Physics 77

Introduction to Computational Techniques in Physics Spring 2019

Numerical Integration Amin Jazaeri, Yury Kolomensky

See also Python workbook Lecture07b.ipynb

What is numerical integration really calculating?

Consider the definite integral

$$I = \int_{a} f(x) dx$$

The integral can be approximated by weighted sum

$$I \approx \sum_{i=1}^{n} \omega_{i} f(x_{i}) \Delta x_{i}$$

- The ω_{l} are weights, and the x_{i} are abscissas
- Assuming that f is finite and continuous on the interval [a,b]
 numerical integration leads to a unique solution
- The goal of any numerical integration method is to choose abscissas and weights such that errors are minimized for the smallest n possible for a given function

Numerical Integration

• What are the choices of evaluation points, x_i 's and weights w_i 's such that:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} w_{i} f(x_{i}) \Delta x_{i}$$

- In general we have two sets of degree of freedom:
 - The spacing of evaluation points.
 - The weighted importance of each point.

Numerical Integration

- Numerical integration Methods:
- 1. Upper and Lower Sums
- 2. Newton-Cotes Methods:
 - a) Trapezoid Rule
 - b) Simpson Rules
- 3. Romberg Method
- 4. Gauss Quadrature

Upper and Lower Sums

The interval is divided into subintervals

$$Partition P = \left\{ a = x_0 \le x_1 \le x_2 \le \dots \le x_n = b \right\}$$

Define

$$m_i = \min \{ f(x) : x_i \le x \le x_{i+1} \}$$

 $M_i = \max \{ f(x) : x_i \le x \le x_{i+1} \}$

Lower sum
$$L(f, P) = \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

Upper sum
$$U(f,P) = \sum_{i=0}^{n-1} M_i (x_{i+1} - x_i)$$

Upper and Lower Sums

Lower sum
$$L(f,P) = \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

Upper sum
$$U(f,P) = \sum_{i=0}^{n-1} M_i (x_{i+1} - x_i)$$

Estimate of the integral = $\frac{L+U}{2}$

$$Error \le \frac{U - L}{2}$$

6

Example

$$\int_0^1 x^2 dx = 1/3 \text{ (true value)}$$

Partition
$$P = \left\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\right\}$$

n = 4 (four equal intervals)

$$m_0 = 0,$$
 $m_1 = \frac{1}{16},$ $m_2 = \frac{1}{4},$ $m_3 = \frac{9}{16}$

$$M_0 = \frac{1}{16}$$
, $M_1 = \frac{1}{4}$, $M_2 = \frac{9}{16}$, $M_3 = 1$

$$x_{i+1} - x_i = \frac{1}{4}$$
 for $i = 0, 1, 2, 3$

Example

Lower sum
$$L(f, P) = \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

$$L(f,P) = \frac{1}{4} \left[0 + \frac{1}{16} + \frac{1}{4} + \frac{9}{16} \right] = \frac{14}{64}$$

Upper sum
$$U(f,P) = \sum_{i=0}^{n-1} M_i (x_{i+1} - x_i)$$

$$U(f,P) = \frac{1}{4} \left[\frac{1}{16} + \frac{1}{4} + \frac{9}{16} + 1 \right] = \frac{30}{64}$$

Estimate of the integral =
$$\frac{1}{2} \left(\frac{30}{64} + \frac{14}{64} \right) = \frac{11}{32}$$

$$Error < \frac{1}{2} \left(\frac{30}{64} - \frac{14}{64} \right) = \frac{1}{8}$$

Estimate - True_Value = 0.01 << Error_Estimate

Upper and Lower Sums

- Estimates based on Upper and Lower Sums are easy to obtain for monotonic functions (always increasing or always decreasing).
- For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.

Newton-Cotes Methods

- In Newton-Cote Methods, the function is approximated by a polynomial of order n
- Computing the integral of a polynomial is easy.

