Numerical Optimization Methods in Imaging

Part III: Forward-backward and Douglas-Rachford algorithms

jean-christophe@pesquet.eu

PhD Summer School MMLIA - Bologna

Fixed points

In the following, ${\cal H}$ is a real Hilbert space.

Let $(\nu, \gamma) \in]0, +\infty[^2$. Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be Fréchet differentiable with a ν -Lipschitzian gradient.

Let $T = \operatorname{prox}_{\gamma f} \circ (\operatorname{Id} - \gamma \nabla g)$.

- 1. Fix T = Argmin(f + g).
- 2. If $\gamma \in]0,2/\nu[$, then T is δ^{-1} -averaged with $\delta=2-\gamma\nu/2\in]1,2[$.

Fixed points

In the following, ${\cal H}$ is a real Hilbert space.

Let $(\nu, \gamma) \in]0, +\infty[^2$. Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be Fréchet differentiable with a u-Lipschitzian gradient.

Let $T = \operatorname{prox}_{\gamma f} \circ (\operatorname{Id} - \gamma \nabla g)$.

- 1. Fix T = Argmin(f + g).
- 2. If $\gamma \in]0,2/\nu[$, then T is δ^{-1} -averaged with $\delta=2-\gamma\nu/2\in]1,2[$.

Proof: For every $x \in \mathcal{H}$,

$$x \in \operatorname{Fix} T$$

$$\Leftrightarrow x = \operatorname{prox}_{\gamma f} (x - \gamma \nabla g(x))$$

$$\Leftrightarrow (\operatorname{Id} - \gamma \nabla g) x \in (\operatorname{Id} + \gamma \partial f) x$$

$$\Leftrightarrow 0 \in \nabla g(x) + \partial f(x).$$

Consequently, $\operatorname{Fix} T = \operatorname{zer} (\nabla g + \partial f) = \operatorname{zer} (\partial (g + f)) = \operatorname{Argmin} (f + g)$.

Fixed points

Let
$$(\nu, \gamma) \in]0, +\infty[^2$$
. Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be Fréchet differentiable with a ν -Lipschitzian gradient. Let $T = \operatorname{prox}_{\gamma f} \circ (\operatorname{Id} - \gamma \nabla g)$.

- 1. Fix T = Argmin(f + g).
- 2. If $\gamma \in]0,2/\nu[$, then T is δ^{-1} -averaged with $\delta=2-\gamma\nu/2\in]1,2[$.

<u>Proof</u>: $\operatorname{prox}_{\gamma f}$ is $\alpha_1 = 1/2$ -averaged.

$$\gamma \in]0,2/\nu[\Rightarrow \mathrm{Id} - \gamma \nabla g \text{ is } \alpha_2 = \gamma \nu/2 \text{-averaged.}$$

It follows that T is α -averaged with

$$\alpha = \frac{1}{1 + 1/(\frac{\alpha_1}{1 - \alpha_1} + \frac{\alpha_2}{1 - \alpha_2})} = \frac{\alpha_1 + \alpha_2 - 2\alpha_1\alpha_2}{1 - \alpha_1\alpha_2}$$
$$= \frac{\frac{1}{2} + \frac{\gamma\nu}{2} - 2\frac{1}{2}\frac{\gamma\nu}{2}}{1 - \frac{1}{2}\frac{\gamma\nu}{2}} \iff \alpha^{-1} = \delta.$$

Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be Fréchet differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $\gamma \in]0,2/\nu[$ and $\delta = 2-\gamma \nu/2 \in]1,2[$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}} \lambda_n(\delta-\lambda_n) = +\infty$.

We assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla g(x_n) \\ x_{n+1} = x_n + \lambda_n (\operatorname{prox}_{\gamma f} y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer x of f+g.

Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be Fréchet differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $\gamma \in]0,2/\nu[$ and $\delta=2-\gamma\nu/2\in]1,2[$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}} \lambda_n(\delta-\lambda_n) = +\infty$.

We assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla g(x_n) \\ x_{n+1} = x_n + \lambda_n (\operatorname{prox}_{\gamma f} y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer x of f+g.

Exercice: Prove this result.

Proof:

Let $T = \operatorname{prox}_{\gamma f} \circ (\operatorname{Id} - \gamma \nabla g)$. For every $n \in \mathbb{N}$,

$$x_{n+1} = x_n + \lambda_n (Tx_n - x_n).$$

T is δ^{-1} -averaged and $\operatorname{Fix} T = \operatorname{Argmin}(f + g)$.

The FB algorithm is thus have an instance of the generalized form of KM iteration.

Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be Fréchet differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $\gamma \in]0,2/\nu[$ and $\delta = 2 - \gamma \nu/2 \in]1,2[$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}} \lambda_n(\delta-\lambda_n) = +\infty$.

We assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla g(x_n) \\ x_{n+1} = x_n + \lambda_n (\operatorname{prox}_{\gamma f} y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer x of f+g. In addition, if $T=\operatorname{prox}_{\gamma f}\circ(\operatorname{Id}-\gamma\nabla g)$, then

$$(\forall n \in \mathbb{N}) \quad \langle Tx_n - x \mid x_n - Tx_n \rangle \geq \gamma \langle Tx_n - x \mid \nabla g(x_n) - \nabla g(x) \rangle.$$

Proof:

Let $y = x - \gamma \nabla g(x)$.

