BIG HOMEWORK

ALEXANDER KETSBA

Dec 2023

In this document, I described the application of the LazyFCA algorithm for binary classification using the example of three datasets. The comparison of this algorithm with the usual classifiers is also given: Decision tree, Random forest, XGBoost, Catboost, k-NN, Naive Bayes, logistic regression.

The following datasets were used in the work:

https://www.kaggle.com/datasets/merishnasuwal/breast-cancer-prediction-dataset

https://www.kaggle.com/datasets/christianlillelund/passenger-list-for-the-estonia-ferry-disaster

https://www.kaggle.com/datasets/nareshbhat/health-care-data-set-on-heart-attack-possibility

The target variables are distributed as follows in datasets:

It can be seen that the most unbalanced dataset is Estonia Disaster with a ratio of 86% to 14%.

The dataset with Heart Attack is the most balanced 46% to 54%.

The tools for LazyFCA can be found in the fcalc folder.

A separate notebook has been created for each dataset using models. You can find them along with the files in the GitHub repository: https://github.com/Sandrobus228/BigHW OSDA

- Cancer Models.ipynb notebook using the 1st dataset
- Estonia Models.ipynb notebook using the 2nd dataset
- Heart_Models.ipynb notebook using the 3rd dataset

The feature of the lazy-FCA classification with binary attributes algorithm is to work only with categorical variables. To do this, I binarized continuous variables as follows. For each such variable, I found 10 quantiles [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] and I broke down the values by belonging to each of them. Then, using K-Fold, I tested each method for the BinarizedBinaryClassifier algorithm. It is worth noting that the 'standard' and 'standard-support' methods produced predictors [-1, 0, 1]. To combat this and calculate correctly, I replaced the value of '-1' randomly with [0,1]. In the final notebook, I abandoned this idea for a clean result. Divided into 5 splits for K-Fold, the accuracy results for the methods turned out to be as follows:

Estonia Disaster Dataset

Cancer Dataset

Heart Attack Dataset

It can be seen that in the first dataset, BinarizedBinaryClassifier copes with predictions worse than the "Most frequent class". Most likely, these results were obtained due to a small set of variables.

So, below is a comparison of models based on accuracy and f1 score metrics.

Estonia Disaster Dataset

Accuracy		F1_Score	
Fcalc_Binarized:	0.55	Catboost:	_
Tree:	0.67	NaiveB:	0.20
Log Reg:	0.73	RandForest:	0.26
KNN:	0.80	Fcalc Binarized:	0.33
Fcalc Structure:	0.82	XGB:	0.33
NaiveB:	0.84	Fcalc Structure:	0.35
XGB:	0.85	KNN:	0.37
Catboost:	0.86	Tree:	0.40
RandForest:	0.87	Log Reg:	0.44

It can be seen here that PatternBinaryClassifier does well against the background of other algorithms, but is inferior in both metrics to some of them. Accuracy = 0.82, F1_Score = 0.35. The binary algorithm did not perform so well: Accuracy = 0.55, F1_Score = 0.33.

Cancer Dataset

On a more balanced dataset with cancer prediction data, both FCALC algorithms performed well and kept roughly on par with conventional algorithms for both metrics.

Accuracy		F1_Score		
Fcalc_Binarized: Tree: KNN: Naive_B: Fcalc_Structure: Log Reg:	0.92 0.92 0.94	Fcalc_Binarized: Tree: KNN: NaiveB: Fcalc_Structure: Log_Reg:	0.93 0.94 0.95 0.96 0.97	
Catboost: RandForest: XGB:	0.96 0.96 0.96	<pre>Catboost: RandForest: XGB:</pre>	0.97 0.97 0.97	

Approximately the same can be observed with the Heart Attack data.

Heart Attack Dataset

Accuracy			F1_Score	
	XGB:	0.63	XGB:	0.7
	Tree:	0.68	Log_Reg:	0.72
	Log_Reg:	0.7	NaiveB:	0.73
	NaiveB:	0.7	Tree:	0.73
	KNN:	0.71	KNN:	0.74
	RandForest:	0.73	RandForest:	0.76
	<pre>Fcalc_Structure:</pre>	0.78	Fcalc_Structure:	0.8
	<pre>Fcalc_Binarized:</pre>	0.81	Fcalc_Binarized:	0.81
	Catboost:	0.86	Catboost:	0.87

So, we can see that on richer datasets and target-variable balanced datasets, Lazy FCA algorithms perform much better, often even surpassing some familiar and popular classification algorithms.