Theoretical Questions on Stochastic Calculus

 $Exam\ Preparation\ Booklet$

Course: Stochastic Calculus for Finance

Student: Filippo Vicidomini Master's Degree in Engineering Physics

Contents

0.1	Question 1	4
0.2	Question 2	6
0.3	Question 6	8
0.4	Question 7	10
0.5	Question 8	11
0.6	Question 9	13

0.1 Question 1

Explain what an ODE is, and what it means for a function x(t) to be a (classical) solution. State the theorems that you know and that establish: (a) existence of a solution; (b) local existence and uniqueness of a solution; (c) global existence and uniqueness of a solution. Compare them and explain, give suitable examples.

Answer

Definition of ODE

An **ordinary differential equation (ODE)** is an equation where the unknown is a function x(t) of one real variable (often time t), and the function appears together with its derivatives. A general first-order ODE can be written in normal form as

$$x'(t) = f(t, x(t)), \quad t \ge t_0.$$

Classical Solution

A function $x:[t_0,T]\to\mathbb{R}$ is a classical solution to the Cauchy problem

$$\begin{cases} x'(t) = f(t, x(t)), & t \ge t_0, \\ x(t_0) = x_0, \end{cases}$$

if:

- i) x is differentiable on $[t_0, T]$;
- ii) it satisfies x'(t) = f(t, x(t)) for all $t \in [t_0, T]$;
- iii) it satisfies the initial condition $x(t_0) = x_0$.

Theorems of Existence and Uniqueness

- Peano's Existence Theorem: If f(t, x) is continuous in a neighborhood of (t_0, x_0) , then there exists at least one solution x(t) to the Cauchy problem on some interval around t_0 . (Existence, but not uniqueness).
- Picard-Lindelöf (Cauchy-Lipschitz) Theorem: If f(t, x) is continuous in t and Lipschitz continuous in x, then there exists a unique local solution to the Cauchy problem.
- Global Existence and Uniqueness: If the assumptions above hold on the entire domain (e.g. f is globally Lipschitz or satisfies suitable growth conditions preventing blow–up), then the solution can be extended uniquely to all $t \geq t_0$.

Comparison

- Peano theorem ensures existence but possibly many solutions.
- Picard–Lindelöf ensures both existence and uniqueness, but only locally in time.
- Global results require additional conditions to extend the solution to all times.

Examples

• Non-uniqueness (Peano):

$$x'(t) = \sqrt{x(t)}, \quad x(0) = 0.$$

Both $x(t) \equiv 0$ and $x(t) = \frac{t^2}{4}$ are solutions, showing non-uniqueness since $f(x) = \sqrt{x}$ is not Lipschitz at 0.

• Unique local (and global) solution (Picard–Lindelöf):

$$x'(t) = t + x$$
, $x(0) = 1$.

Here f(t,x) = t + x is Lipschitz in x. The unique solution is

$$x(t) = Ce^t - t - 1.$$

• Global existence:

$$x'(t) = -x(t), \quad x(0) = x_0.$$

Solution: $x(t) = x_0 e^{-t}$, which exists uniquely for all $t \ge 0$.

0.2 Question 2

Say what a linear ODE is. Show that, under suitable assumptions on the coefficients (exemplify), a Cauchy problem for a linear ODE has a unique solution. Prove that such solution is given by the known solution formula.

Answer

Definition

A first-order linear ODE is an equation of the form

$$x'(t) = a(t)x(t) + b(t), \quad t \ge t_0,$$

where $a, b: I \to \mathbb{R}$ are given real functions on an interval $I \ni t_0$. The associated **Cauchy problem** is

$$\begin{cases} x'(t) = a(t)x(t) + b(t), \\ x(t_0) = x_0. \end{cases}$$

Existence and Uniqueness (Picard-Lindelöf)

If $a(\cdot)$ and $b(\cdot)$ are continuous on I, then f(t,x) = a(t)x + b(t) is continuous and Lipschitz in x on compatti:

$$|f(t,x) - f(t,y)| = |a(t)||x - y| \le L|x - y| \quad (t \in K \subseteq I).$$

Hence the Cauchy problem admits a **unique local** solution; if a, b are continuous on all of I and no blow-up occurs, the solution extends **uniquely** on I.

