

1/28

FIGURE 1

2/28

FIGURE 2

3/28

FIGURE 3

4/28

FIGURE 4

5/28

FIGURE 5**BEST AVAILABLE COPY**

6/28

FIGURE 6

CREF-Trans 6
CREF-Trans 6.4 NMT

BEST AVAILABLE COPY

7/28

FIGURE 7

BEST AVAILABLE COPY

8/28

FIGURE 8A

9/28

FIGURE 8B

(E) 1 MGKEKTHINIVVIGH 15

(E) 16 YDSGKSTTIGHLIVKCGGIDKRTTEKEEAEMGKSEKYAWVLDKLKAER 67
(P) 1 MQS 3(E) 68 ERGITDISLWKFETSKYYVTIDAPGHRDFIKNMITGTSQADCAVLIVAAAGV 120
(P) 4 ERGITDISLWKFETSKYYVTIDAPGHRDFIQNMITGTSQADCAVLIVAAAGV 56(E) 121 GEFEGISKNGQTREHALLAYTLGVQLIVGVNKMDSTEPPYSOKRYEEIVKE 173
(P) 57 GEFEGISKNGQTREHALLAYTLGVQLIVGVNKMDSTEPPYSOKRYEEIVKE 109(E) 174 VSTYTKKIGYNPDTVAFVPISGWNGDNMLEPSANMPWFKGWKVTRKDGNA 223
(P) 110 VSTYTKKIGYNPDTVAFVPISGWNGDNMLEPSANMPWFKGWKVTRKDGNA 159(E) 224 SGTTLEALDCILPPTRPTDKPLRLPLQDVYKIGGIGTVPVGRVETGVLKPGM 276
(P) 160 SGTTLEALDCILPPTRPTDKPLGLPLQDVYKIGGIGTVPVGRVETGVLKPGM 212(E) 277 VVTFAPVNVTTTEVKSVEMHHEALSEALPGDNVGFGNVKNVDVRRGNV 325
(P) 213 VVTFGPVNVTTTEVKSVEMHHEALGEALPGDNVGFGNVKNVDVRRGNV 261(E) 326 AGDSKNDPPMEAAGFTAQVIIILNHPGQISAGYAPVULDCHTAHACKFAELK 376
(P) 262 AGDSKNDPPMEAAGFPQAQVIIILNHPGQISAGYAPVULDCHTAHACKFAELK 312(E) 377 EKIDRRSGKKLEDGPKFLKSGDAAIYDMVPGKPMCVESFSDDYPPLCRFAVRD 428
(P) 313 EKIDRRSGKKLEDGPKFLKSGDAAIYDMVPGKPMCVESFSDDYPPLCFCFAVRD 364(E) 429 MRQTVAVGVTKAVDKKAAGAGKVTKSAQKAQKAK 462
(P) 365 MRQTVAVGVTKAVDKKAAGAGKVTKSAQKAQKAK 398

10/28

FIGURE 8C

Human EF-1 α	Amino Acid	K (100)	R (247)	A (281)	S (300)	T (341)	R (423)
	Codon	AAA	CGC	GCT	AGT	ACT	CCC
	Nucleotide	A	C	C	A	A	C
PTI-1	Amino Acid	Q (36)	G (183)	G (217)	G (236)	P (277)	C (359)
	Codon	CAA	GCC	GGT	GGT	GCT	TGC
	Nucleotide	C	G	G	G	C	T

