Homework 6 Written

July 7th, 2021 at 11:59pm

1 Bayes' Net: Representation

Assume we are given the following ten Bayes' nets, labeled G_1 to G_{10} :

Assume we are also given the following Bayes' nets, labeled G_1 to G_3 :

1. Assume we know that a joint distribution $d_1(\text{over A,B,C})$ can be represented by Bayes' net $\mathbf{B_1}$. Mark all of the following Bayes' nets that are guaranteed to be able to represent d_1 .

 $\square \ \ G_1 \qquad \square \ \ G_2 \qquad \square \ \ G_3 \qquad \nearrow \ \ G_4 \qquad \nearrow \ \ G_5$

 \square G_6 \square G_7 \square G_8 \square G_9 \square G_{10}

 \square None of the above.

2.					-			,		can be represented by Bayes' net $\mathbf{B_2}$ be able to represent d_2 .
		G_1		$\mathbf{G_2}$		${f G_3}$		$\mathbf{G_4}$		G_5
		${ m G}_6$		G_7		G_8		G_9		G_{10}
		None of	the	above.						
3.					-			,		can be represented by Bayes' net $\mathbf{B_3}$ be able to represent d_3 .
		$\mathbf{G_1}$		$\mathbf{G_2}$		$\mathbf{G_3}$		$\mathbf{G_4}$		G_5
		${ m G_6}$		G_7		G_8		G_9		G_{10}
		None of	the	above.						
4.	Assume we know that a joint distribution d_4 (over A,B,C) can be represented by Bayes' net $\mathbf{B_1}\mathbf{B_2}$ and $\mathbf{B_3}$. Mark all of the following Bayes' nets that are guaranteed to be able to represent d_4 .									
		G_1		G_2		G_3		G_4		G_5
		${ m G}_6$		G_7	V	G_8		G_9		G_{10}
		None of	the	above.						

2 Variable Elimination

For the Bayes' net below, we are given the query P(A, E|+c). All variables have binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: B, D, G, F.

Complete the following description of the factors generated in this process:

After inserting evidence, we have the following factors to start out with:

Solution:

$$P(A), P(B \mid A), P(+c), P(D \mid A, B, +c), P(E \mid D), P(F \mid D), P(G \mid +c, F)$$

When eliminating B we generate a new factor f_1 as follows:

Solution:

$$f_1(A, +c, D) = \sum_b P(b \mid A)P(D \mid A, b, +c)$$

This leaves us with the factors:

Solution:

$$P(A), P(+c), P(E \mid D), P(F \mid D), P(G \mid +c, F), f_1(A, +c, D)$$

When eliminating D we generate a new factor f_2 as follows:

VE 492: Written #6 (Due July 7th, 2021 at 11:59pm)

This leaves us with the factors:

P(A), P(f(C)), P(G(f(C)F)), $f_{2}(A, f(C)F)$

When eliminating G we generate a new factor f_2 as follows:

f3(+c, F)= & P(9(+c, F) Solution: ...

This leaves us with the factors:

P(A), P(EC), $f_2(A, C, E, F)$, $f_3(EC, F)$

When eliminating F we generate a new factor f_4 as follows:

P(E; Arc)

Solution: ... $f_{\epsilon}(A_1+C_1\overline{E}) = \overline{f}_{1/2}(A_1+C_1\overline{E},f) + f_{1/2}(f_1)$

This leaves us with the factors:

P(A), P(tc), fy(A, tc, E) Solution: ...

(b) Write a formula to compute P(A, E|+c) from the remaining factors.

PCA) PC+C) fa (A, +C) Solution: ...

would represent the factor.

Solution: ... +2; +1/3 /12e=4, f2/3 /12e=8, f5/5 /12e=2, f6/5/12e=4

VE 492: Written #6 (Due July 7th, 2021 at 11:59pm)

(d) Find a variable elimination ordering for the same query, i.e., for P(A, E|+c), for which the maximum size factor generated along the way is smallest. Hint: the maximum size factor generated in your solution should have only 2 variables, for a size of $2^2 = 4$ table. Fill in the variable elimination ordering and the factors generated into the table below.

Variable Eliminated	Factor Generated
В	1. (A,K,D)
<u> </u>	+2 (+C) F)
Ë	13 (+C,D)
	+ (A)+(,E)

For example, in the naive ordering we used earlier, the first row in this table would have had the following two entries: B, $f_1(A, +c, D)$.