Virtual Reality Lab Class Winter Term 2018/19

Fulya Tasliarmut (111448) and Marat Khairtdinov (119434)
October 28, 2018

1 Exercise 1.1 - 1.4

see vr_assignment1.py

2 Exercise 1.5

This exercise shows how to find a pair of angles α and β such that the fallowing equation holds:

$$rot(90, x) \cdot rot(\alpha, z) = rot(\beta, y) \cdot rot(90, x)$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \overset{!}{=} \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ 0 & 0 & -1 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \overset{!}{=} \begin{bmatrix} \cos(\beta) & -\sin(\beta) & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -\sin(\beta) & \cos(\beta) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

All places in both matrices are the same with the exception of column 1, row 3. Here we have $sin(\alpha)$ on one side of the equation and $-sin(\beta)$ on the other side. The trivial answer to solve $sin(\alpha) = -sin(\beta)$ for α and β would result in 0. For $\alpha = \beta = 180^{\circ}$ the equation holds as $sin(180^{\circ}) = \pm 0$ as does $-sin(180^{\circ}) = \pm 0$.

3 Exercise 1.6

Figure 1: $rot(90, y) \cdot trans(5.0, 0.0, -2.0)$

Figure 2: $trans(-4.0, 0.0, 2.0) \cdot scale(0.5)$

Figure 3: $scale(0.5) \cdot trans(-4.0, 0.0, 2.0)$

Figure 4: $trans(-2.0, 0.0, 4.0) \cdot scale(0.5) \cdot rot(180, y)$