Since $\mathrm{prox}_{\gamma f}$ is firmly nonexpansive, for every $n \in \mathbb{N}$,

$$\langle \operatorname{prox}_{\gamma f} y_{n} - \operatorname{prox}_{\gamma f} y \mid y_{n} - y \rangle \geq \|\operatorname{prox}_{\gamma f} y_{n} - \operatorname{prox}_{\gamma f} y \|^{2}$$

$$\Leftrightarrow \langle \operatorname{prox}_{\gamma f} y_{n} - \operatorname{prox}_{\gamma f} y \mid (\operatorname{Id} - \operatorname{prox}_{\gamma f}) y_{n} - (\operatorname{Id} - \operatorname{prox}_{\gamma f}) y \rangle \geq 0$$

$$\Leftrightarrow \langle Tx_{n} - Tx \mid y_{n} - Tx_{n} - y + Tx \rangle \geq 0$$

$$\Leftrightarrow \langle Tx_{n} - x \mid x_{n} - \gamma \nabla g(x_{n}) - Tx_{n} - x + \gamma \nabla g(x) + x \rangle \geq 0$$

$$\Leftrightarrow \langle Tx_{n} - x \mid x_{n} - Tx_{n} \rangle \geq \gamma \langle Tx_{n} - x \mid \nabla g(x_{n}) - \nabla g(x) \rangle .$$

Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be Fréchet differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $\gamma \in]0,2/\nu[$ and $\delta = 2-\gamma \nu/2 \in]1,2[$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}} \lambda_n(\delta-\lambda_n) = +\infty$.

We assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla g(x_n) \\ x_{n+1} = x_n + \lambda_n (\operatorname{prox}_{\gamma f} y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer x of f+g. In addition, $(\nabla g(x_n))_{n\in\mathbb{N}}$ converges strongly to $\nabla g(x)$.

Proof:

Since T is nonexpansive, for every $n \in \mathbb{N}$,

$$\begin{aligned} \|x_n - x\| \|x_n - Tx_n\| &\geq \|Tx_n - Tx\| \|x_n - Tx_n\| \\ &= \|Tx_n - x\| \|x_n - Tx_n\| \\ &\geq \langle Tx_n - x \mid x_n - Tx_n \rangle \\ &\geq \gamma \langle Tx_n - x \mid \nabla g(x_n) - \nabla g(x) \rangle \\ &= \gamma \langle Tx_n - x_n \mid \nabla g(x_n) - \nabla g(x) \rangle + \gamma \langle x_n - x \mid \nabla g(x_n) - \nabla g(x) \rangle \,. \end{aligned}$$

By using the cocoercivity of ∇g ,

$$||x_{n} - x|| ||x_{n} - Tx_{n}|| \ge -\gamma ||Tx_{n} - x_{n}|| ||\nabla g(x_{n}) - \nabla g(x)|| + \gamma \nu^{-1} ||\nabla g(x_{n}) - \nabla g(x)||^{2}$$

$$\ge -\gamma \nu ||Tx_{n} - x_{n}|| ||x_{n} - x|| + \gamma \nu^{-1} ||\nabla g(x_{n}) - \nabla g(x)||^{2}.$$

This yields

$$\gamma \nu^{-1} \|\nabla g(x_n) - \nabla g(x)\|^2 \le (1 + \gamma \nu) \|x_n - x\| \|x_n - Tx_n\|.$$

Proof:

This yields

$$\gamma \nu^{-1} \|\nabla g(x_n) - \nabla g(x)\|^2 \le (1 + \gamma \nu) \|x_n - x\| \|x_n - Tx_n\|.$$

Since $x_n \to x$, $(x_n)_{n \in \mathbb{N}}$ is bounded and so is $(\|x_n - x\|)_{n \in \mathbb{N}}$. In addition $x_n - Tx_n \to 0$. Therefore $\nabla g(x_n) \to \nabla g(x)$.

Three point inequality

Let $(\nu, \gamma) \in]0, +\infty[^2]$. Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient.

Let h = f + g.

Let $(x, z) \in \mathcal{H}^2$ and let $p = \text{prox}_{\gamma f}(x - \gamma \nabla g(x))$.

Then

$$h(p) \leq h(z) + \frac{1}{\gamma} \langle x - p \mid x - z \rangle - \left(\frac{1}{\gamma} - \frac{\nu}{2}\right) \|x - p\|^2.$$

Three point inequality

Let $(\nu, \gamma) \in]0, +\infty[^2]$. Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient.

Let
$$h = f + g$$
.

Let $(x, z) \in \mathcal{H}^2$ and let $p = \text{prox}_{\gamma f}(x - \gamma \nabla g(x))$.

Then

$$h(p) \le h(z) + \frac{1}{\gamma} \langle x - p \mid x - z \rangle - \left(\frac{1}{\gamma} - \frac{\nu}{2}\right) \|x - p\|^2.$$

Proof: According to the descent lemma,

$$g(p) \le g(x) + \langle \nabla g(x) \mid p - x \rangle + \frac{\nu}{2} ||p - x||^2$$

and, by the tangent inequality,

$$g(z) \ge g(x) + \langle \nabla g(x) \mid z - x \rangle$$
.

We have thus

$$g(p) \le g(z) - \langle \nabla g(x) \mid z - p \rangle + \frac{\nu}{2} ||p - x||^2.$$

Proof: We have thus

$$g(p) \le g(z) - \langle \nabla g(x) \mid z - p \rangle + \frac{\nu}{2} ||p - x||^2.$$

In addition

$$p = \operatorname{prox}_{\gamma f}(x - \gamma \nabla g(x))$$

$$\Leftrightarrow x - \gamma \nabla g(x) - p \in \gamma \partial f(p)$$

$$\Leftrightarrow \frac{x - p}{\gamma} - \nabla g(x) \in \partial f(p).$$

We deduce that

$$f(z) \ge f(p) + \left\langle \frac{x-p}{\gamma} - \nabla g(x) \mid z-p \right\rangle.$$

Proof: We have thus

$$\begin{cases} g(p) \leq g(z) - \langle \nabla g(x) \mid z - p \rangle + \frac{\nu}{2} \| p - x \|^2 \\ f(z) \geq f(p) + \frac{1}{\gamma} \langle x - p \mid z - p \rangle - \langle \nabla g(x) \mid z - p \rangle \end{cases}$$

$$\Rightarrow h(p) \leq h(z) - \frac{1}{\gamma} \langle x - p \mid z - p \rangle + \frac{\nu}{2} \| p - x \|^2$$

$$\Leftrightarrow h(p) \leq h(z) + \frac{1}{\gamma} \langle x - p \mid p - x + x - z \rangle + \frac{\nu}{2} \| p - x \|^2$$

$$\Leftrightarrow h(p) \leq h(z) + \frac{1}{\gamma} \langle x - p \mid x - z \rangle + \left(\frac{\nu}{2} - \frac{1}{\gamma}\right) \| p - x \|^2.$$

```
Let f \in \Gamma_0(\mathcal{H}).
```

Let $g \in \Gamma_0(\mathcal{H})$ be differentiable with a u-Lipschitzian gradient where

$$\nu \in]0,+\infty[.$$

Let $(\gamma_n)_{n\in\mathbb{N}}$ in $[\underline{\gamma},\overline{\gamma}]$ where $0<\underline{\gamma}<\overline{\gamma}<2/
u$ and

let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[\underline{\lambda},1]$ with $0<\underline{\lambda}\leq 1$.

We assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 \in \operatorname{dom} f$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma_n \nabla g(x_n) \\ p_n = \operatorname{prox}_{\gamma_n f} y_n \\ x_{n+1} = x_n + \lambda_n (p_n - x_n). \end{cases}$$

Then,

- 1. $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone sequence with respect to $\operatorname{Argmin}(f+g)$.
- 2. If $\widehat{x} \in \operatorname{Argmin}(f+g)$, then $\sum_{n \in \mathbb{N}} \|\nabla g(x_n) \nabla g(\widehat{x})\|^2 < +\infty$.
- 3. $\sum_{n \in \mathbb{N}} \|x_{n+1} x_n\|^2 < +\infty$. 4. $(f(x_n) + g(x_n))_{n \in \mathbb{N}}$ is a decaying sequence.
- 5. $\sum_{p\in\mathbb{N}}((f+g)(x_p)-\inf(f+g))^2<+\infty.$
- 6. $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of f+g.

Let $f \in \Gamma_0(\mathcal{H})$ be strongly convex .

Let $g \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $(\gamma_n)_{n\in\mathbb{N}}$ in $[\underline{\gamma}, \overline{\gamma}]$ where $0 < \underline{\gamma} < \overline{\gamma} < 2/\nu$ and let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[\underline{\lambda}, 1]$ with $0 < \underline{\lambda} \le 1$.

Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma_n \nabla g(x_n) \\ p_n = \operatorname{prox}_{\gamma_n f} y_n \\ x_{n+1} = x_n + \lambda_n (p_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges linearly to the unique minimizer of f+g.

<u>Proof</u>: If f is strongly convex, there exists $\eta \in]0, +\infty[$ and $\ell \in \Gamma_0(\mathcal{H})$ such that

$$f = \ell + \frac{\eta}{2} \| \cdot \|^2.$$

This implies that f+g is strictly convex and coercive, hence has a unique minimizer \widehat{x} .

In addition, for every $x \in \mathcal{H}$ and $\gamma \in]0, +\infty[$,

$$\mathrm{prox}_{\gamma f} x = \ \mathrm{prox}_{\frac{\gamma \ell}{1 + \gamma \eta}} \Big(\frac{x}{1 + \gamma \eta} \Big).$$

For every $n \in \mathbb{N}$,

$$\begin{split} &\|\rho_n - \widehat{x}\|^2 \\ &= \|\operatorname{prox}_{\gamma_n f}(x_n - \gamma_n \nabla g(x_n)) - \operatorname{prox}_{\gamma_n f}(\widehat{x} - \gamma_n \nabla g(\widehat{x}))\|^2 \\ &\leq \frac{1}{(1 + \gamma_n \eta)^2} \|x_n - \gamma_n \nabla g(x_n) - \widehat{x} + \gamma_n \nabla g(\widehat{x}))\|^2 \\ &\leq \frac{1}{(1 + \gamma_n \eta)^2} (\|x_n - \widehat{x}\|^2 - \gamma_n (2\nu^{-1} - \gamma_n) \|\nabla g(x_n) - \nabla g(\widehat{x}))\|^2) \\ &\leq \frac{1}{(1 + \gamma_n \eta)^2} \|x_n - \widehat{x}\|^2. \end{split}$$

<u>Proof</u>: Therefore, for every $n \in \mathbb{N}$,

$$\|p_n - \widehat{x}\| \le \frac{1}{1 + \gamma \eta} \|x_n - \widehat{x}\|$$

and

$$||x_{n+1} - \widehat{x}|| \le (1 - \lambda_n)||x_n - \widehat{x}|| + \lambda_n||p_n - \widehat{x}||$$

$$\le \left(1 - \lambda_n \frac{\underline{\gamma}\eta}{1 + \underline{\gamma}\eta}\right)||x_n - \widehat{x}||$$

$$\le \chi ||x_n - \widehat{x}||$$

with

$$0 \le \chi = 1 - \underline{\lambda} \frac{\underline{\gamma} \eta}{1 + \underline{\gamma} \eta} < 1.$$

We deduce that, for every $n \in \mathbb{N}$, $||x_n - \hat{x}|| \le \chi^n ||x_0 - \hat{x}||$.

Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $(\gamma_n)_{n\in\mathbb{N}}$ in $[\gamma,\overline{\gamma}]$ where $0<\gamma<\overline{\gamma}\leq 1/\nu$.

We assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma_n \nabla g(x_n) \\ x_{n+1} = \operatorname{prox}_{\gamma_n f} y_n \end{cases}$$

Then, there exists $M \in [0, +\infty[$ such that, for every $n \in \mathbb{N} \setminus \{0\}$,

$$(f+g)(x_n)-\inf(f+g)\leq \frac{M}{n}.$$

Setting $z = \hat{x} \in \operatorname{Argmin}(f + g)$ in the 3 point inequality yields, for every $n \in \mathbb{N}$.

$$(f+g)(x_{n+1}) \leq \inf(f+g) + \frac{1}{\gamma_n} \langle x_n - x_{n+1} \mid x_n - \widehat{x} \rangle - \left(\frac{1}{\gamma_n} - \frac{\nu}{2}\right) \|x_n - x_{n+1}\|^2.$$

Since $\gamma_n \in]0,1/\nu]$, $\gamma_n^{-1} - \nu/2 \geq \gamma_n^{-1}/2$ and

$$(f+g)(x_{n+1}) - \inf(f+g)$$

$$\leq -\frac{1}{2\gamma_n} (-2\langle x_n - x_{n+1} \mid x_n - \widehat{x} \rangle + \|x_n - x_{n+1}\|^2)$$

$$= -\frac{1}{2\gamma_n} (\|x_n - x_{n+1} - x_n + \widehat{x}\|^2 - \|x_n - \widehat{x}\|^2)$$

$$\leq \frac{1}{2\gamma} (\|x_n - \widehat{x}\|^2 - \|x_{n+1} - \widehat{x}\|^2).$$

Since $\gamma_n \in]0,1/\nu], \ \gamma_n^{-1} - \nu/2 \ge \gamma_n^{-1}/2$ and

$$(f+g)(x_{n+1}) - \inf(f+g)$$

 $\leq \frac{1}{2\gamma}(\|x_n - \widehat{x}\|^2 - \|x_{n+1} - \widehat{x}\|^2).$

We deduce that, for every $N \in \mathbb{N}$,

$$\sum_{n=0}^{N} (f+g)(x_{n+1}) - \inf(f+g) \leq \frac{1}{2\gamma} (\|x_0 - \widehat{x}\|^2 - \|x_{N+1} - \widehat{x}\|^2).$$

Since $((f+g)(x_n) - \inf(f+g))_{n \in \mathbb{N}}$ is a decaying sequence, we have thus

$$(N+1)((f+g)(x_{N+1})-\inf(f+g))\leq \frac{1}{2\gamma}\|x_0-\widehat{x}\|^2.$$

Accelerated version

Let $f \in \Gamma_0(\mathcal{H})$.

Let
$$g \in \Gamma_0(\mathcal{H})$$
 be differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $\gamma \in]0, \frac{1/\nu}{}$ and $\zeta \in [2, +\infty[$.

We assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 = z_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} x_{n+1} = \operatorname{prox}_{\gamma f}(z_n - \gamma \nabla g(z_n)) \\ \lambda_n = \frac{n}{n+1+\zeta} \\ z_{n+1} = x_{n+1} + \lambda_n(x_{n+1} - x_n). \end{cases}$$

Then, there exists $M \in [0, +\infty[$ such that, for every $n \in \mathbb{N} \setminus \{0\}$,

$$(f+g)(x_n)-\inf(f+g)\leq \frac{M}{n^2}.$$

In addition, if $\zeta > 2$, then $(x_n)_{n \in \mathbb{N}}$ converges weakly to a minimizer of f + g.

Projected gradient algorithm

Let C be a nonempty closed convex subset of \mathcal{H} .

Let $g \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $\gamma \in]0, 2/\nu[$ and $\delta = 2 - \gamma \nu/2 \in]1, 2[$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}} \lambda_n(\delta-\lambda_n) = +\infty$.

We assume that $\operatorname{Argmin} g(x) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla g(x_n) \\ x_{n+1} = x_n + \lambda_n (P_C y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of g over C.

Gradient descent algorithm

Let $g \in \Gamma_0(\mathcal{H})$ be a differentiable function with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $(\gamma_n)_{n\in\mathbb{N}}$ in $[\underline{\gamma}, \overline{\gamma}]$ where $0 < \underline{\gamma} < \overline{\gamma} < 2/\nu$.

We assume that $\operatorname{Argmin} g \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n \nabla g(x_n)$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of g.

Proximal point algorithm

Let $f \in \Gamma_0(\mathcal{H})$.

Let $(\gamma_n)_{n\in\mathbb{N}}$ be a sequence in $]0,+\infty[$ such that $\sum_{n\in\mathbb{N}}\gamma_n=+\infty.$ We assume that $\operatorname{Argmin} f\neq\varnothing.$ Let $x_0\in\mathcal{H}$ and

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = \operatorname{prox}_{\gamma_n f} x_n.$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of f.

Iterative thresholding

Problem

Let $\mathcal G$ be a Hilbert space and let $L\in\mathcal B(\mathbb R^K,\mathcal G)$.

Let $y \in \mathcal{G}$ and let $\chi \in]0, +\infty[$. We want to

minimize
$$\frac{1}{2} ||Lx - y||^2 + \chi ||x||_1$$
.

Algorithm

Let $\gamma \in]0, 2/\|L\|^2[$ and $\delta = 2 - \gamma \|L\|^2/2$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}} \lambda_n(\delta-\lambda_n) = +\infty$.

Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma L^*(Lx_n - y) = (v_n^{(k)})_{1 \le k \le K} \\ p_n = \left(\operatorname{soft}_{[-\gamma \chi, \gamma \chi]}(v_n^{(k)}) \right)_{1 \le k \le K} \\ x_{n+1} = x_n + \lambda_n(p_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges to a solution to the problem.

Iterative thresholding

Algorithm

Let $\gamma \in]0, 2/\|L\|^2[$ and $\delta = 2 - \gamma \|L\|^2/2$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}}\lambda_n(\delta-\lambda_n)=+\infty$. Let $x_0\in\mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma L^*(Lx_n - y) = (v_n^{(k)})_{1 \le k \le K} \\ p_n = \left(\operatorname{soft}_{[-\gamma \chi, \gamma \chi]}(v_n^{(k)}) \right)_{1 \le k \le K} \\ x_{n+1} = x_n + \lambda_n(p_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges to a solution to the problem.

Proof: Set $f = \chi \|\cdot\|_1$ and $g = \frac{1}{2} \|L \cdot -y\|^2$.

 $f + g \in \Gamma_0(\mathbb{R}^K)$ and is coercive, then $\operatorname{Argmin}(f + g) \neq \emptyset$.

