## Homework 5. Solutions.

1 Consider the following curves:

$$C_{1}: \mathbf{r}(t) \begin{cases} x = t \\ y = 2t^{2} - 1 \end{cases}, \ 0 < t < 1, \qquad C_{2}: \mathbf{r}(t) \begin{cases} x = t \\ y = 2t^{2} - 1 \end{cases}, \ -1 < t < 1,$$

$$C_{3}: \mathbf{r}(t) \begin{cases} x = 2t \\ y = 8t^{2} - 1 \end{cases}, \ 0 < t < \frac{1}{2}, \qquad C_{4}: \mathbf{r}(t) \begin{cases} x = \cos t \\ y = \cos 2t \end{cases}, \ 0 < t < \frac{\pi}{2},$$

$$C_{5}: \mathbf{r}(t) \begin{cases} x = t \\ y = 2t - 1 \end{cases}, \ 0 < t < 1, \qquad C_{6}: \mathbf{r}(t) \begin{cases} x = 1 - t \\ y = 1 - 2t \end{cases}, \ 0 < t < 1,$$

$$C_{7}: \mathbf{r}(t) \begin{cases} x = \sin^{2} t \\ y = -\cos 2t \end{cases}, \ 0 < t < \frac{\pi}{2}, \qquad C_{8}: \mathbf{r}(t) \begin{cases} x = t \\ y = \sqrt{1 - t^{2}}, \ -1 < t < 1,$$

$$C_{9}: \mathbf{r}(t) \begin{cases} x = \cos t \\ y = \sin t \end{cases}, \ 0 < t < \pi, \qquad C_{10}: \mathbf{r}(t) \begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \ 0 < t < 2\pi \end{cases}$$

$$C_{11}: \mathbf{r}(t) \begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \ 0 < t < 2\pi \end{cases}$$

Draw the images of these curves.

Write down their velocity vectors.

Indicate parameterised curves which have the same image (equivalent curves).

In each equivalence class of parameterised curves indicate curves with same and opposite orientations.

$$C_{1}: \mathbf{v}(t) = \begin{pmatrix} v_{x} \\ v_{y} \end{pmatrix} = \begin{pmatrix} 1 \\ 4t \end{pmatrix}, C_{2}: \mathbf{v}(t) = \begin{pmatrix} v_{x} \\ v_{y} \end{pmatrix} = \begin{pmatrix} 1 \\ 4t \end{pmatrix}, C_{3}: \mathbf{v}(t) = \begin{pmatrix} 2 \\ 16t \end{pmatrix}, C_{4}: \mathbf{v}(t) = \begin{pmatrix} -\sin t \\ -2\sin 2t \end{pmatrix},$$

$$C_{5}: \mathbf{v}(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, C_{6}: \mathbf{v}(t) = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, C_{7}: \mathbf{v}(t) = \begin{pmatrix} \sin 2t \\ 2\sin 2t \end{pmatrix},$$

$$C_{8}: \mathbf{v}(t) = \begin{pmatrix} 1 \\ \frac{-t}{\sqrt{1-t^{2}}} \end{pmatrix}, C_{9}: \mathbf{v}(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}, C_{10}: \mathbf{v}(t) = \begin{pmatrix} -2\sin 2t \\ 2\cos 2t \end{pmatrix}$$

$$C_{11}: \mathbf{v}(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}, C_{12}: \mathbf{v}(t) = \begin{pmatrix} -a\sin t \\ b\cos t \end{pmatrix}$$

Curves  $C_1$ ,  $C_3$  and  $C_4$  have the same image: it is piece of parabola  $y = 2x^2 - 1$  between points (0,1) and (1,1). Image of the curve  $C_2$  is piece of the same parabola  $y = 2x^2 - 1$  between points (-1,1) and (1,1). Image of curve  $C_1$  is a part of the image of the curve  $C_2$ .

