

Introduction to single cell RNA sequencing and analysis

Kelsy Cotto, Malachi Griffith, Obi Griffith, Evelyn Schmidt, Kartik Singhal, Zach Skidmore CRI Bioinformatics Workshop. May 17-22, 2025

Acknowledgements

- Jon Preall, CSHL, SEQTEC
- Jennifer Foltz, Washington University, Genomics in Medicine
- Trevor Pugh, PMH, OICR, CBW
- Allegra Petti, MGH/Harvard
- Brian Haas, Broad Institute

Single-cell omics - A new paradigm in biology and medicine?

- Redefine "cell type"
 - Catalog known cell types in healthy and diseased tissues
 - Define/discover new cell types
- Redefine relationships between cells
- Interpret genetic variation at single-cell resolution
- And much more...

Discussion of bulk vs single cell RNA-seq

Factors to compare: Cost, complexity of library prep, complexity of analysis, qualitative and quantitative differences in richness of information obtained.

Fruit salad or tip of the iceberg?

scRNA

Multimodal single-cell measurements

- scRNA/snRNA
- CITE-seq
- TCR sequencing
- scATAC-seq
- scMethyl-seq
- TARGET-seq, G&T-seq (scDNA & scRNA)
- scCRISPRi/Perturb-seq
- Patch-seq
- Spatial transcriptomics

Kelsey et al. Science 2017

Cell type vs cell lineage vs cell state

https://www.science.org/doi/10.1126/science.aar3131

Basic overview of single cell RNA analysis

Multiple platforms have emerged ... Each with trade-offs...

PMC7289686

Plate-based vs Droplet-based

Multiple platforms have emerged ... Each with trade-offs...

Additional considerations

- Size of cells
- Expected % of cell population of interest
- Depth of detection needed for experimental question
- Accessibility

Intro to 10X approach

Intro to 10X approach

10X Approach (5')

10X Approach (5' v2)

Pooled amplified cDNA processed in bulk

10X Single Cell 5' GEX and V(D)J dual index libraries

Chromium Single Cell 5' Gene Expression Dual Index Library

3' vs 5' approach - polyT and TSO switch places

Inside individual GEMs

3' vs 5' approach - Fragmentation and PCR steps result in different ends of transcripts being kept

3' vs 5' approach results in different end bias

PMC6694122

Fig1b. Petti et al. 2019. Nat Comm

3' vs 5' approach

- Both require polyA transcripts
- Both involve end bias (choose 3' or 5')
 - 5' coverage more evenly distributed?
- Only 5' approach is compatible with V(D)J enrichment
 - Because business end of V(D)J transcript is at 5' followed by large C region at 3' end
 - In order to amplify TCR from 3' 10X library you would need very large fragments and would have to design primers off the variable V genes instead of constant C gene

21

Overview of 10x genomics pipeline

How deeply do you need to sequence?

General Rule: Achieve 90% saturation

Official Recommendations (reads/cell):

3' - V3: 20K

3' - V2: 50K

5' - 20K

5' with variant discovery - 200K

5' V(D)J - 5K

Fixed RNA: 10K

Example application: Increased capacity and new technologies are allowing study of previously inaccessible tumor types

• Hodgkins Lymphoma - has remained a challenge because HRS cells account for $^{\sim}1-5\%$ of cells in the tumor tissue.

- Isolate HRS cells and then apply genomic techniques
 - Flow sorting very challenging cell type
 - Laser capture microdissection extremely low inputs for sequencing
- Handful of cell lines have been profiled
- Almost no genome-wide sequencing data exists

Todd Fehniger

Felicia Gomez

Brute force strategy - Ultra Deep Exome sequencing of 31 Hodgkins tumor/normal pairs

- IDT Exome capture reagent
- Three KAPA libraries were constructed/sample
- Libraries were sequenced across eight lanes of an Illumina HiSeq
- Somatic Variant Calling
 - SNV were called using 5 variant callers
 - Indels were called using 4 variant callers
- Target depth ~1000x
- Validation with targeted Haloplex technology

High coverage and concordance achieved

- ~1000X coverage achieved
- High VAF concordance between WES and haloplex validation
- Overall variant validation rate >90%
- Mean mutation burden = 33 protein-coding variants
 - One hypermutator 3,160 variants

Represents one of the few comprehensive surveys of HL - mutation landscape reveals known and novel genes/pathways/hotspots

- ~50 genes have mutations in 3 or more samples
- JAK/STAT SOCS1 & STAT6
- NFKB TNFAIP3 & XPO1
- SWI/SNF BCL7A & SMAD3
- *PCDH7, IGLL5, CDH5, ...*

27

Single nucleus sequencing identifies mutant-positive HRS cells

RESEARCH ARTICLE

https://doi.org/10.1158/2767-9764.CRC-23-0140

OPEN ACCESS

Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma

29

Felicia Gomez^{1,2,3}, Bryan Fisk^{1,2}, Joshua F. McMichael², Matthew Mosior^{1,2}, Jennifer A. Foltz¹, Zachary L. Skidmore^{1,2}, Eric J. Duncavage⁴, Christopher A. Miller^{1,2}, Haley Abel^{1,2}, Yi-Shan Li⁴, David A. Russler-Germain¹, Kilannin Krysiak^{1,2,3,4}, Marcus P. Watkins¹, Cody A. Ramirez^{1,2}, Alina Schmidt^{1,2}, Fernanda Martins Rodrigues^{1,2}, Lee Trani², Ajay Khanna¹, Julia A. Wagner¹, Robert S. Fulton², Catrina C. Fronick², Michelle D. O'Laughlin², Timothy Schappe¹, Amanda F. Cashen¹, Neha Mehta-Shah¹, Brad S. Kahl¹, Jason Walker², Nancy L. Bartlett¹, Malachi Griffith^{1,2,3,5}, Todd A. Fehniger^{1,3}, and Obi L. Griffith^{1,2,3,5}

Introduction to scRNA dataset for hands-on exercises

https://rnabio.org/module-08-scrna/0008/01/02/scRNA_Data/

Includes brief demo of CellRanger QC Reports and Loupe Browser