ABSTRACT ATTACHED

19日本国特許庁(JP)

①特許出願公開

平3-109067

⑩ 公 開 特 許 公 報(A)

個公開 平成3年(1991)5月9日 庁内整理番号 ®Int. Cl. 5 識別記号 A 61 F 13/15 13/48 15/16 9/26 A 61 L 8415-4F C 08 8415-4F // C 08 L 1:00 300 6737-4C A 61 F 13/18 A 61 L 15/01 6779-4C C 6606-3B A 41 B 13/02 審査請求 未請求 請求項の数 4 (全6頁)

図発明の名称 セルロース系スポンジ圧縮体及びその製造方法

②特 頤 平1-245508

②出 頤 平1(1989)9月21日

⑩発 明 者 新 開 茂 則 神奈川県伊勢原市伊勢原3-30-20 オリーブハイツ202

⑫発 明 者 小 平 勇 次 東京都府中市分梅町 4-11-9

⑪出 顋 人 ライオン株式会社 東京都墨田区本所1丁目3番7号

個代 理 人 弁理士 林 宏 外1名

明細 28

i. 晃明の名称

セルロース系スポンジ 圧縮体及びその製造方法

2. 特許請求の範囲

- 1. ビスコースに補強用級維と結晶芒硝とを加えたビスコース混合物を凝固、再生、水洗して得られるセルロース系スポンジを、水分含有率を13~35%に調整した状態でプレスしたことを特徴とするセルロース系スポンジ圧縮体。
- 2. 第1項記載のセルロース系スポンジ圧縮体を吸収体の少なくとも一部に用いたことを特徴とする吸収性物品。
- 1. ビスコースに補強用級維と結晶芒硝とを混合し、所定の形状に成型して凝固、再生、乾燥処理を施した技、水分合有率を11~35%に調整した状態でプレスすることを特徴とするセルロース系スポンジ圧縮体の製造方法。
 - 4. ブレス時にセルロース系スポンジを加熱す

ることを特徴とする請求項 3 に記載のセルロース 系スポンジ圧縮体の製造方法。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、生理用ナブキン、使い捨ておむつ、 包帯等の吸収性物品に使用される保存時の複元防止性及び使用時の吸収性に優れるセルロース系スポンジ圧縮体及びその製造方法に関するものである。

[従来の技術]

生理用ナプキンや紙おむつ等の吸収性物品は、一般に、人体から排出された経血や尿等の体液を迅速に吸収する吸収体を備えている。このような吸収体は、従来、フラッフバルブや吸収紙は高ないたが、これらの素材で構成された吸収体は、強度が小さいため、着用中の体の動きにより切れたりよれて塊となることがあり、その結果、体液の漏れを生じ易いという欠点を有していた。

このような欠点を解決するため、吸収体を強度の大きいセルロース系スポンジによって構成したものが提案されており(例えば特願昭 62-1320 69 号や特願昭 62-303478 号、特顧昭 63-250998 号を参照)、これらのものにおいては、セルロース系スポンジを使用する場合、吸収体が所望の吸収性を保持しながらコンパクトに形成されるプレスではの大きいセルロース系スポンジ圧のの圧縮体とし、このセルロース系スポンジ圧縮体で吸収体を構成するようにしている。

しかしながら、このようなセルロース系スポンジ圧縮体は、復元力が大きいため、時間の経過と共に大策に厚さが変化して元の状態に戻り易かという性質を持っており、この復元性が製品のもとなり取り扱いを困难にするなどの不福合を生じる原因となっていた。従元しにくいセルロース系スポンジ圧縮体の出現が不可欠である。

定の厚さを維持することができる。

従って、上記セルロース系スポンジ圧縮体を吸収性物品における吸収体の少なくとも一部に用いることにより、 該吸収性物品の厚さの経時的変化を防止し、寸法安定性に勝れた高品質の吸収性物品を得ることが可能となる。

また、上記セルロース系スポンジ圧縮体は、ビスコースに補強用機能と結晶芒硝とを混合し、所定の形状に成型して凝固、再生、乾燥処理を施した後、水分含有率を13~35%に調整した状態でプレスすることにより製造される。

上記プレス時にセルロース系スポンジを加熱しても良く、この加熱によりプレス圧(負荷)を小さくすることができるため、その分セルロース系スポンジの破損度合が小さくなるだけでなく、吸収性能の低下も確実に防止することができる。

