MEM6810 工程系统建模与仿真

案例 软件

第二讲: uniform(0,1) 随机数

沈海辉

中美物流研究院 上海交通大学

- ★ shenhaihui.github.io/teaching/mem6810p
- shenhaihui@sjtu.edu.cn

2025年春 (MEM非全日制)

董浩云智能制造与服务管理研究院 CYTUNG Institute of Intelligent Manufacturing and Service Managemen (中美物流研究院)

目录

- 1 引言
- 2 伪随机数
- 3 线性同余发生器
- 4 更复杂的随机数发生器*
- 5 用Excel产生随机数
- 6 简单应用实例
 - ▶ 三门问题
 - ▶ 生日问题
 - ▶ 未婚妻问题

- 1 引言
- 2 伪随机数
- 3 线性同余发生器
- 4 更复杂的随机数发生器*
- 5 用Excel产生随机数
- 6 简单应用实例
 - ▶ 三门问题
 - ▶ 生日问题

▶ 未婚妻问题

假设某个库房有一些运输车辆到达需要卸载,经统计发现卸载所需时长的概率分布表如下:

卸载时长/分	概率
10 20	$\frac{2}{6}$ 0.30 $\frac{3}{6}$ 0.45
30	$\frac{3}{1}$ 0.45 $\frac{1}{6}$ 0.25

• 如何对到达车辆的卸载时长进行模拟呢?

① 掷骰子

② 转轮盘

如果我们知道如何从 0 到 1 之间"随机且均匀"地抽出若干数字,那么我们便可以模拟任何分布!

- $\mathsf{M}(0,1)$ 区间上的连续均匀分布中抽取的独立随机样本的观测值, 被称为 $\mathsf{uniform}(0,1)$ 随机数 (random numbers), 有时也简称为随机数.
- 如果随机变量 $U \sim \text{uniform}(0,1)$, 那么

$$\mathbb{E}[U] = 1/2$$
, $Var(U) = 1/12$.

- 使用 MATLAB 生成的 10 个 uniform(0,1) 随机数: 0.8147, 0.9058, 0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.9575, 0.9649.
- uniform(0,1) 随机数的统计性质:
 - 均匀性: (0,1) 区间上的每个值都有一样的可能性.
 - 独立性: 隐含前后的数相互之间无相关性.

均匀性

图: 经验概率密度函数 (即, 放缩后的频率直方图, 形状相同)

(from ZHANG Xiaowei)

• 独立性

图: 散点图 (from ZHANG Xiaowei)

- 1 引言
- 2 伪随机数
- 3 线性同余发生器
- 4 更复杂的随机数发生器*
- 5 用Excel产生随机数
- 6 简单应用实例
 - ▶ 三门问题
 - ▶ 生日问题

▶ 未婚妻问题

伪随机数

- 计算机无法产生真正的随机性! 它只能产生一些伪随机数 (pseudo-random numbers).
- "伪"意味着不是真正的随机.
 - 随机数是通过某种算法来生成的, 这就消除了随机性.
 - 生成的随机数序列可以被复现.
- 目标: 生成 (0,1) 范围内的一系列数字, 使他们可以显示出和 uniform(0,1) 随机数一样的性质.
 - 统计性质是最重要的.
 - 是否是真随机是次要的.

伪随机数

- 优秀的随机数发生器 (random number generator, RNG) 所需的性质:
 - 1 通过统计性检验.
 - ② 坚实的理论基础.
 - ❸ 快.
 - 4 足够长的周期.
 - 可移植性好.
 - 6 可复现.
- 随机数发生器的一些技术:
 - 线性同余发生器 (Linear Congruential Generator, LCG)
 - 组合线性同余发生器 (Combined LCG)
 - 多重递归发生器 (Multiple Recursive Generator, MRG)

沈海辉

- 1 引言
- 2 伪随机数
- 3 线性同余发生器
- 4 更复杂的随机数发生器*
- 5 用Excel产生随机数
- 6 简单应用实例
 - ▶ 三门问题
 - ▶ 生日问题
 - ▶ 未婚妻问题

线性同余发生器

- 线性同余发生器是一种简单的早期的随机数发生器.
- ① 通过下述递归式产生一系列 0 到 m-1 之间的整数 x_0, x_1, x_2, \ldots

$$x_{i+1} = (ax_i + c) \mod m, \quad i = 0, 1, 2, \dots$$

- \mod 表示取模操作; 初始值 x_0 称为种子 (seed), a 称为乘子 (multiplier), c 称为增量 (increment), m 称为模数 (modulus).
- ② 将 x_i 变换到 0 和 1 之间的数值 u_i :

$$u_i = \frac{x_i}{m}, \quad i = 0, 1, 2, \dots$$

- u_i 的可能取值: $\{0, \frac{1}{m}, \dots, \frac{m-1}{m}\}$. (可能不完全覆盖!)
- a, c, m, 和 x_0 的选取对统计性质和周期长度有极大的影响.