11/28

FIGURE 9**BEST AVAILABLE COPY**

12/28

FIGURE 10**BEST AVAILABLE COPY**

13/28

FIGURE 11**BEST AVAILABLE COPY**

14/28

FIGURE 12A**FIGURE 12B****FIGURE 12C****FIGURE 12D****BEST AVAILABLE COPY**

15/28

FIGURE 13A

1 CGGACCGAGC TCCGTTGCAT TTTGATGAAT CCATAGTCAA ATTAGCGAGA
51 CACGTTGCGA ATTGAAACAT CTTAGTAGCA ACAGGAAAAG AAAATAAATA
101 ATGATTTCGT CAGTAGTGGC GAGCGAAAGC GAAAGAGCCC AAACCTGTAA
151 AGGGGGGTTG GTAGGACATC TTACATTGAG TTACAAAATT TTATGATAGT
201 AGAAGAAGTT GGGAAAGCTT CAACATAGAA GGTGATATTCTGTATACGA
251 AATCATAAAAA TCTCATAGAT GTATCCTGAG TAGGGCCGGG TACGTGAAAC
301 CCTGTCTGAA TCTGCCCGGG ACCACCCGTA AGGCTAAATA CTAATCAGAC
351 ACCGATAGTG AACTAGTACC GTGAGGGAAA GGTGAAAAGA ACCCGAGAGG
401 GGAGTGAAAT AGATTCTGAA ACCATTACT TACAAGTAGT CAGAGCACGT
451 TAAAGTGTGA TGGCGTACAT CTTGCAGTAT GGGCCGGCGA GTTATGTTAA
501 TATGCAAGGT TAAGCACGAA AAAAGCGGAG CCGTAGGGAA ACCGAGTCTG
551 AATAGGGCGA CTTTAGTATA TTGGCATATA CCCGAAACCA GGTGATCATC
601 CATGAGCAGG TTGAAGCTTA GGTAAAACCA AGTGGAGGAC CGAACCGTAG
651 TACGCTAAAAA AGTGCCCGGA TGACTTGTGG ATAGTGGTGA AATTCCAATC
701 GAACCTGGAG ATAGCTGGTT CTCTTCGAAA TAGCTTAGG GCTAGCGTAT
751 AGTACTGTAAATGGGGGTA GAGCACTGAA TGTGGAATGG CGGCATCTAG
801 CTGTACTGAC TATAATCAAACCTCCGAATAAC CATTAAAATT AAGCTATGCA
851 GTCGGAACGT GGGTGATAAC GTCCACGCTC GCGAGGGAAA CAACCCAGAT
901 CCGTCAGCTA AGGTCCCAAATTGTGTTAA GTGAGAAAGG TTGTGGAGAT
951 TTCATAAAACA ACTAGGAAGTTGGTTAGAA GCAGCCACCTTTAAAGAGT
1001 GCGTAATTGC TCACTAGTCA AGAGATCTG CGCCAATAAT GTAACGGGAC
1051 TCAAACACAA TACCCAAGCT ACGGGCACAT TATGTGCGTT AGGAGAGCGT
1101 TTAAATTTCG TTGAAGTCAG ACCGTGAGAC TGGTGGAGAG ATTAAAAGTT
1151 CGAGAATGCC GGCATGAGTA ACGATTGAA GTGAGAATCT TCGACGCCCTA
1201 TTGGGAAAGG TTCTCTGGGC AAGGTTCTCC ACCCAGGGTT AGTCAGGGCC
1251 TAAGATGAGG CAGAAATGCA TACTGGATGG ACAACAGGTT AATATTCTG

16/28

FIGURE 13B

1301 TACTTGGTAA AAGAATGATG GAGTGACGAA AAAGGATAGT TCTACCACTT
1351 CCACTATGTC CTATCAATAG GAGCTGTATT TGGCATCATA GGAGGCTTCA
1401 TTCACTGATT TCCCCTATT TCAGGCTACA CCCTAGACCA AACCTACGCC
1451 AAAATCCATT TCACTATCAT ATTCACTCGGC GTAAATCTAA CTTTCTTCCC
1501 ACAACACTTT CTCGGCCTAT CCGGAATGAC CCGACCCGAC GTTACTCGGA
1551 CTACCCCGAT GCATACACCA CATGAAACAT CCTATCATCT GTAGGCTCAT
1601 TCATTTCTCT AACAGCAGTA ATATTAATAA TTTTCATGAT TTGAGAAGCC
1651 TTCGCCTTCG AAGCGAAAAG TCCTAATAGT AGAAGAACCC TCCATAAACCC
1701 TGGAGTGACT ATATGGATGC CCCCACCCCTA CCTCACATTG GAAGAACCCG
1751 TATACATAAAA ATCTAGACAA AAAAGGAAGG AAGTGAACGC CCCACAAAAA
1801 AAAAAAAAAA AAAAAAAAAA

