LABORATORY MANUAL FOR DETERMINATION OF YOUNG MODULUS OF RECTANGULAR BEAM

EXPERIMENT

AIM

To determine the Young's modulus of a rectangular beam by bending beam method.

APPARATUS

- 1. Metallic Beam
- 2. Knife Edge 02
- 3. Voltmeter
- 4. Spherometer
- 5. Hanger with weight
- 6. Slide Caliper

THEORY

A metallic beam length L is kept on two knife edges 'A' and 'B' and loaded at the mid-point with a load W, let ' δ ' be the depression at the mid-point, then the Young's modulus of elasticity of the material of the beam is:

$$Y = \frac{WL^3}{48(\delta)I_g} - \dots (1)$$

Where I_g = Geometrical moment of Inertia of the beam. In case of rectangular beam, the moment of inertia is given by

$$I_g = \frac{b d^3}{12}$$
 ----(2)

Where, b = breadth and d = depth or thickness of the beam

Combining equation (1) and (2) We get:

$$\therefore Y = \frac{WL^3}{4(\delta)b d^3} = \frac{mgL^3}{4(\delta)b d^3}$$

Fig. Arrangements of the apparatus for determination of depression of the beam.

PROCEDURE

- 1. Two knife edges are fixed along the length of the working table. The two knife-edges are fixed at a known distance (80, 90 cm) and they must be kept parallel to each other and perpendicular to the edge of the table.
- 2. The mid-point of the two knife edges is located and the hanger is hanged from the midpoint.
- 3. Pitch and least- count of the spherometer is calculated.
- 4. First of all, the tip of the screw of spherometer is brought in contact with the pointer attached with the hanging arrangement.
- 5. Initial disc reading of the spherometer is taken and a known weight is added to the hanger. Then the depression at the mid-point is measured by nothing and final disc reading of the spherometer.
- 6. The reading is repeated with different loads and in each case the depression at mid-point is calculated.
- 7. 'b' and 'd' of the beam is measured with the help of slide calipers.
- 8. A graph is plotted between load and depression at mid-point. From the graph the final value of Young's modulus is calculated
- 9. Measurement of 'b' and 'd'
- 10. Calculate least count of slide calipers.

OBSERVATIONS

Length is measured by the meter scale. Least count of the scale = 1mm Length of the rectangular bar (L)=.... m

[A] Table for determination of breadth of the rectangular bar (b)

- Instrument used: Vernier Calliper
- Least count (L.C) of the instrument: 0.01 cm (show calculation for determining L.C)

No. of obs.	Main Scale Reading (MSR) (cm)	Ver. Reading (VSR)	b Total Reading (MSR+VSR×L.C) (cm)	Mean breadth (b) (cm)
1.				
2.				3 =
3.				1 =

[B] Table for determination of breadth of the rectangular bar (d)

- Instrument used: Vernier Calliper
- Least count (L.C) of the instrument: 0.01 cm (show calculation for determining L.C)

No. of obs.	Main Scale Reading (MSR) (cm)	Ver. Reading (VSR)	d Total Reading (MSR+VSR×L.C) (cm)	Mean depth (d) (cm)
1. 2.		UTEO	F TECHN	OLIVER
3.		A Company		

LABORATORY MANUAL

[C] Table for determination of depression of the rectangular bar (δ)

- Instrument used: Spherometer
- · Pitch of the Spherometer:
- Least count (L.C) of the instrument: 0.01 mm (show calculation for determining L.C)

Table [C-1] FOR LOAD INCREASING

No. of obs.	Load (kg)	No. of rotation x pitch = (A)	Initial Disc Reading (I)	Final Disc Reading (F)	Diff. (I-F)	Diff. X L.C. (B) (mm)	Depression (A+B) (mm)	Cumulative Depression (\delta) (mm)
	0.5						(δ ₁)	(δ_1)
	1.0						(δ ₂)	$(\delta_1 + \delta_2)$
	1.5						(δ ₃)	$(\delta_1 + \delta_2 + \delta_3)$
	2.0						(δ 4)	$(\delta_1+\ldots+\delta_4)$
	2.5				h ,		(δ ₅)	$(\delta_1+\ldots+\delta_5)$

Table [C-2] FOR LOAD DECREASING

No. of obs.	Load (kg)	No. of rotation x pitch = (A)	Initial Disc Reading (I)	Final Disc Reading (F)	Diff. (I-F)	Diff. X L.C. (B) (mm)	Depression (A+B) (mm)	Cumulative Depression (δ) (mm)
	2.5						(δ ₅)	$(\delta_1 + \cdots + \delta_5)$
	2.0	We					(δ ₄)	$(\delta_1++\delta_4)$
	1.5		775				(δ ₃)	$(\delta_1 + \delta_2 + \delta_3)$
	1.0			EO		2-	(δ ₂)	$(\delta_1 + \delta_2)$
	0.5						(δ ₁)	(δ_1)

Table [C-3] for mean depression for each load and calculation of Young's Modulus

$$Y = \frac{mgL^3}{4(\delta)b\,d^3}$$

Load (Kg)	Cumulative Depression for load increasing	Cumulative Depression for load decreasing	Mean Depression (δ_{mean})	Y (×10 ¹¹) N/m ²
0.5	111396	1911 17	1502	
1.0	0.1		7/55	
1.5		,		
2.0				
2.5				~ A)\ /

CALCULATIONS

Show calculation of Y for each load.

Calculate the average value of Young's modulus.

CALCULATIONS OF YOUNG'S MODULUS FROM GRAPH

Plot a graph between load along X-axis and corresponding mean depression along Y-axis. From the slope of the graph find the value of

• Slope =
$$\frac{\delta}{m}$$
; $Y = \frac{mgL^3}{4(\delta)bd^3}$

$$\therefore Y = \frac{gL^3}{4bd^3} \times \frac{1}{slope}$$

ERROR CALCULATIONS

$$Y = \frac{mgL^3}{4(\delta)b\,d^3}$$

• For maximum Error in Y:

$$\therefore \frac{\Delta Y}{Y} = \frac{\Delta m}{m} + \frac{\Delta g}{g} + 3\frac{\Delta L}{L} + \frac{\Delta b}{b} + 3\frac{\Delta d}{d} + \frac{\Delta \delta}{\delta}$$

 Δm and Δg = zero, as these are not measured

RESULT

 \therefore Young's modulus of the rectangular bar is $\boldsymbol{Y_f} = \boldsymbol{Y} \pm \boldsymbol{\Delta Y} \; \mathbf{N/m^2}$

PRECAUTIONS

- 1. Care must be taken to see that the beam does not slip on the knifeedges. A little wax may be used to prevent slipping.
- 2. The C.G. of the beam must be midway between the knife-edges and weight-hanger must be placed at this point.
- 3. Excessive load must not be put on the beam.