Наибольший общий делитель и наименьшее общее кратное

Определение 1.6. Целое число $d \neq 0$ называется наибольшим общим делителем целых чисел $a_1, a_2, ..., a_k$ (обозначается $d = \text{НОД}(a_1, a_2, ..., a_k)$), если выполняются следующие условия:

- 1) каждое из чисел $a_1, a_2, ..., a_k$ делится на d;
- 2) если $d_1 \neq 0$ другой общий делитель чисел $a_1, a_2, ..., a_k$, то d делится на d_1 .

Пример 1.9. НОД(12345, 24690) = 12345; НОД(12345, 54321) =
$$= 3$$
; НОД(12345, 12541) = 1.

Ненулевые целые числа a и b называются accouuupoванными (обозначается $a \sim b$), если a делится на b и b делится на a.

Теорема 1.2 (об ассоциированных числах). Числа a и b ассоциированы тогда и только тогда, когда $a = \pm b$.

Доказательство. Пусть a делится на b, тогда существует такое целое число c, что $a = b \cdot c$. Поскольку $|c| \ge 1$, получаем $|a| = |b| \cdot |c| \ge |b| \cdot 1 = |b|$, то есть $|a| \ge |b|$.

В то же время b делится на a. Проводя аналогичные выкладки, получаем $|b| \ge |a|$. Таким образом, |a| = |b|, то есть $a = \pm b$.

Теорема 1.3 (о единственности наибольшего общего делителя). Пусть числа $a_1, a_2, ..., a_k$ целые и d_1 — их наибольший общий делитель. Целое число d_2 является наибольшим общим делителем чисел $a_1, a_2, ..., a_k$ тогда и только тогда, когда $d_2 \sim d_1$.

Теорема 1.4 (о существовании и линейном представлении наибольшего общего делителя). Для любых целых чисел $a_1, a_2, ..., a_k$ существует наибольший общий делитель d, и его можно представить в виде линейной комбинации этих чисел: $d = c_1 a_1 + c_2 a_2 + ... + c_k a_k$, где $c_i \in \mathbb{Z}$.

Пример 1.10. Наибольший общий делитель чисел 91, 105, 154 равен 7. В качестве линейного представления можно взять, например,

$$7 = 7 \cdot 91 + (-6) \cdot 105 + 0 \cdot 154$$

или

$$7 = 4 \cdot 91 + 1 \cdot 105 - 3 \cdot 154$$
.

Определение 1.7. Целые числа $a_1, a_2, ..., a_k$ называются взаимно простыми в совокупности, если НОД $(a_1, a_2, ..., a_k) = 1$. Целые числа a и b называются взаимно простыми, если НОД(a, b) = 1.

Определение 1.8. Целые числа $a_1, a_2, ..., a_k$ называются попарно взаимно простыми, если НОД $(a_i, a_j) = 1$ для всех $1 \le i \ne j \le k$.

Пример 1.11. Числа 3, 6, 8 взаимно просты в совокупности, так как HOД(3, 6, 8) = 1. Числа 3, 5, 8 попарно взаимно просты.

Взаимно простые числа обладают следующими свойствами.

1. Для того чтобы целые числа $a_1, a_2, ..., a_k$ были взаимно простыми в совокупности, необходимо и достаточно, чтобы существовали такие целые числа $c_1, c_2, ..., c_k$, что $c_1a_1 + c_2a_2 + ... + c_ka_k = 1$.

- 1'. Для того чтобы целые числа a, b были взаимно простыми, необходимо и достаточно, чтобы существовали такие целые числа m, n, что ma + nb = 1.
- 2. Пусть произведение ab делится на c и НОД(a, c) = 1. Тогда b делится на c.
 - 3. Если НОД(a, b) = 1, НОД(a, c) = 1, то НОД(a, bc) = 1.
- 4. Если НОД $(a, b_1) = 1$, НОД $(a, b_2) = 1$, ..., НОД $(a, b_k) = 1$, то НОД $(a, b_1b_2...b_k) = 1$.
- 5. Пусть целые числа $a_1,\ a_2,\ ...,\ a_l,\ b_1,\ b_2,\ ...,\ b_k$ таковы, что $HOД(a_i,b_j)=1$ для всех $1\leq i\leq l,\ 1\leq j\leq k.$ Тогда $HOД(a_1a_2...a_l,\ b_1b_2...b_k)=1.$
- 6. Пусть целое число a делится на b_1 и на b_2 , НОД $(b_1, b_2) = 1$. Тогда a делится на произведение b_1b_2 .
- 7. Если a делится на каждое из попарно взаимно простых чисел b_1 , b_2 , ..., b_k , то a делится на произведение $b_1b_2...b_k$.