17/28

FIGURE 14A

1 AACTAAGTGG AGGACCGAAC CGTAGTACGC TAAAAAGTGC CCGGATGACT
51 TGTGGATAGT GGTGAAATTCAATCGAACCTGGAGATAGCTGGTTCTCTT
101 CGAAATAGCT TTAGGGCTAG CGTATAGTAT TGTTTAATGG GGGTAGAGCA
151 CTGAATGTGG AATCGGCGGC ATCTAGCTGT ACTGACTATA ATCAAACCTCC
201 GAATACCATT AAAATTAAGC TATGCAGTCG GAACGTGGGT GATAACCTCC
251 ACTCTCGCGA GGGAAACAAC CCAGATCGTC AGCTAAGGTC CCAAAATTGT
301 GTTAAGTGAG AAAGGTTGTG AGATTCATA AACAACTAGG AAGTTGGCTT
351 AGAACGAGCC ACCTTTAAA GAGTGCCTAA TTGCTCACTA GTCAAGAGAT
401 CTTGCGCCAA TAATGTAACG GGACTCAAAC ACAATACCGA AGCTACGGGC
451 ACATTATGTC GGTTAGGAGA GCGTTTAAT TTCGTTGAAG TCAGACCGTG
501 AGACTGGTGG AGAGATTAAA AGTTCGAGAA TGCCCCGCAT GAGTAACGAT
551 TCGAAGTGAG AATCTTCGAC GCCTATTGGG AAAGGTTCC TGGGCAAGGT
601 TCGTCCACCC AGGGTTAGTC AGGGCCTAAG ATGAGGCAGA AATGCATAGT
651 CGATGGACAA CAGGTTAATA TTCTGTACT TGGTAAAAGA ATGATGGAGT
701 GACGAAAAAG GATAGTTCTA CCACTACTG GATTGTGGGG TAAGCAACAA
751 GAGAGTTATA TAGGCAAATC CGTATAGCAT AATCTTGAGT TGTGATGCAT
801 AGTGAAGACT TCGGTCGAGT AACGAATTGA ATCGATTCA TGTTCCAAG
851 AAAAGCTTCT AGTGTAAATT TTTTATCAAC CTGTACCGAG AACGAACACA
901 CGTTCCAAG ATGAGTATTCAAGGGCGAGC GAGAAAACCA ATGTTAAGGA
951 ACTCTGAAA ATAACCCCGT AAGTTCGCGA GAAGGGGCGC CTATTTTAA
1001 TAGGCCACAG AAAATAGGGG GGCAACTGTT TATCAAAAAC ACAGCTCTCT
1051 GCTAAGTTGT AAAACGACGT ATAGAGGGTG AAGCCTGCC AGTCCCGAAG
1101 TTAAACGGAG ATGTTAGCTT ACGCAAAGCA TTAAAGTGAAG CCCGGGTGA
1151 ACGGCGGCCG TAACTATAAC GGTCTTAAGG TAGCGAAATT CCTTGTCAAC
1201 TAATTATTGA CCTGCACGAA AGGCGCAATG ATCTCCCTAC TGTCTCAACA
1251 TTGGACTCGG TGAAATTATG GTACCAGTGA AAACGCAGGT TACCCGCATC

