Отчет по лабораторной работе №5

Дисциплина: архитектура компьютера

Группа: НКАбд-04-23

Зоригоо Номун

Содержание

1	Цель работы	4			
2	Задание				
3	Теоретическое введение	6			
4	Выполнение лабораторной работы 4.1 Основы работы с mc	10 11			
5	Выводы				
6	Список литературы	20			

Список иллюстраций

4.1	Открытыи тс	8
4.2	Перемещение между директориями	9
4.3	Создание каталога	9
4.4	Перемещение между директориями	9
4.5	Создание файла	9
4.6	Открытие файла для редактирования	.10
4.7	Редактирование файла	.10
4.8	Открытие файла для просмотра	.11
4.9	Компиляция файла и передача на обработку компоновщику	.11
4.10	Исполнение файла	.11
4.11	Скачанный файл	.12
4.12	Копирование файла	.12
4.13	Копирование файла	.13
4.14	Редактирование файла	.13
4.15	Исполнение файла	.13
4.16	Отредактированный файл	.14
4.17	Исполнение файла	.14
4.18	Копирование файла	.15
4.19	Редактирование файла	.15
4.20	Исполнение файла	.16
4.21	Копирование файла	.17
4.22	Редактирование файла	.17
4.23	Исполнение файла	.18

1 Цель работы

Целью данной лабораторной работы является приобретение практических навыков работы в Midnight Commander, освоение инструкций языка ассемблера mov и int.

2 Задание

- 1. Основы работы с тс
- 2. Структура программы на языке ассемблера NASM
- 3. Подключение внешнего файла
- 4. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. mc является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной. Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss). Для объявления инициированных данных в секции .data используются директивы DB, DW, DD, DQ и DT, которые резервируют память и указывают, какие значения должны храниться в этой памяти: - DB (define byte) — определяет переменную размером в 1 байт; - DW (define word) — определяет переменную размеров в 2 байта (слово); - DD (define double word) — определяет переменную размером в 4 байта (двойное слово); - DQ (define quad word) — определяет переменную размером в 8 байт (учетве- рённое слово); - DT (define ten bytes) — определяет переменную размером в 10 байт. Директивы используются для объявления простых переменных и для объявления массивов. Для определения строк принято использовать директиву DB в связи с особенностями хранения данных в оперативной памяти. Инструкция языка ассемблера mov предназначена для дублирования данных источника в приёмнике.

mov dst, src

Здесь операнд dst — приёмник, а src — источник. В качестве операнда могут выступать регистры (register), ячейки памяти (memory) и непосредственные значения (const). Инструкция языка ассемблера intпредназначена для вызова прерывания с указанным номером.

int n

Здесь n — номер прерывания, принадлежащий диапазону 0–255. При программировании в Linux с использованием вызовов ядра sys_calls n=80h (принято задавать в шестнадцатеричной системе счисления).

4 Выполнение лабораторной работы

4.1 Основы работы с тс

Открываю Midnight Commander, введя в терминал mc (рис. 4.1).

Рис. 4.1: Открытый тс

Перехожу в каталог ~/work/study/2023-2024/Архитектура Компьютера/arch-pc, используя файловый менеджер mc (рис. 4.2)

Рис. 4.2: Перемещение между директориями

С помощью функциональной клавиши F7 создаю каталог lab05 (рис. 4.3).

Рис. 4.3: Создание каталога

Переходу в созданный каталог (рис. 4.4).

Рис. 4.4: Перемещение между директориями

В строке ввода прописываю команду touch lab5-1.asm, чтобы создать файл, в котором буду работать (рис. 4.5).

```
Hint: F13 (or Shift-F3) invokes ch-pc/lab05$ touch lab5-1.asm

1Help 2Menu 3View 4Edit
```

Рис. 4.5: Создание файла

4.2 Структура программы на языке ассемблера NASM

С помощью функциональной клавиши F4 открываю созданный файл для редактирования в редакторе nano (рис. 4.6).

```
zorigoo-nomun@zorigoo-nomun-1-2:~ Q = — □ ×
...-nomun/work/study/2023-2024/Архитектура компьютера/arch-pc/lab5-1.asm
```

