МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №4 по курсу «Методы машинного обучения»

Тема: «Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей.»

ИСПОЛНИТЕЛЬ:	_ьабин В.ь	•
	ФИО	
группа ИУ5-22М		
	подпись	
	" <u>"</u>	2020 г.
ПРЕПОДАВАТЕЛЬ:		
	ФИО	
	подпись	
	" "	2020 г.

Москва - 2020

Задание:

- 1)Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2)В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3)С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4)Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью трех подходящих для задачи метрик.
- 5)Постройте модель и оцените качество модели с использованием кросс-валидации. Проведите эксперименты с тремя различными стратегиями кросс-валидации.
- 6)Произведите подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации.
- 7)Повторите пункт 4 для найденного оптимального значения гиперпараметра К. Сравните качество полученной модели с качеством модели, полученной в пункте 4.
- 8)Постройте кривые обучения и валидации.

lab4

May 4, 2020

[133]: import pandas as pd

import io

import numpy as np

```
import requests
      from sklearn.impute import SimpleImputer
      # mushrooms dataset
      url = "https://www.wolframcloud.com/obj/d0c0084e-0b60-46db-a4d9-beb33412905e"
      s = requests.get(url).content
      data = pd.read_csv(io.StringIO(s.decode('utf-8')))
      data.head()
[133]:
        CapShape CapSurface CapColor ... Population Habitat
                                                                 Class
          convex
                     smooth
                              brown ... scattered
                                                    urban poisonous
      1
          convex
                     smooth yellow ...
                                        numerous grasses
                                                                edible
            bell
      2
                     smooth white ... numerous meadows
                                                                edible
      3
                    scaly white ... scattered urban poisonous
          convex
                     smooth
                                                                edible
          convex
                              gray ... abundant grasses
      [5 rows x 23 columns]
      Dataset preparation
[134]: rows, columns = data.shape
      print('rows = {}; columns = {}'.format(rows, columns), '\n\n')
      # go through each dataset column and check unique values to find empty one_
       → (like NaN or Missing[])
      for col in data.columns:
        print('{}: {}'.format(col, data[col].unique()))
      rows = 8124; columns = 23
      CapShape: ['convex' 'bell' 'sunken' 'flat' 'knobbed' 'conical']
```

CapSurface: ['smooth' 'scaly' 'fibrous' 'grooves']

```
'cinnamon'
       'green']
      Bruises: [ True False]
      Odor: ['pungent' 'almond' 'anise' 'none' 'foul' 'creosote' 'fishy' 'spicy'
       'musty']
      GillAttachment: ['free' 'attached']
      GillSpacing: ['close' 'crowded']
      GillSize: ['narrow' 'broad']
      GillColor: ['black' 'brown' 'gray' 'pink' 'white' 'chocolate' 'purple' 'red'
      'buff'
       'green' 'yellow' 'orange']
      StalkShape: ['enlarging' 'tapering']
      StalkRoot: ['equal' 'club' 'bulbous' 'rooted' 'Missing[]']
      StalkSurfaceAboveRing: ['smooth' 'fibrous' 'silky' 'scaly']
      StalkSurfaceBelowRing: ['smooth' 'fibrous' 'scaly' 'silky']
      StalkColorAboveRing: ['white' 'gray' 'pink' 'brown' 'buff' 'red' 'orange'
      'cinnamon' 'yellow']
      StalkColorBelowRing: ['white' 'pink' 'gray' 'buff' 'brown' 'red' 'yellow'
      'orange' 'cinnamon']
      VeilType: ['partial']
      VeilColor: ['white' 'brown' 'orange' 'yellow']
      RingNumber: [1 2 0]
      RingType: ['pendant' 'evanescent' 'large' 'flaring' 'none']
      SporePrintColor: ['black' 'brown' 'purple' 'chocolate' 'white' 'green' 'orange'
      'yellow'
       'buff']
      Population: ['scattered' 'numerous' 'abundant' 'several' 'solitary' 'clustered']
      Habitat: ['urban' 'grasses' 'meadows' 'woods' 'paths' 'waste' 'leaves']
      Class: ['poisonous' 'edible']
[135]: """
       on initial viewing it seems that we have single column
       with absence of values in rows: this column is StalkRoot and
       absence of values is indicated like Missing[]
       11 11 11
       # Take a look at columns more precisely to ensure that this column is single_
        →with absence of values
       for col in data.columns:
           # Missing[] amount
           temp_null_count = data[data[col] == 'Missing[]'].shape[0]
           dt = str(data[col].dtype)
           if temp_null_count>0 and (dt=='object'):
               temp_perc = round((temp_null_count / rows) * 100.0, 2)
               print('Column {}. Data type {}. amount of Missing[] values {}, {}%.'.
        →format(col, dt, temp_null_count, temp_perc))
```

