Midterm Assignment Write-up

1. Introduction

In this assignment, I clean the UN Migrant Stock Total file that contains six tables based on the Tidy data principles. Table 1, 2, 3, and 5 have similar violations of Tidy data principles, therefore their cleaning processes are similar. The details of the cleaning steps for Table 1 would be discussed in section *Table 1*, and the process for Table 2, 3, 5 are discussed in section *Table 2, 3, 5*. The screenshots of the dataset are included after the explanation of the cleaning steps to provide a glance at the data structure. The procedure of cleaning Table 4 and 6 are discussed in sections *Table 4* and *Table 6*, respectively. Based on the Tidy data principle, I merge the cleaned tables together, and the reason and process of doing so would be discussed in the section *Table manipulation in merging (section 2.5)*. The challenges in cleaning process are discussed in section *Discussion (section 3)*.

2. Method/Result

All tables have multi index headers, therefore, when import these datasets, I combine the first two rows as a new header, then rename each column based on the associated characteristics including the sex categories and topic of interest. For example, table 1 contains the international migrant stock number for three sex categories: both sexes, male and female between 1990 and 2015. Each category has six columns which are the stock data collected every five-year from 1990 to 2015. The header names are changed by adding the associated sex category to each column of years. Therefore, the columns of 1990 to 2015 under the international migrant stock for both sexes became "IMS Both 1990", "IMS Both 1995, and etc.

2.1 Table 1

After renaming the headers of the international migrant stock columns (1990 to 2015 for each category of sex), the first problem is that the column headers are values instead of variable names for these 18 columns (Figure 1). This violates the Tidy data principle 1 that every variable must have its own column. So, I pivot the table into a longer format by melting the headers as one column named *IMS* and saving all the associated numeric values in another variable called *International migrant stock at mid-year*. Thus, eighteen-column headers and their values are melted into two columns (Figure 2).

	Sort order	Major area, region, country or area of destination	Notes	Country code	Type of data (a)	IMS Both 1990	IMS Both 1995	IMS Both 2000	IMS Both 2005	IMS Both 2010	
0	1	WORLD	NaN	900	NaN	152563212	160801752	172703309	191269100	221714243	
1	2	Developed regions	(b)	901	NaN	82378628	92306854	103375363	117181109	132560325	
2	3	Developing regions	(c)	902	NaN	70184584	68494898	69327946	74087991	89153918	
3	4	Least developed countries	(d)	941	NaN	11075966	11711703	10077824	9809634	10018128	
4	5	Less developed regions excluding least develop	NaN	934	NaN	59105261	56778501	59244124	64272611	79130668	

Figure 1: Data frame structure after merging the multi-index headers.

	Sort order	Major area, region, country or area of destination	Notes	Country code	Type of data (a)	IMS	International migrant stock at mid-year
0	1	WORLD	NaN	900	NaN	IMS Both 1990	152563212
1	2	Developed regions	(b)	901	NaN	IMS Both 1990	82378628
2	3	Developing regions	(c)	902	NaN	IMS Both 1990	70184584
3	4	Least developed countries	(d)	941	NaN	IMS Both 1990	11075966
4	5	Less developed regions excluding least develop	NaN	934	NaN	IMS Both 1990	59105261
5	6	Sub-Saharan Africa	(e)	947	NaN	IMS Both 1990	14690319

Figure 2: Data frame structure after melting the column headers and associated values.

However, the second problem is that the *IMS* column contain both the sex and year categories, which again violates principle 1 as each column needs to contain a unique variable. Therefore, the sex and year values in the *IMS* column are separated into two new columns called *Sex* and *Year*. For convivence in reading, I move *Year* and *Sex* columns to the front of *International migrant stock at mid-year* and save it as a new data frame called *un1_order* (Figure 3).

