The region of experimentation for three factors are time ($40 \le T_1 \le 80$ min), temperature ($200 \le T_2 \le 300$ °C), and pressure ($20 \le P \le 50$ psi). A first-order model in coded variables has been fit to yield data from a 2^3 design. The model is

$$\hat{y} = 30 + 5x_1 + 2.5x_2 + 3.5x_3$$

Is the point $T_1 = 85$, $T_2 = 325$, P = 60 on the path of steepest ascent?

$$3x_1 = \frac{5}{20} = 0.25$$

$$\therefore \quad \Delta x_{l} = \frac{\beta_{l}}{2\lambda}$$

$$0.25 = \frac{3}{2}$$

$$\therefore \quad \sqrt[4]{x_3} = \frac{\sqrt[4]{3}}{2\sqrt{3}} = \frac{3.5}{20} = 0.175$$

	Coded	Joe i	obles	Note	oal Voeio	.bleg
	۵ (α_{z}	χ_3	Ti	石	P
Oxigin	0	\bigcirc	٥	60	250	35
\triangle	0-25	0.152	0.175	5	6.25	2.625
0 +D	0-25	0.125	0-175	65	526.52	37.625
0+51	1.25	0.625	0-875	85	281.55	48.125
0+101	2.5	1.25	1.75	(lo	312.5	61.52
The	point	T1 = 85	T ₂ = 325	& P= 60	\sim	
201	or or	the	poth of	steepest	oscent	

2. An engineer is interested in the effects of cutting speed (A), tool geometry (B), and cutting angle (C) on the life (in hours) of a machine tool. Two levels of each factor are chosen, and three replicates of a 2³ factorial design are run. The results are as follows: [3+7+3 marks]

•	D	0	Treatment		Replicate		
A	В	C	Combination	I	II	III	
-	-		(1)	22	31	25	78
+	-	·	a	32	43	29	104
-	+	-	b	35	34	50	119
+	+	42	ab	55	47	46	148
-	(=)	+	c	44	45	38	127
+	(=)	+	ab	40	37	36	113
-	+	+	bc	60	50	54	164
+	+	+	abc	39	41	47	12.7

- a. Estimate the factor effects. Which effects appear to be large?
- b. Use the analysis of variance to confirm your conclusions for part (a).
- c. Write down a regression model for predicting tool life (in hours) based on the results of this experiment.

ANOVA table: (Note: Calculate sum of squares only for significant terms from part a)

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	\mathbf{F}_0
A/B/C Treatment		* * * * * * * * * * * * * * * * * * * *		
A/B/C Treatment				
Interaction terms				
Error				
Total				

n=3 (3=) 3 Replicates)

$$A = \frac{1}{40} \left[a - ci + ab - b + ac - c + abc - bc \right]$$

$$=$$
 $\frac{1}{12} \times 4$

$$= 1 \left[119 + 148 + 164 + 127 - 78 - 104 - 127 - 113 \right]$$

$$= \frac{1}{12} \left[136 \right]$$

$$C = \frac{1}{4n} \left[\text{C} + \text{ac} + \text{bc} + \text{abc} - (1) - a - b - ab} \right]$$

$$= \frac{1}{4n} \left[\frac{127 + 113 + 164 + 127 - 78 - (04 - 119 - 148)}{148} \right]$$

$$AB = \frac{1}{40} \left[ab - a - b + (1) + abc - bc - ac + c \right]$$

$$= \frac{1}{4x3} \left[\frac{148 - 104 - 119 + 18}{4x3} + \frac{127 - 164 - 113}{4x3} + \frac{127}{12} \right]$$

$$= \frac{1}{12} \times \left[\frac{-20}{12} \right]$$

$$= -1.667$$

$$= \frac{15}{1} \times \left[-109\right]$$

$$BC = I \left[(1) + a - b - ab - c - ac + bc + abc \right]$$

$$=1$$
 [78+104-119-148-127-113+4x3 164+127]

ABC =
$$\frac{1}{40}$$
 $\left[abc - bc - ac + c - ab + b + a - (1) \right]$
= $\frac{1}{4x3}$ $\left[\frac{127 - 164 - 113 + 127 - 148 + 119 + 104 - 78}{4x3} \right]$
= $\frac{1}{12}$ $\left[\frac{1}{2} - \frac{26}{12} \right]$

Calculating Sum of Squares

$$SST = \underbrace{\sum_{i=1}^{n} \sum_{5=1}^{n} \sum_{k=1}^{n} y_{i52}^{2} - \frac{y_{i52}^{2}}{8n}}$$

$$= \underbrace{\sum_{i=1}^{n} \sum_{5=1}^{n} \sum_{k=1}^{n} y_{i52}^{2} + 25^{2} + 32^{2} + 29^{2} + 35^{2} + 34^{2} + 50^{2} + - \frac{980^{2}}{8 \times 3}}$$

$$55^{2} + 47^{2} + 46^{2} + 46^{2} + 46^{2} + 46^{2} + 45^{2} + 38^{2} + 46^{2} + 37^{2} + 36^{2} + 47^{2} + 46^{2} + 47^{2} + 36^{2} + 47^{2}$$

For eg: estimate contrast = 4

Of forder A

of foctore B = 136

of fector (= 82

Source	Sum of Squares	Degree of Freedom	Mean Squee	Fo
A	0.667	l	0.67	6.022
B	770-667	1	770.67	25.55
C	280-167	ſ	280 · 167	9.31
AB	(6.667	1	16-667	0.225
AC	468.167	1	468:167	15.52
BC	48.167		48.167	1.59
ABC	28 · 167	(28.167	0.93

Esece 482.661 16 30.16 Total 2095.33 23

Based on ANOVA table,
fortoe B, C & AC one significant.

PS: Based on the question in the exem, if you have calculated Amoun table for main effects only, you have been gooded full moets.

9= 40-833 + 0-1667 2a + 5-67 2B + 3-4167 2B - 4-4164 XAZC

Even it you have skipped Ac term based on poet b, you have been gooded full mocks.

3. Answer the following questions:

a. An article uses a 2⁵⁻² design to investigate the effect of A= condensation temperature, B=amount of material 1, C=solvent volume, D=condensation time, and E=amount of material 2 on yield. The results obtained are as follows:

> e = 23.2ad = 16.9

cd = 23.8bde = 16.8

ab = 15.5bc = 16.2 ace = 23.4abcde = 18.1

- i. Verify that the design generators used were I = ACE and I=BDE.

ii. Estimate the main effects. See next poss

[2+3 marks]

b. Consider the following design:

Run	A	В	C	D	E	У
1	-1	-1	-1	1	-1	50
2	1	-1	-1	-1	-1	20
3	-1	1	-1	-1	1	40
4	1	1	-1	1	1	25
5	-1	-1	1	-1	1	45
6	1	-1	1	1	1	30
7	-1	1	1	1	-1	40
8	1	1	1	-1	-1	30

i. What is the generator for column D? D=-AB∠

ii. What is the generator for column E? E = -B∠

Even though E=A.D is weary, you have been gooded full morets

c. Consider the following design:

[1+1+1 marks]

Consider the jollov	[1+1+1 ma	
Run	Treatment columns	y
1	(1)	50
2	ad	20
3	bd	40
4	ab	25
5	cd	45
6	ac	30
7	bc	40
8	abcd	30

- i. How many factors did this experiment investigate? 4
- ii. What is the resolution of this design?
- iii. What is the complete defining relation for this design? I = ABCD

