УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа Часть 2

Часть 2 Вариант 58

> Студент XXX XXX XXX P31XX

Преподаватель Поляков Владимир Иванович

Задание

Построить комбинационную схему, реализующую двоичный счетчик $C=(A-1)_{\mod 27}$, где A — 5 битное беззнаковое число и C — 5 битное.

Таблица истинности

Nº	a_1	a_2	a_3	a_4	a_5	c_1	c_2	c_3	c_4	c_5
0	0	0	0	0	0	1	1	0	1	0
1	0	0	0	0	1	0	0	0	0	0
2	0	0	0	1	0	0	0	0	0	1
3	0	0	0	1	1	0	0	0	1	0
4	0	0	1	0	0	0	0	0	1	1
5	0	0	1	0	1	0	0	1	0	0
6	0	0	1	1	0	0	0	1	0	1
7	0	0	1	1	1	0	0	1	1	0
8	0	1	0	0	0	0	0	1	1	1
9	0	1	0	0	1	0	1	0	0	0
10	0	1	0	1	0	0	1	0	0	1
11	0	1	0	1	1	0	1	0	1	0
12	0	1	1	0	0	0	1	0	1	1
13	0	1	1	0	1	0	1	1	0	0
14	0	1	1	1	0	0	1	1	0	1
15	0	1	1	1	1	0	1	1	1	0
16	1	0	0	0	0	0	1	1	1	1
17	1	0	0	0	1	1	0	0	0	0
18	1	0	0	1	0	1	0	0	0	1
19	1	0	0	1	1	1	0	0	1	0
20	1	0	1	0	0	1	0	0	1	1
21	1	0	1	0	1	1	0	1	0	0
22	1	0	1	1	0	1	0	1	0	1
23	1	0	1	1	1	1	0	1	1	0
24	1	1	0	0	0	1	0	1	1	1
25	1	1	0	0	1	1	1	0	0	0
26	1	1	0	1	0	1	1	0	0	1
27	1	1	0	1	1	d	d	d	d	d
28	1	1	1	0	0	d	d	d	d	d
29	1	1	1	0	1	d	d	d	d	d
30	1	1	1	1	0	d	d	d	d	d
31	1	1	1	1	1	d	d	d	d	d

Минимизация булевых функций на картах Карно

$$c_1 = a_1\,a_2 \vee a_1\,a_3 \vee a_1\,a_4 \vee a_1\,a_5 \vee \overline{a_1}\,\overline{a_2}\,\overline{a_3}\,\overline{a_4}\,\overline{a_5} \quad (S_Q = 18)$$

$$c_2 = a_2 a_3 \lor a_2 a_4 \lor a_2 a_5 \lor \overline{a_2} \overline{a_3} \overline{a_4} \overline{a_5} \quad (S_Q = 14)$$

$$c_3 = a_3 \, a_4 \vee a_3 \, a_5 \vee a_1 \, \overline{a_3} \, \overline{a_4} \, \overline{a_5} \vee a_2 \, \overline{a_3} \, \overline{a_4} \, \overline{a_5} \quad (S_Q = 16)$$

$$c_4 = a_4 \, a_5 \vee \overline{a_4} \, \overline{a_5} \quad (S_Q = 6)$$

$$c_5 = a_1 \overline{a_5} \vee a_2 \overline{a_5} \vee a_3 \overline{a_5} \vee a_4 \overline{a_5} \quad (S_Q = 12)$$

