Data Structures and Algorithms

Week 4

Priority Queues

- Each element in a queue is associated with a key.
- When an element is removed, an element with a minimal (or maximal) key is removed.
- Usually keys are numbers.
- Objects can be used as keys as far as there is a total ordering among those objects.

Priority Queues ADT

- insert(k, v): Create an entry with key k and value v in the priority queue.
- min(): Returns (but does not remove) an entry (k, v) with the minimum key. Returns null if the priority queue is empty.
- removeMin(): Removes and returns an entry (*k*, *v*) with the minimum key. Returns null if the priority queue is empty.
- size(): Returns the number of entries in the priority queue.
- isEmpty(): Returns true if the priority queue is empty. Returns false, otherwise.

Priority Queues ADT

Method	Return Value	Priority Queue Contents
insert(17, A)		{(17, A)}
insert(4, P)		{(4, P), (17, A)}
insert(15, X)		{(4, P), (15, X), (17, A)}
size()	3	{(4, P), (15, X), (17, A)}
isEmpty()	false	{(4, P), (15, X), (17, A)}
min()	(4, P)	{(4, P), (15, X), (17, A)}
removeMin()	(4, P)	{(15, X), (17, A)}
removeMin()	(15, X)	{(17, A)}
removeMin()	(17, A)	{}
removeMin()	null	{}
size()	0	{}
isEmpty()	true	{}

- An element in a priority queue has key and value.
- Entry interface is used to store a key-value pair.

```
public interface Entry<K,V> {
K getKey();
V getValue();
```

PriorityQueue interface

- Keys must have total ordering.
- Total ordering means there is a linear ordering among all keys.
- Total ordering of a comparison rule, ≤, satisfies the following properties:
 - Comparability property: $k_1 \le k_2$ or $k_2 \le k_1$.
 - Antisymmetric property: If $k_1 \le k_2$ and $k_2 \le k_1$, then $k_1 = k_2$.
 - Transitive property: If $k_1 \le k_2$ and $k_2 \le k_3$, then $k_1 \le k_3$.
- If keys have total ordering, minimal key is well defined
- key_{min} is a key such that: $key_{min} \le k$, for all k

- Two ways to compare objects in Java
 - compareTo and compare
- compareTo is defined in java.util.Comparable interface.
- A class must override and implement the compareTo method.
- Ordering defined in the compareTo method is called natural ordering.
- Usage: a.compareTo(b) returns
 - a negative number, if a < b
 - zero, if a = b
 - a positive number, if a > b
- Many Java classes implemented Comparable interface.

- compare is defined in java.util.Comparator interface.
- Use this to compare not by natural ordering
- Need to write a separate customized comparator
- Example: To compare strings by length (natural ordering is lexicograhic ordering).
- First, write a customized comparator method

```
public class StringLengthComparator implements Comparator<String> {
    public int compare(String a, String b){
        if (a.length() < b.length()) return -1;
        else if (a.length() == b.length()) return 0;
        else return 1;
}</pre>
```

Then, use it as follows:

```
public class ComparatorTest {
9
     public static void main(String[] args) {
10
               StringLengthComparator c = new StringLengthComparator();
11
                String s1 = "tiger";
12
               String s2 = "sugar";
13
               String s3 = "coffee";
               String s4 = "cat";
14
               System.out.println("Compare s1 and s2: " + c.compare(s1, s2)); // 0
15
16
               System.out.println("Compare s1 and s3: " + c.compare(s1, s3)); // -1
               System.out.println("Compare s1 and s4: " + c.compare(s1, s4)); // 1
17
27
28 }
```

Priority Queues AbstractPriorityQueue Base Class

- Provides common features for different concrete implementations.
- An entry in a priority queue is implemented as *PQEntry*:

```
protected static class PQEntry<K,V> implements Entry<K,V> {
     private K k; // key
2
3
     private V v; // value
     public PQEntry(K key, V value) {
4
5
        k = key;
6
        v = value:
7
8
     public K getKey() { return k; }
     public V getValue() { return v; }
9
     protected void setKey(K key) { k = key; }
10
     protected void setValue(V value) { v = value; }
11
12 }
```

- Implementation with an unsorted list
- Implementation with a sorted list
- We will focus on implementation with heap.
- Heap is a binary tree with the following properties:
 - Heap-order property: In a heap T, for every position p, except the root, the key stored at p is greater than or equal to the key stored at p's parent. (minimum-oriented heap)
 - Complete binary tree property: A heap is a complete binary tree.

