1. Gauss-Seidel 방법의 이론적 배경

1) 기본 원리

- Gauss-Seidel 방법은 연립 방정식을 푸는 반복적(iterative) 방법 중 하나입니다.
- 이 방법은 **연립 일차 방정식**의 해를 점진적으로 근사하는 방식으로, 각 변수에 대해 **순차적으로 업데이트** 하면서 수렴을 유도합니다.

2) 방정식의 재구성

- 연립 방정식 $A\mathbf{x} = \mathbf{b}$ 를 Gauss-Seidel 방법에 맞게 다음과 같이 변형합니다. 각 변수는 다른 변수들의 이전 값을 사용하여 계산됩니다.
- 예를 들어, x_1 을 풀기 위해 나머지 변수를 우변으로 넘기고, 그 변수를 계산한 후에 다시 대입합니다.

$$x_1 = \frac{b_1 - a_{12}x_2 - a_{13}x_3}{a_{11}},$$

$$x_2 = \frac{b_2 - a_{21}x_1 - a_{23}x_3}{a_{22}},$$

$$x_3 = \frac{b_3 - a_{31}x_1 - a_{32}x_2}{a_{33}}.$$

3) 수렴 조건

- Gauss-Seidel 방법은 대각우월성(diagonal dominance)이 있는 경우에 수렴을 보장합니다.
- 즉, 행렬의 대각 요소가 다른 행의 요소들의 합보다 커야 합니다.
- 대각우월성 조건을 만족하지 않으면 수렴이 불안정해지거나 무한 반복될 수 있습니다.

2. 예제 문제의 Gauss-Seidel 방법 적용

다음 연립방정식을 Gauss-Seidel 방법으로 풀어보겠습니다.

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85,$$

 $0.1x_1 + 7x_2 - 0.3x_3 = -19.3,$
 $0.3x_1 - 0.2x_2 + 10x_3 = 71.4.$

1) 초기값 설정

첫 번째로 x₁, x₂, x₃의 초기값을 0으로 설정합니다. 이는 임의로 선택한 값이며, 반복을 통해 수렴하는 값을 찾아갑니다. x₁⁽⁰⁾ = 0, x₂⁽⁰⁾ = 0, x₃⁽⁰⁾ = 0.

2) 반복 계산 과정

STEP 1: 첫 번째 반복

각 변수에 대해 첫 번째 반복을 수행합니다.

• x₁ 계산:

$$x_1^{(1)} = \frac{7.85 + 0.1 \cdot 0 + 0.2 \cdot 0}{3} = 2.616667$$

- 여기서 x_1 을 구할 때, x_2 와 x_3 는 **0**으로 대입됩니다.
- x₂ 계산:

$$x_2^{(1)} = \frac{-19.3 - 0.1 \cdot 2.616667 + 0.3 \cdot 0}{7} = -2.794524$$

- 여기서는 x_1 의 값을 이전에 계산된 2.616667로 대입하여 x_2 를 계산합니다.
- x₃ 계산:

$$x_3^{(1)} = \frac{71.4 - 0.3 \cdot 2.616667 + 0.2 \cdot (-2.794524)}{10} = 7.005610$$

• 여기서는 이전에 계산된 x_1 과 x_2 의 값을 사용하여 x_3 를 계산합니다.

STEP 2: 두 번째 반복

두 번째 반복에서 각 변수를 다시 계산합니다.

• x₁ 계산:

$$x_1^{(2)} = \frac{7.85 + 0.1 \cdot (-2.794524) + 0.2 \cdot 7.005610}{3} = 2.990557$$

- 이번에는 x_2 와 x_3 의 값을 첫 번째 반복에서 계산한 값을 사용합니다.
- x₂ 계산:

$$x_2^{(2)} = \frac{-19.3 - 0.1 \cdot 2.990557 + 0.3 \cdot 7.005610}{7} = -2.499625$$

- 마찬가지로 이전 반복에서 계산된 x_1 과 x_3 의 값을 사용합니다.
- x₃ 계산:

$$x_3^{(2)} = \frac{71.4 - 0.3 \cdot 2.990557 + 0.2 \cdot (-2.499625)}{10} = 7.000291$$

3. 수렴 여부 확인

- 반복을 진행할 때마다 각 변수의 값이 조금씩 달라지며, 이 값들의 변화량이 매우 작아질 때 수렴했다고 판단합니다.
- 수렴 기준은 주어진 수식에 따라 계산할 수 있습니다:

$$|e^k| = \max \left| \frac{x_i^{(k)} - x_i^{(k-1)}}{x_i^{(k)}} \right| \times 100.$$

• 이 값이 원하는 수렴 허용 오차 ϵ 이하가 될 때 계산을 멈추고 결과를 출력합니다.

