

XXXX

\underline{XXXXX}

学院	
专业	
学号。	
姓名	

2025年8月24日

摘要

XXXXX **关键词:** XXX

目录

1	goal		1
	1.1	solve computational problems	1
	1.2	prove correctness	1
	1.3	argue efficiency	1
2	Wha	at is a computational problem?	1
3	Wha	at is an algorithm?	1
4	RAN	Л	1

XXX

1 goal

1.1 solve computational problems

解决计算问题

1.2 prove correctness

证明算法的正确性

1.3 argue efficiency

论证算法的效率 Don't measure time, measure the number of operations. Use asymptotic analysis(渐 进分析), which O(n) means the upper bounds, $\Omega(n)$ means the lower bounds, and $\Theta(n)$ for both. O Notation: Non-negative function(非负函数) g(n) is in O(f(n)) if and only if there exists a positive real number c and positive integer n_0 such that $g(n) \leq c \cdot f(n)$, for all $n > n_0$. Ω Notation: Non-negative function g(n) is in $\Omega(f(n))$ if and only if there exists a positive real number c and positive integer n_0 such that

$$c \cdot f(n) \le g(n)$$
 for all $n \ge n_0$.

 Θ Notation: Non-negative function g(n) is in $\Theta(f(n))$ if and only if $g(n) \in O(f(n)) \cap \Omega(f(n))$.

2 What is a computational problem?

Some kind of predict, say that we can check. If given a input and output, we can check whether the output is correct for the input.

3 What is an algorithm?

some kind of functions that takes these inputs, maps(映射) it to a single output, and that output better be correct based on the problem.

4 RAM

Random access memory(RAM) means that we can randomly access different places in memory in constant time.(RAM 提供了常数时间的随机访问能力,使得我们可以直接跳到任意内存地址,而不需要顺序扫描)