Elsőrendű logika alapjai

August 13, 2020

Tartalomjegyzék

_		ndatok
		Formalizálás
		Értéktábla
	1.3	Tautológia vizsgálat
2	Meg	goldások
	2.1	Formalizálás
		Értéktábla
	2.3	Tautológia vizsgálat

1 Feladatok

1.1 Formalizálás

Formalizáljuk a következő mondatokat! Milyen különböző univerzumokkal lehetne dolgozni és azok hogyan változtatják a formulákat?

- 1. Egyfajtájú példa
 - (a) Minden informatikus tud logikusan gondolkozni.
 - (b) Aki tud logikusan gondolkozni, az okos.
 - (c) Minden informatikus okos.
- 2. Egyfajtájú eset
 - (a) Minden bogár rovar, de nem minden rovar bogár.
 - (b) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
 - (c) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
 - (d) K: Szarvas (egy) bogár.
- 3. Egyfajtájú függvénnyel
 - (a) Ha két számot összeadunk, akkor nagyobb számot kapunk.
 - (b) Van olyan szám, aminek a négyzete önmagával egyenlő.
 - (c) Ha egy számhoz hozzáadunk nullát, akkor önmagát kapjuk.
 - (d) Egy számot szorozva nullával nullát kapunk.

1.2 Értéktábla

Készítsük el a következő formulákhoz és hozzájuk tartozó interpretációhoz az értéketáblát. Mi olvasható le a formula szemantikus tulajdonságairól az értéktábla alapján?

- 1. Formula: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$ Interpretáció: $U=\{0,1\}, |P(x,y)|^I-(x< y), |Q(x)|^I-(x==0), |\bar{a}|^I=0$
- 2. Formula: $\exists x \exists y (P(x,y) \land Q(f(\bar{a}))) \supset \forall x P(x,\bar{a}) \land P(f(x),\bar{b})$ Interpretáció: $U = \{1,2,3\}, |P(x,y)|^I - x == y, |Q(x)|^I - x$ páros, $|\bar{a}|^I = 1, |\bar{b}|^I = 3, |f(x)|^I - x$ rákövetkezője univerzumon belül
- 3. Formula: $\exists x \forall y P(f(x,y), \bar{a}) \supset Q(z) \supset P(z,x) \lor P(v, \bar{a})$ Interpretáció: $U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0),$ $|\bar{a}|^I = 0, |f(x)|^I$ - összeadás univerzumon belül
- 4. Formula: $(\forall x P(x) \lor \neg Q(y)) \supset (\neg \exists z Q(f(z)) \supset \forall k (P(k) \lor Q(w)))$ Interpretáció: $U = \{0,1\}, |P|^I = \{b\}, |Q|^I = \{a\}, f|^I(a) = \{b\}, |f|^I(b) = \{b\}$
- 5. Formula: $\forall x (P(x) \land Q(x, \overline{a})) \supset (\exists x Q(x, y) \lor \neg \forall y (P(\overline{a}) \supset Q(f(y), \overline{a})) \supset P(v))$ Interpretáció: $U = \{a, b\}, |P|^I = \{1\}, |Q|^I = \{(0, 0), (1, 1)\}$ $|f|^I(0) = \{1\}, |f|^I(1) = \{0\}, |a|^I = 0$

1.3 Tautológia vizsgálat

Döntsük el a következő formulákról, hogy tautológiák-e!

- 1. $\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
- 2. $\forall x (P(x) \land R(x)) \supset \forall x P(x)$
- 3. $P(x,y) \vee \neg Q(x) \supset \exists x Q(x) \vee (\exists x Q(x) \supset P(x,y) \vee \neg Q(x))$
- 4. $P(x,y) \supset \neg Q(x) \land Q(x) \supset P(x,y)$

2 Megoldások

2.1 Formalizálás

1. $U \text{ (univerzum)} = \{emberek\}$

Predikátumok:

- \bullet I(x) x informatikus
- $\bullet~L(x)$ x logikusan gondolkozik
- O(x) x okos
- 2. Megoldás 1: U (univerzum) = {állatok}

Predikátumok:

- R(x) x rovar
- \bullet B(x) x bogár
- \bullet K(x) x kitines a szárnyfedele
- \bullet S(x) x szarvasbogár

Konstans: \bar{a} - Szarvas

Megoldás 2: $U (univerzum) = \{rovarok\}$

Predikátumok:

- \bullet B(x) x bogár
- \bullet K(x) x kitines a szárnyfedele
- \bullet S(x) x szarvasbogár