Derivation (Proof via integrating factor)

Consider

$$x'(t) - a(t)x(t) = b(t).$$

Let the integrating factor be

$$\mu(t) = \exp\left(\int_{t_0}^t a(s) \, ds\right), \qquad \mu(t) > 0, \ \mu'(t) = a(t)\mu(t).$$

Multiply the ODE by $\mu(t)$:

$$\mu(t)x'(t) - \mu(t)a(t)x(t) = \mu(t)b(t).$$

By the product rule,

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big(\mu(t)x(t) \Big) = \mu(t)b(t).$$

Integrate from t_0 to t:

$$\mu(t)x(t) - \mu(t_0)x(t_0) = \int_{t_0}^{t} \mu(r)b(r) dr.$$

Since $\mu(t_0) = 1$, $x(t_0) = x_0$, we obtain the solution formula

$$x(t) = \exp\left(\int_{t_0}^t a(s) \, \mathrm{d}s\right) \left[x_0 + \int_{t_0}^t \exp\left(-\int_{t_0}^r a(u) \, \mathrm{d}u\right) b(r) \, \mathrm{d}r\right].$$

Verification (Plug-in)

Set $\mu(t) = \exp(\int_{t_0}^t a)$ and write

$$x(t) = \mu(t) \left(x_0 + \int_{t_0}^t \mu(r)^{-1} b(r) \, dr \right).$$

 ${\bf Differentiate:}$

$$x'(t) = \mu'(t) \left(x_0 + \int_{t_0}^t \mu(r)^{-1} b(r) \, dr \right) + \mu(t) \cdot \mu(t)^{-1} b(t).$$

Since $\mu'(t) = a(t)\mu(t)$, we get

$$x'(t) = a(t)\mu(t)\Big(\cdots\Big) + b(t) = a(t)x(t) + b(t),$$

quindi x soddisfa l'ODE. Inoltre $x(t_0) = \mu(t_0) (x_0 + 0) = x_0$. Per unicità (Picard–Lindelöf), questa è la soluzione del problema di Cauchy.

Example

Let

$$x'(t) = 2x(t) + t,$$
 $x(0) = 1.$

Here a(t) = 2, b(t) = t, $\mu(t) = e^{2t}$. Thus

$$x(t) = e^{2t} \left(1 + \int_0^t e^{-2r} r \, dr \right) = e^{2t} \left(1 - \frac{1}{2} t e^{-2t} - \frac{1}{4} e^{-2t} + \frac{1}{4} \right).$$

This (unique) solution is defined for all $t \in \mathbb{R}$.

0.3 Question 6

State and interpret the definition of: a) sigma algebra; b) sigma algebra generated by a random variable; c) filtration; d) stochastic process; e) stochastic process adapted to a filtration.

Answer

a) Sigma algebra

Let Ω be a sample space. A σ -algebra \mathcal{F} on Ω is a collection of subsets of Ω such that:

- i) $\Omega \in \mathcal{F}$;
- ii) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (closed under complementation);
- iii) If $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ (closed under countable unions).

By De Morgan's laws, \mathcal{F} is also closed under countable intersections.

Interpretation: a σ -algebra represents the collection of events that can be "observed" or "measured" in a probabilistic experiment.

Example: On \mathbb{R} , the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is generated by all open intervals (a,b).

b) Sigma algebra generated by a random variable

Given a random variable $X : \Omega \to \mathbb{R}$, the σ -algebra generated by X, denoted $\sigma(X)$, is the smallest σ -algebra such that X is measurable. Formally,

$$\sigma(X) = \{X^{-1}(B) : B \in \mathcal{B}(\mathbb{R})\}.$$

Interpretation: $\sigma(X)$ contains exactly the events that can be described in terms of the knowledge of X.

