ADVANCED CALCULUS 1 ASSIGNMENT # 1: 2019 SPRING

- §1.2. # 2. Show that $\frac{3^n}{n!}$ converges to 0.
- §1.2. # 3. Let $x_n = \sqrt{n^2 + 1} n$. Compute $\lim_{n \to \infty} x_n$.
- §1.3. # 4. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be bounded below and define $A + B = \{x + y \mid x \in A \text{ and } y \in B\}$. Is it true that $\inf(A+B) = \inf A + \inf B$?

(Exercises for Chapter 1)

- # 4. Show that $d = \inf(S)$ iff d is a lower bound for S and for any $\varepsilon > 0$ there is an $x \in S$ such that $d \ge x - \varepsilon$.
- # 10. Verify that the bounded metric in Example 1.7.2d is indeed a metric.
- # 12. In an inner product space show that
- (a) $2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x y||^2$ (parallelogram law)
- (b) $||x+y|| ||x-y|| \le ||x||^2 + ||y||^2$ (c) $4\langle x, y \rangle = ||x+y||^2 ||x-y||^2$ (polarization identity).

Interpret these results geometrically in terms of the parallelogram formed by x and y.

- # 15. Let x_n be a sequence in \mathbb{R} such that $d(x_n, x_{n+1}) \leq d(x_{n-1}, x_n)/2$. Show that x_n is a Cauchy sequence.
- # 17. Let $S \in \mathbb{R}$ be bounded below and nonempty. Show that $\inf(S) = \sup\{x \in \mathbb{R} \mid x \text{ is a lower bound for } S\}$.

22.

(a) If x_n and y_n are bounded sequences in \mathbb{R} , prove that

$$\lim \sup (x_n + y_n) \le \lim \sup x_n + \lim \sup y_n$$

(b) Is the product rule true for lim sups?

32.

- (a) Give a reasonable definition for what $\lim_{n\to\infty} x_n = \infty$ should mean.
- (b) Let $x_1 = 1$ and define inductively $x_{n+1} = (x_1 + \cdots + x_n)/2$. Prove that $x_n \to \infty$.