

XN297L 安规设计和调试参考

目录

一、简介	3
二、FCC、R&TTE 发射接收杂散规范	3
2.1 FCC	3
2.2 R&TTE	3
三、双面板(过 R&TTE 和 FCC)	4
3.1 遥控端	4
3.1.1 匹配结构	4
3.1.1.1 单向(安规只考虑 TX 模式, 不考虑 RX 模式)	4
3.1.1.2 双向(安规考虑 TX 和 RX 模式)	4
3.1.2 PCB 实现参考	5
3.1.3 软件配置	5
3.1.3.1 TX 模式功率配置	5
3.1.3.2 TX 模式寄存器配置	6
3.1.3.3 RX 模式寄存器配置	
3.1.4 边带	7
3.2 接收端(小飞碟端)	7
3.2.1 匹配结构	7
3.2.1.1 合封(PAN159 和 PAN163)	7
3.2.1.2 单封(QFN20)	7
3.2.1.3 单封(SOP8)	7
3.2.2 PCB 实现参考	8
3.2.3 软件配置	8
3.2.3.1 TX 模式功率配置	8
3.2.3.2 TX 模式寄存器配置	8
3.2.3.3 RX 模式寄存器配置	9
3.3 接收端(小车端)	9
3.3.1 匹配结构	9
3.3.1.1 优先推荐匹配	_

3.3.1.2 第二推荐匹配	10
3.3.1.3 SOP8 封装	10
3.3.2 软件配置	10
3.3.2.1 TX 模式功率配置	10
3.3.2.2 TX 模式寄存器配置	11
3.3.2.3 RX 模式寄存器配置	11
四、单面板(过 R&TTE 和 FCC)	12
4.1 遥控端	12
4.1.1 匹配结构	12
4.1.1.1 单向(不考虑过 RX 模式 R&TTE)	12
4.1.1.2 双向(考虑过 RX 模式 R&TTE)	12
4.1.2 PCB 实现参考	13
4.1.3 软件配置	13
4.1.3.1 TX 模式功率配置	14
4.1.3.2 TX 模式寄存器配置	14
4.1.2.3 RX 模式寄存器配置	14
4.1.3 边带	15
4.2 接收端(小车端)	15
4.2.1 匹配结构	15
4.2.2 PCB 实现参考	15
4.2.3 软件配置	16
4.2.3.1 TX 模式功率配置	16
4.2.3.2 TX 模式寄存器配置	16
4.2.3.3 RX 模式寄存器配置	17
五、注意事项	17
附 1 寄存器地址	18
附 2 各功率寄存器配置	18

一、简介

本文首先简单列出了 FCC 和 CE 杂散相关规范;具体测试流程以及测试方法请参考 FCC Part 15 和 ETSI EN 300 440。因为双面板和单面板的辐射特性不同,单面板因为 PCB 射频电路没有 Bottom 层的参考地,杂散更容易辐射出去,过安规更加困难;所以针对不同规范(FCC和 CE)不同叠构(双面板和单面板)在匹配结构、功率配置、寄存器配置这几个发面给出说明供参考。

二、FCC、R&TTE 发射接收杂散规范

2.1 FCC

参考 FCC Part 15,接收模式具体规范在 15.109 中给出,发射模式具体规范在 15.209 中给出。任何杂散功率平均值不得超过下列数值

Frequency	Electrical Field Strength	EIRP
30-88MHz	$100 \mu V/m$	-55.2dBm
88-261MHz	150μV/m	-51.7dBm
216-910MHz	$200 \mu V/m$	-49.2dBm
>960MHz	$500 \mu V/m$	-41.2dBm

2.2 R&TTE

参考 ETSI EN 300 440

任何杂散功率峰值不得超过下列数值。

Frequency Ranges	47MHz to 74MHz 87.5MHz to 108MHz	Other Frequencies	Frequencies
State	174MHz to 230MHz 470MHz to 862MHz	<=1000MHz	>1000MHz
TX Mode	4nW / -54dBm	250nW / -36dBm	1μW / -30dBm
RX Mode/Standby	2nW / -57dBm	2nW / -57dBm	-20nW / -47dBm

