Молекулярно-генетические методы в аквакультуре, оценке биологического разнообразия и филогении I

Туранов С.В.

ННЦМБ ДВО РАН

Лаб. Молекулярной систематики

Соотношение темпов роста населения и обеспеченности пищей (FAO).

Мировое потребление водных организмов в миллионах тонн, 1950-2010 (FAO).

Мировая продукция аквакультуры в миллионах тонн, 1950-2010 (FAO).

Россия — на 2013г. ~ 155500 тонн. К 2020г. обещают до 315500 тонн.

Мировая продукция аквакультуры в миллионах тонн, 1950-2010 (FAO).

Многолетний искусственный отбор

[http://www.geneticliteracyproject.org/2015/02/02/how-your-food-would-look-if-not-genetically-modified-

Многолетний искусственный отбор

[http://www.coolweirdo.com/huge-genetically-modified-bulls.html]

Генетически модифицированные организмы

[http://news.nationalgeographic.com/news/2010/03/100329-six-pack-mutant-trout-genetically-engineered-modified-gm/]

Генетически модифицированные организмы

Эти атлантические лососи одного возраста, но...

Генетически модифицированные организмы — увлекаться не нужно

Немного истории

A long time ago in a galaxy far, far away...

~ 4000 лет назад в Египте, 3500 лет назад в Китае начали культивировать тиляпию и карпов, соответственно.

К началу 19 века в Японии сформировалась культура разведения карпов с необычной окраской (подвид Кои)

1665г. – английский физик **Роберт Гук** описывает строение пробки. На срезах обнаружены пустоты – поры или «клетки».

1670-е гг. – нидерландский натуралист **Антони ван Левенгук** впервые описывает микроскопическое строение тканей живого, обнаруживает сперматозоиды и существование микроорганизмов.

1809 г. – описано явление электрофорез. Профессора МГУ П.И. Страхов и Ф.Ф. Рейсс.

Электрокинетическое явление перемещения частиц дисперсной фазы (коллоидной или белковой фазы) в жидкой или газообразной среде под действием внешнего электрического поля.

1831 г. – открытие ядра как обязательной части растительной клетки. Британский ботаник **Роберт Броун**. «Броуновское движение».

1840 г. – **Карл Вильгельм фон Негели** обнаруживает, что в делящейся клетке ядро делится первым.

1859 г. – английский натуралист **Чарльз Дарвин** публикует «Происхождение видов...».

1866 г. – австрийский ботаник **Грегор Иоганн Мендель** публикует «Опыты над растительными гибридами».

1869 г. – швейцарский физиолог **Фридрих Мишер** открыл ДНК. Первоначально - нуклеин, нуклеиновая кислота.

1879-1882 гг. – немецкий биолог **Вальтер Флемминг** открыл существование хромосом и описал процесс клеточного деления (митоз).

1889г. – первые попытки расчетов наследственной природы многих важных признаков. Английский исследователь сэр **Френсис Гальтон.**

Начало 1900-х гг. — основы количественной генетики. Датский биолог **Вильгельм Людвиг Иогансен** (термины *чистые линии, ген, генотип, фенотип, популяция*); английский биолог-эволюционист и статистик Сэр **Рональд Эйлмер Фишер** (генетическая теория естественного отбора)

1902-1903 гг. – американский цитолог **У. Сеттон**, немецкий эмбриолог **Теодор Бовери** – независимо друг от друга вывели параллелизм в поведении менделевских факторов наследственности (генов) и хромосом. *Хромосомная теория наследственности*.

1908 г. – английский математик Годфри Харолд Харди и немецкий врач открыли закономерности соотношения частот генов и генотипов в панмиктической популяции.

1905-1913 гг. — открытие явления сцепленного наследования, кроссинговера, построение генетических карт. Английские биологи и генетики **Томас Хант Морган**, **Альфред Стертевант**.

1920-1930-е гг. - развитие основ популяционной генетики. Сьюэл Райт, Джон Бёрдон Сандерсон Хо́лдейн, Рональд Эйлмер Фишер, Сергей Сергеевич Четвериков.

