Method for the selective production of racemic metallocene complexes

Patent number:

DE10030638

Publication date:

2002-01-10

Inventor:

DAMRAU ROBERT [DE]; MUELLER PATRICK [DE];

ROYO EVA [DE]; BRINTZINGER HANS-HERBERT [CH]

Applicant:

BASELL POLYOLEFINE GMBH [DE]

Classification:

- international:

C07F17/00; C07B53/00; C08F4/64; C08F4/76

- european:

C07B53/00; C07F17/00; C08F10/00

Application number: DE20001030638 20000629 Priority number(s): DE20001030638 20000629

Also published as:

WO0200672 (A1) US2004010157 (A1) EP1294734 (B1)

Abstract of DE10030638

The invention relates to a method for producing racemic metallocene complexes by reacting bridged or non-bridged transition metal complexes with cyclopentadienyl derivatives of alkaline or alkaline earth metals and optionally, subsequently substituting the phenolate ligands.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USP10)

(B) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

© OffenlegungsschriftDE 100 30 638 A 1

(7) Aktenzeichen:(2) Anmeldetag:

100 30 638.1

(3) Offenlegungstag:

29. 6. 200010. 1. 2002

(5) Int. Cl.⁷: **C 07 F 17/00**

C 07 B 53/00 C 08 F 4/64 C 08 F 4/76

(7) Anmelder:

Basell Polyolefine GmbH, 77694 Kehl, DE

(72) Erfinder:

Damrau, Robert, 78462 Konstanz, DE; Müller, Patrick, Dr., 67663 Kaiserslautern, DE; Royo, Eva, Dr., 78462 Konstanz, DE; Brintzinger, Hans-Herbert, Prof.Dr., Tägerwilen, CH

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (A) Verfahren zur selektiven Herstellung racemischer Metallocenkomplexe
- Verfahren zur Herstellung von racemischen Metallocenkomplexen durch Umsetzung von verbrückten oder nicht-verbrückten Übergangsmetallkomplexen mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen und gegebenenfalls anschließende Substitution der Phenolatliganden.

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von racemischen Metallocenkomplexen durch Umsetzung von verbrückten oder nicht verbrückten Übergangsmetallaromatkomplexen der allgemeinen Formel I

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

X gleich oder verschieden Fluor, Chlor, Brom, Iod, Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR¹⁰ oder -NR¹⁰R¹

n eine ganze Zahl zwischen 1 und 4, wobei n der Wertigkeit von M minus der Zahl 2 entspricht,

R1, R8 gleich oder verschieden Fluor, Chlor, Brom, Iod, C1- bis C20-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R9)3 mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituert sein können, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P (R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, C_{10} - C_{1 cloalkyl, Alkylaryl

R² bis R7 gleich oder verschieden Wasserstoff, C1- bis C20-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits einen C₁- bis C₁₀-Alkylrest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R9)3 mit R9 gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, C_{10} -Alkyl, C_{10} -Alk cloalkyl, Alkylaryl

 R^{10} , R^{11} C_{1^-} bis C_{10^-} Alkyl, C_{6^-} bis C_{15^-} Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

Y, Y¹ gleich oder verschieden

 $=BR^{12}$, $=AlR^{12}$, -Ge-, -Sn-, -O-, -S-, =SO, $=SO_2$, $=NR^{12}$, =CO, $=PR^{12}$ oder $=P(O)R^{12}$, wobei R¹² gleich oder verschieden Wasserstoff, Halogen, C₁-C₁₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryl, C₁-C₁₀-Alkoxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C₈-C₄₀-Arylalkenyl, C₇-C₄₀-Alkylaryl bedeuten, oder wobei zwei Reste R¹² mit den sie verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C1- bis C20-Alkyl, 3- bis 8-gliedri-

ges Cycloalkyl – das seinerseits ein C_1 - bis C_{10} - Alkyl als Rest tragen kann –, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9)₃ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, oder zusammen mit benachbarten Resten R^4 oder R^5 für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste vollständig oder teilweise mit Heteroatomen substituiert sein können,

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl

mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen, erwärmen des so erhaltenen Reaktionsgemisches auf eine Temperatur im Bereich von -78 bis 250°C, gegebenenfalls unter Zusatz von Radikalen oder Radikalbildnern und gegebenenfalls anschließende Substitution des verbrückten phenolischen Liganden oder der beiden nicht verbrückten phenolischen Liganden zum Mono- oder Bisubstitutionsprodukt; racemische Metallocenkomplexe der allgemeinen Formel III

$$R^{15}$$
 R^{14}
 R^{16}
 R^{13}
 R^{17}
 R^{17}
 R^{19}
 R

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

$$X^1$$
 R^3
 R^4
 R^5
 R^6
 R^7
 R^1
 Y^1
 Y^1
 R^8

wobei:

 R^1 , R^8 gleich oder verschieden Fluor, Chlor, Brom, Iod, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C_1 - bis C_{10} -Alkyl als Rest tragen kann –, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9)₃ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P (R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

 R^2 bis R^7 gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C_1 -bis C_{10} -Alkylrest tragen kann –, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, $Si(R^9)_3$ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,

benachbarte Reste R^2 bis R^7 können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein,

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl

Y, Y¹ gleich oder verschieden

 $=BR^{12}, =AlR^{12}, -Ge-, -Sn-, -O-, -S-, =SO, =SO_2, =NR^{12}, =CO, =PR^{12} \ oder = P(O)R^{12}, \ wobei$ $R^{12} \ gleich \ oder \ verschieden \ Wasserstoff, \ Halogen, \ C_1-C_{10}-Alkyl, \ C_1-C_{10}-Fluoralkyl, \ C_6-C_{10}-Fluoraryl, \ C_6-C_{10}-Aryl, \ C_1-C_{10}-Aryl, \ C_1-C_{10}-Ary$ C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_8 - C_{40} -Arylalkenyl, C_7 - C_{40} -Alkylaryl bedeuten, oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen einen Ping bilden

M1 Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C1- bis C20-Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann –, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R9)3 mit R9 gleich oder verschieden C1- bis C20-Alkyl, C3- bis C10-Cycloalkyl, C6- bis C15-Aryl, oder zusammen mit benachbarten Resten R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste vollständig oder teilweise mit Heteroatomen substituiert sein können,

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, C_{10} -Alkyl, C_{10} -Alk

cloalkyl, Alkylaryl

R¹³ bis R¹⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C1- bis C10-Alkyl als Substituent tragen kann -, C6- bis C15-Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R¹⁸)₃ mit R¹⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

Z für

steht,

wobei die Reste

R¹⁹ bis R²³ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann -, C₆- bis C₁₅-Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R²⁴)₃ mit R²⁴ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

oder wobei die Reste

R¹⁶ und Z gemeinsam eine Gruppierung -[T(R²⁵)(R²⁶)]_g-E- bilden,

T gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht, , R^{26} für Wasserstoff, C_{1} - bis C_{10} -Alkyl, C_{3} - bis C_{10} -Cycloalkyl oder C_{6} - bis C_{15} -Aryl

q für die Zahlen 1, 2, 3 oder 4,

E für

5

10

30

40

55

oder A steht, wobei A -O-, -S-, > NR²⁷ oder > PR²⁷ bedeutet,

mit R²⁷ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl oder Alkylaryl und die Verwendung von racemischen Metallocenkomplexen gemäß Formel III als Katalysatoren oder als Bestandteil von Katalysatoren für die Polymerisation von olefinisch ungesättigten Verbindungen oder als Reagentien oder als Kata-

lysatoren in der Stereoselektivensynthese.

[0002] Neben der stereospezifischen Olefinpolymerisation bietet in zunehmendem Maße die enantioselektive organische Synthese interessante Anwendungsmöglichkeiten für chirale Metallocenkomplexe von Metallen der III.-VI. Nebengruppe des Periodensystems der Elemente. Beispielhaft seien hier enantioselektive Hydrierungen prochiraler Substrate genannt, beispielsweise prochiraler Olefine, wie in R. Waymouth, P. Pino, J. Am. Chem. Soc. 112 (1990), S. 4911-4914 beschrieben, oder prochiraler Ketone, Imine und Oxime, wie in der WO 92/9545 beschrieben.

[0003] Weiterhin seien genannt die Herstellung optisch aktiver Alkene durch enantioselektive Oligomerisation, wie in W. Kaminsky et al., Angew. Chem. 101 (1989), S. 1304–1306 beschrieben sowie die enantioselektive Cyclopolymerisation von 1,5-Hexadienen, wie in R. Waymouth, G. Coates, J. Am. Chem. Soc. 113 (1991), S. 6270–6271 beschrieben. [0004] Die genannten Anwendungen erfordern im allgemeinen den Einsatz eines Metallocenkomplexes in seiner racemischen Form, d. h. ohne meso-Verbindungen. Von dem bei der Metallocensynthese des Standes der Technik anfallenden Diastereomerengemisch (rac.- u. meso-Form) muß zunächst die meso-Form abgetrennt werden. Da die meso-Form verworfen werden muß, ist die Ausbeute an racemischem Metallocenkomplex gering.

[0005] Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur selektiven Herstellung von racemischen, praktisch (NMR-Meßgenauigkeit) meso-Isomer-freien Metallocenkomplexen zu finden.

[0006] Eine weitere Aufgabe war es, racemische Metallocenkomplexe zu finden, welche entweder direkt als oder in Katalysatoren, vornehmlich für die Olefinpolymerisation, verwendet werden können, oder die nach Modifizierung, beispielsweise nach der Substitution eines "Hilfsliganden", als, oder in Katalysatoren, vornehmlich für die Olefinpolymerisation, verwendet werden können, oder die als Reagenzien oder Katalysatoren in der stereoselektiven Synthese verwendet werden können.

