Master Degree in Artificial Intelligence for Science and Technology

Introduction to Anomaly Detection

Fabio Stella

Department of Informatics, Systems and Communication
University of Milan-Bicocca
fabio.stella@unimib.it

OUTLOOK

- Introduction
- Type of Attributes and Complex Data
- Types of Data
- Types of Anomalies
- Output of Anomaly Detection
- Applications of Anomaly Detection

What are anomalies/outliers?

 The set of data points that are considerably different than the remainder of the data

Natural implication is that anomalies are relatively rare

- One in a thousand occurs often if you have lots of data
- Context is important, e.g., freezing temps in July

Can be important or a nuisance

- Unusually high blood pressure
- 200 pound, 2 year old
- 80 years old and pregnant

"Mining needle in a haystack. So much hay and so little time"

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!

Source: http://www.epa.gov/ozone/science/hole/size.html

- Anomaly is a pattern in the data that does not conform to the expected behavior
- Also referred to as outliers, exceptions, peculiarities, surprises, etc.

CAUSES OF ANOMALIES

- Data from different classes: measuring the weights of oranges, but a few grapefruit are mixed in
- Natural variation: unusually tall people
- Data errors: 200 pound 2 year old
- Cyber intrusions
- Credit card fraud
- Faults in mechanical systems

REAL WORLD ANOMALIES

- Credit Card Fraud
 - An abnormally high purchase made on a credit card

- Cyber Intrusions
 - A web server involved in ftp traffic

A SIMPLE EXAMPLE OF ANOMALY

- N₁ and N₂ are regions of normal behavior
- Points o₁ and o₂ are anomalies
- Points in region O₃ are also anomalies

INPUT DATA

Univariate

Most common form of data handled by anomaly detection techniques is Record Data

Multi-variate

Tid	SrcIP	Start time	Dest IP	Dest Port	Number of bytes	Attack
1	206.135.38.95	11:07:20	160.94.179.223	139	192	No
2	206.163.37.95	11:13:56	160.94.179.219	139	195	No
3	206.163.37.95	11:14:29	160.94.179.217	139	180	No
4	206.163.37.95	11:14:30	160.94.179.255	139	199	No
5	206.163.37.95	11:14:32	160.94.179.254	139	19	Yes
6	206.163.37.95	11:14:35	160.94.179.253	139	177	No
7	206.163.37.95	11:14:36	160.94.179.252	139	172	No
8	206.163.37.95	11:14:38	160.94.179.251	139	285	Yes
9	206.163.37.95	11:14:41	160.94.179.250	139	195	No
10	206.163.37.95	11:14:44	160.94.179.249	139	163	Yes

Type of Attributes

- Binary
- Categorical
- Continuous
- Hybrid

categorical

CONTINUOUS

categorical

ontinuou

binary

Tid	SrcIP	Duration	Dest IP	Number of bytes	Internal
1	206.163.37.81	0.10	160.94.179.208	150	No
2	206.163.37.99	0.27	160.94.179.235	208	No
3	160.94.123.45	1.23	160.94.179.221	195	Yes
4	206.163.37.37	112.03	160.94.179.253	199	No
5	206.163.37.41	0.32	160.94.179.244	181	No

INPUT DATA: COMPLEX DATA TYPES

- Relationship among data instances
 - Sequential
 - Temporal
 - Spatial
 - Spatio-temporal
 - Graph

DATA LABELS

- Supervised Anomaly Detection
 - Labels available for both normal data and anomalies
 - Similar to rare class mining
- Semi-supervised Anomaly Detection
 - Labels available only for normal data
- Unsupervised Anomaly Detection
 - No labels assumed
 - Based on the assumption that anomalies are very rare compared to normal data

TYPES OF ANOMALIES

- Point Anomalies
- Contextual Anomalies
- Collective Anomalies

TYPES OF ANOMALIES

- Point Anomalies
- Contextual Anomalies
- Collective Anomalies

An individual data instance is anomalous w.r.t. the data

Types of Anomalies

- Point Anomalies
- CONTEXTUAL ANOMALIES
- Collective Anomalies
 - An individual data instance is anomalous within a context
 - Requires a notion of context
 - Also referred to as conditional anomalies*

