Storm 计算可靠性相关引理及定理证明

符号及其对应含义如下表:

符号	含义	符号	含义
sp	输出组件	bt	处理组件
cid	组件中的标识	id	组件读入或发送的元组 标识
mid	输入组件发送的元组(原 始元组)标识	sid	元组流的标识
TE	迁移事件集合	RE	storm 拓扑运行的事件 集合
stp	storm 计算拓扑	M	Net 库所标识映射 (Marking)
Net	storm 计算拓扑对应 CPN 模型	b	Net 迁移中变量的赋值
t	Net 迁移发生的时间	[]: $var \rightarrow \Sigma$	赋值映射

Storm Net 中的迁移触发时将产生迁移事件,其定义如下:

定义1 (迁移事件) 迁移事件 $te = \langle tr, b, t \rangle$, 其中:

- $tr \in TR$ 是迁移:
- $b:V \to \Sigma$ 是迁移发生时的状态,即对相关变量的赋值;
- $t \in TIME$ 表示迁移 tr 发生在时刻 t 。

 $te = \langle tr, b, t \rangle \in TE$ 表示在时刻 t 和状态 b 条件下发生了迁移 tr 。符号 TE 表示所有的迁移事件集合。

定义 2 (可执行的迁移事件 te)给定 Marking M ,时间 t^* 及迁移事件 te , te 在 < M , t^* > 条件下可发生迁移的,记为 < M , t^* > — te — < M' , , 当且仅当以下条件是满足的:

- $t' \geq t^*$;
- 对迁移 tr 的所有库所 $p, E(p,tr)\langle b\rangle \leq M(p)$, 即输入库所存在足够的托肯供迁移 tr 消耗。
- 当迁移事件 te 在 $< M, t^* >$ 下是可执行的,则 tr 发生后,Marking M' 可以定义为:

$$M'(p) = (M(p) - E(p,tr)\langle b \rangle_{\perp t}) + E(tr,p) \langle b \rangle_{\perp t}$$

定义 3 (Storm 的迁移事件) $TE = TE(sp) \bigcup TE(bt) \bigcup \overline{sAck} \bigcup \overline{sFail}$ 表示 Net 迁移事件集合,其中:

- $-TE(sp) = \overline{take(sp)} \cup \overline{semit(sp)}$, 表示输出组件对应的迁移事件集合;
- $-TE(bt) = \overline{take(bt)} \cup \overline{emit(bt)} \cup \overline{ack(bt)} \cup \overline{fail(bt)}$,表示处理组件对应的迁移事件集合,由 take,emit, ack, fail 类型迁移构成。

- $-sAck = \{(sAck, b, t)\}$,表示计算确认迁移事件集合;
- $-sFail = \{(sFail, b, t)\}$,表示计算失败迁移事件集合;
- **定义 4**(Storm 的运行事件) $RE = RE(sp) \bigcup RE(bt) \bigcup RE(ack)$ 表示 stp 运行时日志事件集合,其中:
- $-RE(sp) = \{semit(cid, mid, sid, t)\}$,表示标识为 cid 的输出组件在 t 时刻发送标识为 mid 的元组至元组流 sid 中。
 - $-RE(bt) = \{take(cid,id,mid,sid,t)\} \cup \{emit(cid,id,mid,sid,t)\} \cup \{fail(cid,id,mid,t)\} \cup \{ack(cid,id,mid,t)\};$
 - $-RE(ack) = \{sAck(mid,t)\} \cup \{sFail(mid,t)\}$ _o

RE 和 TE 两类事件中间存在的映射关系由下述定义确定。

- **定义 5**(RE 到 TE 的映射)给定 Storm 拓扑 stp,RE 事件集到 TE 迁移事件集的映射关系由映射函数 $rt: RE \to \overline{TE}$,通过如下规则定义:
- 一当 e=semit(cid,mid,sid,t) \in RE(sp) ,其中设 v_0 为输出组件 sp 读入的数据, tup_0 为发送的元组,则 $rt(e)=tk\cdot se$,其中

