## České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Katedra softwarového inženýrství Obor: Aplikace informatiky v přírodních vědách



# Optické rozpoznávání znaků na naskenovaných historických plakátech pomocí nejmodernějších metod

Optical Character Recognition on Scanned Historical Posters Using the State-of-the-Art Methods

VÝZKUMNÝ ÚKOL

Vypracoval: Anna Gruberová

Vedoucí práce: Ing. Adam Novozámský, Ph.D.

Rok: 2022

## České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Katedra softwarového inženýrství

Akademický rok 2021/2022

## ZADÁNÍ VÝZKUMNÉHO ÚKOLU

Student:

Bc. Anna Gruberová

Studijní program:

Aplikace informatiky v přírodních vědách

Název práce česky:

Optické rozpoznávání znaků na naskenovaných historických

plakátech pomocí nejmodernějších metod

Název práce anglicky:

Optical Character Recognition on Scanned Historical Posters

Using the State-of-the-Art Methods

#### Pokyny pro vypracování:

- 1. Seznamte se s problematikou optického rozpoznávání znaků. Na základě rešerše vyberte několik metod, se kterými budete dále pracovat a vyhodnocovat úspěšnost jejich detekce.
- 2. Stáhněte několik volně dostupných datasetů, které jsou využívány v literatuře k porovnání jednotlivých metod na OCR. Dále vytvořte svůj vlastní dataset z obdržených dat.
- 3. Nastudujte techniky porovnání OCR výstupů s ground-truth.
- 4. U vybraných metod prostudujte jejich chování na jednotlivých datasetech při různém nastavení parametrů.
- 5. Navrhněte také možnosti filtrování výstupů jednotlivých metod za účelem snížení falešných detekcí.

#### Doporučená literatura:

- [1] R. C. Gonzalez, R. E. Woods, Digital Image Processing (4th ed.). Pearson, 2018. ISBN 9353062985.
- [2] GOODFELLOW, Ian, Yoshua BENGIO a Aaron COURVILLE. Deep learning. Cambridge, Massachusetts: The MIT Press, [2016]. ISBN 0262035618.
- [3] SMITH, R. An Overview of the Tesseract OCR Engine. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2 [online]. IEEE, 2007, 2007, s. 629-633. ISBN 0-7695-2822-8. ISSN 1520-5363. Dostupné z: doi:10.1109/ICDAR.2007.4376991
- [4] CHEN, Xiaoxue, et al. Text Recognition in the Wild. ACM Computing Surveys [online]. 2021, 54(2), 1-35 [cit. 2021-10-2]. ISSN 0360-0300. Dostupné z: doi:10.1145/3440756

Jméno a pracoviště vedoucího práce:

. . . . . . . . . . . . . . . . . .

vedoucí práce

Ing. Adam Novozámský, Ph.D.

Computer Vision Lab, Institute of Visual Computing & Human-Centered Technology, TU Wien - Faculty of Informatics

vedoucí katedry

Datum zadání výzkumného úkolu: 15.10.2021

Termín odevzdání výzkumného úkolu: 31.8.2022

V Praze dne 15. 10. 2021

2

Missey prace anglictor. Optical Character Recognition on Semmed Historical Posters

| Prohlášení                                                                                                |                |
|-----------------------------------------------------------------------------------------------------------|----------------|
| Prohlašuji, že jsem svou bakalářskou práci vypracova pouze podklady (literaturu, projekty, SW atd.) uvede |                |
| V Praze dne                                                                                               |                |
|                                                                                                           | Anna Gruberová |

#### Poděkování

.

Anna Gruberová

| Název práce:                                                                  |                                                                                                                                                     |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Optické rozpoznávání znaků na naskenovaných historických plakátech pomocí nej |                                                                                                                                                     |  |  |  |
| Autor:                                                                        | Anna Gruberová                                                                                                                                      |  |  |  |
| Obor:                                                                         | Aplikace informatiky v přírodních vědách                                                                                                            |  |  |  |
| Druh práce:                                                                   | Výzkumný úkol                                                                                                                                       |  |  |  |
| Vedoucí práce:                                                                | Ing. Adam Novozámský, Ph.D.<br>Computer Vision Lab, Institute of Visual Computing & Human-<br>Centered Technology, TU Wien - Faculty of Informatics |  |  |  |
| Konzultant:                                                                   |                                                                                                                                                     |  |  |  |
| Abstrakt: .                                                                   |                                                                                                                                                     |  |  |  |
| Klíčová slova:                                                                |                                                                                                                                                     |  |  |  |
| Title: Optical Chara                                                          | acter Recognition on Scanned Historical Posters Using the State-of-t                                                                                |  |  |  |

Author: Anna Gruberová

Abstract: .