In addition, g is Fréchet differentiable and

$$(\forall x \in \mathbb{R}^K) \quad \nabla g(x) = L^*(Lx - y).$$

For every $(x, x') \in (\mathbb{R}^K)^2$,

$$\|\nabla g(x) - \nabla g(x')\| = \|L^*(Lx - Lx')\| \le \|L^*L\|\|x - x'\|.$$

Thus ∇g is ν -Lipschitzian with $\nu = \|L^*L\| = \|L\|^2$.

By noticing that, for every $n \in \mathbb{N}$, $p_n = \text{prox}_{\gamma\chi\|\cdot\|_1}(y_n)$, we recognize a FB algorithm for which the conditions of convergence are met.

Graph of a set-valued operator

Let $\mathcal H$ be a real Hilbert space.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.

The graph of A is

$$\operatorname{gra} A = \{(x, u) \in \mathcal{H}^2 \mid u \in Ax\}.$$

Let
$${\mathcal H}$$
 be a Hilbert space.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.

 A^{-1} is the operator from ${\cal H}$ to $2^{{\cal H}}$ the graph of which is

$$\operatorname{gra}(A^{-1}) = \{(u, x) \mid (x, u) \in \operatorname{gra}A\}.$$

Monotone operator: definition

Let \mathcal{H} be a real Hilbert space.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.

A is monotone if

$$(\forall (x_1, u_1) \in \operatorname{gra} A)(\forall (x_2, u_2) \in \operatorname{gra} A) \qquad \langle u_1 - u_2 \mid x_1 - x_2 \rangle \geq 0.$$

Monotone operator: definition

Let \mathcal{H} be a real Hilbert space.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.

A is monotone if

$$\big(\forall (x_1,u_1)\in \mathrm{gra} A\big)\big(\forall (x_2,u_2)\in \mathrm{gra} A\big) \qquad \langle u_1-u_2\mid x_1-x_2\rangle\geq 0\;.$$

Let \mathcal{H} be a Hilbert space. Let $A: \mathcal{H} \to 2^{\mathcal{H}}$

A is maximally monotone if A is monotone and if there exists no monotone operator $B\colon \mathcal{H}\to 2^{\mathcal{H}}$ (different from A) such that $\operatorname{gra} B$ properly contains $\operatorname{gra} A$.

Resolvent

Let ${\cal H}$ be a Hilbert space.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.

The revolvent of A is

$$J_A = (\mathrm{Id} + A)^{-1}.$$

Resolvent

Let \mathcal{H} be a Hilbert space.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.

The revolvent of A is

$$J_A=(\mathrm{Id}+A)^{-1}.$$

Minty theorem

Let \mathcal{H} be a Hilbert space.

A is maximally monotone \Rightarrow $J_A : \mathcal{H} \to \mathcal{H}$

Resolvent

Let \mathcal{H} be a Hilbert space.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$.

The revolvent of A is

$$J_A = (\mathrm{Id} + A)^{-1}.$$

Minty theorem

Let \mathcal{H} be a Hilbert space.

A is maximally monotone \Rightarrow $J_A : \mathcal{H} \to \mathcal{H}$

Example : if $f \in \Gamma_0(\mathcal{H})$, then ∂f is maximally monotone and $J_{\partial f} = \operatorname{prox}_f$.

Forward-Backward algorithm

Let \mathcal{H} be a Hilbert space.

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$ be a maximally monotone operator .

Let $B\colon \mathcal{H} \to \mathcal{H}$ be a u^{-1} -cocoercive operator with $u\in]0,+\infty[$.

Let $\gamma \in]0,2/\nu[$ and $\delta = 2 - \gamma \nu/2 \in]1,2[$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}} \lambda_n(\delta-\lambda_n) = +\infty$.

We assume that $\operatorname{zer}(A+B)\neq\varnothing$. Let $x_0\in\mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma B x_n \\ x_{n+1} = x_n + \lambda_n (J_{\gamma A} y_n - x_n). \end{cases}$$

 $(x_n)_{n\in\mathbb{N}}$ converges weakly to a point in $\operatorname{zer}(A+B)$.

Example : $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{H})$ with ν -Lipschitzian gradient \Rightarrow Proximal gradient algorithm

Recap of optimization strategies

Motivation

Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$. We want to

$$\underset{x \in \mathcal{H}}{\text{minimize}} \ f(x) + g(x).$$

Possible solutions:

- ightharpoonup gradient descent algorithm $\Rightarrow f + g$ needs to be smooth
- ightharpoonup proximal point algorithm $\Rightarrow f + g$ needs to be "proximable"
- ightharpoonup Forward-Backward algorithm $\Rightarrow g$ needs to be smooth

Can we find a splitting algorithm when both f and g are nonsmooth?

Reflection of the prox

Let $\gamma \in]0, +\infty[$ and let $f \in \Gamma_0(\mathcal{H})$.

The reflection of the proximity operator defined as

$$\operatorname{rprox}_{\gamma f} = 2\operatorname{prox}_{\gamma f} - \operatorname{Id}$$

is nonexpansive.

Fixed points

Let $\gamma \in]0, +\infty[$, let $f \in \Gamma_0(\mathcal{H})$ and let $g \in \Gamma_0(\mathcal{H})$.

We have

$$\operatorname{zer} \left(\partial f + \partial g\right) = \operatorname{prox}_{\gamma g}(\operatorname{Fix} T)$$

where $T = \operatorname{rprox}_{\gamma f} \circ \operatorname{rprox}_{\gamma g}$.

Fixed points

Let
$$\gamma \in \]0, +\infty[$$
, let $f \in \Gamma_0(\mathcal{H})$ and let $g \in \Gamma_0(\mathcal{H})$.
We have
$$\operatorname{zer} \left(\partial f + \partial g\right) = \operatorname{prox}_{\gamma g}(\operatorname{Fix} T)$$
 where $T = \operatorname{rprox}_{\gamma f} \circ \operatorname{rprox}_{\gamma g}$.

