CSCE-642 Reinforcement Learning Chapter 2: Multi-armed Bandit

Instructor: Guni Sharon

CSCE-689, Reinforcement Learning

Optimal action

$$\mathbb{E}[a] = -\$0.5$$

 $\mathbb{E}[b] = -\$0.2$

 $\mathbb{E}[c] = \$0.1$

 $\mathbb{E}[d] = \$0.11$

$$\mathbb{E}[a] = ?$$

 $\mathbb{E}[b] = ?$

 $\mathbb{E}[c] = ?$

 $\mathbb{E}[d] = ?$

$$\widehat{\mathbb{E}}[a] = 1$$

-0.2, -0.2

$$\widehat{\mathbb{E}}[b] = -0.2$$

-0.5, -0.5, -0.5

$$\widehat{\mathbb{E}}[c] = -0.5$$

-2, -2

$$\widehat{\mathbb{E}}[d] = -2$$

-1, -1, 5, -1, -1, -1, -1, -1, 2, 6, -1, -1, -1, -1, -1

$$\mathbb{E}[a] = -\$0.5$$

-0.2, -0.2

-0.5, -0.5, -0.5

$$\mathbb{E}[c] = \$0.1$$

-2, -2

$$\mathbb{E}[d] = \$0.11_{6}$$

Notation

k	Number of actions (arms)
t	Discreate time step or play count
$q_*(a)$	True value (expected reward) of action a
$Q_t(a)$	Estimate of $q_*(a)$ at time step t
$N_t(a)$	Number of times action a was selected before step t
R_t	The reward observed at time step t
A_t	The action chosen at time step t

$$R = \{-1, -1, 5\}$$

$$N_{11}(a) = 3$$

$$q_*(a) = -\$0.5$$

$$Q_{11}(a) = 1$$

$$R = \{-0.2, -0.2\}$$

$$N_{11}(b) = 2$$

$$q_*(b) = -\$0.2$$

$$Q_{11}(b) = -0.2$$

$$R = \{-0.5, -0.5, -0.5\}$$

$$N_{11}(c) = 3$$

$$q_*(c) = \$0.1$$

$$Q_{11}(c) = -0.5$$

$$R = \{-2, -2\}$$

$$N_{11}(d) = 2$$

$$q_*(d) = \$0.11$$

$$Q_{11}(d) = -2$$

Greedy action = Exploit current knowledge

$$Q_{11}(b) = -0.2$$

-0.5, -0.5, -0.5

$$Q_{11}(c) = -0.5$$

$$Q_{11}(d) = -2$$

Or *Explore* for new knowledge

-1, -1, 5

 $Q_{11}(a) = 1$

-0.2, -0.2

 $Q_{11}(b) = -0.2$

-0.5, -0.5, -0.5

 $Q_{11}(c) = -0.5$

Explore or exploit?

- Short term or long-term planning?
- How confident are you regarding your current knowledge?
- The answer is usually a function of the current action-value estimations, uncertainties, and planning horizon

Action-value methods

- Assume a simple evaluation function: $Q_{t+1}(a) = \begin{cases} \frac{\sum_{t:A_t = a} r_t}{N_t(a)}, \ N_t(a) > 0\\ 0, N_t(a) = 0 \end{cases}$
- What action should be chosen next?
 - Greedy action: $A_t = \operatorname{argmax}_a Q_t(a)$
 - Exploit current knowledge to maximize immediate reward
 - Short-cited strategy
 - Never discovers more lucrative actions

ε -greedy

```
epsilon = 0.05
def get_action():
    if random.random() > epsilon:
        return argmax<sub>a</sub>(Q(a))
    else:
        return random.choice(A)
```


• If each action is sampled infinitely than $Q_t(a)$ will converge on $q_*(a)$

Example problem

- k = 10
- $A = \{1, ..., 10\}$
- $\Pr\{r|a\} \sim \mathcal{N}(q_*(a), 1)$
- The optimal policy is to always choose a_3
- But we don't know that initially

Results

- Average performance of ϵ -greedy action-value methods on the 10-armed testbed
 - $\varepsilon = 0$
 - $\varepsilon = 0.1$
 - $\varepsilon = 0.01$
- Averages over 2000 runs each with 1000 steps
- All methods used sample averages as their actionvalue estimates

