\$1 BRGINÉS ENVOIES

- De: Mid ano Aou Vid πραγματικών αριθμών είναι μία συνάρτηση d: IN → IR. Συνηθίζουμε να συμβολίζουμε τις τιμές της με αι, αι, αι αι αι ---
- Fix Káte né IN dvalfepópadóte ótor apithó an ws tor n- Dótó opo tres akodoutíds. Eníons oup Bodísoupe pía akodoutíd ws dan $\frac{1}{2}$ and $\frac{1}{2}$ (an) $\frac{1}{2}$ (an)

· Napa Seignata:

- α) 'EGIW CE IR. Η GTA DEPÝ ακο Λουθία (απ)η με τιμή C τ.w. αη = C, ΥΝΕΙΝ
- B) $(d_n)_n = (\frac{1}{n})_n$. Tote, $d_1 = \frac{1}{1} = 1$, $d_2 = \frac{1}{2}$, $d_3 = \frac{1}{3}$, ---
- γ) AV $d \in \mathbb{R}$, $(dn)_n = (d^n)_n$, Tota $d_1 = d$, $d_2 = d^2$, $d_3 = d^3 \cdots$
- J) (dn)n=(2n-1)n, d1=1, d2=3, ---
- ξ) (Ανωδρομικός ορισμός) $α_1 = 1$ και ∀n ∈ IN ορίζουμε $d_{n+1} = \sqrt{1+d_n}$ (160δύναμα ∀n > 2: $α_n = \sqrt{1+d_{n-1}}$)

$$\Rightarrow$$
 $d_1 = 1, d_2 = \sqrt{2}, d_3 = \sqrt{1 + \sqrt{2}}, ...$

5)
$$d_1 = 1$$
, $d_2 = 1$ Kai $\forall n \in \mathbb{N}$: $d_{n+2} = d_n + d_{n+1}$. Tore
$$d_1 = 1$$
, $d_2 = 1$, $d_3 = 2$, $d_4 = 3$, $d_5 = 5$, $d_6 = 8$, $d_7 = 13$...

$$\eta$$
 $\lambda_{n} = \begin{cases}
3n^{2} & \text{av} & n = 2K \\
\frac{1}{7n} & \text{av} & n = 2K-1
\end{cases}$
 $(K \in IN) - T_{\delta T \leq 1} = \begin{cases}
\lambda_{4} = 48 \\
\lambda_{5} = \frac{1}{45}
\end{cases}$

(ii) Opi Jours
$$(dn)_n + (\beta n)_n = (dn + \beta n)_n$$

 $(dn)_n - (\beta n)_n = (dn - \beta n)_n$
 $(dn)_n \cdot (\beta n)_n = (dn \beta n)_n$

AV
$$\beta_n \neq 0$$
, $\forall n \in \mathbb{N}$, opijou $\mu \in \frac{(\alpha_n)_n}{(\beta_n)_n} = (\frac{\alpha_n}{\beta_n})_n$

 $\frac{\partial \rho}{\partial r} \left(\frac{2 i v_0 A_0}{4 n} \frac{1 \mu \dot{\omega} \dot{v}}{r} \right) = \frac{1 E_0 T \omega}{1 E_0 T \omega} \left(\frac{\partial r}{\partial r} \right)_n \frac{\partial v_0 A_0 \dot{v} \dot{v}}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial v_0 A_0}{\partial r} = \frac{1}{2} \frac{1 e_0 T \omega}{1 e_0 T \omega} \frac{\partial$

• Παραδείχματα: i) Η $(α_n)_n = \left(\frac{1}{n}\right)_n εχει δύνολο τιμών,
το εύνολο <math>\frac{1}{n}$: $n \in \mathbb{N}$ $\frac{1}{3}$.

ii) H (dn)n = ((-1)n)n Exe ws 6000 Ao TIpiwo To f-1,13.

\$2 Zógk A169 AKO AOU DIWV

• As EZETA 600 ME TON DKO LOUPIN (An) $= \left(\frac{1}{n}\right)_n$.

Για n=1: $α_1=1$, για n=5: $α_n=\frac{1}{5}$ ---, για n=1000: $α_n=\frac{1}{1000}$ Καθώς το n γινέται "μεγάλο", o $α_n$ πληδιάζει τον αριθμό o. Δηλαδή, η $\left(\frac{1}{n}\right)_n$ συγκλίνει στο o.