18/28

FIGURE 14B

1301 AAGACGAAAA GACCCCGTGG AGCTTTACTA TAACTTCGTA TTGAAAATTG
1351 GTT TAGCATG TGTAGGATAG GCAGGGAGACT TTGAAGCTGG GACGCTAGTT
1401 CTAGTGGAGT CAACCTTGAA ATACCACCCCT TGCTAAATTG ATTTTCTAAC
1451 CCGTTCCCCT TATCTGGAAG GAGACAGTGC GTGGTGGGT A GTTTGACTGG
1501 GCGGTCGCCT CCTAAAGTGT AACGGAGGCG TTCAAAGCTA CACTCAATAT
1551 GGTCAGAAC CATATGCAGA GCACAAAGGT AAAAGTGTGG TTGACTGCAA
1601 GACTTACAAG TCGAGCAGGT GCGAAAGCAG GACTTAGTGA TCCGGCGGTA
1651 CATTGTGGAA TGGCCGTCGC TCAACGGATA AAAGTCACCC CGGGGATAAAC
1701 AGGCTAATCT TCCCCAAGAG ATCACATCGA CGGGAAAGGTT TGGCACCTCG
1751 ATGTCGGCTC ATCGCATCCT GGAGCTGGAG TCGGTTCCAA GGGTTTGCTG
1801 TTCGCCAATT AAAGCGGTAC GTGAGCTGGG TTCAGAACGT CGTGAGACAG
1851 TTCGGTCCTC CACTTAGTT

19/28

FIGURE 15A

- 1 CGGCACGAGC GGCACGAGAG AAGAGACTCC AATCGACAAG
AAGCTGGAAA
- 51 AGAACATGATGT TGTCTTAAA CAACCTACAG AATATCATCT
ATAACCCGGT
- 101 AATCCCCTTT GTTGGCACCA TTCCTGATCA GCTGGATCCT
GGAACCTTGA
- 151 TTGTGATACG TGGGCATGTT CCTAGTGACG CAGACAGATT
CCAGGTGGAT
- 201 CTGCAGAATG GCAGCAGCGT GAAACCTCGA GCCGATGTGG
CCTTCATT
- 251 CAATCCTCGT TTCAAAAGGG CCGGCTGCAT TGTTGCAAT
ACTTTGATAA
- 301 ATGAAAAATG GGGACGGGAA GAGATCACCT ATGACACGCC
TTCAAAAGA
- 351 GAAAAGTCTT TTGAGATCGT GATTATGGTG CTGAAGGACA
AATTCCAGGT
- 401 GGCTGTAAAT GGAAAACATA CTCTGCTCTA TGGCCACAGG
ATCGGCCAG
- 451 AGAAAATAGA CACTCTGGC ATTATGGCA AAGTGAATAT
TCACTCAATT
- 501 GGTTTAGCT TCAGCTCGGA CTTACAAAGT ACCCAAGCAT
CTAGTCTGGA
- 551 ACTGACAGAG ATAGTTAGAG AAAATGTTCC AAAGTCTGGC
ACGCCAGC
- 601 TTAGCCTGCC ATTGCGTGCA AGGTTGAACA CCCCATGGG
CCCTGGACGA
- 651 ACTGTCGTCG TTCAAGGAGA AGTGAATGCA AATGCCAAAA
GCTTTAATGT
- 701 TGACCTACTA GCAGGAAAAT CAAAGGATAT TGCTCTACAC
TTGAACCCAC
- 751 GCCTGAATAT TAAAGCATT GTAAGAAATT CTTTCTTCA
GGAGTCCTGG
- 801 GGAGAAGAAG AGAGAAATAT TACCTCTTTC CCATTAGTC
CTGGGATGTA