Konstans: \bar{a} - Szarvas

3. U (univerzum) = {természetes számok}

Predikátumok:

- N(x,y) (x > y)
- E(x,y) (x == y)

Függvények:

- p(x,y) (x + y)
- m(x,y) (x * y)
- \bullet s(x) x^2

Konstans: \bar{a} - nulla

Formalizált állítások:

- (a) $\forall x (I(x) \supset L(x))$
- (b) $\forall x (L(x) \supset O(x))$
- (c) $\forall x (I(x) \supset O(x))$

Formalizált állítások:

- (a) $\forall x (B(x) \supset R(x)) \land \neg \forall x (R(x) \supset B(x))$
- (b) $S(\bar{a}) \wedge K(\bar{a})$
- (c) $\forall x (R(x) \supset (\neg K(x) \lor B(x)))$
- (d) $B(\bar{a})$

Formalizált állítások:

- (a) $\neg \forall x B(x)$
- (b) $S(\bar{a}) \wedge K(\bar{a})$
- (c) $\forall x (\neg K(x) \lor B(x))$
- (d) $B(\bar{a})$

Formalizált állítások:

- (a) $\forall x \forall y (N(p(x,y),x) \land N(p(x,y),y))$
- (b) $\exists x E(x, s(x))$
- (c) $\forall x (E(x, p(\bar{a}, x)))$
- (d) $\forall x (E(m(x,\bar{a}),\bar{a}))$

2.2 Értéktábla

1. $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

Prímkomponensek: $\forall x \exists y P(x, y), Q(\bar{a}), P(\bar{a}, z)$

Szabad változók: z

Értéktábla adott interpretációhoz:

z	$\forall x \exists y P(x,y) \ (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	$1 \land 2 \lor 3$
0	h	i	h	h
1	h	i	i	i

Kvantált formula kiszámítása:

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = h$$

Az értéktábla alapján:

- Kielégíthető, mert az adott interpretációban van olyan változókiértékelés, ahol igaz.
- Biztos nem kielégíthetetlen, mert az adott interpretációban van olyan változókiértékelés, ahol hamis.
- Biztos nem logikai törvény, mert az adott interpretációban van olyan változókiértékelés, ahol hamis.

2.
$$\exists x \exists y (P(x,y) \land Q(f(\bar{a}))) \supset \forall x P(x,\bar{a}) \land P(f(x),\bar{b})$$

Változóiban tiszta alak pl: $\exists w \exists y (P(w,y) \land Q(f(\bar{a}))) \supset \forall z P(z,\bar{a}) \land P(f(x),\bar{b})$

Prímkomponensek: $\exists w \exists y (P(w,y) \land Q(f(\bar{a}))), \forall z P(z,\bar{a}), P(f(x),\bar{b})$

Szabad változók: x

Értéktábla adott interpretációhoz:

$x \mid$	$\exists w \exists y (P(w,y) \land Q(f(\bar{a}))) \ (1)$	$\forall z P(z, \bar{a}) \ (2)$	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	h
2	i	h	i	h
3	i	h	h	h

Kvantált formulák kiszámítása:

$$\begin{array}{l} \bullet \ \exists w \exists y (P(w,y) \land Q(f(\bar{a}))) = \\ \exists y (P(1,y) \land Q(f(\bar{a}))) \lor \exists y (P(2,y) \land Q(f(\bar{a}))) \lor \exists y (P(3,y) \land Q(f(\bar{a}))) = \\ [(P(1,1) \land Q(f(\bar{a}))) \lor (P(1,2) \land Q(f(\bar{a}))) \lor (P(1,3) \land Q(f(\bar{a})))] \lor \\ [(P(2,1) \land Q(f(\bar{a}))) \lor (P(2,2) \land Q(f(\bar{a}))) \lor (P(2,3) \land Q(f(\bar{a})))] \lor \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = i \end{array}$$

•
$$\forall z P(z, \bar{a}) = P(1, \bar{a}) \land P(2, \bar{a}) \land P(3, \bar{a}) = i \land h \land h = h$$

Az értéktábla alapján:

• Lehet kielégíthető, mert lehet, hogy egy másik interpretációban van igaz helyettesítési értéke.

