ГЛАВА ІІ

Дифференциальные уравнения I порядка в симметричной форме

§ 1. ОПРЕДЕЛЕНИЕ РЕШЕНИЯ, ЕГО СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ

 1^{0} . Объект изучения.

Уравнение первого порядка в симметричной форме имеет вид

$$M(x,y)dx + N(x,y)dy = 0, (2.1)$$

где вещественные функции M и N определены и непрерывны в некоторой области D плоскости Oxy, т.е. $M, N \in C(D), D \subset \mathbb{R}^2$.

- 20. Решение уравнения в симметричной форме.
- **Df.** Точка $(x_0, y_0) \in D$ называется особой для уравнения (2.1), если $M(x_0, y_0)$, $N(x_0, y_0) = 0$. Точка, которая не является особой, называется неособой или обыкновенной.
- **Df.** Решением дифференциального уравнения (2.1) на промежутке $\langle a,b \rangle$ называется функция $y = \varphi(x)$ или $x = \psi(y)$, определенная и непрерывная на $\langle a,b \rangle$ и удовлетворяющая трем условиям:
 - 1) функция $\varphi(x)$ или $\psi(y)$ дифференцируема на $\langle a,b \rangle$,
 - 2) точка $(x, \varphi(x)) \in D$ для $\forall x \in \langle a, b \rangle$ или точка $(\psi(y), y) \in D$ для $\forall y \in \langle a, b \rangle$,
 - $3_x)\; M(x,\varphi(x)) + N(x,\varphi(x)) \varphi'(x) \stackrel{\langle a,b \rangle}{\equiv} 0\;$ или
 - $3_y) M(\psi(y), y)\psi'(y) + N(\psi(y), y) \stackrel{\langle a,b \rangle}{\equiv} 0.$
 - **Df.** Особым граничным решением уравнения (2.1) на промежутке $\langle a,b \rangle$ называется любое решение $y = \varphi(x)$ или $x = \psi(y)$, определенное на $\langle a,b \rangle$, у которого $(x,\varphi(x)) \in H$ для $\forall x \in \langle a,b \rangle$ или $(\psi(y),y) \in H$ для $\forall y \in \langle a,b \rangle$.
 - 30. Существование и единственность решения.

Теорема (о существовании решения). Пусть в уравнении (2.1) функции M(x,y) и N(x,y) непрерывны в области $G \subset D \setminus H$, тогда для любой точки $(x_0,y_0) \in G$ и для любого отрезка Пеано $P_h(x_0,y_0)$, построенного для первого или второго уравнения (2.2) в некоторой окрестности $V(x_0,y_0)$, существует по крайней мере одно решение задачи Коши уравнения (2.1) с начальными данными x_0,y_0 , определенное на $P_h(x_0,y_0)$.

Теорема (о единственности решения, слабая). Пусть в уравнении (2.1) M(x,y) и N(x,y) непрерывны в области $G \subset D \backslash H$, а в области $\widetilde{G} \subset G$ выполняется хотя бы одно из условий:

- а) $N(x,y) \neq 0$, существуют и непрерывны частные производные $\partial M(x,y)/\partial y$, $\partial N(x,y)/\partial y$;
- b) $M(x,y) \neq 0$, существуют и непрерывны частные производные $\partial M(x,y)/\partial x$, $\partial N(x,y)/\partial x$.

Tогда \widetilde{G} — это область единственности для уравнения (2.1).

