整数规划

吴婷

南京大学数学系

2020年7月14日

§1 数学模型

问题的提出

【例1】某企业家计划以14万资金从事项目投资。若可供选择的项目如下表所示,试求收益最大的投资方案。

项目	投入 (万元)	获利 (万元)
A	5	16
В	7	22
С	4	12
D	3	8

【解】设x_i表示第j个项目的投资状态,且

$$x_j = \begin{cases} 1, & 投资 j 项目 \\ 0, & 不投资 j 项目 \end{cases}$$

则

解得

$$x^* = (0, 1, 1, 1)^T$$

$$f^* = 42 (万元)$$

【例 2】某公司计划在m个可能的地点选择一定数量的厂址。若 i处被选中,则以下情况应予考虑: ① 固定成本 P_i ; ② 预生产能力 S_i ; ③ 第j区的需要量 d_j ; ④ 由i厂至j地区的商品运输成本 C_{ij} 。试求费用最小且满足需要的选址方案。

【解】设 x_{ij} 表示由i点运往j地区的商品数量; w_i 表示i处的选择状态,且

$$w_i = \begin{cases} 1, 选择 i 地 \\ 0, 不选择 i 地 \end{cases}$$

则

Min
$$f = \sum_{i} P_{i} w_{i} + \sum_{i} \sum_{j} C_{ij} x_{ij}$$

s.t. $\sum x_{ij} \leq S_{i} w_{i}$, $i = 1,...,m$
 $\sum w_{i} x_{ij} \geq d_{j}$, $j = 1,...,n$
 $x_{ij} \geq 0$; $w_{i} = 0$ 或 1

整数线性规划的几种常见的类型

全整型线性规划 决策变量、约束条件中的系数皆为整数

纯整型线性规划 决策变量全为整数

混合型整数线性规划 部分决策变量为整数

0-1型整数线性规划 决策变量只能取0或1

§ 2 分支定界法

算法的导出

【例1】求解整数规划问题

Max
$$z = 2x_1 + x_2$$

s.t. $x_1 + x_2 \le 5$
 $-x_1 + x_2 \le 0$
 $6x_1 + 2x_2 \le 21$
 $x_j \ge 0, j = 1, 2$ 且为整

【分析】考虑伴随问题,即放开整约束的线性规划问题

$$\begin{cases} \text{Max } z = 2x_1 + x_2 \\ \text{s.t. } x_1 + x_2 \le 5 \\ -x_1 + x_2 \le 0 \\ 6x_1 + 2x_2 \le 21 \\ x_j \ge 0, j = 1, 2 \end{cases}$$

伴随问题的最优解是 $\underline{x}^* = (2.5, 2.5)^T$, $z^* = 7.5$

能否通过圆整的办法求得该问题的整数最优解呢?

可选择的点为

$$\underline{\mathbf{x}}^{(1)} = (2,2)^{\mathrm{T}}, \ \underline{\mathbf{x}}^{(2)} = (2,3)^{\mathrm{T}}, \ \underline{\mathbf{x}}^{(3)} = (3,2)^{\mathrm{T}}, \ \underline{\mathbf{x}}^{(4)} = (3,3)^{\mathrm{T}}_{\circ}$$

枚举法呢?

此法虽然能求得整数最优解,但是计算量成指数倍增长,实践中无法运用。

能否只检验一小部分整数解点,从而求得该问题的整数最优解呢?

分支定界法

【例2】求解整数规划问题

 $x_1 \ge 8$

(L₅) Max
$$z = 20x_1+40x_2$$

s.t. $5x_1 + 8x_2 \le 60$
 $x_1 \le 7$
 $x_2 \le 3$
 $x_1 \ge 6$
 $x_i \ge 0, j=1, 2$