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \left(a_{0} + a_{1}x + \dots + a_{n}x^{n}\right) dx$$

$$\int_{a}^{b} f(x)dx \approx a_{0}(b - a) + a_{1}\frac{(b^{2} - a^{2})}{2} + \dots + a_{n}\frac{(b^{n+1} - a^{n+1})}{n+1}$$

Newton-Cotes Methods

Trapezoid Method (First Order Polynomial are used)

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} (a_0 + a_1 x) dx$$

- Simpson 1/3 Rule (Second Order Polynomial are used),

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \left(a_0 + a_1x + a_2x^2\right) dx$$

Trapezoid Method

Derivation-One interval

$$I = \int_{a}^{b} f(x)dx \approx \int_{a}^{b} \left(f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right) dx$$

$$I \approx \int_{a}^{b} \left(f(a) - a \frac{f(b) - f(a)}{b - a} + \frac{f(b) - f(a)}{b - a} x \right) dx$$

$$= \left(f(a) - a \frac{f(b) - f(a)}{b - a} \right) x \Big|_{a}^{b} + \frac{f(b) - f(a)}{b - a} \frac{x^{2}}{2} \Big|_{a}^{b}$$

$$= \left(f(a) - a \frac{f(b) - f(a)}{b - a} \right) (b - a) + \frac{f(b) - f(a)}{2(b - a)} (b^{2} - a^{2})$$

$$= (b - a) \frac{f(b) + f(a)}{2}$$

Trapezoid Rule

Trapezoid Rule

Numerical Integration

Composite Trapezoid Rule

Trapezoid Rule

 Approximate integral using the areas of the trapezoids

$$\int_{a}^{b} f(x)dx \cong \sum \text{ area of trapezoids}$$

$$= h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + h \frac{f(x_2) + f(x_3)}{2} + h \frac{f(x_3) + f(x_4)}{2}$$

$$= \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + f(x_4)]$$

$$= \frac{h}{2} [f(x_0) + f(x_4)] + h [f(x_1) + f(x_2) + f(x_3)]$$

16

For n intervals this generalizes to

$$\int_{a}^{b} f(x)dx \cong \frac{h}{2} [f(a) + f(b)] + h \sum_{i=1}^{n-1} f(x_i)$$
 (1) The trapezoidal rule.

Numerical Integration

Trapezoid Rule

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n-1} \frac{f(x_{i+1}) + f(x_{i})}{2} \Delta x_{i}$$
$$\Delta x_{i} = \frac{(b-a)}{(n-1)}$$

So the weights are:

$$\left\{ w_{i} \right\}_{i=0}^{N} : w_{i} \begin{cases} 0.5 & i = 0, N \\ 1 & otherwise \end{cases}$$

Simpson's Rule

- Trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the line over the interval.
- Simpson's 1/3rd rule is an extension of Trapezoidal rule where the integrand is approximated by a second order polynomial.

$$I = \int_{a}^{b} f(x)dx \approx \int_{a}^{b} f_{2}(x)dx$$
 Where $f_{2}(x)$ is a second order polynomial.

$$f_2(x) = a_0 + a_1 x + a_2 x^2$$

Simpson's Rule

Simpson's rule:

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{3} [f(a) + 4f(a + \Delta x) + f(b)]$$

where
$$\Delta x = \frac{b-a}{2}$$

 Simpson's rule can only be applied when there are an even number of subintervals:

$$\int_{x_1}^{x_n} f(x)dx \approx \sum_{i=1,3,5}^{n-2} \frac{x_{i+1} - x_i}{3} [f(x_i) + 4f(x_{i+1}) + f(x_{i+2})]$$

Composite Simpson's Rule

The Simpson's rule for x0, x1, x2 is given as:

$$\int_{x_0}^{x_2} p_1(x)dx = \frac{h}{3} \left[f(x_0) + 4f(x_1) + f(x_2) \right]$$

We can do the same on x₂,x₃,x₄ to get

$$\int_{0}^{x_{4}} p_{1}(x)dx = \frac{h}{3} [f(x_{2}) + 4f(x_{3}) + f(x_{4})]$$

Hence on the entire region

$$\int_{0}^{x_{4}} f(x)dx \cong \frac{h}{3} \Big[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + f(x_{4}) \Big]$$

