

열유체해석 및 실습

과목명.	열 유체 해석 및 실습		
담 당.	박 예 슬 교수님		
제출일.	2025년 06월 16일		
학 과.	기계공학과		
학 번.	203206		
이 름.	김 민 준		

MOKPO NATIONAL UNIVERSITY

목차

제1장 서론
1.1 실습 배경 및 목적
제2장 이론적 배경
2.1 전산유체역학의 기본 원리
2.2 격자(Grid)의 개념과 역할
제3장 모델링 및 메쉬 구성5
3.1 모델링 절차
3.2 Named Selection 설정
3.3 메쉬를 다양하게 제작 및 해석 하는 이유6
3.4 메쉬 생성 단계
3.5 메쉬 품질 기준7
3.6 메쉬 사이즈 기준
3.7 메쉬 생성
제 4 장 유동 해석 설정 및 수행12
4.1 해석 조건
4.2 수렴 조건
4.3 해석 결과 13

제5장 해석 결과 및 비교 16
5.1 압력 분포 (Pressure Contour & Pathlines)
5.2 유속 분포 (Velocity Contour & Pathlines) 22
5.3 온도 분포 (Temperature Contour & Pathlines) 28
5.4 압력 분포도 이미지화 34
5.5 속도 벡터 이미지화
5.6 온도 분포 이미지화 35
5.7 유선 이미지화
5.8 라인 추가 36
5.9 Poly Line 1 그래프
5.10 Poly Line 2 그래프 38
5.11 메쉬 선택
5.12 데이터 추출 41
제6장 조건 변화 해석 4%
6.1 조건 목록
6.2 분석 내용 45
제7장 결과 및 분석
7.1 유동장 및 속도 분포
7.2 메쉬 품질 및 해석 신뢰성 46
7.3 종합 평가

열 유체 실습 및 해석 < T-자형 파이프 내부 열유동 해석>

제1장 서론

1.1 실습 배경 및 목적

유체 시스템 설계에서 파이프 구조 내의 유동 해석은 전력 산업, 냉난방 시스템, 열교환기 설계 등 다양한 공학 분야에서 중요한 역할을 한다. 특히, 두 유입구를 갖는 T자형 파이프(T-pipe)는 상이한 온도와 속도의 유체가 합류함으로써 복잡한 유동 특성과 열전달 현상을 발생시키며, 이는 설계 및 최적화 과정에서 반드시 해석되어야 할 대상이다.

본 실습은 T-pipe 내부 유동 해석을 전산유체역학(Computational Fluid Dynamics, CFD) 기반으로 수 행하며, 다양한 격자 조건과 유동 조건에 따른 해석 결과의 민감도를 분석한다. 목적은 다음과 같다.

- 다양한 격자 유형(Tetra, Hexa, Poly)과 해상도(Size1, Size2, Size3)의 해석 정확도 비교
- 해석 시간과 자원 효율성 측면에서 최적 격자 조건 도출
- 다양한 유동 조건 변화에 따른 T-pipe 내 열 유동 특성 분석

제2장 이론적 배경

2.1 전산유체역학의 기본 원리

CFD는 연속 방정식(Continuity), 운동량 보존(Momentum), 에너지 보존(Energy) 방정식을 수치해석 기법을 통해 해결하는 방법론이다. 본 해석에서 사용된 Ansys Fluent는 유한체적법(Finite Volume Method, FVM)을 기반으로 하며, Navier-Stokes 방정식을 이산화하여 유동장 내의 각 셀에서 물리적 변수(속도, 압력, 온도 등)를 해석한다.

2.2 격자(Grid)의 개념과 역할

격자는 연속적인 유동장을 이산화하기 위한 공간적 구획 단위로서, 격자의 크기, 유형, 품질은 해석 결과에 직접적인 영향을 미친다. 주요 품질 지표로는 Skewness, Orthogonal Quality, Aspect Ratio 등이 있다.

