Linear Algebra

Notes by Finley Cooper

24th October 2025

Contents

1	Vector Spaces	3
	1.1 Definitions	3
	1.2 Linear maps, isomorphisms, and quotients	
	1.3 Basis	7
	1.4 Direct sums	14
2	Matrices and Linear Maps	16
	2.1 Vector spaces of linear maps	16

1 Vector Spaces

1.1 Definitions

For this lecture course, \mathbb{F} will always be field.

Definition. (Vector Space) A \mathbb{F} -vector space (or a vector space over \mathbb{F}) is an abelian group $(V, +, \mathbf{0})$ equipped with a function

$$\mathbb{F} \times V \to V$$
$$(\lambda, v) \to v$$

which we call scalar multiplication such that $\forall v, w \in V, \forall \lambda, \mu \in \mathbb{F}$

- (i) $(\lambda + \mu)v = \lambda v + \mu v$
- (ii) $\lambda(v+w) = \lambda v + \lambda w$
- (iii) $\lambda(\mu v) = (\lambda \mu)v$
- (iv) $1 \cdot v = v \cdot 1 = v$

Remember that $\mathbf{0}$ and 0 are not the same thing. 0 is an element in the field \mathbb{F} and $\mathbf{0}$ is the additive identity in V.

For an example consider \mathbb{F}^n n-dimensional column vectors with entries in \mathbb{F} . We also have the example of a vector space \mathbb{C}^n which is a complex vector space, but also a real vector space (taking either \mathbb{C} or \mathbb{R} as the underlying scalar field).

We also can see that $M_{m \times n}(\mathbb{F})$ form a vector space with m rows and n columns.

For any non-empty set X, we denote \mathbb{F}^X as the space of functions from X to \mathbb{F} equipped with operations such that:

$$f+g$$
 is given by $(f+g)(x)=f(x)+g(x)$
 λf is given by $(\lambda f)(x)=\lambda f(x)$

Proposition. For all $v \in V$ we have that $0 \cdot v = \mathbf{0}$ and $(-1) \cdot v = -v$ where -v denotes the additive inverse of v.

Proof. Trivial.

Definition. (Subspace) A *subspace* of a \mathbb{F} -vector space V is a subset $U \subseteq V$ which is a \mathbb{F} -vector space itself under the same operations as V. Equivalently, (U, +) is a subgroup of (V, +) and $\forall \lambda \in \mathbb{F}$, $\forall u \in U$ we have that $\lambda u \in U$.

Remark. Axioms (i)-(iv) are always automatically inherited into all subspaces.

Proposition. (Subspace test) Let V be a \mathbb{F} -vector space and $U \subseteq V$ then U is a subspace of V if and only if,

- (i) U is nonempty.
- (ii) $\forall \lambda \in \mathbb{F}$ and $\forall u, w \in U$ we have that $u + \lambda w \in U$.

Proof. If U is a subspace then U satisfies (i) and (ii) since it contains 0 and is closed. Conversely suppose that $U \subseteq V$ satisfies (i) and (ii). Taking $\lambda = -1$ so $\forall u, w \in V, u - w \in U$ hence (U, +) is a subgroup of (V, +) by the subgroup test. Finally taking $u = \mathbf{0}$ so we have that $\forall w \in U, \forall \lambda \in \mathbb{F}$ we have that $\lambda w \in U$. So U is a subspace of V.

We notate U by $U \leq V$.

For some examples

(i)

$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + y + z = t \right\} \subseteq \mathbb{R}^3,$$

for fixed $t \in \mathbb{R}$ is a subspace of \mathbb{R}^3 iff t = 0.

- (ii) Take $\mathbb{R}^{\mathbb{R}}$ as all the functions from \mathbb{R} to \mathbb{R} then the set of continuous functions is a subspace.
- (iii) Also we have that $C^{\infty}(\mathbb{R})$, the set of infintely differentiable functions from \mathbb{R} to \mathbb{R} is a subspace of $\mathbb{R}^{\mathbb{R}}$ and the subspace of continuous functions.
- (iv) A further subspace of all of those subspaces is the set of polynomial functions.

Lemma. For $U, W \leq V$ we have that $U \cap W \leq V$.

Proof. We'll use the subspace test. Both U,W are subspaces so they contain $\mathbf 0$ hence $\mathbf 0 \in U \cap W$ so $U \cap W$ is nonempty. Secondly take $x,y \in U \cap W$ with $\lambda \in \mathbb F$. Then $U \leq V$ and $x,y \in U$ so $x + \lambda y \in U$. Similarly with W so $x + \lambda y \in W$ hence we have that $x + \lambda y \in U \cap W$ hence $U \cap W \leq V$

Remark. This does not apply for subspaces, in fact from IA Groups, we know it doesn't even hold for the underlying abelian group.

Definition. (Subspace sum) For $U, W \leq V$, the subspace sum of U, W is

$$U+W=\{u+w:u\in U,w\in W\}.$$

Lemma. If $U, W \leq V$ then $U + W \leq V$.

Proof. Simple application of the subspace test.

Remark. U+W is the smallest subgroup of U,W in terms of inclusion, i.e. if K is such that $U\subseteq K$ and $W\subseteq K$ then $U+W\subseteq K$.