	Sort order	Major area, region, country or area of destination	Notes	Country code	Type of data (a)	Year	Sex	International migrant stock at mid-year
0	1	WORLD	NaN	900	NaN	1990	Both	152563212
1	2	Developed regions	(b)	901	NaN	1990	Both	82378628
2	3	Developing regions	(c)	902	NaN	1990	Both	70184584
3	4	Least developed countries	(d)	941	NaN	1990	Both	11075966
4	5	Less developed regions excluding least develop	NaN	934	NaN	1990	Both	59105261

Figure 3: Data frame structure after separating the year and sex into two columns

Thirdly, the international stock column contains missing value in ".." form. To keep the data type of variable consistent, I change the missing values into 0.

Fourthly, in Figure 3, we can see that all the countries, regions, continents, and other larger ranges of destinations are collected as one variable named *Major area, region, country or area of destination*. Despite the fact that they all indicate the destination, they are different types of location, which also violates principle 1 as there are more than one variable in one column. Therefore, I separate the destination column into 7 different location columns: *Total, Nation, Separation in developing regions, Separation in Africa, Major area, Region, Country or area.* In order to do so, I filter the destination rows based on the characteristics of the locations, and then save them as a new data frame. For example, I filter out all the continent rows and save them as a dataset called *Main area* (Figure 4).

So	rt order	Major area	Notes	Country code	Type of data (a)	Year	Sex	International migrant stock at mid-year
6	7	Africa	NaN	903	NaN	1990	Both	15690623
70	71	Asia	NaN	935	NaN	1990	Both	48142261
126	127	Europe	NaN	908	NaN	1990	Both	49219200
179	180	Latin America and the Caribbean	NaN	904	NaN	1990	Both	7169728
231	232	Northern America	NaN	905	NaN	1990	Both	27610542

Figure 4: Data frame that only contains main area locations

After the filtering, I concatenate all seven datasets together to have all information in one table. Since the variables *Notes, Type of data (a)* do not provide important information about the observational unit, they are removed from the dataset. *Country code* is dropped from the data table because both this and *Sort order* provide the unique ID for each destination (Figure 5).

	Sort order	Total	Nation	Separation in developing regions	Separation in Africa	Major area	Region	Country or area	Year	Sex	International migrant stock at mid-year
0	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	1990	Both	152563212
1	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	1995	Both	160801752
2	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2000	Both	172703309
3	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2005	Both	191269100
4	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2010	Both	221714243
5	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2015	Both	243700236
6	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	1990	Male	77747510
7	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	1995	Male	81737477
8	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2000	Male	87884839
9	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2005	Male	97866674
10	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2010	Male	114613714
11	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2015	Male	126115435
12	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	1990	Female	74815702
13	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	1995	Female	79064275
14	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2000	Female	84818470
15	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2005	Female	93402426
16	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2010	Female	107100529
17	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN	2015	Female	117584801
18	2	NaN	Developed regions	NaN	NaN	NaN	NaN	NaN	1990	Both	82378628
19	3	NaN	Developing regions	NaN	NaN	NaN	NaN	NaN	1990	Both	70184584

Figure 5: Dataset that contains all 7 different location types.

Fifthly, Figure 5 contains the international migrant stock of each destination in each sex category for every 5-year. Thus, the dataset has three types of observational units which are the destination, year and sex. This violates principle 3 that a table should have only one type of observational unit. Therefore, the table should be separated into three based on the types of the observational unit, one contains only the destination and *Sort order* which is the unique identification variable for the destination, one contains *Sort order, Year,* and the associated international migrant stock, and the other one that has *Sort order, Sex*, and the associated international migrant stock. But due to the difficulty in separating the year and sex into two tables, so I only create two new tables, one for the destination observational unit (Figure 6), and one that contains *Sort order, Year, Sex* and *International migrant stock* (Figure 7).

	Sort order	Total	Nation	Separation in developing regions	Separation in Africa	Major area	Region	Country or area
0	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN
1	2	NaN	Developed regions	NaN	NaN	NaN	NaN	NaN
2	3	NaN	Developing regions	NaN	NaN	NaN	NaN	NaN
3	4	NaN	NaN	Least developed countries	NaN	NaN	NaN	NaN
4	5	NaN	NaN	Less developed regions excluding least develop	NaN	NaN	NaN	NaN

Figure 6: Data table for destination.

