## Description '

#### DIAZEPAN DERIVATIVES OR SALTS THEREOF

#### Technical Field:

This invention relates to novel a diazepan derivative or a salt thereof, which is useful as pharmaceutical particularly as an activated blood coagulation factor X inhibitor and also to such pharmaceutical agent.

#### Background Art:

With the changes into European and American life styles and the increase in aged population in recent years, number ofpatients with thromboembolic diseases including myocardial infarction, cerebral thrombosis and peripheral arterial thrombosis have been increasing year by year and social importance of their treatment has been increasing more and more. As well as the fibrinolysis therapy and antiplatelet therapy, the anticoagulation therapy takes a part of the medical therapy in treating and preventing thrombosis (Sogo Rinsho, 41: 2141-2145, In particular, the safety which withstands long-1989). term administration and accurate and proper expression of anticoagulation activity the are essential in the prevention ofthrombosis. Warfarin potassium frequently used in the world as the sole oral anticoagulant but this drug is extremely difficult to use

is difficult to it control clinically because anticoaqulation capacity due to the characteristics based on its action mechanism (J. Clinical Pharmacology, 32, 196-209, 1992 and N. Eng. J. Med., 324(26), 1865-1875, 1991) whereby a great concern has been directed toward the development ofmore useful and easily usable anticoagulants.

Thrombin controls conversion of fibrinogen fibrin which is the final step of coagulation and is also concerned deeply in the activation and aggregation of platelets ("T-PA and Pro-UK" edited bу s. Matsuo, published by Gakusai Kikaku, pp. 5-40 "Blood Coagulation", inhibitor has been 1986) and its the center anticoagulant studies as a target of development However, thrombin inhibitors which can pharmaceuticals. be administered orally have not been put into the market until now because of their low bioavailability by oral administration and problems from the viewpoint of safety (Biomed. Biochim. Acta, 44, 1201-1210, 1985).

Activated blood coagulation factor X is a key enzyme which is located at the joining point of the extrinsic and intrinsic coagulation cascade reactions and located upstream to thrombin whereby there is a possibility that inhibition of this factor is more efficient than the thrombin inhibition and such an inhibitor can inhibit this coagulation system in a specific manner (THROMBOSIS RESEARCH (19), 339-349, 1980).

As the compounds having an activated blood

coagulation factor X inhibiting action, amidinonaphthyl alkylbenzene derivatives or salts thereof have been known (Japanese Patent Laid-Open No. 208946/1993; Thrombosis Haemostasis, 71(3), 314-319, 1994; and Thrombosis Haemostasis, 72(3), 393-396, 1994).

In WO 96/16940, it is mentioned that an amidinonaphthyl derivative or a salt thereof represented by the following general formula is the compound having an activated blood coagulation factor X inhibiting action (Prior Art 1).

(For the symbols in the formula, refer to the gazette.)

In W099/00121, W099/00126, W099/00127, W099/00128, W000/39111, W000/39117 and W000/39118, phenylenediamide compounds, etc. represented by the following general formula are mentioned as an factor Xa inhibitor (Prior Art 2).

$$A_{\parallel}^{5} A_{A}^{6} L^{1} Q^{1}$$

$$A_{\parallel}^{4} A^{3} R^{2}$$

(For the symbols in the formula, refer to the gazette.)

Further, in WO99/32477, a broad range of compounds represented by the following general formula is mentioned as an anticoagulant (Prior Art 3).

$$(R^1)_m$$
 $E$ 
 $C$ 
 $(R^4)_n$ 
 $C$ 
 $C$ 

(For the symbols in the formula, refer to the gazette.)

Disclosure of the Invention:

The present inventors have produced a diazepan derivative represented by the following general formula (I) or a salt thereof and found that it has an excellent activated blood coagulation factor X inhibiting action and particularly has an excellent activity by oral administration.

Specifically, this invention relates to a diazepan derivative represented by the following general formula (I) or a salt thereof and also to a pharmaceutical composition, particularly an activated blood coagulation factor X inhibitor, containing the same as an effective ingredient.



(Symbols in the above formula have the following meanings:

Rings A and B: They are the same or different and are each aryl or heteroaryl which may have 1 to 3 substituents:

$$X^{1}: -C(=O)-NR^{4}-, -NR^{4}-C(=O)-, -NR^{4}-CH_{2}-, -O-CH_{2}-, -$$

 $CH_2-CH_2-$  or -CH=CH-;

 $X^2$ :  $-C(=0)-NR^5- or -NR^5-C(=0)-$ ;

 $R^1$ : hydrogen atom, lower alkyl, -lower alkylene-O-lower alkyl,  $C_{3-8}$  cycloalkyl, aryl, heteroaryl, -lower alkylene- $C_{3-8}$  cycloalkyl, -lower alkylene-aryl, -lower alkylene-heteroaryl or -C(=NR<sup>6</sup>)-lower alkyl;

R<sup>2</sup>: -OH, -O-lower alkyl, -O-lower alkylene-OH, -O-SO<sub>2</sub>-OH, -O-lower alkylene-COO+lower alkyl, -COOH, -COO-lower alkyl or halogen atom;

 $R^3$ : hydrogen atom, halogen atom or lower alkyl; and  $R^4$ ,  $R^5$  and  $R^6$ : They are the same or different and are each hydrogen atom or lower alkyl.)

The compound of this invention (I) has a different structure from the compounds mentioned in the Prior Art 1 in such a respect that it has a diazepan-1-yl group and at least four cyclic moieties and that the nitrogen atom of diazepan is directly linked to a ring B. Further, the compound of this invention has a different structure from the Prior Art 2 in such a respect that it has a diazepan-1-yl group. Moreover, in the Prior Art 3, no compound having a diazepan-1-yl group is specifically mentioned. Thus, the characteristic feature of the compound (I) of this invention in terms of chemical structure is that diazepanylaryl or diazepanylheteroaryl is linked to a benzene ring via an amide linkage, that the benzene ring is further linked to aryl or heteroaryl via an amide linkage and further that the benzene ring has -OH, -Olower alkyl or halogen atom, etc.

As hereunder, the compound (I) of this invention will be illustrated in detail.

The term "lower" in the definition for the general formula in the specification means a straight or branched carbon chain having 1 to 6 carbons unless otherwise mentioned. Therefore, examples of the "lower alkyl" for R<sup>1</sup> to R<sup>6</sup> and of that exemplified for the substituents which will be mentioned later are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, 1-methylbutyl, methylbutyl, 1,2-dimethylpropyl, hexyl, isohexyl, 1methylpentyl, 2-methylpentyl, 3-methylpentyl, dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1ethylbutyl, 2-ethylbutyl, 1,1,2-timethylpropyl, 1,2,2trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2methylpropyl. Among them, those having 1 to 3 carbons are preferred and methyl and ethyl are particularly preferred.

"Lower alkylene" means  $C_{1-6}$  alkylene that is one in which arbitrary one hydrogen atom has been removed from the above-described "lower alkyl" and is preferably methylene, ethylene, propylene or isopropylene.

"Aryl" means an aromatic hydrocarbon ring including a fused ring and is preferably aryl having 6 to 14 carbons, and more preferably phenyl, naphthyl, etc.

"Heteroaryl" means a heterocyclic aryl having 1 to 4 same or different heteroatoms selected from a group consisting of N, S and O including a fused ring and its

specific examples are furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, isothiazolyl, isoxazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, indolyl, indazolyl, indolidinyl, quinolyl, isoquinolyl, quinazolinyl, quinolidinyl, quinoxalinyl, cinnolinyl, benzimidazolyl, imidazopyridyl, benzofuranyl, dihydrobenzofuranyl, naphthylidinyl, 1,2-benzoisoxazolyl, benzoxazolyl, benzothiazolyl, oxazolopyridyl, isothiazolopyridyl benzothienyl although and this invention is not limited thereto.

 $^{"}C_{3-8}$  cycloalkyl" means a cycloalkyl having 3 to 8 carbons and is particularly preferably cyclopropyl or cyclobutyl.

Examples of "substituent" for the "aryl orheteroaryl which may have 1 to 3 substituents" optionally substituted lower alkyl, lower alkenyl, lower alkynyl,  $C_{3-8}$  cycloalkyl, optionally -O-substituted lower alkyl, halogen atom,  $-NH_2$ , -NH-lower alkyl, -N-(lower  $alkyl)_2$ ,  $-C(=NH)-NH_2$ ,  $-C(=N-OH)-NH_2$ , -C(=NH)-NH-OH, C(=NH)-NH-C(=O)-O-lower alkyl, -COOH, optionally -C(=O)-Osubstituted lower alkyl, optionally -C(=0)-0-substituted  $C_{6-14}$  aryl, optionally -C(=0)-O-substituted heteroaryl, -CN, -NO $_2$ , -OH, optionally -O-CO-substituted lower alkyl, -O-CO-NH<sub>2</sub>, -O-CO-NH-lower alkyl, -O-CO-N-(lower alkyl)<sub>2</sub>, -SH,  $-C(=O)-NH_2$ , -C(=O)-NH-(lower alkyl) and -C(=O)-N-(lower alkyl) $alkyl)_2$ .

Examples of the substituent for the "optionally substituted lower alkyl, lower alkenyl, lower alkynyl or

 $C_{3-8}$  cycloalkyl", "optionally substituted  $C_{6-14}$  aryl" or "optionally substituted heteroaryl" are halogen atom, - COOH, -C(=0)-O-lower alkyl, -OH, -NH<sub>2</sub>, -NH-lower alkyl and -N-(lower alkyl)<sub>2</sub>.

Examples of the "halogen atom" are fluorine atom, chlorine atom, iodine atom and bromine atom. Particularly, chlorine atom and bromine atom are preferred.

Incidentally,  $R^1$  is preferably lower alkyl, and particularly preferably methyl.  $R^2$  is particularly preferably -OH.  $R^4$  to  $R^6$  are the same or different and are each hydrogen atom or lower alkyl, and more preferably hydrogen atom. Further,  $X^1$  is preferably  $-C(=0)-NR^4-$ ,  $-NR^4-C(=0)-$ ,  $-NR^4-CH_2-$  or  $-O-CH_2-$ , and particularly preferably  $-C(=0)-NR^4-$  or  $-NR^4-C(=0)-$ .  $X^2$  is  $-C(=0)-NR^5-$  or  $-NR^5-C(=0)-$ , and more preferably  $-NR^5-C(=0)-$ .

Ring A and ring B are the same or different and are desirably benzene ring, pyridine ring, naphthalene ring, thiophene ring, benzofuran ring or quinoline ring, and particularly preferably benzene ring.

Of the compounds of this invention, particularly preferred specific examples include 3-hydroxy-4'-methoxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benz-anilide, 3-hydroxy-N¹-(4-methoxybenzoyl)-N²-[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]-1,2-phenylenediamine, 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzamide, 5-chloro-3-hydroxy-4'-methoxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl-amino}benzamilide and 5-bromo-N-(5-chloro-2-pyridyl)-3-

hydroxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzamide or salts thereof.

The compound of this invention includes various isomers such as geometrical isomers, tautomers and optical isomers, either as mixtures or in isolated forms.

The compound (I) of this invention may form an acid addition salt. Further, it may form a salt with a base depending upon the type of the substituent. Specific examples of such a salt are acid addition salts with a mineral acid such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid and phosphoric acid or with an organic acid such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid and ethanesulfonic acid or with an acidic amino acid such as aspartic acid and glutamic acid and salts with an inorganic base such as sodium, potassium, magnesium, calcium and aluminum, an organic base such as methylamine, ethylamine and ethanolamine, a basic amino acid such as lysine and ornithine and an ammonium salt.

In addition, hydrates, pharmaceutically acceptable various solvates and polymorphism of the compound (I) are also included in this invention. Incidentally, it goes without saying that this invention is not limited to the compounds mentioned in the following Examples but includes all of the diazepan derivatives represented by the general formula (I) and pharmaceutically acceptable salts thereof.

Incidentally, the compound of this invention the so-called prodrugs, includes all of i.e., compounds which can be converted to the represented by the general formula (I) or a salt thereof by metabolism in vivo. Examples of the group which forms the prodrugs of the compound of this invention are those mentioned in Prog. Med. 5: 2157-2161 (1985) and those mentioned in "Iyakuhin no Kaihatsu" (Development of Pharmaceuticals) published by Hirokawa Shoten in 1990, Vol. 7, "Molecular Design", pages 163-198.

# (Production Methods)

Typical production methods of the compound of this.
invention will be illustrated as hereunder.

$$Q^1$$
 $R^2$ 
 $R^2$ 
 $R^2$ 
 $R^2$ 
 $R^2$ 
 $R^2$ 
 $R^3$ 
 $R^2$ 
 $R^2$ 
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^3$ 

(In the formulae, A, B,  $R^1$ ,  $R^2$ ,  $R^3$  and  $X^2$  have the same meanings as defined already;  $Q^1$  and  $W^1$  are that, when  $Q^1$  is  $-NHR^4$ ,  $W^1$  is -COOH while, when  $Q^1$  is -COOH,  $W^1$  is  $-NHR^4$ ;  $Y^1$  is  $-C(=O)-NR^4-$  or  $-NR^4-C(=O)-$ ; and  $R^4$  has the same meanings as defined already.)

#### Step A:

This is a reaction to synthesize the compound (Ia) in which an amine and a carboxylic acid comprising a combination of the compound (IIa) and the compound (IIIa)

are reacted preferably in the presence of a condensing agent. This reaction may be carried out according to the usual acylation reaction.

Examples of the condensing agent which is used advantageously are N,N-dicyclohexylcarbodiimide (DCC), 1-ethyl-3-[3-(N,N-dimethylamino)propyl]carbodiimide, carbonyldiimidazole, diphenylphosphoryl azide (DPPA) and diethylphosphoryl cyanide.

It is also possible that a carboxylic acid is made into the active derivatives of the corresponding carboxylic acid and then condensed with an amine.

Examples of the active derivative of the carboxylic acid used are active ester prepared by the reaction with a compound of a phenol type such as p-nitrophenol or an Nhydroxyamine type such as 1-hydroxysuccinimide and 1hydroxybenzotriazole, carbonic acid monoalkyl ester, mixed acid anhydride prepared by the reaction with organic acid and a phosphoric acid type mixed acid anhydride prepared bу the reaction with phosphoryl chloride methylmorpholine; acid azide prepared by the reaction of an ester with hydrazine and alkyl nitrite; acid halides such as acid chloride and acid bromide; and acid anhydride Usually, the above reaction is of a symmetric type. carried out in a solvent from with cooling to at room temperature although, in some cases, it is to be carried out under an anhydrous condition depending upon the type of the acylation reaction.

Examples of the applicable solvent are inert

solvents which do not participate in the reaction such as water, ethanol, methanol, dimethylformamide, dioxane, tetrahydrofuran, ether, dichloroethane, dichloromethane, chloroform, carbon tetrachloride, dimethoxymethane, dimethoxyethane, ethyl acetate, benzene, acetonitrile and dimethyl sulfoxide and a mixed solvent thereof and an appropriate selection depending upon the applied method is preferred.

In addition, depending upon the applied method, there are some cases where the reaction smoothly proceeds in the presence of a base or using such a base as a solvent where the base is sodium carbonate, potassium carbonate, sodium ethoxide, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), N-methylmorpholine, triethylamine, trimethylamine, pyridine, sodium hydride, butyl lithium, sodium amide, or the like.

Further, any methods other than above-described reactions may be employed so far as they are a reaction for forming an amide linkage.

$$Q^2$$
 $R^3$ 
 $R^2$ 
 $R^2$ 
 $R^3$ 
 $R^2$ 
 $R^3$ 
 $R^4$ 
 $R^4$ 

(In the formulae, A, B,  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  and  $X^2$  have the same meanings as defined already; and  $Q^2$  is -CHO or -CH<sub>2</sub>-leaving group. Examples of the leaving group include halogen atom,  $-O-(SO_2)$ -alkyl and  $-O-(SO_2)$ -aryl.)

#### Step B:

This is a reaction to synthesize the compound (Ib) in which an aldehyde and an amine, or a  $-CH_2$ - leaving group-containing compound and an amine, comprising a combination of the compound (IIb) and the compound (IIIb) are condensed.

In the case of the combination of the aldehyde and the amine, the reaction may be carried out according to a usual reductive amination reaction in the presence of a reducing agent.

As the reducing agent, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, boranetrimethylamine complex and the like can be suitably used. Further, catalytic hydrogenation may be carried out at atmospheric pressure or under an elevated pressure in the presence of a catalyst such as palladium-carbon and platinum oxide. The reaction is carried out under cooling or heating in a solvent that does not participate in the reaction. In addition, depending upon the applied method, there are some cases where the reaction smoothly proceeds the presence of an acid such as acetic acid, toluenesulfonic acid and sulfuric acid or using such an acid as a solvent.

In the case of the combination of the  $-CH_2$ -leaving group-containing compound and the amine, the reaction may be carried out according to a usual N-alkylation reaction.

The reaction is carried out under cooling or heating in a solvent that does not participate in the reaction.

In addition, depending upon the applied method, there are some cases where the reaction smoothly proceeds in the presence of the base as described above or using such a base as a solvent.

Further, any methods other than above-described reactions may be employed so far as they are a reaction for forming an  $-NR^4-CH_2-$  linkage.

(In the formulae, A, B,  $R^1$ ,  $R^2$ ,  $R^3$  and  $X^2$  have the same meanings as defined already; and  $Q^3$  is  $-CH_2$ -leaving group. Examples of the leaving group include halogen atom,  $-O-(SO_2)$ -alkyl and  $-O-(SO_2)$ -aryl.)

#### Step C:

This is a reaction to synthesize the compound (Ic) in which a  $-CH_2$ -leaving group-containing compound and an alcohol comprising a combination of the compound (IIc) and the compound (IIIc) are condensed. The reaction may be carried out according to a usual N-alkylation reaction.

The reaction is carried out under cooling or heating in a solvent that does not participate in the reaction. In addition, depending upon the applied method, there are some cases where the reaction smoothly proceeds in the presence of the base as described above or using such a base as a solvent.

Further, any methods other than above-described reactions may be employed so far as they are a reaction for forming an ether linkage.

(In the formulae, A, B,  $R^1$ ,  $R^2$ ,  $R^3$  and  $X^2$  have the same meanings as defined already; and  $Q^4$  and  $W^4$  are that, when  $Q^4$  is -CHO,  $W^4$  is a phosphonium salt such as -CH<sub>2</sub>-P<sup>+</sup>Ph<sub>3</sub>Br<sup>-</sup>, a phosphorous diester such as -CH<sub>2</sub>-P(=O)(-OEt<sub>2</sub>), or a phosphine oxide such as -CH<sub>2</sub>-P(=O)(-Ph)<sub>2</sub> while, when  $W^4$  is -CHO,  $Q^4$  is a phosphonium salt such as  $CH_2$ -P<sup>+</sup>Ph<sub>3</sub>Br<sup>-</sup>, a phosphorous diester such as -CH<sub>2</sub>-P(=O)(-OEt<sub>2</sub>), or a phosphine oxide such as -CH<sub>2</sub>-P(=O)(-Ph)<sub>2</sub>.)

# Step D:

This is a reaction to synthesize the compound (Id) in which an aldehyde and a phosphonium salt, a phosphorous diester or a phosphine oxide comprising a combination of the compound (IId) and the compound (IIId) are reacted in the presence of the base as described above. The reaction may be carried out according to a usual Wittig reaction or Wittig-Horner reaction.

The reaction is carried out under cooling or heating

in a solvent that does not participate in the reaction.

Depending upon the applied method, an intermediate ylide as isolated may be reacted with the aldehyde.

Further, any methods other than above-described reactions may be employed so far as they are a reaction for forming a carbon-carbon double bond.

#### Step E:

This is a reaction to synthesize the compound (Ie) through a reduction reaction of the compound (Id). The reaction may be carried out according to a usual hydrogenation reaction using a catalyst.

