Examenul de bacalaureat național 2014

Proba E. c)

Matematică *M_tehnologic*

Simulare pentru elevii clasei a XII-a

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- **5p** 1. Calculați suma primilor trei termeni ai unei progresii aritmetice $(a_n)_{n>1}$, știind că $a_2 = 4$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2014x 2013. Calculați $(f(1))^{2014}$.
- **5p** 3. Rezolvați în multimea numerelor reale ecuația $3^{2-3x} = 3^{x+6}$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de o cifră, acesta să fie divizor al lui 10.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,3) și B(-1,1). Determinați ecuația dreptei AB.
- **5p 6.** Arătați că $\sqrt{3}\cos 30^{\circ} + \sqrt{2}\sin 45^{\circ} = \frac{5}{2}$.

SUBIECTUL al II-lea

(30 de puncte)

- 1. Se consideră matricea $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$.
- **5p** a) Calculați det A.
- **5p b)** Determinați numărul real m pentru care matricele $A + mI_3$ și $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 4 & 8 \end{pmatrix}$ sunt egale, unde

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- **5p** c) Rezolvați ecuația matriceală $AX = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$, unde $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție comutativă x * y = x + y 5.
- **5p** a) Arătați că 2*(-2)=2014*(-2014).
- **5p b**) Verificați dacă legea "*" este asociativă.
- **5p c**) Calculați (-4)*(-3)*(-2)*(-1)*0*1*2*3*4.

SUBIECTUL al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 7$.
- **5p a)** Arătați că $\lim_{x\to 0} \frac{f(x) f(0)}{x} = -3$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f(x)}{x(2x+1)(3x+2)}$.
- **5p** c) Demonstrați că $f(x) \ge 5$ pentru orice $x \in [-1, +\infty)$.
 - **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + 2x$ și $F: \mathbb{R} \to \mathbb{R}$, $F(x) = e^x + x^2 + 2014$.
- **5p** a) Calculați $\int_{1}^{2} (f(x) e^x) dx$.
- $\mathbf{5p}$ **b)** Arătați că funcția F este o primitivă a funcției f.
- **5p** c) Calculați $\int_{0}^{1} f(x) F(x) dx$.