Part IB Paper 7: Mathematical Methods (2)

Linear Algebra

Examples Paper 1

Straightforward questions are marked † Tripos standard questions are marked * Apart from the questions marked MATLAB, all questions can be done by hand.

Vector Spaces

- 1† Show that the vector space spanned by $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^t$ and $\begin{bmatrix} 0 & 1 & 0.5 \end{bmatrix}^t$ is the same as that spanned by $\begin{bmatrix} 2 & 1 & -0.5 \end{bmatrix}^t$ and $\begin{bmatrix} 1 & -1 & -1 \end{bmatrix}^t$.
- 2^{\dagger} A vector space S is spanned by the vectors $\begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^t$, $\begin{bmatrix} -1 & 3 & 1 \end{bmatrix}^t$ and $\begin{bmatrix} 3 & 1 & -1 \end{bmatrix}^t$.
- (a) Determine the dimension of *S* and find a basis.
- (b) Determine whether the vector $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^t$ lies in S.
- (c) Find a basis of the space T consisting of all vectors orthogonal to every vector in S.
- (d) Express $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^t$ as $\underline{s} + \underline{t}$ where \underline{s} is in S and \underline{t} is in T.
- The vectors $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^t$ and $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^t$ span the column space of the 3×2 matrix **A**. What is the rank of **A**? Show that the most general form for **A** is

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

1

provided $ad - cb \neq 0$. Explain why this condition is necessary.

Matrix manipulation and LU Decomposition

4† Find a 3 × 2 matrix **D** such that
$$\mathbf{A} \mathbf{B} = \begin{bmatrix} 2 & 1 & 6 \\ 3 & 2 & 1 \\ 4 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 6 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 2 \\ 2 & 1 & 3 \\ 1 & 3 & 4 \end{bmatrix} \mathbf{D} = \mathbf{C} \mathbf{D}$$

Find a 3×3 matrix **P** such that $\mathbf{A} = \mathbf{C} \mathbf{P}$. If $\mathbf{B} = \mathbf{Q} \mathbf{D}$, what is the relationship between **P** and **Q**?

5† Perform the LU factorisation of:

(a)
$$\begin{bmatrix} 3 & 1 & 2 \\ -3 & 3 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 1 \\ 6 & 4 \\ -2 & 0 \end{bmatrix}$

Perform LU factorisation with partial pivoting (i.e. decomposition of the form PA = LU) on the matrix

$$\begin{bmatrix} -1 & 2 & 0 \\ 1 & 1 & 4 \\ 2 & -2 & 4 \end{bmatrix}$$

What is the matrix M, where A = MU?

7.† (OCTAVE or MATLAB)

$$\mathbf{A} = \begin{bmatrix} 2.0 & 2.1 & -4.6 & 3.1 & -2.5 \\ 1.6 & 8.4 & 1.2 & -0.8 & 5.4 \\ 4.0 & 1.0 & -2.0 & 3.0 & 1.0 \\ 1.2 & 1.9 & -2.2 & 1.0 & -2.2 \\ 0.8 & 6.6 & -0.8 & -1.0 & -2.8 \end{bmatrix}$$

Using elimination with partial pivoting, which rows of **A** would be swapped before elimination starts? Use the LU decomposition in OCTAVE or MATLAB to find the matrices, **L**, **U** and **P**. Are any other rows swapped during the elimination?

2

Solution of equations and fundamental sub-spaces

8* Complete the LU factorisation of

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 3 & 1 & 1 \end{bmatrix}$$

What is the general solution, \mathbf{x} , to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if:

(i)
$$\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, (ii) $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$

- 9 Find a basis for each of the four fundamental subspaces of the matrix **A** in Q 8.
- Write down a matrix with the required property, or explain why no such matrix exists, for:

(a) Column space contains
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and row space contains $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

(b) Column space has basis
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and nullspace has basis $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$

- (c) Column space = \mathbb{R}^4 , row space = \mathbb{R}^3 .
- 11 The matrix $\mathbf{A} = \begin{bmatrix} 2 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & -1 & 3/2 \end{bmatrix}$ is extended to form a 6×3 matrix using the identity matrix \mathbf{I} .

$$\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 & 1 & 0 & 0 \\ 3 & 4 & 2 & 0 & 1 & 0 \\ 1 & -1 & 3/2 & 0 & 0 & 1 \end{bmatrix}$$

3

Manipulate the rows of the extended matrix using scaling and addition and subtraction of rows until it is in the form $[\ \mathbf{I} \ \mathbf{B} \]$. Show that $\mathbf{A} \ \mathbf{B} = \mathbf{I}$ and explain why this method of finding the inverse works.

