Big data science Day 3

F. Legger - INFN Torino https://github.com/leggerf/MLCourse-2022

We learned

- Big data
- Analytics
- Machine learning

Today

- Deep learning
- Parallelisation
- Heterogeneous architectures
- Future directions

Deep Learning is a subfield of ML concerned with algorithms inspired by the structure and function of the brain called artificial neural networks [Jason Brownlee]

Machine translation

Real-time translation into Mandarin Chinese (2012)

)

Creativity

Short recap: Neuron

$$x_1 o x_1 * w_1$$

$$x_2 \to x_2 * w_2$$

 all the weighted inputs are added together with a bias b

$$(x_1*w_1)+(x_2*w_2)+b$$

• the sum is passed through an activation function f

$$y = f(x_1 * w_1 + x_2 * w_2 + b)$$

Neural network

- Combining more neurons
- A hidden layer is any layer between the input (first) layer and output (last) layer
 - There can be multiple hidden layers
- Feedforward: process of passing inputs forward to get an output

Input Layer

Hidden Layer

Output Layer

This network has:

- one **input** layer with 2 inputs
- one hidden layer with 2 neurons
- one output layer with 1 neuron

Deep Learning

- Neural network with several layers
 - Deep vs shallow
- A family of parametric models which learn non-linear hierarchical representations:

Brief history of neural networks

1943 - McCulloch & Pitts Model

- Early model of artificial neuron
- Generates a binary output
- The weights values are fixed

Dendrites

Nucleus

Axon

Synapses

1958 - Perceptron by Rosemblatt

- Perceptron as a machine for linear classification
- Main idea: Learn the weights and consider bias.
 - · One weight per input
 - · Multiply weights with respective inputs and add bias
 - · If result larger than threshold return 1, otherwise O

First NN winter

 1970- Minsky. The XOR cannot be solved by perceptrons.

 Neural models cannot be applied to complex tasks.

Multi-layer Feed Forward Neural Network

 1980s. Multi-layer Perceptrons (MLP) can solve XOR.

ML Feed Forward Neural Networks:

- Densely connect artificial neurons to realize compositions of non-linear functions
- The information is propagated from the inputs to the outputs
- The input data are usually n-dimensional feature vectors
- Tasks: Classification, Regression

How to train it?

- Rosenblatt algorithm* not applicable, as it expects to know the desired target
 - For hidden layers we cannot know the desired target
- Learning MLP for complicated functions can be solved with Back propagation (1980)
 - efficient algorithm for complex NN which processes large training sets

^{*} Remember? Rosenblatt developed a method to train a single neuron

1990s - CNN and LSTM

- Important advances in the field:
 - Backpropagation
 - Recurrent Long-Short Term Memory Networks (Schmidhuber, 1997)
 - Convolutional Neural Networks LeNet: OCR solved before 2000s (LeCun, 1998).

Convolutional Neural Networks (CNN)

- Convolutional layer: two functions produce a third that describes how the shape of one is changed by the other
- pooling layer: reduce dimensionality

4	1	5	0	
7	8	9	8	Max pooling
3	5	6	5	· · · · · · · · · · · · · · · · · · ·
2	4	1	0	

Second NN Winter

- NN cannot exploit many layers
 - Overfitting
 - Vanishing gradient (with NN training you need to multiply several small numbers → they become smaller and smaller)
- Lack of processing power (no GPUs)
- Lack of data (no large annotated datasets)
- Kernel Machines (e.g. SVMs) suddenly become very popular^o

ImageNet

A Large-Scale Hierarchical Image Database (2009)

2012 - AlexNet

- Hinton's group implemented a CNN similar to LeNet [LeCun1998] but...
 - Trained on ImageNet (1.4M images, 1K categories)
 - With 2 GPUs
 - Other technical improvements (ReLU, dropout, data augmentation)

AlexNet

- 60M parameters
- Limited information exchange between GPUs

Why Deep Learning now?

- Three main factors:
 - Better hardware
 - Big data
 - Technical advances:
 - · Layer-wise pretraining
 - Optimization (e.g. Adam, batch normalization)
 - Regularization (e.g. dropout)

...