Run		Basic	Design	E=AC	D=BE	Teatment combination	<i>∀</i> 8€
	A	В	C				
l		-	~	+	-	e	<i>2</i> 3·2
2	+	-	· ·	_	t	ad	16.9
3	-	+	_	+	+	bde	16.8
4	+	+	~	-	_	ab	15.5
5	-	^	+	_	+	d	23.8
6	t	-	+	+	_	q ce	23.4
7	~	†	+	_	_	Ьс	16.2
8	+	+	+	+	+	abade	18-1

	b) cotimate the main effects
	A = 4 [(ad + ob + acc + aloade) - (e+ bde -cd -bc)]
	= 1 \(\sum_{\text{\left}} \left(\left(\left\ + 15.\Gamma + 13.\dagger + 18.\dagger \right) - \(\left(23.2 + 16.8 + 23.8 + 16.2 \right) \right]
	= -1.525
	B = [(bde + ab + bc +abade) - (e + ad + ace)]
	= [((6.8 + 12.2 + 16.5 + 18.4) - (53.5 H) 6.4 + 53.8 + 53.4)]
	≥ -5·as
	c = [(od tace + bc + abcde) - (e+ od + bde+ob)]
	= ([(23.8 + 23.4 + 16.5 + 18.1) - (23.2 + 16.9 + 16.8 + 15.5)]
	£ 2:175
	D = 1 [Loudt bdetcdt abcde) - (e+ab+ace+bc)]
	= [(16.4 + 18.8 + 53.8 + 18.1) - (53.5 + 12.2 + 12.2 + 18.5)
	= ~ 0.670
-	
	E = 1 [(c+bde+ace+abcde) - (ad +ab+cd+bc)]
	= [(23.2 + 16.8 + 23.4 + 18.1) - (16.9 + 15.5 + 23.8 + 16.2)]
	= 2.275

Q3b

- 3. An article describes an experiment to investigate the effect of the type of glass and the type of phosphor on the brightness of a television tube. The response variable is the current necessary (in microamps) to obtain a specified brightness level. The data are as follows:
 - a. Is there any indication that either factor influences brightness? Use α= 0.05. (<u>Hint:</u> complete the ANOVA table)
 - b. Do the two factors interact? Use $\alpha = 0.05$.

[8+2 marks]

a:2 b=3 n=3

Class Tyme	Pho	osphor Type	
Glass Type	1	2	3
is in	280	300	290
1	290 (857)	310 (905)	285 (265
	285	295	290
12	230	260	220
2	235	240 (735)	225 (675
	240	235	230
bla:	1560	1640	1500

2625

2 115

ANOVA table: 15 60 16 40 1540

Source of Variation Sum of Squares Preedom Mean Square Fo

A Treatment
B Treatment

y...= 4740

Interaction Error Total

$$= \frac{1}{3\times3} \left[2625^{2} + 2115^{2} \right] - \frac{4740^{2}}{2\times3\times3}$$

SS phosphoe =
$$\frac{1}{an} \frac{\hat{\xi}}{\xi} y.\tau^2 - \frac{y...^2}{abn}$$

SSINTEROCHION =
$$\frac{1}{n} \frac{g}{(z_1 + z_2)} = \frac{g}{g} - \frac{g}{g} - \frac{g}{g} - \frac{g}{g} = \frac{g}{g}$$

$$= \frac{1}{3} \left[855^{2} + 905^{2} + 865^{2} + - 4740^{2} - 14450 - 24343 - 14450 - 24343 - 14450 - 14500 - 1450$$

$$= \begin{bmatrix} 280^{2} + 300^{2} + 270^{2} + \\ 290^{2} + 310^{2} + 285^{2} + \\ 285^{2} + 295^{2} + 290^{2} + \\ 230^{2} + 260^{2} + 220^{2} + \\ 235^{2} + 240^{2} + 225^{2} + \\ 240^{2} + 235^{2} + 230^{2} \end{bmatrix}$$

$$= \left[252500 + 261425 + 252350\right] - 1248200$$

$$\left[168900 + 163450 + 165725\right]$$

= 16120

Sove Ce	Sum of Squares	DOF	Mean Square	F
Glass	14450	((0 - 1)	14450	273.77
Phospholus	933.33	2	466.65	8.84
Interaction	(33.33	2 (0-1) (6-1)	66-66	1.26
Egicl	633.34	ab(n-1)	\$2.78	
Total	16150	12 959 -1 17		

$$F_{1,12} = 3.18$$

 $F_{2,12} = 2.81$

- -) Both fectors influence beigthness
- -> Interaction term is insignificant