PCT

国際事務局 特許協力条約に基づいて公開された国際出願

世界知的所有権機関

村計師月余利に基づいて公開された国际山脈

WO00/07023 (51) 国際特許分類6 (11) 国際公開番号 **A1** G01N 33/576 2000年2月10日(10.02.00) (43) 国際公開日 PCT/JP99/04129 (81) 指定国 AL, BR, CA, CN, JP, KR, LT, LV, MK, RO, RU, (21) 国際出願番号 SI, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, (22) 国際出願日 1999年7月30日(30.07.99) IE, IT, LU, MC, NL, PT, SE) 添付公開書類 (30) 優先権データ 国際調査報告書 ЛР 特願平10/216094 1998年7月30日(30.07.98) (71) 出願人(米国を除くすべての指定国について) 東燃株式会社(TONEN CORPORATION)[JP/JP] 〒150-8411 東京都渋谷区広尾一丁目1番39号 Tokyo, (JP) (72) 発明者;および (75) 発明者/出願人(米国についてのみ) 青柳克己(AOYAGI, Katsumi)[JP/JP] 大植千春(OHUE, Chiharu)[JP/JP]

(54) Title: METHOD FOR ASSAYING HEPATITIS C VIRUS

(54)発明の名称 C型肝炎ウイルスの測定方法

〒356-8505 埼玉県入間郡大井町西鶴ヶ岡1丁目3番1号

飯田久美子(IIDA, Kumiko)[JP/JP] 八木慎太郎(YAGI, Shintaro)[JP/JP]

東燃株式会社 総合研究所内 Saitama, (JP)

石田 敬, 外(ISHIDA, Takashi et al.) 〒105-8423 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル 青和特許法律事務所 Tokyo, (JP)

(57) Abstract

(74) 代理人

A method for assaying hepatitis C virus (CHV) characterized by comprising binding CHV core antigen and CHV core antibody to probes thereof in the presence of a cationic surfactant and/or a nonionic surfactant.

(57)要約

C型肝炎ウイルス(CHV)の測定方法において、陽イオン性界面活性剤もしくは非イオン性界面活性剤又はその両者の存在下で、CHVコア抗原及びCHVコア抗体をそれらのプローブとの結合により測定することを特徴とする方法。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AL アルバニア EES! RAT	C C I K R S T U V A A C D U J N J V J N J N J N J N J N J N J N J N	RSSESSETTTTTTUUSSENUTA UDEGIKLNZDGJZMRTAGSZNUA デーニキレ デーニキレン デーニキレン デーニキレン デーニキレン デーニキレン デーニキレン デーニキレン デーニキレン デーニャージンルルリクガ国ズィーアン イーアン イーアン アグェガヴヴラガン イーアン イーアン アグニガフバー アグニッナ アグニガフバー アグニガフバー アグニガフバー アンニッナ アグニガフバー アンニッナ アグニガフバー アンニッナ アンニッナ アンニッナ アンニッナ アンニッナ アンニッナ アンニッナ アンニッナ アンニッナ アンコーアン アンコ
-------------------	---	--

明 細 書

C型肝炎ウイルスの測定方法

発明の分野

本発明は、C型肝炎ウイルス(HCV)の検出方法に関し、さらに詳しくは、HCVコア抗原を測定するか、又はHCVコア抗原とHCVコア抗体を同時に測定するための方法に関する。この方法は多数の血液試料等のスクリーニングのために特に有効である。

背景技術

HCV(C型肝炎ウイルス)の感染によって引き起こされる肝炎は、高い頻度で慢性化し、感染期間が長期化するにつれ、肝硬変、肝ガンとしばしば移行する。しかしながらHCVの感染は、主に血液および血液由来成分によってもたらせることから、感染源を特定し、排除することにより感染経路を遮断することが可能である。現在感染源を特定する方法としては、主にHCVポリペプチドに対する抗体を検出する方法が採られているが、より高い精度で感染源を特定できる方法が求められていた。

求められる背景としては、HCV感染後、抗原は存在するが抗体が産生されない、いわゆるウィンドピリオド(Window period)と呼ばれる時期が存在することにある。この期間にある血清は、抗体検査により感染の有無を判別することができない。抗体検査ではウィンドピリオド期にある検体を排除できないため、抗体検査によりスクリーニングを行っている輸血や血液成分、血液製剤などの血液由来物質を利用する場合は、ウィンドピリオドにある検体による二次感染の危険性が存在している。そのためHCVポリペプチドに対

する抗体ではなく、HCVそのもの、つまりHCVパーティクルを 検出する必要があった。

HCVそのものを検出、測定することは、HCVパーティクルを構成している抗原または遺伝子(RNA)を検出することにより可能となる。ここでHCVパーティクルを構成している抗原は、コア抗原、エンベロープ抗原(E1,E2)であると考えられている。

このうちエンベロープ抗原は、超可変領域(Hyper Variable Reg ion)に代表されるように、抗原性の高い領域で変異が多い。また遺伝子型間での違いも報告されている。これらの変異、違いを全て検出するためには、複数の領域に特異的に結合するプローブを用いる必要がある。

なおここでプローブとは、抗原に特異的に結合する分子、たとえばレセプター、抗体、組換え抗体、機能性分子、または機能性構造物の様に、抗原分子を認識し結合するものをいう。

一方コア抗原はアミノ酸配列レベルで配列が保存されており、領域を選択することにより、複数種類の遺伝子型が報告されているHCVのいずれの遺伝子型の抗原も検出できるプローブを得ることが出来るため、遺伝子型に依存しない検出方法を構築することが可能となる。

しかしながら抗原を検出する系を構築するためには留意しなければならない点がある。すなわち、被験者である検体中には抗体が存在する可能性が高く、これらの抗体が、抗原を検出するためのプローブと結合部位を競合し、プローブの結合を阻害することにより抗原の検出感度を下げる。そのため抗原を効率良く検出するためには、抗体の結合しない領域もしくは抗体の結合によりプローブの結合が干渉されない領域を認識するプローブを用いる方法が考えられる。しかしながら、HCVコア抗原のように複数の抗体結合部位が報

告心れている分子において、前述の条件をみたすプローブを作成することは困難である。

そのため抗原分子を検出するためには、プローブの結合を阻害する抗体を除く必要がある。除く方法としては、物理的な原理に従って除く方法、例えば分子量の違いを利用して、HCVパーティクルと抗体とを分離分別する方法がある。この例として、ゲル濾過、超遠心分離法、密度勾配遠心分離法、限外濾過膜等の膜を利用した分子量分画法がある。しかししばしば抗体は、他の生体高分子と複合体を形成し高分子量に変化するため、物理的な原則にしたがった方法では、HCVパーティクルとの分別が困難になる。またこれらの方法は、処理行程に特殊な機器を用いることなどから、血液のスクリーニングなどのマススクリーニングに適用することは困難である

一方生化学的な原理に基づいた方法、例えばPEG(ポリエチレングリコール)などの水環境を変化させることにより、HCVパーティクルと他の血清成分との化学的性質の違い、例えば水に対する溶解性の違いを利用してHCVパーティクルを優先的に沈澱させることにより分別する方法もあるが、抗体または抗体複合体はしばパーティクルと同様の分画に沈澱し、分画すること自体が困難となる。またHCVパーティクルは、しばしばHCVパーティクルを構成している抗原とそれを認識する抗体との免疫複合体を形成しており、免疫複合体から抗体または抗原のみを分離することは困難である。

そのためプローブの機能を阻害する物質(抗体など)を機能的に破壊することにより除く方法がとられる。抗体の機能を失わせる方法としては、タンパク質を変性させる条件に露呈させることにより 抗体タンパク質を変性させる方法が考えられるが、ここで重要なこ

とは抗体の機能は失わせるが、目的とする抗原の機能、つまりプローブと結合する機能、すなわちプローブが抗体の場合にはエピトープを消失させない、またはエピトープを再提示させる条件である。

HCVの感染の有無を判別する方法に求められる機能は、その目的により異なる。

抗体検査は検体中にHCVに対する抗体が存在するか否かを判別する方法であるが、検体中にHCVに対する抗体が存在した場合、その検体の供与者が現在HCVに感染しており検体中にHCVが存在している場合もあれば、すでに治療または自然治癒によりHCVが体内から排除されている場合もあり、抗体の有無によりこれらを区別することは困難である。

抗原検査は、HCVが検体中に存在しているか否か、または存在している場合にはその量の多寡を知らせることが重要な機能であり、その際に抗体が存在しているか否かは問題とならない。

治療の際には、肝炎がHCVを主たる原因とするか否かを決定するために、HCVの抗体検査が重要な情報を与えるが、最終的にはHCVの抗原の有無が確定診断には求められる。また治療効果判定には、HCVが体内から排除されているか否かを判定することが重要であり、判定には抗原の量の多寡を知ることが重要である。すなわち抗体の有無に関係なく抗原の有無、その量を知ることが治療に重要である。すなわち治療においては、抗原の有無とその量を与える検査方法がもっとも重要な方法である。

一方血液および血液由来製剤においては、二次感染の抑止がもっとも重要であり、そのためにはHCVの感染源としての危険性の有無を判別することが検査方法に求められる。現在この分野では主たる検査方法として抗体検査が用いられている。

しかしながら前述のように、HCV感染後のウィンドピリオドに

ある血清は、抗体検査により感染の有無を判別することができない。故に、抗体検査によりスクリーニングを行っている輸血や血液成分、血液製剤などの血液由来物質を利用する場合は、ウィンドピリオドにある検体による二次感染の危険性が存在する。

