

Institutt for elektronikk og telekommunikasjon

Eksamensoppgave i TTT4120 Digital signalbehandling

Faglig kontakt under eksamen: Torbjørn Svendsen

Tlf.: 930 80 477

Eksamensdato: Tirsdag 5. august 2014 Eksamenstid (fra - til): 09.00 - 13.00

Hjelpemiddelkode/tillatte hjelpemidler: D – Ingen trykte og håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Annen informasjon:

- Eksamen består av 4 oppgaver der
 - oppgave 1 omhandler grunnleggende egenskaper ved systemer/filtre
 - oppgave 2 omhandler digital filterdesign
 - oppgave 3 omhandler stokastiske prosesser
 - oppgave 4 omhandler realisering av digitale filtre
- Vekting av deloppgavene er angitt i parentes ved starten av hver oppgave.
- Alle oppgavene skal besvares
- Sensurfrist er 3 uker etter eksamensdato.

Målform/språk: Norsk - bokmål

Totalt antall sider: 9

Heray, antall vedleggsider: 3

	Kontrollert av:
Dato	Signatur

Oppgave 1 (3+3+5+5+3+3=22)

- 1a) La $X(z) = \mathcal{Z}\{x(n)\}$, der $\mathcal{Z}\{\cdot\}$ betegner z-transformen. Vis at $\mathcal{Z}\{x(n+k)\} = z^k X(z)$.
- **1b)** Figur 1 viser pol- og nullpunktplassering til et kausalt, tidsdiskret filter i z-planet.

Figur 1: Pol- og nullpunktplassering i z-planet

Er dette et lavpass-, høypass-, båndpass- eller båndstoppfilter? Begrunn svaret.

1c) Vis at filterets overføringsfunksjon i z-planet kan uttrykkes som

$$H(z) = \frac{1 - z^{-2}}{1 - a^2 z^{-2}}$$

Finn enhetspulsresponsen til filteret.

1d) Hva blir konvergensområdet (ROC) til filteret i Figur 1? Når er filteret stabilt? Vil filteret ha minimum fase?

Alle tre svarene skal begrunnes!

1e) Et kausalt, tidsdiskret filter er gitt ved sin overføringsfunksjon

$$H(z) = \frac{1 - \frac{5}{4}z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{3}{4}z^{-1}\right)} \tag{1}$$

Har filteret et kausalt og stabilt inversfilter? Begrunn svaret.

1f) Hvilken type filter er filteret i likning (1) (lavpass, høypass, båndpass, båndstopp eller allpass)? Begrunn svaret.

Oppgave 2 (3+4+7+5+2=21)

Figur 2: Analogt filter

Det analoge, kausale filteret i Figur 2 har en overføringsfunksjon i s-planet som er gitt av

$$H_a(s) = \frac{s - 1/RC}{s + 1/RC} \tag{2}$$

2a) Tegn pol og nullpunkt i s-planet.

Kan du si hvilken type filter dette er ved å skissere modulen $|H_a(j\Omega)|$?

2b) Ved design av et tidsdiskret IIR-filter H(z) kan en ta utgangspunkt i et kjent analogt filter $H_a(s)$ samt den bilineære transformen

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \tag{3}$$

Ta utgangspunkt i $s=j\Omega$ og $z=e^{j\omega}$ og vis at transformasjon i frekvens er gitt ved

$$\Omega = \frac{2}{T} \tan(\frac{\omega}{2}) \tag{4}$$

2c) Det analoge filteret gitt av likning (2) skal transformeres til et tidsdiskret filter ved hjelp av den bilineære transformen.

En ønsker at $\Omega_c = 1/RC$ skal transformeres til ω_c som er gitt ved $\tan(\frac{\omega_c}{2}) = 1/2$.

Finn T og vis at resulterende overføringsfunksjon er gitt ved

$$H(z) = \frac{1}{3} \frac{1 - 3z^{-1}}{1 - \frac{1}{3}z^{-1}} \tag{5}$$

Skisser en direkte form 2 (DF2) realisering av filteret med forsterkningsfaktoren 1/3 plassert på inngangen av filteret.

