Zadanie 33.

Wiązka zadań Wędrówka po planszy

Wędrowiec podróżuje po kwadratowej planszy rozmiaru $n \times n$. Swoją wędrówkę rozpoczyna na dowolnym polu **pierwszej kolumny** planszy, a na koniec powinien dotrzeć do **ostatniej kolumny**. Będąc w kolumnie j < n, wędrowiec może w jednym ruchu przenieść się do kolumny j+1 (nie może przenieść się do żadnej innej kolumny). Wartość każdego pola planszy jest liczbą całkowitą. Wartość pola w i-tym wierszu i j-tej kolumnie na planszy A oznaczać będziemy przez A[i,j].

Rozważamy 3 typy wędrowca:

- skaczący, który z pola w kolumnie *j*<*n* może przeskoczyć na dowolne pole w kolumnie *j*+1;
- spadający, który z pola A[i, j] możne przenieść się tylko na pola A[k, j+1] takie, że $i \le k \le n$;
- chodzący, który z pola A[i, j] może przeskoczyć tylko na pola A[k, j+1] takie, że k=i lub k=i-1 lub k=i+1 oraz $1 \le k \le n$.

Przykład

Rozważmy planszę rozmiaru 10×10 . Jeżeli bieżącą pozycją wędrowca jest pole A[3,4], to

- wędrowiec skaczący może w jednym ruchu przenieść się do pól A[1,5], A[2,5],...,A[10,5],
- wędrowiec spadający może przenieść się do pól A[3,5], A[4,5],...,A[10,5],
- wędrowiec chodzący może przenieść się do pól A[2,5], A[3,5], A[4,5].

Rozważmy następujący algorytm, opisujący trasę jednego z typów wędrowców, dla poniższych danych:

Dane: n — liczba naturalna większa od 1; A — tablica rozmiaru $n \times n$ wypełniona liczbami całkowitymi.

Uwaga: W poniższym algorytmie B[0...n+1,1..n] jest tablicą, której wiersze mają numery 0,1,...,n,n+1, a kolumny 1,2,...,n-1, n.

```
Algorytm:
```

```
dla i=1,2,...,n wykonuj
        jeżeli A[i,1]>0
                 B[i,1] \leftarrow 1
        w przeciwnym razie
                 B[i,1] \leftarrow 0
dla j=2,3,...,n wykonuj
        B[0,j] \leftarrow 0
        B[n+1,j] \leftarrow 0
        dla i=1,2,...,n wykonuj
                 jeżeli A[i,j] ≤0
                         B[i,j] \leftarrow 0
                 w przeciwnym razie
                         jeżeli B[i-1, j-1]=1 lub B[i, j-1]=1 lub B[i+1, j-1]=1
                                  B[i,j] \leftarrow 1
                         w przeciwnym razie
                                  B[i,j] \leftarrow 0
d \leftarrow 0
dla i=1,2,...,n wykonuj
        jeżeli B[i,n]=1
                 d \leftarrow 1
zwróć d
```

33.1.

Rozważmy działanie algorytmu dla *n*=5 oraz następującej zawartości tablicy A:

	1	2	3	4	5
1	-2	-1	4	7	8
2	-3	2	3	-10	-2
3	1	-4	-1	5	-5
4	-2	-1	-2	-3	9
5	-1	-5	1	-4	1

Podaj końcową zawartość kolumn 1,2,...,5 **tablicy B** oraz wartość zwracaną przez algorytm 1 dla powyższych danych.

Tablica B:

	1	2	3	4	5
0					
1					
2					
3					
4					
5					
6					

Wartość zwracana przez algorytm:

33.2.

Uzupełnij specyfikację podanego powyżej algorytmu.

Specyfikacja

Dane:

n — liczba naturalna większa niż 1

A — plansza rozmiaru $n \times n$ wypełniona liczbami całkowitymi.

Wynik:

0 — w przeciwnym przypadku

33.3.

Wartością trasy wędrowca nazywamy sumę liczb zapisanych na polach planszy, które wędrowiec odwiedza w trakcie trasy. Podaj algorytm zgodny z poniższą specyfikacją.

Specyfikacja

Dane:

n — liczba naturalna większa niż 1

A — plansza rozmiaru $n \times n$ wypełniona liczbami całkowitymi.

Wynik:

Największa wartość trasy wędrowca typu skaczącego zaczynającej się w pierwszej kolumnie i kończącej się w ostatniej kolumnie.

Przykład

Dla n=5 oraz zawartości planszy podanej w zadaniu 1 algorytm powinien zwrócić wartość 23; trasa wędrowca o największej wartości prowadzi przez pola A[3,1], A[2,2], A[1,3], A[1,4] i A[4,5].

33.4.

Podaj algorytm zgodny z poniższa specyfikacją.

Specyfikacja

Dane:

n — liczba naturalna większa niż 1

A — plansza rozmiaru $n \times n$ wypełniona liczbami całkowitymi.

Wynik:

1 — jeśli istnieje trasa wędrowca spadającego zaczynająca się w pierwszej kolumnie, kończąca się w ostatniej kolumnie i przechodząca wyłącznie przez pola o wartościach nieujemnych;

0 — w przeciwnym przypadku.

Przykład

Dla n=5 oraz zawartości planszy podanej w zadaniu 1 algorytm powinien zwrócić wartość 0, gdyż trasa spełniająca podane warunki musi zaczynać się w polu A[3,1], z którego można przejść tylko do pól ujemnych w drugiej kolumnie. Dla n=5 i poniższej zawartości planszy algorytm powinien zwrócić wartość 1; trasa prowadząca tylko przez pola dodatnie może przechodzić np. przez pola: A[1,1], A[2,2], A[2,3], A[3,4] i A[4,5].

	1	2	3	4	5
1	2	-1	4	7	8
2	-3	2	3	-10	-2
3	1	-4	-1	5	-5
4	-2	-1	-2	3	9
5	-1	-5	-6	-4	1

Publikacja opracowana przez zespół koordynowany przez **Renatę Świrko** działający w ramach projektu *Budowa banków zadań* realizowanego przez Centralną Komisję Egzaminacyjną pod kierunkiem Janiny Grzegorek.

Autorzy

dr Lech Duraj dr Ewa Kołczyk Agata Kordas-Łata dr Beata Laszkiewicz Michał Malarski dr Rafał Nowak Rita Pluta Dorota Roman-Jurdzińska

Komentatorzy

prof. dr hab. Krzysztof Diks prof. dr hab. Krzysztof Loryś Romualda Laskowska Joanna Śmigielska

Opracowanie redakcyjne

Jakub Pochrybniak

Redaktor naczelny

Julia Konkołowicz-Pniewska

Zbiory zadań opracowano w ramach projektu Budowa banków zadań,
Działanie 3.2 Rozwój systemu egzaminów zewnętrznych,
Priorytet III Wysoka jakość systemu oświaty,
Program Operacyjny Kapitał Ludzki

