An Autonomous Institute under MAKAUT

B.TECH/CSE/EVEN/8th Sem/R18/ CS802B/2021-2022 YEAR: 2022

MACHINE LEARNING

PAPER CODE: CS802B

TIME ALLOTTED: 3 HOURS FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

SL	1. Answer any <i>ten</i> from the following, choosing the correct alt Question	ernative of each o Marks	•	n: 10×1=10 Blooms Taxonomy Level
(i)	During training phase, dataset with target class labels is req (a) Supervised Learning (b) Unsupervised Learning (c) Both Supervised and Unsupervised Learning (d) None of the above	uired in 1	CO2	BLT1
(ii)	A similarity distance criterion is to be decided in (a) Clustering (b) Association Rule Mining (c) Classification (d) None of the above	1	CO3	BLT2
(iii)	Regression Model is used to predict (a) Numerical value of the target variable (b) Categorical class of target variable (c) Similarity between the target variable and the predictor variable (d) None of the above	1	CO2	BLT1
(iv)	Market Basket analysis is based on the concept of (a) Clustering (b) Association Rule Mining (c) Classification (d) None of the above	1	CO3	BLT1
(v)	The gender of a person is an example of (a) Categorical and nominal variable (b) Categorical and ordinal variable (c) Discrete Quantitative variable (d) Continuous Quantitative variable	1	CO1	BLT2

An Autonomous Institute under MAKAUT

(vi)	During training phase, dataset with target class labels is required in (a) Supervised Learning (b) Unsupervised Learning (c) Both Supervised and Unsupervised Learning (d) None of the above	1	CO2	BLT1
(vii)	The quality of Regression Analysis may be affected by (a) Collinearity only (b) Heteroskedasticity only (c) Both Collinearity and Heteroskedasticity (d) None of the above	1	CO1	BLT2
(viii)	DBSCAN clustering scheme is one kind of (a) Hierarchical clustering strategy (b) Density based clustering strategy (c) Partitioning clustering strategy (d) None of the above	1	CO3	BLT1
(ix)	A ReLu activation function for input x may be defined as (a) max(-1, x) (b) min(0, x) (c) max(1, x) (d) max(0, x)	1	CO5	BLT2
(x)	Which of the followings is associated with ANN based learning? (a) Gradient Descent Optimization (b) Particle Swarm Optimization (c) Genetic Algorithm Based Optimization (d) All of the above	1	CO5	BLT1
(xi)	A binary sigmoid function has range of (a) (-1, +1) (b) (-1, 0) (c) (0, 1) (d) None of the above	1	CO5	BLT1
(xii)	In Random Forest Classification strategy involves (a) Bayesian Classifier (b) Single decision tree classifier (c) LDA (d) Multiple decision tree classifiers	1	CO2	BLT1

An Autonomous Institute under MAKAUT

GROUP – B (Short Answer Type Questions) (Answer any three of the following) 3 x 5 = 15

	SL	Question	Marks	CO	Blooms
					Taxonomy
					Level
2.	(i)	What are the general steps of deploying classification model?	3	CO1	BLT1
	(ii)	Explain Boxplot with respect to the given data: {199, 201, 236,	2	CO1	BLT2
		269,271,278,283,291, 301, 303, 341}.			
3.	(i)	Compute precision, recall, F-measure for each of the classes – A, B	5	CO3	BLT3
		and C in respect of following classification model's outcome.			

	GoldLabel_A	GoldLabel_B	GoldLabel_C	
Predicted_A	30	20	10	TotalPredicted_A=60
Predicted_B	50	60	10	TotalPredicted_B=120
Predicted_C	20	20	80	TotalPredicted_C=120
	TotalGoldLabel_A=100	TotalGoldLabel_B=100	TotalGoldLabel_C=100	

4. (i) Write the algorithm of KNN classification concept.
 2 CO3 BLT1
 (ii) Apply the idea of KNN classifier to determine the T-Shirt size of a 3 customer having height 161 cms and weight 61 kg (assume k = 5).

Ht.	Wt.	Size
(cms)	(kgs)	Size
158	58	М
158	59	М
158	63	М
160	59	М
160	60	М
163	60	М
163	61	М
160	64	L
163	64	L

Ht	Wt.	Size
(cms)	(kgs)	Size
165	61	L
165	62	L
165	65	L
168	62	L
168	63	L
168	66	L
170	63	L
170	64	L
170	68	L

5. (i) Apply the concept of regression model for the following dataset to 3 CO2 BLT3 determine the glucose level of a person having age 55.

