IEC 62209-3 Validation Results GPI Model Creation

2023/05/03 14:29:31

1 Executive Summary

The SAR measurement system validation procedure described in IEC 62209-3 [1] is a three step procedure that consists of a) GPI model creation, b) model confirmation, and b) the critical data space search. This automatically generated document reports on the outcome of the *GPI model creation*.

The SAR measurement system described in Table 1 successfully completed the GPI model creation step.

The results of the two test criteria of the GPI model creation are shown in Table 2.

Measurement system name	A SAR System
Manufacturer	A Manufacturer
Phantom type	Flat
Hardware version	AD 385 12B
Software version	V2.0

Table 1: Measurement system analyzed in this report.

Test	Success Criterion	Outcome	Pass / Fail
Acceptance of data	$\Delta SAR \in [-U, +O]$	See Table 4	Pass
Model fitting	nrmse < 25 %	8.7 %	Pass

Table 2: Summary of the GPI Model creation outcomes for the measurement system described in Table 1.

2 Introduction

2.1 Purpose of Report

This report provides the results of the *GPI model creation* step for the SAR measurement system validation procedure described in IEC 62209-3 [1]. The GPI model is a model that describes the expected measurement error and uncertainty for the given SAR measurement system of interest as a function of exposure parameters. This report has been automatically generated by an online-accessible, GUI-based validation application (http://sarvalidation.site/version 1.0.6) using measured data obtained with the SAR measurement system described in Table 1.

Background and additional information on the methodology can be found in the open-access paper [2]. The open-source software leveraged by the online application is provided with IEC 62209-3 and can be found at https://github.com/ITISFoundation/publication-IEC62209.

2.2 GPI Model Creation

SAR measurement system validation in IEC 62209-3 [1] consists of these three steps:

- a) Gaussian process interpolation (GPI) model creation
- b) GPI model confirmation
- c) Critical data space search

The results of *GPI model creation* (a) are reported in this document. The process involves the following steps (see Clause D.4.4 of [1]):

- 1) Test set generation The GPI software generates the measurement configurations (i.e. antenna types, frequencies, power levels, modulations, antenna locations, and antenna angles and distances) to be measured. To reduce the number of configurations (high dimensional parameter space with millions of available exposure conditions) required to generate the GPI model, a smart algorithm selects configurations that sparsely, pseudo-randomly, but uniformly cover all parameter space dimensions.
- 2) Measurement The model generating party (system manufacturer, independent laboratory, or test laboratory) measures the test configurations on a reference SAR measurement system. The resulting model is valid only for the measured hardware and software version. Should outliers emerge, they are identified and the measurements double checked. The system is acceptable for use if all results are within the acceptance criteria specified in the standard.
- 3) Analysis and model creation The software analyses the measurement data and uses semivariograms and range-isotropisation to produce a global semivariogram and a GPI model. That model is then provided to the test laboratory for the independent model confirmation step, along with a report detailing the generation of the GPI model (this document).

2.3 Success Criteria

Two criteria must be met for the model creation to be considered successful:

acceptance

for the system to be considered acceptable for use in accordance with IEC 62209-3, all test configuration SAR deviations (ΔSAR_j , j=1 to N) between the measured SAR values and the numerical SAR target values (specified by IEC) must be within the acceptance criteria given in Clause D.4.7 of [1]:

$$-U < r_{s,j} < +O,$$
 $j = 1 ... N$

where $r_{s,j}$ is the linear deviation between the measured SAR $(SAR_{m,j})$ and the numerical target $(SAR_{num,j})$ given by:

$$r_{s,j} = 100 \% \times \left(\frac{SAR_{m,j} - SAR_{num,j}}{SAR_{num,j}}\right)$$

and the deviation in dB is $\Delta SAR_j = 10 \times log_{10}(r_{s,j})$. The error bounds [-U, +O] are given by:

$$+O = 2 \times u_s + 15 \%$$

$$-U = -100 \times \frac{2 \times u_s + 15 \%}{100 + 2 \times u_s + 15 \%}$$

where 2 x u_s is the reported measurement uncertainty of the SAR measurement with a 95 % confidence level.

When expressed in dB, the error bounds are equal, meaning that $10 \times log_{10}(O) = 10 \times log_{10}(U)$, so the requirement simplifies to:

$$|\Delta SAR_j| = 10 \times log_{10}(+O)$$

• nrmse \leq 25 %

the normalized root-mean-square error (nrmse) of the model must be less than or equal to 25 %. If this criterion is not met, it is recommended not to continue with the model confirmation or critical data space search, as they will not be based on a good model.

3 Model Creation

3.1 Limits of Relevant Exposure Parameter Space

The test configurations were generated for measurement on the system detailed in Table 1 according to the parameters in Table 3, which therefore define the extent of the exposure parameter space for which the GPI model can be considered to be relevant.

Parameter	Value
Measurement area: x,y (mm)	80, 160
Frequency range (MHz)	300 - 6000
Size of training data	400

Table 3: Range of the exposure parameter space covered by the test configurations. The GPI model can therefore be considered to be relevant within this range.

3.2 Test Configurations

Figure 1 illustrates how the test configuration sample used for GPI model construction is distributed along the different exposure parameter space dimensions. The complete details on the exposure conditions and measurement results are shown in Annex A.

Figure 1: Distribution of the test configurations showing how they uniformly, but pseudo-randomly, cover the exposure parameter space dimensions.

3.3 Performance on Acceptance Criteria

The obtained deviations (ΔSAR_{10g}) of the test configuration measurements from the target values are shown in Figure 2, along with the acceptance thresholds. The raw data are tabulated in Table 6 in the Appendix. The pass/fail result is shown in Table 4.

Test	Success Criterion	Outcome	Pass / Fail
Acceptance of data	$\Delta SAR \in [-U, +O]$	See Table 6	Pass

Table 4: Result for the acceptance criterion.

Figure 2: Deviations in SAR_{10g} compared to the target values for the test configurations. The deviations are compared to the maximum permissible errors (mpe; dashed lines). Blue dots are inside the mpe. Any red dots are outside the mpe.

3.4 Model Fitting Quality

The obtained SAR-error semivariogram is shown in Figure 3. The upper graph shows the fit of the model to the model errors. The lower bar graph shows the distribution of the errors. The quality of that fit (quantified as nrmse) is relevant with regard to the GPI model quality. Figure 4 shows how the errors are distributed along the different dimensions of the parameter space (frequency, location, etc.). The pass/fail result is shown in Table 5.

Test	Success Criterion	Outcome	Pass / Fail
Model fitting	nrmse < 25~%	8.7 %	Pass

Table 5: Quantification (normalized mean squared error) of the semi-variogram fitting quality, which affects the GPI model quality.

Figure 3: GPI semi-variogram construction: fitting (top), and histogram of the lags available for the semi-variogram construction (bottom).

Figure 4: Marginals showing the distribution of measurement errors in the training data.

References

- [1] IEC 62209-3, "Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz)", Committee Draft, February 2023.
- [2] C. Bujard, E. Neufeld, M. Douglas, J. Wiart, N. Kuster, "A Gaussian-process-model-based approach for robust, independent, and implementation-agnostic validation of complex multi-variable measurement systems: application to SAR measurement systems," online https://arxiv.org/abs/2211.12907, uploaded April 12, 2023.

A Training Data Set

Table 6: Training Data Set for 10-gram average SAR.

