AMATH 515: Homework 6 Sid Meka

1. Let f'(x;v) for $x,v\in\mathbb{R}^n$ denote the directional derivative of a function $f:\mathbb{R}^n\to\mathbb{R}$ at x and in the direction of v defined as

$$f'(x;v) := \lim_{\alpha \downarrow 0} \frac{f(x + \alpha v) - f(x)}{\alpha}.$$

Prove the following statements:

(a) If f is convex then for $0 < \alpha_1, < \alpha_2$ it holds that

$$\frac{f(x + \alpha_1 v) - f(x)}{\alpha_1} \le \frac{f(x + \alpha_2 v) - f(x)}{\alpha_2}$$

Proof. Since f is convex, we apply the standard convexity inequality:

$$f(\lambda x_2 + (1 - \lambda)x) \le \lambda f(x_2) + (1 - \lambda)f(x)$$

and

$$x_1 = \lambda x_2 + (1 - \lambda)x$$

for any $\lambda \in [0,1]$ and points $x_1 = x + \alpha_1 v$ and $x_2 = x + \alpha_2 v$. Note that $\lambda = \frac{\alpha_1}{\alpha_2}$, so this actually means in this case, $\lambda \in (0,1)$ as $\frac{\alpha_1}{\alpha_2} \in (0,1)$ from the way α_1 and α_2 are defined.

Applying convexity,

$$f(x_1) \le \lambda f(x_2) + (1 - \lambda)f(x)$$

Rearranging, we get:

$$f(x_1) - f(x) \le \lambda (f(x_2) - f(x))$$

Dividing both sides by α_1 and using $\lambda = \frac{\alpha_1}{\alpha_2}$, we obtain:

$$\frac{f(x_1) - f(x)}{\alpha_1} \le \frac{\frac{\alpha_1}{\alpha_2} (f(x_1) - f(x))}{\alpha_1}$$

$$\frac{f(x_1) - f(x)}{\alpha_1} \le \frac{f(x_1) - f(x)}{\alpha_2}$$

Now substituting $x_1 = x + \alpha_1 v$ and $x_2 = x + \alpha_2 v$ we have

$$\frac{f(x+\alpha_1 v) - f(x)}{\alpha_1} \le \frac{f(x+\alpha_2 v) - f(x)}{\alpha_2}$$

as desired. \Box

(b) Use the previous result to show that the directional derivative, for convex f, can be equivalently defined as

$$f'(x;v) := \inf_{\alpha > 0} \frac{f(x + \alpha v) - f(x)}{\alpha}.$$

Applying the previous part, consider:

$$\frac{f(x+\alpha_1v)-f(x)}{\alpha_1} \le \frac{f(x+\alpha_2v)-f(x)}{\alpha_2} \le \frac{f(x+\alpha_3v)-f(x)}{\alpha_3} \le \dots \le \frac{f(x+\alpha_nv)-f(x)}{\alpha_n}$$

where $\alpha_1 < \alpha_2 < \alpha_3 < \ldots < \alpha_n$. Notice how this pattern shows that we get $\frac{f(x+\alpha v)-f(x)}{\alpha}$ as nonincreasing as α decreases. Now, applying this instantaneously as $\alpha \to 0^+$, we get to the Greatest Lower Bound as we get to its limit as $\alpha \to 0^+$, or in other words, the infimum of $\frac{f(x+\alpha v)-f(x)}{\alpha}$ as long as $\alpha > 0$.

(c) Show that the directional derivative is additive, that is, $(f_1 + f_2)'(x;v) = f_1'(x;v) + f_2'(x;v)$.

$$(f_1 + f_2)'(x; v) = \lim_{\alpha \downarrow 0} \frac{(f_1 + f_2)(x + \alpha v) - (f_1 + f_2)(x)}{\alpha} = \lim_{\alpha \downarrow 0} \frac{f_1(x + \alpha v) + f_2(x + \alpha v) - f_1(x) - f_2(x)}{\alpha} = \lim_{\alpha \downarrow 0} \frac{(f_1(x + \alpha v) - f_1(x)) + (f_2(x + \alpha v) - f_2(x))}{\alpha} = \lim_{\alpha \downarrow 0} \frac{f_1(x + \alpha v) - f_1(x)}{\alpha} + \lim_{\alpha \downarrow 0} \frac{f_2(x + \alpha v) - f_2(x)}{\alpha} = f'_1(x; v) + f'_2(x; v)$$

(d) Show that the directional derivative is homogeneous with respect to the direction v, i.e., $f'(x; \lambda v) = \lambda f'(x; v)$ for all $\lambda > 0$.

