< 고객데이터 전처리 >

Raw 데이터는 데이터 편향성도 짙고(Long tail) 원하는 고객세분화가 나올 것 같지 않아서 전처리를 하기로 함

1. RFM Score

R 칼럼은 비교적 원하는 방향성을 갖고 있으므로 단순히 qcut을 통해서 %별로 나눔

따라서 F, M 칼럼에 대해서 기준을 가지고 섹션을 나누기로 함데이터셋을 outlier를 기준으로 나눔
(MIN~이상치 이전의 데이터셋 [A] / 이상치 이후의 데이터셋~MAX [B])

1-1. 4 Section

min~A.mean / ~outlier / ~B.mean / ~max

1-2. 5 Section

B 에서도 이상치가 있을 것이니 그것을 기준으로 또 나눠봄 [C] min~A.mean() / ~outlier / ~B.mean() / ~C / ~max

2. Robust Scaling

중앙값과 IQR을 사용하기 때문에 이상치가 많고, 민감한 데이터여도 이상치의 영향을 줄일 수 있다.

3. Log Scaling

데이터가 급격하게 변하는 양상이므로 적합하다

< Cluster 후보 >

K-mean 클러스터링을 바탕으로 진행하기로 하고

1. Loss Function 이 작은 스케일링 기법을 선택하고 2. ElbowMethod 에서 나온 K 값을 썼을 때 3. Silhouette Score 를 비교하자

	Loss	Elbow	Silhouette
1-1	779	4	0.5237
1-2	1182	4	0.4325
2	1477	4	0.4621
3	1961	4	0.3710

>> 결과적으로 1-1. RFM(4) Score 로 전처리한 데이터셋 사용

< 클러스터 확인 >

	고객수	R	F	М
0	195	\uparrow	\uparrow	1
1	390	\downarrow	\downarrow	\downarrow
2	351	\	↑	↑
3	532	↑	\	↓

	T	
	해석	등급
0	높은 방문율과 구매율을 가졌지만 방문이 뜸해진 고객	재구매 유도 고객
1	자주 방문하지만 높은 실적을 남기진 않는 금액	일반 고객
2	최근까지도 방문하며 매장에 이익을 가져다 주는 우수 고객	프리미엄 고객
3	방문도 뜸하고 구매율이 적은 고객	이탈 위험 고객

< 데이터 확인(평균) >

	R	F	М
전체	145	36	2964
0	229	62	4822
1	63	14	1149
2	57	80	7154
3	232	12	849

< 클러스터 분포 >

