

Modelling of Dynamical Systems

Jakob Deutloff

Motivation

Stock

Flow

influence

The Bathtub Example

Differential Equation

$$\frac{dW}{dt} = i - o$$

Initial Conditions:

$$W(0) = 0$$

Parameters:

$$i = 1\frac{l}{s}, \qquad o = 0.9\frac{l}{s}$$

Analytical Solution

$$W(t) = (i - o) * t$$

How to model this?

Differential Equation

Model Output for Bathtub Example

Parameters:

$$i = 1\frac{l}{s}, \qquad o = 0.9\frac{l}{s}$$

Code provided under:

<u>GitHub</u>

The Population Example

Differential Equation:

$$\frac{dP}{dt} = b(P) - d(P)$$

$$b(P) = f * P, \qquad d(P) = m * P$$

Initial Conditions:

$$P(0) = 1000 P$$

Parameters:

$$f = \frac{1.5}{\text{lifetime}}, \qquad m = \frac{1}{\text{lifetime}}$$

Discrete Solution:

$$\Delta P = b(P_j) - d(P_j)$$

$$P_{j+1} = P_j + \Delta P$$

$$= P_j + b(P_j) - d(P_j)$$

$$= P_j + f * P_j - m * P_j$$

$$= P_j * (1 + f - m)$$

Model Output for Population Example

Parameters: $f = \frac{1.5}{\text{lifetime}}$ $m = \frac{1}{\text{lifetime}}$

Parameters: $f = \frac{0.5}{\text{lifetime}}$ $m = \frac{1}{\text{lifetime}}$

The Population – Resource Example

Differential Equation:

$$\frac{dP}{dt} = b(P) - d(P,R)$$
$$b(P) = f * P$$

$$d(P) = \widehat{m}(R) * P$$

$$\hat{m}(R) = m(R) * P$$

$$\hat{m}(R) = m * (1 + \frac{R_0 - R}{R_0})$$

$$\frac{dR}{dt} = \hat{r}(R) - h * P$$
$$\hat{r}(R) = r * (R_0 - R)$$

Initial Conditions:

$$P(0) = 10 P$$

 $R(0) = 1000$

Parameters:

$$f = \frac{1.5}{\text{lifetime}}, \qquad m = \frac{1}{\text{lifetime}},$$
 $r = 0.01, \qquad h = 0.001$

Model Output for Population – Resource Example

Parameters:

$$f = \frac{1.5}{\text{lifetime}}, \qquad m = \frac{1}{\text{lifetime}}$$
 $r = 0.01, \qquad h = 0.001$

References

Books:

[1] Meadows, Donella H (2009): Thinking in Systems – A Primer (Earthscan, UK)

Video Snippets:

https://www.youtube.com/watch?v=dvvd5RHmp7c https://www.youtube.com/watch?v=qu0HN9rYtlw https://www.youtube.com/watch?v=Od6EeCWytZo