МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

О.Н. Ефремова, Е.Д. Глазырина

НЕОПРЕДЕЛЕННЫЙ И ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛЫ В ПРИМЕРАХ И ЗАДАЧАХ

Рекомендовано в качестве учебного пособия Редакционно-издательским советом Томского политехнического университета

Издательство Томского политехнического университета 2011 УДК 517.31+517.38(076) ББК 22.161.1я73 Е924

Ефремова О.Н.

Е924 Неопределенный и определенный интегралы в примерах и задачах: учебное пособие / О.Н. Ефремова, Е.Д. Глазырина, Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2011. — 88 с.

Учебное пособие включает в себя разделы высшей математики «Неопределённый интеграл» и «Определённый интеграл», что соответствует курсу высшей математики, предусмотренному действующей программой для студентов технических вузов.

Каждая глава содержит краткое изложение теоретических вопросов, достаточно большое количество примеров, чаще всего решённых несколькими методами, и задания для самостоятельного решения. Изложение материала построено в логической связи с предыдущими разделами, что позволяет студентам систематизировать полученные знания и сознательно применять их на практике.

Предназначено для студентов всех специальностей технического вуза.

УДК 517.31+517.38(076) ББК 22.161.1я73

Рецензенты

Кандидат физико-математических наук, доцент ТПУ $E.M.\ Горбатенко$

Кандидат физико-математических наук, доцент ТГУ *И.Г. Устинова*

- © ГОУ ВПО НИ ТПУ, 2011
- © Ефремова О.Н., Глазырина Е.Д., 2011
- © Оформление. Издательство Томского политехнического университета, 2011

1. НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

Справочный материал

Понятие неопределённого интеграла тесно связано с понятием первообразной, когда по известному результату дифференцирования нужно восстановить искомую функцию.

Определение 1.1. Функция F(x), где $x \in X \subset R$ называется **перво-образной** для функции f(x) на множестве X, если она дифференцируема для любого $x \in X$ и выполняется равенство F'(x) = f(x).

Теорема 1.1. Если на промежутке X функция F(x) является первообразной для функции f(x), то функция F(x) = c, где c = const, также будет первообразной для функции f(x).

Определение 1.2. *Множество всех первообразных функции f(x) на множестве X называется неопределённым интегралом и обозначается*

$$\int f(x)dx = F(x) + c, \qquad (1.1)$$

где знак ∫ - знак интеграла;

f(x) – подынтегральная функция;

f(x)dx – подынтегральное выражение;

x — переменная интегрирования;

c — постоянная интегрирования.

Запись $\int f(x)dx$ читаем: интеграл эф от икс дэ икс.

Определение 1.3. Операция нахождения первообразной для функции f(x) называется **интегрированием**.

Свойства неопределённого интеграла

Свойство 1.1. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

$$\int du = u + c$$
, где $u = u(x)$, $c = const$.

Свойство 1.2. Постоянный множитель можно выносить за знак интеграла:

$$\int kf(u)du = k \int f(u)du$$
, $z \partial e \ k = const$.

Свойство 1.3. Интеграл от алгебраической суммы (разности) функций равен алгебраической сумме (разности) неопределённых интегралов:

$$\int (f(u) \pm \varphi(u)) du = \int f(u) du \pm \int \varphi(u) du.$$

Свойство 1.4. $\int f(au+b)du = \frac{1}{a}F(au+b)+c$, где a, b, c – константы.

Замечание. Объединив свойства 1.1 и 1.2, запишем свойство линейности неопределенного интеграла:

$$\int (\alpha \cdot f(u) \pm \beta \cdot \varphi(u)) du = \alpha \int f(u) du \pm \beta \int \varphi(u) du,$$

где α и β – const.

Чтобы научиться интегрировать, нужно знать таблицу неопределённых интегралов основных элементарных функций (табл. 1.1), свойства интегралов, различать классы интегрируемых функций и помнить основные формулы математики. Интегралы, внесённые в табл. 1.1, впредь будем называть *табличными*.

Таблица 1.1 **Таблица неопределённых интегралов**

1	$\int dx = x + c \; , \; c = const$	2	$\int x^n dx = \frac{x^{n+1}}{n+1} + c , \ n \neq -1$
3	$\int \frac{dx}{x} = \ln x + c$	4	$\int e^x dx = e^x + c$
5	$\int a^x dx = \frac{a^x}{\ln a} + c, \ a > 0, \ a \neq 1$	6	$\int \sin x dx = -\cos x + c$
7	$\int \cos x dx = \sin x + c$	8	$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + c$
9	$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + c$	10	$\int \frac{dx}{a^2 + x^2} = \begin{cases} \frac{1}{a} \arctan \frac{x}{a} + c, \\ -\frac{1}{a} \arctan \frac{x}{a} + c \end{cases}$
11	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \begin{cases} \arcsin \frac{x}{a} + c, \\ -\arccos \frac{x}{a} + c \end{cases}$	12	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + c$
13	$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left x + \sqrt{x^2 \pm a^2} \right + c$	14	$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{x+a}{x-a} \right + c$

1.1. Непосредственное интегрирование

Простейший метод интегрирования — непосредственное интегрирование. Суть непосредственного интегрирования — с помощью основных алгебраических действий, основных формул и свойств неопределённого интеграла привести (преобразовать) заданный интеграл к табличному.

Пример 1.1. Найдите интегралы:

1.1.1.
$$\int x^5 dx$$
; **1.1.2.** $\int \frac{dx}{3-x^2}$; **1.1.3.** $\int \left(\frac{5}{\sqrt{x}} - \sqrt[3]{x^2}\right) dx$;

1.1.4.
$$\int 2^x \cdot e^x dx$$
; **1.1.5.** $\int \frac{dx}{16x^2 + 9}$; **1.1.6.** $\int (x^2 + 1)(x - 2) dx$;

1.1.7.
$$\int tg^2 x dx$$
; **1.1.8.** $\int \sin^2 \frac{x}{2} dx$; **1.1.9.** $\int \frac{3 \cdot 4^x + 4 \cdot 3^x}{3^x} dx$;

1.1.10.
$$\int \frac{(2+x)^3}{x} dx$$
; **1.1.11.** $\int \frac{1+2x^2}{x^2(1+x^2)} dx$.

Решение. 1.1.1. Интеграл находим по формуле 2 табл. 1.1:

$$\int x^5 dx = \frac{x^{5+1}}{5+1} + c = \frac{x^6}{6} + c.$$

1.1.2. По формуле 14 табл. 1.1, при $a = \sqrt{3}$, получаем

$$\int \frac{dx}{3-x^2} = \int \frac{dx}{\left(\sqrt{3}\right)^2 - x^2} = \frac{1}{2\sqrt{3}} \ln \left| \frac{x+\sqrt{3}}{x-\sqrt{3}} \right| + c.$$

1.1.3. Запишем подынтегральную функцию в виде разности степенных функций и воспользуемся свойствами 1.2 и 1.3:

$$\int \left(\frac{5}{\sqrt{x}} - \sqrt[3]{x^2}\right) dx = 5 \int x^{-\frac{1}{2}} dx - \int x^{\frac{2}{3}} dx = 5 \frac{x^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} - \frac{x^{\frac{2}{3} + 1}}{\frac{2}{3} + 1} + c =$$

$$= 10x^{\frac{1}{2}} - \frac{3}{5}x^{\frac{5}{3}} + c = 10\sqrt{x} - \frac{3}{5}\sqrt[3]{x^5} + c.$$

1.1.4. Преобразуем подынтегральную функцию и получим интеграл 5 табл.1.1:

$$\int 2^{x} \cdot e^{x} dx = \int (2e)^{x} dx = \frac{(2e)^{x}}{\ln(2e)} + c.$$

1.1.5. Вынесем в знаменателе множитель при x^2 и применим формулу 10 табл. 1.1:

$$\int \frac{dx}{16x^2 + 9} = \frac{1}{16} \int \frac{dx}{x^2 + \frac{9}{16}} = \frac{1}{16} \int \frac{dx}{x^2 + \left(\frac{3}{4}\right)^2} = \frac{1}{16} \cdot \frac{1}{\frac{3}{4}} \arctan \frac{x}{\frac{3}{4}} + c =$$

$$= \frac{1}{12} \arctan \frac{4x}{3} + c.$$

1.1.6. Чтобы проинтегрировать данное выражение, раскроем скобки, и затем воспользуемся свойствами 1.2 и 1.3:

$$\int (x^2 + 1)(x - 2) dx = \int (x^3 - 2x^2 + x - 2) dx = \frac{x^4}{4} - 2\frac{x^3}{3} + \frac{x^2}{2} - 2x + c.$$

Обратите внимание: В примере 1.1.6 мы пропустили запись суммы интегралов и сразу записали сумму первообразных. В дальнейшем будем поступать так же, помня о существовании правил интегрирования 1.2 и 1.3.

Некоторые интегралы можно находить несколькими способами. Приведём один из способов интегрирования.

1.1.7. Преобразуем подынтегральную функцию, получим табличные интегралы 8 и 1 табл. 1.1:

$$\int tg^{2}x dx = \int \frac{\sin^{2} x}{\cos^{2} x} dx = \int \frac{1 - \cos^{2} x}{\cos^{2} x} dx = \int \left(\frac{1}{\cos^{2} x} - 1\right) dx = \int \frac{dx}{\cos^{2} x} - \int dx = \int \frac{dx}{\cos^{2} x} dx = \int \frac{1 - \cos^{2} x}{\cos^{2} x} dx = \int \frac$$

1.1.8. Применим тригонометрическую формулу $\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$, свойство линейности неопределённого интеграла и формулы 1 и 7 табл. 1.1:

$$\int \sin^2 \frac{x}{2} dx = \int \frac{1 - \cos x}{2} dx = \frac{1}{2} \left(\int dx - \int \cos x dx \right) = \frac{1}{2} (x - \sin x) + c.$$

1.1.9. Производя почленное деление, преобразуем частное в сумму функций. Получим табличные интегралы 5 и 1 табл. 1.1:

$$\int \frac{3 \cdot 4^x + 4 \cdot 3^x}{3^x} dx = \int \left(\frac{3 \cdot 4^x}{3^x} + \frac{4 \cdot 3^x}{3^x}\right) dx = 3 \int \left(\frac{4}{3}\right)^x dx + 4 \int dx = \frac{3 \cdot \left(\frac{4}{3}\right)^x}{\ln \frac{4}{3}} + 4x + c.$$

1.1.10. Воспользуемся формулой $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, свойством линейности неопределённого интеграла и формулами 3, 1, 2 табл. 1.1:

$$\int \frac{(2+x)^3}{x} dx = \int \frac{8+12x+6x^2+x^3}{x} dx = 8 \int \frac{dx}{x} + 12 \int dx + 6 \int x dx + \int x^2 dx = 8 \ln|x| + 12x + 3x^2 + \frac{x^3}{3} + c.$$

1.1.11. Выполнив элементарные преобразования в числителе дроби, представим частное в виде суммы функций:

$$\int \frac{1+2x^2}{x^2(1+x^2)} dx = \int \frac{(1+x^2)+x^2}{x^2(1+x^2)} dx = \int \left(\frac{1+x^2}{x^2(1+x^2)} + \frac{x^2}{x^2(1+x^2)}\right) dx =$$

$$= \int \frac{dx}{x^2} + \int \frac{dx}{1+x^2} = -x^{-1} + \arctan x + c = -\frac{1}{x} + \arctan x + c.$$

Здесь воспользовались формулами 2 и 10 табл. 1.1.

1.2. Метод замены переменной или подстановки

Справочный материал

Теорема 1.2. Пусть:

- функция $x = \varphi(t)$ определена и дифференцируема на некотором промежутке T;
- функция f(x) определена на множестве значений X функции $x = \varphi(t)$, m. e. на промежутке T определена сложная функция $f(\varphi(t))$;
 - ullet функция f(x) на множестве X имеет первообразную F(x). Тогда справедлива формула

$$\int f(x)dx = \int f[\varphi(t)] \cdot \varphi'(t)dt. \tag{1.2}$$

Таким образом, существует класс интегрируемых функций, которые легко преобразовать к табличному интегралу с помощью некоторой подстановки или *методом замены переменной*.

Метод замены переменной основан на знании таблицы 1.1 неопределённых интегралов и умении дифференцировать.

Для применения этого метода требуется:

- увидеть под знаком интеграла функцию и её производную,
- обозначить эту функцию за новую переменную,
- \bullet выразить dx через новую переменную и свести интеграл к табличному,
- после нахождения первообразной функции вернуться к старой переменной.

Заметим, что в этом методе все вычисления удобно производить в строку, отделяя процедуру замены переменной вертикальными линиями. **Пример 1.2.** Найдите интегралы:

1.2.1.
$$\int \cos \frac{2}{x} \frac{dx}{x^2}$$
; **1.2.2.** $\int \frac{e^{3x} dx}{1 + e^{6x}}$; **1.2.3.** $\int \frac{x^2 dx}{\cos^2(x^3)}$;

1.2.4.
$$\int \frac{e^{\arctan x} dx}{1+x^2}$$

1.2.5.
$$\int \frac{\ln x}{x} dx$$
;

1.2.4.
$$\int \frac{e^{\arctan x} dx}{1+x^2}$$
; **1.2.5.** $\int \frac{\ln x}{x} dx$; **1.2.6.** $\int \frac{dx}{\cos^2 x(1+3 \tan x)}$;

1.2.7.
$$\int x \cdot 8^{2-3x^2} dx$$

1.2.8.
$$\int \frac{e^x dx}{e^x + 2}$$

1.2.7.
$$\int x \cdot 8^{2-3x^2} dx$$
; **1.2.8.** $\int \frac{e^x dx}{e^x + 2}$; **1.2.9.** $\int \frac{x-1}{\sqrt{7-9x^2}} dx$;

1.2.10.
$$\int \frac{dx}{x(1+\ln^2 x)}$$
; **1.2.11.** $\int \frac{xdx}{x^2-1}$; **1.2.12.** $\int e^{\cos x} \sin x dx$.

1.2.11.
$$\int \frac{xdx}{x^2 - 1}$$
;

$$1.2.12. \int e^{\cos x} \sin x dx$$

Решение. 1.2.1. Сделаем замену $\frac{2}{r} = t$:

$$\int \cos \frac{2}{x} \frac{dx}{x^2} = \left| \frac{2}{x} = t, -\frac{2}{x^2} dx = dt, \frac{dx}{x^2} = -\frac{dt}{2} \right| = \int \cos t \left(-\frac{dt}{2} \right) =$$

$$= -\frac{1}{2} \int \cos t dt = -\frac{1}{2} \sin t + c = -\frac{1}{2} \sin \frac{2}{x} + c.$$

1.2.2. Сделаем замену $e^{3x} = t$:

$$\int \frac{e^{3x} dx}{1 + e^{6x}} = \int \frac{e^{3x} dx}{1 + (e^{3x})^2} = \begin{vmatrix} e^{3x} = t, & 3e^{3x} dx = dt, & e^{3x} dx = \frac{dt}{3} \end{vmatrix} = \frac{1}{3} \int \frac{dt}{1 + t^2} = \frac{1}{3} \arctan t dt + c = \frac{1}{3} \arctan t dt + c.$$

1.2.3. Сделаем замену $x^3 = t$:

$$\int \frac{x^2 dx}{\cos^2(x^3)} = \left| x^3 = t, \ 3x^2 dx = dt, \ x^2 dx = \frac{dt}{3} \right| = \frac{1}{3} \int \frac{dt}{\cos^2 t} =$$

$$= \frac{1}{3} \operatorname{tg} t + c = \frac{1}{3} \operatorname{tg}(x^3) + c.$$

1.2.4. Сделаем замену arctgx = t:

$$\int \frac{e^{\arctan x} dx}{1+x^2} = \left| \arctan x = t, \frac{dx}{1+x^2} = dt \right| = \int e^t dt = e^t + c = e^{\arctan x} + c.$$

1.2.5. Сделаем замену $\ln x = t$:

$$\int \frac{\ln x}{x} dx = \left| \ln x = t, \frac{dx}{x} = dt \right| = \int t dt = \frac{t^2}{2} + c = \frac{(\ln x)^2}{2} + c.$$

1.2.6. Сделаем замену 1 + 3tgx =

$$\int \frac{dx}{\cos^2 x (1+3tgx)} = \begin{vmatrix} 1+3tgx = t, \\ \frac{3dx}{\cos^2 x} = dt, & \frac{dx}{\cos^2 x} = \frac{dt}{3} \end{vmatrix} = \int \frac{dt}{3 \cdot t} = \frac{1}{3} \ln|t| + c =$$

$$= \frac{1}{3}\ln\left|1 + 3\operatorname{tg}x\right| + c.$$

1.2.7. Сделаем замену
$$2-3x^2=t$$
:
$$\int x \cdot 8^{2-3x^2} dx = \begin{vmatrix} 2-3x^2=t & -6x dx = dt \\ x dx = \frac{dt}{-6} \end{vmatrix} = -\frac{1}{6} \int 8^t dt = \frac{1}{6} \int 8^t dt$$

1.2.8. Сделаем замену ln(2x+1) =

$$\int \frac{e^{x} dx}{e^{x} + 2} = \begin{vmatrix} e^{x} + 2 = t & e^{x} dx = dt \\ = \int \frac{dt}{t} = \ln|t| + c = \ln|e^{x} + 2| + c.$$

1.2.9. Производя почленное деление, представим интеграл в виде разности двух интегралов:

$$\int \frac{x-1}{\sqrt{7-9x^2}} \, dx = \int \frac{x \, dx}{\sqrt{7-9x^2}} - \int \frac{dx}{\sqrt{7-9x^2}} \, .$$

a)
$$\int \frac{xdx}{\sqrt{7-9x^2}} = \begin{vmatrix} 7-9x^2 = t \\ xdx = \frac{dt}{-18} \end{vmatrix}, -18xdx = dt, = \int \frac{dt}{-18\sqrt{t}} = -\frac{1}{18} \int t^{-\frac{1}{2}} dt = \int \frac{dt}{-18\sqrt{t}} = -\frac{1}{18} \int t^{-\frac{1}{2}} dt = \int \frac{dt}{-18\sqrt{t}} + c = -\frac{1}{9} \sqrt{t} + c = -\frac{1}{9} \sqrt{7-9x^2} + c;$$
6)
$$\int \frac{dx}{\sqrt{7-9x^2}} = \int \frac{dx}{\sqrt{(\sqrt{7})^2 - (3x)^2}} = \begin{vmatrix} 3x = t, & 3dx = dt, \\ dx = \frac{dt}{3} \end{vmatrix} = \frac{1}{3} \int \frac{dt}{\sqrt{(\sqrt{7})^2 - t^2}} = \frac{1}{3} \arcsin \frac{t}{\sqrt{7}} + c = \frac{1}{3} \arcsin \frac{3x}{\sqrt{7}} + c.$$

Окончательно получаем:

$$\int \frac{x-1}{\sqrt{7-9x^2}} \, dx = -\frac{\sqrt{7-9x^2}}{9} - \frac{1}{3} \arcsin \frac{3x}{\sqrt{7}} + c.$$

$$\int \frac{dx}{x(1+\ln^2 x)} = \left| \ln x = t \right|, \qquad \left| = \int \frac{dt}{1+t^2} = \arctan t + c = \arctan (\ln x) + t$$

$$\begin{vmatrix} \frac{dx}{x} = dt \\ \frac{xdx}{x^2 - 1} = \begin{cases} x^2 - 1 = t, \ 2xdx = dt, \\ xdx = \frac{1}{2}dt \end{cases} = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \ln|t| + c = \frac{1}{2} \ln|x^2 - 1| + c.$$

1.2.12. Сделаем замену $\cos x = t$:
$$\int e^{\cos x} \sin x dx = \begin{vmatrix} \cos x = t, \\ -\sin x dx = dt, \\ \sin x dx = -dt \end{vmatrix} = -\int e^t dt = -e^t + c = -e^{\cos x} + c.$$

Тождественное преобразование подынтегрального выражения с выделением дифференциала новой переменной

Справочный материал

Данный метод основан на знании таблицы неопределённых интегралов (см. табл. 1.1) и таблицы дифференциалов для основных элементарных функций dy = y'dx (табл. 1.2).

Таблица 1.2 **Таблица дифференциалов**

1	d(cx+b)=cdx,	2	$d(x^n) = nx^{n-1}dx$			
	c = const, b = const					
3	$d(\ln x) = \frac{dx}{x}$	4	$d(\log_a x) = \frac{1}{x \ln a} dx$			
5	$d(e^x) = e^x dx$	6	$d(a^x) = a^x \ln a dx$			
7	$d(\sin x) = \cos x dx$	8	$d(\cos x) = -\sin x dx$			
9	$d(tgx) = \frac{dx}{\cos^2 x}$	10	$d(\operatorname{ctg} x) = -\frac{dx}{\sin^2 x}$			
11	$d(\arcsin x) = \frac{dx}{\sqrt{1 - x^2}}$	12	$d(\arccos x) = -\frac{dx}{\sqrt{1-x^2}}$			
13	$d(\operatorname{arctg} x) = \frac{dx}{1+x^2}$	14	$d(\operatorname{arcetg} x) = -\frac{dx}{1+x^2}$			

Пример 1.3. Найдите интегралы:

1.3.1.
$$\int \sin^3 5x \cos 5x dx$$
; 1.3.2. $\int \cot(2x+1) dx$; 1.3.3. $\int x^3 \cos(x^4) dx$; 1.3.4. $\int \cos x \cdot 3^{\sin x} dx$;

1.3.5.
$$\int \sin(2-7x) dx$$
;
1.3.6. $\int \frac{2x+1}{4x^2-1} dx$;
1.3.7. $\int \frac{x dx}{x^4+4}$;
1.3.8. $\int \frac{e^{3x} dx}{9+e^{6x}}$;
1.3.9. $\int \frac{x^3 dx}{1+x^4}$;
1.3.10. $\int \frac{\sqrt[3]{1+\ln x}}{x} dx$.

Решение. 1.3.1. Воспользуемся тем, что $\cos 5x dx = \frac{1}{5} d(\sin 5x)$ и получим табличный интеграл 2 табл. 1.1:

$$\int \sin^3 5x \cos 5x dx = \int \sin^3 5x \frac{\cos 5x d(5x)}{5} = \frac{1}{5} \int \sin^3 5x d(\sin 5x) =$$
$$= \frac{1}{5} \cdot \frac{\sin^4 5x}{4} + c = \frac{1}{20} \sin^4 5x + c.$$

1.3.2. Воспользуемся формулами $ctg\alpha = \frac{\cos\alpha}{\sin\alpha}$, $\cos x dx = d(\sin x)$ и получим табличный интеграл 3 табл. 1.1:

$$\int \cot(2x+1)dx = \int \frac{\cos(2x+1)}{\sin(2x+1)}dx = \frac{1}{2} \int \frac{d(\sin(2x+1))}{\sin(2x+1)} = \frac{1}{2} \ln|\sin(2x+1)| + c.$$

1.3.3. Воспользуемся тем, что $d(x^4) = 4x^3 dx$ и получим табличный интеграл 7 табл. 1.1:

$$\int x^3 \cos(x^4) dx = \int \cos(x^4) \frac{d(x^4)}{4} = \frac{1}{4} \sin(x^4) + c.$$

1.3.4. Воспользуемся тем, что $d(\sin x) = \cos x dx$ и получим табличный интеграл 5 табл. 1.1:

$$\int \cos x \cdot 3^{\sin x} dx = \int 3^{\sin x} d(\sin x) = \frac{3^{\sin x}}{\ln 3} + c.$$

1.3.5. Умножим и разделим интеграл на (-7) и воспользуемся равенством $dx = \frac{d(2-7x)}{-7}$:

$$\int \sin(2-7x) \, dx = \int \sin(2-7x) \frac{d(2-7x)}{-7} = \frac{1}{7} \cos(2-7x) + c \, .$$

1.3.6. Производя почленное деление, представим интеграл в виде суммы интегралов:

$$\int \frac{2x+1}{4x^2-1} dx = \int \frac{2xdx}{4x^2-1} + \int \frac{dx}{4x^2-1} =$$

$$= \frac{1}{4} \int \frac{d(4x^2-1)}{4x^2-1} + \frac{1}{2} \int \frac{d(2x)}{(2x)^2-1} = \frac{1}{4} \ln \left| 4x^2 - 1 \right| + \frac{1}{4} \ln \left| \frac{2x-1}{2x+1} \right| + c = \frac{1}{2} \ln |2x-1| + c.$$

1.3.7. Внесём под знак дифференциала функцию x^2 , учитывая равенство $\frac{1}{2}d(x^2)=xdx$, и получим табличный интеграл 10 табл. 1.1:

$$\int \frac{xdx}{x^4 + 4} = \int \frac{xdx}{(x^2)^2 + 2^2} = \frac{1}{2} \int \frac{d(x^2)}{(x^2)^2 + 2^2} = \frac{1}{4} \operatorname{arctg} \frac{x^2}{2} + c.$$

1.3.8. Внесём под знак дифференциала функцию e^{3x} , учитывая равенство $d(e^{3x}) = 3e^{3x}dx$, и получим табличный интеграл 10 табл. 1.1:

$$\int \frac{e^{3x} dx}{9 + e^{6x}} = \frac{1}{3} \int \frac{d(e^{3x})}{3^2 + (e^{3x})^2} = \frac{1}{3} \cdot \frac{1}{3} \arctan \frac{e^{3x}}{3} + c = \frac{1}{9} \arctan \frac{e^{3x}}{3} + c.$$

1.3.9. Воспользуемся тем, что $x^3 dx = \frac{1}{4} d(1 + x^4)$, и получим табличный интеграл 3 табл. 1.1:

$$\int \frac{x^3 dx}{1+x^4} = \frac{1}{4} \int \frac{d(1+x^4)}{1+x^4} = \frac{1}{4} \ln(1+x^4) + c.$$

1.3.10. Воспользуемся формулой 3 табл. 1.2 и получим табличный интеграл 2 табл. 1.1:

$$\int \frac{\sqrt[3]{1+\ln x}}{x} dx = \int (1+\ln x)^{\frac{1}{3}} d(1+\ln x) = \frac{3(1+\ln x)^{\frac{4}{3}}}{4} + c = \frac{3}{4} \sqrt[3]{(1+\ln x)^4} + c.$$

1.3. Метод интегрирования по частям

Справочный материал

Метод интегрирования по частям основан на применении формулы $\int u dv = uv - \int v du \,, \tag{1.3}$

которую называют формулой интегрирования по частям.

Выделим некоторые классы функций, интегрируемых по частям.

Класс І. Произведение многочлена n-й степени ($n \in N$)

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$

на тригонометрическую или показательную функцию

$$P_n(x)\sin \alpha x$$
, $P_n(x)\cos \alpha x$, $P_n(x)e^{\alpha x}$, $P_n(x)a^{\alpha x}$.

Класс II. Произведение многочлена целой степени P(x) (или функция P(x) – иррациональная алгебраическая функция) на обратную тригонометрическую функцию или на логарифмическую функцию

$$P(x) \arcsin^n \alpha x$$
, $P(x) \arccos^n \alpha x$, $P(x) \operatorname{arctg}^n \alpha x$, $P(x) \operatorname{arcctg}^n \alpha x$, $P(x) \ln^n \alpha x$, $P(x) \log_a^n \alpha x$, где $a > 0$, $a \ne 0$, $n \in N$.

