关于 ETEX 的那些你想知道却从不敢问的问题

或者说,如何在不会使用 LATEX 的情况下使用 LATEX

Tout ce que vous avez toujours voulu savoir sur \LaTeX sans jamais oser le demander

Ou comment utiliser \LaTeX quand on n'y connaît goutte

ver. 1.5

Vincent Lozano 著

December 27, 2022

Contents

Ι	I 关于 IATEX 的那些你想知道却从不敢问的问题					
	基本原则	9				
	1.1 安装	9				
	L.2 "生产"周期	1				
	1.2.1 编辑	1				
	1.2.2 编译	1				
	1.2.3 显示	2				
	1.2.4 打印	2				
	L3 源文件的结构	2				
	1.3.1 文档的类	3				

4 CONTENTS

序

男人的邪恶胜过女人的善良 1 。——《便西拉智训 2 》 42:14

从前……

一切始于 1990 年年初。我当时正在 PC 286 计算机上使用称为 WordPerfect 的软件,以此入门人们所谓的"文字处理"。这款软件现在仍然存在,并且由 Corel 公司维护,运行在日后拥有响当当名头的 MS-DOS 中。MS-DOS 集成了用以粗略预览文档的接口,尤其允许用户"看到代码",也就是借助一种标记语言将文档可视化,以灵活地控制。

稍晚些时间,随着 Windows 3.1 迅速风靡,人们突如其来地追求图形界面,我虽然仍情有不甘,却逐渐说服了自己去使用那款在今天很出名的文字处理软件——的 2.0 版(后面还带个小小的字母,在当时那可真是重大的升级)……但我日后才知道,这个版本有个很有趣的"特性": 文件体积过大,超过了某个特定的值时,会出现保存失败的情况!这时,你既不能保存,也不能恢复文档。有些头铁的朋友尝试先删除几行再保存,但这种撞大运的解决方案并没能成功……

当时,大家毫不掩饰地嘲讽这些"你懂的"公司制作的软件³ ——这里就不点名了。我周围的大多数人躺平地选择了接受,认为使用这些堂而皇之不给出警告的可悲的跟风之流是正常现象。软件的这种"特性"坚定了我的信念: 我绝不使用这种软件。当时还在攻读工程师学位的我意识到,我今后的部分工作将会集中在起草文档和使用通用的信息系统上。为此,我需要足够健壮的工具。

我是在让·莫奈大学 (Université Jean Monnet) 和圣-埃蒂安高等矿业学校 (École des Mines de Saint-Étienne) 攻读 DEA (现在叫 master recherche) ⁴ 时相继接触 UNIX 和 Linux 的。那时

¹本书的章首引言来自《旧约》与《新约》,将它们引用在这里纯粹是我一手挑动的——有时,这些句子中带有一些与章标题相关的内容(译注:宗教相关内容按原文直译,不代表译者对任何宗教文献中任何语句的认可或否认。本书未标注"译注"字样的脚注均为原书脚注)。

 $^{^2}$ 译注:原文如此,但作为《诗歌智慧书》一部分的《便西拉智训》(天主教译为《德勋篇》)似乎属于次经,即在一些教派中不被承认作为《圣经》的一部分出现。

³这些被嘲讽的对象中,我们可以看到一些名场面:通用汽车公司老板对比尔·盖茨挑衅性言论的回应(译注:可能是指比尔·盖茨的观点,即如果汽车工业能够像计算机领域一样发展,那么一辆汽车只需要 25 美元就能买到,并且消耗 1 加仑汽油就能跑 1000 英里。作为回应,通用汽车方面罗列了一系列言论来嘲讽,例如"如果那样,那么想要汽车熄火,需要点击开始菜单"),以及罗伯托·迪·科斯莫(Roberto Di Cosmo)的"赛博空间中的陷阱" (piège dans le cyberespace)。

⁴译注: DEA 即 diplôme d'études approfondies, 法国教育体系下的一种学位。

(1993~1994年),在我刚写论文的开头时,"拉泰克"(latèque)这个词就开始围着我转。这里问题似乎是要找到一款能排出数学公式的软件,而说到撰写理科文档,IATEX 似乎显然是避不开的唯一答案。说实话,找软件这种问题甚至都根本没出现过!

