GIẢI TÍCH (CƠ BẢN)

Tài liêu ôn thi cao học năm 2005

Phiên bản đã chỉnh sửa

PGS TS. Lê Hoàn Hóa

Ngày 10 tháng 12 năm 2004

Phép Tính Vi Phân Hàm Nhiều Biến

I - Sự liên tục

1. Không gian \mathbb{R}^n :

Dinh nghĩa:

Với $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, đặt:

- $||x|| = (x_1^2 + x_2^2 + \ldots + x_n^2)^{\frac{1}{2}}$ là chuẩn Euclide của x- $d(x,y) = ||x-y|| = [(x_1-y_1)^2 + (x_2-y_2)^2 + \ldots + (x_n-y_n)^2]^{\frac{1}{2}}$ là khoảng cách giữa x, y.
- $B(x,r) = \{y \in \mathbb{R}^n/d(x,y) < r\}$ là quả cầu mở tâm x, bán kính r.

Cho $D \subset \mathbb{R}^n$, điểm $x \in \mathbb{R}^n$ được gọi là điểm biên của D nếu với mọi r > 0 thì $B(x,r) \cap D \neq \emptyset$ và $B(x,r) \cap (\mathbb{R}^n \setminus D) \neq \emptyset$.

Nếu x là điểm biên của D thì x cũng là điểm biên của $\mathbb{R}^n \setminus D$. Tập tất cả các điểm biên của D được gọi là biên của D, ký hiệu ∂D . Ta có:

$$\partial D = \partial(\mathbb{R}^n \setminus D)$$

Tập D được gọi là mở nếu mọi $x \in D$, có r > 0 sao cho $B(x,r) \subset D$. Nếu D là tập mở, $x \in D$ thì x không là điểm biên của D. Vậy nếu D là tập mở thì D không chứa điểm biên của D và ngược lai.

Tập $A \subset \mathbb{R}^n$ được gọi là đóng nếu $\mathbb{R}^n \setminus A$ là tập mở. A là tập đóng $\Leftrightarrow \partial A \subset A$ Đặt:

- $\overset{0}{D} = D \setminus \partial D$ là tập mở lớn nhất chứa trong D và gọi là phần trong của D.
- $\bullet \ \, \overset{-}{D} = D \cup \partial D$ là tập đóng bé nhất chứa D và gọi là bao đóng của D

Tập D được gọi là bị chặn nếu có $M \ge 0$ sao cho $||x|| \le M$ với mọi $x \in D$ Định lý:

- 1) \mathbb{R}^n là không gian đầy đủ, nghĩa là mọi dãy cơ bản trong \mathbb{R}^n đều hội tụ.
- 2) Cho A là tập đóng bị chặn trong \mathbb{R}^n và $(x_k)_k$ là dãy trong A. Khi đó có dãy con $(x_{ki})_i$ của dãy $(x_k)_k$ sao cho $\lim_{i\to\infty}x_{ki}=x$ và $x\in A$
- 2. Giới hạn và sự liên tục:

Dinh nghĩa:

Cho $D \subset \mathbb{R}^n$, điểm $x_0 \in \mathbb{R}^n$ được gọi là điểm giới hạn (hay điểm tụ) của D nếu với mọi r > 0 thì

$$D \cap B(x_0, r) \setminus \{x_0\} \neq \emptyset$$

 x_0 là điểm giới hạn của D nếu và chỉ nếu có dãy $(x_k)_k$ trong D, $x_k \neq x_0$, $\lim_{k \to \infty} x_k = x_0$ 2.1 Cho $f: D \to \mathbb{R}$ và x_0 là điểm giới hạn của D. Ta nói:

$$\lim_{x \to x_0} f(x) = a \in \mathbb{R} \quad \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 : \forall x \in D, 0 < d(x, x_0) < \delta$$

$$\Rightarrow |f(x) - a| < \varepsilon$$

$$\lim_{x \to x_0} f(x) = +\infty \quad \Leftrightarrow \forall A \in \mathbb{R}, \exists \delta > 0 : \forall x \in D, 0 < d(x, x_0) < \delta$$

$$\Rightarrow f(x) > A$$

$$\lim_{x \to x_0} f(x) = -\infty \quad \Leftrightarrow \forall A \in \mathbb{R}, \exists \delta > 0 : \forall x \in D, 0 < d(x, x_0) < \delta$$

$$\Rightarrow f(x) < A$$

Ta có:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \forall (x_k)_k \subset D, x_k \neq x_0, \lim_{k \to \infty} x_k = x_0 \Rightarrow \lim_{k \to \infty} f(x_k) = a$$

Ghi chú:

Để chứng minh không có $\lim_{x\to x_0} f(x)$ ta cần chỉ ra có hai dãy $(x_k)_k, (y_k)_k$ trong D

$$x_k \neq x_0, y_k \neq y_0, \lim_{k \to \infty} x_k = x_0 = \lim_{k \to \infty} y_k$$

$$\min_{k \to \infty} f(x_k) \neq \lim_{k \to \infty} f(y_k)$$

2.2 Cho $f: D \to \mathbb{R}$ và $x_0 \in D$. Ta nói:

$$f$$
 liên tục tại $x_0 \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 : \forall x \in D, d(x, x_0) < \delta$
 $\Rightarrow |f(x) - f(x_0)| < \varepsilon$

