概率论与数理统计

眠云跂石整理

第1章 事件的概率

组合公式

事件的运算

第2章 随机变量及概率分布

- 2.1 一维随机变量
 - 2.1.1 离散型随机变量
 - 1 二项分布
 - 2 泊松分布
 - 3 超几何分布
 - 4 负二项分布
 - 5 几何分布
 - 5'几何分布
 - 2.1.2 连续型随机变量
 - 1 正态分布
 - 2 指数分布
 - 3 威布尔分布
 - 4 均匀分布
 - 5 对数正态分布
 - 6 柯西分布
 - 7 拉普拉斯分布

2.2 多维随机变量

- 2.2.1 离散性随机向量
 - 1 多项分布
- 2.2.2 连续型随机向量
 - 1 矩形均匀分布
 - 2 二维正态分布
 - 3 多元正态分布
- 2.2.3 边缘分布
 - 1 概念解释
 - 2 多项分布
 - 3 二维正态分布
- 2.3 条件概率分布与随机变量的独立性
 - 2.3.1 条件概率分布的概念
 - 2.3.2 离散性随机变量的条件概率分布
 - 2.3.3 连续性随机变量的条件概率分布
 - 2.3.4 随机变量的独立性
- 2.4 随机变量的函数的概率分布
 - 2.4.1 离散性分布
 - 2.4.2 连续型分布
 - 1 单变量函数
 - 1.1 严格单调
 - 1.2 幂函数
 - 2 多变量函数
 - 2.4.3 随机变量和的密度函数
 - 2.4.4 随机变量商的密度函数

注意事项

第3章 随机变量的数字特征

- 3.1 数学期望与中位数
 - 3.1.1 数学期望的定义
 - 3.1.2 数学期望的性质
 - 3.1.3 条件数学期望(条件均值)
 - 3.1.4 中位数
- 3.2 方差与矩
 - 3.2.1 方差和标准差
 - 3.2.2 矩
- 3.3 协方差与相关系数
 - 3.3.1 协方差
 - 3.3.2 相关系数
- 3.4 大数定理和中心极限定理

- 3.4.1 大数定理
- 3.4.2 中心极限定理
- 3.5 母函数
 - 3.5.1 母函数的定义
 - 3.5.2 常见分布的母函数
 - 3.5.2 母函数的性质
 - 3.5.3 独立和的母函数
- 3.6 特征函数
 - 3.6.1 特征函数的定义
 - 3.6.2 常见分布的特征函数
 - 3.6.3 特征函数的性质

例题

第4章 参数估计

- 4.1 数理统计学的基本概念
- 4.2 点估计
 - 4.2.1 矩估计法
 - 4.2.2 极大似然估计法
 - 4.2.3 贝叶斯估计法
- 4.3 点估计的优良性准则
 - 4.3.1 估计量的无偏性
 - 4.3.2 最小方差无偏估计
 - 1 均方误差
 - 2 最小方差无偏估计 (MVU 估计)
 - 3 克拉美 劳不等式
 - 4.3.3 估计量的相合性与渐进正态性
 - 1 相合性
 - 2 渐进正态性
- 4.4 区间估计
 - 4.4.1 基本概念
 - 4.4.2 枢轴变量法
 - 4.4.3 大样本法
 - 4.4.4 置信界
 - 4.4.5 贝叶斯法

第5章 假设检验

- 5.1 问题提法和基本概念
 - 5.1.1 例子与问题提法
 - 5.1.2 功效函数
 - 5.1.3 两类错误, 检验的水平
 - 5.1.4 一致最优检验

第1章事件的概率

组合公式

由
$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{-ni}$$
 知

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$$
$$\binom{n}{0} - \binom{n}{1} - \dots + (-1)^{-1} \binom{n}{n} = 0$$

由
$$(1+x)^{m+n} = (1+x)^m (1+x)^n$$
 知

$$\binom{m+n}{k} = \sum_{i=0}^k \binom{m}{i} \binom{n}{k-i}$$

特别地, 当 m = k = n 时,

$$\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i}^2$$

$$\sum_{k_1+k_2=k} inom{n_1}{k_1}inom{n_2}{k_2} = inom{n_1+n_2}{k_1+k_2}$$

此外还有下式,也可以从直观上理解.

$$\sum_{n_1+n_2=n} \binom{n_1}{k_1} \binom{n_2}{k_2} = \binom{n_1+n_2+1}{k_1+k_2+1}$$

多项式系数: $\frac{n!}{r_1!\cdots r_k!}$.

利用第一式 (杨辉恒等式) 数归得第二式 (或直观理解)

$$\binom{n+m}{m} + \binom{n+m}{m+1} = \binom{n+m+1}{m+1}$$
$$\sum_{r=0}^{m} \binom{n-1+r}{r} = \binom{n+m}{m}$$

由负指数二项展开式
$$(1-x)^{-r}=\sum_{i=0}^{\infty}\binom{-r}{i}(-x)^i=\sum_{i=0}^{\infty}\binom{i+r-1}{r-1}x^i$$
 知
$$\sum_{i=0}^{\infty}\binom{i+r-1}{r-1}=0$$

$$\sum_{i=0}^{\infty}\binom{i+r-1}{r-1}(-1)^i=2^{-r}$$

$$p^{-r}=\sum_{i=0}^{\infty}\binom{i+r-1}{r-1}p^r(1-p)^i$$

原式两边求导,并令 x=1-p,得

$$rp^{-r-1} = \sum_{i=0}^{\infty} i \binom{i+r-1}{r-1} (1-p)^{i-1}$$

Stirling 数, 拆分数, 装箱问题, Burnside 定理与 Polya 定理

事件的运算

- 记号
 - $\circ A + B \equiv A \cup B.$
 - $\circ \ AB \equiv A \cap B.$
 - $\circ \ A B \equiv A \overline{B}.$
- 加法
 - \circ 交換律: A+B=B+A.
 - 结合律: (A+B)+C=A+(B+C). 于是可定义 A+B+C=(A+B)+C.
 - \circ 自加: A+A=A.
- 乘法
 - 交換律: AB = BA.
 - 结合律: (AB)C = A(BC). 于是可定义 ABC = (AB)C.
 - 自乘: AA = A.
- 分配律
 - 加法与乘法: (A+B)C = AC + BC.
 - 减法与乘法: (A-B)C = AC BC.

• 减法

$$\circ \ A - B = A \overline{B} \neq A + (-B).$$

$$\circ \ \ A\subseteq B \Leftrightarrow A-B=\varnothing.$$

$$\circ A = B \Leftrightarrow A - B = B - A = \varnothing.$$

• 无消去律

$$\circ \ A+B=A+C \Rightarrow B=C.$$

$$\circ A - B = A - C \Rightarrow B = C.$$

混合运算

$$\circ$$
 $(A+B)-C \neq A+(B-C)$. (因为减法本质上是乘法)

因此 A+B-C 没有意义,除非定义运算顺序或优先级

$$A - (B + C) = A - B - C = (A - C) - (B - C).$$

$$\circ A - (B - C) = (A - B)C = AC - BC.$$

• 负号(补集)

$$\circ -(A+B) = (-A)(-B).$$

$$\circ -(A-B) = B - A = (-A)B.$$

$$\circ$$
 $-(AB) = (-A) + (-B).$

理论上可以这么写,实际上用 \overline{A} 的符号会更方便.

互斥

$$\circ$$
 A 与 B 互斥 \Leftrightarrow $AB=\varnothing$ \Leftrightarrow $P(AB)=0$.

。
$$AC=BC$$
 会 $A-B$ 与 $B-A$ 均与 C 互斥 会 $P(\overline{A}BC)=P(A\overline{B}C)=0$. 当且仅当 $C=\Omega$ 时, 可由此推出 $A=B$.

$$\circ$$
 A 与 B 互斥 \Rightarrow AC 与 BC 互斥 \Rightarrow $P(C(A+B)) = P(AC) + P(BC)$.

对立

$$\circ$$
 A 与 B 对立 \Leftrightarrow $AB=\varnothing$ 且 $A+B=\Omega$.

• 条件概率

$$\circ$$
 定义: $P(A \mid B) = P(AB)/P(B)$.

• 全概率公式: 若两两互斥的
$$B_i$$
 之交为必然事件,则 $P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \cdots$

。 贝叶斯公式:

■
$$P(B \mid A) = \frac{P(B)P(A \mid B)}{P(A)}$$
.
■ $P(B_i \mid A) = \frac{P(AB_i)}{P(A)} = \frac{P(B_i)P(A \mid B_i)}{\sum P(B_j)P(A \mid B_j)}$.

