MATH 225A: Metamathmatics

Jad Damaj

Fall 2022

Contents

1	Structures and Theories	3
	1.1 August 25	3
	1.1.1 Review	3
	1.1.2 Definable Sets	5
2	Basic Techniques	6
	2.1 August 30	ϵ
	2.1.1 Compactness Theorem	6

Chapter 1

Structures and Theories

1.1 August 25

1.1.1 Review

Definition 1.1.1. A language \mathcal{L} consists of $\{\mathcal{C}, \mathcal{R}, \mathcal{F}\}$ where \mathcal{C} is the set of constant symbols, \mathcal{R} is the set of relation symbols, \mathcal{F} is the set of function symbols, and and arity function $n : \mathcal{R} \cup \mathcal{F} \to \mathbb{N}$. For $R \in \mathcal{R}$, n_R is the arity of R, for $f \in \mathcal{F}$, n_f is the number of inputs f takes.

Definition 1.1.2. An \mathcal{L} -structure consist of

- \bullet a set M called the domain
- an element $c^{\mathcal{M}}$ for each $c \in \mathcal{C}$
- a subset $R^{\mathcal{M}} \subseteq M^{n_R}$ for each $R \in \mathcal{R}$
- a function $f^{\mathcal{M}}: M^{n_f} \to M$ for each $f \in \mathcal{F}$

denoted $\mathcal{M} = (M : \{c^{\mathcal{M}} : c \in \mathcal{C}\}, \{R^{\mathcal{M}} : R \in \mathcal{R}\}, \{f^{\mathcal{M}} : f \in \mathcal{F}\})$

Definition 1.1.3. An \mathcal{L} -embedding $\eta: \mathcal{M} \to \mathcal{N}$ is a one to one function $M \to N$ that preserves interpretation

eg.
$$\eta(c^{\mathcal{M}}) = c^{\mathcal{N}}, \ \eta(f^{\mathcal{M}})(m_1, \dots, m_{n_f}) = f^{\mathcal{N}}(\eta(m_1), \dots, \eta(m_{n_f})),$$

 $(m_1, \dots, m_{n_R}) \in R^{\mathcal{M}} \iff (\eta(m_1), \dots, \eta(m_n)) \in R^{\mathcal{N}}$

Definition 1.1.4. An \mathcal{L} -isomorphim is an \mathcal{L} -embedding that is onto.

Definition 1.1.5.
$$\mathcal{M}$$
 is a substructure if \mathcal{N} , written $\mathcal{M} \subseteq \mathcal{N}$ if: $c^{\mathcal{M}} = c^{\mathcal{N}}, f^{\mathcal{M}} = f^{\mathcal{N}} \upharpoonright M^{n_f}, R^{\mathcal{M}} = R^{\mathcal{N}} \cap M^{n_R}$

First Order language:

• Use symbols:

1.1. AUGUST 25 225A: Metamathmatics

- $-\mathcal{L}$
- Logical symbols: connectives (\land, \lor, \neg) , quantifiers (\forall, \exists) , equality (=), variables (v_0, v_1, \ldots)
- paranthesis and commas
- terms
 - -c: constants
 - $-v_i$: variables
 - $-f(t_1,\ldots,t_{n_f})$ for terms t_1,\ldots,t_{n_f}
- given an \mathcal{L} -structure \mathcal{M} , a term $t(v_0,\ldots,v_n)$, and $m_0,\ldots,m_n\in M$ we inductively define $t^{\mathcal{M}}(m_0,\ldots,m_n)$
- atomic formulas: $t_1 = t_2$ and $R(t_1, \ldots, t_{n_R})$
- \mathcal{L} -formulas: If ϕ and ψ are \mathcal{L} -formulas, then so are: $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $\exists v \phi$, $\forall v \phi$

Definition 1.1.6. We say a variable v occurs freely in ψ when it is not in a quantifier $\forall v$ or $\exists v$

• an \mathcal{L} -sentence is an \mathcal{L} -formula with no free variables

Definition 1.1.7. A theory is a set of \mathcal{L} -sentences

Definition 1.1.8. Given an \mathcal{L} -formla $\psi(v_1, \ldots, v_k)$, \mathcal{L} -structure \mathcal{M} , $m_1, \ldots, m_k \in M$ we can define $\mathcal{M} \models \phi(m_1, \ldots, m_k)$ inductively. We say (m_1, \ldots, m_k) satisfies ϕ in \mathcal{M} or ϕ is true in $\mathcal{M}, m_1, \ldots, m_k$.