Nếu f liên tục tại mọi $x \in D$ ta nói f liên tục trên D

f liên tục trên
$$D \Leftrightarrow \forall x \in D, \forall \varepsilon > 0, \exists \delta > 0 : \forall x' \in D, d(x, x') < \delta$$

 $\Rightarrow |f(x) - f(x')| < \varepsilon$

$$f$$
 liên tục đều trên $D \iff \forall \varepsilon > 0, \exists \delta > 0: \forall x, x' \in D, d(x, x') < \delta \implies |f(x) - f(x')| < \varepsilon$

Ta có: Nếu $x_0 \in D$ và x_0 là điểm giới hạn của D thì:

$$f$$
 liên tục tại $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

2.3 Tập $D \subset \mathbb{R}^n$ được gọi là liên thông nếu không có hai tập mở O_1, O_2 sao cho :

$$D \cap O_i \neq \emptyset$$
, $i = 1, 2$, $D \subset O_1 \cup O_2$, $D \cap O_1 \cap O_2 = \emptyset$

Định lý:

Cho A là tập đóng bị chặn trong \mathbb{R}^n và $f:A\to\mathbb{R}$ liên tục. Khi đó:

- a) f liên tục đều trên A
- b) f đạt cực đại, cực tiểu trên A, nghĩa là có $x_0, y_0 \in A$ sao cho :

$$f(x_0) = \max\{f(x), x \in A\}$$

$$f(y_0) = min\{f(x), x \in A\}$$

c) Nếu giả sử thêm A liên thông và đặt :

$$m = min\{f(x), x \in A\}, M = max\{f(x), x \in A\}$$

Khi đó :
$$f(A) = [m, M]$$

3. Thí dụ:

3.1 Cho $f(x,y)=\sqrt{1-x^2-y^2}$, miền xác định $D_f=\{x^2+y^2\leq 1\}$ là tập đóng, bị chặn trong \mathbb{R}^2

Cho $g(x,y) = \sqrt{\frac{x^2}{4} + y^2 - 1} + \ln(4 - x^2 - y^2)$ miền xác định:

$$D_g = \left\{ (x, y) \in \mathbb{R}^2 / x^2 + y^2 < 4, \frac{x^2}{4} + y^2 \ge 1 \right\}$$

Biên của D_q là hai đường cong :

$$C_1 = \left\{ \frac{x^2}{4} + y^2 = 1 \right\}, \ C_2 = \left\{ x^2 + y^2 = 4 \right\}$$

Mọi $(x,y)\in C_1, (x,y)\neq (\pm 2,0)$ thì $(x,y)\in D_g$

Mọi $(x,y) \in C_2$ thì $(x,y) \notin D_g$

 D_g là tập bị chặn, D_g không là tập đóng cũng không là tập mở. D_g không liên thông

Thật vậy, đặt:

$$O_1 = \{(x, y) \in \mathbb{R}^2 / y > 0\}, O_2 = \{(x, y) \in \mathbb{R}^2 / y < 0\}$$

 O_1, O_2 là tập mở thỏa mãn:

$$D_g \cap O_i \neq \emptyset, \ i = 1, 2, \ D_g \subset O_1 \cup O_2, \ D_g \cap O_1 \cap O_2 = \emptyset$$

3.2 Cho $A = \left\{ (x, y) \in \mathbb{R}^2 \middle/ x, y \in \mathbb{Q} \cap [0, 1] \right\}, B = \left\{ (x, y) \in \mathbb{R}^2 \middle/ x, y \in [0, 1] \setminus \mathbb{Q} \right\}$ Khi đó :

$$\partial A = \partial B = [0,1] \times [0,1], \stackrel{0}{A} = \stackrel{0}{B} = \emptyset, \overline{A} = \overline{B} = [0,1] \times [0,1]$$

Thật vậy , với $(x,y)\in[0,1]^2$ và r>0, trong quả cầu mở tâm (x,y) bán kính r, gọi D là hình vuông mở chứa trong quả cầu $D=\left(x-\frac{r}{2},x+\frac{r}{2}\right)\times\left(y-\frac{r}{2},y+\frac{r}{2}\right)$

Do mỗi khoảng mở khác rỗng đều chứa vô số số hữu tỉ và số vô tỉ nên $D \cap A \neq \emptyset$, $D \cap B \neq \emptyset$, $D \cap (\mathbb{R}^2 \backslash A) \neq \emptyset$, $D \cap (\mathbb{R}^2 \backslash B) \neq \emptyset$

Vây $(x,y) \in \partial A, (x,y) \in \partial B$

Ngoài ra, tập các điểm giới hạn của D cũng là $[0,1] \times [0,1]$

Tính các giới hạn:

i)
$$\lim_{x,y\to 0} \frac{\sin xy}{1 - \sqrt[3]{1 + xy}} = \lim_{t\to 0} \frac{\sin t}{1 - (1+t)^{\frac{1}{3}}} = \lim_{t\to 0} \frac{t}{\frac{-t}{3}} = -3$$