	P_f		PAPR	$_{\mathrm{BW}}$	s	θ	x	y	SAR	u_s	ΔSAR	mpe	Pass
ant.	(dB)	Mod	(dB)	(MHz)	(mm)	(°)	(mm)	(mm)	(W/kg)	(%)	(dB)	(dB)	?
D300	26	M1	0.000	0	15	105	15	-3	0.725	25	-0.3	1.5	Y
D300	28	M1	0.000	0	25	30	15	61	0.894	25	0.1	1.5	Y
D300	21	M2	10.000	0	25	150	9	11	0.171	25	-0.1	1.5	Y
D300	21	M2	10.000	0	15	225	-12	-24	0.215	25	-0.6	1.5	Y
D300	33	M1	0.000	0	25	225	-33	-14	2.518	25	-0.4	1.5	Y
D300	33	M1	0.000	0	15	285	-4	63	3.719	25	-0.2	1.5	Y
D300	34	M1	0.000	0	15	180	2	-56	4.481	25	-0.4	1.5	Y
D300	26	M2	10.000	0	15	30	-23	8	0.757	25	-0.1	1.5	Y
D300	30	M2	10.000	0	25	90	21	50	1.211	25	-0.6	1.5	Y
D300	30	M2	10.000	0	25	240	-32	51	1.292	25	-0.3	1.5	Y
D300	30	M2	10.000	0	25	0	-15	58	1.333	25	-0.2	1.5	Y
D300	40	M1	0.000	0	25	315	16	-44	12.574	25	-0.4	1.5	Y
D300	41	M1	0.000	0	25	120	-7	35	15.902	25	-0.4	1.5	Y
D300	41	M1	0.000	0	25	135	-18	-31	15.918	25	-0.4	1.5	Y
D300	42	M1	0.000	0	25	165	4	77	21.200	25	-0.2	1.5	Y
D300	43	M1	0.000	0	25	255	-25	-39	25.882	25	-0.3	1.5	Y
D300	36	M2	10.000	0	15	30	-25	24	7.147	25	-0.3	1.5	Y
D450	14	M15	5.750	5	15	150	-29	-11	0.075	25	-0.1	1.5	Y
D450	14	M12	6.650	3	15	60	33	-30	0.074	25	-0.2	1.5	Y
D450	16	M15	5.750	5	15	15	20	-17	0.117	25	-0.2	1.5	Y
D450	16	M8	5.760	1	15	105	21	44	0.109	25	-0.5	1.5	Y
D450	17	M12	6.650	3	25	90	25	-62	0.099	25	-0.6	1.5	Y
D450	19	M12	6.650	3	25	75	6	42	0.163	25	-0.4	1.5	Y
D450	19	M12	6.650	3	25	180	15	-60	0.174	25	-0.1	1.5	Y
D450	19	M12	6.650	3	25	345	-5	-38	0.161	25	-0.5	1.5	Y
D450	18	M16	6.440	5	15	240	38	21	0.181	25	-0.3	1.5	Y
D450	20	M9	6.410	1	25	75	38	76	0.213	25	-0.2	1.5	Y

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

									mued from				
antonna	P_f	Mod	PAPR	BW	s (marra)	θ (°)	(202202)	<i>y</i>	SAR	u_s	ΔSAR	mpe (AD)	Pass
antenna D450	(dB) 24	Mod	(dB) 6.440	(MHz) 5	(mm)	330	(mm)	(mm) 67	(W/kg)	(%) 25	(dB) -0.7	(dB) 1.5	? Y
D450 D450	27	M16 M9			15		-16		0.653	25			Y
D450 D450	28	M12	6.410 6.650	3	25 15	180 165	24 14	-67 47	1.143 1.841	25	-0.2	1.5 1.5	Y
D450 D450	29				15	150	-2	52	2.272	25		1.5	Y
	30	M9	6.410	1			37			25	-0.3		Y
D450		M9	6.410	1	15	90		23	2.757		-0.5	1.5	Y
D450	34	M9	6.410	1	15	15	20	-41	7.501	25 25	-0.1	1.5	1
D750	13	M2	10.000	0	15	300	12	-23	0.106		-0.2	1.5	Y
D750	14	M2	10.000	0	15	225	16	-41	0.125	25	-0.5	1.5	Y
D750	15	M2	10.000	0	15	135	30	-65	0.181	25	0.1	1.5	Y
D750	16	M9	6.410	1	15	285	-13	41	0.220	25	-0.0	1.5	Y
D750	27	M1	0.000	0	15	195	7	-51	2.564	25	-0.3	1.5	Y
D750	30	M1	0.000	0	25	105	-14	16	3.358	25	-0.3	1.5	Y
D750	31	M1	0.000	0	25	180	33	-68	4.301	25	-0.2	1.5	Y
D750	33	M1	0.000	0	25	195	32	-5	6.722	25	-0.3	1.5	Y
D750	22	M2	10.000	0	15	285	-38	13	0.839	25	-0.2	1.5	Y
D750	24	M2	10.000	0	25	165	0	59	0.877	25	-0.1	1.5	Y
D750	25	M12	6.650	3	25	195	29	80	1.044	25	-0.4	1.5	Y
D750	36	M1	0.000	0	15	120	10	-16	19.770	25	-0.5	1.5	Y
D750	29	M2	10.000	0	15	255	14	2	4.303	25	-0.1	1.5	Y
D750	30	M9	6.410	1	15	0	32	-9	5.164	25	-0.3	1.5	Y
D750	41	M1	0.000	0	25	75	36	-19	40.873	25	-0.4	1.5	Y
D750	40	M1	0.000	0	15	15	34	-79	50.664	25	-0.4	1.5	Y
D750	31	M2	10.000	0	15	165	-15	7	6.719	25	-0.2	1.5	Y
D835	14	M12	6.650	3	25	90	-21	32	0.088	25	-0.4	1.5	Y
D835	14	M8	5.760	1	25	165	37	-32	0.091	25	-0.2	1.5	Y
D835	13	M18	5.670	20	5	195	-38	4	0.102	25	-0.5	1.5	Y
D835	13	M13	2.910	5	5	120	39	56	0.117	25	0.1	1.5	Y
D835	14	M8	5.760	1	15	180	-36	32	0.151	25	-0.1	1.5	Y
D835	19	M11	5.730	3	25	255	26	-24	0.300	25	-0.1	1.5	Y
D835	21	M18	5.670	20	25	135	-11	-55	0.481	25	-0.0	1.5	Y
D835	20	M8	5.760	1	15	180	-6	56	0.590	25	-0.2	1.5	Y
D835	22	M13	2.910	5	5	270	-1	28	0.855	25	-0.3	1.5	Y
D835	24	M11	5.730	3	15	135	-16	-65	1.453	25	-0.3	1.5	Y
D835	24	M18	5.670	20	15	90	26	39	1.461	25	-0.3	1.5	Y
D835	27	M13	2.910	5	25	15	-34	59	1.821	25	-0.2	1.5	Y
D835	25	M12	6.650	3	15	135	-40	37	1.850	25	-0.3	1.5	Y
D835	27	M12	6.650	3	5	330	-2	-58	2.591	25	-0.5	1.5	Y
D835	28	M12	6.650	3	15	300	14	-37	3.786	25	-0.2	1.5	Y
D835	28	M8	5.760	1	5	180	-19	51	3.416	25	-0.3	1.5	Y
D900	12	M11	5.730	3	15	75	11	-2	0.104	25	-0.3	1.5	Y
D900	13	M11	5.730	3	15	300	19	28	0.133	25	-0.2	1.5	Y
D900	12	M2	10.000	0	5	75	21	38	0.101	25	-0.3	1.5	Y
		1	ı	1	1	1		1	1	(Continued	on nex	