[0007] Demgemäß wurde das in den Patentansprüchen definierte Verfahren, die racemischen Metallocenkomplexe III, sowie deren Verwendung als Katalysatoren oder in Katalysatoren für die Polymerisation von olefinisch ungesättigten Verbindungen oder als Reagenzien oder Katalysatoren in der Stereoselektiven Synthese gefunden.

[0008] Die Begriffe "meso-Form", "Racemat" und somit auch "Enantiomere" in Verbindung mit Metallocenkomplexen sind bekannt und beispielsweise in Rheingold et al., Organometallics 11 (1992), S. 1869–1876 definiert.

[0009] Der Begriff "praktisch meso-frei" wird hier so verstanden, daß mindestens 90% einer Verbindung in Form des Racemats vorliegen.

[0010] Die erfindungsgemäßen, verbrückten oder unverbrückten Übergangsmetallaromatkomplexe haben die allgemeine Formel I

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

X gleich oder verschieden Fluor, Chlor, Brom, Iod, Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR¹⁰ oder -NR¹⁰R¹¹,

n eine ganze Zahl zwischen 1 und 4, wobei n der Wertigkeit von M minus der Zahl 2 entspricht,

 R^1 , R^8 gleich oder verschieden Fluor, Chlor, Brom, Iod, C_{1^-} bis C_{20^-} Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C_{1^-} bis C_{10^-} Alkyl als Rest tragen kann –, C_{6^-} bis C_{15^-} Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9)₃ mit R^9 gleich oder verschieden C_{1^-} bis C_{20^-} Alkyl, C_{3^-} bis C_{10^-} Cycloalkyl, C_{6^-} bis C_{15^-} Aryl,

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

R² bis R⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits einen

 C_1 - bis C_{10} -Alkylrest tragen kann –, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9)₃ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, benachbarte Reste R^2 bis R^7 können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesät-

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein.

sein, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl

R¹⁰, R¹¹C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

Y, Y¹ gleich oder verschieden

 R^{12} R^{12} R^{12} R^{12} R^{12} R^{12} =BR¹², =AlR¹², -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR¹², =CO, =PR¹² oder =P(O)R¹²,

 R^{12} gleich oder verschieden Wasserstoff, Halogen, C_1 - C_{10} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryl, C_1 - C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_8 - C_{40} -Arylalkenyl, C_7 - C_{40} -Alkylaryl bedeuten, oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen einen Ring bilden,

M1 Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

30

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann –, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, oder zusammen mit benachbarten Resten R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen substituiert sein können.

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl.

[0011] Bevorzugte Metalle M sind Titan, Zirkonium und Hafnium, insbesondere Zirkonium.

[0012] Gut geeignete Substituenten X sind Fluor, Chlor, Brom, Iod, vorzugsweise Chlor, weiterhin C₁- bis C₆-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, i-Butyl, vorzugsweise tert.-Butyl. Außerdem gut geeignet als Substituenten X sind Alkoholate -OR¹⁰ oder Amide -NR¹⁰R¹¹ mit R¹⁰ oder R¹¹ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest. Derartige Reste X sind beispielsweise Methyl, Ethyl, i-Propyl, tert.-Butyl, Phenyl, Naphthyl, p-Tolyl, Benzyl, Trifluormethyl, Pentafluorphenyl.

[0013] Die Substituenten R¹ und R8 sind gleich oder verschieden und bedeuten Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, -OR²¹, SR²¹, -N(R²¹)₂, -P(R²¹)₂, mit R²², gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²8)₃ mit R²8, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits einen C₁- bis C₁₀-Alkylrest, wie Methyl, Ethyl, Propyl tragen kann. Beispiele für derartige Cycloalkylreste sind Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl, Norbornyl. Weiterhin bedeuten die Substituenten R¹ und R² C₆- bis C₁₅-Aryl, wie Phenyl, Naphthyl; Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie p-Tolyl; Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl wie Si(R²)₃ mit R² gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, beispielsweise Trimethylsilyl, tert.-Butyl-dimethylsilyl, Triphenylsilyl. Die genannten Reste können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte Reste R¹ und R² genannt die Trifluormethyl-, Pentafluorethyl-, Heptafluorpropyl-, Heptafluorisopropyl-, Pentafluorphenylgruppe.

[0014] Bevorzugte Substituenten R¹ und R⁸ sind solche, die viel Raum in Anspruch nehmen. Üblicherweise nennt man solche Substituenten sperrige Substituenten. Sie zeichnen sich dadurch aus, daß sie sterische Hinderung hervorrufen können.

[0015] Im allgemeinen versteht man unter diesen Gruppen kohlenstoff- oder siliziumorganische Reste mit hohem Raumbedarf (sperrige Reste), aber auch Fluor und vorzugsweise Chlor, Brom und Iod. Die Anzahl der Kohlenstoffatome die in derartigen kohlenstoff- oder siliziumorganischen Resten enthalten sind, liegt üblicherweise nicht unter drei.

[0016] Bevorzugte nicht-aromatische, sperrige Reste sind solche kohlenstoff- oder siliziumorganischen Reste, die in α -Stellung oder höherer Stellung verzweigt sind. Beispiele für derartige Reste sind verzweigte C_3 - bis C_{20} -aliphatische, C_9 - bis C_{20} -araliphatische Reste und C_3 - bis C_{10} -cycloaliphatische Reste, wie iso-Propyl, tert.-Butyl, iso-Butyl, neo-Pentyl, 2-Methyl-2-phenylpropyl (Neophyl), Cyclohexyl, 1-Methylcyclohexyl, Bicyclo[2.2.1]hept-2-yl (2-Norbornyl), Bicyclo[2.2.1]hept-1-yl (1-Norbornyl), Adamantyl. Weiterhin kommen als solche Reste siliziumorganische Reste mit drei bis dreißig Kohlenstoffatomen in Frage, beispielsweise Trimethylsilyl, Triethylsilyl, Triphenylsilyl, tert.-Butyldimethylsilyl, Tritolylsilyl oder Bis(trimethylsilyl)methyl.

[0017] Bevorzugte aromatische, sperrige Gruppen sind in der Regel C₆- bis C₂₀-Arylreste, wie Phenyl, 1- oder 2-Naphthyl oder vorzugsweise C₁- bis C₁₀-alkyl- oder C₃- bis C₁₀-cycloalkylsubstituierte aromatische Reste wie 2,6-Dimethylphenyl, 2,6-Di-tert.-Butylphenyl, Mesityl.

[0018] Ganz besonders bevorzugte Substituenten R¹ und R⁸ sind i-Propyl, tert.-Butyl, Trimethylsilyl, Cyclohexyl, i-Butyl, Trifluormethyl, 3.5-Dimethylphenyl.

[0019] Im bevorzugten Substitutionsmuster sind R¹ und R⁸ in Formel I gleich.

[0020] Die Substituenten R² bis R³ sind gleich oder verschieden und bedeuten Wasserstoff, C₁- bis C₂₀-Alkyl, -OR²¹, -SR²¹, -N(R²¹)₂, -P(R²¹)₂, mit R²¹, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₀- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²8)₃ mit R²8, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₀- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits einen C₁- bis C₁₀-Alkylrest, wie Methyl, Ethyl, Propyl tragen kann. Beispiele für derartige Cycloalkylreste sind Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl, Norbornyl. Weiterhin bedeuten die Substituenten R² bis R³ C₆- bis C₁₅-Aryl, wie Phenyl, Naphthyl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl wie Si(R³)₃ mit R³ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, beispielsweise Trimethylsilyl, tert.-Butyldimethylsilyl, Triphenylsilyl. Die Reste R² bis R³ können aber auch derartig miteinander verbunden sein, daß benachbarte Reste für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder ungesättigte cyclische Gruppen stehen. Vorzugsweise sind die Reste R³ und R⁴ und/oder die Reste R⁵ und R⁶ mit einer C₂-Brücke derartig verbunden, daß ein benzoanelliertes Ringsystem (Naphthylderivat) entsteht. Die genannten Reste R² bis R³ können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte Reste R² bis R³ genannt die Trifluormethyl-, Pentafluorethyl-, Heptafluorisopropyl-, Pentafluorphenylgruppe.

[0021] Besonders bevorzugt sind die Reste R² und R⁷ gleich und bedeuten Wasserstoff, und R³, R⁴, R⁵, R⁶ haben die bereits genannte Bedeutung.

35

[0022] Als Brückenglieder Y, Y¹ kommen die folgenden in Frage:

=BR 12 , AlR 12 , -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR 12 , =CO, =PR 12 oder =P(O)R 12 , wobei R 12 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine $C_1\text{-}C_{10}\text{-}$ Alkylgruppe, eine $C_1\text{-}C_{10}\text{-}$ Fluoralkylgruppe, eine $C_6\text{-}C_{10}\text{-}$ Arylgruppe, eine $C_1\text{-}C_{10}\text{-}$ Alkoxygruppe, eine $C_2\text{-}C_{10}\text{-}$ Alkenylgruppe, eine $C_7\text{-}C_{40}\text{-}$ Arylalkylgruppe, eine $C_7\text{-}C_{40}\text{-}$ Arylalkylgruppe bedeuten oder R 12 und R 13 oder R 12 und R 14 jeweils mit den sie verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist. [0023] Bevorzugte Brückenglieder Y, Y¹ sind Methylen -CH₂-, S, O, -C(CH₃)₂-, wobei m in Formel I vorzugsweise 1 oder 2 ist; Y¹ ist ganz besonders bevorzugt gleich und bedeutet Sauerstoff -O-. Ganz besonders bevorzugt sind Phenolattyp-Strukturen, in welchen m in Formel I 0 ist, das heißt, daß die aromatischen Ringsysteme direkt miteinander verknüpft sind, vorzugsweise zum Biphenolderivat.