вида $e^{\alpha x}\cos\beta x$, $e^{\alpha x}\sin\beta x$, $\cos(\ln x)$, $\sin(\ln x)$, $\sqrt{a^2\pm x^2}$, называются ииклическими.

Разбивая подынтегральную функцию на части (множители) u и dv, следует придерживаться следующих правил:

Правило 1. Интегрирование дифференциала dv не должно представлять затруднений.

Правило 2. Применение формулы (1.3) должно привести к упрощению подынтегральной функции (приблизить её к табличному интегралу).

Правило 3. Чтобы найти du, нужно продифференцировать функцию u. Чтобы найти v, нужно проинтегрировать dv, не прибавляя константу c. Формулу интегрирования по частям можно применять несколько раз.

Правило 4. В циклических интегралах, применив два раза формулу (1.3), приходим к первоначальному интегралу, затем из полученного равенства выражаем искомый интеграл.

З а м е ч а н и е 1. Если аргумент функции и дифференциала не совпадают, то лучше предварительно упростить подынтегральное выражение, введя новую переменную, и к полученному выражению применить формулу интегрирования по частям (1.3).

Таблица 1.3 позволит быстрее распознать, к какому классу (I – III) относится наша функция и правильно выбрать u, dv.

Таблица 1.3

класс	интеграл	u(x), dv(x)	du(x), v(x)
	$1. \int P_n(x)e^{\alpha x}dx$	$u=P_n(x),$	$du = P_n'(x)dx,$
1	·	$dv = e^{\alpha x} dx$	$v = \int dv = \int e^{\alpha x} dx = \frac{1}{\alpha} e^{\alpha x}$
	$2. \int P_n(x) a^{\alpha x} dx$	$u=P_n(x),$	$du = P_n'(x)dx,$
		$dv = a^{\alpha x} dx$	$v = \int dv = \int a^{\alpha x} dx = \frac{1}{\alpha \ln a} a^{\alpha x}$

	3. $\int P_n(x) \sin \alpha x dx$	$u = P_n(x),$	$du = P_n'(x)dx,$
	J W	$dv = \sin \alpha x dx$	$v = \int \sin \alpha x dx = -\frac{1}{\alpha} \cos \alpha x$
	$4. \int P_n(x) \cos \alpha x dx$	$u=P_n(x),$	$du = P_n'(x)dx,$
		$dv = \cos\alpha x dx$	$v = \int \cos \alpha x dx = \frac{1}{\alpha} \sin \alpha x$
II	5. $\int P(x) \arcsin^n \alpha x dx$, $n \in \mathbb{N}$	$u = \arcsin^n \alpha x,$ dv = P(x)dx	$du = \frac{\alpha n \arcsin^{n-1} \alpha x}{\sqrt{1 - (\alpha x)^2}} dx,$
			$v = \int P(x)dx$
	6. $\int P(x) \arccos^n \alpha x dx$, $n \in \mathbb{N}$	$u = \arccos^n \alpha x,$ dv = P(x)dx	$du = -\frac{\alpha n \arccos^{n-1} \alpha x}{\sqrt{1 - (\alpha x)^2}} dx,$
			$v = \int P(x)dx$
	7. $\int \arcsin \alpha x dx$,	$u = \arcsin\alpha x,$ $dv = dx,$	$du = \frac{\alpha dx}{\sqrt{1 - (\alpha x)^2}},$
	$\int \arccos \alpha x dx$	$u = \arccos \alpha x$	$v = \int dx = x,$ αdx
			$du = -\frac{\alpha dx}{\sqrt{1 - (\alpha x)^2}}$
	8. $\int P(x) \operatorname{arctg}^n \alpha x dx$,	$u = \operatorname{arctg}^n \alpha x$,	$du = \frac{\alpha n \operatorname{arctg}^{n-1} \alpha x}{\alpha x} dx$
	$n \in N$	dv = P(x)dx	$du = \frac{\alpha n \operatorname{arctg}^{n-1} \alpha x}{1 + (\alpha x)^2} dx,$
			$v = \int P(x)dx$
	9. $\int P(x)\operatorname{arcctg}^n \alpha x dx$,	$u = \operatorname{arcctg}^n \alpha x$,	$du = \alpha n \operatorname{arcctg}^{n-1} \alpha x$
	$n \in N$	dv = P(x)dx	$du = -\frac{\alpha n \operatorname{arcctg}^{n-1} \alpha x}{1 + (\alpha x)^2} dx,$
			$v = \int P(x)dx$
	10. $\int \operatorname{arctg} \alpha x dx$,	$u = \arctan dx,$ $dv = dx,$	$du = \frac{\alpha dx}{1 + (\alpha x)^2}, \ v = \int dx = x,$
	$\int \operatorname{arcctg} \alpha x dx$	$u = \operatorname{arcctg} \alpha x$	$du = -\frac{\alpha dx}{1 + (\alpha x)^2}$
	$11. \int P(x) \ln^n x dx,$	$u = \ln^n x,$ dv = P(x)dx,	$du = \frac{n \ln^{n-1} x}{x} dx,$
	$\int P(x) \log_a^n x dx,$	$u = \log_a^n x$	$v = \int P(x)dx ,$
	$a > 0, a \neq 1, n \in N$	3,0	$du = \frac{n \log_a^{n-1} x}{x \cdot \ln a} dx$

	$12. \int \ln^n \alpha x dx, n \in N$	$u = \ln^n \alpha x,$ $dv = dx$	$du = n \ln^{n-1} \alpha x \cdot \frac{dx}{x}, \ v = x$
III	13. $\int e^{\alpha x} \sin \beta x dx$	1) $u = e^{\alpha x}$, $dv = \sin \beta x dx$	$du = \alpha e^{\alpha x} dx,$ $v = \int \sin \beta x dx = -\frac{1}{\beta} \cos \beta x$
		2) $u = e^{\alpha x}$, $dv = \cos \beta x dx$	$du = \alpha e^{\alpha x} dx,$ $v = \int \cos \beta x dx = \frac{1}{\beta} \sin \beta x$
	14. $\int e^{\alpha x} \cos \beta x dx$	1) $u = e^{\alpha x}$, $dv = \cos \beta x dx$	$du = \alpha e^{\alpha x} dx,$ $v = \int \cos \beta x dx = \frac{1}{\beta} \sin \beta x$
		$ 2) u = e^{\alpha x}, dv = \sin \beta x dx $	$du = \alpha e^{\alpha x} dx,$ $v = \int \sin \beta x dx = -\frac{1}{\beta} \cos \beta x$
	15. $\int \cos(\ln x) dx$	1) $u = \cos(\ln x)$, $dv = dx$	$du = -\sin(\ln x)\frac{dx}{x}, v = x$
		$2) u = \sin(\ln x), dv = dx$	$du = \cos(\ln x) \frac{dx}{x}, \ v = x$
	16. $\int \sin(\ln x) dx$	1) $u = \sin(\ln x)$, $dv = dx$	$du = \cos(\ln x) \frac{dx}{x}, \ v = x$
		$ 2) u = \cos(\ln x), \\ dv = dx $	$du = -\sin(\ln x)\frac{dx}{x}, \ v = x$

3 а мечание 2. В интегралах 13, 14 табл. 1.3 можно взять за $dv = e^{\alpha x} dx$, а за u — оставшееся выражение, это не усложнит процесс интегрирования.

3 а м е ч а н и е 3. Интегралы 15, 16 табл. 1.3 сводятся к виду 13, 14, если выполнить предварительно замену переменной $\ln x = t$, $x = e^t$, $dx = e^t dt$.

Пример 1.4. Найдите интегралы:

1.4.1.
$$\int xe^{5x} dx$$
; **1.4.2.** $\int x\cos 2x dx$; **1.4.3.** $\int e^{\sqrt{x}} dx$;

1.4.4.
$$\int x^3 \sin x^2 dx$$
; **1.4.5.** $\int \arccos 2x dx$; **1.4.6.** $\int \frac{\ln x dx}{x^2}$;

1.4.7.
$$\int e^x \sin 3x dx$$
; **1.4.8.** $\int \cos(\ln x) dx$.

Интегралы 1.4.1 – 1.4.8 находятся с помощью формулы интегрирования по частям $\int u dv = uv - \int v du$ и табл. 1.3.

Решение. 1.4.1. Имеем интеграл вида 1 табл. 1.3. Полагаем u=x, $dv=e^{5x}dx$. Найдём du и v и применим формулу интегрирования по частям:

$$\int xe^{5x} dx = \begin{vmatrix} u = x, & du = dx, \\ dv = e^{5x} dx, \\ v = \int e^{5x} dx = \frac{e^{5x}}{5} \end{vmatrix} = x \cdot \frac{e^{5x}}{5} - \frac{1}{5} \int e^{5x} dx = \frac{xe^{5x}}{5} - \frac{e^{5x}}{5} + c.$$

1.4.2. Имеем интеграл вида 4 табл. 1.3. Полагаем u = x, тогда $dv = \cos 2x dx$. Найдём du и v и применим формулу интегрирования по частям:

$$\int x \cos 2x dx = \begin{vmatrix} u = x, & du = dx, \\ dv = \cos 2x dx, & v = \int \cos 2x dx = \frac{1}{2} \sin 2x \end{vmatrix} = x \cdot \frac{1}{2} \sin 2x - \frac{1}{2} \sin 2x dx = \frac{x}{2} \sin 2x dx = \frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x + c.$$

1.4.3. Сделаем замену переменной $x = t^2$, dx = 2tdt, получим интеграл вида 1 табл. 1.3:

$$\int e^{\sqrt{x}} dx = \left| x = t^2, \ dx = 2t dt \right| = \int e^t \cdot 2t dt = 2 \int t e^t dt =$$

$$= \left| u = t, \ dv = e^t dt, \right|$$

$$= \left| du = dt, \ v = \int e^t dt = e^t \right|$$

$$= 2 \left(t e^t - \int e^t dt \right) = 2 \left(t e^t - e^t \right) + c = 2 e^{\sqrt{x}} \left(\sqrt{x} - 1 \right) + c.$$

1.4.4. Отделим от x^3 один множитель и сделаем замену переменных $x^2 = t$, 2xdx = dt. Получившийся интеграл найдём с помощью формулы интегрирования по частям:

$$\int x^{3} \sin x^{2} dx = \int x^{2} \cdot \sin x^{2} \cdot x dx = \begin{vmatrix} x^{2} = t, & 2x dx = dt, \\ x dx = \frac{dt}{2} \end{vmatrix} = \int t \sin t \frac{dt}{2} =$$

$$= \frac{1}{2} \int t \sin t dt = \begin{vmatrix} u = t, & du = dt, \\ dv = \sin t dt, & v = -\cos t \end{vmatrix} = \frac{1}{2} \left(-t \cos t + \int \cos t dt \right) =$$

$$= \frac{1}{2} \left(-t \cos t + \sin t \right) + c = \frac{1}{2} \left(-x^{2} \cos x^{2} + \sin x^{2} \right) + c.$$

1.4.5. Имеем интеграл вида 7 табл. 1.3. Полагаем $u = \arccos 2x$, dv = dx. Найдём du и v и применим формулу (1.3):

$$\int \arccos 2x dx = \begin{vmatrix} u = \arccos 2x, & du = -\frac{2dx}{\sqrt{1 - 4x^2}}, \\ dv = dx, & v = \int dx = x \end{vmatrix} = \arccos 2x \cdot x - \frac{1}{4} \frac{(1 - 4x^2)^{\frac{1}{2}}}{\frac{1}{2}} + c = x \arccos 2x - \frac{1}{2} \sqrt{1 - 4x^2} + c.$$

1.4.6. Имеем интеграл вида 11 табл. 1.3. Полагаем $u = \ln x$, $dv = \frac{dx}{r^2}$.

Интегрируем:

$$\int \frac{\ln x dx}{x^2} = \begin{vmatrix} u = \ln x, du = \frac{dx}{x}, \\ dv = \frac{dx}{x^2}, v = -\frac{1}{x} \end{vmatrix} = \ln x \cdot \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \cdot \frac{dx}{x} = -\frac{\ln x}{x} + \int \frac{dx}{x^2} = -\frac{\ln x}{x} - \frac{1}{x} + c = -\frac{1}{x}(\ln x + 1) + c.$$

1.4.7. Имеем циклический интеграл 13 табл. 1.3. Применим два раза

формулу интегрирования по частям, полагая
$$u = e^x$$
:
$$\int e^x \sin 3x dx = \begin{vmatrix} u = e^x, & du = e^x dx, \\ dv = \sin 3x dx, & v = \int \sin 3x dx = -\frac{1}{3} \cos 3x \end{vmatrix} = e^x \left(-\frac{1}{3} \cos 3x \right) - \int \left(-\frac{1}{3} \cos 3x \right) \cdot e^x dx = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \int e^x \cos 3x dx = \right.$$

$$= \begin{vmatrix} u = e^x, & du = e^x dx, \\ dv = \cos 3x dx, & v = \int \cos 3x dx = \frac{1}{3} \sin 3x \end{vmatrix} = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int \sin 3x \cdot e^x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int \sin 3x \cdot e^x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int \sin 3x \cdot e^x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int \sin 3x \cdot e^x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int \sin 3x \cdot e^x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int \sin 3x \cdot e^x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int \sin 3x \cdot e^x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int e^x \sin 3x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int e^x \sin 3x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int e^x \cos 3x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \sin 3x - \frac{1}{3} \int e^x \cos 3x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \cos 3x - \frac{1}{3} \int e^x \cos 3x dx \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \cos 3x - \frac{1}{3} \cos 3x \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \left(e^x \cdot \frac{1}{3} \cos 3x - \frac{1}{3} \cos 3x \right) = -\frac{1}{3} e^x \cos 3x + \frac{1}{3} \cos 3x + \frac{$$

Выразим искомый интеграл из равенства

$$\int e^x \sin 3x dx = -\frac{1}{3}e^x \cos 3x + \frac{1}{9}e^x \sin 3x - \frac{1}{9}\int e^x \sin 3x dx,$$

получаем

$$\int e^x \sin 3x dx + \frac{1}{9} \int e^x \sin 3x dx = -\frac{1}{3} e^x \cos 3x + \frac{1}{9} e^x \sin 3x,$$

$$\frac{10}{9} \int e^x \sin 3x dx = \frac{e^x}{9} (\sin 3x - 3\cos 3x);$$

$$\int e^x \sin 3x dx = \frac{e^x}{10} (\sin 3x - 3\cos 3x) + c.$$

1.4.8. Имеем циклический интеграл 15 табл. 1.3:

$$\int \cos(\ln x) dx = \begin{vmatrix} u = \cos(\ln x), & du = -\sin(\ln x) \frac{dx}{x}, \\ dv = dx, & v = \int dx = x \end{vmatrix} = = \cos(\ln x)x - \int x \left(-\sin(\ln x) \frac{dx}{x} \right) = x \cos(\ln x) + \int \sin(\ln x) dx = = \begin{vmatrix} u = \sin(\ln x), & du = \cos(\ln x) \frac{dx}{x}, \\ dv = dx, & v = \int dx = x \end{vmatrix} = x \cos(\ln x) + \sin(\ln x) \cdot x - - \int x \cos(\ln x) \frac{dx}{x} = x \cos(\ln x) + x \sin(\ln x) - \int \cos(\ln x) dx.$$

Выразим искомый интеграл из равенства

$$\int \cos(\ln x) dx = x \cos(\ln x) + x \sin(\ln x) - \int \cos(\ln x) dx;$$

$$\int \cos(\ln x) dx + \int \cos(\ln x) dx = x \cos(\ln x) + x \sin(\ln x);$$

$$2 \int \cos(\ln x) dx = x (\cos(\ln x) + \sin(\ln x));$$

$$\int \cos(\ln x) dx = \frac{x}{2} (\cos(\ln x) + \sin(\ln x)) + c.$$

1.4. Интегралы от функций, содержащих квадратный трёхчлен

Справочный материал

1. Интегралы вида
$$\int \frac{Bx+C}{ax^2+bx+c} dx$$
, $\int \frac{Bx+C}{\sqrt{ax^2+bx+c}} dx$.

При интегрировании функций, содержащих в знаменателе дроби квадратный трёхчлен $ax^2 + bx + c$ рекомендуется придерживаться следующей схемы:

• выделить полный квадрат из квадратного трёхчлена, в результате чего он преобразуется в квадратный двучлен

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + 2x\frac{b}{2a} + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right) =$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} \pm k^{2}\right], \text{ где } k^{2} = \frac{c}{a} - \frac{b^{2}}{4a^{2}};$$

ullet выражение $\left(x+\frac{b}{2a}\right)$ заменить через новую переменную t. Пере-

менную x выразить через t и найти дифференциал dx;

• проинтегрировать табличные интегралы, используя формулы:

$$\int \frac{du}{u} = \ln|u| + c \,, \qquad \int \frac{du}{\sqrt{u}} = 2\sqrt{u} + c \,, \text{ где } u = ax^2 + bx + c \,;$$

$$\int \frac{dt}{t^2 + A^2} = \frac{1}{A} \arctan \frac{t}{A} + c \,, \qquad \int \frac{dt}{t^2 - A^2} = \frac{1}{2A} \ln \left| \frac{t - A}{t + A} \right| + c \,;$$

$$\int \frac{dt}{\sqrt{t^2 \pm A^2}} = \ln \left| t + \sqrt{t^2 \pm A^2} \right| + c \,;$$

$$\int \frac{dt}{\sqrt{A^2 - t^2}} = \arcsin \frac{t}{A} + c \,, \text{ где } t = x + \frac{b}{2a} \,, \text{ } A = const \,;$$

• вернуться к старой переменной х.

3 а м е ч а н и е . Эти интегралы можно найти, выделив в числителе дроби производную квадратного трёхчлена $ax^2 + bx + c$ и представив интеграл в виде суммы двух табличных интегралов.

2. Интегралы вида $\int \sqrt{ax^2 + bx + c} \, dx$.

Выделением под знаком радикала полного квадрата рассматриваемые интегралы сводятся к интегралам одного из следующих видов:

$$\int \sqrt{A^2 - t^2} \, dt$$
, $\int \sqrt{A^2 + t^2} \, dt$, $\int \sqrt{t^2 - A^2} \, dt$, где $A = const$.

3. Интегралы вида $\int \frac{dx}{x\sqrt{ax^2 + bx + c}}$

Данные интегралы сводятся к интегралу вида $\int \frac{dt}{\sqrt{{a_1}t^2+{b_1}t+{c_1}}}$ с

помощью подстановки $x = \frac{1}{t}$.

Пример 1.5. Найдите интегралы:

1.5.1.
$$\int \frac{6x}{x^2 + 2x + 5} dx$$
; **1.5.2.** $\int \frac{x - 3}{4x^2 - 8x + 2} dx$;

1.5.3.
$$\int \frac{x-2}{\sqrt{x^2+4x+8}} dx;$$
1.5.4.
$$\int \frac{2x-1}{\sqrt{1-6x-x^2}} dx;$$
1.5.5.
$$\int \frac{dx}{x\sqrt{2+x-x^2}}.$$

Решение. 1.5.1. Выделим полный квадрат в знаменателе дроби $x^2 + 2x + 5 = (x^2 + 2 \cdot x \cdot 1 + 1^2) - 1^2 + 5 = (x+1)^2 + 4$ и сделаем замену x+1=t:

$$\int \frac{6xdx}{x^2 + 2x + 5} = \begin{vmatrix} \text{выделим полный квадрат:} \\ x^2 + 2x + 5 = (x+1)^2 + 4 \end{vmatrix} = 6 \int \frac{xdx}{(x+1)^2 + 4} = 6 \int \frac{xdx}{t^2 + 4} = 6 \int$$

1.5.2. Выделим в знаменателе дроби полный квадрат и введём новую переменную:

$$\int \frac{(x-3)dx}{4x^2 - 8x + 2} = \begin{vmatrix} 4x^2 - 8x + 2 &= ((2x)^2 - 2 \cdot 2x \cdot 2 + 2^2) - 2^2 + 2 &= \\ &= (2x-2)^2 - 2, \\ 2x - 2 &= t, \ x = \frac{t+2}{2}, \ dx = \frac{dt}{2}, \ 4x^2 - 8x + 2 &= t^2 - 2 \end{vmatrix} =$$

$$= \int \frac{\frac{t+2}{2} - 3}{t^2 - 2} \frac{dt}{2} = \frac{1}{4} \int \frac{t - 4}{t^2 - 2} dt = \frac{1}{4} \int \frac{t dt}{t^2 - 2} - \frac{1}{4} \int \frac{4 dt}{t^2 - 2} = \frac{1}{4 \cdot 2} \int \frac{d(t^2 - 2)}{t^2 - 2} - \frac{1}{4} \int \frac{dt}{t^2 - 2} dt = \frac{1}{4} \int \frac{t - \sqrt{2}}{t^2 - 2}$$

1.5.3. В подкоренном выражении выделим полный квадрат и введём новую переменную:

$$\int \frac{(x-2)dx}{\sqrt{x^2 + 4x + 8}} = \begin{vmatrix} x^2 + 4x + 8 &= (x^2 + 2 \cdot x \cdot 2 + 2^2) - 2^2 + 8 &= \\ &= (x+2)^2 + 4, \ x + 2 &= t, \ x &= t - 2, \ dx &= dt, \\ &= x^2 + 4x + 8 &= t^2 + 4 \end{vmatrix} =$$

$$= \int \frac{(t-2-2)dt}{\sqrt{t^2 + 4}} = \int \frac{t \, dt}{\sqrt{t^2 + 4}} - 4 \int \frac{dt}{\sqrt{t^2 + 4}} = \frac{1}{2} \int (t^2 + 4)^{-\frac{1}{2}} \, d(t^2 + 4) - 4 \int \frac{dt}{\sqrt{t^2 + 4}} =$$

$$= \frac{1}{2} \frac{(t^2 + 4)^{\frac{1}{2}}}{\frac{1}{2}} - 4 \ln |t + \sqrt{t^2 + 4}| + c =$$

$$= \sqrt{x^2 + 4x + 8} - 4 \ln |x + 2 + \sqrt{x^2 + 4x + 8}| + c.$$

1.5.4. В знаменателе дроби выделим полный квадрат и введём новую переменную:

$$\int \frac{(2x-1)dx}{\sqrt{1-6x-x^2}} = \begin{vmatrix} 1-6x-x^2 = -(x^2+6x-1) = \\ = -(x^2+2\cdot x\cdot 3+3^2-3^2-1) = \\ = -(x+3)^2+10 \\ x+3=t, \ x=t-3, \\ dx=dt, \ 1-6x-x^2=10-t^2 \end{vmatrix} = \int \frac{2tdt}{\sqrt{10-t^2}} dt = \int \frac{2tdt}{\sqrt{10-t^2}} -7\int \frac{dt}{\sqrt{10-t^2}} = -\int \frac{d(10-t^2)}{\sqrt{10-t^2}} -7\int \frac{dt}{\sqrt{\sqrt{10}}} = -\int \frac{dt}{\sqrt{10-t^2}} -7\int \frac{dt}{\sqrt{10-t^2}} = -\int \frac{d(10-t^2)}{\sqrt{10-t^2}} -7\int \frac{dt}{\sqrt{10-t^2}} -7\int \frac{dt}{\sqrt{10-t^2}} = -\int \frac{d(10-t^2)}{\sqrt{10-t^2}} -7\int \frac{dt}{\sqrt{10-t^2}} -7\int$$

1.5.5. Преобразуем подынтегральную функцию и применим подстановку $\frac{1}{r} = t$:

$$\int \frac{dx}{x\sqrt{2+x-x^2}} = \int \frac{dx}{x\sqrt{x^2\left(\frac{2}{x^2} + \frac{1}{x} - 1\right)}} = \int \frac{dx}{x^2\sqrt{\frac{2}{x^2} + \frac{1}{x} - 1}} =$$

$$= \left| \frac{1}{x} = t, -\frac{dx}{x^2} = dt, \frac{dx}{x^2} = -dt \right| = -\int \frac{dt}{\sqrt{2t^2 + t - 1}}.$$

Выделим в подкоренном выражении полный квадрат:

$$2t^{2} + t - 1 = \left(\sqrt{2}t\right)^{2} + 2\sqrt{2}t \cdot \frac{1}{2\sqrt{2}} + \left(\frac{1}{2\sqrt{2}}\right)^{2} - \left(\frac{1}{2\sqrt{2}}\right)^{2} - 1 = \frac{1}{2\sqrt{2}}$$

$$= \left(\sqrt{2}t + \frac{1}{2\sqrt{2}}\right)^2 - \frac{1}{8} - 1 = \left(\sqrt{2}t + \frac{1}{2\sqrt{2}}\right)^2 - \frac{9}{8}.$$

Найдём интеграл:

$$I = -\int \frac{dt}{\sqrt{2t^2 + t - 1}} = -\int \frac{dt}{\sqrt{\left(\sqrt{2}t + \frac{1}{2\sqrt{2}}\right)^2 - \frac{9}{8}}} = -\frac{1}{\sqrt{2}} \int \frac{d\left(\sqrt{2}t + \frac{1}{2\sqrt{2}}\right)}{\sqrt{\left(\sqrt{2}t + \frac{1}{2\sqrt{2}}\right)^2 - \frac{9}{8}}} =$$

$$= -\frac{1}{\sqrt{2}} \ln \left| \sqrt{2}t + \frac{1}{2\sqrt{2}} + \sqrt{\left(\sqrt{2}t + \frac{1}{2\sqrt{2}}\right)^2 - \frac{9}{8}} \right| + c =$$

$$= -\frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2}}{x} + \frac{1}{2\sqrt{2}} + \sqrt{\frac{2}{x^2} + \frac{1}{x} - 1} \right| + c = -\frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2} + \sqrt{2 + x - x^2}}{x} + \frac{1}{2\sqrt{2}} \right| + c.$$

1.5. Интегрирование рациональных дробей

1.5.1. Рациональные дроби

Справочный материал

Определение 1.4. Дробь $\frac{P_m(x)}{Q_n(x)}$ называется рациональной, если

 $P_m(x), \ Q_n(x)$ – многочлены степени т и п соответственно $(m \ge 0, n > 0, m \in \mathbb{Z}, n \in \mathbb{Z})$:

$$P_m(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m,$$

$$Q_n(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n,$$

где $a_0, a_1, ..., a_m, b_0, b_1, ..., b_n$ – любые числа $(a_m \neq 0, b_n \neq 0)$.

Если m < n, то рациональная дробь называется **правильной**; если $m \ge n$, то дробь называется **неправильной**.

Теорема 1.3. Уравнение $b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n = 0$ имеет ровно n корней действительных или комплексных (включая их кратность), nричём каждый комплексный корень (a + bi) имеет сопряжённый комплексный корень (a - bi).

