Project #7

SAMPLES AND STATISTICS

Tulika Asthana(2671577263) | EE 511 - Simulation of Stochastic Processes | 4/20/2017

Tool: MATLAB v2016a|Windows 10(Professional)

Problem #1

Implement a random number generator for a random vector $X = [X_1, X_2, X_3]^T$ having multivariate Gaussian distribution with

$$\mu = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad \Sigma = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

- **EXPERIMENT:** The purpose of this problem is to implement a random number generator for a random vector 'X' with a multivariate Gaussian Distribution with the above given specifications. For doing so, we generate 'Z', a standard normal random variable row vector i.e.

$$Z \sim N(o,I)$$

Since X is a vector, it can be expressed as:

$$X = [X_1, X_2, X_3]$$

Then, we can write:

$$X^{T} = A.(Z^{T}) + \mu$$

where, $\Sigma = A.A^{T}$

We can calculate the lower triangular matrix A by using the Choleski Decomposition, which says that:

"For any $n \times n$ symmetric and positive definite matrix M, there is an $n \times n$ lower triangular matrix A such that $M = AA_n$, where by lower triangular we mean that all elements in the upper triangle of the matrix are equal to 0. "(M.Ross, 2013)

Hence, I generated a row vector Z of length # and initialize it with standard normal random variables using normand.

I generated the lower triangular square matrix 'A' by using the chol() function provided in MATLAB, and hence obtained the column vector 'X' of length 3.

I have generated N samples of 'X' and calculated the sample mean and covariance.

- CODE:

```
function randNumGenerate(N)
XArray = zeros(3,N);
for i = 1:N
    mu = [1 2 3];
    sigma = [ 3 -1 1;
              -1
                 5 3;
               1
                 3 4];
    A = chol(sigma, 'lower');
    Z = normrnd(0,1,1,3);
    X = A*Z.' + mu.';
    X = transpose(X);
    for k = 1:3
        XArray(k,i) = X(k);
    end
end
X1Array = zeros(1,N);
X2Array = zeros(1,N);
X3Array = zeros(1,N);
for i = 1:N
X1Array(1,i) = mean(XArray(1,i));
X2Array(1,i) = mean(XArray(2,i));
X3Array(1,i) = mean(XArray(3,i));
display('The sample mean is:');
formatSpecMean = 'The mean of the samples is %.2f\n';
meanX1 = mean(X1Array);
meanX2 = mean(X2Array);
meanX3 = mean(X3Array);
fprintf(formatSpecMean, meanX1);
fprintf(formatSpecMean,meanX2);
fprintf(formatSpecMean, meanX3);
covariance = cov(XArray.');
display('The covariance of the samples is:');
display(covariance);
end
```

- OUTPUT

```
>> randNumGenerate(1000)
The sample mean is:
The mean of the samples is 1.05
The mean of the samples is 1.94
The mean of the samples is 2.99
The covariance of the samples is:
covariance =
    2.9673
             -0.9940
                         1.0418
   -0.9940
              4.7800
                         2.8178
              2.8178
                         3.9098
    1.0418
```

```
>> randNumGenerate(100000)
The sample mean is:
The mean of the samples is 1.00
The mean of the samples is 2.01
The mean of the samples is 3.01
The covariance of the samples is:

covariance =

2.9843   -0.9837    0.9994
-0.9837    4.9968    3.0092
0.9994    3.0092    4.0101
```

ANALYSIS: As can be viewed from the output, the mean and the covariance of the samples generated matches very closely with the specified mean and covariance. The margin of difference decreases when the number of samples is increased.

Problem #2

Implement a random number generator for a random variable with the following mixture distribution: f(x) = 0.4N(-1,1) + 0.6N(1,1). Generate a histogram and overlay the theoretical p.d.f. of the random variable.

EXPERIMENT: I generated N uniform random variables in X and set a constraint that if : $X(i) \leftarrow 0.4$

Then the distribution be generated from N(-1,1), otherwise, the distribution be generated from N(1,1). I have then plotted the histogram of X and overlayed it with the theoretical PDF.

CODE

```
function mixtureDist(N)
X = rand(N,1);
Z = zeros(N,1);
%% Distribution Generation
for i = 1:N
    if(X(i) <= 0.4)
        Z(i) = normrnd(-1,1);
    else
        Z(i) = normrnd(1,1);
    end
end</pre>
```

```
grid on;
histogram(Z);
x = -4:4;
hold on
%% Histogram and Theoretical PDF
pdf = 10000*(0.4*normpdf(x,-1,1)+ 0.6*normpdf(x,1,1));
plot(x,pdf,'linewidth',2,'color','black');
title('Histogram of Distribution overlayed with Theoretical PDF of the
Distribution');
xlabel('Sample values');
ylabel('Sample Frequency/Probability');
end
```

OUTPUT

- **ANALYSIS:** As can be seen, the theoretical PDF and the histogram of X are overlayed very well together. The quality of fit increases with increae in number of samples of X.

Problem #3

Implement a 2-dimensional random number generator for a Gaussian mixture model (GMM) pdf with 2 subpopulations. Use the expectation maximization (EM) algorithm to estimate the pdf parameters of the 2-D GMM from samples. Compare the quality and speed of your GMM-EM estimates using 300 samples from different GMM distributions (e.g. spherical vs ellipsoidal covariance, close vs well-separated subpopulations, etc.).

- EXPERIMENT: I created a Gaussian Mixture Distribution object using the gmdistribution() function which creates a distribution with the given specifications. I, then, used the random() to randomly choose 300 samples from the distribution 'obj'. The, I used the gmdistribution.fit() function which applies the Expectation Maximization algorithm on the Gaussian Mixture Model.

I then used the ezcontour() and the ezsurf() to draw the contour and scatter plots.

- CODE:

```
function expectationMaximization()
%% first distribution is centered at (0,0), second at (-1,3)
mu = [1 -2; 3 4];
%% covariance matrix
sigma = cat(3,[2 0;0 .5],[1 0;0 1]);
%% weight
p = [0.05, 0.95];
%% build GMM
obj = gmdistribution(mu, sigma, p);
samples = random(obj,300);
options = statset('Display', 'final');
EM = gmdistribution.fit(samples, 2, 'options',options);
%% 2D projection
figure;
ezcontourf(@(x,y) pdf(obj,[x y]));
%% view PDF surface
figure;
ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])
```

- OUTPUT: μ = [1 2;-3 -4], p = [0.05 0.95];

– **ANALYSIS:** As we can observe, changing the value of μ changes the proximity f the contour plots of the clusters to each other. Changing the values of the weights changes how heavily the distribution is effected by each weight. Changing the values of the Σ changes the shapes of the contours.

Problem #4

A geyser is a hot spring characterized by an intermittent discharge of water and steam. Old Faithful is a famous cone geyser in Yellowstone National Park, Wyoming. It has a predictable geothermal discharge and since 2000 it has erupted every 44 to 125 minutes. Refer to the addendum data file that contains waiting times and the durations for 272 eruptions.

- a. Generate a 2-D scatter plot of the data. Run a \mathbb{Z} -means clustering routine on the data for k=2. Show the two clusters on a scatterplot.
- b. Use a GMM-EM algorithm to fit the dataset to a GMM pdf. Draw a contour plot of your final GMM pdf. Overlay the contour plot with a scatterplot of the data set. How can you use the GMM pdf estimates to cluster the data?
 - **EXPERIMENT:** After gathering the data from the data file, I used the kmeans function to generate the clusters and then plot them together by using the hold function. For plotting the

contour, I have again used the ezcontour() function and passed the distribution returned by the gmdistribution.fit() function.

CODE

CODE		
X = [3.600	79;
	1.800	54;
	3.333	74;
	2.283	62;
	4.533	85;
	2.883	55 ;
	4.700	88;
	3.600	85;
	1.950	51;
	4.350	85;
	1.833	54;
	3.917	84;
	4.200	78;
	1.750	47;
	4.700	83;
	2.167	52 ;
	1.750	62;
	4.800	84;
	1.600	52;
	4.250	79;
	1.800	51;
	1.750	47;
	3.450	78;
	3.067	69 ;
	4.533	74;
	3.600	83;
	1.967	55;
	4.083	76;
	3.850	78;
	4.433	79;
	4.300	73;
	4.467	77;
	3.367	66;
	4.033	80
	3.833	74;
	2.017	52;
	1.867	48;
	4.833	80;
	1.833	59;
	4.783	90;
	4.350	80;
	1.883	58;
	4.567	84;
	1.750	58;
	4.533	
		73;
	3.317	83;
	3.833	64;
	2.100	53;
	4.633	82;
	2.000	59;
	4.800	75 ;
	4.716	90;
	1.833	
		54;
	4.833	80;
	1.733	54;
	4.883	83;
	3.717	71;
	1.667	64;
	4.567	77;
		<u> </u>

4.317	81;
2.233	59;
4.500	84;
1.750	48;
4.800	82;
1.817	60;
4.400	92;
4.167	78;
4.700	78;
2.067	65 ;
4.700	73;
4.033	82;
1.967	56;
4.500	79;
4.000	71;
1.983	62;
5.067	
	76;
2.017	60;
4.567	78;
3.883	76 ;
3.600	83;
4.133	75;
4.333	82;
4.100	70;
2.633	65 ;
4.067	73;
4.933	88;
3.950	76;
4.517	80;
2.167	48;
4.000	86;
2.200	60;
4.333	90;
1.867	50;
4.817	78;
1.833	63;
4.300	72;
4.667	84;
3.750	75 ;
1.867	51;
4.900	82;
2.483	62;
4.367	
	88;
2.100	49;
4.500	83;
4.050	81;
1.867	47;
4.700	84;
1.783	52;
4.850	86;
3.683	81;
4.733	75;
2.300	59;
4.900	89;
4.417	79;
1.700	59;
4.633	81;
2.317	50;
4.600	85 ;
1.817	59 ;
4.417	87;
2.617	
	53;
4.067	69;

