Pixelated Butterfly

Бобков Денис 192

Чем вообще занимаемся?

- Работаем с GEMM нейросетями
- Хотим ускорить умножение матриц за счёт sparse структуры
- В начале работы для каждой матрицы весов находим свой паттерн и обучаем только ненулевые веса

Паттерн - правило, по которому выбираем позиции для ненулевых элементов

Другие методы

Есть проблемы:

- 1) Статические методы плохое качество, динамические долго
- 2) Найденная маска не всегда параллелится
- 3) Хотим чтобы метод работал с разными типами операций (attention, MLP)

Предлагается метод, решающий всё это

Общая схема

- 1) Распределяем бюджет по слоям модели
- 2) Для каждой матрицы весов предсказываем sparse маску (паттерн)
- 3) Инициализируем также обучаемую малоранговую добавку в виде U и V

Получаем представление матрицы весов вида $W = \gamma B + (1 - \gamma)UV^{\top}$

В - sparse матрица

 UV^T - малоранговая добавка

 γ - обучаемый параметр

Распределение бюджета

- Считаем, что доступ к блоку размера b равносилен доступу 1 элемента
- Будем распределять бюджет прямо пропорционально стоимости слоёв

Как вычислить стоимость?

Распределение бюджета

- Считаем, что доступ к блоку размера b равносилен доступу 1 элемента
- Будем распределять бюджет прямо пропорционально стоимости слоёв

Модель бюджета для 1 слоя: $Totalcost = Cost_{mem} \cdot N_{blockmem} + Cost_{flop} \cdot N_{flop}$.

Cost - стоимость операции

N - количество операций

Замечание

Важно использовать (b, b) block-aligned патерны в масках

Пример (b_1, b_2) - aligned маски:

- 1) Разбиваем матрицу на блоки размера (b_1, b_2)
- 2) Каждый блок должен состоять только из 1, либо только из 0

Выбор паттерна: теория

Ранее был изучен класс butterfly матриц, но они:

- 1) He block-align -> неэффективные
- 2) Сложно параллелятся, т.к. состоят из произведения нескольких матриц
- 3) Имеют большой ранг -> плохо работаю с матрицами низкого ранга

Выбор паттерна: определения

Block butterfly factor $B_{k,b}$ размера kb с размером блока b это матрица вида

$$\mathbf{B}_{k,b}=egin{bmatrix} \mathbf{D}_1 & \mathbf{D}_2 \ \mathbf{D}_3 & \mathbf{D}_4 \end{bmatrix}$$
 , где \mathbf{D}_i это блочно-диагональная матрица размера $rac{k}{2} imesrac{k}{2}$

Пример:

$$b = 2$$

$$k = 8$$

Выбор паттерна: определения

Block butterfly factor matrix $\mathbf{B}_k^{(n,b)}$ размера nb с размером блока b и страйдом k это блочно-диагональная матрица вида $\mathbf{B}_k^{(n,b)} = \mathrm{diag}\left(\left[\mathbf{B}_{k,b}\right]_1, \left[\mathbf{B}_{k,b}\right]_2, \dots, \left[\mathbf{B}_{k,b}\right]_{\frac{n}{k}}\right)$ с n/k блоками.

Выбор паттерна: определения

Block butterfly matrix \mathbf{B}^{(n,b)} размера nb с размером блока b это матрица представленная в виде произведения b.b. factor matrix: $\mathbf{B}^{(n,b)} = \mathbf{B}_n^{(n,b)} \mathbf{B}_{\frac{n}{2}}^{(n,b)} \dots \mathbf{B}_2^{(n,b)}$

Block Butterfly

Выбор паттерна: Flat

Хотим избавиться от произведения

Показали, что если M - b.b. matrix, то для некоторого $\lambda \in \mathbb{R}$:

$$M = (I + \lambda \mathbf{B}_n^{(n)})(I + \lambda \mathbf{B}_{n/2}^{(n)}) \dots (I + \lambda \mathbf{B}_2^{(n)})$$

Т.е. если λ маленькая, то можем представить:

$$M = I + \lambda (\mathbf{B}_2^{(n)} + \mathbf{B}_4^{(n)} + \dots + \mathbf{B}_n^{(n)}) + \widetilde{O}(\lambda^2).$$

На практике просто берётся сумма из k b.b. matrix, где k зависит от бюджета

Общая схема (опять)

- 1) Распределяем бюджет по слоям модели
- 2) Для каждой матрицы весов инициализируем k flat b.b. matrices, будем брать B как их сумма.

