§ 7.3 复合函数和隐函数的偏导数

一、用链式法则求下列函数的导数或偏导数:

1.
$$z=u^v, u=x+2y, v=x-y, \Re \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$$
.

2.
$$z = \frac{y}{x}, x = e^t, y = 1 - e^{2t}, \stackrel{d}{x} \frac{dz}{dt}$$
.

二、求下列复合函数的一阶偏导数:

1.
$$u = f(x, xy, xyz), \Re \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}$$
.

2.
$$z = f\left(xy, \frac{x}{y}\right) + \varphi\left(\frac{y}{x}\right)$$
,其中 f, φ 均可微,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

三、设函数
$$z=f(x,y)$$
 在点 $(1,1)$ 处可微,且 $f(1,1)=1$, $\frac{\partial f}{\partial x}\Big|_{(1,1)}=2$, $\frac{\partial f}{\partial y}\Big|_{(1,1)}=3$,
$$\varphi(x)=f(x,f(x,x))$$
,求 $\frac{\mathrm{d}}{\mathrm{d}x}\varphi^3(x)\Big|_{x=1}$.

四、设函数
$$z = f(x^2 + y^2)$$
,其中 f 具有二阶导数,求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$.

五、设函数
$$z=yf(e^x,xy)$$
,其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$.

六、求下列方程所确定的隐函数 y = f(x)的一阶导数:

1.
$$x^2 + xy - e^y = 0$$
.

2.
$$x^{y} = y^{x}$$
.

十、设 u=f(x,y,z)有连续的偏导数,y=y(x)和 z=z(x)分别由方程 $e^{xy}-y=0$ 和 $e^{z}-xz=0$ 所确定,求 $\frac{\mathrm{d}u}{\mathrm{d}x}$.

七、求方程 $z=e^{2x-3z}+2y$ 所确定的隐函数 z=f(x,y)的一阶偏导数.

八、已知 $x^2 + y^2 + z^2 = 4z$,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x^2}$.

九、已知 $z+\ln z-\int_{y}^{x}\mathrm{e}^{-t^{2}}\,\mathrm{d}t=0$,求 $\frac{\partial^{2}z}{\partial x\partial y}$.

十一、求由下列方程组所确定的隐函数的导数或偏导数:

1.
$$\begin{cases} x+y+z=0, & \text{ } \frac{\mathrm{d}z}{\mathrm{d}x}, \frac{\mathrm{d}y}{\mathrm{d}x}. \end{cases}$$

2.
$$\begin{cases} u = f(ux, v+y), \\ v = g(u-x, v^2y), \end{cases}$$
其中 f, g 具有一阶连续偏导数,求 $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}.$