Example: If $X(\omega) = 1$ when a coin toss is Head and 0 otherwise, then $\sigma(X) = \{\emptyset, \Omega, \{X = 1\}, \{X = 0\}\}.$

c) Filtration

A filtration $\{\mathcal{F}_t\}_{t\geq 0}$ is an increasing family of σ -algebras:

$$\mathcal{F}_s \subset \mathcal{F}_t$$
 for all $0 < s < t$.

Interpretation: \mathcal{F}_t represents the information available up to time t. As time progresses, information increases.

Example: For a Brownian motion W(t), the natural filtration is $\mathcal{F}_t = \sigma(W(s) : 0 \le s \le t)$, i.e. all events determined by the past trajectory of W up to time t.

d) Stochastic process

A stochastic process is a family $\{X(t)\}_{t\geq 0}$ of random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Interpretation: X(t) describes the random evolution of a system in time. - Fixing t, X(t) is a random variable on Ω . - Fixing $\omega \in \Omega$, $t \mapsto X(t, \omega)$ is a trajectory (sample path).

Example: A random walk $M_n = \sum_{j=1}^n X_j$ with i.i.d. ± 1 steps is a stochastic process indexed by $n \in \mathbb{N}$.

e) Adapted stochastic process

A stochastic process $\{X(t)\}_{t\geq 0}$ is **adapted** to a filtration $\{\mathcal{F}_t\}$ if, for each t, X(t) is \mathcal{F}_t -measurable.

Interpretation: At time t, the value X(t) depends only on the information available up to t, not on the future.

Example: The Brownian motion W(t) is adapted to its natural filtration $\{\mathcal{F}_t\}$, since W(t) is \mathcal{F}_t -measurable by construction.

0.4 Question 7

Give the definition of the martingale property for a stochastic process and interpret it. Give suitable examples of stochastic processes with this property.

Answer

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\{\mathcal{F}_t\}$ a filtration. A stochastic process X(t) adapted to $\{\mathcal{F}_t\}$ is called a **martingale** if:

- i) $\mathbb{E}[|X(t)|] < \infty$ for all t;
- ii) For all s < t,

$$\mathbb{E}[X(t) \mid \mathcal{F}_s] = X(s).$$

Interpretation

A martingale represents a **fair game**: given the information available up to time s, the best prediction of the value at time t is exactly the current value X(s). This means the process has no drift: it does not systematically increase or decrease.

Consequently, $\mathbb{E}[X(t)] = \mathbb{E}[X(0)]$ for all t.

Examples

- Symmetric random walk: $M_n = \sum_{j=1}^n X_j$ with $X_j = \pm 1$ with equal probability, is a martingale with respect to the natural filtration.
- Brownian motion W(t): is a martingale with respect to its natural filtration.
- Itô integrals: if $\Delta(t)$ is adapted and square-integrable, then

$$I(t) = \int_0^t \Delta(s) \, \mathrm{d}W(s)$$

is a martingale with zero mean.

Counterexample

A Geometric Brownian Motion

$$S(t) = S(0)e^{(\alpha - \frac{1}{2}\sigma^2)t + \sigma W(t)}$$

is not a martingale if $\alpha \neq 0$, since it has exponential drift. However, under the risk-neutral measure \mathbb{Q} , the discounted price $e^{-rt}S(t)$ is a martingale. This property is fundamental in financial mathematics (e.g., Black–Scholes model).

0.5 Question 8

Describe the construction of a Brownian motion.

Answer

A Brownian motion, also known as a Wiener process, is a stochastic process W(t) defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ that satisfies the following properties:

- i) W(0) = 0 almost surely;
- ii) W(t) has independent increments: for $0 \le t_0 < t_1 < \cdots < t_n$, the increments

$$W(t_1) - W(t_0), W(t_2) - W(t_1), \dots, W(t_n) - W(t_{n-1})$$

are independent random variables;

- iii) W(t) has Gaussian increments: for s < t, the increment W(t) W(s) is normally distributed with mean 0 and variance t s;
- iv) W(t) has continuous trajectories almost surely.

