Lagrangian density
$\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + 2 r_1 \partial_i \omega^{\kappa\lambda}_{\ \kappa} \partial^i \omega_{\lambda}^{\ \alpha} - 2 r_3 \partial_i \omega^{\kappa\lambda}_{\ \kappa} \partial^i \omega_{\lambda}^{\ \alpha} -$
$r_5\partial_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$rac{2}{3}r_1\partial_ heta\omega_{lphaeta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$r_5\partial_{lpha}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{\theta\kappa\lambda} + 2r_1\partial_{ heta}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{\theta\kappa\lambda} - 2r_3\partial_{ heta}\omega_{\lambda}^{a}_{a}\partial_{\kappa}\omega^{\theta\kappa\lambda} +$
$r_5\partial_ heta\omega_\lambda^{lpha}\partial_\kappa\omega^{ heta\kappa\lambda} + 2r_1\partial_\alpha\omega_\lambda^{lpha}\partial_\kappa\omega^{\kappa\lambda heta} - 2r_3\partial_\alpha\omega_\lambda^{lpha}\partial_\kappa\omega^{\kappa\lambda heta} -$
$r_5\partial_{lpha}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ - $4r_1\partial_{ heta}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ + $4r_3\partial_{ heta}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ +
$2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + \tfrac{2}{3} r_1 \partial_\kappa \omega^{\alpha \beta \theta} \partial^\kappa \omega_{\alpha \beta \theta} - \tfrac{2}{3} r_1 \partial_\kappa \omega^{\theta \alpha \beta} \partial^\kappa \omega_{\alpha \beta \theta} +$
$rac{2}{3} r_1 \partial^{eta} \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$2 r_1 \partial_\alpha \omega_\lambda^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} - 2 r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} + r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} -$
$2r_1\partial_\theta\omega_\lambda^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{\kappa} + 2r_3\partial_\theta\omega_\lambda^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{\kappa} - r_5\partial_\theta\omega_\lambda^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{\kappa}$

	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}\alpha\beta}^{\#2}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1-\alpha}^{\#2}$
$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\frac{1}{k^2(2r_3+r_5)}$	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\sigma_1^{\!\#1}\dagger^lpha$	0	0	$\frac{1}{k^2 \left(-r_1 + 2 r_3 + r_5 \right)}$	0
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	0
aints #			7	

traints	#	1	3	3	5	12
Source constraints	SO(3) irreps	$\sigma_{0}^{\#1} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$\sigma_{1}^{\#2}\alpha\beta == 0$	$\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\sigma_{0}^{\#1}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 (-r_1 + r_3)}$	0
$\sigma_{0}^{\sharp 1}$ †	0	0

$\omega_{2}^{\#1} + \alpha^{\beta} \qquad 0$ $\omega_{2}^{\#1} + \alpha^{\beta \chi} \qquad 0$ $\omega_{2}^{\#1} + \alpha^{\chi \chi} \qquad 0$	$\omega_{2^{\text{-}}}^{\#1}$	0	k^2
$\omega_{2}^{\#1} + \alpha\beta$ $\omega_{2}^{\#1} + \alpha\beta\chi$	$\omega_2^{\#1}$	0	0
		$\omega_2^{\#1} + ^{lphaeta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

	$\omega_{1^{+}lphaeta}^{\#1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\omega_{1}^{\sharp 1} \dagger^{lpha}$	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right)$	0
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	0

$\sigma_{2^{ ext{-}}}^{\#1} _{lphaeta\chi}$	0	$\frac{1}{k^2 r_1}$
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	0	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{#1} +^{\alpha\beta\chi}$

Quadratic pole			
Pole residue:	$\frac{1}{r_1 (r_1 - 2r_3 - r_5) (2r_3 + r_5)} > 0$		
Polarisations:	2		

(No massive particles)