1.2 Linear maps, isomorphisms, and quotients

Definition. (Linear map) For V, W F-vector spaces. A linear map from V to W is a group homomorphism, φ , from (V, +) to (W, +) such that $\forall v \in V$

$$\varphi(\lambda v) = \lambda \varphi(v)$$

Equivalently to show any function $\alpha:V\to W$ is a linear map we just need to show that $\forall u,w\in V,\,\forall\lambda\in\mathbb{F}$ we have

$$\alpha(u + \lambda w) = \alpha(u) + \lambda \alpha(w).$$

For some examples of linear maps

- (i) $V = \mathbb{F}^n, W = \mathbb{F}^m \ A \in M_{m \times n}(\mathbb{F})$. Then let $\alpha : V \to W$ be given by $\alpha(v) = Av$. Then α is linear.
- (ii) $\alpha: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ defined by taking the derivative.
- (iii) $\alpha: C(\mathbb{R}) \to \mathbb{R}$ defined by taking the integral from 0 to 1.
- (iv) X any nonempty set, $x_0 \in X$,

$$\alpha: \mathbb{F}^X \to \mathbb{F}$$
 $f \to f(x_0)$

- (v) For any V, W the identity mapping from V to V is linear and so is the zero map from V to W.
- (vi) The composition of two linear maps is linear.
- (vii) For a non-example squaring in \mathbb{R} is not linear. Similarly adding constants is not linear, since linear maps preserve the zero vector.

Definition. (Isomorphism) A linear map $\alpha: V \to W$ is an *isomorphism* if it is bijective. We say that V and W are isomorphic, if there exists an isomorphism from $V \to W$ and denote this by $V \cong W$.

An example is the vector space $V = \mathbb{F}^4$ and $W = M_{2 \times 2}(\mathbb{F})$ we can define the map

$$\alpha: V \to W$$

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \to \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Then α is an isomorphism.

Proposition. If $\alpha: V \to W$ is an isomorphism then $\alpha^{-1}: W \to V$ is also an isomorphism.

Proof. Clearly α^{-1} is a bijection. We need to prove that α^{-1} is linear. Take $w_1, w_2 \in W$ and $\lambda \in \mathbb{F}$. So we can write $w_i = \alpha(v_i)$ for i = 1, 2. Then

$$\alpha^{-1}(w_1 + \lambda w_2) = \alpha^{-1}(\alpha(v_1) + \lambda \alpha(v_2)) = \alpha^{-1}(\alpha(v_1 + \lambda v_2)) = v_1 + \lambda v_2 = \alpha^{-1}(w_1) + \lambda \alpha^{-1}(w_2)$$

. Hence α^{-1} is linear, so α^{-1} is an isomorphism.

Definition. (Kernal) Let V, W be \mathbb{F} -vector spaces. Then the kernel of the linear map $\alpha: V \to W$ is

$$\ker(\alpha) = \{v \in V : \alpha(v) = \mathbf{0}_W\} \subseteq V$$

Definition. (Image) Let V,W be \mathbb{F} -vector spaces. Then the image of a linear map $\alpha:V\to W$ is

$$\operatorname{im}(\alpha) = {\alpha(v) : v \in V} \subseteq W$$

Lemma. For a linear map $\alpha: V \to W$ the following hold.

- (i) $\ker \alpha \leq V$ and $\operatorname{im} \alpha \leq W$
- (ii) α is surjective if and only if im $\alpha = W$
- (iii) α is injective if and only if $\ker \alpha = \{\mathbf{0}_V\}$

Proof. $\mathbf{0}_V + \mathbf{0}_V = \mathbf{0}_V$, so applying α to both sides any using the fact that α is linear gives that $\alpha(\mathbf{0}_V) = \mathbf{0}_W$. So ker α is nonempty. The rest of the proof is a simple application of the subspace test.

The second statement is immediate from the definition.

For the final statement suppose α injective. Suppose $v \in \ker \alpha$. Then $\alpha(v) = \mathbf{0}_W = \alpha(\mathbf{0}_w)$ so $v = \mathbf{0}_V$ by injectivity. Hence $\ker \alpha$ is trivial. Conversely suppose that $\ker \alpha = \{0_V\}$ Let $u, v \in V$ and suppose that $\alpha(u) = \alpha(v)$. The $\alpha(u - v) = \mathbf{0}_W$, so $u - v \in \ker \alpha$, so u = v.

For V a \mathbb{F} -vector space, $W \leq V$ write

$$\frac{V}{W} = \{v + W : v \in V\}$$

as the left cosets of W in V. Recall that two cosets v + V and u + W are the same coset if and only if $v - u \in W$.

Proposition. V/W is an \mathbb{F} -vector space under operations

$$(u+W) + (v+W) = (u+v) + W$$
$$\lambda(v+W) = (\lambda v) + W$$

We call V/W the quotient space of V by W.

Proof. The proof is long and requires a lot of vector space axioms so we'll just sketch out the proof.

We check that operations are well-defined, so for $u, \overline{u}, v, \overline{v} \in V$ and $\lambda \in \mathbb{F}$ if

$$u + W = \overline{u} + W, \quad v + W = \overline{v} + W$$

then

$$(u+v)+W=(\overline{u}+\overline{w})+W$$

and

$$(\lambda u) + W = (\lambda \overline{u}) + W$$

The vector space axioms are inherited from V.

Proposition. (Quotient map) The function $\pi_W: V \to \frac{V}{W}$ called a *quotient map* is given by

$$\pi_W(v) = v + W$$

is a well-defined, surjective, linear map with ker $\pi_W = W$.

Proof. Surjectivity is clear. For linearity let $u, v \in V$ and $\lambda \in \mathbb{F}$. Then

$$\pi_W(u + \lambda v) = (u + \lambda v) + W$$

$$= (u + W) + (\lambda v + W)$$

$$= (u + W) + \lambda(v + W)$$

$$= \pi_W(u) + \lambda \pi_W(v)$$

For $v \in V$, we have that $v \in \ker \pi_W \iff \pi_W(v) = \mathbf{0}_{V/W}$. So $v + W = \mathbf{0}_V + W$ so finally $v = v - \mathbf{0}_V \in W$.

