

电子系统设计基础 4.单片机基础-C51

张翠翠 西一楼520 西安交通大学 信通学院

- 01 51单片机
- 02 51系统板
- 03 51单片机程序设计
- 04) 实验任务

51单片机

8位微处理器 8-bit Microcontroller Unit

51单片机

程序存储器里的指令 跟着系统时钟的节拍 一条一条执行

● 主电源引脚

VCC(40脚):接+5 V电源正端。

VSS(20脚): 接电源地端。

电源电压范围是4~5.5V,最高电源电压为6.6V。

任何引脚对地的电压范围是 - 1V~7V

27. Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground1.0V to +7.0V
Maximum Operating Voltage 6.6V
DC Output Current

			1
(T2) P1.0 🗆	1	40	□ vcc
(T2EX) P1.1	2	39	P0.0 (AD0)
P1.2 □	3	38	P0.1 (AD1)
P1.3 🗆	4	37	P0.2 (AD2)
P1.4 🗆	5	36	P0.3 (AD3)
P1.5 🗆	6	35	P0.4 (AD4)
P1.6 □	7	34	P0.5 (AD5)
P1.7 🗆	8	33	P0.6 (AD6)
RST □	9	32	P0.7 (AD7)
(RXD) P3.0 🗆	10	31	□ EA/VPP
(TXD) P3.1	11	30	ALE/PROG
(INT0) P3.2	12	29	□PSEN
(INT1) P3.3 □	13	28	□ P2.7 (A15)
(T0) P3.4 🗆	14	27	□ P2.6 (A14)
(T1) P3.5 □	15	26	□ P2.5 (A13)
(WR) P3.6 □	16	25	□ P2.4 (A12)
(RD) P3.7	17	24	P2.3 (A11)
XTAL2	18	23	P2.2 (A10)
XTAL1 □	19	22	□ P2.1 (A9)
GND □	20	21	□ P2.0 (A8)

● 输入/输出引脚

▶ P0口(P0.0~P0.7) 引脚39~32:8位的漏极开路结构,双向IO。
 作为输出端使用,需要外接上拉电阻(在作为I/O口使用时,T1管夹断);
 若作为输入端使用,需要先将"1"写入端口(使T2管夹断);
 P0口可作为地址总线(A0-A7),也可作为数据总线(D0-D7);
 P0可驱动8个TTL,其它P口可以驱动4个TLL。(1个TTL负载为0.4mA)。

▶ P1口(P1.0~P1.7)(引脚1~8):8位的双向IO,有内部上拉内部有上拉电阻,因此可以作为准双向I/O口使用。
作为输入端使用时,需要先将"1"写入端口(使T2管夹断);

Port Pin	Alternate Functions		
P1.0	T2 (external count input to Timer/Counter 2), clock-out		
P1.1	T2EX (Timer/Counter 2 capture/reload trigger and direction control)		

▶ P2口(P2.0~P2.7)引脚21~28: 8位双向IO,内部有上拉。

内部有上拉电阻,因此可以作为准双向I/O口使用。

作为输入端使用时,需要先将"1"写入端口(使T2管夹断);

在接有片外存储器时, P2口作为高8位地址总线(A8-A15);

▶ P3口(P3.0~P3.7) 引脚10~17: 8位双向IO,内部有上拉
 P3口具有上拉电阻,可作为准双向输入输出端口使用;作为输入端使用时,需要先将"1"写入端口(使T1管夹断);
 P3口的每个引脚还有第2功能.

▶ P3口(P3.0~P3.7) 引脚10~17: 8位双向IO,内部有上拉
 P3口具有上拉电阻,可作为准双向输入输出端口使用;作为输入端使用时,需要先将"1"写入端口(使T1管夹断);
 P3口的每个引脚还有第2功能.

			1
(T2) P1.0 □	1	40	l vcc
(T2EX) P1.1 □	2	39	□ P0.0 (AD0)
P1.2	3	38	□ P0.1 (AD1)
P1.3 🗆	4	37	□ P0.1 (AD1)
P1.4	· .	36	
	-		P0.3 (AD3)
P1.5 □		35	□ P0.4 (AD4)
P1.6 □	7	34	□ P0.5 (AD5)
P1.7 □	8	33	□ P0.6 (AD6)
RST □	9	32	□ P0.7 (AD7)
(RXD) P3.0 [10	31	□ EA/VPP
(TXD) P3.1 □	11	30	□ ALE/PROG
(INT0) P3.2 □	12	29	□ PSEN
(INT1) P3.3 □	13	28	□ P2.7 (A15)
(T0) P3.4 □	14	27	□ P2.6 (A14)
(T1) P3.5 \square	15	26	□ P2.5 (A13)
(WR) P3.6 □	16	25	□ P2.4 (A12)
(RD) P3.7 □	17	24	□ P2.3 (A11)
XTAL2	18	23	□ P2.2 (A10)
XTAL1 □	19	22	□ P2.1 (A9)
GND □	20	21	□ P2.0 (A8)
			J