Incremental sample averages

- sample averages: $Q_{t+1}(a) = \frac{\sum_{i=1}^{t} r_i}{N_t(a)}$
- Not memory and computational efficient, $O(N_t(a))$
- Temporal difference:

$$\begin{split} \bullet \quad & Q_{t+1}(a) = \frac{1}{N_t(a)} \sum_{i=1}^t r_t = \frac{1}{N_t(a)} \Big(r_t + \sum_{i=1}^{N_t(a)-1} r_i \Big) \\ & = \frac{1}{N_t(a)} \Bigg(r_t + (N_t(a) - 1) \frac{1}{N_t(a) - 1} \sum_{i=1}^{N_t(a)-1} r_i \Bigg) \\ & = \frac{1}{N_t(a)} \Big(r_t + (N_t(a) - 1) Q_t(a) \Big) = \frac{1}{N_t(a)} \Big(r_t + N_t(a) Q_t(a) - Q_t(a) \Big) \\ & = Q_t(a) + \frac{1}{N_t(a)} \big[r_t - Q_t(a) \big] \end{split}$$

- More generally:
 - $NewEstimate \leftarrow OldEstimate + w_t[Target OldEstimate]$

Nonstationary outcomes

- Averaging over samples assumes stationary distribution of outcomes
- What if the reward probabilities change over time?

Give more weight to recent observations!

Constant

•
$$Q_{t+1}(a) = Q_t(a) + \alpha [r_t - Q_t(a)]$$
 $0 < \alpha < 1$
= $\alpha r_t + (1 - \alpha)\alpha r_{t-1} + (1 - \alpha)^2 \alpha r_{t-2} + \dots + (1 - \alpha)^{t-1} \alpha r_1 + (1 - \alpha)^t Q_1(a)$

A.K.A., Exponential decay

Setting the step size α

- The learning rate cannot be too large
 - Won't converge
- Or to small
 - Premature convergence
- Good practice: Start large and decrease
 - E.g., $\alpha_t(a) = \frac{1}{N_t(a)}$ (results in sample averages)
- Conditions that guarantee convergance to optimum (global if assuming convexity)
 - $\bullet \sum_t \alpha_t(a) = \infty$

Quiz

- Different learning rates are utilized in different applications
- Which of the following rates guarantees convergence?

$\alpha_t =$	$\sum_T lpha_t$	$\sum_{T} lpha_{m{t}}^2$
$1/t^{2}$		
1/t		
$1/t^{2/3}$		
$1/t$ $1/t^{2/3}$ $1/t^{1/2}$ $1/100$		
1/100		

$$\sum_{i} \frac{1}{i^c}$$
 converges if $c > 1$

Initial Q values + greedy

•
$$Q_{t+1}(a) = \begin{cases} Q_t(a) + \alpha_t[r_t - Q_t(a)], & N_t(a) > 0 \\ ?, & N_t(a) = 0 \end{cases}$$

- What would happen if we set the default value to the minimal achievable outcome?
 - Initial values introduce bias
- What would happen if we set the default value to the maximal achievable outcome?
 - Initial values can encourage exploration!

10-bandits problem

- k = 10
- $A = \{1, ..., 10\}$
- $\Pr\{r|a\} \sim \mathcal{N}(q_*(a), 1)$
- $\max[q_*(a)] = 3$
- $\alpha = 0.1$
- Setting initial value to 5 and then following greedy selection is more effective than ε -greedy

Optimistic initial Q values

- Powerful for stationary outcomes
- Unlikely to help with the general nonstationary case. Why?
 - Encourages exploration at early stages
 - Exploration incentive decays over time

Exploration strategy

- Exploration is constantly needed as there is always uncertainty about the action-value (Q) estimates
- The greedy actions are those that look best at present, but some of the other actions may actually be better
- ε-greedy action selection forces the non-greedy actions to be tried, but indiscriminately, with no preference for those that are nearly greedy or particularly uncertain
- It would be better to select among the non-greedy actions according to their potential for actually being optimal, taking into account both how close their estimates are to being maximal and the uncertainties in those estimates

Upper-Confidence-Bounds action selection

•
$$A_{t+1} = \operatorname{argmax}_{a} \left[Q_{t}(a) + c \sqrt{\frac{\ln t}{N_{t}(a)}} \right]$$

- c > 0 is a parameter for controlling the degree of exploration
- Provides a "bonus" in value estimation for underexplored actions
- Each time a is selected the uncertainty is presumably reduced: $N_t(a)$ increments, and, as it appears in the denominator, the uncertainty term decreases
- On the other hand, each time an action other than a is selected, t increases but $N_t(a)$ does not; because t appears in the numerator, the uncertainty bonus increases
- The use of the natural logarithm means that the increases get smaller over time, but are unbounded
- All actions will eventually be selected, but actions with lower value estimates, or that have already been selected frequently, will be selected with decreasing frequency over time.

