Behemoth: A Flash-centric Training Accelerator for Extreme-scale DNNs

Kim, Shine., Yunho, Jin., Gina, Sohn., Jonghyun, Bae., Taejun, Ham., Jaewook, Lee. **USENIX FAST'21** Seoul National University and Samsung Electronics

2024. 08. 21

Presentation by Nakyeong Kim

nkkim@dankook.ac.kr

Contents

- 1. Introduction
- 2. Background and Motivation
- 3. Behemoth Overview
- 4. Flash Memory System
- 5. Evaluation
- 6. Conclusion

Extremely Large Model Era

Figure 1: Trends of model size scaling with large NLP models

Extremely Large Model Era

Figure 1: Trends of model size scaling with large NLP models

Figure 1: Trends of model size scaling with large NLP models

Figure 1: Trends of model size scaling with large NLP models

Memory Capacity Problem

- Two Solution
 - 1. Discard some computation results and recalculate
 - Utilize model parallelism (HBM-based memory)

Memory Capacity Problem

- Two Solution
 - Discard some computation results and recalculate
 - Incur amount of extra computation
 - 2. Utilize model parallelism (HBM-based memory)
 - Require careful load balancing and stall arise (by dependency)

2. Background

DNN Training

- Repeated until error threshold reached
- Training process is deterministic
- Training require extra storage to buffer each layers' output and weight

2. Background

DNN Training – Challenge

- TPU have inefficient memory systems that unnecessarily expensive
 - Each value in the matrix is reused many times, requiring small number of memory access

	Computation (TFLOPS)	I/O Bandwidth (GB/s)
GPT	73.7	9.26
TPU with HBM	105	600

2. Background

DNN Training – Challenge

- TPU have inefficient memory systems that unnecessarily expensive
 - Each value in the matrix is reused many times, requiring small number of memory access

	Computation (TFLOPS)	I/O Bandwidth (GB/s)	
GPT	73.7	9.26	der-utilized
TPU with HBM	105	600	uer-utilizet

2. Motivation

Flash Memory System

- Cost-effective large-scale language model training platform
 - Replace HBM to flash memory
 - Architect for language model

- Need to address
 - Extremely-low bandwidth
 - Endurance

Architecture

Data Parallelism

- Training dataset is partitioned across multiple devices
- To satisfy computation, memory, and bandwidth requirements, integrate one Weight Node with multiple Activation Nodes

Architecture

- Model Analysis
- Sequence Generating
 - DMA command sequence: control data transfer between Tensor Buffer and NAND flash devices
 - Computation command sequence: list operation commands to perform on Compute Core

Execution Walk-Through – Forward Path

- Each steps can be overlapped
 While computation is performed on Activation Node, weights on Weight Node are prefetched
- Activation tensor in Tensor Buffer is written to NAND flash for reuse during backward propagation

Execution Walk-Through – Backward Path

- Like forward propagation, all steps are pipelined and operated in parallel
- After calculation of all layers is completed, final weight gradient tensor is transferred from Activation Node to Tensor Buffer of Weight Buffer
- If all weight gradients have been received, Weight Node update training results to weights

Problems

- Limited bandwidth
- 2. Endurance

Problems

- Limited bandwidth
- 2. Endurance

To fully utilize high peak bandwidth of NAND device

- Make writing sequential as much as
- Prevent slow NAND firmware running from being bottleneck

Data Access Pattern

Written by host before training start Discarded once training finished

Written by Compute Core during forward path of t Consumed during backward path of training

Table 1: DNN training data types and multi-stream support

		0	J I		1.1	
	#: Stream name			Access pe	ermission	
	(Act. Node / Weight Node)	Persistency	Retention	Host	Behemoth	
[1: NV-Stream	Non-volatile	Years	Append-only	Read only	
	(Training inputs $/-$)	Non-volatile	icais	seq. write	Read Offiy	
	2: V-Stream				Read &	
tr	ainingctivations /	Volatile	Minutes	N/A	Append-only	
-]	Interm. weights)				seq. write	
	3: NV-Stream				Read &	
	(-/ Trained weights)	Non-volatile	Years	Read only	Append-only	
	(-/ Trained weights)				seq. write	

Data Access Pattern

Updated at end of each iteration
Only updated at end of training
Later read by host CPU

Table 1: DNN training data types and multi-stream support

	_	• •		
#: Stream name			Access pe	ermission
(Act. Node / Weight Node)	Persistency	Retention	Host	Behemoth
1: NV-Stream	Non-volatile	Years	Append-only	Read only
(Training inputs / –)	Non-volatile	Tears	seq. write	Read only
2: V-Stream				Read &
(Activations /	Volatile	Minutes	N/A	Append-only
Interm. weights)				seq. write
3: NV-Stream				Read &
(-/ Trained weights)	Non-volatile	Years	Read only	Append-only
(-/ Trained weights)				seq. write

