This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

1. (Currently Amended) A compound of Formula I:

$$X^2$$
 X^7
 X^7
 X^1

in which:

 X^1 is -NHC(R^1)(R^2) X^3 or -NH X^4 :

 X^2 is hydrogen, fluoro, -OH, -OR⁴, -NHR¹⁵ or -NR¹⁷R¹⁸ and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

 X^3 is cyano, $-C(R^7)(R^8)R^{16}$, $-C(R^6)(OR^6)_2$, $-CH_2C(O)R^{16}$, $-CH=CHS(O)_2R^5$, $-C(O)CF_2C(O)NR^5R^5$, $-C(O)C(O)NR^5R^6$, $-C(O)C(O)OR^5$, $-C(O)CH_2OR^5$, $-C(O)CH_2N(R^6)SO_2R^5$ or $-C(O)C(O)R^5$; wherein R^5 is hydrogen, (C_{1-4}) alkyl, (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, (C_{9-10}) bicycloaryl (C_{0-6}) alkyl or hetero (C_{8-10}) bicycloaryl (C_{0-6}) alkyl; R^6 is hydrogen, hydroxy or (C_{1-6}) alkyl; or where X^3 contains an $-NR^5R^6$ group, R^5 and R^6 together with the nitrogen atom to which they are both attached, form hetero (C_{3-10}) cycloalkyl, hetero (C_{5-10}) aryl or hetero (C_{8-10}) bicycloaryl; R^7 is hydrogen or (C_{1-4}) alkyl and R^8 is hydroxy or R^7 and R^8 together form oxo; R^{16} is hydrogen, $-X^4$, $-CF_3$, $-CF_2CF_2R^9$ or $-N(R^6)OR^6$; R^9 is hydrogen, halo, (C_{1-4}) alkyl, (C_{5-10}) aryl (C_{0-6}) alkyl or (C_{5-10}) heteroaryl (C_{0-6}) alkyl, with the proviso that when X^3 is cyano, then X^2 is hydrogen, fluoro, -OH, $-OR^4$ or $-NR^{17}R^{18}$ and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

 X^4 is comprises a heteromonocyclic ring containing 4 to 7 ring member atoms or a fused heterobicyclic ring system containing 8 to 14 ring member atoms and any carbocyclic ketone, iminoketone or thioketone derivative thereof, with the proviso that when $-X^4$ is other than a heteromonocyclic ring containing 5 ring member atoms, wherein no more than two of the ring member atoms comprising the ring are heteroatoms, then X^2 is fluoro, -OH, -OR⁴, -NHR¹⁵ or -NR¹⁷R¹⁸ and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

wherein within R^5 , X^3 or X^4 any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5C(O)R^{12}$,

 R^1 is hydrogen or $(C_{1\text{-}6})$ alkyl and R^2 is selected from a group consisting of hydrogen, cyano, $-X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)NR^{12}, -X^5NR^{12}C(O)NR^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5OC(O)R^{12}, -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12}, -X^5C(O)R^{12}, -X^5OC(O)R^{12}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}, -X^5P(O)(OR^{12})OR^{12}, -X^5OR^{14}, -X^5SR^{14}, -X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)_2R^{13}, -R^{14}, -X^5OR^{14}, -X^5SR^{14}, -X^5S(O)R^{14}, -X^5S(O)_2R^{14}, -X^5S(O)R^{14}, -X^5S(O)R^$

hetero(C_{8-10})bicycloaryl(C_{1-6})alkyl;

```
substituted with 1 to 3 radicals independently selected from (C<sub>1-6</sub>)alkyl, (C<sub>1-6</sub>)alkylidene, cyano,
  halo, halo-substituted(C_{1-4})alkyl, nitro, -X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)OR^{12},
   -X^5NR^{12}C(O)NR^{12}R^{12}, -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12},
   -X^5C(O)R^{12}, -X^5OC(O)R^{12}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}.
  -X^5P(O)(OR^{12})OR^{12}, -X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)_2R^{13} and
 -X<sup>5</sup>C(O)R<sup>13</sup>, wherein X<sup>5</sup>, R<sup>12</sup> and R<sup>13</sup> are as defined above:
 R^3 is (C_{1-6})alkyl or -C(R^6)(R^6)X^6, wherein R^6 is hydrogen or (C_{1-6})alkyl and X^6 is selected from
 -X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)OR^{12}, -X^5NR^{12}C(O)NR^{12}R^{12}.
 -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12}, -X^5C(O)R^{12}, -X^5OC(O)R^{12}.
 -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}, -X^5P(O)(OR^{12})OR^{12},
 -X^5OP(O)(OR^{12})OR^{12}, -X^5C(O)R^{13}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)R^{13}, -X^5OR^{14}, -
 -X^{5}SR^{14}, -X^{5}S(O)R^{14}, -X^{5}S(O)_{2}R^{14}, -X^{5}C(O)R^{14}, -X^{5}C(O)OR^{14}, -X^{5}OC(O)R^{14}, -X^{5}NR^{14}R^{12}, -
 -X^5NR^{12}C(O)R^{14}, -X^5NR^{12}C(O)OR^{14}, -X^5C(O)NR^{14}R^{12}, -X^5S(O)_2NR^{14}R^{12}, -X^5NR^{12}S(O)_2R^{14},
 -X<sup>5</sup>NR<sup>12</sup>C(O)NR<sup>14</sup>R<sup>12</sup> and -X<sup>5</sup>NR<sup>12</sup>C(NR<sup>12</sup>)NR<sup>14</sup>R<sup>12</sup> wherein X<sup>5</sup>, R<sup>12</sup>, R<sup>13</sup> and R<sup>14</sup> are as defined
 above;
 R^4 is selected from -X^8NR^{12}R^{12}, -X^8NR^{12}C(O)R^{12}, -X^8NR^{12}C(O)OR^{12}, -X^8NR^{12}C(O)NR^{12}R^{12}
 -X^{8}NR^{12}C(NR^{12})NR^{12}R^{12}, -X^{8}OR^{12}, -X^{8}SR^{12}, -X^{5}C(O)OR^{12}, -X^{5}C(O)R^{12}, -X^{8}OC(O)R^{12}.
-X^{5}C(O)NR^{12}R^{12}, -X^{8}S(O)_{2}NR^{12}R^{12}, -X^{8}NR^{12}S(O)_{2}R^{12}, -X^{8}P(O)(OR^{12})OR^{12}.
-X^{8}OP(O)(OR^{12})OR^{12}, -X^{5}C(O)R^{13}, -X^{8}NR^{12}C(O)R^{13}, -X^{8}S(O)R^{13}, -X^{8}S(O)R^{13}, -R^{14}, -X^{8}OR^{14},
-X^8SR^{14}, -X^8S(O)R^{14}, -X^8S(O)_2R^{14}, -X^5C(O)R^{14}, -X^5C(O)OR^{14}, -X^8OC(O)R^{14}, -X^8NR^{14}R^{12}.
-X^8NR^{12}C(O)R^{14}, -X^8NR^{12}C(O)OR^{14}, -X^5C(O)NR^{14}R^{12}, -X^8S(O)_2NR^{14}R^{12}, -X^8NR^{12}S(O)_2R^{14}, -X^{12}R^{12}R^{12}, -X^{12}R^{12}R^{12}R^{12}, -X^{12}R^{12}R^{12}R^{12}R^{12}R^{12}, -X^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}
-X^8NR^{12}C(O)NR^{14}R^{12} and -X^8NR^{12}C(NR^{12})NR^{14}R^{12} wherein X^8 is (C_{1-6})alkylene and X^5, R^{12},
```

 R^{15} is (C_{6-10}) aryl, hetero (C_{5-10}) aryl, (C_{9-10}) bicycloaryl or hetero (C_{8-10}) bicycloaryl; R^{17} is (C_{1-6}) alkyl, (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{0-3}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, hetero (C_{5-10}) aryl (C_{0-6}) alkyl, (C_{9-10}) bicycloaryl (C_{0-6}) alkyl or hetero (C_{8-10}) bicycloaryl (C_{0-6}) alkyl, with the proviso that when X^3 is cyano, then R^{17} is

 (C_{6-10}) aryl (C_{1-6}) alkyl, hetero (C_{5-10}) aryl (C_{1-6}) alkyl, (C_{9-10}) bicycloaryl (C_{1-6}) alkyl or

 R^{13} and R^{14} are as defined above, with the proviso that when X^3 is cyano and X^2 is $-OR^4$, where R^4 is defined as $-R^{14}$, then R^{14} is (C_{3-10}) cycloalkyl (C_{1-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{1-3}) alkyl,

 $(C_{1-6})alkyl, (C_{3-10})cycloalkyl(C_{1-6})alkyl, hetero(C_{3-10})cycloalkyl(C_{1-6})alkyl, (C_{6-10})aryl(C_{1-6})alkyl, hetero(C_{5-10})aryl(C_{1-6})alkyl, (C_{9-10})bicycloaryl(C_{1-6})alkyl or hetero(C_{8-10})bicycloaryl(C_{1-6})alkyl; \\ R^{18} is hydrogen, (C_{1-6})alkyl, (C_{3-10})cycloalkyl(C_{0-6})alkyl, hetero(C_{3-10})cycloalkyl(C_{0-6})alkyl, (C_{6-10})aryl(C_{0-6})alkyl, hetero(C_{5-10})aryl(C_{0-6})alkyl, (C_{9-10})bicycloaryl(C_{0-6})alkyl or hetero(C_{8-10})bicycloaryl(C_{0-6})alkyl, with the proviso that when <math>X^3$ is cyano, then R^{18} is $(C_{1-6})alkyl, (C_{3-10})cycloalkyl(C_{1-6})alkyl, hetero(C_{3-10})cycloalkyl(C_{1-6})alkyl, (C_{6-10})aryl(C_{1-6})alkyl, hetero(C_{5-10})aryl(C_{1-6})alkyl, (C_{9-10})bicycloaryl(C_{1-6})alkyl, and <math>(C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})a$

wherein within R³, R⁴, R¹⁵, R¹⁷ and R¹⁸ any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, halo-substituted(C₁₋₄)alkyl, nitro, -X⁵NR¹²R¹², -X⁵NR¹²C(O)R¹², $-X^5NR^{12}C(O)OR^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$, $-X^5NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^5OR^{12}$, $-X^5SR^{12}$. $-X^5C(O)OR^{12}$, $-X^5C(O)R^{12}$, $-X^5OC(O)R^{12}$, $-X^5C(O)NR^{12}R^{12}$, $-X^5S(O)_2NR^{12}R^{12}$. $-X^5NR^{12}S(O)_2R^{12}$, $-X^5P(O)(OR^{12})OR^{12}$, $-X^5OP(O)(OR^{12})OR^{12}$, $-X^5NR^{12}C(O)R^{13}$, $-X^5S(O)R^{13}$. -X⁵C(O)R¹³ and -X⁵S(O)₂R¹³ and/or 1 radical selected from -R¹⁴, -X⁵OR¹⁴, -X⁵SR¹⁴, $-X^{5}S(O)R^{14}$, $-X^{5}S(O)_{2}R^{14}$, $-X^{5}C(O)R^{14}$, $-X^{5}C(O)OR^{14}$, $-X^{5}OC(O)R^{14}$, $-X^{5}NR^{14}R^{12}$. $-X^5NR^{12}C(O)R^{14}$, $-X^5NR^{12}C(O)OR^{14}$, $-X^5C(O)NR^{14}R^{12}$, $-X^5S(O)_2NR^{14}R^{12}$, $-X^5NR^{12}S(O)_2R^{14}$, -X⁵NR¹²C(O)NR¹⁴R¹² and -X⁵NR¹²C(NR¹²)NR¹⁴R¹²; and within R³ and R⁴ any aliphatic mojety is unsubstituted or substituted further by 1 to 5 radicals independently selected from cyano, halo, nitro, -NR¹²R¹², -NR¹²C(O)R¹², -NR¹²C(O)OR¹², -NR¹²C(O)NR¹²R¹², -NR¹²C(NR¹²)NR¹²R¹². $-OR^{12}$, $-SR^{12}$, $-C(O)OR^{12}$, $-C(O)R^{12}$, $-OC(O)R^{12}$, $-C(O)NR^{12}R^{12}$, $-S(O)_2NR^{12}R^{12}$, $-NR^{12}S(O)_2R^{12}$, -P(O)(OR¹²)OR¹², -OP(O)(OR¹²)OR¹², -NR¹²C(O)R¹³, -S(O)R¹³ and -S(O)₂R¹³; wherein X⁵, R¹², R¹³ and R¹⁴ are as described above, with the proviso that when X³ is cyano and X² is -OR⁴, where R⁴ is defined as -R¹⁴, or -NHR¹⁸, then any aromatic ring system present within R¹⁴ or R¹⁸ is not substituted further by halo, (C_{3-10}) cycloalkyl, hetero (C_{3-10}) cycloalkyl, (C_{6-10}) aryl, hetero(C_{5-10})aryl, (C_{9-10})bicycloaryl or hetero(C_{8-10})bicycloaryl; with the proviso that only one bicyclic ring structure is present within R³, R⁴ or R¹⁵; N-oxide derivatives, prodrug derivatives. protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of

stereoisomers thereof and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

2. (Original) A compound of Claim 1, which is of the following formula:

$$X^2$$
 X^1

in which X^2 is hydrogen, fluoro, -OH, -OR⁴, -NHR¹⁵; R^3 , R^4 , R^{15} and X^1 are the same as defined in claim 1.

3. (Currently Amended) A compound of Claim 1 or Claim 2 in which:

 X^{1} is -NHC(R^{1})(R^{2}) X^{3} or -NHCH(R^{19})C(O) R^{20} ;

 X^2 is hydrogen, fluoro, -OH, -OR⁴, -NHR¹⁵ or -NR¹⁷R¹⁸ and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

 X^3 is cyano, $-C(R^7)(R^8)R^{16}$, $-C(R^6)(OR^6)_2$, $-CH_2C(O)R^{16}$, $-CH=CHS(O)_2R^5$, $-C(O)CF_2C(O)NR^5R^5$, $-C(O)C(O)NR^5R^6$, $-C(O)C(O)OR^5$, $-C(O)CH_2OR^5$, $-C(O)CH_2N(R^6)SO_2R^5$ or $-C(O)C(O)R^5$; wherein R^5 is hydrogen, (C_{1-4}) alkyl, (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, hetero (C_{5-10}) aryl (C_{0-6}) alkyl, (C_{9-10}) bicycloaryl (C_{0-6}) alkyl or hetero (C_{8-10}) bicycloaryl (C_{0-6}) alkyl; R^6 is hydrogen, hydroxy or (C_{1-6}) alkyl; or where X^3 contains an $-NR^5R^6$ group, R^5 and R^6 together with the nitrogen atom to which they are both attached, form hetero (C_{3-10}) cycloalkyl, hetero (C_{5-10}) aryl or hetero (C_{8-10}) bicycloaryl; R^7 is hydrogen or (C_{1-4}) alkyl and R^8 is hydroxy or R^7 and R^8 together form oxo; R^{16} is hydrogen, $-X^4$, $-CF_3$, $-CF_2CF_2R^9$ or $-N(R^6)OR^6$; R^9 is hydrogen, halo, (C_{1-4}) alkyl, (C_{5-10}) aryl (C_{0-6}) alkyl or (C_{5-10}) heteroaryl (C_{0-6}) alkyl, with the proviso

that when X^3 is cyano, then X^2 is hydrogen, fluoro, -OH, -OR⁴ or -NR¹⁷R¹⁸ and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

 X^4 is comprises a heteromonocyclic ring containing 4 to 7 ring member atoms or a fused heterobicyclic ring system containing 8 to 14 ring member atoms and any carbocyclic ketone, iminoketone or thioketone derivative thereof, with the proviso that when $-X^4$ is other than a heteromonocyclic ring containing 5 ring member atoms, wherein no more than two of the ring member atoms comprising the ring are heteroatoms, then X^2 is fluoro, -OH, -OR⁴, -NHR¹⁵ or -NR¹⁷R¹⁸ and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

wherein within R^5 , X^3 or X^4 any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5NR^{12}C(O)OR^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5C(O)R^{12}$, $-X^5C(O)R^$