Теорема 1.4. Каждый целый многочлен с вещественными коэффициентами разлагается, и притом единственным способом, на вещественные множители

$$Q_n(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n = b_n (x - x_1)^{l_1} \cdot (x - x_2)^{l_2} \cdots$$

 $\cdots(x-x_{i})^{l_{i}}\cdots(x-x_{r})^{l_{r}}\cdot(x^{2}+p_{1}x+q_{1})^{k_{1}}\cdots(x^{2}+p_{j}x+q_{j})^{k_{j}},$ (1.4) где l_{i} – кратность действительных корней x_{i} ;

 k_{i} – кратность комплексных корней;

$$l_1 + l_2 + \dots + l_r + 2(k_1 + \dots + k_j) = n, i = 1, 2, \dots, r, j = 1, 2, \dots, n - r,$$

причём паре сопряжённых комплексных корней $(a \pm bi)$ соответствует квадратный трёхчлен $(x^2 + px + q)$.

3 а м е ч а н и е . Квадратный трёхчлен $x^2 + px + q$ (или $x^2 + p_j x + q_j$) не имеет действительных корней.

Теорема 1.5. Каждая правильная дробь может быть представлена в виде суммы конечного числа простых дробей вида

1)
$$\frac{A}{x-a}$$
; 2) $\frac{A}{(x-a)^k}$, где $k \ge 2$, $k \in \mathbb{Z}$; 3) $\frac{Bx+C}{x^2+px+q}$; 4) $\frac{Bx+C}{(x^2+px+q)^k}$, где $k \ge 2$, $k \in \mathbb{Z}$,

а именно

$$\frac{P_m(x)}{Q_n(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{(x - x_1)^2} + \dots + \frac{A_{l_1}}{(x - x_1)^{l_1}} + \dots + \frac{B_1}{x - x_i} + \frac{B_2}{(x - x_i)^2} + \dots + \frac{B_{l_i}}{(x - x_i)^{l_i}} + \dots + \frac{E_{l_r}}{(x - x_i)^{l_i}} + \dots + \frac{E_{l_r}}{(x - x_r)^{l_r}} + \frac{C_1 x + D_1}{x^2 + p_1 x + q_1} + \frac{C_2 x + D_2}{(x^2 + p_1 x + q_1)^2} + \dots + \frac{C_{k_1} x + D_{k_1}}{(x^2 + p_1 x + q_1)^{l_{k_1}}} + \dots + \frac{M_1 x + N_1}{x^2 + p_j x + q_j} + \frac{M_2 x + N_2}{(x^2 + p_j x + q_j)^2} + \dots + \frac{M_{k_j} x + N_{k_j}}{(x^2 + p_j x + q_j)^{k_j}}, \tag{1.5}$$

где i = 1, 2, ..., r, j = 1, 2, ..., n - r.

Правило разложения правильной рациональной дроби $\dfrac{P_m(x)}{Q_n(x)}$ в виде суммы простых дробей

1. Приравнять знаменатель дроби — многочлен $Q_n(x)$ к нулю и найти его корни (вещественные и комплексно сопряжённые).

- **2.** Разложить многочлен $Q_n(x)$ по формуле (1.4) на вещественные множители, линейные или квадратичные
 - x a;

- $(x-a)^k$, где $k \ge 2, k \in \mathbb{Z}$;
- $\bullet x^2 + px + q;$
- $(x^2 + px + q)^k$, где $k \ge 2, k \in \mathbb{Z}$.

3 а м е ч а н и е . При разложении можно использовать формулы:

- $a^2 b^2 = (a b)(a + b)$;
- $a^3 b^3 = (a b) (a^2 + ab + b^2);$
- $a^3 + b^3 = (a + b) (a^2 ab + b^2);$
- $ax^2 + bx + c = a(x x_1)(x x_2)$, где x_1 , x_2 действительные корни квадратного трёхчлена $ax^2 + bx + c$.
- **3.** Каждому множителю в знаменателе дроби поставить в соответствие простую дробь вида 1-4 формулы (1.5), пользуясь табл. 1.4.

Таблица 1.4

Тип множителя в знаменателе дроби	Число про- стых дробей	Вид дробей в разложении на простые дроби
1. $x-a$	1	<u>A</u>
		x-a
2. $(x-a)^k$	k	A_1 A_2 A_k
	$(k \ge 2, k \in Z)$	$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_k}{(x-a)^k}$
	$k \in \mathbb{Z}$	
3. $x^2 + px + q$	1	Bx + C
		$\frac{1}{x^2 + px + q}$
4. $(x^2 + px + q)^k$	k	$B_1x + C_1$ $B_2x + C_2$ $B_kx + C_k$
	$(k \ge 2, \\ k \in Z)$	$\frac{B_1x + C_1}{x^2 + px + q} + \frac{B_2x + C_2}{(x^2 + px + q)^2} + \dots + \frac{B_kx + C_k}{(x^2 + px + q)^k}$

4. Найти *неопределённые коэффициенты*. Для этого в правой части равенства (1.5) все дроби привести к наименьшему общему знаменателю и приравнять числители исходной и полученной дробей.

Приравнивая коэффициенты при x в одинаковых степенях, составить систему уравнений для определения неизвестных коэффициентов. Число уравнений должно быть равно числу неизвестных коэффициентов. Полученная система линейных уравнений всегда совместна и определена.

5. Записать разложение правильной рациональной дроби $\frac{P_m(x)}{Q_n(x)}$ в виде суммы простых дробей с учётом найденных коэффициентов.

1.5.2. Интегрирование простых рациональных дробей

Согласно теореме 1.5 интегрирование рациональных дробей сводится к интегрированию простых дробей типа 1 — 4 табл. 1.4. Проинтегрируем каждую из простых дробей:

1.
$$\int \frac{Adx}{x-a} = A \int \frac{d(x-a)}{x-a} = A \ln|x-a| + c$$
, где a и c – константы.

2.
$$\int \frac{Adx}{(x-a)^k} = A \int (x-a)^{-k} d(x-a) = A \frac{(x-a)^{-k+1}}{-k+1} + c =$$

$$=\frac{A}{(-k+1)(x-a)^{k-1}}+c$$
, где $k \ge 2, k \in Z, a, c$ – константы;

3.
$$\int \frac{(Bx+C)dx}{x^2+px+q}$$
, где многочлен x^2+px+q не имеет вещественных

корней, т. е. $D = p^2 - 4q < 0$.

В знаменателе дроби выделим полный квадрат:

$$x^2 + px + q = x^2 + 2 \cdot \frac{p}{2} \cdot x + \left(\frac{p}{2}\right)^2 + q - \left(\frac{p}{2}\right)^2 = \left(x + \frac{p}{2}\right)^2 + a^2,$$
 где $a^2 = q - \left(\frac{p}{2}\right)^2 > 0$, $a = \frac{1}{2}\sqrt{4q - p^2}$.

Сделаем замену $x + \frac{p}{2} = t$, откуда $x = t - \frac{p}{2}$, dx = dt, и найдём интеграл типа 3:

$$\int \frac{(Bx+C)dx}{x^2 + px + q} = \int \frac{B\left(t - \frac{p}{2}\right) + C}{t^2 + a^2} dt = B\int \frac{tdt}{t^2 + a^2} + \left(-\frac{Bp}{2} + C\right)\int \frac{dt}{t^2 + a^2} =$$

$$= \frac{B}{2}\int \frac{d(t^2 + a^2)}{t^2 + a^2} + \left(C - \frac{Bp}{2}\right)\int \frac{dt}{t^2 + a^2} =$$

$$= \frac{B}{2}\ln(t^2 + a^2) + \frac{2C - Bp}{2} \cdot \frac{1}{a}\arctan\frac{t}{a} + c =$$

$$= \frac{B}{2}\ln(x^2 + px + q) + \frac{2C - Bp}{2 \cdot \frac{1}{2}\sqrt{4q - p^2}} \operatorname{arctg} \frac{x + \frac{p}{2}}{\frac{1}{2}\sqrt{4q - p^2}} + c =$$

$$= \frac{B}{2}\ln(x^2 + px + q) + \frac{2C - Bp}{\sqrt{4q - p^2}} \operatorname{arctg} \frac{2x + p}{\sqrt{4q - p^2}} + c.$$

4. Интеграл $\int \frac{Bx+C}{(x^2+px+q)^k} dx$, где $k \ge 2$, $k \in Z$, находится аналогично предыдущему.

1.5.3. Интегрирование рациональных дробей

Правило интегрирования рациональных дробей

- 1. Установить, является ли рациональная дробь $\frac{P_m(x)}{Q_n(x)}$ правильной или неправильной. Неправильную дробь представить в виде суммы многочлена и правильной рациональной дроби.
- **2.** Найти корни знаменателя многочлена $Q_n(x)$ и записать его в виде произведения простых сомножителей типа 1-4 по формуле (1.4).
- **3.** Правильную рациональную дробь представить в виде суммы простых дробей, пользуясь табл. 1.4.
 - 4. Найти коэффициенты разложения.
- **5.** Воспользовавшись свойством линейности, найти интеграл от рациональной дроби, как от суммы функций.

Пример 1.6. Найдите интегралы:

1.6.1.
$$\int \frac{5x-1}{x(x^2-x-6)} dx$$
; 1.6.2. $\int \frac{2x}{(x-3)(x+2)^2} dx$; 1.6.3. $\int \frac{x^2 dx}{x^2-x-6}$; 1.6.4. $\int \frac{x^2-3}{(x^2+2)(x^2-2x)} dx$; 1.6.5. $\int \frac{x^4+1}{x^3+x^2} dx$.

Решение. 1.6.1. Имеем правильную рациональную дробь. Представим дробь в виде суммы простых дробей с помощью табл. 1.4:

вим дробь в виде суммы простых дробей с помощью табл. 1.4:
$$\frac{5x-1}{x(x^2-x-6)} = \frac{5x-1}{x(x-3)(x+2)} = \frac{A}{x} + \frac{B}{x-3} + \frac{C}{x+2};$$

$$\frac{5x-1}{x(x^2-x-6)} = \frac{A(x-3)(x+2) + Bx(x+2) + Cx(x-3)}{x(x-3)(x+2)};$$

$$5x-1 = A(x-3)(x+2) + Bx(x+2) + Cx(x-3).$$

Используя действительные корни знаменателя, находим коэффициенты A, B, C:

•
$$x_1 = 0 \Rightarrow -1 = A \cdot (-3) \cdot 2 \Rightarrow A = \frac{1}{6}$$
;

•
$$x_2 = 3 \Rightarrow 5 \cdot 3 - 1 = B \cdot 3 \cdot 5 \Rightarrow B = \frac{14}{15}$$
;

•
$$x_3 = -2 \Rightarrow 5 \cdot (-2) - 1 = C \cdot (-2) \cdot (-5) \Rightarrow C = -\frac{11}{10}$$

$$\int \frac{5x-1}{x(x^2-x-6)} dx = \frac{1}{6} \int \frac{dx}{x} + \frac{14}{15} \int \frac{dx}{x-3} - \frac{11}{10} \int \frac{dx}{x+2} = \frac{1}{6} \int \frac{dx}{x} + \frac{14}{15} \int \frac{d(x-3)}{x-3} - \frac{11}{10} \int \frac{d(x+2)}{x+2} = \frac{1}{6} \ln|x| + \frac{14}{15} \ln|x-3| - \frac{11}{10} \ln|x+2| + c = \ln\left|\frac{6\sqrt{x} \cdot \sqrt[15]{(x-3)^{14}}}{\sqrt[10]{(x+2)^{11}}}\right| + c.$$

1.6.2. Представим правильную рациональную дробь в виде суммы простых дробей с помощью табл. 1.4 и найдём коэффициенты:

$$\frac{2x}{(x-3)(x+2)^2} = \frac{A}{x-3} + \frac{B}{x+2} + \frac{C}{(x+2)^2} =$$

$$= \frac{A(x+2)^2 + B(x-3)(x+2) + C(x-3)}{(x-3)(x+2)^2};$$

$$2x = Ax^2 + 4Ax + 4A + Bx^2 - Bx - 6B + Cx - 3C;$$

$$2x = x^2(A+B) + x(4A-B+C) + (4A-6B-3C).$$

Приравниваем коэффициенты при одинаковых степенях х:

Приравниваем коэффициенты при одинаковых степенях х
$$x^2$$
 $A + B = 0$, $A + B + C = 2$, $A + B + C = 2$, $A + B + C = 0$, $A + C = 0$,

Интегрируем:

$$\int \frac{2xdx}{(x-3)(x+2)^2} = \frac{6}{25} \int \frac{dx}{x-3} - \frac{6}{25} \int \frac{dx}{x+2} + \frac{4}{5} \int \frac{dx}{(x+2)^2} = \frac{6}{25} \int \frac{d(x-3)}{x-3} - \frac{6}{25} \int \frac{d(x+2)}{x+2} + \frac{4}{5} \int (x+2)^{-2} d(x+2) = \frac{6}{25} \ln|x-3| - \frac{6}{25} \ln|x+2| + \frac{4}{5} \frac{(x+2)^{-1}}{-1} + c = \frac{6}{25} \ln\left|\frac{x-3}{x+2}\right| - \frac{4}{5(x+2)} + c.$$

1.6.3. У неправильной рациональной дроби выделим целую часть, разделив числитель на знаменатель:

$$\begin{array}{c|c}
-x^2 & |\underline{x^2 - x - 6} \\
\underline{x^2 - x - 6} & 1 \\
x + 6 &
\end{array}$$

Запишем результат деления:

$$\frac{x^2}{x^2 - x - 6} = 1 + \frac{x + 6}{x^2 - x - 6}.$$

Представим правильную рациональную дробь в виде суммы простых дробей с помощью табл. 1.4:

$$\frac{x+6}{x^2-x-6} = \frac{x+6}{(x-3)(x+2)} = \frac{A}{x-3} + \frac{B}{x+2} = \frac{A(x+2)+B(x-3)}{(x-3)(x+2)};$$
$$x+6 = A(x+2) + B(x-3).$$

Используя действительные корни знаменателя, найдём коэффициенты A и B:

•
$$x_1 = -2 \Rightarrow -2 + 6 = B \cdot (-5) \Rightarrow B = -\frac{4}{5}$$
;

•
$$x_2 = 3 \Rightarrow 3 + 6 = A \cdot 5 \Rightarrow A = \frac{9}{5}$$
.

Интегрируем:

$$\int \frac{x^2 dx}{x^2 - x - 6} = \int \left(1 + \frac{x + 6}{x^2 - x - 6} \right) dx = \int \left(1 + \frac{\frac{9}{5}}{x - 3} - \frac{\frac{4}{5}}{x + 2} \right) dx = \int dx + \frac{9}{5} \int \frac{d(x - 3)}{x - 3} - \frac{\frac{4}{5}}{5} \int \frac{d(x + 2)}{x + 2} dx = \int dx + \frac{9}{5} \int \frac{d(x - 3)}{x - 3} - \frac{\frac{4}{5} \ln|x - 3|}{x - 3} - \frac{\frac{4}{5}$$

1.6.4. Представим правильную рациональную дробь в виде суммы простых дробей, найдём неопределённые коэффициенты и проинтегрируем:

$$\frac{x^2 - 3}{(x^2 + 2)(x^2 - 2x)} = \frac{x^2 - 3}{(x^2 + 2)x(x - 2)} = \frac{Ax + B}{x^2 + 2} + \frac{C}{x} + \frac{D}{x - 2} =$$

$$= \frac{(Ax + B)x(x - 2) + C(x^2 + 2)(x - 2) + D(x^2 + 2)x}{(x^2 + 2)x(x - 2)};$$

$$x^2 - 3 = (Ax + B)x(x - 2) + C(x^2 + 2)(x - 2) + Dx(x^2 + 2).$$

Используя действительные корни знаменателя дроби, найдём коэффициенты C и D:

•
$$x_1 = 0 \Rightarrow -3 = C \cdot 2 \cdot (-2) \Rightarrow C = \frac{3}{4}$$
;

•
$$x_2 = 2 \Rightarrow 2^2 - 3 = D \cdot 2 \cdot 6 \Rightarrow D = \frac{1}{12}$$
.

Для нахождения коэффициентов A и B приравняем коэффициенты при x^3 и x^2 в последнем равенстве и подставим в полученную систему уравнений значения коэффициентов C и D:

$$\begin{array}{c|c} x^{3} & A+C+D=0, \\ x^{2} & B-2C=1, \end{array} \Rightarrow \begin{cases} A=-C-D=-\frac{5}{6}, \\ B=1+2C=1+2\cdot\frac{3}{4}=\frac{5}{2}. \end{cases}$$

Интегрируем:

$$\int \frac{x^2 - 3}{(x^2 + 2)(x^2 - 2x)} dx = \int \frac{(x^2 - 3)dx}{(x^2 + 2) \cdot x(x - 2)} = \int \left(\frac{-\frac{5}{6}x + \frac{5}{2}}{x^2 + 2} + \frac{\frac{3}{4}}{x} + \frac{\frac{1}{12}}{x^2} \right) dx =$$

$$= -\frac{5}{6 \cdot 2} \int \frac{d(x^2 + 2)}{x^2 + 2} + \frac{5}{2} \int \frac{dx}{x^2 + \left(\sqrt{2}\right)^2} + \frac{3}{4} \int \frac{dx}{x} + \frac{1}{12} \int \frac{d(x - 2)}{x - 2} = -\frac{5}{12} \ln(x^2 + 2) +$$

$$+ \frac{5}{2\sqrt{2}} \arctan \frac{x}{\sqrt{2}} + \frac{3}{4} \ln|x| + \frac{1}{12} \ln|x - 2| + c =$$

$$= \frac{5}{2\sqrt{2}} \arctan \frac{x}{\sqrt{2}} + \ln \left| \frac{\sqrt[4]{x^3} \cdot \sqrt[12]{x - 2}}{\sqrt[12]{(x^2 + 2)^5}} \right| + c.$$

1.6.5. Рациональная дробь $\frac{x^4+1}{x^3+x^2}$ неправильная, выделим целую часть:

$$\begin{array}{c|ccccc}
-x^4 + 1 & & x^3 + x^2 \\
x^4 + x^3 & & x - 1 \\
\hline
-x^3 + 1 & & \\
-x^3 - x^2 & & \\
& & x^2 + 1
\end{array}$$

Результат деления: $\frac{x^4+1}{x^3+x^2} = x-1 + \frac{x^2+1}{x^3+x^2}$.

Представим правильную рациональную дробь в виде суммы простых дробей и приравняем числители исходной и полученной дробей:

$$\frac{x^{2}+1}{x^{3}+x^{2}} = \frac{x^{2}+1}{x^{2}(x+1)} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x+1} = \frac{Ax(x+1) + B(x+1) + Cx^{2}}{x^{2}(x+1)};$$

$$x^{2}+1 = Ax^{2} + Ax + Bx + B + Cx^{2};$$

$$x^{2}+1 = x^{2}(A+C) + x(A+B) + B.$$

Составим систему для нахождения неопределённых коэффициентов (приравняем коэффициенты при одинаковых степенях x в последнем равенстве) и решим её:

$$\begin{array}{c|c} x^2 & A+C=1, \\ x & A+B=0, \\ x^0 & B=1, \end{array} \Rightarrow \begin{cases} C=1-A=2, \\ A=-B=-1, \\ B=1. \end{cases}$$

Запишем разложение дроби:

$$\frac{x^2+1}{x^2(x+1)} = -\frac{1}{x} + \frac{1}{x^2} + \frac{2}{x+1}.$$

Интегрируем:

$$\int \frac{x^4 + 1}{x^3 + x^2} dx = \int \left(x - 1 + \frac{x^2 + 1}{x^3 + x^2} \right) dx = \int \left(x - 1 - \frac{1}{x} + \frac{1}{x^2} + \frac{2}{x + 1} \right) dx =$$

$$= \int x dx - \int dx - \int \frac{dx}{x} + \int x^{-2} dx + 2 \int \frac{d(x + 1)}{x + 1} =$$

$$\frac{x^2}{2} - x - \ln|x| - \frac{1}{x} + 2\ln|x + 1| + c.$$

1.6. Интегрирование тригонометрических функций

Таблица 1.5 **Методы интегрирования тригонометрических функций**

Вид интеграла	Подстановка или метод	Примечания
1	интегрирования	1
1. $\int \sin \alpha x \sin \beta x dx,$ $\int \cos \alpha x \cos \beta x dx,$ $\int \sin \alpha x \cos \beta x dx$	Применяются формулы $\sin \alpha \sin \beta =$ $= \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$	Получаются интегралы $\int \cos kx dx = \frac{1}{k} \sin kx + c$
	$ \cos \alpha \cos \beta =$ $= \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$ $\sin \alpha \cos \beta =$ $= \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$	$\int \sin kx dx =$ $= -\frac{1}{k} \cos kx + c,$ $k = const, c = const$
$ \int \sin^{2m} \beta x \cos^{2n} \beta x dx $ $ n \in N, m \in N $ $ (n = 0 \text{ или } m = 0) $	Применяются формулы понижения степени $\sin^2\alpha = \frac{1-\cos 2\alpha}{2},$ $\cos^2\alpha = \frac{1+\cos 2\alpha}{2},$	$\sin \beta x$ и $\cos \beta x$ входят в подынтегральную функцию в чётных степенях
2	$\sin \alpha \cos \alpha = \frac{1}{2} \sin 2\alpha$	O×
$\int \sin^m \beta x \cos^p \beta x dx,$	$\int \frac{\sin^{m-1} \beta x \cos^p \beta x d(\cos \beta x)}{-\beta}$	От нечётной степени $\sin^m \beta x$ или $\cos^m \beta x$
	$\sin^2 \beta x = 1 - \cos^2 \beta x;$ $\int \frac{\cos^{m-1} \beta x \sin^p \beta x d(\sin \beta x)}{\beta},$ $\cos^2 \beta x = 1 - \sin^2 \beta x$	отделим один мно- житель и внесём его под знак дифферен- циала, а к чётной степени [т. к. $(m-1)$ – чётное число] при-
$A \int B(\sin x, \cos x) dx$	Применяется универсаль-	меним формулу: $\cos^2 \alpha + \sin^2 \alpha = 1$ $R(\sin x, \cos x) - \text{рацио-}$
$4. \int R(\sin x, \cos x) dx$	ная тригонометрическая подстановка $tg \frac{x}{2} = t \Rightarrow x = 2arctgt,$	R(snix, cosx) = рацио- нальная дробь, зави- сящая от функций sinx и $cosx$

[J ' '	$dx = \frac{2dt}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2},$ $\sin x = \frac{2t}{1+t^2}$ Подстановка $tgx = t \Rightarrow x = arctgt,$ $dx = \frac{dt}{1+t^2}, \cos^2 x = \frac{1}{1+t^2},$ $\sin^2 x = \frac{t^2}{1+t^2}$	$R(\sin^2 x, \cos^2 x, \sin x \cos x)$ — рациональная дробь, зависящая от $\sin^2 x, \cos^2 x, \sin x \cos x;$ $m + n$ — целое отрица-
	$ \begin{aligned} 1+t^2 \\ \sin x \cos x &= \frac{t}{1+t^2} \end{aligned} $	тельное число
6. $\int R(\operatorname{tg} x) dx,$ $\int \operatorname{tg}^n x dx, n \in N$	Подстановка $tgx = t \Rightarrow x = arctgt,$ $dx = \frac{dt}{1+t^2}$	R(tgx) — рациональная дробь, зависящая от tgx
7. $\int R(\operatorname{ctg} x) dx,$ $\int \operatorname{ctg}^n x dx, n \in N$	Подстановка $ctgx = t \implies x = arcctgt,$ $dx = -\frac{dt}{1+t^2}$	R(ctgx) — рациональная дробь, зависящая от $ctgx$

Пример 1.7. Найдите интегралы:

1.7.1.
$$\int \frac{dx}{8-4\sin x+7\cos x}$$
; **1.7.2.** $\int \frac{dx}{2+3\sin x}$;

1.7.3.
$$\int \frac{\cos 2x}{\sin^4 x} dx$$
; **1.7.4.** $\int \cot g^5 x dx$;

1.7.5.
$$\int \sin^4 5x dx$$
; **1.7.6.** $\int tg^3 x dx$;

1.7.7.
$$\int \cos 3x \sin 4x dx$$
; **1.7.8.** $\int \cos^3 x \sin^4 x dx$;

1.7.9.
$$\int \frac{\sin^5 x \, dx}{\cos^3 x}$$
; **1.7.10.** $\int \sin^2 3x \cos^2 3x \, dx$;

1.7.11.
$$\int \frac{dx}{9\cos^2 x + 16\sin^2 x}$$
; **1.7.12.** $\int \frac{dx}{\cos^3 x \cdot \sin x}$.

