Tarea 4

Estadística Bayesiana

Simulación Estocástica MCMC

$Metropolis ext{-}Hastings$

1.- Se $Y \sim Binomial(n, p)$, con n fijo. Considere el logaritmo de los momios $\theta = \log\left(\frac{p}{1-p}\right)$ tal que su distribución inicial (prior) es $\theta \sim Normal(\mu, \sigma^2)$, con $\mu = 1$ y $\sigma^2 = 0.16$. Suponga que se observan n = 10 y p = 7.

Use el algoritmo de Metropolis-Hastings para simular la distribución final (posterior) de p, y la de θ .

Muestreo de Gibbs

2.- Sea X_1, \ldots, X_n una muestra aleatoria de una distribución Normal truncada, definida en X > 0, $X \sim NormalTrunc(\mu, \sigma^2)I(0, \infty)$. Considere las distribuciones prior $\mu \sim Normal(\mu_0, \tau_0^2)$ y $\sigma^2 \sim InvGamma(a, b)$.

Use el algoritmo de muestreo de Gibbs para estimar la distribución posterior de μ y σ^2 . Simule un conjunto de datos para ejemplificar.

Adicionalmente, incluye la estimación usando JAGS.