

DATASHEET

JMB585 PCle Gen3x2 to 5 SATA 6Gb/s Bridge

Document No.: PDS-18001/ Revision: 1.1 / Date: 12/14/2018

JMicron Technology Corporation

1F, No. 13, Innovation Road 1, Science-Based Industrial Park,

Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Website: http://www.jmicron.com

Copyright © 2018, JMicron Technology Corp. All Rights Reserved.

Printed in Taiwan 2018

JMicron and the JMicron Logo are trademarks of JMicron Technology Corporation in Taiwan and/or other countries.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use implantation or other life supports application where malfunction may result in injury or death to persons. The information contained in this document does not affect or change JMicron's product specification or warranties. Nothing in this document shall operate as an express or implied license or environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will JMicron be liable for damages arising directly or indirectly from any use of the information contained in this document.

For more information on JMicron products, please visit the JMicron web site at http://www.JMicron.com or send e-mail to sales@jmicron.com. For product application support, please send e-mail to fae@jmicron.com.

JMicron Technology Corporation

1F, No.13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Revision History

Revision	Effective		Author			
Number	Date	Reference	Description of the Change	Author		
0.1	02/26/2018	-	- Draft release			
0.2	10/05/2018	-	 rename JMS585 to JMB585 remove GPIO0 rename Signal Name in 5 Package pin-out swap PCle Lane0 and Lane1 	MD Lin		
1.0	11/01/2018	Chapter 7	Update Electrical characteristics	MD Lin		
1.1	12/14/2018		Change core power to 1.25V	MD Lin		

Table of Contents

Re	visio	on History	ii
Та	ble o	of Contents	iii
Fi	gure	List	iv
Та	ble L	ist	v
1	Intro	oduction	1
2	Fea	tures	2
3	Blo	ck diagram	3
4	Pac	kage dimension	4
5	Pac	kage pin-out	5
	5.1	Pin assignment	5
	5.2	Pin type definition	6
	5.3	Pin description	7
		5.3.1 PCIe interface	7
		5.3.2 SATA Gen 3 interface	8
		5.3.3 Crystal interface	9
		5.3.4 Control and GPIO interface	9
		5.3.5 Power supply	11
6	Clo	ck and reset	12
	6.1	Crystal input	12
7	Elec	ctrical characteristics	13
	7.1	Absolute maximum rating	13
	7.2	Operating voltage and temperature	13
	7.3	External clock source conditions	14
	7.4	Power dissipation	14
		7.4.1 PCIe to SATA mode	14
	7.5	I/O DC characteristics	15
	7.6	Power-on sequence	16
8	Pro	duct naming rule and identification	18
	8.1	Format of the part number	18
	8.2	Explanation of the part number	18
	8.3	Top mark	19

Figure List

Figure 1	Block diagram	3
Figure 2	Package outline drawing of QFN76 9x9	4
Figure 3	76-Pin assignment of JMB585	5
Figure 4	Power-on sequence	.16
Figure 5	Format of the part number	.18
Figure 6	Illustration of device top mark	.19

Table List

Table 1	Pin type definition	6
Table 2	Pin description – PCIe interface	7
Table 3	Pin description – SATA 3.1 Gen 3	8
Table 4	Pin description – Crystal interface	9
Table 5	Pin description – Control and GPIO interface	9
Table 6	Pin description – Power supply interface	11
Table 7	Crystal electrical specification	12
Table 8	Absolute maximum rating	13
Table 9	Operating voltage and temperature	13
Table 10	External clock source conditions	14
Table 11	Power dissipation – Operation with PCIe L0 state	14
Table 12	Power dissipation – Idle with PCIe L0 state	14
Table 13	Power dissipation – Suspend with PCIe L2 state	15
Table 14	I/O DC characteristics	15
Table 15	Power-on timing requirements	17
Table 16	Explanation of the part number	18

1 Introduction

The JMB585 is a bridge controller between the PCIe host and the storage devices with SATA/AHCI interface. Its upstream port provides a PCIe which data transmission rate for PCIe Gen 3x2 specification. Meanwhile, its downstream port can connect to SATA/AHCI storage devices, such as a solid-state drive (SSD). The data speed of each port for the SATA port can arrive at 6Gb/s.