TYPES OF ANOMALIES

- Point Anomalies
- Contextual Anomalies

- COLLECTIVE ANOMALIES
 - A collection of related data instances is anomalous
 - Requires a relationship among data instances
 - Sequential Data
 - Spatial Data
 - Graph Data
 - The individual instances within a collective anomaly are not anomalous by themselves

OUTPUT OF ANOMALY DETECTION

LABEL

- Each test instance is given a normal or anomaly label
- This is especially true of classification-based approaches

SCORE

- Each test instance is assigned an anomaly score
- Allows the output to be ranked
- Requires an additional threshold parameter

APPLICATIONS OF ANOMALY DETECTION

- Network intrusion detection
- Insurance / Credit card fraud detection
- Healthcare Informatics / Medical diagnostics
- Industrial Damage Detection
- Image Processing / Video surveillance
- Novel Topic Detection in Text Mining

APPLICATIONS OF ANOMALY DETECTION: NETWORK INTRUSION DETECTION

Intrusion Detection:

- Process of monitoring the events occurring in a computer system or network and analyzing them for intrusions
- Intrusions are defined as attempts to bypass the security mechanisms of a computer or network

Challenges

- Traditional signature-based intrusion detection systems are based on signatures of known attacks and cannot detect emerging cyber threats
- Substantial latency in deployment of newly created signatures across the computer system
- Anomaly detection can alleviate these limitations

APPLICATIONS OF ANOMALY DETECTION: FRAUD DETECTION

- Fraud detection refers to detection of criminal activities occurring in commercial organizations:
 - Malicious users might be the actual customers of the organization or might be posing as a customer (also known as identity theft).
- Types of fraud
 - Credit card fraud
 - Insurance claim fraud
 - Mobile / cell phone fraud
 - Insider trading
- Challenges
 - Fast and accurate real-time detection
 - Misclassification cost is very high

APPLICATIONS OF ANOMALY DETECTION: HEALTH INFORMATICS

- Detect anomalous patient records:
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key Challenges
 - Only normal labels available
 - Misclassification cost is very high
 - Data can be complex: spatio-temporal

APPLICATIONS OF ANOMALY DETECTION: INDUSTRIAL DAMAGE DETECTION

- Industrial damage detection refers to detection of different faults and failures in complex industrial systems, structural damages, intrusions in electronic security systems, abnormal energy consumption, etc.
 - Example: Aircraft Safety
 - Anomalous Aircraft (Engine) / Fleet Usage
 - Anomalies in engine combustion data
 - Total aircraft health and usage management
- Key Challenges
 - Data is extremely huge, noisy and unlabelled
 - Most of applications exhibit temporal behavior
 - Detecting anomalous events typically require immediate intervention

APPLICATIONS OF ANOMALY DETECTION: MAGE PROCESSING

- Detecting outliers in an image or video monitored over time
- Detecting anomalous regions within an image
- Used in
 - mammography image analysis
 - video surveillance
 - satellite image analysis
- Key Challenges
 - Detecting collective anomalies
 - Data sets are very large

MODEL-BASED VS MODEL-FREE

Model-based Approaches

- Model can be parametric or non-parametric
- Anomalies are those points that don't fit well
- Anomalies are those points that distort the model

Model-free Approaches

- Anomalies are identified directly from the data without building a model
- Often the underlying assumption is that most of the points in the data are normal

Point Anomaly Detection Techniques

- NEAREST NEIGHBOR BASED
 - Anomalies are points far away from other points
- Clustering Based
 - Points far away from cluster centers are outliers
 - Small clusters are outliers
- STATISTICAL APPROACHES
- Reconstruction Based

RECAP

- Introduction
- Type of Attributes and Complex Data
- Types of Data
- Types of Anomalies
- Output of Anomaly Detection
- Applications of Anomaly Detection