본 연구는 다음 격자 유형을 분석한다:

- Tetrahedral (사면체): 비정형 형상에 적합하나 셸 수가 많고 계산량이 많음
- Hexahedral (육면체): 정렬된 흐름에서 정확하나 형상 제약이 큼
- Polyhedral: 균형잡힌 셀 수와 품질, 수렴성 우수

제3장 모델링 및 메쉬 구성

3.1 모델링 절차

T-pipe 형상은 SpaceClaim을 통해 구성되었으며, 아래의 도안을 참고하였다.

두 유입구(Inlet 1, Inlet 2)와 하나의 출구(Outlet)를 갖는다. 형상의 기준 길이는 각각 100mm로 설정되었으며, 중심 축 기준으로 Revolve 기능을 사용해 원형 단면을 생성하였다.

3.2 Named Selection 설정

CFD 환경에서 경계 조건을 명확하게 구분하기 위해 각 경계면에 이름을 부여(Named Selection)하였다:

- Inlet_1, Inlet_2: 유체 유입 조건 부여

- Outlet: 유체 유출 경계

- Wall: 벽면 조건

지시 사항에 따라 설계안 도안이다.

3.3 메쉬를 다양하게 제작 및 해석 하는 이유

- 경계층 해석의 정확성 확보

유체는 고체 경계면에서 속도가 0이 되는 no-slip 조건을 만족해야 함. 이 경계 근처에서 급격한 속도 변화가 생기기 때문에, 경계층을 잘 포착하려면 경계 근처의 메쉬를 매우 조밀하게 구성해야 함. 특히 난류 모델에서는 y^+ 값(경계면과 첫 번째 셀의 비차원 거리)이 중요한데, 이를 만족하려면 적절한 메쉬 밀도 조정이 필수.

- 유동 특성(와류, 박리 등)의 정확한 포착

날개 주변, 배출구, 곡면 주변 등에서는 와류 형성, 유동 박리, 재순환 영역이 자주 발생. 이런 현상은 거친 메쉬로는 제대로 포착되지 않음 → 조밀한 메쉬가 필요. 다양한 메쉬 밀도로 시뮬레이션을 수행하며 유동장이 물리적으로 타당한지 확인함.

- 수치 해석 수렴성 (Mesh Convergence Study)

메쉬를 점점 더 세밀하게 바꿔가며 결과가 일정한 값을 향해 수렴하는지 확인. 예: 유량, 압력 강하, 항력 계수, 속도 분포 등이 메쉬를 세분화할수록 변하지 않음 → 신뢰할 수 있는 결과.

- 계산 자원 최적화

유동 전체에 세밀한 메쉬를 쓰면 정확도는 높아지지만 계산 시간/메모리 폭증. 따라서 다양한 메쉬를 비교하여 필요한 영역에는 조밀하게, 그 외에는 거칠게 구성하여 효율성을 높임. 이를 Adaptive Mesh Refinement (AMR) 또는 비균일 메쉬 전략이라고 함.

- 특정 수치 모델/스킴과의 연계

어떤 해석 스킴(예: 압력 기반 SIMPLE 알고리즘)이나 난류 모델 $(k-\epsilon, k-\omega)$ SST 등)은 메쉬 품질에 매우 민감함.

메쉬의 크기, 셀 품질, skewness, orthogonality 등이 결과에 영향을 미치므로, 다양한 메쉬 설정을 테스트하여 수치적 안정성 확보.

3.4 메쉬 생성 단계

Ansys Meshing 도구를 사용하여 격자 생성을 수행하였다. 세부 절차는 다음과 같다:

- Surface mesh 생성
- Volume mesh 생성
- Growth Rate 조절
- Minimum/Maximum cell size 설정
- 메쉬 유형 선택: Tetra, Hexa, Poly

3.5 메쉬 품질 기준

구분	Skewness	Orthogonal Quality	적용 기준
양호	< 0.5	> 0.3	Acceptable
보통	0.5 - 0.8	0.2 - 0.3	Warning
불량	> 0.8	< 0.2	Re-meshing 필요

3.6 메쉬 사이즈 기준

사이즈	Minimum Size	Maximum Size	Growth Rate
size 1	0.006	0.017	1.2
size 2	0.004	0.012	1.2
size 3	0.002	0.008	1.2