1944 г. – ДНК есть вещество, определяющее наследственность. Освальд Эвери, Колин Маклауд и Маклин Маккарти (ДНК – компонент трансформирующего начала). Альфред Херши и Марта Чейз.

1953 г. – расшифровка структуры ДНК. Фрэнсис Крик, Джеймс Уотсон, Морис Уилкинс, Розалинд Франклин.

Rosalind Franklin

© 2011 Pearson Education, Inc.

Franklin's X-ray diffraction photograph of DNA

1954 г. – открытие генетического кода. Советский и американский физиктеоретик Георгий Антонович Гамов.

1955 г. — описание методологических принципов крахмального гель-электрофореза и принципов введения специфических генных модификаций у мышей с использованием эмбриональных стволовых клеток. Англо-американский генетик Оливер Смитис.

1957 г. – разработка гистохимических принципов визуализации ферментов (энзимов) и изозимов. **Хантер** и **Маркерт**.

1970-е гг. — открытие и широкое распространение **рестриктаз**. Швейцарский микробиолог **Ве́рнер А́рбер**, американские микробиологи **Хамилтон Отанел Смит** и **Даниел Натанс**.

1977 г. – изобретение секвенирования нуклеиновых кислот методом обрыва цепи. Метод Сэнгера. Английский биохимик **Фредерик Сэнгер.**

1980-е гг. – первая трансгенная мышь (Ричард Палмер, Ральф Бристер, опухоль мозга).

1983-1985 гг. – изобретение полимеразной цепной реакции (ПЦР). Американский биохимик Кэри Бенкс Муллис.

The PCR song:

https://www.youtube.com/watch?v=x5yPkxCLads

GTCA song:

https://www.youtube.com/watch?v=ID6KY1QBR5s

1985 г. – изобретение ДНК-дактилоскопии (фингерпринтинга). Британский генетик Алек Джеффрис.

Конец 1980-х –начало 1990-х гг. – разработка большого количества ДНК-маркеров и связанных с ними технологий. **RFLP, RAPD, AFLP, SNP**.

Середина 1990-х – 2000-е гг. – разработка методов секвенирования второго поколения. Методы дробовика (Shotgun). 454 Life Sciences (пиросеквенирование), IonTorrent (ионное полупроводниковое), SOLiD (на основе лигирования).

2009 г. – разработка метода одномолекулярного секвенирования в реальном времени. Pacific Biosciences.

Методы молекулярной генетики в аквакультуре

Контроль генетического разнообразия природных и искусственно поддерживаемых популяций и отбор при содействии молекулярных маркеров, квартирующих определённые признаки или состояние популяции.

(Грамотно используем природный потенциал для искусственного отбора)

Биотехнология.

(Индуцируем чужое либо модифицируем собственное генетическое разнообразие)

Основные критерии при отборе важных признаков в аквакультуре:

- 1. Увеличение скорости роста.
- 2. Повышение устойчивости к заболеваниям.
- 3. Повышение эффективности усвоения корма.
- 4. Повышение качества продукции.

Литература:

- 1. Dunham R. A. Aquaculture and fisheries biotechnology: genetic approaches. 2011.
- 2. Картавцев Ю.Ф. Молекулярная эволюция и популяционная генетика. 2-е изд. Владивосток: Изд-во Дальневост. Ун-та, 2009. 280 с.
- 3. Браун Т.А. Геномы / Пер. с англ. М.-Ижевск: Институт компьютерных исследований, 2011. 944 с.
- 4. Лукашов В.В. Молекулярная эволюция и филогенетический анализ. Москва: Бином. Лаборатория знаний, 2009. 256 с.
- 5. Ней М., Кумар С. Молекулярная эволюция и филогенетика. К.: КВИІЦ, 2004. 418 с.
- 6. Dale J.W., Schantz M.V., Plant N. From genes to genomes: concepts and applications of DNA technology. 3rd ed. University of Surrey, UK., A John Wiley & Sons, Ltd., Publication., 2011. 386 pp.
- 7. Allendorf F. W., Luikart G., Aitken S. N. Conservation and the genetics of populations. 2nd ed., John Wiley & Sons, Ltd. 2013. 630 pp.