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

		1010 0 1	DADD			_			GAD			I	Ъ
antonna	P_f	Mod	PAPR (dB)	BW (MHz)	s (mm)	θ (°)	x	y	SAR	$\begin{pmatrix} u_s \\ (\%) \end{pmatrix}$	$\begin{array}{ c c c } \Delta SAR \\ (\mathrm{dB}) \end{array}$	mpe (AD)	Pass ?
D900	(dB) 14	Mod	5.730	(MHZ)	(mm) 15	0	(mm) 12	(mm)	(W/kg)	25		(dB) 1.5	Y
		M11				-		-69	0.155		-0.5		
D900	15	M15	5.750	5	15 15	15 300	-20	37	0.217	25 25	-0.1	1.5	Y
D900	18	M2	10.000				-14	69	0.434		-0.1	1.5	
D900	21	M11	5.730	3	15	300	32	-77	0.828	25	-0.3	1.5	Y
D900	22	M2	10.000	0	15	150	-39	0	1.112	25	0.0	1.5	Y
D900	22	M9	6.410	1	5	210	-24	-22	0.965	25	-0.5	1.5	Y
D900	26	M2	10.000	0	25	120	8	55	1.645	25	0.0	1.5	Y
D900	25	M9	6.410	1	15	45	-4	57	2.220	25	0.0	1.5	Y
D900	26	M15	5.750	5	15	120	-35	42	2.767	25	-0.0	1.5	Y
D900	26	M2	10.000	0	15	210	-3	22	2.546	25	-0.4	1.5	Y
D900	27	M9	6.410	1	15	45	-8	46	3.511	25	0.0	1.5	Y
D900	30	M9	6.410	1	25	270	21	30	4.105	25	0.0	1.5	Y
D900	27	M11	5.730	3	5	300	-1	75	3.369	25	-0.1	1.5	Y
D900	30	M2	10.000	0	25	105	-22	12	3.888	25	-0.2	1.5	Y
D900	29	M16	6.440	5	15	180	-28	-29	5.144	25	-0.3	1.5	Y
D1450	13	M5	7.890	0	25	330	-18	-80	0.080	25	-0.6	1.5	Y
D1450	14	M2	10.000	0	25	105	-11	-25	0.098	25	-0.7	1.5	Y
D1450	11	M5	7.890	0	10	225	-37	-27	0.179	25	-0.6	1.5	Y
D1450	18	M7	7.700	1	25	60	0	15	0.275	25	-0.2	1.5	Y
D1450	13	M11	5.730	3	5	30	16	-48	0.330	25	-0.2	1.5	Y
D1450	14	M7	7.700	1	5	90	9	-15	0.401	25	-0.4	1.5	Y
D1450	15	M7	7.700	1	10	315	-10	-58	0.457	25	-0.5	1.5	Y
D1450	21	M2	10.000	0	25	105	-4	-23	0.514	25	-0.5	1.5	Y
D1450	23	M7	7.700	1	25	45	29	-73	0.843	25	-0.4	1.5	Y
D1450	23	M17	6.590	10	25	225	-4	55	0.830	25	-0.5	1.5	Y
D1450	17	M11	5.730	3	10	90	33	4	0.732	25	-0.5	1.5	Y
D1450	21	M17	6.590	10	5	330	34	4	1.914	25	-0.6	1.5	Y
D1450	22	M2	10.000	0	5	15	2	25	2.642	25	-0.2	1.5	Y
D1450	23	M17	6.590	10	5	315	-28	-8	3.064	25	-0.6	1.5	Y
D1450	24	M5	7.890	0	5	300	-10	75	4.147	25	-0.2	1.5	Y
D1450	32	M7	7.700	1	25	240	32	68	6.968	25	-0.2	1.5	Y
D1750	12	M11	5.730	3	25	270	-36	46	0.072	25	0.3	1.5	Y
D1750	12	M18	5.670	20	25	300	23	38	0.073	25	0.4	1.5	Y
D1750	15	M14	3.980	5	25	150	-25	-15	0.141	25	0.3	1.5	Y
D1750	9	M14	3.980	5	10	345	24	-54	0.146	25	-0.2	1.5	Y
D1750	16	M9	6.410	1	25	15	18	-4	0.175	25	0.2	1.5	Y
D1750	9	M11	5.730	3	5	0	-19	-44	0.178	25	0.0	1.5	Y
D1750	18	M11	5.730	3	25	225	27	40	0.264	25	-0.0	1.5	Y
D1750	10	M14	3.980	5	5	45	-3	10	0.233	25	0.2	1.5	Y
D1750	11	M9	6.410	1	10	15	3	9	0.256	25	0.2	1.5	Y
D1750	12	M11	5.730	3	10	285	-31	23	0.321	25	0.2	1.5	Y
D1750	13	M18	5.670	20	10	120	21	8	0.400	25	0.2	1.5	Y
	<u> </u>		- 3.0		<u> </u>				1		Continued		
										`			1 .0

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

		able 6 1							inued from				
	P_f		PAPR	BW	s	θ	x	y	SAR	u_s	ΔSAR	mpe	Pass
antenna	(dB)	Mod	(dB)	(MHz)	(mm)	(°)	(mm)	(mm)	(W/kg)	(%)	(dB)	(dB)	?
D1750	20	M14	3.980	5	25	60	-20	4	0.428	25	0.1	1.5	Y
D1750	15	M14	3.980	5	5	75	12	40	0.689	25	-0.1	1.5	Y
D1750	18	M18	5.670	20	5	15	25	71	1.480	25	0.2	1.5	Y
D1750	30	M18	5.670	20	25	120	-23	25	4.202	25	0.0	1.5	Y
D1750	22	M14	3.980	5	5	75	-29	22	3.360	25	-0.2	1.5	Y
D1950	13	M18	5.670	20	25	225	-11	11	0.080	25	-0.1	1.5	Y
D1950	14	M1	0.000	0	10	45	-19	-18	0.530	25	0.0	1.5	Y
D1950	23	M1	0.000	0	25	270	27	50	0.839	25	0.1	1.5	Y
D1950	6	M14	3.980	5	5	225	-26	-59	0.113	25	-0.2	1.5	Y
D1950	6	M14	3.980	5	5	315	-27	17	0.109	25	-0.3	1.5	Y
D1950	16	M16	6.440	5	25	315	-28	20	0.154	25	-0.3	1.5	Y
D1950	9	M14	3.980	5	5	90	-8	35	0.219	25	-0.3	1.5	Y
D1950	11	M16	6.440	5	5	315	-24	-26	0.338	25	-0.4	1.5	Y
D1950	12	M8	5.760	1	5	60	8	-34	0.476	25	0.1	1.5	Y
D1950	13	M8	5.760	1	5	75	8	19	0.573	25	-0.1	1.5	Y
D1950	16	M14	3.980	5	10	330	2	6	0.764	25	-0.4	1.5	Y
D1950	18	M14	3.980	5	10	0	-19	16	1.316	25	-0.0	1.5	Y
D1950	25	M1	0.000	0	5	240	19	-35	9.100	25	-0.1	1.5	Y
D1950	19	M18	5.670	20	10	300	-8	18	1.548	25	-0.3	1.5	Y
D1950	29	M8	5.760	1	25	135	-34	-8	3.208	25	-0.1	1.5	Y
D1950	22	M16	6.440	5	10	90	2	56	3.075	25	-0.3	1.5	Y
D1950	31	M16	6.440	5	25	0	-5	46	5.201	25	-0.0	1.5	Y
D1950	41	M1	0.000	0	25	300	22	41	47.785	25	-0.4	1.5	Y
D2300	10	M1	0.000	0	5	60	-1	-66	0.320	25	-0.5	1.5	Y
D2300	13	M1	0.000	0	10	285	-12	2	0.437	25	-0.3	1.5	Y
D2300	4	М3	11.960	0	10	75	-38	-9	0.051	25	-0.6	1.5	Y
D2300	12	M1	0.000	0	5	345	-34	7	0.480	25	-0.7	1.5	Y
D2300	26	M1	0.000	0	25	315	-8	61	1.274	25	-0.7	1.5	Y
D2300	7	M7	7.700	1	5	150	10	34	0.177	25	-0.0	1.5	Y
D2300	10	M4	5.680	0	10	45	2	-13	0.221	25	-0.2	1.5	Y
D2300	10	М3	11.960	0	5	285	-31	57	0.352	25	-0.1	1.5	Y
D2300	14	M17	6.590	10	5	105	7	-58	0.777	25	-0.6	1.5	Y
D2300	14	M4	5.680	0	5	255	10	-12	0.873	25	-0.1	1.5	Y
D2300	15	M7	7.700	1	5	225	-33	-63	0.953	25	-0.7	1.5	Y
D2300	27	M17	6.590	10	25	210	31	64	1.654	25	-0.5	1.5	Y
D2300	16	М3	11.960	0	5	315	28	14	1.172	25	-0.8	1.5	Y
D2300	18	М3	11.960	0	5	195	-2	21	1.942	25	-0.6	1.5	Y
D2300	20	М3	11.960	0	10	300	-29	1	2.132	25	-0.4	1.5	Y
D2300	29	M4	5.680	0	25	135	-7	-48	2.853	25	-0.2	1.5	Y
D2450	4	M6	7.930	0	10	240	-17	-40	0.053	25	-0.5	1.5	Y
D2450	14	M5	7.890	0	25	300	-10	10	0.087	25	-0.6	1.5	Y
D2450	14	M1	0.000	0	10	345	-18	71	0.533	25	-0.5	1.5	Y
Continued on next page									t page				

