Assignment Project Exam Help

Reviews of Priority Queuts and Graphs

Add WeChat powcoder

Priority Queue Abstract Datatype

What does a priority queue look like?

Assignment Project Exam Help

An ordered sequence of elements

https://powcoder.com

- a1 is the first element in the queue powcoder
- a_n is the last element in the queue

Priorities

What role do priorities play?

Assignment Project Exam Help each element is determined by the priority associated with each element

- a1 hattps://powcederacom
- Priorities do not need to be distinct
 - prairie charialoge (ring) faltemplo i Wice Gele CT
- Priorities can change as a computation proceeds

Assignment Project Exam Help

- How might priorities be determined?
- What potentials are produced produces?
- How can priority queues be efficiently implemented?

Add WeChat powcoder

Priorities

Assignment Project Exam Help • A queue of jobs to be processed by some resource

- priority determined by importance/urgency of job https://powcoder.com

 • A queue of items on an agenda
- - priority measures whether items are ready to be considered

Add WeChat powcoder

Priority Queue Operations

Assidenment Projective xum Help

- Add new element to queue
- Updattps://powcoder.com
- Determine if queue is empty (or more generally length of queue)
- Return an empty priority queue powcoder

Implementations of Priority Queues

Assignment Project Exam Help We will consider two alternatives:

- Unshittlig imple protein coder.com
- Heap implementation

Add WeChat powcoder

Unsorted List Implementation

Elements arranged in arbitrary order

Assignment Project Exam Help

Example:

Efficiency of Unsorted List Implementation

Suppose we have a queue containing n elements: (a_1, \ldots, a_n)

Assignment Project Exam Help

- and to end of list
- takes $\Theta(1)$ time to execute
- Remoting Front of approveder.com
 - requires linear search of queue
 - takes $\Theta(n)$ time in worst-case Add WeChat powcoder
- Update priority of an element:
 - no reordering of elements required
 - takes $\Theta(1)$ assuming constant time access to priority values

Heap Implementation

What is a heap?

As sparsant relient the Proring is constrained in the Ip

• A full binary tree https://powcoder.com

Heaps

Angeneral: Assignment Project Exam Help

Heap as Tree

Assignment Project Exam Help

Heap Ordering

The clever idea behind heaps:

As Stight a "light touch" Projecte Exam Help

- Goal: just ordered enough to be useful

 - the highest prigrity element can be found quickly
 avoid unrecessarily maintaining templete cruelliness

A heap is well-farmed when for each i the priority of a is as high as be priority of the child at powerful powe

For all i:

$$priority(a_i) \ge priority(a_{2i})$$

 $priority(a_i) \ge priority(a_{2i+1})$

Example Heap

98	97	20	14	88	15	10	10	13	70	1	12	13	3	2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Term 1, 2017

Working with Heaps

Assignment Project Exam Help

- Insert new element to end of sequence https://powcoder.com
 Repeatedly swap with parent if higher priority
- This is operation is called the apify powcoder

Adding a New Element

David Weir (U of Sussex)

Exchange with Parent

David Weir (U of Sussex)

Exchange with Parent

David Weir (U of Sussex)

Program Analysis

Term 1, 2017

Running Time

Assignment Project Exam Help

- The number of exchanges is bounded by the depth of the tree
- The netta Saign power design on the netta Saign power design of the netta Saign power design powe
- The running time is $\Theta(\log n)$ in worst-case
- Best-case running lime is that powcoder

Removing Element from Heap

Assignment Project Exam Help

- The highest priority element is at the front of the sequence
- Need to the heap property coder.com
- Insert last element in sequence at front and put down tree as required WeChat powcoder

Illustrative Example

Remove Root

David Weir (U of Sussex)

Insert Last Element at Root

Compare Root with Children

1 2 3 4 3 6 7 6 9 10 11 12(E3)(I4)(I3(E0) (E) E 9(0)

Left Child Should be Root

David Weir (U of Sussex)

