Aplicativo móvel de realidade virtual para auxiliar pessoas cegas a transitarem em determinados ambientes

Universidade Regional de Blumenau - FURB

Orientador: Dalton Solano dos Reis

Orientando: Guilherme Barth

Introdução

• 18,6% da população brasileira possui deficiência visual;

• 6 milhões de pessoas (3,2%) contém severas dificuldades para enxergar;

"Para as pessoas sem deficiência, a tecnologia torna as coisas mais fáceis. Para as pessoas com deficiência, a tecnologia torna as coisas possíveis." - Radabaugh, 1993

Introdução

• Tecnologias para propiciar uma melhor qualidade de vida

• Global Position System, Beacons, sensores e comunicação;

Objetivo Geral

Desenvolvimento de uma aplicação para dispositivos móveis que possa auxiliar as pessoas cegas.

Objetivos específicos

- analisar a precisão do sensor LiDAR dos dispositivos móveis;
- exercer a microlocalização com o uso de Beacons;
- realizar interação com a interface apenas com áudio;

Trabalhos correlatos

Sistemas de Localização: Explorando a IPS - Beacons (Krause, 2018);

Black Glasses - Assistente para deficientes visuais via geolocalização (Silva, 2019);

 Mapeamento tridimensional de ambientes internos utilizando um sensor LiDAR (Rossi; Freitas; Reis, 2019);

Sistemas de Localização (Krause 2018)

Beacon

Técnica FingerPrint

 Transformar o ambiente em um grafo de Beacons

Fonte: Krause (2018)

Fonte: Rocha (2016)

Black Glasses (Silva, 2019)

- Utilização do Google Glass;
- GPS Offline;
- Comunicação Speech to Text e Text to Speech

Mapeamento tridimensional de ambientes internos utilizando um sensor LiDAR (Rossi; Freitas; Reis, 2019)

Nuvem de pontos de LASER do LiDAR;

Utilizado um filtro Kalman para redução de ruído;

Fonte: Rossi, Freitas e Reis (2019)

Comparação de trabalhos Correlatos

Trabalhos Correlatos Características	Krause (2018)	Silva (2019)	Rossi, Freitas e Reis (2019)		
Objetivo da predição	Localização do	Transformação de	Mapeamento		
	indivíduo	áudio em texto	tridimensional		
Utiliza banco de dados	Sim	Não	Não		
Algoritmo utilizado	Fingerprint	Metodologia própria	Kalman		
Forma de obtenção de dados	Sinal de Bluetooth	Áudio	Laser		

Fonte: Elaborado pelo autor

Requisitos Funcionais

- O aplicativo deve ser desenvolvido utilizando os sensores do dispositivo móvel;
- O aplicativo deve realizar a integração com o Google Maps em tempo real;
- O aplicativo deve permitir a utilização do Speech to Text;
- O aplicativo deve permitir o cadastro de novos beacons em seu banco de dados;
- O aplicativo deve utilizar o sensor LiDAR;
- O aplicativo deve informar que há um objeto próximo, em sua direção, para evitar a colisão;
- O aplicativo deve localizar e informar o caminho para chegar aos cômodos da casa, utilizando os Beacons.

Requisitos Não Funcionais

- O aplicativo possuirá uma interface para verificar se as informações são coerentes;
- O aplicativo possuirá um banco de dados para guardar os dados dos beacons cadastrados;
- O aplicativo será desenvolvido na linguagem Swift usando a IDE XCode.

Finalidade do projeto

- Aplicativo para dispositivo m\u00f3vel para pessoas cegas;
- LiDAR para identificação de objetos;
- Utilização de Beacons para a microlocalização;
- Speech to Text e Text to Speech;

Cronograma

	2022										
	fe	fev.		mar.		abr.		maio		jun.	
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2	
estudo de sensores, ferramentas e linguagem de programação											
implementação do sensor LiDAR											
implementar conversor de voz para texto											
implementar integração com o GPS											
cadastro e localização de Beacons											
implementar uma interface											
realizar testes e analisar precisão											

Referências

BARBOSA, Isabelle. Pessoas com deficiência visual relatam seus maiores obstáculos. Folha de Pernambuco. Recife, p. 1-1. 14 mar. 2019. Disponível em: https://www.folhape.com.br/noticias/pessoas-com-deficiencia-visual-relatam-seus-maiores-obstaculos/98782/. Acesso em: 18 set. 2021

GOOGLE CLOUD. Princípios básicos da Speech-to-Text. 2021. Disponível em: https://cloud.google.com/speech-to-text/docs/basics?hl=pt-br. Acesso em: 19 set. 2021.