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

		1010 0 1							mued from	_			-
,	P_f	3 f 1	PAPR	BW	s	θ (°)	x	y	SAR	u_s	ΔSAR	mpe	Pass
D2450	(dB) 15	Mod	(dB) 10.260	(MHz)	(mm)	330	(mm)	(mm) -42	(W/kg) 0.106	(%) 25	(dB) -0.7	(dB) 1.5	? Y
D2450 D2450	6	M10 M10	10.260	1	25 5	240	20 12	-52		$\frac{25}{25}$		1.5	Y
D2450 D2450	11	M6	7.930	0	10	45	-5	-32 -72	0.139 0.267	$\frac{25}{25}$	-0.5 -0.5	1.5	Y
	23					165	-5 16		4.527	$\frac{25}{25}$	-0.3	1.5	Y
D2450	23	M1	0.000	0	10			0		$\frac{25}{25}$			Y
D2450		M1	0.000	0	10	255	30	-16	4.396		-0.3	1.5	Y
D2450	15	M5	7.890	0	10	210	-3	67	0.631	25	-0.8	1.5	1
D2450	13	M6	7.930	0	5	210	-35	18	0.683	25	-0.6	1.5	Y
D2450	16	M2	10.000	0	10	105	4	-20	0.831	25	-0.6	1.5	Y
D2450	25	M2	10.000	0	25	270	-9	-31	1.111	25	-0.5	1.5	Y
D2450	17	M5	7.890	0	10	0	-27	-57	1.057	25	-0.5	1.5	Y
D2450	27	M10	10.260	1	25	345	-10	-65	1.679	25	-0.7	1.5	Y
D2450	24	M1	0.000	0	5	45	20	68	9.236	25	-0.3	1.5	Y
D2450	21	M2	10.000	0	10	240	30	-66	2.728	25	-0.4	1.5	Y
D2450	19	M10	10.260	1	5	60	29	-62	2.678	25	-0.6	1.5	Y
D2600	12	M4	5.680	0	25	105	0	78	0.057	25	-0.0	1.5	Y
D2600	3	M4	5.680	0	5	150	0	-12	0.090	25	0.2	1.5	Y
D2600	3	M13	2.910	5	5	225	-40	-70	0.081	25	-0.3	1.5	Y
D2600	3	M13	2.910	5	5	240	21	6	0.084	25	-0.1	1.5	Y
D2600	9	M24	10.280	100	10	105	-32	79	0.190	25	-0.1	1.5	Y
D2600	6	M6	7.930	0	5	345	6	-10	0.153	25	-0.5	1.5	Y
D2600	20	M6	7.930	0	25	120	29	-69	0.333	25	-0.3	1.5	Y
D2600	10	M4	5.680	0	5	90	22	-18	0.397	25	-0.4	1.5	Y
D2600	10	M18	5.670	20	5	255	32	66	0.439	25	0.1	1.5	Y
D2600	25	M24	10.280	100	25	60	4	-38	1.137	25	-0.0	1.5	Y
D2600	16	M18	5.670	20	5	330	-6	-37	1.654	25	-0.2	1.5	Y
D2600	28	M13	2.910	5	25	0	8	-34	2.275	25	-0.0	1.5	Y
D2600	20	M18	5.670	20	10	15	-33	-55	2.416	25	-0.1	1.5	Y
D2600	29	M6	7.930	0	25	30	7	19	2.855	25	-0.0	1.5	Y
D2600	23	M18	5.670	20	10	195	4	-66	4.640	25	-0.2	1.5	Y
D2600	32	M6	7.930	0	25	75	-29	-74	5.358	25	-0.3	1.5	Y
D3700	2	M2	10.000	0	10	345	-31	26	0.037	30	-0.2	1.6	Y
D3700	2	M21	8.430	25	10	165	3	38	0.043	30	0.5	1.6	Y
D3700	12	M1	0.000	0	10	285	-32	-39	0.402	30	0.2	1.6	Y
D3700	3	M21	8.430	25	10	285	17	70	0.054	30	0.5	1.6	Y
D3700	7	M7	7.700	1	10	135	1	54	0.147	30	0.8	1.6	Y
D3700	3	M2	10.000	0	5	180	-11	-53	0.115	30	0.1	1.6	Y
D3700	7	M21	8.430	25	10	120	-17	41	0.128	30	0.2	1.6	Y
D3700	16	M1	0.000	0	5	345	12	-34	2.294	30	0.1	1.6	Y
D3700	14	M24	10.280	100	10	195	17	-51	0.675	30	0.5	1.6	Y
D3700	14	M2	10.000	0	10	0	9	-48	0.636	30	0.2	1.6	Y
D3700	12	M24	10.280	100	5	285	5	-13	1.008	30	0.5	1.6	Y
D3700	35	M1	0.000	0	25	135	1	17	10.258	30	0.2	1.6	Y
	-	1	1	<u> </u>			<u> </u>	<u> </u>	1		Continued		

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

		ibic o i					rage DA.		mued from				
	P_f	M - J	PAPR	BW	s ()	θ (°)	<i>x</i>	y ()	SAR	u_s	ΔSAR	mpe (4D)	Pass
D3700	(dB)	Mod M1	(dB) 0.000	(MHz) 0	(mm) 5	180	(mm) -40	(mm) -40	(W/kg) 8.744	(%)	(dB) -0.1	(dB) 1.6	? Y
D3700	17	M21	8.430	25	10	135	-31	29	1.271	30	0.2	1.6	Y
D3700	18	M21	8.430	25	10	30	-31 -1	-15	1.674	30	0.2	1.6	Y
D3700	29	M2	10.000	0	25	255	33	29	2.693	30	0.4	1.6	Y
D3700	27	M1	0.000	0	5	255	-14	36	30.446	30	0.4	1.6	Y
D3700 D4200		M24	10.280	100	10	135	13	-23	0.060	30	0.3	1.6	Y
D4200 D4200	$\frac{4}{15}$	M5	7.890	0	25	195	-29	31	0.000	30		1.6	Y
		M2		0	25	285				30	0.3		Y
D4200	19		10.000				37	-49	0.238		0.1	1.6	1
D4200	11	M5	7.890	0	10	270	-34	-3	0.304	30	0.4	1.6	Y
D4200	12	M6	7.930	0	10	270	9	64	0.396	30	0.5	1.6	Y
D4200	12	M21	8.430	25	10	270	39	-1	0.384	30	0.4	1.6	Y
D4200	9	M24	10.280	100	5	195	-36	61	0.537	30	0.6	1.6	Y
D4200	14	M5	7.890	0	10	270	31	-60	0.624	30	0.5	1.6	Y
D4200	10	M21	8.430	25	5	330	-22	66	0.582	30	-0.1	1.6	Y
D4200	26	M6	7.930	0	25	30	1	5	1.303	30	0.5	1.6	Y
D4200	28	M24	10.280	100	25	105	22	-47	1.758	30	-0.2	1.6	Y
D4200	13	M6	7.930	0	5	150	11	-1	1.212	30	0.1	1.6	Y
D4200	14	M24	10.280	100	5	60	-20	-21	1.654	30	0.5	1.6	Y
D4200	20	M2	10.000	0	10	30	39	33	2.484	30	0.5	1.6	Y
D4200	16	M2	10.000	0	5	0	-37	48	2.459	30	0.2	1.6	Y
D4200	31	M6	7.930	0	25	240	20	-28	3.794	30	0.2	1.6	Y
D4200	22	M24	10.280	100	10	45	-32	-49	3.918	30	0.5	1.6	Y
D4600	2	M24	10.280	100	10	60	11	-5	0.034	30	-0.0	1.6	Y
D4600	11	M2	10.000	0	25	240	30	37	0.036	30	-0.2	1.6	Y
D4600	13	M5	7.890	0	25	315	32	27	0.053	30	-0.5	1.6	Y
D4600	13	M2	10.000	0	25	135	10	40	0.058	30	-0.1	1.6	Y
D4600	0	M21	8.430	25	5	60	-2	-29	0.056	30	-0.2	1.6	Y
D4600	2	M4	5.680	0	5	15	6	-52	0.089	30	-0.2	1.6	Y
D4600	21	M5	7.890	0	25	270	37	-36	0.357	30	-0.2	1.6	Y
D4600	22	M24	10.280	100	25	75	34	-43	0.462	30	-0.1	1.6	Y
D4600	24	M5	7.890	0	25	210	-22	35	0.695	30	-0.3	1.6	Y
D4600	25	M5	7.890	0	25	285	-3	-58	0.903	30	-0.2	1.6	Y
D4600	27	M24	10.280	100	25	105	6	63	1.436	30	-0.2	1.6	Y
D4600	19	M24	10.280	100	10	120	40	-25	1.733	30	0.1	1.6	Y
D4600	28	M2	10.000	0	25	45	18	-71	1.760	30	-0.3	1.6	Y
D4600	20	M21	8.430	25	10	150	-3	-54	2.130	30	-0.0	1.6	Y
D4600	16	M21	8.430	25	5	30	19	77	2.384	30	0.1	1.6	Y
D4600	21	M21	8.430	25	10	60	-16	-78	2.443	30	-0.5	1.6	Y
D4600	17	M24	10.280	100	5	255	-23	-26	2.894	30	-0.1	1.6	Y
D5200	-4	M23	8.900	80	5	90	13	75	0.022	30	-0.1	1.6	Y
D5200	-4	M23	8.900	80	5	195	-6	-63	0.022	30	-0.1	1.6	Y
D5200	-4	M20	10.120	20	5	120	5	65	0.022	30	-0.1	1.6	Y
										(Continued	on nex	t page

