MAT377 Lecture Notes

ARKY!! :3C

'24 Fall Semester

Contents

1	Day 1: Introduction to Probability (Sep. 4, 2024)	2
2	Day 2: Expectations and Distributions (Sep. 9, 2024)	4
3	Day 3: Distributions, Stability Property, Moments (Sep. 11, 2024)	9

§1 Day 1: Introduction to Probability (Sep. 4, 2024)

Link to textbook.

We start with a sampler problem that on the surface, seems unrelated to probability. Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be unit vectors on the unit sphere, i.e.t $||v_i|| = 1$. If we are to pick $\varepsilon_i = \{-1, 1\}$ at random, what is our expectation on how large will

$$\sum_{i=1}^{n} \varepsilon_i v_i$$

be? We could brute force and average out over all probabilities as follows,

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left(\sum_{i=1}^n \varepsilon_i v_i \right) = \sum_{i=1}^n \left(\frac{1}{2^n} \sum_{\underbrace{\varepsilon \in \{-1,1\}^n}_{=0}} \varepsilon_i \right) v_i = 0.$$

Now, consider that

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left| \sum_{i=1}^n \varepsilon_i v_i \right|^2 = \frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \sum_{i_1,i_2=1}^n \varepsilon_{i_1} \varepsilon_{i_2} \left\langle v_{i_1}, v_{i_2} \right\rangle \\
= \sum_{i_1,i_2=1}^n \left(\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \varepsilon_{i_1} \varepsilon_{i_2} \right) \left\langle v_{i_1}, v_{i_2} \right\rangle$$

To simplify the bracketed summation, we could consider the following two cases:

• If $i_1 \neq i_2$, we would have that

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \varepsilon_{i_1} \varepsilon_{i_2} = \frac{2^{n-2}}{2^n} \sum_{\substack{\varepsilon_{i_1} \in \{-1,1\} \\ \varepsilon_{i_2} \in \{-1,1\}}} \varepsilon_{i_1} \varepsilon_{i_2} = 0.$$

• If $i_1 = i_2$, we would have

$$\frac{1}{2^n}\sum_{\varepsilon\in\{-1,1\}^n}\varepsilon_{i_1}\varepsilon_{i_2}=\frac{2^{n-1}}{2^n}\sum_{\varepsilon_i\in\{-1,1\}}\varepsilon_{i_1}\varepsilon_{i_2}=1.$$

By linearity of expectation, we obtain

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left| \sum_{i=1}^n \varepsilon_i v_i \right|^2 = n,$$

and

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left| \sum_{i=1}^n \varepsilon_i v_i \right| = c\sqrt{n},$$

where c is a positive real constant.

We now abstract a few probability terms;

- Ω is a sample space, i.e. the set of possible outcomes.
- Let P denote probability, i.e. a mapping of subsets of Ω to [0,1] (read: probability of getting these subsets of Ω); the probability of an event ε out of S occurring is given by $P(\varepsilon \in S, S \subset \{-1,1\}^n) = \frac{1}{|S|}$, assuming that each event in S is equally likely. With this, we have three important properties of P to define:
 - 1. $P(\Omega) = 1$; the chance of an event in the probability space happening is 1.
 - 2. Let \mathcal{F} be a collection of subsets A_1, \ldots, A_n . Then

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i),$$

given that $A_i \cap A_j = \emptyset$ for all $1 \le i, j \le n$. This is linearity of expectation.

- 3. $P(A^C) = 1 P(A)$, which is a property of set complement.
- When our collection \mathcal{F} of subsets of Ω satisfy the following properties, we call it a σ -algebra:
 - 1. $\emptyset \in \mathcal{F}$,
 - 2. Closed under countable union: $A_n \in \mathcal{F} \implies \bigcup_{i=1}^n A_i \in \mathcal{F}$,
 - 3. Closed under complement: $A_i \in \mathcal{F} \implies A_i^C \in \mathcal{F}$.

In a finite sample space, the power set $\mathcal{F} = \mathcal{P}(\Omega)$ is one such example of a σ -algebra. As an example, let $\Omega = [0,1)$; then P([a,b]) = b - a (wlog, let a < b). Now, let $\mathcal{F} = \mathcal{P}([0,1))$. Define the equivalence $x \sim y$ if $x - y \in \mathbb{Q}$.

• We now introduce the axiom of choice; Let A be a set containing one element of each equivalence class from the above defined equivalence. Consider $\tau_q A := \{A\} + q$; let us claim that

$$\bigcup_{q \in \mathbb{Q}} \tau_q A = [0, 1),$$

which is a countable union of [0,1), since \mathbb{Q} is countable. We have that $P(A) = P(\tau_q A)$ because intervals don't change size under shifting by q. However, observe that

$$P([0,1)) = P\left(\bigcup_{q \in \mathbb{Q}} \tau_q A\right) = \sum_{q \in \mathbb{Q}} P(\tau_q A).$$

Then either

$$P(A) = 0 \implies P(\tau_q A) = 0 \implies P([0, 1)) = 0, \text{ or}$$

 $P(A) \neq 0 \implies P(\tau_q A) \to \infty \implies P([0, 1)) \to \infty,$

which doesn't make sense (for now). This shows that we need to pick our σ -algebra properly; observing that the intersection of two σ -algebras is also a σ -algebra, it is appropriate to let \mathcal{F} be the smallest σ -algebra containing [a,b). This is called a Borel Set.¹

¹this is confusing. ill check later

§2 Day 2: Expectations and Distributions (Sep. 9, 2024)

Course administrative details first; starting next week, office hours will be held on Monday from 11:15am to 12:15pm. Recap of last lecture:

- A probability space Ω is the set of all possible outcomes of an "experiment," i.e. a countable set of individual events $\{\omega_1, \ldots, \omega_n\}$ (we will cover continuous probability later on).
- $\mathcal{F} = \mathcal{P}(\Omega)$ is the set of all subsets of Ω .
- $P(A) = \sum_{\omega \in \Omega} P(\omega)$ is the probability of an outcome in $A \in \mathcal{F}$ occurring.

A random variable X is a function $\Omega \to \mathbb{R}$, aka the measurement of the event, and the expectation of the random variable, EX, is given by $\sum_{\omega \in \Omega} X(\omega) P(\omega)$. Is expectation well behaved? No. For example, consider the St. Petersburg Paradox; suppose you are playing a game in the casino; every time you flip a coin, your prize money doubles if it lands on heads (read: double or nothing lfg!!!). Then we may consider the set of outcomes to be the number of consecutive heads, i.e.

$$\Omega = \{1, 2, 3, \dots\},$$

$$P(n) = \frac{1}{2^n},$$

$$X(n) = 2^n.$$

Clearly, the chance of getting n heads in a row is 2^{-n} , and assuming your prize money started at 1 dollar, you would win 2^n dollars for said n heads. Taking the expectation of this game, we find

$$EX = \sum_{n=1}^{\infty} 2^n \cdot \frac{1}{2^n} = \sum_{n=1}^{\infty} 1 = \infty.$$

It doesn't make sense to expect to win infinite amounts of money from this game² unless you had unlimited wealth to start with. With this in mind, we insist on

$$\sum_{\omega \in \Omega} |X(\omega)| P(\omega) < \infty$$

within the context of this class.

Theorem 2.1 (Linearity of Expectation). X is linear; i.e., E[ax + by] = aEx + bEy.

We start with a lemma:

Lemma 2.2. Let us have a bijective map $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Then

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{\pi(n,m)}$$

if all $c_n \geq 0$ or if either side is absolutely convergent.

²martingale strat lfg.,..

We proceed to prove this with casework.

• Suppose $c_n \geq 0$; then using the bijective nature of π , we may choose large enough N, M such that

$$\sum_{n=1}^{K} c_n \le \sum_{n=1}^{N} \sum_{m=1}^{M} c_{\pi(n,m)}$$

for any choice of K. Conversely, we may pick

$$\sum_{n=1}^{N} \sum_{m=1}^{M} c_{\pi(n,m)} \le \sum_{n=1}^{K} c_n$$

for any N, M by picking $k \ge \max_{\substack{1 \le n \le N \\ 1 \le m \le M}} \{\pi(n, m)\}$. Now, let $M \to \infty$; we have

$$\sum_{n=1}^{N} \sum_{m=1}^{\infty} c_{\pi(n,m)} \le \sum_{n=1}^{\infty} c_n,$$

then let $N \to \infty$ to get

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{\pi(n,m)} \le \sum_{n=1}^{\infty} c_n.$$

As per earlier, we also see that LHS is greater or equal to RHS, which implies equality. \Box

• Now, suppose $\sum_{n=1}^{\infty} |c_n| < \infty$. Let $c_n = a_n - b_n$, where $a_n = c_n \mathbb{1}(c_n \geq 0)$ and $b_n = c_n \mathbb{1}(c_n < 0)$. Then we obtain

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{\pi}(n, m), \qquad \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{\pi}(n, m)$$

as per our proof above. Summing both, we conclude that equality holds for absolute convergence as well. \Box

For now, let X take values $\{a_1, a_2, \dots\}$ (countably many). Consider

$$P'(a_n) = P(X = a_n) = P(\underbrace{\{\omega \mid X(\omega) = a_n\}}_{X^{-1}(a_n)})$$

as the probably of a pre-image (or, $P' = P \circ X$). We see that P' is a probability on \mathbb{R} (concentrated on $\{a_1, a_2, \dots\}$), and $0 \leq P'(a_n) \leq 1$ for any n; from now, we will call P' a distribution of X. Here are some examples of distributions:

• The Bernoulli distribution: let $0 \le p \le 1$. Then consider a coin with p chance to land on heads, and 1-p on tails; then Ber_p is given by $\Omega = \{H, T\}$,

$$X(H) = 1, P(X = 1) = p,$$

 $X(T) = 0, P(X = 0) = 1 - p.$

• Flip N coins, with $X = \{0, 1, ..., N\}$ being the number of heads we obtain. Then

$$P(X = \ell) = \binom{N}{\ell} p^{\ell} (1 - p)^{N - \ell},$$

and the expected value is given by

$$EX = \sum_{\ell=0}^{N} \ell \binom{N}{\ell} p^{\ell} (1-p)^{N-\ell}.$$

Using linearity of expectation, we see $EX = EX_1 + \cdots + EX_n = Np$ by separating each coinflip.

Expectation enjoys the change of variables property;³

$$EX = \sum_{\omega \in \Omega} X(\omega) P(\omega) = \sum_{n=1}^{\infty} a_n P'(a_n).$$

To see this, consider partioning the probability space Ω into $X^{-1} = \{\omega_{nm} \mid 1 \leq m \leq M_n\}$ in terms of their measurement from X (where $X(\omega_{ni}) = X(\omega_{nj}) = a_n$ for any $1 \leq i, j \leq M_n$)⁴, and write

$$\sum_{\omega \in \Omega} X(\omega) P(\omega) = \sum_{n=1}^{\infty} \sum_{m=1}^{M_n} X(\omega_{nm}) P(\omega_{nm}),$$
 (by Lemma)

where we may note that mapping each individual $\omega \in \Omega$ to some index nm is bijective since it is a partition. We continue by writing

$$= \sum_{n=1}^{\infty} \sum_{m=1}^{M_n} a_n P(\omega_{nm}) = \sum_{n=1}^{\infty} a_n \left(\sum_{m=1}^{M_n} P(\omega_{nm}) \right)$$
$$= \sum_{n=1}^{\infty} a_n P(X = a_n),$$

where we may note $P(X = a_n) = P'(a_n)$.

The probability distribution of any given random variable X also approaches 0 at its tail. Specifically, we have that $\lim_{t\to\infty} P(x\geq t)=0$. To prove this, we start by observing that $P(x\geq t)$ is monotone decreasing; consider

$$P(X \ge n) = \sum_{m=n}^{\infty} P(m \le X < m+1).$$

Clearly, the sum is convergent, as the sum of probabilities is equal to 1. Using the fact that the tail of a convergent series approaches 0, we conclude that $P(m \le X < m+1) \to 0$ as $m \to \infty$, and so $P(X \ge n) \to 0$ as $n \to \infty$.

³read: sum of value of outcome multiplied by the chance it occurs over all ω is the same as going over each value individually and multiplying the chance you roll into it

⁴read M_n as a counter of how many outcomes in Ω have the same measurement of a_n

Lemma 2.3 (Expectation of Random Variable in terms of Integral). The expectation of a random variable X may be expressed as $EX = \int_0^\infty P(X \ge t) dt$ for $X \ge 0.5$

Let us start by considering the case where X takes integer values only;

$$EX = \sum_{n=1}^{\infty} nP(X = n) = \sum_{n=1}^{\infty} \sum_{m=1}^{n} P(X = n)$$
$$= \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} P(X = n)$$
$$= \sum_{m=1}^{\infty} P(X \ge m).$$

For the general case, let us start by writing $a_n = \int_0^\infty 1(t \le a_n) dt$ by the layer cake decomposition. Then

$$EX = \sum_{n=1}^{\infty} a_n P(X = a_n) = \sum_{n=1}^{\infty} \left(\int_0^{\infty} 1(t \le a_n) dt \right) P(X = a_n)$$

$$\stackrel{(*)}{=} \int_0^{\infty} \left(\sum_{n=1}^{\infty} 1(t \le a_n) P(X = a_n) \right) dt \qquad (Fubini)$$

$$= \int_0^{\infty} \sum_{a_n \ge t} P(X = a_n) dt$$

$$= \int_0^{\infty} P(X \ge t) dt$$

To resolve (*) without the use of Fubini's theorem, we may write

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} 1(t \le a_{n}) P(X < a_{n}) dt = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{m-1}^{m} 1(t \le a_{n}) P(X = a_{n}) dt$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{m-1}^{m} 1(t \le a_{n}) P(X \ge a_{n}) dt$$

$$= \sum_{m=1}^{\infty} \lim_{N \to \infty} \sum_{n=1}^{N} \int_{m-1}^{m} 1(t \le a_{n}) P(X \ge a_{n}) dt$$

$$= \sum_{m=1}^{\infty} \lim_{N \to \infty} \int_{m-1}^{m} \left(\sum_{n=1}^{N} 1(t \le a_{n}) P(X \ge a_{n}) \right) dt$$

$$= \sum_{m=1}^{\infty} \int_{m-1}^{m} \left(\lim_{N \to \infty} \sum_{n=1}^{N} 1(t \le a_{n}) P(X \ge a_{n}) \right) dt$$

$$= \int_{0}^{\infty} \left(\sum_{n=1}^{\infty} 1(t \le a_{n}) P(X = a_{n}) \right) dt,$$

which we conclude by removing the auxiliary summations, since it is enough to know that $\sum_{n=1}^{N} 1(t \leq a_n) P(X = a_n) \to \sum_{n=1}^{\infty} 1(t \leq a_n) P(X = a_n)$ uniformly in $t \in [m-1, m]$; i.e.,

$$\left| \sum_{n=N+1}^{\infty} 1(t \le a_n) P(X = a_n) \right| \le \sum_{n=N+1}^{\infty} P(X = a_n) \to 0$$

as $N \to \infty$ as per earlier (since the tail goes to 0).

⁵intuition: layer cake formula, but compile them together in level sets.

We also briefly went over examples multinomial distributions at the end of class;

• Suppose X_1, \ldots, X_n are independent, and let $P(X_i = j) = p_j$ for $j = 1, \ldots, k$. Let $\Omega = \{n_1, \ldots, n_k\}, n_j \geq 0, n_1 + \cdots + n_k = n\}$ (read: k-sided dice rolled n times, where n_j denotes the number of times j came up). Then

$$P((n_1, \dots, n_k)) = \binom{n}{n_1, \dots, n_k} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}.$$

• The geometric distribution; let 0 denote the probability of getting a head, and let us toss a coin until we get a heads. Let the outcome of <math>X denote the number of tosses it took. Then

$$P(X = n) = (1 - p)^{n-1}p,$$

and we may check $\sum_{n=1}^{\infty} P(x=n) = 1$ by geometric series.

• The Poisson distribution; let $\lambda > 0$. Then

$$P(X=n) = \frac{\lambda^n}{n!}e^{-\lambda}$$

for $n = 0, 1, 2, \dots$

§3 Day 3: Distributions, Stability Property, Moments (Sep. 11, 2024)

Recall the Poisson distribution

$$P(X=n) = \frac{\lambda^n}{n!}e^{-\lambda}$$

where $n = 0, 1, \ldots$ and $\lambda > 0$. We introduce the stability property: let us consider the independent random variables X_1, X_2 distributed as follows,

$$X_1 \sim \operatorname{Poiss}_{\lambda_1},$$

 $X_2 \sim \operatorname{Poiss}_{\lambda_2}.$

Then we have that $X_1 + X_2 \sim \text{Poiss}_{\lambda_1 + \lambda_2}$. To prove this, write

$$P(X_1 + X_2 = n) = \sum_{m=0}^{n} P(X_1 = m, X_2 = n - m)$$

$$= \sum_{m=0}^{n} P(X_1 = m) P(X_2 = n - m)$$

$$= \sum_{m=0}^{n} \frac{\lambda_1^m}{m!} e^{-\lambda_1} \frac{\lambda_2^{m-2}}{(m-n)!} e^{-\lambda_2}$$

$$= \frac{1}{n!} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \lambda_1^m \lambda_2^{n-m} e^{-(\lambda_1 + \lambda_2)}$$