• A theory T is satisfiable if it has a model \mathcal{M} , eg. \mathcal{M} such that $\mathcal{M} \models \phi$ for $\phi \in T$

Proposition 1.1.9. If $\mathcal{M} \subseteq \mathcal{N}$, $\phi(\overline{v})$ is quantifier free, $\overline{m} \in M$, then $\mathcal{M} \models \phi(\overline{m}) \leftrightarrow \mathcal{N} \models \phi(\overline{m})$.

Definition 1.1.10. \mathcal{M} is elementarily equivalent to \mathcal{N} if for all \mathcal{L} -sentences ϕ , $\mathcal{M} \models \phi \leftrightarrow \mathcal{N} \models \phi$, denoted $\mathcal{M} \equiv \mathcal{N}$

- Th(\mathcal{M}), the full theory of \mathcal{M} , is $\{\phi \ \mathcal{L} \text{sentence } | \mathcal{M} \models \phi\}$
- $\mathcal{M} \equiv \mathcal{N} \iff \mathrm{TH}(\mathcal{M}) = \mathrm{Th}(\mathcal{N})$
- A class of \mathcal{L} -structures \mathcal{K} is elementary if there is a theory T such that \mathcal{K} is the class of all \mathcal{M} such that $\mathcal{M} \models T$.

Logical implication: $T \models \phi$ if for every $\mathcal{M} \models T$, $\mathcal{M} \models \phi$ Gödels Completeness Theorem: $T \models \phi \leftrightarrow$ there is a formal proof for $T \vdash \phi$ 1.1. AUGUST 25 225A: Metamathmatics

1.1.2 Definable Sets

Definition 1.1.11. $X \subseteq M^n$ is definable if there is an \mathcal{L} -formula $\phi(v_1, \ldots, v_n, w_1, \ldots, w_m)$ and $b_1, \ldots, b_m \in M$ such that $\forall \overline{a}, \overline{a} \in X \leftrightarrow \mathcal{M} \models \phi(\overline{a}, \overline{b})$ (definable over \overline{b})

• Given $A \subseteq M$, X is definable over A, or A-definable, if it is definable over \bar{b} for some $\bar{b} \in A$.

Proposition 1.1.12. Suppose $\mathcal{D} = (D_n : n \in \omega)$ is the smallest collection of subsets $D_n \subseteq \mathcal{P}(M^n)$ such that

- $M^n \in D_n$
- D_n is closed under union, intersection, complement, permutation
- if $X \in D_{n+1}$, then $\pi(X) \in D_n$ where $\pi(m_1, ..., m_{n+1}) = (m_1, ..., m_n)$
- $\{\bar{b}\} \in D_n \text{ for } \bar{b} \in M^n$
- $R^{\mathcal{M}} \in D_{n_R}$, graph $(f) \in D_{n_f+1}$
- if $X \in D_n$, $M \times X \in D_{n+1}$
- $\{(m_1,\ldots,m_n): m_i-m_i\} \in D_n$

Then $X \subseteq \mathcal{M}^n$ is definable $\leftrightarrow X \in D_n$

Chapter 2

Basic Techniques

2.1 August 30

2.1.1 Compactness Theorem

Theorem 2.1.1 (Compactness). If T is finitely satisfiable, then T has a model \mathcal{M} . Furthermore, $|\mathcal{M}| \leq |\mathcal{L}| + \aleph_0$

 \bullet T is finitely satisfiable if every finite subset is satisfiable

Compactness II: if $T \models \phi$, then there is finite $T_0 \subset T$ such that $T_0 \models \phi$ $T \models \phi \leftrightarrow T \cup \{\neg \phi\}$ is not satisfiable

Proposition 1: If T is finitely satisfiable, maximal, and has the witness property, then T has a model \mathcal{M} with $|\mathcal{M}| \leq |\mathcal{L}|$

Proposition 2: If T is finitely satisfiable, then there is $\mathcal{L}^* \supseteq \mathcal{L}$ and an \mathcal{L}^* -theory $T^* \supseteq T$ such that T^* is finite; y satisfiable, maximal, and has the witness property. Further, $|\mathcal{L}^*| \leq |\mathcal{L}| + \aleph_0$

Definition 2.1.2. • T is maximal if for any sentence ϕ , either $\phi \in T$ or $\neg \phi \in T$

• T has the witness property if for all \mathcal{L} -formulas $\phi(v)$ there is a constant c_{ϕ} such that $\exists v \phi(v) \rightarrow \phi(c_{\phi}) \in T$

Lemma 1: If T is maximal and finitely satisfiable, if there is finite $\Delta \subseteq T$ such that $\Delta \models \phi$, then $\phi \in T$.