于是,我着手把这个叫做 IAT_EX 的"玩意儿"装在 Mac 系统(安装的发行版叫 OzT_EX)和另一个由古登堡(Gutenberg)协会支持的发行版系统——Solaris 上。为此,我还得去收买一个系统管理员,让他同意创建一个特权用户 texadm,用来管理那个发行版……

1994 年年初,我带着坚定的意志使用 LATEX 开始写论文。在 1995 年,在被我发现的种种技巧激起的兴趣的巨大感召下,我着手为同事和实验室起草用于入门 LATEX 的指导手册。这个手册就是本书的原型。在 1997 年,在练习了两年并一只脚踏入了排版领域后,我更坚定了自己的看法: LATEX 绝对是写严肃文件的首选软件:它有对版面 (mise en page)的全面控制,有对参考文献的管理,支持索引 (通用名称和作者名),能轻松操作文件。最重要的是,排版的结果很好看。从那时起,这就是支撑我使用 LATEX 的最强大而无可争辩的理由。

今天,作为国立圣-埃蒂安工程师学院(École Nationale d'ingénieurs de Saint-Étienne)的计算机高级讲师,我用 LèTeX 来起草理科文档和教学材料。几年使用下来,我仍然在学习和发现,也仍然会对项目贡献者提出的各种扩展啧啧称奇。这些扩展使 LèTeX 成为了充满宝藏的巴扎(bazar),成为了一款名副其实地朝着更高工效发展的 5 、始终以"产出优美的工作成果"为目标的卓越而独特的工具。

本书结构

本书是针对"使用 IATeX 进行文字处理"的介绍。它不是一本参考手册,但本书的写作目标是传授读者使用 IATeX 的基本知识,并在可能情况下,让读者对它感兴趣。读者可以在本书中找到开始使用 IATeX 的必要信息和起草文档的建议。为了提升阅读体验,我们"高明地"将本书分为了若干章节,并配有附录。本书首先介绍 IATeX 的基础知识:

然后有如下附录:

我们建议您先从第1章一路读到数学部分。其余的章节相对独立,可以根据需要阅读。再强调一遍,我们建议在熟练掌握了基础概念之后再去阅读本书的第II部分。文档最后的索引提供了查询所需内容的快捷入口。最后,正如同其他关于 IPTEX 的答疑解惑的法文资料,我没有费神地将所有 IPTEX 术语和计算机术语逐一翻译。

你需要知道的知识

本书适用于初学者阅读,不要求读者有关于 LèTeX 的任何知识。然而,本书读者应当具有基本的、有关操作系统和计算机用户的知识。本书读者最好懂得如何从使用绘图获图片处理软件开始,

⁵并不是指那些诸如在菜单中添加一个功能入口、在弹出对话框时添加个提示音的"提效"。

创建一个封装在其计算机系统中的 PostScript 文件。

你不会通过本书学习到的知识

你正阅读的这本图书在令人称赞的同时也有以下知识面漏洞。

- 本书不含有关于 T_EX 或 L^AT_EX 生成字体原理的清晰解释。你不会找到关于"元字体"(METAFONT) 一词的知识。
- 你不会找到关于在 UNIX 系统下安装 LATEX 发布版的知识。
- 你不会找到任何现有扩展包的"目录"或清单,无论扩展包是否实用、是否兼容。
- 本书回避了"先有鸡还是先有蛋"之类的问题,也避免讨论关于上帝和科学的问题。
-
- (1) 不要对本书的内容抱有不切实际的幻想:本书书名着实是个不要脸的谎言。

TFX 是什么?

