# Cox Proportional Hazard Model

## Chao Cheng

### December 29, 2022

## Contents

| 2 | Estimation |       |                                                 |
|---|------------|-------|-------------------------------------------------|
|   | 2.1        | What  | is $L_1(\beta)$                                 |
|   |            | 2.1.1 | Intuition: profile likelihood perspective       |
|   |            |       | Intuition: conditional distribution perspective |
|   | 2.2        | What  | if there is censoring?                          |
|   | 2.3        | What  | if there are tied event times?                  |
|   |            | 2.3.1 | Exact partial likelihood                        |
|   |            | 2.3.2 | Breslow's approximation                         |
|   |            |       | Efron's approximation                           |
|   |            | 2.3.4 | One example for comparison                      |

## 1 Introduction

In this note we will talk about the Cox's proportional hazards (Cox's PH) model. Suppose we observe some non-informatively right-censored data  $(U, \delta)$  with covariate vector Z. That is, for subject i, the covariate vector is  $Z_i$ , survival time  $T_i$  and censoring time  $C_i$ . The observed data is  $(U_i, \delta_i)$  where  $U_i = \min(T_i, C_i)$  and  $\delta_i = 1$  ( $T_i \leq C_i$ ). Also  $T_i \perp C_i | Z_i$ .

And now we want to model the relationship between Z and T. One way to do that is to incorporate Z into the hazard function  $h(\cdot)$ , e.g.,

$$T \sim Exp(\lambda_Z) \implies h(t) = \lambda_Z \stackrel{\Delta}{=} e^{\alpha + \beta Z} = \lambda_0 e^{\beta Z},$$

where  $\lambda_0 = e^{\alpha}$  can be viewed as a baseline hazard. If  $\beta = 0$  then Z is not associated with T.

We can generalize this idea as

$$h(t|Z) = h_0(t) \times g(Z).$$

So the hazard can be factorized and this model is sometimes called a "multiplicative intensive model" or "multiplicative hazard model" or "proportional hazard model" because this factorization implies that

$$\frac{h\left(t|Z=z_{1}\right)}{h\left(t|Z=z_{2}\right)}=\frac{g\left(z_{1}\right)}{g\left(z_{2}\right)}.$$

The hazard ratio is constant with respect to t, hence the (constant) proportional hazard. So in our previous model (the exponential survival time), the hazard ratio is

$$\frac{h(t|Z=z_1)}{h(t|Z=z_2)} = e^{\beta(z_1-z_2)}.$$

Also this exponential form of g(Z)

$$h(t|Z) = h_0(t) \cdot e^{\beta Z} \tag{1}$$

is the Cox's PH model.

## 2 Estimation

In this section, we will talk about what is the objective function for Cox's model. But we will not talk about the detailed optimization algorithm. (1) implies that

$$S(t|Z) = \exp(-H(t|Z))$$

$$= \exp\left(-\int_0^t h(u|Z) du\right)$$

$$= \exp\left(-\int_0^t h_0(t) du \cdot g(Z)\right)$$

$$= (S_0(t))^{g(Z)} = (S_0(t))^{\exp(\beta Z)},$$

where  $S_0(t) = \exp\left(-\int_0^t h_0(u) du\right)$ , the survival function for Z = 0, hence S(t|Z = 0). Also remember that f(t|Z) = h(t|Z) S(t|Z). Thus, given n independent data  $(u_i, \delta_i, z_i)$ , the likelihood (one can refer to our previous notes about survival analysis.) is

$$L(\beta, h_{0}(\cdot)) = \prod_{i=1}^{n} (f(u_{i}|z_{i}))^{\delta_{i}} (S(u_{i}|z_{i}))^{1-\delta_{i}} = \prod_{i=1}^{n} h(u_{i}|z_{i})^{\delta_{i}} S(u_{i}|z_{i})$$

$$= \prod_{i=1}^{n} (h_{0}(u_{i}) e^{\beta z_{i}})^{\delta_{i}} \left( \exp\left(-\int_{0}^{u_{i}} h_{0}(t) dt\right) \right)^{\exp(\beta z_{i})}$$

$$= \text{function } (data, h_{0}(\cdot), \beta).$$
(2)

If  $h_0(\cdot)$  is allowed to be "arbitary", then the "parameter space" is

$$\mathcal{H} \times \mathcal{R}^{p} = \left\{ \left( h\left( \cdot \right), \beta \right) \middle| h_{0}\left( \cdot \right) \geq 0, \int_{0}^{\infty} h_{0}\left( t \right) dt = \infty, \beta \in \mathcal{R}^{p} \right\},$$

where  $\int_0^\infty h_0(t) dt = \infty$  ensures that  $S_0(\infty) = 0$ .