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

		IDIC U I							inued from				
antonna	P_f	Mod	PAPR (dB)	BW	(20,200)	θ (°)	x	y	SAR (W/lrm)	u_s	ΔSAR	mpe (AD)	Pass
D5200	(dB)	Mod M19	9.380	(MHz) 20	(mm) 10	75	(mm) -17	(mm) -1	(W/kg) 0.031	(%)	(dB) -0.4	(dB) 1.6	? Y
D5200	10	M22	8.910	40	25	0	18	30	0.031	30	0.1	1.6	Y
D5200	4	M20	10.120	20	10	210	-8	-32	0.041	30	-0.5	1.6	Y
D5200	12	M20	10.120	20	25	0	-24	- 3 2	0.048	30	-0.3	1.6	Y
D5200	5	M22	8.910	40	10	15	-34	43	0.067	30	-0.2	1.6	Y
D5200	0	M19	9.380	20	5	315	-20	-61	0.050	30	-0.6	1.6	Y
D5200	17		9.380	20	25	330	-20 17	-01 -70		30	-0.6	1.6	Y
D5200 D5200		M19			25				0.181	30			Y
	18	M20	10.120	20		60	-36	21	0.238		-0.2	1.6	1
D5200	4	M3	11.960	0	5 25	150	-3	34	0.147	30	0.1	1.6	Y
D5200	24	M23	8.900	80		210	3	-13	0.939	30	-0.3	1.6	Y
D5200	24	M22	8.910	40	25	105	-25	-76	0.939	30	-0.3	1.6	Y
D5200	12	M22	8.910	40	5	225	-16	31	0.846	30	-0.3	1.6	Y
D5200	14	M19	9.380	20	5	330	7	63	1.305	30	-0.4	1.6	Y
D5500	1	M20	10.120	20	10	330	-30	54	0.029	30	-0.1	1.6	Y
D5500	2	M19	9.380	20	10	315	-33	19	0.037	30	0.0	1.6	Y
D5500	11	M22	8.910	40	25	30	-27	-7	0.064	30	0.3	1.6	Y
D5500	0	M23	8.900	80	5	345	35	79	0.064	30	0.0	1.6	Y
D5500	0	M22	8.910	40	5	180	-6	15	0.068	30	0.3	1.6	Y
D5500	17	M23	8.900	80	25	75	-38	-3	0.226	30	-0.3	1.6	Y
D5500	17	M20	10.120	20	25	240	28	-41	0.251	30	0.2	1.6	Y
D5500	9	M20	10.120	20	10	165	-16	69	0.197	30	0.3	1.6	Y
D5500	4	M22	8.910	40	5	105	-6	17	0.162	30	0.1	1.6	Y
D5500	21	M20	10.120	20	25	195	22	47	0.575	30	-0.2	1.6	Y
D5500	12	M2	10.000	0	10	45	-31	53	0.381	30	0.1	1.6	Y
D5500	7	M23	8.900	80	5	210	-22	45	0.322	30	0.0	1.6	Y
D5500	7	M22	8.910	40	5	90	-29	-45	0.338	30	0.2	1.6	Y
D5500	8	M23	8.900	80	5	165	1	-70	0.406	30	0.1	1.6	Y
D5500	10	M23	8.900	80	5	150	-12	13	0.710	30	0.5	1.6	Y
D5500	25	M20	10.120	20	25	240	-12	14	1.546	30	0.1	1.6	Y
D5500	17	M22	8.910	40	10	60	-30	53	1.248	30	0.3	1.6	Y
D5600	7	M1	0.000	0	5	330	31	-76	0.314	30	0.1	1.6	Y
D5600	12	М3	11.960	0	25	165	7	77	0.080	30	0.3	1.6	Y
D5600	-1	М3	11.960	0	5	285	36	-67	0.052	30	0.2	1.6	Y
D5600	5	М3	11.960	0	10	75	-14	-7	0.076	30	0.3	1.6	Y
D5600	11	M1	0.000	0	5	225	-39	-38	0.767	30	-0.1	1.6	Y
D5600	27	M1	0.000	0	25	345	-1	73	2.383	30	0.1	1.6	Y
D5600	6	M22	8.910	40	5	45	24	-43	0.272	30	0.4	1.6	Y
D5600	20	M20	10.120	20	25	135	-38	-14	0.499	30	0.3	1.6	Y
D5600	21	M1	0.000	0	10	150	-20	52	3.229	30	0.6	1.6	Y
D5600	30	M1	0.000	0	25	30	-9	-29	5.289	30	0.5	1.6	Y
D5600	14	М3	11.960	0	10	195	24	73	0.612	30	0.3	1.6	Y
D5600	17	M23	8.900	80	10	300	-21	-40	1.233	30	0.4	1.6	Y
										(Continued	on nex	t page