CapColor: ['brown' 'yellow' 'white' 'gray' 'red' 'pink' 'buff' 'purple'

```
/usr/local/lib/python3.6/dist-packages/pandas/core/ops/array_ops.py:253:
      FutureWarning: elementwise comparison failed; returning scalar instead, but in
      the future will perform elementwise comparison
        res_values = method(rvalues)
[136]: data['StalkRoot'].unique()
[136]: array(['equal', 'club', 'bulbous', 'rooted', 'Missing[]'], dtype=object)
[137]: # impute data with most frequent values
       imputation = SimpleImputer(missing_values='Missing[]', strategy='most_frequent')
       data_imputed = imputation.fit_transform(data[['StalkRoot']])
       np.unique(data_imputed)
[137]: array(['bulbous', 'club', 'equal', 'rooted'], dtype=object)
[138]: # put imputed data in our dataset
       for i in range(rows):
         data['StalkRoot'][i] = data_imputed[i][0]
       data['StalkRoot'].unique()
      /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2:
      SettingWithCopyWarning:
      A value is trying to be set on a copy of a slice from a DataFrame
      See the caveats in the documentation: https://pandas.pydata.org/pandas-
      docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
[138]: array(['equal', 'club', 'bulbous', 'rooted'], dtype=object)
[139]: | # now we'll transform categorical columns to columns with values in [0, 1]
       object_columns = []
       # initially, find amount of unique values for each column
       # and add categorical columns to object_columns
       for column in data.columns:
           dt = str(data[column].dtype)
           amount_unique = len(pd.unique(data[column]))
           print('{}: {}, {}'.format(column, amount_unique, dt))
           if dt == 'object':
               object_columns.append({'column': column, 'amount': amount_unique})
      CapShape: 6, object
      CapSurface: 4, object
```

Column StalkRoot. Data type object. amount of Missing[] values 2480, 30.53%.

CapColor: 10, object

```
Bruises: 2, bool
    Odor: 9, object
    GillAttachment: 2, object
    GillSpacing: 2, object
    GillSize: 2, object
    GillColor: 12, object
    StalkShape: 2, object
    StalkRoot: 4, object
    StalkSurfaceAboveRing: 4, object
    StalkSurfaceBelowRing: 4, object
    StalkColorAboveRing: 9, object
    StalkColorBelowRing: 9, object
    VeilType: 1, object
    VeilColor: 4, object
    RingNumber: 3, int64
    RingType: 5, object
    SporePrintColor: 9, object
    Population: 6, object
    Habitat: 7, object
    Class: 2, object
[0]: from sklearn.preprocessing import OneHotEncoder
     ohe = OneHotEncoder()
[0]: """
     after oneHot encoding for single value we'll have something like this [0.0, 1.
     \rightarrow 0, 0.0, 0.0, ...]
     but we need to have just a number - so this function will normalize it with \sqcup
     \rightarrownext formula:
     norm_val = (N - i) / N, where
     N - amount of unique values for our column
     i - index of 1.0 in values [0.0, 1.0, 0.0, 0.0, ...] before normalizing
     so for example if we`ll have 10 different values - then in normalized view it_{\sqcup}
     \hookrightarrow will variating
     from 0.1 (if index = 9) to 1.0 (if index = 0)
     HHH
     def from_bytes_to_num(col_in_arr, uniquie_amount):
         normalized_col = []
         for value in col_in_arr:
             normalized_value = (uniquie_amount - np.where(value == 1.0)[0][0]) /__
      →uniquie_amount
             normalized_col.append(float("{0:.4f}".format(normalized_value))) #_
      \rightarrow digits after float point
         return normalized_col
     normalized_data = []
```

```
for col in object_columns:
    uniquie_amount = col['amount']
    col_name = col['column']

#encode with oneHot
    column_after_encoding = ohe.fit_transform(data[[col_name]])

#fetch it to array
    col_in_arr = column_after_encoding.toarray()

#normilizing column values
    normalized_col = from_bytes_to_num(col_in_arr, uniquie_amount)

normalized_data.append({'column': col_name, 'data': normalized_col})
```

