BLOCKCHAINS ARCHITECTURE, DESIGN AND USE CASES

SANDIP CHAKRABORTY
COMPUTER SCIENCE AND ENGINEERING,
IIT KHARAGPUR

PRAVEEN JAYACHANDRAN

IBM RESEARCH,

INDIA

Blockchain Consensus Protocols

- Permissionless Blockchain
 - Proof of Work (PoW)
 - Proof of State (PoS)
 - Proof of Burn (PoB)

Proof of Elapsed Time (PoET)

Image Source: https://www.ictworks.org/eight-practical-blockchain-use-cases/

Blockchain Consensus Protocols

- Permissioned Blockchain
 - BFT
 - PBFT
 - RBFT

Image Source: https://www.challenge.org/demo/blockchain-challenge-2/

PoW vs PBFT

- PoW
 - Open environment, works over a large number of nodes
 - Scalable in terms of number of nodes
 - Transaction throughput is low

- PBFT
 - Closed, not scalable in terms od number of nodes
 - High transaction throughput

PoW Scalability

- Two magic numbers in PoW
 - Block frequency 10 minutes
 - Block size 1 MB

Transaction throughput - 7 transactions per second (with 200-250 bytes transactions)

Performance vs Scalability for PoW and BFT

Vukolić, Marko. "The quest for scalable blockchain fabric: Proofof-work vs. BFT replication." International Workshop on Open Problems in Network Security. Springer, Cham, 2015.

node scalability

PoW vs PBFT - Consensus Finality

• If a correct node p appends block b to its copy of blockchain before appending block b', then no correct node q appends block b' before b to its copy of the blockchain (Vukolic, 2015)

- PoW is a randomized protocol does not ensure consensus finality
 - Remember the forks in Bitcoin blockchain

BFT protocols ensure total ordering of transactions - ensures consensus finality

PoW Consensus vs BFT Consensus

	PoW consensus	BFT consensus
Node identity	open,	permissioned, nodes need
management	entirely decentralized	to know IDs of all other nodes
Consensus finality	no	yes
Scalability	excellent	limited, not well explored
(no. of nodes)	(thousands of nodes)	(tested only up to $n \leq 20$ nodes)
Scalability	excellent	excellent
(no. of clients)	(thousands of clients)	(thousands of clients)
Performance	limited	excellent
(throughput)	(due to possible of chain forks)	(tens of thousands tx/sec)
Performance	high latency	excellent
(latency)	(due to multi-block confirmations)	(matches network latency)
Power	very poor	good
consumption	(PoW wastes energy)	
Tolerated power	$\leq 25\%$ computing power	$\leq 33\%$ voting power
of an adversary		
Network synchrony	physical clock timestamps	none for consensus safety
assumptions	(e.g., for block validity)	(synchrony needed for liveness)
Correctness	no	yes
proofs		

Vukolić, Marko. "The quest for scalable blockchain fabric: Proofof-work vs. BFT replication." International Workshop on Open Problems in Network Security. Springer, Cham, 2015.

Bitcoin-NG

Eyal, I., Gencer, A. E., Sirer, E. G., & Van Renesse, R. (2016, March). **Bitcoin-NG: A Scalable Blockchain Protocol**. In *NSDI 2016*

Bitcoin-NG

Issues with Nakamoto Consensus (PoW)

Transaction scalability

 Block frequency of 10 minutes and block size of 1 MB during mining reduces the transactions supported per second

Issues with Forks

- Prevents consensus finality
- Makes the system unfair a miner with poor connectivity has always in a disadvantageous position

Bitcoin-NG: A Scalable PoW Protocol

 Bitcoin - think of the winning miner as the leader - the leader serializes the transactions and include a new block in the blockchain

- Decouple Bitcoin's blockchain operations into two planes
 - Leader election: Use PoW to randomly select a leader (an infrequent operation)
 - Transaction Serialization: The leader serializes the transaction until a new leader is elected

Bitcoin vs Bitcoin-NG

Image Source: http://hackingdistributed.com/2015/10/14/bitcoin-ng/

Bitcoin-NG: Key Blocks

Key blocks are used to choose a leader (similar to Bitcoin)

- A key block contains
 - The reference to the previous block
 - The current Unix time
 - A coinbase transaction to pay of the reward
 - A target hash value
 - A nonce field

Bitcoin-NG: Key Blocks

 For a key block to be valid, the cryptographic hash of its header must be smaller than the target value.

- The key block also contains a public key (so the name, key block)
 - Used in subsequent microblocks

Bitcoin-NG: Key Blocks

- Key blocks are generated based on regular Bitcoin mining procedure
 - Find out the nonce such that the block hash is less than the target value

 Key blocks are generated infrequently - the intervals between two key blocks is exponentially distributed

Bitcoin-NG: Microblocks

Once a node generates a key block, it becomes the leader

- As a leader, the node is allowed to generate microblocks
 - Microblocks are generates at a set rate smaller than a predefined maximum
 - The rate is much higher than the key block generation rate

Bitcoin-NG: Microblocks

- A microblock contains
 - Ledger entries
 - Header
 - Reference to the previous block
 - The current Unix time
 - A cryptographic hash of the ledger entries (Markle root)
 - A cryptographic signature of the header
- The signature uses private key corresponding to the key block public key

Bitcoin-NG: Confirmation Time

- When a miner generates a key block, he may not have heard of all microblocks generated by the previous leader
 - Common if microblock generation is frequent
 - May result in microblock fork

Bitcoin-NG: Confirmation Time

- A node may hear a forked microblock (A₃) but not the new key block (B)
 - This can be prevented by ensuring the reception of the key block
 - When a node sees a microblock, it waits for propagation time of the network, to make sure it is not pruned by a new key block

Bitcoin vs Bitcoin-NG

Bitcoin vs Bitcoin-NG

Performance vs Scalability for PoW and BFT

Vukolić, Marko. "The quest for scalable blockchain fabric: Proofof-work vs. BFT replication." International Workshop on Open Problems in Network Security. Springer, Cham, 2015.

node scalability