Решение. 1.7.1. Данный интеграл — вида 4 табл. 1.5. Делаем универсальную тригонометрическую подстановку $tg\frac{x}{2} = t$:

$$\int \frac{dx}{8-4\sin x + 7\cos x} = \begin{vmatrix} \operatorname{tg}\frac{x}{2} = t, & dx = \frac{2dt}{1+t^2}, \\ \sin x = \frac{2t}{1+t^2}, & \cos x = \frac{1-t^2}{1+t^2} \end{vmatrix} = \int \frac{\frac{2dt}{1+t^2}}{8-4\frac{2t}{1+t^2} + 7\frac{1-t^2}{1+t^2}} =$$

$$= 2\int \frac{dt}{8(1+t^2)-8t+7(1-t^2)} = 2\int \frac{dt}{8+8t^2-8t+7-7t^2} = 2\int \frac{dt}{t^2-8t+15} =$$

$$= 2\int \frac{dt}{(t-4)^2-1} = 2\int \frac{d(t-4)}{(t-4)^2-1^2} = \frac{2}{2\cdot 1} \ln\left|\frac{t-4-1}{t-4+1}\right| + c = \ln\left|\frac{t-5}{t-3}\right| + c =$$

$$= \ln\left|\frac{\operatorname{tg}\frac{x}{2} - 5}{\operatorname{tg}\frac{x}{2} - 3}\right| + c.$$

1.7.2. Данный интеграл — вида 4 табл. 1.5. Делаем универсальную тригонометрическую подстановку $tg\frac{x}{2} = t$:

$$\int \frac{dx}{2+3\sin x} = \left| \frac{\lg \frac{x}{2} = t, dx = \frac{2dt}{1+t^2}}{\sin x = \frac{2t}{1+t^2}} \right| = \int \frac{\frac{2dt}{1+t^2}}{2+3\frac{2t}{1+t^2}} = 2\int \frac{dt}{2(1+t^2)+6t} =$$

$$= 2\int \frac{dt}{2(1+t^2+3t)} = \int \frac{dt}{t^2+3t+1} = \int \frac{dt}{t^2+2\cdot t\cdot \frac{3}{2} + \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 + 1} =$$

$$= \int \frac{dt}{\left(t+\frac{3}{2}\right)^2 - \frac{5}{4}} = \int \frac{d\left(t+\frac{3}{2}\right)}{\left(t+\frac{3}{2}\right)^2 - \left(\frac{\sqrt{5}}{2}\right)^2} = \frac{1}{2\cdot \frac{\sqrt{5}}{2}} \ln \left| \frac{t+\frac{3}{2} - \frac{\sqrt{5}}{2}}{t+\frac{3}{2} + \frac{\sqrt{5}}{2}} \right| + c =$$

$$= \frac{1}{\sqrt{5}} \ln \left| \frac{2t+3-\sqrt{5}}{2t+3+\sqrt{5}} \right| + c = \frac{1}{\sqrt{5}} \ln \left| \frac{2tg\frac{x}{2}+3-\sqrt{5}}{2tg\frac{x}{2}+3+\sqrt{5}} \right| + c.$$

1.7.3. Применим тригонометрические формулы

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha, \ \operatorname{ctg}\alpha = \frac{\cos \alpha}{\sin \alpha}:$$

$$\int \frac{\cos 2x}{\sin^4 x} dx = \int \frac{\cos^2 x - \sin^2 x}{\sin^4 x} dx = \int \left(\frac{\cos^2 x}{\sin^4 x} - \frac{1}{\sin^2 x}\right) dx =$$

$$= \int \operatorname{ctg}^2 x \cdot \frac{dx}{\sin^2 x} - \int \frac{dx}{\sin^2 x} = -\int \operatorname{ctg}^2 x d(\operatorname{ctg}x) + \operatorname{ctg}x = -\frac{\operatorname{ctg}^3 x}{3} + \operatorname{ctg}x + c.$$

1.7.4. Согласно п. 7 табл. 1.5 делаем подстановку ctgx = t:

$$\int \operatorname{ctg}^{5} x dx = \begin{vmatrix} \operatorname{ctg} x = t , & x = \operatorname{arcctg} t \\ dx = -\frac{dt}{1+t^{2}} \end{vmatrix} = \int t^{5} \left(-\frac{dt}{1+t^{2}} \right) = -\int \frac{t^{5} dt}{1+t^{2}}.$$

Получили неправильную рациональную дробь. Выделим целую часть, разделив числитель дроби на знаменатель:

$$\begin{array}{c|c}
-t^5 & |\underline{t^2 + 1}| \\
\underline{t^5 + t^3} & t^3 - t \\
-t^3 & \\
-\underline{t^3 - t} \\
t
\end{array}$$

Запишем результат деления:

$$\frac{t^5}{t^2+1} = t^3 - t + \frac{t}{t^2+1}.$$

Тогла

$$I = -\int \frac{t^5 dt}{1+t^2} = -\int \left(t^3 - t + \frac{t}{t^2 + 1}\right) dt = -\left(\frac{t^4}{4} - \frac{t^2}{2} + \frac{1}{2}\int \frac{d(t^2 + 1)}{t^2 + 1}\right) =$$

$$= -\frac{t^4}{4} + \frac{t^2}{2} - \frac{1}{2}\ln(t^2 + 1) + c = -\frac{1}{4}\operatorname{ctg}^4 x + \frac{1}{2}\operatorname{ctg}^2 x - \frac{1}{2}\ln(\operatorname{ctg}^2 x + 1) + c =$$

$$= -\frac{1}{4}\operatorname{ctg}^4 x + \frac{1}{2}\operatorname{ctg}^2 x + \ln|\sin x| + c.$$

Здесь воспользовались формулой $\operatorname{ctg}^2 x + 1 = \frac{1}{\sin^2 x}$.

1.7.5. Согласно п. 2. табл. 1.5 воспользуемся тригонометрическими формулами

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
, $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$

и проинтегрируем:

$$\int \sin^4 5x dx = \int (\sin^2 5x)^2 dx = \int \left(\frac{1 - \cos 10x}{2}\right)^2 dx = \frac{1}{4} \int \left(1 - 2\cos 10x + \cos^2 10x\right) dx =$$

$$= \frac{1}{4} \int \left(1 - 2\cos 10x + \frac{1 + \cos 20x}{2}\right) dx = \frac{1}{4} \left(\frac{3}{2} \int dx - \frac{2}{10} \int \cos 10x d(10x) + \frac{1}{2 \cdot 20} \int \cos 20x d(20x)\right) = \frac{3}{8} x - \frac{1}{20} \sin 10x + \frac{1}{160} \sin 20x + c.$$

1.7.6. Первый способ. Согласно п. 6 табл. 1.5 делаем подстановку tg x = t:

$$\int tg^3 x dx = \left| tg x = t, dx = \frac{dt}{1 + t^2} \right| = \int \frac{t^3 dt}{1 + t^2}.$$

Получили неправильную рациональную дробь. Выделим целую часть, разделив числитель на знаменатель:

$$-\frac{t^3}{\frac{t^3+t}{t}} \frac{\left|t^2+1\right|}{t}$$

Запишем результат деления:

$$\frac{t^3}{1+t^2} = t - \frac{t}{1+t^2} \, .$$

Интегрируем:

$$I = \int \frac{t^3 dt}{1+t^2} = \int \left(t - \frac{t}{1+t^2}\right) dt = \int t dt - \frac{1}{2} \int \frac{d(t^2+1)}{t^2+1} = \frac{t^2}{2} - \frac{1}{2} \ln(t^2+1) + c =$$

$$= \frac{\operatorname{tg}^2 x}{2} - \frac{1}{2} \ln(\operatorname{tg}^2 x + 1) + c = \frac{\operatorname{tg}^2 x}{2} - \frac{1}{2} \ln\frac{1}{\cos^2 x} + c =$$

$$= \frac{\operatorname{tg}^2 x}{2} - \frac{1}{2} \ln(\cos^{-2} x) + c = \frac{\operatorname{tg}^2 x}{2} + \ln|\cos x| + c.$$

Второй способ. Преобразуем подынтегральную функцию и проинтегрируем:

$$\int tg^3 x dx = \int \left(\left(tg^3 x + tgx \right) - tgx \right) dx = \int tgx \left(tg^2 x + 1 \right) dx - \int tgx dx =$$

$$= \int \frac{tgx}{\cos^2 x} dx - \int \frac{\sin x}{\cos x} dx = \int tgx d(tgx) + \int \frac{d(\cos x)}{\cos x} = \frac{tg^2 x}{2} + \ln|\cos x| + c.$$

1.7.7. Согласно п. 1 табл. 1.5 применим формулу

$$\sin \alpha \cdot \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta)):$$

$$\int \cos 3x \sin 4x dx = \frac{1}{2} \int (\sin(4x - 3x) + \sin(3x + 4x)) dx = \frac{1}{2} \int \sin x dx + \frac{1}{2} \int \sin 7x dx = \frac{1}{2} (-\cos x) + \frac{1}{2 \cdot 7} \int \sin 7x d(7x) = -\frac{1}{2} \cos x - \frac{1}{14} \cos 7x + c.$$

1.7.8. Данный интеграл вида 3 табл. 1.5. От функции $\cos^3 x$ отделим $\cos x$ в первой степени, внесём функцию $\sin x$ под знак дифференциала и применим формулу $\cos^2 x = 1 - \sin^2 x$:

$$\int \cos^3 x \sin^4 x dx = \int \cos^2 x \sin^4 x \cos x dx = \int (1 - \sin^2 x) \sin^4 x d(\sin x) =$$

$$= \int (\sin^4 x - \sin^6 x) d(\sin x) = \frac{1}{5} \sin^5 x - \frac{1}{7} \sin^7 x + c.$$

1.7.9. Преобразуем подынтегральную функцию к рациональной функции $R(\cos t)$:

$$\int \frac{\sin^5 x \, dx}{\cos^3 x} = \int \frac{\sin^4 x \sin x \, dx}{\cos^3 x} = -\int \frac{\left(1 - \cos^2 x\right)^2 \, d(\cos x)}{\cos^3 x} = \begin{vmatrix} \cos x = t \\ -\int \frac{\left(1 - t^2\right)^2 \, dt}{t^3} = -\int \frac{1 - 2t^2 + t^4}{t^3} \, dt = -\int \left(\frac{1}{t^3} - \frac{2}{t} + t\right) \, dt = \\ = -\left(-\frac{1}{2t^2} - 2\ln|t| + \frac{t^2}{2}\right) + c = \frac{1}{2\cos^2 x} + 2\ln|\cos x| - \frac{\cos^2 x}{2} + c.$$

1.7.10. Применяя тригонометрические формулы (см. п.2 табл. 1.5), понижаем порядок подынтегральной функции и сводим интеграл к табличному виду:

$$\int \sin^2 3x \cos^2 3x dx = \int (\sin 3x \cdot \cos 3x)^2 dx =$$

$$= \frac{1}{4} \int \sin^2 6x dx = \frac{1}{8} \int (1 - \cos 12x) dx = \frac{1}{8} \left(x - \frac{\sin 12x}{12} \right) + c.$$

1.7.11. Данный интеграл есть интеграл вида 5 табл. 1.5. Делаем подстановку tgx = t:

$$\int \frac{dx}{9\cos^2 x + 16\sin^2 x} = \left| tgx = t, dx = \frac{dt}{1 + t^2}, \right| = \left| \sin^2 x = \frac{t^2}{1 + t^2}, \cos^2 x = \frac{t}{1 + t^2} \right| = \int \frac{dt}{\left(1 + t^2\right) \cdot \left(\frac{9}{1 + t^2} + \frac{16t^2}{1 + t^2}\right)} = \int \frac{dt}{9 + 16t^2} = \frac{1}{4} \int \frac{d(4t)}{3^2 + (4t)^2} = \int \frac{dt}{1 + t^2} dt =$$

$$=\frac{1}{4}\cdot\frac{1}{3}\arctan\frac{4t}{3}+c=\frac{1}{12}\arctan\frac{4tgx}{3}+c$$
.

1.7.12. Данный интеграл есть интеграл вида 5 табл. 1.5, т. к. выражение m+n=-1-3=-4 есть целое отрицательное число. Делаем подстановку tgx=t:

$$\int \frac{dx}{\cos^3 x \cdot \sin x} = \left| \begin{array}{c} \operatorname{tg} x = t, \ dx = \frac{dt}{1+t^2}, \\ \sin x = \frac{t}{\sqrt{1+t^2}}, \cos x = \frac{1}{\sqrt{1+t^2}} \end{array} \right| =$$

$$= \int \frac{dt}{\left(1+t^2\right)\left(\frac{1}{\sqrt{1+t^2}}\right)^3 \cdot \frac{t}{\sqrt{1+t^2}}} = \int \frac{\left(1+t^2\right)^2}{\left(1+t^2\right)t} = \int \frac{1+t^2}{t} dt = \int \left(\frac{1}{t}+t\right) dt =$$

$$= \ln|t| + \frac{t^2}{2} + c = \ln|\operatorname{tg} x| + \frac{\operatorname{tg}^2 x}{2} + c.$$

1.7. Интегрирование иррациональных выражений

Таблица 1.6

Вид интеграла	Подстановка	Примечания
	или метод интегрирования	
1. $\int R(x, x^{\frac{p_1}{q_1}}, x^{\frac{p_2}{q_2}},, \frac{p_k}{q_k}) dx$	кратное чисел $q_1, q_2,, q_k$, $t = \sqrt[5]{x}$	Рациональная функция относительно x и ради-
\dots, x^{q_k}) dx		калов x ; p_i , q_i — целые числа, $i = 1, 2,, k$
$\int R(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{p_1}{q_1}}, \dots, \left(\frac{ax+b}{cx+d}\right)^{\frac{p_k}{q_k}}) dx$		x выразим через t : $x = \frac{t^s d - b}{a - t^s c}$
$3. \int R(x, \sqrt{a^2 - x^2}) dx$	$x = a \sin t, \ dx = a \cos t dt,$ $a^2 - x^2 = a^2 \cos^2 t$	$t = \arcsin \frac{x}{a}$

4.
$$\int R(x, \sqrt{a^2 + x^2}) dx$$
 $x = atgt, dx = \frac{a dt}{\cos^2 t},$ $t = arctg \frac{x}{a}$ $x^2 + a^2 = \frac{a^2}{\cos^2 t}$ $t = arctg \frac{x}{a}$ 5. $\int R(x, \sqrt{x^2 - a^2}) dx$ $x = \frac{a}{\cos t}, dx = \frac{a \sin t}{\cos^2 t} dt,$ $t = arccos \frac{a}{x}$ $x^2 - a^2 = a^2 \frac{\sin^2 t}{\cos^2 t}$ $t = arccos \frac{a}{x}$ 6. $\int x^m (a + bx^n)^p dx$ Подстановки Чебышева П. Л.: 1) $p - \text{ целое} \Rightarrow x = t^s, s - \text{ наименьше общее кратное знаменателей m и $n, dx = st^{s-1} dt$; $n = a + bx^n = t^s$, где $n = a + bx^n = t^s$, где $n = a + bx^n = t^s$, где $n = a + bx^n = t^s$, где $n = a + bx^n = t^s$, где $n = a + bx^n = t^s x^n$, где $n =$$

Пример 1.8. Найдите интегралы:

1.8.1.
$$\int \frac{dx}{\sqrt[3]{x} + \sqrt{x}}$$
;

1.8.2.
$$\int \frac{dx}{\sqrt[3]{(x+1)^2} + \sqrt{x+1}};$$

1.8.3.
$$\int \frac{dx}{\sqrt{(9+x^2)^3}};$$

1.8.4.
$$\int \frac{\sqrt{(9-x^2)^3}}{x^6} \frac{dx}{dx};$$

1.8.5.
$$\int \frac{\sqrt{x^2 - 16}}{x} dx$$
; **1.8.6.** $\int \frac{x^{11} dx}{\sqrt{1 + x^4}}$; **1.8.7.** $\int \frac{dx}{x^2 \cdot \sqrt[3]{(1 + x^3)^2}}$.

Интегралы 1.8.1 – 1.8.7 содержат иррациональные функции. Для выбора правильной подстановки воспользуемся табл. 1.6.

Решение. 1.8.1. Согласно п. 1 табл. 1.6 делаем подстановку $x = t^6$:

$$\int \frac{dx}{\sqrt[3]{x} + \sqrt{x}} = \begin{vmatrix} x^{\frac{1}{3}} x^{\frac{1}{2}} \Rightarrow x = t^{6}, \\ dx = 6t^{5} dt, t = \sqrt[6]{x} \end{vmatrix} = \int \frac{6t^{5} dt}{\sqrt[3]{t^{6}} + \sqrt{t^{6}}} = 6\int \frac{t^{5} dt}{t^{2} + t^{3}} = 6\int \frac{t^{5} dt}{t^{5}} = 6\int \frac{t^{$$

Получили неправильную рациональную дробь. Выделим целую часть:

$$\begin{array}{c|c}
-t^3 & \underline{t+1} \\
\underline{t^3+t^2} & t^2-t+1 \\
--t^2 & \\
-\underline{t^2-t} \\
\underline{-t} \\
\underline{t+1} \\
-1
\end{array}$$

Запишем результат деления:

$$\frac{t^3}{1+t} = t^2 - t + 1 - \frac{1}{1+t}.$$

Интегрируем:

$$I = 6\int \left(t^2 - t + 1 - \frac{1}{1+t}\right) dt = 6\left(\frac{t^3}{3} - \frac{t^2}{2} + t - \ln|t+1|\right) + c =$$

$$= 2\sqrt[6]{x^3} - 3\sqrt[6]{x^2} + 6\sqrt[6]{x} - 6\ln\left|\sqrt[6]{x} + 1\right| + c = 2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln\left|\sqrt[6]{x} + 1\right| + c.$$

3 а м е ч а н и е . Выделить целую часть у дроби $\frac{t^3}{t+1}$ можно было, воспользовавшись элементарными преобразованиями и формулой $a^3+b^3=(a+b)(a^2-ab+b^2)$:

$$\frac{t^3}{t+1} = \frac{(t^3+1)-1}{t+1} = \frac{(t+1)(t^2-t+1)}{t+1} - \frac{1}{t+1} = t^2 - t + 1 - \frac{1}{t+1}.$$

1.8.9. Интегрируемая функция зависит от $(x+1)^{\frac{2}{3}}$ и $(x+1)^{\frac{1}{2}}$. Делаем подстановку $x+1=t^6$, $dx=6t^5dt$ (см. п. 2 табл. 1.6):

$$\int \frac{dx}{\sqrt[3]{(x+1)^2} + \sqrt{x+1}} = |(x+1)^{\frac{2}{3}}, (x+1)^{\frac{1}{2}} \Rightarrow x+1 = t^6, \\ x = t^6 - 1, dx = 6t^5 dt, t = \sqrt[6]{x+1}| = \int \frac{6t^5 dt}{\sqrt[3]{(t^6)^2} + \sqrt{t^6}} = \\ = 6\int \frac{t^5 dt}{t^4 + t^3} = 6\int \frac{t^5 dt}{t^3 (t+1)} = 6\int \frac{t^2 dt}{t+1} = 6\int \frac{(t^2 - 1) + 1}{t+1} dt = \\ = 6\int \left(\frac{(t-1)(t+1)}{t+1} + \frac{1}{t+1}\right) dt = 6\int \left(t - 1 + \frac{1}{t+1}\right) dt = 6\left(\frac{t^2}{2} - t + \ln|t+1|\right) + c = \\ = 3\sqrt[6]{(x+1)^2} - 6\sqrt[6]{x+1} + 6\ln|\sqrt[6]{x+1} + 1| + c = \\ = 3\sqrt[3]{x+1} - 6\sqrt[6]{x+1} + 6\ln|\sqrt[6]{x+1} + 1| + c.$$

1.8.3 Согласно п. 4 табл. 1.6 делаем подстановку x = 3 tg t:

$$\int \frac{dx}{\sqrt{(9+x^2)^3}} = \begin{vmatrix} x = 3 \operatorname{tg} t, dx = \frac{3dt}{\cos^2 t}, \\ 9 + x^2 = 9 + 9tg^2 t = \frac{9}{\cos^2 t}, \\ t = \operatorname{arctg} \frac{x}{3} \end{vmatrix} = \int \frac{\frac{3dt}{\cos^2 t}}{\sqrt{\left(\frac{9}{\cos^2 t}\right)^3}} = \int \frac{\frac{3dt}{\cos^2 t}}{\frac{3^3}{\cos^3 t}} = \frac{1}{9} \int \cos t dt = \frac{1}{9} \sin t + c = \frac{1}{9} \sin \left(\operatorname{arctg} \frac{x}{3}\right) + c.$$

1.8.4. Согласно п. 3 табл. 1.6 делаем подстановку $x = 3 \sin t$:

$$\int \frac{\sqrt{(9-x^2)^3}}{x^6} \frac{dx}{dx} = \begin{vmatrix} x = 3\sin t, & dx = 3\cos t dt, \\ 9 - x^2 = 9 - 9\sin^2 t = 9\cos^2 t, \\ t = \arcsin\frac{x}{3} \end{vmatrix} = \int \frac{\sqrt{(9\cos^2 t)^3}}{(3\sin t)^6} \cdot 3\cos t dt = \int \frac{3^3\cos^3 t \cdot 3\cos t dt}{3^6\sin^6 t} = \frac{1}{3^2} \int \frac{\cos^4 t}{\sin^4 t} \cdot \frac{dt}{\sin^2 t} = \frac{1}{9} \int \cot^4 t d(\cot t) = -\frac{1}{9} \cdot \frac{\cot^5 t}{5} + c = -\frac{1}{45} \cot^5 t + c = -\frac{1}{45} \cot^6 \left(\arcsin\frac{x}{3}\right) + c.$$

1.8.5. Согласно п. 5 табл. 1.6, при a=4, делаем тригонометрическую подстановку

$$x = \frac{4}{\cos t}, \quad dx = \frac{4\sin t}{\cos^2 t} dt,$$

$$x^2 - 16 = \frac{16}{\cos^2 t} - 16 = 16 \left(\frac{1}{\cos^2 t} - 1\right) = 16 \frac{\sin^2 t}{\cos^2 t};$$

$$\int \frac{\sqrt{x^2 - 16}}{x} dx = \begin{vmatrix} x = \frac{4}{\cos t}, & dx = \frac{4\sin t}{\cos^2 t} dt, \\ x^2 - 16 = 16 \frac{\sin^2 t}{\cos^2 t}, & t = \arccos\frac{4}{x} \end{vmatrix} = \int \frac{\sqrt{16 \frac{\sin^2 t}{\cos^2 t}}}{\frac{4}{\cos t}} \frac{4\sin t}{\cos^2 t} dt =$$

$$= \int 4\sin t \frac{\sin t}{\cos^2 t} dt = 4 \int \frac{\sin^2 t}{\cos^2 t} dt = 4 \int \left(\frac{1}{\cos^2 t} - 1\right) dt =$$

$$= 4(tgt - t) + c = 4tg \left(\arccos\frac{4}{x}\right) - 4\arccos\frac{4}{x} + c.$$

1.8.6. Имеем дифференциальный бином. Согласно п. 6 табл. 1.6 проверим условия интегрируемости бинома:

$$\int \frac{x^{11}dx}{\sqrt{1+x^4}} = \int x^{11} \left(1+x^4\right)^{-\frac{1}{2}} dx =$$

$$\begin{vmatrix} m=11, \ n=4, \ p=-\frac{1}{2}, \ \frac{m+1}{n}=3 \text{--целое, второй случай} \Rightarrow \\ \Rightarrow 1+x^4=t^2, \ x=(t^2-1)^{\frac{1}{4}}, \ dx=\frac{t}{2}(t^2-1)^{-\frac{3}{4}} dt, \ t=\sqrt{1+x^4} \end{vmatrix} =$$

$$=\int \left(\left(t^2-1\right)^{\frac{1}{4}}\right)^{11} \left(t^2\right)^{-\frac{1}{2}} \cdot \frac{t}{2} \left(t^2-1\right)^{-\frac{3}{4}} dt = \frac{1}{2} \int \left(t^2-1\right)^{\frac{11}{4}} t^{-1} \cdot t \left(t^2-1\right)^{-\frac{3}{4}} dt =$$

$$=\frac{1}{2} \int \left(t^2-1\right)^2 dt = \frac{1}{2} \int \left(t^4-2t^2+1\right) dt = \frac{1}{2} \left(\frac{t^5}{5}-\frac{2t^3}{3}+t\right) + c = \frac{1}{10} \sqrt{(1+x^4)^5} - \frac{1}{3} \sqrt{(1+x^4)^3} + \frac{1}{2} \sqrt{1+x^4} + c.$$

1.8.7. Имеем дифференциальный бином. Согласно п. 6 табл. 1.6 выберем подстановку Чебышева:

$$\begin{vmatrix} x^3 = \frac{1}{t^3 - 1}, & x = (t^3 - 1)^{-\frac{1}{3}}, & dx = -t^2(t^3 - 1)^{-\frac{4}{3}}dt, & t = \frac{\sqrt[3]{1 + x^3}}{x} \end{vmatrix}$$

$$= \int \left((t^3 - 1)^{-\frac{1}{3}} \right)^{-2} \cdot \left(1 + \frac{1}{t^3 - 1} \right)^{-\frac{2}{3}} \cdot \left(-t^2(t^3 - 1)^{-\frac{4}{3}}dt \right) =$$

$$= -\int \left(t^3 - 1 \right)^{\frac{2}{3}} \left(\frac{t^3}{t^3 - 1} \right)^{-\frac{2}{3}} t^2 \left(t^3 - 1 \right)^{-\frac{4}{3}} dt = -\int \left(t^3 - 1 \right)^{-\frac{2}{3}} \frac{\left(t^3 - 1 \right)^{\frac{2}{3}}}{\left(t^3 \right)^{\frac{2}{3}}} t^2 dt =$$

$$= -\int dt = -t + c = -\frac{\sqrt[3]{1 + x^3}}{x} + c.$$

2. ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

Справочный материал

Определение 2.1. Определённым интегралом от функции f(x) на отрезке [a, b] называется предел интегральной суммы $\sum_{i=1}^{n} f(\xi_i) \Delta x_i$, когда отрезок [a, b] разбивается произвольным образом на n отрезков

гда отрезок [a, b] разбивается произвольным образом на n отрезков $[x_{i-1}, x_i]$, в каждом из которых произвольно выбирается точка ξ_i . Значение функции, вычисленное в точке ξ_i , распространяется на весь отрезок $[x_{i-1}, x_i]$, $\Delta x_i - \partial$ лина i-го отрезка:

$$\int_{a}^{b} f(x)dx = \lim_{\substack{d \to 0 \\ (n \to \infty)}} \sum_{i=1}^{n} f(\xi_i) \Delta x_i,$$

где d – наибольшая из длин отрезков Δx_i при i = 1, 2, ..., n.

Определённый интеграл обозначается так:

$$\int_{a}^{b} f(x)dx,$$

где f(x) — подынтегральная функция,

f(x)dx – подынтегральное выражение,

а – нижний предел интегрирования,

b – верхний предел интегрирования.

Если существует интеграл $\int_{a}^{b} f(x)dx$, то функция f(x) называется интегрируемой на отрезке [a,b].

Запись $\int_{a}^{b} f(x)dx$ читаем: интеграл от о до бэ эф от икс дэ икс.

Теорема 2.1 (о существовании определённого интеграла). Функция f(x) интегрируема на отрезке [a, b], если выполняется одно из следующих условий:

- функция f(x) непрерывна на отрезке [a, b];
- \bullet функция f(x) монотонна и ограничена на отрезке [a,b];
- \bullet функция f(x) имеет конечное число точек разрыва первого рода.

Свойства определённого интеграла

Свойство 2.1. *Если функция равна единице на отрезке* (*a*, *b*), то величина определённого интеграла равна длине интервала:

$$\int_{a}^{b} dx = b - a.$$

Свойство 2.2. Если нижний предел интегрирования равен верхнему пределу, то интеграл равен нулю: $\int_{a}^{a} f(x)dx = 0$.

Свойство 2.3. При перестановке пределов интегрирования определённый интеграл меняет знак на противоположный:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

Свойство 2.4. Постоянный множитель можно выносить за знак определённого интеграла: $\int_{a}^{b} cf(x)dx = c\int_{a}^{b} f(x)dx$, где c = const.

Свойство 2.5. Определённый интеграл от алгебраической суммы конечного числа интегрируемых на отрезке [a,b] функций $f_1(x), f_2(x), \ldots, f_n(x)$ равен алгебраической сумме определённых интегралов от слагаемых функций:

$$\int_{a}^{b} \sum_{k=1}^{n} f_k(x) dx = \sum_{k=1}^{n} \int_{a}^{b} f_k(x) dx.$$

Свойство 2.6. Аддитивность: $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$,

где $c \in (a, b)$.

Свойство 2.7. Если функция f(x) — нечётная, т. е. f(-x) = -f(x), то $\int_{-a}^{a} f(x) dx = 0$.

Свойство 2.8. Если функция f(x) – чётная, т. е. f(-x) = f(x), то $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$

Свойство 2.9. Если функция $f(x) \ge 0$ для любого $x \in [a,b]$, то $\int_{a}^{b} f(x) dx \ge 0$, где a < b.

Свойство 2.10. Монотонность. Если для любого $x \in [a,b]$ выполняется неравенство $f(x) \ge g(x)$, то имеет место неравенство $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$.

Свойство 2.11. Теорема об оценке определённого интеграла. Ecли m — наименьшее, M — наибольшее значение непрерывной функции f(x)на отрезке [a,b], то выполняется неравенство

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$
, $z \ge a < b$.

