Programme de colle n°21

Géométrie plane

- 1) Base orthonormée directe.
- 2) Coordonnées cartésiennes, coordonnées polaires.
- 3) Produit scalaire.
- 4) Produit mixte ou déterminant.
- 5) Équation de droites, représentation paramétrique, vecteur directeur, normal.
- 6) Distance d'une droite à un point.
- 7) Équation de cercles.
- 8) Intersection de droites, de cercles.

Polynômes

- 1) Définition de $\mathbb{K}[X]$ pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .
- 2) Structure d'espace vectoriel, sous-espace vectoriel $\mathbb{K}_n[X]$.
- 3) Degré d'un polynôme, $deg(P+Q), deg(PQ), deg(P \circ Q)$.
- 4) Division euclidienne dans $\mathbb{K}[X]$.
- 5) Racines de multiplicité k, lien avec la dérivée de P.

Questions de cours

- 1) Pour \vec{u} et \vec{v} deux vecteurs, montrer que : $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$. En déduire l'identité du parallélogramme et celle de polarisation.
- 2) Soient $\vec{u} \binom{x}{y}$ et $\vec{v} \binom{x'}{y'}$ deux vecteurs du plan dont les coordonnées sont prises dans un repère orthonormé. Montrer que $\vec{u} \cdot \vec{v} = xx' + yy'$.
- 3) Soit $\mathcal{D}: 2x y + 4 = 0$ et M(1,1). Déterminer les coordonnées du projeté orthogonal de M sur \mathcal{D} .
- 4) Dans un repère orthonormal (O, \vec{i}, \vec{j}) , on considère le point $\Omega(1, -1)$ ainsi que les vecteurs $\vec{u} \binom{1}{2}$ et $\vec{v} \binom{-2}{3}$.
 - (a) Montrer que $(\Omega, \vec{u}, \vec{v})$ est un repère. Est-il direct? Est-il orthogonal?
 - (b) Dans le reprère (O, \vec{i}, \vec{j}) , on considère le vecteur $\vec{w} \begin{pmatrix} -3 \\ -3 \end{pmatrix}$ et le point A(5,6). Calculer leurs coordonnées dans $(\Omega, \vec{u}, \vec{v})$.
- 5) Soit \mathcal{D} la droite qui passe par les points A(1,1) et B(2,-1). Donner : un vecteur directeur, un vecteur normal, un paramétrage et une équation cartésienne de \mathcal{D} .
- 6) Effectuer une division euclidienne de polynômes choisis par le colleur.
- 7) Dans le théorème de la division euclidienne, montrer l'unicité du couple (Q, R) sous réserve d'existence.
- 8) Soit P un polynôme. Montrer que P est inversible dans $\mathbb{K}[X]$ si et seulement si P est constant non nul.
- 9) Soient $P \in \mathbb{K}[X]$ et $\alpha, \beta \in \mathbb{K}$ tels que $\alpha \neq \beta$ Déterminer le reste de la division euclidienne de P par $X \alpha$ puis celui de P par $(X \alpha)(X \beta)$.

C. Darreye PTSI Lycée Dorian