1000m급 수중글라이더의 위치추정 항법기술 개발

- 해양복합연구단 BCA분야 (8~12세부) -

2024. 09. 25 [수요일]

유태석 (LIG넥스원㈜)

주관기관: 한국해양과학기술원 한국도키멕㈜, 한국해양대학교 LIG넥스원㈜, 오션테크㈜

과제 개요

사업명	무인이동체 원천기술개발사업(내역사업 2 : 통합운용 기술실증기 개발)
과제명	무인수상선-수중자율이동체 복합체계 개발(해양복합연구단)
세부과제명	제11세부: 1000미터급 수중글라이더 항법기술 개발
연구목표	수중글라이더의 위치추정을 위한 수중항법기술을 개발하는 과제임
사업기간	총 연구기간 : 2020. 06. 01 ~ 2024. 12. 31(1, 2단계 총 55개월) 당해(5차)년도 연구기간 : 2024. 01. 01 ~ 2024. 12. 31(12개월)
연구사업비	총 8.03억(국비 4.82억원, 기업 3.21억원)/당해 1.7억원
주관기관	LIG넥스원㈜
참여기관	해당사항 없음

과제 연구목표

○ 최종 목표

1000급 수중글라이더의 위치추정 항법 기술 개발

○ 세부 목표

- 1. 수중 위치추정 알고리즘 기술 개발
- 2. 위치추정 알고리즘 구현을 위한 항법성능분석장치 개발
- 3. 위치추정 알고리즘의 수중글라이더 탑재로 성능 입증

과제 연차별 연구개발 목표

○ 연차별 연구목표

단계	연차	연구목표	세부목표		
	1차년	수중글라이더 수중항법 요구도 분석 및 개발일정 도출	① 수중글라이더 수중항법 요구도 분석 및 개발일정 도출 ② 수중항법시스템 관련 자료조사 ③ 센서신호모델링 기법 연구 및 개발 ④ 수중항법 구성(안) 설계		
1단계	2차년	수중글라이더 수중항법기술 상세설 계	① 수중항법 센서 선정 ② 수중복합항법 알고리즘 개발 ③ 항법시뮬레이터(성능검증장치) 설계		
	3차년	수중글라이더 수중항법기술 상세설계	① 위치추정 알고리즘 보완 ② 항법시뮬레이터(성능검증장치) 보완		
2단계	4차년	수중글라이더 수중항법기술 구현 및 기능 입증	① 해상시험 지원 및 데이터 분석		
	5차년	수중글라이더 시험 평가 적용	① 해상시험 지원 및 데이터 분석		

시제 개발 범위

GigaRF PARTINE COMMENT COMMEN

과제 연구개발로드맵

단계		1단계		2단계			
년도	2020	2021	2022	2023	2024	2025	2026~27
해양복합 연구단 (제11세부)		시스템 설계 DR, CDR	알고리즘 및 시뮬레이터 보완	해상시	험 지원		

- 1,000m급 수중글라이더 항법 기술 개발 (11세부: LIG 넥스원)
 - ▶ 수중 항법 알고리즘 개발
 - 위치 추정 알고리즘 검증용 소프트웨어 구조 설계
 - 위치 추정 알고리즘 설계 및 검증
 - GPS 정보 기반 통합 해류 추정
 - ▶ 수중 항법 시뮬레이터(항법 성능 검증 장치) 개발
 - 수중글라이더의 위치 추정 알고리즘 시뮬레이션 수행
 - 시험 데이터 기반 성능 분석 수행

[항법 성능 검증 장치 SW GUI 구성]

[위치 추정 알고리즘 SW 구조]

[통합 해류 추정]

[위치 추정 검증]

1. 수중항법 센서선정 분야

- AHRS (TRAX 2)
- ② 심도계 (DPS500D)
- ③ GPS 수신기(ZED-F9P)

TRAX2

ZED-F9P

DPS 500D

2. 수중항법 알고리즘 분야

- 위치추정알고리즘 검증용 소프트웨어 구조 설계
- 위치추정 알고리즘 설계 및 검증
- GPS정보 기반 통합해류 추정

소프트웨어 구조

통합해류추정

위치추정 검증

- 3. 수중항법 시뮬레이터(항법성능검증장치) 분야
 - 수중글라이더의 위치추정 알고리즘 시뮬레이션 수행
 - 시험데이터 기반 성능분석 수행

<글라이더 SW 클래스 구성>

<글라이더 SW GUI 구성>

대표 성과

○ 대표 산출물 (건수)

시제품	기술	논문			특허		ul 🖘	
	기술 자료	국외논문	국외발표	국내논문	국내발표	출원	록	94
5	2	-	_	1	-	ı	-	

○ 대표 산출물 (리스트)

순번	시제품	기술자료	비고
1	가속도/지자계/자이로 센서	_	
2	심도계	-	
3	GPS 수신기	-	
4	항법 시뮬레이터	- 기술 사양서 1부	
5	위치 추정 알고리즘	- 기술 사양서 1부	

❖ 5차년도 연구목표

- ◆ 해상시험 지원
 - 항법알고리즘 수중글라이더 탑재
 - : 수중글라이더 제어기 내 코드 삽입 시 지원
 - 해상 시험 데이터 분석
 - ※ 평가 주안점 목표 항목
 - (정성) 1000미터급 수중글라이더의 위치추정항법 기술 개발
 - : 수중 글라이더 시험 평가 적용

❖ 유사 수중글라이더 실 해상시험 데이터 후처리 분석 결과

분석 개요

❖ 유사 수중글라이더 실 해상시험 데이터 후처리 분석 결과

2. 분석 결과 [1/3]

1) 필터 입력값 : 롤/피치/심도

2) 필터 출력값: 속도(항체좌표계)

❖ 유사 수중글라이더 실 해상시험 데이터 후처리 분석 결과

- 2. 분석 결과 [2/3]
- 1) 위치오차 : 354m (@ 169초 ~ @ 3318초 = 3,149초동안 잠항 = 52.4분 주행)

❖ 유사 수중글라이더 실 해상시험 데이터 후처리 분석 결과

- 2. 분석 결과 [3/3]
- 1) 위치오차 : 354m (@ 169초 ~ @ 3318초 = 3,149초동안 잠항 = 52.4분 주행)

2024년도 무인이동체원천기술개발사업 통합기술워크샵

감사합니다.

