Data Modelling Methods-IV

CS771: Introduction to Machine Learning
Purushottam Kar

Mid Semester Examination

- September 21st, 2017 (Thursday) 1300-1500 hrs
- Venue L18, 19, L20 (all OROS)
- Syllabus: till whatever we covered on Wednesday + maybe one question from today's lecture
- Open notes (handwritten only)
- No printed/photocopied material
- No laptops, i-pads, mobile phones (switched off)
- Please bring a notepad with you for rough work
- Please bring a pencil/eraser with you we will not provide these
- Answers will have to be written on the question paper itself

Outline of today's discussion

DIMENSIONALITY REDUCTION TECHNIQUES

- Study an appropriate generative model for low-dim. Data
- Study the MLE for zero-noise condition (PCA)
- Study the MLE for noisy conditions (PPCA)
- See an efficient "power method" to solve the MLE

AFTER MID-SEMS

- See a "soft"-assignment approach to solving the MLE
- See how the "hard" assignment rule can be used to solve PCA
- The One EM to Rule them All, Kernels, Deep learning, RecSys

Hard assignment – k-means Soft assignment – soft k-means

Hard assignment – k-means Soft assignment – soft k-means

CS771: Intro to ML

Hard assignment – k-means Soft assignment – soft k-means

CS771: Intro to ML

Hard assignment – k-means Soft assignment – soft k-means

CS771: Intro to ML

Hard assignment – k-means Soft assignment – soft k-means

CS771: Intro to ML

Hard assignment – k-means Soft assignment – soft k-means

CS771: Intro to ML

Hard assignment – k-means Soft assignment – soft k-means

Hard assignment – k-means Soft assignment – soft k-means Discovering hidden structure in data

$$\mathbf{z}^i \sim \mathcal{N}(\mathbf{0}, I_k)$$

Isn't this exactly Linear Regression?

- No, subtle differences exist
- If we write things in the same notation, then

Linear Regression

- $\mathbf{z}^i \in \mathbb{R}^k$.
- $y^i = \langle \mathbf{w}^*, \mathbf{z}^i \rangle + \epsilon^i$
- $\mathbf{w}^* \in \mathbb{R}^k$
- $\epsilon^i \sim \mathcal{N}(0, \sigma^2) \in \mathbb{R}$
- Observed data $\mathbf{x}^i = (\mathbf{z}^i, y^i) \in \mathbb{R}^{k+1}$

Low-rank Modelling

- $\mathbf{z}^i \in \mathbb{R}^k$.
- $\mathbf{y}^i = W\mathbf{z}^i + \boldsymbol{\epsilon}^i$
- $W \in \mathbb{R}^{d \times k}$
- $\epsilon^i \sim \mathcal{N}(\mathbf{0}, \sigma^2 \cdot I_d) \in \mathbb{R}^d$
- Observed data $\mathbf{x}^i = \mathbf{y}^i \in \mathbb{R}^d$
- ullet In linear regression, $old z^i$ is visible, in low-rank data it is latent!

- Space savings: store k-dim \mathbf{z}^i instead of d-dim \mathbf{x}^i , $k \ll d$
- \bullet Discover hidden structure in data: W captures structure in data

- Space savings: store k-dim \mathbf{z}^i instead of d-dim \mathbf{x}^i , $k \ll d$
- Discover hidden structure in data: W captures structure in data Original Collection of Images

• Space savings: store k-dim \mathbf{z}^i instead of d-dim \mathbf{x}^i , $k \ll d$

• Discover hidden structure in data: W captures structure in data

Original Collection of Images

K=49 Eigenvectors ("eigenfaces") learned by PCA on this data

• Space savings: store k-dim \mathbf{z}^i instead of d-dim \mathbf{x}^i , $k \ll d$

Discover hidden structure in data: W captures structure in data

Original Collection of Images

K=49 Eigenvectors ("eigenfaces") learned by PCA on this data

Each image's reconstructed version

• Noise removal: \mathbf{z}^i contains all the useful info, rest is noise

ullet Noise removal: \mathbf{z}^i contains all the useful info, rest is noise

ullet Noise removal: \mathbf{z}^i contains all the useful info, rest is noise

CS771: Intro to ML

http://personales.upv.es/jmanjon/ Netrapalli et al, Non-convex Robust PCA, NIPS 2014