 $(\operatorname{d\check{a}t} t = xy)$

(dặt
$$t = xy$$
)
ii)
$$\lim_{x,y\to 0} \frac{1-\cos xy}{y^2} = \lim_{x,y\to 0} \frac{x^2(1-\cos xy)}{x^2y^2} = 0$$
iii)
$$\lim_{x,y\to +\infty} (x^2+y^2)e^{-(x+y)} = 0$$

iii)
$$\lim_{x,y\to+\infty} (x^2 + y^2)e^{-(x+y)} = 0$$

Thật vậy :
$$\frac{x^2 + y^2}{e^{x+y}} \le \frac{x^2}{e^x} + \frac{y^2}{e^y}$$

iv) $\lim_{x,y\to 0} \frac{xy}{x+y}$ không tồn tại.

Thật vậy, đặt $f(x,y) = \frac{xy}{x+y}$, chọn:

$$(x_k, y_k) = \left(\frac{1}{k}, 0\right) \to (0, 0), \lim_{k \to \infty} f\left(\frac{1}{k}, 0\right) = 0$$

$$(x'_k, y'_k) = \left(\frac{1}{k}, -\frac{1}{k} + \frac{1}{k^2}\right) \to (0, 0), \lim_{k \to \infty} f(x'_k, y'_k) = \lim_{k \to \infty} \frac{\frac{1}{k}(-\frac{1}{k} + \frac{1}{k^2})}{\frac{1}{k^2}} = -1$$

v) $\lim_{x,y\to 0} \frac{x^2y}{x^4+y^2}$ không tồn tại.

Đặt
$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
, chọn:

$$(x_k, y_k) = \left(\frac{1}{k}, 0\right) \to (0, 0), \lim_{k \to \infty} f\left(\frac{1}{k}, 0\right) = 0$$

$$(x_k',y_k') = \left(\frac{1}{k},\frac{1}{k^2}\right) \rightarrow (0,0), \lim_{k \rightarrow \infty} f\left(\frac{1}{k},\frac{1}{k^2}\right) = \frac{1}{2}$$

3.4 Cho D là tập bị đóng, bị chặn trong \mathbb{R}^n và $x_0 \in \mathbb{R}^n$. Chứng minh: có $x_1, y_1 \in D$ sao cho:

$$d(x_0, x_1) = \max\{d(x_0, x), x \in D\}$$

$$d(x_0,y_1)=\min\{d(x_0,x),x\in D\}$$

Đặt $f: D \to \mathbb{R}$ định bởi: $f(x) = d(x_0, x)$ thì f liên tục.

Do D là tập đóng, bị chặn nên f đạt cực đại, cực tiểu trong D.

3.5 Cho D là tập đóng trong \mathbb{R}^n và $x_0 \in \mathbb{R}^n$. Chứng minh: có $x_1 \in D$ sao cho :

$$d(x_0,x_1)=\min\{d(x_0,x),x\in D\}$$

Đặt: $f: D \to \mathbb{R}$ định bởi: $f(x) = d(x_0, x)$ thì f liên tục.

Với M > 0 đủ lớn sao cho $D \cap B'(x_0, M) \neq \emptyset$ $(B'(x_0, r)$ là quả cầu đóng).

Đặt $D_1 = D \cap B'(x_0, M)$ thì D_1 là tập đóng, bị chặn.

Vậy có $x_1 \in D$ sao cho:

$$d(x_0, x_1) = min\{d(x_0, x), x \in D_1\} \le M$$

Với $x \in D$, xét hai trường hợp:

-
$$x \in D_1$$
 thì $d(x_0, x) \ge d(x_0, x_1)$

-
$$x \notin D$$
 thì $d(x_0, x) > M \ge d(x_0, x_1)$
Vậy $d(x_0, x_1) = \min\{d(x_0, x), x \in D\}$

3.6 Cho $f: \mathbb{R}^n \to \mathbb{R}$ liên tục và thỏa mãn: $\lim_{\|x\| \to \infty} f(x) = 0$. Chứng minh: f liên tục đều.

Với $\varepsilon > 0$, do $\lim_{\|x\| \to \infty} f(x) = 0$, có M > 0 sao cho khi $\|x\| > \mathbb{R}$ thì: $\|f(x)\| < \frac{\varepsilon}{3}$

Khi đó: với $x, y \in \mathbb{R}^n, ||x|| > M, ||y|| > M$ thì

$$|f(x) - f(y)| < \frac{2\varepsilon}{3} < \varepsilon$$

Do f liên tục đều trên tập đóng, bị chặn B'(0, M+1) nên có $\delta > 0$ sao cho khi $x,y \in B'(0,M+1), d(x,y) < \delta$ thì $|f(x)-f(y)| < \varepsilon$ Vậy f liên tục đều trên \mathbb{R}^n .