几率

$$\circ$$
 定义: $O(A) = \frac{P(A)}{1 - P(A)} = \frac{P(A)}{P(\overline{A})}$

$$\circ$$
 贝叶斯因子: BF = $\frac{P(A \mid B)}{P(A \mid \overline{B})}$,故 $O(B \mid A) = BF \cdot O(B)$

• 促进作用的性质

 \circ 具有对称性: A 促进 B, 则 B 促进 A, 即

$$P(A \mid B) > P(A) \quad \Leftrightarrow \quad P(B \mid A) > P(B).$$

 \circ 不具有传递性: B 促进 A 且 C 促进 B 不能推出 C 促进 A, 即

$$P(A \mid B) > P(A), P(B \mid C) > P(B) \Rightarrow P(A \mid C) > P(A).$$

。 若 B 和 C 都促进 A, 则 B+C 一定促进 A, 但 BC 和 B-C 不一定促进 A, 即

$$P(A \mid B) > P(A), P(A \mid C) > P(A) \Leftrightarrow P(A \mid B + C) > P(A).$$

 \circ 若 B 促进 A, 则 \overline{B} 抑制 A, B 抑制 \overline{A} , \overline{B} 促进 \overline{A} , 即

$$P(A \mid B) > P(A) \Leftrightarrow P(A \mid \overline{B}) < P(A) \Leftrightarrow P(\overline{A} \mid B) < P(\overline{A}) \Leftrightarrow P(\overline{A} \mid \overline{B}) > P(\overline{A}).$$
 $P(A \mid B) = P(A) \Leftrightarrow P(A \mid \overline{B}) = P(A) \Leftrightarrow P(\overline{A} \mid B) = P(\overline{A}) \Leftrightarrow P(\overline{A} \mid \overline{B}) = P(\overline{A}).$

- 独立
 - \circ $A \subseteq B$ 独立 \Leftrightarrow P(AB) = P(A)P(B) \Rightarrow $P(A \mid B) = P(A)$.
 - \circ 两两独立: $\forall i, j (1 \leq i, j \leq n, i \neq j) : P(A_i A_j) = P(A_i) P(A_j)$.
 - 相互独立: $\forall 1 < k \le n, \ 1 \le i_1 < i_2 < \dots < i_k \le n : P(A_{i_1}A_{i_2} \cdots A_{i_k}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_k})$.
 - 相互独立 ⇒ 两两独立, 反之不一定成立.
 - 独立事件的任一部分也独立.
 - \circ 若 A_1, A_2, \cdots, A_n 独立, $B_i = A_i$ 或 \overline{A}_i , 则 B_1, B_2, \cdots, B_n 也独立.
- 独立事件的概率
 - \circ 乘法: $P(\prod E_i) = \prod P(E_i)$.
 - 加法: $P(\sum E_i) = 1 P(\prod \overline{E_i}) = 1 \prod P(\overline{E_i})$.
 - o 实例:

$$P(E_0 + E_1 E_2) = 1 - P(\overline{E}_0 \overline{E_1 E_2}) = 1 - (1 - P(E_0))(1 - P(E_0 E_1))$$

= $P(E_0) + P(E_1)P(E_2) - P(E_0)P(E_1)P(E_2).$

- 运算定理
 - 加法定理 (并集): P(A+B)=P(A)+P(B) \Leftrightarrow $AB=\varnothing$ \Leftrightarrow P(AB)=0.
 - \circ 减法定理 (差集): P(A-B)=P(A)-P(B) \Leftrightarrow $A\supseteq B$ \Leftrightarrow P(B-A)=0.

 - 加法推论 (补集): $P(A^c) = P(\overline{A}) = 1 P(A)$ 恒成立.
- 表为互斥事件

$$\circ \sum A_i = A_1 + \overline{A}_1 A_2 + \dots + \overline{A}_1 \overline{A}_2 \cdots \overline{A}_{n-1} A_n.$$

- A + B = A + (B A).
- A + B + C = A + (B A) + (C B A).

$$\circ$$
 设 $f(m) = \sum_{k,l} \left(\prod_{i=1}^m A_{k_i} \prod_{j=1}^{n-m} \overline{A}_{l_j} \right)$,则 $\sum_{i=1}^n A_i = \sum_{m=1}^n f(m)$.

- A + B = (B A) + (A B) + AB.
- A + B + C = ABC + (BC A) + (AC B) + (AB C) + (A B C) + (B A C) + (C A B)
- 。 综合应用

 - $P(A+B) = P(A) + P(\overline{A}B) = P(\overline{A}B) + P(A\overline{B}) + P(AB).$
- 容斥原理
 - P(A+B) = P(A) + P(B) P(AB), $\vec{\otimes} P(AB) = P(A) + P(B) P(A+B)$.
 - $\circ \ \ P(\overline{AB}) = P(\overline{A} + \overline{B}), \ P(\overline{AB}) + P(\overline{A} \, \overline{B}) = P(\overline{A}) + P(\overline{B}).$
 - P(A+B+C) = P(A) + P(B) + P(C) P(AB) P(BC) P(CA) + P(ABC).
- 恒等式
 - 。 化简含括号的运算
 - (A+B) + (A-B) = A+B.
 - (A+B)-(A-B)=B.
 - (A B) + (B A) = (A + B) AB.
 - (A B) (B A) = A B.
 - 。 有用的概率恒等式
 - A B = A AB, \overrightarrow{u} , $\overrightarrow{AB} = A\overline{AB}$.
 - P(A-B)=P(A)-P(AB). (利用减法定理) $P(AB)=P(A)-P(A\overline{B})$.
 - $P(A\overline{B}) = P(A) P(AB) = P(A) P(B) + P(\overline{A}B).$
- 例题

- 欧拉装错信封: $P_n = \sum_{k=0}^{n} \frac{(-1)^k}{k!}$.
- 。 先胜 n 局者为胜, 甲 a 胜 b 负, 则甲胜的概率为: $P_n(a,b) = \sum_{i=1}^{n-b} p^{n-a-1+i} (1-p)^{n-b-i} \binom{2n-a-b-1}{n-a-1+i}.$
- 。 设 n 个独立事件 A_1,A_2,\cdots,A_n 的概率分别为 p_1,p_2,\cdots,p_n , 记 $p=p_1+p_2+\cdots+p_n$, 则
 - A_1, A_2, \cdots, A_n 都不发生的概率小于 e^{-p} .

概率的公理化定义

- 1. 非负性.
- 2. 规范性.
- 3. 可列可加性.

定理 1 独立事件的交与并

若 A 和 B 均与 C 独立, 则 AB 与 C 独立 $\Leftrightarrow A + B$ 与 C 独立.

证明

- 法一
- 1. 必要性

$$P((A + B)C) = P(AC + BC)$$

$$= P(AC) + P(BC) - P(ABC^{2})$$

$$= P(C)(P(A) + P(B) - P(AB))$$

$$= P(C)P(A + B).$$

2. 充分性

$$P(ABC) = P((AC)(BC))$$
= $P(AC) + P(BC) - P((A+B)C)$
= $P(C)(P(A) + P(B) - P(A+B))$
= $P(C)P(AB)$.

- 法二
- 1. 必要性

$$P((A + B)C) = P((A - B)C) + P((B - A)C) + P(ABC)$$

$$= P(AC - ABC) + P(BC - ABC) + P(ABC)$$

$$= P(A)P(C) - P(AB)P(C) + P(B)P(C) - P(AB)P(C) + P(AB)P(C)$$

$$= P(C)(P(A) + P(B) - P(AB))$$

$$= P(C)P(A + B).$$

2. 充分性

$$P(ABC) = P((A+B)C) - P((A-B)C) - P((B-A)C)$$

$$= P(A+B)P(C) - P(AC-ABC) - P(BC-ABC)$$

$$= P(A+B)P(C) - P(A)P(C) + P(ABC) - P(B)P(C) + P(ABC)$$

$$= P(AC) + P(BC) - P((A+B)C)$$

$$= P(C)(P(A) + P(B) - P(A+B))$$

$$= P(C)P(AB).$$

推论 增加互斥条件的充分条件

若 A 和 B 均与 C 独立, 且 A 与 B 互斥, 则 AB 与 A+B 均与 C 独立.

定理 2 相互独立的充要条件

设 0 < P(A) < 1, 则 $P(B \mid A) = P(B \mid A)$ 是事件 A, B 相互独立的充要条件.

证明

1. 必要性

$$P(B) = P(AB) + P(\overline{A}B)$$

$$= P(A)P(B \mid A) + P(\overline{A})P(B \mid \overline{A})$$

$$= P(B \mid A) = P(AB)/P(A).$$

2. 充分性

$$P(B \mid A) = P(AB)/P(A) = P(B)$$

$$= P(AB) + P(\overline{A}B)$$

$$= P(A)P(B \mid A) + P(\overline{A})P(B \mid \overline{A})$$

$$= P(B \mid \overline{A}).$$

推论 相互独立的充要条件

设 0 < P(A) < 1, 则 $P(A \mid B) = P(\overline{A} \mid B)$ 是事件 A, B 相互独立的充要条件.

第2章随机变量及概率分布

2.1 一维随机变量

常见分布更详细的信息请见笔记附录 (源代码 或 PDF)

注意各分布的定义在不同资料上可能不同,请注意区分.

2.1.1 离散型随机变量

概率函数,分布表,

分布函数是一个右连续的不减函数.

1 二项分布

 $X \sim B(n, p)$.

理解: 事件发生的概率为 p, 则重复 n 次试验, 事件发生的次数为 x.

概率分布:
$$P(X=i)=b(i;n,p)=\binom{n}{i}p^i(1-p)^{n-i}$$
.

最可能数: x = |(n+1)p|.

2 泊松分布

 $X \sim P(\lambda)$.

理解: 单位时间内事件平均发生 λ 次, 则某一段单位时间内发生的次数为 x.

概率分布:
$$P(X=i) = \lim_{n \to \infty} b(i; n, \frac{\lambda}{n}) = \frac{\mathrm{e}^{-\lambda} \lambda^i}{i!}.$$

当二项分布满足 n>50, p<0.1, np<5 时, 用泊松分布近似效果较好.

3 超几何分布

 $X \sim H(N, n, M)$.

理解: N 件产品中有 M 件次品, 从总体中抽 n 件时次品的数量 m.

概率分布:
$$P(X=m) = \binom{M}{m} \binom{N-M}{n-m} / \binom{N}{n}$$
.

4 负二项分布

 $X \sim NB(r, p)$.

理解: 合格率为 p, 抽取到 r 个合格产品时, 抽到的不合格产品的个数 x.