Curve  $C_3$  can be obtained from the curve  $C_1$  by reparameterisation  $t(\tau) = 2\tau$ ,  $\mathbf{r}_3(\tau) = \mathbf{r}_1(t(\tau)) = \mathbf{r}_1(2\tau)$ . Respectively  $\mathbf{v}_3(\tau) = t'(\tau)\mathbf{v}_1(t(\tau)) = 2\mathbf{v}_1(2\tau)$ . Curve  $C_4$  can be obtained from the curve  $C_1$  by reparameterisation  $t(\tau) = \cos \tau$ ,  $\mathbf{r}_4(\tau) = \mathbf{r}_1(t(\tau)) = \mathbf{r}_1(\cos \tau)$ . Respectively  $\mathbf{v}_4(\tau) = \begin{pmatrix} -\sin \tau \\ -2\sin 2\tau \end{pmatrix} = t'(\tau)\mathbf{v}_1(t(\tau)) = -\sin \tau \mathbf{v}_1(\cos \tau) = -\sin \tau \begin{pmatrix} 1 \\ 2\cos \tau \end{pmatrix}$ .

We see that curves  $C_1, C_3, C_4$  are equivalent. They belong to the same equivalence class of non-parameterised curves. Equivalent curves  $C_1$  and  $C_3$  have same orientation because diffeomorphism  $t = 2\tau$  has positive derivative. Equivalent curves  $C_1$  and  $C_4$  (and so  $C_3$  and  $C_4$ ) have opposite orientation because diffeomorphism  $t = \cos \tau$  has negative derivative (for 0 < t < 1).

Now consider curves  $C_5, C_6, C_7$ . It is easy to see that they all have the same image— segment of the line between point (0, -1) and (1, 1). These three curves belong to the same equivalence class of non-parameterised curves. Curve  $C_6$  can be obtained from the curve  $C_5$  by reparameterisation  $t(\tau) = 1 - \tau$ ,  $\mathbf{r}_6(\tau) = \mathbf{r}_5(t(\tau)) = \mathbf{r}_5(1 - \tau)$ . Respectively  $\mathbf{v}_6(\tau) = t'(\tau)\mathbf{v}_5(t(\tau)) = -\mathbf{v}_5(1 - \tau)$ . (Velocity just change its direction on opposite.) Curve  $C_7$  can be obtained from the curve  $C_5$  by reparameterisation  $t(\tau) = t'(\tau)\mathbf{v}_5(t(\tau))$ 

$$\sin^2 \tau$$
,  $\mathbf{r}_7(\tau) = \mathbf{r}_5(t(\tau)) = \mathbf{r}_5(\sin \tau)$ . Respectively  $\mathbf{v}_7(\tau) = \begin{pmatrix} \sin 2\tau \\ 2\sin 2\tau \end{pmatrix} = t'(\tau)\mathbf{v}_5(t(\tau)) = \sin 2\tau \mathbf{v}_5(\sin \tau) = \sin 2\tau \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ .

Equivalent curves  $C_5$  and  $C_7$  have the same orientation because derivative of diffeomorphism  $t = \sin^2 \tau$  is positive (on the interval 0 < t < 1). Curve  $C_6$  has orinetation opposite to the orientation of the curves  $C_5$  and  $C_6$  because derivative of diffeomorphism  $t = 1 - \tau$  is negative. Or in other words when we go to the curve  $C_6$  starting point becomes ending point and vice versa.

Now consider curves  $C_8$ ,  $C_9$ ,  $C_{10}$ . It is easy to see that they all have the same image—upper part of the circle  $x^2 + y^2 = 1$ . These three curves belong to the same equivalence class of non-parameterised curves. Curve  $C_9$  can be obtained from the curve  $C_8$  by reparameterisation  $t(\tau) = \cos \tau$ . Then  $\mathbf{r}_9(\tau) = \mathbf{r}_8(t(\tau)) = \mathbf{r}_8(\cos \tau)$ . Respectively  $\mathbf{v}_9(\tau) = t'(\tau)\mathbf{v}_8(t(\tau)) = -\sin \tau \mathbf{v}_8(\cos \tau)$ .

Curve  $C_{10}$  can be obtained from the curve  $C_8$  by reparameterisation  $t(\tau) = 2\tau$ ,  $\mathbf{r}_{10}(\tau) = \mathbf{r}_8(t(\tau)) = \mathbf{r}_8(2\tau)$ . Respectively  $\mathbf{v}_{10}(\tau) = t'(\tau)\mathbf{v}_8(t(\tau)) = 2\tau\mathbf{v}_8(2\tau)$ .

Equivalent curves  $C_8$  and  $C_{10}$  have the same orientation because derivative of diffeomorphism  $t = 2\tau$  is positive. Curve  $C_9$  has orinetation opposite to the orientation of the curves  $C_8$  and  $C_{10}$  because derivative of diffeomorphism  $t = \cos \tau$  on the interval  $0 < t < \pi$  is negative.