In general this likelihood is hard to maximize. And Cox proposed this idea: to factor  $L(\beta, h_0(\cdot))$  as

$$L\left(\beta,h_{0}\left(\cdot\right)\right)=L_{1}\left(\beta\right)\times L_{2}\left(\beta,h_{0}\left(\cdot\right)\right),$$

where  $L_1$  only depends on  $\beta$  and its maximization  $(\hat{\beta})$  enjoys nice properties such as consistency and asymptotic normality while  $L_2$  contains relatively little information about  $\beta$ . And this  $L_1$  is called a **partial likelihood**.

## 2.1 What is $L_1(\beta)$

In this section we introduce the  $L_1$  proposed by Cox. First let's assume there are **NO** tied nor censoring observations. And define the distinct times of failure  $\tau_1 < \tau_2 < \cdots$ . Denote

$$R_j = \{i | U_i \ge \tau_j\} = \text{risk set at } \tau_j,$$

and

 $Z_{(j)}$  = value of Z for the subject who fails at  $\tau_j$ .

we can reconstruct the data from  $\{\tau_j\}$ ,  $\{R_j\}$  and  $\{Z_{(j)}\}$ . And  $L_1$  is defined as

$$L_1(\beta) \stackrel{\Delta}{=} \prod_j \left\{ \frac{e^{\beta Z_{(j)}}}{\sum_{l \in R_j} e^{\beta Z_l}} \right\}. \tag{3}$$

(Cox model assumes the time measurement to be continuous, but here we think about discrete time point for some intuition.)

### 2.1.1 Intuition: profile likelihood perspective

Note that under this setting (no tie, no censor), the full likelihood (2) becomes

$$L\left(\beta, h_0\left(\cdot\right)\right) = \prod_{i=1}^{n} h_0\left(u_i\right) e^{\beta z_i} \left(\exp\left(-\int_0^{u_i} h_0\left(t\right) dt\right)\right)^{\exp(\beta z_i)}.$$

Furthermore, we can assume  $u_i = \tau_i$ , i.e. the data has been <u>sorted</u> based on survival time. And use the KM idea, i.e. assume the survival function is **discrete** with <u>baseline</u> hazard value  $h_i$  at  $u_i$ . Then this likelihood becomes

$$L(\beta, h_1, \dots, h_n) = \prod_{i=1}^n h_i e^{\beta z_i} \exp\left(-\sum_{j=1}^i h_j\right)^{\exp(\beta z_i)}.$$
 (4)

Note that, in previous notes we have deduct that in discrete case, for any  $t \in [v_j, v_{j+1})$ :

$$H(t) = \sum_{i=1}^{j} h_i$$
  $S(t) = \prod_{i=1}^{j} (1 - h_i).$ 

Here in (4) we use the approximation that  $e^{-h_j} \approx 1 - h_j$  when  $h_j$  is close to 0.

We can use the method of <u>profile likelihood</u>: That is, for any given  $\beta$ , we maximize L (or equivalently,  $\log L$ ) over  $h_j$ s so the result is a function of  $\beta$ . Taking derivative, we have

$$\frac{\partial \log L}{\partial h_j} = \frac{1}{h_j} - \sum_{i < j} \exp(\beta z_i), \qquad j = 1, \dots, n.$$