3.7 메쉬 생성 Polyhedral Sizel 의 정보

Use Custom Size Field/Control Files?	No -		
Minimum Size [m]	0.00069336		
Maximum Size [m] 0.01775			
Growth Rate	1.2		
Console			
Total Number of Cells	= 8844		
Minimum Orthogonal Quality = 0.511			
Maximum Aspect Ratio = 14.15			
Number of Isolated Cells = 0			
Meshing>			
Mesh Quality:			
nesh Quality.			
Minimum Orthogonal Qu	ality = 5.11002e-01		
	•		
Maximum Aspect Ratio	= 1.41460e+01		

Polyhedral Size2의 정보

Polyhedral Size3의 정보

Hexahedral Size1의 정보

Hexahedral Size2의 정보

Hexahedral Size3의 정보

Tetrahedral Size1의 정보

Tetrahedral Size2의 정보

Tetrahedral Size3의 정보

위의 내용을 정리하면 아래와 같다.

종류	사이즈	셀 개수	퀄리티
Polyhedral	Size1	8,844	0.511
Polyhedral	Size2	18,933	0.5318
Polyhedral	Size3	48,484	0.2008
Hexahedral	Size1	84,508	0.5917
Hexahedral	Size2	125,281	0.0576
Hexahedral	Size3	166,410	0.0977
Tetrahedral	Size1	25,379	0.241
Tetrahedral	Size2	58.969	0.1993
Tetrahedral	Size3	166,220	0.174

따라 Mesh Type은 품질 기준 충족하며 Cell 개수가 적어 계산 비용이 적은 Polyhedral로 선정한다.

제4장 유동 해석 설정 및 수행

4.1 해석 조건

유체: 물(water-liquid)

모델: Steady, Turbulent, Energy Equation 포함

난류 모델: k-epsilon standard 경계 조건: Inlet_1: 35℃, 11 m/s Inlet_2: 65°C, 9 m/s

Outlet: Gauge Pressure = 0

해상도 조건: 메쉬 Size 치수 표 참조

4.2 수렴 조건

Residual 기준: 1e-06

Under-relaxation factor: Default

초기 조건: Zero velocity, Uniform temperature

4.3 해석 결과 앞서 정한 Polyheral의 Fluent를 이용한 유동해석 결과이다.

3가지 모델 모두 Continuity가 일정하게 감소하여 1e-06 까지 도달하여 계산이 종료됨을 확인

Size1의 경우 1e-06 까지 도달하여 계산이 종료되었지만 일정하게 감소하지 않는 모습을 보임 Size2의 경우 1e-06 까지 도달하지 못하고 상승과 하락을 반복하고 계산이 종료되지 않음 Size3만 Continuity가 일정하게 감소하여 1e-06 까지 도달하여 계산이 종료됨을 확인

Size1,2의 경우 1e-06 까지 도달하지 못하고 상승과 하락을 반복하고 계산이 종료되지 않음 Size3만 Continuity가 일정하게 감소하여 1e-06 까지 도달하여 계산이 종료됨을 확인

제5장 해석 결과 및 비교

5.1 압력 분포 (Pressure Contour & Pathlines)

5.2 유속 분포 (Velocity Contour & Pathlines)

5.3 온도 분포 (Temperature Contour & Pathlines)

5.4 압력 분포도 이미지화

5.5 속도 벡터 이미지화

5.6 온도 분포 이미지화

5.7 유선 이미지화

5.8 라인 추가

5.9 Line 1 그래프

[Poly, Hexa, Tetra]

[Poly]

[Hexa]

[Tetra]

5.10 Line 2 그래프

[Poly, Hexa, Tetra]

[Poly]

[Hexa]

[Tetra]

5.11 메쉬 선택(<u>Tetra size 3</u>로 결정)

