[缺陷检测]

太阳能电池板缺陷检测系统的设计 与实现

文/孟庆钰 国能神皖安庆发电有限责任公司

> 为提高太阳能电池板的缺陷检测效率,设计基于图像处理技术的缺陷检测系统。该系 统硬件方面采用高分辨率的CCD相机、可编程电源、数字信号处理器,实现对太阳能电池 板的实时监测:软件方面包含图像采集模块、图像处理模块和输出模块,利用图像处理算 法对电池板的缺陷进行自动分类。实验结果表明,该系统在电池板缺陷检测测试中准确率 较高, 能够有效解决传统检测方法中存在的效率低下等问题。

太阳能电池板的质量直接影响其发电效率,进 而影响其使用的可持续性。电池板在生产、运输和 安装过程中, 会受机械碰撞、温度变化和材料缺陷 等因素的影响而产生各种缺陷, 如裂纹、污渍和脱 落等。这些缺陷不仅会降低电池板的光电转换效 率,还会导致其性能下降,在极端情况下会进一步 引发安全隐患。随着太阳能发电市场快速发展,太 阳能电池板生产规模不断扩大, 传统的人工检测方法 难以满足日益增长的检测需求。因此,设计自动化 缺陷检测系统, 有利于提高检测效率, 保证检测准确 性,降低人工成本,提高检测可靠性。

太阳能电池板缺陷检测系统设计

1. 硬件设计

(1) CCD相机

为对太阳能电池板进行高质量成像,选择高 分辨率的CCD相机,该相机具有优异的灵敏度 和良好的低噪声特性,能够在多种光照条件下提 供清晰的图像,确保检测过程中图像质量可靠稳 定。选用型号为Sony IMX253相机,分辨率为4 056×3 040像素, 动态范围为72 dB, 该相机性能 参数见表1。

表1 相机性能参数数据表

参数	数值		
灵敏度	0.3 lux (彩色) /0.03 lux (黑白)		
帧率/fps	30		
动态范围/dB	72		
接口	USB3.0		
尺寸/in	1/1.8		

通过以上性能参数数据可知,该CCD相机能够 在不同环境光照条件下捕捉到清晰且细致的电池板 图像,为后续的图像处理和缺陷识别提供准确的原 始数据。

(2) 可编程电源

为模拟太阳能电池板在不同工作环境里的运行 状态,系统采用可编程电源,该电源不仅能够提供 稳定的电压和电流,还可以实时监测电池板的性能 变化, 为缺陷分析提供必要的数据支持。编程电源 型号为Keysight E3631A,输出电压范围为0~6 V, 输出电流范围为0~3 A, 编程分辨率电压为1 mV, 电流为1 mA。借助可编程电源,系统能够模拟电池 板在不同光照、温度和负载条件下的工作状态, 获 取真实的电池板性能数据,这些数据用于分析电池 板的工作效率并帮助识别潜在的缺陷。

(3) 数字信号处理器

数字信号处理器 (DSP) 是该缺陷检测系统的 核心处理单元,负责实时图像处理和缺陷识别。 DSP型号为Texas Instruments TMS320C6748, 处理器架构C64x+, 主频456 MHz, 内存32 MB DDR2 SDRAM, DSP性能最高可达1.5 GFLOPS, 外设接口SPI、I2C、UART,适合执行复杂的图像 处理算法和实时数据分析任务。1.5 GFLOPS的处理 性能能够保证系统在进行高分辨率的图像处理和缺 陷检测时, 系统能够迅速响应并实时反馈结果。

(4) 数据存储模块

为存储采集到的图像和性能数据, 系统配备 固态硬盘SSD, 其高读写速度能够确保数据的快 速存取, 为后续的数据分析提供保障。硬盘型号为 Samsung 970 EVO Plus,存储容量为1 TB,读取速度 最高可达3 500 MB/s, 写入速度最高可达3 300 MB/ s,接口为NVMe M.2,可以为后续数据分析提供充足 的存储空间。

(5) 其他辅助硬件组件

除主要硬件组件外, 本系统还包含辅助硬件, 以增强系统整体可靠性,如散热系统使用静音型风 扇,风量120 CFM,静音设计≤25 dB,标准ATX机 箱, 宽度200 mm, 深度500 mm, 高度400 mm, 具 有良好的散热性能,硬件系统架构图如图1所示。

图1 硬件流程图

2. 软件设计

(1) 图像采集模块

图像采集模块是整个系统的前端部分,负责从 CCD相机获取实时图像并进行初步的图像预处理, 该模块设计能确保图像采集的实时性, 为后续的图 像分析和处理奠定基础。为提高图像质量,模块引 入去噪处理技术,采用高斯滤波和中值滤波两种 算法。

高斯滤波通过设置标准差σ为1.5,利用高斯函 数对图像进行平滑处理,以有效消除图像中的高频 噪声。高斯滤波的公式为

$$G(x, y) = \frac{1}{2\pi \sigma^2} e^{\frac{x^2 + y^2}{2\sigma^2}}$$
 (1)