4. 결론

- Gauss-Seidel 방법은 대각우월성을 만족하는 선형 방정식에서 매우 효율적입니다.
- 각 반복에서 계산한 값을 다음 계산에 바로 사용하므로 빠르게 수렴할 수 있으며, 계산 과정이 비교적 간단합니다.
- 하지만, 수렴하지 않는 경우도 있으므로 대각우월성 여부를 확인하는 것이 중요합니다.

```
function gaussSeidel(A, b, tol)
   N = length(b); % 계수 행렬의 크기
   x = zeros(N, 1);
                     % 초기값 (모든 변수를 0으로 설정)
   max_iter = 100; % 최대 반복 횟수
   x_history = zeros(max_iter, N); % 시각화를 위한 기록 저장
   for count = 1:max iter
       x \text{ old } = x;
                  % 이전 반복에서의 값을 저장
       for i = 1:N
           sigma = 0; % sigma 값 초기화
          for j = 1:N
              if j ~= i
                  sigma = sigma + A(i, j) * x(j);
           end
           x(i) = (b(i) - sigma) / A(i, i);
       end
       x_history(count, :) = x'; % 현재 값을 기록
       % 상대 오차 확인
       if max(abs((x - x_old) ./ x)) < tol
           disp(['수렴 완료: ' num2str(count) '번째 반복']);
           disp(x);
           x_history = x_history(1:count, :); % 사용한 반복 수만큼 저장
           break;
       end
   end
   % 시각화 부분
   figure;
   hold on;
   plot(1:size(x_history, 1), x_history(:, 1), '-o', 'DisplayName', 'x_1');
   plot(1:size(x_history, 1), x_history(:, 2), '-o', 'DisplayName', 'x_2');
   plot(1:size(x_history, 1), x_history(:, 3), '-o', 'DisplayName', 'x_3');
   xlabel('Iteration');
   ylabel('Value');
```

```
title('Gauss-Seidel Convergence');
   legend('show');
   grid on;
   hold off;
   if count == max_iter
       disp('최대 반복 횟수 초과');
       disp(x);
   end
end
% 실행 부분
A = [3, -0.1, -0.2;
    0.1, 7, -0.3;
    0.3, -0.2, 10];
                    % 계수 행렬
b = [7.85; -19.3; 71.4]; % 상수 벡터
tol = 0.0005;
                      % 허용 오차
gaussSeidel(A, b, tol); % Gauss-Seidel 함수 실행
```

수렴 완료: 4번째 반복 3.0000 -2.5000 7.0000

1. 수렴 조건 (17.2 수렴 판정)

고정점 반복법의 수렴 조건 (충분 조건)

고정점 반복법에서 중요한 개념은 수렴입니다. 어떤 방정식을 반복적으로 계산할 때, 계산값이 특정 값에 수렴하는 것이 목표입니다. 수렴을 판단하기 위한 충분 조건은 다음과 같습니다.

• 주어진 조건에서 수렴 여부를 판단하는 방법은 방정식 내의 각 변수들의 **편미분**을 계산하여, 그 합이 1 보다 작을 때 수렴한다고 보는 것입니다.

$$E_{i+1} = g'(\zeta)E_i$$

- 이때, 반복을 통한 오차 E_{i+1} 가 이전 오차 E_i 의 함수 형태로 표현됩니다. 여기서 **편미분**이 사용되며, 각 편미분의 합이 1보다 작을 때, 결과값이 수렴할 가능성이 높다는 것을 의미합니다.
- 구체적인 수렴 조건은 다음과 같은 수식으로 표현됩니다:

$$\left| \frac{\partial u}{\partial x} \right| + \left| \frac{\partial u}{\partial y} \right| < 1$$
 그리고 $\left| \frac{\partial v}{\partial x} \right| + \left| \frac{\partial v}{\partial y} \right| < 1$

• 이 조건은 편미분의 절대값이 1보다 작을 때 시스템이 수렴한다고 말하는 것인데, 이는 반복 계산에서 변수들의 값이 안정적으로 수렴할 수 있는지를 판단하는 중요한 기준입니다.

대각선 지배성

수렴 여부를 보장하는 또 하나의 중요한 조건은 대각선 지배성입니다. 대각선 지배성은 다음과 같이 정의됩니다:

$$|a_{ii}| > \sum_{i \neq j} |a_{ij}|$$

- 이 수식은 행렬의 **대각 성분** a_{ii} 가 그 행에 있는 나머지 성분 a_{ij} 들의 절대값의 합보다 큰 경우를 의미합니다. 즉, 각 행에서 대각 성분이 나머지 값들보다 더 큰 기여를 해야 시스템이 안정적으로 수렴할 가능성이 높다는 것을 의미합니다.
- 대각선 지배성은 수렴을 보장하는 중요한 수학적 조건으로, 특히 **Gauss-Seidel** 방법과 같은 반복법에서 수렴을 보장하는 핵심 요소입니다. 대각선 지배성이 만족되지 않으면 반복 계산 중에 값이 발산할 수 있으며, 그 결과 수렴하지 않는 현상이 발생할 수 있습니다.