Also, the JMB585 SATA Host provides five ports and supports Port Multiplier. JMB585 supports command-based switching (CBS) and FIS (Frame Information Structure)-based switching (FBS). The default communication method between the SATA Host and the port Multiplier is CBS. FBS allows the Host controller to issue multiple commands that send and receive data simultaneously from any drive.

The JMB585 supports TRIM to the SSD and can transmit and receive data by both of AHCI mode and legacy IDE mode to and from the host respectively.

JMB585 is highly integrated with JMicron PCI Express and SATA self-designed PHYs.

Finally, the JMB585 is a new product that almost reaches PCIe Gen3x2 line bandwidth. JMB585 can be applied on PC. Mobile, severs, IPC, consumer electrical devices, storage device, and NVR/DVR system.

2 Features

General Features

- 15 GPIOs for customization.
- SPI interface for external SPI Flash (Option ROM).
- Supports Windows 7, Windows 10 and Linux-base OS
- Supports 3.3V I/O and 1.25V core power.
- 25MHz external crystal.
- 76-pin (2 lane PCle to 5 SATA port) package.

PCI Express Features

- Supports up to two lane of PCI Express.
- Complies with PCI Express Base Specification Revision 3.1a.
- Supports PCIe link layer power saving mode.
- 100MHz differential PCI Express reference clock in.

SATA Features

- Supports 5 SATA port.
- Supports command-based and FIS-based for Port Multiplier.
- Complies with SATA Specification Revision 3.2.
- Supports AHCI mode and IDE programming interface.
- Supports Native Command Queue (NCQ).
- Supports SATA link power saving mode (partial and slumber)
- Supports SATA plug-in detection capable.
- Supports drive power control and staggered spin-up.
- Supports SATA Partial / Slumber power management state.

3 Block diagram

Figure 1 Block diagram

4 Package dimension

Figure 2 Package outline drawing of QFN76 9x9

5 Package pin-out

5.1 Pin assignment

Figure 3 76-Pin assignment of JMB585

5.2 Pin type definition

 Table 1
 Pin type definition

Pin type	Definition					
Α	Analog					
D	Digital					
I	Input					
0	Output					
Р	Power					
Ю	Bi-directional					
L	Internal weak pull-low					
Н	Internal weak pull-high (Max. 85 k Ω , Typical 54 k Ω , Min. 36 k Ω)					

5.3 Pin description

5.3.1 PCle interface

Table 2 Pin description - PCle interface

Signal Name	QFN 76	Туре	Description
P_RXN0	26	AI	PCIe Port RX- Signal of Lane 0
P_RXP0	27	AI	PCIe Port RX+ Signal of Lane 0
P_TXN0	29	АО	PCle Port TX- Signal of Lane 0 A 200 nF capacitor should be connected between this pin and PCle connector.
P_TXP0	30	АО	PCle Port TX+ Signal of Lane 0 A 200 nF capacitor should be connected between this pin and PCle connector.
P_REXT	31	AI	External Reference Resistance A 12 k Ω ±1% external resistor should be connected to this pin.
P_RXN1	33	AI	PCIe Port RX- Signal of Lane 1
P_RXP1	34	AI	PCIe Port RX+ Signal of Lane 1
P_TXN1	36	АО	PCIe Port TX- Signal of Lane 1 A 200 nF capacitor should be connected between this pin and PCIe connector.
P_TXP1	37	АО	PCle Port TX+ Signal of Lane 1 A 200 nF capacitor should be connected between this pin and PCle connector.
P_REFCLKP	24	DI	Differential Clock P 100Mhz reference clock from Host.
P_REFCLKN	23	DI	Differential Clock N 100Mhz reference clock from Host.
P_RSTN	22	DI	PCIE Reset from Host
P_CLKREQ	21	DIO	This is for L1 substate