20/28

FIGURE 15B

- 851 CTTTGAGATG ATAATTATT GTGATGTTAG AGAATTCAAG
GTTGCAGTAA
- 901 ATGGCGTACA CAGCCTGGAG TACAAACACA GATTAAAGA
GCTCAGCAGT
- 951 ATTGACACGC TGGAAATTAA TGGAGACATC CACTTACTGG
AAGTAAGGAG
- 1001 CTGGTAGCCT ACCTACACAG CTGCTACAAA AACCAAAATA
CAGAATGGCT
- 1051 TCTGTGATAC TGGCCTTGCT GAAACGCATC TCACTGGTCA
TTCTATTGTT
- 1101 TATATTGTTA AAATGAGCTT GTGCACCATT AGGTCTGCT
GGGTGTTCTC
- 1151 AGTCCTTGCC ATGACGTATG GTGGTGTCTA GCACTGAATG
GGGAAACTGG
- 1201 GGGCAGCAAC ACTTATAGCC AGTTAAAGCC ACTCTGCCCT
CTCTCCTACT
- 1251 TTGGCTGACT CTTCAAGAAC GCCATTCAAC AAGTATTAT
GGAGTACCTA
- 1301 CTATAATACA GTAGCTAAC A TGTATTGAGC ACAGATT
TTGGTAAAT
- 1351 CTGTGAGGAG CTAGGATATA TACTGGTGA AACAAACCAG
TATGTTCCCT
- 1401 GTTCTCTTGA GCTTCGACTC TTCTGTGCGC TACTGCTGCG
CACTGCTTT
- 1451 TCTACAGGCA TTACATCAAC TCCTAAGGGG TCCTCTGGGA
TTAGTTATGC
- 1501 AGATATTAAA TCACCCGAAG ACACAACTT ACAGAAGACA
CAACTCCTTC
- 1551 CCCAGTGATC ACTGTCATAA CCAGTGCTCT GCCGTATCCC
ATCACTGAGG
- 1601 ACTGATGTTG ACTGACATCA TTTCTTTAT CGTAATAAAC
ATGTGGCTCT
- 1651 ATTAGCTGCA AGCTTACCA AGTAATTGGC ATGACATCTG
AGCACAGAAA
- 1701 TTAAGCCAAA AAACCAAAGC AAAACAAATA CATGGTGCTG
AAATTAACCT

21/28

FIGURE 15C

- 1751 GATGCCAAGC CCAAGGCAGC TGATTTCTGT GTATTTAAC
TTACCCGAAA
- 1801 TCAGAGTCTA CACAGACGCC TACAGAAGTT TCAGGAAGAG
CCAAGATGCA
- 1851 TTCAATTGT AAGATATTAA TGGCCAACAA AGTAAGGTCA
GGATTAGACT
- 1901 TCAGGCATTC ATAAGGCAGG CACTATCAGA AAGTGTACGC
CAACTAAGGG
- 1951 ACCCACAAAG CAGGCAGAGG TAATGCAGAA ATCTGTTTG
TTCCCATGAA
- 2001 ATCACCAATC AAGGCCTCCG TTCTTCTAAA GATTAGTCCA
TCATCATTAG
- 2051 CAACTGAGAT CAAAGCACTC TTCCACTTTA CGTGATTAAA
ATCAAACCTG
- 2101 TATCAGCAAG TTAAATGGTT CCATTTCTGT GATTTTTCTA
TTATTTGAGG
- 2151 GGAGTTGGCA GAAGTTCCAT GTATATGGGA TCTTACAGG
TCAGATCTG
- 2201 TTACAGGAAA TTCAAAGGT TTGGGAGTGG GGAGGGAAAA
AAGCTCAGTC
- 2251 AGTGAGGATC ATTCCACATT AGACTGGGGC AGAACTCTGC
CAGGATTAG
- 2301 GAATATTTTC AGAACAGATT TTAGATATTAA TTCTATCCA
TATATTGAAA
- 2351 AGGAATACCA TTGTCAATCT TATTTTTITA AAAGTACTCA
GTGTAGAAAT
- 2401 CGCTAGCCCT TAATTCTTT CCAGCTTTTC ATATTAATGT
ATGCAGAGTC
- 2451 TCACCAAGCT CAAAGACACT GGTTGGGGGT GGAGGGTGCC
ACAGGGAAAG
- 2501 CTGTAGAAGG CAAGAAGACT CGAGAATCCC CCAGAGTTAT
CTTTCTCCAT
- 2551 AAAGACCATC AGAGTGCTTA ACTGAGCTGT TGGAGACTGT
GAGGCATTAA
- 2601 GGAAAAAAAT AGCCCACCTCA CATCATTCCCT TGTAAGTCTT
▲AGTTCAATT

