Trabalho Prático n.º 8

Sistemas Digitais

1º Ano de Engenharia Informática

Circuitos sequenciais: Latches, Flip-Flops e Contadores			
Grupo Diogo António Costa Medeiros	_n.° <u>70633</u>		
	_ n.°		

Turma __5__

Objectivos

- Construir uma *latch* \overline{S} \overline{R} usando portas NAND
- Verificar experimentalmente as propriedades lógicas de um *flip-flop JK master–slave* (mestre–escravo)
- Determinar as ligações necessárias para um contador binário bidireccional (*up–down counter*)
- Construir contadores com sequência de contagem pré-estabelecida usando contadores bidireccionais.

Referências

- TAUB, Herbert, "Circuitos Digitais e Microprocessadores", McGraw-Hill
- Texas Instruments online [http://www.ti.com/]

Material

- Placa RH21
- 74LS00 NAND, 2 entradas
- 74LS20 NAND, 4 entradas
- 74LS76A DUAL J–K FLIP-FLOPS, PRESET AND CLEAR
- 74LS193 SYNCHRONOUS UP/DOWN DUAL CLOCK COUNTER
- 4 LEDs
- $4 R = 330 \Omega$

1.Latch e Flip-Flop

Flip-flop e latches são circuitos lógico fundamentais cuja saída é 1 ou 0, e que podem ser usados como **armazenadores de informação** binária, **divisores de frequência**, **contadores**, **detectores de sequências** binárias, etc. Como o seu **estado** se mantém por tempo indefinido, enquanto não for dada uma ordem explícita para a sua alteração, o *flip-flop* e a *latch* são classificados como **dispositivos bi-estáveis**.

Uma palavra se impõe no que toca à **nomenclatura**: Não existe um *standard* aceite por todos os fabricantes e autores neste assunto. Entre os dispositivos bi-estáveis temos a considerar os dispositivos **síncronos** e os **assíncronos**; os primeiros são facilmente identificáveis por possuirem uma entrada para o **sinal de relógio de sincronismo**. Alguns autores classificam tudo como *flip-flop*, acrescentado a designação '**síncrono**' ou '**assíncrono**'; outros preferem a designação *latch* (distinguindo também entre *latches* síncronas e assíncronas); outros, ainda, designam os dispositivos síncronos como *flip-flops* e os assíncronos como *latches*…

Neste protocolo usaremos esta última nomenclatura.

1.1 Latch S'R'

Uma latch \overline{S} \overline{R} (também chamado flip-flop \overline{S} \overline{R} básico) pode ser construído ligando duas portas NAND como mostra a figura 1.

Figura 1. Latch S'R' (a) Circuito lógico (b) Símbolo (c) Tabela de verdade.

1.1.1 Monte o circuito da figura 1 e complete a tabela ao lado.

Atenção: Preencha a tabela ao lado exactamente pela ordem indicada e sem desligar a alimentação entre cada leitura, ou destruirá a *sequência* de valores de entrada!

\overline{S}	\overline{R}	Q	\overline{Q}
0	1	1	0
1	1	1	0
1	0	0	1
1	1	0	1
0	0	1	1

1.1.2 Comente os resultados obtidos.

/S e /R são entradas ativas-baixas. Quando /S está ativo e /R inativo, dá-se um Set das saídas, ficando Q a 1 e /Q a 0. Caso se desliguem ambas as entradas (/S=/R=1), as saídas permanecem com o último estado lógico, Qn=Qn-1 e /Qn=/Qn-1. Ao ligar-se /R a 0 e /S a 1, ocorre Reset, ficando Q = 0 e /Q = 1. Por último, com /S=/R=0, as saídas ficam ambas ativas, tratando-se de um estado inválido da latch.

1.1.3 Apresente o esquema de uma *latch SR* (implementada usando apenas **portas NOR**).

1.2 Flip-flop SR com relógio

Na figura 2 podemos ver um *flip-flop SR* com a entrada de relógio de sincronismo (*shift*) e a respectiva tabela de verdade.

Figura 2. Flip-flop SR (a) Circuito lógico (b) Tabela de verdade.

1.2.1 Monte o circuito da figura 2. Use para *shift* uma onda quadrada entre 0 e 5V com 0.2s de período. Preencha a tabela ao lado.

S	R	Q	\overline{Q}
0	1	0	1
0	0	0	1
1	0	1	0
0	0	1	0
1	1	1	1

Atenção: Preencha a tabela ao lado **exactamente pela ordem indicada** e **sem desligar a alimentação** entre cada leitura, ou destruirá a *sequência* de valores de entrada!

1.2.2 Comente os resultados obtidos.

As saídas do flip-flop SR atualizam quando se dá um pulso de relógio na borda de 0 para 1. Neste flip-flop é possível fazer Set das saídas com entradas S=1 e R=0 e Reset com entradas S=0 e R=1. Caso S=R=0, as saídas permanecem idênticas às anteriores no pulso seguinte. Já se S=R=1, as saídas ficam ambas ativas, resultando num estado inválido do circuito.

