IBQ_R 2022

Masha Gartstein, Erich Seamon

10/25/2022

Exploratory Data Analysis

Model Development and Output: Control Group One VS. Experimental - ALL VARIABLES

Model Accuracy Estimates: Control Group One VS. Experimental Group – All Variables

ROC Curve: Control Group One VS. Experimental – All Variables

Model Development and Output: Control Group Two VS. Experimental - ALL VARIABLES

Model Accuracy Estimates: Control Group Two VS. Experimental Group – All Variables

ROC Curve: Control Group Two VS. Experimental – All Variables

Model Development and Output: Control Group One VS. Experimental - TRANSFORMED VARIABLES

Model Accuracy Estimates: Control Group One VS. Experimental Group - Transformed Variables

ROC Curve: Control Group One VS. Experimental – Transformed Variables

Model Development and Output: Control Group Two VS. Experimental - TRANSFORMED VARIABLES

Model Accuracy Estimates: Control Group Two VS. Experimental Group - Transformed Variables

ROC Curve: Control Group Two VS. Experimental – Transformed Variables

Random Forest Control One vs. Experimental Transformed Variables

Random Forest Control Two vs. Experimental Transformed Variables

Random Forest Control One vs. Experimental All Variables

Random Forest Control Two vs. Experimental All Variables

models	Exp. VS.	CG1 cla	ssification: All Variabes	Exp. VS. CG2 classification: All Variables		
	accuracy	kappa	AUC	accuracy	kappa	AUC
lda	0.543	-0.014	0.621	0.540	0.009	0.576
glm	0.535	-0.021	0.550	0.550	0.047	0.618
svm	0.529	0.104	0.603	0.577	0.149	0.565
knn	0.542	0.162	0.576	0.535	0.113	0.578
nb	0.505	0.084	0.542	0.579	0.156	0.567
cart	0.557	0.127	0.464	0.587	0.036	0.612
c5.0	0.545	0.048	0.615	0.529	0.100	0.566
bagging	0.545	0.032	0.617	0.534	0.063	0.575
rf	0.567	0.044	0.646	0.538	0.149	0.585
gbm	0.461	0.070	0.600	0.570	0.178	0.623
adabag	0.543	0.084	0.621	0.540	0.184	0.576

models	Exp. VS.	CG1 cla	ssification: Transformed Variables	Exp. VS.	CG2 classification:	Transformed Variables
	accuracy	kappa	AUC	accuracy	kappa	AUC
lda	0.518	0.064	0.564	0.509	0.162	0.566
glm	0.471	0.050	0.478	0.512	0.169	0.415
svm	0.487	-0.069	0.467	0.498	0.038	0.624
knn	0.518	-0.014	0.526	0.560	-0.004	0.559
nb	0.474	0.050	0.528	0.560	0.156	0.575
cart	0.529	-0.014	0.500	0.552	0.043	0.575
c5.0	0.537	0.000	0.479	0.540	0.029	0.596
bagging	0.468	-0.029	0.491	0.498	-0.093	0.616
rf	0.490	-0.105	0.495	0.542	-0.102	0.599
gbm	0.512	0.021	0.517	0.513	0.093	0.584
adabag	0.518	0.057	0.564	0.509	0.135	0.566