0.符号约定

- 某种人群的数量-时间关系函数为X(t), 其中 X 表示该人群的名称首字母。
- 患者传染率为 β ,患者治愈率 γ ,被传染之后**成为患者而不是潜伏者,或者由潜伏者成为患者**的概率为 α (由于潜伏者只有变为患者后才会被医院收治,故忽略潜伏者治愈率)。
- 患者单位时间内接触人数 r_1 , 潜伏者单位时间内接触人数 r_2 (本文的算法中单位为人/天)。
- 安徽总人数 $N = 6.3236 \times 10^7$ (单位:人)。

1.假设与约定

- 附件中的数据真实可靠
- 安徽区域的人数近似稳定,不会大幅度地向外或向内流动
- 潜伏者在出现症状前,不会被检查出携带病毒并入院收治
- 死亡人数对疫情模型几乎没有影响。事实上,安徽地区截至2.19的患者死亡率仅为约0.6%
- 本模型仅用于计算不超过一个月的情况。由于安徽的疫情发展迅速(事实上根据预测,3月上旬就将结束),这已经足够。

2.传染病模型简述

考虑新冠肺炎疫情复杂,选择seir模型作为基础。

将人群分为如下几类:

- S (Susceptible), 易感者。指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染。
- E (Exposed),潜伏者。指接触过感染者,但暂无能力传染给其他人的人,对潜伏期长的传染病适用。
- I (Infectious),确诊患者。指染上传染病的人,可以传播给 S 类成员,将其变为 E 类或 I 类成品。
- R (Recovered), 治愈者。指被隔离或因病愈而具有免疫力的人。如免疫期有限, R 类成员可以重新变为 S 类。包括病死者。
- 需要注意的是,在本文中,为了方便调参,I代表累计确诊人数。

其满足恒等关系S(t) + E(t) + I(t) = N, 与微分方程

$$rac{\mathrm{d}S}{\mathrm{d}t} = -r_1eta IS/N$$
 $rac{\mathrm{d}E}{\mathrm{d}t} = r_1eta IS/N - lpha E$ $rac{\mathrm{d}I}{\mathrm{d}t} = lpha E$ $rac{\mathrm{d}R}{\mathrm{d}t} = \gamma I$

由于SARS-CoV-2的潜伏者具有感染能力,我们对微分方程进行调整:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -r_1\beta IS/N - r_2\beta ES/N$$

$$\frac{\mathrm{d}E}{\mathrm{d}t} = r_1\beta IS/N - \alpha E + r_2\beta ES/N$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \alpha E$$

$$\frac{\mathrm{d}R}{\mathrm{d}t} = \gamma I$$

具体计算过程中, 我们取天为单位。进行迭代求解:

$$S_n = S_{n-1} - r_1 \beta I_{n-1} S_{n-1} / N - r_2 \beta E_{n-1} S_{n-1} / N$$

$$E_n = E_{n-1} + r_1 \beta I_{n-1} S_{n-1} / N - \alpha E_{n-1} + r_2 \beta E_{n-1} S_{n-1} / N$$

$$I_n = I_{n-1} + \alpha E_{n-1}$$

$$R_n = R_{n-1} + \gamma I_{n-1}$$

事实上, r_1, r_2, γ 为定值时,将会导致结果极不准确。这不难理解,因为戒严尺度、医疗经验皆发生了变化。

所以我们令 $r_1 = r_1(t), r_2 = r_2(t), \gamma = \gamma(t)$ 为关于时间的函数。

模型参数

固有参数

- 人口: $N = 6.3236 \times 10^7$
- $S_0=N, I_0=9, R_0=0$ (初始状态下E和I极少,故SO大致视作N)。
- 传染率: β = 1.7%
- 潜伏者发病概率: $\alpha = 13\%$
- 固有参数中部分选自文献[1]