4.250	77;
1.967	56;
4.600	88;
3.767	81;
1.917	45 ;
4.500	82;
2.267	55 ;
4.650	90;
1.867	45;
4.167	83;
2.800	56;
4.333	89;
1.833	46;
4.383	82;
1.883	51;
4.933	86;
2.033	
	53;
3.733	79 ;
4.233	81;
2.233	60;
4.533	82;
4.817	77;
4.333	76 ;
1.983	59;
4.633	80;
2.017	49;
5.100	96;
1.800	53;
5.033	77;
4.000	77;
2.400	65 ;
4.600	81;
3.567	71;
4.000	70;
4.500	81;
4.083	93;
1.800	53;
3.967	89;
2.200	45 ;
4.150	86;
2.000	58;
3.833	78 ;
3.500	66;
4.583	
	76;
2.367	63;
5.000	88;
1.933	52;
4.617	93;
1.917	49;
2.083	57 ;
4.583	77;
3.333	68;
4.167	81;
4.333	81;
4.500	73;
2.417	50;
4.000	85;
4.167	74;
1.883	55 ;
4.583	77;
4.250	83;
3.767	83 ;
2.033	51;
2.033	- ÷ /

4.433	78;
4.083	84;
1.833	46;
4.417	83;
2.183	55 ;
4.800	81;
1.833	57 ;
4.800	76;
4.100	84;
3.966	77;
4.233	81;
3.500	87;
4.366	77;
2.250	51;
4.667	78;
2.100	60;
4.350	82;
4.133	91;
1.867	53;
4.600	78;
1.783	46;
4.367	77;
3.850	84;
1.933	49;
4.500	83;
2.383	71;
4.700	80;
1.867	49;
3.833	75;
3.417	64;
4.233	76;
2.400	53 ;
4.800	94;
2.000	55 ;
4.150	76 ;
1.867	50;
4.267	82;
1.750	54 ;
4.483	75 ;
4.000	78;
4.117	79;
4.083	78 ;
4.267	78;
3.917	70;
4.550	79;
4.083	70;
2.417	54;
4.183	86;
2.217	50;
4.450	90;
1.883	54;
1.850	54 ;
4.283	77;
3.950	79;
2.333	64;
4.150	75;
2.350	47;
4.933	86;
2.900	63 ;
4.583	85;
3.833	82;
2.083	57 ;
4.367	82;
4.50/	<i>∨∟₁</i>

```
2.133
                               67;
                   4.350
                               74;
                   2.200
                               54;
                  4.450
                               83;
                   3.567
                              73;
                   4.500
                              73;
                   4.150
                              88;
                   3.817
                              80;
                  3.917
                              71;
                  4.450
                              83;
                  2.000
                              56;
                              79;
                  4.283
                  4.767
                              78;
                  4.533
                              84;
                  1.850
                              58;
                  4.250
                              83;
                  1.983
                              43;
                  2.250
                              60;
                  4.750
                              75;
                  4.117
                              81;
                  2.150
                              46;
                  4.417
                              90;
                  1.817
                              46;
                  4.467
                              74;];
%% kmeans and scatter plot
[y \ C] = kmeans(X,2); % Find the assignment y and the means C of
each cluster
figure(2)
plot(X(y==1,1),X(y==1,2), 'x');
hold on
plot (X(y==2,1), X(y==2,2), 'o');
% plot(X(y==3,1),X(y==3,2), '^');
% plot(X(y==4,1), X(y==4,2), '+');
plot(C(1,1),C(1,2), 'rx','LineWidth',2);
plot(C(2,1),C(2,2), 'ro','LineWidth',2);
% plot(C(3,1),C(3,2), 'r^','LineWidth',2);
% plot(C(4,1),C(4,2), 'r+','LineWidth',2);
legend('Points of cluster 1', 'Points of cluster 2')
title('Data Points with Labels by K-means Clustering')
hold off
%% GMM Distribution
EM = gmdistribution.fit(X,2);
%% 2D projection
figure;
% x = 1.5:5.5;
% y = 40:100;
ezcontourf(@(x,y) pdf(EM,[x y]),[1.5 5.5, 40 100]);
```


- **ANALYSIS**: As can be seen in the plots, the clusters are well apart and the scatter plot is spherical.