MATHEMATICS 121, FALL 2013 LINEAR ALGEBRA WITH APPLICATIONS

September 29, 2013 Luis Perez

Module #6, Proof:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that $Ker\ T$ and $Img\ T$ are subspaces of \mathbb{R}^n and \mathbb{R}^m respectively and that $dim(Ker\ T) + dim(Img\ T) = n$.

Ker T is a subspace of \mathbb{R}^n . By definition, Ker T is in the domain of T, therefore it is a subset of \mathbb{R}^n .

First, notice $T(\vec{0}) = 0$ and therefore $\vec{0} \in \text{Ker } T$ and Ker T is non-empty. Let $\vec{x}_1, \vec{x}_2 \in \text{Ker } T$. This means $T(\vec{x}_1) = 0$ and $T(\vec{x}_2) = 0$.

Then $T(a\vec{x}_1 + b\vec{x}_2) = aT(\vec{x}_1) + bT(\vec{x}_2) = 0$, and therefore $(a\vec{x}_1 + b\vec{x}_2) \in \text{Ker } T$ meaning Ker T is closed under addition and scalar multiplication and is therefore a subspace.

Img T is a subspace of \mathbb{R}^m . By definition, Img T is in the codomain of T, therefore it is a subset of \mathbb{R}^m .

First, notice $T(\vec{0}) = 0$ and therefore $\vec{0} \in \text{Img } T$ and Img T is non-empty. Let $\vec{b_1}, \vec{b_2} \in \text{Img } T$. This means $T(\vec{x_1}) = \vec{b_1}$ and $T(\vec{x_2}) = \vec{b_2}$ for some $\vec{x_1}, \vec{x_2} \in \mathbb{R}^n$. Then $T(a\vec{x_1} + c\vec{x_2}) = aT(\vec{x_1}) + cT(\vec{x_2}) = a\vec{b_1} + c\vec{b_2}$, and therefore $(a\vec{b_1} + c\vec{b_2}) \in \text{Im } T$ meaning Im T is closed under addition and scalar multiplication and is therefore a subspace of \mathbb{R}^m .

 $\dim(\operatorname{Ker} T) + \dim(\operatorname{Img} T) = n$. The liner transformation can be represented by an $n \times m$ matrix A. Each column of the row-reduced form of A will be either pivotal or non-pivotal. Therefore pivotal columns + non-pivotal columns = n. But the pivotal columns in $\operatorname{rre} f(A)$ correspond (bijectively) to the set of linearly independent columns in A, and since the Im A is the span of its columns, dim(Im T) = dim(Im A) = number of pivotal columns in $\operatorname{rre} f(A)$. Similarly, for each of the non-pivotal columns in $\operatorname{rre} f(A)$ we can construct $\vec{v}_i \in R^n$ with zeros in the positions corresponding to all other non-pivotal columns and a 1 in the position corresponding to the pivotal column from which \vec{v} is being constructed. By construction, this set of vectors is linearly independent. Therefore dim(Ker T) = dim(Ker A) = number of non-pivotal columns.

Taken together, this means $\dim(\text{Ker }T) + \dim(\text{Img }T) = n.$

Q.E.D.