In general for an even number of intervals n

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [f(a) + f(b)] + \frac{4h}{3} \sum_{i=1}^{n/2} f(x_{2i-1}) + \frac{2h}{3} \sum_{i=1}^{n/2-1} f(x_{2i})$$

Composite Simpson's 1/3 Rule

Applicable only if the number of segments is even

Weights in Simpson's Rule

• For 1/3 Simpson' Rule the weights are:

$$\{w_i\}_{i=0}^{N}: w_i \begin{cases} 1/3 & \text{end points} \\ 4/3 & \text{odd points} \\ 2/3 & \text{even points} \end{cases}$$

Simpson's 1/3 Rule

Composite Simpson's 1/3 Rule

Higher order fits

- Can increase the order of the fit to cubic, quartic etc.
- For a cubic fit over x₀,x₁,x₂,x₃ we find

$$\int_{x_0}^{x_3} f(x)dx \cong \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$
Simpson's 3/8th Rule

• For a quartic fit over x_0, x_1, x_2, x_3, x_4

$$\int_{x_0}^{x_4} f(x)dx \approx \frac{2h}{45} \Big[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \Big]$$
Boole's Rule

 In practice these higher order formulas are not that useful, we can devise better methods if we first consider the errors involved

Error in the Trapezoid Rule

Consider a Taylor expansions of f(x) about a

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \frac{(x - a)^3}{3!}f'''(a) + \dots$$

The integral of f(x) written in this form is then

$$\int_{a}^{b} f(x)dx = \left[xf(a) + \frac{(x-a)^{2}}{2!} f'(a) + \frac{(x-a)^{3}}{3!} f'''(a) + \frac{(x-a)^{4}}{4!} f''''(a) + \frac{(x-a)^{5}}{5!} f'''''(a) + \dots \right]_{a}^{b}$$

$$= hf(a) + \frac{h^{2}}{2} f'(a) + \frac{h^{3}}{6} f'''(a) + \frac{h^{4}}{24} f''''(a) + \dots$$
 (1) where h=b-a

Error in the Trapezoid Rule

Perform the same expansion about b

$$\int_{a}^{b} f(x)dx = hf(b) - \frac{h^{2}}{2}f'(b) + \frac{h^{3}}{6}f''(b) - \frac{h^{4}}{24}f'''(b) + \dots$$
 (2)

If we take an average of (1) and (2) then

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \Big[f(a) + f(b) \Big] + \frac{h^{2}}{4} \Big[f'(a) - f'(b) \Big] + \frac{h^{3}}{12} \Big[f''(a) + f''(b) \Big] + \frac{h^{4}}{48} \Big[f'''(a) - f'''(b) \Big] + \frac{h^{5}}{240} \Big[f^{iv}(a) + f^{iv}(b) \Big] + \dots$$
(3)

Notice that odd derivatives are differenced while even derivatives are added

Error in the Trapezoid Rule

We also make Taylor expansions of f' and f'' around both a & b, which allow us to substitute for terms in f' and fiv and to derive

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [f(a) + f(b)] + \frac{h^{2}}{12} [f'(a) - f'(b)] + \frac{h^{4}}{720} [f'''(a) - f'''(b)] + \dots (10)$$

- It takes quite a bit of work to get to this point, but the key issue is that we have now created correction terms which are all differences
- If we now use this formula in the composite trapezoid rule there will be a large number of cancellations

Error in the Composite Trapzoid

We now sum over a series of trapezoids to get

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \Big[\Big(f(a) + f(x_{1}) \Big) + \Big(f(x_{1}) + f(x_{2}) \Big) + \dots + \Big(f(x_{n-2}) + f(x_{n-1}) \Big) + \Big(f(x_{n-1}) + f(b) \Big) \Big]
+ \frac{h^{2}}{12} \Big[\Big(f'(a) - f'(x_{1}) \Big) + \Big(f'(x_{1}) - f'(x_{2}) \Big) + \dots + \Big(f'(x_{n-2}) - f'(x_{n-1}) \Big) + \Big(f'(x_{n-1}) - f'(b) \Big) \Big]
+ \frac{h^{4}}{720} \Big[\Big(f'''(a) - f'''(x_{1}) \Big) + \Big(f'''(x_{1}) - f'''(x_{2}) \Big) + \dots + \Big(f'''(x_{n-2}) - f'''(x_{n-1}) \Big) + \Big(f'''(x_{n-1}) - f'''(b) \Big) \Big]
+ \dots
= \frac{h}{2} \Big[f(a) + f(b) \Big] + h \sum_{i=1}^{n-1} f(a+ih) + \frac{h^{2}}{12} \Big[f'(a) - f'(b) \Big] + \frac{h^{4}}{720} \Big[f'''(a) - f'''(b) \Big] + \dots$$
(11)