Priority Queues

Implementing Using a Heap

- Complete binary tree
 - Levels 0, 1, . . ., h 1 of T have the maximal number of nodes (in other words, level i has 2^i nodes, where 0 ≤ i ≤ h 1), and
 - Nodes at level h are in the leftmost possible positions at that level.

yes no

Priority queue implemented using a heap example:

• Height of a heap with n entries is $h = \lfloor \log n \rfloor$

- Adding an entry to a heap
 - Step 1: Add new entry at the "end" of the heap
 - Step 2: Reorganize the heap (because adding new entry may violate the heap-order property)
- Reorganization is done by up-heap bubbling.

- Removing the entry with minimal key
 - Step1: Remove the root
 - Step 2: Last node is move up to the root and perform down-heap bubbling.
- Down-heap bubbling is opposite of up-heap bubbling.

- The level number of a position p, f(p), is defined as follow:
 - If p is the root, f(p) = 0
 - If p is the left child of position q, f(p) = 2*f(q) + 1
 - If p is the right child of position q, f(p) = 2*f(q) + 2
- The level number is used as the index in an array where the entry with position *p* is stored.

- Then, the entry at position p is stored in A[f(p)].
- Index of the root node is 0.
- Index of left child of p = 2*f(p) + 1
- Index of right child of p = 2*f(p) + 2
- Index of parent of $p = \lfloor (f(p)-1)/2 \rfloor$

Example

- HeapPriorityQueue class implements a priority queue using a heap.
- A heap is implemented using ArrayList.
- Will briefly look at upheap, downheap, insert, and removeMin methods.
- HeapPriorityQueue.java code

Priority Queues Analysis of Heap-Based Priority Queue

- insertion:
 - upheap method takes O(log n)
 - So, insertion takes O(log n)
- removeMin:
 - downheap method takes O(log n)
 - So, removeMin takes O(log n)

Method	Running Time
size, isEmpty	O(1)
min	O(1)
insert	O(log n)
removeMin	O(log n)

- Given n elements, we can build a heap with n successive insertions => takes O(n log n) time.
- O(n) time algorithm
- Assume $n = 2^{h+1} 1$ (or every level is full)
- Step 1: Build (n + 1) / 2 heaps at height 0
- Step 2: Build (n + 1) / 4 heaps at height 1

. . .

- Step *i*: Build (n + 1) / 2ⁱ heaps at height i 1
 . . .
- Step h + 1: A single heap is formed at height h.

Illustration

Given sequence of keys: 14, 5, 8, 25, 9, 11, 17, 16, 15, 4, 12, 6, 7, 23, 20

Java implementation

Java implementation

```
public HeapPriorityQueue(K[] keys, V[] values) {
2
    super();
    for (int j=0; j < Math.min(keys.length, values.length); j++)
4
       heap.add(new PQEntry<>(keys[i], values[i]));
5
    heapify();
6
   protected void heapify() {
    int startIndex = parent(size()-1); // start at PARENT of last entry
8
9
    for (int j=startIndex; j \ge 0; j--) // loop until processing the root
10
       downheap(j);
11 }
```

Priority Queues Java's Priority Queue

- java.util.PriorityQueue
- An entry is a single element.
- Some operations in Java's PriorityQueue
 - add(E e): Inserts the specified element e to the priority queue.
 - isEmpty(): Returns true if the priority queue contains no element.
 - peek(): Retrieves, but does not remove, a minimal element from the priority queue.
 - remove(): Removes a minimal element from the priority queue.
 - size(): Returns the number of elements in the priority queue.