 $R^{1} \text{ is hydrogen or } (C_{1-6}) \text{alkyl and } R^{2} \text{ is selected from a group consisting of hydrogen, cyano,} \\ -X^{5}NR^{12}R^{12}, -X^{5}NR^{12}C(O)R^{12}, -X^{5}NR^{12}C(O)OR^{12}, -R^{12}, -X^{5}NR^{12}C(O)NR^{12}R^{12}, \\ -X^{5}NR^{12}C(NR^{12})NR^{12}R^{12}, -X^{5}OR^{12}, -X^{5}SR^{12}, -X^{5}C(O)OR^{12}, -X^{5}C(O)R^{12}, -X^{5}OC(O)R^{12}, \\ -X^{5}C(O)NR^{12}R^{12}, -X^{5}S(O)_{2}NR^{12}R^{12}, -X^{5}NR^{12}S(O)_{2}R^{12}, -X^{5}P(O)(OR^{12})OR^{12}, \\ -X^{5}OP(O)(OR^{12})OR^{12}, -X^{5}NR^{12}C(O)R^{13}, -X^{5}S(O)R^{13}, -X^{5}S(O)_{2}R^{13}, -R^{14}, -X^{5}OR^{14}, -X^{5}SR^{14}, \\ -X^{5}S(O)R^{14}, -X^{5}S(O)_{2}R^{14}, -X^{5}C(O)R^{14}, -X^{5}C(O)OR^{14}, -X^{5}OC(O)R^{14}, -X^{5}NR^{12}R^{12}, \\ -X^{5}NR^{12}C(O)R^{14}, -X^{5}NR^{12}C(O)OR^{14}, -X^{5}C(O)NR^{12}R^{12}, -X^{5}S(O)_{2}NR^{14}R^{12}, -X^{5}NR^{12}S(O)_{2}R^{14}, \\ -X^{5}NR^{12}C(O)NR^{14}R^{12} \text{ and } -X^{5}NR^{12}C(NR^{12})NR^{14}R^{12}, \text{ wherein } X^{5}, R^{12}, R^{13} \text{ and } R^{14} \text{ are as defined} \\ -X^{5}NR^{12}C(O)NR^{14}R^{12} \text{ and } -X^{5}NR^{12}C(NR^{12})NR^{14}R^{12}, \text{ wherein } X^{5}, R^{12}, R^{13} \text{ and } R^{14} \text{ are as defined} \\ -X^{5}NR^{12}C(O)NR^{14}R^{12} \text{ and } -X^{5}NR^{12}C(NR^{12})NR^{14}R^{12}, \text{ wherein } X^{5}, R^{12}, R^{13} \text{ and } R^{14} \text{ are as defined} \\ -X^{5}NR^{12}C(O)R^{14}R^{12} \text{ and } -X^{5}NR^{12}C(NR^{12})NR^{14}R^{12}, \text{ wherein } X^{5}, R^{12}, R^{13} \text{ and } R^{14} \text{ are as defined} \\ -X^{5}NR^{12}C(O)R^{14}R^{12}R^{12} + X^{5}R^{12}R^{12}R^{12}R^{12} + X^{5}R^{12}R^{1$

```
above; or R<sup>1</sup> and R<sup>2</sup> taken together with the carbon atom to which both R<sup>1</sup> and R<sup>2</sup> are attached
  form (C<sub>3-8</sub>)cycloalkylene or (C<sub>3-8</sub>)heterocycloalkylene; wherein within said R<sup>2</sup> any heteroaryl,
  aryl, cycloalkyl, heterocycloalkyl, cycloalkylene or heterocycloalkylene is unsubstituted or
  substituted with 1 to 3 radicals independently selected from (C<sub>1-6</sub>)alkyl, (C<sub>1-6</sub>)alkylidene, cyano,
 halo, halo-substituted(C_{1-4})alkyl, nitro, -X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)QR^{12},
 -X^5NR^{12}C(O)NR^{12}R^{12}, -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12},
 -X^5C(O)R^{12}, -X^5OC(O)R^{12}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}.
 -X^5P(O)(OR^{12})OR^{12}, -X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)_2R^{13} and
 -X<sup>5</sup>C(O)R<sup>13</sup>, wherein X<sup>5</sup>, R<sup>12</sup> and R<sup>13</sup> are as defined above;
R^3 is (C_{1-6})alkyl or -C(R^6)(R^6)X^6, wherein R^6 is hydrogen or (C_{1-6})alkyl and X^6 is selected from
 -X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)OR^{12}, -X^5NR^{12}C(O)NR^{12}R^{12}.
 -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12}, -X^5C(O)R^{12}, -X^5OC(O)R^{12},
-X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}, -X^5P(O)(OR^{12})OR^{12}
-X^{5}OP(O)(OR^{12})OR^{12}, -X^{5}C(O)R^{13}, -X^{5}NR^{12}C(O)R^{13}, -X^{5}S(O)R^{13}, -X^{5}S(O)_{2}R^{13}, -R^{14}, -X^{5}OR^{14}, -X^
-X^{5}SR^{14}, -X^{5}S(O)R^{14}, -X^{5}S(O)_{2}R^{14}, -X^{5}C(O)R^{14}, -X^{5}C(O)OR^{14}, -X^{5}OC(O)R^{14}, -X^{5}NR^{14}R^{12},
-X^5NR^{12}C(O)R^{14}, -X^5NR^{12}C(O)OR^{14}, -X^5C(O)NR^{14}R^{12}, -X^5S(O)_2NR^{14}R^{12}, -X^5NR^{12}S(O)_2R^{14}, -X^5NR^{12}S(O)_2R^{14},
-X^5NR^{12}C(O)NR^{14}R^{12} and -X^5NR^{12}C(NR^{12})NR^{14}R^{12} wherein X^5, R^{12}, R^{13} and R^{14} are as defined
above;
```

 $R^4 \text{ is selected from } -X^8NR^{12}R^{12}, -X^8NR^{12}C(O)R^{12}, -X^8NR^{12}C(O)OR^{12}, -X^8NR^{12}C(O)NR^{12}R^{12}, \\ -X^8NR^{12}C(NR^{12})NR^{12}R^{12}, -X^8OR^{12}, -X^8SR^{12}, -X^5C(O)OR^{12}, -X^5C(O)R^{12}, -X^8OC(O)R^{12}, \\ -X^5C(O)NR^{12}R^{12}, -X^8S(O)_2NR^{12}R^{12}, -X^8NR^{12}S(O)_2R^{12}, -X^8P(O)(OR^{12})OR^{12}, \\ -X^8OP(O)(OR^{12})OR^{12}, -X^5C(O)R^{13}, -X^8NR^{12}C(O)R^{13}, -X^8S(O)R^{13}, -X^8S(O)_2R^{13}, -R^{14}, -X^8OR^{14}, \\ -X^8SR^{14}, -X^8S(O)R^{14}, -X^8S(O)_2R^{14}, -X^5C(O)R^{14}, -X^5C(O)OR^{14}, -X^8OC(O)R^{14}, -X^8NR^{12}R^{12}, \\ -X^8NR^{12}C(O)R^{14}, -X^8NR^{12}C(O)OR^{14}, -X^5C(O)NR^{14}R^{12}, -X^8S(O)_2NR^{14}R^{12}, -X^8NR^{12}S(O)_2R^{14}, \\ -X^8NR^{12}C(O)NR^{14}R^{12} \text{ and } -X^8NR^{12}C(NR^{12})NR^{14}R^{12} \text{ wherein } X^8 \text{ is } (C_{1-6})\text{alkylene and } X^5, R^{12}, \\ R^{13} \text{ and } R^{14} \text{ are as defined above, with the proviso that when } X^3 \text{ is cyano and } X^2 \text{ is } -OR^4, \text{ where } R^4 \text{ is defined as } -R^{14}, \text{ then } R^{14} \text{ is } (C_{3-10})\text{cycloalkyl}(C_{1-6})\text{alkyl}, \text{ hetero}(C_{3-10})\text{cycloalkyl}(C_{1-6})\text{alkyl}, \\ (C_{6-10})\text{aryl}(C_{1-6})\text{alkyl}, \text{ hetero}(C_{5-10})\text{aryl}(C_{1-6})\text{alkyl}, (C_{9-10})\text{bicycloaryl}(C_{1-6})\text{alkyl} \text{ or } \\ \text{hetero}(C_{8-10})\text{bicycloaryl}(C_{1-6})\text{alkyl};$

 R^{15} is (C_{6-10}) aryl, hetero (C_{5-10}) aryl, (C_{9-10}) bicycloaryl or hetero (C_{8-10}) bicycloaryl;

 $R^{17} \text{ is } (C_{1\text{-}6}) \text{alkyl, } (C_{3\text{-}10}) \text{cycloalkyl} (C_{0\text{-}6}) \text{alkyl, hetero} (C_{3\text{-}10}) \text{cycloalkyl} (C_{0\text{-}3}) \text{alkyl, } (C_{6\text{-}10}) \text{aryl} (C_{0\text{-}6}) \text{alkyl, hetero} (C_{5\text{-}10}) \text{aryl} (C_{0\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{bicycloaryl} (C_{0\text{-}6}) \text{alkyl or hetero} (C_{8\text{-}10}) \text{bicycloaryl} (C_{0\text{-}6}) \text{alkyl, with the proviso that when } X^3 \text{ is cyano, then } R^{17} \text{ is } (C_{1\text{-}6}) \text{alkyl, } (C_{3\text{-}10}) \text{cycloalkyl} (C_{1\text{-}6}) \text{alkyl, } (C_{6\text{-}10}) \text{aryl} (C_{1\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{bicycloaryl} (C_{1\text{-}6}) \text{alkyl, } (C_{6\text{-}10}) \text{aryl} (C_{1\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{bicycloaryl} (C_{1\text{-}6}) \text{alkyl, hetero} (C_{8\text{-}10}) \text{bicycloaryl} (C_{1\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{bicycloaryl} (C_{0\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{bicycloaryl} (C_{1\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{bicycloaryl} (C_{1\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{bicycloaryl} (C_{1\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{aryl} (C_{1\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{aryl} (C_{1\text{-}6}) \text{alkyl, } (C_{9\text{-}10}) \text{bicycloaryl} (C_{1\text{-}6}) \text{alkyl, } (C_{1\text{-}6}) \text{alkyl, } (C$

R¹⁹ and R²⁰ together with the atoms to which R¹⁹ and R²⁰ are attached form (C₄₋₈)heterocycloalkylene, wherein no more than one of the ring member atoms comprising the ring is a heteroatom selected from -NR²¹- or -O-, wherein the ring is unsubstituted or substituted with R^2 , wherein R^2 is as defined above, and R^{21} is hydrogen, $-C(O)OR^{12}$, $-C(O)R^{12}$. $-C(O)NR^{12}R^{12}$, $-S(O)_2NR^{12}R^{12}$, $-S(O)R^{13}$ and $-S(O)_2R^{13}$, $-S(O)R^{14}$, $-S(O)_2R^{14}$, $-C(O)R^{14}$, $-C(O)OR^{14}$, $-C(O)NR^{12}R^{12}$ and $-S(O)_2NR^{14}R^{12}$, wherein R^{12} , R^{13} and R^{14} are as defined above; wherein within R³, R⁴, R¹⁵, R¹⁷ and R¹⁸ any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, halo-substituted(C₁₋₄)alkyl, nitro, -X⁵NR¹²R¹², -X⁵NR¹²C(O)R¹², $-X^{5}NR^{12}C(O)OR^{12}$, $-X^{5}NR^{12}C(O)NR^{12}R^{12}$, $-X^{5}NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^{5}OR^{12}$, $-X^{5}SR^{12}$. $-X^5C(O)OR^{12}$, $-X^5C(O)R^{12}$, $-X^5OC(O)R^{12}$, $-X^5C(O)NR^{12}R^{12}$, $-X^5S(O)_2NR^{12}R^{12}$, $-X^5NR^{12}S(O)_2R^{12}$, $-X^5P(O)(OR^{12})OR^{12}$, $-X^5OP(O)(OR^{12})OR^{12}$, $-X^5NR^{12}C(O)R^{13}$, $-X^5S(O)R^{13}$, $-X^5C(O)R^{13}$ and $-X^5S(O)_2R^{13}$ and/or 1 radical selected from $-R^{14}$, $-X^5OR^{14}$, $-X^5SR^{14}$. $-X^{5}S(O)R^{14}$, $-X^{5}S(O)_{2}R^{14}$, $-X^{5}C(O)R^{14}$, $-X^{5}C(O)OR^{14}$, $-X^{5}OC(O)R^{14}$, $-X^{5}NR^{14}R^{12}$, $-X^5NR^{12}C(O)R^{14}$, $-X^5NR^{12}C(O)OR^{14}$, $-X^5C(O)NR^{14}R^{12}$, $-X^5S(O)_2NR^{14}R^{12}$, $-X^5NR^{12}S(O)_2R^{14}$. -X⁵NR¹²C(O)NR¹⁴R¹² and -X⁵NR¹²C(NR¹²)NR¹⁴R¹²; and within R³ and R⁴ any aliphatic moiety is unsubstituted or substituted further by 1 to 5 radicals independently selected from cyano, halo, nitro, -NR¹²R¹², -NR¹²C(O)R¹², -NR¹²C(O)OR¹², -NR¹²C(O)NR¹²R¹², -NR¹²C(NR¹²)NR¹²R¹², $-OR^{12}$, $-SR^{12}$, $-C(O)OR^{12}$, $-C(O)R^{12}$, $-OC(O)R^{12}$, $-C(O)NR^{12}R^{12}$, $-S(O)_2NR^{12}R^{12}$, $-NR^{12}S(O)_2R^{12}$,

-P(O)(OR¹²)OR¹², -OP(O)(OR¹²)OR¹², -NR¹²C(O)R¹³, -S(O)R¹³ and -S(O)₂R¹³; wherein X⁵, R¹², R¹³ and R¹⁴ are as described above, with the proviso that when X³ is cyano and X² is -OR⁴, where R⁴ is defined as -R¹⁴, or -NHR¹⁸, then any aromatic ring system present within R¹⁴ or R¹⁸ is not substituted further by halo, (C₃₋₁₀)cycloalkyl, hetero(C₃₋₁₀)cycloalkyl, (C₆₋₁₀)aryl, hetero(C₅₋₁₀)aryl, (C₉₋₁₀)bicycloaryl or hetero(C₈₋₁₀)bicycloaryl; with the proviso that only one bicyclic ring structure is present within R³, R⁴ or R¹⁵; N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of stereoisomers thereof and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

4. (Currently Amended) The compound of Claim 1 or Claim 2 in which:

 X^1 is $-NHC(R^1)(R^2)X^3$ or $-NHCH(R^{19})C(O)R^{20}$;

 X^2 is hydrogen, fluoro, -OH, -OR⁴, -NHR¹⁵ or -NR¹⁷R¹⁸ and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

 X^3 is $-C(R^7)(R^8)R^{16}$, $-C(R^6)(OR^6)_2$, $-CH_2C(O)R^{16}$, $-CH=CHS(O)_2R^5$, $-C(O)CF_2C(O)NR^5R^5$, $-C(O)C(O)NR^5R^6$, $-C(O)C(O)OR^5$, $-C(O)CH_2OR^5$, $-C(O)CH_2N(R^6)SO_2R^5$ or $-C(O)C(O)R^5$; wherein R^5 is hydrogen, (C_{1-4}) alkyl, (C_{3-10}) cycloalkyl, (C_{0-6}) alkyl, hetero(C_{3-10})cycloalkyl(C_{0-3})alkyl, (C_{6-10}) aryl(C_{0-6})alkyl, hetero(C_{5-10})aryl(C_{0-6})alkyl, (C_{9-10}) bicycloaryl(C_{0-6})alkyl or hetero(C_{8-10})bicycloaryl(C_{0-6})alkyl; R^6 is hydrogen, hydroxy or (C_{1-6}) alkyl; or where X^3 contains an $-NR^5R^6$ group, R^5 and R^6 together with the nitrogen atom to which they are both attached, form hetero(C_{3-10})cycloalkyl, hetero(C_{5-10})aryl or hetero(C_{8-10})bicycloaryl; R^7 is hydrogen or (C_{1-4}) alkyl and R^8 is hydroxy or R^7 and R^8 together form oxo; R^{16} is hydrogen, $-X^4$, $-CF_3$, $-CF_2CF_2R^9$ or $-N(R^6)OR^6$; R^9 is hydrogen, halo, (C_{1-4}) alkyl, (C_{5-10}) aryl(C_{0-6})alkyl or (C_{5-10}) heteroaryl(C_{0-6})alkyl;