Modelling Low-rank Data

- As discussed, $\mathbf{z}^i \sim \mathcal{N}(\mathbf{0}, I_k)$
- As discussed $\mathbf{x}^i | \mathbf{z}^i \sim \mathcal{N}(W\mathbf{z}^i, \sigma^2 \cdot I_d)$
- Not the only possible choice others possible Factor Analysis
- Things are not that bad here

$$\mathbb{P}\big[\mathbf{x}^i \mid \sigma, W\big] = \int_{\mathbf{Z}} \mathbb{P}\big[\mathbf{x}^i \mid \mathbf{z}, \sigma, W\big] \cdot \mathbb{P}[\mathbf{z}] \, d\mathbf{z} = \mathcal{N}(0, \sigma^2 \cdot I_d + WW^\top)$$

- Note: $\mathbb{P}[\mathbf{z} \mid \sigma, W] = \mathbb{P}[\mathbf{z}]$ by our definition
- Hmm ... so $\mathbb{P}[\mathbf{x}^i \mid \sigma, W] = \mathcal{N}(0, \Sigma)$ where $\Sigma = \sigma^2 \cdot I_d + WW^{\mathsf{T}}$
- But I know how to estimate Σ give many samples of \mathbf{x}

Approach 1

Direct Estimation

Direct Estimation

• If we have $\mathbf{x} \sim \mathcal{N}(0, \Sigma)$, then given many (many) samples \mathbf{x}^i

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{i} (\mathbf{x}^{i})^{\mathsf{T}}$$

- So done ???
- Yeah ... No...
- How do we extract σ , W from $\hat{\Sigma}$? (Remember $\Sigma = \sigma^2 \cdot I_d + WW^{\mathsf{T}}$)
- More importantly, Σ has d^2 parameters in it ($\Sigma \in \mathbb{R}^{d \times d}$)
- To estimate it reliably, will need $n pprox d^2$ samples ... too much
- Moreover, there are actually only $\approx dk+1$ parameters (W $\in \mathbb{R}^{d \times k}$ and $\sigma \in \mathbb{R}$). Should need only $n \approx dk$ samples

Approach 2

MLE Estimation for σ and W

Elementary Matrix Algebra

The Singular Value Decomposition Theorem

- Every real matrix $M \in \mathbb{R}^{m \times n}$ can be decomposed as $M = U \Lambda V^{\mathsf{T}}$
- $U = [\mathbf{u}^1, ..., \mathbf{u}^m] \in \mathbb{R}^{m \times m}$ is an orthonormal matrix $UU^\top = U^\top U = I$
- $\langle \mathbf{u}^i, \mathbf{u}^j \rangle = 1$ if i = j, 0 otherwise
- Columns of U are the left singular vectors of M
- $V = [\mathbf{v}^1, ..., \mathbf{v}^m] \in \mathbb{R}^{n \times n}$ is an orthonormal matrix $VV^\intercal = V^\intercal V = I$
- Columns of V are the right singular vectors of M
- $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_{\min(m,n)}) \in \mathbb{R}_+^{m \times n}$ is a diagonal matrix
- We order $\lambda_1 \geq \lambda_2 \geq \cdots$
- Diagonal entries of Λ are the *singular values* of M

λ_1	0	0	0
0	λ_2	0	विविधान
0	0	λ_3	0

Elementary Matrix Algebra

The Singular Value Decomposition Theorem

• Every real matrix $M \in \mathbb{R}^{m \times n}$ can be decomposed as $\min(m,n)$

$$M = U\Lambda V^{\top} = \sum_{i=1}^{\infty} \lambda_i \cdot \mathbf{u}^i (\mathbf{v}^i)^{\top}$$

- For all $i = 1, ... \min(m, n), M\mathbf{v}^i = \lambda_i \mathbf{u}^i$
- Why? Because $\langle \mathbf{v}^i, \mathbf{v}^j \rangle = 1$ if i = j, 0 otherwise, will be very useful
- U forms a basis for \mathbb{R}^m
- Every vector $\mathbf{x} \in \mathbb{R}^m$ can be written as $\mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{u}^i$
- α_i can be (uniquely) found as $\alpha_i = \langle \mathbf{x}, \mathbf{u}^i \rangle$
- ullet V similarly forms a basis for \mathbb{R}^n

Elementary Matrix Algebra

• If the matrix $M \in \mathbb{R}^{m \times m}$ is symmetric (and hence square) then we can instead write the matrix as

$$M = U\Lambda U^{\top} = \sum_{i=1}^{n} \lambda_i \cdot \mathbf{u}^i (\mathbf{u}^i)^{\top}$$

- Columns of *U* are the eigenvectors of *M*
- Diagonal entries of Λ are the *eigenvalues* of M (they are real)
- If all eigenvalues are ≥ 0 , then the matrix is called positive semidefinite (PSD)
- $\sigma^2 \cdot I$ is PSD, matrices of the form $M = XX^T$ or X^TX are PSD
- If A, B are PSD then A + B is PSD too!