Проблема:

В будет большого ранга, поэтому сделаем малоранговую добавку

Получаем представление матрицы весов вида $W = \gamma B + (1-\gamma)UV^{\top}$

Полная схема

- 1) Распределяем бюджет по слоям модели прямо пропорционально стоимости слоёв
- 2) От ⅓ до ¼ бюджета отводится для малорангового разложения, на основании этого вычисляется ранг
- 3) Для каждой матрицы весов инициализируем k flat b.b. matrices, будем брать В как их сумма, k высчитывается из оставшегося бюджета

Получаем представление матрицы весов вида $W = \gamma B + (1-\gamma)UV^{\mathsf{T}}$

4) Обучаем

Model	CIFAR10	CIFAR100	${\bf ImageNet}$	et Speedup	
Mixer-S/16	86.4	58.7	72.4	-	
Pixelfly-Mixer-S/16	89.8	62.9	72.6	$1.7 \times$	
Mixer-B/16	87.6	59.5	75.6	-	
Pixelfly-Mixer- $B/16$	90.6	65.4	76.3	$2.3 \times$	
ViT-S/16	89.5	65.1	77.7	-	
Pixelfly-ViT-S/16	91.3	66.8	77.5	$1.9 \times$	
ViT-B/16	89.9	61.9	78.5	-	
Pixelfly-ViT-B/ 16	92.2	65.1	78.6	$2.0 \times$	

Измеряют: accuracy

Speedup считают на ImageNet

Model	${\bf ImageNet\ top-1\ acc.}$	Speedup	Params	FLOPs
Mixer-B/16	75.6	-	59.9M	12.6G
Butterfly-Mixer-B/16	76.1	$0.8 \times$	17.4M	4.3G
Pixelfly-Mixer- $B/16$	76.3	$2.3 \times$	17.4M	4.3G

Model	${\bf ImageNet\ top-1\ acc.}$	${\bf Speedup}$	Params	FLOPs
Mixer-B/16	75.6	-	59.9M	12.6G
Butterfly-Mixer-B/16	76.1	$0.8 \times$	17.4M	4.3G
Pixelfly-Mixer-B/16	76.3	$2.3 \times$	17.4M	4.3G

- Измеряют NTK
- Кривая обучения Pixelfly сильно ближе к Dense
- Обучают VIT на CIFAR 100

Model	${\bf ImageNet\ top-1\ acc.}$	Speedup	Params	FLOPs
Mixer-B/16	75.6	-	59.9M	12.6G
Butterfly-Mixer-B/16	76.1	$0.8 \times$	17.4M	4.3G
Pixelfly-Mixer-B/16	76.3	$2.3 \times$	17.4M	4.3G

Model	ImageNet (Acc)	Speedup
T2T-ViT	81.7	-
BigBird	81.5	0.9×
Sparse Transformer	81.4	1.3×
Pixelfly	81.7	1.4×

Результаты NLP

Model	WikiText-103 (ppl)	Speedup	Params	FLOPS
GPT-2-Small	22.2	-	117M	48.4G
BigBird	23.3	0.96×	117M	40.2G
Pixelfly	22.5	$2.1 \times$	68M	18.5G
GPT-2-Medium	20.9	-	345 M	168G
BigBird	21.5	1.1×	345 M	134G
Pixelfly	21.0	$2.5 \times$	203M	27G

Задача: Language modeling

Метрика: perplexity (меньше-лучше)

Результаты NLP

Model	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup
Transformer	36.54	63.12	80.33	41.56	73.49	59.01	-
Reformer	36.85	58.12	78.36	28.30	67.95	53.90	0.8×
Pixelfly	37.65	66.78	80.55	42.35	72.01	59.86	5.2×

Использовали LRA - набор бенчмарков для трансформеров

Метрика: accuracy

Спасибо за внимание

Статья: https://arxiv.org/pdf/2112.00029.pdf