Introduction to Forces

1 Initial thoughts and motivation

- 1.1 Where are we now?
- 2 Questions
- 2.1 Check your understanding

2.2 Trying out the waters

- 1. A book of mass M is positioned against a vertical wall. The coefficient of friction between the book and the wall is μ . You wish to keep the book from falling by pushing on it with a force F applied at an angle θ with respect to the horizontal $(-\pi/2 < \theta < \pi/2)$, as shown in Figure 1.
 - a) For a given θ , what is the minimum F required?
 - b) For what θ is this minimum F the smallest? What is the corresponding minimum F?
 - c) What is the limiting value of θ , below which there does not exist an F that keeps the book up?

2.3 Olympiad style questions

- 1. A bar of mass m is pull up by means of a thread up an inclined plane forming an angle α with the horizontal (see figure 2). The coefficient of friction is equal to k. Find the angle β which the thread must form with the inclined plane for the tension of the thread to be minimum. What is it equal to?
- 2. What is the minimum force needed to dislodge a block of mass m resting on an inclined plane of slope angle α , if the coefficient of friction is μ ? Investigate the cases when a) $\alpha = 0$; b) $0 < \alpha < \arctan \mu$.

Figure 1: Book on wall

Figure 2: Mass pulled up on incline

Figure 3: Dislodging block