令和5年度秋の演習問題

取り組みチェック表

問題	取り組み日	$\bigcirc \cdot \triangle \cdot \times$	コメント
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			

			T(
ľ	Şξ	.	H	×
	덛		4	į
		ar	2.1	g

46 以下の問いに答えよ.

- (1) $x = \sqrt{3 + 2\sqrt{2}}$ のとき, $x^4 + x^3 + x^2 + x + 1$ の整数部分はいくらか.
- (2) 0 でない 2 つの実数 a,b が a+b+1=0 を満たすとき, $\frac{b^2}{a}+\frac{1}{ab}+\frac{a^2}{b}$ の値を求めよ.

47 以下の問いに答えよ.

- (1) y = |x| + |x-1| + |x-2| ($-1 \le x \le 3$) の最大値および最小値を求めよ.
- (2) 実数 k に対し、方程式 x|1-|x||=k の異なる実数解の個数を求めよ.

- 48 $a-2 \le x \le a+2$ のとき, 2 次関数 $f(x)=-x^2+4ax$ の最小値を m とし, 最大値を M とする.
 - (1) a=3 のとき, m の値と M の値を求めよ.
 - (2) a = -1 のとき, m の値と M の値を求めよ.
 - (3) m を a を用いて表せ.
 - (4) M を a を用いて表せ.

49 a を実数とし、2 次方程式 $x^2 + 2(a+1)x + 3(a^2 + 4a + 3) = 0$ を考える。2 次方程式の 1 つの解が正で他の解が負となるとき、a のとりうる値の範囲を求めよ.

また、2次方程式が2つの異なる正の解をもつとき、aのとりうる値の範囲を求めよ.

50 \triangle ABC の面積が $12\sqrt{6}$ であり、その辺の長さの比は AB : BC : CA = 5:6:7 である.このとき、 $\sin \angle$ ABC の値を求めよ.

また、 $\triangle ABC$ の内接円の半径を求めよ.

- [51] AB = 2, BC = 3, CD = 6, DA = 5 である四角形 ABCD があり、この四角形は円 O に内接している.
 - (1) cos∠B の値を求めよ.
 - (2) 円 O の半径を求めよ.
 - (3) 四角形 ABCD の面積を求めよ.
 - (4) 四角形 ABCD は、ある円に外接している.この円の半径を求めよ.

- $\boxed{\mathbf{52}}$ $0 \le x < 2\pi$ とする. 以下の問いに答えよ.
 - (1) $\cos x + \cos 3x = 2\cos x \cos 2x$ を示せ.
 - (2) 方程式 $\cos x + \cos 2x + \cos 3x = 0$ を解け.

- **53** 下図のような直角二等辺三角形の紙片がある. 線分 EF を折り目として, 点 A が辺 BC の中点 D に重なるように, 紙 片を折り曲げたとする. このとき次の値を求めよ. (ただし, AB=2とする.)
 - (1) DE
 - (2) DF
 - (3) △DEF の 面積

- $\fbox{\bf 54}$ 1 辺の長さが 1m の正方形 ABCD の内部にある次の面積を順次計算せよ.
 - (1) 2 頂点 A, B から 1m 以内にある部分の面積 S m^2 .
 - (2) 4 頂点 A, B, C, D から 1m 以内にある部分の面積 x m².

55 0 < x < 3 とする. 以下の問いに答えよ.

(1)
$$f(x) = x(3-x)$$
 の最大値を求めよ.

$$(2) \ g(x) = \frac{1}{x(3-x)} \ \mathcal{O} 最小値を求めよ.$$

以下, $x \neq 1, 2$ とする.

$$(3) \ h(x) = \frac{2}{x(1-x)} + \frac{2}{(x-1)(2-x)} + \frac{2}{(x-2)(3-x)} \ の最小値を求めよ.$$

(4) h(x) のとる最小の整数値と、そのときのx の値を求めよ.