AE 6230 - HW2: Response of SDOF Systems and Equations of MDOF Systems

Out: September 29, 2022; Due: October 6, 2022 by 11:59 PM ET in Canvas

Guidelines

- Read each question carefully before doing any work;
- If you find yourself doing pages of math, pause and consider if there is an easier approach;
- You can consult any relevant materials;
- You can discuss solution approaches with others, but your submission must be your own work;
- If you have doubts, please ask questions in class, during office hours, and/or Piazza (no questions via email);
- The solution to each question should concisely and clearly show the steps;
- Simplify your results as much as possible;
- Box the final answer for each question;
- Submit any code with the solution (but remember to also submit all relevant plots).

Problem 1 – 40 points

Figure 1: Periodic excitation applied to a single-degree-of-freedom system.

Consider a single-degree-of-freedom system subject to the periodic excitation in Fig. 1, with parameters given in Table 1. Answer the following questions:

1. Determine the expressions of the coefficients of the Fourier series representation of F(t)

$$F(t) = \frac{a_0}{2} + \sum_{p=1}^{\infty} a_p \cos p\omega_0 t + \sum_{p=1}^{\infty} b_p \sin p\omega_0 t$$
 (1)

2. Plot the discrete frequency spectrum associated with Eq. (1)

$$c_p = \sqrt{a_p^2 + b_p^2} \text{ vs. } p \tag{2}$$

for p = 0, ..., 12;

- 3. Determine how many terms must be kept in Eq. (1) such that the highest-order harmonic has an amplitude below $0.05F_0$, $0.025F_0$, and $0.005F_0$;
- 4. Plot the truncated Fourier series representations of F(t) identified via the convergence study in Question 3 against the true function in Fig. 1 for $t \in [0, T]$;
- 5. Determine the expression of the steady-state response of the system x(t) subject to F(t);
- 6. Plot the discrete frequency spectrum for with x(t) (that is, the amplitude of each harmonic) for $p = 0, \dots, 12$;
- 7. Plot x(t) for each truncated Fourier series representation of F(t) identified in Question 3 for $t \in [0, T]$;
- 8. Motivate the trends observed in the plots for Questions 2, 4, 6, 7 for increasing p.

Guidelines:

- Questions 1 and 5: do not substitute the values of the parameters for these questions;
- Question 3: you can solve this analytically or numerically (or both).

Table 1: Parameter values for Problem 1.

Parameter	Symbol	Value
Excitation peak value	F_0	1 N
Excitation period	T	0.2 s
Natural frequency	ω_n	$5\omega_0$
Viscous damping factor	ζ	0.05
Stiffness constant	k	10 N/m

Problem 2 – 35 points

Figure 2: Trapezoidal input applied to a single-degree-of-freedom system.

Consider a single-degree-of-freedom system subject to the input in Fig. 2, with parameters in Table 2. Assuming the system at rest for $t \le 0$ and neglecting damping, answer the following questions:

1. Using the convolution integral, show that the response for $0 \le t \le T_1$ is given by

$$x(t) = \frac{x_s}{T_1 \omega_n} \left(\omega_n t - \sin \omega_n t \right) \tag{3}$$

where $\omega_n = 2\pi/T_n$ is the natural frequency of the system and $x_s = F_0/k$ is the response for a static input having the same amplitude as the trapezoidal input in Fig. 2;

- 2. Considering the other time intervals $T_1 \le t \le T_1 + T_2$, $T_1 + T_2 \le t \le 2T_1 + T_2$, and $t \ge 2T_1 + T_2$
 - (a) Explain the approach you pursue to determine x(t);
 - (b) Derive the expression of x(t) specialized to each time interval;
- 3. Plot $x(t)/x_s$ for $T_1 = 0.1T_n, 0.5T_n, T_n, 1.5T_n, 2T_n, 2.5T_n$ for $t \in [0, 1.5]$ s and $x(t)/x_s \in [-2, 2]$;
- 4. Determine the maximum value of $x(t)/x_s$ in the time interval $T_1 \le t \le T_1 + T_2$ as a function of T_1/T_n ;
- 5. Plot the result from Question 4 for $T_1/T_n \in [0, 4]$;
- 6. Discuss the trends in the results for Question 3 and 5.

Guidelines:

• Question 4: you can use the plots from Question 3 to check the results for this question.

Table 2: Parameter values for Problem 2.

Parameter	Symbol	Value
Time length of constant input	T_2	0.5 s
Natural frequency of the system	ω_n	$20\pi \text{ rad/s}$

Problem 3 – 25 points

Figure 3: Schematic of wind-tunnel wing model undergoing plunge and pitch vibrations.

Consider a rigid wing mounted in a wind-tunnel test section (Fig. 3). The wing undergoes plunge (vertical translation) and pitch vibrations, which are restrained by two springs attached to the quarter-chord and trailing-edge points as shown in Fig. 3. The wing has mass m and pitch moment of inertia J_C about the center of mass C, located at the half-chord point. The chord has length 2b and the two springs both have spring constant k. The motion is described by choosing the vertical translations of the leading-edge and trailing-edge points, denoted by $h_{LE}(t)$ and $h_{TE}(t)$, as the generalized coordinates. The traslations are assumed to be positive in the upward direction and are measured from the horizontal configuration in Fig. 3. Neglecting gravity and assuming small-amplitude motions, answer the following questions:

- 1. Write the kinetic and potential energies of the system as functions of $h_{LE}(t)$ and $h_{TE}(t)$;
- 2. Derive the equations of motion in the matrix form

$$\mathbf{M} \begin{Bmatrix} \ddot{h}_{LE}(t) \\ \ddot{h}_{TE}(t) \end{Bmatrix} + \mathbf{K} \begin{Bmatrix} h_{LE}(t) \\ h_{TE}(t) \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$
(4)

using Lagrange's equations;

- 3. Define a coordinate transformation that results in inertial decoupling (but not necessarily elastic decoupling) and derive the corresponding transformation matrix **T**;
- 4. Obtain the new mass and stiffness matrices based on the transformation matrix from Question 3;
- 5. Derive the equations of motion using the Netwonian approach based on the free-body diagram for the system (to be included in the solution) and compare the results with Question 4.

Guidelines:

- Question 2: show the steps in the process, not only the final form of the matrices;
- Question 4: you can verify the results by obtaining the new matrices directly from Lagrange's equations.