Рис. 4.6: Открытие файла для редактирования

Ввожу в файл код программы для запроса строки у пользователя (рис. 4.7). Далее выхожу из файла (Ctrl+X), сохраняя изменения (Y, Enter).

```
..-nomun/work/study/2023-2024/Архитектура компьютера/arch-pc
        .data ; Секция инициированных данных
        'Введите строку:',10
       EQU $-msg ; Длина переменной 'msg'
        .bss ; Секция не инициированных данных
           80 ; Буфер размером 80 байт
        .text ; Код программы
       _start ; Начало программы
     t: ; Точка входа в программу
mov eax,4; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла 1 - стандартный вывод
mov ecx,msg ; Адрес строки 'msg' в 'ecx'
mov edx,msgLen; Размер строки 'msg' в 'edx'
int 80h ; Вызов ядра
mov eax, 3 ; Системный вызов для чтения (sys read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, buf1 ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
mov eax,1 ; Системный вызов для выхода (sys exit)
mov ebx,0 ; Выход с кодом возврата 0 (без ошибок)
int 80h ; Вызов ядра
```

Рис. 4.7: Редактирование файла

С помощью функциональной клавиши F3 открываю файл для просмотра, чтобы проверить, содержит ли файл текст программы (рис. 4.8).

```
mc [zorigoo-nomun@zorigoo-nomun-1-2]:~/work/study/2023-2024/Архит...
                                                               Q
/home/zorigoo-nomun/wor~epa/arch-pc/lab5-1.asm
                                                      1239/1239
                                                                              100
SECTION .data ; Секция инициированных данных
msg: DB 'Введите строку:',10
msgLen: EQU $-msg ; Длина переменной 'msg'
SECTION .bss ; Секция не инициированных данных
buf1: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла 1 - стандартный вывод
mov ecx,msg ; Адрес строки 'msg' в 'ecx'
mov edx,msgLen ; Размер строки 'msg' в 'edx'
int 80h ; Вызов ядра
mov eax, 3 ; Системный вызов для чтения (sys_read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, buf1 ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
mov eax,1 ; Системный вызов для выхода (sys_exit)
mov ebx,0 ; Выход с кодом возврата 0 (без ошибок)
int 80h ; Вызов ядра
```

Рис. 4.8: Открытие файла для просмотра

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-1.asm. Создался объектный файл lab5-1.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-1 lab5-1.o (рис. 4.9). Создался исполняемый файл lab5-1.

```
zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2024/Архитектура компьютера/ar ch-pc$ nasm -f elf lab5-1.asm zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2024/Архитектура компьютера/ar ch-pc$ ld -m elf_i386 -o lab5-1 lab5-1.o
```

Рис. 4.9: Компиляция файла и передача на обработку компоновщику Запускаю исполняемый файл. Программа выводит строку "Введите строку:" и ждет ввода с клавиатуры, я ввожу свои ФИО, на этом программа заканчивает свою работу (рис. 4.10).

```
ch-pc$ ./lab5-1
Введите строку:
Номун Зоригоо
```

Рис. 4.10: Исполнение файла

4.3 Подключение внешнего файла

Скачиваю файл in_out.asm со страницы курса в ТУИС. Он сохранился в каталог "Загрузки" (рис. 4.11).

Рис. 4.11: Скачанный файл

С помощью функциональной клавиши F5 копирую файл in_out.asm из каталога Загрузки в созданный каталог lab05 (рис. 4.12).

Рис. 4.12: Копирование файла

С помощью функциональной клавиши F5 копирую файл lab5-1 в тот же каталог, но с другим именем, для этого в появившемся окне т прописываю имя для копии файла (рис. 4.13).

Рис. 4.13: Копирование файла

Изменяю содержимое файла lab5-2.asm во встроенном редакторе nano (рис. 4.14), чтобы в программе использовались подпрограммы из внешнего файла in_out.asm.

```
то [zorigoo-nomun@zorigoo-nomun-1-2]:~/work/study/2023-2024/Apxит...

.../work/study/2023-2024/Apxитектура компьютера/arch-pc/labe
SECTION .bss; Секция не инициированных данных
buf1: RESB 80; Буфер размером 80 байт
SECTION .text; Код программы
GLOBAL _start; Начало программы
_start:; Точка входа в программу
mov eax, msg; запись адреса выводимого сообщения в `EAX`
call sprintLF; вызов подпрограммы печати сообщения
mov ecx, buf1; запись адреса переменной в `EAX`
mov edx, 80; запись длины вводимого сообщения в `EBX`
call sread; вызов подпрограммы ввода сообщения
call quit; вызов подпрограммы завершения
```