[実施例]

以下、本発明の実施例を図面を参照しながら更に詳細に説明する。

[発明が解決しようとする課題]

本発明の課題は、使用時の吸収性能を損なうことなく保存時の復元防止性を向上させたセルロース系スポンジ圧縮体を得ることにある。

[課題を解決するための手段]

上記録題を解決するため、本発明等は、競意研究を重ねた結果、セルロース系スポンジをプレスする際に、それに含まれる水分率を特定の範囲に調整しておくことにより、吸収性能を損なうことをなく圧縮後の復元力をコントロールし得ることを見出し、本発明をなすに至った。

即ち、本発明のセルロース系スポンジ圧縮体は、ビスコースに補強用機維と結晶芒硝とを加えたビスコース混合物を凝固、再生、水洗して得られるセルロース系スポンジを、水分合有率を1J~15%に調整した状態でプレスしたことを特徴とするものである。

かくして得られたセルロース系スポンジ圧縮体 は、復元防止性に勝れ、保存時に長期に至って一

本免明のセルロース系スポンジ圧組体を構成されたルロース系スポンジとは、セルロース骨格の方式ポンジを意味し、このようなものとしては、セルロース自体からなるスポンジのの他、セルロース諸導体、例えばピスコースやセルロースエーテル類、セルロースエステル類等からなるスポンジがある。このようなセルロース系スポンジの製造例を説明すると次の通りである。

本 発明の セルロース系スポンジ 圧縮体は、このようにして 得られた セルロース系スポンジをプレスローラでプレスすることにより 得られるが、 その 優、 セルロース系スポンジの水分含有率をセルロースの 平衡 水分率 を超える 13~ 15%、 好ましくは 15~ 25% に調整しておくことが 重要である。

実験によれば、上述したような水分含有事の下でセルロース系スポンジをプレスすることにより、比較的小さなプレス圧で確実に所定の厚さに圧縮成形することができるはかりでなの厚さを維めてることができる。一方、彼セルロースをはないのが多点の加えられると、それが多点の加くプレス時にそれほど大きないないため、セルロース系スをかける必要がないため、セルロース系スの性がかける必要がないため、セルロース系スの性能の低下を生じることもない。因に、プレス時の水分含有率が11%より小さいと、復元性が大き

用ナプキンや使い 捨ておむつ、 包袋等の吸収性物品の吸収体に使用される。 第1 図乃至第3 図は、上記セルロース系スポンジ圧縮体を吸収体の少なくとも一部に用いた生理用ナプキンの互いに異なる実施例を示している。

第1 図に示すものは、水溶性高分子4aを付着させたセルロース系スポンジ圧縮体4.4 を2 層に積層し、それらの間に経血を吸収保持させるための高分子吸収体5 を配設すると共に、上層のセルロース系スポンジ圧縮体4 の上面に薄葉紙5 を重合することにより吸収体1 を構成し、缺吸収体を液透過性変面材2 と液不透過性の防漏材1 とによって被覆したものである。

また、好2 図に示すものは、水溶性高分子 (aを付着させたセルロース 系スポンジ 圧縮体 4 とフラッフバルブ 1 とを 2 暦に積層し、それらの間に高分子吸収体 5 を配設すると共に、上層のフラッフパルブ 1 の上面に薄萎紙 6 を重合することにより吸収体 1 を構成し、該吸収体 1 を装面材 2 と防

るばかりでなく、大きなプレス圧をかける必要があるため組織に与える損傷が大きくなると共に吸収性能の低下を来し易く、逆に水分含有率が 15% より大きいと、セルロース系スポンジが圧縮体となりにくくなる。

上記プレス時に、例えばプレスローラをスチーム等の加熱媒体を供給することによってセルロース系スポンジを加熱することもでき、この加熱により、一層小さいプレス圧(負荷)で所期のプレスを行うことができるため、その分セルロース系スポンジに加わる損傷が小さくなると共にプレスによる吸収性能の低下が防止される。

ここで、プレス後のセルロース系スポンシ圧縮体の密度は、 0.1~0.8g/cm²、好ましくは 0.3~0.7g/cm²、に調整するのが良い。また、上記セルロース系スポンジには、必要に応じて着色剤や液吸収性添加剤、特に繊維状物質等の補助成分を含有させることができる。