线性同余发生器

• 例子: 使用 LCG, 并取 $x_0 = 27$, a = 17, c = 43, 及 m = 100.

$$x_0 = 27$$

 $x_1 = (17 \times 27 + 43) \mod 100 = 502 \mod 100 = 2$
 $u_1 = 2/100 = 0.02$
 $x_2 = (17 \times 2 + 43) \mod 100 = 77 \mod 100 = 77$
 $u_2 = 77/100 = 0.77$
 $x_3 = (17 \times 77 + 43) \mod 100 = 1352 \mod 100 = 52$
 $u_3 = 52/100 = 0.52$
 $x_4 = (17 \times 52 + 43) \mod 100 = 927 \mod 100 = 27$
 $u_4 = 27/100 = 0.27$

周期长度只有 4!

• 访问 https://xiaoweiz.shinyapps.io/randNumGen 尝试不同的参数值.

线性同余发生器

- LCG 的一个实际使用 (Lewis et al. 1969): $a = 7^5$, c = 0, $m = 2^{31} 1 = 2,147,483,647$ (一个质数).
 - 它采用 $u_i = \frac{x_i}{m+1}$.
 - 它可通过许多标准的统计性检验.
 - 周期长度 $\approx 2^{31} 2 \approx 2 \times 10^9$ (超过 20 亿).
- 注: 通过令模数 m 为 2 的幂 (或者接近), 取模运算可以更加高效, 因为大多数计算机是采用二进制来表示数字的.
- 随机计算机算力的增长, 简单的 LCG 如今已经无法胜任了; 实际中我们使用更加复杂的随机数发生器.

- 1 引言
- 2 伪随机数
- 3 线性同余发生器
- 4 更复杂的随机数发生器*
- 5 用Excel产生随机数
- 6 简单应用实例
 - ▶ 三门问题
 - ▶ 生日问题

▶ 未婚妻问题

更复杂的随机数发生器*

- Combined LCG: 将 J (≥ 2) 个 LCG 组合起来 (其中 c = 0).
- 对于 32 位计算机, L'Ecuyer (1988) 提出将 J=2 个 LCG 组 合. 其中 $a_1 = 40.014$, $m_1 = 2.147.483.563$, $a_2 = 40.692$, 及 $m_2 = 2.147,483,399.$
 - ① 从 $[1, m_1 1]$ 中为第一个发生器选择种子 $x_{1,0}$, 从 $[1, m_2 1]$ 中为 第二个发生器选择种子 $x_{2,0}$. 令 i=0.
 - 2 计算 $x_{1,j+1} = a_1 x_{1,j} \mod m_1$, $x_{2, i+1} = a_2 x_{2, i} \mod m_2$.
 - 3 $x_{i+1} = (x_{1,i+1} x_{2,i+1}) \mod (m_1 1)$. (注: mod 使用 floored division, 即, $y \mod m = y - m | \frac{y}{m} |$.)
 - 4 返回

$$u_{j+1} = \begin{cases} \frac{x_{j+1}}{m_1}, & \text{if } x_{j+1} > 0, \\ \frac{m_1 - 1}{m_1}, & \text{if } x_{j+1} = 0. \end{cases}$$

5 令 i = i + 1 并跳转至第 2 步.

它的周期长度为 $(m_1-1)(m_2-1)/2 \approx 2 \times 10^{18}$. (A) 上海美國大學

更复杂的随机数发生器*

 Multiple Recursive Generator (MRG): 通过使用更高阶的递归 来拓展 LCG:

$$x_i = (a_1 x_{i-1} + a_2 x_{i-2} + \dots + a_k x_{i-K}) \mod m.$$

- 一个被广泛采用的特例为 MRG32k3a[†] ([L'Ecuyer 1999]), 它属于 combined MRG, 其中 J=2 及 K=3.
 - 它的周期长度为 $\approx 3 \times 10^{57}$, 这是一个极大的数.
 - 假设你每秒可以生成10亿(10⁹)个伪随机数,那么穷尽 MRG32k3a的周期所需的时间比当前宇宙的年龄还要长!
- 在仿真软件及编程语言中广泛使用的那些知名的随机数发生器,其统计性质都接受过广泛的检验并被证明有效.
- 当你手中的随机数发生器并不知名或者没有任何记录, 你需要格外小心!
 - 即便是在一些大众商业软件 (如, Excel, Visual Basic) 中用了 多年的发生器, 都曾被发现存在一些缺陷 (L'Ecuyer 2001).