Определение 1.9. Целое число M называется наименьшим общим кратным целых чисел $a_1, a_2, ..., a_k, a_i \neq 0$ для i = 1, 2, ..., k, (обо-

значается $M = HOK(a_1, a_2, ..., a_k)$), если выполняются следующие условия:

- 1) M делится на каждое из чисел $a_1, a_2, ..., a_k$;
- 2) если M_1 другое общее кратное чисел $a_1, a_2, ..., a_k$, то M_1 делится на M.

Пример 1.12. HOK(12345, 24690) = 24690; HOK(12345, 54321) =
$$= 223530915$$
; HOK(12345, 12541) = 154818645 .

Наибольший общий делитель и наименьшее общее кратное двух положительных целых чисел связаны соотношением:

$$HOД(a, b) \cdot HOK(a, b) = ab.$$

Пример 1.13. HOД(12345, 24690) · HOK(12345, 24690) = 12345 × \times 24690 = 304798050; HOД(12345, 54321) · HOK(12345, 54321) = $3 \times \times 223530915 = 670592745 = 12345 \cdot 54321$; HOД(12345, 12541) · HOK(12345, 12541) = $1 \cdot 154818645 = 12345 \cdot 12541$.

1.3. Вычисление наибольшего общего делителя

1.3.1. Алгоритм Евклида

Для вычисления наибольшего общего делителя двух целых чисел применяется способ повторного деления с остатком, называемый *алгоритмом Евклида*.

Алгоритм 1.1. Алгоритм Евклида.

 $Bxo\partial$. Целые числа $a, b; 0 < b \le a$.

Bыход. d = HOД(a, b).

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, i \leftarrow 1$.
- 2. Найти остаток r_{i+1} от деления r_{i-1} на r_i .

- 3. Если $r_{i+1} = 0$, то положить $d \leftarrow r_i$. В противном случае положить $i \leftarrow i+1$ и вернуться на шаг 2.
- 4. Результат: d. \square Сложность алгоритма Евклида равна $O(\log^2 a)$.

Для доказательства корректности алгоритма Евклида нам понадобятся две леммы.

Лемма 1.5. Если числа a и b целые и a делится на b, то b = HOД(a, b).

Доказательство. Пусть d = HOД(a, b), тогда по теореме 1.4 существуют такие целые числа m, n, что d = ma + nb. Поскольку a делится на b, то сумма в правой части равенства делится на b, а значит и d делится на b. В то же время b делится на d как на наибольший общий делитель. Таким образом, числа d и b ассоциированы и равны с точностью до зна-

Лемма 1.6. Для любых целых чисел a, b, c выполняется равенство HOД(a+cb,b) = HOД(a,b).

Доказательство. Пусть d = HOД(a, b). Тогда a делится на d, b делится на d, значит, по свойству 2 делимости, и сумма a + cb делится на d, то есть d — общий делитель чисел a + cb и b.

Пусть d_1 — произвольный общий делитель чисел a+cb и b. Тогда число a=(a+cb)-cb делится на d_1 , то есть d_1 — общий делитель чисел a и b. А так как делитель d наибольший, то d делится на d_1 , и d — наибольший общий делитель чисел a+cb и b.

Пример 1.14. Используя алгоритм Евклида, найдем такие целые числа n, для которых дробь $\frac{3n+4}{8n+5}$ несократима [4]. Дробь несократима, если ее числитель и знаменатель взаимно просты. Построим последовательность наибольших общих делителей, используя лемму 1.6:

$$HOД(3n+4, 8n+5) = HOД(3n+4, 2\cdot(3n+4)+2n-3) =$$

$$= HOД(3n+4, 2n-3) = HOД(2n-3+n+7, 2n-3) =$$

$$= HOД(n+7, 2n-3) = HOД(n+7, 2\cdot(n+7)-17) = HOД(n+7, -17) =$$

$$= HOД(n+7, 17).$$

Таким образом, чтобы дробь была несократима, нужно, чтобы число n+7 не делилось на 17, то есть чтобы n имело вид 17q+r, где $0 \le r \le 16$, $r \ne 10$. Действительно, при r=10 получаем

$$\frac{3(17q+10)+4}{8(17q+10)+5} = \frac{3\cdot 17q+34}{8\cdot 17q+85} = \frac{17(3q+2)}{17(8q+5)} = \frac{3q+2}{8q+5}.$$

Теорема 1.7. Для любых a, b > 0 алгоритм Евклида останавливается и выдаваемое им число d является наибольшим общим делителем чисел a и b.

Доказательство. По теореме о делении с остатком для любого $i \ge 1$ имеем $r_{i-1} = q_i r_i + r_{i+1}$, где $0 \le r_{i+1} < r_i$. Получаем монотонно убывающую последовательность неотрицательных целых чисел $r_1 > r_2 > r_3 > \dots \ge 0$, ограниченную снизу. Такая последовательность не может быть бесконечной, следовательно, алгоритм Евклида останавливается.

Докажем теперь, что число d — наибольший общий делитель для чисел $r_1, r_2, ..., r_k$, где r_{k-1} делится на r_k . С учетом леммы 1.6 можем записать:

$$HOД(a, b) = HOД(r_0, r_1) = HOД(q_1r_1 + r_2, r_1) = HOД(r_1, r_2) =$$

$$= HOД(r_2, r_3) = \dots = HOД(r_{k-1}, r_k).$$

А по лемме 1.5 получаем НОД
$$(r_{k-1}, r_k) = r_k = d$$
.

Посмотрим, для каких целых чисел алгоритм Евклида выполняет больше всего итераций.

Напомним, что последовательностью Фибоначчи $\{F_k\}$, где $k \in \mathbb{N}$, называется последовательность, элементы которой связаны соотношением: $F_{k+1} = F_k + F_{k-1}$ для $k \ge 2$, при этом $F_1 = F_2 = 1$:

Найдем наибольший общий делитель для чисел Фибоначчи F_{k+2} и F_{k+1} : НОД (F_{k+2}, F_{k+1}) = по определению чисел Фибоначчи = НОД $(F_{k+1} + F_k, F_{k+1})$ = по лемме 1.6 = НОД (F_{k+1}, F_k) = ... = НОД (F_2, F_1) = НОД (F_1, F_2) = НОД (F_2, F_2) = НОД (F_2, F_3) = НОД (F_2, F_3) = НОД (F_2, F_3) = НОД (F_3, F_3) = ... = НОД (F_3, F_3) = ...

Пример 1.15. Пусть $a = F_6 = 8$, $b = F_5 = 5$. Тогда за четыре шага: $8 = 1 \cdot 5 + 3$, $5 = 1 \cdot 3 + 2$, $3 = 1 \cdot 2 + 1$, $2 = 2 \cdot 1 + 0$ — находим HOД(a, b) = 1.

Лемма 1.8. При $k \ge 2$ справедливо неравенство $F_k \ge \phi^{k-2}$, где $\phi = \frac{1+\sqrt{5}}{2}$ — корень квадратного уравнения $x^2-x-1=0$ («золотое сечение»).

Доказательство [5] проведем методом математической индукции. При k=2 имеем $F_2=1 \ge \phi^0=1$.

Индукционный переход:

$$F_{k+1} = F_k + F_{k-1} \ge \phi^{k-2} + \phi^{k-3} = \phi^{k-3}(\phi + 1) = \phi^{k-3}\phi^2 = \phi^{k-1}.$$

Теорема 1.9 (Ламэ). Для целых чисел a, b, N таких, что $0 < b < a \le N$, число итераций в алгоритме Евклида для a и b не превосходит $1 + \left[\log_{\phi} N\right]$.

Доказательство [5]. Пусть НОД(a,b) = НОД (r_0,r_1) = НОД (r_1,r_2) = \dots = НОД (r_{k-1},r_k) = r_k . Сначала индукцией по i докажем, что $F_i \le r_{k-(i-1)}$ для $i=1,2,\dots,k+1$. При i=1 имеем $F_1=1 \le$ НОД(a,b) = r_k ; при i=2 —

 $F_2 = 1 \le \mathrm{HOД}(a,b) = r_k < r_{k-1}$. Индукционный переход — делим с остатком r_{k-i} на r_{k+1-i} :

$$r_{k-i} = q_{k-(i-1)}r_{k-(i-1)} + r_{k-(i-2)} \ge r_{k-(i-1)} + r_{k-(i-2)} \ge F_i + F_{i-1} = F_{i-1}.$$

Отсюда

$$N \ge a = r_0 \ge F_{k+1} \ge \phi^{k-1}$$

(в последнем неравенстве мы воспользовались леммой 1.8). Логарифмируя неравенство $\phi^{k-1} \leq N$, получаем требуемую оценку числа итераций в алгоритме Евклида: $k \leq 1 + \left \lceil \log_{\phi} N \right \rceil$.