- · Γενικά, έστω (dn)n ακολουθία και αΕ IR. Θα λέμε ότι η (dn)n συγκλίνει στον α αν
- 11 Kathis to n megadiver o an Epxetal 060 Signote Kovta 6TO a;
- " για 060 δήποτε κοντά 670 α θεδή 600 με, θα βρίσκονται οι όροι της απ , αρκεί το η να είναι αρκετά μεγάδο",
- Aυστηρός ορισμός της σύγκλισης: Έστω (dn)η ακολουθία και αξ \mathbb{R} , Αέμε στι η (dn)η συγκλίνει στο α και γράφουρε lim αη = α η dη $\xrightarrow{n\to\infty}$ α, σταν

- Nagarygyan: To no $\xi \overline{3}$ aprátal anó to ξ .
- · Napa Jeignata
- i) AV dn = C, Yn EIN, ME CEIR, TOTE lim dn = C.
- ii) $(dn)_n = \left(\frac{1}{n}\right)_n \xrightarrow{n \to \infty} 0$. $np \text{appart}_1$, $\tilde{\epsilon} 6 \tau \omega \in 70$, $\tau \delta \tau \epsilon dn \delta \tau \eta V$ $Apx : \mu \eta \delta \epsilon \alpha : \delta i \delta \tau \eta \tau \alpha \quad \exists n_0 \in \mathbb{N} \quad \tau \cdot \omega : 0 < \frac{1}{n_0} < \epsilon :$ $\left[\mu \tilde{\alpha} \lambda_1 \epsilon \tau \alpha \quad \mu n_0 p_0 \delta \mu \epsilon \quad v \alpha \quad n \lambda_1 p_0 \nu \mu \epsilon \quad n_0 = \left[\frac{1}{\epsilon}\right] + 1 \right]$ $[Apa \quad \forall n \ni n_0 : \tilde{\epsilon} \chi_0 \nu \mu \epsilon \delta \tau 1 \quad \epsilon > \frac{1}{n_0} \Rightarrow \frac{1}{n} = dn > 0 > -\epsilon .$
- $\begin{array}{ll} \overline{u} & \frac{n^2 n}{n^2 + n} & \frac{n \to \infty}{n^2 + n} & 1 & \left[\int_{-1}^{1} \frac{1}{n^2 + n} \right] = \left[\frac{2n}{n^2 + n} \right] = 2 \left[\frac{1}{n+1} \right] \leq \frac{2}{n} & \frac{1}{n^2 + n} = 2 \left[\frac{1}{n+1} \right] \leq \frac{2}{n} & \frac{1}{n^2 + n} = 2 \left[\frac{1}{n+1} \right] = 2 \left[\frac{1}{n$

And Apximin Stid 1515 tyto, $\frac{1}{2}$ to $\frac{1}{2}$ $\frac{1$

iv) H (dn)n = (-1)n Jer GuyKATVEI.

BUGINES I DISTYTES

- i) Το όριο κάθε ακολουθίας (όταν υπάρχει) είναι μοναξικό.
- il) Kpitypio NapepiBoAyS: 'Estw (dn)n, (Bn)n, (Vn)n akoAouties
 Kai le IR, T.W.

- 1) du & Bu & Yu, thomas yid Kanoio no EIN
- 2) $\lim_{n\to\infty} dn = \lim_{n\to\infty} \gamma_n = \ell$

Tore lim Bn = l

OP: Mia akohou Dia (dn)n Kaheital Ypayméry dr JM>0 T.W. the M 16xúel Idn] = M

 $\frac{\Pi \cdot \chi \cdot \quad O_L \left(\left(\frac{1-1}{n} \right)_n \quad \kappa \alpha_1 \left(\frac{1}{n} \right)_n \quad \epsilon_{iv \alpha_1} \quad \psi_{p \alpha} \gamma_{\mu \epsilon v \epsilon j} \cdot M \left(n^2 + 2 \right)_n \quad f_{\epsilon v} \epsilon_{iv \alpha_1} }{\psi_{p \alpha} \gamma_{\mu \epsilon v \gamma} \cdot \dots \cdot \psi_{p \alpha} \gamma_{\mu \epsilon v \gamma} \cdot \dots \cdot \psi_{p \alpha} }$

Θεώρημα: Κάθε συγκλίνουσα ακολουθία είναι φραγμένη [προσοχή = δεν ισχύει το αντίστροφο π.χ. ((-1)ⁿ)_n.]

 $Ω_{\rm F}: 1Ε67ω (dn)_n ακολουθία. Ένα Τελικό τμήμα της (dn)_η είναι$ $μία ακολουθία της μορ (ης (βη)_η = (dm+η-1)_η = (dm, dm+1,-...).$ $Ω-χ: Η (<math>\frac{1}{12+η}$)η είναι τελικό τμήμα της ($\frac{1}{η}$)η

2) 'EGTW (dn) n drofoutid kan d E IR. Tote 16xúel dn \rightard

ANN undexen tedinó thýpha trys (dn) n trou va Gugndível GTO a

KATE TEÁINÓ THÝPHA - " - " - " a.