[0024] Von den erfindungsgemäßen unverbrückten Übergangsmetallaromatkomplexen der allgemeinen Formel I sind diejenigen bevorzugt, in denen Y für Reste R' und R" steht, die gleich oder verschieden sind und Fluor, Chlor, Brom, Iod,

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl, C₁- bis C₂₀-Alkyl oder 3- bis 8-gliedriges Cycloalkyl – das seinerseits einen C₁- bis C₁₀-Alkylrest, wie Methyl, Ethyl, Propyl tragen kann – bedeuten. Beispiele für derartige Cycloalkylreste sind Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl, Norbornyl. Weiterhin bedeuten die Substituenten R' und R" C₆- bis C₁₅-Aryl, wie Phenyl, Naphthyl; Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie p-Tolyl; Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl wie Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, beispielsweise Trimethylsilyl, tert.-Butyldimethylsilyl, Triphenylsilyl. Die genannten Reste können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte Reste R' und R" genannt die Trifluormethyl-, Pentafluorethyl-, Heptafluorisopropyl-, Pentafluorphenylgruppe.

[0025] Bevorzugt sind R' und R" gleich. Besonders bevorzugte unverbrückte Übergangsmetallaromatkomplexe sind solche, in welchen R¹, R⁸, R' und R" gleich sind, ein ganz besonders bevorzugtes Substitutionsmuster ist jenes in welchem R¹, R³, R' und R⁶, R⁸, R" H bedeuten und R², R⁴ und R⁵, R⁷ die oben genannte Bedeutung, vorzugsweise tert.-Butyl, jedoch nicht H haben. Der phenolische Rest in (I) ist vorzugsweise ein Biphenolatrest mit den oben beschriebenen Substitutionsmustern.

[0026] Die verbrückten oder nicht verbrückten Übergangsmetallaromatkomplexe I werden im allgemeinen nach Methoden hergestellt, die dem Fachmann bekannt sind.

[0027] Die Synthese der verbrückten Übergangsmetallphenolatkomplexe ist beispielsweise in C. J. Schaverien, J. Am. Chem. Soc. (1995), Seiten 3008 bis 3012, beschrieben. Als gut geeignet hat sich hierbei folgendes Vorgehen erwiesen, wobei in der Regel im Temperaturbereich von –78 bis 110°C, vorzugsweise zunächst bei ca. 20°C gearbeitet wird und die Reaktion dann durch Kochen am Rückfluß vervollständigt wird. Das Biphenol wird zunächst in einem Lösungsmittel, beispielsweise Tetrahydrofuran (THF) deprotoniert, zum Beispiel mit Natriumhydrid oder n-Butyllithium, und anschließend die Übergangsmetallverbindung, beispielsweise das Halogenid, wie Titan-, Zirkonium- oder Hafniumtetrachlorid, vorteilhaft in Form des Bis-THF-Adduktes, hinzugegeben. Nach erfolgter Umsetzung wird das Produkt in der Regel nach Abtrennung von Salzen durch Auskristallisieren erhalten. Die Herstellung von nicht-verbrückten Übergangsmetallphenolatkomplexen kann beispielsweise nach H. Yasuda et. al. J. Organomet. Chem. 473 (1994), Seiten 105 bis 116 erfolgen.

[0028] Die erfindungsgemäßen, verbrückten oder nicht verbrückten Übergangsmetallaromatkomplexe I enthalten in der Regel noch 1 bis 4 Äquivalente einer Lewis-Base, welche in der Regel über die Syntheseroute eingeschleppt wird. Als derartige Lewisbasen sind beispielsweise zu nennen Ether, wie Diethylether oder Tetrahydrofuran (THF) aber auch Amine wie TMEDA. Es ist aber auch möglich, die Übergangsmetallaromatkomplexe Lewis-Basen-frei zu erhalten, beispielsweise durch Trocknung im Vakuum oder Wahl anderer Lösungsmittel bei der Synthese. Derartige Maßnahmen sind dem Fachmann bekannt.

[0029] Die erfindungsgemäßen racemischen Metallocenkomplexe werden hergestellt durch Umsetzung der verbrückten oder nicht verbrückten Übergangsmetallaromatkomplexe I mit Cyclopentadienylderivaten der Alkali- oder Erdalkalimetalle und anschließender Erhitzung des so erhaltenen Reaktionsgemisches, gegebenenfalls in Gegenwart von Radikalen oder Radikalbildnern, wie im folgenden beschrieben.

[0030] Vorzugsweise setzt man Übergangsmetallaromatkomplexe I ein, in welchen M Zirkonium bedeutet und die Reste R¹ und R8 die oben beschriebene, bevorzugte Bedeutung haben. Sehr gut geeignet sind Dichlorobis(3,5-di-tert.-Butylphenolat)zirkon · (THF)₂, Dichlorbis(3,5-di-tert.-Butylphenolat)zirkon · (DME), Dichlorbis(2,6-Dimethylphenolat)zirkon · (THF)₂, Dichlorbis(2,6-Dimethylphenolat)zirkon · (DME), Dichlorbis(2,4,6-Trimethylphenolat)zirkon · (THF)₂, Dichlorbis(2,4,6-Trimethylphenolat)zirkon · (THF)₂, Dichlorbis(2,4,6-Trimethylphenolat)zirkon · (DME) und die in den Beispielen genannten Zirkon-Phenolat-Verbindungen.

[0031] Prinzipiell kommen als Cyclopentadienylderivate der Alkali- oder Erdalkalimetalle diejenigen in Frage, welche nach der Umsetzung mit den erfindungsgemäßen, verbrückten Übergangsmetallaromatkomplexen I selektiv, praktisch meso-Isomeren-freie, racemische Metallocenkomplexe liefern.

[0032] Die erfindungsgemäßen racemischen Metallocenkomplexe können verbrückt sein, müssen es aber nicht sein. Es genügt im allgemeinen eine hohe Rotationsbarriere, insbesondere im Temperaturbereich von 20 bis 80°C, (bestimmbar mit der Methode der ¹H und/oder ¹³C-NMR-Spektroskopie) der unverbrückten Cyclopentadienyltyp-Liganden im Metallocen, damit die Metallocenkomplexe direkt in ihrer racemischen Form isoliert werden können, ohne daß sie sich in die meso-Form umwandeln können. Die Rotationsbarriere, die dies gewährleistet, liegt üblicherweise über 20 kJ/mol. [0033] Gut geeignete Cyclopentadienderivate von Alkali- oder Erdalkalimetallen sind solche der allgemeinen Formel II

in der die Substituenten und Indizes folgende Bedeutung haben:

M² Li, Na, K, Rb, Cs, Be, Mg, Ca, S, Ba,

55

R¹³ bis R¹⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits ein C₁-

bis C₁₀-Alkyl als Substituent tragen kann, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R¹⁸)3 mit

R¹⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl, Z für

5

20

35

40

65

steht,

wobei die Reste

R¹⁹ bis R²³ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits ein C₁bis C₁₀-Alkyl als Substituent tragen kann, C₆- bis C₁₅-Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R²⁴)₃ mit

R²⁴ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

oder wobei die Reste

 R^{16} und Z gemeinsam eine Gruppierung - $[T(R^{25})(R^{26})]_n$ -E- bilden, in der

T gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht,

 R^{25} , R^{26} für Wasserstoff, C_1 - bis C_{10} -Alkyl, C_3 - bis C_{10} -Cycloalkyl oder C_6 - bis C_{15} -Aryl

n für die Zahlen 1, 2, 3 oder 4,

$$R^{23}$$
 R^{19}
 R^{20}

oder A steht, wobei A -O-, -S-, > NR²⁷ oder > PR²⁷ bedeutet,

mit R^{27} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R^{28})₃ mit R^{28} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl oder Alkylaryl,

wobei

p = 1 für Be, Mg, Ca, Sr, Ba und

p = 2 für Li, Na, K, Rb, Cs.

[0034] Bevorzugte Verbindungen der Formel II sind solche, in welchen M² Lithium, Natrium und insbesondere Magnesium bedeutet. Ferner sind solche Verbindungen der Formel IIa)

besonders bevorzugt, in welchen M^2 Magnesium, R^{17} und R^{23} von Wasserstoff verschiedene Substituenten bedeuten, wie C_1 - bis C_{10} -Alkyl, also Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, i.-Butyl, Hexyl, weiterhin C_6 - C_{10} -Aryl, wie Phenyl oder Trialkylsilyl, wie Trimethylsilyl, $T(R^{25}R^{26})$ für Bis- C_1 - C_{10} -alkylsilyl oder Bis- C_6 - C_{10} -arylsilyl steht, wie Dimethylsilyl, Diphenylsilyl, weiterhin für 1,2-Ethandiyl, Methylen und die Reste R^{13} bis R^{15} und R^{19} bis R²⁵ die bereits genannte Bedeutung haben und insbesondere ein Indenyltyp-Ringsystem oder ein Benzoindenyltyp-Ringsystem bilden.