Data Access Pattern

- Each two data types housed in same device
- It is beneficial to separate different types of data to logically isolated spaces

Table 2: NAND block layout for a chip and multi-stream attributes of Activation Node

	NAND Block Layout Stream attribu				attributes		
	Plane PBN	0 1 7		Capacity	P/E cycle/		
	0	FTL Metadata				Retention	Retention
	9	(LBN2PBN map, PB metadata, etc)					
3	10	1.	1: NV-Stream (training input)				50K /
00	92	1.	. 14 4-3116	am (training mpt	11)	249 GiB	1 year
'8	93	2	· V Stron	m (activation date	a)	1737 GiB	2M /
0	671	2: V-Stream (activation data) 1737 GiB 1 da					1 day
	672	Reserved blocks for bad block replacement					
	682	IXESEI VEL	I DIOCKS I	or bad block rep	iaccillelli		

Data Access Pattern

- Each two data types housed in same device
- It is beneficial to separate different types of data to logically isolated spaces

83

578

→ Sequential Write

Each single stream can have their own logical address space, access permission, allowed P/E cycle

Table 2: NAND block layout for a chip and multi-stream attributes of Activation Node

NAND Block Layout				Stream a	attributes	
Plane PBN	0	1		7	Capacity	P/E cycle/
0 FTL Metadata				Retent	Retention	
9	(LBN2PBN map, PB metadata, etc)					
10	1: NV-Stream (training input)				249 GiB	50K /
92	1.	. IN V-SHE	am (training mpt	11)	249 GIB	1 year
93	2	· V Stroot	m (activation dat	a)	1737 GiB 2M	2M /
671		. v-Sueai	m (activation data	a)	1/3/ GIB	1 day
672	Deserve	d blocks f	locament			
682	Kesei vei	i blocks i	or bad block replacement			

Seperation via Data Types

- Enable optimizations
 - Lightweight FTL
 Only sequential writes, complicated GC and wear-leveling is unnecessary
 - → Remove GC functionality
 - → Replace wear-leveling block allocator with simple round-robin block allocator
 - Hardware automation of write path

Round-Robin Block Allocation

Seperation via Data Types

- Enable optimizations
 - Lightweight FTL
 - Hardware automation of write path
 Modern SSD controllers adopt read automation feature by exploiting specialized hardware
 Write path is much more complex than read path (still rely on firmware)
 - 1. Garbage collecting
 - 2. Wear-leveling
 - 3. Guaranteeing data consistency
 - 4. Managing metadata for recovery
 - 5. Handling exceptions for P/E failures

Seperation via Data Types

- Enable optimizations
 - Lightweight FTL
 - Hardware automation of write path
 Modern SSD controllers adopt read automation feature by exploiting specialized hardware
 Write path is much more complex than read path (still rely on firmware)
 - 1. Garbage collecting
 - 2. Wear leveling → Minimized
 - 3. Guaranteeing data consistency
 - 4. Managing metadata for recovery → unnecessary for temporary data
 - 5. Handling exceptions for P/E failures → Rare
 - → Prevent firmware from being bottleneck

Endurance

- FMS use flash as temporary buffer for activations and intermediate weights
- Frequently reprogrammed values → affect SSD lifespan? (no)
- If stored data only a few minutes, enough to keep data until guaranteed retention time
- Reduced retention reduce need for hardware resources
 (e.g., complex ECC engines or extra over-provisioning space)

Environment

- Comparison
 - TPU-based DNN training system (for Behemoth) 1)
 - Conventional SSD (for FMS) 2)
- Metric
 - Memory cost (1)
 - Throughput (2)
 - Tensor lifespan (2)
- Model
 - Compute Core by MAESTRO
 - FMS by MQSim

Workloads (12)

Table 3: DNN models evaluated with Behemoth. We use a sequence length of 2048 (tokens) for each model.

Model	Size	Total act. (GB)	Total weight (GB)	PFLOP
	1×1	44	350	2.15
	1×2	88	698	4.42
BERT/GPT3-like [5, 18]	1×4	175	1393	8.56
BERT/GP13-like [3, 18]	2×1	88	1395	8.56
	2×2	175	2786	17.12
	2×4	349	5569	34.21
	1×1	40	305	0.62
	1×2	80	609	1.25
T5-like [54]	1×4	160	1218	2.49
13-like [34]	2×1	80	1218	2.49
	2×2	160	2436	4.99
	2×4	319	4871	9.97

Sequence: 2048 tokens

Activation: 1 batch Size: Width x Dimension

Batch: 1

Memory Cost – Platform

- Model parallelism is difficult to loadbalance
 - GPT-3 with 24-stage pipeline
- Data parallelism enable complete model to be trained on single device

Table 4: Platform configurations for the cost evaluation of Behemoth.

