Package 'CircNNTSR'

September 1, 2023

Type Package

Title Statistical Analysis of Circular Data using Nonnegative Trigonometric Sums (NNTS) Models	
Version 2.3	
Date 2023-08-31	
Author Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez	
Maintainer Maria Mercedes Gregorio-Dominguez <mercedes@itam.mx></mercedes@itam.mx>	
Description Includes functions for the analysis of circular data using distributions based on Nonnega tive Trigonometric Sums (NNTS). The package includes functions for calculation of densities and distributions, for the estimation of parameters, for plotting and more.	
Depends stats	
License GPL (>= 2)	
LazyLoad yes	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2023-09-01 04:20:02 UTC	
R topics documented:	
CircNNTSR-package	3
Ants	5
Ants_radians	6
Datab3fisher	6
Datab3fisher_ready	7
DataB5FisherSpherical	7
Datab6fisher	8
Datab6fisher_ready	9
	9
3	0
1	0
HomicidesMexico2005	.1
HurricanesGulfofMexico1951to1970	.1

2

HurricanesGulfofMexico1971to2008	. 12
mnntsdensity	. 12
mnntsloglik	
mnntsmanifoldnewtonestimation	
mnntsmarginal	
mnntsplot	
mnntsplotmarginal	
mnntsplotwithmarginals	
mnntsrandominitial	
mnntssimulation	
Nest	
nntsABcoefficients	
nntsABcoefficientsSymmetric	
nntsABDensity	
nntsABDensitySymmetric	
nntsdensity	
nntsDensityInterval0to1	
nntsDistribution	
nntsDistributioninterval0to1	
nntsDistributioninterval0to2pi	
nntsestimationSymmetric	. 29
nntsloglik	. 30
nntsloglikInterval0to1	. 31
nntsloglikInterval0to2pi	. 32
nntsloglikSymmetric	. 33
nntsmanifoldnewtonestimation	. 34
nntsmanifoldnewtonestimationgradientstop	. 35
nntsmanifoldnewtonestimationintervalOto1	
nntsmanifoldnewtonestimationinterval0to2pi	
nntsplot	
nntsplotInterval0to1	
nntsplotSymmetric	
nntsrandominitial	. 40
nntsrandominitialSymmetric	
nntssimulation	
nntsSymmetricDensity	
nntsuniformitytestlikelihoodratio	
•	
ProteinsAAA	. 44
snntsdensity	. 45
snntsdensityplot	
snntsloglik	
snntsmanifoldnewtonestimation	
snntsmarginallatitude	
snntsmarginallongitude	
snntssimulation	
SuicidesMexico2005	. 53
Turtles	. 53
Turtles radians	. 54

WindDirectionsTrive	riate	5.
Index		5.
CircNNTSR-package	CircNNTSR: An R Package for the statistical analysis of circular data using nonnegative trigonometric sums (NNTS) models	_

Description

A collection of utilities for the statistical analysis of circular and spherical data using nonnegative trigonometric sum (NNTS) models

Details

Package: CircNNTSR
Type: Package
Version: 2.2-1
Date: 2020-02-16
License: GLP (>=2)
LazyLoad: yes

Fernandez-Duran, J.J. (2004) proposed a new family of distributions for circular random variables based on nonnegative trigonometric sums. This package provides functions for working with circular distributions based on nonnegative trigonometric sums, including functions for estimating the parameters and plotting the densities.

The distribution function in this package is a circular distribution based on nonnegative trigonometric sums (Fernandez-Duran, 2004). Fejer (1915) expressed a univariate nonnegative trigonometric (Fourier) sum (series), for a variable θ , as the squared modulus of a sum of complex numbers, i.e.,

$$\left\| \sum_{k=0}^{M} c_k e^{ik\theta} \right\|^2 \quad (1)$$

where $i = \sqrt{-1}$. From this result, the parameters (a_k, b_k) for k = 1, ..., M of the trigonometric sum of order $M, T(\theta)$,

$$T(\theta) = a_0 + \sum_{k=1}^{M} (a_k cos(k\theta) + b_k sin(k\theta))$$

are expressed in terms of the complex parameters in Equation 1, c_k , for $k=0,\ldots,M$, as $a_k-ib_k=2\sum_{\nu=0}^{n-k}c_{\nu+k}\bar{c}_{\nu}$. The additional constraint, $\sum_{k=0}^n\|c_k\|^2=\frac{1}{2\pi}=a_0$, is imposed to make the trigonometric sum to integrate one. Thus, c_0 must be real and positive, and there are 2*M free parameters. Then, the probability density function for a circular (angular) random variable is defined as (Fernandez-Duran, 2004)

$$f(\theta; \underline{a}, \underline{b}, M) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{M} (a_k cos(k\theta) + b_k sin(k\theta)).$$

Note that Equation 1 can also be expressed as a double sum as

$$\sum_{k=0}^{M} \sum_{m=0}^{M} c_k \bar{c}_m e^{i(k-m)\theta}$$

.

The \underline{c} parameters can also be expressed in polar coordinates as $c_k = \rho_k e^{i\phi_k}$ for $\rho_k \geq 0$ and $\phi_k \in [0, 2\pi)$; where ρ_k is the modulus of c_k and ϕ_k is the argument of c_k for $k = 1, \ldots, M$. Many functions of the packages use as parameters the squared moduli and the arguments of c_k , ρ_k^2 and ϕ_k , for $k = 1, \ldots, M$. We refer to the parameter M as the number of components in the NNTS.

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Maintainer: Maria Mercedes Gregorio Dominguez <mercedes@itam.mx>

References

Fernandez-Duran, J.J. (2004). Circular Distributions Based on Nonnegative Trigonometric Sums, Biometrics, 60(2), 499-503.

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2010). A Likelihood-Ratio Test for Homogeneity in Circular Data. Journal of Biometrics & Biostatistics, 1(3), 107. doi:10.4172/2155-6180.1000107

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2010). Maximum Likelihood Estimation of Nonnegative Trigonometric Sums Models Using a Newton-Like Algorithm on Manifolds. Electronic Journal of Statistics, 4, 1402-1410. doi:10.1214/10-ejs587

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2014). Distributions for Spherical Data Based on Nonnegative Trigonometric Sums. Statistical Papers, 55(4), 983-1000. doi:10.1007/s00362-013-0547-5

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2014). Modeling Angles in Proteins and Circular Genomes Using Multivariate Angular Distributions Based on Nonnegative Trigonometric Sums. Statistical Applications in Genetics and Molecular Biology, 13(1), 1-18. doi:10.1515/sagmb-2012-0012

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2014). Testing for Seasonality Using Circular Distributions Based on Nonnegative Trigonometric Sums as Alternative Hypotheses. Statistical Methods in Medical Research, 23(3), 279-292. doi:10.1177/0962280211411531.

Juan Jose Fernandez-Duran, Maria Mercedes Gregorio-Dominguez (2016). CircNNTSR: An R Package for the Statistical Analysis of Circular, Multivariate Circular, and Spherical Data Using Nonnegative Trigonometric Sums. Journal of Statistical Software, 70(6), 1-19. doi:10.18637/jss.v070.i06

Examples

set.seed(200)
data(Turtles_radians)
#Empirical analysis of data
Turtles_hist<-hist(Turtles_radians,breaks=10,freq=FALSE)
#Estimation of the NNTS density with 3 componentes for data</pre>

Ants 5

```
est<-nntsmanifoldnewtonestimation(Turtles_radians,3,iter=100)
est
#plot the estimated density
nntsplot(est$cestimates[,2],3)
#add the histogram to the estimated density plot
plot(Turtles_hist, freq=FALSE, add=TRUE)
b<-c(runif(10,3*pi/2,2*pi-0.00000001),runif(10,pi/2,pi-0.00000001))
estS<-nntsestimationSymmetric(2,b)
nntsplotSymmetric(estS$coef,2)

M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est
cest<-est$cestimates
mnntsplot(cest, M)</pre>
```

Ants

Movements of ants

Description

Directions chosen by 100 ants in response to an evenly illuminated black target.