3.7 Cho

$$f(x,y) = \begin{cases} (x^2 + y^2)^{x^2 + y^2} &, & x^2 + y^2 > 0 \\ a &, & x = y = 0 \end{cases}$$
$$g(x,y) = \begin{cases} (x^2 + y^2)e^{x^2 - y^2} &, & x^2 + y^2 > 0 \\ b &, & x = y = 0 \end{cases}$$

Định a,b để f,g liên tục tại (0,0). Đặt $t=x^2+y^2$, ta có: $\lim_{x,y\to 0}(x^2+y^2)^{x^2+y^2}=\lim_{t\to 0}t^t=1$ (do $\lim_{t\to 0}\ln t^t=\lim_{t\to 0}t\ln t=0$)

Vây: f liên tục tại $(0,0) \Leftrightarrow a=1$

Do $x, y \to 0$, có thể giả sử $x^2 + y^2 < 1$. Khi đó:

$$(x^2 + y^2)^{x^2 + y^2} \le (x^2 + y^2)^{x^2 - y^2} \le (x^2 + y^2)^{-(x^2 + y^2)}$$

Suy ra: $\lim_{x,y\to 0} (x^2 + y^2)^{x^2 - y^2} = 1$

Vậy q liên tục tại $(0,0) \Leftrightarrow b=1$

Bài tập

1 - Khảo sát các giới hạn sau:
i)
$$\lim_{x,y\to 0} \frac{y(x^2+y^2)}{y^2+(x^2+y^2)^2}$$

ii)
$$\lim_{\substack{x \to 0 \\ y \to 1}} (1 + xy)^{\frac{1}{x^2 + xy}}$$

Định a để các hàm số sau lên

i)
$$f(x,y) = \begin{cases} \cos \frac{x^3 - y^3}{x^2 + y^2}, & x^2 + y^2 > 0 \\ a, & x = y = 0 \end{cases}$$

ii) $g(x,y) = \begin{cases} x \cos \frac{1}{x^2 + y^2}, & x^2 + y^2 > 0 \\ a, & x = y = 0 \end{cases}$

ii)
$$g(x,y) = \begin{cases} x \cos \frac{1}{x^2 + y^2}, & x^2 + y^2 > 0 \\ a, & x = y = 0 \end{cases}$$

3 - Chứng minh hàm số sau liên tục đều trên \mathbb{R}^2 :

$$f(x,y) = \begin{cases} (x+y)\sin\frac{1}{x^2 + y^2}, & x^2 + y^2 > 0\\ 0, & x = y = 0 \end{cases}$$

HD:
$$\lim_{x^2+y^2\to\infty} f(x,y) = 0$$

Chứng minh hàm số sau không liên tục đều trên \mathbb{R}^2 :

$$f(x,y) = \begin{cases} (x^2 + y^2)\cos\frac{1}{x^2 + y^2} &, x^2 + y^2 > 0\\ 0 &, x = y = 0 \end{cases}$$

HD: Hàm f(x,y) tương đương với hàm $g(x,y)=x^2+y^2$ khi $x^2+y^2\to +\infty$

II -Sư khả vi

Đao hàm riêng: 1.

Cho D là tập mở trong \mathbb{R}^n , $f:D\to\mathbb{R}$.

Đặt $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ (thàng phần thứ i bằng 1). Với $x \in D$, đạo hàm riêng của f tại x theo biến x_i , ký hiệu $\frac{\partial f}{\partial x_i}(x)$, định bởi:

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t\to 0} \frac{(x+te_i) - f(x)}{t} \text{ (nếu giới hạn tồn tại, hữu hạn)}$$

Sự khả vi:

Cho D là tập mở trong \mathbb{R}^n , $f:D\to\mathbb{R}$ và $x\in D$. Giả sử tồn tại các đạo hàm riêng $\frac{\partial f}{\partial x_i}(x), i = 1, \dots, n$. Ta nói f khả vi tại x nếu với $h = (h_1, h_2, \dots, h_n) \in \mathbb{R}^n$ sao cho $x + h \in D$ thì:

$$f(x+h) - f(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)h_i + ||h||\varphi(h)|$$

trong đó φ xác định trong lân cận của $O_{\mathbb{R}^n}$ thỏa: $\lim_{h\to O_{\mathbb{R}^n}} \varphi(h)=0$

Vi phân của f tại x, ký hiệu là df(x), định bởi:

$$df(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)h_i = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)dx_i$$
 thay h_i bằng dx_i

Tính chất: Nếu f khả vi tại x thì f liên tục tại x.

Diều kiện đủ: Nếu các đạo hàm riêng $\frac{\partial f}{\partial x_i}$, $i = 1, 2, \dots, n$ liên tục tại x thì f khả vitai x

Ghi chú: Hàm

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 > 0\\ 0, & x = y = 0 \end{cases}$$

có $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial u}(0,0) = 0$ nhưng f không liên tục tại (0,0) (do không tồn tại $\lim_{x,y\to 0} f(x,y)).$