Theorem. (First isomorphism theorem) Let V,W be \mathbb{F} -vector spaces and $\alpha:V\to W$ linear. Then there is an isomorphism

$$\overline{\alpha}: \frac{V}{\ker \alpha} \to \operatorname{im} \alpha$$

given by $\overline{\alpha}(v + \ker \alpha) = \alpha(v)$

Proof. For $u, v \in V$,

$$u + K = v = K \iff u - v \in K \iff \alpha(u - v) = \mathbf{0}_W \iff \alpha(u) = \alpha(v) \iff \overline{\alpha}(u + \ker \alpha) = \overline{\alpha}(v + \ker \alpha)$$

The forward direction shows that $\overline{\alpha}$ is well-defined, and the converse shows that $\overline{\alpha}$ is injective. For surjectivity given $w \in \operatorname{im} \alpha$, there exists some $v \in V$ s.t. $w = \alpha(v)$. Then $w = \overline{\alpha}(v + \ker \alpha)$. Finally for linearity given $u, v \in V$, $\lambda \in \mathbb{F}$,

$$\overline{\alpha}((u + \ker \alpha) + \lambda(v + \ker \alpha)) = \overline{\alpha}((u + \lambda v) + \ker \alpha)$$

$$= \alpha(u + \lambda v)$$

$$= \alpha(u) + \lambda \alpha(v)$$

$$= \overline{\alpha}(u + \ker \alpha) + \lambda \overline{\alpha}(v + \ker \alpha)$$

So $\overline{\alpha}$ is linear hence is an isomorphism

1.3 Basis

Definition. (Span) Let V be a \mathbb{F} -vector space. Then the span of some subset $S \subseteq V$ is

$$\langle S \rangle = \left\{ \sum_{s \in S} \lambda_s \cdot s : \lambda_s \in \mathbb{F} \right\}$$

where \sum denotes finite sums. An expression the form above is called a *linear combination* of S.

We say that S spans V if $\langle S \rangle = V$

Definition. (Finite-dimensional) For a vector space V we say that it is *finite-dimensional* if there exists a finite spanning set.

We'll give some simple remarks without proof.

- (i) $\langle S \rangle \leq V$ and conversely if $W \leq V$ and $S \subseteq W$ then $\langle S \rangle \leq W$.
- (ii) If $S, T \subseteq W$ and S spans V and $S \subseteq \langle V \rangle$ then T spans V.
- (iii) By convention $\langle \emptyset \rangle = \{ \mathbf{0}_V \}$.
- (iv) $\langle S \cup T \rangle = \langle S \rangle + \langle T \rangle$

For an example consider $V = \mathbb{R}^3$ and consider the sets

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\}$$
$$T = \left\{ \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} \right\}$$

Then
$$\langle S \rangle = \langle T \rangle = \left\{ \begin{pmatrix} x \\ y \\ 2y \end{pmatrix} : x, y \in \mathbb{R} \right\} \leq \mathbb{R}^3.$$

For a second example consider $V = \mathbb{R}^{\mathbb{N}}$ and set $T = \{\delta_n : n \in \mathbb{N}\}$. This is not a spanning set, since we require infinitely many elements from T to make an element in V. In fact we can write that

$$\langle T \rangle = \{ f \in \mathbb{R}^{\mathbb{N}} : f(n) = 0 \text{ for all but finitely many terms} \}.$$

Definition. (Linear Independence) A subset $S \subseteq V$ is called *linearly independent* if, for all finite linear combinations

$$\sum_{s \in S} \lambda_s s \quad \text{of S}$$

if the sum is the zero vector in V the $\lambda_s = 0$ for all $s \in S$.

If S is not linearly indepedent we say that S is linearly dependent.

We'll make some more remarks

- (i) If $\mathbf{0} \in S$ then S is not linearly independent.
- (ii) If we have a finite set, then to show linearly independent, we only need to consider the linear combination of all elements, not all finite lienar combinations.
- (iii) However is S is infinite, then we have to consider every possible finite subset of S and show it's linearly independent.
- (iv) Every subset of a linearly independent set is itself linearly indepedent.

Definition. (Basis) A subset $S \subseteq V$ is a *basis* for V if S is linearly independent and a spanning set.

For an example consider $e_i \in \mathbb{F}^n$ be given by

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \text{with the 1 in the ith entry}$$

then the set $\{e_i : 1 \leq i \leq n\}$ is the standard basis for \mathbb{F}^n .

For $P(\mathbb{R})$ the set of real polynomial functions and let $p_n \in P(\mathbb{R})$ be given by $p_n(x) = x^n$, then $\{p_n : n \in \mathbb{Z}_{\geq 0}\}$ is a basis for $P(\mathbb{R})$.

Proposition. If $S \subseteq V$ is a finite spanning set, then there exists a subset $S' \subseteq S$ such that S' is a basis.

Proof. If S is linearly independent then we're done. Otherwise write $S = \{v_1, \dots, v_n\}$. Then there exists $\lambda_1, \dots, \lambda_n$ such that $\lambda_1 v_1 + \dots + \lambda_n v_n = \mathbf{0}$ wlog suppose that λ_n is nonzero. Then

$$v_n = -\frac{1}{\lambda_n} \sum_{i=1}^{n-1} \lambda_i v_i$$

so v_n is in the span of the other vectors. Hence $S \setminus \{v_n\}$ is still a spanning set. Repeat which the set is linearly independent, must terminate since the set is finite and the empty set is not a spanning set.

Corollary. Every finite-dimensional vector space has a finite basis.

Proof. Trivial application of the proposition

Theorem. (Steinitz Exchange Lemma) Let $S, T \subseteq V$ finite with S linearly independent and T a spanning set of V. Then

- (i) $|S| \le |T|$,
- (ii) and there exists $T' \subseteq T$ which has size |T'| = |T| |S| and $S \cup T'$ spans V.

Proof. To come later...

Let's look at some consequences of the lemma first.