Program Analysis

Term 1, 2017 103 / 606

Swop Root and Left Child

David Weir (U of Sussex)

Compare with Children

97	10	20	50	88	15	10	14	13	70	1	12	13	3	2		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

David Weir (U of Sussex)

Program Analysis

Term 1, 2017

105 / 606

Right Child Should Move Up

Swop Nodes

Compare with Children

David Weir (U of Sussex)

Left Child Should Move Up

Swop Nodes

David Weir (U of Sussex)

Program Analysis

Term 1, 2017 110 / 606

Restored the Heap

97	88	20	50	70	15	10	14	13	10	1	12	13	3	2	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

111/606

A Heap for you to restore

Assignment Project Exam Help

Show the heap as a tree

Add WeChat powcoder

A Heap for you to restore

Assignment Project Exam Help

Running Time

Assignment Project Exam Help How Long Does This Take?

- · Worktespsundedpydentheterelegelegom
- Best-case Θ(1)

Add WeChat powcoder

Building a Heap from Scratch

Assignment Project Exam Help Straightforward approach:

- repeatedly insert new elements
- electrinsertion takes a (leg n) timeler.com

 total rulning time is a (n) on timeler.com

- More efficient alternative:

 create logp botton chat powcoder

Bottom-up Heap Construction

Assignment Project Exam Help Consider nodes in order of increasing height in free

- Restore heap for subtree rooted at node being considered
 - through required exchanges with highest priority child Add WeChat powcoder

Heapification Order

Analysis of Running Time

Assignments Project Exam Help

https://powcoder.com

Number of nodes of height h

Add WeChathpowcoder

Total Running Time

Assignment Projects Exam Help $\sum_{h=0}^{\infty} \frac{P_{n+1}P_{n}}{2^{h+1}} = \sum_{h=0}^{\infty} \frac{P_{n}}{2^{h}} \sum_{h=0}^{\infty} \frac{P_{n}}{2^{h}} = \sum_{h=0}^{\infty} \frac{P_{n}}{2^{h}}$ https://powcode.com

Assignment Project Exam Help

https://poweoder.com

Add WeChat powcoder

Graphs

Assignment Project Exam Help

- Need not be linear like a list, but could be
- Need not be hierarchical like a tree, but could be
- Can express arbitrary binary relationship between a collection of elements
- Strength of relationship can be encoded using weights Add WeChat powcoder

Let's look at an example graph

There are 8 vertices or nodes

Use *n* to refer to the number of nodes — so n = 8

コト 4月ト 4 三 ト 4 三 ・ りへへ

Use V to refer to the set of all nodes — so $V = \{v_1, \dots, v_8\}$

4 D > 4 A D > 4 B > 4 B > 9 Q P

There are 10 edges

Each edge denoted by a set of two vertices

For example: $\{v_5, v_7\}$

Use *m* to refer to the number of edges — so m = 10

Use E to refer to the set of all edges

$$\begin{split} E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_5\}, \{v_3, v_6\}, \\ \{v_4, v_6\}, \{v_4, v_7\}, \{v_5, v_7\}, \{v_5, v_8\}, \{v_6, v_8\}\} \end{split}$$

Use G to refer to the graph — so G = (V, E)

| ロ ト 4 周 ト 4 三 ト 4 三 ト 9 Q (~

The layout of the graph is unimportant

This is the same graph

What Are Graphs Good For?

Assignmenta Project Exam Help

- Transport networks

 - node: a place node: a place
- Communication networks
 - node: computer cluster
 - Add WeChat powcoder

What Are Graphs Good For?