Set them to 0 we have  $\hat{h}_j = 1/\sum_{i \leq j} \exp(\beta z_i)$ . And the <u>log</u> profile likelihood of  $\beta$  is

$$\log L_{profile}(\beta) = \log \left\{ \prod_{i=1}^{n} \frac{\exp(\beta z_{i})}{\sum_{k \leq i} \exp(\beta z_{k})} \exp\left(-\sum_{j=1}^{i} \frac{1}{\sum_{k \leq j} \exp(\beta z_{k})}\right)^{\exp(\beta z_{i})} \right\}$$

$$= \sum_{i=1}^{n} \left\{ \log \left\{ \frac{\exp(\beta z_{i})}{\sum_{k \leq i} \exp(\beta z_{k})} \exp\left(-\sum_{j=1}^{i} \frac{1}{\sum_{k \leq j} \exp(\beta z_{k})}\right)^{\exp(\beta z_{i})} \right\} \right\}$$

$$= \sum_{i=1}^{n} \left\{ \log \left( \frac{\exp(\beta z_{i})}{\sum_{k \leq i} \exp(\beta z_{k})} - \exp(\beta z_{i}) \cdot \left(\sum_{j=1}^{i} \frac{1}{\sum_{k \leq j} \exp(\beta z_{k})}\right) \right\}$$

$$= \sum_{i=1}^{n} \left\{ \log \left( \frac{\exp(\beta z_{i})}{\sum_{k \leq i} \exp(\beta z_{k})} \right) - \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{\exp(\beta z_{i})}{\sum_{k \leq j} \exp(\beta z_{k})}, \right\}$$

where the second part of last equation can be reduced to -n?, which means

$$L_{profile}(\beta) \propto \prod_{i=1}^{n} \frac{\exp(\beta z_i)}{\sum_{k \leq i} \exp(\beta z_k)}.$$

And this is what Cox uses as  $L_1(\beta)$ .

#### 2.1.2 Intuition: conditional distribution perspective

Given the fact that someone survies up to just prior to  $\tau_j$ , hence in the risk set  $R_j$ , the hazard of someone with covariate value z failing at  $t = \tau_j$  is

$$h_0(\tau_i)\exp(\beta z)$$
.

In discrete case, this is the conditional probability (in continuous case, this hazard value can go beyond 1.) of someone fails at  $\tau_j$  given the fact that subject survives past  $\tau_{j-1}$ .

Now, given the risk set  $R_j$  and the fact that the subject with  $z_*$  fails at  $\tau_j$ , this conditional so-called "probability"/"likelihood" is

$$\frac{h_0\left(\tau_j\right)\exp\left(\beta z_\star\right)}{\sum\limits_{l\in R_j}h_0\left(\tau_j\right)\exp\left(\beta z_l\right)} = \frac{\exp\left(\beta z_\star\right)}{\sum\limits_{l\in R_j}\exp\left(\beta z_l\right)}.$$

Then the cumproduct over all  $\tau_i$  leads to  $L_1$  in Cox's model.

**Note:** strictly speaking, this is not a conditional probability. In <u>discrete</u> case, let  $h(z_1, \tau), \dots, h(z_n, \tau)$  denotes the hazard of subject i at  $\tau$ , which is the conditional probability of the subject fails at  $\tau_j$  given the fact that the subject survives past  $\tau_{j-1}$ . Then given the risk set  $R_j$  and the fact that exactly one subject fails at  $\tau_j$ . The probability of that subject being  $z_i, i \in R_j$  is

$$\frac{h\left(z_{i},\tau\right)\prod_{j\neq i}\left(1-h\left(z_{j},\tau\right)\right)}{\sum_{i\in R_{j}}\left(h\left(z_{i},\tau\right)\prod_{l\in R_{j},l\neq i}\left(1-h\left(z_{l},\tau\right)\right)\right)}$$

### 2.2 What if there is censoring?

Then (3) is still used.

### 2.3 What if there are tied event times?

Through the probability of tie existance is 0 in the continuous time case, in real life it is pretty comman. Let

$$au_1 < au_2 < \dots < au_k$$
 distinct failure times 
$$d_j \qquad \qquad \text{number of failures at } au_j$$
 
$$z_{(j)}^{(1)}, z_{(j)}^{(2)}, \dots, z_{(j)}^{(d_j)} \qquad \text{values of z for the } d_j \text{ subjects who fail at } au_j$$
 as before

Then the exact, and two approximation of the partial likelihood are shown below.

