Atividade AA-12

Nesta tarefa deve-se (i) propor uma gramática livre de contexto G_n que gere a linguagem \mathcal{L}_n selecionada e (ii) provar que a linguagem $\mathcal{L}(G_n)$, gerada pela gramática G_n , é igual à linguagem \mathcal{L}_n , ou seja, $\mathcal{L}(G_n) = \mathcal{L}_n$. (Cada aluna(o) deve consultar na descrição da atividade AA-12, na disciplina INF0333A da plataforma Turing, qual é a linguagem associada ao seu número de matrícula. A descrição da linguagem está disponível no arquivo "Lista de linguagens livres de contexto" da Seção "Coletânea de exercícios".)

Iury Alexandre Alves Bo (202103735)

- $\mathcal{L}_4 = \{ w = uv, |u|_1 \geqslant |u|_0 + 4, u, v \in \Sigma^* \}.$
- Gramática G_4 que gera as cadeias da linguagem \mathcal{L}_4 :

$$G_4 = (\{S, A, B\}, \{0, 1\}, P, S), \text{ com } P = \left\{ \begin{array}{l} S \to A1A1A1A1AB, \\ A \to 0A1 \mid 1A0 \mid AA \mid 1A \mid A1 \mid \varepsilon, \\ B \to 0B \mid 1B \mid \varepsilon \end{array} \right\}.$$

$\mathcal{L}_4 \subseteq \mathcal{L}(G_{99})$, ou seja, se $w \in \mathcal{L}_4$, então $S \stackrel{*}{\Longrightarrow} w$.

Qualquer cadeia $w \in \mathcal{L}_4$ pode ser obtida a partir de G_{99} a partir dos seguintes procedimentos de derivação:

Derivação	Regra usada	
$S \stackrel{\scriptscriptstyle 1}{\Longrightarrow} A1A1A1A1AB$	$S \to A1A1A1A1AB$	
$\stackrel{n}{\Longrightarrow} 0^n A 1^n 1 A 1 A 1 A 1 A B$	$A \rightarrow 0A1$	
$\stackrel{\scriptscriptstyle{1}}{\Longrightarrow} 0^n 1^{n+1} A 1 A 1 A 1 A B$	$A \to \varepsilon$	
$\stackrel{\scriptscriptstyle{m}}{\Longrightarrow} 0^{n+1} 1^m A 1 A 1 A 1 A 1 A B$	$A \rightarrow 1A$	
$\stackrel{\scriptstyle 1}{\Longrightarrow} 0^n 1^{n+m+1} 1A1A1A1AB$	$A \to \varepsilon$	
$\stackrel{p}{\Longrightarrow} 0^n 1^{n+m+2} 1^p A 0^p 1 A 1 A B$	$A \rightarrow 1A0$	
$\stackrel{1}{\Longrightarrow} 0^n 1^{n+m+p+2} 0^p 1A1AB$	$A \to \varepsilon$	
$\stackrel{q}{\Longrightarrow} 0^n 1^{n+m+p+2} 0^p 1A 1^q 1AB$	$A \to A1$	
$\stackrel{\stackrel{\scriptstyle 1}{\Longrightarrow}}{\Longrightarrow} 0^n 1^{n+m+p+2} 0^p 1^{q+2} AB$	$A \to \varepsilon$	
$\stackrel{\stackrel{\scriptstyle 1}{\Longrightarrow}}{\Longrightarrow} 0^n 1^{n+m+p+2} 0^p 1^{q+2} AAB$	$A \to AA$	
$\stackrel{\stackrel{\scriptstyle 1}{\Longrightarrow}}{\Longrightarrow} 0^n 1^{n+m+p+2} 0^p 1^{q+2} AB$	$A \to \varepsilon$	
$\stackrel{\scriptscriptstyle 1}{\Longrightarrow} 0^n 1^{n+m+p+2} 0^p 1^{q+2} B$	$A \to \varepsilon$	
$\stackrel{\stackrel{\scriptstyle 1}{\Longrightarrow}}{\Longrightarrow} 0^n 1^{n+m+p+2} 0^p 1^{q+2}$	$B \to \varepsilon$	
$\longrightarrow 0^n 1^{n+m+p+2} 0^p 1^{q+2}$		