 X^4 is comprises a heteromonocyclic ring containing 4 to 7 ring member atoms or a fused heterobicyclic ring system containing 8 to 14 ring member atoms and any carbocyclic ketone, iminoketone or thioketone derivative thereof, with the proviso that when $-X^4$ is other than a

heteromonocyclic ring containing 5 ring member atoms, wherein no more than two of the ring member atoms comprising the ring are heteroatoms, then X^2 is fluoro, -OH, -OR⁴, -NHR¹⁵ or -NR¹⁷R¹⁸ and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

wherein within R^5 , X^3 or X^4 any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5C(O)R^{12}$,

 R^1 is hydrogen or (C_{1-6}) alkyl and R^2 is selected from a group consisting of hydrogen, cyano, $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5OR^{12}$, $-X^5OR^{12}$, $-X^5OR^{12}$, $-X^5OR^{12}$, $-X^5OC(O)R^{12}$, $-X^5OC(O)R^$

```
-X^5C(O)R^{12}, -X^5OC(O)R^{12}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}, -X^5P(O)(OR^{12})OR^{12}, -X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)R^{13} and
```

-X⁵C(O)R¹³, wherein X⁵, R¹² and R¹³ are as defined above;

 R^3 is (C_{1-6}) alkyl or $-C(R^6)(R^6)X^6$, wherein R^6 is hydrogen or (C_{1-6}) alkyl and X^6 is selected from $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$,

 $-X^5NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^5OR^{12}$, $-X^5SR^{12}$, $-X^5C(O)OR^{12}$, $-X^5C(O)R^{12}$, $-X^5OC(O)R^{12}$,

 $-X^5C(O)NR^{12}R^{12}$, $-X^5S(O)_2NR^{12}R^{12}$, $-X^5NR^{12}S(O)_2R^{12}$, $-X^5P(O)(OR^{12})OR^{12}$,

 $-X^5OP(O)(OR^{12})OR^{12}, -X^5C(O)R^{13}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)_2R^{13}, -R^{14}, -X^5OR^{14}, -R^{14}, -R^{1$

 $-X^{5}SR^{14}$, $-X^{5}S(O)R^{14}$, $-X^{5}S(O)_{2}R^{14}$, $-X^{5}C(O)R^{14}$, $-X^{5}C(O)OR^{14}$, $-X^{5}OC(O)R^{14}$, $-X^{5}NR^{14}R^{12}$,

 $-X^5NR^{12}C(O)R^{14}, -X^5NR^{12}C(O)OR^{14}, -X^5C(O)NR^{14}R^{12}, -X^5S(O)_2NR^{14}R^{12}, -X^5NR^{12}S(O)_2R^{14}, -X^5NR^{12}S(O)_2R^{14},$

 $-X^5NR^{12}C(O)NR^{14}R^{12}$ and $-X^5NR^{12}C(NR^{12})NR^{14}R^{12}$ wherein X^5 , R^{12} , R^{13} and R^{14} are as defined above;

 R^4 is selected from $-X^8NR^{12}R^{12}$, $-X^8NR^{12}C(O)R^{12}$, $-X^8NR^{12}C(O)OR^{12}$, $-X^8NR^{12}C(O)NR^{12}R^{12}$, $-X^8NR^{12}C(O)R^{12}$, $-X^8NR^{12}C(O)R^{12}$, $-X^8C(O)R^{12}$, $-X^8C(O)R^{12$

 $-X^{5}C(O)NR^{12}R^{12}$, $-X^{8}S(O)_{2}NR^{12}R^{12}$, $-X^{8}NR^{12}S(O)_{2}R^{12}$, $-X^{8}P(O)(OR^{12})OR^{12}$,

 $-X^{8}OP(O)(OR^{12})OR^{12}$, $-X^{5}C(O)R^{13}$, $-X^{8}NR^{12}C(O)R^{13}$, $-X^{8}S(O)R^{13}$, $-X^{8}S(O)_{2}R^{13}$, $-R^{14}$, $-X^{8}OR^{14}$,

 $-X^{8}SR^{14}$, $-X^{8}S(O)R^{14}$, $-X^{8}S(O)_{2}R^{14}$, $-X^{5}C(O)R^{14}$, $-X^{5}C(O)OR^{14}$, $-X^{8}OC(O)R^{14}$, $-X^{8}NR^{14}R^{12}$,

 $-X^{8}NR^{12}C(O)R^{14}$, $-X^{8}NR^{12}C(O)OR^{14}$, $-X^{5}C(O)NR^{14}R^{12}$, $-X^{8}S(O)_{2}NR^{14}R^{12}$, $-X^{8}NR^{12}S(O)_{2}R^{14}$,

 $-X^8NR^{12}C(O)NR^{14}R^{12}$ and $-X^8NR^{12}C(NR^{12})NR^{14}R^{12}$ wherein X^8 is (C_{1-6}) alkylene and X^5 , R^{12} , R^{13} and R^{14} are as defined above;

 R^{15} is (C_{6-10}) aryl, hetero (C_{5-10}) aryl, (C_{9-10}) bicycloaryl or hetero (C_{8-10}) bicycloaryl;

 R^{17} is hydrogen, (C_{1-6}) alkyl, (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, hetero (C_{5-10}) aryl (C_{0-6}) alkyl, (C_{9-10}) bicycloaryl (C_{0-6}) alkyl; hetero (C_{8-10}) bicycloaryl (C_{0-6}) alkyl;

 R^{18} is (C_{1-6}) alkyl, (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, hetero (C_{5-10}) aryl (C_{0-6}) alkyl, (C_{9-10}) bicycloaryl (C_{0-6}) alkyl or hetero (C_{8-10}) bicycloaryl (C_{0-6}) alkyl; and

 R^{19} and R^{20} together with the atoms to which R^{19} and R^{20} are attached form (C_{4-8}) heterocycloalkylene, wherein no more than one of the ring member atoms comprising the

ring is a heteroatom selected from -NR²¹- or -O-, wherein the ring is unsubstituted or substituted with R², wherein R² is as defined above, and R²¹ is hydrogen, -C(O)OR¹², -C(O)R¹², $-C(O)NR^{12}R^{12}$, $-S(O)_2NR^{12}R^{12}$, $-S(O)R^{13}$ and $-S(O)_2R^{13}$, $-S(O)R^{14}$, $-S(O)_2R^{14}$, $-C(O)R^{14}$, -C(O)OR¹⁴, -C(O)NR¹²R¹² and -S(O)₂NR¹⁴R¹², wherein R¹², R¹³ and R¹⁴ are as defined above; wherein within R³, R⁴, R¹⁵, R¹⁷ and R¹⁸ any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, halo-substituted(C₁₋₄)alkyl, nitro, -X⁵NR¹²R¹², -X⁵NR¹²C(O)R¹², $-X^5NR^{12}C(O)OR^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$, $-X^5NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^5OR^{12}$, $-X^5SR^{12}$ $-X^5C(O)OR^{12}$, $-X^5C(O)R^{12}$, $-X^5OC(O)R^{12}$, $-X^5C(O)NR^{12}R^{12}$, $-X^5S(O)_2NR^{12}R^{12}$. $-X^5NR^{12}S(O)_2R^{12}$, $-X^5P(O)(OR^{12})OR^{12}$, $-X^5OP(O)(OR^{12})OR^{12}$, $-X^5NR^{12}C(O)R^{13}$, $-X^5S(O)R^{13}$. -X⁵C(O)R¹³ and -X⁵S(O)₂R¹³ and/or 1 radical selected from -R¹⁴, -X⁵OR¹⁴, -X⁵SR¹⁴, $-X^{5}S(O)R^{14}$, $-X^{5}S(O)_{2}R^{14}$, $-X^{5}C(O)R^{14}$, $-X^{5}C(O)OR^{14}$, $-X^{5}OC(O)R^{14}$, $-X^{5}NR^{14}R^{12}$. $-X^5NR^{12}C(O)R^{14}$, $-X^5NR^{12}C(O)OR^{14}$, $-X^5C(O)NR^{14}R^{12}$, $-X^5S(O)_2NR^{14}R^{12}$, $-X^5NR^{12}S(O)_2R^{14}$, -X⁵NR¹²C(O)NR¹⁴R¹² and -X⁵NR¹²C(NR¹²)NR¹⁴R¹²; and within R³ and R⁴ any aliphatic moiety is unsubstituted or substituted further by 1 to 5 radicals independently selected from cyano, halo, nitro, -NR¹²R¹², -NR¹²C(O)R¹², -NR¹²C(O)OR¹², -NR¹²C(O)NR¹²R¹², -NR¹²C(NR¹²)NR¹²R¹². $-OR^{12}, -SR^{12}, -C(O)OR^{12}, -C(O)R^{12}, -OC(O)R^{12}, -C(O)NR^{12}R^{12}, -S(O)_2NR^{12}R^{12}, -NR^{12}S(O)_2R^{12}, -NR^{$ -P(O)(OR¹²)OR¹², -OP(O)(OR¹²)OR¹², -NR¹²C(O)R¹³, -S(O)R¹³ and -S(O)₂R¹³; wherein X⁵, R¹², R^{13} and R^{14} are as described above; with the proviso that only one bicyclic ring structure is present within R³, R⁴ or R¹⁵; N-oxide derivatives, prodrug derivatives, protected derivatives. individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof.and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

5. (Withdrawn-currently Amended) A compound of Claim 1 or Claim 2 in which: X^1 is -NHC(R^1)(R^2) X^3 or -NHCH(R^{19})C(O) R^{20} ; X^2 is hydrogen, fluoro, -OH, -OR 4 or -NR 17 R 18 and X^7 is hydrogen or X^2 and X^7 both represent fluoro;

X³ is cyano;

```
wherein within X<sup>3</sup> any alicyclic or aromatic ring system is unsubstituted or substituted further by
  1 to 5 radicals independently selected from (C<sub>1-6</sub>)alkyl, (C<sub>1-6</sub>)alkylidene, cyano, halo,
 halo-substituted(C_{1-4})alkyl, nitro, -X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)OR^{12}
  -X^5NR^{12}C(O)NR^{12}R^{12}, -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12}.
 -X^5C(O)R^{12}, -X^5OC(O)R^{12}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}.
 -X^5P(O)(OR^{12})OR^{12}, -X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13} and -X^5S(O)_2R^{13}
 and/or 1 radical selected from -R^{14}, -X^5OR^{14}, -X^5SR^{14}, -X^5S(O)R^{14}, -X^5S(O)R^{14}, -X^5C(O)R^{14}
 -X^{5}C(O)OR^{14}, -X^{5}OC(O)R^{14}, -X^{5}NR^{14}R^{12}, -X^{5}NR^{12}C(O)R^{14}, -X^{5}NR^{12}C(O)OR^{14}.
 -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{14}R^{12}, -X^5NR^{12}S(O)_2R^{14}, -X^5NR^{12}C(O)NR^{14}R^{12} and
 -X<sup>5</sup>NR<sup>12</sup>C(NR<sup>12</sup>)NR<sup>14</sup>R<sup>12</sup>, wherein X<sup>5</sup> is a bond or (C<sub>1-6</sub>)alkylene; R<sup>12</sup> at each occurrence
 independently is hydrogen, (C_{1-6})alkyl or halo-substituted (C_{1-6})alkyl; R^{13} is (C_{1-6})alkyl or
 halo-substituted(C_{1-6})alkyl; and R^{14} is (C_{3-10})cycloalkyl(C_{0-6})alkyl,
 hetero(C_{3-10})cycloalkyl(C_{0-3})alkyl, (C_{6-10})aryl(C_{0-6})alkyl, hetero(C_{5-10})aryl(C_{0-6})alkyl,
 (C_{9-10})bicycloaryl(C_{0-6})alkyl or hetero(C_{8-10})bicycloaryl(C_{0-6})alkyl;
R<sup>1</sup> is hydrogen or (C<sub>1-6</sub>)alkyl and R<sup>2</sup> is selected from a group consisting of hydrogen, cyano,
-X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)OR^{12}, -R^{12}, -X^5NR^{12}C(O)NR^{12}R^{12},
-X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12}, -X^5C(O)R^{12}, -X^5OC(O)R^{12}
-X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}, -X^5P(O)(OR^{12})OR^{12}.
-X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)_2R^{13}, -R^{14}, -X^5OR^{14}, -X^5SR^{14}
-X^{5}S(O)R^{14}, -X^{5}S(O)_{2}R^{14}, -X^{5}C(O)R^{14}, -X^{5}C(O)OR^{14}, -X^{5}OC(O)R^{14}, -X^{5}NR^{14}R^{12}
-X^5NR^{12}C(O)R^{14}, -X^5NR^{12}C(O)OR^{14}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{14}R^{12}, -X^5NR^{12}S(O)_2R^{14}, -X^5NR^{14}S(O)_2R^{14}, -X^5NR^{14}S(O)_2R^{14},
-X<sup>5</sup>NR<sup>12</sup>C(O)NR<sup>14</sup>R<sup>12</sup> and -X<sup>5</sup>NR<sup>12</sup>C(NR<sup>12</sup>)NR<sup>14</sup>R<sup>12</sup>, wherein X<sup>5</sup>, R<sup>12</sup>, R<sup>13</sup> and R<sup>14</sup> are as defined
above; or R<sup>1</sup> and R<sup>2</sup> taken together with the carbon atom to which both R<sup>1</sup> and R<sup>2</sup> are attached
form (C_{3-8}) cycloalkylene or (C_{3-8}) heterocycloalkylene; wherein within said \mathbb{R}^2 any heteroaryl,
aryl, cycloalkyl, heterocycloalkyl, cycloalkylene or heterocycloalkylene is unsubstituted or
substituted with 1 to 3 radicals independently selected from (C<sub>1-6</sub>)alkyl, (C<sub>1-6</sub>)alkylidene, cyano,
halo, halo-substituted(C<sub>1-4</sub>)alkyl, nitro, -X<sup>5</sup>NR<sup>12</sup>R<sup>12</sup>, -X<sup>5</sup>NR<sup>12</sup>C(O)R<sup>12</sup>, -X<sup>5</sup>NR<sup>12</sup>C(O)OR<sup>12</sup>.
-X^5NR^{12}C(O)NR^{12}R^{12}, -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12},
-X^5C(O)R^{12}, -X^5OC(O)R^{12}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)NR^{12}R^{12}, -X^5NR^{12}S(O)R^{12}
```

```
-X^5P(O)(OR^{12})OR^{12}, -X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)_2R^{13} and -X^5C(O)R^{13}, wherein X^5, R^{12} and R^{13} are as defined above;
```

 $R^{3} \text{ is } (C_{1-6}) \text{alkyl or } -C(R^{6})(R^{6})X^{6}, \text{ wherein } R^{6} \text{ is hydrogen or } (C_{1-6}) \text{alkyl and } X^{6} \text{ is selected from } -X^{5}NR^{12}R^{12}, -X^{5}NR^{12}C(O)R^{12}, -X^{5}NR^{12}C(O)R^{12}, -X^{5}NR^{12}C(O)NR^{12}R^{12}, \\ -X^{5}NR^{12}C(NR^{12})NR^{12}R^{12}, -X^{5}OR^{12}, -X^{5}SR^{12}, -X^{5}C(O)QR^{12}, -X^{5}C(O)R^{12}, -X^{5}OC(O)R^{12}, \\ -X^{5}C(O)NR^{12}R^{12}, -X^{5}S(O)_{2}NR^{12}R^{12}, -X^{5}NR^{12}S(O)_{2}R^{12}, -X^{5}P(O)(OR^{12})QR^{12}, \\ -X^{5}OP(O)(OR^{12})QR^{12}, -X^{5}C(O)R^{13}, -X^{5}NR^{12}C(O)R^{13}, -X^{5}S(O)_{2}R^{13}, -X^{5}S(O)_{2}R^{14}, -X^{5}OR^{14}, \\ -X^{5}SR^{14}, -X^{5}S(O)R^{14}, -X^{5}S(O)_{2}R^{14}, -X^{5}C(O)R^{14}, -X^{5}C(O)R^{14}, -X^{5}OC(O)R^{14}, -X^{5}NR^{14}R^{12}, \\ \end{array}$