1.3 O Flip-flop JK master-slave

A maior parte dos sistemas digitais opera em **modo síncrono**, isto é, as acções são sincronizadas com um **relógio** do sistema, pelo que todos os *flip-flops* do circuito mudam (eventualmente) de estado ao mesmo tempo, em sincronismo com o relógio do sistema.

Como exemplo, temos o *flip-flop master–slave* (mestre–escravo) com relógio; o símbolo deste *flip-flop* é mostrado na figura 3, conjuntamente com a tabela de verdade.

Figura 3. Flip-flop JK master–slave. (a) Símbolo (b) Tabela de verdade.

Na tabela de verdade, $\mathbf{t_n}$ é o **instante** imediatamente **anterior** ao pulso de relógio, e $\mathbf{t_{n+1}}$ é o **instante** imediatamente **posterior** à ocorrência desse pulso.

1.3.1 Examine as folhas de dados do *flip-flop JK* ('76). Monte o circuito da figura 3, aplicando-lhe o mesmo sinal de relógio do ponto 1.2.1 e complete a tabela de verdade.

J	K	Q	\overline{Q}
0	1	0	1
1	1	1	0
1	0	1	0
1	1	0	1
0	0	0	1

Atenção: Preencha a tabela ao lado exactamente pela ordem indicada e sem desligar a alimentação entre cada leitura, ou destruirá a *sequência* de valores de entrada!

1.3.2 Comente os resultados obtidos.

No circuito pedido, as saídas atualizam quando o pulso do relógio transita de 1 para 0 (borda de descida). Este circuito funciona de forma semelhante ao flip-flop SR, permitindo fazer Set com J=1 e K=0, Reset com J=0 e K=1 e manter os valores lógicos das entradas anteriores J=K=0. No entanto, no caso J=K=1, a cada pulso de relógio, as saídas invertem, Qn=/Qn-1 e /Qn=Qn-1.

1.3.3 Deixe as entradas J e K do '76 em aberto (\equiv '1') e aumente a **frequência** do relógio para **1 kHz**. O resultado é um *flip-flop T*, como mostrado na figura 4.

Figura 4. Flip-flop T. (a) Símbolo (b) Tabela de verdade.

1.3.4 Note que se trata de um divisor de frequência.

Indique o valor dessa divisão: ______2

1.3.5 Com o *flip-flop* ainda ligado para funcionar no tipo T, aplique um nível 0 à entrada \overline{PRE} e depois a \overline{CLR} para verificar que estas entradas fazem, respectivamente, o *set* e o *reset* directos (também ditos assíncronos) do *flip-flop*.

2.Contadores

Os contadores binários são usados em aplicações que requerem uma evolução **crescente** da contagem binária. No entanto, é por vezes desejável usar um contador que progrida na contagem de forma **decrescente**. Um contador que possa ser usado em contagem crescente ou decrescente é designado *up-down counter* (por vezes, também '**contador bidireccional**'). O '193 é um *up-down counter* síncrono de 4 bits. Tem uma entrada de *reset* directo (*CLR*), pelo que pode fazer um *reset* em qualquer ponto da contagem, independentemente do sinal de sincronismo. A entrada de controlo \overline{LOAD} permite carregar dados nas entradas *A*, *B*, *C* e *D*. O símbolo lógico deste contador é mostrado na figura 5 (página seguinte).

2.1 Examine as folhas de dados do '193. Ligue \overline{LOAD} a V_{CC} e CLR à terra. Para **contagem crescente**, ligue DOWN a V_{CC} e aplique um sinal de relógio a UP. Use uma frequência baixa e verifique, usando LEDs (coloque resistências de 330 Ω), que se trata de uma contagem crescente.

Figura 5. Símbolo lógico do '193 (*4–bit binary up–down counter*).

2.2 Coloque agora UP a V_{CC} e aplique o sinal de relógio a DOWN. Verifique que obtém uma contagem decrescente.

2.3 Ligue o '193 como na figura 6. Ponha as quatro entradas a 0V, escolha a contagem crescente e verifique se os LEDs passam pelos 15 estados discretos.

Figura 6. Circuito a implementar.

2.4 Coloque o circuito a funcionar de acordo com o seguinte diagrama de estados.

2.5 Teça as **considerações** que achar convenientes.

O circuito 74LS193 permite fazer contagens crescentes e decrescentes cominício e fim em quaisquer números binários de 0 a 15. No exercício 2.4, montou-se este circuito de modo a fazer uma contagem de 6 a 14. Para isto, ligou-se DOWN a Vcc e UP ao clock, de modo a realizar-se uma contagem crescente. Para que a contagem tivesse início em 6, foi necessário colocar nas entradas D a A o número 6 em binário, 0110. Por outro lado, para que a contagem terminasse em 14, ligaram-se as entradas QD a QA a uma porta NAND e esta ao /LOAD, a fim de carregar 6 quando o contador atingisse 15, ainda que este último valor de saída não se verifique quando este circuito é

Trabalho Prático n.º 8

ligado a outros circuitos, por exemplo um descodificador.