Pontificia Universidad Católica de Chile Instituto de Ingeniería Matemática y Computacional Álgebra Lineal Avanzada y Modelamiento- IMT2230 Segundo Semestre 2023

Guía de Ejercicios – 2

Profesor: Cristóbal Rojas Ayudante: Pablo Rademacher

P 1. Potencias de matrices.

a) Considere las siguientes matrices:

$$A = \begin{bmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{bmatrix}, \qquad B = \begin{bmatrix} 0.6 & 0.9 \\ 0.1 & 0.6 \end{bmatrix}$$

a.1) Determine si $A^k \to 0$ o si $B^k \to 0$ cuando $k \to \infty$.

a.2) Encuentre S y Λ tales que $A=S\Lambda S^{-1}$. ¿Cual es el límite de $S\Lambda^k S^{-1}$ cuando $k\to\infty$?

a.3) Encuentre S y Λ tales que $B=S\Lambda S^{-1}.$ Calcule $B^{10}u_0$ para los siguientes u_0 :

 $u_0 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad u_0 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad u_0 = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$

b) Considere las matrices:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

En cada caso, diagonalice y calcule $S\Lambda S^{-1}$ para demostrar las siguientes identidades:

$$A^k = \frac{1}{2} \begin{bmatrix} 3^k + 1 & 3^k - 1 \\ 3^k - 1 & 3^k + 1 \end{bmatrix}, \qquad B^k = \begin{bmatrix} 3^k & 3^k - 2^k \\ 0 & 2^k \end{bmatrix}$$

c) Encuentre los valores y vectores propios de A y A^{∞} donde:

$$A = \begin{bmatrix} 0, 6 & 0, 2 \\ 0, 4 & 0, 8 \end{bmatrix}, \qquad A^{\infty} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 2/3 \end{bmatrix}.$$

Explique por qué A^{100} está cerca de A^{∞} .

P 2. Ecuaciones de diferencias / diferenciales y Procesos de Markov

a) Suponga que durante una epidemia, cada mes la mitad de los que están sanos se enferman, y un cuarto de los que están enfermos mueren. Encuentre la matriz de Markov asociada y calcule su estado de equilibrio.

b) Encuentre los valores límites de y_k y z_k cuando $k \to \infty$ si:

$$y_{k+1} = 0.8y_k + 0.3z_k$$
 $y_0 = 0$
 $z_{k+1} = 0.2y_k + 0.7z_k$ $z_0 = 5$

1

y encuentre fórmulas para y_k y para z_k a partir de $A^k = S \Lambda^k S^{-1}.$

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL ÁLGEBRA LINEAL AVANZADA Y MODELAMIENTO- IMT2230 SEGUNDO SEMESTRE 2023

c) Considere la matriz

$$A = \begin{bmatrix} a & b \\ 1 - a & 1 - b \end{bmatrix}.$$

- c.1) Para qué valores de a y b es A de Markov?
- c.2) Calcule $u_k = A^k u_0$ para $u_0^T = (1,1)$, y cualquier valor de a y b.
- c.3) Bajo qué condiciones se cumple que u_k es convergente cuando $k \to \infty$? Cuál es el límite? Debe A necesariamente ser de Markov para que esto ocurra?
- d) Si A es de Markov, muestre la suma de las componentes de Av es igual a la suma de las componentes de v. Deduzca que si $Av = \lambda v$, con $\lambda \neq 1$, entonces la suma de las componentes de v es cero.
- e) Suponga que la población de conejos c y de lobos l está gobernada por

$$\frac{dc}{dt} = 4c - 2l$$
$$\frac{dl}{dt} = c + l.$$

- e.1) Describa la estabilidad de este sistem (estable, inestable, neutro).
- e.2) Si inicialmente c = 300 y l = 200, cuáles son las poblaciones en tiempo t?
- e.3) Después de un largo tiempo, cual es la proporción de conejos en relación a los lobos?