée expansion $\tau=30~ms$, [Orange] Simulation de expansion $\tau=30~ms$ avec $n_p=56.6~\mu m^{-1}$, T=556.975~nK, $\mu=556.975~nK$, $x_0=19.6~\mu m$, et $\ell=24.78~\mu m$ et [Vert] Distribution de rapidité en x=0 pour T=556.975~nK, $\mu=556.975~nK$

(b) [Bleu] Donnée de Selection après expansion $\tau=1~ms$, [Vert] Simulation de l'expansion pour $\tau=1~ms$, avec $x_0=19.6~\mu m$ et $\ell=24.78~\mu m$ et (T=556.975~nK) et $\mu=556.975~nK, n_p=56.6~\mu m^{-1})=64.554~nK)$ et [Orange] Données de l'expansion pour $\tau=30~ms$

(d) [Bleu] Déviation de du nombre d'atome simulé par raport au nombre d'atome simulé à $\tau=0~ms~$, [Orange] Déviation de du nombre d'atome simulé par rapport au nombre d'atome mesuré dans les donné à $\tau=1~ms$, [Vert] Déviation de du nombre d'atome simulé par raport au nombre d'atome mesuré sur les donné à $\tau=30~ms$ et [Rouge] Déviation de du nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesurer sur les donné à $\tau=1~ms$

- A) Ajustement sur la déformation du bord (7a) :
 - a) On extrais la temperature T en faisant un ajustement sur le profil de bord
 - b) Le potentiel chimique est une fonction de la temperature T et la densité $n_p: \mu(T, n_p = 56.6 \ \mu m^{-1})$ tel que $\int \rho_{[\nu_{\{T,\mu\}}]}(\theta) d\theta = n_p$
 - L'ajustement donne $T = 556.975 \ nK$ et $\mu(T = 556.975 \ nK, n_p = 56.6 \ \mu m^{-1}) = 64.554 \ nK$
- B) Selection $[x_0 \ell/2, x_0 + \ell/2]$
 - $x_0 = 19.6 \ \mu m$ (trouvé avec un ajustement gaussien sur "expansion 1D $\tau = 1 \ ms$ " (5) ou (7a) ou (7b)
 - o $\ell=24.78~\mu m$ (trouvé en faisant la différence des positions des extremums du gradient des données "expansion 1D $\tau=1~ms$ " (5) ou (7a) ou (7b))
- C) Expansion
 - On considère que la tranche $[x_0 \ell/2, x_0 + \ell/2]$ n'est pas homogène
 - o Après Simulation GHD on obtiens les profil orange de 7c
 - Les simulations GHD Conservent le nombre d'atoms à 3% près (blue de 7d)
 - Les simulations GHD de l'expansion commencent avec une erreur 10% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion à $\tau = 1 \ ms$ (Premier point de la courbe orange de 7d)
 - Les simulations GHD de l'expansion se terminent avec une erreur 13% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion $\tau = 30~ms$ (Dernier point de la courbe verte de 7d)
 - Les mesures sur les données du nombre d'atomes lors de l'expansion montrent une perte de 17% du nombre d'atomes (rouge 7d)

3.2 Méthode 1.1 (Ajustement sur la déformation du bord + ajustement x_0 et ℓ ($\mu(T, n_p = 56.6 \ \mu m^{-1}), T, x_0 = 18.852 \ \mu m, \ell = 27.860 \ \mu m$):

(a) [Bleu] Donnée de Déformation du bord t=18~ms, [Vert] Ajustement avec T=558.939~nK et $\mu(T=558.939~nK, n_p=56.6~\mu m^{-1})=64.529~nK$, [Orange] Donnée de Selection après expansion $\tau=1~ms$ et [Rouge] Simulation de l'expansion pour $\tau=1~ms$, avec $18.852~\mu m$ et $\ell=27.860~\mu m$

(c) [Bleu] Donnée expansion $\tau=30~ms$, [Orange] Simulation de expansion $\tau=30~ms$ avec $n_p=56.6~\mu m^{-1}$, T=558.939~nK, $\mu=64.529~nK$, $x_0=18.852~\mu m$, et $\ell=27.860~\mu m$ et [Vert] Distribution de rapidité en $x=x_0$ pour T=558.939~nK, $\mu=64.529~nK$ et [Rouge] Distribution de rapidité en $x=x_0$ avec $\ell=27.860~\mu m$, pour T=558.939~nK, $\mu=64.529~nK$

A) Ajustement sur la déformation du bord (7a) ou (8a) :

(b) [Bleu] Donnée de Selection après expansion $\tau=1~ms$, [Vert] Simulation de l'expansion pour $\tau=1~ms$, avec $x_0=8.852~\mu m$ et $\ell=27.860~\mu m$ et (T=558.939~nK et $\mu=64.529~nK, n_p=56.6~\mu m^{-1})=64.554~nK)$ et [Orange] Données de l'expansion pour $\tau=30~ms$