Свойство 2.12. Теорема о среднем. Если функция f(x) непрерывна на отрезке [a, b], то существует такая точка $\xi \in [a, b]$, что выполняется равенство

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

Задача 1. Используя определение определенного интеграла, вычислить $\int_{0}^{5} (-x+1) dx$.

Решение. Разобьём отрезок [0,5] на n равных частей (в данном случае это удобно) точками $0=x_0< x_1< x_2< \ldots < x_{i-1}< x_i< \ldots < x_n=5$. Длина каждого частичного отрезка находится по формуле

$$\Delta x_i = \frac{b-a}{2},$$

где a=0, b=5. Тогда $\Delta x_i = \frac{5}{n}$. В качестве промежуточных точек $\xi_i \in [x_{i-1}, x_i]$ возьмем правые концы частичных отрезков:

$$\xi_i = x_i = \frac{b-a}{n} \cdot i + a, (i = 1, 2, ..., n).$$

Получим $\xi_i = \frac{5i}{n}$. Найдем значение функции f(x) = -x + 1 в точке ξ_i :

$$f(\xi_i) = -\frac{5i}{n} + 1 = \frac{n-5i}{n}$$
.

Составим соответствующую интегральную сумму:

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i = \sum_{i=1}^{n} \frac{n-5i}{n} \cdot \frac{5}{n} = \frac{5}{n^2} \sum_{i=1}^{n} (n-5i) =$$

$$= \frac{5}{n^2} [(n-5) + (n-10) + \dots + (n-5n)] = \frac{5}{n^2} [(n-5) + (n-10) + \dots + (-4n)] =$$
$$= \frac{5}{n^2} \cdot \frac{n-5+(-4n)}{2} \cdot n = \frac{-25-15n}{2n}.$$

Вычислим предел интегральной суммы при $n \to \infty$. Получим

$$\lim_{n \to \infty} \frac{-25 - 15n}{2n} = -\frac{15}{2} = -7.5.$$

Следовательно, по определению,

$$\int_{0}^{5} (-x+1)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} = -7.5.$$

Задача 2. Вычислить определенный интеграл по определению от функции f(x) = -x + 3 на отрезке [-1; 1], разбив отрезок интегрирования любым произвольным образом.

Решение. Разобьём отрезок [-1; 1] на n равных частей точками

$$-1 = x_0 < x_1 < x_2 < \dots < x_{i-1} < x_i < \dots < x_n = 1$$
.

Длина каждого частичного отрезка $\Delta x_i = \frac{b-a}{2} = \frac{1-(-1)}{n} = \frac{2}{n}$. В качестве промежуточных точек $\xi_i \in [x_{i-1}, x_i]$ возьмем правые концы частичных отрезков:

$$\xi_i = x_i = \frac{b-a}{n} \cdot i + a = \frac{2i}{n} - 1 = \frac{2i-n}{n}$$
.

Найдем значение функции f(x) = -x + 3 в точке ξ_i :

$$f(\xi_i) = \frac{n-2i}{n} + 3 = \frac{4n-2i}{n}$$
.

Составим соответствующую интегральную сумму:

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i = \sum_{i=1}^{n} \frac{4n-2i}{n} \cdot \frac{2}{n} = \frac{4}{n^2} \sum_{i=1}^{n} (2n-i) =$$

$$= \frac{4}{n^2} [(2n-1) + (2n-2) + \dots + n] = \frac{4}{n^2} \cdot \frac{(2n-1) + n}{2} \cdot n = \frac{6n-2}{n}.$$

Вычислим предел интегральной суммы при $n \to \infty$:

$$\lim_{n\to\infty}\frac{6n-2}{n}=6.$$

Следовательно, по определению,

$$\int_{0}^{5} (-x+1)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) \Delta x_i = 6.$$

Замечание: Сумму n первых членов арифметической прогрессии нашли по формуле

$$S_n = \frac{a_1 + a_n}{2} \cdot n \,.$$

Задача 3. Оцените интеграл $\int_{1}^{2} \sqrt{1+3x^4} \, dx$.

Решение. Воспользуемся теоремой об оценке определенного интеграла (свойство 2.11).

Функция $f(x) = \sqrt{1 + 3x^4}$ достигает своего наименьшего и наибольшего значений либо на концах интервала [1; 2], либо в критических точках. Найдем критические точки функции $f(x) = \sqrt{1 + 3x^4}$:

$$f'(x) = \left(\left(1 + 3x^4 \right)^{\frac{1}{2}} \right)' = \frac{1}{2} \left(1 + 3x^4 \right)^{-\frac{1}{2}} \cdot 12x^3 = \frac{6x^3}{\sqrt{1 + 3x^4}} = 0 \Rightarrow x = 0.$$

Но точка x = 0 не принадлежит отрезку [1; 2]. Найдем значение функции на концах отрезка интегрирования:

$$f(1) = \sqrt{1+3} = 2$$
; $f(2) = \sqrt{1+3\cdot 2^4} = 7$.

Тогда m=2 — наименьшее значение функции, M=7 — наибольшее значение функции, b-a=2-1=1, и по свойству 2.11 получаем

$$2 \le \int_{1}^{2} \sqrt{1 + 3x^4} \, dx \le 7 \, .$$

2.1. Методы вычисления определённого интеграла

2.1.1. Непосредственное интегрирование

Данный метод применяется к вычислению интегралов, когда при решении задачи используется таблица 1.1 неопределённых интегралов и формула Ньютона-Лейбница

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a), \qquad (2.1)$$

где F'(x) = f(x).

Пример 2.1. Вычислите интегралы:

2.1.1.
$$\int_{0}^{\sqrt{3}} \frac{x - (\arctan x)^{4}}{1 + x^{2}} dx;$$
1.1.2.
$$\int_{1}^{e} \frac{2 + 3 \ln^{2} x}{x} dx;$$

2.1.3.
$$\int_{-1}^{0} \frac{\operatorname{tg}(x+1)}{\cos^{2}(x+1)} dx;$$
2.1.4.
$$\int_{\pi/4}^{\pi/2} \frac{x \cos x + \sin x}{(x \sin x)^{2}} dx;$$
2.1.5.
$$\int_{0}^{\pi} 2^{4} \cos^{6} x dx;$$
2.1.6.
$$\int_{0}^{\pi} \sin 3x \cos 7x dx;$$
2.1.7.
$$\int_{1}^{e} \frac{x^{2} + \ln x^{2}}{x} dx;$$
2.1.8.
$$\int_{0}^{\pi/2} \frac{\sin 2x}{1 + \cos^{2} x} dx;$$
2.1.9.
$$\int_{0}^{1} \frac{e^{x} dx}{1 + e^{2x}};$$
2.1.10.
$$\int_{0}^{\sqrt{2}} \frac{x dx}{\sqrt{4 - x^{2}}}.$$

Решение. 2.1.1. Разделим каждое слагаемое в числителе дроби на знаменатель $(1+x^2)$.

Учитывая, что
$$xdx = \frac{1}{2}d(x^2 + 1)$$
, $\frac{dx}{1 + x^2} = d(\arctan x)$, представим

интеграл в виде разности табличных интегралов и применим формулу Ньютона-Лейбница:

$$\int_{0}^{\sqrt{3}} \frac{x - (\arctan x)^{4}}{1 + x^{2}} dx = \int_{0}^{\sqrt{3}} \frac{x dx}{1 + x^{2}} - \int_{0}^{\sqrt{3}} \frac{(\arctan x)^{4}}{1 + x^{2}} dx = \frac{1}{2} \int_{0}^{\sqrt{3}} \frac{d(1 + x^{2})}{1 + x^{2}} - \int_{0}^{\sqrt{3}} (\arctan x)^{4} d(\arctan x) = \frac{1}{2} \ln(1 + x^{2}) \Big|_{0}^{\sqrt{3}} - \frac{(\arctan x)^{5}}{5} \Big|_{0}^{\sqrt{3}} = \frac{1}{2} (\ln 4 - \ln 1) - \int_{0}^{1} (\arctan x)^{3} dx = \frac{1}{2} (\ln 4 - \ln 1) - \int_{0}^{1} (\arctan x)^{3} dx = \frac{1}{2} (\arctan x)^{5} = \frac{1}{2} (\arctan x)^{5}$$

2.1.2. Разделим каждое слагаемое в числителе дроби на x, сведём к сумме двух табличных интегралов и применим формулу Ньютона-Лейбница:

$$\int_{1}^{e} \frac{2+3\ln^{2} x}{x} dx = 2\int_{1}^{e} \frac{dx}{x} + 3\int_{1}^{e} \frac{\ln^{2} x}{x} dx = 2\ln|x||_{1}^{e} + 3\int_{1}^{e} \ln^{2} x d(\ln x) = 2(\ln e - \ln 1) + 3 \cdot \frac{\ln^{3} x}{3} \Big|_{1}^{e} = 2 + \ln^{3} e - \ln^{3} 1 = 2 + 1 = 3.$$

2.1.3. Внесём под знак дифференциала функцию tg(x+1), т.к. $\frac{dx}{\cos^2(x+1)} = d(tg(x+1))$, далее применим формулу 2 табл. 1.1 и формулу Ньютона-Лейбница:

$$\int_{-1}^{0} \frac{\operatorname{tg}(x+1)}{\cos^{2}(x+1)} dx = \int_{-1}^{0} \operatorname{tg}(x+1) d(\operatorname{tg}(x+1)) = \frac{\operatorname{tg}^{2}(x+1)}{2} \bigg|_{-1}^{0} = \frac{1}{2} \left(\operatorname{tg}^{2} 1 - \operatorname{tg}^{2} 0 \right) = \frac{1}{2} \operatorname{tg}^{2} 1.$$

2.1.4. Так как $(x \sin x)' = \sin x + x \cos x$, внесём функцию $x \sin x$ под знак дифференциала и проинтегрируем:

$$\int_{\pi/4}^{\pi/2} \frac{x \cos x + \sin x}{(x \sin x)^2} dx = \int_{\pi/4}^{\pi/2} (x \sin x)^{-2} d(x \sin x) = -\frac{1}{x \sin x} \Big|_{\pi/4}^{\pi/2} =$$

$$= -\frac{2}{\pi \sin \frac{\pi}{2}} + \frac{4}{\pi \sin \frac{\pi}{4}} = -\frac{2}{\pi} + \frac{4 \cdot 2}{\pi \sqrt{2}} = \frac{-2 + 4\sqrt{2}}{\pi} = \frac{2}{\pi} (2\sqrt{2} - 1).$$

2.1.5. Запишем $\cos^6 x = (\cos^2 x)^3$ и применим тригонометрическую формулу понижения степени $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$ (см. табл. 1.5, п. 2):

$$\int_{0}^{\pi} 2^{4} \cos^{6} x dx = 2^{4} \int_{0}^{\pi} (\cos^{2} x)^{3} dx = 2^{4} \int_{0}^{\pi} \left(\frac{1 + \cos 2x}{2} \right)^{3} dx = \frac{2^{4}}{2^{3}} \int_{0}^{\pi} (1 + 3\cos 2x + \cos 2x) dx = 2 \int_{0}^{\pi} \left(1 + 3\cos 2x + \frac{3}{2} (1 + \cos 4x) \right) dx + 2 \int_{0}^{\pi} \cos^{2} 2x \cdot \cos 2x dx = 2 \left(x + \frac{3}{2} \sin 2x + \frac{3}{2} x + \frac{3}{2} \cdot \frac{1}{4} \sin 4x \right) \Big|_{0}^{\pi} + 2 \int_{0}^{\pi} (1 - \sin^{2} 2x) \frac{d\sin 2x}{2} = 2 \left(\pi + \frac{3}{2} \pi \right) + \left(\sin 2x - \frac{\sin^{3} 2x}{3} \right) \Big|_{0}^{\pi} = 5\pi.$$

2.1.6. Согласно п. 1 табл. 1.5 получим

$$\int_{0}^{\pi} \sin 3x \cos 7x = \frac{1}{2} \int_{0}^{\pi} \left[\sin(3x - 7x) + \sin(3x + 7x) \right] dx =$$

$$= \frac{1}{2} \int_{0}^{\pi} (-\sin 4x + \sin 10x) dx = \frac{1}{2} \left(\frac{1}{4} \cos 4x - \frac{1}{10} \cos 10x \right) \Big|_{0}^{\pi} = 0.$$

2.1.7. Разделим каждое слагаемое в числителе дроби на x и применим формулу Ньютона-Лейбница:

$$\int_{1}^{e} \frac{x^{2} + \ln x^{2}}{x} dx = \int_{1}^{e} \frac{x^{2}}{x} dx + \int_{1}^{e} \frac{\ln x^{2}}{x} dx = \int_{1}^{e} x dx + 2 \int_{1}^{e} \ln x d(\ln x) = \frac{x^{2}}{2} \Big|_{1}^{e} + \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + 2 \int_{1}^{e} \ln x d(\ln x) = \frac{x^{2}}{2} \Big|_{1}^{e} + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + 2 \int_{1}^{e} \ln x d(\ln x) = \frac{x^{2}}{2} \Big|_{1}^{e} + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + 2 \int_{1}^{e} \ln x d(\ln x) = \frac{x^{2}}{2} \Big|_{1}^{e} + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx + \frac{\ln x^{2}}{x} dx = \frac{\ln x^{2}}{x} dx + \frac{\ln x$$

$$+ \ln^2 x \Big|_1^e = \frac{e^2}{2} - \frac{1}{2} + \ln^2 e - \ln^2 1 = \frac{e^2}{2} - \frac{1}{2} + 1 = \frac{1}{2} (e^2 + 1).$$

2.1.8. Учитывая, что $d(1 + \cos^2 x) = -2\cos x \sin x dx = -\sin 2x dx$, получим табличный интеграл

$$\int_{0}^{\frac{\pi}{2}} \frac{\sin 2x dx}{1 + \cos^{2} x} = -\int_{0}^{\frac{\pi}{2}} \frac{d(1 + \cos^{2} x)}{1 + \cos^{2} x} = -\ln(1 + \cos^{2} x)\Big|_{0}^{\frac{\pi}{2}} = -\ln(1 + \cos^{2} \frac{\pi}{2}) + \ln(1 + \cos^{2} x)\Big|_{0}^{\frac{\pi}{2}} = -\ln(1 + \cos^{2} \frac{\pi}{2}) + \ln(1 + \cos^{2} x)\Big|_{0}^{\frac{\pi}{2}} = -\ln(1 + \cos^{2} x)\Big|_{0}^{\frac{\pi}{2}} = -\ln(1 + \cos^{2} \frac{\pi}{2})$$

2.1.9. Воспользуемся формулой $e^x dx = d(e^x)$ и получим табличный интеграл

$$\int_{0}^{1} \frac{e^{x} dx}{1 + e^{2x}} = \int_{0}^{1} \frac{d(e^{x})}{1 + (e^{x})^{2}} = \operatorname{arctg}(e^{x}) \Big|_{0}^{1} = \operatorname{arctg}e - \operatorname{arctg}0 = \operatorname{arctg}e.$$

2.1.10. Найдём производную подкоренного выражения:

$$\left(4-x^2\right)'=-2x.$$

Тогда

$$xdx = -\frac{1}{2}d(4-x^2).$$

Интегрируем:

$$\int_{0}^{\sqrt{2}} \frac{x dx}{\sqrt{4-x^2}} = -\frac{1}{2} \int_{0}^{\sqrt{2}} \frac{d(4-x^2)}{\sqrt{4-x^2}} = -\frac{1}{2} \cdot 2\sqrt{4-x^2} \bigg|_{0}^{\sqrt{2}} = -\sqrt{4-2} + \sqrt{4-0} =$$

$$= 2 - \sqrt{2} .$$
2.1.11. Умножим и разделим подынтегральную функцию на 2:

$$\int_{\frac{\pi}{8}}^{\frac{\pi}{6}} \frac{dx}{\cos^2 2x} = \frac{1}{2} \int_{\frac{\pi}{8}}^{\frac{\pi}{6}} \frac{2dx}{\cos^2 2x} = \frac{1}{2} \int_{\frac{\pi}{8}}^{\frac{\pi}{6}} \frac{d(2x)}{\cos^2 2x} = \frac{1}{2} \operatorname{tg} 2x \Big|_{\frac{\pi}{8}}^{\frac{\pi}{6}} = \frac{1}{2} \left(\operatorname{tg} \frac{\pi}{3} - \operatorname{tg} \frac{\pi}{4} \right) = \frac{1}{2} \left(\sqrt{3} - 1 \right).$$

2.1.2. Замена переменной в определённом интеграле

Справочный материал

Пусть f(x) — непрерывная функция на отрезке [a, b]. Тогда, если:

- функция $x = \varphi(t)$ дифференцируема на отрезке $[\alpha, \beta]$ и $\varphi'(t)$ непрерывна на этом отрезке;
 - множеством значений функции $x = \varphi(t)$ является отрезок [a, b];
 - $\varphi(\alpha) = a$, $\varphi(\beta) = b$,

то справедлива формула

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f[\varphi(t)] \cdot \varphi'(t) dt. \qquad (2.2)$$

Схема применения метода замены переменной, или метода подстановки

- **1.** Выбрать подстановку (или сделать замену переменной) $x = \varphi(t)$, где $\varphi(t)$ непрерывная функция на отрезке $[\alpha, \beta]$.
- **2.** Найти $dx = \varphi'(t) dt$, где $\varphi'(t)$ также непрерывная функция на отрезке $[\alpha, \beta]$.
 - 3. Найти пределы изменения новой переменной:
 - $x_1 = a \Rightarrow a = \varphi(t) \Rightarrow t_1 = \alpha$;
 - $x_2 = b \Rightarrow b = \varphi(t) \Rightarrow t_2 = \beta$.
 - 4. Преобразовать подынтегральную функцию.
- **5.** Записать интеграл, используя замену переменной, и вычислить его.

Замечание. При замене переменной в определённом интеграле не нужно возвращаться к старой переменной в найденной первообразной, т. к. были изменены границы интегрирования.

Пример 2.2. Вычислите интегралы:

2.2.1.
$$\int_{\frac{\pi}{4}}^{\arcsin \sqrt{\frac{2}{3}}} \frac{8 \operatorname{tg} x dx}{3 \cos^{2} x + 8 \sin^{2} x - 7};$$
2.2.2.
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x dx}{\cos^{3} x};$$
2.2.3.
$$\int_{0}^{4} \sqrt{16 - x^{2}} dx;$$
2.2.4.
$$\int_{\ln 3}^{\ln 8} \frac{dx}{\sqrt{1 + e^{x}}};$$

2.2.5.
$$\int_{\frac{\pi}{2}}^{2\operatorname{arctg2}} \frac{dx}{\sin x (1 + \sin x)};$$
2.2.6.
$$\int_{2}^{9} \frac{x dx}{\sqrt[3]{x - 1}};$$
2.2.7.
$$\int_{0}^{\sqrt{2}} \frac{x^{4} dx}{(4 - x^{2})^{\frac{3}{2}}};$$
2.2.8.
$$\int_{1}^{2} \frac{dx}{(4 + x^{2})^{\frac{3}{2}}}.$$

Решение. 2.2.1. Согласно п. 5 табл. 1.5 сделаем подстановку tgx = t. Найдём пределы интегрирования для переменной t:

•
$$x_1 = \frac{\pi}{4} \Rightarrow t_1 = \operatorname{tg} \frac{\pi}{4} = 1$$
;

•
$$x_2 = \arcsin\sqrt{\frac{2}{3}} \Rightarrow$$

$$\Rightarrow t_2 = \operatorname{tg}\left(\arcsin\sqrt{\frac{2}{3}}\right) = \frac{\sin\left(\arcsin\sqrt{\frac{2}{3}}\right)}{\sqrt{1-\sin^2\left(\arcsin\sqrt{\frac{2}{3}}\right)}} = \frac{\sqrt{\frac{2}{3}}}{\sqrt{1-\frac{2}{3}}} = \sqrt{2}.$$

$$\int_{\frac{\pi}{4}}^{\arcsin \sqrt{\frac{2}{3}}} \frac{8 \operatorname{tg} x dx}{3 \cos^{2} x + 8 \sin^{2} x - 7} = \begin{cases} \operatorname{tg} x = t, \ dx = \frac{dt}{1 + t^{2}}, \\ x_{1} = \frac{\pi}{4} \Rightarrow t_{1} = 1, \\ x_{2} = \arcsin \sqrt{\frac{2}{3}} \Rightarrow t_{2} = \sqrt{2}, \\ \cos^{2} x = \frac{1}{1 + t^{2}}, \sin^{2} x = \frac{t^{2}}{1 + t^{2}} \end{cases} = \begin{cases} \frac{8t dt}{(1 + t^{2}) \cdot \left(3 \frac{1}{1 + t^{2}} + 8 \frac{t^{2}}{1 + t^{2}} - 7\right)} = \\ = 8 \int_{1}^{\sqrt{2}} \frac{t dt}{(1 + t^{2}) \cdot \frac{3 + 8t^{2} - 7 - 7t^{2}}{1 + t^{2}}} = 8 \int_{1}^{\sqrt{2}} \frac{t dt}{t^{2} - 4} = 8 \cdot \frac{1}{2} \int_{1}^{\sqrt{2}} \frac{d(t^{2} - 4)}{t^{2} - 4} = \\ = 4 \ln|t^{2} - 4||_{1}^{\sqrt{2}} = 4(\ln|2 - 4| - \ln|1 - 4|) = 4(\ln 2 - \ln 3) = 4 \ln \frac{2}{3}. \end{cases}$$

- **2.2.2.** Сделаем замену переменной $\cos x = t \Rightarrow -\sin x \, dx = dt$. Найдём пределы интегрирования переменной t:
- значению $x = \frac{\pi}{6}$ соответствует $t_1 = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$;
- значению $x = \frac{\pi}{3}$ соответствует $t_2 = \cos \frac{\pi}{3} = \frac{1}{2}$.

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x dx}{\cos^3 x} = -\int_{\frac{3}{2}}^{\frac{1}{2}} t^{-3} dt = \frac{1}{2t^2} \Big|_{\frac{\sqrt{3}}{2}}^{\frac{1}{2}} = \frac{1}{2} \left(4 - \frac{4}{3} \right) = \frac{4}{3}.$$

2.2.3. Сделаем подстановку:

$$x = 4 \sin t \Rightarrow 16 - x^2 = 16(1 - \sin^2 t) = 16\cos^2 t$$
, $dx = 4\cos t dt$.

Найдём пределы изменения новой переменной:

- при x = 0 имеем $0 = 4 \sin t \Rightarrow \sin t = 0 \Rightarrow t_1 = 0$,
- при x = 4 имеем $4 = 4 \sin t \Rightarrow \sin t = 1 \Rightarrow t_2 = \frac{\pi}{2}$.

Находим интеграл

$$\int_{0}^{4} \sqrt{16 - x^{2}} dx = \int_{0}^{\frac{\pi}{2}} \sqrt{16\cos^{2}t} \cdot 4\cos t dt = \int_{0}^{\frac{\pi}{2}} 4|\cos t| \cdot 4\cos t dt =$$

$$= 16 \int_{0}^{\frac{\pi}{2}} \cos^{2}t dt = \frac{16}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) dt = 8 \left(t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\frac{\pi}{2}} =$$

$$= 8 \left(\frac{\pi}{2} + \frac{1}{2} (\sin \pi - \sin 0) \right) = 4\pi.$$

Здесь $\sqrt{\cos^2 t} = |\cos t| = \cos t$, т. к. $0 \le t \le \frac{\pi}{2}$.

2.2.4. Сделаем замену $1 + e^x = t^2$. Тогда $x = \ln(t^2 - 1)$, $dx = \frac{2tdt}{t^2 - 1}$.

Найдём пределы интегрирования для переменной t:

•
$$x_1 = \ln 3 \Rightarrow t_1 = \sqrt{1 + e^{\ln 3}} = \sqrt{4} = 2$$
;

•
$$x_2 = \ln 8 \Rightarrow t_2 = \sqrt{1 + e^{\ln 8}} = \sqrt{9} = 3$$
.

$$\int_{\ln 3}^{\ln 8} \frac{dx}{\sqrt{1+e^x}} = \begin{vmatrix} 1 + e^x = t^2, & dx = \frac{2tdt}{t^2 - 1}, \\ x_1 = \ln 3 \Rightarrow t_1 = 2, \\ x_2 = \ln 8 \Rightarrow t_2 = 3 \end{vmatrix} = \int_{2}^{3} \frac{2tdt}{(t^2 - 1)t} = 2\int_{2}^{3} \frac{dt}{t^2 - 1} = 1$$

$$=2\cdot\frac{1}{2}\ln\left|\frac{t-1}{t+1}\right|_{2}^{3}=\ln\left|\frac{3-1}{3+1}\right|-\ln\left|\frac{2-1}{2+1}\right|=\ln\frac{1}{2}-\ln\frac{1}{3}=\ln\frac{3}{2}.$$

2.2.5. Согласно п. 4 табл. 1.5 делаем замену $tg\frac{x}{2} = t$ и находим пределы изменения переменной t:

•
$$x_1 = \frac{\pi}{2} \Rightarrow t_1 = \lg \frac{\pi}{4} = 1$$
;

•
$$x_2 = 2arctg2 \Rightarrow t_2 = tg\frac{2 arctg2}{2} = 2$$
.

Вычисляем интеграл:

$$\int_{\frac{\pi}{2}}^{2\arctan 2} \frac{dx}{\sin x (1+\sin x)} = \left| tg \frac{x}{2} = t, \quad dx = \frac{2dt}{1+t^2}, \quad \sin x = \frac{2t}{1+t^2}, \right| =$$

$$\left| x_1 = \frac{\pi}{2} \Rightarrow t_1 = 1, \quad x_2 = 2\arctan 2 \Rightarrow t_2 = 2 \right| =$$

$$= \int_{1}^{2} \frac{2dt}{(1+t^2) \frac{2t}{1+t^2}} \cdot \left(1 + \frac{2t}{1+t^2} \right) = \int_{1}^{2} \frac{dt}{t \cdot \frac{1+t^2+2t}{1+t^2}} = \int_{1}^{2} \frac{1+t^2}{t (1+t)^2} dt =$$

$$= \int_{1}^{2} \frac{(1+t^2+2t)-2t}{t (1+t)^2} dt = \int_{1}^{2} \frac{(1+t)^2}{t (1+t)^2} dt - 2\int_{1}^{2} \frac{tdt}{t (1+t)^2} =$$

$$= \int_{1}^{2} \frac{dt}{t} - 2\int_{1}^{2} (1+t)^{-2} d(1+t) = \ln|t| \Big|_{1}^{2} + \frac{2}{1+t} \Big|_{1}^{2} =$$

$$= \ln 2 - \ln 1 + \frac{2}{2+1} - \frac{2}{1+1} = \ln 2 + \frac{2}{3} - 1 = \ln 2 - \frac{1}{3}.$$

2.2.6. Подынтегральная функция зависит от x и от $(x-1)^{\frac{1}{3}}$; следовательно, делаем подстановку $x-1=t^3$ (см. табл. 1.6, п. 2).