10-bandits problem

- k = 10
- $A = \{1, ..., 10\}$
- $\Pr\{r|a\} \sim \mathcal{N}(q_*(a), 1)$
- $\max[q_*(a)] = 3$
- $\alpha = 0.1$

Policy-based algorithms

- Forget about action-value (Q) estimates, we don't really care about them
- We care about what actions to chose
 - Let's assign a preference to each action and tweak its value
- Define $H_t(a)$ as a numerical score associated with action a
- Which action is selected?
 - $A_t = \underset{a}{\operatorname{argmax}}[H_t(a)]$
 - Hardmax results in no exploration -- deterministic action selection
 Softmax!

Softmax function (Boltzmann distribution)

- Input: vector of scores
- Output: vector of probabilities forming a valid distribution

•
$$\Pr\{a_t = a\} = \frac{e^{H_t(a)}}{\sum_{a' \in A} e^{H_t(a')}} = \Pr(a)$$

•
$$H_t \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{bmatrix} 6 \\ 9 \\ 2 \end{bmatrix}$$

• softmax $\begin{pmatrix} 6 \\ 9 \\ 2 \end{pmatrix} = \begin{bmatrix} 0.047 \\ 0.952 \\ 0.00087 \end{bmatrix}$

• That is, with Pr(0.95) choose a_2 , Pr(0.05) choose a_1 , and Pr(0.01) choose a_3

Softmax function

- Exploration checked!
- Softmax provides another important attribute a differentiable policy
- Say that we learn that action a_1 results in good relative performance
- Hardmax: $A_t = \underset{a}{\operatorname{argmax}}[H_t(a_1), H_t(a_2), H_t(a_3)]$
 - Change $H(a_1)$ such that $\Pr(a_1)$ is increased, $\frac{\partial \Pr(a_1)}{\partial H(a_1)} = NA$
- Softmax: $\Pr(a_1) = \frac{e^{H_t(a)}}{\sum_{a' \in A} e^{H_t(a')}}$
 - Change $H(a_1)$ such that $\Pr(a_1)$ is increased -> update towards $\frac{\partial \Pr(a_1)}{\partial H(a_1)}$

Gradient ascend

•
$$H_{t+1}(A_t) = H_t(A_t) + \alpha (R_t - \overline{R_t}) \frac{\partial \Pr(A_t)}{\partial H(A_t)}$$
 ?
• $\forall a \neq A_t, H_{t+1}(a) = H_t(a) + \alpha (R_t - \overline{R_t}) \frac{\partial \Pr(A_t)}{\partial H(a)}$

- Update the preferences based on observed reward and a baseline reward $(\overline{R_t})$
- If the observed reward is larger than the baseline:
 - Increase the preference of the chosen action, A_t
 - Decrease the preference of all other actions, $\forall a \neq A_t$
- Else do the opposite

Softmax derivative

$$H_{i} := H(a_{i})$$

$$p_{i} := \Pr(a_{i})$$

$$\bullet \frac{\partial p_{i}}{\partial H_{j}} = \frac{\partial \frac{e^{H_{i}}}{\sum_{k} e^{H_{k}}}}{\partial H_{j}}$$

•
$$f = e^{H_i}$$
, $g = \sum_k e^{H_k}$

• Case
$$i = j$$
:

•
$$\frac{\partial p_i}{\partial H_j} = \frac{e^{H_i}g - e^{H_i}e^{H_j}}{g^2} = \frac{e^{H_i}}{g} \cdot \frac{g - e^{H_j}}{g} = p_i(1 - p_j) = p_j(1 - p_j)$$

• Case $i \neq j$:

$$\bullet \frac{\partial p_i}{\partial H_j} = \frac{0g - e^{H_i} e^{H_j}}{g^2} = -\frac{e^{H_i}}{g} \cdot \frac{e^{H_j}}{g} = -p_i p_j$$

 $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$

Softmax derivative

• softmax
$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

- Partial derivative relates to a given input/output pair
 - Jacobian matrix with entries: H_i , p_i

$$\bullet \frac{\partial p_i}{\partial H_j} = \begin{cases} p_i (1 - p_j), & i = j \\ -p_j p_i, & i \neq j \end{cases}$$

Log-likelihood (gradient ascend)

•
$$H_{t+1}(A_t) = H_t(A_t) + \alpha (R_t - \overline{R_t}) \frac{\partial \Pr(A_t)}{\partial H(A_t)}$$

•
$$\forall a \neq A_t, H_{t+1}(a) = H_t(a) + \alpha (R_t - \overline{R_t}) \frac{\partial \Pr(A_t)}{\partial H(a)}$$

- Replace $Pr(A_t)$ with $log(Pr(A_t))$
- How does $\frac{\partial \log(\Pr(A_t))}{\partial H(A_t)}$ behave?
- How is it different from $\frac{\partial \Pr(A_t)}{\partial H(A_t)}$?
- Provides a helpful gradient!