$$f'(x;\lambda v) = \\ \lim_{\alpha \downarrow 0} \frac{f(x + \alpha(\lambda v)) - f(x)}{\alpha} = \\ \lim_{\alpha \downarrow 0} \frac{f(x + (\alpha \lambda)v) - f(x)}{\alpha} = \\ \lim_{\alpha \downarrow 0} \frac{f(x + \alpha'v) - f(x)}{\alpha} \cdot \frac{\alpha'}{\alpha} =$$
 (where we define $\alpha' = \alpha \lambda$, so $\alpha' \to 0$ as $\alpha \to 0$)
$$\lim_{\alpha' \downarrow 0} \frac{f(x + \alpha'v) - f(x)}{\alpha'} \cdot \lambda =$$
 (As $\lambda = \frac{\alpha'}{\alpha}$)
$$\lambda \lim_{\alpha' \downarrow 0} \frac{f(x + \alpha'v) - f(x)}{\alpha'} = \\ \lambda f'(x; v)$$

- 2. Recall that a function $x \mapsto ||x||$ for $x \in \mathbb{R}^n$ is a norm if it satisfies:
 - (a) ||x|| = 0 iff x = 0
 - (b) $\|\lambda x\| = |\lambda| \cdot \|x\|$ for all $\lambda \in \mathbb{R}$
 - (c) $||x+y|| \le ||x|| + ||y||$. Show for any norm f(x) = ||x||, that f is not differentiable at x = 0 but $0 \in \partial f(0)$

Does this imply that 0 is a global minimizer?

We consider the function f(x) = ||x|| and show it is not differentiable at x = 0, but that $0 \in \partial f(0)$. If x = 0, the directional derivative is:

$$f'(0; v) = \lim_{\alpha \to 0^+} \frac{\|\alpha v\| - \|0\|}{\alpha}$$

or more simply,

$$f'(0; v) = \lim_{\alpha \to 0^+} \frac{\|\alpha v\|}{\alpha}$$

$$f'(0; v) = \lim_{\alpha \to 0^+} \frac{\alpha ||v||}{\alpha}$$

$$f'(0;v) = \lim_{\alpha \to 0^+} \|v\|$$

The subdifferential of f at x = 0 is given by:

$$\partial f(0) = \{ g \in \mathbb{R}^n \mid g^T x \le ||x||, \forall x \in \mathbb{R}^n \}$$

Since f is a norm, $\partial f(0)$ contains all unit vectors in \mathbb{R}^n , meaning $0 \in \partial f(0)$. Thus, 0 is a minimizer because for all x, $||x|| \ge 0$ and ||0|| = 0 meaning 0 is the global minimum.

3. Consider the function $f(x) = ||x||_1 = \sum_{i=1}^n |x_i|$ for $x \in \mathbb{R}^n$. Identify the subdifferential of f.

From Homework 1 Question 2 Part c, we have shown that any norm is convex. We will use that fact when solving this problem. Because $||x||_1$ is convex as it is a norm, we can use the subdifferential.

We first start by providing the definition of the subdifferential. The subdifferential of f at x, denoted by $\partial f(x)$, is given by:

$$\partial f(x) = \{ g \in \mathbb{R}^n \mid f(y) \ge f(x) + g^T(y - x), \ \forall y \in \mathbb{R}^n \}$$

Now we consider the cases for each component. If $x_i > 0$, $|x_i| = x_i$, so $\frac{\partial f}{\partial x_i} = 1$ and the subdifferential contains only $g_i = 1$. If $x_i < 0$, $|x_i| = -x_i$, so $\frac{\partial f}{\partial x_i} = -1$ and the subdifferential contains only $g_i = -1$. If $x_i = 0$, we actually have a nondifferentiable $|x_i|$; here, the one sided derivatives are ± 1 , which suggests that any g_i in the interval [-1,1] satisfies the subgradient condition.

Thus, we have:

$$\partial f(x) = \left\{ g \in \mathbb{R}^n \mid g_i = \begin{cases} 1 & \text{if } x_i > 0 \\ -1 & \text{if } x_i < 0 \\ s_i & \text{if } x_i = 0 \end{cases} \right\}$$

Note that s_i represents a value in the interval [-1,1] that is s_i is just a placeholder for a real number in [-1,1], meaning that for indices where $x_i = 0$, the subdifferential allows a range of possible values for g_i .

