INTRODUCTION TO APACHE SPARK

3. SPARK SQL AND DATAFRAMES

REMINDER: HOMEWORKS

- Expected by email before the following class
- Submit the exported notebook (.ipynb extension)
- File name should include both student name and no space

(FirstName1LastName1_FirstName2LastName2.py) for instance

OVERVIEW

- Spark SQL is a library included in Apache Spark since version 1.3
- Its main goal is to provide an easier interface to process tabular data
- Instead of RDDs, we deal with DataFrames
- Starting from Spark 1.6, there is also the concept of Datasets, but only for Scala and Java

CONTEXTS AND SPARKSESSION

- Before Spark 2, there was only SparkContext and SQLContext
- All core functionality was accessed with SparkContext
- All SQL functionality needed the SQLContext, which can be created from an SparkContext
- Starting from Spark 2.0, there is now the SparkSession class
- SparkSession is now the global entry-point for everything Spark-related

CREATING A SPARK SESSION

DATAFRAME

- The main entity of Spark SQL is the DataFrame
- A DataFrame is actually an RDD of Rows with a Schema definition
- The schema defines the names of the columns and their data types
- Row is a class representing a row of the DataFrame.
- It can be used almost as a List, with its size equal to the number of columns in the schema.

EXAMPLES

```
>>> from pyspark.sql import Row
>>> row1 = Row(name="John", age=21)
>>> row2 = Row(name="James", age=32)
>>> row3 = Row(name="Jane", age=18)
>>> row1['name']
'John'
```

EXAMPLES

```
>>> df = spark.createDataFrame([row1, row2, row3])
>>> df.printSchema()
>>> df.show()
 -- name: string (nullable = true)
 -- age: long (nullable = true)
  name|age|
  John 21
 James
       32
  Jane |
```

EXAMPLES

```
>>> print(df.rdd.toDebugString())
```

```
(8) MapPartitionsRDD[209] at javaToPython at NativeMethodAcces
| MapPartitionsRDD[208] at javaToPython at NativeMethodAccess
| MapPartitionsRDD[207] at javaToPython at NativeMethodAccess
| MapPartitionsRDD[204] at applySchemaToPythonRDD at NativeMe
| MapPartitionsRDD[203] at map at SerDeUtil.scala:123 []
| MapPartitionsRDD[202] at mapPartitions at SerDeUtil.scala:1
| PythonRDD[201] at RDD at PythonRDD.scala:48 []
| ParallelCollectionRDD[200] at parallelize at PythonRDD.scal
```

- We can use the method createDataFrame present in the SparkSession instance.
- DataFrames can be created from:
 - a pandas.DataFrame object
 - a local python list
 - an RDD
- The full documentation and parameters can be found in the API docs

```
>>> column_names = ["name", "age", "gender"]
>>> rdd = sc.parallelize([
    ("John", 21, "male"),
    ("James", 25, "female"),
    ("Albert", 46, "male")
])
>>> df = spark.createDataFrame(rdd, column_names)
>>> df.show()
```

```
+----+
| name|age|gender|
+----+
| John| 21| male|
| James| 25|female|
| Albert| 46| male|
+----+
```

SCHEMA AND TYPES

- A DataFrame always contains a schema
- The schema defines the column names and types
- The schema of a DataFrame is represented by the class types.StructType (docs)
- When creating a DataFrame, the schema can be either inferred or defined by the user

CREATING A CUSTOM SCHEMA

```
root
|-- name: string (nullable = true)
|-- age: integer (nullable = true)
|-- gender: string (nullable = true)

+---+--+
| name | age | gender |
+---+---+
| John | 21 | male |
+----+---+
```

TYPES SUPPORTED BY SPARK SQL

READING DATA FROM SOURCES

- In real use-cases, data is usually read from external sources
- Spark SQL provides many connectors to read from:
 - Text files (csv, json)
 - Distributed tabular files (Parquet, ORC)
 - General relational Databases (via JDBC)
- Specific connectors to many other databases can be found in third-party libraries...
- ...or you can implement your own connector for Spark (Scala API).

