

Developing A Novel Continual Learning Strategy To Address

The Forgetting Problem For Al Models In Human-In-The-Loop Procedures

Radiological Society
of North America

Tiezheng Zhang¹; Xiaoxi Chen²; Chongyu Qu¹; Alan Yuille¹; Zongwei Zhou^{1,*}

¹Johns Hopkins University, ²Shanghai Jiao Tong University

Purpose

Devising an effective strategy to tackle the forgetting problem in AI models that continually learn from newly annotated classes (e.g., organs and tumors) while preserving the knowledge of previously learned classes.

Results

All Data Revision-Focused Merged Data Before Finetuning Continual Learning Continue Learning Continual Learning Organ mDice(%) mDice(%) mDice(%) mDice(%) 0.25 0.95 0.94 0.94 Spleen Right Kidney 0.92 0.08 0.92 0.92 Left Kidney 0.91 0.12 0.91 0.91 Gall Bladder(1) 0.82 0.82 0.82 0.82 0.96 0.00 0.96 0.96 Liver 0.93 0.90 0.93 0.93 Stomach(11) 0.83 Aorta(12) 0.73 0.83 0.75 0.75 0.77 0.77 Postcava(6) 0.76 0.81 0.82 Pancreas 0.07 0.82

(The organs in red were revised by radiologists and the number represents the number of cases radiologists revised)

Methods

Methods:

- "Merged Data Continual Learning"
- "Organ-Based MLP layers for AI model"

Reference

[1] Zhang, Yixiao, et al. "Continual learning for abdominal multi-organ and tumor segmentation." *International conference on medical image computing and computer-assisted intervention*. Cham: Springer Nature Switzerland, 2023.

[2] Qu, Chongyu, et al. "Annotating 8,000 Abdominal CT Volumes for Multi-Organ Segmentation in Three Weeks." arXiv preprint arXiv:2305.09666 (2023)