

Carbon Nanomaterials

Img credit | https://www.advancedsciencenew s.com/carbon-nanomaterials-in-healthcare-video/

Content

- 1. Brief introduction to carbon nanomaterials
- 2. What is so special about carbon? Carbon hybridization
- 3. Fullerenes, 1st 0D carbon nanomaterial
- 4. Carbon nanotubes
- 5. Graphene

Bibliography

- 1. "Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes" Mauricio Terrones, Annu. Rev. Mater.Res. 2003. 33:419–501 doi: 10.1146/annurev.matsci.33.012802.100255
- 2. "Carbon Nanotubes: Present and Future Commercial Applications" Volder et al, Science, 2013, 339, 535, http://science.sciencemag.org/content/339/6119/535
- 3. "Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene" Lee et al, RSC Adv., 2017, 7, 15644 https://doi.org/10.1039/C7RA00392G
- 4. "Advances and Trends in Chemically Doped Graphene", Rümmeli et al, Adv. Mater. Interfaces 2020, 7, 2000999, http://doi.org/10.1002/admi.202000999

Carbon Nanomaterials

Carbon materials

Short Chronology

1779 – Graphite (Scheele in 1779, John D. Bernal 20th)

1814 – Diamond (Davy)

1985 – Fullerenes (Kroto, Smalley, Curl)

Nobel Prize in Chemistry 1996

1991 – Carbon nanotubes (lijima)

1997 - Carbon nanofoam (Giapintzakis)

2004 – Graphene (Geim and Novoselov),

Nobel Prize in Physics 2010

Graphene

Diamond

Dresselhaus & Terrones

Proceedings of the IEEE, 2013, 101 (7) doi: 10.1109/JPROC.2013.2261271

rmelinda Macoas | ermelinda macoas@tecnico.ulisboa.pt | NMN 2223

Mildred S. Dresselhaus Queen of Carbon Science

https://youtu.be/xHeO9EYJHIs

Carbono

Carbon hybridization

Diamond vs graphite sp³ vs sp²

Nobel Prize in Chemistry 1996

Fullerenes

Robert F.Curl Jr. Rice University

Sir Harold W. Kroto Sussex University

Richard E. Smalley Rice University

Fullerenes

even numbers of carbons

C_{20+2xHex} faces

12 pentagonal rings m = (Cn-20)/2 hex rings

1 nm

- High molecular symmetry
- Large number of delocalized p-electrons
- Strong electron acceptors (radical scavengers/antioxidant)
- High triplet generation yield (singlet oxygen sensitizer = oxidant)
- Good thermal and pressure stability

Color Odor Formula Weight Density Standard heat of formation Index of refraction Boiling point Resistivity Crystal form Optical band gap Vapor pressure Solub lity

Black Solid Odorless 720.65 $1.7 \text{ to } 1.9 \text{ gcm}^{-3}$ 9.08 k calmol⁻¹ 2.2 (600nm) Sublimes at 800K 1014 ohms m⁻¹ Hexagonal cubic 1.68 eV 5×10^{-6} torr at room temperature and $8 \times 10^{-4} \text{ torr at } 800 \text{K}$ Benzene, toluene and chloroform

Poor solubility (1-5 mg/ml) strongly limits processability

Carbon Nanomaterials

Img credit | https://www.advancedsciencenew s.com/carbon-nanomaterials-in-healthcare-video/