3. Thí du:

3.1 Tính đạo hàm riêng:
$$\sin(\frac{x}{y})$$
 a)
$$f(x,y) = e^{\sin(\frac{x}{y})}$$

$$\Rightarrow \frac{\partial f}{\partial x}(x,y) = \frac{1}{y}\cos\frac{x}{y} \cdot e^{\sin(\frac{x}{y})}$$

$$\frac{\partial f}{\partial y}(x,y) = -\frac{x}{y^2}\cos\frac{x}{y} \cdot e^{\sin(\frac{x}{y})}$$

b)
$$f(x, y, z) = (\frac{y}{x})^z = e^{z \ln \frac{y}{x}}$$

 $\frac{\partial f}{\partial x}(x, y, z) = -\frac{z}{y}(\frac{y}{x})^z, \frac{\partial f}{\partial y} = \frac{z}{y}(\frac{y}{x})^z, \frac{\partial f}{\partial z} = \ln \frac{y}{x}(\frac{y}{x})^z$

c)
$$f(x,y) = \int_{\sin x}^{x^2 + y^2} e^{t^2} dt$$

 $\frac{\partial f}{\partial x}(x,y) = 2xe^{(x^2 + y^2)^2} - \cos xe^{\sin^2 x}, \frac{\partial f}{\partial y}(x,y) = 2ye^{(x^2 + y^2)^2}$

 $3.2\,$ Xét sự khả vi của các hàm sau tại (0,0)

a)
$$f(x,y) = \begin{cases} x + \frac{xy^2}{\sqrt{x^2 + y^2}}, & x^2 + y^2 > 0\\ 0, & x = y = 0 \end{cases}$$

Ta có:

$$\begin{split} &\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 1, \ \frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0 \\ &\text{V\'oi} \ h = (s,t), \ \varphi(s,t) = \frac{1}{\sqrt{s^2 + t^2}} \left[f(s,t) - f(0,0) - \frac{\partial f}{\partial x}(0,0)s - \frac{\partial f}{\partial y}(0,0)t \right] \\ &\varphi(s,t) = \frac{st^2}{s^2 + t^2}. \ \text{Suy ra: } \lim_{s,t \to 0} \varphi(s,t) = 0 \\ &\text{V\^ay } f \ \text{kh\^a} \ \text{vi tại } (0,0) \end{split}$$

b)
$$f(x,y) = \sqrt[3]{x^3 + y^3}$$
 $\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 1$, $\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 1$ Với $h = (s,t)$, $\varphi(s,t) = \frac{1}{\sqrt{s^2 + t^2}} \left[f(s,t) - f(0,0) - \frac{\partial f}{\partial x}(0,0)s - \frac{\partial f}{\partial y}(0,0)t \right]$ $\varphi(s,t) = \frac{1}{\sqrt{s^2 + t^2}} \left[\sqrt[3]{s^3 + t^3} - s - t \right]$ Chọn $s = t > 0$, $\varphi(s,s) = \frac{1}{s\sqrt{2}} \left[s\sqrt[3]{2} - 2s \right] = \frac{1}{\sqrt{2}} \left[(\sqrt[3]{2} - 2) \right]$ Suy ra: không có $\lim_{s,t \to 0} \varphi(s,t) = 0$ Vậy f không khả vi tại $(0,0)$

3.3 Cho

$$f(x,y) = \begin{cases} x^2 \sin \frac{1}{x^2 + y^2} &, x^2 + y^2 > 0\\ 0 &, x = y = 0 \end{cases}$$

Xét sự khả vi của f tại mọi $(x,y) \in \mathbb{R}^2$. Xét sự liên tục của $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ tại (0,0). $+ Tai(x,y) \neq (0,0)$:

$$\frac{\partial f}{\partial x}(x,y) = 2x \sin \frac{1}{x^2 + y^2} - \frac{2x^3}{(x^2 + y^2)^2} \cos \frac{1}{x^2 + y^2}$$
$$\frac{\partial f}{\partial y}(x,y) = -\frac{2x^2y}{(x^2 + y^2)^2} \cos \frac{1}{x^2 + y^2}$$

Do $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ liên tục tại mọi $(x,y) \neq (0,0)$ nên f khả vi tại mọi $(x,y) \neq (0,0)$. + $Tai\ (0,0)$:

$$\begin{split} \frac{\partial f}{\partial x}(0,0) &= \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0, \ \frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0 \\ \text{V\'oi} \ h &= (s,t), \ \varphi(s,t) = \frac{s^2}{\sqrt{s^2 + t^2}} \sin \frac{1}{s^2 + t^2} \\ \text{Suy ra: } \lim_{s,t \to 0} \varphi(s,t) &= 0 \end{split}$$

Vậy f khả vi tại (0,0)

Chon:

$$(x_k,y_k)=(0,\frac{1}{k})\to (0,0), \ \frac{\partial f}{\partial x}(0,\frac{1}{k})=0, \ \frac{\partial f}{\partial y}(0,\frac{1}{k})=0$$

$$(x_k',y_k')=(\frac{1}{2\sqrt{k\pi}},\frac{1}{2\sqrt{k\pi}})\to (0,0), \ \frac{\partial f}{\partial x}(x_k',y_k')=\frac{\partial f}{\partial y}(x_k',y_k')=-16\sqrt{k\pi}$$
 Suy ra không tồn tại $\lim_{x,y\to 0}\frac{\partial f}{\partial x}(x,y), \ \lim_{x,y\to 0}\frac{\partial f}{\partial y}(x,y)$ Vậy $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ không liên tục tại $(0,0)$