5.3.2 SATA Gen 3 interface

Table 3 Pin description – SATA 3.1 Gen 3

Signal Name	QFN 76	Туре	Description
S_RXP0	40	Al	SATA Port0 RX+ Signal
S_RXN0	41	AI	SATA Port0 RX- Signal
S_TXN0	43	АО	SATA Port0 TX- Signal A 10 nF capacitor should be connected between this pin and SATA connector.
S_TXP0	44	АО	SATA Port0 TX+ Signal A 10 nF capacitor should be connected between this pin and SATA connector.
S_RXP1	46	AI	SATA Port1 RX+ Signal
S_RXN1	47	AI	SATA Port1 RX- Signal
S_TXN1	49	АО	SATA Port1 TX- Signal A 10 nF capacitor should be connected between this pin and SATA connector.
S_TXP1	50	АО	SATA Port1 TX+ Signal A 10 nF capacitor should be connected between this pin and SATA connector.
S_RXP2	52	AI	SATA Port2 RX+ Signal
S_RXN2	53	Al	SATA Port2 RX- Signal
S_TXN2	55	АО	SATA Port2 TX- Signal A 10 nF capacitor should be connected between this pin and SATA connector.
S_TXP2	56	АО	SATA Port2 TX+ Signal A 10 nF capacitor should be connected between this pin and SATA connector.
S_RXP3	64	AI	SATA Port3 RX+ Signal
S_RXN3	65	AI	SATA Port3 RX- Signal
S_TXN3	67	АО	SATA Port3 TX- Signal A 10 nF capacitor should be connected between this pin and SATA connector.

S_TXP3	68	AO	SATA Port3 TX+ Signal A 10 nF capacitor should be connected between this pin and SATA connector.
S_RXP4	70	AI	SATA Port4 RX+ Signal
S_RXN4	71	AI	SATA Port4 RX- Signal
S_TXN4	73	AO	SATA Port4 TX- Signal A 10 nF capacitor should be connected between this pin and SATA connector.
S_TXP4	74	АО	SATA Port4 TX+ Signal A 10 nF capacitor should be connected between this pin and SATA connector.

5.3.3 Crystal interface

Table 4 Pin description – Crystal interface

Signal Name	QFN 76	Туре	Description
XIN	59	AI	Crystal Input/Oscillator Input It is connected to a 25MHz crystal or crystal oscillator. The variation range should be ±30ppm. And the input voltage range is 3.3V±5%.
хоит	60	AO	Crystal Output It is connected to a crystal. While crystal oscillator is applied, this pin should be reserved for No Connection (NC). The output variation range is around ±30ppm (input dependent). And the output voltage range is 3.3V±5% (input dependent).

5.3.4 Control and GPIO interface

Table 5 Pin description – Control and GPIO interface

Signal Name	QFN 76	Туре	Description
XTSTN	2	DI	MP Test Mode Enable Schmitt trigger input pin. This pin is reserved for IC mass production testing. Keep this pin to logic "1" in normal operation.
GPIO1	19	DO	SPI SI : SPI Flash SI Pin.
GPIO2	18	DO	SPI CK : SPI Flash CK Pin
GPIO3	17	DO	SPI WP# : SPI Flash WP# Pin

Signal Name	QFN 76	Type	Description
GPIO4	15	DI	SPI SO : SPI Flash SO Pin
GPIO5	13	DO	SPI CE# : SPI Flash CE# Pin
GPIO6	4	DO	SATA0 LED : SATA Port 0 PWM (PHY Ready / Link Busy / Sleep Dim)
GPIO7	3	DO	SATA1 LED : SATA Port 1 PWM (PHY Ready / Link Busy / Sleep Dim)
GPIO8	76	DO	SATA2 LED : SATA Port 2 PWM (PHY Ready / Link Busy / Sleep Dim)
GPIO9	14	DO	SATA3 LED : SATA Port 3 PWM (PHY Ready / Link Busy / Sleep Dim)
GPIO10	11	DO	SATA4 LED : SATA Port 4 PWM (PHY Ready / Link Busy / Sleep Dim)
GPIO11	10	DIO	GPO11 : General Purpose I/O
GPIO12	9	DIO	GPO12 : General Purpose I/O.
GPIO13	8	DIO	GPO13 : General Purpose I/O
GPIO14	7	DIO	GPO14 : General Purpose I/O
GPIO15	6	DIO	GPO15 : General Purpose I/O