概率分布:
$$P(X=i)=d(i;r,p)=\binom{i+r-1}{r-1}p^r(1-p)^i$$
.

5 几何分布

$$X \sim GE(p)$$
.

理解: 合格率为 p, 抽取到第一个合格产品时, 抽到的不合格产品的个数 x.

概率分布:
$$P(X=i) = p(1-p)^i$$
.

几何分布具有无记忆性.

5' 几何分布

$$X \sim G(p)$$
.

理解: 合格率为 p, 抽取到第一个合格产品时, 抽到的总产品的个数 x.

概率分布:
$$P(X = i) = p(1 - p)^{i-1}$$
.

几何分布具有无记忆性.

2.1.2 连续型随机变量

概率分布函数, 概率密度函数

注:以下偏度系数定义为 $eta_1=\mu_3/\mu_2^{3/2}$,峰度系数定义为 $eta_2=\mu_4/\mu^2$.

1 正态分布

$$X \sim N(\mu, \sigma^2)$$
.

概率密度函数:
$$f(x)=(\sqrt{2\pi}\sigma)^{-1}\mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}}$$
.

标准正态分布:
$$Y=(X-\mu)/\sigma \sim N(0,1)$$
.

$$3\sigma$$
原则: 0.6826, 09544, 9.9974.

上
$$\alpha$$
 分位数: $\Phi(z_{\alpha}) = 1 - \alpha$.

2指数分布

$$X \sim E(\lambda)$$
.

概率密度函数:
$$f(x) = \begin{cases} \lambda \mathrm{e}^{-\lambda x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$$

分布函数:
$$F(x) = \begin{cases} 0, & x \leq 0, \\ 1 - \mathrm{e}^{-\lambda x}, & x > 0. \end{cases}$$

指数分布具有无记忆性,即 $P(X > m + t \mid X > m) = P(X > t)$.

3 威布尔分布

概率密度函数:
$$f(x) = egin{cases} \lambda \alpha x^{\alpha-1} \mathrm{e}^{-\lambda x^{\alpha}}, & x > 0, \\ 0, & x \leq 0. \end{cases}$$

分布函数:
$$F(x) = \begin{cases} 1 - \mathrm{e}^{-\lambda x^{\alpha}}, & x > 0, \\ 0, & x \leq 0. \end{cases}$$

4 均匀分布

$$X \sim R(a,b)$$
.

概率密度函数:
$$f(x) = \begin{cases} 1/(b-a), & a \leq x \leq b, \\ 0, & x < a \ \ensuremath{\mbox{g}}\xspace x > b. \end{cases}$$

分布函数:
$$F(x) = \begin{cases} 0, & x \leq a, \\ (x-a)/(b-a), & a < x < b, \\ 1, & x \geq b. \end{cases}$$

5 对数正态分布

 $\ln X \sim N(\mu, \sigma^2)$.

概率密度函数:
$$f(x,\mu,\sigma) = egin{cases} \left(x\sqrt{2\pi}\sigma\right)\exp\left[-rac{(\ln x - \mu)^2}{2\sigma^2}
ight], & x>0, \\ 0, & x\leq 0. \end{cases}$$

6 柯西分布

$$X \sim C(\gamma, x_0)$$
.

概率密度函数:
$$f(x;x_0,\gamma) = \frac{1}{\pi} \cdot \frac{\gamma}{(x-x_0)^2 + \gamma^2} \ (-\infty < x < +\infty).$$

7 拉普拉斯分布

$$X \sim \operatorname{La}(\mu, b)$$
.

概率密度函数:
$$f(x) = \frac{1}{2\lambda} \mathrm{e}^{-\frac{|x-\mu|}{\lambda}}$$
.

2.2 多维随机变量

常见分布更详细的信息请见笔记附录 (<u>源代码</u> 或 PDF)

2.2.1 离散性随机向量

1 多项分布

$$X=(X_1,\cdots,X_n)\sim M(N;p_1,\cdots,p_n).$$

$$P(X_1=k_1,X_2=k_2,\cdots,X_n=k_n)=rac{N!}{k_1!k_2!\cdots k_n!}p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}.$$

多项分布的边缘分布是二项分布.

$$(X_1,X_2,\cdots,X_n)\sim M(N;p_1,p_2,\cdots,p_n)\quad\Rightarrow\quad X_1+X_2\sim B(N;p_1+p_2).$$

2.2.2 连续型随机向量

1矩形均匀分布

2 二维正态分布

$$X = (X_1, X_2) \sim N(a, b, \sigma_1^2, \sigma_2^2, \rho).$$

$$f(x_1,x_2) = (2\pi\sigma_1\sigma_2\sqrt{1-
ho^2})^{-1} \exp\left[-rac{1}{2(1-
ho^2)} \Biggl(rac{(x_1-a)^2}{\sigma_1^2} - rac{2
ho(x_1-a)(x_2-b)}{\sigma_1\sigma_2} + rac{(x_2-b)^2}{\sigma_2^2}\Biggr)
ight].$$

当且仅当 $\rho=0$ 时, X_1 和 X_2 独立.

其它性质

- 二维正态分布的边缘分布是正态分布.
- 二维正态分布的条件分布是正态分布.

若
$$(X,Y)\sim N(a,b,\sigma_1^2,\sigma_2^2,
ho)$$
, 则给定 $X=x$ 时 Y 的条件分布为

$$N(b+
ho\sigma_2\sigma_1^{-1}(x-a),\,\sigma_2^2(1-
ho^2)).$$

• 二维正态分布的边缘分布的和仍为正态分布

若
$$(X_1,X_2)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,
ho)$$
, 则 $Y=X_1+X_2\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2+2
ho\sigma_1\sigma_2)$.

• 独立的正态分布的联合分布是正态分布.

正态分布的联合分布不一定是二维正态分布。

• 相互独立的正态分布的和仍为正态分布

若
$$X_i \sim N(\mu_i, \sigma_i^2)$$
,则 $X_1 + \cdots + X_n \sim N(\mu_1 + \cdots + \mu_n, \sigma_1^2 + \cdots + \sigma_n^2)$.

• 若 $Y = X_1 + X_2$ 服从正态分布, X_1, X_2 独立, 则 X_1, X_2 也是正态分布.

3 多元正态分布

设 (X_1, X_2, \cdots, X_n) 为 n 元随机变量, 令

$$m{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}, \quad m{\mu} = egin{pmatrix} \mu_1 \ \mu_2 \ dots \ \mu_n \end{pmatrix}, \quad m{C} = egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \ c_{21} & c_{22} & \cdots & c_{nn} \ dots & dots & dots \ c_{n1} & c_{n2} & \cdots & n_{nn} \end{pmatrix},$$

其中 C 为<u>协方差矩阵</u>. 如果 (X_1, X_2, \dots, X_n) 的概率密度函数为

$$f(x_1,x_2,\cdots,x_n) = rac{\mathrm{e}^{-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu})^{\mathrm{T}}oldsymbol{C}^{-1}(oldsymbol{x}-oldsymbol{\mu})}}{(2\pi)^{rac{n}{2}}|oldsymbol{C}|^{rac{1}{2}}}$$

则称 (X_1, X_2, \dots, X_n) 是参数为 μ , C 的 n 元正态变量.

其它性质

- n 维正态分布的边缘分布是正态分布.
- n 维正态分布的条件分布是正态分布.
- n 维正态分布的边缘分布的和是正态分布.
- n 维随机变量 (X_1, X_2, \dots, X_n) 服从 n 维正态分布的充要条件是:

$$orall l_i \in \mathbb{R} \ (i=1,2,\cdots,n): l_1X_1 + l_2X_2 + \cdots + l_nX_n \sim N(\mu,\sigma^2).$$

- 若 Y_1,Y_2,\cdots,Y_m 都是 n 维正态分布分量 X_i $(i=1,2,\cdots,n)$ 的线性函数, 则 (Y_1,Y_2,\cdots,Y_m) 服从 m 维正态分布.
- n 维正态分布各分量相互对立充要条件是它们两两不相关.

2.2.3 边缘分布

1 概念解释

- 随机向量的分布可以决定其任一分量的边缘分布, 但反之不亦然.
- 随机向量也叫作其边缘分布的 联合分布.
- 类似的有二维的边缘分布.

2 多项分布

 $(X_1,\cdots,X_n)\sim M(N;p_1,\cdots,p_n)$ 关于 X_1 的边缘分布为 $M(N,p_1)$.

3 二维正态分布

 $(X_1, X_2) \sim N(a, b, \sigma_1^2, \sigma_2^2, \rho)$ 关于 X_1 和 X_2 的边缘分布分别是 $N(a, \sigma_1^2)$ 和 $N(b, \sigma_2^2)$.

2.3 条件概率分布与随机变量的独立性

2.3.1 条件概率分布的概念

2.3.2 离散性随机变量的条件概率分布

1 多项分布

在给定 $X_2 = k_2$ 的条件下, X_1 的条件分布为 $B(N - k_2, p_1/(1 - p_2))$.

2.3.3 连续性随机变量的条件概率分布

$$f_1(x_1\mid a\leq X_2\leq b)=\int_a^b f(x_1,t_2)\,\mathrm{d}t_2igg/\int_a^b f_2(t_2)\,\mathrm{d}t_2$$

$$f(x_1, x_2) = f_2(x_2) f_1(x_1 \mid x_2) f(x_1, \dots, x_n) = g(x_1, \dots x_k) h(x_{k+1}, \dots, x_n \mid x_1, \dots, x_k)$$

$$f_1(x_1) = \int_{-\infty}^{+\infty} f_2(x_2) f_1(x_1 \mid x_2) \mathrm{d}x_2$$

正态变量的条件分布仍为正态. 正态分布条件分布的中心位置是

$$m(x_1) = b + \rho \sigma_2 \sigma_1^{-1}(x_1 - a).$$

2.3.4 随机变量的独立性

两个变量的独立 \Leftrightarrow $f_1(x_1) = f_1(x_1 \mid x_2)$.