危険性をより軽減させるためには抗原検査の併用が求められるが、献血などの血液検査のようなマススクリーニングでは未だ抗原検査は行われていない。

理論的には100%の精度(感度、特異度)で抗原の有無を判定できる検査方法が存在すれば、それを唯一の検査方法とすれば良いが、いかなる検出方法でも検出感度が存在し、検出感度以下のものは測定できない。故に100%の精度で判別できる検査方法は存在しない。また特殊な例においては抗原検査のみでは感染源を逃す可能性が存在し、そのためこの分野においては抗体と抗原の両者を測定することが、二次感染の危険性を軽減させるために必要である。マススクリーニングに適用でき、高い感度、特異性を示す抗原検出方法が用いられるようになった場合、抗原と抗体の両方を測定することが求められるようになり、同一検体数での検査数が現在よりも増加し、コストアップ要因となる。

このようなことから、抗原と抗体を同一方法で測定することが可能となれば、当該分野においては検査数の軽減をはかることが出来、多大な効果を与えることが分かる。

すでに記したように抗体を検出する方法、抗原を検出する方法は開発されているが、前述のごとく抗体を検出する条件では、抗原を検出しようとすると、抗原を検出するプローブの結合を阻害する抗体が存在することにより抗原を効率良く検出できない。一方抗原を検出する条件でも、前述のごとく、抗原の検出を競合阻害する抗体を除く方法がとられることから、抗体を検出できない。それゆえす

でに報告されている方法では抗原と抗体を同一方法で検出することはできない。

発明の開示

血液および血液由来の物質を利用する際の、二次感染軽減の目的においては、感染者、感染既往者を区別する必要はなく、抗体または抗原が存在するか否かを判別できればよい。すなわち本発明は、ウィンドピリオド期のように抗体の存在しない時期の検体では抗原を検出し、抗体の存在する時期の検体では抗原を、又は抗原と抗体を検出する方法を提供することにより、血液および血液由来物質の検査に求められる新しい検査方法を提供する。

上記の課題を解決するため、本発明は、C型肝炎ウイルス(HCV)の測定方法において、アルキル基と第2~第4級アミンとを有する界面活性剤もしくは非イオン界面活性剤、又はこの両者の存在下で、HCVコア抗原をそのプローブとの結合により測定することを特徴とする方法を提供する。

本発明はさらに、上記の方法によるHCVコア抗原の測定と共に、HCVコア抗体を、そのプローブとの結合により測定することを特徴とする方法を提供する。

図面の簡単な説明

図 1 は、モノクローナル抗体 C 11-15の抗体価を、他のモノクローナル抗体 C 11-3 , C 11-7 , C 11-10及び C 11-14の抗体価と比較して示すグラフである。

図2は、本発明の種々のモノクローナル抗体を単独で、又は混合して一次抗体として固相に固定して使用し、HCV-RNA陽性検体を測定した場合のELISAの結果を示すグラフである。

発明の実施の形態

本発明の提供するHCV感染検出方法は、ウィンドピリオド期のように抗体の存在しない時期の検体では抗原を検出し、抗体の存在する時期は抗原を、又は抗原と抗体の両者を検出する方法である。すなわち抗体の存在しない時期、ウィンドピリオド期においては抗体が存在しないため、抗原を検出する際に抗体を除く必要はないことになる。故に抗原を検出するために必要な前処理を行う必要はなくなる。

しかしながら、HCVパーティクルに含まれる抗原を検出するためには、検出のために用いるプローブの認識部位を露呈させることが重要である。HCVウイルスパーティクルは、ゲノムである核酸とコア抗原が複合体を形成して粒子を形成し、その粒子を脂質膜とエンベロープタンパク質からなる外膜が覆った構造をしていると考えられている。さらに血液中では低密度リポプロテイン(LDL)やHCVに対する抗体などとの複合体を形成して存在しているとわれている。そのため、血液中に存在するウイルスパーティクルのままでは、プローブはコア抗原を認識し結合することが出来ないのままでは、プローブはコア抗原を認識し結合することが出来ない。故にコア抗原を検出するためには、コア抗原を取り囲むこれらの構造物を除去するなどの処理をして、コア抗原がプローブに認識されるようにする必要がある。

すなわち本発明においては、検体中に含まれるHCVパーティクル中のコア抗原を、コア抗原を認識するためのプローブが認識できるように露呈させる反応条件、反応させる系からなる反応方法、および反応させる系を含む試薬をも提供する。

一方抗体が十分に存在している時期においては、前述のごとく、 検体中にはプローブの結合部位と競合するコア抗原に対する抗体が 存在している場合があるが、その場合にはコア抗原の検出感度が低

下ばる可能性がある。またコア抗原をプローブと結合できるように露呈させた場合には、プローブと競合するコア抗原に対する抗体が含まれた場合、抗体は露呈されたコア抗原に吸収され、抗体を免疫複合体を検出する方法によって検出するための抗原に結合するコア抗原に対する抗体の量が減少し、検出感度が低下する可能性がある。

そのため抗体の検出に用いる抗原は、コア抗原のエピトープのみからなるものでもよいが、好ましくはコア抗原以外のHCVエピトープを含むペプチドまたはポリペプチドである。またHCVエピトープを模倣する、HCVエピトープを含むペプチドまたはポリペプチド以外のペプチドまたはポリペプチド、または化合物であってもよい。

ただしコア抗原を検出するためのプローブと、HCVエピトープまたはHCVエピトープを代替する化合物とは、互いに認識しあうことにより結合するものでないことが好ましい。

HCVコア抗原のためのプローブとしての抗体又はHCVコア抗原を検出するための標識される抗体は、マウス、ウサギ、ニワトリ、ヤギ、ヒツジ、ウシなどの実験動物を免疫して得られるポリクローナル抗体;免疫した個体から、脾臓細胞を分離し、ミエローマ細胞と融合させることによって得られるハイブリドーマの産生するモノクローナル抗体;または脾臓細胞、血中白血球をEBウイルスによって不死化させた細胞の産生するモノクローナル抗体;HCVに感染しているヒトもしくはチンパンジーなどが産生しているモノクローナル抗体;

マウス、ヒトなどのイムノグロブリンの c D N A もしくは染色体 D N A から得られる可変領域遺伝子断片、またはイムノグロブリンの c D N A もしくは染色体 D N A の一部と人工的に作製した配列と

を組み合わせることによって構成される可変領域遺伝子断片、人工的な遺伝子配列を用いて構成される可変領域遺伝子断片またはこれらを材料に遺伝子組換え手法によって作製される可変領域遺伝子断片を、イムノグロブリン定常領域遺伝子断片を組み合わせることによって構成される組換え抗体遺伝子によって形質転換された細胞が産生する組換え抗体;上記の可変領域遺伝子断片と例えばバクテリオファージの構造蛋白質と融合させて作られるファージ抗体;上記の可変聴域遺伝子断片を他の適用な遺伝子断片例えばmyc遺伝子の一部などと組み合わせることにより構成される組換え抗体遺伝子によって形質転換された細胞が産生する組換え抗体などである。

トリプシン分子に可変領域を人工的に導入することによって産生されるプローブ、レセプターなどの蛋白質に特異的に結合する分子を人工的に改変することによって得られるプローブ、その他コンビナトリアルケミストリー技術によって作製されたプローブなど、コア抗原に高い特異性、親和性を示す分子であればそれを用いることが出来る。

上記のモノクローナル抗体は、当業者により容易に作製することができる。ハイブリドーマによるモノクローナル抗体の作製は良く知られている。例えば、BALB/cマウスなどの腹腔内あるいは皮内に、上記融合ポリペプチドもしくはポリペプチド(以下、本抗原)を単独もしくはBSA,KLHなどと結合させた抗原として、単純あるいはフロイント完全アジュバント等のアジュバントと混合して定期的に免疫する。血中の抗体価が上昇した時点で、追加免疫として本抗原を尾静脈内に投与し、無菌的に脾臓を摘出した後、適当なマウス骨髄腫細胞株と細胞融合し、ハイブリドーマを得る。本方法は、KohlerとMilsteinの方法(Nature 256: 495-497, 1975)に従って行なうことができる。

止記方法により得られたハイブリドーマ細胞株を適当な培養液中で培養し、その後、本抗原に対して特異的な反応を示す抗体を産生するハイブリドーマ細胞株を選択してクローン化する。抗体産生ハイブリドーマのクローニングには限界希釈法のほか軟寒天法(Eur. J. Immunol. 6:511-519,1976)などを利用することができる。そして、産生されたモノクローナル抗体をプロテインAなどを用いたカラムクロマトグラフィーなどの方法により精製する。

上記のモノクローナル抗体以外にもプローブとして用いる分子は作製することが出来る。例えば組換え抗体についてはHoogenboonの総説などに詳しく記載されている(Trends in Biotechnology, 15:62-70, 1997)。

本発明において、検体中のHCVコア抗体のためのプローブとしての抗原又は前記HCVコア抗体を製造するための抗原は、具体的には、例えば配列番号:1又は2に示すアミノ酸配列を有するポリペプチド、あるいは配列番号:3~6に記載の複数のアミノ酸配列を含有する融合ポリペプチドであり、これらは、これらをコードするDNAの組換え発現により得ることができる。

ここで検出原理は、酵素標識抗体方法、蛍光標識方法、ラジオアイソトープ標識方法など通常の免疫測定法に用いられる方法を用いてもよく、酵素標識抗体法における酵素検出原理は、比色法、蛍光法、化学発光法などがある。また抗体の検出には、二抗原サンドイッチ法のような、抗体検出に一般的に用いられる方法を用いてもよく、さらに抗原の検出にも同様に一ステップサンドイッチ系などの方法を用いることも出来る。

本発明の様態の一つは、以下のような反応系である。(1)HC Vコア抗原に対するプローブ、たとえばHCVコア抗原に対する抗体と、(2)HCVエピトープを含む化合物、たとえばHCVポリ

