

Plano de Ensino

- Apresentação e Revisão
- Introdução à Teoria da Computação.
- Conceitos Básicos de Teoria da Computação.
- Programas.
- Máquinas e Computações.
- Modelos Computacionais.
- Máquinas Universais.
- Tese de Church.
- Máquina de Turing.

Livro-Texto

- Bibliografia Básica:
 - » LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elementos da Teoria da Computação. 2ª ed. Porto Alegre: Bookman, 2000.
 - » SIPSER, Michael. Introdução à Teoria da Computação. 2ª ed. São Paulo: Cengage Learning, 2011.

3. Máquinas - Introdução

- Uma máquina deve suprir todas as informações necessárias para que a computação de um programa possa ser descrita.
- A máquina deve suprir o significados dos identificadores de operações e testes.
- Cada identificador deve estar associado a uma transformação na estrutura de memória e a uma função verdade respectivamente. Note-se:
 - » Nem todo identificador de operação ou teste é definido em uma máquina.
 - » Para cada identificador de operação ou teste definido em uma máquina existe somente uma função associada.

3. Máquinas - Introdução

- Definição: uma Máquina M é uma 7-upla
 M=(V, X, Y, π_X, π_Y, Π_O, Π_T)
 - » Onde:
 - V: conjunto de valores de Memória;
 - X: conjunto de valores de Entrada;
 - Y: conjunto de valores de Saída;
 - π_X: função de entrada tal que: π_X: X→V;
 - π_{Y} : função de saída tal que: π_{Y} : V \rightarrow Y;
 - Π_o : conjunto de interpretações de operações onde, para cada identificador de operação F interpretado por M, existe uma única função: π_Y : V \Rightarrow V em Π_F ;
 - Π_T: conjunto de interpretações de testes tal que, para cada identificador de teste T interpretado por M, existe uma única função: π_T: V→{verdadeiro, falso} em Π_T.

3. Máquinas - Introdução

- Máquina de 1 registrador M_{1reg} → suponha uma especificação de uma máquina com 1 registrador a o qual assume valores em N, com duas operações e um teste, como segue:
 - » Subtração de 1 em a, se a > 0;
 - » Adição de 1 em a;
 - » Teste se a é zero.

3. Máquinas - Introdução

Anhanguera

■ Máquina M_{1reg}

$\mathbf{M}_{\text{lreg}} = \; (\mathbb{N}, \mathbb{N}, \mathbb{N}, \text{id}_{\mathbb{N}}, \text{id}_{\mathbb{N}}, \{\text{ad}, \text{sub}\}, \{\text{zero}\})$

- N: corresponde ao conjunto de valores de memória, e/s;
- id_N: N → N é a função de entrada e saída;
- ad: N → N é a interpretação tal que, ∀n ∈ N, ad(n)=n+1;
- sub: $\mathbb{N} \to \mathbb{N}$ é a interpretação tal que, $\forall n \in \mathbb{N}$:
- $sub(n)=n-1, n\neq 0; sub(n)=0, se n=0;$
- **zero:** $\mathbb{N} \to \{\text{verdadeiro, falso}\}\ \acute{\text{e}}\ a\ \text{interpretação tal que, } \forall n \in \mathbb{N}:$ $zero(n)=verdadeiro, n=0; zero(n)=falso, se n\neq 0;$

3. Máquinas - Introdução

- Máquina de 2 registradores $M_{2\text{reg}}$ → suponha uma especificação de uma máquina com 2 registradores a e b os quais assumem valores em ℕ, com duas operações e um teste, como segue:
 - » Subtração de 1 em a, se a > 0;
 - » Adição de 1 em b;
 - » Teste se a é zero.

3. Máquinas - Introdução

■ Máquina **M**_{2reg}

$\mathbf{M}_{2\text{reg}} = (\mathbb{N}^2, \mathbb{N}, \mathbb{N}, \text{armazena_a, retorna_b},$ {subtrai_a, adiciona_b}, {a_zero})

- * N^2 : corresponde ao conjunto de valores de memória * N: corresponde aos conjuntos de valores de entrada e
- saída, simultaneamente.
- **armazena_a: $\mathbb{N}^{3}\mathbb{N}^{2}$ é a função de entrada tal que, $\forall n \in \mathbb{N}$: armazena_a(n)=(n,0).

