MATH 135: SET THEORY AUTUMN 1999 FINAL EXAMINATION

 Complete the following definitions. Unless explicitly stated to the contrary, if you refer to a word introduced in this class, you must define that word as well. a The empty set, Ø, is b An injective function f: X → Y from the set X to the set Y is (You need not define ordered pair or Cartesian product, but you do need to define function. c A Cauchy sequence of rational numbers is (You need not define ℚ or any of its arithmetic or order theoretic structure.) d An ordinal is e A cardinal is f A relation R on a set X is transitive if g By definition, if n, m ∈ ω are natural numbers, then n < m if and only if
2. State the following axioms in the formal language. If you wish, you may state the axioms in mathematical English also. Defined terms are acceptable in the formal version. a Comprehension (or Subset) Axiom b Axiom of Choice (in the form about right inverses) c Replacement Axiom
 a Show that there exists a unique operation on ordinals, called ordinal addition, satisfying α + 0 = α, α + β⁺ = (α + β)⁺, and α + λ = ∪{α + β β ∈ λ} for limit ordinals λ. (Recall that a limit ordinal is a non-zero ordinal which is not of the form γ⁺.) b Show that for any two ordinals α and β, α + β = α + β . c Compute ω + 1 and 1 + ω.
4. For $X \subseteq \mathbb{R}$, let $\mathcal{C}(X,\mathbb{R}) := \{f : X \to \mathbb{R} \mid f \text{ is continuous } \}$. Calculate $ \mathcal{C}(\mathbb{R},\mathbb{R}) $. (Hint: Compare $\mathcal{C}(\mathbb{R},\mathbb{R})$ with $\mathcal{C}(\mathbb{Q},\mathcal{R})$.)
5 . We showed in class that for every set X there is some ordinal α so that there is no injection $\psi: X \to \alpha$. Show that the least such α is a cardinal, and, in fact, is the least cardinal greater than $ X $. (This requires the Axiom of Choice.)
6. Without using any other form of the Axiom of Choice, prove that the well-ordering theorem implies the version of the Axiom of Choice given in question 2b.

Date: 10 December 1999.

1

- 7. Prove or disprove: If α is a countable ordinal, then there is a set of real numbers $X \subseteq \mathbb{R}$ which with the ordering induced by \mathbb{R} is order isomorphic to (α, ϵ) .
- **8**. Define a relation E on \mathbb{R} by $\langle x, y \rangle \in E \Leftrightarrow x y \in \mathbb{Q}$.
 - a Show that E is an equivalence relation.
 - b Calculate $|\mathbb{R}/E|$.
 - c Prove or disprove: there is a function $F: \mathbb{R}/E \to \mathbb{R}/E$ satisfying $F([x]_E) = [x^2]_E$ for $x \in \mathbb{R}$.
 - d Prove or disprove: There is a set of real number $A \subseteq \mathbb{R}$ such that $|A \cap C| = 1$ for each $C \in \mathbb{R}/E$.