AGE (X)	GLUCOSE LEVEL (Y)
43	99
21	65
25	79

An Autonomous Institute under MAKAUT

42	75
57	87
59	81

- (ii) How can we evaluate a regression model?6. (i) Discuss on maximum-margin hyperplane algorithm of SVM for2 CO2 BLT56. CO5 BLT2
 - solving classification problem?
 - (ii) Justify the utility of kernel trick in SVM for solving classification 2 CO5 BLT5 problem.

GROUP – C (Long Answer Type Questions)

(Answer any three of the following) $3 \times 15 = 45$

SL Question Marks CO Blooms Taxonomy Level 7. (i) What is the working principle of Reinforced Learning in Machine 2 CO1 BLT1 Explain overfitting and underfitting problem along with some 3 CO2 BLT2 (ii) remedial measures. Develop a decision tree classifier based on the ID3 algorithm with 10 CO3 BLT3 (iii) respect to the following dataset and determine whether one should play tennis given outlook=sunny, humidity=high, wind=strong.

Day	Outlook	Humidity	Wind	Play Tennis
1	Sunny	High	Weak	No
2	Sunny	High	Strong	No
3	Overcast	High	Weak	Yes
4	Rain	High	Weak	Yes
5	Rain	Normal	Weak	Yes
6	Rain	Normal	Strong	No
7	Overcast	Normal	Strong	Yes
8	Sunny	High	Weak	No
9	Sunny	Normal	Weak	Yes
10	Rain	Normal	Weak	Yes
11	Sunny	Normal	Strong	Yes
12	Overcast	High	Strong	Yes
13	Overcast	Normal	Weak	Yes
14	Rain	High	Strong	No

8. (i) Trace the iterative steps of K-Medoid algorithm with reference to 8 CO4 BLT3 the following dataset, which is to be divided into two clusters.

Id	Weight	Height	Width
1	5	3	10
2	10	15	20
3	15	12	15

An Autonomous Institute under MAKAUT

4	24	10	25
5	30	45	30
6	85	70	40
7	71	80	40
8	60	78	50
9	55	52	80
10	80	91	60

(ii) Is there any advantage of K-Medoid clustering strategy over K-Means clustering strategy?

1 CO4 BLT5

Apply DBSCAN clustering scheme on following dataset where it is 6 (iii) given that the minimum number of points inside the circle around

CO4 BLT3

CO4 BLT3

given that the minimum number of points inside the circle around a core-point being at center is 4 and the

radius of the circle is 1.9

is 4 and the units.

Point	Х	Υ
P1	3	7
P2	4	6
Р3	5	5
P4	6	4
P5	7	3
P6	6	2

Point	X	Υ
P7	7	2
P8	8	4
P9	3	3
P10	2	6
P11	3	5
P12	2	4

- 9. (i) Compare Hierarchical Divisive Clustering strategy with Hierarchical 3 CO4 BLT2 Agglomerative Clustering strategy.
 - (ii) Apply the concept of Hierarchical Agglomerative Clustering 10 strategy based on the following distance matrix to construct the dendrogram as diagrammatic representation of the entire clustering process.

	P1	P2	Р3	P4	P5
P1	0				
P2	1.04139	0			
Р3	0.59304	0.77369	0		
P4	0.46098	0.61612	0.30232	0	
P5	0.81841	0.32388	0.45222	0.35847	0

- (iii) How Silhouette Coefficient is used to evaluate the quality of a 2 CO4 BLT2 clustering model?
- 10. (i) Propose a supervised learning strategy for retrieving a list of similar 3 CO3 BLT6 image objects for a given query image object based on various image features.

An Autonomous Institute under MAKAUT

(ii) Illustrate the concept of Naïve Bayes Classification strategy based 5 CO3 BLT3 on the following dataset and determine whether given fruit is a 'Banana' or 'Orange' or 'Other' when only the 3 features (long,

Туре	Long	Not Long	Sweet	Not Sweet	Yellow	Not Yellow	Total
Banana	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Other	100	100	150	50	50	150	200
Total	500	500	650	350	800	200	1000

sweet and yellow) are known.

(iii) Apply the principle of apriori algorithm to generate association 7 rules with reference to the following transaction dataset of items where it is assumed that the minimum support value is 2 and confidence is 60%.

Transaction Id	Items
1	Hotdogs, Buns, Ketchup
2	Hotdogs, Buns
3	Hotdogs, Chips, Coke
4	Chips, Coke
5	Chips, Ketchup
6	Chips, Coke, Hotdogs

- 11. (i) How the physiological behaviour of Biological Neuron can be 2 CO5 BLT2 mathematically modeled?
 - (ii) Discuss on the followings.
 - (i) Convolutional Neural network
 - (ii) Recurrent Neural Network
 - (iii) Derive the back propagation formulation model for ANN based 9 CO5 BLT3 classification scheme.

CO4 BLT3

CO5 BLT2

4