Port Pin	Alternate Functions
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INT0 (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (timer 0 external input)
P3.5	T1 (timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

● RST 引脚: 9号引脚

复位输入。在振荡器运行时,有两个机器周期(24个振荡周期)以上的高电平出现在此引脚时,将使单片机复位,只要这个引脚保持高电平,51芯片便循环复位。复位后P3.0-P3.7口均置1,引脚表现为高电平,程序计数器和特殊功能寄存器SFR全部清零。当复位脚由高电平变为低电平时,芯片为ROM的00H处开始运行程序。复位操作不会对内部RAM有所影响。

VCC

● ALE/PROG引脚: 30号引脚

ALE: Address Latch Enable 高有效,用于锁存地址的低8位字节。

/PROG: 编程引脚,低有效,在FLASH编程期间,此引脚用于输入编程脉冲。

在平时, ALE端以不变的频率周期输出正脉冲信号, 此频率为振荡器频率的 1/6。因此它可用作对外部输出的脉冲或用于定时目的。

● EA/VPP引脚: 31号引脚

EA: External Access Enable 外部访问使能

当EA为GND时,访问外部程序存储器(0000H-FFFFH)

当EA为高电平时,访问内部程序存储器

在FLASH编程期间,此引脚用于施加12V的编程电源(VPP)

● 外接晶体引脚XTAL1 (19) 和XTAL2 (18)

石英晶体与内部的反相器组成Pierce振荡器,接线如图所示。

单片机可使用外部时钟信号也可使用内部时钟

当使用内部时钟时,此二引线用于外接石英晶体和微调电容

当使用外部时钟时,用于接外部时钟信号,NMOS接XTAL2,CMOS接XTAL1

28. DC Characteristics

The values shown in this table are valid for $T_A = -40^{\circ}\text{C}$ to 85°C and $V_{CC} = 4.0\text{V}$ to 5.5V, unless otherwise noted.

Symbol	Parameter	Condition	Min	Max	Units
V _{IL}	Input Low-voltage	(Except EA)	-0.5	0.2 V _{CC} -0.1	V
V _{IL1}	Input Low-voltage (EA)		-0.5	0.2 V _{CC} -0.3	V
V _{IH}	Input High-voltage	(Except XTAL1, RST)	0.2 V _{CC} +0.9	V _{CC} +0.5	V
V _{IH1}	Input High-voltage	(XTAL1, RST)	0.7 V _{CC}	V _{CC} +0.5	V
V _{OL}	Output Low-voltage ⁽¹⁾ (Ports 1,2,3)	I _{OL} = 1.6 mA		0.45	V
V _{OL1}	Output Low-voltage ⁽¹⁾ (Port 0, ALE, PSEN)	I _{OL} = 3.2 mA		0.45	V
		I_{OH} = -60 μ A, V_{CC} = 5V ±10%	2.4		V
V_{OH}	Output High-voltage (Ports 1,2,3, ALE, PSEN)	I _{OH} = -25 μA	0.75 V _{CC}		V
	(1 0110 1,2,0, 1122, 1 0214)	I _{OH} = -10 μA	0.9 V _{CC}		V
		I_{OH} = -800 μ A, V_{CC} = 5V \pm 10%	2.4		V
V _{OH1}	Output High-voltage (Port 0 in External Bus Mode)	I _{OH} = -300 μA	0.75 V _{CC}		V
	(ort o in External Bus mode)	I _{OH} = -80 μA	0.9 V _{CC}		V
I _{IL}	Logical 0 Input Current (Ports 1,2,3)	V _{IN} = 0.45V		-50	μА
I _{TL}	Logical 1 to 0 Transition Current (Ports 1,2,3)	$V_{IN} = 2V$, $V_{CC} = 5V \pm 10\%$		-650	μА
ILI	Input Leakage Current (Port 0, EA)	0.45 < V _{IN} < V _{CC}		±10	μA
RRST	Reset Pull-down Resistor		10	30	kΩ
C _{IO}	Pin Capacitance	Test Freq. = 1 MHz, T _A = 25°C		10	pF
		Active Mode, 12 MHz		25	mA
I _{cc}	Power Supply Current	Idle Mode, 12 MHz		6.5	mA
	Power-down Mode ⁽¹⁾	V _{CC} = 5.5V		100	μA