Proof. If $\phi \notin T$, $\neg \phi \in T$. Since $\Delta \models \phi$, $\Delta \cup \{\neg \phi\}$ is not satisfiable, contradicting our assumption.

Henekin Construction:

We want to define $\mathcal{M} = (M, c^{\mathcal{M}}, R^{\mathcal{M}}, f^{\mathcal{M}})$

- Let $M = \mathcal{C}/\sim$ where \mathcal{C} is the set of constant symbols and \sim is the equivalence relation defined by $c_1 \sim c_2 \leftrightarrow c_1 = c_2 \in T$
- $R^{\mathcal{M}} \subseteq M^{n_R}$ by $(c_1^*, \dots, c_{n_R}^*) \in R^{\mathcal{M}} \leftrightarrow R(c_1, \dots, c_n) \in T$ where c^* equivalence class of c This is well defined since if we have $c_1' \sim c_1, \dots, c_n' \sim c_n, R(c_1, \dots, c_n) \in T$ then $R(c_1', \dots, c_n') \in T$

2.1. AUGUST 30 225A: Metamathmatics

• $f^{\mathcal{M}}$ by $f^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = d^* \leftrightarrow f(c_1, \ldots, c_n) = d \in T$. SUch a d^* exists since T has the witness property: $\exists v f(c_1, \ldots, c_n) = v \to f(c_1, \ldots, c_n) \in T$

• $c^{\mathcal{M}} := c^*$

Claim: For every formula $\phi(v_1, \ldots, v_k)$ and constant symbols c_1, \ldots, c_k , $\mathcal{M} \models \phi(c_1^*, \ldots, c_n^*) \leftrightarrow \phi(c_1, \ldots, c_n) \in T$ This implies $\mathcal{M} \models T$

Proof. By induction on formulas $\phi(v_1,\ldots,v_l)$

- atomic formulas: $\phi(v_1, \ldots, v_k)$ is $t_1(v_1, \ldots, v_k) = t_2(v_1, \ldots, v_k)$ Subclaim: $t^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = c^* \leftrightarrow t(c_1, \ldots, c_n) = c \in T$ Proved by induction on terms
- $\phi(v_1,\ldots,v_k)$ is $R(v_1,\ldots,v_k)$. Follows by definition of $R^{\mathcal{M}}$
- Suppose $\phi(\overline{v})$ is $\psi_1(\overline{v}) \wedge \psi_2(\overline{v})$, then $\mathcal{M} \models \psi_1 \wedge \psi_2(\overline{v}) \leftrightarrow \mathcal{M} \models \psi_1(\overline{v}) \text{ and } \mathcal{M} \models \psi_2(\overline{v}) \overset{\text{IH}}{\leftrightarrow} \psi_1(\overline{c}) \in T \text{ and } \psi_2(\overline{c}) \in T \overset{\text{lemma}}{\leftrightarrow} \psi_1 \wedge \psi_2(\overline{c}) \in T$
- Suppose $\phi(\overline{v})$ is $\neg \psi(\overline{v})$, then $\mathcal{M} \models \neg \psi(\overline{c}^*) \leftrightarrow \mathcal{M} \not\models \psi(\overline{c}^*) \overset{\text{IH}}{\leftrightarrow} \varphi(\overline{c}) \notin T \overset{\text{maximality}}{\leftrightarrow} \neg \psi(\overline{(c)}) \in T$
- Suppose $phi(\overline{v})$ is $\exists w \varphi(\overline{v}, w)$, then $\mathcal{M} \models \exists w \varphi(\overline{c}^*, w) \leftrightarrow \exists d \in M \text{ such that } \varphi(\overline{c}, d) \in T \overset{\text{witness principle}}{\leftrightarrow} \exists w \varphi(\overline{c}w) \in T$