ペプチドのエピトープを含むペプチド、ペプチド化合物またはポリペプチド、およびこれらの混合物を、免疫測定法に用いられる担体、たとえばミクロタイタープレートに固相化させる。固相化させた担体を、HCVパーティクル、またはパーティクル複合体からHCV工ピトープに対する抗体の機能を阻害させないような成分を含む反応緩衝液中で、被検体と反応させ、検体中に含まれるコア抗原およびHCVエピトープに対する抗体を担体に特異的に結合させる。

次に、結合されなかった検体中の成分を、たとえば担体を適当な緩衝液で洗浄することによって除いた後、担体に結合したコア抗原を認識するプローブたとえばコア抗原に対する酵素などで標識された抗体と、担体に結合したHCVエピトープに対する抗体を認識するプローブ、たとえば酵素などで標識された抗一ヒト抗体マウスに対ローナル抗体を含む反応させることにより、担体に結合したコア抗原とHCVエピトープに対する抗体に特異的に結合させる。反応終了後、未反応の成分を取り除くため、たとえば担体を適当な緩衝液で洗浄した後、標識を適当な方法で検出することにより、検体中に含まれるコア抗原とHCVエピトープに対する抗体を検出することが可能となる。

またイムノクロマト法などの一般的に免疫測定法に用いることの 出来るB/F分離法にも適用可能であることは、当該分野の研究者 にとっては自明である。

抗原検出に適した反応条件

本発明が提供する系における抗原検出に適した反応系とは、HCV抗原エピトープに対する抗体の機能を失わせない程度のマイルドな条件でありながら、検体中に存在する複雑な構造体であるHCVパーティクルから、HCV抗原を認識するプローブである抗体の認

識する領域を十分に露呈させる条件からなる系である。

すでに超遠心法にて分離したウイルスパーティクル(Takahashi et al., 1996, J. Gen. virol, 73:667-672)、ポリエチレングリコールによって凝集沈殿させたHCVパーティクルをTween80やTritonX100の様な非イオン性の界面活性剤によって処理することにより(Kashiwakuma et al., 1996, J. Immunological methods 190:79-89)、コア抗原が検出可能であることが示されているが、前者においてはその検出感度が不十分であり、十分に抗原が露呈されているかは疑問である。また後者においては他の処理剤を加えることにより抗体を失活させており、界面活性剤の効果そのものについては触れられていない。

本発明においては、始めに界面活性剤を基本に条件を検討し、反応液を界面活性剤を中心とした組成にすることにより、すでに報告されているHCV抗原検出系のように、遠心操作や加熱などの操作からなる前処理法を適用することなく、単に反応液中で検体を希釈することのみにより、HCVパーティクル中の抗原を効率良く検出することが可能となった。

効果的にウイルス粒子中からコア抗原を抽出し、かつ血清中の様々な物質との相互反応を抑制し、効率よくプローブと抗原とが反応できる条件を与えることが必要である。この際の効果的な界面活性剤としては、アルキル基と第2~第4級アミンを同一分子内に有する界面活性剤、又は非イオン性界面活性剤が挙げられる。

前記アルキル基と第2~第4級アミンを有する界面活性剤において、アルキル基に好ましくは直鎖アルキル基であり、その炭素原子数は好ましくは10個以上、さらに好ましくは12~16個である。アミンとしては第3アミン又は第4アミン(アンモニウム)が好ましい。具体的な界面活性剤としては、ドデシルーNーサルコシン

酸、ドデシルトリメチルアンモニウム塩、セチルトリメチルアンモニウム塩、3-(ドデシルジメチルアンモニオ)-1-プロパンスルホン酸、3-(テトラデシルジメチルアンモニオ)-1-プロパンスルホン酸、ドデシルピリミジウム塩、セチルピリミジウム塩、デカノイル-N-メチルグルカミド(MEGA-10)、ドデシル-N-ベタイン等が挙げられる。ドデシル-N-サルコシン酸及びドデシルトリメチルアンモニウム塩が好ましい。

前記の非イオン性界面活性剤としては $12\sim14$ の間の親水疎水比を有するものが好ましく、ポリオキシエチレンイソオクチルフェニルエーテル類、例えばTritonX100、TritonX114など、あるいはポリオキシエチレンノニファニルエーテル類、例えばNonidet p40, TritonN101、Nikkol

本発明においては、上記2つのタイプの界面活性剤を単独で用いてもよいが、併用するのが一層好ましく、併用により相乗効果が得られる。

さらにHCVエピトープに対する抗体を検出するように、HCVエピトープを含む抗原と、HCV抗原を検出するための抗体を固相化した担体と、本発明が提供する反応液で希釈した検体と反応させることにより、HCV抗体が存在せずHCV抗原を含む検体においては、抗原を効率良く検出し、HCV抗原が存在せず抗体のみが存在する抗体においては効率良く抗体を検出し、さらに抗原と抗体が存在する検体では、抗原と抗体を同時に検出することにより高いシグナルを与えていることを見いだし、本発明を完成させるに至った

ウイルスの抗原とウイルス抗原に対する抗体を同時検出する方法は、すでにHIVで報告されている(Weber et al., J. Clinic. Mic

robaio1.,36:2235-2239,1998)。HIVの場合には、ウイルス抗原検査としてgag蛋白質であるp24を検出することが有効である。一方ウイルス抗原に対する抗体検査では、envelop蛋白質とgag蛋白質であるp19に対する抗体を検出することが有効である。そのためウイルスの抗原とウイルス抗原に対する抗体を同時検出する方法は、抗原検査としてgag蛋白質であるp24を検出し、抗体検査としてenvelop蛋白質とgag蛋白質の一部であるp19に対する抗体を検出する方法を組み合わせることにより達成される。

このようにウイルス抗原検出に用いる抗原のエピトープと、ウイルス抗体検出に用いる被検体中の抗体が認識するエピトープが異なる場合、ウイルス抗原とウイルス抗原に対する抗体を同時検出する方法の構築は比較的容易である。なぜならば、たとえばHIV検査の場合、抗原検出に用いるプローブ、たとえばHIVエピトープに対するモノクローナル抗体、の認識する抗原p24と、抗体検査で被験者の試料中に含まれる抗体の認識する抗原、envelop蛋白質とgag蛋白質の一部であるp19とは異なる蛋白質であり、抗原検査に用いるプローブがenvelop蛋白質とgag蛋白が抗体検出に用いるHIVエピトープに結合することによって起こる競合反応による感度低下、非特異反応など、抗原検出系、抗体検出系が互いに他の系を干渉することが起こり難いためである。

しかしながら、HCVエピトープに対する抗体検出においては、 コア抗原エピトープに対する抗体を検出することが臨床的に非常に 有用である (Chiba et al, Proc. Natl. Acad. Sci. USA 88:4641-4645 , 1991, Bresters et al., Vox Sang., 62:213-217, 1992)。ゆえ に、抗体検出においてコア抗原エピトープに対する抗体を検出する

ことは必須の要件である。一方抗原検出においては、ウイルスパーティクルを構成する抗原のうち、コア抗原は、他の抗原、E1,E2よりも変異率が低いため、コア抗原を検出することは、HCV抗原検出においてもっとも有効な方法である。すなわち、効果的なHCVの抗原抗体同時測定を構築するためには、抗原検出系と抗体検出系で同じ抗原、コア抗原を用いる必要がある。

そのため、何の工夫も無くコア抗原を用いた場合、抗原検出に用いるコア抗原に対するモノクローナル抗体が、抗体検出に用いるコア抗原に結合し、吸収され被検体中の抗原の検出感度が低下する、抗体検出に用いる抗原に結合し、抗原検査の非特異反応を誘発する、抗体検査のためのHCVエピトープがマスクされ感度が低下するなどの問題が起こる。

本発明者らはこの問題を解決するために、抗原検出に用いるモノクローナル抗体のエピトープと、被検体中に存在するコア抗原に対する抗体のエピトープを分割させることにより、抗原と、抗体を同時に効率良く検出できることを見出し、本発明を完成させるに至った。

以下実施例を詳細に説明することにより、抗原と抗体の同時測定のための好適なエピトープの組み合わせ例を示す。

コア抗原に対する被検体中の抗体のエピトープについては、様々なエピトープ解析の結果から、最も重要な領域がコア抗原のN末、特にHCVポリペプチドの第1位から40位に存在することが示されている(Okamoto et al, Hapatology 15:180-186, 1992, Sallberg et al, J. Clinical. Microbiol., 30:1989-1994, 1992, Sallsberg et al., J Med. Vilol, 43:62-68, 1994)。また遺伝子型特異的に反応するエピトープがHCVポリペプチドの第66位から第80位にある(Machida Hepatology 16:886-891 '92 、特願平9-20

9 5 2 2)。そのため、HCVエピトープに対する抗体を検出するための抗原として、HCVポリペプチドの第1位から第40位、第66位から第80位の配列を持つことが重要である。ゆえに、HCV抗体を検出する抗原としては、HCVポリペプチドの第1位から42位、第66位から第80位の配列を含む抗原CEPMを好適な配列を持つ抗原ポリペプチドとして実施例に開示する。なおCEPMはHCVポリペプチドの下記に示す領域を、下記の順に並べた人口配列からなる抗原であり、その構築方法は特願平9-209522に記載されている。また配列は配列番号10に記載されている。CEPMのHCVエピトープの並び:

(1238-1313) - (1363-1460) - (1712-1751) - (66-80) - (1686-1704) - (1716-1751) - (66-80) - (1690-1713) - (1-42)

一方抗原検出においては、被検体中にコア抗原に対する抗体が比較的存在しない領域、すなわちHCVポリペプチドの第100位から130位を認識し結合するモノクローナル抗体を第一次反応に、第一次抗体に結合したコア抗原を検出するための第二次抗体の認識部位としては、抗体検査に用いていない領域、HCVポリペプチドの第40位から50位を認識するモノクローナル抗体を用いて、HCVポリペプチドの第10位から50位を認識するモノクローナル抗体を用いて、HCVポリペプチドの第100位から130位に対する抗体によって保持されたコア抗原を検出する。

これらのモノクローナル抗体はいずれも、HCV抗体を検出するために用いているHCVポリペプチドの第1位から42位までを含む抗原には結合しないことから、上記のモノクローナル抗体、上記の抗原を用いることにより、結合による抗原検出系、抗体検出系への反応阻害が生じ得ず、それぞれの測定系を同時に機能させることが可能となった。

実施例

以下実施例によって本発明を詳細に説明する。

実施例 1. HCV由来ポリペプチドの発現プラスミドの発現および精製

(A)発現プラスミドの構築

HCVのコア領域に相当する発現プラスミドは以下の方法で構築した。 C11-C21クローンおよびC10-E12クローン(特開平6-38765)を pUC119に組み込んで得られたプラスミド pUC・C11-C21および pUC・C10-E12の各DNA 1 μ gを制限酵素反応液20 μ 1〔50 mM Tris-HC1(pH7.5)、10 mM MgC12、1 mM DTT、100 mM NaC1、15単位のEcoRIおよび15単位のC1aI酵素〕中、および〔10 mM Tris-HC1(pH7.5)、10 mM MgC12、1 mM DTT、5)、10 mM MgC12、1 mM DTT、5)、10 mM MgC12、1 mM DTT、5)、10 mM MgC12、1 mM DTT、50 mM NaC1、15単位のC1aIおよび15単位のKpnI酵素〕中で各々37℃1時間消化し、その後0.8%アガロースゲル電気泳動を行ない、約380 bpのEcoRI-C1aI断片および約920 bpのC1aI-KpnI断片を精製した。

この2つのDNA断片とpUC119をEcoRIおよびKpnIで消化したベクターに10×リガーゼ用緩衝液〔660mM TrisーHC1(pH7.5)、66mM MgCl2、100mMジチオスレトール、1mM ATP〕 5μ 1、T4リガーゼ1 μ 1(350単位/ μ 1)に水を加えて50 μ 1とし、16 $^{\circ}$ で一晩保温し、連結反応を行なった。このプラスミドを用い大腸菌JM109を形質転換させ、プラスミドpUC・C21-E12を得た。

このプラスミドpUC・C21-E12 DNA 1 ngを2つの プライマー (5′-GAATTCATGGGCACGAATCCTAAA-3′(配列番号:

7)、5 ' - TTAGTCCTCCAGAACCCGGAC - 3 ' (配列番号:8)) を用い P C R を行なう。 P C R は GeneAmpTM (DNA Amplification Reagent Kit, Perkin Elmer Cetus製)のキットを用い D N A 変性 9 5 \mathbb{C} 1 . 5 分、アニーリング <math>5 0 \mathbb{C} 2 分、D N A 合成 7 0 \mathbb{C} 3 分 の条件で行ない、得られた D N A 断片を 0 . 8 % アガロースゲル電気泳動により分解し、グラスパウダー法(Gene Clean)で精製した。

一方、p U C 1 9 を制限酵素 S m a I で消化し、P C R 法によって得られた D N A 断片を 1 0 × リガーゼ用緩衝液〔6 6 0 m M T r i s - H C 1 (pH 7 . 5)、 6 6 m M M g C 1 2 、 1 0 0 m M \mathcal{I} チオスレトール、1 m M A T P 1 5 μ 1、1 4 リガーゼ1 μ 1 (350 単位 1 μ 1)に水を加えて 1 5 0 μ 1 とし、 1 6 1 で一晩保温し、連結反応を行なった。このプラスミドを用い大腸菌 1 M 1 0 9 を形質転換させ、プラスミド 1 D C 1 9 1 C 1 9 1 C 1 2 1 S 1 S 1 C 1 6 1 C 1 S 1 C 1 C 1 C 1 C 1 S 1 C

このプラスミドDNA 1μ gを制限酵素反応液 20μ 1〔150mM NaCl、6mM Tris-HCl(pH7.5)、6mM MgCl2、15単位のEcoRIおよび15単位のBamHI酵素〕中で37℃1時間消化反応を行ない、その後0.8%アガロースゲル電気泳動を行ない、約490bpのEcoRI-BamHI断片を分離し、これをグラスパウダー法で精製した。

次に発現ベクターであるTrp・TrpE(特開平5-84085)のDNA 1μ gを制限酵素反応液 20μ 1〔150 mM N a C 1、6 mM Tris-HC1(pH 7.5)、6 mM MgC 1₂、 $15単位のEcoRIおよび15単位のBamHI酵素〕中で37℃で1時間消化し、その反応液に水39<math>\mu$ 1を加え、70℃で5分間熱処理した後にバクテリアアルカリ性ホスファターゼ(BAP) 1μ 1(250 単位 $/\mu$ 1)を加えて37℃で1時間保温した。

この反応液にフェノールを加えてフェノール抽出を行ない、得られた水層をエタノール沈殿し、沈殿物を乾燥した。得られたEcoRI-BamHI処理ベクターDNA 1 μ gと上述のコア140断片を10×リガーゼ用緩衝液〔660mM Tris-HC1(pH 7. 5)、66mM MgC1。、100mMジチオスレトール、1mM ATP〕 5 μ 1、T4リガーゼ1 μ 1(350単位 $/\mu$ 1)に水を加えて50 μ 1とし、16 $^{\circ}$ Cで一晩保温し、連結反応を行なった

この反応液の $10\mu1$ を用いて大腸菌HB101株を形質転換した。形質転換に用いる感受性大腸菌株は塩化カルシウム法(Mandel M. とHiga, A., J. Mol. Biol., 53, 159-162(1970)〕により作られる。形質転換大腸菌を 25μ g/mlのアンピシリンを含むLBプレート(1%トリプトン、0.5% NaCl、1.5%寒天)上に塗布し、37%に一晩保温した。プレート上に生じた菌のコロニーを 1 白金耳取り、 25μ g/mlのアンピシリンを含むLB培地に移し、一晩 37%で培養した。

1. $5 \, \text{ml}$ の菌培養液を遠心して集菌し、プラスミドDNAのミニプレパレーションをアルカリ法 [Manniatis ら、Molecular Cloning: A Laboratory Manual, (1982)] により行なった。得られたプラスミドDNA 1 μ gを制限酵素反応液 2 0 μ 1 $[150\,\text{mM}]$ NaС1、6 mM Т r is -HCl (pH7. 5)、6 mM M g C 1_2 、15 単位のEcoRIおよび15 単位のBamHI酵素〕中で37℃、1時間消化し、アガロースゲル電気泳動を行なって、約490 bpのEcoRI-BamHI断片が生じるT r p・T r p E コア160発現プラスミドを選別した。

(B) クローンコア 1 6 0 でコードされるポリペプチドの発現および精製

発現プラスミドTrp・TrpEコア160をもつ大腸菌HB101株を50μg/mlのアンピシリンを含む3mlの2YT培地(1.6%トリプトン、1%酵母エキス、0.5% NaC1)に接種し、37℃で9時間培養する。この培養液1mlを50μg/mlのアンピシリンを含む100mlのM9-CA培地(0.6% Na2HPO₄、0.5% NaC1、0.1% NH₄C1、0.1mM CaC1₂、2mM MgSO₄、0.5%カザミノ酸、0.2%グルコース)に植え継ぎ、37℃で培養した。OD600=0.3の時に終濃度40mg/1になるようにインドールアクリル酸を加え、さらに16時間培養した。この培養液を遠心分離して菌体を集めた。

菌体に20m1の緩衝液A〔50mM Tris-HCl(pH8.0)、1mM EDTA、30mM NaCl〕を加えて懸濁し、再び遠心分離を行なって発現菌体2.6gを得た。得られた菌体を緩衝液A 10m1中に懸濁し、超音波破砕により大腸菌膜を破砕した後に遠心分離を行ない、HCV cDNAでコードされるポリペプチドとTrpEの融合ポリペプチドを含む不溶性画分を得た。その画分に10m1の6M尿素を含む緩衝液Aを加えて融合ポリペプチドを可溶化抽出した。可溶化した抽出物をS-Sepharoseを用いたイオン交換カラムクロマトグラフィーにかけて、融合ポリペプチドの精製を行なった。

実施例2. ハイブリドーマの作製法

前記方法により調製した融合ポリペプチド(TrpC11)を 6 M尿素溶解後、0.15M NaClを含む10m Mリン酸緩衝液(pH7.3)に終濃度が1.0m Mリン酸緩衝液(7rpC11 懸濁液とした。7rpC11 温度が1.0m 0.05 mg/mlとなるように調製した該懸濁液

を $4\sim6$ 週令の B A L B / c 系マウスに腹腔内投与した。さらに約8 週間後、免疫化動物に T r p C 1 1 濃度が 0.0 5 \sim 0.0 3 mg/mlとなるように調製した生理食塩水溶液を尾静脈内に投与した

最終追加免疫後3日目に、この免疫動物より無菌的に脾臓を摘出し、ハサミで切片としてさらにメッシュを用いて脾臓を個々の細胞にほぐし、RPMI-1640培地で3回洗浄した。8-アザグアニジン存在下で数日間培養し、復帰突然変異体を完全に除いた対数増殖期のマウス骨髄腫細胞株PAIを前記と同様に洗浄後、該細胞1.8×10⁷ 個と脾臓細胞1.0×10⁸ 個を50m1容の遠心管に入れ混合した。200×g、5分間遠心分離を行ない、上清を除去し、37℃に保温した50%ポリエチレングリコール(PEG)4000(メルク社製)を含むRPMI-1640培地1m1を加えて細胞融合させた。

融合細胞は、遠心分離(200×g、5分間)によってPEGを除いた後、96ウエルプレートを用いて、ヒポキサンチン、アミノプテリンおよびチミジン(以下、HATと省略)を含むRPMI-1640培地中で1~2週間培養してハイブリドーマのみを増殖させた。その後、HATを含まない培地で成育させ、約2週間後目的の抗体を産生するクローンをELISA法により検索し、所望の反応特異性を有する本発明のモノクローナル抗体を産生するハイブリドーマを得た。

得られたハイブリドーマについて、常法の限界希釈法に従い、目的とする抗体の産生株の検索および単一クローン化を行ない、得られたハイブリドーマをHC11-14, HC11-10, HC11-3、およびHC11-7と命名した。該4種類のハイブリドーマに関しては、微生物工業技術研究所に平成9年7月4日付でFER

M, BP-6006, FERM BP-6004, FERM BP -6002及びFERM BP-6003として寄託された。

実施例3. モノクローナル抗体の作製法

実施例 2 に記載の方法により得られたハイブリドーマをプリスタン等で処理したマウス腹腔に移植し、腹水中に産生されてくるモノクローナル抗体を取得した。該モノクローナル抗体の精製は、プロテインAを結合させたセファロースカラムにより Ig Gフラクションを分離した。

前記5種類のハイブリドーマから産生されたそれぞれのモノクローナル抗体、C11-14, C11-10, C11-7およびC11-3のアイソタイプは、ウサギ抗マウスIg各アイソタイプ抗体(Zymed 社製)を用いた二重免疫拡散法により、C11-10及びC11-7がIgG2a, C11-14及びC11-3がIgG1であることが明らかとなった。得られた4種類のモノクローナル抗体について、HCV・コア領域由来の配列によって合成した20のペプチドを用いてエピトープ解析を行なった結果、表1に示す如くコア領域の一部を特異的に認識するモノクローナル抗体であることがわかった。

表 1

抗体	認識部位
C11-14	41Gly-50Arg (配列番号 4)
C11-10	²¹ Asp- ⁴⁰ Arg (配列番号 3)
C11-3	100Pro-120Gly (配列番号 5)
C11-7	¹¹¹ Asp- ¹³⁰ Phe(配列番号 6)

実施例 4. 抗原を前処理操作なしで効率的に検出させるための方 法

HCVパーティクルを含む検体を界面活性剤を加えた反応液に希 釈し、HCVコア抗原の検出される効率を検討した。

なおHCVコア抗原の検出は、HCVコア抗原に対するモノクローナル抗体を用いたサンドイッチ酵素免疫アッセイ(EIA)で行った。実施例3で得られたモノクローナル抗体のうち、C11-3とC11-7をコア抗原を補足する抗体として用い、C11-10、C11-14を補足されたコア抗原を検出するための抗体として用いた。

一次反応液中に各種界面活性剤を加えその効果を検討した。HC Vに対する抗体の力価が検出感度以下であり、ほとんどHCVに対 する抗体を含まないと考えられるHCV抗原陽性血清を用いて、発 光量の多寡によってコア抗原の検出感度を調べ健常人血清の発光量 を1.0として、それに対する反応比率で表わした。結果を次の表 2および表3に示す。

表 2

健常人血清に対する各血清の反応比率(S/N ratio)

			No45	No46	No3	No7	No19
	無然加		15.67	1.00	1. 15	1.34	1.19
	効果判定基準		> 30.0	>2.0	>2.0	>2.0	>2.0
	添加剂 HLB値	%					
隆イオン性 界面活性剤	ドデシル硫酸ナトリウム 40.0	0.5 2.0	5, 42 5, 73				
	ドデンル-N- サルコシン酸ナトリウム	0.5 2.0	12. 79 125. 43	2. 70 7. 27	3, 83	3.70	6.71
	パーフルオロアルキルカルボン酸S-113 (ASAHI GLASS製)	0.5 2.0	10. 55 6. 72	1. 27 0. 91			
陽イオン性 界面活性剤	セチルトリメチルアンモニウムブロミド	0.5 2.0	72. 97 44. 55	7. 42 5. 35	3.09	3, 52	5.43
	ドデシルピリジニウムクロライド	0.5 2.0	53. 43 12. 44	4. 70 2. 49	2.05	1. 52	2, 33
	n-ドデシルトリメチルアンモニウム	0.5 2.0	66.84 27.98	4. 43 3. 77	2. 41	1.63	2.67
	テトラデシルアンモニウムブロミド	0.05	14.69				
	n-オクチルトリメチルアンモニウムクロライド	0.5 2.0	12. 57 11. 46		1.00	0. 75	0.99
両イオン性界面活性剤	CHAPS	0.5 2.0	29. 57 25. 32		1.63	1.82	2, 42
	パーフルオロアルキルベタインS-132 (ASAHI GLASS製)	0.5 2.0	11. 07 10. 77	1. 61 1. 49			
	3- (ドデシルジメチルアンモニオ)-1- プロパンスルホン酸	0.5 2.0	57. 69 113. 19		4.57	3, 44	5.26

	表	מים		健常人血	間に対する	健常人血清に対する各血清の反応比率(S/N ratio)	(応比率(S/	N ratio)
				No45	No46	No3	No7	No19
	無然加			15. 67	1.00	1.15	1.34	1.19
	効果判定基準			> 30.0	>2.0	>2.0	>2.0	>2.0
	添 加 剎	HLB値	%					
非イオン性界面活性剤	MEGA-10	· Opposite the second	0.5	32. 11 38. 49	3. 53 5.53	1.97	1.87	2.84
	Tween 20	16.7	0.5 2.0	16.88 12.36				
	Tween 40	15.6	0.5 2.0	14.96 19.10		1. 02 1. 32	0.99 1.25	1. 41 1. 64
	Tween 80	15.0	0.5 2.0	12. 45 17. 47		1.33	1.23	1. 10
	Nonidet P-40	13.1	0.5	43.14		3,09	2.95	4.58
	オクチルグルコシド		0.5 2.0	12. 48 25. 07		0. 90 1. 92	0.60 1.20	0.97 2.63
	Triton N101	13.4	0.5 2.0	26. 50 60. 84		1. 85 2. 23	1. 62 2. 28	2, 70 3, 81
	Triton X100	13.5		27. 72 71. 08		2.90	2.34	3.86
	Triton X114	12.4	0.5 2.0	31. 49 58. 62		2. 04 1. 92	1. 65 2. 11	2.77 2.51
	Triton X305	17.3	0.5 2.0	10. 50 25. 91		0.94 1.30	0.97 1.24	1.08
	Triton X405	17.9	0.5 2.0	12. 54 24. 92		0.86 1.21	0. 78 1. 24	1.04 1.25
その色	ベンジルジメチルフェニルアンモニウム クロライド		0.5	5. 45 7. 01	1. 00 1. 12			
	トリエチルアミン		0.5	3,89	0.97			
界面活性剤	2%ドデシル-N-サルコシン酸ナトリウム +2% Triton X100			244. 13		6.11	5.50	12. 71

この結果から、TritonX100に代表されるように、HLB値が12~14間を示す非イオン性界面活性剤の添加により、HCV抗原陽性血清では、健常人血清と比較して発光量が増大し、検出感度が上昇することが判明した。また、同様にドデシルーN-サルコシン酸ナトリウムやドデシルトリメチルアンモニウムに代表されるように、直鎖アルキル基と第2~第4級アミンを同時にその構造にもつ界面活性剤の添加により、HCV抗原陽性血清における検出感度が上昇することも判明した。炭素数8以下のアルキル基をもつ前記界面活性剤はこのような感度上昇効果は認められなかった。また、これらの2種類の界面活性剤を混合(表2では2%ドデシルーN-サルコシン酸ナトリウムと2%TritonX100を混合)添加することにより、さらにHCV抗原陽性血清における検出感度が上昇することも判明した。

実施例 5. H C V 感染後の H C V 抗体出現前 (ウインドピリオド 期) の検体中のコア抗原検出

市販セロコンヴァージョンパネルPHV905(B. B. I. in c.)を、反応液中に2%のTritonX100及び2%のドデシルーNーサルコシン酸ナトリウム添加し、実施例4に準じて測定した。ここで用いたPHV905パネルは、観察開始後21日目(血清 No. PHV905-7)に抗HCV抗体検査(オルソEIA. 3.0)で陽転化を示したものであり、その抗体価はカットオフインデックス(S/CO)で表されており、1.0以上が陽性と判定される。HCVコア抗原活性(発光量)は、健常人血清の発光量を1.0として、それに対する比率(S/N)で表した。

表4に示したように、まだ抗HCV抗体が陽性となる前にコア抗原活性が認められ、この界面活性剤の添加により、ウイルス粒子からコア抗原性が露呈し、固相化されたモノクローナル抗体と反応し

検出できていることが確認された。

表 4

血清No.	観察開始後 日 数	HCVコア抗原 活性(S/N)	抗HCV抗体価 (S/CO)
PHV 905-1	0	5. 32	0.000
905-2	4	8. 30	0.000
905-3	7	15. 63	0.000
905-4	11	4.37	0.300
905-5	14	14.75	0.700
905-6	18	7. 57	0.700
905-7	21	4.82	2.500
905-8	25	3. 31	5.000
905-9	28	1. 61	5.000

実施例 6. 検体中に含まれる H C V 抗体の検出とコア抗原との同時検出

HCVエピトープに対する抗体が含まれ、かつHCV抗原がほとんど含まれない検体(ヒト血清)を用いて、界面活性剤を含む一次反応液中でHCVエピトープに対する抗体が失活せずHCVポリペプチドに結合し、2次反応液中に抗ヒト抗体を加えることにより検出可能であること、さらにコア抗原が存在する場合にはコア抗原を検出し、HCVエピトープに対する抗体が含まれるときには抗体を、その両者が含まれ時にはその両者を検出可能であることを、以下の方法により確認した。

EIAは基本的には以下の条件で行った。HCVエピトープを含む組換え抗原CEPMを尿素を含む燐酸緩衝液に希釈して、ミクロタイタープレートに添加し、4℃-夜保温する。燐酸緩衝液で洗浄

そこにTritonX100,ドデシル-N-サルコシン酸ナトリウム及び尿素を含む一次反応緩衝液100 μ 1、検体100 μ 1を順次加え、撹拌後、室温で1.5時間反応させた。低濃度の界面活性剤を加えた燐酸緩衝液で洗浄することにより未反応物を除いた後、ホースラディッシュパーオキシダーゼで標識したHCVコア抗原に対するモノクローナル抗体C11-14と、ヒトIgGに対するマウスモノクローナル抗体を含む2次反応緩衝液を加え、室温30分反応させた。

反応終了後、未反応物を低濃度の界面活性剤を加えた燐酸緩衝液で洗浄することにより除き、基質液(オルトフェニレンジアミン)を加え室温 2 0 分反応後、吸光度を測定した。

HCVコア抗原をほとんど含まないことが確認されているHCV 抗体陽性ヒト血清を、ウマ血清により希釈したものを検体として、 HCVエピトープに対する抗体が検出されていることを確認したと ころ、濃度依存的に反応することが確認され、抗体が一次反応液中 で失活することなく検出されていることが確認された。

表5: HCV抗原と HCV抗体の同時測定

(本発明) (比較例) (比較例) POD-標識 POD-標識 POD-標識 標識抗体: c11-14と c11-14 抗ヒトIgG POD-標識 抗ヒトIgG CEPM c11-3 と 相 c11-3 と 固 c11-7 & c11-7CEPM サンプル 陽性血清 組換え コア抗原 希釈倍数 ng/ml 0.000 0.000 0.001 2.834 50 2.784 0.000 0.000 2.758 12.5 2.822 3. 1 $\times 2048$ 1.586 0.210 1.341 0.78 \times 512 0.423 0.539 0.815 0.085 1.139 1.151 0.2 $\times 128$ 0.014 1.746 1.621 0.048 $\times 32$

(値は OD492/OD690)

1.824

2.161

一方組換えコア抗原をウマ血清に加え、ウマ血清により希釈した ものを検体として、測定したところ濃度依存的に組換えコア抗原が 検出できていることが確認された。

0.000

 \times 8

コア抗原とヒト血清を適当量加えたウマ血清を検体として測定したところ、表4に示すごとく、組換えコア抗原のみを含む場合には組換えコア抗原によるシグナルが得られ、ヒトHCV抗体陽性血清のみを含む場合にはHCV抗体のみのシグナルが得られ、両者を含む場合には両者のシグナルが加算されたシグナルが得られた。故に抗原検出系、抗体検出系の両者が互いに他を干渉しあうことなく機能し、HCV抗原とHCVポリペプチドのエピトープに対する抗体が検出できていることが分かった。

実施例 7. ヒト血清中の抗原抗体測定法

健常人検体と患者検体、および血清陽転化パネル検体(BBI inc.)を用いて、実施例 6 に記載した方法に従い抗原と抗体の同時測定を行った。なおパネル血清については、販売元が提供しているHCV抗体検出試薬での判定結果との比較を行った。

健常人検体18例を用いて測定した結果を表6に示すが、健常人には反応しないことが確認された。健常人の分布から、陽性と陰性の判別値を0.1と設定した。

表7に示すごとくHCV陽性検体ではいずれも陽性の値を与えた。

一方表 8 に示すごとく、パネル血清では抗体検査では陽性であることを判別できなかったポイント、1 から 6 の間で陽性判定を与えた。これらのポイントは、Amplicor HCV testの判定結果は陽性判定が与えられており、いわゆるウィンドピリオドに相当するが、ウィンドピリオドの検体でも陽性判定を与えることが確認された。

表 6

検体番号	吸光度
健常人 1	0.063
2	0.057
3	0.066
4	0.025
5	0.045
6	0.063
7	0.047
10	0.033
11	0.036
13	0.037
14	0.030
15	0.028
16	0.031
17	0.040
18	0.051
19	0.052
20	0.031
21	0.053
mean	0.044

表 7

患者検体	吸光度
3	2.892 陽性
16	2.335 陽性
45	0.394 陽性
84	2.769 陽性

表 8

パネル血清	吸光度	判定	抗体アッセイ	Amplicor	HCV test
PHV907-1	0.557	陽性	陰性	陽性	
2	0.397	陽性	陰性	陽性	
3	0.357	陽性	陰性	陽性	
4	0.224	陽性	陰性	陽性	
5	0.192	陽性	陰性	陽性	
6	0.247	陽性	陽性	陽性	
7	2.414	陽性	陽性	陽性	

実施例 8. モノクローナル抗体の作製

実施例 3 に記載の方法により新たなハイブリドーマを作製し、HC11-15と命名した。微生物工業技術研究所に平成11年7月16日付けで、FEAMBP-9782として寄託された。このハイブリドーマから産生されてきたモノクローナル抗体を精製し、アイソタイプを検定したところ、IgG1であることが明らかとなった。このモノクローナル抗体は、コア領域の配列によって合成した20のペプチドを用いたエピトープ解析の結果、「5Thr-30Ile(配列番号9)を特異的に認識するモノクローナル抗体であることがわかった。

実施例9. モノクローナル抗体の抗体価検定

組み換えコア抗原(Trp c 11)を、 6 M尿素を含有する $1 \ 0 \ mM$ リン酸緩衝液(pH 7. 3)に終濃度 $2 \ \mu \ g \ / m1$ となるように希釈し、マイクロプレートの各ウエルに $1 \ 0 \ 0 \ \mu \ 1 \ d$ 可能 の $1 \ d$ で で 晩静置した後、吸引し、 $1 \ d$ の $1 \ d$ の 1

C11-15が最も抗体価が高く、2次抗体として使用した場合感度高く検出できることが示された。

実施例10. <u>固相化モノクローナル抗体の違いによるサンドイッチ</u> ELISA検定

で抗HCV抗体陰性検体100μ1と反応液100μ1を各ウエルに添加し、室温で1時間反応させた。洗浄後、ペルオキシダーゼ標識抗コア抗原モノクローナル抗体(C11-14&c11-10の混合物)を添加し、30分間反応させ、洗浄後、オルトフェニレンジアミンと過酸化水素の入った基質液を添加し酵素反応させる。室温で30分間反応させた後、2N硫酸を添加して酵素反応を停止させ、マイクロプレートリーダーで492nmの吸光度を測定した。図2にその結果を示した。

C11-15のみの固相化ではあまり検出感度が低いが、c11-15にc11-3やc11-7を混合して固相化することにより、検出感度が上昇することが示された。

実施例11. エピトープキメラ抗原の発現と精製

6 M尿素を含む溶液で可溶化した抗原溶液から、SセファーロースHPカラム(ファルマシア社)を用いたイオン交換法とSuperdex75pg(ファルマシア社)を用いたゲル濾過法によりエピトープキメラ抗原を精製した。

なお、上記キメラ抗原をコードするDNAの塩基配列を配列番号: 10に示し、キメラ抗原のアミノ酸配列を配列番号: 11に示す。

特許協力条約第13規則の2の寄託された微生物への言及及び寄託機関

寄託機関 名 称:工業技術院生命工学工業技術研究所

あて名:日本国茨城県つくば市東1丁目1-3

微生物(1) 表 示: HC11-3

寄託番号: FERM BP-6002

寄託日:1997年7月4日

(2) 表 示: HC11-7

寄託番号: FERM BP-6003

寄託日:1997年7月4日

(3) 表 示: HC11-10

寄託番号: FERM BP-6004

寄託日:1997年7月4日

(4) 表 示: HC11-11

寄託番号: FERM BP-6005

寄託日:1997年7月4日

(5) 表 示: HC11-4

寄託番号: FERM BP-6006

寄託日:1997年7月4日

(6) 表 示: HC11-15

寄託番号: FERM BP-6782

寄託日:1999年7月16日

請 求 の 範 囲

- 1. C型肝炎ウイルス(H C V)の測定方法において、炭素原子数10個以上のアルキル基と第2~第4級アミンとを有する界面活性剤もしくは非イオン界面活性剤、又はこの両者の存在下で、H C V コア抗原をそのプローブとの結合により測定することを特徴とする方法。
- 2. 前記アルキル基と第2~第4級アミンとを有する界面活性剤が、炭素原子数12~16個のアルキル基と第3級又は第4級アミンとを有する界面活性剤である、請求項1に記載の方法。
- 3. 前記第 3 級又は第 4 級アミン界面活性剤が、ドデシルーN-1 サルコシン酸、セチルもしくはドデシルトリメチルアンモニウム塩、3-(ドデシルジメチルアンモニオ)-1-プロパンスルホン酸、ドデシルピリミジウム塩、又はデカノイルーN-メチルグルカミド(MEGA-10)である、請求項1又は2に記載の方法。
- 4. 前記非イオン性界面活性剤が、12~14の親水疎水比(H LB)を有する界面活性剤である、請求項1~3のいずれか1項に 記載の方法。
- 5. 前記非イオン性界面活性剤が、ポリオキシエチレンイソオク チルフェニルテーテル、又はポリオキシエチレンノニルフェニルエ ーテルである請求項1~4のいずれか1項に記載の方法。
- 6. C型肝炎ウイルス(HCV)の測定方法において、請求項1 ~5に記載の方法によるHCVコア抗原の測定と共に、抗HCV抗体を、そのプローブとの結合により測定することを特徴とする方法
- 7. 前記抗HCV抗体のためのプローブが、HCV関連ポリペプチドである、請求項6に記載の方法。