TMRG32k3a 或其适配是 MATLAB, R, SAS, Arena 等软件所使用的随机数发生器中的一种

- 1 引言
- 2 伪随机数
- 3 线性同余发生器
- 4 更复杂的随机数发生器*
- 5 用Excel产生随机数
- 6 简单应用实例
 - ▶ 三门问题
 - ▶ 生日问题

▶ 未婚妻问题

用Excel产生随机数

• 在 Excel 中, 可以直接使用函数

RAND()

生成 uniform(0,1) 随机数.

若要生成 uniform(a, b) 随机数, 其中 a < b, 可使用
 a+(b-a)*RAND()

若要生成 [a, b] 上的离散均匀分布的随机数 (包含端点), 其中 a < b, 可使用

RANDBETWEEN(a, b)

或者

FLOOR(a+(b+1-a)*RAND())
FLOOR.MATH(a+(b+1-a)*RAND())

- 1 引言
- 2 伪随机数
- ③ 线性同余发生器
- 4 更复杂的随机数发生器*
- 5 用Excel产生随机数
- 6 简单应用实例
 - ▶ 三门问题
 - ▶ 生日问题

▶ 未婚妻问题

- Monty Hall Problem, 又称三门问题、山羊汽车问题
 - 出自美国电视游戏节目 Let's Make a Deal, 并以它的主持人 Monty Hall 命名. 中限21点 (2008)

IMDb链接: tt0478087

○ 写短評 / 写影評 分享到 ▼

决胜21点的剧情简介 · · · · · ·

Ben Campbell (吉姆·斯特加斯 Jim Sturgess 饰) 有看惊人的才华,身为麻酱理工高材生的他学业无懈可击,他 办着无意外地赢得了话佛医学探别承取通知书,然而30万的高昂学费和生活费令他的大学梦描绘改鉴,在争取奖学金 的简适由。教授对她的提出来多处面看过,Apps有不足像态文技术——他们好的杂华—

Ben在一級被店打工,持取每小时8美元的薪酬。同时和两个好友准备竞赛209以期获得认同和奖金。数学课上本 8万天才法嗣被贯彻Mickey Rosa (凯文·史顺西 Kevin Spacey 简) 发现。Mickey 希望本加入自己的27算法团队,专门 去赌场依靠奠牌高得大钱。Ben并不同意,但Ben—直输您的女孩.III Taylor (#凯特·波茨沃斯 Kate Bosworth 简) 也出 面忧憾时,Ben开始初摇。

Ben开始了严密的训练,出师的成功让Ben尝到了金钱、虚荣、欲望的权力。同时他和旧友开始疏远,渐渐迷失在 赌场的漩涡里。 ⑤豆瓣

推荐

- 最简单的分析:
 - 如果"不换", 一旦选好结果便确定了,

$$\mathbb{P}(\mathfrak{C}中 = 1/3.$$

如果"换",一旦选好结果也确定了(一开始选中车,最后会选中羊;一开始选中羊,最后会选中车).因此,

$$\mathbb{P}($$
最后选中车 $)=\mathbb{P}($ 一开始选中羊 $)=2/3.$

- 不信? 让我们来做一下仿真实验
 - 访问 http://www.rossmanchance.com/applets/MontyHall/MontyO4.html 试一下!
 - 用 Excel 来实现.

- 假设班上有60名同学,那么至少有两个同学生日为同一天 (月日)的概率为多少?(一年按365天计.)99.41%
- 分析计算
 - 先计算全班生日不同的概率:

$$\mathbb{P}(全班不同) = \frac{365 \times 364 \times \dots \times 306}{365^{60}}.$$

于是,

• 使用 Excel 进行仿真.

沈海辉

- 未婚妻问题 (Fiancee Problem), 又称公主选驸马问题、秘书问题 (Secretary Problem)
 - 最早由美国数学家 Merrill M. Flood 在 1949 提出.
- 基本问题描述:
 - 要从 N 个人中挑选出一位; N 是一个已知数, 比如, N = 10.
 - 候选者以随机 (谁先谁后概率均等) 的顺序到来.
 - 我们看到候选者之后, 会为TA打一个分数 (不会出现同分):
 - 这个分数只与候选者的特质有关, 与出现顺序无关;
 - 可理解为候选者的客观的优秀 (匹配) 程度.
 - 看到一位候选者之后, 我们有两种选择:
 - 选择接受,则挑选环节结束;
 - 选择拒绝,则继续看下一位,并且之后不能再反悔重新选TA.
 - 如果前 N-1 位都没接受,则必须接受第 N 位.
 - 问题: 采用何种策略, 可以以最大的概率选择到真正最优秀 (最匹配)的人?