2.3 推荐的 PCB 解决方案

2.3.1 小四轴

遥控器建议用双面板模组, 小飞碟用双面一体板。

2.3.2 小车

遥控器和小车端都用双面板模组;如果考虑成本,遥控器和小车端都可以用单面一体板, 但距离会比双面板模组近。

三、双面板(过 R&TTE 和 FCC)

3.1 遥控端

3.1.1 匹配结构

3.1.1.1 单向(安规只考虑 TX 模式,不考虑 RX 模式)

安规推荐匹配结构由四个器件构成,结构如下图。

- 注: 1、C1、L2和C3要根据实际效果来进行微调。
 - 2、电容推荐用 Murata 0402。
 - 3 NC = Not Connect

3.1.1.2 双向(安规考虑 TX 和 RX 模式)

安规推荐匹配结构由 5 个器件构成,结构如下图所示,实际的值跟 PCB 实现有关,可能需要微调。

3.1.2 PCB 实现参考

3.1.2.1 四个匹配器件(模组)

3.1.2.2 五个匹配器件(模组)

3.1.3 软件配置

3.1.3.1 TX 模式功率配置

250Kbps	1/2Mbps	输出功
RF_SETUP	RF_SETUP	率 (dBm)

寄存器	寄存器	
D5	15	9

3.1.3.2 TX 模式寄存器配置

1Mbps 通信配置:

BB_CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF CAL: 0xF6, 0x3F, 0x5D

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM_CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

3.1.3.3 RX 模式寄存器配置

1Mbps 通信配置:

BB CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB_CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) [©]

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

备注①: RX 模式 RF_CAL 配置成 0x06, 0x3F, 0x5D 用于过 RX 模式的安规,不能用于 TX 模式,如果在 TX 模式下使用该配置会导致不良率升高,如果有 RX 切换到 TX 的操作,需要先将 RF_CAL 从 0x06, 0x3F, 0x5D 配置成 0xF6, 0x3F, 0x5D,再进入 TX 模式;如果不过安规建议使用和 TX 模式一样的配置 0xF6, 0x3F, 0x5D。

3.1.4 边带

边带过安规推荐使用频率为 2420MHz--2465MHz。

3.2 接收端 (小飞碟端)

3.2.1 匹配结构

3.2.1.1 合封 (PAN159 和 PAN163)

安规推荐匹配结构由一个器件构成,结构如下图。

3.2.1.2 单封 (QFN20)

安规推荐匹配结构由一个器件构成,结构如下图。

3.2.1.3 单封 (SOP8)

SOP8 不容易过 RX R&TTE 规范,不推荐使用。

3.2.2 PCB 实现参考

一体板布局天线附近不要放置金属器件(蜂鸣器,电池,螺丝等),以免影响天线辐射性能。 PCB 走线尽量避开天线,保证芯片及天线有较好的铺地,抑制发射接收杂散。

3.2.3 软件配置

3.2.3.1 TX 模式功率配置

250Kbps RF_SETUP 寄存器	1/2Mbps RF_SETUP 寄存器	输出功 率(dBm)
E9	29	-9

3.2.3.2 TX 模式寄存器配置

1Mbps 通信配置:

BB CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM_CAL: 0x01

DEM_CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

3.2.3.3 RX 模式寄存器配置

1Mbps 通信配置:

BB CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

备注①: RX 模式 RF_CAL 配置成 0x06, 0x3F, 0x5D 用于过 RX 模式的安规,不能用于 TX 模式,如果在 TX 模式下使用该配置会导致不良率升高,如果有 RX 切换到 TX 的操作,需要先将 RF_CAL 从 0x06, 0x3F, 0x5D 配置成 0xF6, 0x3F, 0x5D,再进入 TX 模式;如果不过安规建议使用和 TX 模式一样的配置 0xF6, 0x3F, 0x5D。