The reaction is carried out in a hydrogen atmosphere under cooling or heating in a solvent that does not participate in the reaction. Depending upon the applied method, the reaction is carried out under an elevated pressure. Examples of the catalyst that is used include palladium-carbon (Pd-C), platinum oxide, Raney nickel, chlorotriphenylphosphine rhodium (Whilkinson's catalyst) and nickel borohydride. In addition, the reaction may be carried out using a hydrogen source such as ammonium formate, sodium phosphinate and hydrazine in place of using the hydrogen atmosphere.

Further, any methods other than above-described reactions may be employed so far as they are a reaction for reducing the double bond.

Moreover, any methods may be employed even not via the compound (Id) so far as they are a reaction for

forming a -CH<sub>2</sub>-CH<sub>2</sub>- linkage.

(In the formulae, A, B,  $R^1$ ,  $R^2$ ,  $R^3$ ,  $X^1$ ,  $X^2$ ,  $Q^1$  and  $W^1$  have the same meanings as defined already.)

## Step F:

This is a reaction to synthesize the compound (I) in which a carboxylic acid and an amine comprising a combination of the compound (IVa) and the compound (Va) are reacted. The reaction is carried out in the same manner as in the step A.

Compounds (I) of this invention wherein  $R^1$  is hydrogen can also be obtained through the above-described hydrogenation reaction or the like, using a compound (I) of this invention where  $R^1$  is benzyl.

Further, compounds (I) of this invention wherein  $R^1$  is one other than hydrogen atom can also be obtained through the above-described usual reductive amination or N-alkylation or the like, using a compound (I) of this invention wherein  $R^1$  is hydrogen atom.

Moreover, compounds (I) of this invention wherein  $\mathbb{R}^2$  is -OH can also be obtained by protecting its hydroxyl group by a protective group for phenol to synthesize a compound and then cleaving the protective group in a

method suitable for cleavage. With regard to the protective group for phenol, there is no particular limitation so far as it is a group which is usually used for protection of phenol, and its examples include optionally substituted lower alkyl, aralkyl, tri(lower alkyl)silyl, lower alkylcarbonyl, lower alkyloxycarbonyl and sulfonyl. "Aralkyl" means a group where hydrogen atom of the above-described alkyl is substituted with aryl, and its specific examples include benzyl and phenylethyl.

It is also possible to obtain compounds wherein R<sup>2</sup> is -0-lower alkyl, -O-lower alkylene-OH, -O-lower alkylene-COOH or -O-lower alkylene-COO-lower through the above-described usual -O-alkylation or the like using a compound (I) of this invention wherein R<sup>2</sup> is OH. Further, it is possible to obtain the compounds wherein R<sup>2</sup> is -O-SO<sub>2</sub>-OH by sulfone oxidation of a compound this invention wherein R<sup>2</sup> is (I) OH of trimethylamine-sulfur trioxide complex or the Moreover, in the case where R<sup>2</sup> contains ester group, it is possible to obtain the compounds wherein R<sup>2</sup> contains group through hydrolysis under acidic condition of an aqueous solution of hydrochloric acid or the like, or under a basic condition of an aqueous solution of sodium hydroxide or the like.

It is also possible to obtain compounds (I) of this invention wherein the ring A contains hydroxyamidino group or amidino group using a compound (I) of this invention wherein the ring A contains nitrile group.

The synthesis of compounds (I) of this invention wherein the ring A contains hydroxyamidino group can be carried out by reacting a compound (I) of this invention wherein the ring Α contains nitrile group hydroxylamine. The reaction is carried out under cooling or heating in a solvent that does not participate in the reaction. In addition, depending upon the applied method, there are some cases where the reaction smoothly proceeds in the presence of the base as described above or using such a base as a solvent.

The synthesis of compounds (I) of this invention wherein the ring A contains amidino group includes the following methods (i) to (iV).

(i) Method in which a nitrile is converted into an imidate, which is then condensed with an amine:

A compound (I) of this invention wherein the ring A contains nitrile group is reacted with an alcohol such as methanol and ethanol at -40°C to 0°C in the presence of hydrogen chloride gas to form an imidate, which is then reacted with an amine or amine salt such as ammonia, ammonium carbonate, ammonium chloride and ammonium acetate. As the solvent, the above-described solvent that does not participate in the reaction can be used.

(ii) Method in which a nitrile is converted into a thioimidate via a thioamide, which is then condensed with an mine:

A compound (I) of this invention wherein the ring A contains nitrile group is reacted with hydrogen sulfide in the presence of an organic base such as methylamine, triethylamine, pyridine and picoline, or a compound (I) of this invention wherein the ring A contains nitrile group is reacted with o,o-diethyl dithiophosphate, to form a thioamide.

Subsequently, the thioamide is reacted with a lower alkyl halide such as methyl iodide and ethyl iodide to form a thioimidate, which is then reacted with an amine or amine salt such as ammonia, ammonium carbonate, ammonium chloride and ammonium acetate. As the solvent, the abovedescribed solvent that does not participate in the reaction can be used.

(iii) Method in which an amine, amine salt, metal amide or Grignard reagent is added directly to a nitrile:

A reagent such as ammonia, ammonium chloride and ammonia, ammonium thiocyanate, alkylammonium thiocyanate, NaNH<sub>2</sub> and (CH<sub>3</sub>)<sub>2</sub>NMgBr is added directly to a compound (I) of this invention wherein the ring A contains nitrile group. As the solvent, the above-described solvent that does not participate in the reaction can be used. Further, the reaction can be carried out without using a solvent.

# (iv) Method for reducing hydroxyamidino group:

A compound (I) of this invention wherein the ring A contains hydroxyamidino group is subjected to

hydrogenation as described above directly. Alternatively, it is exerted with acetic anhydride or trifluoroacetic anhydride in the presence of a solvent such as acetic acid or trifluoroacetic acid and then subjected to hydrogenation as described above. Thus, the hydroxyamidino group can be reduced.

Further, any methods other than the above-described reactions may be employed so far as they are a reaction for forming an amidino group.

The compound represented by the general formula (I) may also be manufactured by an optional combination of the steps which can be usually adopted by the persons skilled in the art such as known alkylation, acylation, oxidation, reduction and hydrolysis. In addition, the method shown by the following reaction schemes is particularly effective for the synthesis of the compound represented by the general formula (I).

(In the formulae, A, B,  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  and  $R^5$  have the same meanings as defined already.)

This is a reaction in which the compound (VIa) and the amine (IIIb), or the compound (VIIa) and the amine (Vb), are reacted to form an amide linkage to give the compound (If) or the compound (Ig) and that is carried out in the above-mentioned inert solvent at room temperature or under heating. In addition, depending upon the applied method, there are some cases where the reaction smoothly proceeds in the presence of a base or using such a base as solvent where the base N-methylmorpholine, is triethylamine, trimethylamine, pyridine, sodium hydride, potassium tert-butoxide, butyl lithium, sodium amide, or the like.

# (Production Methods for the Starting Compounds)

As hereunder, typical production methods for the starting compounds of the compound (I) of this invention will be illustrated.

(In the formulae, B,  $R^1$ ,  $R^2$ ,  $R^3$ ,  $Q^1$ ,  $W^1$  and  $X^2$  have the same meanings as defined already; U is -COOH, -NHR<sup>5</sup>, -CH<sub>2</sub>-leaving group, -CHO, a phosphonium salt such as -CH<sub>2</sub>- $P^+Ph_3Br^-$ , a phosphorous diester such as -CH<sub>2</sub>- $P(=0)(-OEt_2)$ , or a phosphine oxide such as -CH<sub>2</sub>- $P(=0)(-Ph)_2$ ; and  $R^5$  has the same meanings as defined already.)

#### Production Method 1

This is a reaction in which a carboxylic acid and an amine comprising a combination of the compound (VIIIa) and the compound (Va) are condensed to form an amide linkage. This reaction is carried out in the same manner as in the above-mentioned step A.

Further, in the case where in the compound (IIe), U means -CH<sub>2</sub>-leaving group, it is possible to obtain compounds wherein U is -CHO by oxidation reaction using 4methylmorpholine N-oxide or the like. Also, possible to obtain compounds wherein U is a phosphonium such as  $-CH_2-P^+Ph_3Br^$ by reaction organophosphorus compound such as triphenylphosphine.

The compound represented by the general formula (IIe) may also be manufactured by an optional combination of the steps which can be usually adopted by the persons skilled in the art such as known alkylation, acylation, oxidation, reduction and hydrolysis. For example, after obtaining a compound wherein -NO<sub>2</sub> is present in a site corresponding to U, the compound is subjected to a reduction reaction such as hydrogenation as described above, whereby a compound wherein U is NH<sub>2</sub> can be obtained. Further, after obtaining a compound wherein ester group is present in a site corresponding to U, the compound is subjected to hydrolysis under an acidic condition using an aqueous solution of hydrochloric acid or the like, or under an alkaline condition using sodium hydroxide or the

like, whereby a compound wherein U is -COOH can be obtained. Moreover, it is possible to obtain a compound wherein U is -NHR<sup>5</sup> by using a compound wherein a site corresponding to U is protected by t-butoxycarbonyl group, benzyl group or the like and cleaving the respective protective groups in a method suitable for cleaving the protective groups such as an acidic condition using trifluoroacetic acid or the like and a reducing condition such as hydrogenation as described above.

Q Z (IIIe) A 
$$X^1$$
 Z  $R^2$  Production Method 2 (IVb)

(In the formulae, A,  $R^2$ ,  $R^3$  and  $X^1$  have the same meanings as defined already. Z means -COOH or -NHR<sup>5</sup>. Q and W are that, when Q means  $Q^1$ , W means  $W^1$ ; when Q means  $Q^2$ , W means -NHR<sup>4</sup>; when Q means  $Q^3$ , W means -OH; and when Q means  $Q^4$ , W means  $W^4$ , respectively.  $Q^1$ ,  $Q^2$ ,  $Q^3$ ,  $Q^4$ ,  $W^1$ ,  $W^4$  and  $R^4$  have the same meanings as defined already.)

## Production Method 2:

This is a reaction to synthesize the compound (IVb) in which, when Q means  $Q^1$ , and W means  $W^1$ , a carboxylic acid and an amine comprising a combination of the compound (VIIIb) and the compound (IIIe) are reacted. The reaction can be carried out in the same manner as in the step A.

This is a reaction to synthesize the compound (IVb) in which, when Q means  $Q^2$ , and W means -NHR<sup>4</sup>, an aldehyde

and an amine, or a  $-CH_2$ -leaving group-containing compound and an amine, comprising a combination of the compound (VIIIb) and the compound (IIIe) are condensed. The reaction can be carried out in the same manner as in the step B.

This is a reaction to synthesize the compound (IVb) in which, when Q means  $Q^3$ , and W means -OH, a -CH<sub>2</sub>-leaving group-containing compound and an alcohol comprising a combination of the compound (VIIIb) and the compound (IIIe) are condensed. The reaction can be carried out in the same manner as in the step C.

This is a reaction to synthesize the compound (IVb) in which, when Q means  $Q^4$ , and W means  $W^4$ , an aldehydde and a phosphonium salt, a phosphorous diester or a phosphine oxide comprising a combination of the compound (VIIIb) and the compound (IIIe) are condensed. The reaction can be carried out in the same manner as in the step D.

In addition, the compound represented by the general formula (IVb) may also be manufactured by an optional combination of the steps which can be usually adopted by the persons skilled in the art such as known alkylation, acylation, oxidation, reduction and hydrolysis. For example, after obtaining a compound wherein -NO<sub>2</sub> is present in a site corresponding to Z, the compound is subjected to a reduction reaction such as hydrogenation as described above, whereby a compound wherein Z is -NH<sub>2</sub> can be obtained. Further, after obtaining a compound wherein ester group is present in a site corresponding to Z, the

subjected to hydrolysis under compound an acidic condition using an aqueous solution of hydrochloric acid or the like, or under an alkaline condition using sodium hydroxide or the like, whereby a compound wherein Z is -COOH can be obtained. Moreover, it is possible to obtain a compound wherein Z is -NHR<sup>5</sup> by using a compound wherein a site corresponding to Z is protected by t-butoxycarbonyl benzyl group, group or the like and cleaving the respective protective groups in a method suitable for cleaving the protective groups such as an acidic condition using trifluoroacetic acid or the like and a reducing condition such as hydrogenation as described above.

In addition, the method shown in the following reaction scheme is particularly effective for synthesizing the compounds represented by the general formulae (IIf) and (IVc).

(In the formulae, A, B,  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  and  $R^5$  have the same meanings as defined already.)

This is a reaction where an amide linkage is formed

by the reaction of the compound (IX) with the amine (Va), or the compound (X) with the amine (IIIb), to give the compound (IIf) or compound (IVc) and that is carried out in the above-mentioned inert solvent at room temperature or under heating. In addition, depending upon the applied method, there are some cases where the reaction smoothly proceeds in the presence of a base or using such a base as a solvent in which the base is N-methylmorpholine, triethylamine, trimethylamine, pyridine, sodium hydride, potassium tert-butoxide, butyl lithium, sodium amide, or the like.

The compound of this invention produced in this way can be isolated and purified by known techniques such as extraction, precipitation, separation chromatography, fractionating crystallization, recrystallization. Also, the compound of this invention can be made into desired salts by subjecting it to a usual salt forming reaction.

In addition, the compound of this invention may of optical in the form isomers when it has asymmetric carbons. Those optical isomers separated in the usual method by fractionating crystallization in which an isomer is recrystallized together with appropriate an salt or by column chromatography or the like.

## Industrial Applicability:

The compound of this invention shows a potent anticoagulation action by inhibiting the activated blood

coagulation factor X in s specific manner. Accordingly, the compound is useful as a blood coagulation inhibitor or a drug for use in the prevention and the treatment of diseases which are induced by thrombus or embolus.

Examples of such diseases include cerebrovascular disorders such as cerebral infarction, cerebral thrombosis, cerebral embolism, transient cerebral ischemic attack (TIA), subarachnoid hemorrhage (vascular twitching) and the like, ischemic heart diseases such as acute or chronic myocardial infarction, unstable angina, coronary artery thrombolysis and the like, pulmonary vascular disorders such as pulmonary thrombosis, pulmonary embolism and the like, and various vascular disorders such as peripheral arterial obstruction, deep vein thrombosis, disseminated intravascular coagulation syndrome, thrombus formation after artificial blood vessel operation or after artificial valve replacement, re-occlusion and restricture after coronary artery by-pass operation, occlusion and re-stricture after PTCA (percutaneous transluminal coronary angioplasty) or PTCR (percutaneous transluminal coronary re-canalization) operation thrombus formation at the time of extracorporeal circulation.

In addition, a possibility has been suggested on the use of the compound having an activated blood coagulation factor X inhibiting action as a drug for use in the prevention and the treatment of influenza virus infection based on the activity to inhibit the growth of influenza

virus (Japanese Patent Laid-Open No. 227971/1994) and, therefore, the compound of this invention is also expected to have the same effect.

The excellent activity of the compound of this invention to inhibit the activated blood coagulation factor X has been confirmed by the following tests.

1) Test on measurement of coagulation time by human activated blood coagulation factor X:

To 90  $\mu$ l of human blood plasma were added 10  $\mu$ l of a drug or a physiological saline and 50  $\mu l$  of human factor Xa (Enzyme Research Labs), incubation was carried out at 37°C for 3 minutes, 100 µl of 20 mM CaCl<sub>2</sub> previously warmed at 37°C were added and the time until coagulation was measured by a coagulo-meter (KC10 of Amelung). With regard to the human blood plasma, each 45 ml of blood were collected from vein of elbow of six healthy persons using a syringe in which 5 ml of 3.8% sodium citrate were contained and centrifuged at 4°C for 15 minutes at 3,000 rpm and the separated blood plasma was pooled and frozen, then thawed before use.. With regard to the human factor Xa, the concentration by which the coagulation time when a physiological saline (control) was added was about 30 to 40 seconds was selected. A CT2 value (concentration by which the coagulation time is prolonged to an extent of 2fold) was determined by plotting the drug concentrations and relative value (fold) of the coagulation time to the control, followed by subjecting to linear regression. The results are shown in the following Table 1.

2) Test on measurement of coagulation time by bovine thrombin:

To 50  $\mu$ l of human blood plasma was added 50  $\mu$ l of a drug or a physiological saline, incubation was carried out at 37°C for 3 minutes, 50 µl of thrombin (500 units of Thrombin (derived from bovine; Mochida Pharmaceutical) previously warmed at 37°C was added and the time until coagulation was measured by a coagulo-meter (KC10 Amelung). With regard to the human blood plasma, each 45 ml of blood was collected from vein of elbow of six healthy persons using a syringe in which 5 ml of 3.8% sodium citrate was contained and centrifuged at 4°C for 15 minutes at 3,000 rpm and the separated blood plasma was pooled and frozen, then thawed before use.. With regard the thrombin. the concentration by which coagulation time when a physiological saline (control) was added was about 20 seconds was selected. A CT<sub>2</sub> value (concentration by which the coagulation time is prolonged to an extent of 2-fold) was determined by plotting the drug concentrations and relative value (fold) of coagulation time to the control, followed by subjecting to linear regression. The results are shown in the following Table 1.

Table 1

|                       | Compound   | Test on measurement of coagulation time by human activated blood coagulation factor X (CT <sub>2</sub> ) (μM) | Test on measurement of coagulation time by bovine thrombin (CT <sub>2</sub> ) (μM) |
|-----------------------|------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Compounds of Examples | Example 5  | 0.10                                                                                                          | >100                                                                               |
|                       | Example 9  | 1.71                                                                                                          | >100                                                                               |
|                       | Example 11 | 1.33                                                                                                          | >100                                                                               |
|                       | Example 32 | 1.41                                                                                                          | >100                                                                               |
|                       | Example 39 | 1.53                                                                                                          | >100                                                                               |
| Control               | Control 1  | 17.0                                                                                                          | >100                                                                               |
| Compounds             | Control 2  | 11.3                                                                                                          | -                                                                                  |

(Control 2)

(Example 42 of WO 99/00121) (Example 198 of WO 99/00121)

3) Test on measurement of enzyme inhibition by synthetic substrate method:

a 96-well microplate were added 80  $\mu l$  of a reaction buffer (pH 8.4), 15  $\mu l$  of a drug and 30  $\mu l$  of 2 mM synthetic substrate S-2222 (Chromogenix), then 25  $\mu l$  of 0.025 U/ml of human activated blood coagulation factor  ${\tt X}$ (Factor Xa; Enzyme Research Labs) was added, the reaction carried out 37°C for 10 minutes, changes was at absorbance 405 nm were measured by a Bio-Rad Model 3550 and IC<sub>50</sub> was calculated. The compound of Example 1 exhibited an  $IC_{50}$  of 10 nM or less.

As a result of the measurements of the above 1), 2)

and 3), it was confirmed that the compound of this invention inhibits human activated blood coagulation factor X in a specific manner and shows а potent anticoagulation action to blood. For example, compounds shown in Examples 5, 9, 11, 32 and 39 of this invention were confirmed to clearly extend the coaqulation time at low concentration showing an excellent anti-blood coagulation action as compared with Example 42 (control 1) and Example 198 (control 2) of WO 99/00121.

4) Test on ex vivo measurement of coagulation time in mice (oral administration):

A drug which was dissolved or suspended in 0.5% methylcellulose was compulsorily administered po mg/kg) via an oral gavage to a male ICR mouse (20-30 g; Japan SLC) fasted for 12 hours or longer and, after 30 minutes and 2 hours, 0.9 ml of blood was collected under anesthetization with diethyl ether from inferior vena cava by a syringe containing 100 µl of 3.8% sodium citrate and blood plasma was separated by means of centrifugal treatment of 3,000 rpm for 10 minutes. Using the resulting blood plasma, extrinsic coagulation time (PT) and intrinsic coagulation time (APTT) were measured in accordance with the following methods a) and b).

#### a) Extrinsic coaquiation time (PT):

Ortho Brain Thromboplastin (54 mg/vial; a freezedried preparation; Ortho-Clinical Diagnostics) was dissolved in 2.5 ml of Milli-Q water and preliminarily

warmed at 37°C. The above-separated blood plasma (50  $\mu$ l) was warmed at 37°C for 1 minute, 50  $\mu$ l of the above-mentioned thromboplastin solution was added and the coagulation time was measured. Amelung KC10A was used for the measurement of the coagulation time.