Выразим переменную t через x:

$$t = \sqrt[3]{x - 1} .$$

Найдём пределы изменения новой переменной:

•
$$x_1 = 2 \Rightarrow t_1 = \sqrt[3]{2 - 1} = 1$$
, • $x_2 = 9 \Rightarrow t_2 = \sqrt[3]{9 - 1} = 2$.

$$\int_{2}^{9} \frac{xdx}{\sqrt[3]{x-1}} = \begin{vmatrix} x-1=t^3, & x=t^3-1, & dx=3t^2dt, \\ x_1=2 \Rightarrow t_1=1, & x_2=9 \Rightarrow t_2=2 \end{vmatrix} = \int_{1}^{2} \frac{(t^3+1)\cdot 3t^2dt}{t} = \int_{1$$

$$= 3\int_{1}^{2} (t^{3} + 1)t dt = 3\int_{1}^{2} (t^{4} + t) dt = 3\left(\frac{t^{5}}{5} + \frac{t^{2}}{2}\right)\Big|_{1}^{2} = 3\left(\frac{2^{5}}{5} + \frac{2^{2}}{2} - \frac{1}{5} - \frac{1}{2}\right) =$$

$$= 3\left(\frac{31}{5} + \frac{3}{2}\right) = 3 \cdot \frac{77}{10} = 23,1.$$

2.2.7. Согласно табл. 1.6, п. 3 делаем подстановку $x = 2\sin t$. Преобразуем подкоренное выражение: $4 - x^2 = 4 - 4\sin^2 t = 4\cos^2 t$.

Выразим переменную t через x:

$$t = \arcsin \frac{x}{2}$$
.

Найдём пределы её изменения:

•
$$x_1 = 0 \Rightarrow t_1 = \arcsin 0 = 0$$
, • $x_2 = \sqrt{2} \Rightarrow t_2 = \arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4}$.

Вычисляем интеграл:

$$\int_{0}^{\sqrt{2}} \frac{x^{4} dx}{(4 - x^{2})^{\frac{3}{2}}} = \begin{vmatrix} x = 2\sin t, dx = 2\cos t dt, 4 - x^{2} = 4\cos^{2} t, \\ t = \arcsin \frac{x}{2}, x_{1} = 0 \Rightarrow t_{1} = 0, x_{2} = \sqrt{2} \Rightarrow t_{2} = \frac{\pi}{4} \end{vmatrix} =$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{(2\sin t)^{4} 2\cos t dt}{(4\cos^{2} t)^{\frac{3}{2}}} = \frac{2^{5}}{2^{3}} \int_{0}^{\frac{\pi}{4}} \frac{\sin^{4} t \cos t dt}{\cos^{3} t} = 4 \int_{0}^{\frac{\pi}{4}} \frac{\sin^{4} t dt}{\cos^{2} t} =$$

$$= 4 \int_{0}^{\frac{\pi}{4}} \left(\frac{1 - \cos^{2} t}{\cos^{2} t} \right)^{2} dt = 4 \int_{0}^{\frac{\pi}{4}} \frac{(1 - 2\cos^{2} t + \cos^{4} t) dt}{\cos^{2} t} =$$

$$= 4 \int_{0}^{\frac{\pi}{4}} \left(\frac{1}{\cos^{2} t} - 2 + \frac{1 + \cos 2t}{2} \right) dt = 4 \left(tgt - 2t + \frac{1}{2}t + \frac{1}{4}\sin 2t \right) \Big|_{0}^{\frac{\pi}{4}} =$$

$$= 4 \left(tg\frac{\pi}{4} - \frac{3}{2} \cdot \frac{\pi}{4} + \frac{1}{4}\sin\frac{\pi}{2} \right) = 4 \left(1 - \frac{3\pi}{8} + \frac{1}{4} \right) = 5 - \frac{3\pi}{2}.$$

2.2.8. Согласно табл. 1.6, п. 4 сделаем замену $x = 2 \operatorname{tg} t$.

Выразим переменную t:

$$t = \operatorname{arctg} \frac{x}{2}$$
.

Для переменной *t* найдём пределы изменения:

•
$$x_1 = 0 \Rightarrow t_1 = \operatorname{arctg} 0 = 0$$
, • $x_2 = 2 \Rightarrow t_2 = \operatorname{arctg} 1 = \frac{\pi}{4}$.

$$\int_{0}^{2} \frac{dx}{(4+x^{2})^{\frac{3}{2}}} = \begin{vmatrix} x = 2tgt, dx = \frac{2dt}{\cos^{2}t}, \\ 4 + x^{2} = \frac{4}{\cos^{2}t}, \\ x_{1} = 0 \Rightarrow t_{1} = 0, x_{2} = 2 \Rightarrow t_{2} = \frac{\pi}{4} \end{vmatrix} = \int_{0}^{\frac{\pi}{4}} \frac{2dt}{\cos^{2}t} dt = \int_{0}^{\frac{\pi}{4}}$$

2.1.3. Метод интегрирования по частям

Формула интегрирования по частям для определённого интеграла имеет вид

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du, \qquad (2.3)$$

где u = u(x) и v = v(x) – функции, имеющие непрерывные производные на отрезке [a, b].

При этом необходимо помнить *классы функций*, *интегрируемых по частям*, и таблицу 1.3.

Пример 2.3. Вычислите интегралы:

2.3.1.
$$\int_{0}^{1} x^{2}e^{3x}dx$$
; **2.3.2.** $\int_{1}^{2} x \ln^{2} x dx$; **2.3.3.** $\int_{0}^{1} \arctan x dx$; **2.3.4.** $\int_{0}^{\frac{\pi}{4}} x \sin^{2} x dx$; **2.3.5.** $\int_{1}^{2} x \ln(x+1)dx$; **2.3.6.** $\int_{-2}^{0} (x^{2}-4)\cos 3x dx$.

Решение. 2.3.1. Применим формулу интегрирования по частям. Данный интеграл относится к классу I табл. 1.3. Обозначим $u = x^2$, $dv = e^{3x} dx$. Найдём du и v и применим формулу интегрирования по частям два раза:

$$\int_{0}^{1} x^{2} e^{3x} dx = \begin{vmatrix} u = x^{2}, & du = 2x dx, \\ dv = e^{3x} dx, & v = \frac{1}{3} e^{3x} \end{vmatrix} = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1} - \frac{2}{3} \int_{0}^{1} x e^{3x} dx = \frac{1}{3} x^{2} e^{3x} \Big|_{0}^{1}$$

$$= \frac{1}{3}e^{3} - 0 - \frac{2}{3}\int_{0}^{1} xe^{3x} dx = \begin{vmatrix} u = x, du = dx, \\ dv = e^{3x} dx, v = \frac{1}{3}e^{3x} \end{vmatrix} = \frac{1}{3}e^{3} - \frac{2}{3}\left(x \cdot \frac{1}{3}e^{3x}\right)^{1} - \frac{1}{3}\int_{0}^{1} e^{3x} dx = \frac{1}{3}e^{3} - \frac{2}{3}\left(\frac{1}{3}e^{3} - \frac{1}{9}e^{3x}\right)^{1} = \frac{1}{3}e^{3} - \frac{2}{9}e^{3} + \frac{2}{27}\left(e^{3} - e^{0}\right) = \frac{1}{27}\left(5e^{3} - 2\right).$$

2.3.2. Интеграл относится к классу II табл. 1.3. Обозначим $u = \ln^2 x$, dv = x dx. Найдём $du = 2 \ln x \frac{dx}{x}$, $v = \int x dx = \frac{x^2}{2}$ и два раза применим формулу интегрирования по частям:

$$\int_{1}^{2} x \ln^{2} x dx = \begin{bmatrix} u = \ln^{2} x, du = 2 \ln x \frac{dx}{x}, \\ dv = x dx, v = \frac{x^{2}}{2} \end{bmatrix} = \frac{x^{2}}{2} \ln^{2} x \Big|_{1}^{2} - \int_{1}^{2} x^{2} \ln x \frac{dx}{x} = \frac{x^{2}}{2} \ln^{2} x \Big|_{1}^{2} - \int_{1}^{2} x^{2} \ln x \frac{dx}{x} = \frac{x^{2}}{2} \ln^{2} x \Big|_{1}^{2} - \int_{1}^{2} x^{2} \ln x \frac{dx}{x} = \frac{x^{2}}{2} \ln^{2} x \Big|_{1}^{2} - \int_{1}^{2} x^{2} \ln x \frac{dx}{x} = \frac{x^{2}}{2} \ln^{2} x \Big|_{1}^{2} - \int_{1}^{2} x^{2} \ln x \frac{dx}{x} = \frac{x^{2}}{2} \ln^{2} x \Big|_{1}^{2} - \frac{x^{2}}{2} \ln^{2} x \Big|_{1}^{2} + \frac{x^{2}}{2} \ln$$

$$= 2 \ln^2 2 - \frac{1}{2} \ln^2 1 - \int_1^2 x \ln x dx = \begin{vmatrix} u = \ln x, du = \frac{dx}{x}, \\ dv = x dx, v = \frac{x^2}{2} \end{vmatrix} = 2 \ln^2 2 - \left(\frac{x^2}{2} \ln x\right)_1^2 - \frac{1}{2} \ln^2 x \ln x + \frac{1}{2} \ln x$$

$$-\int_{1}^{2} \frac{x^{2}}{2} \frac{dx}{x} = 2 \ln^{2} 2 - \frac{1}{2} \left(4 \ln 2 - \ln 1 - \int_{1}^{2} x dx \right) = 2 \ln^{2} 2 - 2 \ln 2 + \frac{1}{2} \cdot \frac{x^{2}}{2} \Big|_{1}^{2} = 2 \ln^{2} 2 - 2 \ln 2 + \frac{1}{4} (4 - 1) = 2 \ln^{2} 2 - 2 \ln 2 + \frac{3}{4} = 2 \ln^{2} 2 - 2 \ln 2 + 0.75.$$

2.3.3. Обозначим $u = \arctan x$, dv = dx (см. п. 10 табл. 1.3). Найдём $du = \frac{dx}{1+x^2}$, $v = \int dx = x$ и применим формулу интегрирования по частям:

$$\int_{0}^{1} \arctan dx = \begin{vmatrix} u = \arctan x, \ du = \frac{dx}{1+x^{2}}, \ dv = dx, \ v = x \end{vmatrix} = x \arctan \left| \frac{1}{0} - \int_{0}^{1} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x - x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right| = x - x \arctan \left| \frac{1}{0} - \frac{1}{0} \frac{x dx}{1+x^{2}} \right|$$

$$= \arctan\left[\frac{1}{2}\int_{0}^{1} \frac{d(x^{2}+1)}{1+x^{2}} = \frac{\pi}{4} - \frac{1}{2}\ln(1+x^{2})\right]_{0}^{1} = \frac{\pi}{4} - \frac{1}{2}(\ln 2 - \ln 1) = \frac{\pi}{4} - \frac{1}{2}\ln 2.$$

2.3.4. Имеем интеграл вида 3 табл. 1.3. Обозначим u = x, $dv = \sin^2 x dx$. Тогда найдём $v = \int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} dx = \frac{1}{2} x - \frac{1}{4} \sin 2x$, du = dx. Применим формулу интегрирования по частям:

$$\int_{0}^{\frac{\pi}{4}} x \sin^{2} x dx = \begin{vmatrix} u = x, du = dx, \\ dv = \sin^{2} x dx, v = \frac{1}{2}x - \frac{1}{4}\sin 2x \end{vmatrix} = x \cdot \left(\frac{1}{2}x - \frac{1}{4}\sin 2x\right) \Big|_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \left(\frac{1}{2}x - \frac{1}{4}\sin 2x\right) dx = \frac{\pi}{4} \left(\frac{1}{2} \cdot \frac{\pi}{4} - \frac{1}{4}\sin \frac{\pi}{2}\right) - \left(\frac{1}{2} \cdot \frac{x^{2}}{2} + \frac{1}{8}\cos 2x\right) \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} \left(\frac{\pi}{8} - \frac{1}{4}\right) - \left(\frac{1}{4} \cdot \left(\frac{\pi}{4}\right)^{2} + \frac{1}{8}\cos \frac{\pi}{2} - \frac{1}{8}\cos 0\right) = \frac{\pi^{2}}{32} - \frac{\pi}{16} - \frac{\pi^{2}}{64} + \frac{1}{8} = \frac{\pi^{2}}{64} - \frac{\pi}{16} + \frac{1}{8} = \frac{1}{64} \left(\pi^{2} - 4\pi + 8\right).$$

2.3.5. Интеграл относится к классу II табл. 1.3. Обозначим $u = \ln(x+1)$, dv = xdx. Найдём du, v и применим формулу (2.3):

$$\int_{1}^{2} x \ln(x+1) dx = \begin{vmatrix} u = \ln(x+1), du = \frac{dx}{x+1}, \\ dv = x dx, v = \frac{x^{2}}{2} \end{vmatrix} = \frac{x^{2}}{2} \ln(x+1) \Big|_{1}^{2} - \frac{1}{2} \int_{1}^{2} \frac{x^{2} dx}{x+1} = 2 \ln 3 - \frac{1}{2} \ln 2 - \frac{1}{2} \int_{1}^{2} \frac{(x^{2} - 1) + 1}{x+1} dx =$$

$$= 2 \ln 3 - \frac{1}{2} \ln 2 - \frac{1}{2} \int_{1}^{2} \frac{(x-1)(x+1) + 1}{x+1} dx =$$

$$= 2 \ln 3 - \frac{1}{2} \ln 2 - \frac{1}{2} \int_{1}^{2} \left(x - 1 + \frac{1}{x+1}\right) dx = 2 \ln 3 - \frac{1}{2} \ln 2 - \frac{1}{2} \cdot \frac{x^{2}}{2} \Big|_{1}^{2} + \frac{x}{2} \Big|_{1}^{2} - \frac{1}{2} \ln(x+1) \Big|_{1}^{2} = 2 \ln 3 - \frac{1}{2} \ln 2 - 1 + \frac{1}{4} + 1 - \frac{1}{2} - \frac{1}{2} \ln 3 + \frac{1}{2} \ln 2 = \frac{3}{2} \ln 3 - \frac{1}{4}.$$

2.3.6. Данный интеграл относится к классу I табл. 1.3. Обозначим $u=x^2-4$, $dv=\cos 3x dx$. Тогда du=2x dx, $v=\frac{1}{3}\sin 3x$. Формулу (2.3) применим два раза:

$$\int_{-2}^{0} (x^2 - 4)\cos 3x dx = \begin{vmatrix} u = x^2 - 4, & du = 2x dx, \\ dv = \cos 3x dx, & v = \frac{1}{3}\sin 3x \end{vmatrix} =$$

$$= (x^{2} - 4) \cdot \frac{1}{3} \sin 3x \Big|_{-2}^{0} - \frac{2}{3} \int_{-2}^{0} x \sin 3x dx = \left| \begin{array}{c} u = x, du = dx, \\ dv = \sin 3x dx, v = -\frac{1}{3} \cos 3x \end{array} \right| = \\ = (0 - 4) \cdot \frac{1}{3} \sin 0 - (4 - 4) \cdot \frac{1}{3} \sin(-6) - \frac{2}{3} \left[-\frac{x}{3} \cos 3x \right]_{-2}^{0} + \frac{1}{3} \int_{-2}^{0} \cos 3x dx \right] = \\ = -\frac{2}{3} \left[-\frac{x}{3} \cos 3x + \frac{1}{9} \sin 3x \right]_{-2}^{0} = \\ = -\frac{2}{3} \left[0 + \frac{1}{9} \cdot \sin 0 + \left(-\frac{2}{3} \right) \cos(-6) - \frac{1}{9} \sin(-6) \right] = -\frac{2}{3} \left(-\frac{2}{3} \cos 6 + \frac{1}{9} \sin 6 \right) = \\ = -\frac{2}{27} (\sin 6 - 6 \cos 6).$$

2.2. Несобственные интегралы

Справочный материал

Определение 2.2. *Несобственным интегралом от непрерывной* функции f(x) в интервале $[a, +\infty)$, или **несобственным интегралом первого рода**, называется конечный предел (если он существует) интегра-

ла
$$\int_{a}^{b} f(x)dx npu \ b \to +\infty$$
:

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$
 (2.4)

Тогда

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} F(b) - F(a).$$

Если данный предел существует, то несобственный интеграл называется *сходящимся*, а если предел не существует или равен бесконечности, то интеграл называется *расходящимся*.

Аналогично определяются несобственные интегралы для других бесконечных интервалов:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx, \quad \int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx,$$

где c – любая точка оси Ox, f(x) непрерывна для любого $x \in (-\infty, +\infty)$.

Теорема 2.2. Пусть функции f(x) и $\varphi(x)$ интегрируемы и для всех $x \ge a$ выполняется неравенство $0 \le f(x) \le \varphi(x)$. Тогда:

- ullet если интеграл $\int\limits_a^{+\infty} f(x)dx$ расходится, то расходится и интеграл $\int\limits_a^{+\infty} \phi(x)dx$;
- если интеграл $\int_{a}^{+\infty} \varphi(x)dx$ сходится, то сходится и интеграл $\int_{a}^{+\infty} f(x)dx$, при этом $\int_{a}^{+\infty} f(x)dx \le \int_{a}^{+\infty} \varphi(x)dx$;
 - $ec\pi u \lim_{x \to +\infty} \frac{f(x)}{\varphi(x)} = c$, $z\partial e \ 0 < c < +\infty$, $c = const \ u \ \varphi(x) \neq 0$, mo uhme-

гралы $\int_{a}^{+\infty} f(x)dx$ и $\int_{a}^{+\infty} \varphi(x)dx$ сходятся или расходятся одновременно.

Определение 2.3. Несобственным интегралом от интегрируемой функции f(x), непрерывной на $a \le x < b$ и неограниченной при $x \to b$, или **несобственным интегралом второго рода**, называется предел инте-

грала $\int_{a}^{b-\varepsilon} f(x)dx$ при $\varepsilon \to 0$:

$$\int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0} \int_{a}^{b-\epsilon} f(x) dx.$$
 (2.5)

Если предел, стоящий справа в формуле (2.5), существует, то несобственный интеграл второго рода называется *сходящимся*, а если предел не существует или равен бесконечности, то несобственный интеграл второго рода называется *расходящимся*.

Аналогично определяется интеграл от функции f(x), неограниченной при $x \to a$:

$$\int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0} \int_{a+\epsilon}^{b} f(x) dx.$$
 (2.6)

Если функция имеет бесконечный разрыв внутри отрезка [a, b], т. е. в точке a < c < b, то полагают

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \lim_{\epsilon \to 0} \int_{a}^{c-\epsilon} f(x) dx + \lim_{\epsilon \to 0} \int_{c+\epsilon}^{b} f(x) dx.$$

Теорема 2.3. Если на интервале [a, b) функции f(x) и $\varphi(x)$ непрерывны и при x = b терпят разрыв второго рода, причём во всех точках этого промежутка выполняется неравенство $0 \le f(x) \le \varphi(x)$, то:

ullet если интеграл $\int\limits_{a}^{b} f(x)dx$ расходится, то расходится и интеграл $\int \varphi(x)dx;$

ullet если интеграл $\int\limits_a^b \varphi(x) dx$ сходится, то сходится и интеграл $\int f(x)dx$;

 $egin{aligned} \bullet & ecлu & \lim_{x o +\infty} rac{f(x)}{\varphi(x)} = c \;, \;\;
ho de & 0 < c < +\infty \;, \;\; c = const \;, \;\; mo \;\;$ интегралы $\int_{a}^{b} f(x) dx \;\; u \int_{a}^{b} \varphi(x) dx \;\; cxo ds$ тся или расходятся одновременно.

При исследовании на сходимость некоторых несобственных интегралов удобно пользоваться теоремами 2.2. и 2.3, либо таблицей 2.1 эквивалентных бесконечно малых величин. Напомним наиболее часто встречающиеся соотношения эквивалентности бесконечно малых $\alpha(x) \to 0$.

Таблица 2.1 Эквивалентность бесконечно малых при $\alpha(x) o 0$

1	$\sin\alpha(x) \sim \alpha(x)$	6	$e^{\alpha(x)} - 1 \sim \alpha(x)$
2	$tg\alpha(x) \sim \alpha(x)$	7	$a^{\alpha(x)} - 1 \sim \alpha(x) \ln a$
3	$1 - \cos\alpha(x) \sim \frac{1}{2}\alpha^2(x)$	8	$(1+\alpha(x))^k - 1 \sim k\alpha(x)$
4	$\arcsin\alpha(x) \sim \alpha(x)$	9	$\ln(1+\alpha(x)) \sim \alpha(x)$
5	$arctg\alpha(x) \sim \alpha(x)$	10	$\log_a (1 + \alpha(x)) \sim \frac{\alpha(x)}{\ln a}$

Для сравнения будем использовать следующие интегралы:

1)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^k}$$
 при $k > 1$ интеграл сходится, при $k \le 1$ интеграл расходится,

$$(2)$$
 $\int_{0}^{+\infty} q^{x} dx$ при $|q| < 1$ интеграл сходится, при $|q| \ge 1$ интеграл расходится.

Внешне несобственный интеграл второго рода не отличается от обычного определённого интеграла, поэтому при вычислении определённого интеграла нужно проверить, не имеет ли подынтегральная функция точки разрыва второго рода в интервале интегрирования, затем приступать к вычислению.

Пример 2.4. Вычислите или докажите расходимость интегралов:

2.4.1.
$$\int_{2}^{+\infty} \frac{dx}{x \ln^{2} x};$$
2.4.2.
$$\int_{1}^{+\infty} \frac{\ln x}{x^{2}} dx;$$
2.4.3.
$$\int_{0}^{5} \frac{5 dx}{\sqrt{25 - x^{2}}};$$
2.4.4.
$$\int_{1}^{5} \frac{dx}{x \ln x};$$
2.4.5.
$$\int_{0}^{1} \frac{dx}{x^{2} - 4x + 3};$$
2.4.6.
$$\int_{0}^{2} \frac{dx}{(x - 1)^{\frac{2}{3}}};$$
2.4.7.
$$\int_{0}^{1} \frac{x^{4} dx}{\sqrt{1 - x^{5}}};$$
2.4.8.
$$\int_{0}^{1} \ln x dx;$$
2.4.9.
$$\int_{1}^{+\infty} \frac{2 + 3 \cos x}{x^{4}} dx;$$
2.4.10.
$$\int_{0}^{\frac{1}{2}} \frac{dx}{x \ln^{2} x};$$
2.4.11.
$$\int_{1}^{+\infty} \frac{dx}{2 + x + 3x^{5}};$$
2.4.12.
$$\int_{1}^{+\infty} \frac{dx}{(1 + x)\sqrt{x}};$$
2.4.13.
$$\int_{0}^{0} x e^{-x^{2}} dx;$$
2.4.14.
$$\int_{-\infty}^{+\infty} \frac{dx}{1 + x^{2}}.$$

2.4.1. Пользуясь определением 2.2 и формулой (2.4), получим

$$\int_{2}^{+\infty} \frac{dx}{x \ln^{2} x} = \lim_{b \to +\infty} \int_{2}^{b} \ln^{-2} x d(\ln x) =$$

$$= \lim_{b \to +\infty} \left(-\frac{1}{\ln x} \Big|_{2}^{b} \right) = \lim_{b \to +\infty} \left(-\frac{1}{\ln b} + \frac{1}{\ln 2} \right) = \frac{1}{\ln 2}.$$

Следовательно, интеграл сходится.

2.4.2. Пользуясь определением 2.2 и формулой (2.4), получим

$$\int_{1}^{+\infty} \frac{\ln x}{x^{2}} dx = \lim_{b \to +\infty} \int_{1}^{b} \frac{\ln x}{x^{2}} dx = \begin{vmatrix} u = \ln x, du = \frac{dx}{x}, \\ dv = \frac{dx}{x^{2}}, v = \int \frac{dx}{x^{2}} = -\frac{1}{x} \end{vmatrix} = \lim_{b \to +\infty} \left(\ln x \cdot \left(-\frac{1}{x} \right) \Big|_{1}^{b} + \int_{1}^{b} \frac{dx}{x^{2}} \right) = \lim_{b \to +\infty} \left(-\frac{\ln x}{x} \Big|_{1}^{b} - \frac{1}{x} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(-\frac{\ln x}{x} \Big|_{1}^{b} - \frac{1}{x} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(-\frac{\ln x}{x} \Big|_{1}^{b} - \frac{1}{x} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(-\frac{\ln x}{x} \Big|_{1}^{b} - \frac{1}{x} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(-\frac{\ln x}{x} \Big|_{1}^{b} - \frac{1}{x} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(-\frac{\ln x}{x} \Big|_{1}^{b} - \frac{1}{x} \Big|_{1}^{b} - \frac{1}{x} \Big|_{1}^{b} \right) = \lim_{b \to +\infty} \left(-\frac{\ln x}{x} \Big|_{1}^{b} - \frac{1}{x} \Big|_{1}^{b} -$$

$$= \lim_{x \to +\infty} \left(-\frac{\ln b}{b} + \frac{\ln 1}{1} - \frac{1}{b} + 1 \right) = \lim_{b \to +\infty} \left(-\frac{\ln b}{b} - \frac{1}{b} + 1 \right) = 1.$$

Предел $\lim_{b \to +\infty} \frac{\ln b}{b}$ нашли, применяя правило Лопиталя:

$$\lim_{b \to +\infty} \frac{\ln b}{b} = \left(\frac{\infty}{\infty}\right) = \lim_{b \to +\infty} \frac{\frac{1}{b}}{1} = \left(\frac{1}{\infty}\right) = 0.$$

Таким образом, несобственный интеграл $\int_{1}^{+\infty} \frac{\ln x}{x^2} dx$ сходится.

2.4.3. Функция $\frac{5}{\sqrt{25-x^2}}$ не определена в точке x=5. Пользуясь

определением 2.3 и формулой (2.5), получим

$$\int_{0}^{5} \frac{5dx}{\sqrt{25 - x^{2}}} = 5 \lim_{\varepsilon \to 0} \int_{0}^{5 - \varepsilon} \frac{dx}{\sqrt{5^{2} - x^{2}}} = 5 \lim_{\varepsilon \to 0} \left(\arcsin \frac{x}{5} \right) \Big|_{0}^{5 - \varepsilon} =$$

$$= 5 \lim_{\varepsilon \to 0} \left(\arcsin \frac{5 - \varepsilon}{5} - \arcsin 0 \right) = 5 \arcsin 1 = \frac{5\pi}{2},$$

следовательно, интеграл сходится.

2.4.4. Функция не определена в точке x = 1. Согласно формуле (2.6) получим

$$\int_{1}^{5} \frac{dx}{x \ln x} = \lim_{\epsilon \to 0} \int_{1+\epsilon}^{5} \frac{d(\ln x)}{\ln x} = \lim_{\epsilon \to 0} \ln \ln |\ln x| \Big|_{1+\epsilon}^{5} = \ln(\ln 5) - \lim_{\epsilon \to 0} \ln (\ln(1+\epsilon)).$$

Логарифм нуля не существует, следовательно, данный интеграл расходится.

