УДК 621.039.5

ИССЛЕДОВАНИЕ УРОВНЯ НЕЙТРОННОГО ФОНА В ЯДЕРНЫХ МАТЕРИАЛАХ ЗА СЧЕТ (α, n)-реакций НА ЛЕГКИХ ЭЛЕМЕНТАХ

В.А. Юферева, А.Н. Шмелев

Московский инженерно-физический институт (государственный университет), г. Москва

Увеличение нейтронного фона ядерных материалов приводит к повышению их самозащищенности с точки зрения нераспространения. В работе исследуется возможность изменения нейтронного фона за счет (α , α) реакций на легких элементах. Согласно данным заводов-изготовителей ядерное топливо уже содержит в себе легкие элементы в виде примесей. В качестве альфа-источника в работе рассматривался α 0. Изменять фон можно, меняя концентрации легких элементов или альфа-источника в топливе и время выдержки топлива после фабрикации. В качестве критерия защищенности топлива рассматривался выход нейтронов с единицы массы в секунду. Приводятся оценки изменения уровня нейтронного фона при дообогащении урана различного изотопного состава.

Ключевые слова: нейтронный фон, (α, n) -реакции, денатурация, дообогащение, нераспространение.

Key words: neutron background, (α, n) -reactions, denaturing, re-enrichment, nonproliferation.

ВВЕДЕНИЕ

Для урана одним из важных свойств внутренней защищенности является его обогащение, поэтому в ряде стран (в первую очередь, в США и России) реализуется тенденция к устранению высокообогащенного урана (ВОУ) как материала прямого использования из гражданского ядерного топливного цикла (ЯТЦ).

Другой аспект защиты урана от распространения заключается в том, что, хотя НОУ и не причисляют к классу ЯМ прямого использования, но с развитием технологий обогащения растет угроза переключения НОУ с последующим его дообогащением. Ввиду очевидной предпочтительности ВОУ можно считать, что в случае доступа к НОУ потенциальный нарушитель (субнациональная террористическая группа) предпримет все усилия, чтобы сначала дообогатить доступный уран до оружейного качества (90% и выше), а потом использовать его в оружейных целях [1]. В связи с этим в последних выступлениях специалистов по ядерному нераспространению подчеркивается идея повышения защищенности экспортных поставок топлива для АЭС с НОУ [2, 3].

Одним из эффективных и технически реализуемых способов снижения привлекательности топлива с точки зрения переключения является денатурация, т.е. перевод топлива в состояние, менее пригодное для использования в оружейных целях. Термин «изотопная денатурация» используется для обозначения любых изменений в изотопном составе химического элемента с целью придать ему некоторые новые свойства.

Рассматривается возможность повышения защищенности ядерного топлива с ураном 20-процентного обогащения за счет малой добавки в его состав радиоактивного изотопа ²³²U.

ВЛИЯНИЕ ЛЕГКИХ ПРИМЕСЕЙ В ТОПЛИВЕ НА НЕЙТРОННЫЙ ФОН

Основная цель предлагаемого варианта денатурации — повышение нейтронного фона ЯМ, которое происходит благодаря (α , n)-реакциям. Нейтронный фон способствует преждевременному запуску цепной реакции деления и, как следствие, снижению энергетического выхода ядерного взрывного устройства.

Если в ЯМ имеется мощный источник α -частиц, (α, n) -реакции начинают играть значительную роль в формировании нейтронного фона. Таким источником служит изотоп ²³²U, который является одним из наиболее интенсивных α -источников среди изотопов урана и плутония. В табл. 1 приведены изотопы легких элементов (ЛЭ), содержащихся в различных количествах в уране как результат его технологических переделов. На отмеченных изотопах ЛЭ достаточно интенсивно протекает (α, n) -реакция при наличии в уране α -источника (например, ²³²U).

Отметим, что перечисленные в табл. 1 изотопы не являются сильными поглотителями нейтронов. Видно, что (α, n) -канал для ЛЭ (Ве, В, F, Al) сопоставим, а с учетом продуктов распада 232 U значительно превосходит его нейтронную активность (1300 н/с кг). Последнее обстоятельство указывает на значимость этих и других ЛЭ в формировании нейтронного фона в уране.

В расчетах использованы данные по содержанию основных примесей в обогащенном уране, производимом на Новосибирском заводе химических концентратов [4] и Ульбинском металлургическом заводе [5]. Приведенные в табл. 1 выходы нейтронов рассчитаны на основе данных EXFOR [6]. Учет замедления α -частиц в уране осуществлялся с помощью программного комплекса SRIM [7].