Usage

data(Ants)

Format

Directions chosen by 100 ants in degrees

Source

Randomly selected values by Fisher (1993) from Jander (1957)

References

N.I. Fisher (1993) Statistical analysis of circular data. Cambridge University Press.

6 Datab3fisher

Ants_radians

Movements of ants

Description

Direction chosen by 100 ants in response to an evenly illuminated black target.

Usage

```
data(Ants_radians)
```

Format

Directions chosen by 100 ants in radians

Source

Randomly selected values by Fisher (1993) from Jander (1957)

References

N.I. Fisher (1993) Statistical analysis of circular data. Cambridge University Press.

Datab3fisher

Database B3 from Fisher

Description

Database B3 from Fisher et al. (1987)

Usage

data(Datab3fisher)

Format

Datab3fisher

Details

The dataset Datab3fisher consists of 148 observations of the arrival directions of low-mu showers of cosmic rays (Toyoda *et al.*, 1965; see Fisher *et al.*, 1987, pp. 280-281). The observations are measured in declination and right ascension coordinates.

Source

Fisher, et al. (1987)

Datab3fisher_ready 7

References

Toyoda, Y., Suga, K., Murakami, K., Hasegawa, H., Shibata, S., Domingo, V., Escobar, I., Kamata, K., Bradt, H., Clark, G. and La Pointe, M. (1965). Studies of Primary Cosmic Rays in the Energy Region 10¹⁴ eV to 10¹⁷ eV (Bolivian Air Shower Joint Experiment), Proceedings of the International Conference on Cosmic Rays, vol. 2, London, September, 1965, 708–711. London: The Institute of Physics and the Physical Society.

Fisher, N.I., Lewis, T. and Embleton, B.J.J. (1987). Statistical Analysis of Spherical Data, Cambridge U.K.: Cambridge University Press.

Datab3fisher_ready

Data transformed from Datab3fisher

Description

Data transformed from Datab3fisher

Usage

data(Datab3fisher_ready)

Format

Datab3fisher ready

Details

datab3fisher[,2] <- 90 + datab3fisher[,2]; datab3fisher_ready <- datab3fisher*(pi/180)

DataB5FisherSpherical Spherical Data on Magnetic Remanence

Description

Measurements of magnetic remanence from 52 specimens of red beds from the Bowen Basin, Queensland.

Usage

data(DataB5FisherSpherical)

Format

Declination -inclination in degrees

8 Datab6fisher

Source

P.W. Schmidt

References

Fisher N.I., Lewis T. and Embleton B.J.J. (1987) Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge. Data B.5.

Examples

data(DataB5FisherSpherical)

Datab6fisher

Database B6 from Fisher et al. (1987)

Description

datab6fisher

Usage

data(Datab6fisher)

Format

The coordinates are declination and inclination measured in degrees

Details

The data-set Datab6fisher contains 107 measurements of magnetic remanence in samples of Precambrian volcanics collected in Northwest Australia. (Schmidt and Embleton, 1985; see Fisher et al., 1987, pp. 285).

Source

Fisher, et al. (1987)

References

Schmidt, P.W. and Embleton, B.J.J. (1985). Pre-folding and overprint magnetic signatures in Precambrian (~2.9-2.7ga) igneous rocks from the Pilbara Craton and Hamersley Basin, N.W. Australia, Journal of Geophysical Research, 90 (B4), 2967–2984.

Fisher, N.I., Lewis, T. and Embleton, B.J.J. (1987). Statistical Analysis of Spherical Data, Cambridge U.K.: Cambridge University Press.

Datab6fisher_ready 9

Datab6fisher_ready

Data transformed from datab6fisher

Description

Data transformed from datab6fisher

Usage

```
data(Datab6fisher_ready)
```

Format

Datab6fisher_ready

Details

```
dataaux <- datab6fisher; datab6fisher[,1] <- dataaux[,2]; datab6fisher[,2] <- dataaux[,1]; datab6fisher[,1] <- 360 - datab6fisher[,1]; datab6fisher[,2] <- 90 + datab6fisher[,2]; datab6fisher_ready <- datab6fisher*(pi/180)
```

DataUniformBivariate200obs

Uniform Bivariate Circular Data

Description

200 realizations of a uniform distribution on the torus

Usage

data(DataUniformBivariate200obs)

Format

Angles in radians

EarthquakesPacificMexicogt6

Date of Occurrence of Earthquakes

Description

The time of occurrence of earthquakes of intensity greater than 6.0° Richter with an epicenter occurring in the coast of the Pacific Ocean in Mexico from 1920 to 2002. There is a total of 241 observations.

Usage

data(EarthquakesPacificMexicogt6)

Format

Time in years. All observations in the interval (0,1]

Source

Mexican Database of Strong Earthquakes. CENAPRED.

EarthquakesPacificMexicogt7

Date of Occurrence of Earthquakes 2

Description

The time of occurrence of earthquakes of intensity greater than 7.0^{o} Richter with an epicenter occurring in the coast of the Pacific Ocean in Mexico from 1920 to 2002. There are a total of 76 observations.

Usage

data(EarthquakesPacificMexicogt7)

Format

Time in years. All observations in the interval (0,1]

Source

Mexican Database of Strong Earthquakes. CENAPRED.

HomicidesMexico2005

HomicidesMexico2005

Homicides in Mexico during 2005

Description

Monthly number of homicides in Mexico during 2005

Usage

data(HomicidesMexico2005)

Format

Integer values

Source

INEGI (Mexican National Statistical Agency) www.inegi.gob.mx

HurricanesGulfofMexico1951to1970

Hurricanes in Mexico from 1951 to 1970

Description

The time of occurrence (starting times) of hurricanes in the Gulf of Mexico for the 1951-1970 period. There are a total of 196 observations.

Usage

data(HurricanesGulfofMexico1951to1970)

Format

Time in years. All observations in the interval (0,1]

Source

http://weather.unisys.com/hurricane/atlantic/1978/index.html

12 mnntsdensity

HurricanesGulfofMexico1971to2008

Hurricanes in Mexico from 1971 to 2008

Description

The time of occurrence (starting times) of hurricanes in the Gulf of Mexico for the 1971-2008 period. There are a total of 417 observations

Usage

data(HurricanesGulfofMexico1971to2008)

Format

Time in years. All observations in the interval (0,1]

Source

http://weather.unisys.com/hurricane/atlantic/1978/index.html

mnntsdensity

MNNTS density function

Description

Density function for the MNNTS model

Usage

```
mnntsdensity(data, cpars = 1/sqrt(2 * pi), M = 0, R=1)
```

Arguments

data	Matrix of angles in radians, a column for each dimension, a row for each data point
cpars	Parameters of the model. A vector of complex numbers of dimension prod(M+1). The first element is a real and positive number. The first M[1]+1 elements correspond to dimension one, the next M[2]+1 elements correspond to dimension two, and so on. The sum of the SQUARED moduli of the c parameters must be equal to $\left(\frac{1}{2*pi}\right)^R$.
М	Vector of length R with number of components in the MNNTS for each dimension
R	Number of dimensions

mnntsloglik 13

Value

The function returns the density function evaluated at each row in data

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Juan Jose Fernandez-Duran, Maria Mercedes Gregorio-Dominguez (2016). CircNNTSR: An R Package for the Statistical Analysis of Circular, Multivariate Circular, and Spherical Data Using Nonnegative Trigonometric Sums. Journal of Statistical Software, 70(6), 1-19. doi:10.18637/jss.v070.i06

Examples

```
set.seed(200)
M<-c(2,3)
R<-length(M)
data<-c(0,pi,pi/2,pi,pi,3*pi/2,pi,2*pi,2*pi,pi)
data<-matrix(data,ncol=2,byrow=TRUE)
data
ccoef<-mnntsrandominitial(M,R)
mnntsdensity(data,ccoef,M,R)

M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est
ccoef<-est$cestimates[,3]
mnntsdensity(data,ccoef,M,R)</pre>
```

 ${\tt mnntsloglik}$

MNNTS log-likelihood function

Description

Computes the log-likelihood function with MNNTS density for data

Usage

```
mnntsloglik(data, cpars = 1/sqrt(2 * pi), M = 0, R = 1)
```

Arguments

data	Matrix of angles in radians, a column for each dimension, a row for each data point.
cpars	Parameters of the model. A vector of complex numbers of dimension prod(M+1). The first element is a real and positive number. The first M[1]+1 elements correspond to dimension one, next M[2]+1 elements correspond to dimension two, and so on. The sum of the SQUARED moduli of the c parameters must be equal to $\left(\frac{1}{2*pi}\right)^R$.
М	Vector of length R with number of components in the MNNTS for each dimension.
R	Number of dimensions.

