Summary Information for Four Named Discrete Probability Distributions

Distribution	Parameters	Random Variable	Probability Mass Function	Examples
Binomial—may be used	n = number of	X = number of successes in n	Probability that an n-trial	Examples of binomial
in situations with	independent trials	independent trials.	binomial experiment	experiments:
dichotomous outcomes			results in exactly x	1. The experiment is to
from a fixed number of	p = probability of	$X \sim \text{Binomial}(n, p)$	successes:	toss a fair coin 10 times
independent trials with	success (assumed	E(V)		and record the sequence
constant probability of success for each trial.	constant over all trials)	$\mu = E(X) = np$	$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$	of heads and tails. Let <i>X</i> = the number of tails in
success for each trial.		$\sigma^2 = Var(Y) = nn(1-n)$	$(x)^{i}$	10 tosses.
When $n = 1$, called a		$\sigma^{2} = Var(X) = np(1 - p)$ $\sigma = SD(X) = \sqrt{\sigma^{2}}$	for $x = 0, 1, 2,, n$.	2. Giving a multiple-choice
Bernoulli trial		$z = SD(V) = \sqrt{-2}$	101 K 0, 1, 2, ,	test with 30 questions,
		$\delta = SD(X) = \sqrt{\delta^2}$		each with 4 options of
				which only 1 option is
				correct. Assume
				random guessing on
				each question. Let <i>X</i> =
				number of correct
	N			guesses in 30 questions.
Hypergeometric —may	<i>N</i> = size of population	X = number of successes in a	Probability that an <i>n</i> -trial	Examples of
be used in situations	M = number of	sample of size <i>n</i> .	hypergeometric	hypergeometric experiments:
where you sample <i>n</i> items without	successes in population	$X \sim \text{Hypergeometric}(n, M, N)$	experiment results in	1. Drawing candies from a
replacement from a	successes in population	Y's Trypergeometric(n, m, w)	exactly <i>x</i> successes, when	bowl: you have a bowl
population of size <i>N</i> .	n = sample size, drawn	(M)	the population consists of N	with 50 M&M's, 20 blue
Requires a dichotomous	without replacement.	$\mu = E(X) = n\left(\frac{M}{N}\right)$	items, M of which are	and 30 not blue. You
response variable with	_	(11)	classified as successes:	randomly select 8
one outcome designated		$\sigma^2 = Var(X)$		M&M's from the bowl
success and the other		-nM(N-M)	$\binom{M}{N-M}$	without replacement.
failure. Probability of		$\sigma^{2} = Var(X)$ $= nM(N - M) \frac{N - n}{N^{2}(N - 1)}$	$P(X = x) = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{y}}$	You count the number of
success not constant			$\binom{N}{n}$	blue M&M's you have
from trial to trial.		$\sigma = \mathrm{SD}(X) = \sqrt{\sigma^2}$		drawn.
			for $x = 0, 1, 2,, n$.	2. Drawing cards from a
				standard playing deck:
				you are randomly dealt 5 cards from the deck.
				You count the number of
				spades in your hand.

Summary Information for Four Named Discrete Probability Distributions

Geometric —used to	<i>p</i> = constant probability	<i>X</i> = number of Bernoulli trials	Probability that the first	Examples of geometric
model the number of	of success	to get one success.	occurrence of success requires	distributed random
trials up to and including		8	<i>x</i> independent trials each with	variables:
the first success. Assumes		$X \sim \text{Geometric}(p)$	the constant probability of	1. Toss a standard six-
constant probability of		, ,	success, p:	sided die and count the
success and a		1		number of times it takes
dichotomous response.		$\mu = E(X) = \frac{1}{p}$	$P(X = x) = (1 - p)^{x-1}p$	before you throw a 5.
		P	for $x = 1, 2,$	Let $X = \text{number of tosses}$
		1-n	1,2,,.	of the die up to and
		$\sigma^2 = \operatorname{Var}(X) = \frac{1 - p}{p^2}$		including the first
		P		observed 5.
		$\sigma = SD(X) = \sqrt{\sigma^2}$		2. A middle school boy
		$\sigma = SD(X) = \sqrt{\sigma^2}$		attends his first school
				dance and starts to ask
				girls to dance. Let $X =$
				number of times he
				must ask a girl to dance
				before and up to the
				first yes.
Poisson —used to model	$\mu = \lambda t$ where λ is the	X = number of occurrences in a	Probability of x discrete	Examples of Poisson
events that occur rarely	average unit rate or	specified time frame or area.	occurrences of event X in a	distributed random
in space or time. Used to	unit area of occurrence,		given time interval or	variables:
calculate the probability	and t is a scaling factor	$X \sim \text{Poisson}(\mu)$	specified region in space:	1. The number of patients
of a given number of	for the number of units.			that arrive at the
events occurring in a		$\mu = E(X) = \sigma^2 = Var(X) = \lambda t$	$P(X = x) = \frac{\mu^x e^{-\mu}}{1}$, for $\mu > 0$.	Harborview ER during
fixed interval of space or			x = 0.1.2,	an 8-hour day shift
time provided the			x - 0,1,2,,	given an average of 3.2
occurrences are				patients per hour.
independent of the time				2. The number of cars sold
or location of the last				by a car salesman in one
event and you know the				week given an average
average rate of				of 1.2 sales per day.
occurrence.				

$Other\ interesting\ properties:$

- 1. As $n \to \infty$, the binomial distribution converges a to a normal distribution. This is why, when n is large enough, we can use normal approximation to estimate binomial probabilities. For this class, n large enough means np > 5 and n(1-p) = nq > 5. Use of continuity correction generally recommended.
- 2. The Poisson distribution can be approximated with a normal distribution when μ is large. Use of continuity correction generally recommended.
- 3. The Poisson distribution can be used to approximate binomial probabilities when you let $\lambda = np$ and $n \rightarrow \infty$, with p very small so that np is essentially fixed.