CS & IT ENGINERING

Theory of Computation

Regular Languages

Mallesham Devasane Sir

Recap of Previous Lecture

Topic

Regular Expressions

$$\rightarrow OR$$
 2+ $\phi = 2$
 $\rightarrow Concatenation$

$$2\phi = \phi = 2.8.2.\phi = \phi$$

Topics to be Covered

Topic

Regular Expressions

> Kleene star > Kleene plus

E+ a

The lay sking of ϵ , a?

The lay ϵ sking of ϵ , a? ϵ sking ϵ sking of ϵ , a? ϵ sking ϵ ski

TOPIC: Kleene Stax

R*

R

Kleene star of R Kleene closure of R

R closure

o or more as

$$\alpha = E + \alpha + \alpha \alpha + \alpha + \alpha + \cdots$$

$$\begin{cases} \begin{cases} \tilde{a} & n > 0 \end{cases} \\ \begin{cases} \tilde{a}, \tilde{a},$$

$$\phi^{\circ} = \varepsilon$$

$$a^{\circ} = \xi$$

$$\phi^{2} = \phi. \phi = \phi$$

$$\xi^{2} = \varepsilon. \varepsilon = \varepsilon$$

$$\alpha^{2} = \alpha. \alpha = \alpha \alpha$$

$$(\alpha b)^{2} = \alpha b. \alpha b = \alpha b \alpha b$$

$$\alpha a \alpha^{2} = \alpha \alpha a. \alpha \alpha \alpha = \alpha^{6}$$

Kleene Plus

R

Kleene plus of R

Positive closure es R

one or more times of R

Slide 9

$$R^{+} = R^{1} + R^{2} + R^{3} + R^{4} + \dots$$

$$\Phi^{+} = \Phi^{+} + \Phi^{2} + \Phi^{3} + \Phi^{4} + \dots = \Phi$$

$$E^{+} = E$$

$$\Delta^{+} = a + aa + a^{3} + A^{4} + \dots$$

$$(ab)^{+} = ab + abab + (ab)^{3} + abababab + \dots$$

$$R^* = R^+ + R^0$$

$$R^* = R^+ + \epsilon$$

$$R^* + R^2 + \epsilon$$

$$R^* + R^2 + \epsilon$$

R, + R2

R, or R2

R. R2

R, followed by R,

Zero or more times of R

One or more times of R

- A at
- c (aa)⁺

D None of Kese

#Q2
$$\left(\alpha^*\right)^0 =$$

- **A** a*
- 3

- Bat
- Р

generates ____ minimum stony

Ba

D ab

a

aaa

#QJ. IJ
$$\Sigma = \{a, b\}$$
 then $\Sigma^* =$

 \mathbf{A} \mathbf{a}^*

B

(a+b)*

(ab)*

2 mins Summary

THANK - YOU