

709.028

Non-invasive BCIs KU

Exercise #1

Jonas Ditz
Institut of Neural Engineering / BCI Lab
14.03.2019

Introduction to Matlab

BCI Scheme

Spatial filter

BCI Scheme

P300

Positive peak 300ms after an odd rare target stimulus

Here: Beeps at a specified frequency interrupted by rare beeps with a higher frequency

P300: Target vs non-target

P300: Signal-tao-Noise ratio (SNR)

$$SNR[dB] = 10 \cdot log_{10}(N \cdot \frac{P_S}{P_N})$$

$$P_S \sim 4.3 \; \mu \text{W}$$
 $P_N \sim 75 \; \mu \text{W}$ $N = 1$

$$SNR[dB] \sim -12 dB$$

$$P_S \sim 4.3 \; \mu \text{W}$$
 $P_N \sim 75 \; \mu \text{W}$ $N = 400$

$$SNR[dB] \sim 14 dB$$

