Data Science and Business Analytics Intern #GRIPSEP22

Author: Mariyam Khatoon

Task-1: Exploratory Data Analysis Using Decision Tree

Task-2: Prediction Using Unsupervised ML (Level-Beginner)

Source Python

Library

```
In [1]: import numpy as np
   import matplotlib.pyplot as mplt
   import pandas as pd
   import seaborn as sbn
   from sklearn.datasets import load_iris
   import sklearn.metrics as skm
   from sklearn import tree
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.model_selection import train_test_split
```

Import Data Set

```
In [2]: iris = load_iris()
X = iris.data[:,:]
y = iris.target
```

```
In [3]: X[:20]
Out[3]: array([[5.1, 3.5, 1.4, 0.2],
          [4.9, 3., 1.4, 0.2],
          [4.7, 3.2, 1.3, 0.2],
          [4.6, 3.1, 1.5, 0.2],
          [5., 3.6, 1.4, 0.2],
          [5.4, 3.9, 1.7, 0.4],
          [4.6, 3.4, 1.4, 0.3],
          [5., 3.4, 1.5, 0.2],
          [4.4, 2.9, 1.4, 0.2],
          [4.9, 3.1, 1.5, 0.1],
          [5.4, 3.7, 1.5, 0.2],
          [4.8, 3.4, 1.6, 0.2],
          [4.8, 3., 1.4, 0.1],
          [4.3, 3., 1.1, 0.1],
          [5.8, 4., 1.2, 0.2],
          [5.7, 4.4, 1.5, 0.4],
          [5.4, 3.9, 1.3, 0.4],
          [5.1, 3.5, 1.4, 0.3],
          [5.7, 3.8, 1.7, 0.3],
          [5.1, 3.8, 1.5, 0.3]])
In [4]: X.shape
Out[4]: (150, 4)
In [5]: y
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
          Checking Dependent Values
In [6]: | iris.target_names
Out[6]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
     Exploratory Data Analysis
```

Converting the Dataset into DataFrame

```
In [7]: data = pd.DataFrame(iris["data"],columns=["Sepal Length","Sepal Width","Petal Ler
```

```
In [8]: data.sample(5)
```

Out[8]:

	Sepal Length	Sepal Width	Petal Length	Petal Width
13	4.3	3.0	1.1	0.1
70	5.9	3.2	4.8	1.8
44	5.1	3.8	1.9	0.4
135	7.7	3.0	6.1	2.3
41	4.5	2.3	1.3	0.3

```
In [9]: data.shape
Out[9]: (150, 4)
```

Number of rows 150, and number of columns 5 in thedataset

Data Cleaning

NULL (empty) values in the dataset

There is no NULL (empty) values in the dataset

Duplicated values in the dataset

```
In [11]: data.duplicated().sum()
Out[11]: 1
```

There is one duplicated value in the dataset

Removing duplicate values

```
In [12]: data = data.drop_duplicates()
```

```
In [13]: data.duplicated().sum()
```

Out[13]: 0

Descriptive Statistics

In [14]: data.describe()

Out[14]:

	Sepal Length	Sepal Width	Petal Length	Petal Width
count	149.000000	149.000000	149.000000	149.000000
mean	5.843624	3.059732	3.748993	1.194631
std	0.830851	0.436342	1.767791	0.762622
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.300000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [15]: data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 149 entries, 0 to 149
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Sepal Length	149 non-null	float64
1	Sepal Width	149 non-null	float64
2	Petal Length	149 non-null	float64
3	Petal Width	149 non-null	float64
	67		

dtypes: float64(4)
memory usage: 5.8 KB

In [16]: data.corr()

Out[16]:

	Sepal Length	Sepal Width	Petal Length	Petal Width
Sepal Length	1.000000	-0.118129	0.873738	0.820620
Sepal Width	-0.118129	1.000000	-0.426028	-0.362894
Petal Length	0.873738	-0.426028	1.000000	0.962772
Petal Width	0.820620	-0.362894	0.962772	1.000000

Data Visualization

Pairplot Plotting

In [18]: sbn.pairplot(data)
mplt.show()

Decision Tree Model Training for the Dataset

Comaparision Between Actual & Predicted values

In [22]: pd.DataFrame({"Actual":y_test, "Predicted":y_pred})

Out[22]:		Actual	Predicted
	0	0	0
	1	1	1
	2	1	1
	3	0	0
	4	2	2
	5	1	1
	6	2	2
	7	0	0
	8	0	0
	9	2	2
	10	1	1
	11	0	0
	12	2	2
	13	1	1
	14	1	1
	15	0	0
	16	1	1
	17	1	1
	18	0	0
	19	0	0
	20	1	1
	21		
	22	1	2
	23	0	0
	24	2	2
	25	1	1
	26	0	0
	27	0	0
	28	1	1
	29	2	2
	30	1	1
	31	2	2
	32	1	1
	22	2	2

2

2

33

	Actual	Predicted
34	2	2
35	0	0
36	1	1
37	0	0
38	1	1
39	2	2
40	2	2
41	0	0
42	2	1
43	2	2
44	1	1

Trained Model Visaulization

New Data Feeding to Trained Model

Prediction of Class Output for Few Random Feeds

```
In [27]: pre_result = dtc.predict([[6.5, 3.4, 4.7, 2.1]])
    if pre_result == [0]:
        print("setosa")
    elif pre_result == [1]:
        print("versicolor")
    else:
        print("virginica")
```

versicolor

The Model Preduction for Values 6.5, 3.4, 4.7, 2.1 is 'versicolor'

```
In [31]: pre_result = dtc.predict([[3.5, 5.9, 6.3, 8.7]])
    if pre_result == [0]:
        print("setosa")
    elif pre_result == [1]:
        print("versicolor")
    else:
        print("virginica")
```

virginica

The Model Preduction for Values 3.5, 5.9, 6.3, 8.7 is 'virginica'

Model Accuracy

The Model Accuracy is 0.95 or 95.56%

Kmean Clusturing

```
In [33]: iris = pd.DataFrame(iris.data, columns = iris.feature_names)
iris.head()
```

_		_ ~	_	-
()ı	11	1 2	- ~	
Οu	4 C I	ı	_	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

The Elbow Method (Within Cluster Sum of Squares)

C:\Users\ASUS\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:881: UserW arning: KMeans is known to have a memory leak on Windows with MKL, when there a re less chunks than available threads. You can avoid it by setting the environm ent variable OMP_NUM_THREADS=1.

warnings.warn(

From above figure, which has a shape of elbow. This method for determining the optimum numbers of clustres is known as "The Elbow Method". The optimum numbers of clusters is the point, at which first elbow occures. In the present data set elbow occures at "3", so the optimum numbers of clusters is "3". Thus, for further visualization the optimum numbers of samples is taken as "3".

Kmeans and Cluster Visualization

Kmeans classifier

```
In [35]: kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10,
y_kmeans = kmeans.fit_predict(x)
```

Visualising first two colums

```
In [36]: mplt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 50, c = 'blue', label
    mplt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 50, c = 'red', label =
    mplt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 50, c = 'black', label

# Clusters' Centroids
    mplt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1],s = 50,
    mplt.legend()
```

Out[36]: <matplotlib.legend.Legend at 0x18171c38fa0>

In []: