VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE::VIJAYAWADA

(AUTONOMOUS)

DEPARTMENT OF IT MICRO LEVEL SYLLABUS

Class	B Tech	Regulation	VR20
Subject Code	20IT6302	Year & Semester	III Year , II Semester
Title of the Subject	Machine Learning		

Unit	Content/Topics Covered	Text	Chapter/ Section	Page
No	(mention Sub Topics as found in books)	Book	No.	Number
Unit I	The ingredients of machine learning	[T1]	1	13
	Tasks: The problems that can be solved with		1.1	14-16
	machine learning			
	Evaluating performance of a task		1.1	18-20
	Models: The output of machine learning		1.2	20-21
	Geometric models		1.2	21-25
	Probabilistic models		1.2	25-32
	Logical models		1.2	32-36
	Features: the workhorses of machine learning		1.3	38-40
	Two uses of features		1.3	40-41
	Binary classification and Related tasks		2	49-52
	Classification		2.1	52-53
	Assessing classification performance		2.1	53-57
	Visualising classification performance		2.1	58-60
	Beyond binary Classification		3	81
	Handling more than two classes		3.1	81-82
	Multi class classification		3.1	82-86
	Regression		3.2	91-94
Unit II	Decision Tree Learning	[T2]	3	52
	Introduction	1	3.1	52
	Decision tree representation		3.2	52-53
	Appropriate problems for decision tree learning		3.3	54-55
	The basic decision tree learning algorithm	1	3.4	55-59
_	Inductive bias in decision tree		3.6	60-63
	Issues in decision tree learning		3.7	66-76
	Linear Models	[T1]	7	196
	The least –squares method		7.1	196-200
	Multivariate linear regression		7.1	201-204
	Regularised regression]	7.1	204-205
	Using least-squares regression for classification		7.1	205-207
	Support vector machines		7.3	211-216
	Soft margin SVM]	7.3	216-219
	Going beyond linearity with kernel methods.	<u> </u>	7.5	224-226
Unit III	Distance-based Models	EMD43	8	231
	Ways of Measuring Distance	[T1]	8.1	231-237
	Nearest-neighbour classification]	8.3	242-245
	Distance Based Clustering]	8.4	245-247
	K-means algorithm]	8.4	247-250
	Clustering around medoids]	8.4	250-252
_	-Hierarchical Clustering]	8.5	253-258
	Bayesian Learning	[T2]	6	154
	Introduction	<u> </u>	6.1	154-156

	Bayes Theorem		6.2	156-158
	Bayes Optimal Classifier	1	6.7	174-176
	Naïve Bayes Classifier		6.9	177-179
	Baysian Belief Networks		6.11	184-187
Unit IV	Artificial Neural Networks	[T2]	4	81
	Introduction	1	4.1	81-82
	Neural network representation	1	4.2	82-83
	Appropriate problems for neural network	1	4.3	83-86
	learning			
	perceptron		4.4	86-87
	Multilayer networks and the back propagation	1	4.5	95
	algorithm			
	Differentiable threshold unit		4.5.1	95-97
	The back propagation Algorithm		4.5.2	97-103
	Reinforcement Learning	1	13	367
	Introduction,	1	13.1	367
	The Learning task]	13.2	367-373
	Q-learning(The Q function, An Algorithm for		13.3	373-375
	learning Q)			

Text Book(s):

- [T1] Machine Learning: The art and Science of algorithms that make sense of data, Peter Flach, Cambridge University Press, 2012
- [T2] Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education

Reference Books:

- 1. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition
- 2. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014
- 3. Ethem Alpaydin, Introduction to machine learning, second edition, MIT press.

E-resources and other digital material

- [1]. Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012, https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-5nov11.pdf
- [2] Machine Learning by Andrew Ng, Stanford University https://www.coursera.org/learn/machine-learning
- [3] Professor S. Sarkar IIT Kharagpur "Introduction to machine learning", https://www.youtube.com/playlist?list=PLYihddLF-CgYuWNL55Wg8ALkm6u8U7gps
- [4] Professor Carl Gustaf Jansson, KTH, Video Course on Machine Learning https://nptel.ac.in/noc/individual_course.php?id=noc19-cs35

Designation	Name in Capitals	Signature with Date
Course Coordinators	Dr. T ANURADHA	
	Dr G KALYANI	
Module Coordinator	Mr Y SANDEEP	
Program Coordinator	Dr.G.KALYANI	
Head of the Department	Dr.M.SUNEETHA	