

Prototype de système de recommandation de films

PAUL DESCHLIDRE, VANICK DJOFANG DJAMEN,

MOHAMED EL AMINE MEGUANANI, EMMA OLLIVIER

KENIA PINEDA MESA, BAPTISTE VIERA

Sommaire

- Introduction
- Présentation des données et du modèle de données
- Exploitation des données et tableau de bord
- Entrepôt de données
- Interface utilisateur et recommandations
- Architecture du prototype
- Perpectives
- Sources et références
- Démonstration

Les systèmes de recommendations

 Largement répandus dans ce domaine et indispensables pour répondre aux besoins d'affaire

Font face à de nombreux défis (performance, éthique)
 (Schedl et al.) (Milano et al.)

Basés fréquemment sur l'intelligence artificielle (Roy et Dutta)

Nécessite une grande quantité de données (Roh *et al.*)

Les sources des données

MovieLens

The Movie Database

Blockbuster Database

Rounak Banik, The movie Dataset, Kaggle www.kaggle.com/datasets/rounakbanik/the-movies-dataset

CrowsFlower, Blockbuster Database, Data world, https://data.world/crowdflower/blockbuster-database

Les informations fournis sur les données

Informations générales sur les films

(titre, poster, date de sortie, pays, genres)

Acteurs et équipe de tournage

Mots clefs associés

Notes

Popularité

Le modèle de données

Exploitation de données

Analyse et nettoyage de données

Analyse et détection des anomalies

"duplicated()"

"unique()"

"groupby()"

"count()"

"sort_values()"

Nettoyage des données

drop_duplicates() drop_duplicates(subset=['Title', 'Pays'], keep='last')

"isnull()"

drop_duplicates(subset=['Id'])

dropna(subset=['Id'])

"describe()"

astype('int64')

Transformation

Modèle

17,2K (40,74%)

__ 5,78K (13,68%)

• CA

● IT

• DE

IN

• RU

• ES

AUHK

• KR

• SE • FI • CN

Visualisation

BR 0,25K (0,59%) SE 0,36K (0,8...)

0,57K (1,3...) IN 0,... (...)

DE 1... (...)

1,3... (3...)

1,4K (3...)

1,42K (3,...)

2,51K (5,95%)

GB 2,8K (6,63%) -

Genre

Classement des 20 films les mieux notes

the shawshank ..

fight club

pulp fiction

the dark knight

Partage

Les logiciels utilisés

L'entrepôt de données

L'interface utilisateur

Système de recommandation

Environnement de programmation

L'entrepôt de données

L'interface utilisateur

Composé de 3 parties principales :

La page d'inscription

La page de recommandations

La page de recherche

La page d'inscription

Permet à l'utilisateur de :

• Rentrer ses informations qui lui permettront par la suite de s'authentifier et d'accéder à son profil

• Donner au système ses préférences afin qu'il puisse dès de début lui proposer des films pertinents

La page des recommandations

Recommandations personnalisées pour un utilisateur en fonction :

- Des notes données par d'autres utilisateurs (filtrage collaboratif)
- De ses genres préférés
- De la période de l'année
- Du succès rencontré par les films
- Du pays de résidence de l'utilisateur
- De la date de naissance de l'utilisateur

La page des recommandations

La page de recherche de films

Permet à l'utilisateur de :

- chercher des films à partir de leur titre
- les filtrer par rapport à leur réalisateur, leur date de sortie ou encore leur genre
- voir les notes estimées qu'il aurait pu mettre à ceux-ci grâce au modèle d'apprentissage machine

Architecture du système de recommendation

- <u>Etape 1</u>: Charger l'ensemble des données relatives aux films dans Snowflake
- <u>Etape 2</u>: Créer une image docker de l'entraînement et d'inférence personnalisée pour SageMaker
- <u>Etape 3</u>: Créer une application sans serveur pour connecter Snowflake et SageMaker en déploiement des fonctions AWS Lambda et API Gateway.
- <u>Etape 4</u>: Entraînement, déploiement mais aussi inférence du modèle à l'aide des fonctions externes de Snowflake

Création et déploiement du modèle sous format d'image Docker dans AWS

Training.py

```
data = Dataset.load from_df(df[['USERID', 'MOVIEID', 'RATING']], reader)
# SVD algorithm.
                               surpr[se
algo = SVD()
# 5-fold cross-validation
cross validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
trainset = data.build full trainset()
# Predict ratings that are not in the training set.
testset = trainset.build anti testset()
predictions = algo.test(testset)
top n = get top n(predictions, n=10)
# save the top 10 recommended ratings into Snowflake
save predictions to snowflake(top n, cur, output table name)
# save the model
dump.dump(os.path.join(model path, 'model.pkl'), algo=algo)
```