[0035] Ganz besonders bevorzugte Verbindungen II sind jene, welche in den Beispielen beschrieben werden und au-Berdem

Dimethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)magnesium

Diethylsilandiylbis(3-tert,-butyl-5-methylcyclopentadienyl)magnesium

Dimethylsilandiylbis(3-tert.-butyl-5-ethylcyclopentadienyl)magnesium

Dimethylsilandiylbis(3-tert.-pentyl-5-methylcyclopentadienyl)magnesium

Dimethylsilandiylbis(2,4,7-trimethylindenyl)magnesium

1,2-Ethandiylbis(1-{2,4,7-trimethylindenyl})magnesium

Dimethylsilandiylbis(4,5,6,7-tetrahydro-1-indenyl)magnesium

Dimethylsilandiylbis(1-indenyl)magnesium

```
Dimethylsilandiylbis(2-methylindenyl)magnesium
Phenyl(methyl)silandiylbis(2-methylindenyl)magnesium
Diphenylsilandiylbis(2-methylindenyl)magnesium
Dimethylsilandiylbis(2-methyl-4,5,6,7-tetrahydro-1-indenyl)magnesium
Dimethylsilandiylbis(2,4-dimethyl-6-isopropylindenyl)magnesium
Dimethylsilandiylbis(2-methyl-1-benzindenyl)magnesium
Dimethylsilandiylbis(2-ethyl-1-benzindenyl)magnesium
Dimethylsilandiylbis(2-propyl-1-benzindenyl)magnesium
Dimethylsilandiylbis(2-phenyl-1-benzindenyl)magnesium
Diphenylsilandiylbis(2-methyl-1-benzindenyl)magnesium
Phenylmethylsilandiylbis(2-methyl-1-benzindenyl)magnesium
Ethandiylbis(2-methyl-1-benzindenyl)magnesium
Dimethylsilandiylbis(2-methyl-1-tetrahydrobenzindenyl)magnesium
Dimethylsilandiylbis(2-methyl-4-isopropyl-1-indenyl)magnesium
Dimethylsilandiylbis(2-methyl-4-phenyl-1-indenyl)magnesium
Dimethylsilandiylbis(2-methyl-4-naphthyl-1-indenyl)magnesium
Dimethylsilandiylbis(2-methyl-4-{3,5-trifluoromethyl}phenyl-1-indenyl)magnesium
Dimethyl silandiylb is (2-ethyl-4-isopropyl-1-indenyl) magnesium\\
Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl)magnesium
Dimethylsilandiylbis(2-ethyl-4-naphthyl-1-indenyl)magnesium
Dimethylsilandiylbis(2-ethyl-4-{3,5-trifluoromethyl}phenyl-1-indenyl)magnesium
Ethandiylbis(2-methyl-4-phenyl-1-indenyl)magnesium
Ethandiylbis(2-methyl-4-naphthyl-1-indenyl)magnesium
Ethandiylbis(2-methyl-4-{3,5-di-(trifluoromethyl)}phenyl-1-indenyl)magnesium
 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magne-
 Dimethylsilandiylbis(2-cyclohexyl-4-phenyl-indenyl)magnesium
 Dimethylsilandiylbis(2-butyl-4-phenyl-indenyl)magnesium
 Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
 Dimethylsilandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
Diemethylgermandiylbis(2-meth-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
 Diethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
 Dimethylsilandiylbis(2-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
 Dimethylsilandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)
 Dimethylsilandiylbis(2-butyl-4-(4'-tert.-butyl-phenyl-6-(4'-tert.-butyl-phenyl)-indenyl)magnesium
Dimethylsilandiylbis(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
 Dimethylsilandiylbis(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
 Dimethyl silandiyl (2-ethyl-4-(\hat{4}'-tert.-butyl-phenyl)-indenyl)-2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl) magnesium (2-ethyl-4-(\hat{4}'-tert.-butyl-phenyl)-indenyl) magnesium (2-ethyl-4-(\hat{4}'-tert.-butyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-
 Dimethylsilandiyl(2-methyl-4-naphthyl-indenyl)-(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium
 sowie die jeweiligen Lewis-Basenaddukte dieser vorstehend genannten Verbindungen mit beispielswiese THF, DME,
 TMEDA.
 [0036] Derartige Alkali- oder Erdalkalimetallverbindungen II lassen sich nach literaturbekannten Methoden erhalten,
 beispielsweise durch die, vorzugsweise stöchiometrische Umsetzung einer Organometallverbindung oder eines Hydrids
 des Alkali- oder Erdalkalimetalls mit dem entsprechenden Cyclopentadienyltyp-Kohlenwasserstoff. Geeignete Organo-
 metallyerbindungen sind beispielsweise n-Butyllithium, Di-n-butylmagnesium oder (n,s)-Dibutylmagnesium (Bomag).
 [0037] Die Umsetzung der verbrückten oder nicht verbrückten Übergangsmetallaromatkomplexe I mit den Cyclopen-
 tadienvlderivaten von Alkali- oder Erdalkalimetallen, vorzugsweise der Formeln II oder IIa, findet üblicherweise in ei-
 nem organischen Lösungs- oder Suspensionsmittel, vorzugsweise in einem Lösungsmittelgemisch, welches ein Lewis-
 basisches Lösungsmittel enthält, im Temperaturbereich von -78°C bis 250°C, vorzugsweise im Temperaturbereich von 0
 bis 110°C statt. Gut geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, aroma-
 tische Kohlenwasserstoffe wie Toluol, ortho-, meta- oder para-Xylol oder Isopropylbenzol (Cumol), Ether, wie Tetrahy-
 drofuran (THF), Diethylether, Methyl-tert.-Butylether oder Dimethoxyethan (DME), Amine wie Diisopropylamin, Tet-
 ramethylethandiamin (TMEDA) oder Pyridin. Gut geeignete Lösungsmittelgemische sind solche aus Toluol und THF,
 Toluol und DME oder Toluol und TMEDA, wobei die Lewis-Base im allgemeinen in einer Menge von 0,1 bis 50 mol-%,
 vorzugsweise 1 bis 20 mol-%, bezogen auf das Lösungsmittelgemisch, vorliegt. Das molare Verhältnis des Übergangs-
 metallaromatkomplexes I zu dem Cyclopentadienylderivat von Alkali- oder Erdalkalimetallen liegt üblicherweise im
 Bereich von 0,8: 1 bis 1:1,2, vorzugsweise bei 1:1.
 [0038] Es wurde gefunden, daß eine anschließende Erwärmung des Reaktionsgemisches, auf Temperaturen im Bereich
 von -78 bis 250°C, vorzugsweise 20 bis 150°C und insbesondere 80 bis 110°C und gegebenenfalls in Gegenwart von Ra-
 dikalen oder Radikalbildnern schnell zu einer höheren Ausbeute, im allgemeinen 80 bis 100%, vorzugsweise 95 bis
 100%, an racemischen Komplexen (I) führt. Als Radikale seien genannt Sauerstoff, 2,2'-6,6'-tetramethyl-Pyrimidin-N-
 Oxid (TEMPO). Als Radikalbildner sind alle diejenigen organischen und anorganischen Verbindungen geeignet, welche
 in dem oben genannten Temperaturintervall und/oder bei Bestrahlung zu Radikalen zerfallen, wie Peroxide, Diacylper-
 oxide - beispielsweise Benzoylperoxid, Acetylperoxyd - Peroxydicarbonate, Perester, Azoalkane, Nitrite, Hypochlo-
```

ride, Polyhalomethane, N-Chloramine. Besonders bevorzugt verwendet man TEMPO. Radikalbildner werden bevorzugt dann eingesetzt, wenn das Metallocen (I) als Cyclopentadienyl-Typ-Ligand ein benzoanelliertes Indenylsystem wie Dimethylsilyl-Bis(2-Methylbenzoindenyl) enthält.

[0039] Die erfindungsgemäßen, racemischen Metallocenkomplexe sind vorzugsweise solche der allgemeinen Formel

$$R^{15}$$
 R^{14}
 R^{16}
 R^{13}
 R^{17}
 MX^{1}
 R^{19}
 R

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

$$X^1$$
 R^3
 R^4
 R^5
 R^6
 R^7
 R^1
 Y^1
 Y^1
 R^8

wobei: R^1 , R^8 gleich oder verschieden Fluor, Chlor, Brom, Iod, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C_1 - bis C_{10} -Alkyl als Rest tragen kann –, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9)₃ mit R^9

30

gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können, $-OR^{27}$, $-SR^{27}$, $-N(R^{27})_2$, $-P(R^{27})_2$, mit R^{27} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R^{28} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl R^2 bis R^7 gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, R^2 - bis R^2 -

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

Y, Y¹ gleich oder verschieden

 $=BR^{12}, =AlR^{12}, -Ge-, -Sn-, -O-, -S-, =SO, =SO_2, =NR^{12}, =CO, =PR^{12} \ oder = P(O)R^{12}, \ wobei$ $R^{12} \ gleich \ oder \ verschieden \ Wasserstoff, \ Halogen, C_1-C_{10}-Alkyl, C_1-C_{10}-Fluoralkyl, C_6-C_{10}-Fluoraryl, C_6-C_{10}-Aryl, C_1-C_{10}-Aryl, C_1-C_$

 C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_8 - C_{40} -Arylalkenyl, C_7 - C_{40} -Alkylaryl bedeuten, oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C1- bis C20-Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann –, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, $Si(R^9)_3$ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, oder zusammen mit benachbarten Resten R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen

substituiert sein können, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, C_8 - bis C_{10} -Cycloalkyl, $C_$

cloalkyl, Alkylaryl

R¹³ bis R¹⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, – das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann -, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R¹⁸)₃ mit

 R^{18} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

Z für

steht.

wobei die Reste

 R^{19} bis R^{23} gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, – das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann -, C₆- bis C₁₅-Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R²⁴)₃ mit R²⁴ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

oder wobei die Reste

 R^{16} und Z gemeinsam eine Gruppierung - $[T(R^{25})(R^{26})]_q$ -E- bilden, in der T gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht, R^{25} , R^{26} für Wasserstoff, C_1 - bis C_{10} -Alkyl, C_3 - bis C_{10} -Cycloalkyl oder C_6 - bis C_{15} -Aryl q für die Zahlen 1, 2, 3 oder 4,

É für 40

oder A steht, wobei A -O-, -S-, > NR²⁷ oder > PR²⁷ bedeutet,

mit R²⁷ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl oder Alkylaryl. [0040] Bevorzugte Verbindungen der Formel III sind solche, in welchen M Titan, Hafnium und insbesondere Zirkonium bedeutet. Ferner sind verbrückte Verbindungen der Formel III besonders bevorzugt (ansa-Metallocene), in welchen R¹⁷ und R²³ von Wasserstoff verschiedene Substituenten bedeuten, wie C₁- bis C₁₀-Alkyl, also Methyl, Ethyl, n-Propyl,

i-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, i.-Butyl, Hexyl, weiterhin C₆-C₁₀-Aryl, wie Phenyl oder Trialkylsilyl, wie Trimethylsilyl, $T(R^{25}R^{26})$ für Bis- C_1 - C_{10} -alkylsilyl oder Bis- C_6 - C_{10} -arylsilyl steht wie Dimethylsilyl, Diphenylsilyl, weiterhin für 1,2-Ethandiyl, Methylen und die Reste R^{13} bis R^{15} und R^{19} bis R^{25} die bereits genannte Bedeutung haben und insbesondere ein Indenyltyp-Ringsystem oder ein Benzoindenyltyp-Ringsystem bilden.