[142]:		CapShape	CapSurface	${\tt CapColor}$	•••	Population	Habitat	Class
	0	0.6667	0.25	1.0		0.5000	0.4286	0.5
	1	0.6667	0.25	0.1		0.6667	1.0000	1.0
	2	1.0000	0.25	0.2		0.6667	0.7143	1.0
	3	0.6667	0.50	0.2		0.5000	0.4286	0.5
	4	0.6667	0.25	0.7		1.0000	1.0000	1.0
	•••	•••	•••				•••	
	8119	0.3333	0.25	1.0		0.8333	0.8571	1.0
	8120	0.6667	0.25	1.0		0.3333	0.8571	1.0
	8121	0.5000	0.25	1.0		0.8333	0.8571	1.0
	8122	0.3333	0.50	1.0		0.3333	0.8571	0.5
	8123	0.6667	0.25	1.0	•••	0.8333	0.8571	1.0

[8124 rows x 23 columns]

Data splitting

```
[143]: from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import cross_val_score, train_test_split
    dcopy = data.copy()

X = dcopy.drop("Class", axis=1)
    y = dcopy["Class"]
```

```
print(X.head(), "\n")
       print(y.head())
                   CapSurface CapColor ... SporePrintColor Population Habitat
         CapShape
           0.6667
                          0.25
      0
                                     1.0
                                                       1.0000
                                                                   0.5000
                                                                             0.4286
      1
           0.6667
                          0.25
                                     0.1 ...
                                                       0.8889
                                                                   0.6667
                                                                            1.0000
                                     0.2 ...
      2
           1.0000
                          0.25
                                                       0.8889
                                                                   0.6667
                                                                             0.7143
      3
           0.6667
                          0.50
                                     0.2 ...
                                                       1.0000
                                                                   0.5000
                                                                             0.4286
      4
           0.6667
                          0.25
                                     0.7 ...
                                                       0.8889
                                                                   1.0000
                                                                            1.0000
      [5 rows x 22 columns]
      0
           0.5
           1.0
      1
      2
           1.0
      3
           0.5
           1.0
      4
      Name: Class, dtype: float64
  [0]: columns = X.columns
       scaler = StandardScaler()
       X = scaler.fit_transform(X)
[145]: # divide train and test selections
       X_train, X_test, y_train, y_test = train_test_split(X, y,
                                    test_size=0.25, random_state=1)
       print(X_train.shape)
       print(X_test.shape)
       print(y_train.shape)
       print(y_test.shape)
      (6093, 22)
      (2031, 22)
      (6093,)
      (2031,)
                                            K
      Nearest neighbor model for an arbitrary given hyperparameter K
  [0]: from sklearn.neighbors import KNeighborsRegressor
       from sklearn.metrics import mean_absolute_error
       from sklearn.metrics import median_absolute_error, r2_score
       def test_model(model):
```

mean_absolute_error(y_test, model.predict(X_test)))

print("mean_absolute_error:",

print("median_absolute_error:",

```
median_absolute_error(y_test, model.predict(X_test)))
           print("r2_score:",
                 r2_score(y_test, model.predict(X_test)))
[147]: reg_15 = KNeighborsRegressor(n_neighbors=15)
       reg_15.fit(X_train, y_train)
[147]: KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
                           metric_params=None, n_jobs=None, n_neighbors=15, p=2,
                           weights='uniform')
[148]: test_model(reg_15)
      mean_absolute_error: 0.00218283275890366
      median absolute error: 0.0
      r2_score: 0.9921832263403219
      Using cross validation
[149]: from sklearn.model selection import KFold, RepeatedKFold, ShuffleSplit
       scores = cross_val_score(KNeighborsRegressor(n_neighbors=15), X, y,
                                cv=KFold(n_splits=10), scoring="r2")
       print(scores)
       print(scores.mean(), "±", scores.std())
      [0.9973447 1.
                                                               0.99432662
       0.88597886 0.98065168 0.9964011 0.95745946]
      0.9812162420110482 \pm 0.03421807954746192
[150]: | scores = cross_val_score(KNeighborsRegressor(n_neighbors=15), X, y,
                                cv=RepeatedKFold(n_splits=5, n_repeats=2),
                                scoring="r2")
       print(scores)
       print(scores.mean(), "±", scores.std())
      [0.99423453 0.99658153 0.99644782 0.9954995 0.99693324 0.9961005
       0.99626767 0.99451314 0.9945565 0.99599151]
      0.9957125930439743 \pm 0.0009125396963525019
[151]: | scores = cross_val_score(KNeighborsRegressor(n_neighbors=15), X, y,
                                cv=ShuffleSplit(n_splits=10), scoring="r2")
       print(scores)
       print(scores.mean(), "±", scores.std())
      [0.99704793 0.99424454 0.99973745 0.99222284 0.99758438 0.99687133
       0.99314695 0.99492516 0.99365927 0.99584219]
```

```
0.995528203082066 \pm 0.002196769232138002
```