Преобразование системы булевых функций

$$\begin{cases} c_{1} = a_{1} a_{2} \vee a_{1} a_{3} \vee a_{1} a_{4} \vee a_{1} a_{5} \vee \overline{a_{1}} \overline{a_{2}} \overline{a_{3}} \overline{a_{4}} \overline{a_{5}} & (S_{Q}^{c_{1}} = 18) \\ c_{2} = a_{2} a_{3} \vee a_{2} a_{4} \vee a_{2} a_{5} \vee \overline{a_{2}} \overline{a_{3}} \overline{a_{4}} \overline{a_{5}} & (S_{Q}^{c_{2}} = 14) \\ c_{3} = a_{3} a_{4} \vee a_{3} a_{5} \vee a_{1} \overline{a_{3}} \overline{a_{4}} \overline{a_{5}} \vee a_{2} \overline{a_{3}} \overline{a_{4}} \overline{a_{5}} & (S_{Q}^{c_{3}} = 16) \\ c_{4} = a_{4} a_{5} \vee \overline{a_{4}} \overline{a_{5}} & (S_{Q}^{c_{4}} = 6) \\ c_{5} = a_{1} \overline{a_{5}} \vee a_{2} \overline{a_{5}} \vee a_{3} \overline{a_{5}} \vee a_{4} \overline{a_{5}} & (S_{Q}^{c_{5}} = 12) \\ (S_{Q} = 66) \end{cases}$$

Проведем раздельную факторизацию системы.

$$\begin{cases} c_1 = a_1 \ (a_2 \lor a_3 \lor a_4 \lor a_5) \lor \overline{a_1} \ \overline{a_2} \ \overline{a_3} \ \overline{a_4} \ \overline{a_5} & (S_Q^{c_1} = 13) \\ c_2 = a_2 \ (a_3 \lor a_4 \lor a_5) \lor \overline{a_2} \ \overline{a_3} \ \overline{a_4} \ \overline{a_5} & (S_Q^{c_2} = 11) \\ c_3 = a_3 \ (a_4 \lor a_5) \lor \overline{a_3} \ \overline{a_4} \ \overline{a_5} & (a_1 \lor a_2) & (S_Q^{c_3} = 12) \\ c_4 = a_4 \ a_5 \lor \overline{a_4} \ \overline{a_5} & (S_Q^{c_4} = 6) \\ c_5 = \overline{a_5} \ (a_1 \lor a_2 \lor a_3 \lor a_4) & (S_Q^{c_5} = 6) \\ (S_Q = 48) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_{0} = \overline{a_{2}} \, \overline{a_{3}} \, \overline{a_{4}} \, \overline{a_{5}}, \quad \overline{\varphi_{0}} = a_{2} \vee a_{3} \vee a_{4} \vee a_{5}$$

$$\begin{cases} \varphi_{0} = \overline{a_{2}} \, \overline{a_{3}} \, \overline{a_{4}} \, \overline{a_{5}} & (S_{Q}^{\varphi_{0}} = 4) \\ c_{1} = a_{1} \, \overline{\varphi_{0}} \vee \varphi_{0} \, \overline{a_{1}} & (S_{Q}^{c_{1}} = 6) \\ c_{2} = a_{2} \, (a_{3} \vee a_{4} \vee a_{5}) \vee \varphi_{0} & (S_{Q}^{c_{2}} = 7) \\ c_{3} = a_{3} \, (a_{4} \vee a_{5}) \vee \overline{a_{3}} \, \overline{a_{4}} \, \overline{a_{5}} & (S_{Q}^{c_{3}} = 12) \\ c_{4} = a_{4} \, a_{5} \vee \overline{a_{4}} \, \overline{a_{5}} & (S_{Q}^{c_{4}} = 6) \\ c_{5} = \overline{a_{5}} \, (a_{1} \vee a_{2} \vee a_{3} \vee a_{4}) & (S_{Q}^{c_{5}} = 6) \\ (S_{Q} = 42) & (S_{Q}^{c_{5}} = 6) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_{1} = a_{4} a_{5}, \quad \varphi_{1} = a_{4} \vee a_{5}$$

