

Types de base

Il existe 4 types de base

- Caractere char
- Entier int
- Réel float
- Reel double precision double
 Le type d'une donnée determine
- La place memoire (sizeof())
- Les operations legales
- Les bornes

Types de base

Nom	Taille	Constante	Min	Max
char	1 octet	'a',97	-128 (SCHAR_NIM)	+127 (SCHAR_NAX)
unsigned char	1 octet	'a',97	0	265 (DCHAR_MAX)
short	2 octets	-125, 312	-32768 (SHRT_MIN)	32767 (ehrt_max)
unsigned short	2 octets	2730	0	65535 (USHRT_MAX)
int	4 octets (parfols 2 ou 8)	-3000, 3213	-2 millards env. (INT_NIN)	+2 miliards env. (INT_MAX)
unsigned int	4 octets (parfols 2 ou 8)	3124U	0	4 millards env. (UINT_MAX)
long	4 octets (parfols 8 ou 16)	3167L	-2 millards env. (INT_NIN)	+2 millards env. (INT_MAX)
unsigned long	4 octets (parfols 8 ou 16)	243UL	0	4 milliards env. (UINT_MAX)
float	4 octets	21.3 F , 3.12∈4F	-3.4e38 ENV. (-FLT_MAX) 1.17e-38 (FLT_MIN)	+3.4e38 ENV. (FLT_MAX)
double	B octets	12.4, 125.205	-1.79e308 ENV (-DBL_MAX) 2.22e-308 ENV. (DBL_MIN)	1.79@308 (DBL_MAX)

char

Là encore, deux types, codés sur 8 bits.

- char (-128 à 127)
- unsigned char (0 à 255)

Exemple: 'a' 'c' '\$' '\n' '\t' '\007' les caractères imprimables sont toujours positifs.

le code ASCII de 'A' est 65 mais celui de '2' n'est pas 2.

Caractères spéciaux:

```
\n (nouvelle ligne)
\t (tabulation horizontale)
\a (sonne),
\f (nouvelle page),
```

Les entiers

Exemple: unsigned short maValeur;

short (short int)	16 bits	-32.768 à 32.767
int	32 bits	-2.147.483.648 à 2.147.483.647
long (long int)	32 bits	-2.147.483.648 à 2.147.483.647
unsigned short	16 bits	0 à 65.535
unsigned long	32 bits	0 à 4.294.967.295

Constantes entières:24, -24, +25, -0

0x00ff (hexadécimale)

016 (octale)

54L (de type long)

Les réels

- Trois types possibles:
 - float, 32 bits, -3,4e38 à 3,4e38 (7 chiffres significatifs)
 - -double, 64 bits, -1,7e308 à 1,7e308 (15 chiffres signi.)
 - long double, 80 bits, 3,4e-4932 à 1,1e4932 (non standard)
- Par défaut, une constante réelle est de type double mais on peut forcer le type à float (532.76f) ou à long (3E-10L)
- Stocké en deux parties: mantisse(signi.) et exposant.

Constante

Constantes

Identificateurs

Identificateurs corrects: Identificateurs incorrects:

nom1
nom_2
_nom_3
Nom_de_variable
deuxieme_choix
mot_francais

1nom nom.2 -nom-3 Nom de variable deuxième_choix mot_français

déclaration des variables simples

- Type NomVar1, NomVar2,..., NomVarN;
- int compteur, X, Y;
- float hauteur, largeur;
- double masse_atomique;
- · char touche;

Initialisation des variables

Initialisation

En C, il est possible d'initialiser les variables lors de leur déclaration:

```
int MAX = 1023;
char TAB = '\t';
float X = 1.05e-4;
const
```

 En utilisant l'attribut const, nous pouvons indiquer que la valeur d'une variable ne change pas au cours d'un programme:

```
Const int MAX = 767;
Const double e = 2.71828182845905;
const char newline = '\n';
```

Affichage de variables: Printf()