3.3 接收端(小车端)

3.3.1 匹配结构

3.3.1.1 优先推荐匹配

优先推荐匹配结构由 5 个器件构成,RX 模式安规性能最好,结构如下图所示,实际的值跟PCB 实现有关,可能需要微调。

3.3.1.2 第二推荐匹配

在优先推荐匹配距离不够的情况下,可以选用四个器件匹配结构,结构如下图, 距离会提升, 但 RX 模式安规性能会比 5 个器件差。

- 注: 1、C1、L2和C3要根据实际效果来进行微调。
 - 2、电容推荐用 Murata 0402。
 - 3. NC = Not Connect

3.3.1.3 SOP8 封装

SOP8 不容易过 RX R&TTE 规范,不推荐使用。

3.3.2 软件配置

3.3.2.1 TX 模式功率配置

250Kbps RF_SETUP 寄存器	1/2Mbps RF_SETUP 寄存器	输出功 率(dBm)
D5	15	9
D4	14	4

3.3.2.2 TX 模式寄存器配置

1Mbps 通信配置:

BB CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM_CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB_CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF_CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

3.3.2.3 RX 模式寄存器配置

1Mbps 通信配置:

BB_CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) [©]

RF_CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB_CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

备注①: RX 模式 RF_CAL 配置成 0x06, 0x3F, 0x5D 用于过 RX 模式的安规,不能用于 TX 模式,如果在 TX 模式下使用该配置会导致不良率升高,如果有 RX 切换到 TX 的操作,需要先将 RF_CAL 从 0x06, 0x3F, 0x5D 配置成 0xF6, 0x3F, 0x5D,再进入 TX 模式;如果不过安规建议使用和 TX 模式一样的配置 0xF6, 0x3F, 0x5D。

四、单面板(过 R&TTE 和 FCC)

4.1 遥控端

4.1.1 匹配结构

4.1.1.1 单向(不考虑过 RX 模式 R&TTE)

安规推荐匹配结构由四个器件构成,结构如下图。

- 注: 1、C1、L2 和 C3 要根据实际效果来进行微调。
 - 2、电容推荐用 Murata 0402。
 - $3 \cdot NC = Not Connect$

4.1.1.2 双向 (考虑过 RX 模式 R&TTE)

安规推荐匹配结构由 5 个器件构成,结构如下图所示,实际的值跟 PCB 实现有关,可能需要微调。

4.1.2 PCB 实现参考

4.1.2.1 四个匹配器件

4.1.2.2 五个匹配器件

天线附近不要放置金属器件(蜂鸣器,电池、螺丝等),以免影响天线辐射性能。 PCB 走线尽量避开天线,保证芯片及天线有较好的铺地,抑制发射接收杂散。

4.1.3 软件配置

4.1.3.1 TX 模式功率配置

250Kbps RF_SETUP 寄存器	1/2Mbps RF_SETUP 寄存器	输出功 率(dBm)
D5	15	9
D4	14	4

4.1.3.2 TX 模式寄存器配置

1Mbps 通信配置:

BB CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB_CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF CAL: 0xF6, 0x3F, 0x5D

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

4.1.2.3 RX 模式寄存器配置

1Mbps 通信配置:

BB CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM_CAL2: 0x0B, 0xDF, 0x02

备注①: RX 模式 RF_CAL 配置成 0x06, 0x3F, 0x5D 用于过 RX 模式的安规,不能用于 TX 模式,如果在 TX 模式下使用该配置会导致不良率升高,如果有 RX 切换到 TX 的操作,需要先将 RF_CAL 从 0x06, 0x3F, 0x5D 配置成 0xF6, 0x3F, 0x5D,再进入 TX 模式;如果不过安规建议使用和 TX 模式一样的配置 0xF6, 0x3F, 0x5D。

250Kbps 通信配置:

BB CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

备注①: RX 模式 RF_CAL 配置成 0x06, 0x3F, 0x5D 用于过 RX 模式的安规,不能用于 TX 模式,如果在 TX 模式下使用该配置会导致不良率升高,如果有 RX 切换到 TX 的操作,需要先将 RF_CAL 从 0x06, 0x3F, 0x5D 配置成 0xF6, 0x3F, 0x5D,再进入 TX 模式;如果不过安规建议使用和 TX 模式一样的配置 0xF6, 0x3F, 0x5D。

4.1.3 边带

边带过安规推荐使用频率为 2420MHz--2465MHz。

4.2 接收端 (小车端)

4.2.1 匹配结构

安规推荐匹配结构由 5 个器件构成,结构如下图所示,实际的值跟 PCB 实现有关,可能需要微调。

4.2.2 PCB 实现参考

4.2.2.1 四个匹配器件

4.2.2.2 五个匹配器件

天线附近不要放置金属器件(蜂鸣器,电池、螺丝等),以免影响天线辐射性能。 PCB 走线尽量避开天线,保证芯片及天线有较好的铺地,抑制发射接收杂散。

4.2.3 软件配置

4.2.3.1 TX 模式功率配置

250Kbps RF_SETUP 寄存器	1/2Mbps RF_SETUP 寄存器	输出功 率(dBm)
D4	14	4

4.2.3.2 TX 模式寄存器配置

1Mbps 通信配置:

BB CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF_CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF CAL: 0xF6, 0x3F, 0x5D

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

4.2.3.3 RX 模式寄存器配置

1Mbps 通信配置:

BB CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM CAL: 0x01

DEM CAL2: 0x0B, 0xDF, 0x02

250Kbps 通信配置:

BB_CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

备注①: RX 模式 RF_CAL 配置成 0x06, 0x3F, 0x5D 用于过 RX 模式的安规,不能用于 TX 模式,如果在 TX 模式下使用该配置会导致不良率升高,如果有 RX 切换到 TX 的操作,需要先将 RF_CAL 从 0x06, 0x3F, 0x5D 配置成 0xF6, 0x3F, 0x5D,再进入 TX 模式;如果不过安规建议使用和 TX 模式一样的配置 0xF6, 0x3F, 0x5D。

五、注意事项

- 1. RX 和 TX 模式的 RF_CAL 配置是有区别的,如果将 RX 模式 RF_CAL 配置用于 TX 模式,会导致 TX 模式不能正常工作;同时如果将 TX 模式 RF_CAL 配置用于 RX 模式,会导致 RX 模式的杂散辐射不能满足 R&TTE 要求。TX 模式和 RX 模式 RF_CAL 配置在前面的内容有明确说明。
- 2. RX 模式和 TX 模式是针对 XN297L 来区分的, 跟实际应用的遥控端和被控制端没有直接联系, 遥控端可能处于 TX 和 RX 模式, 被控制端也可能处于 TX 和 RX 模式。

附 1 寄存器地址

寄存器	地址
RF_SETUP	0x06
DEMOD_CAL	0x19
RF_CAL2	0x1A
DEM_CAL2	0x1B
RF_CAL	0x1E
BB_CAL	0x1F

附 2 各功率寄存器配置

250Kbps RF_SETUP 寄存器	1Mbps RF_SETUP 寄存器	输出功率 (dBm)	特殊说明
E7	27	11	
E6	26	10	
D5	15	9	
不能用	0D	7	该配置不能用于 250Kbps, 存在通信丢包风险; 用于 1Mbps 通信, 要严格按照流程实现。
不能用	06	6	该配置不能用于 250Kbps,存在通信丢包风险; 用于 1Mbps 通信,要严格按照流程实现。
EC	2C	5	
不能用	05	5	该配置不能用于 250Kbps,存在通信丢包风险; 用于 1Mbps 通信,要严格按照流程实现。
D4	14	4	
不能用	0C	3	该配置不能用于 250Kbps, 存在通信丢包风险; 用于 1Mbps 通信, 要严格按照流程实现。
EA	2A	-1	
E9	29	-9	
D9	19	-10	
F0	30	-23	