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

Antenna (dB) Mod (dB) (MHz) (mm) (") (mm) (mm) (W/kg) (%) (dB) (dB) (dB) (dB) (D5600 37 M1 0.000 0 25 35 19 9 26.275 30 0.5 1.6 Y D5600 14 M22 8.910 40 5 240 26 -11 1.645 30 0.2 1.6 Y V V V V V V V V V	Table 6 Training Data Set for 10-gram average SAR – continued from previous page													
D5600		P_f		PAPR	BW	s	θ	x	y	SAR	u_s	ΔSAR	mpe	Pass
D5600		\ /		\ /		/	(/	\ /	/	. , -,	` /	/	\ /	
D5600														1
D5600 38 M1 0.000 0 25 315 39 66 30.666 30 0.1 1.6 Y						l								
D5600														1
D5800	D5600			0.000	0		315		66			0.1	1.6	1
D5800	D5600		M22	8.910	40	10	15	-27	-45	3.253	30	0.6	1.6	1
D5800	D5800	-3	М3	11.960	0	l	30		-46	0.030	30	0.2	1.6	1
D5800	D5800	0	M22	8.910	40	5	285	11	62	0.063	30	0.4	1.6	Y
D5800	D5800	5	M20	10.120	20	10	30	28	57	0.075	30	0.3	1.6	Y
D5800	D5800	14	M19	9.380	20	25	60	-28	51	0.145	30	0.1	1.6	Y
D5800	D5800	8	М3	11.960	0	10	330	29	31	0.138	30	-0.0	1.6	Y
D5800	D5800	8	M23	8.900	80	10	240	-30	-19	0.150	30	0.4	1.6	Y
D5800	D5800	9	M19	9.380	20	10	90	36	74	0.171	30	-0.1		Y
D5800 S M22 8.910 40 S 270 S 33 0.191 30 0.2 1.6 Y		9					180							
D5800 10 M19 9.380 20 10 270 34 -44 0.236 30 0.3 1.6 Y														
D5800 10 M20 10.120 20 10 210 -11 48 0.216 30 -0.1 1.6 Y D5800 6 M23 8.900 80 5 75 -9 -34 0.231 30 0.1 1.6 Y D5800 22 M23 8.900 80 25 195 6 70 0.966 30 0.3 1.6 Y D5800 27 M22 8.910 40 25 225 -14 69 3.039 30 0.3 1.6 Y D5800 28 M22 8.910 40 25 285 37 -6 3.888 30 0.3 1.6 Y V750 9 M15 5.750 5 2 345 -23 27 0.027 30 -0.6 1.6 Y V750 19 M1 0.000 0 2 75 -25						l								
D5800 6 M23 8.900 80 5 75 -9 -34 0.231 30 0.1 1.6 Y D5800 22 M23 8.900 80 25 195 6 70 0.966 30 0.3 1.6 Y D5800 27 M22 8.910 40 25 225 -14 69 3.039 30 0.3 1.6 Y D5800 15 M19 9.380 20 5 270 -12 64 1.958 30 0.4 1.6 Y D5800 28 M22 8.910 40 25 285 37 -6 3.888 30 0.3 1.6 Y V750 9 M15 5.750 5 2 345 -23 27 0.027 30 -0.6 1.6 Y V750 19 M1 0.000 0 2 75 -25 <														
D5800 22 M23 8.900 80 25 195 6 70 0.966 30 0.3 1.6 Y														1
D5800 27 M22 8.910 40 25 225 -14 69 3.039 30 0.3 1.6 Y D5800 15 M19 9.380 20 5 270 -12 64 1.958 30 0.4 1.6 Y D5800 28 M22 8.910 40 25 285 37 -6 3.888 30 0.3 1.6 Y V750 9 M15 5.750 5 2 345 -23 27 0.027 30 -0.6 1.6 Y V750 10 M15 5.750 5 2 300 28 -46 0.034 30 -0.6 1.6 Y V750 19 M1 0.000 0 2 345 31 -11 0.277 30 -0.4 1.6 Y V750 11 M15 5.750 5 2 75 -26						l								1
D5800 15 M19 9.380 20 5 270 -12 64 1.958 30 0.4 1.6 Y D5800 28 M22 8.910 40 25 285 37 -6 3.888 30 0.3 1.6 Y V750 9 M15 5.750 5 2 345 -23 27 0.027 30 -0.6 1.6 Y V750 10 M15 5.750 5 2 300 28 -46 0.034 30 -0.6 1.6 Y V750 19 M1 0.000 0 2 75 -25 -47 0.277 30 -0.4 1.6 Y V750 19 M1 0.000 0 2 345 31 -11 0.277 30 -0.4 1.6 Y V750 11 M14 3.980 5 2 195 -35 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
D5800 28 M22 8.910 40 25 285 37 -6 3.888 30 0.3 1.6 Y V750 9 M15 5.750 5 2 345 -23 27 0.027 30 -0.6 1.6 Y V750 10 M15 5.750 5 2 300 28 -46 0.034 30 -0.6 1.6 Y V750 19 M1 0.000 0 2 75 -25 -47 0.277 30 -0.4 1.6 Y V750 19 M1 0.000 0 2 345 31 -11 0.277 30 -0.4 1.6 Y V750 11 M15 5.750 5 2 75 -26 15 0.047 30 -0.1 1.6 Y V750 15 M14 3.980 5 2 195 -35						l								
V750 9 M15 5.750 5 2 345 -23 27 0.027 30 -0.6 1.6 Y V750 10 M15 5.750 5 2 300 28 -46 0.034 30 -0.6 1.6 Y V750 19 M1 0.000 0 2 75 -25 -47 0.277 30 -0.4 1.6 Y V750 19 M1 0.000 0 2 345 31 -11 0.277 30 -0.4 1.6 Y V750 11 M15 5.750 5 2 75 -26 15 0.047 30 -0.1 1.6 Y V750 12 M14 3.980 5 2 195 -35 60 0.060 30 -0.1 1.6 Y V750 15 M14 3.980 5 2 315 35 49						l								1
V750 10 M15 5.750 5 2 300 28 -46 0.034 30 -0.6 1.6 Y V750 19 M1 0.000 0 2 75 -25 -47 0.277 30 -0.4 1.6 Y V750 19 M1 0.000 0 2 345 31 -11 0.277 30 -0.4 1.6 Y V750 11 M15 5.750 5 2 75 -26 15 0.047 30 -0.1 1.6 Y V750 12 M14 3.980 5 2 195 -35 60 0.060 30 -0.1 1.6 Y V750 15 M14 3.980 5 2 300 -17 71 0.113 30 -0.2 1.6 Y V750 16 M14 3.980 5 2 315 35 4						l								
V750 19 M1 0.000 0 2 75 -25 -47 0.277 30 -0.4 1.6 Y V750 19 M1 0.000 0 2 345 31 -11 0.277 30 -0.4 1.6 Y V750 11 M15 5.750 5 2 75 -26 15 0.047 30 -0.1 1.6 Y V750 12 M14 3.980 5 2 195 -35 60 0.060 30 -0.1 1.6 Y V750 15 M14 3.980 5 2 45 11 72 0.116 30 -0.2 1.6 Y V750 15 M14 3.980 5 2 315 35 49 0.141 30 -0.4 1.6 Y V750 16 M14 3.980 5 2 315 35 49 </td <td></td>														
V750 19 M1 0.000 0 2 345 31 -11 0.277 30 -0.4 1.6 Y V750 11 M15 5.750 5 2 75 -26 15 0.047 30 -0.1 1.6 Y V750 12 M14 3.980 5 2 195 -35 60 0.060 30 -0.1 1.6 Y V750 15 M14 3.980 5 2 45 11 72 0.116 30 -0.2 1.6 Y V750 15 M14 3.980 5 2 300 -17 71 0.113 30 -0.3 1.6 Y V750 16 M14 3.980 5 2 315 35 49 0.141 30 -0.4 1.6 Y V750 18 M16 6.440 5 2 165 38 24<						l								
V750 11 M15 5.750 5 2 75 -26 15 0.047 30 -0.1 1.6 Y V750 12 M14 3.980 5 2 195 -35 60 0.060 30 -0.1 1.6 Y V750 15 M14 3.980 5 2 45 11 72 0.116 30 -0.2 1.6 Y V750 15 M14 3.980 5 2 300 -17 71 0.113 30 -0.3 1.6 Y V750 16 M14 3.980 5 2 315 35 49 0.141 30 -0.4 1.6 Y V750 17 M12 6.650 3 2 210 -39 25 0.175 30 -0.4 1.6 Y V750 18 M16 6.440 5 2 165 38 24						l								