Portanto, se $w=0^n1^{n+m+p+2}0^p1^{q+2}$, com $n,m,p,q\geqslant 0$, então $S\mathop{\Longrightarrow}\limits_{G_{99}}^*w$.

$$\mathcal{L}(G_{99}) \subseteq \mathcal{L}_4$$
, ou seja, se $S \stackrel{*}{\Longrightarrow} w$, então $w = a^n b^{2m+1} c^{2m+1} a^{2n}, \ n, m \geqslant 0$.

Sejam $|u|_x$ o número de ocorrências do símbolo x na cadeia u, $|u|_{xp}$ o número de ocorrências do símbolo x como prefixo de u e $|u|_{xs}$ o número de ocorrências do símbolo x como sufixo de u. As relações seguintes são válidas para qualquer forma sentencial u gerada por G_{99} :

- (i) $2 \cdot |u|_{ap} = |u|_{as}$;
- (ii) se $u = u_1 X u_2$ e $X \in V$, então $|u_1|_b = |u_2|_c = 2m$, $m \in \mathbb{N}$ (ou seja, quantidade par de símbolos se u é uma forma sentencial, mas não é uma cadeia);
- (iii) os a's aparecem somente como prefixo e sufixo, todos os b's precedem todos os c's e os b's não aparecem como prefixo; e
- (iv) em uma cadeia u, $|u|_b = |u|_c = 2m+1$, $m \in \mathbb{N}$ (ou seja, se temos uma cadeia de símbolos terminais, a quantidade de b's é igual à de c's e é ímpar.)

A seguir será provado, por indução na quantidade de passos de derivação, que as relações (i)–(iv) são válidas para qualquer cadeia derivável a partir de S.

Base: As relações são válidas para todas as cadeias que podem ser obtidas a partir de S com a aplicação de apenas uma regra de derivação:

$$S \stackrel{\scriptscriptstyle{1}}{\Longrightarrow} A1A1A1A1AB.$$

Hipótese de Indução: As relações são válidas para todas as cadeias u que podem ser obtidas a partir de S com a aplicação de até k regras de derivação $(S \stackrel{k}{\Longrightarrow} u)$.

Passo indutivo: Seja w uma cadeia derivável a partir de S em k+1 passos de derivação, ou seja, $S \stackrel{k+1}{\Longrightarrow} w$. Essa derivação pode ser escrita como $S \stackrel{k}{\Longrightarrow} u \stackrel{1}{\Longrightarrow} w$. Pela hipótese indutiva, as relações (i)–(iv) são válidas para as formas sentenciais deriváveis a partir de S com a aplicação de até k regras de derivação, ou seja, são válidas para u. Queremos mostrar que a aplicação de mais uma regra não muda as relações descritas. A tabela a seguir mostra o efeito da aplicação de mais uma regra de derivação à forma sentencial u:

Regra	$ w _0$	$ w _1$
$S \to A1A1A1A1AB$	$ u _0$	$ u _1 + 4$
$A \rightarrow 0A1$	$ u _0 + 1$	$ u _1 + 1$
$A \to 1A0$	$ u _0 + 1$	$ u _1 + 1$
$A \to AA$	$ u _0$	$ u _1$
$A \to A1$	$ u _0$	$ u _1 + 1$
$A \to 1A$	$ u _0$	$ u _1 + 1$
$A \to \varepsilon$	$ u _0$	$ u _1$
$B \to 0B$	$ u _0 + 1$	$ u _1$
$B \to 1B$	$ u _0$	$ u _1 + 1$
$B \to \varepsilon$	$ u _0$	$ u _1$

Pela análise das entradas na tabela, pode-se concluir que as relações (i)–(iv) são mantidas para a cadeia w.