	Sort order	Year	Sex	International migrant stock at mid-year
0	1	1990	Both	152563212
1	1	1995	Both	160801752
2	1	2000	Both	172703309
3	1	2005	Both	191269100
4	1	2010	Both	221714243

Figure 7: Data table for the year and sex.

2.2 Table 2, Table 3 and Table 5

All Table 2, 3 and 5 of the UN data files have the same data structure as Table 1, therefore, the violations of the Tidy data principles and the cleaning process are similar as Table 1. Instead of *international migrant stock*, Table 2, Table 3 and Table 5 have *Total population at mid-year (thousands)*, *International migrant stock as a percentage of the total population*, and *Annual rate of change of the migrant stock*, respectively. Similar as Table 1, each of Table 2, 3 and 5 are supposed to be separated into 3 tables based on the types of the observational unit, but due to the difficulty in separation, the dataset ends with two separations instead of three, which is the same as Table 1 case.

2.3 Table 4

Table 4 also has similar violations of the Tidy data principles and the cleaning process as table 1. The process of cleaning the dataset are similar. The only difference is that instead of three sex categories, this dataset only contains data for female migrants (Figure 8), which means it has one measurement per destination every 5-year. In other words, there are two observational units: the destination and the year of data. Therefore, according to the Tidy data principle 3, the data table is separated into two tables: one contains *Sort order* and the destination (Figure 9), and the other one contains *Sort order*, *Year*, and *percentage of the international migrant stock* for female migrants (Figure 10).

	Sort order	Major area, region, country or area of destination	Notes	Country code	Type of data (a)	Year	Female migrants as a percentage of the international migrant stock
0	1	WORLD	NaN	900	NaN	1990	49.03915
1	2	Developed regions	(b)	901	NaN	1990	51.123977
2	3	Developing regions	(c)	902	NaN	1990	46.592099
3	4	Least developed countries	(d)	941	NaN	1990	47.261155
4	5	Less developed regions excluding least develop	NaN	934	NaN	1990	46.466684

Figure 8: Dataset structure after pivoting the column headers down for Table 4.

	Sort order	Total	Nation	Separation in developing regions	Separation in Africa	Major area	Region	Country or area
0	1	WORLD	NaN	NaN	NaN	NaN	NaN	NaN
1	2	NaN	Developed regions	NaN	NaN	NaN	NaN	NaN
2	3	NaN	Developing regions	NaN	NaN	NaN	NaN	NaN
3	4	NaN	NaN	Least developed countries	NaN	NaN	NaN	NaN

Figure 9: Dataset for destination

	Sort order	Year	Female migrants as a	percentage of th	e international migrant stock
0	1	1990			49.039150
1	1	1995			49.168790
2	1	2000			49.112244
3	1	2005			48.832993
4	1	2010			48.305660

Figure 10: Dataset for the other type of observational unit.

2.4 Table 6

Table 6 contains no sex category and three topics of interest: the estimated refugee stock at mid-year for both sexes, the percentage of the international migrant stock for refugees, and the annual rate of change of the refugee stock. Similar to Table 1, I rename the multi-index column headers into a single level based on the corresponding topic of interest. Instead of melting the column headers directly as shown in Figure 2, I separate the table into three based on the topics of interest. Then I melt the column headers into a

column within each table due to its violation of Tidy data principle 1. Each table has the *Sort order,* the destination, *Notes, Country code, Type of data (a), Year,* and the corresponding topic of interest (Figure 11).

