Exercices sur les vecteurs 1

Exercice I:

ABCD est un tétraèdre. On considère les milieux I de [AB], J de [BC], K de [CD] et M de [IK]. G est l'intersection des segments [BK] et [DJ].

(c) En déduire que
$$\overrightarrow{AG} = \overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CD}$$
.

2. (a) Exprimer \overrightarrow{IK} puis \overrightarrow{IM} en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{BC} et \overrightarrow{CD} .

(b) En déduire que
$$\overrightarrow{AM} = \frac{3}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{CD}$$
.

3. Démontrer que les points A, M et G sont alignés.

Exercice II:

ABCD est un tétraèdre; on considère les milieux I de [AB], J de [BC] et K de [CD].

1. (a) Exprimer chacun des vecteurs suivants en fonction de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} : \overrightarrow{BC} , \overrightarrow{ID} , \overrightarrow{IK} .

(b) En déduire les coordonnées des vecteurs \overrightarrow{BC} , \overrightarrow{ID} et \overrightarrow{IK} dans le repère $\left(A;\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}\right)$.

2. (a) Exprimer chacun des vecteurs suivants en fonction de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} : \overrightarrow{AI} , \overrightarrow{AJ} , \overrightarrow{AK} .

(b) En déduire les coordonnées des points I, J et K dans le repère $\left(A;\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}\right)$.

Exercice III:

L'espace est muni du repère $(O; \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$.

- A sachant que son abscisse est 3,
- B sachant que son ordonnée est 1,
- C sachant que sa cote est 3.

2. Placer D(-1; -2; -1), E(2; 1; -1) et F(2; 4; 3).

Exercice IV:

L'espace est rapporté à un repère $(O; \overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k})$. Les parties 1, 2, 3 sont indépendantes.

1. Soient les points A(1;2;3), B(-1;6;-3), C(-1;-2;-3) et D(2;-8;6). Démontrer que (AB)//(CD).

- 2. On considère les vecteurs $\overrightarrow{u}(3;-2;0)$, $\overrightarrow{v}(4;0;3)$ et $\overrightarrow{w}(7;-6;-3)$.
 - (a) Existe-t-il deux réels α , $\beta \in \mathbb{R}$ tels que $\overrightarrow{w} = \alpha \overrightarrow{u} + \beta \overrightarrow{v}$?
 - (b) Les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont-ils coplanaires?
- 3. Soient les points A(2;2;1), B(3;1;2), C(1;5;3) et D(3;5;8).
 - (a) Calculer les coordonnées des vecteurs \overrightarrow{AB} . \overrightarrow{AC} et \overrightarrow{AD} .
 - (b) Démontrer que les points A, B et C définissent un plan.
 - (c) Démontrer qu'il existe deux réels x et y tels que $\overrightarrow{AD} = x\overrightarrow{AB} + y\overrightarrow{AC}$.
 - (d) En déduire que $D \in (ABC)$.

Exercice V:

ABCDEFGH est un cube.

Dans chaque cas, dire si les vecteurs sont coplanaires.

(a)
$$\overrightarrow{BF}$$
 et \overrightarrow{CH} .

(b)
$$\overrightarrow{DG}$$
, \overrightarrow{DH} et \overrightarrow{EF} .

(c)
$$\overrightarrow{DA}$$
, \overrightarrow{DC} et \overrightarrow{DE} . (d) \overrightarrow{AD} , \overrightarrow{CH} et \overrightarrow{FG} .

(d)
$$\overrightarrow{AD}$$
, \overrightarrow{CH} et \overrightarrow{FG} .

(e)
$$\overrightarrow{AF}$$
, \overrightarrow{BE} et \overrightarrow{CD} . (f) \overrightarrow{AC} , \overrightarrow{DF} et \overrightarrow{EG} .

(f)
$$\overrightarrow{AC}$$
, \overrightarrow{DF} et \overrightarrow{EG} .

Exercice VI:

L'espace est rapporté à un repère $(O; \overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k})$.

Soient les droites définies par les systèmes d'équations paramétriques

$$D_1 \begin{cases} x = \lambda + 1 \\ y = -\lambda \quad \text{où } \lambda \in \mathbb{R} \quad D_2 \begin{cases} x = -t + 4 \\ y = t - 4 \quad \text{où } t \in \mathbb{R} \end{cases} \quad D_3 \begin{cases} x = 2s \\ y = -2s \quad \text{où } s \in \mathbb{R} \quad D_4 \begin{cases} x = t + 2 \\ y = -t - 2 \quad \text{où } t \in \mathbb{R} \end{cases} \\ z = t + 1 \end{cases}$$

- (a) Parmi ces droites, trouver deux droites strictement parallèles, et deux droites confondues.
- (b) Déterminer la position de D_1 par rapport à D_2 .
- (c) Déterminer la position de D_3 par rapport à D_4 .

Exercice VII:

L'espace est rapporté à un repère $(O; \overrightarrow{1}, \overrightarrow{j}, \overrightarrow{k})$.

- 1. Soient les point A(1;1;2), B(-1;2;3) et C(-2;1;5).
 - (a) Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{BC} .
 - (b) Démontrer que les points A, B et C définissent un plan.
 - (c) Donner un système d'équations paramétriques du plan (ABC).
- 2. Soit P le plan représenté par le système $\begin{cases} x=5-s\\ y=-4+s-t & \text{ où } s,t\in\mathbb{R}.\\ z=3+2t \end{cases}$
 - (a) Donner un point D et deux vecteurs directeurs de P qu'on nommera \overrightarrow{u} et \overrightarrow{v} .
 - (b) Le point D est-il sur (ABC)?
 - (c) Parmi les points A, B et C lesquels se trouvent sur P?
 - (d) Démontrer que P coupe (ABC) suivant une droite dont on donnera une représentation paramétrique.

2