Two interpolation methods for vector fields that conserve flux and line integrals

Alexander Pletzer (NeSI/NIWA), Wolfgang Hayek (NIWA/NeSI) and Samantha Adams (UK Met Office)

7 May 2019

New Zealand eScience Infrastructure

Motivation: want answers to

How to interpolate vector fields with staggered components?

- Arakawa C/D grids
- Components are on cell faces or edges
- Arises in computational fluid dynamics and electromagnetics

Currently used interpolation methods in earth sciences

Is there hope to unify these?

- Linear
- Conservative or area weighted, used in climate studies to enforce conservation of total mass, energy

Babylonian tablet (1700BC)

Bilinear

Conservative (used since the 1990s)

Earth science grids are curvilinear

Example: cubed-sphere grid employed by exascale weather prediction/climate modelling system LFRic developed at UK Met Office

- Six logically rectangular grids (cannot be represented as a single structured grid)
- No pole-like singularity but some distortion where three tiles meet

Interpolation is required for

- regridding/remapping fields deom one grid to another
- computing fluxes across an area
- advecting fields
- visualising streamlines

Four types of fields - four types of interpolation methods

Type of field determines staggering and interpolation method

- "Correct" discretisation ensures that mimetic properties such as $\nabla \times \nabla = \nabla \cdot \nabla \times = 0$ are satisfied
- "Correct" interpolation ensures conservation of line, surface and volume integrals (as appropriate)

field type	num.comp.	example	staggering	target	method
scalar	1	temperature	nodal	point	bilinear
vector	3	velocity	edges/Arakawa D	line	this talk
pseudo-vector	3	magnetic field	faces/Arakawa C	surface	this talk
pseudo-scalar	1	mass density	cell centred	volume	conservative

Generalizing "interpolation" to work for nodal, edge, face and cell fields

One formula for all cases

$$\int f = \sum_{i} f_{i} \int_{T} \phi_{i}$$

- ϕ_i is **basis** k-form, k = 0, 1, 2 or 3
- T is target (point, line, area or volume)
- f_i is **field integral** over cell element k (node, edge, face or cell)
- $\int_T \phi_i \equiv$ interpolation weight
- *i* index runs over all the degrees of freedom (points, edges, faces etc., as appropriate)

Basis functions ϕ_j satisfy orthogonality condition

$$\int_i \phi_j = \delta_{ij}$$

i is cell element (node, edge, face, cell), j is basis function index

Edge basis is perpendicular to neighbouring edges

Face basis is tangent to neighbouring faces

Result 1: divergence-free field $v = dz \wedge d\psi$

Flux integral depends only on distance of endpoints to nearest grid node

Result 2: Singular, polar vector field $v=\frac{xdx+ydy}{2\pi(x^2+y^2)}$

Loop integral is 1 if singularity is inside contour, 0 otherwise. Getting exact 0 for E0 and E1, exact 1 for E6-E9 and in between values for contours that intersect the cell containing (0,0)

Result 3: flux on the cubed sphere $v = d\psi \wedge dr$

Edge/face interpolation works for highly distorted cells. Zero error start/end points fall onto grid nodes.

Integration path/surface

Error is $\sim 1/N^2$

Summary

Type of field \to discretised field staggering \to basis functions \to interpolation method

- use bilinear for nodal (scalar) field
- use edge for vector field conserves line integrals (e.g. voltage)
- use face for pseudo-vector field conserves flux integrals (magnetic flux)
- use cell for pseudo-scalar fields conserves volume integrals (total mass)

Masking and partially valid cells?

Ok if taking account of partial cell, faces, edges when setting cell, face and edge integrals. Done!

Summary (2)

What about tetrahedra?

Similar approach except that the basis functions are Whitney's bases (1957)

Higher order basis functions?

Initial work indicates that higher order basis functions can be used. These also satisfy the orthogonality condition $\int_i \phi_j = \delta_{ij}$ on sub-cell edges, faces and cells. Quadratic elements effectively split each cell into 8 sub-cells, each face into 4 sub-faces and each edge into 2 sub-edges.

The time is ripe to treat interpolation with the same rigour as modelling

"Mimetic Interpolation of Vector Fields on Arakawa C/D Grids": https://journals.ametsoc.org/doi/10.1175/MWR-D-18-0146.1