MLE Estimation

- Given samples $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n$ generated from $\mathcal{N}(0, \sigma^2 \cdot I_d + WW^\top)$ $\log \mathbb{P}[X \mid W, \sigma] = \frac{n}{2} \left(d \log 2\pi + \log |\mathcal{C}| + \mathrm{tr}(\mathcal{C}^{-1}S) \right)$ where $\mathcal{C} = WW^\top + \sigma^2 \cdot I_d$, and $S = \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i \left(\mathbf{x}^i \right)^\top$
- $\operatorname{tr}(M) = \sum_{i} M_{i,i}$
- For any $A, B \in \mathbb{R}^{m \times n}$, $\operatorname{tr}(A^{\mathsf{T}}B) = \sum_{i,j} A_{i,j} B_{i,j} = \operatorname{tr}(B^{\mathsf{T}}A)$
- Let $S = U\Lambda U^{\mathsf{T}}$ be the eigen-decomposition of S
- Alternately, let $X = U\sqrt{\Lambda}V^{T}$ be the singular decomposition of X
- $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d), \lambda_i \geq 0$ (Why?), $\sqrt{\Lambda} = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_d})$ (notation)
- In general if $A = \operatorname{diag}(a_1, \dots, a_d)$, then $\sqrt{A} = \operatorname{diag}(\sqrt{a_1}, \dots, \sqrt{a_d})$

Probabilistic Principal Component Analysis (Tipping and Bishop, 1999)

MLE Estimation

- Given samples $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n$ generated from $\mathcal{N}(0, \sigma^2 \cdot I_d + WW^\top)$ $\log \mathbb{P}[X \mid W, \sigma] = \frac{n}{2} \left(d \log 2\pi + \log |\mathcal{C}| + \mathrm{tr}(\mathcal{C}^{-1}S) \right)$ where $\mathcal{C} = WW^\top + \sigma^2 \cdot I_d$, and $S = \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top$
- Let $S = U\Lambda U^{\mathsf{T}}$ be the eigen-decomposition of S
- $\hat{\sigma}_{\text{MLE}} = \frac{1}{d-k} \sum_{j=k+1}^{d} \lambda_j$
- Remember, we order $\lambda_1 \geq \lambda_2 \geq \cdots$
- $\widehat{W}_{\text{MLE}} = U_{k} \sqrt{\Lambda_{k} \widehat{\sigma}^{2}_{\text{MLE}} \cdot I}$
- where $U_k = [u^1, ..., u^k]$ and $\Lambda_k = [\lambda_1, ..., \lambda_k]$
- ullet Top k eigenvalues and eigenvectors

Noiseless dimensionality reduction

The PCA estimate

- Let $\sigma=0$, then the MLE looks like (no need to estimate σ) $\widehat{W}_{\text{MLE}}=\mathbf{U}_{\mathbf{k}}\sqrt{\Lambda_{k}}$
- ullet So we need to find the k leading eigenvalues/vectors of S
- Recall $S = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{i} (\mathbf{x}^{i})^{\mathsf{T}}$
- ullet In general it takes $\mathcal{O}(d^3)$ time to find all d eigenvectors/values
- Much faster method to find top k in $O(d^2k)$ time

The PCA estimate

Beautiful FA interpretation – next time!!

- Let $\sigma=0$, then the MLE looks like (no need t stimate σ) $\widehat{W}_{\mathrm{MLE}}=\mathrm{U_k}\sqrt{\Lambda_k}$
- ullet So we need to find the k leading eigenvalues/vectors of S
- Recall $S = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{i} (\mathbf{x}^{i})^{\mathsf{T}}$
- ullet In general it takes $\mathcal{O}(d^3)$ time to find all d eigenvectors/values
- Much faster method to find top k in $O(d^2k)$ time

