P1 Brainstorming Presentation

Green Team

Anvitha Paruchuri, Michael Dobrowolski, Paul Reggentin, Shariq Lalani

Overview

- Task
- Resources and Background Material
- Designs
 - o Design #1
 - Design #2
 - Design #3
- Risks and Mitigation
- Team Member and Skills
- Workplan

Task

- Build a robot that can reach a sequence of waypoints in 2m x 2m arena that is covered by 8 2D bar-codes(tags)
- While the robot moves the laser pointer should be oriented along the positive Y axis and projecting a dot on the wall
- The task should be completed in 15 minutes

Pass/Fail Requirement

- Robot should stay in the arena
- The final waypoint should be reached in 15 min
- Laser always stays in the positive Y direction

Caveats

- After the first waypoint, the robot should be completely autonomous
- The non active waypoints can be moved
- Robot location is defined by only one tag
- Noisy sensing data
- Robot tag cannot leave the arena

Resources and Background Materials

• 2014 Blue Team

• 2014 Maize Team

Video of Holonomic Robot using Omni Wheels

Design #1: Concept

- Main body is box shaped with 2 rack and pinion gear mechanisms
- 4 motor design
 - One for each wheel on main body
 - One for rack and pinion which moves tag along y axis
 - One for rack and pinion which moves along x axis
- Based on 2016 Green Team Design

Design #1: Pros and Cons

Pros:

- No need to orient laser
- Simple coding
- Only requires motion in one direction for main body
- No need to determine position of waypoints

Cons:

Most difficult mechanical design

Design #2: Concept

- Uses slider crank mechanism
- Laser attached on main body
- 4 motor design
 - o 2 motors for main body front/back wheels
 - 2 motors for wheels on smaller box attached to arm

Design #2: Pros and Cons

Pros:

- Easy coding
- No need to determine position of waypoints
- Simplistic design
- No need to control orientation of laser
- Only requires motion in one direction for main body

Cons:

- Bulky mechanical design
- Complex assembly compared to third design

Design #3: Concept

- Robot that turns and moves separately
- 5 motor design
 - o 2 motors drive wheels
 - 2 motors lift wheels when turning
 - 1 motor rotates the wheel chassis to turn
- Based on 2014 Blue Team Design

Design #3: Pros and Cons

Pros

- No need to control orientation of laser.
- Optimized for straight-line motion along waypoint lines
- Rotation allows searching for waypoint lines without moving

Cons

- Wheeled motion is liable to drift error
- No way to correct if laser alignment is changed
- Small adjustments in position are difficult and time-consuming
- Central platform must remain flat
 - Must calibrate leg lifting motors to one another to prevent platform tilt

Risks and Mitigation

Time constraints

 A group chat will be used to keep in frequent contact. This will allow group members to stay up to date on the project even if a meeting is missed. This will help us to keep on top of the project and finish with adequate time.

Bugs in software

- Possible bugs:
 - Miss tag
 - Laser points wrong way
- Code will have to be completed early in order to extensively test for bugs

Mechanical Failures

Stress tests and frequent testing will help us mitigate physical failures

Team Members and Skills

- Anvitha Paruchuri (CSE)
 - Programming
- Michael Dobrowolski (CSE)
 - Programming
- Paul Reggentin (EE)
 - Signal Processing
 - System Analysis
- Shariq Lalani

Workplan

Action	2/8	2/11	2/13	2/16	2/19	2/22	2/25	2/28	3/3	3/6	3/8	3/9	3/12	3/15	3/18	3/20	3/21	3/24	3/27	3/29
Brainstorming																				
Project Research																				
Brainstorming Presentation																				
Demo 1 Simulation																				
Demo 1																				
Demo 2 Prototye																				
Demo 2																				
Documentation																				
Assembly Manual																				
Testing Functionality																				
Final Demo Day																				
Final Report										72			:	72				72		
Final Report Review		9																		

Thank you! Questions?

References

- https://wiki2.eecs.umich.edu/hrb/images/3/33/BrainstormingPresentation_14Maize.pdf
- https://wiki2.eecs.umich.edu/hrb/images/e/e5/Brainstorm_Presentation_14Blue.pdf
- https://wiki2.eecs.umich.edu/hrb/index.php/File:BlueTeam-P1-2014.pdf
- https://wiki2.eecs.umich.edu/hrb/images/a/aa/Construction_Document_14Blue.pdf
- http://robotics.stackexchange.com/questions/10019/should-i-use-gyro-or-encoders-for-robot-moving-in-straight-line
- https://www.youtube.com/watch?v=5vJCucpVdX0
- https://wiki2.eecs.umich.edu/hrb/index.php?title=File:Kalman-Filter-Intro.pdf
- https://youtu.be/aUkBa1zMKv4
- https://en.wikipedia.org/wiki/PID_controller
- https://wiki2.eecs.umich.edu/hrb/images/7/79/FinalReport_%281%29.pdf