READING DATA FROM SOURCES

In all cases, the syntax is similar:

```
spark.read.{source}(path)
```

- Spark supports different file systems to look for the data:
 - Local files: file://
 - HDFS (hadoop filesystem): hdfs://
 - Amazon S3: s3://

READING FROM CSV

READING FROM CSV - MAIN OPTIONS

option	description
sep	The separator character
header	If "true", the first line contains the column names
inferSchema	If "true", the column types will be guessed from the contents
dateFormat	A string representing the format of the date columns

The full list of options can be found in the API Docs

READING FROM OTHER FILE TYPES

```
# JSON file
df = spark.read.json("/path/to/file.json")
df = spark.read.format("json").load("/path/to/file.json")

# Parquet file (distributed tabular data)
df = spark.read.parquet("hdfs:///path/to/file.parquet")
df = spark.read.format("parquet").load("hdfs:///path/to/file.p

# ORC file (distributed tabular data)
df = spark.read.orc("hdfs:///path/to/file.orc")
df = spark.read.format("orc").load("hdfs:///path/to/file.orc")
```

READING FROM EXTERNAL DATABASES

- JDBC drivers (Java) can be used to read from relational Databases (Oracle, PostgreSQL, MySQL, etc.)
- The java driver file must be uploaded to the cluster before trying to access
- This operation can be very heavy. When available, database-specific connectors provided by third-party libraries should be used.

READING FROM EXTERNAL DATABASES

```
df = spark.read.format("jdbc") \
    .option("url", "jdbc:postgresql:dbserver") \
    .option("dbtable", "schema.tablename") \
    .option("user", "username") \
    .option("password", "p4ssw0rd") \
    .load()
# or
df = spark.read.jdbc(
    url="jdbc:postgresql:dbserver",
    table="schema.tablename"
    properties={
        "user": "username",
        "password": "p4ssw0rd"
```

PERFORMING QUERIES

- Spark SQL was created to be compatible with SQL queries
- So it supports actual SQL queries to be performed on DataFrames
- First, the DataFrame must be tagged as a temporary view
- Then, the queries can be applied using spark.sql

PERFORMING QUERIES

```
column names = ["name", "age", "gender"]
rows = [
    ["John", 21, "male"],
    ["Jane", 25, "female"]
df = spark.createDataFrame(rows, column names)
# Create a temporary view from the DataFrame
df.createOrReplaceTempView("new view")
# Apply the query
query = "SELECT name, age FROM new view WHERE gender='male'"
men df = spark.sql(query)
men df.show()
```

```
+---+
|name|age|
+---+
|John| 21|
+---+
```

USING THE API

- Although allowing SQL queries is a very powerful feature, it's not the best way to code a complex logic
- Errors are harder to find in Strings
- Using queries makes the code less modularizable
- So Spark SQL provides a full API with SQL-like operations
- It's the best way to code complex logic when using Spark SQL

BASIC OPERATIONS

operation	description
select	Chooses columns from the table
where	Filters rows based on a boolean rule
limit	Limits the number of rows
orderBy	Sorts the DataFrame based on one or more columns
alias	Changes the name of a column
cast	Changes the type of a column
withColumn	Adds a new column

SELECT

```
# In a SQL query:
df.createOrReplaceTempView("some_table")
query = "SELECT name, age FROM some_table"
spark.sql(query).show()

# Using Spark SQL API:
df.select("name", "age").show()
```

```
+----+
| name|age|
+----+
| John| 21|
| Jane| 25|
+----+
```

WHERE

```
# In a SQL query:
query = "SELECT * FROM table WHERE age > 21"

# Using Spark SQL API:
df.where("age > 21").show()

# alternatively:
df.where(df['age'] > 21).show()
df.where(df.age > 21).show()
df.select("*").where("age > 21").show()
```

```
+---+
|name|age|gender|
+---+
|Jane| 25|female|
+---+
```

LIMIT

Jane| 25|female| ----+

ORDER BY

```
# In a SQL query:
query = "SELECT * FROM table ORDER BY name ASC"

# Using Spark SQL API:
df.orderBy(df.name.asc()).show()

+---+---+
| name | age | gender |
+---+---+
| Jane | 25 | female |
```

John | 21 | male |

ALIAS (NAME CHANGE)

```
# In a SQL query:
query = "SELECT name, age, gender AS sex FROM table"

# Using Spark SQL API:
df.select(df.name, df.age, df.gender.alias('sex')).show()

+---+---+
```

```
+---+
|name|age| sex|
+---+
|---+---+
|John| 21| male|
|Jane| 25|female|
+---+---+
```

CAST (TYPE CHANGE)

```
# In a SQL query:
query = "SELECT name, cast(age AS float) AS age_f FROM table"

# Using Spark SQL API:
df.select(df.name, df.age.cast("float").alias("age_f")).show()

# or
new_age_col = df.age.cast("float").alias("age_f")
df.select(df.name, new_age_col).show()
```

```
+---+
|name|age_f|
+---+
|John| 21.0|
|Jane| 25.0|
+---+
```

ADDING NEW COLUMNS

```
# In a SQL query:
query = "SELECT *, 12*age AS age_months FROM table"

# Using Spark SQL API:
df.withColumn("age_months", df.age * 12).show()
# or
df.select("*", (df.age * 12).alias("age_months")).show()

# Note: Using withColumn is preferable
```

BASIC OPERATIONS

- The full list of operations that can be applied to a DataFrame can be found in the DataFrame docs
- The list of operations on Columns can be found in the Column docs

COLUMN FUNCTIONS

- Most of the time we need chain many transformations using one or more functions
- Spark SQL has a package called functions with many functions available for that
- Some of those functions are only for aggregations
 - For example: avg, sum, etc
 - We will cover them later
- Some others are for column transformation or operations
 - examples: substr, concat, datediff, floor, etc.
- The full list with descriptions is, as usual, in the API docs

COLUMN FUNCTIONS

To use these functions, we first need to import them:

from pyspark.sql import functions as fn

NUMERIC FUNCTIONS EXAMPLES

```
from pyspark.sql import functions as fn
df = spark.createDataFrame([
    ("garnier", 3.49),
    ("elseve", 2.71)
], ["brand", "cost"])
round cost = fn.round(df.cost, 1)
floor cost = fn.floor(df.cost)
ceil cost = fn.ceil(df.cost)
df.withColumn('round', round cost)\
  .withColumn('floor', floor cost)\
  .withColumn('ceil', ceil cost).show()
```

```
+----+
| brand|cost|round|floor|ceil|
+----+
|garnier|3.49| 3.5| 3| 4|
| elseve|2.71| 2.7| 2| 3|
+----+
```

STRING FUNCTIONS EXAMPLES

```
from pyspark.sql import functions as fn

df = spark.createDataFrame([
          ("John", "Doe"),
          ("Mary", "Jane")
], ["first_name", "last_name"])

last_name_initial = fn.substring(df.last_name, 0, 1)
name = fn.concat_ws(" ", df.first_name, last_name_initial)

df.withColumn("name", name).show()
```

```
+-----+
|first_name|last_name| name|
+-----+
| John| Doe|John D|
| Mary| Jane|Mary J|
+-----+
```

DATE FUNCTIONS EXAMPLES

```
from datetime import date
from pyspark.sql import functions as fn
df = spark.createDataFrame([
    (date(2015, 1, 1), date(2015, 1, 15)),
    (date(2015, 2, 21), date(2015, 3, 8)),
], ["start date", "end date"])
days between = fn.datediff(df.end date, df.start date)
start month = fn.month(df.start date)
df.withColumn('days between', days between)\
  .withColumn('start month', start month)\
  .show()
```

```
+-----+
|start_date| end_date|days_between|start_month|
+-----+
|2015-01-01|2015-01-15| 14| 1|
|2015-02-21|2015-03-08| 15| 2|
+-----+
```

CONDITIONAL TRANSFORMATIONS

- In the functions package there is a special function called when
- This function is used to create a new column which value depends on the value of other columns
- otherwise is used to match "the remainder"
- Combination between conditions can be done using "&" for "and" and "|" for "or"

