文章目录

- 1. A* 树搜索
- 2. A* 图搜索
- 3. 一致性与可采纳性

对一个图 (有向图) , 要找到从起点到终点的一条路径, 既可以用图搜索算法, 也可以用树搜索算法。

图搜索算法 不允许 重复访问结点。

树搜索算法允许重复访问结点。

以 \mathbf{A}^* 搜索为例,启发函数为 $\mathbf{f}(\mathbf{n})=\mathbf{g}(\mathbf{n})+\mathbf{h}(\mathbf{n})$, $\mathbf{g}(\mathbf{n})$ 是从起点到当前结点走过的路径的代价, $\mathbf{h}(\mathbf{n})$ 是当前节点到目标的估计代价。每次 \mathbf{A}^* 搜索都会搜拓展节点中 \mathbf{f} 最小的点。

例子

图一表示一个搜索问题,其中结点表示状态,边上的数字表示状态之间的实际代价,S为初始结点,G为终止结点,表格中的数字表示结点到终止结点的估计代价。根据图一回答如下问题: \varTheta

Heuristic A B C D E

S	A	В	C	D	E	G
6	0	6	4	1	10	0

图一:搜索状态图←

 \leftarrow

https://blog.csdn.net/shiwei.

- c) 给出 A*的树搜索路径,要求给出每一步的扩展结点和代价值(5分); ←
- d) 给出 A*的图搜索路径,要求给出每一步的扩展结点和代价值(5分); 6

1. A* 树搜索

Algorithm progression:

Path	Fringe (ordered by path +				
expanded	heuristic cost)				
S	S-A(2+0) S-B(1+6) S-G(9+0)				
S-A	S-A-D(5+1) S-B(1+6) S-A-C(4+4) S-G(9+0)				
S-A-D	S-B(1+6) S-A-C(4+4) S-G(9+0) S-A-D-G(9+0)				
S-B	S-B-D(3+1) S-A-C(4+4) S-G(9+0) S-A-D-G(9+0) S-B-E(5+10)				
S-B-D	S-B-D-G(7+0) S-A-C(4+4) S-G(9+0) S-A-D-G(9+0) S-B-E(5+10)				
S-B-D-G	S-A-C(4+4) S-G(9+0) S-A-D-G(9+0) S-B-E(5±10)//blog.csdn.net/shi				

Fringe 中包含了当前拓展出的所有可以走但尚未访问的路径。

需要注意的是第四行选择的 S-B 这一条路径,它可以拓展出 S-B-D 这一条路径放入 Fringe,树搜索允许重复访问结点。

2. A* 图搜索

Algorithm progression:

Path expanded	Closed list	Fringe (ordered by path + heuristic cost)
S	S	S-A(2+0) S-B(1+6) S-G(9+0)
S-A	S A	S-A-D(5+1) S-B(1+6) S-A-C(4+4) S-G(9+0)
S-A-D	SAD	S-B(1+6) S-A-C(4+4) S-G(9+0) S-A-D-G(9+0)
S-B	SADB	S-A-C(4+4) S-G(9+0) S-A-D-G(9+0) S-B-E(5+10)
S-A-C	SADBC	S-A-C-G(8+0) S-G(9+0) S-A-D-G(9+0) S-B-E(5+10)
S-A-C-G	SADBCG	S-G(9+0) S-A-D-G(9+0) S-B-E(5+10) log csdn net/shiwe

要注意的是第四行选择的 S-B 这一条路径,D 已经在之前访问过了并加入到了 Closed List 中,所以 S-B 只能拓展出 S-B-E 这一条路径。

3. 一致性与可采纳性

针对启发函数 f 而言,

如果 f(n) 可采纳,那么要满足:

对于每个结点 n, $f(n) < h^*(n)$ 。 其中 $h^*(n)$ 是到达目标节点的真实代价。

这意味着可采纳的启发函数绝对不会高估到达目标节点的代价,因此它是最优的。

如果启发函数是可采纳的,那么A*使用树搜索是最优的。

邀 文章知识点与官方知识档案匹配,可进一步学习相关知识

算法技能树〉首页〉概览 61681 人正在系统学习中