(d) [Bleu] Déviation de du nombre d'atome simulé par raport au nombre d'atome simulé à $\tau=0~ms$, [Orange] Déviation de du nombre d'atome simulé par rapport au nombre d'atome mesuré dans les donné à $\tau=1~ms$, [Vert] Déviation de du nombre d'atome simulé par raport au nombre d'atome mesuré sur les donné à $\tau=30~ms$ et [Rouge] Déviation de du nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesuré sur les donné à $\tau=1~ms$

- o (idem)
-
 o L'ajustement donne T=558.939~nKet $\mu(T=558.939~nK,n_p=56.6~\mu m^{-1})=64.554~nK$
- B) Selection $[x_0 \ell/2, x_0 + \ell/2]$
 - o $x_0 = 18.852 \ \mu m$ (trouvé avec un ajustement gaussien sur "expansion 1D $\tau = 1 \ ms$ " (5) ou (8a) ou (8b)
 - o $\ell=27.860~\mu m$ (en ajustant pour que les simulation $\tau=0$ donne le mement nombre d'atome que pour les donné à $\tau=1~ms$ "expansion 1D $\tau=1~ms$ " (5) ou (8a) ou (8b))
- C) Expansion
 - On considère que la tranche $[x_0 \ell/2, x_0 + \ell/2]$ n'est pas homogène
 - o Après Simulation GHD on obtiens les profil orange de 8c
 - Les simulations GHD Conservent le nombre d'atoms à 3% près (blue de 8d)
 - x Les simulations GHD de l'expansion commencent avec une erreur 0% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion à $\tau = 1 \ ms$ (Premier point de la courbe orange de 8d)
 - x Les simulations GHD de l'expansion se terminent avec une erreur 23% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion $\tau = 30~ms$ (Dernier point de la courbe verte de 8d)
 - Les mesures sur les données du nombre d'atomes lors de l'expansion montrent une perte de 17% du nombre d'atomes (rouge 8d)

3.3 Méthode 1.2 (Ajustement sur la déformation du bord + ajustement x_0 et ℓ ($\mu(T, n_p = 56.6 \ \mu m^{-1}), T, x_0 = 18.852 \ \mu m, \ell = 22.14 \ \mu m$):

(a) [Bleu] Donnée de Déformation du bord t=18~ms, [Vert] Ajustement avec T=558.939~nK et $\mu(T=558.939~nK,n_p=56.6~\mu m^{-1})=64.529~nK$, [Orange] Donnée de Selection après expansion $\tau=1~ms$ et [Rouge] Simulation de l'expansion pour $\tau=1~ms$, avec $18.852~\mu m$ et $\ell=22.14~\mu m$

(c) [Bleu] Donnée expansion $\tau=30~ms$, [Orange] Simulation de expansion $\tau=30~ms$ avec $n_p=56.6~\mu m^{-1}$, T=558.939~nK, $\mu=64.529~nK$, $x_0=18.852~\mu m$, et $\ell=27.860~\mu m$ et [Vert] Distribution de rapidité en $x=x_0$ pour T=558.939~nK, $\mu=64.529~nK$ et [Rouge] Distribution de rapidité en $x=x_0$ avec $\ell=22.14~\mu m$, pour T=558.939~nK, $\mu=64.529~nK$

A) Ajustement sur la déformation du bord (7a) ou (9a) :

(b) [Bleu] Donnée de Selection après expansion $\tau=1~ms$, [Vert] Simulation de l'expansion pour $\tau=1~ms$, avec $x_0=8.852~\mu m$ et $\ell=22.14~\mu m$ et (T=558.939~nK et $\mu=64.529~nK, n_p=56.6~\mu m^{-1})=64.554~nK)$ et [Orange] Données de l'expansion pour $\tau=30~ms$

(d) [Bleu] Déviation de du nombre d'atome simulé par raport au nombre d'atome simulé à $\tau=0~ms$, [Orange] Déviation de du nombre d'atome simulé par rapport au nombre d'atome mesuré dans les donné à $\tau=1~ms$, [Vert] Déviation de du nombre d'atome simulé par raport au nombre d'atome mesuré sur les donné à $\tau=30~ms$ et [Rouge] Déviation de du nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesuré sur les donné à $\tau=1~ms$