22/28

FIGURE 15D

- 2651 TCATTTACG TGGAGGAAAA AAATTTAAAA AGCTATTAGT
ATTATTAAT
- 2701 GAATTTACT GAGACATTTC TTAGAAATAT GCACTTCTAT
ACTAGCAAGC
- 2751 TCTGTCTCTA AAATGCAAGT TGGCCCTTTG CTTGCCACAT
TTCTGCATTA
- 2801 AACTCTATA TTAGCTCAA AGGCTTTAA TCTCAATGCG
AACATTCTAC
- 2851 GGGATGTCT TAGATGCCTT TAAAAAGGGG GCAAGATCTA
ATTTATTTG
- 2901 AACCTCACT TTCCAACCTT CACCATGACC CAGTACTAGA
GATTAGGGCA
- 2951 CTTCAAAGCA TTGAAAAAAA TCTACTGATA CTTACTTTCT
TAGACAAGTA
- 3001 GTTCTTAGTT AACCACCAAT GGAACGGGT TCATTCTGAA
TCCTGGAGGA
- 3051 GCTTCCTCGT GCCACCCAGT GTTCTGGGC CCTCTGTGTG
AGCAGCCAGG
- 3101 TGTGAGCTGT TTAGAAGCA GCGTGTGCC TTCATCTCTC
CCGTTCCCA
- 3151 AAAGAACAAA GGATAAAGGT GACAGTCACA CTCCTGGGT
AAAAAAAGCA
- 3201 TTCCAGAACCC ACTTCTCTT ATGGGCACAA CAACAAAGAA
GCTAAGTTCG
- 3251 CCTACCCAAA TGAAAGTAGG CTTTACAGTC AAGTACTTCT
GTTGATTGCT
- 3301 AAATAACTTC ATTTCTTGA AATAGAGCAA CTTTGAGTGA
AATCTGCAAC
- 3351 ATGGATACCA TGTATGTAAG ATACTGCTGT ACAGAAGAGT
TAAGGCTTAC
- 3401 AGTCAAATG AGCGTCAGC TTTGGGTGCT AAAATTAACA
AGTCTAATAT
- 3451 TATTACCATC AATCAGGAAG AGATAATAAA TGTTAAACA
AACACAGCAG
- 3501 TCTGTATAAA AATACGTGTA TATTACTCT TTCTGTGCAC
GCTCTATAGC

23/28

FIGURE 15E

- 3551 ATAGGCAGGA GAGGCTTATG TGGCAGCACA AGCCAGGTGG
GGATTTGTA
- 3601 AAGAAGTGAT AAAACATTG TAAGTAATCC AAGTAGGAGA
TATTAAGGCA
- 3651 CCAAAAGTAA CATGGCACCC AACACCCAAA AATAAAAATA
TGAAATATGA
- 3701 GTGTGAACTC TGAGTAGAGT ATGAAACACC ACAGAAAGTC
TTAGAAATAG
- 3751 CTCTGGAGTG GCTCTCCCAG GACAGTTTCC AGTTGGCTGA
ATAGTCTTT
- 3801 GGCACTGATG TTCTACTTCT TCACATTCT CATCTAAAAAAA
AAAAAAAAAA

24/28

FIGURE 16A**A. LNCaP****FIGURE 16B****B. DU-145****FIGURE 16C****C. PC-3****FIGURE 16D Secreted and Cellular PCTA-1**