Value

The function returns the value of the log-likelihood function for the data.

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

Examples

```
M<-c(2,3)
R<-length(M)
data<-c(0,pi,pi/2,pi,pi,3*pi/2,pi,2*pi,2*pi,pi)
data<-matrix(data,ncol=2,byrow=TRUE)
data
ccoef<-mnntsrandominitial(M,R)
mnntsdensity(data,ccoef,M,R)
mnntsloglik(data,ccoef,M,R)</pre>
```

 ${\tt mnntsmanifold new tone stimation}$

Parameter estimation for the MNNTS distributions

Description

Computes the maximum likelihood estimates of the MNNTS parameters using a Newton algorithm on the hypersphere

Usage

mnntsmanifoldnewtonestimation(data,M=0,R=1,iter=1000,initialpoint=FALSE,cinitial)

Arguments

data Matrix of angles in radians, a column for each dimension, a row for each data

point

M Vector of length R with number of components in the MNNTS for each dimen-

sion

R Number of dimensions

iter Number of iterations for the Newton algorithm

initial point TRUE if an initial point for the optimization algorithm will be used

cinitial Initial value for cpars (parameters of the model) for the optimization algorithm.

Vector of complex numbers of dimension prod(M+1). The first element is a real and positive number. The first M[1]+1 elements correspond to dimension one, the next M[2]+1 elements correspond to dimension two, and so on. The sum of

the SQUARED moduli of the c parameters must be equal to $\left(\frac{1}{2*pi}\right)^R$.

Value

cestimates Matrix of prod(M+1)*(R+1). The first R columns are the parameter number,

and the last column is the c parameter's estimators

loglik Optimum log-likelihood value

AIC Value of Akaike's Information Criterion

BIC Value of Bayesian Information Criterion

gradnormerror Gradient error after the last iteration

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

16 mnntsmarginal

Examples

```
set.seed(200)
M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest*(pi/180)
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est</pre>
```

mnntsmarginal

Marginal density function of the MNNTS model

Description

Marginal density function for one dimension of the MNNTS model evaluated at a point

Usage

```
mnntsmarginal(cestimatesarray, M, component, theta)
```

Arguments

cestimatesarray

Matrix of prod(M+1)*(R+1). The first R columns are the parameter number,

and the last column is the c parameter's estimators

M Vector of length R with number of components in the MNNTS for each dimen-

sion

component Number of the dimension for computing the marginal

theta An angle in radians (or a vector of angles)

Value

The function returns the density function evaluated at theta

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

mnntsplot 17

Examples

```
set.seed(200)
M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est
cest<-est$cestimates
mnntsmarginal(cest,M,1,pi)</pre>
```

mnntsplot

Plots an MNNTS bivariate density

Description

Plots the MNNTS bivariate density function

Usage

```
mnntsplot(cestimates, M, ...)
```

Arguments

Matrix of prod(M+1)*(R+1). The first R columns are the parameter number, and the last column is the c parameter's estimators. R=2 for a bivariate distribution

M Vector with the number of components in the MNNTS for each dimension

Arguments passed to the function plot

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

18 mnntsplotmarginal

Examples

```
set.seed(200)
M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est
cest<-est$cestimates
mnntsplot(cest, M)</pre>
```

mnntsplotmarginal

Plots an MNNTS marginal density

Description

Plots the MNNTS marginal density function

Usage

```
mnntsplotmarginal(cestimates, M, component, ...)
```

Arguments

cestimates Matrix of prod(M+1)*(R+1). The first R columns are the parameter number, and

the last column the c parameter's estimators. The matrix could be the output of

mnntsmanifoldnewtonestimation \$cestimates

M Vector with number of components in the MNNTS for each dimension

component Number of the dimension for computing the marginal density

... Arguments passed to the function plot

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

Examples

```
set.seed(200)
M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est
cest<-est$cestimates
mnntsplotmarginal(cest, M, 1)
mnntsplotmarginal(cest, M, 2)</pre>
```

mnntsplotwithmarginals

Plots an MNNTS bivariate density together with the marginals

Description

Plots the MNNTS bivariate density function together with the marginals

Usage

```
mnntsplotwithmarginals(cestimates, M, ...)
```

Arguments

cestimates	Matrix of $\operatorname{prod}(M+1)^*(R+1)$. The first R columns are the parameter number, and the last column the c parameter's estimators. The matrix could be the output of mnntsmanifoldnewtonestimation \$cestimates.
М	Vector of length R with number of components in the MNNTS for each dimension
	Arguments passed to the function plot

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

20 mnntsrandominitial

Examples

```
set.seed(200)
M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est
cest<-est$cestimates
mnntsplotwithmarginals(cest, M)</pre>
```

mnntsrandominitial

Initial random point

Description

This function generates a random point on the surface of the prod(M+1)-dimensional unit hypersphere

Usage

```
mnntsrandominitial(M = 1, R = 1)
```

Arguments

M Vector of length R with number of components in the MNNTS for each dimen-

sion

R Number of dimensions

Value

Returns a valid initial point for estimation functions

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

```
M<-c(2,3)
R<-length(M)
mnntsrandominitial(M,R)</pre>
```

mnntssimulation 21

mnntssimulation MNNTS density simulation function

Description

Simulation for the density function for the MNNTS model

Usage

```
mnntssimulation(nsim=1, cpars = 1/(2 * pi), M = c(0,0), R=2)
```

Arguments

nsim	Number of simulations
cpars	Parameters of the model. A vector of complex numbers of dimension $prod(M+1)$. The first element is a real and positive number. The first $M[1]+1$ elements correspond to dimension one, next $M[2]+1$ elements correspond to dimension two, and so on. The sum of the SQUARED moduli of the c parameters must be equal to $1/(2*pi)$.
М	Vector of length R with number of components in the MNNTS for each dimension
R	Number of dimensions

Value

simulations	The function generates nsim random values from the MNNTS density function
conteo	Number of uniform random numbers used for simulations

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

```
M<-c(2,3)
R<-length(M)
ccoef<-mnntsrandominitial(M,R)
data<-mnntssimulation(10,ccoef,M,R)
data</pre>
```

22 nntsABcoefficients

Nest

Nest orientations and creek directions

Description

Orientation of nests of 50 noisy scrub birds (theta) along the bank of a creek bed, together with the corresponding directions (phi) of creek flow at the nearest point to the nest.