 $-X^5NR^{12}C(O)R^{14}$, $-X^5NR^{12}C(O)OR^{14}$, $-X^5C(O)NR^{14}R^{12}$, $-X^5S(O)_2NR^{14}R^{12}$, $-X^5NR^{12}S(O)_2R^{14}$, $-X^5NR^{12}C(O)NR^{14}R^{12}$ and $-X^5NR^{12}C(NR^{12})NR^{14}R^{12}$ wherein X^5 , R^{12} , R^{13} and R^{14} are as defined above;

 $R^4 \text{ is selected from } -X^8NR^{12}R^{12}, -X^8NR^{12}C(O)R^{12}, -X^8NR^{12}C(O)OR^{12}, -X^8NR^{12}C(O)NR^{12}R^{12}, \\ -X^8NR^{12}C(NR^{12})NR^{12}R^{12}, -X^8OR^{12}, -X^8SR^{12}, -X^5C(O)OR^{12}, -X^5C(O)R^{12}, -X^8OC(O)R^{12}, \\ -X^5C(O)NR^{12}R^{12}, -X^8S(O)_2NR^{12}R^{12}, -X^8NR^{12}S(O)_2R^{12}, -X^8P(O)(OR^{12})OR^{12}, \\ -X^8OP(O)(OR^{12})OR^{12}, -X^5C(O)R^{13}, -X^8NR^{12}C(O)R^{13}, -X^8S(O)R^{13}, -X^8S(O)_2R^{13}, -R^{14}, -X^8OR^{14}, \\ -X^8SR^{14}, -X^8S(O)R^{14}, -X^8S(O)_2R^{14}, -X^5C(O)R^{14}, -X^5C(O)OR^{14}, -X^8OC(O)R^{14}, -X^8NR^{12}R^{12}, \\ -X^8NR^{12}C(O)R^{14}, -X^8NR^{12}C(O)OR^{14}, -X^5C(O)NR^{14}R^{12}, -X^8S(O)_2NR^{14}R^{12}, -X^8NR^{12}S(O)_2R^{14}, \\ -X^8NR^{12}C(O)NR^{14}R^{12} \text{ and } -X^8NR^{12}C(NR^{12})NR^{14}R^{12} \text{ wherein } X^8 \text{ is } (C_{1-6})\text{alkylene and } X^5, R^{12}, \\ R^{13} \text{ and } R^{14} \text{ are as defined above, with the proviso that when } X^3 \text{ is cyano and } X^2 \text{ is } -OR^4, \text{ where } R^4 \text{ is defined as } -R^{14}, \text{ then } R^{14} \text{ is } (C_{3-10})\text{cycloalkyl}(C_{1-6})\text{alkyl}, \text{ hetero}(C_{3-10})\text{cycloalkyl}(C_{1-6})\text{alkyl}, \\ (C_{6-10})\text{aryl}(C_{1-6})\text{alkyl}, \text{ hetero}(C_{5-10})\text{aryl}(C_{1-6})\text{alkyl}, (C_{9-10})\text{bicycloaryl}(C_{1-6})\text{alkyl}; \\ \end{cases}$

 R^{15} is (C_{6-10}) aryl, hetero (C_{5-10}) aryl, (C_{9-10}) bicycloaryl or hetero (C_{8-10}) bicycloaryl; R^{17} is (C_{1-6}) alkyl, (C_{3-10}) cycloalkyl (C_{1-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{1-6}) alkyl, (C_{6-10}) aryl (C_{1-6}) alkyl, hetero (C_{5-10}) aryl (C_{1-6}) alkyl, (C_{9-10}) bicycloaryl (C_{1-6}) alkyl or hetero (C_{8-10}) bicycloaryl (C_{1-6}) alkyl;

 R^{18} is (C_{1-6}) alkyl, (C_{3-10}) cycloalkyl (C_{1-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{1-6}) alkyl, (C_{6-10}) aryl (C_{1-6}) alkyl, hetero (C_{5-10}) aryl (C_{1-6}) alkyl, (C_{9-10}) bicycloaryl (C_{1-6}) alkyl or hetero (C_{8-10}) bicycloaryl (C_{1-6}) alkyl; and

 R^{19} and R^{20} together with the atoms to which R^{19} and R^{20} are attached form (C₄₋₈)heterocycloalkylene, wherein no more than one of the ring member atoms comprising the ring is a heteroatom selected from -NR²¹- or -O-, wherein the ring is unsubstituted or substituted with R², wherein R² is as defined above, and R²¹ is hydrogen, -C(O)OR¹², -C(O)R¹², $-C(O)NR^{12}R^{12}$, $-S(O)_2NR^{12}R^{12}$, $-S(O)R^{13}$ and $-S(O)_2R^{13}$, $-S(O)R^{14}$, $-S(O)_2R^{14}$, $-C(O)R^{14}$, -C(O)OR¹⁴, -C(O)NR¹²R¹² and -S(O)₂NR¹⁴R¹², wherein R¹², R¹³ and R¹⁴ are as defined above: wherein within R³, R⁴, R¹⁵, R¹⁷ and R¹⁸ any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, halo-substituted(C₁₋₄)alkyl, nitro, -X⁵NR¹²R¹², -X⁵NR¹²C(O)R¹², $-X^5NR^{12}C(O)OR^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$, $-X^5NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^5OR^{12}$, $-X^5SR^{12}$. $-X^5C(O)OR^{12}$, $-X^5C(O)R^{12}$, $-X^5OC(O)R^{12}$, $-X^5C(O)NR^{12}R^{12}$, $-X^5S(O)NR^{12}R^{12}$ $-X^5NR^{12}S(O)_2R^{12}$, $-X^5P(O)(OR^{12})OR^{12}$, $-X^5OP(O)(OR^{12})OR^{12}$, $-X^5NR^{12}C(O)R^{13}$, $-X^5S(O)R^{13}$. $-X^5C(O)R^{13}$ and $-X^5S(O)_2R^{13}$ and/or 1 radical selected from $-R^{14}$, $-X^5OR^{14}$, $-X^5SR^{14}$, $-X^{5}S(O)R^{14}$, $-X^{5}S(O)_{2}R^{14}$, $-X^{5}C(O)R^{14}$, $-X^{5}C(O)OR^{14}$, $-X^{5}OC(O)R^{14}$, $-X^{5}NR^{14}R^{12}$. $-X^5NR^{12}C(O)R^{14}$, $-X^5NR^{12}C(O)OR^{14}$, $-X^5C(O)NR^{14}R^{12}$, $-X^5S(O)_2NR^{14}R^{12}$, $-X^5NR^{12}S(O)_2R^{14}$. -X⁵NR¹²C(O)NR¹⁴R¹² and -X⁵NR¹²C(NR¹²)NR¹⁴R¹²; and within R³ and R⁴ any aliphatic moiety is unsubstituted or substituted further by 1 to 5 radicals independently selected from evano, halo, nitro, -NR¹²R¹², -NR¹²C(O)R¹², -NR¹²C(O)OR¹², -NR¹²C(O)NR¹²R¹², -NR¹²C(NR¹²)NR¹²R¹², $-OR^{12}$, $-SR^{12}$, $-C(O)OR^{12}$, $-C(O)R^{12}$, $-OC(O)R^{12}$, $-C(O)NR^{12}R^{12}$, $-S(O)_2NR^{12}R^{12}$, $-NR^{12}S(O)_2R^{12}$. -P(O)(OR¹²)OR¹², -OP(O)(OR¹²)OR¹², -NR¹²C(O)R¹³, -S(O)R¹³ and -S(O)₂R¹³; wherein X⁵, R¹², R^{13} and R^{14} are as described above, with the proviso that when X^2 is $-OR^4$, where R^4 is defined as -R¹⁴, or -NHR¹⁸, then any aromatic ring system present within R¹⁴ or R¹⁸ is not substituted further by halo, (C_{3-10}) cycloalkyl, hetero (C_{3-10}) cycloalkyl, (C_{6-10}) aryl, hetero (C_{5-10}) aryl, (C_{9-10}) bicycloaryl or hetero (C_{8-10}) bicycloaryl; with the proviso that only one bicyclic ring structure is present within R³, R⁴ or R¹⁵; N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof. and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

6. (Currently Amended) A compound of Claim 1 or 2 in which:

 X^1 is -NHC(R^1)(R^2) X^3 or -NHCH(R^{19})C(O) R^{20} ;

 X^2 is -OH, -OC(O)NR¹²R¹² or -OC(O)R¹⁴, wherein R¹² and R¹⁴ are as defined below;

 X^3 is cyano, $-C(R^7)(R^8)R^{16}$, $-C(R^6)(OR^6)_2$, $-CH_2C(O)R^{16}$, $-CH=CHS(O)_2R^5$,

 $-C(O)CF_2C(O)NR^5R^5$, $-C(O)C(O)NR^5R^6$, $-C(O)C(O)OR^5$, $-C(O)CH_2OR^5$,

-C(O)CH₂N(R⁶)SO₂R⁵ or -C(O)C(O)R⁵; wherein R⁵ is hydrogen, (C₁₋₄)alkyl,

 $(C_{3\text{-}10}) cycloalkyl (C_{0\text{-}6}) alkyl, \ hetero(C_{3\text{-}10}) cycloalkyl (C_{0\text{-}3}) alkyl, \ (C_{6\text{-}10}) aryl (C_{0\text{-}6}) alkyl, \ hetero(C_{5\text{-}10}) aryl (C_{0\text{-}6}) alkyl, \ (C_{9\text{-}10}) bicycloaryl (C_{0\text{-}6}) alkyl \ or \ hetero(C_{8\text{-}10}) bicycloaryl (C_{0\text{-}6}) alkyl; \ hetero(C_{5\text{-}10}) aryl (C_{0\text{-}6}) alkyl, \ hetero(C_{9\text{-}10}) bicycloaryl (C_{0\text{-}6}) alkyl; \ hetero(C_{9\text{-}10}) bicycloaryl (C_{9\text{-}10}) bicyc$

 R^6 is hydrogen, hydroxy or (C_{1-6}) alkyl; or where X^3 contains an -NR 5 R 6 group, R^5 and R^6 together with the nitrogen atom to which they are both attached, form hetero(C_{3-10})cycloalkyl, hetero(C_{5-10})aryl or hetero(C_{8-10})bicycloaryl; R^7 is hydrogen or (C_{1-4}) alkyl and R^8 is hydroxy or R^7 and R^8 together form oxo; R^{16} is hydrogen, -X 4 , -CF $_3$, -CF $_2$ CF $_2$ R 9 or -N(R^6)OR 6 ; R^9 is hydrogen, halo, (C_{1-4}) alkyl, (C_{5-10}) aryl(C_{0-6})alkyl or (C_{5-10}) heteroaryl(C_{0-6})alkyl;

 X^4 is comprises a heteromonocyclic ring containing 4 to 7 ring member atoms or a fused heterobicyclic ring system containing 8 to 14 ring member atoms and any carbocyclic ketone, iminoketone or thioketone derivative thereof;

wherein within R^5 , X^3 or X^4 any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5C(O)R^{12}$,

```
R^1 is hydrogen or (C_{1-6}) alkyl and R^2 is selected from a group consisting of hydrogen, cyano.
 -X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)OR^{12}, -R^{12}, -X^5NR^{12}C(O)NR^{12}R^{12}.
 -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12}, -X^5C(O)R^{12}, -X^5OC(O)R^{12},
 -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}, -X^5P(O)(OR^{12})OR^{12},
-X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)_2R^{13}, -R^{14}, -X^5OR^{14}, -X^5SR^{14}.
-X^{5}S(O)R^{14}, -X^{5}S(O)_{2}R^{14}, -X^{5}C(O)R^{14}, -X^{5}C(O)OR^{14}, -X^{5}OC(O)R^{14}, -X^{5}NR^{14}R^{12},
-X^5NR^{12}C(O)R^{14}, -X^5NR^{12}C(O)OR^{14}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{14}R^{12}, -X^5NR^{12}S(O)_2R^{14}.
-X<sup>5</sup>NR<sup>12</sup>C(O)NR<sup>14</sup>R<sup>12</sup> and -X<sup>5</sup>NR<sup>12</sup>C(NR<sup>12</sup>)NR<sup>14</sup>R<sup>12</sup>, wherein X<sup>5</sup>, R<sup>12</sup>, R<sup>13</sup> and R<sup>14</sup> are as defined
above; or R<sup>1</sup> and R<sup>2</sup> taken together with the carbon atom to which both R<sup>1</sup> and R<sup>2</sup> are attached
form (C<sub>3-8</sub>)cycloalkylene or (C<sub>3-8</sub>)heterocycloalkylene; wherein within said R<sup>2</sup> any heteroaryl,
aryl, cycloalkyl, heterocycloalkyl, cycloalkylene or heterocycloalkylene is unsubstituted or
substituted with 1 to 3 radicals independently selected from (C<sub>1-6</sub>)alkyl, (C<sub>1-6</sub>)alkylidene, cyano,
halo, halo-substituted(C<sub>1-4</sub>)alkyl, nitro, -X<sup>5</sup>NR<sup>12</sup>R<sup>12</sup>, -X<sup>5</sup>NR<sup>12</sup>C(O)R<sup>12</sup>, -X<sup>5</sup>NR<sup>12</sup>C(O)OR<sup>12</sup>,
-X^5NR^{12}C(O)NR^{12}R^{12}, -X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12}.
-X^5C(O)R^{12}, -X^5OC(O)R^{12}, -X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}.
-X^5P(O)(OR^{12})OR^{12}, -X^5OP(O)(OR^{12})OR^{12}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)R^{13} and
-X<sup>5</sup>C(O)R<sup>13</sup>, wherein X<sup>5</sup>, R<sup>12</sup> and R<sup>13</sup> are as defined above;
R^3 is (C_{1-6})alkyl or -C(R^6)(R^6)X^6, wherein R^6 is hydrogen or (C_{1-6})alkyl and X^6 is selected from
-X^5NR^{12}R^{12}, -X^5NR^{12}C(O)R^{12}, -X^5NR^{12}C(O)OR^{12}, -X^5NR^{12}C(O)NR^{12}R^{12}.
-X^5NR^{12}C(NR^{12})NR^{12}R^{12}, -X^5OR^{12}, -X^5SR^{12}, -X^5C(O)OR^{12}, -X^5C(O)R^{12}, -X^5OC(O)R^{12}.
-X^5C(O)NR^{12}R^{12}, -X^5S(O)_2NR^{12}R^{12}, -X^5NR^{12}S(O)_2R^{12}, -X^5P(O)(OR^{12})OR^{12}.
-X^5OP(O)(OR^{12})OR^{12}, -X^5C(O)R^{13}, -X^5NR^{12}C(O)R^{13}, -X^5S(O)R^{13}, -X^5S(O)R^{13}, -X^5OR^{14}, -X^5OR^{14}
-X^{5}SR^{14}, -X^{5}S(O)R^{14}, -X^{5}S(O)_{2}R^{14}, -X^{5}C(O)R^{14}, -X^{5}C(O)OR^{14}, -X^{5}OC(O)R^{14}, -X^{5}NR^{14}R^{12}.
-X^5NR^{12}C(O)R^{14}, -X^5NR^{12}C(O)OR^{14}, -X^5C(O)NR^{14}R^{12}, -X^5S(O)_2NR^{14}R^{12}, -X^5NR^{12}S(O)_2R^{14}.
-X<sup>5</sup>NR<sup>12</sup>C(O)NR<sup>14</sup>R<sup>12</sup> and -X<sup>5</sup>NR<sup>12</sup>C(NR<sup>12</sup>)NR<sup>14</sup>R<sup>12</sup> wherein X<sup>5</sup>, R<sup>12</sup>, R<sup>13</sup> and R<sup>14</sup> are as defined
above; and
```