Corollary. For a finite-dimensional vector space V,

- (i) Every basis for V is finite.
- (ii) All finite basis have the same size.

Proof. V has a finite basis B, suppose we have some other basis B' infinite. Let $B'' \subseteq B'$ with |B''| = |B| + 1 then |B''| is linearly independent, so applying (i) of the Steinitz exchange lemma with S = B'' and T = B we get a contradiction.

For the second part, let B_1, B_2 be finite basis for V then apply Steinitz symmetrically since both are spanning set and linearly independent, so we get that $|B_1| \ge |B_2|$ and $|B_1| \ge |B_2|$ so $|B_1| = |B_2|$.

Definition. (Dimension) For a vector space V the dimension of V is the size of any basis. We write this as dim V.

This definition is well-defined by the previous corollary.

For an example dim $\mathbb{F}^n = n$ since we've shown the standard basis has size n. As a complex vector space \mathbb{C} is one-dimensional as a complex vector space and two-dimension as a real vector space, with basis $\{1\}$ and $\{1,i\}$ repectively.

Corollary. For a vector space V let $S, T \subseteq V$ finite, with S linearly independent and T a spanning set, then

$$|S| \le \dim V \le |T|$$

with equality if and only if S spans or V is linearly independent respectively.

Proof. The inequalities are immediate from Steinitz. If S is a basis then $|S| = \dim V$ from the previous corollary. Conversely if $|S| = \dim V$ and let B be a basis for V so we have that |B| = |S| so B is a spanning set. So we can apply Steinitz (ii) to B so there exists $B' \subseteq B$ with |B'| = |B| - |S| = 0 and $S \cup B' = S \cup \emptyset$ spans V. So S is a basis. Similar we have a very similar proof for equality in V.

We will not prove that every vector space has a basis, however some non-finitely dimensional vector spaces have an infinite basis, for example $P(\mathbb{R})$.

Proposition. If V is a finite-dimensional vector space, then if $U \leq V$ then U is finite-dimensional, namely, $\dim U \leq \dim V$ with equality if and only if U = V.

Proof. If $U = \{\mathbf{0}\}$, we're done. Otherwise let $\mathbf{0} \neq u_1 \in U$. Then $\{u_1\} \subseteq U$ is linearly indepedent. Repeating, after repeating k times suppose we have $\{u_1, \ldots, u_k\}$ linearly indepedent with $k \leq \dim(V)$ by the previously corollary. If the set spans U we're done, if not we'll add another vector, u_{k+1} outside of the span of our space. If $\{u_1, \ldots, u_{k+1}\}$ is not linearly indepedent, we can write $\mathbf{0}$ non-trivially, so

$$\sum_{i=1}^{k+1} \lambda_i u_i = \mathbf{0}$$

with $\lambda_{k+1} \neq 0$ since $\{u_1, \ldots, u_k\}$ linearly independent. Thus we have that

$$u_{k+1} = -\frac{1}{\lambda_{k+1}} \left(\sum_{i=1}^{k} \lambda_i u_i \right)$$

this process must terminate after at most dim V many steps, by the previous corollary. If dim $U = \dim V$ apply the previous corollary with S being any basis for U.

Proposition. (Extending a basis) Let $U \leq V$. For any basis B_U of U there exists a basis B_V of V such that $B_U \subseteq B_V$.

Proof. Apply the second result from Steinitz with $S = B_U$ and T is any basis for V. We obtain that $T' \subseteq T$ s.t.

$$|T'| = |T| - |S| = \dim V - \dim U$$

and $B_V = B_U \cup T'$ spans V. But we have that

$$|B_V| \le |B_U| + |T'| = \dim V$$

so by the previous corollary, B_V is a basis for V.

Now we'll finally prove the Steinitz exchange lemma.

Proof. Let $S = \{u_1, \ldots, u_m\}$, $T = \{v_1, \ldots, v_n\}$ with |T| = m and |T| = n. If S is empty then we're done. Otherwise there exists $\lambda_i \in \mathbb{F}$ such that

$$u_1 = \sum_{i=1}^{n} \lambda_i v_i$$

so by renumbering we can say that $\lambda_1 \neq 0$. Then

$$v_1 = \frac{1}{\lambda_1} \left(u_1 - \sum_{i=2}^n \lambda_i v_i \right)$$

So $\{u_1, v_2, \dots, v_n\}$ spans V. After repeating k times with k < m suppose $\{u_1, \dots, u_k, v_{k+1}, \dots, v_n\}$ spans V, then there exists $\lambda_i, \mu_j \in \mathbb{F}$ such that

$$u_{k+1} = \sum_{j=1}^{k} \mu_j u_j + \sum_{i=k+1}^{n} \lambda_i v_i$$

If for all $\lambda_i = 0$ then

$$\left(\sum_{j=1}^k \mu_j u_j\right) - u_{k+1} = \mathbf{0}$$

which is a contradiction since S is linearly independent. So by relabeling we have that $\lambda_{k+1} \neq 0$ such that

$$v_{k+1} = \frac{1}{\lambda_{k+1}} \left(u_{k+1} - \sum_{j=1}^{k} \mu_j u_j - \sum_{i=k+1}^{n} \lambda_i v_i \right)$$

so $(u_1, \ldots, u_{k+1}, v_{k+2}, \ldots, v_n)$ spans V. So we can conclude that $m \neq n$ and $\{u_1, \ldots, u_m, v_{m+1}, \ldots, v_n\}$ spans V hence the set $T' = \{v_{m+1}, \ldots, v_n\}$ exists as claimed.

Definition. (Nullity) For a linear map $\alpha: V \to W$ we define the *nullity* of α as $n(\alpha) = \dim \ker \alpha$.