[0041] Ganz besonders bevorzugte Verbindungen III sind jene, welche in den Beispielen beschrieben werden, und au-Berdem

Dimethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat Diethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat Dimethylsilandiylbis(3-tert.-butyl-5-ethylcyclopentadienyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat Dimethylsilandiylbis(3-tert.-pentyl-5-methylcyclopentadienyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2,4,7-trimethylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat 1,2-Ethandiylbis(1-{2,4,7-trimethylindenyl)}zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat Dimethylsilandiylbis(1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat Dimethylsilandiylbis(4,5,6,7-tetrahydro-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

```
Dimethylsilandiylbis(2-methylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Phenyl(methyl)silandiylbis(2-methylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Diphenylsilandiylbis(2-methylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-methyl-4,5,6,7-tetrahydro-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2,4-dimethyl-6-isopropylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
                                                                                                                                                                                                                                 5
Dimethylsilandiylbis(2-methyl-1-benzindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-ethyl-1-benzindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-propyl-1-benzindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-phenyl-1-benzindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Diphenylsilandiylbis(2-methyl-1-benzindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
                                                                                                                                                                                                                                10
 1 Phenylmethylsilandiylbis(2-methyl-1-benzindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Ethandiylbis(2-methyl-1-benzindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-methyl-1-tetrahydrobenzindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-methyl-4-isopropyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dirnethylsilandiylbis(2-methyl-4-phenyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
                                                                                                                                                                                                                                15
Dimethylsilandiylbis(2-methyl-4-naphthyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethyl silandiylb is (2-methyl-4-\{3,5-trifluoromethyl\} phenyl-1-indenyl) zirconium-3, 3', 5, 5'-tetra-t-butyl-1, 1'-bi-2-phenyl-1-indenyl) zirconium-3, 3', 5, 5'-tetra-t-butyl-1, 1'-bi-2-phenyl-1, 1'-bi-2-p
Dimethylsilandiylbis(2-ethyl-4-isopropyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
                                                                                                                                                                                                                                20
Dimethylsilandiylbis(2-ethyl-4-naphthyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-ethyl-4-(3,5-trifluoromethyl}phenyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-pheno-
Ethandiylbis(2-methyl-4-phenyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
Ethandiylbis(2-methyl-4-naphthyl-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat
                                                                                                                                                                                                                                25
E than diylb is (2-methyl-4-\{3,5-di-(trifluoromethyl)\} phenyl-1-indenyl) zirconium-3, 3',5,5'-tetra-t-butyl-1,1'-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-pheno-bi-2-p
Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-idenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylsilandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-idenyl)-(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-
3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
                                                                                                                                                                                                                                30
Dimethylsilandiylbis(2-cyclohexyl-4-phenyl-indenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-butyl-4-phenyl-indenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylgermandiylbis(2-methyl-4-(4'-tert,-butyl-phenyl)-indenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
                                                                                                                                                                                                                                35
Diethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylsilandivl(2-methyl-4-(4'-tert,-butyl-phenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl)-indenyl
tra-tBu-1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-butyl-4-(4'-tert.-butyl-phenyl)-6-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3',5,5'-tetra-tBu-
                                                                                                                                                                                                                                40
1,1'-bi-2-phenolat
Dimethylsilandiylbis(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylsilandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)-(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-
3,3',5,5'-tetra-tBu-1,1'-bi-2-phenolat
Dimethylsilandiyl(2-methyl-4-naphthyl-indenyl)-(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3',5,5'-te-
                                                                                                                                                                                                                                45
tra-tBu-1,1'-bi-2-phenolat.
[0042] Die racemischen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III, lassen sich im allgemei-
nen weiter modifizieren.
[0043] Insbesondere kann beispielsweise ein verbrückter Biphenolatligand X<sup>1</sup> vollständig oder hälftig oder einer oder
beide unverbrückten Phenolatliganden in dem Komplex III durch Mono- oder Bis-Substitution abgespalten und gegebe-
nenfalls wiederverwendet werden. Geeignete Abspaltungs-(Substitutions-)methoden sind die Umsetzung der racemi-
schen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III mit SOCl<sub>2</sub>, Siliciumtetrachlorid, Methylalu-
miniumdichlorid, Dimethylaluminiumchlorid, Aluminiumtrichlorid einer Brönsted-Säure wie Halogenwasserstoff, also
HF, HBr, HI, vorzugsweise HCl, welche in der Regel in Substanz oder als Lösung in Wasser oder organischen Lösungs-
mitteln wie Diethylether, THF angewandt wird. Gut geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe, wie
Pentan, Hexan, Heptan, aromatische Kohlenwasserstoffe wie Toluol, ortho-, meta- oder para-Xylol oder Isopropylbenzol
(Cumol), Ether, wie Tetrahydrofuran (THF), Diethylether, Methyl-tert.-Butylether oder Dimethoxyethan (DME), Amine
wie Diisopropylamin, Tetramethylethandiamin (TMEDA) oder Pyridin. Sehr gut geeignet sind Lewis-Base-haltige Lö-
sungsmittelgemische aus Kohlenwasserstoffen und Ethern oder Aminen oder beidem, beispielsweise solche aus Toluol
und THF, Toluol und DME oder Toluol und TMEDA, wobei die Lewis-Base im allgemeinen in einer Menge von
0,01-50 mol-%, vorzugsweise 0,1-10 mol-%, bezogen auf das Lösungsmittelgemisch, vorliegt. Besonders gut eignen
sich Carbonsäurehalogenide wie Acetylchlorid, Phenylacetylchlorid, 2-Thiophenacetylchlorid, Trichloracetylchlorid,
Trimethylacetylchlorid, O-Acetylmandelsäurechlorid, 1,3,5-Benzenetricarboxylicacidchlorid, 2,6-Pyridincarbonsäure-
chlorid, tert.-Butylacetylchlorid, Chloroacetylchlorid, 4-Chlorobenzeneacetylchlorid, Dichloroacetylchlorid, 3-Methox-
yphenylacetylchlorid, Acetylbromid, Bromoacetylbromid, Acetylfluorid, Benzoylfluorid, als "Abspaltungsreagenz",
wobei diese in der Regel in den o. g. Lösungsmitteln oder auch in Substanz verwendet werden. Hierbei entsteht üblicher-
weise das der Formel III analoge Di-Halogenid (X = F, Cl, Br, I) oder bei teilweiser (hälftiger) Substitution des phenoli-
schen Liganden ein Monohalogenid. Ein weiteres gut geeignetes Substitutions-Verfahren ist die Umsetzung der racemi-
```

schen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III mit Organo-Aluminiumverbindungen wie $Tri-C_1$ - bis C_{10} -Alkylaluminium, also Trimethylaluminium, Triethylaluminium, Tri-n-butylaluminium, Triiso-butylaluminium. Hierbei entsteht nach derzeitigem Kenntnisstand im allgemeinen die zu III analoge Organo-Verbindung (X = organischer Rest, z. B. C_1 - bis C_{10} -Alkyl, wie Methyl, Ethyl, n-Butyl, i-Butyl) und beispielsweise das Organo-Aluminiumbinaphtholat. Analog kann auch verfahren werden, wenn der Ligand X^1 in dem Komplex III zwei nicht verbrückte Phenolatliganden ist.

[0044] Bei den Spaltungsreaktionen werden die Komponenten üblicherweise im stöchiometrischen Verhältnis eingesetzt, davon abhängig, ob ein mono- oder disubstituiertes Produkt erhalten werden soll.

[0045] Die Spaltungsreaktionen finden im allgemeinen unter Erhaltung der Stereochemie der Metallocenkomplexe statt, das bedeutet, es findet im allgemeinen keine Umwandlung der racemischen Form in die meso-Form der Metallocenkomplexe statt. Vielmehr kann, insbesondere mit den oben beschriebenen Chlorierungsmethoden, die rac-Selektivität gesteigert werden, wobei jedoch die Stereochemie der Ausgangs(bi)phenolat-Typ- oder Ausgangsbis-phenolat-Komplexe in der Regel erhalten bleibt.

[0046] Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß es sehr selektiv die racem-Form von Metallocenkomplexen zugänglich macht. Besonders vorteilhaft lassen sich verbrückte Indenyl- oder Benzoindenyltyp-Metallocene erhalten, welche in der Nachbarschaft des Brückenglieds (sogenannte 2-Stellung) einen von Wasserstoff verschiedenen Liganden haben.

[0047] Die erfindungsgemäßen racemischen Metallocenkomplexe, insbesondere jene der allgemeinen Formel III oder ihre, beispielsweise durch Substitution der Phenolatliganden zugänglichen, bereits beschriebenen Derivate lassen sich als Katalysatoren oder in Katalysatorsystemen für die Polymerisation von olefinisch ungesättigten Verbindungen, wie Ethylen, Propylen, 1-Buten, 1-Hexen, 1-Octen, Styrol, verwenden. Besonders vorteilhaft kommen sie zur Geltung bei der stereoselektiven Polymerisation von prochiralen, olefinisch ungesättigten Verbindungen, wie Propylen, Styrol. Geeignete Katalysatoren oder Katalysatorsysteme, in welchen die erfindungsgemäßen racemischen Metallocenkomplexe als "Metallocenkomponente" fungieren können, werden üblicherweise mittels metalloceniumionenbildenden Verbindungen enthalten, wie beispielsweise in EP-A-0 700 935, Seite 7, Zeile 34 bis Seite 8, Zeile 21 und Formeln (IV) und (V) beschrieben. Weitere metalloceniumionenbildenden Verbindungen sind Alumoxan (RAIO)_n wie Methylaluminoxan.