定义 3.1 连续型随机变量的相互独立 (独立)

$$X_1,X_2,\cdots,X_n$$
 相互独立 (独立) $\qquad\Leftrightarrow\qquad f(x_1,\cdots,x_n)=f_1(x_1)\cdots f_n(x_n).$

定理 3.1

连续变量独立 ⇔ 对应的事件独立.

定理 3.2

若连续型随机向量
$$(X_1,X_2,\cdots,X_n)$$
 的概率密度函数 $f(x_1,x_2,\cdots,x_n)=g_1(x_1)g_2(x_2)\cdots g_n(x_n)$,则 X_1,X_2,\cdots,X_n 相互独立,且 $f_i(x_i)=Cg_i(x_i)$.

定理 3.3

若 X_1, X_2, \cdots, X_n 相互独立,

$$Y_1=g_1(X_1,X_2,\cdots,X_m),\,Y_2=g_2(X_{m+1},X_{m+2},\cdots,X_n),$$

则 Y_1 和 Y_2 独立.

定义 3.2 离散性随机变量的相互独立

 X_1, X_2, \cdots, X_n 相互独立 (独立) 等价于

$$orall a_1, a_2, \cdots, a_n \colon P(X_1 = a_1, \cdots, X_n = a_n) = P(X_1 = a_1) \cdots P(X_n = a_n).$$

示性函数

$$X = \begin{cases} 1, & \text{当事件 } A \text{ 发生时,} \\ 0, & \text{当事件 } A \text{ 不发生时.} \end{cases}$$

2.4 随机变量的函数的概率分布

2.4.1 离散性分布

- 1. 多项分布 $(X_1,X_2,\cdots,X_n)\sim M(N;p_1,p_2,\cdots,p_n)$ \Rightarrow $X_1+X_2\sim B(N;p_1+p_2).$
- 2. 二项分布 $X_1 \sim B(n_1,p), \ X_2 \sim B(n_2,p) \quad \Rightarrow \quad X_1 + X_2 \sim B(n_1+n_2,p).$
- 3. 泊松分布 $X_1 \sim P(\lambda_1), \ X_2 \sim P(\lambda_2) \quad \Rightarrow \quad X_1 + X_2 \sim P(\lambda_1 + \lambda_2).$

2.4.2 连续型分布

1 单变量函数

1.1 严格单调

若 X 有密度函数 f(x), Y=g(X) 且该函数严格单调, 令 X=h(Y), 则 Y 的概率密度函数为

$$l(y) = f(h(y)) |h'(y)|.$$

 $ullet X \sim N(\mu, \sigma^2) \quad \Rightarrow \quad aX + b \sim N(a\mu + b, a^2\sigma^2).$

1.2 幂函数

若 X 有密度函数 f(x), $Y = X^n$, 其中 n 为偶数, 则 Y 的概率密度函数为

$$l(y) = \left|rac{y^{rac{1}{n}-1}}{n}
ight| \left[f(y^{rac{1}{n}}) + f(-y^{rac{1}{n}})
ight]. \quad (n$$
 是偶数)

• 若
$$X\sim N(0,1)$$
, 则 $Y=X^2$ 的密度函数为 $l(y)=egin{cases} \left(\sqrt{2\pi y}
ight)^{-1}\mathrm{e}^{-y/2}, & y>0,\ 0, & y\leq 0. \end{cases}$

2 多变量函数

以两个为例, 多变量是类似的,

$$\begin{cases} Y_1 = g_1(X_1, X_2) \\ Y_2 = g_2(X_1, X_2) \end{cases} \Rightarrow \begin{cases} X_1 = h_1(Y_1, Y_2) \\ X_2 = h_2(Y_1, Y_2) \end{cases}$$

则雅可比行列式为

$$J(y_1,y_2) = egin{array}{c|c} \dfrac{\partial h_1}{\partial y_1} & \dfrac{\partial h_1}{\partial y_1} \ \dfrac{\partial h_2}{\partial y_1} & \dfrac{\partial h_2}{\partial y_1} \ \end{array},$$

概率密度函数

$$l(y_1, y_2) = f(h_1(y_1, y_2), h_2(y_1, y_2)) |J(y_1, y_2)|.$$

2.4.3 随机变量和的密度函数

设 (X_1,X_2) 的联合密度函数为 $f(x_1,x_2)$, 则 $Y=X_1+X_2$ 的密度函数为

$$l(y) = \int_{-\infty}^{+\infty} f(x, y - x) dx = \int_{-\infty}^{+\infty} f(y - x, x) dx.$$

- 法一: 固定 y 后积分得分布函数, 再对 y 求导得上式.
- 法二: 补充 $Y_2 = X_1$, 利用 2.4.2.2
- 二维正态分布的边缘分布的和仍为正态分布 $\Xi\left(X_1,X_2\right) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho), 则\ Y=X_1+X_2 \sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2+2\rho\sigma_1\sigma_2).$
- 相互独立的正态分布的和仍为正态分布 若 $X_i \sim N(\mu_i, \sigma_i^2)$, 则 $X_1 + \dots + X_n \sim N(\mu_1 + \dots + \mu_n, \sigma_1^2 + \dots + \sigma_n^2)$.
- 若 $Y = X_1 + X_2$ 服从正态分布, X_1, X_2 独立,则 X_1, X_2 也是正态分布.

自由度为 n 的皮尔逊卡方密度与 **卡方分布** $X \sim \chi_n^2$

$$k_n(x) = egin{cases} rac{\mathrm{e}^{-x/2} x^{(n-2)/2}}{\Gamma\left(rac{n}{2}
ight) 2^{n/2}}, & x > 0, \ 0, & x < 0. \end{cases}$$

- 若 X_1,X_2,\cdots,X_n 相互独立, 且有公共分布 N(0,1) (独立同分布 iid), 则 $Y=X_1^2+X_2^2+\cdots+X_n^2\sim\chi_n^2$
- 若 $X_1 \sim \chi_m^2$ 与 $X_2 \sim \chi_n^2$ 独立,则 $X_1 + X_2 \sim \chi_{m+n}^2$.
- 若 X_1,X_2,\cdots,X_n 相互独立,且都服从指数分布 $E(\lambda)$,则 $X=2\lambda(X_1+X_2+\cdots+X_n)\sim\chi^2_{2n}$.
- $E(\chi_n^2) = n$.
- $E(\chi_n^2)^{-1} = \frac{1}{n-2}$.
- $ullet \ E(\chi_n^2)^k = rac{2^k \, \Gamma\left(rac{n}{2} + k
 ight)}{\Gamma\left(rac{n}{2}
 ight)} \ (k \in \mathbb{Z}).$
- $\operatorname{Var}(\chi_n^2) = 2n$.

注意到方差是均值的两倍,可以以此检验是否为卡方分布.

2.4.4 随机变量商的密度函数

设 (X_1,X_2) 的联合密度函数为 $f(x_1,x_2)$, 则 $Y=X_2/X_1$ 的密度函数为

$$l(y)=\int_0^{+\infty}x_1f(x_1,x_1y)\,\mathrm{d}x_1.$$

• 法一: 固定 y 后积分得分布函数, 再对 y 求导得上式.

• 法二: 补充 $Y_2 = X_1$, 利用 2.4.2.2

设 X_1, X_2 独立, $X_1 \sim \chi_n^2, X_2 \sim N(0,1), Y = X_2/\sqrt{X_1/n}$, 则 Y 的概率函数为

$$t_n(y)=rac{\Gamma((n+1)/2)}{\sqrt{n\pi}\,\Gamma(n/2)}igg(1+rac{y^2}{n}igg)^{-rac{n+1}{2}}.$$

称为自由度为 n 的 t **分布**

•
$$E(t_n) = 0 \ (n > 1).$$

• $Var(t_n) = \frac{n}{n-2} \ (n > 2).$

设 X_1,X_2 独立, $X_1\sim \chi_n^2,\, X_2\sim \chi_m^2,\, Y=rac{X_2}{m}\left/rac{X_1}{n}$, 则 Y 的概率密度函数为

$$f_{m,n}(y)=m^{m/2}n^{n/2}rac{\Gamma\left(rac{m+n}{2}
ight)}{\Gamma\left(rac{m}{2}
ight)\Gamma\left(rac{n}{2}
ight)}y^{m/2-1}(my+n)^{-(m+n)/2}\quad (y>0)$$

称为自由度为 (m,n) 的 F **分布**.

$$egin{aligned} ullet & E(f_{m,n}) = rac{n}{n-2} \ (n>2). \ & \operatorname{Var}(f_{m,n}) = rac{2n^2(m+n-2)}{m(n-2)^2(n-4)}. \end{aligned}$$

ightharpoonup 若 X_1, X_2, \cdots, X_n 独立同分布, 且有分布函数 F(x) 和密度函数 f(x), 则

$$Y = \max(X_1, X_2, \cdots, X_n) \sim nF^{n-1}(x)f(x), \ Z = \min(X_1, X_2, \cdots, X_n) \sim n[1 - F(x)]^{n-1}f(x).$$

注意事项

- 概率密度函数在某点的取值必为 0, 如果非零,则不存在这样的概率密度函数. 即混合型随机变量没有概率密度函数.
- 计算随机变量的函数的概率分布时,注意单调性,值域和值域是否重叠.