Definition. (Rank) For a linear map $\alpha: V \to W$ we define the rank of α as

$$rk(\alpha) = \dim \operatorname{im} \alpha.$$

Theorem. (Rank-nullity theorem) If V is a finite dimensional \mathbb{F} -vector space and W is a \mathbb{F} -vector space. Then if $\alpha:V\to W$ is linear then im α is finite dimensional and

$$\dim V = \mathbf{n}(\alpha) + \mathbf{rk}(\alpha).$$

Proof. Recall the first isomorphism theorem so

$$\frac{V}{\ker \alpha} \cong \operatorname{im} \alpha$$

It is sufficient to prove the lemma

Lemma. For $U \leq V$,

$$\dim(V/U) = \dim V - \dim U$$

Proof. Let $B_U = \{u_1, \dots, u_m\}$ be a basis of U. Extend to a basis $B_V = \{u_1, \dots, u_m, v_{m+1}, \dots, v_n\}$ of V where $m = \dim U$ and $n = \dim V$.

Set $B_{V/U} = \{v_i + U : m + 1 \le i \le n \}$. The we claim that $B_{V/U}$ is a basis for V/U of size n - m. To show spanning, for $v \in V$ write

$$v = \sum_{i} \lambda_i v_i + \sum_{j} \mu_j v_j$$

Then $v + U = \sum_{i} \lambda_i(v_i + U) \in \langle B_{V/U} \rangle$. For linear independence, suppose

$$\sum_{i} \lambda_i(v_i + U) = \mathbf{0} + U$$

hence

$$= \left(\sum_{i} \lambda_{i} v_{i}\right) + U$$

$$\sum_{i} \lambda_{i} v_{i} \in U$$

$$\sum_{i} \lambda_{i} v_{i} = \sum_{j} \mu_{j} u_{j}$$

since B_V is linearly independent, we have that all λ_i and μ_j are zero. Similarly if $v_i + U = v_j + U$ with $i \neq j$ then we can write $v_i - v_j = \sum_j \mu_j u_j$ which is a contradiction.

Remark. We can make a direct proof without quotient spaces by rearranging some of the arguments of the proof.

Corollary. (Linear Pigeonhole principle) If dim $V = \dim W = n$ and $\alpha : V \to W$ then the following conditions are equivalent.

- (i) α is injective,
- (ii) α is surjective,
- (iii) α is an isomorphism.

Proof. If α injective then $n(\alpha) = 0$ so by rank nullity we have that $rk(\alpha) = n$ so α is surjective. If α is surjective then $rk(\alpha) = n$ so by rank nullity, the dimension of the kernel is 0 hence the kernel is trivial, so α injective, hence α is an isomorphism. If α is an isomorphism, clearly it's injective, so all equivalent.

Proposition. Suppose V is a vector space with a basis B. For any vector space W and any function $f: B \to W$ there is a unique linear map $F: V \to W$ such that F(B) = W.

Proof. First we'll show existence. For $v \in V$ write $v = \sum_b \lambda_b b$ for a finite sum. Then define

$$F(v) = \sum_{b} \lambda_b f(b).$$

This is well-defined, since B is a basis the λ_b are uniquely determined by v. For $u, v \in V$ and $\lambda \in \mathbb{F}$ we write

$$u = \sum_{b} \mu_b b, \quad \sum_{b} \lambda_b b.$$

Then

$$F(u + \lambda v) = F(\sum_{b} (\mu_b + \lambda \lambda_b) f(b)$$
$$= \sum_{b} \mu_b f(b) + \lambda \sum_{b} \lambda_b f(b)$$
$$= F(u) + \lambda F(v).$$

So F is linear. To show uniqueness $\overline{F}: V \to W$ is another linear map extending f then,

$$\overline{F}\left(\sum_{b}\lambda bb\right) = \sum_{b}\lambda_{b}\overline{F}(b)$$

which is the same as our definition for F hence they are the same function.

Corollary. For a vector space, V, with dim V = n with a basis $B = \{v_1, \ldots, v_n\}$ for V then there is a unique isomorphism

$$F_B: V \to \mathbb{F}^n$$

$$\sum_{i=1}^n \lambda_i v_i \to \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Proof. Let $E = \{e_1, \dots, e_n\}$ be the standard basis for \mathbb{F}^n . Define

$$f: B \to W$$
$$v_i \to e_i$$

and let F_B be the unique linear extension of f to V. We see that f defines a bijection from $B \to E$. Let \bar{F}_B be the unique linear extension of $f^{-1}: E \to B$. Then $\bar{F}_B \cdot F_B$ is the composition of two linear maps, hence it's linear, moreover it is id_B . But also id_V is also a linear extension of id_B , by the proposition, they are the same map so $\bar{F}_B \cdot F_B = F_B \cdot \bar{F}_B = \mathrm{id}_B$. Hence F_B is bijective, so it is an isomorphism.

Corollary. If V, W are finite dimensional \mathbb{F} -vector spaces. Then

$$V \cong W \iff \dim V = \dim W$$

Proof. Trivial from the corollary using the transitivity of the isomorphism relation.

Definition. (Coordinate vector) $F_B(v) = [v]_B$ is the *coordinate vector* of v with respect to the basis B

For an example if $V \cong \mathbb{F}^n$ and $U \leq V$ with $U \cong \mathbb{F}^m$ then $\dim(V/U) = n - m$, so $\frac{V}{U} \cong \mathbb{F}^{n-m}$.

1.4 Direct sums

Definition. (External direct sum) For \mathbb{F} -vector spaces, V and W, we dnote the *external direct sum* of V and W as $V \oplus W$ with underlying set $V \times W$ with addition and scalar multiplication given in the obvious sense.

We can similarly define

$$V_1 \oplus \cdots \oplus V_n = \bigoplus_{i=1}^n V_i.$$

Lemma. For V, W finite dimensional vector spaces,

$$\dim(V \oplus W) = \dim V + \dim W$$

Proof.

