LMA0001 – Lógica Matemática Aula 08 Equivalência Lógica

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Equivalências lógicas

Com base na relação de consequência, podemos definir agora quando duas fórmulas são **logicamente equivalentes**.

Escrevemos

$$A \equiv B$$

se, e somente se,

$$A \models B$$
 e $B \models A$

Intuitivamente: A e B possuem a mesma tabela-verdade.

Equivalências notáveis

Dupla negação: $\neg\neg p \equiv p$

Implicação como disjunção: $p \to q \equiv \neg p \lor q$

Associatividade de \wedge : $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$

 $\mbox{Associatividade de \vee:} \qquad \qquad p \lor (q \lor r) \equiv (p \lor q) \lor r$

De Morgan (1): $\neg (p \lor q) \equiv (\neg p \land \neg q)$

De Morgan (2): $\neg (p \land q) \equiv (\neg p \lor \neg q)$

Distributividade de \land sobre \lor : $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Distributividade de \vee sobre \wedge : $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

Equivalências entre conectivos

Considerando a equivalência lógica, existe certa *redundância* no conjunto de conectivos básicos.

Podemos representar \vee e \rightarrow somente utilizando \wedge e \neg :

- $A \lor B \equiv \neg(\neg A \land \neg B)$
- $A \to B \equiv \neg (A \land \neg B)$

Portanto, podemos definir o cálculo proposicional utilizando somente \land e \neg , sem perder poder de expressão.

Algumas versões do cálculo proposicional introduzem conectivos adicionais como o *ou exclusivo* e a *dupla implicação*.

Ou exclusivo

O ou exclusivo, denotado

$$A \oplus B$$

difere do *ou inclusivo* por retornar falso quando ambas as afirmações são verdadeiras.

Tabela-verdade:

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Equivalência:

$$A \oplus B \equiv (A \land \neg B) \lor (\neg A \land B)$$

Dupla implicação

A dupla implicação, denotada

$$A \leftrightarrow B$$

é verdade quando A e B são ambos verdadeiros ou ambos falsos.

Tabela-verdade:

A	В	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Equivalência:

$$A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B) \equiv (A \to B) \land (B \to A)$$

Exercícios

- ① Defina os conectivos \rightarrow e \land utilizando somente \lor e \neg , e mostre que as equivalências valem através de tabelas-verdade.
- 2 Considere o conectivo representado pela tabela-verdade a seguir:

$$\begin{array}{c|cccc} A & B & A \uparrow B \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Descreva os operadores \land e \neg utilizando somente \uparrow , e mostre a validade das equivalências através de tabelas-verdade.