Proof: Let $x \in \mathcal{H}$.

$$0 \in \gamma(\partial f(x) + \partial g(x)) \Leftrightarrow (\exists y \in \mathcal{H}) \quad x - y \in \gamma \partial f(x) \text{ and } y - x \in \gamma \partial g(x)$$

$$\Leftrightarrow (\exists y \in \mathcal{H}) \quad 2x - y \in (\mathrm{Id} + \gamma \partial f)x$$

$$\text{and } x = \mathrm{prox}_{\gamma g}(y)$$

$$\Leftrightarrow (\exists y \in \mathcal{H}) \quad x = \mathrm{prox}_{\gamma f}(\mathrm{rprox}_{\gamma g}(y)) \text{ and } x = \mathrm{prox}_{\gamma g}(y)$$

$$\Leftrightarrow (\exists y \in \mathcal{H}) \quad \mathrm{rprox}_{\gamma f}(\mathrm{rprox}_{\gamma g}(y)) = 2x - \mathrm{rprox}_{\gamma g}(y) = y$$

$$\text{and } x = \mathrm{prox}_{\gamma g}(y)$$

$$\Leftrightarrow (\exists y \in \mathrm{Fix} T) \quad x = \mathrm{prox}_{\gamma g}(y).$$

Let ${\mathcal H}$ be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$.

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = \operatorname{prox}_{\gamma f} (2y_n - x_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

Let \mathcal{H} be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$.

Let
$$\gamma \in]0,+\infty[$$
 and let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,2]$ such that

 $\sum_{n\in\mathbb{N}}\lambda_n(2-\lambda_n)=+\infty.$

We assume that $\operatorname{zer}(\partial f + \partial g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = \operatorname{prox}_{\gamma f} (2y_n - x_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

The following properties are satisfied:

- 1. $x_n \rightarrow \hat{x}$
- 2. $\hat{y} = \text{prox}_{\gamma g} \hat{x} \in \text{Argmin}(f + g)$
- 3. $z_n y_n \rightarrow 0$.

<u>Proof</u>: Let $T = \operatorname{rprox}_{\gamma f} \circ \operatorname{rprox}_{\gamma g}$. T is nonexpansive and $\varnothing \neq \operatorname{zer}(\partial f + \partial g) = \operatorname{prox}_{\gamma g}(\operatorname{Fix} T) \Rightarrow \operatorname{Fix} T \neq \varnothing$. Moreover, for every $n \in \mathbb{N}$,

$$\begin{aligned} x_{n+1} &= x_n + \lambda_n \left(\operatorname{prox}_{\gamma f} (2 \operatorname{prox}_{\gamma g} (x_n) - x_n) - \operatorname{prox}_{\gamma g} (x_n) \right) \\ &= x_n + \frac{\lambda_n}{2} \left(2 \operatorname{prox}_{\gamma f} (2 \operatorname{prox}_{\gamma g} (x_n) - x_n) - 2 \operatorname{prox}_{\gamma g} (x_n) + x_n - x_n \right) \\ &= x_n + \frac{\lambda_n}{2} \left(2 \operatorname{prox}_{\gamma f} (\operatorname{rprox}_{\gamma g} (x_n)) - \operatorname{rprox}_{\gamma g} (x_n) - x_n \right) \\ &= x_n + \frac{\lambda_n}{2} \left(T x_n - x_n \right). \end{aligned}$$

 \Rightarrow Krasnosel'skii-Mann algorithm with relaxation factors $(\lambda_n/2)_{n\in\mathbb{N}}$. We deduce that $Tx_n - x_n \to 0$ and $x_n \rightharpoonup \widehat{x} \in \operatorname{Fix} T$.

Proof: For every $n \in \mathbb{N}$,

$$z_n - y_n = \operatorname{prox}_{\gamma f}(2\operatorname{prox}_{\gamma g}(x_n) - x_n) - \operatorname{prox}_{\gamma g}(x_n) = \frac{1}{2}(Tx_n - x_n) \to 0.$$

In addition, $\hat{y} = \operatorname{prox}_{\gamma g}(\hat{x}) \in \operatorname{zer}(\partial f + \partial g)$.

Since

$$\partial f(\widehat{y}) + \partial g(\widehat{y}) \subset \partial (f+g)(\widehat{y}),$$

$$\hat{y} \in \operatorname{zer} (\partial (f+g)) = \operatorname{Argmin}(f+g).$$

Let \mathcal{H} be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$.

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

We assume that $\operatorname{zer}\left(\partial f + \partial g\right) \neq \varnothing$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = \operatorname{prox}_{\gamma f} (2y_n - x_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

The following properties are satisfied:

- 1. $x_n \rightarrow \hat{x}$
- 2. $\hat{y} = \text{prox}_{\gamma g} \hat{x} \in \text{Argmin}(f + g)$
- 3. $z_n y_n \rightarrow 0$
- 4. $y_n \rightharpoonup \widehat{y}, z_n \rightharpoonup \widehat{y}$.

<u>Proof</u>: For simplicity, assume that \mathcal{H} is finite dimensional. $\operatorname{prox}_{\gamma g}$ being continuous (since nonexpansive), we have

$$y_n \to \operatorname{prox}_{\gamma g} \widehat{x} = \widehat{y}.$$

Because $z_n - y_n \to 0$, we deduce that $z_n \to \operatorname{prox}_{\gamma g} \widehat{x} = \widehat{y}$.

Let ${\mathcal H}$ be a Hilbert space.

Let
$$f \in \Gamma_0(\mathcal{H})$$
 and $g \in \Gamma_0(\mathcal{H})$.

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

We assume that $\operatorname{zer}\left(\partial f + \partial g\right) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = \operatorname{prox}_{\gamma f} (2y_n - x_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

The following properties are satisfied:

- 1. $x_n \rightarrow \hat{x}$
- 2. $\hat{y} = \text{prox}_{\gamma g} \hat{x} \in \text{Argmin}(f + g)$
- 3. $z_n y_n \rightarrow 0$
- 4. $y_n \rightarrow \widehat{y}, z_n \rightarrow \widehat{y}$.

