Sub Code: MET-001/TME101 ROLL NO.......

## Ist SEMESTER EXAMINATION, 2022 – 23 First Year , Ist Year B.Tech. Basic Mechanical Engineering

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

|      | to may be assumed and state the assumption made in the answer.                             |        |
|------|--------------------------------------------------------------------------------------------|--------|
| Q 1. | Answer any four parts of the following.                                                    | 5x4=20 |
|      | a) A body of weight 300 N is lying on a rough horizontal plane having a coefficient        |        |
|      | of friction as 0.3. Find the magnitude of the force, which can move the body,              |        |
|      | while acting at an angle of 25° with the horizontal.                                       |        |
|      | b) Briefly define hardness, toughness and malleability.                                    |        |
|      | c) State and derive Pascal's law.                                                          |        |
|      | d) A steam turbine operates under steady flow conditions. It receives 7500 kg/h            |        |
|      | of steam from the boiler. The steam enters the turbine at 2800 kJ/kg enthalpy, 70          |        |
|      | m/s velocity, and an elevation of 4 m. The steam leaves the turbine at 2000 kJ/kg          |        |
|      | enthalpy, 140 m/s velocity, and an elevation of 1.5 m. Heat losses from the                |        |
|      | turbine to surroundings amount to 0.213 kJ/kg. Calculate the output of the turbine         |        |
|      | in kW.                                                                                     |        |
|      | e) Briefly define Bore, Stroke, Top dead centre, Bottom dead centre and swept              |        |
|      | volume by drawing a neat sketch of piston cylinder arrangement of an IC engine.            |        |
|      | f) Define (i) elastic limit, (ii) yield strength, (iii) ultimate strength and show them    |        |
|      | on a stress strain diagram for a ductile material.                                         |        |
| Q 2. | Answer any four parts of the following.                                                    | 5x4=20 |
|      | a) Describe various types of errors in measurement.                                        |        |
|      | b) What is Cast Iron? Also describe its general properties.                                |        |
|      | c) The density and kinematic viscosity of a liquid is 850 kg/m³ and 1.75 cm²/s             |        |
|      | respectively. Calculate its (a) specific weight, (b) specific gravity, (c) specific        |        |
|      | volume and (d) dynamic viscosity in Ns/m <sup>2</sup> .                                    |        |
|      | d) Explain the working principle of centrifugal pump with a neat sketch.                   |        |
|      | e) Briefly describe any one instrument for the measurement of (i) Temperature, and         |        |
|      | (ii) Pressure.                                                                             |        |
|      | f) An ideal gas expands in the piston cylinder arrangement. Derive the formulae of         |        |
|      | work done by the ideal gas if the expansion process is (i) isothermal, and (ii)            |        |
|      | Isobaric.                                                                                  |        |
| Q 3. | Answer any two parts of the following.                                                     | 10x2=  |
|      | a) State and derive Bernoulli's Equation                                                   | 20     |
|      | b) A cylinder contains 0.2 m <sup>3</sup> of a gas at 1 bar and 100°C. This is compressed  |        |
|      | polytropically to volume 0.05 m <sup>3</sup> so that the pressure becomes 6 bar. Calculate |        |
|      | (a) the mass of gas, (b) change in internal energy of the gas during process, and          |        |
|      | (c) Heat transfer during compression. Assume $\gamma = 1.4$ and Characteristic gas         |        |
|      | constant for gas $(R) = 0.3 \text{ kJ/kg. K.}$                                             |        |
|      | c) Explain the working principle of two-stroke CI engine with the help of a suitable       |        |
|      | diagram.                                                                                   |        |
|      |                                                                                            |        |



\*\*\*\*\*