## b) Intrinsic coagulation time (APTT):

To 50  $\mu$ l of the above blood plasma was added 50  $\mu$ l of Hemoliance Thrombosil I (DIA-IATRON), the mixture was warmed at 37°C for 3 minutes, 50  $\mu$ l of a 20 mM CaCl<sub>2</sub> solution previously warmed at 37°C were added and the coagulation time was measured. KClOA manufactured by Amelung was used for the measurement of the coagulation time.

Dose dependency of and time-course changes in the anticoagulation action were also examined by changing the administration dose or the blood collection time.

5) Test on *ex vivo* measurement of coagulation time in cynomolgus monkeys (oral administration):

A drug (5 mg/ml) which was dissolved (suspended) in 0.5% methylcellulose was compulsorily administered po at a dose of 10 mg/kg (2 ml/kg) via an oral gavage after blood collection before the administration of the drug to a male cynomolgus monkeys (body weight around 4 kg) fasted for 12 hours or longer and, after 1, 2, 4, 6 and 8 hours, 2 ml of blood was collected from femoral vein using 1/10 volume of 3.8% sodium citrate and blood plasma was separated by means of centrifugal treatment of 3,000 rpm for 10 minutes.

Using the resulting blood plasma, extrinsic coagulation time (PT) and intrinsic coagulation time (APTT) were measured in accordance with the above methods a) and b). Incidentally, the experiment was carried out under non-anesthetization.

As a result of the tests of 4) and 5), the compound of this invention was confirmed to have an action of prolongation the coagulation time by an oral administration as well. The compound shown in Example 3 exhibited a twice or more action of prolongation the coagulation time in terms of PT and APTT in both of the tests of 4) and 5) as compared with the control (plasma without administration of a drug).

The pharmaceutical composition which contains one or more compounds of this invention represented by the general formula (I) or pharmaceutically acceptable salts thereof as the active ingredient is prepared into tablets, diluted powders, fine granules, granules, capsules, pills, solutions, injections, suppositories, ointments, plasters and the like using commonly used pharmaceutical carriers, fillers and other additives and administered either orally or parenterally.

Clinical dose of the compound of this invention in human is optionally decided by taking symptoms, body weight, age, sex and the like of each patient to be treated into consideration and, usually, it is 0.1 to 500

mg by oral administration or 0.01 to 100 mg by parenteral administration per day per adult where the daily dose is divided into one to several times per day. Since the dose varies under various conditions, a smaller dose than the above range may be sufficient in some cases.

solid composition for use in the oral administration according to this invention is used in the form of tablets, diluted powders, granules and the like. In such a solid composition, one or more active substances are mixed with at least one inert diluent such as lactose, mannitol, glucose, hydroxypropyl cellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone, metasilicic acid or magnesium aluminate. In the usual manner, the composition may contain additives other than the inert diluent, such as a lubricant (e.g., magnesium stearate), a disintegrating agent (e.g., calcium cellulose glycolate), a stabilizing agent (e.g., lactose) and a solubilizing agent or a solubilizing aid (e.g., glutamic acid and aspartic acid). If necessary, tablets or pills may be coated with a film of a gastric or enteric substance such as sucrose, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate or the like.

The liquid composition for oral administration includes pharmaceutically acceptable emulsions, solutions, suspensions, syrups, elixirs and the like and contains a commonly used inert diluent such as pure water or ethyl alcohol. In addition to the inert diluent, composition may also contain auxiliary agents such as a

solubilizing agent or a solubilizing aid, a moistening agent, a suspending agent and the like, as well as sweeteners, flavors, aromas and antiseptics.

for parenteral administration The injections aqueous or includes aseptic non-aqueous solutions, suspensions and emulsions. Examples of the diluent for use in the aqueous solutions and suspensions distilled water for injection use and physiological saline. Examples of the diluent for use in the non-aqueous include propylene suspensions solutions and glycol, polyethylene glycol, a vegetable oil (e.g., olive oil), an alcohol (e.g., ethyl alcohol), Polysorbate 80 (a trade name) and the like.

Such a composition may further contain additive agents such as isotonic agent, an antiseptic agent, a moistening agent, an emulsifying agent, a dispersing agent, a stabilizing agent (e.g., lactose) and a solubilizing agent or a solubilizing aid. Those compositions are sterilized by filtering through a bacteria retaining germicide blending ofа filter, orirradiation. Alternatively, they may be used by firstly making into sterile solid compositions and dissolving them in sterile water or a sterile solvent for injection prior to their use.

Best Mode for Carrying Out the Invention:

The following description specifically illustrates the production method of the compounds of this invention

with reference to the production examples of the compounds of this invention. In this connection, since novel compounds are included in the starting material compounds for the compounds of this invention, production methods of them are also described as the Referential Examples.

### Referential Example 1:

Ethyl 4-bromomethyl-3-nitrobenzoate (26.00 g) was dissolved in 90 ml of acetonitrile, then 7.97 g of 3aminobenzonitrile and 12.44 g of potassium carbonate were added and the mixture was stirred at 70°C for 3 hours. reaction solution was cooled to room temperature, after filtration, the mother liquor was concentrated in Ethyl acetate was added to the resulting residue. The mixture was washed with a 1N aqueous solution of hydrochloric acid and a saturated aqueous solution of sodium bicarbonate, dried over anhydrous magnesium sulfate and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography using hexaneethyl acetate (80:20 to 75:25) as an eluting solvent to give 12.06 g of ethyl 4-[(3-cyanophenylamino)methyl]-3nitrobenzoate.

### Referential Example 2:

Ethyl 4-[(3-cyanophenylamino)methyl]-3-nitrobenzoate (5.79 g) was dissolved in 50 ml of ethanol, then 50 ml of purified water, 0.96 g of ammonium chloride and 4.97 g of iron powder were added and the mixture was refluxed under

heating for 40 minutes. The reaction solution was filtered through Celite and concentrated *in vacuo*. Ethyl acetate was added to the resulting residue. The mixture was washed with a saturated aqueous solution of sodium bicarbonate and a saturated aqueous solution of sodium chloride, dried over anhydrous magnesium sulfate, concentrated *in vacuo* and dried to give 5.71 g of ethyl 3-amino-4-[(3-cyanophenylamino)methyl]benzoate.

#### Referential Example 3:

Ethyl 4-bromomethyl-3-nitrobenzoate (46.11 g) was dissolved in 500 ml of acetonitrile, then 20 g of 4methylmorpholine-N-oxide was added and the mixture was stirred at room temperature for 80 minutes. The reaction solution was concentrated in vacuo, water was added and the mixture was extracted with chloroform. The organic layer was washed with a saturate aqueous solution of sodium chloride, dried over magnesium sulfate concentrated in vacuo. The resulting residue was purified by silica gel column chromatography using hexane-ethyl acetate (4:1) as an eluting solvent to give 10.723 g of ethyl 4-formyl-3-nitrobenzoate.

#### Referential Example 4:

Ethyl 4-formyl-3-nitrobenzoate (5.81 g) was dissolved in 70 ml of toluene, then 2.1 ml of 1,8-diazabicyclo[5.4.0]-undec-7-ene and the mixture was stirred at 80°C for one hour. To the reaction solution,

2.69 g of 3-[(1,1,1-

triphenylphosphonio)methyl]benzonitrile bromide was added, and the mixture was stirred at 80°C for 24 hours. Insoluble matters were filtered out and the filtrate was concentrated in vacuo. The resulting residue was purified by silica gel column chromatography using hexane-ethyl acetate (10:1) as an eluting solvent. The resulting intermediate (3.1 g) was dissolved in a mixed solvent of 50 ml of ethanol and 10 ml of tetrahydrofuran, then 1 q of a palladium oxide-barium sulfate complex was added and the mixture was stirred in a hydrogen atmosphere at room temperature for 3 days. The reaction solution was filtered through Celite and the filtrate was concentrated in vacuo. The resulting residue was purified by silica gel column chromatography using hexane-ethyl acetate (2:1) as an eluting solvent to give 2.35 g of ethyl 3-amino-4-[2-(3-cyanophenyl)ethyl]benzoate.

### Referential Example 5:

3-Hydroxy-2-nitrobenzoic acid (1.83 g) was dissolved in 50 ml of N,N-dimethylformamide, then 1.23 g of 4-methoxyaniline, 2.50 g of 1-ethyl-3-dimethylaminopropylcarbodiimide hydrochloride, 1.35 g of 1-hydroxybenzotriazole and 1.81 ml of triethylamine were added and the mixture was stirred at room temperature for 66 hours. The reaction solution was concentrated in vacuo, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated

aqueous solution of sodium chloride, dried over magnesium sulfate and concentrated in vacuo. Chloroform was added to the resulting residue and the resulting precipitate was filtered to give 2.04 g of 3-hydroxy-4'-methoxy-2-nitrobenzanilide. The filtrate was purified by silica gel column chromatography using chloroform-methanol (98:2) as an eluting solvent, chloroform was added to the resulting crude product and the resulting precipitate was filtered to give additional 0.24 g of 3-hydroxy-4'-methoxy-2-nitrobenzanilide.

### Referential Example 6:

3-Hydroxy-4'-methoxy-2-nitrobenzanilide (1.15 g) was suspended in 50 ml of methanol, 300 mg of 10% palladium-carbon powder were added and the mixture was stirred in a hydrogen atmosphere at room temperature for 1 hour. The reaction solution was filtered through Celite and washed with methanol and the filtrate was concentrated in vacuo to give 966 mg of 2-amino-3-hydroxy-4'-methoxybenzanilide.

## Referential Example 7:

4-(4-Methyl-1,4-diazepan-1-yl)benzonitrile (18.86 g) was dissolved in 185 ml of 12N hydrochloric acid, stirred at 80°C for 12 hours and concentrated in vacuo. Water was added, the mixture was stirred at room temperature and the resulting precipitate was filtered and washed with water. The resulting solid was dried in vacuo to give 18.25 g of 4-(4-methyl-1,4-diazepan-1-yl)benzoic acid hydrochloride.

### Referential Example 8:

A mixture of 16.3 g of 4-(4-methyl-1,4-diazepan-1acid hydrochloride, 0.88 yl)benzoic g of dimethylformamide, 14.3 g of thinonyl chloride and 160 ml of ethyl acetate was stirred at 40°C for 3 hours and concentrated in vacuo. To a mixture of the resulting residue and 130 ml of acetonitrile, a solution of 8.35 g of 2-amino-3-nitrophenol, 9.52 g of pyridine and 60 ml of acetonitrile was added under ice cooling. The mixture was stirred at 5°C or lower overnight and crystals were collected by filtration to give 21.4 g of 2-amino-3nitrophenyl 4-(4-methyl-1,4-diazepan-1-yl)benzoate hydrochloride.

### Referential Example 9:

A mixture of 2.00 g of 2-amino-3-nitrophenyl 4-(4-methyl-1,4-diazepan-1-yl)benzoate hydrochloride, 995 mg of triethylamine and 20 ml of acetonitrile was stirred at 70°C for 6 hours. A solution of 197 ml of sodium hydroxide and 2 ml of water was added, then 20 ml of water was added and the acetonitrile was distilled off under heating at atmospheric pressure. Water (10 ml) was further added and the mixture was stirred at room temperature for 14 hours. Deposited crystals were collected by filtration to give 1.57 g of 2'-hydroxy-4-(4-methyl-1,4-diazepan-1-yl)-6'-nitrobenzanilide.

## Referential Example 10:

A mixture of 2.14 g of 2'-hydroxy-4-(4-methyl-1,4diazepan-1-yl)-6'-nitrobenzanilide, 43 ml of methanol and 467 mg of 10% palladium-carbon (wetting rate: 54.2%) was stirred in a hydrogen atmosphere of atmospheric pressure at 30°C until the absorption of hydrogen had stopped. catalyst was filtered out and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography using chloroform-methanol (20:1 to 10:1) to give 1.61 g of 2'-amino-6'-hydroxy-4-(4methyl-1,4-diazepan-1-yl)benzanilide.

## Referential Example 11:

2-Amino-3-nitrophenol (308 mg) was dissolved in 10 ml of pyridine, then 341 mg of 4-methoxybenzoyl chloride was added at  $0^{\circ}\text{C}$  and the mixture was stirred at room temperature for 18 hours. The reaction solution was concentrated in vacuo, 20 ml of chloroform was added to resulting residue and the mixture was concentrated in vacuo. This operation was repeated three times, and the residue from which the pyridine had been removed was purified by silica gel column chromatography using chloroform as an eluting solvent to give 428 mg of 2'-hydroxy-4-methoxy-6'nitrobenzanilide.

A compound of Referential Example 12 was synthesized in the same manner as in Referential Example 6.

## Referential Example 13:

3-Hydroxy-2-nitrobenzoic acid (10.5 g) was dissolved in 60 ml of N,N-dimethylformamide, then 15 ml of benzyl bromide and 19.0 g of potassium carbonate were added at 0°C and the mixture was stirred for one night at room temperature. The reaction solution was filtered through Celite and concentrated in vacuo. Water was added to the resulting residue and the mixture was extracted with ether, washed with a saturated aqueous solution of sodium chloride and dried over anhydrous magnesium sulfate. The solvent was evaporated in vacuo to give 20.7 g of benzyl 3-benzyloxy-2-nitrobenzoate.

### Referential Example 14:

To 20.7 g of benzyl 3-benzyloxy-2-nitrobenzoate were added 100 ml of ethanol and 120 ml of 1N aqueous solution of sodium hydroxide and the mixture was stirred at room temperature for one night, at 60°C for 3 hours and at 80°C for 5 hours. After ethanol was evaporated in vacuo, the resulting aqueous solution was washed with ether and hydrochloric acid was added. The resulting precipitate was filtered and dried in vacuo to give 15.8 g of 3-benzyloxy-2-nitrobenzoic acid.

## Referential Example 15:

To 5.47 g of 3-benzyloxy-2-nitrobenzoic acid were added 20 ml of thionyl chloride and a few drops of N,N-

dimethylformamide and the mixture was stirred at  $80^{\circ}\text{C}$  for 30 minutes. The reaction solution was concentrated in vacuo, 35 ml of pyridine and 2.55 g of 2-amino-5chloropyridine were added to the residue at 0°C and the mixture was stirred at room temperature for one night. reaction solution was concentrated in saturated aqueous solution of sodium bicarbonate was added to the resulting residue and the mixture was extracted chloroform. The organic layer was dried over anhydrous magnesium sulfate, the solvent was evaporated in vacuo and the residue was subjected to an azeotropic treatment with toluene to give 7.44 g of 3-benzyloxy-N-(5chloro-2-pyridyl)-2-nitrobenzamide.

# Referential Example 16:

To 7.44 g of 3-benzyloxy-N-(5-chloro-2-pyridyl)-2nitrobenzamide were added 40 ml of trifluoroacetic acid and 3.72 g of pentamethylbenzene and the mixture was stirred at 40°C for one night. The reaction solution was concentrated in vacuo, a saturated aqueous solution of sodium bicarbonate was added to the resulting residue to such an extent that the residue did not become alkaline the mixture was extracted with chloroform. The organic layer was extracted with a 1N aqueous solution of sodium hydroxide and the aqueous layer was acidified by adding hydrochloric acid thereto and extracted with chloroform. The extract was dried over anhydrous magnesium sulfate, the solvent was evaporated in vacuo and

200 ml of an ethanolic suspension of Raney nickel was added to the resulting residue. The mixture was stirred in a hydrogen atmosphere for 6 hours, N,N-dimethylformamide was added and the insoluble matters were filtered off. The solvent was evaporated in vacuo and water was added to the resulting residue. The resulting precipitate was filtered and dried in vacuo to give 4.58 g of 2-amino-N-(5-chloro-2-pyridyl)-3-hydroxybenzamide.

## Referential Example 17:

2-Amino-N-(5-chloro-2-pyridyl)-3-hydroxybenzamide (3.06 g) and 1.80 g of N-chlorosucciimide were dissolved in 60 ml of N,N-dimethylformamide, the solution was stirred at 50°C for 8 hours and at room temperature for 4 hours and the insoluble matters were filtered off. After the solvent was evaporated in vacuo, a 1N aqueous solution of sodium hydroxide was added to the resulting residue, followed by extraction with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, the solvent was evaporated in vacuo and the resulting residue was purified by silica gel column chromatography. Ethanol was added to the resulting crudely purified product and the resulting precipitate was filtered and dried in vacuo to give 767 mg of 2-amino-5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxybenzamide. The mother liquor was concentrated, a mixture of ethyl acetate and isopropyl ether was added and the resulting precipitate was filtered and dried in vacuo to give additional 942 mg of the above compound.

Compounds of Referential Examples 18 and 19 were synthesized in the same manner as in Referential Example 17.

# Referential Example 20:

Ethyl 2-amino-5-chloro-3-hydroxybenzoate (3.23 g) was dissolved in 160 ml of a 3N aqueous solution of hydrochloric acid and stirred at  $85^{\circ}\text{C}$  for 3 hours and at 80°C for 5 days. The reaction solution was cooled to room temperature, insoluble matters were filtered off, 320 ml of a 1N aqueous solution of sodium hydroxide was added to the filtrate and the mixture was stirred at temperature for 1 hour. The resulting precipitate was filtered, washed with pure water and dried in vacuo to give 1.55 g of 2-amino-5-chloro-3-hydroxybenzoic acid.

## Referential Example 21:

2-Amino-5-chloro-3-hydroxybenzoic acid (1.12 g) was dissolved in 60 ml of N,N-dimethylformamide, then 7.38 g of 4-methoxyaniline, 1.73 g of 1-ethyl-3-dimethylaminopropylcarbodiimide hydrochloride, 1.21 q of 1 hydroxybenzotriazole and 1.26 ml of triethylamine were thereto and added the mixture was stirred temperature for 13 hours. The reaction solution was concentrated in vacuo, ethyl acetate was added to the resulting residue and the mixture was washed with pure water and a saturated aqueous solution of sodium chloride,

dried over magnesium sulfate and concentrated *in vacuo*. Chloroform was added to the resulting residue, the mixture was stirred for 30 minutes and the resulting precipitate was filtered, washed with chloroform and dried *in vacuo* to give 0.96 g of 2-amino-5-chloro-3-hydroxy-4'-methoxy-2-benzanilide.

## Referential Example 22:

Thionyl chloride (40 ml) was added to 5.09 g of 4-(4-methyl-1,4-diazepan-1-yl)benzoic acid hydrochloride and the mixture was stirred at 60°C for 30 minutes. reaction solution was concentrated to dryness in vacuo. To the resulting residue, a solution of 5.65 g of ethyl 3amino-4-[(3-cyanophenylamino)methyl]benzoate in 50 ml of pyridine was added, and the mixture was stirred at room temperature for 5 hours. The reaction solution was concentrated in vacuo, and ethyl acetate and chloroform were added to the resulting residue. The mixture was washed with a saturated aqueous solution of bicarbonate and a saturated aqueous solution of sodium chloride, dried over anhydrous magnesium sulfate and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography using hexane-ethyl acetate (95:5 to 90:10) as an eluting solvent to give 6.42 g of ethyl 4-[(3-cyanophenylamino)methyl]-3-[4-(4-methyl-1,4-diazepan-1-yl)benzoylamino]benzoate.

A compound of Referential Example 23 was synthesized

in the same manner as in Referential Example 22.