上述したセルロース系スポンジ圧縮体は、生理

踊材3 とによって被覆したものである。

更に、第3図に示すものは、水溶性高分子4aを付着させたセルロース系スポンジ圧縮体4を2階に積層し、それらの層の間に、高分子吸収体5を薄揉紙6.6間に挟持させてなるポリマー加工吸収紙8を配設することにより吸収体1を構成し、該吸収体1を表面材2と防漏材3とによって被覆したものである。

上記フラッフバルブ 7 は、針葉樹や広葉樹を化学処理して得られる通常のパルプである。

一方、薄葉紙 5 としては、吸収性物品の幅方向にクレープ状の微を施した吸収性を有するものが 用いられる。

また、高分子吸収体5 は、吸水膨調性を示すもので、従来より公知のものを用いることができる。その具体例としては、アクリロニトリルグラフト化設粉の加水分解物、ポリアクリル酸塩架機体の他、ポリアクリルアミド系、酢酸ビニル/アクリル酸メチルコポリマー系のもの等がある。こ

更に、上記波面材 2 としては、体液等の水分を 通過させるに十分な透孔を有するものであれば任 意のものを使用することができ、例えば、レーヨ ン紙や不構布、細孔を穿設したプラスチックフィ ルム等が用いられる。

また、防猟材3 としては、ポリエチレンフィルムをラミネートした紙又は不織布、適宜の合成樹脂シート等を使用することができるが、使用中のムレを防ぐためには、透湿防水性を有する多孔質

次に、上記セルロース系スポンジ圧縮体及びそれを使用した吸収性物品の性能実験について説明する。

なお、この実験における各物性値は次のように して測定した。

(1) 復元率(%)

サンプルを、自然の状態に保った室内と、 25℃× 55.% RH及び 25℃× 65.% RHに調整した場所とにそれぞれ 10日間保存し、保存前の厚さ t」と保存後の厚さ t2から下式により求めた。

復元平(%) =
$$\frac{t_2 - t_1}{t_1}$$
 × 100

(2) 吸収量及び吸収倍率

サンブルを10メッシュの金網上に抜せ、その上からサンブルより大きめのアクリル版を載せると共に、サンブルの単位面積当たり50g/cm²になるように分網を載せ、そのまま模擬経血に5分間投資する。その後全体を静かに引き上げ、3分間水切りした後の重量を測

シートを使用するのが好ましい。このような多孔 質シートとしては、風合いの良好な熱可塑性を としては、風合いの良好な熱可塑性を といる。 が出る。 がですると共に、必要に応じて がですると、のようなシートは、水流 気は通過させるが水は通過させない多数の欲細孔 を有するもので、少なくとも1000 g/o²・24hr以上 の透湿度を有するように構成したものが好ましい。

かくしてセルロース系スポンジ圧縮体4を吸収体1に使用した生理用ナブキンは、厚さの経時的変化がないため寸法安定性に勝れており、個包装(ビロー包装)や一括包装(製品)した状態による寸法変化が生じないから、コンパクトで取り扱いが容易である。しかも、体液を吸収することにより急激に膨稠、復元するため、吸収容量も大きい。

定し、役債全の重量 g i と 浸債 技の重量 g i から 次のようにして求める。

吸収量(g) = g₂ - g₁
吸収倍率 (倍) =
$$\frac{g_2 - g_1}{g_1}$$

(実験例1)

水分合有事を第1表に示すように調整した厚さ3 mmのセルロース系スポンジ(常密度 0.05g/cm²)を8種類用意し、これらのセルロース系スポンジを一対のプレスローラでプレスしてそれぞれ厚さ0.3mmのセルロース系スポンジ圧縮体とした。これを所定の場所に10日間保存して保存後の厚さを測定し、復元率を求めた。なお、プレスは窒温で行った。その結果を第1表に示す。

第 1 表

水分率		復元率 (%)					
Но	(%)	蜜	内	25°C	× % R H	45°C × 85%	
1	5	1 5		3	0	150	
2	8	10		2	0	5 0	
3	10	7		1	0	2 0	
4	15	1			4	6	
\$	20	0			2	4	
6	10	0			0	3	
7	35	0			0	1	
8	40	<i>h</i>	分	過多	圧 縮	不 可	

(実験例Ⅱ)

セルロース系スポンジをプレスする際プレスローラを加熱し、厚さ3mmのセルロース系スポンツ(常密度 0.05g/cm²)を厚さ0.1mm に圧縮するのに必要なプレス圧を測定した。この時のプレス圧は、油圧式のゲージ圧から線圧(Kg/cm) に換算して示した。その結果を第2変に示す。