V750 12 M14 3.980 5 2 195 -35 60 0.060 30 -0.1 1.6 Y V750 15 M14 3.980 5 2 45 11 72 0.116 30 -0.2 1.6 Y V750 15 M14 3.980 5 2 300 -17 71 0.113 30 -0.3 1.6 Y V750 16 M14 3.980 5 2 315 35 49 0.141 30 -0.4 1.6 Y V750 17 M12 6.650 3 2 210 -39 25 0.175 30 -0.4 1.6 Y V750 18 M16 6.440 5 2 165 38 24 0.261 30 0.3 1.6 Y V750 28 M1 0.000 0 2 255 26 60 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						l								
V750 15 M14 3.980 5 2 45 11 72 0.116 30 -0.2 1.6 Y V750 15 M14 3.980 5 2 300 -17 71 0.113 30 -0.3 1.6 Y V750 16 M14 3.980 5 2 315 35 49 0.141 30 -0.4 1.6 Y V750 17 M12 6.650 3 2 210 -39 25 0.175 30 -0.4 1.6 Y V750 18 M16 6.440 5 2 165 38 24 0.261 30 0.3 1.6 Y V750 28 M1 0.000 0 2 315 4 -80 2.256 30 -0.3 1.6 Y V750 20 M15 5.750 5 2 45 5 9						l								
V750 15 M14 3.980 5 2 300 -17 71 0.113 30 -0.3 1.6 Y V750 16 M14 3.980 5 2 315 35 49 0.141 30 -0.4 1.6 Y V750 17 M12 6.650 3 2 210 -39 25 0.175 30 -0.4 1.6 Y V750 18 M16 6.440 5 2 165 38 24 0.261 30 0.3 1.6 Y V750 28 M1 0.000 0 2 315 4 -80 2.256 30 -0.3 1.6 Y V750 20 M15 5.750 5 2 255 26 60 0.403 30 0.0 1.6 Y V750 24 M15 5.750 5 2 45 5 9						l								
V750 16 M14 3.980 5 2 315 35 49 0.141 30 -0.4 1.6 Y V750 17 M12 6.650 3 2 210 -39 25 0.175 30 -0.4 1.6 Y V750 18 M16 6.440 5 2 165 38 24 0.261 30 0.3 1.6 Y V750 28 M1 0.000 0 2 315 4 -80 2.256 30 -0.3 1.6 Y V750 20 M15 5.750 5 2 255 26 60 0.403 30 0.2 1.6 Y V750 24 M15 5.750 5 2 45 5 9 0.973 30 0.0 1.6 Y V750 35 M1 0.000 0 2 120 26 -17						l								
V750 17 M12 6.650 3 2 210 -39 25 0.175 30 -0.4 1.6 Y V750 18 M16 6.440 5 2 165 38 24 0.261 30 0.3 1.6 Y V750 28 M1 0.000 0 2 315 4 -80 2.256 30 -0.3 1.6 Y V750 20 M15 5.750 5 2 255 26 60 0.403 30 0.2 1.6 Y V750 24 M15 5.750 5 2 45 5 9 0.973 30 0.0 1.6 Y V750 35 M1 0.000 0 2 345 -21 -21 11.392 30 -0.3 1.6 Y V750 38 M1 0.000 0 2 120 26 -17						l								
V750 18 M16 6.440 5 2 165 38 24 0.261 30 0.3 1.6 Y V750 28 M1 0.000 0 2 315 4 -80 2.256 30 -0.3 1.6 Y V750 20 M15 5.750 5 2 255 26 60 0.403 30 0.2 1.6 Y V750 24 M15 5.750 5 2 45 5 9 0.973 30 0.0 1.6 Y V750 35 M1 0.000 0 2 345 -21 -21 11.392 30 -0.3 1.6 Y V750 38 M1 0.000 0 2 120 26 -17 22.646 30 -0.3 1.6 Y V835 9 M9 6.410 1 2 30 28 59														
V750 28 M1 0.000 0 2 315 4 -80 2.256 30 -0.3 1.6 Y V750 20 M15 5.750 5 2 255 26 60 0.403 30 0.2 1.6 Y V750 24 M15 5.750 5 2 45 5 9 0.973 30 0.0 1.6 Y V750 35 M1 0.000 0 2 345 -21 -21 11.392 30 -0.3 1.6 Y V750 38 M1 0.000 0 2 120 26 -17 22.646 30 -0.3 1.6 Y V835 9 M9 6.410 1 2 30 28 59 0.029 30 -0.2 1.6 Y V835 20 M1 0.000 0 2 150 31 -49														
V750 20 M15 5.750 5 2 255 26 60 0.403 30 0.2 1.6 Y V750 24 M15 5.750 5 2 45 5 9 0.973 30 0.0 1.6 Y V750 35 M1 0.000 0 2 345 -21 -21 11.392 30 -0.3 1.6 Y V750 38 M1 0.000 0 2 120 26 -17 22.646 30 -0.3 1.6 Y V835 9 M9 6.410 1 2 30 28 59 0.029 30 -0.2 1.6 Y V835 20 M1 0.000 0 2 0 17 50 0.373 30 -0.1 1.6 Y V835 24 M1 0.000 0 2 150 31 -49						l								
V750 24 M15 5.750 5 2 45 5 9 0.973 30 0.0 1.6 Y V750 35 M1 0.000 0 2 345 -21 -21 11.392 30 -0.3 1.6 Y V750 38 M1 0.000 0 2 120 26 -17 22.646 30 -0.3 1.6 Y V835 9 M9 6.410 1 2 30 28 59 0.029 30 -0.2 1.6 Y V835 20 M1 0.000 0 2 0 17 50 0.373 30 -0.1 1.6 Y V835 24 M1 0.000 0 2 150 31 -49 0.978 30 0.1 1.6 Y V835 15 M11 5.730 3 2 15 -13 29						l								1
V750 35 M1 0.000 0 2 345 -21 -21 11.392 30 -0.3 1.6 Y V750 38 M1 0.000 0 2 120 26 -17 22.646 30 -0.3 1.6 Y V835 9 M9 6.410 1 2 30 28 59 0.029 30 -0.2 1.6 Y V835 20 M1 0.000 0 2 0 17 50 0.373 30 -0.1 1.6 Y V835 24 M1 0.000 0 2 150 31 -49 0.978 30 0.1 1.6 Y V835 15 M11 5.730 3 2 15 -13 29 0.116 30 -0.2 1.6 Y V835 16 M12 6.650 3 2 30 -31 -33														
V750 38 M1 0.000 0 2 120 26 -17 22.646 30 -0.3 1.6 Y V835 9 M9 6.410 1 2 30 28 59 0.029 30 -0.2 1.6 Y V835 20 M1 0.000 0 2 0 17 50 0.373 30 -0.1 1.6 Y V835 24 M1 0.000 0 2 150 31 -49 0.978 30 0.1 1.6 Y V835 15 M11 5.730 3 2 15 -13 29 0.116 30 -0.2 1.6 Y V835 16 M12 6.650 3 2 30 -31 -33 0.148 30 -0.1 1.6 Y														
V835 9 M9 6.410 1 2 30 28 59 0.029 30 -0.2 1.6 Y V835 20 M1 0.000 0 2 0 17 50 0.373 30 -0.1 1.6 Y V835 24 M1 0.000 0 2 150 31 -49 0.978 30 0.1 1.6 Y V835 15 M11 5.730 3 2 15 -13 29 0.116 30 -0.2 1.6 Y V835 16 M12 6.650 3 2 30 -31 -33 0.148 30 -0.1 1.6 Y														
V835 20 M1 0.000 0 2 0 17 50 0.373 30 -0.1 1.6 Y V835 24 M1 0.000 0 2 150 31 -49 0.978 30 0.1 1.6 Y V835 15 M11 5.730 3 2 15 -13 29 0.116 30 -0.2 1.6 Y V835 16 M12 6.650 3 2 30 -31 -33 0.148 30 -0.1 1.6 Y														
V835 24 M1 0.000 0 2 150 31 -49 0.978 30 0.1 1.6 Y V835 15 M11 5.730 3 2 15 -13 29 0.116 30 -0.2 1.6 Y V835 16 M12 6.650 3 2 30 -31 -33 0.148 30 -0.1 1.6 Y					1									1
V835 15 M11 5.730 3 2 15 -13 29 0.116 30 -0.2 1.6 Y V835 16 M12 6.650 3 2 30 -31 -33 0.148 30 -0.1 1.6 Y				0.000	0	2	0	17	50	0.373	30	-0.1	1.6	
V835 16 M12 6.650 3 2 30 -31 -33 0.148 30 -0.1 1.6 Y	V835	24	M1	0.000	0	2	150	31	-49	0.978	30	0.1	1.6	Y
	V835	15	M11	5.730	3	2	15	-13	29	0.116	30	-0.2	1.6	Y
C: 1	V835	16	M12	6.650	3	2	30	-31	-33	0.148	30	-0.1	1.6	Y
Continued on next page		•			•						(Continued	on nex	t page

