Math 143 Set 15

- **11.** Find the length of the curve described by $\mathbf{r}(t) = \langle \sin t, 5t, \cos t \rangle$ for $t \in [-10, 10]$.
- 12. The DNA molecule has the shape of a double helix. The radius of each helix is nearly 10 angstroms (1 angstrom is 10^{-8} cm). Each helix rises about 34 angstroms during a complete turn, and there are 2.9×10^8 complete turns. Estimate the length of each helix.
- **13.** Parameterize $\mathbf{r}(t) = \langle 3t, 4t 1, t + 3 \rangle$ by arclength.
- **14.** Find the unit tangent vector \mathbf{T} , the unit normal vector \mathbf{N} , and the binomial vector \mathbf{B} at the point (1,2/3,1) for $\mathbf{r}(t)=\left\langle t^2,2t^3/3,t\right\rangle$.
- 15. Find T, N, and B for
 - a. $\mathbf{r}(t) = \langle \sin(kt), t, \cos(kt) \rangle$ for some number k,
 - b. $\mathbf{r}(t) = \left\langle \sqrt{2}t, e^t, e^t \right\rangle$.