Implementation and evaluation of K-nearest neighbors (KNN) algorithm for handwritten digit recognition

Final Presentation – Data Science 2021

Project 5 Group 2

Nina Gutzeit, Maximilian Hingerl, Emma Kray, Johannes Müller

Recap of 4 Milestones

- 1. Milestone: implementing data normalization
- 2. Milestone: implementing PCA
- 3. Milestone: implementing a classification algorithm
- 4. Milestone: testing the algorithm

O. Data Cleaning

```
# Checking Training data for missing values:
any_na(train_values)
# Checking Test data for missing values:
any_na(test_values)
```

There are no missing values in this data. There are no missing values in this data.

```
# Checking data for range
rm_range(train_values)
rm_range(train_labels, upper=10)
rm_range(test_values)
rm_range(test_labels, upper=10)
```

```
No values out of range.
```

1. Standardization

Original image

Centered

Z- transformed

$$rac{(X_i-\overline{X})}{\sigma_i}$$

Z-transformed, other colour scale

1. PCA preparation

$$\operatorname{corr}(x,y) = rac{1}{N-1} \cdot \sum_{i=1}^N rac{\left(X_i - \overline{X}
ight)\left(Y_i - \overline{Y}
ight)}{\sigma_x}$$

$$\mathrm{cov}(x,y) = rac{1}{N-1} \cdot \sum_{i=1}^N \left(X_i - \overline{X}
ight) \left(Y_i - \overline{Y}
ight)$$

Challenges:

- for loops!
- cannot use numpy functions

2. Principal Component Analysis

- Three best principal components
- 3D plot

Comparison of test and training values

Comparison before and after PCA

3.1 KNN – the algorithm

3.2 KNN – distance methods

- Manhattan
- Euclidean
- Euclidean performed better
- Formulas:

correctly classified vs wrongly classified numbers using the euclidean distance: 9803 vs 197 correctly classified vs wrongly classified numbers using the manhattan distance: 9786 vs 214

3.3 KNN – multiprocessing

- The concept
 - More threads

 more processes at the same time
- Time improvement, but still to slow

3.4 KNN – kd-trees

- Space partioning method
- Splitting training data along the median for each dimension

4. testing

• Optimal number of k and pca:

Weighted knn

- Inverse weight of distance between labels
- Addition to normal KNN
- More accurate
- Much slower

Main project performance and different approaches

- Hier vor allem wunderschöne plots, die performance darstellen
- Auf nächster Folie oder so die anderen approaches

Works also for other data sets (very short insight in fashion mnist and performance)

- Requirement:
 - Same format 28x28

Fashion Mnist performance

Fig. 12: KNN Accuracy Heatmap with Reduced Range for Fashion Mnist

Phone numbers

Please write your phone number in **bold** legible handwriting. For better results write your number in the centre of each box using a digital ballpoint pen. Write in the large without drawing beyond the border.

0 1 2 3 4 5 6 7 8 9 9 0

Phone numbers limitations

- 4 vs 4
- 7 7
- 1

- unique handwriting
- number variants: crossing 7s, capping 1s

→ Is 60000 images enough?

Our teamwork

Thank you for your attention!

- Beardmore, A. (2020, October 12). Uncovering the Environmental Impact of Cloud Computing. Earth.Org. https://earth.org/environmental-impact-of-cloud-computing/.
- Cook, G. (2012, April). How Clean is Your Cloud? greenpeace.org. https://www.greenpeace.org/static/planet4-international-stateless/2012/04/e7c8ff21-howcleanisyourcloud.pdf.s
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). K-nearest neighbors. In An introduction to statistical learning: with applications in R (p. 163). essay, Springer.
- Lucivero F. (2020). Big Data, Big Waste? A Reflection on the Environmental Sustainability of Big Data Initiatives. Science and engineering ethics, 26(2), 1009—1030. https://doi.org/10.1007/s11948-019-00171-7 (Lucivero, 2020)
- Sattiraju, N. (2020, April 2). Secret Cost of Google's Data Centers: Billions of Gallons of Water. Time. https://time.com/5814276/google-data-centers-water/. (Sattiraju, 2020)
- Walsh, B. (2014, April 2). New Greenpeace Report Shows the Environmental Impact of the Internet. Time. https://time.com/46777/your-data-is-dirty-the-carbon-price-of-cloud-computing/. (Walsh, 2014)