Proiect SAIIV

Scopul Proiectului

Proiectul urmărește să dezvolte un sistem interactiv de control al dispozitivelor electronice folosind urmărirea mâinii, cu aplicabilitate în domenii precum automatizarea casei, educație sau divertisment.

Funcționalitate

Sistemul utilizează:

- Un modul software bazat pe OpenCV şi MediaPipe pentru detectarea şi urmărirea mâinilor.
- Un microcontroler (Arduino) pentru controlul efectiv al dispozitivelor conectate.
- Un laptop cu cameră care să ruleze programele Python și sa fie conectt la un microcontroler (Arduino) pentru comunicarea serială.

Componentele sistemului

1. Modul de procesare video:

- a. Captură video în timp real.
- b. Detectarea mâinilor și identificarea tipului de mână (stânga/dreapta).

2. Comunicare cu Arduino:

- a. Trimiterea comenzilor pentru controlul intensității luminii (pentru mâna stângă).
- b. Controlul individual a LED-urilor (pentru mâna dreaptă).

3. Interfață grafică:

a. Suport pentru afișarea feedback-ului vizual, cum ar fi nivelul de lumină setat sau numărul de degete ridicate.

Componente utilizate

- O placuţă Arduino;
- Un breadboard;
- 5 LED-uri;
- 5 rezistențe de 220Ω;
- Jumper cables;

Arhitectură

Sistemul este compus din următoarele module principale:

1. Cod Python:

- a. Utilizează biblioteci precum OpenCV și MediaPipe pentru procesarea imaginilor și detectarea mâinilor.
- b. Tratează datele obținute pentru a determina gesturile și distanțele între punctele de referință.
- c. Trimite datele prelucrate către Arduino prin intermediul unui port serial.

2. Cod Arduino:

- a. Primește comenzile de la calculator (prin Python) și controlează dispozitivele electronice conectate.
- b. Codul este optimizat pentru gestionarea rapidă a comenzilor.

3. Simulare:

a. Reprezintă o simulare virtuală a dispozitivelor controlate, folosint platforma TinkerCAD.

Implementare

1. Procesarea video

- Folosește modulul "HandTrackingModule.py" pentru detectarea și urmărirea mâinilor.
- Functii principale:
 - o findHands(): Detectează mâinile și identifică tipul (stânga/dreapta).
 - fingersUp(): Determină starea degetelor (ridicat/coborât).

o findDistance(): Calculează distanța între punctele de referință (folosit pentru ajustarea intensității).

2. Comunicarea cu Arduino

- Protocol serial pentru transmiterea comenzilor:
 - o B{valoare}: Setează intensitatea luminii.
 - F{index}{stare}: Controlează LED-urile individuale.

3. Simulare

• Sistemul a fost refăcut utilizând platforma TinkerCAD, care permite simularea funcționării dispozitivelor electronice într-un mediu interactiv și intuitiv.

Rezultate și Concluzii

Proiectul demonstrează capacitatea de a controla dispozitive electronice în timp real utilizând doar gesturi ale mâinii. Implementarea sa demonstrează eficiența interfeței ommașină și poate fi extinsă pentru aplicații mai complexe.

Exemplu de funcționare

1. Pentru controlarea numarului de LED-uri aprines

Fiecare LED este legat la un deget (luate de la stănga la dreapta), folosind mana dreapta.

2. Pentru controlarea intensități tuturor LED-urilor

Toate LED-urile o să aibă aceași intensitate, folosind mana stanga.

Bibliografie

- 1. OpenCV Documentation Documentație oficială pentru biblioteca OpenCV.
- 2. MediaPipe Hands- Soluție oficială MediaPipe pentru detectarea mâinilor.
- 3. Arduino Documentation Ghid și documentație oficială Arduino.
- 4. <u>ChatGPT OpenAl</u> Asistent Al care a contribuit la scrierea codului Python și Adruino căt și la redactarea documentației și structurarea informațiilor.
- 5. <u>TinkerCAD Simulator</u> Platformă pentru simularea și testarea proiectelor.
- 6. Diverse tutoriale și resurse online pentru Python, Arduino și dezvoltarea interfețelor om-mașină. Cum ar fi : https://www.youtube.com/@murtazasworkshop/featured