Image of the curve  $C_{11}$  is circle  $x^2 + y^2 = 1$ . Image of the curve  $C_{12}$  is ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 

**2** Consider the curves  $C_1, C_2$  given by the parametric equations

$$C_1: \mathbf{r}(\tau) \ \begin{cases} r(\tau) = \frac{1}{2 - \cos \tau} \\ \varphi(\tau) = \tau \end{cases}, \ 0 \le \tau < 2\pi, \ C_2: \mathbf{r}(t) \ \begin{cases} x(t) = \frac{2}{3} \cos t + \frac{1}{3} \\ y(t) = \frac{1}{\sqrt{3}} \sin t \end{cases}, \ 0 \le t < 2\pi.$$

Here the curve  $C_1$  is defined in polar coordinates  $r, \varphi$ , the curve  $C_2$  is defined in usual cartesian coordinates  $(x = r \cos \varphi, y = r \sin \varphi)$ .

Show that the images of both curves are ellipses.

Check that these ellipses coincide.

 $^{\dagger}$  Find foci of this ellipse \*.

Just to recall the definition of the ellipse:

**Definition**. The locus of points in the plane such that sum of the distances to two fixed points is constant:

$$\{\mathbf{r}: |\mathbf{r} - F_1| + |\mathbf{r} - F_2| = constant\}. \tag{2.1}$$

 $F_1, F_2$  are called foci of the ellipse.

One can show that in suitable cartesian coordinates the equation of ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. {(2.2)}$$

(See the sketch of the proof in Appendix at the end.) The inverse is also true: any curve which is defined by (2.2) is an ellipse.

The ellipse (2.2) can be defined by parametric equation

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, 0 \le t \le 2\pi$$
 (2.3)

<sup>\*</sup> Ellipse can be defined as a locus of points in a plane such that the sum of the distances to two fixed points is a constant. These two fixed points are called foci.

where a, b are arbitrary parameters  $a \neq 0, b \neq 0$ .

Now return to our problem. One can easy see that the second curve is an ellipse:  $x - \frac{1}{3} = \frac{2}{3}\cos t$ ,  $y = \frac{1}{\sqrt{3}}\sin t$ . Hence

$$\frac{9}{4}\left(x - \frac{1}{3}\right)^2 + 3y^2 = \cos^2 t + \sin^2 t = 1.$$
 (2.4)

if we translate coordinate  $x\mapsto x-\frac{1}{3}$  we come to the equation (2.2) with

$$a = \frac{2}{3}, \ b = \frac{1}{\sqrt{3}}.$$
 (2.5)

The first curve defines the set of points  $r(2-\cos\varphi)=1$  (in polar coordinates). Hence  $2r=1+r\cos\varphi$ , i.e.  $2\sqrt{x^2+y^2}=1+r\cos\varphi=1+x$ ). Taking squares we come to  $4x^2+4y^2=(1+x)^2$  (condition,  $1+x\geq 0$ ). Hence  $4x^2+4y^2=1+2x+x^2$ , i.e.  $3x^2-2x+4y^2=1$ .

$$3\left(x^2 - \frac{2x}{3}\right) + 4y^2 = 1 \Leftrightarrow 3\left(x - \frac{1}{3}\right)^2 + 4y^2 = 1 + \frac{1}{3} \Leftrightarrow \frac{9}{4}\left(x - \frac{1}{3}\right)^2 + 3y^2 = 1$$

We see that this equation coincides with equation (2.4). Ellipses coincide.

Now find the foci of this ellipse and check the condition (2.1).

Consider the two points  $F_1 = (0,0)$  and  $F_2 = (0,f)$ . Take an arbitrary point P on the ellipse  $r = \frac{1}{2-\cos\varphi}$ . (We prefer to work in polar coordinates.) Denote by l(P) the sum of the distances from the point P on the ellipse to two points  $F_1, F_2$ 

$$l(P) = |P - F_1| + |P - F_2|$$

Show that one can choose f such that the sum l(P) is constant for an arbitrary point P:  $r(1-2\cos\varphi)=1$ . Considering the triangle  $F_1F_2P$  we see that

$$|PF_1|^2 + |F_1F_2|^2 - 2|PF_1||F_1F_2|\cos\varphi = |PF_2|^2$$
.