4

- Lehet kielégíthetetlen, hiszen a többi interpretációban szintén lehet, hogy minden változókiértékelésben hamis a helyettesítési értéke.
- Biztos nem logikai törvény, mert az adott interpretációban van olyan változókiértékelés, ahol hamis

3. $\exists x \forall y P(f(x,y), \bar{a}) \supset Q(z) \supset P(z,x) \lor P(v,\bar{a})$

Változóiban tiszta alak pl: $\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \lor P(v,\bar{a})$

Prímkomponensek: $\exists w \forall y P(f(w,y),\bar{a}), Q(z), P(z,x), P(v,\bar{a})$

Szabad változók: z, x, v

Értéktábla adott interpretációhoz:

z	x	$\mid v \mid$	$\mid \exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	i
0	0	1	i	i	i	i	i
0	1	0	i	i	h	i	i
1	0	0	i	i	i	i	i
0	1	1	i	i	h	i	i
1	0	1	i	i	i	i	i
1	1	0	i	i	i	i	i
1	1	1	i	i	i	i	i

Kvantált formulák kiszámítása:

• TODO

Az értéktábla alapján:

- Kielégíthető, mert az adott interpretációban volt olyan változókiértékelés, ahol igaz.
- \bullet Biztos nem kielégíthetetlen, hiszen az adott interpretációban van olyan változókiértékelés, aholigaz.
- \bullet Lehet logikai törvény, hiszen a többi interpretációban még lehet igaz minden helyettesítési érték.

4. $(\forall x P(x) \lor \neg Q(y)) \supset (\neg \exists z Q(f(z)) \supset \forall k (P(k) \lor Q(w)))$

Változóiban tiszta alak pl: Már abban van.

Prímkomponensek: $\forall x P(x), Q(y), \exists z Q(f(z), \forall k (P(k) \lor Q(w))$

Szabad változók: y, w

Értéktábla adott interpretációhoz:

	\mathbf{y}	\mathbf{w}	$\forall x P(x) \ (1)$	Q(y) (2)	$\exists z Q(f(z)) \ (3)$	$\forall k(P(k) \lor Q(w)) \ (4)$	$(1 \lor 2) \supset (\neg 3 \supset 4)$
κ_1	a	a	h	i	h	i	i
κ_2	a	b	h	i	h	h	i
κ_3	b	a	h	h	h	i	i
κ_4	b	b	h	h	h	h	h

Kvantált formulák kiszámítása:

- $|\forall x P(x)|^{I,\kappa_{1-4}} = |\forall x P(x)|^I = |P(a)|^I \wedge |P(b)|^I = h \wedge i = h$
- $|\exists z Q(f(z))|^{I,\kappa_{1-4}} = |Q(f(a)) \vee Q(f(b))|^I = h \vee h = h$
- $|Q(y)|^{I,\kappa_{1,2}} = |Q(a)|^I = i$
- $|Q(y)|^{I,\kappa_{3,4}} = |Q(b)|^I = h$
- $\begin{array}{l} \bullet \ \ |\forall k(P(k) \vee Q(w))|^{I,\kappa_{1,3}} = |P(a) \vee Q(w)|^{I,\kappa_{1,3}} \wedge |P(b) \vee Q(w)|^{I,\kappa_{1,3}} = |P(a) \vee Q(a)|^{I} \wedge |P(b) \vee Q(a)|^{I} \\ Q(a)|^{I} = i \\ \ \ |\forall k(P(k) \vee Q(w))|^{I,\kappa_{2,4}} = |P(a) \vee Q(w)|^{I,\kappa_{2,4}} \wedge |P(b) \vee Q(w)|^{I,\kappa_{2,4}} = |P(a) \vee Q(b)|^{I} \wedge |P(b) \vee Q(b)|^{I} \\ Q(b)|^{I} = h \end{array}$

Az értéktábla alapján:

- Kielégíthető, mert az adott interpretációban van olyan változókiértékelés, ahol igaz.
- Biztos nem kielégíthetetlen, mert az adott interpretációban van olyan változókiértékelés, ahol hamis.
- $\bullet\,$ Biztos nem logikai törvény, mert az adott interpretációban van olyan változókiértékelés, ahol hamis.

5.
$$\forall x (P(x) \land Q(x, \overline{a})) \supset (\exists x Q(x, y) \lor \neg \forall y (P(\overline{a}) \supset Q(f(y), \overline{a})) \supset P(v))$$

Változóiban tiszta alak pl:
$$\forall x(P(x) \land Q(x, \overline{a})) \supset (\exists z Q(z, y) \lor \neg \forall w(P(\overline{a}) \supset Q(f(w), \overline{a})) \supset P(v))$$

Prímkomponensek: $\forall x(P(x) \land Q(x,\overline{a})), \exists z Q(z,y), \forall w(P(\overline{a}) \supset Q(f(w),\overline{a})), P(v)$ Szabad változók: y,v

Értéktábla adott interpretációhoz:

	\mathbf{y}	$\mid \mathbf{v} \mid$	$\forall x (P(x) \land Q(x, \overline{a}))$	$\exists z Q(z,y)$	$\forall w(P(\overline{a}) \supset Q(f(w), \overline{a}))$	P(v)	\mathbf{F}
κ_1	0	0	h	i	i	h	i
κ_2	0	1	h	i	i	i	i
κ_3	1	0	h	i	i	h	i
κ_4	1	1	h	i	i	i	i

Kvantált formulák kiszámítása:

- $|\forall x (P(x) \land Q(x, \overline{a}))|^{I, \kappa_{1-4}} = |\forall x (P(x) \land Q(x, \overline{a}))|^{I} = |P(0) \land Q(0, 0)|^{I} \land |P(1) \land Q(1, 0)|^{I} = h$
- $|\exists z Q(z,y)|^{I,\kappa_{1,2}} = |Q(0,0) \vee Q(1,0)|^I = i$
- $|\exists z Q(z,y)|^{I,\kappa_{3,4}} = |Q(0,1) \vee Q(1,1)|^I = i$
- $|\forall w(P(\overline{a}) \supset Q(f(w), \overline{a}))|^{I,\kappa_{1-4}} = |\forall w(P(\overline{a}) \supset Q(f(w), \overline{a}))|^{I} = |(P(0) \supset Q(f(0), 0))|^{I} \wedge |(P(0) \supset Q(f(1), 0))|^{I} = i$
- $|P(v)|^{I,\kappa_{1,3}} = |P(0)|^I = h$
- $|P(v)|^{I,\kappa_{2,4}} = |P(1)|^I = i$

Az értéktábla alapján:

- Kielégíthető, mert az adott interpretációban volt olyan változókiértékelés, ahol igaz.
- ullet Biztos nem kielégíthetetlen, hiszen az adott interpretációban van olyan változókiértékelés, ahol igaz.
- Lehet logikai törvény, hiszen a többi interpretációban még lehet igaz minden helyettesítési
 érték.

2.3 Tautológia vizsgálat

1. $\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$

Prímkomponensek: $\forall x P(x), \forall x R(x)$

Quine-féle táblázat:

$\forall x P(x)$	$\forall x R(x)$	$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
A	B	$(A \land B \supset A)$
i	i	i
i	h	i
h	i	i
h	h	i

A táblázatból látható, hogy a prímkomponensekhez rendelhető összes igazságérték esetén igaz lenne a formula, így tautológia.

2. $\forall x (P(x) \land R(x)) \supset \forall x P(x)$

Prímkomponensek: $\forall x (P(x) \land R(x)), \forall x P(x)$

Quine-féle táblázat:

$\forall x (P(x) \land R(x))$	$\forall x P(x)$	$\forall x (P(x) \land R(x)) \supset \forall x P(x)$
A	B	$(A\supset B)$
i	i	i
i	h	h
h	i	i
h	h	i

A táblázatból látható, hogy a prímkomponensekhez rendelhető összes igazságérték esetén nem minden esetben igaz a formula, így nem tautológia.

3. $P(x,y) \vee \neg Q(x) \supset \exists x Q(x) \vee (\exists x Q(x) \supset P(x,y) \vee \neg Q(x))$

Prímkomponensek: $P(x,y), Q(x), \exists x Q(x)$

Quine-féle táblázat:

P(x,y)	Q(x)	$\exists x Q(x)$	$P(x,y) \vee \neg Q(x) \supset \exists x Q(x) \vee (\exists x Q(x) \supset P(x,y) \vee \neg Q(x))$
A	B	C	$(A \vee \neg B) \supset C \vee (C \supset A \vee \neg B)$
i	i	i	i
i	i	h	i
i	h	i	i
h	i	i	i
i	h	h	i
h	i	h	i
${ m h}$	h	i	i
${ m h}$	h	h	i

A táblázatból látható, hogy a prímkomponensekhez rendelhető összes igazságérték esetén igaz lenne a formula, így tautológia.

4. $P(x,y) \supset \neg Q(x) \land Q(x) \supset P(x,y)$

Prímkomponensek: P(x,y), Q(x)

Quine-féle táblázat:

P(x, y)	Q(x)	$P(x,y) \supset \neg Q(x) \land Q(x) \supset P(x,y)$
A	B	$A\supset ((\neg B\wedge B)\supset A)$
i	i	i
i	h	i
h	i	i
h	h	i

 ${\bf A}$ táblázatból látható, hogy a prímkomponensekhez rendelhető összes igazságérték esetén igaz lenne a formula, így tautológia.