

IEEE 802.11 MAC

- Contention-based protocol:
 - Node can start a transmission at any random moment
 - Must contend for the channel
 - CSMA/CA
- Traffic services
 - Asynchronous Data Service (mandatory):
 - exchange of data packets based on "best-effort"
 - support of broadcast and multicast
 - Time-Bounded Service (optional):
 - implemented using PCF (Point Coordination Function)

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

3

IEEE 802.11 MAC (cont.)

- Access methods:
 - DCF CSMA/CA (mandatory)
 - collision avoidance via randomized back-off mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
 - Unicast only
 - DCF w/ RTS/CTS (optional)
 - Also called Distributed Foundation Wireless MAC
 - avoids hidden terminal problem
 - PCF (optional)
 - access point polls terminals according to a list

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

IEEE 802.11 MAC: Contention Window

- Node ready to send starts sensing the medium
 - Carrier Sense based on CCA, Clear Channel Assessment
- If the channel is busy?
 - The node has to wait for a free DIFS
 - Then the node must additionally wait a random back-off time
 - Collision avoidance and multiple of slot-time
 - If another station occupies the channel during the back-off time of the node?
 - The back-off timer stops

9

1

IEEE 802.11 MAC: Contention Window (cont.)

- If the channel is busy? (cont.)
 - A binary exponential backoff procedure:
 - At each re-transmission attempt, the length of the Collision Window (CW) is doubled
 - Contending nodes randomly select a time from their CW
 - To bound access latency,
 - CW is not doubled once a certain maximum (CW_max) has been reached
- If the sender does not receive the ACK?
 - · Assume, the data was lost due to a collision at the receiver

- Broadcast Vs. Unicast:
 - ACK
 - Sending Unicast packet:
 - A node wanting to transmit a packet,
 - Must first test the radio channel to check if it is free during a specified time
 - Distributed Inter Frame Space (DIFS)
 - If the channel is free,
 - Transmit a DATA packet
 - The receiver waits a Short Inter Frame Space (SIFS)
 - Check the received packet (e.g., CRC)
 - Acknowledging the reception of the data by sending an ACK packet
 - Automatic retransmission of data packets in case of transmission errors, e.g. no ACK is returned

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