Рис. 4.14: Редактирование файла

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-2.asm. Создался объектный файл lab5-2.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-2 lab5-2.o Создался исполняемый файл lab5-2. Запускаю исполняемый файл (рис. 4.15).

```
zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05$ nasm -f elf lab5-2.asm
zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05$ ld -m elf_i386 -o lab5-2 l
ab5-2.o
zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05$ ./lab5-2
Введите строку:
Зоригоо Номун
```

Рис. 4.15: Исполнение файла

Открываю файл lab5-2.asm для редактирования в nano функциональной клавишей F4. Изменяю в нем подпрограмму sprintLF на sprint. Сохраняю изменения и открываю файл для просмотра, чтобы проверить сохранение действий (рис. 4.16).

```
GNU nano 7.2
                        /home/zorigoo-nomun/work/study/2023-2024/Архитектура компьютера/arch-pc/lab5-2.asm
  Программа вывода сообщения на экран и ввода строки с клавиатуры
%include 'in out.asm'
                                       : подключение внешнего файла
         .data ; Секция инициированных данных 'Введите строку: ',0h ; сообщение
                   ; Секция не инициированных данных
           80
                   ; Буфер размером 80 байт
                    ; Код программы
          _start ; Начало программы
                    ; Точка входа в программу
   mov eax, msg ; запись адреса выводимого сообщения в `EAX` call sprintLF ; вызов подпрограммы печати сообщения
   mov ecx, buf1 ; запись адреса переменной в mov edx, 80 ; запись длины вводимого coof
                    ; запись длины вводимого сообщения в `ЕВХ`
   call sread ; вызов подпрограммы ввода сообщения
   call quit
                    ; вызов подпрограммы завершения
```

Рис. 4.16: Отредактированный файл

Снова транслирую файл, выполняю компоновку созданного объектного файла, запускаю новый исполняемый файл (рис. 4.17).

```
zorigoo-nomun@zorigoo-nomun-1-2:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05$ nasm -f elf lab5-2.asm zorigoo-nomun@zorigoo-nomun-1-2:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05$ ld -m elf_i386 -o lab-5-2-2 lab5-2.o zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab05$ ./lab-5-2-2 Введите строку: Зоригоо Номун
```

Рис. 4.17: Исполнение файла

Разница между первым исполняемым файлом lab6-2 и вторым lab6-2-2 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint.

4.4 Выполнение заданий для самостоятельной работы

1. Создаю копию файла lab5-1.asm с именем lab5-1-1.asm с помощью функциональной клавиши F5 (рис. 4.18).

in_out.asm	3942	Nov	8	19:08	in_out.asm	3942	Nov	8	19:08
*lab-5-2-2	9092	Nov	9	14:31	*lab-5-2-2	9092	Nov	9	14:31
lab5-1-1.asm	1239	Nov	8	18:47	lab5-1-1.asm	1239	Nov		18:47
lab5-1.asm	1239	Nov		18:47	lab5-1.asm	1239	Nov		18:47
lab5-1.asm.save	1	Nov	7	12:46	lab5-1.asm.save	1	Nov	7	12:46
*lab5-2	9092	Nov	9	14:22	*lab5-2	9092	Nov	9	14:22
lab5-2.asm	1352	Nov		13:04	lab5-2.asm	1352	Nov		13:04
lab5-2.o	1312	Nov	9	14:30	lab5-2.o	1312	Nov	9	14:30

Рис. 4.18: Копирование файла

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.19).

```
..ork/study/2023-2024/Архитектура компьютера/arch-pc/lab05/lab5-2-1.asm
%include 'in out.asm'
                                   ; подключение внешнего файла
      .data
                               ; Секция инициированных данных
 sg: DB 'Введите строку: ',0h ; сообщение
                 ; Секция не инициированных данных
 ECTION .bss
 uf1: RESB 80
                 ; Буфер размером 80 байт
  TION .text
                 ; Код программы
      BAL _start ; Начало программы
                ; Точка входа в программу
  mov eax, msg ; запись адреса выводимого сообщения в `EAX`
  call sprintLF ; вызов подпрограммы печати сообщения
  mov ecx, buf1 ; запись адреса переменной в `EAX`
  mov edx, 80
                ; запись длины вводимого сообщения в `ЕВХ`
  call sread
                 ; вызов подпрограммы ввода сообщения
  call quit
                 ; вызов подпрограммы завершения
```