3) $1 = 6 \pi \omega$ (dn) disofortia xai $d \in \mathbb{R}$. Tote $d_n \xrightarrow{n \to \infty} d$ ANN $\exists \xi \neq 0$ $\tau_*\omega_*$. $\forall n_0 \in \mathbb{N}$, $\exists n \geq n_0 \tau_*\omega_*$. $|\vec{\alpha}_n - \vec{\alpha}| \not \geq \xi$.

Xai ANN $\exists \xi \neq 0$ $\tau_*\omega_*$, τ_0 $\epsilon \omega = 0$ $|\vec{\alpha}_n - \vec{\alpha}| \neq \xi$ $|\vec{\alpha}_n - \vec{\alpha}| \neq \xi$

\$3 <u>Anókaión</u> 670 áneipo De: 1861W ldn)n dkodovája.

i) Népe óti y làn), teiver 610 +00 (ý ano Kaiver 610 +00 ý dy $\xrightarrow{n\to\infty}$)

av +M>0, $\exists m \in \mathbb{N}$ tw. $tm \geq m_0$ éxorpre $d_m \geq M$ ii) Népe óti y $(d_m)_m$ teiver 610 $-\infty$ (ý ano Kaiver 610 $-\infty$ ý $d_m \xrightarrow{n\to\infty}$)

1) NEME OTIN LAND LEIVER 600 - TO (M AND KINVER 600 - TO M AND TO BY OUT AN Z-ON AND TO BY OUT AN Z-ON.

 $\frac{\text{Nαρατηρήδεις: IE6τω (α_n)_n, (β_n)_n ακολουθίες}{i) Aν α_n <math>\leq$ β_n, γ_n \in IN και α_n $\xrightarrow{n \to \infty}$, τότε β_n $\xrightarrow{n \to \infty}$ $\xrightarrow{n \to \infty}$.

ii) Aν α_n \Rightarrow β_n; γ_n \in IN και α_n $\xrightarrow{n \to \infty}$, τότε β_n $\xrightarrow{n \to \infty}$ $\xrightarrow{n \to \infty}$.

iii) Aν α_n \Rightarrow β_n; γ_n $\xrightarrow{n \to \infty}$ $\xrightarrow{n \to \infty}$, τότε $\xrightarrow{n \to \infty}$ $\xrightarrow{$

&4 PAJEBP2 OPINV

Napatypyers: Eerw (dn)n drodoutia kar at IR.

- i) $H \propto n \rightarrow \infty$ ANN $|\alpha_n| \xrightarrow{n \rightarrow \infty} 0 \left(n \cdot x \cdot (-1)^n \frac{1}{n} \xrightarrow{n \rightarrow \infty} 0 \right)$.
- ii) H $dn \xrightarrow{n \to \infty} \alpha$ ANN $an \alpha \xrightarrow{n \to \infty} 0$ ANN $|a_n \alpha| \xrightarrow{n \to \infty} 0$.
- iii) Av $d_n \rightarrow d$, $tite |d_n| \rightarrow |a|$ ($npo60\chi\dot{q}$: $fev 16\chi\dot{u}e_1$ το αντί ετρο φο, n.χ. dn = (-1)")

npazzes, Siatazy kai Guyxalien: EGTW (an)n, (Bn) akodoudies Kald, BEIR, CEIR.

- i) AV dn -> d Kdi Bn -> B, tote dn+ Bn -> d+ B EIJINÓTEPA, dV du mos a, TÓTE dy+c mos d+c.
- (i) AV dn -> & Kdi Bn -> B TÓTE dy. Bn -> 00 d.B EIJIKOTEPA, dV dn -> x, TOTE C. dn n-100 C.x.
- iii) AV dy -> d Kd1 Bn m-> B, Tote dn-Bn m-> d-B
- iv) AV du mon x kai By mon B T.W. By \$0, the IN Kai B\$0, Tote dn no x B
- V) AV on and Kan KEIN, Tots on moo q'K (npo60 xy to K 6Tat Epó ws npos n)

- Ni) AV $dn \longrightarrow \alpha$ Kal $K \in \mathbb{N}$, Tote $K \sqrt{dn} \xrightarrow{n \to \infty} K \sqrt{\alpha}$,