2d) Vis at enhetspulsresponsen til H(z) er gitt ved

$$h(n) = \begin{cases} \frac{1}{3} \left(\frac{1}{3}\right)^n - \left(\frac{1}{3}\right)^{n-1} = -\frac{8}{9} \left(\frac{1}{3}\right)^{n-1} & n > 0\\ \frac{1}{3} & n = 0\\ 0 & n < 0 \end{cases}$$

$$(6)$$

2e) Vis at det tidsdiskrete filteret kan realiseres som en parallell-struktur:

$$H(z) = H_1(z) + H_2(z) = \frac{\frac{1}{3}}{1 - \frac{1}{3}z^{-1}} + \frac{-z^{-1}}{1 - \frac{1}{3}z^{-1}}$$
 (7)

Oppgave 3 (4+2+5+3+4=17)

3a) Hvit støy påtrykkes parallellrealiseringen av filteret H(z) fra oppgave 2 (likning (7)). Hvilke typer stokastiske prosesser opptrer på utgangen av henholdsvis $H_1(z), H_2(z)$ og H(z)?

Finn autokorrelasjonsfunksjonen til utgangen av $H_1(z)$.

3b) Vi har en lydkilde som skal punktprøves. Kilden er ikke ideell, slik at det oppstår en refleksjon i en avstånd av $l_1 = 4,0$ cm fra kilden. Avstanden fra refleksjonen til mikrofon og A/D-omformeren er $l_2 = 4,5$ cm. Refleksjonen er ikke ideell, slik at den reflekterte bølgen dempes med en faktor a, der 0 < a < 1. Gå ut fra at avstanden fra kilde til mikrofon og A/D-omformer kan settes lik 0cm, og at lydens hastighet er 340 m/s. Punktprøvingshastigheten er $F_s = 8kHz$. Systemet er illustrert i Figur 3.

Figur 3: Lydkilde

Vis at det punktprøvde signalet kan uttrykkes som $z(n) = x(n) + \alpha x(n-2)$ der x(n) = x(nT) er den punktprøvde versjonen av det analoge signalet x(t).

3c) Vis at autokorrelasjonsfunksjonen til z(t) i Figur 3, $r_{zz}(k)$, kan uttrykkes som

$$r_{zz}(k) = (1 + \alpha^2)r_{xx}(k) + \alpha r_{xx}(k-2) + \alpha r_{xx}(k+2)$$

- **3d)** La x(n) være en hvitstøyprosess med middelverdi 0 og varians σ_x^2 . Finn autokorrelasjonsfunksjonen til z(n), $r_{zz}(k)$, uttrykt ved σ_x^2 i dette tilfellet.
- 3e) La x(n) være en AR(1)-prosess, x(n) = ax(n-1) + w(n), der w(n) er hvit støy med varians σ_w^2 . Vis at autokorrelasjonsfunksjonen til x(n), $r_{xx}(k)$ kan uttrykkes som

$$r_{xx}(k) = a^k \frac{\sigma_w^2}{1 - a^2}$$

Oppgave 4 (4+5+6+6=21)

Et tidsdiskret filter er karakterisert av sin overføringsfunksjon, H(z):

$$H(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{3}z^{-1}} \tag{8}$$

og har enhetspulsrespons, h(n) gitt ved

$$h(n) = \begin{cases} 0 & n < 0 \\ 1 & n = 0 \\ 2\left(\frac{1}{3}\right)^n & n > 0 \end{cases}$$
 (9)

Det tidsdiskrete filteret skal realiseres med fast komma tallrepresentasjon med B+1 bit og dynamikk [-1,1). Avrunding (kvantisering) foretas etter hver multiplikasjon og kan regnes som hvit støy med effekt σ_e^2 og uniform amplitudefordeling.

- **4a)** Skisser strukturen til filteret realisert som både direkte form 1 (DF1) og direkte form 2 (DF2)
- **4b)** Finn resulterende støyeffekt på utgangen uttrykt ved σ_e^2 for både DF1 og DF2 strukturen.
- **4c)** Inngangssignalet x(n) til filteret har uniform amplitudefordeling med full utstyring, dvs. $x_{max} = \max_{n} |x(n)| = 1.$

Vis at en for å unngå overstyring i DF1 strukturen må skalere på inngangen med 1/2 (ned-skalering med 2).

Finn reduksjonen i signal-støy forholdet(S/N) på utgangen grunnet nedskaleringen.

4d) Gjenta deloppgave 4c men nå for DF2-strukturen.