Remark: The limit case when $(\forall n \in \mathbb{N})$ $\lambda_n = 2$ is the Peaceman-Rachford algorithm. Its convergence is only guaranteed under some additional assumption (e.g. strong convexity of g).

Example

Problem

Let $u \in \mathbb{R}^K$, let $\Phi_u \in \Gamma_0(\mathbb{R}^K)$, and let $\chi \in [0, +\infty[$. We want to

$$\underset{x \in \mathbb{R}^K}{\text{minimize}} \ \Phi_u(x) + \chi \|x\|_1.$$

Algorithm

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

We assume that $\inf \Phi_u > -\infty$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma \Phi_u}(x_n) \\ z_n = \left(\operatorname{soft}_{[-\gamma \chi, \gamma \chi]} (2y_n^{(k)} - x_n^{(k)}) \right)_{1 \le k \le K} \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

Then, $(y_n)_{n\in\mathbb{N}}$ and $(z_n)_{n\in\mathbb{N}}$ converge to the same solution to the problem.

Example

Algorithm

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

We assume that $\inf \Phi_u > -\infty$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma \Phi_u}(x_n) \\ z_n = \left(\operatorname{soft}_{[-\gamma \chi, \gamma \chi]}(2y_n^{(k)} - x_n^{(k)}) \right)_{1 \le k \le K} \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

Then, $(y_n)_{n\in\mathbb{N}}$ and $(z_n)_{n\in\mathbb{N}}$ converge to the same solution to the problem.

<u>Proof</u>: Set $f = \Phi_u$ and $g = \|\cdot\|_1$. $f + g \in \Gamma_0(\mathbb{R}^K)$ and is coercive, then $\operatorname{zer}(\partial(f+g)) = \operatorname{Argmin}(f+g) \neq \emptyset$. In addition since $\|\cdot\|_1$ is finite-valued, $\operatorname{zer}(\partial f + \partial g) = \operatorname{zer}(\partial (f+g)) \neq \emptyset$. We recognize a DR algorithm for which the conditions of convergence are met.

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.

Let $g \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G},\mathcal{H})$ be such that L^*L is an isomorphism .

Let
$$\gamma \in]0, +\infty[$$
 and let $(\lambda_n)_{n \in \mathbb{N}}$ a sequence in $[0,2]$ such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

Assume that $\operatorname{zer} (L^* \circ \partial g \circ L) \neq \varnothing$. Let $x_0 \in \mathcal{H}$, $v_0 = (L^*L)^{-1}L^*x_0$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ c_n = (L^* L)^{-1} L^* y_n \\ x_{n+1} = x_n + \lambda_n (L(2c_n - v_n) - y_n) \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

Then $c_n \rightharpoonup \widehat{v}$ and $v_n \rightharpoonup \widehat{v}$ where $\widehat{v} \in \operatorname{Argmin}(g \circ L)$.

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.

Let $g \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G},\mathcal{H})$ be such that L^*L is an isomorphism .

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

Assume that $\operatorname{zer}(L^* \circ \partial g \circ L) \neq \emptyset$. Let $x_0 \in \mathcal{H}$, $v_0 = (L^*L)^{-1}L^*x_0$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ c_n = (L^*L)^{-1} L^* y_n \\ x_{n+1} = x_n + \lambda_n (L(2c_n - v_n) - y_n) \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

Then $c_n \rightharpoonup \widehat{v}$ and $v_n \rightharpoonup \widehat{v}$ where $\widehat{v} \in \operatorname{Argmin}(g \circ L)$.

Remark: $(L^*L)^{-1}L^*$ is the pseudo-inverse of L

<u>Proof</u>: Let $E = \operatorname{ran} L$. E is closed. Indeed, let $(Lw_n)_{n \in \mathbb{N}}$ be sequence of E converging to $z \in \mathcal{H}$. By continuity,

$$L^*Lw_n \to L^*z \quad \Rightarrow \quad w_n \to (L^*L)^{-1}L^*z = w$$

 $\Rightarrow \quad Lw_n \to Lw.$

This shows that the limit of any convergent sequence of elements of E belongs to E.

<u>Proof</u>: Let $E = \operatorname{ran} L$. Since E is closed, $\iota_E \in \Gamma_0(\mathcal{H})$ and

$$\operatorname{zer}(L^* \circ \partial g \circ L) \neq \varnothing \qquad \Leftrightarrow \qquad (\exists v \in \mathcal{G}) \ 0 \in L^* \partial g(Lv)$$

$$\Leftrightarrow \qquad (\exists x \in E) \ 0 \in L^* \partial g(x)$$

$$\Leftrightarrow \qquad (\exists x \in E) (\exists u \in \partial g(x)) \quad 0 = L^* u$$

$$\Leftrightarrow \qquad (\exists x \in E) (\exists u \in \partial g(x)) \quad -u \in \operatorname{Ker} L^* = E^{\perp}$$

$$\Leftrightarrow \qquad (\exists x \in \mathcal{H}) (\exists u \in \partial g(x)) \quad -u \in N_E(x) = \partial \iota_E(x)$$

$$\Leftrightarrow \qquad (\exists x \in \mathcal{H}) \ 0 \in \partial \iota_E(x) + \partial g(x)$$

$$\Leftrightarrow \qquad \operatorname{zer}(\partial \iota_E + \partial g) \neq \varnothing.$$

We next apply Douglas-Rachford algorithm with $f = \iota_E$.