(L₆) Max
$$z = 20x_1 + 40x_2$$

s.t. $5x_1 + 8x_2 \le 60$
 $x_1 = 8$
 $x_2 \le 3$
 $x_1 \ge 6$
 $x_1 \ge 0, j=1, 2$

$$x^{(5)} = (7, 3)^T$$
, $f_5 = 260$

260
$$\leq$$
f* \leq 260 $x^{(6)} = (8, 2.5)^T, f_6 = 260$

于是,最优解为: $x^* = (5,4)^T$, $x^* = (7,3)^T$; $f^* = 260$

定界要点

求极大

子域上伴随问题的整数解提供原问题最优目标值的下界。

子域上伴随问题的非整数解提供原问题最优目标值的上界。

求极小

子域上伴随问题的整数解提供原问题最优目标值的上界。

子域上伴随问题的非整数解提供原问题最优目标值的下界。

不再分支准则

- (1) 子域上伴随问题的最优解是整数。
- (2) 子域上伴随问题不可行。
- (3) 子域上伴随问题的最优解不可能优于目前已求得的解。

分支变量的选择

任意

§3 隐枚举法

基本思想

对于0-1规划问题,由于其解被限定为0或1,故可以在满足约束的前提下,将目标优化演变为"过竿"约束,逐次改进,最终求得最优解。

【例1】求解整数规划问题

【解】

步 1

试算初始可行解

求极大 在目标函数中,令负系数决策变量为0,其余变量为1。

求极小 在目标函数中,令正系数决策变量为0,其余变量为1。

本例为 $\mathbf{x}^{(0)} = (1, 0, 0)^{\mathrm{T}}$

步 2 将目标优化转变为"过竿"约束,解不等式组。

本例, $f_0=3$;

"竿"为 $f_{max} \geq 3$ 。

						7			
点	竿 f≥3	约束①	约束②	约束③	约束④	目标值			
(0, 0, 0)	×								
(0, 0, 1)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	5			
	竿 f≥5								
(0, 1, 0)	×								
(0, 1, 1)	×								
(1, 0, 0)	×								
(1, 0, 1)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	8			
	竿 f≥8								
(1, 1, 0)	×								
(1, 1, 1)	×								
次数	16								

§ 4 指派问题

有n件事,让n个人去做,如何分配效益最高?

数学模型

设 x_{ij} 表示指派第i个人去做第j件事,则

$$x_{ij} = \begin{cases} 1, 指派第i个人去做第j件事 \\ 0, 未指派任何人 \end{cases}$$

由于每人只做一件事,每件事也只分配一个人去做,故

$$\begin{cases} \sum_{j} x_{ij} = 1, & i = 1,...,n \\ \sum_{i} x_{ij} = 1, & j = 1,...,n \end{cases}$$

一般模型

Min
$$\sum_{i}\sum_{j}c_{ij} x_{ij}$$

s.t. $\sum_{j}x_{ij}=1$, $i=1,...,n$

$$\sum_{i}x_{ij}=1$$
, $j=1,...,n$

$$x_{ij}=0$$
 或 1

【例1】四个工人被分配去做四项不同的工作。他们各自完成这些工作需要的时间如下表所示。试求总消耗时间为最少的分配方案。

	工作 I	工作 II	工作 III	工作 IV
甲	2	15	13	4
乙	10	4	14	15
万	9	14	16	13
丁	7	8	11	19

【解】设 x_{ii} 表示指派第i个人去做第j件事,则

Min
$$f = 2x_{11} + 15x_{12} + 13x_{13} + 4x_{14} + 10x_{21} + 4x_{22} + 14x_{23} + 15x_{24} + 9x_{31} + 14x_{32} + 16x_{33} + 13x_{34} + 7x_{41} + 8x_{42} + 9x_{43} + 10x_{44}$$
s.t. $\sum_{j} x_{ij} = 1$, $i = 1, ..., 4$

$$\sum_{i} x_{ij} = 1$$
, $j = 1, ..., 4$

$$x_{ij} = 0$$
 或 1

对于上述模型,应如何去解?

匈牙利法

独立零元素 矩阵中,位于不同行、不同列的零元素。

定理 1 若n维指派问题的效益矩阵有n个独立零元素,则 与独立零元素位置相应的变量x_{ii}置1,其余置0,即得指 派问题得最优解。

如何生成零元素?

