Introduction to Machine Learning

Lecture 4 Linear Models I

Goker Erdogan 26 – 30 November 2018 Pontificia Universidad Javeriana

Types of learning problems

Supervised learning	Unsupervised learning	Reinforcement learning
Learning from supervision (i.e., teacher) Given inputs and outputs , learn a function that maps input → output	Learning with no supervision Given only inputs, extract some pattern from the data.	Learning from rewards and punishments. Inspired by (operant) conditioning in psychology. The agent acts in an environment over some time. It gets reward/punishment from time to time. Needs to learn a <i>policy</i> to maximize reward.
Examples: - Recognizing faces - Predicting the sales for a product - Learning to rank search results	Examples: - Clustering (market segmentation) - Dimensionality reduction (visualization) - Generating celebrity faces	Examples: - Most robotics applications (e.g. learning to move around) - Playing games (e.g., AlphaGo)

Supervised learning

- Two main types of problems
 - Regression
 - Outputs are real-valued (quantitative)
 - Examples:
 - Predicting the sales of a product
 - Predicting the value of a home
 - Classification
 - Outputs are discrete (qualitative)
 - Examples:
 - Face/speech/object recognition
 - Predicting if a person will default on their loan
 - Predicting whether a stock will go up or down
- Note inputs can be of any type (real-valued or discrete).

Linear regression

Assume the relation between input and output is linear

$$y = \beta_0 + \sum_{d=1}^{D} x_d \beta_d$$

- β are known as parameters or coefficients
- β_0 is known as bias or intercept
- Matrix notation
 - $X_{N\times(D+1)}$: Data matrix. N samples. D features (measurements)
 - Add a new feature (column) that is all 1s.
 - Y_N : Output (target) vector. N samples.
 - β_{D+1} : Parameter vector. D+1 coefficients (including intercept).
 - Then, the above can be written as

$$Y = X\beta$$

Linear regression

Note that we can apply any (possibly nonlinear) preprocessing on x

$$y = \beta_0 + \sum_{d=1}^{D} \phi_d(x)\beta_d$$

- This is still a linear model. Because it is linear in the parameters.
- Linearity

$$y(c_1\beta + c_2\gamma) = c_1y(\beta) + c_2y(\gamma)$$

- Why do we care about linear regression?
 - Easy to interpret
 - May outperform complex models if
 - Little data
 - High noise in data
 - Foundation for many techniques

Solving linear regression

- Find the parameters that fit the training data $\{x, y\}_{n=1,2,...,N}$
 - Pick the line that passes as close as possible to the training points
- How do we measure closeness?

$$E(\beta) = \frac{1}{2} \sum_{n=1}^{N} (y - (\beta_0 + \sum_{d=1}^{D} X_{nd} \beta_d))^2$$

- Find parameters that minimize the sum-of-squares error (method of least squares)
 - Set derivative to 0 and solve for β

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \qquad \qquad \bar{x} \text{: Mean of x} \\ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

Solving linear regression

- Linear regression is an easy problem
 - Convex (i.e., single global minimum)
 - Fast algorithms available

FIGURE 3.2. Contour and three-dimensional plots of the RSS on the Advertising data, using sales as the response and TV as the predictor. The red dots correspond to the least squares estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, given by (3.4).

Solving the general case

• Minimize the following wrt to β

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta).$$

- Need to assume that X is full rank (no linearly dependent columns)
- The solution is

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

- In python, numpy.linalg.lstsq
- In R, fit \leftarrow lm(y \sim x1 + x2 + x3 ...)
- Good resources for matrix calculus
 - http://www.matrixcalculus.org/
 - https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Outliers

[3]

- Robust alternatives
 - Use absolute value instead of squared error
 - Harder to solve

Correlated inputs (colinearity)

FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left: A plot of age versus limit. These two variables are not collinear. Right: A plot of rating versus limit. There is high collinearity.

- Correlated inputs (colinearity)
 - Solution unstable
 - Hard to interpret
 - What can we do?
 - Look at the correlation matrix
 - Whiten input data (PCA)
- Correlation of error-terms
 - Violates the independence assumption
 - e.g., Time-series data

- Nonlinear input output relation
 - Interaction terms
 - Residual (error) plot

FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto data set. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a trend. Left: A linear regression of mpg on horsepower. A strong pattern in the residuals indicates non-linearity in the data. Right: A linear regression of mpg on horsepower and horsepower². There is little pattern in the residuals.

Summary

- Linear regression
 - Formulation
 - How to solve it
 - What can go wrong
- Exercises
 - Solve 1D case
 - Do the lab in Section 3.6 of ISLR

References

- [1] James, Witten, Hastie, and Tibshirani. An Introduction to Statistical Learning with Applications in R. Chapter 3.
- [2] Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning. Chapter 3.
- [3] http://r-statistics.co/Outlier-Treatment-With-R.html