Usage

data(Nest)

Format

Orientation of 50 nests (vectors)

Source

Data supplied by Dr. Graham Smith

References

N.I. Fisher (1993) Statistical analysis of circular data. Cambridge University Press.

nntsABcoefficients

AB coefficients

Description

This function transforms the complex parameters c to the parameters ab for a reparameterization of the density function

Usage

```
nntsABcoefficients(cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

cpars	Vector of complex numbers of dimension M+1. The first element is a real and
-------	---

positive number. The sum of the SQUARED moduli of the c parameters must

be equal to 1/(2*pi).

M Number of components in the NNTS

Value

The function returns the parameters ab associated with the parameters cpars and returns a vector of real numbers of size 2*M, where the first M elements are the a_k , k=1,...,M, and the next M elements are the b_k , k=1,...,M

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Examples

```
#random generation of c parameters
ccoef<-nntsrandominitial(3)
ccoef
ab<-nntsABcoefficients(ccoef,3)
ab</pre>
```

```
\verb|nntsABcoefficientsSymmetric||\\
```

AB coefficients

Description

This function transforms the complex parameters c to the parameters ab for a reparameterization of the density function

Usage

```
nntsABcoefficientsSymmetric(cpars = c(0,0), M = 0)
```

Arguments

cpars Vector of complex numbers of dimension 2*M

M Number of components in the NNTS

Value

The function returns the parameters ab associated with the pararameters cpars

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

nntsABDensit	٠,
nntsabbensit	·V

Density function with AB coefficients

Description

Density function expressed in terms of the ab parameters at theta

Usage

```
nntsABDensity(theta, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

theta Vector of angles in radians

cpars Vector of complex numbers of dimension M+1. The first element is a real and

positive number. The sum of the SQUARED moduli of the c parameters must

be equal to 1/(2*pi)

M Number of components in the NNTS

Value

Returns the density function in terms of the ab coefficients evaluated at theta

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Examples

```
ccoef<-nntsrandominitial(3)
nntsABDensity(1,ccoef,3)
nntsABDensity(1+2*pi,ccoef,3)</pre>
```

 ${\tt nntsABDensitySymmetric}$

Density function with AB coefficients

Description

Density function expressed in terms of the ab parameters at theta

Usage

```
nntsABDensitySymmetric(cpars = c(0, 0), M = 0, theta)
```

nntsdensity 25

Arguments

theta Vector of angles in radians

cpars Vector of complex numbers of dimension 2*M

M Number of components in the NNTS

Value

Returns the density function in terms of the ab coefficients evaluated at theta

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

nntsdensity	NNTS density function	
-------------	-----------------------	--

Description

Density function for the NNTS model

Usage

```
nntsdensity(data, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

data Vector of angles in radians

cpars Vector of complex numbers of dimension M+1. The first element is a real and

positive number. The sum of the squared moduli of the c parameters must be

equal to 1/(2*pi).

M Number of components in the NNTS

Value

The function returns the density function evaluated at each point in data

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. (2004). Circular Distributions Based on Nonnegative Trigonometric Sums, Biometrics, 60(2), 499-503.

Juan Jose Fernandez-Duran, Maria Mercedes Gregorio-Dominguez (2016). CircNNTSR: An R Package for the Statistical Analysis of Circular, Multivariate Circular, and Spherical Data Using Nonnegative Trigonometric Sums. Journal of Statistical Software, 70(6), 1-19. doi:10.18637/jss.v070.i06

Examples

```
ccoef<-nntsrandominitial(3)
nntsdensity(1,ccoef,3)
nntsdensity(1+pi,ccoef,3)
nntsdensity(c(1,1+pi),ccoef,3)</pre>
```

nntsDensityInterval0to1

NNTS density function for a variable defined in the interval [0,1)

Description

Computes the density function at theta for a variable defined in the interval [0,1))

Usage

```
nntsDensityInterval0to1(S, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

S	Vector of values defined in the interval [0,1) at which the density function is computed
cpars	Vector of complex numbers of dimension $M+1$. The first element is a real and positive number. The sum of the squared moduli of the c parameters must be equal to $1/(2*pi)$
М	Number of components in the NNTS

Details

This function computes the density function of a variable S (S in the interval [0,1)). If theta is defined in radians (theta in the interval [0,2*pi)), the relation between S and theta is theta=2*pi*S.

Value

Value of the density function at each component of S

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

```
ccoef<-nntsrandominitial(3)
nntsDensityInterval0to1(c(.8,1.8),ccoef,3)</pre>
```

nntsDistribution 27

nntsDistribution	NNTS Distribution function

Description

Cumulative distribution function in terms of the c parameters at theta, measured in radians [0,2*pi).

Usage

```
nntsDistribution(theta, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

theta	Vector of angles in radians at which the distribution is computed
cpars	Vector of complex numbers of dimension M+1. The first element is a real and positive number. The sum of the SQUARED moduli of the c parameters must be equal to 1/(2*pi).

M Number of components in the NNTS

Value

The function returns the value of the distribution function evaluated at each component of theta

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Examples

```
ccoef<-nntsrandominitial(3)
nntsDistribution(c(0,pi/2,pi,2*pi-0.00000001,2*pi),ccoef,3)</pre>
```

nntsDistributioninterval0to1

NNTS distribution function for the incidence data defined in the interval [0,1)

Description

Computes the distribution function at theta for the incidence data (number of observed values in certain intervals defined in the interval [0,1))

Usage

```
nntsDistributionintervalOto1(theta, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

theta Value at which the distribution function is computed

cpars Vector of complex numbers of dimension M+1. The first element is a real and

positive number. The sum of the squared moduli of the c parameters must be

equal to 1/(2*pi).

M Number of components in the NNTS

Value

The function returns the value of the distribution function at theta

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Examples

```
cpars<-nntsrandominitial(2)
nntsDistributioninterval0to1(pi, cpars, 2)</pre>
```

nntsDistributioninterval0to2pi

NNTS distribution function for data defined in the interval [0,2*pi)

Description

Computes the distribution function for the data at theta

Usage

```
nntsDistributioninterval0to2pi(theta, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

theta Value at which the distribution function is computed

cpars Vector of complex numbers of dimension M+1. The first element is a real and

positive number. The sum of the SQUARED moduli of the c parameters must

be equal to 1/(2*pi).

M Number of components in the NNTS

Value

The function returns the value of the distribution function at theta

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Examples

```
cpars<-nntsrandominitial(3)
nntsDistributioninterval0to2pi(0, cpars, 3)
nntsDistributioninterval0to2pi(pi, cpars, 3)
nntsDistributioninterval0to2pi(2*pi-0.00000001, cpars, 3)
nntsDistributioninterval0to2pi(2*pi, cpars, 3)
nntsDistributioninterval0to2pi(3*pi, cpars, 3)</pre>
```

nntsestimationSymmetric

NNTS Symmetric Coefficient estimation

Description

Computes the maximum likelihood estimates of the symmetric NNTS parameters

Usage

```
nntsestimationSymmetric(M = 0, data, maxit = 500)
```

Arguments

М	Number of components	in	the NNT	S

data Vector of angles in radians

maxit Maximum number of iterations in the optimization algorithm

Value

coef Vector of length M+1. The first M components are the squared moduli of the c

parameters, and the last number is the mean of symmetry

loglik Optimum log-likelihood value

AIC Value of Akaike's Information Criterion
BIC Value of Bayesian Information Criterion

convergence An integer code: zero indicates successful convergence; error codes are the fol-

lowing: one indicates that the iteration limit maxit has been reached, and 10

indicates degeneracy of the Nelder-Mead simplex

Note

For the maximization of the loglikelihood function the function constrOptim from the package stats is used

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

30 nntsloglik

References

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2009) Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums. Working Paper, DE-C09.12, Department of Statistics, ITAM, Mexico

Examples

```
b < -c(runif(10,3*pi/2,2*pi-0.00000001), runif(10,pi/2,pi-0.00000001)) \\ estS < -nntsestimationSymmetric(2,b) \\ nntsplotSymmetric(estS$coef,2)
```

nntsloglik

NNTS log-likelihood function

Description

Computes the log-likelihood function with NNTS density for data

Usage

```
nntsloglik(data, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

data Vector with observed angles in radians.

cpars Vector of complex numbers of dimension M+1. The first element is a real and

positive number. The sum of the squared moduli of the c parameters must be

equal to 1/(2*pi).