第3章随机变量的数字特征

3.1 数学期望与中位数

3.1.1 数学期望的定义

3.1.2 数学期望的性质

定理 1.1 随机变量之和的期望

若干个随机变量之和的期望,等于各变量的期望之和,即

$$E(X_1 + X_2 + \cdots + X_n) = E(X_1) + E(X_2) + \cdots + E(X_n).$$

$$E(X_1X_2\cdots X_n)=E(X_1)E(X_2)\cdots E(X_n).$$

定理 1.3 随机变量函数的期望

设随机变量 X 为离散型, 有分布 $P(X=a_i)=p_i, i=1,2,\cdots,n$, 或者为连续型, 有概率密度函数 f(x), 则

$$E(g(X)) = \sum_i g(a_i) p_i$$
 或 $\int_{-\infty}^{+\infty} g(x) f(x) \, \mathrm{d}x$ (若求和或极限存在.)

3.1.3 条件数学期望 (条件均值)

条件期望 $E(Y \mid x)$ 称为 Y 对 X 的回归函数.

$$E(Y \mid x) = \int_{-\infty}^{+\infty} y f(y \mid x) \, \mathrm{d}y.$$

期望等于条件期望的期望

$$E(Y) = \int_{-\infty}^{+\infty} E(Y \mid x) f_1(x) dx$$
$$= E[E(Y \mid X)]$$

3.1.4 中位数

- 中位数总是存在,均值则不然.
- 中位数可以不唯一.

3.2 方差与矩

3.2.1 方差和标准差

- 1. $Var(X) = E(X EX)^2 = E(X^2) (EX)^2$.
- $2. \operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X).$
- 3. 独立随机变量: $\operatorname{Var}(X_1 + \cdots + X_n) = \operatorname{Var}(X_1) + \cdots + \operatorname{Var}(X_n)$.
- 4. $E[(X-c)^2] = Var(X) + (EX-c)^2$.

$$\mathrm{Var}(X) = \min_{c} \left\{ E[(X-c)^2]
ight\}$$
, 当且仅当 $c=EX$ 时取等.

注意 比较 $\operatorname{Var}(nX_1)=n^2\operatorname{Var}(X_1)$, 而独立同分布时 $\operatorname{Var}(X_1+\cdots+X_n)=n\operatorname{Var}(X_1)$.

3.2.2 矩

定义

- 1. X 关于 c 点的 k 阶矩: $E[(X-c)^k]$.
- 2. k 阶原点矩: $\alpha_k = E(X^k)$.
- 3. k 阶中心距: $\mu_k = E[(X EX)^k]$.

特例

- 1. $\alpha_1 = E(X)$.
- 2. $\mu_1 = 0$.
- 3. $\mu_2 = Var(X)$.

偏度系数
$$eta_1=rac{\mu_3}{\mu_2^{3/2}}.$$

峰度系数
$$eta_2=rac{\mu_4}{\mu_2^2}.$$

正态分布 $N(\mu, \sigma^2)$ 的峰度系数为 3,故有时定义峰度系数为 μ_4/μ_2^2-3 .

3.3 协方差与相关系数

3.3.1 协方差

- 1. Cov(X, Y) = E[(X EX)(Y EY)].
- 2. Cov(X, Y) = Cov(Y, X).
- 3. Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z).
- 4. $Cov(a_1X + b_1, a_2Y + b_2) = a_1a_2 Cov(X, Y).$
- $5.2 \operatorname{Cov}(X, Y) = \operatorname{Var}(X + Y) \operatorname{Var}(X) \operatorname{Var}(Y).$
- 6. Cov(X, Y) = E(XY) E(X)E(Y).
- 7. 若X, Y独立,则Cov(X, Y) = 0.
- 8. $[Cov(X,Y)]^2 \le \sigma_1^2 \sigma_2^2$, 且当且仅当 Y = a + bX 时取等.

施瓦茨不等式 $E(X^2)E(Y^2)\geq [E(XY)]^2$, 当且仅当具有线性关系即 aX+bY=0 时取等.

• 由 $E[(Y+tX)^2] \geq 0$ 的判别式小于零即得.

协方差矩阵 设 n 维随机变量 (X_1,X_2,\cdots,X_n) 中 X_i 与 X_j 的协方差都存在,且记作 $c_{ij}=\mathrm{Cov}(X_i,X_j),$ $i,j,=1,2,\cdots,n$,则协方差矩阵为

$$m{C} = egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \ c_{21} & c_{22} & \cdots & c_{nn} \ dots & dots & dots \ c_{n1} & c_{n2} & \cdots & n_{nn} \end{pmatrix}.$$

其中 $c_{ii} = \operatorname{Var}(X_i)$. <u>多元正态分布中的应用</u>

3.3.2 相关系数

- 1. $\operatorname{Corr}(X,Y) \equiv \operatorname{Cov}(X,Y)/(\sigma_1\sigma_2)$.
 - 。 相关系数也可以记作

$$ho(X,Y) = E\left[\left(rac{X - E(X)}{\sqrt{\mathrm{Var}(X)}}\right)\left(rac{Y - E(Y)}{\sqrt{\mathrm{Var}(Y)}}
ight)
ight].$$

- 2. Corr(X, Y) = Corr(Y, X).
 - 。 相关系数矩阵是对称阵.
- 3. $Corr(a_1X + b_1, a_2Y + b_2) = Corr(X, Y).$
 - 。 相关系数不受单位影响.
- 4. 若 X, Y 独立,则 Corr(X, Y) = 0.
 - 若 Corr(X, Y) = 0 则称 $X \ni Y$ 不相关
- 5. $|Corr(X,Y)| \le 1$, 且当且仅当 X 和 Y 有严格线性关系时取等.
 - 。 相关系数又称为线性相关系数.
- 6. 最小二乘及其均方误差

$$\begin{split} E[(Y-a-bX)^2] &\equiv E[(Y-m_2)-b(X-m_1)-c]^2 \\ &= \sigma_2^2 + b^2 \sigma_1^2 - 2b \operatorname{Cov}(X,Y) + c^2 \\ &\geq \sigma_2^2 + b^2 \sigma_1^2 - 2b \operatorname{Cov}(X,Y) \\ b &= \operatorname{Cov}(X,Y)/\sigma_1^2 = \sigma_1^{-1} \sigma_2 \operatorname{Corr}(X,Y) \equiv \sigma_1^{-1} \sigma_2 \rho \\ L(X) &= m_2 - \sigma_1^{-1} \sigma_2 \rho m_1 + \sigma_1^{-1} \sigma_2 \rho X \\ E[(Y-L(X))^2] &= \sigma_2^2 + b^2 \sigma_1^2 - 2b \operatorname{Cov}(X,Y) \qquad \text{(由最上式)} \\ &= \sigma_2^2 (1-\rho^2) \end{split}$$

二维正态分布

若 $(X,Y)\sim N(a,b,\sigma_1^2,\sigma_2^2,
ho)$, 则

- 1. 即使允许用任何函数 M(X) 逼近 Y,则所得到的最佳逼近仍是 L(X),故只需考虑线性逼近已足够.
- 2. 对于二维正态分布, $Corr(X,Y) = \rho$, 即 Corr(X,Y) = 0 可推出二者独立.

3.4 大数定理和中心极限定理

3.4.1 大数定理

依概率收敛 $Y_n \stackrel{P}{
ightarrow} a \quad \Leftrightarrow \quad \lim_{n
ightarrow \infty} P\left\{ |Y_n - a| < arepsilon
ight\} = 1.$

•
$$X_n \overset{P}{ o} a \quad \Rightarrow \quad g(X_n) \overset{P}{ o} g(a)$$
. (其中 X_n 可为向量)

马尔科夫不等式 若 Y 为只取非负值的随机变量,则对 $\forall \varepsilon > 0$,有

$$P(Y \ge \varepsilon) \le E(Y)/\varepsilon$$
.

切比雪夫不等式 若 ${
m Var}(Y)$ 存在,则

$$P(|Y - EY| \ge \varepsilon) \le Var(Y)/\varepsilon^2$$
.

大数定理 设 X_1,X_2,\cdots,X_n 是独立同分布的随机变量,记它们的公共均值为 a,方差存在并记为 σ^2 ,则对 $\forall \varepsilon>0$,有

$$\lim_{n \to \infty} P\left(\left|\overline{X}_n - a\right| \ge \varepsilon\right) = 0.$$

伯努利大数定理 即大数定理的特例 (频率收敛于概率)

$$\lim_{n\to\infty}P\left(|p_n-p|\geq arepsilon
ight)=0.$$

• 大数定理中无需假定 X_i 的方差存在也可以证明 (即 **辛钦大数定理**),不必同分布,甚至可以不独立。

3.4.2 中心极限定理

应用

林德伯格—莱维定理 设 X_1,X_2,\cdots,X_n 为独立同分布的随机变量, $E(X_i)=a,\, {\rm Var}(X_i)=\sigma^2\; (0<\sigma^2<\infty)$,则对任何实数 x,有

$$\lim_{n o\infty}P\left(rac{1}{\sqrt{n}\sigma}(X_1+X_2+\cdots+X_n-na)\leq x
ight)=arPhi(x)=\int_{-\infty}^xrac{\mathrm{e}^{-rac{t^2}{2}}}{\sqrt{2\pi}}\,\mathrm{d}t.$$

• 因此,任何独立同分布的大量随机变量之和近似服从正态分布.

$$rac{\displaystyle\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma}\dot{\sim} N(0,1) \quad \Rightarrow \quad \overline{X}\,\dot{\sim} N\left(\mu,rac{\sigma^2}{n}
ight).$$

• 误区: 变量本身的分布并未改变. 可以将大量随机变量分为若干组大量随机变量, 分别计算其和, 并验证其符合正态分布. 这个性质可用于参数估计等, 但不可用于检验随机变量的值是否被篡改.

