Random Forest

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df1=pd.read_csv(r"C:\Users\user\Downloads\C5_health care diabetes.csv")
 df1

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunctio
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.31

768 rows × 9 columns

In [3]: df=df1.head(10)
df

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288
5	5	116	74	0	0	25.6	0.201
6	3	78	50	32	88	31.0	0.248
7	10	115	0	0	0	35.3	0.134
8	2	197	70	45	543	30.5	0.158
9	8	125	96	0	0	0.0	0.232
4							

In [5]: df['Outcome'].value_counts()

Out[5]: 1 6 0 4

Name: Outcome, dtype: int64

In [7]: x=df.drop('Outcome',axis=1)
y=df['Outcome']

```
In [8]:
         g1={"g":{'g':1,'g':2}}
         df=df.replace(g1)
         print(df)
                                    BloodPressure SkinThickness
             Pregnancies
                          Glucose
                                                                   Insulin
                                                                              BMI
         0
                               148
                                                                             33.6
                       6
                                               72
                                                               35
                                                                          0
         1
                       1
                                85
                                               66
                                                               29
                                                                          0
                                                                             26.6
          2
                       8
                               183
                                                                             23.3
                                               64
                                                                0
                                                                          0
                       1
         3
                               89
                                               66
                                                               23
                                                                        94
                                                                             28.1
                                                                       168 43.1
         4
                       0
                               137
                                               40
                                                               35
         5
                       5
                               116
                                               74
                                                                0
                                                                          0 25.6
                       3
                                                               32
                                                                        88 31.0
         6
                               78
                                               50
         7
                      10
                               115
                                                0
                                                                0
                                                                         0
                                                                             35.3
         8
                       2
                                                               45
                                                                       543 30.5
                               197
                                               70
         9
                       8
                               125
                                               96
                                                                0
                                                                          0
                                                                              0.0
             DiabetesPedigreeFunction Age
                                             Outcome
         0
                                0.627
                                         50
                                                   1
         1
                                0.351
                                         31
                                                   0
         2
                                0.672
                                         32
                                                    1
          3
                                0.167
                                         21
                                                    0
         4
                                 2.288
                                         33
                                                   1
         5
                                0.201
                                         30
                                                   0
         6
                                0.248
                                         26
                                                   1
         7
                                0.134
                                         29
                                                   0
         8
                                0.158
                                         53
                                                   1
         9
                                0.232
                                         54
                                                    1
 In [9]: | from sklearn.model selection import train test split
         x train,x test,y train,y test = train test split(x,y,train size=0.70)
In [10]: from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[10]: RandomForestClassifier()
         parameters = { 'max_depth':[1,2,3,4,5],
In [11]:
              'min_samples_leaf':[5,10,15,20,25],
                        'n_estimators':[10,20,30,40,50]
         }
In [12]: | from sklearn.model_selection import GridSearchCV
         grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="a
         grid_search.fit(x_train,y_train)
Out[12]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min samples leaf': [5, 10, 15, 20, 25],
                                    'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
```

gini = 0.49 samples = 5 value = [4, 3] class = Yes

In []: