Electromagnetismo 2025

Guía 3: Electrostática. Método de las imágenes

9 de abril de 2025

Problema 1: Se lleva una carga puntual q y se la coloca a una distancia d de un plano conductor infinito mantenido a potencial cero. Utilizando el método de las imágenes halle:

- (a) Encontrar la función de Green. Comprobar que realmente satisface las condiciones de contorno.
- (b) Encontrar la solución general Φ .
- (c) La densidad superficial de carga inducida en el plano y represéntela.
- (d) La fuerza entre el plano y la carga mediante la ley de Coulomb aplicada a la fuerza entre la cargas y sus imágenes.
- (e) La fuerza total que actúa sobre el plano obtenida por integración.
- (f) El trabajo necesario para llevar la carga desde su posición hasta el infinito.

Problema 2: Se tienen dos cargas puntuales q y -q situadas a una distancia d de un plano conductor infinito mantenido a potencial cero y separadas entre ellas una distancia d.

- (a) Encontrar la función de Green del problema.
- (b) Encontrar la solución general Φ .

Problema 3: Encontrar el potencial electrostático $\Phi(x,y)$ acotado en el espacio y>0 limitado por un plano conductor infinito en y=0. Este plano está dividido en una franja (-a < x < a) a potencial $\Phi=V$ y el resto (aislado eléctricamente de la franja) a potencial $\Phi=0$. Comprobar que esa función satisface las condiciones de contorno.

Problema 4: Considere un problema de potencial en el semiespacio definido por z > 0, con condiciones de contorno de Dirichlet sobre el plano z = 0 (y en el infinito).

- (a) Escriba la función de Green apropiada.
- (b) Si el potencial sobre el plano z=0 se especifica por $\Phi=V$ dentro de un círculo, halle una expresión integral para el potencial en el punto p dado en términos de coordenadas (ρ, ϕ, z)
- (c) Muestre que a lo largo del eje del círculo el potencial está dado por

$$\Phi = V \left[1 - \frac{|z|}{(a^2 + z^2)^{1/2}} \right] \tag{1}$$

(d) Muestre que a grandes distancias $(\rho^2 + z^2 \gg a^2)$ el potencial puede ser expandido en serie de $(\rho^2 + z^2)^{-1}$ y que los términos principales del desarrollo son:

$$\Phi = \frac{Va^2}{2} \frac{z}{(\rho^2 + z^2)^{3/2}} \left[1 - \frac{3a^2}{4(\rho^2 + z^2)} + \frac{5(3\rho^2 a^2 + a^4)}{8(\rho^2 + z^2)^2} + \cdots \right]$$
(2)

Verifique que los resultados de (c) y (d) son consistentes entre sí dentro de su rango de validez.

Problema 5: Sea una esfera hueca conductora de radio a conectada a tierra. A una distancia b > a del centro de la misma se coloca una carga q. Determinar:

(a) El potencial en todo el espacio.

- (b) La densidad superficial de carga sobre la esfera y la carga total inducida sobre la misma.¿Es de esperar este resultado?
- (c) La fuerza total sobre la carga.

Problema 6: Considere una esfera conductora de radio a inmersa en un campo eléctrico uniforme E_0 . A los efectos de generar un campo eléctrico uniforme se puede utilizar dos cargas puntuales de cargas opuestas que se encuentran alejadas infinitamente.

- (a) Usando el método de las imágenes determine el potencial externo a la esfera.
- (b) Encuentre la densidad de carga superficial inducida en la esfera.

Problema 7: Dos planos semi-infinitos conductores se cortan en un angulo recto y estan conectados a tierra. Se coloca una carga q en el interior del cuadrante.

- (a) Encontrar el potencial en todo punto del cuadrante.
- (b) Que fuerza siente la carga?
- (c) Determine la función de Green con condiciones de contorno de Dirichlet del problema.

F@CENA (C) 2025