USER DEFINED FUNCTIONS

- When you need a transformation that is not available in the functions package, you can create an User Defined Function (UDF)
- Beware, UDFs' can be very slow.
- So, it should be used only when you are sure the operation cannot be done with by combining existing functions
- To create an UDF, you use functions.udf, passing a lambda or a named functions
- It is similar to the map operation of RDDs

```
from pyspark.sql import functions as fn
from pyspark.sql.types import StringType
df = spark.createDataFrame([(1, 3), (4, 2)], ["first", "second")]
def my func(col 1, col 2):
    if (col 1 > col 2):
       return "{} is bigger than {}".format(col 1, col 2)
    else:
       return "{} is bigger than {}".format(col 2, col 1)
my udf = fn.udf(my func, StringType())
df.withColumn("udf", my udf(df['first'], df['second'])).show()
                         udf
|first|second|
    1 3 3 is bigger than 1
     4 2 4 is bigger than 2
```

PANDASUDFS

- Spark 3 introduced a faster, vectorized variant
- It leverages some of Pandas functions (API docs)

```
import pandas as pd
from pyspark.sql.functions import pandas_udf

@pandas_udf('long')
def pandas_plus_one(s: pd.Series) -> pd.Series:
    return s + 2

spark.range(3).select(pandas_plus_one("id")).collect()
```

```
[Row(id=2), Row(id=3), Row(id=4)]
```

PERFORMING JOINS

- Spark SQL supports joins between 2 DataFrames
- As in normal SQL, a join rule must be defined
 - The rule can either be a set of join keys, or a conditional rule
 - Join with conditional rules in Spark can be very heavy
- Many types of joins are available:

```
from datetime import date
products = spark.createDataFrame([
    ('1', 'mouse', 'microsoft', 39.99),
    ('2', 'keyboard', 'logitech', 59.99),
], ['prod id', 'prod cat', 'prod brand', 'prod value'])
purchases = spark.createDataFrame([
    (date(2017, 11, 1), 2, '1'),
    (date(2017, 11, 2), 1, '1'),
    (date(2017, 11, 5), 1, '2'),
], ['date', 'quantity', 'prod id'])
# The default join type is the "INNER" join
purchases.join(products, 'prod id').show()
```

```
+-----+
|prod_id| date|quantity|prod_cat|prod_brand|prod_value|
+-----+
| 1|2017-11-01| 2| mouse| microsoft| 39.99|
| 1|2017-11-02| 1| mouse| microsoft| 39.99|
| 2|2017-11-05| 1|keyboard| logitech| 59.99|
+-----+
```

+	t	ht	H	+	tt	
date	quantity	prod_id	$ \mathtt{prod_id} $	prod_cat	prod_brand	prod_
+	t	H 	t	+	tt	
2017-11-01	2	1	1	mouse	microsoft	
2017-11-02	1	1	1	mouse	microsoft	
2017-11-05	1	2	2	keyboard	logitech	
+					t	·

```
new_purchases = spark.createDataFrame([
        (date(2017, 11, 1), 2, '1'),
        (date(2017, 11, 2), 1, '3'),
], ['date', 'quantity', 'prod_id_x'])

# The default join type is the "INNER" join
join_rule = new_purchases.prod_id_x == products.prod_id
new_purchases.join(products, join_rule, 'left').show()
```

JOIN TYPES

SQL Join Type	In Spark
CROSS	cross
INNER	inner
FULL OUTER	outer, full, fullouter+
LEFT ANTI	leftanti
LEFT OUTER	leftouter, left
LEFT SEMI	leftsemi
RIGHT OUTER	rightouter, right

