







# Machine learning: Frequentist vs Bayesian

## Frequentist machine learning

## Bayesian machine learning

Fonction de prédiction  $f_{\theta}$  paramétrée par  $\theta \in \mathbb{R}^p$ .

#### On obtient M fonctions de prédiction $(f_{\theta_1}, \ldots, f_{\theta_M})$

# On optimise:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \operatorname{loss}(f_{\theta}(\mathbf{x}_i), y_i) + \frac{1}{C} \operatorname{p\'enalit\'e}(\theta)$$

#### On obtient une fonction de prédiction optimale $f_{\theta^*}$

#### Choisir le meilleur C par validation croisée

#### On obtient une prédiction moyenne avec un intervalle de crédibilité

Pour chaque  $\mathbf{x}_i$  on a M prédictions: une distribution de prédictions

On simule une MCMC  $\theta_1, \ldots, \theta_M \sim \text{loi a posteriori } \theta | y_i, \mathbf{x}_i$ 

#### C est simulé suivant un modèle hiérarchique avec $C \sim$ hyperprior

 $\theta$  est un vecteur aléatoire suivant une loi a priori  $\pi$  de variance  $\propto C$ 

#### Facile à expliquer et à implémenter

#### 2. Adapté pour des quantités de données gigantesques (Optimisation distribuée, stochastique)

3. Optimisation (souvent) non-convexe: dépend de l'initialisation

1. Quantifie l'incertitude des prédictions: essentiel pour des applications sensibles (diagnostique médical, voitures autonomes ...) 2. Basé sur la simulation MCMC (lente en grande dimension / risque de divergence)



# Bayesian machine learning

# Bayesian machine learning

# Machine learning: Frequentist vs Bayesian

### Frequentist machine learning

Fonction de prédiction  $f_{\theta}$  paramétrée par  $\theta \in \mathbb{R}^p$ .

On optimise:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \operatorname{loss}(f_{\theta}(\mathbf{x}_i), y_i) + \frac{1}{C} \operatorname{p\'enalit\'e}(\theta)$$

On obtient une fonction de prédiction optimale  $f_{\theta^*}$ 

Choisir le meilleur C par validation croisée

- 1. Facile à expliquer et à implémenter
- 2. Adapté pour des quantités de données gigantesques (Optimisation distribuée, stochastique)
- 3. Optimisation (souvent) non-convexe: dépend de l'initialisation

### Bayesian machine learning

 $\theta$  est un vecteur aléatoire suivant une loi a priori  $\pi$  de variance  $\propto C$ 

On simule une MCMC  $\theta_1, \ldots, \theta_M \sim \text{loi a posteriori } \theta | y_i, \mathbf{x}_i$ 

On obtient M fonctions de prédiction  $(f_{\theta_1}, \dots, f_{\theta_M})$ 

Pour chaque  $\mathbf{x}_i$  on a M prédictions: une distribution de prédictions

On obtient une prédiction moyenne avec un intervalle de crédibilité

C est simulé suivant un modèle hiérarchique avec  $C \sim$  hyperprior

- 1. Quantifie l'incertitude des prédictions: essentiel pour des applications sensibles (diagnostique médical, voitures autonomes ...)
- 2. Basé sur la simulation MCMC (lente en grande dimension / risque de divergence)





Best of both worlds:



