INF 1010 Estruturas de Dados Avançadas

Árvores B

Árvores B

- estrutura de dados para armazenamento externo
- tempo de acesso à memória secundária
 - leitura em blocos

 uso frequente em sistemas de gerenciamento de bancos de dados

Árvore B - idéia

cada acesso à memória secundária traz um grupo de elementos

sub-árvores são algomeradas em páginas

Árvore B - idéia básica

Árvore n-ária com chaves de busca nos nós

Árvore B – idéia básica

Árvore n-ária com chaves de busca nos nós

Árvore B – definição (Knuth, 1997)

árvore B de ordem m

todo nó (página) tem no máximo m filhos

exemplo: árvore B de ordem 4 (árvore 2-3-4)

Árvore B – definição (Knuth, 1997)

árvore B de ordem m

- todo nó (página) tem no máximo m filhos
- cada nó (exceto a raiz e as folhas) possui no mínimo [m/2] filhos
- a raiz possui ao menos 2 filhos (a menos que seja folha)

exemplo: árvore B de ordem 4

Árvore B - definição (Knuth, 1997)

árvore B de ordem m

- todo nó (página) tem no máximo m filhos
- cada nó (exceto a raiz e as folhas) possui no mínimo [m/2] filhos
- a raiz possui ao menos 2 filhos (a menos que seja folha)
- um nó não terminal com k filhos possui k-1 chaves
- todas as folhas aparecem no mesmo nível

exemplo: árvore B de ordem 4 (árvore 2-3-4)

Árvore B - propriedades

Número mínimo de chaves de uma Árvore B de ordem m e altura h

- A raiz tem no mínimo 1 chave e 2 filhos.
- Todos os nós internos tem no mínimo [m/2] filhos e [m/2] -1) chaves.
- Todas as folhas tem no mínimo ([m/2]-1) chaves.

Árvore B - propriedades

número mínimo de chaves de uma Árvore B de ordem m e altura h

$$k = 1 + (\lceil m/2 \rceil - 1)^{*}(2 + 2^{*}\lceil m/2 \rceil + 2^{*}\lceil m/2 \rceil^{2} + ... + 2^{*}\lceil m/2 \rceil^{(h-1)})$$

$$= 1 + (\lceil m/2 \rceil - 1)^{*}2^{*}(1 + \lceil m/2 \rceil + \lceil m/2 \rceil^{2} + ... + \lceil m/2 \rceil^{(h-1)})$$

$$= 1 + (\lceil m/2 \rceil - 1)^{*}2^{*}(\sum_{i=0}^{h-1}\lceil m/2 \rceil^{i})$$

$$= 1 + (\lceil m/2 \rceil - 1)^{*}2^{*}\frac{\lceil m/2 \rceil^{h-1}}{\lceil m/2 \rceil - 1}$$

$$= 1 + 2^{*}(\lceil m/2 \rceil^{h} - 1)$$

$$= 2^{*}(\lceil m/2 \rceil^{h}) - 1$$

Árvore B - propriedades

número mínimo de chaves de uma Árvore B de ordem m e altura h

$$k = 1 + (\lceil m/2 \rceil - 1)^*(2 + 2^*\lceil m/2 \rceil + 2^*\lceil m/2 \rceil^2 + ... + 2^*\lceil m/2 \rceil^{(h-1)})$$

$$= 1 + (\lceil m/2 \rceil - 1)^*2^*(1 + \lceil m/2 \rceil + \lceil m/2 \rceil^2 + ... + \lceil m/2 \rceil^{(h-1)})$$

$$= 1 + (\lceil m/2 \rceil - 1)^*2^*(\sum_{i=0}^{h-1} \lceil m/2 \rceil^i)$$

$$= 1 + (\lceil m/2 \rceil - 1)^*2^*\frac{\lceil m/2 \rceil^{h-1}}{\lceil m/2 \rceil - 1}$$

$$= 1 + 2^*(\lceil m/2 \rceil^h - 1)$$

$$= 2^*(\lceil m/2 \rceil^h) - 1$$

$$k \ge 2*((m/2)^h) -1$$

 $(k+1)/2 \ge (m/2)^h$
 $h \le \log((k+1)/2)$

Árvore B - busca

- 1. busca entre as chaves de uma página
- se não for encontrada na página:procura página para onde deve descer

Árvore B - busca

1. busca entre as chaves de uma página

 $k_1 \dots k_{m-1}$ (se m for grande: busca binária)

Árvore B - busca

2. se não for encontrada na página:

- $1.x < k_1 \rightarrow busca deve continuar na página <math>p_0$
- $2.k_i < x < k_{i+1}$ para $1 \le i < m-1 \rightarrow$ busca deve continuar na página p_i
- $3.k_{m-1} < x \rightarrow$ busca deve continuar na página p_{m-1} se não houver páginas abaixo da atual, a chave não existe


```
procura chave até chegar a uma folha (se chave ñ existente) seja p<sub>i</sub> a página onde x deverá ser inserido
```

se p_i tiver menos de m-1 elementos se página p_i já estiver lotada:

. . .

exemplo árvore ordem 5

insere 10, 30, 50, 70, 90

seja p_i a página onde x deverá ser inserido se p_i tiver menos de m-1 elementos

1. insere em p_i, na posição adequada se página p_i já estiver lotada...

seja p_i a página onde x deverá ser inserido

. . .

se página p_i já estiver lotada:

- aloca uma nova página p_k
- 2. distribui as m chaves da seguinte maneira:
 - 1. [m/2]-1 menores chaves em p_i
 - 2. m-[m/2] maiores chaves em p_k

seja p_i a página onde x deverá ser inserido

. . .

se página p_i já estiver lotada:

- 1. aloca uma nova página p_k
- 2. distribui as m chaves da seguinte maneira:
 - 1. $\lceil m/2 \rceil$ -1 menores chaves em p_i
 - 2. m-[m/2] maiores chaves em p_k
 - 3. insere a chave mediana (em [m/2]) na página superior (se página p_i for raiz: cria nova raiz com a mediana)

insere 10, 30, 50, 70, 90 (ordem 5)

insere 10, 30, 50, 70, 90 (ordem 5)

- 1. [m/2]-1 (2) menores chaves em p_i
- 2. m- $\lceil m/2 \rceil$ (2) maiores chaves em p_k
- 3. insere a chave mediana (em [m/2] (3)) na página superior (se página p_i for raiz: cria nova raiz com a mediana)

overflow: split

insere 20 (ordem 5)

insere 40 (ordem 5)

insere 60 (ordem 5)

insere 80 (ordem 5)

insere 100 (ordem 5)

overflow: split

insere 100 (ordem 5)

overflow: split

Árvore B de ordem m - remoção

Remoção de chave: deve ser realizada em um nó folha

caso simples:

Árvore B de ordem m

Remoção de chave: deve ser realizada em um nó folha

caso simples:

Árvore B de ordem m - remoção

Remoção de chave: deve ser realizada em um nó folha

 Se a chave a ser removido não estiver em um nó folha, substitua-a pela maior chave da sua sub-árvore à esquerda, ou pelo menor chave da sua sub-árvore à direita.

Remoção de chave em uma folha

2. Quando a chave está em uma folha, deve-se removê-la e, se a folha ficar com menos de [m/2]-1 chaves, deve-se realizar uma concatenação ou uma redistribuição.

Concatenação

Concatenação:

• Ocorre quando, após a remoção, a página onde a chave foi removida e uma página adjacente possuem em conjunto menos de m-1 chaves.

Concatenação

Concatenação:

- Ocorre quando, após a remoção, a página onde a chave foi removida e uma página adjacente possuem em conjunto com menos de m-1 chaves.
- Concatena-se esta página com uma adjacente. A chave do pai que estava entre elas fica na página que foi concatenada.
- Se a página resultante tiver menos do que m/2 chaves, repete-se o procedimento, podendo-se chegar até a raiz.

remove 70 (ordem 5)

remove 70 (ordem 5)

Redistribuição

Redistribuição:

• Ocorre quando, após a remoção, a página onde a chave foi removida e uma página adjacente possuem, em conjunto, m chaves ou mais.

Redistribuição

Redistribuição:

- Ocorre quando, após a remoção, a página onde a chave foi removida e uma página adjacente possuem, em conjunto, m chaves ou mais.
- Move-se a chave da página pai ("entre" as páginas adjacentes) para a página deficiente e a chave da página adjacente* para a página pai.
- Não há propagação, pois o número de chaves do pai não muda.

Redistribuição

Redistribuição:

- Ocorre quando, após a remoção, a página onde a chave foi removida e uma página adjacente possuem, em conjunto, m chaves ou mais.
- Move-se a chave da página pai ("entre" as páginas adjacentes) para a página deficiente e a chave da página adjacente* para a página pai.
- Não há propagação, pois o número de chaves do pai não muda.

* Se a página adjacente estiver à esquerda da página deficiente, a chave movida é a maior daquela página (borrow from left). Se a página adjacente estiver à direita da página deficiente, a chave movida é a menor daquela página (borrow from right).

remove 20 (ordem 5)

remove 20 (ordem 5)

Variantes de Árvore B

Árvore B+

Árvore B*

- - -

(Outras mais recentes)