棣莫弗—拉普拉斯定理 上式的特例,当 $P(X_i=1)=p,\,P(X_i=0)=1-p\;(0< p<1)$ 时,对任何实数 x,有

$$\lim_{n o\infty}P\left(rac{1}{\sqrt{np(1-p)}}(X_1+X_2+\cdots+X_n-np)\leq x
ight)=arPhi(x).$$

• 或者说, 若随机变量 $\eta_n \sim B(n,p) \ (n=1,2,\cdots)$, 则对任何实数 x, 有

$$\lim_{n o \infty} P\left\{ rac{\eta_n - np}{\sqrt{np(1-p)}} \le x
ight\} = arPhi(x).$$

估值公式

$$P(t_1 \le X_1 + X_2 + \dots + X_n \le t_2) \approx \Phi(y_2) - \Phi(y_1).$$

其中
$$y_i = (t_i - np) \left/ \sqrt{np(1-p)} \right.$$
,或修正为

$$\left\{ egin{aligned} y_1 &= \left(t_i - rac{1}{2} - np
ight) \middle/ \sqrt{np(1-p)}, \ y_2 &= \left(t_i + rac{1}{2} - np
ight) \middle/ \sqrt{np(1-p)}. \end{aligned}
ight.$$

3.5 母函数

3.5.1 母函数的定义

整值随机变量即只取非负整值的随机变量。

若整值随机变量的概率分布为 $P\left\{X=k\right\}=p_k,\,k=0,1,2,\cdots$, 则其 **母函数** 为

$$G(s):=\sum_{k=0}^{+\infty}p_ks^k=E(s^X).$$

• G(1) 收敛且为 1 (而不是书中说的因为某种方式的计算结果为 1 而收敛), 且 G(-1) 绝对收敛, 故 G(s) 至少在 [-1,1] 上

3.5.2 常见分布的母函数

• 对于 $X \sim B(n, p)$, 有

$$G(s) = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k} s^k = (ps+q)^n, \quad s \in (-\infty, +\infty).$$

对于 X ~ P(λ), 有

$$G(s) = \sum_{k=0}^{+\infty} rac{\lambda^k \mathrm{e}^{-\lambda}}{k!} \cdot s^k = \mathrm{e}^{\lambda(s-1)}, \quad s \in (-\infty, +\infty).$$

对于 X ~ G(p), 有

$$G(s)=\sum_{k=1}^{+\infty}pq^{k-1}s^k=rac{ps}{1-qs},\quad s\inigg(-rac{1}{q},rac{1}{q}igg).$$

3.5.2 母函数的性质

•
$$p_k = \frac{G^{(k)}(0)}{k!}, \ k = 0, 1, 2, \cdots$$

•
$$E(X) = \sum_{k=1}^{+\infty} k p_k = G'(1).$$

•
$$Var(X) = G''(1) + G'(1) - [G'(1)]^2$$
.

若X的k阶矩存在,则有

- $G^{(0)}(1) = 1$.
- $G^{(1)}(1) = E(X)$.

- $G^{(2)}(1) = E(X^2) E(X)$. $G^{(3)}(1) = E(X^3) 3E(X^2) + 2E(X)$. $G^{(4)}(1) = E(X^4 6X^3 + 11X^2 6X)$.

3.5.3 独立和的母函数

设整值随机变量 $X \sim P\{X=k\} = a_k$ 和 $Y \sim P\{Y=k\} = b_k$ 相互独立, 且母函数分别为 A(s), B(s), 则 Z=X+Y的母函数为

$$G(s)=A(s)B(s)=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_{k}b_{n-k}s^{n}.$$

若 n 个整值随机变量独立同分布, 则 $G(s)=[G_1(s)]^n$.

3.6 特征函数

3.6.1 特征函数的定义

设 X, Y 为实随机变量, 则称 Z = X + iY 为 **复随机变量**.

设X是实随机变量,则X的(一维)特征函数为

$$g(t) = E(e^{itX})$$
 $(-\infty < t < +\infty)$
$$= \begin{cases} \int_{-\infty}^{+\infty} e^{itx} f(x) dx, & \text{连续型随机变量,} \\ \sum p_k e^{itx_k} = G(e^{it}), & \text{离散性随机变量.} \end{cases}$$

$$= \begin{cases} \int_{-\infty}^{+\infty} f(x) \cos tx dx + i \int_{-\infty}^{+\infty} f(x) \sin tx dx, & \text{连续型随机变量,} \\ \sum p_k \cos tx_k + i \sum p_k \sin tx_k, & \text{离散性随机变量.} \end{cases}$$

• 上述级数与广义积分绝对收敛.

3.6.2 常见分布的特征函数

常见分布	特征函数
$X \sim B(n,p)$	$g(t) = \sum_{k=0}^n inom{n}{k} p^k q^{n-k} \mathrm{e}^{\mathrm{i}tk} = (p\mathrm{e}^{\mathrm{i}t} + q)^n$
$X \sim P(\lambda)$	$g(t) = \sum_{k=0}^{+\infty} rac{\lambda^k \mathrm{e}^{-\lambda}}{k!} \mathrm{e}^{\mathrm{i}tk} = \mathrm{e}^{\lambda \left(\mathrm{e}^{\mathrm{i}t}-1 ight)}$
$X \sim G(p)$	$g(t) = \sum_{k=1}^{+\infty} pq^{k-1} \mathrm{e}^{\mathrm{i}tk} = rac{p\mathrm{e}^{\mathrm{i}t}}{1-q\mathrm{e}^{\mathrm{i}t}}$
$X \sim U(a,b)$	$g(t)=\int_a^brac{\mathrm{e}^{\mathrm{i}tx}}{b-a}\mathrm{d}x=egin{cases} rac{\mathrm{e}^{\mathrm{i}bt}-\mathrm{e}^{\mathrm{i}at}}{\mathrm{i}t(b-a)}, & t eq 0,\ 1, & t=0. \end{cases}$
$X \sim E(\lambda)$	$g(t) = \int_0^{+\infty} \mathrm{e}^{\mathrm{i}tx} \lambda \mathrm{e}^{-\lambda x} \mathrm{d}x = rac{\lambda}{\lambda - \mathrm{i}t}$
$X \sim N(\mu, \sigma^2)$	$g(t) = \int_{-\infty}^{+\infty} rac{\mathrm{e}^{\mathrm{i}tx}}{\sqrt{2\pi}\sigma} \mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}}\mathrm{d}x = \mathrm{e}^{\mathrm{i}\mu t} = \mathrm{e}^{\mathrm{i}\mu t - rac{\sigma^2}{2}t^2}$

3.6.3 特征函数的性质

1. g(0) = 1.

2. $|g(t)| \le 1$.

3. $g(-t) = \overline{g(t)}$.

4. g(t) 在 $(-\infty, +\infty)$ 上一致连续

5. $\forall n \in \mathbb{N}^+, \, \forall t_i \in \mathbb{R}, \, \forall z_i \in \mathbb{C}:$

$$\sum_{i=1}^n \sum_{k=1}^n g(t_j-t_k) z_j \overline{z}_k \geq 0.$$

6. 如果 X 的 n 阶原点矩存在,则它的特征函数 的 n 阶导数存在,且

$$g^{(k)}(0) = \mathrm{i}^k E(X^k), \quad k = 1, 2, \cdots n.$$

7. 若X 的特征函数为 $g_X(t)$, 且 $Y=aX+b~(a,b\in\mathbb{R})$, 则

$$g_Y(t) = \mathrm{e}^{\mathrm{i} b t} g_X(at).$$

8. 如果 X_1 和 X_2 相互独立, 且特征函数分别为 $g_1(t), g_2(t)$, 则 $Y=X_1+X_2$ 的特征函数为

$$g_Y(t) = g_1(t)g_2(t).$$

类似的, 由性质 6 可得到 k 阶原点矩.

例题

分鞋:例 1.7 和 2.4

第4章参数估计

4.1 数理统计学的基本概念

总体(母体)是概率分布族的一员.

总体分布 离散性 (概率函数), 连续型 (概率密度函数)

单参数分布族

非参数总体

样本大小 (容量)

经验分布函数 (样本分布函数) $F_n(x) = \{X_1, X_2, \cdots, X_n \ \text{中不大于} \ x \ \text{的个数}\}/n.$

即将 X 的样本值 x_1, x_2, \dots, x_n 从小到大重排后, 定义经验分布函数如下.

- 1. $0 \le F_n(x) \le 1$.
- 2. $F_n(x)$ 单调不减.
- 3. $F_n(-\infty) = 0$, $F_n(+\infty) = 1$.
- $4. F_n(x)$ 右连续.

常用统计图

- 1. **频率直方图** 以 $\dfrac{f_i}{\Delta t_i}$ 为高. 所有小矩形的面积和为 1.
- 2. 条形图 一般用于小样本离散性随机变量总体分布.

格列文科定理 对于任意实数 x, 经验分布函数 $F_n(x)$ 以概率 1 一致收敛于总体分布函数 F(x), 即

$$P\left\{\lim_{n o\infty}\sup_{-\infty< x<+\infty}|F_n(x)-F(x)|=0
ight\}=1.$$

• 经验分布函数不确定, 不唯一, 所以在极限外套一个 P.

统计量 只依赖于样本,而不依赖于其未知参数。

- 样本的统计量为 $g(X_1, X_2, \dots, X_n)$.
- 统计量的观测值为 $g(x_1, x_2, \dots, x_n)$.

