

Simulation of Glancing Angle Deposition (GLAD)

Ojas Kulkarni ¹, Kevin Walsh ², Shamus McNamara ², Chuang Qu ²

¹Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT

²Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY

Introduction

[1] Vapor source

- GLAD is a bottom-up nanomanufacturing technique for thin films.
- The incident angle (α) and azimuth rotation angle (φ) are manipulated to produce shadowing which results in self-assembled nanostructures.
- Applications in sensing, optics, magnetic storage and other fields.

[1] M. Taschuk, M. Hawkeye, M. Brett, *Handbook of Deposition Technologies for Films and Coatings*, William Andrew Publishing, 2010. p. 624, p. 629, p. 630 [2] B. Dick, M. J. Brett, T. J. Smy, M. R. Freeman, M. Malac, and R. F. Egerton, "Periodic magnetic microstructures by glancing angle deposition," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, no. 4, pp. 1838–1844, Jul. 2000, doi: 10.1116/1.582481.

GLAD Theory and Design Elements

- Ballistic shadowing causes particle structures to grow and reduce in size.
- Different seeding patterns can be used.
- Natural seeds are cost effective but do not provide much initial control over deposition.
- Predetermined seeds are time consuming but allow for more control over nanostructures.

Research Project Goal

Develop a 3D simulation of the GLAD process for fabricating nano-structures which includes the following:

- Allow the user to modify both incidence angle (α) and azimuth rotation angle (φ) .
- Allow for the prediction of various seeding strategies (both natural and pre-seeds).
- Uncover the relationship between α and column growth angle (β) .

Background and Previous Research

- Simulation was excessively slow and required specific hardware to run. (100+ Hours)
- 2D simulation does exist but is inaccurate on a large scale.

Simulation Idea

- Particles will enter scene from specific incidence angle.
- Incoming particles will check for any collisions that happen.
- Land at their appropriate positions.

Incoming particle

• New particle enters scene.

Previously
Deposited
particle 1

Previously
Deposited
particle 2

Previously
Deposited
particle 3

Substrate

- New particle enters scene.
- Casts a vector-ray from its initial position to its destination.

- New particle enters scene.
- Casts a vector-ray from its initial position to its destination.
- If the ray intersects anything in its path, particle will land at the intersection point.
- If it doesn't, then particle will land on substrate.

- New particle enters scene.
- Casts a vector-ray from its initial position to its destination.
- If the ray intersects anything in its path, particle will land at the intersection point.
- If it doesn't, then particle will land on substrate.
- Steps repeated until all particles (~35,000 particles) have settled to their final positions.

•
$$x = d * \cos \beta$$

- New particle enters scene.
- Casts a vector-ray from its initial position to its destination.
- If the ray intersects anything in its path, particle will land at the intersection point.
- If it doesn't, then particle will land on substrate.
- Steps repeated until all particles (~35,000 particles) have settled to their final positions.

•
$$x = d * \cos \beta$$

Demonstration of Simulated Growth

Simulation of Natural Seed Growths

Comparison of Simulation vs. Experiment

Main parameter to test is the column growth angle (β).

Demonstrated: $\beta < \alpha$

Tait's Rule (Theoretical)

$$\beta = \alpha - \sin^{-1}(\frac{1 - \cos(\alpha)}{2})$$

For $\alpha < 70^{o}$, continuous thin films are observed and thus cannot be compared.

Seeding Patterns

Line Seeds

Spherical Seeds

Cube Seeds with flat tops

Simulated Growth on Pre-seeds

Simulated Growth of Complex Structures

 Used a spontaneous recipe to create zigzag, rod, and helix

> •Zig-Zag: $\alpha = 75^o$, 80^o •Column: $\omega = 5 \, rpm$ •Helix: $\omega = 0.04 \, rpm$

Program Efficiency

Time Complexity	Iterations	Render Time (s)
$O(n^4)$	x < 2,500,000,000	38.55
$O(n^3 + n^2)$	<i>x</i> < 510,000,000	12.36
$O(n^3+n)$	<i>x</i> < 500,000,000	9.79
$O(sn^3)$	x < 100,000,000	3.54

We developed and tested 4 algorithms and the last one turned out to be the most efficient.

Conclusions

- Implemented 3D simulation of the GLAD process in a Monte-Carlo Fashion
- Demonstrated growths on natural and predetermined seeds.
- Outputs include percent coverage, and simulated column growth angle.
- Developed efficient collision resolution algorithms.

Acknowledgements

NSF Award ID #1950137

NSF Award ID #2025075

Thank you

Future Work

- Adding surface diffusion to landed particles
- Adding support for various deposition materials:
 - Currently only supports Germanium
- Adding support for changes in pressure