

South China University of Technology

The Experiment Report of Machine Learning

SCHOOL: SCHOOL OF SOFTWARE ENGINEERING

SUBJECT: SOFTWARE ENGINEERING

Author: Haipeng Deng

Supervisor: Mingkui Tan

Student ID: 201730686193

Grade: Undergraduate

November 11, 2019

Recommender System Based on Matrix Decomposition

Abstract-This report introduces my work in lab5, where I built a recommending system based on matrix factorization and optimized it using the strategy of stochastic gradient descent.

I. Introduction

THE recommender system has been developed as an independent discipline for nearly twenty years but not yet has a precise definition. Several strategies have been proposed in the way to constructing a more accurate and more useful model, such as Content-based Algorithm, Item-based Collaborative Filtering Algorithm and Matrix Factorization Algorithm. In this lab, we will work on a Matrix Factorization model, which put the observed samples in a sparse matrix and try to decompose it through introducing a new parameter K, which tries to identify the potential features of each user and each item. The main goals of the lab are completely generating a movie recommender system and cultivate engineering ability under a small dataset.

II. METHODS AND THEORY

Before constructing a recommender system using matrix factorization, there are some concepts we need to introduce. A matrix $R \in \mathbb{R}^{m*n}$ is a sparse rating matrix for m users and n items(movies in this case). An observed samples $r_{u,i}$ (means the rate of user u towards item(movie) i) will be represented as a specific value in R. In the matrix factorization method we use, we will try to decompose R into two matrices $P \in \mathbb{R}^{m*k}$ and $Q \in \mathbb{R}^{k*n}$ where k denotes potential features for each user and movie.

Fig. 1. An illustration of matrix factorization (m=4, n=4, k=2).

After confirming the basic skeleton of our model, the next step is to determine how we evaluate the goodness of it and the way we optimize it. A naive loss function is squared error loss:

$$L(r_{u,i}, \hat{r}_{u,i}) = (r_{u,i} - \hat{r}_{u,i})^2$$
 (1)

Besides, there are two ways to minimize the loss on our

lab guidance alternate least squares optimization(ALS) and stochastic gradient descent method(SGD). I chose SGD as my strategy to optimize, because it is a simple and scalable to large-scale datasets way compared to ALS.

In stochastic gradient descent, we define the loss function as below:

$$L = \sum_{u,i \in \Omega} (r_{u,i} - p_u^T q_i)^2 + \lambda_p ||p_u||^2 + \lambda_q ||q_i||^2$$
 (2)

1

 $r_{u,i}$ denotes the actual rating of user u for item i. Ω denotes the set of observed samples from rating matrix R. λ_p and λ_q are regularization parameters to avoid overtting. In order to minimize the loss and update our matrices P and Q, we randomly pick an observed sample $r_{u,i}$ in the sparse matrix R and there are two other important formulas which we use to calculate gradients:

$$\frac{\partial l}{\partial p_u} = E_{u,i}(-q_i) + \lambda_p p_u \qquad (3)$$

$$\frac{\partial l}{\partial q_i} = E_{u,i}(-p_u) + \lambda_q q_i \qquad (4)$$

$$\frac{\partial l}{\partial q_i} = E_{u,i}(-p_u) + \lambda_q q_i \tag{4}$$

In the equations above, p_u denotes the uth user's column vector while q_i denotes the ith movie's column vector. They both have shape k * 1

The following step is to update the feature matrices P and Q with learning rate α making use of the gradients we computed:

$$p_{u} = p_{u} + \alpha \frac{\partial l}{\partial p_{u}}$$

$$q_{i} = q_{i} + \alpha \frac{\partial l}{\partial q_{i}}$$

$$(5)$$

$$q_i = q_i + \alpha \frac{\partial l}{\partial q_i} \tag{6}$$

We will repeat the steps above until the loss converge.

III. EXPERIMENTS

A. Dataset

In this lab we Utilize the 'MovieLens-100k dataset' which Consists 10,000 comments from 943 users out of 1682 movies. At least, each user comment 20 videos. Users and movies are numbered consecutively from number 1 respectively. The data is sorted randomly.

B. Implementation

Firstly, I decided to use ul.base as my train data and u1.test as my test data, then I read the data set to generate my matrix R and fill 0 for null values. According to the principle that $k \ll min(m, n)$, I finally chose $k = 50, \lambda_p =$ $0.5, \lambda_q = 0.5\alpha = 0.01$ as my input hyperparameters. To perform stochastic gradient descent, I randomly selected an observed sample $r_{u,i}$ from observed set, then calculated the gradient $\frac{\partial l}{\partial p_u}$, $\frac{\partial l}{\partial q_i}$ to the loss function. Next, I updated the feature matrices P and Q with learning rate alpha and gradient using formula (5) (6). I repeated the above processes until convergence.

Fig. 2. The change of Lvalidation.

IV. CONCLUSION

To summarize, I feel this lab very inspiring and beneficial for me. Instead of reading and deriving the theory and formulas in books and slices, it offers us a practical way to practise machine learning.