Priority Queues Heap-Sort

- Uses array-based heap data structure.
- In-place sorting: no additional storage is used.
- Uses a maximum-oriented heap.
- maximum-oriented heap: In a heap T, for every position p, except the root, the key stored at p is smaller than or equal to the key stored at p's parent.
- Sorting steps:
 - 1. Given *n* elements are inserted into a maximum-oriented heap.
 - 2. Repeat the following until only one node is left in the heap:
 Root is swapped with the last node, heap size is decremented, perform down-heap bubbling.

Illustration

Illustration

Illustration

Illustration

The root node is swapped with the last node. Heap size is decremented.

Down-heap bubbling is applied on the root.

Illustration

The root node is swapped with the last node. Heap size is decremented.

At this time the array is sorted.

Priority Queues Adaptable Priority Queue

- Can remove arbitrary entry (not just the root).
- Can replace the key of an entry.
- Can replace the value of an entry.
- Uses location-aware entities to find an entry in a priority queue efficiently.
- Location-aware entry keeps one more field, current index of the entry in an array-based heap.

Priority Queues Adaptable Priority Queue

Illustration of removeMin

Priority Queues Adaptable Priority Queue

Illustration of removeMin

Priority Queues HeapAdaptablePriorityQueue Class

- Extends HeapPriorityQueue class.
- An entry in the queue

```
protected static class AdaptablePQEntry<K,V> extends PQEntry<K,V> {
private int index;  // entry's current index within the heap

public AdaptablePQEntry(K key, V value, int j) {
    super(key, value);  // this sets the key and value
    index = j;  // this sets the new field
}

public int getIndex() { return index; }

public void setIndex(int j) { index = j; }
}
```

Priority Queues HeapAdaptablePriorityQueue Class

• <u>HeapAdaptablePriorityQueue.java</u> code.

- Map is a data structure to efficiently store and retrieve values based on search keys.
- Map stores (key, value) pairs.
- Each (key, value) pair is called an entry.
- Keys are unique.
- Maps are also known as associative arrays.
- Applications:
 - (movie title, movie information)
 - (part number, part information)
 - (reservation number, reservation information)
 - (student id, student information)

- size(): Returns the number of entries in *M*.
- isEmpty(): Returns true if M is empty. Returns false, otherwise.
- get(k): Returns the value v associated with the key k, if such entry exists. Returns null, otherwise.
- put(k, v): If there is no entry in M with a key equal to k, then adds the entry (k, v) to M and returns null.
 Otherwise, replaces the existing value associated with the key k with v and returns the old value.

- remove(k): Removes from M the entry with the key k and returns its value. If there is not entry in M with the key k, returns null.
- keySet(): Returns an iterable collection containing all keys in M.
- values(): Returns an iterable collection containing all values in M. If multiple keys map to the same value, then the value appears multiple times in the returned collection.
- entrySet(): Returns an iterable collection containing all (key, value) entries in M.

Map interface

```
1 public interface Map<K,V> {
2  int size();
3  boolean isEmpty();
4  V get(K key);
5  V put(K key, V value);
6  V remove(K key);
7  Iterable<K> keySet();
8  Iterable<V> values();
9  Iterable<Entry<K,V>> entrySet();
10 }
```

• Note: *java.util.Map* interface provides more extensive set of operations than those defined above.

- Simple application example: Word Frequency
 - Counts frequency of each word in a text.
 - Create an empty map.
 - In the map, an entry is (word, frequency) pair.
 - Read one word at a time.
 - If the word is not in the map, insert it and set frequency = 1
 - If the word is already in the map, increment the frequency of the word.
- WordCount.java code.

Maps Hash Tables

- Hash table is an efficient implementation of a map.
- Consider a map that stores n entries.
- Assume keys are integers in the range [0, N 1] and values are characters, usually N ≥ n.
- We can design a lookup table of length N as follows, where keys are used as indexes:

0	1	2	3	4	5	6	7	8	9	10
	D		Z			С	Q			

Lookup table's capacity N = 11

Currently there are 4 entries: (1,D), (3,Z), (6,C), and (7,Q)

Maps Hash Tables

Issues:

- The domain of keys may be much larger than the actual number of elements to be stored in the table, i.e., N >> n. This is a waste of space.
- Keys may not be integers. Then, they cannot be used as indexes in the table.

