

ROOTED TREE ORDERINGS

Why

We want to simplify common questions using orderings of a rooted tree.¹

Definition

A topological ordering of a rooted tree is an ordering σ for which $v \prec_{\sigma} \operatorname{pa}(v)$. If there are n vertices, the root has index n and every other vertex has an index less than its parent.

A postordering is a topological ordering in which descendents of a vertex are given consecutive numbers. For the postordering σ , if $\sigma^{-1}(v) = j$ and v has k proper descendents then the proper descendents of v have are numbered consecutively from j - k through j - 1. Figure 1 shows an example.

One can generate a postordering by numbering vertices in decreasing sequence (starting at n) in the order they are visited.²

Given an ordering, the *first descendent* of v (which we denote fdesc(v)) is the descendent with the lowest index. Given a postordering σ , one can check whether a vertex w is a proper descendent of v, by $fdesc(v) \leq_{\sigma} w \prec_{\sigma} v$.

¹This sheet is incomplete and will be updated in future editions.

²Future editions will clarify.

Figure 1: A postordering of a rooted tree.

