Practical sampling instruments record voltage values over a small but finite time and not instantaneously. How is the interpolated signal affected by this?

Let T(t) be the continuous analog signal before sampling and S(t) the sampled signal with a sampling interval τ . Then we can write $S(t) = T(t) \cdot D_{\tau}(t)$ where $D_{\tau}(t)$ is a dirac comb with τ as the spacing between the individual delta functions.

Then by the convolution theorem the fourier transform of S(t), F(S) will be the convolution of F(T) with $F(D_{\tau})$. The fourier transform of T(t) will simply be the spectrum of T, $f(\nu)$ ie the frequency components of T. We assume the spectrum range of our T to be from 0 to $\Delta \nu$. Further the fourier transform of a Dirac comb is also a dirac comb with inverse spacing, so $F(D_{\tau}(t)) = D_{\frac{1}{\tau}}$. Hence

$$F(S(t)) = f(\nu) * D_{\frac{1}{\tau}}$$
 (1)

Now convolution of $f(\nu)$ with $D_{\frac{1}{\tau}}$ means a sum of infinite copies of $f(\nu)$ which are displaced relative to each other by $\frac{1}{\tau}$. We know that $f(\nu)$ is non-zero everywhere except $[-\Delta\nu, \Delta\nu]$. So if the sampling frequency $f_s = \frac{1}{\tau} \geq 2\Delta\nu$, then F(S(t)) would simply look like infinite copies of $f(\nu)$ laid side by side. Now if we multiply F(S(t)) with a rectangular function of width $\Delta\nu$ then we get as an output our spectrum $f(\nu)$.

In other words, in time domain all this corresponds to convolving our S(t) with a suitable sinc function (achieved by a low-pass filter), which will be given by the fourier transform of the above rectangular function of width $\Delta \nu$. This will give the interpolated continuous time signal from our digital one.

However practical sampling instruments dont record values instantaneously but during a finite time. This means that our sampled signal S(t) is now instead given by $S(t) = T(t) \cdot D'_{\tau}(t)$ where $D'_{\tau}(t)$ is an infinite train of finite width rectangular functions separated by τ . Then F(S) will be -

$$F(S(t)) = f(\nu) * F(D'_{\tau})$$
(2)

Now the fourier transform of D' comes out to be the dirac comb $D_{\frac{1}{\tau}}$ but with the heights of the delta functions modulated by a sinc function, as shown in the figure ¹. Convolution of $f(\nu)$ with this function would again yield infinite copies of $f(\nu)$ laid side by side but successive copies away from the origin

would get scaled down with the sinc. But in the case where $f(\nu)$ is centered on the origin, we can still retrieve its exact theoretical form by again passing S(t) through a low-pass filter.

However if the bandwidth of our signal is not centered on 0, then the copy of $F(\nu)$ in the above convolution that will be centered on 0 will be much scaled down. Using a low pass filter in this case would yield a very weak interpolated signal.

How do the detector and integrator change the spectrum of the signal?

Square-law detector

Let the voltage signal just before square-law detection be composed of frequencies running from [a, b], the bandwidth being $b - a = \Delta \nu$. Then the signal can be thought of as a sum of many sinusoidal signals having frequencies in this range. Consider any two of these frequencies ω_1 and ω_2 . So the signal looks like $s(t) = c_1 \sin \omega_1 t + c_2 \sin \omega_2 t + ...$

The result of square law detection is that this sum is getting squared. So the new signal becomes (ignoring the amplitudes c_1 and c_2 from now)-

$$sin^{2}(\omega_{1}t) + sin^{2}(\omega_{2}t) + 2sin(\omega_{1}t)sin(\omega_{2}t)$$

$$\Rightarrow 1 - \frac{1}{2}(\cos(2\omega_{1}) + \cos(2\omega_{2})) + \cos(\omega_{1} - \omega_{2})t - \cos(\omega_{1} + \omega_{2})t$$

using trigonometric identities. We have a constant value which represents a signal of non-zero power and 0 frequency. From ω_1 and ω_2 , we get the frequencies $2\omega_1$, $2\omega_2$, $\omega_1 - \omega_2$ and $\omega_1 + \omega_2$.

¹Source - www.sonoma.edu

These 4 frequencies will be generated by every pair of frequencies in the range [a,b] from the original signal. Out of all the frequencies generated from detection, 2b would be the highest. And all the frequencies between 0 and 2b will be generated by detection. Hence the range of frequencies of the signal after detection is [0,2b]. While we ignored the amplitude of the individual frequencies, it can be seen that the amplitudes of the resulting frequencies get changed in a non-linear way so the shape of the spectrum gets totally changed.

Integrator

Again consider the input of the integrator as a sum of many sinusoidal components. Let the integration time be τ . Then we are summing all the values of the signal in time bins of size τ . For frequency components less than $1/\tau$, all the values in each bin will have a phase difference less than 2π so these frequencies remain preserved. But for frequencies f greater than $1/\tau$ each integration bin will have at least one complete cycle. Adding values of a complete cycle yields 0, hence only the portion $\tau \% \frac{1}{f}$ would be added in each bin. This would cut all the oscillations in the input faster than $1/\tau$ and reduce these f to frequencies lower than $1/\tau$. Hence the range of frequencies of the output of the integrator will be $[0,\frac{1}{\tau}]$.