Opic

Continuous Optimization I

Today

Applications of gradient descent · Linear system solving

Wewton's method (another iterative method for continuous optimization)

Applications!

- · Computing roots
- · Unconstrained minimization

Review of last time

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x}(x) \\ \frac{\partial f}{\partial x}(x) \end{bmatrix} \in \mathbb{R}^n$$

Gradient Descent Hethod

Start with
$$x^{\circ}$$

Repeat

 $x^{k+1} = x^{k} - n_{k} \nabla f(x^{k})$

based on Taylor Expansion
$$f(x) = f(x^{i}) + \nabla f(x^{i}) (x-x^{i}) + \frac{1}{2} (x-x^{i})^{T} \nabla^{2} f(x^{i}) (x-x^{i})_{t...}$$
linear approximation "error" hopefully small

Known fact gradient descent converges to \tilde{x} st. $\nabla f(\tilde{x}) = 0$ might not even be local min:

might not even be local min.

could be local max or siddle pt.

but all local mins are critical!

(if convex, all critical pts are local mins)

Linear Systems Solving

Given system of linear equations
$$a_{i} \times_{i} + a_{12} \times_{2} + \dots + a_{1m} \times_{n} = b_{i}$$

$$a_{2i} \times_{1} + a_{2i} \times_{2} + \dots + a_{2n} \times_{n} = b_{2}$$

$$\vdots$$

$$a_{mi} \times_{i} + a_{m2} \times_{2} + \dots + a_{mn} \times_{n} = b_{mn}$$
Find $X_{i} \cdots \times_{n} = x_{n} \cdot x_{n} = x_{n} \cdot x_{n} = x_{n} \cdot x_{n}$

$$x_{i} \cdots \times_{n} = x_{n} \cdot x_{n} \cdot x_{n} + x_{n} \cdot x_{n} = x_{n} \cdot x_{n} = x_{n} \cdot x_{n}$$

$$x_{i} \cdots \times_{n} = x_{n} \cdot x_{n} \cdot x_{n} + x_{n} \cdot x_{n} = x_{n} \cdot x_{n} = x_{n} \cdot x_{n} + x_{n} \cdot x_{n} + x_{n} \cdot x_{n} = x_{n} \cdot x_{n} + x_{n} \cdot x_{n} + x_{n} \cdot x_{n} = x_{n} \cdot x_{n} + x_{n} \cdot x_{n} + x_{n} \cdot x_{n} = x_{n} \cdot x_{n} + x_{n} \cdot x_{n} + x_{n} \cdot x_{n} = x_{n} \cdot x_{n} + x_{n} \cdot$$

OR equivalently:

Given
$$A = \begin{bmatrix} a_1 & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ a_{m_1} & a_{m_2} & a_{m_n} \end{bmatrix}$$
 $b = \begin{bmatrix} b_1 \\ b_m \end{bmatrix} \in \mathbb{R}^m$

Find $X = \begin{bmatrix} x_1 \\ x_n \end{bmatrix} \in \mathbb{R}^n$

Such that $Ax = b$

How to solve?

1st idea :...

invert A:

compute A' + set X = A'b natural

why not?

· can be slow (fastest algorithm uses $\theta(n^{2.373})$

· computing A can involve Very large numbers since might need to divide by

small numbers

. if A is sparse (few non zero entries)

then At might not be

can we hope to improve?

2nd idea:

· phrase as Unconstrained minimization problem

ruse gradient descent!

Consider

$$f(x) = \frac{1}{2} x^{T} A x - bx$$

Quadratic
function

Why did we pick this crazy choice of f? (what does it have to do with our goal?)

What is ∇f ?

this is looking >> more promising!

$$\nabla f(x) = Ax - b$$

Note: $\nabla bx = b$ $\nabla (x^T B x) = 2Bx$

What does gradient descent do? if finds an extremum - where $\nabla f(\hat{x}) \approx 0$ if we find such an \hat{x} we have

O= Vf(x) = Ax-b

50 A x ≈ b

Comment: in fact, we picked of a solution!