BÀI TẬP:

1) Cho

$$f(x,y) = \frac{\sin xy}{x}, x \neq 0$$

Định giá trị của f tại (0,y) để f liên tục. Khi đó tính $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$

2) Cho

$$f(x,y) = \begin{cases} \frac{x^2 - 2y^2}{x - y} &, & x \neq y \\ 0 &, & x = y \end{cases}$$

- a) Xét tính liên tục của f tại (0,0) và (1,1)
- b) Tính $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$
- 3) Cho

$$f(x,y) = \begin{cases} \frac{x \sin y}{\sqrt{x^2 + y^2}}, & x^2 + y^2 > 0\\ 0, & x = y = 0 \end{cases}$$

Xét sự khả vi của f tại (0,0).

4) Cho

$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} e^{-\frac{1}{\sqrt{x^2 + y^2}}}, & x^2 + y^2 > 0\\ 0, & x = y = 0 \end{cases}$$

Tính $\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)$ và xét tính liên tục của chúng tại mọi (x,y), đặc biệt tại (0,0)

HD: Dùng $\lim_{t\to\infty} \frac{t^n}{e^t} = 0$

5) Chứng tổ các hàm sau có đạo hàm riêng $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ không liên tục tại (0,0) nhưng f khả vi tại (0,0):

a)
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & x^2 + y^2 > 0\\ 0, & x = y = 0 \end{cases}$$

b)
$$f(x,y) = \begin{cases} \ln(1+x^2+y^2)\sin\frac{1}{\sqrt{x^2+y^2}}, & x^2+y^2>0\\ 0, & x=y=0 \end{cases}$$

6) Cho

$$f(x,y) = \begin{cases} x^2 \sin \frac{1}{(x^2 + y^2)^{1/3}}, & x^2 + y^2 > 0\\ 0, & x = y = 0 \end{cases}$$

Chứng minh các đạo hàm riêng $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ liên tục tại mọi (x,y) đặc biệt tại (0,0)

HD:
$$\frac{\partial f}{\partial x}(x,y) = 2x \sin \frac{1}{(x^2 + y^2)^{\frac{1}{3}}} - \frac{2}{3} \frac{x^3}{(x^2 + y^2)^{\frac{4}{3}}} \cos \frac{1}{(x^2 + y^2)^{\frac{1}{3}}}$$
$$\frac{\partial f}{\partial y}(x,y) = -\frac{2}{3} \frac{x^2 y}{(x^2 + y^2)^{\frac{4}{3}}} \cos \frac{1}{(x^2 + y^2)^{\frac{1}{3}}}$$
$$0 \le \frac{|x|^3}{(x^2 + y^2)^{\frac{4}{3}}} \le \frac{|x|}{(x^2 + y^2)^{\frac{1}{3}}} \le |x|^{\frac{1}{3}}$$
$$0 \le \frac{x^2 |y|}{(x^2 + y^2)^{\frac{4}{3}}} \le \frac{|y|}{(x^2 + y^2)^{\frac{1}{3}}} \le |y|^{\frac{1}{3}}$$

4. Hàm ẩn:

Định nghĩa: Cho $A \subset \mathbb{R}^n, B \subset \mathbb{R}^p$, mỗi phần tử của $A \times B$ ghi là (x, y) với $x \in A, y \in B$. Cho $f: A \times B \to \mathbb{R}^p$. Mỗi $(x, y) \in A \times B, f(x, y) \in \mathbb{R}^p$ ghi là:

$$f(x,y) = (f_1(x,y), f_2(x,y), \dots, f_p(x,y))$$

Các hàm $f_1, f_2, \dots, f_p : A \times B \to \mathbb{R}$ được gọi là hàm thành phần của f. Mỗi hàm thành phần là một hàm số thực theo n+p biến số thực

$$(x,y) = (x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_p)$$

Phương trình vecto:

$$f(x,y) = O_{\mathbb{R}^p} \tag{1}$$

tương đương với hệ thống gồm p phương trình:

$$\begin{cases}
f_1(x,y) = 0 \\
f_2(x,y) = 0 \\
\dots \\
f_p(x,y) = 0
\end{cases}$$
(2)

Khi nào từ phương trình vecto (1) có thể giải được $y = \varphi(x)$?

Ánh xạ φ xác định trong tập con của \mathbb{R}^n có giá trị trong \mathbb{R}^p , nếu có, được gọi là ánh xạ ẩn suy ra từ phương trình vecto (1).