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

Table 6 Training Data Set for 10-gram average SAR – continued from previous page													
	P_f		PAPR	BW	s	θ	x	y	SAR	u_s	ΔSAR	mpe	Pass
antenna	(dB)	Mod	(dB)	(MHz)	(mm)	(°)	(mm)	(mm)	(W/kg)	(%)	(dB)	(dB)	?
V835	26	M1	0.000	0	2	15	-26	12	1.519	30	-0.0	1.6	Y
V835	17	M12	6.650	3	2	255	39	-71	0.196	30	0.1	1.6	Y
V835	17	M17	6.590	10	2	165	-37	42	0.197	30	0.1	1.6	Y
V835	27	M1	0.000	0	2	90	-7	-74	1.880	30	-0.1	1.6	Y
V835	27	M1	0.000	0	2	195	-11	-10	1.677	30	-0.6	1.6	Y
V835	19	M17	6.590	10	2	90	35	-20	0.279	30	-0.4	1.6	Y
V835	21	M17	6.590	10	2	60	-27	-27	0.475	30	-0.1	1.6	Y
V835	22	M17	6.590	10	2	150	14	-68	0.551	30	-0.4	1.6	Y
V835	25	M12	6.650	3	2	105	34	-18	1.098	30	-0.4	1.6	Y
V835	35	M1	0.000	0	2	135	23	3	12.116	30	0.0	1.6	Y
V835	26	M11	5.730	3	2	120	-9	11	1.397	30	-0.4	1.6	Y
V835	26	M9	6.410	1	2	165	-20	-59	1.574	30	0.1	1.6	Y
V1950	14	M14	3.980	5	2	195	-36	-22	0.086	30	-0.2	1.6	Y
V1950	15	M16	6.440	5	2	345	-15	-56	0.105	30	-0.3	1.6	Y
V1950	18	M16	6.440	5	2	300	17	46	0.224	30	-0.0	1.6	Y
V1950	18	M10	10.260	1	2	120	-5	-53	0.202	30	-0.5	1.6	Y
V1950	18	M10	10.260	1	2	210	14	-78	0.188	30	-0.8	1.6	Y
V1950	19	M14	3.980	5	2	255	35	67	0.274	30	-0.2	1.6	Y
V1950	20	M10	10.260	1	2	225	-33	36	0.318	30	-0.5	1.6	Y
V1950	20	M10	10.260	1	2	240	-13	14	0.334	30	-0.3	1.6	Y
V1950	21	M10	10.260	1	2	330	-10	74	0.380	30	-0.7	1.6	Y
V1950	23	M16	6.440	5	2	0	-6	-46	0.666	30	-0.3	1.6	Y
V1950	24	M16	6.440	5	2	225	-38	-76	0.731	30	-0.9	1.6	Y
V1950	24	M13	2.910	5	2	255	23	-52	0.952	30	0.2	1.6	Y
V1950	26	M10	10.260	1	2	165	0	0	1.500	30	0.2	1.6	Y
V1950	28	M16	6.440	5	2	345	-37	-28	2.094	30	-0.3	1.6	Y
V1950	30	M14	3.980	5	2	315	13	73	3.067	30	-0.7	1.6	Y
V1950	31	M16	6.440	5	2	0	27	-53	4.065	30	-0.5	1.6	Y
V1950	31	M16	6.440	5	2	210	-24	-4	3.965	30	-0.6	1.6	Y
V3700	12	M7	7.700	1	2	45	18	-32	0.061	30	-0.3	1.6	Y
V3700	15	M21	8.430	25	2	45	-7	-64	0.127	30	-0.1	1.6	Y
V3700	16	M4	5.680	0	2	210	27	43	0.144	30	-0.6	1.6	Y
V3700	16	M24	10.280	100	2	30	-23	1	0.158	30	-0.2	1.6	Y
V3700	16	M24	10.280	100	2	315	22	-79	0.142	30	-0.7	1.6	Y
V3700	18	M7	7.700	1	2	330	25	-73	0.220	30	-0.8	1.6	Y
V3700	21	M21	8.430	25	2	150	23	26	0.520	30	-0.0	1.6	Y
V3700	21	M16	6.440	5	2	105	-15	78	0.480	30	-0.4	1.6	Y
V3700	21	M16	6.440	5	2	255	7	-75	0.476	30	-0.4	1.6	Y
V3700	22	M21	8.430	25	2	255	-13	-50	0.603	30	-0.4	1.6	Y
V3700	23	M16	6.440	5	2	270	36	24	0.801	30	-0.1	1.6	Y
V3700	24	M21	8.430	25	2	240	-26	33	0.947	30	-0.4	1.6	Y
V3700	24	M4	5.680	0	2	135	-7	-61	0.955	30	-0.4	1.6	Y
, 5100		1,11	0.000			100	'	01	1 0.000		Continued		
											Jonunueu	OH HEX	, bage

Table 6 Training Data Set for 10-gram average SAR – continued from previous page

	P_f		PAPR	BW		θ	$\frac{x}{x}$	y	SAR	u_s	ΔSAR	mpe	Pass
antenna	(dB)	Mod	(dB)	(MHz)	(mm)	(°)	(mm)	(mm)	(W/kg)	(%)	(dB)	(dB)	?
V3700	27	M4	5.680	0	2	0	39	-64	1.924	30	-0.3	1.6	Y
V3700	27	M4	5.680	0	2	285	-4	-74	1.945	30	-0.3	1.6	Y
V3700	27	M7	7.700	1	2	195	-35	-72	1.823	30	-0.6	1.6	Y
V3700	31	M4	5.680	0	2	120	-18	-75	4.683	30	-0.5	1.6	Y
C2450A	13	M5	7.890	0	7	60	-18	44	0.062	25	-0.1	1.5	Y
C2450A	15	M23	8.900	80	7	150	13	-5	0.108	25	0.3	1.5	Y
C2450A	15	M22	8.910	40	7	225	3	45	0.100	25	-0.1	1.5	Y
C2450A	17	M23	8.900	80	7	180	40	79	0.165	25	0.1	1.5	Y
C2450A	17	M22	8.910	40	7	105	4	72	0.155	25	-0.2	1.5	Y
C2450A	18	M5	7.890	0	7	315	0	3	0.200	25	-0.1	1.5	Y
C2450A	21	M6	7.930	0	7	180	-37	-56	0.399	25	-0.1	1.5	Y
C2450A	22	M23	8.900	80	7	165	-14	-50	0.560	25	0.4	1.5	Y
C2450A	24	M6	7.930	0	7	195	36	49	0.757	25	-0.3	1.5	Y
C2450A	24	M2	10.000	0	7	210	-19	-35	0.764	25	-0.2	1.5	Y
C2450A	26	M22	8.910	40	7	180	16	-61	1.324	25	0.2	1.5	Y
C2450A	27	M2	10.000	0	7	135	-21	-19	1.644	25	0.1	1.5	Y
C2450A	27	M2	10.000	0	7	330	25	62	1.507	25	-0.3	1.5	Y
C2450A	30	M23	8.900	80	7	165	38	58	3.402	25	0.2	1.5	Y
C2450A	31	M23	8.900	80	7	120	18	-42	4.294	25	0.3	1.5	Y
C2450A	31	M2	10.000	0	7	270	37	-30	4.130	25	0.1	1.5	Y
C2450A	32	M5	7.890	0	7	225	-39	7	4.582	25	-0.5	1.5	Y
C2450B	12	M10	10.260	1	7	180	26	-31	0.042	25	0.0	1.5	Y
C2450B	16	M23	8.900	80	7	240	33	-78	0.112	25	0.3	1.5	Y
C2450B	17	M10	10.260	1	7	300	8	-70	0.139	25	0.2	1.5	Y
C2450B	18	M10	10.260	1	7	270	15	-26	0.177	25	0.3	1.5	Y
C2450B	18	M10	10.260	1	7	285	10	-2	0.173	25	0.2	1.5	Y
C2450B	18	M22	8.910	40	7	255	-35	-77	0.175	25	0.2	1.5	Y
C2450B	19	M10	10.260	1	7	30	13	-8	0.215	25	0.1	1.5	Y
C2450B	23	M5	7.890	0	7	0	-30	54	0.536	25	0.1	1.5	Y
C2450B	24	M10	10.260	1	7	90	28	20	0.628	25	-0.2	1.5	Y
C2450B	24	M23	8.900	80	7	345	-16	-36	0.654	25	-0.1	1.5	Y
C2450B	28	M23	8.900	80	7	45	25	-54	1.691	25	0.1	1.5	Y
C2450B	30	M23	8.900	80	7	210	16	-21	2.725	25	0.1	1.5	Y
C2450B	31	M6	7.930	0	7	15	-28	-6	3.323	25	0.0	1.5	Y
C2450B	31	M6	7.930	0	7	270	15	28	3.568	25	0.3	1.5	Y
C2450B	31	M5	7.890	0	7	330	-23	76	3.084	25	-0.3	1.5	Y
C2450B	32	M10	10.260	1	7	165	-21	5	4.312	25	0.1	1.5	Y