Advantages:

Advantages:

· fast

· no division

Root finding

given
$$f:\mathbb{R}^n \to \mathbb{R}$$

find x^* s.t. $f(x^*) = 0$ = very different goal,
right?
actually, we'll see - that
it is very related

idea 1 Use gradient descent again

$$define \qquad g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2x \qquad = integral \qquad of f$$

$$g(x) = \frac{x^3}{3} - 2$$

Start with
$$X^{\circ}$$
repeat
$$X^{KH} = X^{K} - \frac{f(X^{K})}{f'(X^{K})}$$

General Case

$$f(x) = f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2} (x - x^k)^T \nabla^2 f(x^k) (x - x^k) + \dots$$
error

Setting

$$0 = \hat{f}_{k}(x) = f(x^{k}) + \nabla f(x^{k})^{T}(x - x^{k})$$

det
$$X_{k+1} = X_k - \frac{\|\Delta t(x_k)\|_3}{f(x_k)} \Delta t(x_k)$$

f is non-linear two are ignoring that

step size might not he Step size might not be small enough to make error small

=> convergence not as robust as for GD

i.e. might not converge

but if it does converge, then it is

Turns out that error is being sequenced! FAST
so if error >1, big problem
but if error 21, converges fast

Newton's method for Troots:

$$f(x) = x^{2} - q$$

$$f(x^{(k)})$$

$$x^{(k+1)} = x^{(k)} - \left(\frac{(x^{(k)})^{2} - a}{2x^{(k)}}\right) = x^{(k)} - \frac{x^{(k)}}{2} + \frac{q}{2x^{(k)}} = \frac{1}{2}\left[x^{(k)} + \frac{a}{x^{(k)}}\right]$$

$$a \text{ verage of } x^{(k)}$$

$$f'(x^{(k)})$$

$$dates \text{ back}$$

$$to \text{ 13a by lonians}$$

Example a=2

$$\chi^{(1)} = 1.50000.$$
 $(1+\frac{2}{7})/2 = 3/2$

$$\chi^{(2)} = \frac{1.41666}{1.41666} = \frac{(\frac{3}{4} + \frac{2}{312})}{2} = \frac{17}{12}$$

Error analysis

Assume multiplicative error at stage k is (I+
$$E_K$$
)
i.e. $\chi^{(K)} = \sqrt{\alpha} \left(1 + E_K \right)$

then
$$X^{(KH)} = \frac{X^{(K)} + (\frac{a}{x}a^{(K)})}{2}$$

$$= \sqrt{a} \left(1 + \varepsilon_{\kappa}\right) + \left(\frac{a}{\sqrt{a}\left(1 + \varepsilon_{\kappa}\right)}\right)$$

$$= \sqrt{a} \left[\frac{1 + \varepsilon_{K} + (1 + \varepsilon_{K})}{2} \right] = \sqrt{a} \left[\frac{1 + 2\varepsilon_{K} + \varepsilon_{K}^{2} + 1}{2(1 + \varepsilon_{K})} \right]$$

$$= \sqrt{\alpha} \left[\frac{2 + 2\varepsilon_k + \varepsilon_k^2}{2(1 + \varepsilon_k)} \right]$$

=
$$\sqrt{a} \left[1 + \frac{\epsilon_{k}^{2}}{a(1+\epsilon_{k})} \right] \leftarrow \frac{gvadratic}{convergence}$$

Newton's method + unconstrained minimization are different 1

one finds zeros,
the other finds minima

But Newton's method & unconstrained minimization are also Very related!

- · we already saw that minimization of "integral" can be used to find zeroes
- · finding zeroes can be used to solve minimization too!

e.g. to find $X^* = argmn f(x)$ for convex f

compute root of $g(x) = \|\nabla f(x)\|^2$ $g(x^*) = 0 \implies \nabla f(x^*) = 0 \implies X^* = argmin f(x)$ $\chi = argmin f(x)$ $\chi = argmin f(x)$ $\chi = argmin f(x)$