WHAT IS CLAIMED IS:

1. A protected monomer having a formula (I)

5 wherein,

B is selected from the group consisting of:

anthracenyl, pyrenyl,

10

$$R^{53}$$
 R^{54} R^{54} R^{55} R^{55} R^{55} R^{56} R^{56} R^{56}

$$R^{61}$$
 R^{62}
 R^{63}
 R^{63}
 R^{63}
 R^{64}
 R^{65}
 R^{67}
 R^{67}
 R^{67}

X² is an ortho ester protecting group, hydrogen, ethers, alkyl ethers, esters, halogens, protected amines, or protected hydroxyl moieties;

 X^3 is -O-P(OR²⁷)N(R²⁸)₂ or -O-L-R²⁹;

 X^{5} ', X^{5} '', X^{5} ''' include at least one alkoxy or siloxy substituent;

R¹ is hydrogen or C₁-C₄ alkyl;

5

10

 R^2 is hydrogen, C_1 - C_4 alkyl, or C_2 - C_6 alkenyl optionally substituted with hydroxy, or $C(O)NHR^a$;

R³ is hydrogen, halo, C₁-C₄ alkyl, C₁-C₄ thioalkoxy, NH₂, NHR^b, or NR^bR^c;

R⁴ when taken together with R⁴ forms oxo, or R⁴ when taken together with R⁵ forms a double bond between the carbon and nitrogen atoms to which they are attached;

R⁴ when taken together with R⁴ forms oxo, or is O;

R⁵ is hydrogen, C₁-C₄ alkyl, or when taken together with R⁴ forms a double bond between the carbon and nitrogen atoms to which they are attached;

R⁶ is hydrogen, halo, NH₂, NHR^b, or NR^bR^c;

R⁷ is an unshared electron pair, or C₁-C₄ alkyl;

R⁸ when taken together with R⁹ forms a double bond between the carbon and nitrogen atoms to which they are attached, or R⁸ when taken together with R¹¹ forms a double bond between the carbon and nitrogen atoms to which they are attached;

 R^9 is hydrogen, C_1 - C_4 alkyl, or when taken together with R^8 forms a double bond between the carbon and nitrogen atoms to which they are attached;

R¹⁰ is hydrogen or is absent;

R¹¹ is hydrogen, C₁-C₄ alkyl, or when taken together with R⁸ forms a double bond between the carbon and nitrogen atoms to which they are attached;

 R^{12} is hydrogen, formyl, or C_1 - C_4 alkyl optionally substituted with hydroxy or protected hydroxy;

R¹³ and R¹⁴ are each independently hydrogen or C₁-C₄ alkyl;

R¹⁵ is hydrogen, C₁-C₄ alkyl, or (CH₂)_nCH(R^d)CH(NHR^e)(COOR^g);

R¹⁶ is hydrogen or C₁-C₄ alkyl;

R¹⁷ is halo, NH₂, NHR^b, or NR^bR^c;

R¹⁸ is cyano, C(=NH)NH₂, or CH₂NH(R^h);

R¹⁹ is hydrogen, or C₁-C₄ alkyl;

R²⁰ is:

10

15

20

25

30

- (i) hydrogen;
- (ii) hydroxy or protected hydroxy;
- (iii) C₁-C₄ alkoxy optionally substituted with COOR^f; or
- (iv) C_1 - C_4 alkyl optionally substituted with hydroxy and/or $COOR^f$, NH_2 , NHR^m , or $CONH_2$;

R²¹ is hydrogen, or when taken together with R²³ forms a double bond between the carbon atoms to which they are attached;

R²² is hydrogen;

R²³ is hydrogen, or when taken together with R²¹ forms a double bond between the carbon atoms to which they are attached;

 R^{24} and R^{25} are each, independently, hydrogen or C_1 - C_4 alkyl; R^{26} is $(CH_2)_nCH(R^d)CH(NHR^e)(COOR^g)$; R^{27} is C_1 - C_6 alkyl optionally substituted with cyano, or C_2 - C_6 alkenyl; R^{28} is C_1 - C_{10} alkyl; R^{29} is a liquid or solid phase support reagent; Q is N or CR^{44} ; Q' is N or CR^{45} ; Q'' is N or CR^{45} ;

Q''' is N or CR⁴⁹; O^{iv} is N or CR⁵⁰:

5

10

15

20

25

30

 R^{44} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R^{45} forms –OCH₂O-;

R⁴⁵ is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R⁴⁴ or R⁴⁶ forms –OCH₂O-;

 R^{46} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R^{45} or R^{47} forms –OCH₂O-;

 R^{47} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R^{46} or R^{48} forms –OCH₂O-;

R⁴⁸ is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R⁴⁷ forms –OCH₂O-;

 $R^{49}R^{50}$, R^{51} , R^{52} , R^{53} , R^{54} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , R^{71} , and R^{72} are each independently selected from hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R⁰;

 R^{55} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o, or when taken together with R⁵⁶ forms a fused aromatic ring which may be optionally substituted;

 R^{56} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o, or when taken together with R⁵⁵ forms a fused aromatic ring which may be optionally substituted;

X is O, S, or Se;

Y is O or S;

5

10

15

20

25

L is $-C(O)(CH_2)_qC(O)$ -, or $-C(O)(CH_2)_qS$ -;

Provided that R¹, R², and R³ cannot all be hydrogen; further provided that when R⁵ is hydrogen, R⁶ cannot be NH₂, NH(protecting group), or NH(iBu); further provided that when R¹² is hydrogen and R⁸ and R¹¹ together form a double bond between the carbon and nitrogen atoms to which they are attached, R⁹ and R¹⁰ cannot both be hydrogen; further provided that when X and Y are O, R¹⁹ is hydrogen, and R²¹ and R²³ together form a double bond between the carbon atoms to which they are attached, R²⁰ cannot be hydrogen or CH₃;

R^a is glycinyl, threonyl, or norvalyl, each of which may optionally be partially or fully protected;

 R^b is C_1 - C_6 alkyl or a nitrogen protecting group;

R^c is C₁-C₆ alkyl;

R^d is hydrogen, hydroxy, protected hydroxy, or OOH;

R^e is hydrogen, a nitrogen protecting group, or COOR^g;

Rf is hydrogen, or C1-C6 alkyl;

 R^g is C_1 - C_{10} alkyl;

R^h is hydrogen, or

$$R_kO$$
 R_i
 R_i

Rⁱ and Rj when taken together forms a double bond between the carbon atoms to which they are attached, or Rⁱ and Rj when taken together form -O- between the carbon atoms to which they are attached;

 R^k and R^l are each, independently, hydrogen, a hydroxyl protecting group, a sugar, or a fully or partially protected sugar;

R^m is C₁-C₄ alkyl optionally substituted with COOH;

R° is alkyl optionally substituted with halo, hydroxy, nitro, protected hydroxy, NH₂,

NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl,

NC(O)R¹⁷, or NC(O)R°;

n is 1-4; and q is 0-4.

2. The monomer of claim 1, wherein B is:

5 3. The monomer of claim 1, wherein B is:

4. The monomer of claim 1, wherein B is:

5. The monomer of claim 1, wherein B is:

6. The monomer of claim 1, wherein B is:

7. The monomer of claim 1, wherein B is:

$$R^{19}$$
 R^{20}
 R^{21}
 R^{23}

10

8. The monomer of claim 1, wherein B is:

9. The monomer of claim 1, wherein B is:

10. The monomer of claim 1, wherein B is:

10

11. The monomer of claim 1, wherein B is:

12. The monomer of claim 1, wherein B is:

13. The monomer of claim 1, wherein B is:

10

10

14. The monomer of claim 1, wherein B is:

5 15. The monomer of claim 1, wherein B is:

- 16. The monomer of claim 1, wherein B is anthracenyl.
- 17. The monomer of claim 1, wherein B is pyrenyl.
- 18. The monomer of claim1, wherein R²⁸ is isopropyl.
- 19. The monomer of claim 1, wherein X⁵', X⁵", and X⁵" are any combination of the following formula:

20. The compound of claim 1, wherein X^{5} and X^{5} are siloxy and X^{5} is cycloalkoxy.

21. The monomer of claim 1, wherein the orthoester protecting group has a formula(III):

5 22. The monomer of claim 21, wherein R³¹ and R³² are the same or different and are any combination of the following formulae:

$$\frac{1}{2}$$
 $\frac{1}{2}$
 $\frac{1}$

wherein R^{33} , R^{34} , R^{35} , R^{36} , and R^{37} is a compatible ligand, or hydrogen, or halogen, alkyl, or cyano substituent, and R^{38} is compatible ligand.