§ 2. ИНТЕГРАЛ УРАВНЕНИЯ В СИММЕТРИЧНОЙ ФОРМЕ

- 1⁰. Определение интеграла.
- **Df.** Непрерывная в области G пространства \mathbb{R}^2 функция U(x,y) называется допустимой, если для любой точки $(x_0,y_0) \in G$ существует такая непрерывная функция $y = \xi(x)$ (или $x = \eta(y)$), определенная на интервале (α,β) , содержащем точку x_0 (или y_0), что:
 - 1) $y_0 = \xi(x_0)$ (или $x_0 = \eta(y_0)$);
- 2) $(x, \xi(x)) \in G$ для $\forall x \in (\alpha, \beta)$ (или $(\eta(y), y) \in G$ для $\forall y \in (\alpha, \beta)$);
- 3) $y = \xi(x)$ (или $x = \eta(y)$) является единственным решением уравнения

$$U(x,y) = U(x_0, y_0),$$
 (2.3)

т. е.
$$U(x,\xi(x))\stackrel{(\alpha,\beta)}{\equiv} U(x_0,y_0)$$
 или $U(\eta(y),y)\stackrel{(\alpha,\beta)}{\equiv} U(x_0,y_0)$.

Df. Допустимая функция U(x,y) называется интегралом дифференциального уравнения (2.1) в области единственности G, если для любой точки $(x_0, y_0) \in G$ единственная функция $y = \xi(x)$ или $x = \eta(y)$ из определения допустимой функции является решением задачи Коши уравнения (2.1) с начальными данными x_0, y_0 , т. е. удовлетворяет тождеству 3_x) или 3_y) из определения решения.

20. Характеристическое свойства интеграла.

Теорема (о характеристическом свойстве интеграла). Для того чтобы допустимая функция U(x,y) была интегралом уравнения в симметричной форме (2.1) в области единственности G, необходимо и достаточно, чтобы U(x,y) обращалась в постоянную вдоль любого решения (2.1), т. е. чтобы $U(x,\varphi(x)) \stackrel{\langle a,b \rangle}{\equiv} C$ для любого решения $y = \varphi(x)$, определенного на $\langle a,b \rangle$, и $U(\psi(y),y) \stackrel{\langle a,b \rangle}{\equiv} C$ для любого решения $x = \psi(y)$, определенного там же.

30. Характеристическое свойство гладкого интеграла.

Df. Непрерывную в области G функцию U(x,y) будем называть гладкой и использовать запись: $U(x,y) \in C^1(G)$, если в G существуют и непрерывны частные производные U по x и по y.

Будем для краткости обозначать $\partial U/\partial x = U_x'$ и $\partial U/\partial y = U_y'$.

Df. Функция U(x,y) называется гладкой допустимой в области G пространства \mathbb{R}^2 , если $(U_x')^2 + (U_y')^2 > 0$ для $\forall (x,y) \in G$.

Df. Интеграл U(x,y) уравнения (2.1) называется гладким, если U гладкая допустимая функция.

Теорема (о характеристическом свойстве гладкого интеграла). Для того чтобы гладкая допустимая функция U(x,y) была гладким интегралом уравнения (2.1) в области единственности G, необходимо и достаточно, чтобы выполнялось тождество

$$N(x,y) U'_x(x,y) - M(x,y) U'_y(x,y) \stackrel{G}{=} 0.$$
 (2.5)

Следствие. Гладкая допустимая функция U(x,y) является гладким интегралом классического уравнения (1.1) y' = f(x,y) в области единственности G тогда и только тогда, когда выполняется тождество $U'_x(x,y) + f(x,y)U'_y(x,y) \stackrel{G}{=} 0$.

4^{0} . Существование интеграла, связь между интегралами.

Теорема (о существовании непрерывного интеграла). Для любой точки (x_0, y_0) из области единственности G существует окрестность $A \subset G$, в которой дифференциальное уравнение (2.1) имеет интеграл U(x, y).

Df. Пусть U(x,y) интеграл уравнения (2.1) в области единственности G. Тогда равенство U(x,y) = C называется общим интегралом дифференциального уравнения (2.1).

Теорема (о существовании гладкого интеграла). Пусть в уравнении (2.1) функции M(x,y), N(x,y) являются гладкими в некоторой области $G \subset D/H$, т. е. в G определены и непрерывны частные производные $M'_x(x,y), M'_y(x,y), N'_x(x,y), N'_y(x,y)$. Тогда для любой точки (x_0,y_0) из G существует окрестность $A \subset G$, в которой уравнение (2.1) имеет гладкий интеграл U(x,y).

