Coffee Talk #4

November 9, 2021

Ozgur Taylan Turan

Learning Rate Annealing Can Provably Help Generalization Even For Convex Problems¹

¹P. Nakkiran (2020). "Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems". In: pp. 1–9. arXiv: 2005.07360

Why This Paper?

Simple, but not obvious observations...

Aim

Show that large initial learning rate can act as a regularizer!

- Non-convex setting ¹
- Convex setting ²

¹Y. Li, C. Wei, and T. Ma (2019). "Towards explaining the regularization effect of initial large learning rate in training neural networks". In: Advances in Neural Information Processing Systems 32, pp. 1–49. ISSN: 10495258. arXiv: 1907.04595

²P. Nakkiran (2020). "Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems". In: pp. 1–9. arXiv: 2005.07360

Non-Convex Setting ¹-A

Figure 1: CIFAR-10 accuracy vs. epoch for WideResNet with weight decay, no data augmentation, and initial lr of 0.1 vs. 0.01. Gray represents the annealing time. **Left:** Train. **Right:** Validation.

¹Y. Li, C. Wei, and T. Ma (2019). "Towards explaining the regularization effect of initial large learning rate in training neural networks". In: Advances in Neural Information Processing Systems 32, pp. 1–49. ISSN: 10495258. arXiv: 1907.04595

Non-Convex Setting ¹-B

Claim 1: Small learning rate \rightarrow easy-to-generalize and hard-to-fit patterns Claim 2: Large learning rate \rightarrow hard-to-generalize and easy-to-fit patterns

Complex theoretical and a small empirical investigation.

¹Y. Li, C. Wei, and T. Ma (2019). "Towards explaining the regularization effect of initial large learning rate in training neural networks". In: Advances in Neural Information Processing Systems 32, pp. 1–49. ISSN: 10495258. arXiv: 1907.04595

Non-Convex Setting ¹-C

Figure 4: Visualizations of CIFAR-10 images with patches added.

CIFAR-10: 20% No-patch, 16% Only-patch, 60% Image-with-patch

¹Y. Li, C. Wei, and T. Ma (2019). "Towards explaining the regularization effect of initial large learning rate in training neural networks". In: Advances in Neural Information Processing Systems 32, pp. 1–49. ISSN: 10495258. arXiv: 1907.04595

Non-Convex Setting ¹-D

Figure 3: Accuracy vs. epoch on patch-augmented CIFAR-10. The gray line indicates annealing of activation noise and learning rate. **Left:** Clean validation set. **Right:** Images containing only the patch.

Small Gaussian-noise addition before activation layer have a regularizing effect on the small learning rate!

¹Y. Li, C. Wei, and T. Ma (2019). "Towards explaining the regularization effect of initial large learning rate in training neural networks". In: Advances in Neural Information Processing Systems 32, pp. 1–49. ISSN: 10495258. arXiv: 1907.04595

Non-Convex Setting ¹-E

Claim 3: Convex problems have unique minimum, so this effect cannot be observed!

¹Y. Li, C. Wei, and T. Ma (2019). "Towards explaining the regularization effect of initial large learning rate in training neural networks". In: Advances in Neural Information Processing Systems 32, pp. 1–49. ISSN: 10495258. arXiv: 1907.04595

Problem

- Assume a distribution \mathcal{D} over $(x,y) \in \mathbb{R}^2 x \mathbb{R}$
- Given $x \in \{\mathbf{e}_1, \mathbf{e}_2\}$ uniformly at random; $y = \langle \beta^*, x \rangle$ for ground truth \mathbb{R}^2
- Learn a linear model $\hat{y} := \langle \beta, x \rangle$, where $\beta = (\beta_1, \beta_2)$
- Noting, population loss $\to L_{\mathcal{D}} := \mathbb{E}_D \Big[(\langle \beta, x \rangle y)^2 \Big]$
- And, empirical loss $\to \hat{L}_n := \frac{1}{n} \sum_i (\langle \beta, x_i \rangle y_i)^2$ for drawn n samples from the distribution \mathcal{D}

¹P. Nakkiran (2020). "Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems". In: pp. 1–9. arXiv: 2005.07360

Assume you have n = 3 with $(x_i, y_i)_{i=1}^3 \to \{(\mathbf{e}_1, \beta_1^*), (\mathbf{e}_1, \beta_1^*), (\mathbf{e}_2, \beta_2^*)\}$

Empirical Loss

$$\hat{L}_n := \frac{2}{3}(\beta_1 - \beta_1^*)^2 + \frac{1}{3}(\beta_2 - \beta_2^*)^2$$

¹P. Nakkiran (2020). "Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems". In: pp. 1–9. arXiv: 2005.07360

Assume you have n = 3 with $(x_i, y_i)_{i=1}^3 \to \{(\mathbf{e}_1, \beta_1^*), (\mathbf{e}_1, \beta_1^*), (\mathbf{e}_2, \beta_2^*)\}$

Empirical Loss

$$\hat{L}_n := \frac{2}{3}(\beta_1 - \beta_1^*)^2 + \frac{1}{3}(\beta_2 - \beta_2^*)^2$$

Population Loss

$$L_{\mathcal{D}} := \frac{1}{2}(\beta_1 - \beta_1^*)^2 + \frac{1}{2}(\beta_2 - \beta_2^*)^2$$

¹P. Nakkiran (2020). "Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems". In: pp. 1–9. arXiv: 2005.07360

Start from 0-initialization and update with SGD until $\hat{L}_n = \varepsilon$ with small learning rate (a) and large learning rate with annealing (b)

¹P. Nakkiran (2020). "Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems". In: pp. 1–9. arXiv: 2005.07360

Start from 0-initialization and update with SGD until $\hat{L}_n = \varepsilon$ with small learning rate (a) and large learning rate with annealing (b)

So, large learning rate is regularizing the high curvature update and allow better generalization performance.

¹P. Nakkiran (2020), "Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems". In: pp. 1–9, arXiv: 2005.07360

Conclusions

- Learning rate can have a regularizing effect in both convex and non-convex settings, although reasons are different.
- Investigation of learning rate remains an open question in more complex settings.