Solution:

- Use a *hash function* that maps keys to integers in the range [0, N-1], distributing keys relatively evenly.
- N doesn't have to be very large (could be smaller).

Maps Hash Tables

- Ideally a hash function distributes keys evenly across the table.
- In practice, some keys are mapped to the same location.
- One solution: each slot in the table keeps a bucket which stores a collection of entries. This table is called bucket array.

Maps Hash Function

- Two step process:
 - Hash code maps keys of arbitrary object type to integers. The resulting integer is also called hash code.
 - Compression function maps the hash code to integers in the range [0, N – 1]

Maps Hash Code

- Treat bit representation of base types as integers
- Polynomial hash code: used for strings or variable-length objects
- Cyclic-shift hash code: a variant of polynomial hash code
- Java has a default *hashCode*() function defined in the *Object* class, which returns a 32-bit integer of *int* type.
- When designing a hashCode() for a user-defined class,
 make sure: If x.equals(y), x.hashCode() = y.hashCode()

Compression Function

- When two keys are mapped to the same hash table index, it is called *collision*.
- A good compression function must distribute hash codes (of keys) relatively uniformly across the hash table to minimize collisions.
- Will discuss two compression functions (compression functions are often called just *hash functions*):
 - division method
 - MAD (multiply-add-and-divide) method

Compression Function

- Division method: i mod N,
 where i is an integer (such as a hash code) and N is the hash table size.
- MAD method: [(ai + b) mod p] mod N,
 where N is hash table size, p is a prime number larger than N, and a and b are integers in [0, p 1], a > 0.

Maps Compression Function

 MAD method is better (in terms of well distributing keys across the has table), but division method is more efficient.

Maps Collision Handling

- When two keys are mapped to the same slot in the hash table, it is called *collision*.
- Will discuss two collision resolution approaches: chaining and open addressing.
- Chaining: Each slot in the table keeps an unsorted list and all keys that are mapped to the same slot are kept in the list.

Maps Chaining Method

- Advantage: Easy to implement
- Drawback:
 - Additional storage
 - In the worst case, all keys are stored in the same list, which increases running time.
- Running time
 - Load factor $\lambda = n / N$, which is expected size of a list.
 - Map operations run in $O(\lceil n/N \rceil)$ or $O(\lambda)$
 - If keys are well distributed, $O(\lambda) = O(1)$ and running time is O(1).
 - In the worst case, O(n).

Maps Open Addressing

- All entries are stored in a hash table itself.
- No additional data structure and no additional storage space is needed.
- When adding a new key causes a collision, an alternative location in the table is found and the new element is stored in that location.
- Will briefly discuss three open addressing techniques linear probing, quadratic probing, and double hashing.

- Assume A is the array of a hash table.
- Inserting an entry (k, v).
 - Hash function h is applied to key k, i.e., j ← h(k). We say k is mapped to j.
 - If A[j] is empty, then the entry is stored there, i.e., $A[j] \leftarrow (k, v)$.
 - If that slot is occupied, the next bucket A[j+1] is probed to see whether it is available.
 - If it is empty, the entry is stored there. Otherwise, the next bucket, A[j+2], is probed, and so on, until an empty slot is found or all slots have been probed.
 - The sequence of slots probed, called *probe sequence*, is determined by $A[(j+i) \mod N]$, for i = 0, 1, 2, ..., N-1.
 - − *i* is called *probe number*.

Linear Probing

• Illustration: N = 10, $h = k \mod N$, keys are added in the following order: 4, 12, 14, 24.

	24			\ \	\bigcirc	\bigcirc			
0	1	2	3	4	5	6	7	8	9
		12		4	14	24			

- Searching an entry with key = k.
 - A key k is mapped to the array index j, i.e., $j \leftarrow h(k)$.
 - If A[j] is empty, then conclude the entry is not in the hash table.
 - If that slot is occupied and it has the entry with k, then the entry is found.
 - If the slot is occupied and the key of the entry in the slot is not k, the next bucket, A[j+2], is probed, and so on, until the entry is found or all slots have been probed.