- Note now h=(b-a)/n
- The expansion is in powers of h²ⁱ

Error in estimating the integral

Error in estimating the integral

Assumption: f'(x) is continuous on [a,b]

Equal intervals (width = h)

Theorem: If Trapezoid Method is used to

approximate $\int_a^b f(x)dx$ then

Error =
$$\frac{b-a}{12} h^2 (f'(b) - f'(a))$$

$$\left| Error \right| \le \frac{b-a}{12} h^2 \max_{x \in [a,b]} \left| f'(x) \right|$$

Estimating the Error

For Trapezoid method

 How many equally spaced intervals are needed to compute:

To 5 decimal points accuracy?

Estimating the Error

For Trapezoid method

 How many equally spaced intervals are needed to compute:

$$\int_0^\pi \sin(x) dx$$

To 5 decimal points accuracy?

	1
Examp	
Lamb	I

Example

$$\int_0^{\pi} \sin(x) dx, \quad \text{find h so that } \left| \text{error} \right| \le \frac{1}{2} \times 10^{-5}$$

$$\begin{aligned} |Error| &\leq \frac{b-a}{12} \ h^2 \ \max_{x \in [a,b]} |f'(x)| \\ b &= \pi; \ a = 0; \quad f'(x) = \cos(x); \\ |f'(x)| &\leq 1 \quad \Rightarrow |Error| \leq \frac{\pi}{12} h^2 \leq \frac{1}{2} \times 10^{-5} \\ &\Rightarrow \qquad h^2 \leq \frac{6}{\pi} \times 10^{-5} = 1.91 \times 10^{-5} \Rightarrow h \leq 0.004 \end{aligned}$$

~750 equally-spaced points

Gaussian Quadrature

- Thus far we have considered regular spaced abscissas, although we have considered the possibility of adapting spacing
- We've also looked solely at closed interval formulas
- Gaussian quadrature achieves high accuracy and efficiency by optimally selecting the abscissas
- It is usual to apply a change of variables to make the integral map to [-1,1]
- There are also a number of different families of Gaussian quadrature, we'll look at Gauss-Legendre
- The following slides were adapted from:

http://numericalmethods.eng.usf.edu/topics/gauss_quadrature.html

Theory of Gaussian Quadrature

Trapezoid Method

$$\int_{a}^{b} f(x)dx = h \left[\sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} (f(x_0) + f(x_n)) \right]$$

It can be expressed as

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} c_{i} f(x_{i})$$
where $c_{i} = \begin{cases} h & i = 1, 2, ..., n-1 \\ 0.5h & i = 0 \text{ and } n \end{cases}$

Previously, the Trapezoidal Rule was developed by the method of undetermined coefficients. The result of that development is summarized below.

$$\int_{a}^{b} f(x)dx \approx c_{1}f(a) + c_{2}f(b)$$

$$= \frac{b-a}{2}f(a) + \frac{b-a}{2}f(b)$$

The two-point Gauss Quadrature Rule is an extension of the Trapezoidal Rule approximation where the arguments of the function are not predetermined as a and b but as unknowns x_1 and x_2 . In the two-point Gauss Quadrature Rule, the integral is approximated as

$$I = \int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2})$$

The four unknowns x_1 , x_2 , c_1 and c_2 are found by assuming that the formula gives exact results for integrating a general third order polynomial, $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$.