23. The monomer of claim 21, wherein the orthoester is:

5

- 24. The monomer of claim 1, wherein R²⁹ is a fluoride-stable polystyrene based solid support or PEG.
- 25. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃; 10 R²⁸ is (CH₃)₂CH-; X5' and X5" are trimethylsiloxy; X5" is cyclododecyloxy; and B is:

15

26. The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; X_3 and X_3 are trimethylsiloxy; X_3 is cyclododecyloxy; and X_3 is:

27. The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; R^{28} is $(CH_3)_2CH_3$; and R^{28} is $(CH_3)_2CH_3$; R^{28} ; R^{28} is $(CH_3)_2CH_3$.

28. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃; R²⁸ is (CH₃)₂CH-; X5' and X5" are trimethylsiloxy; X5" is cyclododecyloxy; and B is:

5

29. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃; R²⁸ is (CH₃)₂CH-; X5' and X5" are trimethylsiloxy; X5" is cyclododecyloxy; and B is:

30. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃; R²⁸ is (CH₃)₂CH-; X5' and X5" are trimethylsiloxy; X5" is cyclododecyloxy; and B is:

$$R^{19}$$
 R^{20}
 R^{21}
 R^{23}
 R^{22}

31. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃;

R²⁸ is (CH₃)₂CH-; X5' and X5" are trimethylsiloxy; X5" is cyclododecyloxy; and B is:

32. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃; R²⁸ is (CH₃)₂CH-; X5' and X5" are trimethylsiloxy; X5" is cyclododecyloxy; and B is:

5

33. The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; R^{28} is $(CH_3)_2CH_3$; and R^{28} is $(CH_3)_2CH_3$; R^{28} ; R^{28} is $(CH_3)_2CH_3$; R^{2

34. The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; is cyclododecyloxy; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; is cyclododecyloxy; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; is cyclododecyloxy; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; is cyclododecyloxy; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; is cyclododecyloxy; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsiloxy; X_3 ; and X_3 ; and X_3 ; are trimethylsil

5 35. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃; R²⁸ is (CH₃)₂CH-; X5' and X5'' are trimethylsiloxy; X5''' is cyclododecyloxy; and B is:

36. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃; R²⁸ is (CH₃)₂CH-; X5' and X5'' are trimethylsiloxy; X5''' is cyclododecyloxy; and B is:

5

37. The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; X_5 and X_5 are trimethylsiloxy; X_5 is cyclododecyloxy; and X_5 is:

10

38. The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; R^{28} is $(CH_3)_2CH_3$; and R^{28} is $(CH_3)_2CH_3$; R^{28} ; R^{28} is $(CH_3)_2CH_3$; R^{28} is $(CH_3)_2CH_3$; R^{28} is $(CH_3)_2CH_3$; R^{28} ; R^{28} is $(CH_3)_2CH_3$.

39. The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; R^{28} is $(CH_3)_2CH_3$; and R^{28} ; and R^{28} is $(CH_3)_2CH_3$; and R^{28} ; and

- 40. The monomer of claim 1, wherein X² is -OC[OCH₂CH₂OC(O)CH₃]₂; R²⁷ is CH₃; R²⁸ is (CH₃)₂CH-; X5' and X5'' are trimethylsiloxy; X5''' is cyclododecyloxy; and B is pyrenyl.
 - 41. The monomer of claim 1, wherein B is selected from the group consisting of:

2-aminoadeninyl

10 2-methyladeninyl,

5

15

20

25

30

N6-methyladeninyl,

2-methylthio-N6-methyladeninyl,

N6-isopentenyladeninyl,

2-methylthio-N6-isopentenyladeninyl,

N6-(cis-hydroxyisopentenyl)adeninyl,

2-methylthio-N6-(cis-hydroxyisopentenyl) adeninyl,

N6-glycinylcarbamoyladeninyl,

N6-threonylcarbamoyladeninyl,

2-methylthio-N6-threonyl carbamoyladeninyl,

N6-methyl-N6-threonylcarbamoyladeninyl,

N6-hydroxynorvalylcarbamoyladeninyl,

2-methylthio-N6-hydroxynorvalyl carbamoyladeninyl,

N6,N6-dimethyladeninyl,

3-methylcytosinyl,

5-methylcytosinyl,

2-thiocytosinyl,

5-formylcytosinyl,

N4-methylcytosinyl,

5-hydroxymethylcytosinyl,

1-methylguaninyl,

N2-methylguaninyl, 7-methylguaninyl, N2,N2-dimethylguaninyl,

5

10

N2,7-dimethylguaninyl,
N2,N2,7-trimethylguaninyl,
1-methylguaninyl,
7-cyano-7-deazaguaninyl,
7-aminomethyl-7-deazaguaninyl,