4. Consider the constrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $c_i(x) = 0$, $i = 1, \dots, m$,

with continuous $f: \mathbb{R}^n \to \mathbb{R}$ and $c_i: \mathbb{R}^n \to \mathbb{R}$, and let x^* denote a global solution. Further define the penalized/relaxed approximations

$$\min_{x \in \mathbb{R}^n} f(x) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x)$$

with positive penalty parameters $\mu_k \downarrow 0$ as $k \to \infty$, and denote their global minimizers as x^k . Your goal in this problem is to show that every limit point of the sequence $\{x^k\}_{k=1}^{\infty}$ is a global solution of the constrained problem. Note that the proof will not rely on convexity assumptions and holds for non-convex optimization problems as well.

(a) Use the optimality of x^* and the x^k to infer that

$$f(x^k) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k) \le f(x^*),$$

and obtain a bound on $\sum_{i=1}^{m} c_i^2(x^k)$.

Since x^k is a global minimizer of the penalized function, we have:

$$f(x^k) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k) \le f(x^*) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^*)$$

Since x^* is a global minimizer of the original constrained problem, it satisfies the feasibility conditions:

$$c_i(x^*) = 0$$
, $\forall i = 1, 2, \dots, m$

Thus, evaluating the penalized objective at x^* , we obtain:

$$f(x^k) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k) \le f(x^*) + \frac{1}{2\mu_k} \sum_{i=1}^m (0^2)$$

Or more simply:

$$f(x^k) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k) \le f(x^*)$$

To find the bound on $\sum_{i=1}^{m} c_i^2(x^k)$, we just work from:

$$f(x^k) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k) \le f(x^*)$$

$$\frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k) \le f(x^*) - f(x^k)$$

$$\sum_{i=1}^{m} c_i^2(x^k) \le 2\mu_k \left(f(x^*) - f(x^k) \right)$$

Thus, our explicit upper bound is: $2\mu_k (f(x^*) - f(x^k))$.

(b) Now take \overline{x} to be any limit point of the $\{x^k\}_{k=1}^{\infty}$, that is, \overline{x} is the limit of some convergent subsequence of the x^k ; you may assume such a subsequence exists. Show that $c_i(\overline{x}) = 0$ for $i = 1, \ldots, m$ and so \overline{x} is feasible for the original constrained problem.

Let \overline{x} be a limit point of $\{x^k\}$, meaning there exists a subsequence $\{x^{k_j}\}$ such that:

$$x^{k_j} \to \overline{x}$$
 as $j \to \infty$

Since we already established that $c_i(x^k) \to 0$, it follows from continuity of $c_i(x)$ that:

$$c_i(\overline{x}) = \lim_{j \to \infty} c_i(x^{k_j}) = 0$$
 for such a k_j

Also, remember that we are solving the constrained optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $c_i(x) = 0$, $i = 1, \dots, m$

That means we have:

$$c_i(\overline{x}) = \lim_{j \to \infty} c_i(x^{k_j}) = 0 \quad \forall i = 1, \dots, m$$

Because \overline{x} satisfies all constraints here, \overline{x} is feasible for the original constrained problem.

(c) Use the non-negativity of the μ_k and the $c_i^2(x^k)$ to infer that $f(\overline{x}) \leq f(x^*)$. Further use this result to argue that \overline{x} is a global solution.

Recall that we have established

$$f(x^k) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k) \le f(x^*)$$

Also, since μ_k is nonnegative, it follows that $\frac{1}{2\mu_k}\sum_{i=1}^m c_i^2(x^k)$ is nonnegative as $c_i:\mathbb{R}^n\to\mathbb{R}$ meaning

that $c_i^2: \mathbb{R}^n \to \mathbb{R}^+ \cup \{0\}$. Thus, because $\frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k)$ is nonnegative,

$$f(x^k) \le f(x^k) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k)$$

Thus,

$$f(x^k) \le f(x^k) + \frac{1}{2\mu_k} \sum_{i=1}^m c_i^2(x^k) \le f(x^*)$$

Which means:

$$f(x^k) \le f(x^\star)$$

We now consider the limit point of x^k , which leads to \overline{x} as $\lim_{j\to\infty} f(x^{k_j}) \leq f(x^*)$ for some subsequence $\{x^{k_j}\}$. Thus, we combine this knowledge along with the fact that f is continuous with $f: \mathbb{R}^n \to \mathbb{R}$ to state that

$$f(\overline{x}) < f(x^*)$$

Since x^* is defined as a minimizer, we also have $f(x^*) \leq f(\overline{x})$. Because both $f(\overline{x}) \leq f(x^*)$ and $f(x^*) \leq f(\overline{x})$, it must follow that $f(\overline{x}) = f(x^*)$. Thus, because $f(\overline{x}) = f(x^*)$, \overline{x} attains the optimal value, making it a global solution to the original problem.