 * retorna_b: $\mathbb{N}^{2} \Rightarrow \mathbb{N}$ é a função de saída tal que, $\forall (n,m) \in \mathbb{N}^{2}$
- N²: retorna_b (n,m)=(m). subtrai_a: N² \rightarrow N² \in interpretação tal que, $\forall (n,m) \in \mathbb{N}^2$: subtrai_a (n,m)=(n-1,m), se n $\neq 0$; subtrai_a (n,m)=(0,m),
- adiciona_b: $\mathbb{N}^2 \rightarrow \mathbb{N}^2$ é interpretação tal que, $\forall (n,m) \in$
- \mathbb{N}^2 : adiciona_b(n,m)={n,m+1}. a_zero: $\mathbb{N}^2 \to \{\text{verdadeiro, falso}\} \in \text{interpretação tal}$ que, $\forall (n,m) \in \mathbb{N}^2$: a_zero(n,m)=verdadeiro, se n=0; $a_zero(n,m)=falso, se n\neq 0.$

3. Máquinas – Computações	_A
 Uma computação é resumidamente um histórico do funcionamento da máquina para o programa, considerando um valor inicial. A computação pode ser realizada por um: Programa monolítico; Programa iterativo; Programa recursivo. 	Arhänguera
3. Máquinas – Computações	Anlhanguera
 Definição 1: Sejam M=(V, X, Y, π_X, π_Y, Π_O, Π_T) uma máquina e P=(I, r) um programa monolítico para M o L é o seu correspondente conjunto de rótulos. Uma Computação do Programa Monolítico P na Máquina uma cadeia (finita ou infinita) de pares L X V:	Pe v ₀
3. Máquinas – Computações	Anhanguera
 a) Operação: » Se s_k é o rótulo de uma operação da forma: s_k: faça F vá_para r' então (s_{k+1}, v_{k+1})=(r', π_F(v_k)) é par subsequente de (s_k, v_k) na cadeia; » Se s_k é o rótulo de uma operação da forma: s_k: faça ✓ vá_para r' então (s_{k+1}, v_{k+1})=(r', v_k) é par subsequente de (s_k, v_k) na cadeia. b) Teste: » Se s_k é o rótulo de um teste da forma: s_k: se T então vá_para r' senão vá_para r" então (s_{k+1}, v_k) par subsequente de (s_k, v_k) na cadeia sendo que v_{k+1}=v_k e: · s_{k+1} = r' se π_F(v_k)=verdadeiro · s_{k+1} = r'' se π_F(v_k)= falso 	

3. Máquinas - Computações

- Note-se:
 - » Para um dado valor inicial de memória, a correspondente cadeia de computação é única, ou seja, é determinística;
 - » Um teste e a operação vazia não alteram o valor corrente da memória;
 - » Em uma computação infinita, rótulo algum da cadeia é final.

3. Máquinas - Computações

 Exemplo: computação finita de programa monolítico P_{mon_ab} (abaixo) na máquina de 2 registradores M_{2reg} (anterior) e v₀=(3,0).

se a_zero então vá_para 9 senão vá_para 2

```
2: faça subtrai a vá para 3
3: faça adiciona b vá para 1

(1, (3, 0)) (1, (2, 1)) (1, (1, 2)) (1, (0, 3)) (2, (3, 0)) (2, (2, 1)) (2, (1, 2)) (9, (0, 3)) (3, (2, 0)) (3, (1, 1)) (3, (0, 2))
```

3. Máquinas - Computações

 Exemplo: computação infinita de programa monolítico P_{mon_inf} (abaixo) na máquina de 2 registradores M_{2reg} (anterior) e v₀=(3,0).

3. Máquinas - Computações Definição 2: Sejam M=(V, X, Y, π_X, π_Y, Π_O, Π_T) uma máquina e P um programa iterativo. Uma computação do programa iterativo P na máquina M é uma cadeia de elementos de I x V: $(i_0, v_0) (i_1, v_1)(i_2, v_2)...$ » Onde l é um conjunto de programas iterativos, $i_0 = P; \checkmark$ e v_0 é o conteúdo inicial da memória de M. • Essa cadeia indica a sequência de estados que serão assumidos pela máquina M durante a execução do programa P. Uma computação pode ser finita ou infinita. 3. Máquinas - Computações • Os pares (i_{k+1}, v_{k+1}) , k > 0, são obtidos a partir dos pares (i_k, v_k) , a partir da análise do tipo de instrução inicial de ■ Considere que U, W e Z são programa iterativos, F é identificador de operação e T é identificador de teste. a computação termina com valor v_k na memória. » i_k = F; U • $(i_{k+1}, \ v_{k+1}) = (U, \ \pi_F(v_k))$ 3. Máquinas - Computações » i_k = se T então U senão W;Z • se $\pi_T(v_k) = \text{verdadeiro},$ $(i_{k+1}, v_{k+1}) = (U; Z, v_k)$ • se $\pi_T(v_k)$ = falso, $(i_{k+1}, v_{k+1}) = (W; Z, v_k)$ » i_k = enquanto T faça U; W se π_T(v_k) = verdadeiro, $(i_{k+1}, v_{k+1}) = (U; enquanto T faça U; W, v_k)$

