Mis rayadas con los generadores

June 12, 2018

Tenemos unos hermosos potenciales generadores de $SL(2,\mathbb{Z})$, que son :

$$x = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Si asumimos que x,y generan todas las $M\in SL(2,\mathbb{Z})$ con $\|M\|_{\infty}\leq 2$, ¿podemos demostrar que $\langle x,y\rangle=SL(2,\mathbb{Z})$?

Veamos que sí, y chachi pistachi. Sea

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in SL(2, \mathbb{Z}),$$

 $\operatorname{con} \|A\|_{\infty} = a_{11} > 2$

Lo primero para ahorrarnos quebraderos de cabeza es darnos cuenta de que $|a_{11}| \neq |a_{ij}|$ para todo $ij \neq 11$, y que no puede ser que $|a_{22}| > |a_{12}|, |a_{21}|$. También es cierto que $a_{11}a_{22} \geq 0 \iff a_{12}a_{21} \leq 0$.

Con esto, la vida es más fácil.

O yo hago las cosas mal y me creo que es más fácil. Ya veremos.

Con esto, se abren ante nosotros 4 fantásticos casos en función del orden de los $|a_{ij}|$, cada uno subdividido en otros 4 según el signo de los a_{ij} . No son 8 porque hacemos la trampa de que $a_{11} > 0$.

Además, pa no repetirlo 16 veces, que que de claro que $|a_{11}|=a, |a_{12}|=b, |a_{21}|=c, |a_{22}|=d$.

- 1. $|a_{11}| > |a_{12}| \ge |a_{21}| \ge |a_{22}|$
 - **1.1.** $a_{11} > 2, a_{12} \ge 0, a_{21} \ge 0, a_{22} \ge 0$

$$AR = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ c-d & c \end{pmatrix} \qquad |a-b| < a$$

$$|c-d| < |c| < a$$