5.12 데이터 추출

X [m]	Velocity [m s ⁻¹]	2	열	3	ලි
undef	undef	undef	undef	undef	undef
-7.34E-02	1.62E+00	6.38E-02	3.93E+01	2.12E-01	5.54E+01
-6.98E-02	1.87E+00	6.73E-02	4.16E+01	2.15E-01	5.51E+01
-6.63E-02	1.96E+00	7.09E-02	4.38E+01	2.19E-01	5.49E+01
-6.28E-02	1.99E+00	7.44E-02	4.60E+01	2.22E-01	5.46E+01
-5.93E-02	2.08E+00	7.79E-02	4.80E+01	2.26E-01	5.43E+01
-5.58E-02	1.76E+00	8.14E-02	4.99E+01	2.29E-01	5.41E+01
-5.23E-02	1.58E+00	8.49E-02	5.16E+01	2.33E-01	5.38E+01
-4.87E-02	1.55E+00	8.84E-02	5.33E+01	2.36E-01	5.36E+01
-4.52E-02	1.80E+00	9.20E-02	5.46E+01	2.40E-01	5.33E+01
-4.17E-02	2.22E+00	9.55E-02	5.59E+01	2.43E-01	5.30E+01
-3.82E-02	2.76E+00	9.90E-02	5.69E+01	2.47E-01	5.28E+01
-3.47E-02	3.33E+00	1.03E-01	5.79E+01	2.50E-01	5.25E+01
-3.12E-02	3.92E+00	1.06E-01	5.86E+01	2.54E-01	5.23E+01
-2.76E-02	4.51E+00	1.10E-01	5.92E+01	2.57E-01	5.20E+01
-2.41E-02	5.09E+00	1.13E-01	5.97E+01	2.61E-01	5.18E+01
-2.06E-02	5.69E+00	1.17E-01	6.00E+01	2.64E-01	5.15E+01
-1.71E-02	6.29E+00	1.20E-01	6.03E+01	2.68E-01	5.13E+01
-1.36E-02	6.91E+00	1.24E-01	6.04E+01	2.71E-01	5.10E+01
-1.01E-02	7.56E+00	1.27E-01	6.04E+01	2.75E-01	5.08E+01
-6.53E-03	8.23E+00	1.31E-01	6.04E+01	2.78E-01	5.06E+01
-3.02E-03	8.96E+00	1.34E-01	6.03E+01	2.82E-01	5.03E+01
5.02E-04	9.73E+00	1.38E-01	6.02E+01	2.85E-01	5.01E+01
4.02E-03	1.06E+01	1.41E-01	6.00E+01	2.89E-01	4.99E+01
7.54E-03	1.15E+01	1.45E-01	5.98E+01	2.92E-01	4.97E+01
1.11E-02	1.24E+01	1.48E-01	5.96E+01	2.96E-01	4.95E+01
1.46E-02	1.35E+01	1.52E-01	5.94E+01	2.99E-01	4.93E+01
1.81E-02	1.46E+01	1.55E-01	5.91E+01	3.03E-01	4.91E+01
2.16E-02	1.59E+01	1.59E-01	5.89E+01	3.07E-01	4.89E+01
2.51E-02	1.72E+01	1.62E-01	5.87E+01	3.10E-01	4.87E+01
2.86E-02	1.87E+01	1.66E-01	5.85E+01	3.14E-01	4.86E+01
3.22E-02	2.03E+01	1.69E-01	5.82E+01	3.17E-01	4.84E+01
3.57E-02	2.20E+01	1.73E-01	5.80E+01	3.21E-01	4.82E+01
3.92E-02	2.39E+01	1.76E-01	5.78E+01	3.24E-01	4.81E+01
4.27E-02	2.58E+01	1.80E-01	5.75E+01	3.28E-01	4.79E+01
4.62E-02	2.79E+01	1.83E-01	5.73E+01	3.31E-01	4.77E+01
4.97E-02	3.00E+01	1.87E-01	5.71E+01	3.35E-01	4.76E+01
5.33E-02	3.23E+01	1.90E-01	5.68E+01	3.38E-01	4.75E+01
5.68E-02	3.46E+01	1.94E-01	5.66E+01	3.42E-01	4.73E+01
6.03E-02	3.69E+01	1.97E-01	5.64E+01	3.45E-01	4.72E+01
다음 옆을	줄 위부터	2.01E-01	5.61E+01	3.49E-01	4.71E+01

