Formulaire de RDM

	Cas	Exemple	Effort	Caractéristique surface	Module et contrainte	Contrainte /effort	Contrainte /déformation	Déformation /effort
Sollicitations simples	Traction compression	- F F	N en N	S = aire section en mm ²	E en MPa σ en MPa	$\sigma = \frac{N}{S}$	$\sigma = E. \varepsilon$	$\Delta L = \frac{N.L}{E.S}$
	Cisaillement	F - F	T en N	S = aire section en mm²	G en MPa τ en MPa	$\tau = k \frac{T}{S}$ K fonction de la section	$ au = G.\gamma$	$\gamma = \frac{kT}{G.S}$
	Torsion	-MM	Mt en N.m	Module de torsion $\frac{I_{G0}}{r} \text{ en mm}^3$	G en MPa τ en MPa	$\tau = \frac{Mt}{\frac{I_{G0}}{r}}$	au = G. heta ho	$Mt = G.\theta.I_{G0}$ Avec α = θ L
	Flexion	-M X M	Mfz en N.m	Module de flexion $\frac{I_{Gz}}{y} \text{ en mm}^3$	E en MPa σ en MPa	$\sigma = \frac{Mfz}{\frac{I_{Gz}}{y}}$	$\sigma_M = E.\varepsilon_M$	EI_{Gz} .y"(x)=Mfz(x)

N: effort normal en traction (Mpa)

T: effort tranchant en cisaillement (Mpa)

S : section résistante en traction et cisaillement

M_{fz}: moment fléchissant en flexion (m.N)

y : position du point M considéré dans la section droite

I_{Gz}: moment quadratique (mm⁴)

M_t:moment de torsion (m.N)

r : position radiale du point M considéré dans la section droite

I_{Go}: moment quadratique polaire (mm⁴)

Pour les calculs de résistance

σ: contrainte normale (Mpa)

E:module d'Young (MPa)

ε: déformation unitaire

T: contrainte de cisaillement (Mpa)

G: module de Coulomb (MPa)

y : angle de cisaillement

∆I: allongement (mm)

v(x): équation de la déformée

0 :angle de rotation unitaire (rad/mm)

 α_x : angle de rotation (rad)