```
import pandas as pd
import numpy as np
```

from sklearn.datasets import fetch_california_housing boston = fetch_california_housing()

data = pd.DataFrame(boston.data)

data.head()

	0	1	2	3	4	5	6	7	7
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	

data.columns = boston.feature_names

data['PRICE'] = boston.target

data.head()

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude	PRICE	10.
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526	
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585	
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521	
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413	
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422	

data.isnull().sum()

MedInc 0
HouseAge 0
AveRooms 0
AveBedrms 0
Population 0
AveOccup 1
Latitude 0
Longitude 0
PRICE 0
dtype: int64

data.describe()

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	Р
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.00
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	3.070655	35.631861	-119.569704	2.06
std	1.899822	12.585558	2.474173	0.473911	1132.462122	10.386050	2.135952	2.003532	1.15
min	0.499900	1.000000	0.846154	0.333333	3.000000	0.692308	32.540000	-124.350000	0.14
25%	2.563400	18.000000	4.440716	1.006079	787.000000	2.429741	33.930000	-121.800000	1.19
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	2.818116	34.260000	-118.490000	1.79
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	3.282261	37.710000	-118.010000	2.64
max	15.000100	52.000000	141.909091	34.066667	35682.000000	1243.333333	41.950000	-114.310000	5.00

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 9 columns):
Column Non-Null Count Dtype

```
MedInc
                      20640 non-null float64
          HouseAge
                      20640 non-null float64
          AveRooms
                      20640 non-null
                                      float64
                     20640 non-null float64
          AveBedrms
          Population 20640 non-null float64
         Ave0ccup
                      20640 non-null float64
                      20640 non-null float64
         Latitude
         Longitude
                      20640 non-null float64
     8 PRICE
                      20640 non-null float64
     dtypes: float64(9)
     memory usage: 1.4 MB
x = data.iloc[:, :-1]
y = data.PRICE
from sklearn.model_selection import train_test_split
x_{train}, x_{test}, y_{train}, y_{test} = train_{test}, y_{train}, y_{test} = 0.2, train_{train}, train_{train}
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
     ▼ LinearRegression
     LinearRegression()
y_pred = regressor.predict(x_test)
from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print(rmse)
     0.7245753833536993
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
from keras.layers import Activation, Dense, Dropout
from keras.models import Sequential
model = Sequential()
model.add(Dense(128, activation='relu', input_dim = 8))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1))
model.compile(optimizer = 'adam', loss = 'mean_squared_error')
model.fit(x_train, y_train, epochs = 100)
```

```
EDOCU 94/100
  516/516 [=====
           Epoch 85/100
  516/516 [====
             Epoch 86/100
  516/516 [===========] - 1s 3ms/step - loss: 0.1676
  Epoch 87/100
  Enoch 88/100
  516/516 [=======] - 1s 2ms/step - loss: 0.1655
  Epoch 89/100
  516/516 [==========] - 3s 5ms/step - loss: 0.1632
  Epoch 90/100
  516/516 [=====
            Epoch 91/100
  516/516 [===========] - 2s 3ms/step - loss: 0.1648
  Epoch 92/100
  516/516 [============== ] - 1s 2ms/step - loss: 0.1619
  Enoch 93/100
  Epoch 94/100
  516/516 [=====
            Epoch 95/100
  516/516 [====
               Epoch 96/100
  516/516 [====
            Epoch 97/100
  Epoch 98/100
  Epoch 99/100
  516/516 [=====
            Epoch 100/100
  516/516 [============ ] - 2s 4ms/step - loss: 0.1558
  <keras.callbacks.History at 0x7f935c149f60>
y_pred = model.predict(x_test)
  129/129 [=======] - 1s 3ms/step
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
rmse
  0.5211309857354227
```

Colab paid products - Cancel contracts here

✓ 0s completed at 5:43 PM

×