Colle 8A: Espaces vectoriels

Question de cours :

Définition de la limite d'une suite. Dans le cas où la limite est finie, prouver l'unicité de la limite.

Exercice 1:

Soit E, F deux espaces vectoriels et $u \in \mathcal{L}(E, F)$. Montrer que $\Phi : (x, y) \mapsto (x, y - u(x))$ est un automorphisme de $E \times F$.

Exercice 2 : Noyaux itérés

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$.

- 1. Montrer que la suite (Ker u^n) $_{n\in\mathbb{N}}$ est croissante pour l'inclusion.
- 2. Montrer que la suite (Im u^n) $_{n\in\mathbb{N}}$ est décroissante pour l'inclusion.
- 3. Montrer que Ker $u = \text{Ker } u^2 \text{ ssi Im } u \cap \text{Ker } u = \{0_E\}.$
- 4. Montrer que Im $u = \text{Im } u^2 \text{ ssi } E = \text{Ker } u + \text{Im } u$.

Exercice 3:

Soit E un \mathbb{K} -espace vectoriel, p et q deux projecteurs de E.

- 1. Montrer que p+q est un projecteur ssi $p \circ q = q \circ p = 0$.
- 2. Montrer que, dans ce cas, $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$ et $\operatorname{Ker}(p+q) = \operatorname{Ker} p \cap \operatorname{Ker} q$.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 8B : Espaces vectoriels

Question de cours :

Démontrer que toute suite convergente est bornée.

Exercice 1: Soit E un espace vectoriel et $u, v \in \mathcal{L}(E)$ tels que $u \circ v \circ u = u$ et $v \circ u \circ v = v$.

- 1. Montrer que $E = \text{Ker } v \oplus \text{Im } u$.
- 2. Montrer que $u(\operatorname{Im} v) = \operatorname{Im} u$.

Exercice 2:

Soit E un \mathbb{K} -espace vectoriel, p,q deux projecteurs de E tels que Im $p=\mathrm{Im}\ q.$

Montrer que, pour tout $\lambda \in \mathbb{K}$, $\lambda p + (1 - \lambda)q$ est un projecteur de même image que p et q.

Exercice 3:

Soit E, F deux \mathbb{K} -espaces vectoriels, $\Phi \in \mathcal{L}(E)$ et $u \in \mathcal{L}(E, F)$. On admet que tout sous-espace vectoriel de E et de F admet un supplémentaire.

Montrer qu'il existe $v \in \mathcal{L}(E, F)$ tel que $u = v \circ \Phi$ ssi Ker $\Phi \subset \text{Ker } u$.

Colle 8C: Espaces vectoriels

Question de cours :

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles qui convergent respectivement vers ℓ_1 et ℓ_2 . Si λ et μ sont deux réels, montrer que la suite $(\lambda u_n + \mu v_n)_{n\in\mathbb{N}}$ converge vers $\lambda \ell_1 + \mu \ell_2$.

Exercice 1:

Soit E, F deux espaces vectoriels, $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, E)$ tels que $v \circ u = \mathrm{Id}_E$. Montrer que Ker $v \oplus \mathrm{Im}\ u = F$.

Exercice 2:

Soit E l'espace vectoriel des fonctions réelles à valeurs réelles, F le sev de E des fonctions 1-périodiques et G le sev de E des fonctions de limite nulle en $+\infty$.

- 1. Montrer que $F \cap G = \{0_E\}$.
- $2.\ F$ et G sont-ils supplémentaires?

Exercice 3:

Soit E un \mathbb{K} -espace vectoriel, p,q deux projecteurs de E tels que Im $p \subset \operatorname{Ker} q$. Soit alors $r = p + q - p \circ q$. Montrer que r est un projecteur et trouver son image et son noyau.