 R^{19} and R^{20} together with the atoms to which R^{19} and R^{20} are attached form (C_{4-8}) heterocycloalkylene, wherein no more than one of the ring member atoms comprising the ring is a heteroatom selected from -NR²¹- or -O-, wherein and the ring is unsubstituted or substituted with R^2 , wherein R^2 is as defined above, and R^{21} is hydrogen, -C(O)OR¹², -C(O)R¹²,

 $-C(O)NR^{12}R^{12}$, $-S(O)_2NR^{12}R^{12}$, $-S(O)R^{13}$ and $-S(O)_2R^{13}$, $-S(O)R^{14}$, $-S(O)_2R^{14}$, $-C(O)R^{14}$, -C(O)OR¹⁴, -C(O)NR¹²R¹² and -S(O)₂NR¹⁴R¹², wherein R¹², R¹³ and R¹⁴ are as defined above; wherein within R³, R⁴, R¹⁵, R¹⁷ and R¹⁸ any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, halo-substituted(C_{1-4})alkyl, nitro, $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5NR^{12}C(O)OR^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$, $-X^5NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^5OR^{12}$, $-X^5SR^{12}$ $-X^5C(O)OR^{12}$, $-X^5C(O)R^{12}$, $-X^5OC(O)R^{12}$, $-X^5C(O)NR^{12}R^{12}$, $-X^5S(O)_2NR^{12}R^{12}$ $-X^5NR^{12}S(O)_2R^{12}$, $-X^5P(O)(OR^{12})OR^{12}$, $-X^5OP(O)(OR^{12})OR^{12}$, $-X^5NR^{12}C(O)R^{13}$, $-X^5S(O)R^{13}$, $-X^5C(O)R^{13}$ and $-X^5S(O)_2R^{13}$ and/or 1 radical selected from $-R^{14}$, $-X^5OR^{14}$, $-X^5SR^{14}$, $-X^{5}S(O)R^{14}$, $-X^{5}S(O)_{2}R^{14}$, $-X^{5}C(O)R^{14}$, $-X^{5}C(O)OR^{14}$, $-X^{5}OC(O)R^{14}$, $-X^{5}NR^{14}R^{12}$. $-X^5NR^{12}C(O)R^{14}$, $-X^5NR^{12}C(O)OR^{14}$, $-X^5C(O)NR^{14}R^{12}$, $-X^5S(O)_2NR^{14}R^{12}$, $-X^5NR^{12}S(O)_2R^{14}$. $-X^5NR^{12}C(O)NR^{14}R^{12}$ and $-X^5NR^{12}C(NR^{12})NR^{14}R^{12}$; and within R^3 and R^4 any aliphatic moiety is unsubstituted or substituted further by 1 to 5 radicals independently selected from cyano, halo, nitro, -NR¹²R¹², -NR¹²C(O)R¹², -NR¹²C(O)OR¹², -NR¹²C(O)NR¹²R¹², -NR¹²C(NR¹²)NR¹²R¹², $-OR^{12}$, $-SR^{12}$, $-C(O)OR^{12}$, $-C(O)R^{12}$, $-OC(O)R^{12}$, $-C(O)NR^{12}R^{12}$, $-S(O)_2NR^{12}R^{12}$, $-NR^{12}S(O)_2R^{12}$ -P(O)(OR¹²)OR¹², -OP(O)(OR¹²)OR¹², -NR¹²C(O)R¹³, -S(O)R¹³ and -S(O)₂R¹³; wherein X⁵, R¹², R¹³ and R¹⁴ are as described above; with the proviso that only one bicyclic ring structure is present within R³, R⁴ or R¹⁵; N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof. and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

7. (Withdrawn-currently Amended) The compound of Claim 1 or Claim 2 in which: $X^{1} \text{ is -NHC}(R^{1})(R^{2})C(O)C(O)NR^{5}R^{6}, \text{ wherein } R^{5} \text{ is hydrogen, } (C_{1-4})\text{alkyl,} \\ (C_{3-10})\text{cycloalkyl}(C_{0-6})\text{alkyl, hetero}(C_{3-10})\text{cycloalkyl}(C_{0-3})\text{alkyl, } (C_{6-10})\text{aryl}(C_{0-6})\text{alkyl,} \\ \text{hetero}(C_{5-10})\text{aryl}(C_{0-6})\text{alkyl, } (C_{9-10})\text{bicycloaryl}(C_{0-6})\text{alkyl or hetero}(C_{8-10})\text{bicycloaryl}(C_{0-6})\text{alkyl} \\ \text{and } R^{6} \text{ is hydrogen, hydroxy or } (C_{1-6})\text{alkyl or } R^{5} \text{ and } R^{6} \text{ together with the nitrogen atom to which they are both attached form hetero}(C_{3-10})\text{cycloalkyl, hetero}(C_{5-10})\text{aryl or hetero}(C_{8-10})\text{bicycloaryl;}$

X² is hydrogen;

wherein within X^1 any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5NR^{12}C(O)OR^{12}$, $-X^5NR^{12}C(O)NR^{12}R^{12}$, $-X^5NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^5OR^{12}$, $-X^5SR^{12}$, $-X^5C(O)R^{12}$, $-X^5C(O)R^{$

 R^1 is hydrogen and R^2 is (C_{1-6}) alkyl; and

 R^3 is $-CH_2X^6$, wherein X^6 is $-X^5NR^{12}S(O)_2R^{12}$ or $-X^5S(O)_2R^{14}$ wherein X^5 , R^{12} and R^{14} are as defined above;

wherein within R^3 any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^5NR^{12}R^{12}$, $-X^5NR^{12}C(O)R^{12}$, $-X^5C(O)R^{12}$, $-X^5$

N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the *N*-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof. and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

8. (Currently Amended) The compound of Claim 3 in which:

X¹ is -NHC(R¹)(R²)X³ or -NHCH(R¹9)C(O)R²0, wherein R¹ is hydrogen or (C₁-6)alkyl and R² is hydrogen, (C₁-6)alkyl, -X⁵OR¹², -X⁵S(O)R¹³, -X⁵OR¹⁴, (C₆₋₁₀)aryl(C₀-6)alkyl or hetero(C₅-10)aryl(C₀-6)alkyl or R¹ and R² taken together with the carbon atom to which both R¹ and R² are attached form (C₃-6)cycloalkylene or (C₃-6)heterocycloalkylene, wherein within said R² any heteroaryl, aryl, cycloalkylene or heterocycloalkylene is unsubstituted or substituted with (C₁-6)alkyl or hydroxy, wherein X³ is cyano, -C(O)R¹6, -C(R⁶)(OR⁶)₂, -CH=CHS(O)₂R⁵, -CH₂C(O)R¹6, -C(O)CF₂C(O)NR⁵R⁵, -C(O)C(O)NR⁵R⁶, -C(O)C(O)OR⁵, -C(O)CH₂OR⁵, -C(O)CH₂N(R⁶)SO₂R⁵ or -C(O)C(O)R⁵ and R¹9 and R²0 together with the atoms to which R¹9 and R²0 are attached form (C₄-8)heterocycloalkylene, wherein no more than one of the ring member atoms comprising the ring is a heteroatom selected from -NR²¹- or -O-, wherein the ring is unsubstituted or substituted with (C₁-6)alkyl or -X⁵C(O)OR¹² and R²¹ is hydrogen, (C₁-6)alkyl, -X⁵C(O)R¹², -X⁵C(O)OR¹², -R¹⁴, -X⁵C(O)R¹⁴ or -C(O)OR¹⁴;

 X^2 is -OH or -OC(O)NR¹²R¹², wherein each R¹² independently represent hydrogen or (C₁₋₆)alkyl, wherein said alkyl is unsubstituted or substituted with hydroxy or methoxy, or X^2 is -OC(O)NHR¹⁴, wherein R¹⁴ is (C₃₋₁₀)cycloalkyl(C₀₋₆)alkyl or hetero(C₃₋₁₀)cycloalkyl(C₁₋₃)alkyl, or X^2 is -OC(O)R¹⁴, wherein R¹⁴ is -NR²²R²³ and R²² and R²³ together with the nitrogen atom to which both R²² and R²³ attached form a hetero(C₄₋₆)cycloalkyl ring, which ring may be unsubstituted or substituted with hydroxy; and

R³ is -CH₂X⁶; wherein X⁶ is is selected from -X⁵SR¹², -X⁵C(O)NR¹²R¹², -X⁵S(O)₂R¹³, -X⁵C(O)R¹³, -X⁵C(O)R¹³, -X⁵C(O)R¹⁴, -X⁵C(O)R¹⁴, -X⁵C(O)R¹⁴, -X⁵C(O)NR¹⁴R¹²; N-oxide-derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and

mixtures of stereoisomers thereof.and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

9. (Currently Amended) The compound of Claim 8 in which:

 X^3 is cyano, -C(O)X⁴, -C(O)H, -C(O)N(CH₃)OCH₃, -CH(OCH₃)₂, -C(O)CF₃, -C(O)CF₂CF₃, -CH₂C(O)R¹⁶, (E)-2-benzenesulfonyl-vinyl, 2-dimethylcarbamoyl-2,2-difluoro-acetyl, 2-oxo-2-pyrrolidin-1-yl-acetyl, 2-morpholin-4-yl-2-oxo-acetyl, 2-oxo-2-piperazin-1-yl-acetyl, 2-(4-methanesulfonyl-piperazin-1-yl)-2-oxo-acetyl, 2-(1,1-dioxo-1 \Box ⁶-thiomorpholin-4-yl)-2-oxo-acetyl, dimethylaminooxalyl, tetrahydro-pyran-4-ylaminooxalyl, 2-morpholin-4-yl-ethylaminooxalyl, cyclopentyl-ethyl-aminooxalyl, pyridin-3-ylaminooxalyl, phenylaminooxalyl, 1-benzoyl-piperidin-4-ylaminooxalyl, 1-benzylcarbamoyl-methanoyl, 1-benzyloxy(oxalyl), 2-benzyloxy-acetyl, 2-benzenesulfonylamino-ethanoyl, 2-oxo-2-phenyl-ethanoyl, 3*H*-oxazole-2-carbonyl, 5-trifluoromethyl-oxazole-2-carbonyl, 3-trifluoromethyl-[1,2,4]oxadiazole-5-carbonyl, 2,2,3,3,3-pentafluoro-propionyl, hydroxyaminooxalyl, oxalyl, 2-(1,3-dihydro-isoindol-2-yl)-2-oxo-acetyl, benzothiazol-2-ylaminooxalyl, 2-oxo-ethyl, 2-oxazol-2-yl-2-oxo-ethyl or 2-benzooxazol-2-yl-2-oxo-ethyl;

X² is selected from -OH, dimethylcarbamoyloxy, morpholin-4-ylcarbonyloxy, piperidin-1-yl-carbonyloxy, pyrrolidin-1-yl-carbonyloxy, pyrrimidin-2-ylamino, tetrahydro-pyran-4-ylamino, 1-methyl-piperidin-4-ylamino, N-(2-methoxyethyl)-N-(tetrahydro-pyran-4-yl)amino, isopropylamino and cyclohexylamino; 4-tert-butoxycarbonylpiperazin-1-ylcarbonyloxy, N-benzyl-carbamoyloxy, pyrrolidin-1-yl-carbonyloxy, N,N-dimethyl-carbamoyloxy, piperidin-1-yl-carbonyloxy, 4-methanesulfonyl-piperazin-1-yl-carbonyloxy, N-phenyl-carbamoyloxy, N-(5,6,7,8-tetrahydro-naphthalen-1-yl)-carbamoyloxy, N-butyl-N-methyl-carbamoyloxy, N-pyridin-3-yl-carbamoyloxy, N-isopropyl-carbamoyloxy, N-pyridin-4-yl-carbamoyloxy, N-pyridin-4-yl-carbamoyloxy, N-phenethyl-carbamoyloxy, N-phenethyl-carbamoyloxy,

- 2-methoxyethylcarbamoyloxy, diethylcarbamoyloxy, pyrrolidin-1-ylcarbonyloxy,
- 2-hydroxyethylcarbamoyloxy, tetrahydro-furan-2-ylmethylcarbamoyloxy,
- cyclopropylcarbamoyloxy, *tert*-butylcarbamoyloxy, 3-hydroxy-pyrrolidin-1-yl-carbonyloxy and carbamoyloxy; and
- R³ is thiophene-2-sulfonyl-methyl, 3-chloro-2-fluoro-phenyl-methane-sulfonyl-methyl, benzene-sulfonyl-methyl, phenyl-methane-sulfonyl-methyl, 2-(1,1-difluoro-methoxy)-phenyl-methane-sulfonyl-methyl, 2-benzene-sulfonyl-ethyl, 2-(pyridine-2-sulfonyl)-ethyl,
- 2-(pyridine-4-sulfonyl)-ethyl, 2-phenyl-methanesulfonyl-ethyl, oxy-pyridin-2-yl-methanesulfonyl-methyl, prop-2-ene-1-sulfonyl-methyl, 4-methoxy-phenyl-methane-sulfonyl-methyl, p-tolyl-methane-sulfonyl-methyl, 4-chloro-phenyl-methane-sulfonyl-methyl, o-tolyl-methanesulfonyl-methyl, 4-trifluoro-methyl-phenyl-methane-sulfonyl-methyl, 4-trifluoro-methyl, 4-trifluoro-methyl, 4-trifluoro-methyl, 4-trifluoro-methyl,
- 2-bromo-phenyl-methane-sulfonyl-methyl, pyridin-2-yl-methane-sulfonyl-methyl, pyridin-3-yl-methane-sulfonyl-methyl, pyridin-4-yl-methane-sulfonyl-methyl, naphthalen-2-yl-methane-sulfonyl-methyl, 3-trifluoro-methyl-phenyl-methane-sulfonyl-methyl, 3-trifluoro-methyl, 3-trifluoro-methoxy-phenyl-methane-sulfonyl-methyl,
- 4-fluoro-2-trifluoromethoxy-phenyl-methane-sulfonylmethyl,
- 2-fluoro-6-trifluoromethyl-phenylmethanesulfonylmethyl,
- 3-chloro-phenylmethanesulfonylmethyl, 2-fluoro-phenylmethanesulfonylmethyl,
- 2-trifluoro-phenylmethanesulfonylmethyl, 2-cyano-phenylmethanesulfonylmethyl,
- 4-tert-butyl-phenylmethanesulfonylmethyl, 2-fluoro-3-methyl-phenyl-methane-sulfonyl-methyl,
- 3-fluoro-phenylmethanesulfonylmethyl, 4-fluoro-phenylmethane-sulfonylmethyl,
- 2-chloro-phenylmethanesulfonylmethyl, 2,5-difluoro-phenylmethane-sulfonylmethyl,
- 2,6-difluoro-phenylmethanesulfonylmethyl, 2,5-dichloro-phenyl-methane-sulfonylmethyl,
- 3,4-dichloro-phenylmethanesulfonylmethyl, 2-(1,1-difluoro-methoxy)-phenylmethanesulfonylmethyl, 2-cyano-phenyl-methane-sulfonyl-methyl,
- 3-cyano-phenylmethanesulfonylmethyl, 2-trifluoro-methoxy-phenyl-methane-sulfonylmethyl,
- 2, 3- difluoro-phenyl methane sulfonyl methyl, 2, 5- difluoro-phenyl-methane sulfonyl methyl,
- biphenyl-2-ylmethanesulfonylmethyl, cyclohexylmethyl, 3-fluoro-phenyl-
- methanesulfonylmethyl, 3,4-difluoro-phenyl-methanesulfonylmethyl,
- 2,4-difluoro-phenylmethanesulfonylmethyl, 2,4,6-trifluoro-phenylmethanesulfonylmethyl,

