

Analytical Framework for Autonomous Charging Station Enabling Electrification of Transportation System

by Ravil Bikmetov

Charlotte 2019

Proposed Autonomous Charging Station

Servicing Flow

Tier of	Speed	Charging	Time to full	Application
charge	Орсса	rate, kW	charge*, hours	Application
1	Slow	3	6 – 8	Overnight at home
2	Medium	6	3 – 4	Commercial and public on-street
3	Fast	120	0.25 – 0.6	Commercial and public on-street
4	Ultra-fast	450	0.5 - 0.75	Deployment stage

^{*}Time to full charge is defined based on an average battery size for a given tier of charge

Proposed Autonomous Charging Station

Functional Architecture

<u>Physical Infrastructure</u>: power generators, their control and monitoring gear; electric chargers or fuel pumps; security cameras; wireless and/or wired networking equipment; computer servers; and associated hardware;

<u>Communication</u>: information exchange between the AVs and the charging station processing servers;

<u>Classification</u>: matching the needs of the AVs with the capabilities of the charging station;

Queueing: flexible queueing system, where incoming classified AVs are paired with the most suitable charging pumps;

<u>Financial</u>: vehicles' authorization and payment transactions;

Services: will charge/fuel AVs based on information exchanged

between the lower layers.

Theoretical background and Methodology

High level

Choice of the total number of pumps in each tier

Initialized through statistical analysis

Medium level

Choice of the number of sharable pumps in each tier

Demonstrated in developed analytical platform

Low level

Operational level scheduling

Demonstrated in online scheduling procedure

Theoretical background and Methodology

- Discrete-event simulation
 - scalable for high complexity systems;
 - verification of analytical approach;
- ➤ Multiple charging rates → multi-server queueing system;
- Pooled queueing system
 - o queue discipline "first come first serve" (priorities for featured services);
 - priority line for emergency vehicles and services;
- Classification based on pump sharing priority rule:
 - Same tier designated;
 - 2. Same tier sharable;
 - 3. Next highest tier sharable;
 - 4. Opportunistic charging and reject & referral;
- Any existing dynamic pricing model can be adapted.

Theoretical background and Methodology

- Flexibility of vehicles' arrivals due to their autonomous nature → homogeneous arrival rates over 24 hours;
- Charging requests are described by Poisson Process with hourly arrival rate:

$$\lambda_a = \frac{f_a N_a}{24 \times 7}$$

 N_a and f_a - number of AVs of tier a in the region and the average weekly frequency of their visits per week;

- Inter-arrival time is described by expon. distribution: $IA_a(t) = \lambda_a \cdot e^{-\lambda_a t}$;
- Probability of a single arrival during short time period $h: \lambda_a h$.

Vehicle	Average weekly frequency per vehicle					
vemere	Personal	Service				
Tesla Model S	0.6	4.72				
Tesla Model X	0.59	4.67				
Chevy Volt	0.42	3.3				
Ford Fusion Energi	0.32	2.5				
Nissan Leaf	1.64	12.9				

Input Parameters

- λ = arrival rate of charging requests (veh/hour): described by Poisson Process;
- IA = inter-arrival time between requests (mins): described by exponential distribution;
- n = number of tiers; $R_i = \text{ratio of vehicles in tier } i \in n$: obtained from preliminary analysis;
- E_i = energy acceptance rate of tier $i \in n$ (kW); B_i = battery capacity of tier $i \in n$ (kWh);
- *N* = number of vehicles;
- $ED_j^i = U_j[0.7...0.9] * B_i = \text{energy demand of vehicle } j \in N \text{ from tier } i \in n \text{ (kWh)};$
- $A_i = U[5 ... 30] = \text{earliest arrival time of vehicle } j \in N \text{ (mins)};$
- $D_j^i = U_j[0.9.1.1] * t_i =$ charging due date of vehicle $j \in N$ from tier $i \in n$ (mins) with average waiting time for this tier t_i .