M Number of components in the NNTS

Value

The function returns the value of the log-likelihood function for the data

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J. (2004). Circular Distributions Based on Nonnegative Trigonometric Sums, Biometrics, 60(2), 499-503.

```
a<-c(runif(10,3*pi/2,2*pi-0.00000001),runif(10,pi/2,pi-0.00000001)) est<-nntsmanifoldnewtonestimation(a,2) ccoef<-est$cestimates[,2] nntsloglik(a,ccoef,2)
```

nntsloglikInterval0to1 31

```
nntsloglikInterval0to1
```

NNTS log-likelihood function for the incidence data defined in the interval [0,1)

Description

Computes the log-likelihood function for incidence data (number of observed values in certain intervals defined in the interval [0,1))

Usage

```
nntsloglikInterval0to1(data, cutpoints, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

data	Number of observations in each interval
cutpoints	Vector of size length(data)+1 with the limits of the intervals
cpars	Vector of complex numbers of dimension M+1. The first element is a real and positive number. The sum of the SQUARED moduli of the c parameters must be equal to 1/(2*pi).
М	Number of components in the NNTS

Value

The function returns the value of the log-likelihood function for data

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

```
data<-c(1,2,6,4,1)
cutpoints<-c(0,0.2,0.4,0.6,0.8,0.9999999)
cpars<-nntsrandominitial(1)
nntsloglikInterval0to1(data, cutpoints, cpars, 1)</pre>
```

nntsloglikInterval0to2pi

NNTS log-likelihood function for the incidence data defined in the interval [0,2*pi)

Description

Computes the log-likelihood function for incidence data (number of observed values in certain intervals defined in the interval [0,2*pi))

Usage

```
nntsloglikInterval0to2pi(data, cutpoints, cpars = 1/sqrt(2 * pi), M = 0)
```

Arguments

data	Number of observations in each interval
cutpoints	Vector of size length(data)+1 with the limits of the exhaustive and mutually exclusive intervals in which the interval [0,2*pi) is divided.
cpars	Vector of complex numbers of dimension M+1. The first element is a real and positive number. The sum of the SQUARED moduli of the c parameters must be equal to 1/(2*pi).
М	Number of components in the NNTS density

Value

The function returns the value of the log-likelihood function for the data

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

```
\label{eq:data-condition} $$ \data<-c(2,3,6,4)$    cutpoints<-c(0,pi/2,pi,3*pi/2,2*pi-0.00000001)$    est<-nntsmanifoldnewtonestimationinterval0to2pi(data,cutpoints,M=1)$    cpars<-est$cestimates[,2]$    nntsloglikInterval0to2pi(data,cutpoints,cpars,M=1)$
```

nntsloglikSymmetric 33

nntsloglikSymmetric	

NNTS symmetric log-likelihood function

Description

Computes the log-likelihood function with NNTS symmetric density for the data

Usage

```
nntsloglikSymmetric(cpars = c(0, 0), M = 0, data)
```

Arguments

cpars	Vector of real numbers of	f dimension M+1.	The first M number	s are the squared

moduli of the c parameters. The sum must be less than 1/(2*pi). The last number

is the mean of symmetry

M Number of components in the NNTS

data Vector with angles in radians. The first column is used if data are a matrix

Value

The function returns the value of the log-likelihood function for the data

Note

The default values provide the Uniform circular log-likelihood for the data

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2009) Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums. Working Paper, DE-C09.12, Department of Statistics, ITAM, Mexico

```
nntsloglikSymmetric(c(.01,.02,2),2,t(c(pi,pi/2,2*pi,pi)))
```

nntsmanifoldnewtonestimation

Parameter estimation for NNTS distributions

Description

Computes the maximum likelihood estimates of the NNTS parameters, using a Newton algorithm on the hypersphere

Usage

nntsmanifoldnewtonestimation(data, M=0, iter=1000, initialpoint = FALSE, cinitial)

Arguments

data Vector of angles in radians

M Number of components in the NNTS

iter Number of iterations

initialpoint TRUE if an initial point for the optimization algorithm will be used

cinitial Vector of size M+1. The first element is real and the next M elements are com-

plex (values for \$c_0\$ and \$c_1, ..., c_M\$). The sum of the squared moduli of

the parameters must be equal to 1/(2*pi)

Value

cestimates Matrix of (M+1)x2. The first column is the parameter numbers, and the second

column is the c parameter's estimators

loglik Optimum log-likelihood value

AIC Value of Akaike's Information Criterion

BIC Value of Bayesian Information Criterion

gradnormerror Gradient error after the last iteration

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2010). Maximum Likelihood Estimation of Nonnegative Trigonometric Sums Models by Using a Newton-like Algorithm on Manifolds, Working Paper, Department of Statistics, ITAM, DE-C10.8

Examples

```
set.seed(200)
a<-c(runif(10,3*pi/2,2*pi-0.00000001),runif(10,pi/2,pi-0.00000001))
#Estimation of the NNTSdensity with 2 components for data and 200 iterations
nntsmanifoldnewtonestimation(a,2,iter=200)

data(Turtles_radians)
#Empirical analysis of data
Turtles_hist<-hist(Turtles_radians,breaks=10,freq=FALSE)
#Estimation of the NNTS density with 3 componentes for data
nntsmanifoldnewtonestimation(Turtles_radians,3,iter=200)</pre>
```

nntsmanifoldnewtonestimationgradientstop

Maximum likelihood estimates of the NNTS parameters

Description

Computes the maximum likelihood estimates of the NNTS parameters, using a Newton algorithm on the hypersphere with the option to specify a minimum value of the norm of the gradient error to stop the algorithm

Usage

nntsmanifoldnewtonestimationgradientstop(data, M = 0, iter = 1000, initialpoint = FALSE, cinitial,gradientstop=1e-10)

Arguments

data	Vector of angles in radians
uala	vector or angles in radians

M Number of components in the NNTS

iter Number of iterations

initialpoint TRUE if an initial point for the optimization algorithm will be used

cinitial Vector of size M+1. The first element is real and the next M elements are com-

plex (values for c_0 and c_1, \ldots, c_M). The sum of the squared moduli of the

parameters must be equal to $\frac{1}{7}2\pi$

gradientstop The value of the norm of the gradient error of the Newton algorithm at which

the algorithms stops

Value

cestimates Matrix of (M+1)x2. The first column is the parameter numbers, and the second

column is the c parameter???s estimators

loglik Optimum log-likelihood value

AIC Value of Akaike???s Information Criterion
BIC Value of Bayesian Information Criterion
gradnormerror Gradient error after the last iteration

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2010). Maximum Likelihood Estimation of Nonnegative Trigonometric Sums Models by Using a Newton-like Algorithm on Manifolds, Working Paper, Department of Statistics, ITAM, DE-C10.8

Examples

```
set.seed(200)
a<-c(runif(10,3*pi/2,2*pi-0.00000001),runif(10,pi/2,pi-0.00000001))
#Estimation of the NNTSdensity with 2 components for data and gradientstop at 1e-12
nntsmanifoldnewtonestimationgradientstop(a,2,gradientstop=1e-12)
data(Turtles_radians)
#Empirical analysis of data
Turtles_hist<-hist(Turtles_radians,breaks=10,freq=FALSE)
#Estimation of the NNTS density with 3 componentes for data and gradientstop at 1e-12
nntsmanifoldnewtonestimationgradientstop(Turtles_radians,3,gradientstop=1e-12)</pre>
```

nnts manifold new to nest imation interval 0 to 1

Parameter estimation for grouped data defined in [0,1)

Description

Parameter estimation for incidence data (number of observed values in certain intervals defined over [0,1))

Usage

```
nntsmanifoldnewtonestimationinterval0to1(data, cutpoints, subintervals, M = 0, iter=1000, initialpoint = FALSE, cinitial)
```

Arguments

data Frequency of data on each interval

cutpoints Vector with the limits of intervals. The length of cutpoints must be one plus the

length of the data

subintervals Number of intervals

M Number of components in the NNTS

iter Number of iterations

initialpoint TRUE if an initial point for the optimization algorithm will be used

cinitial Vector of size M+1. The first element is real and the next M elements are com-

plex (values for \$c_0\$ and \$c_1, ..., c_M\$). The sum of the squared moduli of

the parameters must be equal to 1/(2*pi)

Value

cestimates Matrix of M+1 * 2. The first column is the parameter numbers and the second

column is the c parameter's estimators

loglik Optimum loglikelihood value

AIC Value of Akaike's Information Criterion

BIC Value of Bayesian Information Criterion

gradnormerror Gradient error after the last iteration

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

Examples