JOIN TYPES

INNER JOIN

LEFT OUTER JOIN

RIGHT OUTER JOIN

FULL OUTER JOIN

CARTESIAN (CROSS) JOIN

PERFORMING AGGREGATIONS

- Maybe the most used operations in SQL and Spark SQL
- Similar to SQL, we use "group by" to perform aggregations
- For simple aggregations, we can call the function just after groupBy
- Usually, we use groupBy().agg()
- There are many aggregation functions in pyspark.sql.functions
- Some examples:
 - Numeric: fn.avg, fn.sum, fn.min, fn.max, etc.
 - General: fn.first, fn.last, fn.count, fn.countDistinct, etc.

```
products = spark.createDataFrame([
    ('1', 'mouse', 'microsoft', 39.99),
    ('2', 'mouse', 'microsoft', 59.99),
    ('3', 'keyboard', 'microsoft', 59.99),
    ('4', 'keyboard', 'logitech', 59.99),
    ('5', 'mouse', 'logitech', 29.99),
], ['prod_id', 'prod_cat', 'prod_brand', 'prod_value'])

products.groupBy('prod_cat').avg('prod_value').show()
#or
from pyspark.sql import functions as fn
products.groupBy('prod_cat').agg(fn.avg('prod_value')).show()
```

```
from pyspark.sql import functions as fn
products.groupBy('prod_brand').agg(
        fn.round(fn.avg('prod_value'), 1).alias('average'),
        fn.ceil(fn.sum('prod_value')).alias('sum'),
        fn.min('prod_value').alias('min')
).show()
```

```
+-----+
|prod_brand|average|sum| min|
+-----+
| logitech| 40.0| 80|29.99|
| microsoft| 53.3|160|39.99|
+-----+
```

```
+-----+
|prod_brand|average| min|
+-----+
| logitech| 40.0|29.99|
| microsoft| 53.3|39.99|
+-----+
```

WINDOW FUNCTIONS

- A very, very powerful feature
- They allow to solve very complex problems
- They exist in some relational databases
- There's a very good article about this feature here

WINDOW FUNCTIONS

- It's similar to aggregations, but the number of rows doesn't change
- Instead, new columns are created, and the aggregated values are duplicated for values of the same "group"
- There are "traditional" aggregations, such as min, max, avg, sum
- and "special" types, such as "lag", "lead", "rank"
- Examples are worth more than 1000 words:)

NUMERIC WINDOW FUNCTIONS

```
from pyspark.sql import Window
from pyspark.sql import functions as fn

# First, we create the Window definition
window = Window.partitionBy('prod_brand')
# Then, we can use "over" to aggregate on this window
avg = fn.avg('prod_value').over(window)
# Finally, we can use this as usualusual
products.withColumn('avg_brand_value', fn.round(avg, 2)).show(
```

```
+----+
| prod_id | prod_cat | prod_brand | prod_value | avg_brand_value |
+----+
| 4 | keyboard | logitech | 49.99 | 39.99 |
| 5 | mouse | logitech | 29.99 | 39.99 |
| 1 | mouse | microsoft | 39.99 | 53.32 |
| 2 | mouse | microsoft | 59.99 | 53.32 |
| 3 | keyboard | microsoft | 59.99 | 53.32 |
+----+
```

NUMERIC WINDOW FUNCTIONS

```
from pyspark.sql import Window
from pyspark.sql import functions as fn

# The window can be defined on multiple columns
window = Window.partitionBy('prod_brand', 'prod_cat')

avg = fn.avg('prod_value').over(window)
products.withColumn('avg_value', fn.round(avg, 2)).show()
```

```
+----+
|prod_id|prod_cat|prod_brand|prod_value|avg_value|
+----+
| 1| mouse|microsoft| 39.99| 49.99|
| 2| mouse|microsoft| 59.99| 49.99|
| 4|keyboard| logitech| 49.99| 49.99|
| 3|keyboard|microsoft| 59.99| 59.99|
| 5| mouse| logitech| 29.99| 29.99|
```

NUMERIC WINDOW FUNCTIONS

```
from pyspark.sql import Window
from pyspark.sql import functions as fn

# Multiple windows can be defined
window1 = Window.partitionBy('prod_brand')
window2 = Window.partitionBy('prod_cat')

avg_brand = fn.avg('prod_value').over(window1)
avg_cat = fn.avg('prod_value').over(window2)

products.withColumn('avg_by_brand', fn.round(avg_brand, 2))\
    .withColumn('avg_by_cat', fn.round(avg_cat, 2))\
    .show()
```

```
prod id|prod cat|prod brand|prod value|avg by brand|avg by cat|
      4 | keyboard | logitech |
                                49.99
                                             39.99
                                                       54.99
     3 keyboard
                 microsoft |
                               59.99
                                            53.32
                                                       54.99
          mouse
                 logitech
                            29.99
                                            39.99
                                                       43.32
                                39.99
                 microsoft|
                                             53.32
                                                       43.32
          mouse
                 microsoft
                                59.99
                                             53.32
                                                        43.32
          mouse
```