样本均值
$$\overline{X}=a_1=rac{1}{n}\sum_{i=1}^n X_i.$$

• 其观测值记为
$$\overline{x}=rac{1}{n}\sum_{i=1}^n x_i$$
.

样本离差平方和
$$SS = \sum_{i=1}^{n} (X_i - \overline{X})^2$$
.

• 其观测值记为
$$\operatorname{ss} = \sum_{i=1}^{n} (x_i - \overline{x})^2$$
.

样本方差
$$S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2.$$

- 其观测值记为 s^2 .
- 标准差又称均方差, 样本标准差的观测值记为 s.

样本原点矩
$$a_k=rac{1}{n}\sum_{i=1}^n X_i^k$$
.

• 或使用 A_k 表示样本原点矩, 用 a_k 表示其观测值

样本中心矩
$$m_k=rac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^k.$$

- 或使用 B_k 表示样本中心距, 用 b_k 表示其观测值
- 矩称为理论矩, 样本矩称为经验矩, 即经验分布函数的矩.

$$\bullet \ m_2 = \frac{n-1}{n} S^2.$$

样本协方差
$$S_{XY}=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})(Y_i-\overline{Y}).$$

• 其观测值记为 s_{yy} .

样本相关系数 $ho_{XY} = rac{S_{XY}}{S_X S_Y}$.

• 其中 S_X 和 S_Y 为样本均方差. 其观测值为 $ho_{XY} = \dfrac{s_{_{XY}}}{s_{_{_{X}}}s_{_{_{Y}}}}.$

样本的 **众数** 记为 M_0

次序统计量 $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$

样本中位数
$$\hat{m}=egin{cases} X_{((n+1)/2)}, & n$$
 为奇数, $(X_{(n/2)}+X_{(n/2+1)})/2, & n$ 为偶数.

4.2 点估计

4.2.1 矩估计法

$$lpha_m = \int_{-\infty}^{+\infty} x^m f(x; heta_1,\cdots, heta_2) \,\mathrm{d}x pprox a_m = \sum_{i=1}^n X_i^m/n$$

取 $m=1,2,\cdots,k$,联立方程组即得 $\theta_i \approx \hat{\theta}_i(X_1,\cdots,X_n)$.

变异系数 σ/μ .

4.2.2 极大似然估计法

样本 (X_1, X_2, \cdots, X_n) 的总体分布函数为

$$L(x_1, \cdots, x_n; \theta_1, \cdots, \theta_k) = f(x_1; \theta_1, \cdots, \theta_k) f(x_2; \theta_1, \cdots, \theta_k) \cdots f(x_n; \theta_1, \cdots, \theta_k)$$

$$L(X_1, \cdots, X_n; \theta_1^*, \cdots, \theta_k^*) = \max_{\theta_1, \cdots, \theta_k} L(X_1, \cdots, X_n; \theta_1, \cdots, \theta_k)$$

欲得到极大似然估计,解如下似然方程组

$$rac{\partial \ln L}{\partial heta_i} = 0 \quad (i = 1, 2, \cdots, k)$$

4.2.3 贝叶斯估计法

先验分布, 先验概率. 允许使用主观概率.

设总体有概率密度 $f(X,\theta)$,抽样本 X_1,X_2,\cdots,X_n ,则 (θ,X_1,\cdots,X_n) 的联合密度为

$$h(\theta)f(X_1,\theta)\cdots f(X_n,\theta)$$

由此算出 (X_1, X_2, \cdots, X_n) 的边缘密度为

$$p(X_1,X_2,\cdots,X_n)=\int h(heta)f(X_1, heta)\cdots f(X_n, heta)\mathrm{d} heta$$

从而得出 θ 在给定 X_1, X_2, \cdots, X_n 的条件密度为

$$h(\theta \mid X_1, \dots, X_n) = h(\theta) f(X_1, \theta) \dots f(X_n, \theta) / p(X_1, \dots, X_n)$$

$$\tilde{\theta} = E(h(\theta \mid X_1, X_2, \cdots, X_n)).$$

h(heta) 一般是概率函数,即满足 $h(heta) \geq 0, \ \int h(heta) \mathrm{d} heta = 1.$

但对于积分域为无穷区间,或一些特定的分布,可以采用其它函数,比如 $h(\theta)=1$,或直接取为<u>先验密度</u>等. 此时 $h(\theta)$ 称为 "广义先验密度".

根据 n 次独立试验中事件 A 发生的次数 X 去估计其发生的概率 p,按照 "同等无知" 原则(贝叶斯原则),由上述方法积分得

$$\tilde{p} = \frac{X+1}{n+2}.$$

- 估计正态分布 $N(\mu, \sigma^2)$ 中的 μ 时,取 $h(\mu) = 1$;
- 估计正态分布 $N(\mu, \sigma^2)$ 中的 σ 时,取 $h(\sigma) = \sigma^{-1}$;
- 估计指数分布 $E(\lambda)$ 中的 λ 时,取 $h(\lambda) = \lambda^{-1}$.

由先验分布 $N(\mu,\sigma^2)$ 估计正态总体 $N(\theta,1)$ 中的 θ 为 (取 $h(\theta)$ 为先验密度)

$$ilde{ heta} = rac{n}{n+\sigma^{-2}} \overline{X} + rac{\sigma^{-2}}{n+\sigma^{-2}} \mu.$$

不知道为什么将正态总体分布的方差取为 1,有什么实际应用吗?

4.3 点估计的优良性准则

估计的整体性能

- 1. 无偏性.
 - 1. 没有系统性的偏差, 即误差的均值为零.
 - 2. 各次估计的均值依概率收敛至被估计值.
- 2. 数量指标 (如均方误差).

4.3.1 估计量的无偏性

无偏估计量 \hat{g} 须满足

$$E_{\theta_1,\ldots,\theta_k}[\hat{q}(X_1,\cdots,X_n)]=q(\theta_1,\cdots,\theta_k).$$

- $m = \overline{X} \not = E(X)$ 的无偏估计.
- 如果总体均值未知, 则 $S^2=\sum_{i=1}^n \frac{(X_i-\overline{X})^2}{n-1}$ 是 $\mathrm{Var}(X)$ 的无偏估计.
- 如果总体均值已知,则 $m_2=\sum_{n=1}^{\infty} \frac{(X_i-\overline{X})^2}{n}$ 是 $\mathrm{Var}(X)$ 的无偏估计.

由 $\sigma^2 = E(S^2) = Var(S) + (ES)^2$ 知, S 总是 σ 系统性偏低的估计.

• \bigstar (看思路) 对于正态分布总体 $N(\mu, \sigma^2)$, 由 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$ 算出

$$S/\sigma \sim g(s) = egin{cases} rac{(n-1)^{rac{n-1}{2}}}{2^{rac{n-3}{2}}\Gamma\left(rac{n-1}{2}
ight)}, & s>0 \ 0 & s\leq 0. \end{cases}$$

计算 $E(S) = \sigma \int_0^{+\infty} sg(s) \, \mathrm{d}s$, 故 σ 的一个无偏估计是

$$ilde{\sigma} = \sqrt{rac{n-1}{2}} rac{\Gamma\left(rac{n-1}{2}
ight)}{\Gamma\left(rac{n}{2}
ight)} S.$$

• 无偏估计不一定好,比如 $X \sim P(\lambda)$,则 $g(\lambda) = \mathrm{e}^{-2\lambda}$ 唯一的无偏估计为

$$\hat{g}(X) = egin{cases} 1, & X$$
为偶数, $-1, & X$ 为奇数.

4.3.2 最小方差无偏估计

1 均方误差

$$M_{\hat{ heta}}(heta) = E_{ heta} \Big[\hat{ heta}(X_1, \cdots, X_n) - heta \Big]^2$$

= $\operatorname{Var}_{ heta}(\hat{ heta}) + \Big[E_{ heta}(\hat{ heta}) - heta \Big]^2$

2 最小方差无偏估计 (MVU 估计)

注意是最小方差, 而不是最小均方误差. (Minimum Variance Unbiased)

3 克拉美 - 劳不等式

对于单参数情况 $f(x,\theta)$, 为估计 $g(\theta)$, 记 **费歇尔信息量** 为

$$I(\theta) = E\left[\left(\frac{\partial f(x,\theta)}{\partial \theta} \middle/ f(x,\theta)\right)^{2}\right]$$

$$= \int \left[\left(\frac{\partial f(x,\theta)}{\partial \theta}\right)^{2} \middle/ f(x,\theta)\right] dx \qquad (连续的总体分布)$$

$$= \sum_{i} \left(\frac{\partial f(a_{i},\theta)}{\partial \theta}\right)^{2} \middle/ f(a_{i},\theta) \qquad (离散的总体分布)$$

则对任一无偏估计 $\hat{g}=\hat{g}(X_1,X_2,\cdots,X_n)$, 有 克拉美 - 劳不等式:

$$\operatorname{Var}_{\theta}(\hat{\theta}) \geq (g'(\theta))^2/(nI(\theta)).$$

- MVU 的均方误差不一定是最小的,如对于正态分布 $N(\mu,\sigma^2)$,其中 μ 已知,则 m_2 是 MVU 估计,但 $E(m_2-\sigma^2)^2=\frac{2\sigma^4}{n}>E(\frac{m_2}{n+1}-\sigma^2)^2=\frac{2\sigma^4}{n+1}.$
- 若 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 都是 θ 的 MVU 估计, 则 $a\hat{\theta}_1+b\hat{\theta}_2+c$ 是 $(a+b)\theta+c$ 的 MVU 估计. \spadesuit \spadesuit (利用第三章定理 3.1, 2°)
- 若 $E(X)=\theta,$ $\sum_{i=1}^n c_i=1$, 则 $\sum_{i=1}^n c_i X_i$ 是 θ 的无偏估计,并且当且仅当 $c_i=\frac{1}{n}$ 时,其为 MVU 估计.