```
data<-c(1,2,4,6,1)
cutpoints<-c(0,0.2,0.4,0.6,0.8,0.999999999)
nntsmanifoldnewtonestimationintervalOto1(data, cutpoints, length(data), 1)</pre>
```

nntsmanifoldnewtonestimationinterval0to2pi

Parameter estimation for grouped data defined in [0,2*pi)

Description

Parameter estimation for incidence data (number of observed values in certain intervals defined over [0,2*pi))

Usage

```
nntsmanifoldnewtonestimationinterval0to2pi(data, cutpoints,
subintervals,M = 0, iter=1000, initialpoint = FALSE, cinitial)
```

Arguments

data Frequency of data on each interval

cutpoints Vector with the limits of intervals. The length of cutpoints has to be one plus the

length of the data

subintervals Number of intervals

M Number of components in the NNTS

iter Number of iterations

initialpoint TRUE if an initial point for the optimization algorithm will be used

cinitial A vector of size M+1. The first element is real, and the next M elements are

complex (values for \$c_0\$ and \$c_1, ..., c_M\$). The sum of the squared moduli

of the parameters must be equal to 1/(2*pi)

38 nntsplot

Value

cestimates Matrix of M+1*2. The first column is the parameter numbers, and the second

column is the c parameter's estimators

loglik Optimum log-likelihood value

AIC Value of Akaike's Information Criterion

BIC Value of Bayesian Information Criterion

gradnormerror Gradient error after last iteration

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

Examples

```
data<-c(1,2,6,4)
cutpoints<-c(0,pi/2,pi,3*pi/2,2*pi-0.00000001)
nntsmanifoldnewtonestimationinterval0to2pi(data, cutpoints, length(data),1)</pre>
```

nntsplot

Plots the NNTS density

Description

Plots the NNTS density

Usage

```
nntsplot(cpars = 1/sqrt(2 * pi), M = 0, ...)
```

Arguments

cpars Vector of complex numbers of dimension M+1. The first element is a real and

positive number. The sum of the SQUARED moduli of the c parameters must

be equal to 1/(2*pi).

M Number of components in the NNTS

... Arguments passed to the function curve

```
data(Turtles_radians)
#Empirical analysis of data
Turtles_hist<-hist(Turtles_radians,breaks=10,freq=FALSE)
#Estimation of the NNTS density with 3 componentes for data
est<-nntsmanifoldnewtonestimation(Turtles_radians,3,iter=200)
est
#plot the histogram</pre>
```

nntsplotInterval0to1 39

```
plot(Turtles_hist, freq=FALSE)
#add the estimated density to the histogram
nntsplot(est$cestimates[,2],3,add= TRUE)
```

nntsplotInterval0to1 Plots an NNTS density for a variable defined in the interval [0,1)

Description

Plots the NNTS density for a variable defined in the interval [0,1)

Usage

```
nntsplotInterval0to1(cpars = 1/sqrt(2 * pi), M = 0, ...)
```

Arguments

cpars Vector of complex numbers of dimension M+1. The first element is a real and

positive number. The sum of the SQUARED moduli of the c parameters must

be equal to 1/(2*pi).

M Number of components in the NNTS

... Arguments passed to the function curve

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Examples

```
\label{eq:data-continuous} \begin{split} & \text{data-c}(1,2,4,6,2) \\ & \text{cutpoints-c}(0,0.2,0.4,0.6,0.8,0.9999999) \\ & \text{est-nntsmanifoldnewtonestimationinterval0to1(data,cutpoints,5,1)} \\ & \text{cpars-est$cestimates[,2]} \\ & \text{nntsplotInterval0to1(cpars, 1)} \end{split}
```

nntsplotSymmetric

Plots a symmetric NNTS density function

Description

Plots the Symmetric NNTS density function

Usage

```
nntsplotSymmetric(cpars = c(0, 0), M = 0, ...)
```

40 nntsrandominitial

Arguments

cpars Vector of real numbers of dimension 2M. The first 2M-1 numbers are the squared

moduli of the c parameters. The sum must be less than 1/(2*pi). The last number

is the mean of symmetry

M Number of components in the NNTS

... Arguments passed to the function curve

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2009) Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums. Working Paper, DE-C09.12, Department of Statistics, ITAM, Mexico

nntsrandominitial

Initial random point

Description

This function generates a random point on the surface of the (M+1)-dimensional unit hypersphere

Usage

```
nntsrandominitial(M=1)
```

Arguments

Μ

Number of components in the NNTS

Value

Returns a valid initial point for the estimation functions

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Examples

```
nntsrandominitial(3)
```

nntsrandominitial(7)

nntsrandominitialSymmetric

Initial random point

Description

This function generates a random point on the surface of the (M+1)-dimensional unit hypersphere

Usage

nntsrandominitialSymmetric(M)

Arguments

Μ

Number of components in the NNTS

Value

Returns a valid initial point for the estimation functions nntsestimation and nntsestimationSymmetric

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

nntssimulation

NNTS density simulation function

Description

Simulation for the density function for the NNTS model

Usage

```
nntssimulation(nsim=1, cpars = 1/(2 * pi), M = 0)
```

Arguments

nsim	Number of simulations
cpars	Parameters of the model. A vector of complex numbers of dimension M+1. The sum of the squared moduli of the c parameters must be equal to $1/(2*pi)$.
М	Number of components in the NNTS model

Value

simulations The function generates nsim random values from the MNNTS density function

conteo Number of uniform random numbers used for simulations

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Examples

```
M<-3
ccoef<-nntsrandominitial(M)
data<-nntssimulation(10,ccoef,M)
data</pre>
```

nntsSymmetricDensity Symmetric NNTS density function

Description

Density function for the Symmetric NNTS

Usage

```
nntsSymmetricDensity(cpars = c(0, 0), M = 0, theta)
```

Arguments

cpars Vector of real numbers of dimension 2*M. The first M numbers are the squared

moduli of the c parameters. The sum must be less than 1/(2*pi). The last number

is the mean of symmetry

M Number of components in the NNTS

theta Angle in radians

Value

The function returns the density function evaluated at theta

Note

The default values provide the uniform circular density

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2009) Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums. Working Paper, DE-C09.12, Department of Statistics, ITAM, Mexico

nntsuniformitytestlikelihoodratio

Computes the statistic and critical values of the circular uniformity test

Description

Computes the statistic and critical values at 10%, 5% and 1% of the circular uniformity test based on the NNTS likelihood ratio for M values from 1 to 7 and any sample size.

Usage

nntsuniformitytestlikelihoodratio(data,M=1, iter=1000, initialpoint = FALSE, cinitial,gradientstop=1e-10)

Arguments

data Vector of angles in radians

M Number of components in the NNTS

iter Number of iterations

initialpoint TRUE if an initial point for the optimization algorithm will be used

cinitial Vector of size M+1. The first element is real and the next M elements are com-

plex (values for c_0 and c_1, \ldots, c_M). The sum of the squared moduli of the

parameters must be equal to $\frac{1}{2\pi}$

.

gradientstop The value of the gradient of the Newton algorithm at which the algorithms stops

Value

gradient Gradient error after the last iteration

likratiounifstat

Value of the likelihood ratio NNTS circular uniformity test statistic

criticalvalue10percent

Critical value at a 10% significance level of the likelihood ratio NNTS circular uniformity test

criticalvalue05percent

Critical value at a 5% significance level of the likelihood ratio NNTS circular uniformity test

criticalvalue01percent

Critical value at a 1% significance level of the likelihood ratio NNTS circular uniformity test

44 ProteinsAAA

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran and J. J. and Gregorio-Dominguez and M. M (2022). Sums of Independent Circular Random Variables and Maximum Likelihood Circular Uniformity Tests Based on Nonnegative Trigonometric Sums Distributions, arXiv preprint arXiv:2212.01416

Examples