- o (idem)
- B) Selection $[x_0 \ell/2, x_0 + \ell/2]$
 - $-x_0 = 18.852 \ \mu m$ (trouvé avec un ajustement gaussien sur "expansion 1D $\tau = 1 \ ms$ " (5) ou (9a) ou (9b))
 - x $x_0 = 22.14 \ \mu m$ (en ajustant pour que les simulation $\tau = 0$ donne le mement nombre d'atome que pour les donné à $\tau = 30 \ ms$ "expansion 1D $\tau = 1 \ ms$ " (5) ou (9a) ou (9c))
- C) Expansion
 - On considère que la tranche $[x_0 \ell/2, x_0 + \ell/2]$ n'est pas homogène
 - o Après Simulation GHD on obtiens les profil orange de 9c
 - Les simulations GHD Conservent le nombre d'atoms à 3% près (blue de 9d)
 - x Les simulations GHD de l'expansion commencent avec une erreur 0% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion à $\tau = 1 \ ms$ (Premier point de la courbe orange de 9d)
 - x Les simulations GHD de l'expansion se terminent avec une erreur 13% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion $\tau = 30~ms$ (Dernier point de la courbe verte de 9d)
 - Les mesures sur les données du nombre d'atomes lors de l'expansion montrent une perte de 17% du nombre d'atomes (rouge 9d)

3.4 Méthode 2 (Ajustement sur l'expansion ($\mu(T,n_p=56.6~\mu m^{-1}),T,x_0=19.6~\mu m,\ell=24.78~\mu m$) :

(a) [Bleu] Donnée de Déformation du bord t=18~ms, [Vert] Ajustement avec T=556.975~nK et $\mu(T=556.975~nK,n_p=56.6~\mu m^{-1})=64.554~nK$, [Orange] Donnée de Selection après expansion $\tau=1~ms$ et [Rouge] Simulation de l'expansion pour $\tau=1~ms$, avec $x_0=19.6~\mu m$ et $\ell=24.78~\mu m$

(c) [Bleu] Donnée expansion $\tau=30~ms$, [Orange] Simulation de expansion $\tau=30~ms$ avec $n_p=56.6~\mu m^{-1}$, T=556.975~nK, $\mu=556.975~nK$, $x_0=19.6~\mu m$, et $\ell=24.78~\mu m$ et [Vert] Distribution de rapidité en x=0 pour T=556.975~nK, $\mu=556.975~nK$

(b) [Bleu] Donnée de Selection après expansion $\tau=1~ms$, [Vert] Simulation de l'expansion pour $\tau=1~ms$, avec $x_0=19.6~\mu m$ et $\ell=24.78~\mu m$ et (T=556.975~nK) et $\mu=556.975~nK, n_p=56.6~\mu m^{-1})=64.554~nK)$ et [Orange] Données de l'expansion pour $\tau=30~ms$

(d) [Bleu] Déviation de du nombre d'atome simulé par raport au nombre d'atome simulé à $\tau=0~ms$, [Orange] Déviation de du nombre d'atome simulé par rapport au nombre d'atome mesuré dans les donné à $\tau=1~ms$, [Vert] Déviation de du nombre d'atome simulé par raport au nombre d'atome mesuré sur les donné à $\tau=30~ms$ et [Rouge] Déviation de du nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesurer sur les donné à $\tau=1~ms$

- A) Selection $[x_0 \ell/2, x_0 + \ell/2]$ (Idem)
 - o $x_0 = 19.6 \ \mu m$ (trouvé avec un ajustement gaussien sur "expansion 1D $\tau = 1 \ ms$ " (5) ou (10a) ou (10b)
 - o $\ell = 24.78 \ \mu m$ (trouvé en faisant la différence des positions des extremums du gradient des données "expansion 1D $\tau = 1 \ ms$ " (5) ou (10a) ou (10b))
- B) Deformation + Expansion , Ajustement sur les données Expansion $\tau = 30~ms$
 - a) On extrais la temperature T en faisant un ajustement sur le profil de bord
 - b) Le potentiel chimique est une fonction de la temperature T et la densité $n_p: \mu(T, n_p = 56.6 \ \mu m^{-1})$ tel que $\int \rho_{[\nu_{\{T,\mu\}}]}(\theta) d\theta = n_p$
 - L'ajustement donne $T = 556.975 \ nK$ et $\mu(T = 556.975 \ nK, n_p = 56.6 \ \mu m^{-1}) = 64.554 \ nK$
 - On considère que la tranche $[x_0 \ell/2, x_0 + \ell/2]$ n'est pas homogène
 - o Après Simulation GHD on obtiens les profil orange de 10c
 - Les simulations GHD Conservent le nombre d'atoms à 3% près (blue de 10d)
 - Les simulations GHD de l'expansion commencent avec une erreur 10% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion à $\tau = 1 \ ms$ (Premier point de la courbe orange de 10d)
 - x Les simulations GHD de l'expansion se terminent avec une erreur 23% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion $\tau = 30~ms$ (Dernier point de la courbe verte de 10d)
 - Les mesures sur les données du nombre d'atomes lors de l'expansion montrent une perte de 17% du nombre d'atomes (rouge 10d)