<u>Proof</u>: $f = \iota_E \Rightarrow \operatorname{prox}_{\gamma f} = P_E$. The DR algorithm reads

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = P_E(2y_n - x_n) = 2P_E y_n - P_E x_n \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

For every $n \in \mathbb{N}$, $P_E y_n = Lc_n$ with

$$c_n = \underset{c \in \mathcal{G}}{\operatorname{argmin}} \|y_n - Lc\|^2$$

$$\Leftrightarrow L^*(Lc_n - y_n) = 0$$

$$\Leftrightarrow c_n = (L^*L)^{-1}L^*y_n.$$

<u>Proof</u>: $f = \iota_E \Rightarrow \operatorname{prox}_{\gamma f} = P_E$. The DR algorithm reads

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = P_E(2y_n - x_n) = 2P_E y_n - P_E x_n \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

For every $n \in \mathbb{N}$, $P_E y_n = L c_n$ with $c_n = (L^* L)^{-1} L^* y_n$ and $P_E x_n = L v_n$ with $v_n = (L^* L)^{-1} L^* x_n$. In addition

$$Lv_{n+1} = P_{E}x_{n+1} = P_{E}x_{n} + \lambda_{n}(P_{E}z_{n} - P_{E}y_{n})$$

$$= P_{E}x_{n} + \lambda_{n}(z_{n} - P_{E}y_{n})$$

$$= P_{E}x_{n} + \lambda_{n}(P_{E}y_{n} - P_{E}x_{n})$$

$$= L(v_{n} + \lambda_{n}(c_{n} - v_{n})),$$

which yields $v_{n+1} = v_n + \lambda_n(c_n - v_n)$.

<u>Proof</u>: In summary

$$\left(\forall n \in \mathbb{N}\right) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ c_n = (L^*L)^{-1} L^* y_n \\ z_n = L(2c_n - v_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n) \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

We know that

$$y_n
ightharpoonup \widehat{y} \in \operatorname{Argmin}(\iota_E + g)$$

 $\Leftrightarrow \widehat{y} = L\widehat{v} \text{ and } (\forall y \in E) \ g(y) \ge g(\widehat{y})$
 $\Leftrightarrow \widehat{y} = L\widehat{v} \text{ and } (\forall v \in \mathcal{G}) \ g(Lv) \ge g(L\widehat{v})$
 $\Leftrightarrow \widehat{y} = L\widehat{v} \text{ and } \widehat{v} \in \operatorname{Argmin}(g \circ L).$

Proof: In summary

$$\begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ c_n = (L^*L)^{-1} L^* y_n \\ z_n = L(2c_n - v_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n) \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

We know that

$$y_n \rightharpoonup \widehat{y} = L\widehat{v} \text{ and } \widehat{v} \in \operatorname{Argmin}(g \circ L).$$

Because of the weak continuity of P_E ,

$$P_E y_n = L c_n
ightharpoonup P_E \widehat{y} = \widehat{y} = L \widehat{v}$$

and, by using the weak continuity of $(L^*L)^{-1}L^*$,

$$c_n \rightharpoonup \widehat{v} \in \operatorname{Argmin}(g \circ L).$$

<u>Proof</u>: In summary

$$\begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ c_n = (L^* L)^{-1} L^* y_n \\ z_n = L(2c_n - v_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n) \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

In addition

$$z_n = L(2c_n - v_n)
ightharpoonup \widehat{y} = L\widehat{v}$$

and, because of the weak continuity of $(L^*L)^{-1}L^*$,

$$2c_n - v_n \rightarrow \widehat{v} \Rightarrow v_n \rightarrow \widehat{v}.$$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.

Let $g \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G},\mathcal{H})$ be such that L^*L is an isomorphism .

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

Assume that $\operatorname{zer}(L^* \circ \partial g \circ L) \neq \emptyset$. Let $x_0 \in \mathcal{H}, \ v_0 = (L^*L)^{-1}L^*x_0$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ c_n = (L^*L)^{-1} L^* y_n \\ x_{n+1} = x_n + \lambda_n (L(2c_n - v_n) - y_n) \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

Then $v_n \rightharpoonup \widehat{v}$ where $\widehat{v} \in \operatorname{Argmin}(g \circ L)$.

Question: Give the particular case of the algorithm when

$$\mathcal{H} = \mathcal{H}_1 \times \cdots \times \mathcal{H}_m
(\forall x = (x_1, \dots, x_m) \in \mathcal{H}) g(x) = \sum_{i=1}^m g_i(x_i)
L: v \mapsto (L_1 v, \dots, L_m v).$$

PPXA+

Let $\mathcal{H}_1, \dots, \mathcal{H}_m$ and \mathcal{G} be Hilbert spaces.

For every $i \in \{1, ..., m\}$, let $g_i \in \Gamma_0(\mathcal{H}_i)$ and let $L_i \in \mathcal{B}(\mathcal{G}, \mathcal{H}_i)$.

Assume that $\sum_{i=1}^{m} L_{i}^{*} L_{i}$ is an isomorphism.

Let $\gamma \in [0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ a sequence in [0, 2] such that

 $\sum_{n\in\mathbb{N}}\lambda_n(2-\lambda_n)=+\infty$. Assume that $\operatorname{zer}\left(\sum_{i=1}^m L_i^*\circ\partial g_i\circ L_i\right)\neq\varnothing$. Let $(x_{0,i})_{1 \le i \le m} \in \mathcal{H}_1 \times \cdots \times \mathcal{H}_m$, $v_0 = (\sum_{i=1}^m L_i^* L_i)^{-1} \sum_{i=1}^m L_i^* x_{0,i}$ and

$$\begin{cases} y_{n,i} = \operatorname{prox}_{\gamma_{g_i}}(x_{n,i}), & i \in \{1, \dots, m\} \end{cases}$$

$$(\forall n \in \mathbb{N}) \begin{cases} y_{n,i} = \text{prox}_{\gamma g_i}(x_{n,i}), & i \in \{1, \dots, m\} \\ c_n = (\sum_{i=1}^m L_i^* L_i)^{-1} \sum_{i=1}^m L_i^* y_{n,i} \\ x_{n+1,i} = x_{n,i} + \lambda_n (L_i (2c_n - v_n) - y_{n,i}), & i \in \{1, \dots, m\} \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

Then $v_n \rightharpoonup \widehat{v} \in \operatorname{Argmin} \sum_{i=1}^m g_i \circ L_i$.