Disciplinas Matemática Discreta e Lógica Matemática

Dificuldade na área de Computação: construção de programas corretos

Teste não garante a ausência de erros

Necessidade...

Provar matematicamente que determinado processo está correto para sistemas críticos

Conceitos

Lógica matemática:

- ✓ Ramo da matemática que trabalha com a verificação formal de teoremas
- ✓ Dentro da computação atual, tem-se a lógica usada na construção de algoritmos (lógica de programas): relações E (^), OU (v), NÃO (¬), cuja formalização matemática teve início na metade do século XIX, quando George Boole (matemático inglês) começou a trabalhar com álgebra booleana

Álgebra:

- ✓ Parte da matemática que cuida de técnicas de relação entre conjuntos e funções.
- ✓ Exemplo de aplicação: grandes bases de dados é preciso ter técnicas eficientes de consulta e inserção de dados, como também técnicas de mineração de dados que permitam selecionar informações por critérios de proximidade/semelhança (Ex: pato X pata galo X gala)

Ferramenta para construção dos operadores lógicos: Diagrama de Venn – homenagem ao matemático britânico do século XIX

Conceitos

Relações de conjuntos

Leis de Equivalência

Lei	Forma matemática	Significado
Negação	P = ¬ (¬ P)	O contrário do contrário de algo é ele mesmo
Meio excluído	Pv¬P=verdade	Afirmar que ou isso ou não isso é sempre verdade
Contradição	P^¬P = falso	Algo não pode ser verdade e falso ao mesmo tempo
Simplificação OU	P v P = P P v verdade = verdade P v falso = P P v (P ^ Q) = P	Algo ou algo tem o valor de algo
Simplificação E	P^P=P P^verdade = P P^falso = falso P^(P v Q) = P	Algo e algo tem o valor de algo

✓ Construir tabelas verdade seguindo as leis, de forma que:

4) Simplificação OU

5) Simplificação E

Р	Q	PvQ	P ^ (P v Q)

Construir tabelas verdade seguindo as leis, de forma que:

1) Negação

Р	¬ P	¬ (¬ P)
V	F	V
F	V	F

- 2) Meio excluído
- P ¬P Pv¬P
- 3) Contradição

Р	¬ P	P^¬P

4) Simplificação OU

Р	Q	P^Q	P v (P ^ Q)

5) Simplificação E

Р	Q	PvQ	P ^ (P v Q)

✓ Construir tabelas verdade seguindo as leis, de forma que:

1) Negação

Р	¬ P	¬ (¬ P)
V	F	V
Г	1/	Г

2) Meio excluído

V

- P ¬P Pv¬P

 V F V
- 3) Contradição

Р	¬ P	P^¬P

4) Simplificação OU

Р	Q	P ^ Q	P v (P ^ Q)

5) Simplificação E

Р	Q	PvQ	P ^ (P v Q)

Construir tabelas verdade seguindo as leis, de forma que:

1) Negação

•	¬ (¬ P)	
	V	

F

- 2) Meio excluído
- 3) Contradição

Р	¬ P	Pv¬P	P	¬ P	P^¬P
V	F	V	V	F	F
F	V	V	F	V	F

4) Simplificação OU

Р	Q	P^Q	P v (P ^ Q)

5) Simplificação E

Р	Q	PvQ	P ^ (P v Q)

Construir tabelas verdade seguindo as leis, de forma que:

1) Negação

Р	¬ P	¬ (¬ P)
V	F	V
F	V	F

2) Meio excluído

Р	¬ P	P v ¬ P
V	F	V
F	V	V

3) Contradição

Р	¬ P	P^¬P
V	F	F
F	V	F

4) Simplificação OU

Р	Q	P^Q	P v (P ^ Q)
V	V	V	V
F	F	F	F
V	F	F	V
F	V	F	F

5) Simplificação E

Р	Q	PvQ	P ^ (P v Q)

Construir tabelas verdade seguindo as leis, de forma que:

1) Negação

Р	¬ P	¬ (¬ P)
V	F	V
F	V	F

2) Meio excluído

Р	¬ P	P v ¬ P
V	F	V
F	V	V

3) Contradição

Р	¬ P	P^¬P
V	F	F
F	V	F

4) Simplificação OU

Р	Q	P^Q	P v (P ^ Q)
V	V	V	V
F	F	F	F
V	F	F	V
F	V	F	F

5) Simplificação E

Р	Q	PvQ	P ^ (P v Q)
V	F	V	V
V	V	V	V
F	V	V	F
F	F	F	F

- Leis de Morgan – homenagem ao matemático inglês do século XIX, as quais auxiliam na negação de uma proposição composta. Diagrama de Venn correspondente:

$$\neg (P \land Q) = \neg P \lor \neg Q$$

$$\neg (P \lor Q) = \neg P \land \neg Q$$

- Leis de Morgan – homenagem ao matemático inglês do século XIX, as quais auxiliam na negação de uma proposição composta. Diagrama de Venn correspondente:

Introdução à Ciência da Computação

As proposições verdadeiras (valor lógico 1) ou falsas (valor lógico 0) podem ser associadas à analogia de que zero (0) pode significar um circuito elétrico desligado e um (1) pode significar um circuito elétrico ligado

Base lógica da arquitetura dos computadores

Portanto, a proposição P ^ Q pode ser associada a um circuito em série e a proposição P v Q a um circuito em paralelo

Portas lógicas

- ✓ Constituem a base do hardware sobre a qual os computadores digitais são construídos uso da álgebra booleana
- ✓ Tipos mais simples:

NOT (inversores)

Α	X
0	1
1	0

_A	В	X
0	0	0
0	1	0
1	0	0
1	1	1

NAND (inversor AND) $A \mid_{B} \mid_{X}$

А	В	<u> </u>
0	0	1
0	1	1
1	0	1
1	1	0

OR

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

NOR (inversor OR)

Α	В	Χ
0	0	1
0	1	0
1	0	0
1	1	0

Implementação de funções booleanas

Exemplo:

Dada uma tabela verdade para uma função de 3 variáveis (A, B, C), de forma que represente uma função lógica da maioria: resultado é 0 se existe um número maior de entradas em 0; e resultado é 1 se existe um número maior de entrada em 1

Α	В	С	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Implementação de funções booleanas

Exemplo:

Dada uma tabela verdade para uma função de 3 variáveis (A, B, C), de forma que represente uma função lógica da maioria: resultado é 0 se existe um número maior de entradas em 0; e resultado é 1 se existe um número maior de entrada em 1

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Identificar na tabela as linhas que contém o valor 1 na coluna de resultado

	Α	В	С	Χ
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
_	1	0	0	0
L	1	0	1	1
	1	1	0	1
	1	1	1	1

Para as linhas destacadas em vermelho, fazer um AND considerando todas as variáveis (A, B e C). Usa-se o ponto para indicar AND entre as variáveis de entrada e, quando necessário, colocar os inversores (uma barra sobre a variável de entrada deve ser usada para indicar que seu valor é invertido, ou seja, igual a zero)

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Para as linhas destacadas em vermelho, fazer um AND considerando todas as variáveis (A, B e C). Usa-se o ponto para indicar AND entre as variáveis de entrada e, quando necessário, colocar os inversores (uma barra sobre a variável de entrada deve ser usada para indicar que seu valor é invertido, ou seja, igual a zero)

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $X = \overline{A}.B.C$ $A.\overline{B}.C$ $A.B.\overline{C}$ A.B.C

Para obter a função correspondente, é necessário fazer um OR de todos os termos do produto para dar o resultado final. Usa-se o sinal + para indicar OR.

$$X = \overline{A}.B.C + A.\overline{B}.C + A.B.\overline{C} + A.B.C$$

Para implementar o circuito equivalente à função obtida, as variáveis de entrada devem ser representadas do lado esquerdo e X do lado direito. Quando necessário, devem ser representados os inversores.

$$X = \overline{A}.B.C + A.\overline{B}.C + A.B.\overline{C} + A.B.C$$

Para implementar o circuito equivalente à função obtida, as variáveis de entrada devem ser representadas do lado esquerdo e X do lado direito. Quando necessário, devem ser representados os inversores.

$$X = \overline{A}.B.C + A.\overline{B}.C + A.B.\overline{C} + A.B.C$$

Introdução à Ciência da Computação

Exercício

Dado o circuito a seguir, elabore a função equivalente e a tabela verdade