## Example 1:

Ethyl 4-[(3-cyanophenylamino)methyl]-3-[4-(4-methyl-1,4-diazepan-1-yl)benzoylamino]benzoate (4.09)g) dissolved in 80 ml of ethanol and hydrogen chloride gas was passed therethrough at -20°C or lower for 20 minutes. The temperature was increased to 3°C and the mixture was stirred for 24 hours. The reaction solution concentrated to dryness in vacuo. The resulting residue was dissolved in 80 ml of ethanol, then 6.16 g of ammonium acetate was added and the mixture was stirred at room temperature for 3.5 days. The reaction solution was concentrated in vacuo, and the resulting residue was purified by ODS column chromatography using 0.002N aqueous solution of hydrochloric acid-ethanol (100:0 to 80:20) as eluting solvent to give 3.84 g of ethyl 4-[(3carbamimidoylphenylamino)methyl]-3-[4-(4-methyl-1,4diazepan-1-yl)benzoylamino]benzoate hydrochloride. resulting compound (1.70 g) was dissolved in 20 ml of ethanol, then 30 ml of a 1N aqueous solution of sodium hydroxide was added and the mixture was stirred at room temperature for one hour. The reaction solution was neutralized with a 1N aqueous solution of hydrochloric acid and concentrated in vacuo. The resulting residue was purified by ODS column chromatography using 0.002N aqueous solution of hydrochloric acid-acetonitrile (100:0 to 92:8) as an eluting solvent and freeze-dried to give 1.48 g of

4-[(3-carbamimidoylphenylamino)methyl]-3-[4-(4-methyl-1,4-diazepan-1-yl)benzoylamino]benzoic acid hydrochloride.

### Example 2:

Ethyl 4-[(3-cyanophenylamino)methyl]-3-[4-(4-methyl-1,4-diazepan-1-yl)benzoylamino]benzoate (1.42)g) was dissolved in 30 ml of ethanol, then 291 of hydroxylamine hydrochloride and 0.78 ml of triethylamine were added and the mixture was stirred at 60°C for 24 The reaction solution was concentrated in vacuo hours. and the resulting residue was purified by silica gel chromatography using chloroform-methanol-aqueous column ammonia (100:0:0 to 92:8:0.8) to give a crudely purified product, ethyl  $4 - (\{[3 - (N$ hydroxycarbamimidoyl)phenyl]amino}methyl)-3-[4-(4-methyl-1,4-diazepan-1-yl)benzoylamino]benzoate. The crudely purified product was further purified by ODS column chromatography using 0.002N aqueous solution hydrochloric acid-methanol (100:0 to 88:12) as an eluting solvent and freeze-dried to give 1.03 g of ethyl 4-({[3-(N-hydroxycarbamimidoyl)phenyl]amino}methyl)-3-[4-(4methyl-1,4-diazepan-1-yl)benzoylamino]benzoate hydrochloride.

Compounds of Examples 3, 5, 7 and 54 were synthesized in the same manner as in Example 1.

Compounds of Examples 4, 6, 8 and 53 were synthesized in the same manner as in Example 2.

### Example 9:

4-(4-Methyl-1,4-diazepan-1-yl)benzoic acid hydrochloride (812 mg) was dissolved in 8 ml of thionyl chloride and stirred at 60°C for 30 minutes. The reaction solution was concentrated to dryness in vacuo. A solution where 774 mg of 2-amino-4'-methoxy-3-hydroxybenzanilide was dissolved in 15 ml of pyridine was added to the resulting residue at 0°C and the mixture was stirred at room temperature for 2 hours. The reaction solution was concentrated in vacuo, toluene was added to the resulting residue and the mixture was concentrated in vacuo again. To the resulting residue were added a saturated aqueous solution of sodium bicarbonate and ethyl acetate and the resulting precipitate was filtered. The ethyl acetate layer of the mother liquor was dried over anhydrous sodium sulfate and concentrated in vacuo. The resulting residue was mixed with the filtered precipitate and purified by silica gel column chromatography using chloroform-methanol (98:2) as an eluting solvent to give 873 mg of 3-hydroxy-4'-methoxy-2-{[4-(4-methyl-1,4-diazepan-1yl)benzoyl]amino}benzanilide. The resulting compound was suspended in 10 ml of ethanol, 0.7 ml of a 4N solution of hydrochloric acid in ethyl acetate was added, the mixture was stirred and the resulting precipitate was filtered, washed with ethanol and dried in vacuo to give 896 mg of 3-hydroxy-4'-methoxy-2-{[4-(4-methyl-1,4-diazapan-1yl)benzoyl]amino}benzanilide hydrochloride.

Compounds of Examples 10 to 16, 42, 51 and 52 were synthesized in the same manner as in Example 9.

## Example 17:

2'-Amino-6'-hydroxy-4-(4-methyl-1,4-diazapan-1yl)benzanilide (2.03 g) was dissolved in 60 ml of pyridine, 1.12 q of 4-methoxybenzoyl chloride was added at 0°C and the mixture was stirred at room temperature for 3 days. The reaction solution was concentrated in vacuo, then 150 ml of chloroform was added to the resulting residue and the mixture was made alkaline with 150 ml of a 5% aqueous sodium bicarbonate solution ofand extracted The resulting organic layer was dried over chloroform. anhydrous sodium sulfate and concentrated in vacuo, toluene was added thereto and the mixture was concentrated The resulting residue was purified by in vacuo again. silica gel column chromatography using chloroformmethanol-saturated aqueous ammonia (100:10:1)eluting solvent. This was recrystallized from ethanol to give 1.74 g of 3-hydroxy- $N^1$ -(4-methoxybenzoyl)- $N^2$ -[4-(4methyl-1,4-diazepan-1-yl)benzoyl]-1,2-phenylenediamine.  $3-Hydroxy-N^1-(4-methoxybenzoy1)-N^2-[4-(4-methyl-1,4$ diazepan-1-yl)benzoyl]-1,2-phenylenediamine (1.10 g) 269 mg of maleic acid were dissolved under heating in 11 ml of a 50% aqueous solution of methanol, and 11 ml of water was added for cooling. Crystals thus formed were collected by filtration and dried to give 1.18 g of 3hydroxy- $N^1$ -(4-methoxybenzoyl)- $N^2$ -[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]-1,2-phenylenediamine maleate.

Compounds of Examples 18 to 35 were synthesized in the same manner as in Example 17.

#### Example 36:

 $3-Hydroxy-N^1-(4-methoxybenzoyl)-N^2-[4-(4-methyl-1,4-methyl-1)]$ diazepan-1-yl)benzoyl]-1,2-phenylenediamine (500 mg) was dissolved in 11 ml of methanol, then 215 mg of benzyl bromide was added at room temperature and the mixture was stirred for 5 hours. Benzyl bromide (215 g) was further added at room temperature and the mixture was stirred for 16 hours. The resulting deposit was collected by filtration and suspended in 11 ml of N, N-dimethylformamide, then 210 mg of ethyl bromoacetate and 174 mg of potassium carbonate were added and the mixture was stirred at 100°C Insoluble matters were filtered off, for 30 minutes. followed by concentration in vacuo. The resulting residue was dissolved in 16 ml of acetic acid, then 100 mg of a 10% palladium-carbon powder was added and the mixture was stirred in a hydrogen atmosphere of 3 atm. at room temperature for 3 hours. The reaction solution was filtered through Celite and washed with methanol, and the filtrate was concentrated in vacuo. Chloroform (50 ml) was added to the resulting residue, and the mixture was made alkaline with 50 ml of a 5% aqueous solution of sodium bicarbonate, followed by extraction with chloroform.

resulting organic layer was dried over The anhydrous sodium sulfate and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography using chloroform-methanol-saturated aqueous ammonia (100:10:1) as an eluting solvent to give 580 mg of a crudely purified product, ethyl (3 - [(4 methoxybenzoyl)amino]-2-{[4-(4-methyl-1,4-diazepan-1yl)benzoyl]amino}phenoxy)acetate. The crudely purified product was purified by ODS column chromatography using 0.001N hydrochloric acid-methanol (10:4) as an eluting solvent to give 350 mg οf ethyl (3-[(4methoxybenzoyl)amino]-2-{[4-(4-methyl-1,4-diazepan-1yl)benzoyl]amino}phenoxy)acetate hydrochloride.

### Example 37:

 $(3-[(4-methoxybenzoyl)amino]-2-{[4-(4-methyl-$ 1,4-diazepan-1-yl)benzoyl]amino}phenoxy)acetate hydrochloride (350 mg) was dissolved in 6 ml of methanol, then 1.8 ml of a 1N aqueous solution of sodium hydroxide was added at room temperature and the mixture was stirred for 2 hours. 1N hydrochloric acid (1.8 ml) was further added and the mixture was concentrated in vacuo. The resulting residue was purified by ODS column chromatography using 0.001N hydrochloric acid-acetonitrile (1:1) as an eluting solvent to give 254 mg of (3-[(4methoxybenzoyl)amino]-2-{[4-(4-methyl-1,4-diazepan-1yl)benzoyl]amino}phenoxy)acetic acid hydrochloride.

A compound of Example 38 was synthesized in the same manner as in Example 37.

#### Example 39:

A crudely purified product (370 mg) of ethyl (3-[(4methoxybenzoyl)amino]-2-{[4-(4-methyl-1,4-diazepan-1-yl) benzoyl]amino}phenoxy)acetate was dissolved in 7 ml of tetrahydrofuran and 108 mg of sodium tetrahydroborate was added at room temperature. A solution of 930 mg of methanol in 7 ml of tetrahydrofuran was added dropwise thereto at  $60^{\circ}\text{C}$  over 25 minutes. The mixture was stirred at  $60^{\circ}$ C for 2 hours. Water (1 ml) was further added at room temperature and the mixture was concentrated in vacuo. The resulting residue was again subjected to the abovedescribed operation and the resulting residue was purified by silica gel column chromatography using chloroformmethanol-saturated aqueous ammonia (100:10:1)eluting solvent. The resulting compound was suspended in 3 ml of ethanol, then 0.4 ml of 1N hydrochloric acid was added and the mixture was concentrated in vacuo. (3 ml) and 3 ml of distilled water were added to the resulting residue, and a precipitate thus formed was filtered to give 107 mg of 3-(2-hydroxyethoxy)- $N^1$ -(4 $methoxybenzoyl)-N^2-[4-(4-methyl-1,4-diazepan-1$ yl)benzoyl]-1,2-phenylenediamine hydrochloride.

## Example 40:

 $3-Hydroxy-N^1-(4-methoxybenzoyl)-N^2-[4-(4-methyl-1,4-methyl-1)]$ 

diazepan-1-yl)benzoyl]-1,2-phenylenediamine (730 mg) was dissolved in 20 ml of tetrahydrofuran, then 0.13 ml of methanol, 498 mg of triphenylphosphine and 0.23 ml of diethyl azodicarboxylate were added and the mixture was stirred at room temperature for 16.5 hours. The reaction solution was concentrated in vacuo and the resulting residue was dissolved in chloroform. The solution was washed with a 0.5N aqueous solution of sodium hydroxide and a saturated aqueous solution of sodium chloride and dried over anhydrous sodium sulfate, followed concentration in vacuo. The resulting residue purified by silica gel column chromatography using chloroform-methanol (95:5 to 93:7) as an eluting solvent. The resulting crudely purified product was dissolved in 10 ml of ethanol, then 0.4 ml of a 4N hydrochloric acid-ethyl acetate solution was added and the mixture was concentrated in vacuo. The resulting residue was purified by ODS column chromatography using 0.002N aqueous solution of hydrochloric acid-acetonitrile (97:3 to 85:15) as an eluting solvent and freeze-dried to give 335 mg of 3 $methoxy-N^1-(4-methoxybenzoy1)-N^2-[4-(4-methyl-1,4-diazepan-$ 1-yl)benzoyl]-1,2-phenylenediamine hydrochloride.

## Example 41:

 $3-Hydroxy-N^1-(4-methoxybenzoyl)-N^2-[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]-1,2-phenylenediamine (474 mg) was dissolved in 15 ml of N,N-dimethylformamide, then 1.39 g of a trimethylamine-sulfur trioxide complex was added and$ 

the mixture was stirred at 60°C for 79 hours. 0.42 g of a trimethylamine-sulfur trioxide complex was added and the mixture was stirred at 60°C for 38 hours. Still further, 0.42 g of a trimethylamine-sulfur trioxide complex was added and the mixture was stirred at 60°C for 23 hours and concentrated in vacuo. Water was added to the resulting residue and the mixture was stirred for one hour. A precipitate thus formed was collected filtration and washed with water. The resulting crudely purified product was suspended in ethanol and suspension was stirred and filtered. The residue was washed with ethanol and water and dried in vacuo to give 483 mg of 3-[(4-methoxybenzoyl)amino]-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}phenyl hydrogen sulfate.

#### Example 43:

 $N^2$ -[4-(4-Benzyl-1,4-diazepan-1-yl)benzoyl]-3-hydroxy- $N^1$ -(4-methoxybenzoyl)-1,2-phenylenediamine (11.53 g) was dissolved in 250 ml of acetic acid, then 2.5 g of a 10% palladium-carbon powder was added and the mixture was stirred in a hydrogen atmosphere of 3 atm. at room temperature for 44 hours. The reaction solution was filtered through Celite and washed with acetic acid, and the filtrate was concentrated in vacuo. Toluene was added and the mixture was again concentrated in vacuo to give 11.11 g of a residue. The residue (2.00 g) was dissolved in a mixed solvent of chloroform, an aqueous solution of

sodium bicarbonate and methanol and the mixture stirred for 12 hours. The organic layer was separated, washed with a saturated aqueous solution of chloride, dried over anhydrous magnesium sulfate concentrated in vacuo. The resulting residue suspended in ethanol and the suspension was stirred for 3hours. A precipitate thus formed was filtered and washed The resulting solid was recrystallized from with ethanol. ethanol  $N^2$ -[4-(1,4-diazepan-1-yl)benzoyl]-3to give  $hydroxy-N^1-(4-methoxybenzoyl)-1,2-phenylenediamine.$ product was further crystallized from 0.5N HCl to give 878  $N^2$ -[4-(1,4-diazepan-1-yl)benzoyl]-3-hydroxy- $N^1$ -(4methoxybenzoyl)-1,2-phenylenediamine hydrochloride.

## Example 44:

 $3-Hydroxy-N^1-(4-methoxybenzoy1)-N^2-[4-(1,4-diazepan-$ 1-yl)benzoyl]-1,2-phenylenediamine (857 mg) was suspended in 20 ml of dichloroethane, and 1.2 g of acetic acid, 261  $\,$ mq cyclopropanecarbaldehyde and 789 of triacetoxyborohydride were added at room temperature. was stirred for 2 hours, then 261 of cyclopropanecarbaldehyde and 789 mg of triacetoxyborohydride were added at room temperature, and the mixture was further stirred for 2 hours. The reaction solution was concentrated in vacuo and 50 ml of chloroform was added to the resulting residue. The mixture was made alkaline with 50 ml of a 5% aqueous solution of sodium bicarbonate and extracted with chloroform. The resulting

organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography using chloroformmethanol-saturated aqueous ammonia (100:10:1) as an eluting solvent. The resulting compound was suspended in 13 ml of ethanol and 1.9 ml of 1N hydrochloric acid was added. A precipitate thus formed was filtered to give 656 mg of 3-hydroxy- $N^1$ -(4-methoxybenzoyl)- $N^2$ -[4-(4-cyclopropylmethyl-1,4-diazepan-1-yl)benzoyl]-1,2-phenylenediamine hydrochloride.

## Example 45:

 $N^2 - [4 - (1, 4 - \text{Diazepan} - 1 - \text{yl}) \text{benzoyl}] - 3 - \text{hydroxy} - N^1 - (4 - \text{pinzoyl})$ methoxybenzoyl)-1,2-phenylenediamine (1.3 g) was dissolved in 20 ml of ethanol, then 1.04 g of ethyl acetoimidate hydrochloride and 1.5 ml of triethylamine were added, and the mixture was stirred for 17 hours. Ethanol (150 ml), 1.04 g of ethyl acetoimidate hydrochloride and 1.5 ml of triethylamine were further added, and the mixture was stirred at 50°C for 68 hours. The reaction solution was concentrated in vacuo. The resulting residue was purified column chromatography using by ODS 0.002 N solution of hydrochloric acid-acetonitrile (95:5 to 70:30) as an eluting solvent and freeze-dried to give 515 mg of  $3-hydroxy-N^2-\{4-[4-(1-iminoethyl)-1,4-diazepan-1$ yl]benzoyl $-N^{1}$ -(4-methoxybenzoyl)-1,2-phenylenediamine hydrochloride.

Compounds of Examples 46 to 48 were synthesized in the same manner as in Example 44.

### Example 49:

4-(4-Methyl-1,4-diazepan-1-yl)benzoic acid hydrochloride (755 mg) was dissolved in 2.2 ml of thionyl chloride and stirred at 60°C for 30 minutes. The reaction solution was concentrated and dried in vacuo. To the residue was added a solution of 891 mg of 2-amino-5chloro-N-(5-chloro-2-pyridyl)-3-hydroxybenzamide in 10 ml the mixture pyridine and was stirred The reaction solution was temperature for 13 hours. concentrated in vacuo, 20 ml of acetic acid was added to the resulting residue and the mixture was stirred at room temperature for 17 hours. The reaction solution was concentrated in vacuo, a saturated aqueous solution of sodium bicarbonate was added to the resulting residue and the mixture was extracted with chloroform, dried over anhydrous sodium sulfate and concentrated in vacuo. residue was purified by silica gel column chromatography using chloroform-methanol-aqueous ammonia (97:3:0.3 95:5:0.5) as an eluting solvent to give a crudely purified product, 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazapan-1-yl)benzoyl]amino}benzamide. was further purified by ODS column chromatography using acetonitrile-0.002N aqueous solution of hydrochloric acid (2:8 to 3:7) as an eluting solvent, suspended in a diluted aqueous solution of hydrochloric acid and freeze-dried to give 492 mg of 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazapan-1-yl)benzoyl]amino}benzamide hydrochloride.

A compound of Example 50 was synthesized in the same manner as in Example 49.

Structural formulae and physicochemical properties of the compounds of the above Referential Examples and Examples are shown in Tables 2 and 3. The compounds shown in Tables 4 to 6 can be easily produced in manners substantially the same as those described in the Examples or Production Methods, or by applying thereto slightly modified methods that are obvious to those skilled in the art. The symbols in the tables have the following meanings.

Rf: Referential Example No.