Key words: .

## Contents

| 1        | OC   | $\mathbf{R}$              | 11 |
|----------|------|---------------------------|----|
|          | 1.1  | Text detection            | 11 |
|          | 1.2  | Text recognition          |    |
| <b>2</b> | Soft | tware                     | 13 |
|          | 2.1  | Scene text detection      | 13 |
|          |      | 2.1.1 CRAFT               | 13 |
|          | 2.2  | Scene text recognition    |    |
|          |      | 2.2.1 CRNN                |    |
|          | 2.3  | End-to-end systems        |    |
|          |      | 2.3.1 Tesseract           |    |
|          |      | 2.3.2 EasyOCR             |    |
|          |      | 2.3.3 Keras-ocr           |    |
|          |      | 2.3.4 Google Cloud Vision |    |
|          |      | 2.3.5 Other               |    |
| 3        | Dat  | asets                     | 17 |
|          | 3.1  | Synthetic datasets        | 17 |
|          | 3.2  | Scene text image datasets |    |
|          | 3.3  | Wien TU dataset           |    |
| 4        | Tes  | ting methods              | 19 |

## OCR

#### 1.1 Text detection

#### 1.2 Text recognition

## Outline

- What is OCR
- Datasets (types(synthetic, photos, scaned documents), problems(languages, noise, nonhorizontal text))
- Text detection
  - Description
  - Methods (CRAFT)
- Text recognition
  - Description
  - Methods
- End-to-end systems (Annotating tool)
  - Reading scanned documents
  - EasyOCR
  - keras-ocr
  - Tesseract (PyTesseract)
  - (Google Cloud Vision free) paid
  - (AWS Recognition) paid
  - (Kili) paid

- Results evaluation
  - Comparison of output and ground-truth

\_

- $\bullet\,$  Testing methods on free datasets
  - Description of datasets
- $\bullet$  Using methods on historical posters
  - Description of dataset

## Software

#### 2.1 Scene text detection

#### Methods

#### 2.1.1 CRAFT

CRAFT is framework for scene text detection.

#### 2.2 Scene text recognition

#### Methods

#### 2.2.1 CRNN

Convolutional Recurrent Neural Network

#### 2.3 End-to-end systems

End-to-end system when given an image with text it can both detect and recognize the text and produces a string output of the text. The supply of such is wide, ranging from open source libraries for various programming languages to commercial softwares with modern GUI. New methods are still being developed as there is always space for improvement. New methods can come from commercial background or are developed for international OCR competitions. In the next section some of the free available tools are described.

#### 2.3.1 Tesseract

Tesseract is an open source text recognition engine. It supports over 160 languages. Originally Tesseract was created by Hewlett-Packard in late 1980s, from 2006 it is developed and maintained by Google. As it does not have a built-in GUI direct use is via command line. However, there exist a significant number of GUIs for Linux, Windows, Mac for computer usage and also for Android and iOS to use on mobile phones and few online OCR services. Another way how to use the engine is via libraries for computer languages, namely for example they exist for Java called tess4j, Python called pytesseract, R, Ruby and others. [8]

Tesseract is mainly used as tool for recognizing documents (with both computer font text or hadwritten text). Best results are obtained on preprocessed images. The preprocessing includes noise reduction, horizontal alignment of text, elimination of dark borders around text region, conversion to binary black and white picture and other adjustments depending on the nature of the picture. Thus when used on scene text images it gives generally worse results than other OCR softwares.

Computations with Tesseract are supported for GPU and also CPU. Tesseract uses for recognition Long Short Term Memory (LSTM) model (kind of RNN).