Thus if  $(r, \varphi)$  are polar coordinates of the point P then

$$r^{2} + f^{2} - 2rf\cos\varphi = (l-r)^{2} \Leftrightarrow f^{2} - 2fr\cos\varphi = l^{2} - 2lr \Leftrightarrow r = \frac{l^{2} - f^{2}}{2l - 2f\cos\varphi}$$

On the other hand  $r = \frac{1}{2-\cos\varphi}$ . Hence

$$r = \frac{1}{2 - \cos \varphi} = \frac{l^2 - f^2}{2l - 2f \cos \varphi} \Leftrightarrow 2(l^2 - f^2 - l) = (l^2 - f^2 - 2f) \cos \varphi$$

This equation is valid for an arbitrary  $\varphi$ . Hence  $l^2 - f^2 - l = 0$  and  $l^2 - f^2 - 2f = 0$ , i.e.

$$f = \frac{2}{3}, l = \frac{4}{3}$$
.

We proved that the foci of the ellipse are at the points  $F_1 = (0,0)$  and  $F_2 = (\frac{1}{3},0)$ . The sum of the distances from any point on the ellipse to foci is equal to  $\frac{4}{3}$ 

3 Consider the following curve (helix):  $\mathbf{r}(t)$ :  $\begin{cases} x(t) = a \cos \omega t \\ y(t) = a \sin \omega t \\ z(t) = ct \end{cases}$ 

Show that the image of this curve belongs to the surface of cylinder  $x^2 + y^2 = a^2$ .

Find the velocity vector of this curve.

Find the length of this curve.

Finish the following sentence:

After developing the surface of cylinder to the plane the curve will develop to the...

For any point of this curve  $x^2(t) + y^2(t) = a^2$ . Hence all points belong to the surface of cylinder  $x^2 + y^2 = a^2$ .

Calculate velocity vector:

$$\mathbf{v}(t) = \begin{pmatrix} v_x \\ v_y \\ \mathbf{v}_z \end{pmatrix} = \begin{pmatrix} x_t \\ y_t \\ z_t \end{pmatrix} = \begin{pmatrix} -\omega a \sin \omega t \\ \omega a \cos \omega t \\ c \end{pmatrix}$$

and

$$|\mathbf{v}|^2 = \mathbf{v}^2 = v_x^2 + v_y^2 + v_z^2 = \omega^2 a^2 \sin^2 \omega t + \omega^2 a^2 \cos^2 \omega t + c^2 = \omega^2 a^2 + c^2$$

The speed is constant, hence length is equal to  $L = |\mathbf{v}|t_0 = t_0\sqrt{\omega^2a^2 + c^2}$ .

Consider surface of cylinder  $\mathbf{r}(\varphi, h)$ :  $x = a\cos\varphi$ ,  $y = a\sin\varphi$ , z = h. Any point  $(\varphi, h)$  after developing on the plane will have the coordinates  $L(\varphi) = a\varphi$  (length of the arc) and z = h. For points of the helix an angle  $\varphi = \omega t$ , h = ct. Hence for these points  $L(t) = a\omega t$  and z(t) = ct, i.e.  $z = \frac{c}{a\omega}L$ . It is a line.

## Appendix $^{\dagger}$

Consider an ellipse with foci at the points  $F_1$ ,  $F_2$  and with sum of the distances to foci is equal to l:

ellipse = 
$$\{P: |P - F_1| + |P - F_2| = l\}$$
. (A1)

Put an origin of coordinate frame at the point  $F_1$  and x-axis along the ray  $F_1F_2$ .

Denote by f the length of the interval  $F_1F_2$ ,  $f = |F_1F_2|$ . Let point P is at the distance r from the focus  $F_1$ . Let  $\varphi$  be an angle between the rays  $F_1P$  and  $F_1F_2$ . Then it follows from (A1) that

$$r^2 - 2rf\cos\varphi + f^2 = (l-r)^2$$

Opening brackets we come to

$$r(2l - 2f\cos\varphi) = l^2 - f^2.$$

 $r, \varphi$  are polar coordinates:  $x = r \cos \varphi$ ,  $r^2 = x^2 + y^2$ . We see that

$$2lr - 2fx = l^2 - f^2$$
.

Hence

$$4l^2r^2 = 4l^2(x^2 + y^2) = (l^2 - f^2 + 2fx)^2$$
.

This last equation is in cartesian coordinates. It is easy to see that by translation  $x \mapsto x - s$  we come to the canonical equation (2.2).