5.3.5 Power supply

Table 6 Pin description – Power supply interface

Signal Name	QFN 76	Туре	Description
vсск	5,16, 38, 62, 75	PI	1.25V core power supply
vcco	1,14	PI	3.3V I/O power supply
P_AVDDL	25,28,32, 35	PI	Analog 1.25V power supply for PCle
S_AVDDL	39,42,45, 48,51,54, 63,66,69, 72	PI	Analog 1.25V power supply for SATA
XAVDDL	58	PI	Analog 1.25V power supply for crystal oscillator
XAVDDH	61	PI	Analog 3.3V power supply for crystal oscillator

6 Clock and reset

6.1 Crystal input

Single crystal input (25MHz) is needed.

Table 7 Crystal electrical specification

Parameter	Symbol	Min	Typical	Max	Unit
Crystal Frequency	f _{clk}		25		MHz
Long term stability (Crystal Only)	$\Delta \mathbf{f}_{MAX_Crystal}$	-30		30	ppm

7 Electrical characteristics

7.1 Absolute maximum rating

Table 8 Absolute maximum rating

Parameter	Symbol	Condition	Min	Max	Unit
Digital 3.3V	VCCO _(ABS)		-0.5	VCCO+0.5	V
Digital 1.25V	VCCK _(ABS)		-0.5	VCCK+0.5	V
Analog 3.3V	XAVDDH		-0.5	XAVDDH+0.5	V
Analog 1.25V	XAVDDL _(ABS)		-0.5	XAVDDL+0.5	V
Analog 1.25V	S_AVDDL _(ABS)		-0.5	S_AVDDL+0.5	V
Analog 1.25V	P_AVDDL _(ABS)		-0.5	P_AVDDL+0.5	V
Digital I/O input voltage	V _{I(D)}		-0.5	VCCO+0.5	V
Storage temperature	T _{STORAGE}		-40	150	°C

7.2 Operating voltage and temperature

Table 9 Operating voltage and temperature

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO		3.0	3.3	3.6	V
Digital 1.25V	VCCK		1.20	1.25	1.30	V
Analog 3.3V	XAVDDH		3.0	3.3	3.6	V
	XAVDDL					
Analog 1.25V	S_AVDDL		1.20	1.25	1.30	V
	P_AVDDL					
Digital I/O input voltage	V _{I(D)}		3.0	3.3	3.6	V
Ambient operation temperature	T _A		0		70	°C
Junction Temperature	TJ				125	°C

7.3 External clock source conditions

Table 10 External clock source conditions

Parameter	Symbol	Condition	Min	Typical	Max	Unit
External reference clock				25		MHz
Clock Duty Cycle			45	50	55	%

7.4 Power dissipation

7.4.1 PCle to SATA mode

7.4.1.1 Operation with PCle LO state

 Table 11
 Power dissipation – Operation with PCIe L0 state

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		1		mA
Digital 1.25V	VCCK	Operate @ 1.25V		270		mA
Analog 3.3V	XAVDDH	Operate @ 3.3V		1		mA
Analog 1.25V	XAVDDL	Operate @ 1.25V		18		mA
Analog 1.25V	S_AVDDL	Operate @ 1.25V		600		mA
Analog 1.25V	P_AVDDL	Operate @ 1.25V		300		mA