Output Parameters

- \triangleright N_R , N_S = number of rejected and serviced vehicles (overall and per tier); $N_R + N_S = N$;
- $\sum_{i=1}^{N_S} ED_i^i(t)$ = power consumption profile: amount of power consumed by ACS over time;
- $ightharpoonup Ut_{tot}$, Ut_1 , ..., Ut_n = utilization of pumps (total and for tier $i \in n$);
- > Scheduling calendar: timeline of each pump utilization.

Assumptions

- Focusing on classification and queueing layers and utilizing existing technologies for the other layers of functional architecture;
- Charging rate of each pump in a tier is equal to the power acceptance rate of the vehicles in the same tier;
- Real-time pricing and waiting times are provided by charging stations;
- Vehicles can't be charged at lower tier pumps;
- No queue disruption for scheduled vehicles;
- Guarding time intervals and operation failures are neglected.

Scheduling Procedure at ACS (example)

Mathematical Formulation

Input Data:

 $N_k = \{1, 2, ..., n_k\}$ = index set of existing vehicles assigned to pump k at the time of scheduling a new vehicle N. N_k is a totally ordered set, where i < j for $i, j \in N_k$ implies that vehicle i is charged before vehicle j.

 a_i = arrival time of vehicle (= 0 if arrived already); d_i = due date of vehicle $i \in N_k$

 c_i = charging time of vehicle $i \in N_k$ at the current queue

 w_i = penalty imposed on the completion time of vehicle $i \in N_k$

 a_N = earliest arrival time of new vehicle; d_N = due date of new vehicle

 c_N = charging time of new vehicle at the current pump

 w_N = penalty imposed on the completion time of new vehicle

 $y_0 = 0$ defined for the sake of simplicity of formulation

Mathematical Formulation

Decision Variables:

 x_i = start time of charging vehicle $i \in N_k$

 $x_N = \text{start time of charging new vehicle}$

 y_i = completion time of charging vehicle $i \in N_k$

 y_N = completion time of charging new vehicle

 $z_i = 1$ if new vehicle is placed right before vehicle i for $i \in N_k$; 0 otherwise

 $z_L = 1$ if new vehicle is placed after vehicle n_k ; 0 otherwise

Mathematical Formulation

Sum of charging completion times

Minimize
$$\sum_{i=1}^{n_k} w_i y_i + w_N y_N$$

subject to
$$y_i = x_i + c_i$$
 for $i \in N_k$

$$y_N = x_N + c_N$$
; $x_N \ge a_N$; $y_N \le d_N$

$$x_i \ge a_i$$

for $i \in N_k$

$$y_i \le d_i$$

for $i \in N_k$

$$x_i \ge y_{i-1}(1 - z_i) + y_N z_i$$

for $i \in N_k$

$$x_N \ge y_{i-1}z_i$$

for $i \in N_k$

$$x_N \ge y_{n_k} z_{last}; \ \sum_{i \in N_k} z_i + z_{last} = 1$$

$$x_i \ge 0, x_N \ge y_i \ge 0, y_N \ge 0; z_i, z_N \in \{0, 1\}.$$

Optimization Objective:

minimize the sum of charging completion times of all vehicles in the queue including the newly arrived vehicle

Overall Structure and Flowchart

Divided into 3 modules:

- Vehicle Data Generation
- > Pump Data Generation
- Queueing and Scheduling
- Charging requests' arrival rate: λ;
- Ratio in each tier: R₁, R₂, ..., R_N;
- Walk-in or reservation requests' ratios: R_W, R_R;
- Maximum number simulated: Veh_{max}.

```
IA = 60*exprnd(1/lambda, Veh_max-1,1);
e_arr_t=5+25*rand(Veh_max,1);
```

type: reservation or walk-in.

```
for i=1:Veh_max
    en_dem(i,1)=(0.2*rand+0.7)*Bat_cap(tier(i,1));
    deadl_t(i,1)=(0.4*rand+0.8)*Tier_Wait_Aver(tier(i,1));
    for n=1:N
        charg_t(i,n)=60*en_dem(i,1)/min(Ac_rate(n),Ac_rate(tier(i,1)));
    end
end
```

Vehicle Data Generation

arr_t, type, tier, charg_t, e_arr_t, deadl_t

Pump data generation

START in a f numar

Initialization of pumps
Initialize N, Pumptot,
Pump1, Pump2, ..., PumpN
PS1, PS2, ..., PSN,

Define pump selection rule pr1, pr2, prshar

Read vehicle data: arr_t, type, tier, charg_t, e_arr_t, deadl_t

Overall Structure and Flowchart

- The number of tiers: N;
- The total number of pumps: Pump_tot;
- Numbers of pumps per tier: Pump₁, ..., Pump_N;
- Numbers of sharable pumps per tier: PS₁, ..., PS_N;
- Defining priorities for pump selection rule:
 - pr₁ designated pumps of the same tier;
 - pr₂ sharable pumps of the same tier;
 - pr_{shar} is used for sharable pumps of higher tier

Sharab	le pumps	Pump selection rule					
Tier 1	Tier 2	Tier 1	Tier 2	Tier 3			
0	0	1, 2	3, 4,, 11	12,, 32			
1	3	2, 1	4,, 11, 3, 1	12, 32, 3, 1			

Retrieving results from vehicle data generation module

Overall Structure and Flowchart

- Initialization and update of
 - current clock time at each iteration;
 - currently scheduled vehicle;
 - power consumption of ACS;
 - current and overall pump status matrices (P and P_{aggr});
 - current and overall vehicle status matrices (V and V_{aggr});
- Vehicles' classification by pump selection;
- Solution of charging scheduling optimization for each vehicle;
- Reporting results

Key Data Structures

V – current state vehicles matrix showing vehicles' scheduling parameters along with their scheduling results for vehicles that are currently in the system;

							V					
ID	्रा type	tier	→ a	rr_t 🔻	e_arr_t 🔻	deadl_t 🔻	res_arr_t	charg_t	compl_t	Pump#	act_arr_t	act_compl_t 🖫
	1	1	3	0.00	25.28	466.00	0.00	228.65	3.65	12	223.18	451.83
	2	1	2	1.77	14.49	326.91	0.00	162.01	21.50	3	16.26	178.27
	3	1	3	2.45	12.98	487.73	0.00	207.75	66.41	12	15.43	223.18
	4	1	2	10.95	29.65	240.60	0.00	152.93	36.76	4	40.60	193.53
	5	1	3	23.21	22.95	561.96	0.00	218.02	18.23	13	226.09	444.11
	6	1	3	32.16	15.33	542.33	0.00	178.60	1.48	13	47.49	226.09
	7	1	2	38.46	7.47	359.66	0.00	155.18	14.65	3	178.27	333.45
	10	1	2	64.21	6.85	331.66	0.00	137.02	11.75	4	193.53	330.55
	11	1	1	67.35	8.01	101.00	0.00	34.87	9.18	1	131.07	165.95
	12	1	3	78.24	29.54	426.06	0.00	202.10	6.75	14	107.78	309.88
	13	1	2	79.30	17.42	278.44	0.00	160.83	4.92	5	96.72	257.54
	14	1	3	90.02	5.56	433.89	0.00	221.84	7.03	15	95.58	317.42
	15	1	3	94.15	6.35	420.15	0.00	222.88	4.58	16	100.50	323.38
	16	1	3	94.15	8.52	390.08	0.00	216.83	0.71	17	102.68	319.51
	17	1	1	100.36	27.34	123.21	9.18	33.55	42.73	1	165.95	199.50
	18	1	3	118.70	16.65	424.81	0.00	197.34	7.35	14	309.88	507.22
	19	1	2	127.96	19.02	257.45	0.00	156.08	19.04	6	146.98	303.06
	20	1	3	133.49	17.36	386.47	0.00	203.08	0.26	18	150.85	353.93

P – current state pumps matrix showing pumps' tiers, e.g., ultra-fast, fast, and medium, pumps' types: sharable or designated, and vehicles currently scheduled for these pump (i.e., currently in the system);

			P			
Pump#	tier -	type -		CHARGED	VEHICLES ID:	5
1	1	0	11	17	0	0
2	1	0	0	0	0	0
3	2	0	2	7	0	0
4	2	0	4	10	0	0
5	2	0	13	0	0	0
6	2	0	19	0	0	0
7	2	0	0	0	0	0
8	2	0	0	0	0	0
9	2	0	0	0	0	0
10	2	0	0	0	0	0
11	2	0	0	0	0	0
12	3	0	3	1	0	0
13	3	0	6	5	0	0
14	3	0	12	18	0	0
15	3	0	14	0	0	0
16	3	0	15	0	0	0
17	3	0	16	0	0	0
18	3	0	20	0	0	0

Key Data Structures

 V_{aggr} – overall vehicles matrix showing vehicles' scheduling parameters along with their scheduling results for all vehicles that have been served and currently in the system.

							Vaggr					
ID	្ _រ type	tier	→ a	rr_t 🕝 🤄	e_arr_t 🐷	deadl_t 🔻	res_arr_t	charg_t 🐷	compl_t 🔽	Pump# 🗔	act_arr_t 🐷	act_compl_t 🗔
	1	1	3	0.00	25.28	466.00	0.00	228.65	3.65	12	223.18	451.83
	2	1	2	1.77	14.49	326.91	0.00	162.01	21.50	3	16.26	178.27
	3	1	3	2.45	12.98	487.73	0.00	207.75	66.41	12	15.43	223.18
	4	1	2	10.95	29.65	240.60	0.00	152.93	36.76	4	40.60	193.53
	5	1	3	23.21	22.95	561.96	0.00	218.02	18.23	13	226.09	444.11
	6	1	3	32.16	15.33	542.33	0.00	178.60	1.48	13	47.49	226.09
	7	1	2	38.46	7.47	359.66	0.00	155.18	14.65	3	178.27	333.45
	8	1	1	45.94	23.36	140.14	0.00	30.19	3.12	1	100.88	131.07
	9	1	1	46.40	20.93	101.06	0.00	33.55	6.73	1	67.33	100.88
	10	1	2	64.21	6.85	331.66	0.00	137.02	11.75	4	193.53	330.55
	11	1	1	67.35	8.01	101.00	0.00	34.87	9.18	1	131.07	165.95
	12	1	3	78.24	29.54	426.06	0.00	202.10	6.75	14	107.78	309.88
	13	1	2	79.30	17.42	278.44	0.00	160.83	4.92	5	96.72	257.54
	14	1	3	90.02	5.56	433.89	0.00	221.84	7.03	15	95.58	317.42
	15	1	3	94.15	6.35	420.15	0.00	222.88	4.58	16	100.50	323.38
	16	1	3	94.15	8.52	390.08	0.00	216.83	0.71	17	102.68	319.51
	17	1	1	100.36	27.34	123.21	9.18	33.55	42.73	1	165.95	199.50
	18	1	3	118.70	16.65	424.81	0.00	197.34	7.35	14	309.88	507.22
	19	1	2	127.96	19.02	257.45	0.00	156.08	19.04	6	146.98	303.06
	20	1	3	133.49	17.36	386.47	0.00	203.08	0.26	18	150.85	353.93

 P_{aggr} – overall pumps matrix showing parameters their tier and type (in a manner similar to matrix P), and all vehicles that have been served and currently in the system.

Paggr										
Pump#	tier	type .		CHARGED	VEHICLES IDS	i				
1	1	0	9	8	11	17				
2	1	0	0	0	0	0				
3	2	0	2	7	0	0				
4	2	0	4	10	0	0				
5	2	0	13	0	0	0				
6	2	0	19	0	0	0				
7	2	0	0	0	0	0				
8	2	0	0	0	0	0				
9	2	0	0	0	0	0				
10	2	0	0	0	0	0				
11	2	0	0	0	0	0				
12	3	0	3	1	0	0				
13	3	0	6	5	0	0				
14	3	0	12	18	0	0				
15	3	0	14	0	0	0				
16	3	0	15	0	0	0				
17	3	0	16	0	0	0				
18	3	0	20	0	0	0				

Key Coding Blocks: Solve Scheduling

Objective: Minimize $w^T y + w_N y_N$

```
%% 1. Creating row-vector f (coef of objective function)
f = zeros(1,5*nk+3); f(nk+2:2*nk+2) = 1;
%% 2. Creating matrix A (coef of constraints)
A = A matr(nk);
%% 3. Creating column-vector b (rhs constants)
b = b vect(nk, Char time, E arr time, Due date);
%% 4. Creating column-vector 1b (low bound)
lb = zeros(1, size(f, 2));
%% 5. Creating row-vector Vtype (var type: continuous or binary)
Vtype(1:5*nk+3) = 'C';
Vtype(2*nk+3:3*nk+3) = 'B';
%% 6. Creating row-vector sense ('>,<,=' signs for constraints)
sense = sense vect(nk);
```

Linearization of bilinear terms

Creating linear constraints: A * x = b

Creating bound constraints: $x \ge lb$

Defining variable types: continuous (C) or binary (B)

Key Coding Blocks: MILP model setup for Nk=2

X1	X2	XN	Y1	Y2	YN	Z1	Z2	ZL	VN1	V12	VN2	V2L	Description	sense	b vect
-1	0	0	1	0	0	0	0	0	0	0	0	0	Y1-X1	=	charg_t
0	-1	0	0	1	0	0	0	0	0	0	0	0	Y2-X2	=	charg_t
0	0	-1	0	0	1	0	0	0	0	0	0	0	YN-XN	=	charg_t
0	1	0	0	0	0	0	0	0	0	0	0	0	X2	>	arr_t
0	0	1	0	0	0	0	0	0	0	0	0	0	XN	>	arr_t
0	0	0	1	0	0	0	0	0	0	0	0	0	Y1	<	deadl_t
0	0	0	0	1	0	0	0	0	0	0	0	0	Y2	<	deadl_t
0	0	0	0	0	1	0	0	0	0	0	0	0	YN	<	deadl_t
1	0	0	0	0	0	0	0	0	-1	0	0	0	X1-VN1	>	0
0	0	0	0	0	-1	-10000	0	0	1	0	0	0	VN1-YN-10000*Z1	>	-10000
0	0	0	0	0	-1	0	0	0	1	0	0	0	VN1-YN	<	0
0	0	0	0	0	0	-10000	0	0	1	0	0	0	VN1-10000*Z1	<	0
0	1	0	-1	0	0	0	0	0	0	1	-1	0	X2-Y1+V12-VN2	>	0
0	0	0	-1	0	0	0	-10000	0	0	1	0	0	V12-Y1-10000*Z2	>	-10000
0	0	0	-1	0	0	0	0	0	0	1	0	0	V12-Y1	<	0
0	0	0	0	0	0	0	-10000	0	0	1	0	0	V12-10000*Z2	<	0
0	0	0	0	0	-1	0	-10000	0	0	0	1	0	VN2-YN-10000*Z2	>	-10000
0	0	0	0	0	-1	0	0	0	0	0	1	0	VN2-YN	<	0
0	0	0	0	0	0	0	-10000	0	0	0	1	0	VN2-10000*Z2	<	0
0	0	1	0	0	0	0	0	0	0	-1	0	0	XN-V12	>	0
0	0	1	0	0	0	0	0	0	0	0	0	-1	XN-V2L	>	0
0	0	0	0	-1	0	0	0	-10000	0	0	0	1	V1L-Y1-10000*ZL	>	-10000
0	0	0	0	-1	0	0	0	0	0	0	0	1	V1L-Y1	<	0
0	0	0	0	0	0	0	0	-10000	0	0	0	1	V1L-10000*ZL	<	0
0	0	0	0	0	0	1	1	1	0	0	0	0	Z1+Z2+ZL	=	1
1	0	0	0	0	0	0	0	0	0	0	0	0	X1	>	arr_t

Key Coding Blocks: Solve Scheduling

```
%% Running optimization routine
  model.obj = f;
  model.A = sparse(A);
  model.rhs = b;
  model.lb = lb;
  model.sense = sense;
  model.vtype = Vtype;
   result = qurobi (model);
if strcmp(result.status, 'INFEASIBLE')
   display(result.status);
   run=1; pr curr(m)=0; %zeroing occupied pump in pr curr list
   if sum(pr curr) == 0; % condition for all available pumps
       V aggr = V rej (V aggr, veh num, V read);
    end
else
   x = result.x % Recording results
   fval = result.objval; % optimal value of objective function
   V aggr = V a sch(V aggr, veh num, V read, x);
   V = V sch(V, veh num, V read, x);
   P aggr = P a sch(P aggr, veh num, x);
   P = P sch(P, veh num, x);
end
```

