Teoría de Lenguajes

Clase Teórica 4
Expresiones Regulares y gramáticas regulares

Primer Cuatrimestre 2024

Bibliografía

Capítulo 3, Introduction to Automata Theory, Languages and Computation, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

En esta clase

- ▶ Definición de expresión regular
- ► Teorema: Para cada expresion regular r hay un AFND- λ M con un solo estado final y sin transiciones de salida tal que $\mathcal{L}(r) = \mathcal{L}(M)$.
- ▶ Teorema: Para cada AFD M hay una expresion regular r tal que $\mathcal{L}(r) = \mathcal{L}(M)$.

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 . Definimos la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},\,$$

definido sobre el alfabeto $\Sigma_1 \cup \Sigma_2$.

La clausura de Kleene de un lenguaje $L\subseteq \Sigma^*$ es el lenguaje L^* que se define así:

- ▶ $L^0 = \{\lambda\}$
- $L^n = LL^{n-1} \text{ para } n \ge 1$
- $L^* = \bigcup_{n \ge 0} L^n.$

La clausura positiva de un lenguaje $L\subseteq \Sigma^*$ es el lenguaje L^+ definido por :

$$L^+ = \bigcup_{n \ge 1} L^n.$$

Por lo tanto $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$.

Definición

Dado un alfabeto Σ , una expresión regular denota un lenguaje sobre Σ :

- ▶ Ø es una expresión regular que denota el conjunto vacío ∅.
- \triangleright λ es una expresión regular que denota el conjunto $\{\lambda\}$.
- ▶ para cada $a \in \Sigma$, a es es una expresión regular que denota el conjunto $\{a\}$.

Notación

Lo anterior puede escribirse como :
$$\mathcal{L}(r) = R$$
, $\mathcal{L}(s) = S$, $\mathcal{L}(r \mid s) = R \cup S$, $\mathcal{L}(rs) = RS$, $\mathcal{L}(r^*) = R^*$ y $\mathcal{L}(r^+) = R^+$.

Ejemplo

- ▶ 00
- $(0 | 1)^*$
- $(0 \mid 1)^* 00 (0 \mid 1)^*$
- ► (1 | 10)*
- $(0 \mid \lambda) (1 \mid 10)^*$

Teorema

Dada una expresión regular r, existe un AFND- λ M con un solo estado final y sin transiciones a partir del mismo tal que $\mathcal{L}(M) = \mathcal{L}(r)$.

Demostración. Caso base: $r = \emptyset$,

Caso base: $r = \lambda$,

Caso base: r = a.

Caso inductivo: supongamos la expresión regular es $r_1|r_2, r_1r_2, r_1^*$, ó r_2^+ y asumimos que vale la propiedad para r_1 y para r_2 .

Es decir, tanto para r_1 como para r_2 existen AFND- λ M_1 y M_2 con un solo estado final y sin transiciones a partir del mismo, tal que

$$\mathcal{L}(M_1) = \mathcal{L}(r_1)$$
 y $\mathcal{L}(M_2) = \mathcal{L}(r_2)$.

 $\begin{array}{c} \textbf{Caso} \ r = r_1 \mid r_2. \ \text{Por h.i. existen} \ M_1 = \langle Q_1, \Sigma_1, \delta_1, q_1, \{f_1\} \rangle \ \text{y} \\ M_2 = \langle Q_2, \Sigma_2, \delta_2, q_2, \{f_2\} \rangle \ \text{tales que} \ \mathcal{L} \left(M_1\right) = \mathcal{L} \left(r_1\right) \ \text{y} \\ \mathcal{L} \left(M_2\right) = \mathcal{L} \left(r_2\right). \ \text{Sea} \ M = \langle Q_1 \cup Q_1 \cup \{q_0, f_0\} \,, \Sigma_1 \cup \Sigma_1, \delta, q_0, \{f_0\} \rangle \\ M_1 \\ \hline \end{array}$

▶
$$\delta (q_0, \lambda) = \{q_1, q_2\}$$
▶ $\delta (q, a) = \delta_1 (q, a)$ para $q \in Q_1 - \{f_1\}$ y $a \in \Sigma_1 \cup \{\lambda\}$
▶ $\delta (q, a) = \delta_2 (q, a)$ para $q \in Q_2 - \{f_2\}$ y $a \in \Sigma_2 \cup \{\lambda\}$
▶ $\delta (f_1, \lambda) = \delta (f_2, \lambda) = \{f_0\}.$

Caso $r = r_1 r_2$.

Por h.i. existen $M_1=\langle Q_1,\Sigma_1,\delta_1,q_1,\{f_1\}\rangle$ y $M_2=\langle Q_2,\Sigma_2,\delta_2,q_2,\{f_2\}\rangle$, tales que $\mathcal{L}\left(M_1\right)=\mathcal{L}\left(r_1\right)$ y $\mathcal{L}\left(M_2\right)=\mathcal{L}\left(r_2\right)$ respectivamente.

Entonces podemos construir el autómata

$$M = \langle Q_1 \cup Q_2, \Sigma_1 \cup \Sigma_2, \delta, q_1, \{f_2\} \rangle$$

- $\delta(f_1, \lambda) = \{q_2\}$

Caso $r = r_1^*$.

Por h.i. existe $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_1, \{f_1\} \rangle$, tal que $\mathcal{L}\left(M_1\right) = \mathcal{L}\left(r_1\right)$. Entonces podemos construir el autómata

$$M = \langle Q_1 \cup \{f_0, q_0\}, \Sigma_1, \delta, q_0, \{f_0\} \rangle$$

- $\blacktriangleright \ \delta \left(q,a\right)=\delta _{1}\left(q,a\right) \ \mathsf{para} \ q\in Q_{1}-\left\{ f_{1}\right\} \ \mathsf{y} \ a\in \Sigma _{1}\cup \left\{ \lambda \right\}$
- $\delta(q_0, \lambda) = \delta(f_1, \lambda) = \{q_1, f_0\}.$

Caso $r = r_1^+$.