Ex: Example No.

structure: Structural formula

salt: Salt

free: Free substance

DATA: Physical properties data

NMR: Nucleomagnetic resonance spectrum (TMS

internal standard)

FAB-MS: Mass analytical value

Me: Methyl

Et: Ethyl

Table 2

| Rf | structure(salt)        | DATA                                                                                    |
|----|------------------------|-----------------------------------------------------------------------------------------|
| 1  | NO <sub>2</sub>        | NMR (CDC1 <sub>3</sub> ):                                                               |
|    | NC N                   | $\delta: 1.42 \text{ (3H, t, J} = 7.2 \text{ Hz), } 4.43 \text{ (2H, q, J} =$           |
| 1  | H COOEt                | 7. $2Hz$ ), 4. $63(1H, t, J = 5.7 Hz)$ , 4. $81(2H, d, J)$                              |
|    | (free)                 | = 6.0  Hz), $6.72 - 6.78(2H, m)$ , $7.01(1H, dt)$                                       |
|    | (1166)                 | 1.3 Hz, 7.7 Hz), 7.19 - 7.27(1H, m), 7.69(1H,                                           |
|    |                        | d, J = 8.1 Hz), 8.24(1H, dd, J = 1.7 Hz, 8.0                                            |
| -  |                        | Hz), 8. 73 (1H, d, $J = 1.7 Hz$ )<br>$NMR (CDCI_2)$ :                                   |
| 2  | NH <sub>2</sub>        | $\delta: 1.39(3H, t, J = 7.1 Hz), 3.96 - 4.16(3H, m),$                                  |
|    | NC NO                  | 4. 25 (2H, d, $J = 4.2 \text{ Hz}$ ), 4. 36 (2H, q, $J =$                               |
|    | COOEt                  | 7. 1Hz), 6. 85 - 6. 93 (2H, m), 7. 05 (1H, dt, $J =$                                    |
|    | (free)                 | 1. 2 Hz, 7. 9 Hz), 7. 22 (1H, d, J = 7. 7 Hz),                                          |
|    | (22.23)                | 7. 27 (1H, t, $J = 8.0 \text{ Hz}$ ), 7. 41 (1H, d, $J = 1.3$                           |
|    |                        | H <sub>2</sub> ), 7.43(1H, dd, $J = 1.7 \text{ Hz}$ , 7.7 H <sub>2</sub> )              |
| 3  | Q NO <sub>2</sub>      | NMR (CDC1 <sub>3</sub> ):                                                               |
|    | H                      | $\delta$ : 1.46(3H, t, J=7.2Hz), 4.48(2H, q, J=7.2Hz),                                  |
|    | COOEt                  | 8.00(1H, d, J=8.0Hz), 8.42(1H, d, J=8.0Hz),                                             |
|    | (free)                 | 8.75(1H, s), 10.46(1H, s)                                                               |
| 4  | ŅH <sub>2</sub>        | NMR (CDC1 <sub>3</sub> ):                                                               |
|    | NC 2                   | $\delta$ : 1.38(3H, t, J=7.1Hz), 2.82(2H, t, J=8.4Hz),                                  |
|    | NC COOF                | 2.96(2H, t, J=8.4Hz), 4.34(2H, q, J=7.1Hz),                                             |
|    | COOEt                  | 6.97(1H, d, J=8.4Hz), 7.33-7.41(4H, m), 7.44-                                           |
|    | (free)                 | 7.52(2H, m)                                                                             |
| 5  | MeO NO <sub>2</sub> OH | $NMR (DMSO-d_6):$                                                                       |
|    | N OH                   | $\delta$ : 3.74(3H, s), 6.92(2H, d, J = 8.8 Hz), 7.19 -                                 |
|    | H                      | 7. 30 (2H, m), 7. 50 (1H, t, $J = 8.6 \text{ Hz}$ ), 7. 58 (2H,                         |
|    | (free)                 | d, J = 9.3 Hz), 10.46(1H, s), 11.25(1H, brs),                                           |
| 6  | MeO O NH               | NMR (DMSO-d <sub>6</sub> ):                                                             |
|    | N COH                  | $\delta$ : 3.74(3H, s), 5.79(2H, s), 6.46(1H, t, J = 7.8                                |
|    | H 🕌                    | Hz), 6.82 (1H, d, $J = 7.8 \text{ Hz}$ ), 6.90 (2H, d, $J = 0.00 \text{ Hz}$ )          |
|    | (free)                 | 8.8 Hz), 7.15(1H, d, $J = 7.8$ Hz), 7.61(2H, d, $J = 8.8$ Hz), 0.55(1H, a), 0.81(1H, a) |
| 7  |                        | = 8.8 Hz), 9.56(1H, s), 9.81(1H, s),                                                    |
| 7  | HO <sub>2</sub> C      | NMR (DMSO-d <sub>6</sub> ):<br>δ:2.06 - 2.24(1H, m), 2.30 - 2.45(1H, m),                |
|    | N-Me                   | 2.77(3H, s), 3.00 - 3.24(2H, m), 3.24 -                                                 |
|    | _                      | 3.55(4H, m), 3.70 - 4.00(2H, m), 6.81(2H, d, J                                          |
|    | HC I                   | = 9.1  Hz), $7.78(2H, d, J = 9.1  Hz)$ , $11.06(1H, d, J)$                              |
| [  |                        | s), 12.20(1H, s)                                                                        |
| 8  | ŅH₂ Q                  | NMR (DMSO-d <sub>6</sub> )                                                              |
|    | O <sub>2</sub> N       | δ:2.15 - 2.22(1H, m), 2.34-2.45(1H, m), 2.79(3H,                                        |
|    |                        | d, J = 5.0Hz), 3.05 - 3.22(2H, m), 3.40 -                                               |
|    | Ì <mark>∵.</mark> N-Me | 3.61(4H, m), 3.79 - 3.88(1H, m), 3.95 -                                                 |
|    | нс і                   | 4.03(1H, m), 6.69 - 6.75(1H, m), 6.93(2H, d, J                                          |
|    | 1101                   | = 9.0  Hz), $7.05(2H,  br)$ , $8.00(2H,  d,  J = 9.0)$                                  |
| L  |                        | Hz), 11.12(1H, br)                                                                      |

Table 2 (continue)

|       |                         | I NMD (DMCO. d.)                                                                                         |
|-------|-------------------------|----------------------------------------------------------------------------------------------------------|
| 9     | l l                     | NMR (DMSO-d <sub>6</sub> )                                                                               |
|       | HŅ Y                    | $\delta: 1.86-1.95$ (2H, m), 2.29 (3H, s), 2.45 - 2.52 (2H,                                              |
|       | O <sub>2</sub> N N      | m), $2.65(2H, t, J = 4.4Hz)$ , $3.51(2H, t, J = 6.0)$                                                    |
|       | 1 OH N·Me               | H2), $3.60(2H, 1, J = 4.4 Hz)$ , $6.76(2H, d, J = 9.2)$                                                  |
|       | (free)                  | H2), $7.21-7.28(2H, m)$ , $7.35(1H, dd, J = 6.8Hz)$                                                      |
|       | (1100)                  | 2.4  Hz), $7.84(2H, d, J = 9.2Hz)$ , $9.53(1H, br)$                                                      |
| 10    | l P                     | NMR (DMSO- $d_{\delta}$ ):                                                                               |
|       | ни                      | 1.85-1.94(2H, m), 2.26(3H, s), 2.43(2H, t,                                                               |
|       | H <sub>2</sub> N N      | J=5.6Hz), 2.61(2H, t, J=4.8Hz), 3.51(2H, t,                                                              |
|       | * OH N-Me               | J=6.0Hz), 3.58(2H, t, J=4.8Hz), 4.68(2H, s),                                                             |
|       | ((5-00)                 | 6.16(1H, dd, J=7.6Hz, 1.2Hz), 6.24(1H, dd,                                                               |
|       | (free)                  | J=8.0Hz, 1.2Hz), 6.70-6.81(3H, m), 7.86(1H, d,                                                           |
|       |                         | J=8.8Hz), 8.93(1H, br), 8.94(1H, s)                                                                      |
| 11    | MeO                     | NMR (DMSO-d <sub>6</sub> ):                                                                              |
|       | H NO <sub>2</sub>       | $\delta$ :3.88(3H, s), 6.70(1H, dd, I = 7.7 Hz, 8.7 Hz),                                                 |
|       |                         | 7.14(2H, d, J = 8.9 Hz), 7.17 - 7.21(2H, m),                                                             |
|       | но                      | 7.43(1H, dd, $J = 1.4 \text{ Hz}$ , 7.7 Hz), 7.97(1H, dd, $J$                                            |
|       | (free)                  | = 1.4  Hz, 8.7  Hz), 8.13(2H, d, J = 8.9  Hz)                                                            |
| 12    | MeO.                    | NMR (DMSO-d <sub>6</sub> ):                                                                              |
| 1 1 4 | H NH <sub>2</sub>       | $\delta: 3.83 - 3.86 (2H, m), 3.84 (3H, s), 6.68 - 6.72$                                                 |
|       | , X, X                  | (1H, m), 6.72 - 6.78(1H, m), 7.06(2H, d, J = 8.7)                                                        |
|       | но                      | Hz), $7.06 - 7.12(2H, m)$ , $8.05(2H, d, J = 8.7 Hz)$ ,                                                  |
|       | (free)                  | 9.63 - 9.67(1H, br)                                                                                      |
| 13    |                         | NMR (DMSO-d <sub>s</sub> ):                                                                              |
| 1.0   | NO <sub>2</sub>         | $\delta: 5.33(4H, s), 7.31 - 7.45(10H, m), 7.61(1H, dd,$                                                 |
|       |                         | J = 1.4  Hz, 7.5  Hz), 7.68(1H, t, J = 7.9  Hz),                                                         |
|       |                         | 7. $74(1H, dd, J = 1.5 Hz, 8.2 Hz)$                                                                      |
|       | (free)                  | <u> </u>                                                                                                 |
| 14    | NO <sub>2</sub>         | $NMR (DMSO-d_6)$ :                                                                                       |
|       | HOOC                    | $\delta$ :5.32(2H, s), 7.31 - 7.44 (5H, m), 7.56(1H, dd,                                                 |
| 1     |                         | J = 1.7  Hz, 7.3  Hz, 7.64(1H, 1, J = 7.9  Hz),                                                          |
|       | (free)                  | 7.68(1H, dd, J = 1.7 Hz, 8.3 Hz)                                                                         |
| 1.5   |                         | NIAD (CDC) ).                                                                                            |
| 15    | CI O NO2                | NMR (CDCl <sub>3</sub> ):                                                                                |
|       |                         | $\delta: 5.23 (2H, s), 7.22 - 7.26 (2H, m), 7.31 - 7.39$                                                 |
|       | н 📞                     | (5H, m), $7.46(1H, t, J = 8.3 Hz)$ , $7.69(1H, dd, J = 2.7 Hz$ , $9.1 Hz$ ), $8.03(1H, d, J = 2.9 Hz)$ , |
|       | (free)                  | 8. 26 (1H, d, $J = 8.8 \text{ Hz}$ ), 9. 01 (1H, brs)                                                    |
| 1.6   |                         | NMR (DMSO- $d_6$ ):                                                                                      |
| 16    | CI NH <sub>2</sub> OH   | $\delta: 5.93(2H, s), 6.44(1H, t, J = 7.9Hz), 6.82(1H, l)$                                               |
|       | N'N'Y J                 | d, $J = 7.7 \text{ Hz}$ ), $7.27(1\text{H}, d, J = 7.3 \text{ Hz})$ , $7.93(1\text{H}, d)$               |
|       |                         | dd, J = 2.6 Hz, 9.0 Hz), 8.14(1H, d, J = 8.8 Hz),                                                        |
|       | (free)                  | 8. 41 (1H, d, $J = 2.4$ Hz), 9. 60 (1H, s), 10. 46 (1H,                                                  |
|       |                         | s)                                                                                                       |
| 17    | Cl a AILI               | NMR (DMSO-d <sub>s</sub> ):                                                                              |
| 1 1   | CI O NH <sub>2</sub> OH | $\delta$ :6.04(2H, brs), 6.80(1H, d, J = 2.4 Hz),                                                        |
|       |                         | 7. 36 (1H, d, $J = 2.0 \text{ Hz}$ ), 7. 93 (1H, dd, $J = 2.5 \text{ Hz}$ )                              |
|       |                         | 8.8  Hz), $8.11 (1H, d, J = 9.3  Hz)$ , $8.42 (1H, d, J = 9.3  Hz)$                                      |
|       | (f = )                  | 2.5 Hz), 10.16(1H, brs), 10.67(1H, s)                                                                    |
| L     | (free)                  |                                                                                                          |

Table 2 (continue)

| 1.0 | Cl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NIMD (DMCO 4).                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 18  | CI NH <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $NMR (DMSO-d_6):$                                                           |
|     | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\delta : 6.06 (2H, brs), 6.90 (1H, d, J = 2.2 Hz),$                        |
|     | " \\"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7. 47 (1H, d, $J = 2.2 \text{ Hz}$ ), 7. 93 (1H, dd, $J = 2.8 \text{ Hz}$ , |
|     | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.0  Hz), $8.10(1H, d, J = 9.0  Hz)$ , $8.42(1H, d, J = 9.0  Hz)$           |
|     | (free)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2 Hz), 10.15(1H, brs), 10.69(1H, s)                                       |
| 19  | NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NMR (CDC1 <sub>3</sub> ):                                                   |
|     | EtOOC COH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\delta:1.38(3H, t, J = 7.3 Hz), 4.33(2H, q, J = 7.3$                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hz), $5.00 - 6.30(3H \text{ br})$ , $6.81(1H, d, J = 2.0 \text{ Hz})$       |
|     | Ċı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.48(1H, d, J = 2.4 Hz)                                                     |
|     | (free)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |
| 20  | NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NMR (DMSO-d <sub>6</sub> ):                                                 |
|     | ноос                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | δ:3.37(1.5H, brs), 6.78(1H, d, J = 2.4 Hz),                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.17(1H, d, J = 2.5 Hz), 8.34(1.5H, brs),                                   |
| İ   | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.19(1H, s)                                                                |
|     | (free)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |
| 21  | MeO NH <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NMR (DMSO-d <sub>6</sub> ):                                                 |
|     | ) NAME OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF | $\delta$ :3.74(3H, s), 5.93(2H, brs), 6.78(1H, d, J =                       |
|     | н 😽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9  Hz), $6.91(2H, d, J = 9.3  Hz)$ , $7.23(1H, d, J = 1)$                 |
|     | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5  Hz), $7.59(2H, d, J = 9.3  Hz)$ , $9.90(1H, s)$ ,                      |
|     | (free)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.09(1H, brs)                                                              |
| 22  | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NMR (CDCl <sub>3</sub> ):                                                   |
|     | ни 🔨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\delta:1.39(3H, t, J = 7.4 Hz), 1.97 - 2.06(2H, m),$                       |
|     | NC NO NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.38(3H, s), 2.53 - 2.59(2H, m), 2.68 -                                     |
|     | H N.We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.73(2H, m), 3.51(2H, t, $J = 6.4 \text{ Hz}$ ), 3.57 -                     |
|     | COOEt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.63(2H, m), 4.34 - 4.42(5H, m), 6.58(2H, d, J                              |
|     | (free)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 8.8 Hz), 6.96 - 7.01(2H, m), 7.12(1H, d, J =                              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.8 Hz), 7.31(1H, t, $J = 7.8 \text{ Hz}$ ), 7.40(1H, d, $J$                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 8.3  Hz), $7.65  (2H, d, J = 8.7  Hz$ ), $7.81  (1H,$                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dd, J = 1.5 Hz, 7.8 Hz), 8.67(1H, d, J = 2.0                                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hz), 8.85(1H, s),                                                           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FAB-MS(m/z): 512(M+H) <sup>+</sup>                                          |
| 23  | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NMR (CDC1 <sub>3</sub> ):                                                   |
|     | Ни Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | δ: 1.37(3H, t, J=7.1Hz), 2.43-2.54(2H, br),                                 |
|     | NC NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.76(3H, s), 2.93-3.01(4H, m), 3.14-3.22(2H,                                |
|     | COOEt N·Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | br), 3.23-3.29(2H, br), 3.59(2H, t, J=6.4Hz),                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.89-3.95(2H, m), 4.33(2H, q, J=7.1Hz),                                     |
|     | (free)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.72(2H, d, J=8.9Hz), 7.20(1H, d, J=7.3Hz),                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.27-7.35(3H, m), 7.41(1H, d, J=7.3Hz), 7.68-                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.73(1H, m), 7.75(2H, d, J=8.3H <sub>2</sub> ), 7.85(1H, dd,                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J=1.8Hz, 8.3Hz), 8.23(1H, s)                                                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FAB-MS(m/z): 511 (M+H) +                                                    |

Table 3

| Ex | structure(salt)                              | DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | HN HN COOH HC1                               | NMR (DMSO- $d_6$ ): $\delta$ :2.16-2.26(2H, br), 2.67(3H, s), 2.95 - 3.49(5H, br), 3.54(2H, t, J = 6.3 Hz), 3.73- 3.86(2H, br), 4.44(2H, d, J = 5.3 Hz), 6.79 - 6.87(4H, m), 6.94(1H, d, J = 7.3 Hz), 6.98 (1H, s), 7.26(1H, t, J = 8.3 Hz), 7.44(1H, d, J = 7.8 Hz), 7.75(1H, dd, J = 2.0 Hz, 7.8 Hz), 7.94 (2H, d, J = 9.2 Hz), 7.98(1H, d, J = 1.9 Hz), 9.07(2H, s), 9.22(2H, s), 9.98(2H, s) FAB-MS(m/z): 501(M+H) <sup>+</sup>                                        |
| 2  | HO'NH <sub>2</sub> HO'N-Me                   | NMR (DMSO- $d_{\delta}$ ): $\delta$ :1.31(3H, t, J = 7.3 Hz), 2.79(3H, d, J = 4.4 Hz), 4.31(2H, q, J = 7.3 Hz), 4.43(2H, s), 6.76 - 6.91(6H, m), 7.25(1H, t, J = 8.4 Hz), 7.46(1H, d, J = 8.3 Hz), 7.77(1H, dd, J = 8.3, 1.4 Hz), 7.96(2H, d, J = 8.8 Hz), 8.01(1H, d, J = 1.4 Hz), FAB-MS (m/z): 545 (M+H) +                                                                                                                                                              |
| 3  | H <sub>2</sub> N <sub>H</sub> O HO COOH N-Me | NMR (DMSO- $d_6$ ): $\delta$ : 2.02 - 2.09(2H, m), 2.76 - 2.84(2H, m), 2.87 - 2.98(2H, m), 3.32(3H, br s), 3.51 - 3.55(2H, m), 3.68 - 3.73(2H, m), 5.31(2H, s), 6.81(2H, d, J = 8.8 Hz), 7.31(1H, dd, J = 2.4 Hz, 8.4 Hz), 7.40(1H, d, J = 8.0 Hz), 7.46 - 7.49(1H, m), 7.50 - 7.54(1H, m), 7.62(1H, d, J = 8.4 Hz), 7.82(1H, dd, J = 2.0 Hz, 8.0 Hz), 7.89 (2H, d, J = 8.8 Hz), 8.03 (1H, d, J = 1.6 Hz), 9.33(4H, br s), 9.90(1H, s) FAB-MS(m/z): 502 (M+H) <sup>+</sup> |
| 4  | H <sub>2</sub> N O HN COOEt N-Me             | NMR (DMSO- $d_6$ ): $\delta$ : 1.33(3H, 1, J = 7.4 Hz), 2.79(3H, s),  4.32(2H, q, J = 7.3 Hz), 5.26(2H, s),  6.86(2H, d, J = 8.8 Hz), 7.03 - 7.08(1H, m),  7.26 - 7.37(3H, m), 7.67(1H, d, J = 8.4 Hz),  7.84(1H, dd, J = 1.6 Hz, 8.4 Hz), 7.91 (2H, d, J = 8.8 Hz), 8.10 (1H, d, J = 1.6 Hz),  FAB-MS (m/z): 546 (M+H) <sup>+</sup>                                                                                                                                       |
| 5  | HN NH <sub>2</sub> COOH N·Me                 | NMR (DMSO- $d_6$ ):<br>$\delta$ : 2.12-2.24(1H, m), 2.38-2.49(1H, m), 2.79(3H, d, J=4.9Hz), 3.92-3.99(2H, m), 3.01-3.20(4H, m), 3.39-3.58(4H, m), 3.76-3.85(1H, m), 3.90-4.03(1H, m), 6.86(2H, d, J=9.3Hz), 7.41(1H, d, J=8.3Hz), 7.43-7.49(2H, m), 7.61-7.67(1H, m), 7.75(2H, dd, J=1.5Hz, 9.3Hz), 7.88(1H, d, J=1.5Hz), 7.98(2H, d, J=9.3Hz), 9.35(2H, s), 9.45(2H, s), 9.91(1H, s), 11.37(1H, s) FAB-MS(m/z): 500 (M+H)+                                                |

