Визуализация графов

Computer Science клуб, март 2014

Александр Дайняк, ФИВТ МФТИ

www.dainiak.com

Правила укладки корневых деревьев

- Отсутствие скрещиваний рёбер (planar)
- Прямолинейность (straight-line)
- Строгая вертикальная монотонность (strictly upward) y-координаты вершин строго больше чем у их потомков
- Сильное соблюдение порядка потомков (strongly order-preserving):

$$x_{\text{левого ребёнка}} \le x_{\text{вершины}} \le x_{\text{правого ребёнка}}$$

Деревья с площадью $\Omega(n \log n)$

h-v-укладка и её смещение

Склейка h-v-дерева из поддеревьев

Задача: минимизация площади

 $x_{
m левого}$ ребёнка $< x_{
m вершины} < x_{
m правого}$ ребёнка

Площадь в общем случае может быть $\Omega(n^2)$

Задача: минимизация площади

Т. М. Chan '2002. Достаточно площади $O\left(n\cdot\sqrt{\log n}\cdot 2^{\sqrt{2\log n}}\right)$. А. Garg, А. Rusu '2003. Площадь $\Theta(n\log n)$.

Обе теоремы используют path-based approach.

Жадный путь $(v_0, v_1, ...)$

Полагаем $T_0 := T$ (исходное дерево).

Пусть v_i , L_i , R_i — корень и левое/правое поддеревья T_i .

Тогда $T_{i+1}\coloneqq$ максимальное из L_i , R_i .

Поддеревья пути— это поддеревья, корни которых суть сёстры вершин пути.

Выбор хорошего «направляющего пути»

Пусть m — параметр (выберем позже).

Пусть v_k — сама нижняя из вершин жадного пути, для которой $|T_k| \geq n-m$.

Пусть v_k — левый потомок v_{k-1} .

 π' — часть жадного пути до v_k .

 $\pi''-$ самый левый путь в дереве от v_k до листа.

Получение рекуррентной оценки

Пусть уже построены поддеревья для всех вершин из пути π' U π'' .

Пусть α и β — самые широкие укладки для левых и правых поддеревьев для вершин π' .

Пусть γ — самая широкая укладка для вершин из π'' .

Имеем

$$W(T) \le \max\{W(\alpha) + W(\beta) + 2, 1 + W(\gamma)\}.$$

Т.к.
$$|\alpha| \le m$$
, $|\beta| \le m$ и $|\gamma| \le n-m$, то $W(n) \le \max\{2 \cdot W(m) + 2, 1 + W(n-m)\}$.

Избавление от тах

Получили неравенство

$$W(n) \le \max\{2 \cdot W(m) + 2, 1 + W(n - m)\}.$$

Рекурсивно применяя это неравенство, получим

$$W(n) \leq \underbrace{1+1+\cdots+1}_{k \text{ pas}} + W(n-km),$$

где k наибольшее такое, что $W(n-km) \ge 2 \cdot W(m) + 1$.

Тогда

$$W(n) \le k + 2 \cdot W(m) + 2 \le 2 \cdot W(m) + O(n/m)$$
.

Немного матана...

Получается, что для любых n и m, где $m \le n$, выполнено $W(n) \le 2 \cdot W(m) + O(n/m)$

Обозначим $f(x) \coloneqq W(2^{(\log x)^2/2}).$

Положив $m\coloneqq 2^{(\log x)^2/2-\log x}$, получаем $f(x)\le 2\cdot W\big(2^{(\log x)^2/2-\log x}\big)+O(x)\le 2\cdot W\big(2^{(\log x-1)^2/2}\big)+O(x)=$ $=2\cdot f(x/2)+O(x).$

Завершение доказательства

Обозначив
$$f(x) \coloneqq W\big(2^{(\log x)^2/2}\big)$$
, получили $f(x) \le 2 \cdot f(x/2) + O(x)$.

Отсюда

$$f(x) = O(x \log x).$$
Обозначив $x \coloneqq 2^{\sqrt{2 \log n}}$, получаем $W(n) = O\left(2^{\sqrt{2 \log n}} \cdot \sqrt{\log n}\right).$

Общая площадь укладки не больше, чем

$$W(n) \cdot n = O\left(n \cdot \sqrt{\log n} \cdot 2^{\sqrt{2\log n}}\right).$$