EE 201C Homework 1

Wei Wu

Submit code and report to:

Xiao shi(xshi2091@gmail.com)

Email Subject: EE201C_HW1_Name_UID

1. References

Capacitance Calculation:

- Formula based
 - T.Sakurai, K.Tamaru, "Simple Formulas for Two- and Three-Dimensional Capacitances," IEEE Trans. Electron Devices ED-30, pp. 183-185
 - F C Wu, S C Wong, P S Liu, D L Yu, F Lin, "Empirical models for wiring capacitances in VLSI", In Proc. IEEE Int. Symp. on Circuits and Systems, 1996
- Table based
 - J. Cong, L. He, A. B. Kahng, D. Noice, N. Shirali and S. H.-C. Yen, "Analysis and Justification of a Simple, Practical 2 1/2-D Capacitance Extraction Methodology", ACM/IEEE Design Automation Conference, June 1997, pp.627-632
- Field solver
 - K. Nabors and J. White, "FastCap: A multipole accelerated 3-D capacitance extraction program", IEEE Trans. Computer-Aided Design, 10(11), 1991.

1. References

Inductance Calculation:

- Table based
 - L. He, N. Chang, S. Lin, and O. S. Nakagawa, "An Efficient Inductance Modeling for On-chip Interconnects", IEEE Custom Integrated Circuits Conference, May 1999.
 - Norman Chang, Shen Lin, O. Sam Nakagawa, Weize Xie, Lei He, "Clocktree RLC Extraction with Efficient Inductance Modeling". DATE 2000
- Circuit model and inductance screening
 - M. Xu and L. He, "An efficient model for frequency-based on-chip inductance," IEEE/ACM International Great Lakes Symposium on VLSI, West Lafayette, Indiana, pp. 115-120, March 2001.
 - Shen Lin, Norman Chang, Sam Nakagawa, "Quick On-Chip Self- and Mutual-Inductance Screen," ISQED, pp.513, First International Symposium on Quality of Electronic Design, 2000.

1. References

Inductance Calculation (cont.):

- PEEC model and Susceptance model
 - A.E. Ruehli, "Inductance calculations in a complex integrate circuit environment," IBM J. Res. Develop., vol. 16, pp. 470-481, Sept. 1972.
 - A. Devgan, H. Ji and W. Dai, "How to Efficiently Capture OnChip Inductance Effects: Introducing a New Circuit Element K," Proc. ICCAD, pp. 150-155, 2000.

- Formulas

Ø. Zhong, and C. Koh. Exact Closed Form Formula for Partial Mutual Inductances of On-Chip Interconnects. ICCD, 2002

- Field solver

M. Kamon, M. J. Tsuk, and J. K. White, "Fasthenry: a multipole-accelerated 3-D inductance extraction program," IEEE Trans. Microwave Theory Tech., pp. 1750 - 1758, Sep 1994.

2. Further Readings

- N. Delorme, M. Belleville, and J. Chilo. Inductance and Capacitance Analytic Formulas for VLSI Interconnects. Electronics letters, 1996
- T. Sakurai. Closed-Form Expressions for Interconnection Delay, Coupling, and Crosstalk in VLSI's. IEEE Transactions on Electron Devices, 1993
- W. Shi, J. Liu, N. Kakani and T. Yu, "A fast hierarchical algorithm for three-dimensional capacitance extraction", IEEE Trans. CAD, 21(3): 330-336, 2002.
- N. Delorme, M. Belleville, and J. Chilo. Inductance and Capacitance Analytic Formulas for VLSI Interconnects. Electronics letters, 1996
- H. Kim, and C. C. Chen. Be careful of Self and Mutual Inductance Formulae. UW-Madison VLSI-EDA Lab, 2001

3. Example for L_{eff}

Calculation effective loop inductance (L_{eff}) of signal trace T2

- According to definition of L_{eff} of T2

$$\Delta V = L_{eff} \cdot \frac{di_2}{dt} = Lp_{22} \cdot \frac{di_2}{dt} + Lp_{21} \cdot \frac{di_1}{dt} + Lp_{23} \cdot \frac{di_3}{dt} - Lp_{11} \cdot \frac{di_1}{dt} - Lp_{12} \cdot \frac{di_2}{dt} - Lp_{13} \cdot \frac{di_3}{dt},$$