Table 3 (continue)

| 6  | Q                    | $NMR(DMSO-d_6)$ :                                                                                           |
|----|----------------------|-------------------------------------------------------------------------------------------------------------|
|    | HN HN                | $\delta$ : 1.32(3H, t, J=7.0Hz), 2.78(3H, s), 4.31(2H,                                                      |
|    | HOW                  | q, J=7.0Hz), 6.86(2H, d, J=8.8Hz), 7.40-                                                                    |
| 1  | NH <sub>3</sub> N·Me | 7. 46 (3H, m), 7. 53 (1H, dt, J=1.9Hz, 7. 1Hz),                                                             |
|    | COOEt                | 7. 62 (1H, s), 7. 76 (1H, dd, J=1. 9Hz, 7. 1Hz),                                                            |
|    | HC1                  | 7. 90 (1H, d, J=1.4Hz), 7. 96 (2H, d, J=8.8Hz)                                                              |
|    |                      | FAB-MS (m/z): 544 (M+H) +                                                                                   |
| 7  | 0 –                  | NMR (DMSO-d <sub>6</sub> ):                                                                                 |
| '  | N-Me                 | 1 "                                                                                                         |
| 1  | H,N                  | $\delta$ : 2.79(3H, d, J = 4.8 Hz), 6.87(2H, d, J =                                                         |
|    | NH COOH              | 8. 8 Hz), 7. 43 (1H, d, J = 16. 0 Hz), 7. 53 (1H,                                                           |
|    | W. 000W              | d, J = 16.0 Hz), 7.60 - 7.64(1H, m), 7.73(1H,                                                               |
|    |                      | d, $J = 8.0 \text{ Hz}$ ), $7.83(1\text{H}, dd, J = 1.6 \text{ Hz}, 8.4)$                                   |
|    | HC1                  | Hz), $7.89(1H, d, J = 7.6 Hz)$ ,                                                                            |
|    |                      | FAB-MS (m/z): 498 (M+H) +                                                                                   |
| 8  | N-Me                 | NMR (DMSO-d <sub>6</sub> ):                                                                                 |
|    |                      | $\delta$ : 1.33(3H, t, J = 7.2 Hz), 2.80(3H, d, J =                                                         |
|    | HO'NH COOEt          | 4.8 Hz), 4.34 (2H, q, J = 7.2 Hz), 6.88 (2H, d,                                                             |
|    | · ·                  | J = 9.2  Hz, $7.42 - 7.51(2H, m)$ , $7.58 - 7.55(2H, m)$                                                    |
|    | HC1                  | 7.65(2H, m), 7.84 - 7.87(2H, m), 7.90(1H, s),                                                               |
|    |                      | 7.96 - 8.01(4H, m)                                                                                          |
| 9  |                      | FAB-MS (m/z): 542 (M+H) +                                                                                   |
| 9  | MeO                  | NMR (DMSO-d <sub>6</sub> ):                                                                                 |
|    | N N N N Me           | $\delta: 2.10 - 2.41(2H, m), 2.78(3H, s), 3.02 -$                                                           |
|    | H JOH N N            | 3. 22 (2H, m), 3. 35 - 3. 57 (4H, m), 3. 67 -                                                               |
|    | •                    | 3.81(4H, m), 3.87 - 3.99(1H, m), 6.80 -                                                                     |
|    | HC I                 | 6. 95 (4H, m), 7. 11 (1H, d, J = 7. 3 Hz), 7. 17 -                                                          |
|    |                      | 7. 28 (2H, m), 7. 57 (2H, d, J = 8. 8 Hz), 7. 85                                                            |
|    |                      | (2H, d, J = 8.8 Hz), 10.02(1H, s), 10.19(1H,                                                                |
| ]  |                      | s), 10.41(1H, s), 10.64(1H, brs)<br>FAB-MS(m/z): 475(M+H) <sup>+</sup>                                      |
| 10 | 0                    |                                                                                                             |
| 10 | CI                   | NMR (DMSO-d <sub>6</sub> ):                                                                                 |
|    | N N-Me               | $\delta$ : 2.78(3H, s), 6.84(2H, d, J = 9.3 Hz),                                                            |
|    | JOH N HOLL           | 7.10 - 7.13(1H, m), 7.15 - 7.18(1H, m), 7.22                                                                |
|    | <b></b>              | - 7. 26 (1H, m), 7. 36 (2H, d, J = 8.8 Hz), 7. 71                                                           |
|    | HC1                  | (2H, d, $J = 8.7 \text{ Hz}$ ), 7.85 (2H, d, $J = 8.8 \text{ Hz}$ )<br>FAB-MS (m/z): 479 (M+H) <sup>+</sup> |
| 11 | 0                    | NMR (DMSO-d <sub>6</sub> ):                                                                                 |
| 11 | F O UNI              | $\delta: 2.10 - 2.22(1H, m), 2.28 - 2.41(1H, m),$                                                           |
|    | HN N-Me              | 2.77(3H, d, J = 4.9 Hz), 3.02 - 3.21(2H, m),                                                                |
|    | H JOH W Name         | 3. 38 - 3. 57 (4H, m), 3. 75 (1H, dd, $J = 9.7 \text{ Hz}$ ,                                                |
|    |                      | 16.1 Hz), 3.93(1H, dd, J = 2.9 Hz, 16.6 Hz),                                                                |
|    | HCl                  | 6. 85 (2H, d, $J = 8.8 \text{ Hz}$ ), $7.09 - 7.27 (5H, m)$ ,                                               |
|    |                      | 7. 69 (2H, dd, $J = 5.1 \text{ Hz}$ , 9.1 Hz), 7.85 (2H,                                                    |
|    |                      | d, $J = 8.8 \text{ Hz}$ ), $9.75 - 10.10(1\text{H}, \text{br})$ ,                                           |
|    |                      | 10.14(1H, s), 10.36(1H, s), 10.86(1H, brs)                                                                  |
|    |                      | FAB-MS (m/z): 463 (M+H) +                                                                                   |
|    |                      |                                                                                                             |

Table 3 (continue)

| 12       | 0           | $NMR(DMSO-d_6)$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2      | → OHN →     | $\delta: 2.11 - 2.40(2H, m), 2.27(3H, s), 2.78(3H, s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -        | Ma N-Me     | s), 3.01 - 3.22(2H, m), 3.38 - 3.55(4H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | Me H JOH "  | 3.73(1H, dd, J = 9.7 Hz, 16.1 Hz), 3.93(1H, 1.73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| }        | <b>~ ~</b>  | d, $J = 15.1 \text{ Hz}$ , $6.83 - 6.91(3H, m)$ , $7.11(1H, m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| l        |             | dd, $J = 1.4 Hz$ , $8.3 Hz$ ), $7.15 - 7.20(2H, m)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | HC1         | 7. 24 (1H, 1, $J = 7.8 \text{ Hz}$ ), 7. 44 (1H, d, $J = 8.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |             | Hz), $7.49(1H, s)$ , $7.86(2H, d, J = 8.8 Hz)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |             | 9.96(1H, s), 10.14(1H, s), 10.17(1H, s),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |             | 10.54(1H, brs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u> |             | FAB-MS (m/z): 459 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13       | Br. A       | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | O HN        | $\delta: 2.79 \text{ (3H, d, J = 2.4 Hz), } 6.84 \text{ (2H, d, J = 2.4 Hz)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | N OH N N.Me | 9.3 Hz), 7.11(1H, dd, J = 1.3 Hz, 8.1 Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | H OH N·Me   | 7. 16 (1H, d. $J = 6.8$ Hz), 7. 24 (1H, t, $J = 7.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | нс і        | Hz), 7. 48 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 7. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 8. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 8. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 8. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 8. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 8. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8 \text{ Hz}$ ), 9. 65 (2H, d, $J = 8.8  H$ |
|          |             | 8.8  Hz), $7.84  (2H, d, J = 8.8  Hz$ ), $9.95  (1H, d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| į i      |             | s), 9.97(1H, s), 10.39(1H, s), 10.48 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |             | 10.65(1H, br)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |             | FAB-MS (m/z): 523 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14       | CI          | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |             | $\delta: 2.12 - 2.20 \text{ (1H, m)}, 2.32 - 2.43 \text{ (1H, m)},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | N' N' N' Me | 2. $78(3H, d, J = 4.8 Hz)$ , $3.05 - 3.20(2H, m)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |             | 3.39 - 3.56(4H, m), 3.73 - 3.82(1H, m), 3.91 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | UC1         | 3. 97 (1H, m), 6. 90 (2H, d, J = 8. 7 Hz), 7. 65 (1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| }        | HC I        | dd, J = 2.4 Hz , 8.8 Hz), 7.79 (2H, d, J = 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |             | Hz), $7.99 - 8.02(2H, m)$ , $8.11(1H, d, J = 8.8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |             | Hz), $8.43(1H, d, J = 8.8 Hz)$ , $8.48(1H, d, J = 1.0 0.4(1H, b = 0.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |             | 2.5 Hz), 10.94(1H, br s), 11.23(1H, s),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [        |             | 11.29(1H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.       |             | FAB-MS (m/z): 498 (M) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15       | MeO A LIN   | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ] [      |             | $\delta: 2.25(3H, s), 3.75(3H, s), 6.79(2H, d, J = 8.8 Hz), 6.91 - 7.01(3H, m), 7.24(1H, d, J = 9.88 Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| į į      | H D N-Me    | 8.8 Hz), $6.91 - 7.01(3H, M)$ , $7.24(1H, G, J = 2.5 Hz)$ , $7.61(2H, G, J = 8.8 Hz)$ , $7.69(2H, G, J = 8.8 Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | ОН          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |             | d, $J = 8.8 \text{ Hz}$ ), $8.28(1\text{H}, d, J = 8.8 \text{ Hz})$ , FAB-MS(m/z): $475(\text{M+H})^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | (free)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16       | MeO         | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |             | δ: 2. 25 (3H, s), 3. 76 (3H, s), 6. 55 (1H, dd, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | N N Me      | = 8.8, 2.4 Hz), 6.82 (2H, d, J = 9.3 Hz), 6.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | OH OH       | (2H, d, J = 8.8 Hz), 7.57 (2H, d, J = 8.8 Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [ ]      | (free)      | 7. 74 (2H, d, $J = 9.3Hz$ ), 7. 84 (1H, d, $J = 8.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | •           | Hz), $8.27$ (1H, d, $J = 2.4$ Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |             | FAB-MS (m/z): 475 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table 3 (continue)

|         | T              | <del></del>                                                  |
|---------|----------------|--------------------------------------------------------------|
| 17      | γ γ            | NMR (DMSO-d <sub>6</sub> ):                                  |
| }       | MeO H HN       | $\delta: 2.11 - 2.20(2H, m), 2.83(3H, s), 3.20 -$            |
|         | N N Me         | 3.45(4H, m), $3.52(2H, t, J = 6.0 Hz)$ , $3.72 -$            |
|         | O LJOH i ji    | 3. 88 (5H, m), 6. 03 (2H, s), 6. 80 (1H, d, $J = 8.0$        |
| 1       |                | 1                                                            |
|         |                | Hz), $6.85(2H, d, J = 8.8 Hz)$ , $7.04(2H, d, J = 8.8 Hz)$   |
|         | нсоон          | 8.8  Hz), $7.14(1H$ , 1, $J = 8.0  Hz$ ), $7.24(1H$ , d, $J$ |
|         | н <u></u> соон | = 8.0  Hz, $7.85(2H, d, J = 8.8  Hz)$ , $7.91(2H, d, J)$     |
|         |                | J = 8.8  Hz), $9.47(1H, s)$ , $9.67(1H, s)$ , $9.77(1H, s)$  |
| 1       |                | (s)                                                          |
|         |                | FAB-MS(m/z): 475 (M+H) <sup>+</sup>                          |
| 10      |                |                                                              |
| 18      |                | $NMR (DMSO-d_6):$                                            |
| ì       | H HW Y         | δ:2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 -                    |
|         | N-Me           | 7.17(1H, m), 7.22(1H, d, J = 8.3 Hz), 7.58(2H,               |
|         | O OH           | d, J = 8.3 Hz), 7.89 - 7.93(4H, m),                          |
|         |                | FAB-MS(m/z): 479 (M+H) <sup>+</sup>                          |
| L       | HC1            |                                                              |
| 19      | Q              | NMR (DMSO-d <sub>6</sub> ):                                  |
| 1       | Br HN          | $\delta$ :2.79(3H, s), 6.82 - 6.86(3H, m), 7.13 -            |
| }       | H HN NMe       | 7.17(1H, m), 7.22(1H, d, $J = 7.8 \text{ Hz}$ ), 7.72(2H,    |
|         | LOH N NAME     |                                                              |
|         |                | d, J = 8.3  Hz, 7.83(2H, d, J = 8.3  Hz),                    |
|         | HC I           | 7.92(2H, d, J = 8.8 Hz)                                      |
|         | 1101           | $FAB-MS(m/z): 523, 525 (M+H)^{+}$                            |
| 20      | Q              | $NMR(DMSO-d_6)$ :                                            |
|         | H HŃ Y         | $\delta: 2.79(3H, s), 6.82(1H, d, J = 8.3 Hz),$              |
|         | Me N. Me       | 6.86(2H, d, J = 8.8 Hz), 7.13 - 7.17(1H, m),                 |
|         | Me TOH !       | 7. 27 (1H, d, J = 8.4 Hz), 7. 36 - 7. 79 (2H, m),            |
|         |                | 7. $64 - 7.68(2H, m)$ , $7.95(2H, d, J = 8.3 Hz)$ ,          |
|         |                |                                                              |
|         | HC1            | 9.56(1H, s)                                                  |
|         | 1101           | FAB-MS(m/z): 459 (M+H) <sup>+</sup>                          |
| 21      | W-0            | NMR (DMSO-d <sub>6</sub> ):                                  |
|         | MeO H HŅ       | δ: 2.69(3H, s), 3.92(3H, s), 6.81 - 6.84(3H,                 |
|         | CI N Me        | m), 7.14(1H, dd, J = 7.8, 8.3Hz), 7.22(1H, d, J              |
| 1       | OH ( ) HO      | = 7.8Hz), $7.27(1$ H, d, $J = 8.8$ Hz), $7.88(1$ H, dd, $J$  |
| 1       |                | = 2.0, 8.3Hz), $7.93(2$ H, d, $J = 8.8$ )), $7.95(1$ H.      |
|         | HC1            |                                                              |
| 1       |                | d, J = 2.0Hz                                                 |
| <u></u> |                | FAB-MS m/z: 509 (M <sup>t</sup> )                            |
| 22      | CI P           | NMR (DMSO- $d_6$ ):                                          |
|         | CI S H HN      | $\delta$ :2.80(3H, d, J = 3.9 Hz), 6.79 - 6.88(3H, m),       |
|         | N N N N N Me   | 7.10 - 7.18(2H, m), $7.24(1H, d, J = 3.9Hz)$ ,               |
|         | O TOH "        | 7. 72 (1H, d, $J = 3.9Hz$ ), 7. 95 (2H, d, $J = 8.8Hz$ ),    |
|         | · •            | FAB-MS m/z: 485 (M <sup>+</sup> )                            |
|         | HC1            | 1715 INC 111/4. TOU (NI)                                     |
| 23      | 0              | NMR (DMSO-d <sub>6</sub> ):                                  |
| 43      | F. A           |                                                              |
| (       | H HN           | δ: 2.78(3H, s), 6.82 - 6.85(3H, m), 7.13 -                   |
|         | N N N Me       | 7.17(1H, m), 7.22(1H, d, $J = 7.8 \text{ Hz}$ ), 7.32 -      |
| }       | о Гон          | 7.37(2H, m), 7.93(2H, d, $J = 8.8 \text{ Hz}$ ), 7.95 -      |
|         | HC1            | 7.99(2H, m)                                                  |
| ]       | HC1            | FAB-MS(m/z): 463(M+H) <sup>+</sup>                           |
|         | <del></del>    |                                                              |

Table 3 (continue)

| 24  | P           | NMR (DMSO-d <sub>6</sub> ):                                                     |
|-----|-------------|---------------------------------------------------------------------------------|
|     | H HN        | $\delta$ :2.76(3H, s), 6.83 - 6.87(3H, m), 7.16 -                               |
|     | N-Me        | 7. 20 (1H, m), 7. 31 (1H, d, $J = 8.3 \text{ Hz}$ ), 7. 59 -                    |
| 1   | Ö VOH V     | 7.66(2H, m), 7.94 - 8.04(6H, m), 8.50(1H, s),                                   |
| 1   | HC1         | FAB-MS (m/z): 495 (M+H) +                                                       |
| 25  | 101         | NIMD (DVGO )                                                                    |
| 23  | Br          | NMR (DMSO $-d_6$ ):                                                             |
|     |             | $\delta$ : 2.80 (3H, d, J = 4.3 Hz), 6.81 - 6.86 (3H, m),                       |
| 1   | OH N NMe    | 7.11 - 7.17(2H, m), $7.33(1H, d, J = 3.9Hz)$ ,                                  |
| 1   |             | 7.66 (1H, d, $J = 4.4Hz$ ), 7.94 (2H, d, $J = 8.8Hz$ )                          |
| L   | HC1         | FAB-MS (m/z): 529, 531 (M+H)+                                                   |
| 26  | Q           | NMR (DMSO-d <sub>6</sub> ):                                                     |
| 1   | O H HŅ      | $\delta$ :2.75(3H, s), 6.84 - 6.88(3H, m), 7.15 -                               |
|     | N N N Me    | 7.19(1H, m), 7.33 - 7.37(2H, m), 7.47 - 7.51(1H,                                |
|     | O OH        | m), $7.57(1H, d, J = 8.3 Hz)$ , $7.67(1H, s)$ ,                                 |
|     | нст         | 7.80(1H, d, J = 7.8 Hz), 8.00(2H, d, J = 8.3 Hz)                                |
| -   | 1101        | FAB-MS (m/z): 485 (M+H) +                                                       |
| 27  | AN   P      | NMR (DMSO-d <sub>6</sub> ):                                                     |
|     | HHN TO      | $\delta$ : 2.75(3H, d, J = 4.9 Hz), 6.83(2H, d, J = 9.3                         |
|     | OH W WWe    | $ Hz\rangle$ , 6.88(1H, d, $J = 7.8Hz$ ), $7.17 - 7.21(1H,)$                    |
|     |             | [m), 7.29(1H, d, $J = 7.8  Hz$ ), 7.79 - 7.82(1H, $m$ )                         |
|     | HC1         | 7.98 - 8.01(3H, m), 8.17 - 8.20(2H, m), 9.16(1H,                                |
| l   |             | s), 9.44 (1H, d, J = 1.9 Hz)                                                    |
| 28  |             | FAB-MS (m/z): 496 (M+H)+                                                        |
| 40  | MeO         | $NMR (DMSO-d_6):$                                                               |
| }   | N N N Me    | $\delta$ : 2. 80 (3H, d, J = 2.4 Hz), 6. 40 (1H, d, J = 3.9                     |
|     | O JOH N N   | Hz), 6.80(1H, dd, J = 1.5Hz, 7.8Hz), 6.86(2H,                                   |
|     | lici 🗸      | d, $J = 8.8 \text{ Hz}$ ), $7.10 - 7.18(2\text{H, m})$ , $7.53(1\text{H, d})$   |
|     | HC1         | J = 3.9  Hz, 7.94(2H, d, $J = 8.8 Hz$ )<br>FAB-MS (m/z): 481 (M+H) <sup>+</sup> |
| 29  | Q           | NMR (DMSO- $d_s$ ):                                                             |
|     | MeO H HN MO | $\delta: 2.79(3H, d, J = 5.9 Hz), 3.81(3H, s),$                                 |
|     | N N N N Me  | 6.80(1H, d, $J = 8.3 \text{ Hz}$ ), 6.85(1H, d, $J = 8.8$                       |
|     | O COH       | Hz), $7.03(2H, d, J = 8.8 Hz)$ , $7.12 - 7.17(1H, d)$                           |
|     |             | m), $7.24 - 7.27(1H, m)$ , $7.86(2H, d, J = 8.8 Hz)$ ,                          |
|     | нсі         | 8. 18 (1H, d, $J = 8.7 \text{ Hz}$ ), 8. 79 (1H, s)                             |
|     | IICI        | FAB-MS (m/z): 476 (M+H) +                                                       |
| 30  | MeO         | NMR (DMSO-d <sub>6</sub> ):                                                     |
|     | H HN T      | $\delta: 2.79 \text{ (3H, s)}, 6.82 - 6.86 \text{ (3H, m)}, 7.12 -$             |
|     | F OH N N Me | 7. 16 (1H, m), 7. 22 (1H, d, $J = 7.8 \text{ Hz}$ ), 7. 27 –                    |
|     |             | 7. 31 (1H, m), $7.72 - 7.77$ (2H, m), $7.94$ (2H, d, J =                        |
|     | HC1         | 8.3 Hz),                                                                        |
| - 1 |             | FAB-MS (m/z): 493 (M+H) +                                                       |
| 31  | MeO         | NMR (DMSO $-d_6$ ):                                                             |
| j   | L           | $\delta$ :2.79(3H, d, J = 5.9 Hz), 3.05 - 3.21(2H, m),                          |
| [   | P N N Me    | 3.82(3H, s), 6.85(2H, d, J = 9.3 Hz), 7.03(2H)                                  |
|     |             | d, J = 8.8 Hz), 7.13 - 7.18(1H, m), 7.31 -                                      |
|     |             | 7. 37 (1H, m), 7. 55 - 7. 59 (1H, m), 7. 89 (2H, d, $J = \frac{1}{2}$           |
|     | HC I        | 8. 8 Hz), 7. 94 (2H, d, $J = 8.7 \text{ Hz}$ )                                  |
| i   |             | FAB-MS (m/z): 477 (M+H) +                                                       |

Table 3 (continue)

| 32    | MeO                                   | $NMR(DMSO-d_6)$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | HIN TO A N                            | $\delta$ :1.82 - 2.01(2H, m), 3.46 - 3.89(11H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | OH W. M                               | 6.80(1H, d, J = 7.8 Hz), 6.86(2H, d, J = 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 0 000                                 | Hz), $6.97 - 7.21(5H, m)$ , $7.25(1H, d, J = 8.3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| }     | HC1                                   | Hz), 7.78 - 7.94 (4H, m), 8.18 (2H, s), 9.51 (1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | 1.01                                  | s), 9.66(1H, brs), 9.82(1H, s), 13.46(1H, brs),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                       | FAB-MS (m/z): 538 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                       | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33    | MeO UN                                | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ì     | MeO H HN N-Me                         | $\delta: 2.24(1.5H, s), 2.26(1.5H, s), 2.84 - 2.95(3H,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | OH N N Me                             | m), 6.81(1H, d, J = 7.8 Hz), 6.84 - 6.93(2H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                       | 7.04(2H, d, J = 8.8 Hz), 7.14(1H, t, J = 8.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| }     | HC1                                   | Hz), 7.24(1H, d, $J = 8.3 Hz$ ), 7.87(2H, d, $J =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1     |                                       | 8.8 Hz), 7.91(2H, d, J = 8.9 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     |                                       | FAB-MS (m/z): 516 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 34    | Q                                     | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ] "   | MeO H HŅ                              | $\delta$ :6.80 (1H, dd, J = 0.9 Hz, 8.3 Hz), 6.85(2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | N N N N N N N N N N N N N N N N N N N | d, J = 8.7 Hz), 7.03(2H, d, J = 8.7 Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                                       | 7. 14(1H, t, $J = 8.3 \text{ Hz}$ ), 7. 24(1H, d, $J = 7.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1     | нс1                                   | Hz), 7.43 - 7.51(3H, m), 7.54 - 7.61(2H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }     | 1101                                  | 7.86(2H, d, J = 8.7 Hz), 7.91(2H, d, J = 8.7 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                       | FAB-MS $(m/z)$ : 551 $(M+H)^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 0.5 |                                       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35    | MeO HAN                               | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | N N N Me                              | $\delta$ : 1.14(3H, t, J = 6.8 Hz), 2.80(3H, d, J =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| j     |                                       | 4.4  Hz), $3.83(3H, s)$ , $4.16(2H, q, J = 7.2  Hz)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| İ     | COOEt                                 | 6.86(2H, d, J = 8.8 Hz), 7.06(2H, d, J = 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | HC1                                   | Hz), $7.39 - 7.43(1H, m)$ , $7.68(1H, dd, J = 1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1     |                                       | Hz , 7.8 Hz), 7.86 - 7.88(3H, m), 7.94(2H, d, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ĺ     |                                       | = 8.7 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                       | FAB-MS(m/z): 531(M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36    | N-0                                   | NMR (DMSO-d <sub>8</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | MeO H HN                              | $\delta$ : 1.21(3H, t, J = 7.3 Hz), 2.78(3H, d, J = 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | N' N' Me                              | Hz), $4.17(2H, q, J = 7.3 Hz)$ , $4.83(2H, s)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| İ     |                                       | 6.86(2H, d, J = 9.3 Hz), 6.92(1H, d, J = 7.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | COOEt                                 | Hz), $7.04(2H, d, J = 8.8 Hz)$ , $7.25 - 7.29(1H, J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | HC1                                   | m), $7.49(1H, d, J = 7.8 Hz)$ , $7.86(2H, d, J = 8.8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                                       | Hz), 7.93(2H, d, $J = 8.8 Hz$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ]     |                                       | FAB-MS(m/z): 561 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37    | 0                                     | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | MeO HN                                | $\delta$ : 2.78(3H, s), 4.75(2H, s), 6.86(2H, d, J =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | N N N Me                              | 9.3  Hz), $6.94(1H, d, J = 7.3  Hz)$ , $7.04(2H, d, J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                       | = 8.8  Hz), $7.25 - 7.30(1H, m)$ , $7.50(1H, d, J = 1.3  Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | соон                                  | $\begin{bmatrix} -8.8 & \text{Hz} \end{bmatrix}$ , $\begin{bmatrix} 7.23 & -7.30 & \text{Hz} \end{bmatrix}$ , $\begin{bmatrix} 7.30 & \text{Hz} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} 7.95 & \text{C2H} \end{bmatrix}$ , $\begin{bmatrix} $ |
| 1     | HC1                                   | (1.9  Hz), (1.85(2H, 0, 3 - 8.8  Hz), (1.95(2H, 0, 3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -     | <del> </del>                          | FAB-MS (m/z): 533 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 38    | MeO UN                                | $NMR (DMSO-d_6):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                       | $\delta$ : 2.77(3H, d, J = 4.4 Hz), 6.87(2H, d, J = 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | hwe hwe                               | Hz), $7.05(2H, d, J = 8.8 Hz)$ , $7.38 - 7.42(1H, J = 8.8 Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | COOH                                  | m), $7.75(1H, d, J = 7.3 Hz)$ , $7.88 - 7.94(5H, m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | нсі                                   | FAB-MS(m/z): 503(M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 1101                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 3 (continue)

| 39   |                    | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39   | MeO                | $\delta: 2.12 - 2.22(1H, m), 2.26 - 2.39(1H, m),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1    | N N N Me           | 2.79(3H, d, J = 3.9 Hz), 3.05 - 3.21(2H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1    |                    | 3. 39 - 3. 55 (4H, m), 3. 66 - 3. 79 (3H, m), 3. 81 (3H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | OH ~               | $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $  s \rangle$ , $ $ |
| 1    | HC1                | 4.86(1H, br s), 6.86(2H, d, J = 8.8 Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                    | 6.97(1H, d, J = 7.4 Hz), 7.04(2H, d, J = 8.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1    |                    | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                    | $ Hz\rangle$ , $7.25 - 7.29(1H, m)$ , $7.42(1H, d, J = 8.3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                    | Hz), $7.86(2H, d, J = 8.7 Hz)$ , $7.92(2H, d, J = 9.80(1H, c))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                    | 8.8 Hz), 9.55(1H, s), 9.89(1H, s), 10.67(1H, br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                    | s)<br>  FAB-MS(m/z): 519(M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10   |                    | $NMR (DMSO-d_6):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 40   | MeO                | $\delta$ : 2.79(3H, d, J = 4.9 Hz), 6.85(2H, d, J = 8.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1    | H HN J N.We        | Hz), $6.95(1H, d, J = 8.3 Hz)$ , $7.02(2H, d, J = 8.3 Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                    | $\begin{bmatrix} 8.7 \text{ Hz} \end{bmatrix}$ , $\begin{bmatrix} 7.29 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.29 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42 \text{ (1H, d, J = 8.3 Hz)}, \\ 7.42  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | OME V              | = 8.3  Hz, 7.84(2H, d, J = 8.8 Hz), 7.92(2H, d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                    | J = 8.8  Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | HCI                | FAB-MS (m/z): 489 (M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41   | 0                  | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 11 | MeO H HN           | $\delta: 2.08 - 2.23(2H, m), 2.84(3H, s), 3.10 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | N-Me               | 4.05(11H, m), $6.93(2H, d, J = 9.3 Hz)$ , $6.95(1H, J = 9.3 Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1    | i 🗸 🔾              | d, 8.3 Hz), $7.01-7.08(3H, m)$ , $7.28(1H, t, J =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [    | o <sub>so³</sub> H | [8.3  Hz), 7.7(1H, dd, J = 1.4  Hz, 8.3  Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1    | (free)             | 7.83(2H, d, J = 8.8 Hz), 7.92(2H, d, J = 9.2Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| }    |                    | 9.4(1H, brs), 9.91(1H, s), 10.37(1H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| İ    |                    | FAB-MS(m/z): 553 (M-H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 42   | P                  | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ļ    | MeO H HN           | $\delta$ :2.79(3H, d = 4.9 Hz), 6.78(1H, d, J = 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | NW6 We             | $ Hz\rangle$ , 6.82(2H, d, $J = 8.8 Hz$ ), 7.06(2H, d, $J =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1    |                    | 8.8  Hz, $7.13(1H, t, J = 7.8  Hz)$ , $7.30(1H, d, J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | HO                 | = 7.8  Hz, $7.75(2H, d, J = 8.8  Hz)$ , $8.01(2H, d, J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ſ    | HC1                | J = 8.8  Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                    | FAB-MS (m/z): 475 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 43   | MeO                | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ļ    |                    | $\delta$ : 6.81(1H, dd, J = 1.5, 8.3 Hz), 6.86(2H, d, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | OH N NH            | = 8.8 Hz), 7.03(2H, d, J = 8.7 Hz), 7.13(1H, t,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | •                  | J = 8.3 Hz), 7.25(1H, d, J = 8.3 Hz), 7.87(2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | HC1                | [d, J = 8.8  Hz), 7.93(2H, d, J = 8.8  Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 0                  | FAB-MS (m/z): 461 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 44   | MeO H HN           | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                    | $\delta$ : 0.35 - 0.43(2H, m), 0.61 - 0.67(2H, m), 1.08 - 1.15(1H, m)6.81(1H, dd, J = 1.0 Hz, 8.8 Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| }    | I OH U             | $\begin{bmatrix} -1.15(1n, m/0.81(1n, dd, J-1.0 Hz, 8.8 Hz), \\ 6.86(2H, d, J=8.8 Hz), 7.03(2H, d, J=8.3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1    | нсі                | Hz , $7.11 - 7.16(1H, m)$ , $7.24(1H, dd, J = 1.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 1101               | Hz , 7.9 $ Hz $ , 7.87 (2H, d, $ J  = 8.8  Hz $ , 7.93 (2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                    | d, J = 8.8  Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ]    |                    | FAB-MS (m/z): 515 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| t    | L                  | 1115 40 (44/ 5/) . VIV (111/11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table 3 (continue)

|          |               | MMD (DMCO 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45       | MeO           | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | HHN C. NH     | $\delta : 6.81 (1H, d, J = 8.3 Hz), 6.84 - 6.93 (2H, m),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | OH N Me       | 7. 03 (2H, d, $J = 9.3 \text{ Hz}$ ), 7. 13 (1H, t, $J = 8.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1101          | Hz), $7.25(1H, d, J = 8.3 Hz)$ , $7.88(2H, d, J = 0.0 Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | HC1           | 8.2  Hz), $7.92(2H, d, J = 8.3  Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |               | FAB-MS (m/z): 502 (M+H) †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 46       | MeO           | $NMR (DMSO-d_6):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |               | $\delta: 6.80 - 6.86 (3H, m), 7.03 (2H, d, J = 8.8 Hz),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | JOH N N       | 7.11 - 7.16(1H, m), $7.24(1H, dd, J = 1.0 Hz$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |               | 7. 8 Hz), 7. 87(2H, d, $J = 8.8 \text{ Hz}$ ), 7. 93(2H, d, $J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | HC1           | = 8.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |               | FAB-MS (m/z): 515 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 47       | MeO           | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | HN []Me       | $\delta: 1.21 - 1.28(6H, m), 6.80(1H, d, J = 7.9 Hz),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | OH N Me       | 6. 85 (2H, d, J = 8.8 Hz), 7. 03 (2H, d, J = 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 1101          | Hz), $7.14(1H, t, J = 7.9 Hz)$ , $7.24(1H, d, J = 7.9 Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | HC1           | 7.8 Hz), 7.86(2H, d, J = 8.3 Hz), 7.92(2H, d, J = 8.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |               | = 8.8 Hz)<br>FAB-MS(m/z): 503(M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40       | 0 .           | NMR (DMSO-d <sub>c</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 48       | MeO H HN      | $\delta : 6.73 - 6.88(3H, m), 7.03(2H, d, J = 8.8 Hz),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | N N N N OME   | 7.14(1H, t, J = 8.3 Hz), 7.24(1H, dd, J = 1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | o Von V       | Hz, 8.3 Hz), 7.87(2H, d, J = 8.8 Hz), 7.93(2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |               | $\begin{bmatrix} 112, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (211, & 0.5 & 112/2, & 1.55 & (21$ |
|          | нс і          | FAB-MS (m/z): 519 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 49       | 0             | NMR (DMSO- $d_s$ ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 49       | CI O UNI      | $\delta: 2.10 - 2.21(1H, m), 2.23 - 2.37(1H, m),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | N-Me          | 2.79(3H, d, J = 4.9 Hz), 3.02 - 3.21(2H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | H H TOH '     | 3. 37 - 3. 56 (4H, m), 3. 66 - 3. 95 (2H, m), 6. 81 (2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | L CI          | d, $J = 8.8 \text{ Hz}$ , $7.15(2\text{H}, \text{s})$ , $7.82(2\text{H}, \text{d}, \text{J} = 8.8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | HC1           | Hz), 7.89(1H, dd, $J = 2.5$ , 8.8 Hz), 8.08(1H, d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | nor           | J = 8.8  Hz), $8.36(1H, d, J = 2.4  Hz)$ , $9.51(1H, d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |               | s), 10.33 - 10.63(2H, br), 10.68(1H,s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |               | FAB-MS(m/z): 514(M+H) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50       | - γ           | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | CI O HÍN      | δ:2.10 - 2.33(2H, m), 2.79(3H, s), 3.01 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | N N N-Me      | 3.22(2H, m), 3.35 - 3.51(4H, m), 3.65 - 3.79(1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | OH N-ME       | m), 3.85 - 3.98(1H, m), 6.81(2H, d, J = 8.8 Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ì        | Br            | 7. 27 (2H, s), 7. 82 (2H, d, $J = 9.3 \text{ Hz}$ ), 7. 89 (1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | нс 1          | dd, $J = 2.5$ , $8.8 \text{ Hz}$ ), $8.08(1\text{H}, d, J = 9.2 \text{ Hz})$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |               | 8. 36 (1H, d, $J = 2.9 \text{ Hz}$ ), 9. 50 (1H, s), 10. 37 (1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |               | brs), 10.44(1H, s), 10.69(1H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u> </u> |               | FAB-MS (m/z): 558, 560 (M+H) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51       | Ch A          | NMR (DMSO-d <sub>6</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | O'T PHN TO MO | δ: 2.22(2H, brs), 2.74(3H, s), 3.00 - 3.60(6H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | N N N N-Me    | m), 3.81(2H, brs), 6.82(2H, d, J = 9.3 Hz), 7.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | , n 🗸 🔾       | -7.25(3H, m), $7.83(2H, d, J = 8.8 Hz)$ , $7.90(1H, d, J = 2.8 Hz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | HC l          | dd, J = 2.8 Hz, 9.1 Hz), 8.13(1H, d, J = 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | ·             | Hz), 8.35(1H, d, J = 2.5 Hz), 9.71(1H, s),<br>9.95(1H, s), 10.58(1H, s), 10.62 - 10.88(1H, br)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |               | FAB-MS $(m/z)$ : 480 $(M+H)^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L        |               | 17AU 1113 (11/4) . 400 (11TH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 3 (continue)

| [ <u>[ [ ]</u> |                                                      | NUD (DUOC 1)                                             |
|----------------|------------------------------------------------------|----------------------------------------------------------|
| 52             | MeO.                                                 | NMR (DMSO $-d_6$ ):                                      |
|                | O HIV                                                | $\delta: 2.10 - 2.34(2H, m), 2.81(3H, s), 3.01 -$        |
|                | N N N-Me                                             | 3.25(2H, m), 3.35 - 3.60(4H, m), 3.62 - 3.79(4H,         |
|                | H HOH                                                | m), $3.82 - 4.00$ (1H, m), $6.84$ (2H, d, $J = 9.3$ Hz), |
|                | Ċı                                                   | 6.88(2H, d, J = 8.8 Hz), 7.12(1H, d, J = 2.5)            |
|                |                                                      | Hz), $7.18(1H, d, J = 2.4 Hz)$ , $7.54(2H, d, J =$       |
|                | нсі                                                  | 9.3  Hz), $7.84(2H, d, J = 8.8  Hz)$ , $9.86(1H, brs)$ , |
|                |                                                      | 9.96(1H, s), 10.16(1H, s), 10.43(1H, s)                  |
| ļ              |                                                      | FAB-MS(m/z): 509(M+H) <sup>+</sup>                       |
| 53             | Ŷ                                                    | NMR (DMSO-d <sub>6</sub> ):                              |
|                | Н ни                                                 | $\delta$ : 1.35(3H, t, J = 7.3 Hz), 2.79(3H, d, J =      |
|                | H <sub>2</sub> N N                                   | 4.9 Hz), 4.35(2H, q, J = 7.3 Hz), 6.85(2H, d,            |
|                | HO'N O N'Me                                          | J = 9.3  Hz), $7.68 - 7.74(1H, m)$ , $7.82 -$            |
|                | COOEt                                                | 7.88(2H, m), 7.92 - 7.98(3H, m), 8.19 -                  |
|                | HC1                                                  | 8.24(1H, m), 8.27(1H, s), 8.38 (1H, s)                   |
|                |                                                      | FAB-MS(m/z): 559 (M+H)+                                  |
| 54             | ρ                                                    | NMR (DMSO-d <sub>6</sub> ):                              |
|                | і ни                                                 | $\delta$ : 2.79(3H, d, J = 4.9 Hz), 6.85(2H, d, J =      |
|                | H <sub>2</sub> N N N N N N N N N N N N N N N N N N N | 9.3 Hz), 7.76 - 7.84(3H, m), 7.98(2H, d, J =             |
|                | NH O N·Me                                            | 8.8 Hz), 8.03(1H, d, J = 7.8 Hz), 8.25(1H,               |
|                | СООН                                                 | s), $8.31(1H, d, J = 7.8 Hz)$ , $8.53(1H, s)$ ,          |
|                | HC1                                                  | FAB-MS(m/z): 515 (M+H) <sup>+</sup>                      |

Table 4

| CI O HN N N Me   | CI O HN S N N Me | CI O HN S N N Me  |
|------------------|------------------|-------------------|
| CI O HN S N N·Me | MeO H HN N N Me  | MeO HN N N·Me     |
| CI O HN N N Me   | CI O HN N N·Me   | MeO H HN S N N·Me |
| CI N HN N N Me   | MeO OHN S N N·Me | CI O HN S N N Me  |
| CI O HN N·Me     | CI O HN N-Me     | CI O HN P N-Me    |
| CI O HN N-Me     | MeO F N N Me     | MeO H HN F N Me   |