29.1 External Program and Data Memory Characteristics

	Parameter	12 MHz	12 MHz Oscillator		Variable Oscillator	
Symbol		Min	Max	Min	Max	Units
1/t _{CLCL}	Oscillator Frequency			0	33	MHz
t _{LHLL}	ALE Pulse Width	127		2t _{CLCL} -40		ns
t _{AVLL}	Address Valid to ALE Low	43		t _{CLCL} -25		ns
t _{LLAX}	Address Hold after ALE Low	48		t _{CLCL} -25		ns
t _{LLIV}	ALE Low to Valid Instruction In		233		4t _{CLCL} -65	ns
t _{LLPL}	ALE Low to PSEN Low	43		t _{CLCL} -25		ns
t _{PLPH}	PSEN Pulse Width	205		3t _{CLCL} -45		ns
t _{PLIV}	PSEN Low to Valid Instruction In		145		3t _{CLCL} -60	ns
t _{PXIX}	Input Instruction Hold after PSEN	0		0		ns
t _{PXIZ}	Input Instruction Float after PSEN		59		t _{CLCL} -25	ns
t _{PXAV}	PSEN to Address Valid	75		t _{CLCL} -8		ns
t _{aviv}	Address to Valid Instruction In		312		5t _{CLCL} -80	ns
t _{PLAZ}	PSEN Low to Address Float		10		10	ns
t _{RLRH}	RD Pulse Width	400		6t _{CLCL} -100		ns
t _{WLWH}	WR Pulse Width	400		6t _{CLCL} -100		ns
t _{RLDV}	RD Low to Valid Data In		252		5t _{CLCL} -90	ns
t _{RHDX}	Data Hold after RD	0		0		ns
t _{RHDZ}	Data Float after RD		97		2t _{CLCL} -28	ns
t _{LLDV}	ALE Low to Valid Data In		517		8t _{CLCL} -150	ns
t _{AVDV}	Address to Valid Data In		585		9t _{CLCL} -165	ns
t _{LLWL}	ALE Low to RD or WR Low	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	Address to RD or WR Low	203		4t _{CLCL} -75		ns
t _{qvwx}	Data Valid to WR Transition	23		t _{CLCL} -30		ns
t _{qvwH}	Data Valid to WR High	433		7t _{CLCL} -130		ns
twnqx	Data Hold after WR	33		t _{CLCL} -25		ns
t _{RLAZ}	RD Low to Address Float		0		0	ns
twhih	RD or WR High to ALE High	43	123	t _{CLCL} -25	t _{CLCL} +25	ns

Features

- Compatible with MCS®-51 Products
- 32K Bytes of Reprogrammable Flash Memory
- Endurance: 10,000 Write/Erase Cycles
- 4V to 5.5V Operating Range
- Fully Static Operation: 0 Hz to 33 MHz
- Three-level Program Memory Lock
- 512 x 8-bit Internal RAM
- 32 Programmable I/O Lines
- Three 16-bit Timer/Counters
- Eight Interrupt Sources
- Programmable Serial Channel
- Low-power Idle and Power-down Modes
- Interrupt Recovery from Power-down Mode
- Hardware Watchdog Timer
- Dual Data Pointer
- Power-off Flag
- Green (Pb/Halide-free) Packaging Option

● 以SST89E564RD 51单片机为核心

◆ 外设:

- 并行总线驱动的8位7段数码管
- 4X4 键盘
- 字符型LCD (LC1621)
- 外扩32K RAM(KM62256)
- SPI总线驱动的10位ADC(TLC1549)、10位DAC(TLC5615)
- I2C总线驱动的外扩E2PROM (AT24C02)
- 日历时钟芯片 (PCF8563)
- 单总线(1-WIRE)驱动的数字式温度传感器DS18B20
- MAX232的串口通讯
- 基于TDA2822M放大MIC的音频功放
- 红外线发射和接收装置
- 555信号发生和整形电路
- JTAG下载接口
- 蜂鸣器

● 以SST89E564RD 51单片机为核心

◆ 仿真调试

- 通过串口与PC机连接, 因此仿真时需要设置相应的串口号
- 支持KEIL C51开发仿真环境,64K用户可使用的仿真程序空间,0x0000-0xFFFF,监控程序存储在特殊空间,不占用0x0000-0xFFFF的64K仿真空间
- 全保留单片机特性,避免仿真正常而实际烧录芯片却不正常的问题
- RS-232通讯接口,波特率4.8Kbps-57.6Kbps自适应
- 仿真频率0-40MHz晶振可选,系统配置11.0592MHz
- 程序代码可以重复装载,无需预先擦除用户程序空间
- 监控程序占用用户的资源少,全速运行不占用资源
- 片内64K程序空间可以随时进行在线程序更新,可以调试长达几千行的智能控制、键盘控制汉字液晶显示等大型程序
- 可单步、断点、全速、可查看参考变量、RAM变量
- 支持汇编、C语言、C语言和汇编混合调试
- 支持同时最多10个断点。

