Zhenfei Zhang

Cryptography Engineer zhenfei.zhang@hotmail.com
Algorand https://zhenfeizhang.github.io/

Boston, MA https://www.linkedin.com/in/zhenfeizhang/

Experience

Cryptography Engineer, Algorand, 2018-now

Identify, develop and standardize cryptographic tools to be used by Algorand blockchain protocol.

- Design: Identify suitable cryptography for Algorand blockchain;
- Coding: Product level Rust code for
 - Pixel aggregatable signature;
 - BLS signature;
 - Pointproofs: Aggregating Proofs for Multiple Vector Commitments;
- Standardization: Internet draft for BLS signature scheme, IETF/CFRG working group.

Director of Cryptography Research, Security Innovation -> OnBoard Security, 2014-2018

- Homomorphic encryptions (IARPA project);
- Post-quantum cryptography;
- blockchain cryptography.

-----Highlights

Standards

Contribute to **2** out of 7 finalists of NIST's **post-quantum standardization process**: **Falcon** and **NTRU**.

LAC won the first prize of Chinese post-quantum cryptography competition.

Internet draft: BLS-signature, Quantum safe hybrid for TLS 1.2 and TLS 1.3.

Former member of ETSI Quantum-safe Cryptography (QSC) working group.

Former member of ISO/SC27 working group.

Publication and patents

3 U.S. patents; **25+** peer reviewed paper at ACM CCS 2020, PKC 2020, Asiacrypt 2019, Crypto 2019, Asiacrypt 2018, PKC 2018, IEEE Transaction on Computers,

etc.;

See next pages for full list.

Programming Languages

Rust: Cryptographic library at product level.

C: Cryptographic library, nearly product level code.

Python/Sage: Proof of concept codes.

Software

Pixel A pairing based, forward-secure and aggregatable signature, written in python

(PoC) and rust (product level). Improves existing (non-aggregatable) solution by

100x, open sourced and external audited. Source code.

Pointproofs: A pairing based, aggregatable prove system over multiple vector commitments,

written in rust (product level). Source code.

Raptor A lattice based (linkable) ring signature, written in C as a PoC, aiming to protect

user's anonymity against quantum adversaries. Source code.

NTRUEncrypt A C implementation of NTRUEncrypt, submitted to NIST PQC standardization

process. Source code.

Ring mul- A C library for fast ring multiplication using AVX-2; improving prior codes by a factor

tiplication of 2.23. Source code

libgcrypt-ntru Enabling NTRUEncrypt for libgcrypt. **Source code**.

Education

2010-2014 PhD, Computer Science, *University of Wollongong, Australia*;

Thesis title: Revisiting Fully Homomorphic Encryption Schemes and Their Cryp-

tographic Primitives

2008-2009 Master of Engineering - Research, *University of Wollongong, Australia*;

2007 Master of Internet Technology, *University of Wollongong*, *Australia*;

2001-2005 Bachelor of Computer Science, BeiHang University, China.

Research Interest

Practical aspects of lattice based cryptography;

Cryptographic primitives for blockchains privacy, such as ring signatures, zero knowledge proofs;

See next pages for the full list of patents, standards and publications.

Patents

- Chameleon Hash technique and linkable ring signature technique
 - Zhenfei Zhang
 - Provisional patent, 2018.
- Digital signature technique
 - Jeffrey Hoffstein, Jill Pipher, William J Whyte, Zhenfei Zhang
 - United States Patent Application, 2018.
- Digital signature method and apparatus
 - Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, William J Whyte, Zhenfei Zhang
 - United States Patent 15530762, 2017.

Standards

- BLS Signature Scheme
 - D. Boneh, S.Gorbunov, R. Wahby, H.Wee, Z.Zhang
 - Internet-Draft.
- Quantum-Safe Hybrid (QSH) Ciphersuite for Transport Layer Security (TLS) version 1.2
 - J. M. Schanck, W. Whyte and Z. Zhang
 - Internet-Draft.
- Criteria for selection of public-key cryptographic algorithms for quantum-safe hybrid cryptography
 - J. M. Schanck, W. Whyte and Z. Zhang
 - Internet-Draft.
- Quantum-Safe Hybrid (QSH) Ciphersuite for Transport Layer Security (TLS) version 1.3
 - W. Whyte, Z. Zhang, S. Fluhrer and O. Garcia-Morchon
 - Internet-Draft.
- Efficient Embedded Security Standards (EESS) #1: Implementation Aspects of NTRUEncrypt
 - W. Whyte and Z. Zhang
 - Consortium for Efficient Embedded Security
- Quantum Safe Cryptography and Security; An introduction, benefits, enablers and challenges
 - One of 22 contributors
 - European Telecommunications Standards Institute(ETSI) white paper

Publications

2020

Practical Post-Quantum Few-Time Verifiable Random Function with Applications to Algorand

- Muhammed F. Esgin and Veronika Kuchta and Amin Sakzad and Ron Steinfeld and Zhenfei
 Zhang and Shifeng Sun and Shumo Chu
- Pre-print. IACR eprint. Source code.

• Pointproofs: Aggregating Proofs for Multiple Vector Commitments

- Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, Zhenfei Zhang
- ACM CCS 2020. IACR eprint. Source code.

• MPSign: A Signature from Small-Secret Middle-Product Learning with Errors

- Shi Bai, Dipayan Das, Ryo Hiromasa, Miruna Rosca, Amin Sakzad, Damien Stehle, Ron Steinfeld, Zhenfei Zhang
- PKC 2020. IACR eprint. Source code

Modular Lattice Signatures, revisited

- Dipayan Das, Jeffrey Hoffstein, Jill Pipher, William Whyte, Zhenfei Zhang
- Design, Codes and Cryptography. IACR eprint. Source code.
- 1st round, NIST post-quantum cryptography standardization process.