#### 2.3.2 EasyOCR

EasyOCR is a product of Jaded AI for both image text detection and recognition. it supports over 80 languages and various scripts such as Latin, Chinese, Arabic etc. The company offers software with web interface for free and also prepaid version which enables usage of a new model for custom data. However, in addition to the web interface, the company also created a python package under the same name. [4]

The idea of EasyOCR package is to provide an easy-to-use tool where one can plug-in already created state-of-art models and use them for annotating. Pipeline of Easy-OCR behavior is shown in the image 2.1. As it can be seen in this image, default detection model is CRAFT and for recognition is used CRNN (Convolutional Recurrent Neural Network) which model is composed of following components: feature extraction (Resnet is used) and VGG (Convolutional Neural Network), sequence labeling (LSTM is used) and decoding (CTC is used).[5]

EasyOCR package by default computes annotation on GPU, however there is a possibility for CPU computations (provided that the selected model supports it).

#### 2.3.3 Keras-ocr

keras-ocr is a python library used for detecting and recognizing text in images created by Fausto Morales. It works with variety of languages and with different writing scripts. It allows computing on CPU as well as on GPU. It unites the CRAFT text detection model and an implementation in Keras python library of CRNN for

## EasyOCR Framework CRAFT Mid-Process ResNet+LSTM+CTC Other Detection Models Data Generator Training Pipeline

Figure 2.1: Diagram of EasyOCR pipeline. Grey slots are placeholders for models. The mentioned models are the ones used as default. [5]

recognizing text, worth mentioning this is a different implementation of CRNN than in EasyOCR.[1]

On the official website<sup>1</sup> of the package there is a comparison of this method with two other OCR APIs – Google Cloud Vision and AWS Rekognition. Their performance was tested on 1,000 images from the COCO-Text validation set using a basic pretrained model of each method. None of the investigated methods Michalovice, 293 01 Mlada Boleslavperformed poorly; however, AWS Rekognition had the worst precision and recall results. Google's method and keras-ocr has similar results. It is important to mention that no tuning parameters were used in any of these methods. Another candidate for comparison was Tesseract but it performed on very badly on given data, most likely due to the fact that Tesseract is suitable for scanned documents rather than for photos of real life scenery and objects with text. [1]

CRAFT already provides a pretrained model which can be used directly without modification for text detection or it is used as initial model for training a new model on new data. This model was trained on three datasets (SynthText, IC13, IC17) and supports English and multi language text detection. [7] Similarly for recognition, CRNN also has a pretrained model This model was trained on the synthetic word dataset which consists of 9 million images with vocabulary of 90K English words. [3] To use these models in the keras-ocr library one either doesn't specify anything and use the defaults, or pass the value clovaai-general for the CRAFT pretrained model or kurapan for the CRNN model.

Keras-ocr offers preprocessing for four public datasets though any text image dataset can be examined using this tool. These four datasets are: BornDigital dataset, COCO-Text dataset, ICDAR 2013 dataset, ICDAR 2019 dataset (only Latin-only scripts).[2]

#### 2.3.4 Google Cloud Vision

Google Cloud Vision is software from Google which consist of two products: AutoML Vision and Vision API. Vision API detects objects, faces and text from images with

<sup>1</sup>https://pypi.org/project/keras-ocr/

already pretrained model. With AutoML Vision user can train custom model from own data. It has free and paid version with a  ${
m GUI.[6]}$  API for python

#### 2.3.5 Other

**AWS** Rekognition

## **Datasets**

- 3.1 Synthetic datasets
- 3.2 Scene text image datasets
- 3.3 Wien TU dataset

Testing methods

## Bibliography

- [1] keras-OCR. Last accessed 2022. Available from: https://pypi.org/project/keras-ocr/.
- [2] keras-ocr documentation. Last accessed 2022. Available from: https://keras-ocr.readthedocs.io/en/latest/index.html.
- [3] Text recognition data Visual Geometry Group University of Oxford. Last accessed 2022. Available from: https://www.robots.ox.ac.uk/~vgg/data/text/#sec-synth.
- [4] JAIDED AI. Jaided AI Distribute the benefits of AI to the world. Available from: https://www.jaided.ai/.
- [5] JAIDED AI. Jaidedai/EasyOCR. Available from: https://github.com/ JaidedAI/EasyOCR.
- [6] Vision AI derive image insights via ML cloud vision API google cloud. Available from: https://cloud.google.com/vision/.
- [7] CLOVA AI RESEARCH. Clovaai/Craft-pytorch: Official implementation of character region awareness for text detection (CRAFT). Last accessed 2022. Available from: https://github.com/clovaai/CRAFT-pytorch.
- [8] Tesseract-Ocr. Tesseract-OCR/tessdoc: Tesseract documentation. Available from: https://github.com/tesseract-ocr/tessdoc.