2,4,5-trifluoro-phenylmethanesulfonylmethyl, 2,3,4-trifluoro-phenylmethanesulfonylmethyl, 2,3,5-trifluoro-phenyl-methane-sulfonylmethyl, 2,5,6-trifluoro-phenylmethanesulfonylmethyl, 2-chloro-5-trifluoro-methylphenylmethanesulfonylmethyl, 2-methyl-propane-1-sulfonyl, 2-fluoro-3-trifluoro-methylphenylmethanesulfonylmethyl, 2-fluoro-4-trifluoromethylphenylmethanesulfonylmethyl, 2-fluoro-5-trifluoro-methyl-phenyl-methane-sulfonylmethyl, 4-fluoro-3-trifluoro-methylphenylmethanesulfonylmethyl, 2-methoxy-phenylmethanesulfonylmethyl, 3,5-bis-trifluoromethyl-phenylmethanesulfonylmethyl, 4-difluoromethoxy-phenylmethanesulfonylmethyl, 2-difluoro-methoxy-phenylmethanesulfonylmethyl, 3-difluoromethoxy-phenylmethanesulfonylmethyl, 2,6-dichlorophenylmethanesulfonylmethyl, biphenyl-4-ylmethanesulfonylmethyl, 3,5-dimethyl-isoxazol-4-ylmethanesulfonylmethyl, 5-chloro-thien-2-yl-methane-sulfonylmethyl, 2-[4-(1,1-difluoro-methoxy)-benzenesulfonyl]-ethyl, 2-[2-(1,1-difluoro-methoxy)-benzenesulfonyl]-ethyl, 2-[3-(1,1-difluoromethoxy)-benzenesulfonyl]-ethyl, 2-(4-trifluoromethoxy-benzenesulfonyl)-ethyl, 2-(3-trifluoromethoxy-benzene-sulfonyl)-ethyl, 2-(2-trifluoro-methoxy-benzene-sulfonyl)-ethyl, (cyanomethyl-methyl-carbamoyl)-methyl, biphenyl-3-ylmethyl, 2-oxo-2-pyrrolidin-1-yl-ethyl, 2-benzenesulfonyl-ethyl, isobutylsulfanylmethyl, 2-phenylsulfanyl-ethyl, cyclohexylmethanesulfonylmethyl, 2-cyclohexyl-ethanesulfonyl, benzyl, naphthalen-2-yl, benzylsulfanylmethyl, 2-trifluoromethyl-benzylsulfanylmethyl, phenylsulfanyl-ethyl, cyclopropyl-methanesulfonylmethyl, 5-bromo-thien-2-ylmethyl, 3-phenyl-propyl, 2,2-difluoro-3-phenyl-propyl, 3,4,5-trimethoxy-phenylmethanesulfonylmethyl, 2,2-difluoro-3-thien-2-ylpropyl, cyclohexylethyl, cyclohexylmethyl, tert-butylmethyl, 1-methylcyclohexylmethyl, 1-methylcyclopentylmethyl, 2,2-difluoro-3-phenylpropyl, 2,2-dimethyl-3-phenylpropyl, 1-benzylcyclopropylmethyl, -X⁵S(O)₂R¹³ and -X⁵S(O)₂R¹⁴, wherein R¹³ is alkyl and R¹⁴ is phenyl which phenyl is unsubstituted or substituted; N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

10. (Currently Amended) A compound of Claim 9 in which:

X³ is 1*H*-benzoimidazol-2-ylcarbonyl, pyrimidin-2-ylcarbonyl, benzooxazol-2-ylcarbonyl, benzothiazol-2-ylcarbonyl, pyridazin-3-ylcarbonyl, 3-phenyl-[1,2,4]oxadiazol-5-ylcarbonyl or 3-ethyl-[1,2,4]oxadiazol-5-ylcarbonyl, 2-oxo-2-pyrrolidin-1-yl-acetyl, 2-morpholin-4-yl-2-oxo-acetyl, 2-oxo-2-piperazin-1-yl-acetyl, 2-(4-methanesulfonyl-piperazin-1-yl)-2-oxo-acetyl, 2-(1,1-dioxo-1-thiomorpholin-4-yl)-2-oxo-acetyl, dimethylaminooxalyl, tetrahydro-pyran-4-ylaminooxalyl, 2-morpholin-4-yl-ethylaminooxalyl, cyclopentyl-ethyl-aminooxalyl, pyridin-3-ylaminooxalyl, phenylaminooxalyl or 1-benzoyl-piperidin-4-ylaminooxalyl; X² is selected from -OH, dimethylcarbamoyloxy, morpholin-4-ylcarbonyloxy, piperidin-1-yl-carbonyloxy, pyrrolidin-1-yl-carbonyloxy, pyrimidin-2-ylamino, tetrahydro-pyran-4-ylamino, 1-methyl-piperidin-4-ylamino, *N*-(2-methoxyethyl)-*N*-(tetrahydro-pyran-4-yl)amino, isopropylamino and cyclohexylamino:

R³ is cyclohexylethyl, cyclohexylmethyl, *tert*-butylmethyl, 1-methylcyclohexylmethyl, 1-methylcyclopentylmethyl, 2,2-difluoro-3-phenylpropyl, 2,2-dimethyl-3-phenylpropyl, 1-benzylcyclopropylmethyl, -X⁵S(O)₂R¹³ or -X⁵S(O)₂R¹⁴, wherein R¹³ is alkyl and R¹⁴ is phenyl which phenyl is unsubstituted or substituted; and the pharmaceutically acceptable salts and solvates of such compounds and the *N*-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof *N* oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

11. (Withdrawn-currently Amended) The compound of Claim 3 in which:

 X^1 is -NHC(R^1)(R^2) X^3 or -NHCH(R^{19})C(O) R^{20} , wherein R^1 is hydrogen or (C_{1-6})alkyl and R^2 is hydrogen, (C_{1-6})alkyl, - X^5 OR¹², - X^5 S(O) R^{13} , - X^5 OR¹⁴, (C_{6-10})aryl(C_{0-6})alkyl or hetero(C_{5-10})aryl(C_{0-6})alkyl or R^1 and R^2 taken together with the carbon atom to which both R^1 and R^2 are attached form (C_{3-6})cycloalkylene or (C_{3-6})heterocycloalkylene, wherein within said R^2 any heteroaryl, aryl, cycloalkylene or heterocycloalkylene is unsubstituted or substituted with (C_{1-6})alkyl or hydroxy, wherein X^3 is cyano, -C(O) R^{16} , -C(R^6)(OR⁶)₂, -CH=CHS(O)₂ R^5 , -CH₂C(O) R^{16} , -C(O)CF₂C(O)NR⁵ R^5 , -C(O)C(O)NR⁵ R^6 , -C(O)C(O)OR⁵, -C(O)CH₂OR⁵, -C(O)CH₂OR⁵, -C(O)CH₂N(R^6)SO₂ R^5 or -C(O)C(O)R⁵ and R^{19} and R^{20} together with the atoms to which R^{19}

and R^{20} are attached form (C₄₋₈)heterocycloalkylene, wherein no more than one of the ring member atoms comprising the ring is a heteroatom selected from -NR²¹- or -O-, wherein the ring is unsubstituted or substituted with (C₁₋₆)alkyl or -X⁵C(O)OR¹² and R²¹ is hydrogen, (C₁₋₆)alkyl, -X⁵C(O)R¹², -X⁵C(O)OR¹², -R¹⁴, -X⁵C(O)R¹⁴ or -C(O)OR¹⁴;

 X^2 is -NHR¹⁵, wherein R¹⁵ is (C_{6-10}) aryl, hetero (C_{5-10}) aryl, (C_{9-10}) bicycloaryl or hetero (C_{8-10}) bicycloaryl, or -NR¹⁷R¹⁸, wherein R¹⁷ is hetero (C_{3-10}) cycloalkyl and R¹⁸ is hydrogen or R¹⁷ and R¹⁸ independently are (C_{6-10}) aryl (C_{1-6}) alkyl or hetero (C_{5-10}) aryl (C_{1-6}) alkyl, wherein within R¹⁵, R¹⁷ and R¹⁸ any alicyclic or aromatic ring system is unsubstituted or substituted further by 1 to 5 radicals independently selected from (C_{1-6}) alkyl, cyano, halo, nitro, halo-substituted (C_{1-4}) alkyl, -X⁵OR¹², -X⁵C(O)OR¹², -X⁵C(O)R¹³, -X⁵C(O)NR¹²R¹², -X⁵NR¹²S(O)₂R¹² and/or 1 radical selected from -R¹⁴, -X⁵OR¹⁴ and -X⁵C(O)NR¹⁴R¹²; and R³ is -CH₂X⁶; wherein X⁶ is is selected from -X⁵SR¹², -X⁵C(O)NR¹²R¹², -X⁵S(O)₂R¹³, -X⁵C(O)R¹³, -X⁵OR¹², -X⁵SR¹⁴, -X⁵SR¹⁴, -X⁵S(O)₂R¹⁴, -X⁵C(O)R¹⁴, -X⁵C(O)NR¹⁴R¹²; A-oxide-derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof.

12. (Withdrawn-currently Amended) The compound of Claim 11 in which:

 X^3 is cyano, $-C(O)X^4$, -C(O)H, $-C(O)N(CH_3)OCH_3$, $-CH(OCH_3)_2$, $-C(O)CF_3$, $-C(O)CF_2CF_3$, $-CH_2C(O)R^{16}$, (E)-2-benzenesulfonyl-vinyl, 2-dimethylcarbamoyl-2,2-difluoro-acetyl, 2-oxo-2-pyrrolidin-1-yl-acetyl, 2-morpholin-4-yl-2-oxo-acetyl, 2-oxo-2-piperazin-1-yl-acetyl, 2-(4-methanesulfonyl-piperazin-1-yl)-2-oxo-acetyl, 2-(1,1-dioxo-1 \Box ^6-thiomorpholin-4-yl)-2-oxo-acetyl, dimethylaminooxalyl, tetrahydro-pyran-4-ylaminooxalyl, 2-morpholin-4-yl-ethylaminooxalyl, cyclopentyl-ethyl-aminooxalyl, pyridin-3-ylaminooxalyl, phenylaminooxalyl, 1-benzyl-piperidin-4-ylaminooxalyl, 1-benzylcarbamoyl-methanoyl, 1-benzyloxy(oxalyl), 2-benzyloxy-acetyl, 2-benzenesulfonylamino-ethanoyl, 2-oxo-2-phenyl-ethanoyl, 3*H*-oxazole-2-carbonyl, 5-trifluoromethyl-oxazole-2-carbonyl, 3-trifluoromethyl-[1,2,4]oxadiazole-5-carbonyl, 2,2,3,3,3-pentafluoro-propionyl, hydroxyaminooxalyl, oxalyl, 2-(1,3-dihydro-isoindol-2-yl)-2-

oxo-acetyl, benzothiazol-2-ylaminooxalyl, 2-oxo-ethyl, 2-oxazol-2-yl-2-oxo-ethyl or 2-benzooxazol-2-yl-2-oxo-ethyl;

 X^2 is selected from 5-nitrothiazol-2-ylamino, 2-nitrophenylamino, pyrimidin-2-ylamino, tetrahydro-pyran-4-ylamino, N-(2-methoxyethyl)-N-(tetrahydro-pyran-4-yl)amino, 1-methyl-piperidin-4-ylamino, isopropylamino, di(thien-2-ylmethyl)amino or di(benzyl)amino; and

R³ is thiophene-2-sulfonyl-methyl, 3-chloro-2-fluoro-phenyl-methane-sulfonyl-methyl, benzene-sulfonyl-methyl, phenyl-methane-sulfonyl-methyl, 2-(1,1-difluoro-methoxy)-phenyl-methane-sulfonyl-methyl, 2-benzene-sulfonyl-ethyl, 2-(pyridine-2-sulfonyl)-ethyl,

2-(pyridine-4-sulfonyl)-ethyl, 2-phenyl-methanesulfonyl-ethyl, oxy-pyridin-2-yl-methanesulfonyl-methyl, prop-2-ene-1-sulfonyl-methyl, 4-methoxy-phenyl-methane-sulfonyl-methyl, p-tolyl-methane-sulfonyl-methyl, 4-chloro-phenyl-methane-sulfonyl-methyl, o-tolyl-methanesulfonyl-methyl, 3,5-dimethyl-phenyl-methane-sulfonyl-methyl, 4-trifluoro-methyl-phenyl-methane-sulfonyl-methyl, 4-trifluoro-methyl, 4-trifluoro-methyl,

2-bromo-phenyl-methane-sulfonyl-methyl, pyridin-2-yl-methane-sulfonyl-methyl, pyridin-3-yl-methane-sulfonyl-methyl, pyridin-4-yl-methane-sulfonyl-methyl, naphthalen-2-yl-methane-sulfonyl-methyl, 3-methyl-phenyl-methane-sulfonyl-methyl, 3-trifluoro-methyl-phenyl-methane-sulfonyl-methyl, 3-trifluoro-methoxy-phenyl-methane-sulfonyl-methyl,

- 4-fluoro-2-trifluoromethoxy-phenyl-methane-sulfonylmethyl,
- 2-fluoro-6-trifluoromethyl-phenylmethanesulfonylmethyl,
- 3-chloro-phenylmethanesulfonylmethyl, 2-fluoro-phenylmethanesulfonylmethyl,
- 2-trifluoro-phenylmethanesulfonylmethyl, 2-cyano-phenylmethanesulfonylmethyl,
- 4-tert-butyl-phenylmethanesulfonylmethyl, 2-fluoro-3-methyl-phenyl-methane-sulfonyl-methyl,
- 3-fluoro-phenylmethanesulfonylmethyl, 4-fluoro-phenylmethane-sulfonylmethyl,
- 2-chloro-phenylmethanesulfonylmethyl, 2,5-difluoro-phenylmethane-sulfonylmethyl,
- 2,6-difluoro-phenylmethanesulfonylmethyl, 2,5-dichloro-phenyl-methane-sulfonylmethyl,
- 3,4-dichloro-phenylmethanesulfonylmethyl, 2-(1,1-difluoro-methoxy)-phenylmethanesulfonylmethyl, 2-cyano-phenyl-methane-sulfonyl-methyl,
- 3-cyano-phenylmethanesulfonylmethyl, 2-trifluoro-methoxy-phenyl-methane-sulfonylmethyl,
- 2,3-difluoro-phenylmethanesulfonylmethyl, 2,5-difluoro-phenyl-methanesulfonylmethyl, biphenyl-2-ylmethanesulfonylmethyl, cyclohexylmethyl, 3-fluoro-phenyl-methanesulfonylmethyl, 3,4-difluoro-phenyl-methanesulfonylmethyl,

2,4-difluoro-phenylmethanesulfonylmethyl, 2,4,6-trifluoro-phenylmethanesulfonylmethyl, 2,4,5-trifluoro-phenylmethanesulfonylmethyl, 2,3,4-trifluoro-phenylmethanesulfonylmethyl, 2,3,5-trifluoro-phenyl-methane-sulfonylmethyl, 2,5,6-trifluoro-phenylmethanesulfonylmethyl, 2-chloro-5-trifluoro-methylphenylmethanesulfonylmethyl, 2-methyl-propane-1-sulfonyl, 2-fluoro-3-trifluoro-methylphenylmethanesulfonylmethyl, 2-fluoro-4-trifluoromethylphenylmethanesulfonylmethyl, 2-fluoro-5-trifluoro-methyl-phenyl-methane-sulfonylmethyl, 4-fluoro-3-trifluoro-methylphenylmethanesulfonylmethyl, 2-methoxy-phenylmethanesulfonylmethyl, 3,5-bis-trifluoromethyl-phenylmethanesulfonylmethyl, 4-difluoromethoxy-phenylmethanesulfonylmethyl, 2-difluoro-methoxy-phenylmethanesulfonylmethyl, 3-difluoromethoxy-phenylmethanesulfonylmethyl, 2,6-dichlorophenylmethanesulfonylmethyl, biphenyl-4-ylmethanesulfonylmethyl, 3,5-dimethyl-isoxazol-4-ylmethanesulfonylmethyl, 5-chloro-thien-2-yl-methane-sulfonylmethyl, 2-[4-(1,1-difluoro-methoxy)-benzenesulfonyl]-ethyl, 2-[2-(1,1-difluoro-methoxy)-benzenesulfonyl]-ethyl, 2-[3-(1,1-difluoromethoxy)-benzenesulfonyl]-ethyl, 2-(4-trifluoromethoxy-benzenesulfonyl)-ethyl, 2-(3-trifluoromethoxy-benzenesulfonyl)-ethyl, 2-(2-trifluoro-methoxy-benzene-sulfonyl)-ethyl, (cyanomethyl-methyl-carbamoyl)-methyl, biphenyl-3-ylmethyl, 2-oxo-2-pyrrolidin-1-yl-ethyl, 2-benzenesulfonyl-ethyl, isobutylsulfanylmethyl, 2-phenylsulfanyl-ethyl, cyclohexylmethanesulfonylmethyl, 2-cyclohexyl-ethanesulfonyl, benzyl, naphthalen-2-yl, benzylsulfanylmethyl, 2-trifluoromethyl-benzylsulfanylmethyl, phenylsulfanyl-ethyl, cyclopropyl-methanesulfonylmethyl, 5-bromo-thien-2-ylmethyl, 3-phenyl-propyl, 2,2-difluoro-3-phenyl-propyl, 3,4,5-trimethoxy-phenylmethanesulfonylmethyl, 2,2-difluoro-3-thien-2-ylpropyl, cyclohexylethyl, cyclohexylmethyl, tert-butylmethyl, 1-methylcyclohexylmethyl, 1-methylcyclopentylmethyl, 2,2-difluoro-3-phenylpropyl, 2,2-dimethyl-3-phenylpropyl, 1-benzylcyclopropylmethyl, -X⁵S(O)₂R¹³ and -X⁵S(O)₂R¹⁴, wherein R¹³ is alkyl and R¹⁴ is phenyl which phenyl is unsubstituted or substituted; Noxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