唐纳德·欧文·克努特(Donald Ervin Knuth)——就是那个有着众多关于数学和算法的著作 [包括《计算机程序设计的艺术》(英: The Art of Computer Programing)] 的数学家——对 20 世纪 70 年代的技术条件下打印出来的文章的样子深感失望,产生了开发称为 T_{EX} 的文字处理系统的初步想法。20 世纪 80 年代初次公布的 T_{EX} 是由一个宏处理器(processeur de macro;英:macro processsor)和几个基元(primitive)组成的复杂系统。第一组预编译的宏很快以"普通格式"(format plain)的名义出现。

注意, TeX 既不是文字处理器 [克努特将其称为"typesetting system", 可以翻译成"排字系统"(système de composition)] 也不是一种编译后的编程语言。这是克努特关于 TeX 的一些说明⁶:

"英文的'technology'一词由希腊文词根' $au\epsilon\chi$ …'演变而来,这个词根有时也指艺术和科学技术。 $T_{\rm E}X$ 由此而来,正是 $au\epsilon\chi$ 的大写形式。"

关于 TeX 中"X"的发音:

"……它的发音像德语单词 ach 中的'ch', 或西班牙语中的'j'……如果你对着电脑正确地发音, 屏幕上会出现哈气。"

⁶出自 TEXBook 的"The Name of the Game"一章。

你家里的家政阿姨可能会更想让你读成"TeK",从而避免读得像橡胶一样,或者没两天就要擦电脑。⁷

最后,对于 T_EX 的标识设计,克努特强调字母 E 需要稍微错位一些,以提示人们这是关于排版的工具。对于确实会遇到的一些无法使字母 E 稍微错位的情况,他坚持道,需要将 T_EX 写成" T_EX "。

目前, $T_{\rm E}X$ 的最新版本号是 3.1415926 (没错,它收敛于 π)。在 $T_{\rm E}X$: the program 一书的前言中,克努特估测上一个程序漏洞已于 1985 年 11 月 27 日发现并改正,并出价 20.48 美元来悬赏下一个漏洞。今天,这个十六进制的金额停留在 327.68 美元,如果有人喜欢 2 的幂,这个数字应该会让他满意……

IATEX 是什么?

1985 年, T_{EX} 已经传播了一段时间,莱斯利·兰波特(Leslie Lamport)将宏组合起来,创造了一个视野更广的格式,称为 $I_{A}T_{EX}$,版本号为 2.09。今天, $I_{A}T_{EX}$ 已经成为了事实标准,只有一些生古的情况才会只支持 T_{EX} 而不支持 $I_{A}T_{EX}$ 。然而, $I_{A}T_{EX}$ 有点像 T_{EX} 的"镀层",提供 T_{EX} 的宏的调用。有时,掌握 T_{EX} 中的部分概念有助于从困难的处境中脱身。兰波特在他的书中这样说 [10]:

"可以将 IATEX 想象成一幢房子,它的构架和钉子就是由 TeX 提供的。如果你只是在房子中生活,那么你不需要准备钉子、搭建构架,但如果想要为房子新增一个房间,那么你就会需要它们。"

他还说道:

"LATEX 的出名是因为它允许作者从排版工作中抽离,并且专注在写作上。如果你在形式上花费了太多时间,那么你并没有很好地使用 LATEX。"

从 1994 年至今,一个由欧美成员组成的团队[以弗朗克·米特尔巴赫(Frank Mittelbach)为核心]着手 LèTeX 的开发。1994 年发布的 LèTeX 版本称作LèTeX 2_ε 。团队的长期目标是孵化一个名为 LèTeX3 的系统。

使用许可

画重点: T_EX 和 L^AT_EX 属于自由软件——也因此是免费的。同时,自由软件(logiciels libres; 英: free software)的标志是其开放性。因此,T_EX 也可以有其 Web 源码⁸ 。L^AT_EX 的宏是以 T_EX

⁷译注:此句原文是"Votre humble serviteur se contente lui de le prononcer « TeK » pour contrecarrer l'aspect caoutchouteux et éviter d'avoir à nettoyer son écran régulièrement.",实在没看懂是什么意思(尤其是中间出现的 lui 看不太懂是哪个词的宾语),先大致猜着翻了,请大家赐教。