[0048] Die erfindungsgemäßen racemischen Metallocenkomplexe, insbesondere jene der allgemeinen Formel III oder ihre, beispielsweise durch Abspaltung der Phenolatliganden zugänglichen, bereits beschriebenen Derivate lassen sich weiterhin als Reagenzien oder als Katalysatoren oder in Katalysatorsystemen in der stereoselektiven, insbesondere organischen Synthese verwenden. Beispielsweise seien genannt die stereoselektive Reduktionen oder stereoselektiven Alkylierungen von C=C-Doppelbindungen oder C=O-, C=N-Doppelbindungen.

Beispiele

Abkürzungen

bpo = 1,1'-Bi-2-Phenolat bip = 3,3'-5,5'-tetra-t-Bu-1,1'-bi-2-Phenolat.

Beispiele, bei denen man rac-Selektivität durch thermische Isomerisierung erreicht

Beispiel 1

Darstellung von rac-Me₂Si(2-Me-ind)₂Zr[3,3',5,5'-(t-Bu)₄-1,1'bi-2-phenolat]

rac-Me₂Si(2-Me-ind)₂Zr(bip) (4C)

[0049] 0.64 g (1.95 mmol) Me₂Si(2-Me-ind)₂Li₂ und 1.39 g (1.95 mmol) Cl₂(THF)₂Zr(bip) wurden trocken vermischt und ca. 15 ml eines 10:1-Gemisches Toluol/THF (Volumenverhältnis) zugegeben. Die Reaktionsmischung wurde 12 h bei Raumtemperatur gerührt. Hierbei bildete sich eine orange-farbene Lösung und ein weißer Niederschlag. (LiCl). Das ¹H-NMR-Spektrum der Rohmischung zeigte ein Isomerenverhältnis von ca. 1:1. Die Reaktionsmischung wurde 5 h bei 80°C gerührt. Das 1H-NMR-Spektrum zeigte nun ein rac/meso-Verhältnis von ca. 16:1. Die Lösung wurde abfiltriert und das Lösungsmittelgemisch am Hochvakuum entfernt. Es wurden 1.17 g (74%) Me₂Si(2-Me-ind)₂Zr(bip) als gelber Schaum in einem rac/meso-Verhältnis von 16:1 NMR-spektroskopisch rein erhalten. Der gelbe Schaum wurde in Hexan aufgenommen und auf –30°C gekühlt. Nach einem Tag wurden durch Filtration 0.35 g (22%) rein racemisches Me₂Si(2-Me-ind)₂Zr (bip) als mikrokristallines gelbes Pulver erhalten. ¹H-NMR-Spektrum in C₆D₆ siehe Tabelle B. ¹³C-NMR-Spektrum in C₆D₆(25°C, 600 MHz) 161.1, 141.2, 135.3, 134.8, 134.3, 131.8, 130.9, 129.7, 126.0, 126.8, 124.9, 123.3, 121.8, 111.6, 92.4, 34.3, 32.5, 32.1, 31.8, 18.8, 2.55. Das Massenspektrum (EI-MS/70 eV) zeigte Molekularionenpeak bei m/e 812–821 mit der typischen Isotopenverteilung.

Elementaranalyse:

gefunden:

C 73.64%; H 7.73%; Zr 11.06;

berechnet:

C 73.74%; H 7.67%; Zr 11.20%.

65

35

40

Tabelle B

1H-NMR-shifts für Komplex rac-4C (in ppm, C_6D_6 , 25°C, 600 MHz)

TH-INVIR-SIIIIS III Koliipiex Iac	C-4C (III ppin, C&D&, 25 C, 600 MHz)	
	Zuordnung ^a	5
7.60 (d, 2H) ³ J (8.4 Hz)	C ₉ H ₅ (<u>H</u> 7, <u>H</u> 7')	
7.49 (d, 2H) ⁴ J (2.4 Hz)	C ₆ H ₂ (H4, H4')	
7.26 (d, 2H) ³ J (8.4 Hz) 7.18 (d, 2H) ⁴ J (2.4 Hz)	C_9H_5 ($\overline{H}4$, $\overline{H}4$)	
6.85 (dd, 2H) ³ J (8.4 Hz) ³ J (7.2 Hz)	C ₆ H ₂ (H6, H6') C ₉ H ₅ (H6, H6')	10
6.77 (dd, 2H) ³ J (8.4 Hz) ³ J (7.2 Hz)	C ₉ H ₅ (H5, H5')	
5.83 (s, 2H)	C ₉ H ₅ (H 3, H 3')	
2.21 (s, 6H)	$(2-CH_3-C_9\overline{H_5})$	
1.36, 1.33 (s, 18H)	$C\underline{H}_3)_3C$	
0.80 (s, 6H)	$(\overline{CH}_3)_2Si$	15
^a Zuordnung durch 1H-NMR-ROESY-Technik		
Ве	rispiel 2	20
Synthese von Me ₂ Si(2-Me-ind-4-Ph)) ₂ Zr(3,3'-5,5'-tetra- ^t Bu-1,1'-bi-2-phenolat)	
(Me ₂ Si(2-Me	-4-Ph-ind) ₂ Zr(bip)	25
A) Synthese	von ZrCl ₄ (THF) ₂	25
[0050] Zu einer Suspension von g 4.99(21.41 mmol) ZrCl ₄ in 80 ml Toluol wurden bei 0°C (Eisbadkühlung) 3.1 g (43.0 mmol) THF innerhalb 15 min. langsam zugetropft. Die Suspension wurde auf Raumtemperatur erwärmt und 1 h gerührt.		30
B) Synthese von (3,3'-5,5'-	tetra-'Bu-1,1'-bi-2-phenolat)Li ₂	
	8'-5,5'-tetra-Bu-1,1'-bi-2-phenol in 120 ml Toluol und 3.1 g ml (45.56 mmol) einer 2.68 molaren BuLi-Lösung in Toluol inurde auf Raumtemperatur erwärmt und 1 h gerührt.	35
C) Synthese von Cl ₂ Zr(3,3'-5,5'	-tetra-Bu-1,1'-bi-2-phenolat) (THF)2	
	n A) wurde unter Stickstoff mittels Kanüle die Dilithiumbiphee Reste im Kolben an Dilithiumbiphenolatlösung wurden mit Raumtemperatur gerührt.	40
D) Synthese von Mo	e ₂ Si(2-Me-4-Ph-ind) ₂ Li ₂	45
[0053] Zu einer Lösung von 9.8 g (20.90 mmol) Me ₂ S	Si(2-Me-4-Ph-indH) ₂ in 110 ml Toluol und 5 g (69.33 mmol)	43
THF wurden bei Raumtemperatur 16.4 ml (43.95 mmol)	einer 2.68 molaren BuLi-Lösung in Toluol innerhalb 20 min. 60°C erwärmt, 1 h gerührt und auf Raumtemperatur gekühlt.	
E) Synthese von Me ₂	Si(2-Me-4-Ph-ind) ₂ Zr(bip)	50
	aus Teilschritt D) wurde bei Raumtemperatur die Suspension vollständiger Zugabe färbte sich die Suspension gelb-orange.	
Die Reaktionsmischung wurde 12 h bei Raumtemperatur meso-Verhältnis von ca. 1:1. Die Suspension wurde 9 h	gerührt. Ein ¹ H-NMR-Spektrum der Reaktion zeigte ein rac- n auf 85°C erwärmt. Die ¹ H-NMR-spektroskopische Untersu-	55
setzungsprodukten. Die Suspension wurde filtriert, der winigten Filtrate unter Hochvakuum auf ca. 1/4 eingeengt. I	on ca. 15:1 ohne Anzeichen von Verunreinigungen oder Zereiße Niederschlag mit wenig Toluol gewaschen und die verei- Nach einigen Tagen bildete sich ein orangener kristalliner Nie-	
		60
C: 77,0%; H: 7.4; berechnet:		
C: 77,0%; H 7.3%.		65
¹ H-NMR-Spektrum in C ₆ D ₆ siehe Tabelle C.		
•		

Tabelle C

1H-NMR-shifts für Komplex (in ppm, C₆D₆ 25°C, 200 MHz)

5		Anordnung
	7.78 (d, 2H)	H (aromatisch)
	7.44 (d, 2H)	C ₆ H ₂ O (bip)
	7.34-6.96 (m, 14H)	H (aromatisch)
	6.49 (d, 2H)	C_6H_2O (bip)
10	6.36 (s, 2H)	C ₅ H
	2.27 (s, 6H)	CH_3
	1.32 (s, 18H)	$C(CH_3)_3$
	1.25 (s, 18H)	$C(CH_3)_3$
	0.99 (s, 6H)	Me ₂ Si
15		

Beispiel 3

Synthese von Me₂Si(2-Me-4-(4-^tBu-Ph-ind)₂Zr(3,3'-5,5'-tetra-^tBu-1,1'-bi-2-phenolat)

Me₂Si(2-Me-4-(4-^tBu-Ph)-ind)₂Zr(bip)

A) Synthese von ZrCl₄(THF)₂

[0055] Zu einer Suspension von 5.45 g (23.38 mmol) ZrCl₄ in 100 ml Toluol wurden bei 0°C (Eisbadkühlung) 3.8 g (52.7 mmol) THF innerhalb 15 min. langsam zugetropft. Die Suspension wurde auf Raumtemperatur erwärmt und 1 h gerührt.