KRAUSE, Djonathan. Sistemas de Localização: explorando a ips - beacons. 2018. 18 f. TCC (Doutorado) - Curso de Bacharel em Ciência da Computação, Universidade Regional de Blumenau (Furb), Blumenau, 2018. Disponível em: http://dsc.inf.furb.br/arquivos/tccs/monografias/2018 2 djonathan-rafael-krause monografia.pdf. Acesso em: 20 set. 2021.

MACIEL, A. O. Aplicações: Mapeamento móvel utilizando tecnologia lidar. Anais XV Simpósio Brasileiro de Sensoriamento Remoto, 2011. p. 5455-5462, 2011. Citado na página 16.

MACKEY, Andrew; SPACHOS, Petros. Performance evaluation of beacons for indoor localization in smart buildings. 2017 leee Global Conference On Signal And Information Processing (globalsip), Montreal, v. 1, n. 1, p.823-825, nov. 2017. IEEE.

Referências

PAVAN, N. L.; SANTOS, D. R. d. Um Método Automatico Para Registro De Dados Laser Scanning Terrestre Usando Superficies Planas. BCG - Boletim de Ciencias Geodesicas, 2015. scielo, v. 21, p. 572 – 589, 09 2015. ISSN 1982-2170. Citado na página 16.

PIX FORCE. O que e o LIDAR e como é utilizado? 2018. Disponível em: https://pixforce.com.br/o-que-e-o-lidar-e-como-e-utilizado/. Acesso em: 18 set. 2021.

RADABAUGH, M. P. NIDRR's Long Range Plan-Technology for access and function research section two: NIDDR Research Agenda Chapter 5: Technology for access and function. [S.I.], 1993. Disponível em: . Acesso em: 15 de set. 2021.

RECK, Marcelo S. Beacons BLE - Bluetooth Low Energy - Design e análise de um sistema de localização indoor. 2016. 84 f. Trabalho de Conclusão de Curso (Engenheiro de Controle e Automação) -Universidade de Caxias do Sul, Caxias do Sul.

ROCHA, Marcus Otávio. FURB-Mobile: sistema móvel multiplataforma para navegação em rotas internas. 2016. 61 f. Trabalho de Conclusão de Curso (Graduação) Curso de Ciência da Computação. Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau, 2016.

Referências

ROSSI, Túlio Xavier; FREITAS, Elias José de Rezende; REIS, Agnaldo José da Rocha. Mapeamento Tridimensional de Ambientes Internos Utilizando um Sensor LIDAR. 2019. 62 f. Monografia (Especialização) - Curso de Engenharia de Controle e Automação, Universidade Federal de Ouro Preto, Ouro Preto, 2019. Disponível em: https://monografias.ufop.br/handle/35400000/2439. Acesso em: 24 set. 2021.

SILVA, Carlos P. A. Um software de reconhecimento de voz para português brasileiro. 2010. 85 f. Dissertação (Mestrado em Engenharia Elétrica) – Setor de Tecnologia, Universidade Federal do Pará, Belém.

SILVA, William Lopes da. Black Glasses: assistente para deficientes visuais via geolocalização. 2019. 20 f. Monografia (Especialização) - Curso de Bacharel em Ciência da Computação, Universidade Regional de Blumenau (Furb), Blumenau, 2019. Disponível em: http://dsc.inf.furb.br/arquivos/tccs/monografias/2019 2 william-lopes-da-silva monografia.pdf. Acesso em: 20 set. 2021.

XU, Lisheng; YANG, Feifei; JIANG, Yuqi. Variation of Received Signal Strength in Wireless Sensor Network. In: INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL, 3., 2011, Harbin. Anais... Harbin: IEEE, 2011. p. 1-1.

Obrigado!