2019

• Middle-Product Learning with Rounding Problem and its Applications

- Shi Bai, Katharina Boudgoust, Dipayan Das, Adeline Roux-Langlois, Weiqiang Wen, Zhenfei
 Zhang
- Asiacrypt 2019. IACR eprint.

• Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications

- Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, William Whyte
- Crypto 2019. IACR eprint.

• (Linkable) Ring Signature from Hash-Then-One-Way Signature

- Xingye Lu, Man Ho Au, Zhenfei Zhang
- TrustCom 2019. IACR eprint.

• Ring Signatures based on Middle-Product Learning with Errors Problems

- Dipayan Das, Man Ho Au, Zhenfei Zhang
- Africacrypt 2019.

Raptor: A Practical Lattice-Based (Linkable) Ring Signature

- Xingye Lu, Man Ho Au, Zhenfei Zhang
- ACNS 2019. IACR eprint. Source code.

• Round5: Compact and Fast Post-Quantum Public-Key Encryption

- Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Thijs Laarhoven,
 Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen, Zhenfei Zhang
- PQCrypto 2019. IACR eprint. Website.
- 2nd round, NIST post-quantum cryptography standardization process.
- Cryptanalysis of an NTRU-based Proxy Encryption Scheme from ASIACCS'15

- Zhen Liu, Yanbin Pan, Zhenfei Zhang
- PQCrypto 2019. IACR eprint.

2018

• LAC: Practical Ring-LWE Based Public-Key Encryption with Byte-Level Modulus

- Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan He, Bao Li
- Pre-print. IACR eprint. Source code. talk
- First prize of Chinese post-quantum cryptography competition.
- 2nd round, NIST post-quantum cryptography standardization process.

• Shorter Messages and Faster Post-Quantum Encryption with Round5 on Cortex M

- Markku-Juhani O. Saarinen, Sauvik Bhattacharya, Oscar Garcia-Morchon, Ronald Rietman,
 Ludo Tolhuizen, Zhenfei Zhang
- Cardis 2018. IACR eprint.

• On the Hardness of the Computational Ring-LWR Problem and its Applications

- Long Chen, Zhenfeng Zhang, Zhenfei Zhang
- Asiacrypt 2018. IACR eprint.

• A signature scheme from the finite field isomorphism problem.

- Jeffrey Hoffstein, Joseph H. Silverman, William Whyte, Zhenfei Zhang
- MathCrypt 2018. IACR eprint, Slides.
- Journal of Mathematical Cryptology. Journal version

• Practical Signatures from the Partial Fourier Recovery Problem Revisited: A Provably-Secure and Gaussian-Distributed Construction.

- Xingye Lu, Zhenfei Zhang, Man Ho Au
- ACISP 2018.

• Optimizing polynomial convolution for NTRUEncrypt.

- Wei Dai, William Whyte, Zhenfei Zhang
- IEEE Transaction on Computers. IACR eprint, Source code.

• Fully Homomorphic Encryption from the Finite Field Isomorphism Problem.

- Yarkin Doröz, Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, Berk Sunar, William Whyte, Zhenfei Zhang:
- PKC 2018. IACR eprint.

2017

Choosing parameters for NTRUEncrypt

- Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte, Zhenfei
 Zhang
- CT-RSA 2017. IACR eprint.

Round2: KEM and PKE based on GLWR.

- Hayo Baan, Sauvik Bhattacharya, Óscar García-Morchón, Ronald Rietman, Ludo Tolhuizen,
 Jose Luis Torre-Arce, Zhenfei Zhang
- NIST PQC submission. IACR eprint.

• A signature scheme from Learning with Truncation.

- Jeffrey Hoffstein, Jill Pipher, William Whyte, Zhenfei Zhang
- Pre-print. IACR eprint.
- Anonymous Announcement System (AAS) for Electric Vehicle in VANETs.

- Man Ho Au, Joseph K. Liu, Zhenfei Zhang, Willy Susilo, Jin Li
- The Computer Journal.

2016

- Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world.
 - John M. Schanck, William Whyte, Zhenfei Zhang
 - PoPETs 2016. IACR eprint, Tor feature request, Source code.
- NTRU modular lattice signature scheme on CUDA GPUs.
 - Wei Dai, Berk Sunar, John M. Schanck, William Whyte, Zhenfei Zhang
 - HPCS 2016. IACR eprint.

2015 and earlier

- LLL for ideal lattices: re-evaluation of the security of Gentry-Halevi's FHE scheme.
 - Thomas Plantard, Willy Susilo, Zhenfei Zhang
 - Design, Codes and Cryptography.
- DA-Encrypt: Homomorphic Encryption via Non-Archimedean Diophantine Approximation.
 - Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte, Zhenfei
 Zhang
 - Pre-print. IACR eprint.
- Fully Homomorphic Encryption Using Hidden Ideal Lattice.
 - Thomas Plantard, Willy Susilo, Zhenfei Zhang
 - IEEE Transation on Information Forensics and Security.
- Adaptive Precision Floating Point LLL.
 - Thomas Plantard, Willy Susilo, Zhenfei Zhang
 - ACISP 2013.
- On the CCA-1 Security of Somewhat Homomorphic Encryption over the Integers.
 - Zhenfei Zhang, Thomas Plantard, Willy Susilo
 - ISPEC 2012.
- Lattice Reduction for Modular Knapsack.
 - Thomas Plantard, Willy Susilo, Zhenfei Zhang
 - SAC 2012.
- Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes.
 - Zhenfei Zhang, Thomas Plantard, Willy Susilo
 - ICISC 2011.