Using mixed-integer linear programming (MILP) solver from Gurobi

Checking result status and updating Vaggr, V, Paggr, P based on it

Testing Scenarios

Initialization of Pumps

Tier	Battery size, kWh	Power acceptance rate, kW			
1	81	120			
2	20	6.6			
3	14	3.3			

Tier	Balanced	Lower first tier	Higher first tier		
1	0.2	0.1	0.3		
2	0.3	0.4	0.2		
3	0.5	0.5	0.5		

Tier	Average charging time per vehicle, hours	Service rate per pump, veh/hour	Number of pumps	Pump ID
1	0.54	1.85	2	1, 2
2	2.42	0.413	9	3, 4,, 11
3	3.39	0.295	21	12, 13,, 32

Energy requirement for each vehicle in this tier is $0.8 \cdot 81 = 64.8 \text{ kWh}$

$$\lambda_1 = 0.2 \cdot 10 = 2 \text{ veh/hour} \qquad \mu_1 = \lambda_1/0.8 = 0.8 \cdot 2 = 2.5 \text{ veh/hour} \qquad (\frac{\lambda_i}{\mu_i} \sim 0.8)$$

Required power delivery rate in tier 1: $2.5 \cdot 64.8 = 162 \text{ kW} \rightarrow 2$ pumps

Testing Scenarios

Arrival Rates and Distribution between Tiers

Testing Results and Analyses

Number of Rejections and Pump Utilization

- No benefit from sharing for balanced scenario;
- Sharing of tier 1 pumps has higher impact than sharing of tier 2 pumps;
- Sharing of both pumps of tier 1 results in the highest number of rejections increasing it by 8 to 25 vehicles;
- Sharing only one pump in tier 1 results in the minimum number of rejections for any level of sharing in tier 2.

- Min number of rejections is achieved when none of pumps is shared;
- Sharing of one and two pumps in tier 1 increases the number of overall rejections by about 35 and 50 vehicles from the minimum.

Testing Results and Analyses

<u>Tier-specific</u> Parameters

12 veh/hour:

- Sharing one pump in tier 1 increases its utilization by up to 18% for 12 veh/hour;
- Sharing two pumps in tier 1 results in the highest number of rejections in this tier.

14 veh/hour:

 similar trends with a significant increase in number of rejections and the corresponding growth of pumps' utilization.

Testing Results and Analyses

Scheduling Calendar & Power Consumption Profile

Analytical Platform

Pumps' Assignment for Selection Rule

Sharing	Sharabl	e pumps	F	Pump selection rul	e
combination	Tier 1	Tier 2	Tier 1	Tier 2	Tier 3
1	0	0	1, 2	3, 4,, 11	12, 13,, 32
2	0	3	1, 2	4, 5,, 11, 3	12, 13,, 32, 3
•••	•••	•••	•••	•••	•••
6	0	3, 4,, 11	1, 2	3, 4,, 11	12, 13, 32, 3, 4,, 11
7	1	0	2, 1	3, 4,, 11, 1	12, 13, 32, 1
8	1	3	2, 1	4, 5,, 11, 3, 1	12, 13, 32, 3, 1
•••	•••	•••	•••	•••	•••
12	1	3, 4,, 11	2, 1	3, 4,, 11, 1	12, 13, 32, 3, 4,, 11, 1
13	1, 2	0	1, 2	3, 4,, 11, 1, 2	12, 13, 32, 1,
14	1, 2	3	1, 2	4, 5,, 11, 3, 1,	12, 13, 32, 3, 1, 2
•••			•••	•••	•••
18	1, 2	3, 4,, 11	1, 2	3, 4,, 11, 1, 2	12, 13, 32, 3, 4,, 11, 1, 2