Construction via Random Walks

One can construct a Brownian motion as the limit of suitably rescaled symmetric random walks:

• Consider a sequence $(X_j)_{j\geq 1}$ of i.i.d. random variables with

$$\mathbb{P}(X_j = 1) = \mathbb{P}(X_j = -1) = \frac{1}{2}.$$

• Define the partial sums (a symmetric random walk):

$$M_k = \sum_{j=1}^k X_j, \quad M_0 = 0.$$

Then $\mathbb{E}[M_k] = 0$, $Var(M_k) = k$.

• Define the scaled random walk:

$$W^{(n)}(t) = \frac{1}{\sqrt{n}} M_{\lfloor nt \rfloor}, \quad t \ge 0.$$

• As $n \to \infty$, the processes $W^{(n)}(t)$ converge in distribution to a process W(t) that satisfies the above four properties.

The limit process W(t) is called a **Brownian motion**.

Properties

From this construction, Brownian motion inherits:

- Mean zero: $\mathbb{E}[W(t)] = 0$;
- Variance linear in time: Var(W(t)) = t;
- Independent, Gaussian increments;
- Quadratic variation: $[W, W]_t = t$;
- Martingale property: $\mathbb{E}[W(t) \mid \mathcal{F}_s] = W(s)$ for s < t.

Interpretation

Brownian motion models continuous-time randomness:

- In physics, it describes the irregular motion of particles suspended in a fluid.
- In finance, it underlies models of asset price fluctuations (e.g., geometric Brownian motion in the Black–Scholes framework).

0.6 Question 9

Describe the construction of a random walk and of a scaled random walk. Show that a Brownian motion can be obtained as a limit of scaled random walks.

Answer

Random Walk

Let $\{X_i\}_{i\geq 1}$ be a sequence of i.i.d. random variables with

$$\mathbb{P}(X_j = 1) = \mathbb{P}(X_j = -1) = \frac{1}{2}.$$

Define the partial sums

$$M_k = \sum_{j=1}^k X_j, \quad M_0 = 0.$$

The process $\{M_k\}_{k\in\mathbb{N}}$ is called a **symmetric random walk**. Properties:

- $\mathbb{E}[M_k] = 0$, $\operatorname{Var}(M_k) = k$.
- Increments are independent and stationary: $M_{n+m} M_n \sim \mathcal{N}(0, m)$.
- M_k is a martingale with respect to the natural filtration.

Scaled Random Walk

To approach a continuous-time process, rescale both time and space:

$$W^{(n)}(t) = \frac{1}{\sqrt{n}} M_{\lfloor nt \rfloor}, \quad t \ge 0.$$

Interpretation:

- Time is accelerated by factor n (steps of size 1/n).
- Space is scaled down by $1/\sqrt{n}$ (variance normalisation).

Thus $W^{(n)}(t)$ is a piecewise constant, right–continuous process with jumps $\pm 1/\sqrt{n}$ at times k/n.

Limit Process: Brownian Motion

By Donsker's invariance principle (or functional Central Limit Theorem),

$$W^{(n)}(t) \xrightarrow{d} W(t)$$
, as $n \to \infty$,

where W(t) is a **Brownian motion**.

Proof idea:

• Finite-dimensional distributions: by the Central Limit Theorem, for fixed t,

$$W^{(n)}(t) = \frac{1}{\sqrt{n}} M_{\lfloor nt \rfloor} \stackrel{d}{=} \mathcal{N}(0, t).$$

- Independence of increments: inherited from independence of X_i .
- Continuous trajectories: obtained in the limit (the $W^{(n)}$ are piecewise constant, but converge in distribution to a continuous process).

Conclusion

A Brownian motion W(t) is obtained as the scaling limit of a symmetric random walk.

$$W(t) = \lim_{n \to \infty} W^{(n)}(t) \quad \text{in distribution}.$$

Example

Simulating many paths of a scaled random walk with large n, the trajectories approximate continuous Brownian paths with variance t and independent Gaussian increments.