Hence

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \left(a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3}\right) dx$$

$$= \left[a_{0}x + a_{1}\frac{x^{2}}{2} + a_{2}\frac{x^{3}}{3} + a_{3}\frac{x^{4}}{4}\right]_{a}^{b}$$

$$= a_{0}(b - a) + a_{1}\left(\frac{b^{2} - a^{2}}{2}\right) + a_{2}\left(\frac{b^{3} - a^{3}}{3}\right) + a_{3}\left(\frac{b^{4} - a^{4}}{4}\right)$$

It follows that

$$\int_{a}^{b} f(x)dx = c_{1} \left(a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + a_{3}x_{1}^{3} \right) + c_{2} \left(a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + a_{3}x_{2}^{3} \right)$$

Equating Equations the two previous two expressions yield

$$a_{0}(b-a)+a_{1}\left(\frac{b^{2}-a^{2}}{2}\right)+a_{2}\left(\frac{b^{3}-a^{3}}{3}\right)+a_{3}\left(\frac{b^{4}-a^{4}}{4}\right)$$

$$=c_{1}\left(a_{0}+a_{1}x_{1}+a_{2}x_{1}^{2}+a_{3}x_{1}^{3}\right)+c_{2}\left(a_{0}+a_{1}x_{2}+a_{2}x_{2}^{2}+a_{3}x_{2}^{3}\right)$$

$$=a_{0}\left(c_{1}+c_{2}\right)+a_{1}\left(c_{1}x_{1}+c_{2}x_{2}\right)+a_{2}\left(c_{1}x_{1}^{2}+c_{2}x_{2}^{2}\right)+a_{3}\left(c_{1}x_{1}^{3}+c_{2}x_{2}^{3}\right)$$

Since the constants a_0 , a_1 , a_2 , a_3 are arbitrary

$$b - a = c_1 + c_2$$

$$\frac{b^2 - a^2}{2} = c_1 x_1 + c_2 x_2$$

$$\frac{b^3 - a^3}{3} = c_1 x_1^2 + c_2 x_2^2$$

$$\frac{b^3 - a^3}{3} = c_1 x_1^2 + c_2 x_2^2 \qquad \frac{b^4 - a^4}{4} = c_1 x_1^3 + c_2 x_2^3$$

Basis of Gauss Quadrature

The previous four simultaneous nonlinear Equations have only one acceptable solution,

$$x_1 = \left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}$$

$$x_2 = \left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}$$

$$c_1 = \frac{b - a}{2}$$

$$c_2 = \frac{b - a}{2}$$

Basis of Gauss Quadrature

Hence Two-Point Gaussian Quadrature Rule

$$\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2})$$

$$= \frac{b-a}{2} f\left(\frac{b-a}{2}\left(-\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}\right) + \frac{b-a}{2} f\left(\frac{b-a}{2}\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}\right)$$

Higher Point Gaussian Quadrature Formulas

$$\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2}) + c_{3}f(x_{3})$$

is called the three-point Gauss Quadrature Rule.

The coefficients c_1 , c_2 , and c_3 , and the functional arguments x_1 , x_2 , and x_3 are calculated by assuming the formula gives exact expressions for integrating a fifth order polynomial

$$\int_{a}^{b} \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 \right) dx$$

General n-point rules would approximate the integral

$$\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2}) + \dots + c_{n}f(x_{n})$$

Arguments and Weighing Factors for n-point Gauss Quadrature Formulas

In handbooks, coefficients and arguments given for n-point Gauss Quadrature Rule are given for integrals

$$\int_{-1}^{1} g(x)dx \cong \sum_{i=1}^{n} c_i g(x_i)$$

as shown in Table 1.

Table 1: Weighting factors c and function arguments x used in Gauss Quadrature Formulas.