- Let $S = U\Lambda U^{\mathsf{T}} = \sum_{i=1}^{d} \lambda_i \mathbf{u}^i (\mathbf{u}^i)^{\mathsf{T}}$ and $\lambda_1 > \lambda_2 \geq \cdots$ (strict separation)
- The above condition can be relaxed to handle cases $\lambda_1=\lambda_2$
- But makes life more complicated
- Key idea: U forms a basis for \mathbb{R}^d , every $\mathbf{x} \in \mathbb{R}^d$ is $\mathbf{x} = \sum_{i=1}^d \alpha_i \mathbf{u}^i$
- Assume that we have a vector \mathbf{x} so that $\alpha_i = \frac{1}{\sqrt{d}}$ for all $i \in [d]$
- Then what is the vector Sx?
- Since $\langle \mathbf{u}^i, \mathbf{u}^j \rangle = 1$ if i = j, 0 otherwise

$$S\mathbf{x} = \sum_{i=1}^{a} \alpha_i \lambda_i \cdot \mathbf{u}^i$$

Notice $\alpha_1 \lambda_1 > \alpha_i \lambda_i$ for all $i \neq 1$

Amplifies component along leading eigenvector

Continuing this way, we can show that

$$S^{t}\mathbf{x} = \underbrace{SSSSSS}_{t} \mathbf{x} = \sum_{i=1}^{a} \alpha_{i} \lambda_{i}^{t} \cdot \mathbf{u}^{i}$$

- Even if $\lambda_1=1.01$ and $\lambda_2=1.005$, after t=1000 iterations, $\lambda_1^t>20000$ whereas $\lambda_2<150$. Tiny differences get amplified greatly!!
- Even if $\lambda_1=0.995$ and $\lambda_2=0.99$, after t=1000 iterations, $\lambda_1^t>0.005$ whereas $\lambda_2<0.00005$. The difference is still amplified!!
- No need to have α_i equal. Even if α_1 is smaller than other α_i , soon we will have $\alpha_1 \lambda_1^t$ much much larger than $\alpha_i \lambda_i^t$ for $i \neq 1$.
- The only thing we need to be careful about is to not have $\alpha_1=0$. The above procedure fails if $\alpha_1=0$

Sept 15, 2017

THE POWER METHOD

- 1. Matrix S
- 2. Initialize \mathbf{x}^0 randomly $\sim \mathcal{N}(\mathbf{0}, I)$
- !3. For t = 1, 2, ..., T

$$\mathbf{y}^t = S\mathbf{x}^{t-1}$$

$$\mathbf{x}^t = \frac{\mathbf{y}^t}{\|\mathbf{y}^t\|_2}$$

- 4. Repeat until convergence
- 5. Return eigenvector estimate as \mathbf{x}^T
- 6. Return eigenvalue estimate as $||S\mathbf{x}^T||_2$

Ensures $\alpha_1 \neq 0$ with high probability

THE POWER METHOD

- 1. Matrix S
- 2. Initialize \mathbf{x}^0 randomly $\sim \mathcal{N}(\mathbf{0}, I)$
- !3. For t = 1, 2, ..., T

$$\mathbf{y}^t = S\mathbf{x}^{t-1}$$
$$\mathbf{x}^t = \frac{\mathbf{y}^t}{\|\mathbf{x}^t\|}$$

- 14. Repeat until convergence
- 5. Return eigenvector estimate as \mathbf{x}^T

THE POWER METHOD

- ¦1. Matrix S
- 2. Initialize \mathbf{x}^0 randomly $\sim \mathcal{N}(\mathbf{0}, I)$
- !3. For t = 1, 2, ..., T

$$\mathbf{y}^t = S\mathbf{x}^{t-1}$$

$$\mathbf{x}^t = \frac{\mathbf{y}^t}{\|\mathbf{y}^t\|_2}$$

- i4. Repeat until convergence
- 5. Return eigenvector estimate as \mathbf{x}^T
- 6. Return eigenvalue estimate as $||S\mathbf{x}^T||_2$

Ensures $\alpha_1 \neq 0$ with high probability

Takes only $O(d^2)$ time

Ensures $\alpha_1 \neq 0$ with high probability

THE POWER METHOD

- 1. Matrix S
- 2. Initialize \mathbf{x}^0 randomly $\sim \mathcal{N}(\mathbf{0}, I)$
- !3. For t = 1, 2, ..., T

$$\mathbf{y}^t = S\mathbf{x}^{t-1}$$

$$\mathbf{x}^t = \frac{\mathbf{y}^t}{\|\mathbf{y}^t\|_2}$$

- i4. Repeat until convergence
- 1 5. Return eigenvector estimate as ${\bf x}^{T}$