X [m]	Velocity [m s ⁻¹]	2열		3열	
undef	undef	undef	undef	undef	undef
-7.34E-02	1.69E+00	6.38E-02	4.14E+01	2.12E-01	2.47E+01
-6.98E-02	7.83E-01	6.73E-02	4.46E+01	2.15E-01	2.50E+01
-6.63E-02	6.54E-01	7.09E-02	4.77E+01	2.19E-01	2.52E+01
-6.28E-02	1.17E+00	7.44E-02	5.09E+01	2.22E-01	2.56E+01
-5.93E-02	1.77E+00	7.79E-02	5.35E+01	2.26E-01	2.58E+01
-5.58E-02	3.24E+00	8.14E-02	5.59E+01	2.29E-01	2.61E+01
-5.23E-02	4.84E+00	8.49E-02	5.69E+01	2.33E-01	2.64E+01
-4.87E-02	5.75E+00	8.84E-02	5.76E+01	2.36E-01	2.66E+01
-4.52E-02	6.59E+00	9.20E-02	5.63E+01	2.40E-01	2.69E+01
-4.17E-02	7.10E+00	9.55E-02	5.50E+01	2.43E-01	2.72E+01
-3.82E-02	7.54E+00	9.90E-02	5.21E+01	2.47E-01	2.75E+01
-3.47E-02	7.83E+00	1.03E-01	4.95E+01	2.50E-01	2.77E+01
-3.12E-02	8.10E+00	1.06E-01	4.62E+01	2.54E-01	2.80E+01
-2.76E-02	8.33E+00	1.10E-01	4.32E+01	2.57E-01	2.83E+01
-2.41E-02	8.58E+00	1.13E-01	3.99E+01	2.61E-01	2.85E+01
-2.06E-02	8.85E+00	1.17E-01	3.72E+01	2.64E-01	2.88E+01
-1.71E-02	9.18E+00	1.20E-01	3.45E+01	2.68E-01	2.90E+01
-1.36E-02	9.53E+00	1.24E-01	3.23E+01	2.71E-01	2.93E+01
-1.01E-02	9.95E+00	1.27E-01	3.02E+01	2.75E-01	2.95E+01
-6.53E-03	1.04E+01	1.31E-01	2.86E+01	2.78E-01	2.98E+01
-3.02E-03	1.10E+01	1.34E-01	2.71E+01	2.82E-01	3.00E+01
5.02E-04	1.16E+01	1.38E-01	2.59E+01	2.85E-01	3.03E+01
4.02E-03	1.22E+01	1.41E-01	2.48E+01	2.89E-01	3.05E+01
7.54E-03	1.30E+01	1.45E-01	2.41E+01	2.92E-01	3.07E+01
1.11E-02	1.38E+01	1.48E-01	2.34E+01	2.96E-01	3.10E+01
1.46E-02	1.47E+01	1.52E-01	2.30E+01	2.99E-01	3.12E+01
1.81E-02	1.57E+01	1.55E-01	2.26E+01	3.03E-01	3.14E+01
2.16E-02	1.68E+01	1.59E-01	2.24E+01	3.07E-01	3.16E+01
2.51E-02	1.80E+01	1.62E-01	2.23E+01	3.10E-01	3.18E+01
2.86E-02	1.94E+01	1.66E-01	2.22E+01	3.14E-01	3.20E+01
3.22E-02	2.09E+01	1.69E-01	2.23E+01	3.17E-01	3.22E+01
3.57E-02	2.25E+01	1.73E-01	2.23E+01	3.21E-01	3.24E+01
3.92E-02	2.43E+01	1.76E-01	2.25E+01	3.24E-01	3.26E+01
4.27E-02	2.62E+01	1.80E-01	2.26E+01	3.28E-01	3.28E+01
4.62E-02	2.83E+01	1.83E-01	2.28E+01	3.31E-01	3.30E+01
4.97E-02	3.06E+01	1.87E-01	2.29E+01	3.35E-01	3.32E+01
5.33E-02	3.31E+01	1.90E-01	2.32E+01	3.38E-01	3.33E+01
5.68E-02	3.56E+01	1.94E-01	2.34E+01	3.42E-01	3.35E+01
6.03E-02	3.85E+01	1.97E-01	2.36E+01	3.45E-01	3.37E+01
다음 옆칅	줄 위부터	2.01E-01	2.39E+01	3.49E-01	3.39E+01