```
set.seed(200)
a<-2*pi*runif(50)
#NNTS likelihood ratio circular uniformity test for M=2 and gradientstop at 1e-09
nntsuniformitytestlikelihoodratio(data=a,M=2,gradientstop=1e-09)
data(Turtles_radians)
#NNTS likelihood ratio circular uniformity test for M=5 and gradientstop at 1e-12
nntsuniformitytestlikelihoodratio(data=Turtles_radians,M=5,gradientstop=1e-09)</pre>
```

ProteinsAAA

Dihedral angles in protein

Description

Dataset of the dihedral angles in a protein between three consecutive Alanine (Ala) amino acids. This dataset was constructed from the recommended July 2003 list of proteins via the algorithm in Hobohm et al. (1992). This algorithm selects a representative sample of proteins from the vast Protein Data Bank (PDB, Berman et al., 2000). The dataset contains 233 pairs of dihedral angles.

Usage

```
data(ProteinsAAA)
```

Format

Two columns of angles in radians

Source

Protein Data Bank (PDB)

References

Hobohm, U. and Scharf, M. and Schneider, R. and Sander, C. (1992) Selection of a Representative Set of Structures from the Brookhaven Protein Data Bank, Protein Science, 1, 409-417. Berman, H. M. and Westbrook, J. and Feng, Z. and Gilliand, G. and Bhat, T. N. and Weissing, H. and Shyndialov, I. N. and Bourne, P. E. (2000) The Protein Data Bank, Nucleic Acids Research, 28, 235-242.

snntsdensity 45

snntsdensity SNNTS density function for spherical data
--

Description

Density function for the SNNTS model for spherical data

Usage

```
snntsdensity(data, cpars = 1, M = c(0,0))
```

Arguments

data	Matrix of angles in radians. The first column contains longitude data (between zero and 2*pi), and second column contains latitude data (between zero and pi), with one row for each data point
cpars	Vector of complex numbers of dimension prod(M+1). The first element is a real and positive number. The sum of the squared moduli of the c parameters must be equal to one.
М	Vector with the number of components in the SNNTS for each dimension

Value

The function returns the density function evaluated for each row in the data

Note

The parameters cinitial and cestimates used by this function are the transformed parameters of the SNNTS density function, which lie on the surface of the unit hypersphere

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Juan Jose Fernandez-Duran, Maria Mercedes Gregorio-Dominguez (2016). CircNNTSR: An R Package for the Statistical Analysis of Circular, Multivariate Circular, and Spherical Data Using Nonnegative Trigonometric Sums. Journal of Statistical Software, 70(6), 1-19. doi:10.18637/jss.v070.i06

```
data(Datab6fisher_ready)
data<-Datab6fisher_ready
M<-c(2,3)
cpars<-rnorm(prod(M+1))+rnorm(prod(M+1))*complex(real=0,imaginary=1)
cpars[1]<-Re(cpars[1])
cpars<- cpars/sqrt(sum(Mod(cpars)^2))</pre>
```

46 snntsdensityplot

```
snntsdensity(data, cpars, M)
```

 ${\tt snntsdensityplot}$

Plots a SNNTS density for spherical data

Description

Computes the points needed to plot the SNNTS density function for spherical data

Usage

```
snntsdensityplot(long, lat, cpars = 1, M = c(0,0))
```

Arguments

long	Grid for longitude. Vector with values between zero and 2*pi
lat	Grid for latitude. Vector with values between zero and pi
cpars	Vector of complex numbers of dimension $\operatorname{prod}(M+1)$. The sum of the squared moduli of the c parameters must be equal to one
М	Vector with the number of components in the SNNTS for each dimension

Value

The points needed to plot the SNNTS density function

Note

The parameters cpars used by this function are the transformed parameters of the SNNTS density function, which lie on the surface of the unit hypersphere

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran J. J. y Gregorio Dominguez, M. M. (2008) Spherical Distributions Based on Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C08.6

snntsloglik 47

Examples

```
set.seed(200)
data(Datab6fisher_ready)
data<-Datab6fisher_ready
M<-c(4,4)
cest<-snntsmanifoldnewtonestimation(data, M, iter=150)
cpars<-cest$cestimates[,3]
longitud<-seq(0,360,10)*(pi/180)
latitud<-seq(0,180,5)*(pi/180)
z<-outer(longitud,latitud,FUN="snntsdensityplot",cpars,M)
persp(longitud,latitud,z,theta=45,phi=30)
contour(longitud,latitud,z)
points(data[,1],data[,2])</pre>
```

snntsloglik

SNNTS log-likelihood function for spherical data

Description

Computes the log-likelihood function with SNNTS density for spherical data

Usage

```
snntsloglik(data, cpars = 1, M = c(0,0))
```

Arguments

data	Matrix of angles in radians. The first column contains longitude data (between zero and 2*pi), and the second column containslatitude data (between zero and pi), with one row for each data point
cpars	Vector of complex numbers of dimension $\operatorname{prod}(M+1)$. The first element is a real and positive number. The first $M[1]+1$ elements correspond to longitude, the next $M[2]+1$ elements correspond to latitude. The sum of the squared moduli of the c parameters must be equal to 1
М	Vector with number of components in the SNNTS for each dimension

Value

The function returns the value of the log-likelihood function for the data

Note

The parameters cpars used by this function are the transformed parameters of the SNNTS density function, which lie on the surface of the unit hypersphere

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran J. J. y Gregorio Dominguez, M. M. (2008) Spherical Distributions Based on Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C08.6

Examples

```
data(Datab6fisher_ready)
data<-Datab6fisher_ready
M<-c(4,4)
cpars<-rnorm(prod(M+1))+rnorm(prod(M+1))*complex(real=0,imaginary=1)
cpars[1]<-Re(cpars[1])
cpars<- cpars/sqrt(sum(Mod(cpars)^2))
snntsdensity(data, cpars, M)
snntsloglik(data, cpars, M)</pre>
```

snntsmanifoldnewtonestimation

Parameter estimation for SNNTS distributions for spherical data

Description

Computes the maximum likelihood estimates of the SNNTS model parameters using a Newton algorithm on the hypersphere

Usage

```
snntsmanifoldnewtonestimation(data, M = c(0,0), iter = 1000, initialpoint = FALSE, cinitial)
```

Arguments

contains longitude data (between zero and 2*pi), and second column contains

latitude data (between zero and pi), with one row for each data point

M Vector with number of components in the SNNTS for each dimension

iter Number of iterations

initialpoint TRUE if an initial point for the optimization algorithm will be used

cinitial Initial value for cpars for the optimization algorithm, avector of complex num-

bers of dimension prod(M+1). The first element is a real and positive number.

The sum of the squared moduli of the c parameters must be equal to one.

snntsmarginallatitude 49

Value

cestimates Matrix of prod(M+1)*(3). The first two columns are the parameter numbers,

and the last column is the c parameter's estimators

loglik Optimum log-likelihood value

AIC Value of Akaike's Information Criterion

BIC Value of Bayesian Information Criterion

gradnormerror Gradient error after the last iteration

Note

The parameters cinitial and cestimates used by this function are the transformed parameters of the SNNTS density function, which lie on the surface of the unit hypersphere

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran J. J. y Gregorio Dominguez, M. M. (2008) Spherical Distributions Based on Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C08.6

Examples

```
set.seed(200)
data(Datab6fisher_ready)
data<-Datab6fisher_ready

M<-c(4,4)
cpar<-rnorm(prod(M+1))+rnorm(prod(M+1))*complex(real=0,imaginary=1)
cpar[1]<-Re(cpar[1])
cpar<- cpar/sqrt(sum(Mod(cpar)^2))

cest<-snntsmanifoldnewtonestimation(data,c(4,4),100,TRUE,cpar)
cest
cest<-snntsmanifoldnewtonestimation(data,c(1,2),100)
cest</pre>
```

snntsmarginallatitude Marginal density function for latitude of the SNNTS model for spherical data

Description

Marginal density function for latitude of the SNNTS model for spherical data

50 snntsmarginallatitude

Usage