- Deleting an entry:
 - Assume initially all slots are empty.
 - Assume we want to remove an entry in A[/].
 - We cannot simply remove the entry in A[j].
 - Assume the current table is:

 0	1	2	3	4	5	6	7	8	9
		12		4	14	24			

- And, we delete an entry with key = 14.

After deleting entry with key = 14

 0	1	2	3	4	5	6	7	8	9
		12		4		24			

• Search entry with key = 24

24 is mapped to A[4]; occupied; A[5] is probed; empty; conclude entry with key = 24 is not in the table => this is wrong.

se	arch 2	4 —		\ /	\bigcirc				
0	1	2	3	4	5	6	7	8	9
		12		4		24			

Linear Probing

- Solution: Put a "special object" or a "defucnt" object in the slot from which an entry is deleted.
- For example, place φ in the slot when an entry is removed.
- After removing entry with key = 14

0	1	2	3	4	5	6	7	8	9
		12		4	ф	24			

- When inserting, the slot with ϕ is considered empty.
- When searching and entry with key = k, the slot with φ is considered having an entry with a key ≠ k.

- Linear probing tends to create primary clustering.
- A cluster is a contiguous occupied slots.
- Once a cluster is formed, it tends to grow, which is called primary clustering.

Quadratic Probing

- Uses a quadratic function to determine the next slot to probe.
- Example: Probe sequence is determined by $A[(h(k) + f(i)) \mod N]$, for i = 0, 1, 2, ..., N 1, where $f(i) = i^2$
- Assume that we are inserting a key 24 and it is mapped to A[4], and that it is occupied. Then, the probe sequence is:

```
A[(4 + 1^2) \mod 10] = A[5],

A[(4 + 2^2) \mod 10] = A[8],

A[(4 + 3^2) \mod 10] = A[3],
```

Maps Quadratic Probing

- Quadratic hashing does not have primary clustering.
- But, it still has clustering problem, which is called secondary clustering.
- There are quadratic probing methods that use different quadratic functions.

Maps Double Hashing

- Does not cause serious clustering problem.
- Uses two hash functions.
- Probe sequence is determined by $A[(h(k) + i \cdot h'(k)) \mod N]$, for i = 0, 1, 2, ..., N 1
- One common secondary hash function h' is:
 h'(k) = q (k mod q), for some prime number q < N, N is prime
- Another common h' is:
 h'(k) = 1 + (k mod N'), where N' is slightly smaller than N, N is prime

Maps Double Hashing

• Example (of the second *h*')

$$h(k) = k \mod 13$$

 $h'(k) = 1 + (k \mod 11)$
 $h(k, i) = (h(k) + i*h'(k)) \mod m$

- Inserting k = 14, h(k) = 1, h'(k) = 4
- h(14) = 1, occupied
- -i = 1: 1 + 4 = 5, occupied
- -i = 2: 1 + 8 = 9, empty, store 14 here

Load Factor and Efficiency

- Load factor is defined as λ = n / N
- A larger value of λ means there is higher probability of collisions.
- So, a smaller λ is better.
- With chaining method, λ could be greater than 1.
- With open addressing, $\lambda \le 1$.
- Performance of chaining method:
 - A theoretical analysis shows that the average number of slots that need to be probed for a successful search is approximately $1+\frac{\lambda}{2}$.

Load Factor and Efficiency

- Performance of chaining method (continued):
 - Let C be the average number of elements that need to be probed for a successful search.

λ	С
0.5	1.25
0.7	1.35
1.0	1.5
2.0	2

– Java uses chaining method and λ is set to 0.75 or less by default.

Load Factor and Efficiency

- Performance of double hashing:
 - The average number of slots that need to be probed for a successful search is approximately $\frac{1}{\lambda} \ln \frac{1}{1-\lambda}$
 - Let C be the average number of slots that need to be probed for a successful search.

λ	С
0.3	1.19
0.5	1.39
0.7	1.72
0.9	2.56

References

 M.T. Goodrich, R. Tamassia, and M.H. Goldwasser, "Data Structures and Algorithms in Java," Sixth Edition, Wiley, 2014.