DYNLOG

Workshop: Advent of Code – day 2

Adám Brudzewsky Richard Park Rodrigo Girão Serrão

Day 1

- Array-oriented techniques
- Bingo and Strings

Day 2

- Reading and parsing data from files
- Mathematical insights for array-oriented programming

Problems

- 15.2 Wrapping Presents
- 15.17 Filling Containers
- 16.3 Triangles

Topics

- Reading and parsing data from files
- Mathematical insights for array-oriented programming

System Functions

System Functions

INGET

Vector of characters:

Vector of character vectors:

⊃□NGET filename 1

Hello, World!

System Functions

MAP

- n-row matrix:
 80 n ⁻¹ ☐MAP filename
- n-column matrix:
 80 ⁻¹ n □MAP filename
- n-column m-row array: 80 ⁻¹ n m □MAP filename
 etc.

System Functions

CSV

From array:

 $\square CSV ('1,2,3' '4,5,6') \theta 4$

From file:

 \square CSV 'foo.csv' θ 4

2 to error on non-numbers

CSV

□CSVc'ab,cd' 'de,fg'

CSV

For more techniques, watch is.gd/dyalog csv

□CSV: 'Invert'2 < 'ab,cd' 'de,fg'</pre>

System Functions

JSON

JSON

```
□JSON: 'M'⊢' { "Abe":31, "Bob":27} '
```

System Functions

'<root>_{cont}outer</root>' 4

System Functions

"x"-delimited tuples to numeric matrix (15.2)

```
↑{□JSON'[',ω,']'}"'x'□R','⊃□NGET path 1
↑'x'(0 □JSON"≠⊆⊢)"⊃□NGET path 1
```

□CSV: Separator 'x' cpath

Lines of same length to character matrix (15.5, 16.6)

```
↑⊃□NGET path 1
```

n is line length + 1

Fixed-width fields to numeric matrix (16.3)

```
↑' '(1 □JSON"≠⊆⊢)"□□NGET path 1
```

```
□CSV: Widths'(5 5 5) - path ' 0 2
```


Mathematical Insights

- 15.2 Wrapping Presents
- 15.17 Filling Containers
- 16.3 Triangles

Area of paper required:

Surface area of whole box

4

Area of smallest face

Area of smallest face

Area of smallest face

- {ω[Δω]}
 - ×/21
 - $\times/\omega[1\ 2]$
- Multiply all 3 sides and divide by largest
 (×/÷[/) l w h
- Take smallest of products of sidesL/ L w h × w h L

Area of smallest face

Exercise: Using a similar insight, compute the perimeter of the smallest face

Multiply all 3 sides and divide by largest

$$(\times/\div[/)$$
 l w h


```
CanfillRecursive\leftarrow{
\alpha \le 0: \alpha = 0
0 \in \rho \omega: 0
+/(\alpha - \omega) \forall (\imath \ne \omega) \downarrow \subset \omega
}
```


Combinations are related to Boolean vectors When doing base conversion, ☐IO←0

Exercise: Use τ (or ι) to find all Boolean numbers 0 to ω

Filtered arithmetic

Exercise: What is another way to write:

$$+/\alpha/\omega$$

for Boolean vector α and numeric vector ω ?


```
Filtered arithmetic
```

Exercise: How can we filter numeric vector ω using each row of Boolean matrix α ?

```
α: 3 5ρ1 0 0 1
1 0 0 1 1
0 0 1 1 0
0 1 1 0 0
ω: 3 4 5 6 7
←: A result need not be nested
3 6 7 5 6 4 5
```


Triangles

Three numbers may define a triangle if

$$a + b \ge c$$

Triangles

Three numbers may define a triangle if

$$a + b \ge c$$

This requires finding out which two sides are shortest.

Can we find a calculation which doesn't depend on conditions?

Triangles

For part 1, each row of 3 numbers defines the sides of a triangle.

For part 2, each vertical group of 3 defines the sides of a triangle.

How does the following code achieve this redefinition?

 $(p\omega)p, \phi\omega$

DVALOC

We're here for you!

General support **Forums** Chat room Adám Brudzewsky Richard Park

support@dyalog.com forums.dyalog.com apl.chat adam@dyalog.com rpark@dyalog.com Rodrigo Girão Serrão rodrigo@dyalog.com