定理 2 若从效益矩阵一行(列)诸元素中分别减去该行(列) 的最小元素得到一个新矩阵,则以此新矩阵作为效益矩 阵的指派问题最优解和原问题相同。

证明)

设原问题的效益矩阵 为 C_{ii},新矩阵为 B_{ii},

$$B = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ & \dots & & & \\ C_{k1}\text{-r} & C_{k2}\text{-r} & \dots & C_{kn}\text{-r} \\ & \dots & & & \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{pmatrix}$$

故原问题与新问题的最优解相同。

圈零法

- 步1增加效益矩阵的零元素。
- ① 每行减去该行中的最小元素; ②每列减去该列中的最小元素。 步 2 找出效益矩阵中所有独立的零元素。

本例中

最佳方案已求得,即

甲-- IV; 乙-- II; 丙-- I; 丁-- III。

共需 28 小时。

圈零准则

- (1) 圈零应从含零最少的行(列)开始。
- (2) 圈出一个零后,应划去与其同行(列)的其它零元素。
- (3) 若含零最少的行(列) 存在两个或两个以上的零元素时,可任选一个起始。由于选择不同,得到的最优解也将不同,但目标值肯定是相同的。

准则反例

多解范例

圈零

倘若圈不到n个 独立的零元素, 怎么办?

最小直线集合

- 步 1 对不含圈零的行打上记号"√"。
- 步 2 对打"√"的行中所有含零元素的列打上记号"√"。
- 步 3 对打"√"的列中有圈零的行打上记号"√"。
- 步 4 重复步2、步3,直至打不出新的"√"为止。
- 步 5 对未被打"√"的行划横线,对所有打"√"的列划竖线,即得最小直线集合。

生成独立的零元素

- 步1 在未被最小直线集合覆盖的元素中,找出最小元素τ
- 步 2 在未被最小直线集合覆盖的行中,每个元素都减去τ
- 步 3 在被最小直线集合覆盖的列中,每个元素都加上τ

若实施上述步骤后,依然未能找到n个独立的零元素,则重新计算最小直线集合。

【例2】圈出下列效益矩阵的独立零元素。

【解】

C一

列减

附注1 对于指派问题中的极大化模型

$$\text{Max } \sum_{i} \sum_{j} c_{ij} x_{ij} \neq \text{Min } \sum_{i} \sum_{j} (-c_{ij}) x_{ij}$$

这时,应构造一个新的效益矩阵

$$B = \{b_{ij}\}$$

其中, $b_{ij} = M - c_{ij}$, $M = \max\{c_{ij}\}$ 。然后,求解

$$\begin{cases} \text{Min } \sum_{i} \sum_{j} b_{ij} x_{ij} \\ \text{s.t. } \sum_{j} x_{ij} = 1 \text{ , } i = 1, ..., n \end{cases}$$
$$\sum_{i} x_{ij} = 1 \text{ , } j = 1, ..., n$$
$$x_{ij} = 0 \text{ 或 } 1$$

由于两者的效益矩阵之间,诸元素相差一个常数,因此,这两个模型的最优解相同。

附注2 人数和任务数不相等的指派问题

人少事多

虚拟人,效益系数取零

事少人多

虚拟事,效益系数取零

1人多事

将该人化为若干个效益系数相同的人

不宜某事

将该人承担此事的效益系数取 M >> 1

【例3】拟由三家公司承建五个商店,费用如下:

	A	В	С	D	Е
甲	4	8	7	15	12
乙	7	9	17	14	10
丙	6	9	12	8	7

若允许一家公司可以承建1-2家商店,求最佳方案。

§5 割平面法

算法思想

求解线性整数规划问题的伴随问题时,若最优解不是整

数时,则设法在伴随问题中增加一个约束,使其:

- (1)将此非整最优解"割去";
- (2) 原问题的任一整数解不受该约束的影响。

如此循环, 直至求得原问题的整数最优解。

数学推导

设伴随问题的最优基为 $B = [p_{i_1}, p_{i_2}, ..., p_{i_m}]$,N表示非基列。则

$$x_{B} = B^{-1}b - B^{-1}Nx_{N}$$

若 $d = B^{-1}b$ 的分量是整数,则 $x^* = (x_B, 0)^T$ 为原问题的最优解;

