Sampling People, Records, & Networks

Jim Lepkowski, PhD
Professor & Research Professor Emeritus
Institute for Social Research, University of Michigan
Research Professor,
Joint Program in Survey Methodology, University of Maryland

Unit I

- I Research designs ...
- 2 Surveys
- 3 Why sample?
- 4 Why randomize?
- 5 Types of sampling
- 6 Evaluating samples
- 7 Units sampled

- Unit I: Sampling as a research tool
 - Lecture I Research design & sampling
 - Lecture 2 Surveys & sampling
 - Lecture 3 -- Why sample at all?
 - Lecture 4 Why might we randomize, and how do we do it?
 - Lecture 5 What happens when we randomize?
 - Lecture 6 How do we evaluate how good the sample is?
 - Lecture 7 What kinds of things can we sample?
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

Unit I

- I Research designs ...
- 2 Surveys
- 3 Why sample?
- 4 Why randomize?
- 5 Types of sampling
- 6 Evaluating samples
- 7 Units sampled

- Unit I: Sampling as a research tool
 - Lecture I Research design & sampling
 - Lecture 2 Surveys & sampling
 - Lecture 3 -- Why sample at all?
 - Lecture 4 Why might we randomize, and how do we do it?
 - Lecture 5 What happens when we randomize?
 - Lecture 6 How do we evaluate how good the sample is?
 - Lecture 7 What kinds of things can we sample?
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- Research design
- 3 R's

- Unit I: Sampling as a research tool
 - Lecture I Research design & sampling
 - Lecture 2 Surveys & sampling
 - Lecture 3 -- Why sample at all?
 - Lecture 4 Why might we randomize, and how do we do it?
 - Lecture 5 What happens when we randomize?
 - Lecture 6 How do we evaluate how good the sample is?
 - Lecture 7 What kinds of things can we sample?
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- Research design
- 3 R's

Research designs & surveys?

- Research design
- 3 R's

• Experiments

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
 - 1954 Field Trial of the Salk Poliomyelitis Vaccine

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
 - 1954 Field Trial of the Salk Poliomyelitis Vaccine
 - Two study designs: Observed control & Double blind randomized control experiment

- Research design
- 3 R's

• Experiments

- Dependent variable
- Factors
- Control or randomization of disturbing variables
- 1954 Field Trial of the Salk Poliomyelitis Vaccine
- Two study designs: Observed control & Double blind randomized control experiment
- 220,000 vaccinated 2^{nd} graders & 725,000 unvaccinated 1^{st} & 3^{rd} graders

- Research design
- 3 R's

• Experiments

- Dependent variable
- Factors
- Control or randomization of disturbing variables
- 1954 Field Trial of the Salk Poliomyelitis Vaccine
- Two study designs: Observed control & Double blind randomized control experiment
- * 220,000 vaccinated 2^{nd} graders & 725,000 unvaccinated 1^{st} & 3^{rd} graders
- 200,000 vaccinated 2nd graders & 200,00 controls

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
 - 1954 Field Trial of the Salk Poliomyelitis Vaccine
 - Two study designs: Observed control & Double blind randomized control experiment
 - 220,000 vaccinated 2nd graders & 725,000 unvaccinated 1st & 3rd graders
 - 200,000 vaccinated 2nd graders & 200,00 controls
 - Conclusion from randomized study: vaccine effective, safe

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
- Quasi-experimental: observational

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
- Quasi-experimental: observational
- Doll & Hill 1951-4 British Doctors Study
- All registered physicians in UK

Survey Data Collection & Analytic Specialization

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
- Quasi-experimental: observational
 - Doll & Hill 1951-4 British Doctors Study
 - Survey of all registered physicians in UK
 - 40,000 (2/3) responded, & followed

Top Bar Reserved for U-M Branding and Course Information

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
- Quasi-experimental: observational
 - Doll & Hill 1951 British Doctors Study
 - Survey of all registered physicians in UK
 - 40,000 (2/3) responded, & followed no randomization
 - Link between smoking & lung cancer, heart disease

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
- Quasi-experimental: observational
- Survey samples: observational

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
- Quasi-experimental: observational
- Survey samples: observational
 - Nationally representative sample

Survey Data Collection & Analytic Specialization

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
- Quasi-experimental: observational
- Survey samples: observational
 - Nationally representative sample
 - Levels & trends on fertility, infant & child mortality, family planning, maternal & child health

Survey Data Collection & Analytic Specialization

- Research design
- 3 R's

- Experiments
 - Dependent variable
 - Factors
 - Control or randomization of disturbing variables
- Quasi-experimental: observational
- Survey samples: observational
 - Nationally representative sample
 - Levels & trends on fertility, infant & child mortality, family planning, maternal & child health
 - Randomized selection of 11,974 households & 9,746 women 15-49 years of age

- Research design
- 3 R's

• The 3 R's

- Research design
- 3 R's

- The 3 R's
- Realism

- Research design
- 3 R's

- The 3 R's
- Realism
- Randomization

The 3 R's: FDR's approach

- Relief: to provide jobs for the unemployed and to protect farmers from foreclosure
- Recovery: to get the economy back into high gear, "priming the pump"
- Reform: To regulate banks, to abolish child labor, and to conserve farm lands

- Research design
- 3 R's

- The 3 R's
- Realism
- Randomization
- Representation

Unit I

- I Research designs ...
- 2 Surveys
- 3 Why sample?
- 4 Why randomize?
- 5 Types of sampling
- 6 Evaluating samples
- 7 Units sampled

• Unit I: Sampling as a research tool

- Lecture I Research design & sampling
- Lecture 2 Surveys & sampling
- Lecture 3 -- Why sample at all?
- Lecture 4 Why might we randomize, and how do we do it?
- Lecture 5 What happens when we randomize?
- Lecture 6 How do we evaluate how good the sample is?
- Lecture 7 What kinds of things can we sample?
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

