CS6462 Probabilistic and Explainable AI

Lesson 1 Probability of Events

Probability

Definition

- mathematics concerned with numerical descriptions of how likely an event is to occur
- degree of belief of an experiment X (or phenomena) where all possible outcomes are known (denoted as sample space S)
- any subset of S is called an event E
- event *E occurs* if the outcome of experiment *X* is contained in *E*

Example

X = tossing a die

 $S = \{1, 2, 3, 4, 5, 6\}$

E = {2, 4, 6} - an event "the number is even"

Probability (cont.)

Example 2

```
X = tossing a coin twice
```

E = {hh, ht} event "the first toss results in a Head"

Example 3

X = tossing a die twice

 $S = \{f(i, j) : i, j = 1, 2,, 6\}$ contains 36 elements

 $E = \{f(i,j): f+j=10\}$ event "the sum of the results of the two tosses is equal to 10"

Example 4

X = choosing a point from the interval [0; 1]

 $S \subseteq Q$ rational numbers, $s \in S$ and $0 \le s \le 1$

$$E = \{1/3\}$$

Events and Set Theory

Set Theory provides the *notation* to describe and manipulate events:

- $E \subseteq S$, $F \subseteq S$ events E and F are *subsets* of the sample space S
- **E**^c complement of **E** the set of all outcomes not in **E**
- $E \cap F$ intersection of E and F the set of all outcomes in both E and F
- EUF union of E and F the set of all outcomes in E or in F or in both E and F
- *E* ⊆ *F* event *E* is subset of *F*
- $E \cap F = \emptyset$ events E and F are mutually exclusive (disjoint)
- union and intersection of more than two events:

$$\bigcup_{i=1}^{n} E_{i}$$
, $\bigcup_{i=1}^{\infty} E_{i}$, $\bigcap_{i=1}^{n} E_{i}$, $\bigcap_{i=1}^{\infty} E_{i}$

Events and Set Theory (cont.)

Commutativity:

• $E \cup F = F \cup E$, $E \cap F = F \cap E$

Associativity:

• $(E \cup F) \cup G = E \cup (F \cup G)$, $(E \cap F) \cap G = E \cap (F \cap G)$

Distributivity:

• $(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$, $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$

Morgan's Laws:

- $(E \cup F)^c = E^c \cap F^c$
- $(E \cap F)^c = E^c \cup F^c$

Probability of Events – Properties

Properties of probability **P** with respect to sample space **S**:

- notion: probability P of an event E
 P(E)
- scaling: measures uncertainty on a scale from 0 to 1, with 1 representing certainty $P(S) = 1, 0 \le P(E) \ \forall \ E \in S$
- additivity: imposes order on the assignment of probabilities $P(E \cup F) = P(E) + P(F), \text{ iff } E \cap F = \emptyset$ for any sequence of events E_1, E_2, \dots, E_n which are mutually exclusive $P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i)$

Probability of Events — Properties (cont.)

• complementarity:

$$P(E) + P(E^c) = 1 \forall E \in S$$

• general additivity: additivity for non-mutually exclusive events

$$P(E \cup F) = P(E) + P(F) - P(E \cap F) \forall E, F \in S$$

• log odds: measures the odds of success - probability of success/probability of failure

$$LogOdds(E) = \ln(P(E)/P(E^c))$$

$$LogOdds(E) = \ln(P(E)/(1 - P(E))$$

Probability of Events – Examples

Example 1: **X** = Tossing a fair coin

$$S = \{h, t\}$$

$$P(S) = 1$$
, $P(h) = P(t) = \frac{1}{2}$

Example 2: **X** = Tossing a fair die

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$P(S) = 1$$
, $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$

Example 3: X = Tossing a fair coin twice.

$$P(S) = 1$$
, $P(hh) = P(ht) = P(th) = P(tt) = 1/4$

Probability of Events – Examples (cont.)

Example 4: $X = Tossing \ a \ die - P(E \cup F)$?

- $S = \{1, 2, 3, 4, 5, 6\}$
- P(S) = 1, P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- E = {1, 3, 6}, F = {3, 4, 6}
- $E = \{1\} \cup \{3\} \cup \{6\}, F = \{3\} \cup \{4\} \cup \{6\}$
- $E \cap F = \{3, 6\} = \{3\} \cup \{6\}$
- recall additivity rule: $P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i)$

$$P(E) = P(1) + P(3) + P(6) = 3/6,$$

 $P(F) = P(3) + P(4) + P(6) = 3/6$

$$P(E \cap F) = P(3) + P(6) = 2/6$$

• recall general additivity rule: $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ $P(E \cup F) = 3/6 + 3/6 - 2/6 = 4/6$

Probability of Events – Examples (cont.)

Example 5: **X** = 80% chance of rain

- S = [0,1]
- E chance of rain
- *P(E)* = 0.8 odds of success 80%
- *P*(*E*^c) = 0.2 odds of failure 20%
- recall $log odds rule: LogOdds(E) = ln(P(E)/P(E^c))$ $LogOdds(E) = ln(P(E)/P(E^c)) = ln (0.8/0.2) = 1.38629436$ the odds ratio (the probability of success/probability of failure) = 4 the log odds = 1.38629436

Summary

Probability of Events

- *Probability* mathematics concerned with numerical descriptions of how likely an event is to occur
- Events outcomes E of experiment X with known set of possible outcomes S
 event E occurs if the outcome of experiment X is contained in E
- Set Theory provides the notation to describe and manipulate events:
 - notion *P(E)*
 - properties (rules) scaling, additivity, complementarity, general additivity
 - log odds another way to express probability
- Next Lesson Conditional Probability

Thank You!

Questions?