$$= \frac{1}{n!} (\lambda_1 + \lambda_2)^n e^{-(\lambda_1 + \lambda_2)}.$$

Binomials also have a related property; let

$$X_1 \sim \text{Bin}(n_1, p),$$

 $X_2 \sim \text{Bin}(n_2, p).$

Given that X_1, X_2 are independent, we know that $X_1 + X_2 \sim \text{Bin}(n_1 + n_2, p)$. To prove this, we may just write

$$X_1 = y_1 + \dots + y_{n_1},$$

$$X_2 = y_{n_1+1} + \dots + y_{n_1+n_2},$$

$$X_1 + X_2 = y_1 + \dots + y_{n_1+n_2} \sim \text{Bin}(n_1 + n_2, p).$$

Moreover, we also have $Bin(n, \frac{\lambda}{n}) \stackrel{n \to \infty}{\to} Poiss_{\lambda}$. This is called the *law of little numbers*. To prove this, we have

$$\binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{\lambda^k}{k!} \underbrace{\frac{n(n-1)\dots(n-k+1)}{n^k}}_{\to 1} \underbrace{\left(1 - \frac{\lambda}{n}\right)^{n-k}}_{\to e^{-\lambda}}$$

$$\stackrel{n \to \infty}{\to} \frac{\lambda^k}{k!} e^{-\lambda} = \text{Poiss}_{\lambda}.$$

There are two examples of Poisson distributions that we will go over: shark attacks and radioactive decay. (but we didn't go over it ig?)

Theorem 3.1 (Doeblin). Let X_i be independent random variables distributed by Ber_{p_i} , where $0 < p_i < 1$. Let us have $S_n = X_1 + \cdots + X_n$ with $\lambda = p_1 + \cdots + p_n$. Then

$$\left| P(S_n \in A) - \sum_{n \in A} \frac{\lambda^n}{n!} e^{-\lambda} \right| \le \sum_{i=1}^n p_i^2,$$

where $A \subset \{0, 1, ... \}$.

To prove this, let y be a random variable where $y \sim \text{Poiss}_p$, then $P(y=0) = e^{-p} > 1 - p$. Define $\Omega^{\perp} = \{-1, 0, 1, 2, \dots\}$; then we have $P_p(-1) = 1 - p$, $P_p(0) = e^{-p} - 1 + p$, $P_p(k) = \frac{p^k}{k!}e^{-p}$ for $k = 1, 2, 3, \dots$ Moreover, define

$$X(\omega) = \begin{cases} 0 & \omega = -1 \\ 1 & \omega \ge 0 \end{cases}, \quad y(\omega) = \begin{cases} 0 & \omega = 0, 1 \\ \omega & \omega \ge 1 \end{cases}.$$

Then $P(x=y)=1-p+pe^{-p}\geq 1-p+p(1-p)=1-p^2$, so $P(x=y)\leq p^2$. Take $\Omega=(\Omega_+)^n$ and $X_i(\omega)=X(\omega)$, and let us have

$$P(\omega) = \prod_{i=1}^{n} P_{p_i}(\omega_i)$$

where X_i are independently distributed by Ber_p , and y_i are independently distributed by $Poiss_{p_i}$. Finally, let us have

$$S_n = X_1 + \dots + X_n,$$

$$S'_n = y_1 + \dots + y_n,$$

then $P(S_n \neq S_n') \leq \sum_{i=1}^n P(X_i \neq y_i) \leq \sum_{i=1}^n p_i^2$, which means $S_n' \sim \text{Poiss}_{\lambda}$.

We now define *moments*. For a random variable X, $E(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega)$, as long as $E|X| < \infty$. Then moments are given by EX^n where $n = 1, 2, \ldots$ (??) For example, let $X = \text{Poiss}_{\lambda}$. Then we have for n = 1,

$$EX = \sum_{n=0}^{\infty} n \frac{\lambda^n}{n!} e^{-\lambda}$$
$$= \sum_{n=0}^{\infty} \frac{\lambda^n}{(n-1)!} e^{-\lambda}$$
$$= \sum_{n=0}^{\infty} \frac{\lambda^{n+1}}{n!} e^{-\lambda}$$
$$= \lambda.$$

For n=2, we have

$$EX^{2} = \sum_{n=0}^{\infty} n^{2} \frac{\lambda^{n}}{n!} e^{-\lambda}$$
$$= E(X(X-1)) + EX$$
$$= \lambda^{2} + \lambda.$$

⁶reminder: review this proof, i'm stupid and don't really get it.