Prof. Dr. Cisinski, Dr. Hoang-Kim Nguyen, Sebastian Wolf

Exercises for the course Higher Category Theory (return:01.12.20, 16:00)

Exercise 1 (2+4+4=10 points). Let $\tau : sSet \to Cat$ be the left adjoint of the nerve functor $N : Cat \to sSet$.

- 1. Prove that the inclusions $\Lambda_k^3 \subset \partial \Delta^3 \subset \Delta^3$ induce a isomorphisms $\tau(\Lambda_k^3) \cong \tau(\partial \Delta^3) \cong [3]$ for $k \in \{1, 2\}$.
- 2. Given any $n \ge 1$, describe explicitly $\tau(\Lambda_k^n)$ for k = 0 and k = n.
- 3. Prove that a small category C is a groupoid (i.e. all ist morphisms are invertible) if and only if N(C) is a Kan complex.

Exercise 2 (2+2+2+4=10 points). Prove that each of the following are weak factorization systems of the category of sets.

- 1. (A_1, B_1) with A_1 the class of all maps and B_1 the class of all bijections. Observe (B_1, A_1) is also such a thing. Prove that A_1 is the smallest saturated class which contains the map $\emptyset \to \{0\}$ as well as the map $\{0, 1\} \to \{0\}$.
- 2. (A_2, B_2) with A_2 the class of all injective maps and B_2 the class of all surjective maps. Prove that A_1 is the smallest saturated class which contains the map $\emptyset \to \{0\}$.
- 3. (A_3, B_3) with A_3 the class of all injective maps $X \to Y$ such that Y is empty or such that X is non-empty, while B_3 is the class of maps which are either surjective or with empty codomain. Prove that A_3 is the smallest saturated class which contains the inclusion map $\{0\} \hookrightarrow \{0,1\}$.
- Prove that there are no other weak factorization systems than the ones above on the category of sets.