 Nii) Av $dn \xrightarrow{n \to \infty} 0$ Kal $(B_n)_n (Ppaypévy)_n$ Tote $dn \cdot Bn \xrightarrow{n \to \infty} 0$, $(Npo60\chi_{7}^{2})_n To (B_n)_n eival anapairyto \cdot N-\chi \cdot (dn)_n = (\frac{1}{n})_n Kal (B_n)_n = (n^{2})_n)$
- Note of Br. the IN, Kai on ->d Kai Bn ->B,
 - ($np060\chi\dot{\gamma}: \lambda V dn \xrightarrow{n\to\infty} d$, $\beta n \xrightarrow{n\to\infty} \beta$, $\kappa \alpha i dn Z \beta n$, $\forall n \in \mathbb{N}$) $\Delta \in \mathbb{N}$ 6 wendy $\epsilon \tau d i$ of τi $\lambda Z \beta (\mu \delta v o \delta \tau) \lambda \leq \beta$) $n.\chi_{\circ} (\alpha n)_{n} = (\frac{-1}{n})_{n} \kappa d i (\beta n)_{n} = (\frac{1}{n})_{n} i$ To $\tau \in \chi \circ \nu m \in \mathcal{M} \cap Z \cap \mathcal{M} \cap \mathcal{M$
- ix) AV m & dn & M, th & IN (onou m, M & IR) Kall on m+00 d,

§ 5 Kánord Babiká ópid

1) $\overline{Z}_{\nu}\mu n \epsilon \rho_{1} U \rho \rho \hat{a} \tau_{MS} (dn)_{n} = (d^{n})_{n} \delta n \nu d > 0$.

Av d = 1, $\tau \delta \tau \epsilon d^{n} \xrightarrow{n \to \infty} 1$,

Av 0 < x < 1, $\tau \delta \tau \epsilon d^{n} \xrightarrow{n \to \infty} 0$,

Av d > 1, $\tau \delta \tau \epsilon d^{n} \xrightarrow{n \to \infty} + \infty$.

AZK = D.o. av dy = C, th & N, Totz lim dy = C. Núch: 42>0, Ino=1 T.w. Yn 7 no=1 Exoupe lan-C/28. AZK: $\Delta.o.$ dV $(dn)_n = (-1)^n$, $\tau o \tau \epsilon \eta (dn)_n F z V <math>\epsilon u \gamma \kappa A \bar{\nu} \epsilon l$ Núen: 8.8.0. y (dn) Sev Guykaiver GE Kavéva ópro de R. DIXKPÍVOUME SÚO REPINTÉNES KAI ENIJÉYOUME $\varepsilon = \frac{1}{2}$. o AV d≥0, ξχουμε |dn-d|=|-1-d|= 1+d≥ 17 € Marabe n stepistó n=1,3,5 ---AV d ≤ 0, Exorpre | dn - d | = |1-d| = 1-d > 1> € Yld Kátře n aprilo n=2,4,6--i Ap L SEV 16 XVEI ÓTI «nó Kámoro ópo Kar METÁ (XIX N 77 Mo LO KETÁ METÁ MEXADO) ÉXOUME «n \in (α - ϵ , λ + ϵ) \leftarrow \rightarrow 1 \rightarrow 1

AZK: D.O. TO éplo Katz akolovDids (ótav unapxz) zíval movasikó.

Núby: 'EGTW STI YIX TYV OKO FORDÍZ (dn)n 16XÚZI dn -> X KXI Xy -> X $\mu \in d Z Z$. $EniA Éyov <math>\mu \in E = \frac{d-d}{2}$ or opiopo tys big Kaibys $k \alpha i \in \chi \cup J \mu \in A$ Fro T.W hono = |dn-d| < E, Fro T.W. none = |dn-d| < E 1 Apa yid n > max (no, no g 16x021 | 2-2 | [2-dn]+|dn-d/ (2+ E = 2-2, ATONO! AZK: EGTW (dn)n, (Bn)n, (Yn)n drotovoies Kai PEIR T.W:

1) dn & Bn & My th & no The Kansio no & M

2) lunda = lun yn = l

D.o. lim Bu = l

MGGn: EGRA EZO, 2400 DI (dn)n Kai (Yn)n GUZKÁIVON 620 0 PEO P JM TW nZNy > l-E4dn < l+E EXOLINE ∃N2 T-W N>N2 > l-2 < yn < l+2 yidn > max gno, N1, N2 y 16xúEi l-E Zan & Bn & Yn < l+E Kalı durá drośzikrúzi ou lun Bn = l

AZK: D.O. Kátz Gyráivouda ako Aoutid EÍVal ClayMêVy.

 $\Lambda \tilde{u}_{01}$: 'Estw Unin T.w. dn \rightarrow 2 EIR. En. Légortes $\varepsilon = 1$ Exoups on d-12 du 2 d+1 yet n Zno de Ketá prejado 'Apd, Idni < lal+1, th > no

Evi. Idn = max & |d11, |d21, ---, |dn-1 }

DETOVERS AD INOV M = max & lay, laz/1 -- , lang-1, b/+13 16 XUE Idn & M, The IN, Jud y Iduln Eivai GRAYMENN.