Jenemoun.				
		NPU Parameters		
Number of cores		16 cores (52.5 T	CFLOPs per core)	
Number of PEs		524	1,288	
Peak throughput	840 TFLOPs			
Host I/F conf.		PCIe Gen4 × 32 lane [51]		
		Memory Parameter	rs	
	Re	sembled TPU [27]	Bell emoth	
Buffer conf.		16GB HBM	16GB DDR4 DRAM + 2TB NAND flash	
Peak bandwidth		300GB/s	50GB/s	
		Compute Paramete	rs	
Parallel comp. method	ı	Model parallelism	Data parallelism	

Memory Cost – Platform

Figure 8: Memory cost comparison between TPU v3 [27] and Behemoth. $W \times D$ in the figure illustrates that the dimension of each layer is increased by W times and the number of layers is increased by D times.

Memory Cost – Platform

GPT3 have many parameters, which need more memory capacity in training It also support more long sequences

Figure 8: Memory cost comparison between TPU v3 [27] and Behemoth. $W \times D$ in the figure illustrates that the dimension of each layer is increased by W times and the number of layers is increased by D times.

Throughput – Storage

Table 5: FMS and conventional storage configuration.

	Storage Parameter			
	Behemoth FMS	Baseline SSD X 4		
	2ТВ,	500GB,		
NAND	64 channels,	16 channels,		
Configurations	2 chips/channel,	2 chips/channel,		
	1 die/chip	1 die/chip		
Channel	1200	MT/s		
Speed Rate	(MT/s: Mega Transf	ers per Second [20])		
NAND	128Gb SLC / die	e: 8 planes / die,		
Structure	683 blocks / plane, 768	pages / block, 4KB page		
NAND Latency	Read: 3µs, Program: 100µs, Block erase: 5ms			
Buffer Configurations	SRAM 16MB: 6MB for FTL metadata, 10MB for I/O buffer	DRAM 512GB: FTL metadata SRAM 8MB: I/O buffer, GC Buffer		
FTL Schemes	Block mapping	Page mapping, Preemtible GC [38]		
OP ratio	N/A	7%		
Firmware Latency	N/A	Write: 1.45μs / a page (4KB)		
Contoller	Read: 1.93µs / an NVMe Cmd,	Read:		
Latency	Write: 1.18 <i>u</i> s / an NVMe Cmd	$1.93\mu s$ / an NVMe Cmd		

Bandwidth: 2.75GB/s * 4 = 11.0GB/

Throughput – Storage

Figure 9: DNN training throughput of 432 Behemoths over various model sizes.

- Behemoth is close to ideal case (zero overhead from memory accesses)
- Baseline SSD achieve limited throughput bottlenecked by SSD firmware
- Lower speedup on wider models in BehemothFMS is because of higher data reuse (less bandwidth)

Throughput – Storage

Figure 9: DNN training throughput of 432 Behemoths over various model sizes.

- Behemoth is close to ideal case (zero overhead from memory accesses)
- Baseline SSD achieve limited throughput bottlenecked by SSD firmware
- Lower speedup on wider models in BehemothFMS is because of higher data reuse (less bandwidth)

Tensor Lifespan – Storage

Figure 10: Tensor lifespan

- Longest lifespan of tensors is 41s
- Reducing retention time (1y \rightarrow 3d) can increase P/E cycle by 40x \sim
- BehemothFMS guarantee to function 6.6 years with T5-like models
- We also assume that WAF is 1, because there no GC operations

Tensor Lifespan – Storage

- Longest lifespan of tensors is 41s
- Reducing retention time (1y \rightarrow 3d) can increase P/E cycle by 40x~
- BehemothFMS guarantee to function 6.6 years with T5-like models > 5y warranty
- We also assume that WAF is 1, because there no GC operations

6. Conclusion

- Recent DNN models require much more memory space for training as NLP grows exponentially. However, conventional DNN training platform(e.g., NVIDIA GPUs or Google TPUs) provide insufficient capacity, which leads to excessive cost and memory bandwidth underutilization.
- We propose Behemoth, a flash-based memory system for cost-effective training platform targeting extreme-scale DNN models. It overcomes low-bandwidth and endurance problem of SSDs by separating data according to their characteristics.
- Behemoth achieve much smaller memory system cost than conventional DNN training platform utilizing HBM devices.

Q&A

Thank you!

2024. 08. 21 Presentation by Nakyeong Kim

nkkim@dankook.ac.kr

