CSC343 Worksheet 12 Solution

July 1, 2020

1. • Keys

- {id of molecule}
- {x position, y position, z position}
- Functional Dependencies
 - 1. id of molecule \rightarrow x position, y position, z position, x velocity, y velocity, z velocity
 - 2. x position, y position, z position \rightarrow id of molecule, x velocity, y velocity, z velocity

Notes:

- Function Dependencies
 - Functional Dependency is a relationship between two attributes typically between the key and other non-key attributes within a table.

Example:

 $SIN \rightarrow Name$, Address, Birthdate

Example 2:

 $ISBN \rightarrow Title$

- Key of Relations
 - One or more attributes $\{A_1, A_2, ..., A_n\}$ is a key for a relation R if
 - 1. Those attributes functionally determine all other attributes of the relation
 - 2. No proper subset of $\{A_1, A_2, ... A_n\}$ functionally determines all other attributes of R

Example:

Given relation

R = Movies1(title, year, length, genre, studioName, starName)

i. {title, year, starName } form a key for the relation Movies1

- ii. { year, starName } is not a key. Same star can be in multiple movies per year
- Superkeys
 - * Means a set of attributes that contains a key
 - * Don't need to be minimal

Example:

Given relation

R = Movies1(title, year, length, genre, studioName, starName)

- · { title, year, starName } is a key and superkey
- { title, year, starName, title, year, length} is a superkey

References:

- 1) OpenTextBC, Chapter 11 Functional Dependencies, link
- 2. a) 1. $AB \rightarrow C$
 - 2. $AB \rightarrow D$
 - 3. $C \rightarrow A$
 - 4. $C \rightarrow B$
 - 5. $D \rightarrow B$
 - 6. $D \rightarrow C$
 - 7. $C \rightarrow D$
 - 8. $D \rightarrow A$

Second Attempt:

 $\{A,B\}^+=\{A,B,C,D\}$, so the following non-trivial FDs follows: $AB\to C$ and $AB\to D$.

 $\{C\}^+ = \{D,A\}$, so the following non-trivial FDs follows $C \to D$ and $C \to A$.

 $\{D\}^+ = \{A\}$, so the following non-trivial FDs follows: $D \to A$.

Notes:

- The Splitting / Combining Rule
 - Combining Rule

*
$$A_1, A_2, \dots, A_n \to B_i$$
 for $i = 1, 2, ..., m$ to $A_1, A_2, \dots A_n \to B_1, B_2, \dots B_m$

Example:

Given

```
title year \rightarrow length
title year \rightarrow genre
title year \rightarrow studioName

it's combined form is
title year \rightarrow length genre studioName

- Splitting Rule

*
* A_1, A_2, \cdots A_n \rightarrow B_1, B_2, \cdots B_m
```

 $A_1, A_2, \cdots, A_n \to B_i \text{ for } i = 1, 2, ..., m$

Example:

Given

title year \rightarrow length

It's splitted form is

title \rightarrow length year \rightarrow length

- Trivial Functional Dependencies
 - A functional dependency $FD: X \to Y$ is **trivial** if Y is a subset of X

Exmaple:

title year \rightarrow title

Example 2:

 $title \rightarrow title$

- Non-trivial Functional Dependencies
 - is a case where some but not all of the attributes on the R.H.S of an FD are also on L.H.S

Example:

title year \rightarrow title movieLength

- Can be simplified using tirivial-dependency rule
 - * The FD $A_1A_2\cdots A_n\to B_1B_2\cdots B_m$ is equivalent to $A_1A_2\cdots A_n\to C_1C_2\cdots C_k$

where C's are all those B's that are not in A's.

Figure 3.3: The trivial-dependency rule

- Computing the Clousre of Attributes
 - Closure of attribute set $\{X\}$ is denoted as $\{X\}^+$.
 - The closure means a given set of attributes A satisfying FD, are a sets of all attributes B such that $A \to B$

Example:

Given attributes A, B, C, D, E, F and FDs $AB \to C, BC \to AD, D \to E$ and $CF \to B$, What is the closure of $\{A, B\}$ or $\{A, B\}^+$

- 1. Start with $\{A, B\}$.
- 2. Split $BC \to AD$
 - * We have $BC \to A$ and BCtoD
 - * Since A is in $\{A, B\}$, this is not included
 - * Since D is not in $\{A, B\}$, this IS included

So, we have $\{A, B, D\}$

- 3. Since C in $AB \to C$ is NOT in $\{A, B, C, D\}$, C is included and we have $\{A, B, C, D\}$
- 4. Since A in $BC \to A$ is in $\{A, B, C, D\}$, this is skipped
- 5. Since E is not in $D \to E$, E is included and we have $\{A, B, C, D, E\}$ as our solution
- Why the Closure Algorithm Works
- Transitive Rule
 - Definition

If
$$A_1A_2 \cdots A_n \to B_1B_2 \cdots B_m$$
 and $B_1B_2 \cdots B_m \to C_1C_2 \cdots C_k$ hold in relation $R, A_1A_2 \cdots A_n \to C_1C_2 \cdots C_k$ also holds in R .

Example:

Given

title year \rightarrow studioName studioName \rightarrow studioAddr

Transitive rule says the above is equal to the following

title year \rightarrow studioAddr

- Inference Rules
 - Is allso called Armstrong's Axioms
 - Has 3 axioms
 - 1. Reflexivity

* If
$$\{B_1, B_2, ..., B_n\} \subseteq \{A_1, A_2, ..., A_n\}$$
 then $A_1 A_2 \cdots A_n \to B_1 B_2 \cdots B_m$

- * also called **trivial FDs**
- 2. Augmentation

* If
$$A_1 A_2 \cdots A_n \to B_1 B_2 \cdots B_m$$

then $A_1 A_2 \cdots A_n C_1 C_2 \cdots C_k \to B_1 B_2 \cdots B_m C_1 C_2 \cdots C_k$

- * $C_1C_2\cdots C_k$ are any set of attributes
- 3. Transitivity

* If
$$A_1A_2\cdots A_n \to B_1B_2\cdots B_m$$
 and $B_1B_2\cdots B_m \to C_1C_2\cdots C_k$
then $A_1A-2\cdots A_n \to C_1C_2\cdots C_k$

b) A, B is the only key of R.

Notes:

- Key of Attributes
 - **Definition:** A set of attributes $\{A_1, A_2, \cdots, A_n\}$ is a key for a relation R if
 - 1. Those attributes functionally determine all other attributes

- 2. No proper subset of $\{A_1, A_2, ..., A_n\}$ functionally determines all other attributes of R.
- c) The superkeys that are not keys are: $\{A, B, C\}$, $\{A, B, D\}$, $\{A, B, C, D\}$
- 3. i) a) $\{A\}^+=\{A,B,C,D\}$, so we have $A\to A,\,A\to B,\,A\to C,\,A\to D$ $\{B\}^+=\{C,D\}, \text{ so we have }B\to C \text{ and }B\to D$
 - b) $\{A\}$ is the key of S.
 - c) The super keys that are not keys are:

$${A, B}, {A, C}, {A, D}, {A, B, C}, {A, B, D}, {A, B, C, D}$$

- ii) a) $\{A\}^+ = \{A\}$, so this FD is trivial.
 - $\{B\}^+ = \{B\}$, so this FD is trivial.
 - $\{C\}^+ = \{C\}$, so this FD is trivial.
 - $\{D\}^+ = \{D\}$, so this FD is trivial.
 - $\{A,B\}^+ = \{A,B,C,D\}$, so we have $AB \to A$, $AB \to B$, $AB \to C$, $AB \to D$
 - $\{A,C\}^+ = \{A,C\}$, so we have $AC \to A$, $AC \to C$
 - $\{A,D\}^+ = \{A,D,B\}$, so we have $AD \to A$, $AD \to D$, $AD \to B$
 - $\{B,C\}^+=\{B,C,D,A\},$ so we have $BC\to A,\,BC\to B,\,BC\to C,\,BC\to D$
 - $\{D,C\}^+ = \{D,C,A,B\}, \, \text{so we have} \,\, DC \to D, \, DC \to C, \, DC \to A, \, DC \to B$
 - $\{A,B,C\}^+=\{A,B,C,D\}$, so we have $ABC\to A$, $ABC\to B$, $ABC\to C$, $ABC\to D$
 - $\{B,C,D\}^+=\{B,C,D,A\}$, so we have $BCD\to A,\ BCD\to B,\ BCD\to C,\ BCD\to D$
 - $\{C,D,A\}^+=\{C,D,A,B\},$ so we have $CDA\to A,\ CDA\to B,\ CDA\to C,\ CDA\to D$
 - $\{D,A,B\}^+=\{D,A,B,C\}$, so we have $DAB\to A,\ DAB\to B,\ DAB\to C,\ DAB\to D$
 - $\{D,A,B\}^+=\{D,A,B,C\},$ so we have $DAB\to A,\ DAB\to B,\ DAB\to C,\ DAB\to D$
 - ${A, B, C, D}^+ = {A, B, C, D}$, so this FD is trivial.

- b) $\{A, B\}$, $\{A, C\}$, $\{B, C\}$, $\{D, C\}$ are the keys of T.
- c) The super keys that are not keys are:

$${A,B,C}, {A,B,D}, {B,C,D}, {A,D,C}, {A,B,D}, {A,B,C,D}$$

iii) a)
$$\{A\}^+ = \{A, B, C, D\}$$
, so we have $A \to C, A \to D$

$$\{B\}^+ = \{A, B, C, D\}$$
, so we have $B \to A, B \to D$

$$\{C\}^+ = \{A, B, C, D\}$$
, so we have $C \to A, C \to B$

$$\{D\}^+ = \{A, B, C, D\}$$
, so we have $D \to B$, $D \to C$

$$\{A,B\}^+ = \{A,B,C,D\}$$
, so we have $AB \to C$, $AB \to D$

$$\{B,C\}^+ = \{A,B,C,D\}$$
, so we have $BC \to A$, $BC \to D$

$$\{B,D\}^+ = \{A,B,C,D\}$$
, so we have $BD \to A,\,BD \to C$

$$\{C,D\}^+ = \{A,B,C,D\}$$
, so we have $CD \to A, CD \to B$

$$\{C,D\}^+ = \{A,B,C,D\}$$
, so we have $CD \to A, CD \to B$

$$\{A,B,C\}^+ = \{A,B,C,D\}$$
, so we have $ABC \to D$

$$\{B,C,D\}^+=\{A,B,C,D\}$$
, so we have $BCD\to A$

$$\{C, D, A\}^+ = \{A, B, C, D\}$$
, so we have $CDA \rightarrow B$

$$\{D,A,B\}^+ = \{A,B,C,D\}$$
, so we have $DAB \to C$

Correct Solution:

$$\{A\}^+ = \{A, B, C, D\}$$
, so we have $A \to C$, $A \to D$

$$\{B\}^+ = \{A, B, C, D\}$$
, so we have $B \to A$, $B \to D$

$$\{C\}^+ = \{A, B, C, D\}$$
, so we have $C \to A, C \to B$

$$\{D\}^+ = \{A,B,C,D\}$$
, so we have $D \to B,\, D \to C$

$$\{A,B\}^+ = \{A,B,C,D\}$$
, so we have $AB \to C$, $AB \to D$

$$\{A,C\}^+=\{A,B,C,D\},$$
 so we have $AC\to B,\,AC\to D$

$$\{A,D\}^+ = \{A,B,C,D\}$$
, so we have $AD \to B$, $AD \to C$

$$\{B,C\}^+ = \{A,B,C,D\}$$
, so we have $BC \to A,\,BC \to D$

$$\{B,D\}^+ = \{A,B,C,D\}$$
, so we have $BD \to A$, $BD \to C$

$$\{C,D\}^+=\{A,B,C,D\}$$
, so we have $CD\to A$, $CD\to B$ $\{A,B,C\}^+=\{A,B,C,D\}$, so we have $ABC\to D$ $\{B,C,D\}^+=\{A,B,C,D\}$, so we have $BCD\to A$ $\{C,D,A\}^+=\{A,B,C,D\}$, so we have $CDA\to B$ $\{D,A,B\}^+=\{A,B,C,D\}$, so we have $DAB\to C$

- b) $\{A\}, \{B\}, \{C\}, \{D\}$ are the keys of U.
- c) The super keys that are not keys are:

$$\{A,B\}, \{A,C\}, \{A,D\}, \{B,C\}, \ \{B,D\}, \{C,D\}, \ \{A,B,C\}, \ \{B,C,D\}, \ \{C,D,A\}, \{D,A,B\}. \ \{A,B,C,D\}$$

4. a) We need to show the closure of attributes $\{A_1, A_2, \dots, A_n, C\}$ in $FD\ A_1, A_2, \dots, A_n, C \to B$ is $\{A_1, A_2, \dots, A_n, C, B\}$, that is $\{A_1, A_2, \dots, A_n, C\}^+ = \{A_1, A_2, \dots, A_n, C, B\}$

Since we know $\{A_1, A_2, \dots, A_n\}$ functionally determines B, we can conclude B can be added to $\{A_1, A_2, \dots, A_n, C\}$.

Thus, it follows from above that $\{A_1, A_2, \dots, A_n, C\}^+ = \{A_1, A_2, \dots, A_n, C, B\}$.

b) Let $A_1A_2\cdots A_n\to B$ is FD. That is, $\{A_1A_2\cdots A_n\}^+=\{A_1A_2\cdots A_n,B\}$

We need to show $A_1A_2\cdots A_nC\to BC$ follows. That is, $\{A_1,A_2,\cdots,A_n,C\}^+=\{A_1,A_2,\cdots,A_n,C,B\}$

It follows from the combine and split rule that $A_1A_2\cdots A_nC\to BC$ can be splitted into $A_1A_2\cdots A_nC\to B$ and $A_1A_2\cdots A_nC\to C$.

So, we need to show $A_1A_2\cdots A_nC\to B$ and $A_1A_2\cdots ,A_nC\to C$ follows from the given.

We will do so in parts.

1. Part 1 (Showing $A_1A_2\cdots A_nC\to B$):

Here, we need to show $A_1A_2\cdots A_nC\to B$ follows.

And indeed, this follows from the work of *augmenting left sides*. That is the solution to previous problem.

2. Part 2 (Showing $A_1A_2\cdots A_nC\to C$):

Here, we need to show $A_1A_2\cdots A_nC\to C$ follows.

The definition of trivial FD tells us $A_1A_2 \cdots A_n \to B_1B_2 \cdots B_m$ holds when $\{B_1, B_2, \cdots, B_m\} \subseteq \{A_1, A_2, \cdots, A_n\}$

Since $\{C\}\subseteq\{A_1,A_2\cdots,A_n,C\}$, we can conclude this FD follows trivially.

c) Let $A_1A_2\cdots A_n\to B_1B_2\cdots B_m$ and $C_1C_2\cdots C_k\to D$, where B are each among the C's.

We need to show $A_1A_2\cdots A_nE_1E_2\cdots E_j\to D$ follows, where the E's are all of those C's not found among the B's.

The transitive rule tells us if $A_1A_2 \cdots A_n \to B_1B_2 \cdots B_m$ and $B_1B_2 \cdots B_m \to C_1C_2 \cdots C_k$, then $A_1A_2 \cdots A_n \to C_1C_2 \cdots C_k$ also holds in R.

Since we know $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ and $C_1C_2\cdots C_k \to D$ where B's are each among the C's, we can conclude from the transitive rule that $A_1A_2\cdots A_n \to D$.

Then using **augmenting left sides** to all C's not found among the B's on $A_1A_2 \cdots A_n \to D$, we can conclude $A_1A_2 \cdots A_nE_1E_2 \cdots E_j \to D$ follows.

d) Rough Work:

Assume FD's $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ and $C_1C_2\ldots C_k \to D_1D_2\cdots D_j$ holds.

We need to show FD $A_1A_2 \cdots A_nC_1C_2 \cdots C_k \to B_1B_2 \cdots B_mD_1D_2 \cdots D_k$ follows.

1. Using split combine rule, split $A_1A_2\cdots A_nC_1C_2\cdots C_k \to B_1B_2\cdots B_mD_1D_2\cdots D_k$ into $A_1A_2\cdots A_nC_1C_2\cdots C_k \to B_1B_2\cdots B_m$ and $A_1A_2\cdots A_nC_1C_2\cdots C_k \to D_1D_2\cdots D_k$

The split / combine rule tells us showing $A_1A_2\cdots A_nC_1C_2\cdots C_k\to B_1B_2\cdots B_mD_1D_2\cdots D_k$ is the same as showing $A_1A_2\cdots A_nC_1C_2\cdots C_k\to B_1B_2\cdots B_m$ and $A_1A_2\cdots A_nC_1C_2\cdots C_k\to D_1D_2\cdots D_k$

So, we will prove the two, in parts

1. Show $A_1A_2\cdots A_nC_1C_2\cdots C_k\to B_1B_2\cdots B_m$ follows

Here, we need to show $A_1A_2\cdots A_nC_1C_2\cdots C_k\to B_1B_2\cdots B_m$ follows.

2. Show $A_1A_2\cdots A_nC_1C_2\cdots C_k\to D_1D_2\cdots D_k$ follows