Таблица 1 Выход нейтронов в (α , n)-реакциях на 100 ppm ЛЭ в металлическом уране с 1% 232 U, н/с кг

Изотоп	Содержание в природной смеси, %	Выход, н/с кг U	Выход с учетом продуктов распада ²³² U, н/с кг U		
Li-7	92.5	98.9	1778		
Be-9	100	5866	37934		
B-11	81	1910	11801		
C-13	1.11	13	135		
0-18	0.2	8.1	64.2		
F-19	100	1243	11717		
Na-23	100	352.7	4283		
Al-27	100	1166	12150		
Si-29	5	13.8	144		

ВЛИЯНИЕ МАЛЫХ ДОБАВОК 232 U НА α -фон ПРИ ПОСЛЕДУЮЩЕМ ДООБОГАЩЕНИИ И ВЫДЕРЖКЕ УРАНА

Изотоп 232 U является источником нейтронов спонтанного деления и α -частиц. Например, при внесении в 20-процентный уран лишь 10 ppm 232 U этот изотоп становится основным α -источником. Это обстоятельство играет решающую роль в создании барьеров противодействия несанкционированному дообогащению. Поскольку 232 U легче 235 U на 3 а.е.м., его содержание будет увеличиваться в процессе дообогащения, резко повышая внутренний источник α -излучения в уране.

Кроме этого в процессе дообогащения ²³²U начинает активно вытеснять целевой изотоп ²³⁵U, тем самым ограничивая его максимальное содержание в продукте. В табл. 2 приведены значения максимального содержания изотопа ²³⁵U при дообогащении 20-процентного урана с разным содержанием денатурирующего изотопа ²³²U.

Видно, что добавки ²³²U могут заметно понижать максимально достижимые обогащения продукта и, таким образом, снижать возможности его несанкционированного использования.

На рис. 1 показано изменение α -активности урана при его дообогащении. Видно, что за счет повышения содержания ²³²U удельная активность продукта возра-

Таблица 2 Максимальные содержания ²³⁵U в продукте при дообогащении 20-процентного урана с малыми добавками денатурирующего изотопа ²³²U

²³² U, %	0.001	0.005	0.01	0.1	0.5	1
Максимальное содержание ²³⁵ U, %	84.6	83.5	82.3	72.3	57.4	49.5

Рис. 1. Изменение $\, \alpha \,$ -активности урана при дообогащении 20-процентного урана (обогащение урана в отвале $X_W = 0.3\%$)

стает на два порядка. Кроме этого с течением времени накапливаются α -активные продукты распада 232 U. Поэтому дальнейшее пребывание материала в той или иной форме неизбежно приведет к росту α -активности (рис. 2) и, следовательно, нейтронного фона урана.

Рис. 2. Рост α -активности материала после дообогащения

ИЗМЕНЕНИЕ НЕЙТРОННОГО ФОНА ПРИ ДООБОГАЩЕНИИ ДЕНАТУРИРОВАННОГО УРАНА

С помощью специально разработанного программного комплекса ADDNET были проведены оценки изменения выхода нейтронов при дообогащении 20-процентного урана различного изотопного состава. Содержание легких элементов в металлическом уране взято из данных Новосибирского завода химических концентратов [4] и Ульбинского металлургического комбината [5].

При дообогащении 20-процентного урана, не содержащего 232 U, наибольшее влияние на выход нейтронов оказывает увеличение содержания 234 U. Максимально достижимое обогащение составило 84,6% 235 U, а содержание 234 U ~11%. По данным [6, 7] в отсутствие 232 U нейтронный фон в продукте, вызванный (α , п)-реакциями на примесях легких элементов, оказался почти на порядок меньше, чем выход нейтронов спонтанного деления 238 U (1,36·10-2 нейтрон/г·с). Подобное изменение нейтронного фона незначительно скажется на повышении самозащищенности урана.

Переход на однократно рециклированный уран (в котором появляются в заметном количестве 236 U и следы 232 U) также не приводит к повышению нейтронного фона за счет (α , n)-реакций до уровня спонтанного деления 238 U. При дообогащении однократно рециклированного урана выход нейтронов по (α , n)-каналу возрастает лишь до $3.5\cdot 10^{-3}$ нейтрон/г·с и определяется, в основном, увеличением начального содержания 234 U. При этом вклад α -частиц от 236 U и 232 U в генерацию нейтронов пренебрежимо мал.

Рис. 3. Изменения выхода нейтронов за счет (α , n)-реакций при дообогащении 20-процентного урана с различным исходным содержанием 232 U

Ситуация кардинально меняется при внесении в 20-процентный уран малых количеств 232 U. На рис. 3 представлены выходы нейтронов за счет (α , n)-реакций при дообогащении 20-процентного урана, содержащего 232 U в количестве 0.001, 0.01, 0.1 и 1%.

Как видно, добавление малых количеств 232 U (0.001–1%) в топливо приводит при попытках дообогащения к повышению нейтронного фона материала на два порядка. Денатурация 20-процентного урана 0,1% 232 U и его последующее дообогащение приведет к повышению фона по сравнению с фоном нейтронов спонтанного деления почти в 10000 раз. При хранении такого ЯМ нейтронный фон будет возрастать за счет продуктов распада 232 U и через год увеличится приблизительно в 3 раза.