(First Proof) Let B, C be basis for V, W respectively. Set

$$D = (B \times \{\mathbf{0}_W\}) \cup (\{\mathbf{0}_V\} \times C)$$

it is straightfoward to check that D is basis of $V \oplus W$ of the size $\dim V + \dim W$.

(Second Proof) Suppose $V \cong \mathbb{F}^n$ and $W \cong \mathbb{F}^m$ construct an isomorphism $V \oplus W \cong \mathbb{F}^{n+m}$. \square

Proposition. Let V be a vector space with $U, W \leq V$. There is a surjective linear map

$$\varphi: U \oplus W \to U + W$$
$$(u, w) \to u + w$$

with $\ker \varphi \cong U \cap W$.

Proof. Surjectively and linearity are clear. Note for $(u,w) \in U \oplus W$ then $(u,w) \in \ker \varphi$ if and only if w = -u. Hence

$$\ker \varphi = \{(x, -x) : x \in U \cap W\}$$

the map $\psi: U \cap W \to \ker \varphi$ sending $x \to (x, -x)$ is an isomorphism.

Corollary. (Sum-Intersection Formula) If V is finite dimensional and $U, W \leq V$ then

$$\dim(U+W) = \dim U + \dim V - \dim(U \cup V)$$

Applying the rank-nullity theorem to the linear map φ in the proposition we get that

$$\dim U + \dim W = \dim(U \oplus V)$$

$$= \dim(\ker \varphi) + \dim(\operatorname{im} \varphi)$$

$$= \dim(U + W) + \dim(U \cap W) \quad \Box$$

We can also give an explicit basis. Given a basis B for $U \cap W$, extend B to a basis B_U for U, and a basis B_W for W. Then $B_U \cap B_W$ spans U + W and

$$|B_U \cup B_W| \le |B_U| + |B_W| - |B| = \dim(U + V)$$

hence $B_U \cup B_W$ is linearly independent so it's a basis for U + W.

Remark. We could also check directly that $B_U \cup B_W$ is linearly independent of the size $\dim(U+V)$ without assuming the sum-intersection formula, so this also servers as an alternative proof of the sum-intersection formula.

Definition. (Internal direct sum) Suppose $U, W \leq V$ satisfy

- (i) U + W = V,
- (ii) $U \cap W = \{ \mathbf{0}_V \}.$

Then

$$\varphi:U\oplus W\to V$$

is an isomorphism, and we say that V is the *internal direct sum* of U and W, and we write that $V = U \oplus W$.

Alternatively, every element $v \in V$ can be written uniquely as v = u + w for $u \in U, w \in W$.

Definition. (Direct complement) For $U \leq V$ a direct complement to U in V is a subspace $W \leq V$ satisfying $V = U \oplus W$.

Proposition. If V is finite dimensional then every subspace has a direct complement.

Proof. Let $U \leq V$ and let B_U be a basis for U. Extend to a basis B_V for V. Set $W =_V \backslash B_U \rangle$. Then

$$V = \langle B_V \rangle = \langle B_U \cup (B_V \setminus B_U) \rangle$$
$$= \langle B_U \rangle + \langle B_V \setminus B_U \rangle$$
$$= U + W.$$

Moreover using the sum-intersection formula

$$\dim(U \cap W) = |B_V| + |B_U| - |B_V \setminus B_U| = 0.$$

Hence $U \oplus W = V$.

More generally for $U_1, \ldots, U_n \leq V$ we say that V is the direct sum of the U_i and write that

$$V = U_1 \oplus + \dots + \oplus V_n = \bigoplus_{i=1}^n V_i$$

if the map

$$\varphi: U_1 \oplus \cdots \oplus U_n \to V$$

 $(u_1, \dots, u_n) \to u_1, \dots, u_n$

is an isomorphism. Equivalently every $v \in V$ can be uniquely written as $v = u_1 + \cdots + u_n$ for $u_i \in U_i$.

2 Matrices and Linear Maps

2.1 Vector spaces of linear maps

Definition. For V, W \mathbb{F} -vector spaces we define

$$\mathcal{L}(V, W) = \{\alpha : V \to W : \alpha \text{ is linear}\}\$$

which forms a F-vector space under pointwise addition and obvious scalar multiplication.

Recall that $M_{m \times n}$ is the space of matrices over \mathbb{F} with m rows and n columns. For $A \in M_{m \times n}(\mathbb{F})$ we write $A = (a_{ij})$ where $a_{ij} \in \mathbb{F}$ is the entry in the ith row and the jth column.

Let $B = \{v_1, \dots, v_n\}, C = \{w_1, \dots, w_m\}$ are ordered basis for V, W.

Let $\alpha \in \mathcal{L}(V, W)$. We can write

$$\alpha(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$\alpha(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m1}w_m$$

$$\vdots$$

$$\alpha(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

Definition. (Matrix) The matrix of α with respect to the ordered basis B, C is

$$[\alpha]_C^B = (a_{ij}) \in M_{m \times n}(\mathbb{F})$$

Recall we have a linear isomorphism

$$\varepsilon_B: V \to \mathbb{F}^n$$

$$v = \sum_{i=1}^n \lambda_i v_i \to (\lambda_i)_i = [v]_B$$

where $[v]_B$ is the coordinate vector of v with respect to B.