式中, G(x,y)为高斯函数的值; (x,y)为像素坐标; σ

为标准差。

中值滤波对每个像素邻域的像素值取中值,能 够有效抑制椒盐噪声,中值滤波在处理图像边缘时 能够保持较好的图像细节。

同时,对图像进行归一化处理,将像素值范围 调整至0~1之间,消除不同光照条件下引起的亮度 变化, 归一化处理的公式为

$$I = \frac{I - I_{\min}}{I_{\max} - I_{\min}} \tag{2}$$

式中,I为原始图像像素值; I_{min} 和 I_{max} 分别为图像中 的最小和最大像素值,确保后续图像处理算法能够 在一致的条件下进行分析。

(2) 图像处理模块

图像处理模块负责对预处理后的电池板图像进 行缺陷识别,该模块通过多种先进的图像处理算 法,对电池板图像进行高效分析。

通过边缘检测能够有效提取出图像中的重要结 构信息,系统采用Canny边缘检测算法,使用Sobel 算子计算出图像的梯度强度和方向,公式为

$$G = \sqrt{G_{\rm x}^2 + G_{\rm y}^2} \tag{3}$$

式中,G为梯度幅值; G_x^2 为水平方向梯度; G_y^2 为垂 直方向梯度。

在每个方向梯度通过抑制非最高梯度值,即在 该梯度方向上找寻最大值,其余的值赋值 0,以保 留边缘点,设定低阈值(50)和高阈值(150), 通过连接强边缘和弱边缘来确定最终边缘。

在边缘检测完成后,接下来是特征提取环节。 为提高缺陷识别的准确性,采用Haar特征和局部二 值模式特征提取方法。Haar特征通过对图像中不同 区域进行加权求和, 提取出重要的纹理特征, 提取 的特征随后用于训练支持向量机分类器,便于区分 正常区域与缺陷区域, 分类器通过与已标注的训练 数据进行对比,实现对不同缺陷的准确分类,经过 训练,系统分类准确率达到95%以上,具体分类效 果见表2。

表2 缺陷分类数据表

缺陷类型	检测数量	正确分类	精确率(%)
裂纹	100	97	97
污渍	50	48	96
脱落	30	29	96.66

(3) 输出模块

输出模块负责将处理结果进行可视化展示并生 成详尽的缺陷检测报告, 该模块的设计主要目标是 确保用户能够准确地理解太阳能电池板的整体状 况,并采取相应的维护措施。

输出模块通过用户友好的界面展示处理后的图 像,缺陷区域使用不同颜色进行标注,以便干用户 快速识别和发现,如裂纹用红色标记,污渍用黄色 标记,其他缺陷根据具体情况采用不同颜色进行标 记。用户可以通过缩放和平移操作查看细节,分析 缺陷的具体位置和严重程度,不同类型缺陷的标注 示例见表3。

表3 缺陷标注示例

缺陷类型	标记颜色	描述			
裂纹	红色	垂直或水平裂缝, 影响电池性能			
污渍	黄色	表面污垢,导致光照吸收下降			
脱落	蓝色	组件部分脱落,需及时更换			
其他	绿色	其他不正常现象			

系统自动生成检测报告,报告内容包括:①检 测时间,如2024年12月19日14:30,②检测图像, 包含处理后的图像和缺陷标记;③缺陷类型,如裂 纹、污渍; 缺陷数量, 如裂纹3个, 污渍2个; ④缺 陷位置在图像中的坐标,如(120,340)。报告采 用PDF格式,便于用户保存和打印。

根据检测结果,系统提供缺陷信息,并给出维护 建议, 如检测到多处裂纹, 系统会建议用户进行更换 或维修,并附上相关费用预估,如系统提示用户"建 议对电池板进行更换,预估费用为2000元"。

所有检测结果和报告将被记录到数据库中,便 于后续的数据分析,系统将使用以下公式计算缺陷 发生率

缺陷发生率 =
$$\frac{$$
缺陷数量}{总检测次数} \times 100% (4)

例如,在过去的100次检测中发现缺陷共计15 次,则缺陷发生率为15/100×100%=15%。

为提高用户体验,输出模块需与其他辅助系 统。(如监控系统和数据管理平台)无缝集成,可 通过API接口实现,以确保数据流的顺畅传递。输 出模块需要具备以下兼容性: 能够在不同操作系统 上运行,提供适配手机端和平板端的可视界面,同 时,方便用户在现场进行查看。

3. 实验分析

为评估缺陷检测系统的性能,对多组太阳能电 池板进行系统测试,实验旨在验证系统在实际场景 中的准确性,实验具体步骤如下。

从不同制造厂商和不同使用年份中选择总计 100块太阳能电池板,确保样本多样性。根据常见 缺陷类型进行分类,使用该系统对所有电池板进行 检测,记录检测结果,再由专业工程师对检测结果 进行人工审查,以验证系统的准确性。在实验过程 中, 检测总数100块电池板, 检测到的缺陷数量120 个,包含多种缺陷,缺陷分布情况见表4。

表4 缺陷分布情况

缺陷类型	数量
裂纹	45
污渍	30
脱落	25
遮挡	20

相较于传统人工检测方法,系统检测速度提高 30%, 系统检测每块电池板的平均时间为5 min, 而 传统方法需7 min,对比系统检测结果与人工验证结 果,得到的数据见表5。

表5 系统检测与人工检测对比数据

缺陷类型	系统检测数量	人工验证数量	准确率 (%)
裂纹	45	45	100
污渍	30	29	96.66
脱落	25	23	92
遮挡	20	19	95

通过对实验数据分析,得出以下结论:本缺陷 检测系统在太阳能电池板的缺陷检测工作中表现出 色,具有高准确率的特性,适合在实际应用中推广 使用,实验结果验证该缺陷检测系统具有实用性。

结束语

基于图像处理技术设计太阳能电池板缺陷检测 系统,该系统设计方案从硬件和软件两个部分进行 了全面的探讨和研究。实验结果表明, 该系统的检 测准确率达95%以上,在检测用时上比传统的人工 检查缩短了近30%, 为太阳能电池板缺陷检测提供 了新的思路和方法,在太阳能发电行业具有广泛的 应用价值。EA

(收稿日期: 2025-06-25)