 - \blacksquare $se = (semit(cid, so_i), [tup \mapsto tup_0], t) \in semit(sp), (so_i.sid = sid);$
- 一当 $e = take(cid, id, mid, sid, t) \in RE(bt)$,其中设 tup_0 为组件 bt 从元组流 sid 中读取的元组 $(tup_0.id = id, tup_0.mid = mid)$,则 rt(e) = tk,其中 $tk = (take(cid), [tup \mapsto tup_0], t) \in take(bt)$;
- 一当 $e=emit(cid,id,mid,sid,t)\in RE(bt)$,设 tup_0 为组件 bt 向元组流 sid 中发送的元组 $(tup_0.id=id,tup_0.mid=mid)$,则 rt(e)=et ,其中 $et=(emit(cid,so_i),[tup\mapsto tup_0],t)\in \overline{emit(bt)}$;
- 一当 $e = fail(cid,id,mid,t) \in RE(bt)$,则 rt(e) = fa,其中 $fa = (fail(cid),[re \mapsto (cid,mid,FALSE)],t) \in \overline{fail(bt)}$;
- - $\stackrel{.}{=}$ $e = ack(cid, id, mid, t) \in RE(bt)$, $yllowedge Tr(e) = (ack(cid), [re \mapsto (id, mid, TRUE)], t)$ $\in \overline{ack(bt)}$;
- 一当 e = sAck(mid,t),则 $rt(e) = (sAck,[re \mapsto (mid,TRUE)],t) \in sAck$,其中 re 为所有处理组件中的变量;
- 一当 e=sFail(mid,t),则 $rt(e)=(sFail,[re_0\mapsto (mid,FALSE)],t)\in \overline{sFail}$,其中 re_0 为 某个调用 fail 方法的组件中的结果变量。

设 $\overline{\sigma} \in \overline{RE}$ 为运行迹, $rt(\overline{\sigma}) \in \overline{TE}$ 定义为:若 $\overline{\sigma} = \overline{\sigma'} \cdot e$,则 $rt(\overline{\sigma}) = rt(\overline{\sigma'}) \cdot rt(e)$ 。 Storm 拓扑 stp 运行迹与对应 Net 的迁移迹满足如下关系:

引理 1 设 Storm 拓扑 stp, 及对应的 Net, 如果 $\overline{\sigma}$ 为 stp 关于输入数据 v 的完整运行迹,则 $rt(\overline{\sigma})$ 为

Net 关于v 的完整迁移迹。

证明:

(1) $rt(\bar{\sigma})$ 为 Net 关于 v 的迁移迹。

对 $\bar{\sigma}$ 的长度 $n = |\bar{\sigma}|$ 进行归纳假设。

当 n=1 时,根据 Storm 拓扑的执行语义和事件打点方式可知,此时 $\overline{\sigma} \in semit(cid,mid,sid,t)$ 表示 Storm 首先在输出组件 cid 中,在 t 时刻完成发送元组 mid 至元组流 sid 中。 $rt(\overline{\sigma}) = tk \cdot se \in \overline{TE}$,显然满足, $< M_0, 0 > \xrightarrow{tk \cdot se} < M$,t > ,其中 $M_0(p_0) = v$, $M(p_{so_i}) = tup$, $(so_i.id = sid,tup.id = mid)$ 即 $rt(\overline{\sigma})$ 为 Net 的迁移迹。

设 $|\overline{\sigma}| \le n$ 时上述命题成立,则当 $|\overline{\sigma}| = n+1$ 时,令 $\overline{\sigma}[n] = e$, $\overline{\sigma}[n+1] = e'$ 。

由假设可知, $\overline{\sigma}[0:n]$ 满足上述命题,则存在 M_0 , t^- ,M',使得 $< M_0$, $0 > \xrightarrow{\overline{n}(\overline{\sigma}[0:n])} < M^-$, $t^- > \infty$ 下面须证明,存在Net 的库所标识M',使得

$$\langle M^-, t^- \rangle \xrightarrow{rt(e')} (M', t)$$

对e, e'之间的关系进行讨论。

a) 当 e = semit(cid, mid, sid, t) 时,由于 $\overline{\sigma}$ 为处理输入v的运行迹。则 e' = semit(cid, mid', sid', t')或e' = take(cid', id, mid, sid, t'),即同一输出组件发送其他元组至其他元组流中,或后续组件消费订阅的元组。根据迁移事件rt(e)的定义可知,

$$\langle M^-, t^- \rangle \xrightarrow{\overline{n}(e')} (M', t)$$
, M' 满足:

当 e' = semit(cid, mid', sid', t') 时, $M'(p_{so_i'}) = tup'$,其中, $so_i'.sid = sid'$,tup'.id = mid'。 当 e' = take(cid', id, mid, sid, t') 时, $M'(p_{so_i'}) = \varnothing$ 1, $M'(p_{ready}^{cid'}) = \varnothing$ 1, $M'(p_{val}^{cid'}) = val(tup)$, $M'(p_{re}^{cid'}) = res(tup)$ 。其中,tup.id = mid ,tup 为组件 cid' 读入的元组。对其他 $p \in Net$, $M'(p) = M^-(p)$ 。从而可知, $< M_0, 0 > \frac{\overline{n}(\overline{\sigma}[0:n])}{\overline{n}(\overline{\sigma}[0:n])} < M^-, t^- > \overline{n}(\overline{\sigma})$ 为 Net 的迁移迹。

b) 当 e = take(cid,id,mid,sid,t) 时,根据 id,cid,mid 的关联性,e' 可分成两类:即 (b.1) e 与 e' 相互独立。即 $e.id \neq e'.id$ 且 $e.cid \neq e'.cid$,则设 $\overline{\sigma}' = \overline{\sigma}[0:n-1] \cdot e' \cdot e$,即交 换 e 和 e' 顺序,则 $\overline{\sigma}'$ 与 $\overline{\sigma}[0:n-1] \cdot e'$ 仍为 stp 的运行迹,且 $|\overline{\sigma}[0:n-1] \cdot e'| = n$,此时,根据归纳假设, $rt(\overline{\sigma}[0:n-1] \cdot e')$ 为 Net 的迁移迹,且满足

$$\langle M_0, 0 \rangle \xrightarrow{rt(\overline{\sigma}[0:n-1]\cdot e')} \langle M^-, t^- \rangle$$

由于 e 与 e' 的独立性,则 rt(e) 与 rt(e') 也相互独立,故 M^- 满足 $< M^-, t^-> \xrightarrow{r(e)} < M', t>$ 。因此 $\overline{\sigma}'$ 与 $\overline{\sigma}$ 都满足 $< M_0, 0> \xrightarrow{\overline{n}(\overline{\sigma}')} < M', t>$, $< M_0, 0> \xrightarrow{\overline{n}(\overline{\sigma}')} < M', t>$ 。即 $rt(\overline{\sigma}')$ 为 Net 的迁移迹。

(b.2) e = e'相关联。若 e.id = e'.id 且 e.cid = e'.cid 时,则 e' = fail(cid,id,mid,t) 或 ack(cid,id,mid,t)。根据 val 和 res 函数的定义可知:

_

 $M'(p_{so'}) = \emptyset$ 表示库所无托肯

$$\langle M^-, t^- \rangle \xrightarrow{rt(e')} \langle M', t \rangle$$

若 $e.id \neq e'.id$, e.cid = e'.cid , e.mid = e'.mid , 则 e' = emit(cid,id',mid,t) 。则根据 take 迁移中 val 函数的定义可知:

$$\langle M^-, t^- \rangle \xrightarrow{rt(e')} \langle M', t \rangle$$

因此,本情形下,(1)成立。

- c) 其他情形可以通过同样类似分析,得到相同结论。
- (2) $rt(\bar{\sigma})$ 是完整的迁移迹。

由于 Net 模型中不存在其他内部迁移事件,当 $\overline{\sigma}$ 为完整的运行迹时,即不存在更多的运行,故 Net 不存在更多的迁移事件,即 $\overline{rt}(\overline{\sigma})$ 是完整的迁移迹。

综上所述,引理1成立。

引理 2 (Storm 计算可靠性与运行迹)给定 Storm 计算拓扑 stp,若 stp 是计算可靠的,则对于任意 stp 的运行迹 $\overline{\sigma}$, $\overline{\sigma}$ 满足如下条件:

- (停机) 对于 $\overline{\sigma}$ 中任意 semit 事件,都有以 mid 为关联的 sFail 或 sAck 事件相对应;
- (正确停机) 若 sAck 事件出现在 σ 中,则必为 σ 中的最后事件;
- (bolt 处理正确) $\overline{\sigma}$ 中每个 take 事件都有以 mid 为关联的 ack 或 fail 事件;
- (通讯正常)若 $\overline{\sigma}$ 中未包含 sFail 事件,则 $\overline{\sigma}$ 中每个 emit 事件都有和其流依赖的组件的 take 事件对应。

证明: 使用反证法证明, 分为以下四步:

设 $\bar{\sigma}$ 为 stp 关于数据 v 的完整运行迹。

(1) $\bar{\sigma}$ 满足停机条件。

假设 $\overline{\sigma}$ 中存在 semit事件,但不存在对应的 sFail 及 sAck。则根据引理 1,Net 存在完整运行迹 $rt(\overline{\sigma})$ 。由于 sFail, sAck事件未出现在 $\overline{\sigma}$ 中,则 $rt(\overline{\sigma})$ 中不存在 sFail, sAck 类型迁移。故 Net 中的 sAck, sFail 满足 $M_f(sAck)=M_f(sFail)=\emptyset$,从而 Net 关于v 的完整迁移迹是不可靠的。矛盾,故(1)成立。

(2) $\bar{\sigma}$ 满足正确停机条件。

假设 sAck 事件出现在 $\overline{\sigma}$ 中,但不是最后的事件。不妨设最后事件为 e 。根据引理 1 可知,Net 存在关于数据 v 的完整迁移迹 $rt(\overline{\sigma})$ 。其中最后迁移为 rt(e)=te 。 te 不是 sAck,sFail 迁移。当 te 为其他任何迁移时,必存在库所 p' ($p' \notin \{sAck, sFail\}$),使得 $M_f(P) \neq \emptyset$,显然,此时 $rt(\overline{\sigma})$ 对 v 的计算是不可靠的。矛盾,故(2)成立。

(3) $\bar{\sigma}$ 满足每个 bolt 正确处理条件。

假设 $\overline{\sigma}$ 中存在一个 cid 的 bolt,其中 take 事件没有对应的 ack 和 fail 事件。则根据引理 1 可知,Net 存在完整运行迹 $\sigma=rt(\overline{\sigma})$,满足 take(cid)迁移发生,而 ack(cid),fail(cid)迁移未发生。则由 bolt 的语义可知, $M_f(ready_{cid})=\emptyset$,从而 σ 不是 Net 可靠的运行迹。矛盾,因此(3)成立。

(4) σ 满足通讯正常条件

假设 $\overline{\sigma}$ 中存在某个 emit 事件 e ,不存在后续关联的 take 事件 tk ,不妨设 e = semit(cid,id,mid,sid,t),tk = take(cid',id,mid,sid,t')。根据引理 1 可知,存在 Net 迁移迹 σ ,

满足 $rt(e) \in \sigma$,且 σ 中不存在take(cid') 迁移。由于在处理组件中无法发生对元组id 触发ack 或fail 迁移,则在未发生sFail 迁移的前提下 $M_f(P_{ack_{cid}}) = M_f(P_{fail_{cid}}) = \varnothing$,从而 σ 不是计算可靠的迁移迹。矛盾,从而(4) 成立。

综上所述,引理2成立。

定理 1 给定 Storm 计算拓扑 stp,若 stp 的计算是可靠的,则对任意 stp 的运行迹 $\overline{\sigma}$, $\overline{\sigma}$ 满足 $\overline{\sigma} \vDash ECL(stp)$ 。

证明:根据 ECL 公式的语义及引理 2,可证明该定理。