Rectified Linear Units - Activation function (2010)

$$f(x) = \max(0, x)$$

 More efficient gradient propagation: (derivative is O or constant)

- More efficient computation: (only comparison, addition and multiplication).
- Sparse activation: e.g. in a randomly initialized networks, only about 50% of hidden units are activated (having a non-zero output)

Regularization - Dropout

- For each instance drop a node (hidden or input) and its connections with probability p and train
- Final net just has all averaged weights (actually scaled by 1-p)
- As if ensembling 2ⁿ different network substructures

Data augmentation

- Techniques to significantly increase the diversity of data available for training models, without actually collecting new data
- Data augmentation techniques such as cropping, padding, and horizontal flipping are commonly used to train large neural networks

Horizontal Flip

Rotate

Training a neural network

Name	Weight (lb)	Height (in)	Gender
Alice	133	65	F
Bob	160	72	М
Charlie	152	70	М
Diana	120	60	F

Predict gender from weight and height

Feature engineering

- Symmetrize numeric values
- Category -> numbers

Name	Weight (lb)	Height (in)	Gender
Alice	133	65	F
Bob	160	72	М
Charlie	152	70	М
Diana	120	60	F

Name	Weight (minus 135)	Height (minus 66)	Gender
Alice	-2	-1	1
Bob	25	6	0
Charlie	17	4	0
Diana	-15	-6	1

Ingredients

- n: 4, number of samples (Alice, Bob, Charlie, Diana)
- y : variable being predicted (Gender)
- \mathbf{y}_{true} : true value of y, \mathbf{y}_{pred} : predicted value of y = \mathbf{o}

Input Layer

- Loss function L: MSE
- Activation function **f**
- Outputs of the hidden layer h
- Unknown parameters: weights w and biases b

Hidden Layer

Output Layer

Back propagation

- Training the network == trying to minimize its loss
 - Find weights w and biases b
 - $\circ L(w_1, w_2, w_3, w_4, w_5, w_6, b_1, b_2, b_3)$
- Minimization taking partial derivatives (back propagation)

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y_{pred}} * \frac{\partial y_{pred}}{\partial h_1} * \frac{\partial h_1}{\partial w_1}$$
 For very simple case: with only Alice in the dataset, n=1
$$L = (1 - y_{pred})^2$$

$$y_{pred} = o_1 = f(w_5 h_1 + w_6 h_2 + b_3)$$

$$h_1 = f(w_1 x_1 + w_2 x_2 + b_1)$$

$$\frac{\partial L}{\partial y_{pred}} = \frac{\partial (1 - y_{pred})^2}{\partial y_{pred}}$$

$$\frac{\partial y_{pred}}{\partial h_1} = w_5 * f'(w_5 h_1 + w_6 h_2 + b_3)$$

$$\frac{\partial h_1}{\partial w_1} = x_1 * f'(w_1 x_1 + w_2 x_2 + b_1)$$

Gradient Descent

- optimization algorithm to find weights and biases to minimize loss
- update equation:

$$w_1 \leftarrow w_1 - \eta \frac{\partial L}{\partial w_1}$$

- η (learning rate) is a constant that controls how fast we train
- If $\frac{\partial L}{\partial w_1}$ is positive, w_1 will decrease, which makes L decrease.
- If $\frac{\partial L}{\partial w_1}$ is negative, w_1 will increase, which makes L decrease.

Stochastic gradient descent (SDG)

- **Stochastic** -> the parameters are updated using only a single training instance (usually randomly selected) in each iteration
 - Use mini-batch sampled in the dataset for gradient estimate.

$$\mathbf{\Theta}^{t+1} = \mathbf{\Theta}^t - rac{\eta_t}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}
abla_{\Theta} \mathcal{L}_i$$

- Sometimes helps to escape from local minima
- · Noisy gradients act as regularization
- Variance of gradients increases when batch size decreases
- Not clear how many sample per batch

Training the network

- Choose one sample from our dataset
 - This is what makes it stochastic gradient descent - only operate on one sample at a time
- Calculate all the partial derivatives of loss with respect to weights or biases
- Use the update equation to update each weight and bias

Loss functions

- https://heartbeat.fritz.ai/5-regression-los s-functions-all-machine-learners-should -know-4fb140e9d4b0
- https://www.wikiwand.com/en/Loss_func tions_for_classification

Regularization

- One of the major aspects of training the model is overfitting -> the ML model captures the noise in your training dataset
- The **regularization** term is an addition to the loss function which helps generalize the model
 - **L1** or Lasso regularization adds a penalty which is the sum of the absolute values of the weights $Min(\sum_{i=1}^{n}(y_i-w_ix_i)^2+p\sum_{i=1}^{n}|w_i|)$
 - o L2 or Ridge regularization adds a penalty which is the sum of the squared values of weights
 - $Min(\sum_{i=1}^{n} (y_i w_i x_i)^2 + p \sum_{i=1}^{n} (w_i)^2)$ L2+MSE
- **Dropout** in NN context: hidden nodes are dropped randomly
- Early Stopping is a time regularization technique which stops training based on given criteria

Activation functions

- Classification: sigmoid functions
 - sigmoids and tanh functions are sometimes avoided due to the vanishing gradient problem
- ReLU function is a general activation function
- dead neurons in our networks -> the leaky ReLU
- ReLU function should only be used in the hidden layers
- As a rule of thumb, start with ReLU

Sigmoid

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