分析计算*

- 已知最优的策略具有如下结构: 拒绝前 k 人, 从第 k+1 位起, 一旦TA的分数超过一开始的 k 人, 就接受TA; 否则继续.
 - 可通过动态规划的方法来得出严格的证明.
- 在最优策略的结构下, 如何确定最优的 k (记为 k^*)?
 - 以 ℙ(k) 表示选中最优秀 (最匹配) 者的概率.
 - 先推导出 ℙ(k) 关于 k 的表达式.
 - 再求解使 ℙ(k) 最大的 k, 即 k*.

• 特殊情形

- 若 N=2, 任何策略下, 选对的概率都为 1/2, 问题退化; 故以下只考虑 $N\geq 3$ 的情形.
- k = 0, 对应情况为, 一定接受第一位, 此时 $\mathbb{P}(0) = 1/N$.
- k = N 1, 对应情况为, 一定接受第 N 位, 此时 $\mathbb{P}(N-1) = 1/N$.

分析计算 (续)*

沈海辉

分析计算 (续)*

对于
$$2 \le k \le N-1$$
, 有
$$\mathbb{P}(k) = \frac{k}{N} \left(\frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{N-1} \right),$$

$$\mathbb{P}(k-1) = \frac{k-1}{N} \left(\frac{1}{k-1} + \frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{N-1} \right)$$

$$= \frac{1}{N} + \frac{k-1}{N} \left(\frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{N-1} \right).$$

因此,

$$\mathbb{P}(k) - \mathbb{P}(k-1) = \frac{1}{N} \left(\frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{N-1} \right) - \frac{1}{N}$$
$$= \frac{1}{N} \left(\frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{N-1} - 1 \right).$$

注意到,该等式在k=1时,也成立.

分析计算 (续)*

进一步注意到以下几点:

- P(k) P(k-1) 随着 k 增大而减小;
- k=1 F, $\mathbb{P}(1)-\mathbb{P}(0)=\frac{1}{N}\left(1+\frac{1}{k+1}+\cdots+\frac{1}{N-1}-1\right)>0;$
- k = N 1 \$\operation\$, $\mathbb{P}(N 1) \mathbb{P}(N 2) = \frac{1}{N} (\frac{1}{N 1} 1) < 0$.

因此, 必定存在一个 k, 使得 $\mathbb{P}(k)$ 取到最大值, 该值即为所求 k^* . 且 k^* 必定满足, $\mathbb{P}(k^*) - \mathbb{P}(k^*-1) \geq 0$, $\mathbb{P}(k^*+1) - \mathbb{P}(k^*) < 0$. 换言之, k^* 为满足条件

$$\mathbb{P}(k)-\mathbb{P}(k-1)\geq 0, \ \ \mathbb{P},$$

$$\frac{1}{k}+\frac{1}{k+1}+\cdots+\frac{1}{N-1}\geq 1,$$

的最大的k.

- 结论: 最优的策略为, 拒绝前 k^* 人, 从第 k^*+1 位起, 一旦TA的分数超过一开始的 k^* 人, 就接受TA; 否则继续. 其中 k^* 为满足 $\frac{1}{k}+\frac{1}{k+1}+\cdots+\frac{1}{N-1}\geq 1$ 的最大的 k, 且在该策略下, 选中最优的概率为 $\mathbb{P}(k^*)=\frac{k^*}{N}\left(\frac{1}{k^*}+\frac{1}{k^*+1}+\cdots+\frac{1}{N-1}\right)$.
- 若 N=10, 则 $k^*=3$, $\mathbb{P}(k^*)=0.3987$; 若 N=50, 则 $k^*=18$, $\mathbb{P}(k^*)=0.3743$; 若 N=100, 则 $k^*=37$, $\mathbb{P}(k^*)=0.3710$.
- 通过进一步的分析, 可以证明, 当 $N \to \infty$ 时,

$$\frac{k^*}{N} \to \frac{1}{e}, \quad \mathbb{P}(k^*) \to \frac{1}{e},$$

其中 $e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.7183$ 为自然常数, $\frac{1}{e} = 0.3679$.

• 使用 Excel 进行仿真.