13. (Withdrawn-currently Amended) A compound of Claim 12 in which:

X³ is 1*H*-benzoimidazol-2-ylcarbonyl, pyrimidin-2-ylcarbonyl, benzooxazol-2-ylcarbonyl, benzothiazol-2-ylcarbonyl, pyridazin-3-ylcarbonyl, 3-phenyl-[1,2,4]oxadiazol-5-ylcarbonyl or 3-ethyl-[1,2,4]oxadiazol-5-ylcarbonyl, 2-oxo-2-pyrrolidin-1-yl-acetyl, 2-morpholin-4-yl-2-oxo-acetyl, 2-oxo-2-piperazin-1-yl-acetyl, 2-(4-methanesulfonyl-piperazin-1-yl)-2-oxo-acetyl, 2-(1,1-dioxo-1-thiomorpholin-4-yl)-2-oxo-acetyl, dimethylaminooxalyl, tetrahydro-pyran-4-ylaminooxalyl, 2-morpholin-4-yl-ethylaminooxalyl, cyclopentyl-ethyl-aminooxalyl, pyridin-3-ylaminooxalyl, phenylaminooxalyl or 1-benzoyl-piperidin-4-ylaminooxalyl; X² is selected from -OH, dimethylcarbamoyloxy, morpholin-4-ylcarbonyloxy, piperidin-1-yl-carbonyloxy, pyrrolidin-1-yl-carbonyloxy, pyrimidin-2-ylamino, tetrahydro-pyran-4-ylamino, 1-methyl-piperidin-4-ylamino, *N*-(2-methoxyethyl)-*N*-(tetrahydro-pyran-4-yl)amino, isopropylamino and cyclohexylamino:

R³ is cyclohexylethyl, cyclohexylmethyl, *tert*-butylmethyl, 1-methylcyclohexylmethyl, 1-methylcyclopentylmethyl, 2,2-difluoro-3-phenylpropyl, 2,2-dimethyl-3-phenylpropyl, 1-benzylcyclopropylmethyl, -X⁵S(O)₂R¹³ or -X⁵S(O)₂R¹⁴, wherein R¹³ is alkyl and R¹⁴ is phenyl which phenyl is unsubstituted or substituted; and the pharmaceutically acceptable salts and solvates of such compounds and the *N*-oxides, prodrugs, compounds thereof having protected reactive groups, stereoisomers and mixtures of stereoisomers thereof. and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

- 14. (Currently Amended) A compound of Claim 1 selected from the group consisting of: (*R*)-*N*-cyanomethyl-2-hydroxy-3-phenylmethanesulfonyl-propionamide;
- (R)-N-(1-cyano-1-thiophen-2-yl-methyl)-2-hydroxy-3-phenylmethanesulfonyl-propionamide;
- (*R*)-*N*-(1-cyano-1-thiophen-2-yl-methyl)-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide;
- (R)-N-cyanomethyl-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide;

morpholine-4-carboxylic acid (R)-1-(cyanomethyl-carbamoyl)-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (R)-1-(cyanomethyl-carbamoyl)-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester;

- (R)-(2-methoxy-ethyl)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-phenylmethanesulfonyl-ethyl ester;
- (S)-diethyl-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-pyrrolidine-1-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-morpholine-4-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-4-Ethyl-piperazine-1-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-2-hydroxymethyl-pyrrolidine-1-carboxylic acid (S)-1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-(2,2,2-Trifluoro-ethyl)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-(2-hydroxyethyl)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester; (Tetrahydrofuran-2-ylmethyl)-carbamic acid (S)-1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-Azetidine-1-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-cyclopropyl-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-piperidine-1-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-(2-methoxy-ethyl)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (R)-3-hydroxy-pyrrolidine-1-carboxylic acid (S)-1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-3-hydroxy-pyrrolidine-1-carboxylic acid (S)-1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-morpholine-4-carboxylic acid 1-(cyanomethyl-carbamoyl)-3-cyclohexyl-propyl ester; morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester;

morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzothiazol-2-yl-methanoyl)-propylcarbamoyl]-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester;

pyrrolidine-1-carboxylic acid (R)-1-(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

dimethyl-carbamic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzylcarbamoyl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (S)-1-[(S)-1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester; morpholine-4-carboxylic acid (S)-1-[(S)-1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

- (S)-2-{(R)-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propanoylamino}-*N*-methoxy-*N*-methyl-butyramide;
- (R)-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-*N*-((S)-1-formyl-propyl)-2-hydroxy-propionamide;
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-2-hydroxy-3-phenyl-methanesulfonyl-propionamide;
- (S)-3-{3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-propanoylamino}-2-oxo-pentanoic acid benzylamide;
- *N*-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-propionamide;
- N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-3-phenyl-propyl]-3-p-tolylmethanesulfonyl-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-(1-ethyl-2,3-dioxo-3-pyrrolidin-1-yl-propyl)-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-(1-ethyl-3-morpholin-4-yl-2,3-dioxo-propyl)-propionamide;

- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-(1-ethyl-2,3-dioxo-3-piperazin-1-yl-propyl)-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-[3-(1,1-dioxo-116-thiomorpholin-4-yl)-1-ethyl-2,3-dioxo-propyl]-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-[1-ethyl-3-(4-methyl-sulfonyl-piperazin-1-yl)-2,3-dioxo-propyl]-propionamide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid dimethylamide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid cyclopentyl-ethyl-amide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid phenylamide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid pyridin-3-ylamide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid (tetrahydro-pyran-4-yl)-amide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid (1-benzoyl-piperidin-4-yl)-amide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid (2-morpholin-4-yl-ethyl)-amide;
- (R)-*N*-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-2-(2-nitro-phenylamino)-3-phenylmethanesulfonyl-propionamide;
- N-[1-(benzooxazole-2-carbonyl)-propyl]-3-phenylmethanesulfonyl-2-(pyrimidin-2-ylamino)-propionamide.
- (R)-*N*-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-2-(5-nitro-thiazol-2-ylamino)-3-phenylmethanesulfonyl-propionamide;
- (2S) (4,4-difluoro-2-hydroxy-5-phenyl-pentanoic acid (1(S)-cyano-3-phenyl-propyl)-amide; N-(1(S)-cyano-3-phenyl-propyl)-2-(S)-(2-morpholin-4-yl-2-oxo-ethoxy)-4-phenyl-butyramide;

- N-(1-(S)-cyano-3-phenyl-propyl)-2-(S)-fluoro-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2,2-difluoro-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2-(S)-hydroxy-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2-(R)-hydroxy-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2-(R)-methoxy-4-phenyl-butyramide;
- 2,2-difluoro-5-phenyl-pentanoic acid (1-cyano-cyclopropyl)-amide;
- N-(1-(S)-cyano-3-phenyl-propyl)-4-phenyl-butyramide;
- 2,2-difluoro-5-phenyl-pentanoic acid ((S)-1-cyano-3-phenyl-propyl)-amide;
- N-(4-cyano-1-ethyl-piperidin-4-yl)-3-cyclohexyl-propionamide;
- N-(4-cyano-1-ethyl-piperidin-4-yl)-3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionamide;
- (S)-tert-butyl-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (R)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-(2-difluoromethoxy-phenylmethanesulfonyl)-ethyl ester;
- (S)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (R)-morpholine-4-carboxylic acid 1-(1-cyano-cyclopropylcarbamoyl)-2-phenylmethanesulfonylethyl ester;
- (R)-morpholine-4-carboxylic acid 1-(4-cyano-tetrahydro-pyran-4-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl ester;
- 3-cyclohexyl-2-hydroxy-*N*-[1-(oxazolo[4,5-*b*]pyridine-2-carbonyl)-propyl]-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-2-dibenzylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-2-dimethylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-(1-methyl-piperidin-4-ylamino)-3-phenylmethanesulfonyl-propionamide;

- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-(bis-thiophen-2-ylmethyl-amino)-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-dibenzylamino-3-phenylmethanesulfonyl-propionamide;
- (S)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-(tetrahydro-pyran-4-ylamino)-3-thiophen-2-yl-propionamide;
- (S)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-isopropylamino-3-thiophen-2-yl-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-[(2-methoxy-ethyl)-(tetrahydro-pyran-4-yl)-amino]-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-cyclohexylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-dimethylamino-3-phenylmethanesulfonyl-propionamide;
- (1S)-N-[1-(benzooxazole-2-carbonyl)-butyl]-2-(S)-fluoro-4-phenyl-butyramide;
- 2,2-difluoro-5-phenyl-pentanoic acid [(S)-1-(benzoxazole-2-carbonyl)-butyl]-amide; morpholine-4-carboxylic acid (S)-1-[(S)-1-(benzooxazole-2-carbonyl)-propylcarbamoyl]-2-cyclohexyl-ethyl ester;
- morpholine-4-carboxylic acid (S)-2-cyclohexyl-1-[(S)-1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propylcarbamoyl]-ethyl ester;
- $morpholine-4-carboxylic\ acid\ (S)-2-cyclohexyl-1-[(S)-1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-propylcarbamoyl]-ethyl\ ester;$
- morpholine-4-carboxylic acid (S)-2-cyclohexyl-1-[(S)-1-(5-phenyl-[1,3,4]oxadiazole-2-carbonyl)-propylcarbamoyl]-ethyl ester;

- morpholine-4-carboxylic acid (S)-1-[(S)-1-(benzooxazole-2-carbonyl)-propylcarbamoyl]-3-cyclohexyl-propyl ester;
- 4-[4,4-dimethyl-2-(morpholine-4-carbonyloxy)-pentanoylamino]-3-oxo-azepane-1-carboxylic acid benzyl ester;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-3-cyclopropylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[1-(benzoxazole-2-carbonyl)-butyl]-2-cyclohexylamino-3-cyclopropylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzoxazole-2-carbonyl)-butyl]-2-cycloheptylamino-3-cyclopropylmethanesulfonyl-propionamide;
- (R)-3-phenylmethanesulfonyl-N-[(S)-3-phenyl-1-(thiazole-2-carbonyl)-propyl]-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-3-phenyl-propyl]-3-cyclopropylmethanesulfonyl-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- (R)-3-cyclopropylmethanesulfonyl-N-[1-(5-ethyl-1,2,4-oxadiazole-3-carbonyl)-propyl]-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- (R)-3-phenylmethanesulfonyl-N-[1-(3-phenyl-1,2,4-oxadiazole-5-carbonyl)-propyl]-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- (R)-N-[1-(3-cyclopropyl-1,2,4-oxadiazole-5-carbonyl)-propyl]-3-phenylmethanesulfonyl-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- {(R)-1-[1-(benzothiazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(S)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-thiophen-2-yl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[1-(benzothiazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;

- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-cyclopropylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- (R)-1-{1-[hydroxy-(3-phenyl-1,2,4-oxadiazol-5-yl)-methyl]-propylcarbamoyl}-2-phenylmethanesulfonyl-ethyl)-carbamic acid tert-butyl ester;
- ((R)-2-cyclopropylmethanesulfonyl-1-{(S)-1-[(5-ethyl-1,2,4-oxadiazol-3-yl)-hydroxy-methyl]-propylcarbamoyl}-ethyl)-carbamic acid tert-butyl ester;
- {(R)-1-[1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-3-phenyl-propylcarbamoyl]-2-cyclopropylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(hydroxy-thiazol-2-yl-methyl)-3-phenyl-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-cyclopropylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- (R)-1-{1-[hydroxy-(3-phenyl-1,2,4-oxadiazol-5-yl)-methyl]-propylcarbamoyl}-2-phenylmethanesulfonyl-ethyl)-carbamic acid tert-butyl ester;
- ((R)-2-cyclopropylmethanesulfonyl-1-{(S)-1-[(5-ethyl-1,2,4-oxadiazol-3-yl)-hydroxy-methyl]-propylcarbamoyl}-ethyl)-carbamic acid tert-butyl ester;
- {(R)-1-[1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-3-phenyl-propylcarbamoyl]-2-cyclopropylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(hydroxy-thiazol-2-yl-methyl)-3-phenyl-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- (R)-2-phenylmethanesulfonyl-1-{(S)-1-[(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-hydroxy-methyl]-propylcarbamoyl}-ethyl)-carbamic acid tert-butyl ester;
- (R)-N-[1-(Benzoxazole-2-carbonyl)-butyl]-2-[cyclopropylmethyl-(tetrahydro-pyran-4-ylmethyl)-amino]-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-2-dibenzylamino-3-phenylmethanesulfonyl-propionamide;

- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-2-dimethylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-(1-methyl-piperidin-4-ylamino)-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-(bis-thiophen-2-ylmethyl-amino)-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-dibenzylamino-3-phenylmethanesulfonyl-propionamide;
- (S)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-(tetrahydro-pyran-4-ylamino)-3-thiophen-2-yl-propionamide;
- S)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-isopropylamino-3-thiophen-2-yl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-[(2-methoxy-ethyl)-(tetrahydro-pyran-4-yl)-amino]-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-cyclohexylamino-3-phenylmethanesulfonyl-propionamide;

- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-dimethylamino-3-phenylmethanesulfonyl-propionamide;
- N-cyanomethyl-3-cyclohexyl-propionamide;
- N-cyanomethyl-3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionamide;
- 3-(3-cyclohexyl-propionylamino)-2-oxo-5-phenyl-pentanoic acid thiazol-2-ylamide;
- 3-cyclohexyl-*N*-(1-formyl-3-phenyl-propyl)-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-N-[(S)-1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-propionamide;
- *N*-[(S)-1-(benzooxazole-2-carbonyl)-propyl]-2-(2-cyano-phenylamino)-3-cyclohexyl-propionamide;
- N-Cyanomethyl-3-cyclohexyl-2-(4-methoxy-phenoxy)-propionamide;
- 2-benzyloxy-N-cyanomethyl-3-cyclohexyl-propionamide;
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-2-benzyloxy-3-phenylmethanesulfonyl-propionamide;
- (*R*)-*N*-[(*S*)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-2-methoxymethoxy-3-phenylmethanesulfonyl-propionamide;
- (S)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-2-hydroxy-3-phenyl-propionamide;
- (*R*)-*N*-[(*S*)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-3-phenylmethanesulfonyl-2-triisopropylsilanyloxy-propionamide;
- (*R*)-*N*-[(*S*)-1-(1-benzothiazol-2-yl-methanoyl)-propyl]-2-hydroxy-3-phenylmethanesulfonyl-propionamide;
- (*R*)-2-hydroxy-3-phenylmethanesulfonyl-*N*-[(S)-1-(1-pyridazin-3-yl-methanoyl)-butyl]-propionamide;
- (S)-3-((R)-2-hydroxy-3-phenylmethanesulfonyl-propanoylamino)-2-oxo-pentanoic acid benzylamide;
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide;