Proof. Let $v \in V$ write $v = \sum_{j=1}^{n} \lambda_j v_j$. Then

$$\alpha(v) = \sum_{j=1}^{n} \lambda_j \alpha(v_j)$$

$$= \sum_{j=1}^{n} \lambda_j \sum_{i=1}^{m} a_{ij} w_i$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \lambda_j a_{ij} \right) w_i.$$

So

$$[\alpha(v)]_C = \left(\sum_{j=1}^n a_{ij}\lambda_j\right)_i$$
$$= (a_{ij}) \cdot (\lambda_j)$$
$$= [\alpha]_C^B[v]_B.$$

Hence (i) is proved. For (ii), take $1 \leq j \leq n$, so $[v_j]_B = e_j$. Hence for $A \in M_{m \times n}(\mathbb{F})$, $A[v_j]_B$ is the jth column of A. But if $A[v_j]_B = [\alpha(v_j)]_C = [\alpha]_C^B[v_j]_B = [\alpha]_C^Be_j$, then $A[v_j]_B$ is also the jth column of $[\alpha]_C^B$. Since this holds for all j in our range, they are the same matrix.

Now for part (iii), let $\alpha, \beta \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. Then

$$[\alpha + \lambda \beta]_C^B[v]_B = [(\alpha + \lambda \beta)(v)]_C$$

$$= [\alpha(v) + \lambda \beta(v)]_C$$

$$= [\alpha(v)]_C + \lambda [\beta(v)]_C$$

$$= ([\alpha]_C^B + \lambda [\beta]_C^B)[v]_B$$

for all $v \in V$. Hence by (ii) we get that $[\alpha + \lambda \beta]_c^b = [\alpha]_C^B + \lambda [\beta]_C^B$ so the map is linear. Let $\alpha \in \ker(\varepsilon_C^B)$ so that $[\alpha]_C^B = 0 \in M_{m \times n}(\mathbb{F})$. Then by (i) we have that $[\alpha(v)]_C = 0$ for all $v \in V$. But $\varepsilon : w \to [w]_C$ is an isomorphism so $\alpha(v) = 0$ for all $v \in V$ hence $\alpha = 0$ and α is injective. For surjectivity let $A \in M_{m \times n}(\mathbb{F})$ and define $f : B \to W$ by $f(v_j) = \sum_{i=1}^n a_{ij} w_I$ and extend f to a linear map $F : V \to W$. Then $[F]_C^B = A$. So ε_C^B is an isomorphism.

Proposition. Let V, W, X be finite-dimensional \mathbb{F} -vector spaces with basis B, C, D and $\alpha \in \mathcal{L}(V, W)$ and $\beta \in \mathcal{L}(W, X)$. Then

$$[\beta \circ \alpha]_D^B = [\beta]_D^C [\alpha]_C^B.$$

Proof. By the theorem $[\beta \circ \alpha]_D^B$ is the unique matrix A satisfying

$$A[v]_B = [\beta(\alpha(v))]_D, \quad \forall v \in V.$$

But $[\beta]_D^C[\alpha]_C^B[v]_B = [\beta]_D^C[\alpha(v)]_C = [\beta(\alpha(v))]_D$. So by (ii) of theorem they are equal.

Remark. For any basis B of V,

$$[\mathrm{id}_V]_B^B = I_{\dim V}.$$

Definition. (Change of basis matrix) Let B, B' be basis for V and $\dim V = n$. The change of basis matrix from B to B' is given by

$$P = [\mathrm{id}_V]_{B'}^B \in M_{m \times n}(\mathbb{F})$$

Equivalently letting $B = \{v_i\}_{i=1}^n$ and $B' = \{v_i'\}_{i=1}^n$, then

$$P = (p_{ij})$$
 where $v_j = \sum_{i=1}^n p_{ij} v_i'$

so the jth column of P is $[v_j]_{B'}$.

Proposition. For V, W finite-dimensional vector spaces,

- (i) $[\mathrm{id}_V]_{B'}^B \in GL_n(\mathbb{F})$ with inverse $[\mathrm{id}_V]_B^{B'}$. (ii) If $\alpha \in \mathcal{L}(V,W)$ and B,B' basis for V and C,C' basis for W, then

$$[\alpha]_{C'}^{B'} = [\mathrm{id}_W]_{C'}^C [\alpha]_C^B [\mathrm{id}_V]_B^{B'}.$$

Proof. By the remark,

$$I_n = [\mathrm{id}_V]_B^B = [\mathrm{id}_V]_B^{B'} [\mathrm{id}_V]_{B'}^B$$

and symmetrically swapping B and B'. For the second part the result is immediate from the proposition.

Definition. (Equivalent matrices) Let $A, A' \in M_{m \times n}(\mathbb{F})$. We say that A and A' are equivalent if $\exists P \in GL_m(\mathbb{F}), Q \in GL_n(\mathbb{F})$ such that A' = PAQ.

Remark. Certianly A is equivalent to itself by $P = I_m$ and $Q = I_n$.

If A' = PAQ then $A = P^{-1}A'Q^{-1}$.

If A'' = RA'S too, then A'' = (RP)A(QS), so the equivalence of matrices is an equivance relation on $M_{m\times n}(\mathbb{F})$.

Theorem. Let V, W be finite-dimensional \mathbb{F} -vector spaces. Let $\dim V = n$, $\dim W = m$ and let $\alpha \in \mathcal{L}(V, W)$. Let $r = \operatorname{rk}(\alpha)$. Then,

(i) There exists basis B, C for V, W respectively such that

$$[\alpha]_C^B = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \in M_{m \times n}(\mathbb{F})$$

where I_r is the identity matrix of size r, and the zeros are block zero matrices.