2.4.5. Функция не определена в точке x = 1. Пользуясь определением 2.3 и формулой (2.5), получим

$$\int_{0}^{1} \frac{dx}{x^{2} - 4x + 3} = \lim_{\varepsilon \to 0} \int_{0}^{1-\varepsilon} \frac{dx}{(x - 2)^{2} - 1} = \lim_{\varepsilon \to 0} \int_{0}^{1+\varepsilon} \frac{d(x - 2)}{(x - 2)^{2} - 1^{2}} =$$

$$= \frac{1}{2} \lim_{\varepsilon \to 0} \ln \left| \frac{x - 2 - 1}{x - 2 + 1} \right|_{0}^{1-\varepsilon} = \frac{1}{2} \lim_{\varepsilon \to 0} \left(\ln \left| \frac{1 - \varepsilon - 3}{1 - \varepsilon - 1} \right| - \ln \left| \frac{-3}{1} \right| \right) = \frac{1}{2} (\infty - \ln 3) = +\infty,$$

следовательно, данный интеграл расходится.

2.4.6. Так как внутри отрезка интегрирования находится точка x = 1, в которой функция не определена, представим данный интеграл в виде суммы двух интегралов второго рода:

$$\int_{0}^{2} \frac{dx}{(x-1)^{\frac{2}{3}}} = \int_{0}^{1} \frac{dx}{(x-1)^{\frac{2}{3}}} + \int_{1}^{2} \frac{dx}{(x-1)^{\frac{2}{3}}};$$
a)
$$\int_{0}^{1} \frac{dx}{(x-1)^{\frac{2}{3}}} = \lim_{\epsilon \to 0} \int_{0}^{1-\epsilon} (x-1)^{-\frac{2}{3}} d(x-1) = \lim_{\epsilon \to 0} 3(x-1)^{\frac{1}{3}} \Big|_{0}^{1-\epsilon} = \frac{3 \lim_{\epsilon \to 0} \left((1-\epsilon-1)^{\frac{1}{3}} - (0-1)^{\frac{1}{3}} \right) = 3;$$
6)
$$\int_{1}^{2} \frac{dx}{(x-1)^{\frac{2}{3}}} = \lim_{\epsilon \to 0} \int_{1+\epsilon}^{2} (x-1)^{-\frac{2}{3}} d(x-1) = \lim_{\epsilon \to 0} 3(x-1)^{\frac{1}{3}} \Big|_{1+\epsilon}^{2} = \frac{3 \lim_{\epsilon \to 0} \left((2-1)^{\frac{1}{3}} - (1+\epsilon-1)^{\frac{1}{3}} \right) = 3(1-0) = 3.$$

Тогда

$$\int_{0}^{2} \frac{dx}{(x-1)^{2/3}} = 3 + 3 = 6.$$

Следовательно, интеграл сходится.

2.4.7. Функция не определена в точке x = 1. Воспользуемся формулой (2.5). Вычислим интеграл:

$$\int_{0}^{1} \frac{x^{4} dx}{\sqrt{1-x^{5}}} = \lim_{\varepsilon \to 0} \int_{0}^{1-\varepsilon} (1-x^{5})^{-1/2} \cdot \frac{d(1-x^{5})}{-5} = -\frac{1}{5} \lim_{\varepsilon \to 0} 2\sqrt{1-x^{5}} \Big|_{0}^{1-\varepsilon} =$$

$$= -\frac{2}{5} \lim_{\varepsilon \to 0} \left(\sqrt{1-(1-\varepsilon)^{5}} - \sqrt{1-0} \right) = -\frac{2}{5} (0-1) = \frac{2}{5} = 0.4.$$

Следовательно, интеграл сходится.

2.4.8. Функция $\ln x$ не определена в точке x=0. Согласно формуле (2.6) получаем

$$\int_{0}^{1} \ln x dx = \lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \ln x dx = \begin{vmatrix} u = \ln x, du = \frac{dx}{x}, \\ dv = dx, v = \int dx = x \end{vmatrix} = \lim_{\varepsilon \to +0} \left(x \ln x \Big|_{\varepsilon}^{1} - \int_{\varepsilon}^{1} dx \right) = \lim_{\varepsilon \to +0} (x \ln x - x)\Big|_{\varepsilon}^{1} = \lim_{\varepsilon \to +0} (1 \ln 1 - \varepsilon \ln \varepsilon - 1 + \varepsilon) = -1 - \lim_{\varepsilon \to +0} \varepsilon \ln \varepsilon.$$

Для вычисления предела воспользуемся правилом Лопиталя $\lim_{x\to a} \frac{f(x)}{\varphi(x)} = \lim_{x\to a} \frac{f'(x)}{\varphi'(x)}$, где f(x) и $\varphi(x)$ — бесконечно малые или бесконечно большие функции, причём $\varphi'(x) \neq 0$:

$$\lim_{\epsilon \to +0} \epsilon \ln \epsilon = (0 \cdot \infty) = \lim_{\epsilon \to +0} \frac{\ln \epsilon}{\frac{1}{\epsilon}} = \left(\frac{\infty}{\infty}\right) = \lim_{\epsilon \to +0} \frac{\frac{1}{\epsilon}}{-\frac{1}{\epsilon^2}} = \lim_{\epsilon \to +0} (-\epsilon) = 0.$$

Таким образом, получим

$$\int_{0}^{1} \ln x dx = -1.$$

Следовательно, интеграл сходится.

2.4.9. Используем теорему сравнения (2.2):

$$\frac{2+3\cos x}{x^4} \le \frac{2+3}{x^4} = \frac{5}{x^4}, \text{ т. к. } |\cos x| \le 1.$$

Исследуем на сходимость интеграл $\int_{1}^{+\infty} \frac{5dx}{x^4}$:

$$\int_{1}^{+\infty} \frac{5dx}{x^4} = 5 \lim_{b \to +\infty} \int_{1}^{b} x^{-4} dx = -\frac{5}{3} \lim_{b \to +\infty} \frac{1}{x^3} \Big|_{1}^{b} = -\frac{5}{3} \lim_{b \to +\infty} \left(\frac{1}{b^3} - 1 \right) =$$
$$= -\frac{5}{3} (0 - 1) = \frac{5}{3},$$

т. е. интеграл $\int_{1}^{\infty} \frac{5dx}{x^4}$ сходится, следовательно, интеграл $\int_{1}^{+\infty} \frac{2+3\cos x}{x^4} dx$ сходится.

2.4.10. Функция $f(x) = \frac{1}{x \ln^2 x}$ не определена в точке x = 0. Пользуясь формулой (2.6), получим

$$\int_{0}^{1/2} \frac{dx}{x \ln^{2} x} = \lim_{\epsilon \to +0} \int_{\epsilon}^{1/2} \frac{dx}{x \ln^{2} x} = \lim_{\epsilon \to +0} \int_{\epsilon}^{1/2} \frac{d(\ln x)}{\ln^{2} x} = -\lim_{\epsilon \to +0} \frac{1}{\ln x} \Big|_{\epsilon}^{1/2} = -\lim_{\epsilon \to +0} \left(\frac{1}{\ln \frac{1}{2}} - \frac{1}{\ln \epsilon} \right) = -\frac{1}{\ln \frac{1}{2}} = \frac{1}{\ln 2}.$$

Следовательно, интеграл сходится.

2.4.11. Используем теорему сравнения (2.2): сравним функцию $f(x) = \frac{1}{2 + x + 3x^5}$ с функцией $\varphi(x) = \frac{1}{x^5}$.

Исследуем на сходимость интеграл $\int_{1}^{+\infty} \frac{dx}{x^5}$:

$$\int_{1}^{+\infty} \frac{dx}{x^{5}} = \lim_{b \to +\infty} \int_{1}^{b} x^{-5} dx = \lim_{b \to +\infty} \left(-\frac{1}{4x^{4}} \Big|_{1}^{b} \right) = -\frac{1}{4} \lim_{b \to +\infty} \left(\frac{1}{b^{4}} - 1 \right) = -\frac{1}{4} (0 - 1) = \frac{1}{4}.$$

Так как интеграл сходится и $\lim_{x \to +\infty} \frac{f(x)}{\varphi(x)} = \frac{1}{3} \neq 0$, то сходится и инте-

грал
$$\int_{1}^{+\infty} \frac{dx}{2+x+3x^5}.$$

2.4.12. Заметим, что знаменатель подынтегральной функции $(1+x)\sqrt{x} = \sqrt{x} + \sqrt{x^3} \sim \sqrt{x^3}$ при $x \to +\infty$, а интеграл $\int\limits_{1}^{+\infty} \frac{dx}{\sqrt{x^3}}$ сходится

при
$$k = \frac{3}{2} > 1$$
:

$$\int_{1}^{+\infty} \frac{dx}{\sqrt{x^{3}}} = \lim_{b \to +\infty} \int_{1}^{b} x^{-3/2} dx = \lim_{b \to +\infty} \left(-2x^{-1/2} \right) \Big|_{1}^{b} = -2 \lim_{b \to +\infty} \frac{1}{\sqrt{x}} \Big|_{1}^{b} =$$

$$= -2 \lim_{b \to +\infty} \left(\frac{1}{\sqrt{b}} - \frac{1}{\sqrt{1}} \right) = -2(0-1) = 2,$$

т.е. интеграл сходится.

Согласно признаку сравнения (теорема 2.2) вычислим предел $\lim_{x\to +\infty} \frac{f(x)}{\varphi(x)}, \ \text{где } f(x) = \frac{1}{(1+x)\sqrt{x}}, \ \varphi(x) = \frac{1}{\sqrt{x^3}} :$

$$\lim_{x \to +\infty} \frac{\frac{1}{(1+x)\sqrt{x}}}{\frac{1}{\sqrt{x^3}}} = \lim_{x \to +\infty} \frac{\sqrt{x^3}}{\sqrt{x^3} + \sqrt{x}} = 1 \neq 0,$$

следовательно, интеграл $\int\limits_{1}^{+\infty} \frac{dx}{(1+x)\sqrt{x}}$ также сходится.

Следовательно, интеграл сходится.

2.4.13. Согласно формуле $\int_{-\infty}^{a} f(x)dx = \lim_{b \to -\infty} \int_{b}^{a} f(x)dx$ имеем $\int_{-\infty}^{0} xe^{-x^{2}} dx = \lim_{a \to -\infty} \int_{a}^{0} xe^{-x^{2}} dx = -\frac{1}{2} \lim_{a \to -\infty} \int_{a}^{0} e^{-x^{2}} d(-x^{2}) =$ $= -\frac{1}{2} \lim_{a \to -\infty} e^{-x^{2}} \Big|_{a}^{0} = -\frac{1}{2} \lim_{a \to -\infty} \left(1 - e^{-a^{2}}\right) = -\frac{1}{2} \lim_{a \to -\infty} \left(1 - \frac{1}{e^{a^{2}}}\right) = -\frac{1}{2}.$

2.4.14. Воспользуемся формулой
$$\int\limits_{-\infty}^{+\infty} f(x)dx = \int\limits_{-\infty}^{c} f(x)dx + \int\limits_{c}^{+\infty} f(x)dx,$$
 где $c \in (-\infty, +\infty)$.

Исследуем на сходимость данный интеграл. Пусть c=0. Тогда $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \int_{-\infty}^{0} \frac{dx}{1+x^2} + \int_{0}^{+\infty} \frac{dx}{1+x^2} = \lim_{a \to -\infty} \int_{a}^{0} \frac{dx}{1+x^2} + \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{1+x^2} =$ $= \lim_{a \to -\infty} \arctan \left| \frac{1}{a} + \lim_{b \to +\infty} \arctan \left| \frac{1}{a} + \lim_{a \to -\infty} \arctan \left| \frac{1}{a} + \lim_{a \to -$

Следовательно, интеграл сходится.

2.3. Приложения определённого интеграла

2.3.1. Вычисление площадей плоских фигур

Чтобы найти площадь плоской фигуры, необходимо построить данную фигуру в декартовой или полярной системах координат и воспользоваться одной из формул для вычисления площади, которые приведены в табл. 2.2 и табл. 2.3.

Таблица 2.2 Вычисление площадей плоских фигур в декартовой системе координат

$$S = \int_{c}^{d} (x_1(y) - x_2(y)) dy, \ c < d$$

Таблица 2.3

Вычисление площадей плоских фигур в полярной системе координат

Если область интегрирования ограничена несколькими линиями, для нахождения площади фигуры необходимо:

- найти пределы интегрирования;
- составить подынтегральное выражение;
- вычислить интеграл.

Решение задачи начинается с отыскания точек пересечения линий, ограничивающих область интегрирования, для чего решаем систему уравнений этих кривых. Рисунок поможет правильно составить подынтегральное выражение.

Пример 2.5. Найдите площадь фигур, ограниченных линиями:

2.5.1.
$$y = x^2 - 3x + 3$$
, $y = x$;

2.5.2.
$$x = \sqrt{4 - y^2}$$
, $y = 0$, $y = 1$, $x = 0$;

2.5.3.
$$y = \frac{8}{4+x^2}$$
, $y = \frac{x^2}{4}$;

2.5.4.
$$x = 4 - y^2$$
, $x = y^2 - 2y$;

2.5.5.
$$\rho = 4\cos 3\phi$$
, $\rho = 2$, где $\rho \ge 2$;

2.5.6.
$$\begin{cases} x = \sqrt{2} \cos t; \\ y = 2\sqrt{2} \sin t, \end{cases} \quad y = 2, \ y \ge 2.$$

Решение. 2.5.1. Построим область, ограниченную параболой $y = x^2 - 3x + 3$ и прямой y = x (рис. 2.1).

Найдём точки пересечения линий:

$$\begin{cases} y = x^{2} - 3x + 3; & \begin{cases} x^{2} - 4x + 3 = 0; \\ y = x, \end{cases} & \begin{cases} y = x, \end{cases} \\ \begin{cases} x_{1} = 1; & \begin{cases} x_{2} = 3; \\ y_{1} = 1, \end{cases} \end{cases} \end{cases}$$

Найдём площадь фигуры по формуле 2 табл. 2.2:

$$S = \int_{1}^{3} (x - (x^{2} - 3x + 3)) dx =$$

$$= \int_{1}^{3} (4x - x^{2} - 3) dx = \left(2x^{2} - \frac{x^{3}}{3} - 3x\right)\Big|_{1}^{3} = (18 - 9 - 9) - \left(2 - \frac{1}{3} - 3\right) = \frac{4}{3}.$$

2.5.2. Построим область, ограниченную прямыми y=0, y=1, x=0 и линией $x=\sqrt{4-y^2}$ — левой половиной окружности $x^2+y^2=4$ (см. рис. 2.2). По формуле 3 табл. 2.2 найдём площадь:

$$S = \int_{0}^{1} \sqrt{4 - y^{2}} dy = \begin{vmatrix} y = 2\sin t, dy = 2\cos t dt, \\ 4 - y^{2} = 4 - 4\sin^{2} t = 4\cos^{2} t, t = \arcsin\frac{y}{2}, \\ y_{1} = 0 \Rightarrow t_{1} = 0, y_{2} = 1 \Rightarrow t_{2} = \arcsin\frac{1}{2} = \frac{\pi}{6} \end{vmatrix} =$$

$$= \int_{0}^{\frac{\pi}{6}} \sqrt{4\cos^{2} t} \cdot 2\cos t dt = 4 \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt =$$

$$= 4 \int_{0}^{\frac{\pi}{6}} \frac{1 + \cos 2t}{2} dt = 2 \left(t + \frac{1}{2} \sin 2t \right) \Big|_{0}^{\frac{\pi}{6}} =$$

$$= 2 \left(\frac{\pi}{6} + \frac{1}{2} \sin \frac{\pi}{3} - 0 - \frac{1}{2} \sin 0 \right) = 2 \left(\frac{\pi}{6} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \right) = \frac{\pi}{3} + \frac{\sqrt{3}}{2}.$$

Здесь $\sqrt{\cos^2 t} = \cos t$, т. к. $0 \le t \le \frac{\pi}{6}$.

2.5.3. Найдём точки пересечения параболы $y = \frac{x^2}{4}$ и кривой $y = \frac{8}{4 + x^2}$. Для этого решим систему уравнений:

$$\begin{cases} y = \frac{x^2}{4}; \\ y = \frac{8}{4 + x^2}, \Rightarrow \begin{cases} x^2 = 4y; \\ y = \frac{8}{4 + 4y}, \Rightarrow \begin{cases} \frac{y(4 + 4y) - 8}{4 + 4y} = 0. \end{cases} \end{cases}$$

Решая квадратное уравнение $4y^2 + 4y - 8 = 0$, получим

1)
$$\begin{cases} y_1 = 1; \\ x^2 = 4y, \end{cases} \begin{cases} y_1 = 1; \\ x_1 = 2, \end{cases}$$
 $\mathbf{u} \begin{cases} y_2 = 1; \\ x_2 = -2, \end{cases}$

2)
$$\begin{cases} y_2 = -2; \\ x^2 = 4y \end{cases}$$
 – система не имеет решения.

Построим область интегрирования (см. рис. 2.3). Кривую $y = \frac{8}{4+x^2}$ строим по точкам, записав данные в таблицу:

X	-3	-2	-1	0	1	2	3
y	8	1	8	2	8	1	8
	$\overline{13}$		5		5		13

Для нахождения площади данной фигуры воспользуемся формулой 2 табл. 2.2. Поскольку фигура симметрична относительно оси *Оу*, достаточно найти площадь половины фигуры и результат умножить на два:

$$S = 2\int_{0}^{2} \left(\frac{8}{4+x^{2}} - \frac{x^{2}}{4} \right) dx = 2\left(8\int_{0}^{2} \frac{dx}{2^{2}+x^{2}} - \frac{1}{4}\int_{0}^{2} x^{2} dx \right) =$$

$$= 2\left(8 \cdot \frac{1}{2} \operatorname{arctg} \frac{x}{2} - \frac{1}{4} \cdot \frac{x^{3}}{3} \right) \Big|_{0}^{2} = 2\left(4\operatorname{arctg} \frac{x}{2} - \frac{x^{3}}{12} \right) \Big|_{0}^{2} =$$

$$= 2\left(4\operatorname{arctg} 1 - \frac{8}{12} - 4\operatorname{arctg} 0 + 0 \right) = 2\left(4 \cdot \frac{\pi}{4} - \frac{2}{3} \right) = 2\pi - \frac{4}{3}.$$

2.5.4. Построим область, ограниченную параболами $x_1 = 4 - y^2$, $x_2 = y^2 - 2y$ (рис. 2.4).

Найдём точки пересечения данных линий, решив систему уравне-

ний
$$\begin{cases} x = 4 - y^2; \\ x = y^2 - 2y, \end{cases}$$
 $y^2 - y - 2 = 0 \Rightarrow y_1 = -1, y_2 = 2.$

По формуле 3 табл. 2.2 найдём площадь фигуры:

$$S = \int_{-1}^{2} (x_1(y) - x_2(y)) dy = \int_{-1}^{2} (4 - y^2 - (y^2 - 2y)) dy =$$

$$= \int_{-1}^{2} (4 - 2y^2 + 2y) dy = \left(4y - \frac{2y^3}{3} + y^2 \right) \Big|_{-1}^{2} = \left(8 - \frac{16}{3} + 4 \right) - \left(-4 + \frac{2}{3} + 1 \right) = 9.$$

2.5.5. Построим область, ограниченную трёхлепестковой розой $\rho_1 = 4\cos 3\varphi$ и окружностью радиуса R=2 с центром в начале координат $\rho_2=2$ (рис. 2.5). Найдём точки пересечения данных линий:

$$4\cos 3\phi = 2, \cos 3\phi = \frac{1}{2}, 3\phi = \pm \arccos \frac{1}{2} + 2\pi n;$$
$$3\phi = \pm \frac{\pi}{3} + 2\pi n, \ \phi = \pm \frac{\pi}{9} + \frac{2\pi n}{3}, \ n \in \mathbb{Z}.$$

С учётом симметрии фигуры можно найти площадь заштрихованной части (рис. 2.5) и умножить на 6. Применим формулу 2 табл. 2.3 и найдём площадь:

Рис. 2.5

$$S = 6 \cdot \frac{1}{2} \int_{0}^{\frac{\pi}{9}} (\rho_{1}^{2}(\varphi) - \rho_{2}^{2}(\varphi)) d\varphi = 3 \int_{0}^{\frac{\pi}{9}} (16\cos^{2}3\varphi - 4) d\varphi =$$

$$= 3 \int_{0}^{\frac{\pi}{9}} \left(16 \cdot \frac{1 + \cos 6\varphi}{2} - 4 \right) d\varphi = 3 \int_{0}^{\frac{\pi}{9}} (4 + 8\cos 6\varphi) d\varphi = 3 \left(4\varphi + \frac{8}{6}\sin 6\varphi \right) \Big|_{0}^{\frac{\pi}{9}} =$$

$$= 3 \left(4 \cdot \frac{\pi}{9} + \frac{4}{3}\sin \frac{2\pi}{3} - 0 - \frac{4}{3}\sin 0 \right) = \frac{4\pi}{3} + 4\sin \frac{2\pi}{3} =$$

$$= \frac{4\pi}{3} + 4 \cdot \frac{\sqrt{3}}{2} = \frac{4\pi}{3} + 2\sqrt{3}.$$

2.5.6. Параметрические уравнения $\begin{cases} x = a \cos t; \\ y = b \sin t \end{cases}$ определяют эллипс с полуосями a и b. Значит, фигура ограничена эллипсом $\begin{cases} x = \sqrt{2} \cos t; \\ y = 2\sqrt{2} \sin t \end{cases}$ с полуосями $a = \sqrt{2}$ и $b = 2\sqrt{2}$ и прямой y = 2 (см. рис. 2.6).

Найдём точки пересечения этих линий:

$$2\sqrt{2}\sin t = 2$$
, $\sin t = \frac{1}{\sqrt{2}}$, или $\sin t = \frac{\sqrt{2}}{2}$.

Тогда

$$t = (-1)^n \frac{\pi}{4} + \pi n, \ n \in \mathbb{Z}.$$

- Точке x_1 соответствует параметр t_1 при n=1: $t_1=-\frac{\pi}{4}+\pi=\frac{3\pi}{4}$; $x_1=\sqrt{2}\cos\frac{3\pi}{4}=\sqrt{2}\cdot\left(-\frac{\sqrt{2}}{2}\right)=-1.$
- ullet Точке x_2 соответствует параметр t_2 при n=0 : $t_2=\frac{\pi}{4}$;

$$x_2 = \sqrt{2}\cos\frac{\pi}{4} = \sqrt{2} \cdot \frac{\sqrt{2}}{2} = 1.$$

Применим формулу 2 табл. 2.2:

$$S = \int_{x_1}^{x_2} (y_1(x) - y_2(x)) dx = \int_{x_1}^{x_2} y_1(x) dx - \int_{x_1}^{x_2} y_2(x) dx.$$

Вычислим отдельно каждый из интегралов:

$$+2\ln\left(\frac{3}{4} + \sqrt{\frac{9}{16} + 1}\right) - 2\ln\left(0 + \sqrt{0 + 1}\right) = \frac{15}{8} - 2\int_{0}^{3/4} \sqrt{\varphi^{2} + 1} d\varphi + 2\ln 2$$

$$\int_{3\pi/4}^{\pi/4} 2\sqrt{2} \sin t \cdot \left(-\sqrt{2} \sin t\right) dt = -4\int_{3\pi/4}^{\pi/4} \sin^{2} t dt =$$

$$= -\frac{4}{2}\int_{3\pi/4}^{\pi/4} (1 - \cos 2t) dt = -2\left(t - \frac{1}{2}\sin 2t\right)\Big|_{3\pi/4}^{\pi/4} =$$

$$= -2\left(\frac{\pi}{4} - \frac{1}{2}\sin\frac{\pi}{2} - \frac{3\pi}{4} + \frac{1}{2}\sin\frac{3\pi}{2}\right) =$$

$$= -2\left(-\frac{\pi}{2} - \frac{1}{2}\sin\frac{\pi}{2} + \frac{1}{2}\sin\frac{3\pi}{2}\right) = -2\left(-\frac{\pi}{2} - \frac{1}{2} - \frac{1}{2}\right) = \pi + 1 + 1 = \pi + 2;$$

$$\int_{x_{1}}^{x_{2}} y_{2}(x) dx = \int_{-1}^{1} 2dx = 2x\Big|_{-1}^{1} = 2(1 + 1) = 4.$$

Таким образом, площадь искомой фигуры

$$S = \pi + 2 - 4 = \pi - 2.$$

2.3.2. Вычисление длины дуги кривой

Чтобы найти длину дуги кривой, необходимо воспользоваться одной из формул для вычисления длины дуги, которые приведены в табл. 2.4.

Таблица 2.4

	Способ задания кривой	Формула для вычисления длины дуги кривой
1	Кривая задана уравнением $y = y(x)$, $a \le x \le b$	$l = \int_{a}^{b} \sqrt{1 + (y_x')^2} dx$
2	Кривая задана параметрическими уравнениями $\begin{cases} x = x(t), \\ y = y(t), \end{cases} t_1 \le t \le t_2$	$l = \int_{t_1}^{t_2} \sqrt{(x_t')^2 + (y_t')^2} dt$
	Кривая задана в полярной системе координат уравнением $\rho = \rho(\phi)$, $\alpha \le \phi \le \beta$	$l = \int_{\alpha}^{\beta} \sqrt{\rho^{2}(\varphi) + (\rho'(\varphi))^{2}} d\varphi$

Замечание. Если заданы пределы, по которым ведётся интегрирование, то при вычислении длины дуги кривой эту кривую строить не обязательно.

Пример 2.6. Найдите длину дуги кривой:

2.6.1.
$$y = \arcsin x - \sqrt{1 - x^2}$$
, $0 \le x \le \frac{15}{16}$;

2.6.2.
$$y = 1 - \ln \sin x$$
, $\frac{\pi}{3} \le x \le \frac{\pi}{2}$;

2.6.3.
$$\begin{cases} x = 6(\cos t + t \sin t); \\ y = 6(\sin t - t \cos t), \end{cases} 0 \le t \le \pi;$$

2.6.4.
$$\begin{cases} x = \frac{1}{2}\cos t - \frac{1}{4}\cos 2t; \\ y = \frac{1}{2}\sin t - \frac{1}{4}\sin 2t, \end{cases} \frac{\pi}{2} \le t \le \frac{2\pi}{3};$$

2.6.5.
$$\begin{cases} x = 10\cos^3 t; \\ y = 10\sin^3 t \end{cases} (x \ge 0, y \ge 0).$$

2.6.6.
$$\rho = 4e^{4\phi/3}$$
, $0 \le \phi \le \frac{\pi}{3}$ (логарифмическая спираль).

2.6.7.
$$\rho = 2\varphi$$
, $0 \le \varphi \le \frac{3}{4}$.