LAG AND LEAD

- lag and lead are special functions used over an ordered window
- They are used to take the "previous" and "next" value within the window
- Very useful in datasets with a date column

LAG AND LEAD

```
purchases = spark.createDataFrame([
        (date(2017, 11, 1), 'mouse'),
        (date(2017, 11, 2), 'mouse'),
        (date(2017, 11, 4), 'keyboard'),
        (date(2017, 11, 6), 'keyboard'),
        (date(2017, 11, 9), 'keyboard'),
        (date(2017, 11, 12), 'mouse'),
        (date(2017, 11, 18), 'keyboard')
], ['date', 'prod_cat'])
purchases.show()
```

```
+-----+
| date|prod_cat|
+-----+
|2017-11-01| mouse|
|2017-11-02| mouse|
|2017-11-04|keyboard|
|2017-11-06|keyboard|
|2017-11-09|keyboard|
|2017-11-12| mouse|
|2017-11-18|keyboard|
+-----+
```

LAG AND LEAD

```
window = Window.partitionBy('prod_cat').orderBy('date')
prev_purch = fn.lag('date', 1).over(window)
next_purch = fn.lead('date', 1).over(window)

purchases.withColumn('prev', prev_purch)\
    .withColumn('next', next_purch)\
    .orderBy('prod_cat', 'date')\
    .show()
```

```
+----+
|prod_cat| date| prev| next|
+-----+
|keyboard|2017-11-04| null|2017-11-06|
|keyboard|2017-11-06|2017-11-04|2017-11-09|
|keyboard|2017-11-09|2017-11-06|2017-11-18|
|keyboard|2017-11-18|2017-11-09| null|
| mouse|2017-11-01| null|2017-11-02|
| mouse|2017-11-02|2017-11-01|2017-11-12|
| mouse|2017-11-12|2017-11-02| null|
+-----+
```

RANK, DENSERANK AND ROWNUMBER

- Another set of useful "special" functions
- Also used on ordered windows
- They create a rank, or an order of the items within the window

RANK AND ROWNUMBER

```
category name points
veterans | John | 3000 |
         Bob | 3200
veterans
               4000
veterans
         Mary
                4000
          Jane
  young
  young
         April 3100
         Alice
                3700
  young
  young Micheal
                 4000
```

RANK AND ROWNUMBER

```
window = Window.partitionBy('category').orderBy(contestants.points.desc()
rank = fn.rank().over(window)
dense_rank = fn.dense_rank().over(window)
row_number = fn.row_number().over(window)

contestants\
    .withColumn('rank', rank)\
    .withColumn('dense_rank', dense_rank)\
    .withColumn('row_number', row_number)\
    .orderBy('category', fn.col('points').desc())\
    .show()
```

+	+	+	+		+	
category	name	points	rank de	nse_rank row_	number	
+	+		+	+	+	
veterans	Mary	4000	1	1	1	
veterans	Bob	3200	2	2	2	
veterans	John	3000	3	3	3	
young	Jane	4000	1	1	1	
young	Micheal	4000	1	1	2	
young	Alice	3700	3	2	3	
young	April	3100	4	3	4	
+	++		++		+	

WRITING DATAFRAMES

- Very similar to Reading
- Output targets are the same (csv, json, parquet, jdbc, etc.)
- Instead of df.read.{source}, just use df.write.{target}

WRITING DATAFRAMES

- Main option: mode
- Possible values:
 - "append": Append contents of this DataFrame to existing data.
 - "overwrite": Overwrite existing data.
 - "error": Throw an exception if data already exists.
 - "ignore": Silently ignore this operation if data already exists.

```
products.write.csv('/products.csv')
products.write.mode('overwrite').parquet('/file.parquet')
products.write.format('parquet').save('/file.parquet')
```

QUERY PLANNING AND OPTIMIZATION

A good post if you want more details on this.

(:!DNE EHT ANY QUESTIONS?