B) Synthese von (3,3'-5,5'-tetra-tBu-1,1'-bi-2-phenolat)Li₂

[0056] Zu einer Lösung von 9.6 g (23.38 mmol) 3,3'-5,5'-tetra-'Bu-1,1'-bi-2-phenol in 130 ml Toluol und 3.8 g (52.7 mmol) THF wurden bei 0°C (Eisbadkühlung) 18.3 ml (49.1 mmol) einer 2.68 molaren BuLi-Lösung in Toluol innerhalb 20 min. langsam zugetropft. Die klare hellgelbe Lösung wurde auf Raumtemperatur erwärmt und 1 h gerührt.

C) Synthese von Cl₂Zr(3,3'-5,5'-tetra-'Bu-1,1'-bi-2-phenolat) (THF)₂

[0057] Zu der ZrCl₄(THF)₂-Suspension aus Teilreaktion A) wurde unter Stickstoff mittels Kanüle die Lithiumbiphenolatlösung aus Teilreaktion B) zugegeben. Verbleibende Reste im Kolben wurden mit 10 ml Toluol nachgespült. Die Suspension wird 4 h bei Raumtemperatur gerührt.

D) Synthese von Me₂Si(2-Me-4-(4'-^tBu-Ph)-ind)₂Li₂

[0058] Zu einer Lösung von 13.0 g (22.38 mmol) Me₂Si(2-Me-4-(4'-Bu-Ph)-indH)₂ in 150 ml Toluol und 6 g (83.20 mmol) THF wurden bei Raumtemperatur 17.5 ml (46.9 mmol)) einer 2.68 molaren BuLi-Lösung in Toluol innerhalb 20 min. langsam zugetropft. Die hellgelbe Suspension wurde auf 60°C erwärmt, 1 h gerührt und auf Raumtemperatur gekühlt.

E) Synthese von Me₂Si(2-Me-4-(4'-^tBu-Ph)-ind)₂Zr(bip)

[0059] Zu der Me₂Si(2-Me-4-(4'-'Bu-Ph)-ind)₂Li₂-Suspension aus Teilschritt D) wurde bei Raumtemperatur die Suspension aus C) mittels Kanüle unter Stickstoff zugegeben. Nach vollständiger Zugabe färbte sich die Suspension gelblich. Die Reaktionsmischung wurde 12 h bei Raumtemperatur gerührt. Ein ¹H-NMR-Spektrum der Reaktion zeigte ein rac-meso-Verhältnis von ca. 1: 2. Die Suspension wurde 9 h auf 85°C erwärmt. Die ¹H-NMR-spektroskopische Untersuchung der Rohmischung zeigte ein rac-meso-Verhältnis von ca. 15: 1 ohne Anzeichen von Verunreinigungen oder Zersetzungsprodukten. Die Suspension wurde filtriert, der weiße Niederschlag mit wenig Toluol gewaschen und die vereinigten Filtrate unter Hochvakuum auf ca. 1/4 eingeengt. Durch mehrmaliges Kristallisieren bei Raumtemperatur, Filtration und Trocknung wurden insgesamt 21.1 g (88%) rein racemisches Me₂Si(2-Me-4-(4'-t-Bu-Ph-ind)₂Zr(bip) erhalten.

60

20

30

35

40

Me₂Si(2-Me-4-(4'-t-Bu-PH))₂Zr(3,3'-5,5'-tetra-t-Bu-1,1'-bi-2-Phenol)

¹H-NMR-Verschiebungen (in ppm, C₆D₆ 25°C, 200 MHz)

7.76 (m, 4H)	H _{arom.}	5
7.76 (m, 4H)	H _{arom.}	
7.47 (d, 2H)	C ₆ H ₂ (Biphenol)	
7.35-6.95 (m, 10H)	H _{arom} .	10
6.56 (d, 2H)	C ₆ H ₂ (Biphenol)	
6.34 (s, 2H)	C ₅ H	
2.26 (s, 6H)	CH ₃	15
1.33 (s, 18H)	(CH ₃) ₃ C	
1.28 (s, 18H)	(CH ₃) ₃ C	
1.27 (s, 18H)	(CH ₃) ₃ C	20
0,99 (s, 6H)	Me ₂ Si	

Beispiele bei dem man rac-Selektivität durch Zugabe von Radikalquellen und Erhitzen erreicht (Isomerisierung)

25

30

40

45

65

Beispiel 4) Synthese von rac-Me₂Si(2-Me-benz[e]ind)₂Zr(bip) (5C)

[0060] 0.89 g (2.10 mmol) Me₂Si(2-Me-benz[e]ind)₂Li₂ und 1.50 g (2.10 mmol) Cl₂(THF)₂Zr(bip) wurden trocken vermischt und ca. 15 ml eines 10: 1-Gemisches Toluol/THF (Volumenverhältnis) zugegeben. Die Reaktionsmischung wurde 12 h bei Raumtemperatur gerührt. Hierbei bildete sich eine orange-farbene Lösung und ein weißer Niederschlag (LiCl). Das ¹H-NMR-Spektrum der Rohmischung zeigte ein Isomerenverhältnis von ca. 1: 1. Die Reaktionsmischung wurde filtriert. Zum Filtrat wurden bei Raumtemperatur 0.30 g (1.92 mmol) TEMPO hinzugegeben und die Reaktionsmischung 1 h auf 75°C erwärmt. Das ¹H-NMR-Spektrum der Rohmischung zeigte rein racemisches Me₂Si(2-Mebenz[e]ind)₂Zr(bip). Durch Einengen der Lösung am Hochvakuum und mehrfaches Kristallisieren bei Raumtemperatur wurden insgesamt 1.6 g, (1.76 mmol; 84%) rac-Me₂Si(2-Me-benz[e]ind)₂Zr(bip) erhalten.

¹H-NMR-Spektrum in CDCl₃ siehe Tabelle E. ¹³C-NMR-Spektrum in CDCl₃ (25°C, 600 MHz 158.1, 139.1, 133.3,

133.1, 131.8, 131.6, 130.1, 128.9, 128.2, 127.6, 127.2, 126.4, 125.6, 124.1, 124.0, 121.2, 110.8, 97.3, 35.3, 34.0, 33.1, 31.8, 19.1, 2.9). Das Massenspektrum (EI-MS/70 eV) zeigt Molekularionenpeak bei m/e 906–915 mit der typischen Isotopenverteilung.

Elementaranalyse:

gefunden:

C 75.99%; H 7.09%; Zr 9.83;

berechnet:

C 76.18%; H 7.27%; Zr 9.97%.

Tabelle E

1H-NMR-shifts für Komplex rac-5C (in ppm, CDCl₃, 25°C, 600 MHz)

	Zuordnung ^a	
$7.62 (d, 2H)^3 J (8.5 Hz)$	C ₁₃ H ₇ (H8/9 H8'/9')	
7.47 (d, 2H) ³ J (7.8 Hz)	$C_{13}H_7$ ($\overline{H}7$, $H\overline{7}$ ')	
7.19 (d, 2H) ³ J (8.5 Hz)	$C_{13}H_7$ ($\overline{H}8/9$, $H8'(9')$	
7.11 (d, 2H) ⁴ J (2.5 Hz)	C_6H_2 ($\overline{H4}/6$, $\overline{H4}'/6'$)	55
$7.10 (dd, 2H)^{3} J (7.8 Hz)^{3} J (7.3 Hz)$	$C_{13}H_7$ (H6, H6')	
6.95 (dd, 2H) ³ J (7.9 Hz) ³ J (7.3 Hz)	$C_{13}H_7(\overline{H}5,\overline{H}5')$	•
6.65 (d, 2H) ³ J (7.9 Hz)	$C_{13}H_7(\overline{H}4,\overline{H}4')$	
6.34 (s, 2H)	$C_{13}H_7(\overline{H}3, \overline{H}3')$	
6.24 (d, 2H) ⁴ J (2.5 Hz)	C ₆ H ₂ (H4/6, H4'/6')	60
2.63 (s, 6H)	$(2-CH_3-C_{13}H_7)$	
1.38 (s, 6H)	$(CH_3)_2Si$	
1.28, 1.02 (s, 18H)	(CH ₃) ₃ C	

^a Zuordnung durch 1H-NMR-ROESY-Technik

Beispiele zur Abspaltung von Phenolaten an ansa-Metallocenbisphenolatkomplexen

Beispiel 5

5 Darstellung von Me₂Si(2-Me-benz[e]ind)₂ZrCl₂ durch Umsetzung von Me₂Si(2-Me-benz[e]ind)₂Zr(3,5-Me₂-OC₆H₃)₂ mit CH₃COCl

[0061] Zu einer Lösung von 2.8 g (3.74 mmol) rac-Me₂Si(2-Me-benz[e]ind)₂Zr(3,5-Me₂-OC₆H₃)₂ in 48 g Toluol und 0.6 g (8.3 mmol) THF wurden bei Raumtemperatur 0.63 g (8.02 mmol) Acetylchlorid in 13 g Toluol bei Raumtemperatur zugetropft. Die Lösung wurde 2 Tage bei Raumtemperatur gerührt. Die leicht orangene Lösung färbte sich zunehmend gelb. Nach einigen Stunden ist die Bildung eines hellgelben kristallinen Niederschlages zu beobachten. Das ¹H-NMR-Spektrum zeigte neben den Resonanzen des 3,5-Me₂-Phenolmethylesters Signale rein racemischen Me₂Si(2-Me-benz[e]ind)₂ZrCl₂. Der hellgelbe kristalline Niederschlag wurde durch Filtration isoliert, mit wenig Toluol gewaschen und im Hochvakuum getrocknet. Hierbei werden 1.97 g (3.42 mmol) (92%) rein racemisches Me₂Si(2-Me-benz[e]ind)₂ZrCl₂ analysenrein erhalten.

Darstellung von Me $_2$ Si (2-Me-benz[e]ind) $_2$ Zr(3,5-Me $_2$ -OC $_6$ H $_3$)Cl durch Umsetzung von Me $_2$ Si(2-Me-benz[e]ind) $_2$ Zr(3,5-Me $_2$ -OC $_6$ H $_3$) $_2$ mit CH $_3$ COCl

[0062] Zu einer Lösung von 2.5 g (3.34 mmol) rac-Me₂Si(2-Me-benz[e]ind)₂Zr(3,5-Me₂-OC₆H₃)₂ in 60 g Toluol und 0.25 g (3.4 mmol) THF wurden bei Raumtemperatur 0.26 g (3.34 mmol) Acetylchlorid in 10 g Toluol bei Raumtemperatur zugetropft. Die Lösung wurde 2 Tage bei Raumtemperatur gerührt. Die leicht orangene Lösung färbte sich zunehmend gelb. Das ¹H-NMR-Spektrum zeigte neben den Resonanzen des 3,5-Me₂-Phenolmethylesters Signale rein racemischen Me₂Si(2-Me-benz[e]ind)₂Zr(3,5-Me₂-OC₆H₃)Cl. Die Lösung wurde am Hochvakuum auf ca. 1/4 eingeengt. Nach einigen Tagen bildete sich ein hellgelber kristalliner Niederschlag der filtriert, mit wenig Toluol gewaschen und im Hochvakuum getrocknet wurde, hierdurch wurden 2.0 g (90%) rein racemisches Me₂Si(2-Me-benz[e]ind)₂Zr(3,5-Me₂-OC₆H₃)Cl analysenrein erhalten.

Elementaranalyse Me₂Si(Me-benz)[e]ind)₂ZrCl(3,5-di-Me-Phenolat): gefunden:

30 C: 67.5%; H: 5.3; berechnet: C 68.8%; H 5.3%.

35

Me₂Si(2-Me-benz[e]ind)₂ZrCl(3,5-di-Me-Phenolat)

¹H-NMR-Verschiebungen (in ppm, CDCl₃, 25°C, 200 MHz)

	7.90 (d, 1H)	H _{arom} .
40	7.78 (d, 1H)	H _{arom} .
	7.70-6.88 (11m, H)	H _{arom} .
	6.69 (s, 1H)	C ₅ H oder C ₆ H ₃ (4-Position Phenolat)
45	6.33 (s, 1H)	C ₅ H oder C ₆ H ₃ (4-Position Phenolat)
	5.81 (s, 2H)	C ₆ H ₃ (2,6-Position Phenolat)
	2.29 (s, 3H)	CH ₃
50	2.20 (s, 3H)	CH ₃
	2.12 (s, 6H)	3,5-(CH ₃) ₂ (Phenolat)
	0.95 (s, 3H)	Me ₂ Si
55	0,89 (s, 3H)	Me ₂ Si

Patentansprüche

 Verfahren zur Herstellung von racemischen Metallocenkomplexen durch Umsetzung von verbrückten oder nicht verbrückten Übergangsmetallaromatkomplexen der allgemeinen Formel I

$$\begin{array}{c|c}
R^3 & R^4 & R^5 & R^6 \\
R^2 & & & & & \\
R^1 & Y^1 & & & \\
MX_n & & & & \\
\end{array}$$
(1),

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

X gleich oder verschieden Fluor, Chlor, Brom, Iod, Wasserstoff, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR¹⁰ oder -NR¹⁰R¹¹,

n eine ganze Zahl zwischen 1 und 4, wobei n der Wertigkeit von M minus der Zahl 2 entspricht,

R¹, R⁸ gleich oder verschieden Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C₁₀-Cycloalkyl, Alkylaryl

25

35

 R^2 bis R^7 gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits einen C₁- bis C₁₀-Alkylrest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein,

 $-OR^{27}$, $-SR^{27}$, $-N(R^{27})_2$, $-P(R^{27})_2$, mit R^{27} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

, R^{11} C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C_7 -Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

Y, Y¹ gleich oder verschieden

 $=BR^{12}, =AlR^{12}, -Ge-, -Sn-, -O-, -S-, =SO, =SO_2, =NR^{12}, =CO, =PR^{12} \text{ oder } =P(O)R^{12}, \text{ wobei } R^{12} \text{ gleich oder verschieden Wasserstoff, Halogen, } C_1-C_{10}-Alkyl, C_1-C_{10}-Fluoralkyl, C_6-C_{10}-Fluoraryl, C_6-C_$ Aryl, C₁-C₁₀-Alkoxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C₈-C₄₀-Arylalkenyl, C₇-C₄₀-Alkylaryl bedeuten, oder wobei zwei Reste R¹² mit den sie verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8gliedriges Cycloalkyl - das seinerseits ein C1- bis C10-Alkyl als Rest tragen kann -, C6- bis C15-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloal-

kyl, C_6 - bis C_{15} -Aryl, oder zusammen mit benachbarten Resten R^4 oder R^5 für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste vollständig oder teilweise mit Heteroatomen substituiert sein können, $-OR^{27}$, $-SR^{27}$, $-N(R^{27})_2$, $-P(R^{27})_2$, mit R^{27} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R^{28} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen, Erwärmen des so erhaltenen Reaktionsgemisches auf eine Temperatur im Bereich von -78 bis 250° C, gegebenenfalls unter Zusatz von Radikalen oder Radikalbildnern und gegebenenfalls anschließende Substitution des verbrückten phenolischen Liganden oder der beiden

- nicht verbrückten phenolischen Liganden zum Mono- oder Bisubstitutionsprodukt.

 2. Verfahren nach Anspruch 1, wobei R¹ und R⁸ in Formel I sperrige Substituenten sind.
- 3. Verfahren nach den Ansprüchen 1 bis 2, wobei m in Formel I 0 bedeutet.
- 4. Verfahren nach den Ansprüchen 1 bis 3, wobei Y1 gleich ist und Sauerstoff bedeutet.
- 5. Verfahren nach den Ansprüchen 1 bis 4, wobei Cyclopentadienylderivate des Magnesiums oder des Lithiums verwendet werden.
- 6. Racemische Metallocenkomplexe der allgemeinen Formel III

$$\begin{array}{c}
\mathbb{R}^{15} \\
\mathbb{R}^{16}
\end{array}$$

$$\mathbb{R}^{13}$$

$$\mathbb{R}^{13}$$

$$\mathbb{R}^{13}$$

$$\mathbb{R}^{13}$$

$$\mathbb{R}^{13}$$

$$\mathbb{R}^{13}$$

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

$$R^{2}$$
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}

wobei:

10

15

20

25

30

35

40

45

50

55

60

65

 R^1 , R^8 gleich oder verschieden Fluor, Chlor, Brom, Iod, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C_1 - bis C_{10} -Alkyl als Rest tragen kann –, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, $Si(R^9)_3$ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können, $-OR^{27}$, $-SR^{27}$, $-N(R^{27})_2$, $-P(R^{27})_2$, mit R^{27} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R^{28} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl,

 R^2 bis R^7 gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits einen C_1 - bis C_{10} -Alkylrest tragen kann –, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9)₃ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, benachbarte Reste R^2 bis R^7 können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für un-

gesättigte cyclische Gruppen stehen, und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl, Y, Y¹ gleich oder verschieden

-

10

15

25

40

45

55

= BR¹², = AIR¹², -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR¹², =CO, =PR¹² oder =P(O)R¹², wobei

 R^{12} gleich oder verschieden Wasserstoff, Halogen, C_1 - C_{10} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryl, C_1 - C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_8 - C_{40} -Arylalkenyl, C_7 - C_{40} -Alkylaryl bedeuten oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl – das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann –, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, oder zusammen mit benachbarten Resten R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste vollständig oder teilweise mit Heteroatomen substituiert sein können,

 $-OR^{27}$, $-SR^{27}$, $-N(R^{27})_2$, $-P(R^{27})_2$, mit R^{27} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R^{28} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl,

 R^{13} bis R^{17} gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, – das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann –, C_6 - bis C_{15} -Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder $Si(R^{18})_3$ mit R^{18} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

$$R^{22}$$
 R^{23}
 R^{19}
 R^{20}

steht,
wobei die Reste

 R^{19} bis R^{23} gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, – das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann –, C_6 - bis C_{15} -Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder $Si(R^{24})_3$ mit R^{24} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl, oder wobei die Reste R^{16} und Z gemeinsam eine Gruppierung - $[T(R^{25})(R^{26})]_q$ -E- bilden, in der

T gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht, R^{25} , R^{26} für Wasserstoff, C_1 - bis C_{10} -Alkyl, C_3 - bis C_{10} -Cycloalkyl oder C_6 - bis C_{15} -Aryl

q für die Zahlen 1, 2, 3 oder 4,

E für

$$R^{23}$$
 R^{19}
 R^{20}
65

oder A steht, wobei A -O-, -S-, > NR²⁷ oder > PR²⁷ bedeutet,

mit R²⁷ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl oder Alkylaryl.

7. Racemische Metallocenkomplexe nach Anspruch 6, wobei R¹⁷ und R²³ nicht Wasserstoff bedeuten, wenn R¹⁶ und Z gemeinsam eine Gruppierung -[T(R²⁵)(R²⁶)_q-E- bilden.

8. Verwendung von racemischen Metallocenkomplexen gemäß den Ansprüchen 6 bis 7 als Katalysatoren oder als Bestandteil von Katalysatoren für die Polymerisation von olefinisch ungesättigten Verbindungen oder als Reagenzien oder Katalysatoren in der stereoselektiven Synthese

zien oder Katalysatoren in der stereoselektiven Synthese.