Table 5

|                    |                                         |         |                |          |                  |                | <del></del>    |  |  |  |
|--------------------|-----------------------------------------|---------|----------------|----------|------------------|----------------|----------------|--|--|--|
|                    | A HN DN                                 |         |                |          |                  |                |                |  |  |  |
| $R^2$ $N \cdot Me$ |                                         |         |                |          |                  |                |                |  |  |  |
| - Y <sub>3</sub> C |                                         |         |                |          |                  |                |                |  |  |  |
| No.                | A                                       | R²      | R <sup>3</sup> | No.      | A                | R <sup>2</sup> | R <sup>3</sup> |  |  |  |
| 1                  |                                         | OH      | Cl             | 32       | -                | 0Н             | Cl             |  |  |  |
| 2                  |                                         | ОН      | Н              | 33       | MaQ              | Н              | Cl             |  |  |  |
| 3                  |                                         | Н       | Cl             | 34       | MeO-()-          | 0Н             | Br             |  |  |  |
| 4                  | HN                                      | ОН      | Br             | 35       |                  | Н              | Br             |  |  |  |
| 5                  | NH <sub>2</sub>                         | Н       | Br             | 36       |                  | ОН             | Cl             |  |  |  |
| . 6                |                                         | 0Н      | F              | 37       | Br—              | Н              | Cl             |  |  |  |
| 7                  |                                         | Н       | F              | 38       | J                | 0Н             | Br             |  |  |  |
| 8                  |                                         | ОН      | Cl             | 39       |                  | Н              | Br             |  |  |  |
| 9                  |                                         | ОН      | Н              | 40       |                  | 0Н             | Cl             |  |  |  |
| 10                 | N. N.                                   | Н       | Cl             | 41       | F——              | Н              | <u>C1</u>      |  |  |  |
| 11                 | HO NH <sub>2</sub>                      | OH      | Br             | 42       |                  | ОН             | Br             |  |  |  |
| 12                 |                                         | Н       | Br             | 43       |                  | Н              | Br             |  |  |  |
| 13                 |                                         | OH      | F              | 44       |                  | ОН             | <u>C1</u>      |  |  |  |
| 14                 |                                         | Н       | F              | 45       |                  | Н              | C1             |  |  |  |
| 15<br>16           |                                         | OH<br>H | C1<br>C1.      | 46       | CI N             | 0Н<br>Н        | Br             |  |  |  |
| 17                 | CI-{}                                   | 0H      | Br             | 47<br>48 |                  | н<br>ОН        | Br<br>H        |  |  |  |
| 18                 |                                         | Н       | Br             | 49       |                  | OH<br>OH       | Cl             |  |  |  |
| 19                 |                                         | OH      | Cl             | 50       |                  | Н              | Cl             |  |  |  |
| 20                 |                                         | Н       | Cl             | 51       | N                | ОН             | Br             |  |  |  |
| 21                 | Br-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | OH      | Br             | 52       | N N              | Н              | Br             |  |  |  |
| 22                 | ~N                                      | Н       | Br             | 53       |                  | OH             | Н              |  |  |  |
| 23                 |                                         | ОН      | Н              | 54       |                  | ОН             | Cl             |  |  |  |
| 24                 |                                         | ОН      | Cl             | 55       |                  | Н              | C1             |  |  |  |
| 25                 | MeO-                                    | Н       | Cl             | 56       | F-{}}-           | ОН             | Br             |  |  |  |
| 26                 | , viec // V                             | OH      | Br             | 57       | _ ~N             | Н              | Br             |  |  |  |
| 27                 |                                         | ОН      | Н              | 58       |                  | ОН             | Н              |  |  |  |
| 28                 |                                         | 0Н      | Cl             | 59       |                  | 0Н             | C1             |  |  |  |
| 29                 |                                         | ОН      | Н              | 60       |                  | ОН             | Н              |  |  |  |
| 30                 | H <sub>2</sub> N                        | Н       | Cl             | 61       | H <sub>2</sub> N | Н              | Cl             |  |  |  |
| 31                 |                                         | ОН      | Br             | 62       |                  | ОН             | Br             |  |  |  |

Table 5 (continue)

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                          |                |       |     |                 |                |                |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------|----------------|-------|-----|-----------------|----------------|----------------|--|--|--|
|                                                       | $\begin{pmatrix} A \end{pmatrix} H H N \begin{pmatrix} A \end{pmatrix} $ |                |       |     |                 |                |                |  |  |  |
| $R^2$ $N$ $N \cdot Me$                                |                                                                          |                |       |     |                 |                |                |  |  |  |
| R <sup>3</sup>                                        |                                                                          |                |       |     |                 |                |                |  |  |  |
| No.                                                   | Α                                                                        | R <sup>2</sup> | $R^3$ | No. | A               | R <sup>2</sup> | R <sup>3</sup> |  |  |  |
| 63                                                    |                                                                          | ОН             | Cl    | 92  |                 | ОН             | Cl             |  |  |  |
| 64                                                    |                                                                          | ОН             | Н     | 93  | N=\             | 0Н             | Н              |  |  |  |
| 65                                                    | <del>      _   _   _   _   _</del>                                       | Н              | Cl    | 94  | CI-(N=)-        | Н              | Cl             |  |  |  |
| 66                                                    |                                                                          | ОН             | Br    | 95  |                 | ОН             | Br             |  |  |  |
| 67                                                    |                                                                          | Н              | Br    | 96  |                 | Н              | Br             |  |  |  |
| 68                                                    |                                                                          | ОН             | Cl    | 97  |                 | ОН             | Cl             |  |  |  |
| 69                                                    | H₂N TEtOOC·N                                                             | ОН             | Н     | 98  | /=N             | ОН             | Н              |  |  |  |
| 70                                                    | FtOOC <sup>.N</sup>                                                      | Н              | Cl    | 99  | CI——N—          | . Н            | Cl             |  |  |  |
| 71                                                    | 2.000                                                                    | ОН             | Br    | 100 |                 | ОН             | Br             |  |  |  |
| 72                                                    |                                                                          | Н              | Br    | 101 |                 | H              | Br             |  |  |  |
| 73                                                    |                                                                          | ОН             | Cl    | 102 | NH <sub>2</sub> | ОН             | C1.            |  |  |  |
| 74                                                    |                                                                          | ОН             | Н     | 103 |                 | ОН             | Н              |  |  |  |
| 75                                                    | MeO S                                                                    | Н              | Cl    | 104 |                 | Н              | Cl             |  |  |  |
| 76                                                    |                                                                          | ОН             | Br    | 105 |                 | OH             | Br             |  |  |  |
| 77                                                    |                                                                          | Н              | Br    | 106 |                 | Н              | Br             |  |  |  |
| 78                                                    |                                                                          | OH             | Cl    | 107 |                 | ОН             | C1             |  |  |  |
| 79                                                    | Me S                                                                     | Н              | C1    | 108 |                 | ОН             | Н              |  |  |  |
| 80                                                    | 5                                                                        | ОН             | Br    | 109 | NH <sub>2</sub> | Н              | Cl             |  |  |  |
| 81                                                    |                                                                          | Н              | Br    | 110 | -               | OH<br>H        | Br             |  |  |  |
| 82                                                    |                                                                          | OH             | Cl    | 111 |                 |                | Br             |  |  |  |
| 83                                                    | W.O. /=\                                                                 | ОН             | Н     | 112 |                 | ОН             | Cl             |  |  |  |
| 84                                                    | MeO-(N-)                                                                 | Н              | Cl    | 113 | CI S            | Н              | C1             |  |  |  |
| 85                                                    |                                                                          | НО             | Br    | 114 | CI S            | ОН             | Br             |  |  |  |
| 86                                                    |                                                                          | Н              | Br    | 115 |                 | Н              | Br             |  |  |  |
| 87                                                    |                                                                          | OH             | Cl    | 116 |                 | OH             | Cl             |  |  |  |
| 88                                                    |                                                                          | ОН             | Н     | 117 |                 | Н              | Cl             |  |  |  |
| 89                                                    | NH <sub>2</sub>                                                          | Н              | Cl    | 118 | Br S            | ОН             | Br             |  |  |  |
| 90                                                    |                                                                          | ОН             | Br    | 119 |                 | Н              | Br             |  |  |  |
| 91                                                    |                                                                          | Н              | Br    | 120 |                 | ОН             | F              |  |  |  |

Table 5 (continue)

| A O HN         |                 |                |                |     |                  |                |                |  |  |  |
|----------------|-----------------|----------------|----------------|-----|------------------|----------------|----------------|--|--|--|
| N N Me         |                 |                |                |     |                  |                |                |  |  |  |
| Y <sub>3</sub> |                 |                |                |     |                  |                |                |  |  |  |
| No.            | A               | R <sup>2</sup> | R <sup>3</sup> | No. | A                | R <sup>2</sup> | $\mathbb{R}^3$ |  |  |  |
| 121            |                 | ОН             | Cl             | 151 |                  | Н              | Cl             |  |  |  |
| 122            |                 | ОН             | Н              | 152 | Mag (=)          | ОН             | Br             |  |  |  |
| 123            |                 | Н              | Cl             | 153 | MeO-()           | Н              | Br             |  |  |  |
| 124            | HN              | ОН             | Br             | 154 |                  | OH             | F              |  |  |  |
| 125            | NH <sub>2</sub> | Н              | Br             | 155 |                  | ОН             | Cl             |  |  |  |
| 126            |                 | ОН             | F              | 156 | Br—              | Н              | Cl             |  |  |  |
| 127            |                 | Н              | F              | 157 |                  | ОН             | Br             |  |  |  |
| 128            |                 | ОН             | Cl             | 158 |                  | Н              | Br             |  |  |  |
| 129            | N. I            | 0Н             | Н              | 159 |                  | OH             | Cl             |  |  |  |
| 130            | HO Y V          | Н              | Cl             | 160 | F-(=)-           | Н              | Cl             |  |  |  |
| 131            | £               | ОН             | Br             | 161 | ' 🖳              | 0Н             | Br.            |  |  |  |
| 132            |                 | Н              | Br             | 162 |                  | Н              | Br             |  |  |  |
| 133            |                 | ОН             | Cl             | 163 | CI—(¯)—          | Н              | Br             |  |  |  |
| 134            | CI—()—          | Н              | Cl             | 164 | _N_              | 0H             | F              |  |  |  |
| 135            | - · ·           | ОН             | Br             | 165 |                  | OH             | Cl             |  |  |  |
| 136            |                 | Н              | Br             | 166 |                  | Н              | Cl             |  |  |  |
| 137            |                 | ОН             | Cl             | 167 | H <sub>2</sub> N | OH             | Br             |  |  |  |
| 138            |                 | Н              | Cl             | 168 | _                | Н              | Br             |  |  |  |
| 139            | Br-∕√ >>—       | OH             | Br             | 169 |                  | 0H             | <u>H</u>       |  |  |  |
| 140            |                 | Н              | Br             | 170 |                  | OH             | Cl             |  |  |  |
| 141            |                 | ОН             | H              | 171 |                  | Н              | Cl             |  |  |  |
| 142            |                 | ОН             | Cl             | 172 | F-(              | 0H             | Br             |  |  |  |
| 143            | W-0 /=\         | Н              | Cl             | 173 | _N               | Н              | Br             |  |  |  |
| 144            | MeO-(_N         | ОН             | Br             | 174 |                  | ОН             | Н              |  |  |  |
| 145            |                 | Н              | Br             | 175 |                  | OH             | F              |  |  |  |
| 146            |                 | OH OH          | H              | 176 |                  | OH II          | Cl             |  |  |  |
| 147            | NH <sub>2</sub> | OH OH          | Cl             | 177 | CI-              | Н              | Cl             |  |  |  |
| 148            |                 | ОН             | Н              | 178 | CI _N            | ОН             | Br             |  |  |  |
| 149            |                 | OH             | Br             | 179 |                  | Н              | Br             |  |  |  |
| 150            |                 | Н              | C1             | 180 |                  | 0Н             | Н              |  |  |  |

Table 5 (continue)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                        |                |                |                   |                   |                |                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|----------------|-------------------|-------------------|----------------|----------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q HN                                     |                |                |                   |                   |                |                |  |  |  |
| $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}$ |                                          |                |                |                   |                   |                |                |  |  |  |
| A N N N Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                |                |                   |                   |                |                |  |  |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                        | R <sup>2</sup> | R <sup>3</sup> | No.               | A                 | $\mathbb{R}^2$ | R <sup>3</sup> |  |  |  |
| 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ОН             | Cl             | 211               |                   | ОН             | Cl             |  |  |  |
| 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ОН             | Н              |                   | N                 | ОН             | Н              |  |  |  |
| 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>⊢</b> (¯)                             | Н              | Cl             | 212               | CI—N=             | Н              | Cl             |  |  |  |
| 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ОН             | Br             | 214               | N—                | ОН             | Br             |  |  |  |
| 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Н              | Br             | 215               |                   | Н              | Br             |  |  |  |
| 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ОН             | Cl             | 216               |                   | ОН             | Cl             |  |  |  |
| 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H <sub>2</sub> N                         | ОН             | Н              | 217               | æN.               | ОН             | Н              |  |  |  |
| 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Finoc.N                                  | Н              | Cl             | 218               | CI-\(\sigma_N\)   | Н              | CI             |  |  |  |
| 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21000                                    | ОН             | Br             | 219               |                   | ОН             | Br             |  |  |  |
| 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Н              | Br             | 220               |                   | Н              | Br             |  |  |  |
| 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ОН             | Cl             | 221               | NH <sub>2</sub>   | ОН             | Cl             |  |  |  |
| 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , L                                      | OH             | H              | 222<br>223<br>224 |                   | ОН             | Н              |  |  |  |
| 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Н              | Cl             | 223               |                   | Н              | Cl             |  |  |  |
| 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĥ                                        | OH             | Br             |                   |                   | ОН             | Br             |  |  |  |
| 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Н              | Br             | 225               |                   | Н              | Br             |  |  |  |
| 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | OH             | C1             | 226               |                   | ОН             | Cl             |  |  |  |
| 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | OH             | Н              | 227               |                   | ОН             | Н              |  |  |  |
| 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Me S                                     | Н              | Cl             | 228               | NH <sub>2</sub>   | Н              | Cl             |  |  |  |
| 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ОН             | Br             | 229               | INFI <sub>2</sub> | ОН             | Br             |  |  |  |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Н              | Br             | 230               |                   | Н              | Br             |  |  |  |
| 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ОН             | Cl             | 231               |                   | ОН             | Cl             |  |  |  |
| 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 0Н             | Н              | 232               | CI S              | Н              | Cl             |  |  |  |
| 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MeO-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Н              | Cl             | 233               | U S               | ОН             | Br             |  |  |  |
| 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ОН             | Br             | 234               |                   | Н              | Br             |  |  |  |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Н              | Br             | 235               |                   | OH             | Н              |  |  |  |
| 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 0H             | Cl             | 236               |                   | ОН             | Cl             |  |  |  |
| 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | OH             | H              | 237               | Br S              | Н              | Cl             |  |  |  |
| 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NH <sub>2</sub>                          | Н              | Cl             | 238               |                   | OH             | Br             |  |  |  |
| 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 0H             | Br             | 239               |                   | Н              | Br             |  |  |  |
| 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Н              | Br             | 240               |                   | ОН             | Н              |  |  |  |

Table 6

| 0                                     |                                 |                                         |                |    |                  |                                         |                |  |  |  |  |
|---------------------------------------|---------------------------------|-----------------------------------------|----------------|----|------------------|-----------------------------------------|----------------|--|--|--|--|
|                                       | $A \rightarrow X' HN$           |                                         |                |    |                  |                                         |                |  |  |  |  |
| \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                 |                                         |                |    |                  |                                         |                |  |  |  |  |
| R <sup>3</sup> N-Me                   |                                 |                                         |                |    |                  |                                         |                |  |  |  |  |
| No                                    | A                               | X 1                                     | R <sup>3</sup> | No | A                | X 1                                     | R <sup>3</sup> |  |  |  |  |
| 1                                     |                                 | - C H <sub>2</sub> - C H <sub>2</sub> - | Н              | 32 |                  | $-CH_2-CH_2-$                           | Н              |  |  |  |  |
| 2                                     |                                 | - C H <sub>2</sub> - C H <sub>2</sub> - | Cl             | 33 |                  | - C H <sub>2</sub> - C H <sub>2</sub> - | Cl             |  |  |  |  |
| 3                                     |                                 | -NH-CH <sub>2</sub> -                   | Н              | 34 |                  | -NH-CH <sub>2</sub> -                   | Н              |  |  |  |  |
| 4                                     | HN                              | -NH-CH <sub>2</sub> -                   | Cl             | 35 | H <sub>2</sub> N | -NH-CH <sub>2</sub> -                   | Cl             |  |  |  |  |
| 5                                     | NH <sub>2</sub>                 | -O-CH <sub>2</sub> -                    | Н              | 36 | HO <sup>.Ñ</sup> | - O - C H <sub>2</sub> -                | Н              |  |  |  |  |
| 6                                     |                                 | -O-CH <sub>2</sub> -                    | Cl             | 37 |                  | - O - C H <sub>2</sub> -                | Cl             |  |  |  |  |
| 7                                     |                                 | (E) -CH=CH-                             | Н              | 38 |                  | (E) -CH=CH-                             | Н              |  |  |  |  |
| 8                                     |                                 | (E) -CH=CH-                             | Cl             | 39 |                  | (E) -CH=CH-                             | Cl             |  |  |  |  |
| 9                                     |                                 | - C H <sub>2</sub> - C H <sub>2</sub> - | Н              | 40 |                  | - C H <sub>2</sub> - C H <sub>2</sub> - | Н              |  |  |  |  |
| 10                                    |                                 | - C H <sub>2</sub> - C H <sub>2</sub> - | Cl             | 41 | CI               | - C H <sub>2</sub> - C H <sub>2</sub> - | Cl             |  |  |  |  |
| 11                                    |                                 | -NH-CH <sub>2</sub> -                   | Н              | 42 |                  | -NH-CH <sub>2</sub> -                   | Н              |  |  |  |  |
| 12                                    |                                 | -NH-CH <sub>2</sub> -                   | Cl             | 43 |                  | -NH-CH <sub>2</sub> -                   | Cl             |  |  |  |  |
| 13                                    | N '                             | -O-CH <sub>2</sub> -                    | Н              | 44 |                  | - O - C H <sub>2</sub> -                | Н              |  |  |  |  |
| 14                                    |                                 | -O-CH <sub>2</sub> -                    | Cl             | 45 |                  | - O - C H <sub>2</sub> -                | Cl             |  |  |  |  |
| 15                                    |                                 | (E) -CH=CH-                             | Cl             | 46 |                  | (E) -CH=CH-                             | Cl             |  |  |  |  |
| 16                                    |                                 | $-CH_2-CH_2-$                           | Н              | 47 |                  | $-CH_2-CH_2-$                           | Н              |  |  |  |  |
| 17                                    |                                 | $-CH_2-CH_2-$                           | Cl             | 48 | H,N              | $-CH_2-CH_2-$                           | Cl             |  |  |  |  |
| 18                                    |                                 | $-NH-CH_2-$                             | Н              | 49 |                  | $-NH-CH_2-$                             | Н              |  |  |  |  |
| 19                                    |                                 | $-NH-CH_2-$                             | Cl             | 50 |                  | $-NH-CH_2-$                             | Cl             |  |  |  |  |
| 20                                    | NH <sub>2</sub>                 | -O-CH <sub>2</sub> -                    | H              | 51 | E1000.11         | - O - C H <sub>2</sub> -                | Н              |  |  |  |  |
| 21                                    |                                 | - O - C H <sub>2</sub> -                | Cl             | 52 |                  | - O - C H <sub>2</sub> -                | C1             |  |  |  |  |
| 22                                    |                                 | (E) -CH=CH-                             | H              | 53 |                  | (E) -CH=CH-                             | Н              |  |  |  |  |
| 23                                    |                                 | (E) -CH=CH-                             | Cl             | 54 |                  | (E) -CH=CH-                             | Cl             |  |  |  |  |
| 24                                    |                                 | $-CH_2-CH_2-$                           | Н              | 55 |                  | $-CH_2-CH_2-$                           | Н              |  |  |  |  |
| 25                                    | 26<br>27<br>28 H <sub>2</sub> N | $-CH_2-CH_2-$                           | Cl             | 56 |                  | $-CH_2-CH_2-$                           | Cl             |  |  |  |  |
| 26                                    |                                 | -NH-CH <sub>2</sub> -                   | Н              | 57 |                  | -NH-CH <sub>2</sub> -                   | Н              |  |  |  |  |
| 27                                    |                                 | $-NH-CH_2-$                             | Cl             | 58 |                  | - N H - C H <sub>2</sub> -              | Cl             |  |  |  |  |
| 28                                    |                                 | -O-CH <sub>2</sub> -                    | Н              | 59 |                  | -O-CH <sub>2</sub> -                    | Н              |  |  |  |  |
| 29                                    |                                 | - O - C H <sub>2</sub> -                | C1             | 60 |                  | -O-CH <sub>2</sub> -                    | Cl             |  |  |  |  |
| 30                                    |                                 | (E) -CH=CH-                             | Н              | 61 |                  | (E) -CH=CH-                             | Н              |  |  |  |  |
| 31                                    |                                 | (E) -CH=CH-                             | Cl             | 62 |                  | (E) -CH=CH-                             | Cl             |  |  |  |  |