	Sort order	Major area, region, country or area of destination		Country code	Type of data (a)	Year	Estimated refugee stock at mid-year
0	1	WORLD	NaN	900	NaN	1990	18836571
1	2	Developed regions	(b)	901	NaN	1990	2014564
2	3	Developing regions	(c)	902	NaN	1990	16822007
3	4	Least developed countries	(d)	941	NaN	1990	5048391
4	5	Less developed regions excluding least develop	NaN	934	NaN	1990	11773616
	Sort order	Major area, region, country or dest	area of	Year Refug	ees as a perce	ntage	of the international migrant stock
0				Year	ees as a perce	entage	_
0	order	dest	ination	Year	ees as a perce	entage	stock
	order 1	dest	WORLD	1990 1990	ees as a perce	entage	12.346732
1	order 1 2	dest	WORLD d regions g regions	1990 1990 1990	ees as a perce	entage	12.346732 2.445494

Figure 11: Melting the column headers that contains the values of year in Refugee stock dataset and percentage of the international migrant stock for refugees' dataset, respectively.

The data of the annual rate of change of the refugee stock were collected in 4 5-year intervals between 1990 and 2015. For convenience in formatting, the values of the year interval are renamed into the upper bound of the interval. For example, "1990-1995" is changed into "1995" as shown in Figure 12.

	Sort order	Major area, region, country or area of destination	Year	Annual rate of change of the refugee stock
0	1	WORLD	ARCRS 1990- 1995	-2.123497
1	2	Developed regions	ARCRS 1990- 1995	9.388424
2	3	Developing regions	ARCRS 1990- 1995	-2.839417
3	4	Least developed countries	ARCRS 1990- 1995	-0.680327
4	5	Less developed regions excluding least develop	ARCRS 1990- 1995	-4.3836
	Sort order	Major area, region, country or area of destina	tion Year Annu	ual rate of change of the refugee stock
0	1	W	ORLD 1995	-2.123497
1	2	Developed re	egions 1995	9.388424
2	3	Developing re	egions 1995	-2.839417
3	4	Least developed cou	ntries 1995	-0.680327
4	5	Less developed regions excluding least developed	elop 1995	-4.3836
3	4	Developing re Least developed cou	egions 1995 Intries 1995	-0.680327

Figure 12: The interval for year are changed into the upper bound of the range.

After that, I combine all three tables based on the destination to have a complete table that includes all the topics (Figure 13). Due to the same reason as table 1 case, the variables *Notes*, *Type of data(a)*, and *Country code* are removed from the dataset. The missing data in the dataset were recorded in different forms: "NaN", "..", and 0. To keep the format consistent, I replace the missing values with 0. In this case, the value for the annual rate of change of the refugee stock in 1990 would be 0, because the value of the year for 1990-1995 was changed into 1995.

	Sort order	Major area, region, country or area of destination	Year	Estimated refugee stock at mid-year	Refugees as a percentage of the international migrant stock	Annual rate of change of the refugee stock
0	1	WORLD	1990	18836571	12.346732	0.0
1	2	Developed regions	1990	2014564	2.445494	0.0
2	3	Developing regions	1990	16822007	23.968236	0.0
3	4	Least developed countries	1990	5048391	45.565880	0.0
4	5	Less developed regions excluding least develop	1990	11773616	19.919743	0.0

Figure 13: Dataset that contains three topics of interest with the melted column headers.

The destination column in this dataset also violates the Tidy data principle 1, which is the same as the Table 1 case. Thus, this column is also separated into different ones based on the geographic characteristics. The procedure of doing this is the same as the Table 1 case.

Since for each destination, we measure the three topics of interest every five years, the observational units are the destination and the year. Therefore, due to the violation of principle 3 that each table should have only one type of observational unit, the dataset is separated into two. One is the location table that contains the sorting order and the destination (same as Figure 9); the other contains *Sort order*, *Year*, and the three topics of interest (Figure 14).

	Sort order	Year	Estimated refugee stock at mid-year	Refugees as a percentage of the international migrant stock	Annual rate of change of the refugee stock
0	1	1990	18836571	12.346732	0.000000
1	1	1995	17853840	11.103013	-2.123497
2	1	2000	15827803	9.164736	-3.837069
3	1	2005	13276733	6.941389	-5.557223
4	1	2010	15370755	6.932687	-0.025089

Figure 14: Dataset that contains only one type of the observational unit (year) and three topics of interest.