ЗАКЛЮЧЕНИЕ

Внесение малых количеств 232 U в топливо с 20-процентным ураном позволяет значительно повысить нейтронный фон урана при дальнейшем его дообогащении и технологическом переделе за счет (α , n)-реакций на примесях. С увеличением времени выдержки денатурированного урана нейтронный фон продолжает расти. Количественная оценка самозащищенности денатурированного топлива выходит за рамки данной работы. Тем не менее, на основании данных по Манхэттенскому проекту [8] можно сделать вывод, что подобное повышение нейтронного фона станет серьезным барьером для переключения ЯМ на немирные цели. Кроме того следует отметить, что наличие существенного нейтронного и гамма-фона у денатурированного урана повышает возможности его обнаружения и требует принятия дополнительных мер по обеспечению радиационной безопасности при обращении с ним.

Литература

- 1. *Glaser A*. On the Proliferation Potential of Uranium Fuel for Research Reactors at Various Enrichment Levels//Science and Global Security. 2006. V. 14. P. 7-8.
- 2. Алексеев П.Н., Иванов Е.А., Невиница В.А. и ∂p . Повышение защищенности экспортных поставок топлива легководных реакторов при использовании регенерированного урана//Известия вузов. Ядерная энергетика. − 2007. № 3. Вып. 2. С. 3-9.
- 3. http://www.pircenter.org/gpconference/data/4section_r.html?
- 4. http://www.nccp.ru/ir/uran.html.
- 5. http://www.ulba.kz/umz3_1_2.htm.
- 6. http://www-nds.iaea.org/exfor/exfor00.htm.
- 7. http://www.srim.org.
- 8. http://nuclearweaponarchive.org/Usa/Med/Med.html.

Поступила в редакцию 22.01.2009

УДК 621.039.7

Selfdisposal of High Level Radioactive Waste \A.Y. Fedorovskiy, M.A. Skachek; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2009. – 8 pages, 1 table. – References, 10 titles.

In this work one of perspective alternative method of localisation of a radioactive waste a self-disposal of a high level active waste is considered. The calculations confirming basic possibility of realisation of the chosen method are carried out, its merits and demerits are noted.

УДК 621.039.5

Investigation of Nuclear Materials Neutron Background from (α, n) -Reactions with Light Elements \V.A. Yufereva, A.N. Shmelev; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2009. – 6 pages, 2 tables, 3 illustrations. – References, 8 titles.

The intensifying of internal neutron source of nuclear materials causes the increasing of their proliferation self-protection. This work deals with investigations of neutron background intensifying by (α,n) -reactions with light elements (LE). In accordance with the production reports of manufacturing plants, LE isotopes appear in nuclear fuel as inevitable impurities from application of some nuclear technologies. ²³²U was chosen as a source of additional alpha-particles in nuclear fuel. The changes of neutron background can be provided by changing of LE quantities or increasing of alpha-particle source, also by changing delay time of nuclear fuel after fabrication. Neutron yield per second from mass unit served as criterion of fuel self-protection.

Also this article contains the evaluation of dependence of neutron background on ²³⁵U content in the product at re-enrichment of 20%-uranium.

УДК 621.039.534

Experimental Investigations of Efficiency of Hear-Carrier Flow Mixing for Choosing the Optimal Design of Alternative Fuel Assemblies of Reactors VVER\S.M. Dmitriev, S.S. Borodin, A.N. Ershov, M.A. Legchanov, D.A. Nyrkov, D.N. Solncev, A.E. Khrobostov; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2009. – 10 pages, 1 table, 10 illustrations. – References, 5 titles.

In this article the results and analysis of experimental data on investigation of the local mass transfer and hydrodynamic of heat-carrier flow in alternative fuel assembly of reactor VVER at using different design of mixing grids are submitted. Due to results of investigations a turbulent diffusion coefficient of heat-carrier flow in alternative fuel assemblies of reactor VVER with mixing grids was defined. Finding makes it possible to show the features of turbulent heat-carrier flow in fuel assemblies with mixing grids and to use in the capacity of database for thermotechnical calculation of core of reactors VVER.

УДК 621.039.51

Simulation of Dynamic Processes for VVER-1000 Reactor\A.A. Kazantsev, V.V. Sergeev, V.I. Belozerov, A.Yu. Efremov; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2009. – 7 pages, 5 illustrations. – References, 10 titles.

The calculations showing the opportunity of thermal physic model and some results of 3D-dynamic modeling of VVER-1000 reactor are presented. Present paper is performed on the basis of 3D-transient non-equilibrium thermal – hydraulic two-phase model from 6 equations and point kinetic model of reactor. Void reactivity coefficient was shown based upon accident scenario with switching-off of 2 pumps from 4 and arising into reactors core volume of steam.

УДК 621.039.5

Speed Propagation of Waves of Pressure in Technological Channels of Reactor PEMK-1000 \K.N. Proskuryakov, D.A. Parshin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2009. – 11 pages, 1 table, 5 illustrations. – References, 13 titles.