



An analysis of the demographics of the Minneapolis Police Use of Force and US Police Shootings

Authors: Cassidy Frier, Aditi Panchal, Olivia Ornelas, Adrianne Relampagos

## **Background/Motivation**

- We believe that the rate at how police killings and violence in the US have become increasingly common is disturbing.
- Want to know whether certain demographics really make a difference on whether or not someone will experience police violence.

**Goal:** We hope to find some insight to this question based on several factors from a purely scientific background

## Steps

- 1. Chose datasets to focus on & cleaned the data
  - a. US Police Killings (Kaggle)
  - b. Minneapolis Police Stops and Police Violence (Kaggle)
- 2. Developed Preliminary charts to see if there were any key takeaways
- 3. Compare the differences and find connections in incidents for each demographic
- 4. Add context (i.e. population, regional crime rates, etc) to visuals
- 5. Develop a machine learning algorithm that can predict an outcome of a police incident (clustering or decision tree)

# Minneapolis Police Stops and Violence - breakdown by race

|                    | responseDate | problem | personSearch | vehicleSearch | gender | policePrecinct | neighborhood | PrimaryOffense | SubjectInjury | ForceType | ForceTypeAction | EventAge | TypeOfResistance |
|--------------------|--------------|---------|--------------|---------------|--------|----------------|--------------|----------------|---------------|-----------|-----------------|----------|------------------|
| race               |              |         |              |               |        |                |              |                |               |           |                 |          |                  |
| Asian              | 2274         | 2274    | 1986         | 1986          | 2274   | 2248           | 2248         | 288            | 288           | 288       | 288             | 288      | 288              |
| Black              | 63504        | 63504   | 51423        | 51423         | 63504  | 63090          | 63090        | 12081          | 12081         | 12081     | 12081           | 12081    | 12081            |
| East African       | 7461         | 7461    | 7461         | 7461          | 7461   | 7406           | 7406         | 0              | 0             | 0         | 0               | 0        | 0                |
| Latino             | 5823         | 5823    | 5823         | 5823          | 5823   | 5781           | 5781         | 0              | 0             | 0         | 0               | 0        | 0                |
| Native American    | 5371         | 5371    | 4306         | 4306          | 5371   | 5322           | 5322         | 1065           | 1065          | 1065      | 1065            | 1065     | 1065             |
| Other              | 3697         | 3697    | 3697         | 3697          | 3697   | 3651           | 3651         | 0              | 0             | 0         | 0               | 0        | 0                |
| Other / Mixed Race | 795          | 795     | 0            | 0             | 795    | 795            | 795          | 795            | 795           | 795       | 795             | 795      | 795              |
| Pacific Islander   | 2            | 2       | 0            | 0             | 2      | 2              | 2            | 2              | 2             | 2         | 2               | 2        | 2                |
| Unknown            | 37403        | 37403   | 37198        | 37198         | 37403  | 37240          | 37240        | 205            | 205           | 205       | 205             | 205      | 205              |
| White              | 40301        | 40301   | 35632        | 35632         | 40301  | 39950          | 39950        | 4669           | 4669          | 4669      | 4669            | 4669     | 4669             |
| not recorded       | 157          | 157     | 0            | 0             | 157    | 157            | 157          | 157            | 157           | 157       | 157             | 157      | 157              |







## Findings - Force Exerted (cont.)

#### Percent Composition of Type of Police Force Exerted on Differing Age Groups (Minneapolis 2015-2017)

- Older people are more likely to encounter other uses of indirect forces since they are weaker
- Bodily force increases as age increases and drastically drops for the same reason



## Findings - Subject Injuries by Police Precinct







## Findings -Classification Tree

race Black <= 0.5 entropy = 0.998 samples = 100.0% value = [0.524, 0.476] class = No

TypeOfResistance Assaulted Officer <= 0.5 entropy = 0.979 samples = 35.5% value = [0.415, 0.585] class = Yes

problem Disturbance <= 0.5 entropy = 0.98 samples = 64.5% value = [0.584, 0.416] class = No

- Used One-hot-encoder to preprocess categorical data
- [['race', 'gender', 'Age', 'PrimaryOffense', 'problem', 'TypeOfResistance', 'SubjectInjury']]
- Problem examples: Suspicious Person, Fight Disturbance , Domestic Abuse-In Progress
- **Accuracy: 75.19%**
- Increase performance

problem Disturbance <= 0.5 entropy = 0.999samples = 22.9%value = [0.481, 0.519]class = Yes

entropy = 0.875 samples = 12.6% value = 10.295, 0.705class = Yes

age 50-59 <= 0.5 PrimaryOffense ASLT4 <= 0.5 entropy = 0.993samples = 55.2%value = [0.55, 0.45] class = No

gender Female <= 0.5 entropy = 0.752samples = 9.3%value = 10.784, 0.2161class = No

race Asian <= 0.5 age 40-49 <= 0.5 race Whi problem Traffic Law problem Traffic Law Enfo PrimaryOffense ( entropy = 0.986 samples = 17.8% value = [0.43, 0.57 value = [0.659, 0.34 value = [0

entropy = 0.925 entropy samples = 5.1% samples class = No

samples value =

class

entropy = 0.samples = 16 value = [0.43,class = Ye

samples value = [0.7

class = No

### **Impact**

- By studying this we hope to bring awareness to any bias related to demographics in hopes to reduce violent police interactions
- Data has potential to discover how different defining characteristics of individuals impact the likelihood of them experiencing violence by police

## Next Steps - What now?

If more time allowed, we would ideally continue our research by:

- Modifying and optimizing decision tree performance
- Studying how these deaths and demographics compare to other first world countries
- Include population data to compare trends from city to city
- Look into how officers are trained (on average) across the US and different countries
- Compare the data, draw conclusions on why the trends occur, and create a plan on how to reduce police killings in the US
- Find more quantitative data to use towards clustering and regression