Video Lectures On Artificial Intelligence

Lecture 14
Optimization I (Simulated Annealing)

Prof. Deepak Khemani

Department of Computer Science IIT Madras

Optimization - bent optima Materials - minimum energy

Materials - minimum energy

ANNEALING - controlled cooling

Random Walk - EXPLORATION

(vol(c) -> Q-current node evol(n) -> m-next node

 $P(c,n) = \frac{1}{1+c}$

 $P(c,n) = \frac{1}{1+e^{\Delta E}/T}$

ne random-neighborn (C)
evaluate DE More with P((,n) =

STOCHASTIC HC n = random-neighborn (C)
evaluate QE More with P(c,n) =

effect ΔE T=10 , eval(c) = 107eval(n) $-\Delta E$ $e^{-\Delta E/T}$ P 80 27 14.88 0.06

effect (ΔE , T=10, eval(c) = 107 eval(n) - ΔE $e^{-\Delta E/T}$ P 80 27 14.88 0.06 100 7 2.01 0.33

T=10 , eval(c) = 107 cal(n) - 入E 14.88 0.06 27 80 0.33 2.01 00 0,20 107 $|\cdot \bigcirc$

, coal (c) = 107 effect (DE T=10 Cal(n) ->E 14,88 0.06 27 80 0.33 2.01 100 0,20 107 $|\cdot \bigcirc$ 0.78 0.27 -13

 $\frac{1}{e^{-\Delta E/T}} = 107$ T=10 coal (n) 14,88 0.06 27 80 0.33 2.01 100 0,20 $|\cdot \bigcirc$ 107 0.78 120 0.27 -13 -93 ().99 $G_{1} \bigcirc 1$

T=10 pool(c) = 107 = Pcal(n) 一人も 0.06 14,88 80 0.33 2.01 100 0.20 $|\cdot ()$ 0.78 0.27 0.01

T=10 for C(c)=107 $E=\frac{-\Delta E}{T}$ chal (n) 14.88 0.06 0.33 2.01 00 0.20 $|\cdot \bigcirc|$ 0.78 0.01 -13/7

-13/T 0.000002

0.000002

-13/T 0.000002 0.074 0.78

-13/T 0.000002 0.074

0.000002 0.074

Temontony-decreasing-Pon (T)

Temminu-decreamy-in (T) COOUNG RATE

SIMULATED ANNEALING - controlled cooling J = Very High n = random-neighborn (C) evaluate SE T = montmu-duranny-Pn (T)

SIMULATED ANNEALING - controlled cooling J = Very High n = random-neighborn (C) evaluate SE T = montour-durany-Pn (T)

SIMULATED ANNEALING - controlled cooling J = Very High n = random-neighborn (C) evaluate QE T = montinu-duranny-Pn (T)