Fonction Lambda: Entrainement et recommandation


```
API Gateway
```

```
training_job_name = prefix
TRAINING_IMAGE_ECR_PATH = os.environ['training_image_ecr_path']
SAGEMAKER ROLE ARN = os.environ['sagemaker role arn']
response = client.create training job(
    TrainingJobName=training job name,
   HyperParameters=dict(input_table_name=_input_table_name, output_table_name=_output_table_name
    AlgorithmSpecification={
        'TrainingImage': TRAINING IMAGE ECR PATH,
        'TrainingInputMode': 'File'
   RoleArn=SAGEMAKER ROLE ARN,
   OutputDataConfig={
        'S3OutputPath': s3 output location
    ResourceConfig={
        'InstanceType': 'ml.m5.xlarge',
        'InstanceCount': 1,
        'VolumeSizeInGB': 10
    StoppingCondition={
        'MaxRuntimeInSeconds': 3600
```

Fonction Lambda: Déploiement


```
# start the SageMaker training job
client = boto3.client('sagemaker')
ECR_PATH = os.environ['training_image_ecr_path']
SAGEMAKER ROLE ARN = os.environ['sagemaker role_arn']
response = client.create model(
    ModelName=model name,
    PrimaryContainer={
        'Image': ECR PATH,
        'ModelDataUrl': model data url
    ExecutionRoleArn=SAGEMAKER ROLE ARN
print(response)
print("now trying to create endpoint config...")
response = client.create_endpoint_config(
    EndpointConfigName=model_name,
    ProductionVariants=[
            'VariantName': 'variant-1',
            'ModelName': model name.
            'InitialInstanceCount': 1,
            'InstanceType': 'ml.t2.medium'
print(response)
print("now trying to create the endpoint...")
response = client.create_endpoint(
    EndpointName=model name,
    EndpointConfigName=model name
```

Fonction Lambda: Appel du model


```
[ API Gateway
```

```
# invoke the SageMaker endpoint
client = boto3.client('sagemaker-runtime')
response = client.invoke_endpoint(
    EndpointName=model_name,
    Body=body.encode('utf-8'),
    ContentType='text/csv'
)
```

Fonctions Externes dans Snowflake

 Fonction « train_and_get_recommendations » pour l'entraînement et les prédictions

```
create or replace external function train_and_get_recommendations
(table_entree varchar, table_sortie varchar)
    returns variant
    api_integration = snf_recommender_api_integration
    as '<API_Gateway_entrainement_point_terminaison_url>';
```

- Fonction « deploy_model » pour le déploiement du modèle
- Fonction « invoke_model » pour l'appel du modèle

Utilisation du modèle par lot et en temps réel

```
Par lot:
```

```
Select train_and_get_recommendations(" donnees_entrainement ", "recommandation_predite");

Temps-réel:

Select deploy_model('movielens-model-v1', '<s3_artefact_du_model>');

Select nn.utilisateur_id, nn.film_id, m.titre, invoke_model('movielens-model-v1', nn.utilisateur_id, nn.film_id) as note_predite from non_note nn, film f where nn.film_id = f.id;
```

Difficultés rencontrées: Microsoft Azure

Architecture du système de recommandation initial basé sur les services de Microsoft Azure et non sur AWS et Snowflake

Difficultés rencontrées: Microsoft Azure

Migration de Spark 2.3 vers Spark ≥ 3.0

Problèmes financiers

Perspectives

- Possibilité des utilisateurs de noter des films et de mettre à jour la base de données
- Automatisation du pipeline d'apprentissage automatique pour le TOP 10 des recommandations
- Ajouter des algorithmes de filtrage par contenu ou des algorithmes hybrides basée sur du deep learning (apprentissage profond)
- Utilisation des données non supervisées
- Pouvoir choisir de ne pas avoir de recommandé certains types de film

Sources et références

- •Roy, D., Dutta, M. A systematic review and research perspective on recommender systems. J Big Data 9, 59 (2022). https://doi.org/10.1186/s40537-022-00592-5
- •Schedl, M., Zamani, H., Chen, CW. et al. Current challenges and visions in music recommender systems research. Int J Multimed Info Retr 7, 95–116 (2018). https://doi.org/10.1007/s13735-018-0154-2
- •Milano, S., Taddeo, M. & Floridi, L. Recommender systems and their ethical challenges. AI & Soc 35, 957–967 (2020). https://doi.org/10.1007/s00146-020-00950-y
- •Seaver, N., "Captivating algorithms: Recommender systems as traps." Journal of Material Culture, 24(4), 421–436, 2019, https://doi.org/10.1177/1359183518820366
- •Gomez-Uribe, C-A., Hunt, N., The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4, Article 13 (January 2016), https://doi.org/10.1145/2843948
- •Roh, Y., Heo, G., Euijong Whang S., A Survey on Data Collection for Machine Learning: a Big Data -- Al Integration Perspective, 2019,1811.03402, arXiv, https://doi.org/10.48550/arXiv.1811.03402
- •Rounak Banik, The movie Dataset, Kaggle, www.kaggle.com/datasets/rounakbanik/the-movies-dataset
- •CrowsFlower, Blockbuster Database, Data world, https://data.world/crowdflower/blockbuster-database
- Documentation de Streamlit, https://docs.streamlit.io/

DEMO