제6장 조건 변화 해석

6.1 조건 목록

Case 1 11 m/s, 35°C 9 m/s, 65°C **은 위의 내용과 동일하여 자료 기입 X**

Case 2 25 m/s, 35°C 9 m/s, 65°C

Case 3 11 m/s, 35°C 25 m/s, 65°C

Case 4 11 m/s, 100°C 9 m/s, 65°C

Case 5 25 m/s, 100°C 9 m/s, 65°C

Title

128

108

48

20

40

66

88

100

120

140

160

180

Case 6 11 m/s, 100°C 25 m/s, 65°C

6.2 분석 내용

- 고속 유입 시 혼합 속도 및 온도 구배 증가
- 고온 유입 시 벽면 인근 열전달 계수 상승
- Inlet 2가 강한 경우 유동방향이 대칭 깨짐

제7장 결과 및 분석

7.1 유동장 및 속도 분포

본 실습에서는 다양한 메쉬 형태(Poly, Hexa, Tetra)와 조건(Size 1, Size 2, Size 3)에 따른 T자형 파이 프 내부의 유동장 및 속도 분포를 분석하였다.

- Size 1 (가장 거친 메쉬):

매끄러운 유동장이 형성되며, 와류 구간이 명확하게 관찰된다.

그러나 메쉬가 거칠어 세부적인 유동 구조(특히 벽면 근처 및 병합 구간)의 해상도는 다소 떨어진다.

- Size 2 (중간 해상도):

Size 1과 비교하여 유의미한 차이는 크지 않으나, 전체적으로 유동장이 더 균일하게 표현된다. 계산 효율성과 해석 정확도의 균형이 잘 맞는 조건이다.

- Size 3 (가장 미세한 메쉬):

가장 세밀한 메쉬로, 병합 구간에서의 속도 변화 구배(gradient)가 명확하게 표현된다.

단, 실험 결과에 따라 메쉬 품질이나 경계 조건에 따라 병합 구간에서 속도 gradient가 일부 손실되는 현상이 관찰되기도 하였다(* 메쉬 품질이나 경계 조건에 따라 다를 수 있음).

일반적으로는 미세 메쉬에서 유동장 해상도가 가장 우수하나, 특정 조건에서는 오히려 수렴성 문제로 인해 결과가 저하될 수 있다.

7.2 메쉬 품질 및 해석 신뢰성

- 메쉬 품질:

Size 3 메쉬에서 메쉬 품질 지표(Skewness, Orthogonal Quality 등)가 가장 우수하게 나타났다. Size 1 메쉬는 계산 속도는 빠르나, 해석 신뢰성은 다소 떨어진다.

- 수렴성:

Size 1과 Size 2는 비교적 안정적으로 수렴하였으나, Size 3 메쉬에서는 메쉬 수가 많아 수렴에 시간이 더 소요되거나, 특정 조건에서 수렴이 어려운 경우가 있었다.

7.3 종합 평가

- Size 1:

빠른 계산이 필요한 예비 해석이나 대략적인 경향 파악에 적합하다.

- Size 2:

실무적 해석 및 반복적 설계에 가장 적합하며, 정밀도와 계산 효율의 균형이 우수하다.

- Size 3:

정밀한 유동 구조 분석 및 연구 목적에 적합하나, 계산 비용이 크고 수렴성 문제가 발생할 수 있다.

제8장 결론

T자형 파이프 내부 유동 해석 결과, 메쉬 크기 및 유형에 따라 유동장 해상도와 계산 효율성이 크게 달라짐을 확인하였다.

Size 2 메쉬가 실무적 해석에 가장 적합하며, 정밀한 분석이 필요할 경우 Size 3 메쉬를 활용하는 것이 바람직하다.

다만, Size 3 메쉬는 계산 비용과 수렴성 문제를 고려하여 신중하게 적용해야 한다.