Takes only $O(d^2)$ time

Eigenvectors are all unit norm

Ensures $\alpha_1 \neq 0$ with high probability

THE POWER METHOD

- 1. Matrix S
- 2. Initialize \mathbf{x}^0 randomly $\sim \mathcal{N}(\mathbf{0}, I)$
- !3. For t = 1, 2, ..., T

$$\mathbf{v}^t = S\mathbf{x}^{t-1}$$

$$\mathbf{x}^t = \frac{\mathbf{y}^t}{\|\mathbf{y}^t\|_2}$$

- i4. Repeat until convergence
- 1 5. Return eigenvector estimate as \mathbf{x}^{T}
- 6. Return eigenvalue estimate as $||S\mathbf{x}^T||_2$

Takes only $O(d^2)$ time

Eigenvectors are all unit norm

Why is this appropriate ??

THE POWER METHOD

- 1. Matrix S
- 2. Initialize \mathbf{x}^0 randomly $\sim \mathcal{N}(\mathbf{0}, I)$
- !3. For t = 1, 2, ..., T

$$\mathbf{y}^t = S\mathbf{x}^{t-1}$$

$$\mathbf{x}^t = \frac{\mathbf{y}^t}{\|\mathbf{y}^t\|_2}$$

- i4. Repeat until convergence
- 1 5. Return eigenvector estimate as \mathbf{x}^{T}
- 6. Return eigenvalue estimate as $||S\mathbf{x}^T||_2$

Ensures $\alpha_1 \neq 0$ with high probability

Takes only $O(d^2)$ time

Eigenvectors are all unit norm

Why is this appropriate ??

Overall $O(d^2)$ time

THE PCA METHOD

- 1. Matrix S
- i2. Initialize S^0 ← S
- 3. For j = 1, ..., k
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \mathsf{POWER-METHOD}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_j \cdot \hat{\mathbf{u}}_j (\hat{\mathbf{u}}_j)^{\mathsf{T}}$
- 4. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j} \cdot \widehat{\mathbf{u}}_j \right]_{j=1,\dots,k}$

THE PCA METHOD

- !1. Matrix S
- i2. Initialize S^0 ← S
- 3. For j = 1, ..., k
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \mathsf{POWER-METH}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_j \cdot \hat{\mathbf{u}}_j (\hat{\mathbf{u}}_j)^\top$
- 4. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j} \cdot \widehat{\mathbf{u}}_j \right]_{j=1,\dots,k}$

THE PCA METHOD

- !1. Matrix S
- 2. Initialize $S^0 \leftarrow S$
- 3. For j = 1, ..., k
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \mathsf{POWER-METH}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^\mathsf{T}$
- 4. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j} \cdot \widehat{\mathbf{u}}_j \right]_{j=1,\dots,k}$

$$S = \lambda_1 \mathbf{u}^1 (\mathbf{u}^1)^{\top} + \lambda_2 \mathbf{u}^2 (\mathbf{u}^2)^{\top} + \lambda_3 \mathbf{u}^3 (\mathbf{u}^3)^{\top} + \lambda_4 \mathbf{u}^4 (\mathbf{u}^4)^{\top}$$

THE PCA METHOD

- 1. Matrix S
- 2. Initialize $S^0 \leftarrow S$
- 3. For j = 1, ..., k
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \mathsf{POWER-METH}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^\mathsf{T}$
- 4. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j} \cdot \widehat{\mathbf{u}}_j \right]_{j=1,\dots,k}$

$$S = \lambda_1 \mathbf{u}^1 (\mathbf{u}^1)^{\top} + \lambda_2 \mathbf{u}^2 (\mathbf{u}^2)^{\top} + \lambda_3 \mathbf{u}^3 (\mathbf{u}^3)^{\top} + \lambda_4 \mathbf{u}^4 (\mathbf{u}^4)^{\top}$$

THE PCA METHOD

- !1. Matrix S
- 2. Initialize $S^0 \leftarrow S$
- 3. For j = 1, ..., k
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \mathsf{POWER-METH}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^\mathsf{T}$
- 4. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j} \cdot \widehat{\mathbf{u}}_j \right]_{j=1,\dots,k}$

$$S = \lambda_1 \mathbf{u}^1 (\mathbf{u}^1)^{\top} + \lambda_2 \mathbf{u}^2 (\mathbf{u}^2)^{\top} + \lambda_3 \mathbf{u}^3 (\mathbf{u}^3)^{\top} + \lambda_4 \mathbf{u}^4 (\mathbf{u}^4)^{\top}$$