- (*R*)-*N*-[(*S*)-1-(1-benzothiazol-2-yl-methanoyl)-propyl]-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide; and
- (2R,5S)-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonylmethyl]-6-ethoxy-5-ethyl-morpholin-3-one; or[[and]] their corresponding N-oxides, and their prodrugs, and their protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates (e.g. hydrates) of such compounds and their N-oxides and their prodrugs, and their protected derivatives, individual isomers and mixtures of isomers thereof.
- 15. (Original) A compound of claim 14 selected from the group consisting of: (*R*)-*N*-cyanomethyl-2-hydroxy-3-phenylmethanesulfonyl-propionamide;
- (R)-N-(1-cyano-1-thiophen-2-yl-methyl)-2-hydroxy-3-phenylmethanesulfonyl-propionamide;
- (*R*)-*N*-(1-cyano-1-thiophen-2-yl-methyl)-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide;
- (*R*)-*N*-cyanomethyl-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide;

morpholine-4-carboxylic acid (R)-1-(cyanomethyl-carbamoyl)-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (R)-1-(cyanomethyl-carbamoyl)-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester;

- (R)-(2-methoxy-ethyl)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-phenylmethanesulfonyl-ethyl ester;
- (S)-diethyl-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-pyrrolidine-1-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-morpholine-4-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-4-Ethyl-piperazine-1-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-2-hydroxymethyl-pyrrolidine-1-carboxylic acid (S)-1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-(2,2,2-Trifluoro-ethyl)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;

- (S)-(2-hydroxyethyl)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester; (Tetrahydrofuran-2-ylmethyl)-carbamic acid (S)-1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-Azetidine-1-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-cyclopropyl-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-piperidine-1-carboxylic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-(2-methoxy-ethyl)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (R)-3-hydroxy-pyrrolidine-1-carboxylic acid (S)-1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-3-hydroxy-pyrrolidine-1-carboxylic acid (S)-1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (S)-morpholine-4-carboxylic acid 1-(cyanomethyl-carbamoyl)-3-cyclohexyl-propyl ester; morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester;

morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzothiazol-2-yl-methanoyl)-propylcarbamoyl]-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester;

pyrrolidine-1-carboxylic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

dimethyl-carbamic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzylcarbamoyl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (S)-1-[(S)-1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester; morpholine-4-carboxylic acid (S)-1-[(S)-1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

- (S)-2-{(R)-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propanoylamino}-*N*-methoxy-*N*-methyl-butyramide;
- (R)-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-N-((S)-1-formyl-propyl)-2-hydroxy-propionamide;
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-2-hydroxy-3-phenyl-methanesulfonyl-propionamide;
- (S)-3-{3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-propanoylamino}-2-oxo-pentanoic acid benzylamide;
- N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-propionamide;
- N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-3-phenyl-propyl]-3-p-tolylmethanesulfonyl-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-(1-ethyl-2,3-dioxo-3-pyrrolidin-1-yl-propyl)-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-(1-ethyl-3-morpholin-4-yl-2,3-dioxo-propyl)-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-(1-ethyl-2,3-dioxo-3-piperazin-1-yl-propyl)-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-[3-(1,1-dioxo-1l6-thiomorpholin-4-yl)-1-ethyl-2,3-dioxo-propyl]-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-[1-ethyl-3-(4-methyl-sulfonyl-piperazin-1-yl)-2,3-dioxo-propyl]-propionamide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid dimethylamide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid cyclopentyl-ethyl-amide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid phenylamide;

- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid pyridin-3-ylamide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid (tetrahydro-pyran-4-yl)-amide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid (1-benzoyl-piperidin-4-yl)-amide;
- 3-[3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionylamino]-2-oxo-pentanoic acid (2-morpholin-4-yl-ethyl)-amide;
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-2-(2-nitro-phenylamino)-3-phenylmethanesulfonyl-propionamide;
- N-[1-(benzooxazole-2-carbonyl)-propyl]-3-phenylmethanesulfonyl-2-(pyrimidin-2-ylamino)-propionamide.
- (R)-*N*-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-2-(5-nitro-thiazol-2-ylamino)-3-phenylmethanesulfonyl-propionamide;
- (2S) (4,4-difluoro-2-hydroxy-5-phenyl-pentanoic acid (1(S)-cyano-3-phenyl-propyl)-amide;
- N-(1(S)-cyano-3-phenyl-propyl)-2-(S)-(2-morpholin-4-yl-2-oxo-ethoxy)-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2-(S)-fluoro-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2,2-difluoro-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2-(S)-hydroxy-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2-(R)-hydroxy-4-phenyl-butyramide;
- N-(1-(S)-cyano-3-phenyl-propyl)-2-(R)-methoxy-4-phenyl-butyramide;
- 2,2-difluoro-5-phenyl-pentanoic acid (1-cyano-cyclopropyl)-amide;
- N-(1-(S)-cyano-3-phenyl-propyl)-4-phenyl-butyramide;
- 2,2-difluoro-5-phenyl-pentanoic acid ((S)-1-cyano-3-phenyl-propyl)-amide;
- N-(4-cyano-1-ethyl-piperidin-4-yl)-3-cyclohexyl-propionamide;
- N-(4-cyano-1-ethyl-piperidin-4-yl)-3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionamide;
- (S)-tert-butyl-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (R)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-(2-difluoromethoxy-phenylmethanesulfonyl)-ethyl ester;

- (S)-carbamic acid 1-(cyanomethyl-carbamoyl)-2-cyclohexyl-ethyl ester;
- (R)-morpholine-4-carboxylic acid 1-(1-cyano-cyclopropylcarbamoyl)-2-phenylmethanesulfonylethyl ester;
- (R)-morpholine-4-carboxylic acid 1-(4-cyano-tetrahydro-pyran-4-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl ester;
- 3-cyclohexyl-2-hydroxy-N-[1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propyl]-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-2-dibenzylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-2-dimethylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-(1-methyl-piperidin-4-ylamino)-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-(bis-thiophen-2-ylmethyl-amino)-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-dibenzylamino-3-phenylmethanesulfonyl-propionamide;
- (S)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-(tetrahydro-pyran-4-ylamino)-3-thiophen-2-yl-propionamide;
- (S)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-isopropylamino-3-thiophen-2-yl-propionamide;
- (R)-N-[1-(benzothiazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;

- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-[(2-methoxy-ethyl)-(tetrahydro-pyran-4-yl)-amino]-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-cyclohexylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-dimethylamino-3-phenylmethanesulfonyl-propionamide;
- (1S)-N-[1-(benzooxazole-2-carbonyl)-butyl]-2-(S)-fluoro-4-phenyl-butyramide;
- 2,2-difluoro-5-phenyl-pentanoic acid [(S)-1-(benzoxazole-2-carbonyl)-butyl]-amide; morpholine-4-carboxylic acid (S)-1-[(S)-1-(benzooxazole-2-carbonyl)-propylcarbamoyl]-2-cyclohexyl-ethyl ester;
- morpholine-4-carboxylic acid (S)-2-cyclohexyl-1-[(S)-1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propylcarbamoyl]-ethyl ester;
- morpholine-4-carboxylic acid (S)-2-cyclohexyl-1-[(S)-1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-propylcarbamoyl]-ethyl ester;
- morpholine-4-carboxylic acid (S)-2-cyclohexyl-1-[(S)-1-(5-phenyl-[1,3,4]oxadiazole-2-carbonyl)-propylcarbamoyl]-ethyl ester;
- morpholine-4-carboxylic acid (S)-1-[(S)-1-(benzooxazole-2-carbonyl)-propylcarbamoyl]-3-cyclohexyl-propyl ester;
- 4-[4,4-dimethyl-2-(morpholine-4-carbonyloxy)-pentanoylamino]-3-oxo-azepane-1-carboxylic acid benzyl ester;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-3-cyclopropylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[1-(benzoxazole-2-carbonyl)-butyl]-2-cyclohexylamino-3-cyclopropylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzoxazole-2-carbonyl)-butyl]-2-cycloheptylamino-3-cyclopropylmethanesulfonyl-propionamide;
- (R)-3-phenylmethanesulfonyl-N-[(S)-3-phenyl-1-(thiazole-2-carbonyl)-propyl]-2-(tetrahydropyran-4-ylamino)-propionamide;

- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-3-phenyl-propyl]-3-cyclopropylmethanesulfonyl-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- (R)-3-cyclopropylmethanesulfonyl-N-[1-(5-ethyl-1,2,4-oxadiazole-3-carbonyl)-propyl]-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- (R)-3-phenylmethanesulfonyl-N-[1-(3-phenyl-1,2,4-oxadiazole-5-carbonyl)-propyl]-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- (R)-N-[1-(3-cyclopropyl-1,2,4-oxadiazole-5-carbonyl)-propyl]-3-phenylmethanesulfonyl-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- {(R)-1-[1-(benzothiazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(S)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-thiophen-2-yl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[1-(benzothiazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-cyclopropylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- (R)-1-{1-[hydroxy-(3-phenyl-1,2,4-oxadiazol-5-yl)-methyl]-propylcarbamoyl}-2-phenylmethanesulfonyl-ethyl)-carbamic acid tert-butyl ester;
- ((R)-2-cyclopropylmethanesulfonyl-1-{(S)-1-[(5-ethyl-1,2,4-oxadiazol-3-yl)-hydroxy-methyl]-propylcarbamoyl}-ethyl)-carbamic acid tert-butyl ester;
- {(R)-1-[1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-3-phenyl-propylcarbamoyl]-2-cyclopropylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- {(R)-1-[(S)-1-(hydroxy-thiazol-2-yl-methyl)-3-phenyl-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;

- {(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-cyclopropylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- (R)-1-{1-[hydroxy-(3-phenyl-1,2,4-oxadiazol-5-yl)-methyl]-propylcarbamoyl}-2-phenylmethanesulfonyl-ethyl)-carbamic acid tert-butyl ester;
- ((R)-2-cyclopropylmethanesulfonyl-1-{(S)-1-[(5-ethyl-1,2,4-oxadiazol-3-yl)-hydroxy-methyl]-propylcarbamoyl}-ethyl)-carbamic acid tert-butyl ester;
- {(R)-1-[1-(benzoxazol-2-yl-hydroxy-methyl)-butylcarbamoyl]-2-phenylmethanesulfonyl-ethyl}-carbamic acid tert-butyl ester;
- $\label{eq:continuous} $$ \{(R)-1-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-3-phenyl-propylcarbamoyl]-2-cyclopropylmethanesulfonyl-ethyl\}-carbamic acid tert-butyl ester;$
- $\{(R)-1-[(S)-1-(hydroxy-thiazol-2-yl-methyl)-3-phenyl-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl\}-carbamic acid tert-butyl ester;$
- (R)-2-phenylmethanesulfonyl-1-{(S)-1-[(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-hydroxy-methyl]-propylcarbamoyl}-ethyl)-carbamic acid tert-butyl ester;
- (R)-N-[1-(Benzoxazole-2-carbonyl)-butyl]-2-[cyclopropylmethyl-(tetrahydro-pyran-4-ylmethyl)-amino]-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-2-dibenzylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-2-dimethylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-(1-methyl-piperidin-4-ylamino)-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-(bis-thiophen-2-ylmethyl-amino)-3-phenylmethanesulfonyl-propionamide;

- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-dibenzylamino-3-phenylmethanesulfonyl-propionamide;
- (S)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-(tetrahydro-pyran-4-ylamino)-3-thiophen-2-yl-propionamide;
- S)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-isopropylamino-3-thiophen-2-yl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[1-(benzothiazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydropyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-[(2-methoxy-ethyl)-(tetrahydro-pyran-4-yl)-amino]-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-cyclohexylamino-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazol-2-yl-hydroxy-methyl)-butyl]-2-dimethylamino-3-phenylmethanesulfonyl-propionamide;

N-cyanomethyl-3-cyclohexyl-propionamide;

N-cyanomethyl-3-(2-difluoromethoxy-phenylmethanesulfonyl)-propionamide;

- 3-(3-cyclohexyl-propionylamino)-2-oxo-5-phenyl-pentanoic acid thiazol-2-ylamide;
- 3-cyclohexyl-*N*-(1-formyl-3-phenyl-propyl)-propionamide;
- 3-(2-difluoromethoxy-phenylmethanesulfonyl)-*N*-[(S)-1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-propionamide;
- *N*-[(S)-1-(benzooxazole-2-carbonyl)-propyl]-2-(2-cyano-phenylamino)-3-cyclohexyl-propionamide;
- N-Cyanomethyl-3-cyclohexyl-2-(4-methoxy-phenoxy)-propionamide;
- 2-benzyloxy-N-cyanomethyl-3-cyclohexyl-propionamide;

- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-2-benzyloxy-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-2-methoxymethoxy-3-phenylmethanesulfonyl-propionamide;
- (S)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-2-hydroxy-3-phenyl-propionamide;
- (*R*)-*N*-[(*S*)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-3-phenylmethanesulfonyl-2-triisopropylsilanyloxy-propionamide;
- (*R*)-*N*-[(*S*)-1-(1-benzothiazol-2-yl-methanoyl)-propyl]-2-hydroxy-3-phenylmethanesulfonyl-propionamide;
- (*R*)-2-hydroxy-3-phenylmethanesulfonyl-*N*-[(S)-1-(1-pyridazin-3-yl-methanoyl)-butyl]-propionamide;
- (S)-3-((R)-2-hydroxy-3-phenylmethanesulfonyl-propanoylamino)-2-oxo-pentanoic acid benzylamide;
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide;
- (R)-N-[(S)-1-(1-benzothiazol-2-yl-methanoyl)-propyl]-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide; and
- (2R,5S)-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonylmethyl]-6-ethoxy-5-ethylmorpholin-3-one.
- 16. (Currently Amended) A compound of claim 15 selected from the group consisting of: morpholine-4-carboxylic acid (R)-1-(cyanomethyl-carbamoyl)-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester, (Compound 31); morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester, (Compound 11); morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester, (Compound 14);

morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzothiazol-2-yl-methanoyl)-propylcarbamoyl]-2-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-ethyl ester, (Compound 15);

pyrrolidine-1-carboxylic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester, (Compound 19);

dimethyl-carbamic acid (R)-1-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester, (Compound 20);

morpholine-4-carboxylic acid (R)-1-[(S)-1-(1-benzylcarbamoyl-methanoyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester, (Compound 25);

morpholine-4-carboxylic acid (S)-1-[(S)-1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

morpholine-4-carboxylic acid (S)-1-[(S)-1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-propylcarbamoyl]-2-phenylmethanesulfonyl-ethyl ester;

- (R)-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-N-((S)-1-formyl-propyl)-2-hydroxy-propionamide;
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-2-hydroxy-3-phenyl-methanesulfonyl-propionamide;
- (S)-3-{3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-propanoylamino}-2-oxo-pentanoic acid benzylamide;
- (R)-*N*-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-2-(2-nitro-phenylamino)-3-phenylmethanesulfonyl-propionamide;
- (R)-*N*-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-2-(5-nitro-thiazol-2-ylamino)-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-3-phenylmethanesulfonyl-2-(tetrahydro-pyran-4-ylamino)-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-isopropylamino-3-phenylmethanesulfonyl propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-[(2-methoxy-ethyl)-(tetrahydro-pyran-4-yl)-amino]-3-phenylmethanesulfonyl-propionamide;
- (R)-N-[(S)-1-(benzoxazole-2-carbonyl)-butyl]-2-cyclohexylamino-3-phenylmethanesulfonyl-propionamide;

morpholine-4-carboxylic acid (S)-2-cyclohexyl-1-[(S)-1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propylcarbamoyl]-ethyl ester;

- (S)-3-((R)-2-hydroxy-3-phenylmethanesulfonyl-propanoylamino)-2-oxo-pentanoic acid benzylamide; and
- (R)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-3-[2-(1,1-difluoro-methoxy)-phenylmethanesulfonyl]-2-hydroxy-propionamide.
- 17. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.
- 18. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 2 in combination with a pharmaceutically acceptable excipient.
- 19. (Withdrawn) A method for treating a disease in an animal in which inhibition of Cathepsin S can prevent, inhibit or ameliorate the pathology and/or symptomology of the disease, which method comprises administering to the animal a therapeutically effective amount of compound of Claim 1 or Claim 2.
- 20. (Withdrawn) The use of a compound of Claim 1 or 2 in the manufacture of a medicament for treating a disease in an animal in which Cathepsin S activity contributes to the pathology and/or symptomology of the disease.