Vedlegg: Noen grunnleggende likninger og formler.

A. Sekvenser:

$$\sum_{n=0}^{N-1} \alpha^n = \frac{1 - \alpha^N}{1 - \alpha}$$

$$|\alpha| < 1 \Rightarrow \sum_{n=0}^{\infty} \alpha^n = \frac{1}{1 - \alpha} \text{ og } -\sum_{n=-1}^{-\infty} \alpha^n = \frac{1}{1 - \alpha}$$

B. Lineær foldning:

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k) = \sum_{k} x(k)h(n-k)$$

$$Y(z) = H(z)X(z) \Rightarrow Y(f) = H(f)X(f) \Rightarrow$$

$$Y(f_k) = H(f_k)X(f_k) \quad f_k = k/N \text{ for } k = 0, \dots, N-1 \text{ der vi skriver } Y(k) = Y(f_k)$$

C. Transformer:

Z:
$$H(z) = \sum_{n} h(n)z^{-n} \Rightarrow H(f) = \sum_{n} h(n) e^{-j2\pi nf}$$

DFT: $H(k) = \sum_{n=0}^{L-1} h(n) e^{-j2\pi nk/N} \quad k = 0, ..., N-1$
IDFT: $h(n) = \frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j2\pi nk/N} \quad n = 0, ..., L-1$

D. Punktprøvingsteoremet (Nyquist):

Gitt et analogt signal $x_a(t)$ med båndbredde $\pm B$ som er punktprøvd med $F_s=1/T_s$:

$$x(n) = x(nT_s) = x_a(t)|_{t=nT_s}$$
 $n = -\infty,, \infty$

$$X(f) = X(F/F_s) = F_s \sum_{k} X_a[(f - k)F_s]$$

 $x_a(t)$ kan gjenvinnes fra c $x(n) \Leftrightarrow F_s \geq 2B$

E. Autokorrelasjon, energispektrum og Parsevals teorem:

Gitt en sekvens h(n) med endelig energi E_h :

Autokorrelasjon:
$$r_{hh}(m) = \sum_{n} h(n)h(n+m)$$
 $m = -\infty,, \infty$

Energispektrum:
$$S_{hh}(z) = H(z)H(z^{-1}) \Rightarrow S_{hh}(f) = |H(f)|^2$$

Parsevals teeorem:
$$E_h = r_{hh}(0) = \sum_n h^2(n) = \int_0^{2\pi} |H(f)|^2 df$$

F. Multirateformler:

Desimering, der
$$T_{sy} = DT_{sx}$$
:

$$v(mT_{sy}) = \sum_{k} h[(mD - k)T_{sx}] \ x(kT_{sx}) \quad m = -\infty,, \infty$$

Oppsampling, der
$$T_{sx} = UT_{sy}$$
:

$$y(lT_{sy}) = \sum_{n} h[(l - nU)T_{sy}] \ x(nT_{sx}) \quad l = -\infty,, \infty$$

Interpolasjon, der
$$T_{sy} = DT_{sv} = \frac{D}{U}T_{sx}$$
:

$$y(lT_{sy}) = \sum_{m} h[(lD - mU)T_{sv}] \ x(mT_{sx}) \quad l = -\infty,, \infty$$

G. Autokorrelasjon, effektspektrum og Wiener-Khintchins teorem:

Gitt en stasjonær, ergodisk sekvens x(n) med uendelig energi:

Autokorrelasjon:
$$\gamma_{xx}(m) = E[x(n)x(n+m)] \ m = -\infty,, \infty$$

Effektspektrum:
$$\Gamma_{xx}(z) = Z[\gamma_{xx}(m)] \Rightarrow$$

Wiener-Khintchin:
$$\Gamma_{xx}(f) = DTFT[\gamma_{xx}(m)] = \sum_{m} \gamma_{xx}(m) e^{-j2\pi mf}$$

H. Yule-Walker og Normallikningene, der $a_0 = 1$:

Yule-Walker likningene:
$$\sum_{k=0}^p a_k \gamma_{xx}(m-k) = \sigma_f^2 \ \delta(m) \ \ m=0,...,p$$

Normallikningene:
$$\sum_{k=1}^{p} a_k \gamma_{xx}(m-k) = -\gamma_{xx}(m) \quad m = 1, ..., p$$