- Also, two ground traces have the same voltage drop

$$Lp_{11} \cdot \frac{di_{1}}{dt} + Lp_{12} \cdot \frac{di_{2}}{dt} + Lp_{13} \cdot \frac{di_{3}}{dt}$$

$$= Lp_{13} \cdot \frac{di_{1}}{dt} + Lp_{23} \cdot \frac{di_{2}}{dt} + Lp_{33} \cdot \frac{di_{3}}{dt},$$

- Assume all current returns in this block

- KCL:
$$i_1 + i_2 + i_3 = 0$$

- L_{eff} can be solved as a function of partial inductances

$$L_{eff} = Lp_{22} - 2Lp_{23} + \frac{Lp_{11}}{2} + \frac{Lp_{13}}{2}$$

^{*} L. He, N. Chang, S. Lin, and O. S. Nakagawa, "An Efficient Inductance Modeling for On-chip Interconnects", IEEE Custom Integrated Circuits Conference, May 1999.

3. Homework (due Feb 1, 2016)

[1] Given three wires, each modeled by at least 2 filaments, find the 3x3 matrix for (frequency-independent) inductance between the 3 wires, along with the capacitance and resistance. We assume that the ground plane has infinite size and is 10 um away for the purpose of capacitance calculation.

- wire width: W=9um, wire thickness: T=6um, wire length: l=9000um,
- wire spacing: S = 15um, distance to ground: H=10um,
- $_{\odot}$ Copper electrical resistivity 0.0175 Ω mm²/m (room temperature),
- $_{\odot} \mu = 1.256 \times 10^{-6} \text{H/m}$
- $_{\odot}$ free space ϵ_0 =8.85imes10 $^{\text{-12}}$ F/m

Discretization and L calculation

- Discretize 3 wires into 6 filaments.
- For each filament, calculate its self-inductance with (e.g.)

$$L_{self-L} = \frac{\mu l}{2\pi} \left[\ln \left(\frac{2l}{W' + T} \right) + \frac{1}{2} + \frac{(W' + T)}{4l} \right]$$

$$W' = W/2$$

For each pair of filament, calculate the mutual inductance with (e.g.) $ul \begin{bmatrix} 1 & (2l) & D \end{bmatrix}$

$$L_{mutual-L} = \frac{\mu l}{2\pi} \left[\ln \left(\frac{2l}{D} \right) - 1 + \frac{D}{l} \right]$$

Different filaments and formulae may be used for better accuracy.

Calculate inductance matrix of three wires

Mutual Inductance

$$Lp_{km} = \sum_{i=1}^{P} \sum_{i=1}^{Q} Lp_{ij}$$

- \cdot Lp_{km} is the mutual inductance between conductor T_k and T_m
- \cdot Lp_{ij} is the mutual inductance between filament i of T_k and filament j of T_m
- · Lp_{ij} can be negative to denote the inverse current direction.

- Self Inductance
- If k=m, Lp_{km} is the self Lp for one conductor

Capacitance Calculation

 C_1 and C_5 equals to average of those for the following two cases:

- single wire over ground
- three parallel wires over ground

Total cap below needs to be split into ground and coupling cap

$$C = \varepsilon \left\{ \frac{w}{h} + 2.977 \left(\frac{t}{h} \right)^{0.232} + \left[0.229 \left(\frac{w}{s} \right) + 1.227 \left(\frac{t}{s} \right)^{1.384} \right] \left(\frac{h}{s} \right)^{0.398} \right\}$$

Step 1.4

- Resistance Calculation
- Copper electrical resistivity 0.0175 Ω mm²/m (room temperature),
 - I is length of wire
 - A is area of wire's cross section

$$R = \rho \frac{l}{A}$$

[2] Build the RC and RCL circuit models in SPICE netlist for the above wires. (suggest to use matlab script to generate matrix and thus SPICE netlist)

[3] Assume a step function applied at end-end, compare the four waveforms at the far-end for the central wire using SPICE transient analysis for (a) RC and RLC models and (b) rising time is 20ns, or try to use longer rising time.

Due on Feb 1, 2016

Submit code and report to:

Xiao shi(xshi2091@gmail.com)

Email Subject: EE201C_HW1_Name_UID