Assigning Project Exam Help

- edge: hyperlink from one page to another
- Social networks
 - http://powcoder.com edge: some sort or relationship between two people
- Dependency networks

 - ► node: task to be performed

 ► eagle dependence tweet and tasks WCOCCT

And much much more

Sometimes relationships are directional

(D) (A) (E) (E) (A) (A)

124 / 606

Capture this with directional edges

(D) (A) (B) (B) (B) (A)

124 / 606

This is called a directed graph

E is now a set of directed pairs

4 ロ ト 4 同 ト 4 豆 ト 1 目 9 9 9 9

$$E = \{(v_1, v_2), (v_3, v_1), (v_2, v_3), (v_2, v_5), (v_6, v_3), \\ (v_4, v_6), (v_7, v_4), (v_5, v_7), (v_8, v_5), (v_6, v_8)\}$$

Directed Acyclic Graphs

Important special case: directed acyclic graphs or DAGs

Weighted Graphs

Sometimes want to associate weights with edges - e.g. distance

Weighted Graphs

Capture this with weighted edges

(D) (A) (B) (B) (B) (A)

Weighted Graphs

This is called a weighted graph

4 D > 4 P > 4 B > 4 B > B 900

Let's remove these edges to give a tree

4 D > 4 A D > 4 B > 4 B > 9 Q P

How can we tell that its a tree?

Let's pick it up by v₈

What happens if we put back the edges we removed

Adding that one creates a cycle

Adding that one also creates a cycle

Guess what!

Fact 1: there are no cycles

Fact 2: its connected, i.e. path between any pair of nodes

Fact 3: n nodes and n-1 edges

... and that's what makes it a tree

Graphs: Implementation

Assignment Project Exam Help Question: What data structure can we use to store a graph?

Answer: There are two alternatives:

• Adjacency maintx / POWCoder.com

Adjacency list

Add WeChat powcoder

Adjacency Matrix Representation

Adjacency matrix for undirected graph shown earlier

Entry value in (i, j) same as value in (j, i) for undirected graph

Adjacency Matrix Representation

Adjacency matrix for directed graph shown earlier

Adjacency Matrix Representation (cont.)

Assignment Project Exam Help

Two issues worth considering:

- Space efficiency of adjacency matrix representation
- Running tipes to bas population

 Running tipes to bas populations

 Runni

Add WeChat powcoder

Space Efficiency of Adjacency Matrix Representation

Aissignment Project Exam Help Question: How much space used to store G?

Answer: Intips://powcoder.com

Doesn't matter how many edges there are

i.e. its not a function of m

Inefficient for graphs without many edge powcoder

Time Efficienty of Matrix Representation

As stage on the stage of the st

The not so good news;

- It tales to be sind now control for comm
- Even if there aren't any adjacent nodes it still takes $\Theta(n)$ to discover this
- Compared to enonerate rotate rot
- Desirable that finding next node in enumeration take constant time

Adjacency List Representation

Adjacency List Representation Features

Assignment Project Exam Help

Same two issues need to be considered:

- Space efficiency of adjacency list representation
 Running time of basic operations of adjacency list representation

Add WeChat powcoder

Space Efficiency of Adjacency List Representation

Assignment Project Exam Help

Question: How much space used to store G?

Answer: $\Theta(m)$ PS://POWCOder.Com

Time Efficiency of Adjacency List Representation

the good news: pt Project Exame Help

- Takes Q(n) to establish if a particular edge is in graph
 Linear search of adjacency list COCET. COM
- Adjacency list length is O(n)

For most of the aportion the constact has the constact ha implementation is preferable.

Not so good news:

Vertices and Edges

Let G = (V, E) be a graph where |V| = n and |E| = mAssignment Project Exam Help

How few edges could there be?

- Posintips: photogener.com
- If G is connected then $m \ge n 1$

How many edges could there be?

• If Gick complete or then at 100 W20 1010 CT12)

So, in general, m is $O(n^2)$

Questions for you

- Give adjacency list and adjacency matrix encodings of this graph
- Which uses the least space?

Asstignmente Projecty Exampi Help

Questions for you

- Give adjacency list and adjacency matrix encodings of this graph
- Which uses the least space?
 Adjacency list uses less memory
 Sthis was a different form of the control of the contr