 $^{^8}$ 克努特孕育的 Web 语言被形容为一种"文学性的编程语言"。使用 Web 源码,可以生成程序的 Pascal 或 C 代码,也可以为代码生成 TeX 文档。

源码的格式发布的⁹。对于大部分用户来说,获取程序的源码可能不是首要考虑的,但需要知道, 正是这种不隐藏任何内容的性质,使得人们可以改进现有的扩展、创造新的扩展。

一款软件是自由软件,并不意味着我们可以使用它做任何想做的事情。自由软件属于其作者,所有的改动都需要被记录。同样,每次改动都需要以与具有与改动前不同的文件名体现。这样可以保证系统的严密和便携(关于IFIEX 2_{ε} 的使用许可,请参阅 ftp://ftp.lip6.fr/pub/TeX/CTAN/macros/latex/base/lpp)。

不使用 LATEX 的 5 个理由

在一些情况下,强烈建议不使用 LATEX。具体来说,这些不使用 LATEX 的理由如下。

- 1. 你只将文字处理器用于制作贺卡、写邮件、记录几个想法等用途。
- 2. 你十分喜欢鼠标(可能具有 1~3 个按键),并且认为输入方程的唯一方式就是频繁地使用鼠标点来点去。
- 3. 你觉得 UNIX 是一个"让人头痛"且"不易使用"的系统,或者你对所有的编程语言都有着强烈的反感。
- 4. 你认为以下情况是正常的:
 - (a) 新版软件不能读取其旧版本创建的文档;
 - (b) 要使用新版软件, 必须换一个操作系统;
 - (c) 要使用新版操作系统, 必须换一台计算机;
 - (d) 要使用新计算机,必须……
- 5. 你不知道键盘上的"\"键在哪里。

如果你的情况满足以上任何一条,最好在你现在的系统上知足常乐。

使用 LATEX 的若干理由

说服本书读者使用 T_EX 和 $I^\mu T_EX$ 而不是其他系统似乎不成问题——毕竟,你都读这本书了,也就已经不知不觉被说服了。让我们看看 T_EX 的设计者是怎么说的:

⁹译注:此句原文: Les macros de L^AT_EX sont quant à elles distribuées sous forme de code source T_EX., 翻译时没 看懂 elles 指谁,翻译可能有误。我查到 macro 可以写成 macro-instruction,为阴性,故用 elles 指代这些宏,但不能确定。请读者赐教。

"在使用 T_{EX} 起草文档时,你就是在指挥计算机如何准确地把你的稿件转化为几个页面,以媲美世界上最好的打印机能够实现的排版样式。"——D.E. 克努特, T_{FX} Book[9]

 T_{FX} 和 $I_{A}T_{FX}$ 可以生成无与伦比的文档(并可以极细微地调整 10),这显然归功于以下元素:

- 仔细地绘制字体;
- 处理排版上的细节,如连接号(tiret)和合字:
 - "avez-vous bien regardé ces tirets (page 19-23) "这句文字中的各种连接号;
 - fin 一词中的"fi"、souffle 一词中的"ffl",以及 trèfle 一词中的"fl";
- 性能良好的断字算法;
- 专门针对数学公式的呈现。

此外,IATEX 是少数瞄准科技文档的文字处理软件。这是因为,除了处理方程和公式之外外,IATEX 还有大量围绕起草文章、生成参考文献和索引的功能。

最后, $I = T_E X$ 尤其针对大文件的生成做了适配。这不仅是由于处理 $I = T_E X$ 文档本身占用的内存空间极小,也是因为宏和交叉引用($référence\ croisée$; 英: $cross\ reference$)可以让我们对文件有着全面而灵活的控制。

交叉引用 IATEX 允许以符号的形式于文档的任何位置引用有编号的对象。此外,标题、图片、表格、方程、参考文献、列表、定理等的序号都可以在文章的多个位置以简单的方式引用,不需要我们去关心具体的号码本身是多少。

