Homework 4

1. Compute the inverse of the following matrices.

(a)
$$\begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 2 & 30 \\ 0 & 5 & 5 \\ 0 & 0 & 2 \end{bmatrix}$, (c) $\begin{bmatrix} 1 & 3 & 3 \\ 3 & 1 & 6 \\ -1 & 2 & 2 \end{bmatrix}$, (d) $\begin{bmatrix} 1 & 3 & 3 & 3 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$,

(e)
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation that maps the standard vector \mathbf{e}_1 ,

$$\mathbf{e}_2$$
 and \mathbf{e}_3 to $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Is T invertible? Explain.

- 3. (a) Find invertible matrix A, B such that A + B is not invertible.
- (b) Find non-invertible matrix A, B such that A + B is invertible.

4. For which values of the constant a, b is the following matrix not invertible?

$$\left[\begin{array}{ccc} a & b & b \\ a & a & b \\ a & a & a \end{array}\right]$$

(Hint: find its row echelon form)

- 5. Determine if the following statement true or false.
- (a) If a matrix A has a completely zero row, then it is not invertible.
- (b) Upper triangular matrices are always invertible.
- (c) If A is invertible, then Ax = 0 may have non-trivial solution.
- (d) If AB is invertible, then A is invertible.

6. For the matrices A, B are invertible, Is the following true? If it is true, verify it. If it is false, give an example to explain why it is false.

1

(i)
$$(A^2)^{-1} = (A^{-1})^2$$

(ii)
$$(A+B)^{-1} = A^{-1} + B^{-1}$$
.

- 7 (i) Let A be an $n \times n$ matrix. Expand $(I A)(I + A + A^2)$.
 - (ii) Suppose that $A^3 = O$, the zero matrix. Use (i), find $(I A)^{-1}$ in terms of A.
 - (iv) (Bonus 1 point) If $A^k = O$, find $(I A)^{-1}$.