pseudouracilyl,

WO 2004/094345

dihydrouracilyl,

5-methyluracilyl,

1-methylpseudouracilyl,

2-thiouracilyl,

5 4-thiouracilyl,

15

25

5-methyl-2-thiouracilyl,

3-(3-amino-3-carboxypropyl)uracilyl,

5-hydroxyuracilyl,

5-methoxyuracilyl,

10 uracilyl 5-oxyacetic acid,

uracilyl 5-oxyacetic acid methyl ester,

5-(carboxyhydroxymethyl)uracilyl,

5-(carboxyhydroxymethyl)uracilyl methyl ester,

5-methoxycarbonylmethyluracilyl,

5-methoxycarbonylmethyl-2-thiouracilyl,

5-aminomethyl-2-thiouracilyl,

5-methylaminomethyluracilyl,

5-methylaminomethyl-2-thiouracilyl,

5-methylaminomethyl-2-selenouracilyl,

20 5-carbamoylmethyluracilyl,

5-carboxymethylaminomethyluracilyl,

5-carboxymethylaminomethyl-2-thiouracilyl,

3-methyluracilyl,

1-methyl-3-(3-amino-3-carboxypropyl) pseudouracilyl,

5-carboxymethyluracilyl,

5-methyldihydrouracilyl,

3-methylpseudouracilyl,

$$N_{\text{ph}}^{\text{NO}_2}$$
, $N_{\text{ph}}^{\text{NO}_2}$

$$H_3C$$
 CH_3
 N
 N
 N
 N
 CH_3
 CH_3

42. The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; R^{28} is (CH_3)

2-aminoadeninyl,

2-methyladeninyl,

10 N6-methyladeninyl,

5

15

2-methylthio-N6-methyladeninyl,

N6-isopentenyladeninyl,

2-methylthio-N6-isopentenyladeninyl,

N6-(cis-hydroxyisopentenyl)adeninyl,

2-methylthio-N6-(cis-hydroxyisopentenyl) adeninyl,

N6-glycinylcarbamoyladeninyl,

N6-threonylcarbamoyladeninyl,

2-methylthio-N6-threonyl carbamoyladeninyl,

N6-methyl-N6-threonylcarbamoyladeninyl,

N6-hydroxynorvalylcarbamoyladeninyl,

2-methylthio-N6-hydroxynorvalyl carbamoyladeninyl,

N6,N6-dimethyladeninyl,

3-methylcytosinyl,

5-methylcytosinyl,

2-thiocytosinyl,

5-formylcytosinyl,

N4-methylcytosinyl,

5-hydroxymethylcytosinyl,

1-methylguaninyl,

N2-methylguaninyl,

7-methylguaninyl,

N2, N2-dimethylguaninyl,

15

10

N2,7-dimethylguaninyl,

N2,N2,7-trimethylguaninyl,

1-methylguaninyl,

5 7-cyano-7-deazaguaninyl,

7-aminomethyl-7-deazaguaninyl,

pseudouracilyl,

dihydrouracilyl,

5-methyluracilyl,

10 1-methylpseudouracilyl,

2-thiouracilyl,

4-thiouracilyl

5-methyl-2-thiouracilyl,

3-(3-amino-3-carboxypropyl)uracilyl,

5-hydroxyuracilyl,

20

5-methoxyuracilyl,

uracilyl 5-oxyacetic acid,

uracilyl 5-oxyacetic acid methyl ester,

5-(carboxyhydroxymethyl)uracilyl,

5-(carboxyhydroxymethyl)uracilyl methyl ester,

5-methoxycarbonylmethyluracilyl,

5-methoxycarbonylmethyl-2-thiouracilyl,

5-aminomethyl-2-thiouracilyl,

5-methylaminomethyluracilyl,

5-methylaminomethyl-2-thiouracilyl,

5-methylaminomethyl-2-selenouracilyl,

5-carbamoylmethyluracilyl,

5-carboxymethylaminomethyluracilyl,

5-carboxymethylaminomethyl-2-thiouracilyl,

3-methyluracilyl,

1-methyl-3-(3-amino-3-carboxypropyl) pseudouracilyl,

5-carboxymethyluracilyl,

5-methyldihydrouracilyl,

3-methylpseudouracilyl,

$$H_3C$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

$$CH_3$$
 , and CH_3

5

- 43. The monomer of claim 1, wherein X^2 is fluoro.