THE PCA METHOD

- !1. Matrix S
- 2. Initialize $S^0 \leftarrow S$
- 3. For j = 1, ..., k
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \mathsf{POWER-METH}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^\mathsf{T}$
- 4. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j} \cdot \widehat{\mathbf{u}}_j \right]_{j=1,\dots,k}$

$$S = \lambda_1 \mathbf{u}^1 (\mathbf{u}^1)^{\top} + \lambda_2 \mathbf{u}^2 (\mathbf{u}^2)^{\top} + \lambda_3 \mathbf{u}^3 (\mathbf{u}^3)^{\top} + \lambda_4 \mathbf{u}^4 (\mathbf{u}^4)^{\top}$$

THE PCA METHOD

- 1. Matrix S
- i2. Initialize S^0 ← S
- 3. For j = 1, ..., k
 - 1. Let $(\hat{\lambda}_i, \hat{\mathbf{u}}_i) \leftarrow \text{POWER-METH}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_j \cdot \hat{\mathbf{u}}_j (\hat{\mathbf{u}}_j)^{\mathsf{T}}$
- 4. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j} \cdot \widehat{\mathbf{u}}_j \right]$

The peeling method

Some residue might still be left due to inaccurate estimation of λ_i , \mathbf{u}^i but usually small

$$S = \lambda_1 \mathbf{u}^1 (\mathbf{u}^1)^{\top} + \lambda_2 \mathbf{u}^2 (\mathbf{u}^2)^{\top} + \lambda_3 \mathbf{u}^3 (\mathbf{u}^3)^{\top} + \lambda_4 \mathbf{u}^4 (\mathbf{u}^4)^{\top}$$

Overall $O(d^2k)$ time

THE PCA METHOD

- 1. Matrix S
- i2. Initialize $S^0 \leftarrow S$
- 3. For j = 1, ..., k
 - 1. Let $(\hat{\lambda}_i, \hat{\mathbf{u}}_i) \leftarrow \text{POWER-METH}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^{\mathsf{T}}$
- 4. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j} \cdot \widehat{\mathbf{u}}_j \right]_i$

The peeling method

Some residue might still be left due to inaccurate estimation of λ_i , \mathbf{u}^i but usually small

$$S = \lambda_1 \mathbf{u}^1 (\mathbf{u}^1)^{\top} + \lambda_2 \mathbf{u}^2 (\mathbf{u}^2)^{\top} + \lambda_3 \mathbf{u}^3 (\mathbf{u}^3)^{\top} + \lambda_4 \mathbf{u}^4 (\mathbf{u}^4)^{\top}$$

THE PPCA METHOD

- 1. Matrix S
- !2. Initialize $S^0 \leftarrow S$
- !3. For j = 1, ..., d
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \mathsf{POWER-METHOD}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_j \cdot \hat{\mathbf{u}}_j (\hat{\mathbf{u}}_j)^{\mathsf{T}}$
- 4. Let $\hat{\sigma}_{\text{MLE}} = \frac{1}{d-k} \sum_{j=k+1}^{d} \hat{\lambda}_j$
- 5. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j \widehat{\sigma}_{\text{MLE}}^2 \cdot \widehat{\mathbf{u}}_j} \right]$

THE PPCA METHOD

- 1. Matrix S
- !2. Initialize $S^0 \leftarrow S$
- !3. For j = 1, ..., d
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \text{POWER-METHOD}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^{\mathsf{T}}$
- 4. Let $\hat{\sigma}_{\text{MLE}} = \frac{1}{d-k} \sum_{j=k+1}^{d} \hat{\lambda}_j$
- 5. Return $\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j \widehat{\sigma}_{\text{MLE}}^2 \cdot \widehat{\mathbf{u}}_j} \right]$

Recall that

$$\widehat{W}_{\text{MLE}} = U_{k} \sqrt{\Lambda_{k} - \widehat{\sigma}^{2}_{\text{MLE}} \cdot I}$$