Softmax derivative with log-likelihood

$$\bullet \frac{\partial p_i}{\partial H_j} = \begin{cases} p_i(1 - p_i), & i = j \\ -p_j p_i, & i \neq j \end{cases}$$

$$\bullet \frac{\partial \log(p_i)}{\partial H_j} = \begin{cases} \left(1 - p_j\right), & i = j \\ -p_j, & i \neq j \end{cases}$$
 Not depended on p_i

Softmax derivative with log-likelihood

•
$$\frac{\partial p_{i}}{\partial a_{j}} = \begin{cases} p_{i}(1-p_{j}), & i=j\\ -p_{j}p_{i}, & i\neq j \end{cases}$$
• $\frac{\partial \log(p_{i})}{\partial a_{j}} = \begin{cases} (1-p_{j}), & i=j\\ -p_{j}, & i\neq j \end{cases}$
• $H_{t+1}(A_{t}) = H_{t}(A_{t}) + \alpha(R_{t} - \overline{R_{t}}) \Pr(A_{t}) (1 - \Pr(A_{t}))$
• $\forall a \neq A_{t}, H_{t+1}(a) = H_{t}(a) - \alpha(R_{t} - \overline{R_{t}}) \Pr(A_{t}) \Pr(a)$
• $H_{t+1}(A_{t}) = H_{t}(A_{t}) + \alpha(R_{t} - \overline{R_{t}}) (1 - \Pr(A_{t}))$
• $\forall a \neq A_{t}, H_{t+1}(a) = H_{t}(a) - \alpha(R_{t} - \overline{R_{t}}) \Pr(a)$

Baseline, $\overline{R_t}$?

$$\begin{aligned} H_{t+1}(A_t) &= H_t(A_t) + \alpha (R_t - \overline{R_t}) (1 - \Pr(A_t)) \\ \forall \alpha \neq A_t, H_{t+1}(\alpha) &= H_t(\alpha) - \alpha (R_t - \overline{R_t}) \Pr(\alpha) \end{aligned}$$

- If observed reward is bigger than baseline:
 - Increase the score of the chosen action, A_t
 - Decrease the score of all other actions, $\forall a \neq A_t$
- Else do the opposite

H(a)	3	2	1
Pr(a)	0.665	0.245	0.09
R	2	8	1

Baseline, $\overline{R_t}$?

 $H_{t+1}(A_t) = H_t(A_t) + \alpha (R_t - \overline{R_t})(1 - \Pr(A_t))$ $\forall a \neq A_t, H_{t+1}(a) = H_t(a) - \alpha (R_t - \overline{R_t}) \Pr(a)$

*In this example we are updating each machine assuming it was played and the affiliated R_{t} was observed

Observed reward

Update direction for various baseline values

	H(a)	3	2	1		
	Pr(a)	0.665	0.245	0.09		
d	R_{t}	2	8	1		
$(R_t - \overline{R_t})(1 - \Pr(A_t))$						
	$\overline{R_t} = 10$	-2.68	-1.51	-8.19		
9	$\overline{R_t} = 3$	-0.34	3.78	-1.82		
	$\overline{R_t} = -3$	1.68	8.31	3.64		

Which baseline value makes most sense?

Setting $\overline{R_t} = \frac{1}{t} \sum_t r$ is usually a good choice

*More on choosing a baseline later

Baseline impact

- Average performance of gradient ascend
- With baseline: $\overline{R_t} = \frac{1}{t} \sum_t r$
- No baseline: $\overline{R_t} = 0$
- 10-armed example problem

What did we learn?

- Problem: choose the action that results in highest expected reward
- **Assumptions**: (1) actions' expected reward is unknown, (2) we are confronted with the same problem over and over, (3) we are able to observe an action's outcome once chosen
- Approach: learn the actions' expected reward through exploration (value based) or learn a policy directly (policy based), exploit learnt knowledge to choose best action
- Methods: (1) greedy + initializing estimates optimistically, (2) epsilon-greedy, (3) Upper-Confidence-Bounds, (4) gradient ascend + soft-max
- Which works best?

Overall results

- A parameter study of the various bandit algorithms
- Each point is the average reward obtained over 1000 steps with a particular algorithm at a particular setting of its parameter

Next...

• Class:

Markov Decision Processes

Assignments:

- Quiz Multi Armed Bandits on Canvas by Sep-3, EOD.
- Go over tutorials
 - Linear algebra
 - Basic probability
 - Python
 - Numpy
 - Gym (OpenAI)

• Project:

- Go over the project description and timeline
- Find a partner (a relevant discussion board is available on Campuswire)