Thermodynamics	Describe a system
Describe a system	A system is a particular part of the universe.
Thermodynamics	Describe the surroundings of a system
Describe the surroundings of a system	The part of the universe which is outside (i.e. surrounding) a system.
Thermodynamics	Describe the boundary of a system.
Describe the boundary of a system	The boundary (or wall) of a system is the thing which separates it from its surroundings.
Thermodynamics	Describe the boundary of a system.
Describe the boundary of a system	The boundary (or wall) of a system is the thing which separates it from its surroundings.

Thermodynamics	Describe a closed system.
Describe a closed system	A closed system is a system where no matter is exchanged, only energy.
Thermodynamics	Describe adiabatic walls.
Describe how adiabatic walls.	Adiabatic walls prevent thermal interaction (i.e. heat exchange)
Thermodynamics	What type of walls does a thermally isolated system have?
type of walls does a thermally isolated system	have? A thermally isolated system has adiabatic walls.
Electromagnetism	What is Maxwell's II and what does it tell us?
What is Maxwell's II and what does it tell us?	$\nabla \cdot \mathbf{B} = 0$

Statistical Mechanics	What is the equilibrium entropy of an isolated system of N constituents with energy E?
um entropy of an isolated system of N constitu	ents with energy, $E = kln\Omega(N, E, \alpha*)$
Diffraction physics	Define the electric displacement of a dialectric
Define the electric displacement of a dialectric.	$\underline{D} = \epsilon_0 \underline{E} + \underline{P}$ Where $\underline{E} =$ Electric field , $\underline{P} =$ Polarisation
Diffraction Physics	Define the electric displacement of a dialectric Table 1: default
at are the refractive indices of MgF_2 and $\mathrm{Al}_2\mathrm{C}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$