宏 宏无疑是 IATEX 最强大的功能。

 $^{^{10}}$ 作为参考,LATeX 内置的衡量单位是比例点(英: $scaled\ point$),在 TeXBook 中记作 sp,合 1/65536 点; 1 点合约 1/72 英寸; 1 英寸合 2.54 厘米。比例点可以在大约 50 埃米的尺度上调整文档。目前打印机的分辨率对于这个尺度来说,实在是太充裕了。

Part I

关于 IATEX 的那些你想知道却从不敢 问的问题

Chapter 1

基本原则

人若身患漏症,他因这漏症就不洁净了。——《圣经·利未记》15:2

本章介绍 LATEX 的基本原理。你将会看到关于 LATEX 安装的简介、使用 LATEX 的基本"流程"(session)介绍、文章格式的结构、使用变音符号的注意事项,认识几个工具,以及了解面对编译错误消息时的态度。

1.1 安装

你想安装 $I
ightharpoonup I
ightharpoonup I
ightharpoonup I
ightharpoonup X 的其中一个发行版,具体的版本取决于你的操作系统 <math>^1$ 。发行版中带有可以自动安装和配置 I
ightharpoonup X 、 Tr X 和其他相关内容的程序。

对于 UNIX 我们可以找到称为 teT_EX 的发行版,虽然它的开发早在 2006 年就停止了。今天,我们一般安装 T_EXLive (http://www.tug.org/texlive)。

对于 macOS 建议安装的发行版是 MacTeX (http://www.tug.org/mactex)。

对于 Windows 最简单的方式无疑是选择 proTeXt (http://www.tug.org/protext)。它会安装称为 MiKTeX 的发行版 (http://www.miktex.org) 和几个开发工具,其中包含一个查看 PostScript 文件的程序 (gsview)。

偶尔,需要在为发行版中搭配一款文字编辑器(如果其中没有包含),因为你很快就能看到,使用 LAT_EX 就是在文件中输入文字和命令。

 $^{^1}$ 如果你不知道操作系统是什么东西,那么你使用的是 macOS ; 如果你不知道你的计算机用的具体是哪个操作系统,那么你在用 Windows; 否则,你在用 UNIX……

- UNIX 中,推荐使用 emacs 或 vi,即使前者明显比后者更高级,但二者用户之间无结果的恶意争吵仍在继续。
- kile 和 texmaker 是已集成的开发环境。依靠它们,初学的用户在入门时会觉得更轻松。它们的特点是将编辑、编译和可视化集成在一个界面。这两个环境也使通过菜单、对话框或其他标签来探索 LATFX 指令称为可能(如图1.1a 所示)。
- Windows 中的对应产品是 TFXnicCenter (如图 1.1b 所示)。
- macOS 中的对应山品是 TEXshop 和 iTEXmax。

$\begin{array}{c} {\rm Kile} \\ {\rm T_{\!E}XnicCenter} \end{array}$

Figure 1.1: 集成的两个开发环境: Linux 中的 Kile 和 Windows 中的 T_E XnicCenter。它们将编辑、编译和可视化集成在一个界面中

你很快就会学到,用 IAT_EX 制作文档是一个翻译(也称作编译)的过程——将编辑者创建的源文件转换为用于显示或印刷的格式²。因此,发行版中内置了或多或少的著名工具,可以将编译后的不同格式的文件显示出来。

对于 PDF 格式 除了著名的 acrobat reader, UNIX 中还有一些可以显示 PDF 文件, 如 xpdf、evince 等。

对于 DVI 格式 UNIX 中的 xdvi、kdvi 和 Windows 中的 yap 都是可以显示这种 LaTeX 编译文件的程序。

对于 PostScript 格式 ghostscript 套件(在各平台下的名称可能有差异)可以显示 PostScript 文件。

① 需要注意,为了使你选用的发行版包含 \LaTeX 的 "法文"模式,以确保能够正确处理断字 (césure; 英: hyphenation),我们需要在编译文档是需要更改其 "日志"(见 1.6 节)以使法文模式加载:

LaTeX2e <2005/12/01>

Babel $\langle v3.8h \rangle$ and hyphenation patterns for english, [...] dumylang, french, loaded.