Printf("format", variable1,variable2,...);

```
int r=15;
double pi=3.14159;
printf( "un cercle de rayon %d a pour périmètre %f \n", r,2*pi*r);
```

→ un cercle de rayon 15 a pour périmètre 94.247700

Affichage de variables: Printf()

Format	Type de variable correspondant
%с	Caractère de type char
%d ou %i	Entier de type int
% X	Entier de type int affiché en notation hexadécimale
%u	Entier non signé de type unsigned int
% f	Nombre à virgule flottante de type float ou double
%e ou %E	Nombre à virgule flottante affiché en notation exponentielle

Formatage des nombres avec print()

Format	Résultat	Description
%6d	123	Largeur minimum de champ de 6 caractères
%06d	000123	Largeur minimum de champ de 6 caractères, remplissage avec des zéros
%-6d	123	Largeur minimum de champ de 6 caractères, cadrage à gauche
%6.3f	3.141	Largeur minimum de champ de 6 caractères avec 3 chiffres après la virgule

Les opérateurs particuliers de C

Les opérateurs d'affectation

En pratique, nous retrouvons souvent des affectations comme:

$$i = i + 2$$

En C, nous utiliserons plutôt la formulation plus compacte:

$$i += 2$$

Pour la plupart des expressions de la forme:

$$expr1 = (expr1) op (expr2)$$

 il existe une formulation équivalente qui utilise un opérateur d'affectation:

Les opérateurs particuliers de C

· Opérateurs d'affectation

```
+= ajouter à
```

-= diminuer de

*= multiplier par

/= diviser par

%= modulo

Les opérateurs particuliers de C

Opérateurs d'incrémentation et de décrémentation

Les affectations les plus fréquentes sont du type:

$$| = | + 1$$
 et $| = | -1$

En C, nous disposons de deux opérateurs inhabituels pour ces affectations:

I++ Ou ++I pour l'incrémentation (augmentation d'une unité)
 I-- Ou --I pour la décrémentation (diminution d'une unité)

Opérateurs d'incrémentation et de décrémentation

• X = I++ passe d'abord la valeur de l à X et *incrémente après*

X = I-- passe d'abord la valeur de I à X et *décrémente après*

X = ++ incrémente d'abord et passe la valeur incrémentée à X

X = -- décrémente d'abord et passe la valeur décrémentée à X

Exemple

Supposons que la valeur de N est égal à 5:

Incrém. postfixe:

X = N++;

Résultat: N=6 et X=5

Incrém. préfixe:

X = ++N;

Résultat: N=6 et X=6

Les priorités des opérateurs

Classes de priorités

```
      Priorité 1 (la plus forte):
      ()

      Priorité 2:
      ! ++ --

      Priorité 3:
      * / %

      Priorité 4:
      + -

      Priorité 5:
      < <= > >=

      Priorité 6:
      == !=

      Priorité 7:
      &&

      Priorité 8:
      ||

      Priorité 9 (la plus faible):
      = += -= *= /= %=
```

Les fonctions arithmétiques standard

#include <math.h>

exp(X) fonction exponentielle eX log(X) logarithme naturel log10(X) logarithme à base 10 log10(X), X>0	E
log(X) logarithme naturel ln(X), X>0 log10(X) logarithme à base 10 log10(X), X>0	
log(X) logarithme naturel ln(X), X>0 log10(X) logarithme à base 10 log10(X), X>0	
log10(X) logarithme à base 10 log10(X), X>0	
pow(X,Y) X exposant Y XY	
sqrt(X) racine carrée de X pour X>0	
fabs(X) valeur absolue de X X	
floor(X) arrondir en moins int(X)	
ceil(X) arrondir en plus fmòd(X.Y)	
reste rationnel de X/Y (même signe que X)	
pour X différent de Ó	
sin(X) cos(X) tan(X)	
asin(X) acos(X) atan(X)	
sinh(X) cosh(X) tanh(X)	