#### 2.3.1 Exact partial likelihood

The exact partial likelihood considers all the possible rankings for the tied observations. Specifically

$$L_{1}(\beta) = \prod_{j=1}^{K} \left\{ \sum_{(k_{1}, \dots, k_{d_{j}}) = (1, 2, \dots, d_{j})} \prod_{i=1}^{d_{j}} \left\{ \frac{\exp\left(\beta z_{(j)}^{(k_{i})}\right)}{\sum_{l \in R_{j}} \exp\left(\beta z_{l}\right) - \sum_{s=i}^{d_{j}} \exp\left(\beta z_{(j)}^{(s)}\right)} \right\} \right\}.$$
(6)

The computation of the exact partial likelihood gets out of hand pretty quickly as  $d_j$  increases. So some modification/approximation methods are proposed.

#### 2.3.2 Breslow's approximation

$$L_1(\beta) = \prod_{j=1}^K \left\{ \prod_{i=1}^{d_j} \left\{ \frac{\exp\left(\beta z_{(j)}^{(i)}\right)}{\sum_{l \in R_j} \exp\left(\beta z_{(l)}\right)} \right\} \right\}.$$
 (7)

The idea is to treat these  $d_j$  subjects separately as that in (3), the **same** risk set is used for each and product the results together.

### 2.3.3 Efron's approximation

$$L_{1}(\beta) = \prod_{j=1}^{K} \left\{ \frac{\prod_{i=1}^{d_{j}} \exp\left(\beta z_{(j)}^{(i)}\right)}{\prod_{i=1}^{d_{j}} \left\{ \sum_{l \in R_{j}} \exp\left(\beta z_{l}\right) - \frac{i-1}{d_{j}} \sum_{s=1}^{d_{j}} \exp\left(\beta z_{(j)}^{(s)}\right) \right\}} \right\},$$
(8)

which is quite accurate for moderate  $d_i$ .

### 2.3.4 One example for comparison

Let's assume  $R_j = \{1, 2, 3\}$  and death set at  $\tau_j$  is  $D_j = \{1, 2\}$ , which means <u>two</u> tied event at  $\tau_j$ . Then at this time point,

1. the exact partial likelihood, from (6) is

$$\frac{\exp(\beta z_1)}{\exp(\beta z_1) + \exp(\beta z_2) + \exp(\beta z_3)} \times \frac{\exp(\beta z_2)}{\exp(\beta z_2) + \exp(\beta z_3)} 
+ \frac{\exp(\beta z_2)}{\exp(\beta z_1) + \exp(\beta z_2) + \exp(\beta z_3)} \times \frac{\exp(\beta z_1)}{\exp(\beta z_1) + \exp(\beta z_3)} 
= \frac{\exp(\beta (z_1 + z_2))}{\exp(\beta z_1) + \exp(\beta z_2) + \exp(\beta z_3)} \times \left(\frac{1}{\exp(\beta z_2) + \exp(\beta z_3)} + \frac{1}{\exp(\beta z_1) + \exp(\beta z_3)}\right)$$

2. the breslow's approximation, from (7) is

$$\frac{\exp(\beta(z_1 + z_2))}{\exp(\beta z_1) + \exp(\beta z_2) + \exp(\beta z_3)} \times \frac{1}{\exp(\beta z_1) + \exp(\beta z_2) + \exp(\beta z_3)}$$

$$= \frac{\exp(\beta(z_1 + z_2))}{(\exp(\beta z_1) + \exp(\beta z_2) + \exp(\beta z_3))^2}$$

3. the efron's approximation, from (8) is

$$\frac{\exp\left(\beta\left(z_{1}+z_{2}\right)\right)}{\exp\left(\beta z_{1}\right)+\exp\left(\beta z_{2}\right)+\exp\left(\beta z_{3}\right)}\times\frac{1}{\exp\left(\beta z_{1}\right)+\exp\left(\beta z_{2}\right)+\exp\left(\beta z_{3}\right)-\frac{1}{2}\left(\exp\left(\beta z_{1}\right)+\exp\left(\beta z_{2}\right)\right)}$$

So normally speaking, efron's approximation is more accurate than breslow's, but breslow's is more easire to empute. In real application, when  $d_j$  is big, it may be appropriate to consider analysis for discrete survival function.

## 3 Inference

### References