3.2 Vilém Zouhar

Popis

Pakliže $f_m(e_1) \leq c'(e_1)$, tak $f_m' = f_m$. Jinak pro $e_1 = (a,b)$ vezmeme b a pomocí BFS najdeme cestu P_s do stoku, obdobně pro a nalezneme cestu P_z do zdroje. Na těchto cestách snížíme tok o 1, čímž dostaneme validní tok (nemusí být maximální). Aby byl maximální, tak spustíme na reziduálním grafu (lze in-place původního) ze zdroje do stoku BFS, které pokud nalezne zlepšující cestu, tak můžeme vylepšit (o 1). Tím jsme skončili, neboť $|f_m| = |f_m'|$ a maximální tok nového grafu nemůže být větší, neboť je slabší. Pokud nenajdeme žádnou zlepšující cestu, tak jsme taky skončili, neboť platí lemma o souvislosti existence zlepšující cesty a maximalitou toku.

P_z , P_s

Na výpočet těchto cest nepoužíváme jen původní graf, ale využíváme hrany, po kterých teče alespoň komodita velikosti 1. Existenci těchto cest pak máme zaručenou z Kirchhofova zákona.

Složitost

Na výpočet P_z , P_s potřebujeme O(m+n). To stejné pro výpočet zlepšující cesty, tedy zároveň je to i složitost řešení.