```
snntsmarginallatitude(data, cpars = 1, M = c(0,0))
```

Arguments

data	Vector of angles in radians, with one row for each data point. The data must be between zero and pi.
cpars	Vector of complex numbers of dimension $\operatorname{prod}(M+1)$. The first element is a real and positive number. The sum of the squared moduli of the c parameters must be equal to one
М	Vector with the number of components in the SNNTS for each dimension

Value

The function returns the SNNTS marginal density function for latitude evaluated at data

Note

The parameters cpars used by this function are the transformed parameters of the SNNTS density function, which lie on the surface of the unit hypersphere

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran J. J. y Gregorio Dominguez, M. M. (2008) Spherical Distributions Based on Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C08.6

```
set.seed(200)
data(Datab6fisher_ready)
data<-Datab6fisher_ready
M<-c(1,2)
cest<-snntsmanifoldnewtonestimation(data, M,iter=150)
lat<-snntsmarginallatitude(seq(0,pi,.1),cest$cestimates[,3],M)
plot(seq(0,pi,.1),lat,type="1")</pre>
```

snntsmarginallongitude 51

snntsmarginallongitude

Marginal density function for the longitude of the SNNTS model for spherical data

Description

Marginal density function for the longitude of the SNNTS model for spherical data

Usage

```
snntsmarginallongitude(data, cpars = 1, M = c(0,0))
```

Arguments

data	Vector of angles in radians, with one row for each data point. The data must be between zero and 2*pi
cpars	Vector of complex numbers of dimension prod(M+1). The first element is a real and positive number. The first M[1]+1 elements correspond to longitude, and the next M[2]+1 elements correspond to latitude. The sum of the squared moduli of the c parameters must be equal to one.
М	Vector with number of components in the SNNTS for each dimension

Value

The function returns the density function evaluated for the data

Note

The parameters cpars used by this function are the transformed parameters of the SNNTS density function, which lie on the surface of the unit hypersphere

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

References

Fernandez-Duran J. J. y Gregorio Dominguez, M. M. (2008) Spherical Distributions Based on Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C08.6

52 snntssimulation

Examples

```
set.seed(200)
data(Datab6fisher_ready)
data<-Datab6fisher_ready
M<-c(1,2)
cest<-snntsmanifoldnewtonestimation(data, M,iter=150)
long<-snntsmarginallongitude(seq(0,2*pi,.1),cest$cestimates[,3],M)
plot(seq(0,2*pi,.1),long,type="l")</pre>
```

snntssimulation

SNNTS density simulation function

Description

Simulation for the density function for the SNNTS model

Usage

```
snntssimulation(nsim=1, cpars =(1/(2*pi))^2, M = c(0,0))
```

Arguments

nsim Number of simulations

cpars Vector of complex numbers of dimension prod(M+1). The first element is a real

and positive number. The first M[1]+1 elements correspond to longitude, the next M[2]+1 elements correspond to latitude. The sum of the squared moduli of

the c parameters must be equal to one

M Vector with the number of components in the SNNTS for each dimension

Value

simulations The function generates nsim random values from the SNNTS density function

conteo Number of uniform random numbers used for simulations

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

```
M<-c(2,3)
R<-length(M)
ccoef<-mnntsrandominitial(M,R)
data<-mnntssimulation(10,ccoef,M,R)
data</pre>
```

SuicidesMexico2005 53

SuicidesMexico2005

Suicides in Mexico during 2005

Description

Monthly number of suicides in Mexico during 2005

Usage

data(SuicidesMexico2005)

Format

Integer values

Source

INEGI (Mexican National Statistical Agency) www.inegi.gob.mx

Turtles

Movements of turtles

Description

Data measurement of the directions taken by 76 turtles after treatment

Usage

data(Turtles)

Format

Directions of turtles in degrees

Source

Stephens (1969) Techniques for directional data. Technical Report 150. Dept. of Statistics, Stanford University. Stanford, CA.

References

N.I. Fisher (1993) Statistical analysis of circular data. Cambridge University Press.

54 WindDirectionsTrivariate

Turtles_radians

Movements of turtles

Description

Data measurement of the directions taken by 76 turtles after treatment

Usage

```
data(Turtles_radians)
```

Format

Directions of turtles in radians

Source

Stephens (1969) Techniques for directional data. Technical Report 150. Dept. of Statistics, Stanford University. Stanford, CA.

References

N.I. Fisher (1993) Statistical analysis of circular data. Cambridge University Press.

WindDirectionsTrivariate

Wind directions

Description

Wind directions registered at the monitoring stations of San Agustin located in the north, Pedregal in the southwest, and Hangares in the southeast of the Mexico Central Valley's at 14:00 on days between January 1, 1993 and February 29, 2000. There are a total of 1,682 observations

Usage

data(WindDirectionsTrivariate)

Format

Three columns of angles in radians

Source

Mexico Central Valleys pollution monitoring network. RAMA SIMAT (Red Automatica de Monitoreo Ambiental)

Index

* datasets	HurricanesGulfofMexico1971to2008, 12
Ants, 5	
Ants_radians, 6	mnntsdensity, 12
Datab3fisher, 6	mnntsloglik, 13
Datab3fisher_ready, 7	mnntsmanifoldnewtonestimation, 14
DataB5FisherSpherical, 7	mnntsmarginal, 16
Datab6fisher, 8	mnntsplot, 17
Datab6fisher_ready,9	mnntsplotmarginal, 18
DataUniformBivariate200obs, 9	mnntsplotwithmarginals, 19
EarthquakesPacificMexicogt6, 10	mnntsrandominitial, 20
EarthquakesPacificMexicogt7, 10	mnntssimulation, 21
HomicidesMexico2005, 11	
HurricanesGulfofMexico1951to1970,	Nest, 22
11	nntsABcoefficients, 22
HurricanesGulfofMexico1971to2008,	nntsABcoefficientsSymmetric, 23
12	nntsABDensity, 24
Nest, 22	nntsABDensitySymmetric, 24
ProteinsAAA, 44	nntsdensity, 25
SuicidesMexico2005, 53	${\sf nntsDensityInterval0to1}, {\sf 26}$
WindDirectionsTrivariate, 54	nntsDistribution, 27
* package	${\tt nntsDistributioninterval0to1,27}$
CircNNTSR-package, 3	nntsDistributioninterval 0 to 2 pi, 28
	${\sf nntsestimationSymmetric}, 29$
Ants, 5	nntsloglik, 30
Ants_radians, 6	nntsloglikInterval0to1,31
Cimphinted (Cimphinted manks and 2	nntsloglikInterval0to2pi,32
CircNNTSR (CircNNTSR-package), 3	nntsloglikSymmetric, 33
CircNNTSR-package, 3	${\tt nntsmanifold}{\tt newtonestimation}, 34$
Oatab3fisher,6	$nnts {\it manifold} new to nestimation gradient stop,$
Datab3fisher_ready,7	35
DataB5FisherSpherical,7	$nnts {\it manifold} newton estimation interval 0 to 1,$
Datab6fisher, 8	36
Datab6fisher_ready,9	nntsmanifoldnewtonestimationinterval0to2pi
DataUniformBivariate200obs,9	37
Saturding in the saturd	nntsplot, 38
EarthquakesPacificMexicogt6, 10	nntsplotInterval0to1, 39
EarthquakesPacificMexicogt7, 10	nntsplotSymmetric, 39
	${\sf nntsrandominitial}, 40$
HomicidesMexico2005, 11	${\sf nntsrandominitialSymmetric}, {\sf 41}$
HurricanesGulfofMexico1951to1970.11	nntssimulation, 41

56 INDEX

```
nntsSymmetricDensity, 42
nntsuniformitytestlikelihoodratio, 43
ProteinsAAA, 44

snntsdensity, 45
snntsdensityplot, 46
snntsloglik, 47
snntsmanifoldnewtonestimation, 48
snntsmarginallatitude, 49
snntsmarginallongitude, 51
snntssimulation, 52
SuicidesMexico2005, 53

Turtles, 53
Turtles_radians, 54
WindDirectionsTrivariate, 54
```