Points	Weighting Factors	Function Arguments
2	$c_1 = 1.000000000$ $c_2 = 1.000000000$	$x_1 = -0.577350269$ $x_2 = 0.577350269$
3	$c_1 = 0.555555556$ $c_2 = 0.888888889$ $c_3 = 0.555555556$	$x_1 = -0.774596669$ $x_2 = 0.0000000000$ $x_3 = 0.774596669$
4	$c_1 = 0.347854845$ $c_2 = 0.652145155$ $c_3 = 0.652145155$ $c_4 = 0.347854845$	$x_1 = -0.861136312$ $x_2 = -0.339981044$ $x_3 = 0.339981044$ $x_4 = 0.861136312$

Arguments and Weighing Factors for n-point Gauss Quadrature Formulas

So if the table is given for $\int_{1}^{1} g(x)dx$ integrals, how does one solve $\int f(x)dx$? The answer lies in that any integral with limits of [a,b]can be converted into an integral with limits |-1, 1| Let

$$x = mt + c$$

If
$$x = a$$
, then $t = -1$

If x = a, then t = -1If x = b, then t = 1

Such that:

$$m = \frac{b - a}{2}$$

Arguments and Weighing Factors for n-point Gauss Quadrature Formulas

Then
$$c = \frac{b+a}{2}$$
 Hence

$$x = \frac{b-a}{2}t + \frac{b+a}{2} \qquad dx = \frac{b-a}{2}dt$$

Substituting our values of x, and dx into the integral gives us

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{b+a}{2}\right) \frac{b-a}{2}dt$$

See examples in Python workbook Lecture07b.ipynb

Suppose we want to approximate

$$Z = \int_{\Omega} f(\mathbf{x}) d\mathbf{x}$$

Suppose we want to approximate

$$Z = \int f(\mathbf{x}) d\mathbf{x}$$

in a high-dimensional space

- For i = 1 to n
 - Pick a point x_i at random
 - Accept or reject the point based on criterion
 - If accepted, then add $f(x_i)$ to total sum
- Error estimates are "free" by calculating sums of squares

Suppose we want to approximate

$$Z = \int f(\mathbf{x}) d\mathbf{x}$$

in a high-dimensional space

- For i = 1 to n
 - Pick a point x_i at random
 - Accept or reject the point based on criterion
 - If accepted, then add $f(x_i)$ to total sum
- Error estimates are "free" by calculating sums of squares
- Error typically decays as

$$\frac{1}{\sqrt{N}}$$

1-dimensional MC Integration

- Suppose we want to find the area under the curve for Y=f(X) for a given interval.
- Now let's assume we are throwing darts at the picture of f(x). Each dart will land on a point (x_i,y_i), where 0<x_i<1 and 0<y_i<1.
- If the value of y_i<f(x_i), then we count it as a hit. Repeat the process for a large number of i.
- The area under the curve=number of hits/ total number of throws.

Amin Jazaeri

Example

https://en.wikipedia.org/wiki/Monte_Carlo_method

Example

https://en.wikipedia.org/wiki/Monte_Carlo_method

Error Estimate for MC Integrals

- Uncertainties for MC integrals follow the *binomial* distribution:
 - Let the area under the curve be S, and the area populated by random points ("darts") is S_0 . Let N_0 be the number of points thrown, and N the number of points accepted. Then the estimator of S is:

$$\hat{S} = S_0 \frac{N}{N_0}$$

Define the "efficiency" of accepting the events as

$$\epsilon \equiv \frac{S}{S_0} \approx \hat{\epsilon} = \frac{N}{N_0}$$

Error Estimate for MC Integrals

□ N is a random variable, which follows a binomial distribution ("choose N out of N_0 "). Estimator of $\varepsilon = N/N_0$ is therefore also a random variable. Its uncertainty is given by

$$\sigma(\hat{\epsilon}) = \sqrt{\frac{\epsilon(1-\epsilon)}{N_0}}$$

□ You can show that in the limit $N << N_0$ ($\varepsilon \rightarrow 0$),

$$\sigma(\hat{\epsilon}) \approx \sqrt{\frac{\epsilon}{N_0}} \approx \frac{\epsilon}{\sqrt{N}}$$

and
$$\sigma(\hat{S}) = S_0 \sigma(\hat{\epsilon}) = \frac{S}{\sqrt{N}}$$

Error Estimate

Example: Compute π by MC

Workshop 6!

https://en.wikipedia.org/wiki/Monte_Carlo_method

Example: Compute π by MC

Workshop 6!

https://en.wikipedia.org/wiki/Monte_Carlo_method