4.3.3 估计量的相合性与渐进正态性

1相合性

如果当样本大小 n 无限增加时, 估计量 $T(X_1,X_2,\cdots,X_n)$ 依概率收敛于被估计值, 则称该估计量是相合估计, 即

$$orall arepsilon > 0: \lim_{n o \infty} P_{ heta_1, \cdots, heta_k} \left(|T(X_1, \cdots, X_n) - g(heta_1, \cdots, heta_n)| \geq arepsilon
ight) = 0.$$

具有相合性的例子: m(n), $m_2(n)$, 绝大多数极大似然估计等等.

2 渐进正态性

- 大样本性质
 - 。 相合性
 - 。 渐进正态性
- 小样本性质
 - 。 无偏性

4.4 区间估计

4.4.1 基本概念

奈曼理论 的原则: 先保证可靠度, 再提升精度

称区间估计 $[\hat{\theta}_1, \hat{\theta}_2]$ 的 **置信系数** 为 $1 - \alpha$, 如果

$$\exists lpha > 0, \, orall heta : P_{ heta}\left(\hat{ heta}_1(X_1, \cdots, X_n) \leq heta \leq \hat{ heta}_2(X_1, \cdots, X_n)
ight) = 1 - lpha.$$

称区间估计 $[\hat{\theta}_1, \hat{\theta}_2]$ 的 **置信水平** 为 $1 - \alpha$, 如果

$$\exists lpha > 0, \, orall heta : P_{ heta} \left(\hat{ heta}_1(X_1, \cdots, X_n) \leq heta \leq \hat{ heta}_2(X_1, \cdots, X_n)
ight) \geq 1 - lpha.$$

 α 一般取为 0.1, 0.05, 0.01, 0.001.

区间估计的研究对象:

- 1. 置信系数或置信水平.
- 2. 区间长度.
- 3. 区间右端点与左端点之比.

4.4.2 枢轴变量法

上 β 分位点: $F(v_{\beta}) = 1 - \beta$.

下 β 分位点: $F(w_{\beta}) = \beta$.

上 β 分位点就是下 $1-\beta$ 分位点.

统计三大分布的上 β 分位点记为: $\chi_n^2(\beta)$, $t_n(\beta)$, $f_{n,m}(\beta)$.

利用上 β 分位点 w_{β} 寻找区间估计的**枢轴变量法**:

- 1. 找一个与被估计参数 $g(\theta)$ 有关的统计量 T.
- 2. 找 枢轴变量 $S(T, g(\theta))$, 使其分布 $F 与 \theta$ 无关.
- 3. $a \leq S(T, g(\theta)) \leq b \quad \Leftrightarrow \quad A \leq g(\theta) \leq B$.
- 4. $P(w_{1-\alpha/2} \leq S(T, g(\theta)) \leq w_{a/2}) = 1 \alpha$.

一样本 t 区间估计,为保证长度 $2St_{n-1}(\alpha/2)/\sqrt{n} \leq L$,斯泰因提出了 **两阶段抽样** 的方法,其中追加抽样的次数为

$$m = \begin{cases} 0, & n \leq [4t_{n-1}^2(\alpha/2)S^2/L^2] + 1, \\ n - 1 - [4t_{n-1}^2(\alpha/2)S^2/L^2], & n > [4t_{n-1}^2(\alpha/2)S^2/L^2] + 1. \end{cases}$$

记两次样本全体的均值为 \tilde{X} , 则区间估计 $[\tilde{X}-L/2,\,\tilde{X}+L/2]$ 有置信系数 $1-\alpha$.

4.4.3 大样本法

大样本区间估计: 利用 中心极限定理 与枢轴变量法.

例如, 一般的, 设总体有均值 θ , 方差 σ^2 , 并且都位置, 从样本 X_1, X_2, \cdots, X_n 做 θ 的区间估计. 由于样本均方差 S 是 σ 的祥和估计, 利用中心极限定理, 当 n 足够大时, 有

$$\sqrt{n}(\overline{X}- heta)/S\sim N(0,1).$$

以此为枢轴变量,于是有区间估计

$$\Big[\overline{X}-Su_{lpha/2}/\sqrt{n},\,\overline{X}+Su_{lpha/2}/\sqrt{n}\Big].$$

对于二项分布, 当 $lpha=0.05,\,n\geq40$ 时, 有区间长度 $heta_2- heta_1\leq0.3.$

4.4.4 置信界

置信系数 (水平) 为 α 的置信上界 $\overline{\theta}$ 和置信下界 θ :

$$\forall \theta : P_{\theta}(\overline{\theta}(X_1, X_2, \dots, X_n) \ge \theta) = 1 - \alpha$$

$$\forall \theta : P_{\theta}(\theta(X_1, X_2, \dots, X_n) \le \theta) = 1 - \alpha$$

4.4.5 贝叶斯法

即寻找 $\hat{\theta}_1$, $\hat{\theta}_2$, 使得

$$\int_{\hat{ heta}_1}^{\hat{ heta}_2} h(heta \mid X_1, \cdots, X_n) \, \mathrm{d} heta = 1 - lpha$$
 (区间估计) $\int_{-\infty}^{\hat{ heta}} h(heta \mid X_1, \cdots, X_n) \, \mathrm{d} heta = 1 - lpha$ (置信上界) $\int_{\hat{ heta}}^{+\infty} h(heta \mid X_1, \cdots, X_n) \, \mathrm{d} heta = 1 - lpha$ (置信下界)

区间估计中确定 θ_1 , θ_2 的方法 (原则):

- 1. 使 $\hat{\theta}_2 \hat{\theta}_1$ 最小.
- 2. 使 $\hat{\theta}_2/\hat{\theta}_1$ 最小.
- 3. 取置信水平为 $\alpha/2$ 的置信上下界.

第5章假设检验

5.1 问题提法和基本概念

5.1.1 例子与问题提法

原假设(零假设,解消假设),对立假设(备择假设).

检验统计量,接受域,否定域(临界域),临界值

简单假设,复合假设. 赘余参数.

5.1.2 功效函数

设 H_0 为原假设, Φ 是基于样本 X_1,X_2,\cdots,X_n 而对 H_0 做的一个检验, 则其 **功效函数** 是未知参数 $\theta_1,\theta_2,\cdots,\theta_n$ 的函数:

$$\beta_{\Phi}(\theta_1, \theta_2, \cdots, \theta_n) = P_{\theta_1, \theta_2, \cdots, \theta_n}$$
(在检验 Φ 之下, H_0 被否定)

- 当 $(\theta_1, \theta_2, \dots, \theta_n) \in H_0$ 时, 上式越小越好.
- 当 $(\theta_1,\theta_2,\cdots,\theta_n)\in H_1$ 时, 上式越大越好, 此时称为功效函数.

5.1.3 两类错误, 检验的水平

两类错误

- $1.H_0$ 正确, 但被否定.
- $2. H_0$ 错误, 但被接受.

$$egin{aligned} lpha_{1arPhi}(heta_1, heta_2,\cdots, heta_k) &= egin{cases} eta_{arPhi}(heta_1, heta_2,\cdots, heta_k) \in H_0, \ 0 & (heta_1, heta_2,\cdots, heta_k) \in H_1. \ \end{aligned} \ lpha_{2arPhi}(heta_1, heta_2,\cdots, heta_k) &= egin{cases} 0, & (heta_1, heta_2,\cdots, heta_k) \in H_0, \ 1-eta_{arPhi}(heta_1, heta_2,\cdots, heta_k), & (heta_1, heta_2,\cdots, heta_k) \in H_1. \end{cases}$$

 H_0 的一个水平为 α 的检验 Φ :

$$\beta_{\Phi}(\theta_1, \theta_2, \dots, \theta_k) \leq \alpha$$
 (对任何 $(\theta_1, \theta_2, \dots, \theta_k) \in H_0$).

并使 α 仅可能小. 即固定第一类错误概率的原则

5.1.4 — 致最优检验

假设检验问题 $H_0:H_1$ 的一个水平为 α 的一致最优检验 Φ : 即对任何一个其它水平 α 的检验 g 有

$$\beta_{\Phi}(\theta_1, \theta_2, \dots, \theta_k) \geq \beta_q(\theta_1, \theta_2, \dots, \theta_k)$$
 (对任何 $(\theta_1, \theta_2, \dots, \theta_k) \in H_1$).

- 在总体分布只依赖于一个参数 θ , 而原假设 H_0 是 $\theta \leq \theta_0$ 或 $\theta \geq \theta_0$ 时, 一致最优检验存在.
- 5.2 重要参数检验
- 5.2.1 正态总体均值的检验
- 1 方差 σ² 已知

- 2 方差啊 σ² 未知
- 5.2.2 两个正态总体均值差的检验
- 5.2.3 正态分布方差的检验
- 5.2.4 指数分布参数的检验
- 5.2.5 二项分布参数的检验
- 5.2.6 泊松分布参数的检验
- 5.2.7 大样本检验
- 5.2.8 贝叶斯方法
- 5.3 拟合优度检验
- 5.3.1 理论分布完全已知且只取有限个值的情况
- 5.3.2 理论分布只含有限个值但不完全已知的情况
- 5.3.3 对列联表的应用
- 5.3.4 总体分布为一般分布的情况