Решение. 2.6.1. Кривая задана явно уравнением

$$y = \arcsin x - \sqrt{1 - x^2} ,$$

поэтому для нахождения длины дуги воспользуемся формулой 1 табл. 2.4. Найдём y_x' :

$$y' = \frac{1}{\sqrt{1 - x^2}} + \frac{2x}{2\sqrt{1 - x^2}} = \frac{1 + x}{\sqrt{(1 - x)(x + 1)}} = \sqrt{\frac{1 + x}{1 - x}};$$
$$1 + (y'_x)^2 = 1 + \left(\sqrt{\frac{1 + x}{1 - x}}\right)^2 = \frac{1 - x + 1 + x}{1 - x} = \frac{2}{1 - x}.$$

Вычисляем длину дуги кривой:

$$l = \int_{0}^{15/16} \sqrt{\frac{2}{1-x}} dx = -\sqrt{2} \int_{0}^{15/16} (1-x)^{-1/2} d(1-x) = -2\sqrt{2} (1-x)^{1/2} \Big|_{0}^{15/16} =$$
$$= -2\sqrt{2} \left(\sqrt{1 - \frac{15}{16}} - \sqrt{1-0} \right) = -2\sqrt{2} \left(\frac{1}{4} - 1 \right) = \frac{3\sqrt{2}}{2}.$$

2.6.2. Так как кривая задана явно уравнением $y = 1 - \ln \sin x$, где $\frac{\pi}{3} \le x \le \frac{\pi}{2}$, воспользуемся формулой 1 табл. 2.4:

$$y'_x = -\frac{\cos x}{\sin x} \Rightarrow 1 + (y'_x)^2 = 1 + \left(-\frac{\cos x}{\sin x}\right)^2 = \frac{\sin^2 x + \cos^2 x}{\sin^2 x} = \frac{1}{\sin^2 x}.$$

Вычисляем длину дуги кривой:

$$I = \int_{\pi/3}^{\pi/2} \sqrt{\frac{1}{\sin^2 x}} dx = \int_{\pi/3}^{\pi/2} \frac{dx}{\sin x} = \int_{\pi/3}^{\pi/2} \frac{\sin x dx}{\sin^2 x} = -\int_{\pi/3}^{\pi/2} \frac{d(\cos x)}{1 - \cos^2 x} = \int_{\pi/3}^{\pi/2} \frac{d(\cos x)}{\cos^2 x - 1} =$$

$$= \frac{1}{2} \ln \left| \frac{\cos x - 1}{\cos x + 1} \right|_{\pi/3}^{\pi/2} = \frac{1}{2} \left(\ln \left| \frac{\cos \frac{\pi}{2} - 1}{\cos \frac{\pi}{2} + 1} \right| - \ln \left| \frac{\cos \frac{\pi}{3} - 1}{\cos \frac{\pi}{3} + 1} \right| \right) = \frac{1}{2} \left(\ln \left| \frac{0 - 1}{0 + 1} \right| - \ln \left| \frac{\frac{1}{2} - 1}{\frac{1}{2} + 1} \right| \right) =$$

$$= \frac{1}{2} \left(\ln 1 - \ln \frac{1}{3} \right) = -\frac{1}{2} \ln \frac{1}{3} = \frac{1}{2} \ln 3.$$

$$3 \operatorname{десь} \sqrt{\frac{1}{\sin^2 x}} = \frac{1}{\sin x}, \text{ т. к. } \frac{\pi}{3} \le \pi \le \frac{\pi}{2}.$$

2.6.3. Кривая задана параметрическими уравнениями, поэтому для вычисления длины дуги кривой воспользуемся формулой 2 табл. 2.4:

$$x'_t = 6(-\sin t + \sin t + t\cos t) = 6t\cos t,$$

 $y'_t = 6(\cos t - \cos t + t\sin t) = 6t\sin t;$

$$(x'_t)^2 + (y'_t)^2 = (6t\cos t)^2 + (6t\sin t)^2 = 36t^2$$
.

Вычисляем длину дуги кривой:

$$l = \int_{0}^{\pi} \sqrt{36t^{2}} dt = 6 \int_{0}^{\pi} t dt = 6 \cdot \frac{t^{2}}{2} \Big|_{0}^{\pi} = 3\pi^{2}.$$

2.6.4. Кривая задана параметрическими уравнениями, поэтому для вычисления длины дуги кривой воспользуемся формулой 2 табл. 2.4:

$$x'_{t} = -\frac{1}{2}\sin t + \frac{1}{2}\sin 2t = \frac{1}{2}(-\sin t + \sin 2t);$$

$$y'_{t} = \frac{1}{2}\cos t - \frac{1}{2}\cos 2t = \frac{1}{2}(\cos t - \cos 2t);$$

$$(x'_{t})^{2} + (y'_{t})^{2} = \frac{1}{4}(\sin^{2} t - 2\sin t \sin 2t + \sin^{2} 2t + \cos^{2} t - 2\cos t \cos 2t + \cos^{2} 2t) =$$

$$= \frac{1}{4}(2 - 2(\sin t \sin 2t + \cos t \cos 2t)) = \frac{1}{4}(2 - 2(\cos(2t - t))) = \frac{1}{2}(1 - \cos t) =$$

$$= \frac{1}{2} \cdot 2\sin^{2} \frac{t}{2} = \sin^{2} \frac{t}{2}.$$

При преобразованиях воспользовались формулой

$$1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2}.$$

Вычисляем длину дуги кривой:

$$l = \int_{\frac{\pi}{2}}^{2\pi/3} \sqrt{\sin^2 \frac{t}{2}} dt = \int_{\frac{\pi}{2}}^{2\pi/3} \sin \frac{t}{2} dt = -2\cos \frac{t}{2} \Big|_{\frac{\pi}{2}}^{2\pi/3} = -2\left(\cos \frac{\pi}{3} - \cos \frac{\pi}{4}\right) =$$
$$= -2 \cdot \left(\frac{1}{2} - \frac{\sqrt{2}}{2}\right) = \sqrt{2} - 1.$$

Здесь
$$\sqrt{\sin^2 \frac{t}{2}} = \sin \frac{t}{2}$$
, т. к. $\frac{\pi}{4} \le \frac{t}{2} \le \frac{\pi}{3}$.

2.6.5. Для части астроиды, расположенной в первой четверти (см.

рис. 2.7), параметр t изменяется от нуля до $\frac{\pi}{2}$, т. е. $0 \le t \le \frac{\pi}{2}$. Астроида задана параметрическими уравнениями, поэтому для нахождения длины дуги воспользуемся формулой 2 табл. 2.4.

Рис. 2.7

Преобразуем выражение $(x'_t)^2 + (y'_t)^2$, предварительно вычислив производные x'_t и y'_t :

$$x_t' = 10 \cdot 3\cos^2 t \cdot (-\sin t) = -30\cos^2 t \sin t;$$

$$y_t' = 10 \cdot 3\sin^2 t \cdot \cos t = 30\sin^2 t \cos t;$$

$$(x_t')^2 + (y_t')^2 = (-30\cos^2 t \sin t)^2 + (30\sin^2 t \cos t)^2 = 900\cos^4 t \sin^2 t + 900\sin^4 t \cos^2 t = 900\sin^2 t \cos^2 t (\cos^2 t + \sin^2 t) = 900\sin^2 t \cos^2 t.$$
 Вычисляем длину дуги кривой:

$$l = \int_{0}^{\frac{\pi}{2}} \sqrt{900 \sin^{2} t \cos^{2} t} dt = 30 \int_{0}^{\frac{\pi}{2}} \sin t \cos t dt = 30 \int_{0}^{\frac{\pi}{2}} \sin t d(\sin t) =$$
$$= 30 \frac{\sin^{2} t}{2} \Big|_{0}^{\frac{\pi}{2}} = 15 \left(\sin^{2} \frac{\pi}{2} - \sin^{2} 0 \right) = 15.$$

Здесь $\sqrt{\cos^2 t \sin^2 t} = \cos t \sin t$, т. к. $0 \le t \le \frac{\pi}{2}$.

2.6.6. Кривая задана в полярной системе координат, поэтому при вычислении длины дуги кривой применим формулу 3 табл. 2.4:

$$\rho_{\varphi}' = 4 \cdot \frac{4}{3} e^{4\phi/3},$$

$$\rho^{2} + (\rho_{\varphi}')^{2} = \left(4e^{4\phi/3}\right)^{2} + \left(\frac{16}{3}e^{4\phi/3}\right)^{2} = \left(4e^{4\phi/3}\right)^{2} \left(1 + \frac{16}{9}\right) =$$

$$= \frac{25}{9} \cdot 16 \cdot e^{8\phi/3} = \frac{400}{9} e^{8\phi/3}.$$

Вычисляем длину дуги кривой:

$$l = \int_{0}^{\frac{\pi}{3}} \sqrt{\frac{400}{9} e^{\frac{8\phi}{3}}} d\phi = \frac{20}{3} \int_{0}^{\frac{\pi}{3}} e^{\frac{4\phi}{3}} d\phi = \frac{20}{3} \cdot \frac{3}{4} e^{\frac{4\phi}{3}} \Big|_{0}^{\frac{\pi}{3}} = 5 \left(e^{\frac{4\pi}{9}} - e^{0} \right) =$$

$$=5(e^{4\pi/9}-1).$$

2.6.7. Кривая $\rho = a \varphi$, где a = const, называется спиралью Архимеда (см. рис. 2.8). При вычислении длины дуги применим формулу 3 табл. 2.4: Найдём ρ'_{φ} и преобразуем выражение $\rho^2 + \left(\rho'_{\varphi}\right)^2$:

$$\rho'_{0} = 2 \Rightarrow \rho^{2} + (\rho'_{0})^{2} = (2\phi)^{2} + 2^{2} = 4(\phi^{2} + 1)$$
.

Составим интеграл и вычислим его, используя формулу (2.3):

$$\begin{split} l &= \int_{0}^{3/4} \sqrt{4(\phi^{2}+1)} d\phi = 2 \int_{0}^{3/4} \sqrt{\phi^{2}+1} d\phi = \left| \begin{array}{c} u &= \sqrt{\phi^{2}+1} \,, \, du = \frac{\phi d\phi}{\sqrt{\phi^{2}+1}} \,, \\ dv &= d\phi, \, v = \int d\phi = \phi \end{array} \right| \\ &= 2 \left(\phi \sqrt{\phi^{2}+1} \right)_{0}^{3/4} - \int_{0}^{3/4} \frac{\phi \cdot \phi d\phi}{\sqrt{\phi^{2}+1}} \right) = 2 \left(\frac{3}{4} \sqrt{\frac{9}{16}+1} - 0 - \int_{0}^{3/4} \frac{(\phi^{2}+1)-1}{\sqrt{\phi^{2}+1}} d\phi \right) = \\ &= 2 \left(\frac{3}{4} \cdot \frac{5}{4} - \int_{0}^{3/4} \left(\sqrt{\phi^{2}+1} - \frac{1}{\sqrt{\phi^{2}+1}} \right) d\phi \right) = \\ &= 2 \cdot \frac{15}{16} - 2 \int_{0}^{3/4} \sqrt{\phi^{2}+1} d\phi + 2 \int_{0}^{3/4} \frac{d\phi}{\sqrt{\phi^{2}+1}} = \\ &= \frac{15}{8} - 2 \int_{0}^{3/4} \sqrt{\phi^{2}+1} d\phi + 2 \cdot \ln \left| \phi + \sqrt{\phi^{2}+1} \right|_{0}^{3/4} = \frac{15}{8} - 2 \int_{0}^{3/4} \sqrt{\phi^{2}+1} d\phi + 2 \ln 2 \,. \end{split}$$

Рис. 2.8

Из полученного равенства $l=\frac{15}{8}-l+2\ln 2$ находим длину дуги кривой: $l=\frac{1}{2}\Big(\frac{15}{8}+2\ln 2\Big)=\frac{15}{16}+\ln 2$.

2.3.3. Нахождение объёма тела

Нахождение объёмов некоторых тел можно свести к вычислению определённых интегралов. Для решения задач на вычисление объёмов тела воспользуемся табл. 2.5.

Таблица 2.5

	Способ образова- ния тела	Тело	Формула для вычисления объёма тела
1	S(x) — площадь сечения тела плоскостью, перпендикулярной оси Ox	O(a) $O(a)$	$V = \int_{a}^{b} S(x)dx,$ $a < b$
2	Криволинейная трапеция $ABCD$ вращается вокруг оси Ox y y y y y y y	$y = f(x)$ $A = \int_{Z} \int_{X} \int$	$V_{ox} = \pi \int_{a}^{b} [f(x)]^{2} dx,$ $a < b$
3	Криволинейная трапеция $ABCD$ вращается вокруг оси Oy $X = \phi(y)$ $X = \phi(y)$	$y = \varphi(y)$ $z = \varphi(y)$	$V_{oy} = \pi \int_{c}^{d} [\varphi(y)]^{2} dy,$ $c < d$

Пример 2.7. Найдите объём тела, ограниченного поверхностями:

2.7.1.
$$z = 2x^2 + 18y^2$$
, $z = 6$;

2.7.2.
$$\frac{x^2}{3} + \frac{y^2}{16} = 1$$
, $z = y\sqrt{3}$, $z = 0$, $y \ge 0$.

Решение. 2.7.1. Построим тело, ограниченное плоскостью z=6 и параболоидом $z=2x^2+18y^2$ (рис. 2.9). Сечением параболоида любой плоскостью $z=z_0$ является эллипс $2x^2+18y^2=z_0$.

Для нахождения объёма тела воспользуемся формулой 1 табл. 2.5

$$V = \int_{0}^{6} S(z)dz.$$

Приведём уравнение эллипса к каноническому виду:

$$\frac{2x^2}{z_0} + \frac{18y^2}{z_0} = 1, \ a = \sqrt{\frac{z_0}{2}}, \ b = \sqrt{\frac{z_0}{18}}.$$

Площадь эллипса вычисляется по формуле $S(z) = \pi ab$.

Тогда
$$S(z) = \pi \cdot \sqrt{\frac{z}{2}} \cdot \sqrt{\frac{z}{18}} = \frac{\pi z}{6}$$
, где $z = z_0$.

Вычисляем объём тела

$$V = \int_{0}^{6} \frac{\pi z}{6} dz = \frac{\pi}{6} \cdot \frac{z^{2}}{2} \bigg|_{0}^{6} = \frac{\pi}{12} (6^{2} - 0) = 3\pi \approx 9,4248 \text{ (куб. ед.)}.$$

2.7.2. Построим тело, ограниченное цилиндром $\frac{x^2}{3} + \frac{y^2}{16} = 1$, направленным вдоль оси Oz, плоскостью z = 0 — плоскостью xOy и $z = y\sqrt{3}$ — плоскостью, проходящей через ось Ox (рис. 2.10). Сечениями

тела плоскостями $x=x_0$ являются прямоугольные треугольники с катетами y и $z=y\sqrt{3}$.

Найдём площадь треугольника $S(y) = \frac{1}{2} y \cdot y \sqrt{3} = \frac{\sqrt{3}}{2} y^2$.

По формуле 1 табл. 2.5 вычислим объём тела

$$V = \int_a^b S(x) dx$$
, где $-\sqrt{3} \le x \le \sqrt{3}$.

Тогда

Рис. 2.10

Из уравнения цилиндра выразим y^2 :

$$y^2 = 16 \left(1 - \frac{x^2}{3} \right).$$

Окончательно

$$V = \int_{-\sqrt{3}}^{\sqrt{3}} \frac{\sqrt{3}}{2} \cdot 16 \left(1 - \frac{x^2}{3} \right) dx = 8\sqrt{3} \left(x - \frac{x^3}{9} \right) \Big|_{-\sqrt{3}}^{\sqrt{3}} =$$

$$= 8\sqrt{3} \left(\sqrt{3} - \frac{3\sqrt{3}}{9} + \sqrt{3} - \frac{3\sqrt{3}}{9} \right) =$$

$$= 8\sqrt{3} \left(2\sqrt{3} - \frac{2\sqrt{3}}{3} \right) = 8\sqrt{3} \cdot \frac{4\sqrt{3}}{3} = 32 \text{ (куб. ед.)}.$$

Пример 2.8. Найдите объём тела, образованного вращением вокруг оси Ox фигуры, ограниченной линиями:

2.8.1.
$$y = 1 - x^2$$
, $x = \sqrt{y - 2}$, $x = 0$, $x = 1$;

2.8.2.
$$y^2 - x = 0$$
, $y = x^2$.

Решение. 2.8.1. Построим фигуру, ограниченную параболой $y=1-x^2$, линией $x=\sqrt{y-2}$ – правой ветвью параболы $x^2=y-2$ и прямыми x=0, x=1 (рис. 2.11). Построим тело, полученное при вращении криволинейной трапеции вокруг оси Ox (рис. 2.12).

По формуле 2 табл. 2.5 найдём объём полученного тела:

$$V_{Ox} = \pi \int_{0}^{1} \left(y_{1}^{2}(x) - y_{2}^{2}(x) \right) dx = \pi \int_{0}^{1} \left((x^{2} + 2)^{2} - (1 - x^{2})^{2} \right) dx =$$

$$= \pi \int_{0}^{1} \left(x^{4} + 4x^{2} + 4 - 1 + 2x^{2} - x^{4} \right) dx = \pi \int_{0}^{1} (6x^{2} + 3) dx = \pi \left(6 \cdot \frac{x^{3}}{3} + 3x \right) \Big|_{0}^{1} =$$

$$= \pi (2x^{3} + 3x) \Big|_{0}^{1} = \pi (2 + 3) = 5\pi \approx 15,708 \text{ (куб. ед.)}.$$

2.8.2. Построим фигуру, ограниченную параболами $y_2 = x^2$, $y_1^2 = x$ (см. рис. 2.13). Тело, образованное вращением вокруг оси Ox полученной фигуры, представлено на рис. 2.14.

Из уравнения $x=y^2$ получим уравнение верхней ветви этой параболы: $y_1=\sqrt{x}$. Найдём координаты точек пересечения:

$$\begin{cases} y = x^2, \\ x = y^2, \end{cases} \Rightarrow \begin{cases} y = y^4, \\ x = y^2, \end{cases} \Rightarrow \begin{cases} y(1 - y^3) = 0, \\ x = y^2, \end{cases} \Rightarrow \begin{cases} y_1 = 0, \\ x_1 = 0, \end{cases} \quad \text{if } \begin{cases} y_2 = 1, \\ x_2 = 1. \end{cases}$$

Пользуясь формулой 2 табл. 2.5, вычисляем объём полученного тела:

$$V_{Ox} = \pi \int_{0}^{1} \left(y_{1}^{2} (x - y_{2}^{2} (x)) dx = \pi \int_{0}^{1} \left(\left(\sqrt{x} \right)^{2} - \left(x^{2} \right)^{2} \right) dx = \pi \int_{0}^{1} (x - x^{4}) dx =$$

$$= \pi \left(\frac{x^{2}}{2} - \frac{x^{5}}{5} \right) \Big|_{0}^{1} = \pi \left(\frac{1}{2} - \frac{1}{5} \right) = \frac{3\pi}{10} \approx 0,9425 \text{ (куб. ед.)}.$$

Пример 2.9. Найдите объём тела, образованного вращением вокруг оси *Оу* фигуры, ограниченной линиями:

2.9.1.
$$y = \arccos \frac{x}{3}$$
, $y = \arccos x$, $y = 0$;

2.9.2.
$$y^2 = x - 2$$
, $y = x^3$, $y = 0$, $y = 1$.

Решение. 2.9.1. Построим фигуру, ограниченную линиями $y = \arccos \frac{x}{3}$, $y = \arccos x$, y = 0 (см. рис. 2.15). Построим тело, образованное вращением вокруг оси *Оу* полученной фигуры (см. рис. 2.16).

π/

Объём тела вычисляем по формуле $V_{Oy} = \pi \int_{0}^{\pi/2} (x_1^2(y) - x_2^2(y)) dy$.

Выразим переменную х из уравнений кривых:

•
$$y_1 = \arccos \frac{x}{3} \Rightarrow x_1 = 3\cos y$$
;

•
$$y_2 = \arccos x \implies x_2 = \cos y$$
.

Вычисляем объём тела:

$$V_{Oy} = \pi \int_{0}^{\pi/2} ((3\cos y)^{2} - \cos^{2} y) dy = \pi \int_{0}^{\pi/2} (9\cos^{2} y - \cos^{2} y) dy = \pi \int_{0}^{\pi/2} (9\cos^{2} y - \cos^{2} y) dy = \pi \int_{0}^{\pi/2} (8\cos^{2} y) dy = 8\pi \int_{0}^{\pi/2} (1+\cos 2y) dy = 4\pi \left(y + \frac{1}{2}\sin 2y\right)\Big|_{0}^{\pi/2} = \pi \left(\frac{\pi}{2} + \frac{1}{2}\sin \pi\right) = 2\pi^{2} \approx 19{,}719 \text{ (куб. ед.)}.$$

2.9.2. Построим фигуру, ограниченную линиями $y^2 = x - 2$, $y = x^3$, y = 0, y = 1 (см. рис. 2.17). Построим тело, образованное вращением вокруг оси *Оу* полученной фигуры (см. рис. 2.18).

Объём тела найдём по формуле 3 табл. 2.5:

$$V_{Oy} = \pi \int_{0}^{1} (x_1^2(y) - x_2^2(y)) dy$$
, где $x_1 = y^2 + 2$, $x_2 = \sqrt[3]{y}$.

Тогда

2.3.4. Применение определённого интеграла

1. *Площадь* плоской области, ограниченной линиями y = f(x), y = 0, x = a, x = b находится по формуле

$$S = \int_{a}^{b} f(x)dx$$
, где $a < b$.

2. Длина дуги незамкнутой кривой y = f(x), $a \le x \le b$ вычисляется по формуле

$$l = \int_{a}^{b} \sqrt{1 + (y'(x))^{2}} dx.$$

3. *Площадь поверхности тела*, полученного при вращении вокруг оси Ox кривой y = f(x), $a \le x \le b$, определяется по формуле

$$Q = 2\pi \int_{a}^{b} f(x) \sqrt{1 + [f'(x)]^{2}} dx.$$

4. *Объём тела*, полученного при вращении вокруг оси Ox плоской области, ограниченной линиями y = f(x), y = 0, x = a, x = b, находится по формуле

$$V = \pi \int_{a}^{b} [f(x)]^2 dx$$
, $a < b$.

5. *Масса т материальной кривой АВ* с плотностью $\rho(x)$ вычисляется по формуле

$$m = \int_a^b \rho(x) \sqrt{1 + (y'(x))^2} dx,$$

где кривая AB задана уравнением y = f(x), $a \le x \le b$.

6. Статические моменты для плоской кривой y = y(x) с точечной плотностью $\rho(x)$ определяют по формулам

$$M_x = \int_a^b \rho(x) \cdot y(x) \cdot \sqrt{1 + (y'(x))^2} dx$$
, $M_y = \int_a^b \rho(x) \cdot x \cdot \sqrt{1 + (y'(x))^2} dx$.

7. Моменты инерции плоской кривой y = y(x) с точечной плотностью $\rho(x)$ определяют по формулам

$$I_{x} = \int_{a}^{b} \rho(x) \cdot y^{2}(x) \cdot \sqrt{1 + (y'(x))^{2}} dx, I_{y} = \int_{a}^{b} \rho(x) \cdot x^{2} \cdot \sqrt{1 + (y'(x))^{2}} dx,$$
$$I_{0} = I_{x} + I_{y}, x \in [a, b].$$

8. Координаты центра масс плоской кривой находят по формулам

$$x_{c} = \frac{M_{y}}{m}, \ y_{c} = \frac{M_{x}}{m},$$

где M_x , M_y – статические моменты, m – масса плоской кривой.

9. Вычисление *силы давления жидкости* на вертикально погружённую в жидкость пластину, ограниченную прямыми x = a, x = b и кривыми $y = y_1(x)$, $y = y_2(x)$, осуществляется по формуле

$$P = g \int_{a}^{b} \rho(x) x [y_{2}(x) - y_{1}(x)] dx,$$

где a < b, $y_1(x) \le y_2(x)$; $\rho(x)$ — точечная плотность пластины; g — ускорение свободного падения.

10. Вычисление работы переменной силы.

Работа переменной силы F(x), затраченная на передвижение тела из точки x=a в точку x=b по прямой Ox, совпадающей с направлением силы, определяется по формуле

$$A = \int_{a}^{b} F(x) dx.$$

11. Вычисление *работы электродвигателя* переменной мощности N(t) на отрезке [a,b] осуществляется по формуле

$$A = \int_{a}^{b} N(t)dt.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Арефьев К.П., Ефремова Е.Д., Столярова Г.П., Глазырина Е.Д. Высшая математика. Дифференциальное и интегральное исчисление функций одной переменной. — Издательство Томского политехнического университета, 2011. — 248 с.
- 2. Пискунов Н.С. Дифференциальное и интегральное исчисление для втузов. Т. 1. М.: Наука, 2009. 456 с.
- 3. Сборник задач по математике для втузов / под ред. А.В Ефимова, Б.П. Демидовича. Т. 1. М.: Наука. 1986. 464 с.
- 4. Берман Г.Н. Сборник задач по курсу математического анализа. СПб.: Издательство «Лань», 2005. 608 с.

Содержание

1. Неопределенный интеграл	3	
Справочный материал	3	
1.1. Непосредственное интегрирование	4	
1.2. Метод замены переменной или подстановки	7	
1.3. Метод интегрирования по частям	12	
1.4. Интегралы от функций, содержащих квадратный трехчлен	18	
1.5. Интегрирование рациональных дробей	22	
1.5.1. Рациональные дроби	22	
1.5.2. Интегрирование простых рациональных дробей	25	
1.5.3. Интегрирование рациональных дробей	26	
1.6. Интегрирование тригонометрических функций	31	
1.7. Интегрирование иррациональных выражений	37	
2. Определенный интеграл	43	
Справочный материал	43	
2.1. Методы вычисления определенного интеграла	47	
2.1.1. Непосредственное интегрирование	47	
2.1.2. Замена переменной в определенном интеграле	51	
2.1.3. Метод интегрирования по частям	56	
2.2. Несобственные интегралы	59	
2.3. Приложения определенного интеграла	67	
2.3.1. Вычисление площадей плоских фигур	67	
2.3.2. Вычисление длины дуги	75	
2.3.3. Нахождение объема тела	80	
2.3.4. Применение определённого интеграла	86	
Список литературы		

Учебное издание

ЕФРЕМОВА Оксана Николаевна ГЛАЗЫРИНА Елена Дмитриевна

НЕОПРЕДЕЛЕННЫЙ И ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛЫ В ПРИМЕРАХ И ЗАДАЧАХ

Учебное пособие

Издано в авторской редакции

Научный редактор *доктор физико-математических наук*, профессор К.П. Арефьев

Компьютерная верстка *Е.Д. Глазырина* Дизайн обложки

Отпечатано в Издательстве ТПУ в полном соответствии с качеством предоставленного оригинал-макета

Подписано к печати . .2011. Формат 60х84/16. Бумага «Снегурочка». Печать XEROX. Усл. печ. л. . Уч.-изд. л. . Заказ . Тираж 100 экз.

Национальный исследовательский Томский политехнический университет Система менеджмента качества Издательства Томского политехнического университета сертифицирована NATIONAL QUALITY ASSURANCE по стандарту BS EN ISO 9001:2008

ИЗДАТЕЛЬСТВО ТПУ. 634050, г. Томск, пр. Ленина, 30 Тел./факс: 8(3822)56-35-35, www.tpu.ru