Matematisk Statistik

10. Forelæsning 04.03.2021

- Punktestimatorer fortsætter:
 - omparametrisering, Jensens ulighed
 - asymptotik.
- Områdeestimatorer

Betragt en fordelingsfamilie med parameter θ .

I nogle situationer udtrykkes samme familien vha en anden parameter $\rho = h(\theta)$, hvor h er en **bijektiv** funktion.

Eksempel (R):

rgamma(n, shape, rate = 1, scale = 1/rate).
Parameteren "scale" kan bruges alternativt for "rate".

$$(H) = \{ b, b \rightarrow b, b \rightarrow b \}$$

$$h(\Theta) = \{23, 45, 33, 39, 36\}$$

Proposition 6.3.5: Estimatorer kan genbruges i omparametriserede modeller.

$$\hat{\theta} \text{ er} \begin{cases} \text{ML-estimator} & \text{af } \theta \implies \hat{\rho} = h(\hat{\theta}) \text{ er} \begin{cases} \text{ML-estimator} & \text{af } \rho \\ \text{moment-estimator} \end{cases}$$

Omparametrisering og ML estimatorer: eksempler

Normalfordelingen kan parametriseres ved (μ, σ) frem for (μ, σ^2) — se den måde R gør det på, fx rnorm(n, mean = μ , sd = σ).

ML estimatorer til σ^2 og σ er givet ved

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \implies \widehat{\sigma} = \sqrt{\widehat{\sigma^2}} = \left(\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2\right)^{1/2}$$

Eksponentialfordelingen parametriseres nogle gange med skala $\beta = 1/\lambda$ frem for rate λ .

Så skrives tætheden

$$f(x;\lambda) = \lambda e^{-\lambda x}$$
 som $\tilde{f}(x;\beta) = \frac{1}{\beta} e^{-x/\beta}$.

ML estimator til λ og $\beta = 1/\lambda$:

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i} \implies \hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Hvis $\hat{\theta}$ er ML-estimator for θ , så er $g(\hat{\theta})$ også ML estimator for $g(\theta)$.

Hvis $\hat{\theta}$ er moment-estimator for θ , så er $g(\hat{\theta})$ også moment estimator for $g(\theta)$.

MEN..

Hvis $\hat{\theta}$ er en middelret estimator for θ , så er $g(\hat{\theta})$ generelt set *ikke* middelret for $g(\theta)$.

Jensens uligheda

Lad g være en streng konveks funktion og X en ikke degenereret stokastisk variabel b . Så er

$$g(EX) < Eg(X)$$
.

^aJohan Jensen, 1908

 $[^]b\mathrm{en}$ stok. variabel kaldes degenereret, hvis den kun antager 1 værdi

Jensens ulighed betyder for en unbiased estimator $\hat{\theta}$, hvis g er streng konveks:

$$\operatorname{E} g(\hat{\theta}) > g(\theta).$$

Eksempel (MSRR, side 166): For Unif $[0, \beta]$ fordelingen er $\hat{\beta} = 2\bar{X}$ middelret. Men $(\hat{\beta})^2 = 4\bar{X}^2$ er ikke middelret for β^2 :

$$E[4\bar{X}^2] = 4E[\bar{X}^2] = 4(\text{Var}[\bar{X}] + E[\bar{X}]^2)$$
$$= 4\left(\frac{\beta^2}{12n} + \left(\frac{\beta}{2}\right)^2\right) = \beta^2 + \frac{\beta^2}{3n}$$

Altså $E[\hat{\beta}^2] > \beta^2$.

Theorem 6.3.6:

maksimum likelihood estimatorer ofte er de bedste blandt alle centrale (= middelrette) estimatorer, i det de antager den minimale varians givet ved Cramér-Rao ulighed,

$$\operatorname{Var}(\hat{\theta}_n) \ge \frac{1}{n \mathcal{I}(\theta)}, \quad \mathcal{I}(\theta) = \operatorname{E}\left[\left(\frac{\partial (\ln(f(X;\theta)))}{\partial \theta}\right)^2\right].$$

For store n må man desuden antage, at $\hat{\theta}_n$ er approksimativt normalfordelt.

Eksempel 6.19

Lad $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} f \mod f(x; \theta) = \theta x^{\theta - 1}$, hvor $\theta > 0$, 0 < x < 1.

$$\log f(x;\theta) = \log \theta + (\theta - 1)\log x$$

MLE estimator er $\hat{\theta}_n = -\frac{n}{\sum_{i=1}^n \ln(x_i)}$.

For store n er $\hat{\theta}_n \sim N(\theta, \theta^2/n)$.