INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4512B MSI

8-input multiplexer with 3-state output

Product specification
File under Integrated Circuits, IC04

January 1995

8-input multiplexer with 3-state output

HEF4512B MSI

DESCRIPTION

The HEF4512B is an 8-input multiplexer with 8 binary inputs $(I_0 \text{ to } I_7)$, an enable input (\overline{E}) and an output enable input (\overline{EO}) . One of eight binary inputs is selected by select inputs S_0 , S_1 and S_2 , and is routed to the output O. A HIGH on \overline{EO} causes O to assume a high impedance OFF-state, regardless of other input conditions. This allows the output

to interface directly with bus oriented systems (3-state). When the active LOW enable (\overline{E}) is HIGH, it forces the output LOW provided \overline{EO} is LOW. By proper manipulation of the inputs, the device can provide any logic functions of four variables. It cannot be used to multiplex analogue signals.

HEF4512BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4512BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4512BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

S₀, S₁, S₂ select inputs

EO output enable (active LOW)

E enable (active LOW)
 I₀ to I₇ multiplexer inputs
 O multiplexer output

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

Product specification

Philips Semiconductors

Philips Semiconductors Product specification

8-input multiplexer with 3-state output

HEF4512B MSI

TRUTH TABLE

INPUTS									OUTPUT				
ΕO	Ē	S ₂	S ₁	S ₀	I ₀	I ₁	l ₂	l ₃	I ₄	l ₅	I ₆	l ₇	0
L	Н	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	L
L	L	L	L	L	L	Χ	X	X	Χ	X	X	Χ	L
L	L	L	L	L	Н	Χ	X	X	Χ	X	X	Χ	н
L	L	L	L	Н	Х	L	Χ	Χ	Χ	Χ	X	Χ	L
L	L	L	L	Н	Х	Н	Х	Х	Χ	Х	Х	Х	Н
L	L	L	Н	L	Х	Χ	L	Χ	Χ	Χ	Χ	Χ	L
L	L	L	Н	L	Х	Χ	Н	X	Χ	X	X	Χ	н
L	L	L	Н	Н	Х	Χ	X	L	Χ	X	X	Χ	L
L	L	L	Н	Н	Х	Χ	Х	Н	Χ	Х	Х	Х	Н
L	L	Н	L	L	Х	Χ	Χ	Χ	L	Χ	X	Χ	L
L	L	Н	L	L	Х	Χ	X	X	Н	X	X	Χ	н
L	L	Н	L	Н	Х	Χ	Χ	Χ	Χ	L	Χ	Χ	L
L	L	Н	L	Н	Х	Χ	Χ	Х	Χ	Н	Χ	Χ	Н
L	L	Н	Н	L	Х	Χ	X	X	Χ	X	L	Χ	L
L	L	Н	Н	L	Х	Χ	X	X	Χ	X	Н	Χ	н
L	L	Н	Н	Н	Х	Χ	X	Χ	Χ	Χ	X	L	L
L	L	Н	Н	Н	Х	Χ	Х	Χ	Χ	Х	Х	Н	Н
Н	Х	Х	Χ	X	Х	Χ	Χ	Χ	Χ	Χ	X	Χ	Z

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state is immaterial
 - Z = high impedance OFF-state

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$500 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$2100 f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	5800 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = sum of outputs$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

8-input multiplexer with 3-state output

HEF4512B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O$	5		100	200	ns	73 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
	5		100	200	ns	73 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
$S_n \rightarrow O$	5		140	280	ns	113 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	55	110	ns	44 ns + (0,23 ns/pF) C _L
	15		40	80	ns	32 ns + (0,16 ns/pF) C _L
	5		150	300	ns	123 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	60	120	ns	49 ns + (0,23 ns/pF) C _L
	15		40	80	ns	32 ns + (0,16 ns/pF) C _L
$\overline{E} \to O$	5		60	120	ns	33 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	25	50	ns	14 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns + (0,16 ns/pF) C _L
	5		55	110	ns	28 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	25	50	ns	14 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pf) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
3-state propagation delays						
Output disable times						
$\overline{EO} \to O$	5		35	70	ns	
HIGH	10	t _{PHZ}	20	40	ns	
	15		15	30	ns	
	5		35	70	ns	
LOW	10	t _{PLZ}	15	30	ns	
	15		10	20	ns	
Output enable times						
$\overline{EO} o O$	5		35	70	ns	
HIGH	10	t _{PZH}	15	30	ns	
	15		10	20	ns	

Philips Semiconductors Product specification

8-input multiplexer with 3-state output

HEF4512B MSI

	V _{DD}	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
	5		35	70	ns	
LOW	10	t _{PZL}	20	40	ns	
	15		15	30	ns	

APPLICATION INFORMATION

Some examples of applications for the HEF4512B are:

- Signal gating
- Digital multiplexing
- Number sequence generation

8-input multiplexer with 3-state output

HEF4512B MSI

TRUTH TABLE for Fig. 4

A ₄	A ₃	A ₂	A ₁	A ₀	INPUT O	
L	L	L	L	L	0	
L	L	L	L	Н	1	
L	L	L	Н	L	2	
L	L	L	Н	Н	3	via
L	L	Н	L	L	4	IC 0
L	L	Н	L	Н	5	· ·
L	L	Н	Н	L	6	
L	L	Н	Н	Н	7	
L	Н	L	L	L	8	
L	Н	L	L	Н	9	
L	Н	L	Н	L	10	
L	Н	L	Н	Н	11	via
L	Н	Н	L	L	12	IC 1
L	Н	Н	L	Н	13	
L	Н	Н	Н	L	14	
L	Н	Н	Н	Н	15	
Н	L	L	L	L	16	
Н	L	L	L	Н	17	
Н	L	L	Н	L	18	
Н	L	L	Н	Н	19	via IC
Н	L	Н	L	L	20	2
Н	L	Н	L	Н	21	
Н	L	Н	Н	L	22	
Н	L	Н	Н	Н	23	
Н	Н	L	L	L	24	
Н	Н	L	L	Н	25	
Н	Н	L	Н	L	26	
Н	Н	L	Н	Н	27	via IC
Н	Н	Н	L	L	28	3
Н	Н	Н	L	Н	29	-
Н	Н	Н	Н	L	30	
Н	Н	Н	Н	Н	31	

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.