(ii) If

$$[\alpha]_{C'}^{B'} = \begin{pmatrix} I_{r'} & 0\\ 0 & 0 \end{pmatrix} \in M_{m \times n}(\mathbb{F})$$

for some basis B', C' of V, W respectively, then r' = r

Proof. By rank-nullity $n(\alpha) = n - r$. Let $\{v_{r+1}, \ldots, v_n\}$ be a basis for ker α . Extend to a basis $B = \{v_1, \ldots, v_r, v_{r+1}, \ldots, v_n\}$. Then $\{\alpha(v_1), \ldots, \alpha(v_r)\}$ spans the image, and has size at most $\dim(\operatorname{im}(\alpha))$, so it's linearly independent, hence we can extend it to form a basis of W.

$$C = \{w_1 = \alpha(v_1), \dots, w_r = \alpha(v_r), w_{r+1}, \dots, w_m\}$$

Then

$$\alpha(v_j) = \begin{cases} w_j & 1 \le j \le r \\ \mathbf{0} & \text{otherwise} \end{cases}$$

hence we have that $[\alpha]_C^B = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

For the second part, if $[\alpha]_{C'}^{B'} = \begin{pmatrix} I_{r'} & 0 \\ 0 & 0 \end{pmatrix}$ then

$$\alpha(v_j') = \begin{cases} w_j' & 1 \le j \le r' \\ \mathbf{0} & \text{otherwise} \end{cases}.$$

Hence $w'_1, \ldots, w'_{r'}$ span $\operatorname{im}(\alpha)$ and are linearly independent. Hence $\operatorname{rk}(\alpha) = r'$.

Definition. (Column-space) For $A \in M_{m \times n}(\mathbb{F})$ the column-space Col(A) is the subspace of \mathbb{F}^m spanned by the columns of A. The dimension of the column-space is called the column-rank of A.

Definition. (Row-space) For $A \in M_{m \times n}(\mathbb{F})$ the row-space Row(A) is the subspace of \mathbb{F}^m spanned by the rows of A (when transposed as column vectors). The dimension of the row-space is called the row-rank of A.

Remark.

$$Row(A) = Col(A^T)$$

hence the row-rank of A is the same as the column-rank of A^{T} .

Remark. Given a matrix $A \in M_{m \times n}(F)$ we can define a linear map $\alpha : \mathbb{F}^n \to \mathbb{F}^m$ by $\alpha(v) = Av$. Then $\operatorname{im}(\alpha) = \operatorname{Col}(A)$, so the rank of α is the same as the column-rank of A. Moreover, $A = [\alpha]_{E_m}^{E_n}$ where E_k are the standard basis for \mathbb{F}^k .

We may write im A, ker A, $\operatorname{rk}(A)$, $\operatorname{n}(A)$ to refer to the corresponding concepts for α .

Theorem. Let $A, A' \in M_{m \times n}(\mathbb{F})$, then

(i) A is equivalent to

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$
 where r is the column-rank of A

(ii) A and A' are equivalent if and only if the have the same column-rank.

Proof. We'll first prove a lemma.

Lemma. For
$$A \in M_{m \times n}(\mathbb{F})$$
 and $B \in M_{n \times p}(\mathbb{F})$ then $\mathrm{rk}(A \cdot B) \leq \min(\mathrm{rk}(A), \mathrm{rk}(B))$.

Proof. We have that $\operatorname{im}(AB) \leq \operatorname{im}(A)$ so $\operatorname{rk}(AB) \leq \operatorname{rk}(A)$. If $Bv = \mathbf{0}$ for $v \in \mathbb{F}^p$, then $ABv = \mathbf{0}$, so $\operatorname{n}(B) \geq \operatorname{n}(AB)$, so applying rank-nullity, we get that

$$p - \operatorname{rk}(B) \le p - \operatorname{rk}(AB) \implies \operatorname{rk}(AB) \le \operatorname{rk}(B) \quad \Box$$

Now we'll prove the first part of the theorem. Let α the natural linear map corresponding to A, so $A = [\alpha]_{E_m}^{E_n}$. By the previous theorem, there exists matrices B, C of $\mathbb{F}^n, \mathbb{F}^m$ such that

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = [\alpha]_C^B = [\mathrm{id}_{\mathbb{F}^m}]_C^{E_m} [\alpha]_{E_m}^{E_n} [\mathrm{id}_{\mathbb{F}^n}]_{E_n}^B = PAQ$$

where $r = \text{rk}(\alpha)$ which we know is equal to the column-rank of A.

If A' has column-rank r then both matrices are equivalent to $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, so by transitivity, A and A' are equivalent. Conversely suppose that A and A' are equivalent, so A' = PAQ. By the lemma $\operatorname{rk}(A') \geq \operatorname{rk}(AQ) \geq \operatorname{rk}(A)$ and symmetrically we get that $\operatorname{rk}(A) \geq \operatorname{rk}(A')$, hence $\operatorname{rk}(A') = \operatorname{rk}(A)$.

Theorem. For any $A \in M_{m \times n}(\mathbb{F})$, the row-rank of A is equal to the column-rank of A.

Proof. Note that if P is invertiable, then so it the transpose with inverse $(P^{-1})^T$. Let r be the column-rank of A. So there exists matrices $P \in GL_m(\mathbb{F})$ and $Q \in GL_n(\mathbb{F})$ such that $PAQ = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \in M_{m \times n}(\mathbb{F})$. Then A^T is equivalent to $Q^TA^TP^T = (PAQ)^T = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \in M_{n \times m}(\mathbb{F})$. By the previous theorem, the column-rank of A^T is r which also the row-rank of A.

Let V be a finite-dimensional vector space and B, B' be basis for V. Now let $\alpha \in \operatorname{End}(V) = \mathcal{L}(V, V)$. Then

$$[\alpha]_{B'}^{B'} = [\mathrm{id}_V]_{B'}^B [\alpha]_B^B [\mathrm{id}_V]_B^{B'}$$

Definition. (Similarity) For matrices $A, A' \in M_{n \times m}(\mathbb{F})$ are *similar* if there exists $P \in GL_n(\mathbb{F})$ such that $A' = P^{-1}AP$.

Remark. We have some remarks showing the similarity and equivalence are not the same thing.

- (i) Similarity is an equivalence relation on $M_{n\times n}(\mathbb{F})$.
- (ii) Similar matrices are equivalent but equivalent matrices need not be similar.