Folha Prática 5

1. Considere a rede de fluxo seguinte, onde c/f são pares capacidade/fluxo, e s e t são a origem e destino.

a) Indique os valores de:

- **b)** Partindo de f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo (desenhe a rede residual **em cada iteração**, represente o fluxo final na rede, e explique sucintamente).
- c) Indique um corte $\{S, T\}$ com capacidade mínima. Qual é a essa capacidade?
- d) Qual é a diferença principal entre o método de Ford-Fulkerson e o algoritmo de Edmonds-Karp?
- **2.** Considere a rede de fluxo seguinte, onde c/f são pares capacidade/fluxo, e s e t são a origem e destino.

a) Indique os valores de:

f(q,m)	f(p,z)	f(z,p)
f	c(q,m)	c(m,q)
$c_f(q,m)$	$c_f(m,q)$	$c_f(z,t)$
$c_f(p,s)$	$c_f(s,z)$	$c_f(k,t)$

b) Partindo do fluxo f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo (desenhe a rede residual em cada iteração, represente o fluxo final na rede, e explique sucintamente os passos).

c) Complete as frases: A capacidade do corte $(\{s,q,t\},\{p,x,z,m,k\})$ é			•
	$egline beta = \{S,T\}$ com capacidade i	nínima, a qual é	

3. Na figura está representada uma rede de distribuição de água (origem 1 e destino 6) e o grafo residual associado a um determinado fluxo f nessa rede. Os arcos da rede indicam o sentido em que a água flui, e o valor em cada arco indica a capacidade do tubo.

- a) Enuncie resultados teóricos dados na disciplina que permitam justificar a não otimalidade do fluxo f associado ao grafo residual representado.
- **b**) Determine o fluxo máximo na rede por aplicação do algoritmo de Edmonds-Karp a partir do fluxo f.
- **4.** Seja $\mathcal{G} = (V, E, c, \{S, T\})$ uma rede de fluxo com origem no nó S e destino no nó T, sendo E o conjunto de ligações representadas abaixo (os pares c/f designam a capacidade da ligação e f o valor do fluxo atual).

	c/f
(S,C)	25/18
(S,D)	8/8
(C,H)	10/10
(C,D)	10/5
(H,T)	4/4

	c/f
(B,F)	8/5
(C,B)	3/3
(A,F)	6/5
(H,B)	5/4
(H,F)	2/2

	c/f
(B,D)	5/2
(D,A)	17/15
(A,T)	10/10
(F,T)	18/12

- **a**) Apresente em pseudo-código o método de Ford-Fulkerson e explique os conceitos usados e o critério para verificação da otimalidade de um fluxo representado na rede.
- b) Determine o fluxo máximo aplicando passo a passo o método a partir da situação representada.
- c) Identifique um corte de capacidade mínima em \mathcal{G} e diga de quanto aumentaria o fluxo máximo se as capacidades dos arcos (H,F) e (H,T) fossem de 10 e 12 unidades. Explique.
- **5.** Considere o emparelhamento $M = \{(a_1, p_1), (a_2, p_3), (a_4, p_2), (a_6, p_4), (a_7, p_7)\}$ no grafo bipartido seguinte. Os restantes ramos estão representados a tracejado.
- a) Represente o problema como um problema de fluxo.
- **b)** Determine a rede residual para o fluxo correspondente a M.
- **c**) Por análise dessa rede, identifique um caminho para aumento de M e determine o emparelhamento M' que se obtém.
- **d)** Averigue se M' já é ótimo. Se não for, determine o ótimo.

 $\mathbf{6}$. Os valores nos ramos do grafo representam a capacidade das ligações. Por aplicação do algoritmo dado nas aulas, determine um caminho de capacidade máxima do nó A para cada um dos restantes nós.

7. Averigue se a instância seguinte de SMI (*Stable marriage with incomplete lists*) admite um único emparelhamento estável.

A:	M_1	M_3	M_5	M_6	M_2	M_4
	M_4					
C:	M_4	M_6	M_5	M_1		
	M_3					M_2
	M_2					

M_1 :	В	Е	D	С	A
M_2 :	A	C	E	В	D
M_3	В	A	D	C	E
M_4 :	E	В	C	A	D
M_5 :	D	A	C	E	В
M_6 :	C	В	D	A	E

- **8.** Temos de atribuir um certo número de tarefas a pessoas com qualificações diferentes. Cada tarefa é realizada por uma única pessoa. Cada pessoa indicou o número máximo de tarefas que pode realizar. Queremos descobrir uma solução que maximize o número de tarefas atribuídas.
- a) Modelo o problema como um problema de fluxo de rede. Explique usando o exemplo a seguir.

nome	pode fazer	número máximo
Maria	2, 9	2
José	3, 1, 4	1
Rita	5,1	1

nome	pode fazer	número máximo
Rui	4, 6, 7, 5	2
Ana	5, 6, 8	1
Vera	9, 2, 7	2

- b) Começando na atribuição (José, $\{3\}$), (Rita, $\{1\}$), (Rui, $\{4,5\}$), (Ana, $\{6\}$), (Vera, $\{2,9\}$), que é uma solução não ótima, aplique o algoritmo de Edmonds-Karp para encontrar uma solução ótima. Apresente e explique os passos intermédios.
- c) Suponha que as listas indicadas acima seguem as preferências das pessoas (por exemplo, a Ana prefere estritamente a tarefa 5 à 6, e a tarefa 6 à 7). As "listas de preferências" das tarefas encontram-se abaixo, significando que é preferível atribuir a tarefa 5 ao Rui do que à Ana, e à Ana do que à Rita, por exemplo.

tarefa	prefs
1	José, Rita
3	José
5	Rui, Ana, Rita

tarefa	prefs
7	Vera, Rui
9	Vera, Maria
2	Vera, Maria

tarefa	prefs
4	José, Rui
6	Ana, Rui
8	Ana

Aplique a variante do algoritmo de Gale-Shapley para obter uma **solução estável**, con as tarefas a efetuarem as propostas, e seguindo a ordem 1, 3, 5, 7, 9, 2, 4, 6, 8. Note que podemos atribuir mais do que uma tarefa à Maria, Rui e Vera.