第 2 裘

なプレス圧とそれに対応する吸収量とを測定した。その結果を第3表に示す。

第 3 衷

Νο	プレス温度 (℃)	プレス圧 (Kg/cm)	吸 収 <u>量</u> (倍)
1	室 温	100	1.0
2	5 0	6 0	1 2
3	100	4 0	1 2
4	130	3 0	1 2
5	180	2 0	10

この結果から分るように、プレス温度が高くなるほど必要プレス圧は小さくなる。また、吸収量については、プレス温度が低い室温プレスでは必要プレス圧が大きいため、スポンジ組織に損傷が加わり、体液吸収時の膨調性が小さくなっては、必要プレス圧は小さいが、高温のためスポンジ組織の暖域が生じ、吸収量が小さくなると考えられる。

	k分率	プレス圧 (Kg/cm)				
No	(%)	宝温	2 0 °C	100℃	130℃	
1	5	140	110	80	70	
2	10	120	9 0	60	50	
]	15	100	8 0	4 0	30	
4	20	40	3 0	2 0	2 0	
5	25	30	2 0	1 5	10	

水分及びプレス温度が高いほど必要なプレス圧 は小さくなる。

なお、本実験に使用した一対のプレスローラは、スチール/スチールの組み合わせであるが、スチール/ゴム、スチール/ベーパーという組み合わせであっても良く、これらの場合にはプレス圧を若干波じることができる。

(実験例皿)

水分含有率 15%、 厚さ 3 mmのセルロース系スポンジ (常密度 0.05g/cm²)を 0.3mm に圧縮するに当たり、プレス温度を種々に変化させた場合の必要

(実験例17)

水分含有率15%、厚さ3 mmのセルロースののセルロースので 1mm のセルローススが 2 mmのセルカン 2 mm のの 2 mm の

第 4 表

		本発明品	比 蛟 例
		(水分15% 100℃ブVス)	(水分5% 室温ブVス)
吸収量	(g)	3 3	28
	室 内	1	10
復元率 (%)	25°C × 65% RH	3	40
(%)	45°C × 85% RH	5	110

[発明の効果]

このように、本発明によれば、セルロース系スポンジをプレスする際に、その水分含有率を13~15%に調整しておくことにより、吸収性能を損なうことなく圧縮後の復元防止性を高めることができ、これにより、寸法安定性に勝れたセルロース系スポンジ圧縮体延てはそれを吸収体に用いた吸収性物品を確実に得ることができる。

4. 図面の簡単な説明

第1 図乃至第3 図はそれぞれ本発明の異なる実

施例を示す断面図である。

1・・吸収体、

4 ・・セルロース系スポンジ圧縮体。

特許出額人 ライオン株式会社

第 1 図

第 2 図

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 03109067 A

(43) Date of publication of application: 09.05.91

(51) Int. CI

A61F 13/15

A61F 13/48

A61L 15/16

C08J 9/26

C08J 9/36

// C08L 1:00

(21) Application number: 01245508

(22) Date of filing: 21.09.89

(71) Applicant:

LION CORP

(72) Inventor:

SHINKAI SHIGENORI **KODAIRA YUJI**

(54) COMPRESSED BODY OF CELLULOSE SPONGE AND PREPARATION THEREOF

(57) Abstract:

PURPOSE: To make it possible to improve restoring resistance of a sponge when it is stored without spoiling absorptive characteristics when it is used by pressing a cellulose sponge obtd. by coagurating a viscose mixture wherein a viscose, a reinforcing fiber and a crystalline sodium sulfate are incorporated, regenerating and washing it under a condition where the water content is adjusted in a specified range.

CONSTITUTION: A cellulose sponge is obtd. by incorporating Glauber's salt, a reinforcing fiber, etc., in a viscose, molding it into a specified shape, heatcoagurating it, washing the coagulant, treating the washed product with diluted sulfuric acid soln., washing it again, neutralizing it with sodium carbonate, washing and drying it. A compressed body of the cellulose sponge is obtd. by pressing the obtd. cellulose sponge by means of press rollers. In this case, the water content of the cellulose sponge is adjusted at 13-35% which is beyond the equilibrium water content of cellulose.

COPYRIGHT: (C)1991, JPO& Japio