Assignment4

CS20Btech11035 -NYALAPOGULA MANASWINI

Download python code from

https://github.com/N-Manaswini23/assignment4/ tree/main/python%20codes

Download latex code from

https://github.com/N-Manaswini23/assignment4/ blob/main/assignment4.tex

Probability	value
Pr(X=1)	$\frac{3}{4}$
Pr(X=0)	$\frac{1}{4}$
$\Pr\left(Y=1 X=1\right)$	$\frac{1}{6}$
$\Pr\left(Y=1 X=0\right)$	$\frac{5}{6}$

TABLE 0: Table 2

GATE 2021 XE-A QUESTION 7(PG:9)

A person who speaks truth 3 out of 4 times, throws a fair dice with six faces and informs the outcome is 5. The probability that the outcome is really 5 is

SOLUTION

Let $X \in \{0, 1\}$ represent the random variable, where 0 represents person speaking false,1 represents person speaking truth.

Let Y ϵ {0, 1} represent random variable, where 0 represents person informs outcome of dice is not 5, 1 represents person informs outcome of dice is 5.

Event	definition
Pr(X=1)	Probability of person
	speaking truth
Pr(X=0)	Probability of person
	speaking false
Pr(Y=1)	Event that person informs
	outcome of dice is 5
$\Pr\left(Y=1 X=1\right)$	Probability of person
	informing outcome is 5
	if person speaks truth
$\Pr\left(Y=1 X=0\right)$	Probability of person
	informing outcome is 5
	if person speaks false
$\Pr\left(X=1 Y=1\right)$	Probability of person
	speaking truth(outcome
	is 5)if person informs
	outcome is 5

TABLE 0: Table 1

From Baye's theorem

$$Pr(Y = 1) = Pr(Y = 1|X = 1) \times Pr(X = 1) + Pr(Y = 1|X = 0) \times Pr(X = 0) \quad (0.0.1)$$

Substiting values from table (0) in (0.0.1)

$$Pr(Y = 1) = \frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4} \qquad (0.0.2)$$
$$= \frac{8}{16} \qquad (0.0.3)$$

$$Pr((X = 1)(Y = 1)) = Pr(Y = 1|X = 1)$$

 $\times Pr(X = 1)$ (0.0.4)

$$= \frac{1}{6} \times \frac{3}{4} \tag{0.0.5}$$

$$=\frac{3}{24}\tag{0.0.6}$$

We need to find Pr(X = 1|Y = 1)

$$Pr(X = 1|Y = 1) = \frac{Pr((X = 1)(Y = 1))}{Pr(Y = 1)}$$
 (0.0.7)

$$= \frac{\frac{24}{8}}{\frac{24}{24}} \tag{0.0.8}$$

$$=\frac{3}{8} \tag{0.0.9}$$

... The desired probability that outcome is really 5 $=\frac{3}{8}=0.375$

P.T.O