- 外设地址
- **7段数码管** 段选信号地址0x9000, 位选信号地址0x8000, 均为高电平有效
- **4x4键盘** 0x8000H, **/WR**控制行, **/RD**控制列
- **字符型LCD(LC1621): ASII码写入的16字2行的字符型LCD** 内部显示器第一行地址: 0x80~0x8F

内部显示器第二行地址: 0xC0~0xCF

• 外挂存储器 (KM62256)

8条数据线(D0~D7), 15条地址线(A0~A14) A15连接到62256的片选信号, 低电平时选择62256 地址范围: 0x0000H~0x7FFFH

51单片机开发流程

■ 工具: Keil-C51版本(51单片机的IDE开发环境) keil-C51的安装过程.pdf Keil-C51新建工程.pdf

■ 语言: C语言、汇编语言、或者两者混合

■ 开发流程:新建工程、添加设计文件、编译、调试下载

■ 入口为main函数,main函数中以死循环结尾


```
REG51.H
    REG51.H
    Header file for gener
   Copyright (c) 1988-20
   All rights reserved.
9 - #ifndef
            REG51 H
    #define
              REG51 H
        BYTE Register
    sfr PO
             = 0x80;
    sfr Pl
             = 0x90;
    sfr P2
             = 0xA0:
    sfr P3
             = 0xB0;
    sfr PSW = 0xD0;
    sfr ACC
             = 0xE0;
    sfr B
             = 0xF0;
    sfr SP
             = 0x81:
    sfr DPL = 0x82;
    sfr DPH = 0x83;
    sfr PCON = 0x87;
    sfr TCON = 0x88:
    sfr TMOD = 0x89;
    sfr TLO
            = 0x8A;
    sfr TL1 = 0x8B;
    sfr THO = 0x8C;
```

■ 键值获取

4x4键盘地址: 0x8000

■ 键值获取

```
//键盘扫描函数,返回获得键码
unsigned char getkeycode (void)
                               /*行码*/
 unsigned char line=0x00;
                              /*列码*/
 unsigned char col=0x00;
 unsigned char scancode=0x01;
                               /*行扫描码*/
                               /*键号*/
 unsigned char keycode;
                               //和数码管IO复用?
 XBYTE[0x8000]=0xff;
                               /*从列端口读入四位列码*/
 col=XBYTE[0x8000]&0x0f;
 if (col==0x00) keycode=0x00;
 else
                               /*取scancode的低四位,没变为全0,循环*/
  while ((scancode&0x0f)!=0)
                               /*行号*/
    line=scancode:
                               /*给行赋扫描码,第一行为0x01*/
    XBYTE[0x8000]=scancode;
    if((XBYTE[0x8000]&0x0f)==col)
                               /*检测按键所在的行跳出循环*/
        break:
                               /*行扫描码左移一位, 转下一行*/
     scancode=scancode<<1;
                               /*把列码移到高四位*/
   col=col<<4:
   kevcode=col|line;
return keycode;
```

思考:

1) 消抖

■ 键值获取

Keycode = 0x11,	S0
Keycode = $0x21$,	S1
Keycode = $0x41$,	S2
Keycode = 0x81,	S3
Keycode = 0x12,	S4
Keycode = $0x22$,	S 5
Keycode = $0x42$,	S6
Keycode = 0x82,	S7
14 l. O 4.4	60
Keycode = $0x14$,	S8
Keycode = $0x24$,	S9
Keycode = $0x44$,	S10
Keycode = $0x84$,	S11
Keycode = 0x18,	S12
	S13
Keycode = $0x28$,	
Keycode = $0x48$,	S14
Keycode = 0x88,	S15

■ 7段数码管的显示驱动

ULN2803

思考:

- 1) 怎么实现扫描显示?
- 2) 怎么实现同时显示的效果?

单击添加文本

- 实验名称:流水灯
- 1. 8个7段数码管以流水灯的形式显示当前按键值
- 2. 8个7段数码管呈现同时显示当前按键值的效果
- 3. 8个7段数码管滚动显示自己学号后8位
- 4. 其它

```
void main(void)
{
    //初始化

while(1)
    {
    //检测按键值

    //特键值扫描显示到7段数码管上
    }
}
```


谢谢大家