Рис. 4.19: Редактирование файла

2. Создаю объектный файл lab5-1-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-1-1, запускаю полученный исполняемый файл. Программа запрашивает ввод, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 4.20).

```
zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2/ch-pc/lab05$ nasm -f elf lab5-1-1.asm zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2/ch-pc/lab05$ ld -m elf_i386 -o lab5-1-1 lab5-1-1.o zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-2/ch-pc/lab05$ ./lab5-1-1 Введите строку: Зоригоо Номун
```

Рис. 4.20: Исполнение файла

Код программы из пункта 1:

```
SECTION .data ; Секция инициированных данных
msg: DB 'Введите строку:',10
msgLen: EQU $-msg ; Длина переменной 'msg'
SECTION .bss ; Секция не инициированных данных
bufl: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL start ; Начало программы
start: ; Точка входа в программу
mov eax, 4 ; Системный вызов для записи (sys write)
mov ebx,1 ; Описатель файла 1 - стандартный вывод
mov ecx, msg ; Адрес строки 'msg' в 'ecx'
mov edx, msgLen ; Размер строки 'msg' в 'edx'
int 80h ; Вызов ядра
mov eax, 3 ; Системный вызов для чтения (sys read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, buf1 ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
mov eax, 4 ; Системный вызов для записи (sys write)
mov ebx,1; Описатель файла '1' - стандартный вывод
mov ecx, buf1 ; Адрес строки buf1 в есх
mov edx, buf1 ; Размер строки buf1
```

```
int 80h ; Вызов ядра

mov eax,1 ; Системный вызов для выхода (sys_exit)

mov ebx,0 ; Выход с кодом возврата 0 (без ошибок)

int 80h ; Вызов ядра
```

3. Создаю копию файла lab5-2.asm с именем lab5-2-1.asm с помощью функциональной клавиши F5 (рис. 4.21).

Рис. 4.21: Копирование файла

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.22).

```
.ork/study/2023-2024/Архитектура компьютера/arch-pc/lab05/lab5-2-1.asm
%include 'in_out.asm'
                                      ; подключение внешнего файла
        .data
                                  ; Секция инициированных данных
        'Введите строку: ',0h ; сообщение
                 ; Секция не инициированных данных
        SB 80
                  ; Буфер размером 80 байт
                  ; Код программы
         _start ; Начало программы
                   ; Точка входа в программу
  mov eax, msg ; запись адреса выводимого сообщения в `EAX` call sprintLF ; вызов подпрограммы печати сообщения
   mov ecx, buf1 ; запись адреса переменной в `
  mov edx, 80 ; запись длины вводимого сообщения в `EBX`
   call sread
                   ; вызов подпрограммы ввода сообщения
   call quit
                   ; вызов подпрограммы завершения
```

Рис. 4.22: Редактирование файла

4. Создаю объектный файл lab5-2-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-2-1, запускаю полученный исполняемый файл. Программа запрашивает ввод без переноса на новую строку, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 4.23).

```
zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-202
ch-pc/lab05$ nasm -f elf lab5-2-1.asm
zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-202
ch-pc/lab05$ ld -m elf_i386 -o lab5-2-1 lab5-2-1.o
zorigoo-nomun@zorigoo-nomun-1-2:~/work/study/2023-202
ch-pc/lab05$ ./lab5-2-1
Введите строку:
Зоригоо Номун
```

Рис. 4.23: Исполнение файла

Код программы из пункта 3:

```
%include 'in out.asm'
SECTION .data ; Секция инициированных данных
msg: DB 'Введите строку: ',0h ; сообщение
SECTION .bss ; Секция не инициированных данных
bufl: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL start ; Начало программы
start: ; Точка входа в программу
mov eax, msg ; запись адреса выводимого сообщения в `EAX`
call sprint ; вызов подпрограммы печати сообщения
mov ecx, buf1 ; запись адреса переменной в `EAX`
mov edx, 80 ; запись длины вводимого сообщения в `EBX`
call sread ; вызов подпрограммы ввода сообщения
mov eax, 4 ; Системный вызов для записи (sys_write)
{\tt mov}\ {\tt ebx,1} ; Описатель файла {\tt '1'}\ {\tt -} стандартный вывод
mov ecx, buf1 ; Адрес строки buf1 в есх
int 80h ; Вызов ядра
call quit ; вызов подпрограммы завершения
```

5 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки работы в Midnight Commander, а также освоила инструкции языка ассемблера mov и int.

6 Список литературы

1. Лабораторная работа №5