# Store Sales Times Series Forecasting

Capstone Final Presentation Carl Riemann



### Introduction

Corporación La Favorita is one of Ecuador's largest corporations, operating across various industries.

This project focuses on analyzing historical daily sales data (2013-2017) from Corporación La Favorita.

The goal is to build a predictive model to forecast future sales trends





### **Problem Statement**

Can we accurately predict future sales trends using large volumes of historical data?

-Develop a Time Series Model to analyze and forecast sales trends from 2013 to 2017.





#### **Data Overview**

- train.csv: Historical sales data
- test.csv: Test data for sales
- oil.csv: Daily oil prices
- holidays\_events.csv: Holidays and events metadata
- stores.csv: Store information



## **Data Reshaping and Wrangling**

The raw data files included columns with varying formats and inconsistencies such as: missing oil prices, holidays\_df date format, or unnecessary columns.

Data from the multiple files provided needed merging for consistency and analysis.



## **Exploratory Data Analysis (EDA)**

Analyzed the distribution of sales across different product families to identify trends and outliers.

Grocery I and Produce, have significantly higher sales and exhibit notable outliers

The EDA will guide the model-building process, as families may require separate handling or more detailed feature engineering.



#### **Feature Selection**

Grouped data by 'date' and 'family' to handle product categories separately and ensure each family had its unique seasonal trends.

Removed year 2013-2014 for lighter load on model building.





## **Model Training**

#### The model was trained on the following features:

- Differenced sales data (first-order differencing of the sales)
- Family type (each family of products was modeled individually)
- Time series structure (date components were implicitly captured in the sales sequence, though not as explicit features like year or month)





#### **Model Evaluation**

The ARIMA model performs well in predicting sales for categories with relatively stable demand, such as AUTOMOTIVE and HARDWARE.

For families like BEVERAGES and GROCERY I, large errors suggest that additional external factors or a more complex model may be needed for better accuracy.

Families in the middle range, such as CLEANING and FROZEN FOODS, show room for improvement but are reasonably well-captured by the model

|    | family                     | MAE      | MSE         | RMSE     |
|----|----------------------------|----------|-------------|----------|
| 0  | BEAUTY                     | 3.524    | 26.717      | 5.169    |
| 1  | BEVERAGES                  | 1441.531 | 4616627.801 | 2148.634 |
| 2  | BREAD/BAKERY               | 270.864  | 130389.475  | 361.095  |
| 3  | CLEANING                   | 445.531  | 400698.381  | 633.007  |
| 4  | DAIRY                      | 444.819  | 416453.657  | 645.332  |
| 5  | DELI                       | 136.269  | 34005.661   | 184.406  |
| 6  | EGGS                       | 120.203  | 31123.843   | 176.420  |
| 7  | FROZEN FOODS               | 103.125  | 67279.670   | 259.383  |
| 8  | GROCERY I                  | 1683.797 | 6795949.540 | 2606.904 |
| 9  | GROCERY II                 | 18.576   | 1199.928    | 34.640   |
| 10 | HOME AND KITCHEN I         | 21.435   | 1819.764    | 42.659   |
| 11 | HOME AND KITCHEN II        | 20.158   | 1586.826    | 39.835   |
| 12 | LAWN AND GARDEN            | 9.938    | 253.654     | 15.927   |
| 13 | LINGERIE                   | 5.846    | 130.731     | 11.434   |
| 14 | LIQUOR, WINE, BEER         | 67.990   | 15220.767   | 123.372  |
| 15 | MEATS                      | 207.055  | 310519.596  | 557.243  |
| 16 | PERSONAL CARE              | 133.540  | 39412.394   | 198.526  |
| 17 | POULTRY                    | 245.386  | 153211.961  | 391.423  |
| 18 | PREPARED FOODS             | 64.018   | 9904.734    | 99.523   |
| 19 | PRODUCE                    | 1544.864 | 5570640.608 | 2360.220 |
| 20 | SEAF00D                    | 23.185   | 1188.272    | 34.471   |
| 21 | AUTOMOTIVE                 | 4.246    | 36.995      | 6.082    |
| 22 | HARDWARE                   | 1.412    | 4.253       | 2.062    |
| 23 | HOME APPLIANCES            | 0.959    | 1.843       | 1.358    |
| 24 | MAGAZINES                  | 5.726    | 68.436      | 8.273    |
| 25 | HOME CARE                  | 115.238  | 26322.082   | 162.241  |
| 26 | PET SUPPLIES               | 6.354    | 88.920      | 9.430    |
| 27 | CELEBRATION                | 9.751    | 250.855     | 15.838   |
| 28 | LADIESWEAR                 | 11.340   | 258.408     | 16.075   |
| 29 | PLAYERS AND ELECTRONICS    | 7.070    | 122.453     | 11.066   |
| 30 | SCHOOL AND OFFICE SUPPLIES | 13.083   | 1729.836    | 41.591   |
| 31 | BABY CARE                  | 1.274    | 10.628      | 3.260    |
| 32 | B00KS                      | 1.462    | 6.393       | 2.528    |



### **Future Work/Recommendations**

Several families like FROZEN FOODS, BREAD/BAKERY, CLEANING have moderate error values (e.g., RMSE between 200 and 600), suggesting there is still room for improvement.

BEVERAGES and GROCERY I show the highest errors across MAE, MSE, and RMSE, but they also have the most outliers, also suggesting room for improvement.

Overall there is still room for model improvement some personal suggestions are:

- modeling with more dates
- removing only the earthquake dates (as they caused a lot of outliers)
- incorporating more variables that capture more trends (holidays/events/promotions)