- 44. The monomer of claim 1, wherein B is:

5

10

15

- 45. The monomer of claim 1, wherein B is substituted or unsubstituted aryl attached to a tethered or untethered ligand.
- 46. A protected monomer having a formula:

in which

u is 1 or 2; the wavy line represents a point of attachment for a ligand or a tethered ligand; and the dotted lines represent points of attachment for a first functionalized hydroxyl group; a second functionalized hydroxyl group; and an unfunctionalized hydroxyl group, a protected hydroxyl group, or hydrogen.

47. The monomer of claim 46, wherein the first functionalized hydroxyl group has the formula:

; in which

 X^{5} ', X^{5} '', and X^{5} ''' include at least one alkoxy or siloxy substituent.

48. The monomer of claim 46, wherein the second functionalized hydroxyl group has one of the following formulas:

$$(R^{28})_2N$$
 OR OP OR $(R^{28})_2N$ OR $(R^{28})_2N$ OR $(R^{28})_2N$ OR $(R^{28})_2N$ OR $(R^{28})_2N$

10

5

; in which

 R^{27} is C_1 - C_6 alkyl optionally substituted with cyano or C_2 - C_6 alkenyl; R^{28} is C_1 - C_{10} alkyl; \bullet is a solid or liquid support reagent; and L is a linker.

- 49. The monomer of claim 46, wherein the ligand is a targeting group.
- 50. The monomer of claim 49, wherein the targeting group is a lipid, steroid, vitamin, carbohydrate, polyamine, amino acid, peptide, peptide mimetic or cleaving molecule.

20

- 51. The monomer of claim 50, wherein the steroid is cholesterol.
- 52. The monomer of claim 46, wherein the ligand is a diagnostic group.
- 53. The monomer of claim 52, wherein the diagnostic group is biotin, a fluorophore, an antibody or an antigen.
 - 54. The monomer of claim 46, wherein the ligand has a formula (G)C(=H)NHRⁿ, in which G is -O-, -NH-, or -CH₂-; H is O or NH; and Rⁿ is H, C₁-C₆ alkyl, C₆-C₁₀ aryl, or C₅-C₁₀ heteroaryl.
 - 55. The monomer of claim 46, wherein the monomer has a tethered ligand.
- 56. The monomer of claim 55, wherein the ligand is tethered with a tether selected from the group consisting of: -C(O)-(CH₂)_s-C(O)-(ligand); -C(O)-(CH₂)_s-C(O)O-(ligand); -C(O)-(CH₂)_s-NH-; -C(O)-(CH₂)_s-NH-C(O)-(ligand); -C(O)-(CH₂)_s-(ligand); -C(O)-NH-(ligand); -C(O)-(ligand); -(CH₂)_s-C(O)-(ligand); -(CH₂)_s-C(O)O-(ligand); -(CH₂)_s-NH-; and -(CH₂)_s-NH-C(O)-(ligand), wherein s is 0-6.

20

57. The monomer of claim 46, wherein the monomer has the formula:

$$X^{5}$$
, X^{5} , X

$$X^{5}$$
 O-chol X^{5} N O-chol X^{5}

- wherein, $X^{5'}$, $X^{5''}$, and $X^{5'''}$ include at least one alkoxy or siloxy substituent, ipr is an isopropyl group, and chol is a cholesterol radical.
 - 58. An iRNA agent having a monomer of claim 1 or 46.
- 59. A method of making an iRNA agent, the method comprising providing an iRNA agent having a monomer of claim 1 or 46 and allowing it to anneal to a complementary RNA sequence to form an iRNA agent.