Homework 4

John J Li

March 3, 2021

Problem 1:

Prove that for every integer n, n^3 is odd if and only if n is odd.

Proof. 1) n^3 is odd $\rightarrow n$ is odd

Indirectly. Suppose n is even. Then n=2k for some $k \in \mathbb{Z}$. Therefore $n^3=(2k)^3=8k^3=2(4k^3)$ and $4k^3\in\mathbb{Z}$. Thus n^3 is even.

2) n is odd $\rightarrow n^3$ is odd

Suppose *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Therefore $n^3 = (2k + 1)^2 = 8k^3 + 6k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1$ and $4k^3 + 6k^2 + 3k \in \mathbb{Z}$. Thus n^3 is odd.

Problem 2:

Prove that for every two integers m, n, m + n is even if and only if $3m^2 + n^3$ is even.

Proof. 1) m + n is even $\rightarrow 3m^2 + n^3$ is even.

(Case 1) Suppose m is even and n is even.

Then it could be said that m=2k and n=2j for some $k,j \in \mathbb{Z}$. Then $3(2k)^2+(2j)^3$ and then 12k+8j which can be written: 2(6k+4j) which is even.

(Case 2) Suppose m is odd and n is odd.

Then it could be said that m = 2k + 1 and n = 2j + 1 for some $k, j \in \mathbb{Z}$. Then $3(2k+1)^2 + (2j+1)^3$ and then $12k^2 + 12k + 8j^3 + 12j^2 + 6j + 4$ which can be written: $2(6k^2 + 6k + 4j^3 + 6j^2 + 3j + 2)$ which is even.

2) $3m^2 + n^3$ is even $\rightarrow m + n$ is even.

Indirectly. Suppose m + n is odd.

(Case 1) Suppose m is odd and n is even

Then it could be said that m = 2k + 1 and n = 2j for some $k, j \in \mathbb{Z}$. Then $3(2k+1)^2 + (2j)^3$ and then $12k^2 + 12k + 8j^3 + 3$ which can be written: $2(6k^2 + 6k + 4j^3 + 1) + 1$ which is odd.

(Case 2) Suppose m is even and n is odd

Then it could be said that m=2k and n=2j+1 for some $k,j\in\mathbb{Z}$. Then $3(2k)^2+(2j+1)^3$ and then $12k^2+12k+8j^3+12j^2+6j+1$ which can be written:

 $2(6k^2 + 6k + 4j^3 + 6j^2 + 3j) + 1$ which is odd.

Problem 3:

Prove that for every $x \in \mathbb{R}$, |x-4| > 4, then $x^2 > 8x$.

Proof. Indirectly. Suppose $x^2 \le 8x$. This implies $0 \le x^2 \le 8x$ and by dividing by x, the equation becomes: $0 \le x \le 8$ so that adding -4 to all sides gives $-4 \le x - 4 \le 4$ which is the same as $|x - 4| \le 4$.

Problem 4:

(a) Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$

Proof. Suppose $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$ then $x \subseteq A$ or $x \subseteq B$. Which can be written as $x \subseteq A \cup B$ which implies $x \in \mathcal{P}(A \cup B)$. Thus, since $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$ and $x \in \mathcal{P}(A \cup B)$, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

(b) Prove that $P(A \cup B) = P(A) \cup P(B)$ if and only if either $A \subseteq B$ or $B \subseteq A$.

Proof. Indirectly. Suppose $A \nsubseteq B$ and $B \nsubseteq A$. There there exists $a \in A \setminus B$ and $b \in B \setminus A$.

Let $x = \{a, b\}.$

- Then $x \subseteq A \cup B$ and so $x \in \mathcal{P}(A \cup B)$.
- Then $x \notin \mathcal{P}(A)$ because $b \in B \setminus A$.
- Then $x \notin \mathcal{P}(B)$ because $a \in A \setminus B$.
- Thus $x \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.

Thus $\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$.

Problem 5:

Let A, B be sets. Prove that $A \setminus (A \setminus B) = A \cap B$.

Proof. Suppose $y,x\in A$ and $z,x\in B$ but $y\notin B$ and $z\notin A$. Then $x\in (A\setminus (A\setminus B))$ but $y,z\notin (A\setminus (A\setminus B))$. So it can be said that for every element in A that is not in B will not be in $A\setminus (A\setminus B)$ and vice versa for B, but for every element in both A and B, it will also be in $A\setminus (A\setminus B)$ which fullfils the definition of $A\cap B$. Thus $A\setminus (A\setminus B)=A\cap B$.

Problem 6:

Prove that for any integers a, b, c if a|b or a|c then $a|(c \cdot b)$.

Proof. 1) Suppose $a|b \to a|(c \cdot b)$.

Then a(i) = b for some $i \in \mathbb{Z}$. Then suppose each side is multiplied by some integer c such that $a(i)c = (b \cdot c)$. Since $i, c \in \mathbb{Z}$, it can be written: $a|(b \cdot c)$. So if a|b then $a|(c \cdot b)$.

2) Suppose $a|c \to a|(c \cdot b)$.

Then a(j) = c for some $j \in \mathbb{Z}$. Then suppose each side is multiplied by some integer b such that $a(j)b = (b \cdot c)$. Since $j, c \in \mathbb{Z}$, it can be written: $a|(b \cdot c)$. So if a|c then $a|(c \cdot b)$.

