Medical Image Processing for Interventional Applications

Random Walker – Properties

Online Course – Unit 42 Andreas Maier, Stefan Steidl, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Properties and Effects

Neutral Segmentation

Weak Boundaries

Noise Robustness

Ambiguous Unseeded Regions

Summary

Take Home Messages Further Readings

Neutral Segmentation

→ Corresponds roughly to Voronoi cells

Figure 1: Original image with seed points

Figure 2: Outlined mask

Neutral Segmentation

→ Corresponds roughly to Voronoi cells

Figure 3: Original image with seed points

Figure 4: Outlined mask

Figure 5: Original image with seed points

Figure 6: Output mask

- On its initial step, the current pixel has 3 out of 4 chances to enter into the region that is likely to be labeled as belonging to the black circle.
- On the other side of the weak boundary, the same holds for the white circle.
- Due to the sharp drop in the probabilities, the segmentation will respect the weak boundary.

Figure 7: Random walk at a region boundary

Figure 8: Original image with seed points

Figure 9: Outlined mask

Figure 8: Original image with seed points

Figure 10: Probabilities for reaching seed 1

Figure 11: Original image with seed points

Figure 12: Outlined mask

Figure 11: Original image with seed points

Figure 13: Probabilities for reaching seed 1

Noise Robustness

Figure 14: Edge mask (a) and ground truth segmentation (b) for a 3-class spiral segmentation task and segmentation results: edge masks with increasing noise level (right part, top row), random walker segmentation (right part, middle row), difference to ground truth (right part, bottom row)

Figure 15: Centered precisely with respect to surface area and intensity

Figure 16: Sharing more surface area with black region

Figure 17: Sharing more surface area with white region

Figure 18: Closer in intensity to the white region (gray value 0.9)

Figure 19: Closer in intensity to the white region (gray value 0.8)

Figure 20: Closer in intensity to the black region (gray value 0.2)

Figure 21: Closer in intensity to the black region (gray value 0.1)

Topics

Properties and Effects

Neutral Segmentation

Weak Boundaries

Noise Robustness

Ambiguous Unseeded Regions

Summary

Take Home Messages Further Readings

Take Home Messages

- The segmentation with random walker works quite well with weak boundaries.
- The algorithm is robust against noise to some degree.
- Unseeded regions are also handled by the algorithm in a useful way.

Further Readings

These slides are based on the following publication:

L. Grady. "Random Walks for Image Segmentation". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.11 (Nov. 2006), pp. 1768–1783. DOI: 10.1109/TPAMI.2006.233

His implementations in Matlab can be downloaded here:

- Graph Analysis Toolbox
- Random Walker