Fig.1

Fig. 2

Sandwich ELISA

配列表

SEQUENCE LISTING

< 110 > Tonen Corporation

< 120> Method for Measurment of

hepatitis C virus

< 1 3 0 > G 9 0 2

< 1 5 0 > J P - 1 0 - 2 1 6 0 9 4

< 1 5 1 > 1 9 9 8 - 0 7 - 3 0

< 1 6 0 > 9

< 2 1 0 > 1

< 2 1 1 > 1 7 7

< 2 1 2 > PRT

< 2 1 3 > Hepatitiv virus

< 4 0 0 > 1

Met Lys Ala Ile Phe Val Leu Lys Gly Ser Leu Asp Arg Asp Pro Glu

1 5 10 15

Phe Met Gly Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr

20 25 30

Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val

35 40 45

Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg

50 55 60

Ala Thr Arg Lys Thr Ser Lys Arg Ser Gln Pro Arg Gly Gly Arg Arg

65 70 75 80

Pro Île Pro Lys Asp Arg Ser Thr Gly Lys Ser Trp Gly Lys Pro

85 90 95

Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro Arg His Arg Ser Arg Asn Val Gly Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Phe Arg Val Gly Ala Phe Leu Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp < 2 1 0 >< 2 1 1 >1 6 0 PRT < 2 1 2 >Hepatitiv virus < 2 1 3 >< 4 0 0 >Met Gly Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Lys Arg Ser Gln Pro Arg Gly Gly Arg Arg Pro lle Pro Lys Asp Arg Arg Ser Thr Gly Lys Ser Trp Gly Lys Pro Gly

Tyr: Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp 95 90 85 Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro 110 100 105 Arg His Arg Ser Arg Asn Val Gly Lys Val Ile Asp Thr Leu Thr Cys 125 120 115 Gly Phe Ala Asp Leu Met Gly Tyr Ile Phe Arg Val Gly Ala Phe Leu 135 140 130 Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 160 155 150 145 < 2 1 0 >3 2 0 < 2 1 1 >PRT < 2 1 2 >< 2 1 3 >Artificial Sequence < 2 2 0 >< 2 2 3 >< 4 0 0 >3 Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly Gly Val Tyr Leu 15 10 5 1 Leu Pro Arg Arg 20 < 2 1 0 >< 2 1 1 >1 0 < 2 1 2 >PRT < 2 1 3 >Artificial Sequence < 2 2 0 >

< 2 2 3 >

<4:0 0>4

Gly Pro Arg Leu Gly Val Arg Ala Thr Arg

1 5 10

< 2 1 0 > 5

< 2 1 1 > 2 1

< 2 1 2 > PRT

< 2 1 3 > Artificial Sequence

< 2 2 0 >

< 2 2 3 >

< 4 0 0 > 5

Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro Arg His Arg

1 5 10 15

Ser Arg Asn Val Gly

20

< 2 1 0 > 6

< 2 1 1 > 2 0

< 2 1 2 > PRT

< 2 1 3 > Artificial Sequence

< 2 2 0 >

< 2 3 0 >

< 4 0 0 > 6

Asp Pro Arg His Arg Ser Arg Asn Val Gly Lys Val Lle Asp Thr Leu

1 5 10 15

Thr Cys Gly Phe

20

< 2 1 0 > 7

< 2 1 1 > 2 4

 $< 2 \cdot 1 2 > D N A$

< 213 > Artificial Sequence

< 2 2 0 > Probe

< 2 3 0 > Synthetic DNA

< 4 0 0 > 7

gaattcatgg gcacgaatcc taaa

24

< 2 1 0 > 8

< 2 1 1 > 2 1

< 2 1 2 > DNA

< 2 1 3 > Artificial Sequence

< 2 2 0 > Probe

< 2 3 0 > Synthetic DNA

< 4 0 0 > 8

ttagtcctcc agaacccgga c

21

15

< 2 1 0 > 9

< 2 1 1 > 1 6

< 2 1 2 > PRT

< 2 1 3 > Artificial Sequence

< 2 2 0 >

< 2 3 0 >

< 2 1 0 >

< 4 0 0 > 9

Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile

1 5 10

1 0

< 2 1 1 > 1 1 9 7

< 2 1 2 > DNA

< 2 1 3 > Artificial Sequence

5 / 1 1

```
< 2 ? 2 0 >
                                                           codi
             Nucleotide sequence
< 2 3 0 >
       for chimeric antigen
< 4 0 0 >
              1 0
gaa ttc acc aaa gtg ccg gtt gct tat gcg gcc aaa ggt tat aag gtc
                                                                  48
Glu Phe Thr Lys Val Pro Val Ala Tyr Ala Ala Lys Gly Tyr Lys Val
                                                       15
                                    10
                  5
ctg gtt ctg gac ccg agc gtt gcc agc acc ctg ggt ttc ggc gcg tat
                                                                  96
Leu Val Leu Asp Pro Ser Val Ala Ser Thr Leu Gly Phe Gly Ala Tyr
                                                    30
                                25
             20
ctg agc aag gcc cat ggt gtg aac ccg aac atc cgc acg ggc atc cgt
                                                                 144
Leu Ser Lys Ala His Gly Val Asn Pro Asn Ile Arg Thr Gly Ile Arg
                                                45
                             40
         35
acc gtt acc acc ggt gct ccg gtg acc tat tcc acc tac ggt aaa tac
                                                                 192
Thr Val Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Tyr
                                            60
                         55
     50
                                                                 240
 ctg gcg gac ggc ggt tgc gcc ggc ggt gcg tac gat gtg atc gga tct
 Leu Ala Asp Gly Gly Cys Ala Gly Gly Ala Tyr Asp Val Ile Gly Ser
                                                            80
                                        75
                     70
  65
                                                                  288
 gga gag gag gtg gcc ctg tct aac act gga gag gtc ccc ttc tat ggc
 Gly Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Val Pro Phe Tyr Gly
                                                        95
                                     90
                 85
 cgc gcg atc ccg atc gaa gcg atc aaa ggc ggt cgc cat ctg gtt ttc
                                                                  336
 Arg Ala Ile Pro Ile Glu Ala Ile Lys Gly Gly Arg His Leu Val Phe
                                                   110
             100
                                105
```

tgc	cat	agc	aag	gag	aaa	tgc	gat	gaa	ctg	gcg	agc	gcg	ctg	tcc	gga	384
Cys	His	Ser	Lys	Glu	Lys	Cys	Asp	Glu	Leu	Ala	Ser	Ala	Leu	Ser	Gly	
		115					120					125				
ttg	ggt	ctg	aac	gct	gtg	gca	ttc	tat	cgc	ggt	ctg	gac	gtg	agc	att	432
Leu	Gly	Leu	Asn	Ala	Val	Ala	Phe	Tyr	Arg	Gly	Leu	Asp	Val	Ser	lle	
	130					135					140					
atc	ccg	acc	cag	ggc	gat	gtg	gtt	atc	gtt	agc	acc	gat	gcg	ctg	atg	480
He	Pro	Thr	Gln	Gly	Asp	Val	Val	He	Val	Ser	Thr	Asp	Ala	Leu	Met	
145					150					155					160	
acc	ggt	ttt	acc	ggc	gat	ttt	gac	tca	gtg	gtc	gac	tgt	aac	aca	tgc	528
Thr	Gly	Phe	Thr	Gly	Asp	Phe	Asp	Ser	Val	Val	Asp	Cys	Asn	Thr	Cys	
				165					170					175		
atc	acc	cag	gga	tct	gga	ctg	gta	agc	ttc	gcg	agc	cat	gtg	ccg	tac	576
He	Thr	Gln	Gly	Ser	Gly	Leu	Val	Ser	Phe	Ala	Ser	His	Val	Pro	Tyr	
			180					185					190			
atc	gag	cag	ggt	atg	caa	ctg	agc	gaa	caa	ttt	aag	cag	aag	agc	ctg	624
Ile	Glu	Gln	Gly	Met	Gln	Leu	Ser	Glu	Gln	Phe	Lys	Gln	Lys	Ser	Leu	
		195					200					205				
ggt	ctg	ctg	cag	acc	gcg	acc	aaa	cag	gcg	gag	gcg	gcc	gcc	ccg	gtg	672
Gly	Leu	Leu	Gln	Thr	Ala	Thr	Lys	Gln	Ala	Glu	Ala	Ala	Ala	Pro	Val	
	210					215					220					
gtt	ggc	acc	ccg	aaa	agc	cgc	cgt	ccg	gaa	ggt	cgt	gcc	tgg	gcg	caa	720
Val	Gly	Thr	Pro	Lys	Ser	Arg	Arg	, Pro	Glu	Gly	Arg	Ala	Trp	Ala	G1n	
225					230					235					240	
ccg	ggt	acc	ato	ato	ctg	ago	ggt	cgt	CCg	gcg	gtt	gta	ccg	gat	cgt	768
Pro	Gly	Thr	· Ile	: Ile	Leu	Ser	Gly	/ Arg	Pro	Ala	. Val	Val	Pro	Asp	Arg	
				245	i				250)				255	j	