Теорема (о связи между интегралами). Пусть U(x,y) является интегралом уравнения (2.1) в некоторой области A, тогда:

1) Если $U_1(x,y)$ — еще один интеграл уравнения (2.1) в области A, то существует функция $\Phi(z)$ такая, что

$$U_1(x,y) \stackrel{A}{=} \Phi(U(x,y)); \tag{2.7}$$

2. Если функция $\Phi(U(x,y))$ — допустимая, то функция $U_1(x,y)$, определяемая формулой (2.7), есть интеграл уравнения (2.1) в A.

§ 3. УРАВНЕНИЕ В ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ, ИНТЕГРИРУЮЩИЙ МНОЖИТЕЛЬ

- 10. Уравнение в полных дифференциалах.
- **Df.** Уравнение (2.1) называется уравнением в полных дифференциалах в области единственности G, если существует такая гладкая функция U(x,y), что для $\forall (x,y) \in G$

$$U'_x(x,y) = M(x,y), \quad U'_y(x,y) = N(x,y).$$
 (2.8)

Теорема (об интеграле уравнения в полных дифференциалах). Пусть уравнение (2.1) является уравнением в полных дифференциалах в области единственности G и U(x,y) — его дифференциал. Тогда U — это гладкий интеграл в G.

Теорема (о существовании дифференциала и его нахождении). Пусть в односвязной области G существуют и непрерывны M'_y и N'_x . Для того чтобы уравнение (2.1) было уравнением в полных дифференциалах в G, необходимо и достаточно, чтобы

$$M'_y(x,y) - N'_x(x,y) \stackrel{G}{=} 0.$$
 (2.9)

В этом случае дифференциал

$$U(x,y) = \int_{(x_0,y_0)}^{(x,y)} M(x,y) dx + N(x,y) dy, \qquad (2.10)$$

где (x_0, y_0) — любая фиксированная точка из G, а \int — это криволинейный интеграл II рода по любому пути, соединяющему в G точку (x_0, y_0) с точкой (x, y).

2^{0} . Интегрирующий множитель.

Df. Функция $\mu(x, y)$, определенная, непрерывная и не обращающаяся в нуль в области G, называется интегрирующим множителем дифференциального уравнения (2.1), если уравнение

$$\mu(x,y)M(x,y) dx + \mu(x,y) N(x,y) dy = 0$$
 (2.11)

является в G уравнением в полных дифференциалах.

Теорема (о существовании интегрирующего множителя). Если в области единственности $\widetilde{G} \subset G$ уравнение (2.1) имеет гладкий интеграл, тогда в \widetilde{G} существует интегрирующий множитель.

Теорема (о нахождении интегрирующего множителя). Пусть нашлась такая функция $\omega(x,y) \in C^1(G)$, что непрерывна функция

$$\psi(\omega) = \frac{M_y' - N_x'}{\omega_x' N - \omega_y' M},\tag{2.13}$$

тогда дифференциальное уравнение (2.1) имеет интегрирующий множитель $\mu(\omega) = \exp\{\int \psi(\omega) d\omega\}$.

30. Уравнения с разделяющимися переменными.

Df. Уравнение (2.1) вида

$$g_1(x)h_2(y)dx + g_2(x)h_1(y)dy = 0,$$
 (2.14)

где $g_i(x) \in C((a,b))$, $h_i(y) \in C((c,d))$ (i=1,2), называется уравнением с разделяющимися переменными в симметричной форме.

4^{0} . Линейные уравнения.

Df. Классическое уравнение (1.1) вида

$$y' + p(x)y = q(x)$$
 $(p(x), q(x) \in C((a, b))),$ (2.16)

называется линейным дифференциальным уравнением І порядка.