What Is Claimed Is:

1. A power semiconductor device having high avalanche capability, said device comprising:

an N^+ doped substrate and, in sequence, N^- doped, P^- doped, and P^+ doped semiconductor layers, said P^- doped and P^+ doped layers having a combined thickness of about 5 μ m to about 12 μ m; and

recombination centers comprising noble metal impurities disposed substantially in said N ⁻ doped and P ⁻ doped layers.

- 2. The device of claim 1 wherein said P $^-$ doped layer has a thickness of about 4 μm to about 10 μm .
- 3. The device of claim 1 wherein said P^+ doped layer has a thickness of about 0.1 μm to about 2 μm .
- 4. The device of claim 1 wherein said P doped layer has a dopant level of at least 10¹⁶ atoms/cm³.
- 5. The device of claim 4 wherein said P doped layer has a dopant level of about 2.5x 10¹⁷ atoms/cm³.
- 6. The device of claim 1 wherein said P⁺ doped layer has a dopant level of at least 10¹⁸ atoms/cm³.
- 7. The device of claim 6 wherein said P⁺ doped layer has a dopant level of about 6×10^{19} atoms/cm³.
- 8. The device of claim 1 wherein said N ⁻ doped layer has a dopant level of about 10¹⁴ atoms/cm³ to about 10¹⁵ atoms/cm³

- 9. The device of claim 1 wherein said N doped, P doped, and P + doped semiconductor layers are epitaxial layers.
- 10. The device of claim 1 wherein said noble metal impurities are selected from the group consisting of gold, platinum, and palladium.
- The device of claim 10 wherein said noble metal impurities comprise platinum.
- 12. The device of claim 11 wherein said recombination centers are formed by platinum diffusion through said N + doped substrate into said N doped and P doped layers.
- The device of claim 11 containing platinum impurities at a concentration of about 1×10^{15} to about 1×10^{16} atoms/cm³.
- The device of claim 13 wherein said concentration of platinum impurities is about 2×10^{15} atoms/cm³.
- 15. The device of claim 1 further comprising an N + doped region disposed in said N doped layer.
- 16. The device of claim 1 further comprising an N + doped region disposed adjacent said P+ and P- doped layers.
 - 17. The device of claim 16 comprising a MOSFET or an IGBT power device.
- 18. A process for forming a power semiconductor device having high avalanche capability, said process comprising:

forming an $N^{\scriptscriptstyle -}$ doped epitaxial layer on an $N^{\scriptscriptstyle +}$ doped substrate;

forming a P - doped layer in said N- doped epitaxial layer;

forming a P+ doped layer in said P - doped layer, said P+ doped and P -

doped layers having a combined thickness of about 5 μ m to about 12 μ m; and forming in said P $^-$ doped and N $^-$ doped layers recombination centers comprising noble metal impurities.

- 19. The process of claim 18 wherein said P $^-$ doped layer has a thickness of about 4 μm to about 10 μm .
- 20. The process of claim 18 wherein said P^+ doped layer has a thickness of about 0.1 μm to about 2 μm .
- 21. The process of claim 18 wherein said P^- doped layer has a dopant level of at least 10^{16} atoms/cm³.
- 22. The process of claim 21 wherein said P $^-$ doped layer has a dopant level of about 2.5x 10^{17} atoms/cm³.
- 23. The process of claim 18 wherein said P⁺ doped layer has a dopant level of at least 10¹⁸ atoms/cm³.
- 24. The process of claim 23 wherein said P^+ doped layer has a dopant level of about 6×10^{19} atoms/cm³.
- 25. The process of claim 18 wherein said N ⁻ doped layer has a dopant level of about 10¹⁴ atoms/cm³ to about 10¹⁵ atoms/cm³
- 26. The process of claim 18 wherein said noble metal impurities are selected from the group consisting of gold, platinum, and palladium.
- 27. The process of claim 26 wherein said noble metal impurities comprise platinum.

- 28. The process of claim 27 wherein said forming said recombination centers comprises diffusing platinum through said N+ doped substrate into said N- and P- doped layers.
- 29. The process of claim 28 platinum impurities are present in said N $^-$ and P $^-$ doped layers at a concentration of about 1×10^{15} to about 1×10^{16} atoms/cm³.
- 30. The process of claim 29 wherein said concentration of platinum impurities is about 2×10^{15} atoms/cm³.
- 31. The process of claim 28 wherein said diffusing is carried out at a temperature of about 940°C.
- 32. The process of claim 31 further comprises cooling said device to a temperature of about 600°C at a rate of about 3°C/minute.
- 33. The process of claim 18 further comprising forming an N $^{+}$ doped region in said N $^{-}$ doped layer.
- 34. The process of claim 18 further comprising forming an N + doped region in said P- doped layer adjacent said P+ doped layer.