

Claims

1. A method (500) for communication between a client computer (900) and a server computer (901), both computers (900, 901) using the hypertext transfer protocol (HTTP), the client computer (900) using an HTTP-browser (210);
5 the method (500) comprising the following steps:
sending (520) a first request (230) from the client computer (900) to the server computer (901);
upon receiving (530) the first request (230),
the server computer (901), (i) allocating (531) a resource (340) at the server computer (901), the resource (340) with an identifier (350), and (ii)
15 returning (532) a predetermined close instruction (360) to the browser (210), the close instruction (360) carrying the identifier (350);
upon unloading (540) the close instruction (360) from the browser (210) of the client computer (900),
20 sending (560) a second request (240) from the client computer (900) to the server computer (901), the second request (240) carrying the identifier (350) and indicating to de-allocate the resource (340); and
25 upon receiving (570) the second request (240) from the client computer (900), by the server computer (901) de-allocating (580) the resource (340).

- 33 -

2. The method (500) of claim 1, wherein after the server computer (901) has returned (532) the predetermined close instruction (360), and before the server computer (901) receives (570) the second request (240) from the client computer (900), the server computer (901) consecutively sends content pages (335) to the client computer (900).
5
3. The method (500) of claim 2, wherein in the step
10 returning (532) a predetermined close instruction (360), the browser (210) presents the close instruction (360) in a first frame (215) and presents the content pages (335) in a second frame (216).
- 15 4. The method (500) of claim 2, wherein the close instruction (360) prevents selected content pages (335) from being cached by the browser (210).
- 20 5. The method (500) of claim 1, wherein in the step sending (560) a second request (240), the client computer (900) sends the second request (240) to a predetermined address of the server computer (901).
- 25 6. The method (500) of claim 1, wherein in the step returning (532) a predetermined close instruction, the predetermined close instruction (360) comprises script (1-5).
- 30 7. The method (500) of claim 1, wherein in the step returning (532) a predetermined close instruction, the script does not lead to a presentation by the browser (210).

- 34 -

8. A computer program product (100/101) for HTTP-
communication between a client computer (900) and a
server computer (901), wherein the client computer
(900) has a browser (210), the computer program
product (100/101) having program code portions that
cause a client processor (910) in the client computer
(900) and a server processor (911) in the server
computer (901) to control the communication,
the computer program product (100/101) comprising:
5 code portions that cause the client processor (910)
to send (520) a first request (230) to the server
computer (901);
code portions that - upon receiving (530) the first
request (230) by the server computer (901) -
10 cause the server processor (911) to (i) allocate
(531) a resource (340) at the server computer
(901), the resource (340) with an identifier
(350), and to (ii) return (532) a predetermined
close instruction (360) to the browser (210), the
close instruction (360) carrying the identifier
15 (350);
code portions that - upon unloading (540) the close
instruction (360) from the browser (210) of the
client computer (900) - cause the client
processor (910) to send (560) a second request
20 (240) to the server computer (901), the second
request (240) carrying the identifier (350) and
indicating to de-allocate the resource (340); and
code portions that - upon receiving (570) the second
25 request (240) from the client computer (900) -
cause the server processor (911) to de-allocate
(580) the resource (340).
30

- 35 -

9. The computer program product (100/101) of claim 8,
wherein the code portions cause the client processor
(900) to provide such a close instruction (360) that
the browser (210) provides a first frame (215) to
5 present the close instruction (360) in a first frame
and provides a second frame (216) to present content
pages (335) that the client computer (900) receives
from the server computer (900).

10 10. The computer program product (100/101) of claim 8,
wherein the code portions cause the client processor
(900) to provide such a close instruction (360) that
caching selected content pages (335) by the browser
(210) is prevented.

15 11. The computer program product (100/101) of claim 8,
wherein the code portions cause the client processor
(900) to provide such a close instruction (360) that
the client computer (900) sends the second request
20 (240) to a predetermined address of the server
computer (901).

25 12. A computer readable medium (970) storing the program
code portions of the computer program product (100)
of claim 8 that cause the client processor (910) to
operate.

30 13. A computer readable medium (971) storing the program
code portions of the computer program product (101)
of claim 8 that cause the server processor (911) to
operate.

- 36 -

14. A computer system (999) in that a client computer (900) and a server computer (901) use HTTP for communication and in that the client computer (900) uses an HTTP-browser (210); the computer system (999)

5 characterized in that:

the client computer (900) sends (520) a first request (230) to the server computer (901);

the server computer (901), upon receiving (530) the

first request (230), (i) allocates (531) a

10 resource (340), the resource (340) having an

identifier (350), and (ii) returns (532) a

predetermined close instruction (360) to the

browser (210) of the client computer (900), the

close instruction (360) carrying the identifier

15 (350);

the client computer (900), upon unloading (540) the close instruction (360) from the browser (210),

sends (560) a second request (240) to the server computer (901), the second request (240) carrying

20 the identifier (350) and indicating to de-

allocate the resource (340); and

the server computer (901), upon receiving (570) the

second request (240) from the client computer

(900), de-allocates (580) the resource (340).

25

15. The computer system (999) of claim 14, wherein the client computer (900) presents the close instruction (360) in a first frame (215) and presents the content pages (335) in a second frame (216).

30

16. The computer system (999) of claim 14, wherein the server computer (901) provides the close instruction (360) such that in the client computer (900) the close instruction (360) prevents selected content pages (335) from being cached by the browser (210).
- 5

- 38 -

17. A method (600) for communication between a client computer (900) and a server computer (901), both computers (900, 901) using the hypertext transfer protocol (HTTP), the client computer (900) using an

5 HTTP-browser (210);

the method (600) comprising the following steps:

sending (601) a request (230) from the client

computer (900) to the server computer (901);

upon receiving (611) the request (230),

10 the server computer (901):

- allocating (612) a resource at the server computer (901), the resource with an identifier (350) and a time-out period (T),

- returning (613) a close instruction (360) to the client computer (900), the close instruction (360) with the time-out period (T) and the identifier (350),

- measuring (614) the time (t) during that communication between the client computer (900)

20 and the server computer (901) is idle, and

- de-allocating (615) the resource (340) when the measured time (t) reaches the time-out period (T); and

upon receiving (602) the close instruction (360),

25 the client computer (900) -

- measuring (603) the time (t) during that the communication between the client computer (900) and the server computer (901) is idle,

30 • displaying (604) a warning to the user if the measured time (t) reaches a predetermined fraction (T/X) of the time-out period (T).

- 39 -

18. A computer program product (100/101) for controlling
HTTP-communication between a client computer (900)
and a server computer (901), wherein the client
computer (900) has a browser (210), the computer
5 program product (100/101) with a client program
portion (100) to control a client processor (910) and
a server program portion (101) to control a server
processor (911), characterized in that
the client program product portion (100) causes the
10 client processor (910) to send (601) a request
(230) from the client computer (900) to the
server computer (901);
upon receiving (611) the request (230) by the server
computer (901), the server program portion (101)
15 causes the server processor (911) to allocate
(612) a resource at the server computer (901),
the resource with an identifier (350) and a time-
out period (T), to return (613) a close
instruction (360) to the client computer (900),
20 the close instruction (360) with the time-out
period (T) and the identifier (350), to measure
(614) the time (t) during that communication
between the client computer (900) and the server
computer (901) is idle, and to de-allocate (615)
25 the resource (340) when the measured time (t)
reaches the time-out period (T); and

- 40 -

upon receiving (602) the close instruction (360) by
the client computer (900), the client program
portion (100) causes the client processor (910)
to measure (603) the time (t) during that the
5 communication between the client computer (900)
and the server computer (901) is idle, and to
display (604) a warning to the user if the
measured time (t) reaches a predetermined
fraction (T/X) of the time-out period (T).

10

- 41 -

19. A method (700) for communication between a client computer (900) and a server computer (901), both computers (900, 901) using the hypertext transfer protocol (HTTP), the client computer (900) using an
5 HTTP-browser (210);
 the method (700) comprising the following steps:
 sending (720) a first request (230) from the client
 computer (900) to the server computer (901);
 allocating (731) a resource (340) at the server
10 computer (901), the resource (340) with an
 identifier (350);
 returning (732) a predetermined response page to the
 browser (210), the response page carrying the
 identifier (350) and carrying browser
15 instructions;
 as instructed by the response page, periodically
 sending (760) the second requests (240) by the
 browser (210) to the server computer (901), the
 second requests (240) carrying the identifier
20 (350); and
 at the server computer (901), periodically checking
 (770) the arrival of the second requests (240)
 with the identifier (350) from the client
 computer (900) and de-allocating (780) the
25 resource (340) in case a predetermined time
 period (T) has lapsed since the last arrival.