2.5 Tables manipulation in merging

For Table 1 to 6, one of the observational units is the destination. As Tidy data principle 3 states that one type of observational unit should be in one table, the destination table for each sheet should be combined into one. I concatenate all six destination tables and remove the duplicate rows. The final destination table for all the UN data sheets contains 265 locations, the structure and observations are the same as Figure 6.

As discussed in previous subsections, Table 1, 2, 3 and 5 have the same types of observational units which are the destination, the sex and the year. Other than combining the destination table, I also merge the tables for the other type of observational unit (Figure 15). Therefore, instead of having one destination table and 4 separated sex and year tables for each sheet, Table 1, 2, 3 and 5 are combined into two tables, one for the destination and the other for the sex and year.

	Sort order	Year	Sex	International migrant stock at mid-year	Total population at mid-year (thousands)	International migrant stock as a percentage of the total population	Annual rate of change of the migrant stock
0	1	1990	Both	152563212	5309667.699	2.873310	0.000000
1	1	1995	Both	160801752	5735123.084	2.803806	1.051865
2	1	2000	Both	172703309	6126622.121	2.818899	1.428058
3	1	2005	Both	191269100	6519635.850	2.933739	2.042124
4	1	2010	Both	221714243	6929725.043	3.199467	2.954160

Figure 15: Table contains the sex, year and the associated topics of interest in Table 1, 2, 3, and 5.

Similarly, except for the destination, both Table 4 and 6 also have the same type of observational unit – year. Therefore, the year tables for both cases are merged together.

	Sort order Ye	ear	Female migrants as a percentage of the international migrant stock	Estimated refugee stock at mid-year	Refugees as a percentage of the international migrant stock	Annual rate of change of the refugee stock
0	1 19	990	49.039150	18836571	12.346732	0.000000
1	1 19	995	49.168790	17853840	11.103013	-2.123497
2	1 20	000	49.112244	15827803	9.164736	-3.837069
3	1 20	005	48.832993	13276733	6.941389	-5.557223
4	1 20	010	48.305660	15370755	6.932687	-0.025089

Figure 16: Table contains the year and the topics of interest in Table 4 and 6

3. Discussion

According to three Tidy data principles, the six UN data tables are cleaned and merged into 3 datasets. Each table was originally recorded in a format that is easier for the human to read, but not trivial for computers. Therefore, the datasets are transformed into more efficient forms to do the analysis computationally based on the Tidy data principles. I realize that principle 3 —the same type of observational unit should be in the same table —is challenged to be fulfilled in this data file.

Instead of having all variables in one dataset by directly merging all six tables together, I separate the table based on the type of observational unit, and then merge the same type of observational unit into one table. As discussed in section 2.5, Table 1, 2, 3, and 5 have identical types of observational unit –destination, year and sex, thus, each of these tables should be separated into three datasets; Table 4 and 6 have two types of the observational unit –destination and year, so each table should be split into two datasets. One of the types of observational unit is the destination and the elements in the destination are the same, therefore, I decided to merge the destination tables together. Hence, there is one destination table for Table 1, 2, 3, 4 5, and 6.

However, due to the difficulties in separating the year and sex into two tables, these two variables are kept in the same dataset. Therefore, Table 1, 2, 3, and 5 are separated into two tables —one for the destination, one for the year, sex and the corresponding variables. Since the tables for year and sex for Table 1, 2, 3, 5 contain the same types of observational unit, these tables are merged into one dataset.

The other challenge in cleaning the datasets is that the destination column in the raw data contains the locations that have an inclusive relationship with other observations. For example, the countries and the

associated continent are stored in the same column. Since we know that a column should record the same feature of the dataset, we should eliminate this inclusive relationship. I separate the column into different columns based on the information provided in the annex file.

4. Conclusion

In conclusion, the UN dataset initially contains 6 different tables (Table 1 to 6). By cleaning the data based on the Tidy data principles, the missing values in the dataset are converted to 0, and the datasets end with 3 different tables, where one for the destination list, one for the year, sex and the associated measurements for Table 1,2,3 and 5, and the other one contains the year and associated measurement for Table 4, 6.