K

Selection of hyperparameter K

[153]: {'n_neighbors': 1}

```
[154]: import matplotlib.pyplot as plt from sklearn.model_selection import learning_curve, validation_curve plt.plot(n_range, gs.cv_results_["mean_train_score"])
```

[154]: [<matplotlib.lines.Line2D at 0x7f3340de8c50>]

[154]:


```
[155]: plt.plot(n_range, gs.cv_results_["mean_test_score"])
```

[155]: [<matplotlib.lines.Line2D at 0x7f333ef6e780>]

[155]:


```
[156]: reg = KNeighborsRegressor(**gs.best_params_)
       reg.fit(X_train, y_train)
       test_model(reg)
      mean_absolute_error: 0.0
      median_absolute_error: 0.0
      r2_score: 1.0
```

```
[0]: # train curve
     def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None):
         train_sizes=np.linspace(.1, 1.0, 5)
         plt.figure()
         plt.title(title)
         if ylim is not None:
             plt.ylim(*ylim)
         plt.xlabel("Training examples")
         plt.ylabel("Score")
         train_sizes, train_scores, test_scores = learning_curve(
```

```
estimator, X, y, cv=cv, n_jobs=-1, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                 train_scores_mean + train_scores_std, alpha=0.1,
                 color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                 test_scores_mean + test_scores_std, alpha=0.1,
                 color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
         label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
         label="Cross-validation score")
plt.legend(loc="best")
return plt
```

```
[158]: plot_learning_curve(reg, str(gs.best_params_), X, y, cv=ShuffleSplit(n_splits=10))
```

[158]: <module 'matplotlib.pyplot' from '/usr/local/lib/python3.6/distpackages/matplotlib/pyplot.py'>

[158]:


```
[0]: # validation curve
       def plot_validation_curve(estimator, title, X, y,
                                 param_name, param_range, cv,
                                 scoring="accuracy"):
           train_scores, test_scores = validation_curve(
               estimator, X, y, param_name=param_name,
               param_range=param_range,
               cv=cv, scoring=scoring, n jobs=-1)
           train_scores_mean = np.mean(train_scores, axis=1)
           train_scores_std = np.std(train_scores, axis=1)
           test_scores_mean = np.mean(test_scores, axis=1)
           test_scores_std = np.std(test_scores, axis=1)
           plt.title(title)
           plt.xlabel(param_name)
           plt.ylabel("Score")
           plt.ylim(0.0, 1.1)
           lw = 2
           plt.plot(param_range, train_scores_mean, label="Training score",
                        color="darkorange", lw=lw)
           plt.fill_between(param_range, train_scores_mean - train_scores_std,
                            train_scores_mean + train_scores_std, alpha=0.2,
                            color="darkorange", lw=lw)
           plt.plot(param_range, test_scores_mean,
                        label="Cross-validation score",
                        color="navy", lw=lw)
           plt.fill_between(param_range, test_scores_mean - test_scores_std,
                            test_scores_mean + test_scores_std, alpha=0.2,
                            color="navy", lw=lw)
           plt.legend(loc="best")
           return plt
[160]: plot_validation_curve(KNeighborsRegressor(), "knn", X, y,
                             param_name="n_neighbors", param_range=n_range,
                             cv=ShuffleSplit(n_splits=10), scoring="r2")
[160]: <module 'matplotlib.pyplot' from '/usr/local/lib/python3.6/dist-
      packages/matplotlib/pyplot.py'>
```

[160]:

[0]: