DS 8 : Chimie & Électromagnétisme Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-20	Étude de l'alliage 2024		
01-09	Analyse chimique de l'alliage		
01-07	Première phase : Séparation du cuivre et de l'aluminium		
1	La réaction se passe à la surface de l'alliage; avec un alliage en poudre, on augmente la surface de contact et donc la vitesse de réaction.	1	
2	On écrit les degrés d'oxydation et les réactions acido-basiques puis on place les espèces.	1	
3	A l'apparition du précipité solide, l'équilibre est vérifié donc on peut écrire le produit de solubilité $K_s = [Al^{3+}][HO^-]^3$, or $K_s = 10^{-32}$ et $[Al^{3+}] = 10^{-2}$ mol/L donc $[HO^-] = 10^{-10}$ mol/L donc $pH = 4$.	1	
4	Écrivons la demi-équation d'oxydo-réduction : $ 2\mathrm{Cu}_{(aq)}^{2+} + \mathrm{H}_2\mathrm{O}_{(l)} + 2\mathrm{e}^- = \mathrm{Cu}_2\mathrm{O}_{(s)} = \mathrm{Cu}_2\mathrm{O}_{(s)} + 2\mathrm{H}^+ $ La formule de Nernst associée : $ E = E^\circ + \frac{0,06V}{2} \log \left(\frac{[Cu^{2+}]^2}{[H^+]^2} \right) $ donc la pente est de $+0,06$ V/pH	1	
5	En milieu très basique, l'élément aluminium se trouve dans un composé ionique en solution alors que le cuivre est sous forme solide. ${\rm Al}_{(s)} + {\rm H_2O}_{(l)} + {\rm HO}_{(aq)}^- = \frac{3}{2} {\rm H_{2(g)}} + {\rm AlO}_{(aq)}^-$	1	
6	En milieu neutre, il se serait formé de l'hydroxyde d'aluminium solide qu'il aurait été difficile de séparer du cuivre solide.	1	
7	On peut ainsi espérer accélérer la réaction	1	

08-08	Deuxième phase : Dissolution du cuivre		
8	On écrit les demi-équations : $Cu_{(s)} = Cu_{(aq)}^{2+} + 2e^{-}$ et	1	
	$NO_{3(aq)}^{-}+4H^{+}+3e^{-} = NO_{(g)}+2H_{2}O_{(l)}$ On équilibre avec		
	$3Cu_{(s)}^{-} + 2NO_{3(aq)}^{-} + 8H^{+} = 3Cu_{(aq)}^{2+} + 2NO_{(g)} + 4H_{2}O_{(l)}$		
09-10	Troisième phase : Dosage du cuivre dans l'alliage		
9	On a les potentiels pour les deux demi-couples $S_4O_{6(aq)}^{2-} + 2e^- = 2S_2O_{3(aq)}^{2-}$, E_1 et	1	
	$I_{2(aq)} + 2e^- = 2I_{(aq)}^-, E_2$ à l'équilibre $E_1 = E_2$ donc en écrivant la formule de Nernst on a $\frac{RT}{2F} \ln K = E_2^{\circ} - E_1^{\circ}$ d'où $K = \exp\left(\frac{2F(E_2^{\circ} - E_1^{\circ})}{RT}\right) = 2.10^{18}$		
10	$n(S_2O_3^{2-})_{verse}=2n(I_2)_{initial}$ d'après un tableau d'avancement de la réaction de titrage quasi-totale de R3. De même d'après R2, on a $n(Cu)_{init}=2n(I_2)_{formé}$ donc $n(Cu)_{init}=n(S_2O_3^{2-})_{verse}=C.V_{eq}$ donc $m_{Cu}=M_{Cu}CV_{eq}=40$ mg donc un pourcentage massique de 4%	1	
11-26	Modélisation de la corrosion		
11-13	État de surface des métaux		
11	$\Delta_r H^\circ = -1700 \text{ kJ/mol}$, la réaction est exothermique $\Delta_r S^\circ = 51 - 2 \times 27 - \frac{3}{2} \times 205 \text{ J/(K.mol)} = -310 \text{J/(K.mol)}$, le signe est négatif en effet les espèces gazeuses sont des réactifs. $\Delta_r G^\circ = -1700 + 298 \times 0,310 \text{ kJ/mol} = -1607 \text{ kJ/mol}$, le signe est négatif, la constante d'équilibre est grande devant 1.	1	
12	La constante d'équilibre vaut $K^{\circ} = \exp\left(-\frac{\Delta_r G^{\circ}}{RT}\right) = e^{7.10^2} \gg 1$ Le quotient de réaction vaut $Q_r = \left(\frac{p^{\circ}}{p_{O_2}}\right)^{3/2} = 11$ Donc $Q_r < K^{\circ}$ la réaction se fait dans le sens direct, l'aluminium s'oxyde.	1	

13	Loi de Van't Hoff, la réaction est exothermique donc une baisse	1	
	de la température déplace l'équilibre dans le sens direct.		
	Principe de le Châtelier une augmentation de la pression déplace		
	l'équilibre dans le sens direct de consommation des espèces ga- zeuses.		
	Bonus 1 : en calculant la constante d'équilibre les valeurs de pres-		
	sion et de température demandée pour observer une variation si-		
	gnificative de l'état final sont inatteignables.		
	Bonus 2 : la variance est ici de 1 (2 facteurs d'équilibre p,T et 1		
	équilibre chimique $K = Q_r$) donc si on change p et T on a alors		
	une rupture d'équilibre et non un déplacement d'équilibre.		
14-14	Corrosion galvanique		
14	On obtient sur la première courbe i-E l'existence d'un potentiel	1	
14	mixte avec courant de corrosion non nul (faire un schéma), pour :	1	
	l'oxydation de l'aluminium sur l'aluminium solide jouant le rôle		
	d'anode,		
	et la réduction du O_2 sur le cuivre solide jouant le rôle de cathode.		
15-16	Dissolution de l'oxyde de cuivre(I)		
15	$2Cu_{(aq)}^{2+} + H_2O_{(l)} + 2e^- = Cu_2O_{(s)} + 2H^+$	1	
	et $O_{2(g)}^{(aq)} + 4H^+ + 4e^- = 2H_2O_{(l)}$		
	On équilibre pour $2Cu_2O_{(s)} + 8H^+ + O_{2(g)} = 4Cu_{(aq)}^{2+} + 4H_2O_{(l)}$		
16	Plus le milieu est acide, plus la concentration en ion H ⁺ est grande,	1	
	or c'est un réactif donc par loi de modération l'équilibre est déplacé		
	dans le sens direct donc les ions $Cu_{(aq)}^{2+}$ sont formés.		
17-17	Redéposition du cuivre		
17	À partir des courbes fournies, on peut définir un potentiel mixte	1	
	et l'existence d'un courant de corrosion et d'un dépôt de cuivre		
	solide à la surface de l'aluminium.		
18-20	Protection contre la corrosion		
18	Phase a : on observe tout d'abord l'oxydation de l'aluminium en	1	
	ions aluminium Al_{aq}^{3+} et un courant anodique important.		
	Phase b : on observe un phénomène de passivation ; une fois l'ion		
	aluminium formé en quantité suffisante, le précipité de $Al_2O_{3(s)}$ se		
	forme et passive la plaque d'aluminium ce qui entraîne une chute		
	brutale de l'intensité de corrosion. Phase c : l'intensité résiduelle s'explique peut-être par une passiva-		
1	1 Hase C. I intensite residuene's explique peut-ette par une passiva-	I	1
	tion imparfaite avec une couche d'alumine légèrement perméable.		

19	Pour augmenter le dépôt d'alumine, il faut oxyder l'aluminium so- lide (passage du degré d'oxydation 0 au degré d'oxydation III), les électrons doivent quitter la plaque d'aluminium solide. La plaque d'aluminium doit donc être reliée au pôle positif du générateur.	1	
20	Pour un potentiel de l'électrode d'aluminium à -0,25 V par rapport à l'électrode de référence, on mesure une densité de courant j = $150~\mu A.cm^{-2}$. Et la réaction d'oxydation échange 6 mole d'électron pour chaque mole d'alumine déposée $(2Al + 3H_2O = Al_2O_3 + 6H^+ + 6e^-)$ $d = \frac{m_{Al_2O_3}}{\rho_{Al_2O_3}S} = \frac{n_{Al_2O_3}M_{Al_2O_3}}{\rho_{Al_2O_3}S} = \frac{nM_{Al_2O_3}}{6\rho_{Al_2O_3}S} = \frac{qM_{Al_2O_3}}{6F\rho_{Al_2O_3}S} = \frac{i\Delta t M_{Al_2O_3}}{6\rho_{Al_2O_3}S} = 0,24~\mu m$	1	
21-28	Électromagnétisme et relativité		
21	$ec{F} = q(ec{E} + ec{v} \wedge ec{B})$	1	
22	$ \vec{v} = \vec{v'} + \vec{v_e} $ $ \vec{F} = q(\vec{E} + \vec{v} \wedge \vec{B}) = q(\vec{E'} + \vec{v'} \wedge \vec{B'}) $	1	
	$\vec{E} + \vec{v} \wedge \vec{B} = \vec{E'} + \vec{v} \wedge \vec{B'} - \vec{v_e} \wedge \vec{B'}$ en choisissant $\vec{v} = \vec{0}$ on a la première relation, puis on en déduit la seconde.		
24	Dans R' le fil est statique et il n'y a pas de courant. On en déduit $\vec{B'} = \vec{0}$ et donc $\vec{B} = \vec{0}$ d'après ce qui précède.	1	
25	La situation est invariante par translation selon $\vec{e_z}$ donc $E(M)$ ne dépend pas de z et par rotation autour de (Oz) donc $E(M)$ ne dépend pas de θ , ainsi que par symétrie par $(M, \vec{u}_r, \vec{u}_\theta)$ et $(M, \vec{u}_r, \vec{u}_z)$ le champ est dirigé selon \vec{u}_r . On a donc un champ $\vec{E} = E(r)\vec{u}_r$. On prend comme surface de Gauss un cylindre de rayon r et de hauteur h . La charge intérieure Q_{int} vaut $Q_{int} = \pi a^2 \rho_f h$, et le flux de \vec{E} vaut $E(r).2\pi rh$. L'application du théorème de Gauss $\oiint \vec{E}.\vec{dS} = \frac{Q_{int}}{\epsilon_0}$ donne : $E(r) = \frac{a^2 \rho_f}{2r\epsilon_0}$, soit : $\vec{E'} = \frac{a^2 \rho_f}{2r\epsilon_0}\vec{u}_r$. On a par ailleurs $\vec{E'} = \vec{E}$.	1	

26	On a $I = \frac{dq}{dt} = \lambda \frac{dz}{dt} = \lambda V_e$.	1	
	dt dt La situation magnétostatique présente les mêmes invariances par		
	rotation et translation donc $B(M)$ ne dépend que de r , ainsi		
	qu'une invariance par symétrie par $(M, \vec{u}_r, \vec{u}_z)$ donc \vec{B} est selon		
	\vec{u}_{θ} . On a donc $\vec{B} = B(r)\vec{u}_{\theta}$. On prend comme contour d'Ampère		
	un cercle de rayon r , et le théorème D'Ampère $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_e$		
	donne :		
	$B(r) = \frac{\mu_0 I}{2\pi r}$.		
	Soit $\vec{B} = \frac{\mu_0 I}{2\pi r} \vec{u}_{\theta}$.		
	C'est incompatible avec le résultat précédent : les lois de la méca-		
	nique classique ne sont pas applicables.		
27	$\vec{E}'_{\parallel} = \vec{0}$, donc $\vec{E} = \gamma \vec{E}' = \gamma \frac{a^2 \rho_f}{2r\epsilon_0} \vec{u}_r$. Par ailleurs	1	
	$\vec{B} = \gamma \frac{v_e}{c^2} \vec{u}_z \wedge \frac{a^2 \rho_f}{2h\epsilon_0} \vec{u}_r = \gamma \mu_0 v_e \frac{a^2 \rho_f}{2r} \vec{u}_\theta$. Le dernier terme corres-		
	pondant à $\frac{\lambda_f}{2\pi}$ on retrouve l'expression précédente à un facteur γ		
	près.		
28	Pour retrouver les résultats par calcul direct il faut une densité de	1	
	charge $\lambda = \gamma \lambda_f$. Comme $\gamma > 1$, cela correspond à une contraction		
	des longueurs.		
29-50	Un modèle de l'indice de réfraction		
29-50 29-36	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane		
29-36	Un modèle de l'indice de réfraction		
	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane		
29-36	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de	1	
29-36 29-32	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et	1	
29-36 29-32	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e_y}$. Par ailleurs, le système est invariant par trans-	1	
29-36 29-32	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e_y}$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z.	1	
29-36 29-32	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z. Le plan $z=0$ est également un plan de symétrie : sur ce plan le	1	
29-36 29-32	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z. Le plan $z=0$ est également un plan de symétrie : sur ce plan le champ \vec{B} doit donc être parallèle à \vec{e}_z . Comme il doit aussi être	1	
29-36 29-32 29	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z. Le plan $z=0$ est également un plan de symétrie : sur ce plan le champ \vec{B} doit donc être parallèle à \vec{e}_z . Comme il doit aussi être parallèle à \vec{e}_x , il est nul : $\vec{B}(z=0)=\vec{0}$		
29-36 29-32	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z. Le plan $z=0$ est également un plan de symétrie : sur ce plan le champ \vec{B} doit donc être parallèle à \vec{e}_z . Comme il doit aussi être parallèle à \vec{e}_x , il est nul : $\vec{B}(z=0)=\vec{0}$ Analyse des invariances par translation selon \vec{e}_x et \vec{e}_y donc	1	
29-36 29-32 29	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z. Le plan $z=0$ est également un plan de symétrie : sur ce plan le champ \vec{B} doit donc être parallèle à \vec{e}_z . Comme il doit aussi être parallèle à \vec{e}_x , il est nul : $\vec{B}(z=0)=\vec{0}$ Analyse des invariances par translation selon \vec{e}_x et \vec{e}_y donc $\vec{B}(M)=B(z)\vec{e}_y$. Puis on applique le théorème d'Ampère sur un		
29-36 29-32 29	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z. Le plan $z=0$ est également un plan de symétrie : sur ce plan le champ \vec{B} doit donc être parallèle à \vec{e}_z . Comme il doit aussi être parallèle à \vec{e}_x , il est nul : $\vec{B}(z=0)=\vec{0}$ Analyse des invariances par translation selon \vec{e}_x et \vec{e}_y donc $\vec{B}(M)=B(z)\vec{e}_y$. Puis on applique le théorème d'Ampère sur un rectangle dans le plan horizontal (Myz) avec un côté de coordon-		
29-36 29-32 29	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z. Le plan $z=0$ est également un plan de symétrie : sur ce plan le champ \vec{B} doit donc être parallèle à \vec{e}_z . Comme il doit aussi être parallèle à \vec{e}_x , il est nul : $\vec{B}(z=0)=\vec{0}$ Analyse des invariances par translation selon \vec{e}_x et \vec{e}_y donc $\vec{B}(M)=B(z)\vec{e}_y$. Puis on applique le théorème d'Ampère sur un rectangle dans le plan horizontal (Myz) avec un côté de coordonnée $z=0$ et deux côté perpendiculaire à \vec{e}_y .		
29-36 29-32 29	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de B . Le plan B 0 est également un plan de symétrie : sur ce plan le champ B 1 doit donc être parallèle à B 2. Comme il doit aussi être parallèle à B 3, il est nul : B 4 (B 5) = B 5 Analyse des invariances par translation selon B 5, et B 6 donc B 6. Puis on applique le théorème d'Ampère sur un rectangle dans le plan horizontal (Myz) avec un côté de coordonnée B 6 et deux côté perpendiculaire à B 6. Pour B 8 et deux côté perpendiculaire à B 9. Pour B 8 et deux côté perpendiculaire à B 9.		
29-36 29-32 29	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de z . Le plan $z=0$ est également un plan de symétrie : sur ce plan le champ \vec{B} doit donc être parallèle à \vec{e}_z . Comme il doit aussi être parallèle à \vec{e}_x , il est nul : $\vec{B}(z=0)=\vec{0}$ Analyse des invariances par translation selon \vec{e}_x et \vec{e}_y donc $\vec{B}(M)=B(z)\vec{e}_y$. Puis on applique le théorème d'Ampère sur un rectangle dans le plan horizontal (Myz) avec un côté de coordonnée $z=0$ et deux côté perpendiculaire à \vec{e}_y . pour $ z < a/2$ le courant enlacé dépend linéairement avec z , on trouve $\vec{B}=-\mu_0 J_0 z \vec{e}_y$ et pour $ z >a/2$ le courant enlacé ne varie		
29-36 29-32 29	Un modèle de l'indice de réfraction Champs électromagnétiques créés par une nappe plane de courant Champ statique Pour un point M quelconque, le plan (Mxz) est un plan de symétrie : le champ \vec{B} est donc perpendiculaire à ce plan et $\vec{B}(M) = B(M)\vec{e}_y$. Par ailleurs, le système est invariant par translation selon Ox et selon Oy : le champ B ne dépend que de B . Le plan B 0 est également un plan de symétrie : sur ce plan le champ B 1 doit donc être parallèle à B 2. Comme il doit aussi être parallèle à B 3, il est nul : B 4 (B 5) = B 5 Analyse des invariances par translation selon B 5, et B 6 donc B 6. Puis on applique le théorème d'Ampère sur un rectangle dans le plan horizontal (Myz) avec un côté de coordonnée B 6 et deux côté perpendiculaire à B 6. Pour B 8 et deux côté perpendiculaire à B 9. Pour B 8 et deux côté perpendiculaire à B 9.		

31	On a une distribution volumique de courant donc \vec{j} est définie et finie donc $\vec{rot}\vec{B} = \mu_0\vec{j} +$ est finie donc \vec{B} est dérivable et donc continue. pour $z > a/2$, $\vec{B} = -\mu_0 J_0 \frac{a}{2} \vec{e}_y$ pour $z < -a/2$, $\vec{B} = \mu_0 J_0 \frac{a}{2} \vec{e}_y$	1	
32	On remplace J_0a par J_s et on obtient pour $z>0, \ \vec{B}=-\mu_0\frac{J_s}{2}\vec{e}_y$ pour $z<0, \ \vec{B}=\mu_0\frac{J_s}{2}\vec{e}_y$ On a comme relation de passage $\vec{B}(z=0^+)-\vec{B}(z=0^-)=-\mu_0J_s\vec{e}_y=\mu_0J_s\vec{e}_x\wedge\vec{e}_z$	1	
33-36	Champ créé par une nappe de courant harmonique.		
33	L'approximation des régimes quasi stationnaires consiste à négliger tous la propagation, ce qui revient à ne pas tenir compte du courant de déplacement dans l'équation de Maxwell-Ampère. L'ARQS est vérifiée lorsque les temps de propagation sont très petits devant le temps caractéristique d'évolution des champs, par exemple la période T avec $\tau = \frac{d}{c} \ll T$ La nappe a une dimension infinie : le critère d'ARQS ne peut donc pas être vérifié en tout point : l'ARQS est insuffisante	1	
34	$\operatorname{div} \vec{E} = 0, \ \overrightarrow{\operatorname{rot}} \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \ \operatorname{div} \vec{B} = 0, \ \overrightarrow{\operatorname{rot}} \vec{B} = \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$ On calcule $\overrightarrow{\operatorname{rotrot}} \vec{B} = \overrightarrow{\operatorname{grad}} d \mathring{i} v \vec{B} - \triangle \vec{B} = -\Delta \vec{B}$ $= \epsilon_0 \mu_0 \overrightarrow{\operatorname{rot}} \frac{\partial \vec{E}}{\partial t} = -\epsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}$	1	
35	On trouve $\frac{d^2f}{dz^2} + \frac{\omega^2}{c^2}f = 0.$ La forme générale est $f = A \exp(i\frac{\omega}{c}z) + B \exp(-i\frac{\omega}{c}z)$ Si on considère qu'il n'y a pas de source à l'infini, les ondes doivent s'éloigner du plan. Ceci correspond à une OPPH dans le sens des croissants pour et une OPPH dans le sens des décroissants pour . On a de part et d'autre des ondes planes progressives , pour lesquelles la relation de structure d'onde plane est valide : pour $z>0$, $\vec{E}=\vec{B}\wedge(c\vec{e}_z)$, donc $\vec{E}=cA\exp(i\omega(t-\frac{z}{c}))\vec{e}_x$ pour $z<0$, $\vec{E}=\vec{B}\wedge(-c\vec{e}_z)$, donc $\vec{E}=-cA'\exp(i\omega(t+\frac{z}{c}))\vec{e}_x$	1	

36	La composante tangentielle du champ électrique est continue à une interface, par conséquent $A = -A'$,	1	
	Par ailleurs $\vec{B}(z=0^+,t) - \vec{B}(z=0^-,t) = -\mu_0 J_s \vec{e}_y$		
	donc $A - A' = -\mu_0 J_{S_0}$ donc $A = -A' = -\frac{\mu_0 J_{S_0}}{2}$		
37-42	Interaction d'une onde avec un plan d'atomes		
37-38	Mouvement de la charge élastiquement liée en régime forcé		
37	La force de Lorentz s'exerçant sur la charge $-q$ est de la forme	1	
	$ec{F} = -q\left(ec{E} + ec{v} \wedge ec{B} ight)$. En ordre de grandeur : $B \sim rac{E}{c}$. Le rapport		
	des ordres de grandeur de la force magnétique à la force électrique		
	est donc de l'ordre de $\frac{v}{c}$. Pour un électron non relativiste : $\frac{v}{c} \ll 1$:		
	la force magnétique peut être négligée.		
	Le champ en O peut être confondu avec le champ en M si $r \ll \lambda$, c'est à dire si la longueur d'onde du rayonnement est grande		
	devant les dimensions de l'atome dans lequel se déplace l 'électron.		
38	La relation fondamentale de la dynamique appliquée à la charge α^{E}	1	
	mobile donne : $-m\omega^2 \vec{r} = -q\vec{E} - m\omega_0^2 \vec{r}$, d'où $r_0 = -\frac{qE_0}{m(\omega_0^2 - \omega^2)}$		
39-40	Densité de courant surfaçique induite		
39	La densité de courant surfaçique induite est $\vec{J_s} = -qN_S\vec{v} =$	1	
	La densité de courant surfaçique induite est $\vec{J}_s = -qN_S\vec{v} = -i\omega qN_S\vec{r} = i\omega N_s \frac{q^2}{m(\omega_0^2 - \omega^2)}\vec{E}_0$ donc $\alpha_0 = \frac{q^2}{m(\omega_0^2 - \omega^2)}$		
40	Sur le plan de charges, le champ électrique créé par la distribution	1	
	de charges elle-même est : $u_{c}\vec{I}_{c}$		
	$ec{E}_{dist} = -rac{\mu_0 c J_S}{2}$		
	on a donc $\vec{J}_S = i\omega N_S \alpha_0 \vec{E}_{tot} = i\omega N_S \alpha_0 (\vec{E}_i - \frac{\mu_0 c \vec{J}_S}{2})$, donc $\vec{J}_S = i\omega N_S \alpha_0 (\vec{E}_i - \frac{\mu_0 c \vec{J}_S}{2})$		
	$\frac{i\omega N_S \alpha_0}{1 + \frac{i\omega N_S \alpha_0 \mu_0 c}{2}} \vec{E}_i \text{ et } \alpha = \frac{i\omega N_S \alpha_0}{1 + \frac{i\omega N_S \alpha_0 \mu_0 c}{2}}$		
41-42	Champ électromagnétique		
41	$\vec{E} = \vec{E}_i - i\omega \frac{\mu_0 c\alpha N_S}{2} \vec{E}_i \text{ donc } \gamma = \frac{\mu_0 \alpha N_S}{2}$	1	
42	L'onde qui se propage dans le sens $z < 0$ est uniquement due à la	1	
	distribution donc $\vec{E} = -i\omega\gamma E_{0i} \exp\left(\omega(t + \frac{z}{c})\right)\vec{e}_x$		
43-50	Modèle de propagation dans le milieu		
43-45	Interprétation qualitative de l'influence des plans sur la propagation		
43	A chaque passage par un plan, le champ incident est multiplié par	1	
	$1 - i\omega\gamma = \exp(i\omega\gamma)$ Entre les plans $z_l = la$ et $z_{l+1} = (l+1)a$,		
	l'onde a subi $l+1$ traversées de plan, donc $\vec{E} = \vec{E}_{0i} \exp(\omega(t-t)) \exp(-(l+1)i\omega x) = \vec{E}_{0i} \exp(\omega(t-t)) \exp(-(l+1)i\omega x) = \vec{E}_{0i} \exp(\omega(t-t))$ qui donne		
	$ \begin{vmatrix} \frac{z}{c} \end{pmatrix} \exp(-(l+1)i\omega\gamma) = \vec{E}_{0i} \exp(\omega(t-\frac{z}{c}+(l+1)\gamma)) , \text{ qui donne bien : } . $		
	DICH		

44	Si la longueur d'onde est grande devant a , on peut confondre z et	1	
	$(l+1)a$ dans l'expression du champ : on trouve alors $n=1+\frac{\gamma}{a}$		
45	On reconnait la vitesse de phase en écrivant le champ comme une	1	
40	fonction de $\omega(t-\frac{z}{v_{\phi}})$ avec $v_{\phi}=\frac{c}{n}$, avec n l'indice de réfraction.	1	
	$\epsilon \phi$		
	minimum de déviation, compensation de la différence de marche		
	dans un interféromètre de michelson réglé en lame d'air, décalage		
	des franges dans fentes d'Young, décalahe des franges dans mi-		
	chelson réglé en coin d'air, mise au point d'une image par une lame de verre, mesure de la relation $\sin r = n \sin i$		
	Table de verre, mesure de la relation $\sin t = n \sin t$		
46-50	Utilisation du modèle : indice de réfraction de l'air		
46	$N_V = \frac{N_A p}{RT} = 3.10^{25} \text{ m}^{-3}$. Si d est la distance moyenne entre	1	
	molécules, une molécule occupe un volume $d^3 = \frac{1}{N_V}$, donc la		
	distance moyenne entre molécules est , en ordre de grandeur :		
	$d = N_V^{-1/3} = 3.10^{-9} \text{ m}$		
47	Si, dans le modèle le plus simple, les atomes occupaient un réseau	1	
	cubique simple de pas d , la distance entre plans serait bien $a = d$		
	et, sur un plan, une molécule occuperait un carré de côté d^2 , donc		
	$N_S = \frac{1}{d^2}$. Il est raisonnable d'utiliser ces relations dans le cas		
	réel, en considérant que d est la distance moyenne entre molécules		
	examinée ci-dessus.		
	Dans le domaine visible $\lambda > 0,5~\mu\mathrm{m}$. On a bien $\lambda \gg d = a$ la relation $n = 1 + \frac{\gamma}{a} = 1 + \frac{N_v \mu_0 a^2 q^2}{2m(\omega_0^2 - \omega^2)}$		
48	la relation $n = 1 + \frac{\gamma}{2} = 1 + \frac{N_v \mu_0 a^2 q^2}{2(1 + q^2)^2}$	1	
	Dans l'hypothèse $\omega \ll \omega_0$ on fait un DL à l'ordre 2 pour trouver		
	A et B		
	$A = \frac{N_V \mu_0 a^2 q^2}{2m\omega_0^2}$		
	et $N_{x,y,a} a^2 a^2 a^4$		
	$B=rac{N_V\mu_0a^2q^2c^4}{m\omega_0^4}$		
49	$\frac{B}{A} = \frac{4q^2c^2}{\omega_0^2} \text{ donc } \omega_0 = 2qc\sqrt{\frac{A}{B}}$	1	
10		1	
	on a $\omega_0 \sim 7\omega$, donc l'approximation est correcte.		
50	On trouve $A = 6.10^{-5}$, on a un facteur 4 avec la valeur expéri-	1	
	mentale. Donc le modèle prédit seulement un ordre de grandeur.	1	
	Zono to modero produt Soutement di ordro de Sidnidedi.		