 se π_T(v_k) = falso, (i_{k+1}, v_{k+1}) = (W, v_k)
 i_k = até T faça U; W
 se π_T(v_k) = falso,

> • se $\pi_T(v_k) = \text{verdadeiro},$ $(i_{k+1}, v_{k+1}) = (W, v_k)$

 $(i_{k+1}, v_{k+1}) = (U; até T faça U; W, v_k)$

3. Máquinas - Computações

• Exemplo: computação finita de programa iterativo P_{iter zera} (abaixo) na máquina de 2 registradores M_{2reg} (anterior) e $v_0 = (2,0)$.

faça (subtrai_a; adiciona_b)

(até a_zero faça(subtrai_a; adiciona_b); √, (2,0)) (subtrai_a; adiciona_b; até a_zero faça(subtrai_a; adiciona_b); ✓, (2,0)) (adiciona_b; até a_zero faça(subtrai_a; adiciona_b); ✓, (1,0)) (até a_zero faça(subtrai_a; adiciona_b); ✓, (1,1)) (subtrai_a; adiciona_b; até a_zero faça(subtrai_a; adiciona_b); ✓, (1,1)) (adiciona_b; até a_zero faça(subtrai_a; adiciona_b); ✓, (0,1)) (até a_zero faça(subtrai_a; adiciona_b); ✓, (0,2)) (**√**, (0,2))

3. Máquinas - Computações

■ **Definição 3:** Sejam M=(V, X, Y, π_X , π_Y , Π_O , Π_T) uma Máquina e P um Programa Recursivo para M tal que:

P é E₀ onde R₁ def E₁, R₂ def E₂,...,R_n def E_n

 Uma Computação do Programa Recursivo P na Máquina M é uma cadeia de pares da forma:

$$(D_0, v_0)(D_1, v_1)(D_2, v_2)...$$

- » Onde:
 - (D₀, v₀) é tal que D₀ = E₀; ✓ e v₀ é o valor inicial de memória;
 - Para cada par (D_k, v_k) da cadeia, onde k ∈ {0, 1, 2, ...}, tem-se que:

3. Máquinas - Computações

- a) Caso 1. Se D_k é uma expressão de sub-rotina da forma:
- $\begin{array}{c} \textbf{D}_{k} = (\textbf{\checkmark}; \textbf{C}) \\ \text{$^{\circ}$ então } (\textbf{D}_{k+1}, \textbf{v}_{k+1}) = (\textbf{C}, \textbf{v}_{k}) \\ \textbf{b)} \quad \textbf{Caso 2. Se } \textbf{D}_{k} \text{ \'e uma expressão de sub-rotina da forma:} \end{array}$ $D_k = F;C$
- » então $(D_{k+1}, v_{k+1}) = (C, p_F(v_k))$ Caso 3. Se D_k é uma expressão de sub-rotina da forma: $D_k = R_i;C$
- » então $(D_{k+1}, v_{k+1}) = (E_i; C, v_k)$ d) Caso 4. Se D_k é uma expressão de sub-rotina da forma: $D_k=(C_1;C_2);C$
- » então $(D_{k+1}, V_{k+1}) = (C_1; (C_2; C), v_k)$ e) Caso 5. Se D_k é uma expressão de sub-rotina da forma:
 - $D_k = E_k = (se T então C_1 senão C_2);C$
 - » então $(D_{k+1}, v_{k+1}) = (?, v_k)$ $D_{k+1} = C_1; C \rightarrow \text{se } p_T(v_k) = \text{verdadeiro}$
 - $D_{k+1} = C_2; C \rightarrow \text{se } p_T(v_k) = \text{falso}$

