Forecasting and Election Forecasting

Marco Morales mam2519@columbia.edu

GR5069
Topics in Applied Data Science for Social Scientists

Spring 2017
Columbia University

Housekeeping

- number of students keeps changing?
 - does everyone have a team?
- does every team have a topic?
- next week, guest speaker
 - guest speaker
 - data challenge
 - do not forget: teams start reporting progress

Mini-Lab: GitHub

though this be madness...

- version control allows you to keep track of changes/progress in your code
 - keeps "snapshots" of your code over time
 - helpful to debug, and to enhance reproducibility
 - also great for team collaboration (everyone can see who changed what!)
- Git is a version control software
- GitHub is an online Git repository (on steroids)
 - widely used by data scientists (and in academia)
 - not (strictly) a "software development" tool

...yet there is method in't!

- some Git concepts to keep in mind
 - clone; a local copy of a repository that can be updated as changes happen
 - fork; a fork is a thread a repository.
 - pull; brings changes into master repository
 - branch; a local mirror copy of a repository at a given point in time

...yet there is method in't!

Figure: http://www.moxie.io/images/git-operations.png

...yet there is method in't!

- some useful actions in GitHub
 - git init: initializes Git, and indicates that the folder should be tracked
 - git add: brings new files to the attention of Git to be tracked as well
 - git commit: takes a snapshot of alerted files
 - git push: sends changes in your local file to the GitHub repository

"Unfortunately, we were a little off-target again this quarter."

What is a forecast / forecastable?

what do we mean by forecasts?

forecast: fore- before + casten to prepare
prognosticate: pro- before + gnoscere to know

in essence, we use past information to estimate the future

$$\hat{Y}_{t+1} = f(Y_t, X_t, \epsilon_t)$$

What is a forecast / forecastable?

- Predictability depends on (Hyndman & Athanasopoulos 2013):
 - how well we know factors that influence the forecast
 - how much data (and of what quality!)
 - recursive influence of the forecasts
- Key question: what to forecast?
 - every item?
 - at what level of aggregation?
 - at what frequency? daily? weekly? quarterly? yearly?
- ▶ Remember: explain ≠ predict

Models to explain vs models to forecast

- social scientists typically trained to fit models to explain, and derive "predictions" from them
 - we are taught to approximate the data-generating mechanism
- the type of uncertainty associated with explanation is different from that of prediction (Shmueli 2010)
 - ▶ both rely on the relationship of $\mathcal{Y} = \mathcal{F}(\mathcal{X})$ with E(Y) = f(X)
 - **explanation** tries to match \mathcal{F} with f, using **X** and Y as tools
 - prediction uses f as a tool to generate future values of Y given X

Ways, Means and Tools to Forecast...

- Cross-Sectional models
 - regression-based
 - ML-based
- ▶ Time-Series models
 - Naïve

$$\hat{Y}_{t+1} = Y_t$$

Exponential Smoothing

$$\hat{Y}_{t+1|t} = \sum_{j=0}^{t-1} \alpha (1 - \alpha)^{j} Y_{t-j} + (1 - \alpha)^{t} \ell_{0}$$

ARIMA models

$$\hat{Y}_{t+1} = c + \phi_1 Y_t + ... + \phi_p Y_{t-p} + \theta_1 \epsilon_t + ... \theta_q \epsilon_{t-q} + \epsilon_{t+1}$$

Fitting models vs forecasting: some (empirically validated) rules of thumb

1. keep it simple:

- start parsimonious and add complexity (iff called for)
- increased complexity typically reduces forecast accuracy

2. rely on domain expertise to select inputs

- statistical significance a faulty guide for inclusion
- domain expertise should drive variables to include

3. include more (useful) information

 high correlation in predictors (and multicollinearity) not an issue

4. fit \neq accuracy

well-fitting models may impose unwarranted "structure" and "certainty" to the forecast

5. update models constantly

update parameters as new information arrives

Forecast uncertainty

- by definition, forecasts are uncertain
 - we should be interested in the point estimate of the forecasts and its prediction interval
- it is possible to estimate the range of values where the forecast may lie with a given probability

▶ the **prediction interval** $(\hat{y}_{t+i} \pm k\hat{\sigma})$ is a function of an estimate of the standard deviation of the forecast $(\hat{\sigma})$ and a multiplier k

Time-Series cross-validation

- usual k-fold validation inadequate for time-series because of lagged values in these models
- an appropriate (rolling) time-series cross-validation algorithm (Hyndman):
 - 1. fit your time-series model and compute the error (ϵ_{t+h}^*) for the forecasted observation (\hat{Y}_{t+h}) h steps into the future per

$$\epsilon_{t+h}^* = Y_{t+h} - \hat{Y}_{t+h}$$

- 2. repeat step 1 for t = m + h, ..., n 1 where m is the minimal number of obs to estimate model
- compute appropriate error measure (i.e. MAPE, RMSE..) with estimated errors

Time-Series cross-validation

Figure: Rob Hyndman

Time-Series cross-validation

Figure: Rob Hyndman

Error Measure

Definition

Root Mean Squared Error (RMSE)

$$\sqrt{\frac{\sum_{i=1}^{n}(Y_{t+i}-\hat{Y}_{t+i})^{2}}{n}}$$

Mean Absolute Percent Error (MAPE)

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{|Y_{t+i} - \hat{Y}_{t+i}|}{Y_{t+i}} * 100 \right)$$

- when evaluating forecasts remember:
 - is the measure valid (makes sense to experts)?
 - is the measure sensitive to outliers?
 - is the measure affected by scale?
 - do not use R² to assess models

Forecast Ensembles

Forecast Ensembles

- we typically think of a single model to produce forecasts
 - what if we have various "informative" models?
- simple averaging of forecasts has proven in many cases superior to single forecasts
 - complex methods have been devised to optimize forecast weights, not always best
- particularly useful when models/methods are sufficiently different

What do we know about elections?

- most important resource is contextual / expert knowledge
 - do not re-invent the wheel!
 - listen to:
 - people with intuitive knowledge
 - people with empirical knowledge
 - prior research
- Political Scientists have been studying elections for over half a century...
 - we must know something...

Dense knowledge: economic conditions

Figure: Campbell 2016

 good economic performance typically helps the candidate of the incumbent party

Dense knowledge: presidential approval

Table 1 Presidential Approval in Mid-July of Open Seat Election Years, 1952–2012

Rank	Departing President (Year)	Approval %	Election Outcome
1.	Bill Clinton (2000)	59	Won (Lost EV)
2.	Ronald Reagan (1988)	54	Won
3.	Barack Obama (2016)	51	?
4.	Dwight Eisenhower (1960)	49	Lost? (Lost EV)
5.	Lyndon Johnson (1968)	40	Lost (Close)
6.	George W. Bush (2008)	31	Lost
7.	Harry Truman (1952)	29	Lost

Figure: Campbell 2016

good presidential approval of the incumbent typically helps the in-party candidate

Dense knowledge: ideological polarization

Figure: Campbell 2016

the more polarized the electorate, the harder it becomes to move sway it

Dense knowledge: survey data

 surveys start relying information useful for forecasting right after the Conventions

Team Planning

Forecasting and Election Forecasting

Marco Morales mam2519@columbia.edu

GR5069
Topics in Applied Data Science for Social Scientists

Spring 2017
Columbia University