

Model Development Phase Template

Date	29 September 2024	
Team ID	LTVIP2024TMID24973	
Project Title	Detection of Phishing Websites from URLs Using Machine learning	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Splitting the data:

```
#Splitting the data into train and test
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
```

Training the model:

LogisticRegression()

```
from sklearn.linear_model import LogisticRegression lr=LogisticRegression() lr.fit(x_train,y_train)

LogisticRegression © ®
```


K Nearest Neighbour

- [30] from sklearn.neighbors import KNeighborsClassifier kmodel=KNeighborsClassifier()
- [32] kmodel.fit(x_train,y_train)
- ₹
- KNeighborsClassifier
 KNeighborsClassifier()

Random forest classifier

[25] from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(random_state=0)
model.fit(x_train,y_train)

₹

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Linear regression	Geg y_pred1=lr.predict(x_test) from sklearn.metrics import accuracy_score log_reg=accuracy_score(y_test,y_pred1) log_reg	0.91	[18] Suggested code may be subject to a license IgorKolesnikov27/DA print("Logistic Regression confusion matrix \n") print(confusion_matrix(y_test,y_pred1)) → Logistic Regression confusion matrix [[906 108] [75 1122]]
KNN	[34] y_predk = kmodel.predict(x_test) y_pred_train = kmodel.predict(x_train) [37] knn=accuracy_score(y_test,y_predk) knn1=accuracy_score(y_train,y_pred_train) print("Accuracy score for testing data: ",knn) print("Accuracy score for training data: ",knn1) Accuracy score for testing data: 0.94346449570336 Accuracy score for training data: 0.9655133423796		[22] print("KNeighbors Classifier confusion matrix \n") print(confusion_matrix(y_test,y_pred3)) ★ KNeighbors Classifier confusion matrix [[933 81] [44 1153]]
Random Forest	<pre>/s [29] y_p=model.predict(x_test)</pre>	0.97	[28] Suggested code may be subject to a license print("Random Forest Classifier confusion matrix \n") print(confusion_matrix(y_test,y_p)) → Random Forest Classifier confusion matrix [[964 50] [15 1182]]

Comparing of model train test accuracy:

Comparing model train and test accuracy

```
models = pd.DataFrame({
    'Model': [ 'Logistic Regression', 'KNN','Random Forest'],
    'Test Score': [ log_reg,knn,rf1,],'Train Score':[log_reg,knn1,rf2]
    })
models.sort_values(by='Test Score', ascending=False)
```


	Model	Test Score	Train Score
2	Random Forest	0.970602	0.990276
1	KNN	0.943464	0.965513
0	Logistic Regression	0.917232	0.917232