Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu, Yutong Lin, Yue Cao, Han Hu et al.

Microsoft Research Asia

ICCV 2021 Best Paper Award

Presented by Minho Park

Contribution

- **Propose Swin Transformer:** A hierarchical Transformer whose representation is computed with **Shifted windows**.
- Use stage structure (for FPN).
- Ablation studies include relative positional encoding.

Shifted Window Approach

- CNN (VGG, ResNet, etc.)
- Global attention (ViTs)
- Local attention (Sliding Window, Axial attention, Swin)

Architectures of Swin Transformer and Vision Transformer.

$$\Omega(MSA) = 4hwC^2 + 2(hw)^2C, \tag{1}$$

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

Figure 2. An illustration of the *shifted window* approach for computing self-attention in the proposed Swin Transformer architecture. In layer l (left), a regular window partitioning scheme is adopted, and self-attention is computed within each window. In the next layer l+1 (right), the window partitioning is shifted, resulting in new windows. The self-attention computation in the new windows crosses the boundaries of the previous windows in layer l, providing connections among them.

Swin Transformer

Two successive Swin Transformer Block.

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Efficient Batch Computation

The number of batched windows remains the same as that of regular window partitioning.

Two successive Swin Transformer Block.

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window partitioning.

.1 1	MSA in a stage (ms) Arch. (F						
method	S 1	S 2	_			S	В
sliding window (naive)	122.5	38.3	12.1	7.6	183	109	77
sliding window (kernel)	7.6	4.7	2.7	1.8	488	283	187
Performer [14]	4.8	2.8	1.8	1.5	638	370	241
window (w/o shifting)	2.8	1.7	1.2	0.9	770	444	280
shifted window (padding)	3.3	2.3	1.9	2.2	670	371	236
shifted window (cyclic)	3.0	1.9	1.3	1.0	755	437	278

Table 5. Real speed of different self-attention computation methods and implementations on a V100 GPU.

Relative Positional Bias

- Positional biases: absolute, relative
- Relative Positional Bias: Attention $(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$, (4)
- A different window size through bi-cubic interpolation.

	Imag	geNet	1	OCO	ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Ablation studies of Swin and different positional biases

Architecture Variants

 Swin-T, Swin-S, Swin-B, Swin-L: 0.25×, 0.5×, 1×, and 2× the model size and computational complexity, respectively.

- Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

layer name	output size	18-layer	34-layer	50-layer	152-layer									
conv1	112×112		7×7, 64, stride 2											
			3×3 max pool, stride 2											
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $								
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $								
conv4_x		$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$		[[1×1, 1024]	[1×1, 1024]	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $								
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \right] \times 3 $								
	1×1		average pool, 1000-d fc, softmax											
FLO	OPs	1.8×10^9	3.6×10^{9}	3.8×10^9	7.6×10^9	11.3×10^9								

ResNet Architectures for ImageNet.

Quantitative Results

(a) Regular ImageNet-1K trained models								
method	image	#param.	EI ODa	throughput	ImageNet			
memou	size	#paraiii.	FLOFS	(image / s)	top-1 acc.			
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0			
RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7			
RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9			
EffNet-B3 [58]	300^{2}	12M	1.8 G	732.1	81.6			
EffNet-B4 [58]	380^{2}	19 M	4.2G	349.4	82.9			
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6			
EffNet-B6 [58]	528^2	43M	19.0G	96.9	84.0			
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3			
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9			
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5			
DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8			
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8			
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1			
Swin-T	224 ²	29M	4.5G	755.2	81.3			
Swin-S	224^{2}	50M	8.7G	436.9	83.0			
Swin-B	224^{2}	88M	15.4G	278.1	83.5			
Swin-B	384 ²	88M	47.0G	84.7	84.5			

(b) ImageNet-22K pre-trained models

method	image	#param.	FLOPs	throughput	ImageNet	
mourou	size	"param.	1 LOI 5	(image / s)	top-1 acc.	
R-101x3 [38]	384^{2}	388M	204.6G	-	84.4	
R-152x4 [38]	$ 480^{2}$	937M	840.5G	-	85.4	
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	84.0	
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	85.2	
Swin-B	224^{2}	88M	15.4G	278.1	85.2	
Swin-B	384^{2}	88M	47.0G	84.7	86.4	
Swin-L	384 ²	197M	103.9G	42.1	87.3	

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [68] and a V100 GPU, following [63].

Quantitative Results

(a) Various frameworks										
Metho	od	Backb	one	AP ^{box}	AP_{50}^{box}	AP ₇₅ ^{box}	#par	am.	FLOPs	FPS
Casca	de	R-5	0	46.3	64.3	50.5	82	M	739G	18.0
Mask R-	CNN	Swir	ı-T	50.5	69.3	54.9	86	M	745G	15.3
ATC	C	R-5	0	43.5	61.9	47.0	32	M	205G	28.3
ATS	3	Swir	n-T	47.2	66.5	51.3	36	M	215G	22.3
DanDain	+a V /2	R-5	0	46.5	64.6	50.3	42	M	274G	13.6
RepPoin	is v Z	Swir	ı-T	50.0	68.5	54.2	45	M	283G	12.0
Spars	se	R-5	0	44.5	63.4	48.2	106	M	166G	21.0
R-CN	N	Swir	ı-T	47.9	67.3	52.3	110	M	172G	18.4
(b)	Vario	us bac	kbo	nes w	Casc	ade M	ask I	R-C	NN	
, ,	AP ^{box}	AP ₅₀	AP_7^{b}	$\sum_{5}^{\infty} AP^{m} $	ask AP	nask AP	mask p	aran	nFLOP	sFPS
DeiT-S [†]	48.0		51.	_		-	- F	30M		
R50	46.3	64.3	50.:	5 40.	1 61	.7 43	3.4 8	32M	739G	18.0
Swin-T	50.5	69.3	54.9	9 43.	7 66	.6 47	7.1 8	36M	745G	15.3
X101-32	48.1	66.5	52.4	4 41.	6 63	.9 45	5.2 1	01N	1 819G	12.8
Swin-S	51.8	70.4	56.	3 44.	7 67	.9 48	3.5 1	07N	1 838G	12.0
X101-64	48.3	66.4	52.	3 41.	7 64	.0 45	5.1 1	40N	1 972G	10.4
Swin-B	51.9	70.9	56. :	5 45.	0 68	.4 48	3.7 1	45N	1 982G	11.6

(c) System-level Comparison

Method	l	ii-val AP ^{mask}		t-dev AP ^{mask}	#param.	FLOPs
RepPointsV2* [12]	-	-	52.1	-	-	-
GCNet* [7]	51.8	44.7	52.3	45.4	-	1041G
RelationNet++* [13]	-	-	52.7	-	-	-
SpineNet-190 [21]	52.6	-	52.8	-	164M	1885G
ResNeSt-200* [78]	52.5	-	53.3	47.1	-	-
EfficientDet-D7 [59]	54.4	-	55.1	-	77M	410G
DetectoRS* [46]	-	-	55.7	48.5	-	-
YOLOv4 P7* [4]	-	-	55.8	-	-	-
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-

Table 2. Results on COCO object detection and instance segmentation. †denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

Quantitative Results

ADE	20K	val	test	#naram	FLOPs 1	EDC
Method	Backbone	mIoU	score	πραιαιιι.	TLOFS	ITS
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G 2	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841 G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2
T 11 0 D 1					A DEGOT	

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

Paperswithcode

- https://paperswithcode.com/task/object-detection
- https://paperswithcode.com/task/semantic-segmentation