BEST AVAILABLE COPY

25/28

FIGURE 17A**FIGURE 17E****FIGURE 17B****FIGURE 17F****FIGURE 17C****FIGURE 17G****FIGURE 17D****FIGURE 17H****BEST AVAILABLE COPY**

26/28

FIGURE 18A

54 ATG ATG TTC TCC TTA AAC AAC CTA CAG AAT ATC ATC TAT AAC CCG GTA ATC CCG TTT GTT
 M M L S L N N L Q N I Y N P V I P F V
 114 GGC ACC ATT CCT GAT CAG CTG GAT CCT CGA ACT TTG ATT GTG ATA CGT GGG CAT GTT CCT
 G T I P D Q 'L P G T I V I R G H V P
 174 AGT GAC GCA GAC AGA TTC CAG GTG GAT CTG CAG AAT CGC AGC AGC CCT CGA GCC
 S D A D R F Q V D L Q N G S S V K P R A
 234 GAT GTG GCC TTT CAT TTC AAT CCT CGT AAA AGG CCC CGC TGC ATT GTT TGC AAT ACT
 D V A F H F N P R F K R A G C I V C N T
 294 TTC ATA AAT GAA AAA TGG CGG GAA GAG ATC ACC TAT GAC ACG CCT TTC AAA AGA GAA
 L I N E K W G R E I T Y D T P F K R E
 354 AAG TCT TTT GAG ATC GTG ATT ATG GTG CTG AAG GAC AAA TTC CAG GTG CCT GCA AAT GGA
 K S F E I V I M V L K D K F Q V A V N G
 414 AAA CAT ACT CTG CTC TAT GCC CAC AGG ATC GGC CCA GAG AAA ATA GAC ACT CTG GGC ATT
 K H T L Y G H R I G P E K I D T L G I
 474 TAT GGC AAA GTG AAT ATT CAC TCA ATT GGT TTT AGC TTC AGC TCG GAC TTA CAA AGT ACC
 Y G K V N I H S I G F S F S D L Q S T
 534 CAA GCA TCT AGT CTG GAA CTG ACA GAG ATA GTT AGA GAA AAT GTT CCA AAG TCT GGC ACG
 Q A S S L E L T E I V R E N V P K S G T
 594 CCC CAG CTT AGC CTC CCA TTC GCT GCA AGG TTG AAC ACC CCC ATG GGC CCT CGA CGA ACT
 P Q L S L P F A A R L N T P M G P G R T
 654 GTC GTC GTC CAA GGA GAA GTG AAT GCA AAT GCC AAA AGC TTT AAT GTC CTA CTA GCA
 V V V Q G E V N A N A K S F N V D L L A
 714 GGA AAA TCA AAG GAT ATT GCT CTA CAC TTG AAC CCA CGC CTG AAT ATT AAA GCA TTT GTC
 G K S K D I A L H L N P R L N I K A F V
 774 AGA AAT TCT TTT CTT CAG GAG TCC TGG CGA GAA GAG AGA AAT ATT ACC TCT TTC CCA
 R N S F L Q E S W G E E R N I T S F P
 834 TTG AGT CCT GGG ATG TAC TTT GAG ATG ATA ATT TAT TGT GAT GTT AGA GAA TTC AAG GTT
 F S P G M Y F E M I I Y C D V R E F K V
 894 GCA GTC AAT GGC GTC CAC AGC CTG GAG TAC AAA CAC AGA TTT AAA GAG CTC AGC AGT ATT
 A V N G V H S L E Y K H R F K E L S S I
 954 GAC ACC CTG GAA ATT AAT GGA GAC ATC CAC TTA CTG GAA GTA AGG AGC TGG TAG
 D T L E I N G D I H L E V R S W

FIGURE 18B

28/28

FIGURE 19**BEST AVAILABLE COPY**