Điều này tương đương với bài toán: khi nào từ hệ phương trình (2) có thể giải được y_1, y_2, \ldots, y_p là các hàm theo các biến x_1, x_2, \ldots, x_n :

$$\begin{cases} y_1 = \varphi_1(x_1, x_2, \dots, x_n) \\ y_2 = \varphi_2(x_1, x_2, \dots, x_n) \\ \dots \\ y_p = \varphi_p(x_1, x_2, \dots, x_n) \end{cases}$$

Các hàm $\varphi_1, \varphi_2, \dots, \varphi_p$, nếu có, được gọi là hàm ẩn suy ra từ hệ phương trình (2) Sau đây là định lí hàm ẩn cho trường hợp đặc biệt

Định lý:

i) Phương trình f(x, y) = 0: Cho f có đạo hàm riêng $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ liên tục trong lân cận của (x_0, y_0) . Giả sử: $f(x_0, y_0) = 0$ và $\frac{\partial f}{\partial u}(x_0, y_0) \neq 0$

Khi đó, có khoảng mở I chứa x_0 , hàm $y:I\to\mathbb{R}$ khả vi liên tục thỏa mãn:

$$y(x_0) = y_0, \quad f(x, y(x)) = 0, \quad \forall x \in I$$

và

$$\frac{dy}{dx}(x) = -\frac{\frac{\partial f}{\partial x}(x, y(x))}{\frac{\partial f}{\partial y}(x, y(x))}, \quad \forall x \in I$$

ii) Phương trình f(x, y, z) = 0: Cho f có đạo hàm riêng liên tục trong lân cận của (x_0, y_0, z_0)

Giả sử $f(x_0, y_0, z_0) = 0$ và $\frac{\partial f}{\partial z}(x_0, y_0, z_0) \neq 0$ Khi đó có tập mở $D \subset \mathbb{R}^2, (x_0, y_0) \in D$, hàm $z : D \to \mathbb{R}$ có đạo hàm riêng liên tục thỏa mãn:

$$z(x_0, y_0) = z_0$$
, $f(x, y, z(x, y)) = 0$, $\forall (x, y) \in D$

và

$$\frac{\partial z}{\partial x}(x,y) = -\frac{\frac{\partial f}{\partial x}(x,y,z(x,y))}{\frac{\partial f}{\partial z}(x,y,z(x,y))} \ , \ \frac{\partial z}{\partial y}(x,y) = -\frac{\frac{\partial f}{\partial y}(x,y,z(x,y))}{\frac{\partial f}{\partial z}(x,y,z(x,y))} \ , \ \forall (x,y) \in D$$

iii) Hệ phương trình:

$$\begin{cases} f(x, y, z) = 0 \\ g(x, y, z) = 0 \end{cases}$$

Cho f,g có các đạo hàm riêng liên tục trong lân cận của $M_0(x_0,y_0,z_0)$. Giả sử:

$$\begin{cases} f(x_0, y_0, z_0) = 0 \\ g(x_0, y_0, z_0) = 0 \end{cases} \text{ và } \begin{vmatrix} \frac{\partial f}{\partial x}(M_0) & \frac{\partial f}{\partial y}(M_0) \\ \frac{\partial g}{\partial x}(M_0) & \frac{\partial g}{\partial y}(M_0) \end{vmatrix} \neq 0$$

Khi đó có khoảng mở I chứa z_0 và các hàm $x,y:I\to\mathbb{R}$ khả vi liên tục thỏa mãn:

$$x(z_0) = x_0, \ , \ y(z_0) = y_0,$$

$$\begin{cases} f(x(z), y(z), z) = 0 \\ g(x(z), y(z), z) = 0 \end{cases}, \text{ v\'oi } \forall z \in I$$

và đạo hàm $\frac{dx}{dz}$, $\frac{dy}{dz}$ được tính từ hệ phương trình tuyến tính:

$$\begin{cases} \frac{\partial f}{\partial x} \cdot \frac{dx}{dz} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dz} + \frac{\partial f}{\partial z} = 0\\ \frac{\partial g}{\partial x} \cdot \frac{dx}{dz} + \frac{\partial g}{\partial y} \cdot \frac{dy}{dz} + \frac{\partial g}{\partial z} = 0 \end{cases}$$

iv) Hệ phương trình:

$$\begin{cases} f(x, y, u, v) = 0 \\ g(x, y, u, v) = 0 \end{cases}$$

Cho f, g có các đạo hàm riêng liên tục trong lân cận của $M_0(x_0, y_0, u_0, v_0)$. Giả sử:

$$\begin{cases} f(x_0, y_0, u_0, v_0) = 0 \\ g(x_0, y_0, u_0, v_0) = 0 \end{cases} \quad \text{và} \quad \begin{vmatrix} \frac{\partial f}{\partial u}(M_0) & \frac{\partial f}{\partial v}(M_0) \\ \frac{\partial g}{\partial u}(M_0) & \frac{\partial g}{\partial v}(M_0) \end{vmatrix} \neq 0$$

Khi đó có một lân cận mở D của (x_0, y_0) và hai hàm $u, v : D \to \mathbb{R}$ có đạo hàm riêng liên tục theo x, y thỏa mãn:

$$u(x_0,y_0)=u_0,\ ,\,v(x_0,y_0)=v_0,$$

$$\left\{ \begin{array}{l} f(x,y,u(x,y),v(x,y))=0\\ g(x,y,u(x,y),v(x,y))=0 \end{array} \right.,\ \text{v\'oi}\ \forall (x,y)\in D$$