待定参数

这是一些较难统计的参数。

- E_0 , 对模型进行二分拟合后, 发现取 E_0 在660附近时拟合效果较好。
- 接触人数

令 r_1 、 r_2 为 $a \exp(-bt)$ 的形式。对已知数据进行拟合,经过二分尝试,可取值如下: $r_1 = 7 \exp(-0.25t), r_2 = 13.2 \exp(-0.48t)$

日治愈率

模型实现

使用Excel计算的结果:

总结

预计3月10日左右结束疫情,安徽将连续多日出现零增长,潜伏者数量骤降。

风险提示

- 本文考虑到的因素有限,包括人口的流动、各地医疗水平的不同等都被忽略。
- 二分拟合的方法难免存在误差。
- 由于安徽地区患者较少,偶然因素大,有几率发生突发的转折,也有几率数据中的趋势仅仅是一小 段随机的曲线。
- 众所周知,由于政府对确诊患者文件的变动,可能附件中的数据并不完全准确。

模型检验 (3.9日晚补充)

可以看出,疫情中后期表现基本与模型完全吻合,并正确地预测了拐点、结束时期。

前期误差原因

- 一方面即"风险提示"中第四点。
- 前后期存在一些被本文忽略,但实际上不容忽视的其他因素,它在前期有重要影响,但中后期影响力则淡化。

附件(安徽省疫情历史数据)

日期	确诊	痊愈	Δ	TMP	痊愈率
1月23日	9	0	0	1	0
1月24日	15	0	0	9	0
1月25日	39	0	0	15	0
1月26日	60	0	0	39	0
1月27日	70	0	0	60	0
1月28日	106	0	0	70	0
1月29日	152	2	2	106	0.018867925
1月30日	200	2	0	152	0
1月31日	237	3	1	200	0.005050505
2月1日	297	3	0	237	0
2月2日	340	5	2	297	0.006802721
2月3日	408	7	2	340	0.005970149
2月4日	480	14	7	408	0.017456359
2月5日	530	20	6	480	0.012875536
2月6日	591	23	3	530	0.005882353
2月7日	665	34	11	591	0.019366197
2月8日	733	47	13	665	0.020602219
2月9日	779	59	12	733	0.017492711
2月10日	830	73	14	779	0.019444444
2月11日	860	88	15	830	0.019815059
2月12日	889	108	20	860	0.025906736
2月13日	910	128	20	889	0.025608195
2月14日	934	166	38	910	0.04859335
2月15日	950	198	32	934	0.041666667
2月16日	962	232	34	950	0.045212766
2月17日	973	266	34	962	0.046575342
2月18日	982	293	27	973	0.038189533
2月19日	986	361	68	982	0.098693759
2月20日	987	424	63	986	0.1008
2月21日 (预测日)	988	500	76	987	0.134991119

日期	确诊	痊愈	Δ	TMP	痊愈率
2月22日	989	567	67	988	0.137295082
2月23日	989	620	53	989	0.125592417
2月24日	989	648	28	989	0.075880759
2月25日	989	692	44	989	0.129032258
2月26日	989	727	35	989	0.117845118
2月27日	989	764	37	989	0.141221374
2月28日	990	814	50	989	0.22222222
2月29日	990	824	10	990	0.056818182
3月1日	990	868	44	990	0.265060241
3月2日	990	888	20	990	0.163934426
3月3日	990	917	29	990	0.284313725
3月4日	990	941	24	990	0.328767123
3月5日	990	956	15	990	0.306122449
3月6日	990	970	14	990	0.411764706
3月7日	990	979	9	990	0.45
3月8日	990	981	2	990	0.181818182
3月9日(检验日&疫情基本结束)	990	984	3	990	0.333333333

数据来自疫情日报。

参考文献

[1] 花长春、陈礼清、田玉铎.利用SEIR模型推演湖北、非湖北和全国疫情拐点——2020年突发风险系列 [EB]/[OL].<u>https://finance.sina.cn/2020-02-07/detail-iimxyqvz0930302.d.html</u> .(2020-02-07)[2020-02-21]

[2]央视网"疫情日报"搜索[EB]/[OL].<u>https://search.cctv.com/search.php</u> .[2020-02-21]