THE PPCA METHOD

- 1. Matrix S
- !2. Initialize $S^0 \leftarrow S$
- !3. For j = 1, ..., d
 - 1. Let $(\hat{\lambda}_i, \hat{\mathbf{u}}_i) \leftarrow \text{POWER-METHOD}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^\mathsf{T}$
- 4. Let $\hat{\sigma}_{\text{MLE}} = \frac{1}{d-k} \sum_{j=k+1}^{d} \hat{\lambda}_j$

 $\widehat{W}_{\text{MLE}} = U_{k} / \Lambda_{k} - \widehat{\sigma}^{2}_{\text{MLE}} \cdot I$

Recall that

Takes $O(d^3)$ time 😊

5. Return
$$\widehat{W}_{\text{MLE}} = \left[\sqrt{\widehat{\lambda}_j - \widehat{\sigma}_{\text{MLE}}^2 \cdot \widehat{\mathbf{u}}_j} \right]$$

THE PPCA METHOD

- 1. Matrix S
- !2. Initialize $S^0 \leftarrow S$
- §3. For j = 1, ..., d
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_i) \leftarrow \text{POWER-METHOD}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^{\mathsf{T}}$
- 4. Let $\hat{\sigma}_{\text{MLE}} = \frac{1}{d-k} \sum_{j=k+1}^{d} \hat{\lambda}_j$

Takes $O(d^3)$ time \otimes

 $\widehat{W}_{\text{MLE}} = U_{k} \sqrt{\Lambda_k - \widehat{\sigma}^2_{\text{MLE}} \cdot I}$

Recall that

5. Return
$$\widehat{W}_{\text{MLE}} = \sqrt{\widehat{\lambda}_j - \widehat{\sigma}_{\text{MLE}}^2 \cdot \widehat{\mathbf{u}}_j}$$

Can we do better?

THE PPCA METHOD

- 1. Matrix S
- !2. Initialize $S^0 \leftarrow S$
- §3. For j = 1, ..., d
 - 1. Let $(\hat{\lambda}_j, \hat{\mathbf{u}}_j) \leftarrow \text{POWER-METHOD}(S^{j-1})$
 - 2. Let $S^j \leftarrow S^{j-1} \hat{\lambda}_i \cdot \hat{\mathbf{u}}_i (\hat{\mathbf{u}}_i)^{\mathsf{T}}$
- 4. Let $\hat{\sigma}_{\text{MLE}} = \frac{1}{d-k} \sum_{j=k+1}^{d} \hat{\lambda}_j$

Recall that

$$\widehat{W}_{\text{MLE}} = U_{k} \sqrt{\Lambda_{k} - \widehat{\sigma}^{2}_{\text{MLE}} \cdot I}$$

Takes $O(d^3)$ time \otimes

After we reconvene

5. Return $\widehat{W}_{\text{MLE}} = \left| \sqrt{\widehat{\lambda}_j - \widehat{\sigma}_{\text{MLE}}^2 \cdot \widehat{\mathbf{u}}_j} \right|$

Can we do better?

j=1,...,k

24

- Many extensions possible
 - Factor analysis $\boldsymbol{\epsilon}^i \sim \mathcal{N}(0, \Sigma_{\chi})$
 - Non-centered data $\mathbf{z}^i \sim \mathcal{N}(\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z)$
 - Non-centered noise $\mathbf{x}^i = W\mathbf{z}^i + \boldsymbol{\epsilon}^i$, $\boldsymbol{\epsilon}^i \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\epsilon}}, \boldsymbol{\Sigma}_{\boldsymbol{\chi}})$
- Handle missing data, as can most generative models (GMM etc)
 - $\mathbf{x}^i = [\mathbf{x}_{obs}^i, \mathbf{x}_{miss}^i], \, \mathbb{P}[\mathbf{x}^i] = \mathbb{P}[\mathbf{x}_{miss}^i \, | \mathbf{x}_{obs}^i] \cdot \mathbb{P}[\mathbf{x}_{obs}^i]$
- Mixture of PPCA? Mixture of GMMs?
- Sequential models: Kalman filters, Hidden Markov models
- Hierarchical models

• PPCA, PCA do not do well on data with non-linear structure

• PPCA, PCA do not do well on data with non-linear structure

• PPCA, PCA do not do well on data with non-linear structure

What PCA/PPCA will give us

• PPCA, PCA do not do well on data with non-linear structure

• PPCA, PCA do not do well on data with non-linear structure

Non-linear dimensionality reduction Kernel PCA, Autoencoders

What PCA/PPCA will give us

Please give your Feedback

http://tinyurl.com/ml17-18afb