Các đạo hàm riêng $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ cho bởi hệ 4 phương trình:

$$\begin{cases} \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial f}{\partial x} = 0 \\ \frac{\partial g}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial g}{\partial x} = 0 \\ \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial f}{\partial y} = 0 \\ \frac{\partial g}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial g}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial g}{\partial y} = 0 \end{cases}$$

Thí dụ:

1) Cho z = z(x, y) xác định từ hệ phương trình

$$\begin{cases} x = u + v \\ y = u^2 + v^2 \\ z = u^3 + v^3 \end{cases} \quad u \neq v$$

Tính
$$\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$$

Ta xem u=u(x,y), v=v(x,y), z=z(x,y) là hàm ẩn. Từ ba phương trình trên, đạo hàm theo x,y:

dao ham theo
$$x, y$$
:
$$\begin{cases}
1 = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \\
0 = u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x}
\end{cases}
\Rightarrow \frac{\partial u}{\partial x} = \frac{v}{v - u}, \quad \frac{\partial v}{\partial x} = \frac{-u}{v - u}$$

$$\begin{cases}
0 = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \\
1 = 2u \frac{\partial u}{\partial y} + 2v \frac{\partial v}{\partial y}
\end{cases}
\Rightarrow \frac{\partial u}{\partial y} = \frac{-1}{2(v - u)}, \quad \frac{\partial v}{\partial y} = \frac{1}{2(v - u)}$$

$$\begin{cases} \frac{\partial z}{\partial x} = 3u^2 \frac{\partial u}{\partial x} + 3v^2 \frac{\partial v}{\partial x} & \frac{\partial z}{\partial x} = -uv \\ \frac{\partial z}{\partial y} = 3u^2 \frac{\partial u}{\partial y} + 3v^2 \frac{\partial v}{\partial y} & \frac{\partial z}{\partial y} = \frac{3}{2}(u+v) \end{cases}$$

2) Cho u=u(x,y), v=v(x,y) là hàm ẩn suy ra từ hệ phương trình:

$$\begin{cases} e^{uv} + u + v &= x+1 \\ uv + u^2 + v &= x+y \end{cases}$$

với giả thiết
$$u(0,0) = 0, v(0,0) = 0$$

Tính $\frac{\partial u}{\partial x}(0,0), \frac{\partial u}{\partial y}(0,0), \frac{\partial v}{\partial x}(0,0), \frac{\partial v}{\partial y}(0,0)$

Xem u = u(x, y), v = v(x, y) là hàm ẩn, từ hai phương trình đạo hàm theo x, y:

$$\begin{cases} (u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial x})e^{uv} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = 1\\ u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial x} + 2u\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = 1\\ (u\frac{\partial u}{\partial y} + v\frac{\partial v}{\partial y})e^{uv} + \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = 0\\ u\frac{\partial u}{\partial y} + v\frac{\partial v}{\partial y} + 2u\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = 1 \end{cases}$$

Thay u(0,0) = 0, v(0,0) = 0, ta được:

$$\begin{cases} \frac{\partial u}{\partial x}(0,0) + \frac{\partial v}{\partial x}(0,0) &= 1 \\ \frac{\partial v}{\partial x}(0,0) &= 1 \end{cases} \Rightarrow \frac{\partial u}{\partial x}(0,0) = 0$$

$$\begin{cases} \frac{\partial u}{\partial y}(0,0) + \frac{\partial v}{\partial y}(0,0) &= 0 \\ \frac{\partial v}{\partial y}(0,0) &= 1 \end{cases} \Rightarrow \frac{\partial u}{\partial y}(0,0) = -1$$

BÀI TẬP

1- Cho z=z(x,y) là hàm ẩn suy ra từ các phương trình sau, tính $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial u}$

a)
$$z \ln(x+z) - \frac{xy}{z} = 0$$

b) $xz - e^{z/y} + x^3 + e^3 = 0$

a) $z\ln(x+z)-\frac{xy}{z}=0$ b) $xz-e^{z/y}+x^3+y^3=0$ 2- Cho x=x(z),y=y(z) là hàm ẩn suy từ hệ:

$$\begin{cases} x^2 + y^2 - \frac{z^2}{2} = 0\\ x + y + z = 2 \end{cases}$$

Tính x'(2), y'(2)

3- Cho u=u(x,y), v=v(x,y), z=z(x,y) là hàm ẩn suy ra từ:

$$\begin{cases} x = u + \ln v \\ y = v - \ln u \\ z = 2u + v \end{cases}$$

Tính
$$\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$$
 tại điểm $u=1, v=1.$

4- Cho u=u(x,y), v=v(x,y) là hàm ẩn suy từ:

$$\begin{cases} xe^{u+v} + 2uv - 1 = 0\\ ye^{u-v} - \frac{u}{1+v} - 2x = 0 \end{cases}$$

Tính
$$\frac{\partial u}{\partial x}(1,2), \frac{\partial v}{\partial y}(1,2), \frac{\partial u}{\partial x}(1,2), \frac{\partial v}{\partial y}(1,2), \text{ biết } u(1,2)=0, v(1,2)=0$$

HD: Sau khi đạo hàm riêng hai phương trình theo x,y thay điều kiện u(1,2)=0,v(1,2)=0.