Dado que $r_1^+ = r_1 r_1^*$, queda demostrado por los casos anteriores.

Indicar Verdadero o Falso, justificar

- 1. r|s = s|r
- 2. $(r^*)^* = r^*$
- 3. $\emptyset^* = \lambda$
- 4. $(r|s)^* = r^*|s^*|$
- 5. $(rs|r)^*r = r(sr|r)^*$

Teorema

Dado un AFD $M = \langle \{q_1, \dots, q_n\}, \Sigma, \delta, q_1, F \rangle$ existe una expresión regular r tal que $\mathcal{L}(M) = \mathcal{L}(r)$.

Demostración. Denotemos con $R^k_{i,j}$ el conjunto de cadenas de Σ^* que llevan al autómata M desde el estado q_i al estado q_j pasando por estados cuyo índice es, a lo sumo, k. Definamos $R^k_{i,j}$ en forma recursiva:

$$R_{i,j}^k = R_{i,k}^{k-1} \left(R_{kk}^{k-1} \right)^* R_{k,j}^{k-1} \cup R_{i,j}^{k-1} \text{ para } k \geq 1$$

$$R_{i,j}^0 = \left\{ \begin{array}{ll} \{a: \delta\left(q_i, a\right) = q_j\} \ , a \in \Sigma & \text{si } i \neq j \\ \{a: \delta\left(q_i, a\right) = q_j\} \cup \{\lambda\} \ , a \in \Sigma & \text{si } i = j \end{array} \right.$$

Caso base: k=0. Debemos dar r_{ij}^0 , tal que $\mathcal{L}\left(r_{ij}^0\right)=R_{ij}^0$. $R_{i,j}^0$ es el conjunto de cadenas de un solo caracter o λ . Por lo tanto, r_{ij}^0 es:

- ▶ $a_1 \mid \ldots \mid a_p$,con a_1, \ldots, a_p símbolos de Σ , si $\delta\left(q_{i,}a_s\right) = q_j$ para $s = 1, \ldots, p$ y $q_i \neq q_j$.
- ▶ $a_1 \mid \ldots \mid a_p \mid \lambda$,con a_1, \ldots, a_p símbolos de Σ , si $\delta\left(q_i, a_s\right) = q_j$ para $s = 1, \ldots, p$ y además $q_i = q_j$.
- \triangleright \varnothing , si no existe ningún a_i que una q_i y q_j y $q_i \neq q_j$.
- $ightharpoonup \lambda$, si no existe ningún a_i que una q_i y q_j y además $q_i=q_j$.

Caso inductivo. Por hipótesis inductiva, tenemos:

$$\mathcal{L}(r_{ik}^{k-1}) = R_{ik}^{k-1}, \ \mathcal{L}(r_{kk}^{k-1}) = R_{kk}^{k-1}, \ \mathcal{L}(r_{kj}^{k-1}) = R_{kj}^{k-1} \ \text{y} \ \mathcal{L}(r_{ij}^{k-1}) = R_{ij}^{k-1}.$$
 Definimos $r_{ij}^k = r_{ik}^{k-1} \left(r_{kk}^{k-1}\right)^* r_{kj}^{k-1} \mid r_{ij}^{k-1} \ \text{y} \ \text{verificamos que}$

$$\begin{split} \mathcal{L}\left(r_{ij}^{k}\right) &= \mathcal{L}\left(r_{ik}^{k-1} \left(r_{kk}^{k-1}\right)^{*} r_{kj}^{k-1} \mid r_{ij}^{k-1}\right) \\ &= \mathcal{L}\left(r_{ik}^{k-1} \left(r_{kk}^{k-1}\right)^{*} r_{kj}^{k-1}\right) \cup \mathcal{L}\left(r_{ij}^{k-1}\right) \\ &= \mathcal{L}\left(r_{ik}^{k-1}\right) \mathcal{L}\left(r_{kk}^{k-1}\right)^{*} \mathcal{L}\left(r_{kj}^{k-1}\right) \cup \mathcal{L}\left(r_{ij}^{k-1}\right) \\ &= R_{ik}^{k-1} \left(R_{kk}^{k-1}\right)^{*} R_{ki}^{k-1} \cup R_{ik}^{k-1} \end{split}$$

Entonces, como
$$O = \{a, \dots, a\} \setminus \{a\}$$
 es el estado inicial de M

$$\mathcal{L}(M) = R_{1j_1}^n \cup \ldots \cup R_{1j_m}^n, \text{ con } F = \{q_{j_1},\ldots,q_{j_m}\}$$

$$= \mathcal{L}(r_{1:}^n) \cup \ldots \cup \mathcal{L}(r_{1:}^n)$$

$$\mathcal{L}(M) = R_{1j_1}^n \cup \ldots \cup R_{1j_m}^n, \text{ con } F = \{q_{j_1}, \ldots, q_{j_m}\}$$

$$= \mathcal{L}(r_{1j_1}^n) \cup \ldots \cup \mathcal{L}(r_{1j_m}^n)$$

$$= \mathcal{L}(r_{1j_1}^n \mid \ldots \mid r_{1j_m}^n)$$

 $=R_{i,i}^k$ Entonces, como $Q = \{q_1, \dots q_n\}$ y q_1 es el estado inicial de M,