7.4.1.2 Idle with PCIe LO state

 Table 12
 Power dissipation – Idle with PCIe L0 state

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		1		mA
Digital 1.25V	VCCK	Operate @ 1.25V		250		mA
Analog 3.3V	XAVDDH	Operate @ 3.3V		1		mA
Analog 1.25V	XAVDDL	Operate @ 1.25V		18		mA
Analog 1.25V	S_AVDDL	Operate @ 1.25V		600		mA
Analog 1.25V	P_AVDDL	Operate @ 1.25V		300		mA

7.4.1.3 Suspend with PCle L2 state

Table 13 Power dissipation – Suspend with PCIe L2 state

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		1		mA
Digital 1.25V	VCCK	Operate @ 1.25V		100		mA
Analog 3.3V	XAVDDH	Operate @ 3.3V		1		mA
Analog 1.25V	XAVDDL	Operate @ 1.25V		18		mA
Analog 1.25V	S_AVDDL	Operate @ 1.25V		330		mA
Analog 1.25V	P_AVDDL	Operate @ 1.25V		190		mA

7.5 I/O DC characteristics

Table 14 I/O DC characteristics

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Input low voltage	V_{IL}		-0.3		8.0	V
Input high voltage	V _{IH}		2		3.6	V
Output low voltage	V_{OL}				0.4	V
Output high voltage	V _{OH}		2.4			V
Output Current	I _{OH}		13.9	26.8	45.2	mA
Output Current	I _{OL}		9.8	14.4	19.1	mA

7.6 Power-on sequence

The power-on sequence is defined in Figure 4. Designers should follow all the rules for external power designs.

Figure 4 Power-on sequence

T_{12v}: Rise time for 12V power rail from 10% to 90%

T1: Rise time for 3V3 power rail from 10% to 90%

T2: Rise time for 1V25 power rail from 10% to 90%

T3: Time interval between 3V3 power and 1V25 Power

T_{Clock:} Time interval between 3V3 and 90% clock swing

Note: Clock must meet 25MHz +/-30ppm during the sequence.

 Table 15
 Power-on timing requirements

Time	Minimum	Maximum
T _{12V}	-	10ms
T1	-	10ms
T2	-	10ms
Т3	-5ms	5ms
Tclock	-	1ms

8 Product naming rule and identification

8.1 Format of the part number

The part number consists of the information of provider, product category, device number, package type, material type, product grade (operating temperature), mask ROM version and device version. The format of the part number is illustrated in Figure 5 below.

Figure 5 Format of the part number

8.2 Explanation of the part number

Table 17 explains each section of the part number illustrated in Figure 5 above.

Meaning Section Length **Purpose** Code(s) a (JM) 2 digits Brand name JM The provider JMicron b (B) 1 digit Product category В B = Bridge, S = SOCThe serial number assigned randomly to form the device name "JMB585" in c (585) 3 digits 585 Device number conjunction with brand name and product category. d (Q) 1 digit Package type B, L, Q, T B = BGA; L = LQFP; Q = QFN; T = TQFPG = Gold wired RoHS compliant halogen-free green product; Ta: 0 ~ 70°C. **H** = Copper wired RoHS compliant halogen-free green product; Ta: 0 ~ 70°C. e (H) Material & grade G, H, I, J 1 digit I = Gold wired RoHS compliant halogen-free green product; Ta: -40 ~ 85°C. J = Copper wired RoHS compliant halogen-free green product;

Table 16 Explanation of the part number

Ta: -40 ~ 85°C.

Section	Length	Purpose	Code(s)	Meaning
f (B)	1 digit	Internal bonding type	A, B, C,	A, B, C,
		Version of mask	A0, A1, A2,	Version A0, A1, A2,
g (A0)	(A0) 2 digit		B0, B1, B2,	Version B0 , B1 , B2 ,
			Z0	Version Z0 = no mask ROM
h (A)	1 digit	Version of the IC	A, B, C,	Version A, B, C,

8.3 Top mark

Each device has its unique top mark containing the information of provider, device name, part number, manufacturing date code, lot number and pin one identifier for identification. The top mark is illustrated in Figure 6 below.

Figure 6 Illustration of device top mark

