<u>LISTING OF THE CLAIMS</u> (including amendments, if any)

1. (**currently amended**) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

identifying R unique n-grams $T_{1...R}$ in the string;

for every unique n-gram T_S:

if a frequency of T_S in a set of n-gram statistics is not greater than a first threshold: clustering the string with a cluster associated with T_S ;

otherwise:

for every other n-gram T_V in the string $T_{1...R, \text{ except } S}$:

concluding that the frequency of n-gram Tv is greater than the first threshold, and in response:

if the frequency of an n-gram pair T_S - T_V is not greater than a second threshold:

clustering the string with a cluster associated with the n-gram pair $T_{\text{S}}\text{-}T_{\text{V}};$

otherwise:

for every other n-gram T_X in the string $T_{1\dots R,\ except\ S\ and\ V}$: clustering the string with a cluster associated with an n-gram

 $triple \ T_{\text{S}}\text{-}T_{\text{V}}\text{-}T_{X;}$

where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, and T_S , T_V , and T_S are members of $T_{1...R}$, and T_S , T_S , and T_S , T_S are integer indexes to identify members of $T_{1...R}$.

- 2. (original) The method of claim 1 further including compiling n-gram statistics.
- 3. (original) The method of claim 1 further including compiling n-gram pair statistics.

4-5. (cancelled)

6. (<u>currently amended</u>) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

identifying R unique n-grams $T_{1\dots R}$ in the string;

for every unique n-gram T_S:

if a frequency of T_S in a set of n-gram statistics is not greater than a first threshold: clustering the string with a cluster associated with T_S ;

otherwise:

for i = 1 to Y:

for every unique set of i n-grams T_U in the string T_{1...R. except S}:

if the frequency of the n-gram set T_S - T_U is not greater than a second threshold:

clustering the string with a cluster associated with the n-gram set T_s - T_u ;

if the string has not been associated with a cluster with this value of T_S:

for every unique set of Y+1 n-grams T_{UY} in the string $T_{1...R, \, except \, S}$:

clustering the string with a cluster associated with the Y+2 n-gram group T_{S} - T_{UY} ,

where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, T_S and T_U are members of $T_{1...R}$, T_{UY} is a subset of $T_{1...R}$, S, V, and X are integer indexes to identify members of $T_{1...R}$ and i and Y are integers.

- 7. (original) The method of claim 6 where Y = 1.
- 8. (original) The method of claim 6 further including compiling n-gram statistics.
- 9. (original) The method of claim 6 further including compiling n-gram group statistics.

10. (<u>currently amended</u>) A computer program, stored on a tangible storage medium, for use in clustering a string, the program including executable instructions that cause a computer to:

identify R unique n-grams $T_{1...R}$ in the string;

for every unique n-gram T_S:

if a frequency of T_S in a set of n-gram statistics is not greater than a first threshold: cluster the string with a cluster associated with T_S ;

otherwise:

for every other n-gram T_V in the string $T_{1...R, except S}$:

concluding that the frequency of n-gram $T_{\rm V}$ is greater than the first threshold, and in response:

if the frequency of an n-gram pair T_S - T_V is not greater than a second threshold:

cluster the string with a cluster associated with the n-gram pair T_{S} - T_{V} :

otherwise

for every other n-gram T_X in the string $T_{1...R, except S \text{ and } V}$:

cluster the string with a cluster associated with an n-gram triple T_S - T_V - T_X ;

where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, and T_S , T_V , and T_S are members of $T_{1...R}$, and T_S , and T_S , and T_S are integer indexes to identify members of $T_{1...R}$.

- 11. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram statistics.
- 12. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram pair statistics.