12* The figure below shows an electrical network.

Write down a matrix equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ which calculates the potential differences across the resistors b_i (in the direction shown by the arrows), in terms of the actual potentials at the nodes, x_i . For example:

$$x_4 - x_3 = b_{III}$$

Each entry in the matrix A will only contain -1, 0 or 1.

- (a) For existence of a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, \mathbf{b} must lie in the column space of \mathbf{A} , and therefore have no component in the left-nullspace. Calculate a basis for the left-nullspace of \mathbf{A} . What is the physical interpretation of \mathbf{b} not having a component in the left-nullspace? (Remember Kirchoff's Voltage Law.)
- (b) In general a solution \mathbf{x} of $\mathbf{A}\mathbf{x} = \mathbf{b}$ can have any component of the nullspace of \mathbf{A} added to it without affecting \mathbf{b} . Calculate a basis for the nullspace of \mathbf{A} . What is the physical interpretation of the nullspace?

13* A matrix **A** has an **LU** decomposition given by PA = LU, where

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.5 & 1 & 0 & 0 & 0 \\ 1 & -0.5 & 1 & 0 & 0 \\ 0.5 & 0.5 & 0.5 & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} -2 & 2 & 1 & 2 & -4 \\ 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Show that the vector

$$\mathbf{b} = \begin{bmatrix} -1\\2\\5\\1 \end{bmatrix}$$

lies in the column space of A.

- (b) Find the most general solution \mathbf{x} to the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- (c) Explain, without calculation, how you would find all vectors \mathbf{b} for which $\mathbf{A}\mathbf{x} = \mathbf{b}$ does not have a solution.

Relevant Paper 7 IB Tripos Questions:

2002 Q4 (a-c), 2003 Q4, 2004 Q4, 2005 Q4 & 5, 2006 Q5a, 2007 Q4a, 2008 Q5 (a-c), 2010 Q5

Answers

N.B. Remember that the basis of a vector space is not unique, so you may get different answers to some of those listed here and still be correct.

2. (a) Dimension 2. Any 2 of the vectors. (b) No. (c)
$$\begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}$$
 (d) $\underline{s} = \begin{bmatrix} 8/15 \\ 7/30 \\ 1/6 \end{bmatrix} \underline{t} = \begin{bmatrix} 7/15 \\ -7/30 \\ 5/6 \end{bmatrix}$

3. 2

4.
$$\mathbf{D} = \begin{bmatrix} 2 & 1 \\ 6 & 2 \\ 1 & 1 \end{bmatrix} \quad \mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \mathbf{Q} = \mathbf{P}^{\mathbf{t}}$$

5. (a)
$$\mathbf{L} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
 $\mathbf{U} = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 4 & 3 \end{bmatrix}$ (b) $\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$ $\mathbf{U} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

5

6.
$$\mathbf{M} = \begin{bmatrix} -0.5 & 0.5 & 1 \\ 0.5 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \mathbf{U} = \begin{bmatrix} 2 & -2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{P} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.5 & 0.5 & 1 \end{bmatrix}$$

7. Rows 4 and 5 are swapped in addition to rows 1 and 3.

8.
$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \ \mathbf{U} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ (a.i) \begin{bmatrix} -3 \\ 2 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 (a.ii) no solution

9. Nullspace
$$\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ Rowspace $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, Column space $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

Left-nullspace
$$\begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}$$

10. (a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$
, (b-c) no matrix exists.

11.
$$\mathbf{B} = \begin{vmatrix} 2 & -1 & 0 \\ -\frac{5}{8} & \frac{1}{2} & -\frac{1}{4} \\ -\frac{7}{4} & 1 & \frac{1}{2} \end{vmatrix}$$

12.
$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$
 (a) left-nullspace
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
,
$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 (b) nullspace
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

13. (a) Find $\mathbf{c} = \mathbf{U}\mathbf{x}$ by solving $\mathbf{L}\mathbf{c} = \mathbf{P}\mathbf{b}$. Then show that $\mathbf{U}\mathbf{x} = \mathbf{c}$ can be solved.

(b)
$$\mathbf{x} = \begin{bmatrix} -2 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1.5 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$J P Jarrett$$

6