相関関係 (散布図)

correlation

相関と散布図

2次元 data と散布図

• data 同士の関係を図で表す

日	ビールの販売数	気温
1	64	26.6
2	53	22.4
3	58	24.4

散布図

• 2変数の **相関関係** がわかる

相関の出発点は → 散布図

散布図と相関

- 散布図から 5つの相関 の種類分けが出来る
 - 。 強い相関
 - 右肩上がり
 - 片方が上がれば、もう一方も上がる
 - data が直線のように密集している
 - 。弱い相関
 - 右肩上がり
 - 片方が上がれば、もう一方も上がる
 - data がまばら
 - 。 無相関
 - 全体的に散らばっている(円形の様に)
 - 特に x軸, y軸との関係はみられない
 - 。 強い負の相関
 - 右肩下がり
 - 片方が上がれば、片方が下がる
 - 直線のように密集している
 - 。 弱い負の相関
 - 右肩下がり
 - 片方が上がれば、片方が下がる
 - data がまばらに

相関の記述

Hide

cd = cars cd

dist <dbl></dbl>	speed <dbl></dbl>
2	4
10	4
4	7

speed <dbl></dbl>	
7	22
8	16
9	10
10	18
10	26
10	34
11	17
1-10 of 50 rows	Previous 1 2 3 4 5 Next

```
x1 <- cd$speed
y1 <- cd$dist
```

散布図 plot

• speed(速度): x1軸

• dist(制動距離): y1軸

。 相関関係 があることが窺える

Hide

```
plot(x1, y1)
```


無相関

• 乱数を発生させた為に data に 相関関係が窺えない

Hide

```
x2 <- rnorm(100, mean = 0, sd = 1)
y2 <- rnorm(100, mean = 0, sd = 1)
plot(x2, y2)
```


相関係数

2つの変数の強さを -1~1 の数値で示す統計量

n 個の変数 x と変数 y がある時の相関係数は r

 \downarrow

- 標準偏差 = σ
- 変数 = n個
- 変数 = x, y

$$r = \frac{\pm \beta \hbar}{x\sigma \times y\sigma}$$

公式

$$r_{xy} = \frac{\sum (x_i - \bar{x})(y - \bar{y})/n}{\sqrt{\sum (x_i - \bar{x})^2}/n\sqrt{\sum (y_i - \bar{y})^2}/n}$$
$$= \frac{\sum (x_i - \bar{x})(y - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2}\sqrt{\sum (y_i - \bar{y})^2}}$$

散布図

相関係数

旧因际

セットでみることでより data の結びつきがわかる

相関係数を求める

- 相関係数は -1 ~ 1 の間で表す
 - 。 一(マイナス)は **負の相関**
 - 。 +(プラス)は **正の相関**

speed(速さ) と dist(制動距離)相関係数

- 相関係数: 0.8068949
 - 。 結構強めの相関があることが窺える

Hide

cor(x1, y1)

[1] 0.8068949

Hide

plot(x1, y1)

無相関の相関係数

• 相関係数: -0.0596985

。 相関関係は全く窺えない

Hide cor(x2, y2)

[1] -0.05969848

Hide plot(x2, y2)

相関係数2

- 相関係数の注意点 1 -
 - 一般的な相関の強さと相関係数の値

值	相関
$0 < r \leq \pm 0.2$	ほとんど相関無し
$\pm 0.2 \le r \le \pm 0.4$	弱い相関無し
$\pm 0.4 \le r \le \pm 0.7$	相関有り
±0.7 <u>≤</u> r <u>≤</u> ±1.0	強い相関有り

同じ相関係数でも data数, 外れ値 でだいぶ印象が変わる

 \downarrow

必ず散布図とセットで確認すること

- 相関係数の注意点2 -
 - 相関関係と因果関係

相関関係 ≠ 因果関係

1

相関関係があるからといって **必ず因果関係があるわけではない**

因果関係が成立する条件

- 1. 相関関係がある
- 2. 時間的順序
- 3. 第3因子が存在しない

グラフで確認

• sample数: 30

• 相関係数:0

• 正規分布に従うdata: x, e

```
Hide  n <-1000   r <-1   x <-rnorm(n, mean = 0, sd = 1)   e <-rnorm(n, mean = 0, sd = 1)   y <-r^*x + sqrt(1-r^2)^*e
```

相関係数が1となるグラフ

Hide

```
plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```


Hide

cor(x, y)

[1] 1

相関係数が **0.7** となるグラフ

Hide

```
n <- 1000

r <- 0.7

x <- rnorm(n, mean = 0, sd = 1)

e <- rnorm(n, mean = 0, sd = 1)

y <- r^*x + sqrt(1-r^2)^*e

plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```


cor(x, y)

[1] 0.7129333

相関係数が 0.7 となるグラフ

• 数を減らした場合

```
Hide  n <-30 
 r <-0.7 
 x <-rnorm(n, mean = 0, sd = 1) 
 e <-rnorm(n, mean = 0, sd = 1) 
 y <-r^*x + sqrt(1-r^2)^*e 
 plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```



```
Hide
```

```
cor(x, y)
```

[1] 0.6948065

相関係数が **0.4** となるグラフ

Hide

```
n <- 1000

r <- 0.4

x <- rnorm(n, mean = 0, sd = 1)

e <- rnorm(n, mean = 0, sd = 1)

y <- r^*x + sqrt(1-r^2)^*e

plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```


Hide

cor(x, y)

[1] 0.3957364

相関係数が 0.4 となるグラフ

数を減らした場合

Hide

```
n <- 30

r <- 0.4

x <- rnorm(n, mean = 0, sd = 1)

e <- rnorm(n, mean = 0, sd = 1)

y <- r^*x + sqrt(1-r^2)^*e

plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```


cor(x, y)

[1] 0.4940882

相関係数が 0.2 となるグラフ

```
Hide  n <-1000 
 r <-0.2 
 x <- rnorm(n, mean = 0, sd = 1) 
 e <- rnorm(n, mean = 0, sd = 1) 
 y <- r^*x + sqrt(1-r^2)^*e 
 plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```



```
cor(x, y)
```

[1] 0.2260471

相関係数が 0.2 となるグラフ

• 数を減らした場合

```
Hide
```

```
n <- 30

r <- 0.2

x <- rnorm(n, mean = 0, sd = 1)

e <- rnorm(n, mean = 0, sd = 1)

y <- r*x + sqrt(1-r^2)*e

plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```


Hide

cor(x, y)

[1] 0.2155738

相関係数が0となるグラフ

```
Hide
```

```
n <- 1000

r <- 0

x <- rnorm(n, mean = 0, sd = 1)

e <- rnorm(n, mean = 0, sd = 1)

y <- r^*x + sqrt(1-r^2)^*e

plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```


cor(x, y)

[1] 0.03727087

相関係数が0となるグラフ

• 数を減らした場合

```
Hide  n <-30 
 r <-0 
 x <- rnorm(n, mean = 0, sd = 1) 
 e <- rnorm(n, mean = 0, sd = 1) 
 y <- r^*x + sqrt(1-r^2)^*e 
 plot(x, y, xlim = c(-4, 4), ylim = c(-4, 4))
```


ч	ı	М	_
	ı	u	┖

cor(x, y)

[1] 0.05498187