2. 수렴성 개선 (17.3 수렴성 개선)

이완법 (Relaxation Method)

이완법은 반복 계산에서 수렴성을 개선하거나 수렴 속도를 높이기 위해 사용하는 방법입니다. **이완 계수**를 사용해 현재 계산된 값과 이전 계산된 값의 **가중 평균**을 선택하는 방식입니다.

• **이완 계수** λ 는 **0**에서 **2** 사이의 값입니다.

$$x_i^{(k)} = \lambda x_i^{(k)} + (1 - \lambda) x_i^{(k-1)}$$

 ullet 이 수식은 현재 계산된 값 $x_i^{(k)}$ 와 이전 값 $x_i^{(k-1)}$ 를 **가중 평균**으로 결합하여 새로운 값을 만듭니다. λ 값에 따라 새로운 값에 대한 비중이 결정되며, 이는 수렴 속도나 안정성에 영향을 미칩니다.

하이 이완법 (Under-Relaxation, $0 \le \lambda \le 1$)

- •하이 이완법은 이완 계수 λ 가 0과 1 사이일 때 적용됩니다.
- 이 방법은 주로 **수렴이 잘 되지 않는 시스템**에서 사용됩니다. 즉, 수렴성이 떨어지는 시스템에서 수렴 가능성을 높이기 위해 사용됩니다.
- λ 값이 작을수록 이전 값 $x_i^{(k-1)}$ 의 영향을 더 많이 반영하므로, 계산 값이 급격히 변하는 것을 방지하고 진동(damping)을 줄이는 효과가 있습니다. 이를 통해 반복 계산 과정이 보다 안정적으로 이루어지며, 수렴 가능성을 높일 수 있습니다.
- 결과적으로, 하이 이완법은 시스템의 수렴성을 향상시키며, 반복 계산에서 변동 폭을 줄여 수렴 속도를 향상시킬 수 있습니다.

상 이완법 (Over-Relaxation, $1 \le \lambda \le 2$)

- 상 이완법은 λ 값이 1과 2 사이일 때 적용됩니다.
- 상 이완법은 이미 수렴하고 있는 시스템의 수렴 속도를 가속화하는 데 사용됩니다.
- ullet λ 값이 1보다 크면, 현재 계산된 값 $x_i^{(k)}$ 가 이전 값보다 더 큰 영향을 주게 되므로, 더 빠르게 수렴할 수 있습니다. 그러나 λ 값이 너무 크면 안정성이 떨어질 수 있으므로, 적절한 값을 선택하는 것이 중요합니다.
- 이완 계수 λ 는 시스템마다 최적의 값이 다를 수 있으며, 보통 경험적으로 선택됩니다.

수렴성 개선을 위한 추가 고려 사항

- 대각선 지배성 확인: 이완법을 사용하더라도, 대각선 지배성이 중요한 수렴 조건입니다. 대각선 지배성이 만족되지 않으면 이완법을 사용해도 수렴이 보장되지 않을 수 있습니다.
- 반올림 오차와 수렴성: 수렴성을 높이기 위해서는 반올림 오차와 같은 계산상의 오류도 고려해야 합니다. 반복 계산에서 발생할 수 있는 오차를 최소화하기 위한 계산 방법을 선택하는 것이 중요합니다.
- 회소행렬 및 대각행렬: 대부분의 요소가 0인 회소행렬이나 대각선이 우세한 대각행렬에서는 이완법을 사용하면 수렴 속도를 크게 향상시킬 수 있습니다. 이러한 유형의 행렬에서는 이완법이 반복 계산의 효율성을 극대화할 수 있는 방법입니다.

결론

Gauss-Seidel 방법의 수렴 여부는 **대각선 지배성**과 같은 수학적 조건을 만족하는지에 따라 달라집니다. 대각선 지배성이 보장되는 경우, 반복 계산을 통해 해가 점진적으로 수렴하게 됩니다.

하지만, 수렴 속도를 높이거나 수렴성을 개선하기 위해 이완법(relaxation method)을 사용할 수 있습니다. 이완계수 λ 를 적절히 선택하면, 수렴이 잘 되지 않는 시스템에서 수렴성을 높이거나, 수렴 속도를 가속화할 수 있습니다.

- **하이 이완법**은 $0 \le \lambda \le 1$ 의 범위에서 적용되며, 수렴성이 떨어지는 시스템에서 안정성을 개선합니다.
- 상 이완법은 $1 \le \lambda \le 2$ 의 범위에서 적용되며, 이미 수렴하고 있는 시스템의 수렴 속도를 가속화하는 데 사용됩니다.

이완 계수의 선택은 주로 경험적으로 이루어지며, 시스템의 특성에 맞는 적절한 값을 찾는 것이 중요합니다.