数据库实践实验报告 实验四:自然语言与数据库交互

姓名: 邱吉尔 学号: 10235101533

完成日期: 2025年5月9日

一、实验目的

通过开源项目 DB-GPT 和外部大模型,尝试利用大模型进行数据管理和数据库交互,完成作业任务。

二、任务说明

- 使用第一次实验提供的 college 数据库测试 LLM 的 SQL 编写与处理能力。
- 报告需要记录:
 - 项目搭建与运行过程;
 - 至少 10 个通过 LLM 进行数据库交互的对话示例,建议场景具有复杂性、趣味性和连续 多轮对话特点。

三、环境搭建过程

1. 克隆 DB-GPT 项目代码:

git clone https://github.com/eosphoros-ai/DB-GPT.git

直接使用此网址 git 到本地因为会网络连接不稳定或 SSL 问题报错:

error: RPC failed; curl 56 OpenSSL SSL_read: OpenSSL/3.2.3: error:0A000119:SSL遂使用 SSH 进行 clone: git clone git@github.com:eosphoros-ai/dbgpts.git

2. 创建并激活 Conda 虚拟环境:

安装 Anaconda 后尝试按照所给 docx 文档配置了两步,发现 DB-GPT 已经更新至 0.7.0 版本,项目文件与 docx 文件中有所不同,故后面的配置步骤皆是按照官方文档进行,与 docx 文件的步骤有所不同

3. 安装 uv:

因为 DB-GPT 是 monorepo 架构,相较于 pip, uv 支持并行依赖安装,可自动关联项目目录和环境并且内置 uv venv,可一键创建虚拟环境,因此使用 uv 进行包管理在 powershell 中运行:

pip install uv

然后将 uv 所在目录添加到环境变量中

4. 依赖安装:

```
uv sync --all-packages --frozen --extra "base" --extra "proxy_openai" --extra "rag"
--extra "storage_chromadb" --extra "dbgpts"
```

5. 进入虚拟环境:

在终端中运行

.venv/Scripts/activate

即可进入虚拟环境

6. 下载所需依赖:

执行

pip install dashscope

7. 申请通义千问的使用 API: 按照 docx 文档一步步来即可成功申请,这里就不过多赘述了

- 8. 修改配置文件:
 - (a) 找到 configs 目录下的 dbgpt-proxy-tongyi.toml 文件, 配置通义 api 调用, 可以在该文件下找到此代码:

```
api\_key = "\${env:DASHSCOPE_API_KEY}"
```

因而在用户环境变量中新增变量,变量名为: DASHSCOPE_API_KEY, 变量值即是上一步申请到的通义 API

(b) 接着可以看到文件中还有如下两条代码:

```
provider = "${env:LLM_MODEL_PROVIDER:proxy/tongyi}"
provider = "${env:EMBEDDING_MODEL_PROVIDER:proxy/tongyi}"
```

我先是像上一步一样配置了环境变量,却在启动项目时发现了报错:找不到相应环境变量,后来搜索发现 \${env:LLM_MODEL_PROVIDER:proxy/tongyi}并不是标准 TOML 语法,而是一些框架扩展支持的一种"环境变量注入 + 默认值"的写法

因而采取了另一种简单粗暴的方法:直接写死 provider 的值,将上述代码改成如下代码:

```
provider = "proxy/tongyi"
provider = "proxy/tongyi"
```

9. 启动服务:

uv run python packages/dbgpt-app/src/dbgpt_app/dbgpt_server.py --config configs/dbgpt-proxy-tongyi.toml

如果想略过项目配置检查环节,加快启动速度,可以运行:

- uv run --no-project python packages/dbgpt-app/src/dbgpt_app/dbgpt_server.py --config
 configs/dbgpt-proxy-tongyi.toml
- 10. 打开浏览器访问项目主页: http://localhost:5670
- 11. 配置 SQL,将模型与数据库连接,这里我用了第一次实验用到的 college 数据库:

发现 Chat Data 出现如下两个内容,说明已经配置完成:

四、测试问题示例

实验四: 自然语言与数据库交互

- 1. 查询所有有导师的学生数量。
- 2. 查询所有学生的姓名和所在系名。
- 3. 找出所有学分大于等于 3 的课程。
- 4. 查询所有学生的 ID 及其所选课程总数。
- 5. 查询开设在 "Comp. Sci." 系的所有课程编号和课程名。
- 6. 统计每个系开设的课程数量。
- 7. 找出修了课程数量最多的学生的学号和姓名。
- 8. 找出所有没有选修任何课程的学生。
- 9. 查询每门课的选课人数, 按人数降序排列。
- 10. 查询每个学生的平均成绩。
- 11. 找出所有教授"数据库系统概论 (Database System Concepts)"课程的教师姓名。
- 12. 找出所有课程成绩为全班最高分的学生姓名和成绩。
- 13. 查询所有与 id 为 1000 的学生选修课程相同的其他学生姓名。
- 14. 找出至少选修了 id 为 1000 的学生所选所有课程的学生(集合包含)。
- 15. 找出至少教授过两个不同课程的教师姓名。

六、实验过程截图与 SQL 对话样例

1. 查询所有有导师的学生数量。

最终执行结果为 2000, 与实验结果一致

2. 查询所有学生的姓名和所在系名。

3. 找出所有学分大于等于3的课程。

4. 查询所有学生的 ID 及其所选课程总数。

5. 查询开设在 "Comp. Sci." 系的所有课程编号和课程名。

6. 统计每个系开设的课程数量。

7. 找出修了课程数量最多的学生的学号和姓名。

8. 找出所有没有选修任何课程的学生。

9. 查询每门课的选课人数,按人数降序排列。

10. 查询每个学生的平均成绩。

11. 找出所有教授"数据库系统概论 (Database System Concepts)"课程的教师姓名。

验证后发现确实没有教授数据库的教师

12. 找出所有课程成绩为全班最高分的学生姓名和成绩。

13. 查询所有与 id 为 1000 的学生选修课程相同的其他学生姓名。

```
Chat Data
              查询所有与id为1000的学生选修课程相同的其他学生姓名,意思是选的每一门课程都为id1000的学生相同
          用户需要查询所有与id为1000的学生选修课程完全相同的其他学生姓名。这意味着这些学生的选课列表应该和id为1000的学生完全一致,既不能多也不能少。
                 SELECT DISTINCT
                  s2.name
                  student s2
                 WHERE
NOT EXISTS (
                    FROM
                     takes t1
                       WHERE
                        AND t2.course_id = t1.course_id
                   AND NOT EXISTS (
                     t2.course_id
                    WHERE
                        takes t1
                         AND t1.course_id = t2.course_id
```


14. 找出至少选修了 id 为 1000 的学生所选所有课程的学生。

15. 找出至少教授过两个不同课程的教师姓名。

七、总结与反思

- 本次实验帮助我了解了如何使用大模型实现自然语言到 SQL 的转换。
- 模型表现良好, 但在问题描述不清或语境复杂时可能生成错误 SQL。
- 后续可尝试多轮对话优化提问策略, 引导模型生成更优 SQL。

- 大模型完成基础的 sql 查询,以及有简单聚集、排序的查询毫无问题
- 对于有常识要求的查询需要一定的引导,比如平均 gpa 需要通过学分权重来计算(问题 10), gpa 的高低是从 A-F 排序而不是直接用字符串比较(问题 12)
- 对于高级查询(有嵌套查询、连接、子查询等),我们在提问时需要对这个查询本身有一定的思路,从而进行一些引导,否则大模型很难给出正确查询,比如问题 14:找出至少选修了 id 为 1000 的学生所选所有课程的学生,提问时需要告诉大模型这句话的意思是:只要选的课中有一门被 id 为 1000 的学生选了即可,否则大模型很可能会误解我们的意思从而给出错误查询