Master Theorem

$$T(n) = aT(n/b) + f(n)$$
 where $a \ge 1, b > 1$, and $f(n) > 0$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$. Solution: $T(n) = \Theta(n^{\log_b a})$ $(f(n))$ is polynomially smaller than $n^{\log_b a}$.

Case 2:
$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$
, where $k \ge 0$ Solution: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$
Simple case: $k = 0 \Rightarrow f(n) = \Theta(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a} \lg n)$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for some constant $\epsilon > 0$
 $af(n/b) \le cf(n)$ for some constant $c < 1$ Solution: $T(n) = \Theta(f(n))$
 $(f(n))$ is polynomially greater than $n^{\log_b a}$.

1)
$$T(n) = 8T(n/3) + n^2$$

$$\alpha = 8, b = 3, |(n) = n^2$$

$$\log^{\alpha} = 1.9$$

$$8(n/3)^2 \le Cn^2 \text{ for some } Cc1$$

8 (1/3 n)
$$^{2} \le Cn^{2}$$

8 (1/3 n) $^{2} \le Cn^{2}$
 $\frac{8}{9} y^{2} \le \frac{Cy^{2}}{0^{2}}$
Case 3 applied

2)
$$7(n) = (07(n/3) + n^2)$$

 $\alpha = (0, b = 3, f(n) = n^2)$
 $n^{(09)3} = n^{2.6} > f(n) = n^2$
 $f(n) = f(n^{(09)6-2})$ for $E = 0.1$
(use 1 explies

Case 2:
$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$
, where $k \ge 0$.

Solution: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$

Simple case: $k = 0 \Rightarrow f(n) = \Theta(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a} \lg n)$
 $Q = \{0\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{0\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{0\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{0\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{0\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{0\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{0\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{1\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{1\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{1\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{1\}, b = \{1\}, f(n) = n^2 \log^3 n\}$
 $Q = \{1\}, f(n) = n^2 \log^3 n\}$

1096 = 1093 = 2.1

Case z applied

$$T(n) = QT(n/3) + n^3$$
 $Q = Q$, $b = 3$, $f(n) = m^3$
 $log_0^{\alpha} = log_3^{\alpha} = Z$, $n^{log_0^{\alpha}} = n^{log_0^{\alpha}} = n^2$
 $f(n) = Q(n^{log_0^{\alpha}})$ for $E = 1$, $f(n) = Q(n^{log_0^{\alpha}})$
 $Q(n/b) \leq Cf(n)$ for $Some Cell$
 $Q(n/3) \leq Ch^3$
 $Q(s/3) \leq Ch^3$
 Q