

ละลานตา

การทดสอบความสามารถในการแก้ปัญหาโดยการเขียนโปรแกรม

การทดสอบวันที่ 30 ต.ค. 2564

กำแพงแห่งหนึ่งแบ่งเป็นช่อง ๆ ไว้ N ช่อง (1<=N<=100,000) แต่ละช่องระบายสีไว้หลากหลาย สำหรับช่องที่ i เมื่อ 1<=i<=N สีที่ระบายคือสีหมายเลข C_i (1<=C_i<=100,000)

ส่วนของกำแพงที่ต่อเนื่องกันจะดูละลานตา ถ้ามีสีที่แตกต่างกัน<u>อย่างน้อย</u> K สี (1<=K<=N) คุณต้องการหาว่า มีส่วนของกำแพงที่ต่อเนื่องกันกี่ส่วนที่ดูละลานตา

พิจารณาตัวอย่างที่ N = 8 และ K = 3 ดังต่อไปนี้ ด้านล่างตารางแสดงตัวอย่างกำแพงและสีที่ทาในแต่ละช่อง

		1	2	1	3	4	3	1	3
--	--	---	---	---	---	---	---	---	---

ส่วนของกำแพงที่ต่อเนื่องกันและดูละลานตามีทั้งหมด 18 ส่วน ดังต่อไปนี้

1 2 1 3 4 1 2 1 3 4 3 1 2 1 3 4 3 1 1 2 1 3 4 3 1 1 2 1 3 4 3 1 2 1 3 4 3 1 3 4 3 1 3 4 3 1	3
1 2 1 3 4 3 1 2 1 3 4 3 1 1 2 1 3 4 3 1 1 2 1 3 4 3 1 3 4 3 1	3
1 2 1 3 4 3 1 2 1 3 4 3 1 1 2 1 3 4 3 1 1 2 1 3 4 3 1 3 4 3 1	3
1 2 1 3 4 3 1 1 2 1 3 4 3 1 3 4 3 1 3 4 3 1	3
1 2 1 3 4 3 1 1 2 1 3 4 3 1 3 4 3 1 3 4 3 1	3
1 2 1 3 4 3 1 3	3
1 2 1 3 4 3 1 3	3
2 1 3	
2 1 3 3 1 1	
	3
2 1 3 4 4 3 1	
2 1 3 4 3	3
2 1 3 4 3 1	
2 1 3 4 3 1 3	

หมายเหตุ: มีข้อมูลทดสอบ 50% ที่ N <= 100

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็มสองจำนวน N และ K (1 <= N <= 100,000; 1 <= K <= N) มีข้อมูลทดสอบ 50% ที่ N <= 100

อีก N บรรทัดจะระบุสีของช่องกำแพง กล่าวคือในบรรทัดที่ 1+i สำหรับ 1 <= i <= N จะระบุจำนวนเต็ม C_i ที่ เป็นจำนวนเต็มบวกแทนหมายเลขสีในช่องกำแพงช่องที่ I (1 <= C_i <= 100,000)

ข้อมูลส่งออก

มีหนึ่งบรรทัด เป็นจำนวนเต็มหนึ่งจำนวนระบุจำนวนส่วนของกำแพงที่ต่อเนื่องกันที่ดูละลานตา หมายเหตุ: ในกรณีทดสอบที่ N มีค่ามาก คำตอบอาจจะเป็นจำนวนเต็มขนาดใหญ่ ผู้ใช้ภาษา C/C++ อาจจะต้องใช้ ตัวแปรประเภท long long ในการเก็บค่า

เงื่อนไขการทำงาน โปรแกรมภาษา C/C++ ต้องทำงานภายใน 1.5 วินาที ภาษา Python ทำงานในเวลา 3 วินาที ใช้ หน่วยความจำไม่เกิน 256 MB

(ตัวอย่างข้อมูลทดสอบและรายละเอียดการให้คะแนนอยู่หน้าถัดไป)

การให้คะแนน

- มีข้อมูลทดสอบ 50% ที่ N <= 100
- ข้อมูลทดสอบอีก 50% ที่เหลือ N จะมีขนาดใหญ่ โปรแกรมที่เขียนจะต้องมีประสิทธิภาพมากพอที่จะทำงานได้ ในเวลาที่กำหนด ในส่วนนี้ โปรแกรมที่ส่งจะต้องทำงานถูกต้องในทุกกรณีทดสอบกลุ่มนี้จึงจะได้คะแนน 50%

ตัวอย่าง

Input	Output
8 3	18
1	
2	
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	
3	
4 3	
3	