²本章会略微多介绍一些这个格式。

1.2 "生产"周期

即使 LATEX 并不是通常意义上说的编译型语言,但我们仍然可以将制作一个 LATEX 文档的周期与使用一款经典的编程语言开发软件的编辑—编译—执行周期进行类比。

1.2.1 编辑

一个 \LaTeX 源文件是一个文本文件³。因此,对 \LaTeX 文件的操作并不依赖于某个特定的软件,只需要一个经典的文本编辑器即可。因此,若要操作 \LaTeX 文档,指令

» emacs 「文件名」.tex &

或

» vi 「文件名」.tex

足以让你进入 I^AT_EX 文档这个充满野性和未知的世界。在 Windows 中,根据自己的喜好,我们可以选用一款文字编辑器。注意,对于 I^AT_EX 源文件,推荐使用.tex 扩展名名。

1.2.2 编译

我们用如下指令开始编译:

» pdflatex 「文件名」.tex

早晚有一天,你会看到编译会产出错误。这将是 1.6 节会处理的问题。总之,解决了编译问题后,我们会得到一个带有.pdf 扩展名的文件,它代表便携文件格式(英: portable document format),这是一种由 Adobe 公司创造的著名格式。

- ① 历史上,编译 LATEX 源文件会生成 dvi 文件,代表设备无关 (英: device independant)。此类文件独不受输出环境(如屏幕、打印机等)的影响。这是一种包含了"图像"的 LATEX 便携二进制文件,可以用于各种操作系统。随后,出现了一批用途各异的程序:
 - 用于显示文档,即.dvi→ 点阵屏幕;
 - 用于打印,即.dvi→打印机语言;
 - 用于转换格式,即.dvi→PostScript 文件。

图1.2表明了 UNIX 生成最终文件过程中参与流程的多种程序。

³即文件仅由组成其中符号的代码构成。

① 除了使用 pdflatex 外,也可以使用其他"编译器"来生成 PDF 文件。例如,xelatex 和 lualatex 可以能正确地处理以 UTF-8 编码的文件,是常用的替代选项。

Figure 1.2: UNIX 中参与生成过程的工具

1.2.3 显示

在编译后,可以简单地使用 evince 程序来完成显示步骤。输入以下指令: vevince 「文件名」.pdf &

这是一个 linux 下运行的十分直观的程序,能够给出一个方便阅读的文件预览。

① 注意,不必在每次编译后都重新运行 evince,它显示的内容会自动刷新。

1.2.4 打印

对于 pdf 格式,如何打印它这一问题就丢给了你的操作系统。关于这一点,没有特殊的注意事项。你有了一个文件,可以自由地处置它,无论是直接打印,还是根据你所处的环境来发挥才艺。

① 从 dvi 到 ps 格式的转换需要调用 dvips 程序:

» dvips 「文件名」.dvi

这可以生成一个 PostScrpt 格式的文件。这个格式也由 Adobe 创造,是一种打印机语言,可以看作 pdf 的祖先。目前的打印机出厂即可识别这种打印机语言。我们可以说,文件发送到打印机时,十有八九传送的是 PostScrpt 格式的参数。对于 PostScript 格式的文件,有大量可以显示、修改这种文件的工具。

1.3 源文件的结构

本节将介绍一种文档类型。实际上,所有 LATEX 文档都具有相同的结构,形式如下:

```
\documentclass[「类选项1」,「类选项2」,...]{「类」}
\usepackage[「包选项1」,「包选项2」,...]{「包」}
```

「文前部分」

. . .

\begin{document}

··· 「文本」

. . .

\end{document}

如此一来,所有的 IATEX 文档都可以按以下方式拆解。

- 说明文档的 「类」;
- 文前部分,包含以下内容:
 - 使用特定的 「包」;
 - 多样的初始化和声明;
- 文档主体,即我们将要亲手输入的全部内容,出现在\begin{document} 和\end{document} 之间。

以下介绍各部分的细节。

1.3.1 文档的类