gaa	gtg	ctg	tat	caa	gaa	ttt	ctc	gag	gcc	tct	aga	gcg	gct	ctc	att	816
Glu	Val	Leu	Tyr	Gln	Glu	Phe	Leu	Glu	Ala	Ser	Arg	Ala	Ala	Leu	He	
			260					265					270			
gaa	gag	ggg	caa	cgg	ata	gcc	gag	atg	ctg	aag	tcc	aag	atc	cag	ggc	864
Glu	Glu	Gly	Gln	Arg	lle	Ala	Glu	Met	Leu	Lys	Ser	Lys	He	Gln	Gly	
		275					280					285				
tta	ctg	cag	caa	gcc	tcc	aag	cag	gcc	caa	gac	ata	aaa	atc	gac	ggt	912
Leu	Leu	Gln	Gln	Ala	Ser	Lys	Gln	Ala	Gln	Asp	Ile	Lys	lle	Asp	Gly	
	290					295					300					
acc	ctg	att	att	ccg	aaa	gat	cgt	cgc	agc	acc	ggt	aaa	agc	tgg	ggt	960
Thr	Leu	He	lle	Pro	Lys	Asp	Arg	Arg	Ser	Thr	Gly	Lys	Ser	Trp	Gly	
305					310					315					320	
aaa	ccg	ggc	ttc	ctc	atc	gat	agc	ttg	cat	atc	aac	cag	cga	gcc	gtc	1008
Lys	Pro	Gly	Phe	Leu	lle	Asp	Ser	Leu	His	He	Asn	Gln	Arg	Ala	Val	
				325					330					335		
gtt	gca	ccg	gac	aag	gag	gtc	ctt	tat	gag	gct	ttt	gat	gag	atg	gag	1056
Val	Ala	Pro	Asp	Lys	Glu	Val	Leu	Tyr	G1 u	Ala	Phe	Asp	Glu	Met	Glu	
			340					345					350			
ctc	gcc	atg	ggc	acc	aac	ccg	aaa	ccg	gag	cgt	aaa	agc	aag	cgt	aac	1104
Leu	Ala	Met	Gly	Thr	Asn	Pro	Lys	Pro	Glu	Arg	Lys	Ser	Lys	Arg	Asn	
		355					360					365				
acc	aac	cgt	aaa	ccg	cag	gat	att	aaa	ttc	ccg	ggt	agt	ggt	cag	gtg	1152
Thr	Asn	Arg	Lys	Pro	Gln	Asp	Ile	Lys	Phe	Pro	Gly	Ser	Gly	Gln	Val	
	370					375					380					
gtg	ġgt	ggt	gtg	tac	ctg	gtg	ccg	cgt	cgt	ggt	ccg	taa	ggat	СС		1197
Val	Gly	Gly	Val	Tyr	Leu	Val	Pro	Arg	Arg	Gly	Pro					
385					390					395						

 $< 2 \cdot 1 \quad 0 > 1 \quad 1$

< 2 1 1 > 3 9 6

< 2 1 2 > PRT

< 2 1 3 > Artificial Sequence

< 2 2 0 >

< 2 3 0 > Amino acid sequence of c

himeric antigen

< 4 0 0 > 1 1

Glu Phe Thr Lys Val Pro Val Ala Tyr Ala Ala Lys Gly Tyr Lys Val

5 10 15

Leu Val Leu Asp Pro Ser Val Ala Ser Thr Leu Gly Phe Gly Ala Tyr

20 25 30

Leu Ser Lys Ala His Gly Val Asn Pro Asn Ile Arg Thr Gly Ile Arg

35 40 45

Thr Val Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Tyr

50 55 60

Leu Ala Asp Gly Gly Cys Ala Gly Gly Ala Tyr Asp Val Ile Gly Ser

65 70 75 80

Gly Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Val Pro Phe Tyr Gly

. 85 90 95

Arg Ala Ile Pro Ile Glu Ala Ile Lys Gly Gly Arg His Leu Val Phe

100 105 110

Cys His Ser Lys Glu Lys Cys Asp Glu Leu Ala Ser Ala Leu Ser Gly

115 120 125

Leu Gly Leu Asn Ala Val Ala Phe Tyr Arg Gly Leu Asp Val Ser Ile

130 135 140

Ιle	Pro	Thr	Gln	Gly	Asp	Val	Val	He	Val	Ser	Thr	Asp	Ala	Leu	Met
145					150					155					160
Thr	Gly	Phe	Thr	Gly	Asp	Phe	Asp	Ser	Val	Val	Asp	Cys	Asn	Thr	Cys
				165					170					175	
He	Thr	Gln	Gly	Ser	Gly	Leu	Val	Ser	Phe	Ala	Ser	His	Val	Pro	Tyr
			180					185					190		
He	Glu	Gln	Gly	Met	Gln	Leu	Ser	Glu	Gln	Phe	Lys	Gln	Lys	Ser	Leu
		195					200					205			
Gly	Leu	Leu	Gln	Thr	Ala	Thr	Lys	Gln	Ala	Glu	Ala	Ala	Ala	Pro	Val
	210					215					220				
Val	Gly	Thr	Pro	Lys	Ser	Arg	Arg	Pro	Glu	Gly	Arg	Ala	Trp	Ala	Gln
225					230					235					240
Pro	Gly	Thr	Ile	Ile	Leu	Ser	Gly	Arg	Pro	Ala	Val	Val	Pro	Asp	Arg
				245					250					255	
Glu	Val	Leu	Tyr	Gln	Glu	Phe	Leu	Glu	Ala	Ser	Arg	Ala	Ala	Leu	He
			260					265					270		
Glu	Glu	Gly	Gln	Arg	Ile	Ala	Glu	Met	Leu	Lys	Ser	Lys	lle	Gln	Gly
		275					280					285			
Leu	Leu	Gln	Gln	Ala	Ser	Lys	Gln	Ala	Gln	Asp	He	Lys	He	Asp	Gly
	290					295					300				
Thr	Leu	He	lle	Pro	Lys	Asp	Arg	Arg	Ser	Thr	Gly	Lys	Ser	Trp	Gly
305					310	ı				315					320
Lys	Pro	Gly	Phe	Leu	He	Asp	Ser	Leu	His	Ile	Asn	Gln	Arg		ı Val
				325					330					335	
Val	Ala	Pro	Asp	Lys	Glu	Val	Leu	Tyr	Glu	ı Ala	Phe	Asp	Glu	ı Met	Glu
			340)				345	i				350)	

Leu Ala Met Gly Thr Asn Pro Lys Pro Glu Arg Lys Ser Lys Arg Asn

355 360 365

Thr Asn Arg Lys Pro Gln Asp Ile Lys Phe Pro Gly Ser Gly Gln Val

370 375 380

Val Gly Gly Val Tyr Leu Val Pro Arg Arg Gly Pro

385 390 395

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/04129 ·

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ G01N33/576							
According to International Patent Classification (IPC) or to both national classification and	IPC						
B. FIELDS SEARCHED							
Minimum documentation searched (classification system followed by classification symbols) Int.C1 ⁶ G01N33/576							
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-1999 Kokai Jitsuyo Shinan Koho 1971-1999 Jitsuyo Shinan Toroku Koho 1996-1999							
Electronic data base consulted during the international search (name of data base and, whe BIOSIS (DIALOG)	re practicable, search terms used)						
C. DOCUMENTS CONSIDERED TO BE RELEVANT							
Category* Citation of document, with indication, where appropriate, of the relevant	passages Relevant to claim No.						
A US, 5616460, A (Abbott Laboratories), 1 April, 1997 (01. 04. 97), Abstract, column 5, lines 1 to 35; column lines 40 to 56; Claims & WO, 96/41164, A & EP, 852009, A	1-7						
A JP, 8-5633, A (Dainabot Co., Ltd.), 12 January, 1996 (12. 01. 96), Par. No. [0034] & WO, 95/34812, A	1-7						
A JP, 60-24451, A (Akzo N.V.), 7 February, 1985 (07. 02. 85) & EP, 131974, A	1-7						
Further documents are listed in the continuation of Box C. See patent family	y annex.						
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "A" date and not in confit the principle or theo document of particular considered novel or when the document of particular considered to involve combined with one of the priority date claimed "A" document of particular considered to involve combined with one of the priority date claimed "A" document of particular considered to involve combined with one of the priority date claimed "A" date and not in confit the principle or theo document of particular considered novel or when the document of particular considered to involve combined with one of the priority date claimed Date of the actual completion of the international search Date of mailing of the	date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report						
	r, 1999 (26. 10. 99)						
Name and mailing address of the ISA/ Japanese Patent Office Telephone No.							

	属する分野の分類(国際特許分類(IPC)) 『G01N33/576					
調査を行った最	fった分野 g小限資料(国際特許分類(IPC)) °G01N33∕576					
日本国実用新 日本国公開実 日本国登録実	トの資料で調査を行った分野に含まれるもの 案公報 1922-1996年 用新案公報 1971-1999年 用新案公報 1994-1999年 案登録公報 1996-1999年					
国際調査で使用BIOSIS	用した電子データベース(データベースの名称、 S (DIALOG)	調査に使用した用語)				
C. 関連する	ると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	: きは、その関連する箇所の表示	関連する 請求の範囲の番号			
A US, 5616460, A (Abbott.Laboratorie 1-7s) 1. 4月. 1997 (01. 04. 97) アブストラクト, 第5欄第1-35行,第6欄第40-56行,特許請求の範囲 &WO,96/41164, A&EP, 852009, A						
A	JP, 8-5633, A (ダイナボッ 996 (12.01.96) 【003 &WO, 95/34812, A	ット株式会社)12.1月.1 34】	1 - 7			
区欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	川紙を参照。			
もの 「E」国際出版 以後にな 「L」優先権 日若し、 文献(F 「O」口頭に。	のカテゴリー 車のある文献ではなく、一般的技術水準を示す 質日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 質日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表 て出願と矛盾するものではなく 論の理解のために引用するもの 「X」特に関連のある文献であって、 の新規性又は進歩性がないと考 「Y」特に関連のある文献であって、 上の文献との、当業者にとって よって進歩性がないと考えられ 「&」同一パテントファミリー文献	、発明の原理又は理 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに			
国際調査を完	了した日 14.10.99	国際調査報告の発送日 26.1	0.99			
日本国	D名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 山村 祥子 電話番号 03-3581-1101	内線 3252			

C(続き).	関連すると認められる文献	
引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
カテゴリー* A	JP,60-24451, A (アクゾ・エヌ・ヴェー) 7. 2月. 1985 (07. 02. 85) & EP, 131974, A	1-7
a control of the cont		1
	· ·	