The game of Minesweeper

In this game of Minesweeper, a player searches for hidden bombs on a rectangular grid. The game board is represented by a grid of booleans marking bomb locations. A grid value is true if there is a bomb at that location, false otherwise. A user can click on any cell they choose. The game is lost when the user clicks on a cell containing a bomb. The game is won when all cells not containing bombs have been opened and the only remaining cells are those containing bombs.

Given such a grid of bomb locations, the method createCountGrid() constructs a new grid of integers storing the count of bombs in each neighborhood. The neighborhood for a location includes the location itself and its eight adjacent locations. In the returned grid, each value will be a number from 0 to 9.

If passed the boolean grid on the left, createCountGrid() returns the grid of int values on the right:

Here are the example grids:

(0,0)	iere a	re are the example grids:																				
F F T T F F F F T F F F F T F	(0,0)											(0,0)									
F F T F		F	F	Т	F	F	Т	F	F	Т	F		0	2	3	3	2	1	1	1	2	2
T F F F F F T F F F F F F F F F F F F F		F	F	Т	Т	F	F	F	F	F	Т		0	3	4	5	3	2	2	2	3	2
F F F F T F		F	F	Т	F	Т	F	F	Т	F	F		1	3	3	4	2	1	2	2	3	1
F F T F T F		Т	F	F	F	F	F	F	Т	F	F		1	2	1	3	2	2	3	3	3	0
F F		F	F	F	F	Т	F	F	Т	F	F		1	2	1	2	2	2	4	3	3	0
F F F F F F F F F F F F F F F F F F F		F	F	Т	F	F	Т	F	Т	F	F		0	1	1	2	2	2	3	2	2	0
F T T F F F F F F F F F F F F F F F F F		F	F	F	F	F	F	F	F	F	F		0	1	1	2	2	3	3	3	3	2
		F	F	F	F	Т	F	Т	F	Т	Т		1	2	2	2	1	2	1	2	2	2
		F	Т	Т	F	F	F	F	F	F	F		2	3	2	2	1	3	3	4	3	2
		т	F	F	F	F	F	Т	Т	F	F		2	3	2	1	0	1	2	2	1	0

The examples below demonstrate how to compute the countGrid from the bombGrid.

- A. In "Example A" one can see the cell [0][0] has a count of 1 because the only adjacent cell containing a bomb is [1][1].
- B. In "Example B" one can see the cell [1][2] has a count of 0 because there are no adjacent cells containing a bomb.
- C. In "Example C" one can see the cell [1][1] has a count of 4 because there are 4 adjacent cells containing a bomb. [0][0], [0][2], [2][0], [2][1]
- D. In "Example D" one can see the cell [1][1] has a count of 3 because there are 3

adjacent cells containing a bomb (including the cell itself). [1][1] , [2][0], [2][2]

Example A

F	F	F
F	Т	Т
Т	F	F

1	2	2
2	3	2
2	3	2

Example B

Т	F	F
Т	F	F
Т	F	F

2	2	0
3	3	0
2	2	0

Example C

Т	F	Т
F	F	F
Т	Т	F

1	2	1
2	4	2
2	2	1

Example D

F	F	F
F	Т	F
Т	F	Т

1	1	1		
2	3	2		
2	3	2		