# KINEWATICS



## KINEMATICS

Studies the motion of a body, or a system of bodies,

without considering its mass or the forces acting on

it

#### ROBOT ARM

A robot arm, more formally a serial-link manipulator, comprises a chain of rigid links and joints



# JOINT TYPES

Revolute: the attached links rotate about a common axis.



# JOINT TYPES

Prismatic: the attached links translate about a common axis



## JOINT TYPES

Spherical: the attached links rotate about a point



#### ROBOT ARM

Each joint has one degree of freedom, either translational (a sliding or prismatic joint) or rotational (a revolute joint).

## CONFIGURATION

Robot's configuration: a specification of the positions of all points of the robot.

## CONFIGURATION

described by one of two methods:

- 1. A list of coordinates for each joint (typically an angle or translation distance) expressed relative to some reference frame, aka zero position.
- 2. A spatial representation of its links in the 2D or 3D world in which it operates

## WORKSPACE

The 2D or 3D world in which the robot lives is

known as its workspace

## DEGREE OF FREEDOM (DOF):

the smallest number n of real-valued coordinates needed to represent the robot's configuration

# 1-JOINT ROBOT ARM



How many dof does this robot have?

What is the workspace of this robot?

# 1-JOINT PLANAR ROBOT ARM



Pose of the end effector

 $R(q1) T_x(a1)$ 

# 2-JOINT PLANAR ROBOT ARM



Pose of the end effector

 $R(q1) T_x(a1) R(q2) T_x(a2)$ 

# ROBOT ARM IN 3D



#### FORWARD KINEMATICS

Given a set of joint positions q, what is the pose of the robot tool-tip x?

## FK OF A 2 DOF PLANAR ROBOT



# FK IN 3 DOF



## INVERSE KINEMATICS