若 d = B⁻¹b 的分量并非全是整数,不妨设其第i个分量d_{i0}不是整数,则该问题单纯形终表中第i个方程为

$$x_{i_0} + \sum_{j} \lambda_{i_0 j} x_j = d_{i_0}, j \in N$$

类似地,设
$$d_{i_0} = [d_{i_0}] + \sigma_{i_0}$$
,其中 $0 < \sigma_{i_0} < 1$ 。则

$$x_{i_0} + \sum_{j} ([\lambda_{i_0 j}] + \tau_{i_0 j}) x_j = [d_{i_0}] + \sigma_{i_0}, j \in \mathbb{N}$$

$$x_{i_0} = [d_{i_0}] - \sum_j [\lambda_{i_0 j}] x_j + \sigma_{i_0} - \sum_j \tau_{i_0 j} x_j, \ j \in \mathbb{N}$$

于是,对于 $j \in N$,约束 σ_{i_0} - $\sum_j \tau_{i_0 j} x_j \le 0$ 为所求的割平面约束。

理论分析

即

定理 5.1 割平面 σ_{i_0} - $\sum_j \tau_{i_0 j} x_j \le 0$ 割去了伴随线性规划问题的非整最优解。

【证明】设伴随问题的最优基为 $B = [p_{i_1}, p_{i_2}, ..., p_{i_m}]$,N表示非基列。由 $x_B = B^{-1}b - B^{-1}Nx_N$ 可知,最优解

$$x^* = (x_B, 0)^T = (B^{-1}b, 0)^T = (d_{1_0} d_{2_0}, ..., d_{m_0}, 0)^T$$

$$\begin{cases} x_{j_i} = d_{i_0}, & i = 1, ..., m \\ x_{j} = 0, & j \in N \end{cases}$$

将上式代入割平面方程 σ_{i_0} - $\sum_j \tau_{i_0 j} x_j \le 0$ 得 $\sigma_{i_0} \le 0$ 。

这与 $\sigma_{i_0} > 0$ 矛盾!它表明最优基B不满足割平面约束。此约束加入伴随线性规划问题,必将已求得的非整最优解割去。

定理 5.2 割平面 σ_{i_0} - $\sum_j \tau_{i_0 j} x_j \le 0$ 不会割去原整数规划问题的任何整可行解。

【证明】只需证明原问题的任一整可行解均满足割平面约束。

设 $\mathbf{x}^{(0)} = (\mathbf{x}_1^{(0)}, \mathbf{x}_2^{(0)}, ..., \mathbf{x}_n^{(0)})^T$ 是原整数规划问题的一个整可行解。则它必满足方程

$$x_B^{(0)} = B^{-1}b - B^{-1}Nx_N^{(0)}$$

即,对于j∈ N

$$x_{j_i}^{(0)} = d_{i_0} - \sum_j \lambda_{i_0 j} x_j^{(0)}, i = 1, ..., m$$

设
$$\lambda_{i_0 j} = [\lambda_{i_0 j}] + \tau_{i_0 j}$$
, $d_{i_0} = [d_{i_0}] + \sigma_{i_0}$,且 $0 \le \tau_{i_0 j} < 1$, $0 < \sigma_{i_0} < 1$ 。

则 $x_{j_i}^{(0)} = [d_{i_0}] - \sum_j [\lambda_{i_0 j}] \ x_j^{(0)} + \sigma_{i_0} - \sum_j \tau_{i_0 j} \ x_j^{(0)}$

由于 $x_{j_i}^{(0)}$ 是整数,故 σ_{i_0} - $\sum_j \tau_{i_0 j} x_j^{(0)}$ 必为整数。又 σ_{i_0} - $\sum_j \tau_{i_0 j} x_j^{(0)} \le \sigma_{i_0}$

$$\sigma_{i_0} - \sum_j \tau_{i_0 j} x_j^{(0)} \le 0$$

满足割平面约束。

【例1】求解整数规划问题

Max
$$z = 3x_1 - x_2$$

s.t. $3x_1 - 2x_2 \le 3$
 $5x_1 + 4x_2 \ge 10$
 $2x_1 + x_2 \le 5$
 $x_j \ge 0, j = 1, 2 且为整$

【解】将该问题的伴随问题化为标准型

$$\begin{cases} \text{Min } f = -3x_1 + x_2 \\ \text{s.t. } 3x_1 - 2x_2 + x_3 &= 3 \\ 5x_1 + 4x_2 & -x_4 &= 10 \\ 2x_1 + x_2 & +x_5 = 5 \\ x_j \ge 0, j = 1, \dots, 5 \end{cases}$$

基	\mathbf{x}_1	\mathbf{X}_2	X ₃	X_4	X ₅	解
X ₃	11/2	0	1	-1/2	0	8
\mathbf{x}_2	5/4	1	0	-1/4	0	5/2
X ₅	3/4	0	0	1/4	1	5/2
r	-17/4	0	0	1/4	0	-5/2
\mathbf{x}_1	1	0	1/7	0	2/7	13/7
X ₄	0	0	-3/7	1	22/7	31/7
\mathbf{x}_2	0	1	-2/7	0	3/7	9/7
r	0	0	5/7	0	3/7	30/7

 $x = (13/7, 9/7)^T$ 不是原问题的最优解。以 x_1 为源行,由 $x_1 = 1 + 6/7 - 1/7x_3 - 2/7x_5$ 得割平面 $6/7 - 1/7x_3 - 2/7x_5 \le 0$

引入松弛变量 s_1 ,得

 $s_1 - 1/7x_3 - 2/7x_5 = -6/7$

将上述割平面方程加入伴随问题, 得单纯形表

基	\mathbf{x}_1	\mathbf{x}_2	X ₃	X ₄	X ₅	s_1	解
\mathbf{x}_1	1	0	1/7	0	2/7	0	13/7
X ₄	0	0	-3/7	1	22/7	0	31/7
\mathbf{x}_2	0	1	-2/7	0	3/7	0	9/7
\mathbf{s}_1	0	0	-1/7	0	-2/7	1	-6/7
r	0	0	5/7	0	3/7	0	30/7
\mathbf{x}_1	1	0	0	0	0	1	1
X ₃	0	0	1	-1/2	0	-11/2	5/2
\mathbf{x}_2	0	1	0	-1/4	0	-5/4	5/4
X ₅	0	0	0	1/4	1	-3/4	7/4
r	0	0	0	1/4	0	17/4	7/4

 $x = (1, 5/4)^T$ 仍不是原问题的最优解。以 x_5 为源行,作割平面

将上述割平面方程加入伴随问题, 得单纯形表

基	\mathbf{x}_1	\mathbf{X}_2	X ₃	X_4	X ₅	s_1	s_2	解
\mathbf{x}_1	1	0	0	0	0	1	0	1
X ₃	0	0	1	-1/2	0	-11/2	0	5/2
\mathbf{x}_2	0	1	0	-1/4	0	-5/4	0	5/4
X ₅	0	0	0	1/4	1	-3/4	0	7/4
s_2	0	0	0	-1/4	0	-1/4	1	-3/4
r	0	0	0	1/4	0	17/4	0	7/4
\mathbf{x}_1	1	0	0	0	0	0	1	1
X ₃	0	0	1	0	0	2	-5	4
\mathbf{x}_2	0	1	0	0	0	1	-1	2
X ₅	0	0	0	0	1	-1	-1	1
X ₄	0	0	0	1	0	-4	1	3
r	0	0	0	0	0	1	4	1

 $x^* = (1,2)^T$ 为原整数线性规划问题的最优解, $f^* = 1$ 。

第二割平面: 3/4 - $1/4x_4$ - $1/4s_1 \le 0$,即 $x_4 + s_1 \ge 3$ 。以约束方程 $x_4 = 10$ - $5x_1$ - $4x_2$, $s_1 = 1/7x_3 + 2/7x_5$ - 6/7, $x_3 = 3$ - $3x_1$ + $2x_2$, $x_5 = 5$ - $2x_1$ - x_2 代入得 $x_1 + x_2 \ge 3$ 。