$$\begin{cases}
\varphi_{1} = \overline{a_{4}} \overline{a_{5}} & (S_{Q}^{\varphi_{1}} = 2) \\
\varphi_{0} = \varphi_{1} \overline{a_{2}} \overline{a_{3}} & (S_{Q}^{\varphi_{0}} = 3) \\
c_{1} = a_{1} \overline{\varphi_{0}} \vee \varphi_{0} \overline{a_{1}} & (S_{Q}^{c_{1}} = 6) \\
c_{2} = a_{2} (\overline{\varphi_{1}} \vee a_{3}) \vee \varphi_{0} & (S_{Q}^{c_{2}} = 6) \\
c_{3} = a_{3} \overline{\varphi_{1}} \vee \varphi_{1} \overline{a_{3}} (a_{1} \vee a_{2}) & (S_{Q}^{c_{3}} = 9) \\
c_{4} = a_{4} a_{5} \vee \varphi_{1} & (S_{Q}^{c_{4}} = 4) \\
c_{5} = \overline{a_{5}} (a_{1} \vee a_{2} \vee a_{3} \vee a_{4}) & (S_{Q}^{c_{5}} = 6)
\end{cases}$$

$$(S_{Q} = 38)$$

Проведем совместную декомпозицию системы.

$$\varphi_{2} = a_{1} \vee a_{2} \qquad (S_{Q}^{\varphi_{2}} = 2)
\varphi_{1} = \overline{a_{4}} \overline{a_{5}} \qquad (S_{Q}^{\varphi_{1}} = 2)
\varphi_{0} = \varphi_{1} \overline{a_{2}} \overline{a_{3}} \qquad (S_{Q}^{\varphi_{0}} = 3)
c_{1} = a_{1} \overline{\varphi_{0}} \vee \varphi_{0} \overline{a_{1}} \qquad (S_{Q}^{c_{1}} = 6)
c_{2} = a_{2} (\overline{\varphi_{1}} \vee a_{3}) \vee \varphi_{0} \qquad (S_{Q}^{c_{2}} = 6)
c_{3} = a_{3} \overline{\varphi_{1}} \vee \varphi_{1} \overline{a_{3}} \varphi_{2} \qquad (S_{Q}^{c_{3}} = 7)
c_{4} = a_{4} a_{5} \vee \varphi_{1} \qquad (S_{Q}^{c_{4}} = 4)
c_{5} = \overline{a_{5}} (\varphi_{2} \vee a_{3} \vee a_{4}) \qquad (S_{Q}^{c_{5}} = 5)
(S_{Q} = 37)$$

Проведем совместную декомпозицию системы.

$$\varphi_{3} = \varphi_{1} \, a_{3}, \quad \varphi_{3} = \varphi_{1} \vee a_{3}$$

$$\begin{cases} \varphi_{2} = a_{1} \vee a_{2} & (S_{Q}^{\varphi_{2}} = 2) \\ \varphi_{1} = \overline{a_{4}} \, \overline{a_{5}} & (S_{Q}^{\varphi_{1}} = 2) \\ c_{4} = a_{4} \, a_{5} \vee \varphi_{1} & (S_{Q}^{c_{4}} = 4) \\ c_{5} = \overline{a_{5}} \, (\varphi_{2} \vee a_{3} \vee a_{4}) & (S_{Q}^{c_{5}} = 5) \\ \varphi_{3} = \varphi_{1} \, \overline{a_{3}} & (S_{Q}^{\varphi_{3}} = 2) \\ \varphi_{0} = \varphi_{3} \, \overline{a_{2}} & (S_{Q}^{\varphi_{0}} = 2) \\ c_{1} = a_{1} \, \overline{\varphi_{0}} \vee \varphi_{0} \, \overline{a_{1}} & (S_{Q}^{c_{1}} = 6) \\ c_{2} = a_{2} \, \overline{\varphi_{3}} \vee \varphi_{0} & (S_{Q}^{c_{2}} = 4) \\ c_{3} = a_{3} \, \overline{\varphi_{1}} \vee \varphi_{3} \, \varphi_{2} & (S_{Q}^{c_{3}} = 6) \\ (S_{Q} = 36) \end{cases}$$

Синтез комбинационной схемы в булемов базисе

Будем анализировать схему на следующем наборе аргументов:

$$a_1 = 0, \ a_2 = 1, \ a_3 = 1, \ a_4 = 1, \ a_5 = 0$$

Выходы схемы из таблицы истинности:

Цена схемы: $S_Q=36$. Задержка схемы: $T=6\tau$.