

Câblage de réseaux locaux et distants

Pr Alassane DIOP Ph. D. en Télématiques et Réseaux Informatique

Module 5 : Câblage des réseaux LAN et WAN

FIGURES

1

2

3

1

À la fin de ce module, l'étudiant sera capable d'effectuer des travaux liés aux thèmes suivants :

- 5.1 Câblage des réseaux LAN
- 5.2 Câblage des réseaux WAN

2

Différents symboles sont utilisés pour représenter les types de média. Le réseau Token Ring est représenté par un cercle. Le réseau FDDI est représenté par deux cercles concentriques et le réseau Ethernet symbolisé par une ligne droite. Les connexions série sont représentées par une ligne en forme d'éclair

Mise en œuvre de couche physique LAN

FIGURES

1

- Les mises en œuvre de couche physique varient.
- Certaines mises en œuvre supportent plusieurs médias physiques.

Ethernet dans le campus

	Mise en œuvre Ethernet 10BaseT	Mise en œuvre Fast Ethernet	Mise en œuvre Gigabit Ethernet
Niveau utilisateur final (de l'équipement utilisateur final vers l'équipement	Permet une connectivité pour les applications de petite taille et de taille	Permet un accès à 100-Mbits/s au serveur pour les stations de travail hautes performances.	Généralement pas utilisé à ce niveau.
Niveau groupe de travail (de l'équipement groupe de travail au backbone)	Généralement pas utilisé à ce niveau.	Permet la connectivité entre l'utilisateur final et les groupes de travail. Permet la connectivité du groupe de travail au backbone. Permet la connectivité du bloc serveur à la couche backbone.	Permet une connectivité hautes performances au bloc serveur de l'entreprise.
Niveau backbone	Généralement pas utilisé à ce niveau.	Permet la connectivité du bloc serveur groupe de travail au backbone.	Permet une connectivité haut débit pour l'équipement du réseau et le backbone.

Besoins en médias et connecteurs Ethernet

FIGURE

	10BASE2	10BASE5	10BASE-T	100BASE-TX	100BASE-FX
Médias	Câble coaxial de 50 ohms (Ethernet à câble fin)	Câble coaxial de 50 ohms (Ethernet épais)	Câble EIA/TIA Catégorie 3, 4, 5 UTP, deux paires	Câble EIA/TIA Catégorie 5 UTP, deux paires	Fibre multimode de 62,5/125
Longueur maximale du segment	185 m	500 m	100 m	100 m	400 m
Topologie	En bus	En bus	En étoile	En éto	En étoile
Connecteur	BNC	AUI (Attachment Unit Interface)	ISO 8877 (RJ-45)	ISO 8877 (RJ-45)	Connecteur d'interface média duplex Connecteur ST ou SC
←					

Besoins en médias et connecteurs Ethernet

FIGURE

1000BASE-CX	1000BASE-T	1000BASE-SX	1000BASE-LX
STP	Câble EIA/TIA catégorie 5 UTP, quatre paires	Fibre multimode de 62,5/50 microns.	Fibre multimode de 62,5/50 microns ; fibre monomode de 9 microns.
25 m	100 m	275 m pour la fibre de 62,5 microns ; 550 m pour la fibre de 50 microns	440 m pour la fibre de 62,5 microns ; 550 m pour la fibre de 50 microns ; de 3 à 10 km pour la fibre monomode.
En étoile	En étoile	En étoile	En étoile
ISO 8877 (RJ-45)	ISO 8877 (RJ-45)	Connecteur SC	Connecteur SC
			→

Différences entre les connexions

FIGURE

Connecteur RJ-45

FIGURES

La figure illustre les directives qui permettent de déterminer le type de câble à utiliser pour relier les équipements Cisco.

Prise RJ-45

FIGURES

Prise RJ-45

FIGURES

Code de couleurs T568A et T568B

T568A

T568B

Mise en œuvre du câble droit à paires torsadées non blindées

FIGURES

Étiquette **Broche** TD+ TD-RD+ NC 5 NC RD-Les extrémités des NC fils du câble sont 8 NC dans le même ordre.

Interconnexion des équipements au moyen d'un câble croisé

- 2 3 4 5 6 7 8

Broche Étiquette Broche Étiquette

L'inversion de la paire de fils oranges et de la paire de fils verts s'effectue à une des extrémités du

Mise en œuvre de câble croisé à paires torsadées non blindées

FIGURES

Utilisez un câble droit seulement lorsqu'un port est désigné par un

Utilisez un câble croisé lorsque les DEUX ports sont désignés par un " x " ou lorsque aucun des ports ne présente cette désignation.

Le but du répéteur est de régénérer et de resynchroniser les signaux réseau au niveau du bit. Ils peuvent ainsi parcourir une plus longue distance dans le média.

Interconnexion des équipements au moyen d'un câble croisé

FIGURES 3 4 5 6 7 8 Câble croisé de catégorie 5 à 100 Mbits/s Câble croisé de Câble droit de catégorie 3, 4, 5 à catégorie 3, 4, 5 10 Mbits/s à 10 Mbits/s Câble droit de Câble droit de catégorie 3, 4, 5 à catégorie 5 à 100 Mbits/s 10 Mbits/s

Concentrateur à 8 ports

FIGURE

Les concentrateurs (Hub) sont, en fait, des répéteurs multiports. La différence entre un concentrateur et un répéteur réside dans le nombre de ports respectifs de ces équipements

FIGURE

Il existe trois principaux types de concentrateurs:

- Passif: un concentrateur passif sert uniquement de point de connexion physique. Il ne peut ni manipuler ni visualiser le trafic acheminé par son intermédiaire. De même, il n'amplifie pas le signal et ne le nettoie pas. Un concentrateur passif permet uniquement de partager le média physique. Il n'a besoin d'aucune alimentation électrique.
- Actif: un concentrateur actif doit être branché à une prise de courant pour pouvoir amplifier un signal avant de l'envoyer aux autres ports.
- Intelligent: les concentrateurs intelligents (ou «smart hubs») fonctionnent de la même façon que les concentrateurs actifs, avec des puces microprocesseur et des fonctions de diagnostic. Les concentrateurs intelligents sont plus onéreux que les concentrateurs actifs. Ils sont également plus efficaces dans les situations de dépannage.

FIGURE

Segmentation d'un réseau au moyen de ponts

Segment 2

Pont sans fil

Segmentation d'un réseau au moyen de ponts

FIGURES

2

Dans certains cas, il peut s'avérer nécessaire de diviser un LAN de taille importante en plusieurs petits segments, qui seront plus faciles à gérer. Ceci entraîne la diminution du trafic sur un LAN donné tout en permettant d'étendre la zone géographique précédemment prise en charge par un LAN unique.

Segmentation d'un réseau au moyen de ponts

FIGURES

- Vous pouvez utiliser des équipements de type ponts, commutateurs, routeurs et passerelles pour relier
- les segments du réseau les uns aux autres. Les commutateurs et les ponts fonctionnent au niveau de la couche liaison de données du modèle OSI. Un pont doit prendre des décisions intelligentes
- de la couche liaison de données du modèle OSI. Un pont doit prendre des décisions intelligentes quant à la transmission ou non des signaux au segment suivant d'un réseau.

Commutateur Cisco gamme 2900

Table de commutation

FIGURES

1

2

3

Les commutateurs sont parfois qualifiés de «ponts multiports». Un pont classique comporte seulement deux ports qui relient deux segments du réseau. Un commutateur peut avoir plusieurs ports, selon le nombre de segments à relier. À l'instar des ponts, commutateurs recherchent des informations sur les trames de données qu'ils reçoivent de la part des ordinateurs du réseau. Ils se servent ensuite de ces informations pour créer des tables et déterminer la destination des données que s'envoient les ordinateurs sur le réseau.

Interface	Adresse MAC
E0	0260.8c01.1111
E1	0260.ec01.2222
E2	0260.ec01.3333
E3	0260.8c01.4444

Microsegmentation du réseau

FIGURES

Segment partagé Avant

Commutateur LAN Après

Tout le trafic visible sur chaque segment de réseau

Multiples voies de trafic dans le commutateur

Chemins dédiés entre hôtes émetteur et récepteur

Carte réseau (carte de circuits)

Carte réseau (connexion média)

Réseau d'égal à égal

Accès partagé

FIGURES

Partage d'un dossier

FIGURES

2

Client/serveur

FIGURES

Serveur Station de travail Station de travail

Client/serveur

FIGURES

Comparaison réseau d'égal à égal et réseau client-serveur

FIGURES

Avantages d'un réseau d'égal à égal	Avantages d'un Réseau client-serveur
Implémentation moins coûteuse	Meilleure sécurité
Ne demande pas d'autre logiciel spécialisé dans l'administration réseau	Plus facile à administrer lorsque le réseau est important car l'administration est centralisée.
Ne demande pas d'administrateur réseau dédié.	Possibilité de sauvegarde de toutes les données dans un emplacement central.

Comparaison réseau d'égal à égal et réseau client-serveur

FIGURES

Inconvénients d'un réseau d'égal à égal	Inconvénients d'un réseau client-serveur
Ne s'adapte pas bien aux réseaux importants et complexité de l'administration.	Nécessite un logiciel coûteux, spécialisé pour l'exploitation et l'administration du réseau
Chaque utilisateur doit être formé aux tâches d'administration.	Le serveur nécessite du matériel plus puissant, mais coûteux.
Moins sécurisé	Requires a professional administrator.
Toutes les machines partageant les ressources diminuent les performances	Présente un point de défaillance unique. Indisponibilité des données utilisateur en cas d'arrêt du serveur.

Cisco HDLC	ЬРР	Frame Relay	RNIS BRI	Modem DSL	Modem câble
EIA/TIA-232 EIA/TIA-449 X.21 V.24 V.35 HSSI (High Speed Serial Interface)			RJ-45 Remarque : Les broches du câble RNIS BRI sont différentes de celles utilisées pour Ethernet.	RJ-11 Remarque : transmission via une ligne téléphonique	F Remarque: transmission via une ligne de télévision par câble

- La mise en œuvre de couche physique varie.
- Les spécifications de câble définissent la vitesse d'une liaison.

Comparaison des normes physiques

Données (bits/s)	Distance (mètres) EIA/TIA-232	Distance (mètres) EIA/TIA-449
2400	60	1250
4800	30	625
9600	15	312
19,200	15	156
38,400	15	78
115,200	3.7	_
T1 (1.544 Mbps)	_	15

Options de la connexion série WAN

FIGURES

1

2

Mise en œuvre en série d'un ETTD et d'un ETCD

FIGURES

Équipement terminal de traitement de données :

 Extrémité de l'équipement utilisateur sur la liaison WAN

Équipement de communication de données :

- Extrémité du côté du fournisseur d'un réseau WAN côté de l'unité de communication
- Responsable de la synchronisation

Les routeurs sont responsables du routage des paquets de données de la source à la destination au niveau du LAN, ainsi que de la connectivité au WAN. Dans l'environnement d'un LAN, le routeur stoppe les broadcasts, fournit les services de résolution d'adresse du type ARP et RARP et peut segmenter le réseau via une structure de sous-réseaux. Pour proposer ces services, le routeur doit être connecté au LAN et au WAN.

Connexion série jumelée

Interfaces du port série modulaire

FIGURES

3

Les ports série WAN peuvent être modulaires. Carte d'interface WAN

Câblage des routeurs pour des connexions RNIS

FIGURE

Déterminez si une interface BRI S/T ou une interface U est requise. Les routeurs ont un type de port ou les deux.

Routeur Cisco 827-4V

FIGURE

1

Configuration d'une connexion à une console

FIGURE

Unité avec console

Câble à paires inversées de RJ-45 à RJ-45

PC

Adaptateur RJ-45 à DB-9 étiqueté TERMINAL

- Les PC nécessitent un adaptateur RJ-45 à DB-9 ou RJ-45 à DB-25.
- Les paramètres du port COM sont 9 600 bits/s, 8 bits de données, sans parité, 1 bit d'arrêt et sans contrôle de flux.
- Un accès hors bande à la console est fourni.
- Le port AUX du commutateur peut être utilisé pour une console connectée par modem.

Module 5 : Résumé

FIGURE

1

Câblage des réseaux LAN et WAN

- Les répéteurs, les concentrateurs, les ponts et les commutateurs sont des équipements LAN courants.
- Il existe deux types principaux de réseau LAN, d'égal à égal et client-serveur.
- Les réseaux WAN font appel à la transmission série. Les types de connexion WAN comprennent RNIS, DSL et le modem câble.

Référence: Cisco CCNA 1

Copyright sur l'intégralité du contenu © 2003 Cisco Systems, Inc. Tous droits réservés.