3) Suppose a|b and $a|c \rightarrow a|(c \cdot b)$

Then a(i) = b and a(j) = c for some $i, j \in \mathbb{Z}$. Then $b \cdot c = a(i) \cdot a(j)$ and so $b \cdot c = a^2 i j$. Since i, j are integers, $a^2 | (b \cdot c)$ which implies $a | (b \cdot c)$. So if a | b or a | c then $a | (c \cdot b)$.

Problem 7:

Prove that for every integer n, 15|n if and only if 3|n and 5|n.

Proof. 1) $15|n \rightarrow 3|n$ and 5|n

Suppose 15|n then 15(k)=n for some $k\in\mathbb{Z}$. And since $15=3\cdot 5$, then 3(5)k=n, since 5k is an integer it can be substitute for $j\in\mathbb{Z}$. Then 3j=n which implies 3|n. Subsequently, 3k can be substituted for $i\in\mathbb{Z}$ since 3k is an integer, thus giving 5i=n which implies 5|n. So if 15|n then 3|n and 5|n.

2) 3|n and $5|n \rightarrow 15|n$

Suppose 3|n and 5|n then 3j=n and 5i=n for some $j,i\in\mathbb{Z}$. Multiply 3j=n and 5i=n together to get $15ij=n^2$. Since $j,i\in\mathbb{Z}$ they can be substituted for $k\in\mathbb{Z}$ to get $15k=n^2$ which is $15|n^2$ which implies 15|n. And so if 3|n and 5|n then 15|n.

Problem 8:

Show that $\sqrt{3}$ is irrational.

Proof. By contradiction.

Suppose $\sqrt{3}$ is rational. Then $\sqrt{3} = \frac{p}{q}$ where p and q are integers, share no common factors, and $q \neq 0$. Then $3 = \frac{p^2}{q^2}$ and so $3q^2 = p^2$. So $3|p^2$ which implies 3|p and 3k = p where $k \in \mathbb{Z}$ Thus $3q^2 = (3k)^2$ then $q^2 = 3k$ so $3|q^2$ which implies 3|q. And so q = 3j for some $j \in \mathbb{Z}$.

This contradicts our statement that p and q share no common factors. So, there are no integers p and q such that $\sqrt{3}$ is rational by contradiction. Thus, $\sqrt{3}$ must be irrational.

Problem 9:

Let U be a nonempty set. Show that there is a unique set $A \in \mathcal{P}(U)$ such that for every set $B \in \mathcal{P}(U)$, $A \cap B = B$.

Proof. Existence: Since both $A, B \in \mathcal{P}(U)$, it can be stated that $\forall B \ (U \cap B = B)$, so U has the required property.

Uniqueness: Suppose there are arbitrary sets $C, D \in \mathcal{P}(U)$ and $\forall B \ (C \cap B = B)$ and $\forall B \ (D \cap B = B)$. Applying the first assumption to D it is seen that $C \cap D = D$, and applying the second to C, we get $D \cap C = C$. Clearly, $C \cap D = D \cap C$, so C = D.

Problem 10:

Prove that if $\lim_{x\to a} f(x) = C$ and $\lim_{x\to a} g(x) = D$, then $\lim_{x\to a} (f(x) + g(x)) = C + D$.

Proof. Suppose $\lim_{x\to a} f(x) = C$ and $\lim_{x\to a} g(x) = D$.

Let $\epsilon_1 > 0$ and $\delta_1 > 0$. Let $x \in \mathbb{R}$ and if $0 < |x - a| < \delta_1$ then $|f(x) - C| < \epsilon_1$. Let $\epsilon_2 > 0$ and $\delta_2 > 0$. Let $x \in \mathbb{R}$ and if $0 < |x - a| < \delta_2$ then $|g(x) - D| < \epsilon_2$. Consider ϵ_1 and ϵ_2 to be $\frac{\epsilon}{2}$ and δ to be smaller than δ_1 and δ_2 so that if $0 < |x - a| < \delta$ then $|f(x) - C| < \frac{\epsilon}{2}$ and if $0 < |x - a| < \delta$ then $|g(x) - D| < \frac{\epsilon}{2}$.

After adding both inequalities together, if $0 < |x - a| < \delta$ then $|f(x) - C| + |g(x) - D| < 2 \cdot \frac{\epsilon}{2} = \epsilon$.

Because |f(x) - C| and $|g(x) - D| \ge |f(x) - C + g(x) - D|$, it can be written: if $0 < |x - a| < \delta$ then $|f(x) - C + g(x) - D| \le |f(x) - C| + |g(x) - D| < \epsilon$, and so if $0 < |x - a| < \delta$ then $|f(x) - C + g(x) - D| < \epsilon$.

Then if $0 < |x-a| < \delta$ then $|(f(x)+g(x))-(D+C)| < \epsilon$ which is the definition of $\lim_{x\to a} (f(x)+g(x)) = C+D$. So if $\lim_{x\to a} f(x) = C$ and $\lim_{x\to a} g(x) = D$, then $\lim_{x\to a} (f(x)+g(x)) = C+D$.